Introduction to Machine Learning

Lecture 10

Instructor:

Dr. Tom Arodz

Recap

Modern machine learning:

```
minimize<sub>\theta</sub>: error_metric(
S, some_f(\theta)(x in S).to_class_probs())
```

Filling the gaps:

- some $f(\theta)(x)$ **Or** some $f(\theta;x)$
 - Some function that takes two groups of inputs
 - Raw input features x
 - Trainable parameters ⊖
 - the parameters help us pick a specific function from a family of functions
- to class probs()
 - some $f(\theta;x)$ may not return probabilities, how to convert to: ≥ 0 , sum=1
- error metric
 - Classification error won't work. MSE is not ideal. We need something better!
- minimize_A
 - Gradient descent, over parameters θ of the model some_f (θ; x)
 - $\theta_{n+1} = \theta_n c \nabla_\theta \operatorname{error_metric}(S, \operatorname{model}(\theta_n, S))$

4

10.1. Functions (architectures) used in ML: Linear models

Linear models

```
minimize<sub>\theta</sub>: error_metric(
S, some f(\theta)(x in S).to class probs())
```

Functions (architectures) used in ML: Linear models

• "predicted $y'' = y_{pred}$

```
= w \cdot x + b = \langle w, x \rangle + b
= w^{T}x + b = \Sigma_{i}w_{i}x_{i} + b
= w_{1}x_{1} + w_{2}x_{2} + ... + w_{F}x_{F} + b
Many ways to write the same formula sometimes: w_{0} instead of b (x_{0}=1) -b instead of +b
```

- returns a real value from $-\infty$ to $+\infty$, sign indicates class
- some $f(\theta;x) = linear(w,b;x) = w^Tx+b$
 - two groups of inputs:
 - Raw input features x
 - Trainable parameters θ = (w,b)
 - Features weights w and bias b

Linear models

Modern machine learning:

```
minimize_{\theta}: error_metric(
S, some_f(\theta)(x in S).to_class_probs())
```

- Functions (architectures) used in ML: Linear models
 - $y_{pred} = w^Tx + b$ on input space of F features can be interpreted/viewed in several ways:
 - A linear decision boundary (line/hyperplane) separating 2 classes in F-dim space
 - A projection on a 1-dim space
 - A linear function in F-dim space

Linear Models – decision boundary

•
$$y=w^{T}x=w_{1}x_{1}+w_{2}x_{2}$$

or

•
$$y = w^T x = w_1 x_1 + w_2 x_2 + b$$

w is a vector with the same dimensionality *d* as the samples (e.g. here, 2 features => 2D) We can plot it in the same *d*-dim space (here: 2D) together with samples it's a vector, we plot it starting from (0,0,...)

Decision boundary is always orthogonal (at 90 degree angle) to vector w. It is a subspace of dimensionality (d-1) consisting of all x for which $w^Tx=0$ (d=2 \rightarrow a 1D line; d=3 \rightarrow a 2D plane, \Rightarrow d=4 \rightarrow a 3D hyperplane...) if there is no bias (b=0) then decision boundary has to pass through (0,0,...)

Vector "w" points in the direction in which predictions increase most steeply towards +1 class

Linear Models – decision boundary

$$y = w^T x = w_1 x_1 + w_2 x_2$$

•
$$y = w^T x = w_1 x_1 + w_2 x_2 + b$$

$$let b = +1$$

Non-zero bias b shifts the decision boundary along the w vector positive +b shifts the decision in direction of -w, negative b in direction of +w

With non-zero bias, the decision boundary no longer has to pass through (0,0,...)

Linear models - projection

- $y_{pred} = w^Tx + b$
 - w^Tx linear projection of samples on a line parallel to w
 - b decision threshold on that line

Linear models - projection

- $y_{pred} = w^T x + b$
 - w^Tx linear projection of samples on a line parallel to w
 - b decision threshold on that line

w is a vector, we always "anchor" it a (0,0,...)

 $y=w^Tx=w_1x_1+w_2x_2$

We can plot w^Tx as a real-function of x surface of f(x) will be a line if x is 1D (y=ax+b)

direction in which f(x)increases most steeply

 $y = w^T x = w_1 x_1 + w_2 x_2$

Which features are important here?

