Teoria dei Sistemi e Controllo Ottimo e Adattativo (C. I.) Teoria dei Sistemi (Mod. A)

Docente: Giacomo Baggio

Lez. 10: Teorema di Linearizzazione e di Lyapunov

Corso di Laurea Magistrale in Ingegneria Meccatronica A.A. 2019-2020

Nella scorsa lezione ▶ Traiettorie di stato di un sistema ▶ Punti di equilibrio di un sistema (con e senza ingressi) ▶ Stabilità semplice e asintotica di un equilibrio ▶ Linearizzazione di sistemi non lineari In questa lezione ▶ Teorema di linearizzazione ▶ Funzioni energia e stabilità di sistemi non lineari ▶ Funzioni di Lyapunov

▶ Teorema di stabilità di Lyapunov

Teorema di linearizzazione (t.c.)

 $\dot{x}(t) = f(x(t))$: sistema non lineare con punto di equilibrio \bar{x}

Teorema: Sia $\dot{z}(t) = Fz(t)$ il sistema linearizzato di $\dot{x}(t) = f(x(t))$ attorno a \bar{x} e siano $\lambda_1, \ldots, \lambda_k$ gli autovalori di F. Allora:

- **1.** Se il sistema linearizzato è asintoticamente stabile $(\Re[\lambda_i] < 0, \forall i)$, allora \bar{x} è un punto di equilibrio (localmente) asintoticamente stabile per il sistema non lineare.
- **2.** Se il sistema linearizzato ha un autovalore con parte reale positiva $(\exists i: \Re[\lambda_i] > 0)$, allora \bar{x} è un punto di equilibrio (localmente) instabile per il sistema non lineare.

Caso critico: $\Re[\lambda_i] \leq 0$, $\forall i$, $e \exists i$: $\Re[\lambda_i] = 0$

Giacomo Baggio

IMC-TdS-1920: Lez. 10

November 4, 2019 5 / 25

Teorema di linearizzazione (t.c.): esempi

$$\mathbf{1.} \ \dot{x} = \sin x \qquad \quad \begin{aligned} \bar{x} &= 0 \\ \bar{x} &= \pi \end{aligned}$$

$$\Rightarrow \quad \bar{x} = 0 \text{ instabile}$$

 $\bar{x} = \pi \text{ stabile}$

2.
$$\begin{cases} \dot{x}_1 = x_1 - x_2 - x_1(x_1^2 + x_2^2) \\ \dot{x}_2 = x_1 + x_2 - x_2(x_1^2 + x_2^2) \end{cases} \quad \begin{bmatrix} \bar{x}_1 \\ \bar{x}_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \implies \bar{x} \text{ instabile}$$

3.
$$\dot{x} = \alpha x^3$$
, $\alpha \in \mathbb{R}$, $\bar{x} = 0$

Giacomo Baggio

IMC-TdS-1920: Lez. 10

November 4, 2019 6 / 25

Teorema di linearizzazione (t.d.)

x(t+1) = f(x(t)): sistema non lineare con punto di equilibrio \bar{x}

Teorema: Sia z(t+1) = Fz(t) il sistema linearizzato di x(t+1) = f(x(t)) attorno a \bar{x} e siano $\lambda_1, \ldots, \lambda_k$ gli autovalori di F. Allora:

- **1.** Se il sistema linearizzato è asintoticamente stabile ($|\lambda_i| < 1, \forall i$), allora \bar{x} è un punto di equilibrio (localmente) asintoticamente stabile per il sistema non lineare.
- **2.** Se il sistema linearizzato ha un autovalore con modulo maggiore di uno $(\exists i: |\lambda_i| >$ 1), allora \bar{x} è un punto di equilibrio (localmente) instabile per il sistema non lineare.

Caso critico: $|\lambda_i| \leq 1$, $\forall i$, e $\exists i$: $|\lambda_i| = 1$

Giacomo Baggio

IMC-TdS-1920: Lez 10

November 4, 2019 7 / 25

Teorema di linearizzazione (t.d.): esempi

1. Dato il sistema

$$\begin{cases} x_1(t+1) = ax_2(t) + (1-a)x_2^3(t) \\ x_2(t+1) = -ax_1(t) + (a-1)x_1^3(t) \end{cases}$$

Studiare la stabilità di $\bar{x}=0$ al variare di $a\in\mathbb{R}$ utilizzando la linearizzazione.

 $\bar{x} = 0$ as intoticamente stabile per a < 1

 $\bar{x} = 0$ instabile per a > 1

 $a=\pm 1$: caso critico!

