

Mathematical Foundations of Computer Science

Lecture 6: Counting, Permutations and Combinations

Counting

How do you count?

- What is the number of 16 bit sequences with exactly 4 ones?
- Five kinds of donuts. How many ways to select a dozen?

Motivation:

- Combinatorial Proofs, Probability
- "Well, it's inventory time again — You do the rocks and I'll do the sticks."
- How many configurations does Algorithm search over?
- Time and Storage requirements of Algorithms

Counting and Concluding: Pigeonhole Principle

If socks can be either red, blue or green, how many socks do

we need to find a matching pair? 4

Pigeonhole Principle (basic):

If there are n pigeons and $\leq n-1$ pigeon-holes, then there must be at least 2 pigeons in one of the holes.

Pigeonhole Principle (general):

If |Y| = n and $|X| \ge nk + 1$, then for any function $f: X \to Y$, there exists a $y \in Y$ to which at least k + 1 elements from X map to. $|X| = |\bigcup_{x \in I} P_{reimage}(\{y\})| = |\int_{x \in I} |P_{reimage}(\{y\})| = ||P_{reimage}(\{y\})||_{x \in I} ||_{x \in I} ||P_{reimage}(\{y\})||_{x \in I} ||P_{reimage}(\{y\})||_{x$

Rules and Tools for Counting

Counting One Thing by Another

Bijective function: one-to-one onto mapping

Thm. If $f: A \to B$ is a bijective function, then |A| = |B|

Five kinds of donuts. How many ways to select adozen?

OOOOOOOOOOOOoo

type 1

type 5

type 5

a bijection between dozens and are 16 bit strings w/exact, 4 ones

What is the number of 16 bit sequences with exactly 4 ones?

Counting using m-to-1 maps

Five kinds of donuts. You can either buy them all in small or all of them in large size. How many ways to select a dozen?

Tuice as many as before

m-to-1 function: $f: A \to B$ is a m-to-1 function iff for every $z \in B$ there are exactly m elements $x \in A$ such that f(x) = z

Thm. If $f: A \to B$ is m-to-1 function, then $|A| = m \cdot |B|$

A and B disjoint. ANB 7 \$\frac{1}{2} \land \land

Sum Rule: If there are two disjoint or non-overlapping events that have n_1 and n_2 outcomes respectively, the total number of possible outcomes is $n_1 + n_2$.

If there are 6 republicans, 11 democrats in the primaries then the total number of non-independent candidates= 6+11=17

- Candidate is either democrat or republican (disjoint)
- Sum up the counts

Sum Rule: If A and B are disjoint events, then $|A \cup B| = |A| + |B|$

Simple Rules: Product rule

Product Rule: If there are two independent events that have n_1 and n_2 outcomes respectively, the total number of possible pairs outcomes is $n_1 n_2$. $A \times B = \{(a,b) \mid a \in A \text{ and } b \in B\}$

Product Rule: For sets A, B, one has $|A \times B| = |A| \times |B|$

How many binary strings of size $n? = 2^n$

- 2 choices for the first bit (from {0,1})
- 2 choices for second bit (it doesn't depend on the first bit) $\{o_{i,1}\} \times \{o_{i,1}\} \times \dots \times \{o_{i,1}\} = \{o_{i,1}\}^{n}$
- n such choices

$$|\{0,13^n\}| = |\{0,13^{n-1} \times \{0,13\}| = |\{0,13^{n-1}\}| \{0,13\}|$$

Generalized Product Rule

A Chess Example:

In how many ways can you place two rooks on a chess board so they don't

threaten each other?

Levent 1: Place: black rock

G4.(64-15)

G4-15) = nz Event 2: Place: white rock

Generalized Product Rule: For a sequence of k events, if there are n_1 possible outcomes for the first event, n_2 possible outcomes for 2nd event for each outcome of 1st event,

 n_k possibilities for k^{th} event for each sequence of outcomes for first (k-1) events, then the total number of possible outcomes is $n_1 \times n_2 \times \cdots \times n_k$.

Ordering Items: Permutations

Given n different objects $a_1, a_2, a_3, ..., a_n$, how many different orderings are there? Answer= $\begin{bmatrix} a_1, a_2, a_3, ..., a_n \\ a_2, a_3, ..., a_n \end{bmatrix}$ = $\begin{bmatrix} a_1, a_2, a_3, ..., a_n \\ a_2, a_3, ..., a_n \end{bmatrix}$

Permutations and Factorial: Number of ways of arranging n items is $n! = 1 \times 2 \times 3 \times \cdots \times n$.

How many ways to arrange n students in k chairs (one per chair)?

Analysis (x_1, x_2, \dots, x_n) Analysis (x_n, x_n) Analysis (x_n, x_n)

Permutations: Number of ways of arranging n items is k positions is ${}^{n}P_{k} = n(n-1)(n-2)...(n-k+1) = \frac{n!}{(n-k)!}$

With or Without Repetition?

Have n colors. Want to paint k tiles. How many ways?

• Have n colors. Want to paint k tiles with different colors. How many ways?

Number of ways of arranging n items in k positions:

- 1. With Repetition = n^{4}
- 2. Without Repetition =

$$nP_k = \frac{n!}{(n-k)!}$$

Combinations: Choosing Items

How many ways of picking an ordered pair from a deck of 52 cards? Event 1: Pick first card Event 2: Pick second x51

How many ways of selecting a pair i.e. picking an unordered

pair from a deck of 52 cards?

$$\begin{array}{c}
(Q,A) \\
(A,Q) \\
(IO,K) \\
(K,IO)
\end{array}$$

pairs

= 2 unordered
pairs

Overcounting: If each configuration is counted exactly $m^{\text{total count}}$ times, then the number of configurations = $\frac{\text{total count}}{m}$

Why? (remember m to 1 maps)!