

6N137

Features:

- High speed 10Mbit/s
- Guaranteed performance from -40 to 85°C
- · Logic gate output
- High isolation voltage between input and output (Viso=5000 V rms)
- Pb free and RoHS compliant.
- UL approved (No. 214129)
- VDE approved (No. 132249)
- SEMKO approved
- NEMKO approved
- DEMKO approved
- FIMKO approved
- CSA approved (No. 2037145)

Description

The 6N137 consists of an infrared emitting diode optically coupled to a high speed integrated photo detector logic gate with a strobable output.

It is packaged in a 8-pin DIP package and available in wide-lead spacing and SMD options.

Applications

- Ground loop elimination
- LSTTL to TTL, LSTTL or 5 volt CMOS
- Line receiver, data transmission
- Data multiplexing
- Switching power supplies
- Pulse transformer replacement
- Computer peripheral interface

Truth Table (Positive Logic)

Input	Enable	Output
Н	Н	L
L	Н	Н
Н	L	Н
L	L	Н
Н	NC	L
L	NC	Н

1

Schematic

A 0.1µF bypass capacitor must be connected between pins 8 and 5 *3

Pin Configuration

- 1, No Connection
- 2, Anode
- 3. Cathode
- 4. No Connection
- 5. Gnd
- 6. Vout
- 7, V_E
- 8, V_{CC}

6N137

Absolute Maximum Ratings (T_a=25°C)

	Parameter	Symbol	Rating	Unit
	Forward current	I _F	50	mA
	Enable input voltage Not exceed V _{CC} by more than 500mV	V _E	5.5	V
Input	Reverse voltage	V_{R}	5	V
Power dissipation No derating needed	P_{D}	100	mW	
	Power dissipation No derating needed	Pc	85	mW
Output	Output current	Io	50	mA
	Output voltage	V_{O}	7.0	V
Supply voltage		V_{CC}	7.0	V
Output Po	ower Dissipation	Po	100	mW
Isolation v	/oltage *1	V_{ISO}	5000	V rms
Operating	temperature	T _{OPR}	-40 ~ +85	°C
Storage to	emperature	T _{STG}	-55 ~ +125	°C
Soldering	temperature *2	T _{SOL}	260	°C

Notes

^{*1} AC for 1 minute, R.H.= 40 ~ 60% R.H. In this test, pins 1 & 2 are shorted together, and pins 3 & 4 are shorted together.

^{*2} For 10 seconds.

6N137

Electrical Characteristics (T_a=-40 to 85°C unless specified otherwise)

Input

Parameter	Symbol	Min.	Typ.*	Max.	Unit	Condition
Forward voltage	V_{F}	-	1.4	1.8	V	I _F = 10mA
Reverse voltage	V_R	5.0	-	-	V	I _R = 10μA
Temperature coefficient of forward voltage	$\Delta V_F / \Delta T_A$	-	-1.8	-	mV/°C	I _F =10mA
Input capacitance	C _{IN}	-	60	-	pF	V _F =0, f=1MHz

Output						
Parameter	Symbol	Min.	Тур.*	Max.	Unit	Condition
High level supply current	I _{CCH}	-	7	10	mA	I _F =10mA, V _E =0.5V, V _{CC} =5.5V
Low level supply current	I _{CCL}	ı	9	13	mA	I _F =0mA, V _E =0.5V, V _{CC} =5.5V
High level enable current	I _{EH}	ı	- 0.6	-1.6	mA	V _E =0.5V, V _{CC} =5.5V
Low level enable current	I _{EL}	-	- 0.8	-1.6	mA	V _E =2.0V, V _{CC} =5.5V
High level enable voltage	V_{EH}	2.0	-	ı	V	I _F =10mA, V _{CC} =5.5V
Low level enable voltage	V _{EL}	-	-	0.8	V	I _F =10mA, V _{CC} =5.5V

Transfer Characteristics (T_a=-40 to 85°C unless specified otherwise)

Tansier Characteristics (1a= 40 to 00 0 unicss specified other wise)								
Parameter	Symbol	Min.	Тур.*	Max.	Unit	Condition		
HIGH Level Output Current	I _{OH}	-	2.1	100	uA	V_{CC} =5.5V, V_{O} =5.5V, I_{F} =250 μ A, V_{E} =2.0V		
LOW Level Output Voltage	V _{OL}	-	0.35	0.6	V	$V_{CC} = 5.5V, I_F = 5mA,$ $V_E = 2.0V, I_{OL} = 13mA$		
Input Threshold Current	I _{FT}	-	2.5	5	mA	V_{CC} = 5.5V, V_{O} =0.6V, V_{E} =2.0V, I_{OL} =13mA		

6N137

Switching Characteristics (T_a=-40 to 85°C, V_{CC}=5V, I_F=7.5mA unless specified otherwise)

