Statistics 202: Data Mining

© Jonathan Taylor

Statistics 202: Data Mining

Classification & Decision Trees

Based in part on slides from textbook, slides of Susan Holmes

© Jonathan Taylor

October 19, 2012

Statistics 202: Data Mining

© Jonathan Taylor

Problem description

- We are given a data matrix X with either continuous or discrete variables such that each row $X_i \in \mathcal{F}$ and a set of labels $Y \in \mathcal{L}$.
- For a k-class problem, $\#\mathcal{L} = k$ and we can think of $\mathcal{L} = \{1, \dots, k\}$.
- Our goal is to find a classifier

$$f: \mathcal{F} \to \mathcal{L}$$

that allows us to predict the label of a new observation given a new set of features.

Statistics 202: Data Mining

A supervised problem

- Classification is a supervised problem.
- Usually, we use a subset of the data, the *training set* to learn or estimate the classifier yielding $\hat{f} = \hat{f}_{training}$.
- The performance of \hat{f} is measured by applying it to each case in the *test set* and computing

$$\sum_{j \in test} L(\hat{f}_{training}(\mathbf{X}_j), \mathbf{Y}_j)$$

Statistics 202: Data Mining

Test Set

Statistics 202: Data Mining

© Jonathan Taylor

Examples of classification tasks

- Predicting whether a tumor is benign or malignant.
- Classifying credit card transactions as fraudulent or legitimate.
- Predicting the type of a given tumor among several types.
- Cateogrizing a document or news story as one of {finance, weather, sports, etc.}

Statistics 202: Data Mining

© Jonathan Taylor

Common techniques

- Decision Tree based Methods
- Rule-based Methods
- Discriminant Analysis
- Memory based reasoning
- Neural Networks
- Naïve Bayes
- Support Vector Machines

Classification trees

Statistics 202: Data Mining

© Jonathan Taylor

Training Data

Model: Decision Tree

Classification trees

Statistics 202: Data Mining

© Jonathan Taylor

There could be more than one tree that fits the same data!

Statistics 202: Data Mining

Statistics 202: Data Mining

© Jonathan Taylor

Test Data

Refund	Marital Status	Taxable Income	Cheat
No	Married	80K	?

Statistics 202: Data Mining

Statistics 202: Data Mining

Statistics 202: Data Mining

Statistics 202: Data Mining

Statistics 202: Data Mining

Decision boundary for tree

Statistics 202: Data Mining

Decision tree for iris data using all features

Statistics 202: Data Mining

Decision tree for iris data using petal.length, petal.width

Statistics 202: Data Mining

Regions in petal.length, petal.width plane

Statistics 202: Data Mining

Decision boundary for tree

Statistics 202: Data Mining

Figure: Trees have trouble capturing structure not parallel to axes

Statistics 202: Data Mining

Test Set

Statistics 202: Data Mining

© Jonathan Taylor

Hunt's algorithm (generic structure)

- ullet Let D_t be the set of training records that reach a node t
- If D_t contains records that belong the same class y_t , then t is a leaf node labeled as y_t .
- If $D_t = \emptyset$, then t is a leaf node labeled by the default class, y_d .
- If D_t contains records that belong to more than one class, use an attribute test to split the data into smaller subsets.
 Recursively apply the procedure to each subset.
- This splitting procedure is what can vary for different tree learning algorithms . . .

Statistics 202: Data Mining

Statistics 202: Data Mining

Issues

Greedy strategy: Split the records based on an attribute test that optimizes certain criterion.

What is the best split: What criterion do we use? Previous example chose first to split on Refund . . .

How to split the records: Binary or multi-way? Previous example split Taxable Income at $\geq 80K...$

When do we stop? Should we continue until each node if possible? Previous example stopped with all nodes being completely homogeneous

. .

Different splits: ordinal / nominal

Statistics 202: Data Mining

Figure : Binary or multi-way?

Different splits: continuous

Statistics 202: Data Mining

Figure: Binary or multi-way?

Choosing a variable to split on

Statistics 202: Data Mining

Figure: Which should we start the splitting on?

Statistics 202: Data Mining

© Jonathan Taylor

Choosing the best split

- Need some numerical criterion to choose among possible splits.
- Criterion should favor homogeneous or pure nodes.
- Common cost functions:
 - Gini Index
 - Entropy / Deviance / Information
 - Misclassification Error

Choosing a variable to split on

Statistics 202: Data Mining

Statistics 202: Data Mining

© Jonathan Taylor

GINI Index

- Suppose we have k classes and node t has frequencies $p_t = (p_{1,t}, \dots, p_{k,t})$.
- Criterion

$$extit{GINI}(t) = \sum_{(j,j') \in \{1,...,k\}: j
eq j'} p_{j,t} p_{j',t} = 1 - \sum_{j=1}^{l} p_{j,t}^2.$$

- Maximized when $p_{j,t} = 1/k$ with value 1 1/k
- Minimized when all records belong to a single class.
- Minimizing GINI will favour pure nodes . . .

