CS 4980/6980: Introduction to Data Science

© Spring 2018

Lecture 14: Decision Tree Example and Covariance

INSTRUCTOR: DANIEL L. PIMENTEL-ALARCÓN Scribed by: Nekhena Campbell & Benjamin Crom

This is preliminary work and has not been reviewed by instructor. If you have comments about typos, errors, notation inconsistencies, etc., please email the scribers.

14.1 Last Time

- (a) Random Forests
- (b) Decision Trees

14.2 Is my GF/BF cheating?

Age	23	20	33	23	25	32	27	21	25	27	26	29	47	$\begin{cases} 1 & \text{if Age} > 28 \\ 0 & \text{if Age} < 28 \end{cases}$
Length	1/2	2	7	5	6	10	3	4	3/2	3	4	1/3	1	$\begin{cases} 1 & \text{if Length} > 1 \\ 0 & \text{if Length} < 1 \end{cases}$
Children	0	0	2	1	0	3	0	0	0	0	1	0	6	$\begin{cases} 1 & \text{if } > 1 \\ 0 & \text{if } < 1 \end{cases}$
Hours away/day	20	7	10	7	13	2	8	7	13	11	8	4	12	$\begin{cases} 1 & \text{if } > 10 \\ 0 & \text{if } < 10 \end{cases}$
Trips/year	2	3	5	2	2	5	10	4	3	2	0	2	6	$\begin{cases} 1 & \text{if } > 3 \\ 0 & \text{if } < 3 \end{cases}$
Previous offenses	2	1	0	2	0	0	2	3	0	4	0	0	13	$\begin{cases} 1 & \text{if } > 1 \\ 0 & \text{if } < 1 \end{cases}$
Gender	M 1	M	M	F 1	F 0	F	F 0	M 0	M	F 0	F	M	M	
Is Cheating	1	0	1	1	U	1	U	U	0	U	I	1	1	

														$H(x_i)$	\hat{P}_1
x_1 — AGE	0	0	1	0	0	1	0	0	0	0	0	1	1	.89	4/13
x_2 — LENGTH	0	1	1	1	1	1	1	1	1	1	1	0	1	.619	11/13
x_3 — CHILDREN	0	0	1	1	0	1	0	0	0	0	1	0	1	.9612	5/13
x_4 — HOURS	1	0	0	0	1	0	0	0	1	1	0	0	1	.96	5/13
x_5 — TRIPS	0	0	1	0	0	1	1	1	0	0	0	0	1	.9612	5/13
x_6 — PREV	1	1	0	1	0	0	1	1	0	1	0	0	1	.995	7/13 ← ★
x_6 — GENDER	0	0	0	1	1	1	1	0	0	1	1	0	0	.995	6/13 ←

Compute the entropy for each of these features:

- (a) Computer count number of 1 out of all variables
- (b) Find Bernoulli random variable

$$H(x_3) = \hat{P}_0 \log_2 \frac{1}{\hat{P}_0} + \hat{P}_1 \log_2 \frac{1}{\hat{P}_1}$$
$$= \frac{8}{13} \log_2 \frac{13}{8} + \frac{5}{13} \log_2 \frac{13}{5}$$
$$= 0.962$$

Thus, previous offenses and gender are both about equally informative.

All zeros in previous offenses:

							$H(x_i)$	\hat{P}_1
* Age	1	0	1	0	0	1	1	3/6
Length	1	1	1	1	1	0	< 1	5/6
Children	1	0	1	0	1	0	1	3/6
\rightarrow Hours	0	1	0	1	0	0	< 1	2/6
Trips	1	0	1	0	0	0	< 1	2/6
Gender	0	1	1	0	1	0	1	3/6
Cheating	1	0	1	0	1	1		

All <u>ones</u> in previous offenses:

								$H(x_i)$	\hat{P}_1
⋆ Age	0	0	0	0	0	0	1		1/7
Length	0	1	1	1	1	1	1		6/7
Children	0	0	1	0	0	0	1		2/7
\rightarrow Hours	1	0	0	0	0	1	1	0.98	3/7★
Trips	0	0	0	1	1	0	1	0.98	3/7★
Gender	0	0	1	1	0	1	0	0.98	3/7★
Cheating	1	0	1	0	0	0	1		

$\star = \text{informative variable}$

The closer to 1/2 has a large entropy; the maximum you can have is attained with 1/2.

We use the information above to determine the next question in our decision tree by selecting the most informative variable. For our data, we can choose age, children or hours:

- (a) Hours can be overfitting
- (b) Age is a good choice but we may need to add another layer of questions.

14.3 Covariance [matrices]

Main Goal: Find that variables are related

14.3.1 Random Vectors

Let x be a random variable distributed gaussian(0,1):

$$random \rightarrow x \sim \mathcal{N}(0, 1)$$

$$\parallel$$

$$y \sim \mathcal{N}(0, 1)$$

Variance being 0 makes it deterministic and no longer random:

deterministic
$$\to x \sim \mathcal{N}(0,0)$$

 $x = 0$

Which is better? y = 0.05 vs. y = 0

if y and x are equal: $y|x \sim \mathcal{N}(x, 0)$

if y and x are independent: $y|x \sim \mathcal{N}(0, 1)$

 \exists a strong correlation between x, y:

$$x_1 = 0.05$$
 $y_1 = 0.05$
 $x_2 = 0.07$ $y_2 = 0.07$
 $x_3 = -0.03$ $y_3 = -0.03$
 $x_4 = -0.09$ $y_4 = -0.09$

not so strongly correlated:

$$x_1 = 0.05$$
 $y_1 = -0.1$
 $x_2 = 0.07$ $y_1 = 0.09$
 $x_3 = -0.03$ $y_1 = 0.02$
 $x_4 = -0.09$ $y_1 = 0.05$

$$\boldsymbol{Z} = \begin{bmatrix} x \\ y \end{bmatrix}$$

14.4 Wrap up

14.4.1 Today

- (a) Example of Decision Trees
- (b) Example of Random Forests

14.4.2 Next

(a) Correlation