

DTU



#### Patrick Njage

Researcher
Research Group for Genomic Epidemiology
DTU Food



Week 8: Infectious Disease Bioinformatics course, 2022

#### Content



- Introduction machine learning
- Common types of machine learning algorithms
- Decision trees
- Properties of ensemble approaches
  - Boosting and bagging
  - Popular examples: Random forest and LogitBoost
- Deep learning
- Over and under-fitting
- Cross-validation
- Next generation sequencing data inputs



#### Herbert Alexander Simon:

"Learning is any process by which a system improves performance from experience."

 "Machine Learning is concerned with computer programs that automatically improve their performance through experience."

Machine Learning

**Deep Learning** 

Artificial Intelligence



Herbert Simon
Turing Award 1975
Nobel Prize in Economics 1978

### Learning concept for machine learning

- Learning = <u>Improving</u> with <u>experience</u> at some <u>task</u>
  - Improve over task T,
  - With respect to performance measure, P
  - Based on experience, E.

## Example: spam filtering

Spam - is all email the user does not want to receive and has not asked to receive

T: Identify Spam Emails

P:

% of spam emails that were filtered % of ham/ (non-spam) emails that were incorrectly filtered-out

E: a database of emails that were labelled by users



#### For infectious disease



#### Genotype

What WGS data type?

- SNP?
- Pangenome?
- Gene-by-gene?
- MLST?



#### Issues

- Sample size and population structure
- Number of genotype observations versus phenotypes



#### Phenotype

Reproducible health end-point?

#### Why machine Learning?

- Machine learning: "algorithms that improve with experience"
- Analysis of large, complex data sets
- Relevant "features" in a complex data set enable the ability to make a strong prediction
- Increase in data ad computational power
- Example applications

spam filtering, optical character recognition (OCR), search engines and computer vision



Quantitative outcome e.g. age- regression Qualitative outcome e.g. disease type- classification

## Machine Learning: Forest of algorithms Which one do we choose?



Machine Learning: common options



#### Decision trees

- Decision trees aim: to partition the data into smaller and more homogeneous groups.
- ➤ Homogeneity: the nodes of the split are mode pure, defined e.g. by a Gini index (Kuhn & Johnson, 2013).

#### Decision trees

- A flow-chart-like tree structure
- Internal node denotes a test on an attribute
- Branch represents an outcome of the test
- Leaf nodes represent class labels or class distribution

Decision trees divide the feature space into axis-parallel rectangles, and label each rectangle with one of the K classes.



## Let's look at a tree..and try to understand it



### Let's look at a tree..and try to understand it



Fig. 14.3: The final CART model for the grant data using grouped category predictors

- Aim: to partition the data into smaller and more homogeneous groups.
  - Homogeneity: the nodes of the split are mode pure, defined e.g. by a Gini index.

## Let's look at some trees..and try to understand them



Fig. 14.3: The final CART model for the grant data using grouped category predictors

4.1 Basic Classification Trees

Split determined by the Gini koefficient

- Methods that **combine multiple trees** or methods into one model that tends to **outperform the single models** (Kuhn & Johnson, (2013), Ren et al., (2016)
- Ensemble methods are applied in the field of bioinformatics where the sample size is often low and number of features/predictors often very high (Yang et al. (2010).
- A large number of ensemble methods have been applied to biological data analysis.
- Aim of ensemble methods: to achieve more accurate classifications on training data and better generalization in predictions on unseen data
- Include class of models such as bagging, boosting and random forest (Ren et al., (2016)
  - Random forests: handles high dimesionality data (Yang et al. (2010).
  - Bagging + boosting effective in dealing with data with low sample size (Yang et al. (2010).

# Schematic illustration of hypothesis space for single classifier vs. ensemble of classifiers







(b) Hypothesis space of an ensemble classifier

Fig. 2: A schematic illustration of hypothesis space partitioning with ensemble of classifiers. By combining moderate accurate base classifiers, we can approximate the best classification rule  $h_{best}$  with the increase of model complexity. This can be achieved by combining base classifiers with averaging or majority voting which takes advantage of the overlapped region.

Yang et al. (2010)



• **Boosting**: the observations are weighted and therefore some of them will take part in the new sets more often

- N new training data sets are produced by random sampling with replacement from the original set.
- Bagging: any element has the same probability to appear in a new data set.



#### **Bagging**

Training stage is parallel i.e., each model is built independently

#### **Boosting:**

- builds the new learner sequentially
- Each classifier is trained on data, taking into account the previous classifiers' success.
- After each training step, the weights are redistributed.
- Misclassified data increases its weights to emphasise the most difficult cases. In this way, subsequent learners will focus on them during their training.



Fig. 1: Schematic illustration of the three popular ensemble methods. Yang et al. (2010)

#### Random forest

- A collection of tree-structured classifiers  $\{h(\mathbf{x}, \Theta_k), k = 1, ...\}$  where the  $\{\Theta k\}$  are independent identically distributed random vectors and **each tree casts a unit vote** for the most popular class at input  $\mathbf{x}$  (Breiman, L. 2001)
- Concept: each tree cast a vote for the classification of a new sample and the predicted probability vector is a result of the most popular class among the trees (Breiman, L. 2001)
- Prediction based on classification trees
- Mtry, tuning parameter:
  - Number of ramdomly selected predictors to choose from at each split in the tree.
  - Kept constant for each of the trees.
  - Model is however relatively insensitive to the values of mtry.
- Out-of-bag performance measures: accuracy, sensitivity, specificity, confusion matrices.

# Gradient boosting machines (AdaBoost and LogitBoost)

- Boosting algorithms: additive models where many weak classifiers are combined (or boosted) into a strong classifier (Kuhn & Johnson 2013)
- Weak classifiers: trees that are **dependent on past trees** (in rf the trees are independent)
- Basic gradient boosting has two tuning parameters:
  - > tree depth and number of interactions (Kuhn & Johnson 2013)
- LogitBoost: a boosted logistic regression
  - ➤ additive on the logistic scale with the base learner providing the additive components (Friedman et al., 2000)

Deep learning: Neural networks



## Overfitting and underfitting



**Overtraining:** means that it learns the training set too well – it overfits to the training set such that it performs poorly on the test set.

Underfitting: when model is too simple, both training and test errors are large

## Overfitting and underfitting



**Logistic Regression** 



Support Vector Machine with Gaussian kernel



K-NN

#### Cross-validation



Resampling method that uses different portions of the data to test and train a model on different iterations.



Training on training dataset and model tested on the validation dataset or testing set.



Goal: test the model's ability to predict new data that was not used in estimating it



Flags problems like overfitting or selection bias

### NGS data for machine learning models



#### References



- 1. Kuhn, M. & Johnson, K. Applied Predictive Modeling. (Springer, 2013).
- 2. Yang, P., Hwa Yang, Y., B. Zhou, B. & Y. Zomaya, A. A Review of Ensemble Methods in Bioinformatics. *Curr. Bioinform.* **5**, 296–308 (2010).
- Ren, Y., Zhang, L. & Suganthan, P. N. Ensemble Classification and Regression-Recent Developments, Applications and Future Directions [Review Article]. *IEEE Comput. Intell. Mag.* 11, 41–53 (2016).
- 4. Friedman, J., Hastie, T. & Tibshirani, R. Special invited paper. Additive logistic regression: A statistical view of boosting. *Ann. Stat.* **28**, 337–374 (2000).
- 5. Breiman, L. Random Forests. *Mach. Learn.* **45**, 5–32 (2001).