Time and Motion Part 2: Using Motion and Animation

John Keyser

Motion Graphics

- Animations are often called "Motion Graphics"
- Using animation tends to make visualizations
 - More engaging
 - More memorable
 - Reused more often
- Often, are a "trailer" for a more detailed website/data set

Amount of Data Communicated

- Animations actually tend to communicate less data (in terms of amount) than other methods
 - Viewer's attention tends to be directed/focused
 - Can present only limited info at a time
 - Not able to study/digest
 - Though, pause/replay/etc. can help this
 - Overall cognitive load is increased
 - Need to keep in mind what is seen throughout the video/animation

Two General Categories

- Animation is directly aligned with a variable
 - An aid to display

- Animation is part of a more general presentation
 - Used to tell a story

Animating a Single Variable

Scaling Time

- Simplest use of animation
- The time dimension of animation is just a scaled version of time data
 - e.g. 1 year = 1 second, 1 day = 5 seconds, etc.

 Example 1 – 200 countries, 200 years, 4 minutes

Mapping Variable to Time

- Can map another variable to time
- Should be at least ordinal if not numerical
 - e.g. from smallest to largest, lowest to highest, last to first, etc.
 - Give each element some number of seconds
- Need to explain the mapping/values
 - Won't be obvious otherwise

Example 2 – Gold Reserves by Country

Data Visualization: Time and Motion

Use of Time

- Can speed up or slow down time to emphasize or deemphasize particular points
 - Slow down to emphasize and give the viewer time to look closely

The Role of Audio

Multiple Channels

- In many motion graphics, you can also make use of sound
 - Voiceover narration
 - Ensure it is matched well
 - Human voice is more relatable than computer
 - Background music
 - Use to set mood/tone
 - Careful make sure it really enhances
 - Sound effects
 - Use sparingly to highlight key events
- When forming script, should map both visuals and the audio that will accompany

Data Visualization: Time and Motion

Narration

- Should be scripted first
- Very limited in amount
 - 2 minutes of animation:
 - About 15 short sentences
 - About 250 words total
- Use to complement the visualization, not to repeat
 - The main communication is the visual

Text on Screen

- Adds visual clutter
 - Tough to read and see visualization simultaneously
- Adds to cognitive load
 - another process through visual system
- Ensure any text is either:
 - Non-repetitive with narration or
 - Used in conjunction with narration for critical emphasis or information
- However, sometimes can't be avoided for closed captioning/accessibility

Script and Story

Creating a Script

- For a more general animation, need to script similar to any movie/video
- Plan out entire sequence, time for each part, story you are wanting to tell
- Will convert this to a sequence of storyboards/individual shots and transitions

Forming the Story

- Framing
 - What is the kind of story; what's your goal?
 - Examples:
 - List (here's the data)
 - Myth-busting (people think about this wrong)
 - How-to (what the data can help you do/learn)
 - Topical (how current thing X is reflected in data)
 - Personal Story (how this affects you)
 - Key part of the whole story, since everything should relate to it

Forming the Story

- But/However
 - Need to create "tension" in the story
 - "However" (something unexpected/surprising)
 - Leads to a "Therefore" resolution
 - If just one such point, usually about halfway through the script (after setup/introduction)
- Wrap-up
 - Leave viewer with message to follow up
 - e.g. URL to visit, action to take
 - Or just conclusion

Data Visualization: Time and Motion

Script Notes

- Gaps are good
 - Don't need to fill in every detail; viewers are used to making connections in video
- Be flexible
 - Sticking rigidly to script is not always possible
- Be interesting in speech
 - Vary sentence length
 - Switch between formal/informal, or poetic/direct
 - Use figures of speech/metaphor
 - Be sure it sounds like speaking, not writing
- Shorter and faster is better
 - Keeps attention

The Overall Approach

- Script is broken up into scenarios/frames
 - Each with a distinct purpose, topic, etc.
 - Often can be laid out in storyboards
- Different approaches to presenting scenes
 - Slideshow: Transition from scenario to scenario in linear/explaining fashion
 - Bird's Eye view: Overview, zoom in and out of larger view, or move through landscape
 - Changing scenery: Fixed infographics, changing background as story changes
 - Scene-by-scene: Motion picture approach, with transitions from scene to scene

Animating Data

Animating Charts

- Build out from the zero-point of the axes
- Shapes representing data animate away from the axes/origin
 - Columns grow up or down
 - Lines animate left to right
 - Pies build clockwise form 12 o'clock

Data Visualization: Time and Motion

Animating Numbers/Titles

- Numbers will count up
- Bubbles/dots (in scatter plot) will grow or pop in
- Fade in title/label elements

Animating Objects

- Tend to grow up and to right, shrink down and to left
- Left implies backward, right forward
- Up/Down can be used in different ways
 - Growth/Decline
 - Higher/Lower in a hierarchy
- Zoom in for detail, out for overview

Transitions

- Fades of elements/scenes helps to maintain continuity
- Match cuts tend to transition at a point where frame contents are similar
 - Highlights similarity
- Smash cuts transition between two very different elements
 - Highlights differences
- Jump cuts skip over some time can be disconcerting, but dramatic

Data Visualization: Time and Motion

Easing In and Out

- Key idea: to transition from one thing to another, better to start and end slow and be faster in middle, rather than uniform speed
- Slow in and slow out is one of Thomas & Johnston's 12 principles of Animation
 - Some of these principles are applicable for data visualization, as well

Multimedia Principles

Mayer's 12 Principles for Multimedia Learning

- Richard Mayer presented 12 principles for multimedia learning
 - -2014
 - Most apply to motion graphics as well
- Follows principles of dual channels (visual and audio) and limited cognitive capacity

Principles of Multimedia Learning

1. Multimedia

Use a combination of words and visuals

2. Coherence

Exclude extraneous information

3. Signalling

Use cues to draw attention to important information

4. Redundancy

Don't present same material in multiple ways

Principles of Multimedia Learning

5. Spatial Contiguity

Keep text and visuals close together

6. Temporal Contiguity

- Keep voice narration in line with visuals
- Keep visuals and explanation on same screen

7. Segmenting

Break information into smaller segments rather than one continuous unit

8. Pre-Training

Ensure users know basic principles before seeing application

Principles of Multimedia Learning

9. Modality

Visuals are best accompanied by spoken, not written, words

10.Voice

People respond best to real human voice

11.Personalization

Use a conversational style rather than formal style when speaking

12.Image

 People can learn better from visuals than from a "talking head"