Feuille d'exercices sur les suites

Exercice 1:

Soit (u_n) et (v_n) deux suites définies pour tout entier naturel n par $u_n = \frac{7}{2}n + \frac{23}{8}$ et $v_n = 5 \times (\frac{1}{2})^n$.

- 1. (u_n) est-elle une suite arithmétique?
- 2. (v_n) est-elle une suite géométrique?

Exercice 2:

Pour chaque question, il y a une ou plusieurs bonnes réponses. <u>Justifier</u> vos choix.

- **1.** Soit la suite (U_n) définie pour tout entier naturel n par $U_n = \frac{2^n}{n^2}$.

 - **a.** $U_2 = 2$ **b.** $U_2 = 1$ **c.** $U_4 = 4$ **d.** $U_4 = 2$
- **2.** Soit la suite (V_n) définie par $V_0 = 3$ et la relation de récurrence $V_{n+1} = V_n + n$.
 - **a.** $V_1 = 4$ **b.** $V_1 = 3$ **c.** $V_2 = 6$ **d.** $V_2 = 4$

- **3.** La suite (U_n) vérifiant pour tout entier naturel n la relation $\frac{U_{n+1}}{U_n} = \sqrt{2}$ est une suite :
 - **a.** arithmétique
- **b.** géométrique
- c. ni arithmétique, ni géométrique
- **4.** La suite (U_n) définie sur \mathbb{N} est une suite arithmétique de raison 5 et de premier terme -3. Elle vérifie:

- **a.** $U_0 = -3$ $U_0 = U_0 + 30$ **c.** $U_0 = U_0 + 30$ **d.** $U_0 + U_1 + \dots + U_{25} + U_{26} = 1674$ $U_{n+1} = U_n 5$
- 5. La suite (V_n) définie sur \mathbb{N} est une suite géométrique de raison 4 et de premier terme 7. Elle vérifie:

- **a.** $V_0 = 7$ **b.** $V_9 = V_4 \times 20$ **c.** $V_n = 28n$ **d.** $V_0 + V_1 + \dots + V_9 + V_{10} = 2446675$ pour tout $n \in \mathbb{N}$
- **6.** L'algorithme ci-contre permet de calculer le terme u_n d'une suite u définie sur IN .

On considère la suite v définie sur \mathbb{N} par $v_n = u_n - \frac{10}{2}$.

- **a.** $u_0 = 50$ **b.** $u_4 = 6.25$
- c. Pour tout entier n, $u_{n+1} = -0.5n + 5$
- d. La suite u est arithmétique.

- Variables:
 - n, i : entiers ;
 - u : réel ;
- Début
 - Entrer n;
 - $50 \rightarrow u$

Pour i allant de 1 à n faire $-0.5u + 5 \rightarrow u$

Fin pour;

Afficher u:

Fin

Exercice 3:

Un étudiant loue une chambre pour 3 ans. On lui propose deux types de bail.

<u>ler contrat</u>: Un loyer de 200 € pour le premier mois puis une augmentation de 5 € par mois jusqu'à la fin du bail.

2eme contrat : Un loyer de 200 € pour le premier mois puis une augmentation de 2% par mois jusqu'à la fin du bail.

On appelle U_n le prix du loyer le n-ième mois avec le premier contrat et V_n le prix du loyer le n-ième mois avec le deuxième contrat. On a donc $U_1 = 200$ et $V_1 = 200$.

- 1. Calculer U_2 , U_3 , V_2 et V_3 .
- 2. a. Quelle est la nature de la suite U_n ? De la suite V_n ? Justifier.
 - b. Exprimer U_n en fonction de n.
 - c. Exprimer V_n en fonction de n.
 - d. Calculer, pour chacun des 2 contrats, le loyer du dernier mois (c'est à dire le 36ème mois)
- 3. Quel est le contrat globalement le plus avantageux pour un bail de 3 ans ? Justifier à l'aide de calculs.

Exercice 4:

Soit (u_n) une suite définie sur \mathbb{N} par $u_0 = -3$, et $u_{n+1} = 0.5 u_n + 5$.

Soit (v_n) la suite définie sur \mathbb{N} par $v_n = u_n - 10$

- 1. Démontrer que la suite (v_n) est géométrique, vous préciserez sa raison et son premier terme.
- 2. En déduire une expression de v_n en fonction de n puis de u_n en fonction de n.

Exercices 83 et 85 page 38

Exercice 3:

Un étudiant loue une chambre pour 3 ans. On lui propose deux types de bail.

<u>ler contrat</u>: Un loyer de 200 € pour le premier mois puis une augmentation de 5 € par mois jusqu'à la fin du bail.

<u>2eme contrat</u>: Un loyer de 200 € pour le premier mois puis une augmentation de 2% par mois jusqu'à la fin du bail.

On appelle U_n le prix du loyer le n-ième mois avec le premier contrat et V_n le prix du loyer le n-ième mois avec le deuxième contrat. On a donc $U_1 = 200$ et $V_1 = 200$.

- 4. Calculer U_2 , U_3 , V_2 et V_3 .
- 5. a. Quelle est la nature de la suite U_n ? De la suite V_n ? Justifier.
 - b. Exprimer U_n en fonction de n.
 - c. Exprimer V_n en fonction de n.
 - d. Calculer, pour chacun des 2 contrats, le loyer du dernier mois (c'est à dire le 36ème mois)
- 6. Quel est le contrat globalement le plus avantageux pour un bail de 3 ans ? Justifier à l'aide de calculs.

Exercice 4:

Soit (u_n) une suite définie sur \mathbb{N} par $u_0 = -3$, et $u_{n+1} = 0.5 u_n + 5$.

Soit (v_n) la suite définie sur \mathbb{N} par $v_n = u_n - 10$

- 1. Démontrer que la suite (v_n) est géométrique, vous préciserez sa raison et son premier terme.
- 2. En déduire une expression de v_n en fonction de n puis de u_n en fonction de n.

Exercices 83 et 85 page 38