6a. Lineare Programmierung Existenz von Lösungen und Dualität

Optimierung SoSe 2020

Dr. Alexey Agaltsov

Plan

- Existenz von Lösungen
- Dualität
- Ökonomische Interpretation der Dualität

Lineares Program

Minimiere
$$c_1 x_1 + c_2 x_2$$
 über $x_1 \in \mathbb{R}^{n_1}, x_2 \in \mathbb{R}^{n_2}$ u.d.N. $A_{11} x_1 + A_{12} x_2 \ge b_1$ $c_j \in \mathbb{R}^{n_j}$ $A_{21} x_1 + A_{22} x_2 = b_2$ $b_i \in \mathbb{R}^{m_i}$ $A_{ij} \in \mathbb{R}^{m_i \times n_j}$

- Wie kann man Existenz von Lösungen garantieren?
- Wie kann man eine optimale Lösung charakterisieren und bestimmen?

LP in Standardform

Minimiere
$$c_1x_1+c_2x_2$$
 über $x_1\in\mathbb{R}^{n_1}, x_2\in\mathbb{R}^{n_2}$ u.d.N. $A_{11}x_1+A_{12}x_2\geq b_1$
$$A_{21}x_1+A_{22}x_2=b_2$$

$$x_1\geq 0$$

$$x_2=x_2^+-x_2^-\text{ mit }x_2^+,x_2^-\geq 0$$

$$s=A_{11}x_1+A_{12}x_2-b_1$$
 Minimiere $c_1x_1+c_2x_2^+-c_2x_2^-$ u.d.N. $A_{11}x_1+A_{12}x_2^+-A_{12}x_2^--s=b_1$ Standardform:
$$A_{21}x_1+A_{22}x_2^+-A_{22}x_2^-=b_2$$
 Alle Variablen sind ≥ 0
$$x_1,x_2^+,x_2^-,x_2^->0$$
 Alle anderen NB sind $y=0$

 $x_1, x_2^+, x_2^-, s \ge 0$

Satz 6.1. Existenz von Lösungen

Minimiere
$$z = c^T x$$
 über $x \in \mathbb{R}^n$ u.d.N. $Ax = b$ $x \ge 0$

$$c \in \mathbb{R}^n$$
$$b \in \mathbb{R}^m$$
$$A \in \mathbb{R}^{m \times n}$$

Angenommen:

•
$$\mathcal{F} = \{x: Ax = b, x \ge 0\} \ne \emptyset$$

•
$$z_* = \inf_{x \in \mathcal{F}} c^T x > -\infty$$

Dann $\exists x_* \in \mathcal{F}$ so, dass $c^T x_* = z_*$

Beweis

Angenommen, $\exists x \in \mathbb{R}^n_{\geq 0}$ so, dass Ax = b, $c^Tx = z_*$

$$\bar{A} = \begin{bmatrix} c^T \\ A \end{bmatrix}, \bar{b} = \begin{bmatrix} Z_* \\ b \end{bmatrix}$$

$$\nexists x \in \mathbb{R}^n_{\geq 0} \text{ so, dass } \bar{A} x = \bar{b}$$
 Lemma von Farkas 5.10

 $\exists d \text{ so, dass: } \bar{A}^T d \geq 0, \bar{b}^T d < 0$

$$\exists \delta, \lambda$$
: $\delta c - A^T \lambda \geq 0, \delta z_* - b^T \lambda < 0$

$$\exists \delta, \lambda$$
: $\delta c - A^T \lambda \geq 0, \delta z_* - b^T \lambda < 0$

Beweis

Behauptung: $\delta > 0$.

Sei
$$x \in \mathbb{R}^n_{\geq 0}$$
 mit $Ax = b$

$$\underbrace{\lambda^T A x}_{\leq \delta c} = \underbrace{\lambda^T b}_{\leq \delta z_*}$$

$$\leq \delta c^T x \geq \lambda^T b > \delta z_* \qquad \Rightarrow \delta > 0, \text{ weil } c^T x > z_*$$

Behauptung:
$$\inf_{x \in \mathcal{F}} c^T x > z_*$$
 (Widerspruch zur Definition von z_*)
$$c^T x \geq (1/\delta)\lambda^T b > z_*$$
Die Annahme, dass eine von zigen gib

$$\inf_{x \in \mathcal{T}} c^T x > z_*$$

→ Die Annahme, dass es keine optimale Lösung gibt, ist falsch

Aufgabe 6.2. Existenz von Lösungen

Minimiere
$$\mathbf{z} = c_1^T x_1 + c_2^T x_2$$
 über $x_1 \in \mathbb{R}^{n_1}, x_2 \in \mathbb{R}^{n_2}$ u.d.N. $A_{11}x_1 + A_{12}x_2 \geq b_1$
$$A_{21}x_1 + A_{22}x_2 = b_2$$

$$x_1 \geq 0$$

Sei $\mathcal F$ der zulässige Bereich. Angenommen:

