

SEQUENCE LISTING

<110> Bristol-Myers Squibb Company
<120> POLYNUCLEOTIDE ENCODING A NOVEL METALOPROTEASE, MP-1
<130> D0073 CNT
<150> US 60/266,518
<151> 2001-02-05
<150> US 10/067,443
<151> 2002-02-05
<150> US 60/282,814
<151> 2001-04-10
<160> 71
<170> PatentIn version 3.2
<210> 1
<211> 2197
<212> DNA
<213> Homo sapiens

<220>
<221> CDS
<222> (231)..(1472)

<400> 1
cgacagtctt tagtagggaa aggagacaag tgctagctac tgccgccccaa gtggaaggta 60
ggtaaaattt ctcactcttc accccactga cgctttgcg cacctggaaa agcggttcca 120
gtttgcgcc gtcgcgcct tacagccgac aggagaccag cgctacccaa gtcacgtggg 180
ttcagcctgc agctttcttg gccgaaagg gaattatcta tagagtaagt atg cta 236
Met Leu
1

atc ttg act aag act gca gga gtt ttt ttt aaa cca tca aaa agg aaa 284
Ile Leu Thr Lys Thr Ala Gly Val Phe Phe Lys Pro Ser Lys Arg Lys
5 10 15

gtt tat gaa ttt tta aga agt ttt aat ttt cat cct gga aca cta ttt 332
Val Tyr Glu Phe Leu Arg Ser Phe Asn Phe His Pro Gly Thr Leu Phe
20 25 30

ctt cat aaa ata gta ttg gga att gaa act agt tgt gat gat aca gca 380
Leu His Ile Val Leu Gly Ile Glu Thr Ser Cys Asp Asp Thr Ala
35 40 45 50

gct gct gtg gtg gat gaa act gga aat gtg ttg gga gaa gca ata cat 428
Ala Ala Val Val Asp Glu Thr Gly Asn Val Leu Gly Glu Ala Ile His
55 60 65

cac aca atg gca tgt cat ctt gtg aaa aga aca cat cg ^g gct att ctg His Thr Met Ala Cys His Leu Val Lys Arg Thr His Arg Ala Ile Leu 295 300 305	1148
ttt tgt aag cag aga gac ttg tta cct caa aat aat gca gta ctg gtt Phe Cys Lys Gln Arg Asp Leu Leu Pro Gln Asn Asn Ala Val Leu Val 310 315 320	1196
gca tct ggt gtc gca agt aac ttc tat atc cgc aga gct ctg gaa Ala Ser Gly Gly Val Ala Ser Asn Phe Tyr Ile Arg Arg Ala Leu Glu 325 330 335	1244
att tta aca aac gca aca cag tgc act ttg ttg tgt cct cct ccc aga Ile Leu Thr Asn Ala Thr Gln Cys Thr Leu Leu Cys Pro Pro Pro Arg 340 345 350	1292
cta tgc act gat aat ggc att atg att gca tgg aat ggt att gaa aga Leu Cys Thr Asp Asn Gly Ile Met Ile Ala Trp Asn Gly Ile Glu Arg 355 360 365 370	1340
cta cgt gct ggc ttg ggc att tta cat gac ata gaa ggc atc cgc tat Leu Arg Ala Gly Leu Gly Ile Leu His Asp Ile Glu Gly Ile Arg Tyr 375 380 385	1388
gaa cca aaa tgt cct ctt gga gta gac ata tca aaa gaa gtt gga gaa Glu Pro Lys Cys Pro Leu Gly Val Asp Ile Ser Lys Glu Val Gly Glu 390 395 400	1436
gct tcc ata aaa gta cca caa tta aaa atg gag ata tgatttctgc Ala Ser Ile Lys Val Pro Gln Leu Lys Met Glu Ile 405 410	1482
tg ^t ttcaaaaa agtccctaaa ggg ^t ctcact ctctgac ^c tc agctggagta cagtagccag	1542
atcacaactc actgcaaccc tgacttcctg aactcaagaa atcctcctgc cttagcctct	1602
tgaatagccg ggactacagg tgtgc ^t atgtc catgcc ^c agc caactttatt tctat ^t tttt	1662
gtagagacag gctcttgcca tgg ^t ccgg gctggcctg aactgctgaa ttcaagt ^t at	1722
cctcccac ^c t tggcctccag aagt ^t gctggg attatgggtg tgagccacca tgcctagcc ^a	1782
aatgtttct taaggtatac atttgggtc tt ^t agaagact tatacattt ^t g taatatttat	1842
tactaaat ^t at ctcaaagtat tacaataat gttaccatgt gagctactt ^t gaatcaggct	1902
tcttgcacac caat ^t aaaa atgttaactc ttgatata ^t actactt ^t accactcatg	1962
tcagtcaata aattttaagg tttaagtgc ^a ggc ^c tttg ^t tacagaaatc ctaat ^t tttt	2022
gaaaccataa ctctgac ^c tc acactaaattt cctgtagaca tgct ^t aggaa aatctgctta	2082
gtatcgagat caagaacttc cattcaaaaa gattattcag ttatgttatt tgcatattac	2142
cattgttaaa aataaaaaaaa tttttaaaag atgaaaaaaaaaaaaaaa aaaaa	2197

