Uplift-конец и RecSys

Детали обучения

Случайная аудитория

Отобранная моделью аудитория

Solo Learner, S-Learner

$$\begin{array}{ccc} x_{11} & x_{1m} t_1 y_1 \\ fit(& \\ x_{n1} & x_{nm} t_n y_n \end{array}$$

Solo Learner, S-Learner

$$\begin{array}{ccc} x_{11} & x_{1m} t_1 y_1 \\ fit(&) \\ x_{n1} & x_{nm} t_n y_n \end{array}$$

$$predict\begin{pmatrix} x_{11} & x_{1m} 1 \\ x_{n1} & x_{nm} 1 \end{pmatrix} - predict\begin{pmatrix} x_{11} & x_{1m} 0 \\ 0 \\ x_{n1} & x_{nm} 0 \end{pmatrix} = uplift$$

Two-models approach (T-Learner)

$$model_{treatment} & model_{control} \\ x_{11} & x_{1m}y_1 & x_{pn}y_p \\ = fit(&) & = fit(&) \\ x_{p1} & x_{pm}y_p & x_{n1} & x_{nm}y_n \\ \\ predict_{treatment} \begin{pmatrix} x_{11} & x_{nm} \\ x_{n1} & x_{nm} \end{pmatrix} - predict_{control} \begin{pmatrix} x_{11} & x_{nm} \\ x_{n1} & x_{nm} \end{pmatrix}$$

- Transformed outcome
- Целевая переменная подвергается подобной трансформации

$$Y^{new} = Y_i \frac{(T_i - p)}{p(1 - p)}$$

- P propensity score, вероятность отнесения к контрольной или целевой группе
- Обучаемся как на обычную регрессию
- <u>Тут</u> показывают, что матожидание трансформированного таргета и есть искомый causal effect, т.е.

$$\tau = uplift = E[Y^{new}|X]$$

Метрики качества

Uplift@k

- Отсекаем из всей тестовой выборки по порогу k%
- Сортируем выборку по величине предсказанного uplift
- Смотрим на разницу в среднем по таргету: response_rate между целевой и контрольной группой

```
uplift@k = response\ rate@k_{(treatment)} - response\ rate@k_{(control)} response\ rate@k = mean(Y@k) Y@k - таргет на k\%
```

Метрики качества

Uplift-curve

$$uplift\ curve(t) = \left(rac{Y_t^T}{N_t^T} - rac{Y_t^C}{N_t^C}
ight)(N_t^T + N_t^C)$$

t — накопившееся количество объектов

 Y_t^T, Y_t^C — таргет в treatment группе, таргет в control группе N_t^T, N_t^C — размер treatment группы, размер control группы

• формы у кривой мб разные

Метрики качества

Qini curve

$$qini~curve(t) = Y_t^T - rac{Y_t^C N_t^T}{N_t^C}$$

 Y_t^T, Y_t^C — таргет в treatment группе, таргет в control группе N_t^T, N_t^C — размер treatment группы, размер control группы

Как оценить эффективность?

Короткая инструкция

- 1. Определиться с таргетом (что мерим) и механикой (какой оффер)
- 2. Собираем обучающую выборку:
 - 1. Выделяем большой, репрезентативный, лишенный смещений, случайный сегмент базы
 - 2. Разбиваем его на контроль и тест
 - 3. Запускаем эксперимент
- 3. Дождавшись конца эксперимента, собираем таргет
- 4. Обучаем модель любым методом
- 5. Построили предсказания
- 6. Запустить эксперимент:
 - 1. Берем прогнозы модели, и на них запускаем АБ-тест
 - 2. Параллельно, мы берем случайную выборку, ее делим контроль-тест, и на ней тоже запускаем эксперимент

Каналы рекомендаций

• Мобильное приложение/Доставка

• Главная страница

• Ранжирование в каталоге

• Комплементарные товары

Яйцо Зелёная Линия куриное активита С1 с селеном и йодом, 10шт — натуральный продукт, полученный от птиц свободного содержания. Благодаря этому в нем содержится больше витаминов и микроэлементов. Яйца достаточно крупные, с плотным желтком ярко-желтого цвета. Белок хорошо держит структуру в отварном виде. Продукт подходит для приготовления салатов, блинов и оладий, сэндвичей с яйцом-пашот и авокадо. Им можно смазывать выпечку, чтобы она приобрела аппетитную румяную корочку. Состав Яйцо куриное пищевое столовое. Характеристики товара 10 шт Кол-во в упаковке Все характеристики С этим товаром покупают Пирожное Kinde Простоквашино пас... 99.99 -15% В корзину 84.99₽ Каталог Корзина Профиль

• Расширение корзины

• Персонализированные скидки

Каналы рекомендаций

- Мобильное приложение/Доставка
- Электронная почта

Реко в email

Каналы рекомендаций

- Мобильное приложение/Доставка
- Электронная почта
- SMS

Реко в email

Каналы рекомендаций

- Мобильное приложение/Доставка
- Электронная почта
- SMS
- push

Реко в email

На чем обучать

- На чековых данных
- Короткий словарик:
 - Bebida напиток
 - Comida еда

Проблемы с данными?

