Welcome to

Linear Regression

Day 2

ABOUT INSTRUCTOR - Abhinav Singh

2016	CloudxLab	Building platform for practicing Big Data Technologies
2015	Byjus	#1 Edtech application in India on Play Store
2015		
2013	Specadel	Developed platform for disrupting indian education
2012		
	HashCube	Developed #1 Sudoku Game on Facebook
2009		

Linear Regression

When you think of Regression, think prediction. A regression uses the historical relationship between an independent and a dependent variable to predict the future values of the dependent variable.

Two types

- 1. Simple linear Regression
- 2. Multiple Linear Regression

Application of Linear Regression

- Predicting future sales,
- Predicting Stock prices
- Predicting currency exchange rates and productivity gains resulting from a training program

Linear Regression - Independent & Dependent Variables

Sales of a company = function(Marketing budget, Pricing, Season, Discount)

Independent variables are variable which are used to explain certain phenomena like marketing budget, pricing, season, discount etc

Dependent variables are driven by independent variables like sales of a company

Simple Linear Regression

Problem

Is there any relationship between wages and number of years spent in education?

Dependent Variable - wages
Independent Variable - number of years spent in education

Wages(dependent variable) = (Y-Intercept) + β I Education(Independent Variable)

$$Y = \beta_0 + \beta_1 X$$

Multiple Linear Regression

Problem

Is there any relationship between wages and number of years spent in education, age, gender, worx experience?

Dependent Variable - wages Independent Variable - number of years spent in education, age, gender, work experience etc

Wages(dependent variable) = (Y-Intercept) + β 2(Education) + β 3(age) + β 4(Gender) + β 5(Work Experience) + β 6(Sector)

$$Y = \beta 0 + \beta 1X1 + \beta 2X2 + \beta 3X3 + \beta 4X4 + \beta 5X5$$

Linear Regression - Problem

Given a data how do we find out if we can apply Linear Regression?

Linear Regression - Solution

- 1) Find the Correlation between two variables and if correlation is closer to one it means that we can model the linear regression
- 2) Plot the Scatter plot between two variables and see if there is a line

Linear Regression - Positive Relationship

Linear Regression - Negative Relationship

Linear Regression - No Relationship

Linear Regression - Hand-on

- I) Go to equiskill lab http://labl.equiskill.com
- 2) Open test_for_linear_regression.R
- 3) Load data wages_education.csv
- 4) Plot the graph
- 5) Find correlation

Linear Regression - First model

Let's build our first regression model

- I) Go to equiskill lab http://labl.equiskill.com
- 2) Open wages_education.R
- 3) Load data wages_education.csv
- 4) Fit the model
- 5) Find Coefficients and Y-intercept
- 6) Make Prediction

Linear Regression - First model

Our wages equation will be

Wages = 2.372 (Y-intercept) + 1.267 Education

Linear Regression - Residuals

Residuals are the difference between the actual value and the predicted value.

Suppose as per our predictions, the wage for a professional who has a 12 years of education (Let say #11 from table) which is \$17 per hour. Actually the wage of that professional is \$20 per hour. So Residual will be \$3 which is represented as μ

Linear Regression - Residuals

Points to note

- We can apply linear regression only when dependent variable is continuous
- Independent variables can be numerical and categorical

Linear Regression - Good fit

- Residuals are randomly distributed
- There is no relationship between residuals

Linear Regression - Residual plot

Linear Regression - Perfect fit

• When coefficient of determination $r^2 = 1$

$$r^{2} = \frac{\sum (\hat{y_{i}} - \bar{y})^{2}}{\sum (y_{i} - \bar{y})^{2}}$$

Where $Y_i^{\, }$ = Predicted values

Y = Mean of actual values

Y_i = Actual values

ORDINARY LEAST SQUARES ESTIMATION

In OLS regression, the slope and intercept are chosen such that they minimize the sum of the squared errors

$$\sum (y_i - \hat{y}_i)^2 = \sum e_i^2$$

- We will explore faithful dataset provided by R
- Go to Equiskill lab http://labl.equiskill.com
- Check faithful dataset, we will use this dataset for simple linear regression
- ?faithful
- Open file simple_linear_regression.R

faithful dataset

Waiting time between eruptions and the duration of the eruption for the Old Faithful geyser in Yellowstone National Park, Wyoming, USA.

faithful dataset

- [, I] eruptions numeric Eruption time in mins
- [,2] waiting numeric Waiting time to next eruption (in mins)

	eruptions	waiting
1	3.600	79
2	1.800	54
3	3.333	74
4	2.283	62
5	4.533	85
6	2.883	55
7	4.700	88
8	3.600	85
9	1.950	51
10	4.350	85
11	1.833	54
12	3.917	84
13	4.200	78

Problem I-

Apply the simple linear regression model for the data set faithful, and estimate the next eruption duration if the waiting time since the last eruption has been 80 minutes.

- 1. Fit the model
- 2. Predict next eruption duration manually using equation
- 3. Predict next eruption duration using predict function

Problem 2-

Find the coefficient of determination for the simple linear regression model of the data set faithful.

- I. Fit the model
- 2. Find coefficient of determination

Problem 3-

Plot the residual of the simple linear regression model of the data set faithful against the independent variable waiting.

- I. Fit the model
- 2. Find residual
- 3. Plot residual

- We will explore stackloss dataset provided by R
- Go to Equiskill lab http://labl.equiskill.com
- Check stackloss dataset, we will use this dataset for multiple linear regression
- ?stackloss
- Open file multiple_linear_regression.R

stackloss dataset

Operational data of a plant for the oxidation of ammonia to nitric acid.

- [, I] 'Air Flow' Flow of cooling air
- [,2] 'Water Temp' Cooling Water Inlet Temperature
- [,3] 'Acid Conc.' Concentration of acid [per 1000, minus 500]
- [,4] 'stack.loss' Stack loss

Problem I-

Apply the multiple linear regression model for the data set stackloss, and predict the stack loss if the air flow is 72, water temperature is 20 and acid concentration is 85.

- I. Fit the model
- 2. Predict stack loss manually using equation
- 3. Predict stack loss using predict function

Problem 2-

Find the coefficient of determination for the multiple linear regression model of the data set stackloss.

- I. Fit the model
- 2. Find the coefficient of determination