CS162 Operating Systems and Systems Programming Lecture 26

Networking and TCP/IP (Con't), RPC, Distributed File Systems

April 25th, 2023

Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Recall: Distributed Consensus Making

- Consensus problem
 - All nodes propose a value
 - Some nodes might crash and stop responding
 - Eventually, all remaining nodes decide on the same value from set of proposed values
- Distributed Decision Making
 - Choose between "true" and "false"
 - Or Choose between "commit" and "abort"
- Equally important (but often forgotten!): make it durable!
 - How do we make sure that decisions cannot be forgotten?
 - » This is the "D" of "ACID" in a regular database
 - In a global-scale system?
 - » What about erasure coding or massive replication?
 - » Like BlockChain applications!

Recall: Wide Area Network

- Wide Area Network (WAN): network that covers a broad area (e.g., city, state, country, entire world)
 - E.g., Internet is a WAN
- WAN connects multiple Local Area Networks (LANs)
- Datalink layer networks are connected by routers
 - Different LANs can use different communication technology (e.g., wireless, cellular, optics, wired)

Recall: Routers

- Forward each packet received on an incoming link to an outgoing link based on packet's destination IP address (towards its destination)
- Store & forward: packets are buffered before being forwarded
- Forwarding table: mapping between IP address and the output link

Recall: Packet Forwarding

- Upon receiving a packet, a router
 - read the IP destination address of the packet
 - consults its forwarding table → output port
 - forwards packet to corresponding output port
- Default route (for subnets without explicit entries)
 - Forward to more authoritative router

Setting up Routing Tables

- How do you set up routing tables?
 - Internet has no centralized state!
 - » No single machine knows entire topology
 - » Topology constantly changing (faults, reconfiguration, etc.)
 - Need dynamic algorithm that acquires routing tables
 - » Ideally, have one entry per subnet or portion of address
 - » Could have "default" routes that send packets for unknown subnets to a different router that has more information
- Possible algorithm for acquiring routing table
 - Routing table has "cost" for each entry
 - » Includes number of hops to destination, congestion, etc.
 - » Entries for unknown subnets have infinite cost
 - Neighbors periodically exchange routing tables
 - » If neighbor knows cheaper route to a subnet, replace your entry with neighbors entry (+1 for hop to neighbor)
- In reality:
 - Internet has networks of many different scales
 - Different algorithms run at different scales (e.g. BGP globally, OSPF locally,...)

Naming in the Internet

- How to map human-readable names to IP addresses?
 - E.g. www.berkeley.edu \Rightarrow 128.32.139.48
 - E.g. www.google.com ⇒ different addresses depending on location, and load
- Why is this necessary?
 - IP addresses are hard to remember
 - IP addresses change:
 - » Say, Server 1 crashes gets replaced by Server 2
 - » Or google.com handled by different servers
- Mechanism: Domain Naming System (DNS)

DNS is a hierarchical mechanism for naming

- Name divided in domains, right to left: www.eecs.berkeley.edu
- Each domain owned by a particular organization
 - Top level handled by ICANN (Internet Corporation for Assigned Numbers and Names)
 - Subsequent levels owned by organizations
- Resolution: series of queries to successive servers
- Caching: queries take time, so results cached for period of time

How Important is Correct Resolution?

- If attacker manages to give incorrect mapping:
 - Can get someone to route to server, thinking that they are routing to a different server
 - » Get them to log into "bank" give up username and password
- Is DNS Secure?
 - Definitely a weak link
 - » What if "response" returned from different server than original query?
 - » Get person to use incorrect IP address!
 - Attempt to avoid substitution attacks:
 - » Query includes random number which must be returned
- In July 2008, hole in DNS security located!
 - Dan Kaminsky (security researcher) discovered an attack that broke DNS globally
 - » One person in an ISP convinced to load particular web page, then all users of that ISP end up pointing at wrong address
 - High profile, highly advertised need for patching DNS
 - » Big press release, lots of mystery
 - » Security researchers told no speculation until patches applied

Network Layering

- Layering: building complex services from simpler ones
 - Each layer provides services needed by higher layers by utilizing services provided by lower layers
- The physical/link layer is pretty limited
 - Packets are of limited size (called the "Maximum Transfer Unit or MTU: often 200-1500 bytes in size)
 - Routing is limited to within a physical link (wire) or perhaps through a switch
- Our goal in the following is to show how to construct a secure, ordered, message service routed to anywhere:

Physical Reality: Packets	Abstraction: Messages
Limited Size (MTU)	Arbitrary Size
Unordered (sometimes)	Ordered
Unreliable	Reliable
Machine-to-machine	Process-to-process
Only on local area net	Routed anywhere
Asynchronous	Synchronous
Insecure	Secure

Building a messaging service

- Handling Arbitrary Sized Messages:
 - Must deal with limited physical packet size
 - Split big message into smaller ones (called fragments)
 - » Must be reassembled at destination
 - Checksum computed on each fragment or whole message
- Internet Protocol (IP): Provides way to send datagrams to arbitrary destination
 - Deliver messages unreliably ("best effort") from one machine in Internet to another
 - Since intermediate links may have limited size, must be able to fragment/reassemble packets on demand
 - Includes 256 different "sub-protocols" build on top of IP
 - » Examples: ICMP(1), TCP(6), UDP (17), IPSEC(50,51)

Recall: IPv4 Packet Format

• IP Packet Format:

IP Datagram: an unreliable, unordered, packet sent from source to destination

 Function of network – deliver datagrams!

