

COSC 221 - Introduction to Discrete Structures

Lecture - Logic-02

Readings

- ▶ Propositional Logic: Sections 3.1, 3.2, 3.3
- ▶ Predicate Logic: Sections 3.4
- Computer Science Connections
 - 1. Computational Complexity (Section 3.3)
 - 2. Modern Compilers (Section 3.3)
 - 3. Game Trees (Section 3.4)

Conditional Statements

Logic Connectives

CORE CONCEPT

- \triangleright \neg , \land , \lor , \oplus
- ightharpoonup Implication: $p \Rightarrow q$
- \triangleright Biconditional: $p \Leftrightarrow q$

Conditional Statements

- ▶ New Connective: Implication

Logic Connectives

CORE CONCEPT

- \triangleright \neg , \land , \lor , \oplus
- \triangleright Implication $p \Rightarrow q$
- \triangleright Biconditional: $p \Leftrightarrow q$

- p : Hypothesis (antecedent)
- q : Conclusion (consequence)

Conditional Statements

- ∇ariants of Implication

read

- ▷ "p implies q"
- \triangleright "if p, then q"
- \triangleright "p only if q"
- □ "q if p"

Logic Connectives

CORE CONCEPT

- \triangleright \neg , \land , \lor , \oplus
- $ightharpoonup Implication <math>p \Rightarrow q$
- \triangleright Biconditional: $p \Leftrightarrow q$

- p : Hypothesis (antecedent)
- q : Conclusion (consequence)

Conditional Statements

- New Connective: Implication
- ∇ariants of Implication

Example:

if 0 = 100, then 100 is odd.

read

- ▷ "p implies q"
- \triangleright "if p, then q"
- ▷ "p only if q"
- □ "q if p"

Logic Connectives

CORE CONCEPT

- \triangleright \neg , \land , \lor , \oplus
- \triangleright Implication $p \Rightarrow q$
- \triangleright Biconditional: $p \Leftrightarrow q$

- p : Hypothesis (antecedent)
- q : Conclusion (consequence)

Conditional Statements

- ∇ariants of Implication

Example:

if 0 = 100, then 100 is odd.

Q.1) p: "0 = 100", q: "100 is odd"

The truth value of $p \Rightarrow q$ is

A) T

B) F

C) Unknown

D) Undefined

Logic Connectives

CORE CONCEPT

- \triangleright \neg , \land , \lor , \oplus
- ightharpoonup Implication $p \Rightarrow q$
- \triangleright Biconditional: $p \Leftrightarrow q$

A.k.a Conditional Statement

p : Hypothesis (antecedent)

q : Conclusion (consequence)

Conditional Statements

- New Connective: Implication

Truth Table							
	р	q	$p \Rightarrow q$	p ⇔ q			
	Т	Т	Т	Т			
	Т	F	F	F			
	F	Т	Т	F			
	F	F	Т	Т	ĺ		

Q.1)
$$p$$
: "0 = 100", q : "100 is odd"

The truth value of $p \Rightarrow q$ is

Logic Connectives

CORE CONCEPT

$$\triangleright$$
 \neg , \land , \lor , \oplus

$$ightharpoonspip Implication $p \Rightarrow q$$$

$$\triangleright$$
 Biconditional: $p \Leftrightarrow q$

A.k.a Conditional Statement

p : Hypothesis (antecedent)

q : Conclusion (consequence)

Conditional Statements

- New Connective: Implication

Truth Table

р	q	$p \Rightarrow q$	p ⇔ q
T	Т	Т	Т
T	F	F	F
F	Т	Т	F
F	F	Т	Т

- Q.2) $p \Rightarrow q$ is True on
 - A) Feb 28, 2018 B) Feb 28, 2024
 - C) Feb 27, 2018 D) Both B) and C)
- p = ``Today is Feb 28''
- q= "Tomorrow is Feb 29"

Logic Connectives

CORE CONCEPT

- \triangleright \neg , \land , \lor , \oplus
- $ightharpoonup Implication <math>p \Rightarrow q$
- \triangleright Biconditional: $p \Leftrightarrow q$

- p : Hypothesis (antecedent)
- *q* : Conclusion (consequence)

Conditional Statements

- ▶ New Connective: Implication

Tr	Truth Table						
	р	q	$p \Rightarrow q$	p ⇔ q			
	Т	Т	Т	Т			
	Т	F	F	F			

Q.3) The truth value of

"If
$$1+1=3$$
, then $2+1=4$ " is

- A) T
- B) F

Logic Connectives

CORE CONCEPT

- \triangleright \neg , \land , \lor , \oplus
- $ightharpoonup Implication <math>p \Rightarrow q$
- \triangleright Biconditional: $p \Leftrightarrow q$

- p : Hypothesis (antecedent)
- q : Conclusion (consequence)

- ∇ariants of Implication

- Contrapositive
- ▶ Biconditional
- \triangleright Converse: $q \Rightarrow p (p, \text{ if } q)$
- \triangleright Inverse: $\neg p \Rightarrow \neg q$.