 $y = w^T x = w_1 x_1 + w_2 x_2$

For this w, feature x₁ is irrelevant for predictions

Linear Models – interpreting "w"

- $y = w^T x = w_1 x_1 + w_2 x_2$
- $W = [-1,1]^T$

For this w, both features are equally relevant for predictions but x_1 contributes negatively (low values of $x_1 =>$ class +1) while x_2 contributes positively (high values of $x_2 =>$ class +1

We sometimes interpret values w_i as "importance" of features x_i

But:

May be misleading if features are correlated
 e.g. extreme case:
 if x2=x1, then for w=[-1,1]^T, w^Tx=0
 i.e., together, they don't contribute anything
 to predictions, even though
 both features "look" important!

Space of classification models

- We have observations in a fixed F-dimensional feature space $\mathcal{X} \subset \mathbb{R}^F$
 - Every sample x is a vector (point) in that feature space

$$\mathbf{x} \in \mathcal{X}$$
 $\mathbf{x} = \begin{bmatrix} x^{\langle 1 \rangle}, x^{\langle 2 \rangle}, ..., x^{\langle F \rangle} \end{bmatrix}^T$

We want to construct a classifier, some function h(x) e.g. a linear model:

$$h(x) = w^T x + b$$

- Overall, a classifier is a function that returns real values:
 - If h(x)>0, we predict 1,
 - If h(x)<0, we predict -1
 - All possible classifiers

$$h: \mathcal{X} \mapsto \mathbb{R}$$

of a certain type (e.g. all linear classifiers) form a space ${\cal H}$

 For linear models, it's an F+1 dimensional space of all possible weights w (F-dim) and all possible biases b (1-dim)

Recap

Modern machine learning:

```
minimize<sub>\theta</sub>: error_metric(
S, some_f(\theta)(x in S).to_class_probs())
```

Filling the gaps:

- some $f(\theta)(x)$ **or** some $f(\theta;x)$
 - What family of functions? Simple choice that often works:
 some_f(θ;x) = linear(w,b;x) = w^Tx+b
 Linear models simple and often very effective
- to class probs()
 - some $f(\theta;x)$ may not return probabilities, how to convert to: ≥ 0 , sum=1
- error metric
 - Classification error won't work. MSE is not ideal. We need something better
- minimize_a
 - How?
 Gradient descent, over parameters θ of some f (θ; x)

4

10.2. Gradient descent for linear models

Building ML Approach #3

Modern machine learning:

```
minimize_{\theta}: error_metric( S, some_f(\theta)(x in S).to_class_probs())
```

Filling the gaps:

```
• some_f(\theta)(x) Or some f(\theta;x)
```

- some_f(θ ;x) = linear(w,b;x) = w^Tx+b Linear models - simple and often very effective:
- minimize_θ
 - how? Gradient descent!

Let's try gradient descent for linear models

$$y_{pred} = f(w,b;x) = w \cdot x + b = w_1x_1 + w_2x_2 + ... + w_Fx_F + b$$

Let's start with simple scenario:

- one sample: x
- let's assume the class is supposed to be $y_{true} = -1$
- that means, we want to make $y_{pred} = f(w;x)$ negative, i.e., minimize it
- The task in this scenario is:
 - minimize_w: f(w,b;x)
- Minimization via gradient descent:
 - Move w in the direction of negated gradient of f:
 - $W_{new} = W_{old} c \nabla f(w,b;x)$

- $y_{pred} = f(w,b;x) = w \cdot x + b = w_1x_1 + w_2x_2 + ... + w_Fx_F + b$
- $\nabla f = \nabla_{(w,b)} f(w,b;x)$ $= [\partial f(w;x) / \partial w_1, \partial f(w;x) / \partial w_2, ..., \partial f(w;x) / \partial w_F, \partial f(w;x) / \partial b]$

■
$$\partial f(w,b;x) / \partial w_1 = \partial (w_1x_1 + w_2x_2 + ... + w_Fx_F + b) / \partial w_1$$

= $\partial w_1x_1 / \partial w_1 + ... + \partial w_Fx_F / \partial w_1 + \partial b / \partial w_1$
= $x_1 \partial w_1 / \partial w_1 + ... + 0 + 0 = x_1$

- Rule of differentiation recap:
 - Sum: $\partial(g(a)+h(a)) / \partial a = \partial g(a)/\partial a + \partial h(a)/\partial a$