Witorning Characteristics (1a- 40 to 00 C; VCC-0V; IF-7:0111A diffees specified otherwise)							
Parameter	Symbol	Min.	Typ.*	Max.	Unit	Condition	
Propagation delay time to output High level (Fig.12)	T _{PHL}	-	35	75	ns	$C_L = 15pF, R_L = 350\Omega,$ TA=25°C	
Propagation delay time to output Low level (Fig.12)	T _{PLH}	-	40	75	ns	$C_L = 15pF, R_L = 350\Omega,$ TA=25°C	
Pulse width distortion	Tphl – Tplh	-	5	35	ns	$C_L = 15pF, R_L = 350\Omega$	
Output rise time (Fig.12)	tr	-	40	-	ns	$C_L = 15pF, R_L = 350\Omega$	
Output fall time (Fig.12)	tf	-	10	-	ns	$C_L = 15pF, R_L = 350\Omega$	

Switching Characteristics (T_a=-40 to 85°C, V_{CC}=5V, I_F=7.5mA unless specified otherwise)

Enable Propagation Delay Time to Output High Level (Fig.13)	t _{ELH}	-	15	-	ns	$I_F = 7.5 \text{mA}$, $V_{EH} = 3.5 \text{V}$, $C_L = 15 \text{pF}$, $R_L = 350 \Omega$
Enable Propagation Delay Time to Output Low Level (Fig.13)	t _{EHL}	ı	15	ı	ns	$I_F = 7.5 \text{mA}$, $V_{EH} = 3.5 \text{V}$, $C_L = 15 \text{pF}$, $R_L = 350 \Omega$
Common Mode Transient Immunity at Logic High *4	СМн	5000	ı	ı	V/µS	I_F = 0mA , V_{CM} =50Vp-p, V_{OH} =2.0V, R_L =350 Ω , TA =25°C
Common Mode Transient Immunity at Logic Low *5	CM _L	5000	ı	ı	V/µS	I_F = 7.5mA , V_{CM} =50Vp-p, V_{OL} =0.8V, R_L =350 Ω , TA =25°C

6N137

Typical Performance Curves

I - Foward Current (mA)

T_A - Temperature (°C)

6N137

6N137

Fig. 12 Test circuit and waveforms for $t_{\text{PHL}},\,t_{\text{PLH}},\,t_{\text{r}},$ and t_{f}

Fig. 13 Test circuit and waveform for tehland telh

6N137

Fig. 14 Test circuit Common mode Transient Immunity

Notes:

- *3 The VCC supply must be bypassed by a 0.1µF capacitor or larger. This can be either a ceramic or solid tantalum capacitor with good high frequency characteristic and should be connected as close as possible to the package VCC and GND pins
- *4 CMH— The maximum tolerable rate of rise of the common mode voltage to ensure the output will remain in the HIGH state (i.e., VOUT > 2.0V).
- *5 CML— The maximum tolerable rate of rise of the common mode voltage to ensure the output will remain in the LOW output state (i.e., VOUT < 0.8V).

6N137

Order Information

Part Number

6N137Y(Z)-V

Note

Y = Lead form option (S, S1, M or none) Z = Tape and reel option (TA, TB or none).

V = VDE (optional)

Option	Description	Packing quantity
None	Standard DIP-8	45 units per tube
M	Wide lead bend (0.4 inch spacing)	45 units per tube
S (TA)	Surface mount lead form + TA tape & reel option	1000 units per reel
S (TB)	Surface mount lead form + TB tape & reel option	1000 units per reel
S1 (TA)	Surface mount lead form (low profile) + TA tape & reel option	1000 units per reel
S1 (TB)	Surface mount lead form (low profile) + TB tape & reel option	1000 units per reel

6N137

Package Drawing

(Dimensions in mm)

Standard DIP Type

Option M Type

6N137

Option S Type

Option S1 Type

6N137

Recommended pad layout for surface mount leadform

Device Marking

Notes

6N137 denotes Device Number
Y denotes 1 digit Year code
WW denotes 2 digit Week code
V denotes VDE (optional)

6N137

Tape & Reel Packing Specifications

Direction of feed from reel

Tape dimensions

Dimension No.	Α	В	Do	D1	E	F
Dimension(mm)	10.4±0.1	10.0±0.1	1.5±0.1	1.5±0.1	1.75±0.1	7.5±0.1
Dimension No.	Ро	P1	P2	t	w	K

6N137

Solder Reflow Temperature Profile

6N137

DISCLAIMER

- 1. Above specification may be changed without notice. EVERLIGHT will reserve authority on material change for above specification.
- 2. When using this product, please observe the absolute maximum ratings and the instructions for using outlined in these specification sheets. EVERLIGHT assumes no responsibility for any damage resulting from use of the product which does not comply with the absolute maximum ratings and the instructions included in these specification sheets.
- 3. These specification sheets include materials protected under copyright of EVERLIGHT corporation. Please don't reproduce or cause anyone to reproduce them without EVERLIGHT's consent.