DESARROLLO DE VIDEOJUEGOS Y REALIDAD VIRTUAL CON UNITY 3D

Tema 8: Iluminación y efectos gráficos

- Tipos de fuentes de luz
 - Panel Window-Lighting.
 - La luz ambiental (mínima).
 - Provocada por el skybox.
 - Provocada por el Environment Lighting.
 - Tipos de luces:
 - Directional Light (sólo afecta rotación).
 - Point Light (sólo afecta posición).
 - Spot Light (afecta posición y rotación).
 - Area Light (sólo baked).
 - Cookies. Troquel sobre la sombra.
 - Draw Halo. Dibuja un halo.
 - Flare. Reflejo de la luz en la lente.
 - Render Mode. Prioridad de la iluminación.
 - Culling Mask. Indicar qué capas iluminar.

- Sombreado.
 - Se configura desde la fuente de luz y desde los objetos que lo reciban.
 - Desde la fuente de luz:
 - Soft Shadows. Más calidad, menos eficiencia.
 - Hard Shadows. Menos calidad, más eficiencia.
 - No Shadows.
 - Strength: intensidad.
 - Resolution: determina la calidad. La opción "Use Quality Settings" obtiene la configuración de "Edit->Project Settings->Quality".
 - Bias, Normal Bias y Near Plane. Ajustes de la sombra. Permite eliminar ruido generado por el sombreado.
 - Desde los objetos.
 - En el componente Mesh Renderer:
 - Cast Shadows (proyectar sombras).
 - Recieve Shadows (recibir sombras)

- Luces y modos de renderizado
 - Realtime (luz y escena)
 - Mixed (luz)
 - Baked (luz y escena)

 Luces y modos de renderizado: luz indirecta (sólo se muestran los objetos estáticos)

- Luces y modos de renderizado: luz indirecta.
 - Intensity multiplier (0 vs 1 en Directional Light)

- Ventana Lighting. Global Ilumination.
 - Permite configurar la iluminación global (GI)
 - Pestaña Scene. Efectos de iluminación generales de la escena.
 - Pestaña Global Maps. Muestra los archivos de los mapas de luz.
 - Pestaña Object Mpas. Muestra los mapas de luz y las máscaras de sombra para el gameobject seleccionado.

- Ventana Lighting. Pestaña Scene.
 - Environment (luz ambiental o luz difusa). Permite configurar el skybox, la iluminación ambiental y los reflejos.
 - Realtime Lighting.
 - Calcula la iluminación global en tiempo real (afecta a las fuentes de luz identificadas como tiempo real y a su efecto sobre objetos estáticos). Muy realista pero implica mucho consumo.
 - Mixed Lighting.
 - Precalcula la iluminación en tiempo de ejecución. La opción "Baked indirect" almacena la luz indirecta.
 - Lightmapping Settings.
 - Configuración de la iluminación.
 - Bajar "Lightmap resolution" y "Lighmap size" para agilizar los cálculos.
 - Directional Mode: "Directional" más realista (tienen en cuenta los mapas de normales) y "Non-directional" más económicos (considera que todo la iluminación es plana y difusa).
 - Lightmap parameter: agilizar los cálculos utilizando una resolución "low" en desarrollo".
 - Other settings. Niebla, halos, cookies...

- Lightmap Settings:
 - Permite configurar el tamaño y la resolución del Lightmap.

▶Debug Settings		
☐ Auto Generate	Generate Lighting	1.
1 Directional Lightmap: 512x512px	0.7 MB	

- Lightmap Settings (ver Global maps después de generar):
 - Indirect Resolution (indirect).
 - Lightmap Resolution (baked lightmap).
 - Lightmap Padding. Puede provocar líneas en las sombras.
 - Lightmap Size. Tamaño del lightmap.
 - Compress Lightmaps. Tamaño del mapa.
 - Ambien Occlusion. Definición mayor de la sombra.
 - Final Gather. Multiplica los rebotes de luz. Utilizar al final del proceso de iluminación. Elimina ruidos, limpia sombras...
 - Directional Mode.
 - Non-Directional. Un solo mapa con dos texturas.
 - Directional. Genera dos mapas. Consume más recursos.
 - Indirect Intensity. Intensidad de luz indirecta (incrementar la luz).

