

RESISTÊNCIA DE UM RESISTOR EM FUNÇÃO DO COMPRIMENTO

1. Construa o gráfico da "Resistência elétrica x Comprimento do resistor".

2. O que é possível observar com relação ao comportamento da resistência elétrica? Explique.

A resistência elétrica tende a aumentar o seu valor conforme o comprimento do resistor também aumenta.

RESISTÊNCIA ELÉTRICA DE UM RESISTOR EM FUNÇÃO DA ÁREA

 Construa o gráfico da "Resistência elétrica x Inverso da área de seção reta do resistor".

resistência elétrica x o inverso da área de seção reta do resistor

2. Qual o comportamento da resistência elétrica?

É diretamente proporcional ao comprimento do condutor e inversamente proporcional a área de secção.

3. Com base nos seus conhecimentos, é correto afirmar que "A resistência de um condutor depende da sua geometria (comprimento e área)"?

Sim, a resistência depende da geometria do condutor e do material de que ele é feito. A resistência é diretamente proporcional a área de secção.

4. Calcule a resistividade de cada resistor.

Resistor 1 = $6,44 \times 10-8$ Resistor 2 = $1,02 \times 10-6$

Resistor $3 = 1,34 \times 10-6$

5. Qual dos resistores possui maior resistividade? Por quê?

Para o cálculo da resistividade utilize a fórmula: $\rho = R \frac{A}{L}$

Resistor 1. Pois apresenta a maior resistividade.

CORRENTE ELÉTRICA DE UM RESISTOR

1. Construa o gráfico da "Tensão elétrica x Corrente elétrica", caso precise retorne ao roteiro teórico para relembrar a relação entre Tensão elétrica ou corrente elétrica.

2. Depois da realização do experimento o que é possível observar com relação ao comportamento da corrente elétrica? Explique.

De acordo com o gráfico, podemos observar que conforme atensão aumenta, a corrente também aumenta o seu valor.

3. É possível realizar as medições de corrente elétrica em todos os resistores? Caso não, por quê?

Não. Quando tentamos conectar a ponta do switch no A1 aparece a seguinte mensagem: Esta ligação causará curto circuito na fonte

4. Qual dos resistores apresentou maior valor para a corrente elétrica? Tente elaborar uma justificativa, abordado o comportamento da resistência elétrica como a passagem da corrente elétrica.

Resistor 03 = 0,76 A e possui menor resistencia elétrica

FASE 1 – ASSOCIAÇÃO DE RESISTORES EM SÉRIE

 Preencha a tabela 1 com os resultados obtidos durante o passo 3 (Medindo a tensão).

Lâmpada	Tensão (V)		
3	3		
5	2,96		
6	3,05		
7	2,93		

Tabela 1 – Dados experimentais de tensão com quatro resistores em série

2. Preencha a tabela 2 com os resultados obtidos durante o passo 3 (Medindo a tensão) após a remoção da lâmpada do borne 6.

Lâmpada	Tensão (V)		
3	3,96		
5	3,81		
7	3,88		

Tabela 2 – Dados experimentais de tensão com três resistores em série

3. Com base em suas observações, comente a veracidade da seguinte afirmação: "Em uma associação em série a soma das tensões elétricas sobre cada componente (lâmpada) é igual a tensão elétrica total atuante no circuito."

A associação em série é a soma das tensões elétricas. No experimento realizamos a associação de 4 cargas e 3 cargas e somamos as tensões de cada, assim obtendo o mesmo valor ou aproximado, sendo obtido a tensão total da fonte de tensão.

4. Caso um circuito possuísse 20 lâmpadas em série e uma das lâmpadas "queimasse", o que aconteceria com as demais lâmpadas do circuito? Justifique a sua resposta.

Acarretaria o desligamento de todas as lâmpadas, a falta de um acarreta na perda ou abertura no circuito podendo ocasionar uma queima das demais lâmpadas por sobretensão.

