

Passive reduced order multiport modelling: the Padé-Laguerre, Krylov-Arnoldi-SVD connection (and its application to FDTD)

Daniël De Zutter and Luc Knockaert
Department of Information Technology
Sint-Pietersnieuwstraat 41
9000 Gent Belgium

Outline

- Introduction
- Laguerre-SVD Reduced Order Modelling (ROM)
- Example: PEEC-circuit
- ROM and explicit reciprocity
- Example: two coupled lossy transmission lines
- Application to FDTD: automatic subcell generation
- Example: a grid of dielectric wires
- Conclusion

Introduction

- The time-domain behaviour of a circuit or a physical device (e.g. a package) can be described by a state space description
- in electromagnetics this description typically emerges from numerical techniques such as FDTD, TLM or PEEC

package

State-space description

Typical representation as a set of first-order differential equations

$$C \dot{x} = -G x + B u$$

$$(C, G: N \times N)$$

$$y = L^T x$$

x: a vector of N internal variables (e.g. currents and voltages*)

u: a vector of P input (source) variables (e.g. port voltages)

y: a vector of P output variables (e.g port currents)

**Note*: the variables could also be fields → FDTD!

Reduced Order Modeling

The purpose of ROM techniques is to reformulate the previous state-space description as

$$\hat{\mathbf{C}} \hat{\mathbf{w}} = -\hat{\mathbf{G}} \mathbf{w} + \hat{\mathbf{B}} \mathbf{u}$$

$$(\hat{\mathbf{C}}, \hat{\mathbf{G}}: \mathbf{Q} \times \mathbf{Q})$$

$$y = \hat{L}^T w$$

$$(\hat{\mathbf{B}}, \hat{\mathbf{L}}: \mathbf{Q} \times \mathbf{P})$$

w: a new vector of Q (Q < N) internal variables

u: the same vector of P input (source) variables (i.e. port voltages)

y: the same vector of P output variables (i.e. port currents)

ROM-techniques: state-of-the-art

- 4 major techniques are found in literature
 - Asymptotic Waveform Evaluation (AWE)
 - Matrix Padé via Lanczos
 - Arnoldi-PRIMA
 - Congruence transformation
- these techniques mostly work for early time responses but are less performant for low frequences!
- a new solution (based on an expansion in Laguerre polynomials) was developed by L. Knockaert, circumventing this low frequency problem.

Expansion in scaled Laguerre functions (1)

In most techniques described in literature the transfer matrix
H(s) with

$$\mathbf{H}(\mathbf{s}) = \mathbf{L}^{\mathsf{T}}(\mathbf{G} + \mathbf{s}\mathbf{C})^{-1}\mathbf{B}$$

is used as the starting point to obtain Padé approximations by means of moment matching.

Here we start from $h(t) = Lapl^{-1}(H(s))$ and expand h(t) in a set of scaled Laguerre functions La_n :

$$\mathbf{h}(t) = \sum_{n=0}^{\infty} \mathbf{F}_{n} \, \phi_{n}^{\alpha} (t)$$

with

$$\phi_n^{\alpha}(t) = (2\alpha)^{1/2} e^{-\alpha t} La_n(2\alpha t) \quad \text{with } La_n(t) = \frac{e^t}{n!} \frac{d^n}{dt^n} (e^{-t} t^n)$$

Expansion in scaled Laguerre functions (2)

The Laplace transform of the scaled Laguerre functions is

$$\Phi_{\mathsf{n}}^{\alpha}(\mathsf{s}) = (2\alpha)^{1/2} \frac{1}{\mathsf{s} + \alpha} \left(\frac{\mathsf{s} - \alpha}{\mathsf{s} + \alpha} \right)^{\mathsf{n}}$$

Consequently:

$$\begin{aligned} \mathbf{H}(\mathbf{s}) &= \mathbf{L}^{\mathsf{T}}(\mathbf{G} + \mathbf{s}\mathbf{C})^{-1}\mathbf{B} \\ &= \sum_{n=0}^{\infty} \mathbf{F}_{n} \; \Phi_{n}^{\alpha}(\mathbf{s}) = (2\alpha)^{1/2} \; \frac{1}{\mathbf{s} + \alpha} \sum_{n=0}^{\infty} \mathbf{F}_{n} \left(\frac{\mathbf{s} - \alpha}{\mathbf{s} + \alpha}\right)^{n} \end{aligned}$$

This implies that **H**(s) is written as the **product** of a simple **low-pass filter** and a weighted sum of **all-pass filters**!

