

ITSUE

Curso 18/19 :: Prueba 1

SOLUCIÓN

Escuela Superior de Informática

calificación

Este examen consta de 10 preguntas con un total de 10 puntos. Cada tres preguntas incorrectas resta un punto. Sólo una opción es correcta a menos que se indique algo distinto. No está permitido el uso de calculadora. La duración máxima de este examen será de 30 minutos.

Apellidos:		dos: SOLUCIÓN	Nombre:	Grupo:
1.	plataf	 La carga de trabajo en un sistema de computación hete taforma: a) Se asigna a cada tecnología en partes iguales para fac b) Se asigna a cada tecnología teniendo en cuenta el ren c) Ninguna de las anteriores. d) 	ilitar la distribución de trab	pajo.
2.	parte:	 En un diseño para un sistema heterogéneo, luego de definte: a) Se realiza independiente una de la otra y se agregan a b) Se realizan de manera conjunta e iterativa comparand c) Se realizan de manera independiente pero luego se interactiva 	l diseño. lo resultados.	
3.		 a) Especificación AMBA en el entorno ARM se refiere b) Especificación del modelo de programación para el programación de un método de acceso a memoria. c) Especificación de un modelo de comunicación con su 	rocesador ARM.	
4.		 a) Aumentando la frecuencia del reloj para que termine b) Utilizando todos los modos de bajo consumo que ofre c) Utilizando los modos de bajo consumo posibles de ac procesador de acuerdo a lo que permita el diseño. 	su trabajo en menos tiempo ece el procesador cuando n	o esté procesando.
5.		 a) Configurar el hardware interno tantas veces como lo j deseada. b) Configurar el hardware interno solo para simular una c) Las dos anteriores. 	permita la tec <mark>nología p</mark> ara o	
6.		 a) Menor consumo de potencia en comparación con CPI b) Capacidad de reconfiguración, consumo de potencia menor tiempo de diseño. c) Tecnología con curva de aprendizaje rápida, menor cobles a GPUs. 	Us, elevada frecue <mark>ncia d</mark> e o a reducido en comparació	ón con otros dispositivos,
7.		 a) Comunicación de la parte reconfigurable con los perios b) Comunicación entre componentes implementados en c) Comunicación entre memoria cache y la parte reconfigurable 	féricos de entrada/salida. la parte reconfigurable.	
8.		 a) Se describe un sistema a nivel de su comportamiento b) Se describe un sistema a nivel de diagrama en bloque comportamiento. c) Se obtiene un código de simulación a partir de una o (VHDL). 	y se obtiene un <mark>comp</mark> onent le y se obtiene e <mark>l códi</mark> go el	n C/ C++ describiendo su

10 de diciembre de 2018 1/2

ITSUE Curso 18/19 :: Prueba 1

Escuela Superior de Informática

9.	[1p]	En el proceso de síntesis usando HLS, la etapa de scheduling se encarga de:
		a) Asignar los recursos hardware necesarios para la funcionalidad buscada.
		b) Asignar en qué ciclos de reloj se ejecutará cada operación.
		c) Asignar espacio de memoria a variables y datos del algoritmo a ejecutar.
10.	. [1p] ¿Qué se extrae del código de entrada al usar HLS?	
		a) Una máquina de estado para el control de los pasos del algoritmo.
		b) Una máquina de estado para el control de las etapas del algoritmo a implementar más el camino de datos.
		c) Extrae el datapath correspondiente a l algoritmo a implementar.

10 de diciembre de 2018 2/2