Exercice 1

1. Que signifie le sigle IP?

Internet Protol

2. Completer le tableau suivant

	Premier Octet	Nombre de reseaux	Nombre de machines
class A	0 - 127	2 ⁷ - 2 = 0,123 K	2 ²⁴ - 2
class B	128 - 191	2 ¹⁴ = 16 K	2 ¹⁶ -2
class C	192 - 223	2 ²¹ = 2048 k	2 ⁸ -2

- Nombre de machines : On retire le 1er adresse(adresse du reseau) et le dernier dresse(adresse de diffusion)
- Nombre de reseaux : On divise par 1024 pour avoir la valeur en kilo octes

Exercice 2

1) Soit le masque de reseau : 255.255.255.0

Les machines dont les adresses sont 192.138.42.121 et 192.138.42.1 peuvent-t-ils communiquer ? Justifiez votre reponse.

- OUI
- Les deux machines ont le meme numero de reseau : 192.138.42
- Elles sont donc dans le meme reseau
- Elles peuvent donc communiquer directement

(Directement = pas besoin de passer par un routeur externe)

2) Deux reseaux A et B sont relies par un routeur.

L'entreprise a defini le masque suivant 255.255.0.0. Un utilisateur du reseau a sur la machine 100.64.0.102 n'arrive pas a joindre le correspondant avec l'adresse 100.64.15.102 du reseau B. Faire un schema ; Expliquer les differents hypotheses ?

Exercice 3 QCM adressage IP

1) L'adresse 180.30.17.20 est une adresse de classe :
a) A- b) B e) C- d) D-
Si l'administrateur donne deux fois la meme adresse IP a 2 machines differentes du reseau, que se passe-t-il ?
 a) Les deux machines marchent tres bien. b) La premiere machine obtenir l'adresse IP du reseau marche mais pas la deuxime. c) Aucune machine ne marche. d) Le debit est partage entre les 2 machines.
2) Un reseau de classe B est decoupe en plusieurs sous-reseaux et on obtient un masque final valant 255.255.252.0. En combien de sous-reseaux le reseau de depart a-t-il ete decoupe ? a) 32 b) 64 e) 128 d) 256
3) Un reseau a comme adresse 180.35.128.0 de masque 255.255.240.0. Quelle est l'adresse de broadcast ? a) 180.35.255.255
b) 180.35.143.255 (20bits net-id => 180.35.(1000 1111).255=180.35.143.255)
e) 180.35.159.25 d) 180.35.192.255
4) Un reseau a comme masque 255.255.255.224. Combien de machines peut-il y avoir sur un tel reseau ? a) 254 b) 128- e) 224 d) 30 (host-id a 5bits => 2 ⁵ -2 =30)
Sur un reseau TCP/IP qui fixe l'adresse IP d'une machine ?

```
a) Le constructeur de la carte ethernet.
b) elle est fixee au hasard lors du boot.
c) L'administrateur du reseau.
d) Le chef du departement.
```

5) Une machine a comme adresse IP 150.56.188.80 et se trouve dans un reseau dont le masque est 255.255.240.0. Quelle est l'adresse du reseau ?

```
a) 150.56.0.0
b) 150.56.128.0
c) 150.56.176.0 [ 150.56.(1011 0000).0=150.56.176.0 ] <= tous les bits du hostid mis a 0
d) 150.56.192.0
```

6) On decoupe un reseau dont le masque est 255.255.224.0 en 16 sous-reseaux.

Quel est le nouveau masque ?

a) 255.255.254.0 (on rajoute 4 bits au net-id, soit 23 bits)

b) 255.255.255.0

e) 255.255.252.0

d) 255.255.248.0

on rajoute 4 bits au net id, soit 23 bits

7) Lorsque le protocole IP est utilise au dessus du protocole ethernet, l'adresse IP a-t-elle la meme valeur que l'adresse ethernet ?

a) VRAI

b) FAUX (@Ethernet fait 48bits alors que @IP fait 32bits)

c) cela depend-

8) IP protocol permet d'interconnecter un reseau de classe A avec un reseau de classe C.

a) VRAI (IP permet d'interconnecter des réseaux de taille variables) b) FAUX-

Exercice 4

Afin de disposer de sous reseaux on utilise le masque de 255.255.240.0 avec une adresse reseau de classe B .

