Circuits RC

Càrrega: q(t) $VC\left(1 - e^{-\frac{t}{\tau_C}}\right), \quad I(t)$ Descàrrega: $\overline{VCe^{-\frac{t}{\tau_C}}}, I(t) = -\frac{V}{R}e^{-\frac{t}{\tau_C}}$

 $\tau_C = RC$

Circuits RL

Càrrega: I(t) $\frac{\epsilon}{R_{\rm est}} \left(1 - e^{-\frac{t}{\tau_L}} \right)$ Descàrrega: I(t) $\frac{V}{R_{\rm est}}e^{-\frac{t}{\tau_L}}$ $\tau_L = \frac{L}{R}, R_{\text{est}} = R + r$

2.1 Solenoides

Flux: $\Phi = NBS = \frac{\mu_0 N^2 SI}{I}$ Coeficient d'autoinducció: $L = \frac{\Phi}{I} = \frac{\mu_0 N^2 S}{l}$ $\epsilon_L = -\frac{\mathrm{d}\Phi}{\mathrm{d}t} = -L\frac{\mathrm{d}I}{\mathrm{d}t}$

Corrent alterna

f.e.m. alterna: V(t) $V_0\cos(\omega t + \varphi), T = \frac{2\pi}{\omega}$ $I(t) = \frac{V(t)}{R} = \frac{V_0}{R} \cos(\omega t +$ φ) = $I_0 \cos(\omega t + \varphi)$ Flux: $\Phi = BSN\cos(\omega t +$ θ), B camp magnètic Llei Faraday: $\epsilon(t)$ $V_0\sin(\omega t + \theta_0)$ Voltatge eficaç: $V_{\rm ef} = \frac{V_0}{\sqrt{2}}$

3.1 Circuit amb condensador

V(t)Voltatge: $V_0\cos(\omega t)$ Intensitat: I(t) $-V_0\omega C\sin(\omega t)$ $-I_0\sin(\omega t) = I_0\cos(\omega t + \frac{\pi}{2})$ (desfase de $-\frac{\pi}{2}$) Sigui $V(t) = V_0 e^{i\omega t}$, llavors, $I(t) = V_0 i\omega C e^{i\omega t}$

Podem reproduir la llei d'Ohm $(V = IR_C)$, $R_C = \frac{1}{i\omega C}$.

Reactancia capacitiva:

 $\overline{X_C} = |R_C| = \frac{1}{\omega C},$ $R_C = \frac{X_C}{i} = -iX_C$

3.2 Circuit amb inducció

V(t)Voltatge: $V_0\cos(\omega t)$

Autoinducció a la bobina: $\varepsilon_L = -L \frac{\mathrm{d}I}{\mathrm{d}t}$

Segona llei Kirchhoff:

 $\overline{V(t) + \varepsilon_L} = 0 \implies \overline{I(t)} =$ $\frac{V_0}{I_{\omega}}\sin(\omega t) = I_0\cos(\omega t - \frac{\pi}{2})$ (desfase de $\frac{\pi}{2}$)

Sigui $V(t) = V_0 e^{i\omega t}$, llavors, $I = \frac{V_0}{i\omega L}e^{i\omega t}$. Podem reproduir la llei d'Ohm $V = IR_L, R_L = i\omega L.$

Reactancia inductiva:

 $| \underline{\text{Intensitat eficac}}: I_{\text{ef}} = \frac{I_0}{\sqrt{2}} | X_L = |R_L| = \omega L, | \underline{\text{Potència dissipada}}: P = | \underline{\text{Potència reactiva [VA]}}:$

4 Impedància. Llei d'Ohm

Llei d'Ohm: V = IZImpedància: $\bar{Z} = R +$ Resistència: R $iX \ \ Condensador: -iX_C$ Inducció: iX_L

4.1 Circuit LCR

Angle de fase: $tg(\varphi) =$ $\frac{\overline{X_L - X_C}}{R}, ("I" + \varphi = "U")$ Corrent máxim: $I_0 = \frac{\varepsilon_0}{Z}$

