Uma Introdução aos Sistemas Dinâmicos Discretos

Agenor Gonçalves Neto ^a São Paulo, 2020

^aOrientado pelo Prof. Salvador Addas Zanata (IME-USP).

Conceitos Elementares

Família Quadrática

Estudo Inicial

Conjuntos de Cantor

Caos

Conjugação Topológica

Bifurcação

Teorema de Sharkovsky

Conceitos Elementares

Definição

Um sistema dinâmico é função $f:X\to X$, onde X é um espaço métrico.

Para cada $x \in X$, queremos estudar as propriedades da sequência

$$f^{0}(x) = x$$
, $f^{1}(x) = f(x)$, $f^{2}(x) = f(f(x))$, $f^{3}(x) = f(f(f(x)))$,

Conceitos Elementares

Definição

Se $x \in X$, então $\{f^k(x) : k \ge 0\}$ é a órbita de x.

Definição

Seja $p \in X$.

- i. Se f(p) = p, então p é um ponto fixo.
- ii. Se $f^n(p) = p$ para algum $n \ge 1$, então p é um ponto periódico de período n.
- iii. Se $f^n(p) = p$ para algum $n \ge 1$ e $f^k(p) \ne p$ para todo $1 \le k < n$, então p é um ponto periódico de período primo n.

O conjunto dos pontos periódicos será denotado por Per(f) e o conjunto dos pontos periódicos de período primo n será denotado por $Per_n(f)$.

Conceitos Elementares

Definição

Se p é um ponto periódico de período n, então $\mathcal{B}(p)=\{x\in X: \lim_{k\to\infty}f^{kn}(x)=p\}$ é a bacia de atração de p. Além disso, $\mathcal{B}(\infty)=\{x\in X: \lim_{k\to\infty}|f^k(x)|=\infty\}$ é a bacia de atração do infinito.

Definição

Sejam $f: \mathbb{R} \to \mathbb{R}$ uma função de classe \mathcal{C}^1 e p um ponto periódico de período n. Se $|Df^n(p)| < 1$, dizemos que p é um ponto atrator. Além disso, dizemos que uma órbita é atratora se ela contém um ponto atrator.

Teorema

Sejam $f: \mathbb{R} \to \mathbb{R}$ uma função de classe C^1 . Se p um ponto atrator, então existe uma vizinhança de p contida na bacia de atração de p.

Conceitos Elementares

Família Quadrática

Estudo Inicial

Conjuntos de Cantor

Caos

Conjugação Topológica

Bifurcação

Teorema de Sharkovsky

Família Quadrática

Considere a família de funções $h:\mathbb{R} \to \mathbb{R}$ dadas por

$$h(x) = \mu x(1-x),$$

onde $\mu > 1$. Essa família de funções é conhecida por família quadrática.

Figura 1: Gráficos de h para $\mu = 2$, $\mu = 3$ e $\mu = 4$.

Conceitos Elementares

Família Quadrática

Estudo Inicial

Conjuntos de Cantor

Caos

Conjugação Topológica

Bifurcação

Teorema de Sharkovsky

Família Quadrática: Estudo Inicial

Proposição

Se $\mu>1$, então h(0)=0 e $h(p_{\mu})=p_{\mu}$, onde $p_{\mu}=\frac{\mu-1}{\mu}$.

Proposição

Se $\mu > 1$, então $\lim_{k \to \infty} h^k(x) = -\infty$ para todo $x \notin [0,1]$.

Proposição

Se $1 < \mu < 3$, então $\lim_{k \to \infty} h^k(x) = p_\mu$ para todo $x \in (0,1)$.

Desse modo, se $1<\mu<3$, então

$$\mathcal{B}(0)=\{0,1\},\quad \mathcal{B}(p_{\mu})=(0,1)\quad ext{e}\quad \mathcal{B}(\infty)=(-\infty,0)\cup(1,\infty).$$

Conceitos Elementares

Família Quadrática

Estudo Inicial

Conjuntos de Cantor

Caos

Conjugação Topológica

Bifurcação

Teorema de Sharkovsky

Família Quadrática: Conjuntos de Cantor

Se $\mu >$ 4, então existem pontos em [0,1] cujas órbitas não estão contidas em [0,1]. Portanto, seja

$$\Lambda_n = \{ x \in [0,1] : h^n(x) \in [0,1] \}$$

para cada $n \ge 1$. Definindo

$$\Lambda = \bigcap_{n=1}^{\infty} \Lambda_n,$$

podemos restringir o estudo da dinâmica de h em Λ .

