Memoria Práctica 1

1. Implementación y estructura

El proyecto está estructurado por paquetes de manera similar a lo explicado en el anexo. El *main* ejecuta la clase '*Interface*' de la práctica, quien se encarga cargar y procesar los valores de entrada a nivel de interfaz, y con ayuda de la clase '*GeneticAlgorithm*' se carga el algoritmo de evolución y se ejecuta el main, devolviendo los valores que se han de insertar en la gráfica.

functions
geneticAlgorithn
genetics

₩ graph individual

mutations
selection

utils

Respecto a la estructura de las clases, los tipos de selecciones, cruces, mutaciones, genes y funciones se crean partiendo de una clase abstracta de cada tipo de la que heredan, para poder realizar casteos de una manera más cómoda con la interfaz y que no haya problemas de conversión. Además usamos para cada Función, Selección, Cruce y Mutación un tipo de enum para así hacer más fácil la recolección de datos desde la interfaz. De esta manera creamos una interfaz más genérica para que nos pueda servir de cara a futuras

prácticas con solo crear un enum más y una clase más que herede de las abstractas que se menciona anteriormente.

Hablando de los paquetes optamos por tener el código muy troceado, por lo que hay muchos paquetes para dividir las clases de la práctica. Los nombres son intuitivos por lo que no hace falta explicar que hay en cada paquete.

1.1 Guía de Uso

Todas las opciones para modificar se encuentran en la parte izquierda de la ventana. Solo hemos usado Spinners y DropDowns para que sea más cómodo cambiar los valores. Hay ciertos parámetros como el cruce BLX o el numero de individuos que están deseleccionados ya que solo se activarán para las funciones que lo requieran (En nuestro caso la función 4). Así mismo, el tipo de selección de Truncamiento recibe un parámetro de probabilidad cuando ésta está seleccionada. Además, hemos puesto topes para evitar valores ilógicos al cambiar los parámetros.

2. Graficas de Evolución

Las gráficas que vamos a mostrar ahora se han creado con los siguientes parámetros establecidos, variando quizá en alguna probabilidad de cruce o mutación:

Población Inicial	100
Nº Iteraciones	100
% de Cruce	60
% de Mutación	5
Precisión	0.001

El resto de parámetros varía dependiendo de la función, por lo que lo indicaremos al lado de las gráficas. La representación de las gráficas está igual que la pedida en la práctica, poniendo de color azul el mejor valor absoluto de aptitud, en rojo el mejor valor de aptitud de cada generación y en verde la aptitud media:

FUNCION 1

- Método de Selección:
 Torneo Determinista
- Método de Cruce:
 Monopunto
- <u>Elitismo</u>:
- Fenotipos:

Si del 2%

11.625

5.726

Aptitud:

38.839

A parte de darnos los valores literalmente exactos de los fenotipos, la aptitud siempre se acercaba a la correspondida y la gráfica nos arroja valores muy satisfactorios en comparación a los pedidos en el enunciado.

FUNCION 2

- Método de Selección:
 Truncamiento (10%)
- <u>Método de Cruce:</u> Monopunto
- <u>Elitismo</u>:

No

- Fenotipos:
 - -1.4131

5.479

- Aptitud:
 - -186.35

Esta función es la que más picos consigue con el método de selección por Truncamiento, llegando a conseguir entre 16 y 18 mínimos. Otras configuraciones, llegan a la misma aptitud, pero con muchos menos mínimos.

- Método de Selección:
 Estocástico Universal
- Método de Cruce:
 Monopunto
- <u>Elitismo</u>:

No

• Fenotipos:

512.943

403.484

Aptitud:

-959.83

De las gráficas más precisas tanto en el fenotipo como en la aptitud junto con la función 1.

FUNCIÓN 4

Sabemos que esta función es la más complicada, y más cuando depende de la n. Sin embargo, para todos los valores de n, se mantiene la solución en un valor estable y próximo a los anunciados en la práctica. Eso sí, cabe recalcar que el mantiene los valores más próximos es el BLX, pero eso no implica que los demás tipos de funciones arrojen valores lejanos.

3. Conclusiones

3.1 Métodos de Selección

No hemos encontrado un método de selección claramente mejor que otros, pues cada gráfica se comportaba de manera diferente, pero hemos observado que el método de selección de torneo determinista suele ser más preciso mejor que el resto, pues al hacer más copia de los mejores individuos con el mejor fitness encuentra mejor el valor óptimo. De la misma manera, el método de truncamiento mantenía peor los valores y daban aptitudes ligeramente más lejanas que el resto.

3.2 Cruce

Todas las gráficas tienen un resultado mucho mejor usando el monopunto, con diferencia. El uniforme tampoco se asemeja mucho de la realidad, pero los valores son menos próximos, por eso todas las capturas de pantalla de las funciones las hicimos con el monopunto

3.3 Elitismo

No hay una diferencia notoria entre el elitismo o sin el, lo que si que se observa es que gracias al elitismo hay una clara mejoría exponencial, y se llega al valor de aptitud con muchas menos generaciones.

3.4 Mejores Porcentajes

Los porcentajes con los que hay una clara mejoría en las gráficas que hemos encontrado por cada parámetro son:

- -Para el cruce alrededor del valor de inicio (60%)
- -Para la mutación entre un 5/7%
- Para el elitismo entre un 2/3%

El resto de los valores fuera de este rango tenía gráficas más comunes o bajas que de normal.

4. Reparto de tareas

El inicio de la práctica fue caótico pues, como queríamos poder trabajar en la práctica de manera simultánea decidimos usar github, y las 2 primeras semanas no pudimos hacer nada ya que estuvimos solucionando problemas de compatibilidad, fallos de los paquetes y un largo etc hasta que conseguimos arreglar todo.

Una vez conseguimos tener correctamente el github, se nos fue el tiempo encima, y aunque hayamos sido muy equitativos con el reparto de tareas, (pues hemos trabajado juntos la mayor parte del tiempo), no hemos podido comprobar el correcto funcionamiento de las gráficas. Los últimos días nos dividimos el trabajo para poder llegar al plazo de entrega debido a las semanas iniciales perdidas por culpa de github, pero lo hemos organizado todo para que no nos suponga ningún problema con las futuras prácticas.

Respecto a la implementación final no hemos podido realizar correctamente el método de selección por restos y el Torneo Probabilístico, por lo que no hemos podido testear correctamente el funcionamiento. Además de esto, pese a que la aptitud conseguida en la función 4 sea estable, los valores de los individuos no consiguen alcanzar a los del ejemplo del enunciado

Tras rehacer la práctica y modificar todas las funciones que hay en las páginas anteriores hemos conseguido comprender mejor la práctica y tener al fin un buen funcionamiento de las selecciones y los cruces. La práctica ya está modificada y tendremos en cuenta todos los cambios para la práctica 2.

El torneo probabilístico y restos ya funciona correctamente, el elitismo también, y así con todos