Optimization

Convexity

CONVEX SETS

A set of S is **convex**, if for all $\mathbf{x}, \mathbf{y} \in S$ and all $t \in [0, 1]$ the following applies:

$$\mathbf{x} + t(\mathbf{y} - \mathbf{x}) \in \mathcal{S}$$

Intuitively: Connecting line between any $\mathbf{x}, \mathbf{y} \in \mathcal{S}$ lies completely in \mathcal{S} .

Left: convex set; right: not convex. Source: Wikipedia.

Bernd Bischl © Optimization - 1/7

CONVEX FUNCTIONS

Consider $f: \mathcal{S} \to \mathbb{R}$, \mathcal{S} convex. The function is **convex** if for all $\mathbf{x}, \mathbf{y} \in \mathcal{S}$ and all $t \in [0, 1]$

$$f(\mathbf{x} + t(\mathbf{y} - \mathbf{x})) \le f(\mathbf{x}) + t(f(\mathbf{y}) - f(\mathbf{x})).$$

Strictly convex if "<" instead of " \leq ". **Concave** (strictly) if the equation holds with " \geq " (">"), respectively.

Note: f (strictly) concave $\Leftrightarrow -f$ (strictly) convex.

Left: Strictly convex function. Right: Convex, but not strictly.

EXAMPLES

Convex function: f(x) = |x|.

Proof:
$$f(\mathbf{x} + t(\mathbf{y} - \mathbf{x})) = |\mathbf{x} + t(\mathbf{y} - \mathbf{x})| = |(1 - t)\mathbf{x} + t \cdot \mathbf{y}| \le |(1 - t)\mathbf{x}| + |t \cdot \mathbf{y}|$$

 $= (1 - t)|\mathbf{x}| + t|\mathbf{y}| = |\mathbf{x}| + t \cdot (|\mathbf{y}| - |\mathbf{x}|)$
 $= f(\mathbf{x}) + t \cdot (f(\mathbf{y}) - f(\mathbf{x}))$

Concave function: $f(x) = \log(x)$.

Neither nor: $f(x) = \exp(-x^2)$

PROVE CONVEXITY VIA HESSIAN

Let $f \in C^2$ and $H(\mathbf{x})$ its Hessian.

f is **convex iff** $H(\mathbf{x})$ is positive semidefinite (p.s.d.) for all $\mathbf{x} \in \mathcal{S}$, i.e. if for all points \mathbf{x} and all vectors $\mathbf{d} \neq 0$:

$$\mathbf{d}^{\top} \nabla^2 f(\mathbf{x}) \mathbf{d} \geq 0.$$

If $H(\mathbf{x})$ positive definite (strict ">"), f is strictly convex.

Alternatively: Matrix p.s.d. \Leftrightarrow all eigenvalues \geq 0.

Bernd Bischl © Optimization - 4 / 7

PROVE CONVEXITY VIA HESSIAN

Example:
$$f(\mathbf{x}) = x_1^2 + x_2^2 - 2x_1x_2$$
, $\nabla f(\mathbf{x}) = \begin{pmatrix} 2x_1 - 2x_2 \\ 2x_2 - 2x_1 \end{pmatrix}$, $H(\mathbf{x}) = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix}$.

f is convex since $H(\mathbf{x})$ is p.s.d. for all \mathbf{x} :

$$\mathbf{d}^{\top} \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix} \mathbf{d} = \mathbf{d}^{\top} \begin{pmatrix} 2d_1 - 2d_2 \\ -2d_1 + 2d_2 \end{pmatrix} = 2d_1^2 - 2d_1d_2 - 2d_1d_2 + 2d_2^2$$
$$= 2d_1^2 - 4d_1d_2 + 2d_2^2 = 2(d_1 - d_2)^2 \ge 0.$$

CONVEX FUNCTIONS IN OPTIMIZATION

- For a convex function, every local optimum is a global one
- A strictly convex function at most one optimal point

Left: Strictly convex; exactly one local minimum, which is also global. Middle: Convex, but not strictly; all local optima are global ones, but not unique. Right: Not convex.

Bernd Bischl © Optimization - 6 / 7

CONVEX FUNCTIONS IN OPTIMIZATION

"...in fact, the great watershed in optimization isn't between linearity and nonlinearity, but convexity and nonconvexity."

- R. Tyrrell Rockafellar, in SIAM Review, 1993

Bernd Bischl © Optimization - 7/7