Department of Mathematics Indian Institute of Technology Guwahati

MA 101: Mathematics I Tutorial Sheet-6

July-December 2019

- 1. Let $f: [-1,1] \to \mathbb{R}$ be defined by $f(x) = \begin{cases} 1 & \text{if } x = \frac{1}{n} \text{ for some } n \in \mathbb{N}, \\ 0 & \text{otherwise.} \end{cases}$
 - (a) Show that f is Riemann integrable on [-1,1] and that $\int_{-1}^{1} f(x) dx = 0$.
 - (b) If $F(x) = \int_{-1}^{x} f(t) dt$ for all $x \in [-1,1]$, then show that $F: [-1,1] \to \mathbb{R}$ is differentiable, and in particular, F'(0) = f(0), although f is not continuous at 0.
- 2. Let $f:[a,b]\to\mathbb{R}$ be continuous such that $f(x)\geq 0$ for all $x\in [a,b]$ and $\int_a^b f(x)\,dx=0$. Show that f(x)=0 for all $x\in [a,b]$. Equivalently, if $f:[a,b]\to\mathbb{R}$ is continuous such that $f(x)\geq 0$ for all $x\in [a,b]$ and $f(c)\neq 0$ for some $c\in [a,b]$, then $\int_a^b f(x)\,dx>0$.

(The above result need not be true if f is assumed to be only Riemann integrable on [a, b].)

- 3. Let $f:[0,1] \to \mathbb{R}$ be defined by $f(x) = \begin{cases} x & \text{if } x \text{ is rational,} \\ 0 & \text{if } x \text{ is irrational.} \end{cases}$ Examine whether f is Riemann integrable on [0,1].
- 4. If $f:[0,1]\to\mathbb{R}$ is Riemann integrable, then find $\lim_{n\to\infty}\int\limits_0^1x^nf(x)\,dx$.
- 5. If $f:[0,2\pi]\to\mathbb{R}$ is continuous such that $\int_0^{\frac{\pi}{2}}f(x)\,dx=0$, then show that there exists $c\in(0,\frac{\pi}{2})$ such that $f(c)=2\cos 2c$.
- 6. Evaluate the limit: $\lim_{n\to\infty} \left(\frac{1^8+3^8+\cdots+(2n-1)^8}{n^9}\right)$.
- 7. Let $f:[0,\infty)\to\mathbb{R}$ be such that $f\in\mathcal{R}[0,x]$ for all x>0. If $x\sin(\pi x)=\int_0^{x^2}f(t)dt$, find the value of f(4).
- 8. Examine whether the integral $\int_{0}^{\infty} \sin(x^2) dx$ is convergent.
- 9. Determine all real values of p for which the integral $\int_{0}^{\infty} \frac{x^{p-1}}{1+x} dx$ is convergent.
- 10. Determine all real values of p for which the integral $\int_{0}^{\infty} \frac{e^{-x}-1}{x^{p}} dx$ is convergent.
- 11. Examine whether the improper integral $\int_{-\infty}^{\infty} te^{-t^2} dt$ is convergent.