A normal electrocardiogram is shown below with key features labelled with the letters P, Q,
R, S and T.

Complete the table below to indicate what is happening in the heart at each stage in terms of the heart muscle and the blood flow.

	PQ	RST
Muscle		
Blood flow		

- 2. Yong weighs 80 kg, breathes in 1 L/min oxygen and breaths out 700 mL/min. The level of oxygen in his venous system is 150 mL/L and 180 mL/L in the arterial system.
 - (a) How much ATP does Yong produce per minute per kg body tissue if 20 % [11 marks] of the oxygen is used for respiration and only 35 % of the tissue mass contains respiring cells?
 - (b) How many mars bars should Yong eat per day to sustain his ATP [5 marks] requirements?

Assume that haematocrit is 45 %, that red blood cells, which can be approximated by a cylinder 8 μ m in diameter and 2 μ m high, are composed entirely of haemoglobin which has a specific density of 1.25 and a molecular mass of 65000 Da and carries 4 oxygen molecules per molecule of haemoglobin. Assume the molecular mass of ATP is 550 Da. Assume a mars bar is 60 g and is composed entirely of glucose. Useful equation:

$$CO = \frac{V O_2}{[O_2]_{pv} - [O_2]_{pa}}$$

3. In the indicator dilution method for determining glomerular filtration rate, GFR, an amount, d_0 , of an "ideal" indicator or tracer is injected intravenously and the concentration of the tracer in plasma, $c_p(t)$, is measured as a function of time thereafter. The total clearance of the tracer is estimated from $K = \frac{d_o}{\int c_p(t)dt}$. Using the graph, estimate the clearance, K, of the tracer.

4. A patient's blood pressure trace is shown below by Korotkoff sounds and cuff pressure (mmHg) measurements:

The systolic pressure is in the approx. range of _____mmHg.

The diastolic pressure is in the approx. range of _____mmHg.

5. Put the following phases of gait in order:

Pre-swing, Terminal Stance, Loading response, Mid-standce, Initial swing, Initial contact, Terminal swing, Mid-swing