Ejercicio 1:

Asumiendo que se cuenta en todos los casos con las instrucciones add y mpy. Encontrar una secuencia de instrucciones que resulte óptima en tiempo de ejecución (es decir, que minimice la cantidad de accesos a memoria), y cuya ejecución tenga como resultado la evaluación de la siguiente expresión aritmética:

$$B = (A \times (C+D)) + (A \times (C+D))^3$$

Las etiquetas denotan las direcciones de memoria que contienen los valores sobre los que se quiere operar.

- a) Asumiendo una arquitectura de 0-direcciones (tipo pila), con las instrucciones push y pop para acceder a memoria y la instrucción **dup** que duplica el tope de la pila. Determinar la cantidad de instrucciones y la profundidad de la pila alcanzada.
- b) Asumiendo una arquitectura estilo RISC con operaciones registro a registro, sin limitaciones en cuanto a los registros disponibles, y las instrucciones Id (load) y st (store) para acceder a memoria, y la instrucción Ida (load address). Las operaciones aritméticas operan con dos operandos (dst/fte, fte). Indicar la cantidad de accesos a memoria requeridos.
- c) Asumiendo una arquitectura tipo INTEL con operaciones 1–dirección más registros, sin limitaciones en cuando a los registros disponibles, que en lugar de load y store cuenta con la instrucción mov para acceder a memoria y donde las operaciones aritméticas operan con tres operandos (dst, fte, fte). Indicar la cantidad de accesos a memoria realizados.

- N	Dilo		
a)	Pila		
	Inst 1: PUSH A		
	Inst 2: PUSH C		
	Inst 3: PUSH D		
	Inst 4: ADD		
	Inst 5: MPY	Pila 1: inst 1 a 3	Pila 2. Inst 4
	Inst 6: DUP	Α	Α
	Inst 7: DUP	C	C+D
	Inst 8: DUP	D	
	Inst 9: MPY		
	Inst 10: MPY		
	Inst 11: ADD		
	Inst 12: POP B		
Cantida	nd de instrucciones: 12	Pila 3: Inst 5	Pila 4: Inst 6
Profun	didad de la pila alcanzada: 4	A*(C+D)	A*(C+D)
		(5 - 7	A*(C+D)
			7. (6.5)
		Pila 4: Inst 7 y 8	Pila 5: Inst 9
		A*(C+D)	A*(C+D)
		A*(C+D)	A*(C+D)
		A*(C+D)	(A*(C+D))^2
		A*(C+D)	

b) RISC registro a registro 1: LDA RO,C 2: LD R1,(R0) 3: LDA RO,D 4: LD R2,(R0) 5: LDA RO,A 6: LD R3,(R0) 7: ADD R4,R1,R2 8: MUL R5,R4,R3 9: MUL R6,R6,R5 10: MUL R6,R6,R5 11: ADD R7,R6,R5 12: LDA R8, B 13: ST (R8),R7	Pila 6: Inst 10 A*(C+D) (A*(C+D))^3 R1 <- C R2 <- D R3 <- A R4 <- C+D R5 <- A*(C+D))^3 R7 <- (A*(C+D))^3 B <- R7
c) INTEL 1 dir + reg 1: mov R0,[C] 2: ADD R0,[D] 3: MUL R0,[A] 4: MOV R1,R0 5: MUL R0,R0 6: MUL R0,R1 7: ADD R0,R1 8: MOV [B],R0	Cantidad de instrucciones: 8 Accesos a memoria: 4

Ejercicio № 2:

En el marco de la norma IEEE 754, considerando la representación en punto flotante de media precisión: mantisa fraccionaria en signo magnitud con hidden bit, exponente en exceso y base 2 y la siguiente distribución de bits:

Sig (1b) Exponente (5 bits) Mantisa (10 bits)

Sig (1b)	Exponente (8 bits)	Mantisa (10 bits)
----------	--------------------	-------------------

Dados los números:

