GSC Assignment – 24-3

- Q1. $[Fe(NCS)_6]^{3-}$ ion has five unpaired d electrons. From these results, what can you conclude about whether each complex is a high-spin or low-spin complex? What can you say about the placement of NCS- in the spectrochemical series? [2+2]
- **Q2.** Predict the geometry of the following four-coordinate complexes: [AuBr₄]⁻ and [NiBr₄]²⁻. Justify your answer. [4]
- **Q3.** One of the following solids is yellow, and the other is green: $Fe(NO_3)_2 \cdot 6 H_2O$; $K_4[Fe(CN)_6] \cdot 3 H_2O$. Indicate which is which and explain your reasoning.
- **Q4.** The experimental magnetic moment of the complex ion, $[Cr(H_2O)_6]^{3+}$, is given as 3.87 μ_B (Bohr magnetons). Comment on the validity of the 'spin only' formula for this species. [4]
- Q5. The standard reduction potentials for three octahedral Co(III) coordination compounds

$$[CoL_6]^{3+} + e^- \rightarrow [CoL_6]^{2+}$$
 Eo (V vs NHE)

with ligands, H_2O , NH_3 , and CN^- are: +1.83, +0.11, and -0.83 V versus NHE, respectively. Using CFT, determine which of the ligands corresponds with which standard reduction potential.

- **Q6.** The complex $[Ni(NH_3)_6]^{2+}$ has a ligand field splitting of 209 kJ.mol⁻¹ and forms a purple solution. What is the wavelength and color of the absorbed light? [4]
- Q7. The complex $[Co(H_2O)_6]^{2+}$ is an extremely pale pink-colored complex while $[CoCl_4]^{2-}$ is an intensely blue-colored complex. Explain the *relative colors* and color *intensities* of the two coordination compounds.
- **Q8.** Which of the following complexes would undergo Jahn-Teller distortion? [10]
 - (a) $[FeCl_6]^{3-}$; (b) $[MnCl_6]^{3-}$; (c) $[CuCl_6]^{4-}$; (d) $[CrCl_6]^{3-}$; (e) $[VCl_6]^{4-}$
- **Q9.** Which d-orbitals on the metal ion are used to form σ -bonds between octahedral metal ions and ligands?
- Q10. Which d-orbitals on the metal ion are used to form π -bonds between octahedral metal ions and ligands? [2]
- Q11. State the bonding/nonbonding/antibonding nature of t_{2g} and e_g orbitals according to the ligand field theory for octahedral complexes of the ligands: CO, NH₃, and Br⁻. [9]
- Q12. Which of the following molecules is most likely to form a liquid crystalline phase? [6]
 - (a) isooctane (2,2,4-trimethylpentane)
 - (b) ammonium thiocyanate [NH₄(SCN)]
 - (c) sodium decanoate {Na[CH₃(CH₂)₈CO₂]}

(d)

(e)
$$CH_3(CH_2)_{17}-O \longrightarrow C-OH$$