Redes Neuronais

Aprendizagem Simbólica versus Neuronal

Aprendizagem Simbólica

- Indução de Regras e Árvores de decisão
- trabalha com combinações discretas de valores de atributos
- usa operadores lógico/relacionais (=, >, <)

Aprendizagem Neuronal

- trabalha ajustando pesos não-lineares e contínuos das suas entradas
- usa operadores numéricos (×, +)
- faz uma busca num espaço de granularidade mais fino do que os algoritmos de indução de regras

Redes Neuronais

Inspiradas no cérebro humano que consiste num enorme número de neurónios com altíssima inter-conectividade

São constituídas por uma série de nós (ou neurónios) interligados (através de conexões com pesos numéricos) arranjados em níveis

Modelo Matemático do Neurónio

Cada neurónio na rede aplica aos dados duas funções:

Função de transferência:

- Faz a soma dos produtos das entradas (X_i) pelos pesos correspondentes (W_i)
- adiciona um viés

Função de ativação $\varphi(x)$

 para obter a sua saída que será a entrada para os neurónios do nível seguinte aos quais está ligado

Função de Ativação

Decide se um neurónio deve ser ativado ou não, ou seja, se a informação que o neurónio está a receber é relevante para a previsão ou se deve ser ignorada

Função sigmoide

$$\varphi = \frac{1}{1 + e^x}$$

A f. de ativação permite que a rede resolva problemas não lineares

Funções de ativação mais populares

Rede Neuronal – Caixa Negra

Uma rede neural é um processador que calcula uma variável de saída y em função de variáveis de entrada $x_1, x_2, ..., x_n$

- As variáveis de entrada correspondem aos atributos previsores da amostra de dados
- A variável de saída pode ser discreta (classificação) ou contínua (regressão)

Número de neurónios na camada de Saída

Depende da variável objetivo

- Regressão: um único neurónio gera as previsões de números contínuos
- Classificação binária: Um único neurónio gera 1/0 indicando a classe
- Classificação multi-classe: número de neurónios igual ao número de classes, cada um representando a saída de uma classe

Caraterização das Redes Neuronais

Topologia – define o tipo de ligações entre os nós da rede

- Redes feedforward redes só com ligações para a frente
- Redes recurrent redes com conexões de realimentação

Arquitetura — define o número de níveis intermédios

- **Redes Perceptrão** não existe qualquer nível intermédio, apenas o nível de entrada e de saída
- Redes Perceptrão Multi-nível apresentam um ou mais níveis intermédios

Rede Perceptrão: um só Nível

Permite classificar apenas padrões linearmente separáveis (padrões em lados opostos de um hiperplano)

Limitações Rede Perceptrão

Rede perceptrão não consegue representar a função XOR

Rede Perceptrão Multi-níveis (MLP)

- A rede MLP é composta por uma camada de entrada, uma ou mais camadas intermédias (ou ocultas) e uma camada final camada de saída
- Cada camada, exceto a camada de saída está totalmente conectada à próxima camada

Região de Decisão versus Estrutura da Rede

Estrutura		Tipo de Região de Decisão	
Uma Camada		Semi-plano	8 8 8
Duas camadas		Regiões convexas abertas ou fechadas	A B A A
Três Camadas		Qualquer Tipo de Região	B B B B B B B B B B B B B B B B B B B

Rede Neuronal

- É constituída por uma série de nós (ou neurónios)
- arranjados em níveis/camadas
- interligados (através de conexões com pesos numéricos)

Aprendizagem

O processo de aprendizagem da rede consiste no **ajustamento dos pesos** das ligações entre os neurónios durante o processo de treino da rede

Usa-se:

- um conjunto de treino para evitar ajuste exagerado ou deficiente dos pesos ao problema
- um conjunto de validação para avaliar o desempenho da rede durante o treino

