Contents

Impuls

Luftwiderstand

Vertikaler Fall

Der Luftwiderstand ist proportional zum Quadrat der Schnelligkeit und der Geschwindigkeit entgegengesetzt:

$$\begin{split} \vec{F}_w &= -c_w \cdot \frac{\rho A}{2} \cdot |\vec{v}|^2 \cdot \vec{n}_v \\ c_w &= \text{Widerstandszahl} \\ \rho &= \text{Luftdichte } (1.293 kg/m^3) \\ A &= \text{Querschnittsfläche} \perp \text{zu } \vec{v} \\ \vec{n}_v &= \frac{\vec{v}}{|\vec{v}|} \end{split}$$

Die Widerstandszahl c_w hängt von der Geometrie des betrachteten Körpers ab.

Fallgeschwindigkeit

$$\begin{split} m_{s}\vec{a} &= \vec{F}_{g} + \vec{F}_{w} \\ m\dot{v}_{z} &= -mg + c_{w} \cdot \frac{\rho_{Luft}A}{2} \cdot v_{z}^{2} \\ \Rightarrow \lim_{t \to \infty} v_{z}(t) &= \sqrt{\frac{g}{\gamma}} = \sqrt{\frac{2mg}{c_{w}\rho_{Luft}A}} \\ \vec{F}_{w} \\ \vec{V} \qquad \vec{F}_{g} \end{split}$$

Ballistische Kurven

Generell geht es darum, die Bahn eines Geschosses vorherzusagen.

$$\begin{split} & m \frac{d \vec{v}}{dt} = \vec{F}_G - k \cdot |\vec{v}|^2 \cdot \vec{n}_v \\ & \vec{n}_v = \frac{\vec{v}}{|\vec{v}|} \\ & k = & \text{Konstante} \left[\frac{kg}{m} \right] \end{split}$$

Dieses Problem kann nur numerisch, in Koordinatenform angegangen werden:

$$\begin{pmatrix} \dot{v}_x \\ \dot{v}_y \\ \dot{v}_z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ -g \end{pmatrix} - k \cdot \sqrt{v_x^2 + v_y^2 + v_z^2} \cdot \begin{pmatrix} v_x \\ v_y \\ v_z \end{pmatrix}$$

$$\dot{v}_x = -kv_x \sqrt{v_x^2 + v_y^2 + v_z^2}$$

$$\dot{v}_y = -kv_y \sqrt{v_x^2 + v_y^2 + v_z^2}$$

$$\dot{v}_z = -g - kv_z \sqrt{v_x^2 + v_y^2 + v_z^2}$$

Impuls

Definition

Gegeben ist eine punktförmige Masse m
 mit einer Geschwindigkeit \vec{v} . Der Impuls dieser Masse ist definiert als:

$$\vec{p} = m\vec{v}$$

Der Impuls ist also ein Vektor.

Impuls einer ausgedehnten Masse

$$\vec{p} = \underset{Volume}{\int} \rho(\vec{r}) \vec{v}(\vec{r}) dV$$

 $\rho(\vec{r}) = \text{Dichte am Punkt } \vec{r}$

 $v(\vec{r}) = Geschwindigkeit am Punkt \vec{r}$

dm(r) ist ein Stücklein Masse. Die Gesamtmasse ist aus vielen Massenstücklein zusammengesetzt, das Integral ist eine Summe über ganz kleine Stücklein:

$$dm(\vec{r}) = \rho(\vec{r})dV$$

Zusammenhang Impuls und Kraft

Es gilt:

$$\vec{F} = m\vec{a}, \ \vec{p} = m\vec{v}$$

Weiter können wir sagen:

$$\frac{d\vec{p}}{dt} = \frac{d}{dt}(m\vec{v}) = \frac{dm}{dt}\vec{v} + m\frac{d\vec{v}}{dt}$$

Falls die Masse zeitlich konstant ist $(\frac{dm}{dt} = 0)$ gilt:

$$\frac{d\vec{p}}{dt}=m\frac{d\vec{v}}{dt}=m\vec{a}=\vec{F}$$

$$\Rightarrow \frac{d\vec{p}}{dt} = \vec{F}$$

Die zeitliche Ableitung des Impulses eines Massenpunktes ist gleich der Kraft, die auf ihn wirkt!

Impulserhaltung

Für ein System miteinander wechselwirkender Massen aber ohne äussere Kräfte ist der Gesamtimpuls eine Konstante.

$$\vec{p}_{tot} = \sum_{i} m_i \vec{v}_i = const.$$

$$\frac{d\vec{p}_{tot}}{dt} = \frac{d}{dt} \left(\sum_i m_i \vec{v}_i \right) = \sum_i m_i \vec{a}_i = \sum_i \sum_{j \neq i} \vec{F}_{ij}^{intern}$$

Masseschwerpunkt

Definition

$$\vec{r}_{CM} = \frac{\sum \substack{m_i \vec{r}_i \\ \sum \substack{i} m_i}}{}$$

Schwerpunktgeschwindigkeit

$$\vec{v}_{CM} = \frac{\vec{p}_{tot}}{\sum\limits_{i}^{} m_{i}}$$

Schwerpunktbeschleunigung

$$\vec{a}_{CM} = \frac{\sum\limits_{i} m_i \vec{a}_i}{\sum\limits_{i} m_i}$$

Schwerpunktsatz

Die Änderungsrate des Impulses der im Schwerpunkt konzentrierten Gesamtmasse der Teilchen ist gleich der Summe aller externen Kräfte.

$$\begin{split} M_{tot} &= \sum_{i} m_{i} \\ \vec{a}_{CM} &= \frac{\sum\limits_{i}^{N} \sum\limits_{k} \vec{F}_{ik}^{extern}}{\sum\limits_{i}^{N} m_{i}} \Longleftrightarrow M_{tot} \vec{a}_{CM} = \frac{d\vec{p}_{CM}}{dt} = \sum\limits_{i}^{N} \sum\limits_{k}^{N} \vec{F}_{ik}^{extern} \end{split}$$

Eine Masse m übt gravitative Kräfte auf jeden Einzelteil einer Masse M aus. Zwischen den Teilen von M wirken Kräfte, die M zusammenhalten:

Forces between parts of the earth

Aufgrund des Schewrpunktsatzes dürfen Sie so tun, als ob die von m ausgeübte Kraft im Schwerpunkt von M auf ganz M wirken würde:

Wegen Newtons drittem Gesetz dürfen Sie jetzt schliessen, dass M eine entsprechende Gegenkraft auf m ausübt:

