Al1149 Geodata quality and time series analysis

Huaan Fan

hfan@kth.se, 08-7907340, 0739-442712

Geodata are derived from field measurements

Arne Bjerhammar

Theory of Errors and Generalized Matrix Inverses, Elsevier, 1973

Quality of geodata

- Geo-databases: formats, algorithms, accessibility
 - raster/vector data, advantages/disadvantages
 - algorithms efficient storage/retrieval
 - access to geo-databases
 - ownership, security, regulations
 - National Spatial Data Infrastructure (NSDI)
- Geographic aspects
 - geographic coverage, resolution
 - georeferencing: geodetic reference/coordinate systems
 - completeness & correctness of attribute data
- Positional information (coordinates)
 - errors from original measurements to computed quantities
 - processing: reformatting, interpolation, extrapolation
 - temporal changes

Quality of measurements and geodata

Precision

- internal agreement among the measurements
- a measure of repeatability of the measurements under same measurement condition

Accuracy

a measure of agreement with the true value

Reliability

- capability against gross errors or systematic errors
- reliable measurements are said to be *robust*, *stable*

Objectives of theory of errors

- How to treat measurement errors ?
- How to assess quality of the measurements?
- How to carry out least squares adjustment ?
 - eliminate the disagreements (misclosures) among the measurements and obtain optimal results from given measurements based on the least squares principle
- How to use theoretical insights to design good methods and practical procedures?

How to detect existence of errors?

- Compare repeated meaurements
- Check meaured values with theoretical (mathematical or physical) relations

$$w = \ell_1 + \ell_2 + \ell_3 - 180^0$$

→ Misclosure (*slutfel*)

Classification of measurement errors

- Systematic errors
 - influences of instruments, environment or surveyors etc
 - eliminate the causes, reduce/eliminate the effect
 - apply theoretical correction <u>or</u> automatic detection
- Random errors (Gauss)
- $\lim_{n \to \infty} \frac{\sum_{i=1}^{n} \varepsilon_i}{n} = 0$
- arithmatic mean approaches zero
- equal chance for positive and negative errors
- more small errors than larger errors
- magnitude of errors is limited
- use statistical methods: normal distribution
- Gross errors
 - mistakes which should be avoided. Automatic detection

Example of systematic errors: collimation error

Collimation error: the horizontal line of sight is not parallel to the horizontal axis of the levelling bubble.

Reduce the collimation error:

- calibrate instruments
- appy correction if the error is well known
- design good surveying procedures: e.g. put the level in the middle between the backsight and foresight staffs

Random errors: Statistical way of thinking

- Quality is defined by the overall measurement condition:
 - instruments
 - physical (e.g. weather) conditions
 - surveyor's skills
 - other specific conditions
- Statistical way of thinking
 - not meaningful to describe each individual random error
 - same quality under same measurement conditions
 - one or a fewer *collective* index numbers
 - statistical error index: mean square error (medelfel), standard error (standardfel), standard deviation (standard avvikelse)
 - variance (*varians*) = standard error squared

New ISO terminologies: Uncertainty

Joint Committee for Guides in Metrology (JCGM): Evaluation of measurement data – Guide to the expression of uncertainty in measurement

- No true value, due to errors and incomplete description of the quantity to be measured
- Measurand, value of the measurand
- Uncertainty, instead of SE
- Uncertainty computed as SE
- Uncertainty as 2 or 3 times SE

True error, relative error vs standard error

• Absolute true error = measured - true value

$$\varepsilon = \ell - \widetilde{\ell}$$

• Relative error = error divided by the quantity

$$\gamma = \left| \frac{\varepsilon}{\ell} \right| = \left| \frac{\ell - \tilde{\ell}}{\ell} \right|$$

