FCC PART 15 SUBPART C TEST REPORT

for

Rugged Tablet PC

Model No.: S10A

FCC ID: UVZS10A

of

Applicant: ACA Digital Corporation

Address: 17F, NO. 866-7 Zhongzheng Rd., Zhonghe City, Taipei county, 235 TAIWAN, R.O.C.

Tested and Prepared

by

Worldwide Testing Services (Taiwan) Co., Ltd.

FCC Registration No.: 930600

Industry Canada filed test laboratory Reg. No. IC 5679A-1

A2LA Accredited No.: 2732.01

Report No.: W6M20908-9985-C-1

6F, NO. 58, LANE 188, RUEY-KUANG RD., NEIHU TAIPEI 114, TAIWAN, R.O.C. TEL: 886-2-66068877 FAX: 886-2-66068879 E-mail: wts@wts-lab.com

FCC ID: UVZS10A

TABLE OF CONTENTS

1	General Information		2
1.1	Notes		2
1.2	Testing laboratory		3
1.2.1	Location		3
1.2.2	Details of accreditation sta	tus	3
1.3	Details of approval holder		3
1.4	Application details		4
1.5	General information of Te	st item	4
1.6	Test standards		5
2	Technical test		6
2.1	Summary of test results		6
2.2	Test environment		6
2.3	Test Equipment List		7
2.4	General Test Procedure		9
3	Test results (enclosure)		11
3.1	Peak Output Power (transr	nitter)	12
3.2	Equivalent isotropic radiat	ed power	14
3.3	RF Exposure Compliance	Requirements	14
3.4	Transmitter Radiated Emis	ssions in restricted Bands	15
3.5	Spurious emissions (tx)		16
3.6	Carrier Frequency Separat	ion	24
3.7	Number of Hopping Frequ	encies	25
3.7.1	Pseudorandom Frequency	Hopping Sequence	25
3.7.2	Coordination of hopping s	equences to other transmitters	25
3.7.3	System Receiver Hopping	Capability	25
3.8	Time of Occupancy (Dwel	1 Time)	26
3.9	20dB Bandwidth		28
3.9.1	System Receiver Input Bar	ndwidth	28
3.10	Minimum 6 dB Bandwidth	1	29
3.11	Band-edge Compliance of	RF Emissions	30
3.12	Peak Power Spectral Dens	ity	32
3.13	Radiated Emissions from I	Digital Part	33
3.14	Power Line Conducted En	nission	34
Append	ix		36

FCC ID: UVZS10A

1 General Information

1.1 Notes

The purpose of conformity testing is to increase the probability of adherence to the essential requirements or conformity specifications, as appropriate.

The complexity of the technical specifications, however, means that full and thorough testing is impractical for both technical and economic reasons.

Furthermore, there is no guarantee that a test sample which has passed all the relevant tests conforms to a specification.

Neither is there any guarantee that such a test sample will interwork with other genuinely open systems. The existence of the tests nevertheless provides the confidence that the test sample possesses the qualities as maintained and that is performance generally conforms to representative cases of communications equipment.

The test results of this test report relate exclusively to the item tested as specified in 1.5.

The test report may only be reproduced or published in full.

Reproduction or publication of extracts from the report requires the prior written approval of the Worldwide Testing Services (Taiwan) Co., Ltd.

Tester:

September 9, 2009 Kevin Wang

Date WTS-Lab. Name Signature

Technical responsibility for area of testing:

September 9, 2009 Chang Tse-Ming Chang Tse-ry

Date WTS-Lab. Name Signature

FCC ID: UVZS10A

1.2 Testing laboratory

1.2.1 Location

OATS

No.5-1, Shuang Sing Village, LiShuei Rd., Wanli Township, Taipei County 207, Taiwan (R.O.C.)

Company

Worldwide Testing Services (Taiwan) Co., Ltd. 6F, NO. 58, LANE 188, RUEY-KUANG RD. NEIHU, TAIPEI 114, TAIWAN R.O.C.

Tel : 886-2-66068877 Fax : 886-2-66068879

1.2.2 Details of accreditation status

Accredited testing laboratory

A2LA accredited number: 2732.01

FCC filed test laboratory Reg. No. 930600

Industry Canada filed test laboratory Reg. No. IC 5679A-1

1.3 Details of approval holder

Name: ACA Digital Corporation

Street: 17F, NO. 866-7 Zhongzheng Rd., City: Zhonghe City Taipei county, 235

Country: Taiwan R.O.C.
Telephone: +886-2-8228-1121
Fax: +886-2-2228-9448

FCC ID: UVZS10A

1.4 Application details

Date of receipt of test item: August 17, 2009

Date of test: from August 18, 2009 to September 9, 2009

1.5 General information of Test item

Type of test item: Rugged Tablet PC

Model number: S10A
Multi-listing model number: ./.
Brand name: ACA
Photos: see Annex

Technical data

Frequency band for WLAN: 2.412 – 2.462 GHz

Frequency (ch Low): 2.412 GHz
Frequency (ch Middle): 2.437 GHz
Frequency (ch High): 2.462 GHz

Frequency band for Bluetooth: 2.402 – 2.480 GHz

Frequency (ch Low): 2.402 GHz Frequency (ch Middle): 2.441 GHz Frequency (ch High): 2.480 GHz

Number of Channels: WLAN: 11 channels Bluetooth: 79 channels

Power supply: Adaptor (I/P: AC 100-240 V / 50-60 Hz / 1.5 A,

O/P: 19 Vdc / 3.16 A) Battery (11.1V, 1880 mAh)

Operation modes: duplex

Modulation Type: WLAN: DSSS / OFDM

Bluetooth: GFSK $\cdot \pi / 4DQPSK \cdot 8DPSK$

Antenna Type: $1/2 \lambda$ dipole antenna

Antenna gain: 2 dBi

Emission designator: 11b: DSSS: 16M5G1D

11g: OFDM: 16M5W7D

Bluetooth (Normal mode): 967KF7D Bluetooth (EDR mode): 1M27F1D

Additional information: There are four testing modes in the test report.

Mode A: IEEE 802.11b Mode B: IEEE 802.11g

Mode C: Bluetooth (Normal mode) Mode D: Bluetooth (EDR mode)

FCC ID: UVZS10A

Host device: none

Classification:

Fixed Device	
Mobile Device (Human Body distance > 20cm)	
Portable Device (Human Body distance < 20cm)	\boxtimes
Modular Radio Device	

Transmitter Unom

Mode A (DSSS)

Power (ch 1 or Low): Conducted: 16.66 dBm Power (ch 6 or Middle): Conducted: 16.23 dBm Power (ch 11 or High): Conducted: 15.91 dBm

Mode B (OFDM)

Power (ch 1 or Low): Conducted: 16.54 dBm Power (ch 6 or Middle): Conducted: 15.89 dBm Power (ch 11 or High): Conducted: 15.84 dBm

Mode C Normal Mode

Power (ch 0 or ch Low): Conducted: -1.89 dBm Power (ch 39 or ch Middle): Conducted: -3.94 dBm Power (ch 78 or ch High): Conducted: -5.62 dBm

Mode D EDR Mode

Power (ch 0 or ch Low): Conducted: 1.13 dBm Power (ch 39 or ch Middle): Conducted: -0.95 dBm Power (ch 78 or ch High): Conducted: -2.56 dBm

Manufacturer: (if applicable)

Name: ACA Digital Corporation

Street: 17F, NO. 866-7 Zhongzheng Rd., City: Zhonghe City Taipei county, 235

Country: Taiwan R.O.C.

1.6 Test standards

Technical standard: FCC RULES PART 15 SUBPART C § 15.247 (2008-10)

FCC ID: UVZS10A **Technical test** 2

2.1 Summary of test results

No deviations from the technical specification(s) were ascertained in the course	X
of the tests performed.	

or

The deviations as specified in 3 were ascertained in the course of the tests performed.

