Formula Sheet

Effective rate of interest: $i_{u+1} = \frac{S(u+1) - S(u)}{S(u)}$

Payment of 1	Compound interest	Simple interest
Accumulated value after	$(1+i)^t$	(1+ti)
t years	, ,	
Present value at time 0	$v^t = (1+i)^{-t}$	$(1+it)^{-1}$

i paid at the *end* of the period on the balance at the *beginning* of the period.
d paid at the *beginning* of the period on the balance at the *end* of the period.

$$d = \frac{i}{1+i}$$

Present value with simple discount: $(1-d \cdot t)$

Real interest rate: $1 + i_{real} = \frac{1+i}{1+r}$

The accumulated value of 1 from time 0 to time t under compound interest:

$$S(t) = \left(1 + \frac{i^{(m)}}{m}\right)^{mt} = \left(1 + i\right)^{t} = v^{-t} = (1 - d)^{-t} = \left(1 - \frac{d^{(m)}}{m}\right)^{-mt} = e^{\delta t}$$

The present value at time 0 of 1 payable at time t under compound interest is:

$$S(0) = \left(1 + \frac{i^{(m)}}{m}\right)^{-mt} = \left(1 + i\right)^{-t} = v^{t} = (1 - d)^{t} = \left(1 - \frac{d^{(m)}}{m}\right)^{mt} = e^{-\delta t}$$

Force of interest

For constant force of interest, (under compound interest) $\delta = \ln(1+i)$

	Constant force of interest ($\delta_t = \delta$)	Variable force of interest
Accumulation at time t_2	$S(t_2) = S(t_1) \cdot e^{\delta(t_2 - t_1)}$	
of an amount $S(t_1)$		$S(t_2) = S(t_1) \cdot \exp\left(\int_{t_1}^{t_2} \delta_t dt\right)$
invested at t_1		
Present value at time t_1	$S(t_1) = S(t_2) \cdot e^{-\delta(t_2 - t_1)}$	
of an amount $S(t_2)$ due		$S(t_1) = S(t_2) \cdot \exp\left(-\int_{t_1}^{t_2} \delta_t dt\right)$
at time t_2		

Annuities

n payments of 1	Payments made in arrears (at	Payments made in advance
	end of each period)	(at start of each period)
Accumulated value	$s_{\overrightarrow{n}} = \sum_{t=0}^{n-1} (1+i)^t = \frac{(1+i)^n - 1}{i}$	$\ddot{s}_{n} = \sum_{t=1}^{n} (1+i)^{t} = \frac{(1+i)^{n} - 1}{d}$
Present value	$a_{\overline{n}} = \sum_{t=1}^{n} v^{t} = \frac{1 - v^{n}}{i}$	$\ddot{a}_{\overline{n}} = \sum_{t=0}^{n-1} v^t = \frac{1 - v^n}{d}$

Payments of $\frac{1}{2}$ made each	Payments made in arrears	Payments made in advance
m		
$\frac{1}{m}^{th}$ of a year for n years		
Accumulated value	$s_{\overline{n} }^{(m)} = \frac{(1+i)^n - 1}{i^{(m)}}$	$\ddot{s}_{n}^{(m)} = \frac{(1+i)^{n} - 1}{d^{(m)}}$
Present value	$a_{\overline{n} }^{(m)} = \frac{1 - v^n}{i^{(m)}}$	$\ddot{a}_{\overrightarrow{n}}^{(m)} = \frac{1 - v^n}{d^{(m)}}$
Payments of 1 for perpetuity	Payments made in arrears	Payments made in advance
Present value of 1 per period	$a_{\overline{\infty}} = \frac{1}{i}$	$\ddot{a}_{\overline{\infty} } = \frac{1}{d}$
Present value of $\frac{1}{m}$ per	$a_{\overline{\infty} } = \frac{1}{i}$ $a_{\overline{\infty} }^{(m)} = \frac{1}{i^{(m)}}$	$\ddot{a}_{\overline{\infty} } = \frac{1}{d}$ $\ddot{a}_{\overline{\infty} }^{(m)} = \frac{1}{d^{(m)}}$
period of length $\frac{1}{m}$		
Continuous annuity of 1 per period for n periods	Fixed rate of interest	Variable rate of interest
Accumulated value	$\overline{s}_{\overline{n} } = \int_{0}^{n} (1+i)^{n-t} dt = \frac{(1+i)^{n} - 1}{\delta}$	$\overline{s}_{n \delta_r} = \int_0^n \exp\left(\int_t^n \delta_r dr\right) dt$
Present value	$\overline{a}_{\overline{n}} = \int_{0}^{n} v^{t} dt = \frac{1 - v^{n}}{\delta}$	$\overline{a}_{n \delta_r} = \int_0^n \exp\left(-\int_o^t \delta_r dr\right) dt$
Arithmetically increasing	Payments made in arrears	Payments made in advance
annuity of n payments (first payment amount = 1,		
subsequent payments		
increase by 1 per period)		
Accumulated value	$(Is)_{\overline{n}} = \frac{\ddot{s}_{\overline{n}} - n}{i}$	$(I\ddot{s})_{\overrightarrow{n}} = \frac{\ddot{s}_{\overrightarrow{n}} - n}{d}$
Present value	$(Ia)_{\overline{n}} = \frac{\ddot{a}_{\overline{n}} - nv^n}{i}$	$(I\ddot{a})_{\overline{n}} = \frac{\ddot{a}_{\overline{n}} - nv^n}{d}$
Arithmetically decreasing	Payments made in arrears	Payments made in advance
annuity of n payments (first		
payment amount= n,		
subsequent payments decrease by 1 per period)		
Accumulated value	$(Ds)_{\overline{n}} = \frac{n \cdot (1+i)^n - s_{\overline{n}}}{i}$	$(D\ddot{s})_{\overline{n}} = \frac{n \cdot (1+i)^n - s_{\overline{n}}}{d}$
Present value	$(Da)_{\overline{n}} = \frac{n - a_{\overline{n}}}{i}$	$(D\ddot{a})_{\overline{n}} = \frac{n - a_{\overline{n}}}{d}$

