

Relembrando: Pontos Negativos do k-Means

- *k-Means* é bastante suscetível a problemas quando os *clusters* são de diferentes tamanhos.
- k-Means é também bastante suscetível a problemas quando os clusters têm formatos globulares ou diferentes densidades.

- DBSCAN é um acrônimo para Density-Based Spatial Clustering Applications with Noise;
- Trabalha com a definição de densidade para realizar os agrupamentos, identificando diferentes tamanhos e formatos mesmo com a presença de ruídos e outliers;
- Não necessita da definição do número k de clusters, como no k-Means;
- Ao invés, necessita que sejam definidos dois parâmetros:
 - o **eps:** uma medida de distância utilizada para localizar pontos circunvizinhos;
 - minPts: o número mínimo de pontos aglomerados em uma região para considerá-la densa

- As definições dos parâmetros do DBSCAN podem ser melhor entendidas a partir de dois conceitos:
 - Alcançabilidade: um ponto é alcançável por outro ponto se ele está dentro de uma distância 'eps' dele;
 - Conectividade: determina que determinados pontos formam um *cluster* em particular caso haja uma conexão em cadeia. Por exemplo, $p \in q$ são pontos que podem ser conectados caso $p \rightarrow r \rightarrow s \rightarrow t \rightarrow q$, onde ' $a \rightarrow b$ ' significa 'b é vizinho de a'.

- Há três categorias de pontos após o processo de clusterização do DBSCAN:
 - Núcleo (Core): um ponto com pelo menos 'm' pontos dentro de uma distância 'eps' dele mesmo;
 - Fronteira (Border): um ponto com pelo menos um ponto de núcleo até uma distância eps;
 - Ruído (Noise): um ponto que nem é núcleo nem fronteira.

O algoritmo DBSCAN Etapas

- 1. O algoritmo escolhe aleatoriamente um ponto não selecionado no conjunto de dados;
- 2. Se houver pelo menos 'minPts' dentro de um raio 'eps' do ponto escolhido, considere todos os pontos como pertencentes ao mesmo cluster;
- 3. Após os *clusters* são expandidos aplicando recursivamente os cálculos anteriores para cada ponto circunvizinho.

O algoritmo DBSCAN Exemplo 2

O algoritmo DBSCAN Pontos Fracos

- **Sensibilidade a Parâmetros:** o desempenho do DBSCAN depende da definição correta de parâmetros, como o *eps* e o número mínimo de pontos *minPts*. Escolher valores apropriados pode ser desafiador e pode exigir conhecimento do domínio.
 - Heurísticas comuns são $minPts \ge D + 1$, onde D representa o número de dimensões. O parâmetro eps pode ser definido a partir da curva do cotovelo de um gráfico de k pontos vizinhos.
- Escalabilidade: o DBSCAN pode se tornar computacionalmente custoso para conjuntos de dados maiores, pois precisa calcular distâncias entre pares de pontos, resultando em uma complexidade temporal de O(n^2);
- Ambiguidade de Pontos de Borda: A atribuição de pontos de borda pode ser às vezes ambígua, levando a diferenças nos resultados do clustering dependendo da ordem de processamento. Isso pode tornar o clustering menos determinístico.

Exercício

Utilize o algoritmo DBSCAN para agrupar os registros de vendas de jogos de videogame ao redor do mundo. Utilize o link https://shorturl.at/bpFI4 para acessar os dados.

