NANYANG TECHNOLOGICAL UNIVERSITY School of Electrical & Electronic Engineering

EE4491 Probability Theory & Applications

Tutorial No. 4 (Sem 1, AY2021-2022)

1. A CDF for a random variable X has the form

$$F_X(x) = \begin{cases} A [1 - e^{-(x-1)}], & x > 1 \\ 0, & x \le 1 \end{cases}$$

- (a) Determine the value of A.
- (b) Find $F_X(2)$.
- (c) Compute Pr (X > 2).
- (d) Calculate the probability that *X* lies in the interval $1 < X \le 3$.

2. A random variable Y is related to the random variable X by Y = 3X - 4, where X has a PDF

$$f_X(x) = \alpha \exp(-2|x|)$$

- (a) Determine the value of α .
- (b) Find the probability that Y is negative.
- (c) Compute the probability that Y is greater than X.

The random variable Θ is uniformly distributed over the interval $-\frac{\pi}{2} < \Theta < \frac{\pi}{2}$. Find 3. the PDF of the random variable $Y = \sin \Theta$, and compute the probability that Y > 1/2.

A random variable *X* has a CDF of the form 4.

$$F_X(x) = \begin{cases} 0, & x \le 0 \\ x/2, & 0 < x \le 2 \\ 1, & x > 2 \end{cases}$$

- (a) Find the mean value of X.
- (b) Compute the variance of *X*.
- (c) The third central moment of *X*.

5. A Gaussian random voltage V has a mean value of 10 and a variance of 25.

- (a) What is the probability that an observed value is greater than zero?
- (b) Compute the probability $Pr(0 < V \le 10)$.

(c) Calculate the probability that an observed value greater than twice the mean value?

Answer

(1) (a)
$$A = 1$$
; (b) $1 - e^{-1} = 0.6321$; (c) $e^{-1} = 0.3679$; (d) $1 - e^{-2} = 0.8647$

(1) (a)
$$A = 1$$
, (b) $1 = e^{-1} = 0.0321$, (c) $e^{-1} = 0.009158$
(2) (a) $\alpha = 1$; (b) $1 - 0.5e^{-\frac{8}{3}} = 0.9653$; (c) $0.5e^{-4} = 0.009158$
(3) $f_Y(y) = \frac{1}{\pi\sqrt{1-y^2}}, -1 < y < 1$; $Pr(Y > 1/2) = 1/3$

(3)
$$f_Y(y) = \frac{1}{\pi\sqrt{1-y^2}}, -1 < y < 1; \Pr(Y > 1/2) = 1/3$$

(4) (a) 1; (b) 2^{nd} moment 4/3, var = 1/3; (c) 0

(5) (a)
$$1 - Q(2) = 0.9772$$
; (b) $1 - Q(2) - Q(0) = 0.4772$; (c) $Q(2) = 0.0228$