The u-domain

■ We now map the s-domain onto the u-domain with the bilinear transformation (right half-plane → unit circle)

$$u = \frac{s - \alpha}{s + \alpha}$$

leading to

$$\mathbf{H}(\mathbf{u}) = \mathbf{L}^{\mathsf{T}}[(\alpha \mathbf{C} + \mathbf{G}) + \mathbf{u} (\alpha \mathbf{C} - \mathbf{G})]^{-1}\mathbf{B}$$

Consequently:

an m-th order Padé approximation in the u-domain of **H**(u)

is equivalent to

an m-th order Laguerre approximation of H(s) in the s-domain!

Convergence issues

■ The previous statement implies that **H**(s) can be optimally approximated in the Hardy space by the truncated Laguerre-expansion, i.e.

$$\mathbf{H}(\mathbf{s}) \approx \sum_{n=0}^{m} \mathbf{F}_{n} \Phi_{n}^{\alpha}(\mathbf{s}) = \mathbf{H}_{m}(\mathbf{s})$$

- The point-wise convergence H_m(iω) → H(iω) can be proven (see L. Knockaert and D. De Zutter, "Passive Reduced Multiport Modelling...", Int. J. Electr. Commun. (AEÜ), pp. 254-260, no. 5, 53, 1999. [1])
- lacktriangle Mathematical arguments show that a good choice for α is

$$\alpha \approx 2\pi f_{\text{max}}$$

with f_{max} the bandwidth of the considered system.

The Krylov-Arnoldi-SVD connection (1)

Reduced order modelling via Krylov-Arnoldi

Starting point: original system (N x N)

$$Cx = -Gx + Bu$$

 $y = L^Tx$

via the u-domain a modified A and R matrix can be defined:

$$A = -(\alpha C + G)^{-1}(\alpha C - G)$$
 (classical approach: $A = -G^{-1}C$)
 $R = (\alpha C + G)^{-1}B$ (classical approach: $R = G^{-1}B$)

End point: reduced order system (Q x Q)

$$\hat{C}w = -\hat{G}w + \hat{B}u$$

$$y = \hat{L}^Tw$$
with
$$\hat{G} = X^TCX$$

$$\hat{G} = X^TGX$$

$$\hat{B} = X^TB$$

$$\hat{L} = X^TL$$

The Krylov-Arnoldi-SVD connection (2)

X: a N x Q matrix that orthogonalizes the columns of the N x Q Krylov matrix

$$K_M = [R, AR, A^2R, ..., A^{M-1}R, (A^MR)]$$
 with $Q = P \times M + r$

- X can be generated using the block Arnoldi algorithm which is equivalent to so-called 'thin' QR factorization based on modified Gram-Schmidt orthogonalization.
- to avoid precision problems we use an SVD approach i.e. write K_M as

$$\mathbf{K}_{\mathsf{M}} = \mathbf{U} \Sigma \mathbf{V}^{\mathsf{T}}$$
 implying that $\mathbf{X}^{\mathsf{T}} \mathbf{X} = \mathbf{U}^{\mathsf{T}} \mathbf{U}$

and further implying that the role of X can be replaced by U.

(see [1])

The complete algorithm

- select the values for α ($\approx 2\pi$ f_{max}) and Q (reduction factor N/Q)
- solve $(\mathbf{G} + \alpha \mathbf{C})\mathbf{R}_0 = \mathbf{B}$
- for k = 1, M 1 solve (with M = Q/P) $(G + \alpha C)R_k = (G - \alpha C)R_{k-1}$
- finally,

$$\hat{\mathbf{C}} = \mathbf{U}^{\mathsf{T}}\mathbf{C}\mathbf{U}$$
 $\hat{\mathbf{G}} = \mathbf{U}^{\mathsf{T}}\mathbf{G}\mathbf{U}$
 $\hat{\mathbf{B}} = \mathbf{U}^{\mathsf{T}}\mathbf{B}$
 $\hat{\mathbf{L}} = \mathbf{U}^{\mathsf{T}}\mathbf{L}$

