Reações Redox

2025-05-08

RASCUMIO Índice

Reações Redox					1
Reações Redox Introdução			 	SU.	1
Conceitos Fundamentais			 K		2
Números de Oxidação			 		2
Identificação de Reações Redox			 		2
Balanceamento de Reações Redox			 		2
Exemplo com Python: Simulação de Redox	x	4. W	 		2
Aplicações	51	₽	 		3
Considerações Didáticas	. Kr.		 		3
Referências			 		3

Reações Redox

"A química das reações redox é a base do funcionamento de pilhas, baterias e muitos processos biológicos."

Introdução

Reações de oxidação-redução, ou redox, envolvem a transferência de elétrons entre espécies químicas. São fundamentais na eletroquímica, metabolismo celular e processos industriais.

1

Conceitos Fundamentais

- Oxidação: perda de elétrons.
- Redução: ganho de elétrons.
- O agente oxidante é a substância que reduz (recebe elétrons).
- O agente redutor é a substância que oxida (cede elétrons).

Números de Oxidação

- Representam o estado aparente de carga de um átomo em uma molécula ou íon.
- Úteis para identificar quais elementos são oxidados e reduzidos.

Identificação de Reações Redox

Exemplo:

$$\operatorname{Zn} + \operatorname{Cu}^{2+} \to \operatorname{Zn}^{2+} + \operatorname{Cu}$$

- Zn sofre oxidação $(0 \to +2)$.
- Cu² sofre redução $(+2 \rightarrow 0)$.

Balanceamento de Reações Redox

Método das semi-reações (meio aquoso ácido):

- 1. Separar as semi-reações.
- 2. Balancear elementos, exceto H e O.
- 3. Balancear O com H_2O .
- 4. Balancear H com H⁺.
- 5. Balancear cargas com elétrons.
- 6. Somar e simplificar.

Exemplo com Python: Simulação de Redox

reacoes = { "Zn + Cu2+": {"oxidado": "Zn -> Zn2+", "reduzido": "Cu2+ -> Cu"}, "Fe + Cl2": {"oxidado": "Fe -> Fe2+", "reduzido": "Cl2 -> 2Cl-"}, for r, pares in reacoes.items(): print(f"Reação: {r}") for tipo, eq in pares.items(): print(f" {tipo.title()}: {eq}")

```
Reação: Zn + Cu2+
  Oxidado: Zn -> Zn2+
  Reduzido: Cu2+ -> Cu
Reação: Fe + Cl2
  Oxidado: Fe -> Fe2+
  Reduzido: Cl2 -> 2Cl-
```

Aplicações

- Pilhas e baterias.
- Reações metabólicas (ex: respiração celular).
- Tratamento de águas e processos industriais.

Considerações Didáticas

- Importância do conceito de elétron e analogias visuais.
- Prática com tabelas de potencial padrão e métodos de balanceamento.

Referências

Atkins, P., & Jones, L. (2010). Princípios de Química: Questionando a Vida Moderna e o Meio Ambiente. Bookman.

Autor, A. (2025). Exemplo de Referência. Editora Exemplo.

Oliveira, M. C. (2017). Introdução à Química Geral e Inorgânica. Lidel.

Tipler, P. A., & Mosca, G. (2009). Física para Cientistas e Engenheiros. LTC.