HOCHSCHULE LUZERN

Informatik FH Zentralschweiz

Einführung in die Zahlentheorie 3 - Übung

Prof. Dr. Josef F. Bürgler

I.BA_DMATH, Semesterwoche 11

Die Aufgaben sind zusammen mit dem Lösungweg in möglichst einfacher Form darzustellen. Numerische Resultate sind mit einer Genauigkeit von 4 Stellen anzugeben. Skizzen müssen qualitativ und quantitativ richtig sein.

Sie sollten im Durschnitt 75% der Aufgaben bearbeiten. Die mit grossen römischen Zahlen gekennzeichneten Aufgaben **müssen** bearbeitet werden und die Lösungen dieser Aufgaben werden kontolliert und bewertet. Abgabetermin ihrer Übungsaufgaben ist die letzte Vorlesungsstunde in der Woche nachdem das Thema im Unterricht besprochen wurde.

Referenz: Kenneth H. Rosen, Discrete Mathematics and its Applications, McGraw-Hill International Edition, 6.

Auflage, kurz: KR

I. Gegeben sei die Klartextmenge $\mathcal{M} = \{0,1\}$, die Geheimtextmenge $\mathcal{C} = \{00,01,10,11\}$ und die Schlüsselmenge $\mathcal{K} = \{k_1,k_2,k_3\}$, sowie die Wahrscheinlichkeitsverteilungen auf der Klartextmenge p(0) = 3/4, p(1) = 1/4 und auf der Schlüsselmenge $p(k_1) = 1/2$, $p(k_2) = 1/4$ und $p(k_3) = 1/4$. Die Verschlüsselungsfunktion f sei wie folgt definiert:

$$f(k_1,0) = 01$$
 $f(k_1,1) = 10$
 $f(k_2,0) = 10$ $f(k_2,1) = 11$
 $f(k_3,0) = 11$ $f(k_3,1) = 00$

Untersuchen Sie das System auf perfekte Sicherheit.

- II. Es seien die folgenden drei Primzahlen p = 47, q = 59 und e = 17 gegeben.
 - a) Prüfen Sie zunächst, dass $\phi(pq)$ und e teilerfremd sind.
 - b) Bestimmen Sie per Hand das modulare Inverse d von e modulo $\phi(pq)$. Kontrollieren Sie mit Maple.

- c) Verschlüsseln Sie die Nachrichten 8,117 und 1212.
- d) Entschlüsseln Sie die (kodierten) Nachrichten 596, 1769 und 2345.
- 1. Die Zahl n = 10'921 ist das Produkt von zwei verschiedenen Primzahlen. Ausserdem gilt $\phi(10'921) = 10'692$. Faktorisieren Sie n. Als Hilfsmittel sind dazu nur ein (einfacher) Taschenrechner und eine Formelsammlung erlaubt.
- III. Die Zahl n = 17'753 ist das Produkt von zwei verschiedenen Primzahlen. Ausserdem gilt $\phi(17'753) = 17'280$. Faktorisieren Sie n. Als Hilfsmittel sind dazu nur ein (einfacher) Taschenrechner und eine Formelsammlung erlaubt.
 - 2. **KR**, **Abschnitt 3.7**, **Aufgabe *61**: Begründen Sie kurz, warum man bei der Implementierung des RSA für das Modul *n* keine Primzahl wählen sollte.

Lösungen

I. -

II. -

1. Hinweis: Zu lösen ist das Gleichungssystem $p \cdot q = 10'921$ und $(p-1) \cdot (q-1) = 10'692$. Wie kommt man auf diese beiden Gleichungen?

III. -

2. -

d) 596 ¹⁵⁷ mod 1769 ¹⁵⁷ mod 2345 ¹⁵⁷ mod	2773 - 8	d = 157
1769157 mod	2773 - 117	h = 2773
2345 187 mod	2773 = 1212	

$$III. \quad n = p \cdot q - 17'753$$

$$P = \frac{17^{7}53}{9}$$

III. Die Zahl n = 17'753 ist das Produkt von zwei verschiedenen Primzahlen. Ausserdem gilt $\phi(17'753)$

$$(\rho -1)(q-1) = 17^{1}280$$

$$\frac{1}{1} - \frac{1}{1} - \frac{1}$$

$$\frac{7}{9} = \frac{7}{9} = \frac{7}$$

$$\frac{1}{1753} = \frac{1}{1753} = \frac{1}{1779} = \frac{$$

$$P_{A} = \frac{17^{1753}}{4} = 433$$
 $P_{A} = \frac{17^{1753}}{433} = 41$
 $P_{A} = 433 + 41$