CompSci 190: Pivots, Joins & Probability

Jeff Forbes

February 14, 2019

Pivot

- Cross-classifies according to two categorical variables
- Produces a grid of counts or aggregated values
- Two required arguments:
 - First: variable that forms column labels of grid
 - Second: variable that forms row labels of grid
- Two optional arguments (include both or neither)
 - values='column_label_to_aggregate'
 - collect=function_with_which_to_aggregate

(Demo)

Joining Two Tables

Keep all rows in the table that have a match ...

drinks.join('Cafe', discounts,

... for the value in this column ...

... somewhere in this other table's ...

discounts

'Location')

... column that contains matching values.

drinks

Drink	Cafe	Price
Milk Tea	Tea One	4
Espresso	Nefeli	2
Latte	Nefeli	3
Espresso	Abe's	2

Coupon	Location	
25%	Tea One	
50%	Nefeli	
5%	Tea One	
The joined column is		

The joined column is sorted automatically

Cafe	Drink	Price	Coupon
Nefeli	Espresso	2	50%
Nefeli	Latte	3	50%
Tea One	Milk Tea	4	25%
Tea One	Milk Tea	4	5%

Monty Hall Problem

Random Selection

np.random.choice

- Selects at random
- with replacement
- from an array
- a specified number of times

```
np.random.choice(some_array, sample_size)
```

Discussion Question

```
d = np.arange(6) + 1
```

What results from evaluating the following 2 expressions? Are they the same? Do they describe the same process?

```
np.random.choice(d, 1000) + np.random.choice(d, 1000)
```

```
2 * np.random.choice(d, 1000)
```

Probability

- Lowest value: 0
 - Chance of event that is impossible
- Highest value: 1 (or 100%)
 - Chance of event that is certain

- If an event has chance 70%, then the chance that it doesn't happen is
 - 100% 70% = 30%
 - \circ 1 0.7 = 0.3

(Demo)

Equally Likely Outcomes

Assuming all outcomes are equally likely, the chance of an event A is:

Simulating Monty Hall

Multiplication Rule

Chance that two events A and B both happen

- $= P(A \text{ happens}) \times P(B \text{ happens given that } A \text{ has happened})$
- The answer is less than or equal to each of the two chances being multiplied
- The more conditions you have to satisfy, the less likely you are to satisfy them all

Addition Rule

If event A can happen in exactly one of two ways, then

$$P(A) = P(first way) + P(second way)$$

 The answer is greater than or equal to the chance of each individual way

Example: At Least One Head

- In 3 tosses:
 - Any outcome except TTT
 - \circ P(TTT) = (1/2) x (1/2) x (1/2) = 1/8
 - P(at least one head) = 1 P(TTT) = % = 87.5%
- In 10 tosses:
 - 0 1 (1/2)**10
 - 99.9%

http://bit.ly/FoDS-s19-0214

Test 1

- Topics
 - Causality
 - Python
 - Data (names, values & types)
 - Expressions (numbers, strings, arrays, & tables)
 - **Functions**
 - Probability
 - Visualization
 - Charts & Histograms

- Do the review questions. Post questions to Piazza!
 Bring 2 sheets of notes