2.2 **Test environment**

23 °C Temperature:

20 ... 75 % Relative humidity content:

Air pressure: 86 ... 103 kPa

Details of power supply Adaptor (I/P: AC 100-240 V / 50-60 Hz / 1.5 A,

O/P: 19 Vdc / 3.16 A)

Battery (11.1V, 1880 mAh)

 $\begin{array}{c} test\ voltage: --\ extreme \\ min:\ --\ V \end{array}$ Extreme conditions parameters:

max : -- V

Measurement item	Uncertainty
Peak Output Power	0.51 dB
Spurious Emissions radiated – Transmitter operating	30-200 MHz : 5.18 dB 200-1000 MHz : 5.34 dB 1-18 GHz : 5.26 dB 18-40 GHz : 5.48 dB
Carrier Frequency Separation	2060.94 Hz
Time of Occupancy (Dwell Time)	0.04 ms
20 dB Bandwidth	14.243 kHz
Minimum 6 dB Bandwidth	14.243 kHz
Band-edge Compliance of RF Emission	1.52 dBc
Peak Power Spectral Density	0.746 dB
Power Line Conducted Emission	1.77 dB

Registration number: W6M20908-9985-C-1

FCC ID: UVZS10A

2.3 Test Equipment List

No.	Test equipment	Type	Serial No.	Manufacturer	Cal. Date	Next Cal. Date
ETSTW-CE 001	EMI TEST RECEIVER	ESHS10	842121/013	R&S	2008/9/18	2009/9/17
ETSTW-CE 003	AC POWER SOURCE	APS-9102	D161137	GW	Function	on Test
ETSTW-CE 004	ZWEILEITER-V- NETZNACHBILDUNG TWO- LINE V-NETWORK	ESH3-Z5	840731/011	R&S	2009/3/27	2010/3/26
ETSTW-CE 005	Line-Impedance Stabilisation Network	NNBM 8126D	137	Schwarzbeck	2008/9/15	2009/9/14
ETSTW-CE 006	IMPULSBEGRENZER PULSE LIMITER	ESH3-Z2	100226	R&S	2009/5/9	2010/5/8
ETSTW-CE 009	TEMP.&HUMIDITY CHAMBER	GTH-225-40-1P-U	MAA0305-009	GIANT FORCE	2009/7/21	2010/7/20
ETSTW-CE 015	CISPR 22 TWO BALANCED TELECOM PAIRS IMPEDANCE STABILIZATION NETWORK	FCC-TLISN-T8-02	20307	FCC	2008/9/22	2009/9/21
ETSTW-CE 016	TWO-LINE V-NETWORK	ENV216	100050	R&S	2008/9/24	2009/9/23
ETSTW-RE 002	Function Generator	33220A	MY43004982	Agilent	Function	on Test
ETSTW-RE 003	EMI TEST RECEIVER	ESI 26	831438/001	R&S	2008/10/8	2009/10/7
ETSTW-RE 004	EMI TEST RECEIVER	ESI 40	832427/004	R&S	2008/9/22	2009/9/21
ETSTW-RE 005	EMI TEST RECEIVER	ESVS10	843207/020	R&S	2008/9/18	2009/9/17
ETSTW-RE 010	ABSORBING CLAMP	MDS 21	3469	Schwarzbeck	2008/09/18	2009/09/17
ETSTW-RE 011	PROGRAMMABLE LINEAR POWER SUPPLY	LPS-305	30503070165	МОТЕСН	Function	on Test
ETSTW-RE 017	Log-Periodic Antenna	HL025	352886/001	R&S	2009/5/4	2010/5/3
ETSTW-RE 018	MICROWAVE HORN ANTENNA	AT4560	27212	AR	2008/10/27	2009/10/26
ETSTW-RE 020	MICROWAVE HORN ANTENNA	AT4002A	306915	AR	Function	on Test
ETSTW-RE 021	SWEEP GENERATOR	SWM05	835130/010	R&S	2009/8/19	2010/8/18
ETSTW-RE 028	Log-Periodic Dipole Array Antenna	3148	34429	EMCO	2009/4/15	2010/4/14
ETSTW-RE 029	Biconical Antenna	3109	33524	EMCO	2009/4/15	2010/4/14
ETSTW-RE 030	Double-Ridged Guide Horn Antenna	3117	00035224	EMCO	2009/3/23	2010/3/22
ETSTW-RE 032	Millivoltmeter	URV 55	849086/013	R&S	2009/8/23	2010/8/22
ETSTW-RE 033	WaveRunner 6000A Serise Oscilloscope	WAVERUNNER 6100A	LCRY0604P14508	LeCroy	2009/6/15	2010/6/14
ETSTW-RE 034	Power Sensor	URV5-Z4	839313/006	R&S	2009/8/23	2010/8/22
ETSTW-RE 042	Biconical Antenna	HK116	100172	R&S	2009/1/8	2010/1/7
ETSTW-RE 043	Log-Periodic Dipole Antenna	HL223	100166	R&S	2009/5/5	2010/5/4
ETSTW-RE 044	Log-Periodic Antenna	HL050	100094	R&S	2009/5/21	2010/5/20
ETSTW-RE 047	PSA SERIES SPECTRUM ANALYZER	E4445A	MY46181369	Agilent	2009/6/15	2010/6/14
ETSTW-RE 048	Triple Loop Antenna	HXYZ 9170	HXYZ 9170-134	Schwarzbeck	2009/8/31	2010/8/30
ETSTW-RE 049	TRILOG Super Broadband test Antenna	VULB 9160	9160-3185	Schwarzbeck	2009/4/14	2010/4/13
ETSTW-RE 055	SPECTRUM ANALYZER	FSU 26	200074	R&S	2009/6/10	2010/6/09
ETSTW-RE 064	Bluetooth Test Set	MT8852B-042	6K00005709	Anritsu	Function	on Test
ETSTW-RE 065	Amplifier	AMF-6F- 18002650-25-10P	941608	MITEQ	2009/4/21	2010/4/20

Registration number: W6M20908-9985-C-1

FCC ID: UVZS10A

ETSTW-RE 072	CELL SITE TEST SET	8921A	3339A00375	HP	2008/10/28	2009/10/27
ETSTW-RE 073	Power Meter	N1911A	MY45100769	Agilent	2009/1/13	2010/1/12
ETSTW-RE 074	Power Sensor	N1921A	MY45241198	Agilent	2009/1/13	2010/1/12
ETSTW-RE 091	Match Pad	MDCS1500	None	WOKEN	2008/10/9	2009/10/8
ETSTW-RE 092	Match Pad	MDCS1510	None	WOKEN	2008/10/9	2009/10/8
ETSTW-RE 093	LUMPED ELEMENT POWER DIVIDER	PL2-10	146	MCLI	2009/3/6	2010/3/5
ETSTW-RE 094	Precision Coaxial Termination	HP 909F	03941	Agilent	2008/12/19	2009/12/18
ETSTW-RE 095	Digital Thermo-Hygro Meter	0410	01	WISEWIND	2009/3/24	2010/3/23
ETSTW-RE 096	SIGNAL GENERATOR	SMIQ 03B	102274	R&S	2009/6/5	2010/6/4
ETSTW-RE 097	GPS SIGNAL GENERATOR	GSG-L1	06-0507-0311	Naviva	NO	CR
ETSTW-GSM 002	Universal Radio Communication Tester	CMU 200	109439	R&S	2008/9/23	2009/9/22
ETSTW-GSM 023	Power Divider	4901.19.A	None	SUHNER	2008/9/22	2009/9/21
ETSTW-Cable 001	Microwave Cable	SUCOFLEX 104	238094	HUBER+SUHNER	2008/9/22	2009/9/21
ETSTW-Cable 002	Microwave Cable	SUCOFLEX 104	238093	HUBER+SUHNER	2008/9/22	2009/9/21
ETSTW-Cable 003	Microwave Cable	SUCOFLEX 104	209953	HUBER+SUHNER	2008/9/22	2009/9/21
ETSTW-Cable 006	Microwave Cable	SUCOFLEX 104	279067	HUBER+SUHNER	2009/3/6	2010/3/5
ETSTW-Cable 010	BNC Cable	5 M BNC Cable	None	JYE BAO CO.,LTD.	2009/3/6	2010/3/5
ETSTW-Cable 011	BNC Cable	BNC Cable 1	None	JYE BAO CO.,LTD.	2009/8/20	2010/8/19
ETSTW-Cable 012	BNC Cable	BNC Cable 2	None	JYE BAO CO.,LTD.	2009/8/20	2010/8/19
ETSTW-Cable 013	Microwave Cable	SUCOFLEX 104	232345	HUBER+SUHNER	2009/3/6	2010/3/5
ETSTW-Cable 022	N TYPE Cable	OATS Cable 3	0002	JYE BAO CO.,LTD.	2009/3/6	2010/3/5

FCC ID: UVZS10A

2.4 General Test Procedure

POWER LINE CONDUCTED INTERFERENCE: The procedure used was ANSI STANDARD C63.4-2003 using a 50μH LISN (if necessary). Both lines were observed. The bandwidth of the spectrum analyzer was 10 kHz with an appropriate sweep speed.

RADIATION INTERFERENCE: The test procedure used was according to ANSI STANDARD C63.4-2003 employing a spectrum analyzer. For investigated frequency is equal to or below 1GHz, the RBW and VBW of the spectrum analyzer was 100 kHz and 100kHz respectively with an appropriate sweep speed. For investigated frequency is above 1GHz, both of RBW and VBW of the spectrum analyzer were 1 MHz with an appropriate sweep speed. The analyzer was calibrated in dB above a microvolt at the output of the antenna. The ambient, temperature of the UUT was 23°C with a humidity of 40 %.

FORMULA OF CONVERSION FACTORS: The Field Strength at 3m was established by adding the meter reading of the spectrum analyzer (which is set to read in units of $dB\mu V$) to the antenna correction factor supplied by the antenna manufacturer. The antenna correction factors are stated in terms of dB.