Giacomo Baggio

IMC-TdS-1920: Lez. 10

November 4, 2019 8 / 25

-	

Funzioni energia e stabilità: l'oscillatore armonico

$$x_1(t) = x(t), x_2(t) = \dot{x}(t)$$

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{k}{m} & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$$

$$E_{\text{pot}}(t) = \frac{1}{2}kx_1^2(t), \quad E_{\text{cin}}(t) = \frac{1}{2}mx_2^2(t)$$

$$E_{tot}(t) = E_{m}(t) = E_{pot}(t) + E_{cin}(t)$$
$$= \frac{1}{2}kx_1^2(t) + \frac{1}{2}mx_2^2(t)$$

$$E_{\mathsf{m}}(t) = E(x_1(t), x_2(t)) = \mathsf{costante}, \ \forall t$$

Giacomo Baggio

IMC-TdS-1920: Lez. 10

November 4, 2019 9 / 25

Funzioni energia e stabilità: l'oscillatore armonico smorzato

 $x_1(t) = x(t), x_2(t) = \dot{x}(t)$

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{k}{m} & -\frac{\nu}{m} \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$$

$$E_{\text{pot}}(t) = \frac{1}{2}kx_1^2(t), \quad E_{\text{cin}}(t) = \frac{1}{2}mx_2^2(t)$$

$$E_{\text{tot}}(t) = E_{\text{m}}(t) + E_{\text{attr}}(t) = E_{\text{pot}}(t) + E_{\text{cin}}(t) + E_{\text{attr}}(t)$$

= $\frac{1}{2}kx_1^2(t) + \frac{1}{2}mx_2^2(t) + E_{\text{attr}}(t)$

$$E_{\rm m}(t_2) \leq E_{\rm m}(t_1), \quad \forall t_1, t_2, \ t_1 \leq t_2$$

Giacomo Baggio

IMC-TdS-1920: Lez. 10

November 4, 2019

10 / 25

Funzioni energia e stabilità: il pendolo semplice

$$x_1(t) = \theta(t), x_2(t) = \dot{\theta}(t)$$

$$\begin{cases} \dot{x}_1(t) = x_2(t) \\ \dot{x}_2(t) = -\frac{g}{\ell} \sin x_1(t) \end{cases}$$

$$E_{\text{pot}}(t) = mg\ell(1 - \cos x_1(t)), \quad E_{\text{cin}}(t) = \frac{1}{2}m\ell^2 x_2^2(t)$$

$$E_{\text{tot}}(t) = E_{\text{m}}(t) = E_{\text{pot}}(t) + E_{\text{cin}}(t)$$

= $mg\ell(1 - \cos x_1(t)) + \frac{1}{2}m\ell^2 x_2^2(t)$

$$E_{\mathsf{m}}(t) = E(x_1(t), x_2(t)) = \mathsf{costante}, \ \forall t$$

Giacomo Baggio

IMC-TdS-1920: Lez. 10

November 4, 2019

1 / 25

Funzioni energia e stabilità: il pendolo semplice con attrito

$$x_1(t) = \theta(t), x_2(t) = \dot{\theta}(t)$$

$$\begin{cases} \dot{x}_1(t) = x_2(t) \\ \dot{x}_2(t) = -\frac{g}{\ell} \sin x_1(t) - \frac{\nu}{m\ell} x_2(t) \end{cases}$$

$$E_{\text{pot}}(t) = mg\ell(1 - \cos x_1(t)), \quad E_{\text{cin}}(t) = \frac{1}{2}m\ell^2 x_2^2(t)$$

$$E_{\text{tot}}(t) = E_{\text{m}}(t) + E_{\text{attr}}(t) = E_{\text{pot}}(t) + E_{\text{cin}}(t) + E_{\text{attr}}(t)$$

= $mg\ell(1 - \cos x_1(t)) + \frac{1}{2}m\ell^2 x_2^2(t) + E_{\text{attr}}(t)$

$$E_{\rm m}(t_2) \leq E_{\rm m}(t_1), \quad \forall t_1, t_2, \ t_1 \leq t_2$$

Giacomo Baggio

IMC-TdS-1920: Lez. 10

November 4, 2019

Funzioni (semi)definite positive, negative, indefinite

Definizione: Una funzione $V: \mathbb{R}^n \to \mathbb{R}$ si dice (semi)definita positiva in un intorno di \bar{x} se esiste un intorno \mathcal{I} di \bar{x} tale che:

$$V(x) > (\geq) 0$$
, $\forall x \in \mathcal{I}$, $x \neq \bar{x}$, e $V(\bar{x}) = 0$.