Building a messaging service on IP

- Process to process communication
 - Basic routing gets packets from machine → machine
 - What we really want is routing from process
 →process
 - » Add "ports", which are 16-bit identifiers
 - » A communication channel (connection) defined by 5 items: [source addr, source port, dest addr, dest port, protocol]
- For example: The Unreliable Datagram Protocol (UDP)
 - Layered on top of basic IP (IP Protocol 17)
 - Datagram: an unreliable, unordered, packet sent from source user → dest user (Call it UDP/IP)

IP Header (20 bytes)	
16-bit source port	16-bit destination port
16-bit UDP length	16-bit UDP checksum
UDP Data	

- Important aspect: low overhead!
 - » Often used for high-bandwidth video streams
 - » Many uses of UDP considered "anti-social" none of the "well-behaved" aspects of (say) TCP/IP

Administrivia

- Midterm 3: This Thursday!
 - No class on Thursday. I'll have special office hours during class time.
 - Three double-sided pages of notes
 - Watch for Ed post about where you should go: we have multiple exam rooms
- All material up to today's lecture is fair game
- Final deadlines during RRR week:
 - Yes, there will be office hour watch for specifics
- Also we have a special lecture (just for fun) next Tuesday
 - During normal class time!

Administrivia (Con't)

You need to know your units as CS/Engineering students!
 Units of Time: "s": Second, "min": 60s, "h": 3600s, (of course)

 Millisecond: 1ms ⇒ 10⁻³ s
 Microsecond: 1μs ⇒ 10⁻⁶ s
 Nanosecond: 1ns: ⇒ 10⁻⁹ s
 Picosecond: 1ps ⇒ 10⁻¹² s

- Integer Sizes: "b" \Rightarrow "bit", "B" \Rightarrow "byte" == 8 bits, "W" \Rightarrow "word"==? (depends. Could be 16b, 32b, 64b)
- Units of Space (memory), sometimes called the "binary system"

```
– Kilo: 1KB ≡ 1KiB
                                                             == 2^{10} \text{ bytes } == 1024 \approx 1.0 \times 10^3
                                  \Rightarrow 1024 bytes
– Mega: 1MB ≡ 1MiB
                                  \Rightarrow (1024)<sup>2</sup> bytes
                                                             == 2^{20} \text{ bytes} == 1.048,576 \approx 1.0 \times 10^6
                                                             == 2^{30} bytes == 1.073,741.824 \approx 1.1 \times 10^9
- Giga: \frac{1GB}{} = \frac{1GiB}{} ⇒ (1024)^3 bytes
– Tera: 1TB ≡ 1TiB
                                 \Rightarrow (1024)<sup>4</sup> bytes
                                                             == 2^{40} bytes == 1.099.511.627.776 \approx 1.1 \times 10^{12}
                                 \Rightarrow (1024)<sup>5</sup> bytes
                                                             == 2^{50} bytes == 1,125,899,906,842,624 <math>\approx 1.1 \times 10^{15}
– Peta: 1PB = 1PiB
                                  \Rightarrow (1024)<sup>6</sup> bytes
                                                             == 2^{60} bytes == 1,152,921,504,606,846,976 <math>\approx 1.2 \times 10^{18}
- Exa: 1EB = 1EiB
```

• Units of Bandwidth, Space on disk/etc, Everything else..., sometimes called the "decimal system"

```
- Kilo: 1KB/s ⇒ 10³ bytes/s, 1KB ⇒ 10³ bytes

- Mega: 1MB/s ⇒ 106 bytes/s, 1MB ⇒ 106 bytes

- Giga: 1GB/s ⇒ 109 bytes/s, 1GB ⇒ 109 bytes

- Tera: 1TB/s ⇒ 1012 bytes/s, 1TB ⇒ 1012 bytes

- Peta: 1PB/s ⇒ 1015 bytes/s, 1PB ⇒ 1015 bytes

- Exa: 1EB/s ⇒ 1018 bytes/s, 1EB ⇒ 1018 bytes

Kubiatowicz CS162 © UCB Spring 2023
```

Internet Architecture: Five Layers

- Lower three layers implemented everywhere
- Top two layers implemented only at hosts

Internet Architecture: Five Layers

- Communication goes down to physical network
- Then from network peer to peer
- Then up to relevant layer

Layering Analogy: Packets in Envelopes

Application

Internet Transport Protocols

- Application Present.
- Transport
- <u>Network</u> Datalink
- Physical

- Datagram service (UDP): IP Protocol 17
 - No-frills extension of "best-effort" IP
 - Multiplexing/Demultiplexing among processes
- Reliable, in-order delivery (TCP): IP Protocol 6
 - Connection set-up & tear-down
 - Discarding corrupted packets (segments)
 - Retransmission of lost packets (segments)
 - Flow control/Congestion control
- Other examples:
 - DCCP (33), Datagram Congestion Control Protocol
 - RDP (26), Reliable Data Protocol
 - SCTP (132), Stream Control Transmission Protocol

Network Address Translation: Transport-Level IP Sharing

- Network Address Translation (NAT): Allow multiple clients to share Public IP
 - Translate connections with Private IP addresses to Public IP Address (of firewall)
- Allocate unique (client) port at firewall to distinguish different connections

Recall: Sockets in concept

Reliable Message Delivery: the Problem

- All physical networks can garble and/or drop packets
 - Physical media: packet not transmitted/received
 - » If transmit close to maximum rate, get more throughput even if some packets get lost
 - » If transmit at lowest voltage such that error correction just starts correcting errors, get best power/bit
 - Congestion: no place to put incoming packet
 - » Point-to-point network: insufficient queue at switch/router
 - » Broadcast link: two host try to use same link
 - » In any network: insufficient buffer space at destination
 - » Rate mismatch: what if sender send faster than receiver can process?
- Reliable Message Delivery on top of Unreliable Packets
 - Need some way to make sure that packets actually make it to receiver
 - » Every packet received at least once
 - » Every packet received at most once
 - Can combine with ordering: every packet received by process at destination exactly once and in order

