Author: Akash Prasad

Date: October 5, 2025

Environment reset (run first)

```
rm(list = ls())  # clear objects
graphics.off()  # close plots
cat("\014")  # clear console
```

Step 1: Computing the requested arithmetic and logical expressions

```
123 * 453

## [1] 55719

5^2 * 40

## [1] 1000

TRUE & FALSE

## [1] FALSE

TRUE | FALSE

## [1] TRUE

75 %% 10

## [1] 5

75 / 10

## [1] 7.5
```

Step 2: Creating a vector with c() function and storing it in variable "first_vector"

```
first_vector <- c(17, 12, -33, 5)
first_vector
## [1] 17 12 -33 5
```

Step 3: Creating a 5-multiples vector with c() function and storing it in variable "counting_by_fives"

```
counting_by_fives <- c(5, 10, 15, 20, 25, 30, 35)
counting_by_fives
```

[1] 5 10 15 20 25 30 35

Step 4: Creating a descending vector from 20 to 1 using range operator ":" and storing it in "second_vector"

```
second_vector <- 20:1
second_vector

## [1] 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
```

Step 5: Creating a vector from 5 to 15 using range operator ":" and storing it in "counting_vector"

```
counting_vector <- 5:15
counting_vector
```

[1] 5 6 7 8 9 10 11 12 13 14 15

Step 6: Creating a vector of grades and storing it in "grades"

```
grades <- c(96, 100, 85, 92, 81, 72)
grades
## [1] 96 100 85 92 81 72
```

Step 7: Adding 3 bonus points to grades and storing it in "bonus_points_added"

```
bonus_points_added <- grades + 3
bonus_points_added

## [1] 99 103 88 95 84 75
```

Step 8: Creating a vector of numbers 1–100 using range operator ":" and storing it in "one_to_one_hundred"

```
one_to_one_hundred <- 1:100
one_to_one_hundred

## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 2
## [40] 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 6
## [79] 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
```

Step 9: Performing addition, multiplication, and logical comparisons on "second vector"

```
#'Reading "second_vector"
 second_vector
## [1] 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
 #'Adding 20 to "second_vector" elements
 second_vector + 20
## [1] 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21
 #'Reading "second_vector"
 second_vector
## [1] 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
#'Multiplying 20 to "second_vector" elements
 second_vector * 20
## [1] 400 380 360 340 320 300 280 260 240 220 200 180 160 140 120 100  80  60  40  20
 #'Reading "second_vector"
 second_vector
## [1] 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
#'Checking if "second_vector" elements are greater or equal than 20
 second_vector >= 20
## [1] TRUE FALSE FALSE
 #'Reading "second_vector"
 second_vector
## [1] 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
#'Checking if "second_vector" elements are not equal to 20
 second_vector != 20
```

[1] 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

#'Reading "second_vector"

second vector

Since we are only computing arithmetic and logical expressions and not updating the "second_vector", its value remains unchanged

Step 10: Calculating sum of numbers from 1–100 and storing it in "total"

```
total <- sum(one_to_one_hundred)
total
```

[1] 5050

Step 11: Calculating average of numbers from 1–100 and storing it in "average_value"

```
average_value <- mean(one_to_one_hundred)
average_value
```

[1] 50.5

Step 12: Calculating median of numbers from 1–100 and storing it in "median value"

```
median_value <- median(one_to_one_hundred)
median_value
```

[1] 50.5

Step 13: Finding maximum value from 1-100 and storing it in "max_value"

```
max_value <- max(one_to_one_hundred)
max_value
```

[1] 100

Step 14: Finding minimum value from 1-100 and storing it in "min_value"

```
min_value <- min(one_to_one_hundred)
min_value
```

[1] 1

Step 15: Extracting first element from "second_vector" and storing it in "first_value"

```
first_value <- second_vector[1]
first_value
```

[1] 20

Step 16: Extracting first three elements from "second_vector" and storing them in "first_three_values"

```
first_three_values <- second_vector[1:3]
first_three_values
```

