Лекции по математическому анализу Лектор: Храбров Александр Игоревич

Автор конспекта: Лапшин Дмитрий

Содержание

1	Множества	5
2	Бинарные отношения	7
3	Вещественные числа	9
4	Верхняя и нижняя граница	11
5	Теорема о вложенных отрезках	12
6	Метрические пространства	12
7	Неравентсва Коши-Буняковского и Минковского	13
8	Открытые множества	14
9	Внутренние точки и внутренность множества	14
10	Замкнутые множества	15
11	Открытые и замкнутые множества в пространстве и подпространстве	17
12	Предельные точки	18
13	Супремум и инфимум замкнутых множеств	19
14	Предел последовательности	19
15	Предельный переход в неравенстве	20
16	Теорема о двух миллиционерах	21
17	Предел монотонной последовательности	21
18	Конечное векторное пространство	22
19	Арифметические свойства предела	23
20	Покоординатная сходимость	25
2 1	Бесконечно малые и большие	25
22	Связь между бесконечно большими и малыми	26
23	Компактность	27

24	Свойства компактного множества	27
25	Теорема о пересечение семейства компактов	28
26	Теорема о вложенных параллелепипедах	28
27	Теорема Гейне-Бореля	29
2 8	Подпоследовательность	29
2 9	Секвенциальная компактность	29
30	Теорема Больцано-Вейерштрасса и другие следствия	30
31	Диаметр множества	30
32	Фундамитальные последовательности	31
33	Полнота компактных метрических пространств	32
34	Верхний и нижний предел	32
35	Характеристика верхних и нижних пределов с помощью N и eps	33
36	Неравенство Бернули	34
37	Число е	34
38	Сравнение скорости роста возрастания последовательностей	35
39	Теорема Штольца	35
40	Теорема Штольца	36
41	Пределы функций	37
42	Равносильность определения по Коши и по Гейне	37
43	Свойства функций, имеющих предел	38
44	Арифметические действия с пределами	38
45	Теорема о предельном переходе в неравенствах. Теорема о двух милиционерах	39
46	Левый и правый пределы. Предел монотонной функции	39
47	Критерий Коши для отображений и для функций	39
48	Непрерывные отображения. Непрерывность слева и справа	40
49	Арифметические действия с непрерывными функциями	41
5 0	Характеристика непрерывности в терминах прообразов	42
51	Непрерывность отображений из метрического пространства в векторное	43

52 Непрерывность и компактность	44
53 Теоремы о непрерывности обратного отображения и о непрерывности монотов ной функции	ı- 45
54 Равномерная непрерывность на функции. Теорема Кантора	45
55 Теорема Больцано-Коши	46
56 Непрерывность тригонометрических функций	47
57 Степенная функция	47
58 Логарифм	49
59 Следствия	50
60 Сравнение функций	51
61 Производная	51
62 Геометрический смысл производной	52
63 Одностороние производные	53
64 Непрерывность дифференцируемой функции	53
65 Арифметические действия с диффиренцируемыми функциями	54
66 Производная композиции	54
67 Теорема о дифференцируемости обратной функции	55
68 Производные элементарных функций	56
69 Теоремы Ферма и Ролля	56
70 Теоремы Лагранжа и Коши	57
71 Следствия теоремы Лагранжа	57
72 Теорема Дарбу	59
73 Правило Лопиталя	59
74 Производные высших порядков	60
75 Арифметические действия с производными высших порядков	61
76 Формула Тейлора	61
77 Формула Тейлора с остатком в форме Пеано	62
78 Формула Тейлора с остатком в форме Лагранжа	63

79 Формула Тейлора для некоторых функций	64
80 Следствия формулы Тейлора с остатком в форме Лагранжа	64
81 Иррациональность числа е	65
82 Локальные максимумы и минимумы	65
83 Экстремумы функции	65
84 Достаточные условия экстремума	66
85 Выпуклость	67
86 Непрерывность и дифференциеруемость выпуклой функции	67
87 Критерии выпуклости в терминах первой и второй производных	68
88 Неравенство Йенсена	69
89 Неопределённый интеграл	69
90 Таблица интегралов	71
91 Замена переменной	72
92 Интегрирование по частям	7 3

1. Множества

Не любая совокупность элементов — множество. Про каждый объект можно сказать, принадлежит ли он множеству $(x \in A)$ или нет $(x \notin A)$.

 \mathfrak{Def} : Множество A - подмножество B, если все элементы A содержатся и в B.

$$A \subset B \stackrel{\mathrm{Def}}{\Leftrightarrow} \forall x \in A \ x \in B$$

Def: Множества называются равными, если они содержатся друг в друге.

$$A = B \stackrel{\mathrm{Def}}{\Leftrightarrow} A \subset B \land B \subset A$$

 \mathfrak{Def} : Пустое множество — это множество без элементов.

$$\forall x \, x \notin \emptyset$$

 \mathfrak{Def} : 2^A — множество всех подмножеств A.

$$2^A \stackrel{\mathrm{Def}}{=} \{B \mid B \subset A\}$$

- \mathbb{N} множество натуральных чисел.
- \mathbb{Z} множество целых чисел.
- ullet \mathbb{Q} множество рациональных чисел.
- \mathbb{R} множества вещественных чисел.
- ullet \mathbb{C} множества комплексных чисел.

Задание множеств:

- $\{a, b, c\}$
- $\{a_1, a_2, \dots, a_n\}$
- $\{a_1, a_2, ...\}$
- $\{x \in A \mid \Phi(x)\}, \Phi(x)$ условие.

Например, $\{p \in \mathbb{N} \mid p \text{ имеет ровно } 2 \text{ натуральных делителя} \}$.

Бывают некорректно заданные «множества». Например, множество художественных произведений на русском языке — плохо заданное множество. Рассмотрим $\Phi(n)$ — истина, если п нельзя записать в не более чем тридцать слов русского языка. Тогда $\{n \in \mathbb{N} \mid \Phi(n)\}$ — не множество. Если бы это было множеством, то в нём есть наименьший элемент, который описывается как «Наименьший элемент множества...»

 \mathfrak{Def} : Пересечение двух множеств — множество, состоящие из всех элементов, находящихся одновременно в обоих множествах.

$$A \cap B \stackrel{\mathrm{Def}}{=} \{x \in A \mid x \in B\}$$

 \mathfrak{Def} : Объединение двух множеств — множество, состоящее из элементов обоих множеств.

$$A \cup B \stackrel{\mathrm{Def}}{=} \{x \mid x \in A \lor x \in B\}$$

 \mathfrak{Def} : Разность множеств — это множество тех элементов, которые лежат в первом, но не во втором.

$$A \setminus B \stackrel{\mathrm{Def}}{=} \{x \in A \mid x \notin B\}$$

 \mathfrak{Def} : Симметрическя разность — объединение разностей.

$$A \triangle B \stackrel{\mathrm{Def}}{=} (A \setminus B) \cup (B \setminus A)$$

Объединение и пересечение множно записать для многих множеств.

$$\bigcup_{i \in I} A_i = \left\{x \mid \exists i \in I \colon x \in A_i\right\}; \bigcap_{i \in I} A_i = \left\{x \mid \forall i \in I \; x \in A_i\right\}$$

Свойства операций со множествами:

1. Ассоциативность

$$A \cap B = B \cap A; A \cup B = B \cup A$$

2. Коммутативность

$$(A \cap B) \cap C = A \cap (B \cap C)$$
; $(A \cup B) \cup C = A \cup (B \cup C)$

3. Рефлексивность

$$A \cap A = A; A \cup A = A$$

4. Дистрибутивность

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

5. Нейтральный элемент

$$A \cap \emptyset = \emptyset$$

$$A \cup \emptyset = A$$

Теорема 1.1. Правила де Моргана. $A, B_{\alpha}, \alpha \in I$. Тогда

$$A \setminus \bigcup_{\alpha \in I} B_{\alpha} = \bigcap_{\alpha \in I} \left(A \setminus B_{\alpha} \right) ; A \setminus \bigcap_{\alpha \in I} B_{\alpha} = \bigcup_{\alpha \in I} \left(A \setminus B_{\alpha} \right)$$

▶

$$x \in A \setminus \bigcup_{\alpha \in I} B_{\alpha} \Leftrightarrow \begin{cases} x \in A \\ x \notin \bigcup_{\alpha \in I} B_{\alpha} \Leftrightarrow \begin{cases} x \in A \\ \forall \alpha \in I \ x \notin B_{\alpha} \end{cases} \Leftrightarrow \forall \alpha \in I \begin{cases} x \in A \\ x \notin B_{\alpha} \end{cases} \Leftrightarrow x \in \bigcap_{\alpha \in I} (A \setminus B_{\alpha})$$

$$x \in A \setminus \bigcap_{\alpha \in I} B_{\alpha} \Leftrightarrow \left\{ \begin{matrix} x \in A \\ x \notin \bigcap_{\alpha \in I} B_{\alpha} \Leftrightarrow \left\{ \begin{matrix} x \in A \\ \neg \forall \alpha \in I \ x \in B_{\alpha} \end{matrix} \right. \Leftrightarrow \exists \alpha \in I \colon \left\{ \begin{matrix} x \in A \\ x \notin B_{\alpha} \end{matrix} \right. \Leftrightarrow x \in \bigcup_{\alpha \in I} (A \setminus B_{\alpha}) \right\} \right\}$$

Теорема 1.2. Обобщение дистрибутивности. $A, B_{\alpha}, \alpha \in I$. Тогда

$$A\cap\bigcup_{\alpha\in I}B_\alpha=\bigcup_{\alpha\in I}(A\cap B_\alpha)$$

$$A \cup \bigcap_{\alpha \in I} B_\alpha = \bigcap_{\alpha \in I} (A \cup B_\alpha)$$

$$x \in A \cap \bigcup_{\alpha \in I} B_{\alpha} \Leftrightarrow \left\{ \begin{matrix} x \in A \\ x \in \bigcup_{\alpha \in I} B_{\alpha} \\ \end{matrix} \Leftrightarrow \left\{ \begin{matrix} x \in A \\ \exists \alpha \in I \colon x \in B_{\alpha} \end{matrix} \Leftrightarrow \exists \alpha \in I \colon \left\{ \begin{matrix} x \in A \\ x \in B_{\alpha} \\ \end{matrix} \Leftrightarrow x \in \bigcup_{\alpha \in I} (A \cap B_{\alpha}) \right\} \right\} \right\}$$

$$x \in A \cup \bigcap_{\alpha \in I} B_{\alpha} \Leftrightarrow \begin{bmatrix} x \in A \\ x \in \bigcap_{\alpha \in I} B_{\alpha} \Leftrightarrow \begin{bmatrix} x \in A \\ \forall \alpha \in I \ x \in B_{\alpha} \end{cases} \Leftrightarrow \forall \alpha \in I \ \begin{bmatrix} x \in A \\ x \in B_{\alpha} \Leftrightarrow x \in \bigcap_{\alpha \in I} (A \cup B_{\alpha}) \end{bmatrix}$$

 \mathfrak{Def} : Упорядоченная пара $\langle a,b \rangle$ или (a,b) — объект

$$(a_1;b_1)=(a_2;b_2)\overset{\mathrm{Def}}{\Leftrightarrow}a_1=a_2\wedge b_1=b_2$$

 \mathfrak{Def} : Упорядоченная n-ка, или кортеж — объект

$$(a_1,a_2,\dots,a_n)=(b_1,b_2,\dots,b_n) \overset{\mathrm{Def}}{\Leftrightarrow} \forall i=1..n \ a_i=b_i$$

 \mathfrak{Def} : Декартого произведение множеств — множество кортежей, состоящих из элементов соответствующих множеств.

$$(a_1,a_2,\dots,a_n) \in A_1 \times A_2 \times \dots \times A_n \overset{\mathrm{Def}}{\Leftrightarrow} \forall i=1..n \; a_i \in A_i$$

2. Бинарные отношения

 \mathfrak{Def} : Отношение на множествах A и B — произвольное подмножество их декартова произведения.

$$a R b \stackrel{\mathrm{Def}}{\Leftrightarrow} (a, b) \in R$$

Def: Область определения отношения

$$\beta_R = dom_R = \{a \in A \mid \exists b \in B \colon (a,b) \in R\}$$

Def: Обсласть значения отношения

$$\rho_R = ran_R = \{ b \in B \mid \exists a \in A \colon (a, b) \in R \}$$

Def: Обратное отношение

$$R^{-1} \colon \beta_{R^{-1}} = \rho_R; \rho_{R^{-1}} = \beta_R; b\,R^{-1}\,a \stackrel{\mathrm{Def}}{\Leftrightarrow} a\,R\,b$$

Def: Композиция отношений

$$R_1\colon A\to B; R_2\colon B\to C$$

$$R_1\circ R_2=\{(a,c)\mid a\,R_1\,b\wedge b\,R_2\,c\}$$

Про значок — его использовать не будем

Пример композиции: $\langle : \mathbb{N} \to \mathbb{N}$.

$$< \circ <= \{(a,b) \mid b-a \geqslant 2\}$$

 \mathfrak{Def} : Функция (отображение) — такое отношение, что первый ключ уникален.

$$f\colon A o B$$

$$a\,fb_1\wedge a\,fb_2\Rightarrow b_1=b_2$$

$$a\,fb\stackrel{\mathrm{Def}}{\Leftrightarrow}f(a)=b$$
 $A=eta_f\quad (A-$ область определения)

Деf: Свойтва отображеий:

- 1. Рефлексивность a R a
- 2. Симметричность $a R b \Leftrightarrow b R a$
- 3. Транзитивность $a R b \wedge b R c \Rightarrow a R c$
- 4. Иррефлексивность $\neg a R a$
- 5. Антисимметричность $a R b \wedge b R a \Rightarrow a = b$

Примеры:

- $\bullet =: 1, 2, 3, 5$
- $\equiv : 1, 2, 3$
- \leq : 1, 3, 5
- <: 3, 4, 5
- $\bullet \subset :1, 3, 5$

3. Вещественные числа

 \mathfrak{Def} : Множество вещественных чисел можно определить как множество, на котором есть операции + и \times , причём:

- 1. Коммутативность $\forall a, b \ a + b = b + a; a \times b = b \times a$
- 2. Ассоциативность $\forall a, b, c \ a + (b+c) = (a+b) + c; a \times (b \times c) = (a \times b) \times c$
- 3. Нейтральный элемент $\exists o \colon \forall a \ a+o=a; \exists e \colon \forall a \ a \times e=a; o \neq e$
- 4. Обратный элемент $\forall a \exists -a \colon a+-a=o; \forall a \neq o \exists a^{-1} \colon a \times a^{-1}=a$
- 5. Дистрибутивность $\forall a, b, c \ a \times (b+c) = (a \times b) + (a \times c)$

Кроме того, есть отношения ≤ (и аналогично <, также определены обратные):

- 1. Рефлексивно
- 2. Антисимметрично
- 3. Транзитивно
- 4. Любые два элемента сравнимы
- 5. $\forall a, b, c \ a \leq b \Longrightarrow a + c \leq b + c$
- 6. $\forall a, b \ a > 0 \land b \geqslant 0 \Rightarrow ab \geqslant 0$

Также выполнена аксиома полноты: $A, B \subset \mathbb{R}, A \cup B \neq \emptyset, \forall a \in A \ \forall b \in B \ a \leqslant b$. Тогда

$$\exists c \in \mathbb{R} \colon \forall a \in A \ a \leqslant c \land \forall b \in B \ c \leqslant b$$

REM: На $\mathbb Q$ аксиома не выполняется:

$$A = \{r \in \mathbb{Q} \mid r^2 < 2\}; B = \{r \in \mathbb{Q}_+ \mid r^2 > 2\}; c = \sqrt{2} \notin \mathbb{Q}$$

Теорема 3.1. Принцип Архимеда. Пусть $x, y \in \mathbb{R}, y > 0$. Тогда

$$\exists n \in \mathbb{N} : x < ny$$

$$A \leftrightharpoons \{u \in \mathbb{R} \mid \exists n \in \mathbb{N} : u < ny\}; y \in A$$

Пусть $A \neq \mathbb{R}$. Тогда $B \leftrightharpoons \mathbb{R} - A \neq \emptyset$. Рассмотрим $a \in A; b \in B$.

$$b < a \Rightarrow b < a < ny \Rightarrow b \in A$$
 — противоречие

Таким образом

$$\forall a \in A \ \forall b \in B \ a \leqslant b$$

Тогда

$$\exists c\in\mathbb{R}\colon\forall a\in A\ a\leqslant c\wedge\forall b\in B\ c\leqslant b$$

$$c\in A\Rightarrow c+y\in A\Rightarrow c>c+y\Rightarrow y<0$$
 — противоречие

Тогда $c \in B$. Пусть $c - y \notin B$, тогда

$$c-y \in A \Rightarrow c-y < ny \Rightarrow c < (n+1)y \Rightarrow c \in A$$
 — противоречие

Значит

$$c-y \in B \Rightarrow c-y \geqslant c \Rightarrow y \leqslant 0$$
 — противоречие

Таким образом $A = \mathbb{R}$

Следствие 3.1.1.

$$\forall \varepsilon > 0 \,\exists n \in \mathbb{N} \colon \frac{1}{n} < \varepsilon$$

▶ Рассмотрим $x = 1, y = \varepsilon$ Следствие 3.1.2. $x, y \in \mathbb{R}, x < y$

$$\exists r \in \mathbb{Q} : x < r < y$$

$$y - x > 0 \Rightarrow \exists n \in \mathbb{N} \colon \frac{1}{n} < y - x$$

Покажем, что $\exists m \in \mathbb{Z} \colon m \leqslant nx < m+1$. Вообще говоря, $m \stackrel{\text{Def}}{=} \lfloor nx \rfloor$.

$$M \leftrightharpoons \{m \in \mathbb{Z} \mid m \leqslant nx\}$$

$$x \geqslant 0 \Rightarrow M \neq \emptyset$$

$$x<0\Rightarrow \exists \tilde{m}\in \mathbb{N}\colon \tilde{m}-1>n(-x)\Rightarrow -\tilde{m}\in M\Rightarrow M\neq\emptyset$$

Рассмторим y = 1; x = nx; y > 0. По принципу Архимеда

$$\exists k \in \mathbb{N} \colon k > nx$$

Тогда

$$\forall m \in M \ m < k \Rightarrow \exists m = \max M \colon m \leqslant nx < m + 1$$

$$m \leqslant nx < m + 1 \Rightarrow \frac{m}{n} \leqslant x \leqslant \frac{m + 1}{n}$$

Осталось проверить $\frac{m+1}{n} < y$.

$$\frac{m}{n} \leqslant x \land \frac{1}{n} < y - x \Rightarrow \frac{m+1}{n} < y$$

Следствие 3.1.3. $x, y \in \mathbb{R}, x < y$.

$$\exists z \in \mathbb{R} \setminus \mathbb{Q} : x < z < y$$

$$\begin{split} \sqrt{2} \in \mathbb{R} - \mathbb{Q} \\ x < y \Rightarrow x - \sqrt{2} < y - \sqrt{2} \Rightarrow \exists r \in \mathbb{Q} : x - \sqrt{2} < r < y - \sqrt{2} \Rightarrow \\ \Rightarrow \exists z = r + \sqrt{2} : z \in \mathbb{R} - \mathbb{Q} : x < z < y \end{split}$$

4. Верхняя и нижняя граница

 $\mathfrak{Def} \colon A \subset \mathbb{R}.$

 $x \in R$ — верхняя граница A, если

$$\forall a \in A : a \leqslant x$$

 $x \in R$ — нижняя граница A, если

$$\forall a \in A : a \geqslant x$$

 \mathfrak{Def} : A ограничено сверху, если

$$\exists x \in R : x$$
 — верхняя граница A

A ограничено снизу, если

$$\exists x \in R : x$$
 — нижняя граница A

A ограничено, если A ограничено сверху и снизу.

REM: Границ, если они есть, много.

 $\mathfrak{Def}\colon\ A\subset\mathbb{R},\ A$ ограничено сверху. x — супремум A, если x — наименьшая из верхних границ.

 $\mathfrak{Def}\colon\ A\subset\mathbb{R},\, A$ ограничено снизу. x — инфимум A, если x — наибольшая из нижних границ. Пример:

$$A = \left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots\right\}$$

$$\sup A = 1, \inf A = 0$$

Утверждение. N не ограничено сверху.

▶
$$x$$
 — верхняя граница $\Rightarrow \exists n \in \mathbb{N} : n > x$.

Теорема 4.1. Существование точной границы. $A \neq \emptyset$.

- 1. Если A ограничено сверху, то $\exists x = \sup A$.
- 2. Если A ограничено снизу, то $\exists x = \inf A$.

Эта теорема равносильна аксиоме полноты.

1. B — множество всех верхних границ A.

$$\forall a \in A \ \forall b \in B \ a \leqslant b \Rightarrow \exists c \in \mathbb{R} \colon \forall a \in A \ a \leqslant c \land \forall b \in B \ c \leqslant b \Rightarrow \exists \sup A = c$$

2. Рассмотрим $B = \{-a : a \in A\}$. Тогда

$$\inf A = -\sup B$$

REM: Без аксиомы полноты это неверно. Рассмотрим $A = \{x \in \mathbb{Q} : x^2 < 2\}, U = \mathbb{Q}$ Теорема 4.2. Свойство и признак точной границы.