Potència

Potència instantània: P(t) = V(t)I(t) $V_0 I_0 \cos(\omega t) \cos(\omega t - \varphi)$ Potència mitja: $\frac{V_0 I_0}{2\cos(\varphi)}$ $V_{\rm ef}I_{\rm ef}\cos(\varphi)$

5.1 Potència en una resistència

No desfase: $\varphi = 0, V(t) =$ $V_0\cos(\omega t), I(t) = I_0\cos(\omega t)$ Potència instanània: $P(t) = V_0 \cos(\omega t) I_0 \cos(\omega t)$ $=\frac{V_0^2}{R}\cos^2(\omega t)$

Potència mitja: $P = \frac{V_0^2}{2R}$ $\overline{\text{Valors eficaços}}$: $V_{\text{ef}} = \frac{V_0}{\sqrt{2}}$, $I_{\rm ef} = \frac{I_0}{\sqrt{2}}$

 $\frac{V_{\text{ef}}^2}{R} = RI_{\text{ef}}^2$

5.2 Potència en un condensador

<u>Desfase</u>: $\varphi = -\frac{\pi}{2}, V(t) =$ $V_0\cos(\omega t), I(t)$ $I_0\cos(\omega t + \frac{\pi}{2}) = -I_0\sin(\omega t)$ Potència instantània: $\overline{P(t) = -\frac{V_0^2}{X_C}}\sin(\omega t)\cos(\omega t)$ $= -\frac{V_0^2}{2X_C}\sin(2\omega t)$ Potència mitja: 0

5.3 Potència en una inducció

 $V_0\cos(\omega t), I(t)$ $I_0\cos(\omega t - \frac{\pi}{2}) = I_0\sin(\omega t)$ Potència instantània: $P(t) = \frac{V_0^2}{X_L} \sin(\omega t) \cos(\omega t) =$ $\frac{V_0^2}{2X_L}\sin(2\omega t)$ Potencia mitja: 0

5.4 Potència complexa

 $= V_0 e^{i\omega t}, \bar{I}$ $I_0 e^{i\omega t - \varphi}, \bar{Z} = Z e^{i\varphi}$ Potència complexa: $\bar{S} =$ $\frac{\overline{V}\overline{I}^*}{2} = \frac{V_0 e^{i\omega t} I_0 e^{-i(\omega t - \varphi)}}{2}$ $\frac{V_0^2 I_0}{2} e^{i\varphi} = V_{\text{ef}} I_{\text{ef}}^2 (\cos(\varphi) +$ $i \sin(\varphi)$ $\frac{\text{Potència activa [W]:}}{P = Re[\bar{S}] = V_{\text{ef}}I_{\text{ef}}\cos(\varphi)}$

 $Q = Im[\bar{S}] = V_{\rm ef}I_{\rm ef}\sin(\varphi)$ Potència aparent [VA]: $S = |\bar{S}| = V_{\rm ef}I_{\rm ef}$

5.5 Factor de potència

Factor de potència: $\cos(\varphi) = \frac{P}{S}$ Millora del f.d.p. en sèrie: Z = R + iX, connectem $X' = -X. \ (X > 0, \varphi >$ $0) \implies C = \frac{1}{\omega X}, (X <$ $0, \varphi < 0) \implies L = \frac{|X|}{\omega}$ Millora del f.d.p. en paral·lel: <u>Desfase</u>: $\varphi = \frac{\pi}{2}, V(t) = \overline{X' = -\frac{(R^2 + X^2)}{X} = -\frac{Z}{\sin(\varphi)}}$

6 Superposició de senyals. Amplada de banda

Senval sinusoidal: F(t) = $A\sin(2\pi f_1 t + \varphi)$ Espectre: Rang de frequències del senval. Amplada de banda (f_b) : Mida del espectre. Freqüència n-èssima harmònica: $f_n = \frac{n\omega_0}{2\pi} = \frac{n}{T}$ Pols: Un cicle. Velocitat de transmissió $\underline{\text{maxima}}$: $v_{\text{max}} = \frac{1}{T_{\text{bit}}} =$ $\frac{1}{2\pi} = \frac{f_b}{2}, T_{\rm bit} = 2\tau$