1계층 물리적 계층

2007년 6월 7일 목요일 오전 5:57

네트워크 케이블과 신호에 대한 것으로 물리적 신호의 전송 규칙을 조정하는 역할

1계층에서 가장 먼저 네트워크의 구성 방식에 대해서 알아 보도록 하겠습니다.

네트워크의 구성방식에는 버스(Bus), 스타(Star), 링(Ring), 메시형(Mesh), 방식 있습니다.

1. 버스 (Bus)형 네트워크 구성 방식

Thinnet 케이블을 주로 사용하여 구성하였다.

a. 장점

- i. 네트워크 구성의 케이블 및 하드웨어 비용이 저렴하다.
- ii. 네트워크의 설치가 간단하고 쉽다.
- iii. 네트워크의 구성이 복잡하지 않고 컴퓨터 사이의 직접 접속으로 이루어진다.
- iv. 네트워크의 연결 길이를 쉽게 연장시킬 수 있다.

b. 단점

- i. 네트워크의 선로에 문제가 생기는 경우 고장 부위를 찾기가 어려워 전체 회선을 점검 해야한다.
- ii. 네트워크상의 컴퓨터가 동시에 많은 신호를 전송하는 경우 전체 시스템의 성능이 저하 될 수 있다.
- iii. 네트워크의 선로 연장에 한계가 있다.

2. 스타 방식의 네트워크 시스템

1계층 장비인 HUB와 UTP(Unshielded Twisted Pair)를 이용하여 구성 하였다.

a. 장점

- i. 한대의 컴퓨터가 고장을 일으켜도 전체 네트워크에는 영향을 주지 않는다.
- ii. 장애 발생시 해당 컴퓨터와 허브 사이만 점거해 문제를 쉽게 해결 할 수 있다.
- iii. 새로운 컴퓨터를 네트워크에 추가로 설치하기가 쉽다.

b. 단점

- i. 허브의 장애시 전체 네트워크의 기능이 정지된다.
- ii. 허브와 컴퓨터 사이의 연장 거리에 제한이 있다.

3. 링 방식의 네트워크 구축

FDDI(Fiber Distributed Data Inteface) 방식이나 Token Ring 방식의 네트워크

a. 장점

- i. 네트워크의 모든 컴퓨터가 단일 원형 선로로 접속되어 있으므로 모든 구성 컴퓨터가 데이터를 수신할 수 있는 균등 한 기회를 갖는다.
- ii. 네트워크의 설치가 간편하다.

b. 단점

- i. 선로에 문제가 생기면 전체 시스템의 통신이 어렵게 된다.
- ii. 새로운 컴퓨터를 추가로 설치하기가 어렵다.

4. 완전 메시 토폴로지(Full-mesh topology)

중복성(redundancy)과 장애 허용(Fault tolerance)을 목적으로 모든 장치들을 상호 연결한 네트워크 형태

a. 장점

- i. 모든 노드가 서로 물리적으로 연결되어 있어 완전한 중복성이 제공된다는 것
- ii. 어떤 링크가 고장이 나더라도 많은 다른 정상적인 링크를 통하여 정보를 목적까지 전달 할 수 있다.

b. 단점

- i. 링크 내의 연결 수가 과도하게 많아진다.
- ii. 완전 메세 토폴로지의 구현은 어려우면서도 비용이 많이 든다.

5. 부분 메시 토폴로지(Partial-mesh topology)

부분 메시 토폴로지는 몇몇의 대체 경로를 제공함으로써 중복성을 지원한다. 만약 한 경로를 사용할 수 없게 되면, 데이터는 아무리 멀더라도 다른 경로를 통해 전송된다. 부분 메시 토폴로지는 인터넷뿐만 아니라 많은 백본 네트워크의 구성 시 사용한다.

