KOMBINATORYKA

• **Permutacją** zbioru skończonego nazywamy każde ustawienie wszystkich jego elementów w dowolnej kolejności.

Jest n! permutacji zbioru n-elementowego.

Dla naturalnych wartości n określamy:

$$n! = 1 \cdot 2 \cdot \ldots \cdot n.$$

Ponadto przyjmujemy 0! = 1

Przykład

- 1. Na ile sposobów można ustawić w kolejce 5 osób? Na $5! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 = 120$ sposobów.
- 2. Ile można utworzyć liczb czterocyfrowych wykorzystując wszystkie cyfry liczby 3425?

Takich liczb jest 4! = 24.

3. Czternaście osób jadało codziennie obiady przy podłużnym stole. Wszyscy zajmowali zawsze te same miejsca. Pewnego dnia najmłodszy z uczestników, wystąpił z propozycją, aby miejca zajmować za każdym razem inaczej, aż do wyczerpania wszystkich możliwych rozmieszczeń. Jak sądzisz, ile tygodni czy lat będzie trwało wyczerpywanie wszystkich możliwości?

• Reguła mnożenia Jeżeli pewien wybór zależy od skończenie wielu decyzji, przy czym podejmując pierwszą decyzję mamy n_1 możliwości, drugą - n_2 możliwości, \cdots , ostatnią n_k możliwości, to wybór ten może być dokonany na $n_1 \times n_2 \times \ldots \times n_k$ sposobów.

Przykład

1. Na ile sposobów można ustawić w kolejce 5 dziewczyn i 4 chłopaków, jeżeli dziewczyny stoją przed chłopakami?

Na $5! \times 4! = 120 \cdot 24 = 2880$ sposobów.

2. "Milion zestawów obiadowych" - głosi reklama pewnej restauracji. W rzeczywistości jest tam tylko 12 zup, 20 drugich dań, 10 przystawek, 20 deserów i 25 gatunków win. Czy masz prawo czuć się oszukany?

• Każdy k-elementowy podzbiór zbioru n-elementowego A ($k \le n$) nazywamy k-elementową **kombinacją** tego zbioru.

Liczba wszystkich k-elementowych kombinacji zbioru n-elementowego jest równa

$$C_n^k = \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Przykład

1. W turnieju szachowym brało udział pięciu zawodników. Ile partii rozegrano, jeżeli każdy z uczestników rozegrał jedną partię z każdym z pozostałych?

Rozegrano
$$\binom{5}{2} = \frac{5!}{2! \cdot (5-2)!} = \frac{5!}{2! \cdot 3!} = \frac{4 \cdot 5}{2} = 10$$
 partii.

2. Na egzaminie student wybiera 4 pytania spośród 6. Na ile sposobów może to zrobić?

Może to zrobić na
$$\binom{6}{4} = \frac{6!}{4! \cdot 2!} = \frac{5 \cdot 6}{2} = 15$$
 sposobów.

3. W Dużym Lotku należy skreślić 6 spośród 49 liczb.Sprawdź, czy liczba możliwych wyborów jest większa od 10 000 000.

• Każdy k-wyrazowy ciąg, utworzony z różnych elementów n-elementowego zbioru A, gdzie $k \leq n$, nazywamy **wariacją bez powtórzeń** zbioru A. Liczba wszystkich k-elementowych wariacji bez powtórzeń jest równa

$$V_n^k = n \cdot (n-1) \cdot \ldots \cdot (n-k+1) = \frac{n!}{(n-k)!}$$

Przykład

1. Pewien kod tworzymy z trzech liter wybranych spośród następujących: A,B,C,D,E,F,G,H, przy czym litery nie mogą się powtarzać. Ile jest takich kodów?

Na pierwszym miejscu możemy wpisać jedną z ośmiu liter, na drugim - jedną z pozostałych siedmiu, a na trzecim jedną z pozostałych sześciu. Zatem jest $8\cdot 7\cdot 6=336$ kodów.

2. W sali wykładowej jest 100 miejsc. Na ile sposobów mogą zająć miejsca 3 słuchacze?

Na $100 \cdot 99 \cdot 98 = 970200$ sposoby.

3. Ile można utworzyć siedmiocyfrowych numerów telefonicznych rozpoczynających się od 701, w których żadna cyfra nie będzie się powtarzała?

• Każdy k-wyrazowy ciąg, w którym wyrazy mogą się powtarzać, utworzony z elementów n-elementowego zbioru A, gdzie $k \leq n$, nazywamy wariacją z powtórzeniami zbioru A.

