مدارهای الکتریکی و الکترونیکی فصل سیزدهم: تقویتکننده عملیاتی

استاد درس: محمود ممتازپور ceit.aut.ac.ir/~momtazpour

فهرست مطالب

- □ معرفی تقویت کننده عملیاتی
 - 🗖 مدل دقيق آپامپ
 - 🗖 مدل ایدهآل
 - 🗖 کاربردهای آپامپ
 - تقویتکننده معکوسکننده
- تقویت کننده غیر معکوس کننده
 - دنبالكننده ولتاژ (بافر)
 - تقویتکننده چندطبقه
- منبع ولتار و منبع جريان ايدهآل
 - □ مدار مقایسهکننده
 - 🗖 چند مثال

تقويتكننده عملياتي

OP-

AMP

- □ تقویتکننده عملیاتی یا آپامپ، یک مدار مجتمع (IC) است که از آن در کاربردهای متنوع به عنوان یک تقویتکننده استفاده میشود.
 - □ قدمت آن به سال 1940 برمیگردد، زمانی که از آن در مدارهای محاسباتی آنالوگ برای ساخت جمعکننده، تفریقکننده، ضربکننده

مدار داخلی یک آپامپ نمونه

سمبل المان آپامپ

- □ یک آپامپ به طور کلی با سمبل زیر نمایش داده می شود و دارای پایه های زیر است:
 - 🗖 پایههای ورودی: Input
 - 🗖 پایه خروجی: Output
 - V^+,V^- پایههای منبع تغذیه: V^-
 - Offset: پایههای تنظیم آفست

سمبل آپامپ

- □ بیایید فعلاً تمرکز را بر روی پایههای ورودی و خروجی بگذاریم
 و فرض کنیم پایههای دیگر به ولتاژ مناسب و صل شدهاند.
 - □ آپامپ یک تقویت کننده تفاضلی است، یعنی تفاضل ورودی ها را تقویت می کند.

مدل دقیق آپامپ

- □ یک مدار که به عنوان تقویت کننده و لتاژ عمل می کند را می توان با مدار معادل زیر مدل کرد.
 - 🗖 این مدل شامل:
 - (R_i) مقاومت ورودی \square
 - (R_o) مقاومت خروجی \Box
 - \square بهره مدار باز \square

مثال: استفاده از مدل دقیق برای تحلیل تقویت کننده معکوس کننده

□ در مدار زیر، بهره تقویتکننده چقدر است؟

$$\square KCL_1: \frac{-v_d - v_{in}}{R_1} + \frac{-v_d - v_{out}}{R_f} + \frac{-v_d}{R_i} = 0$$

 $\square KCL_2: \frac{v_{out} + v_d}{R_f} + \frac{v_{out} - Av_d}{R_o} = 0$

مثال: استفاده از مدل دقیق برای تحلیل تقویت کننده معکوس کننده

ا با حل دستگاه معادلات و حذف v_d داریم:

□ مشخصات آپامپ LM741:

$$A = 200000$$

$$R_i = 2M\Omega$$

$$R_o = 75\Omega$$

$$R_1=4.7$$
 و $R_f=47$ اگر

$$A_{v} = -9.999$$
 داريم:

مزایای آپامپ به عنوان تقویت کننده ولتاژ

- □ مقاومت ورودی زیاد (در حد مگا اهم تا ترا اهم)
 □ تا بیشینه ولتاژ منبع بر روی ورودی آن بیفتد.
- □ مقاومت خروجی کم (در حد چند اهم تا چند ده اهم)
 □ تا همه ولتاژ خروجی تقویتکننده بر روی بار بیفتد.

بهره قابل تنظیم! (با اعمال مقاومت فیدبک)

دیدیم در مدار روبرو، مادامی که R_{i} R_{i}

مدل ایدهآل

وقتی $A=\infty$ ، A=0 و $R_i=\infty$ باشد، رفتار آپامپ تقریبا به صورت زیر است:

جون v_{out} یک مقدار متناهی دارد (از منبع تغذیه نمیتواند بیشتر شود)، $v_{out} = \frac{v_{out}}{4} \approx 0$

است. $i_{in} \approx 0$ است \Box

مدل ایدهآل آپامپ

🗖 قوانین مدل ایدهآل:

جریانی از ورودیها نمیگذرد.

□ اختلاف ولتاژ بین دو پایه ورودی صفر است.

تقويت كننده معكوس كننده

□ با اعمال KVL و استفاده از قوانین آبامپ ایدهآل داریم:

 $\square v_{out} =$

مثال:

 $\mathbf{v}_{in}(t) = 5\sin 3t \ mV$, $R_f = 47K\Omega$, $R_1 = 4.7K\Omega$

تقويت كننده غير معكوس كننده

$$v_{out} = \Box$$

دنبال کننده ولتار (بافر ولتار)

- ے خروجی به مقاومت R_L بستگی ندارد! بافر با تغییر R_L میتواند جریان لازم برای ثابت نگه داشتن ولتاژ خروجی را تأمین کند.
- □ همچنین این مدار، اثر مقاومت ورودی منبع را نیز از بین میبرد!

