Engineering Mathematics

Real Analysis Series Part 8

Let $\{a_n\}$ be a sequence then the sum of the terms of the sequence is called a series.

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \dots + a_n + \dots$$

If the number of terms in a series is finite the series is called a finite series. If the number of terms in a series is infinite the series is called an infinite series.

Infinite Series

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \dots + a_n + \dots$$

Convergent, Divergent and Oscillatory Series

Let $\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \dots + a_n + \dots$ be a series and S_n be the sum of the first n terms of the series.

$$S_n = a_1 + a_2 + a_3 + \dots + a_n$$
 , Then $\{S_n\}$ will be a sequence.

- ightharpoonup If S_n tends to a finite number when $n \to \infty$, then the series is said to be a convergent series.
- If S_n tends to infinity when $n \to \infty$, then the series is said to be a divergent series.
- If S_n does not tends to a unique limit when $n \to \infty$, then the series is said to be an oscillatory series.

Positive Term Series

If all terms after few negative terms in an infinite series are positive, such a series is a positive term series.

Definition

Let $\sum a_n$ be a series, If $\sum |a_n|$ is convergent, we say that $\sum a_n$ is absolutely convergent.

• If $\sum a_n$ is absolutely convergent then it is convergent.

Definition

If $\sum a_n$ is a convergent series, but not absolutely convergent, then we say that it is conditionally convergent.

1. Alternating Series Test

Let $\{a_n\}$ be a decreasing sequence of positive terms such that $\lim_{n\to\infty}a_n=0$ and if $b_n=(-1)^na_n$ or $b_n=(-1)^{n+1}a_n$ then, $\sum b_n$ is convergent.

Theorem

Let $\sum a_n$ be a series, $\sum a_n$ is convergent $\implies \lim_{n\to\infty} a_n = 0$

2. Cauchy's Fundamental Test for Divergence

 $\lim_{n\to\infty} a_n \neq 0 \Longrightarrow \sum a_n$ is divergent

3. Integral Test

Suppose f(x) is a positive continuous and decreasing function defined on $[1, \infty)$, then

$$\sum_{n=1}^{\infty} f(n)$$
 is convergent $\iff \int_{1}^{\infty} f(x) dx < \infty$

p-Series

 $\frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \cdots \infty$ is called the p – series.

- When p > 1, the series is convergent.
- ❖ When $p \le 1$, the series is divergent.

4. Comparison Test

I. Direct Comparison Test

Let two positive term series, $\sum u_n$ and $\sum v_n$,

If
$$\exists n_0 \in \mathbb{Z}^+ \ s.t. \ 0 \le u_n \le v_n$$
; $\forall n > n_0$, then

- $\sum v_n$ is convergent $\Longrightarrow \sum u_n$ is convergent
- $\sum u_n$ is divergent $\Longrightarrow \sum v_n$ is divergent

II. Limit Comparison Test

Let two positive term series, $\sum u_n$ and $\sum v_n$,

If $\lim_{n\to\infty}\frac{u_n}{v_n}=$ *finite number*, then both series converge or diverge.

5. Ratio Test

If $\sum u_n$ is a positive term series such that $\lim_{n\to\infty}\frac{u_{n+1}}{u_n}=k$ then,

- If k < 1, series is convergent
- If k > 1, series is divergent
- \clubsuit If k = 1, test fails

Exercise

- 1. Prove that the geometric series $1 + r + r^2 + r^3 + \cdots \infty$ is
 - a. Convergent if |r| < 1
 - b. Divergent if $r \ge 1$
 - c. Oscillatory if $r \leq -1$
- 2. Prove that $\sum \frac{(-1)^n}{n}$ is convergent.
- 3. Prove that $\sum (-1)^n \left(\frac{n}{n+2}\right)$ is not convergent.
- 4. Prove that $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent.
- 5. Prove that $\frac{1}{2} + \frac{1}{5} + \frac{1}{10} + \frac{1}{17} + \cdots \infty$ is convergent.
- 6. Prove that $\sum \frac{1}{n(n+1)}$ is convergent.
- 7. Prove that $\sum \frac{n}{n+1}$ is divergent.
- 8. Prove that $\sum_{n=0}^{\infty} \frac{(-1)^n}{n}$ is conditionally convergent.

Exercise

Examine the convergence or divergence of the following series.

1.
$$2 + \frac{3.1}{2.4} + \frac{4}{3.4^2} + \frac{5}{4.4^3} + \cdots$$

2.
$$1 + \frac{1.2}{1.3} + \frac{1.2.3}{1.3.5} + \frac{1.2.3.4}{1.3.5.7} + \cdots$$

3.
$$1 + \frac{3}{2!} + \frac{5}{3!} + \frac{7}{4!} + \cdots$$

4.
$$\frac{1}{1.2} + \frac{2}{3.4} + \frac{3}{5.6} + \cdots$$

5.
$$\frac{1}{1.3} + \frac{2}{3.5} + \frac{3}{5.7} + \cdots$$

6.
$$1 + \frac{2^2}{2!} + \frac{3^2}{3!} + \frac{4^2}{4!} + \cdots$$

3

7.
$$\frac{1}{1+2} + \frac{2}{1+2^2} + \frac{3}{1+2^3} + \cdots$$

9.
$$\frac{1}{3} + \frac{2!}{3^2} + \frac{3!}{3^3} + \cdots$$

$$11.\sum_{n=1}^{\infty} \frac{2n^3+5}{4n^5+1}$$

13.
$$\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^2+1}$$

$$15.\sum_{n=1}^{\infty}\frac{x^n}{1+x^{2n}}$$

17.
$$\sum_{n=1}^{\infty} \frac{x^{n-1}}{n \cdot 3^n}$$

$$19.\sum_{n=1}^{\infty} \frac{\ln n}{n}$$

$$21.\sum_{n=1}^{\infty} (-1)^n \frac{n+1}{n^2+2n+3}$$

$$23.\sum_{n=1}^{\infty}\frac{n!}{n^n}$$

8.
$$1 + \frac{1}{2^2} + \frac{2^2}{3^3} + \frac{3^3}{4^4} + \cdots$$

$$10.\sum_{n=1}^{\infty} \frac{1}{\sqrt{n} + \sqrt{n+1}}$$

$$12.\sum_{n=1}^{\infty} \frac{a^n}{x^n + n^a}$$

$$14.\sum_{n=1}^{\infty}\frac{n^2}{e^n}$$

$$16. \sum_{n=1}^{\infty} \frac{n^2}{2^n}$$

18.
$$\sum_{n=1}^{\infty} ne^{-n^2}$$

$$20.\sum_{n=1}^{\infty}(-1)^n\left(\frac{n+1}{n}\right)^n$$

$$22. \sum_{n=1}^{\infty} (-1)^{n+1} \frac{\sin(\frac{\pi}{n})}{n^2}$$

$$24.\sum_{n=1}^{\infty} \frac{n^3}{2^n}$$

----End of the Tutorial----

Dasun Madushan

B.Sc. Eng. (Hons) – 1st Class Electronic & Telecommunication Engineering University of Moratuwa