微积分 A (1)

姚家燕

第 18 讲

在听课过程中,

严禁使用任何电子产品!

期中考试内容、时间及地点

内容: 第1、2、3、4章

时间: 11月14日星期六晚19:20-21:20

地点: 见网络学堂

重要提示: 考试时需且只需带学生证和文具!

学生证上的照片必须清晰可辨, 否则逐出考场.

千万不要迟到或无故缺考!

考前答疑:?

考前答疑地点: 理科楼数学科学系 A 216

第 18 讲

第5章 Riemann 积分

§1. Riemann 积分的概念

定义 1. 设 $f:[a,b]\to\mathbb{R}$ 为函数.

• 分割: 称 $P: a = x_0 < x_1 < \cdots < x_n = b$ 为 [a,b] 的分割. 它将 [a,b] 分成内部不相交的 小区间 $\Delta_i = [x_{i-1},x_i]$ $(1 \le i \le n)$. 令

$$\Delta x_i := x_i - x_{i-1} \ (1 \leqslant i \leqslant n),$$

$$\lambda(P) := \max_{1 \leq i \leq n} \Delta x_i$$
 (称为 P 的步长).

- 取点: 称 $\xi = \{\xi_1, ..., \xi_n\}$ 为分割 P 的取点, 其中 $\xi_i \in [x_{i-1}, x_i]$ $(1 \le i \le n)$. 此时称 (P, ξ) 为 [a, b] 的带点分割.
- Riemann 和: 对 [a,b] 的带点分割 (P,ξ) , 令

$$\sigma(f; P, \xi) = \sum_{i=1}^{n} f(\xi_i) \Delta x_i,$$

称为 f 关于带点分割 (P,ξ) 的 Riemann 和.

• Riemann 积分: 如果存在 $I \in \mathbb{R}$ 使得 $\forall \varepsilon > 0$, $\exists \delta > 0$ 使对于 [a,b] 的任意带点分割 (P,ξ) , 当 $\lambda(P) < \delta$ 时, $|\sigma(f;P,\xi) - I| < \varepsilon$. 此时记

$$I = \lim_{\lambda(P) \to 0} \sigma(f; P, \xi) = \lim_{\lambda(P) \to 0} \sum_{i=1}^{n} f(\xi_i) \Delta x_i,$$

称为 f 在 [a,b] 上的定积分 (Riemann 积分), 简记为 $I = \int_a^b f(x) dx$, 并且称 f 在 [a,b] 上 (Riemann) 可积. 否则称之为不可积.

评注

- 常值函数可积且 $\forall c \in \mathbb{R}$, $\int_a^b c \, \mathrm{d}x = c(b-a)$.
- 仅在有限个点处不为零的函数为可积函数, 并且其积分为零. 事实上, 如果函数 f 仅在 点 c_1, c_2, \ldots, c_k 处不为零, 那么 $\forall \varepsilon > 0$, 若令 $M = \max_{1 \leq i \leq k} |f(c_i)|$, $\delta = \frac{\varepsilon}{k(M+1)}$, 那么对 [a,b] 的 任意带点分割 (P,ξ) , 当 $\lambda(P)<\delta$ 时, 均有 $|\sigma(f; P, \xi)| < kM\delta < \varepsilon.$

- •记 $\mathscr{R}[a,b]$ 为[a,b]上所有可积函数的集合.
- 否定形式: 函数 f 在 [a,b] 上不可积当且仅当 $\forall I \in \mathbb{R}, \exists \varepsilon_0 > 0$ 使得 $\forall \delta > 0$, 存在 [a,b] 的 带点分割 (P,ξ) 满足 $\lambda(P) < \delta$, 但我们却有 $|\sigma(f;P,\xi) I| \geqslant \varepsilon_0$.
- 从现在开始, 我们约定:

$$\int_{b}^{a} f(x) dx = - \int_{a}^{b} f(x) dx$$
, $\int_{a}^{a} f(x) dx = 0$.

例 1. (Dirichlet 函数) $\forall x \in [0,1]$, 定义

$$D(x) = \begin{cases} 0, & \text{ if } x \in \mathbb{Q}, \\ 1, & \text{ if } x \notin \mathbb{Q}. \end{cases}$$

求证: $D \notin \mathcal{R}[0,1]$.

