

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR PHYSIK

R: Rechenmethoden für Physiker, WiSe 2024/25

DOZENT: JAN VON DELFT

ÜBUNGEN: MARKUS FRANKENBACH

https://moodle.lmu.de → Kurse suchen: 'Rechenmethoden'

Sheet 03: Vector Product, Curves, Line Integrals

Posted: Mo 28.10.24 Central Tutorial: 31.10.24 Due: Th 07.11.24, 14:00 (b)[2](E/M/A) means: problem (b) counts 2 points and is easy/medium hard/advanced Suggestions for central tutorial: example problems 3, 6, 7, 4. Videos exist for example problems 4 (L4.3.1), 8 (V1.4.1).

Example Problem 1: $1/(1-x^2)$ Integrals by hyperbolic substitution [3] Points: (a)[1](E); (b)[2](M)

For integrals involving $1/(1-x^2)$, the substitution $x=\tanh y$ may help, since it gives $1-x^2=\mathrm{sech}^2 y$. Use it to compute the following integrals I(z); check your answers by calculating $\frac{\mathrm{d}I(z)}{\mathrm{d}z}$. [Check your results: (a) $I\left(\frac{3}{5}\right)=\ln 2$; (b) for a=3, $I\left(\frac{1}{5}\right)=\frac{1}{6}\ln 2+\frac{5}{32}$.]

(a)
$$I(z) = \int_0^z \mathrm{d}x \, \frac{1}{1-x^2} \quad (|z| < 1),$$
 (b) $I(z) = \int_0^z \mathrm{d}x \, \frac{1}{(1-a^2x^2)^2} \quad (|az| < 1).$

Hint: For (b), use integration by parts for the $\cosh^2 y$ integral emerging after the substitution.

Example Problem 2: Elementary computations with vectors [3]

Points: (a)[1](E); (b)[1](E); (c)[1](E)

Given the vectors $\mathbf{a}=(4,3,1)^T$ and $\mathbf{b}=(1,-1,1)^T.$

- (a) Calculate $\|\mathbf{b}\|$, $\mathbf{a} \mathbf{b}$, $\mathbf{a} \cdot \mathbf{b}$ and $\mathbf{a} \times \mathbf{b}$.
- (b) Decompose $a\equiv a_{\parallel}+a_{\perp}$ into two vectors parallel and perpendicular to b.
- (c) Calculate ${\bf a}_\|\cdot{\bf b}$, ${\bf a}_\perp\cdot{\bf b}$, ${\bf a}_\|\times{\bf b}$ and ${\bf a}_\perp\times{\bf b}$. Do these results match your expectations?

[Check your results: (a) $\mathbf{a} \cdot \mathbf{b} + \sum_i (\mathbf{a} \times \mathbf{b})^i = -4$, (b) $\sum_i (\mathbf{a}_{\parallel})^i = \frac{2}{3}$, $\sum_i (\mathbf{a}_{\perp})^i = 7\frac{1}{3}$.]

Example Problem 3: Levi-Civita symbol [3]

Points: (a)[1](E); (b)[1](E); (c)[1](E).

(a) Is the statement $a^ib^j\epsilon_{ij2}\stackrel{?}{=} -a^k\epsilon_{k2l}b^l$ true or false? Justify your answer.

Express the following k-sums over products of two Levi-Civita symbols in terms of Kronecker delta symbols. Check your answers by also writing out the k-sums explicitly and evaluating each term separately.

(b) $\epsilon_{1ik}\epsilon_{kj1}$, (c) $\epsilon_{1ik}\epsilon_{kj2}$.

