MATEMATIKA

EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Fontos tudnivalók

Formai előírások:

- 1. Kérjük, hogy a dolgozatot a vizsgázó által használt színűtől **eltérő színű tollal, olvas- hatóan** javítsa ki.
- 2. A feladatok mellett található szürke téglalapok közül az elsőben a feladatra adható maximális pontszám van, a javító által adott **pontszám a** mellette levő **téglalapba** kerüljön.
- 3. **Kifogástalan megoldás** esetén kérjük, hogy a maximális pontszám feltüntetése mellett kipipálással jelezze, hogy az adott gondolati egységet látta, és jónak minősítette.
- 4. Hiányos/hibás megoldás esetén kérjük, hogy a hiba jelzése mellett az egyes részpontszámokat is írja rá a dolgozatra. Ha a dolgozat javítását jobban követhetővé teszi, akkor a vizsgázó által elvesztett részpontszámok jelzése is elfogadható. Ne maradjon olyan részlet a megoldásban, amelyről a javítás után nem nyilvánvaló, hogy helyes, hibás vagy fölösleges.
- 5. A javítás során alkalmazza az alábbi jelöléseket.
 - helyes lépés: kipipálás
 - elvi hiba: kétszeres aláhúzás
 - számolási hiba vagy más, nem elvi hiba: egyszeres aláhúzás
 - rossz kiinduló adattal végzett helyes lépés: szaggatott vagy áthúzott kipipálás
 - hiányos indoklás, hiányos felsorolás vagy más hiány: hiányiel
 - nem érthető rész: kérdőjel és/vagy hullámvonal
- 6. Az ábrán kívül **ceruzával** írt részeket ne értékelje.

Tartalmi kérések:

- 1. Egyes feladatoknál több megoldás pontozását is megadtuk. Amennyiben azoktól **elté- rő megoldás** születik, keresse meg ezen megoldásoknak az útmutató egyes részleteivel egyenértékű részeit, és ennek alapján pontozzon.
- 2. A pontozási útmutató pontjai tovább **bonthatók, hacsak az útmutató másképp nem rendelkezik**. Az adható pontszámok azonban csak egész pontok lehetnek.
- 3. Ha a megoldásban **számolási hiba**, pontatlanság van, akkor csak arra a részre nem jár pont, ahol a tanuló a hibát elkövette. Ha a hibás részeredménnyel helyes gondolatmenet alapján tovább dolgozik, és a megoldandó probléma lényegében nem változik meg, akkor a következő részpontszámokat meg kell adni.
- 4. **Elvi hibát** követően egy gondolati egységen belül (ezeket az útmutatóban kettős vonal jelzi) a formálisan helyes matematikai lépésekre sem jár pont. Ha azonban a tanuló az elvi hibával kapott rossz eredménnyel mint kiinduló adattal helyesen számol tovább a következő gondolati egységekben vagy részkérdésekben, akkor ezekre a részekre kapja meg a maximális pontot, ha a megoldandó probléma lényegében nem változott meg.
- 5. Ha a megoldási útmutatóban zárójelben szerepel egy **megjegyzés** vagy **mértékegység**, akkor ennek hiánya esetén is teljes értékű a megoldás.

- 6. Egy feladatra adott többféle megoldási próbálkozás közül **a vizsgázó által megjelölt változat értékelhető**. A javítás során egyértelműen jelezze, hogy melyik változatot értékelte, és melyiket nem.
- 7. A megoldásokért **jutalompont** (az adott feladatra vagy feladatrészre előírt maximális pontszámot meghaladó pont) **nem adható**.
- 8. Egy feladatra vagy részfeladatra adott összpontszám **nem lehet negatív**.
- 9. Az olyan részszámításokért, részlépésekért **nem jár pontlevonás**, melyek hibásak, de amelyeket a feladat megoldásához a vizsgázó ténylegesen nem használ fel.
- 10. Az **ábrák** bizonyító erejű felhasználása (például adatok leolvasása méréssel) nem elfogadható.
- 11. **Valószínűségek** megadásánál (ha a feladat szövege másképp nem rendelkezik) a százalékban megadott helyes válasz is elfogadható.
- 12. Ha egy feladat szövege nem ír elő kerekítési kötelezettséget, akkor az útmutatóban megadottól eltérő, **észszerű és helyes kerekítésekkel** kapott rész- és végeredmény is elfogadható.
- 13. A vizsgafeladatsor II. részében kitűzött 5 feladat közül csak 4 feladat megoldása értékelhető. A vizsgázó az erre a célra szolgáló négyzetben feltehetőleg megjelölte annak a feladatnak a sorszámát, amelynek értékelése nem fog beszámítani az összpontszámába. Ennek megfelelően a megjelölt feladatra esetlegesen adott megoldást nem is kell javítani. Ha a vizsgázó nem jelölte meg, hogy melyik feladat értékelését nem kéri, és a választás ténye a dolgozatból sem derül ki egyértelműen, akkor a nem értékelendő feladat automatikusan a kitűzött sorrend szerinti utolsó feladat lesz.