Example: a PEEC-circuit

Typical example: a PEEC circuit

A.E. Ruehli, "Equivalent circuit models for three-dimensional multiconductor systems", IEEE Trans. MTT, March 1974

and

P. Feldmann and R.W. Freund, "Efficient linear circuit analysis by Padé approximation via the Lanczos process", IEEE Trans. Computer-Aided Design, May 1995)

- 2100 capacitors
- 127 inductors
- 6990 mutual inductive couplings
- N = 306
- reduced to Q < N = 60, 90</p>

PEEC-circuit: numerical results (1)

PEEC-circuit: numerical results (2)

■ State-space description and reciprocity

Suppose now that we start from the following state-space description

$$\begin{cases} \mathbf{C}\dot{\mathbf{x}} = -\mathbf{G}\mathbf{x} + \mathbf{L}\mathbf{u} \\ \mathbf{y} = \mathbf{L}^{\mathsf{T}}\mathbf{x} \end{cases}$$

with

$$\mathbf{C} = \mathbf{C}^{\mathsf{T}}; \ \mathbf{G} = \mathbf{G}^{\mathsf{T}}$$

Consequently, the transfer matrix **H**(s) (Laplace domain) is reciprocal, where

$$\mathbf{H}(s) = \mathbf{L}^{\mathsf{T}} (\mathbf{G} + s\mathbf{C})^{-1} \mathbf{L}$$

and

$$\mathbf{H}^{\mathsf{T}}(\mathsf{s}) = \mathbf{H}(\mathsf{s})$$

Explicit reciprocity

Reversely:

start from standard minimal state-space description:

$$\mathbf{H}(\mathbf{s}) = \mathbf{L}^{\mathsf{T}} (\mathbf{s}\mathbf{I} - \mathbf{A})^{-1} \mathbf{R}$$

- suppose that H^T(s) = H(s) (reciprocity)
- then Frobenius: $\mathbf{A} = -\mathbf{C}^{-1} \mathbf{G}$ with $\mathbf{C}^{\mathsf{T}} = \mathbf{C}$ and $\mathbf{G}^{\mathsf{T}} = \mathbf{G}$
- consequence: $\mathbf{H}(s) = \mathbf{L}^{T} (s\mathbf{C} + \mathbf{G})^{-1} \mathbf{CR}$
- since $H(s) = H^{T}(s)$ we have CR = L
- or $H(s) = L^{T} (sC + G)^{-1} L$

Reciprocity ⇒ **explicitly reciprocal state space description**

Congruent ROM and explicit reciprocity

Using congruent reduced order modeling:

$$\hat{\mathbf{G}} = \mathbf{U}^\mathsf{T} \mathbf{G} \mathbf{U}$$

$$\hat{\mathbf{G}} = \mathbf{U}^{\mathsf{T}} \mathbf{G} \mathbf{U}$$
 $\hat{\mathbf{C}} = \mathbf{U}^{\mathsf{T}} \mathbf{C} \mathbf{U}$ $\hat{\mathbf{L}} = \mathbf{U}^{\mathsf{T}} \mathbf{L}$

$$\hat{\mathbf{L}} = \mathbf{U}^{\mathsf{T}} \mathbf{L}$$

e.g. **U** left factor of the SVD of the Krylov matrix (as in our method)

Then reduced state space description is still **explicitly** reciprocal:

$$\hat{\mathbf{H}}(s) = \hat{\mathbf{L}}^{\mathsf{T}}(s\hat{\mathbf{C}} + \hat{\mathbf{G}})^{-1}\hat{\mathbf{L}} = \hat{\mathbf{H}}^{\mathsf{T}}(s)$$

For the non-reciprocal form this is not the case!

