AULA PRÁTICA 4 – Solução de exercícios de gerência de memória virtual

Introdução:

Nessa aula, vamos solucionar alguns exercícios de gerência de memória virtual, aplicando os conceitos trabalhados na aula de número 6.

Contextualizando:

A memória virtual é a junção da memória principal e secundária, dando ao usuário a ilusão de existir uma memória muito maior que a capacidade real da memória principal.

Um programa no ambiente de memória virtual não faz referência a endereços físicos de memória (endereços reais), mas apenas a endereços virtuais. No momento da execução de uma instrução, o endereço virtual referenciado é traduzido para um endereço físico, pois o processador manipula apenas posições da memória principal, esse processo é denominado mapeamento.

Existem duas formas de criação da memória virtual, paginação que é a técnica de gerência de memória onde o espaço de endereçamento real é dividido em blocos do mesmo tamanho, chamados páginas e a segmentação que é a técnica de gerência de memória onde o espaço de endereçamento virtual é dividido em blocos de tamanhos diferentes, chamados segmentos.

EXERCÍCIOS

1) (MACHADO, 2007 pg. 206) Um sistema com gerência de memória virtual por paginação possui tamanho de página com 512 posições, espaço de endereçamento virtual com 512 páginas endereçadas de 0 a 511 e memória real com 10 páginas numeradas de 0 a 9. O conteúdo atual da memória real contém apenas informações de um único processo e é descrito resumidamente na seguinte tabela:

Endereço Físico	Conteúdo			
1536	Página Virtual 34			
2048	Página Virtual 9			
3072	Tabela de páginas			
3584	Página Virtual 65			
4608	Página Virtual 10			

Resposta:

Tamanho de paginas= 512 posições

Páginas Virtuais= 512 páginas (endereços de 0 a 511)

Páginas Reais= 10 páginas (endereços de 0 a 511)

MEMÓRIA LÓGICA

0
1
2
3
4
5
6
7
8
9
10
11
511

MEMÓRIA FÍSICA	
0	512
1	1024
2	1536
3	2048
4	2560
5	3072
6	3584
7	4096
8	4608
9	5120

 a. Considere que a entrada da tabela de páginas contém, além do endereço do frame, o número de página virtual. Mostre o conteúdo da tabela de páginas deste processo.

Resposta:

NPV	FRAME		
9	4		
10	9		
34	3		
65	7		

 b. Mostre o conteúdo da tabela de páginas após a página virtual 49 ser carregada na memória a partir do endereço real 0 e a página virtual 34 ser substituída pela página virtual 12.

Resposta:

NPV	FRAME		
9	4		
10	9		
12	3		
49	0		
65	7		

c. Como é o formato do endereço virtual deste sistema?

R. O endereço virtual possui 9 bits para endereçar a tabela de páginas e 9 bits para o deslocamento dentro da página.

d. Qual endereço físico está associado ao endereço virtual 4613?

- **R.** O endereço virtual 4613 encontra-se na página virtual 9 (4613/512), que inicia no endereço virtual 4608. Como o deslocamento dentro do endereço virtual é 5, o endereço físico é a soma deste mesmo deslocamento ao endereço inicial do frame 2048, ou seja, 2053.
- 2) (MACHADO, 2007 pg. 206) Um sistema operacional implementa gerência de memória virtual por paginação, com frames de 2 kb. A partir da tabela que se segue, que representa o mapeamento de páginas de um processo em um determinado instante de tempo, responda:

Página	Residente	Frame		
0	Sim	20		
1	Sim	40		
2	Sim	100		
3	Sim	10		
4	Não	50		
5	Não	70		
6	Sim	1000		

a. Qual o endereço físico de uma variável que ocupa o último byte da página 3?

R. Página virtual 3 está mapeada no frame 10 que é o decimo primeiro frame da memória principal. Endereço físico: (11 x 2048)-1= 22.527

b. Qual o endereço físico de uma variável que ocupa o primeiro byte da página 2?

R. Página 2 está mapeada no frame 100 que é o centésimo primeiro frame da memória principal. Endereço físico: (100 x 2048)= 204.800

c. Qual o endereço físico de uma variável que tem deslocamento 10 na página 3?

R. Página 3 está mapeada no frame 10 que é o décimo primeiro frame da memória principal. O primeiro endereço da página 3 é (10x2048) = 20.480 somando ao deslocamento 10 = 20.490

d. Quais páginas do processo estão na memória?

R. 0, 1, 2, 3 e 6

3) (MACHADO, 2007 pg. 207) Uma memória virtual possui páginas de 1024 endereços, existem oito páginas virtuais e 4096 bytes de memória real. A tabela de páginas de um processo está descrita a seguir. O asterisco indica que a página não está na memória principal:

Página Virtual	Página Real
0	3
1	1
2	*
3	*
4	2
5	*
6	0
7	*

a) Faça a lista/faixa de todos os endereços virtuais que irão causar Page fault.

Resposta: Mostra a faixa de endereços de cada página virtual e observar a faixa de endereços das páginas que não estão (*) na memória física.

PV	0	1	2	3	4	5	6	7
Endereço	0 -1023	1024 - 2047	2048 - 3071	3072 - 4095	4096 -5119	5120 - 6143	6144 - 7167	7168 - 8191

2 2048 - 3071 3 3072 - 4095 5 5120 - 6143 7 7168 - 8191

 Indique o endereço real correspondente aos seguintes endereços virtuais 0, 1023, 1024, 6500 e 3728

Resposta

End. Virtual 0 (PV 0 / Desloc 0) End. Real = 3072 + 0 = 3072

End. Virtual 1023 (PV 0 / Desloc 1023) End. Real = 3072 + 1023 = 4095

End. Virtual 1024 (PV 1 / Desloc 0) End. Real = 1024 + 0 = 1024

End. Virtual 6500 (PV 6 / Desloc 356) End. Real = 0 + 356 = 356

End. Virtual 3728 (PV 3 / Desloc 656) Page Fault

Síntese

A solução dos exercícios permite compreender como funciona a composição da memória virtual e como funciona a ocupação da memória física. No exercício um, é possível observar como é a relação entre memória virtual e memória física sob o conceito de paginação. O processo de conversão dos endereços virtuais em endereços físicos (mapeamento) é demonstrado nos exercícios 1, 2 e 3 assim como a função da tabela de páginas.