Família Quadrática: Conjuntos de Cantor

Proposição

Se $\mu >$ 4, então

- 1. Λ_n é a união de 2^n intervalos fechados disjuntos.
- 2. $h^n:[a,b] \to [0,1]$ é bijetora, onde [a,b] é um dos intervalos que formam Λ_n .

Figura 2: Gráficos de h, h^2 e h^3 para $\mu = 4.1$.

Família Quadrática: Conjuntos de Cantor

Para facilitar as demonstrações, consideramos $\mu > 2 + \sqrt{5}$.

Lema

Se
$$\mu > 2 + \sqrt{5}$$
, então existe $\nu > 1$ tal que

- 1. $|Dh(\Lambda_1)| > \nu$,
- 2. $b-a<\frac{1}{\nu^n}$, onde [a,b] é um dos intervalos que formam Λ_n .

Teorema

Se $\mu > 2 + \sqrt{5}$, então Λ é um conjunto de Cantor.

Observação

Esse teorema é válido para 4 < $\mu \leq$ 2 + $\sqrt{5}$, porém a demonstração é mais complicada.

Conceitos Elementares

Família Quadrática

Estudo Inicial

Conjuntos de Cantor

Caos

Conjugação Topológica

Bifurcação

Teorema de Sharkovsky

Definição

Seja $f: X \to X$ uma função. Dizemos que f é topologicamente transitiva se dados $x, y \in X$ e $\varepsilon > 0$, existem $z \in X$ e $k \ge 0$ tais que $|x - z| < \varepsilon$ e $|y - f^k(z)| < \varepsilon$.

Proposição

Se $\mu>2+\sqrt{5}$, então $h|_{\Lambda}$ é topologicamente transitiva.

Definição

Seja $f: X \to X$ uma função. Dizemos que f depende sensivelmente das condições iniciais se existe $\delta > 0$ com a seguinte propriedade: dados $x \in X$ e $\varepsilon > 0$, existem $y \in X$ e $k \ge 0$ tais que $|x-y| < \varepsilon$ e $|f^k(x) - f^k(y)| > \delta$.

Proposição

Se $\mu>2+\sqrt{5}$, então $h|_{\Lambda}$ depende sensivelmente das condições iniciais.

Definição

Seja $f:X\to X$ uma função. Dizemos que f é caótica se as seguintes condições são válidas:

- i. Per(f) é denso em X.
- ii. f é topologicamente transitiva.
- iii. f depende sensivelmente das condições iniciais.

Teorema

Seja $f: X \to X$ é uma função contínua, onde X é um conjunto infinito. Se Per(f) é denso em X e f é topologicamente transitiva, então f é caótica.

Teorema

Se $\mu>2+\sqrt{5}$, então $h|_{\Lambda}$ é caótica.

Observação

Esse teorema é válido para 4 < $\mu \leq$ 2 + $\sqrt{5}$, porém a demonstração é mais complicada.

Conceitos Elementares

Família Quadrática

Estudo Inicial

Conjuntos de Cantor

Caos

Conjugação Topológica

Bifurcação

Teorema de Sharkovsky

Família Quadrática: Conjugação Topológica

Definição

Sejam $f:X\to X$, $g:Y\to Y$ e $\tau:X\to Y$ funções. Dizemos que f e g são topologicamente conjugadas por τ se as seguintes condições são válidas:

i. au é um homeomorfismo.

ii. $\tau \circ f = g \circ \tau$.

$$x \in X \xrightarrow{f} f(x) \in X$$

$$\downarrow^{\tau} \qquad \qquad \downarrow^{\tau}$$

$$(x) \in Y \xrightarrow{g} \tau(f(x)) = g(\tau(x)) \in Y$$

Família Quadrática: Conjugação Topológica

Proposição

 $\textit{Sejam } f: X \rightarrow X \textit{ e } g: Y \rightarrow Y \textit{ funções. Se } f \textit{ e } g \textit{ são topologicamente conjugadas, então}$

- 1. Per(f) é denso em X se, e somente se, Per(g) é denso em Y.
- 2. f é topologicamente transitiva se, e somente se, g é topologicamente transitiva.

Família Quadrática: Conjugação Topológica

Lema

A função $T:[0,1] \rightarrow [0,1]$ dada por

$$T(x) = \begin{cases} 2x, & x \in \left[0, \frac{1}{2}\right] \\ 2 - 2x, & x \in \left[\frac{1}{2}, 1\right] \end{cases}$$

é caótica.

Teorema

Se $\mu=$ 4, então h e T são topologicamente conjugadas.

Corolário

Se $\mu = 4$, então h é caótica.

