Mathematical Logic

Cartoon copyright Randy Glasbergen (www.glasbergen.com)

Mathematical Logic

- So far we have looked at the language of sets and relations.
 This is used in Alloy for modelling the *data* representing the state of a software system.
- Now we shall look at the language of logic. This is used to describe logical properties of systems.

Outline:

- Propositional logic
- Quantification (predicate logic)
- Cardinality expressions
- Let expressions
- Comprehensions

Propositional Logic Operators

There are two forms of each operator: a shorthand and a verbose form.

Verbose	Shorthand	Operator Name
not	!	negation
and	&&	conjunction
or		disjunction
implies	=>	implication
else	,	alternative
iff	<=>	bi-implication

CSC9P6

3

Propositional Logic Operators

- The first three operators are familiar from programming.
- Their meaning can be defined by the standard truth tables:

р	not p
true	false
false	true

р	q	p and q
true	true	true
true	false	false
false	true	false
false	false	false

р	q	p or q
true	true	true
true	false	true
false	true	true
false	false	false

Implication

At first glance, the meaning of implication is not so obvious:

Common sense interpretation: "if p, then q" What sense do these have if p or q are false?

The truth table for implication:

р	q	p implies q
true	true	true
true	false	false
false	true	true
false	false	true

- Not convinced by the last two rows? Consider these examples:
 - If the moon is made of cheese then 1+1=2.
 - If the moon is made of cheese then I'll eat my hat!

Else

The else operator is used with the implication operator:

Fimplies Gelse H

is equivalent to

```
(F and G) or ((not F) and H)
...G holds when F holds ...H holds when F does not hold
```

Bi-implication

The <=> operator is two-way implication:

```
p iff q or p <=> q
```

is equivalent to

```
(p implies q) and (q implies p)
```

This can be read as meaning that p and q are *logically* equivalent. Either they are both true, or they are both false.

Nested implication

Implications can be nested...

```
C1 => F1,
C2 => F2,
C3 => F3
```

or equivalently

```
C1 implies F1
else C2 implies F2
else C3 implies F3
```

...under condition C1, F1 holds, and if not, then under condition C2, F2 holds, and if not, under condition C3, F3 holds

Syntactic shorthand

Shorthand for conjunction of constraints...

```
{F G H} ...is equivalent to... F and G and H
```

The negation symbol can be combined with comparison operators...

```
a != b ...is equivalent to... not (a = b) ...is equivalent to... a not= b
```

Equivalent logical expressions

 Each expression on the left is logically equivalent to the expression on the right.

```
p and q
p and p
p and p
p not not p
p not (p and q)
not (p and q)
not (p or q)
p implies q
p implies q
(not p) or q
p implies q
(not p) or q
p implies q
(not q) implies (not p)
```

For the last one, think about this sentence:

[&]quot;If it's working, then it's hurting"

Quantified expressions

A quantified expression has the form...

```
Q x:e | P where Q is a quantifier
```

The quantifiers used in Alloy are...

```
all x:e | P P holds for every x in e;

some x:e | P P holds for at least one x in e;

no x:e | P P holds for no x in e;

lone x:e | P P holds for at most one x in e;

one x:e | P P holds for exactly one x in e.
```

Quantified expressions

Several variables can be bound in the same quantifier:

... says that there is exactly one combination of values for x and y that makes P true.

Variables with the same type can share a declaration...

Quantification Examples

```
sig Person
{
  child: set Person
}
```

some p,q: Person| q in p.child

...says that there is at least one person who has a child

no p: Person | p in p.^child

...says that no person can be reached by following the chain of children from that person (that is there are no cycles in the parent-child relationship)

all p: Person | some q: Person | q in child.p

...says that every person has at least one parent

Expressing Cardinality

Several quantifier forms can be used to state cardinality constraints on set-valued expressions...

```
some s
no s
lone s
one s
```

```
s contains at least one tuple;
s contains no tuples (it is empty);
s contains at most one tuple;
s contains exactly one tuple.
```

Expressing Cardinality

Examples

some Person

...says that the set of persons is not empty;

some child

...says that the child relationship is not empty: there is some pair mapping a person to their child (more succinctly than in the example three slides ago)

no (child.Person - Adult)

...says that only adults can be parents

all p: Person | lone p.child

...says that every person has at most one child (again, more succinctly than in the example three slides ago);

all p: Person | one p.child or no p.child

...says the same thing as the expression above.

Let Expressions

When an expression appears repeatedly, or is a subexpression of a larger, complicated expression, you can factor it out via a let expression.

means the same as the expression A with each occurrence of x replaced by the expression e.

Let Expressions

Example:

Suppose that, for legal purposes, every person must have at least one heir. If a person has children, they are that person's heirs, otherwise the heir is the queen.

```
sig Person {
  child: set Person,
  heir: some Person
}
one sig queen in Person
```

```
all p: Person |
let c = p.child |
  (some c implies p.heir = c else p.heir = queen)
```

This means the same as:

```
all p: Person |
some p.child
implies p.heir = p.child
else p.heir = queen
```

Comprehensions

Comprehensions form relations from properties -- they specify what property a tuple must have for it to belong to a relation.

```
Syntax: \{x_1: e_1, x_2: e_2, ..., x_n: e_n \mid F\}
```

Examples:

```
{p:Adult | no p.child.child}
```

...is the set of adult persons who have no grandchildren

```
{p,q:Person | q in p.^child or p in q.^child}
```

...is a relation mapping persons to their family "line" (descendants and ancestors).

Acknowledgements

 Some of the material in this lecture has been adapted (with permission) from slides prepared by John Hatcliff and others for a course on Software Specifications at Kansas State University.