

Pose Guided Person Image Generation

Liqian Ma¹, Xu Jia^{2*}, Qianru Sun^{3*}, Bernt Schiele³, Tinne Tuytelaars², Luc Van Gool^{1,4}

¹KU-Leuven/PSI, TRACE (Toyota Res in Europe) ²KU-Leuven/PSI, IMEC

³Max Planck Institute for Informatics, Saarland Informatics Campus ⁴ETH Zurich

Introduction

- Task: Synthesize person images in arbitrary poses, based on an image of that person and a novel pose.
- Motivation: Provide users more control over the generation process.
- **Key idea:** Guide the generation process explicitly by an appropriate representation of that intention.

On DeepFashion dataset

On Market-1501 dataset

Contributions

- i) A novel task of conditioning image generation on a reference image and an intended pose.
- ii) A novel mask loss is proposed to encourage the model to focus on transferring the human body appearance instead of background information.
- biii) Divide the problem into two stages, with stage-I focusing on global structure and stage-II on filling in appearance details.

Dataset

- i) DeepFashion[1]: in-shop clothes retrieval dataset with 256x256 resolution.
- ii) Market-1501[2]: person re-identification dataset with 128x64 resolution.

Two-stage framework

Pose Guided Person Generation Network (PG²)

Optimization loss

i) Stage-I loss

 $\mathcal{L}_{G1} = \|(G1(I_A, P_B) - I_B) \odot (1 + M_B)\|_1$

[▶]ii) Stage-II loss

 $\mathcal{L}_{adv}^{D} = \mathcal{L}_{bce}(D(I_A, I_B), 1) + \mathcal{L}_{bce}(D(I_A, G2(I_A, \hat{I}_{B1})), 0)$ $\mathcal{L}_{adv}^{G} = \mathcal{L}_{bce}(D(I_A, G2(I_A, \hat{I}_{B1})), 1)$ $\mathcal{L}_{G2} = \mathcal{L}_{adv}^{G} + \lambda ||(G2(I_A, \hat{I}_{B1}) - I_B) \odot (1 + M_B)||_1$

Generation results

Qualitative results

Quantitative results

Table 1: Quantitative evaluation. For all measures, higher is better.

Model	DeepFashion		Market-1501			
	SSIM	IS	SSIM	IS	mask-SSIM	mask-IS
G1-CE-L1	0.694	2.395	0.219	2.568	0.771	2.455
G1-HME-L1	0.735	2.427	0.294	3.171	0.802	2.508
G1-L1	0.735	2.427	0.304	3.006	0.809	2.455
G1-poseMaskLoss	0.779	2.668	0.340	3.326	0.817	2.682
G1+D	0.761	3.091	0.283	3.490	0.803	3.310
G1+G2+D	0.762	3.090	0.253	3.460	0.792	3.435

Further analysis

Comparison examples with [3]

Our failure cases on DeepFashion

[>] [1] Ziwei Liu, Ping Luo, Shi Qiu, Xiaogang Wang, and Xiaoou Tang. Deepfashion: Powering robust clothes recognition and retrieval with rich annotations. In CVPR, pages 1096–1104, 2016.

[>] [2] Liang Zheng, Liyue Shen, Lu Tian, Shengjin Wang, Jingdong Wang, and Qi Tian. Scalable person re-identification: A benchmark. In ICCV, pages 1116–1124, 2015.

> [3] Bo Zhao, Xiao Wu, Zhi-Qi Cheng, Hao Liu, and Jiashi Feng. Multi-view image generation from a single-view. arXiv, 1704.04886, 2017.