Table of Contents

Project Design Data and Summary

Roof Design Details

Top Member Design

Agitator Bridge Design

Shell Design

Bottom Design

Wind Moment

Seismic Design

Anchor Bolt Design

Anchor Chair Design

Appurtenances Design

Normal and Emergency Venting

Capacities and Weights

Reactions on Foundation

Disclaimer and Special Notes

Page: 2/109

Project Design Data and Summary

Back

Project Data

Job : 2025-06-19-00-40 Date of Calcs. : 20-Jun-2025

Mfg. or Insp. Date : Designer : Melior

Project:

Tag ID: Q9270 API

Plant :

Plant Location:

Site:

Design Basis: API-650 13th Edition Errata 1, 2021

Annexes Used: E, F, J, M, S

Design Parameters and Operating Conditions Design Parameters

Design Internal Pressure = 0.1084 psi or 3 inh2o Design External Pressure = -0.0361 psi or -1 inh2o

D of Tank = 10 ftOD of Tank = 10.0313 ft ID of Tank = 10 ft CL of Tank = 10.0156 ft Shell Height = 30 ft S.G of Contents = 1.1 S.G of Hydrotest = 1Hydrotest Liquid Level = 30 ft Max Design Liq. Level = 30 ft Max Operating Liq. Level = 30 ft Min Liq. Level = 1 ft Design Temperature = 375 °F MDMT (Minimum Design Metal Temperature) = -20 °F Tank Joint Efficiency = 0.7 Ground Snow Load = 0 psf Roof Live Load = 20 psf

Appendix F Data

Failure pressure (Pf) = 3.6067 psi Maximum design pressure (P_max) = 2.2841 psi

Wind Load Basis: ASCE 7-16

Additional Roof Dead Load = 0 psf

3 Second Gust Wind Speed (entered), Vg = 105 mph

Page: 3/109

Design Wind Speed, V = Vg = 105 mph

Seismic Method: API-650 - ASCE7 Mapped(Ss & S1)

Seismic Use Group = II

Site Class = C

 $T_L (sec) = 12$

Ss(g) = 0.24

S1(g) = 0.093

Av(g) = 0.0896

Q = 0.6667

Importance Factor = 1.25

Design Remarks

Summary Results

Shell

Shell #	Width (in)	Material	CA (in)	JE	Min Yield Strength (psi)	Tensile Strength (psi)	Reduction Factor	Sd (psi)	St (psi)
1	60	A240- 316	0	0.7000	21,875	75,000	0.8575	19,725	27,000
2	60	A240- 316	0	0.7000	21,875	75,000	0.8575	19,725	27,000
3	60	A240- 316	0	0.7000	21,875	75,000	0.8575	19,725	27,000
4	60	A240- 316	0	0.7000	21,875	75,000	0.8575	19,725	27,000
5	60	A240- 316	0	0.7000	21,875	75,000	0.8575	19,725	27,000
6	59.375	A240- 316	0	0.7000	21,875	75,000	0.8575	19,725	27,000

(continued)

Shell #	Weight (lbf)	Weight CA (lbf)	t-min Erection (in)	t-Des (in)	t-Test (in)	t-min Seismic (in)	t-min Ext- Pe (in)	t-min (in)	t-Actual (in)
1	1,228	1,228	0.1875	0.0601	0.0399	0.0646	NA	0.1875	0.1875
2	1,228	1,228	0.1875	0.0497	0.033	0.0539	NA	0.1875	0.1875
3	1,228	1,228	0.1875	0.0394	0.0261	0.0431	NA	0.1875	0.1875
4	1,228	1,228	0.1875	0.029	0.0193	0.0324	NA	0.1875	0.1875
5	1,228	1,228	0.1875	0.0186	0.0124	0.0218	NA	0.1875	0.1875
6	1,215	1,215	0.1875	0.0083	0.0055	0.0111	NA	0.1875	0.1875

(continued)

Shell #	Status
1	OK

Page: 4/109

2	OK
3	OK
4	OK
5	OK
6	OK

Total Weight of Shell = 7,378.2999 lbf

Roof

Type = Self Supported Conical Roof Plates Material = A240-316 t.required = 0.1875 in t.actual = 0.1875 in Roof corrosion allowance = 0 in Roof Joint Efficiency = 0.7 Plates Overlap Weight = 0 lbf Plates Weight = 639.6276 lbf

Bottom

Type: Flat Bottom Non Annular
Bottom Material = A240-316
t.required = 0.1875 in
t.actual = 0.1875 in
Bottom corrosion allowance = 0 in
Bottom Joint Efficiency = 0.7
Total Weight of Bottom = 639.55 lbf

Top Member

Type = Detail B Size = L2x2x1/4 Material = A240-316 Weight = 100.397 lbf

Anchors

Quantity = 4 Size = 1 in Material = A36 Bolt Hole Circle Radius = 5.1822 ft

Nameplate Information

Pressure Combination Factor	0.4
Design Standard	API-650 13th Edition Errata 1, 2021
Appendices Used	E, F, J, M, S
Roof	A240-316 : 0.1875 in
Shell (1)	A240-316 : 0.1875 in
Shell (2)	A240-316 : 0.1875 in
Shell (3)	A240-316 : 0.1875 in

Page: 5/109

Shell (4)	A240-316 : 0.1875 in
Shell (5)	A240-316 : 0.1875 in
Shell (6)	A240-316 : 0.1875 in
Bottom	A240-316 : 0.1875 in

