

Smart, Creative and Entrepreneurial

www.esaunggul.ac.id

PRAPROSES DATA
PERTEMUAN - 3
NOVIANDI
PRODI MIK | FAKULTAS ILMU-ILMU KESEHATAN

KEMAMPUAN AKHIR YANG DIHARAPKAN

Mahasiswa mengetahui preprocessing data , melakukan proses cleaning data, mampu menjelaskan konsep data integras, transformasi, reduksi, dan diskritisasi

LATAR BELAKANG PRAPROSES DATA

Tidak komplit

- Terdapat artribut yang kosong dikarenakan atribut tersebut tidak dapat diaplikasikan untuk semua kasus
- Human/Hardware/Software problems

Noisy

 Data mengandung error atau outlier karena terdapat kesalahan dalam penggunaan alat, kesalahan manusia atau komputer pada saat memasukkan data, eror dalam transmisi data

Tidak konsisten

 Format data berubah-ubah dikarenakan berasal dari sumber data yang berbeda. Contoh: Format tanggal

TUJUAN PRAPROSES

- Menghasilkan hasil mining yang berkualitas
- Data warehouse membutuhkan integrasi yang konsisten
- Data extraction, cleaning, and transformation merupakan salah satu tahapan untuk membangun gudang data

Sumber: www.syncsort.com/Syncsort/media /images/data-quality-heromobile.png

TAHAPAN PRAPROSES DATA

ILUSTRASI PRAPROSES DATA

PEMBERSIHAN DATA

Mengisi *missing* value

Meminimumkan *Noise*

Membetulkan data yang tidak konsisten

Mengindentifikasi /membuang outlier

https://developer.salesforce.com/resource/im ages/trailhead/badges/modules/trailhead_mo dule_data_quality.png

MENGISI MISSING VALUE

- Mengabaikan record
- Menggunakan mean/median/modus dari atribut yang mengandung missing value
- Menggunakan nilai termungkin (Menerapkan regresi)

NOISY DATA

Cara mengetahui *outlier* : Clustering, Regresi Linear

Binning

- Smoothing menggunakan Bin Means
- Smoothing menggunakan Bin Medians
- Smoothing menggunakan Bin Boundaries

MENDETEKSI *OUTLIER* DENGAN CLUSTERING

MENDETEKSI *OUTLIER* DENGAN REGRESI LINEAR

METODE BINING

Metode yang dilakukan untuk mengelompokkan data

Salah satu pendekatan diskritisasi

Urutan proses:

- 1. Urutkan data dari kecil ke besar (ascending)
- 2. Melakukan partisi data dalam bins menggunakan *equal-width* atau *equal-depth* (frekuensi)
- 3. Dapat di-*smoothing* menggunakan rata-rata, median. batasan. dsb.

METODE BINING

☐ Partisi *Equal-Width*

Langkah-langkah membagi data ke dalam k interval ukuran yang sama. Lebar interval adalah w= (max-min)/k

☐ Partisi Equal- depth

Membagi data ke dalam k kelompok dimana tiap k kelompok berisi jumlah yang sama

CONTOH PARTISI BINNING

Data: 0, 4, 12, 16 16, 18, 24, 26, 28

Equal Width

BIN 1 = 0.4

BIN 2= 12,16,16,18

BIN 3= 24,26,28

Equal Depth

BIN 1= 0, 4, 12

BIN 2= 16,16,18

BIN 3= 24,26,28

Smoothing berdasarkan rata-rata: Semua nilai tiap bin diganti dengan rata-rata nilai tiap bin

Smoothing berdasarkan batasan: Setiap nilai bin diganti dengan nilai yang paling dekat dari batasan nilai. Batasan nilai terbentuk dari [min, max] tiap bin

INTEGRASI DATA

- Data dapat bersumber dari beberapa sumber
- Teknik-teknik:

ANALISIS KORELASI

ATRIBUT REDUDAN

DUPLIKASI

MENGATASI REDUNDASI PADA INTEGRASI DATA

PENYEBAB REDUNDANSI

- Atribut yang sama mempunyai nama yang berbeda pada database yang berbeda
- Satu atribut merupakan turunan dari atribut lainnya

Dapat dideteksi menggunakan analisis korelasi

Berhati-hati dalam menggabungkan data dari berbagai sumber untuk mengurangi redundasi