Processo de Aprendizagem da Rede Neuronal

A Rede aprende por múltiplas iterações de propagação para frente e para trás

Este ciclo é repetido para cada registo dos dados

Algoritmo de Aprendizagem Retroativa

Backpropagation Algorithm

Inicializa aleatoriamente os pesos da rede

Repete

- 1. calcula o output y(x) para os inputs $x_1, x_2, ..., x_n$ e pesos atuais da rede
- 2. determina o erro da previsão
- 3. propaga o erro para trás na rede através da adaptação dos pesos da rede

Até (erro atingir um mínimo ou um limite máximo de iterações)

Atualização dos pesos da rede

A atualização dos pesos da rede faz-se através da minimização do erro dado pela função:

- soma do quadrado dos erros para a regressão
- taxa de acerto para classificação

O treino da rede pode ser feito usando:

- Abordagem batch (Batch Gradient Descent)
 a atualização dos pesos é feita após a apresentação à rede de todos os casos do conj^{to} de treino
- Abordagem semi-batch (Mini Batch Gradient Descent)

 a atualização dos pesos é feita depois da rede aprender alguns casos do conj^{to} de treino: 5, 10, 50 linhas, etc.
- Abordagem online (Stochastic Gradient Descent)
 a atualização dos pesos é feita após a apresentação de cada caso do conj^{to} de treino

Exemplo funcionamento da rede neuronal

Data Inputs and Weights:

$x_0 = 1.0$	$W_{0A} = 0.5$	$W_{0B} = 0.7$	$W_{0Z} = 0.5$
$x_1 = 0.4$	$W_{1A} = 0.6$	$W_{1B} = 0.9$	$W_{AZ} = 0.9$
$x_2 = 0.2$	$W_{2A} = 0.8$	$W_{2B} = 0.8$	$W_{BZ} = 0.9$
$x_3 = 0.7$	$W_{3A} = 0.6$	$W_{3B} = 0.4$	

$$net_A = \sum_i W_{iA} x_{iA} = W_{0A}(1) + W_{1A} x_{1A} + W_{2A} x_{2A} + W_{3A} x_{3A}
= 0.5 + 0.6(0.4) + 0.8(0.2) + 0.6(0.7) = 1.32
f(net_A) = $\frac{1}{1 + e^{1.32}} = 0.7892$$$

$$net_B = \sum_i W_{iB} x_{iB} = W_{0B}(1) + W_{1B} x_{1B} + W_{2B} x_{2B} + W_{3B} x_{3B}$$
$$= 0.7 + 0.9(0.4) + 0.8(0.2) + 0.4(0.7) = 1.5$$

$$f(\text{net}_B) = \frac{1}{1 + e^{-1.5}} = 0.8176$$

$$net_Z = \sum_i W_{iZ} x_{iZ} = W_{0Z}(1) + W_{AZ} x_{AZ} + W_{BZ} x_{BZ}
= 0.5 + 0.9(0.7892) + 0.9(0.8176) = 1.9461$$

Input Attributes: x_1, x_2, x_3

Predicted Value: 0.8750

$$f(\text{net}_Z) = \frac{1}{1 + e^{-1.9461}} = 0.8750$$

Arquitetura típica da Rede MLP para Regressão

- Input neurons: um por cada atributo de previsão
- Hidden layers: dependente do problema, tipicamente entre 1 e 5
- neurons per hidden layer: dependente do problema, tipicamente entre 10 e 100
- Output neurons: 1 por cada variável a prever
- Hidden activation function: ReLU
- Output activation: ReLU (se saída positiva) /softplus logistica/tanh (se saída limitada a um intervalo de valores)
- Loss function: MSE or MAE

Arquitetura típica da Rede MLP para Classificação

- Input neurons: um por cada atributo de previsão
- Hidden layers: dependente do problema, tipicamente entre 1 e 5
- neurons per hidden layer: dependente do problema, tipicamente entre 10 e 100
- Output neurons: Classificação binária 1 neurónio
 Classificação multi-classe 1 neurónio por label
- Hidden activation function: ReLU
- Output activation: Classificação binária Logistic
 Classificação multi-classe Softmax
- Loss function: Cross entropy

Implementação de MLPs com Keras

- Rede é o foco do Keras
- Uma rede em Keras é uma sequência de camadas Sequencial
- Sequencial: é uma pilha linear de camadas