írásbeli vizsga 1613 3 / 19 2016. május 3.

I.

1. a)		
A mért tömegek között nincs 490 dkg-nál kisebb, tehát az első feltétel teljesül.	1 pont	
Az 5 kg-tól való eltérések (dkg-ban) rendre 6, 9, 7, 12, 8, 17, 7, 12.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
Az eltérések átlaga $\left(\frac{78}{8}\right) = 9,75 \text{ (dkg)}.$	1 pont	
Az árusítást engedélyezik.	1 pont	
Összesen:	4 pont	

1. b)		
A mért adatok átlaga $\left(\frac{4032}{8}\right) = 504$ (dkg),	1 pont	
szórása $\sqrt{\frac{2 \cdot 13^2 + 2 \cdot 11^2 + 2 \cdot 8^2 + 4^2 + 2^2}{8}} =$	1 pont	Ez a pont akkor is jár, ha a vizsgázó számológéppel számolva helyesen vála- szol.
$=\sqrt{91}\approx 9.54 \text{ (dkg)}.$	1 pont	
Összesen:	3 pont	

1. c) első megoldás		
Az eper $\left(1 - \frac{7}{20} - \frac{3}{8}\right) = \frac{11}{40}$ része III. osztályú.	1 pont	
Az összes eper együttes tömege $\left(33 : \frac{11}{40} = \right)$ 120 kg.	1 pont	
Ebből I. osztályú (120 · 0,35 =) 42 kg, II. osztályú (120 – 33 – 42 =) 45 kg.	1 pont	
Az eredetileg tervezett árakkal számolva $(42 \cdot 800 + 45 \cdot 650 + 33 \cdot 450 =) 77700$ Ft lett volna a bevétel.	1 pont	
Ennek a 85%-a 66 045 Ft.	1 pont	
$\frac{66045}{120} = 550,375$	1 pont	
Az akciós egységár 550 Ft/kg legyen.	1 pont	Ez a pont nem jár, ha a vizsgázó nem kerekít, vagy rosszul kerekít.
Összesen:	7 pont	

1. c) második megoldás		
Az eper $\left(1 - \frac{7}{20} - \frac{3}{8}\right) = \frac{11}{40}$ része III. osztályú.	1 pont	
Az eredetileg tervezett árakkal számolva az átlagos egységár kilogrammonként $0.35 \cdot 800 + \frac{3}{8} \cdot 650 + \frac{11}{40} \cdot 450 (= 647.5)$ Ft lett volna.	3 pont	
A kereskedő bevétele akkor lesz az eredetileg tervezett bevétel 85%-a, ha az epret az eredeti átlagos egységár 85%-áért értékesíti.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
Az eredeti átlagos egységár 85%-a 550,375 Ft/kg.	1 pont	
Az akciós egységár 550 Ft/kg legyen.	1 pont	Ez a pont nem jár, ha a vizsgázó nem kerekít, vagy rosszul kerekít.
Összesen:	7 pont	

2. a) első megoldás		
Az összes eset száma $\binom{10}{5}$ (= 252).	1 pont	Mindkét esetben ugyan- annyi az összes eset szá- ma.
Az (egyszerre) kihúzott 5 golyó között 2 fehér golyó $\binom{6}{2}\binom{4}{3}$ különböző módon fordulhat elő.	1 pont	
Az (egyszerre) kihúzott 5 golyó között 4 fehér golyó $\binom{6}{4}\binom{4}{1}$ különböző módon fordulhat elő.	1 pont	
A két valószínűség: $\frac{\binom{6}{2}\binom{4}{3}}{\binom{10}{5}}$, illetve $\frac{\binom{6}{4}\binom{4}{1}}{\binom{10}{5}}$.	1 pont	$ \begin{pmatrix} 6 \\ 2 \end{pmatrix} = \begin{pmatrix} 6 \\ 4 \end{pmatrix} \acute{e}s \begin{pmatrix} 4 \\ 3 \end{pmatrix} = \begin{pmatrix} 4 \\ 1 \end{pmatrix} $
Ez a két valószínűség egyenlő $\left(\frac{5}{21} \approx 0.238\right)$, tehát a tanuló kijelentése igaz.	1 pont	miatt igaz a kijelentés.
Összesen:	5 pont	

2. a) második megoldás		
(Ha egyesével, visszatevés nélkül húzzák ki a golyókat, és figyelembe vesszük a golyók sorrendjét, akkor) az összes eset száma: 10.9.8.7.6 (= 30 240).	1 pont	Mindkét esetben ugyan- annyi az összes eset szá- ma.
Az 5 kihúzott golyó között 2 fehér golyó		
	1 pont	
dulhat elő,		

