Aspect Ratio =
$$\frac{\pm}{w}$$

- > in older processes AR << 1,
- → in modern processes AR ≈ 2.

Wire Resistance:

Resistance
$$R = PL$$
 $\frac{1}{2} \cdot \omega$

$$R = R_0 \cdot L$$

$$\rightarrow$$
 R₀ = Sheet resistance (Ω/\Box)

- 1 is a dimentionless unit.
- Count number of squares

R = R # (# of squares)

Choice of Metals;

o exit full screen, press Esc

- upto 180 nm technology, most wires were aluminum.
- Modern brocesses often use copper.
 - Cu atoms diffuse into silicon and damage the FETs.
 - Must be surrounded by a diffusion barrier.

Metal	Bulk Resistivity (452-on)
Silver	1.6
Copper	1.7
Gold	2.2
Aluminum	2.8
Tungsten	5.3
Tungsten Molybdenum	5.3

Contact Resistance:

- Contacts and vias also have significant resistance (2-2052)
- To reduce resistance, use many contacts.
- Many small contacts for current crowding around the periphery.

in parallel to reduce the resistance.

Wire Capacitance:

- Wire has capacitance per unit length.
 - To neighbors.
 - To layers above and below.

- Total Capacitance:

Lumped Element Models:

- Wires are a distributed system
 - Approximate with lumped element models.

$$\frac{R}{Tc} \rightarrow \frac{R/N}{T} \frac{R$$

- 3 regment II-model is accurate to 3% in simulation.

Cross talk Noise:

- Crosstalk causes noise on nonswitching wires.
- if victim in floating:
 - model as capacitive voltage divider.

$$\Delta V_{vickim} = \frac{C_{adj}}{C_{gnd.} + C_{odj}} * \Delta V_{aggrana}$$

