Homework 2

Soc 225: Data & Society

Brian Park

2023 - 04 - 18

Contents

Pı	roblem 1: Piping Hot Variables	2
	1.1: Get the data	2
	1.2: Set up your R environment	2
	1.3: Use the data to answer a question	2
	1.4: Build on your answer	3
	1.5: Reflect and interpret	4
2.	Prepare and Visualize data	4
	2.1. Set up your environment	4
	2.2: Turn price into a number	Ę
	2.3: Make a scatterplot	Ę
	2.4: Make a boxplot	
	2.5: Interpret your answer	Ę
	Bonus: how did we make the data?	Ę
3.	Your own data	Ę
	3.1. Looking at the dataset you chose for homework 1, think about a research question you'd like to investigate (try search about existing studies around your question). What variables do you plan to use to answer your question?	5
	3.2. What is one way that you have to modify or examine your data to begin to answer your question?	6
	3.3. Using the functions we've worked with in class (select, filter, arrange, mutate), plus any others you'd like to use, clean and transform your data set to make it ready for further exploration.	6

Write all code in the chunks provided!

Hints

Remember to unzip to a real directory before running everything!

Problem 1 should be roughly analogous to what we've done in class, with a few extensions. There are hints at the bottom of this document if you get stuck. If you still can't figure it out, go to google/stack exchange/ask a friend. Finally, email your TA or come to office hours:).

15

Problem 1: Piping Hot Variables

This problem uses dplyr verbs to answer questions about an Airbnb data set.

1.1: Get the data

Go to Inside Airbnb and download the "Detailed Listings" data for Seattle, listings.csv.gz. This file has many more variables than the "Summary" file we've been using in class. Put it in a data/ subfolder in your hw-02 project folder.

[This is a compressed (gzipped) file, but R should be able to handle it as-is. If you run into trouble, try unzipping the file before reading it into R.]

1.2: Set up your R environment

a. Load the tidyverse

\$ host neighbourhood

b. Read the detailed Airbnb data into R

```
library(tidyverse)
```

```
## -- Attaching core tidyverse packages -----
                                                    ----- tidyverse 2.0.0 --
## v dplyr
              1.1.1
                        v readr
                                     2.1.4
## v forcats
               1.0.0
                                     1.5.0
                        v stringr
## v ggplot2
              3.4.2
                        v tibble
                                     3.2.1
## v lubridate 1.9.2
                        v tidyr
                                     1.3.0
## v purrr
               1.0.1
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                    masks stats::lag()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become error
```

```
1.3: Use the data to answer a question
```

listings <- read.csv(gzfile("data/listings.csv.gz"))</pre>

For how many units does the host live in a different neighborhood from the listing? For how many units does the host live in the same neighborhood as the listing?

Try to figure out which variables to use from their names, and think about which verbs you've learned about might work to answer this question. See the hints at the end if you need help.

```
listings %>%
  select(neighbourhood_cleansed, host_neighbourhood) %>%
  filter(!(neighbourhood_cleansed %in% host_neighbourhood)) %>%
  glimpse()

## Rows: 14,246
## Columns: 2
```

<chr> "Indische Buurt", "Grachtengordel", "Grachtengo~

\$ neighbourhood_cleansed <chr> "Oostelijk Havengebied - Indische Buurt", "Cent~

```
listings %>%
  select(neighbourhood_cleansed, host_neighbourhood) %>%
  filter(neighbourhood_cleansed %in% host_neighbourhood) %>%
  glimpse()
```

There are 10,405 units where the host lives in a different neighborhood from the listing. There are 5,711 units where the host lives in the same neighborhood as the listing.

1.4: Build on your answer

Building on that work, what is the average number of listings for hosts that live in the same neighborhood as their listing? What's the average for hosts who live in different neighborhoods from their listing?

