- 1. Prove the general dependent random choice lemma, Lemma 5.4.11.
- 2. Recall that Q_d denotes the d-dimensional hypercube graph, with $n=2^d$ vertices.
 - (a) Prove that Q_d is a bipartite graph with maximum degree d on one side. Conclude from Theorem 5.4.10 that $r(Q_d) \leq n2^{5d\sqrt{\log n}} = 2^{d+5d^{3/2}}$.
 - (b) By applying Lemma 5.4.11 and being more careful, prove that $r(Q_d) \leq 2^{3d} = n^3$. Note that this bound is polynomial in n, whereas the bound in part (a) is superpolynomial in n.
- 3. Let \widehat{K}_k denote the 1-subdivision of K_k . This is a graph on $k + \binom{k}{2}$ vertices, obtained by introducing a new vertex in the middle of every edge of K_k . Equivalently, it is obtained from K_k by replacing every edge by a 2-edge path.
 - (a) Prove that \widehat{K}_k is a bipartite graph with maximum degree 2 on one side. Conclude from Theorem 5.4.10 that $r(\widehat{K}_k) \leq k^2 2^{15\sqrt{\log k}}$.
 - (b) By applying Lemma 5.4.11 and being more careful, prove that $r(\widehat{K}_k) = O(k^2)$. Note that this bound is tight up to the implicit constant since \widehat{K}_k has $\Theta(k^2)$ vertices.
- *4. Prove that for every $d \ge 1$, there exists C > 0 such that the following holds for sufficiently large n. If H is a d-degenerate bipartite graph, then $r(H) \le n2^{C(\log n)^{2/3}} = n^{1+o(1)}$.
 - 5. Let G be an ε -quasirandom graph. Prove that for all disjoint $S, T \subseteq V(G)$ with $|S|, |T| \ge \varepsilon |V(G)|$, we have $|d(S,T) d(G)| \le 2\varepsilon$.
 - 6. Prove the embedding lemma, Lemma 6.1.3, in the case $H = K_3$.

 Don't worry too much about the exact assumptions $d(G) \ge (2\Delta\varepsilon)^{1/\Delta}$ and $N \ge 2n/\varepsilon$ —
 it's OK if you prove this under stronger assumptions of a similar flavor.
 - 7. Prove Theorem 6.2.3, the linear bound on multicolor Ramsey numbers of bounded-degree graphs.
- $\oplus \star 8$. Prove that one cannot do better than exponential bounds in the ε -quasirandom set lemma, Lemma 6.1.4. More precisely, show that there is an absolute constant c > 0 such that for every $\varepsilon > 0$ and every sufficiently large N, there exists an N-vertex graph whose largest ε -quasirandom induced subgraph has at most $2^{-\varepsilon^{-c}}N$ vertices.
- \oplus 9. The proof of Lemma 6.1.4 is not optimized quantitatively.
 - (a) What is the strongest bound on δ you can obtain by being more careful in the proof?

- ?(b) Prove that, for some absolute constant C>0, one can take $\delta=2^{-\varepsilon^{-C}}$ in Lemma 6.1.4. Note that by Exercise 8, this would be best possible up to the value of C.
- \oplus 10. In this problem you will construct an *explicit* ε -quasirandom graph.
 - (a) Fix an odd prime p. Prove that for any $T \subseteq \mathbb{Z}/p\mathbb{Z}$, we have that

$$\sum_{z \in \mathbb{Z}/p\mathbb{Z}} \left| \sum_{t \in T} e^{2\pi i t z/p} \right|^2 = p|T|.$$

(b) Let $\chi: \mathbb{Z}/p\mathbb{Z} \to \{-1,0,1\}$ be the quadratic character mod p, namely the function

$$\chi(x) = \begin{cases} 1 & \text{if } x \text{ is a quadratic residue mod } p, \\ -1 & \text{if } x \text{ is a quadratic non-residue mod } p, \\ 0 & \text{if } x = 0. \end{cases}$$

Prove that if $p \equiv 1 \pmod{4}$, then $\chi(x) = \chi(-x)$ for all $x \in \mathbb{Z}/p\mathbb{Z}$.

(c) Prove the Gauss sum formula,

$$\left| \sum_{z \in \mathbb{Z}/p\mathbb{Z}} \chi(z) e^{2\pi i z/p} \right| = \sqrt{p}.$$

(d) Prove that for all $X, Y \subseteq \mathbb{Z}/p\mathbb{Z}$, we have that

$$\left| \sum_{x \in X} \sum_{y \in Y} \chi(x - y) \right| \leqslant \sqrt{p|X||Y|}.$$

(e) Let $p \equiv 1 \pmod{4}$ be prime. Define the following graph, called the *Paley graph* P_p , whose vertex set is $\mathbb{Z}/p\mathbb{Z}$. For vertices a, b, we join them by an edge if and only if b - a is a quadratic residue mod p; note that by part (b) this is indeed a well-defined graph.

Fix some $\varepsilon > 0$. Prove that if p is sufficiently large with respect to ε , then P_p is ε -quasirandom.