UNIDAD 6 MATRICES

Definición 42 a) Vector renglón de n componentes

 $\overline{V}=(X_1,X_2,\ldots,X_n)$ \rightarrow conjunto ordinado de n números excritos en forma de renglén

Definición 42 b) Vector columna de n componentes: conjunto ordenado de n números escritos en forma de columna.

$$\bar{V} = \begin{bmatrix} X_1 \\ X_2 \\ & Z^2 \end{bmatrix}$$
 $= \sum_{i=1}^{n} X_i X_i$
 $= \sum_{i=1}^{n} X_i$

Moaremos las letras U, V, W, X, J, Z para referirnos a los vectores (con una testa arriba)

Eximples:

V= (4,5) vector rengion a 2 componentes

$$\nabla = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 vector columna de 3 componentes

 $\overline{u}=(4,0,-1,2)$ vector renglish de 4 componentes

$$\bar{x} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
 vector columna y vector coro de 5 componentes

Definición 43 Igualdad de vectores

Stan
$$\bar{X} = (X_1, X_2, \dots, X_n)$$

 $\bar{Y} = (Y_1, Y_2, \dots, Y_n)$

Decimos que X=V => tienen el mismo tamaño y Sus componentes correspondientes son iguales, es decir:

$$X_{1} = Y_{1},$$

$$X_{2} = Y_{2}$$

$$\vdots$$

$$X_{k} = Y_{k}$$

$$\vdots$$

$$X_{k} = Y_{k}$$

Definición 44 Suma de dos vectores

Si $\bar{X}=(X_1,X_2,...,X_n)$ y $\bar{Y}=(y_1,y_2,...,y_n)$, la suma $\bar{X}+\bar{Y}$ su purde realizar si y sólo si \bar{X} y \bar{Y} tienen

el miomo famaño. Si es asi, la suma X+Y se define como:

 $\vec{X}+\vec{Y}=(X_1+y_1,X_2+y_2,...,X_n+y_n)$ \Longrightarrow vector de n componentes también (la suma es cerrada).

Definición 45 Multiplicación de un vector por un escalar

See $\bar{X} = (X_1, X_2, ..., X_n)$ y $\alpha \in \mathbb{R}$. U producto $\alpha \bar{X}$ se define como:

$$\alpha \bar{X} = \alpha (X_1, X_2, ..., X_n)$$
= $(\alpha X_1, \alpha X_2, ..., \alpha X_n)$ vector de n componentes fambien.

Gemplas

- 1) $\overline{\lambda} + \overline{\nu} = (-8,7,3) + (7,-1,2) = (-7,6,5)$
- 2) $3\bar{u} = 3(-8,7,3) = (-24,21,9)$
- 3) $\overline{V} + 2\overline{w} = (1,-1,2) + 2(-5,2,-6)$ = (1,-1,2) + (-10,4,-12)= (-9,3,-16)

4)
$$2\bar{u} - 3\bar{v} + 4\bar{w} = 2(-8,7,3) - 3(1,-1,2) + 4(-5,2,-6)$$

= $(-16,14,6) + (-3,3,-6) + (-20,8,-24)$
= $(-39,25,-24)$

Taka pp. 58,59 probo. 1-38 (Grossman).

Definición 46 Matriz

Una matriz A de tamaño mxn es un arreglo rectangular de mn números dispuestos en m renglanes y n columnas.

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1j} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2j} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mj} & \cdots & a_{mn} \end{bmatrix}_{m \times n}$$

$$= \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1j} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots &$$

A fambien se puede excitàr como A=[aij] mxn

Las matrices se denotan con letras mayisculas: A, B, C, D, etc.

aij es la componente ij de A; es el número que aparece en el

rengión i y la columna j de A.

Exemples:

- 1) [2 1] matriz cuadrada de zxz
- b) [-7 -7 | matriz de 3×2
- c) [3 5 0 -1] matriz de 2×4
- d) [2 4 6 5-6 7 -1 0 3] matriz cuadrada de 3×3
 - e) [00000] matriz wro de 2x5

Localización de componentes.

$$0_{13} = 8$$
 $0_{31} = 4$
 $0_{21} = 5$ $0_{13} = 8$

$$0_{33} = -6$$
 $0_{22} = -2$

Definición 47 Igual dad de matricas

Des matrices $A = [a_{ij}]$ y $B = [b_{ij}]$ son riguales si y solo si:

- 1) Tiemen el miomo famaño
- 2) Sus componentes correspondientes son ignales: $a_{ij} = b_{ij}$ $a_{ij} = b_{ij}$ para i = 1,...,m $y_{ij} = 1,...,n$

