Tema 2. Integrales Impropias

[versión 1.0, compilado el 21/7/2016]

Contenidos

1	Integrales Impropias Elementales			
	1.1	Integr	ales Propias	2
	1.2	Integr	ales Impropias Básicas	6
	1.3		as Variantes	9
	1.4	El Val	or Principal de Cauchy	14
2	Criterios de Convergencia			
	2.1	Criter	ios para Primera Especie	17
		2.1.1	Condición Necesaria	17
		2.1.2	p-Integrales de Primera especie	19
		2.1.3	Comparación Directa	21
		2.1.4	Criterio del límite	25
		2.1.5	Convergencia Absoluta	29
		2.1.6	Criterio de Dirichlet	30
	2.2	Criter	ios para Segunda Especie	32
		2.2.1	p-Integrales de segunda especie	32
		2.2.2	Comparación Directa	34
		2.2.3	Criterio del límite	37
		2.2.4	Convergencia Absoluta	40
3	Ana	álisis d	e integrales impropias usando desarrollos limitados	42
\mathbf{R}	Referencias			

Integrales Impropias Elementales 1

Integrales Propias 1.1

Notas 1.1 (Integral Propia). Recordemos que

1. Una integral de la forma

$$I = \int_{a}^{b} f(x) \, dx$$

es llamada **integral propia** si a y b son números finitos y si la función f(x) está definida, es acotada y es continua o continua a trozos en el intervalo [a, b].

☐ Función acotada y continua:

2. Cuando una integral I es propia, el valor numérico de I existe y es finito, interpretado geométricamente como el área entre la curva generada por f y el eje-x, siendo área negativa para los valores bajo la línea horizontal y = 0.

3. [Segundo Teorema Fundamental del Cálculo]

Si para todo $x \in [a, b]$, existe F(x) tal que F'(x) = f(x) y f(x) continua a trozos y acotada en [a, b]entonces

$$I = \int_{a}^{b} f(x) dx = \int_{a}^{b} F'(x) dx = F(x) \Big|_{a}^{b} = F(b) - F(a)$$

4. [Aditividad] Si $\mathcal{I}_1, \mathcal{I}_2, \dots \mathcal{I}_m$ son intervalos tales que

$$[a,b] = \mathcal{I}_1 \cup \mathcal{I}_2 \cup \dots \mathcal{I}_m = \bigcup_{n=1}^m \mathcal{I}_n$$

entonces

$$\int_{a}^{b} f(x) \, dx = \int_{\mathcal{I}_{1}} f(x) \, dx + \int_{\mathcal{I}_{2}} f(x) \, dx + \dots + \int_{\mathcal{I}_{m}} f(x) \, dx = \sum_{n=1}^{m} \int_{\mathcal{I}_{n}} f(x) \, dx$$

donde

$$\int_{\mathcal{I}_n} f(x) dx = \int_{x_n}^{x_{n+1}} f(x) dx \quad \text{si } \mathcal{I}_n = [x_n, x_{n+1}]$$

5. La fórmula anterior se debe usar para calcular I cuando f(x) es continua a trozos en [a, b] de manera tal que f(x) es continua y acotada dentro de los intervalos $\mathcal{I}_1, \mathcal{I}_2, \dots \mathcal{I}_m$.

Nota 1.2 (Discontinuidad Evitable).

Sea $a \in \mathcal{D} \subseteq \mathbb{R}$ y sea f(x) una función continua en el conjunto $\mathcal{D} \setminus \{a\} = \{x \in \mathcal{D}/x \neq a\}$. Se dice que f(x) posee una **Discontinuidad Evitable** en el punto x = a, si existe y es finito el límite

$$L = \lim_{x \to a} f(x)$$

En tal caso, la función

$$\hat{f}(x) = \begin{cases} f(x) &, \text{ si } x \neq a \\ L &, \text{ si } x = a \end{cases}$$

es una función continua y acotada en el conjunto \mathcal{D} .

En tal caso consideraremos a la integral

$$I = \int_a^b f(x) dx = \int_a^b \hat{f}(x) dx$$

como una integral propia, y como consecuencia el valor numérico de I existe y es finito.

Ejemplo 1.1. En la integral

$$I = \int_0^2 \frac{\ln(1+x)}{\sqrt{x}} \, dx$$

el integrando $f(x) = \frac{\ln(1+x)}{\sqrt{x}}$, es discontinua en el punto x = 0, pero

$$L = \lim_{x \to 0^+} \frac{\ln(1+x)}{\sqrt{x}} \stackrel{L'H}{=} \lim_{x \to 0^+} \frac{\frac{1}{1+x}}{\frac{1}{2\sqrt{x}}} = \lim_{x \to 0^+} \frac{\sqrt{x}}{2(1+x)} = 0$$

existe y es finito, por lo que la discontinuidad en x=0 es evitable por la derecha.

(Por la izquierda la función se indefine)

Como consecuencia podemos considerar esta integral como **propia** pues la discontinuidad es evitable y como consecuencia f(x) es acotada en el intervalo de integración.

En este caso, integrando por partes

$$\begin{split} I &= 2\sqrt{x} \, \ln(1+x) \bigg|_0^2 - \int_0^2 \frac{2\sqrt{x}}{1+x} \, dx \\ &= 2\sqrt{2} \, \ln(3) - 4 \int_0^{\sqrt{2}} \frac{u^2}{1+u^2} \, du \quad \text{, al hacer } x = u^2 \end{split}$$

Como

$$\frac{u^2}{1+u^2} = \frac{1+u^2-1}{1+u^2} = 1 - \frac{1}{1+u^2}$$

entonces

$$I = 2\sqrt{2} \ln(3) - 4u \Big|_{0}^{\sqrt{2}} + 4 \arctan(u) \Big|_{0}^{\sqrt{2}}$$
$$= 2\sqrt{2} \ln(3) - 4\sqrt{2} + 4 \arctan(\sqrt{2})$$

Nota 1.3. En algunas ocasiones, nos encontraremos funciones f(x) que no poseen primitiva elemental, pero que son continuas a trozos y acotadas en el intervalo de integración.

En estos casos podemos asegurar que el valor numérico de la integral existe y es finito.

Ejemplo 1.2. En la integral

$$I = \int_0^{1/3} \frac{\ln(1+x)}{x} \, dx$$

el integrando $f(x) = \frac{\ln(1+x)}{x}$, es discontinua en el punto x = 0, pero

$$L = \lim_{x \to 0} \frac{\ln(1+x)}{\sqrt{x}} \stackrel{L'H}{=} \lim_{x \to 0} \frac{(1+x)^{-1}}{1} = 1$$

existe y es finito, por lo que la discontinuidad en x = 0 es evitable.

Como consecuencia el valor numérico de la integral I existe y es finito , pero la función f(x) no posee primitiva elemental.

Usando la fórmula de Taylor

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \frac{x^6}{6} + \frac{x^7}{7} - \frac{x^8}{8(1+\theta)^8} \quad , \ \theta \in V(0,x)$$

Obtenemos la aproximación $I \approx 0.309\,035\,013\,639$, con un error :

$$\varepsilon = \frac{1}{8^2 \cdot 3^8 \cdot |1 + \varphi|^8} \quad , \ \varphi \in \left[0, \frac{1}{3}\right]$$

$$\leq \frac{1}{419904}$$

$$< 0.000003$$

Tenemos que $I \in [0.309032, 0.309039]$.

Nota: Una aproximación más precisa sería $I \approx 0.309\,033\,126\,487$.

Nota 1.4. Aunque el integrando posea una discontinuidad evitable en el intervalo de integración, a veces es necesario el cálculo de un límite:

• Por ejemplo, si f(x) es continua en]a,b] y es tal que el límite $L = \lim_{x \to a^+} f(x)$ existe y es finito, entonces existe y es finita la integral

$$I = \int_a^b f(x) dx = \lim_{z \to a^+} \int_z^b f(x) dx$$

Si existe F(x) tal que F'(x) = f(x), entonces el valor numérico de la integral es

$$I = F(b) - \lim_{z \to a^+} F(z)$$

• De la misma manera, si f(x) es continua en [a,b[y es tal que el límite $L=\lim_{x\to b^-}f(x)$ existe y es finito, entonces existe y es finita la integral

$$I = \int_{a}^{b} f(x) dx = \lim_{z \to b^{-}} \int_{a}^{z} f(x) dx$$

Si existe F(x) tal que F'(x) = f(x), entonces el valor numérico de la integral es

$$I = \lim_{z \to b^{-}} F(z) - F(a)$$

Ejemplo 1.3. Considere la integral

$$I = \int_0^\pi \frac{x \cos(x) - \sin(x)}{x^2} dx$$

El integrando es discontinuo en x=0, pero el límite cuando $x\to 0^+$ es

$$\lim_{x \to 0+} \frac{x \cos(x) - \sin(x)}{x^2} \stackrel{L'H}{=} \lim_{x \to 0+} \frac{\cos(x) - x \sin(x) - \cos(x)}{2x} = \frac{\sin(0)}{2} = 0$$

por lo tanto la discontinuidad es evitable, y la integral tiene valor numérico finito. Al calcular:

$$I = \int_0^{\pi} \frac{1}{x^2} \cdot [x \cos(x) - \sin(x)] dx$$

$$= \frac{-1}{x} \cdot [x \cos(x) - \sin(x)] \Big|_{0+}^{\pi} - \int_0^{\pi} \frac{-1}{x} \cdot [\cos(x) - x \sin(x) - \cos(x)] dx$$

$$= \left[-\cos(x) + \frac{\sin(x)}{x} \right] \Big|_{0+}^{\pi} - \int_0^{\pi} \frac{-1}{x} \cdot [\cos(x) - x \sin(x) - \cos(x)] dx$$

En este paso indicamos que x se evalúa desde $x = 0^+$, para hacer énfasis en la necesidad de plantear y calcular un límite.

Entonces:

$$I = \left[-\cos(\pi) + \frac{\sin(\pi)}{\pi} \right] - \lim_{x \to 0^+} \left[-\cos(x) + \frac{\sin(x)}{x} \right] - \int_0^{\pi} \sin(x) \, dx$$
$$= \left[1 + 0 \right] - \left[-1 + 1 \right] + \cos(x) \Big|_0^{\pi}$$
$$= 1 - 0 + (-1) - 1$$
$$= -1$$

1.2 Integrales Impropias Básicas

Definición 1.1 (Integral Impropia). La integral de una función f(x) es llamada **Integral Impropia** si el intervalo de integración es infinito o si f(x) tiene asíntotas verticales en el intervalo de integración o en uno de sus extremos.

Hay dos casos principales:

(a) Si f(x) es continua en $[a, +\infty[$, entonces

$$I = \int_{a}^{+\infty} f(x) \, dx$$

es llamada integral impropia de primera especie.

En tal caso

$$I = \lim_{x \to +\infty} \int_{a}^{x} f(u) \, du$$

Además, si F'(x) = f(x)

$$I = F(x) \Big|_{a}^{+\infty}$$

$$= F(+\infty) - F(a)$$

$$= \lim_{x \to +\infty} F(x) - F(a)$$

(b) Si f(x) es continua en [a, b] y

$$\lim_{x \to a^+} f(x) = \pm \infty \quad (\text{ o sea que } x = a \text{ es asíntota vertical})$$

entonces

$$I = \int_{a}^{b} f(x) \, dx$$

es llamada integral impropia de segunda especie.

En tal caso

$$I = \lim_{x \to a^+} \int_x^b f(u) \, du$$

Además, si F'(x) = f(x)

$$I = F(x) \Big|_{a^+}^b$$

$$= F(b) - F(a^+)$$

$$= F(b) - \lim_{x \to a^+} F(x)$$

Definición 1.2 (Convergencia). Una integral impropia I es **convergente** si y solo si I existe y es un número finito.

En caso contrario se dice que I es **divergente**.

En caso de convergencia, I puede ser interpretado como el área de la región infinita encerrada entre f y el eje-x, similar al área en integrales propias.

Ejemplo 1.4. Sea

$$I = \int_5^{+\infty} \frac{dx}{(x-2)^3}$$

Como $f(x) = \frac{1}{(x-2)^3}$ es continua en $[5, +\infty[$, I es una integral de primera especie.

