Statistical Hypothesis Testing [Nonparametric]

Satishkumar L. Varma

Professor, Department of Computer Engineering PCE, New Panvel www.sites.google.com/view/vsat2k www.vsat2k.wordpress.com www.vsat2k.moodlecloud.com

Overview: Statistical Nonparametric Hypothesis Testing

- **☀** Introduction to Nonparametric Statistics
- Uses of Nonparametric Tests
- Advantages of Nonparametric Test
- Disadvantages of Nonparametric Test
- **☀** Nonparametric Tests
 - Sign test
 - **U** test

Learning Objectives

- By the end of this topic, I will be able to . . .
 - Explain what a nonparametric hypothesis test is, and why we use it
 - Describe what is meant by the efficiency of a nonparametric test
 - Explain commonly used Nonparametric Test Procedures
 - Know uses, advantages and disadvantages of nonparametric tests
 - Perform hypothesis tests using nonparametric procedures
 - ♠ Know when to apply parametric & nonparametric tests

Statistical Analysis: Classification

Descriptive Statistics

- Graphical
 - Organizing and presenting the data
 - * Example: histogram, box plot, probability plot
- **♦** Numerical:
 - Summarizing the sample set
 - * Example: mean, median, mode, range, quartile, variance, stad.dev

Inferential Statistics

- **Estimation:**
 - Estimate parameters of the pdf along with its confidence region
- Hypotheses Testing:
 - \clubsuit Making judgements about f(x) and its parameters

Motivation for Hypothesis Testing

- **☀** Need of (Motivation for) Hypothesis Testing
 - **★** Will an investment in MF yield > desired value?
 - **★** Is incidence of diabetes > among male than female?
 - * Are women > than male to change mobile service provider?
 - Has the efficiency of a pump < form its original value due to aging?</p>
- Statistical tests are either
 - Parametric or
 - Nonparametric (distribution-free hypothesis tests)
- When the conditions for the parametric test are met
 - * It is preferable to perform parametric test as opposed to nonparametric test

Need of Nonparametric Tests

- Motivation of performing nonparametric test
 - Should not perform a parametric hypothesis test (t test for μ)
 - if the conditions are not met
 - Data analyst don't take a chance and use a parametric test
 - * when the conditions may not be satisfied?
 - ♣ So, there are advantages and disadvantages to each method

Nonparametric Tests

Distinguish Between Parametric & Nonparametric Test

	Parametric tests	Nonparametric tests		
1	Depends of probability distribution	1	Distribution-free methods	
2	Require more conditions to be satisfied	2	Require fewer conditions than their parametric counterparts	
3	Involve population parameters (Mean)	3	Do not involve population parameters	
4	Use Mean, P	4	Use median	
5	Have stringent assumptions (Normality)	5	Data measured on any scale (Ratio/Interval, Ordinal/ Nominal)	
6	More efficient (at the cost of more stringent required conditions for the parametric tests)	6	Less efficient	
7	Require either a normal population or a large sample $(n \ge 30)$	7	Require neither a normal population nor a large sample $(n < 30)$	

Nonparametric Tests

Advantages

- Easy to understand
- No lengthy calculations
- ▼ No requirement of assumption of distribution
- Applicable to all kind of data

Disadvantages

- Less efficient in comparison with parametric tests
 - for a given level of significance, it require a larger sample size to reject H₀
- Result may or may not provide actual answer because it is distribution free

Parametric & Nonparametric Test Procedures

Parametric tests

- **t** test
- Z test
- x² Test
- F test (Analysis of variance)
- Linear correlation

Nonparametric tests

- Sign Test
- Mann-Whitney U Test
- Mann-Whitney-Wilcoxon Test
- Wilcoxon Signed-Rank Test
- Wilcoxon Rank Sum Test
- Kruskal-Wallis H-Test
- Rank Correlation Test
- Runs Test