Page: 6/109

Anchor Chair Design Back

Anchor Chair Design per AISI T-192 Part V

```
a = Top Plate Width Along Shell (in)
b = Top Plate Length (in)
bmin = Top Plate Minimum Length (in)
c = Top Plate Thickness (in)
CA = Chair Corrosion Allowance (in)
c corr = Top Plate Corroded Thickness (in)
D = Tank Nominal Diameter (ft)
d = Anchor Bolt Diameter (in)
e = Anchor Bolt Eccentricity (in)
Earthquakes-Considered = Earthquakes Considered
emin = Minimum Calculated Eccentricity (in)
emin-btm = Minimum Eccentricity Based on Bolt Clearance From Bottom Plates per API-650
5.12.4 (in)
emin-req = Minimum Required Eccentricity (in)
Et = Bottom Plates Thermal Expansion Coefficient per API-650 Table P.1b (in/in.fdeg)
f = Top Plate Outside To Hole Edge Distance (in)
f min = Distance from Outside of Top Plate to Edge of Hole per AISI T-192 Part V, Notation
g = Vertical Plates Distance (in)
g min = Minimum Distance Between Vertical Plates per AISI T-192, PartV, Notation (in)
h = Chair Height (in)
h-eff = Effective Chair Height (in)
hmax = Chair Maximum Height (in)
j = Vertical Plate Thickness (in)
i corr = Vertical Plate Corroded Thickness (in)
i min = Vertical Plate Minimum Thickness per AISI T-192 Part V, Vertical Side Plates (in)
k = Vertical Plates Average Width (in)
m = Base or Bottom Plate Thickness (in)
Ma-chair = Chair Material
outside-projection = Bottom Outside Projection (in)
R = Nominal Shell Radius (in)
Ssw-chair = Chair Allowable Stress for Seismic or Wind Design per API-650 5.12.9 (psi)
T = Difference between ambient and design temperature per API 650 5.12.4 (°F)
t = Shell Thickness (in)
T ambient = Ambient Temperature (°F)
T design = Design Temperature (°F)
V = Wind Velocity (mph)
Y-bolt = Anchor Bolt Yield Load (lbf)
a = 10.0 \text{ in}
b = 10.0 \text{ in}
c = 0.50 \text{ in}
```

Page: 78/109

```
CA = 0.0 \text{ in}
d = 1.0 in
D = 10.0 \text{ ft}
e = 2.0 in
Earthquakes-Considered = ASCE7-MAPPED-SS-AND-S1
Et = 7.070e-6 in/in.fdeg
f = 6.0 in
g = 4.250 in
h = 14.0 in
j = 0.56250 in
k = 5.47902 in
m = 0.18750 in
Ma-chair = A240-316
outside-projection = 1.0 in
R = 60.0 \text{ in}
t = 0.18750 \text{ in}
T ambient = 70.0 \, ^{\circ}F
T design = 375.0 \, ^{\circ}F
V = 81.90 \text{ mph}
Y-bolt = 19.8318e3 lbf
```

Anchor Chair Material Properties

Material = A240-316 Minimum Tensile Strength (Sut-chair) = 75.0e3 psi As per API-650 S.5.b, Minimum Yield Strength (Sy-chair) = 21.8750e3 psi As per API-650 S.2b, Allowable Design Stress (Sd-chair) = 19.7250e3 psi As per API-650 S.2b, Allowable Hydrostatic Test Stress (St-chair) = 27.0e3 psi

Ssw-chair = 1.33 * Sd-chair Ssw-chair = 1.33 * 19.7250e3 Ssw-chair = 26.2342e3 psi

Size Requirements

c_corr = c - (2 * CA) c_corr = 0.50 - (2 * 0.0) c_corr = 0.50 in

j_corr = j - (2 * CA) j_corr = 0.56250 - (2 * 0.0) j_corr = 0.56250 in

Chair Minimum Height (hmin) = 12.0 in

h >= hmin ==> PASS

Page: 79/109

Appurtenances Design Back

Plan View

LABEL	MARK	CUST. MARK	DESCRIPTION	OUTSIDE PROJ (in)	INSIDE PROJ (in)	ORIENT	RADIUS (in)	REMARKS	REF DWG
Agitator- Bridge	AB01		AGITATOR BRIDGE			0 '			
M1	RM01A		24" ROOF MANWAY	10"	1"	270 '	3'-4"		
N1	RN01A		6" ROOF NOZZLE	6"	1"	0 '	3'-9"		
N2	RN01A		6" ROOF NOZZLE	6"	1"	45 '	3'-9"		
N3	RN01A		6" ROOF NOZZLE	6"	1"	90 '	3'-9"		
N4	RN01A		6" ROOF NOZZLE	6"	1"	135 '	3'-9"		

Elevation View

LABEL	MARK	CUST. MARK	DESCRIPTION	OUTSIDE PROJ (in)	INSIDE PROJ (in)	ORIENT	ELEVATION (in)	REMARKS	REF DWG
Agitator- Bridge	AB01		AGITATOR BRIDGE			0 '	2'-5"		
Anchor- Chair- Bolts	AC01A		ANCHOR CHAIRS			SEE TABLE			
M2	SM01A		24" SHELL MANWAY	10"	1"	325 '	2'-6"	W/ DAVIT	
N5	SN01A		6" SHELL NOZZLE	8"	1"	0 '	1'-0 1/8"		
N6	SN01A		6" SHELL NOZZLE	8"	1"	45 '	1'-0 1/8"		
N7	SN01A		6" SHELL NOZZLE	8"	1"	90 '	1'-0 1/8"		
N8	SN01A		6" SHELL NOZZLE	8"	1"	135 '	1'-0 1/8"		

Page: 83/109

N9	SN02A	3" SHELL NOZZLE	7"	1"	180 '	9 1/2"	
N10	SN02A	3" SHELL NOZZLE	7"	1"	160 '	9 1/2"	
N11	SN02A	3" SHELL NOZZLE	7"	1"	220 '	9 1/2"	
N12	SN02A	3" SHELL NOZZLE	7"	1"	240 '	9 1/2"	
Name- Plate	NP01A	STD API			0 '	3'-4"	

Shell Nozzle: N5

Repad Design

```
NOZZLE Description: 6 in SCH 40S TYPE RFSO
```

Material: A312-TP316

t_rpr = (Repad Required Thickness)

t_n = (Thickness of Neck)

Sd_n = (Stress of Neck Material)

Sd_s = (Stress of Shell Course Material)

CA = (Corrosion Allowance of Neck)

MOUNTED ON SHELL 1: Elevation = 1.0104 ft

COURSE PARAMETERS:

t-calc = 0.0646 in

t_cr = 0.0646 in (Course t-calc less C.A)

t_c = 0.1875 in (Course t less C.A.)