• Standard error σ (squared), theoretical

$$\sigma^2 = \lim_{n \to \infty} \frac{\sum_{i=1}^n \varepsilon_i^2}{n}$$

• Standard error σ (squared), estimated

$$\widehat{\sigma}^2 = \frac{\sum_{i=1}^n \varepsilon_i^2}{n}$$

An example: triangulation misclosures

$$w = (\ell_1 + \ell_2 + \ell_3) - 180^0$$

$$\hat{\sigma}_w^2 = \frac{1}{30} \sum_{i=1}^{30} w_i^2 = \frac{25.86}{30}$$
 ("2)

$$\hat{\sigma}_w = 0.93''$$

Table 1.1: List of Triangular Misclosures

i	w_i ('')	i	w_i (")	i	$w_i ('')$
1	+1.5	11	-2.0	21	-1.1
2	+1.0	12	-0.7	22	-0.4
3	+0.8	13	-0.8	23	-1.0
4	-1.1	14	-1.2	24	-0.5
5	+0.6	15	+0.8	25	+0.2
6	+1.1	16	-0.3	26	+0.3
7	+0.2	17	+0.6	27	+1.8
8	-0.3	18	+0.8	28	+0.6
9	-0.5	19	-0.3	29	-1.1
10	+0.6	20	-0.9	30	-1.3

$$\widehat{\sigma} = \frac{\widehat{\sigma}_w}{\sqrt{3}} = 0.54''$$

Definition of Weights

Weight is inversely proportional to variance:

$$p_i = rac{c_0}{\sigma_i^2}$$

- *Co* is an arbitrary positive number
- Co is the variance of a quantity with weight 1
- C₀ is called unit-weight standard error (σ₀) squared or variance factor

$$p_i = rac{\sigma_0^2}{\sigma_i^2}$$

Empirical weighting

- levelling: $p_i = c_0$ divided by the length of the levelling line
- distance measurement: $p_i = c_0$ divided by the distance or distance squared
- direction (angle) measurement: p_i = number of whole rounds measured divided by c_0
- levelling: $c_0 = \text{length of the levelling line with weight 1}$ Often taken as 1 km
- distance measurement: c_0 = distance or squared distance of weight 1
- direction (angle) measurement: c_0 = number of whole rounds by which the direction (angle) of unit weight is measured

Computation of the variance factor

 σ_0^2

• Variance factor, theoretical

$$\sigma_0^2 = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n p_i \varepsilon_i \varepsilon_i$$

Variance factor, from finite number of errors

$$\widehat{\sigma}_0^2 = \frac{1}{n} \sum_{i=1}^n p_i \varepsilon_i \varepsilon_i$$

 Variance factor, computed from estimated errors

$$\widehat{\sigma}_0^2 = \frac{1}{f} \sum_{i=1}^n p_i \widehat{\varepsilon}_i \widehat{\varepsilon}_i$$

?

 $\widehat{arepsilon}_i = \ell_i - \widehat{\ell}_i$ (= estimated error of ℓ_i);

f = number of redundant observations (statistical degrees of freedom)

Statistical terminologies: random variables

$$P(\varepsilon \le x) = F(x) = \int_{-\infty}^{x} f(\varepsilon) d\varepsilon$$
 $(-\infty < x < +\infty)$

• Density function
$$f(x)$$

$$\frac{\partial F(x)}{\partial x} = f(x)$$

$$E(\varepsilon) = \int_{-\infty}^{+\infty} \varepsilon \ f(\varepsilon) d\varepsilon$$

$$var(\varepsilon) = \sigma^2 = E\left\{ [\varepsilon - E(\varepsilon)]^2 \right\} = \int_{-\infty}^{+\infty} [\varepsilon - E(\varepsilon)]^2 \cdot f(\varepsilon) \cdot d\varepsilon$$

$$\sigma_{12} = E\left\{ \left[\varepsilon_1 - E(\varepsilon_1) \right] \left[\varepsilon_2 - E(\varepsilon_2) \right] \right\}$$