Nonparametric Tests Requirements

- Situation in which nonparametric tests are used
 - Parametric tests are not satisfied
 - Test hypothesis does not have any distribution
 - Population don not follow a particular distribution (say normal distribution)
 - Neither a normal population nor a large sample available
 - Data is categorical (qualitative)
 - Distributions are not available
 - Requirement of a quick data analysis
 - Unscaled data
 - Tends to be easier than their parametric counterparts

Nonparametric Test Procedures

- Sign Test Statistics
- Mann-Whitney U Test
- Wilcoxon Signed-Rank Test
- **♦** Wilcoxon ranak sum test
- Mann-Whitney-Wilcoxon Test
- **★** Kruskal-Wallis H Test
- * Rank Correlation Test
- Runs test

Sign Test

- Objectives
 - 1. Perform the sign test for a single population median
 - 2. Perform the sign test for matched-pair data from two dependent samples
 - 3. Perform the sign test for binomial data
- **⇒** Sign test is a nonparametric hypothesis test
- # Here the original data are transformed into plus or minus signs
- Test is based on signs and not magnitudes
- ♣ The sign test may be conducted for
 - ♠ 1. a single population median
 - 2. matched-pair data from two dependent samples, or
 - * 3. binomial data
- Note: Sign test is a hypothesis test for the population median, not the population mean

Steps for Performing Sign Test

- Determine whether the conditions required for parametric test are not met
- Write the null and alternative hypotheses for nonparametric sign test
- Change the data values to plus or minus signs
- Perform Sign Test (may be conducted for)
 - **The population median M**
 - ♦ Step 1: State the hypotheses
 - ♦ Step 2: Find the critical value and state the rejection rule
 - ♦ Step 3: Find the value of the test statistic
 - ♦ Step 4: State the conclusion and the interpretation
 - **The matched-pair data from two dependent samples (median of differences)**
 - Step 1: State the hypotheses
 - ♦ Step 2: Find the critical value and state the rejection rule
 - Step 3: Find the value of the test statistic
 - ❖ Step 4: State the conclusion and the interpretation
 - **The p-value method**
 - **⋄** Step 1: State the hypotheses
 - Step 2: Find the p-value using technology
 - Step 3: State the conclusion and the interpretation
 - **Binomial Data**
 - **♦** Step 1: State the hypotheses
 - ❖ Step 2: Find the critical value and state the rejection rule
 - ♦ Step 3: Find the value of the test statistic
 - * Step 4: State the conclusion and the interpretation

Sign Test for a Single Population Median

- Example
 - \clubsuit A random sample size n = 7 from the population of daily sell of banana on the road is given.
 - * We are interested to find whether the conditions required for the parametric hypothesis test are met
 - **¼** Is population normal?
 - **□** Is sample size at least 30?
- # If conditions are not met then we are left with nonparametric hypothesis tests
 - Perform Sign Test for the population median M
 - ♠ Let we are interested in testing whether population median M of sells per day < 10

 - ♦ Step 2: Change data value to plus or minus sign
 - Step 3: Find the critical value and state the rejection rule
 - ♦ Step 4: Find the value of the test statistic
 - Step 5: State the conclusion and the interpretation

Day	1	2	3	4	5	6	7
Sell	7	5	4	25	9	1	3

Step 1: State the hypotheses

- Only requirement for performing the sign test for the population median M is
 - # The sample data have been randomly selected and
 - # It is not necessary to have a population that is normally distributed
- ▶ Interested in testing whether the population median M number of sell per day < 10
 - ♣ Write the null and alternative hypotheses for this test

$$H_0: M = 10$$

$$H_a: M < 10$$

Hypotheses for the sign test for the population median M is in one of the forms

Null hypothesis	Alternative hypothesis	Type of test
$H_{\scriptscriptstyle 0}: M = M_{\scriptscriptstyle 0}$	$H_{\alpha}: M > M_0$	Right-tailed test
$H_{\scriptscriptstyle 0}: M=M_{\scriptscriptstyle 0}$	$H_{\alpha}: M < M_{0}$	Left-tailed test
$H_0: M = M_0$	$H_{\alpha}: M \neq M_{0}$	Two-tailed test

