5. hét, 2024. március 11.

Analízis 2B Előadás

Tartalom

- a) Taylor-sorok
- b) Taylor-polinomok

Taylor-sorok

Hatványsorok

- a) Hatványsor: $\sum (c_n(x-a)^n)$, ahol $a, x, c_n \in \mathbb{R}, k \in \mathbb{N}$.
- b) Hatványsor konvergencia sugara, konvergencia halmaza: Cauchy–Hadamard-tétel.
- c) Hatványsor összegfüggvénye: $f: H \to \mathbb{R}, \ f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n$, ahol H a hatványsor konvergenciahalmaza.

Példák: exp, sin, cos.

Eddig: Hatványsor \implies (analitikus) Függvény.

Mostani probléma: Függvény \implies Hatványsor.

Miért?

- a) A hatványsorokról sok jó tulajdonságot bizonyítottunk pl. folytonosság, differenciálhatóság.
- A sor alakban történő előállítás a részletösszegeket véve lehetőséget ad polinomokkal történő approximációra.
- c) A helyettesítési értékek tetszőleges közelítő kiszámolása az alapműveletekkel.

FOGALMAZZUK MEG PONTOSAN A PROBLÉMÁT

Kérdések

Adott $f \in \mathbb{R} \to \mathbb{R}$ esetén:

- a) Van-e olyan hatványsor, aminek az összegfüggvénye az f függvény?
- b) Ha van, akkor az egyértelmű-e?
- c) Hogyan tudjuk előállítani a kérdéses hatványsort?

A hatványsor együtthatóinak meghatározása

Legyen $f \in \mathbb{R} \to \mathbb{R}$ és $a \in \text{int } \mathcal{D}_f$.

Tegyük fel, hogy van olyan $\sum (c_n(x-a)^n)$ hatványsor, amelyik az a pont egy $k_\delta(a)$ ($\delta > 0$) körnnyezetében előállítja az f függvényt, azaz

$$f(x) = \sum_{n=0}^{\infty} c_n(x-a)^n \quad (x \in k_{\delta}(a)).$$

A $k_{\delta}(a)$ környezet nyilván része a hatványsor konvergencia tartományának.

Tudjuk: hatványsor összegfüggvénye végtelen sokszor differenciálható, és a hatványsor "tagonként deriválható".

Ekkor
$$f^{(n)}(x) = \sum_{k=n}^{+\infty} k(k-1)\cdots(k-n+1)c_k(x-a)^{k-n} \quad (n \in \mathbb{N}).$$

A kapott eredmény

Tekintsük az előző egyenlőséget az x = a pontban:

$$f^{(n)}(a) = n!c_n$$
, azaz $c_n = \frac{f^{(n)}(a)}{n!}$ $(n \in \mathbb{N})$.

Következmény

Tétel

Ha az $f \in \mathbb{R} \to \mathbb{R}$ függvény előállítható a $\sum (c_n(x-a)^n)$ hatványsor összegfüggvényeként az $a \in \operatorname{int} \mathcal{D}_f$ pont valamely $\delta > 0$ sugarú környezetében, akkor

- i) $f \in D^{\infty}(a)$, azaz f végtelen sokszor differenciálható az a pontban,
- ii) $c_n = \frac{f^{(n)}(a)}{n!} \quad (n \in \mathbb{N}).$

Megjegyzés: A formula n = 0 esetén is igaz.

Összefoglalás: Megtudtuk, hogy ha f előállítható hatványsor összegfüggvényeként egy pont környezetében, akkor

- a) f végtelen sokszor differenciálható abban a pontban,
- b) csak egy ilyen hatványsor lehet,
- c) a hatványsor együtthatóit meghatározzák az f függvény adott pontbeli deriváltjai.

Definíció.

