Уточнение параметров гармоник внутрисуточных вариаций ПВЗ из результатов глобального уравнивания

Курдубов С.Л., Миронова С.М., Павлов Д.А.

Институт прикладной астрономии Российской академии наук, Санкт-Петербург, Россия

2 октября 2018 года

Модель внутрисуточных вариаций ПВЗ

$$\Delta\Theta_{l} = \sum_{i=1}^{N} \left\{ C_{il} \cos \left[\sum_{j=1}^{5} k_{ij} \alpha_{j} + n_{i} (h_{\gamma} + \pi) \right] + S_{il} \sin \left[\sum_{j=1}^{5} k_{ij} \alpha_{j} + n_{i} (h_{\gamma} + \pi) \right] \right\},$$

$$(1)$$

где $\Theta_l(l=1,2,3)$ – углы движения полюсов и UT1; C_{il},S_{il} – амплитуды; N – количество суточных и полусуточных гармоник; α_j – пять фундаментальных астрономических аргументов, задающих относитальные положения Земли, Солнца и Луны; h_γ – Гринвичское среднее звездное время; n_i – коэффициент (-1 для суточных гармоник, -2 для полусуточных гармоник); k_{ij} – коэффициенты, учитывающие влияние Солнца и Луны на гармонику

Реализованные в Quasar модели внутрисуточных вариаций ПВЗ

- ▶ ortho-eop, реализация Eanes (2000)
- ▶ pmut1-oceans, реализация Bizouard (2002)

Близкие гармоники

- Метод сравнения на некотором интервале: Близость 2 гармоник означает, что разность между количеством периодов 2 гармоник (на рассматриваемом интервале) меньше заданного числа. 25 и 26 гармоники.
- Из ковариационной матрицы
 - ▶ Корреляция между двумя компонентами одной гармоники
 - Корреляция между компонентами разных гармоник

Близкие гармоники, ковариационная матрица

n1	n2	корреляция	компоненты гармоник
9	11	-0.940	sy - cx
25	26	-0.870	sy - cx
25	27	-0.967	sy - cx
26	28	-0.987	sy - cx
36	38	-0.961	sy - cx
25	27	-0.437	sy - cy
26	28	-0.422	cx - cy
26	28	-0.447	su - cu
65	67	-0.213	sy - sy
26	28	-0.312	sy - sy
25	26	0.890	su - su
26	27	0.898	cx - xc
27	28	0.899	су - су
1	2	0.205	cy - cy

Близкие гармоники, ковариационная матрица

Рис.: Ковариационная матрица 71 внутрисуточной гармоники

Получение гармоник из глобального решения

- ▶ 5677 сессий с 1979 по 2016 год, 9413665 задержек
- 203 станции, 3825 источников
- определялись компоненты 8 главных гармоник как глобальные параметры
- определялись координаты станций и источников, скорости станций как глобальные параметры
- определялись ПВЗ как суточные параметры

Номер гармоники	Период, сут.
1	1.1195148
2	1.0758059
3	1.0027454
4	0.9972696
5	0.5274312
6	0.5175251
7	0.5000000
8	0.4986348

Получение гармоник из глобального решения, коэффициенты гармоник

	1	2	3	4	5	6	7	8
SX, MC	26.31	132.91	51.25	-151.74	-12.93	-26.96	63.56	19.14
ѕу, мс	6.23	48.82	26.13	-77.48	32.88	195.92	86.56	23.11
su, 0.1мс	-249.9	-1206.9	-309.5	854.8	-155.6	-714.0	-15.9	4.1
CX, MC	6.24	48.82	26.13	-77.48	-56.87	-330.15	-144.13	-38.48
су, мс	-26.31	-132.90	-51.25	151.74	11.15	37.58	59.23	17.72
си, 0.1мс	511.8	1602.0	551.2	-1762.0	-379.5	-1619.5	-754.7	-210.4