- $y_{pred} = f(w,b;x) = w \cdot x + b = w_1x_1 + w_2x_2 + ... + w_Fx_F + b$
- $\nabla f(w,b;x)$ = $[\partial f(w;x)/\partial w_1, \partial f(w;x)/\partial w_2,..., \partial f(w;x)/\partial w_F, \partial f(w;x)/\partial b]$
- $\partial f(w,b;x)/\partial w_1 = x_1$
- $\partial f(w,b;x)/\partial b = \partial(w_1x_1+w_2x_2+...+w_Fx_F+b)/\partial b$ = $\partial w_1x_1/\partial b +...+\partial w_Fx_F/\partial b + \partial b/\partial b$ = 0 + ... + 0 + 1 = 1
- $\nabla_{w,b}f(w,b;x)$ $= [\partial f(w;x)/\partial w_1, \partial f(w;x)/\partial w_2,..., \partial f(w;x)/\partial w_F, \partial f(w;x)/\partial b]$ $= [x_1, x_2,..., x_F, 1]$

$$y_{pred} = f(w;x) = w \cdot x + b = w_1x_1 + w_2x_2 + ... + w_Fx_F + b$$

Another simple scenario:

- one sample: x, let's assume the class is supposed to be $y_{true} = +1$
- that means, we want to make $y_{pred} = f(w;x)$ positive, i.e., maximize it
 - i.e., minimize: negate(f(w;x)) = -1 * f(w;x)
- The task in this scenario is:
 - minimize_w: negate(f(w;x))
- Minimization via gradient descent:
 - move w in the direction of negated gradient of f:
 - $W_{new} = W_{old} c \nabla negate(f(w;x))$

- $y_{pred} = f(w,b;x) = w \cdot x + b = w_1x_1 + w_2x_2 + ... + w_Fx_F + b$
- ∇ negate(f(w,b;x)) =[∂ negate(f(w;x))/ ∂ w₁,..., ∂ negate(f(w;x))/ ∂ b]
- ∂negate(f(w,b;x)) /∂w₁ = ∂negate(y_{pred})/ ∂y_{pred} * ∂y_{pred} /∂w₁ = ∂(-1*y_{pred})/ ∂y_{pred} * ∂f(w,b;x) /∂w₁ = ∂(-1*f(w,b;x))/ ∂f(w,b;x) * ∂f(w,b;x) /∂w₁ = -1 * ∂f(w,b;x) /∂w₁ = -1 * $x_1 = -x_1$
- $\nabla_{w,b}$ negate(f(w,b;x)) = [-x₁, -x₂,..., -x_F, -1]
- Rule of differentiation recap:
 - Chain rule: $\partial f(g(a)) / \partial a = \partial f/\partial g * \partial g/\partial a$ $= \partial f(z)/\partial z * \partial g(a)/\partial a$ where z=g(a)

Two-sample (A & B) simple scenario:

- sample x_A , true $y_A = +1$, and sample x_B , true $y_B = -1$
- we want: $y_A = f(w; x_A)$ more positive and $y_B = f(w; x_B)$ more negative
 - minimize: negate(f(w,b;x_A)) + f(w,b;x_B)
- we calculated already:
 - $\nabla_{w,b}$ negate(f(w,b;x_A))= $\nabla_{w,b}$ -f(w,b;x_A)=[-x_{A,1}, -x_{A,2},..., -x_{A,F}, -1]
 - $\nabla_{w,b} f(w,b;x_B) = \nabla_{w,b} f(w,b;x_B) = [+x_{B,1}, x_{B,2}, ..., x_{B,F}, +1]$
- We can write it jointly as:
 - minimize: $-f(w,b;x_A)$ + $f(w,b;x_B)$
 - minimize: $-y_A f(w,b;x_A)$ $-y_B f(w,b;x_B)$
 - minimize: $\Sigma_{k=\{A,B\}}$ - y_k f(w,b; x_k)
- To move w,b in the proper direction, it makes sense to minimize: $\nabla_{w,b} \Sigma_{k=\{A,B\}} y_k f(w;x_k)$