$$\hat{\mathbf{H}}'(s) = \hat{\mathbf{L}}^{\mathsf{T}}\mathbf{U}(s\mathbf{I} - \mathbf{U}^{\mathsf{T}}\mathbf{A}\mathbf{U})^{-1}\mathbf{U}^{\mathsf{T}}\mathbf{R} \neq \hat{\mathbf{H}}^{\mathsf{T}}(s)$$

Example: 2 coupled lines

2 coupled transmission lines represented by M discrete sections total length: 5 cm

$$\mathbf{L} = \begin{bmatrix} 494.6 & 63.3 \\ 63.3 & 494.6 \end{bmatrix} \text{nH/m} \qquad \mathbf{R} = \begin{bmatrix} 0.1 & 0.02 \\ 0.02 & 0.1 \end{bmatrix} \Omega / \text{m}$$

$$\mathbf{C} = \begin{bmatrix} 62.8 & -4.9 \\ -4.9 & 62.8 \end{bmatrix} \text{pF/m} \qquad \mathbf{G} = \begin{bmatrix} 0.1 & -0.01 \\ -0.01 & 0.1 \end{bmatrix} \text{S/m}$$

Normal format

Internal state space variables: $\{\mathbf{v}_{n}, \mathbf{i}_{n}\}$

$$\mathbf{C}_{n} \frac{d\mathbf{v}_{n}}{dt} = -\mathbf{G}_{n} \mathbf{v}_{n} + \mathbf{i}_{n} - \mathbf{i}_{n+1}$$
$$\mathbf{L}_{n} \frac{d\mathbf{i}_{n}}{dt} = -\mathbf{R}_{n} \mathbf{i}_{n} + \mathbf{v}_{n-1} - \mathbf{v}_{n}$$

$$\begin{pmatrix} \mathbf{C_1} & 0 & 0 & 0 & 0 \\ 0 & \mathbf{C_2} & 0 & 0 & 0 \\ 0 & 0 & \mathbf{L_1} & 0 & 0 \\ 0 & 0 & 0 & \mathbf{L_2} & 0 \\ 0 & 0 & 0 & \mathbf{C_3} \end{pmatrix}, \begin{pmatrix} \mathbf{G_1} & 0 & -\mathbf{I} & \mathbf{I} & 0 \\ 0 & \mathbf{G_2} & 0 & -\mathbf{I} & \mathbf{I} \\ \mathbf{I} & 0 & \mathbf{R_1} & 0 & 0 \\ -\mathbf{I} & \mathbf{I} & 0 & \mathbf{R_2} & 0 \\ 0 & -\mathbf{I} & 0 & 0 & \mathbf{R_3} \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & -\mathbf{I} \end{pmatrix}$$

(for M = 2)

Macsi-net Workshop on Model Reduction

Explicitly reciprocal format

Macsi-net Workshop on Model Reduction

Internal state space variables: $\{-\mathbf{v}_n, \mathbf{i}_n\}$

$$\begin{pmatrix}
-\mathbf{C}_{1} & 0 & 0 & 0 & 0 \\
0 & -\mathbf{C}_{2} & 0 & 0 & 0 \\
0 & 0 & \mathbf{L}_{1} & 0 & 0 \\
0 & 0 & 0 & \mathbf{L}_{2} & 0 \\
0 & 0 & 0 & \mathbf{L}_{3}
\end{pmatrix}, \begin{pmatrix}
-\mathbf{G}_{1} & 0 & -\mathbf{I} & \mathbf{I} & 0 \\
0 & -\mathbf{G}_{2} & 0 & -\mathbf{I} & \mathbf{I} \\
-\mathbf{I} & 0 & \mathbf{R}_{1} & 0 & 0 \\
\mathbf{I} & -\mathbf{I} & 0 & \mathbf{R}_{2} & 0 \\
0 & \mathbf{I} & 0 & 0 & \mathbf{R}_{3}
\end{pmatrix}, \begin{pmatrix}
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & -\mathbf{I}
\end{pmatrix}$$

Coupled lossy lines: numerical result

ROM - Conclusion

- we have discussed a reduced order modeling technique which remains accurate for low frequencies i.e. late time responses
- we have drawn attention to the fact that reciprocity can be explicitly represented in the state-space representation
- we have shown how this explicit reciprocity can be maintained when applying a ROM technique

2-D FDTD Automatic subcell generation

B. Denecker, F. Olyslager, D. De Zutter and L. Knockaert Department of Information Technology Sint-Pietersnieuwstraat 41 9000 Gent Belgium

Introduction

- In normal FDTD: cells of constant size
- Space step Δ (size of cell) is dependent on
 - wavelength (unavoidable)
 - smallest geometrical feature
- Techniques to choose ∆ independent of small geometrical features
 - subcell models (thin wire, thin slot,..)
 - non-uniform orthogonal grid
 - subgridding

. . . .

