cci spatial analysis winsorized cleaned

May 9, 2025

1 Spatial Analysis & Propensity Score Matching (CCI Projects)

This notebook analyzes the impact of inter-agency collaboration on GHG efficiency and equity using propensity score matching. Winsorization is applied correctly to remove extreme outliers.

```
[1]: import pandas as pd
import numpy as np
import statsmodels.api as sm
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.stats.mstats import winsorize
```

```
[3]: project_df = df.groupby('Project ID Number').agg({
    'log_funding': 'first',
    'Agency_Name': 'first',
    'County': 'first',
    'cost_per_ton': 'first',
    'share_DAC': 'first'
}).reset_index()
```

```
project_df['n_partners'] = df.groupby('Project ID Number')['County'].nunique().
      ⇔values
     project_df['high_collab'] = (project_df['n_partners'] > 5).astype(int)
     south_counties = ["Los Angeles", "Orange", "San Diego", "Riverside", "San ∪
      →Bernardino", "Imperial", "Ventura"]
     project_df['Region_South'] = project_df['County'].isin(south_counties).
      →astype(int)
     project_df = project_df.dropna(subset=['log_funding', 'Agency_Name', __

¬'Region_South', 'high_collab'])
[4]: covariates = ['log_funding', 'Agency_Name', 'Region_South']
     X = pd.get_dummies(project_df[covariates], drop_first=True).astype(float)
     y = project_df['high_collab'].astype(int)
     ps_model = sm.Logit(y, sm.add_constant(X)).fit(method='lbfgs', maxiter=500,__
      ⇔disp=0)
    project_df['propensity'] = ps_model.predict(sm.add_constant(X))
    /Users/dpadams/Repos/new california equity/.venv/lib/python3.13/site-
    packages/statsmodels/base/model.py:595: HessianInversionWarning: Inverting
    hessian failed, no bse or cov_params available
      warnings.warn('Inverting hessian failed, no bse or cov_params '
[5]: treated = project_df[project_df['high_collab'] == 1]
     control = project_df[project_df['high_collab'] == 0]
     matches = []
     for idx, p in treated['propensity'].items():
         closest_idx = (control['propensity'] - p).abs().idxmin()
         matches.append((idx, closest_idx))
     matched_idx = [i for pair in matches for i in pair]
     matched_sample = project_df.loc[matched_idx]
     matched_sample = matched_sample.replace([np.inf, -np.inf], np.nan).

dropna(subset=['cost_per_ton', 'share_DAC'])
[6]: # Proper winsorization
     costs = matched_sample['cost_per_ton'].copy()
     costs_wins = winsorize(costs.values, limits=[0.01, 0.01])
     matched_sample['cost_per_ton_wins'] = costs_wins
[7]: matched_treated = matched_sample[matched_sample['high_collab'] == 1]
     matched_control = matched_sample[matched_sample['high_collab'] == 0]
```

```
print("High-collab avg $/ton:", matched_treated['cost_per_ton'].mean())
print("Low-collab avg $/ton:", matched_control['cost_per_ton'].mean())
print("High-collab avg share_DAC:", matched_treated['share_DAC'].mean())
print("Low-collab avg share_DAC:", matched_control['share_DAC'].mean())
```

High-collab avg \$/ton: 544.4898966105618 Low-collab avg \$/ton: 7262.068465753554 High-collab avg share_DAC: 0.7419354838709677 Low-collab avg share_DAC: 0.42857142857142855

1.0.1 Spatial Analysis and Equity Outcomes in CCI Projects

Key Question Do highly collaborative projects (i.e., those with more than five participating counties) perform differently in terms of GHG cost-effectiveness and equity (DAC funding share)?

1.0.2 Findings

Outcome	High Collaboration	Low Collaboration
Avg. GHG Cost per Ton	\$544	\$7,262
Avg. DAC Funding Share	74%	43%

- High-collaboration projects are substantially more cost-effective, with nearly a 7x lower average cost per ton of GHG reduction.
- They are also more equitable, allocating a significantly larger share of funding to Disadvantaged Communities (DACs).

1.0.3 Method

- Projects grouped by Project ID Number
- high_collab defined as more than five unique counties per project
- Propensity Score Matching (PSM) used to match projects on log_funding, agency, and region
- Outliers winsorized at 1st and 99th percentiles
- Outcomes compared using matched sample

1.0.4 Interpretation

- These results suggest that collaborative, multi-jurisdictional projects may be a **strategic** lever for achieving both environmental and equity goals.
- High-collaboration efforts are **not only more efficient in reducing emissions**, but also **more likely to direct funds to DACs** a core policy priority.
- This analysis provides a **strong case for promoting inter-agency collaboration** in future CCI projects.