مدار جمعکننده آنالوگ

 $v_{out} = v_{out} = v_{out} = v_{out} = v_{out}$

این مدار عملیات جمع را انجام میدهد، همچنین حاصل را به اندازه $rac{R_f}{R_1}$ تقویت

اتصال پشتسرهم چند آپ امپ

این ولتاژ مستقل از طبقه بعدی است! (چرا؟) پس میتوان آپامپها را پشت سرهم متصل کرد بدون اینکه بهره آنها تغییری کند.

آپامپ به عنوان منبع ولتار ایدهآل

 $v_{out} =$

این مدار رگولاتور با دیود زنر را قبلا دیده بودیم نقش آپ امپ تقویت کردن ولتاژ زنر است

آپامپ به عنوان منبع جریان ایدهآل

با استفاده از یک منبع ولتاژ V_{ref} و یک مقاومت R_{ref} میتوان یک منبع جریان $I_S=rac{V_{ref}}{R_{ref}}$ منبع جریان مستقل از بار $I_S=rac{V_{ref}}{R_{ref}}$ است.

منابع تغذیه آپآمپ

- □ آپامپ برای اینکه بتواند تقویت کند باید روشن شود! بنابراین به منبع تغذیه نیاز دارد.
 - V^- معمو V^+ معمو V^+ مقادیر ولتاثر یکسان و معکوس به دو سر V^+ و V^- و صل میکنیم. مقداری بین 5 تا 24 ولت.
 - ر مین منابع تغذیه باید به زمین ورودی $_{18\,V}$ $_{18\,V}$ $_{18\,V}$ و خروجی نیز متصل باشد.

به اشباع رفتن خروجی

اگر مقدار ورودی به گونه ای باشد که مقدار خروجی بعد از تقویت شدن بخواهد بیشتر از V^+ یا کمتر از V^- شود، خروجی به اشباع میرود و همان V^+ یا V^- میماند.

سیگنال خروجی به اشباع رفته و بریده شده است.

نقش فيدبك منفى

- □ نقش فیدبک منفی: تبدیل یک بهره بزرگ و نامعلوم به یک بهره مشخص
 - □ چرا فیدبک را روی پایه مثبت نمیبندیم؟

 v_a فیدبک منفی باعث میشود ولتاژ نز دیک صفر باقی بماند.

مقايسه كننده ولتارث

□ از آپامپ در حالت مدار باز (بدون فیدبک) میتوان به عنوان مقایسه کننده استفاده کرد.

$$v_{out} = \begin{cases} 12 & v_{in} < 2.5 \\ -12 & v_{in} > 2.5 \end{cases}$$

مثال

□ فرض کنید یک سنسور دما داریم که به از ای دمای بین 0 تا 100
 درجه، ولتاژ 0 تا 5 ولت تولید میکند. مداری طراحی کنید که اگر
 دما کمتر از 60 درجه بود، خروجی منطقی 1 بدهد.

شباهت تقویت کننده غیر معکوس کننده به اهر م

 $V_{out} = 2(V_{fn})$

شباهت تقویت کننده غیر معکوس کننده به اهر م

شباهت تقویت کننده غیر معکوس کننده به اهر م

 $V_{out} = 4(V_{fn})$

شباهت تقویت کننده معکوس کننده به اهرم

$$V_1 = ? \square$$

 $V_{out} = ? \square$

$$V_{out} = ? \square$$

$$v_{\rm out} =$$

$$V_{out} = ? \square$$

$$v_{out} =$$

را بیابید. v_{χ} \square

اگر ولتاژ اولیه خازن در لحظه t=0 برابر 10 ولت باشد، ولتاژ v_o را بیابید

$$v_S = 10u(t)mV$$
, $R_1 = R_2 = 10K\Omega$, $C_1 = 20\mu F$, $C_2 = 100\mu F$

 $v_o = ? \square$

$$v_s = \cos(t) m V$$
, $R_1 = R_2 = 10 K \Omega$, $C_1 = 20 \mu F$, $C_2 = 100 \mu F$

(از فازور استفاده کنید) $v_o=?$

را رسم کنید. v_{out} اگر $v_{in}=\sin(200\pi t)$ ولتاژ ارسم کنید.

رسم کنید. v_{in} نمودار v_{out} را بر حسب v_{in}

رسم کنید. v_{in} نمودار v_{out} را بر حسب v_{in}

- این یک فیلتر اکتیو است (استفاده از آپ امپ در فیلتر فرکانس)
 - 🗖 حساب کنید:
 - 🗖 نوع فیلتر
 - 🗖 بهره فیلتر
 - □ فركانس قطع