- Biconditional
- \triangleright Converse: $q \Rightarrow p (p, \text{ if } q)$
- \triangleright Inverse: $\neg p \Rightarrow \neg q$.

Conditional Statements

- ∇ariants of Implication

Are these two logically identical?

 $\varphi =$ "if *n* is even, then n^2 is even"

 $\psi =$ "If n^2 is not even, then n is not even"

- Biconditional
- \triangleright Converse: $q \Rightarrow p (p, \text{ if } q)$
- \triangleright Inverse: $\neg p \Rightarrow \neg q$.

- New Connective: Implication

Truth Table

р	q	$\neg q$	¬р	φ	ψ
Т	Т	F	F	Т	Т
Т	F	Т	F	F	F
F	Т	F	Т	Т	Т
F	F	Т	Т	Т	Т

Are these two logically identical?

 $\varphi =$ "if *n* is even, then n^2 is even"

 $\psi =$ "If n^2 is not even, then n is not even"

Variants of $p \Rightarrow q$

- Biconditional
- \triangleright Converse: $q \Rightarrow p (p, \text{ if } q)$
- \triangleright Inverse: $\neg p \Rightarrow \neg q$.

 $\neg q \Rightarrow \neg p$

- New Connective: Implication

Truth Table

р	q	$\neg q$	¬р	φ	ψ
Т	Т	F	F	Т	Т
Т	F	Т	F	F	F
F	Т	F	Т	Т	Т
F	F	Т	Т	Т	Т

Are these two logically identical?

 $\varphi =$ "if *n* is even, then n^2 is even"

 $\psi =$ "If n^2 is not even, then n is not even"

Variants of $p \Rightarrow q$

- Biconditional
- \triangleright Converse: $q \Rightarrow p (p, \text{ if } q)$
- \triangleright Inverse: $\neg p \Rightarrow \neg q$.

 $\neg q \Rightarrow \neg p$

Conditional Statements

- ▶ New Connective: Implication
- ∇ariants of Implication

Logic Equivlence next topic

$$(p \Rightarrow q) \equiv (\neg q \Rightarrow \neg p)$$
(Identical Truth Tables)

- Biconditional
- \triangleright Converse: $q \Rightarrow p (p, \text{ if } q)$
- \triangleright Inverse: $\neg p \Rightarrow \neg q$.

Conditional Statements

- New Connective: Implication
- ∇ariants of Implication

Q.4) "If n^2 is even, then n is even"

Its contrapositive is

- A) If n^2 is not even, then n is not even
- B) If n is even, then n^2 is even
- C) If n is not even, then n^2 is not even
- D) n^2 is even, but q is not even

Variants of
$$p \Rightarrow q$$

- Biconditional
- \triangleright Converse: $q \Rightarrow p (p, \text{ if } q)$
- \triangleright Inverse: $\neg p \Rightarrow \neg q$.

$$\neg q \Rightarrow \neg p$$

- New Co
- ▶ Truth V
 ▶ Variants
- Q.5) "A graph is a forest if there is no cycle in it"

Its contrapositive is

- A) If a graph is a forest, then there is no cycle in it
- B) If there is a cycle in a graph, then it is not a forest
- C) If a graph is not a forest, then there exists at least one cycle in it
- D) A graph is a forest or there is a cycle in it

- Biconditional
- \triangleright Converse: $q \Rightarrow p (p, \text{ if } q)$
- \triangleright Inverse: $\neg p \Rightarrow \neg q$.

- ∇ariants of Implication

- Contrapositive
- \triangleright Converse: $q \Rightarrow p (p, \text{ if } q)$
- \triangleright Inverse: $\neg p \Rightarrow \neg q$.

$$p \iff q$$

$$(p \Rightarrow q) \land (q \Rightarrow p)$$

Additional Notes

Example: p = "Today is Easter", q = "Tomorrow is Monday"

- If today is Easter, then tomorrow is Monday
- If tomorrow is Monday, then today is Easter
- If today is not Easter, then tomorrow is not Monday
- If tomorrow is not Monday, then today is not Easter
- Today is Easter, but tomorrow is not Monday

References I