Example:

Freq (MHz) METER READING + ACF + CABLE LOSS (to the receiver) = FS

33 $20 \text{ dB}\mu\text{V} + 10.36 \text{ dB} + 6 \text{ dB} = 36.36 \text{ dB}\mu\text{V/m} \text{ (a)3m}$

The EUT was placed on a table 80 cm high and with dimensions of 1m by 1.5m (non metallic table) and arranged according to ANSI C63.4-2003 Section 13.1.2. The table used for radiated measurements is capable of continuous rotation. The spectrum was scanned from 30 MHz to the frequency specified as follows:

- (1) If the intentional radiator operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.
- (2) If the intentional radiator operates at or above 10 GHz and below 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 100 GHz, whichever is lower.
- (3) If the intentional radiator operates at or above 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 200 GHz, whichever is lower, unless specified otherwise elsewhere in the rules.
- (4) If the intentional radiator contains a digital device, regardless of whether this digital device controls the functions of the intentional radiator or the digital device is used for additional control or function purposes other than to enable the operation of the intentional radiator, the frequency range shall be investigated up to the range specified in paragraphs (a)(1)-(a)(3) of this section or the range applicable to the digital device, as shown in paragraph (b)(1) of this Section, whichever is the higher frequency range of investigation.

For hand-held devices, a exploratory test was performed with three (3) orthogonal planes to determine the highest emissions.

Measurements were made by Worldwide Testing Services (Taiwan) Co., Ltd. at the registered open field test site located No.5-1, Shuang Sing Village, LiShuei Rd., Wanli Township, Taipei County 207, Taiwan (R.O.C.). The Registration Number: **930600**.

When an emission was found, the table was rotated to produce the maximum signal strength. At this point, the antenna was raised and lowered from 1m to 4m. The antenna was placed in both the horizontal and vertical planes.

FCC ID: UVZS10A

When the radiated emission limits are expressed in terms of the average value of the emission, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.

The formula is as follows:

Average = Peak + Duty Factor

Duty Factor = 20 log (dwell time/T)

T = 100ms when the pulse train period is over 100 ms or the period of the pulse train.

Modified Limits for peak according to 15.35 (b) = Max Permitted average Limits + 20dB

FCC ID: UVZS10A

3 Test results (enclosure)

TEST CASE	Para. Number	Required	Test passed	Test failed
Peak Output Power	15.247(b)	×	×	
Equivalent radiated Power	15.247(b)	×	×	
Spurious Emissions radiated – Transmitter operating	15.247(c)	×	×	
Spurious Emissions conducted – Transmitter operating	15.247			
Carrier Frequency Separation	15.247(a) (1)	×	×	
Number of Hopping Frequencies	15.247(a) (1)(i)	×	×	
Time of Occupancy (Dwell Time)	15.247(a) (1)(i)	×	×	
20 dB Bandwidth	15.247(a) (1)(i)	×	×	
Minimum 6 dB Bandwidth	15.247(a)(2)	×	×	
Band-edge Compliance of RF Emission	15.247(c)	×	×	
Peak Power Spectral Density	15.247(d)	×	×	
Radiated Emission from Digital Part	15.109			
Power Line Conducted Emission	15.207(a)	×	×	

The follows is intended to leave blank.

FCC ID: UVZS10A

3.1 Peak Output Power (transmitter)

FCC Rule: 15.247

This measurement applies to equipment with an integral antenna and to equipment with an antenna connector and equipped with an antenna as declared by the applicant.

The power was measured with modulation (declared by the applicant).

Mode A:

Test conditions		Conducted Power			
		Channel Low	Channel Middle	Channel High	
		[dBm]	[dBm]	[dBm]	
$T_{\text{nom}} = 23^{\circ}\text{C}$	$V_{\text{nom}} = 120 \text{ V}$	16.66	16.23	15.91	

Mode B:

Test conditions		Conducted Power		
		Channel Low	Channel Middle	Channel High
		[dBm]	[dBm]	[dBm]
$T_{\text{nom}} = 23^{\circ}\text{C}$	$V_{\text{nom}} = 120 \text{ V}$	16.54	15.89	15.84

Mode C:

Test conditions		Conducted Power		
		Channel Low	Channel Middle	Channel High
		[dBm]	[dBm]	[dBm]
$T_{nom} = 23$ °C	$V_{\text{nom}} = 120 \text{ V}$	-1.89	-3.94	-5.62

Mode D:

Test conditions		Conducted Power		
		Channel Low	Channel Middle	Channel High
		[dBm]	[dBm]	[dBm]
T _{nom} = 23°C	$V_{\text{nom}} = 120 \text{ V}$	1.13	-0.95	-2.56

FCC ID: UVZS10A

Test conditions		Radiated Power		
		Channel Low	Channel Middle	Channel High
		[dBm]	[dBm]	[dBm]
$T_{nom} = \circ C$	$V_{\text{nom}} =V$			

Test conditions $T_{nom} = ^{\circ}C, \ V_{nom} = V$ $Frequency[MHz]$	Signal Field strength TX highest power mode $dB\mu V/m \label{eq:Bmu}$
Measurement uncertainty	< 3 dB

Maximum Peak Output Power

Limits:

Frequency	Number of hopping channels								
MHz	≥ 75	≥ 50	49 ≥ 25	74 ≥ 15					
902-928		30 dBm	24 dBm						
2400-2483.5 MHz	30 dBm	-		21 dbm					
5725-5850 MHz	30 dBm	-							

In case of employing transmitter antennas having antenna gain >dBi and using fixed poin-to point operation consider §15.247 (b)(4).

Test equipment used: ETSTW-RE 055, ETSTW-RE 064

Explanation: See attached diagrams in appendix.

FCC ID: UVZS10A

3.2 Equivalent isotropic radiated power

FCC Rule: 15.247(b)(3)

EIRP = max. conducted output power + antenna gain

EIRP = 16.66 dBm + 2 dBi

= 18.66 dBm

Limit: EIRP = +36 dBm for Antenna gain < 6 dBi

Test equipment used: ETSTW-RE 003 ETSTW-RE 004 ETSTW-RE 017 ETSTW-RE 021

ETSTW-RE 028 ETSTW-RE 030 ETSTW-RE 043 ETSTW-RE 044

3.3 RF Exposure Compliance Requirements

FCC OET Bulletin 65 Edition 97.01 determines the equations for predicting RF fields and applicable limits.

The prediction for power density in the far-field but will over-predict power density in the near field, where it could be used for walking a "worst case" or conservative prediction.

$$S = \frac{PG}{4 \pi R^2}$$

S – Power Density

P – Output power ERP

R – Distance

D – Cable Loss

AG – Antenna Gain

Item	Unit	Value	Remarks
P	mW 46.34469		Peak value
D	dB		
AG	dBi	2	
G		1.6	Calculated Value
R	cm	20	Assumed value
S	mW/cm^2	0.0148	Calculated value

Limits:

Limit for General Population / Uncontrolled Exposure								
Frequency (MHz)	Power Density (mW/cm ²)							
1500 – 100.000	1,0							

FCC ID: UVZS10A

3.4 Transmitter Radiated Emissions in restricted Bands

FCC Rules: 15.247 (c), 15.205, 15.209, 15.35

Radiated emission measurements were performed from 30 MHz to 26500 MHz.

For radiated emission tests, the analyzer setting was as followings:

Frequency ≤ 1 GHz, RBW:100 kHz, VBW: 100 kHz (Peak measurements) Frequency > 1 GHz, RBW: 1 MHz, VBW: 1 MHz (Peak measurements) Frequency > 1 GHz, RBW:1 MHz, VBW: 10 Hz (Average measurements)

Limits.

For frequencies below 1GHz:

Frequency of Emission	Field strength	Field Strength
(MHz)	(microvolts/meter)	(dB microvolts/meter)
30 - 88	100	40.0
88 - 216	150	43.5
216 - 960	200	46.0
Above	500	54.0

For frequencies above 1GHz (Average measurements).

Guidance on Measurement of Digit Transmission Systems:

"If the emission is pulsed, modify the unit for continuous operation, use the setting shown above, then correct the reading by subtracting the peak-average correction factor, derived from the appropriate duty cycle calculation."

The correction factor, based on the total channel dwell time in a 100 ms period, may be mathematically applied to a measurement made with an average detector, to further reduce the value.

Duty cycle correction = 20 log (dwell time/ 100ms)

Note: No duty cycle correction was added to the reading of this EUT.

Explanation: See attached diagrams in Appendix.

FCC ID: UVZS10A

3.5 Spurious emissions (tx)

Spurious emission was measured with modulation (declared by manufacturer).

In any 100 kHz bandwidth outside the frequency band in which the intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c))

SAMPLE CALCULATION OF LIMIT. All results will be updated by an automatic measuring system in accordance to point 2.3.

Calculation of test results:

Such factors like antenna correction, cable loss, external attenuation etc. are already included in the provided measurement results. This is done by using validated test software and calibrated test system according the accreditation requirements.

The peak and average spurious emission plots was measured with the average limits.

In the Table being listed the critical peak and average value an exhibit the compliance with the above calculated Limits.

If in the column's correction factor states a value then the max. Field strength in the same row is corrected by a value gained from the "Marker-Delta-Method" or the "Duty-Cycle Correction Factor".

