Título do artigo

Alan S. Castro
Universidade Federal de São Carlos
UFSCar
Sorocaba, Brasil
email@gmail.com

Lucas Renan A. Nunes
Universidade Federal de São Carlos
UFSCar
Sorocaba, Brasil
email@gmail.com

Cássia C. Monteiro
Universidade Federal de São Carlos
UFSCar
Sorocaba, Brasil
kssia.cm@gmail.com

Thamires C. Luz
Universidade Federal de São Carlos
Ufscar
Sorocaba, Brasil
thamiluz@gmail.com

Resumo—The abstract goes here. DO NOT USE SPECIAL CHARACTERS, SYMBOLS, OR MATH IN YOUR TITLE OR ABSTRACT.

Keywords-web spam; classificador; comparação de métodos

I. Introdução

Com a internet, é comum usarmos sites de busca para encontrarmos resultados como páginas, arquivos, imagens, músicas ou etc . Os resultados exibidos são elencados, através de search engines que geram um rank com os melhores resultados de acordo com o conteúdo relevante na página. O search engine começou por volta de 1994, com o World Wide Web Worm, e tinha por volta de 110.000 páginas web associadas. Após essse ano, isso foi crescendo cada vez mais [1]. Com o crescimento do uso de sites de busca, surgiu o web spam que segundo [2] é definido pela ação de alterar páginas da internet com a intenção de enganar os search engines, de maneira que o conteúdo inserido para elencar a página no rank, não tenha relação com a página em questão. [3], relata que web spam é um dos maiores problemas dos search engines, porque degrada a qualidade dos resultados oferecidos, onde muitas pessoas ficam frustadas ao acessarem páginas que não tem relação com o termo buscado. Ainda relata que o web spam impacta também na área econômica, pois o retorno financeiro de propagandas são aumentadas de acordo com uma boa colocação no rank de busca. Com o crescimento desse problema, estudos se tornam cada vez mais necessários para detectar se uma página usa de métodos fraudulentos para se beneficiar na posição do rank. Com o uso de técnicas de aprendizado de máquina, podemos classificar as páginas como sendo legítimas ou spam, nesse trabalho comparamos três métodos para classificação de web spam. Na sessão II. é realizada a descrição da base de dados utilizada nesse trabalho, e citados os métodos definidos. A sessão III contém uma explicação mais detalhada dos métodos utilizados e

modelo de comparação entre os algortimos, já as escolhas de parâmetros são relatadas na sessão IV. Os resultados são apresentados na sessão V, seguido da conclusão na sessão VI.

II. DESCRIÇÃO DO TRABALHO

Para esse trabalho foi disponibilizado uma base de dados com 3.596 amostras, ou seja páginas, com 137 atributos além do atributo classe. Os atributos são dados contínuos, e descrevem características para páginas que são ou não são spam. A base está balanceada tendo metade das amostras classificadas como spam, e a outra metade classificada como não spam. De acordo com isso, é proposto a comparação de três métodos de aprendizado de máquina, sendo definido a utilização de Naive Bayes, Regressão Logística e Redes Neurais Artificiais, descritas com detalhe na próxima seção. Foi utilizado o software livre Octave para implementação e testes necessários.

III. MÉTODOS

A. Naive Bayes

De acordo com [4], o classificador bayeseano é uma técnica probabilística baseada no teorema de Thomas Bayes, denominado naive Bayes, onde é considerado um algoritmo "ingênuo", devido assumir que todos os atributos possuem relações independentes entre si, o algoritmo de naive Bayes, pode ser descrito como o produtório das probabilidades de cada atributo pelas classes existentes, onde a amostra é classificada para determinada classe, caso o valor calculado de produtório seja superior ao das outras classes. Comparativos entre algoritmos demonstram que o naive Bayes, obteve resultados compatíveis com os métodos de árvore de decisão e redes neurais. Devido a sua simplicidade e o alto poder preditivo, é um dos algoritmos mais utilizados [5].

B. Regressão Logística

A regressão logística, é um classificador que através da função sigmoidal classifica um grupo de amostras. [6], retrata que o método é robusto, flexível e de fácil utilização, com o objetivo de encontrar o melhor modelo que descreva os atríbutos em uma determina classe.

C. Redes Neurais Artifíciais

Redes Neurais Artifíciais é um método que pode ser usado como classificador, foi inicialmente desenvolvido para funcionar como o sistema neural humano, desde então uma grande variedade de modelos de redes foram desenvolvidos, a escolha do modelo da rede depende do problema a ser resolvido, segundo [7] o modelo mais utilizado é o de multilayer perceptrons(MLP), a MLP é constituída de nós fontes que formam a camada de entrada da rede(input layer), uma ou mais camadas intermediárias(hidden layers) e uma camada de saída(output layer). De acordo com [8], as redes neurais têm sido considerada como uma importante ferramenta de mineração de dados.

