

Systeme II 7. Sicherheit

Christian Schindelhauer
Technische Fakultät
Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg
(Version 17.07.2017)

Sicherheit

- Folien und Inhalte aus
 - Computer Networking: A
 Top Down Approach
 5th edition.
 Jim Kurose, Keith Ross
 Addison-Wesley, April 2009.
 - Copyright liegt bei den Autoren Kurose und Ross

Ziele

- Grundlagen von Netzwerksicherheit
 - Kryptographie und deren vielfältige Einsatzmöglichkeiten
 - Authentifizierung
 - Message Integrity
- Sicherheit in der Praxis
 - Firewalls und Intrusion Detection
 - Sicherheit in Anwendungs-, Transport-, Vermittlungs- und Sicherungsschicht

Was ist Netzwerk-Sicherheit

- Vertraulichkeit (Confidentiality)
 - Nur der Sender, gewünschter Empfänger sollte den Nachrichteninhalt "verstehen"
- Authentifizierung
 - Sender und Empfänger möchten sich ihrer Identität versichern
- Integrität (message integrity)
 - Sender und Empfänger wollen, dass eine Nachricht nicht unbemerkt verändert werden
 - bei der Übertragung oder später

DoS = Demial of Service

- Zugriff und Verfügbarkeit
 - von Diensten

Freunde und Feinde: Alice, Bob und Trudy

- Standardnamen im Sicherheitsbereich
- Alice und Bob möchten "sicher" kommunizieren
- Trude (In-Trude-r) möchte mithören, löschen, hinzufügen, verändern

Wer steckt hinter Alice und Bob

- Echte Menschen
- Web-Browser
- Online-Banking-Clients und Servers
- DNS-Servers
- Routers, die Routing-Tabellen austauschen
- etc.

Was kann ein böser Mensch so tun?

- Abhören (eavesdrop)
 - Nachrichten abfangen und lesen
- Einfügen von Nachrichten
 - Nachrichten werden in die bestehende Verbindung eingefügt
- Sich als jemand anders ausgeben (impersonation)
 - Quell-Adresse kann in einem Paket gefälscht werden
- Hijacking
 - Übernahme einer bestehenden Verbindung durch Ersetzen des Empfängers oder Senders
- Denial of Service
 - Dienst abschalten
 - durch Überlast oder direkten Angriff

Ein kurzer Rundgang durch die Kryptographie

m: Originalnachricht (message)

encryption

K_A(m): mit Schlüssel K_A verschlüsselte Nachricht

KA = KB Symm. KA + KB unsymm. $m = K_B(K_A(m))$ Bob's

ciphertext

K_D decryption

Key encryption plaintext. algorithm

decryption plaintext algorithm

key

Einfache Verschlüsselung

Monoalphabetischer Schlüssel

- ersetze jeden Buchstaben durch einen anderen
- Beispiel: Edgar Allen Poe "The Gold Bug"
 - 53\$05))6*;4826)4)4;806*;488¶60))85;1-(;:*8-83(88)5*
 - ;46(;88*96*?;8)*(;485);5*2:*(;4956*2(5*-4)8¶8*;40692
 - 85);)68)4;1(9;48081;8:81;4885;4)485528806*81(9;48;
 - (88;4(?34;48)4;161;:188;?;
- Jedes Symbol steht für einen Buchstaben:
 - -8 = e
 - ; = h
 - ...

Einfache Verschlüsselung

- Monoalphabetischer Schlüssel
 - ersetze jeden Buchstaben durch einen anderen

```
plaintext: abcdefghijklmnopqrstuvwxyz
```

ciphertext: mnbvcxzasdfghjklpoiuytrewq

Plaintext: bob. i love you. alice 26/

ciphertext: nkn. s gktc wky. mgsbc

Polyalphabetische Verschlüsselung

- n monoalphabetische Schlüssel, M₁,M₂,...,M_n
- Zyklus-Muster
 - e.g., n=4, M_1,M_3,M_4,M_3,M_2 ; M_1,M_3,M_4,M_3,M_2 ;
- Für jeden neuen Buchstaben aus den monoalphabetischen Schlüsseln einer ausgewählt
 - "aus": a from M₁, u from M₃, s from M₄
 - Schlüssel: n Schlüsselverfahren und der Zyklus

Bruch einer Kodierung

- Cipher-text only Attack
 - nur mit verschlüsselten Text
 - Zwei Ansätze:
 - Durchsuche alle Schlüssel und teste ob sie einen vernünftigen Text produzieren
 - Statistische Analyse des Schlüssels
- Known-Plaintext-Attack
 - mit der Originalnachricht und dem verschlüsselten Text
- Chosen Plaintext Attack
 - Trudy wählt den Text und lässt Alice ihn verschlüsseln
 - Trudy erhält den verschlüsselten Text