t Basis = 0.0646 in

(SHELL NOZZLE REF. API-650 S.3.3.1, AND FOOTNOTE A OF TABLE 5-7)

Required Area = t_Basis * D

Required Area = 0.0646 * 6.625

Required Area = 0.4279 in2

Available Shell Area = (t c - t Basis) * D

Available Shell Area = (0.1875 - 0.0646) * 6.625

Available Shell Area = 0.8143 in2

Available Nozzle Neck Area = 2 * [(4 * (t_n - CA)) + t_c] * (t_n - CA) * MIN((Sd_n/Sd_s) 1)

Available Nozzle Neck Area = 2 * [(4 * (0.28 - 0)) + 0.1875] * (0.28 - 0) * MIN((19,725/19,725) 1)

Available Nozzle Neck Area = 0.7322 in2

A-rpr = (Required Area - Available Shell Area - Available Nozzle Neck Area)

A-rpr = 0.4279 - 0.8143 - 0.7322

Page: 84/109

```
A-rpr = 0 in2
```

```
Since A-rpr \leq 0, t rpr \leq 0
```

No Reinforcement Pad required.

t_shell_PWHT = Thickness of the shell plate, insert plate, or thickened insert plate for PWHT (in)

Nozzle Neck Material Properties

Material = A312-TP316

As per API-650 S.2b, Allowable Design Stress (Sd-neck) = 19.7250e3 psi

t_shell_PWHT = t-plate t_shell_PWHT = 0.18750 t shell PWHT = 0.18750 in

Thermal Stress Relief (PWHT) Requirements

D = Nozzle Nominal Diameter (NPS) (in) Group = Shell Material Group t_shell = Shell Plate Thickness (in)

D = 6.0 in Group = None t shell = 0.18750 in

Shell material group (None) is not a group specified by API 650, 13th Ed, Section 5.7.4. Requirement for Thermal Stress Relief (PWHT) is unknown.

Shell Nozzle: N6

Repad Design

NOZZLE Description: 6 in SCH 40S TYPE RFSO

Material: A312-TP316

t_rpr = (Repad Required Thickness)

t_n = (Thickness of Neck)

Sd n = (Stress of Neck Material)

Sd s = (Stress of Shell Course Material)

CA = (Corrosion Allowance of Neck)

MOUNTED ON SHELL 1: Elevation = 1.0104 ft

COURSE PARAMETERS:

t-calc = 0.0646 in

t_cr = 0.0646 in (Course t-calc less C.A)

t c = 0.1875 in (Course t less C.A.)

t_Basis = 0.0646 in

(SHELL NOZZLE REF. API-650 S.3.3.1, AND FOOTNOTE A OF TABLE 5-7)

Page: 85/109

```
Required Area = t_Basis * D

Required Area = 0.0646 * 6.625

Required Area = 0.4279 in2

Available Shell Area = (t_C - t_Basis) * D

Available Shell Area = (0.1875 - 0.0646) * 6.625

Available Shell Area = 0.8143 in2

Available Nozzle Neck Area = 0.8143 in2

A-rpr = (Required Area - Available Shell Area - Available Nozzle Neck Area)

A-rpr = 0.4279 - 0.8143 - 0.7322

A-rpr = 0.4279 - 0.8143 - 0.7322

A-rpr = 0.4279 - 0.8143 - 0.7322

Since A-rpr <= 0.4279 - 0.4279 - 0.4279 - 0.4279
```

No Reinforcement Pad required.

t_shell_PWHT = Thickness of the shell plate, insert plate, or thickened insert plate for PWHT (in)

Nozzle Neck Material Properties

Material = A312-TP316 As per API-650 S.2b, Allowable Design Stress (Sd-neck) = 19.7250e3 psi

t_shell_PWHT = t-plate t_shell_PWHT = 0.18750 t shell_PWHT = 0.18750 in

Thermal Stress Relief (PWHT) Requirements

D = Nozzle Nominal Diameter (NPS) (in) Group = Shell Material Group t_shell = Shell Plate Thickness (in)

D = 6.0 in Group = None t shell = 0.18750 in

Shell material group (None) is not a group specified by API 650, 13th Ed, Section 5.7.4. Requirement for Thermal Stress Relief (PWHT) is unknown.

Shell Nozzle: N7

Repad Design

NOZZLE Description: 6 in SCH 40S TYPE RFSO

Material: A312-TP316

t_rpr = (Repad Required Thickness) t_n = (Thickness of Neck)

Page: 86/109

```
Sd n = (Stress of Neck Material)
Sd s = (Stress of Shell Course Material)
CA = (Corrosion Allowance of Neck)
MOUNTED ON SHELL 1: Elevation = 1.0104 ft
COURSE PARAMETERS:
t-calc = 0.0646 in
t cr = 0.0646 in (Course t-calc less C.A)
t = 0.1875 in (Course t less C.A.)
t Basis = 0.0646 in
(SHELL NOZZLE REF. API-650 S.3.3.1, AND FOOTNOTE A OF TABLE 5-7)
Required Area = t Basis * D
Required Area = 0.0646 * 6.625
Required Area = 0.4279 in2
Available Shell Area = (t_c - t_Basis) * D
Available Shell Area = (0.1875 - 0.0646) * 6.625
Available Shell Area = 0.8143 in2
Available Nozzle Neck Area = 2 * [(4 * (t_n - CA)) + t_c] * (t_n - CA) * MIN((Sd_n/Sd_s) 1)
Available Nozzle Neck Area = 2 * [(4 * (0.28 - 0)) + 0.1875] * (0.28 - 0) * MIN((19,725/19,725) 1)
Available Nozzle Neck Area = 0.7322 in2
A-rpr = (Required Area - Available Shell Area - Available Nozzle Neck Area)
A-rpr = 0.4279 - 0.8143 - 0.7322
A-rpr = 0 in2
Since A-rpr \leq 0, t rpr \leq 0
No Reinforcement Pad required.
t shell PWHT = Thickness of the shell plate, insert plate, or thickened insert plate for PWHT (in)
Nozzle Neck Material Properties
Material = A312-TP316
As per API-650 S.2b, Allowable Design Stress (Sd-neck) = 19.7250e3 psi
t shell PWHT = t-plate
t shell PWHT = 0.18750
t shell PWHT = 0.18750 in
Thermal Stress Relief (PWHT) Requirements
D = Nozzle Nominal Diameter (NPS) (in)
Group = Shell Material Group
t shell = Shell Plate Thickness (in)
D = 6.0 in
Group = None
t \text{ shell} = 0.18750 \text{ in}
```