IV. METODOLOGIA

Os algoritmos foram criados seguindo os critérios de otimização e eficiência. As escolhas dos paramêtros, dificuldades e soluções são descritas nas sub-sessões abaixo.

A. Naive Bayes

A principal dificuldade para a implementação do naive bayes, foi otimizar o algoritmo para obter resultados satisfatórios. Para uma base de dados com atributos contínuos e grande dispersão de dados, o algoritmo apresentou-se lento para o cálculo de probabilidade dos elementos. Verificado que o naive bayes não tem um bom resultado com dados contínuos, para resolver esse problema, foi escolhida a solução de cestas, isto é, uma maneira de discretizar os dados contínuos agrupando-os em cestas de equivalência, uma descrição mais detalhada pode ser encontrada em [9]. Para determinar a escala dos atributos foi utilizado o quartil das amostras de treino, sendo utilizado essa mesma escala para as amostras de teste. Após definida a escala, as amostras foram agrupadas em cinco cestas de valores múltiplos com relação a escala, onde o valor cinco foi escolhido através de testes realizados através da análise do comparativo entre desempenho e acurácia obtida.

B. Regressão Logística

Ao testar o algoritmo implementado de regressão logística, foi constatado que com os 137 atributos da base de dados o resultado apresentado foi bom, porém o desempenho computacional foi alto. Para melhorar o desempenho, foi decidido utilizar a técnica de análise de componentes principais (PCA) para reduzir a dimensionalidade de atributos [10]. Com o uso do PCA, foi cálculado o parâmetro k com a matriz de autovalores S retornada da função SVD, de

modo que a soma dos valores até k calculado sobre o total de atributos, resultasse em uma variância de 99%. Com a matriz de atributos reduzidos a k=87, o método apresentou melhor desempenho computacional e não teve interferência na acurácia apresentada .

C. Redes Neurais Artifíciais

Na implementação de Redes Neurais Artifíciais foram encontradas algumas dificuldades para obter um valor de acurácia aceitável para o método, a principal delas foi a atualização dos pesos, denominados nesse trabalho como theta, onde após tentativas o theta inicial foi parametrizado para ser um valor próximo de zero. Além da escolha do theta inicial, para obtermos um melhor resultado foi necessário aplicar a normalização dos dados, para que ficassem com média 0 e desvio padrão 1. Para obter um bom desempenho computacional, definimos o número de neurônios na camada intermediária utilizando as rules of thumb, para saber mais sobre [11], onde após alguns testes foi definido como sendo 20 neurônios na camada intermediária, obtendo dessa forma a menor taxa de erro, alinhada ao desempenho computacional. Com a escolha do theta inicial sendo de forma randômica, o resultado de acurácia varia de acordo com essa escolha, para otimizarmos o resultado, foi gerado um arquivo contendo um dos melhores thetas apresentado pelos testes, sendo possível classificar novas amostras com o uso desse theta pré-definido, ou utilizar o modo randômico, para maiores detalhes de implementação consulte o apêndice.

D. Medida de desempenho

Para validar os resultados obtidos de todos os algoritmos implementados, utilizamos a validação cruzada, ou *cross-validation* que consiste em separar amostras classificadas da base de dados em k partes, onde após essa separação fazemos n repetições de maneira que cada parte seja utilizada como teste de classificação, e as outras partes sejam utilizados para o treinamento do algoritmo. De acordo com [12], a escolha de k é geralmente igual a dez.

V. RESULTADOS

Para cada método descrito acima foi calculado a acurácia, F-medida, revocação e precisão. Os resultados dos testes são demonstrados na Tabela I de comparação, os resultados em negrito descrevem os melhores resultados encontrados.

	Naive Bayes	Regressão Logística	Redes Neurais
Acurácia	80.358948	90.166835	79.221436
Revocação	84.731058	93.528817	78.928929
Precisão	74.064712	87.636191	79.726997
F-Medida	79.039655	90.486672	79.325956

Tabela I Comparativo entre métodos

Como é possível analisarmos, o método que teve um resultado melhor foi a regressão logística, tendo 90% de acurácia. O desempenho computacional dos métodos naive bayes e regressão logística foram equivalentes, levando menos de um minuto para computar os resultados. Já o redes neurais teve um desempenho computacional maior, devido a sua otmização. Em termos gerais, os algoritmos obtiveram um bom resultado, ficando a acurácia de todos acima ou próximos de 80% e a menor F-Medida igual a 79%.

