Intro to R - Plots Part II

Andrea Lane (adapted from Steve Pittard) April 8, 2019

Recall - 4 Major Graphics Packages in R

- Base Graphics (covered last week)
- lattice (will cover today)
- ggplot (will cover today)
- grid used by all other graphics packages

What makes a good plot?

Lattice Graphics

Lattice was written to provide grouping and paneling

- Consistent look and feel
- · Great for multivariate data
- Takes care of lots of things for you
- · Has a formula interface
- · Lots of examples and support on Google
- See http://lmdvr.r-forge.r-project.org/figures/figures.html/
- · Picks useful defaults for you

Lattice Graphics

```
library(lattice)
xlab <- "Wt (Lbs / 1,000)"
main <- "MPG vs. Wt"
xyplot(mpg~wt,data=mtcars,main=main,xlab=xlab,type=c("p","g"))</pre>
```


Lattice Graphics - Grouping

Lattice Graphics - Panels

Panels in Base R

A manual process: creating 3 side-by-side plots with a loop

```
xlab <- "Wt Lbs / 1,000"; main <- "MPG vs. Wt"
par(mfrow=c(1,3))
maxmpg <- max(mtcars$mpg)
maxwt <- max(mtcars$wt)
mydf <- split(mtcars,mtcars$cyl)
for (ii in 1:length(mydf)) {
   tmpdf <- mydf[[ii]]
   main <- paste("MPG vs. Wt",names(mydf)[ii],sep=" - ")
   plot(mpg~wt,data=tmpdf,main=main,
    xlim=c(0,maxwt),
   ylim=c(0,maxmpg))
   grid()
}</pre>
```

Panels in Base R

A manual process: creating 3 side-by-side plots with a loop

ggplot2

- Rapidly becoming the default R graphics package
- Attempts to leverage the good parts of lattice and Base graphics
- Written according to a "Grammar of Graphics" (Wilkinson, 2005)
 - "I find myself still thinking about the book and its ideas, several weeks after I finished reading it. I love that kind of book"
 - "a richly rewarding work, an outstanding achievement by one of the leaders of statistical graphics"
 - "a pleasure to read, whether a novice or an expert in graphics"

ggplot2 resources

- home page for ggplot: http://ggplot2.org/
- Presentation: http://ggplot2.org/resources/2007past-present-future.pdf
- Book: ggplot2: Elegant Graphics for Data Analysis (check Amazon)
- Vanderbilt Workshop: http://ggplot2.org/resources/2007-vanderbilt.pdf
- Documentation: http://ggplot2.tidyverse.org/reference
- R for Data Science Online Book http://r4ds.had.co.nz/
- R Graphics Cookbook: http://www.cookbook-r.com/Graphs/index.html

ggplot2 resources

The cheat sheet is very useful!

http://www.rstudio.com/wp-content/uploads/2015/03/ggplot2-cheatsheet.pdf

tidyverse

ggplot is part of the "tidyverse"

- A collection of R packages that share common philosophies to work well together
- Home page for project is at http://tidyverse.org/
- Main packages are: ggplot2, tibblr, tidyr, readr, purrr, dplyr
- Can install from within R Studio just like any other package
- The name of the package is simply tidyverse

ggplot2 examples

ggplot2 examples

ggplot2 examples

ggplot2 - Key Ideas

These ideas come from the Grammar of Graphics

- Understanding these ideas will help you define a plot in general terms that can be implemented using ggplot commands
- Data: the actual data frame under consideration
- Aesthetics: visual elements mapped to the data (axis, lines, colors, bars, etc)
- Scales: Transformations you might want to apply (e.g. logarithm, polar coordinates)
- Geometries: The shape mapped to the aesthetic(s)

ggplot2 - Key Ideas

Visualizing the data, aesthetics, scales, and geometries

Aesthetics

Here are some of the aesthetics that help make a plot:

- x and y position
- · size of the elements
- · shape
- · color

We use geometries to view the data:

- · lines and variations (dashed, segments, etc)
- bars, histograms
- · text labels
- · points
- http://ggplot2.tidyverse.org/reference/#sectionlayer-geoms

Examples using mtcars

Let's use the simple data set mtcars to create some plots with ggplot2

A data frame with 32 observations on 11 (numeric) variables.