- 5 млн клиентов
- 20 тысяч товарных наименований

Разреженность данных

- 5 млн клиентов
- 20 тысяч товарных наименований
- Гипотеза: человек покупает не более 2 тысяч товарных наименований

Решение проблемы [1]

• Существует товарная иерархия

Решение проблемы [2]

• Перейти к двухуровневым моделям

Подходы ARL – Associations Rules Learning

В 1992 году группа по консалтингу в области ритейла компании Teradata под руководством Томаса Блишока провела исследование 1.2 миллиона транзакций в 25 магазинах для ритейлера Osco Drug (нет, там продавали не наркотики и даже не лекарства, точнее, не только лекартсва. Drug Store — формат разнокалиберных магазинов у дома). После анализа всех этих транзакций самым сильным правилом получилось «Между 17:00 и 19:00 чаще всего пиво и подгузники покупают вместе»

Подходы ARL – Associations Rules Learning

название	формула	Что значит	пример	трактовка
Поддержка $support(x)$	$\frac{\{t \in T; x \in t\}}{ T }$	частота встречаемости айтемсета в транзакциях	Транзакции с пивом и подгрузниками Все транзакции	Доля транзакций с подгузником и пивом ото всех
Уверенность $confidence(x_1 \cup x_2)$	$\frac{supp(x_1 \cup x_2)}{supp(x_1)}$	как часто срабатывает правило в датасете	supp(Пиво ∪ Подг) supp(Пиво)	кто покупает пиво, тот покупает и подгузники
Лифт $lift(x_1 \cup x_2)$	$\frac{supp(x_1 \cup x_2)}{supp(x_1) * supp(x_2)}$	зависят ли айтемы друг от друга	lift = 1.25	правило, что пиво покупают с подгузникми, на 25% мощнее правила, что подгузники просто покупают
Убедительность $conviction(x_1 \cup x_2)$	$\frac{1 - supp(x_1)}{1 - conf(x_1 \cup x_2)}$	частотность ошибок, как часто один из айтемов покупали без другого	conviction = 1.6	правило «купил пиво и подгузники» было бы в 1.2 раза (на 60%) более верным, чем если бы совпадение этих items в одной транзакции было бы чисто случайным

Как использовать результаты ARL

Подходы Коллаборативная фильтрация

Товары

1	1	0		1	
0	1	1			1
			1	1	0
	1	1		0	
	1				1

Пользователи

Подходы Факторизации

Подходы Факторизации. ALS

- x_u вектор пользователя y_i вектор айтема
- p_{ui} предпочтение
- c_{ui} уверенность
- Оптимизационная задача

$$p_{ui} = \begin{cases} 1 & r_{ui} > 0 \\ 0 & r_{ui} = 0 \end{cases}$$

$$c_{ui} = 1 + \alpha r_{ui}$$

$$\min_{y_*, y_*} \sum_{u, i} c_{ui} (p_{ui} - x_u^T y_i)^2 + \lambda \left(\sum_{u} || x_u ||^2 + \sum_{i} || y_i ||^2 \right)$$

• После некоторых попыток оптимизации: $x_u = (Y^T Y + Y^T (C^u - I)Y + \lambda I)^{-1} Y^T C^u p(u)$

$$y_i = (X^T X + X^T (C^i - I)X + \lambda I)^{-1} X^T C^i p(i)$$

Подходы Факторизации. BPR

- Имеем дело с тройкой: пользователей и и два айтема i, j
- Работаем с предпочтением і над ј пользователем и

Эвристики вместо перс.реко?

Эвристики вместо перс.реко

- Топ-10/20/30/40 товаров
- Новинки
- Схожие темы
- И т.п.

Оценка качества?

Позиция	Релевантность		
1	1		
2	0		
3	1		
4	1		
5	0		
6	0		
7	1		
	•••		

precision@5 =
$$\frac{3}{5}$$

recall@5 = $\frac{3}{4}$ (если всего 4 релевантных айтема)

Оценка качества

- Покрытие
 - Какая доля товаров рекомендовалась хотя бы раз?
 - Какой доле пользователей хотя бы раз показаны рекомендации?
- Новизна
 - Как много рекомендованных товаров пользователь встречал раньше?
- Прозорливость (serendipity)
 - Способность предлагать товары, которые отличаются от купленных ранее

Оценка качества

- Покрытие
 - Какая доля товаров рекомендовалась хотя бы раз?
 - Какой доле пользователей хотя бы раз показаны рекомендации?
- Новизна
 - Как много рекомендованных товаров пользователь встречал раньше?
- Прозорливость (serendipity)
 - Способность предлагать товары, которые отличаются от купленных ранее

Схема систем

Ссылки по recsys

- ARL-туториал
- https://habr.com/ru/company/ods/blog/353502/
- ALS-туториал https://medium.com/radon-dev/als-implicit-collaborative-filtering-5ed653ba39fe
- ALS и BPR-туториал https://towardsdatascience.com/recommender-system-using-bayesian-personalized-ranking-d30e98bba0b9
- Обзор методов:
 https://habr.com/ru/post/486802/

Ссылки по луковкам

- Целый диплом по One Class Classification
 https://homepage.tudelft.nl/n9d04/thesis.pdf
- SVDD: https://homepage.tudelft.nl/a9p19/papers/ML SVDD 04.pdf
- Deep One Class Classification
 https://medium.com/analytics-vidhya/paper-summary-deep-one-class-classification-doc-adc4368af75c
- Gaussian Mixture Models
- https://towardsdatascience.com/gaussian-mixture-models-explained-6986aaf5a95

Ссылки по аплифтам

- Подробная серия статей-объяснений:
- https://habr.com/ru/company/ru mts/blog/485980/
- Курс по uplift-моделированию
- https://ods.ai/tracks/uplift-modelling-course/blocks/69a5fb73-458b-4fa0-9edf-201eb10b1538
- Библиотеки https://github.com/uber/causalml
- https://github.com/wayfair/pylift
- https://www.uplift-modeling.com/en/v0.3.0/index.html