Preliminary migrate analysis of M. californianus

MIGRATION RATE AND POPULATION SIZE ESTIMATION

using the coalescent and maximum likelihood or Bayesian inference

Migrate-n version 3.7.2 [April-12-18]

Program started at Wed Jun 2 13:54:45 2021 Program finished at Wed Jun 2 21:25:39 2021

Options

Datatype: DNA sequence data

Inheritance scalers in use for Thetas:

All loci use an inheritance scaler of 1.0

[The locus with a scaler of 1.0 used as reference]

Random number seed: (with internal timer) 985547277

Start parameters:

Theta values were generated from guessed values

Theta = 0.01000

M values were generated from guessed values

M-matrix:

100000.00 [all are the same]

Connection type matrix:

where m = average (average over a group of Thetas or M,

s = symmetric M, S = symmetric 4Nm, 0 = zero, and not estimated,

* = free to vary, Thetas are on diagonal

Population	1	2	3	4	5	6	7	8	9	10	11	12
1 ElfinCo	*	S	0	0	0	0	0	0	0	0	0	0
2 Bamfiel	S	*	s	0	0	0	0	0	0	0	0	0
3 PortRen	0	S	*	s	0	0	0	0	0	0	0	0
4 WalkOnB	0	0	s	*	S	0	0	0	0	0	0	0
5 BodegaH	0	0	0	s	*	S	0	0	0	0	0	0
6 Davenpo	0	0	0	0	S	*	s	0	0	0	0	0
7 VistaDe	0	0	0	0	0	S	*	S	0	0	0	0
8 HazardR	0	0	0	0	0	0	s	*	S	0	0	0
9 Refugio	0	0	0	0	0	0	0	S	*	s	0	0
10 Carpint	0	0	0	0	0	0	0	0	S	*	s	0

11 WhitePo		0	0	0	0	0	0	0	0	0	s	*	s	
12 LaJolla		0	0	0	0	0	0	0	0	0	0	s	*	
Order of param														
1	Θ_1							<0	lispla	ayed:	>			
2	Θ_2							<0	lispla	ayed:	>			
3	Θ_3									ayed:				
4	Θ_4								-	ayed:				
5	Θ_5									ayed:				
6	Θ_6									ayed:				
7	Θ_7									ayed:				
8	Θ_8									ayed:				
9	Θ_9									ayed:				
10	Θ_{10}									ayed:				
11	Θ_{11}									ayed:				
12	Θ_{12}									ayed:				
13	IVI 2	->1	=	IVI	2->	₁ [s]		<0	lispla	ayed:	>			
24	M 1	->2	=	IVI	2->	₁ [s]								
25	M 3	->2	=	IVI	3->			<0	lispla	ayed:	>			
36		->3	=	M	5-/	₂ [s]								
37	M ₄	->3	=	M	4->	₃ [s]		<0	lispla	ayed:	>			
48		->4	=	M	4-/	₃ [s]			P 1 -					
49	M 5	->4	=	M	5->	₄ [s]		<0	lispia	ayed:	>			
60	M ₄	->5	=	M	5-/	₄ [s]			P 1 -					
61	N A	->5	=	M	0 /	₅ [s]		<0	iispia	ayed:	>			
72	N /	->6	=	M	ローノ	₅ [s]			l' I -					
73	N/I	->6	=	IVI N/I	7->			<0	iispia	ayed:	>			
84	М ₆	-> 7	=	M	/-/	6 [s]	l	-0	liople	wod				
85 96	M 8	-> 7	=	IVI IVI	8->	7 [S]	l	<0	iispia	ayed:	>			
96	M 7	->8	=	IVI N/I	8->	را _{7 [} 5]	l I	٠,٠	licala	wod.				
108	M 9.	->8	_		9->			<0	ιοριε	ayed:				
109	M ₈	->9	=	1VI	9->	رد _{ا 8} اءا	l I	~~	lienla	ayed:				
120	M 1	0->9	_	NΛ	10-	ع] _{(<}	l I	~0	iiohic	ay G U.	-			
121	M ₉ .	->10	_	M	10-	او] [و]	l I	٧-	lisnla	ayed:	>			
132	M 1	1->1	0_	M	11-	اد) اما	l I	~0	iopic	ay ou.	-			
133	M M	0->1	1-	M	11– 12–	اد) اما	l I	۰,	lisnla	ayed:	>			
144	M 1:	2->1	1_	M	12-	^{. 1} 15<	l I	~0	iispic	iy Cu.				
	M_{1}	1->1	2	171	12-	>1 1 3	ı							
Mutation rate an	nong loc	oi:												Mutation rate is constant
Analysis strateg	y:													Bayesian inference
	-													,

Proposal distributions for parameter

Parameter Proposal
Theta Metropolis sampling
M Slice sampling

Prior distribution for parameter

Parameter Prior Delta Bins Minimum Mean* Maximum Theta Exp window 0.000010 0.010000 10.000000 1.000000 500 0.000100 100000.000000 1000000.000000 100000.000000 Μ Exp window 500