Transmission Control Protocol (TCP)

- Transmission Control Protocol (TCP)
 - TCP (IP Protocol 6) layered on top of IP
 - Reliable byte stream between two processes on different machines over Internet (read, write, flush)
- TCP Details
 - Fragments byte stream into packets, hands packets to IP
 - » IP may also fragment by itself
 - Uses window-based acknowledgement protocol (to minimize state at sender and receiver)
 - » "Window" reflects storage at receiver sender shouldn't overrun receiver's buffer space
 - » Also, window should reflect speed/capacity of network sender shouldn't overload network
 - Automatically retransmits lost packets
 - Adjusts rate of transmission to avoid congestion
 - » A "good citizen"

Problem: Dropped Packets

- All physical networks can garble or drop packets
 - Physical hardware problems (bad wire, bad signal)
- Therefore, IP can garble or drop packets
 - It doesn't repair this itself (end-to-end principle!)
- Building reliable message delivery
 - Confirm that packets aren't garbled
 - Confirm that packets arrive exactly once

Using Acknowledgements

- How to ensure transmission of packets?
 - Detect garbling at receiver via checksum, discard if bad
 - Receiver acknowledges (by sending "ACK") when packet received properly at destination
 - Timeout at sender: if no ACK, retransmit
- Some questions:
 - If the sender doesn't get an ACK, does that mean the receiver didn't get the original message?
 - » No
 - What if ACK gets dropped? Or if message gets delayed?
 - » Sender doesn't get ACK, retransmits, Receiver gets message twice, ACK each

Stop-and-Wait (No Packet Loss)

- Send; wait for ACK; repeat
- Round Trip Time (RTT): time it takes a packet to travel from sender to receiver and back
 - One-way latency (d): one way delay from sender and receiver
- For symmetric latency, RTT = 2d

Stop-and-Wait (No Packet Loss)

- How fast can you send data?
- Little's Law applied to the network: $n = B \cdot RTT$
- For Stop-and-Wait, n = 1 packet
- So bandwidth is 1 packet per RTT
 - Depends only on latency, not network capacity (!)

Stop-and-Wait (No Packet Loss)

- So bandwidth is 1 packet per RTT
 - Depends only on latency, not network capacity (!)
- Suppose RTT = 100 ms and 1 packet is 1500 Bytes
- Throughput = $\frac{1500 \, Bytes \times 8 \, bits/Byte}{100ms \times 10^{-3} s/ms}$ $= 120 \, \text{Kbps}$

Very inefficient if we have a 100 Mbps link!

Stop-and-Wait with Packet Loss

- Loss recovery relies on timeouts
- How to choose a good timeout?
 - Too short lots of duplication
 - Too long packet loss is really disruptive!
- How to deal with duplication?
 - Retransmission certainly opens up the possibility for copies of packets

How to Deal with Message Duplication?

- Solution: put sequence number in message to identify re-transmitted packets
 - Receiver checks for duplicate number's; Discard if detected
- Requirements:
 - Sender keeps copy of unACK'd messages
 - » Easy: only need to buffer small number of messages
 - Receiver tracks possible duplicate messages
 - » Hard: when ok to forget about received message?
- Alternating-bit protocol:
 - Send one message at a time; don't send next message until ACK received
 - Sender keeps last message; receiver tracks sequence number of last message received
- Pros: simple, small overhead
- Con: doesn't work if network can delay or duplicate messages arbitrarily

Sender Receiver

Advantages of Moving Away From Stop-and-Wait

- Larger space of acknowledgements
 - Pipelining: don't wait for ACK before sending next packet
- ACKs serve dual purpose:
 - Reliability: Confirming packet received
 - Ordering: Packets can be reordered at destination
- How much data is in flight now?
 - Bytes in-flight: Wsend = RTT × B
 - Here B is in "bytes/second"
 - Wsend ≡ Sender's "Window Size"
 - Packets in flight = (Wsend / packet size)
- How long does the sender have to keep the packets around?
- How long does the receiver have to keep the packets' data?
- What if sender is sending packets faster than the receiver can process the data?

Recall: Communication Between Processes

write(wfd, wbuf, wlen);

- Data written by A is held in memory until B reads it
- Queue has a fixed capacity
 - Writing to the queue blocks if the queue if full
 - Reading from the queue blocks if the queue is empty
- POSIX provides this abstraction in the form of pipes

Buffering in a TCP Connection

- A single TCP connection needs *four* in-memory queues:
 - Send buffer: add data on write syscall, remove data when ACK received
 - Receive buffer: add data when packets received, remove data on read syscall

Window Size: Space in Receive Queue

- A host's window size for a TCP connection is how much remaining space it has in its receive queue
- A host advertises its window size in every TCP packet it sends!
- Sender never sends more than receiver's advertised window size

Sliding Window Protocol

- TCP sender knows receiver's window size, and aims never to exceed it
- But packets that it previously send may arrive, filling the window size!

Rule: TCP sender ensures that:

Number of Sent but UnACKed Bytes < Receiver's Advertised Window Size

 Can send new packets as long as sent-but-unacked packets haven't already filled the advertised window size

Sliding Window (No Packet Loss)

- Example:Window size (w) = 3 packets
- Window size to fill link is given by: $w = B_{pkt} \cdot \mathsf{RTT}$
- $B_{pkt} \equiv Packets/sec$
- Little's Law once again!
- For TCP, window is in bytes, not packets

TCP Windows and Sequence Numbers: PER BYTE!