证明: 用反证法. 假设 D 可积并且其积分为 I. 令 $\varepsilon = \frac{1}{4}$. 于是由可积性可知, $\exists \delta > 0$ 使得对于

[0,1] 的任意带点分割 (P,ξ) , 当 $\lambda(P)<\delta$ 时,

$$|\sigma(D; P, \xi) - I| < \frac{1}{4}.$$

选取 $n = \left[\frac{1}{\delta}\right] + 1$, $P: 0 = x_0 < x_1 < \dots < x_n = 1$

为 [0,1] 的均匀分割. 则 $\lambda(P) = \frac{1}{n} < \delta$. 选取点

$$\xi = \{\xi_i\}_{1 \leqslant i \leqslant n}, \; \xi' = \{\xi_i'\}_{1 \leqslant i \leqslant n}$$
 使得对 $1 \leqslant i \leqslant n$,

均有 $\xi_i \in [x_{i-1}, x_i] \cap \mathbb{Q}$, $\xi_i' \in [x_{i-1}, x_i] \setminus \mathbb{Q}$, 那么

$$|\sigma(D; P, \xi) - I| < \frac{1}{4},$$

$$|\sigma(D; P, \xi') - I| < \frac{1}{4}.$$

注意到

$$\sigma(D; P, \xi) = \sum_{i=1}^{n} D(\xi_i) \Delta x_i = 0,$$

$$\sigma(D; P, \xi') = \sum_{i=1}^{n} D(\xi_i') \Delta x_i = \sum_{i=1}^{n} \Delta x_i = 1,$$

于是
$$|I| < \frac{1}{4}$$
, $|1 - I| < \frac{1}{4}$, 从而我们有
$$\frac{1}{2} > |I| + |1 - I| \geqslant |I + (1 - I)| = 1.$$

矛盾! 故所证结论成立.

函数可积的必要条件

定理 1. 若 $f \in \mathcal{R}[a,b]$, 则 f 在 [a,b] 上有界.

证明: 假设 f 的积分为 I, 则 $\exists \delta > 0$ 使得对于 [a,b] 的任意的带点分割 (P,ξ) , 当 $\lambda(P) < \delta$ 时, 我们有 $|\sigma(f; P, \xi) - I| < 1$. 定义 $n = \left[\frac{b-a}{\delta}\right] + 1$, 并设 $P: a = x_0 < x_1 < \cdots < x_n = b$ 为 [a, b] 的 均匀分割,则我们立刻有 $\lambda(P) = \frac{1}{n}(b-a) < \delta$.

 $\forall x \in [a, b]$, 均可以找到 $k \in \mathbb{N}$ $(1 \le k \le n)$ 使得 $x \in [x_{k-1}, x_k]$. 取点 $\xi = \{\xi_i\}_{1 \le i \le n}$ 使得 $\xi_k = x$, 而其余点 ξ_i 则为分割 P 中的适当点. 则

$$1 > |\sigma(f; P, \xi) - I|$$

$$= \left| f(x)\lambda(P) + \sum_{\substack{1 \le i \le n \\ i \ne k}} f(\xi_i)\lambda(P) - I \right|$$

$$\geqslant |f(x)|\lambda(P) - \left| \sum_{i \ne k} f(\xi_i)\lambda(P) - I \right|.$$

 $i\neq k$

由此我们立刻可得

$$\lambda(P)|f(x)| < 1 + |I| + \sum_{\substack{1 \le i \le n \\ i \ne k}} |f(\xi_i)|\lambda(P)$$

$$\leq 1 + |I| + \sum_{0 \le j \le n} |f(x_j)|\lambda(P),$$

则我们有
$$|f(x)|<rac{1}{\lambda(P)}(1+|I|)+\sum_{0\leqslant j\leqslant n}|f(x_j)|$$
,

从而 f 为有界函数.

判断函数可积的 Darboux 准则

定义 2. 设
$$f:[a,b]\to\mathbb{R}$$
 为有界函数, 而

$$P: a = x_0 < x_1 < \dots < x_n = b$$

为 [a,b] 的分割. 对于 $1 \le i \le n$, 定义

•
$$m_i = \inf_{x \in \Delta_i} f(x), \ M_i = \sup_{x \in \Delta_i} f(x),$$

- $L(f;P) = \sum_{i=1}^{n} m_i \Delta x_i$ (Darboux \mathbb{T} \mathbb{H}),
- $U(f; P) = \sum_{i=1}^{n} M_i \Delta x_i$ (Darboux $\bot \pi$).

