MACHINE INTELLIGENCE UNIT-4

Particle Swarm Optimisation

feedback/corrections: vibha@pesu.pes.edu

VIBHA MASTI

Swarm · Loosely structured collection of interacting agents · Agents contribute to and benefit from their group · Eg: swarm of bees, ant colony, flock of birds, human wowds, cells & molecules Swarm Intelligence · No centralised control structures PARTICLE SWARM OPTIMISATION · Population-based stochastic optimisation technique · Potential solutions - particles in the problem space · Particles fly through the problem space by following current optimum particles for · Each particle searches optimal solution

				7		ίt	+1)	-	χ	L	[]	+	V	٠ (t-	t1`)			
					_				V												
					٦,		, , .					•									
									1	u	Ni-	for	W		3	no	l	M			
	•	V	ele) C	W		at		ti	M۱	est	ted)	t	+		i	νfί	Me	2N(e
		6	Ŋ		C																
			1.	in	O.N.	hi0	•	٥٢	ev	ioi	2 A	V	el	o ci	tu						
			2.	P	be	sł		P	er!) (V	lal		be	st	P	00	ih	n	1		
			3.	U.	06	\$ Ł	; .1	to	er!		66	st	(6	est	1	09	it	i W	١	
				+	DU Vol	M M	a Lhr	by	(2v	i+(Lelt	• (ln	.Cl	1† 9		30	Cli	1 1		
	•	V)h	en	1	SN.	tiv	e	2	Äč;	tev	M	+	al	ler)	as	Y	rei	gh	60
		Υ.	NO	000	15	()	66	54	(Y	y	W	60	.1	اد اد	e (-	Ha	we	n	
10)P	<u>0 L</u>	00	alt	S	•															
	•	To	DO	סוס	ارم	1	0		in	es		S	0 (ia		~	ei	ąh	90	ur	ho
		0	E,	ea	.ch	.	Po	ırt	in ncl	e								ט			
(1)	61	O	٥۵	1	B	25 ⁻	+	P	Sc)											
	•					•	_														
	•	۵	11	ev	av	rti	ich	29		CC) ((M	U	ni	cat	te	l	io	th	C	ıll
		_	1.1.	اما															1		

flaw: local minimum less diversity advantage: converges fast (a) at time t = 0(b) at time t = 1Local Best PSD (2) eg: ring topology - every particle connected to 2 neighbours advantage: not easily trapped in local minima, more diversity (b) at time t = 1(a) at time t = 0© vibhas notes 2021

GLOBAL BEST PSD Iteration # 0 Iteration # N Population of particles with random positions and velocities Evaluate fitness function for each particle compare with phest and ghest and update accordingly D dimensional Assume space Position X X i = (xi, xi, ..., xio) Velocity V Vi = (Vi, Viz) , Vin ST © vibhas notes 2021