Summary table with radiated data of the test plots

Model: S10A Date: 2009/9/1

Mode: 802.11b TX CH1 Temperature: 24 °C Engineer: Kevin Polarization: Horizontal Humidity: 51 %

Frequency Reading Factor Result Limit Margin Table Ant.

Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
119.820	21.80	peak	13.40	35.20	43.50	-8.30	120	150
967.736	13.13	peak	27.24	40.37	54.00	-13.63	130	150

Frequency	Reading (dBuV)		Factor (dB)		Result @3m (dBuV/m)		Limit @3m (dBuV/m)		Table Degree	Ant. High
(MHz)	Peak	Ave.	Corr.		Ave.	Peak		(dB)	(Deg.)	(cm)
4817.635	55.21		-5.87	49.34		74.00	54.00	-24.66	155	150
7236.000	49.68		-0.80	48.88		74.00	54.00	-25.12	205	150
9648.000	30.38		21.01	45.39		74.00	54.00	-28.61	215	150
12060.000	31.22		22.84	48.06		74.00	54.00	-25.94	230	150

Registration number: W6M20908-9985-C-1

FCC ID: UVZS10A

Polarization: Vertical

Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
133.347	20.63	peak	14.33	34.96	43.50	-8.54	210	150
967.736	15.11	peak	27.24	42.35	54.00	-11.65	210	150

Polarization: Vertical

Frequency	Reading (dBuV)		Reading Factor Result @3m (dBuV) (dB) (dBuV/m)		Limit @3m (dBuV/m)		Margin	Table	Ant.	
(MHz)	Peak	Ave.	Corr.	Peak	Ave.		Ave.	(dB)	Degree (Deg.)	High (cm)
4817.635	57.42		-5.87	51.55		74.00	54.00	-22.45	210	150
7238.477	56.22		-0.81	55.41		74.00	54.00	-18.59	240	150
9648.000	30.45		21.01	45.46		74.00	54.00	-28.54	320	150
12060.000	31.01		22.84	47.85		74.00	54.00	-26.15	350	150

Mode: 802.11b TX CH6 Temperature: 26 °C Engineer: Kevin

Polarization: Horizontal Humidity: 50 %

Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
119.820	21.79	peak	13.40	35.19	43.50	-8.31	140	150
967.736	13.44	peak	27.24	40.68	54.00	-13.32	145	150

Frequency	Reading (dBuV)		Factor (dB)	Result @3m (dBuV/m)		Limit @3m (dBuV/m)		Margin	Table Degree	Ant. High
(MHz)	Peak	Àve.	Corr.	Peak	Ave.	Peak	Ave.	(dB)	(Deg.)	(cm)
4873.748	51.00		-5.60	45.40		74.00	54.00	-28.60	155	150
7311.000	48.78		-1.00	47.78		74.00	54.00	-26.22	250	150
9748.000	30.64		21.29	45.93		74.00	54.00	-28.07	120	150
12185.000	31.04		23.16	48.20	-	74.00	54.00	-25.80	110	150

Polarization: Vertical

Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
133.347	20.58	peak	14.33	34.91	43.50	-8.59	120	150
967.736	15.42	peak	27.24	42.66	54.00	-11.34	105	150

Frequency	(dB	ding uV)	Factor (dB)	Result (dBu	V/m)	(dBu		Margin	Table Degree	Ant. High
(MHz)	Peak	Ave.	Corr.	Peak	Ave.	Peak	Ave.	(dB)	(Deg.)	(cm)
4873.748	56.45		-5.60	50.85	-	74.00	54.00	-23.15	240	150
7310.621	53.08		-1.00	52.08		74.00	54.00	-21.92	130	150
9748.000	31.6		21.29	46.89	-	74.00	54.00	-27.11	210	150
12185.000	32.1		23.16	49.26		74.00	54.00	-24.74	135	150

Registration number: W6M20908-9985-C-1

FCC ID: UVZS10A

Mode: 802.11b TX CH11 Temperature: 26 °C Engineer: Kevin

Polarization: Horizontal Humidity: 50 %

1 Oldrization.	Horizontal			riairiiaity.	00	70		
Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
119.820	20.98	peak	13.40	34.38	43.50	-9.12	120	150
967.736	13.08	peak	27.24	40.32	54.00	-13.68	115	150

Frequency (MHz)	(dBuV) Peak Ave.		Factor (dB) Corr.	Result @3m (dBuV/m) Peak Ave.		Limit @3m (dBuV/m) Peak Ave.		Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
4924.000	46.80		-5.44	41.36		74.00	54.00	-32.64	210	150
7386.000	48.70		-1.04	47.66		74.00	54.00	-26.34	205	150
9848.000	31.16		21.50	46.66		74.00	54.00	-27.34	240	150
12310.000	31.55		23.20	48.75		74.00	54.00	-25.25	315	150

Polarization: Vertical

Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
133.347	20.01	peak	14.33	34.34	43.50	-9.16	210	150
967.736	14.84	peak	27.24	42.08	54.00	-11.92	135	150

Frequency (MHz)		ding uV) Ave.	Factor (dB) Corr.		Result @3m (dBuV/m) Peak Ave.		Limit @3m (dBuV/m) Peak Ave.		Table Degree (Deg.)	Ant. High (cm)
4921.844	54.72		-5.44	49.28		74.00	54.00	-24.72	120	150
7390.782	50.10		-1.04	49.06		74.00	54.00	-24.94	315	150
9848.000	30.93		21.50	46.43		74.00	54.00	-27.57	140	150
12310.000	31.49		23.20	48.69		74.00	54.00	-25.31	215	150

Mode: 802.11gTX CH1 Temperature: 26 °C Engineer: Kevin

Polarization: Horizontal Humidity: 50 %

Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
119.820	21.81	peak	13.40	35.21	43.50	-8.29	100	150
967.736	13.38	peak	27.24	40.62	54.00	-13.38	105	150

Registration number: W6M20908-9985-C-1

FCC ID: UVZS10A

Frequency (MHz)	(dB	Reading F (dBuV) Peak Ave.		Result @3m (dBuV/m) Peak Ave.		Limit @3m (dBuV/m) Peak Ave.		Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
4824.000	46.47		-5.84	40.63		74.00	54.00	-33.37	210	150
7326.000	47.28		-1.01	46.27		74.00	54.00	-27.73	205	150
9648.000	31.66		21.01	46.67		74.00	54.00	-27.33	210	150
12060.000	31.53		22.84	48.37		74.00	54.00	-25.63	205	150

Polarization: Vertical

Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
133.347	20.73	peak	14.33	35.06	43.50	-8.44	120	150
967.736	15.66	peak	27.24	42.90	54.00	-11.10	100	150

Frequency	(dBuV)		Factor (dB)	Result (dBu			@3m V/m)	Margin	Table Degree	Ant. High
(MHz)	Peàk	Áve.	Corr.	Peak	Áve.		Ave.	(dB)	(Deg.)	(cm)
4824.000	47.59		-5.84	41.75		74.00	54.00	-32.25	210	150
7236.000	51.24		-0.80	50.44		74.00	54.00	-23.56	305	150
9648.000	30.38		21.01	45.39		74.00	54.00	-28.61	120	150
12060.000	31.11		22.84	47.95		74.00	54.00	-26.05	205	150

Mode: 802.11g TX CH6 Temperature: 26 °C Engineer: Kevin Polarization: Horizontal Humidity: 50 %

Frequer (MHz)		eading dBuV)	Detector	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
119.82) :	21.53	peak	13.40	34.93	43.50	-8.57	105	150
967.73	, ·	12.64	peak	27.24	39.88	54.00	-14.12	210	150

Frequency	Reading (dBuV)		Factor Result @3m (dB) (dBuV/m)		Limit @3m (dBuV/m)		Margin	Table Degree	Ant. High	
(MHz)	Peak	Ave.	Corr.	Peak	. ,	Peak	Ave.	(dB)	(Deg.)	(cm)
4874.000	46.94		-5.60	41.34		74.00	54.00	-32.66	210	150
7311.000	48.79		-1.00	47.79		74.00	54.00	-26.21	250	150
9748.000	30.74		21.29	46.03		74.00	54.00	-27.97	210	150
12185.000	30.79		23.16	47.95		74.00	54.00	-26.05	250	150

Registration number: W6M20908-9985-C-1

FCC ID: UVZS10A

Polarization: Vertical

	Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
Ī	133.347	21.06	peak	14.33	35.39	43.50	-8.11	210	150
	967.736	15.34	peak	27.24	42.58	54.00	-11.42	120	150

Frequency	Reading (dBuV)		Factor (dB)	(dB) (dBuV/m)		Limit @3m (dBuV/m)		Margin	Table Degree	Ant. High
(MHz)	Peàk	Áve.	Corr.	Peak	Áve.		Ave.	(dB)	(Deg.)	(cm)
4873.748	48.78		-5.60	43.18		74.00	54.00	-30.82	125	150
7318.637	50.95		-1.00	49.95		74.00	54.00	-24.05	275	150
9748.000	30.98		21.29	46.27		74.00	54.00	-27.73	175	150
12185.000	32.07		23.16	49.23		74.00	54.00	-24.77	280	150

