脚車輪形態可変ロボットの構成法と環境適応形態遷移行動の実現

真壁佑,指導教員:稲葉雅幸

サーボモジュール,センサモジュール,車輪ロボット,形態変化,環境適応

1. はじめに

近年、災害現場における救助や家庭環境での家事支援といっ た . 人間の作業を代替するロボットに関する研究が行われて いる. ヒューマノイドは脚による段差の移動や双腕による作業 を行い, モバイルマニピュレータは室内での車輪を用いた高 速な移動や荷物運搬を行うように , ロボットは動作環境に適 した身体構成を持つが,人間のように広範囲に渡る環境で作 業を達成するためにはハードウェアが環境に適した形に変化 する必要がある.これまで著者はロボットが多様な環境に適 応する能力を拡張するために必要なハードウェア要素につい て研究を行っており,特に状況に応じて形態を変化させるよ うなロボットの開発に取り組んでいる.

率的な環境認識システムを構築した. このシステムにより、視 ・・・ 界中の必要な領域のみで認識を行うことで,車両の周囲の効 率的な安全確認と発進動作を達成した[1]. 修士論文では車輪 や駆動方式の変更が可能な関節を備え,状況に応じて形態を 変化させるようなロボットに関する研究を進めている.車輪 を持つロボットについて,筋骨格腱駆動の双腕はハードウェア 的に柔軟な構造を持つため環境接触を伴うタスクに向き,倒 立二輪の下肢は車輪による移動能力と制御的な安定性を備え るため、二つを組み合わせることで作業能力と移動能力を活 用することが可能になロボットを構成した [2]. 駆動方式を変 えることのできる関節について、動作中に関節の減速比を変

えタスクに適した関節速度・トルクを発揮することを目的とし て,減速比可変で関節のロックも可能な関節を構成した.ま た,開発した関節を腰に備えた三輪車型のロボットを構成し, 物体の運搬タスクや三輪車型から倒立二輪型への遷移動作な

学士論文では筋骨格腱駆動ヒューマノイドの頭部に可動眼

球を搭載し、高速な視点の変更動作と認識範囲の制御による効

どを達成している[3]. 博士過程の研究計画では,修士まで行ってきた研究を発展 させ,より多自由度なハードウェアにおける形態可変や,環

境やタスクに対してアクチュエータ・センサ配置を最適化す るようなシステムの構築を目指す.そのために,共通の通信 系を持つ身体構成要素の開発、身体構造可変な統合ハードウェ ア構造の生成、環境とタスクに対して最適な身体形態の探索 と実現の3つの要素に分割して研究を進める予定である.

2. 研究概要・研究計画

学士論文:可動眼球を用いた認識制御と車両操作 2.1

Fig. 1: 可動眼球を用いた認識制御と運転操作.

2.1.1高解像度な可動眼球視覚モジュールの構成

生物が持つ可動する眼球には、高速に視野範囲を変更できる。 動く物体を追従しつつ視野範囲を絞った効率的な認識を行え るといった利点が存在すると考え、両眼に 4K カメラを備え共 通の tilt 自由度と独立の pan 自由度を持つ視覚モジュールを 構成した. 眼球の自由度を環境認識行動に重要なものに絞り 小型で高解像度なカメラを用いることで, ヒューマノイドの 頭部に収まるサイズの可動眼球を構成し、眼球の自由度を用い た高速な視点の変更動作を実現した.

認識範囲の制御と車両操作への応用 2.1.2

タスクに応じて画像処理を行う範囲を動的に変更すること で効率的に環境認識を行える視覚システムの構成法について 検証した. また , 環境認識動作の応用例として運転操作を行 い、高解像度なカメラを用いたサイドミラーに映る小さな人 物に対する注視動作により、人間と同様の視覚を利用したリ アルタイムな車両周囲の安全確認動作を実現した.

- 修士論文:環境適応可能な脚車輪ロボットの構成法
- 2.2.1 環境接触行動に適した筋骨格型倒立二輪ロボット

Fig. 2: 環境接触行動に適した筋骨格型倒立二輪ロボット.

筋骨格腱駆動ロボットは、ハードウェア的に柔軟な筋によっ て駆動される多自由度のリンク構造を持ち, 関節の力制御が 可能なため , 環境との接触を伴う行動生成に向く また , モ バイルマニピュレータは移動性能に優れ日常生活における家 事タスクに関する研究が広く行われており , 中でも倒立二輪 型の足回りを採用し , 小さなフットプリントと高い移動性能 を持つものも存在する. そこで, 筋骨格腱駆動型の上肢構造 と、倒立二輪型の下肢構造を組み合わせることで、実環境で 接触を伴う動作を行う能力と多様な環境下での移動性能を併 せ持つロボットを構成した. 上肢構造は筋骨格腱駆動構造によ るハードウェア的な柔軟性を持ち、非線形弾性要素と拮抗腱 駆動構造による関節トルク・剛性可変制御が可能なため , 環 境接触行動時の厳密な接触条件の計画が不要である. 加えて 関節の自由度よりも多い冗長な自由度を持つため , 動作中に 筋が破損した場合でも作業を継続することができる、これら の特徴を活用し , 環境接触動作として机の移動動作や , 箱の 把持運搬動作 , 壁への衝突時の衝撃緩和・転倒回避動作を実 現した. 下肢構造は移動性能に加えて倒立二輪構造による姿 勢安定性能を併せ持ち、並進・回転移動動作や、蹴り飛ばし 時の転倒回避動作を達成した. 本ロボットは環境接触能力と冗 長な自由度、移動能力を併せ持つことで、動作中に転倒して も故障しにくく動作を継続することが可能であり, 環境中で 繰り替えし動作を行い、成功と失敗を繰り返して動作を学習 していくロボットに関する研究が行えるようになる. 加えて 筋骨格腱駆動ロボットの複雑な身体構造を制御するために筋 長 , 筋張力 , 関節角度の対応を学習する研究において , 上肢 は(1)筋を駆動するアクチュエータモジュールと(2)関節角度