4 fehér golyó pedig	1 pont	
A két valószínűség:		
$\frac{\binom{5}{2} \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2}{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6}, \text{ illetve } \frac{\binom{5}{4} \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 4}{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6}.$	1 pont	$2 \cdot {5 \choose 2} = 4 \cdot {5 \choose 4}$
Ez a két valószínűség egyenlő $\left(\frac{5}{21} \approx 0.238\right)$, tehát a tanuló kijelentése igaz.	1 pont	miatt igaz a kijelentés.
Összesen:	5 pont	

2. b) első megoldás		
Ha egyesével, visszatevéssel húzzák ki a golyókat, akkor az összes eset száma: $10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 \cdot (= 10^5)$.	1 pont	
2 fehér golyót $\binom{5}{2}$ · 6 ² · 4 ³ (= 23 040),	1 pont	
4 fehér golyót $\binom{5}{4}$ · 6 ⁴ · 4 (= 25 920)	1 pont	
különböző módon húzhatunk.		
A két valószínűség (három tizedesjegyre kerekítve) 0,230, illetve 0,259.	1 pont	
A két valószínűség különbözik, a tanuló kijelentése ebben az esetben nem igaz.	1 pont	
Összesen:	5 pont	

2. b) második megoldás		
A fehér golyó húzásának (állandó) valószínűsége 0,6, a piros golyóé 0,4.	1 pont	
2 fehér golyó húzásának a valószínűsége		
$\begin{pmatrix} 5 \\ 2 \end{pmatrix} \cdot 0.6^2 \cdot 0.4^3,$	1 pont	
4 fehér golyó húzásának a valószínűsége		
$\binom{5}{4} \cdot 0,6^4 \cdot 0,4.$	1 pont	
A két valószínűség (három tizedesjegyre kerekítve) 0,230, illetve 0,259.	1 pont	
A két valószínűség különbözik, a tanuló kijelentése ebben az esetben nem igaz.	1 pont	
Összesen:	5 pont	

3. a)		
Ha a számtani sorozat első tagja a , akkor a 3. tagja $a + 3,2$. A 7. tag $a + 9,6$.	1 pont	
A mértani sorozat tulajdonsága miatt $(a+3,2)^2 = a(a+9,6)$.	1 pont	
$a^2 + 6,4a + 10,24 = a^2 + 9,6a$	1 pont	
3,2a = 10,24, amiből $a = 3,2$.	1 pont	
A három szám: 3,2; 6,4; 12,8.	1 pont	
Ellenőrzés: ezek valóban tekinthetők egy (2 kvóciensű) mértani sorozat első három tagjának.	1 pont	
Összesen:	6 pont	

3. b)		
Az állítás hamis.	1 pont	
Például az $\left\{\frac{1}{n}\right\}$ számsorozat	1 pont	
konvergens, az értékkészlete azonban végtelen számhalmaz.	1 pont	
Összesen:	3 pont	

3. c)		
Megfordítás: Ha az $\{a_n\}$ számsorozat értékkészlete	1 pont	
véges számhalmaz, akkor az $\{a_n\}$ sorozat konvergens.	Тропс	
A megfordított állítás hamis.	1 pont	
Például a $\{(-1)^n\}$ sorozat	1 pont	
értékkészlete véges ({-1; 1}), de a sorozat nem	1 nont	
konvergens.	1 pont	
Összesen:	4 pont	

4. a)			
R	Az átlók metszéspontját jelölje E . A kerületi szögek tétele miatt $PQS \angle = PRS \angle$ és $QPR \angle = QSR \angle$ (azonos ívhez tartozó kerületi szögek).	2 pont	PEQ∠ = SER∠, mert csúcsszögek.
A <i>PEQ</i> és az <i>SER</i> háromsz megegyezik (így a harmad háromszög hasonló.	0	1 pont	
Ugyanígy bizonyíthatjuk a gek hasonlóságát is.	<i>QER</i> és a <i>PES</i> háromszö-	1 pont	
	Összesen:	4 pont	

4. b)		
BCD háromszögben felírjuk a koszinusztételt: $BD^2 = 3^2 + 5^2 - 2 \cdot 3 \cdot 5 \cdot \cos 120^\circ$.	1 pont	D 5 C (120° 3)
BD = 7 (cm)	1 pont	
(A húrnégyszögek tétele miatt) az <i>ABCD</i> négyszög <i>DAB</i> szöge (180° – 120° =) 60°-os,	1 pont	D 5
a Thalész-tétel miatt pedig $ADB \angle = 90^{\circ}$,	1 pont	7 (20°)
ezért az <i>ADB</i> háromszög egy szabályos háromszög fele.	1 pont*	A 60° B
$AD = \frac{BD}{\sqrt{3}} = \frac{7}{\sqrt{3}} \approx 4,04 \text{ (cm)},$	1 pont*	
$AB = 2AD \approx 8,08 \text{ (cm)}.$	1 pont*	
Szinusztétellel a <i>BCD</i> háromszögből: $\frac{\sin CBD \angle}{5} = \frac{\sin 120^{\circ}}{7},$ $(\sin CBD \angle) = \frac{5 \cdot \sin 120^{\circ}}{7} \approx 0,6186).$	1 pont**	
CBD∠ ≈ 38,2° (mert csak hegyesszög lehet)	1 pont**	
$ABC\angle \approx (30^{\circ} + 38.2^{\circ} =) 68.2^{\circ}$ és $ADC\angle (=180^{\circ} - ABC\angle) \approx 111.8^{\circ}$.	1 pont**	
Összesen:	10 pont	