Luego

$$I = \int_{5}^{+\infty} \frac{dx}{(x-2)^3} = \frac{-1}{2(x-2)^2} \Big|_{5}^{+\infty}$$

$$= \lim_{x \to +\infty} \frac{-1}{2(x-2)^2} - \frac{-1}{2(5-2)^2}$$

$$= 0 + \frac{1}{2 \cdot 9}$$

$$= \frac{1}{18}$$

Tenemos que I es convergente.

Ejemplo 1.5. Calcule

$$I = \int_{2}^{6} \frac{dx}{\sqrt{x-2}}$$

Solución:

I es impropia de segunda especie, pues x=2 es asíntota vertical

$$I = \int_{2}^{6} (x-2)^{-1/2} dx$$

$$= \frac{(x-2)^{-1/2+1}}{-1/2+1} \Big|_{2+}^{6}$$

$$= 2\sqrt{x-2} \Big|_{2+}^{6}$$

$$= 2\sqrt{6-2} - \lim_{x \to 2^{+}} 2\sqrt{x-2}$$

$$= 4 - 0$$

$$= 4$$

luego I es convergente.

Ejemplo 1.6. Calcule
$$I = \int_0^{+\infty} \frac{x^2 dx}{x^3 + 2}$$
.

Solución:

La integral es de primera especie, pues $x^2/(x^3+2)$ es continua en $[0,+\infty[$. Sea $u=x^3+2 \implies du=3x^2\,dx$, además

$$\begin{cases} x = 0 & \implies u = 0^3 + 2 = 2 \\ x \to +\infty & \implies u = x^3 + 2 \to +\infty \end{cases}$$

entonces

$$I = \frac{1}{3} \int_{2}^{+\infty} \frac{du}{u} = \frac{1}{3} \ln(u) \Big|_{2}^{+\infty}$$

$$= \frac{1}{3} \left[\lim_{u \to +\infty} \ln(u) - \ln(2) \right]$$

$$= +\infty - \frac{\ln(2)}{3}$$

$$= +\infty$$

Por lo tanto I es divergente.

Ejemplo 1.7. Calcule $I = \int_2^{10} \frac{dx}{x-2}$.

Solución:

I es integral impropia de segunda especie, pues hay asíntota vertical en x=2. En tal caso

$$I = \ln(x-2)\Big|_{2^{+}}^{10} = \ln(10-2) - \lim_{x \to 2^{+}} \ln(x-2) = \ln(8) - \ln(0^{+}) = \ln(8) - (-\infty) = +\infty$$

Luego I es divergente

Ejemplo 1.8. Calcule $I = \int_2^{+\infty} \frac{dx}{x \ln^3(x)}$.

Solución:

I es impropia de primera especie, pues $1/(x \ln^3(x))$ es continua en $[2, +\infty[$.

Sea $u = \ln(x) \implies du = \frac{dx}{x}$, además

$$\begin{cases} x = 2 & \implies u = \ln(2) \\ x \to +\infty & \implies u = \ln(x) \to +\infty \end{cases}$$

luego

$$I = \int_{\ln(2)}^{+\infty} \frac{du}{u^3} = \left. \frac{-1}{2u^2} \right|_{\ln(2)}^{+\infty} = \lim_{u \to +\infty} \frac{-1}{2u^2} + \frac{1}{2 \cdot \ln^2(2)} = 0 + \frac{1}{2 \cdot \ln^2(2)} = \frac{1}{2 \cdot \ln^2(2)}$$

Ejemplo 1.9. Analice la convergencia de la integral $I = \int_0^{\pi/4} \frac{\sin(x)}{x} dx$.

Solución:

Note que

$$\lim_{x \to 0^+} \frac{\operatorname{sen}(x)}{x} = 1 \neq \infty$$

entonces I es una integral propia en $]1, \pi/4]$ al no tener asíntotas verticales. (Ver notas 1.2 y 1.3) Se concluye que I es convergente.

1.3 Algunas Variantes

Notas 1.5 (Otras integrales impropias de primera especie).

1. Si f(x) es continua en el intervalo $]-\infty,b]$, entonces la integral

$$I = \int_{-\infty}^{b} f(x) \, dx$$

es una integral impropia de primera especie tal que

$$I = \lim_{x \to -\infty} \int_{x}^{b} f(x) \, dx$$

I converge si y solo si el límite anterior es convergente (existe y es finito).

Además, si existe F(x) tal que F'(x) = f(x)

$$I = \int_{-\infty}^{b} F'(x) \, dx = F(x) \Big|_{-\infty}^{b} = F(b) - F(-\infty) = F(b) - \lim_{x \to -\infty} F(x)$$

2. Si f(x) es continua en el intervalo $]-\infty,+\infty[$, entonces la integral

$$I = \int_{-\infty}^{+\infty} f(x) \, dx$$

es una integral impropia de primera especie tal que

$$I = \int_{-\infty}^{x_0} f(x) dx + \int_{x_0}^{+\infty} f(x) dx$$

para cualquier número $x_0 \in \mathbb{R}$.

I es convergente si y solo si ambas integrales son convergentes. Si una de las dos integrales es divergente entonces I es divergente.

Además, si existe F(x) tal que F'(x) = f(x)

$$I = \int_{-\infty}^{+\infty} F'(x) dx = F(x) \Big|_{-\infty}^{+\infty} = F(+\infty) - F(-\infty) = \lim_{x \to +\infty} F(x) - \lim_{x \to -\infty} F(x)$$

En este caso I es convergente si y solo si

$$\lim_{x \to +\infty} F(x)$$
 es convergente $\wedge \lim_{x \to -\infty} F(x)$ es convergente

Note que

$$\lim_{x\to +\infty} F(x)$$
 es divergente $\vee \lim_{x\to -\infty} F(x)$ es divergente $\Longrightarrow I$ es divergente

Ejemplo 1.10. Calcule

$$I = \int_{-\infty}^{\sqrt{2}} \frac{dx}{2 + x^2}$$

Solución:

I es impropia de primera especie porque $1/(2+x^2)$ es continua en $\big]-\infty,\sqrt{2}\,\big],$ luego

$$I = \int_{-\infty}^{\sqrt{2}} \frac{dx}{2 + x^2} = \frac{1}{\sqrt{2}} \arctan\left(\frac{x}{\sqrt{2}}\right)\Big|_{-\infty}^{\sqrt{2}}$$

$$= \frac{1}{\sqrt{2}} \cdot \arctan(1) - \frac{1}{\sqrt{2}} \cdot \lim_{x \to -\infty} \arctan\left(\frac{x}{\sqrt{2}}\right)$$

$$= \frac{1}{\sqrt{2}} \cdot \frac{\pi}{4} - \frac{1}{\sqrt{2}} \cdot \frac{-\pi}{2}$$

$$= \frac{3\pi}{4\sqrt{2}}$$

Ejemplo 1.11. Calcule

$$I = \int_{-\infty}^{+\infty} \frac{\operatorname{sech}^{2}(x) dx}{1 + \tanh^{2}(x)}$$

Solución: Note que el integrando es una función continua en todo IR.

Sea $u = \tanh(x) \implies du = \operatorname{sech}^2(x) dx$, además

$$\begin{cases} x \to -\infty \implies u = \lim_{x \to -\infty} \tanh(x) = -1 \\ x \to +\infty \implies u = \lim_{x \to +\infty} \tanh(x) = 1 \end{cases}$$

luego

$$I = \int_{-1}^{1} \frac{du}{1 + u^2}$$

$$= \arctan(u) \Big|_{-1}^{1}$$

$$= \arctan(1) - \arctan(-1)$$

$$= \frac{\pi}{4} - \frac{-\pi}{4}$$

$$= \frac{\pi}{2}$$

es convergente.

Ejemplo 1.12. Calcule

$$I = \int_{-\infty}^{+\infty} e^x \, dx$$

Solución:

$$I = e^{x} \Big|_{-\infty}^{+\infty}$$

$$= \lim_{x \to +\infty} e^{x} - \lim_{x \to -\infty} e^{x}$$

$$= e^{+\infty} - e^{-\infty}$$

$$= (+\infty) - 0$$

$$= +\infty$$

Luego I es integral impropia de primera especie divergente.

Notas 1.6 (Otras integrales impropias de segunda especie).

1. Si f(x) es continua en el intervalo [a, b] y si

$$\lim_{x \to b^{-}} f(x) = \pm \infty$$

entonces la integral

$$I = \int_{a}^{b} f(x) \, dx$$

es una integral impropia de segunda especie tal que

$$I = \lim_{x \to b^{-}} \int_{a}^{x} f(x) \, dx$$

I converge si y solo si el límite anterior es convergente (existe y es finito).

Además, si existe F(x) tal que F'(x) = f(x)

$$I = \int_{a}^{b} F'(x) dx = F(x) \Big|_{a}^{b^{-}} = F(b^{-}) - F(a) = \lim_{x \to b^{-}} F(x) - F(a)$$

2. Si f(x) es continua en el intervalo] a, b [y si

$$\lim_{x \to a^{+}} f(x) = \pm \infty \quad \land \quad \lim_{x \to b^{-}} f(x) = \pm \infty$$

entonces la integral

$$I = \int_{a}^{b} f(x) \, dx$$

es una integral impropia de segunda especie tal que

$$I = \int_{a}^{x_0} f(x) \, dx + \int_{x_0}^{b} f(x) \, dx$$

para cualquier número $x_0 \in a, b$.

I es convergente si y solo si ambas integrales son convergentes. Si una de las dos integrales es divergente entonces I es divergente.

Además, si existe F(x) tal que F'(x) = f(x)

$$I = \int_{a}^{b} F'(x) dx = F(x) \Big|_{a^{+}}^{b^{-}} = F(b^{-}) - F(a^{+}) = \lim_{x \to b^{-}} F(x) - \lim_{x \to a^{+}} F(x)$$

En este caso I es convergente si y solo si

$$\lim_{x\to b^-} F(x)$$
 es convergente $\wedge \lim_{x\to a^+} F(x)$ es convergente

Note que

$$\lim_{x \to b^-} F(x)$$
 es divergente $\vee \lim_{x \to a^+} F(x)$ es divergente $\implies I$ es divergente

3. Si f(x) es continua en $[a,b] \setminus \{x_1\} = [a,x_1[\ \cup\]x_1,b]$ y si

$$\lim_{x \to x_1} f(x) = \pm \infty$$

entonces

$$I = \int_{a}^{b} f(x) \, dx$$

es una integral impropia de segunda especie tal que

$$I = \int_{a}^{x_1} f(x) \, dx + \int_{x_1}^{b} f(x) \, dx$$

I es convergente si y solo si ambas integrales son convergentes.

Si una de las dos integrales es divergente entonces I es divergente.

4. Si f(x) es continua en [a, b] salvo en los puntos $x_1, x_2, \dots x_m \in [a, b]$ y si

$$\lim_{x \to x_i} f(x) = \pm \infty, \quad i = 1, 2, \dots m$$

entonces

$$I = \int_{a}^{b} f(x) \, dx$$

es una integral impropia de segunda especie tal que

$$I = \sum_{n=0}^{m} \int_{\mathcal{I}_n} f(x) \, dx$$

siendo $\mathcal{I}_n = |x_n, x_{n+1}|$ y

$$a = x_0 < x_1 < x_2 < \dots < x_m < x_{m+1} = b$$

I es convergente si y solo si todas las integrales \mathcal{I}_n son convergentes.

Si una de las integrales \mathcal{I}_n es divergente entonces I es divergente.

Ejemplo 1.13. Calcule

$$I = \int_{2}^{4} \frac{dx}{\sqrt{4-x}}$$

Solución: I es integral impropia de segunda especie con asíntota vertical x = 4.

$$I = -2\sqrt{4-x}\Big|_{2}^{4^{-}} = -0 + 2\sqrt{2} = 2\sqrt{2}$$

Se concluye que I es convergente.

Ejemplo 1.14. Calcule

$$I = \int_0^5 \frac{dx}{x^2 - 7x + 12}$$

Solución: Note que

$$I = \int_0^5 \frac{dx}{(x-3)(x-4)}$$

es impropia de segunda especie, porque hay dos asíntotas verticales: x=3 y x=4 Luego

$$I = \int \left[\frac{1}{x-4} - \frac{1}{x-3} \right] dx = \ln \left[\frac{x-4}{x-3} \right] + C$$

$$I = \int_0^3 f + \int_3^{3.5} f + \int_{3.5}^4 f + \int_4^5 f, \quad \text{para } f(x) = \frac{1}{(x-3)(x-4)}$$

es suficiente notar que

$$\int_0^3 f = \ln\left[\frac{x-4}{x-3}\right] \Big|_0^{3^-} = \ln(+\infty) - \ln(4/3) = +\infty$$

Para concluir que I es divergente.