$$\rho_{12} = E \left[\frac{\varepsilon_1 - E(\varepsilon_1)}{\sigma_1} \frac{\varepsilon_2 - E(\varepsilon_2)}{\sigma_2} \right] = \frac{\sigma_{12}}{\sigma_1 \cdot \sigma_2}$$

$$-1 \le \rho_{12} \le +1$$

Variance-covariance matrix of a random vector

Random errors often have zero mean (expectation)

$$\begin{split} E(\varepsilon_{i}) &= 0 \\ E\left\{ \left[\varepsilon_{i} - E(\varepsilon_{i}) \right]^{2} \right\} &= E(\varepsilon_{i}^{2}) = \sigma_{i}^{2} \\ E\left\{ \left[\varepsilon_{i} - E(\varepsilon_{i}) \right] \left[\varepsilon_{j} - E(\varepsilon_{j}) \right] \right\} &= E\left(\varepsilon_{i} \cdot \varepsilon_{j} \right) = \sigma_{ij} \end{split}$$
 $(i, j = 1, 2, 3, \dots, n)$

$$C_{\underset{n \cdot n}{\varepsilon \varepsilon}} = E\left\{ \left[\varepsilon - E\left(\varepsilon \right) \right] \left[\varepsilon - E\left(\varepsilon \right) \right]^{\top} \right\} = E\left\{ \varepsilon \varepsilon^{\top} \right\} = E\left(\left[\begin{array}{c} \varepsilon_{1} \\ \varepsilon_{2} \\ \vdots \\ \varepsilon_{n} \end{array} \right] \quad \left[\varepsilon_{1}, \ \varepsilon_{2}, \ \cdots, \ \varepsilon_{n} \right] \right)$$

$$= \begin{bmatrix} E\left(\varepsilon_1^2\right) & E\left(\varepsilon_1\varepsilon_2\right) & \cdots & E\left(\varepsilon_1\varepsilon_n\right) \\ E\left(\varepsilon_2\varepsilon_1\right) & E\left(\varepsilon_2^2\right) & \cdots & E\left(\varepsilon_2\varepsilon_n\right) \\ \vdots & \vdots & \vdots & \vdots \\ E\left(\varepsilon_n\varepsilon_1\right) & E\left(\varepsilon_n\varepsilon_2\right) & \cdots & E\left(\varepsilon_n^2\right) \end{bmatrix} = \begin{bmatrix} \sigma_1^2 & \sigma_{12} & \cdots & \sigma_{1n} \\ \sigma_{21} & \sigma_2^2 & \cdots & \sigma_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{n1} & \sigma_{n2} & \cdots & \sigma_n^2 \end{bmatrix} \blacksquare$$

Cofactor Matrix Q and Weight Matrix P

• An error vector of n componnets:

$$\begin{array}{c}
\varepsilon_1 \\
\varepsilon_2 \\
\vdots \\
\varepsilon_n
\end{array}$$

• Variance-covariance matrix *C*

$$C_{\varepsilon\varepsilon}$$
 $n\cdot n$

• Co-factor matrix Q

$$\label{eq:Q_ee} Q_{\stackrel{\varepsilon\varepsilon}{n\cdot n}} \, = \frac{1}{\sigma_0^2} \cdot \, \underset{\stackrel{\varepsilon\varepsilon}{n\cdot n}}{C_{\varepsilon\varepsilon}}$$

$$\begin{array}{l} C_{\varepsilon\varepsilon} \ = \sigma_0^2 \ Q_{\varepsilon\varepsilon} \\ {\scriptstyle n\cdot n} \end{array}$$

Weight matrix P

$$P_{\varepsilon\varepsilon} = \left(Q_{\varepsilon\varepsilon}\right)^{-1}$$

Summary of Lecture 1, Basic Concepts

- Classification of errors
- Quality aspects: precision, accuracy, reliability
- Standard errors, statistical way of thinking
- Weights. Variance factor.
- Variance-covariance matrix
- Co-factor matrix and weight matrix