A *-gal jelzett 3 pontot a következő gondolatmenetért is megkaphatja a vizsgázó:

Az ADB derékszögű háromszögben $\sin 60^\circ = \frac{7}{AB}$.	1 pont	$tg 60^{\circ} = \frac{7}{AD}$
$AB\left(=\frac{14}{\sqrt{3}}\right) \approx 8,08 \text{ (cm)}.$	1 pont	$AD\left(=\frac{7}{\sqrt{3}}\right) \approx 4,04 \text{ cm}$
(Pitagorasz-tétellel vagy újabb szögfüggvénnyel) $AD \approx 4,04$ cm.	1 pont	$AB \approx 8,08 \text{ cm}$

A **-gal jelzett 3 pontot a következő gondolatmenetért is megkaphatja a vizsgázó:

A Thalész-tétel miatt az ABC háromszög derékszögű.	1 pont	y
$\cos ABC \angle = \frac{BC}{AB} \approx 0.3712,$	1 pont	
innen $ABC \angle \approx 68.2^{\circ}$ és $ADC \angle (= 180^{\circ} - ABC \angle) \approx 111.8^{\circ}$.	1 pont	

II.

5. a) első megoldás		
5 - x = -3 esetén $ x = 8$,	1 pont	
$5 - x = 3 \operatorname{eset\'{e}n} x = 2.$	1 pont	
Ilyen elemei nincsenek az alaphalmaznak, ezért az eredeti egyenlet megoldáshalmaza az üres halmaz.	1 pont	
Összesen:	3 pont	

5. a) második megoldás		
Mivel az adott alaphalmazon $ x = x$, ezért	2	
az egyenlet az $ 5-x =3$ egyenlettel ekvivalens.	2 pont	
Ez az alaphalmaz egyetlen elemére sem teljesül		
(hiszen az alaphalmaz elemei legfeljebb 1-gyel térnek	1 pont	
el az 5-től), ezért az egyenlet megoldáshalmaza az	i poiit	
üres halmaz.		
Összesen:	3 pont	

5. a) harmadik megoldás		
Az $x \mapsto 5- x (x \in \mathbf{R})$ függvény ábrázolása:	2 pont	
Ez a függvény a [4; 6] alaphalmazon nem veszi fel a 3 függvényértéket, ezért az eredeti egyenletnek nincs megoldása.	1 pont	
Összesen:	3 pont	

5. b) első megoldás		
(Négyzetre emelve:)	1 4	
$2x - 3 = x + 10 + 1 - 2\sqrt{x + 10}$	1 pont	
$2\sqrt{x+10} = 14 - x$	1 pont	
(Négyzetre emelve és rendezve:)		
$4(x+10) = 196 + x^2 - 28x$	1 pont	
$x^2 - 32x + 156 = 0$		
$x_1 = 6$, $x_2 = 26$	1 pont	
Ellenőrzés: A 6 (eleme az alaphalmaznak és) kielégíti		
az eredeti egyenletet (behelyettesítés után mindkét	1 pont	
oldalon 3-at kapunk),		
a 26 pedig hamis gyök.	1 pont	
Összesen:	6 pont	

5. b) második megoldás		
A [4; 6] alaphalmazon mindkét oldal (értelmezve van és) pozitív, ezért itt a négyzetre emelés ekvivalens átalakítás.	1 pont	$x \ge 1,5$ miatt a négyzetre emelés ekvivalens átala-kítás.
$2x - 3 = x + 10 + 1 - 2\sqrt{x + 10}$	1 pont	
$2\sqrt{x+10} = 14-x$ A kapott egyenlet mindkét oldala pozitív a [4; 6] alaphalmazon, ezért itt a négyzetre emelés ekvivalens átalakítás.	1 pont	x ≤ 14 miatt a négyzetre emelés ekvivalens átala- kítás.
$4(x+10) = 196 + x^2 - 28x$ $x^2 - 32x + 156 = 0$	1 pont	
$x_1 = 6$, $x_2 = 26$	1 pont	
Az ekvivalencia miatt a 6 az egyetlen gyöke az egyenletnek.	1 pont	
Összesen:	6 pont	

