거시경제에 대한 계량모형과 딥러닝 모델의 예측력 비교

응용수리과학부 3학년 최순혁

A Table of Contents.

- 1 문제 배경 및 설명
- 2 데이터
- 3 학습 방법 및 결과 도출 방법
- **4** VAR 설명 및 결과

- 5 딥러닝 모델 설명 및 결과
- 6 연구결과

Part 1, 문제 배경 및 설명

Part 1, 문제 배경 및 설명

연구 배경

경제학에서는 전통적 계량 경제학 접근방법을 주로 사 용하고 있으며 머신러닝 방 법론 도입은 초기 단계

Part 1, 문제 배경 및 설명

Lorem Ipsum is simply dummy text of the printing and typesetting industry

문제 설명

- 기존 모형적 접근방식과 딥러닝의 예측력을 비교하여 딥러 닝의 도입의 필요성을 고려하고자 한다.
- 2. 한국은 한국무역의존도가 높아 한국 거시경제 데이터를 한국 통관 수출액으로 가정한다.
- 3. 경제 데이터의 불확실성으로 모델의 모형의 각각의 모 예측값 모집단을 추정하여 95%의 신뢰구간을 비교한다. 신뢰구간을 구성하기 위해 딥러닝기법에는 앙상블 러닝을 적용한다.

Part 2, **HOE**

데이터

Lorem Ipsum is simply dummy text of the printing and typesetting industry

데이터

목표 데이터: 국내 통관 수출액

수출 관련 데이터 포인트:

- 1. 미시간대 소비자심리지수
- 2. 미국 경제정책불확실지수

Lorem Ipsum is simply dummy text of the printing and typesetting industry

데이터 전처리 후

데이터의 형태				데이터의 기본적 정보			
					UMCSENT	EPU	수 출 금액
	UMCSENT	EPU	수출금액	count	250.000000	250.000000	250.000000
2000.01	1.000000	0.109116	0.025841	mean	0.534998	0.215624	0.526546
2000.02	0.987654	0.069559	0.037490	std	0.215383	0.152158	0.294877
2000.03	0.913580	0.069378	0.077262	min	0.000000	0.000000	0.000000
2000.04	0.950617	0.064301	0.056677	25%	0.369489	0.111933	0.273633
2000.04			0.030077	50%	0.582892	0.179071	0.603650
2000.05	0.977072	0.139071	0.081958	75%	0.694885	0.284004	0.792516
				max	1.000000	1.000000	1.000000

Part 3, 학습 방법 및 결과 도출 방법

학습 방법 및 결과 도출 방법

Lorem Ipsum is simply dummy text of the printing and typesetting industry

학습 방법 및 결과 도출 방법

- 1. 계량 경제 모형은 시계열 데이터의 정상성을 가정하고 예측한다. 이는 시계열 모형의 예측의 결과의 평균과 분산이 시간에 상관없이 일정함을 의미하고 따라서 단기 예측에 적합하다.
- 2. 학습방법: 모형과 모델의 학습 방법을 과거 데이터 5개로 미래 데이터 5개를 예측하는 방식으로 설정하고, 테스트 방법을 테스트 데이터를 5개 단위로 나눈 뒤, 한 단위로 다음 단위를 예측하는 방

식

Part 3, 학습 방법 및 결과 도출 방법

Lorem Ipsum is simply dummy text of the printing and typesetting industry

결과 도출 방법 이미지

과거 데이터					예측 데이터				
t-4	t-3	t-2	t-1	t	t+1	t+2	t+3	t+4	t+5

과거 데이터				예측 데이터					
t+1	t+2	t+3	t+4	t+5	t+6	t+7	t+8	t+9	t+10

Part 4, VAR 설명 및 결과

VAR(Vector Autoregressive Model): 서로 관련성 있는 여러 시계열을 활용하여 자신뿐만 아니라 다른 시계열도 추정,예측하는 계량경제학 모형