• Lightmap:

• Ejercicio: crear una sala sci-fi e iluminar.

- Sondas de luz
 - Permiten iluminar de forma económica objetos dinámicos con luces estáticas.
 - Muestrean puntos de luz y aplican la información en tiempo de ejecución.

- Sondas de luz
 - Permiten iluminar de forma económica objetos dinámicos con luces estáticas.

- Sondas de reflejos (reflection probes)
 - Permite generar las reflexiones de la imagen en los objetos.
 - Refleja lo que está delimitado por caja de reflexión.
 - Permite iluminar la escena mediante reflexiones.
 - El mapa generado por el probe son utilizados por el mapa de reflexión de los objetos (debe ser un objeto reflectivo) al pasar cerca.

- Efectos de postprocesado.
 - Consiste en aplicar filtros al buffer de la imagen de la cámara antes de proyectar la imagen.
 - Proporciona efectos de calidad.
 - (Unity 2018+) Instalar desde el Package Manager.

- Efectos de postprocesado.
- Agregar a la cámara el componente Post Process Layer, marcando "PostProcessing" como Layer.
- Configurar el modo de Anti-aliasing.

(Script)	[] ;; ≎,	
↓Camera (Transform)	⊙ This	
PostProcessing	PostProcessing ‡	
No Anti-aliasing		
☑		
	↓Camera (Transform) PostProcessing	

- Efectos de postprocesado.
- Agregar a un GameObject el componente "Post Process Volume" y seleccionar "PostProcessing" como Layer.
- Marcar el parámetro "Is Global".
- Asignar o crear un "Profile".
- Configurar los efectos.

Efectos de postprocesado.

- Efectos de postprocesado.
 - Configurar el profile.
 - Ambient Occlusion. Sombreado de la escena.
 - Auto Exposure. Cálculo de la luminancia y configuración de la adaptación del ojo a los cambios en la iluminación.
 - Bloom. Provoca que las fuentes de luz se muestren más brillantes.
 - Cromatic aberration. Simula un defecto de las lentes que provoca que los colores con converjan correctamente.
 - Color Grading. Permite alterar el color de la escena.
 - Depth of view. Profundidad de campo.
 - Grain. Granularidad de la cámara.
 - Lens distorsion. Distorsiones de la lente.
 - Motion blur. Desenfoque de movimiento.
 - Screen Space Reflection. Reflexiones de la escena (por ejemplo para crear efectos de charcos).
 - Vignete. Viñeta.
 - Post Processing Layer de la cámara.
 - Antialiasing. Reduce el aliasing.

- Efectos de postprocesado.
 - Activación o desactivación desde código.
 - Ejemplo: Desactivación del efecto AmbientOcclusion

```
using UnityEngine;
using UnityEngine.Rendering.PostProcessing;

public class Vignete : MonoBehaviour
{
    PostProcessVolume ppVolume;
    AmbientOcclusion ambientOcclussionLayer;
    void Start()
    {
            ppVolume = gameObject.GetComponent<PostProcessVolume>();
            ppVolume.profile.TryGetSettings(out ambientOcclussionLayer);
            ambientOcclussionLayer.enabled.value = false;
    }
}
```

- Efectos de postprocesado.
 - Modificación de las propiedades de los efectos
 - Ejemplo: viñeta de daño

- Efectos de postprocesado.
 - Modificación de las propiedades de los efectos
 - Ejemplo: viñeta de daño

- Efectos de postprocesado.
 - Modificación de las propiedades de los efectos
 - Ejemplo: viñeta de daño

```
using UnityEngine;
using UnityEngine.Rendering.PostProcessing;

public class Vignete : MonoBehaviour
{
    PostProcessVolume ppVolume;
    Vignette vignetteLayer;
    void Start()
    {
        ppVolume = gameObject.GetComponent<PostProcessVolume>();
        ppVolume.profile.TryGetSettings(out vignetteLayer);
    }
    void Update()
    {
        vignetteLayer.opacity.value = vignetteLayer.opacity.value + Time.deltaTime * 0.1f;
    }
}
```