1. А ограничено сверху. Тогда

$$b = \sup A \Leftrightarrow (\forall a \in A \ a \leqslant b \land \forall \varepsilon > 0 \ \exists a \in A \colon a > b - \varepsilon)$$

2. А ограничено снизу. Тогда

$$c = \inf A \Leftrightarrow (\forall a \in A \ a \geqslant c \land \forall \varepsilon > 0 \ \exists a \in A \colon a < c + \varepsilon)$$

$$b=\sup A\Leftrightarrow (b-$$
 верхняя граница $A\wedge \forall arepsilon>0$ $b-arepsilon-$ не верхняя граница) \Leftrightarrow $(\forall a\in A\ a\leqslant b\wedge \forall arepsilon>0\ \exists a\in A\colon a>b-arepsilon)$

5. Теорема о вложенных отрезках

Теорема 5.1. Теорема о вложенных отрезках. Вместе с теоремой Архимеда выводят полноту. $\{[a_n,b_n]\}_{i=1}^n: \forall i\in\mathbb{N}\ (a_i\leqslant a_{i+1}\wedge b_i\geqslant b_{i+1})\wedge \forall i,j\in\mathbb{N}\ a_i< b_j.$ Тогда

$$\bigcap_{i=1}^{\infty} [a_i, b_i] \neq \emptyset$$

 $ightharpoonup A = \{a_i\}, B = \{b_i\}.$ Тогда по аксиоме полноты

$$\exists c \in \mathbb{R} \colon \forall i \in \mathbb{N} \ c \in [a_i,b_i] \Rightarrow c \in \bigcap_{i=1}^{\infty} [a_i,b_i] \neq \emptyset$$

REM: Существенна замкнутость отрезков.

$$\bigcap_{n=1}^{\infty} \left(0, \frac{1}{n}\right] = \emptyset$$

REM: Не лучи.

$$\bigcap_{n=1}^{\infty} [n, +\infty) = \emptyset$$

REM: \mathbb{R} . Рассмотрим приблежения $\sqrt{2}$.

6. Метрические пространства

 $\mathfrak{Def}\colon$ Пусть есть множество X и отображение $\rho\colon X{\times}X\to [0;+\infty).$ Тогда ρ называется метрикой, если:

- 1. $\rho(x,y) = 0 \Leftrightarrow x = y$
- 2. $\rho(x, y) = \rho(y, x)$
- 3. $\rho(x,y) + \rho(y,z) \geqslant \rho(x,z)$

Также пара (X, ρ) называется метричесикм пространством.

Примеры:

- 1. Дискретная метрика $\rho(x,y) = \begin{cases} 0 & x \neq y \\ 1 & x = y \end{cases}$
- 2. $\rho(x,y) = |x-y|$
- 3. Евклидовская метрика. ρ длина отрезка на плоскости между точками
- 4. Манхеттанская метрика. $\rho((x_1, y_1), (x_2, y_2)) = |x_1 x_2| + |y_1 y_2|$
- 5. Расстояния на сфере.
- 6. Французская железнодорожная метрика. Есть центр точка O. Тогда для точек на одном луче из O расстояние $\rho(A,B) = |AB|$, иначе $\rho(A,B) = |AO| + |BO|$

7. Пространство \mathbb{R}^n , метрика

$$\rho(x,y) = \sqrt{\sum_{i=1}^{n} \left(x_i - y_i\right)^2}$$

 $\mathfrak{Def}\colon$ Пусть (X,ρ) — метрическое пространство. Тогда $(Y,\rho|_{Y\times Y})$ — подпространство X. $Y\subset X$.

 $\mathfrak{Def} \colon \ B_r(a) = \{x \in X \mid \rho(x,a) < r\}$ — открытый шар.

 $\mathfrak{Def}\colon \ \bar{B}_r(a)=\{x\in X\mid \rho(x,a)\leqslant r\}$ — замкнутый шар.

Свойства:

- 1. $B_{r_1}(a) \cap B_{r_2}(a) = B_{\min\{r_1, r_2\}}(a)$
- 2. $x \neq y \Rightarrow \exists r > 0 \colon B_r(x) \cap B_r(y) = \emptyset$

ightharpoonup Рассмотрим $r = \frac{1}{3}\rho(x,y) > 0$.

7. Неравентсва Коши-Буняковского и Минковского

Теорема 7.1. Неравенство Коши-Буняковского. $a_1, a_2, \dots a_n, b_1, b_2, \dots, b_n \in \mathbb{R}$

$$\left(\sum_{k=1}^{n} a_k b_k\right)^2 \leqslant \sum_{k=1}^{n} a_k^2 \sum_{k=1}^{n} b_k^2$$

$$f(t) \leftrightharpoons \sum_{k=1}^n (a_k t - b_k)^2 = \left(\underbrace{a_1^2 + a_2^2 + \ldots + a_n^2}_{\leftrightharpoons A}\right) t^2 - 2 \left(\underbrace{a_1 b_1 + \ldots + a_n b_n}_{\leftrightharpoons C}\right) t + \left(\underbrace{b_1^2 + \ldots + b_2^2}_{\leftrightharpoons B}\right) t + \left(\underbrace{b_1^2 + \ldots + b_2^2}_{\leftrightharpoons B}\right) t + \underbrace{a_1 b_1 + \ldots + a_n b_n}_{\leftrightharpoons B}$$

f имеет не более 1 корня, следовательно

$$(2C)^2 - 4AB \leqslant 0 \Rightarrow 4(C^2 - AB) \leqslant 0 \Leftrightarrow C^2 \leqslant AB$$

Можно считать, что все числа не равны 0 — иначе всё тривиально.

REM: Равентсво в случае, если числа пропорциональны.

 $a_i = \alpha b_i$

 \Leftrightarrow

$$C^2 = AB \Leftrightarrow$$
есть корень $t_0 \Leftrightarrow \forall a_k t_0 - b_k = 0$

Теорема 7.2. Неравенство Минковского.

$$\sqrt{\sum_{i=1}^n (a_i+b_i)^2} \leqslant \sqrt{\sum_{i=1}^k a_i^2} + \sqrt{\sum_{i=1}^k b_i^2}$$

Возведём в квадрат

$$\sqrt{\sum_{i=1}^n (a_i+b_i)^2} \leqslant \sqrt{\sum_{i=1}^k a_i^2} + \sqrt{\sum_{i=1}^k b_i^2} \Leftrightarrow \sum_{i=1}^n (a_i+b_i)^2 \leqslant A + 2\sqrt{AB} + B \Leftrightarrow A + 2\sqrt{AB} + 2\sqrt{AB} + 2\sqrt{AB} +$$

$$\Leftrightarrow A+B+2\sum_{i=1}^n a_ib_i \Leftrightarrow A+B+2\sqrt{AB} \Leftrightarrow \sum_{i=1}^n a_ib_i \leqslant \sqrt{AB} \Leftarrow$$

⇐ Неравенство Коши-Буняковского

REM: Равентсво в случае, если числа пропорциональны.

8. Открытые множества

 $\mathfrak{Def}\colon \ (X,\rho)$ — метрическое пространство. $G\subset X$ — открытое множество, если

$$\forall x \in G \,\exists r > 0 \colon B_r(x) \subset G$$

Теорема 8.1. О свойтсвах открытых множеств. Пусть (X, ρ) — метрическое пространство.

- 1. \emptyset и X открыты.
- 2. Объединение открытых открыто.
- 3. Пересечение конечного числа открытых открыто.
- 4. $B_r(a)$ открыт.

- 1. Очевидно.
- 2.

$$x\in\bigcup G_{\alpha}\Rightarrow\exists\alpha_{0}\colon x\in G_{\alpha_{0}}\Rightarrow\exists r>0:B_{r}(x)\in\bigcup G_{\alpha}$$

3. $x \in \bigcap_{k=1}^n G_k$

$$\forall k=1..n \ x \in G_k \Rightarrow \forall k=1..n \ \exists r_k > 0 \colon B_{r_k}(x) \in G_k \Rightarrow \exists r=\min r_k \colon G_r \in \bigcap_{k=1}^n G_k$$

4.

$$\begin{split} \forall x \in B_r(a) \, \exists r_x = \frac{1}{2} \left(r - \rho(a,x) \right) \\ y \in B_{r_x}(x) \Rightarrow \rho(y,x) < r_x \Rightarrow \rho(y,x) + \rho(a,x) < r_x + \rho(a,x) \Rightarrow \rho(y,a) < r_x \end{split}$$

REM:

$$\bigcap_{n=1}^{\infty} \left(0; 1 + \frac{1}{n} \right) = (0; 1]$$
 — не открытое множество

9. Внутренние точки и внутренность множества

 $\mathfrak{Def}\colon\ x\in A$ — внутренняя точка A, если $\exists r>0\colon B_r(x)\in A$

REM: x — внутренняя точка A эквивалентно тому, что в A содержится некое открытое множество, содержащее ${\bf x}.$

 \mathfrak{Def} : Внутренность множества A:

$$A^{0} = \operatorname{int} A \stackrel{\operatorname{Def}}{=} \bigcup_{\substack{G \text{ otkiputo} \\ G \subset A}} G$$

Свойства:

1. $\operatorname{int} A \subset A$

- 2. int A множество всех внутренних точек.
- $3. \, \text{int} \, A \, \text{открыто}.$
- 4. A открыто $\Leftrightarrow A = \operatorname{int} A$
- 5. $A \subset B \Rightarrow \operatorname{int} A \subset \operatorname{int} B$
- 6. $int(A \cap B) = int A \cap int B$
- 7. int int A = int A

10. Замкнутые множества

 \mathfrak{Def} : Замкнутые множество — множество, дополнение которого открыто.

Теорема 10.1. О свойствах закмнутых множеств. Пусть (X, ρ) — метрическое пространство.

- 1. \emptyset и X закмнуты.
- 2. Перечечение замкнутых замкнуто.
- 3. Объеднинение конечного числа замкнутых замкнуто.
- 4. Замкнутый шар замкнут.

- 1. Очевидно
- 2. По формулам де Моргана

$$X \setminus \bigcap_{\alpha \in I} F_\alpha = \bigcup_{\alpha \in I} \left(X \setminus F_\alpha \right)$$

- 3. По формуле де Моргана
- 4. Докажем, что $X\setminus \bar{B}_r(a)$ открыт. Рассмотрим $x\in X\setminus \bar{B}_r(a)$. Тогда по определению

$$\rho(a,x) > r$$

Покажем, что

$$B_{\rho(a,x)-r}(x)\cap \bar{B}_r(a)=\emptyset$$

Пусть $\exists y \in B_{\rho(a,x)-r}(x) \cap \bar{B}_r(a)$. Тогда

$$y \in \bar{B}_r(a) \Rightarrow \rho(a,y) \leqslant r$$

$$y \in B_{\rho(a,x)-r}(x) \Rightarrow \rho(x,y) < \rho(a,x)-r$$

$$ho(a,x) \leqslant
ho(a,y) +
ho(x,y) < r + (
ho(a,x) - r) =
ho(a,x)$$
 — противоречие

REM:

$$\bigcup_{n=1}^{\infty} \left[\frac{1}{n}; 1 \right] = (0; 1]$$

 $\mathfrak{Def}\colon\ A\subset X,\,(X,\rho).$ Тогда замыкание множества A — перечесение всех замкнутых множеств, содержащих А.

$$\operatorname{cl} A = \bigcap_{\substack{F \text{ замкнуто} \\ F \supset A}} F$$

Теорема 10.2. О связи замыкания и внутренности.

$$X \setminus \operatorname{cl} A = \operatorname{int}(X \setminus A)$$

$$X \setminus \operatorname{int} A = \operatorname{cl}(X \setminus A)$$

$$X\setminus\operatorname{cl} A=X\setminus\bigcap_{\substack{F\text{ замкнуто}\ F\supset A}}F=\bigcup_{\substack{F\text{ замкнуто}\ F\supset A}}(X\setminus F)$$

$$X\setminus F\text{ открыто}$$
 $X\setminus F\subset X\setminus A$

 $X \setminus F \subset X \setminus A$

То

$$\bigcup_{\substack{F \text{ замкнуто} \\ F \supset A}} (X \setminus F) = \bigcup_{\substack{G \text{ открыто} \\ G \subset X \setminus A}} G = \operatorname{int}(X \setminus A)$$

Аналогично

Следствие 10.2.1.

$$int A = \operatorname{cl}(X \setminus A)$$

$$\operatorname{cl} A = \operatorname{int}(X \setminus A)$$

Свойства замыкания:

- 1. $A \subset \operatorname{cl} A$
- $2. \ \mathrm{cl} \ A$ замкнуто.
- 3. A замкнуто $\Leftrightarrow A = \operatorname{cl} A$
- 4. $A \subset B \Rightarrow \operatorname{cl} A \subset \operatorname{cl} B$
- 5. $\operatorname{cl}(A \cup B) = \operatorname{cl} A \cup \operatorname{cl} B$
- 6. $\operatorname{cl}\operatorname{cl} A = \operatorname{cl} A$

11. Открытые и замкнутые множества в пространстве и подпространстве

Теорема 11.1. Существование открытого/замкнутого надмножества в надпространстве. $(X; \rho)$ — пространство, $(Y; \rho)$ — подпространство.

1. A открыто в $Y \Leftrightarrow \exists G \subset X$ — открытое в $X \colon A = G \cap Y$

2. A замкнутыо в $Y \Leftrightarrow \exists F \subset X$ — замкнутое в $X \colon A = F \cap Y$

 $1. \Rightarrow :$

$$A \text{ открыто в } Y \Leftrightarrow \forall x \in A \ \exists r_x > 0 \colon B^Y_{r_x}(x) \subset A$$

$$G \leftrightharpoons \bigcup_{x \in A} B^X_{r_x}(x) - \text{ открыто в } X$$

$$G \cap Y = \bigcup_{x \in A} \left(B^X_{r_x}(x) \cap Y \right) = \bigcup_{x \in A} B^Y_{r_x}(x) = A$$

$$x \in A \subset G \Rightarrow \exists r > 0 \colon B^X_r(x) \subset G$$

$$B^Y_r(x) = B^X_r(x) \cap Y \subset G \cap Y = A$$

 \Leftarrow :

2. Перейдём к доплнениям

Теорема 11.2. О замыканиях. $(X, \rho), A \subset X$

$$x \in \operatorname{cl} A \Leftrightarrow \forall r > 0 \ B_r(x) \cap A \neq \emptyset$$

 \blacktriangleright \Rightarrow : Пусть $\exists r > 0 \colon B_r(x) \cap A = \emptyset$. Тогда

$$B_r(x)\subset X\setminus A$$
 $X\setminus B_r(x)$ замнкуто $X\setminus B_r(x)\supset A$ $x\notin X\setminus B_r(x)$

Тогда

$$\operatorname{cl} A \subset X \setminus B_r(x)$$

Но тогда

$$x \notin \operatorname{cl} A$$

 \Leftarrow : Пусть $x \notin \operatorname{cl} A \Rightarrow \exists F \supset A \colon x \notin F \land F$ закрыто. Тогда

$$x\in X\setminus F$$
 — открытое $\Rightarrow \exists r>0\colon B_r(x)\subset X\setminus F\Rightarrow \exists r>0\colon B_r(x)\cap A=\emptyset$

Cледствие 11.2.1. U открытое $\wedge U \cap A = \emptyset \Rightarrow U \cap \operatorname{cl} A = \emptyset$

ightharpoonup Пусть $x \in U \cap \operatorname{cl} A$.

$$x \in \operatorname{cl} A \Rightarrow \forall r > 0 \ B_r(x) \cap A \neq \emptyset$$

$$x \in U \Rightarrow \exists r_0 > 0 \colon B_{r_0} \subset U$$

Ho
$$B_{r_0}(x) \cap A \neq \emptyset \Rightarrow U \cap A \neq \emptyset$$

12. Предельные точки

Def: Проколотая окрестность точки:

$$\dot{B}_r(x) = B_r(x) \setminus \{x\}$$

 \mathfrak{Def} : Точка $x \in X$ предельная у множества A, если

$$\forall r > 0 \, \dot{B}_r(x) \cap A \neq \emptyset$$

 $\mathfrak{Def}\colon A'$ — множество предельных точек. Свойства:

- 1. $\operatorname{cl} A = A \cup A'$
- 2. $A \subset B \Rightarrow A' \subset B'$
- $3. \ (A \cup B)' = A' \cup B'$

▶ ⊃:

$$A \cup B \supset A \Rightarrow (A \cup B)' \supset A'$$

$$A \cup B \supset B \Rightarrow (A \cup B)' \supset B'$$

Тогда

$$(A \cup B)' \supset A' \cup B'$$

 \subset : Пусть $x \in (A \cup B)' \land x \notin B'$.

$$x \in (A \cup B)' \Rightarrow \forall r > 0 \, B_r(x) \cap (A \cup B) \neq \emptyset$$

$$x \not \in B' \Rightarrow \exists r_0 > 0 \colon \dot{B}_{r_0}(x) \cap B = \emptyset \Rightarrow \forall r \leqslant r_0 \, \dot{B}_r(x) = \emptyset$$

Тогда

$$\forall r>0\:\dot{B}_r(x)\cap A\neq\emptyset\Rightarrow x\in A'$$

Теорема 12.1. Об окрестности предельной точки.

$$x \in A' \Leftrightarrow \forall r > 0 \, |B_r(x) \cap A| = \infty$$

 $x \in A' \Rightarrow \dot{B}_r(x) \cap A \neq \emptyset \Rightarrow \exists y_1 \in A \colon y_1 \neq x \land y \in B_r(x)$

Тогда

$$\dot{B}_{\rho(x,y_1)}\cap A\neq\emptyset\Rightarrow\exists y_2\in A\colon y_2\neq x\wedge y_2\neq y_1\wedge y\in B_{\rho(x,y_1)}$$

Тогда рассмотрим

$$\{y_i\}_{i=1}^\infty \colon y_i \neq y_j \land y_i \neq x \land y_i \in A$$

Следствие 12.1.1. $|A| < \infty \Rightarrow A' = \emptyset$

13. Супремум и инфимум замкнутых множеств

Теорема 13.1. О точной границе замкнутого множества.

A ограниченно сверху и замкнуто $\Rightarrow \sup A \in A$

A ограниченно снизу и замкнуто \Rightarrow inf $A \in A$

$$ightharpoonup a = \sup A$$
. Тогда

$$\forall x \in A \ x \leqslant a \land \forall \varepsilon > 0 \ \exists x \in A \colon x > a - \varepsilon$$

Пусть $a \notin A$. Рассмотрим $\dot{B}_r(a) = (a-r, a+r) \setminus \{a\}$.

$$\dot{B}_r(a) \cap A \neq \emptyset \Rightarrow x \in A' \Rightarrow x \in A$$

14. Предел последовательности

 \mathfrak{Def} : Пусть есть пространство (X,ρ) и последовательность (x_i) . Тогда

$$x^* = \lim_{n \to \infty} x_n \overset{\mathrm{Def}}{\Leftrightarrow} x^* \in X \land \forall \varepsilon > 0 \, \exists N \colon \forall n \geqslant N \; \rho(x^*; x_i) < \varepsilon$$

Примеры:

- $\lim_{n\to\infty} x = x$
- \mathbb{R} : $\lim_{n\to\infty}\frac{1}{n}=0$

REM: Определение зависит от метрического пространства, в котором мы находимся. Последнего предела на $(0; +\infty)$ нет. А на метрике

$$\rho(x;y) = \begin{cases} 0 & x = y \\ 1 & x \neq y \end{cases}$$

предел есть только у стационарных последовательностей.

Теорема 14.1. Свойства предела.

- 1. $x^* = \lim_{n \to \infty} x_n \Leftrightarrow$ каждая окрестность x^* содержит всю последовательность с некотрого элемента
- $2. \ x^* = \lim\nolimits_{n \to \infty} x_n \wedge x^{**} = \lim\nolimits_{n \to \infty} x_n \Rightarrow x^* = x^{**}$
- 3. $\exists x^* = \lim_{n \to \infty} x_n \Rightarrow (x_n)$ ограниченна
- $4.\ x\in A'\Rightarrow \exists (x_n)\subset A\colon \lim\nolimits_{n\to\infty}x_n=x$

1. \Rightarrow : Пусть $x^* \in U$ — открытое множество. Тогда

$$\exists r>0\colon B_r(x^*)\subset U$$

$$\forall \varepsilon > 0 \ \exists N \colon \forall n \geqslant N \ \rho(x^*; x_n) < \varepsilon \Rightarrow \exists N \colon \forall n \geqslant N \ x_n \in U$$

 $\Leftarrow: U \leftrightharpoons B_{\varepsilon}(x^*).$

$$\forall \varepsilon > 0 \; \exists N \colon \forall n \geqslant N \; x_n \in U \Rightarrow x_* = \lim_{n \to \infty} x_n$$

2. Пусть $\varepsilon \leftrightharpoons \frac{\rho(x^*;x^{**})}{2} > 0$

$$x^* = \lim_{n \to \infty} x_n \Rightarrow \exists N_1 \colon \forall n \geqslant N_1 \, \rho(x^*; x_n) < \varepsilon$$

$$x^{**} = \lim_{n \to \infty} x_n \Rightarrow \exists N_2 \colon \forall n \geqslant N_2 \, \rho(x^{**}; x_n) < \varepsilon$$

Тогда

$$\begin{split} \forall n\geqslant \max\{N_1;N_2\} \left\{ \begin{array}{l} \rho(x^*;x_n)<\varepsilon\\ \rho(x^{**};x_n)<\varepsilon \end{array} \right. \Rightarrow \\ \Rightarrow 2\varepsilon = \rho(x^*;x^{**})\leqslant \rho(x^*;x_n)+\rho(x^{**};x_n)<2\varepsilon \end{split}$$

3. $x^* = \lim_{n \to \infty} x_n \Rightarrow \exists N \colon \forall n \geqslant N \ \rho(x^*; x_n) < 1.$ Рассмотрим

$$R = 1 + \max_{n < N} \{\rho(x^*; x_n)\}$$

Тогда

$$\forall n \; x_n \in B_R(x^*)$$

4. $x \in A'$. Рассмотрим

$$\begin{split} x_1 &\in \dot{B}_1(x) \cap A \neq \emptyset \\ x_2 &\in \dot{B}_{\min\{\frac{1}{2};\rho(x;x_1)\}}(x) \cap A \neq \emptyset \\ x_3 &\in \dot{B}_{\min\{\frac{1}{3};\rho(x;x_2)\}}(x) \cap A \neq \emptyset \\ &\vdots \\ x_n &\in \dot{B}_{\min\{\frac{1}{n};\rho(x;x_n)\}}(x) \cap A \neq \emptyset \end{split}$$

Тогда

$$\forall n\geqslant N\; \rho(x;x_n)<\frac{1}{N}\Rightarrow x=\lim_{n\to\infty}x_n$$

REM: В пункте 4 можно выбрать различные x_n .