Shell material group (None) is not a group specified by API 650, 13th Ed, Section 5.7.4. Requirement for

Page: 87/109

Shell Nozzle: N8

Repad Design

Page: 88/109

```
NOZZLE Description: 6 in SCH 40S TYPE RFSO
Material: A312-TP316
t rpr = (Repad Required Thickness)
t n = (Thickness of Neck)
Sd n = (Stress of Neck Material)
Sd s = (Stress of Shell Course Material)
CA = (Corrosion Allowance of Neck)
MOUNTED ON SHELL 1: Elevation = 1.0104 ft
COURSE PARAMETERS:
t-calc = 0.0646 in
t cr = 0.0646 in (Course t-calc less C.A)
t c = 0.1875 in (Course t less C.A.)
t Basis = 0.0646 in
(SHELL NOZZLE REF. API-650 S.3.3.1, AND FOOTNOTE A OF TABLE 5-7)
Required Area = t Basis * D
Required Area = 0.0646 * 6.625
Required Area = 0.4279 in2
Available Shell Area = (t c - t_Basis) * D
Available Shell Area = (0.1875 - 0.0646) * 6.625
Available Shell Area = 0.8143 in2
Available Nozzle Neck Area = 2 * [(4 * (t_n - CA)) + t_c] * (t_n - CA) * MIN((Sd_n/Sd_s) 1)
Available Nozzle Neck Area = 2 * [(4 * (0.28 - 0)) + 0.1875] * (0.28 - 0) * MIN((19,725/19,725) 1)
Available Nozzle Neck Area = 0.7322 in2
A-rpr = (Required Area - Available Shell Area - Available Nozzle Neck Area)
A-rpr = 0.4279 - 0.8143 - 0.7322
A-rpr = 0 in2
Since A-rpr \leq 0, t rpr = 0
No Reinforcement Pad required.
t shell PWHT = Thickness of the shell plate, insert plate, or thickened insert plate for PWHT (in)
Nozzle Neck Material Properties
Material = A312-TP316
```

As per API-650 S.2b, Allowable Design Stress (Sd-neck) = 19.7250e3 psi

```
t_shell_PWHT = t-plate
t_shell_PWHT = 0.18750
t shell PWHT = 0.18750 in
```

Thermal Stress Relief (PWHT) Requirements

D = Nozzle Nominal Diameter (NPS) (in) Group = Shell Material Group t_shell = Shell Plate Thickness (in)

D = 6.0 in Group = None t shell = 0.18750 in

Shell material group (None) is not a group specified by API 650, 13th Ed, Section 5.7.4. Requirement for Thermal Stress Relief (PWHT) is unknown.

Shell Nozzle: N9

Repad Design

NOZZLE Description: 3 in SCH 40S TYPE RFSO Material: A312-TP316 t rpr = (Repad Required Thickness) t_n = (Thickness of Neck) Sd n = (Stress of Neck Material) Sd s = (Stress of Shell Course Material) CA = (Corrosion Allowance of Neck) MOUNTED ON SHELL 1: Elevation = 0.7917 ft **COURSE PARAMETERS:** t-calc = 0.0646 in t cr = 0.0646 in (Course t-calc less C.A) t c = 0.1875 in (Course t less C.A.) t Basis = 0.0646 in (SHELL NOZZLE REF. API-650 S.3.3.1, AND FOOTNOTE A OF TABLE 5-7) Required Area = t Basis * D Required Area = 0.0646 * 3.5 Required Area = 0.2261 in2 Available Shell Area = (t_c - t_Basis) * D Available Shell Area = (0.1875 - 0.0646) * 3.5 Available Shell Area = 0.4302 in2 Available Nozzle Neck Area = 2 * [(4 * (t_n - CA)) + t_c] * (t_n - CA) * MIN((Sd_n/Sd_s) 1)

Available Nozzle Neck Area = 2 * [(4 * (0.216 - 0)) + 0.1875] * (0.216 - 0) * MIN((19,725/19,725) 1)

Page: 89/109

Available Nozzle Neck Area = 0.4542 in2

```
A-rpr = (Required Area - Available Shell Area - Available Nozzle Neck Area)
A-rpr = 0.2261 - 0.4302 - 0.4542
A-rpr = 0 in2
Since A-rpr <= 0, t rpr = 0
```

No Reinforcement Pad required.

t_shell_PWHT = Thickness of the shell plate, insert plate, or thickened insert plate for PWHT (in)

Nozzle Neck Material Properties

Material = A312-TP316 As per API-650 S.2b, Allowable Design Stress (Sd-neck) = 19.7250e3 psi

```
t_shell_PWHT = t-plate
t_shell_PWHT = 0.18750
t_shell_PWHT = 0.18750 in
```

Thermal Stress Relief (PWHT) Requirements

D = Nozzle Nominal Diameter (NPS) (in) Group = Shell Material Group t_shell = Shell Plate Thickness (in)

D = 3.0 in Group = None t shell = 0.18750 in

Shell material group (None) is not a group specified by API 650, 13th Ed, Section 5.7.4. Requirement for Thermal Stress Relief (PWHT) is unknown.