Nota 1.7 (Integrales impropias de tercera especie). Una integral impropia es llamada de tercera especie, si el intervalo de integración es infinito y posee asíntotas verticales dentro o en un extremo de dicho intervalo, o sea que I es de primera y de segunda especie a la vez.

Una forma básica sería $I = \int_a^{+\infty} f(x) dx$, cuando $f: a, +\infty[\to \mathbb{R}$ es continua y $\lim_{x \to a^+} f(x) = \pm \infty$.

Ejemplo 1.15. Calcule
$$I = \int_1^{+\infty} \frac{dx}{x\sqrt{x^2 - 1}}$$
.

Solución: I es impropia de tercera especie, pues el intervalo es infinito y hay una asíntota vertical x = 1. Sea $x = \cosh(z) \implies dx = \operatorname{senh}(z) dz$, además

$$\begin{cases} x = 1 & \Longrightarrow z = 0 \\ x \to +\infty & \Longrightarrow z \to +\infty \end{cases}$$

entonces

$$I = \int_0^{+\infty} \frac{\operatorname{senh}(z) dz}{\cosh(z) \cdot \sqrt{\cosh^2(z) - 1}}$$

$$= \int_0^{+\infty} \frac{dz}{\cosh(z)}$$

$$= \int_0^{+\infty} \frac{\cosh(z) dz}{\cosh^2(z)}$$

$$= \int_0^{+\infty} \frac{\cosh(z) dz}{1 + \sinh^2(z)}$$

$$= \arctan\left[\operatorname{senh}(z)\right] \Big|_0^{+\infty}$$

$$= \arctan(+\infty) - \arctan(0)$$

$$= \frac{\pi}{2}$$

1.4 El Valor Principal de Cauchy

Definición 1.3 (Valor Principal de Cauchy). Hay tres casos principales:

1. Si f(x) es continua en el intervalo $]-\infty,+\infty[$, para la integral de 1^{era} especie

$$I = \int_{-\infty}^{+\infty} f(x) \, dx$$

el valor principal de Cauchy corresponde al límite

$$V.P = \lim_{x \to +\infty} \int_{-x}^{x} f(u) \, du$$

Si I es convergente, entonces I = V.P.

2. Si f(x) es continua en el intervalo a, b y si

$$\lim_{x \to a^+} f(x) = \pm \infty \quad \land \quad \lim_{x \to b^-} f(x) = \pm \infty$$

para la integral de 2^{da} especie

$$I = \int_{a}^{b} f(x) \, dx$$

el valor principal de Cauchy corresponde al límite

$$V.P = \lim_{h \to 0^+} \int_{a+h}^{b-h} f(u) du$$

Si I es convergente, entonces I = V.P.

3. Si f(x) es continua en $[a, x_1] \cup [x_1, b]$ y si

$$\lim_{x \to x_1} f(x) = \pm \infty$$

para la integral de 2° especie

$$I = \int_{a}^{b} f(x) \, dx$$

el valor principal de Cauchy corresponde al límite

$$V.P = \lim_{h \to 0^{+}} \left[\int_{a}^{x_{1}-h} f(u) \, du + \int_{x_{1}+h}^{b} f(u) \, du \right]$$

En este caso, si existe F(x) tal que F'(x) = f(x), el valor principal es

V.P =
$$F(b) - F(a) + \lim_{h \to 0^+} \left[F(x_1 + h) - F(x_1 - h) \right]$$

Si I es convergente, entonces I = V.P.

Nota 1.8. Sea I una integral impropia tiene una de las formas presentadas en la definición 1.3. Si I es convergente, entonces I = V.P.

Note además que aunque el valor principal exista, es posible que I sea divergente.

Nota 1.9.

(a) Una aplicación f(x) es llamada función par si y solo si

$$f(-x) = f(x)$$

En tal caso

$$I = \int_{-x}^{x} f(u) du = 2 \int_{0}^{x} f(u) du$$

(b) Una aplicación f(x) es llamada función impar si y solo si

$$f(-x) = -f(x)$$

En tal caso

$$I = \int_{-x}^{x} f(u) \, du = 0$$

Ejemplo 1.16. Calcule

$$I = \int_{-\infty}^{+\infty} x^3 \, dx$$

Solución:

$$I = \int_{-\infty}^{+\infty} x^3 dx = \left. \frac{x^4}{4} \right|_{-\infty}^{+\infty} = \lim_{x \to +\infty} \frac{x^4}{4} - \lim_{x \to -\infty} \frac{x^4}{4} = +\infty - (+\infty)$$

Se concluye que I es integral impropia de primera especie divergente, pues I es una suma de integrales divergentes.

Por otro lado

V.P =
$$\lim_{x \to +\infty} \int_{-x}^{x} u^{3} du = \lim_{x \to +\infty} 0 = 0$$

Tenemos un ejemplo de una integral divergente con valor principal finito.

Ejemplo 1.17. Calcule

$$I = \int_{-4}^{7} \frac{dx}{x}$$

Solución:

x=0 es asíntota vertical, por lo que la integral anterior es impropia de segunda especie.

$$I = \int_{-4}^{0} \frac{dx}{x} + \int_{0}^{7} \frac{dx}{x} = \ln|x| \Big|_{-4}^{0-} + \ln(x) \Big|_{0+}^{7} = -\infty + \infty$$

Por lo tanto ${\cal I}$ es divergente, al ser suma de integrales divergentes.

Por otro lado,

V.P =
$$\ln |x| \Big|_{-4}^{7} = \ln(7) - \ln(4) = \ln \left(\frac{7}{4}\right)$$

Tenemos que I es una integral impropia que tiene valor principal finito, pero es divergente.

Ejemplo 1.18. Calcule

$$I = \int_{-2}^{2} \frac{dx}{x^2 - 4}$$

Solución:

I tiene asíntotas verticales $x = \pm 2$, entonces

$$I = \underbrace{\int_{-2}^{0} \frac{dx}{x^2 - 4}}_{I_1} + \underbrace{\int_{0}^{2} \frac{dx}{x^2 - 4}}_{I_2}$$

Note que

$$\int \frac{dx}{x^2 - 4} = \frac{1}{4} \int \left[\frac{1}{x - 2} - \frac{1}{x + 2} \right] dx = \frac{1}{4} \ln \left| \frac{x - 2}{x + 2} \right| + C$$

luego

$$I_1 = \int_{-2}^{0} \frac{dx}{x^2 - 4} = \frac{1}{4} \ln \left| \frac{x - 2}{x + 2} \right| \Big|_{-2^+}^{0} = \frac{\ln(1)}{4} - \frac{\ln(+\infty)}{4} = -\infty$$

Como la integral I_1 e divergente, entonces I divergente (sin importar I_2). Note además que

$$V.P = 2\int_0^2 \frac{dx}{x^2 - 4} = 2\int_0^2 \frac{dx}{x^2 - 4} = \frac{1}{2} \ln \left| \frac{x - 2}{x + 2} \right| \Big|_0^{2^-} = \frac{\ln(+\infty)}{2} - \frac{\ln(1)}{2} = +\infty$$

Ejemplo 1.19. Calcule

$$I = \int_{-\infty}^{+\infty} \frac{dx}{1 + x^2}$$

Solución:

Tenemos que

$$I = \int_{-\infty}^{+\infty} \frac{dx}{1+x^2} = \arctan(x)\Big|_{-\infty}^{+\infty} = \arctan(+\infty) - \arctan(-\infty) = \frac{\pi}{2} - \left[-\frac{\pi}{2}\right] = \pi$$

Por otro lado

$$V.P = 2 \int_0^{+\infty} \frac{dx}{1+x^2} = \arctan(x) \Big|_0^{+\infty} = 2 \cdot \left[\arctan(+\infty) - \arctan(0)\right] = 2 \cdot \frac{\pi}{2} = \pi$$

Lo cual verifica que I = V.P, para esta integral convergente.

2 Criterios de Convergencia para Integrales Impropias

2.1 Criterios de convergencia para Integrales Impropias de 1^{era} Especie

2.1.1 Condición Necesaria

Criterio 2.1.1 (Criterio de la Condición Necesaria). Sea $f:[a,+\infty[\to \mathbb{R} \ una \ función \ continua \ de manera tal que existe y es finito el límite$

$$L = \lim_{x \to +\infty} f(x)$$

y sea

$$I = \int_{a}^{+\infty} f(x) \, dx$$

Entonces

Luego se cumple que

$$L \neq 0 \implies I$$
 es una integral de 1^{era} especie Divergente

También es cierto que

$$\lim_{x \to +\infty} f(x) = \pm \infty \implies I \text{ es Divergente}$$

Nota 2.1. El criterio de la condición necesaria es un criterio de divergencia nada más, es decir que no determina si una integral es convergente.

En el criterio enunciado

$$\begin{cases} \lim_{x\to +\infty} f(x) \neq 0 \implies I \text{ es Divergente} \\ \lim_{x\to +\infty} f(x) = 0 \implies \text{ No hay criterio} \end{cases}$$

Si el límite no existe, no se puede concluir nada. (El criterio no aplica)

Ejemplo 2.1. Determine la convergencia de

$$I = \int_2^{+\infty} \frac{3x+1}{2x-1} \, dx$$

Solución: Se tiene que

$$\lim_{x \to +\infty} \frac{3x+1}{2x-1} = \frac{3}{2} \neq 0$$

entonces I es divergente por el criterio de la condición necesaria.

Ejemplo 2.2. Determine la convergencia de

$$I = \int_{5}^{+\infty} \frac{dx}{\sqrt{x-2}}$$

Solución:

Tenemos que

$$\lim_{x \to +\infty} \frac{1}{\sqrt{x-2}} = 0$$

el criterio de la condición necesaria no concluye nada en este caso.

Por otro lado

$$I = 2\sqrt{x-2}\Big|_{5}^{+\infty} = 2\lim_{x \to +\infty} \sqrt{x-2} - 2\sqrt{3} = +\infty$$

O sea que I es divergente, a pesar de cumplir la condición necesaria.

Nota 2.2. Sea $f:]-\infty, b\,] \to [\,0, +\infty\,[\,\,$ una función continua y sea

$$I = \int_{-\infty}^{b} f(x) \, dx$$

Entonces

$$\begin{cases} I \text{ es Convergente} \implies \lim_{x \to -\infty} f(x) = 0 \\ \lim_{x \to -\infty} f(x) \neq 0 \implies I \text{ es Divergente} \\ \lim_{x \to -\infty} f(x) = 0 \implies \text{No hay criterio} \end{cases}$$

Ejemplo 2.3. Determine la convergencia de

$$I = \int_{-\infty}^{0} \left(1 - \frac{3}{x}\right)^x dx$$

Solución:

Tenemos que

$$\lim_{x \to -\infty} \left(1 - \frac{3}{x} \right)^x = \exp\left[\lim_{x \to -\infty} x \ln\left(1 - \frac{3}{x}\right) \right], \quad (e^{0 \cdot \infty})$$

$$= \exp\left[\lim_{x \to -\infty} \frac{\ln\left(1 - 3/x\right)}{1/x} \right]$$

$$\stackrel{L.H}{=} \exp\left[\lim_{x \to -\infty} \frac{\left(1 - 3/x\right)^{-1} \cdot 3/x^2}{-1/x^2} \right]$$

$$= \exp\left[\lim_{x \to -\infty} -3 \cdot \left(1 - 3/x\right)^{-1} \right]$$

$$= e^{-3} \neq 0$$

entonces I es divergente por el criterio de la condición necesaria.

