Monash University
Faculty of Information Technology

Lecture 14 Turing Machines and Computability

Slides by David Albrecht (2011), some additions and modifications by Graham Farr (2013, 2016).

FIT2014 Theory of Computation

Overview

- Turing Machines
- Converting Finite Automaton to a Turing Machine
- Building Turing Machines
- Turing machines for computing functions
- Church's thesis

Effective Process

- Can be done with pencil and paper.
- Is a finite set of instructions.
- Demands neither insight or ingenuity.
- Will definitely work without error.
- Produces in a finite number of steps
 - either:

 A final result, or
 - $^{\circ}\,$ If the result is a sequence, each symbol in the sequence.

Alan Turing (1912-1954) http://www.npg.org.uk/collections/search/portrait/mw165875

How to model computation?

Consider a person doing a computation (pencil & paper).

At any given time, the person is ...

- focused on some particular position on the paper;
- reading the symbol at the current position;
- •in some particular mental **state**, i.e., is doing some particular part of the computation.

Depending on the state and symbol, the person then ...

- •writes a **symbol** there
 - (possibly overwriting what is already there);
- •may change their state;
- •moves their attention nearby.

Turing machine

Set-up:

- infinitely long **tape** divided into cells
- each cell may contain a **symbol** from a finite alphabet
- head scans one tape cell at a time
- at any time, the machine is in some **state**

Program:

 For each state and symbol, specify the next state, next symbol, and direction (one step left, or one step right).

Computation step:

At each step, apply the appropriate instruction.

TM Components

- A Tape and Tape Head
- An Input Alphabet
- A Tape Alphabet
- A finite set of states
 - Each state is numbered by an integer ≥ 1 .
 - Start State (1)
 - Accept State (2)
 - Note: a Reject state is optional (if crash = reject).
- A finite set of rules letter → letter, direction between states.

Definitions

For a Turing Machine T

- Accept(T)
 - The set of strings leading to the **Accept** state.
 - Called the language accepted by T.
- Reject(T)
- The set of strings that **crash**, or lead to a **Reject** state (if there is one), during execution.
- Loop(T)
 - The set of strings that cause T to loop forever.

Regular Languages

Every **Regular Language** can be accepted by a **Turing Machine**.

Convert Finite Automaton into a Turing Machine

- Label start state with 1.
- Label all other states with a integer \geq 3.
- Change the edge labels.
- ∘ a to a→R
- ∘ **b** to **b→R**
- Delete the second circle from all the Final states, and add an edge from each Final state to **Accept 2**, labelled with $\Delta \rightarrow R$.

Problem

Build a Turing Machine that accepts the language $\{a^nb^n: n \ge 0\}$.

If the current letter is blank, then **Accept** string.

Loop {

If current letter is **a**, then change **a** to **A** & move **right**.

Move **right** over any **a**'s and **B**'s.

If current letter is **b**, then change **b** to **B** & move left.

Move left over any **B**'s.

If current letter is **A**, then move **right** & **exit** the loop.

Else if current letter is **a** move **left** over any **a**'s.

If current letter is **A**, then move **right**.

Move right over any B's.

If current letter is blank, then Accept string.

Problem

Build a Turing Machine that accepts the language $\{a^nb^na^n: n \ge 0\}$.

Loop {

If current letter is blank, then Accept string.

If current letter is a, then change a to A & move right.

Move right over a*bb*.

If current letter is a, then move left.

If current letter is b, then change b to a & move right.

Move right over any a's.

If current letter is blank, then delete 2 a's on the left.

Move left over any a's and b's.

If current letter is A, then move right.

Other Machines

Queue automaton

- Like a deterministic PDA, but uses a Queue.
- 2PDA
- · Like a deterministic PDA, but with 2 Stacks.
- NTM
- A Nondeterministic Turing Machine.
- kTM
- A Turing Machine with k Tapes.

Theorems

- Any language which a Turing machine can accept can also be defined by any of these machines, and visa-versa.
- There are algorithms to convert all these machines (including Turing Machines) into each other.

Turing machines for computing functions

So far, our Turing machines just accept/reject. TMs can also compute functions.

What kinds of objects can Turing machines work with?

•any objects that can be encoded as strings ...

ASCII Code

0	bbaaaa	5	bbabab
1	bbaaab	6	bbabba
2	bbaaba	7	bbabbb
3	bbaabb	8	bbbaaa
4	bbabaa	9	bbbaab

Unary Code for Tuples of Integers

- Tuples of natural numbers
- Example: 1,0,2,3
- Encoding:
- Each integer is coded using the unary code as a string of **a**'s
- Integers are separated by a **b**.
- Example: abbaabaaa

A function is computable if it can be represented as: A Turing Machine Input sequences of natural numbers Output one natural number

Variations on Turing machines

- Direction: stay still, as well as Left/Right
- Tapes:
- · two-way infinite
- multiple tapes
- separate input, output, work tapes
- "tapes" of 2 or more dimensions

.....

Same class of computable functions

Other approaches to computability

recursive function theory

starting with Kurt Gödel, 1931

lambda calculus

Alonzo Church, I 936

Turing machines

Alan Turing, I 936-37

Same class of computable functions

Kurt Gödel (1906-1978

A lon zo Church (1903-1995

Church-Turing Thesis

Any function which can defined by an algorithm can be represented by a Turing Machine.

Note: not a Theorem! But widely accepted.

Evidence:

- different approaches to computability end up in agreement
- long experience, that algorithms can be implemented as programs, and therefore on Turing machines
- no known counterexamples,i.e., no algorithms which seem to be unimplementable

Alan Turing

Alan Turing Centenary Year (2012) website:

http://www.turingcentenary.eu/

B. Jack Copeland, Turing: Pioneer of the InformationAge, OUP, 2013.
Andrew Hodges, Alan Turing: The Enigma, Vintage, London, 1983.
Andrew Hodges, Turing, Phoenix, London, 1997.

Turing bibliography: http://www.turing.org.uk/sources/biblio.html

G. Farr, Calls for a posthumous pardon ... but who was Alan Turing, The Conversation, 22 Dec 2011,

ttps://theconversation.com/calls-for-a-posthumous-pardon-but-who-was-alan-turing-4773

G.Farr, The Imitation Game: is it history, drama or myth?, The Conversation, 9 Jan 2015,

https://theconversation.com/the-imitation-game-is-it-history-drama-or-myth-35849

Revision

Know what a Turing Machine is, and how to use one.

- Be able to convert a Finite Automaton into a TM.
- Be able to build a Turing Machine to define a language. Know the unary code for natural numbers, and tuples
- Know what a computable function is, and how to define one using a TM.
- Enow and understand the Church-Turing Thesis.

Turing machine software

(see Moodle)

Tuatara (graphical environment)

Reading:

Sipser, Ch 3: Section 3.1, pp. 165-176, 181-190.

Preparation:

Sipser, Ch 3, start & end of Section 3.2; Section 3.3