

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

ный исследовательский университ (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.04 Программная инженерия

ОТЧЕТ

по лабораторной работе № 2_

Название: Исследование дешифраторов

Дисциплина: Архитектура ЭВМ

Студент	ИУ7-44Б		И.Ю. Елгин		
	(Группа)	(Подпись, дата)	(И.О. Фамилия)		
Преподаватель			А.Ю. Попов		
		(Подпись, дата)	(И.О. Фамилия)		

Цель работы: изучение принципов построения и методов синтеза дешифраторов;

макетирование и экспериментальное исследование дешифраторов.

1. Исследование линейного двухвходового дешифратора с инверсными выходами:

Рис. 1 Схема линейного двухвходового дешифратора с инверсными выходами с переключателями на входах.

Вход			Результат				
EN	2	1	1	2	3	4	
0	0	0	1	1	1	1	
0	0	1	1	1	1	1	
0	1	0	1	1	1	1	
0	1	1	1	1	1	1	
1	0	0	0	1	1	1	
1	0	1	1	0	1	1	
1	1	0	1	1	0	1	
1	1	1	1	1	1	0	

Табл. 1 Зависимость выходных значений от входных для линейного двухвходового дешифратора с инверсными выходами

Рис. 2 Схема линейного двухвходового дешифратора с инверсными выходами с генераторами сигнала на входах.

Рис. 3 Результат работы линейного двухвходового дешифратора с инверсными выходами с переключателями на входах.

Рис. 4 Гонки сигналов.

Частота измерения 100 МГц, амплитуда гонок ~ 20ns

Рис. 5 Схема для устранения гонок.

Для устранения гонок построена такая схема в которой сигналы от всех входов приходят одновременно.

2. Исследование дешифраторов ИС К155ИД4 (74LS155).

В качестве счётчика с двумя выходами используется генератор и Т-триггер один выход счётчика выход Q триггера второй выход напрямую от генератора.

Рис. 6 Дешифратор ИС К155ИД4 с счётчиком на входе и logic analyzer на выходе.

Рис. 7 Работа дешифратора ИС К155ИД4.

В качестве счётчика с тремя выходами используется генератор и 2 Т-триггер соединённых последовательно, один выход счётчика выход Q триггера 2 второй выход Q триггера 2 третий выход напрямую от генератора.

Рис. 8 Схема дешифратора ИС К155ИД4 с использованием разрешающих пинов.

Рис. 9 Работа дешифратора ИС К155ИД4 с использованием разрешающих пинов.

EN	Α	В	С	Fo	F ₁	F ₂	F ₃	F ₄	F ₅	F ₆	F ₇
0	A	A	\forall	0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0	0	0
1	0	0	1	0	1	0	0	0	0	0	0
1	0	1	0	0	0	1	0	0	0	0	0
1	0	1	1	0	0	0	1	0	0	0	0
1	1	0	0	0	0	0	0	1	0	0	0
1	1	0	1	0	0	0	0	0	1	0	0
1	1	1	0	0	0	0	0	0	0	1	0
1	1	1	1	0	0	0	0	0	0	0	1

Табл. 2 Зависимость выходных значений от входных ИС К155ИД4.

3. Исследование дешифраторов ИС КР531ИД14 (74LS139).

Рис. 10 Схема синтеза дешифратора КР531ИД14

Рис. 11 Результат работы полученного дешифратора

4. Исследовать работоспособность дешифраторов ИС 533ИД7 (74LS138). a)

Рис. 12 Схема дешифратора ИС 533ИД7.

Рис. 13 Работа дешифратора ИС 533ИД7.

Рис. 14 Схема дешифраторов синтеза 4-ёх ИС 533ИД7.

Рис. 15 Схема работы полученного дешифратора.

На рисунке 15 слева изображено 5 входных сигналов, справа - 32 выходных.

Вывод: В ходе выполнения лабораторной работы мною были изучены принципы построения и методов синтеза дешифраторов, а также были произведены макетирование и экспериментальное исследование дешифраторов.