评注

• 定义 $m = \inf_{x \in [a,b]} f(x)$, $M = \sup_{x \in [a,b]} f(x)$.

若 (P,ξ) 为 [a,b] 的带点分割,则我们有

$$m(b-a) \leqslant L(f;P) \leqslant \sigma(f;P,\xi)$$

 $\leqslant U(f;P) \leqslant M(b-a).$

• 若 P_1, P_2 为 [a, b] 的分割且 $P_1 \subseteq P_2$, 则

$$L(f; P_1) \leqslant L(f; P_2) \leqslant U(f; P_2) \leqslant U(f; P_1).$$

引理 1. 设 $f:[a,b] \to \mathbb{R}$ 为有界函数, 而 P_1, P_2 为 [a,b] 的两个分割, 则 $L(f;P_1) \leqslant U(f;P_2)$.

证明: 记 Q 为 P_1 , P_2 合起来所得到的 [a,b] 的分割, 则 $P_1 \subseteq Q$, $P_2 \subseteq Q$, 从而

$$L(f; P_1) \leqslant L(f; Q) \leqslant U(f; Q) \leqslant U(f; P_2).$$

注: 由此定义下积分: $\underline{\int}_a^b f(x) dx = \sup_P L(f; P)$,

上积分:
$$\bar{\int}_a^b f(x) dx = \inf_P U(f; P)$$
, 则我们有 $L(f; P) \leqslant \int_a^b f(x) dx \leqslant \bar{\int}_a^b f(x) dx \leqslant U(f; P)$.

引理 2. 设 $f:[a,b]\to\mathbb{R}$ 为有界函数, 而

$$P: a = x_0 < x_1 < \cdots < x_n = b$$

为 [a, b] 的分割. 则

$$L(f;P) = \inf_{\xi} \sigma(f;P,\xi), \ U(f;P) = \sup_{\xi} \sigma(f;P,\xi).$$

证明: 仅考虑 Darboux 下和. 此时, 我们有

$$\inf_{\xi} \sigma(f; P, \xi) = \inf_{\xi} \sum_{i=1}^{n} f(\xi_i) \Delta x_i$$

$$= \sum_{i=1}^{n} \left(\inf_{\xi_i \in \Delta_i} f(\xi_i) \right) \Delta x_i = L(f; P).$$

定理 2. (Darboux) 设 $f:[a,b] \to \mathbb{R}$ 为有界函数,

则下述结论等价:

- $(1) f \in \mathscr{R}[a,b],$
- (2) $\forall \varepsilon > 0$, 存在 [a,b] 的分割 P 使得

$$U(f; P) - L(f; P) < \varepsilon$$
.

(3) $\int_a^b f(x) dx = \int_a^b f(x) dx$.

证明: $(1) \Rightarrow (2)$ 设 $f \in \mathcal{R}[a,b]$, 而 I 为 f 的积分.

则 $\forall \varepsilon > 0$, $\exists \delta > 0$ 使得对于 [a,b] 的任意带点

分割
$$(P,\xi)$$
, 当 $\lambda(P) < \delta$ 时, $|\sigma(f;P,\xi) - I| < \frac{\varepsilon}{3}$.

故 $I - \frac{\varepsilon}{3} < \sigma(f; P, \xi) < I + \frac{\varepsilon}{3}$, 则由引理 2 可知

$$I - \frac{\varepsilon}{3} \leqslant L(f;P) \leqslant U(f;P) \leqslant I + \frac{\varepsilon}{3},$$

故 $U(f;P) - L(f;P) \leqslant \frac{2\varepsilon}{3} < \varepsilon$. 因此 (2) 成立.