Shell Nozzle: N10

Repad Design

NOZZLE Description : 3 in SCH 40S TYPE RFSO Material: A312-TP316

t was - /Danad Danwingd Thickness

t_rpr = (Repad Required Thickness) t_n = (Thickness of Neck)

Sd_n = (Stress of Neck Material)

Sd_s = (Stress of Shell Course Material)
CA = (Corrosion Allowance of Neck)

MOUNTED ON SHELL 1 : Elevation = 0.7917 ft

COURSE PARAMETERS:

t-calc = 0.0646 in t_cr = 0.0646 in (Course t-calc less C.A) t_c = 0.1875 in (Course t less C.A.) t_Basis = 0.0646 in

Page: 90/109

(SHELL NOZZLE REF. API-650 S.3.3.1, AND FOOTNOTE A OF TABLE 5-7)

Required Area = 0.2261 in2

Available Shell Area = (t_c - t_Basis) * D

Required Area = t_Basis * D Required Area = 0.0646 * 3.5

Available Nozzle Neck Area = $2 * [(4 * (t_n - CA)) + t_c] * (t_n - CA) * MIN((Sd_n/Sd_s) 1)$ Available Nozzle Neck Area = 2 * [(4 * (0.216 - 0)) + 0.1875] * (0.216 - 0) * MIN((19,725/19,725) 1)Available Nozzle Neck Area = 0.4542 in2

A-rpr = (Required Area - Available Shell Area - Available Nozzle Neck Area) A-rpr = 0.2261 - 0.4302 - 0.4542 A-rpr = 0 in2

Since A-rpr ≤ 0 , t rpr = 0

No Reinforcement Pad required.

t shell PWHT = Thickness of the shell plate, insert plate, or thickened insert plate for PWHT (in)

Nozzle Neck Material Properties

Material = A312-TP316

As per API-650 S.2b, Allowable Design Stress (Sd-neck) = 19.7250e3 psi

t_shell_PWHT = t-plate t_shell_PWHT = 0.18750 t_shell_PWHT = 0.18750 in

Thermal Stress Relief (PWHT) Requirements

D = Nozzle Nominal Diameter (NPS) (in) Group = Shell Material Group t_shell = Shell Plate Thickness (in)

D = 3.0 in Group = None t shell = 0.18750 in

Shell material group (None) is not a group specified by API 650, 13th Ed, Section 5.7.4. Requirement for Thermal Stress Relief (PWHT) is unknown.

Shell Nozzle: N11

Repad Design

NOZZLE Description: 3 in SCH 40S TYPE RFSO

Material: A312-TP316

Page: 91/109

```
t rpr = (Repad Required Thickness)
t n = (Thickness of Neck)
Sd n = (Stress of Neck Material)
Sd s = (Stress of Shell Course Material)
CA = (Corrosion Allowance of Neck)
MOUNTED ON SHELL 1: Elevation = 0.7917 ft
COURSE PARAMETERS:
t-calc = 0.0646 in
t cr = 0.0646 in (Course t-calc less C.A)
t_c = 0.1875 in (Course t less C.A.)
t Basis = 0.0646 in
(SHELL NOZZLE REF. API-650 S.3.3.1, AND FOOTNOTE A OF TABLE 5-7)
Required Area = t Basis * D
Required Area = 0.0646 * 3.5
Required Area = 0.2261 in2
Available Shell Area = (t_c - t_Basis) * D
Available Shell Area = (0.1875 - 0.0646) * 3.5
Available Shell Area = 0.4302 in2
Available Nozzle Neck Area = 2 \cdot [(4 \cdot (t \cdot n - CA)) + t \cdot c] \cdot (t \cdot n - CA) \cdot MIN((Sd \cdot n/Sd \cdot s) \cdot 1)
Available Nozzle Neck Area = 2 * [(4 * (0.216 - 0)) + 0.1875] * (0.216 - 0) * MIN((19,725/19,725) 1)
Available Nozzle Neck Area = 0.4542 in2
A-rpr = (Required Area - Available Shell Area - Available Nozzle Neck Area)
A-rpr = 0.2261 - 0.4302 - 0.4542
A-rpr = 0 in2
Since A-rpr \leq 0, t_rpr = 0
No Reinforcement Pad required.
t shell PWHT = Thickness of the shell plate, insert plate, or thickened insert plate for PWHT (in)
Nozzle Neck Material Properties
Material = A312-TP316
As per API-650 S.2b, Allowable Design Stress (Sd-neck) = 19.7250e3 psi
t shell PWHT = t-plate
t shell PWHT = 0.18750
t_shell_PWHT = 0.18750 in
Thermal Stress Relief (PWHT) Requirements
D = Nozzle Nominal Diameter (NPS) (in)
Group = Shell Material Group
t shell = Shell Plate Thickness (in)
D = 3.0 in
```

Group = None

Page: 92/109

```
t \text{ shell} = 0.18750 \text{ in}
```

Shell material group (None) is not a group specified by API 650, 13th Ed, Section 5.7.4. Requirement for Thermal Stress Relief (PWHT) is unknown.

Shell Nozzle: N12

Repad Design

```
NOZZLE Description: 3 in SCH 40S TYPE RFSO
Material: A312-TP316
t rpr = (Repad Required Thickness)
t n = (Thickness of Neck)
Sd n = (Stress of Neck Material)
Sd s = (Stress of Shell Course Material)
CA = (Corrosion Allowance of Neck)
MOUNTED ON SHELL 1: Elevation = 0.7917 ft
COURSE PARAMETERS:
t-calc = 0.0646 in
t cr = 0.0646 in (Course t-calc less C.A)
t c = 0.1875 in (Course t less C.A.)
t Basis = 0.0646 in
(SHELL NOZZLE REF. API-650 S.3.3.1, AND FOOTNOTE A OF TABLE 5-7)
Required Area = t Basis * D
Required Area = 0.0646 * 3.5
Required Area = 0.2261 in2
Available Shell Area = (t c - t Basis) * D
Available Shell Area = (0.1875 - 0.0646) * 3.5
Available Shell Area = 0.4302 in2
Available Nozzle Neck Area = 2 * [(4 * (t_n - CA)) + t_c] * (t_n - CA) * MIN((Sd_n/Sd_s) 1)
Available Nozzle Neck Area = 2 * [(4 * (0.216 - 0)) + 0.1875] * (0.216 - 0) * MIN((19,725/19,725) 1)
Available Nozzle Neck Area = 0.4542 in2
A-rpr = (Required Area - Available Shell Area - Available Nozzle Neck Area)
A-rpr = 0.2261 - 0.4302 - 0.4542
A-rpr = 0 in2
Since A-rpr \leq 0, t_rpr \leq 0
No Reinforcement Pad required.
t shell PWHT = Thickness of the shell plate, insert plate, or thickened insert plate for PWHT (in)
```

