Machine Learning as A Tool for Hypothesis Generation

Jens Ludwig, Sendhil Mullainathan QJE, 2024

Present by Long Zhen

Motivation

- Science is curiously asymmetric
 - Tested meticulously & originated intuitively
 - \rightarrow idea generation is also an empirical activity but off stage
 - How to formalize?
- Two developments
 - Machine learning can find patterns that not noticed by human
 - Data on human behavior is exploding → machine readable
- → use ML to expand how hypotheses are generated

Motivation & Research question

- The key challenge:
 - One goal of science is generalization, which requires interpretability
 - The predictors produced by ML are "black boxes"
- This paper's RQ:
 - How to generate hypotheses that are both novel and testable using machine learning algorithms?

Contribution

- Literature on hypothesis generation
 - Prior literature generate hypothesis based on existing theory or economic intuition
 - This paper: propose a systematic procedure to generate hypo using ML
- Literature on machine learning in economic research
 - Prior literature:
 - New measures
 - New models
 - Causal inference tools
 - This paper: apply data-driven ML algorithms to a novel field

How?

- Two challenges:
 - Black box nature of most machine learning algorithms
 - Development in CS to create counterfactual explanations
 - Rorschach test problem need independent subjects to inspect the outcomes
 - Use independent subjects to inspect
 - Whole new concepts that humans do not yet understand cannot be produced
- Apply to other settings:
 - Images, text, and time series are rich to explore potential hypos

A simple framework for discovery

- Criteria for hypotheses generated:
 - Novelty orthogonalize to known factors
 - Testability hard to define ex ante
 - Interpretability: let us generalize
 - Empirical plausibility: correlation between y outcome of interest and h(x) hypo
- Human vs algorithm
 - Human:
 - interpretable but idiosyncratic and not necessarily replicable;
 - novel but noisy (Polanyi's paradox);
 - Not necessarily empirical plausible over-fitting/ curse of dimensionality
 - \rightarrow supervised learning: empirically plausible by construction m(x)
 - Not interpretable

• Related concepts:

- Closed world problem: the fundamental laws are known, but drawing out predictions is computationally hard. E.g., protein
- Open world problem: relation between x and y is unknown
 - ML: generate findings & hypos

An application

- Why in this US criminal justice setting?
 - Clear decision maker
 - Large samples
 - High-dimensional data
- Institutional background
 - Pretrial hearing: within 24-48 hours after arrest, a judge must decide on the bail
 - Based on the defendant's risk of flight
 - Reality: judges systematically mispredict

Data

- Mecklenburg county, North Carolina, the second most populated county in the state
 - Representative sample $\sqrt{}$
 - The Mecklenburg County Sheriff's Office (MCSO):
 - arrest data in the last 3yrs. Demographics/charge/mug shots
 - The North Carolina Administrative Office of the Courts (NCAOC)
 - decision: detain/release/etc.
 - North Carolina Department of Public Safety
 - Defendant's prior convictions and incarceration spells
- \rightarrow almost all info that judge has
- Jan 18, 2017~ Jan 17, 2020; 51,751 arrests

2017.1.18 2019.7.17 2020.1.18

Step 0: ask human

• Ask human to label important features (HIT)

- Demographic-related: ethnicity/skin tone/age
- Psychology-related: trustworthiness/dominance/attractiveness/competence
 - Rate images on a 9-point scale

Step 1: predict judge decisions (y=1/0) using all x

- Predict judge behavior via ML
 - Gradient-boosted decision tree structured data $m_s(x)$
 - CNN unstructured data $m_u(x)$
 - \rightarrow Combine $m_p(x) = [\hat{\beta}_s m_s(x) + \hat{\beta}_u m_u(x)]$
 - "stacking procedure" to form a single weighted-average prediction
 - (also tried fusion model, but not outperform this ensemble model)

- Do judges behave based on flight risk or cognitive error?
 - Rearrest ~ detention prediction
 - → reflects errors in the judicial decision-making process

