Joins

Learning Objective

After completing this lab the student should be able to:

- What is joins why we use it?
- Difference between inner join and outer join.
- Outer join types (Left join, Right join, full join).
- Self join and cross join.
- Practical example and exercises.

Tools and Technologies

• Oracle Database 11g Express Edition/Enterprise Edition.

Oracle Credentials for Lab

Enter the Url in your browser http://172.168.8.16:8080/apex

Username hr

Password **hr**

HR Schema

HR LOCATIONS DEPARTMENTS location_id department_id street_address department_name manager_id postal_code city location_id JOB_HISTORY state_province employee_id country_id start_date **EMPLOYEES** end_date employee_id job_id COUNTRIES first_name department_id last_name country_id email country_name phone_number region_id hire_date **JOBS** job_id job_id salary REGIONS job_title commission_pct

manager_id

department_id

region_id

region_name

HR Table Descriptions

min_salary

max salary

Table COUNTRIES		
Name	Null?	Type
COUNTRY_ID COUNTRY_NAME REGION_ID	NOT NULL	CHAR(2) VARCHAR2(40) NUMBER
Table DEPARTMENTS Name	Null?	Type
DEPARTMENT_ID DEPARTMENT_NAME MANAGER ID LOCATION ID		NUMBER (4) VARCHAR2 (30) NUMBER (6) NUMBER (4)
Table EMPLOYEES Name	Null?	Туре
EMPLOYEE_ID FIRST_NAME LAST NAME EMAIL PHONE_NUMBER HIRE_DATE JOB_ID VARCHAR2 (10)	NOT NULL	NUMBER (6) VARCHAR2 (20) VARCHAR2 (25) VARCHAR2 (25) VARCHAR2 (20) NOT NULL DATE NOT NULL
SALARY COMMISSION PCT MANAGER ID DEPARTMENT_ID Table JOBS		NUMBER(8,2) NUMBER(2,2) NUMBER(6) NUMBER(4)
Name	Null?	Туре
JOB ID JOB_TITLE MIN_SALARY MAX_SALARY		VARCHAR2 (10) VARCHAR2 (35) NUMBER (6) NUMBER (6)
Table JOB_HISTORY Name	Null?	Туре
EMPLOYEE ID START DATE END_DATE JOB_ID DEPARTMENT ID	NOT NULL	
Table LOCATIONS Name	Null?	Туре
LOCATION ID STREET_ADDRESS POSTAL CODE	NOT NULL	NUMBER (4) VARCHAR2 (40) VARCHAR2 (12)
CITY STATE_PROVINCE COUNTRY_ID	NOT NULL	VARCHAR2 (30) VARCHAR2 (25) CHAR (2)

Table REGIONS

Name	Nul:	l?	Type
REGION ID	NOT	NULL	NUMBER
REGION NAME			VARCHAR2 (25)

SQL: Joins

Introduction

A join is a query that combines rows from two or more tables, views, or materialized views. Oracle Database performs a join whenever multiple tables appear in the FROM clause of the query. The select list of the query can select any columns from any of these tables. If any two of these tables have a column name in common, then you must qualify all references to these columns throughout the query with table names to avoid ambiguity.

The different types of SQL joins are:

- INNER JOIN (or sometimes called simple join)
- LEFT OUTER JOIN (or sometimes called LEFT JOIN)
- RIGHT OUTER JOIN (or sometimes called RIGHT JOIN)
- FULL OUTER JOIN (or sometimes called FULL JOIN)
- SELF JOIN
- CROSS JOIN

INNER JOIN (simple join)

An inner join (sometimes called a simple join) is a join of two or more tables that returns only those rows that satisfy the join condition.

Syntax

SELECT columns FROM table1

INNER JOIN table 2 ON table 1.column = table 2.column;

Illustration of an INNER JOIN

An INNER JOIN returns the shaded area:

Example

SELECT e.employee_id, e.last_name, e.department_id, d.department_id, d.location_id FROM employees e JOIN departments d ON (e.department_id = d.department_id);

EMPLOYEE_ID	LAST_NAME	DEPARTMENT_ID	DEPARTMENT_ID	LOCATION_ID
200	Whalen	10	10	1700
201	Hartstein	20	20	1800
202	Fay	20	20	1800
124	Mourgos	50	50	1500
141	Rajs	50	50	1500
142	Davies	50	50	1500
143	Matos	50	50	1500

This SQL INNER JOIN example would return all rows from the employees and departments tables where there is a matching ,department_id value in both the employees and departments tables.

LEFT OUTER JOIN or LEFT JOIN

The LEFT JOIN keyword returns all records from the left table (table1), and the matched records from the right table (table2). The result is NULL from the right side, if there is no match.

