Wissenschaftliches Rechnen - Großübung 5.1

Themen: Komplexe Zahlen, Diskrete Fourier-Transformation

Ugo & Gabriel

17. Januar 2023

Aufgabe 1: Komplexe Zahlen

- 1. Wie viele Lösungen hat die Gleichung $z^3=-27$ in den reellen sowie in den komplexen Zahlen? Welche sind dies?
- 2. Geben Sie die Lösungen aus Aufgabe 1.1 in kartesischer Parametrisierung, in Polarkoordinaten sowie als Matrix an.
- 3. Geben Sie die Vorteile und Nachteile der jeweiligen Darstellungen an.
- 4. Zeigen Sie, dass das Standard-Skalarprodukt zweier komplexer Vektoren $\mathbf{u}, \mathbf{v} \in \mathbb{C}^n$ nicht durch $\mathbf{u}^\mathsf{T} \mathbf{v}$ definiert werden kann. Wie ist es stattdessen definiert?
- 5. Zeigen Sie, dass Polynome mit reellen Koeffizienten nur eine gerade Anzahl an komplexen Nullstellen (imaginärer Anteil ungleich 0) besitzen können (Tipp: Zeige, dass wenn $z \in \mathbb{C}$ eine Nullstelle von p ist, dann ist auch die komplex konjugierte $\overline{z} \in \mathbb{C}$ eine Nullstelle von p).
- 6. Geben Sie alle 5. Einheitswurzeln, also die Lösungen der Gleichung $z^5=1$, an.
- 7. Geben Sie jeweils eine Funktion $f_i: \mathbb{R} \to \mathbb{C}$ an, die sich in der gaußschen Zahlenebene mit konstanter Geschwindigkeit entlang des Einheitskreises um den Ursprung dreht, wobei f(0)=1 sowie f(1)=1 und
 - a) die Funktion sich im Intervall [0,1] einmal mal gegen den Uhrzeigersinn um den Ursprung dreht.
 - b) die Funktion sich im Intervall [0,1] einmal mal im Uhrzeigersinn um den Ursprung dreht.
 - c) die Funktion sich im Intervall [0,1] vier mal gegen den Uhrzeigersinn um den Ursprung dreht.
 - d) die Funktion sich im Intervall [0,1] zwei mal gegen den Uhrzeigersinn um den Ursprung dreht.
 - e) die Funktion sich im Intervall $\left[0,1\right]$ zwei mal im Uhrzeigersinn um den Ursprung dreht.
 - f) die Funktion sich im Intervall [0,1] kein mal um den Ursprung dreht.

Aufgabe 2: Diskrete Fourier-Transformation

- 1. Diskretisieren Sie die Funktionen aus Aufgabe 1.7, indem Sie 5 äquidistante Samples an den Stellen $0, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}$ wählen, und stellen Sie diese als Vektor dar.
- 2. Konstruieren Sie, mit den aus der letzten Aufgabe gefundenen Vektoren, die DFT Matrix Ω_5 , indem sie die Vektor sortieren und normieren.
- 3. Zeigen Sie, dass man die Spalten der Inversen der DFT-Matrix, also $\overline{\Omega_n}^{\mathsf{T}} = \overline{\Omega_n}$, durch umsortieren der Spalten von Ω_n erhalten kann.
- 4. Im Skipt wird gezeigt, dass die DFT-Matrix unitär (komplexe Analogie zu orthogonal) ist, indem gezeigt wird, dass $\overline{\Omega_n}^\mathsf{T}\Omega_n=\mathbf{I}$. Warum reicht es im Komplexen nicht Ω_n nur zu transponieren um Unitarität zu zeigen, sondern muss zusätzlich noch komplex konjugiert werden $(\overline{\Omega_n}^\mathsf{T})$?
- 5. Zeigen Sie, dass Ω_n und $\overline{\Omega_n}$ symmetrisch sind.
- 6. Gegeben ein reeles Signal $\mathbf{s} \in \mathbb{R}^n$ sowie seine Fourier-Transformierte $\Omega_n \mathbf{s} = \hat{\mathbf{s}} \in \mathbb{C}^n$, interpretiert als diskrete Funktion an den Stützstellen $(0, \dots, n-1)$. Zeigen Sie, dass $\hat{\mathbf{s}}$ achsensymetrisch im Realteil, sowie punktsymetrisch im Imaginärteil ist, wenn man den ersten Eintrag ignoriert und als Ursprung $(\frac{n}{2}, 0)$ wählt.
- 7. Zeigen Sie, dass auch die Rückrichtung der Aussage der letzten Aufgabe gilt, wenn der erste Eintrag des transformierten Signals reell ist. Das bedeutet, wenn das transformierte Signal s achsensymetrisch im Realteil sowie punktsymetrisch im Imaginärteil ist, dann ist das Ursprungssignal reell.
- 8. Gegeben die komplexen Stützstellen 1, $e^{\frac{1}{6}2\pi i}$, $e^{\frac{2}{6}2\pi i}$, $e^{\frac{3}{6}2\pi i}$, $e^{\frac{4}{6}2\pi i}$ und $e^{\frac{5}{6}2\pi i}$. Konstruieren Sie die zugehörige Vandermonde-Matrix sowie die zugehörigen Lagrange-Basispolynome.