TFY4125 Fysikk Løsningsforslag til eksamen 23. mai 2023

1F) $a/g = (100 \cdot 1000)/(3600 \cdot 6.9 \cdot 9.81) = 0.41.$

2C)
$$\alpha = d\omega/dt = \omega_0 \exp(-t/5\tau)(2t/\tau^2 - t^2/5\tau^3)$$
, så $\alpha = 0$ ved $t = 0$.

3A) $\alpha = d\omega/dt = \omega_0 \exp(-t/5\tau)(2t/\tau^2 - t^2/5\tau^3)$, så $\alpha = 0$ ved $t = 10\tau$, og her er ω maksimal og lik $\omega_0(10^2 \cdot \exp(-2)) = 1.00 \cdot 100 \cdot 0.135^\circ/\text{s} = 13.5^\circ/\text{s}$.

4D) Total rotert vinkel er

$$\phi = \int_0^\infty \omega(t)dt = \omega_0 \int_0^\infty \left(\frac{t}{\tau}\right)^2 e^{-t/5\tau} dt.$$

Vi substituerer $z = t/\tau$, og dermed $dt = \tau dz$, og får

$$\phi = \omega_0 \tau \int_0^\infty z^2 e^{-z/5} dz.$$

Vi bruker oppgitt integral med $\alpha = 1/5$ og får $\phi = \omega_0 \tau \cdot 250 = 1250^\circ$. Dette er 3.47 runder, dvs 3 hele runder.

5E) $\tan \beta = dy/dx = (y_0/x_0)(1 - 3\xi^2)$, som i startposisjonen $\xi = -2$ er $(5/100) \cdot (-11) = -11/20$. Dermed er $|\beta| = \arctan(11/20) = 29^{\circ}$.

6F) Maksimal fart i banens bunnpunkt der $dy/dx = (y_0/x_0)(1 - 3\xi^2) = 0$, dvs ved $\xi = x/x_0 = -1/\sqrt{3}$. (Lokalt topp-punkt ved $\xi = +1/\sqrt{3}$.) I bunnpunktet er $y_b = y_0 \cdot (-1/\sqrt{3} + 1/3\sqrt{3}) = -2y_0/3\sqrt{3} = -0.019$ m. I startposisjonen er $y_s = y_0 \cdot (-2 + 8) = 6y_0 = 0.30$ m. Energibevarelse gir $mg(y_s - y_b) = 7mv^2/10$, dvs $v = \sqrt{10g(y_s - y_b)/7} = \sqrt{10 \cdot 9.81 \cdot 0.319/7}$ m/s = 2.12 m/s = 212 cm/s.

7A) Ved x=0 er banens krumning null (dvs krumningsradien er uendelig stor), og helningsvinkelen er $\beta = \arctan(dy/dx) = \arctan(y_0/x_0) = \arctan(1/20) = 2.86^{\circ}$. Newtons 1. lov normalt på banen gir $N = mg\cos\beta = 0.025 \cdot 9.81 \cdot 0.9987 = 0.24$ N. Banen er her nesten flat, og normalkraften og tyngden er praktisk talt like store.

8E)

$$I_{0} = \int dI_{0} = \int_{0}^{R} \frac{2}{3} \cdot 4\pi \rho_{0} \left(r^{4} - \frac{3r^{5}}{4R} \right) dr$$
$$= \frac{8\pi \rho_{0}}{3} \cdot R^{5} \cdot \left(\frac{1}{5} - \frac{1}{8} \right)$$
$$= \frac{\pi}{5} \rho_{0} R^{5}.$$

9F) Både tyngdens komponent $mg \sin \beta$ langs skråplanet og friksjonskraften $\mu N = \mu mg \cos \beta$ er rettet nedover, dvs mot klossens bevegelse. Dette er altså lineær bevegelse med konstant akselerasjon $a = -g(\sin \beta + \mu \cos \beta)$, starthastighet $v_0 = 2.2$ m/s og startposisjon $x_0 = 0$. Da er $x(t) = v_0 t + at^2/2$ og $y(t) = v_0 + at$. Klossen snur ved tidspunktet $t_s = -v_0/a$, som gir

 $x(t_s) = -v_0^2/a + v_0^2/2a = -v_0^2/2a = v_0^2/[2g(\sin\beta + \mu\cos\beta)] = 2.2^2/[2\cdot 9.81\cdot (0.1736 + 0.15\cdot 0.9848)]$ m = 0.77 m = 77 cm.