Passos para a construção de redes em Keras:

- 1. Definir a rede: Criar uma rede sequencial e adicionar camadas configuradas
- 2. Compilar a rede: Especificar a função de perda (loss function), otimizadores e chamar o método compile()
- 3. Ajustar a rede: Treinar a rede numa amostra de dados chamando a função fit() no modelo
- 4. Fazer previsões: Usar a rede para gerar previsões sobre novos dados chamando as funções evaluate() ou predict()

Implementação de MLPs com Keras

Keras – API

Keras é uma API Deep Learning de alto nível, em Python que pode ser executada em qualquer um destes três frameworks:

- TensorFlow (da Google)
- CNTK (da Microsoft)
- Theano (do Montreal Institute for Learning Algorithms, Université Montréal, Canadá)

Preparação dos Dados

Dados numéricos

- Variáveis categóricas:
 - 2 classes representadas por 0/1
 - k classes são representadas por k variáveis binárias (dummy variables)

Dados normalizados

Normalização minmax:

$$y' = \frac{y - min_y}{max_y - min_y}$$

• Normalização Zscore:

$$y' = \frac{y - m\acute{e}dia_y}{desvio.padr\~{a}o_y}$$

Conjuntos de Treino, Validação, Teste

As previsões são desenvolvidas no conjunto de treino

Obter previsões certas envolve sempre ajustar a configuração da rede:

- escolher o número de camadas e o tamanho das camadas, nº de neurónios hiperparâmetros
- escolher os pesos da rede parâmetros

Esta afinação é repetida muitas vezes e avaliada com o conjunto de validação

O desempenho final da rede deve ser avaliado num conjunto de dados completamente novo - conjunto de teste

Keras workflow

- 1. Definir os dados de treino, teste e validação
- 2. Definir as camadas da rede que mapeia as entradas para as saídas
- 3. Configurar o processo de aprendizagem da rede escolhendo:
 - i. função de ativação
 - ii. função de perda (função objetivo) a quantidade que será minimizada durante o treino. Representa uma medida de sucesso para a tarefa a executar
 - iii. otimizador determina como a rede será atualizada com base na função de perda.
 Implementa uma variante específica do gradiente estocástico descendente
- 4. Processar os dados de treino usando a f. fit() com a rede treinada

Implementação MLP para classificação com Keras

```
from keras.models import Sequential
from keras.layers import Dense
    nnet = Sequential()
    nnet.add(Dense(units=15,
                   input dim=X train.shape[1],
                   kernel_initializer='uniform',
                   activation='relu'))
    nnet.add(Dense(units=15,
                   kernel initializer='uniform',
                   activation='relu'))
    nnet.add(Dense(units=1, kernel initializer='uniform', activation='sigmoid'))
   #Compiling the nnet
    nnet.compile(optimizer='rmsprop', loss='binary crossentropy', metrics=['accuracy'])
   # fitting the Neural Network
   history = nnet.fit(X train, y train, validation split=0.1, batch size=200, epochs=50)
```

Gráficos com as métricas de treino e validação

- Loss de treino diminui e accuracy treino aumenta em cada época é o esperado quando se faz uma otimização gradiente descente
- Mas, a accuracy de validação baixa a partir da 4º época de treino e o loss de validação aumenta overfitting
- Existem várias técnicas para evitar o overfitting

Evitar o overfitting

- Obter mais dados de treino
- Reduzir a capacidade da rede: o número de camadas e o número de neurónios por camada
 - Começar com relativamente poucas camadas e neurónios e aumentar iterativamente o número de camadas /neurónios
- Adicionar regularização de pesos
 - É feito adicionando à função de perda da rede um custo associado a ter grandes pesos
- Adicionar dropout (desistência)
 - descartar aleatoriamente (definir como zero) recursos de saída das camadas internas durante o treino

Prevenir overfitting: Regularização dos pesos

Overfitting pode ser reduzido colocando restrições na complexidade da rede - forçando valores pequenos para os pesos da rede - torna a distribuição de valores de pesos mais regular - regularização de peso