 $X = (1\ 10000100\ 0011111001) = -1 \times 2^5 \times 1.2431640625 = -39,78125$ $Y = (0\ 01110101\ 1000111100) = 1 \times 2^{-10} \times 1.55859375 = 0.0015220642090$ X*Y = -39,78125 * 0.0015220642090 = 0.060549617

Realizar el producto $X \times Y$ aplicando redondeo hacia $+\infty$ y proximidad pares, explicando cada uno de los pasos involucrados e indicando claramente qué se hace con los bits **G**, **R** y **S** del resultado y **con R** y **S** al redondear. El resultado debe ser expresando según la representación enunciada. Solución:

$$Y = (1) * 2^{117-127} * 1,1000111100$$

Sumo exponentes:	nentes:																				
132 +117 - 127											1	0	0	1	1	1	1	1	0	0	1
= 122											1	1	0	0	0	1	1	1	1	0	0
											011	011	010	0	0	0	0	0	0	0	0
= 0111 1010										011	0	0	0	0	0	0	0	0	0	0	
									1 ¹⁰	0	0	1	1	1	1	1	0	0	1		
								1 ¹⁰	0	0	1	1	1	1	1	0	0	1			
							1 ¹⁰	0	0	1	1	1	1	1	0	0	1				
						1 ¹⁰	0	0	1	1	1	1	1	0	0	1					
					010	0	0	0	0	0	0	0	0	0	0						
				01	0	0	0	0	0	0	0	0	0	0							
			0	0	0	0	0	0	0	0	0	0	0								
		1	0	0	1	1	1	1	1	0	0	1									
	1	0	0	1	1	1	1	1	0	0	1						ļ	ļ			
	1,	1	1	1	1	0	0	0	0	0	0	0	0	0	1	0	1	1	1	0	0
												-									
	1,	1	1	1	1 0	0	0	0	0	0	0	0	0	1	0	1	1	1	0	0	
	G = 0, R = 0, S = 1 Está normalizado. 1,1111000000 => R = 0 S = 1. Redondeo +∞ R = 0 S = 1 +1 LSB																				

		0 1									
		<u> </u>									
Sig (1b)											
1	1111000001										
			!								
Redondeo proximidad pares: R = 0 S = 1 (no hay cambio)											
1, 1 1 1 1	0 0 0 0	0 0									
Resultado:											
Sig (1b)	Exponente (8 bits)	Mantisa (10 bits)									
1	01111001	1111000000									
Resultado decima	il: -39,78125 * 0.00152	220642090 = - 0.060549617									
Resultado Norma	: -1 x 2 ⁻⁶ x 1.9375 = - 0	,0302734375									
Error: 0.0605496	17 - 0,0302734375 = 0	,0302761795									

Ejercicio 3:

En el marco de la norma IEEE 754, considerando la representación en punto flotante de media precisión: mantisa fraccionaria en signo magnitud con hidden bit, exponente en exceso y base 2 y la siguiente distribución de bits:

Sig (1b)	Exponente (8 bits)	Mantisa (10 bits)

Dados los números:

```
X = (0\ 011111100\ 0010110101) = 1 \times 2^{-3} \times 1.1767578125 = 0,147094727

Y = (1\ 01111101\ 1101000110) = -1 \times 2^{-2} \times 1.818359375 = 0,454589844
```

Realizar la suma X + Y aplicando redondeo por proximidad, explicando cada uno de los pasos involucrados e indicando claramente qué se hace con los bits **G**, **R** y **S** del resultado y **con R** y **S** al redondear. El resultado debe ser expresando según la representación enunciada.