Yee cell

2D FDTD - the TM-case

- 2-D FDTD, TM-case, no variation in z-direction
- field variables E_z, H_x, H_y
- Typical cell:
- equations:

$$\begin{split} \partial E_z/\partial x &= \mu \; \partial H_y/\partial t \\ \partial E_z/\partial y &= -\mu \; \partial H_x/\partial t \\ \partial H_y/\partial x - \partial H_x/\partial y &= -\sigma E_z + \epsilon \partial E_z/\partial t \end{split}$$

subindex c refers to coarse grid subindex f refers to fine grid

The subcell idea (1)

- state-space model through FDTD on fine grid
- only the space derivatives are discretised in the FDTD-way

The subcell idea (2)

- \mathbf{x} : internal \mathbf{E}_{z} , \mathbf{H}_{x} , \mathbf{H}_{v} fields

- u: inputs \rightarrow fine grid E_7 -values derived from E₇ fields of coarse grid through a suitable
 - interpolation

$$r = \Delta_c/\Delta_f = 3$$

 $E_f = \frac{2}{3}E_c^{1} + \frac{1}{3}E_c^{2}$

■ The subcell idea (3)

State-space description of subcell

$$\begin{cases} \mathbf{C} \ \mathbf{\dot{x}} = -\mathbf{G} \ \mathbf{x} + \mathbf{B} \ \mathbf{u} \\ \mathbf{y} = \mathbf{L}^T \mathbf{x} \end{cases}$$

y: outputs → fine grid H-values leading to
H-fields of coarse grid through suitable averaging

$$r = \Delta_c / \Delta_f = 3$$
 $H_c = \frac{1}{3} (H_f^1 + H_f^2 + H_f^3)$

The subcell idea (4) - algorithm

- $\begin{array}{l} \text{generate MIMO state-space description of subcell} \\ \text{apply ROM-algorithm} \begin{cases} \overset{\bullet}{\mathbf{C}} \overset{\bullet}{\mathbf{w}} = \overset{\bullet}{\mathbf{-G}} \mathbf{w} + \overset{\bullet}{\mathbf{B}} \mathbf{u} \\ \mathbf{y} = \overset{\bullet}{\mathbf{L}}^T \mathbf{w} \end{cases} & \mathbf{y} = \mathbf{L}^T \mathbf{x} \end{array}$

$$\begin{cases} \mathbf{C} \ \mathbf{\dot{x}} = -\mathbf{G} \ \mathbf{x} + \mathbf{B} \ \mathbf{u} \\ \mathbf{y} = \mathbf{L}^T \mathbf{x} \end{cases}$$

- discretise time in the reduced state-space description
- solve the overall problem using FDTD with updating as below

Example: subcell model for a dielectric wire (1)

- dielectric wire of radius = 0.9mm and ε_r = 10
- $\Delta_{\rm c} = 1.3 \, {\rm mm} \ \Delta_{\rm f} = 0.1 \, {\rm mm} \ {\rm r} = 13$
- original number of state-spacevariables, N = 4408
- number of variables after ROM:either 12, 24 or 48

Example: dielectric wire (2)

- reuse the subcell model e.g. in a periodic arrangement
- line source as excitation
- electric field recorded at other side of periodic structure
- comparison: normal FDTD with fine grid

Example: dielectric wire (3)

Conclusions

- A new reduced order modelling (ROM) technique based on representing time-domain signals in terms of a sum of Laguerre functions was proposed.
- It was shown how ROM can be used in EM field simulations using (2D) FDTD to combine an overall coarse grid with a subcell (fine grid) model of arbitrary objects.

Questions?