- [, 1] mpg Miles/(US) gallon
- [, 2] cyl Number of cylinders
- [, 3] disp Displacement (cu.in.)
- [, 4] hp Gross horsepower
- [, 5] drat Rear axle ratio
- [, 6] wt Weight (1000 lbs)
- [, 7] qsec 1/4 mile time
- [, 8] vs Engine (0 = V-shaped, 1 = straight)
- [, 9] am Transmission (0 = automatic, 1 = manual)
- [,10] gear Number of forward gears
- [,11] carb Number of carburetors

Examples using mtcars

Let's use the simple data set mtcars to create some plots with ggplot2. What are the categorical variables in this data? What are the continuous variables?

Note: We often want to compare continuous quantities across groups (categorical variables)

str(mtcars)

```
## 'data.frame': 32 obs. of 11 variables:
   $ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
   $ cyl : num 6646868446 ...
   $ disp: num 160 160 108 258 360 ...
##
                110 110 93 110 175 105 245 62 95 123 ...
##
   $ hp : num
   $ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
##
   $ wt : num 2.62 2.88 2.32 3.21 3.44 ...
##
##
   $ qsec: num
                16.5 17 18.6 19.4 17 ...
   $ vs : num 0 0 1 1 0 1 0 1 1 1 ...
##
   $ am : num 1110000000...
   $ gear: num 4 4 4 3 3 3 3 4 4 4 ...
##
   $ carb: num 4 4 1 1 2 1 4 2 2 4 ...
```

Plotting is all about exploring relationships!

Let's say we have the following 4 questions of interest:

- · What does the distribution of wt values look like?
- Is there a relationship between mpg and wt?
- Does mpg appear to be different over individual cylinder groups?
- What are the counts of transmission types and cylinder groups?

1. What does the distribution of wt values look like?

- · What kind of variable is wt?
- Which type of plot corresponds to that variable type and the question we want to answer?

1. What does the distribution of wt values look like?

library(ggplot2)
ggplot(mtcars,aes(x=wt)) + geom_histogram(bins=15)

1. What does the distribution of wt values look like?

The geometry is crucial!

```
library(ggplot2)
ggplot(mtcars,aes(x=wt))
```


- · What kinds of variables do we have?
- Which type of plot corresponds to these variable types and the question we want to answer?

ggplot(mtcars,aes(x=wt)) + geom_point(aes(y=mpg))

Note how we added a new geometry on an existing aesthetic mapping then added another aesthetic mapping - we mapped the y-axis to the mpg variable

We could also do this:

ggplot(mtcars,aes(x=wt,y=mpg)) + geom_point()

Adding titles, labels, captions:

```
ggplot(mtcars,aes(x=wt,y=mpg)) + geom_point() +
    ggtitle("MPG vs Wt","mtcars data frame") +
    labs(caption="Extracted from 1974 Motor Trend US")
```


Can also specify title in labs():

Adding more geometry:

```
ggplot(mtcars,aes(x=wt,y=mpg)) + geom_point() +
    ggtitle("MPG vs Wt","mtcars data frame") +
    geom_smooth(method="lm")
```


- · What kinds of variables do we have?
- Which type of plot corresponds to these variable types and the question we want to answer?

- We can use color, shapes, and size to see how unique values of a factor or category impact the plot (this is called "grouping")
- Note that the cyl variable assumes 3 unique values:

```
unique(mtcars$cyl)

## [1] 6 4 8

#Let's make cyl an "official" factor:
mtcars$cyl <- factor(mtcars$cyl)</pre>
```

Do you think specifying this grouping variable would be an aesthetics command or a geometry command?

 In ggplot we use an "aesthetic mapping" to specify a grouping variable

ggplot(mtcars,aes(x=wt,y=mpg,color=cyl)) + geom_point()

What if we use a continuous quantity as a color aesthetic?

ggplot(mtcars,aes(x=wt,y=mpg,color=hp)) + geom_point()

3. Does mpg appear to be different over individual cylinder groups?

We can use multiple layers for grouping. (The aesthetic command can also go inside the geometry!)

ggplot(mtcars,aes(x=wt,y=mpg,color=cyl,size=hp)) + geom_point()

Note the difference between mappings and settings

- Mappings are usually functions of some variable in the data
- Settings alter appearance in a "fixed" way
- Previously we used "size" as a mapping. Here it is used as a setting.

```
library(gridExtra)
p1 <- ggplot(mtcars,aes(x=wt,y=mpg)) + geom_point(color="red")
p2 <- ggplot(mtcars,aes(x=wt,y=mpg)) + geom_point(color="red",size=4)
grid.arrange(p1, p2, nrow=1, ncol=2)</pre>
```