- 10F) Pga impulsbevarelse er farten $v_1 = mv_0/(m+2m) = v_0/3$ like etter kollisjonen. Kinetisk energi like etter kollisjonen er $K_1 = 3mv_1^2/2 = mv_0^2/6$. Dette tilsvarer (det negative) friksjonsarbeidet som bordplata gjør på klossene, dvs $W_f = f \cdot s = \mu N \cdot s = \mu \cdot 3mg \cdot s$, der s er lengden de to klossene glir etter kollisjonen. Dermed: $s = v_0^2/(18\mu g) = [2.2^2/(18 \cdot 0.15 \cdot 9.81)]$ m = 0.18 m = 18 cm.
- **11C)** Ballens impuls reduseres fra mv_0 til null mellom t=0 og $t=\tau$:

$$mv_0 = \int_0^{\tau} F(t)dt = \frac{1}{2}F_0\tau,$$

dvs $F_0\tau=2mv_0$. Impulsøkningen mellom $t=\tau$ og $t=2\tau$ er:

$$\int_{\tau}^{2\tau} \left(\frac{t - 2\tau}{\tau} \right)^2 dt = \frac{1}{3} F_0 \tau = \frac{2mv_0}{3}.$$

Ballens slutthastighet er dermed $2v_0/3 = 5.6$ m/s.

12A) En liten bit av stanga i posisjon x og med lengde dx har masse $dm = \lambda(x) dx$ og dermed treghetsmoment $dI = dm x^2 = \lambda_0 x^3 dx/L$, slik at

$$I = \int dI = \frac{\lambda_0}{L} \int_0^L x^3 dx = \frac{1}{4} \lambda_0 L^3.$$

- 13C) Avstanden fra hver av massene til massesenteret (CM) midt i trekanten er $d = L/(2\cos 30^\circ) = L/\sqrt{3}$ slik at $I_0 = 3 \cdot md^2 = 3mL^2/3 = mL^2$.
- **14F)** $I = 2 \cdot mL^2$.
- **15D)** Total dreieimpuls er $\boldsymbol{L} = \boldsymbol{L}_s + \boldsymbol{L}_b$ med indre dreieimpuls (spinn) $\boldsymbol{L}_s = -I_0\omega_0\hat{x} = -(md^2\omega_0/10)\hat{x}$ og banedreieimpuls $\boldsymbol{L}_b = \boldsymbol{R}_{CM} \times m\boldsymbol{V}_0 = bmV_0\hat{z}$. Dermed er $L = |\boldsymbol{L}| = \sqrt{L_s^2 + L_b^2}$. Med aktuelle tallverdier innsatt: $L_s = 0.140 \cdot 0.052^2 \cdot 78/10$ Js = 0.00295 Js og $L_b = 1.78 \cdot 0.140 \cdot 1.40$ Js = 0.349 Js. Her er L_s så mye mindre enn L_b at vi kan sette $L \simeq L_b = 0.35$ Js.
- **16F)** Kula har en vinkelhastighet $\omega_0 = 78 \text{ rad/s}$ som er betydelig større enn det som tilsvarer ren rulling, $2V_0/d = 53.8 \text{ rad/s}$. Det betyr at kulas kontaktpunkt mot underlaget har en fart i negativ y-retning, med absoluttverdi $\omega_0 d/2 V_0 = (78 \cdot 0.026 1.40) \text{ m/s} = 0.63 \text{ m/s} = 63 \text{ cm/s}$.
- 17B) Newtons 2. lov for translasjon og rotasjon (om kulas massesenter) gir hhv $F\Delta t = mV_0$ og $F\Delta t \cdot z = (md^2/10) \cdot \omega_0$. Her er z høyden til kraftens angrepspunkt, dvs kraftens arm. Det gir $z = d^2\omega_0/10V_0 = (0.052^2 \cdot 78)/(10 \cdot 1.40)$ m = 0.015 m = 15 mm. Til dette må vi legge kulas radius 26 mm, som betyr at kraften virket 41 mm over bordflaten.
- **18B)** $f_0 = \omega_0/2\pi = \sqrt{k/m}/2\pi = \sqrt{400/4.00}/2\pi \text{ Hz} = 1.59 \text{ Hz}.$
- **19B)** Loddet svinger harmonisk med eksponentielt avtagende amplitude $A(t) = A(0) \exp(-\gamma t)$ med $\gamma = b/2m$. Tiden vi skal finne fastlegges derfor av ligningen $\exp(-\gamma t) = 1/3$ eller $t = \ln 3/\gamma = 1/3$

