Assignment-7

EE224BTECH11044 - Muthyala koushik

I. Section-A:JEE Main 2022-29 June-shift-2

- 1) The set of all α , for which the vectors $\mathbf{a} = \alpha t \hat{i} + 6 \hat{j} 3 \hat{k}$ and $\mathbf{b} = t \hat{i} 2 \hat{j} 2 \alpha t \hat{k}$ are inclined at an obtuse angle for all $t \in \mathbb{R}$, is
 - a) $\left(-\frac{4}{3}, 1\right)$
 - b) $\left(-\frac{4}{3}, 0\right]$
 - c) [0, 1)
 - d) (-2, 0]
- 2) Let P(x, y, z) be a point in the first octant, whose projection in the xy-plane is the point Q. Let $OP = \gamma$; the angle between OQ and the positive x-axis be θ ; and the angle between OP and the positive z-axis be ϕ , where O is the origin. Then the distance of P from x-axis is

a)
$$\gamma \sqrt{1 + \cos^2 \phi \sin^2 \theta}$$

b)
$$\gamma \sqrt{1 - \sin^2 \phi \cos^2 \theta}$$

c)
$$\gamma \sqrt{1 + \cos^2 \theta \sin^2 \phi}$$

d)
$$\gamma \sqrt{1 - \sin^2 \theta \cos^2 \phi}$$

- 3) Let the circles $C_1: (x-\alpha)^2 + (y-\beta)^2 = r_1^2$ and $C_2: (x-8)^2 + \left(y-\frac{15}{2}\right)^2 = r_2^2$ touch each other externally at the point (6,6). If the point (6,6) divides the line segment joining the centers of the circles C_1 and C_2 internally in the ratio 2:1, then $(\alpha+\beta)+4\left(r_1^2+r_2^2\right)$ equals
 - a) 110
 - b) 125
 - c) 145
 - d) 130
- 4) Let $I(x) = \int \frac{6}{\sin^2 x(1-\cot x)^2} dx$. If I(0) = 3, then $I\left(\frac{\pi}{12}\right)$ is equal to
 - a) $2\sqrt{3}$
 - b) $6\sqrt{3}$

- c) $\sqrt{3}$
- d) $3\sqrt{3}$
- 5) If $\sin x = -\frac{3}{5}$, where $\pi < x < \frac{3\pi}{2}$, then $80 \left(\tan^2 x \cos x \right)$ is equal to
 - a) 19
 - b) 18
 - c) 109
 - d) 108
- 6) Let z be a complex number such that |z + 2| = 1 and $\operatorname{Im}\left(\frac{z+1}{z+2}\right) = \frac{1}{5}$. Then the value of $\left|\operatorname{Re}\left(\overline{z+2}\right)\right|$ is
 - a) $\frac{2\sqrt{6}}{5}$
 - b) $\frac{24}{5}$
 - c) $\frac{\sqrt{6}}{5}$
 - d) $\frac{1+\sqrt{6}}{5}$
- 7) Let $f(x) = 4\cos^3 x + 3\sqrt{3}\cos^2 x 10$. The number of points of local maxima of f in interval $(0, 2\pi)$ is
 - a) 4
 - b) 1
 - c) 2
 - d) 3
- 8) For the function $f(x) = (\cos x) x + 1$, $x \in \mathbb{R}$, between the following two statements
 - (S_1) f(x) = 0 for only one value of x in $[0, \pi]$.
 - (S_2) f(x) is decreasing in $\left[0, \frac{\pi}{2}\right]$ and increasing in $\left[\frac{\pi}{2}, \pi\right]$.
 - a) Both (S_1) and (S_2) are incorrect.
 - b) Only (S_1) is correct.
 - c) Both (S_1) and (S_2) are correct.
 - d) Only (S_2) is correct.
- 9) Let $A = \begin{bmatrix} 2 & a & 0 \\ 1 & 3 & 1 \\ 0 & 5 & b \end{bmatrix}$. If $A^3 = 4A^2 A 21I$, where I is the identity matrix of order 3×3 , then 2a + 3b is equal to

- a) -10
- b) -9
- c) -12
- d) -13
- 10) Let [t] be the greatest integer less than or equal to t. Let A be the set of all prime factors of 2310 and $f: A \to \mathbb{Z}$ be the function $f(x) = \left[\log_2\left(x^2 + \left[\frac{x^3}{5}\right]\right)\right]$. The number of one-to-one functions from A to the range of f is
 - a) 25
 - b) 120
 - c) 20
 - d) 24
- 11) Let y = y(x) be the solution of the differential equation $(1 + y^2)e^{\tan x}dx + \cos^2 x(1 + e^{2\tan x})dy = 0, y(0) = 1$. Then $y(\frac{\pi}{4})$ is equal to
 - a) $\frac{1}{e^2}$
 - b) $\frac{1}{e}$
 - c) $\frac{2}{e}$
 - d) $\frac{2}{e^2}$
- 12) The equation of two sides AB and AC of a triangle ABC are 4x + y = 14 and 3x 2y = 5, respectively. The point $\left(2, -\frac{4}{3}\right)$ divides the third side BC internally in the ratio 2 : 1. The equation of the side BC is
 - a) x 3y 6 = 0
 - b) x 6y 10 = 0
 - c) x + 3y + 2 = 0
 - d) x + 6y + 6 = 0
- 13) If the shortest distance between the lines

$$L_1: \mathbf{r} = (2+\lambda)\,\hat{i} + (1-3\lambda)\,\hat{j} + (3+4\lambda)\,\hat{k}, \lambda \in \mathbb{R}$$

$$L_2: \mathbf{r} = 2(1+\mu)\hat{i} + 3(1+\mu)\hat{j} + (5+\mu)\hat{k}, \in \mathbb{R}$$

- is $\frac{m}{\sqrt{n}}$, where gcd(m, n) = 1, then the value of m + n equals
- a) 377

- b) 390
- c) 387
- d) 384
- 14) If the set $R = \{(a, b) : a + 5b = 42, a, b \in \mathbb{R}\}$ has m elements and $\sum_{n=1}^{m} (1 i^n!) = x + iy$, where $i = \sqrt{-1}$, then the value of m + x + y is
 - a) 8
 - b) 5
 - c) 4
 - d) 12
- 15) The value of $k \in \mathbb{N}$ for which the integral $I_n = \int_0^1 (1 x^k)^n dx$, $n \in \mathbb{N}$, satisfies $147I_{20} = 148I_{21}$ is
 - a) 8
 - b) 10
 - c) 7
 - d) 14