Deep Learning

Exercise 6: Convolutional Networks

Room: **BIN-1-B.01**

Instructor: Manuel Günther

Email: guenther@ifi.uzh.ch

Office: AND 2.54

Friday, April 1, 2022

Outline

- PyTorch
- MNIST Training with PyTorch

Outline

PyTorch

- Types of Layers
- Datasets and Batches
- The Training Loop
- Running on the GPU

Types of Layers

Learnable Layers

- Fully connected layer torch.nn.Linear
 - \rightarrow in features = D
 - ightarrow out_features =K
 - \rightarrow bias = True
- Convolutional layer
 - \rightarrow in channels = C
 - ightarrow out_channels =Q
 - \rightarrow kernel size = U or (U, V)
 - \rightarrow padding, stride, bias

Non-Learnable Layers

Activation functions:

```
torch.nn.Sigmoid,
torch.nn.Tanh,
torch.nn.Softmax ...
```

- Pooling:
 - torch.nn.MaxPool2d, torch.nn.AvgPool2d
 - ightarrow kernel_size, stride
- Input flattening: torch.nn.Flatten

Datasets and Batches

Datasets

- Many available in torchyision datasets
 - → torchvision.datasets.MNIST
 - \rightarrow torchvision.datasets.ImageNet
- Common interface:
 - ightarrow root: Directory of raw data
 - ightarrow train: set to False for test set
 - → download: downloads data if required
 - → transform: preprocessing
- Return PIL images

Transforms

- Prepares the input
 - → Depends on original data
- Implemented in

torchvision.transforms

- \rightarrow Resize((D, E)): height, width
- ightarrow Normalize(mean, std)
- → Lambda(callable): generic
- \rightarrow ToTensor: PIL \rightarrow tensor
- Combining several transforms:
 - → Compose((trans1,trans2))
- Additionally: target transforms

Datasets and Batches

Data Loader

- Prepares batches of data
 - \rightarrow For both input and target
- torch.utils.data.DataLoader
 - → dataset: see above
 - \rightarrow batch_size = B
 - \rightarrow shuffle after each epoch
 - → num_workers: parallel execution on the CPU (might slow down processing)

Example MNIST Dataset

```
# obtain datasets
transform = torchvision.transforms.ToTensor()
train set = torchvision.datasets.MNIST(
              root="/temp/MNIST",
              train=True, download=True,
              transform=transform
test set = torchvision.datasets.MNIST(
              root="/temp/MNIST",
              train=False, download=True.
              transform=transform
# loaders
train_loader = torch.utils.data.DataLoader(
   train set, shuffle=True, batch size=64
test loader = torch.utils.data.DataLoader(
   test set. shuffle=False, batch size=100
```

The Training Loop

Example Training Loop

```
# training loop
for epoch in range(epochs):
  for x,t in train loader:
    # DO NOT FORGET:
    optimizer.zero grad()
    z = network(x)
    J = loss(z, t)
    J.backward()
    optimizer.step()
    # compute train accuracy
```

Example Test Loop

```
# testing loop
  with torch.no grad():
    correct = 0
    for x,t in test loader:
      z = network(x)
      # optional: compute test loss
      J = loss(z, t)
      # compute test accuracy
      correct += torch.sum(
        torch.argmax(z, dim=1) == t
      ).item()
    acc = correct/ len(test set)
```

Running on the GPU

Preparation

• Test CUDA availability:

```
torch.cuda.is_available()
```

- Select device "cpu" or "cuda":
 device = torch.device("cuda")
- Move everything to the device:

```
network.to(device)
x.to(device)
t.to(device)
```

Speed Warning

Can be slow on CPU (1 min per epoch)

Example Training Loop

```
# instantiate everything
device = torch.device("cuda")
network = Network().to(device)
loss = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(
  params=network.parameters(),
  1r=0.01, momentum=0.9
# training epoch
for epoch in range(epochs):
  for x,t in train_loader:
    optimizer.zero_grad()
    z = network(x.to(device)
    J = loss(z, t.to(device))
    J. backward()
    optimizer.step()
```