Mode: 802.11g TX CH11 Temperature: 26 °C Engineer: Kevin

Polarization: Horizontal Humidity: 50 %

	Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
Ī	119.820	21.95	peak	13.40	35.35	43.50	-8.15	210	150
	967.736	14.08	peak	27.24	41.32	54.00	-12.68	125	150

Frequency		Reading (dBuV)		Result @3m (dBuV/m)			Limit @3m (dBuV/m)		Table Degree	Ant. High
(MHz)	Peak	Ave.	Corr.	Peak	Ave.	Peak	Ave.	(dB)	(Deg.)	(cm)
4924.000	46.31		-5.44	40.87		74.00	54.00	-33.13	215	150
7386.000	48.06		-1.04	47.02		74.00	54.00	-26.98	310	150
9848.000	30.04		21.50	45.54		74.00	54.00	-28.46	250	150
12310.000	30.97		23.20	48.17		74.00	54.00	-25.83	305	150

Polarization: Vertical

	Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
Ī	133.347	20.96	peak	14.33	35.29	43.50	-8.21	125	150
	967.736	15.43	peak	27.24	42.67	54.00	-11.33	140	150

Frequency	Reading (dBuV)		Factor (dB)	(dB) (dBuV/m)		Limit @3m (dBuV/m)		Margin	Table Degree	Ant. High
(MHz)	Peak	Áve.	Ċorr.	Peak	Áve.	Peak	Ave.	(dB)	(Deg.)	(cm)
4921.844	48.30		-5.44	42.86		74.00	54.00	-31.14	215	150
7386.000	48.44		-1.04	47.40		74.00	54.00	-26.60	270	150
9848.000	30.61		21.50	46.11		74.00	54.00	-27.89	290	150
12310.000	31.42		23.20	48.62		74.00	54.00	-25.38	315	150

Registration number: W6M20908-9985-C-1

FCC ID: UVZS10A

Mode: Bluetooth TX CH0 Temperature: 26 °C Engineer: Kevin

Polarization: Horizontal Humidity: 50 %

				· · · · · · · · · · · · · · · · · · ·				
Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
119.820	14.12	peak	13.40	27.52	43.50	-15.98	110	150
967.736	12.21	peak	27.24	39.45	54.00	-14.55	320	150

Frequency	Reading (dBuV) Peak Ave		Factor (dB)	B) (dBuV/m)		Limit @3m (dBuV/m)		Margin	Table Degree	Ant. High
(MHz)	Peak	Ave.	Corr.	Peak	Ave.	Peak	Ave.	(dB)	(Deg.)	(cm)
4804.000	47.31		-5.94	41.37		74.00	54.00	-32.63	120	150
7206.000	48.21		-0.71	47.50		74.00	54.00	-26.50	150	150
9608.000	31.59		20.91	46.5		74.00	54.00	-27.5	250	150
12010.000	31.26		22.57	47.83		74.00	54.00	-26.17	350	150

Polarization: Vertical

Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
119.820	18.77	peak	13.40	32.17	43.50	-11.33	120	150
967.736	14.22	peak	27.24	41.46	54.00	-12.54	100	150

Frequency	Reading (dBuV)		Factor		@3m		@3m	Margin	Table	Ant.
(MHz)	Peak	uv) Ave.	(dB) Corr.	(dBu Peak	V/m) Ave.	(dBu Peak	V/m) Ave.	(dB)	Degree (Deg.)	High (cm)
4801.603	48.84		-5.95	42.89		74.00	54.00	-31.11	250	150
7206.000	47.79		-0.71	47.08		74.00	54.00	-26.92	120	150
9608.000	31.84		20.91	46.75		74.00	54.00	-27.25	250	150
12010.000	31.25		22.57	47.82		74.00	54.00	-26.18	240	150

Mode: Bluetooth TX CH39 Temperature: 26 °C Engineer: Kevin

Polarization: Horizontal Humidity: 50 %

Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
119.820	14.02	peak	13.40	27.42	43.50	-16.08	250	150
967.736	11.72	peak	27.24	38.96	54.00	-15.04	120	150

Frequency	Reading (dBuV)		Factor (dB)	(dB) (dBuV/m)		Limit @3m (dBuV/m)		Margin	Table Degree	Ant. High
(MHz)	Peak	Ave.	Corr.	Peak	Ave.	Peak	Ave.	(dB)	(Deg.)	(cm)
4881.764	49.34		-5.56	43.78		74.00	54.00	-30.22	250	150
7323.000	47.86		-1.00	46.86		74.00	54.00	-27.14	140	150
9764.000	30.85		21.34	46.19		74.00	54.00	-27.81	170	150
12205.000	30.87		23.18	48.05		74.00	54.00	-25.95	250	150

Registration number: W6M20908-9985-C-1

FCC ID: UVZS10A

Polarization: Vertical

Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
119.820	17.16	peak	13.40	30.56	43.50	-12.94	120	150
967.736	14.23	peak	27.24	41.47	54.00	-12.53	110	150

Frequency		ding uV)	Factor (dB)	Result (dBu	:@3m V/m)	Limit (dBu	@3m V/m)	Margin	Table Degree	Ant. High
(MHz)	Peak	Áve.	Corr.	Peak	Ave.	Peak	Ave.	(dB)	(Deg.)	(cm)
4882.000	46.42		-5.56	40.86		74.00	54.00	-33.14	250	150
7323.000	48.07		-1.00	47.07		74.00	54.00	-26.93	120	150
9764.000	31.58		21.34	46.92		74.00	54.00	-27.08	280	150
12205.000	32.2		23.18	49.38		74.00	54.00	-24.62	320	150

Mode: Bluetooth TX CH78 Temperature: 26 °C Engineer: Kevin Polarization: Horizontal Humidity: 50 %

Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
119.820	14.44	peak	13.40	27.84	43.50	-15.66	250	150
967.736	11.64	peak	27.24	38.88	54.00	-15.12	240	150

Frequency (MHz)		ding uV) Ave.	Factor (dB) Corr.		: @3m V/m) Ave.		@3m V/m) Ave.	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
4953.908	49.73		-5.41	44.32		74.00	54.00	-29.68	250	150
7440.000	48.72		-1.02	47.70		74.00	54.00	-26.30	320	150
9920.000	30.83		21.66	46.49		74.00	54.00	-27.51	240	150
12400.000	30.88		23.43	48.30		74.00	54.00	-25.70	130	150

Polarization: Vertical

Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
266.994	18.00	peak	14.35	32.35	46.00	-13.65	120	150
967.736	15.67	peak	27.24	42.91	54.00	-11.09	250	150

Frequency		ding uV)	Factor (dB)		: @3m V/m)		@3m V/m)	Margin	Table Degree	Ant. High
(MHz)	Peak	Áve.	Ċorr.	Peak	Áve.	Peak	Ave.	(dB)	(Deg.)	(cm)
4960.000	47.32		-5.40	41.92		74.00	54.00	-32.08	250	150
7440.000	48.12		-1.02	47.10		74.00	54.00	-26.90	320	150
9920.000	30.87		21.66	46.53		74.00	54.00	-27.47	250	150
12400.000	32.56		23.43	49.98		74.00	54.00	-24.02	320	150

FCC ID: UVZS10A

Note 1. Correction Factor = Antenna factor + Cable loss - Preamplifier

- 2. The formula of measured value as: Test Result = Reading + Correction Factor
- 3. Detector function in the form: PK = Peak, QP = Quasi Peak, AV = Average
- 4. All not in the table noted test results are more than 20 dB below the relevant limits.
- 5. See the attached diagram as appendix.

All other not noted test plots do not contain significant test results in relation to the limits.

TEST RESULT (Transmitter): The unit DOES meet the FCC requirements.

Test equipment used: ETSTW-RE 003, ETSTW-RE 004, ETSTW-RE 017, ETSTW-RE 018,

ETSTW-RE 021, ETSTW-RE 028, ETSTW-RE 029, ETSTW-RE 030,

ETSTW-RE 042, ETSTW-RE 043, ETSTW-RE 064

FCC ID: UVZS10A

3.6 Carrier Frequency Separation

Carrier Frequency Separation was measured with modulation (declared by manufacturer).

According to FCC rules part 15 subpart C §15.247 frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or 20 dB bandwidth of the hopping channel, whichever is greater.

Mode C and Mode D:

Test conditions		Channel Separation				
		Channel 0 Channel 0+1				
$T_{nom} = 23$ °C	$V_{\text{nom}} = 120 \text{ V}$	1000	kHz			

Test conditions		Channel S	Separation		
		Channel 39 Channel 39+1			
$T_{\text{nom}} = 23^{\circ}\text{C}$ $V_{\text{nom}} = 120 \text{ V}$		1000 kHz			

Test conditions		Channel Separation					
1 est conditions		Channel 78 Channel 78+1					
$T_{\text{nom}} = 23^{\circ}\text{C}$ $V_{\text{nom}} = 120 \text{ V}$ 1000 kHz		kHz					

Limits:

Frequency Range	Lin	nits
MHz	20 dB bandwidth < 25 kHz	20 dB bandwidth > 25 kHz
902-928	25 kHz	20 dB bandwidth
2400-2483.5 5725-5850.0	25 kHz	20 dB bandwidth

Test equipment used: ETSTW-RE 055, ETSTW-RE 064

Explanation: This test is not applicable for Mode A and Mode B because these two modes are not FHSS modulation. See attached diagrams in appendix.