[1] 20 19 18

Step 17: Extracting 1st, 5th, 10th, and 11th elements from "second_vector" and storing in "vector_from_brackets"

```
vector_from_brackets <- second_vector[c(1, 5, 10, 11)]
vector_from_brackets</pre>
```

[1] 20 16 11 10

Step 18: Using Boolean indexing to extract selected elements from "first_vector" and storing in "vector_from_boolean_brackets"

```
vector_from_boolean_brackets <- first_vector[c(FALSE, TRUE, FALSE, TRUE)]
vector_from_boolean_brackets</pre>
```

[1] 12 5

Only elements where the index is True is filtered and stored in new variable "vector_from_boolean_brackets"

Step 19: Checking which elements in "second_vector" are greater than or equal to 10

First 10 elements of the "second_vector" are greater or equal to 10, meanwhile the "second_vector" is unchanged

Step 20: Filtering "one_to_one_hundred" to keep only values >= 20

```
one to one hundred[one to one hundred >= 20]
  [1]
             21 22 23 24
                             25
                                  26
                                          28
                                              29
                                                  30
                                     27
                                                      31
                                                          32
                                                              33
                                                                   34
                                                                       35
                                                                           36
                                                                               37
                                                                                   38
                                                                                        39
                             65
## [41]
             61 62 63 64
                                 66
                                     67
                                          68
                                              69
                                                  70
                                                      71
                                                          72 73
                                                                   74
                                                                       75
                                                                           76
                                                                               77
                                                                                        79
## [81] 100
one_to_one_hundred
##
     [1]
                                6
                                        8
                                            9
                                               10
                                                   11
                                                       12
                                                            13
                                                                14
                                                                    15
                                                                        16
                                                                            17
                                                                                18
                                                                                    19
                                                                                         20
                                                                                             21
                                                                                                     23
  [40]
                               45
                                       47
                                           48
                                               49
                                                    50
                                                        51
                                                                                                 61
## [79]
          79
                      82
                  81
                          83
                              84
                                   85
                                       86
                                           87
                                               88
                                                   89
                                                       90
                                                           91
                                                               92
                                                                    93
                                                                        94
                                                                            95
                                                                                96
                                                                                    97
                                                                                        98
                                                                                             99 100
```

Only 81 elements are selected only for viewing (and not updated) out of 100, with filter condition of "one_to_one_hundred" elements greater or equal to 20.

Step 21: Filtering "grades" to keep only values greater than 85 and storing in "lowest grades removed"

```
lowest_grades_removed <- grades[grades > 85]
lowest_grades_removed
```

[1] 96 100 92

Step 22: Removing 3rd and 4th elements from "grades" and storing in "middle_grades_removed"

```
middle_grades_removed <- grades[-c(3, 4)]
middle_grades_removed
```

[1] 96 100 81 72

Step 23: Removing 5th and 10th elements from "second_vector" and storing in "fifth_vector"

```
fifth_vector <- second_vector[-c(5, 10)]
fifth_vector
```

[1] 20 19 18 17 15 14 13 12 10 9 8 7 6 5 4 3 2 1

Step 24: Setting seed and generating 10 random numbers between 0 and 1000 using runif(), storing in "random_vector"

```
set.seed(5)
random_vector <- runif(n = 10, min = 0, max = 1000)
random_vector</pre>
```

[1] 200.2145 685.2186 916.8758 284.3995 104.6501 701.0575 527.9600 807.9352 956.5001 110.4530

Step 25: Calculating total of "random_vector" and storing in "sum vector"

```
sum_vector <- sum(random_vector)
sum_vector</pre>
```

[1] 5295.264

Step 26: Calculating cumulative sum of "random_vector" and storing in "cumsum_vector"

```
cumsum_vector <- cumsum(random_vector)
cumsum_vector</pre>
```

[1] 200.2145 885.4330 1802.3088 2086.7083 2191.3584 2892.4159 3420.3759 4228.3111 5184.8112 5295.