Liczba wszystkich k-elementowych wariacji z powtórzeniami zbioru n-elementow jest równa

$$W_n^k = n^k$$

Przykład

1. Pewien kod tworzymy z pięciu liter wybranych spośród następujących: A,B,C,D,E,F,G,H, przy czym litery mogą się powtarzać. Ile jest takich kodów?

Jest $8^5 = 32768$ takich kodów.

2. Ile można utworzyć sześciocyfrowych numerów telefonicznych rozpoczynających się od 68, w których cyfry mogą się powtarzać?

Jest $10^4 = 10000$ takich numerów.

3. Ile jest wszystkich siedmiocyfrowych numerów telefonicznych, w których nie występuje cyfra 0?

ZDARZENIA LOSOWE

• Rzut monetą czy rzut kostką to przykład doświadczeń losowych. Poszczególne wyniki doświadczenia losowego nazywamy **zdarzeniami elementarnymi**, a ich zbiór - **przestrzenią zdarzeń elementarnych**. Przestrzeń zdarzeń elementarnych oznaczamy grecką literą omega - Ω , a pojedyncze zdarzenia elementarne małą literą ω .

Przykład

- 1. Przestrzeń zdarzeń elementarnych rzutu monetą $\Omega = \{o, r\}$, gdzie o oznacza otrzymanie orła, a r reszki.
- 2. Przestrzeń zdarzeń elementarnych rzutu kostką $\Omega = \{1, 2, 3, 4, 5, 6\}$.

• Zdarzeniem losowym nazywamy dowolny podzbiór przestrzeni zdarzeń elementarnych Ω .

Przykład

Doświadczenie losowe polega na jednokrotnym rzucie kostką.

Przestrzeń zdarzeń elementarnych $\Omega = \{1, 2, 3, 4, 5, 6\}.$

Niech A będzie zdarzeniem polegającym na wypadnięciu parzystej liczby oczek, a B - liczby oczek większej od 4. Wówczas $A = \{2, 4, 6\}, B = \{5, 6\}.$

• Zbiór pusty nazywamy zdarzeniem **niemożliwym**, cały zbiór Ω nazywamy zdarzeniem **pewnym**. Elementy zdarzenia A nazywamy **wynikami sprzyjającymi zdarzeniu A**.

Ponieważ zdarzenia to zbiory, więc na zdarzeniach możemy wykonywać takie same operacje jak na zbiorach.

Niech $A, B \subset \Omega$.

- Sumą zdarzeń A i B nazywamy zdarzenie $A \cup B$, któremu sprzyjają wszystkie zdarzenia elementarne sprzyjające A lub B.
- **Iloczynem** zdarzeń A i B nazywamy zdarzenie $A \cap B$, któremu sprzyjają wszystkie zdarzenia elementarne sprzyjające jednocześnie A i B.
- **Różnicą** zdarzeń A i B nazywamy zdarzenie $A \setminus B$, któremu sprzyjają wszystkie zdarzenia elementarne sprzyjające A i niesprzyjające B.

- Mówimy, że zdarzenia A i B są **rozłączne** lub **wykluczają się**, jeżeli część wspólna $A\cap B$ tych zdarzeń jest zdarzeniem niemożliwym $(A\cap B=\emptyset)$
- Zdarzenie $A' = \Omega \backslash A$ nazywamy **zdarzeniem przeciwnym** do zdarzenia A.
- Jeśli wszystkie elementy zdarzenia A należą do zdarzenia B, to mówimy, że zdarzenie A zawiera się w zdarzeniu B, co zapisujemy $A \subset B$.

• Klasyczna definicja prawdopodobieństwa.

Załóżmy, że w pewnym doświadczeniu losowym jest skończona liczba wyników i wszystkie wyniki są jednakowo prawdopodobne. Wówczas **prawdopodobieństwo zdarzenia** A określamy wzorem:

$$P(A) = \frac{liczba\ wynikow\ sprzyjajacych\ A}{liczba\ wynikow\ mozliwych}$$

Przykład

- 1. Rzucamy symetryczną kostką. Jakie jest prawdopodobieństwo wypadnięcia parzystej liczby oczek, a jakie liczby oczek większej od dwóch?
- 2. Rzucamy dwukrotnie symetryczną kostką. Jakie jest prawdopodobieństwo otrzymania sumy oczek mniejszej od 5, a jakie parzystej sumy oczek?

Prawdopodobieństwo na przeliczalnej przestrzeni zdarzeń.

Pewną kostkę poddano testowi - wykonano długą serię rzutów. W tabeli (w procentach), jak często pojawiał się dany wynik - liczba oczek.

Liczba oczek	1	2	3	4	5	6
Częstość występowania	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$12{,}5\%$	25%	$12{,}5\%$	25%

Zwróć uwagę, że nie wszystkie wyniki występują równie często. Sugeruje to, aby przyjąć dla tej kostki następujące prawdopodobieństwa pojawiania się danej liczby oczek.