FCC ID: UVZS10A

3.7 Number of Hopping Frequencies

According to FCC rules part 15 subpart C §15.247 frequency hopping systems operating in the 2400-2483.5 MHz band shall use at least 15 hopping frequencies. Frequency hopping systems in 5725-5850 MHz bands shall use least 75 hopping frequencies.

For frequency hopping systems operating in the 902-928 MHz band: if the 20dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies; if the 20dB bandwidth of the hopping channel 250 kHz or greater, the system shall use at least 25 hopping frequencies.

Mode C and Mode D:

Test conditions		Operating Mode	Number of Channels
$T_{nom}=23$ °C	$V_{nom}=120 \text{ V}$	normal transmitting	79

Limits:

Frequency Range	Limit				
MHz	20dB Bandwidth	Number of Channels			
002 028 MH-	Bandwidth < 250 kHz	≥ 50			
902-928 MHz	Bandwidth ≥ 250 kHz	≥ 25			
2400-2483.5	not defined	15			
5725-5850.0 MHz	1 MHz	75			

Test equipment used: ETSTW-RE 055, ETSTW-RE 064

Explanation: This test is not applicable for Mode A and Mode B because these two modes are not FHSS modulation. See attached diagrams in appendix.

3.7.1 Pseudorandom Frequency Hopping Sequence

The generation of the hopping sequence is determined by the Bluetooth cord specification and complies with the FCC requirements.

3.7.2 Coordination of hopping sequences to other transmitters

According to the Bluetooth core specification V1.1 such a coordination is not possible. During scatternet function only one of the two hopping sequences will be used at a definite moment.

3.7.3 System Receiver Hopping Capability

According to the Bluetooth core specification. The system receivers shift frequencies in synchronization with the transmitted signals.

FCC ID: UVZS10A

3.8 Time of Occupancy (Dwell Time)

Frequency hopping systems operating in the 5725-5850 MHz band shall use an average time of occupancy on any frequency not greater than 0.4 seconds within a 30 second period.

In 2400-2483,5 MHz band the average time of occupancy on any channel shall not be greater than 0,4 seconds multiplied by the number of hopping channels employed.

For frequency hopping systems operating in the 902-928 MHz band: if the 20dB bandwidth of the hopping channel is less than 250 kHz, the average time of occupancy on any frequency shall not greater than 0.4 seconds within a 20 second period; if the 20dB bandwidth of the hopping channel is 250 kHz or greater, the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period.

Mode C and Mode D:

Test conditions	Operating mode	Measurement period	Time of Occupancy
$T_{\text{nom}} = 23^{\circ}\text{C}$	normal transmitting-DH 1	31.6 s	170.24 ms
$V_{nom} = 120 \text{ V}$	normal transmitting-DH 3	31.6 s	287.04 ms
Channel 0	normal transmitting-DH 5	31.6 s	334.84 ms

Test conditions	Operating mode	Measurement period	Time of Occupancy
$T_{\text{nom}} = 23^{\circ}\text{C}$	normal transmitting-DH 1	31.6 s	170.24 ms
$V_{nom} = 120 \text{ V}$	normal transmitting-DH 3	31.6 s	287.04 ms
Channel 39	normal transmitting-DH 5	31.6 s	334.84 ms

Test conditions	Operating mode	Measurement period	Time of Occupancy
$T_{\text{nom}} = 23^{\circ}\text{C}$	normal transmitting-DH 1	31.6 s	170.24 ms
$V_{nom} = 120 \text{ V}$	normal transmitting-DH 3	31.6 s	287.04 ms
Channel 78	normal transmitting-DH 5	31.6 s	334.84 ms

FCC ID: UVZS10A

Limits and measurement periods:

Frequency MHz	equency MHz Number of channels Measurement Periode		Limit
902 – 928 ≥50		20 s	0,4 s
902 – 928	49 ≥ 25	10 s	0,4 s
2400 – 2483,5	≥ 15	0,4 s * number of used channels	0,4 s
5725- 5850 ≥ 75		30 s	0,4s

Test equipment used: ETSTW-RE 055, ETSTW-RE 064

Explanation: This test is not applicable for Mode A and Mode B because these two modes are not

FHSS modulation. See attached diagrams in appendix, which show the On-time and the

number of counted events during the measurement period

FCC ID: UVZS10A **3.9 20dB Bandwidth**

Frequency hopping systems operating in the 5725-5850 MHz bands shall use a maximum 20dB bandwidth of 1 MHz.

The 20dB bandwidth is measured on the lowest, middle and highest hopping channel.

For frequency hopping systems operating in the 902-928 MHz band the maximum 20dB bandwidth of the hopping channel is 500 kHz.

Mode C:

Test conditions		20 dB Bandwidth		
		Channel Low Channel Middle Channel High		
$T_{\text{nom}} = 23^{\circ}\text{C}$	$V_{\text{nom}} = 120 \text{ V}$	961.538461538 kHz	967.948717948 kHz	967.948717948 kHz

Mode D:

Test co	onditions	20 dB Bandwidth Channel Low Channel Middle Channel High		
				Channel High
$T_{\text{nom}} = 23^{\circ}\text{C}$	$V_{\text{nom}} = 120 \text{ V}$	1.275641026 MHz	1.275641026 MHz	1.275641026 MHz

Limits:

Frequency Range / MHz	Limit	
902-928	≤ 500 kHz	
2400-2483.5	not defined	
5725-5850	≤ 1 MHz	

Test equipment used: ETSTW-RE 055 ETSTW-RE 064

Explanation: This test is not applicable for Mode A and Mode B because these two modes are not FHSS modulation. See attached diagrams in appendix.

3.9.1 System Receiver Input Bandwidth

It is determined in the Bluetooth core specification. The value matches to the bandwidth of transmitter signal.

FCC ID: UVZS10A

3.10 Minimum 6 dB Bandwidth

The analyzer ResBW was set to 100 kHz. For each RF output channel investigated, the spectrum analyzer center frequency was set to the channel carrier. A PEAK reading was taken, two markers were set 6 dB below the maximum level on the right and the left side of the emission.

The 6 dB bandwidth is the frequency difference between the two markers.

Mode A:

Test conditions		6 dB Bandwidth		
		Channel 1 Channel 6 Channel		Channel 11
$T_{nom} = 23$ °C	$V_{\text{nom}} = 120 \text{ V}$	11.910256410 MHz	11.955128205 MHz	11.858974359 MHz

Mode B:

Test conditions		6 dB Bandwidth		
		Channel 1	Channel 6	Channel 11
$T_{nom} = 23$ °C	$V_{\text{nom}} = 120 \text{ V}$	16.602564103 MHz	16.576923077 MHz	16.602564103 MHz

Limits:

Frequency Range MHz	Limits
902-928	min 500 kHz
2400-2483.5	min 500 kHz
5725-5850	min 500 kHz

Test equipment used: ETSTW-RE 055

Explanation: This test is not applicable for Mode C and Mode D because these two modes are not DSSS / OFDM modulation. See attached diagrams in appendix.

FCC ID: UVZS10A

3.11 Band-edge Compliance of RF Emissions

According to FCC rules part 15 subpart C §15.247(c) in any 100 kHz bandwidth outside the frequency band in which the intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in § 15.209(a) is not required.

In addition radiated emission which fall in the restricted bands, as defined in section 15.205(a), must also with the radiated emission limits.

Mode A:

Test conditions		Attenuation at or outside band-edges	
		Lower Band-edge	Upper Band-edge
$T_{nom} = 23$ °C	$V_{\text{nom}} = 120 \text{ V}$	40.30 dB	48.50 dB

Mode B:

Test conditions		Attenuation at or outside band-edges	
		Lower Band-edge	Upper Band-edge
$T_{nom}=23$ °C	V _{nom} =120 V	30.22 dB	35.18 dB

Mode C:

Test conditions		Attenuation at or outside band-edges Single Frequency	
		Lower Band-edge	Upper Band-edge
$T_{nom} = 23^{\circ}C$	$V_{\text{nom}} = 120 \text{ V}$	32.74 dB	43.20 dB

Test conditions		Attenuation at or outside band-edges Hopping Frequency				
		Lower Band-edge	Upper Band-edge			
$T_{nom} = 23$ °C	$V_{\text{nom}} = 120 \text{ V}$	33.50 dB	43.21 dB			

FCC ID: UVZS10A

Mode D:

Test conditions		Attenuation at or outside band-edges Single Frequency				
		Lower Band-edge	Upper Band-edge			
$T_{nom} = 23$ °C	$V_{nom} = 120 \text{ V}$	34.68 dB	37.09 dB			

Test conditions		Attenuation at or outside band-edges Hopping Frequency				
		Lower Band-edge	Upper Band-edge			
$T_{\text{nom}} = 23^{\circ}\text{C}$	$V_{\text{nom}} = 120 \text{ V}$	34.68 dB	37.09 dB			

Limits:

Frequency Range / MHz	Limit
902 –928	
2400 – 2483.5	- 20 dB
5725 - 5850	

Test equipment used: ETSTW-RE 055

Explanation: See attached diagrams in appendix.