=
$$\Sigma_{k=\{A,B\}}$$
 [- $y_k x_{k,1}$, - $y_k x_{k,2}$,..., , - $y_k x_{k,F}$, - y_k]

the two-part term $y_k f(w; x_k) = y_{true} * y_{pred}$ is very common

4

10.3. From error metric to loss function

- Problems with error metrics seen so far:
 - Classification error / is-incorrect: natural and intuitive, but flat (∇=0), not continuous
 - MSE is not ideal for classification problems
- Recall this from "gradient descent":
 - Two-sample (A & B) simple scenario:
 - sample x_A , true $y_A = +1$, and sample x_B , true $y_B = -1$
 - we want: $y_A = f(w; x_A)$ more positive and $y_B = f(w; x_B)$ more negative
 - minimize: negate(f(w,b;x_A)) + f(w,b;x_B)
 - We can write it jointly as:
 - minimize: $-\mathbf{y}_{A}f(w,b;x_{A})$ $-\mathbf{y}_{B}f(w,b;x_{B})$
 - minimize: $\Sigma_{k=\{A,B\}}$ - y_k f(w,b;x_k)
- Can we use $-y_k f(w, b; x_k)$ as a per-sample error metric to be minimized?

- Can we use $-y_k f(w,b;x_k)$ as a per-sample error metric to be minimized?
 - It's not flat
 - It's continuous and differentiable
 - It's monotonic (decreasing)
- It avoids problems we had with error_rate and MSE

- Is $-y_k$ f (w, b; x_k) a good error metric?
 - For linear model $f=w^Tx+b$, value $-yf(x)=-y(w^Tx+b)$ is proportional to distance of x from the decision boundary
 - Positive for incorrect (a penalty)
 - Negative for correct (a reward)

Distance of x from w^Tx+b is: $|w^Tx+b| / ||w||$ where $||w|| = w^Tw$ is norm (length) of w

Which blue decision boundary has **smaller** (penalty – reward)? i.e., **larger** (reward – penalty)?

- Is $-\mathbf{y_k} f(w, b; x_k)$ a good error metric? No!
 - Positive for incorrect (a penalty)
 - Negative for correct (a reward)

Which blue decision boundary has **smaller** (penalty – reward)? i.e., **larger** (reward – penalty)?

- Can we use $-y_k f(w,b;x_k)$ as an per-sample error metric to be minimized?
- -yf(w;x) is not a good error metric:
 - can lead to errors even if 0-error decision boundary exists!

- Giving "reward" (negative value under minimization) is not a good idea!
 - Conclusion: error metric should not have any negative values

Error metric => Loss function

- A classifier is a function h(x) that returns real values:
 - If h(x)>0, we predict 1,
 - If h(x) < 0, we predict -1
 - All possible classifiers of a certain type form a space \mathcal{H}
- We design a measure of quality of various h in \mathcal{H} on a single sample z=(x,y)
 - Non-negative (no rewards), ideally without flat regions esp. in the "wrong prediction" region
 - We call it a penalty or, most commonly, a loss
 - **Loss function** $\ell: \mathcal{H} \times \mathcal{Z} \mapsto \mathbb{R}_+$:
 - Input: a classifier h, and a labeled sample z=(x,y)
 - Output: a non-negative real number
 - 0: no loss we're happy with the prediction
 - >0: some loss quantifies how unhappy we are

Empirical risk minimization

- Loss function $\ell : \mathcal{H} \times \mathcal{Z} \mapsto \mathbb{R}_+$ takes a single sample
- Our classifier should be good (low loss) for all samples
 - In general, our samples come from distribution D over space of samples (features , class): $\mathcal{Z} = \mathcal{X} \times \{-1, +1\}$
 - The expected (avg. over infinite # of samples) loss for distribution D is called *risk* $R(h,D) = \mathbb{E}_{\mathbf{z} \sim D}[\ell(h,\mathbf{z})]$
 - We want low risk, but: distrib. D unknown => risk unknown
 - We have the training set!
 - We can calculate the average loss on the training set

■ Empirical risk:
$$\widehat{R}_{S_m}\left(h\right) = \frac{1}{m} \sum_{i=1}^{m} \ell\left(h, \mathbf{z}_i\right)$$

- How should we choose classifier h from \mathcal{H} ?
- Empirical risk minimization: $\underset{h \in \mathcal{H}}{\operatorname{arg \, min} \, \widehat{R}_{S_m} (h)}$

Losses so far

All have some problems:

- 0/1 loss (is_incorrect): flat
- -yf(x): rewards can lead to errors
- MSE for classification: penalty for correct predictions