應用手冊 No. 046 P 1

產品:錠狀口香糖

目標:使用鋒利切刀測量3種品牌口香糖錠的外部和內部硬度

動作模式:剪切測試

### 測試模式:

| 速度     | 測試模式  | 啟點   | 目標     | 延遲    |
|--------|-------|------|--------|-------|
| 2 mm/s | 距離(壓) | 0 gf | 9.5 mm | 0 sec |

## 配件:

鋒利切刀、測試台

# 實驗設置:

將切割塊插入重型平台·並將其放置在機器底座上。將刀片安裝到稱重感測器支架上·並將其向下移動到切割塊上,直到接近接觸。點選以下按鈕校準刀片,確認切割塊距離為零:

校準探頭: 10毫米(選定的刀片返回距離)

將樣品放置在切割塊的中央,刀片垂直於藥片長度,並從樣品中間區域開始測試。

### 曲線圖:



上述曲線是在 20C 的溫度下切割 3 個不同品牌的口香糖片得到的。

應用手冊 No. 046 P 2

#### 實驗觀察:

刀片接近樣品,接觸後立即觀察到力的快速上升。藥片外塗層的初始斷裂以峰值表示(即由於斷裂事件,力下降)。刀片切開塗層,然後繼續切開藥片內部,藥片內部可能比外塗層更軟,也可能不比外塗層更軟。當刀片距離切割塊 0.5 毫米時,刀片會回到其初始位置。可以測量第一個峰值力(塗層硬度)、曲線下面積(切割總功/能量或韌性)和 7.5 毫米處的力(內部硬度),並將其用作質地指標。這些參數很可能與消費者對「第一口」硬度的感知有關,而「第一口」硬度是口香糖片的一個重要質地特徵。

樣品 A 的塗層明顯更硬,切割所需的能量也更大(因此可能會感覺咬起來更硬),內部硬度也更高(儘管變化很大)。另一方面,樣品 B 和 C 的外部和內部硬度相對相似,儘管樣品 C 的塗層硬度和內部硬度之間的差異很小,以至於塗層的破損不會像其他兩個樣品那樣明顯。

#### 計算項目:

区最大正力

図使用 Cursor Mark 找尋 7.5mm 的力值

図面積(正)

#### 結果:

| 樣品 | 平均第一峰值力        | 平均 7.5 毫米處的力   | 平均面積             |
|----|----------------|----------------|------------------|
|    | ' 塗層硬度 '       | '內部硬度'         | '切削功*/韌性'        |
|    | (+/- S.D.)(kg) | (+/- S.D.)(kg) | (+/- S.D.)(kg s) |
| А  | 6.9 +/- 0.6    | 5.2 +/- 2.0    | 10.8 +/- 1.1     |
| В  | 2.2 +/- 0.4    | 1.4 +/- 0.2    | 4.0 +/- 0.4      |
| С  | 1.9 +/- 0.2    | 1.8 +/- 0.2    | 4.5 +/- 0.4      |

<sup>\*</sup> 此處所說的"功(力\*時間)"與物理學中的"功(力\*距離)"不同。

#### 備註:

- 選擇口香糖碎塊時,請務必選擇那些表面沒有裂縫的碎塊,因為這些裂縫是潛在的薄弱區域,會導致結果 差異很大。寬度可變的部分也應如此。為了便於比較測試結果,請務必確保樣品寬度為恆定值。
- 在嘗試優化測試設定時,建議首次測試選擇硬度最高的樣品,以預測所需的最大測試範圍,並確保測試力 足以測試所有後續樣品。