

홈캠-반려동물행동분석

주찬이의 팔로팔로8로미 @Sollow-me

MSAI 6기 1차 프로젝트 8팀

Contents

- 1. 프로젝트 개요
- 2. 팀 구성 및 역할
- 3. 프로젝트 수행 절차

- 4. 프로젝트 수행 경과
- 5. 책임있는 인공지능
- 6. 자체 평가 의견

프로젝트 개요

프로젝트 주제 및 기획의도

반려동물용 홈 캠 사용 경험 개선

프로젝트 내용

반려동물의 행동이미지 데이터를 학습한 인공지능을 이용

프로젝트 구조

활용방안 및 기대 효과

반려동물 행동 정보를 더 지능적으로 관리하여 사용자 편의성 증대

팀구성및역할

8 팀								
≝ 이현령 <u></u>	1 임태균	출강현비	 이주찬	<u>역</u> 권하은	♥박주형	⋖서지수		
인터페이스 팀			데이터 팀					
UI 디자인 및 앱 개발, 성능 개선		기존 데이터셋 분석 및 데이터셋 재구성						

공동작업					
모델학습	Yolo, ResNet 학습 및 하이퍼파라미터 최적화				
추론 파이프라인 개발	이미지 입력에 대한 추론 및 분석 코드 작성				
앱 개발	시연을 위한 데모 앱 개발				
멘토링 (서현지 주임님 / 최진명 대리님)	프로젝트 진행 과정 피드백				

프로젝트 수행 절차

기 간	활동					
2/13(목)	프로젝트 주제 결정, 데이터셋 입수					
2/14(금) ~ 2/19(수)	데이터셋 분석 및 전처리 박주형, 권하은, 이주찬, 서지수	UI 디자인 임태균, 강현비, 이현령				
2/20(목)	데이터 정제 박주형, 권하은, 이주찬, 서지수, 임태균, 강현비, 이현령	ResNet 학습 및 최적화 파이프라인개발 임태균				
2/21(금)	ResNet 하이퍼파라미터 최적화 박주형, 권하은, 이주찬, 서지수, 임태균, 강현비, 이현령	Yolo 객체탐지 및 후처리 임태균				
2/24(월)	추론 파이프라인 개발 박주형, 권하은, 이주찬, 서지수, 임태균, 강현비	ResNet 최적화 박주형				
2/25(화)	발표 자료 준비					

프로젝트 수행 경과 / 추상화된 다이어그램

프로젝트 수행 경과 / 전체 과정

1. 실시간 객체 탐지: YOLO

학습 데이터셋: COCO, 감지된 객체 중 클래스가 Dog인 것만 걸러서 사용.

2. 이미지 분류: ResNet

학습 데이터셋: Al Hub 반려동물 구분을 위한 동물 영상

3. 전처리 및 정제

혼동을 일으키는 데이터 수기 검수, 이미지 리사이징 등

4. 학습 및 최적화

모델 크기 선택, 하이퍼파라미터 최적화 등

5. 앱 개발

프레임워크: Streamlit, 실시간 영상에 대한 추론 및 분석

프로젝트 수행 경과 / 데이터셋 분석

원천 데이터셋: Al Hub 강아지 행동 예측 데이터

- 강아지, 고양이 행동영상 500시간 분량의 데이터셋
- 바운딩 박스와 15개의 관절 키포인트 라벨 제공
- 바운딩 박스: 7,569,422장 CSV파일 형식
- 강아지, 고양이 행동 원천 이미지 데이터

분석 결과

- 행동 클래스별 **이미지 수**가 균등하지 않음
- 각 클래스에 모호한 이미지가 다수 포함되어 있음

데이터 전처리

원본데이터

데이터 정규화

프로젝트 수행 경과 / 전처리 및 정제

전처리 및 정제 과정

- 전처리 과정에서 양질의 데이터를 가공하는 것이 중요
- 원천 데이터에서 각 클래스의 데이터를 비슷한 양으로 추출
- 각 클래스에서 **모호하지 않은 데이터**만 수기로 검수하여 추출
- 혼동을 일으킬 수 있는 클래스는 다른 클래스와 병합하거나 제외
- 모델 학습을 위해 원천 데이터와 라벨을 활용해 이미지 크롭 후 224x224로 리사이즈