- Sender has three regions:
 - Sequence regions
 - » sent and ACK'd
 - » sent and not ACK'd
 - » not yet sent
 - Window (colored region) adjusted by sender
- Receiver has three regions:
 - Sequence regions
 - » received and ACK'd (given to application)
 - » received and buffered
 - » not yet received (or discarded because out of order)

Window-Based Acknowledgements (TCP)

4/25/23

Congestion

Too much data trying to flow through some part of the network

- IP's solution: Drop packets
- What happens to TCP connection?
 - Lots of retransmission wasted work and wasted bandwidth (when bandwidth is scarce)

Congestion Avoidance

- Congestion
 - How long should timeout be for re-sending messages?
 - » Too long \rightarrow wastes time if message lost
 - » Too short → retransmit even though ACK will arrive shortly
 - Stability problem: more congestion ⇒ ACK is delayed ⇒ unnecessary timeout ⇒ more traffic ⇒ more congestion
 - » Closely related to window size at sender: too big means putting too much data into network
- How does the sender's window size get chosen?
 - Must be less than receiver's advertised buffer size
 - Try to match the rate of sending packets with the rate that the slowest link can accommodate
 - Sender uses an adaptive algorithm to decide size of N
 - » Goal: fill network between sender and receiver
 - » Basic technique: slowly increase size of window until acknowledgements start being delayed/lost
- TCP solution: "slow start" (start sending slowly)
 - If no timeout, slowly increase window size (throughput) by 1 for each ACK received
 - Timeout ⇒ congestion, so cut window size in half
 - "Additive Increase, Multiplicative Decrease"

Congestion Management

- TCP artificially restricts the window size if it sees packet loss
- Careful control loop to make sure:
 - We don't send too fast and overwhelm the network
 - 2. We utilize most of the bandwidth the network has available
 - In general, these are conflicting goals!

From Low, Peterson, and Wang, "Understanding vegas: Duality Model", J. ACM, March 2002.

Recall: Connection Setup over TCP/IP

- 5-Tuple identifies each connection:
 - 1. Source IP Address
 - Destination IP Address
 - 3. Source Port Number
 - 4. Destination Port Number
 - 5. Protocol (always TCP here)

- Often, Client Port "randomly" assigned
 - Done by OS during client socket setup
- Server Port often "well known"
 - 80 (web), 443 (secure web), 25 (sendmail), etc
 - Well-known ports from 0—1023

Establishing TCP Service

- Open connection: 3-way handshaking
 - Need to establish bidirectional communication, including sequence numbers
- Reliable byte stream transfer from (IPa, TCP_Port1) to (IPb, TCP_Port2)
 - Indication if connection fails: Reset
- Close (tear-down) connection

Sockets in concept

Open Connection: 3-Way Handshake

- Server calls listen() to wait for a new connection
- Client calls connect()
 providing server's IP
 address and port
 number
- Each side sends SYN
 packet proposing an
 initial sequence number
 (one for each sender)
 and ACKs the other

Sockets in concept

Close Connection: 4-Way Teardown

 Same for close() call on Host 2

OS deallocates connection state

Can retransmit FIN

ACK if it is lost

Any calls to

deallocates

connection

close()

OS

state

read() return 0

Recall: Distributed Applications Build With Messages

- How do you actually program a distributed application?
 - Need to synchronize multiple threads, running on different machines
 - » No shared memory, so cannot use test&set

- One Abstraction: send/receive messages
 - » Already atomic: no receiver gets portion of a message and two receivers cannot get same message
- Interface:
 - Mailbox (mbox): temporary holding area for messages
 - » Includes both destination location and queue
 - Send(message,mbox)
 - » Send message to remote mailbox identified by mbox
 - Receive(buffer,mbox)
 - » Wait until mbox has message, copy into buffer, and return
 - » If threads sleeping on this mbox, wake up one of them

Question: Data Representation

- An object in memory has a machine-specific binary representation
 - Threads within a single process have the same view of what's in memory
 - Easy to compute offsets into fields, follow pointers, etc.
- In the absence of shared memory, externalizing an object requires us to turn it into a sequential sequence of bytes
 - Serialization/Marshalling: Express an object as a sequence of bytes
 - Deserialization/Unmarshalling: Reconstructing the original object from its marshalled form at destination

Simple Data Types

```
uint32_t x;
```

Suppose I want to write a x to a file

```
First, open the file: FILE* f = fopen("foo.txt", "w");
```

- Then, I have two choices:
 - 1. fprintf(f, "%lu", x);
- Neither one is "wrong" but sender and receiver should be consistent!

Machine Representation

- Consider using the machine representation:
 - fwrite(&x, sizeof(uint32_t), 1, f);
- How do we know if the recipient represents x in the same way?
 - For pipes, is this a problem?
 - What about for sockets?

Endianness

- For a byte-address machine, which end of a machine-recognized object (e.g., int) does its byteaddress refer to?
- Big Endian: address is the most-significant bits
- Little Endian: address is the least-significant bits

Processor	Endianness
Motorola 68000	Big Endian
PowerPC (PPC)	Big Endian
Sun Sparc	Big Endian
IBM S/390	Big Endian
Intel x86 (32 bit)	Little Endian
Intel x86_64 (64 bit)	Little Endian
Dec VAX	Little Endian
Alpha	Bi (Big/Little) Endian
ARM	Bi (Big/Little) Endian
IA-64 (64 bit)	Bi (Big/Little) Endian
MIPS	Bi (Big/Little) Endian

```
int main(int argc, char *argv[])
{
    int val = 0x12345678;
    int i;
    printf("val = %x\n", val);
    for (i = 0; i < sizeof(val); i++) {
        printf("val[%d] = %x\n", i, ((uint8_t *) &val)[i]);
    }
}</pre>
(base) CullerMac19:code09 culler$ ./endian
    val = 12345678
    val[0] = 78
    val[1] = 56
    val[2] = 34
    val[3] = 12

    val[3] = 12
```

