SSC0527 - Engenharia de Software

Atividade 2 - 06/05

Nº do Grupo: 8	
N. USP	Nome
9790899	Eduardo da Silva Argenti
9805341	Leandro A. Silva
10310721	Maria Luisa do Nascimento da Silva
10295346	Mauricio Hitoshi Murakami
10408410	Rafael Doering Soares

Declaração do Escopo do Projeto

Τí	ítulo do Projeto
Irr	rigação inteligente

Justificativa do Projeto (Problemas)

O cuidado com as plantações depende de muitas variáveis que o agricultor nem sempre tem em mãos, como informações sobre a umidade, temperatura e acidez do solo, falta ou excesso de nutrientes, entre outros. Também existem problemas em relação ao cronograma de cuidados com a terra e o agendamento de irrigações com base em previsões meteorológicas. Água e energia elétrica podem ser desperdiçados se não houver um uso inteligente desses recursos na lavoura.

Sensores de umidade, temperatura e acidez do solo são uma ferramenta essencial para obter estes dados, mas existe uma falta de integração entre os sistemas para que a informação seja passada para o usuário da maneira mais completa possível.

Objetivo do Projeto (objetivo em nível estratégico – porque é importante)

O objetivo do projeto é aumentar a eficiência na irrigação de pequenas plantações por meio de um sistema de manejo inteligente da água aplicada com base em dados sensoriais do solo e do clima, potencialmente reduzindo consumo e melhorando a proporção ótima necessária para o crescimento saudável da plantação.

Descrição do Produto do Projeto

O sistema contará com sensores para medição de características da plantação, como umidade, temperatura e acidez do solo. Os sensores ficaram espalhados pela plantação, de modo que cada um cubra uma área do solo de tamanho fixo, para aumentar a precisão da medição. Os usuários principais serão os trabalhadores da plantação, que terão os dados dos sensores em um aplicativo

de celular. Os usuários receberão alertas sobre ocorrências de chuva e períodos de estiagem, além de poderem acessar um histórico dos dados da plantação, assim como um monitoramento do gasto de água.

Principais entregas do projeto

O projeto consistirá nas seguintes entregas:

- Protótipo dos sensores para monitorar uma pequena parte da plantação;
- Software para o monitoramento da plantação;
- Sistema de sensores instalados de acordo com a disposição da plantação;
- Um guia digital dentro do software;
- Uma planta contendo a visão geral das instalações do sensores;
- Uma especificação contendo informações técnicas sobre os hardwares instalados;
- Um modelo de projeto piloto.

Critérios de aceitação do produto

- 1. Sensores estão captando informações corretas e relevantes das características do solo;
- 2. Sistema está recebendo os dados corretamente dos sensores e mapeando a plantação irrigada;
- 3. Sistema consegue usar as informações coletadas para gerar relatórios da plantação e prover dicas para o agricultor;
- 4. Sistema deve estabelecer conexão com aplicações externas de previsão meteorológica;
- 5. Sistema deve realizar backup dos dados diariamente;
- 6. Sistema é seguro e protegido de acesso não autorizado;
- 7. Ao menos três avaliações positivas de agricultores em projetos pilotos.

Data de Abertura:	29/04/2021
Data de Aprovação:	06/05/2021
Versão:	1.0

Planejamento do Projeto

I. Introdução

1. Escopo e propósito do documento

Este documento descreve o planejamento de desenvolvimento do software Irrigação Inteligente, uma aplicação de auxílio na gestão de irrigação em pequenas agriculturas. Ele será um sistema móvel que coleta e exibe informações de dados capturados por sensores no solo e que também aconselha sobre os melhores períodos a se fazer irrigação, adubação e outros tipos de cuidados.

Neste documento também estão disponíveis a organização da equipe, a descrição dos riscos do projeto, a listagem dos recursos de hardware e software necessários para implementação, os critérios de aceitação do sistema e o cronograma de entrega.

2. Objetivos do projeto

O objetivo do projeto é aumentar a eficiência na irrigação de pequenas plantações por meio de um sistema de manejo inteligente da água aplicada com base em dados sensoriais do solo e do clima, potencialmente reduzindo consumo e melhorando a proporção ótima necessária para o crescimento saudável da plantação.

II. Organização de projeto

- 1. Organização da equipe e funções
 - Product Owner + Scrum Master
 - Nome: Leandro
 - Função: Contato com cliente e orientação do time de desenvolvimento.
 - Analista de dados
 - Nome: Eduardo
 - Função: Análise dos dados das plantações e reconhecimento de padrões que podem auxiliar na geração de dicas
 - Desenvolvimento de software:
 - o Nome: Rafael e Mauricio
 - Função: Desenvolvimento das interfaces do aplicativo e da conexão com aplicações externas de previsão meteorológica

- Desenvolvimento voltado para integração de hardware e software:
 - Nome: Maria Luisa
 - Função: Integração do aplicativo aos sensores e microcontroladores

III. Riscos do Projeto

- 1. Descrição dos riscos
- 2. Estratégias de redução dos riscos

IV. Recursos de software e hardware

1. Descrição dos recursos

Os recursos do projeto estarão centrados nos sensores usados na plantação (hardware) e no sistema de coleta, processamento e disposição das informações (software).

Hardware:

- Sensores de umidade e pH;
- Microcontroladores IoT;

Software:

- Sistema de coleta e monitoramento dos sensores;
- Sistema de monitoramento de condições meteorológicas;
- Base de dados das plantações dos clientes;
- Aplicativo mobile.

2. Custos relacionados

Os custos serão calculados de acordo com o tamanho da plantação que o cliente deseja monitorar. Assim, para o preço da malha será feito o cálculo por pontos de sensores.

Além disso, haverá o preço relacionado ao desenvolvimento do software. Para isso é necessário gasto com infraestrutura para o desenvolvimento. (Servidores, computadores para desenvolvimento, sensores para teste).

V. Divisão do trabalho (atividades do projeto, milestones e resultados de cada atividade)

VI. Cronograma (dependência entre atividades, pessoas envolvidas, tempo para cada milestone

VII. Mecanismos de Monitoração

VIII. Relatórios