Mo is the value of the population median M for which a claim is being made

Step 2: Change data value to plus or minus sign

- Changing the data values to plus or minus signs
 - # if (sell per day < 10) assign a minus sign
 - # if(sell per day > 10) assign a plus sign
 - # if(sell per day = 10) ignore data values
 - \clubsuit So, we have 6 minus signs, 1 plus sign and sample size = 6 + 1 = 7

Day	1	2	3	4	5	6	7
Sell	7	5	4	25	9	1	3
Sign	-	-	-	+	-	-	-

Step 3: Find the critical value and state the rejection rule

- **⋄** Small-Sample Case (sample size n <= 25)
 - \clubsuit Use table to find the critical value S_{crit}
 - \Leftrightarrow Choose the column with the appropriate level of significance (a) and
 - The applicable one-tailed or two-tailed test
 - \clubsuit Then select row with the appropriate sample size n = # pluses & minuses
 - \Leftrightarrow The number in that row and column is our critical value $S_{\rm crit}$
 - \Leftrightarrow The rejection rule is to reject H_0 if $S_{\text{data}} \leq S_{\text{crit}}$

Step 3: Find the critical value and state the rejection rule

- Large-Sample Case (sample size n > 25)
 - Use the standard normal table
 - $\angle Z_{crit}$ value for this sign test is always found in the left tail of the st.nor.dist.
 - \checkmark So that Z_{crit} is always less than 0
 - For a left-tailed test or a right-tailed test
 - \checkmark the critical value Z_{crit} is the value of Z with area α to the left of it
 - For a two-tailed test
 - \checkmark the critical value Z_{crit} is the value of Z with area $\alpha/2$ to the left of it
 - \checkmark Table contains values of Z_{crit} for some common values of α
 - $\ ^{\prime \bullet}$ The rejection rule is to reject H0 if $Z_{\text{data}} \leq Z_{\text{crit}}$

Step 4: Find the value of the test statistic

- \Leftrightarrow Find the value of the test statistic S_{data}
 - \clubsuit For small-Sample Case (sample size n <= 25) find S_{data} as

Type of test	Test statistic $S_{\rm data}$
Right-tailed test	$S_{\text{data}} = \text{number of minus signs}$
Left-tailed test	$S_{\text{data}} = \text{number of plus signs}$
Two-tailed test	$S_{\rm data}$ = number of minus signs or plus signs, whichever is smaller

 \Leftrightarrow For large-Sample Case (sample size n > 25) find test statistic Z_{data} as

$$Z_{\text{data}} = \frac{\left(S_{\text{data}} + 0.5\right) - \frac{n}{2}}{\frac{\sqrt{n}}{2}}$$

Step 5: State the conclusion and the interpretation

- State the conclusion and the interpretation
 - Compare the test statistic with the critical value, using the rejection rule
 - \checkmark If(H0 = rejected)
 - State=> Evidence exists that [whatever Ha says]
 - \checkmark If(H0 \neq rejected)
 - ⅍ State=> There is insufficient evidence that [whatever Ha says]

Small-Sample size n <= 25 sign test for population median

- **Example 2:** Use the sign test to determine
 - ⇒ whether the population median M number of sell per day < 10
 - \Rightarrow using level of significance $\alpha = 0.05$
- $\stackrel{\clubsuit}{}$ The hypotheses are H0: M = 10 and Ha: M < 10
- Find the critical value and state the rejection rule
 - \clubsuit The total number of plus signs and minus signs is n = 6 + 1 = 7
 - which is not greater than 25
 - so we use the small-sample case
 - \clubsuit We have a one-tailed test, with $\alpha = 0.05$ and n = 7
 - \Rightarrow which gives us $S_{crit}=1$ (see Figure on next slide)
 - \clubsuit The rejection rule is to reject H_0 if $S_{\text{data}} \leq 1$

*	
State	

Day	1	2	3	4	5	6	7
Sell	7	5	4	25	9	1	3
Sign	-	-	-	+	-	-	-

Small-Sample size $n \le 25$ sign test for population median

Find the value of the test statistic

- **♦** We have a left-tailed test, and so
- from above S_{data} Table, our test statistic is
- $\Rightarrow S_{\text{data}} = \text{number of plus signs} = 1$