Combien d'hotes pourra-t-il y avoir par sous reseau?

 $240.0 = 11110000\ 000000000:\ 2^{12}-2 = 4096-2 = 4094$ machines

Quel est le nombre de sous reseaux disponibles ? $240.0 = 11110000\ 000000000:\ 2^4 = 16\ sous-reseaux$

Exercice 5

Une entreprise veut utiliser l'adresse reseau 192.168.90.0 pour 4 sous reseaux. Le nombre maximum d'hotes par sous reseau etant de 25,

Quel masque de sous reseau utiliseriez-vous pour resoudre ce probleme ?

- Adresse de classe C : 255.255.255.X
- $2^4 < 25 < 2^5$: Ajout de 5 bits0 a la partie hote du masque x=11100000 = 224
- masque = 255.255.255.224

Exercice 6

Un ordinateur X d'adresse IP = 134.214.107.72, son masque de sous reseau est 255.255.192.0

1) Classe de X?

Classe B

2) Combien de machine adressable sur ce reseau?

 $192.0 = 11000000 \quad 000000000 : \quad 2^{14} - 2 = \quad 16384 \text{ hosts}$

3) Combien de sous reseau differents peut il y avoir dans ce reseau?

 $2^2 = 4$ sous reseau

4) Combien de machines differentes peuvent etre adresses dans chacun de ces sous reseau??

(16384/4) - 2 = 4096 machines

5) Quelle est l'adresse de la passerelle par defaut de X?

134.214.0.1

6) Quelle est son broadcast?

134.214.255.255

7) Quelle est la plage d'adresse IP possible

134.214.0.1 - 134.214.255.254

Exercice 7 – Determination du nombre de bits a utiliser pour l'ID sous-reseau

Dans cet exercice, vous devez determiner combien de bits sont necessaires pour creer le nombre de sous-reseaux demandes.

Pour determiner l'identifiant reseau : On cherche la puissance 2 superieur ou egale au nombre de sous reseaux

a) 84 sous-reseaux

7 bits

b) 145 sous-reseaux

8 bits

c) 7 sous-reseaux

3 bits

d) 1 sous-reseau ??

1 bits

e) 15 sous-reseaux

4 bits

Exercice 8 – Calcul du masque de sous-reseau et le nombre d'hotes par sous-reseaux.

A partir d'un ID de reseau et d'un nombre voulu de sous-reseaux, calculez le masque de Sous-reseau et le nombre d'hotes par sous-reseau.

- Puisqu'on nous donne le nb de sous reseaux: On ajoute des bits1 a la partie hote du masque par defaut
- Nbre de bit a ajouter: Puissance de 2 superieure ou egale nbre de sous-reseaux
- 1. ID reseau: 148.25.0.0 et 37 sous-reseaux
 - ClasseB. Masque par defaut: 255.255.X.X
 - On ajoute 6bits: 111111100.00000000 = 252.0
 - masque = 255.255.252.0
- 2. ID reseau: 198.63.24.0 et 2 sous-reseaux
 - ClasseC. Masque par defaut: 255.255.255.X
 - On ajoute 1bits: 10000000 = 128
 - masque = 255.255.255.128
- 3. ID reseau: 110.0.0.0 et 1000 sous-reseaux
 - ClasseA. Masque par defaut : 255.X.X.X
 - On ajoute 10bits: 111111111.11000000.00000000 = 255.192.0
 - masque = 255.255.192.0
- 4. ID reseau: 175.23.0.0 et 550 sous-reseaux
 - ClasseB. Masque par defaut: 255.255.X.X
 - On ajoute 10bits: 11111111.11000000 = 255.192
 - masque = 255.255.255.192
- 5. ID reseau: 209.206.202.0 et 60 sous-reseaux
 - ClasseC. Masque par defaut: 255.255.255.X
 - On ajoute 6bits: 111111100 = 252
 - masque = 255.255.255.252