Example Problem 4: Grassmann identity (BAC-CAB) and Jacobi identity [5]

Points: (a)[2](M); (b)[1](E); (c)[2](M)

(a) Prove the Grassmann (or BAC-CAB) identity for arbitrary vectors $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{R}^3$:

$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = \mathbf{b}(\mathbf{a} \cdot \mathbf{c}) - \mathbf{c}(\mathbf{a} \cdot \mathbf{b}).$$

Hint: Expand the three vectors in an orthonormal basis, e.g. $\mathbf{a} = \mathbf{e}_i a^i$, and use the identity $\epsilon_{ijk}\epsilon_{mnk} = \delta_{im}\delta_{jn} - \delta_{in}\delta_{jm}$ for the Levi-Civita symbol. If you prefer, you may equally well write all indices downstairs, e.g. $\mathbf{a} = \mathbf{e}_i a_i$, since in an orthonormal basis $a_i = a^i$.

(b) Use the Grassmann identity to derive the Jacobi identity:

$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) + \mathbf{b} \times (\mathbf{c} \times \mathbf{a}) + \mathbf{c} \times (\mathbf{a} \times \mathbf{b}) = \mathbf{0}$$
.

(c) Check both identities explicitly for $\mathbf{a}=(1,1,2)^T$, $\mathbf{b}=(3,2,0)^T$ and $\mathbf{c}=(2,1,1)^T$ by separately computing all terms they contain.

Example Problem 5: Scalar triple product [2]

Points: (a)[0.5](E); (b)[1](E); (c)[0.5](E)

This problem illustrates an important relation between the scalar triple product and the question whether three vectors in \mathbb{R}^3 are linearly independent or not.

- (a) Compute the scalar triple product, $S(y) = \mathbf{v}_1 \cdot (\mathbf{v}_2 \times \mathbf{v}_3)$, of $\mathbf{v}_1 = (1,0,2)^T$, $\mathbf{v}_2 = (3,2,1)^T$ and $\mathbf{v}_3 = (-1,-2,y)^T$ as a function of the variable y. [Check your result: S(1) = -4].
- (b) By solving the vector equation $\mathbf{v}_i a^i = \mathbf{0}$, find that value of y for which \mathbf{v}_1 , \mathbf{v}_2 are \mathbf{v}_3 not linearly independent.
- (c) What is the value of S(y) for the value of y found in (b)? Interpret your result!

Example Problem 6: Velocity and acceleration [3]

Points: (a)[1](E); (b)[1](M); (c)[1](E)

Consider the curve $\gamma = \{\mathbf{r}(t) \mid t \in (0, 2\pi/\omega)\}$, $\mathbf{r}(t) = (aC(t), S(t))^T \in \mathbb{R}^2$, with $C(t) = \cos [\pi (1 - \cos \omega t)]$, $S(t) = \sin [\pi (1 - \cos \omega t)]$, and $0 < a, \omega \in \mathbb{R}$.

- (a) Calculate the curve's velocity vector, $\dot{\mathbf{r}}(t)$, and it's acceleration vector, $\ddot{\mathbf{r}}(t)$. Can $\mathbf{r}(t)$ be expressed in terms of $\dot{\mathbf{r}}(t)$ and $\ddot{\mathbf{r}}(t)$?
- (b) Can you represent the curve without the parameter t using an equation? Do you recognize the curve? Sketch the curve for the case a=2.

2

(c) Calculate $\mathbf{r}(t) \cdot \dot{\mathbf{r}}(t)$. For which values of a is $\mathbf{r}(t) \cdot \dot{\mathbf{r}}(t) = 0$ true for all t?

Example Problem 7: Line integral: mountain hike [3]

Points: [3](M)

Two hikers want to hike from the point $\mathbf{r}_0=(0,\,0)^T$ in the valley to a mountain hut at the point $\mathbf{r}_1=(3,\,3a)^T$. Hiker 1 chooses the straight path from valley to hut, γ_1 . Hiker 2 chooses a parabolic path, γ_2 , via the mountain top at the apex of the parabola, at $\mathbf{r}_2=(2,\,4a)^T$ (see figure). They are acted on by the force of gravity $\mathbf{F}_g=-10\,\mathbf{e}_y$, and a height-dependent wind force, $\mathbf{F}_w=-y^2\,\mathbf{e}_x$.

