Vv186 Honors Mathematics II

Functions of a Single Variable

Assignment 4

Date Due: 8:00 AM, Thursday, the 22nd of October 2020

Mathematics is the part of physics where experiments are cheap.

V.I. Arnol'd, On teaching mathematics, March 7th, 1997¹

This assignment has a total of (53 Marks).

Exercise 4.1

Let (X, ρ) be a complete metric space and let $T: X \to X$ be a function on X. Let r < 1 be a real number such that

$$\rho(Tx, Ty) \le r \cdot \rho(x, y)$$
 for all $x, y \in X$.

(We say that T is a *contraction*.) Our goal is to prove that

- a) T has a unique fixed point $x_0 \in X$, i.e., there exists a unique point x_0 such that $Tx_0 = x_0$ and
- b) for any $y_0 \in X$, the sequence $(y_n) = (T^n y_0)$ converges to x as $n \to \infty$.

This theorem is called the *contraction mapping principle* or *Banach's fixed point theorem*². It is an extremely useful tool in the proofs of many important theorems.

i) Show that if $c \neq 1$, then

$$\sum_{i=0}^{k} c^{m+i} = \frac{c^m - c^{m+k+1}}{1 - c}$$

for all $m, k \in \mathbb{N}$. (2 Marks)

- ii) Show that $\rho(y_{n+k}, y_n) \leq r^n (1-r)^{-1} \rho(y_1, y_0)$. Deduce that (y_n) is a Cauchy sequence. Why does this imply that (y_n) converges? (2 Marks)
- iii) Deduce that $x_0 := \lim_{n \to \infty} y_n$ is a fixed point, i.e., $Tx_0 = x_0$. (2 Marks)
- iv) Prove that there can not be two fixed points $x_0, \tilde{x}_0 \in X$. (2 Marks)

Exercise 4.2

Consider the sequence $(a_n)_{n\in\mathbb{N}}$ given by

$$\sqrt{2}$$
, $\sqrt{2\sqrt{2}}$, $\sqrt{2\sqrt{2\sqrt{2}}}$, $\sqrt{2\sqrt{2\sqrt{2\sqrt{2}}}}$,

i) Find a recursive representation of the sequence, i.e., a value a_0 and a function f (defined on what domain?) such that $a_{n+1} = f(a_n)$ for all $n \in \mathbb{N}$. (1 Mark)

¹Arnol'd (sometimes written Arnold) was a famous Russian mathematician who was very critical of "abstract nonsense" and insisted on the importance of intuitive ideas in mathematical theory. The full text of his address, which I highly recommend, can be found at http://pauli.uni-muenster.de/~munsteg/arnold.html. Since Arnol'd spent a lot of time in France, the article addresses differences in the French and Russian culture of mathematics.

²see also *Spivak*, Ch. 22, Ex. 22, 23.

- ii) Finden an explicit representation of the sequence and use induction to show that this representation is correct (i.e., it follows from the recursive representation). (2 Marks)
- iii) Use induction to show that (a_n) is bounded and increasing, so that the limit $a := \lim_{n \to \infty} a_n$ exists. Then find the limit. (2 Marks)

Exercise 4.3

For fixed $a, b, c \in \mathbb{R}$, $a \ge 0$, find $\alpha, \beta \in \mathbb{R}$, such that

$$\lim_{x \to \infty} \left(\sqrt{ax^2 + bx + c} - \alpha x - \beta \right) = 0.$$

Having found such $\alpha, \beta \in \mathbb{R}$, can there exist different numbers $\alpha', \beta' \in \mathbb{R}$ such that $\lim_{x \to \infty} (\sqrt{ax^2 + bx + c} - \alpha'x - ax^2 + bx + bx + bx)$ β') = 0? Explain!

(4 Marks)

Exercise 4.4

- i) For which α is $\sqrt{1+x^4} = O(x^\alpha)$ as $x \to 0$? (1 Mark)
- ii) For which α is $\sqrt{1+x^4} = o(x^\alpha)$ as $x \to 0$? (1 Mark)
- iii) Show that $f(x) = o(\phi(x))$ as $x \to 0$ if and only if $\lim_{x \to 0} \frac{|f(x)|}{|\phi(x)|} = 0$.
- iv) Find functions f and ϕ such that $f(x) = O(\phi(x))$ as $x \to 0$ but $\lim_{x \to 0} \frac{|f(x)|}{|\phi(x)|}$ does not exist.

Exercise 4.5

Interpret and prove the following relations as $x \to x_0 \in \mathbb{R}$:

$$\begin{split} O(f(x)) + O(g(x)) &= O(|f(x)| + |g(x)|), \\ O(f(x))O(g(x)) &= O(f(x)g(x)), \\ O(f(x))o(g(x)) &= o(f(x)g(x)), \\ O(O(f(x))) &= O(f(x)), \\ o(O(f(x)) &= o(f(x)). \end{split}$$

(7 Marks)

Exercise 4.6

Let $[x] := \min\{n \in \mathbb{Z} : n \geq x\}$ denote the smallest integer greater than $x \in \mathbb{R}$. Sketch the following real functions f and state (without proof) at which points of their domain they are continuous.

i)
$$f(x) = \lceil x \rceil$$

$$ii) \quad f(x) = |x| - x$$

iii)
$$f(x) = \sqrt{\lceil x \rceil - x}$$

v)
$$f(x) = \left\lceil \frac{1}{x} \right\rceil$$
,

vi)
$$f(x) = \frac{1}{\left\lceil \frac{1}{x} \right\rceil}$$

(12 Marks)

Exercise 4.7

A number $p/q \in \mathbb{Q}$, $p,q \in \mathbb{Z}$, $q \neq 0$, is in lowest terms if p and q have no common factor and q > 0. We assume (without proof) that every $x \in \mathbb{Q} \setminus \{0\}$ has a unique representation in lowest terms. Define

$$f \colon [0,1] \to \mathbb{R}, \qquad \qquad f(x) = \begin{cases} 0 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \text{ or } x = 0, \\ \frac{1}{q} & \text{if } x \in \mathbb{Q} \text{ and } x = p/q \text{ in lowest terms.} \end{cases}$$

Plot f as well as you can and state (without proof) at which points f is continuous (2 Marks)

Exercise 4.8

Suppose that $f \colon \mathbb{R} \to (0, \infty)$ is continuous and satisfies $\lim_{x \to -\infty} f(x) = \lim_{x \to \infty} f(x) = 0$.

- i) Show that f attains its maximum, i.e., there exists some $x_0 \in \mathbb{R}$ such that $f(x_0) \geq f(x)$ for all $x \in \mathbb{R}$. (2 Marks)
- ii) Let x_0 be given as in i) above and let $y_0 := f(x_0)$. Show that ran $f = (0, y_0]$, i.e., for every $\eta \in (0, y_0]$ there exists some $\xi \in \mathbb{R}$ such that $f(\xi) = \eta$. (2 Marks)

Exercise 4.9

- i) Prove that f(x) = 1/x is not uniformly continuous on (0, 1]. (2 Marks)
- ii) Prove that f(x) = 1/x is uniformly continuous on $[1, \infty)$. (2 Marks)
- iii) Prove that $f(x) = x^2$ is not uniformly continuous on \mathbb{R} . (2 Marks)