5. c)		
A $2\cos^2 x + \cos x - 1 = 0$ (cos x-ben másodfokú) egyenlet teljesül, ha cos $x = -1$ vagy cos $x = 0.5$.	2 pont	
(A megadott egyenlőtlenség $\cos x$ -ben másodfokú tagjának együtthatója pozitív, ezért) $-1 \le \cos x \le 0.5$.	1 pont	
$-1 \le \cos x$ minden $x \in \mathbf{R}$ esetén (így az alaphalmaz minden elemére is) igaz.	1 pont*	
([4; 6] \subset [π ; 2 π] miatt) a koszinuszfüggvény a [4; 6] alaphalmazon szigorúan monoton növekedő,	1 pont*	Ez a pont jár egy megfe- lelő ábráért is.
és itt cos $x = 0.5$, ha $x = \frac{5\pi}{3} (\approx 5.24)$,	1 pont*	
ezért az egyenlőtlenség megoldáshalmaza $\left[4; \frac{5\pi}{3}\right]$.	1 pont*	$4 \le x \le \frac{5\pi}{3}$
Összesen:	7 pont	

Megjegyzések: 1. Ha a vizsgázó megoldásában nem veszi figyelembe a megadott alaphalmazt, akkor legfeljebb 4 pontot kaphat.

2. A *-gal jelzett 4 pontot a következő gondolatmenetért is megkaphatja a vizsgázó:

211 Surjetzett / Pottor ti tto / etitez gertuertumentetet.	0 1	<u> </u>
Az egységkörben az alaphalmaz a vonalkázott körcikkel szemléltethető (a határoló sugarakhoz tartozó középponti szögek 4 radián, illetve 6 radián).	1 pont	$\frac{\pi}{3}$ rad
A $-1 \le \cos x \le 0.5$ egyenlőtlenség megoldáshalmazát		
a $[0; 2\pi]$ halmazon a pöttyözött körcikk szemlélteti (ez a $\left[\frac{\pi}{3}; \frac{5\pi}{3}\right]$ intervallumnak felel meg).	2 pont	6 rad
A két halmaz metszete (szürke körcikk) a $\left[4; \frac{5\pi}{3}\right]$ halmazt szemlélteti. Ez az eredeti egyenlet megoldáshalmaza.	1 pont	$4 \operatorname{rad} \frac{5\pi}{3} \operatorname{rad}$

6. a) első megoldás		
Ha minden csúcs fokszáma legfeljebb 2 lenne, akkor <i>G</i> -nek összesen legfeljebb 8 éle lehetne.	2 pont	
Mivel <i>G</i> -nek 9 éle van, ezért ellentmondásra jutottunk.	1 pont	
A csúcsok között tehát van olyan, amelyiknek a fokszáma legalább 3. (Az állítást bizonyítottuk.)	1 pont	
Összesen:	4 pont	

6. a) második megoldás		
G csúcsainak fokszámát összeadva az élek számának kétszeresét, azaz 18-at kapunk eredményül.	1 pont	
Ha ezt a 18-at egy (kezdetben üres) 8 csúcspontú gráf csúcsai között akarjuk egyesével "szétosztani", akkor a skatulyaelv miatt biztosan lesz olyan csúcs, amelynek a fokszámát legalább háromszor növeljük meg 1-gyel.	2 pont	

Ennek a csúcsnak a fokszáma tehát legalább 3 lesz. (Az állítást bizonyítottuk.)	1 pont	
Összesen:	4 pont	

Megjegyzés: Ha a vizsgázó egy konkrét nyolc- vagy kilencélű nyolcpontú gráfot rajzol, amelyben minden csúcs fokszáma legalább 2, majd az ábrája alapján bizonyítottnak tekinti az állítást, akkor ezért 1 pontot kapjon.

6. b) első megoldás		
Egy szabályos nyolcszög oldalai és átlói számának összege 28.	1 pont	
A 28 szakasz közül négyet $\binom{28}{4}$ (= 20 475)-	1 pont	
féleképpen lehet kiválasztani (összes eset száma).		
Kedvező eset az, amikor mind a 4 szakaszt az A csúcsból induló 7 szakasz közül választjuk ki.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
Ezt $\binom{7}{4}$ (= 35)-féleképpen tehetjük meg.	1 pont	
A kérdéses valószínűség így $\frac{\binom{7}{4}}{\binom{28}{4}}$ =	1 pont	
$=\frac{1}{585} (\approx 0,0017).$	1 pont	
Összesen:	6 pont	

6. b) második megoldás		
Egy szabályos nyolcszög oldalai és átlói számának összege 28.	1 pont	
Egy csúcsból összesen 7 szakasz indul.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
Annak a valószínűsége, hogy az első, második, harmadik, majd negyedik kiválasztott szakasz is az A csúcsból indul, rendre $\frac{7}{28}$, $\frac{6}{27}$, $\frac{5}{26}$, majd $\frac{4}{25}$.	2 pont	
A kérdéses valószínűség ezek szorzata, tehát $\frac{7}{28} \cdot \frac{6}{27} \cdot \frac{5}{26} \cdot \frac{4}{25} =$	1 pont	
$=\frac{1}{585} (\approx 0,0017).$	1 pont	
Összesen:	6 pont	