What Endian is the Internet?

```
NAME
     arpa/inet.h - definitions for internet operations
SYNOPSIS
     #include <arpa/inet.h>
DESCRIPTION
     The in_port_t and in_addr_t types shall be defined as described in <netinet/in.h>.
     The in_addr structure shall be defined as described in <netinet/in.h>.
     The INET_ADDRSTRLEN [IP6] And INET6_ADDRSTRLEN amacros shall be defined as described in settinet/in.h.>.
     The following shall either be declared as functions, defined as macros, or both. If functions are declared, function prototypes
     uint32 t htonl(uint32 t);
     uint16 t htons(uint16 t);
     uint32_t ntohl(uint32_t);
     uint16 t ntohs(uint16 t);
     The uint32_t and uint16_t types shall be defined as described in <intypes.h>.
     The following shall be declared as functions and may also be defined as macros. Function prototypes shall be provided.
     in addr t
                      inet addr(const char *);
                      *inet ntoa(struct in addr);
     char
     const char *inet_ntop(int, const void *restrict, char *restrict,
     int
                       inet pton(int, const char *restrict, void *restrict);
      Inclusion of the <arpa/inet.h> header may also make visible all symbols from <a href="mailto:net/in.h">net/inet/in.h</a> and <a href="mailto:net/in.h">intypes.h</a>>.
```

- Big Endian
 - Network byte order
 - Vs. "host byte order"

Dealing with Endianness

- Decide on an "on-wire" endianness
- Convert from native endianness to "on-wire" endianness before sending out data (serialization/marshalling)
 - uint32_t htonl(uint32_t) and uint16_t htons(uint16_t) convert from native endianness to network endianness (big endian)
- Convert from "on-wire" endianness to native endianness when receiving data (deserialization/unmarshalling)
 - uint32_t ntohl(uint32_t) and uint16_t ntohs(uint16_t) convert from network endianness to native endianness (big endian)

What About Richer Objects?

- Consider word_count_t of Homework 0 and 1 ...
- Each element contains:
 - -An int
 - A pointer to a string (of some length)
 - A pointer to the next element

- typedef struct word_count
 {
 char *word;
 int count;
 struct word_count *next;
 }
 word_count_t;
- fprintf_words writes these as a sequence of lines (character strings with \n) to a file stream
- What if you wanted to write the whole list as a binary object (and read it back as one)?
 - How do you represent the string?
 - Does it make any sense to write the pointer?

Data Serialization Formats

- JSON and XML are commonly used in web applications
- Lots of ad-hoc formats

```
<!DOCTYPE glossary PUBLIC "-//OASIS//DTD DocBook V3.1//EN">
<glossary><title>example glossary</title>
 <GlossDiv><title>S</title>
  <GlossList>
    <GlossEntry ID="SGML" SortAs="SGML">
    <GlossTerm>Standard Generalized Markup Language</GlossTerm>
    <Acronym>SGML</Acronym>
    <Abbrev>ISO 8879:1986</Abbrev>
    <GlossDef>
     <para>A meta-markup language, used to create markup
languages such as DocBook.</para>
     <GlossSeeAlso OtherTerm="GML">
     <GlossSeeAlso OtherTerm="XML">
    </GlossDef>
    <GlossSee OtherTerm="markup">
   </GlossEntry>
  </GlossList>
 </GlossDiv>
</glossary>
```