Ha $f \in D^{\infty}\{a\}$, akkor a

$$T_a f(x) := \sum \left(\frac{f^{(k)}(a)}{k!} (x-a)^k \right) \qquad (x \in \mathbb{R})$$

hatványsort az f függvény $a \in \operatorname{int} \mathcal{D}_f$ ponthoz tartozó Taylor-sorának nevezzük.

Az f függvény a=0 ponthoz tartozó Taylor-sorát szokásos f Maclaurin-sorának is nevezni.

Megjegyzések.

- a) Az előző tételt úgy is megfogalmazhatjuk, hogy minden konvergens hatványsor az összegfüggvényének a konvergencia középpont körüli Taylor-sorával egyenlő.
- b) Ha egy f függvény előállítható konvergens hatványsor összegfüggvényeként, akkor a szóban forgó sor szükségképpen az f függvénynek a konvergencia középpont körüli Taylor-sora.
- c) Az exp, sin, cos, sh, ch függvények definícióiban megadott hatványsorok a szóban forgó függvények a=0 ponthoz tartozó Taylor-sorai.

Kérdések

Ha $f \in D^{\infty}\{a\}$, akkor

- i) mely pontokban lesz konvergens a $T_a f$ Taylor-sor,
- ii) ahol konvergens, ott eőállítja-e az f függvényt, azaz teljesül-e azokban az x pontokban, hogy

$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x - a)^{k}?$$

Rövid válasz: nem

Legyen

$$f(x):=\begin{cases} e^{-\frac{1}{x^2}}, & \text{ha } x\in\mathbb{R}\setminus\{0\}\\ 0, & \text{ha } x=0\,. \end{cases}$$

Ekkor $f \in D^{\infty}(\mathbb{R})$ és $f^{(n)}(0) = 0$ ($n \in \mathbb{N}$). Következésképpen a $T_0 f$ Taylor-sor minden együtthatója 0, a $T_0 f$ Taylor-sor összegfüggvénye az \mathbb{R} -en azonosan 0 függvény, ami az f-et egyetlen $x \neq 0$ pontban sem állítja elő, mert f(x) > 0 ($x \in \mathbb{R}, x \neq 0$).

Az általános eset vizsgálata

A sorfejtés problémájának a vizsgálatához az általános esetben az függvény és a Taylor-sor részletösszegeinek a különbségét kell vizsgálni.

Az előző jelölésekkel:

$$f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k \qquad (n \in \mathbb{N}).$$

Vezessük be a

$$T_{a,n}f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^{k} \qquad (n \in \mathbb{N})$$

jelölést.

Definíció

Legyen $f \in D^{(n)}(a)$.

A
$$T_{a,n}f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k \ (x \in \mathbb{R})$$
 polinomot az f függvény $a \in \operatorname{int} \mathcal{D}_f$ ponthoz tartozó n -edik Taylor-polinomjának nevezzük.

Figyelem: $T_{a,n}f$ létezéséhez nem kell, hogy az f végtelen sokszor differenciálható legyen. Elég, ha $f \in D^{(n)}(a)$.

Ha $f \in D^{\infty}(a)$, akkor az n-edik $T_{a,n}f$ Taylor-polinom a T_af Taylor-sor n-edik részletösszege.

A Taylor-polinomok tulajdonságai

Legyen $n \in \mathbb{N}$, és tegyük fel, hogy $f \in D^n\{a\}$.

Ekkor a

$$T_{a,n}f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n \quad (x \in \mathbb{R})$$

Taylor-polinomra az alábbi interpolációs tulajdonságok teljesülnek:

$$T_{a,n}f(a) = f(a), \ (T_{a,n}f)'(a) = f'(a), \ (T_{a,n}f)''(a) = f''(a), \ \ldots, \ (T_{a,n}f)^{(n)}(a) = f^{(n)}(a).$$

T_{a,n}f az egyetlen ilyen "jó" tulajdonságú legfeljebb *n*-edfokú polinom.

