六、理论构造PRP

哈尔滨工业大学 张宇 2024春

概览

- 1. 单向函数 (One-Way Function)
- 2. 从单向函数构造PRP

概览

- □现代密码学的贡献之一是,单向函数的存在等价于所有 (有意义的)私钥加密的存在
- □密码学对象的构造过程:从OWF构造核心断言(HCP),构造RPG,构造PRF,构造PRP,构造安全私钥加密,而安全私钥加密就是一个OWF,从而形成一个闭环

单向函数 (One-Way Functions)

□单向函数是一个易于计算(多项式时间),而逆向难以计算(无多项式时间算法)

The inverting experiment Invert_{A,f}(n):

- 1 Choose input $x \leftarrow \{0,1\}^n$. Compute y := f(x).
- $\mathbf{2}$ \mathcal{A} is given 1^n and y as input, and outputs x'.
- Invert_{A,f}(n) = 1 if f(x') = y, otherwise 0.

OWF定义

Definitions of OWF/OWP [Yao]

For polynomial-time algorithm M_f and \mathcal{A} .

Definition 1

A function $f: \{0,1\}^* \rightarrow \{0,1\}^*$ is **one-way** if:

- **11** (Easy to compute): $\exists M_f: \forall x, M_f(x) = f(x)$.
- **2** (Hard to invert): $\forall A$, \exists negl such that

$$\Pr[\mathsf{Invert}_{\mathcal{A},f}(n)=1] \leq \mathsf{negl}(n).$$

or

$$\Pr_{x \leftarrow \{0,1\}^n}[\mathcal{A}(f(x)) \in f^{-1}(f(x))] \le \mathsf{negl}(n).$$

Definition 2

Let $f: \{0,1\}^* \to \{0,1\}^*$ be length-preserving, and f_n be the restriction of f to the domain $\{0,1\}^n$. A OWP f is a **one-way permutation** if $\forall n$, f_n is a bijection.

候选单向函数

- 乘法与分解(Multiplication and factoring): $f_{\text{mult}}(x,y) = (xy, ||x||, ||y||)$, x 和 y 是相同长度的质数; 注: 后面会学习RSA问题
- 模平方和平方根(Modular squaring and square roots): $f_{\mathsf{square}}(x) = x^2 \bmod N$;注:也被应用于公钥密码学
- 离散指数与对数(Discrete exponential and logarithm): $f_{g,p}(x) = g^x \mod p$; 注:后面将学习DH密钥交换协议
- 子集和问题(Subset sum problem): $f(x_1,\ldots,x_n,J)=(x_1,\ldots,x_n,\sum_{j\in J}x_j)$; 注:子集和问题判定是否存在一个子集中元素之和为给定的值
- 密码学安全哈希函数(Cryptographically secure hash functions): 稍后会学习;

课堂练习

$f: \{0,1\}^{128} \to \{0,1\}^{128}$ is a OWF. Is f' OWF?

- f'(x) = f(x) ||x|
- f'(x||x') = f(x)||x'|
- $f'(x) = f(x) \oplus f(x)$
- $f'(x) = \begin{cases} f(x) & \text{if } x[0,1,2,3] \neq 1010 \\ x & \text{otherwise} \end{cases}$
- $f'(x) = \begin{cases} f(x) & \text{if } x \neq 1010 || 0^{124} \\ x & \text{otherwise} \end{cases}$
- more examples in homework

必要的假设

- □接下来学习OWP的存在是安全加密方案的充分条件,同时还可以证明 OWP的存在也是安全加密方案的必要条件。
- □ 定理: 假设存在OWP, 那么存在PRG, PRF, PRP和CCA安全私钥加密方案。
 - □如何构造CCA安全的加密方案将在后面学习。
- □命题:如果存在窃听者不可区分私钥加密方案,那么存在一个OWF。

证明: $f(k,m,r)\stackrel{\mathrm{def}}{=}(\mathsf{Enc}_k(m,r),m)$,其中 $|k|=n,|m|=2n,|r|=\ell(n)$ 。

- 。 从破解加密方案问题 \mathcal{A}' 规约到单向函数求逆问题 \mathcal{A} 。规约的关键之一在于将挑战密文和一个明文 $c||m_0$ 作为 \mathcal{A} 求逆的输入。当求拟成功时, \mathcal{A}' 输出0;否则,输出1。当 m_0 被加密,则破解加密方案意味着可求逆;当 m_1 被加密,则破解加密方案意味着没有成功求逆,概率为 $1-1/2^n$ 。
- □接下来证明从OWP可以构造出PRP。