Data Serialization Formats

Name •	Creator- maintainer	Based on ◆	Standardized? ♦	Specification •	Binary? ◆	Human- readable?	Supports references? [®] ◆	Schema-IDL? ◆	Standard APIs	Supports [hide] Zero-copy operations
Apache Avro	Apache Software Foundation	N/A	No	Apache Avro™ 1.8.1 Specificationi©	Yes	No	N/A	Yes (built-in)	N/A	N/A
Apache Parquet	Apache Software Foundation	N/A	No	Apache Parquet[1]@	Yes	No	No	N/A	Java, Python	No
ASN.1	ISO, IEC, ITU- T	N/A	Yes	ISO/IEC 8824; X.680 series of ITU-T Recommendations	Yes (BER, DER, PER, OER, or custom via ECN)	Yes (XER, JER, GSER, or custom via ECN)	Partial ⁴	Yes (built-in)	N/A	Yes (OER)
Bencode	Bram Cohen (creator) BitTorrent, Inc. (maintainer)	N/A	De facto standard via BitTorrent Enhancement Proposal (BEP)	Part of BitTorrent protocol specification@	Partially (numbers and delimiters are ASCII)	No	No	No	No	N/A
Binn	Bernardo Ramos	N/A	No	Binn Specification@	Yes	No	No	No	No	Yos
BSON	MongoDB	JSON	No	BSON Specification €	Yes	No	No	No	No	N/A
CBOR	Carsten Bormann, P. Hoffman	JSON (loosely)	Yes	RFC 7049/F	Yes	No	Yes through tagging	Yes (CDDL _E)	No	Yes
Comma-separated values (CSV)	RFC author: Yakov Shafranovich	N/A	Partial (myriad informal variants used)	RFC 4180.9 (among others)	No	Yes	No	No	No	No
Common Data Representation (CDR)	Object Management Group	N/A	Yes	General Inter-ORB Protocol	Yes	No	Yes	Yes	ADA, C, C++, Java, Cobol, Lisp, Python, Ruby, Smalltalk	N/A
D-Bus Message Protocol	freedesktop.org	N/A	Yes	D-Bus Specification@	Yes	No	No	Partial (Signature strings)	Yes (see D-Bus)	N/A
Efficient XML Interchange (EXI)	W3C	XML, Efficient XMLs9	Yes	Efficient XML Interchange (EXI) Format 1.0½	Yes	Yes (XML)	Yes (XPointer, XPath)	Yes (XML Schema)	Yes (DOM, SAX, StAX, XQuery, XPath)	N/A
FlatBuffers	Google	N/A	No	flatbuffers github page@ Specification	Yes	Yes (Apache Arrow)	Partial (internal to the buffer)	Yes [2]	C++, Java, C#, Go, Python, Rust, JavaScript, PHP, C, Dart, Lua, TypeScript	Yes
Fast Infoset	ISO, IEC, ITU- T	XML	Yes	ITU-T X.891 and ISO/IEC 24824-1:2007	Yes	No	Yes (XPointer, XPath)	Yes (XML schema)	Yes (DOM, SAX, XQuery, XPath)	N/A
FHIR	Health_Level_7	REST basics	Yes	Fast Healthcare Interoperability Resources	Yes	Yes	Yes	Yes	Hapi for FHIR ^[1] JSON, XML, Turtle	No
ion	Amazon	JSON	No	The Amazon Ion Specification@	Yes	Yes	No	No	No	N/A
Java serialization	Oracle Corporation	N/A	Yes	Java Object Serialization@	Yes	No	Yes	No	Yes	N/A
JSON	Douglas Crockford	JavaScript syntax	Yes	STD 90g/RFC 8259g (anoilary: RFC 6901g, RFC 6902g), ECMA-404 J, ISO/IEC 21778-2017g	No, but see BSON, Smile, UBJSON	Yes	Yes (JSON Pointer (RFC 6901) o; alternately; JSONPath o, JPath o, JSPON o, (son-select() or), JSON-LD	Partial (JSON Schema Proposale, ASN.1 with JER, Kwalitye, Rxee, temscript Schemace), JSON-LD	Partial (Clarinet&, JSONQuery&, JSONPath&), JSON-LD	No
MessagePack	Sadayuki Furuhashi	JSON (loosely)	No	MessagePack format specifications	Yes	No	No	No	No	Yes
Netstrings	Dan Bernstein	N/A	No	netstrings.txt;@	Yes	Yes	No	No	No	Yes
OGDL	Rolf Veen	?	No	Specification@	Yes (Binary Specification ∕-)	Yes	Yes (Path Specification(s)	Yes (Schema WD⊘)		N/A
OPC-UA Binary	OPC Foundation	N/A	No	opofoundation.org@	Yes	No	Yes	No	No	N/A
OpenDDL	Eric Lengyel	C, PHP	No	OpenDDL.org@	No	Yes	Yes	No	Yes (OpenDDL Library:>)	N/A
Pickle (Python)	Guido van Rossum	Python	De facto standard via Python Enhancement Proposals (PEPs)	[3] PEP 3154 Pickle protocol version 4	Yes	No	No	No	Yes ([4]:>)	No
Property list	NeXT (creator) Apple (maintainer)	?	Partial	Public DTD for XML formats/	Yes ^a	Yes ^b	No	7	Cocoase, CoreFoundationse, OpenStepse, GnuStepse	No
Protocol Buffers (protobuf)	Google	N/A	No	Developer Guide: Encodings₽	Yes	Partial ^d	No	Yes (built-in)	C++, C#, Java, Python, Javascript, Go	No
	John McCarthu					Voe				

Remote Procedure Call (RPC)

- Raw messaging is a bit too low-level for programming
 - Must wrap up information into message at source
 - Must decide what to do with message at destination
 - May need to sit and wait for multiple messages to arrive
 - And must deal with machine representation by hand
- Another option: Remote Procedure Call (RPC)
 - Calls a procedure on a remote machine
 - Idea: Make communication look like an ordinary function call
 - Automate all of the complexity of translating between representations
 - Client calls:

```
remoteFileSystem→Read("rutabaga");
```

– Translated automatically into call on server:

```
fileSys -> Read("rutabaga");
```

RPC Concept

4/25/23

RPC Information Flow

4/25/23

RPC Implementation

- Request-response message passing (under covers!)
- "Stub" provides glue on client/server
 - Client stub is responsible for "marshalling" arguments and "unmarshalling" the return values
 - Server-side stub is responsible for "unmarshalling" arguments and "marshalling" the return values.
- Marshalling involves (depending on system)
 - Converting values to a canonical form, serializing objects, copying arguments passed by reference, etc.

RPC Details (1/3)

- Equivalence with regular procedure call
 - Parameters ⇔ Request Message
 - Result ⇔ Reply message
 - Name of Procedure: Passed in request message
 - Return Address: mbox2 (client return mail box)
- Stub generator: Compiler that generates stubs
 - Input: interface definitions in an "interface definition language (IDL)"
 - » Contains, among other things, types of arguments/return
 - Output: stub code in the appropriate source language
 - » Code for client to pack message, send it off, wait for result, unpack result and return to caller
 - » Code for server to unpack message, call procedure, pack results, send them off

RPC Details (2/3)

- Cross-platform issues:
 - What if client/server machines are different architectures/ languages?
 - » Convert everything to/from some canonical form
 - » Tag every item with an indication of how it is encoded (avoids unnecessary conversions)
- How does client know which mbox (destination queue) to send to?
 - Need to translate name of remote service into network endpoint (Remote machine, port, possibly other info)
 - Binding: the process of converting a user-visible name into a network endpoint
 - » This is another word for "naming" at network level
 - » Static: fixed at compile time
 - » Dynamic: performed at runtime