(2)⇒(3) 假设 $\forall \varepsilon > 0$, 存在 [a, b] 的分割 P 使得我们有 $U(f; P) - L(f; P) < \varepsilon$, 那么

$$0 \leqslant \int_{a}^{\overline{b}} f(x) dx - \int_{\underline{a}}^{b} f(x) dx$$

$$\leqslant U(f; P) - L(f; P) < \varepsilon.$$

再由 $\varepsilon > 0$ 的任意性可知

$$\int_a^b f(x) \, \mathrm{d}x = \int_a^{\overline{b}} f(x) \, \mathrm{d}x.$$

(3)⇒(1) 设 $\int_a^b f(x) dx = \int_a^b f(x) dx$, 并将该值记作 I. 由上积分的定义, $\forall \varepsilon > 0$, 存在 [a, b] 的分割 $P_0: a = x_0 < x_1 < \cdots < x_n = b$ 使得

$$0 \leqslant U(f; P_0) - I < \frac{\varepsilon}{2}.$$

定义 $M = \sup_{x \in [a,b]} |f(x)|$, $\delta_1 = \frac{\varepsilon}{4nM+1}$, 则对 [a,b] 的任意的分割 P, 当 $\lambda(P) < \delta_1$ 时, 记 Q 为 P, P_0 合起来所组成的新分割, 则我们有

$$0 \leqslant U(f; P) - I \leqslant U(f; Q) + 2nM\lambda(P) - I$$

$$\leqslant U(f; P_0) - I + \frac{\varepsilon}{2} < \varepsilon,$$

同样借助于 $I = \int_a^b f(x) dx$ 以及下积分的定义 可知, $\exists \delta_2 > 0$ 使得对于 [a, b] 的任意的分割 P, 当 $\lambda(P) < \delta_2$ 时, 我们均有 $0 \leq I - L(f; P) < \varepsilon$, 选取 $\delta = \min(\delta_1, \delta_2)$, 则对于区间 [a, b] 的任意 分割 (P,ξ) , 当 $\lambda(P) < \delta$ 时, 我们有

$$I - \varepsilon < L(f; P) \le \sigma(f; P, \xi) \le U(f; P) < I + \varepsilon,$$

也即 $|\sigma(f; P, \xi) - I| < \varepsilon$, 故 $f \in \mathcal{R}[a, b]$.

评注

由前面可知 $f \in \mathcal{R}[a,b]$ 等价于 $\forall \varepsilon > 0$, $\exists \delta > 0$

使得对于 [a,b] 的任意分割 P, 当 $\lambda(P) < \delta$ 时,

均有 $U(f;P) - L(f;P) < \varepsilon$. 此时我们也称

$$\lim_{\lambda(P)\to 0} \left(U(f;P) - L(f;P) \right) = 0.$$

利用振幅刻画函数的可积性

定义 3. 假设 X 为非空数集, 而 $f: X \to \mathbb{R}$ 为有界函数. 对于任意非空子集 $J \subset X$. 定义

$$\omega(f;J) := \sup_{x,y \in J} |f(x) - f(y)|,$$

并称之为 f 在 J 上的振幅.

引理 3. 令
$$M = \sup_{x \in J} f(x)$$
, $m = \inf_{x \in J} f(x)$, 则

$$\omega(f;J) = M - m.$$

证明: 因 $\forall x, y \in J$, 均有 $|f(x) - f(y)| \leq M - m$, 因此 $\omega(f; J) \leq M - m$. 与此同时, 我们也有

$$M - m = \sup_{x \in J} f(x) - \inf_{y \in J} f(y)$$
$$= \sup_{x,y \in J} (f(x) - f(y)) \leq \omega(f; J).$$

故所证结论成立.

定理 3. 假设 $f:[a,b]\to\mathbb{R}$ 为有界函数, 那么 $f\in\mathscr{R}[a,b]$ 当且仅当我们有

$$\lim_{\lambda(P)\to 0} \sum_{i=1}^n \omega(f; \Delta_i) \Delta x_i = 0.$$

证明: 对任意的分割 $P: a = x_0 < \cdots < x_n = b$,

$$\sum_{i=1}^{n} \omega(f; \Delta_i) \Delta x_i = \sum_{i=1}^{n} (M_i - m_i) \Delta x_i$$
$$= U(f; P) - L(f; P),$$

于是由前面讨论立刻可知所证结论成立.

例 2. (Dirichlet 函数) $\forall x \in [0,1]$, 定义

$$D(x) = \begin{cases} 0, & \text{ if } x \in \mathbb{Q} \\ 1, & \text{ if } x \notin \mathbb{Q}. \end{cases}$$

求证: $D \notin \mathcal{R}[0,1]$.

证明: 对于 [a,b] 的任意分割

$$P_0: a = x_0 < x_1 < \dots < x_n = b$$
,

由于 D 在 $[x_{i-1}, x_i]$ 上的上、下确界分别为 1、0, 故 $\sum_{i=1}^{n} \omega(D; \Delta_i) \Delta x_i = \sum_{i=1}^{n} \Delta x_i = 1$. 由此得证.