Find the work, $W[\gamma_i] = -\int_{\gamma_i} d\mathbf{r} \cdot \mathbf{F}$, performed by the hikers along γ_1 and γ_2 , as function of the parameter a. [Check your results: for a=1 one finds $W[\gamma_1]=39$, $W[\gamma_2]=303/5$.]

[Total Points for Example Problems: 22]

Homework Problem 1: $1/(1+x^2)$ Integrals by trigonometric substitution [3]

Points: (a)[1](E); (b)[2](M).

For integrals involving $1/(1+x^2)$, the substitution $x=\tan y$ may help, since it gives $1+x^2=\sec^2 y$. Use it to compute the following integrals I(z); check your answers by calculating $\frac{\mathrm{d}I(z)}{\mathrm{d}z}$. [Check your results: (a) $I(1)=\frac{\pi}{4}$; (b) for $a=\frac{1}{2}$, $I(2)=\frac{\pi}{4}+\frac{1}{2}$.]

(a)
$$I(z) = \int_0^z dx \frac{1}{1+x^2}$$

(b)
$$I(z) = \int_0^z dx \frac{1}{(1+a^2x^2)^2}$$
.

Homework Problem 2: Elementary computations with vectors [3]

Points: (a)[1](E); (b)[1](E); (c)[1](E)

Given the vectors $\mathbf{a} = (2, 1, 5)^T$ and $\mathbf{b} = (-4, 3, 0)^T$.

- (a) Calculate $\|\mathbf{b}\|$, $\mathbf{a} \mathbf{b}$, $\mathbf{a} \cdot \mathbf{b}$ and $\mathbf{a} \times \mathbf{b}$.
- (b) Decompose ${\bf a}$ into a vector ${\bf a}_{\|}$ parallel to ${\bf b}$ and a vector ${\bf a}_{\bot}$ perpendicular to ${\bf b}.$
- (c) Calculate ${\bf a}_{\parallel}\cdot{\bf b}$, ${\bf a}_{\perp}\cdot{\bf b}$, ${\bf a}_{\parallel}\times{\bf b}$ and ${\bf a}_{\perp}\times{\bf b}$. Do these results match your expectations?

[Check your results: (a) $\mathbf{a} \cdot \mathbf{b} + \sum_i (\mathbf{a} \times \mathbf{b})^i = -30$, (b) $\sum_i (\mathbf{a}_{\parallel})^i = \frac{1}{5}$, $\sum_i (\mathbf{a}_{\perp})^i = 7\frac{4}{5}$.]

Homework Problem 3: Levi-Civita symbol [2]

Points: (a)[0,5](E); (b)[0,5](E); (c)[0,5](E); (d)[0,5](E).

(a) Is the statement $a^ia^j\epsilon_{ij3}\stackrel{?}{=}b^mb^n\epsilon_{mn2}$ true or false? Justify your answer.

Express the following k-sums over products of two Levi-Civita symbols in terms of Kronecker delta functions.

3

(b)
$$\epsilon_{1ik}\epsilon_{23k}$$
,

(c)
$$\epsilon_{2ik}\epsilon_{ki2}$$
,

(d)
$$\epsilon_{1ik}\epsilon_{k3j}$$
.

Homework Problem 4: Lagrange identity [3]

Points: (a)[1](E); (b)[1](E); (c)[1](E)

(a) Prove the Lagrange identity for arbitrary vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d} \in \mathbb{R}^3$:

$$(\mathbf{a} \times \mathbf{b}) \cdot (\mathbf{c} \times \mathbf{d}) = (\mathbf{a} \cdot \mathbf{c})(\mathbf{b} \cdot \mathbf{d}) - (\mathbf{a} \cdot \mathbf{d})(\mathbf{b} \cdot \mathbf{c}).$$

Hint: Work in an orthonormal basis and use the properties of the Levi-Civita symbol.

