Various Models and Architectures

Speech & Language Processing Applications

Automatic Speech Recognition

Neural-based Acoustic Models

Mel Frequency Cepstral Coefficients (MFCC) Convolutional Neural Nets

Automatic Speech Recognition

Deep Neural Nets for Acoustic Models

CNN for Acoustic Modelling

- CNN can be used in speech recognition
- Speech signal Sequence of features

- CNN has shown to improve the ASR performance
 - IBM Paper, 2013
 - Now, it belongs to one of the state-of-the-art techniques

• Extract emotion from speech

CNN for Natural Language Processing

- If the input is a sentence, where can we get the image for CNN?
 - Word representations (word vectors / word embeddings): a word can be represented as a vector

Sentence representation

- What if the sentences have different length?
 - Define a max sentence length
 - Pad the sentence with zero vectos or cut the sentence to the max sentence length
 - E.g. with a max sentence length of 10
 - ,I like this movie very much!' can be represented as follows

Word Embeddings

- Another way was proposed by Mikolov et al, (2013)
- https://code.google.com/p/word2vec/

CBOW Skip-gram

RNN for Acoustic Modelling

- RNN can be used in speech recognition
- Speech signal
 — Sequence of features

- RNN has shown to improve the ASR performance
 - Graves et al, 2013 2966 citations
 - Now, it belongs to one of the state-of-the-art techniques

RNN for Slot filling

• e.g. A ticket from Munich to Tokyo please

RNN for Language Modelling

Training data: ,It is a great day'

RNN for Sentiment Analysis

- Input is a sentence
- Output is positive, negative or neutral

RNN for Machine Translation

- Input is a sentence in the source language
- Output is also a sentence but in the target language

RNN for Chit-chat Dialog Modelling

- Input is fed to the source side
- Output of the system in the target side