Definizione: Una funzione $V: \mathbb{R}^n \to \mathbb{R}$ si dice (semi)definita negativa in un intorno di \bar{x} se esiste un intorno \mathcal{I} di \bar{x} tale che:

$$V(x) < (\leq) 0, \ \forall x \in \mathcal{I}, \ x \neq \bar{x}, \ \ e \ V(\bar{x}) = 0.$$

Definizione: Una funzione $V: \mathbb{R}^n \to \mathbb{R}$ si dice indefinita in un intorno \bar{x} se non è né semidefinita positiva né semidefinita negativa in un intorno \bar{x} .

Giacomo Baggio

IMC-TdS-1920: Lez. 10

November 4, 2019

Funzioni (semi)definite positive, negative, indefinite: esempi

1.
$$V(x_1, x_2) = x_1^2 + x_2^2$$
 \implies V definite positive in un intorno di $\bar{x} = 0$

2.
$$V(x_1, x_2) = x_1^2$$
 \implies V semidefinita positiva in un intorno di $\bar{x} = 0$

3.
$$V(x_1, x_2) = -\frac{x_1^2 + x_2^2}{1 + x_1^2}$$
 \implies V definita negativa in un intorno di $\bar{x} = 0$

4.
$$V(x_1, x_2) = x_1 x_2$$
 $\implies V$ indefinita in un intorno di $\bar{x} = 0$

Giacomo Baggio

IMC-TdS-1920: Lez. 10

November 4, 2019

Funzioni di Lyapunov (t.c.)

$$\dot{x}(t) = f(x(t)), \quad \bar{x}$$
 punto di equilibrio

Definizione: Una funzione $V: \mathbb{R}^n \to \mathbb{R}$ si dice funzione di Lyapunov del sistema $\dot{x}(t) = f(x(t))$ rispetto al punto di equilibrio \bar{x} se:

- 1. V(x(t)) è definita positiva in un intorno \mathcal{I} di \bar{x} ,
- 2. $\dot{V}(x(t))$ è semidefinita negativa in un intorno \mathcal{I} di \bar{x} .

Giacomo Baggio

IMC-TdS-1920: Lez. 10

November 4, 2019

15 / 25

Funzioni di Lyapunov (t.c.): esempi

1. Oscillatore armonico smorzato ($\bar{x} = 0$):

2. Pendolo semplice con attrito ($\bar{x} = 0$):

$$\begin{cases} \dot{x}_1(t) = x_2(t) & V(x_1, x_2) = mg\ell(1 - \cos x_1) + \frac{1}{2}m\ell^2 x_2^2 > 0, \\ \dot{x}_2(t) = -\frac{g}{\ell}\sin x_1(t) - \frac{\nu}{m\ell}x_2(t) & \forall x_1, x_2 \in [-\varepsilon, \varepsilon] \setminus \{0\} \\ \dot{V}(x_1, x_2) = -\nu\ell x_2^2 \leq 0, \ \forall x_1, x_2 \end{cases}$$

Giacomo Baggio

IMC-TdS-1920: Lez. 10

November 4, 2019

Funzioni di Lyapunov (t.d.)

$$x(t+1) = f(x(t)), \quad \bar{x}$$
 punto di equilibrio

Definizione: Una funzione $V: \mathbb{R}^n \to \mathbb{R}$ si dice funzione di Lyapunov del sistema x(t+1) = f(x(t)) rispetto al punto di equilibrio \bar{x} se:

- 1. V(x(t)) è definita positiva in un intorno \mathcal{I} di \bar{x} ,
- 2. $\Delta V(x(t)) = V(x(t+1)) V(x(t))$ è semidefinita negativa in un intorno \mathcal{I} di \bar{x} .

Giacomo Baggio

IMC-TdS-1920: Lez. 10

November 4, 2019

17 / 2

Funzioni di Lyapunov: osservazioni

- 1. Funzioni di Lyapunov = funzioni energia "generalizzate" !!!
- **2.** Non esiste un algoritmo generale per costruire funzioni di Lyapunov. Esse devono essere ricavate per tentativi, tipicamente partendo da considerazioni di tipo "energetico" (nel caso di sistemi fisici).
- **3.** Calcolo di $\dot{V}(x)$:

$$\dot{V}(x) = \begin{bmatrix} \frac{\partial V(x)}{\partial x_1} & \cdots & \frac{\partial V(x)}{\partial x_n} \end{bmatrix} \begin{bmatrix} \dot{x}_1 \\ \vdots \\ \dot{x}_n \end{bmatrix} = \begin{bmatrix} \frac{\partial V(x)}{\partial x_1} & \cdots & \frac{\partial V(x)}{\partial x_n} \end{bmatrix} \begin{bmatrix} f_1(x) \\ \vdots \\ f_n(x) \end{bmatrix} = \nabla V(x) f(x)$$

Giacomo Baggio

IMC-TdS-1920: Lez. 10

November 4, 2019

18 / 2

Teorema di stabilità di Lyapunov (t.c.)

