Linear Algebra I Summary of Lectures: Orthogonal Bases

Dr Nicholas Sedlmayr

- 1. Definition 4.1: Two vectors v and w in an inner product space are orthogonal if $\langle v|w\rangle = 0$. The set of vectors $\{v_1, v_2, \ldots\}$ is said to be orthogonal, and the vectors v_1, v_2, \ldots in the set are said to be mutually orthogonal if each pair of distinct vectors v_i, v_l with $i \neq l$ are said to be an orthogonal pair, $\langle v_i|v_l\rangle = 0$.
- 2. Definition 4.2: A set $\{w_1, w_2, ...\}$ of vectors in an inner product space is said to be orthonormal if $\langle w_i | w_j \rangle = \delta_{ij}$. If the orthonormal set is a basis then it is called an orthonormal basis.
- 3. Proposition 4.3: If V is an inner product space over \mathbb{R} or \mathbb{C} , $v_1, v_2, \ldots v_n \in V$, $v_i \neq 0 \ \forall i = 1 \ldots n$, and the v_i are mutually orthogonal then $\{v_1, v_2, \ldots v_n\}$ is a linearly independent set.
- 4. Lemma 4.4: If u, v are any two vectors in an inner product space V with $v \neq 0$ then the vector

$$w = u - \frac{\langle v|u\rangle}{\langle v|v\rangle}v$$

is orthogonal to v.

5. Lemma 4.5: If V is an inner product space, $u, v_1, v_2, \dots v_k \in V$ and $v_1, v_2, \dots v_k$ are mutually orthogonal non-zero vectors then

$$w = u - \sum_{i=1}^{k} \frac{\langle v_i | u \rangle}{\langle v_i | v_i \rangle} v_i$$

is orthogonal tro $v_1, v_2, \dots v_k$.

6. Theorem 4.6: (The Gram-Schmidt process) If $\{v_1, \ldots v_n\}$ is a basis of a finite dimensional inner product space V, then $\{w_1, \ldots w_n\}$ obtained by

$$\begin{array}{l} w_1 = v_1 \\ w_2 = v_2 - \frac{\langle w_1 | v_2 \rangle}{\langle w_! | w_1 \rangle} w_1 \\ \vdots \\ w_k = v_k - \sum_{i=1}^{k-1} \frac{\langle w_i | v_k \rangle}{\langle w_i | w_i \rangle} w_i \\ \vdots \end{array}$$

is an orthogonal basis of V.