프로젝트 수행 경과 / 모델 훈련: YOLO

실시간 객체 탐지 모델: YOLO(You Only Look Once)

- 객체 탐지 모델 (Object Detection)로 이미지에서 여러 객체를 탐지
- 욜로의 자체 학습 데이터셋 COCO 사용
- 감지된 객체 중 클래스가 Dog인 것만 걸러서 사용

下为一十二

COCO는 내규모 객제 감시, 분할 및 캡션 데이터 세트입니다. COCO에는 여러 가 지 기능이 있습니다.

- ✔ 객체 분할
- ✔ 맥락에서의 인식
- ✔ 슈퍼픽셀 물건 분할
- ◆ 330K 이미지(>200K 레이블 지정)
- ◆ 150만개의 객체 인스턴스
- ✔ 80개 객체 카테고리
- ◆ 91개의 물건 카테고리
- ✔ 이미지당 캡션 5개

프로젝트 수행 경과 / 모델 훈련: RESNET

이미지 분류 모델: ResNet(Residual Network)

- CNN모델로 주로 이미지분류와 특징 추출에 사용
- 학습 데이터셋: AlHub 반려동물 구분을 위한 동물 영상
- 강아지 영상과 행동 라벨을 활용해 학습 데이터 재구성

프로젝트 수행 경과 / 학습 및 최적화

최적화와 데이터 증강을 병행

하이퍼파라미터 최적화

Optuna를 이용해 ResNet 모델의 학습률, 배치 크기, 옵티마이저 (Adam, AdamW, SGD), weight decay를 **최적화**

데이터셋 정제 및 구성

원천 데이터로부터 **양질의 데이터**를 추가로 추출 클래스 당 200매에서 300매로 균형을 맞춰 데이터 **증강**

클래스 통합 및 제외

혼동 행렬을 분석하여 클래스를 통합하거나 제외 13개에서 5개로 **클래스 개수 축소**

다양한 모델 아키텍처 실험

ResNet-18/34/50 모델에 대한 최적화 실험 적절한 크기의 모델 선택

```
# Optuna 실행 (20회 탐색)
study = optuna.create_study(direction="minimize") # 최소의 val_loss를 찾는 방향
study.optimize(train_model, n_trials=20) # 20회 탐색
# 최적의 하이퍼파라미터 출력
best_params = study.best_params
print("\n ✓ 최적의 하이퍼파라미터 찾기 완료!")
print(best_params)
# 7. 최적의 하이퍼파라미터를 사용하며 모델 재훈련
batch_size = best_params["batch_size"]
learning_rate = best_params["learning_rate"]
weight_decay = best_params["weight_decay"]
optimizer_name = best_params["optimizer"]
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=8, pin_memory=True)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, num_workers=8, pin_memory=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, num_workers=8, pin_memory=True)
model = models.resnet50(weights=models.ResNet50_Weights.DEFAULT)
num features = model.fc.in features
model.fc = nn.Linear(num_features, num_classes)
model.to(device)
if optimizer_name == "Adam":
   optimizer = optim.Adam(model.parameters(), lr=learning_rate, weight_decay=weight_decay)
elif optimizer_name == "AdamW":
   optimizer = optim.AdamW(model.parameters(), lr=learning rate, weight decay=weight decay)
   optimizer = optim.SGD(model.parameters(), lr=learning_rate, momentum=0.9, weight_decay=weight_decay)
print("♥ 최적의 하이퍼파라미터로 모델을 재학습하세요!")
```


프로젝트 수행 경과 / 앱 개발 및 상품화

Streamlit 기반 단일 페이지 앱

vs. Gradio

- 컴포넌트 디자인이 더 매력적이라고 평가함
- 사용 난이도는 난이도는 Gradio와 비슷한 수준

주기능

- 실시간 영상 표시
- 영상에 대한 추론 결과와 통계 표시
- 추가되는 기록을 실시간으로 업데이트
- 사용자 설정이 가능한 알림 기능

부기능

- 실시간 카메라 화면 가리기
- 음성 대화 (미구현)