Teorema: Dato un sistema $\dot{x}(t) = f(x(t))$ con punto di equilibrio \bar{x} :

- 1. Se esiste una funzione di Lyapunov V(x) del sistema rispetto all'equilibrio \bar{x} allora \bar{x} è semplicemente stabile.
- **2.** Se inoltre si ha che $\dot{V}(x)$ è definita negativa allora \bar{x} è asintoticamente stabile.

Giacomo Baggio

IMC-TdS-1920: Lez. 10

November 4, 2019

19 / 25

Teorema di Lyapunov (t.c.): esempi

1. Oscillatore armonico (m = k = 1):

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}, \quad \bar{x} = 0$$

$$V(x_1, x_2) = \frac{1}{2}x_1^2 + \frac{1}{2}x_2^2$$

 $\dot{V}(x_1,x_2)=0$, semidef. neg.

 $\bar{x} = 0$ semplicemente stabile

Teorema di Lyapunov (t.c.): esempi

2. Oscillatore armonico smorzato ($m = k = \nu = 1$):

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}, \quad \bar{x} = 0$$

$$V(x_1, x_2) = \frac{1}{2}x_1^2 + \frac{1}{2}x_2^2$$

 $\dot{V}(x_1,x_2)=-x_2^2$, semidef. neg.

 $\bar{x} = 0$ semplicemente stabile

$$V(x_1, x_2) = x_1^2 + \frac{1}{2} ((x_2 + x_1)^2 + x_2^2)$$

 $\dot{V}(x_1,x_2) = -(x_1^2 + x_2^2)$, def. neg.

 $\bar{x} = 0$ as into ticamente stabile!!

Giacomo Baggio

IMC-TdS-1920: Lez. 10

November 4, 2019

21 / 29

Teorema di Lyapunov (t.c.): esempi

3. Pendolo semplice ($m = \ell = 1$):

$$\begin{cases} \dot{x}_1(t) = x_2(t) \\ \dot{x}_2(t) = -g \sin x_1(t) \end{cases} \qquad \bar{x} = 0$$

$$V(x_1, x_2) = g(1 - \cos x_1) + \frac{1}{2}x_2^2$$

 $\dot{V}(x_1,x_2)=0$, semidef. neg.

 $\bar{x} = 0$ semplicemente stabile!

Teorema di Lyapunov (t.c.): esempi

4. Pendolo semplice con attrito ($m = \ell = \nu = 1$):

$$\begin{cases} \dot{x}_1(t) = x_2(t) \\ \dot{x}_2(t) = -g \sin x_1(t) - x_2(t) \end{cases} \qquad \bar{x} = 0$$

$$V(x_1, x_2) = g(1 - \cos x_1) + \frac{1}{2}x_2^2$$

 $\dot{V}(x_1, x_2) = -x_2^2$, semidef. neg.

$$\bar{x} = 0$$
 semplicemente stabile

$$V(x_1,x_2) = g(1-\cos x_1) + \frac{1}{2}x_2^2$$
 $V(x_1,x_2) = 2g(1-\cos x_1) + \frac{1}{2}((x_1+x_2)^2 + x_2^2)$

$$\dot{V}(x_1, x_2) = -x_2^2 - gx_1 \sin x_1$$
, def. neg.

 $\bar{x} = 0$ as intoticamente stabile!!

Giacomo Baggio

IMC-TdS-1920: Lez. 10

November 4, 2019

Teorema di stabilità di Lyapunov (t.d.)

Teorema: Dato un sistema x(t+1) = f(x(t)) con punto di equilibrio \bar{x} :

- 1. Se esiste una funzione di Lyapunov V(x) del sistema rispetto all'equilibrio \bar{x} allora \bar{x} è semplicemente stabile.
- **2.** Se inoltre si ha che $\Delta V(x(t))$ è definita negativa allora \bar{x} è asintoticamente stabile.

-	

Teorema di Lyapunov (t.d.): esempi

1. Dato il sistema

$$\begin{cases} x_1(t+1) = -x_2(t) + 2x_2^3(t) \\ x_2(t+1) = x_1(t) - 2x_1^3(t) \end{cases}$$

Studiare la stabilità di $\bar{x}=0$ utilizzando $V(x_1,x_2)=x_1^2+x_2^2$.

$$\Delta V(x_1,x_2) = -4x_1^4(1-x_1^2) - 4x_2^4(1-x_2^2)$$
, negativa definita attorno a $ar{x}$

 $\implies \bar{x} = 0$ as into ticamente stabile

Giacomo Baggio

IMC-TdS-1920: Lez. 10

November 4, 2019

25 / 25