Intervals of Concavity

For each problem, find the x-coordinates of all points of inflection, find all discontinuities, and find the open intervals where the function is concave up and concave down.

1)
$$y = x^3 - 3x^2 + 4$$

2)
$$y = x^3 - 2x^2 - 2$$

3)
$$y = x^4 + x^3 - 3x^2 + 1$$

4)
$$y = \frac{1}{x - 3}$$

$$5) \ \ y = -\frac{x^3}{x^2 - 4}$$

6)
$$y = (5x + 30)^{\frac{2}{3}}$$

7)
$$y = -\frac{3}{16}(x-1)^{\frac{4}{3}} - \frac{3}{2}(x-1)^{\frac{1}{3}} + 2$$

Critical thinking question:

8) Sketch a continous curve y = f(x) where f(1) = 0, f'(0) = 0, f'(2) = 0, f''(x) < 0 for x < 1, and f''(x) > 0 for x > 1.

Intervals of Concavity

Date Period

For each problem, find the x-coordinates of all points of inflection, find all discontinuities, and find the open intervals where the function is concave up and concave down.

1)
$$y = x^3 - 3x^2 + 4$$

Inflection point at: x = 1 No discontinuities exist. Concave up: $(1, \infty)$ Concave down: $(-\infty, 1)$

$$2) \ \ y = x^3 - 2x^2 - 2$$

Inflection point at: $x = \frac{2}{3}$ No discontinuities exist.

Concave up: $\left(\frac{2}{3}, \infty\right)$ Concave down: $\left(-\infty, \frac{2}{3}\right)$

3)
$$y = x^4 + x^3 - 3x^2 + 1$$

Inflection points at: $x = -1, \frac{1}{2}$ No discontinuities exist.

Concave up: $(-\infty, -1)$, $\left(\frac{1}{2}, \infty\right)$ Concave down: $\left(-1, \frac{1}{2}\right)$

4)
$$y = \frac{1}{x - 3}$$

No inflection points exist. Discontinuity at: x = 3 Concave up: $(3, \infty)$ Concave down: $(-\infty, 3)$

$$5) \ \ y = -\frac{x^3}{x^2 - 4}$$

Inflection point at: x = 0 Discontinuities at: x = -2, 2 Concave up: $(-\infty, -2)$, (0, 2) Concave down: (-2, 0), $(2, \infty)$

6)
$$y = (5x + 30)^{\frac{2}{3}}$$

No inflection points exist. No discontinuities exist. Concave up: No intervals exist. Concave down: $(-\infty, -6)$, $(-6, \infty)$

7)
$$y = -\frac{3}{16}(x-1)^{\frac{4}{3}} - \frac{3}{2}(x-1)^{\frac{1}{3}} + 2$$

Inflection points at: x = 1, 5 No discontinuities exist. Concave up: (1, 5) Concave down: $(-\infty, 1), (5, \infty)$

Critical thinking question:

8) Sketch a continous curve y = f(x) where f(1) = 0, f'(0) = 0, f'(2) = 0, f''(x) < 0 for x < 1, and f''(x) > 0 for x > 1.

