Topologie et calcul différentiel

Complétude

Question 1/6

Prolongement de fonctions à image dans un espace complet

Réponse 1/6

Si $P \subset X$, Y est complet et $f: P \to Y$ est une fonction uniformément continue sur P alors f se prolonge en une fonction $\widetilde{f}: \overline{P} \to Y$ uniformément continue

Question 2/6

Completude de l'espace des fonctions continues

Réponse 2/6

Si (X, d) est un espace métrique et E l'espace des fonctions continues bornées sur X à valeurs dans \mathbb{R} , muni de la norme $||f||_X = \sup_{x \in X} (|f(x)|)$ est complet

Question 3/6

Théorème du point fixe de Banach

Réponse 3/6

Si (E, d) est un espace métrique complet et $f: E \to E$ est une fonction λ -contractante, $\lambda < 1$ alors f admet un unique point fixe qui est la limite des suites définies par $x_0 \in E$ et $x_{n+1} = f(x_n)$

Question 4/6

Complété d'un espace métrique

Réponse 4/6

Si (X, d) est un espace métrique alors in existe un espace complet (\widehat{X}, d) (unique à isométrie près) et une isométrie $i: X \to \widehat{X}$ tels que i(X) est dense dans \widehat{X}

Toute fonction $f: X \to Y$ uniformément continue se prolonge alorsen une unique fonction uniformément continue $\widehat{f}: \widehat{X} \to Y$

Question 5/6

(E,d) est complet

Réponse 5/6

Toute suite de Cauchy de E coverge

Question 6/6

Espace de Banach

Réponse 6/6

Espace vectoriel normé complet