- $\ln 3 \cdot (2m/b) = 2 \ln 3 \cdot 4.00/0.020 \text{ s} = 439 \text{ s}.$
- **20C)** Systemet drives på resonans, dvs med en ytre kraft med $\omega = \omega_0 = 10 \text{ s}^{-1}$. Da er utsvingsamplituden $x_0 = F_0/(2m\gamma\omega_0)$ slik at hastighetsamplituden er $v_0 = \omega_0 x_0 = F_0/(2m\gamma) = F_0/b = 0.040/0.020$ m/s = 2.0 m/s.
- 21E) Symmetrisk ladningsfordeling gir null elektrisk dipolmoment.
- **22A)** $V = (Q/4\pi\varepsilon_0 d) \cdot (1/2 + 1/8 1/4 1/6)$, dvs A = 5/24.
- **23D)** De to negative ladningene bidrar mer enn de to positive til totalt elektrisk felt på y-aksen, slik at E peker i negativ y-retning.
- **24C)** Alle bidrag peker i x-retning, så med like store ladninger holder det å addere $1/r^2$ med fortegn: $E_x \sim 1/2^2 + 1/8^2 1/4^2 1/6^2 = (144 + 9 36 16)/576 = 101/576 > 0$.
- **25F)** Vi summerer opp U_{ij} for de 6 unike ladningsparene: $U = (Q^2/4\pi\varepsilon_0 d) \cdot (1 \cdot 1/2 2 \cdot 1/2 2 \cdot 1/4 + 1 \cdot 1/6)$, dvs B = (6 12 6 + 2)/12 = -10/12 = -5/6.
- **26D)** $p = \int dp = \int_0^L 2x \lambda(x) dx = (2\lambda_0/L^2) \int_0^L x^3 dx = (2\lambda_0/L^2) \cdot L^4/4 = \lambda_0 L^2/2.$
- **27B)** Vi kaller det ytre feltet E_0 . Da er feltet inne i den dielektriske plata for det første $E = E_0/\varepsilon_r$ og for det andre $E = E_0 E_i$. Her er $E_i = \sigma_i/\varepsilon_0$ det induserte feltet pga den induserte overflateladningen $\pm \sigma_i$ pr flateenhet på platas overflater. Kombinerer vi alt dette, får vi $\sigma_i = \varepsilon_0 E_i = \varepsilon_0 (E_0 E) = \varepsilon_0 E_0 (1 1/\varepsilon_r)$, som med $E_0 = 5500 \text{ V/m}$ og $\varepsilon_r = 3.5 \text{ blir } \sigma_i = 8.85 \cdot 10^{-12} \cdot 5500 \cdot (1 1/3.5) \text{ C/m}^2 = 3.48 \cdot 10^{-8} \text{ C/m}^2 = 35 \text{ nC/m}^2$.
- **28B)** $C = (1/2.0 + 1/5.0 + 1/7.0)^{-1} \text{ nF} = 1.2 \text{ nF}.$
- **29E)** C = (2.0 + 5.0 + 7.0) nF = 14 nF.
- **30D)** $Q = CV = 5.0 \cdot 10^{-9} \cdot 30 \cdot 10^{3} \text{ C} = 0.15 \text{ mC}.$
- **31E)** Ladning på kondensatoren: $Q(t) = Q_0(1 \exp(-t/RC))$. Gir strøm $I(t) = dQ/dt = (Q_0/RC) \exp(-t/RC)$. Her er $Q_0 = V_0C$ siden I = 0 for $t \gg RC$, slik at da er spenningen over kondensatoren lik den påtrykte spenningen V_0 . Vi må derfor finne tidspunktet t som tilsvarer at $12 = 30 \exp(-t/RC)$, dvs $t = RC \ln(30/12) = 1000 \cdot \ln 2.5$ s = 916 s.
- **32E)** Energibevarelse gir farten v etter akselerasjon med spenning V=38 kV: $mv^2/2=2eV$, dvs $v=\sqrt{4eV/m}=\sqrt{(4\cdot 1.6\cdot 10^{-19}\cdot 38000)/(40\cdot 1.66\cdot 10^{-27})}$ m/s = $6.21\cdot 10^5$ m/s. Newtons 2. lov, med kraft F=qvB og sentripetalakselerasjon v^2/r , gir deretter baneradius $r=mv/2eB=(40\cdot 1.66\cdot 10^{-27}\cdot 6.21\cdot 10^5)/(2\cdot 1.6\cdot 10^{-19}\cdot 0.7)$ m = 0.18 m = 18 cm.
- **33C)** Bruker uttrykk fra formelark og finner $B = \mu_0 I R^2/[2(z^2 + R^2)^{3/2}]$ som med z = 2R blir $B = \mu_0 I/[2R \cdot 5^{3/2}] = (4\pi \cdot 10^{-7} \cdot 1.5)/(2 \cdot 0.15 \cdot 11.18)$ T = 0.56 μ T.

