

Ingeniería Informática

Medios de Transmisión (MT)

Tema 2 Conceptos fundamentales de señales y sistemas

Curso 2007-08

Concepto de señal

• <u>Señal</u>: cualquier magnitud física que varía con el tiempo, espacio o cualquier variable independiente y que contiene información acerca de un fenómeno físico.

 Matemáticamente, las señales se representan por funciones de una o más variables independientes.

Ejemplo de función de una variable

Eiemplo de señal contínua

Telefono

Ejemplo de función de dos variables

Ejemplo de señal bidimensional (imagen)

Ejemplo de función de dos variables

Concepto de sistema

• Sistema: transformación de una señal en otra.

Ejemplo de sistema electromecánico

Ejemplo de sistema mecánico

Ejemplo de sistema eléctrico

Fig. 1.3 An example of a simple electrical system.

Señales continuas y discretas

- <u>Señal continua o analógica</u>: función de una variable independiente continua que toma valores sobre la recta real. Se representan por x(t).
 - t ≡ magnitud continua (número real)
 - x≡magnitud continua (número real)
- <u>Señal discreta</u>: función de una variable discreta que sólo toma valores enteros. Se representan por x[n].
 - n ≡ magnitud discreta (número entero)
 - x≡magnitud continua (número real)

Representación gráfica de señales

Fuente: A. Oppenheim, Signals and Systems, p. 5, Ed. Prentice-Hall, 1997.

Figure 2.6 Graphical representations of (a) continuous-time and (b) discrete-time signals.

Ejemplo de señal discreta

Figure 2.4 An example of a discrete-time signal: the weekly Dow-Jones stock market index from January 5, 1929 to January 4, 1930.

Fuente: A. Oppenheim, Signals and Systems, p. 4, Ed. Prentice-Hall, 1997.

Ejemplo de señal aleatoria contínua

Eiemplo de señal aleatoria discreta

Notas Examen Febrero 95

Concepto de señal par e impar

Figure 1.17 (a) An even continuous-time signal; (b) an odd continuous-time signal.

Ejemplos de señales periódicas

Función sinc

Señal exponencial real

x(t)

Fuente: A. Oppenheim, Signals and Systems, p. 15, Ed. Prentice-Hall, 1997.

Figure 1.19 Continuous-time real exponential $x(t) = Ge^{at}$: (a) a > 0; (b) a < 0.

Señal exponencial compleja

Relación entre la frecuencia fundamental y el periodo de una señal sinusoidal

$$\omega_1 < \omega_2 < \omega_3$$

Señal exponencial compleja no amortiguada

_TEMA2_25

Señal sinusoidal amortiguada

Figure 1.23 (a) Growing sinusoidal signal $x(t) = Ce^{rt} \cos(\omega_0 t + \theta)$, r > 0; (b) decaying sinusoid $x(t) = Ce^{rt} \cos(\omega_0 t + \theta)$, r < 0.

Fuente: A. Oppenheim, Signals and Systems, p. 21, Ed. Prentice-Hall, 1997.

Concepto de sistema

• **Sistema**: cualquier proceso a través del cual unas señales se transforman en otras.

• Un sistema se define especificando la relación entre la señal de entrada y la de salida. Por ejemplo,

$$y(t) = tx(t-1) + x^3(t)$$

Sistemas contínuos y discretos

• **Sistema contínuo**: una señal contínua se transforma en otra señal contínua.

- Ejemplo 1: $y(t) = tx(t-1) + x^3(t)$
- Ejemplo 2: $\frac{dy(t)}{dt} + 2y(t) = x(t)$
 - Ejemplo 3: $y(t) = \int_{-\infty}^{t} x(\tau) d\tau$

Sistemas contínuos y discretos

• **Sistema discreto**: una señal discreta se transforma en otra señal discreta.

- Ejemplo 1: $y(n) = nx(n-1) + x^3(n)$
- Ejemplo 2: y(n) = 2y(n-1) + x(n)
- Ejemplo 3: $y(n) = \sum_{k=-\infty}^{n} x(k)$

Interconexión de sistemas

• Serie: la salida del primer sistema es la entrada del segundo.

Interconexión de sistemas

• **Paralelo**: la entrada es la misma para los dos sistemas y las salidas se suman.

Interconexión de sistemas

• **Realimentación**: la salida del primer sistema se realimenta hacia la entrada a través del segundo.

Ejemplo de interconexión de sistemas con realimentación

Fuente: K. Ogata, Modern Control Engineering, p. 10, Ed. Prentice-Hall, 1997.

Figure 1-5
(a) Liquid-level control system; (b) block diagram.