Step 27: Calculating mean of "random_vector" and storing in "mean_vector"

```
mean_vector <- mean(random_vector)
mean_vector
```

[1] 529.5264

Step 28: Calculating standard deviation of "random_vector" and storing in "sd_vector"

```
sd_vector <- sd(random_vector)
sd_vector</pre>
```

[1] 331.3606

Step 29: Rounding values of "random_vector" to nearest integers and storing in "round_vector"

```
round_vector <- round(random_vector)
round_vector
```

[1] 200 685 917 284 105 701 528 808 957 110

Step 30: Sorting values of "random_vector" in ascending order and storing in "sort vector"

```
sort_vector <- sort(random_vector)
sort_vector
```

[1] 104.6501 110.4530 200.2145 284.3995 527.9600 685.2186 701.0575 807.9352 916.8758 956.5001

Step 31: Downloading the datafile ds_salaries.csv from Canvas and Saving it in same directory as this project

Step 32: Reading dataset "ds_salaries.csv" into R and storing it as "first_dataframe"

```
first_dataframe <- read.csv("ds_salaries.csv")
first_dataframe
```

##		v	work year	ovnorioneo lovol	employment_type	job_title	salary
##	1	0	2020	MI	FT	Data Scientist	70000
##		1	2020	SE	FT	Machine Learning Scientist	260000
##		2	2020	SE	FT	Big Data Engineer	85000
##		3	2020	MI	FT	Product Data Analyst	20000
##		4	2020	SE	FT	Machine Learning Engineer	150000
##		5	2020	EN	FT	Data Analyst	72000
##	-	6	2020	SE	FT	Lead Data Scientist	190000
##		7	2020	MI	FT	Data Scientist	
##	_	8	2020	MI	FT	Business Data Analyst	135000
##		9	2020	SE	FT	Lead Data Engineer	125000
	11	-	2020	EN	FT	Data Scientist	45000
	12		2020	MI	FT	Data Scientist	3000000
	13		2020	EN	FT	Data Scientist	35000
	14		2020	MI	FT	Lead Data Analyst	87000
##	15	14	2020	MI	FT	Data Analyst	85000
	16		2020	MI	FT	Data Analyst	8000
##	17	16	2020	EN	FT	Data Engineer	4450000
##	18	17	2020	SE	FT	Big Data Engineer	100000
##	19	18	2020	EN	FT	Data Science Consultant	423000
##	20	19	2020	MI	FT	Lead Data Engineer	56000
##	21	20	2020	MI	FT	Machine Learning Engineer	299000
##	22	21	2020	MI	FT	Product Data Analyst	450000
##	23	22	2020	SE	FT	Data Engineer	42000
##	24	23	2020	MI	FT	BI Data Analyst	98000
##	25	24	2020	MI	FT	Lead Data Scientist	115000
##	26	25	2020	EX	FT	Director of Data Science	325000
	27	_	2020	EN	FT	Research Scientist	42000
##	28	27	2020	SE	FT	Data Engineer	720000
	29		2020	EN	СТ	Business Data Analyst	100000
	30		2020	SE	FT	Machine Learning Manager	157000
	31		2020	MI	FT	Data Engineering Manager	51999
	32		2020	EN	FT	Big Data Engineer	70000
	33		2020	SE	FT	Data Scientist	60000
	34		2020	MI	FT 	Research Scientist	450000
	35		2020	MI	FT 	Data Analyst	41000
	36		2020	MI	FT 	Data Engineer	65000
	37		2020	MI	FT	Data Science Consultant	103000
	38		2020	EN	FT	Machine Learning Engineer	250000
	39		2020	EN	FT	Data Analyst	10000
	40		2020	EN	FT 	Machine Learning Engineer	138000
##	41	40	2020	MI	FT	Data Scientist	45760