- **34A)** Magnetisk dipolmoment er $m = IA = 1.5 \cdot \pi \cdot 0.15^2$ Am² = 0.106 Am², i positiv z-retning. Med et ytre magnetfelt B_0 med feltstyrke 5.0 T langs x-aksen er dreiemomentet på lederen $\tau = mB_0 = 0.53$ Nm.
- **35B)** Tidsavhengig omsluttet magnetisk fluks er $\phi(t) = B_0 \pi R^2 \cos \omega t$, og indusert spenning blir $V(t) = -d\phi/dt = \omega B_0 \pi R^2 \sin \omega t$, med amplitude $\omega B_0 \pi R^2 = (2\pi/0.026) \cdot 0.7 \cdot \pi \cdot 0.15^2 \text{ V} = 12 \text{ V}.$
- **36A)** Kretsens totale motstand er $(1/R + 1/R)^{-1} = R/2$ med $R = 21~\Omega$, så strømmen blir $I(t) = I_0 \sin \omega t$ med $I_0 = 2V_0/R$. Midlere effekt blir $\langle P \rangle = V_0 \cdot (2V_0/R) \cdot \langle \sin^2 \omega t \rangle = V_0^2/R$ da middelverdien av $\sin^2 \omega t$ er 1/2. Med tallverdier: $\langle P \rangle = 25^2/21~\mathrm{W} = 30~\mathrm{W}$.
- **37C)** $V_2 V_1 = V_0[\sin(\omega t + \pi/6) \sin \omega t]$ som med oppgitt formel kan skrives som $V_2 V_1 = 2V_0\cos(\omega t + \pi/12) \cdot \sin(\pi/12) = 2 \cdot 25 \cdot 0.2588 \cdot \cos(\omega t + \pi/12)$. Amplituden er derfor 13 V.
- **38B)** $T = 2\pi/\omega_0 = 2\pi\sqrt{LC} = 2\pi \cdot 10 \text{ ms} = 63 \text{ ms}.$
- **39A)** Ladningsamplituden avtar eksponentielt med tiden, $Q_0(t) = A \exp(-\gamma t)$, med $\gamma = R/2L$. Dermed er $Q_0(80) = 2.50 \cdot \exp[-(0.020 \cdot 80)/(2 \cdot 0.400)]$ mC = 0.34 mC.
- **40D)** Svingekretsen drives på resonans, med $\omega = \omega_0 = 1/\sqrt{LC} = 100 \text{ s}^{-1}$. Da er strømamplituden $I_0 = \omega_0 Q_0 = (\omega_0 V_0/L)/(2\gamma\omega_0) = V_0/R = 50/20 \text{ A} = 2.5 \text{ A}$.