		Dependent variable: Judge detain decision							
		(1)	(2)	(3)		(4)	(5)	(6)	(7)
Algo judge detain j	prediction	0.6963*** (0.0383)						0.6262*** (0.0433)	0.6171*** (0.0434)
Male			0.1040*** (0.0105)	0.0978			0.0940*** (0.0108)	0.0228^{*} (0.0117)	0.0244** (0.0117)
Age			-0.0008^{**} (0.0004)	-0.0009	4)		$-0.0013^{***} \ (0.0004)$	$-0.0015^{***} \ (0.0004)$	-0.0015^{***} (0.0004)
Black			-0.0139 (0.0098)	-0.065			-0.0618^{***} (0.0156)	-0.0513^{***} (0.0154)	-0.0521^{***} (0.0154)
Trustworthiness					-0.0190^{**} (0.0070)		-0.0135* (0.0071)	-0.0105 (0.0070)	-0.0092 (0.0070)
Human guess									0.0852^{***} (0.0265)
Constant	0.0576*** (0.0106)	0.1868** (0.0165)	0.27 (0.02	780*** 272)	0.3054^{**} (0.0258)		0.3928*** (0.0381)	$0.2429^{***} \ (0.0391)$	0.1981*** (0.0415)
Naive-AUC Observations Adjusted R^2	0.625 9,604 0.0331	0.56 $9,604$ 0.0101	0.57 9,6 0.01	304	0.549 9,604 0.0049		0.586 9,604 0.0162	0.633 9,604 0.0370	0.635 $9,604$ 0.0380

$Dependent\ variable$
Algorithmic judge detain prediction

	(1)	(2)	(3)	(4)	(5)		
Male	0.1186***	0.1179***	0.1153***	0.1138***	0.1140***		
	(0.0025)	(0.0025)	(0.0025)	(0.0025)	(0.0025)		
Age		0.0006^{***}	0.0006^{***}	0.0003^{***}	0.0003^{***}		
_		(0.0001)	(0.0001)	(0.0001)	(0.0001)		
Black		0.0029	-0.0185^{***}	-0.0168^{***}	-0.0171^{***}		
		(0.0023)	(0.0037)	(0.0036)	(0.0036)		
Asian		-0.0204^*	-0.0232^{**}	-0.0210^*	-0.0216^{*}		
		(0.0115)	(0.0115)	(0.0114)	(0.0114)		
Indigenous American		0.0103	0.0061	0.0135	0.0126		
_		(0.0241)	(0.0240)	(0.0238)	(0.0238)		
Skin tone			-0.0441^{***}	-0.0411^{***}	-0.0417^{***}		
			(0.0059)	(0.0058)	(0.0058)		
Attractiveness				-0.0055^{***}	-0.0051^{***}		
				(0.0016)	(0.0016)		
Competence				-0.0091^{***}	-0.0087^{***}		
-				(0.0017)	(0.0017)		
Dominance				0.0037^{***}	0.0030^{**}		
				(0.0012)	(0.0012)		
Trustworthiness				-0.0048^{***}	-0.0041^{**}		
				(0.0016)	(0.0016)		
Human guess					0.0399^{***}		
					(0.0062)		
Constant	0.1595^{***}	0.1391^{***}	0.1771^{***}	0.2393^{***}	0.2173^{***}		
	(0.0022)	(0.0039)	(0.0064)	(0.0089)	(0.0095)		
Observations	9,604	9,604	9,604	9,604	9,604		
Adjusted R^2	,	To 0! <u>f</u>99½ ypo	,	0.2195	0.2228		
~							

Step 2: algorithm-human communication

- Saliency map: use gradient to highlight specific pixels
- build a model of the data distribution morph

How to morph?

(A) Initial face

(C) Naive age-morphed image 2024/5/27

(B) Saliency map

(D) Morphs from our procedure

- Take age as an example
- Use the mug shot to predict age
- Get the saliency map
- change pixels in the direction of the gradient of the predicted outcome
- \rightarrow change age to detention decision
 - \rightarrow create the counterfactual
- Not a face?
 - Use GAN