The mean function will take the average of a variable, but you might need to look up how to use it. See the hints for more suggestions if you get stuck.

```
listings %>%
  filter(neighbourhood_cleansed %in% host_neighbourhood) %>%
  group_by(neighbourhood_cleansed) %>%
  summarise(ave = mean(host_listings_count))
```

```
listings %>%
filter(!(neighbourhood_cleansed %in% host_neighbourhood)) %>%
group_by(neighbourhood_cleansed) %>%
summarise(ave = mean(host_listings_count))
```

```
## # A tibble: 18 x 2
##
      neighbourhood_cleansed
                                               ave
##
      <chr>
                                             <dbl>
                                              1.27
## 1 Bijlmer-Centrum
## 2 Bijlmer-Oost
                                              1.25
## 3 Buitenveldert - Zuidas
                                              1.59
## 4 Centrum-Oost
                                             NA
## 5 Centrum-West
                                              3.00
## 6 De Aker - Nieuw Sloten
                                              1.43
## 7 De Baarsjes - Oud-West
                                             NΑ
## 8 De Pijp - Rivierenbuurt
                                              1.68
## 9 Gaasperdam - Driemond
                                              1.57
```

```
## 10 Geuzenveld - Slotermeer
                                                1.74
## 11 IJburg - Zeeburgereiland
                                                1.85
## 12 Noord-Oost
                                               NΑ
## 13 Noord-West
                                                1.27
## 14 Oostelijk Havengebied - Indische Buurt
                                                1.31
## 15 Oud-Noord
                                                2.09
## 16 Oud-Oost
                                                1.27
## 17 Westerpark
                                                1.53
## 18 Zuid
                                                1.65
```

1.5: Reflect and interpret

Reflect on your answer to 1.4. What might cause the results you got? How does that connect to the idea that Airbnb might be changing neighborhoods?

The average number of listings for hosts living in the same neighborhood is smaller than those living in the different neighborhood. This can be interpreted that the majority of hosts in this neighborhood do not tend to host their houses nearby. Therefore, this result is the reason why Airbnb might be changing neighborhoods to other places which have more hosts living in the same neighborhoods.

2. Prepare and Visualize data

2.1. Set up your environment

Set up your environment by:

Reading the Airbnb data: There's another new data set in the data/ folder. This one has almost 10,000 cases and the census data by zipcode. These data are from New York City, not Seattle!

```
new_data <- read.csv('data/census.csv')
summary(new_data)</pre>
```

```
##
       zipcode
                         white
                                          black
                                                            asian
##
    Min.
           :10001
                     Min.
                            : 160
                                      Min.
                                             :
                                                  17
                                                       Min.
                                                               :
                                                                   67
##
    1st Qu.:10250
                                      1st Qu.: 1064
                                                       1st Qu.: 1044
                     1st Qu.: 3477
    Median :11104
                     Median :10119
                                      Median: 3243
                                                       Median: 3220
                                              :10763
                                                               : 5898
##
    Mean
            :10790
                     Mean
                             :15586
                                      Mean
                                                       Mean
##
    3rd Qu.:11357
                     3rd Qu.:21800
                                      3rd Qu.:14634
                                                       3rd Qu.: 6742
##
    Max.
            :11693
                     Max.
                             :58646
                                      Max.
                                              :77175
                                                       Max.
                                                               :60670
##
                     NA's
                             :1
##
        latinx
                        full_pop
                                       white_proportion
                                                          black_proportion
##
           :
                                               :0.00539
                                                           Min.
                                                                  :0.003838
    Min.
               91
                     Min.
                            : 1685
                                       Min.
##
    1st Qu.: 4175
                     1st Qu.: 26970
                                       1st Qu.:0.10244
                                                           1st Qu.:0.030672
                     Median: 41847
##
    Median: 7773
                                       Median :0.37689
                                                           Median: 0.082469
##
            :13530
                            : 47026
                                               :0.37072
                                                                  :0.212112
    Mean
                     Mean
                                       Mean
                                                           Mean
    3rd Qu.:16551
##
                     3rd Qu.: 66426
                                       3rd Qu.:0.63733
                                                           3rd Qu.:0.300999
##
            :81093
                             :109931
                                               :0.87819
                                                                  :0.903535
    Max.
                     Max.
                                       Max.
                                                           Max.
##
                                       NA's
                                               :1
##
     modal race
##
    Length: 172
    Class : character
    Mode :character
##
```

##

We've given you absolute populations and proportions for the racial composition of the zipcode for each listing. We've also made a variable called 'modal_race' which is the race with the largest proportion in that neighborhood.

These variables are all in the last columns of the data set—you can try selecting them and using summary() to get a sense for what they contain.