6. c) első megoldás		
Az első mérkőzés két résztvevőjét		
$\binom{8}{2}$ (= 28)-féleképpen választhatjuk ki.	1 pont	
A második mérkőzés résztvevőit (a maradék hat sak-		
kozó közül) $\binom{6}{2}$ (= 15)-féleképpen választhatjuk ki.		
Hasonlóan a harmadik mérkőzés résztvevőit (a mara-	2 pont	
dék négy sakkozó közül) $\binom{4}{2}$ (= 6)-féleképpen vá-	2 pont	
laszthatjuk ki. A negyedik mérkőzést az ezek után megmaradt két sakkozó játssza (ez 1 lehetőség).		
A lehetséges párosítások száma (a mérkőzések sorrendjét is figyelembe véve) a fentiek szorzata,	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
(de a mérkőzések sorrendjét nem kell figyelembe venni, ezért) osztva a négy mérkőzés lehetséges sorrendjeinek számával, 4!-sal, azaz	1 pont	
$\frac{\binom{8}{2} \cdot \binom{6}{2} \cdot \binom{4}{2} \cdot \binom{2}{2}}{4!} = 105.$	1 pont	
Összesen:	6 pont	

6. c) második megoldás		
Válasszunk ki tetszőlegesen egy sakkozót.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
Az ő ellenfelét (a többi sakkozó közül) 7-féleképpen választhatjuk ki.	1 pont	
Folytatva ezt az eljárást a maradék hat sakkozó közül válasszunk ki tetszőlegesen egyet, az ő ellenfelét 5-féleképpen választhatjuk ki, majd a maradék négy sakkozó közül kiválasztva egyet, az ő ellenfelét 3-féleképpen választhatjuk ki. A negyedik párost az ezek után megmaradt két sakkozó alkotja (ez 1 lehetőség).	2 pont	
(Ez az eljárás minden lehetőséget megad, és mindegyiket pontosan egyszer, ezért) a lehetséges párosítások száma a fentiek szorzata, azaz	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
$7 \cdot 5 \cdot 3 \cdot 1 = 105.$	1 pont	
Összesen:	6 pont	

6. c) harmadik megoldás		
Állítsuk sorba a sakkozókat,	1	
ezt 8!(= 40 320)-féleképpen tehetjük meg.	1 pont	
A sorba állított sakkozók közül az 1–2., a 3–4.,		
az 5–6., illetve a 7–8. helyen állók játsszanak egy-	1 pont	
mással.		
Ekkor a mérkőzések összes lehetséges sorrendjét és		Ez a pont akkor is jár, ha
egy-egy mérkőzésen belül a két sakkozó sorrendjét is	1 pont	ez a gondolat csak a meg-
figyelembe vettük.		oldásból derül ki.
(A mérkőzések sorrendjét azonban nem kell figye-		
lembe venni, ezért) osztani kell a négy mérkőzés	1 pont	
lehetséges sorrendjeinek számával, 4!-sal,		
valamint (a két sakkozó sorrendjét sem kell figye-		
lembe venni egyik mérkőzésen belül sem, ezért) osz-	1 pont	
tani kell $2 \cdot 2 \cdot 2 \cdot 2 = 2^4$ -nel is.		
A lehetséges párosítások száma ezért $\frac{8!}{4! \cdot 2^4} = 105$.	1 pont	
Összesen:	6 pont	

6. c) negyedik megoldás		
Válasszunk ki 4 sakkozót, ezt $\binom{8}{4}$ (= 70) különböző módon tehetjük meg.	1 pont	
A többi 4 sakkozót 4!(= 24) különböző módon oszthatjuk szét a kiválasztott 4 sakkozó között (minden egyes "szétosztás" az első forduló egy-egy párosításának felel meg).	1 pont	
Így $\binom{8}{4}$ · 4! (= 1680) párosítást kapunk az első fordulóra.	1 pont	
Ezek között az első forduló minden lehetséges párosítása szerepel, mégpedig mindegyik pontosan $2 \cdot 2 \cdot 2 \cdot 2 = 2^4$ -szer (hiszen a forduló négy mérkőzése két-két résztvevőjének sorrendje mindegyik esetben megcserélhető).	2 pont	
Az első forduló különböző párosításainak száma ezért $\frac{\binom{8}{4} \cdot 4!}{2^4} = 105$.	1 pont	
Összesen:	6 pont	

7. a)		
$k(x) = 12 - (2^x - 1)^2 =$	1 pont	
$(=12-(2^{2x}-2\cdot 2^x+1))=12-(4^x-2^{x+1}+1)$	1 pont	
A zárójel felbontása után $k(x) = 11 + 2^{x+1} - 4^x$ adódik, tehát igaz az állítás.	1 pont	
Összesen:	3 pont	