Create detention decision morphs

• Ask subjects to articulate the differences

(B) Transformations of the face along selected steps of the morphing process

Name what differs in image pairs - hypo

(A) A word cloud of the comments

Step 3: new hypothesis evaluation

TABLE IV

CORRELATION BETWEEN WELL-GROOMED AND THE ALGORITHM'S PREDICTION

		Dependent variable: Algorithmic judge detain prediction						
	(1)	(2)	(3)	(4)	(5)	(6)		
Well-groomed	-0.0172*** (0.0011)	-0.0188*** (0.0010)	-0.0184*** (0.0010)	-0.0185*** (0.0010)	-0.0158*** (0.0012)	-0.0153*** (0.0012)		
Male	(0.0011)	0.1201*** (0.0024)	0.1192*** (0.0024)	0.1166*** (0.0024)	0.1153*** (0.0025)	0.1154*** (0.0025)		
Age		(0.0021)	0.0003*** (0.0001)	0.0002*** (0.0001)	0.0002** (0.0001)	0.0002** (0.0001)		
Black			0.0050** (0.0023)	-0.0168*** (0.0036)	-0.0165*** (0.0036)	-0.0168*** (0.0036)		
Asian			-0.0138 (0.0113)	-0.0165 (0.0113)	-0.0153 (0.0113)	-0.0160 (0.0113)		
Indigenous American			0.0211 (0.0237)	0.0169 (0.0236)	0.0181 (0.0236)	0.0172 (0.0236)		
Skin tone			(/	-0.0449*** (0.0058)	-0.0437*** (0.0058)	-0.0440*** (0.0058)		
Attractiveness				(0.000)	0.0006 (0.0016)	0.0008 (0.0016)		
Competence					-0.0062*** (0.0017)	-0.0060*** (0.0017)		
Dominance					0.0036*** (0.0012)	0.0031** (0.0012)		

Iteration

- Generate new hypo orthogonalized to well-groomedness
 - use training data to build predictors of detention risk, m(x), and the facial features to orthogonalize against, $h_1(x)$;
 - pick a point on the GAN latent space of faces;
 - collect the gradients with respect to m(x) and $h_1(x)$;
 - use the Gram-Schmidt process to move within the latent space toward higher predicted detention risk m(x), but orthogonal to $h_1(x)$; and
 - show new morphed image pairs to subjects, have them name a new feature.

TABLE VI

Do Well-Groomed and Heavy-Faced Correlate with Judge Decisions?

	Dependent variable: Judge detain decision							
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	
Heavy-faced	-0.0234*** (0.0036)		-0.0226*** (0.0036)	-0.0223*** (0.0036)		-0.0218*** (0.0037)	-0.0111*** (0.0037)	
Well-groomed		-0.0198*** (0.0043)	-0.0185*** (0.0043)		-0.0124** (0.0051)	-0.0100° (0.0051)	-0.0022 (0.0051)	
Algo judge detain prediction							0.5842^{***} (0.0449)	
Male				0.0918*** (0.0107)	0.0959*** (0.0108)	0.0928*** (0.0108)	0.0269** (0.0118)	
Age				-0.0011^{***} (0.0004)	-0.0013^{***} (0.0004)	-0.0012^{***} (0.0004)	-0.0014^{***} (0.0004)	
Black				$-0.0645^{***} $ (0.0156)	-0.0624^{***} (0.0156)	-0.0643^{***} (0.0156)	-0.0535^{***} (0.0154)	
Asian				-0.0737 (0.0488)	-0.0726 (0.0489)	-0.0701 (0.0488)	-0.0620 (0.0484)	
Indigenous American				0.0490 (0.1019)	0.0683 (0.1021)	0.0524 (0.1019)	0.0501 (0.1010)	
Skin tone				$-0.1062^{***} \ (0.0250)$	-0.1038^{***} (0.0251)	-0.1076^{***} (0.0250)	-0.0801^{***} (0.0249)	
Attractiveness				-0.0084 (0.0067)	0.0004 (0.0070)	-0.0045 (0.0070)	-0.0025 (0.0070)	

Conclusion

- This paper presents a new semi-automated procedure for hypothesis generation. They apply this procedure to a social issue bailing decision to generate two hypothesis.
- Three conditions to apply this procedure:
 - A behavior that can statistically predict
 - Unstructured, high-dimensional data
 - Can morph the input data e.g., GAN; Bi-Encoder

Extension

• Textual/ audio hypothesis?