Increasing annuity	with discrete increases and continuous payments	with continuous increases and continuous payments
Present value	$(I\overline{a})_{\overline{n}} = \int_{0}^{n} \lceil t \rceil v^{t} dt = \frac{\ddot{a}_{\overline{n}} - nv^{n}}{\delta}$	1 7

Geometric series summation formula:
$$1 + x + x^2 + x^3 + ... + x^k = \frac{1 - x^{k+1}}{1 - x} = \frac{x^{k+1} - 1}{x - 1}$$

Present value at time 0 of a series of n payments, each of amount 1, commencing at time k+1: $_k |a_{\overline{n}}| = v^k \cdot a_{\overline{n}}| = a_{\overline{n+k}|} - a_{\overline{k}|}$

General formula for increasing annuity

n-payment annuity with first payment A and subsequent payment B larger (or smaller) than the previous one. Payments made in arrears. Accumulated value at time n is

$$S(n) = (A - B)s_{\overline{n}|i} + B(Is)_{\overline{n}|i}$$

Solving Equations of Value

Quadratic form:
$$a((1+i)^n)^2 + b(1+i)^n + c = 0$$
 solution: $(1+i)^n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Linear interpolation: Given
$$i_1$$
, i_2 , $f(i_1)$ and $f(i_2)$: $\frac{f(i_0) - f(i_1)}{f(i_2) - f(i_1)} \cong \frac{i_0 - i_1}{i_2 - i_1}$

$$\Rightarrow i_0 \cong i_1 + \frac{f(i_0) - f(i_1)}{f(i_2) - f(i_1)} \cdot (i_2 - i_1)$$

Loan calculations

Loan amount = $L = OB_0$

Interest rate per period = i

Amount paid at time $t = K_t$

Interest charged at the end of the t^{th} period = $I_t = OB_{t-1} \cdot i$

Principal repaid at the end of the t^{th} period = $PR_t = K_t - I_t$

Outstanding balance (principal) just after payment at time $t = OB_t$

Where
$$OB_t = OB_{t-1} + OB_{t-1} \cdot i - K_t$$

 $OB_t = OB_{t-1} + I_t - K_t = OB_{t-1} - (K_t - I_t) = OB_{t-1} - PR_t$

Outstanding balance:

Retrospective method:
$$OB_t = L(1+i)^t - \sum_{a=1}^t (1+i)^{t-a} K_a$$

Prospective method:
$$OB_t = vK_{t+1} + v^2K_{t+2} + ... + v^{n-t}K_n = \sum_{a=1}^{n-t} v^aK_{a+t}$$

Capital Budgeting

Internal Rate of Return – effective rate of interest that makes the net present value of cash flows zero.

Discounted Payback Period – the amount of time it takes for a project to start making money.

Measuring Investment Performance

Money-Weighted Rate of Return – interest rate satisfying the equation of value incorporating the initial and final fund values and the intermediate cash flows.

Time-Weighted Rate of Return – product of the growth factors between successive cash flows.

Bonds

$$P = Fr \cdot a_{\overline{n}|_j} + C \cdot v_j^n$$

Callable bonds

When a bond is to be redeemed at the option of the issuer:

- For a bond bought at a discount, if an investor requires a particular minimum yield, the price paid should be based on the *latest* optional redemption date.
- For a bond bought at a premium, if an investor requires a particular minimum yield, the price paid should be based on the *earliest* optional redemption date.

Forward Contracts

Forward price with no income payments = $K = S_0 e^{\delta T}$

Forward price with income payments = $K = (S_0 - PV_I)e^{\delta T}$,

where PV_I is the present value at time t = 0 of the fixed income payments due during the term of the forward contract.