Liczba oczek	1	2	3	4	5	6
Częstość występowania	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{4}$

W powyższej tabeli podano rozkład prawdopodobieństwa pojawienia się danej liczby oczek w rzucie kostką.

• Rozkład prawdopodobieństwa Niech $\Omega = \{\omega_1, \omega_2, \dots, \omega_n, \dots\}$ będzie zbiorem wszystkich wyników pewnego doświadczenia losowego. Każdemu wynikowi ω_i przypisujemy nieujemną liczbę p_i tak, aby spełniony był warunek:

$$p_1 + p_2 + \ldots + p_n + \ldots = 1.$$

Liczbę p_i nazywamy prawdopodobieństwem zdarzenia elementarnego ω_i oraz mówimy, że na przestrzeni Ω został określony **rozkład prawdopodobieństwa**.

Doświadczenie polega na jednokrotnym rzucie niesymetryczną kostką. Prawdopodobieństwo otrzymania danej liczby oczek podano w tabeli. Oblicz prawdopodobieństwo otrzymania parzystej liczby oczek.

Liczba oczek	1	2	3	4	5	6
Częstość występowania	$\frac{1}{9}$	<u>1</u> 9	1 6	$\frac{1}{6}$	<u>1</u> 9	$\frac{1}{3}$

Obliczamy prawdopodobieństwo zdarzenia $A = \{2, 4, 6\}$:

$$P(A) = \frac{1}{9} + \frac{1}{6} + \frac{1}{3} = \frac{11}{18}.$$

• Niech $A \subset \Omega$. **Prawdopodobieństwo** P(A) zdarzenia A jest sumą prawdopodobieństw zdarzeń elementarnych sprzyjających zdarzeniu A.

Własności prawdopodobieństwa

- $P(A) \ge 0, P(A) \le 1$
- $P(\emptyset) = 0, P(\Omega) = 1$
- Jeśli $A \subset B$, to $P(A) \leq P(B)$
- P(A') = 1 P(A)
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- Jeżeli zdarzenia A i B wykluczają się to $P(A \cup B) = P(A) + P(B)$.
- $P(A \setminus B) = P(A) P(A \cap B)$.

Ogólna definicja prawdopodobieństwa

Niech Ω będzie zbiorem zdarzeń elementarnych i \mathcal{F} wyróżnioną w nim rodziną zdarzeń (σ -ciałem). **Prawdopodobieństwem** nazywamy funkcję $P: \mathcal{F} \to \mathcal{R}$, spełniającą warunki:

- 1. $P(A) \ge 0$ dla każdego $A \in \mathcal{F}$,
- 2. $P(\Omega) = 1$,
- 3. jeżeli zdarzenia $A_1, A_2, \ldots \in \mathcal{F}$ parami się wykluczają, to

$$P(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} P(A_n).$$

Można wykazać, że tak zdefiniowane prawdopodobieństwo spełnia wyżej wymienione własności.

Prawdopodobieństwo warunkowe

Przykład. Rzucamy jeden raz symetryczną kostką sześcienną. Jakie jest prawdopodobieństwo, że:

- a) wypadnie parzysta liczba oczek?
- b) wypadnie parzysta liczba oczek, pod warunkiem, że liczba oczek będzie większa od 3?

DEFINICJA. Niech $A, B \subset \Omega$ i P(B) > 0. Prawdopodobieństwo zdarzenia A pod warunkiem zdarzenia B, określamy wzorem:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}.$$

Przykład. W urnie jest 7 kul niebieskich i 4 czerwone. Losujemy z niej kolejno bez zwracania, dwie kule. Niech A oznacza zdarzenie polegające na wylosowaniu za drugim razem kuli czerwonej, a B - polegające na wylosowaniu za pierwszym razem kuli niebieskiej. Oblicz P(A|B).

Jeśli za pierwszym razem wyciągnęliśmy kulę niebieską, to w urnie pozostało 6 kul niebieskich i 4 czerwone. Zatem:

$$P(A|B) = \frac{4}{10} = \frac{2}{5}.$$

Čwiczenie. Z urny, w której jest 5 kul białych i 7 czarnych, losujemy dwie kule bez zwracania. Niech A oznacza zdarzenie polegające na wylosowaniu za drugim razem kuli czarnej, B_1 - na wylosowaniu za pierwszym razem kuli białej, B_2 - na wylosowaniu za pierwszym razem kuli czarnej. Oblicz $P(A|B_1)$ i $P(A|B_2)$. Umieść obliczone prawdopodobieństwa na odpowiednim drzewie.

