MOST ESSENTIAL LEARNING COMPETENCIES (MELC)

GRADE LEVEL : GRADE 12 SUBJECT: GENERAL PHYSICS 2

Quarter	Content Standard	Performance Standard	Most Essential Learning Competencies	Duration	Code
	The learners demonstrate understanding of	The learners should be able to			
3rd	Electric charge Insulators and	Use theoretical and experimental approaches	Describe using a diagram charging by rubbing and charging by induction	Week 1	STEM_GP12EM- IIIa-1
	conductors to solve multi-concept rich-context problems	to solve multi-concept and rich-context problems	Explain the role of electron transfer in electrostatic charging by rubbing	Week 1	STEM_GP12EM- IIIa-2
		involving electricity and magnetism	Describe experiments to show electrostatic charging by induction	Week 1	STEM_GP12EM- IIIa-3
			Calculate the net electric force on a point charge exerted by a system of point charges	Week 1	STEM_GP12EM- IIIa-6
			Describe an electric field as a region in which an electric charge experiences a force	Week 1	STEM_GP12EM- Illa-7
			Calculate the electric field due to a system of point charges using Coulomb's law and the superposition principle	Week 1	STEM_GP12EM- IIIa-10
			Calculate electric flux	Week 1	STEM_GP12EM- IIIb-12
			Use Gauss's law to infer electric field due to uniformly distributed charges on long wires, spheres, and large plates	Week 2	STEM_GP12EM- IIIb-13
			Solve problems involving electric charges, dipoles, forces, fields, and flux in contexts such as, but not	Week 2	STEM_GP12EM- IIIb-14

	limited to, systems of point charges, electrical		
	breakdown of air, charged pendulums,		
	electrostatic ink-jet printers		
1. Electric potential energy	Relate the electric potential with work, potential	Week 2	STEM_GP12EM-
2. Electric potential	energy, and electric field		IIIb-15
3. Equipotential surfaces	Determine the electric potential function at any	Week 2	STEM_GP12EM-
4. Electric field as a	point due to highly symmetric continuous- charge		IIIc-17
potential gradient	distributions		
5. Electric potential	infer the direction and strength of electric field	Week 3	STEM_GP12EM-
	vector, nature of the electric field sources, and		IIIc-18
	electrostatic potential surfaces given the		
	equipotential lines		
	Calculate the electric field in the region given a	Week 3	STEM_GP12EM-
	mathematical function describing its potential in a		IIIc-20
	region of space		
	Solve problems involving electric potential energy	Week 3	STEM_GP12EM-
	and electric potentials in contexts such as, but not		IIIc-22
	limited to, electron guns in CRT TV picture tubes		
	and Van de Graaff generators		
1. Capacitance and	Deduce the effects of simple capacitors (e.g.,	Week 3	STEM_GP12EM-
capacitors a. Capacitors in	parallel-plate, spherical, cylindrical) on the		IIId-23
series and parallel	capacitance, charge, and potential difference		
b. Energy stored and	when the size, potential difference, or charge is		
electric-field energy in	changed		
capacitors	Calculate the equivalent capacitance of a network	Week 3	STEM_GP12EM-
2. Dielectrics	of capacitors connected in series/parallel		IIId-24
	Determine the total charge, the charge on, and	Week 4	STEM_GP12EM-
	the potential difference across each capacitor in		IIId-25
	the network given the capacitors connected in		
	series/parallel		
	Determine the potential energy stored inside the	Week 4	STEM_GP12EM-
	capacitor given the geometry and the potential		IIId-26
	difference across the capacitor		