- $\mathcal{F} \neq \emptyset$
- $z_* = \inf_{x \in \mathcal{F}} (c_1^T x_1 + c_2^T x_2) > -\infty$

Dann $\exists (x_1^*, x_2^*) \in \mathcal{F}$ so, dass $c_1^T x_1^* + c_2^T x_2^* = z_*$

Plan

- Existenz von Lösungen
- Dualität
- Ökonomische Interpretation der Dualität

Lagrange-Funktion

Minimiere
$$c_1^T x_1 + c_2^T x_2$$
 über $x_1 \in \mathbb{R}^{n_1}_{\geq 0}, x_2 \in \mathbb{R}^{n_2}$ $A_{ij} \in \mathbb{R}^{m_i \times n_j}$ u.d.N. $A_{11} x_1 + A_{12} x_2 \geq b_1$ $\mu \in \mathbb{R}^{m_1}_{\geq 0}$ $\lambda \in \mathbb{R}^{m_2}$

$$\mathcal{L}(x_1, x_2, \mu, \lambda) = c_1^T x_1 + c_2^T x_2 + \mu^T (b_1 - A_{11} x_1 - A_{12} x_2) + \lambda^T (b_2 - A_{21} x_1 - A_{22} x_2)$$

$$= b_1^T \mu + b_2^T \lambda + x_1^T (c_1 - A_{11}^T \mu - A_{21}^T \lambda) + x_2^T (c_2 - A_{12}^T \mu - A_{22}^T \lambda)$$

$$G(\mu,\lambda) = \inf_{x_1 \geq 0, x_2} \mathcal{L} = \begin{cases} b_1^T \mu + b_2^T \lambda, & \text{falls } c_1 - A_{11}^T \mu - A_{21}^T \lambda \geq 0, \ c_2 - A_{12}^T \mu - A_{22}^T \lambda = 0 \\ -\infty \end{cases}$$

Das duale Programm

$$G(\mu,\lambda) = \inf_{x_1 \ge 0, x_2} \mathcal{L} = \begin{cases} b_1^T \mu + b_2^T \lambda, & \text{falls } c_1 - A_{11}^T \mu - A_{21}^T \lambda \ge 0, \ c_2 - A_{12}^T \mu - A_{22}^T \lambda = 0 \\ -\infty \end{cases}$$

Maximiere
$$G(\mu, \lambda)$$
 über $\mu \in \mathbb{R}^{m_1}_{\geq 0}, \lambda \in \mathbb{R}^{m_2}$ u.d.N. $G(\mu, \lambda) > -\infty$

Maximiere
$$b_1^T\mu+b_2^T\lambda$$
, $\mu\in\mathbb{R}^{m_1}_{\geq 0}$, $\lambda\in\mathbb{R}^{m_2}$ u.d.N. $A_{11}^T\mu+A_{21}^T\lambda\leq c_1$
$$A_{12}^T\mu+A_{22}^T\lambda=c_2$$

Das duale des Dualen ist das Primale

⇒ "Das Duale des Dualen ist das Primale"

Satz 6.3. Dualität für LP

Seien $\mathcal{F}, \mathcal{F}^*$ die zulässigen Bereiche des primalen bzw. dualen LP Seien α, β die optimalen Werte im primalen bzw. dualen Problem Es gilt genau eine der folgenden Aussagen:

1.
$$\mathcal{F} = \mathcal{F}^* = \emptyset$$
, $\alpha = \infty$, $\beta = -\infty$

2.
$$\mathcal{F} \neq \emptyset$$
, $\mathcal{F}^* = \emptyset$, $\alpha = \beta = -\infty$

3.
$$\mathcal{F} = \emptyset$$
, $\mathcal{F}^* \neq \emptyset$, $\alpha = \beta = \infty$

4.
$$\mathcal{F} \neq \emptyset$$
, $\mathcal{F}^* \neq \emptyset$ und $\alpha = \beta < \infty$

Beweis: $\mathcal{F} = \mathcal{F}^* = \emptyset \Rightarrow \alpha = \infty$, $\beta = -\infty$

$$\alpha = \inf \emptyset = +\infty$$

$$\beta = \sup \emptyset = -\infty$$
Nach Definition

Beweis: $\mathcal{F} \neq \emptyset$, $\mathcal{F}^* = \emptyset \Rightarrow \alpha = \beta = \infty$

$$\beta = \sup \emptyset = -\infty$$

Angenommen,
$$\alpha > -\infty$$
 Aufgabe 6.2

 \exists optimale Lösung (x_1^*, x_2^*) des primalen Programms

Satz 5.15

 \exists optimale Lösung (μ_*, λ_*) des dualen Programms

Widerspruch zu
$$\mathcal{F}^* = \emptyset$$

$$\Rightarrow \alpha = -\infty$$

Beweis: $\beta = \infty \Rightarrow \mathcal{F} = \emptyset$

Angenommen, $\mathcal{F} \neq \emptyset$ sei $x \in \mathcal{F}$ primale Zielfunktion schwache Dualität (Satz 5.13) $\beta \leq f(x)$ sei $x \in \mathcal{F}$