Conceitos Elementares

Família Quadrática

Estudo Inicial

Conjuntos de Cantor

Caos

Conjugação Topológica

Bifurcação

Teorema de Sharkovsky

Família Quadrática: Bifurcação

Definição

Seja f_{λ} uma família parametrizada de funções no parâmetro λ . Dizemos que essa família sofre uma bifurcação em λ_0 se existe $\varepsilon > 0$ com a seguinte propriedade: se $\lambda_1 \in (\lambda_0 - \varepsilon, \lambda_0)$ e $\lambda_2 \in (\lambda_0, \lambda_0 + \varepsilon)$, então f_{λ_1} e f_{λ_2} não são topologicamente conjugadas.

Família Quadrática: Bifurcação

Exemplo

A família E_{λ} de funções dadas por $E_{\lambda}(x)=e^{x+\lambda}$ sofre uma bifurcação em $\lambda_0=-1$.

Figura 3: Gráficos de E_{λ} numa vizinhança de 1 para $\lambda=-1.1$, $\lambda=-1$ e $\lambda=-0.9$.

Uma bifurcação com essas características é chamada de bifurcação tangente.

Família Quadrática: Bifurcação

Exemplo

A família quadrática sofre uma bifurcação em $\mu_0=3$.

Figura 4: Gráficos de h^2 numa vizinhança de p_μ para $\mu=2.9,~\mu=3$ e $\mu=3.1.$

Uma bifurcação com essas características é chamada de bifurcação com duplicação de período.

Conceitos Elementares

Família Quadrática

Estudo Inicial

Conjuntos de Cantor

Caos

Conjugação Topológica

Bifurcação

Teorema de Sharkovsky

Teorema de Sharkovsky

Definição (Ordenação de Sharkovsky)

 $3 \, \triangleright \, 5 \, \triangleright \, \cdots \, \triangleright \, 2 \cdot 3 \, \triangleright \, 2 \cdot 5 \, \triangleright \, \cdots \, \triangleright \, 2^2 \cdot 3 \, \triangleright \, 2^2 \cdot 5 \, \triangleright \, \cdots \, \triangleright \, 2^k \cdot 3 \, \triangleright \, 2^k \cdot 5 \, \triangleright \, \cdots \, \triangleright \, 2^2 \, \triangleright \, 2 \, \triangleright \, 1.$

Teorema (Sharkovsky)

Seja $f: \mathbb{R} \to \mathbb{R}$ uma função contínua. Se $\operatorname{Per}_n(f) \neq \emptyset$, então $\operatorname{Per}_m(f) \neq \emptyset$ para todo $n \triangleright m$.

Teorema

Se $n \ge 1$, então existe uma função f com as seguintes propriedades:

- 1. $\operatorname{Per}_n(f) \neq \emptyset$.
- 2. $\operatorname{Per}_m(f) = \emptyset$ para todo $m \triangleright n$.

Conceitos Elementares

Família Quadrática

Estudo Inicial

Conjuntos de Cantor

Caos

Conjugação Topológica

Bifurcação

Teorema de Sharkovsky

Teorema de Singer

Definição (Derivada de Schwarz)

Seja $f: \mathbb{R} \to \mathbb{R}$ uma função de classe \mathcal{C}^3 . A derivada de Schwarz de f é a função $\mathcal{S}f: \mathbb{R} \setminus \mathcal{C}_f \to \mathbb{R}$ dada por

$$Sf(x) = \frac{D^3f(x)}{Df(x)} - \frac{3}{2} \left(\frac{D^2f(x)}{Df(x)}\right)^2,$$

onde $C_f = \{x \in \mathbb{R} : Df(x) = 0\}.$

Estamos interessados em funções que possuem a derivada de Schwarz negativa.

Exemplo

Se $\mu>1$, então $Sh(x)=-6(1-2x)^{-2}<0$ para todo $x\neq \frac{1}{2}.$

Teorema de Singer

Teorema (Singer)

Se Sf < 0 e f possui n pontos críticos, então f possui no máximo n+2 órbitas periódicas atratoras.

Corolário

Se $\mu>1$, então h possui no máximo 1 órbita periódica atratora.

Referências

Burns, K. e Hasselblatt, B. (2011).

The Sharkovsky Theorem: a Natural Direct Proof.

The American Mathematical Monthly, 118(3):229–244.

🔋 Devaney, R. L. (1989).

An Introduction to Chaotic Dynamical Systems.

Perseus Books.

🖥 Holmgren, R. A. (1996).

A First Course in Discrete Dynamical Systems.

Springer-Verlag New York.