	Describe the effects of inserting dielectric materials on the capacitance, charge, and electric field of a capacitor	Week 4	STEM_GP12EM- IIId-29
	Solve problems involving capacitors and dielectrics in contexts such as, but not limited to, charged plates, batteries, and camera flashlamps.	Week 5	STEM_GP12EM- IIId-30
1. Current, resistivity, and resistance	Distinguish between conventional current and electron flow	Week 5	STEM_GP12EM- IIId-32
2. Ohm's law3. Energy and power in	Apply the relationship charge = current x time to new situations or to solve related problems	Week 5	STEM_GP12EM- IIIe-33
electric circuits 4. Electrical safety	Describe the effect of temperature increase on the resistance of a metallic conductor	Week 5	STEM_GP12EM- IIIe-35
	Describe the ability of a material to conduct current in terms of resistivity and conductivity	Week 5	STEM_GP12EM- IIIe-36
	Apply the relationship of the proportionality between resistance and the length and cross-sectional area of a wire to solve problems	Week 5	STEM_GP12EM- IIIe-37
	Differentiate ohmic and non-ohmic materials in terms of their I-V curves	Week 5	STEM_GP12EM- IIIe-38
	Differentiate emf of a source and potential difference (PD) across a circuit	Week 5	STEM_GP12EM- IIIe-40
	Given an emf source connected to a resistor, determine the power supplied or dissipated by each element in a circuit	Week 5	STEM_GP12EM- IIIe-42
	Solve problems involving current, resistivity, resistance, and Ohm's law in contexts such as, but not limited to, batteries and bulbs, household wiring, and selection of fuses.	Week 5	STEM_GP12EM- IIIe-44
Devices for measuring currents and voltages	Operate devices for measuring currents and voltages	Week 5	STEM_GP12EM- IIIe-45
	Draw circuit diagrams with power sources (cell or battery), switches, lamps, resistors (fixed and variable) fuses, ammeters and voltmeters	Week 5	STEM_GP12EM- IIIf-47

Resistors in series and parallel	Evaluate the equivalent resistance, current, and voltage in a given network of resistors connected in series and/or parallel	Week 6	STEM_GP12EM- IIIg-48
2. Kirchhoff's rules	Calculate the current and voltage through and across circuit elements using Kirchhoff's loop and junction rules (at most 2 loops only)	Week 6	STEM_GP12EM- IIIg-49
3. R-C circuits	Solve problems involving the calculation of currents and potential difference in circuits consisting of batteries, resistors and capacitors.	Week 6	STEM_GP12EM- IIIg-51
Magnetic fields Lorentz Force	Differentiate electric interactions from magnetic interactions	Week 6	STEM_GP12EM- IIIh-54
3. Motion of charge particles in electric and	Evaluate the total magnetic flux through an open surface	Week 6	STEM_GP12EM- IIIh-55
magnetic fields 4. Magnetic forces on current-carrying wires	Describe the motion of a charged particle in a magnetic field in terms of its speed, acceleration, cyclotron radius, cyclotron frequency, and kinetic energy	Week 6	STEM_GP12EM- IIIh-58
	Evaluate the magnetic force on an arbitrary wire segment placed in a uniform magnetic field	Week 6	STEM_GP12EM- IIIh-59
1. Biot-Savart Law 2. Ampere's Law	Evaluate the magnetic field vector at a given point in space due to a moving point charge, an infinitesimal current element, or a straight current-carrying conductor	Week 7	STEM_GP12EM- IIIh-60
	Calculate the magnetic field due to one or more straight wire conductors using the superposition principle	Week 7	STEM_GP12EM- IIIi-62
	Calculate the force per unit length on a current carrying wire due to the magnetic field produced by other current-carrying wires	Week 7	STEM_GP12EM- IIIi-63
	Evaluate the magnetic field vector at any point along the axis of a circular current loop	Week 7	STEM_GP12EM- IIIi-64
	Solve problems involving magnetic fields, forces due to magnetic fields and the motion of charges and current-carrying wires in contexts such as, but not limited to, determining the strength of	Week 7	STEM_GP12EM- IIIi-66

