Authentication: Password & Biometrics

Shuai Wang

Access Control

- Two parts to access control
- Authentication: are you who you say you are?
 - Determine whether access is allowed
 - Authenticate human to machine
 - Or authenticate machine to machine
- Authorization: are you allowed to do that?
 - Once you have access, what can you do?
 - Enforces limits on actions

Are You Who You Say You Are?

- Authenticate a human to a machine?
- Can be based on...
 - Something you know
 - For example, a password
 - Something you have
 - For example, a smartcard
 - Something you are
 - For example, your fingerprint

Something You Know

- Passwords
- Lots of things act as passwords!
 - PIN
 - Social security number
 - Mother's maiden name
 - Date of birth
 - Your first boss's name
 - Name of your pet, etc.

Why Passwords?

- Why is "something you know" more popular than "something you have" and "something you are"?
- Cost: passwords are free
- Convenience: easier for sysadmin to reset pwd than to issue a new thumb

"Passwords are one of the biggest practical problems facing security engineers today."

Keys vs Passwords

Crypto keys

- Spse key is 64 bits
- Then 2⁶⁴ keys
- Choose key at random...
- ...then attacker must try about 2⁶³ keys

Passwords

- Spse passwords are 8 characters, and 256 different options each character
- Then $256^8 = 2^{64}$ pwds?!
- But users do not select passwords at random
- Attacker has far less than 2⁶³ pwds to try (dictionary attack)

dictionary attack: tries only those possibilities which are deemed most likely to succeed, typically derived from a list of words such as in a dictionary

Good and Bad Passwords

- Bad passwords
 - frank
 - Fido
 - Password
 - incorrect
 - Pikachu
 - 88195277
 - AustinStamp

- Good Passwords?
 - jflej,43j-EmmL+y
 - 09864376537263
 - OnceuPOnAt1m8
- ← Passphrase

P0kem0n

Passphrase:

- longer (10~30 letters) to make brute force attacks difficult
- if well chosen, they will not be found in any phrase or quote dictionary
- Structured to be more easily memorable than passwords

Password Experiment

- Three groups of users each group advised to select passwords as follows
 - Group A: At least 6 chars, 1 non-letter
- winner → Group B: Password based on passphrase
 - Group C: 8 random characters
 - Results
 - Group A: About 30% of pwds easy to crack
 - Group B: About 10% cracked
 - Passwords easy to remember
 - Group C: About 10% cracked
 - Passwords hard to remember

Attacks on Passwords

- Attacker could...
 - Target one particular account
 - Target any account on system
 - Target any account on any system
 - Attempt denial of service (DoS) attack
 - What's the connection here?
 - Think about the ATM machine...

Password File?

- Bad idea to store passwords in a file
- But we need to verify passwords
- Solution?

Dictionary Attack towards a File of hashed passwords

- Attacker pre-computes h(x) for all x in a dictionary of common passwords
- Suppose the attacker gets access to password file containing hashed passwords
 - She only needs to compare hashes to her precomputed dictionary
 - After one-time work of computing hashes in dictionary, actual attack is trivial
- Can we prevent this search-based attack?
 - Or at least make it more difficult?

Salt (Random Chosen Value)

- Hash password with salt
- Choose random salt s and compute
 y = h(password, s)
 and store (s,y) in the password file
- Note that the salt s is not secret
- Still easy to verify salted password
- But lots more work for the attacker
 - Why?
 - Must recompute hash for each user

Other Password Issues

- Too many passwords to remember
 - Results in password reuse
 - Why is this a problem?
- Who suffers from bad password?
 - Login password vs ATM PIN
- Failure to change default passwords
- Social engineering...
- Error logs may contain "almost" passwords
- Bugs, keystroke logging, spyware, etc.

Passwords

- Password attacks are too easy
 - Often, one weak password will break security
 - Users choose bad passwords
 - Social engineering attacks, etc.
- Passwords are a BIG security problem
 - And will continue to be a problem
- Popular password cracking tools
 - Password Crackers
 - Password Portal
 - LOphtCrack and LC4 (Windows)
 - John the Ripper (Unix)
- Admin should use these tools to test weak password.

Biometrics

Something You Are

- Biometric
 - "You are your key"
- Examples
 - o Fingerprint
 - Handwritten signature
 - Facial recognition
 - Speech recognition
 - Walking (gait) recognition
 - o Many more!

Why Biometrics?

- May be better than passwords
- But, cheap and reliable biometrics needed
 - Today, an active area of research
- Biometrics are used in security today
 - Fingerprint to unlock car door
 - Palm print for secure entry

Ideal Biometric

- Universal applies to (almost) everyone
 - In reality, no biometric applies to everyone
- Distinguishing distinguish with certainty
 - In reality, cannot hope for 100% certainty
- Permanent physical characteristic being measured never changes
 - In reality, OK if it to remains valid for long time
- Collectable easy to collect required data
 - Depends on whether subjects are *cooperative*
- Also, safe, user-friendly

Enrollment vs Recognition

- Enrollment phase
 - Subject's biometric info put into database
 - Must carefully measure the required info
 - OK if slow and repeated measurement needed
 - Must be very precise
 - May be a weak point in real-world use

Root trust

Recognition phase

- Biometric detection, when used in practice
- Must be quick and simple
- But must be reasonably accurate

Biometric Errors

- Fraud rate versus insult rate
 - Fraud (false negative) Attacker mis-authenticated as Alice
 - Insult (false positive) Alice not authenticated as Alice
- For any biometric, generally speaking, can decrease fraud or insult, but other one will increase
- For example
 - 99% voiceprint match \Rightarrow low fraud, high insult
 - 30% voiceprint match ⇒ high fraud, low insult
- Equal error rate: rate where fraud == insult
 - A way to compare different biometrics

Biometrics: The Bottom Line

- Biometrics are hard to forge
- But attacker could
 - Steal Alice's thumb
 - Photocopy Bob's fingerprint, eye, etc.
 - Subvert software, database, "trusted base" ...
- And how to revoke a "broken" biometric?
- Biometrics are not foolproof

Are You Who You Say You Are?

- Something in your possession
- Examples include following...
 - Car key
 - Laptop computer (or MAC address)
 - Password generator (next)
 - ATM card, smartcard, etc.

2-factor Authentication

- Requires any 2 out of 3 of
 - Something you know
 - Something you have
 - Something you are

Examples

- Credit card: Card and signature
- ATM: Card and PIN