Page: 93/109

Nozzle Neck Material Properties

Material = A312-TP316

As per API-650 S.2b, Allowable Design Stress (Sd-neck) = 19.7250e3 psi

t_shell_PWHT = t-plate t_shell_PWHT = 0.18750 t shell PWHT = 0.18750 in

Thermal Stress Relief (PWHT) Requirements

D = Nozzle Nominal Diameter (NPS) (in) Group = Shell Material Group t shell = Shell Plate Thickness (in)

D = 3.0 in Group = None t shell = 0.18750 in

Shell material group (None) is not a group specified by API 650, 13th Ed, Section 5.7.4. Requirement for Thermal Stress Relief (PWHT) is unknown.

Shell Manway: M2

Repad Design

MANWAY Description: 24 in Neck Thickness 0.25

Material: A240-316

t rpr = (Repad Required Thickness)

t n = (Thickness of Neck)

Sd n = (Stress of Neck Material)

Sd_s = (Stress of Shell Course Material)
CA = (Corrosion Allowance of Neck)

MOUNTED ON SHELL 1 : Elevation = 2.5 ft

COURSE PARAMETERS:

t-calc = 0.0646 in

t cr = 0.0646 in (Course t-calc less C.A)

t c = 0.1875 in (Course t less C.A.)

t Basis = 0.0646 in

(SHELL MANWAY REF. API-650 TABLE 5-6, AND FOOTNOTE A OF TABLE 5-7)

Required Area = t_Basis * D

Required Area = 0.0646 * 24

Required Area = 1.5501 in2

Available Shell Area = (t_c - t_Basis) * D

Available Shell Area = (0.1875 - 0.0646) * 24

Available Shell Area = 2.9499 in2

Page: 94/109

```
Available Manway Neck Area = 2 * [(4 * (t_n - CA)) + t_c] * (t_n - CA) * MIN((Sd_n/Sd_s) 1)

Available Manway Neck Area = 2 * [(4 * (0.25 - 0)) + 0.1875] * (0.25 - 0) * MIN((19,725/19,725) 1)

Available Manway Neck Area = 0.5938 in2

A-rpr = (Required Area - Available Shell Area - Available Manway Neck Area)

A-rpr = 1.5501 - 2.9499 - 0.5938

A-rpr = 0 in2

Since A_rpr <= 0, t_rpr = 0
```

No Reinforcement Pad required.

t shell PWHT = Thickness of the shell plate, insert plate, or thickened insert plate for PWHT (in)

Manway Neck Material Properties

Material = A240-316

As per API-650 S.2b, Allowable Design Stress (Sd-neck) = 19.7250e3 psi

```
t_shell_PWHT = t-plate
t_shell_PWHT = 0.18750
t shell_PWHT = 0.18750 in
```

Thermal Stress Relief (PWHT) Requirements

D = Nozzle Nominal Diameter (NPS) (in) Group = Shell Material Group t shell = Shell Plate Thickness (in)

D = 24.0 in Group = None t shell = 0.18750 in

Shell material group (None) is not a group specified by API 650, 13th Ed, Section 5.7.4. Requirement for Thermal Stress Relief (PWHT) is unknown.

Cover Plate and Bolting Flange Design

CA-cover = Cover Plate and Bolting Flange Corrosion Allowance (in) Db = Bolt Circle Diameter (in) H = Design Liquid Level (ft) M = Cover Plate Thickness Multiplication Factor per API-650 S.3.3.3 M = Bolting Flange Thickness Multiplication Factor per API-650 S.3.3.3 Ma-cover = Cover Plate Material Ma-flange = Bolting Flange Material Sd = Allowable Stress per *API-650 5.7.5.6* (psi) SG = Product Specific Gravity tc = Cover Plate Thickness (in) tc-design = Cover Plate Required Thickness per API-650 5.7.5.6 (in) tc-req = Cover Plate Minimum Required Thickness (in) tf = Bolting Flange Thickness (in) tf-design = Cover Plate Required Thickness per API-650 5.7.5.6 (in) tf-reg = Bolting Flange Minimum Required Thickness (in) t-neck = Neck Thickness (in)

CA-cover = 0.0 in Db = 30.250 in

Page: 95/109

```
H = 30.0 \text{ ft}
Ma-cover = A240-316
Ma-flange = A240-316
SG = 1.10
tc = 0.6250 in
tf = 0.50 in
t-neck = 0.250 in
Water Density (Y) = 0.4330 psi/ft
As per API-650 5.7.5.6, Coefficient For Circular Plate (C) = 0.30
Cover Plate Material Properties and Required Thickness
Material = A240-316
As per API-650 S.5.b, Minimum Yield Strength at Ambient Temperature (Sy-ambient-cover) = 30.0e3 psi
As per API-650 S.5.b, Minimum Yield Strength (Sy-cover) = 21.8750e3 psi
Thickness for MDMT-permissible-cover (per API-650 Figure 4.3) = 0.156250 in
Sd = MIN(Sy-ambient-cover, 30000) / 2 = 15.0e3 psi
M = MAX(SQRT((Sy-ambient-cover / Sy-cover)), SQRT((30000 / Sy-cover)), 1) = 1.17108
As per API-650 5.7.5.6, Cover Plate Erection Thickness (tc-erec) = 0.31250 in
tc-design = ((Db * SQRT(((C * Y * H * MAX(SG , 1)) / Sd))) + CA-cover) * M
tc-design = ((30.250 * SQRT(((0.30 * 0.4330 * 30.0 * MAX(1.10 , 1)) / 15.0e3))) + 0.0) * 1.17108
tc-design = 0.598864 in
tc-req = MAX(tc-erec , tc-design)
tc\text{-reg} = MAX(0.31250, 0.598864)
tc-req = 0.598864 in
t-cover >= tc-req ==> PASS
Bolting Flange Material Properties and Required Thickness
Material = A240-316
As per API-650 S.5.b, Minimum Yield Strength at Ambient Temperature (Sy-ambient-flange) = 30.0e3 psi
As per API-650 S.5.b, Minimum Yield Strength (Sy-flange) = 21.8750e3 psi
Thickness for MDMT-permissible-flange (per API-650 Figure 4.3) = 0.250 in
M = MAX(SQRT((Sy-ambient-flange / Sy-flange)), SQRT((30000 / Sy-flange)), 1) = 1.17108
As per API-650 5.7.5.6, Bolting Flange Erection Thickness (tf-erec) = 0.250 in
tf-design = tc-design - 0.125
tf-design = 0.598864 - 0.125
tf-design = 0.473864 in
tf-req = MAX(tf-erec, tf-design)
tf-req = MAX(0.250, 0.473864)
tf-req = 0.473864 in
```