FCC ID: UVZS10A

3.12 Peak Power Spectral Density

Peak Power Spectral density is a measured at low, middle and high channel.

The peak output power is measured with a measurement bandwidth of 10 MHz and displayed on diagram together with Peak Power Spectral Density result which was measured with a bandwidth of 3 kHz, appreciate frequency span and sweep time.

Mode A:

		Peak Power Spectral Density (3 kHz)				
Test conditions		Channel 1	Channel 6	Channel 11		
		[dBm]	[dBm]	[dBm]		
$T_{nom} = 23$ °C	$V_{\text{nom}} = 120 \text{ V}$	-3.44	-3.39	-2.90		

Mode B:

		Peak Power Spectral Density (3 kHz)				
Test conditions		Channel 1 [dBm]	Channel 6 [dBm]	Channel 11 [dBm]		
T _{nom} = 23°C	$V_{nom} = 120 \text{ V}$	-6.26	-7.91	-7.69		

Limits:

Frequency Range	dBm
MHz	
902-928	8
2400-2483,5	8
5725-5850	8

Test equipment used: ETSTW-RE 055

Explanation: This test is not applicable for Mode C and Mode D because these two modes are not

DSSS / OFDM modulation. See attached diagrams in appendix.

FCC ID: UVZS10A

3.13 Radiated Emissions from Digital Part

FCC Rule: 15.109

Except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency of Emission	Field Strength	Field Strength
(MHz)	(microvolts/meter)	(dBmicrovolts/meter)
30 - 88	100	40.0
88 - 216	150	43.5
216 – 960	200	46.0
Above 960	500	54.0

Test equipment used: ETSTW-RE 003, ETSTW-RE 004, ETSTW-RE 017, ETSTW-RE 028,

ETSTW-RE 029, ETSTW-RE 030, ETSTW-RE 042, ETSTW-RE 043,

ETSTW-RE 064

Explanation: The test results are listed in the separated test report no. W6M20908-9985-P-15B.

FCC ID: UVZS10A

3.14 Power Line Conducted Emission

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the table bellows with this provision shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminals.

This measurement was transact first with instrumentation using an average and peak detector and a 10 kHz bandwidth. If the peak detector achieves a calculated level, the measurement is repeated by an instrumentation using a quasi-peak detector.

Frequency	Level (dBµV)				
Trequency	quasi-peak	average			
150 kHz	lower limit line	Lower limit line			

	Model:	S1	0A	Date:		2009	/8/28		
	Mode:			Tempe	erture:	24	°C		Engineer:
F	Polarization:	Ν		Hum	idity:	51	%		Řick
	Frequency	Rea (dB	ding uV)	Factor (dB)		sult BuV)		mit uV)	Margin
	(MHz)	QÈ	Ave.	Corr.	QP	Áve.	QP	Áve.	(dB)
	0.3578	34.42	30.34	10.05	44.47	40.39	58.78	48.78	-8.39
	0.4169	37.41	33.15	10.08	47.49	43.23	57.51	47.51	-4.28
	0.8949	29.34	24.86	10.11	39.45	34.97	56.00	46.00	-11.03
	2.1468	32.60	24.85	10.07	42.67	34.92	56.00	46.00	-11.08
	5.4272	29.90	21.54	10.13	40.03	31.67	60.00	50.00	-18.33
	19.2582	23.78	15.50	10.47	34.25	25.97	60.00	50.00	-24.03

Polarization:	<u>L1</u>							
Frequency		ding uV)	Factor (dB)		sult SuV)		mit uV)	Margin
(MHz)	QÈ	Ave.	Corr.	QP	Áve.	QP	Áve.	(dB)
0.4184	37.11	32.28	10.18	47.29	42.46	57.48	47.48	-5.02
0.4780	36.29	32.85	10.26	46.55	43.11	56.37	46.37	-3.26
0.8950	33.28	31.25	10.22	43.50	41.47	56.00	46.00	-4.53
2.1505	32.96	26.55	10.21	43.17	36.76	56.00	46.00	-9.24
4.8960	33.00	25.80	10.35	43.35	36.15	56.00	46.00	-9.85
6.5651	29.19	18.68	10.56	39.75	29.24	60.00	50.00	-20.25

Note:

- 1. The formula of measured value as: Test Result = Reading + Correction Factor
- 2. The Correction Factor = Cable Loss + LISN Insertion Loss + Pulse Limit Loss
- 3. Detector function in the form: PK = Peak, QP = Quasi Peak, AV = Average
- 4. All not in the table noted test results are more than 20 dB below the relevant limits.
- 5. Measurement uncertainty = \pm 1.77dB; Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.
- 6. See attached diagrams as appendix.

FCC ID: UVZS10A

Limits:

Frequency of Emission (MHz)	Conducted Limit (dBuV)			
	Quasi Peak	Average		
0.15-0.5	66 to 56	56 to 46		
0.5-5	56	46		
5-30	60	50		

Test equipment used: ETSTW-CE 001 ETSTW-CE 003 ETSTW-CE 004 ETSTW-CE 006 ETSTW-RE 064

Registration number: W6M20908-9985-C-1

FCC ID: UVZS10A

Appendix

Measurement diagrams

- 1. Peak Output Power
- 2. Spurious Emissions radiated
- 3. Carrier Frequency Separation
- 4. Number of Hopping Frequencies
- 5. Time of Occupancy (Dwell Time)
- 6. 20dB Bandwidth
- 7. Minimum 6dB Bandwidth
- 8. Band-edge Compliance of RF Conducted Emissions
- 9. Peak Power Spectral Density
- 10. Power Line Conducted Emission

Registration number: W6M20908-9985-C-1

FCC ID: UVZS10A
Peak Output Power
WLAN Mode (Mode A)

MAX OUTPUT POWER 802.11b CH1 Date: 2.SEP.2009 15:27:42

MAX OUTPUT POWER 802.11b CH6 Date: 2.SEP.2009 15:28:50

Registration number: W6M20908-9985-C-1

FCC ID: UVZS10A

MAX OUTPUT POWER 802.11b CH11 Date: 2.SEP.2009 15:29:40

WLAN Mode (Mode B)

MAX OUTPUT POWER 802.11g CH1 Date: 2.SEP.2009 15:34:01

Registration number: W6M20908-9985-C-1

FCC ID: UVZS10A

MAX OUTPUT POWER 802.11g CH06 Date: 2.SEP.2009 15:33:04

MAX OUTPUT POWER 802.11g CH11 Date: 2.SEP.2009 15:32:31

Registration number: W6M20908-9985-C-1

FCC ID: UVZS10A

Bluetooth Mode (Mode C)

MAX OUTPUT POWER CH0
Date: 2.SEP.2009 12:22:43

MAX OUTPUT POWER CH39
Date: 2.SEP.2009 12:23:16

Registration number: W6M20908-9985-C-1

MAX OUTPUT POWER CH78
Date: 2.SEP.2009 12:23:47

Bluetooth Mode (Mode D)

MAX OUTPUT POWER CHO EDR MODE

Registration number: W6M20908-9985-C-1

FCC ID: UVZS10A

MAX OUTPUT POWER CH39 EDR MODE Date: 2.SEP.2009 12:27:16

MAX OUTPUT POWER CH78 EDR MODE Date: 2.SEP.2009 12:26:24

Registration number: W6M20908-9985-C-1

FCC ID: UVZS10A

Spurious Emissions radiated WLAN Mode (Mode A) CH 1

Antenna Polarization H

Up Line: Peak Limit Line Down Line: Ave Limit Line

Note:

