ЗАДАНИЕ

- 1. Внимательно ознакомьтесь с конструкцией вашей установки. По дополнительным описаниям, расположенным на столах, изучите
 - а) схему подачи воздуха/гелия и схему откачки вашей установки;
 - б) особенности измерительных приборов, используемых в вашей установке (манометр, вольтметр); вычислите цену деления шкалы манометра в $moppax^*$;
 - в) если установка компьютеризирована, включите компьютер и запустите расчётную программу, ознакомьтесь с краткой инструкцией её использования.
- 2. Подготовьте установку к работе:
 - а) включите питание датчиков и измерительного моста;
 - б) убедитесь, что кран подачи гелия K_7 плотно закрыт, и в установке нет запертых объёмов;
 - в) подсоедините установку к форвакуумному насосу (см. описание системы откачки вашей установки) и откачайте её до давления $\sim 0,1$ торр. Это достигается непрерывной работой насоса в течение 3–5 минут (при этом показания манометра M, измеряющего разность давление между установкой и атмосферой, достигнут максимума);

Внимание!

На большинстве установок **выключение насоса** производится в **два** последовательных движения: выключение насоса + соединение насоса с атмосферой. В противном случае после остановки масло из насоса может быть выдавлено в установку, что крайне нежелательно.

- г) после окончания откачки выключите насос (см. замечание выше!).
- 3. Сбалансируйте измерительный мост при предполагаемом «рабочем» давлении (суммарном давлении смеси в эксперименте P_{Σ}). В качестве начального рабочего давления возьмите $P_{\Sigma} \sim 40$ торр. Для этого
 - а) напустите в установку воздух до давления P_{Σ} (см. описание системы напуска воздуха вашей установки). Если давление оказалось слишком большим откачайте его форвакуумным насосом до нужного;
 - б) изолируйте рабочие объёмы, закрыв краны K_1 , K_2 (K_3 открыт);
 - в) сбалансируйте измерительный мост так, чтобы показания вольтметра флуктуировали в среднем около нулевого значения. Используйте по-

^{* 1} Topp = 1 MM pt. ct. $\approx 133,3 \, \Pi a$.

- следовательно ручки регулировки «грубо», затем «точно». После балансировки и до окончания измерений при данном P_{Σ} положения ручек регулировки не менять (*Внимание!* Ручки балансировки моста могут быть очень чувствительны, не касайтесь их в процессе измерений, а также не допускайте вибраций стола).
- 4. Приготовьте рабочие смеси для проведения измерений. В одном из сосудов (например, V_2) должен оказаться чистый воздух, в другом (V_1) смесь воздуха с гелием. Давления в сосудах должны быть *одинаковы* и равны рабочему P_{Σ} . Для этого выполните следующие действия:
 - а) Откачайте всю установку до ~0,1 торр.
 - б) Изолируйте объём V_2 , закрыв краны K_2 и K_3 (туда не должен попасть гелий!). После этого остановите откачку.
 - в) Напустите в установку гелий до давления $P_{\rm He} = 0.1\,P_\Sigma$. Избыточное количество гелия при необходимости откачайте насосом. После этого изолируйте объём $V_{\rm 1}$ (краном $K_{\rm 1}$).
 - г) Перекройте подачу гелия (кран K_7) и откачайте гелий из всех патрубков. Затем остановите откачку.
 - д) Присоедините объём V_2 к установке (кран K_2) и заполните всю установку, исключая объём V_1 , воздухом (без гелия) до давления, избыточного по сравнению с планируемым рабочим давлением ($\sim 1.5 \div 2.0 \, P_\Sigma$ в зависимости от соотношения объёмов патрубков и сосудов см. рекомендации на установке).
 - е) Уравняйте давления в сосудах V_1 и V_2 , создав поток из сосуда с воздухом в сосуд с гелием. Для этого откройте краны K_1 и K_2 при закрытых K_3 и K_4 . Поскольку газ при адиабатическом расширении остывает, необходимо держать краны K_1 и K_2 открытыми в течение некоторого времени (30–60 с), чтобы дать давлениям выравняться при одинаковых температурах. Это время не должно быть слишком велико, чтобы диффузия гелия по патрубкам в обратном направлении не привела к искажению приготовленного состояния.
 - ж) Запишите точное значение установившегося рабочего давления P_{Σ} . Изолируйте объёмы V_1 и V_2 , перекрыв краны K_1 и K_2 . Система должна быть готова к измерениям.
- 5. Процесс диффузии начнётся после открывания крана K_3 . Прежде приготовьте секундомер или компьютерную программу по дополнительному описанию (если установка компьютеризирована). Откройте K_3 и измеряйте, как меняются показания вольтметра с течением времени