## 42 41	2020	EX	FT	Data Engineering Manager	70000
## 43 42	2020	MI		thine Learning Infrastructure Engineer	44000
## 44 43	2020	MI	FT	Data Engineer	106000
## 45 44	2020	MI	FT	Data Engineer	88000
## 46 45	2020	EN	PT	ML Engineer	14000
## 47 46	2020	MI	FT	Data Scientist	60000
## 48 47	2020	SE	FT	Data Engineer	188000
## 49 48	2020	MI	FT	Data Scientist	105000
## 50 49	2020	MI	FT	Data Engineer	61500
## 51 50	2020	EN	FT	Data Analyst	450000
## 52 51	2020	EN	FT	Data Analyst	91000
## 53 52	2020	EN	FT	AI Scientist	300000
## 54 53	2020	EN	FT	Data Engineer	48000
## 55 54	2020	SE	FL	Computer Vision Engineer	60000
## 56 55	2020	SE	FT	Principal Data Scientist	130000
## 57 56	2020	MI	FT	Data Scientist	34000
## 58 57	2020	MI	FT	Data Scientist	118000
## 59 58	2020	SE	FT	Data Scientist	120000
## 60 59	2020	MI	FT	Data Scientist	138350
## 61 60	2020	MI	FT	Data Engineer	110000
## 62 61	2020	MI	FT	Data Engineer	130800
## 63 62	2020	EN	PT	Data Scientist	19000
## 64 63	2020	SE	FT	Data Scientist	412000
## 65 64	2020	SE	FT	Machine Learning Engineer	40000
## 66 65	2020	EN	FT	Data Scientist	55000
## 67 66	2020	EN	FT	Data Scientist	43200
## 68 67	2020	SE	FT	Data Science Manager	190200
## 69 68	2020	EN	FT	Data Scientist	105000
## 70 69	2020	SE	FT	Data Scientist	80000
## 71 70	2020	MI	FT	Data Scientist	55000
## 72 71	2020	MI	FT	Data Scientist	37000
## 73 72	2021	EN	FT	Research Scientist	60000
## 74 73	2021	EX	FT	BI Data Analyst	150000
## 75 74	2021	EX	FT	Head of Data	235000
## 76 75	2021	SE	FT	Data Scientist	45000
## 77 76	2021	MI	FT	BI Data Analyst	100000
## 78 77	2021	MI	PT	3D Computer Vision Researcher	400000
## 79 78	2021	MI	CT	ML Engineer	270000
## 80 79	2021	EN	FT	Data Analyst	80000
## 81 80	2021	SE	FT	Data Analytics Engineer	67000
## 82 81	2021	MI	FT	Data Engineer	140000
## 83 82	2021	MI	FT	Applied Data Scientist	68000
	any_location co		11	Applied Data Scientist	00000
## 1	DE				
## 2	JP	S			
## 3	GB	M			
## 3 ## 4	HN	S			
## 5	US	S L			
## 5 ## 6	US	L			
## 7	US	S			
## 8 ## 9	HU	L			
## 9 ## 10	US NZ	L			
## 10	NZ	S			
## 11	FR	S			

##	12	IN	L
##	13	FR	M
##	14	US	L
##	15	US	L
##	16	PK	L
##	17	JP	S
##	18	GB	S
##	19	IN	M
##	20	US	M
##	21	CN	M
##	22	IN	L
##	23	GR	L
##	24	US	M
##	25	AE	L
##	26	US	L
##	27	NL	L
##	28	MX	S
##	29	US	L
##	30	CA	L
##	31	DE	S
##	32	US	L
##	33	US	L
##	34	US	М
##	35	FR	L
##	36	AT US	L
##	37	US	
##	38	NG	L S
## ##	39 40	US	S
##	41	US	S
##	42	ES	L
##	43	PT	М
##	44	US	L
##	45	GB	L
##	46	DE	S
##	47	GB	S
##	48	US	L
##	49	US	L
##	50	FR	L
##	51	IN	S
##	52	US	L
##	53	DK	S
##	54	DE	L
##	55	US	S
##	56	DE	М
##	57	ES	М
##	58	US	М
##	59	US	L
##	60	US	М
##	61	US	L
##	62	US	М
##	63	IT	S
##	64	US	L
##	65	HR	S
-			_

```
## 66
                      DE
                                     S
                      DE
                                      S
## 67
## 68
                      US
                                     Μ
                                      S
## 69
                      US
## 70
                      ΑT
                                     S
                                      S
## 71
                      LU
## 72
                      FR
                                      S
## 73
                      GB
## 74
                      US
## 75
                      US
## 76
                      FR
## 77
                      US
## 78
                      IN
## 79
                      US
## 80
                      US
## 81
                      DE
## 82
                      US
## 83
                      CA
## [ reached 'max' / getOption("max.print") -- omitted 524 rows ]
```

