Intensity Normalization

Kristin Linn

2017-03-30

Intensity normalization

- Conventional MRI intensites (T1-w, T2-w, PD, FLAIR) are acquired in arbitrary units, making the images not comparable across scanners and visits.
- Intensity normalization brings the intensities to a common scale.

Goals of this tutorial

- Visualize the intensities using boxplots and densities
- ► Apply the WhiteStripe intensity normalization (Shinohara et al. 2014)

Reading in the images

- ► For the moment, we will work with the T1-w images from the training data.
- vals below is restricting to T1-w voxels that are within the brain mask.

```
library(ms.lesion)
library(neurobase)
library(WhiteStripe)
fnames = get image filenames list by subject(group = "train
  type = "coregistered")
t1s = lapply(fnames, function(x) readnii(x["MPRAGE"]))
tissues = lapply(fnames, function(x) readnii(x["Tissue Clas
masks = lapply(fnames, function(x) readnii(x["Brain_Mask"])
vals = mapply(function(t1, mask){
  mask_vals(t1, mask)
}, t1s, masks, SIMPLIFY = FALSE)
```

Code for plotting the data

```
plot_densities = function(dens, xlab = "Raw Intensities",
                          main = "Whole Brain") {
  range_x = sapply(dens, function(d) range(d$x))
  range_x = range(range_x)
  range_y = sapply(dens, function(d) range(d$y))
  range_y = range(range_y)
  plot(dens[[1]], xlim = range_x, ylim = range_y,
       xlab = xlab, main = main)
  for (idens in 2:length(dens)) {
    lines(dens[[idens]], col = idens)
plot boxplots = function(vals,
                          main = "Whole Brain") {
  boxplots <- lapply(vals, boxplot, outline = FALSE, plot :
  boxplots = lapply(boxplots, function(x) x$stats)
  boxplots <- do.call(cbind, boxplots)</pre>
  boxplot(boxplots, main = main)
```

Visualizing the intensities

▶ Full brain densities are mixtures of the tissue class distributions.

plot_densities(dens)

Whole Brain

Visualizing the intensities by tissue class Gray Matter

Visualizing the intensities by tissue class

▶ Notice the complete non-overlap between some subjects' white matter distributions.

White Matter

Paw Intensities

Visualizing the intensities by tissue class CSF

Whole-brain normalization

- ▶ Let's Z-score each voxel using mean and standard deviation computed from all voxels in the brain mask.
- zscore_img is a function in fslr that does this.

```
t1_norm = mapply(function(img, mask){
  zscore_img(img = img, mask = mask, margin = NULL)
}, t1s, masks, SIMPLIFY = FALSE)
```

Whole-brain normalized intensities

Gray matter distributions are more comparable.
 Gray Matter

Whole-brain normalized intensities

White matter distributions are more comparable.

White Matter

Whole-brain normalized intensities CSF

Whole-brain Normalized Intensities

CSF

Why White Stripe?

- Whole-brain normalization may reduce signal in the higher intensities, i.e., less contrast between lesion intensities and normal appearing white matter.
- White Stripe normalization is based on parameters obtained from a sample of normal appearing white matter.
- The idea is to make normal appearing white matter comparable across subjects while preserving high lesion intensity contrast to aid automatic segmentation algorithms.

White Stripe normalization

- We normalize each voxel using the mean and standard deviation computed from normal appearing white matter voxels.
- ► Thus, normal appearing white matter will have a standard normal distribution.
- Units will correspond to variability (standard deviation) of normal appearing white matter.
- Gray matter and CSF distributions, however, may not be comparable across subjects.

WhiteStripe normalized intensities Gray Matter

WhiteStripe Normalized Intensities

Gray Matter

WhiteStripe normalized intensities White Matter

WhiteStripe Normalized Intensities

White Matter

$\begin{array}{c} \text{WhiteStripe normalized intensities} \\ \textbf{CSF} \end{array}$

WhiteStripe Normalized Intensities

CSF

Conclusions

- Intensity normalization is an important step in any image analysis with more than one subject or time point to ensure comparability across images.
- White Stripe normalization may work better for subsequent lesion segmentation algorithms or analysis.
- Newer methods exist, such as RAVEL, which extends WhiteStripe to make intensites comparable across subjects for all tissues (Fortin et al. 2016).

References

Fortin, Jean-Philippe, Elizabeth M Sweeney, John Muschelli, Ciprian M Crainiceanu, Russell T Shinohara, Alzheimer's Disease Neuroimaging Initiative, and others. 2016. "Removing Inter-Subject Technical Variability in Magnetic Resonance Imaging Studies." *NeuroImage* 132. Elsevier: 198–212.

Shinohara, Russell T, Elizabeth M Sweeney, Jeff Goldsmith, Navid Shiee, Farrah J Mateen, Peter A Calabresi, Samson Jarso, et al. 2014. "Statistical Normalization Techniques for Magnetic Resonance Imaging." *NeuroImage: Clinical* 6. Elsevier: 9–19.