7. b)		
Megoldandó a $2^{3x+2}-1 < 3(2^x-1)+2$ egyenlőtlenség	2 pont	
a valós számok halmazán.	- poin	
$4 \cdot 2^{3x} - 1 < 3 \cdot 2^x - 1$	1 pont	
$2^{x}(4\cdot 2^{2x}-3)<0$	1 pont	
Mivel minden valós szám esetén $2^x > 0$, ezért az egyenlőtlenség ekvivalens a $4^x < 0.75$ egyenlőtlenséggel.	1 pont	$2^{2x} < \frac{3}{4}$
A 4-es alapú exponenciális/logaritmus függvény szigorúan monoton nő, ezért	1 pont	A 2-es alapú exponenciá- lis/logaritmus függvény szigorúan monoton nő, ezért
$x < \log_4 0.75 (= -1 + \log_4 3 \approx -0.2075).$	1 pont	$x < 0.5 \log_2 0.75$ $(-1 + \log_2 \sqrt{3} \approx -0.2075)$
Összesen:	7 pont	

7. c)		
A két görbe közös pontjainak első koordinátáját a $12-x^2 = -4$ egyenlet megoldásai adják:	1 pont	
_4 és 4.	1 pont	
(Mivel a [-4; 4] intervallumon a h függvény grafi- konja az $x \mapsto -4$ függvény grafikonja fölött helyez- kedik el, ezért) a kérdezett terület: $\int_{-4}^{4} (16 - x^2) dx =$	1 pont	
$=\left[16x-\frac{x^3}{3}\right]_{-4}^4=$	1 pont	
$= \left(64 - \frac{64}{3}\right) - \left(-64 - \left(-\frac{64}{3}\right)\right) = \frac{128}{3} - \left(-\frac{128}{3}\right) =$	1 pont	Ez a pont akkor is jár, ha a vizsgázó a határozott integrál értékét számoló- géppel jól határozza meg.
$=\frac{256}{3}.$	1 pont	
Összesen:	6 pont	

8. a) első megoldás		
0,99 annak a valószínűsége, hogy egy adott szem meggyből az automata eltávolítja a magot.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
A komplementer esemény (0 vagy 1 mag kerül az		
üvegbe) valószínűsége $0.99^{120} + {120 \choose 1} \cdot 0.01 \cdot 0.99^{119}$.	2 pont	≈ 0,2994 + 0,3629
Ezért a kérdezett valószínűség:		
$1 - 0.99^{120} - {120 \choose 1} \cdot 0.01 \cdot 0.99^{119},$	1 pont	
ami körülbelül 0,34.	1 pont	
Összesen:	5 pont	

8. a) második megoldás		
0,99 annak a valószínűsége, hogy egy adott szem meggyből az automata eltávolítja a magot.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
A kérdezett valószínűség: $\sum_{k=2}^{k=120} {120 \choose k} \cdot 0,01^k \cdot 0,99^{120-k} .$	1 pont	
(Az egyes tagok kiszámítása és valószínűségi megfontolások alapján arra jutunk, hogy) a fenti 119 tagú összeg hetedik tagjától kezdve mindegyik tag kisebb 2,8·10 ⁻⁵ -nél,	1 pont	
ezért az utolsó 113 tag összege nem nagyobb 0,0032-nél.	1 pont	
Mivel az első hat tag összege kevesebb 0,338-nál, ezért a kérdezett valószínűség körülbelül 0,34.	1 pont	
Összesen:	5 pont	

Megjegyzés: $A \sum_{k=2}^{120} {120 \choose k} \cdot 0,01^k \cdot 0,99^{120-k}$ összeg első 9 tagja és a megfelelő tagok összege az alábbi táblázatban látható.

i	$\binom{120}{i} \cdot 0,01^i \cdot 0,99^{120-i}$	$\sum_{k=2}^{i} {120 \choose k} \cdot 0.01^{k} \cdot 0.99^{120-k}$
2	≈ 0,2181	≈ 0,2181
3	≈ 0.0867	≈ 0,3047
4	≈ 0,0256	≈ 0,3304
5	$\approx 0,0060$	≈ 0,3364
6	≈ 0,0012	≈ 0,3375
7	$\approx 0,0002$	≈ 0,3377
8	$\approx 2,7\cdot 10^{-5}$	≈ 0.3377
9	$\approx 3.4 \cdot 10^{-6}$	≈ 0,3377
10	$\approx 3.8 \cdot 10^{-7}$	≈ 0,3377