2.1.2 p-Integrales de Primera especie

Criterio 2.1.2 (p-integrales de 1^{era} especie). Una integral impropia de la forma

$$I = \int_{a}^{+\infty} \frac{dx}{x^p}$$

es llamada p-integral de primera especie siempre que a > 0. En tal caso

$$\boxed{I \ Convergente \iff p > 1}$$

Note que

$$I\ Divergente \iff p \leq 1$$

Nota 2.3. Una integral impropia de la forma

$$I = \int_{a}^{+\infty} \frac{dx}{(x - x_0)^p}$$

también es llamada p-integral de primera especie siempre que $a>x_0\iff x_0\not\in \left[a,+\infty\right[.$ De igual manera se tiene que

 $I \ \text{Convergente} \iff p > 1 \qquad \land \qquad I \ \text{Divergente} \iff p \leq 1$

Nota 2.4.

$$\lim_{x \to \infty} x^n = \begin{cases} 0 & \text{si } n < 0 \\ 1 & \text{si } n = 0 \\ \infty & \text{si } n > 0 \end{cases}$$

Nota 2.5. Sea

$$I = \int \frac{dx}{(x - x_0)^p} = \begin{cases} \ln|x - x_0| + C, & \text{si } p = 1\\ \frac{(x - x_0)^{1-p}}{1-p} + C, & \text{si } p \neq 1 \end{cases}$$

luego, si $x_0 < a$

$$I = \int_{a}^{+\infty} \frac{dx}{(x - x_0)^p} = \begin{cases} \ln(+\infty) - \ln(a - x_0), & \text{si } p = 1\\ \frac{0^+}{1 - p} - \frac{(a - x_0)^{1 - p}}{1 - p}, & \text{si } p > 1\\ \frac{+\infty}{1 - p} - \frac{(a - x_0)^{1 - p}}{1 - p}, & \text{si } p < 1 \end{cases}$$

entonces

$$I = \begin{cases} -\frac{(a-x_0)^{1-p}}{1-p}, & \text{si } p > 1\\ +\infty, & \text{si } p \le 1 \end{cases}$$

Ejemplo 2.4.

$$I = \int_5^{+\infty} \frac{dx}{(x-3)^4}$$

es una p-integral convergente porque p = 4 > 1.

Ejemplo 2.5.

$$I = \int_0^{+\infty} \frac{dx}{\sqrt[3]{x+1}}$$

es una p-integral divergente porque p = 1/3 < 1.

Nota 2.6. Una integral impropia de la forma

$$I = \int_{-\infty}^{b} \frac{dx}{(x - x_0)^p}$$

es llamada p-integral de primera especie siempre que $b < x_0 \iff x_0 \not\in \left] - \infty, b\right]$. En tal caso

Ejemplo 2.6.

$$I = \int_{-\infty}^{-4} \frac{dx}{x+3}$$

es una p-integral divergente porque p = 1.

2.1.3 Comparación Directa

Nota 2.7. Sea $f:[a,+\infty[\to [0,+\infty[$ función continua tal que existe y es finito el límite

$$I = \lim_{x \to +\infty} \int_{a}^{x} f(u) \, du$$

note entonces que

$$I = \int_{a}^{z} f + \int_{z}^{+\infty} f \implies \lim_{z \to +\infty} I = \lim_{z \to +\infty} \int_{a}^{z} f + \lim_{z \to +\infty} \int_{z}^{+\infty} f$$

$$\implies I = I + \lim_{z \to +\infty} \int_{z}^{+\infty} f$$

$$\implies \lim_{z \to +\infty} \int_{z}^{+\infty} f = 0$$

Teorema 2.1 (Criterio de Cauchy). Sea $f:[a,+\infty[\to[0,+\infty[$ función continua, entonces

$$\int_{a}^{+\infty} f(x) dx \ convergente \iff \lim_{z \to +\infty} \int_{z}^{+\infty} f(x) dx = 0$$

Teorema 2.2. Sea $\varphi(x)$ una función positiva y monótona creciente en $[a, +\infty[$ $\subset \mathbb{R}$, entonces

$$\exists M>0 \ tal \ que \ \forall x\geq a, \ \varphi(x)< M \iff \lim_{x\to +\infty}\varphi(x) \ existe \ y \ es \ finito$$

Teorema 2.3 (Criterio de Weierstrass). Sea $f:[a,+\infty[\to[0,+\infty[$ función continua, entonces

$$\exists M > 0 \ tal \ que \ \forall x \geq a, \ \int_a^x f(u) \ du < M \iff I = \int_a^{+\infty} f(x) \ dx \ convergente$$

Nota 2.8. Si para todo $x \in [a, b]$

$$f(x) < g(x) \implies \int_a^b f(x) dx \le \int_a^b g(x) dx$$

Nota 2.9. Si para todo $x \in [a, +\infty[$

$$f(x) < g(x) \implies \int_{a}^{+\infty} f(x) dx \le \int_{a}^{+\infty} g(x) dx$$

Criterio 2.1.3 (Criterio de Comparación Directa). Sean $f, g : [a, +\infty[\to [0, +\infty[$ funciones continuas, entonces

(a)
$$f(x) \le g(x) \wedge \int_a^{+\infty} g(x) dx \ Convergente \implies \int_a^{+\infty} f(x) dx \ Convergente$$

(b)
$$f(x) \ge g(x) \quad \land \quad \int_a^{+\infty} g(x) \, dx \; Divergente \implies \int_a^{+\infty} f(x) \, dx \; Divergente$$

En cualquier otro caso no hay criterio.

Nota 2.10. En el criterio 2.1.3 de comparación directa también se escribe

(a)
$$\int_{a}^{+\infty} f(x) dx \le \int_{a}^{+\infty} g(x) dx$$
 \wedge $\int_{a}^{+\infty} g(x) dx$ Convergente \Longrightarrow $\int_{a}^{+\infty} f(x) dx$ Convergente

(b)
$$\int_{a}^{+\infty} f(x) dx \ge \int_{a}^{+\infty} g(x) dx$$
 \wedge $\int_{a}^{+\infty} g(x) dx$ Divergente $\implies \int_{a}^{+\infty} f(x) dx$ Divergente

Ejemplo 2.7. Como $|\operatorname{sen}(x)| \leq 1$

$$I = \int_{1}^{+\infty} \frac{\sin^{2}(x)}{x^{2}} dx \le \int_{1}^{+\infty} \frac{dx}{x^{2}}$$

La última es una p-integral convergente (p=2>1) , entonces I converge por comparación directa.

Nota 2.11. Algunas desigualdades:

1.
$$\forall x \in \mathbb{R}, \ a < b \iff a + x < b + x$$

2.
$$\forall x > 0, \ a < b \implies ax < bx$$

3.
$$\forall x > 0, \ a + x > a \quad \land \quad a - x < a$$

4.
$$a \le b \iff \frac{1}{a} \ge \frac{1}{b}$$
, siempre que $a, b \ne 0$

5.
$$\forall x > 0$$
, $\frac{1}{a+x} < \frac{1}{a} \wedge \frac{1}{a-x} > \frac{1}{a}$

6.
$$f(x) \nearrow \land a \leq b \implies f(a) \leq f(b)$$

7.
$$f(x) \searrow \land a \leq b \implies f(a) \geq f(b)$$

8.
$$\forall u \in \mathbb{R}, \ \ln(u) < u \iff \frac{1}{\ln(u)} > \frac{1}{u}$$

Ejemplo 2.8. Determine la convergencia de la integral

$$I = \int_2^{+\infty} \frac{dx}{x^3 + 4}$$

Solución:

$$I = \int_{2}^{+\infty} \frac{dx}{x^3 + 4} \le \int_{2}^{+\infty} \frac{dx}{x^3}$$
, que es una p-integral convergente, porque $p = 3 > 1$,

entonces I es convergente por comparación directa.

Ejemplo 2.9. Determine la convergencia de la integral

$$I = \int_{5}^{+\infty} \frac{dx}{\sqrt[3]{x^2 - 4}}$$

Solución:

$$I = \int_{5}^{+\infty} \frac{dx}{\sqrt[3]{x^2 - 4}} \ge \int_{5}^{+\infty} \frac{dx}{\sqrt[3]{x^2}} = \int_{5}^{+\infty} \frac{dx}{x^{2/3}}$$

que es una p-integral divergente porque p=2/3<1, entonces I es divergente por comparación directa.

Ejemplo 2.10. Determine la convergencia de la integral

$$I = \int_{2}^{+\infty} \frac{dx}{\ln(x+2)}$$

Solución:

$$I = \int_{2}^{+\infty} \frac{dx}{\ln(x+2)} \ge \int_{2}^{+\infty} \frac{dx}{x+2}$$

que es una p-integral divergente, entonces I es divergente por comparación directa.

Ejemplo 2.11. Determine la convergencia de la integral

$$I = \int_4^{+\infty} \frac{dx}{x^3 - 1}$$

Solución:

$$I = \int_4^{+\infty} \frac{dx}{x^3 - 1} \ge \int_4^{+\infty} \frac{dx}{x^3}, \quad \text{que es una p-integral convergente, porque $p = 3 > 1$},$$

pero en este caso no hay criterio.

Notas 2.12. Considere dos funciones $f, g : D \subseteq \mathbb{R} \to \mathbb{R}$

1. Se dice que f(x) y g(x) son **equivalentes** cuando $x \to +\infty$ si y solo si

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = 1$$

se denota

$$f(x) \cong g(x)$$
 cuando $x \to +\infty$

2. Si existe y es finito el límite

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \alpha \neq 0$$

se escribe

$$f(x) \sim g(x)$$
 cuando $x \to +\infty$

lo cual se puede leer como que "f(x) y g(x) son similares cuando $x \to +\infty$ ".

3. Se dice que f(x) es "más rápido" que g(x) o que g(x) es "más lento" que f(x) si y solo si

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = +\infty \iff \lim_{x \to +\infty} \frac{g(x)}{f(x)} = 0$$

se denota

$$f(x) \gg g(x)$$
 cuando $x \to +\infty$

o lo que es lo mismo

$$g(x) \ll f(x)$$
 cuando $x \to +\infty$

Notas 2.13. Considere dos funciones $f, g : D \subseteq \mathbb{R} \to \mathbb{R}^+$

1. Si $f(x) \cong g(x) \ \lor \ f(x) \sim g(x)$ cuando $x \to +\infty$, entonces

$$\exists N_1, N_2 > 0$$
 tales que $N_1 \cdot g(x) \leq f(x) \leq N_2 \cdot g(x)$

2. Si $f(x) \ll g(x)$ cuando $x \to +\infty$, entonces

$$\exists N > 0 \text{ tal que } f(x) \leq N \cdot g(x)$$

3. Si $f(x) \gg g(x)$ cuando $x \to +\infty$, entonces

$$\exists N > 0 \text{ tal que } f(x) \geq N \cdot g(x)$$

Ejemplo 2.12. Determine la convergencia de la integral

$$I = \int_{4}^{+\infty} \frac{dx}{x^3 - 1}$$

Solución: Note que

$$\frac{1}{x^3-1}\cong\frac{1}{x^3}$$

entonces existe N > 0 tal que

$$\frac{1}{x^3-1} \leq \frac{N}{x^3}$$

N puede ser 2

$$\frac{1}{x^3-1} \leq \frac{2}{x^3} \iff x^3 \leq 2x^3-2 \iff 2 \leq x^3$$

lo cual es verdadero pues $x \ge 4 \iff x^3 \ge 64$

$$I = \int_4^{+\infty} \frac{dx}{x^3 - 1} \le 2 \int_4^{+\infty} \frac{dx}{x^3}, \quad \text{que es una p-integral convergente, porque $p = 3 > 1$},$$

se concluye que I converge por Comparación Directa.

Nota 2.14. Sean $f, g:]-\infty, b] \rightarrow [0, +\infty[$ funciones continuas, entonces

(a)
$$\int_{-\infty}^{b} f(x) dx \le \int_{-\infty}^{b} g(x) dx$$
 \wedge $\int_{-\infty}^{b} g(x) dx$ Convergente $\implies \int_{-\infty}^{b} f(x) dx$ Convergente

(b)
$$\int_{-\infty}^{b} f(x) dx \ge \int_{-\infty}^{b} g(x) dx$$
 \wedge $\int_{-\infty}^{b} g(x) dx$ Divergente $\implies \int_{-\infty}^{b} f(x) dx$ Divergente

En cualquier otro caso no hay criterio.

Nota 2.15. Si para todo $x \in]-\infty, b]$

$$0 \le f(x) < g(x) \implies \int_{-\infty}^{b} f(x) dx \le \int_{-\infty}^{b} g(x) x$$

2.1.4 Criterio del límite

Criterio 2.1.4 (Criterio del Límite). Sean $f,g:[a,+\infty[\to[0,+\infty[$ funciones continuas, tales que

$$L = \lim_{x \to +\infty} \frac{f(x)}{g(x)}$$

(a)
$$L \neq 0 \implies \int_{a}^{+\infty} f(x) dx \wedge \int_{a}^{+\infty} g(x) dx$$
 tienen el mismo comportamiento (Ambas convergen o ambas divergen). Se denota $\int_{a}^{+\infty} f \sim \int_{a}^{+\infty} g$.