<210> 2
<211> 414
<212> PRT
<213> Homo sapiens

<400> 2

Met Leu Ile Leu Thr Lys Thr Ala Gly Val Phe Phe Lys Pro Ser Lys
1 5 10 15

Arg Lys Val Tyr Glu Phe Leu Arg Ser Phe Asn Phe His Pro Gly Thr
20 25 30

Leu Phe Leu His Lys Ile Val Leu Gly Ile Glu Thr Ser Cys Asp Asp
35 40 45

Thr Ala Ala Ala Val Val Asp Glu Thr Gly Asn Val Leu Gly Glu Ala
50 55 60

Ile His Ser Gln Thr Glu Val His Leu Lys Thr Gly Gly Ile Val Pro
65 70 75 80

Pro Ala Ala Gln Gln Leu His Arg Glu Asn Ile Gln Arg Ile Val Gln
85 90 95

Glu Ala Leu Ser Ala Ser Gly Val Ser Pro Ser Asp Leu Ser Ala Ile
100 105 110

Ala Thr Thr Ile Lys Pro Gly Leu Ala Leu Ser Leu Gly Val Gly Leu
115 120 125

Ser Phe Ser Leu Gln Leu Val Gly Gln Leu Lys Lys Pro Phe Ile Pro
130 135 140

Ile His His Met Glu Ala His Ala Leu Thr Ile Arg Leu Thr Asn Lys
145 150 155 160

Val Glu Phe Pro Phe Leu Val Leu Leu Ile Ser Gly Gly His Cys Leu
165 170 175

Leu Ala Leu Val Gln Gly Val Ser Asp Phe Leu Leu Leu Gly Lys Ser
180 185 190

Leu Asp Ile Ala Pro Gly Asp Met Leu Asp Lys Val Ala Arg Arg Leu
195 200 205

Ser Leu Ile Lys His Pro Glu Cys Ser Thr Met Ser Gly Gly Lys Ala
210 215 220

Ile Glu His Leu Ala Lys Gln Gly Asn Arg Phe His Phe Asp Ile Lys
225 230 235 240

Pro Pro Leu His His Ala Lys Asn Cys Asp Phe Ser Phe Thr Gly Leu
245 250 255

Gln His Val Thr Asp Lys Ile Ile Met Lys Lys Glu Lys Glu Glu Gly
260 265 270

Ile Glu Lys Gly Gln Ile Leu Ser Ser Ala Ala Asp Ile Ala Ala Thr
275 280 285

Val Gln His Thr Met Ala Cys His Leu Val Lys Arg Thr His Arg Ala
290 295 300

Ile Leu Phe Cys Lys Gln Arg Asp Leu Leu Pro Gln Asn Asn Ala Val
305 310 315 320

Leu Val Ala Ser Gly Gly Val Ala Ser Asn Phe Tyr Ile Arg Arg Ala
325 330 335

Leu Glu Ile Leu Thr Asn Ala Thr Gln Cys Thr Leu Leu Cys Pro Pro
340 345 350

Pro Arg Leu Cys Thr Asp Asn Gly Ile Met Ile Ala Trp Asn Gly Ile
355 360 365

Glu Arg Leu Arg Ala Gly Leu Gly Ile Leu His Asp Ile Glu Gly Ile
370 375 380

Arg Tyr Glu Pro Lys Cys Pro Leu Gly Val Asp Ile Ser Lys Glu Val
385 390 395 400

Gly Glu Ala Ser Ile Lys Val Pro Gln Leu Lys Met Glu Ile
405 410

<210> 3
<211> 463
<212> PRT

<213> Arabidopsis thaliana

<400> 3

Met Val Arg Leu Phe Leu Thr Leu Ser Pro Ala Ile Ser Arg Phe Asn
1 5 10 15

Leu Tyr Pro Gly Ile Ser Ile Leu Ala Arg Asn Asn Asn Ser Leu Arg
20 25 30

Leu Gln Lys His His Lys Leu Lys Thr Lys Thr Pro Thr Phe Ser Leu
35 40 45

Ile Ser Pro Ser Ser Ser Pro Asn Phe Gln Arg Thr Arg Phe Tyr Ser
50 55 60

Thr Glu Thr Arg Ile Ser Ser Leu Pro Tyr Ser Glu Asn Pro Asn Phe
65 70 75 80

Asp Asp Asn Leu Val Val Leu Gly Ile Glu Thr Ser Cys Asp Asp Thr
85 90 95

Ala Ala Ala Val Val Ser Pro Phe Asn His Leu Ser Ser Ser Cys Arg
100 105 110

Ala Glu Leu Leu Val Gln Tyr Gly Gly Val Ala Pro Lys Gln Ala Glu
115 120 125

Glu Ala His Ser Arg Val Ile Asp Lys Val Val Gln Asp Ala Leu Asp
130 135 140

Lys Ala Asn Leu Thr Glu Lys Asp Leu Ser Ala Val Ala Val Thr Ile
145 150 155 160

Gly Pro Gly Leu Ser Leu Cys Leu Arg Val Gly Val Arg Lys Ala Arg
165 170 175

Arg Val Ala Gly Asn Phe Ser Leu Pro Ile Val Gly Val His His Met
180 185 190

Glu Ala His Ala Leu Val Ala Arg Leu Val Glu Gln Glu Leu Ser Phe
195 200 205

Pro Phe Met Ala Leu Leu Ile Ser Gly Gly His Asn Leu Leu Val Leu

210 215 220

Ala His Lys Leu Gly Gln Tyr Thr Gln Leu Gly Thr Thr Val Asp Asp
225 230 235 240

Ala Ile Gly Glu Ala Phe Asp Lys Thr Ala Lys Trp Leu Gly Leu Asp
245 250 255

Met His Arg Ser Gly Gly Pro Ala Val Glu Glu Leu Ala Leu Glu Gly
260 265 270

Asp Ala Lys Ser Val Lys Phe Asn Val Pro Met Lys Tyr His Lys Asp
275 280 285

Cys Asn Phe Ser Tyr Ala Gly Leu Lys Thr Gln Val Arg Leu Ala Ile
290 295 300

Glu Ala Lys Glu Ile Arg Asn Arg Ala Asp Ile Ala Ala Ser Phe Gln
305 310 315 320

Arg Val Ala Val Leu His Leu Glu Glu Lys Cys Glu Arg Ala Ile Asp
325 330 335

Trp Ala Leu Glu Leu Glu Pro Ser Ile Lys His Met Val Ile Ser Gly
340 345 350

Gly Val Ala Ser Asn Lys Tyr Val Arg Leu Arg Leu Asn Asn Ile Val
355 360 365

Glu Asn Lys Asn Leu Lys Leu Val Cys Pro Pro Pro Ser Leu Cys Thr
370 375 380

Asp Asn Gly Val Met Val Ala Trp Thr Gly Leu Glu His Phe Arg Val
385 390 395 400

Gly Arg Tyr Asp Pro Pro Pro Pro Ala Thr Glu Pro Glu Asp Tyr Val
405 410 415

Tyr Asp Leu Arg Pro Arg Trp Pro Leu Gly Glu Glu Tyr Ala Lys Gly
420 425 430

Arg Ser Glu Ala Arg Ser Met Arg Thr Ala Arg Ile His Pro Ser Leu
435 440 445

Thr Ser Ile Ile Arg Ala Asp Ser Leu Gln Gln Gln Thr Gln Thr
450 455 460

<210> 4
<211> 421
<212> PRT
<213> Caenorhabditis elegans

<400> 4

Met Asn Ile Pro Lys Ile Leu Asn Asn Asn Leu Val Leu Lys Arg Ile
1 5 10 15

Phe Cys Arg Asn Tyr Ser Val Lys Val Leu Gly Ile Glu Thr Ser Cys
20 . 25 30

Asp Asp Thr Ala Val Ala Ile Val Asn Glu Lys Arg Glu Ile Leu Ser
35 40 45

Ser Glu Arg Tyr Thr Glu Arg Ala Ile Gln Arg Gln Gln Gly Gly Ile
50 55 60

Asn Pro Ser Val Cys Ala Leu Gln His Arg Glu Asn Leu Pro Arg Leu
65 70 75 80

Ile Glu Lys Cys Leu Asn Asp Ala Gly Thr Ser Pro Lys Asp Leu Asp
85 90 95

Ala Val Ala Val Thr Val Thr Pro Gly Leu Val Ile Ala Leu Lys Glu
100 105 110

Gly Ile Ser Ala Ala Ile Gly Phe Ala Lys Lys His Arg Leu Pro Leu
115 120 125

Ile Pro Val His His Met Arg Ala His Ala Leu Ser Ile Leu Leu Val
130 135 140

Asp Asp Ser Val Arg Phe Pro Phe Ser Ala Val Leu Leu Ser Gly Gly
145 150 155 160

His Ala Leu Ile Ser Val Ala Glu Asp Val Glu Lys Phe Lys Leu Tyr
165 170 175

Gly Gln Ser Val Ser Gly Ser Pro Gly Glu Cys Ile Asp Lys Val Ala
180 185 190

Arg Gln Leu Gly Asp Leu Gly Ser Glu Phe Asp Gly Ile His Val Gly
195 200 205

Ala Ala Val Glu Ile Leu Ala Ser Arg Ala Ser Ala Asp Gly His Leu