可変減速関節ロック機構による関節機能の改変 2.2.2High Output ? 減速比可変モジュール 二段変速関節ロック機構 40.9 [kg] 壁を用いた形態変形動作 Fig. 3: 可変減速関節ロック機構による関節機能の改変. ロボットの関節は , 重量やサイズの観点から必要なトルク と関節速度に最適化したモータと減速機構を有する. しかし, 作業中に必要なトルクや速度に対して性能が不足した場合,口

検知可能な関節モジュール, (3) 汎用フレームの三種を組み

合わせて用意に構造を改変できる構造を持つため ,特定の身 体形状での学習結果を他の身体形状にも適用して容易に実験

することが可能である.

境接触時になじむことのできるバックドライバブルな関節の Lつの機能を切り替えることができる. 更に , 関節のロック 機構を用いて電源を入れることなく自由度を固定することで, タスク中の大負荷に耐えることのできる高剛性な関節に変化 し , 非動作時のロボットを自立させてスペースを節約するこ とも可能になる. 開発した関節モジュールの評価のため, 腰 に関節モジュールを備え , 倒立二輪での動作も可能な三輪車 型ロボットを構成し ,関節の駆動状態変更を活用した 40.9kg

の荷物の運搬と , 壁を用いた三輪車形態と倒立二輪形態の間

で双方向の動作形態の遷移を達成した.

博士過程の研究計画

最適化

2.3

ボットの故障やタスクの失敗の原因となる、タスク中に十分な

トルクと関節速度を発揮するために、減速比の二段階変速機

能と関節の ロック機能を併せ持つ一自由度の変速機構を搭載

した関節モジュールを開発した、本モジュールは減速比を変え

ることで,負荷に耐えることのできる大トルクな関節と,環

博士過程では,環境やタスクに対して最適な形態に変化し たり,アクチュエータ・センサ配置を最適化することが可能 なロボットシステムの構築のために,以下の3つの実現を目 指す.

- 共通の通信系と接続部を持つ身体構成要素の開発 身体構造可変な統合ハードウェア構造の生成
- 環境とタスクに対して最適な身体形態の探索と実現
- 2.3.1身体脱着構造可変ロボットの構成法と適応構成

を向上させるためには,機械的・電気的に構造の改変が容易な 身体構成要素が必要であるため,センサとアクチュエータに よらず共通の通信系や接続部を採用することが望ましい.こ こで述べている身体構成要素としては , 身体を駆動する関節・ リンクや,視覚や触覚などのセンサ,推力を発生させるための 車輪やプロペラ , 構成要素を脱着するためのハンドなどを想定

身体構造を自動生成したり可変させる目的で構成の自由度

しており,全体の重量や防水性能といったスペックに応じて適 応が可能な環境がより広くなると考えている.また,それら の要素を組み合わせて複合的な環境・タスクに適応できる統 合的なハードウェアを構成するために , 環境を仮定したシミュ レータを用いてセンサおよびアクチュエータの配置や種類を

最適化するための手法の構築が必要である.この際,構成に 用いた検証手法や実機実験の結果の中で、仮定した環境やタス クに依存しない一般性を見出すことで, 一般的な身体構成の最 適化指標の策定を目指す. さらに, タスクを行っている最中に

適切な身体構成を選択して形態遷移を達成するためには、タ スクの達成時間や移動時の安定性といった最適化指標に基づ

く最適な形態の探索や、実機による多様な環境での形態遷移 が必要となる. 大規模な姿勢遷移や構造改変を達成するため には,転倒回避のための指示領域の遷移計画や,関節負荷の 低減のためのの発揮トルクの最適化を行う必要があると考え られる.これらの全体のシステムの実現に向けて,小さなサ イズでの試作を目的として、市販のシリアルサーボやリンク 部品と、自作のセンサ基板を組み合わせた多自由度な脚車輪 形態可変ロボットの構成に取り組んでいる.自作センサ基板 について、市販のリンク接続部品と同様のサイズを持ち、シ リアルサーボと同様の通信系を備えるため,設計の自由度が

高く様々な構成の試作が可能になると考えている.

構築に向けて研究を進めることを検討している.

著者はロボットが多様な環境に適応する能力を拡張するた めに必要なハードウェア要素について研究を行っており,今後

おわりに

の修正研究では多自由度な脚車輪ロボットによるセンサ情報 を考慮した形態遷移動作に取り組む予定である.さらに,規 格化されたハードウェア要素を活用した身体構成の最適化手 法に関して新しく取り組み始める予定であり, 多様な環境・タ スク群に対して適した形態に変化できるロボットシステムの

3.

参考文献

[1] Makabe, T., et al., "Development of Movable Binocular High-Resolution Eye-Camera Unit for Humanoid

IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids2018), pp. 840-845. IEEE, 2018.

[2] K. Kawaharazuka, T. M., et al., "TWIMP: Two-Wheel

Inverted Musculoskeletal Pendulum as a Learning Con-

trol Platform in the Real World with Environmental

Physical Contact", Proceedings of the 2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids2018), pp. 784-790. IEEE, 2018.

[3] Makabe, T., et al., "Development of Joint Module with Two-speed Gear Transmission and Joint Lock Mechanism during Driving for Task Adaptable Robot

(in press)", 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS2019). IEEE,

and the Evaluation of Looking Around Fixation Con-

trol and Object Recognition", Proceedings of the 2018