Value of long forward contract at time $\mathbf{r} = V_L = (K_r - K_0)e^{-\delta(T-r)}$ If a security does not pay income, this is equivalent to $V_L = S_r - S_0 e^{\delta r}$ Value of short forward contract at time $\mathbf{r} = V_S = -V_L$

Spot rate and forward rates

$$\frac{1 + f_{t,T}^{T}}{(1 + s_t)^{T-t}} = \frac{(1 + s_T)^T}{(1 + s_t)^t}$$

Interest rate risk management

Effective duration (volatility) =
$$\upsilon = -\frac{1}{PV} \frac{d}{di} PV = \frac{\sum_{k=1}^{n} C_{t_k} t_k v_i^{t_k+1}}{PV}$$

Macaulay's duration (discounted mean term or duration) = $\tau = \frac{\sum_{k=1}^{n} C_{t_k} t_k v_i^{t_k}}{PV} = (1+i)v$

Convexity =
$$c = \frac{1}{PV} \frac{d^2}{di^2} PV = \frac{\sum_{k=1}^{n} C_{t_k} t_k (t_k + 1) v_i^{t_k + 2}}{PV}$$

Macaulay's duration for a bond with n coupon payments = $\frac{Fr \cdot (Ia)_{\overline{n}|_j} + n \cdot C \cdot v_j^n}{PV}$

Taylor series

$$f(x+\varepsilon) = f(x) + \varepsilon f'(x) + \frac{\varepsilon^2}{2!} f''(x) + \dots$$

$$\frac{PV(i_0 + \varepsilon) - PV(i_0)}{PV(i_0)} \cong \varepsilon \frac{PV'(i_0)}{PV(i_0)} + \frac{\varepsilon^2}{2} \frac{PV''(i_0)}{PV(i_0)} = -\varepsilon \frac{\tau}{(1 + i_0)} + \frac{\varepsilon^2}{2} c$$

Immunisation

1.
$$S(i_0) = PV_A(i_0) - PV_L(i_0) = 0$$
.

2.
$$\tau_A(i_0) = \tau_L(i_0)$$
, $\upsilon_A(i_0) = \upsilon_L(i_0)$ or $PV_A'(i_0) = PV_L'(i_0)$

3.
$$c_A(i_0) \ge c_L(i_0)$$
 or $PV_A''(i_0) \ge PV_L''(i_0)$

Stochastic interest rate models

Uniform distribution

$$f(x) = \frac{1}{b-a} \text{ for } a < x < b$$

$$E\left[\widetilde{X}\right] = \frac{a+b}{2}$$

$$Var\left[\widetilde{X}\right] = \frac{(b-a)^2}{12}$$

Normal distribution

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(\frac{-(x-\mu)^2}{2\sigma^2}\right) \text{ for } -\infty < x < \infty$$

$$E\left[\widetilde{X}\right] = \mu$$

$$Var\left[\widetilde{X}\right] = \sigma^2$$

Accumulated value of single cash flows

If interest rates are independent and identically distributed, with mean $E[\tilde{i}]$ and variance $Var[\tilde{i}]$, then the mean and variance of the accumulated value of 1 after n periods are:

$$E\left[\widetilde{S}(n)\right] = \left(E\left[1+\widetilde{i}\right]^{n}\right)$$

$$E\left[\widetilde{S}(n)^{2}\right] = \left(E\left[\left(1+\widetilde{i}\right)^{2}\right]^{n}\right)$$

$$Var\left[\widetilde{S}(n)\right] = E\left[\widetilde{S}(n)^{2}\right] - \left(E\left[\widetilde{S}(n)\right]^{2}\right) = \left(E\left[\left(1+\widetilde{i}\right)^{2}\right]^{n}\right) - \left(E\left[1+\widetilde{i}\right]^{2n}\right)$$

Accumulated value using log-normal

For large n, if the forces of interest $\widetilde{\delta}_t$ are independent and identically distributed with mean $E\left[\widetilde{\delta}\right]$ and variance $Var\left[\widetilde{\delta}\right]$, then $\ln\left[\widetilde{S}(n)\right]$ is approximately normally distributed with:

Mean:
$$E[\ln[\widetilde{S}(n)]] = E[\widetilde{\delta}_1 + \widetilde{\delta}_2 + ... + \widetilde{\delta}_n] = n \cdot E[\widetilde{\delta}]$$

Variance: $Var[\ln[\widetilde{S}(n)]] = Var[\widetilde{\delta}_1 + \widetilde{\delta}_2 + ... + \widetilde{\delta}_n] = n \cdot Var[\widetilde{\delta}]$

Annuities

$$E\left[\tilde{s}_{\overline{n}}\right] = s_{\overline{n}}$$
, where $s_{\overline{n}}$ is evaluated at the interest rate $E\left[\tilde{i}\right]$.