# Hands on Machine Learning

### Problem Statement - Titanic Disaster

While there was some element of luck involved in surviving, it seems some groups of people were more likely to survive than others.

In this challenge, we ask you to build a predictive model that answers the question: "what sorts of people were more likely to survive?" using passenger data (ie name, age, gender, socio-economic class, etc).

https://www.kaggle.com/competitions/titanic/overview/description

### Data - Features

- PassengerId is the unique id of the row and it doesn't have any effect on target
- Survived is the target variable we are trying to predict (**0** or **1**):
  - 1 = Survived
  - 0 = Not Survived
- Pclass (Passenger Class) is the socio-economic status of the passenger and it is a categorical ordinal feature which has **3** unique values (**1**, **2** or **3**):
  - 1 = Upper Class
  - 2 = Middle Class
  - 3 = Lower Class
- Name, Sex and Age are self-explanatory
- SibSp is the total number of the passengers' siblings and spouse
- Parch is the total number of the passengers' parents and children
- Ticket is the ticket number of the passenger
- Fare is the passenger fare
- Cabin is the cabin number of the passenger
- Embarked is port of embarkation and it is a categorical feature which has 3 unique values (C, Q or S):
  - C = Cherbourg
  - Q = Queenstown
  - S = Southampton

## What is Machine Learning?

Traditional Programming - Rule based system





## Supervised ML

## Supervised Classification Problem

Output prediction is discrete classes (predict probabilities)

- Yes/No
- High/Medium/Low
- Cat/Dog
- Image Classification
- Product categorization

## Supervised Regression Problem

Continuous values

- House Rent
- Loan amount



### H2O installation

Install JRE

Download h20

http://h2o-release.s3.amazonaws.com/h2o/rel-zumbo/3/index.html

- cd ~/Downloads
- unzip h2o-3.36.1.3.zip
- cd h2o-3.36.1.3
- java -jar h2o.jar

http://localhost:54321

### **Metrics**

### For Classification

Accuracy – What % is correct (not suitable for imbalance dataset)

#### **Precision - Quality**

Of the ones predicted as True, what % is actually true.

TP/(TP + FP)

#### Recall - Quantity

Of the ones which are actually positivem how much are predicted

correctly

TP/(TP + FN)

#### F-Score

Balance between both precision and recall.

### For Regression

MAE, RMSE, MAPE, WMAPE, Bias %



#### Questions:

Of 100 patients, 10 have cancer. Model predicts everyone has cancer? What is accuracy?

ML Model for Criminal justice - what is important - Precision or Recall?

Model to predict Covid or not - Precision or Recall?

### First Model



## Feature Engineered Model



## Feature Engineered + Auto ML

#### **Æ** Leaderboard



#### ▼ MODELS

| models sorted in order of auc, best first |                                                                       |                    |                     |
|-------------------------------------------|-----------------------------------------------------------------------|--------------------|---------------------|
|                                           | model_id                                                              | auc                | logloss             |
| Θ                                         | ${\tt StackedEnsemble\_BestOfFamily\_4\_AutoML\_1\_20220727\_233129}$ | 0.8850709887102292 | 0.4001344056388554  |
| 1                                         | GBM_grid_1_AutoML_1_20220727_233129_model_2                           | 0.8829969209716044 | 0.4095273200315345  |
| 2                                         | GBM_grid_1_AutoML_1_20220727_233129_model_13                          | 0.8817959573497549 | 0.40794461242740115 |
| 3                                         | GBM_grid_1_AutoML_1_20220727_233129_model_10                          | 0.8786385277682747 | 0.413183290114981   |
| 4                                         | StackedEnsemble_AllModels_3_AutoML_1_20220727_233129                  | 0.8785529992017334 | 0.4025558643777332  |
| 5                                         | GBM_grid_1_AutoML_1_20220727_233129_model_15                          | 0.8780077545900331 | 0.41662591931185733 |
| 6                                         | GBM_grid_1_AutoML_1_20220727_233129_model_5                           | 0.8777868057931348 | 0.41386344544043946 |
| 7                                         | DeepLearning_grid_2_AutoML_1_20220727_233129_model_2                  | 0.8770099213137188 | 0.41591235147861344 |
| 8                                         | StackedEnsemble_AllModels_2_AutoML_1_20220727_233129                  | 0.8769671570304483 | 0.4104476236659049  |
| 9                                         | ${\tt StackedEnsemble\_BestOfFamily\_3\_AutoML\_1\_20220727\_233129}$ | 0.8768317368000912 | 0.41326302280699756 |
| 10                                        | StackedEnsemble_BestOfFamily_2_AutoML_1_20220727_233129               | 0.8760370338693124 | 0.412105176276588   |
| 11                                        | GBM_grid_1_AutoML_1_20220727_233129_model_8                           | 0.8760192154179496 | 0.41430064182118886 |
| 12                                        | GBM_2_AutoML_1_20220727_233129                                        | 0.875666410080967  | 0.41630022948302564 |
| 13                                        | DeepLearning_grid_1_AutoML_1_20220727_233129_model_19                 | 0.8744654464591173 | 0.4467866598476236  |
| 14                                        | DeepLearning_grid_2_AutoML_1_20220727_233129_model_16                 | 0.8744155547953016 | 0.42272890805855434 |
| 15                                        | DeepLearning_grid_1_AutoML_1_20220727_233129_model_3                  | 0.8743870452731213 | 0.455560945253822   |
| 16                                        | GBM_4_AutoML_1_20220727_233129                                        | 0.8740912589804996 | 0.4190816239568775  |
| 17                                        | DeepLearning_grid_2_AutoML_1_20220727_233129_model_14                 | 0.8735638328201619 | 0.4178616190289039  |
| 18                                        | GBM_grid_1_AutoML_1_20220727_233129_model_16                          | 0.8733713935454441 | 0.4155765678023712  |
| 19                                        | StackedEnsemble_AllModels_1_AutoML_1_20220727_233129                  | 0.8733464477135363 | 0.41571705080851135 |
| 20                                        | DeepLearning_grid_2_AutoML_1_20220727_233129_model_8                  | 0.8723771239594025 | 0.42893426263126433 |





Actual/Predicted 0

Total

Rate

14 32 0.3043 14 / 46

86 35 0.1405 17 / 121

## What is most important for ML Model?

#### Data

- Good quality data/label
- EDA Imputation, Outlier Detection
- Feature Engineering
- Domain Understanding (SMEs)

#### Models

- Hyper-parameter Tuning
- Trying different Model types (Auto ML)

#### Metrics

- ML Metric
- Business Metric

#### Model Performance in real world

Model Performance Monitoring on ground truth

How could Jack survived with Rose?



# Questions