Statistics 202: Data Mining

© Jonathan Taylor

Gain in GINI Index for a potential split

- Suppose t is to be split into j new child nodes $(t_l)_{1 \le l \le j}$.
- Each child node has a count n_l and a vector of frequencies $(p_{1,t_l},\ldots,p_{k,t_l})$. Hence they have their own GINI index, $GINI(t_l)$.
- The gain in GINI Index for this split is

$$\mathsf{Gain}(\mathit{GINI},t o (t_l)_{1 \leq l \leq j}) = \mathit{GINI}(t) - rac{\sum_{l=1}^{j} n_l \mathit{GINI}(t_l)}{\sum_{l=1}^{j} n_l}.$$

 Greedy algorithm chooses the biggest gain in GINI index among a list of possible splits.

Decision tree for iris data using all features with GINI

Statistics 202: Data Mining

Statistics 202: Data Mining

© Jonathan Taylor

Entropy / Deviance / Information

- Suppose we have k classes and node t has frequencies $p_t = (p_{1,t}, \dots, p_{k,t})$.
- Criterion

$$H(t) = -\sum_{j=1}^k p_{j,t} \log p_{j,t}$$

- Maximized when $p_{i,t} = 1/k$ with value log k
- Minimized when one class has no records in it.
- Minimizing entropy will favour pure nodes . . .

Decision tree for iris data using all features with Entropy

Statistics 202: Data Mining

Statistics 202: Data Mining

© Jonathan Taylor

Gain in entropy for a potential split

- Suppose t is to be split into j new child nodes $(t_l)_{1 \le l \le j}$.
- Each child node has a count n_l and a vector of frequencies $(p_{1,t_l},\ldots,p_{k,t_l})$. Hence they have their own entropy $H(t_l)$.
- The gain in entropy for this split is

$$\mathsf{Gain}(H,t \to (t_l)_{1 \leq l \leq j}) = H(t) - \frac{\sum_{l=1}^{j} n_l H(t_l)}{\sum_{l=1}^{j} n_l}.$$

• Greedy algorithm chooses the biggest gain in *H* among a list of possible splits.

Statistics 202: Data Mining

© Jonathan Taylor

Misclassification Error

- Suppose we have k classes and node t has frequencies $p_t = (p_{1,t}, \dots, p_{k,t})$.
- The mode is

$$\hat{k}(t) = \operatorname*{argmax}_{k} p_{k,t}.$$

Criterion

Misclassification
$$Error(t) = 1 - p_{\hat{k}(t),t}$$

 Not smooth in p_t as GINI, H, can be more difficult to optimize numerically.

Different criteria: GINI, H, MC

Statistics 202: Data Mining

Statistics 202: Data Mining

© Jonathan Taylor

Misclassification Error

- Example: suppose parent has 10 cases: $\{7D, 3R\}$
- A candidate split produces two nodes: $\{3D, 0R\}$, $\{4D, 3R\}$.
- The gain in MC is 0, but gain in GINI is 0.42 0.342 > 0.
- Similarly, entropy will also show an improvement . . .

Choosing the split for a continuous variable

Statistics 202: Data Mining

Statistics 202: Data Mining

© Jonathan Taylor

Stopping training

- As trees get deeper, or if splits are multi-way the number of data points per leaf node drops very quickly.
- Trees that are too deep tend to overfit the data.
- A common strategy is to "prune" the tree by removing some internal nodes.

Statistics 202: Data Mining

Figure : Underfitting corresponds to the left-hand side, overfit to the right $$_{\rm 41/1}$$

Statistics 202. Data Mining © Jonathan

Taylor

Cost-complexity pruning (tree library)

• Given a criterion Q like H or GINI, we define the cost-complexity of a tree with terminal nodes $(t_i)_{1 \le i \le m}$

$$C_{\alpha}(T) = \sum_{i=1}^{m} n_{i}Q(t_{i}) + \alpha m$$

- Given a large tree T_I we might compute $C_{\alpha}(T)$ for any subtree T of T_{I} .
- The optimal tree is defined as

$$\hat{T}_{\alpha} = \underset{T < T_{I}}{\operatorname{argmin}} C_{\alpha}(T).$$

 Can be found by "weakest-link" pruning. See Elements of Statistical Learning for more . . .