VI. CONCLUSION

Nosso trabalho demonstra de forma clara e objetiva a implementação de três métodos de aprendizado de máquina. Onde com a comparação de resultados de testes verificamos que a simplicidade e eficiência da regressão logística, apresentou um melhor desempenho e maior acurácia para uma base de dados balanceada e com dados contínuos. As validações cruzadas utilizadas confirmam que todos os métodos são eficientes com dados apresentados de maneira distintas. Dessa forma, podemos concluir que para a classificação de páginas webspam ou legítimas, pode ser feita através de qualquer um dos três métodos utilizados.

REFERÊNCIAS

- [1] S. Brin and L. Page, "The anatomy of a large-scale hypertextual web search engine," 1998.
- [2] Z. n Gyo ngyi, H. Garcia-Molina, and J. Pedersen, "Combating web spam with trustrank," vol. 30, pp. 576–587, 2004.
- [3] L. Araujo and J. Martinez-Romo, "Web spam detection: New classification features based on qualified link analysis and language models," *IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY*, vol. 5, 2010.
- [4] D. Lowd and P. Domingos, "Naive bayes models for probability estimation," *ICML '05 Proceedings of the 22nd* international conference on Machine learning, pp. 143–161, 2005.
- [5] H. Zhang, "The optimality of naive bayes."
- [6] M. Pohar, M. Blas, and S. Turk, "Comparison of logistic regression and linear discriminant analysis: A simulation study," pp. 529 – 536, 2004.
- [7] W. S. Sarle, "Neural networks and statistical models," 1994.
- [8] O. Intrator and N. Intrator, "Interpreting neural-network results: A simulation study," 2001.
- [9] R. R. Bouckaert, "Naive bayes classifiers that perform well with continuous variables," pp. 1089–1094, 2005.
- [10] H. Abdi and L. J. Williams, "Principal component analysis," 2010
- [11] K. L. Priddy and P. E. Keller, "Artificial neural networks: An introduction," pp. 42 47, 2005.
- [12] C. Elkan, "Evaluating classifiers," 2012.

VII. APÊNDICE

Nessa sessão apresentamos um descritivo da implementação, para que os testes possam ser reproduzidos.

A. Naive Bayes

- 1) A base de dados deve estar na mesma pasta dos arquivos de implementação.
- 2) Para rodar o método, chame o arquivo "nb.m".
- 3) Para dados contínuos, é necessário escalar a base de treinamento chamando "nb_escalarAtributos", a função irá retornar a base escalada, e o range utilizado. Como parâmetro de "qtdeBags" utilizamos 5.
- 4) Para calcular as probabilidades dos elementos, chame a função "nb_calcProbabilidade", onde deve ser passado como uma matriz os elementos únicos da matriz escalada como parâmetro.
- 5) Para classificar uma nova amostra que não estava na base de treino, é necessário chamar novamente a "nb_escalarAtributos", informando o range retornado no passo anterior.
- 6) Chame então a função "nb_classificarAtributos" que retornará a classificação da nova amostra.

B. Regressão Logística

- A base de dados deve estar na mesma pasta dos arquivos de implementação.
- 2) Para rodar o método, chame o arquivo "rl.m".
- 3) Para melhor desempenho computacional, usamos a função "reduzirAtributos", que reduz para *k* amostras, de maneira que a variância seja de 99%.
- 4) Setar o theta inicial com uns.
- 5) Chamar a função "fminunc"passando a "rl_funcaoCusto".
- 6) Com o *theta* ótimo calculado, chamar a "rl_predicao" para a nova amostra de dados..

C. Redes Neurais Articiais - MultiLayer Perceptron

- A base de dados deve estar na mesma pasta dos arquivos de implementação.
- 2) Para rodar o método, chame o arquivo "rn_mlp.m".
- 3) Defina o item "tam_cam_inter", essa variável determina a quantidade de neurônios na camada intermediária. Em nossos testes utilizamos 20.
- 4) Para melhor acurácia, chamamos o "normalizarAtributos".
- 5) Para o resultado acima informado, carregamos o *theta* pré-definido no arquivo "theta_ini". Caso deseje um outro valor de *theta* inicial, deve-se descomentar as linhas que geram os *thetas* aleatórios.
- 6) Chamar a função "fminunc" passando a "rn JDeltha".
- 7) Com o *theta* ótimo calculado, utilizar a função "reshape" para separar o *theta1* e *theta2*.
- 8) Chamar a "rn_predicao" para a nova amostra de dados, passando os *thetas* do item anterior.