Connecting the Dots: A Knowledgeable Path Generator for Commonsense Question Answering

Peifeng Wang Nanyun Peng Filip Illievski Pedro Szekely Xiang Ren

Department of Computer Science, University of Southern California Department of Computer Science, University of California, Los Angeles Information Sciences Institute, University of Southern California

Noah Lee noahlee357@korea.ac.kr Data Intelligence Lab, Korea University 2020 01. 15

EMNLP'20

How can we empower the Knowledge Graphs(KG) for Commonsense QA?

- Commonsense reasoning vs Spurious correlation
- Uninterpretable

- Sparsity Problem
- Contextualization Problem

Language Modeling

Knowledge Graphs

Pretrained LM to enhance generalizability & sparsity

Structured knowledge

Knowledgeable Path Generator (PG) Q: In what geological feature will you find fungus growing?

A: shower stall B: toenails C: basement D: forest E: cave

- 1) Proposes a method to generate task-relevant knowledge paths that may not exist in the original KG
- 2) Design and implement a QA framework with the **Knowledgeable** Path Generator(PG)
- 3) Demonstrates **effectiveness** of the method by extensive experiments on **two benchmark datasets** (CQA & OBQA)

KG-augmented QA Framework

KG-augmented QA Framework: Context Module

KG-augmented QA Framework: Knowledge Module

KG-augmented QA Framework: Knowledge Module – Path Generator

KG-augmented QA Framework: Knowledge Module – Path Generator

KG-augmented QA Framework: Knowledge Module

KG-augmented QA Framework: Reasoning Module

Datasets / Code / Settings

[Dataset]

Commonsense QA [Test set unavailable]

https://www.tau-nlp.org/commonsenseqa

Openbook QA

https://leaderboard.allenai.org/open_book_qa/submissions/public

[Code]

https://github.com/wangpf3/Commonsense-Path-Generator

Datasets / Code / Settings

[Entity Recognition]

Conceptnet(Speer et al., 2017)

[Path Sampling]

- Hops: 1~3
- Global Sampling: 2.8 mil paths
- Local Sampling: 133k paths(CQA)105k paths(OBQA)
- Split: 90:5:5 (train/dev/test)

[Path Generator Training]

- Fine-tune GPT-2
- LR: 1e-5
- Batch size: 64
- Early Stopping : 2 epochs of consecutive loss

(Context Module Settings in Appendix)

06 Baselines

Fine-tuned LM (w/o KG)

Static KG Models

- 1) Relational Network (RN)
- 2) Relational Graph Convolutional Network (RGCN)
- 3) GconAttn

Link Prediction Model – 1 hop path embedding

OBQA Test Accuracy

Methods	RoBERTa-large	AristoRoBERTa
Fine-tuned LMs (w/o KG)	64.80 (±2.37)	78.40 (±1.64)
+ RN	65.20 (±1.18)	75.35 (±1.39)
+ RGCN	62.45 (±1.57)	$74.60 (\pm 2.53)$
+ GconAtten	64.75 (±1.48)	71.80 (±1.21)
+ Link Prediction	66.30 (±0.48)	77.25 (±1.11)
+ PG-Local	70.05 (±1.33)	79.80 (±1.45)
+ PG-Global	68.40 (±0.31)	$80.05(\pm 0.68)$
+ PG-Full	71.20 (±0.96)	79.15 (±0.78)

Commonsense QA Test Accuracy

Methods	Single	Ensemble
RoBERTa (Liu et al., 2019)	72.1	72.5
RoBERTa+FreeLB (Zhu et al., 2019)	-	73.1
RoBERTa+HyKAS (Ma et al., 2019)	73.2	-
XLNet+DREAM	73.3	-
RoBERTa+KE	-	73.3
RoBERTa+KEDGN	-	74.4
XLNet+GraphReason (Lv et al., 2019)	75.3	-
Albert (Lan et al., 2019)	-	76.5
UnifiedOA* (Khashabi et al., 2020)	79.1	-
Albert+PG-Full	75.6	<u>78.2</u>

07 Experiments

Commonsense QA Test Accuracy with varying proportion of train data

Methods	BERT-large			RoBERTa-large		
	20% Train	60% Train	100% Train	20% Train	60% Train	100% Train
Fine-tuned LM (w/o KG)	46.25 (±0.63)	52.30 (±0.16)	55.39 (±0.40)	55.28 (±0.35)	65.56 (±0.76)	68.69 (±0.56)
+ RN + RGCN + GconAttn + Link Prediction	45.12 (±0.69) 48.67 (±0.28) 47.95 (±0.11) 47.10 (±0.79)	54.23 (±0.28) 54.71 (±0.37) 54.96 (±0.69) 53.96 (±0.56)	58.92 (±0.14) 57.13 (±0.36) 56.94 (±0.77) 56.02 (±0.55)	61.32 (±0.68) 58.58 (±0.17) 57.53 (±0.31) 60.84 (±1.36)	66.16 (±0.28) 68.33 (±0.85) 68.09 (±0.63) 66.29 (±0.29)	69.59 (±3.80) 68.41 (±0.66) 69.88 (±0.47) 69.33 (±0.98)
+ PG-Local + PG-Global + PG-Full	50.20 (±0.31) 49.89 (±1.03) 51.97 (±0.26)	55.68 (±0.07) 55.47 (±0.92) 57.53 (±0.19)	56.81 (±0.73) 57.21 (±0.45) 59.07 (±0.30)	$61.56 (\pm 0.72)$ $62.93 (\pm 0.82)$ $63.72 (\pm 0.77)$	67.77 (±0.83) 68.65 (±0.02) 69.46 (±0.23)	$70.43 (\pm 0.65)$ $71.55 (\pm 0.99)$ $72.68 (\pm 0.42)$

Ablation Study

Methods	CQA	OBQA	
Scratch (fine-tune X)	68.75	65.50	
Full (fine-tune)	72.68	71.20	

1) Scratch approximates what static KG already has

2) Pre-trained GPT-2 complements missing knowledge of a static KG

08 Limitation

Model	Affiliation	Date	,	Accuracy (*Uses ConceptNet)	‡
Human		03/10/2019	88.9		
ALBERT+DESC-KCR (ensemble model)	Microsoft Cognitive Services Research	12/02/2020		83.3	
Albert+KD (ensemble model)	HIT-SCIR-QA	12/30/2020		80.9	
ALBERT+DESC-KCR (single model)	Microsoft Cognitive Services Research	12/02/2020		80.7	
ALBERT+KD (single model)	HIT-SCIR-QA	12/10/2020		80.3	
Albert + KCR(knowledge chosen by relations, single model)	ITNLP (Harbin Institute of Technology)	07/12/2020		79.5	
UnifiedQA (single model)	Allen Institute for Al	04/23/2020	79.1		
Albert + KRD(single model)	SudaNLP	12/04/2020	78.4		
Albert + PathGenerator (ensemble model)	USC MOWGLI / INK Lab	05/14/2020		78.2	
T5 (single model)	Allen Institute for Al	04/23/2020	78.1		
TeGBERT (single model)	anonymous	07/22/2020		76.8	
ALBERT (ensemble model)	Zhiyan Technology	12/18/2019	76.5		

- 1) Addresses the **contextualization** and **sparsity** challenges of original KGs
- 2) Design and implement a QA framework with the Knowledgeable Path Generator(PG)
- 3) Demonstrates effectiveness of the method in its robustness to limited training data.

Q&A