Wydawnictwo wydrukowało 80% nakładu pewnej ksiązki w drukarni I, a pozostałe 20% - w drukarni II. Wady ma 0,1% książek z drukarni I i 0,6% książek z drukarni II. Jakie jest prawdopodobieństwo, ze losowa wybrana książka jest wadliwa?

Wzór na prawdopodobieństwo całkowite

Niech $B_1, B_2 \subset \Omega$ będą zdarzeniami o dodatnich prawdopodobieństwach takimi, że $B_1 \cup B_2 = \Omega$ oraz $B_1 \cap B_2 = \emptyset$. Wówczas dla dowolnego zdarzenia $A \subset \Omega$ zachodzi wzór:

$$P(A) = (B_1)P(A|B_1) + P(B_2)P(A|B_2)$$

Pewna choroba występuje u 0,1% ogółu ludności. Test do jej wykrycia daje zawsze odpowiedź pozytywną u osób chorych oraz w 5% osób zdrowych. Jakie jest prawdopodobieństwo, że osoba u której test dał odpowiedź pozytywną jest naprawdę chora?

Oznaczmy:

D – wylosowana osoba ma odczyt pozytywny,

C – wylosowana osoba jest chora,

Z – wylosowana osoba jest zdrowa.

Mamy obliczyć prawdopodobieństwo: P(C|D).

Z definicji prawdopodobieństwa warunkowego i ze wzoru na prawdopodobieństwo całkowite mamy:

$$P(C|D) = \frac{P(C \cap D)}{P(D)} = \frac{P(C) \cdot P(D|C)}{P(C)P(D|C) + P(Z)P(D|Z)} = \frac{0,001 \cdot 1}{0,001 \cdot 1 + 0,999 \cdot 0,05} = 0,02$$

Prawdopodobieństwo, że osoba u której test dał pozytywny wynik jest chora, jest równe 0,02.

Wzór Bayesa (wzór na prawdopodobieństwo przyczyny)

Niech $B_1, B_2 \subset \Omega$ będą zdarzeniami o dodatnich prawdopodobieństwach takimi, że $B_1 \cup B_2 = \Omega$ oraz $B_1 \cap B_2 = \emptyset$. Wówczas dla dowolnego zdarzenia $A \subset \Omega$ o prawdopodobieństwie dodatnim zachodzi wzór:

$$P(B_1|A) = \frac{P(B_1) \cdot P(A|B_1)}{P(B_1)P(A|B_1) + P(B_2)P(A|B_2)}$$

- 1. Jak zmieni się prawdopodobieństwo, że osoba z odczytem dodatnim jest chora (patrz przykład powyżej), jeśli test będzie dawał odczyt pozytywny w przypadku:
- a) 0,1% osób zdrowych, b) 0,01% osób zdrowych?

Przykład Z talii 52 kart wybrano jedną kartę. Jakie jest prawdopodobieństwo, że odgadniemy kolor tej karty? Czy dodatkowa informacja, że jest ona asem, zwiększy prawdopodobieństwo poprawnej odpowiedzi?

Oznaczmy:

A – wylosowana karta jest koloru podanego przez nas

B - karta jest asem

Mamy:

 $P(A) = \frac{13}{52} = \frac{1}{4}$ – wśród 52, kart 13 jest w podanym przez nas kolorze $P(A|B) = \frac{1}{4}$ – wśród 4 asów, jeden jest w podanym przez nas kolorze

Niezależność zdarzeń

Zdarzenia $A, B \subset \Omega$ nazywamy **niezależnymi**, jeśli:

$$P(A \cap B) = P(A) \cdot P(B)$$

Rzucamy raz kostką symetryczną. Czy zdarzenia: A – wypadła nieparzysta liczba oczek i B– wypadła liczba oczek większa od 4, są niezależne?

Prawdopodobieństwo wypadnięcia orła dla pewnej monety niesymetrycznej wynosi $\frac{2}{3}$. Oblicz prawdopodobieństwo otrzymania dokładnie jednego orła w trzykrotnym rzucie tą monetą.

Schemat Bernoulliego

Schemat Bernoulliego polega na wielokrotnym powtórzeniu tego samego doświadczenia, mającego dwa możliwe wyniki o dodatnim prawdopodobieństwie. Każde doświedczenie nazywamy próbą Bernoulliego, jeden z wyników nazywamy sukcesem, drugi – porażką.

Wzór Bernoulliego

W schemacie n prób Bernoulliego prawdopodobieństwo otrzymania k sukcesów jest równe:

$$P(S_n = K) = \binom{n}{k} p^k q^{n-k} \quad \text{dla} \quad k = 0, 1, \dots, n$$

gdzie p prawdopodobieństwo sukcesu w jednej próbie, a q - prawdopodobieństwo porażki (q=1-p).