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

FCC ID: UVZS10A

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

FCC ID: UVZS10A

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

FCC ID: UVZS10A

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

Registration number: W6M20908-9985-C-1

FCC ID: UVZS10A

Antenna Polarization V

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

Registration number: W6M20908-9985-C-1

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

FCC ID: UVZS10A

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

Registration number: W6M20908-9985-C-1

FCC ID: UVZS10A

WLAN Mode (Mode A)_CH 6

Antenna Polarization H

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

Registration number: W6M20908-9985-C-1

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

FCC ID: UVZS10A

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

FCC ID: UVZS10A

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

Registration number: W6M20908-9985-C-1

FCC ID: UVZS10A

Antenna Polarization V

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

FCC ID: UVZS10A

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

Registration number: W6M20908-9985-C-1

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

Registration number: W6M20908-9985-C-1

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

Registration number: W6M20908-9985-C-1

FCC ID: UVZS10A

WLAN Mode (Mode A)_CH 11

Antenna Polarization H

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

FCC ID: UVZS10A

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

FCC ID: UVZS10A

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

Registration number: W6M20908-9985-C-1

FCC ID: UVZS10A

Antenna Polarization V

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

Registration number: W6M20908-9985-C-1

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

Registration number: W6M20908-9985-C-1

FCC ID: UVZS10A

WLAN Mode (Mode B)_ CH 1

Antenna Polarization H

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

FCC ID: UVZS10A

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

Registration number: W6M20908-9985-C-1

FCC ID: UVZS10A

Antenna Polarization V

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

Registration number: W6M20908-9985-C-1

FCC ID: UVZS10A

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

FCC ID: UVZS10A

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

FCC ID: UVZS10A

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

Registration number: W6M20908-9985-C-1

FCC ID: UVZS10A

WLAN Mode (Mode B)_CH 6

Antenna Polarization H

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

FCC ID: UVZS10A

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

FCC ID: UVZS10A

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

Registration number: W6M20908-9985-C-1

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

Registration number: W6M20908-9985-C-1

FCC ID: UVZS10A

Antenna Polarization V

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

FCC ID: UVZS10A

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

Registration number: W6M20908-9985-C-1

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

Registration number: W6M20908-9985-C-1

FCC ID: UVZS10A

WLAN Mode (Mode B)_CH 11

Antenna Polarization H

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

Registration number: W6M20908-9985-C-1

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

Registration number: W6M20908-9985-C-1

FCC ID: UVZS10A

Antenna Polarization V

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

Registration number: W6M20908-9985-C-1

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

- . The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

Registration number: W6M20908-9985-C-1

FCC ID: UVZS10A

Bluetooth Mode_ CH 0 Antenna Polarization H

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

FCC ID: UVZS10A

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

FCC ID: UVZS10A

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

Registration number: W6M20908-9985-C-1

FCC ID: UVZS10A

Antenna Polarization V

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

FCC ID: UVZS10A

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

Registration number: W6M20908-9985-C-1

FCC ID: UVZS10A

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

Registration number: W6M20908-9985-C-1

FCC ID: UVZS10A

Bluetooth Mode_ CH 39 Antenna Polarization H

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

FCC ID: UVZS10A

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

FCC ID: UVZS10A

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

Registration number: W6M20908-9985-C-1

FCC ID: UVZS10A

Antenna Polarization V

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

FCC ID: UVZS10A

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

FCC ID: UVZS10A

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

Registration number: W6M20908-9985-C-1

FCC ID: UVZS10A

Bluetooth Mode_ CH 78 Antenna Polarization H

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

Registration number: W6M20908-9985-C-1

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

FCC ID: UVZS10A

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

Registration number: W6M20908-9985-C-1

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

Registration number: W6M20908-9985-C-1

FCC ID: UVZS10A

Antenna Polarization V

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

FCC ID: UVZS10A

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

Registration number: W6M20908-9985-C-1

FCC ID: UVZS10A

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

Registration number: W6M20908-9985-C-1

FCC ID: UVZS10A

Carrier Frequency Separation

Bluetooth Mode

FREQUENCY SEPARATION CH0
Date: 2.SEP.2009 12:32:54

FREQUENCY SEPARATION CH39

Registration number: W6M20908-9985-C-1

FREQUENCY SEPARATION CH78
Date: 2.SEP.2009 12:35:21

Registration number: W6M20908-9985-C-1

FCC ID: UVZS10A

Number of Hopping Frequencies

Bluetooth Mode

NUMBER OF HOPPING CH0-37 Date: 2.SEP.2009 12:40:54

NUMBER OF HOPPING CH37-78

Date: 2.SEP.2009 12:44:45

Registration number: W6M20908-9985-C-1

FCC ID: UVZS10A

Time of Occupancy (Dwell Time)

Bluetooth Mode

DWELL TIME CH0 DH1 (0.532ms * 320events = 170.24ms)
Date: 2.SEP.2009 13:36:33

DWELL TIME CHO DH3 (1.794ms * 160events = 287.04ms)
Date: 2.SEP.2009 13:41:53

Registration number: W6M20908-9985-C-1

DWELL TIME CH0 DH5 (3.044ms * 110events = 334.84ms)
Date: 2.SEP.2009 13:44:05

DWELL TIME CH39 DH1 (0.532ms * 320events = 170.24ms)
Date: 2.SEP.2009 13:37:42

Registration number: W6M20908-9985-C-1

FCC ID: UVZS10A

DWELL TIME CH39 DH3 (1.794ms * 160events = 287.04ms)
Date: 2.SEP.2009 13:41:16

DWELL TIME CH39 DH5 (3.044ms * 110events = 334.84ms)
Date: 2.SEP.2009 13:44:45

Registration number: W6M20908-9985-C-1

DWELL TIME CH78 DH1 (0.532ms * 320events = 170.24ms)
Date: 2.SEP.2009 13:38:34

DWELL TIME CH78 DH3 (1.794ms * 160events = 287.04ms)
Date: 2.SEP.2009 13:40:41

Registration number: W6M20908-9985-C-1

FCC ID: UVZS10A

DWELL TIME CH78 DH5 (3.044ms * 110events = 334.84ms)
Date: 2.SEP.2009 13:45:23

Registration number: W6M20908-9985-C-1

FCC ID: UVZS10A 20dB Bandwidth Bluetooth Mode

20DB BANDWIDTH CH0
Date: 2.SEP.2009 13:25:19

20DB BANDWIDTH CH39
Date: 2.SEP.2009 13:24:57

Registration number: W6M20908-9985-C-1

20DB BANDWIDTH CH78
Date: 2.SEP.2009 13:24:36

20DB BANDWIDTH CH0 EDR MODE Date: 2.SEP.2009 13:26:19

Registration number: W6M20908-9985-C-1

20DB BANDWIDTH CH39 EDR MODE Date: 2.SEP.2009 13:26:42

20DB BANDWIDTH CH78 EDR MODE Date: 2.SEP.2009 13:27:04

Registration number: W6M20908-9985-C-1

FCC ID: UVZS10A

Minimum 6dB Bandwidth

WLAN Mode

6DB BANDWIDTH 802.11b CH1
Date: 2.SEP.2009 16:06:05

6DB BANDWIDTH 802.11b CH06 Date: 2.SEP.2009 16:16:30

Registration number: W6M20908-9985-C-1

6DB BANDWIDTH 802.11b CH11 Date: 2.SEP.2009 16:09:06

6DB BANDWIDTH 802.11g CH01 Date: 2.SEP.2009 16:18:04

Registration number: W6M20908-9985-C-1

6DB BANDWIDTH 802.11g CH06 Date: 2.SEP.2009 16:14:38

6DB BANDWIDTH 802.11g CH11 Date: 2.SEP.2009 16:10:30

Registration number: W6M20908-9985-C-1

FCC ID: UVZS10A

Band-edge Compliance of RF Conducted Emissions

WLAN Mode

FREQUENCY RANGE 802.11b CH1
Date: 2.SEP.2009 15:44:26

FREQUENCY RANGE 802.11b CH11
Date: 2.SEP.2009 15:43:34

Registration number: W6M20908-9985-C-1

FREQUENCY RANGE 802.11g CH1
Date: 2.SEP.2009 16:02:34

FREQUENCY RANGE 802.11g CH11
Date: 2.SEP.2009 15:42:57

Registration number: W6M20908-9985-C-1

FCC ID: UVZS10A Bluetooth Mode

BANDEDGE CH0
Date: 2.SEP.2009 12:50:03

BANDEDGE CH78
Date: 2.SEP.2009 12:55:59

Registration number: W6M20908-9985-C-1

BANDEDGE CHO HOPPING MODE Date: 2.SEP.2009 12:54:23

BANDEDGE CH78 HOPPING
Date: 2.SEP.2009 12:59:20

Registration number: W6M20908-9985-C-1

BANDEDGE CH0 EDR MODE
Date: 2.SEP.2009 13:03:58

BANDEDGE CH78 EDR MODE
Date: 2.SEP.2009 13:10:38

Registration number: W6M20908-9985-C-1

BANDEDGE CH0 EDR HOPPING MODE Date: 2.SEP.2009 13:06:19

BANDEDGE CH78 EDR HOPPING MODE Date: 2.SEP.2009 13:14:38

Registration number: W6M20908-9985-C-1

FCC ID: UVZS10A

Peak Power Spectral Density

WLAN Mode

POWER DENSITY 802.11b CH1 Date: 2.SEP.2009 16:41:35

POWER DENSITY 802.11b CH6 Date: 2.SEP.2009 16:33:27

Registration number: W6M20908-9985-C-1

FCC ID: UVZS10A

POWER DENSITY 802.11b CH11 Date: 2.SEP.2009 16:31:37

POWER DENSITY 802.11g CH1 Date: 2.SEP.2009 16:24:11

Registration number: W6M20908-9985-C-1

FCC ID: UVZS10A

POWER DENSITY 802.11g CH6 Date: 2.SEP.2009 16:28:29

POWER DENSITY 802.11g CH11 Date: 2.SEP.2009 16:29:26

Registration number: W6M20908-9985-C-1

FCC ID: UVZS10A

Power Line Conducted Emission

LISN N

LISN L1

Up Line: QP Limit Line Down Line: Ave Limit Line

Note:

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of AC conducted test data of this test report.