Markov chain settings: Long chain

Number of chains 1

Recorded steps [a]1000Increment (record every x step [b]100Number of concurrent chains (replicates) [c]3Visited (sampled) parameter values [a*b*c]300000Number of discard trees per chain (burn-in)1000

Multiple Markov chains:

Static heating scheme 4 chains with temperatures

100000.00 3.00 1.50 1.00

Swapping interval is 1

Print options:

Data file: ../../mcalifornianus_210528.mig

Output file:

Posterior distribution raw histogram file:

Print data:

outfile.txt
bayesfile

No

Print genealogies [only some for some data type]:

Data summary

Datatype: Sequence data
Number of loci: 1

Population	Locus	Gene copies
1 ElfinCo	1	19
2 Bamfiel	1	23
3 PortRen	1	15
4 WalkOnB	1	16
5 BodegaH	1	7
6 Davenpo	1	17
7 VistaDe	1	19
8 HazardR	1	23
9 Refugio	1	16
10 Carpint	1	19
11 WhitePo	1	11
12 LaJolla	1	8
Total of all populations	1	193

Bayesian Analysis: Posterior distribution table

ocus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
1	Θ_1	0.00001	0.00001	0.01001	0.06001	0.18001	0.07001	0.02557
1	Θ_2	0.00001	0.00001	0.01001	0.06001	0.18001	0.07001	0.02361
1	Θ_3	0.00001	0.00001	0.01001	0.08001	0.20001	0.09001	0.03224
1	Θ_4	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.02063
1	Θ_5	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00695
1	Θ_6	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01090
1	Θ_7	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.02129
1	Θ_8	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01758
1	Θ_9	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01685
1	Θ_{10}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01582
1	Θ_{11}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01675
1	Θ_{12}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01191
1	M _{2->1}	0.0	0.0	11000.0	22000.0	30000.0	23000.0	26570.7
1	M _{1->2}	0.0	0.0	11000.0	22000.0	30000.0	23000.0	26570.7
1	M _{3->2}	0.0	2000.0	17000.0	30000.0	42000.0	29000.0	39228.3
1	M _{2->3}	0.0	2000.0	17000.0	30000.0	42000.0	29000.0	39228.3
1	M _{4->3}	24000.0	34000.0	49000.0	62000.0	72000.0	45000.0	34775.5
1	M _{3->4}	24000.0	34000.0	49000.0	62000.0	72000.0	45000.0	34775.5
1	M _{5->4}	0.0	6000.0	23000.0	36000.0	46000.0	33000.0	46476.5
1	M _{4->5}	0.0	6000.0	23000.0	36000.0	46000.0	33000.0	46476.5
1	M _{6->5}	0.0	46000.0	57000.0	64000.0	72000.0	59000.0	64653.9
1	M _{5->6}	0.0	46000.0	57000.0	64000.0	72000.0	59000.0	64653.9
1	M _{7->6}	0.0	6000.0	17000.0	24000.0	62000.0	31000.0	27651.9
1	M _{6->7}	0.0	6000.0	17000.0	24000.0	62000.0	31000.0	27651.9
1	M _{8->7}	16000.0	22000.0	35000.0	48000.0	58000.0	45000.0	49067.4
1	M _{7->8}	16000.0	22000.0	35000.0	48000.0	58000.0	45000.0	49067.4
1	M _{9->8}	20000.0	30000.0	39000.0	48000.0	58000.0	41000.0	39890.7
1	M _{8->9}	20000.0	30000.0	39000.0	48000.0	58000.0	41000.0	39890.7
1	M _{10->9}	0.0	0.0	11000.0	24000.0	54000.0	23000.0	21573.1
1	M _{9->10}	0.0	0.0	11000.0	24000.0	54000.0	23000.0	21573.1
1	M _{11->10}	30000.0	44000.0	59000.0	74000.0	86000.0	53000.0	41955.2
1	M _{10->11}	30000.0	44000.0	59000.0	74000.0	86000.0	53000.0	41955.2
1	M _{12->11}	0.0	6000.0	23000.0	30000.0	52000.0	25000.0	24079.6
1	M _{11->12}	0.0	6000.0	23000.0	30000.0	52000.0	25000.0	24079.6

Migrate 3.7.2: (http://popgen.sc.fsu.edu) [program run on 13:54:45]

Citation suggestions:

 Beerli P., 2006. Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22:341-345 Beerli P., 2007. Estimation of the population scaled mutation rate from microsatellite data, Genetics, 177:1967-1968. Beerli P., 2009. How to use MIGRATE or why are Markov chain Monte Carlo programs difficult to use? In Population Genetics for Animal Conservation, G. Bertorelle, M. W. Bruford, H. C. Hauffe, A. Rizzoli, and C. Vernesi, eds., vol. 17 of Conservation Biology, Cambridge University Press, Cambridge UK, pp. 42-79.