MENGATASI REDUNDASI PADA INTEGRASI DATA

Redudancy/ Duplicate :

Hubungan korelasi antar variabel dapat dilihat menggunakan rumus korelasi. Jika data numerik, hubungan korelasinya seperti dibawah ini:

$$r_{A,B} = \frac{\sum (A - \overline{A})(B - \overline{B})}{(n-1)\sigma_A \sigma_B} = \frac{\sum (AB) - n \overline{AB}}{(n-1)\sigma_A \sigma_B}$$

Semakin besar hasil perhitungan tersebut, semakin tinggi korelasi. Jika hasil perhitungan tersebut =0 berarti independen. Jika kurang dari nol tidak independen

MENGATASI REDUNDASI PADA INTEGRASI DATA

Jika data kategorik, hubungan korelasinya seperti dibawah ini menggunakan chi-square:

$$\chi^{2} = \sum \frac{(Observed - Expected)^{2}}{Expected}$$

Semakin besar chi-square, semakin tinggi korelasi. Jika hasil perhitungan tersebut =0 berarti independen. Jika kurang dari nol tidak independen

CONTOH SOAL MENGGUNAKAN CHI-SQUARE

	Play chess	Not play chess	Sum (row)
Like science fiction	250(90)	200(360)	450
Not like science fiction	50(210)	1000(840)	1050
Sum(col.)	300	1200	1500

$$\chi^2 = \frac{(250 - 90)^2}{90} + \frac{(50 - 210)^2}{210} + \frac{(200 - 360)^2}{360} + \frac{(1000 - 840)^2}{840} = 507.93$$

Tujuan diadakan tranformasi data agar data lebih efisien dalam proses data mining dan mungkin juga agar pola yang dihasilkan lebih mudah dipahami.

Hal-hal yang termasuk transformasi data:

Smoothing : Menghapus noise dari data

Aggregation : Ringkasan, Kontruksi data cube

Normalization : Min-max, Z-Score, Decimal Scaling

Normalization

a. Min-max normalization: menghasilkan [new_min,new_max]

$$v' = \frac{v - min_s}{max_s - min_s} (new _ max_s - new _ min_s) + new _ min_s$$

Contoh soal:

Penghasilan berkisar dari \$10,000 sampai \$98,000 dinormalisasikan dari [0,1]. Sehingga untuk penghasilan sebesar \$73,000 dipetakan ke $\frac{73,000-10,000}{98,000-10,000}$ (1-0)+0=0.716

Normalization

b. Min-max Z-score normalization : μ: mean, σ: standard deviation

$$v' = \frac{v - \mu_A}{\sigma_A}$$

Contoh soal:

Misal
$$\mu$$
 = 55,000, σ = 20,000. Maka, $\frac{73,000-55000}{20000}$ = 0.9

Normalization

c. Normalisasi pada skala desimal

$$v' = \frac{v}{10'}$$

Dimana j adalah bilangan bulat terkecil sehingga Max(|v'|) < 1

REDUKSI DATA

Memperkecil volume tapi menghasilkan analasis data yang sama. Strategi- strategi data reduksi: Data cube aggregation, reduksi dimensi (menghapus atribut yang tidak penting), kompresi data, dsb.

DATA CUBE AGGREGATION

Mengurangi ukuran data

Menggunakan representasi yang singkat

REDUKSI DATA

DATA CUBE AGGREGATION

Year	Sales
2662	\$1,568,000
209.5	\$1,356,000
2084	53,594,000
100000	1000000

DISKRITISASI DATA

Terdapat tiga tipe atribut:

- Nominal = Nilai dari sekumpulan data yang tidak beraturan.
 Contoh: Warna, Profesi
- Ordinal = Nilai dari sekumpulan data yang terurut..
 Contoh: Ip, nomor antrian
- Kontinu = Nilai real seperti integer atau real number

Diskritisasi

Metode disktritisasi bisa dilakukan pada data kontinu. Tahap pertama, kita mengelompokkan nilai ke dalam interval. Setelah itu kita menggantikan nilai atribut dengan label atau interval.

Contoh:

Dataset (age, salary): (26;56,000),(28;70,000),(89;99,000)

TERIMA KASIH ©