一致连续函数

定义 4. 设 X 为非空的数集. 称 $f: X \to \mathbb{R}$ 为一致连续, 如果 $\forall \varepsilon > 0$, $\exists \delta > 0$ 使得 $\forall x, y \in X$, 当 $|x - y| < \delta$ 时, 均有 $|f(x) - f(y)| < \varepsilon$.

否定表述: 函数 f 在 X 上不为一致连续当且 仅当 $\exists \varepsilon_0 > 0$ 使得 $\forall \delta > 0$, 存在 $x, y \in X$ 满足 $|x-y| < \delta$, 但 $|f(x) - f(y)| \geqslant \varepsilon_0$. 命题 1. 函数 f 为一致连续当且仅当对于 X 中任意的数列 $\{x_n\}$, $\{y_n\}$, 如果 $\lim_{n\to\infty} (x_n-y_n)=0$, 那么 $\lim_{n\to\infty} (f(x_n)-f(y_n))=0$.

证明: 充分性. 用反证法, 设 f 在 X 上非一致 连续, 那么 $\exists \varepsilon_0 > 0$ 使得 $\forall \delta > 0$, 存在 $x, y \in X$ 满足 $|x-y| < \delta$, 但是 $|f(x)-f(y)| \ge \varepsilon_0$. 从而 $\forall n \geq 1$, 均存在 $x_n, y_n \in X$ 满足 $|x_n - y_n| < \frac{1}{n}$, 但 $|f(x_n) - f(y_n)| \ge \varepsilon_0$. 于是 $\lim_{n \to \infty} (x_n - y_n) = 0$, 但 $\{f(x_n) - f(y_n)\}$ 不收敛到 0. 矛盾! 得证.

必要性. 假设 f 在 X 上一致连续, 那么 $\forall \varepsilon > 0$, $\exists \delta > 0$ 使得 $\forall x, y \in X$, 当 $|x - y| < \delta$ 时, 均有 $|f(x) - f(y)| < \varepsilon$. 于是对于 X 中的任意数列 $\{x_n\}$, $\{y_n\}$, 若 $\lim_{n\to\infty} (x_n - y_n) = 0$, 那么 $\exists N > 0$ 使得 $\forall n > N$, 均有 $|x_n - y_n| < \delta$, 从而我们有 $|f(x_n) - f(y_n)| < \varepsilon$, 由此可知所证成立.

注: 该结论常用于证明某函数不为一致连续.

例 3. 求证: 余弦函数在 ℝ 上一致连续.

证明: $\forall \varepsilon > 0$, 选取 $\delta = \varepsilon$, 则对任意的 $x, y \in \mathbb{R}$, 当 $|x - y| < \delta$ 时, 我们有

$$|\cos x - \cos y| = \left| 2\sin \frac{x - y}{2} \sin \frac{x + y}{2} \right|$$

$$\leqslant 2 \left| \sin \frac{x - y}{2} \right| \leqslant |x - y| < \varepsilon,$$

因此余弦函数在 ℝ 上为一致连续.

作业题: 第 5.1 节第 136 页第 9 题第 (2) 小题, 第 15 题第 (2) 小题.

例 4. 求证: $f(x) = \frac{1}{x}$ 在 (0,1) 上非一致连续.

证明: 事实上, 我们有
$$\lim_{n\to\infty} \left(\frac{1}{n} - \frac{2}{n}\right) = 0$$
, 但
$$\lim_{n\to\infty} \left(f\left(\frac{1}{n}\right) - f\left(\frac{2}{n}\right)\right) = \lim_{n\to\infty} \frac{n}{2} = +\infty,$$

故所证结论成立.

例 5. 证明 $f(x) = \sin \frac{1}{x}$ 在 (0,1) 上非一致连续.

证明:
$$\forall n \geqslant 1$$
, $\diamondsuit x_n = \frac{1}{\frac{\pi}{2} + 2n\pi}$, $y_n = \frac{1}{2n\pi} \in (0, 1)$,

那么 $\lim_{n\to\infty} (x_n - y_n) = 0$, $\lim_{n\to\infty} (f(x_n) - f(y_n)) = 1$,

因此所证结论成立.

定理 4. 若 $f \in \mathcal{C}[a,b]$, 则 f 为一致连续.