210 215 220

Arg Tyr Pro Ile Phe Leu Pro Asn Val Pro Lys Ala Asn Met Asn Phe
225 230 235 240

Asp Gln Ile Lys Gly Ser Tyr Leu Asn Leu Leu Glu Arg Leu Arg Lys
245 250 255

Asn Ser Glu Thr Ser Ile Asp Ile Pro Asp Phe Cys Ala Ser Leu Gln
260 265 270

Asn Thr Val Ala Arg His Ile Ser Ser Lys Leu His Ile Phe Phe Glu
275 280 285

Ser Leu Ser Glu Gln Glu Lys Leu Pro Lys Gln Leu Val Ile Gly Gly
290 295 300

Gly Val Ala Ala Asn Gln Tyr Ile Phe Gly Ala Ile Ser Lys Leu Ser
305 310 315 320

Ala Ala His Asn Val Thr Thr Ile Lys Val Leu Leu Ser Leu Cys Thr
325 330 335

Asp Asn Ala Glu Met Ile Ala Tyr Ser Gly Leu Leu Met Leu Val Asn
340 345 350

Arg Ser Glu Ala Ile Trp Trp Arg Pro Asn Asp Ile Pro Asp Thr Ile
355 360 365

Tyr Ala His Ala Arg Ser Asp Ile Gly Thr Asp Ala Ser Ser Glu Ile
370 375 380

Ile Asp Thr Pro Arg Arg Lys Leu Val Thr Ser Thr Ile His Gly Thr
385 390 395 400

Glu Arg Ile Arg Phe Arg Asn Leu Asp Asp Phe Lys Lys Pro Lys Ser

405

410

415

Pro Lys Thr Thr Glu
420

<210> 5
<211> 327
<212> PRT
<213> Thermotoga maritima

<400> 5

Met Arg Val Leu Gly Ile Glu Thr Ser Cys Asp Glu Thr Ala Val Ala
1 5 10 15

Val Leu Asp Asp Gly Lys Asn Val Val Val Asn Phe Thr Val Ser Gln
20 25 30

Ile Glu Val His Gln Lys Phe Gly Gly Val Val Pro Glu Val Ala Ala
35 40 45

Arg His His Leu Lys Asn Leu Pro Ile Leu Leu Lys Lys Ala Phe Glu
50 55 60

Lys Val Pro Pro Glu Thr Val Asp Val Val Ala Ala Thr Tyr Gly Pro
65 70 75 80

Gly Leu Ile Gly Ala Leu Leu Val Gly Leu Ser Ala Ala Lys Gly Leu
85 90 95

Ala Ile Ser Leu Glu Lys Pro Phe Val Gly Val Asn His Val Glu Ala
100 105 110

His Val Gln Ala Val Phe Leu Ala Asn Pro Asp Leu Lys Pro Pro Leu
115 120 125

Val Val Leu Met Val Ser Gly Gly His Thr Gln Leu Met Lys Val Asp
130 135 140

Glu Asp Tyr Ser Met Glu Val Leu Gly Glu Thr Leu Asp Asp Ser Ala
145 150 155 160

Gly Glu Ala Phe Asp Lys Val Ala Arg Leu Leu Gly Leu Gly Tyr Pro
165 170 175

Gly Gly Pro Val Ile Asp Arg Val Ala Lys Lys Gly Asp Pro Glu Lys
180 185 190

Tyr Ser Phe Pro Arg Pro Met Leu Asp Asp Asp Ser Tyr Asn Phe Ser
195 200 205

Phe Ala Gly Leu Lys Thr Ser Val Leu Tyr Phe Leu Gln Arg Glu Lys
210 215 220

Gly Tyr Lys Val Glu Asp Val Ala Ala Ser Phe Gln Lys Ala Val Val
225 230 235 240

Asp Ile Leu Val Glu Lys Thr Phe Arg Leu Ala Arg Asn Leu Gly Ile
245 250 255

Arg Lys Ile Ala Phe Val Gly Gly Val Ala Ala Asn Ser Met Leu Arg
260 265 270

Glu Glu Val Arg Lys Arg Ala Glu Arg Trp Asn Tyr Glu Val Phe Phe
275 280 285

Pro Pro Leu Glu Leu Cys Thr Asp Asn Ala Leu Met Val Ala Lys Ala
290 295 300

Gly Tyr Glu Lys Ala Lys Arg Gly Met Phe Ser Pro Leu Ser Leu Asn
305 310 315 320

Ala Asp Pro Asn Leu Asn Val
325

<210> 6
<211> 340
<212> PRT
<213> Helicobacter pylori

<400> 6

Met Ile Leu Ser Ile Glu Ser Ser Cys Asp Asp Ser Ser Leu Ala Leu
1 5 10 15

Thr Arg Ile Glu Asp Ala Gln Leu Ile Ala His Phe Lys Ile Ser Gln
20 25 30

Glu Lys His His Ser Ser Tyr Gly Val Val Pro Glu Leu Ala Ser

35

40

45

Arg Leu His Ala Glu Asn Leu Pro Leu Leu Leu Glu Arg Ile Lys Ile
50 55 60

Ser Leu Asn Lys Asp Phe Ser Lys Ile Lys Ala Ile Ala Ile Thr Asn
65 70 75 80

Gln Pro Gly Leu Ser Val Thr Leu Ile Glu Gly Leu Met Met Ala Lys
85 90 95

Ala Leu Ser Leu Ser Leu Asn Leu Pro Leu Ile Leu Glu Asp His Leu
100 105 110

Arg Gly His Val Tyr Ser Leu Phe Ile Asn Glu Lys Gln Thr Cys Met
115 120 125

Pro Leu Ser Val Leu Leu Val Ser Gly Gly His Ser Leu Ile Leu Glu
130 135 140

Ala Arg Asp Tyr Glu Asn Ile Lys Ile Val Ala Thr Ser Leu Asp Asp
145 150 155 160

Ser Phe Gly Glu Ser Phe Asp Lys Val Ser Lys Met Leu Asp Leu Gly
165 170 175

Tyr Pro Gly Gly Pro Ile Val Glu Lys Leu Ala Leu Asp Tyr Arg His
180 185 190

Pro Asn Glu Pro Leu Met Phe Pro Ile Pro Leu Lys Asn Ser Pro Asn
195 200 205

Leu Ala Phe Ser Phe Ser Gly Leu Lys Asn Ala Val Arg Leu Glu Val
210 215 220

Glu Lys Asn Ala Pro Asn Leu Asn Glu Ala Ile Lys Gln Lys Ile Gly
225 230 235 240

Tyr His Phe Gln Ser Ala Ala Ile Glu His Leu Ile Gln Gln Thr Lys
245 250 255

Arg Tyr Phe Lys Ile Lys Arg Pro Lys Ile Phe Gly Ile Val Gly Gly
260 265 270

Ala Ser Gln Asn Leu Ala Leu Arg Lys Ala Phe Glu Asn Leu Cys Asp
275 280 285

Ala Phe Asp Cys Lys Leu Val Leu Ala Pro Leu Glu Phe Cys Ser Asp
290 295 300

Asn	Ala	Ala	Met	Ile	Gly	Arg	Ser	Ser	Leu	Glu	Ala	Tyr	Gln	Lys	Lys
305				310					315					320	

Arg Phe Val Pro Leu Glu Lys Ala Asn Ile Ser Pro Arg Thr Leu Leu
325 330 335

Lys Ser Phe Glu
340

<210> 7
<211> 14
<212> PRT
<213> Homo sapiens

<400> 7

Leu Glu Ile Leu Thr Asn Ala Thr Gln Cys Thr Leu Leu Cys
1 5 10

<210> 8
<211> 13
<212> PRT
<213> Homo sapiens

<400> 8

Val Phe Phe Lys Pro Ser Lys Arg Lys Val Tyr Glu Phe
1 5 10

<210> 9
<211> 13
<212> PRT
<213> *Homo sapiens*

<400> 9

Ser Ala Ile Ala Thr Thr Ile Lys Pro Gly Leu Ala Leu
1 5 10

<210> 10
<211> 13

<212> PRT
<213> Homo sapiens

<400> 10

Glu Ala His Ala Leu Thr Ile Arg Leu Thr Asn Lys Val
1 5 10

<210> 11
<211> 13
<212> PRT
<213> Homo sapiens

<400> 11

Leu Thr Ile Arg Leu Thr Asn Lys Val Glu Phe Pro Phe
1 5 10

<210> 12
<211> 13
<212> PRT
<213> Homo sapiens

<400> 12

Gly Leu Gln His Val Thr Asp Lys Ile Ile Met Lys Lys
1 5 10

<210> 13
<211> 13
<212> PRT
<213> Homo sapiens

<400> 13

His Leu Val Lys Arg Thr His Arg Ala Ile Leu Phe Cys
1 5 10

<210> 14
<211> 13
<212> PRT
<213> Homo sapiens

<400> 14

Glu Val Gly Glu Ala Ser Ile Lys Val Pro Gln Leu Lys
1 5 10

<210> 15
<211> 80
<212> DNA
<213> artificial

<220>
 <223> Synthesized Oligonucleotide With Biotin At 5' End

 <400> 15
 tttatggtag ttgcaattgc tgagaggta cttggagaga ctccactggc agaaagagct 60
 tcttgtacta ttcgttgaat 80