Valóban: Tegyük fel, hogy egy ilyen P polinomra teljesül

$$P(a) = f(a), P'(a) = f'(a), P''(a) = f''(a), \ldots, P^{(n)}(a) = f^{(n)}(a).$$

Legyen $Q := P - T_{an}f$.

Ekkor $Q(a) = Q'(a) = \cdots = Q^{(n)}(a) = 0$.

Ebből következik, hogy az a szám a Q legfeljebb n-edfokú polinomnak legalább (n+1)-szeres gyöke.

Következésképpen $Q \equiv 0$, azaz $P \equiv T_{a,n}f$.

A következő tételben az $f - T_{a,n}f$ különbséget egy jól kezelhető alakban állítjuk elő.

Tétel (Taylor-formula a Lagrange-féle maradéktaggal.)

Legyen $n \in \mathbb{N}$, és tegyük fel, hogy $f \in D^{n+1}(K(a))$.

Ekkor $\forall x \in K(a)$ ponthoz \exists olyan a és x közé eső ξ szám, hogy

$$f(x) - T_{a,n}f(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-a)^{n+1}$$
.

Bizonyítás

Tegyük fel, hogy a < x (az x < a eset hasonlóan kezelhető).

Tudjuk, hogy $f^{(k)}(a) = (T_{a,n}f)^{(k)}(a) \ (k = 0, ..., n).$

Következésképpen az $F := f - T_{a,n}f$ függvényre teljesül, hogy $F^{(k)}(a) = 0$ (k = 0, ..., n).

Legyen $G(t)=(t-a)^{n+1}$ $(t\in\mathbb{R})$. Erre a függvényre is igaz, hogy $G^{(k)}(a)=0$ $(k=0,\ldots,n)$.

Könnyű ellenőrizni, hogy az F, G függvényekre alkalmazható a Cauchy-féle középértéktétel:

$$\exists \ a < \xi_1 < x \,, \quad \text{amelyre} \quad \frac{F(x)}{G(x)} = \frac{F(x) - F(a)}{G(x) - G(a)} = \frac{F'(\xi_1)}{G'(\xi_1)} \,.$$

(A második tagban F(a) = G(a) = 0.)

Bizonyítás (folytatás)

Megismételhetjük az előző gondolatmenetet az F', G' függvényekre:

$$\exists \ a < \xi_2 < \xi_1 \ , \quad \text{amelyre} \quad \frac{F(x)}{G(x)} = \frac{F'(\xi_1)}{G'(\xi_1)} = \frac{F'(\xi_1) - F'(a)}{G'(\xi_1) - G'(a)} = \frac{F''(\xi_2)}{G''(\xi_2)} \ .$$

 $F^{(k)}(a)=G^{(k)}(a) \ (k=0,\dots,n)$ miatt ezt tovább folytathatjuk. Azt kapjuk, hogy $\exists \ a<\xi_{n+1}<\xi_n,$ amelyre

$$\frac{f(x)-T_{a,n}f(x)}{(x-a)^{n+1}} = \frac{F(x)}{G(x)} = \frac{F^{(n)}(\xi_n)}{G^{(n)}(\xi_n)} = \frac{F^{(n)}(\xi_n)-F^{(n)}(a)}{G^{(n)}(\xi_n)-G^{(n)}(a)} = \frac{F^{(n+1)}(\xi_{n+1})}{G^{(n+1)}(\xi_{n+1})} \,.$$

(Az utolsó előtti tagban $F^{(n)}(a) = G^{(n)}(a) = 0$.)

Mivel $T_{a,n}f$ legfeljebb n-edfokú polinom, ezért $(T_{a,n}f)^{(n+1)} \equiv 0$, így $F^{(n+1)}(\xi_{n+1}) = (f(x) - T_{a,n}f(x))^{(n+1)}(\xi_{n+1}) = f^{(n+1)}(\xi_{n+1})$.