证明: 用反证法, 设f在 [a,b] 上不为一致连续, 则存在 $\varepsilon_0 > 0$ 以及 X 中数列 $\{x_n\}, \{y_n\}$ 使得 $|x_n - y_n| < \frac{1}{n}, |f(x_n) - f(y_n)| \ge \varepsilon_0. \text{ in } \mathcal{F} \{x_n\}$ 有界, 因此存在收敛子列 $\{x_{k_n}\}$, 设其极限为 c. 由数列极限的保序性可知 $c \in [a, b]$, 而由夹逼 原理可知 $\{y_{k_n}\}$ 也收敛到 c, 再由 f 的连续性得 $\lim_{n\to\infty} (f(x_{k_n}) - f(y_{k_n})) = f(c) - f(c) = 0. \ \mathcal{F} f!$ 由此可知所证结论成立..

连续函数为可积函数

定理 5. $\mathscr{C}[a,b] \subseteq \mathscr{R}[a,b]$.

证明: 由于
$$f \in \mathcal{C}[a,b]$$
 在 $[a,b]$ 上一致连续, 故 $\forall \varepsilon > 0$, $\exists \delta > 0$ 使 $\forall x,y \in [a,b]$, 若 $|x-y| < \delta$, 则 $|f(x) - f(y)| < \frac{\varepsilon}{b-a+1}$. 对 $[a,b]$ 的任意分割 $P: a = x_0 < \cdots < x_n = b$, 当 $\lambda(P) < \delta$ 时,

 $\sum_{i=1}^{n} \omega(f; \Delta_i) \Delta x_i \leqslant \sum_{i=1}^{n} \frac{\varepsilon}{b-a+1} (x_i - x_{i-1}) < \varepsilon.$

因此所证结论成立.

定理 6. 若 $f:[a,b]\to\mathbb{R}$ 为有界函数并且仅在有限多个点间断,则 $f\in\mathscr{R}[a,b]$.

定义 5. 称函数 $f:[a,b]\to\mathbb{R}$ 为逐段 (或分段) 连续函数, 如果 f 在 [a,b] 上至多只有有限多个间断点, 且均为第一类间断点.

注: 函数 f 为逐段连续当且仅当存在 [a,b] 的分割使得 f 在该分割的每个小区间上均连续. 因此逐段连续函数为有界函数.

推论. 若 f 在 [a,b] 上逐段连续, 则 $f \in \mathcal{R}[a,b]$.

单调函数为可积函数

定理 7. 若 $f:[a,b] \to \mathbb{R}$ 单调, 则 $f \in \mathcal{R}[a,b]$.

证明: 不失一般性, 假设 f 为单调递增 (否则可考虑 -f). $\forall \varepsilon > 0$, 选取 $\delta = \frac{\varepsilon}{f(b) - f(a) + 1}$, 则对于区间 [a, b] 的任意分割 $P: a = x_0 < \cdots < x_n = b$, 当 $\lambda(P) < \delta$ 时, 我们均有

$$\sum_{i=1}^{n} \omega(f; \Delta_i) \Delta x_i \leqslant \sum_{i=1}^{n} (f(x_i) - f(x_{i-1})) \delta$$
$$= (f(b) - f(a)) \delta < \varepsilon.$$

因此所证结论成立.

Lebesgue 判别准则

定义 6. 我们称数集 X 为零测度集, 若 $\forall \varepsilon > 0$, 存在一列开区间 $\{(a_n, b_n)\}$ 使得

$$X \subseteq \bigcup_{n=1}^{\infty} (a_n, b_n), \quad \lim_{n \to \infty} \sum_{k=1}^{n} (b_k - a_k) < \varepsilon.$$

- 注: (1) 空集为零测度集;
- (2) 零测度集的子集也为零测度集;
- (3) 有限集以及可数集为零测度集.

定理 8. (Lebesgue) 区间 [a,b] 上的有界函数 f 为 Riemann 可积当且仅当由 f 的所有间断点所构成的集合为零测度集.

推论. 如果 $f:[a,b] \to [c,d]$ 可积, 而 $g \in \mathscr{C}[c,d]$, 则 $g \circ f \in \mathscr{R}[a,b]$.

证明: 假设 D(f), $D(g \circ f)$ 分别为 f, $g \circ f$ 的间断点集. 由于 g 连续, 因此 $D(g \circ f) \subseteq D(f)$, 从而我们有 $g \circ f \in \mathcal{R}[a,b]$.