(b)
$$L = 0$$
 $\wedge \int_{a}^{+\infty} g(x) dx \ Convergente \implies \int_{a}^{+\infty} f(x) dx \ Convergente$

(c)
$$L = +\infty \quad \wedge \quad \int_{a}^{+\infty} g(x) \, dx \; Divergente \implies \int_{a}^{+\infty} f(x) \, dx \; Divergente$$

En cualquier otro caso no hay criterio.

Ejemplo 2.13. Determine la convergencia de la integral

$$I = \int_2^{+\infty} \frac{dx}{x^3 + 4}$$

Solución: Sean $f(x) = \frac{1}{x^3 + 4}$ y $g(x) = \frac{1}{x^3}$, entonces

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} \frac{x^3}{x^3 + 4} = 1 \neq 0$$

Como

$$I = \int_1^{+\infty} g = \int_2^{+\infty} \frac{dx}{x^3} \quad \text{es p-integral convergente pues $p = 3 > 1$},$$

entonces por el criterio del límite

$$I = \int_{1}^{+\infty} f$$
 es convergente.

Nota 2.16. Si cuando $x \to +\infty$

$$f(x) \ll g(x) \implies \alpha \cdot f(x) + \beta \cdot g(x) \sim g(x)$$

siempre que $\beta \neq 0$, pues

$$\frac{\alpha \cdot f(x) + \beta \cdot g(x)}{g(x)} = \alpha \cdot \frac{f(x)}{g(x)} + \beta \xrightarrow[x \to +\infty]{} 0 + \beta = \beta \neq 0$$

Nota 2.17.

$$p_1 < p_2 \implies x^{p_1} \ll x^{p_2}$$
 cuando $x \to +\infty$

Nota 2.18. Sea $g:[a,+\infty[\to [0,+\infty[$ función continua tal que

$$f(x) = \frac{P(x) \cdot h(x)}{Q(x)}$$

donde P,Q son expresiones radicales con grados

$$\operatorname{Grado}[P(x)] = p_1 \quad \wedge \quad \operatorname{Grado}[Q(x)] = p_2$$

mientras que h(x) es una expresión no radical (log, sen, arctan, . . .). Se sugiere tomar

$$g(x) = \frac{x^{p_1}}{x^{p_2}} = \frac{1}{x^{p_2 - p_1}}$$

Al analizar el límite se obtiene

$$L = \lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} \frac{P(x) \cdot h(x)}{Q(x)} \cdot \frac{1}{g(x)} = \alpha \cdot \lim_{x \to +\infty} h(x)$$

donde

$$\alpha = \lim_{x \to +\infty} \frac{P(x)/Q(x)}{g(x)} \neq 0$$
, pues $\frac{P(x)}{Q(x)} \sim g(x)$

Ejemplo 2.14. Analice la integral

$$I = \int_{1}^{+\infty} \underbrace{\frac{\sqrt[3]{x^4 + x^2 - 1} + \sqrt{7x^3 - x^2}}{\sqrt{x} + 5x^5 - 2}}_{f(x)} dx$$

Solución: Note que

$$\frac{4}{3} < \frac{3}{2} \iff 8 < 9$$

escogemos entonces

$$g(x) = \frac{x^{3/2}}{x^5} \implies \lim_{x \to +\infty} \frac{f(x)}{g(x)} = \frac{\sqrt{7}}{5} \neq 0$$

tenemos que

$$\int_{1}^{+\infty} g = \int_{1}^{+\infty} \frac{dx}{x^{5-3/2}} = \int_{1}^{+\infty} \frac{dx}{x^{7/2}}$$
 es p-integral convergente, porque $p = 7/2 > 1$,

luego I converge por el criterio del límite.

Ejemplo 2.15. Analice la integral

$$I = \int_3^{+\infty} \frac{\sqrt{x}}{(x^2 + 1)\ln(x)} dx = \int_3^{+\infty} f$$

Solución:

Sea

$$g(x) = \frac{x^{1/2}}{x^2} \implies \lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} \frac{\sqrt{x}}{(x^2 + 1)\ln(x)} \cdot \frac{x^2}{\sqrt{x}} = \lim_{x \to +\infty} \frac{1}{\ln x} = 0$$

tenemos que

$$\int_{1}^{+\infty} g = \int_{1}^{+\infty} \frac{dx}{x^{2-1/2}} = \int_{1}^{+\infty} \frac{dx}{x^{3/2}}$$
 es p-integral convergente, porque $p = 3/2 > 1$,

luego I converge por el criterio del límite.

Nota 2.19. Sea $f: [a, +\infty[\to \mathbb{R} \text{ continua y sea } M > a, \text{ entonces }$

$$\int_{a}^{+\infty} f \sim \int_{M}^{+\infty} f$$

es decir que ambas convergen o ambas divergen.

Esto se justifica notando que

$$\int_{a}^{+\infty} f = \int_{a}^{M} f + \int_{M}^{+\infty} f$$

Nota 2.20. Para los criterios de la condición necesaria, comparación directa y del límite, podemos verificar las hipótesis bajo la condición de que $x \ge M$ para algún M.

Es decir

cambiar "
$$f(x) \ge 0$$
" por " $\exists M > 0$ tal que $x > M \implies f(x) \ge 0$ " cambiar " $f(x) \le g(x)$ " por " $\exists M > 0$ tal que $x > M \implies f(x) \le g(x)$ "

y así sucesivamente.

Ejemplo 2.16. Analice

$$I = \int_0^{+\infty} \frac{(x-2)(x-5)}{(x^3+4)\sqrt{x+1}} \, dx$$

Solución: La función

$$f(x) = \frac{(x-2)(x-5)}{(x^3+4)\sqrt{2x+1}}$$

no es positiva en $[0, +\infty[$, pero $x > 5 \implies f(x) > 0$, así podemos analizar

$$I \sim J = \int_{6}^{+\infty} f(x) \, dx$$

Sea

$$g(x) = \frac{x^2}{x^3 \cdot x^{1/2}} = \frac{1}{x^{3/2}}$$

entonces

$$\begin{cases} \lim_{x\to +\infty} \frac{f(x)}{g(x)} = \frac{1}{\sqrt{2}} \neq 0 \\ \int_6^{+\infty} g = \int_6^{+\infty} \frac{dx}{x^{3/2}} \quad \text{que es p-integral convergente, dado que $p=3/2>1$} \end{cases}$$

Se concluye que J es convergente por el criterio del límite, luego I también es convergente.

Nota 2.21. Sean $f, g:]-\infty, b] \to [0, +\infty[$ funciones continuas, tales que

$$L = \lim_{x \to -\infty} \frac{f(x)}{g(x)}$$

(a)
$$L \neq 0 \implies \int_{-\infty}^{b} f(x) dx \wedge \int_{-\infty}^{b} g(x) dx$$
 tienen el mismo comportamiento

(Ambas convergen o ambas divergen).

(b)
$$L = 0$$
 $\wedge \int_{-\infty}^{b} g(x) dx$ Convergente $\Longrightarrow \int_{-\infty}^{b} f(x) dx$ Convergente

(c)
$$L = +\infty \quad \land \quad \int_{-\infty}^{b} g(x) dx \text{ Divergente} \implies \int_{-\infty}^{b} f(x) dx \text{ Divergente}$$

En cualquier otro caso no hay criterio.

Nota 2.22 (Integral de función exponencial). La integral impropia de primera especie

$$\int_{a}^{+\infty} r^{x} dx \text{ es convergente } \iff 0 < r < 1$$

De hecho, si $0 < r \neq 1$

$$I = \frac{r^x}{\ln(r)} \Big|_a^{+\infty} = \begin{cases} \frac{0 - r^a}{\ln(r)} &, \text{ si } 0 < r < 1\\ \frac{+\infty - r^a}{\ln(r)} &, \text{ si } r > 1 \end{cases}$$

Además si

$$r = 0 \implies I = 0 \quad \land \quad r = 1 \implies I = \int_{a}^{+\infty} dx = +\infty$$

O sea que si $0 \le r < 1 \implies I$ es convergente.

Si r < 0, la aplicación r^x es discontinua en todos los intervalos, por lo que r^x no es integrable.

Nota 2.23. Si $0 < r_1 < r_2$, entonces $r_1^x \ll r_2^x$ cuando $x \to +\infty$.

En tal caso

$$r_1^x + r_2^x \cong r_2^x$$

Ejemplo 2.17. Analice la integral

$$I = \int_0^{+\infty} \frac{5 \cdot 2^x + 8 \cdot 3^x}{7 \cdot 5^x + 2^{2x}} \, dx$$

Solución:

Note que $2^x \ll 3^x$ y $2^{2x} = 4^x \ll 5^x$, sean entonces

$$f(x) = \frac{5 \cdot 2^x + 8 \cdot 3^x}{7 \cdot 5^x + 2^{2x}} \quad \land \quad g(x) = \frac{3^x}{5^x} = \left(\frac{3}{5}\right)^x$$

entonces

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \frac{8}{7} \neq 0 \implies I \sim \int_0^{+\infty} \left(\frac{3}{5}\right)^x dx$$

La última integral es convergente pues 0 < 3/5 < 1, luego I converge por el criterio del límite.

2.1.5 Convergencia Absoluta

Criterio 2.1.5 (Convergencia Absoluta). Sea $f:[a,+\infty[\to \mathbb{R} \ función \ continua \ y \ sean$

$$I = \int_{a}^{+\infty} f(x) dx \quad \wedge \quad A = \int_{a}^{+\infty} |f(x)| dx$$

Si A es una integral impropia Convergente, entonces I es Convergente. En tal caso se dice que I converge absolutamente.

Definición 2.1 (Convergencia Condicional). Sea $f:[a,+\infty[\to \mathbb{R}]$ función continua y sean

$$I = \int_{a}^{+\infty} f(x) dx \quad \wedge \quad A = \int_{a}^{+\infty} |f(x)| dx$$

Si I es Convergente y A es Divergente, entonces se dice que I converge condicionalmente.

Ejemplo 2.18. Analice

$$I = \int_0^{+\infty} \frac{\cos(x)}{\sqrt{x^3 + 1}} \, dx$$

Solución:

Note que

$$A = \int_0^{+\infty} \left| \frac{\cos(x)}{\sqrt{x^3 + 1}} \right| dx$$

$$= \int_0^{+\infty} \frac{|\cos(x)|}{\sqrt{x^3 + 1}} dx$$

$$\leq \int_0^{+\infty} \frac{1}{\sqrt{x^3 + 1}} dx$$

$$\sim \int_1^{+\infty} \frac{1}{\sqrt{x^3 + 1}} dx$$

$$\leq \int_1^{+\infty} \frac{1}{\sqrt{x^3}} dx, \quad \text{que es } p\text{-integral convergente}(p = 3/2 > 1),$$

entonces A es convergente por comparación directa.

Luego se sigue que I converge absolutamente.

Nota 2.24. Sea $f:]-\infty, b\,] \to {\rm I\!R}$ función continua y sean

$$I = \int_{-\infty}^{b} f(x) dx \quad \land \quad A = \int_{-\infty}^{b} |f(x)| dx$$

- (a) Si A es convergente, entonces I converge absolutamente.
- (b) Si I es convergente y A es divergente, entonces I converge condicionalmente.

2.1.6 Criterio de Dirichlet

Criterio 2.1.6 (Criterio de Dirichlet). Sean $f, g : [a, +\infty [\to \mathbb{R}]$ funciones continuas tales que

$$\lim_{x \to +\infty} g(x) = 0 \quad \land \quad g(x) \quad es \ mon\'otona \quad [g \searrow \quad \acute{o} \quad g \nearrow]$$

y si para todo $x \in [a, +\infty[$, existe M > 0 que es finito e independiente de x y tal que

$$\left| \int_{a}^{x} f(u) \, du \right| < M$$

entonces

$$I = \int_{a}^{+\infty} f(x) \cdot g(x) \, dx$$

es Convergente.