RPC Details (3/3)

- Dynamic Binding
 - Most RPC systems use dynamic binding via name service
 - » Name service provides dynamic translation of service → mbox
 - Why dynamic binding?
 - » Access control: check who is permitted to access service
 - » Fail-over: If server fails, use a different one
- What if there are multiple servers?
 - Could give flexibility at binding time
 - » Choose unloaded server for each new client
 - Could provide same mbox (router level redirect)
 - » Choose unloaded server for each new request
 - » Only works if no state carried from one call to next
- What if multiple clients?
 - Pass pointer to client-specific return mbox in request

Problems with RPC: Non-Atomic Failures

- Different failure modes in dist. system than on a single machine
- Consider many different types of failures
 - User-level bug causes address space to crash
 - Machine failure, kernel bug causes all processes on same machine to fail
 - Some machine is compromised by malicious party
- Before RPC: whole system would crash/die
- After RPC: One machine crashes/compromised while others keep working
- Can easily result in inconsistent view of the world
 - Did my cached data get written back or not?
 - Did server do what I requested or not?
- Answer? Distributed transactions/Byzantine Commit

Problems with RPC: Performance

- RPC is not performance transparent:
 - Cost of Procedure call « same-machine RPC « network RPC
 - Overheads: Marshalling, Stubs, Kernel-Crossing, Communication
- Programmers must be aware that RPC is not free
 - Caching can help, but may make failure handling complex

Cross-Domain Communication/Location Transparency

- How do address spaces communicate with one another?
 - Shared Memory with Semaphores, monitors, etc...
 - File System
 - Pipes (1-way communication)
 - "Remote" procedure call (2-way communication)
- RPC's can be used to communicate between address spaces on different machines or the same machine
 - Services can be run wherever it's most appropriate
 - Access to local and remote services looks the same
- Examples of RPC systems:
 - CORBA (Common Object Request Broker Architecture)
 - DCOM (Distributed COM)
 - RMI (Java Remote Method Invocation)

Microkernel operating systems

- Example: split kernel into application-level servers.
 - File system looks remote, even though on same machine

- Why split the OS into separate domains?
 - Fault isolation: bugs are more isolated (build a firewall)
 - Enforces modularity: allows incremental upgrades of pieces of software (client or server)
 - Location transparent: service can be local or remote
 - » For example in the X windowing system: Each X client can be on a separate machine from X server; Neither has to run on the machine with the frame buffer.

Network-Attached Storage and the CAP Theorem

- Changes appear to everyone in the same serial order
- Availability:
 - Can get a result at any time
- Partition-Tolerance
 - System continues to work even when network becomes partitioned
- Consistency, Availability, Partition-Tolerance (CAP) Theorem: Cannot have all three at same time
 - Otherwise known as "Brewer's Theorem"

Distributed File Systems

- Transparent access to files stored on a remote disk
- Mount remote files into your local file system
 - Directory in local file system refers to remote files
 - -e.g., /users/jane/prog/foo.c on laptop actually refers to /prog/foo.c on adj.cs.berkeley.edu
- Naming Choices:
 - [Hostname,localname]: Filename includes server
 - » No location or migration transparency, except through DNS remapping
 - A global name space: Filename unique in "world"
 - » Can be served by any server

mount

mount

adj:/jane

Enabling Design: VFS

4/25/23

Recall: Layers of I/O...

```
User App:
User library:

Application / Service
High Level I/O
Low Level I/O
Syscall
File System
I/O Driver
```

```
length = read(input fd, buffer, BUFFER SIZE);
   ssize t read(int, void *, size t) {
     marshal args into registers
     issue syscall
     register result of syscall to rtn value
   };
    Exception U \rightarrow K, interrupt processing
    void syscall handler (struct intr frame *f) {
        unmarshall call#, args from regs
        dispatch : handlers[call#](args)
        marshal results fo syscall ret
      ssize t vfs read(struct file *file, char user *buf,
                        size t count, loff t *pos) {
        User Process/File System relationship
         call device driver to do the work
                                           Device Driver
```

Virtual Filesystem Switch

- VFS: Virtual abstraction similar to local file system
 - Provides virtual superblocks, inodes, files, etc
 - Compatible with a variety of local and remote file systems
 - » provides object-oriented way of implementing file systems
- VFS allows the same system call interface (the API) to be used for different types of file systems
 - The API is to the VFS interface, rather than any specific type of file system.

VFS Common File Model in Linux

- Four primary object types for VFS:
 - superblock object: represents a specific mounted filesystem
 - inode object: represents a specific file
 - dentry object: represents a directory entry
 - file object: represents open file associated with process
- There is no specific directory object (VFS treats directories as files)
- May need to fit the model by faking it
 - Example: make it look like directories are files
 - Example: make it look like have inodes, superblocks, etc.

Simple Distributed File System

- Remote Disk: Reads and writes forwarded to server
 - Use Remote Procedure Calls (RPC) to translate file system calls into remote requests
 - No local caching, but can be cache at server-side
- Advantage: Server provides consistent view of file system to multiple clients
- Problems? Performance!
 - Going over network is slower than going to local memory
 - Lots of network traffic/not well pipelined
 - Server can be a bottleneck

Use of caching to reduce network load

- Idea: Use caching to reduce network load
 - In practice: use buffer cache at source and destination
- Advantage: if open/read/write/close can be done locally, don't need to do any network traffic...fast!
- Problems:
 - Failure:
 - » Client caches have data not committed at server
 - Cache consistency!
 - » Client caches not consistent with server/each other

Dealing with Failures

- What if server crashes? Can client wait until it comes back and just continue making requests?
 - Changes in server's cache but not in disk are lost
- What if there is shared state across RPC's?
 - Client opens file, then does a seek
 - Server crashes
 - What if client wants to do another read?
- Similar problem: What if client removes a file but server crashes before acknowledgement?