§2. Riemann 积分的性质

命题 1. (积分的线性性) 假设函数 $f,g \in \mathcal{R}[a,b]$, 而 $\alpha,\beta \in \mathbb{R}$, 则 $\alpha f + \beta g \in \mathcal{R}[a,b]$ 且

$$\int_{a}^{b} (\alpha f(x) + \beta g(x)) dx = \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx.$$

证明: 由定积分的定义可知

$$\int_{a}^{b} (\alpha f(x) + \beta g(x)) dx = \lim_{\lambda(P) \to 0} \sigma(\alpha f + \beta g; P, \xi)$$

$$= \lim_{\lambda(P) \to 0} (\alpha \sigma(f; P, \xi) + \beta \sigma(g; P, \xi))$$

$$= \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx.$$

推论. 如果 $f \in \mathcal{R}[a,b]$, 则在有限多个点处改变 f 的取值, 既不会改变可积性, 也不改变积分.

证明: 将改变后的函数记作 g. 定义 F = g - f, 那么 F 仅在有限多个点处不为零, 因此为可积.

又 g = f + F, 则 g 也可积并且我们有

$$\int_{a}^{b} g(x) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} F(x) dx$$
$$= \int_{a}^{b} f(x) dx.$$

命题 2. (积分区间的可加性) 假设 $f:[a,b] \to \mathbb{R}$ 为函数, 而 $c \in (a,b)$, 则 f 在 [a,b] 上可积当且 仅当 f 分别在 [a,c], [c,b] 上可积, 此时

$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx.$$

证明: 充分性. 假设 f 分别在区间 [a, c], [c, b] 上可积, 则 $\forall \varepsilon > 0$, 存在 [a, c] 的分割 P_1 与 [c, b] 的分割 P_2 使得我们有

$$U(f; P_1) - L(f; P_1) < \frac{\varepsilon}{2}, \ U(f; P_2) - L(f; P_2) < \frac{\varepsilon}{2}.$$

令
$$P = P_1 \cup P_2$$
, 则 P 为 $[a,b]$ 的分割, 并且 $U(f;P) - L(f;P)$

$$= (U(f; P_1) + U(f; P_2)) - (L(f; P_1) + L(f; P_2))$$

$$= (U(f; P_1) - L(f; P_1)) + (U(f; P_2) - L(f; P_2))$$

$$\varepsilon \quad \varepsilon$$

$$<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon,$$

因此函数 f 在 [a,b] 上可积.

 $\forall \varepsilon > 0$, 援引前面的记号, 我们有

$$0 \leq U(f; P_{1}) - \int_{a}^{c} f(x) dx \leq U(f; P_{1}) - L(f; P_{1}) < \frac{\varepsilon}{2},$$

$$0 \leq U(f; P_{2}) - \int_{c}^{b} f(x) dx \leq U(f; P_{2}) - L(f; P_{2}) < \frac{\varepsilon}{2},$$

$$0 \leq \int_{a}^{b} f(x) dx - L(f; P) \leq U(f; P) - L(f; P) < \varepsilon,$$

$$U(f; P) = U(f; P_{1}) + U(f; P_{2}),$$

由此立刻可得

$$0 \leqslant \left(\int_{a}^{b} f(x) dx - \int_{a}^{c} f(x) dx - \int_{c}^{b} f(x) dx \right) + \left(U(f; P) - L(f; P) \right) < 2\varepsilon,$$

进而可得

$$-\varepsilon \leqslant -(U(f;P) - L(f;P))$$

$$\leqslant \int_{a}^{b} f(x) dx - \int_{a}^{c} f(x) dx - \int_{c}^{b} f(x) dx$$

$$< 2\varepsilon - (U(f;P) - L(f;P)) \leqslant 2\varepsilon,$$

再由 $\varepsilon > 0$ 的任意性可知

$$\int_a^b f(x) \, \mathrm{d}x = \int_a^c f(x) \, \mathrm{d}x + \int_c^b f(x) \, \mathrm{d}x.$$

必要性. 若 f 在 [a,b] 上可积, 则 $\forall \varepsilon > 0$, 存在 区间 [a,b] 的分割 P 使 $U(f;P) - L(f;P) < \varepsilon$. 将P分别限制在[a,c], [c,b]上并补上点c, 由此 可以得到 [a,c] 的分割 P_1 以及 [c,b] 的分割 P_2 . $\Leftrightarrow Q = P_1 \cup P_2$, 则 $P \subseteq Q$, 从而

$$U(f; P_1) - L(f; P_1) \leq U(f; Q) - L(f; Q)$$

$$\leq U(f; P) - L(f; P) < \varepsilon,$$

$$U(f; P_2) - L(f; P_2) \leq U(f; Q) - L(f; Q)$$

$$\leq U(f; P) - L(f; P) < \varepsilon,$$

由此可知 f 分别在 [a,c], [c,b] 上可积.