State the conclusion and the interpretation

- \checkmark The value of our test statistic is $S_{\text{data}}=1$ which is = 1
- \rightsquigarrow so we reject H_0
- Evidence exists that the population median number of sell < 10 per day

	α						
n	0.005 (one tail) 0.01 (two tails)	0.01 (one tail) 0.02 (two tails)	0.025 (one tail) 0.05 (two tails)	0.05 (one tail) 0.10 (two tails)			
1	*	*	*	*			
2	*	*	*	*			
3	*	*	*	*			
4	*	*	*	*			
5	*	*	*	0			
6	*	*	0	0			
7	*	0	0	0			
8	0	0	0	1			
	and the same of th						

Sign Test Using Excel

- Excel does not have a built-in sign test function
- However, use the BINOMDIST function to calculate the p-value for a sign test
 - * Step 1 On the main menu bar, click fx
 - Where it says Search for a function, type BINOMDIST and click Go
 - ♦ Where it says Select a function, select BINOMDIST and click OK
 - Step 2 In the dialog box, enter the following values:
 - For Number_s, enter the value of S_{data} (from Table 3)
 - \clubsuit For Trials, enter n =the sum of the number of pluses and minuses
 - For Probability_s, enter 0.5
 - For Cumulative, type True
 - Step 3 Click OK
 - The result is the *p*-value for a one-tailed test
 - Double this value for a two-tailed test
 - \blacksquare Reject H0 if the p-value < alpha

Efficiency of Nonparametric Hypothesis Test

- **Efficiency of Parametric tests are > corresponding nonparametric tests**
- $\text{Nonparametric test Efficiency, } \eta = \frac{\text{sample size required in parametric test}}{\text{samle size required innonparametric test}}$
 - Provide conditions for parametric and nonparametric tests have been met
 - \checkmark in order to achieve the same result (such as correctly rejecting the H_0)

Efficiency of nonparametric tests vs. parametric tests

Efficiency of Parametric tests are > corresponding nonparametric tests

Parametric Test	Nonparametric Test	Situation	η
t test or Z test	Sign test	Matched pairs (dependent samples)	0.63
t test or Z test	Wilcoxon signed rank test	Matched pairs (dependent samples)	0.95
t test or Z test	Wilcoxon rank sum test	Two independent samples	0.95
Analysis of variance (F test)	Kruskal-Wallis test	Several independent samples	0.95
Linear correlation	Rank correlation test	Correlation	0.91
No parametric test	Runs test	Randomness	-

Examples

- (p)

- 540
- SIV

Summary

- For solved examples:
 - goo.gl/f5rC77

- SLY
- SI

Bibliography

- [1] Data Mining: Concepts and Techniques, Jiawei Han, Micheline Kamber, 3rd edition Publisher: Morgan Kaufmann; 3 edition
- [2] Business Intelligence, 2/E; Efraim Turban, Ramesh Sharda, Dursun Delen, David King; pearson Education
- [3] Data Mining for Business Intelligence: Concepts, Techniques, and Applications in Microsoft Office Excel with Xlminer; 2nd edition, Galit Shmueli, Nitin R. Patel and Peter C. Bruce; John Wiley
- [4] Data Mining Techniques: For Marketing, Sales, and Customer Relationship Management, Author: Berry, Gordon S. Linoff, Format: Paperback, 648 pages, Edition: 3; Publisher: John Wiley & Sons Inc.
- [5] Robert Groth, Data Mining: Building Competitive Advantage, Prentice Hall, 2000.
- [6] P. N. Tan, M. Steinbach, Vipin Kumar, "Introduction to Data Mining", Pearson Education
- [7] Alex Berson and Smith, "Data Mining and Data Warehousing and OLAP", McGraw Hill Publication
- [8] E. G. Mallach, "Decision Support and Data Warehouse Systems", Tata McGraw Hill.
- [9] Michael Berry and Gordon Linoff "Mastering Data Mining- Art & science of CRM", Wiley Student Edition

Thank You.