Equation of VAR(1)
$$Y_{[t]} = AY_{[t-1]} + \epsilon_{[t]}$$
 where $Y_{[t]} = \begin{bmatrix} Y_{1t} \\ Y_{2t} \end{bmatrix}, A = \begin{bmatrix} \phi_{11}\phi_{12} \\ \phi_{21}\phi_{22} \end{bmatrix}, Y_{[t-1]} = \begin{bmatrix} Y_{1t-1} \\ Y_{2t-1} \end{bmatrix},$ $\epsilon_{[t]} = \begin{bmatrix} e_{1t} \\ e_{2t} \end{bmatrix} \sim N(0, \sum_{\epsilon_{[t]}})$ Each Equation of VAR(1) $Y_{1t} = \phi_{11}Y_{1t-1} + \phi_{12}Y_{2t-1} + e_{1t}$ $Y_{2t} = \phi_{21}Y_{1t-1} + \phi_{22}Y_{2t-1} + e_{2t}$

Lorem Ipsum is simply dummy text of the printing and typesetting industry

여러 통계적 모델들을 지원하는 파이썬 모듈 statsmodels을 활용

```
results_tst = []
results_all = []
for i in range(20):
   forecasting_model = VAR(X[50+5*i:150+5*i])
   results = forecasting_model.fit(5)
   forecast_interval = results.forecast_interval(y=X.values[150+5*i-5:150+5*i],steps=5)
   results_all.append(forecast_interval)
   results_tst.append(forecast_interval[2])
```


Part 5, 딥러닝 모델 설명 및 결과

딥러닝 모델 설명 및 결과

Lorem Ipsum is simply dummy text of the printing and typesetting industry

사용된 딥러닝 종류

1. DNN 입력층과 출력층 사이에 여러 개의 은닉층들로 이 뤄진 인공신경망

S

3. GRU LSTM의 변종 2. LSTM 인공신경망의 한 종류로 유닛간의 연결이 순환적 구조를 갖으며, 유닛마다 STATE를 갖는 특징이 있음.

DNN 모델 구조와 결과

Model: "sequential_1"

Layer (type)	Output Shape	Param #
dense (Dense)	(None, None, 60)	420
dropout (Dropout)	(None, None, 60)	0
dense_1 (Dense)	(None, None, 30)	1830
dropout_1 (Dropout)	(None, None, 30)	0
dense_2 (Dense)	(None, None, 3)	93

Total params: 2,343 Trainable params: 2,343 Non-trainable params: 0

딥러닝 모델 설명 및 결과

Lorem Ipsum is simply dummy text of the printing and typesetting industry

LSTM 모델 구조와 결과

Model: "sequential_14"

Layer (type)	Output Shape	Param #
Istm_26 (LSTM)	(None, 5, 32)	4608
Istm_27 (LSTM)	(None, 16)	3136
dense_13 (Dense)	(None, 5)	85

Total params: 7,829 Trainable params: 7,829 Non-trainable params: 0

딥러닝 모델 설명 및 결과

Lorem Ipsum is simply dummy text of the printing and typesetting industry

GRU 모델 구조와 결과

Model: "sequential_10"

Layer (type)	Output Shape	Param #
gru_20 (GRV)	(None, 5, 32)	3552
dropout_10 (Dropout)	(None, 5, 32)	0
gru_21 (GRU)	(None, 5, 16)	2400
dropout_11 (Dropout)	(None, 5, 16)	0
gru_22 (GRU)	(None, 16)	1632
dense_7 (Dense)	(None, 5)	85

Total params: 7,669 Trainable params: 7,669 Non-trainable params: 0

Lorem Ipsum is simply dummy text of the printing and typesetting industry

앙상블 학습

Part 6, 연구 결과

	예측값과 실제값의 차이의 평균	신뢰구간 폭의 평균
VAR 모형	0.12974336040822457	0.5123895099999999
앙상블 모델	0.06723749293389425	0.2716851847916147

1. 앙상블의 모델이 VAR모형에 비해 차이의 평균값도 2배정도 작고, 신뢰구간도 2배정도 작으므로, 딥러닝 앙상블의 결과값이 기존 계랑경제학 모델 VAR보다 더 좋다고 판단

2. 딥러닝 데이터는 더 다양한 데이터를 이용할 수 있어 경제 예측 방법론 개선에 도움이 될 것으로 기대

감사합니다.