Ejemplos

1)
$$\begin{bmatrix} 3 & 4 & 7 \\ -8 & 3 & 1 \end{bmatrix}$$
 = $\begin{bmatrix} 2+1 & 5-1 & 3+4 \\ 2-10 & 1+2 & -4+5 \end{bmatrix}$ _{2×3}

2)
$$\begin{bmatrix} 1 & -2 \\ 3 & 0 \end{bmatrix}$$
 \neq $\begin{bmatrix} -2 & 1 \\ 3 & 0 \end{bmatrix}$ _{2×2}

3)
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \neq \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}_{xx}$$

3)
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \neq \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}_{2\times 3}$$

Definición 48 Suma de matrices

Dos matrices A=[aij] y B=[bij] se pueden sumar si y sólo si tienen el mismo tamaño. En este coso, A+B se define como:

$$A + B = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{71} & a_{72} & \dots & a_{7n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} + \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \vdots & \vdots & & \vdots \\ b_{m1} & b_{m2} & \dots & b_{mn} \end{bmatrix} = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \dots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \dots & a_{2n} + b_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \dots & a_{mn} + b_{mn} \end{bmatrix}_{m \times n}$$

De otra manera:

$$A + B = [a_{ij}]_{m \times n} + [b_{ij}]_{m \times n} = [a_{ij} + b_{ij}]_{m \times n}$$

Exemplo
$$\begin{bmatrix}
2 & 4 & -6 & 1 \\
1 & 3 & 2 & 1 \\
-4 & 3 & -5 & 5
\end{bmatrix} +
\begin{bmatrix}
0 & 1 & 6 & -2 \\
2 & 3 & 4 & 3 \\
-2 & 1 & 4 & 4
\end{bmatrix} =
\begin{bmatrix}
2 & 5 & 0 & 5 \\
3 & 6 & 6 & 4 \\
-6 & 4 & -1 & 9
\end{bmatrix}$$

Definición 49 Multiplicación de una matriz por un eocalar

Sea $A=[a_{ij}]$ una matriz de $m \times n$ y sea or un eocalar.

U producto dA se define como:

En forma compacta: $dA = d[\alpha_{ij}] = [\alpha \alpha_{ij}]_{m \times n}$

entonces
$$2A = \begin{bmatrix} 2 & -6 & 8 & 4 \\ 6 & 2 & 8 & 12 \\ -4 & 6 & 10 & 14 \end{bmatrix}$$

Sean
$$A = \begin{bmatrix} 1 & 4 \\ -2 & -2 \\ 0 & -8 \end{bmatrix}$$
, $B = \begin{bmatrix} -4 & 7 \\ 0 & 1 \\ 8 & -3 \end{bmatrix}$, $C = \begin{bmatrix} 5 & -9 \\ 3 & 0 \\ 6 & 1 \end{bmatrix}$

Realizar:

28) A+B
$$A+B = \begin{bmatrix} 1 & A \\ -2 & -2 \\ 0 & -8 \end{bmatrix} + \begin{bmatrix} -4 & 7 \\ 0 & 1 \\ 8 & -3 \end{bmatrix} = \begin{bmatrix} -3 & 11 \\ -2 & -1 \\ 8 & -11 \end{bmatrix}$$

36) A-C
$$A-C = \begin{bmatrix} 1 & 4 \\ -2 & -2 \\ 0 & -8 \end{bmatrix} - \begin{bmatrix} 5 & -9 \\ 3 & 0 \\ 6 & 1 \end{bmatrix} = \begin{bmatrix} -4 & 13 \\ -5 & -2 \\ -6 & -9 \end{bmatrix}$$

34)
$$6B - 7A + 0C$$

 $6B - 7A + 0C = 6\begin{bmatrix} -4 & 7 \\ 0 & 1 \\ 8 - 3 \end{bmatrix} - 7\begin{bmatrix} 1 & 4 \\ -2 & -2 \\ 0 & 8 \end{bmatrix} + 0\begin{bmatrix} 6 & -9 \\ 3 & 0 \\ 6 & 1 \end{bmatrix}$
 $= \begin{bmatrix} -24 & 42 \\ 0 & 6 \\ 48 & -18 \end{bmatrix} + \begin{bmatrix} -7 & -28 \\ 14 & 14 \\ 0 & 56 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$
 $= \begin{bmatrix} -31 & 14 \\ 14 & 20 \\ 48 & 38 \end{bmatrix}$