- (b) Use (a) to compute $\|\mathbf{a} \times \mathbf{b}\|$ and express the result in terms of $\|\mathbf{a}\|$, $\|\mathbf{b}\|$ and the angle ϕ between \mathbf{a} and \mathbf{b} .
- (c) Check the Lagrange identity explicitly for the vectors $\mathbf{a}=(2,1,0)^T$, $\mathbf{b}=(3,-1,2)^T$, $\mathbf{c}=(3,0,2)^T$, $\mathbf{d}=(1,3,-2)^T$, by separately computing all its terms.

Homework Problem 5: Scalar triple product [3]

Points: [3](M)

Compute the volume, $V(\phi)$, of the parallelepiped spanned by three unit vectors \mathbf{v}_1 , \mathbf{v}_2 and \mathbf{v}_3 , each pair of which encloses a mutual angle of ϕ (with $0 \le \phi \le \frac{2}{3}\pi$; why is this restriction needed?).

Check your results: (i) What do you expect for $V(\frac{\pi}{2})$ and $V(\frac{2}{3}\pi)$? (ii): $V(\frac{\pi}{3}) = \frac{1}{\sqrt{2}}$.

Hint: Choose the orientation of the parallelepiped such that \mathbf{v}_1 and \mathbf{v}_2 both lie in the plane spanned by \mathbf{e}_1 and \mathbf{e}_2 , and that \mathbf{e}_1 bisects the angle between \mathbf{v}_1 and \mathbf{v}_2 (see figure).

Homework Problem 6: Velocity and acceleration [2]

Points: (a)[1](E); (b)[0.5](E); (c)[0.5](E)

Consider the curve $\gamma = \{\mathbf{r}(t) \mid t \in (0, \infty)\}$, $\mathbf{r}(t) = (e^{-t^2}, ae^{t^2})^T \in \mathbb{R}^2$, with $0 < a \in \mathbb{R}$ (0 < a < 1 for (c)).

- (a) Calculate the curve's velocity vector, $\dot{\mathbf{r}}(t)$, and it's acceleration vector, $\ddot{\mathbf{r}}(t)$. Can $\mathbf{r}(t)$ be expressed as a linear combination of $\dot{\mathbf{r}}(t)$ and $\ddot{\mathbf{r}}(t)$?
- (b) Can you represent the curve without the parameter t using an equation? Do you recognize the curve? Sketch the curve for the case a=2.
- (c) Calculate $\mathbf{r}(t) \cdot \dot{\mathbf{r}}(t)$. Find the time, t(a), for which $\mathbf{r}(t) \cdot \dot{\mathbf{r}}(t) = 0$ holds. [Check your result: $t(\mathrm{e}^{-2}) = \pm 1$.]

Homework Problem 7: Line integrals in Cartesian coordinates [4]

Points: (a)[2](M); (b)[1](E); (c)[1](M)

Let $\mathbf{F}(\mathbf{r})=(x^2,z,y)^T$ be a three-dimensional vector field in Cartesian coordinates, with $\mathbf{r}=(x,y,z)^T$. Calculate the line integral $\int_{\gamma} d\mathbf{r} \cdot \mathbf{F}$ along the following paths from $\mathbf{r}_0 \equiv (0,0,0)^T$ to $\mathbf{r}_1 \equiv (0,-2,1)^T$:

(a) $\gamma_a = \gamma_1 \cup \gamma_2$ is the composite path consisting of γ_1 , the straight line from \mathbf{r}_0 to $\mathbf{r}_2 \equiv (1, 1, 1)^T$, and γ_2 , the straight line from \mathbf{r}_2 to \mathbf{r}_1 .

4

(b) γ_b is parametrized by $\mathbf{r}(t) = (\sin(\pi t), -2t^{1/2}, t^2)^T$, with 0 < t < 1.

(c) γ_c is a parabola in the yz-plane with the form $z(y)=y^2+\frac{3}{2}y$.

[Check your results: the sum of the answers from (a), (b) and (c) is $-6.\mbox{\footnotemark}$

[Total Points for Homework Problems: 20]