Sujet 1

I | Oscillateur amorti RLC

Considérons le circuit représenté ci-contre, où le condensateur est initialement déchargé. Le générateur fournit un échelon de tension, en passant de 0 à E à t=0.

- 1) Établir l'équation différentielle vérifiée par le courant i.
- 2) L'écrire sous forme canonique en introduisant deux grandeurs ω_0 et Q que l'on interprétera.
- 3) Expliquer qualitativement l'expression du facteur de qualité.
- 4) Donner la valeur du courant i et de sa dérivée à l'instant initial.
- 5) En supposant Q=2, donner l'expression de i(t) et tracer son allure.

Sujet 2

I Régime transitoire

On considère le circuit ci-contre constitué d'une source idéale de tension continue de force électromotrice E, d'un condensateur de capacité C, d'une bobine d'inductance L, d'une résistance R et d'un interrupteur K. On suppose que l'interrupteur K est ouvert depuis longtemps quand on le ferme à l'instant t=0. On suppose que le condensateur est initialement chargé à la tension $u_c=E$.

- 1) Faire le circuit équivalent à l'instant $t = 0^-$. Exprimer $i_1(0^-)$ en fonction de E et R.
- 2) Exprimer $i_1(0^+)$ et $u(0^+)$ en fonction de E et R.
- 3) Faire le circuit équivalent quand le régime permanent est atteint pour $t \to +\infty$. En déduire les expressions de $i(+\infty)$ et $i_1(+\infty)$.
- 4) Montrer que l'équation différentielle vérifiée par $i_1(t)$ pour $t \ge 0$ peut se mettre sous la forme :

$$\frac{d^2 i_1(t)}{dt^2} + \frac{\omega_0}{Q} \frac{d i_1(t)}{dt} + \omega_0^2 i_1(t) = \omega_0^2 A$$

Exprimer ω_0 , Q et A en fonction de E, R, L et C.

- 5) On suppose que le régime transitoire est de type pseudo-périodique. Donner alors l'inégalité vérifiée par R. On fera intervenir une résistance critique R_c que l'on exprimera en fonction de L et C.
- 6) Exprimer la pseudo-pulsation ω en fonction de ω_0 et Q.
- 7) Donner l'expression de $i_1(t)$ pour $t \geq 0$ en fonction de E, R, L, C, ω et t.
- 8) Tracer l'évolution de i_1 en fonction du temps.
- 9) Exprimer la variation d'énergie emmagasinée \mathcal{E}_L par la bobine entre l'instant initial t=0 et le régime permanent correspondant à $t \to +\infty$. Commenter ce résultat.
- 10) Exprimer la variation d'énergie emmagasinée \mathcal{E}_C par le condensateur entre l'instant initial t=0 et le régime permanent correspondant à $t \to +\infty$. Commenter ce résultat.
- 11) Exprimer la puissance reçue \mathcal{P}_R par la résistance R en régime permanent.

Sujet 3

On réalise le montage suivant. On ferme l'interrupteur à l'instant $t=0,\,C$ traversé par i' étant initialement chargé et C traversé par i étant initialement déchargé.

On pose $\tau = RC$. Données : $R = 10 \,\mathrm{k}\Omega$ et $C = 0.1 \,\mathrm{\mu F}$.

- 1) À partir de considérations physiques, préciser les valeurs de la tension v lorsque t=0 et $t=\infty$.
- 2) Établir l'équation différentielle du second ordre dont la tension v est solution.
- 3) En déduire l'expression de v(t) sans chercher à déterminer les constantes d'intégration.
- 4) Donner l'allure du graphe correspondant à v(t).