Másrészt $G(t) = (t-a)^{n+1}$, ezért $G^{(n+1)} \equiv (n+1)!$.

Következésképpen

$$f(x) - T_{a,n}f(x) = \frac{f^{(n+1)}(\xi_{n+1})}{(n+1)!}(x-a)^{n+1}$$
. \square

Hibaformula

Αz

$$R_n f(x) = f(x) - T_{a,n} f(x) \quad (x \in \mathcal{D}_f)$$

függvény értéke az n-edfokú Taylor-polinommal való közelítés hibája az x pontban.

Az előző tétel következménye:

Ha $\exists M > 0$ olyan, hogy $|f^{(n+1)}(x)| < M \forall x \in K_r(a)$, akkor

$$|R_n f(x)| < \frac{M}{(n+1)!} |x-a|^{n+1} \qquad (x \in K_r(a)).$$

Függvények egy fontos osztályára igaz, hogy egy rögzített a helyhez tartozó Taylor-polinomok sorozata egy K(a) környezet bármely x helyén f(x)-hez tart, ha $n \to +\infty$. Az egyik legegyszerűbb, de fontos ilyen jellegű tétel a következő.

Tétel (Elégséges feltétel az előállításra)

Legyen $f \in D^{\infty}(K(a))$, és tegyük fel, hogy

$$\exists M > 0$$
, amelyre $|f^{(n)}(x)| \leq M \quad (\forall x \in K(a), \forall n \in \mathbb{N}).$

Ekkor f-nek az a ponthoz tartozó Taylor-sora a K(a) halmazon előállítja az f függvényt, vagyis fennáll az

$$f(x) = \lim_{n \to +\infty} \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^{k} = \sum_{k=0}^{+\infty} \frac{f^{(k)}(a)}{k!} (x - a)^{k} \ (x \in K(a))$$

egyenlőség.

Bizonyítás

Legyen $x \in K(a)$ egy tetszőleges pont. Ekkor az előző tétel alapján létezik olyan ξ pont a és x között, hogy

$$\left| f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^{k} \right| = \left| \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-a)^{n+1} \right| \le M \cdot \frac{|x-a|^{n+1}}{(n+1)!}.$$

Ebből a tétel állítása már következik, mert

$$\lim_{n\to+\infty}\frac{(x-a)^{n+1}}{(n+1)!}=0.$$

Példák

- a) $f = \exp, f^{(n)} = \exp, \exp \uparrow$. Az $f^{(n)}$ függvénynek a 0 minden környezetében n-től független korlátja van: $|f^{(n)}(x)| < \exp r =: M \ (x \in K_r(0))$.
- b) $f(x) = \sin(x)$. A sin függvény "hagyományos, geometriai" definícióját tekintjük.

A fenti feltételek teljesülnek: a=0 esetén tetszőleges r>0-ra M=1 választással.

Következésképpen

$$\sin x = \sum_{k=0}^{\infty} \frac{(-1)^k}{k!} x^{2k+1} \, .$$

c) $f(x) = \cos x$ a b)-hez hasonlóan.

Nevezetes sorfejtések

$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + \cdots \quad (|x| < 1)$$

Bizonyítás. Legyen
$$f(x) := \frac{1}{1+x} (x > -1)$$
. Ekkor $f \in D^{\infty}$ és $f^{(n)}(x) = (-1)^n n! (1+x)^{-n-1} (x > -1)$, így
$$f^{(n)}(0) = (-1)^n n! \quad (n \in \mathbb{N}) \implies f^{(n)}(0) = f^{(n)}(0) = f^{(n)}(0)$$

$$T_0 f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} (-1)^n x^n \quad (x \in \mathbb{R}).$$

Ez (-x) hányadosú geometriai sor, és konvergens $\iff |x| < 1$, és ekkor az összege:

$$\frac{1}{1+x}=\frac{1}{1-(-x)}=1-x+x^2-x^3+\cdots \quad (|x|<1).$$

20

$$\frac{1}{1+x^2}=1-x^2+x^4-x^6+\cdots \quad (|x|<1)$$

Bizonyítás. 1^o -ben x helyett x^2 -et írva kapjuk az állítást.