Page: 96/109

t-flange >= tf-req ==> PASS

Roof Nozzle: N1

Repad Design

```
(Per API-650 and other references below)
NOZZLE Description: 6 in SCH 40 TYPE RFSO
Material: A312-TP316
t rpr = (Repad Required Thickness)
t n = (Thickness of Neck)
Sd n = (Stress of Neck Material)
Sd s = (Stress of Roof Material)
CA = (Corrosion Allowance of Neck)
MOUNTED ON ROOF: Elevation = 30.2558 ft
ROOF PARAMETERS:
t-calc = 0.1875 in
t cr = 0.1875 in (Roof t-act less C.A)
t c = 0.1875 in
t Basis = 0.1875 in
(FOR ROOF NOZZLES, REF. API-650 FIG 5-19, TABLE 5-14 AND FOOTNOTE A OF TABLE 5-14, or
API-650 FIG 5-20, TABLE 5-15 AND FOOTNOTE A OF TABLE 5-15)
Required Area = t Basis * D
Required Area = 0.1875 * 6.625
Required Area = 1.2422 in2
Available Roof Area = (t c - t Basis) * D
Available Roof Area = (0.1875 - 0.1875) * 6.625
Available Roof Area = 0 in2
Available Nozzle Neck Area = 2 * [(4 * (t_n - CA)) + t_c] * (t_n - ca) * MIN((Sd_n/Sd_s) 1)
Available Nozzle Neck Area = 2 * [(4 * (0.28 - 0)) + 0.1875] * (0.28 - 0) * MIN((19,725/19,725) 1)
Available Nozzle Neck Area = 0.7322 in2
A_rpr = (Required Area - Available Roof Area - Available Nozzle Neck Area)
A rpr = 1.2422 - 0 - 0.7322
A rpr = 0.51 \text{ in } 2
```

As per API-650 J.3.6.3, reinforcement pad is not required since roof loads do not exceed 25 psf.

No Reinforcement Pad required.

Page: 97/109

Roof Nozzle: N2

Repad Design

```
(Per API-650 and other references below)
NOZZLE Description: 6 in SCH 40 TYPE RFSO
Material: A312-TP316
t rpr = (Repad Required Thickness)
t n = (Thickness of Neck)
Sd n = (Stress of Neck Material)
Sd s = (Stress of Roof Material)
CA = (Corrosion Allowance of Neck)
MOUNTED ON ROOF: Elevation = 30.2558 ft
ROOF PARAMETERS:
t-calc = 0.1875 in
t cr = 0.1875 in (Roof t-act less C.A)
t c = 0.1875 in
t Basis = 0.1875 in
(FOR ROOF NOZZLES, REF. API-650 FIG 5-19, TABLE 5-14 AND FOOTNOTE A OF TABLE 5-14, or
API-650 FIG 5-20, TABLE 5-15 AND FOOTNOTE A OF TABLE 5-15)
Required Area = t Basis * D
Required Area = 0.1875 * 6.625
Required Area = 1.2422 in2
Available Roof Area = (t_c - t_Basis) * D
Available Roof Area = (0.1875 - 0.1875) * 6.625
Available Roof Area = 0 in2
Available Nozzle Neck Area = 2 * [(4 * (t n - CA)) + t c] * (t n - ca) * MIN((Sd n/Sd s) 1)
Available Nozzle Neck Area = 2 * [(4 * (0.28 - 0)) + 0.1875] * (0.28 - 0) * MIN((19,725/19,725) 1)
Available Nozzle Neck Area = 0.7322 in2
A_rpr = (Required Area - Available Roof Area - Available Nozzle Neck Area)
A rpr = 1.2422 - 0 - 0.7322
A rpr = 0.51 in 2
```

As per API-650 J.3.6.3, reinforcement pad is not required since roof loads do not exceed 25 psf.

No Reinforcement Pad required.

Roof Nozzle: N3

Page: 98/109

Repad Design

```
(Per API-650 and other references below)
NOZZLE Description: 6 in SCH 40 TYPE RFSO
Material: A312-TP316
t rpr = (Repad Required Thickness)
t n = (Thickness of Neck)
Sd n = (Stress of Neck Material)
Sd s = (Stress of Roof Material)
CA = (Corrosion Allowance of Neck)
MOUNTED ON ROOF: Elevation = 30.2558 ft
ROOF PARAMETERS:
t-calc = 0.1875 in
t cr = 0.1875 in (Roof t-act less C.A)
t c = 0.1875 in
t Basis = 0.1875 in
(FOR ROOF NOZZLES, REF. API-650 FIG 5-19, TABLE 5-14 AND FOOTNOTE A OF TABLE 5-14, or
API-650 FIG 5-20, TABLE 5-15 AND FOOTNOTE A OF TABLE 5-15)
Required Area = t Basis * D
Required Area = 0.1875 * 6.625
Required Area = 1.2422 in2
Available Roof Area = (t c - t Basis) * D
Available Roof Area = (0.1875 - 0.1875) * 6.625
Available Roof Area = 0 in2
Available Nozzle Neck Area = 2 * [(4 * (t_n - CA)) + t_c] * (t_n - ca) * MIN((Sd_n/Sd_s) 1)
Available Nozzle Neck Area = 2 * [(4 * (0.28 - 0)) + 0.1875] * (0.28 - 0) * MIN((19,725/19,725) 1)
Available Nozzle Neck Area = 0.7322 in2
A_rpr = (Required Area - Available Roof Area - Available Nozzle Neck Area)
A rpr = 1.2422 - 0 - 0.7322
```

As per API-650 J.3.6.3, reinforcement pad is not required since roof loads do not exceed 25 psf.

