```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import tensorflow
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Layer, Dense, Dropout
from sklearn.preprocessing import OneHotEncoder
data = pd.read_csv("thyroidDF.csv")
data.head()
```

	age	sex	on_thyroxine	query_on_thyroxine	on_antithyroid_meds	sick	pregnant	thyroid_surge
0	29	F	f	f	f	f	f	
1	29	F	f	f	f	f	f	
2	41	F	f	f	f	f	f	
3	36	F	f	f	f	f	f	
4	32	F	f	f	f	f	f	

5 rows × 31 columns

data.shape

(9172, 31)

data.isnull().sum()

age	0
sex	307
on_thyroxine	0
query_on_thyroxine	0
on_antithyroid_meds	0
sick	0
pregnant	0
thyroid_surgery	0
I131_treatment	0
query_hypothyroid	0
query_hyperthyroid	0
lithium	0
goitre	0
tumor	0
hypopituitary	0
psych	0
TSH_measured	0
TSH	842
T3_measured	0
Т3	2604
TT4_measured	0
TT4	442
T4U_measured	0

```
T4U
                        809
FTI_measured
                          0
                        802
FTI
TBG_measured
                          0
TBG
                       8823
referral_source
                          0
target
                          0
patient id
                          0
dtype: int64
```

data.drop(['TSH measured','T3 measured','TT4 measured','TFTI measured','TBG measured','referral so

	age	sex	on_thyroxine	query_on_thyroxine	on_antithyroid_meds	sick	pregnant	thyroid_su
0	29	F	f	f	f	f	f	
1	29	F	f	f	f	f	f	
2	41	F	f	f	f	f	f	
3	36	F	f	f	f	f	f	
4	32	F	f	f	f	f	f	
9167	56	М	f	f	f	f	f	
9168	22	М	f	f	f	f	f	
9169	69	М	f	f	f	f	f	
9170	47	F	f	f	f	f	f	
9171	31	М	f	f	f	f	f	

9172 rows × 23 columns

```
diagnoses ={'A': 'hyperthyroid conditions',
            'B': 'hyperthyroid conditions',
            'C': 'hyperthyroid conditions',
            'D': 'hyperthyroid conditions',
            'E': 'hypothyroid conditions',
            'F': 'hypothyroid conditions',
            'G': 'hypothyroid conditions',
            'H': 'hypothyroid conditions',
            'I': 'binding protein',
            'J': 'binding protein',
            'K': 'general health',
            'L': 'replacement therapy',
            'M': 'replacement therapy',
            'N': 'replacement therapy',
            '0': 'antithyroid treatment',
            'P': 'antithyroid treatment',
            'Q': 'antithyroid treatment',
            'R': 'miscellaneous',
            'S': 'miscellaneous',
            'T': 'miscellaneous'}
data['target']=data['target'].map(diagnoses)
data.dropna(subset=['target'],inplace=True)
```

```
data['target'].value_counts()
```

```
hypothyroid conditions 593 general health 436 binding protein 376 replacement therapy 336 miscellaneous 281 hyperthyroid conditions 182 antithyroid treatment 19 Name: target, dtype: int64
```

data[data.age>100]

age sex on_thyroxine query_on_thyroxine on_antithyroid_meds sick pregnant thyroid_surger

0 rows × 31 columns

data.info()

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 2223 entries, 4 to 9169
Data columns (total 31 columns):
```

#	Column	Non-Null Count	Dtype				
0	age	2223 non-null	int64				
1	sex	2133 non-null	object				
2	on_thyroxine	2223 non-null	object				
3	query_on_thyroxine	2223 non-null	object				
4	on_antithyroid_meds	2223 non-null	object				
5	sick	2223 non-null	object				
6	pregnant	2223 non-null	object				
7	thyroid_surgery	2223 non-null	object				
8	I131_treatment	2223 non-null	object				
9	query_hypothyroid	2223 non-null	object				
10	query_hyperthyroid	2223 non-null	object				
11	lithium	2223 non-null	object				
12	goitre	2223 non-null	object				
13	tumor	2223 non-null	object				
14	hypopituitary	2223 non-null	object				
15	psych	2223 non-null	object				
16	TSH_measured	2223 non-null	object				
17	TSH	2073 non-null	float64				
18	T3_measured	2223 non-null	object				
19	T3	1629 non-null	float64				
20	TT4_measured	2223 non-null	object				
21	TT4	2126 non-null	float64				
22	T4U_measured	2223 non-null	object				
23	T4U	2045 non-null	float64				
24	FTI_measured	2223 non-null	object				
25	FTI	2046 non-null	float64				
26	TBG_measured	2223 non-null	object				
27	TBG	98 non-null	float64				
28	referral_source	2223 non-null	object				
29	target	2223 non-null	object				
30	<pre>patient_id</pre>	2223 non-null	int64				
<pre>dtypes: float64(6), int64(2), object(23)</pre>							

dtypes: float64(6), liit64(2), object(25)

memory usage: 555.8+ KB