 REM : Если x_n — различные и x^* — их предел, то $x^* \in \{x_n\}'$

REM:

$$x=\lim_{n\to\infty}x_n\wedge x_n\in A\Rightarrow x\in\operatorname{cl} A$$

Далее будем работать с $(\mathbb{R}; |x-y|)$.

15. Предельный переход в неравенстве

Теорема 15.1. Предельный переход в неравенстве. Пусть $x_n,y_n\in\mathbb{R}; x=\lim x_n; y=\lim y_n; x_n\leqslant y_n$ (или $x_n< y_n$). Тогда $x\leqslant y$.

ightharpoonup Пусть $y < x; \ \varepsilon \stackrel{x}{\leftrightharpoons} \frac{x-y}{2}$. Тогда

$$\exists N_1: \forall n \geqslant N_1 \, |x-x_n| < \varepsilon$$

$$\exists N_2: \forall n\geqslant N_2 \left|y-y_n\right|<\varepsilon$$

Тогда

$$\forall n\geqslant \max\{N_1,N_2\}\,x_n>x-\varepsilon=y+\varepsilon>y_n$$

REM: Понятно, что можно потребовать отношение между последовательностями только с некоторого номера.

REM: Строгие неравенства не сохраняются.

Следствие 15.1.1. $x_n \leqslant b \Rightarrow x \leqslant b$

Следствие 15.1.2. $x_n \geqslant a \Rightarrow x \geqslant a$

Chedemeue 15.1.3. $x_n \in [a;b] \Rightarrow x \in [a;b]$

16. Теорема о двух миллиционерах

Теорема 16.1. О двух миллиционерах. Пусть $x_n \leqslant y_n \leqslant z_n$ и $\lim x_n = \lim z_n = l$. Тогда $\lim y_n = l$.

 \blacktriangleright Выберем $\varepsilon > 0$.

$$\exists N_1 \colon \forall n \geqslant N_1 x_n > l - \varepsilon$$

$$\exists N_2 \colon \forall n \geqslant N_2 z_n < l + \varepsilon$$

Тогда

$$\exists N = \max\{N_1, N_2\} \colon \forall n \geqslant N \ l - \varepsilon < x_n \leqslant y_n \leqslant z_n < l + \varepsilon$$

Тогда $\lim y_n = l$

Следствие 16.1.1. $\lim z_n = 0 \land |y_n| \leqslant z_n \Rightarrow \lim y_n = 0$

Cледствие 16.1.2. Если $\lim x_n = 0$, а y_n ограниченна, то $\lim x_n y_n = 0$.

17. Предел монотонной последовательности

 \mathfrak{Def} : (x_n) нестрого монотонно возрастает, если

$$x_1 \leqslant x_2 \leqslant x_3 \leqslant \cdots$$

 (x_n) строго монотонно возрастает, если

$$x_1 < x_2 < x_3 < \cdots$$

 (x_n) нестрого монотонно убывает, если

$$x_1 \geqslant x_2 \geqslant x_3 \geqslant \cdots$$

 (x_n) строго монотонно убывает, если

$$x_1 > x_2 > x_3 > \cdots$$

Теорема 17.1. Теорема Вейерштрасса. Монотонная последовательность ограниченна тогда и только тогда, когда имеет предел.

▶ ⇐: Очевидно.

 \Rightarrow : Пусть (x_n) возрастает. Она ограниченна, значит есть супремум. Докажем, что это и есть предел. Возьмём $\varepsilon>0$.

$$a = \sup\{x_n\} \Rightarrow \exists x_k \colon x_k > x - \varepsilon \Rightarrow a - \varepsilon < x_k \leqslant x_{k+1} \leqslant \ldots \leqslant a$$

Тогда

$$\forall n \geqslant k |x_n - a| < \varepsilon$$

18. Конечное векторное пространство

 $\mathfrak{Def}\colon$ Вектор — кортеж $x=(x_1,x_2,\dots,x_d)\in\mathbb{R}^d.$ Операция сложения

$$+\colon \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^d; x+y = (x_1+y_1, x_2+y_2, \dots, x_d+y_d)$$

и умножения

$$\times : \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}^d; \lambda x = (\lambda x_1, \lambda x_2, \dots, \lambda x_n)$$

- 1. Сложение
 - (а) Коммутативно
 - (b) **Ассоциативно**
 - (c) Существует ноль $\vec{0} = \underbrace{(0,0,\ldots,0)}_d$
 - (d) Существует обратный элемент
- 2. $\alpha(x+y) = \alpha x + \alpha y$
- 3. $(\alpha + \beta)x = \alpha x + \beta x$
- 4. $(\alpha\beta)x = \alpha(\beta x)$
- 5. 1x = x

Def: Общее определение векторного пространства —

" + " :
$$X + X \to X$$

"
$$\times$$
": $\mathbb{R} \times X \to X$

Обладает свойствами 1-4 и 1X = X

Def: Скалярное произведение векторов (евклидово):

$$\langle x, y \rangle = \sum_{i=1}^{d} x_i y_i$$

Свойства:

1.
$$\langle x, x \rangle \geqslant 0; \langle x, x \rangle = 0 \Leftrightarrow x = \vec{0}$$

- 2. $\langle \lambda x, y \rangle = \lambda \langle x, y \rangle$
- 3. $\langle x, y \rangle = \langle y, x \rangle$
- 4. $\langle x+y,z\rangle = \langle x,z\rangle + \langle y,z\rangle$

 \mathfrak{Def} : Общее определение скалярного произведения: X — веторное пространство. Задана операция $\langle x,y \rangle$: $X \times X \to \mathbb{R}$ обладающая указынными свойствами. Например, если приписать в определение положительную константу — ничего не поменяется.

Def: (Евклидова) норма:

$$||x|| = \sqrt{\langle x, x \rangle}$$

1.
$$||x|| \ge 0$$
; $||x|| = 0 \Leftrightarrow x = \vec{0}$

- $2. \|\lambda x\| = |\lambda| \|x\|$
- 3. $|\langle x,y\rangle|\leqslant \|x\|\|y\|$ (нер-во Коши–Вуняковкского)
- 4. $||x + y|| \le ||x|| + ||y||$ (нер-во треугольника)
- 5. $||x-z|| \le ||x-y|| + ||y-z||$ (нер-во Минковского)
- 6. $||x y|| \ge |||x|| ||y|||$
 - $\|x-y\| = \|y-x\|$. Таким образом достаточно показать, что

$$||x - y|| \geqslant ||x|| - ||y|| \Leftarrow ||x - y|| + ||y|| \geqslant ||x||$$

А это неравнство треугольника.

7. $\rho(x,y) = \|x-y\|$ — метрика. Это ровно евклидово пространтво на \mathbb{R}^d .

 \mathfrak{Def} : Общее определение нормы: $||x||: X \Rightarrow \mathbb{R}$, обладает свойствами 1, 2 и 4. Свойство 3 касается скаляроного произведения, которого может и не быть.

Примеры:

1.
$$||x||_1 = \sum_{k=1}^d |x_k|$$

2.
$$||x||_{\infty} = \max_{k=1..d} |x_k|$$

$$\|x+y\| = \max_{k=1..d} |x_k+y_k| \leqslant \max_{k=1..d} (|x_k|+|y_k|) = |x_{k_0}|+|y_{k_0}| \leqslant \|x\|+\|y\|$$

3.

$$||x||_d = \sqrt[p]{\sum_{k=1}^d |x_k|^p}$$

19. Арифметические свойства предела

Пусть есть (\mathbb{R}^d, ρ) со стандартной метрикой и нормой.

Утверждение. $x_n \in \mathbb{R}^d$.

$$\lim_{n\to\infty}x_n=\vec{0}\Leftrightarrow \lim_{n\to\infty}\|x_n\|=0$$

>

$$\lim x_n = 0 \Leftrightarrow \forall \varepsilon > 0 \, \exists N \colon \forall n > N \, \left\| x_n \right\| < \varepsilon \Leftrightarrow \lim \left\| x_n \right\| = 0$$

 $REM:\ A\subset\mathbb{R}^d$ ограниченно $\Leftrightarrow\exists M\colon\forall x\in A\ \|x\|\leqslant M$

Теорема 19.1. Арифметические свойства предела. $x_n,y_n\in\mathbb{R}^d,\,\lambda\in\mathbb{R},\,\lim x_n=x_0,\,\lim y_n=y_0,\,\lim\lambda=\lambda_0.$

- 1. $\lim(x_n + y_n) = x_0 + y_0$
- $2. \ \lim (\lambda x_n) = \lambda_0 x_0$
- 3. $\lim(x_n y_n) = x_0 y_0$
- 4. $\lim \langle x_n, y_n \rangle = \langle x_0, y_0 \rangle$

5. $\lim \|x_n\| = \|x_0\|$

$$\begin{split} &\forall \varepsilon > 0 \; \exists N_1 \colon \forall n > N_1 \, \|x_n - x_0\| < \varepsilon \\ &\forall \varepsilon > 0 \; \exists N_2 \colon \forall n > N_2 \, \|y_n - y_0\| < \varepsilon \\ &\forall \varepsilon > 0 \; \exists N_3 \colon \forall n > N_3 \, |\lambda - \lambda_0| < \varepsilon \end{split}$$

1.

$$\forall \varepsilon > 0 \ \begin{cases} \|x_n - x_0\| < \varepsilon \\ \|y_n - y_0\| < \varepsilon \end{cases} \ \Rightarrow \|x_n + y_n - x_0 - y_0\| \leqslant \|x_n - x_0\| + \|y_n - y_0\| < \varepsilon + \varepsilon = 2\varepsilon$$

2.

$$\begin{split} \|\lambda_n x_n - \lambda_0 x_0\| &= \|\lambda_n x_n - \lambda_n x_0 + \lambda_n x_0 - \lambda_0 x_0\| \leqslant \|\lambda_n x_n - \lambda_n x_0\| + \|\lambda_n x_0 - \lambda_0 x_0\| = \\ &= |\lambda_n| \|x_n - x_0\| + |\lambda_n - \lambda_0| \|x_0\| \leqslant M \|x_n - x_0\| + |\lambda_n - \lambda_0| \|x_0\| \end{split}$$

Но тогда

$$\forall n > \max N_1, N_3 \ \begin{cases} \|x_n - x_0\| < \frac{\varepsilon}{M} \\ |\lambda_n - \lambda_0| < \frac{\varepsilon}{\|x_0\|} \end{cases} \ \Rightarrow \|\lambda_n x_n - \lambda_0 x_0\| < \varepsilon$$

3. Следствие 1 и 2

4.
$$x_n = \left(x_n^{(1)}, x_n^{(2)}, \dots, x_n^{(d)}\right); y_n = \left(y_n^{(1)}, y_n^{(2)}, \dots, y_n^{(d)}\right)$$
 Это докажем позже

5.

$$0 \leqslant |\|x_n\| - \|x_0\|| \leqslant \|x_n - x_0\| \longrightarrow 0 \Rightarrow \|x_n\| - \|x_0\| \longrightarrow 0 \Rightarrow \|x_n\| \longrightarrow \|x_0\|$$

Теорема 19.2. Свойства предела на вещественных. $x_n,y_n\in\mathbb{R};\lim x_n=x_0;\lim y_n=y_0$

1.
$$\lim(x_n + y_n) = x_0 + y_0$$

$$2. \ \lim x_n y_n = x_0 y_0$$

3.
$$\lim(x_n - y_n) = x_0 - y_0$$

$$4.\ \lim |x_n|=|x_0|$$

5. Если
$$y_n, y_0 \neq 0$$
, то $\lim \frac{x_n}{y_n} = \frac{x_0}{y_0}$

ightharpoonupДокажем, что $\lim \frac{1}{y_n} = \frac{1}{y_0}$.

$$\left|\frac{1}{y_n} - \frac{1}{y_0}\right| = \frac{|y_n - y_0|}{|y_n||y_0|} \leftrightharpoons A$$

$$\exists N_1 \colon \forall n > N_1 \, |y_n - y_0| < \frac{|y_0|}{2} \Rightarrow |y_n| \geqslant |y_0| - |y_0 - y_n| > |y_0| - \frac{|y_0|}{2} = \frac{|y_0|}{2}$$

Тогда

$$A < \frac{|y_n - y_0|}{\frac{|y_0|}{2}|y_0|} < \frac{\frac{\varepsilon |y_0|^2}{2}}{\frac{|y_0|}{2}|y_0|}$$

20. Покоординатная сходимость

 $\mathfrak{Def}\colon\ \{x_n\}$ — последовательность в $\mathbb{R}^d.$ Тогда $\{x_n\}$ сходится в x_0 покоординатно, если

$$x_n = \{x_n^{(1)}, x_n^{(2)}, \dots, x_n^{(d)}\} \colon \lim x_n^{(i)} = x_0^i$$

Теорема 20.1. О сходимости покоординатно. $\{x_n\}$ сходится тогда и только тогда, когда последовательность сходится покоординатно.

$$\left| x_n^{(i)} - x_0^{(i)} \right| \leqslant \sqrt{\sum_{i=1}^d \left(x_n^{(i)} - x_0^{(i)} \right)^2} \leqslant \sum_{i=1}^d \left(x_n^{(i)} - x_0^{(i)} \right)$$

 $\mathit{Cnedcmeue}\ 20.1.1.\ x_n\to x_0, y_n\to y_0.$ Тогда $\langle x_n,y_n\rangle\to\langle x_0,y_0\rangle$

$$\left. \begin{array}{l} x_n \rightarrow x_0 \Rightarrow x_n^{(i)} \rightarrow y_n^{(i)} \\ y_n \rightarrow y_0 \Rightarrow y_n^{(i)} \rightarrow y_0^{(i)} \end{array} \right\} \Rightarrow x_n^{(i)} y_n^{(i)} \rightarrow x_0^{(i)} y_0^{(i)}$$

Тогда

$$\sum_{i=1}^d x_n^{(i)} y_n^{(i)} \to \sum_{i=1}^d x_0^{(i)} y_0^{(i)} \Leftrightarrow \langle x_n, y_n \rangle \to \langle x_0, y_0 \rangle$$

21. Бесконечно малые и большие

Def:

$$\begin{split} & \lim x_n = +\infty \overset{\mathrm{Def}}{\Leftrightarrow} \forall E \; \exists N \colon \forall n > N \; x_n > E \\ & \lim x_n = -\infty \overset{\mathrm{Def}}{\Leftrightarrow} \forall E \; \exists N \colon \forall n > N \; x_n < E \\ & \lim x_n = \infty \overset{\mathrm{Def}}{\Leftrightarrow} \forall E \; \exists N \colon \forall n > N \; |x_n| > E \end{split}$$

REM:

$$\left[\begin{array}{l} \lim x_n = +\infty \\ \lim x_n = -\infty \end{array}\right. \Rightarrow \lim x_n = \infty$$

Также заметим, что обратное неверно $(x_n = (-1)^n n)$.

REM: $\lim x_n = \infty \Rightarrow x_n$ неограниченна

 REM : Единтсвенность предела справедлива и расширенная на $\pm\infty$.

REM: Теорема о двух миллиционерах справедлива и для бесконечно больших.

REM: $\bar{\mathbb{R}} = \mathbb{R} \cup \{+\infty, -\infty\}$

$$1. \ \pm c + \pm \infty = \pm \infty$$

$$2. \pm c - \pm \infty = \mp \infty$$

3.
$$c > 0$$
: $\pm \infty \times c = \pm \infty$

4.
$$c < 0$$
: $\pm \infty \times c = \mp \infty$

5.
$$c > 0$$
: $\frac{\pm \infty}{c} = \pm \infty$

6.
$$c < 0$$
: $\pm \infty = \mp \infty$

7.
$$\frac{c}{+\infty} = 0$$

8.
$$(+\infty) + (+\infty) = +\infty$$

9.
$$(+\infty) - (-\infty) = +\infty$$

10.
$$(-\infty) + (-\infty) = -\infty$$

11.
$$(-\infty) - (+\infty) = -\infty$$

12.
$$\pm \infty \times (+\infty) = \pm \infty$$

13.
$$+\infty \times (-\infty) = \mp \infty$$

Def: Последовательность называют бесконечно большой, если её предел бесконечнен.

Def: Последовательность называют бесконечно малой, если её предел равен нулю.

22. Связь между бесконечно большими и малыми

Теорема 22.1. О связи бесконечно больших и малых. Пусть $x_n \neq 0$. Тогда

$$x_n \to \infty \Leftrightarrow \frac{1}{x_n} \to 0$$

$$x_n \to \infty \Leftrightarrow \forall E > 0 \, \exists N \colon \forall n > N \, \left| x_n \right| > E \Leftrightarrow \forall \varepsilon > 0 \, \exists N \colon \forall n > N \, \left| \frac{1}{x_n} \right| < \varepsilon \Leftrightarrow \frac{1}{x_n} \to 0$$

Теорема 22.2. Об арифметических действиях с бесконечно малыми. Пусть $\{x_n\}, \{y_n\}$ бесконечно малые, $\{z_n\}$ ограниченна. Тогда

- 1. $x_n \pm y_n$ бесконечно малая
- $2. \ x_n z_n$ бесконечно малая

Теорема 22.3. Об арифметических действиях с бесконечно большими.

1.
$$x_n \to +\infty \land y_n$$
 ограниченна снизу $\Rightarrow x_n + y_n \to +\infty$

2.
$$x_n \to -\infty \wedge y_n$$
ограниченна сверху $\Rightarrow x_n + y_n \to -\infty$

3.
$$x_n \to \infty \land y_n$$
 ограниченна $\Rightarrow x_n + y_n \to +\infty$

4.
$$x_n \to \pm \infty \land y_n \geqslant a > 0 \Rightarrow x_n y_n \to +\infty$$

5.
$$x_n \to \pm \infty \land y_n \leqslant a < 0 \Rightarrow x_n y_n \to -\infty$$

6.
$$x_n \to \infty \land |y_n| \geqslant a > 0 \Rightarrow x_n y_n \to \infty$$

7.
$$x_n \to a \neq 0 \land y_n \to 0 \land y_n \neq 0 \Rightarrow \frac{x_n}{y_n} \to \infty$$

8.
$$x_n$$
ограниченна
 $\wedge \, y_n \to \infty \Rightarrow \frac{x_n}{y_n} \to 0$

9. $x_n \to \infty \land y_n$ ограниченна $\land y_n \neq 0 \Rightarrow \frac{x_n}{y_n} \to \infty$

REM:

$$\begin{split} \lim x_n &= l \in \bar{\mathbb{R}} \wedge l > 0 \Rightarrow \exists a > 0 \colon \exists N \colon \forall n > N \ x_n \geqslant a \\ \lim x_n &= l \in \bar{\mathbb{R}} \wedge l < 0 \Rightarrow \exists a < 0 \colon \exists N \colon \forall n > N \ x_n \leqslant a \end{split}$$

23. Компактность

 \mathfrak{Def} : Множество A имеет покрытие множествами B_{α} , если $A\subset \bigcup_{\alpha\in A}B_{\alpha}$.

 \mathfrak{Def} : Множество A имеет открытое покрытие открытыми множествами B_{α} , если $A \subset \bigcup_{\alpha \in A} B_{\alpha}$.

 \mathfrak{Def} : Множество A компактно, если из любого его открытого покрытия можно выбрать конечное подкокрытие.

$$\forall B_{\alpha} \colon K \subset \bigcup_{\alpha \in A} B_{\alpha} \, \exists \alpha_1, \alpha_2, \dots, \alpha_n \colon K \subset \bigcup_{i=1}^n B_{\alpha_i}$$

Теорема 23.1. Компактность и подпространства. Пусть (X, ρ) — метрическое пространство, $K \subset Y \subset X$. Тогда

$$K$$
 компактно в $(X, \rho) \Leftrightarrow K$ компактно в (Y, ρ)

 \blacktriangleright \Rightarrow : Пусть B_{α} — открытое в Y, что

$$K\subset\bigcup_{\alpha\in A}B_\alpha=\bigcup_{\alpha\in A}(G_\alpha\cap Y)\subset\bigcup_{\alpha\in A}G_\alpha$$

Тогда можно заменить покрытие в Y покрытием соотвествующими множествами в X, выбрать конечное подпокрытие, а потом перейти обратно в Y.

$$\Leftarrow$$
: Пусть $K = \bigcup_{\alpha \in I} G_{\alpha}$. Тогда

$$K = K \cap Y \subset \left(\bigcup_{\alpha \in I} G_\alpha\right) \cap Y = \bigcup_{\alpha \in I} \left(G_\alpha \cap Y\right)$$

Получим покрытие в пространстве Y, в нём есть конечное подпокрытие. Выберем соответствующие шарики из X.

REM: Например, (0,1) не компактно. Например, из

$$\bigcup_{i=2}^{\infty} \left(\frac{1}{i}, 1\right)$$

не выбрать.