Note the difference between mappings and settings

To answer this, let's discuss how to handle counts and tabular data in ggplot

Counts and Tabular Data

 Let's say we are given data in a 2x2 table. We would first need to convert the table into a data frame

```
(ctab <- table(carb=mtcars$carb))</pre>
## carb
## 1 2 3 4 6 8
## 7 10 3 10 1 1
(df <- as.data.frame(ctab))</pre>
##
    carb Freq
## 1
       1
            7
       2 10
## 2
     3 3
## 3
## 4
      4 10
## 5 6
           1
## 6
     8
            1
```

Counts and Tabular Data

Then we can use this data frame to create a plot. (Note stat="identity" because geom_bar uses stat_count by default)

ggplot(df,aes(x=carb,y=Freq)) + geom_bar(stat="identity") +
 ggtitle("Observations by Carburetor")

4/10/2019 Intro to R - Plots Part II

Counts and Tabular Data

- What if we want to rearrange the bars?
- Here we want the variable "carb" in order of "Freq"

ggplot(df,aes(x=reorder(carb,Freq),y=Freq)) + geom_bar(stat="identity")
ggtitle("Observations by Carburetor")

- In this case, we already have the data frame. We can use the "fill" aesthetic for the factor variable "cyl"
- Similar to the "grouping" we did earlier, but over a factor variable

```
ggplot(mtcars,aes(x=am)) + geom_bar(aes(fill=factor(cyl))) +
   ggtitle("Transmission by Cylinder Group") +
   xlab("Transmission Type") +
   ylab("Count by Cylinder Group")
```


- To have the bars side by side, create factor variables
- position="dodge" adjusts the horizontal positioning of the bars (compare to position="dodge2")

```
mtcars <- transform(mtcars,am=factor(am,labels=c("Auto","Manual"
     )),cyl=factor(cyl))
     ggplot(mtcars,aes(x=am)) +
     geom_bar(aes(fill=cyl),position="dodge")</pre>
```


A few more fun things

- Facets (panels for ggplot)
- · density and color fill
- boxplots

Equivalent to paneling in lattice

Consider the following example with the diamonds data set (without facets):

```
ggplot(diamonds,aes(x=carat,y=price)) +
geom_point(aes(color=clarity)) +
ggtitle("Price vs Carat Size")
```

4/10/2019 Intro to R - Plots Part II

Facets

Hard to read and interpret!

 The facet_wrap() is used to break down a large plot into multiple small plots for individual categories.
 It takes a formula as the main argument. The items to the left of ~ forms the rows while those to the right form the columns.

```
ggplot(diamonds,aes(x=carat,y=price)) +
geom_point() +
facet_wrap(~clarity)
```


 The facet_wrap() is used to break down a large plot into multiple small plots for individual categories.
 It takes a formula as the main argument. The items to the left of ~ forms the rows while those to the right form the columns.

```
ggplot(diamonds,aes(x=carat,y=price)) +
geom_point() +
facet_wrap(cut~clarity)
```


But let's not leave out the pretty colors...

```
ggplot(diamonds,aes(x=carat,y=price)) +
geom_point(aes(color=clarity)) +
facet_wrap(~clarity)
```


Density

In general anything you wish to set to a static value should be set outside of the aes function

ggplot(mtcars) + geom_density(aes(x=mpg),fill="aquamarine")

Density

We can group the density (fill moves inside the aes function):

ggplot(mtcars) + geom_density(aes(x=mpg,fill=cyl))

Boxplot

A boxplot of mpg across cylinder groups:

ggplot(mtcars) + geom_boxplot(aes(x=cyl,y=mpg))

Summary of ggplot geometry

- · One continuous variable
 - geom_density
 - geom_histogram
- · Two continuous variables
 - geom_point
 - geom_smooth
- · One discrete variable + one continuous variable
 - geom_boxplot
 - geom_bar
- See the ggplot2 cheat sheet for many other geometry options!

References

- http://r-statistics.co/Complete-Ggplot2-Tutorial-Part2-Customizing-Theme-With-R-Code.html#5.%20Faceting:%20Draw%20multiple%20plog
- http://www.sthda.com/english/wiki/be-awesomein-ggplot2-a-practical-guide-to-be-highly-effectiver-software-and-data-visualization/
- https://ggplot2.tidyverse.org/reference/position_dodge.l

Happy Plotting!