```
x.isnull().sum()
```

age 0 sex 0 on_thyroxine 0

query_on_thyroxine 0 on_antithyroid_meds 0 sick 0 0 pregnant 0 thyroid_surgery I131_treatment 0 query_hypothyroid 0 query_hyperthyroid lithium goitre tumor hypopituitary psych TSH_measured 0 TSH 0 T3_measured 0 Т3 0 TT4_measured 0 0 TT4 0 T4U_measured T4U 0 FTI_measured 0 0 FTI 0 TBG_measured 0 TBG 0 referral_source target dtype: int64

Filling Null Values

x=data.iloc[:,0:-1]
y= data.iloc[:,-1]

Х

```
sex on_thyroxine query_on_thyroxine on_antithyroid_meds sick pregnant thyroid_su
       4
             32
x['sex'].unique()
     array(['F', 'M', nan], dtype=object)
x['sex'].replace(np.nan, 'F',inplace=True)
x['sex'].value_counts()
     F
          1687
           536
     Name: sex, dtype: int64
x['age']=x['age'].astype('int')
x['sex']=x['sex'].astype('string')
x['on_thyroxine']=x['on_thyroxine'].astype('string')
x['query_on_thyroxine']=x['query_on_thyroxine'].astype('string')
x['on_antithyroid_meds']=x['on_antithyroid_meds'].astype('string')
x['sick']=x['sick'].astype('string')
x['pregnant']=x['pregnant'].astype('string')
x['thyroid_surgery']=x['thyroid_surgery'].astype('string')
x['I131_treatment']=x['I131_treatment'].astype('string')
x['query_hypothyroid']=x['query_hypothyroid'].astype('string')
x['query_hyperthyroid']=x['query_hyperthyroid'].astype('string')
x['lithium']=x['lithium'].astype('string')
x['goitre']=x['goitre'].astype('string')
x['tumor']=x['tumor'].astype('string')
x['hypopituitary']=x['hypopituitary'].astype('string')
x['psych']=x['psych'].astype('string')
x['TSH_measured']=x['TSH_measured'].astype('string')
x['TSH']=x['TSH'].astype('float')
x['T3_measured']=x['T3_measured'].astype('string')
x['T3']=x['T3'].astype('float')
x['TT4_measured']=x['TT4_measured'].astype('string')
x['TT4']=x['TT4'].astype('float')
x['T4U_measured']=x['T4U_measured'].astype('string')
x['T4U']=x['T4U'].astype('float')
x['FTI_measured']=x['FTI_measured'].astype('string')
x['FTI']=x['FTI'].astype('float')
x['TBG_measured']=x['TBG_measured'].astype('string')
x['TBG']=x['TBG'].astype('float')
x['referral_source']=x['referral_source'].astype('string')
#x['patient_id']=x['patient_id'].astype('float')
x['target']=x['target'].astype('string')
x.info()
     <class 'pandas.core.frame.DataFrame'>
     Int64Index: 2223 entries, 4 to 9169
     Data columns (total 30 columns):
                               Non-Null Count Dtype
          Column
                               -----
      0
          age
                               2223 non-null
                                               int64
      1
                               2223 non-null
          sex
                                               string
      2
          on_thyroxine
                               2223 non-null
                                               string
      3
                               2223 non-null
          query_on_thyroxine
                                               string
```

string

on_antithyroid_meds 2223 non-null