 <210> 16
 <211> 20
 <212> DNA
 <213> homo sapiens

 <400> 16
 ctgctgtggt ggatgaaaact 20

 <210> 17
 <211> 20
 <212> DNA
 <213> homo sapiens

 <400> 17
 tgcgtggcc tccatatatgtat 20

 <210> 18
 <211> 162
 <212> PRT
 <213> homo sapiens

 <400> 18

 Met Arg Ile Leu Val Leu Gly Val Gly Asn Ile Leu Leu Thr Asp Glu
 1 5 10 15

 Ala Ile Gly Val Arg Ile Val Glu Ala Leu Glu Gln Arg Tyr Ile Leu
 20 25 30

 Pro Asp Tyr Val Glu Ile Leu Asp Gly Gly Thr Ala Gly Met Glu Leu
 35 40 45

 Leu Gly Asp Met Ala Asn Arg Asp His Leu Ile Ile Ala Asp Ala Ile
 50 55 60

 Val Ser Lys Lys Asn Ala Pro Gly Thr Met Met Ile Leu Arg Asp Glu
 65 70 75 80

 Glu Val Pro Ala Leu Phe Thr Asn Lys Ile Ser Pro His Gln Leu Gly
 85 90 95

Leu Ala Asp Val Leu Ser Ala Leu Arg Phe Thr Gly Glu Phe Pro Lys
100 105 110

Lys Leu Thr Leu Val Gly Val Ile Pro Glu Ser Leu Glu Pro His Ile
115 120 125

Gly Leu Thr Pro Thr Val Glu Ala Met Ile Glu Pro Ala Leu Glu Gln
130 135 140

Val Leu Ala Ala Leu Arg Glu Ser Gly Val Glu Ala Ile Pro Arg Ser
145 150 155 160

Asp Ser

<210> 19
<211> 439
<212> PRT
<213> homo sapiens

<400> 19

Met Leu Ile Leu Thr Lys Thr Ala Gly Val Phe Phe Lys Pro Ser Lys
1 5 10 15

Arg Lys Val Tyr Glu Phe Leu Arg Ser Phe Asn Phe His Pro Glu Thr
20 25 30

Leu Phe Leu His Lys Ile Val Leu Gly Ile Glu Thr Ser Cys Asp Asp
35 40 45

Thr Ala Ala Ala Val Val Asp Glu Thr Gly Asn Val Leu Gly Glu Ala
50 55 60

Ile His Ser Gln Thr Glu Val His Leu Lys Thr Gly Gly Ile Val Pro
65 70 75 80

Pro Ala Ala Gln Gln Leu His Arg Glu Asn Ile Gln Arg Ile Val Gln
85 90 95

Glu Ala Leu Ser Ala Ser Gly Val Ser Pro Ser Asp Leu Ser Ala Ile
100 105 110

Ala Thr Thr Ile Lys Pro Gly Leu Ala Leu Ser Leu Gly Val Gly Leu
115 120 125

Ser Phe Ser Leu Gln Leu Val Gly Gln Leu Lys Lys Pro Phe Ile Pro
130 135 140

Ile His His Met Glu Ala His Ala Leu Thr Ile Arg Leu Thr Asn Lys
145 150 155 160

Val Glu Phe Pro Phe Leu Val Leu Leu Ile Ser Gly Gly His Cys Leu
165 170 175

Leu Ala Leu Val Gln Gly Val Ser Asp Phe Leu Leu Gly Lys Ser
180 185 190

Leu Asp Ile Ala Pro Gly Asp Met Leu Asp Lys Val Ala Arg Arg Leu
195 200 205

Ser Leu Ile Lys His Pro Glu Cys Ser Thr Met Ser Gly Gly Lys Ala
210 215 220

Ile Glu His Leu Ala Lys Gln Gly Asn Arg Phe His Phe Asp Ile Lys
225 230 235 240

Pro Pro Leu His His Ala Lys Asn Cys Asp Phe Ser Phe Thr Gly Leu
245 250 255

Gln His Val Thr Asp Lys Ile Ile Met Lys Lys Glu Lys Glu Glu Gly
260 265 270

Ile Phe Leu Ile Ser Lys Val Glu Gln Ile Asn Ile Pro Gly Leu Cys
275 280 285

Leu Lys Ile Ala Ala His Phe Cys Arg Tyr Glu Lys Gly Gln Ile Leu
290 295 300

Ser Ser Ala Ala Asp Ile Ala Ala Thr Val Gln His Thr Met Ala Cys
305 310 315 320

His Leu Val Lys Arg Thr His Arg Ala Ile Leu Phe Cys Lys Gln Arg
325 330 335

Asp Leu Leu Pro Gln Asn Asn Ala Val Leu Val Ala Ser Gly Gly Val

340	345	350
Ala Ser Asn Phe Tyr Ile Arg Arg Ala Leu Glu Ile Leu Thr Asn Ala		
355	360	365
Thr Gln Cys Thr Leu Leu Cys Pro Pro Pro Arg Leu Cys Thr Asp Asn		
370	375	380
Gly Ile Met Ile Ala Trp Asn Gly Ile Glu Arg Leu Arg Gly Gly Leu		
385	390	395
400		
Gly Ile Leu His Asp Ile Glu Gly Ile Arg Tyr Glu Pro Lys Cys Pro		
405	410	415
Leu Gly Val Asp Ile Ser Lys Glu Val Gly Glu Ala Ser Ile Lys Val		
420	425	430
Pro Gln Leu Lys Met Glu Ile		
435		
<210> 20		
<211> 14364		
<212> DNA		
<213> homo sapiens		
<400> 20		
actagaggat cccccacatc aagagatact ggtcagcaaa gaaaatttaa gaggagaaag 60		
gatgggctgg gcgtgggtggc tcacgcgtgt aatcccagca ctttgggagg ccgaggcagg 120		
tggatcacga ggtcaagaga tggagaccat cctggccaac atggtgaaac cccgtctcta 180		
ctaaaaatac aaaaatttagc tggcgctggt ggcgtgcacc ttagtcccc gctactcagg 240		
aggctggggc aggagaatcg cttgaacccg ggagggcagag gttgttagtga gccaacctca 300		
caccattgca atccagacgt cgtctcaaaa aaaaaaaaaa aaaaaaaaaatg gagaaagtaa 360		
aatggcaatg tatttttagc actagccaag tcaaagaatg taagacaatg tgactcaagt 420		
ggaaagggt gcatcaggct taaaatacta gccattaaaa gcaccacaca catttctatt 480		
gtttctgttc tgtgtttacc aagcaatctt ctgattataa tttggattta gccttcattg 540		
taatttggtc aatacaagga agataatgac cagcaaactc aactatccta gttccccat 600		
aatttgtttt ctcataaata atacattagt attaatggct tttacacagc attttattag 660		
cagtttggc tgggtaaactc agtactccag agtccagtca cttccagacc tgataaacc 720		

atttcaagcc tataaaagaa tcagatattg aaactcaagt aatcacacta tgggcctgcc	780
gggctggcat acatctgtgg cacgccaatg tggctttcc caagcaatac ccctctctga	840
atacagtttc cattcacatt tccataattc tgtactgcat tttgtcttct gcctgttagac	900
tcaagattctt gagaacagag aatggacctt atctgtatcc ttatactaataa aaagttccta	960
gcataaaagga aataacccaa taaatatgtta acaaataatgaaa ataaaaccta acctagtagg	1020
acataattag gaaataaaata ttgaaaaata ggatttgccc caggcgtggt ggctcatgcc	1080
tgtaatccca gcactttggg aagctgaggc aggtggatca cgaggtcagg agttcaaaac	1140
cagcctggcc aacatagtga aatgtcatct ctactaaaaa tacaaaaatt aactggaat	1200
ggtggcaggc acctgttagtc ccagctactc ggaaggctga ggcaggagaa tcgcttgagc	1260
cccgagggtg gaggtttagt tgagctgaga tggcaccact gcactccagc ctggcaacag	1320
agttagactc catctaaaaa aaaaaagaaaa gattcttata tgtttaata tataatatgt	1380
attaataata aaattttcct ctgaaggcta caaatggaaa gctagacaca caatatctga	1440
gaccaaataa gcataatctag attcagctgg aactctcgat ttatgttcaa cttacatagg	1500
ccatatttt tgagaatgcc catgagtggc attctaacta tctgcataaa agtacagaca	1560
ggcctcagag agcatacatg cttttccccca aataaccctc tcctatgtta caatagagaa	1620
cataaaaaat gtatatacttt gctaaataca tgggacttgt ataagtgcc ctttacatata	1680
attcggtaaa gggaaagata aaattccata ctaatgtgcc ctagagttct cctgtttcac	1740
ataataaacag cattcgact caacactggc caagagtgcc tagacgagga atctaccaat	1800
gatagcacac acaataggat ctgcctgtc ttgacagcac agaagagcat tggatatac	1860
ttgctgaaca taagtggaat tgtaagaaaa ataatacctg atgtgaaagg ttttatgttc	1920
aaactggatt ccagtgtata acagaaataa gctctgacct ctctaacgt atgactaatt	1980
tttcttaact tttaggtttt aattttctt tttcccttg tttaggccaa cagtgcaccc	2040
tagagaaaaat gtgagttatt ttctcttcta gcagttaaga aaacagactc cagtgccaga	2100
tggcctgact tctaattccta gcttgcttt tcctagttgt gtgacctcca aagcacccaa	2160
actctgtggc ccagttgcct gtaaaatgag gacagaaact atttcattggg atttgaaag	2220
aaatataatct acagcaggtg cctggtacat agtgcacact tatcattatt gttacacata	2280
aatgaaattt ttgaaaaaca taagttccaa ataaaaaacc tcaaccatata tctggtaatt	2340
atttacttat ttatctgtat ccacctctag actgtactct gtggcttccc aacatgttgc	2400
tatggattt actcatcttt tataccaga gcttcacaac gtgcaaagtg caggtatata	2460

tgccagccct gtacaacagt ggattctaag gtccttgctt actaaaatct taaataccag	2520
caggggaaaa gcctgactct tggaaaataat ctgtccaatg ttcaaaacaa agttcacaaa	2580
ccaataaaaag aaaaaaaaaa aaaaagcag gtcaagact ttgaaaacat accatgctga	2640
atttcatgta catagtaagg aaggacaaca taatgcatta tggaaatagg atggttaag	2700
gcaactgaat atttaccaca gcctttttt tttttttt tttttttt agacagagtc	2760
tcgctctgta gctcaggctg gagtcagtg gcgcgatctc ggctcactgc tacctccgcc	2820
tcccggtcc cagtcaagc agttctcctg cctcagtc tc ccgattttt ttttttttaa	2880
ttgtaaaaat aagccagccc ctttcttcct agtgaagtgg gagaaacggg ttacactgtc	2940
cgatgagaaa cactccgtt cttggtaac cctgcttaggg ggcgccccta gattccatcc	3000
tatttcctcg atgaaagtat caggtacctc acccctacgt ttagatttga tgatagttcc	3060
cttaaaaatg aatgacgaat aatctacccc atcctttct cacagtagca accaaattcc	3120
agccaagggc aaaaaaaaaa tttttttta atgtagctt gtgtttggaa cttgatgttg	3180
tgtagtcaga caaacctgta ttcggcctcc gctggatcag tcactagctg tgtaatttta	3240
cagaactctc atcacctgca aatctggggg aaatgcaggt gcgcacagag agcgccccgg	3300
gcaaagacgg cctttaagct ttttttcaact aagcatgccc ctcgctagcg gaacagcagc	3360
cagctctgga cgggaccttgc acagttccg atgacatcac ttccggcgc caggttcggg	3420
ctttctcctg cagcgataag ggcagtcgac agtcttagt agggaaagga gacaagtgt	3480
agctactgcc gcccaagtgg aaggtgggtg aaattgctca ctcttcaccc cactgacgct	3540
tttgcgcacc tggaaaagcg gttccagttt gcgcggctcg ccgccttaca gccgacagga	3600
gaccagcgct acccaagtca cgtgggttca gcctgcagct ttcttggccc gaaaggtag	3660
tgttcgtac aatcctcctt gtccagattt tgttaatgca aatctaattc ctcttagttt	3720
tgtctgtctg ggctgcactg cccgcaactg cttctgcaa ataggtcgat catctcta	3780
ccctggatg ccgtgtccct ttagtgtggt ggagaaaggc cctgctttaa cacccagaaa	3840
gttttagaac ggatgatctg ggggcataaa attaggtgt tcgcagtgtg aaaatactag	3900
tgtgttttag ttagggctg ctattatTTT gggggaaaag gatttggaa gatccttgg	3960
atgacaaaac ctgttagcaaa aagtggagat ttaattccaa agattgcaat taaggataaa	4020
ataggtgtta ggttgcagtt ggcgtgtgt tgtttatgtt aactcttggtt tttgaaccaa	4080
atgatccagt tttatTTTga aagatgtttt taggagatgg aatacattaa cagtatTTT	4140