核心断言 (Hard-core predicate)

□核心断言可以理解为根据函数的输出最难推断的关于输入 的一个比特信息,任意敌手算法与随机猜测相比几乎没有 差异。

Definition 3

A function hc : $\{0,1\}^* \to \{0,1\}$ is a hard-core predicate of a function f if (1) hc can be computed in polynomial time, and (2) $\forall \text{ PPT } \mathcal{A}, \exists \text{ negl such that}$

$$\Pr_{x \leftarrow \{0,1\}^n}[\mathcal{A}(f(x)) = \mathsf{hc}(x)] \leq \frac{1}{2} + \mathsf{negl}(n).$$

任意单向函数存在核心断言

- 9. 对于任意OWF的HCP [Goldreich and Levin]
- 定理: f是一个OWF。那么,存在一个OWF g 并与 g 伴随着一个HCP gl。
- 问题: $gl(x) = \bigoplus_{i=1}^{n} x_i$ 是任意OWF的HCP吗? 答案是否定的,例如一个单向函数输出的最后一个比特就是输入按位异或的结果;
- 证明: $g(x,r)\stackrel{\mathrm{def}}{=}(f(x),r)$, for |x|=|r|, 并定义 $\mathsf{gl}(x,r)\stackrel{\mathrm{def}}{=}\bigoplus_{i=1}^n x_i\cdot r_i$ 。 其中,r是一个随机串。
- 说明: g\就是从x中随机选择若干比特异或结果作为核心断言。即便敌手根据输出推断 出x中若干比特的信息,但仍不能推断出(由r来)随机挑选的任意若干比特信息(核心 断言),否则意味着敌手可以求出整个x。
- □gl就是从x中随机选择若干比特异或结果作为核心断言。即便敌手根据 输出推断出x中若干比特的信息,但仍不能推断出(由r来)随机挑选 的任意若干比特信息(核心断言),否则意味着敌手可以求出整个x。

从OWP到PRG

- □因为f为排列(这很重要,不能是非排列的函数),那么当s随机生成时,f(s)也是均匀随机的,G(s)的头部也就是随机的;
- □根据f(s)难以推断核心断言hc(s),这正是伪随机生成器的伪随机性的判断依据:下一比特不可预测性。

PRG from OWP: Blum-Micali Generator

Theorem 5

f is an OWP and hc is an HCP of f. Then $G(s) \stackrel{\text{def}}{=} (f(s), \text{hc}(s))$ constitutes a PRG with expansion factor $\ell(n) = n+1$, then \forall polynomial p(n) > n, \exists a PRG with expansion factor $\ell(n) = p(n)$.

从PRG到PRF

□PRF随机性来自于PRG的随机性

Theorem 6

If \exists a PRG with expansion factor $\ell(n)=2n$, then \exists a PRF.

$$G(k) = G_0(k) \|G_1(k)$$

$$F_k(x_1x_2\cdots x_n)=G_{x_n}(\cdots(G_{x_2}(G_{x_1}(k)))\cdots),G(s)=(G_0(s),G_1(s)).$$

从PRF到PRP

 $F^{(r)}$ is an r-round Feistel network with the mangler function F.

Theorem 7

If F is a length-preserving PRF, then $F^{(3)}$ is a PRP, and $F^{(4)}$ is a strong PRP, that maps 2n-bit strings to 2n-bit strings (and uses a key of length 3n and 4n).

Show that 1- or 2-round Feistel network is not a PRF.

- 首先,Feistel网络本身特性是排列,因此证明上述定理成立的关键在于,证明伪随机性;伪随机性来自与每轮的mangler函数是PRF,其输出是一个独立的随机值。
- 。 对于为什么至少需要3轮? 首先可以观察到如果只有1轮,则不是伪随机的,因为 R_0 被直接输出为 L_1 ;如果只有2轮,也不是随机的,因为只改变 L_0 来翻转1个比特,那么 R_2 也只翻转1个比特。当3轮时,上述两个情况不会发生,并且输出结果 L_3 , R_3 都是经过了PRF结果得到的。

本节小结

□OWF意味着安全私钥加密方案,安全私钥加密方案意味着OWF。

