Lexical Analysis

Sudakshina Dutta

IIT Goa

2nd February, 2022

Strings and Languages

- ▶ **Alphabet** Any finite set of symbols (generally denoted by \sum)
 - Example of symbols are letters, digits and punctuation
 - Example of alphabets : $\{0,1\}$, $\{a,b,c\}$, ASCII code, etc.
- ▶ **String** A finite sequence of symbols drawn from alphabet
 - Sentence/word are synonyms of string
 - Example : 1001 is a string from alphabet $\{0,1\}$. aabbccc is a string from the alphabet $\{a,b,c\}$
 - Length of string s is denoted as |s|
 - **Empty** string ϵ is a string of length 0
 - ightharpoonup is the set of all strings over the alphabet \sum
- ▶ Language A countable set of strings over some fixed alphabet

- ► Language Any countable set of strings over some particular alphabet
 - Example: {0,11,1010}, {0}, {1,11,111} are languages over the alphabet {0,1}
 - \emptyset represents the empty set and $\{\epsilon\}$ is the language containing empty string
 - Each language has a finite representation
 The set of strings {01, 10, 111} is a finite language

Regular expression denotes regular language

Construction of regular expressions

- ightharpoonup Each regular expression r defines the language L(r)
- ▶ It is defined recursively from the languages denoted by the sub-expressions of *r*

Basis

- 1. ϵ is a regular expression and $L(\epsilon)$ is $\{\epsilon\}$
- 2. If a is a symbol in \sum , then a is a regular expression and $L(a) = \{a\}$ i.e., the language of only one string a
- 3. ϕ is a regular expression and the language is $L(\phi) = \phi$

Induction

- 1. (r)|(s) is a regular expression denoting language $L(r) \cup L(s)$
- 2. (r)(s) is a regular expression denoting the language L(r)L(s)
- 3. $(r)^*$ is a regular expression denoting $(L(r))^*$
- 4. (r) is a regular expression denoting L(r)

Operations on Languages

- ▶ Union The set of all strings from both the languages
- Concatenation The set of all strings formed by taking a string from the first language and a string from the second language
- ► **Kleene Closure** (*L**) The set of strings obtained by concatenating the strings zero or more times
 - $-L^0$: Concatenation of L zero times and it is defined to be $\{\epsilon\}$
- ▶ Positive Closure Same as the Kleene Closure, but without the term L^0
 - $-\epsilon$ will not be in L^+

Operations	Definition and Notation
Union of L and M	$L \cup M = \{ s \mid s \text{ is in } L \text{ or } s \text{ is in } M \}$
Concatenation of L and M	$LM = \{ st \mid s \text{ is in } L \text{ and } t \text{ is in } M \}$
Kleene closure of L	$L^* = \bigcup_{i=0}^{\infty} L^i$
Positive closure of L	$L^+ = \bigcup_{i=1}^{\infty} L^i$
? operator	$L(r?) = L(r) \cup \{\epsilon\}$

Examples

- $ightharpoonup L \cup D$ is the set of letters and digits
- ► *LD* is the set of strings of length two each consisting of one letter followed by one digit
- ▶ $L(L \cup D)^*$ is the set of all strings of letters and digit starting with a letter
- \triangleright D^+ is the set of all strings of one or more digits

Examples of Regular Expression

- 1. $L = \text{set of all strings of 0's and 1's, } r = (0+1)^*$
- 2. L = set of all strings of 0's and 1's, with at least two
- consecutive 0's, $r = (0+1)^*00(0+1)^*$
- 3. $L = \{w \in \{0,1\}^* | w \text{ has two or three occurrences of } 1, \text{ the } 1$ first and second of which are not consecutive}, $r = 0*10*010*(10* + \epsilon)$ r = 0*10+10* + 0*10+10*10*
- 4. L = set of all strings of 0's and 1's beginning with 1 and nothaving two consecutive 0's, $r = (1+10)^*$
- 5. L = set of all strings of 0's and 1's ending in 011,r = (0+1)*011

Precedence and associativity of operators

- ➤ The unary operator * has highest precedence and is left associative
- Concatenation has the second highest precedence and is left associative
- ▶ | has the lowest precedence and is left associative
- ► Hence, (a)|((b)*(c)) can be replaced by $a|b^*c$
- **Example** Let $\sum = \{a, b\}$
 - 1. The regular expression a|b denotes the language $\{a,b\}$
 - 2. (a|b)a denotes the language $\{aa, ba\}$
 - 3. a^* denotes the set of string $\{\epsilon, a, aa, aaa, \cdots\}$

LAW	DESCRIPTION
r s=s r	is commutative
r (s t)=(r s) t	is associative
r(st) = (rs)t	Concatenation is associative
r(s t) = rs rt; (s t)r = sr tr	Concatenation distributes over
$\epsilon r = r\epsilon = r$	ϵ is the identity for concatenation
$r^* = (r \epsilon)^*$	ϵ is guaranteed in a closure
$r^{**} = r^*$	* is idempotent

Lexical errors

- ▶ It occurs if the lexical analyzer is unable to proceed because none of the patterns match remaining input
- Sometimes the analyzer tries to do recovery by
 - Deleting characters from the end
 - Replace a character by other character
 - Insert a missing character
 - Transposing two adjacent characters

Sometimes the approach becomes too expensive