3º

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} \cdots \quad (x \in (-1,1]).$$

Ha x = 1, akkor

$$\ln 2 = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$$

Bizonyítás. (Vázlat.) Legyen $f(x) := \ln(1+x)$ (x > -1). Ekkor $f \in D^{\infty}$ és $f^{(n)}(x) = (-1)^{n+1} \cdot (n-1)! \cdot (1+x)^{-n}$, így

$$f(0) = 0, \quad f^{(n)}(0) = (-1)^{n+1} \cdot (n-1)! \ (n \in \mathbb{N}^+) \quad \Longrightarrow$$

$$T_0 f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n} \quad (x \in \mathbb{R}).$$

A sor konvergenciahalmaza a (-1, 1] intervallum.

Az előállítás. Legyen g a $T_0 f$ sor összegfüggvénye:

$$g(x) := \sum_{n=1}^{+\infty} (-1)^{n+1} \frac{x^n}{n} \quad (x \in (-1,1]).$$

Ekkor $g \in D(-1,1)$ és $\forall x \in (-1,1)$ pontban

$$g'(x) = \sum_{n=1}^{+\infty} (-1)^{n+1} \cdot n \cdot \frac{x^{n-1}}{n} = \sum_{n=0}^{+\infty} (-x)^n = \frac{1}{1+x}.$$

Mivel
$$f'(x) = \frac{1}{1+x} (x > -1) \Longrightarrow f' = g'(-1,1)$$
-en \Longrightarrow

$$\exists c \in \mathbb{R}: f(x) - g(x) = c \ (x \in (-1, 1)). \ Ugyanakkor$$

$$f(0) = g(0) = 0 \implies c = 0$$
 for $\forall x \in (-1, 1)$ nonth

$$f(0) - g(0) = 0 \Longrightarrow \underbrace{c = 0}_{\cdot} \text{ (fgy } \forall x \in (-1, 1) \text{ pontban}$$

$$\ln(1+x) = \sum_{n=1}^{+\infty} (-1)^{n+1} \frac{x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} - \cdots$$

$$\underbrace{\text{Az } x = 1 \text{ pontban}}_{\text{az állítás } f \text{ és } g \text{ folytonosságából következik.}$$

arctg
$$x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} \cdots \quad (x \in [-1, 1])$$

Ha x = 1, akkor

$$arctg 1 = \frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$$

Megjegyzés. Az $f(x) := \arctan x \ (x \in \mathbb{R})$ függvény $T_0 f$ Taylor-sorának előállítása a definíció alapján nem egyszerű feladat. \Box **Bizonyítás.** (Vázlat.) **Ötlet:** Az $f'(x) = \frac{1}{1+x^2} \ (x \in \mathbb{R})$ függvény sorösszeg

előállítását már ismerjük (l. a 2º példát):

$$T_0 f'(x) = 1 - x^2 + x^4 - x^6 + \cdots \quad (|x| < 1).$$

Vegyük észre azt, hogy ha

$$g(x) := x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots \quad (|x| < 1), \text{ akkor}$$
 $g'(x) = 1 - x^2 + x^4 - x^6 + \cdots \quad (|x| < 1).$

A 3º példában alkalmazott gondolatmenetet követve kapjuk, hogy

$$g(x) = f(x) = \text{arctg } x, \text{ ha } x \in (-1, 1).$$

A ± 1 pontbeli előállítást is hasonlóan bizonyíthatjuk be.

5º A binomiális sor

$$(1+x)^{\alpha} = \sum_{n=0}^{+\infty} {\alpha \choose n} x^n \quad (x \in (-1,1), \ \alpha \in \mathbb{R}),$$

ahol

$$\binom{\alpha}{0}:=1 \text{ \'es } \binom{\alpha}{n}:=\frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}, \text{ ha } n\in\mathbb{N}^+$$

a binomiális együtthatók.