- Regularização dos pesos é feita adicionando à função de perda da rede um custo associado a ter pesos grandes
- Existem dois tipos de regularização:
- Regularização L1 —O custo adicionado é proporcional ao valor absoluto dos coeficientes de peso (a norma L1 dos pesos)
- Regularização L2 —O custo adicionado é proporcional ao quadrado do valor dos coeficientes de peso (a norma L2 dos pesos)

Prevenir overfitting: Dropout

Dropout consiste em descartar aleatoriamente (definir como zero) uma série de recursos de saída das camadas internas durante o treino

Hidden layer 1

Input layer

Output layer

NN com dropout

- Taxa de dropout: é a fração das características que são zeradas; geralmente toma valores entre 0,2 e 0,5
- No teste: nenhuma unidade é descartada

Deep Learning

Rede Neuronal vs. Rede Deep Learning

As redes profundas ou redes *deep learning* distinguem-se das RNs por terem muitas camadas ocultas

Deep significa muitos "níveis escondidos"

Tipos de redes Deep Learning

Deep Learning Supervisionado

- Artificial Neural Networks (ANN)
- Convolutional Neural Networks (CNN)
- Recurrent Neural Networks (RNN)
- Long Short Term Memory Networks (LSTM)

Deep Learning não Supervisionado

- Self Organising Maps (SOM)
- Restricted Boltzmann machines(RBM)
- Autoencoders
- Deep Belief Networks(DBN)

Aplicações práticas CNN e RNN/LSTM

Aplicações de redes CNNs - visão computacional:

• Reconhecimento facial, reconhecimento de objetos em imagens

Aplicações de redes RNN/LSTM:

- Análises séries temporais
- Processamento automático de texto:
 - Tradução de idiomas (inglês para francês, francês para chinês, etc.)
 - Chatbots
 - Legenda de imagens (resumo do que está presente numa imagem)
 - Legendas de filmes
 - Reconhecimento de fala: conversão de fala em texto
 - Voz de computador: conversão de texto em fala

Convolutional Neural Network

Convolutional Neural Network (CNN)

- Combina várias etapas para derivar as características mais importantes de uma imagem
- Em seguida, converte a imagem inteira numa única linha de características que são depois apreendidas por uma rede neuronal totalmente conectada

Fluxo geral de uma rede neural convolucional (CNN)

Passo 1: Convolution

- Permite converter dados de imagem não estruturados em dados estruturados
- As informações digitais da imagem são resumidas extraindo os pixéis mais importantes da imagem através de **filtros** também conhecidos como **kernels**

Passo 2: Pooling

- Agrega estatísticas por sub-regiões para gerar matrizes menores
- Métodos típicos de pooling incluem agrupamento máximo e agrupamento médio, que usam os valores máximos e os valores médios de todas as sub-regiões não sobrepostas
- Exemplo, de um filtro de agrupamento máximo 2*2 num mapa de recursos 4*4:

Passo 3: Flattening

 Converte a matriz resultante do passo anterior – pooling num vetor para ser passado à rede para fazer a aprendizagem

Convolutional Neural Network (CNN)

Uma rede CNN é constituída:

- por uma sequência de camadas convolucionais e camadas de pooling/agrupamento
- seguida de uma rede totalmente conectada para gerar as probabilidades de cada classe

Redes CNN pré-treinadas

Uma rede pré-treinada é uma rede que foi previamente treinada numa tarefa de classificação de imagens em larga escala

Uma rede pré-treinada pode atuar como um modelo genérico do mundo visual e ser usada em tarefas de classificação que podem envolver classes completamente diferentes da tarefa original para as quais foram treinadas - Vantagem importante da aprendizagem profunda

- VGG16
- VGG19
- ResNet
- Inception
- Inception-ResNet
- Xception

Referências

- Chollet, F. (2021) Deep learning with Python. Simon and Schuster, Manning Publications, ISBN 9781617294433
- Géron, A. (2022) Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. O'Reilly Media, Inc, ISBN 9781492032649