

## WHAT'S WRONG WITH RSA?

RSA is based upon the 'belief' that factoring is 'difficult' – never been proven
Prime numbers are getting too large



# ELLIPTIC CURVE CRYPTOGRAPHY

➤ General mathematical form (Weierstraus equation):

$$y^2 = x^3 + \boldsymbol{a}x + \boldsymbol{b}$$

for some *a*, *b* (curve parameters)





## ELLIPTIC CURVE ENCRYPTION

- $\triangleright$  Encryption: Transforming points on curve  $(P, K_{PU})$  into other point on same curve (C)
- ➤ Main idea (Abelian group): Need a definition of "+" so that "sum" of two points on a curve is also on the same curve:

$$P = P + Q$$
 where  $P = (x_P, y_P), Q = (x_Q, y_Q), R = (x_R, y_R)$ 

- >R = "0" (additive identity)
  - ➤ Point at infinity: ∞
  - > 0 = -0
  - $\triangleright P + (-P) = 0$

# ELLIPTIC CURVE ADDITION CASES



Case 1:  $P \neq Q$  $(x_P \neq x_Q, y_P \neq y_Q)$ 

Case 2: P = Q



# **ELLIPTIC CURVE ADDITION**









$$\triangleright$$
 Equations for  $P \neq Q$  (case 1):

$$\Delta = (y_Q - y_P)/(x_Q - x_P)$$

$$x_R = \Delta^2 - x_P - x_Q$$

$$y_R = \Delta(x_P - x_R) - y_P$$

# ELLIPTIC CURVES OVER Zp

- > Encryption requires modular arithmetic
  - > Must be difficult to recover original points from **R**.
  - > Modular arithmetic prevents "working backward", as in RSA
- ▶ Define "curve" as  $E_p(a, b)$  where p is the modulus, a, b are the coefficients of  $y^2 = x^3 + ax + b$
- Looking for (x, y) such that  $y^2 = (x^3 + ax + b) \mod p$ 
  - ➤ Note: "points" on curve are integers
  - > Example (a = b = 1, p = 13):  $x = 0 \rightarrow y^2 \mod 13 = 1 \mod 13$
  - $y = \pm 1 \mod 13 \rightarrow y = 1.12$
  - > Two points: (0,1) and (0,12)

# FINDING POINTS ON A Zp CURVE

Points on elliptic curve  $y^2 = x^3 + x + 1$  over p(13):

| (0, 1)  | (0, 12)  |
|---------|----------|
| (1, 4)  | (1, 9)   |
| (4, 2)  | (4, 11)  |
| (5, 1)  | (5, 12)  |
| (7, 0)  | (7, 0)   |
| (8, 1)  | (8, 12)  |
| (10, 6) | (10, 7)  |
| (11, 2) | (11, 11) |



# EXAMPLE

• Let's examine the following elliptic curve as an example:

$$y^2 = x^3 + x + 6$$
 over  $\mathbb{Z}_{11}$ 

| X                                | 0 | 1 | 2   | 3   | 4 | 5   | 6 | 7   | 8   | 9 | 10  |
|----------------------------------|---|---|-----|-----|---|-----|---|-----|-----|---|-----|
| x <sup>3</sup> + x + 6<br>mod 11 | 6 | 8 | 5   | 3   | 8 | 4   | 8 | 4   | 9   | 7 | 4   |
| Υ                                |   |   | 4,7 | 5,6 |   | 2,9 |   | 2,9 | 3,8 |   | 2,9 |

### ELLIPTIC CURVE MATHEMATICS

- > Computing  $(x_R, y_R) = (x_P, y_P) + (x_Q, y_Q)$ 
  - ➤ Necessary to turn two points corresponding to key and plaintext into point corresponding to ciphertext
- ➤ Use same rules for "+" as curves in space
- ➤ Main ideas:
  - > Addition/subtraction/multiplication in mod p
  - $\triangleright$  Division = multiplication by inverse mod p

# **EXAMPLE**: (4, 2) + (10, 6) **ON** E13(1, 1)

> step 1: compute  $\Delta = (y_Q - y_P) / (x_Q - x_P)$ 

```
\Delta = (6-2) \times (10-4)^{-1} \mod 13

= 4 \times 6-1 \mod 13 (6^{-1} \mod 13 = 11)

= 4 \times 11 \mod 13 = 5

13 = 2*6 + 1

1 = 13 - 2*6

2 \mod 13 = 11
```

- > step 2: compute  $x_R = \Delta^2 x_P x_Q$ 
  - $xR = (25 4 10) \mod 13 = 11$
  - > step 3: compute  $y_R = \Delta(x_P x_R) y_P$

$$y_R = (5*(4-11)-2) \mod 13 = 2$$

$$(4, 2) + (10, 6) = (11, 2) \rightarrow \text{note: also on curve!}$$

## MULTIPLICATION ON AN ELLIPTIC CURVE

- Multiplication = addition several times
  - > Necessary for some forms of elliptic curve cryptography
  - > Must use formula where P = Q for first addition
- > Example:  $3 \times (1, 4)$  on  $E_{13}(1, 1)$ 
  - $>3 \times (1, 4) = (1, 4) + ((1, 4) + (1, 4)) = (1, 4) + (8, 12) = (0,12)$
- ➤ Elliptic curve encryption is generally based on using multiplication on elliptic curves in place of exponentiation in existing public key algorithm.