5. Preencha a tabela 3 com os resultados obtidos durante o passo 4 (Medindo a corrente elétrica).

Lâmpada	Corrente (A)		
3	0,15		
5	0,15		
6	0,16		
7	0,14		

Tabela 3 – Dados experimentais de corrente com resistores em série

6. Como é o comportamento da corrente elétrica no circuito que você montou? Explique.

As correntes no circuito possui o mesmo valor em qualquer ponto

FASE 2 – ASSOCIAIÃO DE RESISTORES EM PARALELO

 Preencha a tabela 4 com os resultados obtidos durante o passo 3 (Medindo a tensão).

Lâmpada	Corrente (A)		
3	0,15		
5	0,15		
6	0,16		
7	0,14		

Tabela 4 – Dados experimentais de tensão com resistores em paralelo

 Com base em suas medições, comente a veracidade da seguinte afirmação: "Em uma associação em paralelo os componentes do circuito ficam submetidos a uma mesma tensão elétrica".

Em cargas em paralelo o circuito tem a mesma associação, as tensões são idênticas, variando apenas as correntes

3. Com base em suas observações, comente a veracidade da seguinte afirmação: "Em uma associação em paralelo, a retirada de um dos componentes do circuito (lâmpadas) não interrompe o funcionamento dos demais componentes."

Retirando uma lâmpada não causa perda de energia nos outros componentes, ligando em circuito em paralelo, a continuidade dos acendimentos dos componentes se dá pelo fato de ter o positivo e negativoligado na fonte.

FASE 3 – ASSOCIAIÃO MISTA DE RESISTORES

 Em relação a luminosidade observada pelas lâmpadas ao final do passo 1 (montado o experimento), foi possível observar alguma diferença entre elas? Em caso afirmativo, qual foi a diferença? Justifique.

Observei que as lâmpadas 2, 3 e 4 possuiram um luminosidade menor que a lâmpada 5.No circuito misto ocorre na associação em série uma queda na tensão para lâmpada devido a resistencia dos dois componentes serem diferentes.

Preencha a tabela 5 com os resultados obtidos durante o passo 3 (Medindo a tensão).

Lâmpada	Tensão (V)		
2	3,03		
3	3,02		
4	3,03		
5	8,92		

Tabela 5 – Dados experimentais de tensão com associação mista de resistores

3. Qual foi a tensão medida entre os terminais 2A e 5B? Utilizando seus conhecimentos sobre circuitos elétricos e associação de resistores, explique como a tensão fornecida pela fonte é dividida entre as lâmpadas do circuito montado no passo 1.

Foi medido uma tensão de 11,94v, A Lei da <u>Tensão</u> de Kirchoff é sua segunda lei da análise de circuitos e afirma que a tensão se dissipa em torno de uma espira soma zero, ou seja, geração de potencial é igual a potencial.

Anote na tabela apresentada abaixo os valores da corrente elétrica apresentado pelo multímetro ajustado para medir a corrente elétrica que passa pelo led.

Medição	Tensão na fonte (V)	Tensão no multímetro (V)	Corrente elétrica (A)	
1	0	0	0	
2	0,2	0,2	0	
3	0,4	0,4	0	
4	0,6	0,6	0	
5	0,8	0,8	0	
6	1	1	0	
7	1,2	1,2	0	
8	1,4	1,4	0	
9	1,6	1,6	0	
10	1,8	1,8	0	
11	2	2	0	
12	2,2	2,2	0,49 * 10- ³	
13	2,4	2,4	1,09 * 10-3	

Utilizando os dados obtidos no experimento, construa a curva característica do led (tensão apresentada pelo multímetro x corrente elétrica).

Em seguida, responda os questionamentos a seguir:

1. A partir de que valor de corrente elétrica o led acendeu? Sua intensidade luminosa aumentou ao com o aumento da corrente elétrica? Explique.

O LED só acendeu a partir de 2V. Sua intensidade aumenta conforme ocorre aumentaa tensão, pois também aumenta a corrente, consequentemente aumenta aluminosidade do LED.