Nota 2.25 (Desigualdad triangular). Para todo $a, b \in \mathbb{R}$

$$|a \pm b| \le |a| + |b| \quad \land \quad |a| - |b| \le |a \pm b|$$

Ejemplo 2.19. Analice

$$I = \int_{\pi/4}^{+\infty} \frac{\cos(x)}{\sqrt[3]{x+1}} \, dx$$

Solución: Sea $f(x) = \cos(x)$ y sea $g(x) = \frac{1}{\sqrt[3]{x+1}}$, entonces

(a)
$$\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} \frac{1}{\sqrt[3]{x+1}} = 0$$

además $g \searrow$, pues para todo $x \ge \pi/4$

$$g'(x) = \frac{-1}{3(x+1)^{1/3+1}} = \frac{-1}{3(x+1)^{4/3}} < 0$$

también podemos justificar diciendo que

$$\frac{1}{x+1} \searrow \quad \land \quad \sqrt[3]{x} \nearrow \quad \Longrightarrow \quad g(x) \searrow$$

(b)

$$\left| \int_{\pi/4}^{x} f(u) \, du \right| = \left| \int_{\pi/4}^{x} \cos(u) \, du \right|$$
$$= \left| \operatorname{sen}(x) - \operatorname{sen}(\pi/4) \right|$$
$$\leq \left| \operatorname{sen}(x) \right| + \left| \operatorname{sen}(\pi/4) \right|$$
$$\leq 1 + \frac{1}{\sqrt{2}} = M$$

Por (a) y (b) se concluye que I converge por el criterio de Dirichlet.

Nota 2.26. Sean $f,g:]-\infty,b]\to \mathbb{R}$ funciones continuas tales que

$$\lim_{x\to -\infty} g(x) = 0 \quad \wedge \quad g(x) \ \text{ es monótona } \ \left[\ g \searrow \quad \acute{\text{o}} \quad g \nearrow \ \right]$$

y si para todo $x \in]-\infty, b]$, existe M>0 que es finito e independiente de x y tal que

$$\left| \int_{x}^{b} f(u) \, du \right| < M$$

entonces

$$I = \int_{-\infty}^{b} f(x) \cdot g(x) \, dx$$

es Convergente por el criterio de Dirichlet.

Nota 2.27. Considere una integral impropia de segunda especie

$$I = \int_0^b f(x) \, dx$$

tal que $f:]0, b] \to \mathbb{R}$ continua y $f(x) \xrightarrow[x \to 0^+]{} \infty$, entonces I se convierte en una integral impropia de primera especie si hacemos

$$u = \frac{1}{x} \implies dx = -\frac{du}{u^2}$$

quedando

$$I = \int_{1/a}^{+\infty} f\left(\frac{1}{u}\right) \, \frac{du}{u^2}$$

Ejemplo 2.20. Analice

$$I = \int_0^1 \frac{\sin(1/x^2)}{x^2} \, dx$$

Solución:

Haciendo u = 1/x obtenemos

$$dx = \frac{-du}{u^2} \wedge \begin{cases} x = 0^+ \iff u = +\infty \\ x = 1 \iff u = 1 \end{cases}$$

luego

$$I = \int_{+\infty}^{1} \frac{\sin(u^2)}{1/u^2} \cdot \frac{-du}{u^2} = \int_{1}^{+\infty} \sin(u^2) \, du$$

Sea
$$w = u^2 \iff u = \sqrt{w} \implies du = \frac{dw}{2\sqrt{w}}$$

luego

$$I = \int_{1}^{+\infty} \frac{\sin(w)}{2\sqrt{w}} dw$$
, que es impropia de 1era especie.

Note que

$$\frac{1}{\sqrt{w}} \xrightarrow[w \to +\infty]{} 0 \quad \wedge \quad \frac{1}{\sqrt{w}} \searrow \quad \wedge \quad \left| \int_{1}^{w} \operatorname{sen}(z) \, dz \right| = \left| -\cos(w) + \cos(1) \right| \le 2$$

entonces I es convergente por el criterio de Dirichlet.

2.2 Criterios de convergencia para Integrales Impropias de 2^{da} Especie

2.2.1 p-Integrales de segunda especie

Criterio 2.2.1 (p-integrales de 2^{da} especie). Una integral impropia de la forma

$$I = \int_{a}^{b} \frac{dx}{(x-a)^{p}}$$

es llamada p-integral de segunda especie (impropia si p>0) . En tal caso

Note que

 $I\ Divergente \iff p \geq 1$

Nota 2.28.

$$\lim_{x \to 0} x^n = \begin{cases} 0 & \text{si } n > 0 \\ 1 & \text{si } n = 0 \\ \infty & \text{si } n < 0 \end{cases}$$

Nota 2.29. Tenemos que

$$\int \frac{dx}{(x-a)^p} = \begin{cases} \ln|x-a| + C, & \text{si } p = 1\\ \frac{(x-a)^{1-p}}{1-p} + C, & \text{si } p \neq 1 \end{cases}$$

entonces

$$I = \int_{a}^{b} \frac{dx}{(x-a)^{p}} = \begin{cases} \ln(b-a) - \ln(0^{+}), & \text{si } p = 1\\ \frac{(b-a)^{1-p}}{1-p} - \frac{0^{+}}{1-p}, & \text{si } p < 1\\ \frac{(b-a)^{1-p}}{1-p} - \frac{+\infty}{1-p}, & \text{si } p > 1 \end{cases}$$

luego

$$I = \begin{cases} -\frac{(b-a)^{1-p}}{1-p}, & \text{si } p < 1\\ +\infty, & \text{si } p \le 1 \end{cases}$$

Ejemplo 2.21.

$$I = \int_5^8 \frac{dx}{\sqrt[4]{x - 5}}$$

es una p-integral de segunda especie convergente pues p = 1/4 < 1.

Nota 2.30. Una integral impropia de la forma

$$I = \int_{a}^{b} \frac{dx}{(b-x)^{p}}$$

es llamada p-integral de segunda especie

En tal caso

$$I \text{ Convergente } \iff p < 1$$

Ejemplo 2.22.

$$I = \int_0^3 \frac{dx}{\sqrt{(3-x)^5}}$$

es una p-integral de segunda especie divergente pues p = 5/2 > 1.

Ejemplo 2.23. Analice

$$I = \int_{-\infty}^{-2} \frac{dx}{\sqrt[5]{2+x}}$$

Solución: Note que I es una integral de tercera especie, con asíntota vertical en x=-2.

$$I = \underbrace{\int_{-\infty}^{-3} \frac{dx}{\sqrt[5]{2+x}}}_{I_1} + \underbrace{\int_{-3}^{-2} \frac{dx}{\sqrt[5]{2+x}}}_{I_2}$$

 I_2 es una p-integral de 2da especie, pero I_1 es una p-integral de primera especie divergente, entonces I es divergente.

2.2.2 Comparación Directa

Nota 2.31. Si para todo $x \in [a, b]$

$$f(x) < g(x) \implies \int_a^b f(x) dx \le \int_a^b g(x) dx$$

Criterio 2.2.2 (Criterio de Comparación Directa). Sean $f, g :]a, b] \rightarrow [0, +\infty[$ funciones continuas, cumplen que

$$\lim_{x \to a^+} f(x) = \infty \quad \land \quad \lim_{x \to a^+} g(x) = \infty$$

entonces

(a)
$$f(x) \le g(x) \quad \land \quad \int_a^b g(x) \, dx \; Convergente \implies \int_a^b f(x) \, dx \; Convergente$$

(b)
$$f(x) \ge g(x) \quad \land \quad \int_a^b g(x) \, dx \; Divergente \implies \int_a^b f(x) \, dx \; Divergente$$

En cualquier otro caso no hay criterio.

Nota 2.32. En el Criterio 2.2.2 de comparación directa también se escribe

(a)
$$\int_a^b f(x) \, dx \le \int_a^b g(x) \, dx \quad \land \quad \int_a^b g(x) \, dx \text{ Convergente } \Longrightarrow \int_a^b f(x) \, dx \text{ Convergente }$$

(b)
$$\int_a^b f(x) \, dx \ge \int_a^b g(x) \, dx \quad \land \quad \int_a^b g(x) \, dx \text{ Divergente} \implies \int_a^b f(x) \, dx \text{ Divergente}$$

Nota 2.33. Si para todo $x \in [a, b]$

$$f(x) < g(x) \implies \int_a^b f(x) dx \le \int_a^b g(x) dx$$

Ejemplo 2.24.

$$I = \int_{2}^{5} \frac{dx}{\sqrt[3]{(x-2)(x+4)}} \le \int_{2}^{5} \frac{dx}{\sqrt[3]{(x-2)\cdot 4}} = \frac{1}{\sqrt[3]{4}} \cdot \int_{2}^{5} \frac{dx}{\sqrt[3]{x-2}}$$

Pues x+4>4 y como la última es una p-integral de segunda especie convergente (p=1/3<1), entonces I converge por comparación directa.

Ejemplo 2.25. Analice la convergencia de

$$I = \int_{7}^{10} \frac{x^2 + 8}{\sqrt[5]{(x - 7)^6 (15 - x)}} \, dx$$

Solución:

Note que $\forall x \in [7, 10], \ x^2 + 8 > 8 \ \land \ 0 < 15 - x < 15 \iff \frac{1}{15 - x} > \frac{1}{15}$, entonces

$$I \ge \frac{8}{\sqrt[5]{15}} \int_{7}^{10} \frac{dx}{\sqrt[5]{(x-7)^6}}$$

La última es una p-integral de segunda especie divergente (p=6/5>1), entonces I diverge por comparación directa.

Ejemplo 2.26. Analice la convergencia de

$$I = \int_{1}^{8} \frac{dx}{(x-1)^{2}(x+5)}$$

Solución:

Note que $\forall x \in]1,8], \ x+5>5 \iff \frac{1}{x+5}<\frac{1}{5}$, entonces

$$I \le \frac{1}{5} \int_{1}^{8} \frac{dx}{(x-1)^2}$$

La última es una p-integral de segunda especie divergente (p=2>1), pero en este caso NO hay criterio.

Nota 2.34.

Considere dos funciones $f,g:]a,b] \to [\,0,+\infty[\,\,$ continuas tales que $f,g \to +\infty$ cuando $x \to a^+.$

1. Se dice que f(x) y g(x) son **equivalentes** cuando $x \to a^+$ si y solo si

$$\lim_{x \to a^+} \frac{f(x)}{g(x)} = 1$$

se denota

$$f(x) \cong g(x)$$
 cuando $x \to a^+$

2. Si existe y es finito el límite

$$\lim_{x \to a^+} \frac{f(x)}{g(x)} = \alpha \neq 0$$

se escribe

$$f(x) \sim g(x)$$
 cuando $x \to a^+$

lo cual se puede leer como que "f(x) y g(x) son similares cuando $x \to a^+$ ".

3. Se dice que f(x) es "más rápido" que g(x) o que g(x) es "más lento" que f(x) cuando $\to a^+$ si y solo si

$$\lim_{x \to a^{+}} \frac{f(x)}{g(x)} = +\infty \iff \lim_{x \to a^{+}} \frac{g(x)}{f(x)} = 0$$

se denota

$$f(x) \gg g(x)$$
 cuando $x \to a^+$

o lo que es lo mismo

$$g(x) \ll f(x)$$
 cuando $x \to a^+$

Nota 2.35.

Considere dos funciones $f,g:]a,b] \to [0,+\infty[$ continuas tales que $f,g \to +\infty$ cuando $x \to a^+$.

