

Országos Magyar Matematika Olimpia Megyei szakasz, 2019. január 26. IX. osztály

1. Feladat (10 pont)

Adott az
$$a = \frac{\sqrt{2} - \sqrt{3}}{\sqrt{6}} + \frac{\sqrt{3} - \sqrt{4}}{\sqrt{12}} + ... + \frac{\sqrt{9} - \sqrt{10}}{\sqrt{90}}$$
 valós szám.

- a) Számítsd ki az a szám egész részét.
- b) Oldd meg az egész számok halmazán az $\left[\frac{x+1}{2}\right] = 2019[a]$ egyenletet, ahol [t] az t valós szám egész részét jelöli.

2. Feladat (10 pont)

Igazold, hogy

a)
$$\frac{1}{a} + \frac{1}{b} \ge \frac{4}{a+b}$$
 bármely a, b pozitív valós szám esetén;

b)
$$\frac{1}{a} + \frac{1}{b} + \frac{4}{c} \ge \frac{16}{a+b+c}$$
 bármely a, b, c pozitív valós szám esetén;

c)
$$\frac{1}{a} + \frac{1}{b} + \frac{4}{c} + \frac{16}{d} \ge \frac{64}{a+b+c+d}$$
 bármely a, b, c, d pozitív valós szám esetén!

3. Feladat (10 pont)

Adott az \overrightarrow{ABC} háromszög és E, D és F pontok úgy, hogy $\overrightarrow{AE} = \overrightarrow{EB}, \overrightarrow{BD} = 2\overrightarrow{DC}$ és $\overrightarrow{CF} = \frac{1}{2}\overrightarrow{CE}$.

Igazold, hogy a) az A, F és D pontok kollineárisak;

b)
$$\frac{T_{FEA_{\Delta}}}{T_{FDC_{\Delta}}} = 3$$
.

4. Feladat (10 pont)

Egy kör alakú 1 kg tömegű pizzát egyenes vágásokkal darabokra osztunk. Ha tudjuk, hogy két vágás átmegy a pizza közepén, a harmadik pedig nem, bizonyítsd be, hogy létezik egy olyan darab, amelynek tömege legalább 166 g. (Matlap)

Országos Magyar Matematika Olimpia Megyei szakasz, 2019. január 26.

Javítókulcs IX. osztály

1. Feladat (10 pont)

 $a = \frac{\sqrt{2} - \sqrt{3}}{\sqrt{6}} + \frac{\sqrt{3} - \sqrt{4}}{\sqrt{12}} + \dots + \frac{\sqrt{9} - \sqrt{10}}{\sqrt{90}}$ valós szám.

- a) Számítsd ki az a szám egész részét.
- b) Oldd meg az egész számok halmazán az $\left| \frac{x+1}{2} \right| = 2019[a]$ egyenletet, ahol [t] az tvalós szám egész részét jelöli.

(Oláh-Ilkei Árpád, Barót)

Megoldás:

Hivatalból 1pont a) $a = \frac{\sqrt{2} - \sqrt{3}}{\sqrt{6}} + \frac{\sqrt{3} - \sqrt{4}}{\sqrt{12}} + \dots + \frac{\sqrt{9} - \sqrt{10}}{\sqrt{90}} = \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{4}} - \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{10}} - \frac{1}{\sqrt{9}} = 1$ pont $=\frac{1}{\sqrt{10}}-\frac{1}{\sqrt{2}}=\frac{\sqrt{10}(1-\sqrt{5})}{10}$ 1pont $\sqrt{4} < \sqrt{5} < \sqrt{9} \Rightarrow -2 < 1 - \sqrt{5} < -1$ 1pont $3 < \sqrt{10} < 4 \Rightarrow -6 < \sqrt{10} (1 - \sqrt{5}) < -4$ 1pont \Rightarrow -1 < -0, 6 < a < -0, 4 < 0 1pont $\Rightarrow [a] = -1$ 1pont b) $x \in \Box, \lceil \frac{x+1}{2} \rceil = 2019[a]$