			Earth's magnetic field, mass spectrometers, and solenoids.		
	circuits, and other applications of magnetic induction to solve multiconcept, r context problems using concepts from electromagnetic waves, optics, relativity, and	when feasible, experimental approaches to solve multiconcept, rich-	Identify the factors that affect the magnitude of the induced emf and the magnitude and direction of the induced current (Faraday's Law)	Week 7	STEM_GP12EM- IVa-1
		concepts from electromagnetic waves,	Compare and contrast electrostatic electric field and non-electrostatic/induced electric field	Week 7	STEM_GP12EM- IVa-3
		optics, relativity, and atomic and nuclear theory	Calculate the induced emf in a closed loop due to a time-varying magnetic flux using Faraday's Law	Week 7	STEM_GP12EM- IVa-4
		2. Apply ideas from atomic and nuclear physics in	Describe the direction of the induced electric field, magnetic field, and current on a conducting/nonconducting loop using Lenz's Law	Week 8	STEM_GP12EM- IVa-5
	limited to, radiation shielding and inferri	contexts such as, but not limited to, radiation	Compare and contrast alternating current (AC) and direct current (DC)	Week 8	STEM_GP12EM- IVb-6
		shielding and inferring the composition of stars	Characterize the properties (stored energy and time-dependence of charges, currents, and voltages) of an LC circuit	Week 8	STEM_GP12EM- IVb-8
			Relate the properties of EM wave (wavelength, frequency, speed) and the properties of vacuum and optical medium (permittivity, permeability, and index of refraction)	Week 8	STEM_GP12OPT- IVb-12
3. Law of Reflection 4. Law of Refraction (Snell's Law) 5. Polarization (Malus's Law) 7. Applications of reflection, refraction, dispersion, and polarization			Explain the conditions for total internal reflection	Week 8	STEM_GP12OPT- IVb-14
			Explain the phenomenon of dispersion by relating to Snell's Law	Week 8	STEM_GP12OPT- IVb-16
	·	Calculate the intensity of the transmitted light after passing through a series of polarizers applying Malus's Law	Week 8	STEM_GP12OPT- IVc-18	
	refraction, dispersion, and	Solve problems involving reflection, refraction, dispersion, and polarization in contexts such as, but not limited to, (polarizing) sunglasses, atmospheric haloes, and rainbows	Week 8	STEM_GP12OPT- IVc-21	

Reflection and refraction at plane and	Explain image formation as an application of reflection, refraction, and paraxial approximation	Week 8	STEM_GP12OPT- IVd-22
spherical surfaces 2. Mirrors 3. Thin lens		Week 8	STEM_GP12OPT- IVd-23
4. Geometric optics		Week 8	STEM_GP12OPT- IVd-24
	Determine graphically and mathematically the type (virtual/real), magnification, location/ apparent depth, and orientation of image of a point and extended object produced by a lens or series of lenses	Week 8	STEM_GP12OPT- IVd-27
	Apply the principles of geometric optics to discuss image formation by the eye, and correction of common vision defects	Week 8	STEM_GP12OPT- IVd-28
1. Huygens' Principle 2. Two-source interference of light 3. Intensity in interference	Determine the conditions (superposition, path and phase difference, polarization, amplitude) for interference to occur emphasizing the properties of a laser as a monochromatic and coherent light source	Week 9	STEM_GP12OPT- IVf-32
patterns 4. Interference in thin films 5. Diffraction from single-slits	Relate the geometry of the two-slit experiment set up (slit separation, and screen-to-slit distance) and properties of light (wavelength) to the properties of the interference pattern (width, location, and intensity)	Week 9	STEM_GP12OPT- IVf-33
	Relate the geometry of the diffraction experiment setup (slit size, and screen- to-slit distance) and properties of light (wavelength) to the properties of the diffraction pattern (width, location, and intensity of the fringes)	Week 9	STEM_GP12OPT- IVf-35
Postulates of Special Relativity	State the postulates of Special Relativity and their consequences	Week 9	STEM_GP12MP- IVg-39

2. Relativity of times and lengths	Apply the time dilation, length contraction and relativistic velocity addition to worded problems)
3. Relativistic velocity addition4. Relativistic dynamics5. Relativistic Doppler effect	Calculate kinetic energy, rest energy, momentum, and speed of objects moving with speeds comparable to the speed of light	STEM_GP12MP- IVg-42
Photoelectric effect Atomic spectra	Explain the photoelectric effect using the idea of light quanta or photons	STEM_GP12MP- IVh-45
3. Radioactive decay	Explain qualitatively the properties of atomic weeks emission and absorption spectra using the concept of energy levels	STEM_GP12MP- IVh-46
	Calculating radioisotope activity using the concept of half-life Week	STEM_GP12MP- IVh-i-47