

Sygnay i obrazy cyfrowe Laboratorium 2 - Skalowanie i rotacja

Informatyczne Systemy Automatyki

Wykonujący: Igor Potyrała - 272518

Prowadzący - Przemysław Śliwiński

Data laboratoriów: 25 pażdziernika oraz 8 listopada 2023

1 Zadania

1.1 Algorytmy interpolacji

Celem zadania pierwszego było sprawdzenie działania 3 algorytmów interpolacji do skalowania oraz obracania względem puntku. Każdy z algorytmów różni się metodą interpolacji wartości pikseli i złożnością obliczeniową. Algorytmy te to:

- Najbliższy sąsiad,
- Liniowa,
- Sześcienna

1.2 Skalowanie i rotacja

1.2.1 Wyniki skalowania

Obraz 1. Oryginalny obraz.

Obraz 2. 5-krotne powiększenie o 10% za pomocą interpolacji sześciennej.

Obraz 3. Pomniejszenie z powrotem do oryginalnej wielkości za pomocą interpolacji sześciennej.

1.2.2 Wyniki rotacji

Obraz 4. Oryginalny obraz.

Obraz 5. Rotacja o 60 stopni za pomocą interpolacji liniowej.

Obraz 6. Rotacja o 360 stopni za pomocą interpolacji liniowej.

2 Wnioski

Obiektywnie patrząc, najlepszym algorytmem interpolacji jest sześcienny pod względem płynności przejścia między pixelami, a także pozostawia mniej ostre krawędzie, a także nie widać, aż tak urywków podczas obracania, ale z kolei jest nagorszym pod względem czasu. Najszybszy jest algorytm najbliższego sąsiada, ale obrazy przekształcane z jego pomocą mogą się wydawać bardziej ostre i posiadać więcej brakujących fragmentów. Algorytm liniowy jest tylko niewiele wolniejszy od algorytmu najbliższego sąsiada, ale jakością wyjściową obrazu jest mu znacznie bliżej do algorytmu sześciennego.

	Najbliższy sąsiad	Liniowa	Sześcienna
Powiększenie	0.38s	4,86s	$55{,}35s$
Pomniejszenie	0.27s	2,77s	40,51s
Średni błąd kwadratowy	55,41	33,10	23,37

Tabela 1. Przedstawiające charakterystyki czasowe oraz błędy typów interpolacji dla skalowania.