No Reinforcement Pad required.

Roof Nozzle: N4

Page: 99/109

 $A_{rpr} = 0.51 in 2$

Repad Design

```
(Per API-650 and other references below)
NOZZLE Description: 6 in SCH 40 TYPE RFSO
Material: A312-TP316
t rpr = (Repad Required Thickness)
t n = (Thickness of Neck)
Sd n = (Stress of Neck Material)
Sd_s = (Stress of Roof Material)
CA = (Corrosion Allowance of Neck)
MOUNTED ON ROOF: Elevation = 30.2558 ft
ROOF PARAMETERS:
t-calc = 0.1875 in
t cr = 0.1875 in (Roof t-act less C.A)
t c = 0.1875 in
t Basis = 0.1875 in
(FOR ROOF NOZZLES, REF. API-650 FIG 5-19, TABLE 5-14 AND FOOTNOTE A OF TABLE 5-14, or
API-650 FIG 5-20, TABLE 5-15 AND FOOTNOTE A OF TABLE 5-15)
Required Area = t Basis * D
Required Area = 0.1875 * 6.625
Required Area = 1.2422 in2
Available Roof Area = (t c - t Basis) * D
Available Roof Area = (0.1875 - 0.1875) * 6.625
Available Roof Area = 0 in2
Available Nozzle Neck Area = 2 * [(4 * (t_n - CA)) + t_c] * (t_n - ca) * MIN((Sd_n/Sd_s) 1)
Available Nozzle Neck Area = 2 * [(4 * (0.28 - 0)) + 0.1875] * (0.28 - 0) * MiN((19,725/19,725) 1)
Available Nozzle Neck Area = 0.7322 in2
A rpr = (Required Area - Available Roof Area - Available Nozzle Neck Area)
A_{rpr} = 1.2422 - 0 - 0.7322
A_{rpr} = 0.51 in 2
As per API-650 J.3.6.3, reinforcement pad is not required since roof loads do not exceed 25 psf.
```

Roof Manway: M1

No Reinforcement Pad required.

Repad Design

Page: 100/109

```
(Per API-650 Section 5.8.4 and other references below)
MANWAY Description: 24 in Neck Thickness 0.25
Material: A240-316
t rpr = (Repad Required Thickness)
MOUNTED ON ROOF: Elevation = 30.3252 ft
ROOF PARAMETERS:
t-calc = 0.1875 in
t cr = 0.1875 in (Roof t-act less C.A)
t c = 0.1875 in
t Basis = 0.1875 in
(FOR ROOF MANWAY, REF. API-650 FIG 5-16, TABLE 5-13)
Required Area = t Basis * D
Required Area = 0.1875 * 24
Required Area = 4.5 in2
Available Roof Area = (t c - t Basis) * D
Available Roof Area = (0.1875 - 0.1875) * 24
Available Roof Area = 0 in2
Available Manway Neck Area = 2 * [(4 * (t_n - CA)) + t_c] * (t_n - ca) * MIN((Sd_n/Sd_s) 1)
Available Manway Neck Area = 2 * [(4 * (0.25 - 0)) + 0.1875] * (0.25 - 0) * MIN((19,725/19,725) 1)
Available Manway Neck Area = 0.5938 in2
A-rpr = (Required Area - Available Roof Area - Available Manway Neck Area)
A-rpr = 4.5 - 0 - 0.5938
A-rpr = 3.9063 in 2
As per API-650 J.3.6.3, since roof loads does not exceed 25 psf, t_rpr = 0
```

Page: 101/109

No Reinforcement Pad required.

Capacities and Weights Back

Capacity to Top of Shell (to Tank Height): 17,625 gal

Capacity to Design Liquid Level: 17,625 gal Capacity to Maximum Liquid Level: 17,625 gal Working Capacity (to Normal Working Level): 0 gal

Net working Capacity (Working Capacity - Min Capacity): 0 gal

Minimum Capacity (to Min Liq Level): 587 gal

Component	New Condition (lbf)	Corroded (lbf)
SHELL	7,379	7,379
ROOF	634	634
RAFTERS	0	0
GIRDERS	0	0
FRAMING	0	0
COLUMNS	0	0
TRUSS	0	0
STRUCTURE COMPONENTS	0	0
воттом	626	626
STAIRWAYS	0	0
ACCESS	0	0
STIFFENERS	101	101
WIND GIRDERS	0	0
AGITATOR BRIDGE	1,000	1,000
ANCHOR CHAIRS	95	95
SHELL APPURTENANCES	498	498
ROOF APPURTENANCES	260	260
BOTTOM APPURTENANCES	0	0
INSULATION	0	0
FLOATING ROOF	0	0
TOTAL	10,594.4152	10,594.4152

Weight of Tank, Empty: 10,594.4152 lbf

Weight of Tank, Full of Product (Design SG = 1.1): 172,396.4152 lbf

Weight of Tank, Full of Water: 157,686.6893 lbf

Net Working Weight, Full of Product (Design SG = 1.1): 167,002.5333 lbf

Net Working Weight Full of Water: 152,783.6135 lbf

Foundation Area Reg'd: 81.6794 ft2

Foundation Loading, Empty: 129.7072 lbf/ft2

Foundation Loading, Full of Product Design: 2,110.6461 lbf/ft2

Foundation Loading, Full of Water: 1,930.5552 lbf/ft2

SURFACE AREAS Roof: 81.6893 ft2 Shell: 942.4777 ft2

Page: 104/109