24. Свойства компактного множества

Теорема 24.1. Свойства компактного множества. Если K компактно, то K замкнуто и ограниченно.

$$K\subset \bigcup_{n=1}^\infty B_n(x)\Rightarrow K\subset \bigcup_{i=1}^k B_{r_i}(x)\Rightarrow K\subset B_R(x)\Leftrightarrow K$$
 ограниченно

Возьмём произвольный $a \notin K$. Тогда

$$K \subset \bigcup_{x \in K} B_{\frac{1}{2}\rho(a,x)}(x) \Rightarrow K \subset \bigcup_{i=1}^k B_{\frac{1}{2}\rho(a,x_i)}(x_i)$$

Ho $(r \leftrightharpoons \min_{i=1}^k \left\{ \frac{1}{2} \rho(a, x_i) \right\})$

$$\forall i=1..k\ B_r(a)\cap B_{\frac{1}{2}\rho(a,x_i)}(x_i)=\emptyset \Rightarrow B_r(a)\cap \bigcup_{i=1}^k B_{\frac{1}{2}\rho(a,x_i)}(x_i)=\emptyset$$

Но $K\subset\bigcup_{i=1}^kB_{\frac{1}{2}\rho(a,x_i)}(x_i)$. Т. о. $B_r(a)\cap K=\emptyset$. **Теорема 24.2. Признак компактного множества.** Замкнутое подмножество компактного компактно.

ightharpoonup Добавим к покрытию подмножества $X\setminus K_1$.

25. Теорема о пересечение семейства компактов

Теорема 25.1. Пересечение компактных. Дан набор компактных множеств, любое конечное пересечение которых не пусто. Тогда их пересечение не пусто.

 $ightharpoonup K_0$ — любое их них. Пусть пересечение всех пусто.

$$\bigcap_{\alpha \in I} K_{\alpha} = \emptyset$$

Тогда

$$\bigcup_{\alpha \in I} (X \setminus K_{\alpha}) \supset K_0$$

Но тогда можно выбрать конечное покрытие. Тогда

$$\bigcup_{i=1}^k \left(X \setminus K_{x_i} \right) \supset K_0$$

Но тогда

$$\bigcap_{i=0}^k K_{x_i} = \emptyset$$
 противоречие

Следствие 25.1.1. Пусть есть цепочка вложенных непустых компактных. Тогда их пересечение не пусто.

26. Теорема о вложенных параллелепипедах

 \mathfrak{Def} : Параллелепипедом на \mathbb{R}^d и $a,b\in\mathbb{R}^d$ назовём

$$[a,b]=\left\{x\in\mathbb{R}^d\mid \forall i=1..d\, a_i\leqslant x_i\leqslant b_i
ight\}$$
 (закрытый)

$$(a,b) = \left\{x \in \mathbb{R}^d \mid \forall i = 1..d \, a_i \leqslant x_i \leqslant b_i \right\}$$
 (открытый)

Теорема 26.1. О вложенных параллелепипедах. $P_1 \supset P_2 \supset P_3 \supset \dots$ имеют непустое пересечение.

Применим теорему о вложенных отрезках по каждой координате.

27. Теорема Гейне-Бореля

Теорема 27.1. Теорема Гейне-Бореля. Замкнутый куб компактен

$$I = \left\{ x \in \mathbb{R}^d \mid \forall i = 1..d \, 0 \leqslant x_i \leqslant a \right\}$$

Рассмотрим произвольное покрытие. Пусть из него нельзя выбрать конечное подпокрытие. Тогда разобъём куб по кажому измерению пополам. Хотя бы один из результирующих не покрываем. Повторим процесс до бесконечности. У них есть точка в пересечении. Но она тогда есть покрывающее её множество. Оно открыто, а значит оно покроет ещё и некоторый хвост подкубов. Ну а тогда возьмём его и все вышестоящие покрытия. Результат конечен и покрыл куб.

28. Подпоследовательность

Деf: Подпоследовательность:

$$\left\{x_{n_i}\right\}_{i=1}^{\infty}; n_i \uparrow$$

Теорема 28.1. Предел подпоследовательности.

Подпоследовательность имеет тот же предел.

Объединение 2 подпоследовательностей с общим пределом имеет тот же предел.

29. Секвенциальная компактность

Теорема 29.1. Компактность в \mathbb{R}^d . Следующее в \mathbb{R}^d равносильно:

- 1. Компактно
- 2. Замкнуто и ограниченно
- 3. Для любой последовательности в множестве можно выбрать подпоследовательность, сходящуюсю к некоторой точке множества (секвенциально компактно)
- $ightharpoonup 2 \Rightarrow 1$: ограниченно, значит можно его ограничить кубом, значит оно подмножество компактного и закрыто, значит компактно.
- $1\Rightarrow 3$: Возьмём последовательность $\{x_n\} \leftrightharpoons E$ элементов множества F. Если множество элементов E конечно, то какой-то элемент повторился бесконечно. Возьмём новую стационарную последовательность ровно из этого элемента, имеющую предел. Если же оно бесконечно, докажем, что у него есть предельная точка.

Пусть ни одна точка не предельна. Значит

$$\forall x \in X \, \exists r_x > 0 \colon \dot{B}_r \ (x) \cap F = \emptyset$$

Но тогда возьмём покрытие

$$\bigcup_{x \in X} B_{r_x}(x)$$

В нём есть конечное подпокрытие. Возьмём его

$$\bigcup_{i=1}^k \dot{B}_{r_{y_i}}\supset K\supset E$$

Но также

$$\bigcup \dot{B}_{r_{y_i}} \cap E = \emptyset$$

Значит

$$E \subset \bigcup_{i=1}^k \{y_i\}$$

Получили, что E конечное.

Таким образом предельная точка существует, а значит можно выбрать подпоследовательность можно.

 $3\Rightarrow 2$: Пусть K не замкнуто. Возьмём предельную точку, которой нет в K. Значит есть последовательность, сходящаяся к ней. Из неё нельзя выбрать подпоследовательность, сходящуюся к элементу K.

Пусть K не ограничено. Значит есть точка, не лежащая в данном шарике.

$$\begin{split} K \not\subset B_1(a) \Rightarrow \exists x_1 \colon \rho(x_1,a) > 1 \\ K \not\subset B_{\rho(a,x_1)+1}(a) \Rightarrow \exists x_2 \colon \rho(x_2,a) > \rho(x_1,a) + 1 \\ \vdots \end{split}$$

Рассмотрим сходящуюся подпоследовательность. Она ограничена шариком радиуса R. Но

$$\begin{split} \rho(a,x_n) > \rho(a,x_{n-1}) + 1 > \cdots > n \\ \\ R > \rho\left(b,x_{n_k}\right) > \rho\left(a,x_{n_k}\right) + \rho(a,b) > n_k + \rho(a,b) \to \infty \end{split}$$

Значит K ограниченно.

 $REM: 1 \Rightarrow 3; 3 \Rightarrow 2; 1 \Rightarrow 2$ справедливы для всех пространств. $2 \Rightarrow 1$ ломается, например, на $\mathbb R$ с дискретной метрикой.

30. Теорема Больцано-Вейерштрасса и другие следствия

 $Cnedcmbue\ 30.0.1.\ \ {\rm B}\ \mathbb{R}^d$ компактность K равносильна наличию предельной точки для любого подмножества.

▶ В одну сторону просто по теореме. Обратно: возьмём часть доказательства, объясняющее взятие подпоследовательности.

 $Cnedcmbue\ 30.0.2.$ Теорема Больцано-Вейерштрасса. Из любой ограниченной последовательности в \mathbb{R}^d можно выбрать сходящуюся подпоследовательность.

▶ Множество значений ограниченно, значит его замыкание компактно, значит в компактном есть сходящаяся подпоследовательность.

Следствие 30.0.3. В любой последовательности в \mathbb{R}^d есть сходящаяся в \bar{R} подпоследовательность.

► Если ограничена, то см. предыдущее. Иначе она стремится к бесконечности. Тогда выберем бесконечную подпоследовательность, стремящуюся к бесконечности. В ней бесконечное число положительных или бесконечное число отрицательных.

31. Диаметр множества

Def: Диаметр множеста:

$$\operatorname{diam} A = \sup \rho(x, y)$$

Теорема 31.1. Свойства диаметра.

1. $\operatorname{diam} E = \operatorname{diam} \operatorname{cl} E$

2. $K_1\supset K_2\supset K_3\dots$ (последовательность вложенных компактов); diam $K_n\to 0\Rightarrow\bigcap K_i$ — одноточечно

1.

$$\begin{split} E &\subset \operatorname{cl} E \Rightarrow \operatorname{diam} E \leqslant \operatorname{diam} \operatorname{cl} E \\ d &= \operatorname{diam} \operatorname{cl} E = \sup \rho(x,y) \\ \forall \varepsilon > 0 \ \exists x_0, y_0 \colon \rho(x_0,y_0) > d - \varepsilon \\ x_0 &\in \operatorname{cl} E \Rightarrow \exists x_1 \in E \colon \rho(x_0,x_1) < \varepsilon \\ y_0 &\in \operatorname{cl} E \Rightarrow \exists y_1 \in E \colon \rho(y_0,y_1) < \varepsilon \end{split}$$

Тогда

$$\begin{split} \rho(x_1,y_1) + 2\varepsilon > \rho(x_0,x_1) + \rho(x_1,y_1) + \rho(y_1,y_0) \geqslant \rho(x_0,y_0) > d - \varepsilon \\ \rho(x_1,y_1) > \rho(x_0,y_0) - 3\varepsilon \end{split}$$

Устремив $\varepsilon \to 0$, получим

$$\operatorname{diam} E \geqslant \operatorname{diam} \operatorname{cl} E$$

2. Пусть в пересечение лежат две точки, но тогда диаметр для любого n хотя бы $\rho(a,b)$. Противоречие.

32. Фундамитальные последовательности

Def: Последовательность называется фундаментальной, если

$$\forall \varepsilon > 0 \,\exists N \colon \forall n, m > N \, \rho(n, m) < \varepsilon$$

REM:
$$E \leftrightharpoons \{x_i\}_{i=n}^{\infty}$$

$$\{x_n\}$$
 фундаментальная $\Leftrightarrow \operatorname{diam} E \to 0$

Свойства фундаментальных последовательностей:

- 1. Ограничена
- 2. Если есть сходящаяся подпоследовательность, то она сходится.

$$\begin{split} \forall \varepsilon > 0 \, \exists K \colon \forall k > K \, \rho(x_{n_k}, a) < \varepsilon \\ \forall \varepsilon > 0 \, \exists N \colon \forall n, m > K \, \rho(x_n, x_m) < \varepsilon \end{split}$$

T.o.

$$\exists n_k > M = \max\{N, K\} \colon \forall n > n_k \rho(x_n, a) \leqslant \rho(x_{n_k}, a) + \rho(x_{n_k}, x_k) < 2\varepsilon$$

 \mathfrak{Def} : Пространство называют полным, если любая фундаментальная последовательность имеет предел.

33. Полнота компактных метрических пространств

Теорема 33.1. О сходимости фундаментальных последовательностей.

- 1. Любая сходящаяся последовательность фундаментальна.
- 2. В \mathbb{R}^d фундаментальная последовательность всегда сходится.

 $ightharpoonup \lim x_n = a$

$$\forall \varepsilon > 0 \ \exists N \colon \begin{cases} \forall n > N \rho(x_n, a) < \varepsilon \\ \forall m > N \rho(x_m, a) < \varepsilon \end{cases} \Rightarrow \forall \varepsilon > 0 \ \exists N \colon \forall n, m > N \ \rho(x_m, x_n) < 2\varepsilon \end{cases}$$

 x_n — фундаментальная последовательность в \mathbb{R}^d . $E_n \leftrightharpoons \{x_n, x_{n+1}, ...\}$ — ограниченно. cl E_n — ещё и замкнуто. Т.е. компактно.

$$\operatorname{cl} E_1 \supset \operatorname{cl} E_2 \supset \operatorname{cl} E_3 \supset \cdots$$

$$\operatorname{diam} \operatorname{cl} E_n = \operatorname{diam} E_n \to 0$$

T.o.

$$\exists!\,a\colon a\in\bigcap_{i=1}^\infty\operatorname{cl} E_n$$

$$a\in\operatorname{cl} E_n\Rightarrow \forall i>n\,0\leqslant\rho(a,x_i)\leqslant\operatorname{diam} E_n\to0$$

T.o $x_n \to a$.

REM: \mathbb{R}^d полно. $\langle \mathbb{Q}, \rho \rangle$ не полно. Пространство с дискретной метрикой полно.

Теорема 33.2. О полноте компактного пространства. Компактное метрическое пространство полно.

▶ В компакте у любой последовательности есть сходящаяся подпоследовательность. А значит любая фундаментальная последовательность имеет сходящуюся подпоследовательность. А значит она сама сходится. А значит пространство полно. ◀

34. Верхний и нижний предел

Def: Верхний и нижний предел

$$\liminf x_n = \underline{\lim} \, x_n = \lim_{x \to \infty} \inf_{k > n} x_k$$

$$\limsup x_n = \varlimsup x_n = \lim_{x \to \infty} \sup_{k > n} x_k$$

 $REM: \ y_n \leftrightharpoons \inf_{k>n} x_n, \ z_n \leftrightharpoons \sup_{k>n} x_n.$

$$y_n < x_n < z_n$$

$$y_n\nearrow;z_n\searrow$$

 $\mathfrak{Def}\colon a$ — частичный предел последовательности, если a предел подпоследовательности.

 $\ensuremath{\mathit{Лемма}}$ 34.1. Если x_n монотонно возрастает и неограничена, то $\lim x_n = +\infty$

Теорема 34.1. Существование верхнего и нижнего пределов. У любой последовательности есть верхний и нижний предел в $\overline{\mathbb{R}}$, при этом

$$\underline{\lim} \, x_n \leqslant \overline{\lim} \, x_n$$

 $\blacktriangleright y_n \leftrightharpoons \inf_{k>n} x_n, \ z_n \leftrightharpoons \sup_{k>n} x_n.$ Если x_n ограниченно, то и y_n ограниченно. Если x_n не ограниченно снизу, то и y_n не ограниченно снизу. Т.о. $\lim y_n = \underline{\lim} \, x_n.$ Аналогично существует верхний предел.

Теорема 34.2. Верхний и нижний предел и частичные пределы.

- 1. lim sup наибольший частичный предел.
- 2. lim inf наименьший частичный предел.
- 3. lim существует $\Leftrightarrow \overline{\lim} = \lim$

1. $a = \limsup x_n$. Покажем, что a — частичный предел.

$$z_n \searrow \Rightarrow \sup_{k > n} x_k \geqslant a$$

Выберем

$$x_{k_m}\colon x_{k_m} > a - \frac{1}{m}; k_{m+1} > k_m$$

Оно стремится к a.

Пусть есть больший частичный предел. Но тогда с какого-то места последовательность, сходящаяся к b, уйдёт выше супремума, что плохо.

- 2. Аналогично
- 3. Два миллиционера

35. Характеристика верхних и нижних пределов с помощью N и eps

Теорема 35.1. Определение верхнего и нижнего предела через N и ε .

1.

$$a = \underline{\lim} \, x_n \Leftrightarrow \begin{cases} \forall \varepsilon > 0 \, \exists N \colon \forall n > N \, x_n > a - \varepsilon \\ \forall \varepsilon > 0 \, \forall N \colon \exists n > N \, x_n < a + \varepsilon \end{cases}$$

2.

$$a = \overline{\lim} \, x_n \Leftrightarrow \begin{cases} \forall \varepsilon > 0 \, \forall N \colon \exists n > N \, x_n > a - \varepsilon \\ \forall \varepsilon > 0 \, \exists N \colon \forall n > N \, x_n < a + \varepsilon \end{cases}$$

1. Запишем в терминах y_n :

$$\forall \varepsilon > 0 \ \exists N \colon \inf_{n > N} > a - \varepsilon; \forall \varepsilon > 0 \ \exists N \colon \inf_{n > N} < a + \varepsilon$$

Уже видно, что эти условия и задают предел.

2. Аналогично.

Теорема 35.2. О предельном переходе в неравенстве.

$$a_n \leqslant b_n \Rightarrow \begin{cases} \underline{\lim} \, a_n \leqslant \underline{\lim} \, b_n \\ \overline{\lim} \, a_n \leqslant \overline{\lim} \, b_n \end{cases}$$

▶ Просто сводим к пределам инфимумов.

36. Неравенство Бернули

Теорема 36.1. Неравенство Бернулли.

$$\forall x > -1 \ \forall n \in \mathbb{N} \ (1+x)^n \geqslant 1 + nx$$

ightharpoonup Индукция: база очевидна. Пусть $(1+x)^k\geqslant 1+nk$. Тогда

$$(1+x)^{k+1} = \underbrace{(1+x)^k}_{>0} (1+x) \geqslant (1+kx)(1+x) = 1+kx+x+kx^2 \geqslant 1+(k+1)x$$

Следствие 36.1.1. Если |t| > 1, то $\lim t^n = +\infty$. Если |t| < 1, то $\lim t^n = 0$.

37. Число е

Определим число e:

$$x_n = \left(1 + \frac{1}{n}\right)^n; y_n = \left(1 + \frac{1}{n}\right)^{n+1}$$

Покажем, что $x_n \uparrow; y_n \downarrow$.

$$\begin{split} x_n < x_{n+1} & \Leftarrow \frac{(n+1)^n}{n^n} < \frac{(n+2)^{n+1}}{(n+1)^{n+1}} & \Leftarrow \frac{n+1}{n+2} < \frac{n^n(n+2)^n}{(n+1)^{2n}} & \Leftarrow \\ & \Leftarrow \frac{n+1}{n+2} < \left(1 - \frac{1}{n^2+2n+1}\right)^n \Leftarrow 1 - \frac{1}{n+2} < 1 - \frac{n}{n^2+2n+1} \leqslant \left(1 - \frac{1}{n^2+2n+1}\right)^n \\ & y_n < y_{n-1} & \Leftarrow \frac{(n+1)^{n+1}}{n^{n+1}} < \frac{n^n}{(n-1)^n} & \Leftarrow \frac{n+1}{n} < \frac{n^{2n}}{(n-1)^n(n+1)^n} & \Leftarrow \\ & \Leftarrow \frac{n+1}{n} < \left(1 + \frac{1}{n^2-1}\right)^n & \Leftarrow 1 + \frac{1}{n} < 1 - \frac{n}{n^2-1} \leqslant \left(1 - \frac{1}{n^2-1}\right)^n \end{split}$$

Заметим, что при этом $x_n < y_n$. Собственно, тогда $\lim x_n$ существует.

$$\lim \left(1 + \frac{1}{n}\right)^n \leftrightharpoons e$$

Свойства:

- 1. $\lim y_n = e$
- $2. \ x_n < e < y_n$

38. Сравнение скорости роста возрастания последовательностей

Теорема 38.1. Предел убывающей по отношению. $x_n>0,$ $\lim \frac{x_{n+1}}{x_n}<1.$ Тогда $x_n\to 0.$

▶ С какого-то места отношение довольно мало (меньше 1).

Следствие 38.1.1.

$$\lim_{n \to \infty} \frac{n^k}{a^n} = 0 \quad a > 1$$

$$x_n = \frac{n^k}{a^n}$$

$$\frac{x_{n+1}}{x_n} = \left(\frac{n+1}{n}\right)^k \frac{1a}{<}1$$

Следствие 38.1.2.

$$\lim \frac{a^n}{n!} = 0$$

Следствие 38.1.3.

$$\lim \frac{n!}{n^n} = 0$$

>

$$x_n = \frac{n!}{n^n}$$

$$\frac{x_{n+1}}{x_n} = (1 + \frac{1}{n})^- n \to \frac{1}{e} < 1$$

39. Теорема Штольца

Теорема 39.1. Теорема Штольца. $0 < y_n < y_{n-1}, \ \lim x_n = \lim y_n = 0, \ \lim \frac{x_n - x_{n+1}}{y_n - y_{n+1}} = a \in \bar{\mathbb{R}}.$ Тогда $\lim \frac{x_n}{y_n} = a.$

1. Пусть a = 0.

$$\begin{split} \varepsilon_n &= \frac{x_n - x_{n-1}}{y_n - y_{n-1}} \to 0 \\ x_n - x_m &= \sum_{k=m+1}^n (x_k - x_{k-1}) = \sum_{k=m+1}^n \varepsilon_k (y_k - y_{k-1}) \\ |x_n - x_m| &= |\sum | \leq \sum_{k=m+1}^n |\varepsilon_k| (y_{k-1} - y_k) \end{split}$$

Выберем N, такое что $\forall k>N|\varepsilon_k|<arepsilon$, тогда при n и m > N

$$<\sum_{k=m+1}^n \varepsilon(y_{k-1}-y_k) = \varepsilon \sum_{k=m+1}^n (y_{k-1}-y_k) = \varepsilon(y_m-y_n)$$

$$|x_n-x_m|<\varepsilon|y_n-y_m|$$

устремим п к бесконености.

$$|x_m| < \varepsilon(y_m)$$

$$rac{x_m}{y_m} < arepsilon$$
при $m > N$

 $2. \ a \in \mathbb{R}$

$$\tilde{x}_n = x_n - ay_n$$

40. Теорема Штольца

Теорема 40.1. Теорема Штольца. $0 < y_n < y_{n+1}$, $\lim x_n = \lim y_n = +\infty$, $\lim \frac{x_n - x_{n+1}}{y_n - y_{n+1}} = a \in \mathbb{R}$. Тогда $\lim \frac{x_n}{y_n} = a$. $\blacktriangleright a = 0$:

$$\begin{split} \varepsilon_n & \leftrightharpoons \frac{x_n - x_{n+1}}{y_n - y_{n+1}} \\ x_n &= x_1 + \sum_{i=2}^n (x_i - x_{i-1}) = x_1 + \sum_{i=2}^n \varepsilon_i (y_i - y_{i-1}) \\ & \frac{x_n}{y_n} = \frac{x_1}{y_n} + \sum_{i=2}^n \varepsilon_i \frac{y_i - y_{i-1}}{y_n} = \\ & \forall \varepsilon > 0 \, \exists N \colon \forall n > N \, |\varepsilon_n| < \varepsilon \\ & = \frac{x_1}{y_n} + \sum_{i=2}^N + \sum_{i=N+1}^n \\ & \left| \sum_{i=N+1}^n \varepsilon_i \frac{y_i - y_{i-1}}{y_n} \right| \leqslant \sum_{i=N+1}^n |\varepsilon_i| \frac{y_i - y_{i-1}}{y_n} < \sum_{i=N+1}^n \varepsilon \frac{y_i - y_{i-1}}{y_n} < \\ & < \frac{\varepsilon}{y_n} \sum_{i=N+1}^n (y_i - y_{i-1}) = \frac{\varepsilon}{y_n} (y_n - y_N) < \varepsilon \\ & \sum_{i=2}^N \varepsilon_i \frac{y_i - y_{i-1}}{y_n} \leqslant \frac{1}{y_n} \sum_{i=2}^N \varepsilon_i (y_i - y_{i-1}) < \varepsilon \\ & \frac{x_1}{y_n} < \varepsilon \\ & \left| \frac{x_n}{y_n} \right| < \varepsilon \Rightarrow \frac{x_n}{y_n} \to 0 \end{split}$$

T.o.

$$\left|\frac{x_n}{y_n}\right| < \varepsilon \Rightarrow \frac{x_n}{y_n} \to 0$$

 $a\in\mathbb{R}:\,\tilde{x}_n=x_n-ay_n.$ Фактом $x_n\to\infty$ мы не пользовались.

$$\frac{\tilde{x}_n - \tilde{x}_{n-1}}{y_n - y_{n-1}} = \frac{(x_n - ay_n) - (x_{n-1} - ay_{n-1})}{y_n - y_{n-1}} = \frac{x_n - x_{n-1}}{y_n - y_{n-1}} - a \to 0$$

 $a=+\infty$: Поменяем местами x_n и y_n . Проверим, что x_n монотонно растёт и не ноль.

$$\frac{x_n-x_{n-1}}{y_n-y_{n-1}}=+\infty \Rightarrow \frac{x_n-x_{n-1}}{y_n-y_{n-1}}>1x_n-x_{n11}>y_n-y_{n-1}>0$$

 $a=-\infty$: Сменим знаки x_n .