프로젝트 수행 경과 / 시연 영상

책임 있는 인공지능

투명성 (Transparency)

설명 가능한(explainable) AI, 인공지능 동작에 대한 이해 가능성 또는 설명 가능성

책임성 (Accountability)

품질을 보장하고 사고에 따른 책임과 보상 원칙 마련

공정성 (Fairness)

인공지능 시스템에 편견이 어떤 식으로 개입될 수 있는지 고려, 인공지능이 제시하는 추천에 편견이 어떤 식으로 영향을 줄 수 있는지 고려

책임 있는 인공지능

개인정보 보호 및 보안 (Pivacy & Security)

이용자에게 자신의 데이터 이용 방법을 선택할 수 있는 제어권을 요구하는 개인 정보 보호 규정을 준수

포용성 (Inclusiveness)

배제되는 사람이 없도록 예외 없이 반영

신뢰성 및 안전성 (Reliability & Safety)

부적절한 데이터가 포함되어 있는지, 운영 상황을 문서화하고 감시 쉽게 이해할 수 있는 방식으로 조정가능(제어권), 문제를 쉽게 보고할 수 있는 피드백 체계

자체 평가 의견

평가항목	항목설명	점 수
기 능 성	프로젝트 결과물의 <mark>실행 시간</mark> 은 만족스러운 수준인가?	4.4 / 5.0
성능	테스트 결과 정확도 는 기대치에 부합한가? 데이터셋 정제 및 학습 이 올바르게 되었는가? 목표로 한 기능 이 잘 동작하는 가?	4.0 / 5.0
사용자 경험	사용자들이 결과물을 쉽게 이해하고 <mark>사용</mark> 할 수 있는가?	4.0 / 5.0
윤리적 책임감	결과물의 <mark>정확성 및 품질</mark> 에 대해 책임감을 느끼고 있는가?	4.6 / 5.0

자체 평가 의견 / 팀평가

체계적인 역할 분담

각자의 역할을 **책임감**있게 수행하여 효율적으로 프로젝트를 진행함

적극적인 태도

팀원들이 **주도적**으로 참여하여 프로젝트를 적극적으로 수행함

높은 의지와 도전 정신

팀원들의 의지로 다양한 하이퍼파라미터 실험과 모델 최적화에 **도전**하여 지속적으로 성능을 개선함

원활한 커뮤니케이션

팀원 간의 소통이 원활하여 협업이 효과적으로 이루어짐

좋은 팀 분위기

협업 과정에서 유쾌한 분위기가 유지되어 작업 효율이 향상됨

빠른 모델 구축 및 실시간 시스템 설계

체계적인 역할 분담과 원활한 의사소통 덕분에 신속하게 모델을 개발하고 실시간 시스템을 설계할 수 있었음

자체 평가 의견 / 프로젝트 평가

초기 계획의 중요성

상세한 계획 수립의 필요성을 느낌

모델 최적화 및 실시간 시스템 설계

실시간 처리를 위한 파이프라인 구성이 핵심 과제 모델 간의 연계성 조정이 중요한 도전 요소

AI 기반 자동화 시스템 설계의

과제와 해결 방안

모델 최적화의 필요성 실시간 시스템 설계의 복잡성 체감 단순한 모델 구축이 아니라 데이터 수집부터 모델 기획부터 배포까지 전 과정 경험

데이터의 양과 질의 중요성

모델 학습 과정에서 데이터의 양과 질이 성능에 큰 영향을 미침

자체 평가 의견 / Al 평가

모델 성능 평가

테스트 정확도 몇퍼센트인지?

앱 전체 평가

ex) 모델 평가 결과, 정확도가 00.00%로

개선 아이디어

키 포인트 검출 모델(yolo pose 등)을 사용하여 동작을 검출하면 정확도가 높을 것 시계열 데이터를 입력할 수 있는 모델을 사용하면 동작을 더 정확히 분류할 수 있을 것 프레임워크를 Streamlit 이외의 것으로 변경하면 UI 동작 속도를 개선 가능할 것

감사합니다.

@ Sollow-me

MSAI 6기 1차 프로젝트 8팀 주찬이의 팔로팔로8로미

홈캠을 이용한 반려동물 행동 분석 프로젝트 로건