Running on the GPU

Enabling GPU Processing on Google Colaboratory

- Google Colaboratory allows usage of Google GPU servers
- Open a notebook on Google Colaboratory
- Select Runtime → Change Runtime Type
- Select Acceleration GPU (does not work for TPU)
- Check that GPU is enabled:
 - → torch.cuda.is_available() should return True

Outline

- MNIST Training with PyTorch
 - Dataset and Data Loader
 - Networks
 - Network Training

MNIST Training with PyTorch

Goal of Exercise

- Compare fully-connected and convolutional networks
- Get to know PyTorch Dataset and DataLoader classes
- Familiarize with PyTorch training procedure with batches

Task 1: Dataset

- Implement a function to return two datasets with a given transform
- Instantiate MNIST dataset from torchvision.datasets
 - \rightarrow Set dataset to automatically download
- Provide both training and test set

Datasets and Data Loaders

Test 1: Data Types

- Instantiate datasets with transform=None
- Check that the dataset returns PIL.Image.Image's

Task 2: Data Loaders

- Load datasets with torchvision.transforms.ToTensor transform
- Create two data loaders, one for each dataset
 - \rightarrow Choose training batch size to be B=64 (B for test on your choice)
 - → Decide which of the two data loaders require shuffling

Test 2: Batches

- Check data types and ranges of batches: input and target
- ullet Check that batch size equals B for all except the last batch

Networks

Compared Networks

- Fully-connected and convolutional network
 - → Same number of layers with weights

Fully-connected Network

- Input into 28×28 Flatten layer to convert 28×28 input into 28×28 vector
- 2 $K \times D$ fully-connected layer
- tanh activation
- lacktriangledown M imes K fully-connected layer
- tanh activation

Convolutional Network

- $lacktriangleq Q_1 imes 1 imes 5 imes 5$ convolutional layer, stride 1, padding 2
- 2 Maximum pooling, 2×2 kernel, stride 2
- tanh activation
 - $oldsymbol{0} \ Q_2 imes Q_1 imes 5 imes 5$ convolutional layer, stride 1, padding 2
 - Maximum pooling, 2×2 kernel, stride 2
- 6 tanh activation
- Flatten layer
- $O \times ?$ fully-connected layer

Networks

Task 3: Fully-Connected Network

- Implement a function to return the fully-connected network
 - → torch.nn.Sequential can still be used

Task 4: Convolutions Output (theoretical question)

- Analytically compute input size of fully-connected layer in convolutional network
 - → Consider kernel sizes, strides, paddings and poolings

Task 5: Convolutional Network

- Implement a function to return the convolutional network
 - → Consider result of task 4
 - → torch.nn.Sequential can be used, too

Network Training

Task 6: Training and Validation Loop

- training function taking network, epochs, eta
- Instantiate categorical cross-entropy loss
- Instantiate stochastic gradient decent optimizer
- For epochs iterate:
 - Train on all batches of the training set
 - Compute loss and accuracy on test set
 - \rightarrow Store both in separate lists
- Return both lists of losses and accuracies

Network Training

Task 7: Fully-connected Training

- Instantiate fully-connected network with K=100 and O=10
- ullet Train fully-connected network for 10 epochs with $\eta=0.01$
 - → Store lists of losses and accuracies

Task 8: Convolutional Training

- Create convolutional network with $Q_1=32$, $Q_2=64$ and O=10
- Train convolutional network for 10 epochs with $\eta = 0.01$
 - → Store lists of losses and accuracies

Task 9: Plotting

Plot losses and accuracies in two separate plots

Network Training

Task 10: Learnable Parameters

- Compute number of learnable parameters for both networks
 - → Both analytically and via PyTorch