Step 33: Generating summary statistics of the dataset "first_dataframe"

```
summary(first_dataframe)
##
                      work_year
                                    experience_level
                                                       employment_type
                                                                            job_title
                                                                                                  salary
##
    Min.
         : 0.0
                           :2020
                                   Length:607
                                                       Length:607
                                                                           Length:607
                                                                                              Min.
                    1st Qu.:2021
    1st Qu.:151.5
                                   Class :character
                                                       Class :character
                                                                           Class :character
                                                                                              1st Qu.:
    Median :303.0
                    Median:2022
                                   Mode :character
                                                       Mode :character
                                                                           Mode :character
                                                                                              Median:
                    Mean :2021
    Mean :303.0
##
                                                                                              Mean
##
    3rd Qu.:454.5
                    3rd Qu.:2022
                                                                                              3rd Qu.:
##
    Max.
           :606.0
                    Max.
                           :2022
                                                                                               Max.
                                                                                                      :304
     remote ratio
                     company location
                                         company size
##
          : 0.00
                     Length:607
                                         Length:607
   Min.
   1st Qu.: 50.00
                     Class :character
                                         Class :character
```

Mode :character

Visualizations + Recommendations

Mode :character

Median :100.00

3rd Qu.:100.00

:100.00

Mean : 70.92

Max.

##

1. Salary Distribution (Histogram)

Reason: Helps visualize how salaries are spread, showing skewness and outliers.

```
hist(first_dataframe$salary_in_usd,
    main = "Distribution of Salaries (USD)",
    xlab = "Salary (USD)",
```

```
col = "lightblue",
  border = "white")
abline(v = median(first_dataframe$salary_in_usd, na.rm = TRUE),
  col = "red", lwd = 2)
legend("topright", legend = c(paste("Median Salary =", round(median(first_dataframe$salary_in_usd, na.r
  bty = "n")
```

Distribution of Salaries (USD)

2. Salary by Experience Level (Boxplot)

Reason: Shows how pay changes with experience, revealing career-level pay gaps.

```
boxplot(salary_in_usd ~ experience_level, data = first_dataframe,
    main = "Salary by Experience Level",
    xlab = "Experience Level",
    ylab = "Salary (USD)",
    col = "lightgreen")
```

Salary by Experience Level

3. Salary by Company Size (Boxplot)

Reason: Highlights differences in pay trends across small, medium, and large companies.

```
boxplot(salary_in_usd ~ company_size, data = first_dataframe,
    main = "Salary by Company Size",
    xlab = "Company Size",
    ylab = "Salary (USD)",
    col = "lightpink")
```

Salary by Company Size

4. Remote Ratio vs Salary (Boxplot)

Reason: Shows how compensation differs between on-site, hybrid, and fully remote roles.

```
boxplot(salary_in_usd ~ remote_ratio, data = first_dataframe,
    main = "Salary vs Remote Ratio",
    xlab = "Remote Work Ratio (%)",
    ylab = "Salary (USD)",
    col = "lightyellow")
```

Salary vs Remote Ratio

Findings & Insights

The visualizations show that salaries in the dataset are right-skewed, with most professionals earning around the median while a few high-paying roles drive up the average. Pay clearly increases with experience, moving from entry- to executive-level positions. Larger companies tend to offer higher compensation than small or mid-sized ones, reflecting resource differences. Finally, remote roles show comparable or slightly higher pay, suggesting flexibility is increasingly valued without reducing earnings potential.

References

R Core Team (2025). R: A Language and Environment for Statistical Computing. Xie, Y. (2023). knitr: A General-Purpose Package for Dynamic Report Generation in R. All code written by the author.

END