- U(t). Измерение продолжайте до тех пор, пока напряжение не упадет хотя бы на 30–50%. При измерениях вручную с секундомером снимайте показания не реже, чем каждые $10\ c$.
- 6. Повторите измерения пп. 3–5 при различных значениях рабочего давления в диапазоне 40–300 торр (всего 4–6 значений). При планировании эксперимента учтите, что с увеличением давления уменьшается коэффициент диффузии, что приводит к пропорциональному увеличению времени наблюдений.
- 7. *Для проверки утверждения о независимости коэффициента взаимной диффузии от пропорций компонентов проведите измерение коэффициента диффузии примеси воздуха в гелии ($P_{\rm He} = 0.9\,P_{\Sigma},\ P_{\rm возд} = 0.1\,P_{\Sigma}$ при $P_{\Sigma} = 40$ торр). При приготовлении исходного состояния согласно п. 4 гелий и воздух меняются местами (гелий при избыточном давлении подаётся в сосуд, заполненный воздухом при малом давлении).

Обработка результатов измерений

- 8. Убедитесь, что процесс диффузии подчиняется закону (8). С этой целью для каждого из рабочих давлений постройте графики зависимости U(t) в логарифмическом масштабе по оси ординат. По угловым коэффициентам и известным геометрическим параметрам установки рассчитайте коэффициенты взаимной диффузии при выбранных рабочих давлениях (см. формулу (6)). Оцените погрешности результатов.
- 9. Постройте график зависимости коэффициента диффузии от обратного давления в координатах $D\left(\frac{1}{P}\right)$. Экстраполируя график к атмосферному давлению, оцените соответствующий коэффициент диффузии. Сравните результат с табличным.
- 10. *По измерениям п. 7 сравните коэффициенты диффузии примеси гелия в воздухе $D_{\rm He-возд}$ и примеси воздуха в гелии $D_{\rm возд-He}$. Предложите объяснение полученным результатам.
- 11. По полученным результатам оцените длину свободного пробега атомов гелия в воздухе $\lambda_{\rm He}$ в условиях эксперимента, а также эффективное сечение столкновений атомов гелия с молекулами воздуха $\sigma_{\rm He-возл}$.

^{*} Необязательный пункт, выполняется по указанию преподавателя.

Вопросы к сдаче работы

- 1. Сформулируйте закон Фика. Дайте определение коэффициента взаимной диффузии.
- 2. Получите выражение для коэффициента диффузии легкой примеси (2).
- 3. В чем состоит квазистационарное приближение? Каковы условия его применимости в данной работе?
- 4. Почему следует ожидать, что график зависимости D от 1/P должен иметь вид прямой линии?
- 5. Как коэффициент диффузии может зависеть от температуры? Оцените погрешность измеренных коэффициентов диффузии, обусловленную колебаниями температуры окружающей среды.
- 6. Покажите, что в условиях опыта концентрацию в сосудах можно считать постоянной.
- 7. Через какое время после открытия крана K_3 квазистационарное распределение концентрации (3) можно считать установившимся?
- 8. Оцените средние скорости течения газов в опыте. Убедитесь в применимости диффузионного приближения, сравнив результат со средними тепловыми скоростями молекул.
- 9. Пользуясь соотношением Эйнштейна для связи подвижности и диффузии, определите среднюю скорость течения примеси гелия в воздухе под действием силы тяжести. Убедитесь, что сила тяжести не оказывает влияния на результаты опыта.

09.02.2018