M.K. Lau

October 31, 2012

• Behavioral

- How does behavior influence survival and reproduction?
- Genetics
 - * Mutation
 - * Genetic Variation
 - * Inbreeding
 - * Genetic Drift
 - * Neighborhoods
 - * Effective population size
- Extinction
 - * Sixth mass extinction
 - * Patterns of extinction
 - * Endangered species
 - * Characteristics of extinction
- Selection
 - * Individual selection

- * Group selection (Self-regultation)
- * Altruism
- * Coefficient of relatedness
- * Inclusive fitness
- * Kin selection
- * Reciprocal altruism
- * Haplo-diploidy and eusociality
- * Group living
 - · Many eyes
 - \cdot selfish herd
- Life History
 - * reproductive strategies
 - * age structure
 - * mating systems
 - · monogamy
 - \cdot polygamy
 - · polygyny
 - \cdot polyandry
 - * strategies (r vs K)

• Population

- What determines the size of populations?
- Population Dynamics

- * life tables
- * reproductive rates
- * deterministic models
- * stochastic models
- Physical Environment
 - * physical variables
 - \cdot temperature
 - · fire
 - \cdot wind
 - \cdot salt
 - · pH
 - \cdot water
 - * Influences on:
 - \cdot species abundance
 - \cdot species richness
- Interactions
 - * Competition
 - · Tribolium (Park 1954)
 - · Lotka-Volterra

$$dN = rN \frac{K-N}{K}$$

$$\frac{dN_1}{dt} = r_1 N_1 \frac{K_1 - N_1 - \alpha N_2}{K_1}$$

$$\cdot \frac{dN_2}{dt} = r_2 N_2 \frac{K_2 - N_2 - \alpha N_1}{K_2}$$

· Yeast, flies

- \cdot R star = growth rate at resource levels at which lead to extinction
- * Coexistence
 - \cdot allopatry
 - · sympatry
- * Mutualism
- * Predation
- * Herbivory
 - \cdot quuntitiative
 - \cdot qualitative
 - \cdot constituative
 - \cdot induced
 - \cdot mechanical
 - \cdot repellnets
 - · reproduction inhibition
 - \cdot associative defense
 - \cdot mutualism
 - · beneficial berbivory
- * Parasitism
- Community
 - What determines the numbers and composition of species?
 - Organization
 - * Clements = superorganism
 - * Gleason (+ Whitaker) = individualistic

- * Climate
- * Polar Ferrell Hadley Cells
- \ast Adiabatic cooling 1C for 100m
- * Life Zones
- * Eutrophication = aging and dying
- Species Richness
 - * Latitudinal
 - · Spatial Heterogeneity
 - · Competition
 - · Predation
 - · Pollinators
 - \cdot Time
 - · Area
 - · Productivity
 - · Evolutionary Speed
- Diversity
 - * Indices (alpha)
 - · Dominance weighted (Simpson's)
 - · Infromation (Shannon's, Brillouin, Evenness)
 - * Similarity (beta)
 - · Jaccard
 - · Sorenson-BC = $\frac{2a}{2a+b+c}$
- Dynamics (equilibrium vs. non-equilibrium)

- * Resistance (change) vs. Resilience (recovery)
- * Diversity-Stability (Elton, MacArthur, May, Pimm)
- * May's equation $\beta * (SC)^{\frac{1}{2}} < 1$
- * Intermediate disturbance
- * Succession = Celemnts
- Island Biogeography
 - * Area
 - * Distance
 - * Immigration
 - * Extinction
 - * Target Effect = area + immigration
 - * Rescue effect = Distance + extinction

• Ecosystem

- What determines the influences the flux of nutrients?
- Trophic Structure
 - * Food web complexity
 - \cdot Chain length = avg links between trophic levels
 - · Connectance = actual links / potential links
 - · Linkage density = number of links per species
 - * Patterns
 - · Pyramids (Elton, Cohen)
 - * Guilds

- $\ast\,$ Keystones et al.
 - \cdot Dominants = large effect, large abundance/biomass
 - \cdot Keystone = large effect, small
 - \cdot Ecosystem engineers = modify

- Energy

- * Gross = all productivity
- * Net = Gross loss to respiration
- * Limits = resources and temperature
- * Efficiency
- * Global Distribution
- * Secondary Production (limited by primary)
- * Clorpt
- Nutrients
 - * soils
 - * SPONCH
- Light