评注

• 我们已约定

$$\int_{a}^{a} f(x) dx = 0, \int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx,$$

由上述命题可知: $\forall a, b, c \in \mathbb{R}$, 均有

$$\int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx + \int_{b}^{a} f(x) dx = 0.$$

• 由该命题可导出: 若函数 $f:[a,b] \to \mathbb{R}$ 有界且仅在有限多个点处间断, 则 $f \in \mathcal{R}[a,b]$.

例 1. (阶梯函数) 设

$$P: a = x_0 < x_1 < \cdots < x_n = b$$

为 [a,b] 的分割, 而函数 $f:[a,b] \to \mathbb{R}$ 满足

$$f(x) = k_i, \quad \forall x \in (x_{i-1}, x_i), \ 1 \leqslant i \leqslant n.$$

此时称 f 为阶梯函数. 则 $f \in \mathcal{R}[a,b]$ 且

$$\int_{a}^{b} f(x) dx = \sum_{i=1}^{n} k_{i}(x_{i} - x_{i-1}).$$

命题 3. (保序性) 若 $f,g \in \mathcal{R}[a,b]$ 且 $f \geqslant g$, 则

$$\int_{a}^{b} f(x) \, \mathrm{d}x \geqslant \int_{a}^{b} g(x) \, \mathrm{d}x.$$

特别地, 若 $\exists m, M \in \mathbb{R}$ 使得 $m \leq f \leq M$, 则

$$m(b-a) \leqslant \int_a^b f(x) \, \mathrm{d}x \leqslant M(b-a).$$

证明:
$$\lim_{\lambda(P)\to 0} \sum_{i=1}^n f(\xi_i) \Delta x_i \geqslant \lim_{\lambda(P)\to 0} \sum_{i=1}^n g(\xi_i) \Delta x_i$$
.

推论. (保号性) 若 $f \in \mathcal{R}[a,b]$ 非负,则 $\int_a^b f(x) dx \ge 0$.

命题 3'. (严格保号性) 若函数 $f \in \mathcal{C}[a,b]$ 非负, 则 $\int_a^b f(x) dx = 0$ 当且仅当 $f \equiv 0$.

证明: 充分性源于积分定义. 下面证明必要性. 用反证法, 假设 f 在点 $x_0 \in [a,b]$ 处不等于零, 则 $f(x_0) > 0$. 由连续函数保序性, $\exists c, d \in [a,b]$ 使得 c < d, $x_0 \in [c,d]$, 并且 $\forall x \in [c,d]$, 我们有 $f(x) \geqslant \frac{1}{2} f(x_0)$. 由此我们可立刻导出

 $\int_{a}^{b} f(x) \, \mathrm{d}x \geqslant \int_{c}^{d} f(x) \, \mathrm{d}x \geqslant \frac{1}{2} f(x_0) (d - c) > 0,$ $\text{For the first depth of the property of the$

矛盾! 故所证结论成立.

推论. (严格保序性) 若 $f,g \in \mathcal{C}[a,b]$ 使 $\forall x \in [a,b]$, 我们有 $f(x) \geqslant g(x)$, 则 $\int_a^b f(x) \, \mathrm{d}x \geqslant \int_a^b g(x) \, \mathrm{d}x$, 且等号成立当且仅当 $f \equiv g$.

证明: 定义 F = f - g, 则函数 $F \in \mathscr{C}[a, b]$ 非负, 故 $\int_a^b F(x) dx \ge 0$ 且等号成立当且仅当 $F \equiv 0$, 也即 $f \equiv g$. 因此所证结论成立.

注: 对可积函数有类似的结论, 此时将函数相等换成二者仅在某个零测度集上不相等.

祝大家期中考试取得圆满成功!