2. Qual a relação observada na curva característica do led com relação à tensão e corrente elétrica?

Após o valor de 2V é uma relação proporcional

Modicão	Resistência do	Tensão do	Tensão no	
Medição	potenciômetro (Ω)	resistor R2 (V)	potenciômetro (V)	
1	8	1,31	1,05	
2	16	1,09	1,75	
3	24	0,93	2,22	
4	32	0,81	2,58	
5	40	0,71	2,85	
6	48	0,65	3,07	
7	56	0,58	3,27	
8	64	0,53	3,4	
9	72	0,49	3,52	
10	80	0,45	3,64	
11	88	0,42	3,72	
12	96	0,39	3,82	

Tabela 1 – Dados experimentais da tensão

- Preencha a tabela 1 de acordo com os dados experimentais obtidos durante a realização do ensaio.
- 2. Qual o valor a tensão aplicada pela fonte? Qual o valor da resistência?

Tensão aplicada pela fonte: 5V Resistência do potenciometro: 100Ω

Para o cálculo da corrente utilize a equação abaixo.

$$V_f = R_p * i$$

Onde:

V_f = Tensão da fonte

R_P = Resistência do potenciômetro

i = Corrente elétrica do circuito

Os valores de corrente elétrica encontrados serão baseados na resistência do potenciômetro, no entanto, por se tratar de um circuito em série, a corrente que passa pelo potenciômetro é igual a corrente que circula pelos demais resistores.

$$i = \frac{V_f}{R_p} \rightarrow i = \frac{5V}{100\Omega} \rightarrow i = 0.05A$$

3. Preencha a tabela 2 com a corrente que percorre o circuito em cada medição.

Medição	Resistência do potenciômetro (Ω)	Corrente do circuito (A)	Resistência R2 (Ω)	$R_{eq} = (R_p + R_2)$	Eficiência (η)	Potência dissipada no circuito
1	8	0,05	10	18	0,473684	0,559423
2	16	0,05	10	26	0,55217	0,560216
3	24	0,05	10	34	0,62963	0,54184
4	32	0,05	10	42	0,677419	0,523623
5	40	0,05	10	50	0,714286	0,5033473
6	48	0,05	10	58	0,74359	0,488602
7	56	0,05	10	66	0,767442	0,474585
8	64	0,05	10	74	0,787234	0,458715
9	72	0,05	10	82	0,8033922	0,446099
10	80	0,05	10	90	0,818182	0,43587
11	88	0,05	10	98	0,830508	0,424895
12	96	0,05	10	106	0,84127	0,417214

Tabela 2 – Dados experimentais do experimento

4. Com base nos valores obtidos de resistência dos resistores, determine a resistência equivalente (R_{eq}) para cada medição feita no circuito e anote na tabela 2.

Para encontrar a potência dissipada do circuito, você utilizará as resistências apresentadas pelos resistores e potenciômetros, associando-as com os seus valores de tensão.

Utilize a equação abaixo para encontrar a potência dissipada no circuito.

$$Pot_{Dissipada} = \frac{V_i^2}{R_i} + \frac{V_2^2}{R_2} + \frac{V_p^2}{R_p}$$

Onde:

 V_i = Tensão da resistência interna da fonte

R_i = Resistência interna da fonte

 V_2 = Tensão no resistor R2

R₂ = Resistência do resistor R2

 V_p = Tensão no potenciômetro

R_P = Resistência do potenciômetro

5. Anote os valores da potência dissipada na tabela 2.

Encontre os valores para a eficiência da transferência de potência utilizando a equação abaixo.

$$\eta = \frac{R_{eq}}{R_{eq} + R_1}$$

Onde:

 η = Eficiência na transferência de potência

R_{eq} = Resistência equivalente do circuito.

 R_1 = Resistência interna na fonte

- 6. Anote os valores da eficiência na tabela 2.
- 7. Construa o gráfico da potência dissipada em função da eficiência. Para que valor de eficiência foi observada a menor potência dissipada? Pode-se afirmar que esse ponto é o de maior transferência de potência?

A meior potência dissipada foi quando houver a menor eficiência. Sim.

8. Analisando a resistência interna e externa. Quando transferência de potência apresentará seu valor máximo? Justifique.

Quando há menor eficiência, consequentemente, quando há menor resistência

 Como o resistor R1 atua no circuito? Se não fosse colocado este resistor no circuito o valor encontrado para máxima transferência de potência seria o mesmo? Justifique

R1 é o resistor que está próximo a fonte, com a resistência do circuito diminui apotência, haveria sim diferença