$$g^k \rightarrow k \times G$$

# DIFFIE-HELLMAN KEY AGREEMENT



Alice selects random  $\alpha$ 

 $g^{\alpha} \bmod p$   $g^{\beta} \bmod p$ 

Alice computes  $(g^{\beta})^{\alpha} = g^{\alpha\beta} \mod p$  as the shared key (session key)



Bob selects random  $\beta$ 

Bob computes  $(g^{\alpha})^{\beta} = g^{\alpha\beta} \mod p$  as the shared key (session key)



### ELLIPTIC CURVE DIFFIE-HELLMAN

- ➤ Alice and Bob agree on global parameters:
  - $\gt E_p(a,b)$ : Elliptic curve mod p (prime) with parameters a and b
  - ➤ G: "Generator" point on that elliptic curve
    - For all points R on the curve, there exists some n such that  $n \times G = R$ 
      - ► Example: P = 211,  $E_p(0, -4)$ : the curve  $y^2 = x^3 4$ , G = (2, 2)

- ➤ Alice and Bob select own private x and y
- $\succ$  They each generate a public  $R_1$  and  $R_2$  as:  $R_1 = x \times G$  and  $R_2 = y \times G$
- > They exchange these values

# EXAMPLE

• Let's examine the following elliptic curve as an example:

$$y^2 = x^3 + x + 6$$
 over  $\mathbb{Z}_{11}$ 

| X                                | 0 | 1 | 2   | 3   | 4 | 5   | 6 | 7   | 8   | 9 | 10  |
|----------------------------------|---|---|-----|-----|---|-----|---|-----|-----|---|-----|
| x <sup>3</sup> + x + 6<br>mod 11 | 6 | 8 | 5   | 3   | 8 | 4   | 8 | 4   | 9   | 7 | 4   |
| Υ                                |   |   | 4,7 | 5,6 |   | 2,9 |   | 2,9 | 3,8 |   | 2,9 |

## THE GROUP

$$y^2 = x^3 + x + 6$$
 over  $\mathbb{Z}11$ 

We can generate this by using the rules of addition we defined earlier where  $2\alpha = \alpha + \alpha$ 

$$G = (2,7)$$
 $2 G = (5,2)$  $3 G = (8,3)$  $4 G = (10,2)$  $5 G = (3,6)$  $6 G = (7,9)$  $7 G = (7,2)$  $8 G = (3,5)$  $9 G = (10,9)$  $10 G = (8,8)$  $11 G = (5,9)$  $12G = (2,4)$ 

# EXAMPLE

Example: P = 211,  $E_p(0, -4)$ : the curve  $y^2 = x^3 - 4$ , G = (2, 2)

• 
$$x = 121 \rightarrow R_1 = 121 \times (2, 2) = (115, 48)$$

• 
$$y = 203 \rightarrow R_2 = 203 \times (2, 2) = (130, 203)$$



$$121 \times (130, 203) = 203 \times (115, 48) = (161, 69)$$

## ELLIPTIC CURVE DIFFIE-HELLMAN

 $\succ$  Alice and Bob generate the same key  $m{k}$ 

Alice: 
$$k = R_2 \times x$$
  
Bob:  $k = R_1 \times y$ 

Proof: 
$$R_2 \times x = (G \times y) \times x$$
  
 $R_1 \times y = (G \times x) \times y$ 

## SAFE ELLIPTIC CURVES

- ➤ The Curve25519 function:
  - > Uses the prime number  $2^{255} 19$
  - ► Uses the elliptic curve  $y^2 = x^3 + 486662x^2 + x$
  - > Starting in 2014, OpenSSH defaults to Curve25519-based ECDH.
- ➤ The NIST P-256 curve:
  - ► Uses a prime  $2^{256} 2^{224} + 2^{192} + 2^{96} 1$  chosen for efficiency
  - ► Uses curve shape  $y^2 = x^3 3x + b$
  - The NIST's P curve constants led to concerns that the NSA had chosen values that gave them an advantage in factoring public keys.
  - >Dual Elliptic Curve Deterministic Random Bit Generation (or Dual\_EC\_DRBG) is a NIST national standard, which had included a deliberate weakness in the algorithm and the recommended elliptic curve.
- ➤ See <a href="https://safecurves.cr.yp.to/">https://safecurves.cr.yp.to/</a> for a list of safe elliptic curves.

