ReadME

- Latent infection is assumed to be treated by ART
- Morphine effects and Pharmacodynamics are varied.
- Dynamics of ART treatment at different stages:
 - Early and Late treatments of the Latent Reservoir and Viral Load dynamics
 - Peak Viral Dynamics of Latent Reservoir and Viral Load.

Parameters:

Morphine Effect

morphine influences affects the Target T cells susceptiblity by changing the expression of the coreptors

- ullet r \equiv morphine transition rate of $T_L
 ightarrow T_H$
- ullet q \equiv morphine transition rate of $T_H
 ightarrow T_L$

Note: T_L T cells with low susceptibility to infections; T_H T cells with high susceptibility to infections.

Pharmacodynamics of ART

- $m_i \equiv$ drug slope inhibition (of infectivity)
- $n=rac{D_{max}^{i}}{ED50}\equiv$ Drug maximum concentration ratio of inhibitory to reach 50% effect
- $t_{rac{1}{2}} \equiv$ drug half-life
- $\tau \equiv$ drug intake interval

Early Treatment

Morphine Effect

- When low level of morphine is found with r=0.2, the infection is eventually controlled.
- ullet At high level of morphine with r=0.75 and r=1, the infection persists.
- Vice versa is seen in q.

• Pharmacodynamic Effect

- ullet Through varied Pharmacodynamic parameters for cases: $m_i, n,$ and $t_{rac{1}{2}}$
 - when $m_i = 0.5$, n = 15, $andt_{\alpha} = 3$ shows the infection in the latent reservoir and viral load persists.
 - when $m_i=2;3.5$, n=20;25, and $t_{\frac{1}{2}}=4.5;5$ shows the infection in the latent reservoir and viral load is controlled.
- For τ , since this is a drug-dosage intake:
 - au=18;20 hours shows the infection is controlled since the drug intervals are not skipped.
 - au=25 hours shows the infection persists due to skipped intervals.

Late Treatment

• Morphine Effects (r)

- Morphine transition rate r varied at different morphine levels to show the progression of the HIV infection of m_i at different parameters.
- The higher the r is, the higher m_i needs to be to control HIV infection.

• Morphine Effects (q)

- Morphine transition rate q varied at different morphine levels to show the progression of the HIV infection of m_i at different parameters.
- The higher the q is, if $m_i \geq 2$ can control HIV infection.

Peak Viral Dynamics

• Morphine Effects

r:

- As r increases, the peaks of the latent reservoir and viral load has a monotonic increasing solution curve.
- The timing to reach peak in r decreases, implying the days to reach viral peaks is quicker.

q:

- As *q* increases, the peaks of the latent reservoir and viral load has a monotonic decreasing solution curve.
- This implies as q increases, the timing to reach peak decreases and delayed.

Note: The gaps between the latent reservoir and viral load are due to the delayed activation in latent infected cells.

• Pharmacodynamic Effects

- As seen in m_i and $n=\frac{MaxDrugDosage}{ED50}$, as they increase, the solution curves for the latent reservoir and viral load peaks declines.
- With large pharmacodynamic parameters, the peak timing of the latent reservoir and viral load are delayed further.