It's a Multicore World

John Urbanic
Pittsburgh Supercomputing Center
Parallel Computing Scientist

Moore's Law abandoned serial programming around 2004

Moore's Law is not to blame.

Intel process technology capabilities

				Secretaria de la constante de				
High Volume Manufacturing	2004	2006	2008	2010	2012	2014	2016	2018
Feature Size	90nm	65nm	45nm	32nm	22nm	16nm	11nm	8nm
Integration Capacity (Billions of Transistors)	2	4	8	16	32	64	128	256

Transistor for 90nm Process

Source: Intel

Influenza Virus

Source: CDC

At end of day, we keep using all those new transistors.

Moore's Law – The number of transistors on integrated circuit chips (1971-2016) Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.

This advancement is important as other aspects of technological progress – such as processing speed or the price of electronic products – are

Year of introduction

Data source: Wikipedia (https://en.wikipedia.org/wiki/Transistor_count)
The data visualization is available at OurWorldinData.org. There you find more visualizations and research on this topic

That Power and Clock Inflection Point in 2004... didn't get better.

Fun fact: At 100+ Watts and <1V, currents are beginning to exceed 100A at the point of load!

Not a new problem, just a new scale...

Cray-2 with cooling tower in foreground, circa 1985

And how to get more performance from more transistors with the same power.

A 15%
Reduction
In Voltage
Yields

RULE OF THUMB

Frequency	Power	Performance		
Reduction	Reduction	Reduction		
15%	45%	10%		

Area = :

Voltage = 1

Freq = 1

Power = 1

Perf = 1

DUAL CORE

Area = 2

Voltage = 0.85

Freq = 0.85

Power = 1

Perf = ~ 1.8

Single Socket Parallelism

Processor	Year	Vector	Bits	SP FLOPs / core / cycle	Cores	FLOPs/cycle
Pentium III	1999	SSE	128	3	1	3
Pentium IV	2001	SSE2	128	4	1	4
Core	2006	SSE3	128	8	2	16
Nehalem	2008	SSE4	128	8	10	80
Sandybridge	2011	AVX	256	16	12	192
Haswell	2013	AVX2	256	32	18	576
KNC	2012	AVX512	512	32	64	2048
KNL	2016	AVX512	512	64	72	4608
Skylake	2017	AVX512	512	96	28	2688

Putting It All Together

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2017 by K. Rupp

Prototypical Application: Serial Weather Model

First Parallel Weather Modeling Algorithm: Richardson in 1917

Courtesy John Burkhardt, Virginia Tech

Weather Model: Shared Memory (OpenMP)

Four meteorologists in the

Weather Model: Accelerator (OpenACC)

1 meteorologists coordinating 1000 math savants using tin cans and a string.

Weather Model: Distributed Memory (MPI)

50 meteorologists using a telegraph.

The pieces fit like this...

Many Levels and Types of Parallelism

- Vector (SIMD)
- Instruction Level (ILP)
 - Instruction pipelining
 - Superscaler (multiple instruction units)
 - Out-of-order
 - Register renaming
 - Speculative execution
 - Branch prediction
- Multi-Core (Threads)
- SMP/Multi-socket
- Accelerators: GPU & MIC
- Clusters
- MPPs

Compiler (not your problem)

Also Important

- ASIC/FPGA/DSP
- RAID/IO

Cores, Nodes, Processors, PEs?

- The most unambiguous way to refer to the smallest useful computing device is as a Processing Element, or PE.
- This is usually the same as a single core.
- "Processors" usually have more than one core as per the previous list.
- "Nodes" is commonly used to refer to an actual physical unit, most commonly a circuit board or blade with a network connection. These often have multiple processors.

I will try to use the term PE consistently here, but I may slip up myself. Get used to it as you will quite often hear all of the above terms used interchangeably where they shouldn't be.

MPPs (Massively Parallel Processors)

Distributed memory at largest scale. Shared memory at lower level.

Summit (ORNL)

- 122 PFlops Rmax and 187 PFlops Rpeak
- IBM Power 9, 22 core, 3GHz CPUs
- 2,282,544 cores
- NVIDIA Volta GPUs
- EDR Infiniband

Sunway TaihuLight (NSC, China)

- 93 PFlops Rmax and 125 PFlops Rpeak
- Sunway SW26010 260 core, 1.45GHz CPU
- 10,649,600 cores
- Sunway interconnect

GPU Architecture - GK110 Kepler

From a document you should read if you are interested in this:

http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf

Top 10 Systems as of June 2020 Site Manufacturer Computer CPU Cores R

NVIDIA

Dell

IBM

Cray

Frontera

Marconi100

Piz Daint

Cray XC50

7

8

9

10

Italy

Texas Advanced Computing

Swiss National Supercomputing

Center/Univ. of Texas

United States

Centre (CSCS)

Switzerland

Cineca

Italy

				[Accelerator]				
1	RIKEN Center for Computational Science Japan	Fujitsu	Fugaku	ARM 8.2A+ 48C 2.2GHz Torus Fusion Interconnect	7,299,072	415,530	513,854	28.3
2	DOE/SC/ORNL United States	IBM	Summit	Power9 22C 3.0 GHz Dual-rail Infiniband EDR NVIDIA V100	2,414,592	148,600	200,794	10.1
3	DOE/NNSA/LLNL United States	IBM	Sierra	Power9 3.1 GHz 22C Infiniband EDR NVIDIA V100	1,572,480	94,640	125,712	7.4
4	National Super Computer Center in Wuxi China	NRCPC	Sunway TaihuLight	Sunway SW26010 260C 1.45GHz	10,649,600	93,014	125,435	15.3
5	National Super Computer Center in Guangzhou China	NUDT	Tianhe-2 (MilkyWay-2)	Intel Xeon E5-2692 2.2 GHz TH Express-2 Intel Xeon Phi 31S1P	4,981,760	61,444	100,678	18.4
6	Eni S.p.A Italy	Dell	HPc5	Xeon 24C 2.1 GHz Infiniband HDR NVIDIA V100	669,760	35,450	51,720	2.2
	Eni S.p.A		Selene	EPYC 64C 2.25GHz	272,800	27,580	34,568	1.3

Infiniband HDR

InfiniBand HDR

Infiniband EDR

NVIDIA V100

ΝΙΛΙΟΙΆ ΕΊΟΟ

Aries

Power9 16C 3.0 GHz

Xeon E5-2690 2.6 GHz

Intel Xeon 8280 28C 2.7 GHz

448,448

347,776

387,872

23,516

21,640

21,230

38,745

29,354

27,154

1.5

2.4

NVIDIA A100

Sustaining Performance Improvements

Amdahl's Law

- If there is x% of serial component, speedup cannot be better than 100/x.
- If you decompose a problem into many parts, then the parallel time cannot be less than the largest of the parts.
- If the critical path through a computation is T, you cannot complete in less time than T, no matter how many processors you use.

- Amdahl's law used to be cited by the knowledgeable as a limitation.
- These days it is mostly raised by the uninformed.
- Massive scaling is commonplace:
 - Science Literature
 - Web (map reduce everywhere)
 - Data Centers (Spark, etc.)
 - Machine Learning (GPUs and others)

In Conclusion...