Illustration of a LEFT OUTER JOIN

Example

SELECT e.last_name, e.department_id, d.department_name FROM employees e LEFT OUTER JOIN departments d ON (e.department_id = d.department_id);

LAST_NAME	DEPARTMENT_ID	DEPARTMENT_NAME
Whalen	10	Administration
Fay	20	Marketing
Hartstein	20	Marketing

De Haan	90	Executive
Kochhar	90	Executive
King	90	Executive
Gietz	110	Accounting
Higgins	110	Accounting
Grant		

20 rows selected.

Right Outer join

The RIGHT JOIN keyword returns all records from the right table (table2), and the matched records from the left table (table1). The result is NULL from the left side, when there is no match.

Syntax

SELECT columns FROM table1 RIGHT [OUTER] JOIN table2 ON table1.column = table2.column;

Illustration of a RIGHT OUTER JOIN

A RIGHT OUTER JOIN returns the shaded area:

Example

Gietz

Higgins

SELECT e.last_name, e.department_id, d.department_name FROM employees e RIGHT OUTER JOIN department id = d.department id):

ON (e.department_id = d.department_id);				
DEPARTMENT_ID	DEPARTMENT_NAME			
10	Administration			
20	Marketing			
20	Marketing			
50	Shipping			
90	Executive			
	DEPARTMENT_ID 10 20 20 50			

110 Accounting110 Accounting

Full Outer join

The FULL OUTER JOIN keyword return all records when there is a match in either left (table1) or right (table2) table records.

Syntax

SELECT column_names
FROM table1
FULL OUTER JOIN table2
ON table1.column_name = table2.column_name;

Illustration of a Full OUTER JOIN

Example

SELECT e.last_name, d.department_id, d.department_name FROM employees e FULL OUTER JOIN departments d ON (e.department_id = d.department_id);

Output

LAST_NAME	DEPARTMENT_ID	DEPARTMENT_NAME
Whalen	10	Administration
Fay	20	Marketing
Hartstein	20	Marketing
King	90	Executive
Gietz	110	Accounting
Higgins	110	Accounting
Grant		
	190	Contracting

21 rows selected.

Self Join

A self-join is a join in which a table is joined with itself (which is also called Unary relationships), especially when the table has a FOREIGN KEY which references its own PRIMARY KEY. To join a table itself means that each row of the table is combined with itself and with every other row of the table.

The self-join can be viewed as a join of two copies of the same table. The table is not actually copied, but SQL performs the command as though it were.

Syntax

SELECT a.column_name, b.column_name FROM table1 a, table1 b ON a.common filed = b.common field;

Example

SELECT e.last_name emp, m.last_name mgr FROM employees e JOIN employees m ON (e.manager_id = m.employee_id);

EMPLOYEE_ID	LAST_NAME	MANAGER_ID
100	King	
101	Kochhar	100
102	De Haan	100
103	Hunold	102
104	Ernst	103
107	Lorentz	103
124	Mourgos	100

LAST_NAME
King
Kochhar
De Haan
Hunold
Ernst
Lorentz
Mourgos

MANAGER_ID in the WORKER table is equal to EMPLOYEE ID in the MANAGER table.

Applying Additional Conditions to a Join

Example

SELECT e.employee_id, e.last_name, e.department_id, d.department_id, d.location_id FROM employees e JOIN departments d ON (e.department_id = d.department_id) AND e.manager_id = 149;

Creating Three-Way Joins with the ON Clause

SELECT employee_id, city, department_name FROM employees e JOIN departments d ON d.department_id = e.department_id JOIN locations l ON d.location id = l.location id;

EMPLOYEE_ID	CITY	DEPARTMENT_NAME
103	Southlake	IT
104	Southlake	IT
107	Southlake	IT
124	South San Francisco	Shipping
141	South San Francisco	Shipping
142	South San Francisco	Shipping
143	South San Francisco	Shipping
144	South San Francisco	Shipping

Cross join

CROSS JOIN returns the Cartesian product of rows from tables in the join. In other words, it will produce rows which combine each row from the first table with each row from the second table.

Example

SELECT last_name, department_name FROM employees CROSS JOIN departments;

Lab Exercise

- **Q1** Implement your Lab example here.
- Q2 Write a query that displays the job-title, employee last name, department id for all employees whose employee job-id is equal to job job-id.
- **Q3** Write a query to display employees' last name and employee number along with their manager's last name and manager number. Label the columns Employee, Emp#, Manager, and Mgr#, respectively.

Lab Instructor:

Qazi Shuja Ud Din (Teaching Fellow) (Riphah International University) Email: qazi.shujauddin@riphah.edu.pk