b)
$$x \in \square$$
, $\left\lfloor \frac{x+1}{2} \right\rfloor = 2019 \left\lfloor a \right\rfloor$

$$\left[\frac{x+1}{2}\right] = -2019 \Rightarrow -2019 \leq \frac{x+1}{2} < -2018$$

$$-4039 \le x < -4037 \text{ és } x \in \square$$

$$M = \{-4039; -4038\}$$
 1pont

2. Feladat (10 pont)

Igazold, hogy

a)
$$\frac{1}{a} + \frac{1}{b} \ge \frac{4}{a+b}$$
 bármely a, b pozitív valós szám esetén;

b)
$$\frac{1}{a} + \frac{1}{b} + \frac{4}{c} \ge \frac{16}{a+b+c}$$
 bármely a, b, c pozitív valós szám esetén;

MINISTERUL EDUCAȚIEI NAȚIONALE

c)
$$\frac{1}{a} + \frac{1}{b} + \frac{4}{c} + \frac{16}{d} \ge \frac{64}{a+b+c+d}$$
 bármely a, b, c, d pozitív valós szám esetén!

(Nagy Olga, Nagyszalonta)

Megoldás:

Hivatalból 1pont

a)
$$\frac{1}{a} + \frac{1}{b} \ge \frac{4}{a+b} \Leftrightarrow \frac{a+b}{ab} \ge \frac{4}{a+b}$$
 (1)

$$a+b>0 \Rightarrow (1) \Leftrightarrow \frac{(a+b)^2}{ab} \ge 4$$
 (2)

$$ab > 0 \Rightarrow (2) \Leftrightarrow (a+b)^2 \ge 4ab$$
 1pont

 $(a+b)^2 \ge 4ab \Leftrightarrow (a-b)^2 \ge 0$, evidens bármely a,b pozitív valós szám esetén **1pont**

Megjegyzés: Az egyenlőség fennáll, ha a=b.

b)
$$\frac{1}{a} + \frac{1}{b} + \frac{4^{a}}{c} \ge \frac{4}{a+b} + \frac{4}{c}$$
 (3)

és
$$\frac{4}{a+b} + \frac{4}{c} = 4 \cdot \left(\frac{1}{a+b} + \frac{1}{c}\right)^{a} \ge 4 \cdot \frac{4}{a+b+c} = \frac{16}{a+b+c}$$
 (4)

$$(3)$$
 és (4) $\Rightarrow \frac{1}{a} + \frac{1}{b} + \frac{4}{c} \ge \frac{16}{a+b+c}$ igaz, bármely a, b, c pozitív valós szám esetén, **1pont**

Megjegyzés: Az egyenlőség fennáll, ha a=b és a+b=c és a+b+c=d.

c)
$$\frac{1}{a} + \frac{1}{b} + \frac{4}{c} + \frac{16}{d} \ge \frac{16}{a+b+c} + \frac{16}{d}$$
 (5)

$$\frac{16}{a+b+c} + \frac{16}{d} = 16 \cdot \left(\frac{1}{a+b+c} + \frac{1}{d}\right)^{a} \ge 16 \cdot \frac{4}{a+b+c+d}$$
 (6)

$$(5)$$
 és (6) $\Rightarrow \frac{1}{a} + \frac{1}{b} + \frac{4}{c} + \frac{16}{d} \ge \frac{64}{a+b+c+d}$ igaz bármely a, b, c, d pozitív valós szám

esetén. 1pont

Megjegyzés: Az egyenlőség fennáll, ha a=b és a+b=c és a+b+c=d.

3. Feladat (10 pont)

Adott az \overrightarrow{ABC} háromszög és E, D és F pontok úgy, hogy $\overrightarrow{AE} = \overrightarrow{EB}, \overrightarrow{BD} = 2\overrightarrow{DC}$ és $\overrightarrow{CF} = \frac{1}{2}\overrightarrow{CE}$

Igazold, hogy a) az A, F és D pontok kollineárisak;

b)
$$\frac{T_{FEA_{\Delta}}}{T_{FDC_{\Delta}}} = 3$$
.