41. Пределы функций

 $\mathfrak{Def}\colon (X,\rho_x)$ и (Y,ρ_y) — метрические пространства. $E\subset X,$ a — предельная точка E. $f\colon X\to Y.$ Тогда говорят, что

$$\lim_{x \to a} f(x) = b$$

если $b \in Y$ и

$$\forall \varepsilon > 0 \ \exists \delta > 0 \colon \forall x \in \dot{B}_{\delta}(a) \ \cap E \Rightarrow f(x) \in B_{\varepsilon}(b)$$

или, что то же самое

$$\forall \varepsilon > 0 \ \exists \delta > 0 \colon \forall x \ (x \neq a \land \rho(x, a) < \delta) \Rightarrow \rho(f(x), b) < \varepsilon$$

REM: Для бесконечности на \mathbb{R} есть частные случаи.

Def: По Гейне,

$$\lim_{x\to a} f(x) = b \Leftrightarrow \forall \{x_n\} \subset E \colon x_n \neq a \lim_{n\to\infty} x_n = a \Rightarrow \lim_{n\to\infty} f(x_n) = b$$

42. Равносильность определения по Коши и по Гейне

Теорема 42.1. Равносильность определений предела функции. Определения равносильны.

1. Коши ⇒ Гейне

$$\forall \varepsilon > 0 \ \exists \delta > 0 \colon \forall x \in \dot{B}_{\delta}(a) \cap E \Rightarrow f(x) \in B_{\varepsilon}(b)$$

Пусть $limx_n = a, x_n \in E, x_n \neq a$

По δ выберем N $\forall n>Nx_n\in B_\delta(a),$ тогда $f(x_n)\in B_\varepsilon(b)$

Нашли номер N при котором $f(x_n) \in B_{\varepsilon}(b) \Rightarrow lim f(x_n) = b$

2. Гейне ⇒ Коши

от противного.

По Коши
$$\to \forall \varepsilon > 0 \,\exists \delta > 0 \colon \forall x \in \dot{B}_{\delta}(a) \, \cap E \Rightarrow f(x) \in B_{\varepsilon}(b)$$

$$\exists \varepsilon > 0 \ \forall \delta > 0 \colon \exists x \in \dot{B}_{\delta}(a) \ \cap E \Rightarrow f(x) \notin B_{\varepsilon}(b)$$

$$\delta = \frac{1}{n}$$

Выберем последовательность $\{x_n\}$

$$x_n \in \dot{B}_{\frac{1}{n}}(a)$$

$$\rho(f(x_n), b) \ge \varepsilon \Rightarrow \lim(f(x_n)) \ne b$$

Противоречие с определением по Гейне

 $REM: \ \, {\rm B}$ определение по Гейне можно рассматривать только те последовательности, в которых все x_n различны.

REM: Можно рассматривать лишь такие последовательности, что $\rho(x_n,a)$ убывает.

43. Свойства функций, имеющих предел

REM: Если в определении по Гейне все пределы существуют, то они будут равны.

ightharpoonup Возьмём две сходящиеся последовательности x_n и y_n , после применения функций стремящиеся к каким-то разным значениям b и c. Но тогда у последовательности

$$x_1, y_1, x_2, y_2, x_3, y_3$$

сходящейся к той же точке, будет предел. Но тогда у подпоследовательностей одинаковые пределы.

Утверждение. Единственность предела $f \colon E \subset X \to Y, a$ — предельная точка. Тогда предел $\lim f(x)$ единственнен.

► Пусть есть два различных предела. Тогда из определения по Коши с какого-то расстояния весь хвост должен быть ближе к одному пределу, чем к другому. ◀

Теорема 43.1. Ограниченность. $f\colon E\subset X\to Y,\ \lim_{x\to a}=b.$ Тогда

$$\exists r>0\colon f\mid_{E\cap B_r(x)}$$
ограничена

Теорема 43.2. Уход от нуля. $f\colon E\to\mathbb{R}^d,\ \lim_{x\to a}=b\neq \vec{0}.$ Тогда

$$\exists r > 0 \colon \forall x \in \dot{B}_r(a) \cap E \ f(x) \neq \emptyset$$

$$ightharpoonup arepsilon =
ho(x, \vec{0})$$

44. Арифметические действия с пределами

Теорема 44.1. Арифметические свойства предела функции.. $f,g\colon E\subset\to\mathbb{R}^d,\ \lambda\colon E\to\mathbb{R},$ a предельная точка E.

- 1. $\lim x \to a(f(x) + g(x)) = f_0 + g_0$
- 2. $\lim x \to a(\lambda(x)g(x)) = \lambda_0 g_0$

3.
$$\lim x \to a(f(x) - g(x)) = f_0 - g_0$$

4.
$$\lim x \to a \|f(x)\| = \|f_0\|$$

5.
$$\lim x \to a \langle f(x), g(x) \rangle = \langle f_0, g_0 \rangle$$

 \blacktriangleright Возьмём любые сходящиеся к a последовательности. Для них будет справедлива теорема об арифметических действиях с пределами последовательности.

Теорема 44.2. Арифметические свойства предела функции.. $f,g\colon E\subset\to\mathbb{R},\ a$ предельная точка E.

1.
$$\lim x \to a(f(x) \pm g(x)) = f_0 \pm g_0$$

2.
$$\lim x \to a(f(x)g(x)) = f_0g_0$$

3.
$$\lim x \to a |f(x)| = |f_0|$$

4.
$$\lim x \to a \frac{f(x)}{g(x)} = \frac{f_0}{g_0}$$

Аналогично.

REM: Арифметические свойства расширяются на бесконечности.

45. Теорема о предельном переходе в неравенствах. Теорема о двух милиционерах

Теорема 45.1. Предельный переход в неравенстве.. $f,g: E \to Y, a$ предельная точка $E, \forall x \in E \setminus \{a\} f(x) \leq g(x)$. Тогда $f_0 \leq g_0$.

Теорема 45.2. О двух миллиционерах.

46. Левый и правый пределы. Предел монотонной функции

 \mathfrak{Def} : Пределы слева и справа. $f: E \cap \mathbb{R} \to Y$.

$$\lim_{x \to a-} = \lim_{x \to a-0} \stackrel{\mathrm{Def}}{=} \lim_{x \to a} f \mid_{E \cap (-\inf, a)}$$

$$\lim_{x\to a+}=\lim_{x\to a+0}\stackrel{\mathrm{Def}}{=}\lim_{x\to a}f\mid_{E\cap(a,+\inf)}$$

Теорема 46.1. Существование предела возрастающей и ограниченой функции...

47. Критерий Коши для отображений и для функций

Теорема 47.1. Критерий Коши.

$$f:E\subset X\to Y, a$$
 — предельная точка E, Y — полное

$$\exists \lim_{x \to a} f(x) \Leftrightarrow \forall \varepsilon > 0 \\ \exists \delta > 0 \\ \forall x,y \in \dot{B}_{\delta}(a) \cap E\rho(f(x),f(y)) < \varepsilon$$

1.
$$\Rightarrow$$
 Если $\lim_{x \to a} f(x) = b \Rightarrow \forall \varepsilon > 0 \exists \delta > 0$

$$\forall x \in \dot{B}_{\delta}(a) \forall y \in \dot{B}_{\delta}(a)$$

$$f(x) \in B_{\varepsilon}(b), f(y) \in B_{\varepsilon}(b)$$

$$\rho(f(x),b)<\varepsilon, \rho(f(y),b)<\varepsilon \Rightarrow \rho(f(x),f(y))\leq \rho(f(x),b)+\rho(f(y),b)<2\varepsilon$$

 $2. \Leftarrow$

Берем любую последовательность $x_n \ x_n \neq a \in E \rightarrow a$

$$\exists N \forall n > Nx_n \in B_\delta(a)$$

$$\Rightarrow x_n \in \dot{B}_{\delta}(a) \cap E$$

$$\rho(f(x_n), f(x_m)) \forall n, m > N$$

 $\Rightarrow f(x_n)$ — фундументальная последовательность точек из Y

$$\Rightarrow \exists lim(f(x_n))$$
полнота Ү

48. Непрерывные отображения. Непрерывность слева и справа

Def: (По Коши)

$$f: E \subset x \to ya \in E$$

f — непрерывно в точке a, если $\forall \varepsilon>0 \exists \delta>0 \forall x\in B_\delta(a): f(x)\in B_\varepsilon(f(a))$

Def: (По Гейне)

$$\forall \{x_n\} \subset Ex_n \to a: f(x_n) \to f(a) \Leftrightarrow f(\ ---)$$

Def:

$$f: E \subset \mathbb{R} \to Y, a \in E$$

f — непрерывно слева в точке а

$$g=f|_{(-\infty,a]\cap E}, {
m g}\;\; -$$
 непрерывно в точке а

Def:

$$f: E \subset \mathbb{R} \to Y, a \in E$$

f — непрерывно справа в точке а

$$g=f|_{[a,+\infty)\cap E}, {
m g}\;$$
 — непрерывно в точке а

49. Арифметические действия с непрерывными функциями

Теорема 49.1. Арифметические действия с непрерывными функциями.

$$f,g:E\subset X
ightarrow \mathbb{R}^d, a\in Ef, g$$
непрерывны в точке а

Тогда

- 1. f(x) + g(x) непрерывно в точке а
- 2. cf(x) непрерывно в точке а
- 3. f(x) g(x) непрерывно в точке а
- 4. ||f(x)|| непрерывно в точке а
- 5. < f(x), g(x) > непрерывно в точке а

Теорема 49.2.

$$f,g:E\subset X\to\mathbb{R},a\in Ef,g$$
непрерывны в точке а

Тогда

- 1. f(x) + g(x) непрерывно в точке а
- 2. f(x)g(x) непрерывно в точке а
- 3. f(x) g(x) непрерывно в точке а
- 4. |f(x)| непрерывно в точке а
- 5. Если $\mathbf{g}(\mathbf{a}) \neq 0$, то $\frac{f(x)}{g(x)}$ непрерывно в точке \mathbf{a}

Теорема 49.3. о стабильном знаке.

$$f:E\subset X \to \mathbb{R} a\in E, f$$
 — непрерывно в точке а и $f(a)\neq 0$

Тогда

$$\exists B_{\delta}(a)$$
такое что $\forall x \in B_{\delta}(a) sign(f(x)) = sign(f(a))$

$$\varepsilon = \frac{|f(a)|}{2}$$

Теорема 49.4. о непрерывности композиции.

$$f: E_1 \subset X \to Y$$

$$g:E_2\subset Y\to Z$$

$$f(E_1) \subset E_2, a \in E_2$$

f — непрерывна в точке а

g — непрерывна в точке f(a)

тогда $g \circ f$ — непрерывно в точке а.

▶ Надо проверить, что

$$\forall \varepsilon > 0 \exists \delta > 0 \forall x \in B_{\delta}(a) \cap E_1 : g(f(x)) \in B_{\varepsilon}(g(f(a)))$$

Берем ε

$$\exists \gamma>0 \forall y\in B_{\gamma}(f(a))\cap E_2:g(y)\in B_{\varepsilon}(g(f(a)))$$
 (по непрерывности g в точке f(a))

$$\exists \delta>0 \forall x\in B_\delta(a)\cap E_1: f(x)\in B_\gamma(f(a)) (\text{по непрерывности f в точке a})$$

$$\Rightarrow g(f(x)) \in B_{\varepsilon}(g(f(a)))$$

50. Характеристика непрерывности в терминах прообразов

Теорема 50.1.

$$f: x \to y$$

f непрерывно во всех точках ⇔ прообраз любого открытого множества открыто.

 $1. \Rightarrow$

 $G \subset Y$ (открытое), надо доказать, что $f^{-1}(G)$ — открытое.

Возьмем $a \in f^{-1}(G)$ надо доказать, что \exists шар с центром в точке а содержащийся в $f^{-1}(G)$

$$f(a) \in G$$
 — открыто $\Rightarrow \exists B_{\varepsilon}(f(a)) \subset G$

Знаем, что f непрерывнв в точке а

$$\exists \delta > 0 \forall x \in B_{\delta}(a) : f(x) \in B_{\varepsilon}(f(a)) \subset G$$

то есть

$$\forall x \in B_{\delta}(a), f(x) \in G$$

то есть

$$B_{\delta}(a) \subset f^{-1}(G)$$

 $2. \Leftarrow$

Зафиксируем $a \in x$

Надо доказать, что $\forall \varepsilon > 0 \exists \delta > 0 \forall x \in B_{\delta}(a), f(x) \in B_{ensilon}(f(a))$

Возьмем $B_{\varepsilon}(f(a))$ — открытое множество, $a \in f^{-1}(B_{\varepsilon}(f(a)))$ — открытое \Rightarrow

 $\exists B_{\delta}(a) \subset f^{-1}(B_{\varepsilon}(f(a))) \Rightarrow f(B_{\delta}(a)) \subset B_{\varepsilon}(f(a))$

51. Непрерывность отображений из метрического пространства в векторное

Теорема 51.1. ааа.

$$f: E \subset X \to \mathbb{R}^d a \in E$$

Тогда f непрерывна в точке а ⇔ все координаты функции f непрерывны в точке а.

 $1. \Rightarrow$

$$\forall \varepsilon > 0 \exists \delta > 0 \forall x \in B_\delta(a) \cap E : f(x) \in B_\varepsilon(f(a))$$

то есть

$$\rho(f(x), f(a)) < \varepsilon$$

$$|f_i(x) - f_i(a)| \leqslant \sqrt{((f_1(x) - f_1(a))^2 + (f_2(x) - f_2(a))^2 + \ldots)}$$

$$\Rightarrow |f_i(x) - f_i(a)| < \varepsilon \Rightarrow f_i \in B_\varepsilon(f_i(a))$$

$$f_i$$

непрерывна в точке а.

 $2. \Leftarrow$

Возьмем
$$\delta = \min\{\delta_1, \dots, \delta_d\} > 0$$

Тогда
$$\forall x \in B_{\delta}(a) \forall i = 1 \dots d |f_i(x) - f_i(a)| < \varepsilon$$

$$\Rightarrow (f_1(x) - f_1(a))^2 + \dots < d\varepsilon$$

$$\rho(f(x), f(a)) < \sqrt{(d)}\varepsilon$$

52. Непрерывность и компактность

Def:

$$f: E \subset x \to y$$

f — ограниченное отображение, если f(E) — ограничено.

Теорема 52.1. Непрерывный образ компакта — компакт.

$$f: x o y, f$$
 — непрерывен на $\mathbf{X}, K \subset X, K$ — компакт $\Rightarrow f(K)$ — компакт

ightharpoonup Пусть G_{lpha} — открытые множества.

 $\cup_{\alpha \in I} G_{\alpha} \supset f(K)$ надо выбрать конечное подпокрытие.

Рассмотрим $f^{-1}(G_{\alpha})$ — открытое множество(по непрерывности f)

$$\cup_{\alpha \in I} f^{-1}(G_\alpha) \supset K$$

 \Rightarrow \exists конечное подпокрытие.

$$\exists \alpha_1, \dots, \alpha_n \cup_{i=1} f^{-1}(G_{\alpha_i}) \supset$$

 $\bigcup_{i=1}^n G_{\alpha_i}\supset f(K)$ конечное подпокрытие для $\mathrm{f}(\mathrm{k})$

Следствие 52.1.1.

- 1. Непрерывный образ компакта компакт.
- 2. (Теорема Вейерштрасса)

$$f:K \to \mathbb{R}$$
непрерывен на $K \Rightarrow f$ — ограничена

- 3. $f:[a,b]\to\mathbb{R}$ непрерывен на [a, b] \Rightarrow ---ограничена
- 4. $f:K \to \mathbb{R}$ f непрерывен на K, K компакт $\Rightarrow \exists a,b \in K, \forall x \in K \\ f(a) \leq f(x) \leq f(b)$
 - ightharpoonup f(K) ограниченное подмножество $\mathbb R$

$$A = inff(K)$$

$$B = supf(K)$$

— замкнуто
$$\Rightarrow A, B \in f(K)$$

5. (теорема Вейерштрасса)

 $f:[a,b]\to\mathbb{R}$ непрерывна на [a, b], тогда она принимает наибольшее и наименьшее значение.

53. Теоремы о непрерывности обратного отображения и о непрерывности монотонной функции

Теорема 53.1. $f:K\to Y$ непрерывно на K биекция между K и Y, тогда $f^{-1}:Y\to K$ непрерывно.

Надо проверить, что для f^{-1} прообраз открытого множество — открытое. Т.е. надо проверить для f, что образ открытого — открыто.

Берем $G \subset K$ — открытое.

- $\Rightarrow K \setminus G$ замкнутое подмножество К.
- $\Rightarrow K \setminus G$ компакт.
- $\Rightarrow f(K \setminus G)$ компакт \Rightarrow замкнутое
- $\Rightarrow f(G)$ открыто.

Следствие 53.1.1.

- 1. $f:[a,b]\to \mathbb{R}$ строго монотонно и f непреывна на [a, b] $\Rightarrow f^{-1}$ непрерывно на множестве задания.
 - \blacktriangleright [a, b] = K компакт.

строго монотонная \Rightarrow инъекция.

f — биекция между [a, b] и f([a,b])

2. $f:([a,b],(a,b],[a,b),(a,b))\to \mathbb{R}$ строго монотона и непрерывна на нем $\Rightarrow f^{-1}$ непрерывна на множестве задания.

$$y=f(< a,b>)$$

$$f^{-1}:y\to\mathbb{R}$$

Надо доказать непрерывность $\forall c \in y$

Берем $c \in y \Rightarrow c = f(x_0)$ для некоторого $x_0 \in \langle a, b \rangle$

Возьмем $x_0 \in [\alpha, \beta] \subset \langle a, b \rangle$

 $g = f|_{[\alpha,\beta]} : [\alpha,\beta] \to \mathbb{R}$ применяем следствие 1.

$$\forall \varepsilon > 0 \exists \delta > 0 \forall y \in B_\delta(c) \cap f([\alpha,\beta]) : g^{-1}(y) \in B_\varepsilon(g^{-1}(c))$$

 $f: X \to Y$ непрерывно на X.

$$\forall a \in X \forall \varepsilon > 0 \exists \delta > 0 \forall x \in B_\delta(a) : f(x) \in B_\varepsilon(f(a))$$

54. Равномерная непрерывность на функции. Теорема Кантора

 $\mathfrak{Def}\colon\ f:X o Y$ равномерно непрерывна, если

 $\forall \varepsilon > 0 \exists \delta > 0 \forall x,y \in X \rho(x,y) < \delta : \rho(f(x),f(y)) < \varepsilon$

Теорема 54.1. Кантора.

 $f:K\to Y$ К — компакт, f непрерывен на К $\Rightarrow f$ равномерно непрерывно.

От противного.

Пусть для некоторого $\varepsilon > 0$ нет $\delta > 0$, т.е не подходит $\delta = \frac{1}{n}$

$$\exists x_n, \tilde{x}_n \in K\text{\tiny T.4P}(x_n, \tilde{x}_n) < \frac{1}{n} \rho(f(x_n), f(\tilde{x}_n)) \geq \varepsilon$$

 x_n, \tilde{x}_n последовательность точек из K извлеем из x_n сходящуюся подпоследовательность x_{n_k} , $x_{n_k} \to a \in K$

 $\tilde{x}_{n_k} \to a,$ t.k. $\rho(x_{n_k}, \tilde{x}_{n_k}) < \frac{1}{n_k} \to 0$

f непрерывно в точке a.

 $\exists \delta > 0 \forall x \in B_{\delta}(a): f(x) \in B_{frac \varepsilon 2}(f(a))$

Начиная с какого-то N $x_{n_k}, \tilde{x}_{n_k} \in B_{\delta}(a)$

$$\Rightarrow f(x_{n_{\ell}}), f(\tilde{x}_{n_{\ell}}) \in B_{\varepsilon}(f(a))$$

$$\Rightarrow \rho(f(x_{n_k}),f(\tilde{x}_{n_k}))<\varepsilon$$
противоречие

Следствие 54.1.1. Непрерывное на [a, b] функция равномерно непрерывна.