8. b)		
(A hasáb alaplapja az <i>ABCD</i> húrtrapéz.)		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	1 pont	
$A = 1.8 \qquad B$	1 point	
Az ábra jelöléseit használva, az <i>APD</i> derékszögű		
háromszögből Pitagorasz-tétellel:		
$m = \sqrt{1^2 - 0.6^2} = 0.8$ (m).		
A hasáb alaplapjának (az <i>ABCD</i> trapéznak) a területe:		
$\left(\frac{1,8+3}{2}\cdot 0,8=\right)1,92 \text{ (m}^2),$	1 pont	
tehát a hasáb (a konténer) térfogata:	1 pont	
$(1.92 \cdot 2 =) 3.84 \text{ m}^3.$	1 point	
A tisztító folyadék x méter magasságban áll a		Ez a pont akkor is jár, ha
konténerben.	1 pont	ezek a gondolatok csak a
A folyadék egy olyan szimmetrikus trapéz alapú	1 point	megoldásból derülnek ki.
egyenes hasábot tölt meg,		megaratasar tier timen iti.
amelynek a magassága 2 méter, az alaplapjának a		
területe pedig $\left(\frac{2,7}{2}\right) = 1,35 \text{ (m}^2\text{)}.$	1 pont	
D 0,6 P 1,8 Q 0,6 C y R	1 pont	
$azaz \frac{y}{x} = \frac{0.6}{0.8} = \frac{3}{4}.$	1 pont	y = 0.75x
SV = 1.8 + 2y = 1.8 + 1.5x,		
ezért (mivel az <i>ABVS</i> trapéz területe 1,35 m ²)	1 nont	
$\frac{1,8+1,8+1,5x}{2} \cdot x = 1,35.$	1 pont	
Ebből $1.5x^2 + 3.6x - 2.7 = 0$,	1 pont	$5x^2 + 12x - 9 = 0$
amelynek a gyökei 0,6 és –3.	1 pont	
(A –3 nem felel meg, tehát) a tisztító folyadék	•	
0,6 méter magasságban áll a konténerben.	1 pont	
Összesen:	11 pont	

9. a) első megoldás		
$f(x) = \frac{1}{20}((x-900)^2 - 810000 + 950000) =$	2 pont	
$=\frac{1}{20}(x-900)^2+7000$	1 pont	
(Mivel $(x - 900)^2 \ge 0$, és egyenlőség pontosan akkor van, ha $x = 900$, ezért) az óránkénti üzemanyag-fogyasztás 900 km/h átlagsebesség esetén minimális,	1 pont	
és ez a minimum 7000 kg óránként.	1 pont	_
Összesen:	5 pont	_

9. a) második megoldás		
(Az egy óra alatti üzemanyag fogyasztásnak ott lehet minimuma, ahol az f függvény deriváltja 0.) $f'(x) = \frac{1}{10}x - 90$	1 pont	
f'(x) = 0 pontosan akkor, ha $x = 900$.	1 pont	
Mivel a második derivált pozitív ($f''(x) = 0,1$), ezért itt valóban minimuma van az f függvénynek.	1 pont	Ez a pont akkor is jár, ha a vizsgázó az első deri- vált előjelváltásával in- dokol.
Az óránkénti üzemanyag-fogyasztás 900 km/h átlagsebesség esetén lesz minimális,	1 pont	
és ez a minimum $(f(900)) = 7000$ kg óránként.	1 pont	
Összesen:	5 pont	

9. b)		
A repülési idő órában: $t = \frac{5580}{v}$.	1 pont	
Az út során elfogyasztott üzemanyag kg-ban: $t \cdot f(v) = \frac{5580}{v} \cdot \frac{1}{20} (v^2 - 1800v + 950000) =$	1 pont	
$=279v-502200+\frac{265050000}{v}.$	1 pont	
Összesen:	3 pont	

9. c)		
A pozitív valós számok halmazán értelmezett $g(v) = 279v - 502200 + \frac{265050000}{v}$ függvénynek ott lehet szélsőértéke, ahol a deriváltja 0.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
$g'(v) = 279 - \frac{265\ 050\ 000}{v^2}$	1 pont	
$g'(v) = 0$, ha $v = 100\sqrt{95}$ ($\approx 974,68$) (mert $v > 0$).	1 pont	
A deriváltfüggvény értékei $v < 100\sqrt{95}$ esetén negatívak, $v > 100\sqrt{95}$ esetén pedig pozitívak. Ezért a $100\sqrt{95}$ a g függvénynek abszolút minimumhelye.	1 pont	Mivel a második derivált pozitív, ezért itt (abszolút) minimuma van a g függ- vénynek.
(A deriváltfüggvény előjele alapján tehát) a g függvény a $[800;100\sqrt{95}]$ zárt intervallumon szigorúan csökkenő, a $[100\sqrt{95};1100]$ zárt intervallumon pedig szigorúan növekvő, ezért a g függvény $[800;1100]$ intervallumra való leszűkítése a maximumát vagy 800 -nál vagy 1100 -nál veszi fel.	1 pont	
$g(800) = 52 \ 312,5$ $g(1100) \approx 45 \ 654,5$	1 pont	
Tehát a modell szerint 800 km/h átlagsebesség esetén a legnagyobb,	1 pont	
és $(100\sqrt{95} \approx)$ 975 km/h átlagsebesség esetén a legkisebb az egy útra jutó üzemanyag-felhasználás.	1 pont	
Összesen:	8 pont	

Megjegyzés: A szélsőértékhelyek függetlenek az út hosszától.