	Esercizio 1. Si consideri una classe con 9 studenti. Il docente prepara 3 compiti diversi ed ogni compito viene assegnato a 3 studenti.	
	i) In quanti modi si possono abbinare i 9 studenti ai 3 compiti?	
	ii) Se il docente avesse invece preparato 9 compiti diversi, in quanti modi si sarebbero potuti abbinare i 9 studenti ai 9 compiti?	
	Si consideri ora la medisima classe di 9 studenti.	
	iii) In quanti modi si possono partizionare i 9 studenti in 3 gruppi, ognuno dei quali con 3 studenti?	
	iv) In quanti modi si possono partizionare i 9 studenti in 3 gruppi, uno dei quali con 5 studenti e i rimanenti	
	due con 2 studenti ognuno?	
	v) In quanti modi si possono partizionare i 9 studenti in 9 gruppi, ognuno dei quali con un singolo studente?	
;	$\binom{2}{3}\binom{6}{3}\binom{9}{3}$ $\frac{6!}{3!}$ $\frac{6!}{3!}$ $\frac{3!}{3!}$ $\frac{6!}{3!}$	_
($\left(\frac{1}{3}\right)\left(\frac{1}{3}\right)\left(\frac{1}{3}\right)\left(\frac{1}{3}\right)$	
	5 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	
•		
ر ا		
_		
i	$(\frac{5}{2})(\frac{3}{2})(\frac{3}{3})$	
بر	2/2/2/	
	3. 3 Geoff 6 Gual,	
1		
r)	$(\tilde{s})(\dot{z})(\tilde{z})$	
	2 (2 (DP) (GOAL)	
_		
S	(3)(3) (1) (1)	
	3!	
		_

Esercizio 2. Un'urna contiene 10 monete: 5 hanno testa su entrambe le facce, 3 hanno croce su entrambe le facce e 2 sono monete normali (testa su una faccia, croce sull'altra). Si estrae a caso una moneta e la si lancia (senza guardare che tipo di moneta sia).

- i) Calcolare la probabilità di ottenere testa.
- ii) Sapendo che la moneta ha reso testa, calcolare la probabilità che sia una moneta con due teste.

A)
$$P(T) = P(TT) \cdot P(T|TT) + P(TC) \cdot P(T|TC) = \frac{5}{10} \cdot 1 + \frac{2}{10} \cdot \frac{1}{10} = \frac{1}{10} \cdot 1 + \frac{1}{10} \cdot \frac{1}{10} = \frac{1}{10} = \frac{1}{10} \cdot \frac{1}{10} = \frac{1}{10} = \frac{1}{10} \cdot \frac{1}{10} = \frac{1}{10} = \frac{1}{10} \cdot \frac{1}{10} = \frac{1}{10} =$$

Esercizio 3. Si consideri un esame a risposta multipla organizzato al modo seguente. In totale ci sono 10 domande e per ogni domanda ci sono 4 possibili risposte, di cui una sola è corretta. L'algoritmo di valutazione è il seguente: ogni risposta giusta vale 3 e ogni risposta sbagliata (o non risposta) vale -1. Alice risponde a caso a tutte le 10 domande.

- i) Calcolare la probabilità che Alice ottenga la sufficenza (18/30).
- ii) Calcolare il valore di attesa del voto di Alice.
- iii) Calcolare la varianza del voto di Alice.

2)
$$p = \frac{1}{4}$$
 $p = \frac{1}{4}$ $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p = \frac{1}{4}$
 $p =$

Esercizio 4. Un'indagine statistica ha concluso che il 5% della popolazione è omosessuale. In una sala da ballo vi è un numero aleatorio di persone dato da una variabile di Poisson di parametro 1000.

- i) Determinare il valore di attesa delle persone omosessuali nella sala.
- ii) Determinare la distribuzione del numero delle persone omosessuali nella sala.
- iii) Alex entra nella sala da ballo e invita uno dei presenti (scelto a caso senza distinzione di sesso) a ballare. Calcolare la probabilità che il/la prescelto/a sia omosessuale.