Bizonyítás. (Vázlat.) Legyen

$$f(x):=(1+x)^{\alpha}\quad (x>-1,\ \alpha\in\mathbb{R}).$$

1. lépés. Az f függvény 0 pont körüli Taylor-sora:

$$T_0f(x)=\sum_{n=0}\frac{f^{(n)}(0)}{n!}x^n=\sum_{n=0}\binom{\alpha}{n}x^n\quad(x\in\mathbb{R}),$$
 ui. $f^{(n)}(0)=\alpha(\alpha-1)\cdots(\alpha-n+1)\ (n\in\mathbb{N}^+).$

2. lépés. A
$$T_0 f$$
 sor konvergens a $(-1,1)$ intervallumon (l. a hányadoskritériumot). Legyen

$$g(x) := \sum_{n=0}^{+\infty} {\alpha \choose n} x^n \quad (|x| < 1).$$

$$g(x) := \sum_{n=0}^{\infty} \binom{n}{n}^{n}$$

3. lépés.
$$f \in D^{\infty}(-1, +\infty)$$
 és

$$(1+x)\cdot f'(x)=\alpha\cdot f(x)\quad (x>-1).$$

$$(1+x)\cdot I'(x) = \alpha \cdot I(x) \quad (x>-1).$$
 $g \in D^{\infty}(-1,1)$, és igazolható, hogy

$$(1+x)\cdot g'(x)=\alpha\cdot g(x)\quad (|x|<1).$$

$$(1+x)\cdot g'(x)=\alpha\cdot g(x)\quad (|x|<1).$$

tehát

$$(1+x)^{\alpha}=f(x)=g(x)=\sum_{n=0}^{+\infty}\binom{\alpha}{n}x^{n}\quad (|x|<1),$$

 $\left(\frac{g(x)}{(1+x)^{\alpha}}\right)' = \frac{g'(x) \cdot (1+x)^{\alpha} - g(x) \cdot \alpha(1+x)^{\alpha-1}}{(1+x)^{2\alpha}} =$

 $=\frac{(1+x)\cdot g'(x)-\alpha\cdot g(x)}{(1+x)^{\alpha+1}}=0.$

 $(1+x)^{\alpha} = \sum_{n=0}^{+\infty} {\alpha \choose n} x^n \quad (x \in (-1,1), \ \alpha \in \mathbb{R}). \blacksquare$

Ezért $\exists c \in \mathbb{R} : \frac{g(x)}{(1+x)^{\alpha}} = c \ (|x| < 1)$. Mivel $g(0) = {\alpha \choose 0} = 1$, ezért c = 1,

6º A binomiális sorban $\alpha = -\frac{1}{2}$ esetén x helyett $(-x^2)$ -et írva azt kapjuk, hogy

$$\boxed{\frac{1}{\sqrt{1-x^2}} = \sum_{n=0}^{+\infty} (-1)^n \cdot {-\frac{1}{2} \choose n} \cdot x^{2n} \quad (|x| < 1)},$$

ahol $\binom{-\frac{1}{2}}{n} = (-1)^n \cdot \binom{2n}{n} / 4^n$.

7º Ha $f(x) := \arcsin(x) \ (x \in [-1, 1])$, akkor $f \in D(-1, 1)$ és

$$f'(x) = \frac{1}{\sqrt{1-x^2}}$$
 (|x| < 1).

A 6º példát, valamint a 3º példa gondolatmenetét alkalmazva azt kapjuk, hogy

$$\arcsin x = \sum_{n=0}^{+\infty} \frac{\binom{2n}{n}}{4^n} \cdot \frac{x^{2n+1}}{2n+1} \qquad (|x| < 1).$$