ABSTRACT ALGEBRA - FIRST MIDTERM EXAM

ARDEN RASMUSSEN OCTOBER 3, 2019

Problem 1

Let $\omega \in \mathbb{C}$ be a solution of the equation

$$\omega^2 + \omega + 1 = 0.$$

Consider the set $\mathbb{Z}[\omega] = \{a + b\omega | a, b \in \mathbb{Z}\}$. Show that the set $\mathbb{Z}[\omega]$ is closed under the ordinary addition and under the ordinary multiplication. Conclude that $\mathbb{Z}[\omega]$ is a ring which is a subring of the field of complex numbers.

Proof. Consider the set $\mathbb{Z}[\omega] = \{a + b\omega | a, b \in \mathbb{Z}\}$. Let $a_1 + b_1\omega, a_2 + b_2\omega \in \mathbb{Z}[\omega]$, then we compute

$$(a_1 + b_1\omega) + (a_2 + b_2\omega) = (a_1 + a_2) + (b_1 + b_2)\omega.$$

It is clear that $a_1 + a_2 \in \mathbb{Z}$ and $b_1 + b_2 \in \mathbb{Z}$, so we can conclude that $\mathbb{Z}[\omega]$ is closed under ordinary addition. Now we compute

$$(a_1 + b_1\omega) \cdot (a_2 + b_2\omega) = a_1a_2 + a_1b_2\omega + a_2b_1\omega + b_1b_2\omega^2.$$

Since $\omega^2 + \omega + 1 = 0$, then we know that $\omega^2 = -\omega - 1$, so we can rewrite this to be

$$a_1 a_2 + a_1 b_2 \omega + a_2 b_1 \omega - b_1 b_2 (\omega + 1)$$

= $(a_1 a_2 - b_1 b_2) + (a_1 b_2 + a_2 b_1 - b_1 b_2) \omega$.

Again, we can see that $a_1a_2 - b_1b_2 \in \mathbb{Z}$ and $a_1b_2 + a_2b_1 - b_1b_2 \in \mathbb{Z}$, thus we conclude that $\mathbb{Z}[\omega]$ is closed under ordinary addition.

TODO

We are able to conclude that $(\mathbb{Z}[\omega], +, \cdot)$ is a ring, and is a subring of \mathbb{C} .

Problem 2

Consider the set $\mathbb{Z}[2i] = \{a + 2bi | a, b \in \mathbb{Z}\}$. Standard number addition and multiplication turn $\mathbb{Z}[2i]$ into a commutative integral domain with identity.

- (a). Prove that 2 is irreducible in this ring.
- (b). Prove that 2i is irreducible in this ring.
- (c). Is it true that 2|2i in this ring?
- (d). Are 2 and 2i associates in this ring?
- (e). Can you provide two factorizations of 4 into irreducible?
- (f). Is 2 prime in this ring? Justify your claim.
- (g). Is 2i prime in this ring?

1

(g). Is $\mathbb{Z}[2i]$ a Euclidean domain? Is it a PID?

Problem 3

Let I be an ideal of a commutative ring R with identity. Define the following set:

$$\operatorname{rad}\left(I\right)=\left\{r\in R|r^{n}\in I\text{ for some }n\in\mathbb{N}\right\}.$$

Note: \mathbb{N} is the set of positive integers only. In particular, $0 \notin \mathbb{N}$.

- (a). Suppose temporarily that $R = \mathbb{Z}$. Find rad (I) for the following choices of I:
- (i). I = (9)
- (i). I = (43)
- (iii). I = (72)
- (b). Going back to the general situation, show rad(I) is an ideal. Hint: Look at your very first homework assignment.