1° Ordine	A variabili separabili $y'(x) = a(x)b(y)$ Lineari	$\int \frac{dy}{b(y)} = \int a(x) dx$ Risolvi l'integrale (ricorda il $+c$ al secondo) ed esplicita la $y!$			
	y' + a(t)y = f(t)	$y(t) = e^{-A(t)} \left(\int f(t) e^{A(t)} + c ight)$			
2° Ordine (a coefficienti costanti)	Omogenea $ay^{\prime\prime}+by^{\prime}+cy=0$	Risolvere l'eq $caratteristica$ $p(\lambda)=a\lambda^2+b\lambda+c=0$	$\Delta>0$	$\lambda_1 eq \lambda_2$ soluzioni	$y(x)=c_1e^{\lambda_1x}+c_2e^{\lambda_2x}$
			$\Delta=0$	$\lambda = \lambda_1 = \lambda_2$ soluzioni	$y(x)=c_1e^{\lambda}+c_2te^{\lambda}$
			$\Delta < 0$	$\lambda_{12} = lpha \pm ieta$ soluzioni	$y(x) = e^{lpha x}(c_1 cos(eta x) + c_2 sin(eta x))$
	Completa $ay'' + by' + cy = f(x)$ Va risolta prima l'equazione omogenea, per trovare $y_o(x)$ (spesso con i metodi visti sopra). Poi, va trovata un'equazione particolare $y_p(x)$. Per farlo, parti dalle $y_p(x)$ proposte a lato a seconda della forzante, sostituiscile nell'equazione, e determina le costanti in modo che soddisfino l'equazione. L'integrale generale è dunque: $y(x) = y_o(x) + y_p(x)$	f(x) polinomiale di grado n	c eq 0	Parti da $y_p(x)$ di grado n	
			c=0, b eq 0	Parti da $y_p(x)$ di grado $(n+1)$	
			c=0,b=0	Parti da $y_p(x)$ di grado $(n+2)$	
		$f(x)$ esponenziale $Ae^{lpha t}$	$lpha$ non è radice di $p(\lambda)$		$y_p(x) = Ce^{lpha t}$
			$lpha$ è radice singola di $p(\lambda)$		$y_p(x) = Cte^{\alpha t}$
			$lpha$ è radice doppia di $p(\lambda)$		$y_p(x) = C t^2 e^{lpha t}$
		f(x) trigonometrica $Asin(u t) + Bcos(u t)$	$i u$ non è radice di $p(\lambda)$	$y_p(x) = Asin(u t) + Bcos(u t)$	
			$i u$ è radice di $p(\lambda)$	$y_p(x) = t(Asin(u t) + Bcos(u t))$	
		$f(x)$ esponenzialetrigonometrica $e^{lpha x}cos(u x)$ oppure $e^{lpha x}sin(u x)$	Forzante con coseno	Parti da	
				$y_p(x) = e^{x(lpha + u i)}$	
				e poi prendine la parte <i>reale.</i>	
			Forzante con seno	Parti da	
				$y_p(x) = e^{x(lpha + u i)}$ e poi prendine la parte $immaginaria$.	
				e poi prendine la parte immaginalia.	