atctgttcca tctgcctttg ttgtttgatt ctttttagaa aatccacatt ttgtcttaat	4200
ttagctgtc aaaaaataaa tagcactttt cagaggactc tatcaattat tgtactttat	4260
attagctgtc ttaatagtaa gtctttgggt aggaacagca tgcaagtaat aataatacta	4320
aaaaatttta tatctgaccc ctgaaaaacc ccttggagaa cattatattc attcataata	4380
ttatttatat tccccatgttg ctatagcctt tacaaaacttt tggtgacttt tacaaaacttt	4440
cctgttaattc tgtaaaacta tatattgaaa aataagctgg ctaatgtcag ttgcaaataa	4500
taagttgttt ctgttaattct ttttcaggaa ttatctatag agtaagtatg ctaatcttga	4560
ctaaagactgc aggagttttt tttaaaccat caaaaaggaa agtttatgaa ttttaagaa	4620
gttttaattt tcatcctgga acactatttc ttcataaaat agtattggga attgaaacta	4680
gttgtgatga tacagcagct gctgtgggtt atgaaaactgg aaatgtgttgg ggagaagcaa	4740
tacattccca aactgaagtt catttaaagt aagtagacat tatcttagtc atttccactt	4800
ttttggaaaaa agtaaaaatca ttctttgtta tttgtcatat ataaaaagttt tcaggagcta	4860
ctgtcttatt ccttttgca aacacttttta ataactgcta tagaaaacct caaacacttc	4920
atcctggctt ttaagggtct tcacaataag gtcccaacacct taactaatcc tggccaaa	4980
agaaaactgag ctcattccca gcttccgtat ttattgattt tccttcagta atgcattcct	5040
tctttctcc acttctatgt ttcatggtct cagctgaagt ccttagaaaaa ctgttagtca	5100
ttgaaaaaaaaa aaatccattt catatttata catataactt gtatttagtac ttaaataaaat	5160
aataatacac tgggttattt aagcatagaa tgggtcaagg attataaaact gtgatgttta	5220
tagaggacta ccaggcaggt tacctaaata aatggacaag ataaaaagtg gaaaatgtct	5280
ggaggaggc actactcagc tctagccagt tgtcatgtgg gaatgcagga cctgtgttat	5340
tagattatta taatttcaa gggaaaatgg aaatccagat ttttttttc ttttttttg	5400
gtgagacaga gtctcactct gtcaccaggc tggagtgca gtcggatgatc tcggctcact	5460
gcaatctccg cctctcgagt tcaaacgatt cccctgtctc agcctcccaa gtagctggga	5520
ttacaggcac gtgccaccac gcccagctga tttttgcat tttggtagag acggggtttc	5580
accatgttgg ccaggatggt ctcaatctcc tgacctcttgc atccacctac ctggcctcc	5640
caaagtgcag ggattacagg cgtgagacac cgccggggc tggaaatcoa gattgttaat	5700
gtatgtcag atttttaca ttagtagcta atttagaata tattaaaata ctcttggag	5760
gtggggcgcc cccgcccagc agccgccccg tctggaggt gggggcgccct ctgcccgcag	5820
ccgccccgtc tttaggggtgg gggccccctcc gcctggccgc cacctctggg aagtgaggag	5880

ccctctgcc	cggctgccac	cccgctggg	agggtaccc	aacagttcat	tgagaacggg	5940
ccatgatgac	aatggcggtt	ttgtcgaata	gaaaaggggg	aaatgtgggg	aaaagaaaaga	6000
gagatcagat	tgttaatgtg	tctgtgtaga	aagaagtaga	cataggagac	tccatTTGT	6060
tctatactaa	aaaaaaatcct	tctgccttgg	gatgctgttg	atctataacc	ttaccccaa	6120
ccccgtgctc	tctgaaacat	gtgctgtgtc	aactcagggt	taaatggatt	aaggcggtg	6180
caagatgtgc	tttgttagac	agatgcttga	aggcagcata	ctcgtaaga	gtcatcacca	6240
ctccctaatac	tcaagtaccc	aggcacacaa	acactgcaga	aggccgcaga	gtcctctgcc	6300
tagaaaaacc	agagacctt	gttcacatgt	ttatctgctg	accttctctc	cactattgtc	6360
ctatggccct	gccaaatccc	cctctccgag	aaacacccaa	gaatgatcaa	taaatactaa	6420
aaaaataaaat	aaataaataa	gaataaaata	ctctacagat	gagtataacct	ttaagctatc	6480
aatttacaac	atctgaatag	tgaaaaagcc	tggtatTTG	gaatcacagt	cctgtatTTG	6540
aatcctgaat	taagcacttg	gtattggctc	tgttaactgta	ggcaagttcc	atatcctctc	6600
tgattctgtt	ttcacatcag	taaaatagga	aaattggctg	ggcgctgtgg	ctcacgcctg	6660
taatcgcatac	actttgggag	gccgaggcga	gtggaccatg	aggtcaggag	attgagacca	6720
tcctggctaa	catggtaaa	ccccatctct	actaaaaata	caaaaaaaaaat	tagccaggcg	6780
tggggcgga	cgcctgttgt	cgcagctact	tgggaggctg	aggcaggaga	atggcgtgaa	6840
cccgaggagc	ggagcttgca	gtgagcagag	atcgccat	tggactccag	cccgggcgac	6900
agagtgagag	tctgtctcaa	aaaaaaaaaa	aggaaaatta	acatctgcct	catagaatta	6960
cgggagggtg	gcattagaaa	taatgtatgt	aaagaggcag	attgagcctc	aaacaataac	7020
tatgtgaaag	ggactgtgtt	ggatattagt	aaggcactgt	gaagtactgc	aaagtcccttgc	7080
gtttaaggaa	gcttaacttg	attatggaga	catgatgtct	agacctacaa	ggagaattaa	7140
tagtgcaagg	cagcatagca	taagaaaaaa	caagtggtgc	agacagtaac	tattattacc	7200
gtgcctcagc	ttcacagttc	tttcagttt	tcctgagtgc	actgaacttt	tgaacatgta	7260
aaagttaatg	gcacagaaag	gactaccctg	accactttat	ctaaattagg	tactccatc	7320
ctatttattc	tgtatcatca	taccctgcat	atTTCTTTG	taataacttcc	acaatttata	7380
catttgcttg	tgtatgtata	atctctctca	gtagagtcta	agtgccttgc	tgacaggggc	7440
catgtctata	ttaatcacta	tgctatgcct	agtgcctaac	acaatgtttg	acacatcaca	7500
ggtgttcagt	ggccttcgt	taggccttca	gtgaatggag	atggaaagaa	tattataacc	7560

tgtgttagtt cattcttgca ctgctataac gaaataacctg agactggta atttataaag	7620
aaaagagggtt taattggttc gtgtttccac aggctgtgt a gaaagcgtgg cagcatctgc	7680
ttctggggag gcccaggagg ctttactca tggcggagg caaattggga gtaggcgtct	7740
tacatggcag gaggcaggacc gagagaggggg gggtgaggtg ctacacactt tttttttct	7800
ttttagatgg agttttgctc ttgtgccca gaccagagtg caatggcga atcttggctc	7860
atcacaaacct ccgcctcccg ggttcaagcg attctccccctcagccttc agaatacgctg	7920
ggattatagg catgcgccac catgcccagc taattttgtt ttttagtag agatggggtt	7980
tctccatgtt ggtcaggctg tctcgaactc ccgacactcaa gtgatccacc cacctcgcc	8040
tcccaaagtg atgggattac aggctgtgaac caccactccc ggcccacact tttaaacaac	8100
aagatctcat gagaactcat tgactatcgc gacacagtac caagggaaa atacgcccc	8160
atgatgttgtt catctccac caggccccat cttcaacatt gggattacc attctacatg	8220
agatttggc agggacacag atccaaacca tatcactaag tgagcattgt cagcaaagac	8280
aaagaagtga gaaagtacta gacattcagt ttagcttag cataggtcac ttgaggagac	8340
tactggcaa acaggcttca gtgataccat ccacctggct catctcagca tttttgaat	8400
acctatactt gccaggcaat acttagggca tttggatac aaatataaat gagacatatg	8460
actcttgctt ttgaacagct caccatataa gtgggttaga gtgtaggctt atattctggt	8520
tcagccattt actaggctta tattctgggtt caaccattta ctacatttga tactgtgcac	8580
agtttttgtt gcctcagttt ccttatctgt aaaatgataa taatgaccac taactcaaat	8640
taatgttgtt aatattaagt gtgaattcct ttaaagcttt tagggcattc ttcttgaata	8700
gcaaggcgtg aatacaagct agctcttagt aacaatagta gttctactac taccatcagt	8760
aaaaatgaag aagacagtaa gcagatcatt gtgaaacagc atggaaaatg caataataga	8820
ggattacttgc gcaggaggag tcccttcttc caagccagaa acctgaaggac cacccttgac	8880
ttctccctca ccattccaca tccaaatcgt tcatttcattc atagtaatc catctccaa	8940
atatttttttgc caactttcctt cttcccttc actgactgag ttcaatccctt tattgtcttt	9000
tgcacagact cttggctata gttcaagcc tcagtggtt ccctgcctct ttgttagctt	9060
tgtccataa tccacactcc atactgtcta caaatcatag acaaaaatac attgttatta	9120
ttaattctt gagaataaag ccatgttctt atttggccct agtgttagc ataatccctg	9180
gaagataaaa tacacagaaa aggcatagaa aggaaaggag ggaggcaaga cagagaagga	9240
agaaaatgagt tgcaggagaa gaatttggat ttgtatgtctc ccaaattcca tgaaactaaa	9300