Migrate 3.7.2: (http://popgen.sc.fsu.edu) [program run on 13:54:45]

Log-Probability of the data given the model (marginal likelihood)

Use this value for Bayes factor calculations:

BF = Exp[ln(Prob(D | thisModel) - ln(Prob(D | otherModel) or as LBF = 2 (ln(Prob(D | thisModel) - ln(Prob(D | otherModel)) shows the support for thisModel]

Method	In(Prob(D Model))	Notes
Thermodynamic integration	-2246.807597	(1a)
	-2156.249871	(1b)
Harmonic mean	-1867.910460	(2)

(1a, 1b and 2) are approximations to the marginal likelihood, make sure that the program run long enough! (1a, 1b) and (2) should give similar results, in principle.

But (2) is overestimating the likelihood, it is presented for historical reasons and should not be used (1a, 1b) needs heating with chains that span a temperature range of 1.0 to at least 100,000.

(1b) is using a Bezier-curve to get better approximations for runs with low number of heated chains

Citation suggestions:

Beerli P. and M. Palczewski, 2010. Unified framework to evaluate panmixia and migration direction among multiple sampling locations, Genetics, 185: 313-326.

Acceptance ratios for all parameters and the genealogies

Parameter	Accepted changes	Ratio
Θ_1	303/4435	0.06832
Θ_2	1088/4384	0.24818
Θ_3^2	613/4429	0.13841
Θ_4	1200/4192	0.28626
) ₅	473/4531	0.10439
) ₆	1013/4436	0.22836
) ₇	1183/4479	0.26412
) ₈	1211/4457	0.27171
$\mathbf{p}_{\mathbf{q}}$	1285/4435	0.28974
) ₁₀	1174/4394	0.26718
) ₁₁	1279/4439	0.28813
12	1147/4401	0.26062
1 2->1	4398/4398	1.00000
1 1->2	4398/4398	1.00000
$M_{3->2}$	4339/4339	1.00000
1 2->3	4339/4339	1.00000
1 4->3	4420/4420	1.00000
1 3->4	4420/4420	1.00000
1 5->4	4445/4445	1.00000
1 4->5	4445/4445	1.00000
1 6->5	4339/4339	1.00000
1 5->6	4339/4339	1.00000
7->6	4443/4443	1.00000
1 6->7	4443/4443	1.00000
1 8->7	4434/4434	1.00000
1 7->8	4434/4434	1.00000
1 9->8	4294/4294	1.00000
1 8->9	4294/4294	1.00000
1 0->9	4491/4491	1.00000
1 _{9->10}	4491/4491	1.00000
1 11->10 11->10	4500/4500	1.00000
10->11	4500/4500	1.00000
1 12->11	4365/4365	1.00000
11->12	4365/4365	1.00000
Genealogies	35547/150021	0.23695

MCMC-Autocorrelation and Effective MCMC Sample Size

Parameter	Autocorrelation	Effective Sampe Size
Θ_1	0.96136	59.65
Θ_2	0.84154	258.26
Θ_3^-	0.91126	139.80
\mathbf{p}_4°	0.82584	287.86
) ₅	0.90784	156.45
06	0.89010	175.10
07	0.82314	293.12
) ₈	0.81084	313.44
) _o	0.81995	297.25
) ₁₀	0.86497	217.07
211	0.79524	345.86
12	0.84574	253.74
1 2->1	0.85066	243.44
1->2	0.85066	243.44
1 3->2	0.84543	253.01
1 2->3	0.84543	253.01
1 4->3	0.79949	335.31
1 3->4	0.79949	335.31
1 5->4	0.86763	215.73
4->5	0.86763	215.73
1 6->5	0.84004	261.92
0->3 1	0.84004	261.92
1 5->6 1 _{7->6}	0.84418	254.89
/->0 /	0.84418	254.89
0->/ 1	0.85631	234.25
0->/ 1	0.85631	234.25
1	0.83980	263.86
9-20 1	0.83980	263.86
8->9 1	0.81081	316.67
10->9 1	0.81081	316.67
9->10 1	0.84959	247.83
11->10 1	0.84959	247.83
10->11 1	0.85960	227.14
1 12->11 1 11->12	0.85960	227.14
	3.00000	 1.17

Potential Problems

This section reports potential problems with your run, but such reporting is often not very accurate. Whith many parameters in a multilocus analysis, it is very common that some parameters for some loci will not be very

informative, triggering suggestions (for example to increase the prior range) that are not sensible. This suggestion tool will improve with time, therefore do not blindly follow its suggestions. If some parameters are flagged, inspect the tables carefully and judge wether an action is required. For example, if you run a Bayesian inference with sequence data, for macroscopic species there is rarely the need to increase the prior for Theta beyond 0.1; but if you use microsatellites it is rather common that your prior distribution for Theta should have a range from 0.0 to 100 or more. With many populations (>3) it is also very common that some migration routes are estimated poorly because the data contains little or no information for that route. Increasing the range will not help in such situations, reducing number of parameters may help in such situations.
No warning was recorded during the run