6	ΧÇ	o k	<u>۴0</u>	占	<u> </u>	<u> </u>	٩	2		Ex	plo	pi-	L a	hί	16	B	er	\Q'	Vic) U 1		_
						U L			~ /					\:	C)	
	•		X {	/(U)	ra L	ti d Sp	M		7 GX	-P	YUI	e 1	0	ル	τ	re	S T	W	١ζ	Oł		_
		2	Lu	Y C	. V\	21)a(e	70	T	1 1	λ	ol	ת	W	۷W	1					
	•	E	ХC	olo	+i	at	S (C	n:		(D)	Λſ	ρŊ	ት	at	0	(0	av	rc.V	\	0.Y	ou	_ l
		Pı	0	Mi	Si	at Ng		25	20													•
						V																
	•	PS	62	1)a	rav	M {	2te	rs	Q	(N	d	Q	la	ni	41	M	2	No	ula	d	
		6	2	Ch	os	en	لـــــــا	Ь	(٥0	lla	V(e	U	٤X	19.	N	at	in	n		
		α	M.	l	67	rav en plo	it	ał	jo	N						J						
					_																	-
	•	H	VC)	X ,	9	16	W	at	ur	e		۱0۱	۸V	en	ye	NC	e				
		1.	V	elc) U	ty ia ric		CU	ìΝ ! Ο !	\ Pi	70)										
		2.	レク	ne	rt	ia	\ منا	NE	191	17	احما	•										
		5.	L	IJΥ	(67)	Y (C	710	y \	+	αı	70											_
1.	V	0	n (ih	A	C	J۵	W	Di	\ <u>\</u>	λ											
											ָן ע			L								
		i-(٧	T		>	٧		人		V	t	-	\ 	lm	Δ \	,			
					V	1			1	VVA	X			b	+							
		id	}		V		<	\	- \	l ^w	w	_		٧;		-	۱ ر	$\sqrt{\Lambda}$	la:	,		
											V)										
		•		. 1								_						1 -	• 1			
	•	31	W()	ll Al	`	٧m	(Q x	(• (en	.00	UI	`a(ze	S	e	xp	10	ita	λħ	(V)	1
		U	0 (المر)																	-
	•	1 () W	2 D		11.		•		'n	(n.	1 4	00	Dr	1	ø	~ N	10	۲Q.	43.0	V	+
			۱۱۰	3e	ما^) V	ΛQ:	Χ .	1	• 1 (~ 1	()62		L	^ {	,,0	· W	1 10	1	
		7)~	, 0	\	7																+

	•	•																		
•	Sc	UJ	け	M	S															
	1.	C	ho	Na	je p	\ fu	M M	ux K	,	wr	vgv Va	1 tiu	gk ns	ુલ્ડ	+	d	0 e	S	N 0	+
	2.	E	хp	00	(EV	tia	۸۱۱۲	J	dı	eca	ry	V	M	ΔX						
	3.	W	ηt	10 (lu	LL		iΛt	er	tio		V	ve	igi	1					
	ų .	U) N	ኒት	ic	o a	M	f	ac	tr	(
2. Z	ne	rtí	a	(2	zie	ht		h	3										
•	Co) V(m	کاد	•	M)W	rev	nti	un	1	of	•	Pa	ırt	icl	e			
V_i^{t+1} =	= <i>u</i>	V_i^t	^t +	c_1	ra	nd	$l_1 \times$	< (.	P_i^t		X_i^t) +	c_2	ra	inc	$l_2 >$	< (P_g^t		$X_i^t ig)$
•	14)	W) ≥	1)	ve	lo	ci ⁴	rie	S	ij	NC 1	رور	156	2	OV	rer	·	ime
	a -	no P	d s	sw Hi	ar Ll.	m es	4	div fa	rev il	rg.	es	ch	lai	مم	e	d	ir	ect	iσ	ime n
•	I	fai	と	ر ا	۱ ک	,	V	ec	ci	H.	es	C	hei	CVE	Pas	L	O	LV2	ł	
•	D																	egi V		ve e
				W)こ		w	M	ιχ	+	(v	J _M	in i	- v t e	o,	19	x	رن ا	tev	<u>1</u>)
																			s note	es 2021

•	w	and	٥٠	elero	ition	coeffici	ents
		V	ن ک	<u>1</u> C	(1+(2)	-)	
•	Typ	oi cal	lly,	C(= (Cz = 2.0)	
3. (onst	rict	im	coeffi	icient	P	
•	Vel	ociti	67 (const	ricted	l by q	ρ
V_i^{t+1}	$= \varphi$ ($wV_i^t +$	$-c_1 \ ran$	$d_1 imes ig(F$	$P_i^t - X_i^t $	$+ c_2 \; rand_2$	$ imes \left(P_g^t - X_i^t ight) ight)$
•	Wh	ere	φ	is 9	iven	by	
		φ	$=\frac{1}{2}$	$-\psi$ —	$\frac{2}{\sqrt{3/2}}$	$\overline{4\psi}$	
				•	•	, I	
•	an	Α (S	•	> 4)	
			ψ	$=c_1$	$+c_2$		
							© vibhas notes 2021