Solución:

Igualar Exponentes	
X = 1 * 2 ⁻³ * 1.0010110101 >> 1	
X = 1 * 2 ⁻² * 0.10010110101	
Y = (-1) * 2 ⁻² * 1.1101000110	
Constant	
Complementar y	
Y=01.1101000110	
10.0010111001	
<u>+ 1 .</u>	
10.0010111010	
Sumar mantisas	
X 00.10010110101	
Y 10.0010111010 .	
10.1100010100 0 0	Es negativo, con lo cual hay que complementar.
G R S	
Complemento:	
01.0011101011 + 1	
Resultado = 01.0011101100 Esta normalizado	
1.0011101110 0 0 0	
Valores R = 0, S = 0.	
Redondeo proximidad unbiased (pares): p ₀ =0 R=0 S=0	
No sumar nada.	
Teo Samar Hada.	
Resultado final:	
1 01111101 0011101110	

Suma en decimal:
0,147094727 - 0,454589844 = -0,307495117
Suma IEEE (decimal) : 2 ⁻² x 1.23046875 = -0,3076171875
Error: 0,0001220705

Ejercicio Nº 4:

(1) mov R1,#0200	#xxxx Inmediato		R1	R2	R3	M[200]	M[300]
(2) mov (R1), #0100	R Registro	1	200	-	-	-	-
(3) mov 0100(R1), R1	(R) Registro indirecto	2	200	-	-	100	-
(4) mov R2, #0500	xxxx Absoluto	3	200	-	-	100	200
(5) mov @0100(R1), #0500	xxxx(R) Indexado	4	200	500	-	100	200
(6) mov (0200), 0300	(xxxx) Memoria indirecto	5	200	500	-	500	200
(7) mov R3, 0200	@xxxx(R) Pre-indexado indirecto	6	200	500	-	300	200
(8) mov R3, @0100(R3)		7	200	500	200	300	200
		8	200	500	300	300	200

Ejercicio № 5:

Programa	Inc	iso A:	Inciso B:									
	Ensa	mblado										
LDA RO, FFh	00:	80FF	Al tener	que reubic	ar el códig	go máquina	, se deber	án ajustar	todas las			
LOAD R1, 0(R0)	02:	6100	referenci	as que <u>dire</u>	ccionen de	e forma dir	ecta a pos	iciones de	memoria,			
LOAD R2, 0(R0)	04:	6200	no siendo así las referencias que direccionen <u>desplazamientos relativos</u>									
XOR R3, R3, R3	06:	3333	dentro d	dentro del programa. Luego, se deberá ajustar la dirección de la instrucción (LDA R4, lbl3; 8420) por (LDA R4, lbl3; 8440).								
LDA R4, Ibl3	08:	8420	instrucció	ón (LDA R4,	lbl3; 8420) por (LDA	R4, lbl3; 84	40).				
JZ R1, lbl3	0A:	9114										
JZ R2, lbl3	OC:	9212	Inciso C:									
SUB R5, R1, R2	0E:	1512	RO	R1	R2	R3	R4	R5	PC			
JG R5, lbl2	10:	A508							00			
lbl1: ADD R3, R3, R2	12:	0332	FF						02			
DEC R1	14:	E1XX	FF	04					04			
JG R1, lbl1	16:	A1FA							+			
JMP R4	18:	C4XX	FF FF	04	02 02				06			
lbl2: ADD R3, R3, R1	1A:	0331		04		0			08			
DEC R2	1C:	E2XX	FF	04	02	0	20		0A			
JG R2, lbl2	1E:	A2FA	FF	04	02	0	20		0C			
lbl3: STORE R3, 0(R0)	20:	7030	FF	04	02	0	20		0E			
HLT	22:	FXXX	FF	04	02	0	20	02	10			
			FF	04	02	0	20	02	12-1A			
			FF	04	02	04	20	02	1C			
			FF	04	01	04	20	02	1E			
			FF	04	01	04	20	02	20-1A			
			FF	04	01	08	20	02	1C			
			FF	04	00	08	20	02	1E			
			FF	04	00	08	20	02	20			
			FF	04	00	08	20	02	22			
			FF	04	00	08	20	02				
				ma lee por licación A*I		os valores A	A y B, y ret	orna el re	sultado de			
						Inciso D:						
			encarga o MIN(A,B)	de realizar X	X sucesivas de Y=MAX	B no camb s sumas de ((A,B) para esultado.	un valor Y;	el valor d	e X será el			
			positivos.	. Si se ingre	esan valore	s valores des es negativo hasta señal	s, el progra	ama se coi	mporta de			