55. Теорема Больцано-Коши

Лемма 55.1. о связности отрезка Пусть $[a,b] \subset U \cup V, U, V$ — открытые и $U \cap V = \emptyset$ тогда либо $[a,b]\subset U$, либо $[a,b]\subset V$

 \blacktriangleright Рассмотрим точку b. Пусть b $\in V$

 $S = [a, b] \cap U$, пусть $S \neq \emptyset$

$$b_1 = supS$$

Поскольку $\mathbf{b} \in V$ — открытое $\Rightarrow (b-\varepsilon,b+\varepsilon) \subset V$ для некоторого $\varepsilon \Rightarrow (b-\varepsilon,b+\varepsilon) \cap S = \emptyset$ $\Rightarrow b_1 \le b - \varepsilon \Rightarrow b_1 < b$

Пусть $b_1 \in V \Rightarrow (b_1 - \varepsilon_1, b_1 + \varepsilon) \subset V$ $(b_1 - \varepsilon_1, b_1 + \varepsilon) \cap S = \emptyset \Rightarrow supS \leq b_1 - \varepsilon$. Противоречие.

Тогда $b_1 \in U \Rightarrow (b_1 - \varepsilon_1, b_1 + \varepsilon_1) \subset U$

 $\delta = min\{\varepsilon_1, b - b_1\} > 0$

 $[b_1,b_1+arepsilon_1)\subset S\Rightarrow supS\geq b_1+\delta$ — противоречие.

Теорема 55.1. Больцано-Коши. $f:[a,b]\to\mathbb{R}$ f — непрерывно на [a, b]

 $\forall C$ между f(a) и f(b) $\exists c \in (a,b) f(c) = C$

▶ От противного. Пусть $f(x) \neq C \forall x \in [a, b]$, тогда $[a, b] \subset f^{-1}((-\infty, c)) \cup (f^{-1}(C, +\infty))$ открытые и не пересекаются, а и в принадлежат разным множествам. Противоречие. Следствие 55.1.1.

1. $f:[a,b]\to\mathbb{R}$ и непрерывно на [a,b], тогда f([a,b]) — отрезок.

$$\blacktriangleright \exists u,v \in [a,b], f(u) \leq f(x) \leq f(v) \forall x \in [a,b] \Rightarrow f([a,b]) \subset [f(u),f(v)]$$

По теореме Б-К $\forall C \in (f(u), f(v)) \exists c \in (u, v), \text{ т.ч. } f(c) = C \text{ т.е. } f([a, b]) = [f(u), f(v)]$

2. $f: \langle a,b \rangle \to \mathbb{R}$ и непрерывно на $\langle a,b \rangle$, тогда f принимает все значения из (inf f(x), sup f(x))

ightharpoonup Пусть $C \in (inf, sup) \Rightarrow \exists u : f(u) < C, \exists v : f(v) > C \Rightarrow C$ лежит между f(u) и f(v), но f непрерывно на $[u, v] \Rightarrow$ принимает все промежуточные значения.

56. Непрерывность тригонометрических функций

Теорема 56.1.

$$\sin x < x < tgx$$

Следствие 56.1.1. sin и соз непрерывны.

 $\left|\sin x - \sin y\right| = 2\left|\sin\frac{x-y}{2}\right| \left|\cos\frac{x+y}{2}\right| \leqslant |x-y|$

Следствие 56.1.2. tg и ctg непрерывны.

Следствие 56.1.3.

$$\sin \uparrow \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$$
$$\cos \downarrow \left[0, \pi \right]$$
$$tg \uparrow \left(-\frac{\pi}{2}, \frac{\pi}{2} \right)$$

Def:

$$\begin{aligned} & \arcsin = \left(\sin\mid_{[-\frac{\pi}{2},\frac{\pi}{2}]}\right)^{-1} \\ & \arccos = \left(\cos\mid_{[0,\pi]}\right)^{-1} \\ & \arctan = \left(\operatorname{tg}\mid_{(-\frac{\pi}{2},\frac{\pi}{2})}\right)^{-1} \end{aligned}$$

Теорема 56.2.

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

 $> 0 < x < \frac{\pi}{2}$:

$$\sin x < x < \operatorname{tg} x \Rightarrow \frac{\sin x}{x} < 1 < \frac{1}{\cos x} \frac{\sin x}{x} \Rightarrow \cos x < \frac{\sin x}{x} < 1 \xrightarrow{x \to 0} 1 \leqslant \lim_{x \to 0} \frac{\sin x}{x} \leqslant 1$$

57. Степенная функция

$$x^n \quad x \in [0; +\infty); n \in \mathbb{N}$$

Больше нуля, непрерывна, инфимум 0, супремум бесконечен, строго монотонная.

 $x^{\frac{1}{n}}$ обратная

Тоже непрерывна.

$$x^{\frac{m}{n}} = \left(x^{\frac{1}{n}}\right)m$$
$$x^{-\frac{m}{n}} = \frac{1}{r^{\frac{m}{n}}}$$

Утверждение. Определение корректно. $(x^{\frac{1}{n}})^m = (x^{\frac{1}{nk}})^{mk}$

Утверждение. Свойства степени выполняются.

1.
$$x^a x^b = x^{a+b} a, b \in \mathbb{Q}$$

2.
$$(x^a)^b = x^{ab}$$

3.
$$x^a y^a = (xy)^a a \in \mathbb{Q}$$

4.
$$x^a < y^a$$
 при $x < y$

5.
$$x^a < x^b$$
 при х > 1 и а $<$ b или при $0 <$ х < 1 и а $>$ b

Лемма 57.1.

$$\lim_{n o +\infty} a^{rac{1}{n}} = 1$$
при а > 0

 $ightharpoonup a \geqslant 1$:

$$(1+\varepsilon)^n\geqslant 1+\varepsilon n>\varepsilon n>\varepsilon N>a$$

$$N>\frac{a}{\varepsilon}\Rightarrow \forall n>N\;(1+\varepsilon)^n>a\Rightarrow 1+\varepsilon>a^{\frac{1}{n}}\geqslant 1^{\frac{1}{n}}=1$$

0 < a < 1:

$$\lim_{n \to +\infty} a^{\frac{1}{n}} = \frac{1}{\lim_{n \to +\infty} \left(\frac{1}{a}\right)^{\frac{1}{n}}} = 1$$

Теорема 57.1. Пусть $\lim_{n\to +\infty}x_n=x,\ x_n\in\mathbb{Q},\ a>0.$ Тогда последовательноть a^{x_n} имеет предел, зависящий только от x и a.

$$a^{x_n} - a^{x_m} = a^{x_n} \left(a^{x_m - x_n} - 1 \right)$$
$$\forall n \mid x_n \mid \leqslant M \Rightarrow a^{x_n} \in \left[a^{-M}; a^M \right]$$

T.o.

$$|a^{x_n} - a^{x_m}| \leqslant \underbrace{a^M}_{=\subset} \left(a_{x_n - x_m} - 1\right) < C\varepsilon$$

По лемме

$$\begin{split} \exists N \colon \forall k > N \ |a^{\frac{1}{n}} < 1| < \varepsilon \\ |x_n - x_m| < \frac{1}{N} \to -\varepsilon < a^{-\frac{1}{N}} < a_{x_n - x_m} - 1 < a^{\frac{1}{N}} - 1 < 1 + \varepsilon \end{split}$$

Т.о. предел существует.

Пусть теперь

$$\lim_{n \to +\infty} x_n = \lim_{n \to +\infty} y_n = x \quad \lim_{n \to +\infty} a^{x_n} \neq \lim_{n \to +\infty} a^{y_n}$$

Но рассмотрим

$$\{z_n\} = \{x_1, y_1, x_2, y_2, \ldots\} \to x$$

Но тогда a^{z_n} не имеет предела, что противоречит доказанному выше.

Def:

$$a^x = \lim_{\substack{x_n \to x \\ x_n \in \mathbb{Q}}}$$

Свойства степени:

1. Для $x \in \mathbb{Q}$ корректно.

$$2. \ x^a x^b = x^{a+b}$$

3.
$$(x^a)^b = x^{ab}$$

4.
$$x^a y^a = (xy)^a$$

5.
$$x < y \land a > 0 \rightarrow x^a < y^a$$

$$a_n o a > 0 \Rightarrow a_n > 0$$
 с какого-то места
$$x_n^a < x_n^b \Rightarrow x^a \leqslant x^b$$

Теперь хотим строгое

$$\left(\frac{x}{y}\right)^n < 1$$

$$z \leftrightharpoons \frac{x}{y}$$

$$z^{a_n} < 1 \land z^{a_n} \downarrow \Rightarrow z_a < 1$$

6. $x^a < x^b$ при $x > 1 \land a < b$ или $0 < x < 1 \land a > b$

$$\blacktriangleright x > 1 \land a < b$$
:

$$a
$$x^{a_n} < x^p < x^q < x^{b_n}$$
$$x^a \leqslant x^p < x^q \leqslant x^b$$$$

Лемма 57.2.

$$a > 0 \Rightarrow \lim_{x \to 0} a^x = 1$$

$$\begin{split} \forall \varepsilon > 0 \; \exists N \colon \forall n > N \; \left| a^{\frac{1}{n}} - 1 \right| < \varepsilon \\ \forall |x| < \frac{1}{N} 1 - \varepsilon < \frac{1}{1 + \varepsilon} < a^{-\frac{1}{N}} < a^x < a^{\frac{1}{N}} < 1 + \varepsilon \end{split}$$

Возьмём $\delta = \frac{1}{N}$

58. Логарифм

Теорема 58.1.

$$a > 0 \Rightarrow f(x) \leftrightharpoons a^x$$
 непрерывна

 \blacktriangleright Надо доказать, что $a^{\lim_{n\to +\infty}x_n}=\lim_{n\to +\infty}a^{x_n}$ $x_0 \leftrightharpoons \lim_{n\to +\infty}x_n$

$$a^{x_n} - a^{x_0} = a^{x_0} (a^{x_n - x_0} - 1) \to 0$$

Следствие 58.1.1. Есть обратная

$$\log_a x$$

Теорема 58.2.

$$\lim_{x\to\infty}\left(1+\frac{1}{x}\right)^x=e$$

$$\blacktriangleright x_n \to +\infty. \ [x_n] = k$$

$$\left(1+\frac{1}{k+1}\right)^k \leqslant \left(1+\frac{1}{x_n}\right)^{x_n} \leqslant \left(1+\frac{1}{k}\right)^{k+1}$$

$$x_n \to +\infty. \ y_n = -x_n$$

$$f(x_n) = \left(1 + \frac{1}{-y_n}\right)^{-y_n} = \left(1 + \frac{1}{y_n - 1}\right)^{y_n} \to e$$

А для смеси возьмём две части, в каждой есть хороший номер.

59. Следствия

Следствие 59.0.1.

1.
$$\lim_{x\to 0} (1+x)^{\frac{1}{x}} = e$$

2.
$$\lim_{x\to 0}(\frac{\ln(1+x)}{x})=1$$

$$\lim(\frac{ln(1+x)}{x}) = \lim(ln(1+\frac{1}{x})^x) = ln(lim_{x\to 0}(1+\frac{1}{x})^x) = lne = 1$$

3.
$$\lim_{x\to 0} \frac{a^x-1}{x} = \ln a$$

▶
$$y = a^x - 1 \to 0$$
 при $x \to 0$ (непрерывность a^x)

$$a^x = y + 1$$

$$xlna = ln(y+1)$$

$$\frac{a^{x}-1}{x} = \frac{y}{\frac{\ln(y+1)}{\ln(a)}} = \ln(a)\frac{y}{\ln(1+y)} = \ln(a)$$

4.
$$\lim_{x\to 0} \frac{(1+x)^p-1}{x} = p$$

$$\blacktriangleright y = (1+x)^p - 1 \to 0$$
 при $x \to 0$

$$(1+x)^p = 1+y$$

$$pln(1+x) = ln(1+y)$$

$$\frac{(1+x)^p - 1}{x} = \frac{y}{x} = \frac{y}{\ln(1+y)} \frac{\ln(1+y)}{p\ln(1+x)} \frac{\ln(1+x)}{x} p = p$$

60. Сравнение функций

 $\mathfrak{Def}\colon\ f,g\colon E\to\mathbb{R},\ a$ — предельная точка E. Если существует такая $\varphi\colon E\to\mathbb{R},$ что

$$\forall x \in E \ f(x) = \varphi(x)g(x)$$

И

- 1. $\lim_{x \to a} \varphi(x) = 1$, то $f \sim g$ при $x \to a$.
- 2. $\lim_{x\to a} \varphi(x) = 0$, то f = o(g) при $x\to a$.
- 3. φ ограничена, то f = O(g) при $x \to a$.
- 4. Если

$$\forall x \in E |f(x)| \leq c|g(x)|$$

то f = O(g) на E.

Свойства:

- 1. \sim отношение эквиваленции.
- 2. $f_1 \sim f_2 \wedge g_1 \sim g_2 \Rightarrow f_1 g_1 \sim f_2 g_2$
- 3. $f \sim g \Leftrightarrow f = g + o(f) \Leftrightarrow f = g + o(f)$

$$f \sim g \Leftrightarrow f = \varphi g, \varphi \to 1 \Leftrightarrow f = g + (\varphi - 1)g, \varphi - 1 \to 0 \Leftrightarrow f = g + o(g)$$

- 4. $f \sim g \Rightarrow o(f) = o(g)$
- 5. $f \cdot o(g) = o(fg)$

Примеры $(x \to 0)$:

$$\sin x \sim x$$

$$\ln(x+1) \sim x$$

$$a^{x} - 1 \sim \ln a \cdot x$$

$$(x+1)^{p} - 1 \sim px$$

61. Производная

Def:

$$f:(a,b)\to \mathbb{R} x_0\in (a,b)$$

Если существует конечный $\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}$, то он называется производной f в точке x_0 . $f'(x_0)$ \mathfrak{Def} :

$$f:(a,b)\to \mathbb{R} x_0\in (a,b)$$

f — диффиренцируема в точке x_0 , если $\exists A \in \mathbb{R}$ т.ч. $f(x) = f(x_0) + A(x-x_0) + o(x-x_0)$ при $x \to x_0$

Теорема 61.1. $f:(a,b) \to \mathbb{R} x_0 \in (a,b)$

f — дифф. в точке $x_0 \Leftrightarrow \exists$ конечная производная $f'(x_0)$

И в этом случае
$$A=f'(x_0)$$

• f — дифф.в точке $x_0 \Leftrightarrow$

$$\begin{split} \exists A \in \mathbb{R} : f(x) &= f(x_0) + A(x - x_0) + o(x - x_0) \Leftrightarrow \\ \exists A \in \mathbb{R} : f(x) - f(x_0) - A(x - x_0) &= o(x - x_0) \Leftrightarrow \\ \\ \exists A \in \mathbb{R} : \frac{f(x) - f(x_0)}{(x - x_0)} - A &\to 0 \Leftrightarrow \\ \\ \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} &= A \end{split}$$

 $\mathfrak{Def}\colon$ Дифференциал функции f в точке x_0 — это отображение $\mathbb{R}\to\mathbb{R}$ умноженное на A. $df(x_0)$ $T:\mathbb{R}^n\to\mathbb{R}^n$ — линейно, если T(ax+by)=aT(x)+bT(y)

62. Геометрический смысл производной

Если рассмотреть график непрерывной функции

$$y = f(x)$$

то в каждой точке x_0 , где функция непрерывна, можно рассмотреть касательную к её графику

$$y = kx + b$$

Давайте посчитаем угловой коэффициент касательной k.

$$k = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0)$$

Таким образом, производная равна тангенсу угла наклона касательной к графику функции в соотвествующей точке.

63. Одностороние производные

REM: Бесконечные производные.

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \pm \infty$$

Def:

 $f'_+(x_0) = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0}$ — правая производная. $f'_-(x_0) = \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0}$ — левая производная. REM: Если $f'_+(x_0)$, $f'_-(x_0)$ существуют и $f'_+(x_0) = f'_-(x_0)$, то существует $f'(x_0) = f'_+(x_0)$

Пример: f(x) = |x|

$$lim_{x\to 0^+}\frac{f(x)-f(0)}{x-0}=lim_{x\to 0^+}\frac{|x|}{x}=lim_{x\to 0^+}1=1$$

$$f'_{+}(0) = 1$$

$$lim_{x\to 0^{-}}\frac{f(x)-f(0)}{x-0}=lim_{x\to 0^{-}}\frac{|x|}{x}=lim_{x\to 0^{+}}-1=-1$$

$$f'_{-}(0) = -1$$

В частоности f не дифф. в точке 0.

64. Непрерывность дифференцируемой функции

Утверждение. f — дифф. в точке $x_0\Rightarrow f$ — непрерывна в точке x_0 ightharpoonup f — дифф. в точке $x_0 \Rightarrow$

$$f(x)=f(x_0)+A(x-x_0)+o(x-x_0)$$

$$lim_{x\to x_0}f(x) = f(x_0) + \lim_{x\to x_0}(A(x-x_0) + o(x-x_0)) = f(x_0)$$

REM: Обратное не верно.

Примеры

1.
$$f(x) = x^{\frac{1}{3}}$$

$$\lim_{x\to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x\to 0} \frac{x^{\frac{1}{3}}}{x} = \infty$$

 $x^{\frac{1}{3}}$ — не дифф. в точке 0, но непрерывна.

2. $f(x) = x \sin(x)$, f(0) = 0. Непрерывна. $\lim_{x\to 0} \frac{f(x)-f(0)}{x-0} = \lim_{x\to 0} \sin \frac{1}{x}$ не существует.

65. Арифметические действия с диффиренцируемыми функциями

Теорема 65.1. Арифметические действия с диффиренцируемыми функциями.

 $f,g:(a,b)\to \mathbb{R} x_0\in (a,b)$

f,g — дифф. в точке x_0 , тогда

- 1. $(f \pm g)'(x_0) = f'(x_0) \pm g'(x_0)$
- 2. $(cf)'(x_0) = cf'(x_0)$
- 3. $(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$
- 4. Если $g \neq 0$ в окрестности точки x_0 $(\frac{f}{g})'(x_0) = \frac{f'(x_0)g(x_0) f(x_0)g'(x_0)}{g^2(x_0)}$

$$1. \ (f \pm g)'(x_0) = \lim_{x \to x_0} \tfrac{(f(x) \pm g(x)) - (f(x_0) \pm g(x_0))}{x - x_0} = \lim_{x \to x_0} \tfrac{f(x) - f(x_0)}{x - x_0} \pm \lim_{x \to x_0} \tfrac{g(x) - g(x_0)}{x - x_0} = f'(x_0) \pm g'(x_0)$$

2.

3.

$$\begin{split} (fg)'(x_0) &= \lim_{x \to x_0} \frac{f(x)g(x) - f(x_0)g(x_0)}{x - x_0} = \\ &= \lim_{x \to x_0} (\frac{f(x)g(x) - f(x_0)g(x)}{x - x_0} + \frac{f(x_0)g(x) - f(x_0)g(x_0)}{x - x_0}) = \\ &= \lim_{x \to x_0} (g(x)) \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} + f(x_0) \lim_{x \to x_0} \frac{g(x) - g(x_0)}{x - x_0} = \\ &= g(x_0)f'(x_0) + f(x_0)g'(x_0) \end{split}$$

4. Достаточно доказать, что $(\frac{1}{g})'(x_0) = -\frac{g'(x_0)}{g^2(x_0)}$

$$\begin{split} &(\frac{1}{g})'(x_0) = \lim_{x \to x_0} \frac{\frac{1}{g(x)} - \frac{1}{g(x_0)}}{x - x_0} = \\ &= \lim_{x \to x_0} \frac{g(x_0) - g(x)}{x - x_0} \frac{1}{g^2(x)} = \frac{-g'(x_0)}{g^2(x_0)} \end{split}$$

66. Производная композиции

Теорема 66.1. Производная композиции. g дифференцируема в x_0, f дифференцируема в $f(x_0)$. Тогда $f\circ g$ дифференцируема, причём

$$(f \circ g)'(x) = f'(g(x))g'(x)$$

 $(f\circ g)'(x) = \lim_{x\to x_0} \frac{f(g(x)) - f(g(x_0))}{x - x_0} = \lim_{x\to x_0} \left(\frac{f(g(x)) - f(g(x_0))}{g(x) - g(x_0)} \frac{g(x) - g(x_0)}{x - x_0}\right) = f'(g(x))g'(x)$

67. Теорема о дифференцируемости обратной функции

Теорема 67.1. Производная обратной функции. $f:(a,b)\to\mathbb{R}, f^{-1}$ — обратная функция. f — дифф. в точке $x_0\in(a,b)$ Тогда $(f^{-1})'(f(x_0))=\frac{1}{f'(x_0)}$

$$f^{-1} = g$$

$$g(f(x)) = x$$

$$g'(f(x_0))f'(x_0) = 1$$

Нужна дифф. функции g в точке $f(x_0)$

$$\begin{split} f(x) &= f(x_0) + f'(x_0)(x - x_0) + \alpha(x)(x - x_0) \text{где } \alpha(x) \to 0 \\ g(f(x)) &= g(f(x_0) + f'(x_0)(x - x_0) + \alpha(x)(x - x_0)) \\ g(y) &= g(f(x_0)) + A(y - f(x_0)) + \beta(y)(y - f(x_0)) \\ g(f(x)) &= g(f(x_0)) + A(f(x) - f(x_0)) + \beta(f(x))(f(x) - f(x_0)) \\ x &= x_0 + A(f'(x_0)(x - x_0) + \alpha(x)(x - x_0)) + \beta(f(x))(f'(x_0)(x - x_0) + \alpha(x)(x - x_0)) \\ A &= \frac{1}{f'(x_0)}, o = \frac{\alpha(x)}{f'(x_0)} + \beta(f(x))(f'(x_0 + \alpha(x))) \\ \beta(f(x)) &= -\frac{\alpha(x)}{f'(x_0)} \frac{1}{f'(x_0) + \alpha(g(y))} \\ \beta(y) &= -\frac{\alpha(g(y))}{f'(x_0)} \frac{1}{f'(x_0) + \alpha(g(y))} \end{split}$$

Надо понять,
что $\beta(y)\to 0$ при $y\to f(x_0)$ Если $y\to f(x_0),$
то $g(y)\to g(f(x_0))$

$$\lim_{y\to f(x_0)}\alpha(g(y))=\lim_{x\to x_0}\alpha(x)=0$$

Следствие 67.1.1.

$$(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y_0))}$$

68. Производные элементарных функций

$$c' = 0$$

$$(x^p)' = px^{p-1}$$

$$(a^x)' = \ln aa^x$$

$$(\ln x)' = \frac{1}{x}$$

$$\sin' x = \cos x$$

$$\cos' x = -\sin x$$

$$tg' x = \frac{1}{\cos^2 x}$$

$$ctg' x = -\frac{1}{\sin^2 x}$$

$$arctg' x = \frac{1}{1 + x^2}$$

$$arcsin' x = \frac{1}{\sqrt{1 - x^2}}$$

$$\begin{split} \lim_{h \to 0} \frac{(x+h)^p - x^p}{h} &= \lim_{h \to 0} \left(\frac{x^p}{x} \frac{\left(\left(1 + \frac{h}{x} \right)^p - 1 \right)}{\frac{h}{x}} \right) = x^{p-1} p \\ &\lim_{h \to 0} \frac{a^{x+h} - a^x}{h} = \lim_{h \to 0} a_x \frac{a^h - 1}{h} = a_x \ln a \\ &\lim_{h \to 0} \frac{\ln(x+h) - \ln x}{h} = \lim_{h \to 0} \frac{\ln\left(1 + \frac{h}{x} \right)}{\frac{h}{x}} \frac{1}{x} = \frac{1}{x} \end{split}$$

Лоооооооол что такое, Таня?