## **ECDSA**

- Elliptic Curve Digital Signature Algorithm (ECDSA) is an update of DSA algorithm adapted to use elliptic curves.
- ➤Bitcoin uses ECDSA over the standard elliptic curve sec256k1 which provides 128 bit of security:
  - ➤ The equation:  $y^2 = x^3 + 7$
  - The prime:  $p = 2^{256} 2^{32} 2^9 2^8 2^7 2^6 2^4 1$
- ➤ While sec256k1 is a published standard, it is rarely used outside of Bitcoin
- ➤ Possible reason for choosing sec256k1:
  - It is often more than 30% faster than other curves if the implementation is sufficiently optimized.
  - ➤ It is less likely to have a backdoor.

## SECURITY AND SPEED OF ECC

- ➤ Why is this secure?
  - Same type of inverse modular problem (elliptic curve discrete logarithm problem or ECDLP)
  - If we have:  $(x_2, y_2) = d \times (x_1, y_1)$ , there is no simple way to determine d from  $(x_1, y_1)$  and  $(x_2, y_2)$  without trying all possible values
  - Computationally secure as long as *p* large enough (e.g. 160 bits) to prevent exhaustive search
- ➤ Why is this fast?
  - ➤ Only uses addition and multiplication no exponents!
  - ➤ Smaller key sizes
    - ➤ 160 bit ECC key equivalent to 1024 bit RSA key
- ➤ Widely used on smart cards.

### USING ELLIPTIC CURVES IN CRYPTOGRAPHY

- The central part of any cryptosystem involving elliptic curves is the **elliptic group**.
- All public-key cryptosystems have some underlying mathematical operation.
  - RSA has exponentiation (raising the message or ciphertext to the public or private values)
  - ECC has point multiplication (repeated addition of two points).



## GENERIC PROCEDURES OF ECC

- Both parties agree to some publicly-known data items
  - The <u>elliptic curve equation</u>
    - values of *a* and *b*
    - **■** prime, *p*
  - The **elliptic group** computed from the elliptic curve equation
  - A **base point**, G, taken from the elliptic group
    - Similar to the generator used in current cryptosystems
- Each user generates their public/private key pair
  - Private Key = an integer,  $x_A$ , selected from the interval [1, p-1]
  - Public Key = product, Y<sub>A</sub>, of private key and base point
    - $(Y_A = Pm*G)$



#### EXAMPLE

- Suppose Alice wants to send to Bob an encrypted message.
- Both agree on a base point, G.
- Alice and Bob create public/private keys.
  - Alice
    - Private Key = X<sub>A</sub>
    - Public Key =  $Y_A = X_A * G$
  - Bob
    - Private Key = X<sub>R</sub>
    - Public Key =  $Y_B = X_B * G$
- Alice takes plaintext message, M, and encodes it onto a point, P<sub>M</sub>, from the elliptic group



### EXAMPLE CONT.

- Alice chooses another random integer, k from the interval [1, p-1]
- The ciphertext is a pair of points
  - $P_C = [ (kG), (P_M + kY_B) ]$
- To decrypt, Bob computes the product of the first point from P<sub>C</sub> and his private key, b
  - $X_R * (kG)$
- ullet Bob then takes this product and subtracts it from the second point from  $P_C$ 
  - $\bullet (P_M + kY_B) [X_B(kG)] = P_M + k(X_BG) X_B(kB) = P_M$
- Bob then decodes P<sub>M</sub> to get the message, M.



## **ENCRYPTION RULES**

- $y^2 = x^3 + x + 6$  over  $\mathbb{Z}13$
- Suppose we let G = (2,7) and choose the private key to be XA = 7
- Then YA = 7G = (7,2)
- Encryption:

$$e_{K}(x,k) = (k(G), \mathbf{P_{M}} + k(YA))$$
  
 $e_{K}(x,k) = (k(2,7), \mathbf{P_{M}} + k(7,2))$ ,

where  $x \in E$  and  $0 \le k \le 12$ 



# **DECRYPTION RULE**

• Decryption:

$$\begin{aligned} d_K(y_1, & y_2) = y_2 - xAy_1 & =>x \text{ is private kay} \\ d_K(y_1, & y_2) = y_2 - 7y_1 & \end{aligned}$$



#### USING THIS SCHEME

- Suppose Alice wants to send a message to Bob.
- Plaintext is  $P_{M} = (10.9)$  which is a point in E
- Choose a random value for k, k = 3
- So now calculate  $(y_1, y_2)$ :
- $\mathbf{y}_1 = 3(2,7) = (8,3)$
- $\mathbf{y}_2 = (10,9) + 3(7,2) = (10,9) + (3,5) = (10,2)$
- Alice transmits y = ((8,3),(10,2))



## BOB DECRYPTS

- Bob receives y = ((8,3),(10,2))
- Calculates

$$\mathbf{P_M} = (10,2) - 7(8,3)$$

$$= (10,2) - (3,5)$$

$$= (10,2) + (3,6)$$

$$= (10,9)$$

Which was the plaintext