ggttttgagt	aggggaataa	ctggtagcat	gtgcgttaga	gtattctctg	gcagcaatat	9360
aggatgggct	ctaaggatca	aaggacagag	ttagggaaagt	acaatttagaa	gactgttgaa	9420
cagactgaga	tgagggctt	tgagacttgg	cagtggaggt	ggtgataaac	ttaaatgcgg	9480
agagtgaggg	agagaaaagga	agtaaagatg	aacttgaaa	cccaagggtt	atttgatgcc	9540
actaacaag	atgaggaata	taagagaaaa	agtagcttg	aagaattaag	gaaaattata	9600
ttacaatgtg	gatgtgtga	aatcagatca	tttcatttat	atccccctca	ttgcctgaaa	9660
caatattttt	attactcagc	aaatattcat	tgaatgcact	tactgaggat	tttcatttct	9720
acacatagaa	ctagtagatc	ttgcaacatc	aaatatttgg	agatgatttt	tttttggaaac	9780
tagcagtgcg	tttgcagac	tctattttat	tgctccagtt	ctcatattgt	aaatcaatca	9840
catggtagca	aatttggtgc	tagcaaattt	gtctcttagt	tcttacact	tgatatttgg	9900
agtggccatc	caccatccta	catggaccaa	aaatccaaat	tacaaactct	gagcaccaga	9960
ttcccaaact	gtatttcagg	attgcaagct	atctgctatc	ctgctgtgac	ctcaagtgg	10020
atgtgttttta	aaataaaactc	gtcgctttta	taaaactgtc	tcatgtttc	tcttttagaa	10080
tttcttttct	cccggtcatt	ccagctgaat	agctgaacaa	actttgatgc	cttagtcccc	10140
ctgtcccttt	atattcagtt	agttattata	gttcttaagg	ttctctgtcc	ctttcttcc	10200
attcccacaa	tcgcccagtt	taagatataa	tcattttaca	caaatacttt	cgcagtaatc	10260
tctctaaaaa	tcttctgtca	gcaaggaaat	taattttcct	taaataacaat	ttttcctgt	10320
cctcccatg	ctcaaaaactt	gtatggaatg	ctttacaaga	ttatttttgt	gatttcattt	10380
gtcaacaaac	aaatccatgg	gagtctgttg	tgcataaatt	gaaaaagtca	gaaacattat	10440
ccccttaatt	actgcttact	gagtttaac	catagtgtgc	tatgttagaa	ggcacacaat	10500
tagaaaatac	ttgacttact	cagctatata	atgattaact	tgaagacatg	cttttagctg	10560
taatatcatt	tttcttcatt	tttacaatct	taaaactaca	aaatgctgtc	tttctttctt	10620
tcagaacagg	tgggattgtt	cctccagcag	ctcaacagct	tcacagagaa	aatattcaac	10680
gaatagtaca	agaagcttt	tctgccagtg	gagtctctcc	aagtgacctc	tcagcaattg	10740
caactaccat	aaaaccagga	cttgctttaa	gcctggaggt	gggcttatca	tttagcttac	10800
agctggtagg	acagttaaaa	aagccattca	ttcccaattca	tcatatggag	gctcatgcac	10860
ttactattag	gttgaccaat	aaagtagaaat	ttcccttttt	agttcttttg	atttctggag	10920
gtcactgtct	gttggcatta	gttcaaggag	tttcagattt	tctgcttcat	ggaaagtctt	10980

tggacatgc accaggtgac atgcttgaca aggttaattaa gaattaattt ctccattctt 11040
 ttttgttatg ttgtccattt caactaagta gcaatagatg tgctaccacc attcacctaa 11100
 atatttctga attttatctt agtaaactga aaaaaattca catatggtga gaaaaaatag 11160
 aaagagtagt acacaatttt ataattctta gccttcctta ataaaatggt aagaggttca 11220
 tatctgtaca taaaggctga aatagttgc agatacagtt atgtatTTG ccaaataatg 11280
 tatgtgaaag aacgtgcttc gtaaactaac atactgcaaa aaaggtaaaa taagagaata 11340
 tatatagatt aacataagga cattaaagat gcaatgcaca gaattaaatc acacaattac 11400
 ttacaccaca gacagggtcc cccccccacc ccccttgttt tagaatacta cagaggctac 11460
 tgccatatat aggaaaacaa acaaacaac aaacaaaaca ctgcttccc cagtgaard 11520
 ataggaagta taggacaagt tcttattt gacgttcatc attaagcagt tattgtcaac 11580
 ttcaagccca tttccaacc aatagaagag caaacataga cagggcagt gattggcctc 11640
 ttattgtcg ggtcatcata aggaacaggg ttgtctgctt acctgaatat cagctatagt 11700
 ctatatttgc caaagtatag catgtttat tcattcaggg gtttttgtt ttgttagtaa 11760
 tttcaattt atttcctttg catctttcg tttcacagta tttaatttt tgactctaaa 11820
 aaatatgttt ctgtatagg tggcaagaag actttttta ataaaacatc cagagtgc 11880
 caccatgagt ggtggaaag ccatagaaca tttggccaaa caaggaaata gatttcattt 11940
 tgacatcaa cctcccttgc atcatgctaa aaattgtat tttctttta ctggacttca 12000
 acacgttact gataaaataa taatgaaaaa ggaaaaagag gaaggtatata ttctaattag 12060
 taaagttgaa cagataaata ttccctggatt gtgcctaaaa atagctgctc atttctgcag 12120
 gtattgagaa gggcaaatc ctgtcttcag cagcagacat tgctgccaca gtacagcaca 12180
 caatggcatg tcatcttgc aaaagaacac atcggctat tctgtttgt aagcagagag 12240
 acttgttacc tcaaaataat gcagttactgg taagtttt ctcattttt agtaatagtt 12300
 acactttgca atatgttact ttttcccaa gaccttgacc ttgtgttttag gatgaacaga 12360
 tctttatgcc ttatgttagc cctgacagta tgaaattatg caggatagga aagactaaca 12420
 gccatttctt gtactagttt ggttagttt tgggacagct gtatagctc tatggcacat 12480
 aagtctaatt ttgcatttc ttgttgatt taaaagaggg cttacaataa agaaagtaaa 12540
 tgcagtaact gctatcacta ttttagaaaa aataggtgga tttccttcat ctttgatga 12600
 aatccctttg tttgttgatt ttttaataa gccagtcata tttagcagtg ggaggtggta 12660
 ttccaacttt cgtgacacta atgttgataa agttctgata atccactata ttgtaccagc 12720

caaaatccct ttaattgtgc taaaaggcct tgacaaacat cctgttaac tgtatcttaa 12780
 actttattca tttaaaaatt ataaactaaa gtggaaaat gttaaatgg tagtaattca 12840
 tagatggaat tttacatgga tatcaaagaa taattttc agagttatgt agtaaaatgc 12900
 acaaaataat aaaaattca gggctaaaa tagtgacta tgattgaaat tatattaaat 12960
 aaatatttag atgaaagggtt ggaagaaaat atacaaaaat gctagtaatg tttgtatgct 13020
 attagaatta ttagtaattt ttttcttcc aaattttat tacatagata tgtcatctgc 13080
 ccattaccca tctcaaaatg ggatagttt ttattgtta atgctgatat tttctccag 13140
 gttaatttag cagcttggtt catatccata tatgatagtt atttgggtt tctcaattcc 13200
 ttcaggttgc atctgggtt gtcgcaagta acttctatat ccgcagagct ctggaaattt 13260
 taacaaacgc aacacagtgc actttgttgt gtcctcctcc cagactatgc actgataatg 13320
 gcattatgtat tgcattgttta gccacaggat atacgtgctt cactcataac tatgtaaata 13380
 ttaattgcca ttttatcata ctaagccttc ttccttcaga tcttggagct attgatttt 13440
 tttaatgct tcttatttag gaatggtatt gaaagactac gtgctggctt gggcatttt 13500
 catgacatag aaggcatccg ctatgaacca aagtatgtgg tatcattcat gatctttatg 13560
 caagttacat tacttaagac aaagcctgga tttgccttt atatatgagg tttcattga 13620
 cattctggtg gtacttgaag gaaagttaca taaatttctt tcatgaacct agttaaggtt 13680
 gataccatat gagaaatatt tttgctacag tatcaaatta taaaaatctt ggcaagttt 13740
 ggtgagtttag aaacaggtca tgagtaaggg ttagtgcattt cctccttgg aactagaatg 13800
 taaaactatgt ccatgacctg gactttgca atgtcaagaa catctcagaa ccagcaagta 13860
 tgctggaaa tttaaggaaa acatgcagaa agcattcagg tggagatgt ggttgcattt 13920
 atgctcttac acaggcagtt gagaattgga cgaaagatag ctgtttcctg caagccttat 13980
 ttccctccc aaatcaaagt tccagtgaat agcacagttt tttctttact tttttcttt 14040
 ttttttttag agtcttagtg tcacccaggc tagagtgcag tggcgcatcc tcggctact 14100
 gcaacctctg cttccatata tcaagtgatt gtcatgcctc agcctcctga gtagctggaa 14160
 ttacaggttc acacagctgt gcccagctca tttttgtat ttttagctca tgggtttgc 14220
 cacattggcc aggctggctc cgaactccag gcctcaagtg atccacccac ctcggcctcc 14280
 caaagtgcgtg ggatgacagg tggagccac cacacccatggc tggttttca aattactatc 14340
 aaatctgtgt gttaagttaa ttca 14364

```

<210> 21
<211> 1387
<212> DNA
<213> homo sapiens

<400> 21
caggaattat ctatagagta agtatgctaa tcctgactaa gactgcagga gttttttta      60
aaccatcaa aaggaaagtt tatgaatttt taagaagttt taattttcat cctgaaaacac      120
tatttcctca taaaatagta ttggaaattt aaacttagtt tgatgataca gcagctgctg      180
tggtggatga aactggaaat gtgttggag aagcaataca ttcccaaact gaagttcatt      240
taaaaacagg tgggattgtt cctccagcag ctcaacagct tcacagagaa aatattcaac      300
gaatagtaca agaagctctt tctgccagtg gagtctctcc aagtgacctc tcagcaattt      360
caactaccat aaaaccagga ctgcattaa gcctggagt gggcttatca tttagcttac      420
agctggtagg acagttaaaa aagccattca ttcccattca tcatatggag gctcatgcac      480
ttactattag gttgaccaat aaagtagaaat ttccctttt agttctttt atttctggag      540
gtcactgtct gttggcatta gttcaaggag tttcagattt tctgcttctt ggaaagtctt      600
tggacatago accaggtgac atgcttgaca aggtggcaag aagactttct ttaataaaaac      660
atccagagtg ctccaccatg agtggtggga aagccataga gcatttggcc aaacaaggaa      720
atagattca ttttgacatc aaaccccttgc tgcattatgc taaaattgt gattttctt      780
ttactggact tcaacacgtt actgataaaaa taataatgaa aaaggaaaaaa gaggaaggta      840
tatttctaattt tagtaaagtt gaacagataa atattcctgg attgtgccta aaaatagctg      900
ctcatttctg caggtatgag aaggggcaaa tcctgtctc agcagcagac attgctgcca      960
cagtacagca cacaatggca tgtcatctt tgaaaagaac acatcggtt attctgtttt      1020
gtaaggcagag agacttgtt cctcaaaata atgcagttact gggtgcattt ggtgggtcg      1080
caagtaactt ctatatccgc agagctctgg aaattttAAC aaacgcaaca cagtgcactt      1140
tgttgtgtcc tcctcccaga ctatgcactg ataatggcat tatgattgca tggaatggta      1200
ttgaaagact acgtggtggc ttggcattt tacatgacat agaaggcatc cgctatgaac      1260
caaaatgtcc tcttggagta gacatatcaa aagaagttgg agaagcttcc ataaaagtac      1320
cacaattaaa aatggagata tgatttctgc tggtaaaaaa agtccctaaa ggttagtatta      1380
aggtaa                                              1387