COGNITION ONLY MODEL · C2 = 0 · Excludes social component $V_i = wv_i + c_i \text{ rand} * (p_i - x_i^t)$ SOCIAL ONLY MODEL · c, = 0 · Excludes cognitive component Vi = wvi + c2 rand * (pa - xi) · Faster than full & cognitive models for dynamic environments © vibhas notes 2021

Q :	1	Νi	۸ì	w	se		4	()	l ji	V)	2	τ	2+	Ŋ ²							
		ST	-	COV	nst	70	ιlγ	15		_	·	57	15	:)							
				re									၅ ဒ								
	L	et		W	(Lin	er	++	a)) =	0	.3									
	ι	et	(٦ ٦	- C) =	2	<u> </u>													
	A	22	Su	Mt	0		Pi	9	-	fg) <u>=</u>	l	00	00)	C	la	rge	. (. ۱۷۰)
I				Sa																	
		U/2	10	os: dii	e ne	f 2n.). l	~ M!	U	CI	ر)	f	70	S	•	7	ar-	hi d	le	ا ک
	P	=	- C	١,(\	√ _l	-	(.) , (07)			
	P	2	= (-	,))						•	٧ ₂	, =	L	0,	D)			
	P	3 [°]	- (0.	5	_	D ·	5))			1	Jz	Z	L	. 0	, 0)			
	P	ł	2	ί١,	, -)							Vц	-	3	ره	, ())			
	P	5	2	(0.2	J	, O	.2	(۲				٧ _ς	- 3	3	(0	, (Cc			

Fitness value = $f(x,y) = x^2 + y^2$ Run 1

TABLE 1: Initial positions, velocity, and best positions of all particles.

Particle No.	Initial	Positions	Vel	ocity	Best Solution	Bes	st Position	Fitness
Tarticle 140.	X	у	X	у	Dest Solution	X	y	Value
\mathbf{P}_1	1	1	0	0	1000	-		2
P ₂	-1	1	0	0	1000	-	-	2
P ₃	0.5	-0.5	0	0	1000	-	-	0.5
P ₄	1	-1	0	0	1000		-	2
P ₅	0.25	0.25	0	0	1000	-	-	0.125

(3) (a) best value = 0. hs

For P1:

$$P_{3}^{1} = (0.25, 0.25)$$

Let $r_{1} = r_{2} = 0.5$

Local best of $P_{1} = (1_{1})$
 $P_{1}^{1} = (0.25, 0.25)$
 $P_{2}^{1} = (0.25, 0.25)$
 $P_{3}^{1} = (0.25, 0.25)$
 $P_{4}^{1} = (0.25, 0.25)$
 $P_{5}^{1} = (0.25, 0.25)$
 $P_{7}^{1} = (0.25, 0.25)$

Pı	1 =	(0.	25	, 0	. 25	(:	→	new	PB!	
f	CP!) =	Ð٠	125	•					
and	So	\mathbf{M}								

Global best value = 0.125 and Global best position = 0.25, 0.25

_		Current Position		Updated Velocity		Personal Position	Best		Updated Positio		
_	Particle (i)	xi(t)	yi(t)	Fitness value f(xi(t), yi(t))	vi(t+1)	vi(t+1)	P _b (i)	P _b (i)	global best value	xi(t+1)	yi(t+1)
_	1	1	1	2	-0.75	-0.75	1	1	0.125	0.25	0.25
_	2	-1	1	2	1.25	-0.75	-1	1	0.125	0.25	0.25
_	3	0.5	-0.5	0.5	-0.25	0.75	0.5	-0.5	0.125	0.25	0.25
	4	1	-1	2	-0.75	1.25	1	-1	0.125	0.25	0.25
	5	0.25	0.25	0.125	0	0	0.25	0.25	0.125	0.25	0.25

- 1. Transportation planning
 2. Neural networks
 3. Clustering