 $\sin x = y$

$$\arcsin' y = (\sin^{-1} y)' = \frac{1}{\cos y} = \frac{1}{\sqrt{1 - x^2}}$$

tg x = y

$$\operatorname{arctg}' y = (\operatorname{tg}^{-1} y)' = \frac{1}{\cos^2 y} = \frac{1}{1 + x^2}$$

69. Теоремы Ферма и Ролля

Теорема 69.1. Теорема Ферма. $f\colon \langle a,b\rangle,\ x_0\in (a,b),\ f$ дифференцируема в $x_0,\ x_0$ — точка экстремума. Тогда

$$f'(x_0) = 0$$

ightharpoonup Пусть $x > x_0$.

$$\lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}\geqslant 0$$

Пусть $x < x_0$.

$$\lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}\leqslant 0$$

Но тогда

$$f'(x_0) = 0$$

Теорема 69.2. Теорема Ролля. $f \colon [a,b] \in \mathbb{R}, \ f$ непрерывна, f дифференцируема на (a,b), f(a) = f(b). Тогда

$$\exists c \in (a,b) \colon f'(c) = 0$$

▶ Если функция константна, то всё доказано. Иначе есть глобальный максимум и минимум, причём они не могут быть оба в концах.

Следствие 69.2.1. Между корнями функции есть корень производной.

70. Теоремы Лагранжа и Коши

Теорема 70.1. Теорема Лагранжа. $f:[a,b]\in\mathbb{R}, f$ непрерывна, f дифференцируема на (a,b).

$$\exists c \in (a,b) \colon f(b) - f(a) = (b-a)f'(c)$$

Теорема 70.2. Теорема Коши. $f,g\colon [a,b]\in \mathbb{R},\ f$ непрерывна, f дифференцируема на (a,b), $g'(x)\neq 0\neq g(b)-g(a).$

$$\exists c \colon \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}$$

 $\blacktriangleright \ h(x) = f(x) - Kg(x), \ h(a) = h(b).$

$$K = \frac{f(b) - f(a)}{g(b) - g(a)}$$

Тогда

$$\exists c \colon h'(c) = 0$$

$$h'(c) = 0 \Rightarrow K = \frac{f'(c)}{g'(c)}$$

 $\mathit{Cnedcmeue}\ 70.2.1.\ f\colon [a,b]\in\mathbb{R},\, f$ непрерывна, fдифференцируема на $(a,b),\, |f'(x)|\leqslant M.$ Тогда

$$\forall x,y \in (a,b) \; |f(x)-f(y)| \leqslant M|x-y|$$

71. Следствия теоремы Лагранжа

Следствие 71.0.2.

1. $f:[a,b] \to \mathbb{R}$ f — непрерывна на [a,b], дифф. на (a,b) и $|f'(x)| \le M \forall x \in [a,b]$, тогда $|f(x)-f(y)| \le M |x-y| \forall x,y \in [a,b]$

$$\begin{split} f:[x,y] &\to \mathbb{R} \\ \Rightarrow \exists c \in (x,y), f(x) - f(y) = (x-y)f'(c) \\ \Rightarrow |f(x) - f(y)| &= |x-y||f'(c)| \leq M(x-y) \end{split}$$

2. При тех же условиях f равномерно непрерывна на (a, b)

$$\forall \varepsilon > 0 \\ \exists \delta > 0 \\ \forall x,y \in (a,b), |x-y| < \delta: |f(x)-f(y)| < \varepsilon$$

По следствию 1

$$|f(x) - f(y)| \leq M|x - y| < M\delta \Rightarrow \delta = rac{arepsilon}{M}$$
 подходит

3. $f:[a,b] \to \mathbb{R}$, f — непрерывна на [a, b] и диф. на (a, b) и $f'(x) = 0 \forall x \in (a,b)$, тогда f(x) = const.

$$\begin{split} [x,x_0] \subset [a,b] \\ \exists c \in (x,x_0) \subset (a,b), f(x) - f(x_0) = f'(c)(x-x_0) = 0 \\ \Rightarrow f(x) - f(x_0) \forall x \in [a,b] \end{split}$$

4. $f:[a,b] \to \mathbb{R}$, f — непрерывна на [a, b] и диф. на (a, b) и $f'(x) \ge 0 \forall x \in (a,b)$, тогда f(x) монотонно возрастает. А если $f'(x) > 0 \forall x \in (a,b)$, тогда f(x) строго монотонно возрастает.

$$x < yx, y \in < a, b >$$

$$f(y) - f(x) = (y - x)f'(c) \Rightarrow f(y) > f(x)$$

5. $f:[a,b] \to \mathbb{R}$, f — непрерывна на [a, b] и диф. на (a, b) и $f'(x) \le 0 \forall x \in (a,b)$, тогда f(x) монотонно убывает. А если $f'(x) < 0 \forall x \in (a,b)$, тогда f(x) строго монотонно убывает.

Теорема 71.1.

- 1. $f:[a,b] \to \mathbb{R}$, f непрерывна на [a, b] и диф. на (a, b), тогда f(x) монотонно возрастае $\Leftrightarrow f'(x) \ge 0 \forall x \in (a,b)$.
- 2. $f:[a,b] \to \mathbb{R}$, f непрерывна на [a, b] и диф. на (a, b), тогда f(x) монотонно убывает $\Leftrightarrow f'(x) \le 0 \forall x \in (a,b)$.

$$ightharpoonup$$
 $ightharpoonup$ Пусть $\mathrm{x}<\mathrm{y},$ тогда $f(x)< f(y)\Rightarrow rac{f(y)-f(x)}{y-x}\geq 0\Rightarrow f'(x)\geq 0$

72. Теорема Дарбу

Теорема 72.1. Теорема Дарбу. $f \colon [a,b] \to \mathbb{R}, \ f$ дифференцируема на $[a,b], \ C \in [f'(a),f'(b)].$ Тогда

$$\exists c \in (a,b) \colon f'(c) = C$$

 \blacktriangleright Пусть C=0, тогда f'(a) и f'(b) разных знаков.

f непрерывна, поэтому функиця достигает свои максимум и минимум (по теореме Вейерштрасса). Достаточно показать, что один из них достигаются не в конце.

От противного: пусть минимум находится в точке a, а максимум в точке b. Тогда

$$\forall x > a \ \frac{f(x) - f(a)}{x - a} \geqslant 0 \land \forall x < b \ \frac{f(x) - f(b)}{x - b} \geqslant 0$$

Тогда

$$\left. \begin{array}{l} f'(a) = \lim\limits_{x \to a+} \frac{f(x) - f(a)}{x - a} \\ f'(b) = \lim\limits_{x \to b-} \frac{f(x) - f(b)}{x - b} \end{array} \right| \Rightarrow \begin{array}{l} f'(a) \geqslant 0 \\ f'(b) \geqslant 0 \end{array} - \text{противоречиe}$$

Таким образом хотя бы один экстремум не в конце, и искомое c существует.

В общем случае перейдём к

$$g(x) = f(x) - Cx$$
$$g'(x) = f'(x) - C$$

73. Правило Лопиталя

Теорема 73.1. Правило Лопиталя. $-infty \le a < b \le +infty$ f и g дифф. на (a, b)

$$\begin{split} g'(x) &\neq 0 \forall x \in (a,b) \\ \lim_{x \to a^+} f(x) &= \lim_{x \to a^+} g(x) = 0 (+\infty) \\ \lim_{x \to a^+} \frac{f'(x)}{g'(x)} &= l \in \overline{\mathbb{R}} \Rightarrow \\ \lim_{x \to a^+} \frac{f(x)}{g(x)} &= l \end{split}$$

lacktriangle Возьмем $x_n\downarrow ax_n\in (a,b),$ надо доказать, что $\lim_{n o\infty}rac{f(x_n)}{g(x_n)}=l$

$$\frac{f(x_n) - f(a)}{g(x_n) - g(a)} = l$$

По теореме Штольца достаточно проверить, что $\lim_{n \to \infty} \frac{f(x_{n+1}) - f(x_n)}{g(x_{n+1} - g(x_n))}$ и что $g(x_n)$ — монотонна

$$\begin{split} \lim_{n \to \infty} \frac{f(x_{n+1}) - f(x_n)}{g(x_{n+1} - g(x_n))} &= \frac{f'(c_n)}{g'(c_n)} \to l \\ a &< x_{n+1} < c_n < x_n \Rightarrow c_n \to a \end{split}$$

Осталось доказать монотонность $g(x_n)$.

Заметим, что g' везде одного знака, иначе по теореме Дарбу была бы точка, где g' = 0. $\Rightarrow g(x_n)$ — строго монотонно.

Примеры

1.
$$\lim_{x\to\infty}\frac{\ln x}{x^p}=0$$
, при р > 0

$$(\ln(x))' = \frac{1}{x}$$
$$(x^p)' = px^{p-1}$$
$$\lim_{x \to \infty} \frac{(\ln x)'}{(x^p)'} = \lim_{x \to +\infty} \frac{\frac{1}{x}}{px^{p-1}} = 0$$

2.
$$\lim_{x\rightarrow\infty}\frac{x^p}{a^x}=0$$
при а > 1

$$\lim_{x\to\infty}\frac{(x^p)'}{(a^x)'}=\lim\frac{px^{p-1}}{a^x\ln a}$$

3.
$$\lim_{x\to 0^+} x^x = e^{\lim(\ln(x^x))} = 1$$

$$\begin{split} \ln(x^x) &= x ln(x) \\ \lim_{x \to 0^+} x ln(x) &= \lim_{x \to 0^+} \frac{ln(x)}{\frac{1}{x}} = \lim_{x \to 0} \frac{(lnx)'}{\left(\frac{1}{x}\right)'} = \lim_{x \to 0^+} = 0 \end{split}$$

74. Производные высших порядков

 $\mathfrak{Def}\colon$ Производной $n\geqslant 2$ порядка функции f называется производная производной n-1 порядка.

$$f^{(n)} = \left(f^{(n-1)}\right)'$$

 $\mathfrak{Def}\colon C(E), C[a,b], C(a,b)$ — множество непрерывных на E, [a,b], (a,b) функций. Соотвественно, $C^n(E)$ — множество n раз дифференцируемых функций.

$$C^{\infty}(E) = \bigcap_{i=1}^{\infty} C^{i}(E)$$

Утверждение.

$$C^n(E)\supset C^{n+1}(E)$$

REM: При том, что множества вложены друг в друга, они не равны.

$$f(x) = x^{n + \frac{1}{3}}$$

Тогда

$$f^{(n)}(x) = \prod_{i=1}^n \left(i + \frac{1}{3}\right) x^{\frac{1}{3}}$$

Т.о. $f \in C^n(\mathbb{R}),$ но $f^{(n)} = C\sqrt[3]{x}$ не дифференцируема в 0, поэтому $f \notin C^{(n+1)}(\mathbb{R})$

75. Арифметические действия с производными высших порядков

Теорема 75.1. Арифметические действия с производными высших порядков.

1.

$$(\alpha x f + \beta g)^{(n)} = \alpha f^{(n)} + \beta g^{(n)}$$

2. Правило Лейбница

$$(fg)^{(n)} = \sum_{i=0}^{n} \binom{n}{i} f^{(i)} g^{(n-i)}$$

 \blacktriangleright Метод математической индукции: база n=1 уже доказана. Докажем переход

$$(fg)^{(n+1)} = \left(\sum_{i=0}^{n} \binom{n}{i} f^{(i)} g^{(n-i)}\right) = \sum_{i=0}^{n} \binom{n}{i} \left(f^{(i+1)} g^{(n-i)} + f^{(i)} g^{(n-i+1)}\right) = \\ = \sum_{i=0}^{n} \binom{n}{i} f^{(i+1)} g^{(n-i)} + \sum_{i=0}^{n} \binom{n}{i} f^{(i)} g^{(n-i+1)} = \sum_{i=0}^{n-1} \left(\binom{n}{i} + \binom{n}{i+1}\right) f^{(i+1)} g^{(n-i)} + fg^{(n+1)} + f^{(n+1)} g = \\ = \sum_{i=0}^{n+1} \binom{n}{i} f^{(i)} g^{(n+1-i)}$$

76. Формула Тейлора

Теорема 76.1. Формула Тейлора.

$$T(x) = \sum i = 0^n \frac{T^{(i)}(x_0)}{i!} (x - x_0)^i$$

$$\begin{split} T(x) &= \sum_{i=0}^n a_k (x-x_0)^k \\ ((x-x_o)^k)^{(m)} &= \begin{cases} 0 & k < m \\ m! & k = m \\ k(k-1)(k-2)\cdots(k-m+1)(x-x_0)^{k-m} & k > m \end{cases} \\ T(x)^{(m)} &= \sum_{i=m}^n a_k k(k-1)(k-2)(k-3)\cdots(k-i+1)(x-x_0)^{k-m} \\ T(x_0)^{(m)} &= a_m m! \\ a_m &= \frac{T^{(m)}(x_0)}{m!} \end{split}$$

 $\mathfrak{Def}\colon f$ дифференцируема n раз в точке $x_0.$ Тогда многочленом Тейлора функции f в точке x_0 есть

$$T_{n,x_0}f(x) = \sum_{i=0}^n \frac{f^{(i)}(x)}{k!} (x-x_0)^k$$

Деf: Формула Тейлора:

$$f(x) = T_{n,x_0} f(x) + R_{n,x_0} f(x)$$

 ${\mathcal H}$ емма 76.1. g дифференцируема n раз в x_0 . $g(x_0)=g'(x_0)=g''(x_0)=\cdots=g^{(n)}(x_0)=0$. Тогда

$$g(x) = o((x - x_0)^n) x \to x_0$$

$$\lim_{x \to x_0} \frac{g(x)}{(x-x_0)^n} = \lim x \to x_0 \frac{g'(x)}{n(x-x_0)^{n-1}} = \dots = \lim_{x \to x_0} \frac{g^(n-1)}{n! \ (x-x_0)}$$

 $g^{(n-1)}$ дифференцируема в x_0 , а значит

$$g^{(n-1)}(x) = g^{(n-1)}(x_0) + g^{(n)}(x_0)(x-x_0) + o(x-x_0) = o(x-x_0)$$

T.o.

$$\lim_{x \to x_0} \frac{g^{(n-1)}}{n! \left(x - x_0\right)} = 0$$

Тогда

$$g(x) = o\left((x - x_0)^n\right)$$

77. Формула Тейлора с остатком в форме Пеано

Теорема 77.1. Формула Тейлора с остатком в форме Пеано. f дифференцируема n раз в x_0 .

$$f(x) = T_{n,k} f(x) + o((x-x_0)^n) \quad x \to x_0$$

$$g(x) = f(x) - T_{n,k} f(x)$$

$$\forall k \leqslant n \; g^{(k)}(x_0) = f^{(k)}(x_0) - \left(T_{n,x_0} f\right)^{(k)}(x_0) = 0$$

Пользуемся леммой.

Следствие 77.1.1.

$$\exists !\, P \in \mathbb{R}[x] \colon f(x) = P(x) + o((x-x_n)^k) \quad x \to x_0$$

 $\rightarrow x \rightarrow x_0$:

$$\begin{split} T_{n,x_0}f(x)+o\left((x-x_0)^n\right)&=f(x)=P(x)+o\left((x-x_0)^n\right)\\ q(x)&\leftrightharpoons T_{n,x_0}f(x)-P(x)=o\left((x-x_0)^k\right)\\ q(x_0)&=0 \end{split}$$

 $q \in \mathbb{R}[x]$

$$\begin{aligned} q(x) &= (x-x_0)q_1(x) \\ q_1(x) &= o\left((x-x_0)^{n-1}\right) \\ q_1(x_0) &= 0 \end{aligned}$$

$$q_n(x_0) = o(1)$$

$$q_n \equiv 0$$

$$q \equiv 0$$

$$P \equiv T_{n,x_0} f$$

78. Формула Тейлора с остатком в форме Лагранжа

Теорема 78.1. Формула Тейлора с остатком в форме Лагранжа. f дифференцируема n/+1/ раз в $x_0,\,f^{(n)}$ непрерывна на $[x,x_0].$

$$\exists c \in (x,x_0) \colon f(x) = T_{n,x_0}f(x) + \frac{f^{(n+1)}(c)}{(n+1)!}(x-x_0)^{n+1}$$

REM: Теорема Лагража — частный случай для n=0.

$$\exists c \in (x, x_0) \colon f(x) = f(x_0) + f'(c)(x - x_0)$$

$$f(x) = T_{n,x_0} f(x) + M \frac{(x - x_0)^{n+1}}{(n+1)!}$$

Надо доказать, что в форме

$$\begin{split} \exists c \in (x,x_0) \colon M &= \frac{f^{(n+1)}(c)}{(n+1)!} \\ g(t) &\leftrightharpoons f(t) - T_{n,x_0} f(t) - M(t-x_0)^{n+1} \\ g^{(k)}(t) &= f^{(k)}(t) - (T_{n,x_0})^{(k)}(t) - M(n+1)(n+2)(n+3) \cdots (n-k+2)(t-x_0)^{n-k+1} \\ g^{(k)}(x_0) &= 0 \end{split}$$

Тогда у функции g первые n производных равны нулю, а также g(x) = 0, значит

$$g(x_0)=g(x)=0$$

По теореме Ролля

$$\exists x_1 \in (x, x_0) \colon g'(x_1) = 0$$
$$g'(x_0) = g'(x_1) = 0$$

По теореме Ролля

$$\begin{split} \exists x_2 \in (x,x_1) \colon g'(x_2) &= 0 \\ &\vdots \\ \exists x_{n+1} \in (x,x_0) \colon g^{(n+1)}(x_{n+1}) &= 0 \\ g^{(n+1)}(t) &= f(n-1)(t) - M(n+1)! \\ c &= x_{n+1} \end{split}$$

 $\mathit{Cnedcmвue}$ 78.1.1. $f\colon [a,b] \to \mathbb{R}, \, n+1$ раз дифференцируема на $[a,b], \, x_0 \in (a,b), \, \left|f^{(n+1)}(t)\right| \leqslant M.$

$$\left|f(x)-T_{n,x_0}f(x)\right|\leqslant \frac{M\left|x-x_0\right|^{n+1}}{(n+1)!}=O\left((x-x_0)^n\right)$$

 $\exists c \in (x,x_0) \colon \left| f(x) - T_{n,x_0} f(x) \right| = \left| \frac{f^{(n+1)}(v)}{(n+1)!} (x-x_0)^{n+1} \right|$

 $\mathit{Cnedcmeue~78.1.2.}\ f\colon [a,b]\to \mathbb{R}, n+1$ раз дифференцируема на $[a,b], x_0\in (a,b), for all n\ \left|f^{(n+1)}(t)\right|\leqslant M.$

$$\lim_{n \to \infty} T_{n, x_0} = f(x)$$

 $\left|f(x)-T_{n,x_0}f(x)\right|\leqslant \frac{M\left|x-x_0\right|^{n+1}}{(n+1)!}\to 0$

79. Формула Тейлора для некоторых функций

 $x_0 = 0$:

$$e^{x} = 1 \qquad +x + \frac{x^{2}}{2!} \qquad +\frac{x^{3}}{3!} + \frac{x^{4}}{4!} \qquad + \dots + o(x^{n})$$

$$e^{x} = 1 \qquad +x + \frac{x^{2}}{2!} \qquad +\frac{x^{3}}{3!} + \frac{x^{4}}{4!} \qquad + \dots + \frac{e^{c}x^{n+1}}{(n+1)!}$$

$$\sin x = 0 + x + 0 - \frac{x^3}{3!} + 0 + \dots + o(x^{2n+1})$$

$$\cos x = 1 + 0 + \frac{x^2}{2!} + 0 + \dots + o(x^{2n+1})$$

$$\ln(x+1) = 0 + x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + o(x^n)$$

$$(x+1)^p = 1 + px + \frac{p(p-1)}{2!}x^2 + \frac{p(p-1)(p-2)}{3!}x^3 + \frac{p(p-1)(p-2)(p-3)}{4!}x^4 + \dots + o(x^n)$$

80. Следствия формулы Тейлора с остатком в форме Лагранжа

 $\mathfrak{Def}\colon\ a_n\in\mathbb{R}$

$$\sum_{i=0}^{\infty} \stackrel{\text{Def}}{=} \lim_{n \to \infty} \sum_{i=0}^{\infty} i = 0^n a_n$$

Следствие 80.0.3. $\forall x in \mathbb{R}$

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$$
$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$$

81. Иррациональность числа е

Теорема 81.1. Иррациональность e.