```

<210> 22

<211> 267
<212> PRT
<213> homo sapiens

<400> 22

Met Glu Ala His Ala Leu Thr Ile Arg Leu Thr Asn Lys Val Glu Phe
1 5 10 15

Pro Phe Leu Val Leu Leu Ile Ser Gly Gly His Cys Leu Leu Ala Leu
20 25 30

Val Gln Gly Val Ser Asp Phe Leu Leu Leu Gly Lys Ser Leu Asp Ile
35 40 45

Ala Pro Gly Asp Met Leu Asp Lys Val Ala Arg Arg Leu Ser Leu Ile
50 55 60

Lys His Pro Glu Cys Ser Thr Met Ser Gly Gly Lys Ala Ile Glu His
65 70 75 80

Leu Ala Lys Gln Gly Asn Arg Phe His Phe Asp Ile Lys Pro Pro Leu
85 90 95

His His Ala Lys Asn Cys Asp Phe Ser Phe Thr Gly Leu Gln His Val
100 105 110

Thr Asp Lys Ile Ile Met Lys Lys Glu Glu Gly Ile Glu Lys
115 120 125

Gly Gln Ile Leu Ser Ser Ala Ala Asp Ile Ala Ala Thr Val Gln His
130 135 140

Thr Met Ala Cys His Leu Val Lys Arg Thr His Arg Ala Ile Leu Phe
145 150 155 160

Cys Lys Gln Arg Asp Leu Leu Pro Gln Asn Asn Ala Val Leu Val Ala
165 170 175

Ser Gly Gly Val Ala Ser Asn Phe Tyr Ile Arg Arg Ala Leu Glu Ile
180 185 190

Leu Thr Asn Ala Thr Gln Cys Thr Leu Leu Cys Pro Pro Pro Arg Leu
195 200 205

Cys Thr Asp Asn Gly Ile Met Ile Ala Trp Asn Gly Ile Glu Arg Leu
210 215 220

Arg Ala Gly Leu Gly Ile Leu His Asp Ile Glu Gly Ile Arg Tyr Glu
225 230 235 240

Pro Lys Cys Pro Leu Gly Val Asp Ile Ser Lys Glu Val Gly Glu Ala
245 250 255

Ser Ile Lys Val Pro Gln Leu Lys Met Glu Ile
260 265

```
<210> 23  
<211> 1526  
<212> DNA  
<213> homo sapiens
```

ggctggtcct	gaactgctga	attcaagtga	tcctccacc	ttggcctcca	gaagtgcgtgg	1080
gattatgggt	gtgagccacc	atgcctagcc	aaaatgttcc	ttaaggata	cattttgggt	1140
cttagaagac	ttatacattt	gtaatattta	ttactaaata	tctcaaagta	ttacaataaa	1200
tgttaccatg	tgagctactt	tgaatcaggc	ttcttgacaca	ccaatttaaa	aatgttaact	1260
cttgatatat	acactagtt	taccactcat	gtcagtcaat	aaattttaag	gtttaagtgc	1320
aggccttgt	ttacagaaaat	cctaattttt	tgaaaccata	actctgaccc	gacactaaat	1380
tcctgttagac	atgctaagga	aaatctgctt	agtatcgaga	tcaagaactt	ccattcaaaaa	1440
agattattca	gttatgttat	ttgcatatta	ccattgttaa	aaataaaaaaa	atttttaaaa	1500
gatgaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa			1526

<210> 24
<211> 6
<212> PRT
<213> homo sapiens

<400> 24

His His Met Glu Ala His
1 5

<210> 25
<211> 179
<212> PRT
<213> homo sapiens

<400> 25

Ile Val Leu Gly Ile Glu Thr Ser Cys Asp Asp Thr Ala Ala Ala Val
1 5 10 15

Val Asp Glu Thr Gly Asn Val Leu Gly Glu Ala Ile His Ser Gln Thr
20 25 30

Glu Val His Leu Lys Thr Gly Gly Ile Val Pro Pro Ala Ala Gln Gln
35 40 45

Leu His Arg Glu Asn Ile Gln Arg Ile Val Gln Glu Ala Leu Ser Ala
50 55 60

Ser Gly Val Ser Pro Ser Asp Leu Ser Ala Ile Ala Thr Thr Ile Lys
65 70 75 80

Pro Gly Leu Ala Leu Ser Leu Gly Val Gly Leu Ser Phe Ser Leu Gln
85 90 95

Leu Val Gly Gln Leu Lys Lys Pro Phe Ile Pro Cys Cys Ala Thr Thr
100 105 110

Cys Ala Thr Cys Ala Thr Ala Thr Gly Gly Ala Gly Gly Cys Thr Cys
115 120 125

Ala Thr Gly Cys Ala Cys Thr Thr Ala Cys Thr Ala Thr Thr Ala Gly
130 135 140

Gly Thr Thr Gly Ala Cys Cys Ala Ala Thr Ala Ala Ala Gly Thr Ala
145 150 155 160

Gly Ala Ala Thr Thr Thr Cys Ile His His Met Glu Ala His Ala Leu
165 170 175

Thr Ile Arg

<210> 26
<211> 8
<212> PRT
<213> bacteriophage T7

<400> 26

Asp Tyr Lys Asp Asp Asp Asp Lys
1 5

<210> 27
<211> 733
<212> DNA
<213> homo sapiens

<400> 27
gggatccgga gccccaaatct tctgacaaaaa ctcacacatg cccaccgtgc ccagcacctg 60
aattcgaggg tgcaccgtca gttttcctct tccccccaaa acccaaggac accctcatga 120
tctcccgac tcctgaggtc acatgcgtgg tggtggacgt aagccacgaa gaccctgagg 180
tcaagttcaa ctggtagtgtg gacggcgtgg aggtgcataa tgccaagaca aagccgcggg 240
aggagcagta caacagcacg taccgtgtgg tcagcgtcct caccgtcctg caccaggact 300
ggctgaatgg caaggagtac aagtgcagg tctccaacaa agccctccca accccatcg 360

agaaaaaccat	ctccaaagcc	aaagggcagc	cccgagaacc	acaggtgtac	accctgcccc	420
catccccgga	ttagctgacc	aagaaccagg	tcagcctgac	ctgcctggtc	aaaggcttct	480
atccaagcga	catcgccgtg	gagtggaga	gcaatggca	gccggagaac	aactacaaga	540
ccacgcctcc	cgtgctggac	tccgacggct	ccttcttcct	ctacagcaag	ctcaccgtgg	600
acaagagcag	gtggcagcag	ggaaacgtct	tctcatgctc	cgtgatgcat	gaggctctgc	660
acaaccacta	cacgcagaag	agcctctccc	tgtctccggg	taaatgagtg	cgacggccgc	720
gactctagag	gat					733

<210> 28

<211> 421

<212> PRT

<213> *Caenorhabditis elegans*

<400> 28

Met	Asn	Ile	Pro	Lys	Ile	Leu	Asn	Asn	Asn	Leu	Val	Leu	Lys	Arg	Ile
1					5					10			15		

Phe	Cys	Arg	Asn	Tyr	Ser	Val	Lys	Val	Leu	Gly	Ile	Glu	Thr	Ser	Cys
20							25						30		

Asp	Asp	Thr	Ala	Val	Ala	Ile	Val	Asn	Glu	Lys	Arg	Glu	Ile	Leu	Ser
35						40					45				

Ser	Glu	Arg	Tyr	Thr	Glu	Arg	Ala	Ile	Gln	Arg	Gln	Gln	Gly	Gly	Ile
50					55					60					

Asn	Pro	Ser	Val	Cys	Ala	Leu	Gln	His	Arg	Glu	Asn	Leu	Pro	Arg	Leu
65					70				75			80			