1. Si $f(x) \cong g(x) \vee f(x) \sim g(x)$ cuando $x \to a^+$, entonces

$$\exists N_1, N_2 > 0 \text{ tales que } \forall x \in]a, b], \ N_1 \cdot g(x) \leq f(x) \leq N_2 \cdot g(x)$$

2. Si $f(x) \ll g(x)$ cuando $x \to a^+$, entonces

$$\exists N > 0 \text{ tal que } \forall x \in]a, b], f(x) \leq N \cdot g(x)$$

3. Si $f(x) \gg g(x)$ cuando $x \to a^+$, entonces

$$\exists N > 0 \text{ tal que } \forall x \in [a, b], f(x) \geq N \cdot g(x)$$

Ejemplo 2.27. Analice la convergencia de

$$I = \int_{1}^{8} \frac{dx}{(x-1)^{2}(x+5)}$$

Solución:

Note que, cuando $x \to 1^+$

$$\frac{1}{(x-1)^2(x+5)} \sim \frac{1}{(x-1)^2}$$

pues

$$\lim_{x \to 1^+} \frac{\frac{1}{(x-1)^2(x+5)}}{\frac{1}{(x-1)^2}} = \lim_{x \to 1^+} \frac{1}{x+5} = \frac{1}{6} \neq 0$$

luego existe N tal que $\forall x \in [1,8]$

$$\frac{1}{(x-1)^2(x+5)} \ge N \cdot \frac{1}{(x-1)^2}$$

de hecho N = 1/13 pues

$$1 < x \le 8 \iff 6 < x + 5 \le 13$$

$$\iff \frac{1}{6} > \frac{1}{x+5} \ge \frac{1}{13}$$

$$\iff \frac{1}{6(x-1)^2} > \frac{1}{(x-1)^2(x+5)} \ge \frac{1}{13(x-1)^2}$$

Se concluye que

$$I \ge \frac{1}{13} \int_{1}^{8} \frac{dx}{(x-1)^2}$$

La última es una p-integral de segunda especie divergente, entonces I es divergente por el criterio de comparación directa.

Nota 2.36. Sean $f,g:[a,b[\to[0,+\infty[$ funciones continuas, cumplen que

$$\lim_{x \to b^{-}} f(x) = \infty \quad \land \quad \lim_{x \to b^{-}} g(x) = \infty$$

entonces

(b)
$$\int_a^b f(x) \, dx \ge \int_a^b g(x) \, dx \quad \land \quad \int_a^b g(x) \, dx \text{ Divergente} \implies \int_a^b f(x) \, dx \text{ Divergente}$$

En cualquier otro caso no hay criterio.

2.2.3 Criterio del límite

Criterio 2.2.3 (Criterio del Límite). Sean $f, g :]a, b] \rightarrow [0, +\infty[$ funciones continuas, tales que cumplen que

$$\lim_{x \to a^+} f(x) = \infty \quad \land \quad \lim_{x \to a^+} g(x) = \infty$$

entonces si

$$L = \lim_{x \to a^+} \frac{f(x)}{g(x)}$$

(a)
$$L \neq 0 \implies \int_a^b f(x) dx \wedge \int_a^b g(x) dx$$
 tienen el mismo comportamiento
= $(Ambas \ convergen \ o \ ambas \ divergen)$.

(b)
$$L = 0$$
 $\wedge \int_a^b g(x) dx$ Convergente $\Longrightarrow \int_a^b f(x) dx$ Convergente

(c)
$$L = +\infty \quad \land \quad \int_a^b g(x) \, dx \; Divergente \implies \int_a^b f(x) \, dx \; Divergente$$

En cualquier otro caso no hay criterio.

Ejemplo 2.28. Analice la convergencia de

$$I = \int_{1}^{8} \frac{dx}{(x-1)^{2}(x+5)}$$

Solución:

Sean

$$f(x) = \frac{1}{(x-1)^2(x+5)} \quad \land \quad g(x) = \frac{1}{(x-1)^2}$$
$$\lim_{x \to 1^+} \frac{f(x)}{g(x)} = \lim_{x \to a^+} \frac{1}{x+5} = \frac{1}{6} \neq 0$$

Como

$$\int_{1}^{8} g = \int_{1}^{8} \frac{dx}{(x-1)^{2}}$$
 es *p*-integral de 2da especie divergente

se concluye que I es divergente por el criterio del límite.

Nota 2.37. Sea $f:]a,b] \to [0,+\infty[$ continua tal que $f(x) \to +\infty$ si $x \to a^+,$ y sea

$$I = \int_{a}^{b} f(x) \, dx$$

Si f(x) se puede expresar de la forma

$$f(x) = \frac{p(x)}{(x-a)^p} \cdot h(x)$$

donde $\lim_{x\to a^+} p(x) \neq 0$ es finito y h(x) = 1 ó h(x) es expresión no factorizable tal que

$$\lim_{x \to a^+} h(x) = 0 \quad \lor \quad \lim_{x \to a^+} h(x) = \infty$$

Se recomienda hacer

$$g(x) = \frac{1}{(x-a)^p}$$
 para comparar con una p-integral

en caso de que no haya criterio, hacer

$$g(x) = \frac{h(x)}{(x-a)^p}$$

para analizar con más detalle la integral $\int_a^b g$.

Ejemplo 2.29. Analice la integral

$$I = \int_{2}^{5/2} \frac{\ln(3-x)\sqrt{2x}}{(x+2)^{3}\sqrt[4]{x^{4}-16}} dx$$

Solución:

Tomando $I = \int_{2}^{5/2} f$, note que

$$f(x) = \frac{\ln(3-x)\sqrt{2x}}{(x+2)^3 \sqrt[4]{(x-2)(x+2)(x^2+4)}}$$

entonces

$$g(x) = \frac{1}{(x-2)^{1/4}} \implies \lim_{x \to 2^+} \frac{f(x)}{g(x)} = \lim_{x \to 2^+} \frac{\ln(3-x)\sqrt{2x}}{(x+2)^3 \sqrt[4]{(x+2)(x^2+4)}}$$
$$= \lim_{x \to 2^+} \frac{\ln(3-x) \cdot 2}{4^3 \sqrt[4]{4 \cdot 16}}$$
$$= 0$$

Como

$$\int_{2}^{5/2} g = \int_{2}^{5/2} \frac{dx}{(x-2)^{1/4}}$$

es una p-integral de segunda especie convergente, entonces I converge por el criterio del límite. \square

Ejemplo 2.30. Determine la convergencia de la siguiente integral impropia

$$I = \int_{2}^{+\infty} \frac{\sqrt{2x} + 3x^{2} - 1}{x^{3}\sqrt{x^{2} + 5x - 14}} \cdot \arctan\left(\frac{1}{\sqrt{x - 1}}\right) dx$$

Solución:

Como $x^2 + 5x - 14 = (x - 2)(x + 7)$, nos damos cuenta de que hay una asíntota vertical en x = 2, luego I es una integral de tercera especie.

Tenemos que

$$I = \underbrace{\int_{2}^{3} \frac{\sqrt{2x} + 3x^{2} - 1}{x^{3}\sqrt{(x - 2)(x + 7)}} \cdot \arctan\left(\frac{1}{\sqrt{x - 1}}\right) dx}_{I_{1}} + \underbrace{\int_{3}^{+\infty} \frac{\sqrt{2x} + 3x^{2} - 1}{x^{3}\sqrt{x^{2} + 5x - 14}} \cdot \arctan\left(\frac{1}{\sqrt{x - 1}}\right) dx}_{I_{2}}$$

Tomando

$$f(x) = \frac{\sqrt{2x} + 3x^2 - 1}{x^3 \sqrt{(x-2)(x+7)}} \cdot \arctan\left(\frac{1}{\sqrt{x-1}}\right)$$

Analizamos I_1 como integral impropia de segunda especie:

Sea

$$\begin{split} g(x) &= \frac{1}{\sqrt{x-2}} \implies \lim_{x \to 2^+} \frac{f(x)}{g(x)} = \lim_{x \to 2^+} \frac{\sqrt{2x} + 3x^2 - 1}{x^3 \sqrt{x+7}} \cdot \arctan\left(\frac{1}{\sqrt{x-1}}\right) \\ &= \frac{\sqrt{4} + 12 - 1}{8\sqrt{9}} \cdot \arctan\left(\frac{1}{\sqrt{1}}\right) \\ &= \frac{13}{24} \cdot \frac{\pi}{4} \neq 0 \end{split}$$

$$\therefore I_1 = \int_2^{+\infty} f \sim \int_2^{+\infty} g = \int_2^{+\infty} \frac{dx}{\sqrt{x-2}}$$

La última es una p-integral de 2^{da} especie convergente (p = 1/2 < 1), luego I_1 es convergente por el criterio del límite.

En el caso de I_2 que es integral impropia de primera especie:

Sea

$$g(x) = \frac{x^2}{x^3 \cdot \sqrt{x^2}} = \frac{1}{x^2} \implies \lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} 3 \cdot \arctan\left(\frac{1}{\sqrt{x-1}}\right) = 0$$

Como

$$\int_{2}^{+\infty} g = \int_{2}^{+\infty} \frac{dx}{x^{2}}$$
 que es p-integral de 1^{era} especie convergente $(p=2>1)$.

Se concluye que I_2 es convergente por el criterio del límite.

Finalmente concluimos que $I=I_1+I_2$ es convergente, por ser suma de integrales convergentes.

Nota 2.38. Sean $f, g: [a, b[\rightarrow [0, +\infty[$ funciones continuas, tales que

$$\lim_{x \to b^{-}} f(x) = \infty \quad \land \quad \lim_{x \to b^{-}} g(x) = \infty$$

entonces si

$$L = \lim_{x \to b^{-}} \frac{f(x)}{g(x)}$$

(a)
$$L \neq 0 \implies \int_a^b f(x) dx \wedge \int_a^b g(x) dx$$
 tienen el mismo comportamiento

(Ambas convergen o ambas divergen).

(b)
$$L = 0$$
 $\wedge \int_a^b g(x) dx$ Convergente $\Longrightarrow \int_a^b f(x) dx$ Convergente

(c)
$$L = +\infty \quad \land \quad \int_a^b g(x) \, dx \text{ Divergente} \implies \int_a^b f(x) \, dx \text{ Divergente}$$

En cualquier otro caso no hay criterio.

2.2.4 Convergencia Absoluta

Criterio 2.2.4 (Convergencia Absoluta). Sea $f: [a,b] \to \mathbb{R}$ función continua es tal que

$$\lim_{x \to a^+} f(x) = \pm \infty$$

y sean

$$I = \int_a^b f(x) dx \quad \land \quad A = \int_a^b |f(x)| dx$$

Si A es una integral Convergente, entonces I es Convergente.

En tal caso se dice que I converge absolutamente.

Definición 2.2 (Convergencia Condicional). Sea $f: [a,b] \to \mathbb{R}$ función continua es tal que

$$\lim_{x \to a^+} f(x) = \pm \infty$$

y sean

$$I = \int_a^b f(x) \, dx \quad \wedge \quad A = \int_a^b |f(x)| \, dx$$

Si I es Convergente y A es Divergente, entonces se dice que I converge condicionalmente.

Nota 2.39. Sea $f: [a, b] \to \mathbb{R}$ función continua es tal que

$$\lim_{x \to b^{-}} f(x) = \pm \infty$$

y sean

$$I = \int_a^b f(x) \, dx \quad \wedge \quad A = \int_a^b |f(x)| \, dx$$

- (a) Si A convergente, entonces I converge absolutamente.
- (b) Si I convergente y A divergente, entonces I converge condicionalmente.

Ejemplo 2.31. Analice la convergencia

$$I = \int_1^3 \frac{x}{\sqrt[5]{9 - x^2}} \cdot \cos\left(\frac{1}{\sqrt{3 - x}}\right) dx$$

Solución:

I es integral impropia de una función no positiva con asíntota vertical x=3. Sea

$$A = \int_{1}^{3} \left| \frac{x}{\sqrt[5]{9 - x^2}} \cdot \cos\left(\frac{1}{\sqrt{3 - x}}\right) \right| dx$$

$$= \int_{1}^{3} \frac{x}{\sqrt[5]{(3 - x)(3 + x)}} \cdot \left| \cos\left(\frac{1}{\sqrt{3 - x}}\right) \right| dx$$

$$\leq \int_{1}^{3} \frac{x}{\sqrt[5]{(3 - x)(3 + x)}} dx = J$$

Sean

$$f(x) = \frac{x}{\sqrt[5]{(3-x)(3+x)}} \quad \land \quad g(x) = \frac{1}{\sqrt[5]{3-x}}$$

entonces

$$\lim_{x \to 3^{-}} \frac{f(x)}{g(x)} = \lim_{x \to 3^{-}} \frac{x}{\sqrt[5]{3+x}} = \frac{3}{\sqrt[5]{6}} \neq 0.$$

Luego, por el criterio del límite

$$J = \int_{1}^{3} f \sim \int_{1}^{3} g = \int_{1}^{3} \frac{dx}{\sqrt[5]{3 - x}}.$$

La última es una p-integral impropia de 2^{da} especie convergente (p=1/5<1). Como J es convergente, entonces A converge por el criterio de comparación directa. Finalmente, I es convergente absolutamente.