Statistics 202: Data Mining

© Jonathan Taylor

Pre-pruning (rpart library)

- These methods stop the algorithm before it becomes a fully-grown tree.
- Examples
 - Stop if all instances belong to the same class (kind of obvious).
 - Stop if number of instances is less than some user-specified threshold. Both tree, rpart have rules like this.
 - Stop if class distribution of instances are independent of the available features (e.g., using χ^2 test)
 - Stop if expanding the current node does not improve impurity measures (e.g., Gini or information gain). This relates to cp in rpart.

Training and test error as a function of cp

Statistics 202: Data Mining

Statistics 202: Data Mining

	PREDICTED CLASS		
ACTUAL CLASS		Class=Yes	Class=No
	Class=Yes	a (TP)	b (FN)
	Class=No	c (FP)	d (TN)

Statistics 202: Data Mining

© Jonathan Taylor

Measures of performance

Simplest is accuracy

$$\begin{aligned} \mathsf{Accuracy} &= \frac{\mathit{TP} + \mathit{TN}}{\mathit{TP} + \mathit{TN} + \mathit{FP} + \mathit{FN}} \\ &= \mathsf{SMC}(\mathsf{Actual}, \mathsf{Predicted}) \\ &= 1 - \mathsf{Misclassification} \; \mathsf{Rate} \end{aligned}$$

Statistics 202: Data Mining

© Jonathan Taylor

Accuracy isn't everything

- Consider an unbalanced 2-class problem with # 1's=10, # 0's=9990.
- Simply labelling everything 0 yields 99.9% accuracy.
- But, this classifier misses all class 1.

Statistics 202: Data Mining

	PREDICTED CLASS		
ACTUAL CLASS	C(i j)	Class=Yes	Class=No
	Class=Yes	C(Yes Yes)	C(No Yes)
	Class=No	C(Yes No)	C(No No)

Statistics 202: Data Mining

© Jonathan Taylor

Measures of performance

Classification rule changes to

$$\mathsf{Label}(p,C) = \mathsf{argmin}_i \sum_j C(i|j) p_j$$

• Accuracy is the same as cost if $C(Y|Y) = C(N|N) = c_1$, $C(Y|N) = C(N|Y) = c_2$.

Statistics 202: Data Mining

Model M ₁	PREDICTED CLASS		
ACTUAL CLASS		+	•
	+	150	40
	-	60	250

Model M ₂	PREDICTED CLASS		
ACTUAL CLASS		+	-
	+	250	45
	-	5	200

Statistics 202: Data Mining

© Jonathan Taylor

Measures of performance

Other common ones

$$\begin{aligned} & \mathsf{Precision} = \frac{\mathit{TP}}{\mathit{TP} + \mathit{FP}} \\ & \mathsf{Specificity} = \frac{\mathit{TN}}{\mathit{TN} + \mathit{FP}} = \mathit{TNR} \\ & \mathsf{Sensitivity} = \mathsf{Recall} = \frac{\mathit{TP}}{\mathit{TP} + \mathit{FN}} = \mathit{TPR} \\ & F = \frac{2 \cdot \mathsf{Recall} \cdot \mathsf{Precision}}{\mathsf{Recall} + \mathsf{Precision}} \\ & = \frac{2 \cdot \mathit{TP}}{2 \cdot \mathit{TP} + \mathit{FN} + \mathit{FP}} \end{aligned}$$

Statistics 202: Data Mining

© Jonathan Taylor

Measures of performance

- Precision emphasizes P(p = Y, a = Y) & P(p = Y, a = N).
- Recall emphasizes P(p = Y, a = Y) & P(p = N, a = Y).
- FPR = 1 TNR
- FNR = 1 TPR.

Statistics 202: Data Mining

© Jonathan Taylor

Measure of performance

- We have done some simple training / test splits to see how well our classifier is doing.
- More accurately, this procedure measures how well our algorithm for learning the classifier is doing.
- How well this works may depend on

Model: Are we using the right type of classifier model?

Cost: Is our algorithm sensitive to the cost of misclassification?

Data size: Do we have enough data to learn a model?

Statistics 202: Data Mining

Figure : As data increases, our estimate of accuracy improves, as does the variability of our estimate . . .

Statistics 202: Data Mining

© Jonathan Taylor

Estimating performance

Holdout: Split into test and training (e.g. 1/3 test, 2/3 training).

Random subsampling: Repeated replicates of holdout, averaging results.

Cross validation: Partition data into K disjoint subsets. For each subset S_i , train on all but S_i , then test on S_i .

Stratified sampling: May be helpful to sample so Y/N class is roughly equal in training data.

0.632 Bootstrap: Combine training error and bootstrap error

55 / 1

Statistics 202: Data Mining