Ile	Glu	Lys	Cys	Leu	Asn	Asp	Ala	Gly	Thr	Ser	Pro	Lys	Asp	Leu	Asp
					85			90				95			

Ala	Val	Ala	Val	Thr	Val	Thr	Pro	Gly	Leu	Val	Ile	Ala	Leu	Lys	Glu
					100			105			110				

Gly	Ile	Ser	Ala	Ala	Ile	Gly	Phe	Ala	Lys	Lys	His	Arg	Leu	Pro	Leu
					115			120			125				

Ile	Pro	Val	His	His	Met	Arg	Ala	His	Ala	Leu	Ser	Ile	Leu	Leu	Val
					130			135			140				

Asp Asp Ser Val Arg Phe Pro Phe Ser Ala Val Leu Leu Ser Gly Gly
145 150 155 160

His Ala Leu Ile Ser Val Ala Glu Asp Val Glu Lys Phe Lys Leu Tyr
165 170 175

Gly Gln Ser Val Ser Gly Ser Pro Gly Glu Cys Ile Asp Lys Val Ala
180 185 190

Arg Gln Leu Gly Asp Leu Gly Ser Glu Phe Asp Gly Ile His Val Gly
195 200 205

Ala Ala Val Glu Ile Leu Ala Ser Arg Ala Ser Ala Asp Gly His Leu
210 215 220

Arg Tyr Pro Ile Phe Leu Pro Asn Val Pro Lys Ala Asn Met Asn Phe
225 230 235 240

Asp Gln Ile Lys Gly Ser Tyr Leu Asn Leu Leu Glu Arg Leu Arg Lys
245 250 255

Asn Ser Glu Thr Ser Ile Asp Ile Pro Asp Phe Cys Ala Ser Leu Gln
260 265 270

Asn Thr Val Ala Arg His Ile Ser Ser Lys Leu His Ile Phe Phe Glu
275 280 285

Ser Leu Ser Glu Gln Glu Lys Leu Pro Lys Gln Leu Val Ile Gly Gly
290 295 300

Gly Val Ala Ala Asn Gln Tyr Ile Phe Gly Ala Ile Ser Lys Leu Ser
305 310 315 320

Ala Ala His Asn Val Thr Thr Ile Lys Val Leu Leu Ser Leu Cys Thr
325 330 335

Asp Asn Ala Glu Met Ile Ala Tyr Ser Gly Leu Leu Met Leu Val Asn
340 345 350

Arg Ser Glu Ala Ile Trp Trp Arg Pro Asn Asp Ile Pro Asp Thr Ile
355 360 365

Tyr Ala His Ala Arg Ser Asp Ile Gly Thr Asp Ala Ser Ser Glu Ile
370 375 380

Ile Asp Thr Pro Arg Arg Lys Leu Val Thr Ser Thr Ile His Gly Thr
385 390 395 400

Glu Arg Ile Arg Phe Arg Asn Leu Asp Asp Phe Lys Lys Pro Lys Ser
405 410 415

Pro Lys Thr Thr Glu
420

<210> 29
<211> 37
<212> DNA
<213> Homo sapiens

<400> 29
gcagcagcgg ccgctttctt cataaaatag tattggg

37

<210> 30
<211> 36
<212> DNA
<213> Homo sapiens

<400> 30
gcagcagtcg actatatcca ttttaattg tggtac

36

<210> 31
<211> 39
<212> DNA
<213> Homo sapiens

<400> 31
gcagcagcgg ccgcatgcta atcttgacta agactgcag

39

<210> 32
<211> 36
<212> DNA
<213> Homo sapiens

<400> 32
gcagcagtcg acccatgcaa tcataatgcc attatc

36

<210> 33
<211> 23
<212> DNA
<213> Homo sapiens

<400> 33	
caggtgcagc tggcagtc tgg	23
<210> 34	
<211> 23	
<212> DNA	
<213> Homo sapiens	
<400> 34	
caggtaact taaggagtc tgg	23
<210> 35	
<211> 23	
<212> DNA	
<213> Homo sapiens	
<400> 35	
gaggtgcagc tggcagtc tgg	23
<210> 36	
<211> 23	
<212> DNA	
<213> Homo sapiens	
<400> 36	
caggtgcagc tgcaggagtc ggg	23
<210> 37	
<211> 23	
<212> DNA	
<213> Homo sapiens	
<400> 37	
gaggtgcagc tggcagtc tgc	23
<210> 38	
<211> 23	
<212> DNA	
<213> Homo sapiens	
<400> 38	
caggtacagc tgcaggagtc agg	23
<210> 39	
<211> 24	
<212> DNA	
<213> Homo sapiens	
<400> 39	
tgaggagacg gtgaccaggc tgcc	24

<210> 40		
<211> 24		
<212> DNA		
<213> Homo sapiens		
<400> 40		
tgaagagacg gtgaccattg tccc		24
<210> 41		
<211> 24		
<212> DNA		
<213> Homo sapiens		
<400> 41		
tgaggagacg gtgaccaggg ttcc		24
<210> 42		
<211> 24		
<212> DNA		
<213> Homo sapiens		
<400> 42		
tgaggagacg gtgaccgtgg tccc		24
<210> 43		
<211> 23		
<212> DNA		
<213> Homo sapiens		
<400> 43		
gacatccaga tgaccaggc tcc		23
<210> 44		
<211> 23		
<212> DNA		
<213> Homo sapiens		
<400> 44		
gatgttgtga tgactcagtc tcc		23
<210> 45		
<211> 23		
<212> DNA		
<213> Homo sapiens		
<400> 45		
gatattgtga tgactcagtc tcc		23
<210> 46		
<211> 23		

```

<212> DNA
<213> Homo sapiens

<400> 46
gaaatttgtgt tgacgcagtc tcc 23

<210> 47
<211> 23
<212> DNA
<213> Homo sapiens

<400> 47
gacatcgtga tgaccaggc tcc 23

<210> 48
<211> 23
<212> DNA
<213> Homo sapiens

<400> 48
gaaacgacac tcacgcagtc tcc 23

<210> 49
<211> 23
<212> DNA
<213> Homo sapiens

<400> 49
gaaattgtgc tgactcagtc tcc 23

<210> 50
<211> 23
<212> DNA
<213> Homo sapiens

<400> 50
cagtctgtgt tgacgcagcc gcc 23

<210> 51
<211> 23
<212> DNA
<213> Homo sapiens

<400> 51
cagtctgccc tgactcagcc tgc 23

<210> 52
<211> 23
<212> DNA
<213> Homo sapiens

```

<400> 52	
tcctatgtgc tgactcagcc acc	23
<210> 53	
<211> 23	
<212> DNA	
<213> Homo sapiens	
<400> 53	
tcttctgagc tgactcagga ccc	23
<210> 54	
<211> 23	
<212> DNA	
<213> Homo sapiens	
<400> 54	
cacgttatac tgactcaacc gcc	23
<210> 55	
<211> 23	
<212> DNA	
<213> Homo sapiens	
<400> 55	
caggctgtgc tcactcagcc gtc	23
<210> 56	
<211> 23	
<212> DNA	
<213> Homo sapiens	
<400> 56	
aattttatgc tgactcagcc cca	23
<210> 57	
<211> 24	
<212> DNA	
<213> Homo sapiens	
<400> 57	
acgtttgatt tccacacctgg tccc	24
<210> 58	
<211> 24	
<212> DNA	
<213> Homo sapiens	
<400> 58	
acgtttgatc tccagacctgg tccc	24

<210> 59	
<211> 24	
<212> DNA	
<213> Homo sapiens	
<400> 59	
acgtttgata tccacttgg tccc	24
<210> 60	
<211> 24	
<212> DNA	
<213> Homo sapiens	
<400> 60	
acgtttgatc tccaccttgg tccc	24
<210> 61	
<211> 24	
<212> DNA	
<213> Homo sapiens	
<400> 61	
acgttaatc tccagtcgtg tccc	24
<210> 62	
<211> 23	
<212> DNA	
<213> Homo sapiens	
<400> 62	
cagtctgtgt tgacgcagcc gcc	23
<210> 63	
<211> 23	
<212> DNA	
<213> Homo sapiens	
<400> 63	
cagtctgccc tgactcagcc tgc	23
<210> 64	
<211> 23	
<212> DNA	
<213> Homo sapiens	
<400> 64	
tcctatgtgc tgactcagcc acc	23
<210> 65	
<211> 23	

<212> DNA		
<213> Homo sapiens		
<400> 65		
tcttctgagc tgactcagga ccc		23
<210> 66		
<211> 23		
<212> DNA		
<213> Homo sapiens		
<400> 66		
cacgttatac tgactcaacc gcc		23
<210> 67		
<211> 23		
<212> DNA		
<213> Homo sapiens		
<400> 67		
caggctgtgc tcactcagcc gtc		23
<210> 68		
<211> 23		
<212> DNA		
<213> Homo sapiens		
<400> 68		
aattttatgc tgactcagcc cca		23
<210> 69		
<211> 21		
<212> DNA		
<213> Homo sapiens		
<400> 69		
tggcattatg attgcattgg a		21
<210> 70		
<211> 22		
<212> DNA		
<213> Homo sapiens		
<400> 70		
gcggatgcct tctatgtcat gt		22
<210> 71		
<211> 27		
<212> DNA		
<213> Homo sapiens		

<400> 71
atgccccaaagc cagcacgtac tctttca

27

\