3 Análisis de integrales impropias usando desarrollos limitados

Definición 3.1 (Desarrollos generalizados). Si tenemos el desarrollo limitado de f(x) cuando $x \to 0$:

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \mathcal{O}(x^n)$$

entonces el desarrollo

$$f[g(x)] = a_0 + a_1 g(x) + a_2 [g(x)]^2 + \dots + a_n [g(x)]^n + \mathcal{O}[[g(x)]^n]$$

es llamado **Desarrollo Generalizado** de la función "f[g(x)]" cuando $x \to a$, siempre que

$$\lim_{x \to a} g(x) = 0$$

Lo mismo se dice si cambiamos $x \to a$ por

$$x \to a^+ \quad \lor \quad x \to a^- \quad \lor \quad x \to +\infty \quad \lor \quad x \to -\infty$$

Ejemplo 3.1. Como $x \to 0 \implies \sqrt{x} \to 0$ entonces

$$\ln\left[1+\sqrt{x}\right] = \left[u - \frac{u^2}{2} + \frac{u^3}{3} + \mathcal{O}(u^2)\right]_{u=\sqrt{x}}$$
$$= x^{1/2} - \frac{x}{2} + \frac{x^{3/2}}{3} + \mathcal{O}(x^{3/2})$$

es un desarrollo generalizado cuando $x \to 0$.

Ejemplo 3.2. Como $x \to +\infty \implies 1/x \to 0$ entonces

$$sen \left[\frac{1}{x} \right] = \left[u - \frac{u^3}{6} + \frac{u^5}{120} + \mathcal{O}(u^6) \right]_{u=1/x}$$

$$= \frac{1}{x} - \frac{1}{6x^3} + \frac{1}{120x^5} + \mathcal{O}\left[\frac{1}{x^6} \right]$$

es un desarrollo generalizado cuando $x \to +\infty$

Nota 3.1. Sean $p, q : \mathbb{R} \to \mathbb{R}^* = \mathbb{R} \setminus \{0\}$ funciones tales que

$$p(u) = q(u) + \mathcal{O}[q(u)],$$
 cuando $u \to 0$

entonces $p(u) \sim q(u)$ cuando $u \to 0$.

Lo mismo se dice si $u \to 0^+$ ó $u \to 0^-$.

Luego, si $f(u) \ge 0$ continua en]0,b] y $f(u) \xrightarrow[u\to 0^+]{} \infty$ entonces

$$f(u) = g(u) \cdot p(u) \implies \int_0^b f = \int_0^b g(u) \cdot p(u) \, du \sim \int_0^b g(u) \cdot q(u) \, du$$

Igualmente,

$$f(u) = \frac{g(u)}{p(u)} \implies \int_0^b f = \int_0^b \frac{g(u)}{p(u)} du \sim \int_0^b \frac{g(u)}{g(u)} du$$

Nota 3.2. Sea $p(x) = (x-a)^{\alpha} + \mathcal{O}[(x-a)^{\alpha}]$, cuando $x \to a$, o simplemente que $p(x) \sim (x-a)^{\alpha}$. Si $f:]0, b] \to [0, +\infty[$ continua, entonces

$$f(x) = g(x) \cdot p(x) \implies \int_a^b f = \int_a^b g(x) \cdot p(x) dx \sim \int_a^b g(x) \cdot (x - a)^\alpha dx$$

Igualmente

$$f(x) = \frac{g(x)}{p(x)} \implies \int_a^b f = \int_a^b \frac{f(x)}{p(x)} dx \sim \int_a^b \frac{g(x)}{(x-a)^\alpha} dx$$

Ejemplo 3.3. Analice la integral

$$I = \int_{4}^{6} \frac{\ln(3) - \ln(7 - x)}{(x - 4)^{3/2}} dx$$

Solución:

Recordemos que $\ln(1-u) = -u + \mathcal{O}(u)$ cuando $u \to 0$, luego

$$\begin{split} \ln(7-x) &= \ln[3-(x-4)] \\ &= \ln(3) + \ln\left[1 - \frac{x-4}{3}\right] \\ &= \ln(3) - \frac{x-4}{3} + \mathcal{O}\left[\frac{x-4}{3}\right], \quad \text{ cuando } x \to 4^+ \end{split}$$

luego

$$I \sim \int_4^6 \frac{x-4}{3} \cdot \frac{1}{(x-4)^{3/2}} dx = \frac{1}{3} \cdot \int_4^6 \frac{1}{(x-4)^{1/2}} dx$$

como la última es una p-integral de 2^{da} especie convergente (p = 1/2 < 1), entonces I es convergente.

Nota 3.3. Sea $p(x) = x^{\alpha} + \mathcal{O}[x^{\alpha}]$, cuando $x^{\alpha} \to 0$, o si simplemente $p(x) \sim x^{\alpha}$

(a) Si $x^{\alpha} \to 0 \iff x \to 0$ (o sea que $\alpha > 0$) y $f:]0,b] \to [\,0,+\infty[\,$ continua, entonces

$$f(x) = g(x) \cdot p(x) \implies \int_0^b f = \int_0^b g(x) \cdot p(x) \, dx \sim \int_0^b g(x) \cdot x^\alpha \, dx$$

Igualmente

$$f(x) = \frac{g(x)}{p(x)} \implies \int_0^b f = \int_0^b \frac{f(x)}{p(x)} dx \sim \int_0^b \frac{g(x)}{x^\alpha} dx$$

(b) Si $x^{\alpha} \to 0 \iff x \to +\infty$ (o sea que $\alpha < 0$) y $f: [a, +\infty[\to [0, +\infty[$ continua, entonces

$$f(x) = g(x) \cdot p(x) \implies \int_{a}^{+\infty} f = \int_{a}^{+\infty} g(x) \cdot p(x) \, dx \sim \int_{a}^{+\infty} g(x) \cdot x^{\alpha} \, dx$$

Igualmente

$$f(x) = \frac{g(x)}{p(x)} \implies \int_a^{+\infty} f = \int_a^{+\infty} \frac{f(x)}{p(x)} dx \sim \int_a^{+\infty} \frac{g(x)}{x^{\alpha}} dx$$

Ejemplo 3.4. Analice la convergencia de la integral

$$I = \int_0^{\pi/4} \frac{dx}{\sqrt[5]{x^3} \operatorname{sen}\left[\sqrt[5]{x^2}\right]}$$

Solución:

Recordemos que sen(u) = u + O(u), entonces

$$\operatorname{sen}\left[\sqrt[5]{x^2}\right] = \sqrt[5]{x^2} + \mathcal{O}\left[\sqrt[5]{x^2}\right], \quad \text{ cuando } x \to 0^+$$

luego

$$I \sim \int_0^{\pi/4} \frac{dx}{\sqrt[5]{x^3} \cdot \sqrt[5]{x^2}} = \int_0^{\pi/4} \frac{dx}{x}$$

La última es una p-integral de 2^{da} especie divergente (p=1), entonces I es divergente.

Ejemplo 3.5. Analice la convergencia de la integral

$$I = \int_3^{+\infty} \frac{\sqrt{2x} + 3x^2 - 1}{x^3 \sqrt{x^2 + 5x - 14}} \cdot \arctan\left(\frac{1}{\sqrt{x}}\right) dx$$

Solución:

Note que $x \to +\infty \iff u = 1/\sqrt{x} \to 0^+$

$$\arctan\left(\frac{1}{\sqrt{x}}\right) = \left[u + \mathcal{O}(u)\right]\Big|_{u=1/\sqrt{x}} = \frac{1}{\sqrt{x}} + \mathcal{O}\left(\frac{1}{\sqrt{x}}\right)$$

Luego

$$I \sim \int_{3}^{+\infty} \frac{x^2}{x^3 \cdot \sqrt{x^2}} \cdot \frac{1}{\sqrt{x}} dx = \int_{3}^{+\infty} \frac{dx}{x^{2+1/2}} = \int_{3}^{+\infty} \frac{dx}{x^{5/2}}$$

que es una p-integral impropia de 1^{era} especie convergente, luego I es convergente.

Ejemplo 3.6. Analice la convergencia de la integral

$$I = \int_{\pi/2}^{\pi} \frac{dx}{\cos(x)}$$

Solución: I es una integra impropia de 2^{da} especie pues tiene asíntota vertical en $x=\pi/2$. Tenemos que

$$\cos(x) = \cos\left[\frac{\pi}{2} + \left(x - \frac{\pi}{2}\right)\right]$$

$$= \cos\left[\frac{\pi}{2}\right] \cdot \cos\left[x - \frac{\pi}{2}\right] - \sin\left[\frac{\pi}{2}\right] \cdot \sin\left[x - \frac{\pi}{2}\right]$$

$$= -\sin\left[x - \frac{\pi}{2}\right]$$

$$= -(x - \pi/2) + \mathcal{O}(x - \pi/2)$$

pues sen(u) = u + O(u), luego

$$I = -\int_{\pi/2}^{\pi} \frac{dx}{-\cos(x)} \sim -\int_{\pi/2}^{\pi} \frac{dx}{x - \pi/2}$$

que es una p-integral de 2^{da} especie divergente, pues p = 1. Se concluye que I es divergente.

Ejemplo 3.7. Analice la convergencia de la integral

$$I = \int_{-\infty}^{-5} \left(1 + \frac{2}{x}\right)^{-x^3} dx$$

Solución: Tenemos que $1/x \to 0$ cuando $x \to -\infty$, luego

$$\left(1 + \frac{2}{x}\right)^{-x^3} = \exp\left[-x^3 \cdot \ln\left(1 + \frac{2}{x}\right)\right]$$

$$= \exp\left[-x^3 \cdot \left(2/x - \frac{1}{2} \cdot (2/x)^2 + \frac{1}{3} \cdot (2/x)^3 + \mathcal{O}[(2/x)^3]\right)\right]$$

$$= \exp\left[-2x^2 + 2x - \frac{8}{3} + \mathcal{O}(1)\right]$$

entonces

$$I \sim \int_{-\infty}^{-5} \exp\left[-2x^2 + 2x - \frac{8}{3}\right] dx = e^{-8/3} \cdot \int_{-\infty}^{-5} e^{-2x^2} \cdot e^{2x} dx$$

Note que $e^{-2x^2} \cdot e^{2x} \ll \frac{1}{x^2}$ cuando $x \to -\infty$, pues

$$\lim_{x \to -\infty} \frac{e^{-x^2} \cdot e^{2x}}{1/x^2} = \lim_{x \to -\infty} \frac{x^2}{e^{x^2}} \cdot e^{2x} = 0 \cdot 0 = 0$$

Por comparación al límite

$$\int_{-\infty}^{-5} \frac{dx}{x^2} \text{ es } p\text{-integral de } 1^{\text{era}} \text{ especie convergente } \Longrightarrow \int_{-\infty}^{-5} e^{-2x^2} \cdot e^{2x} \, dx \text{ es convergente}$$

Luego I es convergente.

Nota 3.4. Del ejercicio anterior note que

$$\lim_{x \to -\infty} \frac{\left(1 + \frac{2}{x}\right)^{-x^3}}{\exp\left[-2x^2 + 2x - \frac{8}{3}\right]} = 1$$

Referencias

- [1] Pisa Volio E., *Introducción al Análisis real en una variable*, Editorial de la Universidad de Costa Rica, Costa Rica, 2003
- [2] Poltronieri J., Cálculo 2, Serie: Cabécar, Costa Rica, 1998
- [3] Duarte A. & Cambronero S., Complementos de Cálculo, 2011
- [4] Spivak M., Cálculo Infinitesimal, Editorial Reverté, 1988
- [5] Demidovich B., Problemas y Ejercicios de Análisis Matemático, Editorial Mir, Moscú, URSS, 1973
- [6] Piskunov N., Cálculo diferencial e integral. tomo II, Editorial Mir, Moscú, 1978
- [7] Larson R., Hostetler, Cálculo y Geometría Analítica, Editorial McGraw-Hill, México, 1989
- [8] Edwards C.H & Penney D. E., Cálculo con Geometría Analítica, Prentice Hall Hispanoamericana, México, 1996
- [9] Spiegel M. R., Manual de fórmulas y tablas matemáticas, Editorial McGraw-Hill, México, 1970
- [10] Widder D., Advanced Calculus, Dover Publications, Inc., New York, USA, 1989