 $e \notin \mathbb{Q}$

$$\left(1 + \frac{1}{n}\right)^n \leqslant e \leqslant \left(1 + \frac{1}{n+1}\right)^n$$
$$2 < e < 3$$

Пусть $e = \frac{m}{n}$

$$e^{1} = 1 + 1 + \frac{1}{2!} + 1\frac{3!}{+} \dots + \frac{e^{c}}{(n+1)!} = \frac{m}{n} \Rightarrow$$

$$\Rightarrow \underbrace{n! \left(1 + 1 + \frac{1}{2!} + 1\frac{3!}{+} \dots\right)}_{\in \mathbb{N}} + \frac{e^{c}}{n+1} = \underbrace{m(n-1)!}_{\in \mathbb{N}} \Rightarrow$$

$$\Rightarrow \frac{e^{c}}{n+1} \in \mathbb{N}$$

$$0 < c < 1 \Rightarrow 1 < e^{c} < 3$$

$$0 < \frac{1}{n+1} < \frac{e^{c}}{n+1} < \frac{3!}{n+1} < 1$$

T.o. $e \neq \frac{m}{n}$

82. Локальные максимумы и минимумы

83. Экстремумы функции

 $\mathfrak{Def}\colon\ f\colon\ \langle a,b\rangle\to\mathbb{R},\, x_0\in(a,b).\ x_0$ — точка строгого локального минимума, если

$$\exists \delta > 0 \colon \forall x \in (x-\delta, x+\delta) \ \{x_0\} f(x) > f(x_0)$$

 x_0 — точка нестрогого локального минимума, если

$$\exists \delta > 0 \colon \forall x \in (x-\delta, x+\delta) f(x) \geqslant f(x_0)$$

 x_0 — точка строгого локального максимума, если

$$\exists \delta > 0 \colon \forall x \in (x - \delta, x + \delta) \ \{x_0\} f(x) < f(x_0)$$

 x_0 — точка нестрогого локального максимума, если

$$\exists \delta > 0 \colon \forall x \in (x - \delta, x + \delta) f(x) \leqslant f(x_0)$$

Точка локального максимума или минимума также называется точкой локального экстремума. **Теорема 83.1. Необходимое условие экстремума.** $f: \langle a,b \rangle \to \mathbb{R}, x_0 \in (a,b), f$ дифферен-

цируема в x_0 .

$$x_0$$
 — экстремум $\Rightarrow f'(x_0) = 0$

Сузим до окрестности, там по теореме Ферма всё работает.

REM: Обратное неверно, смотри $f(x) = x^3$.

84. Достаточные условия экстремума

Теорема 84.1. Достаточное условие экстремума. $f: \langle a,b \rangle \to R, x_0 \in (a,b), f$ непрерывна на $(x_0-\delta,x_0+\delta)f$ дифференцируема на $(x_0-\delta,x_0)\cup(x_0+\delta)$. Тогда

- $f'((x_0-\delta,x_0))>0 \land f'((x_0,x_0+\delta))<0 \Rightarrow x_0$ точка максимума
- $f'((x_0 \delta, x_0)) < 0 \land f'((x_0, x_0 + \delta)) > 0 \Rightarrow x_0$ точка минимума

$$f'((x_0-\delta,x_0))>0\Rightarrow f$$
возрастает на $(x_0-\delta,x_0)\Rightarrow f(x_0)>f((x_0-\delta,x_0))$
$$f'((x_0,x_0+\delta))<0\Rightarrow f$$
убывает на $(x_0,x_0+\delta)\Rightarrow f(x_0)>f((x_0,x_0+\delta))$

Теорема 84.2. Достаточное условие экстремума через вторую производную. $f \colon \langle a, b \rangle \to$ $R, x_0 \in (a, b), f$ дважды дифференцируема в x_0 и $f'(x_0) = 0$. Тогда

- $f''(x_0) < 0 \Rightarrow x_0$ точка максимума
- $f''(x_0) > 0 \Rightarrow x_0$ точка минимума

Теорема 84.3. Достаточное условие экстремума через n-ую производную. $f: \langle a, b \rangle \to$ $R,\,x_0\in(a,b),\,f$ дифференцируема n раз в x_0 и $f'(x_0)=f''(x_0)\cdots=f^{(n-1)}(x_0)=0.$ Тогда

- $2 \mid n \land f''(x_0) < 0 \Rightarrow x_0$ точка максимума
- $2 \mid n \land f''(x_0) > 0 \Rightarrow x_0$ точка минимума
- $2 \not| 2 \wedge f''(x_0) \neq 0 \Rightarrow x_0$ не экстремум

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \dots + \frac{f^{(n-1)}}{(n-1)!}(x - x_0)^{n-1} + \frac{f^{(n)}}{n!}(x - x_0)^n + o((x - x_0)^n)$$

$$f(x) - f(x_0) = \frac{f^{(n)}}{n!}(x - x_0)^n + o((x - x_0)^n) = (x - x_0)^n \left(\frac{f^{(n)}(x_0)}{n!} + o(1)\right)$$

 $2 \div n \wedge f^{(n)}(x_0) > 0 \Rightarrow \exists \varepsilon > 0 \colon \forall x \in (x_0 - \varepsilon, x_0) \cup (x_0, x_0 + \varepsilon) \ f(x) - f(x_0) > 0 \ 2 \div n \wedge f^{(n)}(x_0) < 0$ $0 \Rightarrow \exists \varepsilon > 0 \colon \forall x \in (x_0 - \varepsilon, x_0) \cup (x_0, x_0 + \varepsilon) \; f(x) - f(x_0) < 0 \; 2 \not + n \; \land \; f^{(n)}(x_0) \neq 0 \Rightarrow \exists \varepsilon > 0 \colon \forall x \in (x_0 - \varepsilon, x_0) \cup (x_0, x_0 + \varepsilon) \; f(x) - f(x_0) < 0 \; 2 \not + n \; \land \; f^{(n)}(x_0) \neq 0 \Rightarrow \exists \varepsilon > 0 \colon \forall x \in (x_0 - \varepsilon, x_0) \cup (x_0, x_0 + \varepsilon) \; f(x) - f(x_0) < 0 \; 2 \not + n \; \land \; f^{(n)}(x_0) \neq 0 \Rightarrow \exists \varepsilon > 0 \colon \forall x \in (x_0 - \varepsilon, x_0) \cup (x_0, x_0 + \varepsilon) \; f(x) - f(x_0) < 0 \; 2 \not + n \; \land \; f^{(n)}(x_0) \neq 0 \Rightarrow \exists \varepsilon > 0 \colon \forall x \in (x_0 - \varepsilon, x_0) \cup (x_0, x_0 + \varepsilon) \; f(x) - f(x_0) < 0 \; 2 \not + n \; \land \; f^{(n)}(x_0) \neq 0 \Rightarrow \exists \varepsilon > 0 \colon \forall x \in (x_0 - \varepsilon, x_0) \cup (x_0, x_0 + \varepsilon) \; f(x) - f(x_0) < 0 \; 2 \not + n \; \land \; f^{(n)}(x_0) \neq 0 \Rightarrow \exists \varepsilon > 0 \colon \forall x \in (x_0 - \varepsilon, x_0) \cup (x_0, x_0) = 0 \; \exists \varepsilon > 0 \; \exists$ $(x_0-\varepsilon,x_0)\cup(x_0,x_0+\varepsilon)\,sign(f(x)-f(x_0))=sign(x-x_0)$

85. Выпуклость

 $\mathfrak{Def}\colon f\colon \langle a,b\rangle \to \mathbb{R}.$ f выпукла вниз, если

$$\forall x,y \in \langle a,b \rangle \ \forall \lambda \in (0,1) \\ f(\lambda x + (1-\lambda)y) \leqslant \lambda f(x) + (1-\lambda)f(y)$$

f строго выпукла вниз, если

$$\forall x, y \in \langle a, b \rangle : x \neq y \ \forall \lambda \in (0, 1) f(\lambda x + (1 - \lambda)y) < \lambda f(x) + (1 - \lambda)f(y)$$

f выпукла вверх, если

$$\forall x, y \in \langle a, b \rangle \ \forall \lambda \in (0, 1) f(\lambda x + (1 - \lambda)y) \geqslant \lambda f(x) + (1 - \lambda) f(y)$$

f строго выпукла вверх, если

$$\forall x, y \in \langle a, b \rangle : x \neq y \ \forall \lambda \in (0, 1) f(\lambda x + (1 - \lambda)y) > \lambda f(x) + (1 - \lambda)f(y)$$

Абсолютно эквивалентная запись, геом. смысл... 0,0301 10.12

REM: Сумма выпуклых и выпуклая, умноженная на положительную, выпуклы. Лемма 85.1. О трёх хордах. $f: \langle a, b \rangle \to R$ — выпуклая, $u < v < w, u, v, w \in \langle a, b \rangle$. Тогда

$$\frac{f(v) - f(u)}{v - u} \leqslant \frac{f(w) - f(u)}{w - u} \leqslant \frac{f(w) - f(v)}{w - v}$$

$$\frac{f(v)-f(u)}{v-u}\leqslant \frac{f(w)-f(u)}{w-u} \Leftrightarrow (w-u)(f(v)-f(u))\leqslant (v-u)(f(w)-f(u)) \Leftrightarrow \\ \Leftrightarrow (w-u)f(v)-(w-u)f(u)\leqslant (v-u)f(w)-(v-u)f(u) \Leftrightarrow (w-u)f(v)\leqslant (v-u)f(w)+(w-v)f(u)$$

86. Непрерывность и дифференциеруемость выпуклой функции

Теорема 86.1. Монотонность производной выпуклой функции. $f\colon \langle a,b \rangle \to R$ — выпуклая. Тогда

$$\forall x \in (a,b) \ f'_{-}(x) \leqslant f'_{+}(x)$$

$$\frac{f(x)-f(u_1)}{x-u_1}\leqslant \frac{f(x)-f(u_2)}{x-u_2}\leqslant \frac{f(x)-f(v)}{x-v}$$

Тогда $\frac{f(x)-f(u)}{x-u}$ растёт и ограничено, т.е. предел $f'_{-}(x)$ существует. Аналогично существует $f'_{+}(x)$, она убывает. Как видно, они в правильном порадке.

Теорема 86.2. Свойство и признак выпуклости. f — выпуклая на $\langle a,b \rangle$ тогда и только тогда, когда

$$\forall x,x_0 \in \langle a,b\rangle \ f(x) \geqslant f(x_0) + (x-x_0)f'(x_0)$$

$$x > x_0, y \in (x_0, x)$$

$$\begin{split} \frac{f(x_0) - f(y)}{x_0 - y} \leqslant \frac{f(x_0) - f(x)}{x_0 - x} \\ f'(x_0) = \lim_{y \to x_0} \frac{f(x_0) - f(y)}{x_0 - y} \leqslant \frac{f(x_0) - f(x)}{x_0 - x} \end{split}$$

$$x_0 - x > 0$$

$$f'(x_0)(x-x_0)\leqslant f(x_0)-f(x)$$

Аналогично $x < x_0, y \in (x, x_0)$

$$\frac{f(x)-f(x_0)}{x-x_0}\leqslant \frac{f(y)-f(x_0)}{y-x_0}$$

⇐:

u < v < w

$$\forall x \ f(x) \geqslant f(v) + (x - v)f'(v)$$
$$f(u) \geqslant f(v) + (u - v)f'(v)$$
$$f(w) \geqslant f(v) + (w - v)f'(v)$$

Сложим с правильными коэффициентами:

$$\begin{split} (w-v)f(u) \geqslant (w-v)f(v) + (w-v)(u-v)f'(v) \\ (v-u)f(w) \geqslant (v-u)f(v) + (w-v)(v-u)f'(v) \\ (w-v)f(u) + (v-u)f(w) \geqslant (w-u)f(v) \end{split}$$

87. Критерии выпуклости в терминах первой и второй производных

Теорема 87.1. Критерий выпуклости. $f \colon \langle a,b \rangle \to \mathbb{R}, f$ дифференцируема на (a,b).

f (строго) выпукла $\Leftrightarrow f'$ (строго) возрастает

$$ightharpoonup \Rightarrow: x_1 < x_2$$

$$f(x) \geqslant f(x_1) + (x - x_1)f'(x_1)$$

$$f(x)\geqslant f(x_2)+(x-x_2)f'(x_2)$$

Подставим

$$f(x_2)\geqslant f(x_1)+(x_2-x_1)f'(x_1)$$

$$f(x_1) \geqslant f(x_2) + (x_1 - x_2)f'(x_2)$$

$$f'(x_1)\leqslant \frac{f(x_2)-f(x_1)}{x_2-x_1}\leqslant f'(x_2)$$

La: Нужно проверить, что

$$\frac{f(u) - f(v)}{u - v} \leqslant \frac{f(v) - f(w)}{v - w}$$

По теороеме Лагранжа, есть точки $\xi < \eta$

$$\frac{f(u)-f(v)}{u-v}=f'(\xi)\leqslant f'(\eta)=\frac{f(v)-f(w)}{v-w}$$

Теорема 87.2. Критерий выпуклости через вторую производную. $f\colon \langle a,b\rangle \to \mathbb{R}, f$ дважды дифференцируема на (a,b).

$$f$$
 выпукла $\Leftrightarrow f'' > 0$

▶ Смотрим на теоремы о монотонности.

88. Неравенство Йенсена

Теорема 88.1. Неравенство Йенсена. $f: \langle a, b \rangle \to \mathbb{R}$ выпукла.

$$\forall \{x_i\}_{i=1}^n \subset \langle a,b\rangle \ \forall \{\lambda_i\}_{i=1}^n \subset [0,1] \colon \sum_{i=1}^n \lambda_i = 1$$

$$f\left(\sum_{i=1}^n \lambda_i x_i\right) \leqslant \sum_{i=1}^n \lambda_i f(x_i)$$

 \blacktriangleright Метод математической индукции. Теорема при n=2 совпадает с определением выпуклости.

$$f\left(\sum_{\underbrace{i=1}_{\leftrightharpoons y}}^{n}\lambda_{i}x_{i}+\lambda x_{n+1}x_{n+1}\right)=f((1-\lambda_{n+1})y+\lambda_{n+1}x_{n+1})\geqslant$$

$$\geqslant (1 - \lambda_{n+1}) f(y) + \lambda_{n+1} f(x_{n+1}) = (1 - \lambda_{n+1}) f\left(\sum_{i=1}^n \frac{\lambda_i}{1 - \lambda_{n+1}} x_i\right) \leqslant (1 - \lambda_{n+1}) \sum_{i=1}^n \frac{\lambda_i}{1 - \lambda_{n+1}} f(x_i) + \lambda_{n+1} f(x_{n+1}) = \sum_{i=1}^n \lambda_i f(x_i) + \lambda_{n+1} f(x_{n+1})$$

89. Неопределённый интеграл

 $\mathfrak{Def}\colon\ f\colon\ \langle a,b\rangle\to\mathbb{R}.$ Функция $F\colon\ \langle a,b\rangle\to\mathbb{R}$ называется первообразной f, если

$$F' = f$$

He для всех f существует F. Например,

$$f(x) = \begin{cases} 1 & x \geqslant 0 \\ 0 & x < 0 \end{cases}$$

ightharpoonup Пусть есть F'=f. Тогда по теореме Дарбу

$$\forall a, b \in (-1, 1), c \in (F'(a), F'(b)) \exists c \in (a, b) : F'(c) = C$$

Теорема 89.1. О существовании первообразной. Для любой непрерывной $f\colon \langle a,b\rangle \to \mathbb{R}$ есть первообразная F. Докажем в следующем семестре.

Теорема 89.2. $f, F \colon \langle a, b \rangle \to \mathbb{R}, F$ — первоообразная. Тогда

- 1. $F + c \ (c \in \mathbb{R})$ также первообразная.
- 2. Φ первообразная $\iff \Phi = F + c$.

$$(F+c)' = F' + 0 = f$$

Рассмотрим $G = \Phi - F$. Она дифференцируема и

$$G' = (\Phi - F)' = \Phi' - F' = f - f = 0$$

Но тогда

$$G = const$$

 \mathfrak{Def} : Неопределённым интегралом функции f называется множество её первообразных.

$$\int f(x) \mathrm{d}x$$

Пока стоит воспринимать все символы интеграла как некоторые «скобки».

Если есть некоторая первообразная F, то

$$\int f(x) dx = \{ F(x) + c \mid c \in \mathbb{R} \}$$

Тот же смысл имеют записи

$$\int f(x)dx = F(x) + c$$
$$\int fdx = F + c$$

Для того, чтобы найти неопределённый интеграл, достаточно найти какую-то первообразную, а для проверки первообразной достаточно взять от неё производную.

90. Таблица интегралов

Таблица интегралов:

$$\int 0 dx = c$$

$$\int x^p dx = \frac{x^{p+1}}{p+1} + c$$

$$\int \frac{dx}{x} = \ln|x| + c$$

$$\int a^x dx = \frac{a^x}{\ln a} + c$$

$$\int \sin x dx = -\cos x + c$$

$$\int \cos x dx = \sin x + c$$

$$\int \frac{dx}{\cos^2 x} = \operatorname{tg} x + c$$

$$\int \frac{dx}{\sin^2 x} = -\operatorname{ctg} x + c$$

$$\int \frac{dx}{\sqrt{1-x^2}} = \arcsin x + c$$

$$\int \frac{dx}{1+x^2} = \arcsin x + c$$

$$\int \frac{dx}{1-x^2} = \frac{1}{2} \ln\left|\frac{1+x}{1-x}\right| + c$$

$$\int \frac{dx}{\sqrt{x^2+1}} = \ln\left|x + \sqrt{x^2 \pm 1}\right| + c$$

 \mathfrak{Def} : Пусть A, B — множества. Тогда

$$A + B = \{a + b \mid a \in A \land b \in B\}$$
$$A - B = \{a - b \mid a \in A \land b \in B\}$$
$$\alpha A = \{\alpha a \mid a \in A\}$$

Теорема 90.1. Об арифметических операциях с интегралами.

$$\int (f \pm g) dx = \int f dx \pm \int g dx$$
$$\int \alpha f dx = \alpha \int f dx$$

 $\alpha \neq 0$

REM: Именно из-за того, что константы в записи нет, мы исключаем ноль. $\triangleright F, G$ — первообразные соотвественно f, g.

$$\int f \mathrm{d}x = \{F + c_1\}$$

$$\int g\mathrm{d}x = \{G+c_2\}$$

$$\int f\mathrm{d}x \pm \int g\mathrm{d}x = \{F+c_1\} \pm \{G+c_2\} = \{F+G+c_3\} =$$

$$= \int (f+g)\mathrm{d}x$$

$$= \int (f+g)\mathrm{d}x$$

$$\alpha \int f\mathrm{d}x = \alpha \{F+c_1\} = \{\alpha F+c_2\} =$$

$$(\alpha F)' = \alpha f$$

$$= \int \alpha f\mathrm{d}x$$

91. Замена переменной

Теорема 91.1. Замена переменной в неопределённом интеграле. $f:\langle a,b\rangle\to\mathbb{R}$ непрерывна, $\varphi:\langle c,d\rangle\to\langle a,b\rangle$ непрерывно дифференцируема.

$$\int f(\varphi(t))\varphi'(t)dt = F(\varphi(t)) + c$$

$$\left(F(\varphi(t))+c\right)'=\left(F(\varphi(t))\right)'=F'(\varphi(t))\varphi'(t)=f(\varphi(t))\varphi'(t)$$

Следствие 91.1.1.

$$\int f(\alpha x + \beta) dx = \frac{1}{\alpha} F(\alpha x + \beta) + c$$

Примеры:

$$\int \frac{\ln^2 x}{x} \mathrm{d}x$$

$$f = x^2, \varphi = \ln x$$

$$\int \frac{\ln^2 x}{x} dx = \int (\ln x)^2 (\ln x)' dx = \frac{(\ln x)^3}{3} + c = \frac{\ln^3 x}{3} + c$$

a > 0

$$\int \frac{\mathrm{d}x}{x^2 + a^2} = \frac{1}{a^2} \int \frac{\mathrm{d}x}{\left(\frac{x}{a}\right)^2 + 1} = \frac{1}{a^2} \frac{1}{\frac{1}{a}} \arctan \frac{x}{a} + c =$$
$$= \frac{1}{a} \arctan \frac{x}{a}$$

$$f = \frac{1}{x^2 + 1}$$

92. Интегрирование по частям

Теорема 92.1. Интегрирование по частям. f,g — дифференцируемые, f'g — интегрируемая.

$$\int fg'\mathrm{d}x = fg - \int f'g\mathrm{d}x$$

▶ Φ — первообразная f'g.

$$(fg-\varPhi+c)'=fg'+f'g-f'g=fg'$$

Пример:

$$\int x^{2}e^{x}dx = x^{2}e^{x} - \int 2xe^{x}dx = x^{2}e^{x} - 2\int xe^{x}dx =$$

$$= x^{2}e^{x} - 2\left(xe^{x} - \int e^{x}dx\right) = x^{2}e^{x} - 2xe^{x} + 2e^{x} + c$$

Есть термин «берущеися» интегралы. Это интегралы, выражаемые через элементарные функции. Их, вообще говоря, мало. К ним относятся рациональные функции (отношение многочленов), произведение тригинометрических функций, $x\sqrt{ax^2+bx+c}$. Не берутся, например,

$$\int e^{x^2} dx$$

$$\int \frac{e^x}{x} dx$$

$$\int \frac{\sin x}{x} dx$$

$$\int \frac{\cos x}{x} dx$$

$$\int \frac{dx}{\ln x}$$