(Szőts Ildikó, Brassó és Spier Tünde, Arad)

Megoldás:

Hivatalból 1pont

Rajz

1pont

a)
$$\overrightarrow{AF} = \frac{1}{2} \overrightarrow{AE} + \frac{1}{2} \overrightarrow{AC}$$
 (1)

$$\overrightarrow{AE} = \frac{1}{2} \overrightarrow{AB} \stackrel{(1)}{\Rightarrow} \overrightarrow{AF} = \frac{1}{4} \left(\overrightarrow{AB} + 2\overrightarrow{AC} \right) \quad (2)$$
1pont

$$\overrightarrow{AD} = \frac{1}{3}\overrightarrow{AB} + \frac{2}{3}\overrightarrow{AC} = \frac{1}{3}\left(\overrightarrow{AB} + 2\overrightarrow{AC}\right) \quad (3)$$

$$(3) \Rightarrow 3\overrightarrow{AD} = \overrightarrow{AB} + 2\overrightarrow{AC} \quad (4)$$

$$(2)$$
és (4) $\Rightarrow \overrightarrow{AF} = \frac{3}{4}\overrightarrow{AD}$ 1pont

b) Mivel F felezőpontja az EC -nek, $T_{AEF} = T_{AFC}$ (5)

Legyen h a CFD háromszög C -ből húzott magassága, amely megegyezik az AFC háromszög C -ből húzott magasságával.

$$\frac{T_{AEF}}{T_{FDC}} \stackrel{(5)}{=} \frac{T_{AFC}}{T_{FDC}} = \frac{AF \cdot \frac{h}{2}}{FD \cdot \frac{h}{2}} = \frac{AF}{FD} \quad (6)$$
1pont

1pont

$$(6)$$
és (7) $\Rightarrow \frac{T_{FEA_{\Delta}}}{T_{FDC_{\Delta}}} = 3$.

1pont

4. Feladat (10 pont)

Egy kör alakú 1 kg tömegű pizzát egyenes vágásokkal darabokra osztunk. Ha tudjuk, hogy két vágás átmegy a pizza közepén, a harmadik pedig nem, bizonyítsd be, hogy létezik egy olyan darab, amelynek tömege legalább 166 g.

MINISTERUL EDUCATIEI NATIONALE

(Matlap, 2893.feladat, 7szám/2018)

Megoldás:

Hivatalból 1pont

A két vágással, amely átmegy a pizza közepén négy részre osztják a pizzát, A, B, C és D, ezek közül két-két rész szimmetrikus: A és C, valamint B és D.

2pont

A harmadik vágás, amely nem megy át a középponton, a négy részből maximum hármat vághat el, így a harmadik vágás után öt, hat vagy hét darabot kaphatunk. **2pont**

Ha öt darabot kapunk, akkor a skatulya-elv alapján létezik legalább egy darab, amelynek tömege legalább 1000:5=200 (g), (tehát legalább 166 g). **1pont**

Ha a pizzát hat részre osztottuk, akkor szintén a skatulya-elv alapján egy darab tömege: 1000:6=166,(6), ami legalább 166 g.

1pont

Tekintsük a harmadik esetben a következő ábrát (amikor hét részre osztjuk a pizzát):

A $D_1,D_2,C_1\cup C_2,B_1,B_2$ és A részek tömege összesen 1 kg, így egy darab tömege: 1000:6=166,(6), ami legalább 166 g.

1pont

Ha a fenti részekből a D_1, D_2, B_1, B_2 vagy A tömege legalább 166 g, akkor a feladat megoldását befejeztük. **1pont** Ha pedig a $C_1 \cup C_2$ rész tömege legalább 166 g, akkor szintén befejeztük a feladat megoldását, mert $C_1 \cup C_2 = A$.

1pont