Stateless Protocol

- Stateless Protocol: A protocol in which all information required to service a request is included with the request
- Even better: Idempotent Operations repeating an operation multiple times is same as executing it just once (e.g., storing to a mem addr.)
- Client: timeout expires without reply, just run the operation again (safe regardless of first attempt)
- Recall HTTP: Also a stateless protocol
 - Include cookies with request to simulate a session

Case Study: Network File System (NFS)

- Three Layers for NFS system
 - UNIX file-system interface: open, read, write, close calls + file descriptors
 - VFS layer: distinguishes local from remote files
 - » Calls the NFS protocol procedures for remote requests
 - NFS service layer: bottom layer of the architecture
 - » Implements the NFS protocol
- NFS Protocol: RPC for file operations on server
 - XDR Serialization standard for data format independence
 - Reading/searching a directory
 - manipulating links and directories
 - accessing file attributes/reading and writing files
- Write-through caching: Modified data committed to server's disk before results are returned to the client
 - lose some of the advantages of caching
 - time to perform write() can be long
 - Need some mechanism for readers to eventually notice changes! (more on this later)

NFS Continued

- NFS servers are stateless; each request provides all arguments require for execution
 - E.g. reads include information for entire operation, such as ReadAt(inumber, position), not Read(openfile)
 - No need to perform network open() or close() on file each operation stands on its own
- Idempotent: Performing requests multiple times has same effect as performing them exactly once
 - Example: Server crashes between disk I/O and message send, client resend read, server does operation again
 - Example: Read and write file blocks: just re-read or re-write file block no other side effects
 - Example: What about "remove"? NFS does operation twice and second time returns an advisory error
- Failure Model: Transparent to client system
 - Is this a good idea? What if you are in the middle of reading a file and server crashes?
 - Options (NFS Provides both):
 - » Hang until server comes back up (next week?)
 - » Return an error. (Of course, most applications don't know they are talking over network)

NFS Architecture

NFS Cache consistency

- NFS protocol: weak consistency
 - Client polls server periodically to check for changes
 - » Polls server if data hasn't been checked in last 3-30 seconds (exact timeout it tunable parameter).
 - » Thus, when file is changed on one client, server is notified, but other clients use old version of file until timeout.

- What if multiple clients write to same file?
 - » In NFS, can get either version (or parts of both)
 - » Completely arbitrary!

Sequential Ordering Constraints

- What sort of cache coherence might we expect?
 - i.e. what if one CPU changes file, and before it's done, another CPU reads file?
- Example: Start with file contents = "A"

- What would we actually want?
 - Assume we want distributed system to behave exactly the same as if all processes are running on single system
 - » If read finishes before write starts, get old copy
 - » If read starts after write finishes, get new copy
 - » Otherwise, get either new or old copy
 - For NFS:
 - » If read starts more than 30 seconds after write, get new copy; otherwise, could get partial update

NFS Pros and Cons

- NFS Pros:
 - Simple, Highly portable
- NFS Cons:
 - Sometimes inconsistent!
 - Doesn't scale to large # clients
 - » Must keep checking to see if caches out of date
 - » Server becomes bottleneck due to polling traffic

Andrew File System

- Andrew File System (AFS, late 80's) → DCE DFS (commercial product)
- Callbacks: Server records who has copy of file
 - On changes, server immediately tells all with old copy
 - No polling bandwidth (continuous checking) needed
- Write through on close
 - Changes not propagated to server until close()
 - Session semantics: updates visible to other clients only after the file is closed
 - » As a result, do not get partial writes: all or nothing!
 - » Although, for processes on local machine, updates visible immediately to other programs who have file open
- In AFS, everyone who has file open sees old version
 - Don't get newer versions until reopen file

Andrew File System (con't)

- Data cached on local disk of client as well as memory
 - On open with a cache miss (file not on local disk):
 - » Get file from server, set up callback with server
 - On write followed by close:
 - » Send copy to server; tells all clients with copies to fetch new version from server on next open (using callbacks)
- What if server crashes? Lose all callback state!
 - Reconstruct callback information from client: go ask everyone "who has which files cached?"
- AFS Pro: Relative to NFS, less server load:
 - Disk as cache ⇒ more files can be cached locally
 - Callbacks ⇒ server not involved if file is read-only
- For both AFS and NFS: central server is bottleneck!
 - Performance: all writes→server, cache misses→server
 - Availability: Server is single point of failure
 - Cost: server machine's high cost relative to workstation

Summary (1/2)

- TCP: Reliable byte stream between two processes on different machines over Internet (read, write, flush)
 - Uses window-based acknowledgement protocol
 - Congestion-avoidance dynamically adapts sender window to account for congestion in network
- Remote Procedure Call (RPC): Call procedure on remote machine or in remote domain
 - Provides same interface as procedure
 - Automatic packing and unpacking of arguments without user programming (in stub)
 - Adapts automatically to different hardware and software architectures at remote end

Summary (2/2)

- Distributed File System:
 - Transparent access to files stored on a remote disk
 - Caching for performance
- VFS: Virtual File System layer (Or Virtual Filesystem Switch)
 - Provides mechanism which gives same system call interface for different types of file systems
- Cache Consistency: Keeping client caches consistent with one another
 - If multiple clients, some reading and some writing, how do stale cached copies get updated?
 - NFS: check periodically for changes
 - AFS: clients register callbacks to be notified by server of changes