	1	2	3	4	5	6	7	8
sx, MC	38.22	138.15	60.16	-99.66	-5.78	-15.57	72.61	15.35
ѕу, мс	-13.00	57.56	31.85	32.13	27.66	180.61	80.12	27.26
su, 0.1мс	-279.07	-1309.38	-359.30	936.04	-204.56	-928.88	-113.24	22.21
cx, Mc	27.76	64.06	24.65	-230.78	-54.65	-331.37	-133.30	-41.88
су, мс	-18.43	-124.90	-34.22	208.99	11.07	46.29	70.57	10.85
си, 0.1мс	518.24	1740.92	508.64	-1681.21	-334.39	-1478.35	-745.75	-211.44

	1	2	3	4	5	6	7	8
SX, MC	36.43	131.37	60.06	-98.83	-6.42	-16.70	73.14	-2.44
ѕу, мс	15.17	55.02	25.81	34.21	28.29	181.64	81.79	10.64
su, 0.1мс	-280.43	-1327.92	-352.66	914.83	-215.18	-937.67	-113.04	7.17
CX, MC	31.00	73.61	27.51	-226.03	-55.56	-332.12	-135.24	-15.19
су, мс	-16.08	-119.48	-33.92	205.24	10.57	45.36	71.81	-4.40
си, 0.1мс	513.49	1709.53	502.26	-1701.80	-332.36	-1478.64	-753.54	-1.86

Таблица: Mодель pmut1_oceans (априорные гармоники, поправки к априорным гармоникам, поправки к нулевым гармоникам)

Получение гармоник из глобального решения, формальные ошибки

	SX, MC	сх, мс	ѕу, мс	су, мс	su, 0.1мс	си, 0.1мс
1	6.071	6.054	6.074	6.077	7.396	7.372
2	7.878	7.932	7.927	7.899	7.332	7.343
3	12.962	12.970	12.983	12.970	7.316	7.274
4	13.570	13.605	13.609	13.579	7.356	7.462
5	1.307	1.313	1.433	1.433	6.580	6.585
6	1.303	1.299	1.427	1.422	6.571	6.560
7	1.292	1.289	1.417	1.415	6.604	6.507
8	1.296	1.303	1.428	1.427	6.567	6.596

Картинки вариаций на суточном интервале РСДБ-наблюдений

Рис.: a) XPO, b) YPO, c) UT1, d) LOD.

Картинки вариаций на недельном интервале РСДБ-наблюдений

Рис.: a) XPO, b) YPO, c) UT1, d) LOD.

Использование вычисленных коэффициентов в РСДБ обработке, CONT14

Рис.: Модель pmut1_oceans. CIP-x, CIP-y, UT1, POL-x.

Использование вычисленных коэффициентов в РСДБ обработке, CONT14, wrms

2 октября 2018 · Санкт-Петербург

Использование вычисленных коэффициентов в обработке наблюдений ЛЛЛ

Станции ЛЛЛ миллиметровой точности:

- 1. ОСА (Обсерватория лазурного берега), Франция, $43^{\circ}45'11''\,N\,\,6^{\circ}55'21''\,E$
- 2. Apache Point Observatory, Нью-Мексико, США, $32^{\circ}46'49''~N~105^{\circ}49'13''~W$

Станции не имеют средств РСДБ. ОСА имеет два лазера: MeO и IR. Наблюдения ЛЛЛ проводятся в ночное время.

Станция	Наблюдений	IERS wrms	HF EOP wrms	
Cerga (MeO)	1836 (2009-2017)	1.427 см	1.431 см	
Cerga (IR)	2840 (2015-2017)	1.317 см	1.311 см	
APO	2648 (2006-2016)	1.398 см	1.391 см	

Ошибка единицы веса по всем наблюдениям ЛЛЛ: 1.349 (IERS), 1.346 (HF EOP)

Выводы

- 1. Получен уточненный набор коэффициентов модели внутрисуточных вариаций ПВЗ.
- 2. Показано, что часть гармоник из модели IERS не может быть разрешена по имеющимся наблюдениям.
- 3. Применение построенной модели с уточненными коэффициентами позволяет улучшить представление наблюдений при обработке ЛЛЛ и РСДБ наблюдений.