[12.4] Problem Statement: Let Φ be a scalar field on an n-manifold \mathfrak{M} . Show that the (n-1)-dimensional plane elements determined by $d\Phi$ are tangential to the family of (n-1)-dimensional surfaces of constant Φ .

There were no posted solutions for this problem so I'll make an attempt.

Solution:

It suffices to show this for every point of the manifold.

Let P be a point of M.

Let X_P be the (n-1)-dimensional plane element at P determined by $d\Phi$. Let ξ be a vector field.

By Penrose's definition of the (n-1)-dimensional plane element at P determined by $d\Phi$, the direction of ξ belongs to X_P iff $0 = d\Phi \bullet \xi$. But $0 = d\Phi \bullet \xi = \xi(\Phi)$, the rate of change of Φ in the direction of ξ .

This implies that Φ is constant on X_P

Thus X_P is tangential to the family of (n-1)-dimensional surfaces of constant Φ .