Widerspruch!

$$\Rightarrow \mathcal{F} = \emptyset$$

Beweis: $\mathcal{F}^* \neq \emptyset$, $\beta < \infty \Rightarrow \mathcal{F} \neq \emptyset$, $\alpha = \beta$

- $\beta < \infty$ impliziert Lösbarkeit des dualen Problems nach Aufgabe 6.2
- Das Duale des Dualen ist äquivalent zum Primalen
- Das Primale hat eine optimale Lösung und $\alpha=\beta$ nach Satz 5.15

Aufgabe 6.4. Komplementaritätsbedingungen

Sei (x_1^*, x_2^*) primal zulässig und sei (μ_*, λ_*) dual zulässig

Die folgenden Aussagen sind äquivalent:

- 1. (x_1^*, x_2^*) und (μ_*, λ_*) sind optimale Lösungen des Primalen bzw. Dualen
- 2. Die Komplementaritätsbedingungen sind erfüllt:

$$(b_1 - A_{11}x_1^* - A_{12}x_2^*)^T \mu_* = 0$$

$$(c_1 - A_{11}^T \mu_* - A_{21}^T \lambda_*)^T x_1^* = 0$$

Tipp: Zeigen Sie, dass diese Bedingungen zum Folgenden äquivalent sind:

$$c_1^T x_1^* + c_2^T x_2^* = b_1^T \mu_* + b_2^T \lambda_*$$

Plan

- Existenz von Lösungen
- Dualität
- Ökonomische Interpretation der Dualität

Produktionsplanung

- Ein Betrieb stellt Produkte P_1, \dots, P_n her
- Herstellung benötigt Hilfsmittel H_1, \dots, H_m (Arbeitszeit, Lagerraum, ...)

	P_1	P_2	P_n	Maximalmenge
H_1	a_{11}	a_{12}	a_{1n}	b_1
H_2	a_{21}	a_{22}	a_{2n}	b_2
H_m	a_{m1}	a_{m2}	a_{mn}	b_m

Vorhandene Menge von H_1

angefordert pro Einheit von P_1

• Reingewinn pro Einheit von P_i ist c_i

Produktionsplanung

- Produktionsplan $x = (x_1, ..., x_i, ..., x_n)$ hergestellte Einheiten von P_i
- Zielfunktion:

$$Reingewinn = c_1 x_1 + \dots + c_n x_n = c^T x$$

Nebenbedingungen:

vorliegende Menge von H_i

$$a_{i1}x_1 + \dots + a_{in}x_n \le b_i \quad \forall i$$

angeforderte Menge von H_i

Produktionsplanung

Maximiere
$$Reingewinn = c^T x$$
 Minimiere $-c^T x$ u.d.N. $Ax \le b$ $A = (a_{ij})$ \longleftrightarrow u.d.N. $-Ax \ge -b$ $x \ge 0$

Das duale Problem:

Maximiere
$$-b^T\mu$$
 Minimiere $b^T\mu$ u.d.N. $-A^T\mu \le -c$ u.d.N. $A^T\mu \ge c$ $\mu \ge 0$

Wie interpretiert man dieses Problem?

Interpretation

• Ein Konkurrent möchte das Betrieb kaufen und bietet μ_i pro Einheit von H_i $Gersamtpreis = b^T \mu$

Wann wäre das Angebot wirtschaftlich attraktiv für den Betrieb?

Reingewinn pro Einheit von P_j

$$a_{1j}\mu_1 + \dots + a_{mj}\mu_m \ge \overline{c_j} \qquad \forall j$$

Gesamtpreis der angeforderten Hilfsmittel pro Einheit von P_i

Interpretation des Dualen

Minimiere
$$Gesamtpreis = b^T \mu$$
 u.d.N. $A^T \mu \geq c$ Angebot ist akzeptabel für den Betrieb $\mu \geq 0$

• Schwache Dualität: \forall Produktionsplan x, \forall akzeptable Preise μ :

$$c^T x \le b^T \mu$$

• Starke Dualität: Seien x_* , μ_* optimale Lösungen, so gilt:

möglichst kleiner akzeptabel Preis

$$c^T x_* = b^T \mu_*$$

möglichst großer Reingewinn

Interpretation

Komplementaritätsbedingung:

$$(Ax_* - b)^T \mu_* = 0$$

Es wird für das *i*-te Hilfsmittel nicht bezahlt

$$A[i,:]x_* < b_i \Rightarrow \mu_{*,i} = 0$$

Kapazität des *i*-ten Hilfsmittels wird nicht ausgeschöpft

Zusammenfassung

- Existenz von Lösungen
- Dualität
- Ökonomische Interpretation der Dualität

Nächstes Video

6b. Lineare Programmierung: Das Simplex-Verfahren I