```
sick
5
                      2223 non-null string
  pregnant
                     2223 non-null string
6
                   2223 non-null string
7 thyroid_surgery
8 I131_treatment
                    2223 non-null string
  query_hypothyroid 2223 non-null string
9
10 query_hyperthyroid 2223 non-null string
11 lithium
                     2223 non-null string
12 goitre
                     2223 non-null string
13 tumor
                     2223 non-null string
14 hypopituitary
                    2223 non-null string
                     2223 non-null string
15 psych
16 TSH_measured
                   2223 non-null string
                     2073 non-null float64
17 TSH
                   2223 non-null string
18 T3 measured
                     1629 non-null float64
19 T3
                   2223 non-null string
20 TT4_measured
                     2126 non-null float64
21 TT4
                   2223 non-null string
2045 non-null float64
22 T4U_measured
23 T4U
   FTI_measured 2223 non-null string FTI 2046 non-null float64
24
25
26 TBG_measured
                   2223 non-null string
27 TBG
                     98 non-null float64
28 referral_source 2223 non-null string
29 target
                      2223 non-null string
```

dtypes: float64(6), int64(1), string(23)

memory usage: 538.4 KB

from sklearn.preprocessing import LabelEncoder lb = LabelEncoder()

from sklearn.preprocessing import OrdinalEncoder, LabelEncoder ordinal_encoder = OrdinalEncoder(dtype='int64') #x.iloc[:, 1:16] = ordinal_encoder.fit_transform(x.iloc[:, 1:16])

x.apply(lb.fit_transform)

	age	sex	on_thyroxine	query_on_thyroxine	on_antithyroid_meds	sick	pregnant	thyroid_su
4	29	0	0	0	0	0	0	
18	60	0	1	0	0	1	0	
32	38	1	0	0	0	0	0	
33	68	0	1	0	0	0	0	
39	52	0	1	0	0	0	0	
9153	61	1	0	0	0	0	0	
9157	57	1	0	0	1	0	0	
9158	61	1	0	0	0	0	0	
9162	33	0	0	0	0	0	0	
9169	66	1	0	0	0	0	0	

2223 rows × 30 columns

#x.iloc[:, 16:29] = lb.fit_transform(x.iloc[:, 16:29])

Х

	age	sex	on_thyroxine	query_on_thyroxine	on_antithyroid_meds	sick	pregnant	thyroid_su
4	32	F	f	f	f	f	f	
18	63	F	t	f	f	t	f	
32	41	М	f	f	f	f	f	
33	71	F	t	f	f	f	f	
39	55	F	t	f	f	f	f	
9153	64	М	f	f	f	f	f	
9157	60	М	f	f	t	f	f	
9158	64	М	f	f	f	f	f	
9162	36	F	f	f	f	f	f	
9169	69	М	f	f	f	f	f	

2223 rows × 30 columns

x.replace(np.nan, '0', inplace=True)

Х

```
age sex on_thyroxine query_on_thyroxine on_antithyroid_meds sick pregnant thyroid_su
       4
             32
       18
             63
                   F
                                 t
                                                     f
                                                                                t
                                                                                          f
       32
             41
                                 f
       22
label_encoder = LabelEncoder()
y_dt = label_encoder.fit_transform(y)
x= label_encoder.fit_transform(x)
      9103
y=pd.DataFrame(y_dt, columns=['target'])
У
#x=data.iloc[:,0:-1]
#y=data.iloc[:,-1]
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.20,random_state=0)
from imblearn.over_sampling import SMOTE
y_train.value_counts()
os = SMOTE()
x_bal,y_bal=os.fit_resample(x_train,y_train)
x_test_bal,y_test_bal=os.fit_resample(x_test,y_test)
from imblearn.over_sampling import SMOTE
from imblearn.over_sampling import SMOTE
sm = SMOTE(random_state = 2)
x_train_res, y_train_res = sm.fit_resample(x_train, y_train)
from imblearn.over_sampling import RandomOverSampler
sm=RandomOverSampler(random_state=2)
x_train_res, y_train_res = sm.fit_resample(x_train, y_train)
x_train.info()
x_train.info
y_train
```

#checking correlation using Heatmap
import seaborn as sns corrmat = x.corr()
f, ax = plt.subplots(figsize = (9, 8))

sns.heatmap (corrmat, ax = ax, cmap "Y1GnBu", linewidths = 0.1)