Introduction to Frequency Response Analysis

Mechanical System Forced Response, Transfer Functions, and Input Output System Charectorization

Jonas Wagner

Univeristy of Texas at Dallas

Mechanical Engineering Graduate Teaching Fellowship Teaching Example - Fall 2021

- Background
- Steady-state Forced Response
- 3 Frequency Dependent Forced Response
- 4 Frequency Response System Characterization

- Background
- Steady-state Forced Response
- 3 Frequency Dependent Forced Response
- 4 Frequency Response System Characterization

Review: Mechanical System Modeling

$$m\frac{\mathrm{d}}{\mathrm{d}t^2}x(t) = \sum F = f(t) - b\frac{\mathrm{d}}{\mathrm{d}t}x(t) - kx(t)$$

Let
$$\mathbf{x} = x(t)$$
 and $\mathbf{u} = f(t)$

$$m\ddot{\mathbf{x}} + c\dot{\mathbf{x}} + k\vec{\mathbf{x}} = \mathbf{u}$$

$$\ddot{\mathbf{x}} = \left(\frac{-c}{m}\right)\dot{\mathbf{x}} + \left(\frac{-k}{m}\right)\mathbf{x} + \left(\frac{1}{m}\right)\mathbf{u}$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{bmatrix} \dot{\mathbf{x}} \\ \mathbf{x} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -\frac{c}{m} & -\frac{k}{m} \end{bmatrix} \begin{bmatrix} \dot{\mathbf{x}} \\ \mathbf{x} \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{m} \end{bmatrix} \begin{bmatrix} \mathbf{u} \end{bmatrix}$$

Spring Mass Damper System [1]

Review: Second-Order System Dynamics

Transfer Function

$$H(s) = \frac{Y(s)}{U(s)} = \frac{\omega_0^2}{s^2 + 2\zeta\omega_0 s + \omega_0^2}$$

System Poles

$$s = -\zeta \omega_0 \pm \omega_0 \sqrt{1 - \zeta^2}$$

Spring Mass Damper System Parameters

$$\omega_0 = \sqrt{\frac{k}{m}} \qquad \qquad \zeta = \sqrt{\frac{c^2}{4mk}}$$

2nd Order System Response [2]

- 1 Background
- Steady-state Forced Response
- 3 Frequency Dependent Forced Response
- 4 Frequency Response System Characterization

Review: Steady-state Input System Response

Convolution:

$$y(t) = \int_0^t h(\tau)u(t-\tau)d\tau \quad Y(s) = H(s)U(s)$$

Sinusoidal Input:

$$u(t) = cos(\omega t) = (e^{j\omega t} + e^{-j\omega t})/2 = U_0 e^{j0}$$

Steady-State Output:

$$y(t) = \int_0^\infty h(\tau) cos(\omega(t-\tau)) d\tau = Ae^{j\phi} = A cos(\omega t + \phi)$$

where $A = U_0|H(j\omega)|$ and $\phi = \angle(H(j\omega))$.

Steady-state System Reponse

$$u(t) = U_0 \cos(\omega t)$$
 $y(t) = Y_0 \cos(\omega t + \phi)$

Magnitude Gain:

$$|H(j\omega)| = \frac{Y_0}{U_0} = \frac{1.5}{2} = 0.75$$

Phase Shift:

$$\angle H(j\omega) = \phi = \frac{\pi}{4}$$

Steady-state System Response with $\omega = 1$.

Homework 6: Sketch Bode Plots for given Transfer

- Background
- Steady-state Forced Response
- 3 Frequency Dependent Forced Response
- 4 Frequency Response System Characterization

Activity: Spring Mass Damper Frequency Response [3]

https://www.sccs.swarthmore.edu/users/12/abiele1/Linear/examples/freq.html

Bode Plot

Transfer Function:

$$H(s) = \frac{\omega_0^2}{s^2 + 2\zeta\omega_0 s + \omega_0^2}$$

Magnitude Gain:

$$|H(j\omega)|_{db} = 20\log_{10}\left|\frac{Y_0}{U_0}\right|$$

Phase Shift:

$$\angle H(j\omega) = \phi$$

Bode Diagram varying dampening factor, ζ .

Activity: Transfer Function Frequency Response

Investigate the system response by varying the input frequency, amplitude, and phase. [4]

Interactive Demo

$$OH(s) = \frac{1}{1+2s}$$
 $OH(s) = \frac{1.6}{s^2+0.5s+1.6}$

$$H\left(j\omega\right) = rac{1}{1+j2\omega} \ H\left(j\omega\right) = rac{1.6}{(1.6-\omega^2)+j(0.5\cdot\omega)}$$

Set input parameters, $V_{in}(t) = A \cdot \cos(\omega \cdot t + \phi)$.

Set w:	1.500	ω	0	$\overline{}$	3
Set A:	1.7	Α	0.2	•	2
Set or	0	n n	-180		180

At $\omega = 1.5$, $H(j\omega) = 1.6/(0.31 + j0.75) = 1.61 \angle -130.9^{\circ} = M \angle \theta$. Since the input can be represented as $1.7 \angle 0^{\circ}$.

The output is $M\cdot A \angle (\theta+\phi) = 2.74 \angle -130.9^{\circ}$.

		Magnitude	Phase	Time Domain	
	H(<i>j</i> ω)	1.61	-130.9°	1.61·cos(1.5·t + -130.9°)	
	Input	1.7	0°	1.7·cos(1.5·t + 0°)	
	Output	2.74	-130.9°	2.74-cos(1.5·t + -130.9°)	

https://lpsa.swarthmore.edu/Bode/BodeWhat.html

- 1 Background
- Steady-state Forced Response
- 3 Frequency Dependent Forced Response
- 4 Frequency Response System Characterization

Real-World Applications: System Charectorization

F(s)	$\frac{1}{\omega_n^2} s^2 + \frac{2\zeta}{\omega_n} s + 1$
Parameter	Initial

Parameter	Initial	Final	
	Estimate	Estimate	
K	30.6	28.9	
ω_n	13.2	13.2	
ζ	0.10	0.10	

System Characterization Paper Results [5]

Lab 3: Experiment with selected system to obtain frequency response and characterize dynamics with an appropriate transfer function. See lab instructions for more details

Bibliography I

Detroit Mercy University of Michigan, Carnegie Mellon. Introduction: System modeling.

Engineer on a Disk. ebook: Dynamic system modeling and control.

Erik Cheever.
Linear systems: Frequency response of one mass.

Erik Cheever.

What bode plots represent: The frequency domain.

Robert D. Throne.

Frequency domain system identification of one, two, and three degree of freedom systems

in an introductory controls class.

ME GTF Interview - Fall 2021