2.2: Turn price into a number

price includes dollar signs, which means that R interprets it as a character. We want it to be a numeric variable instead. Turn price into a numeric variable in the chunk below.

There are a few ways to do this using tidyverse functions. See the hints below for some suggestions.

2.3: Make a scatterplot

Use a scatter plot to compare how unit prices change with the proportion of a particular race.

Bonus: try grouping by zipcode (in any fashion) for this plot

2.4: Make a boxplot

Use the modal_race variable to plot a boxplot comparing race and price. You may have to look up how to make a boxplot in ggplot2—what geom do you need?

Bonus: try showing how this comparison differs by neighborhood group.

2.5: Interpret your answer

Interpret your answer to 2.4. Check the hints if you need help.

Your answer should be at least a few sentences here

Bonus: how did we make the data?

There's another file in the data folder, census.csv. Read it into R and have a look at it.

Download the full listings for New York City from Inside Airbnb, and see if you can join the Census data to it by zipcode using left_join. You'll have to filter out some weird values for zipcode before you can merge.

3. Your own data

3.1. Looking at the dataset you chose for homework 1, think about a research question you'd like to investigate (try search about existing studies around your question). What variables do you plan to use to answer your question?

I will use three variables, xslg(Expected Slugging Percentage), launch_angle_avg, and exit_velocity_avg to examine the correlation of how the launch angle of a ball and its velocity affects the xslg. The ideal angle

and velocity are from 22 to 28 degrees and faster than 90 mph, respectively. I expect that the players more close to the ideal condition would likely have higher xslg.

3.2. What is one way that you have to modify or examine your data to begin to answer your question?

I will have to filter the players having launch angle from 22 to 28 degrees and exit velocity faster than 90 mph. After that, I will examine its mean and median values to answer my research question.

3.3. Using the functions we've worked with in class (select, filter, arrange, mutate), plus any others you'd like to use, clean and transform your data set to make it ready for further exploration.

You must:

a. Create a new dataset that only includes the variables you're interested in

```
new_dataset <- read.csv('data/mlb.csv') %>%
  select(last_name, first_name, xslg, launch_angle_avg, exit_velocity_avg)
head(new_dataset)
```

```
##
     last_name first_name xslg launch_angle_avg exit_velocity_avg
## 1
        Pujols
                    Albert 0.394
                                              16.4
                                                                 88.6
                                                                 93.2
## 2
       Cabrera
                    Miguel 0.515
                                              12.1
## 3
                      Jeff 0.348
                                              20.6
                                                                 89.6
        Mathis
## 4
          Choo
                 Shin-Soo 0.455
                                              11.4
                                                                 90.0
## 5
        Molina
                    Yadier 0.385
                                              12.3
                                                                 84.7
## 6
                 Robinson 0.481
                                               6.2
                                                                 90.4
          Cano
```

b. Output a version of that dataset that only includes certain values of observations, hopefully ones you're interested in.

```
team_one <- new_dataset %>%
  filter(launch_angle_avg >= 22 & launch_angle_avg <= 28 & exit_velocity_avg >= 90)
summary(team_one)
```

```
##
     last_name
                         first_name
                                                               launch_angle_avg
##
   Length:7
                        Length:7
                                            Min.
                                                    :0.3320
                                                               Min.
                                                                       :23.10
                                                               1st Qu.:23.85
##
    Class : character
                        Class : character
                                             1st Qu.:0.3925
##
    Mode :character
                        Mode :character
                                            Median :0.5350
                                                               Median :24.20
##
                                            Mean
                                                    :0.4769
                                                               Mean
                                                                      :24.47
##
                                                               3rd Qu.:24.75
                                             3rd Qu.:0.5415
##
                                            Max.
                                                    :0.6030
                                                               Max.
                                                                      :26.80
##
    exit_velocity_avg
            :90.00
    Min.
##
   1st Qu.:90.45
   Median :91.20
##
           :91.51
## Mean
    3rd Qu.:92.40
##
   \mathtt{Max}.
           :93.70
```

```
team_two <- new_dataset %>%
  filter(launch_angle_avg < 22 | launch_angle_avg > 28 & exit_velocity_avg < 90)
summary(team_two)</pre>
```

```
##
     last_name
                        first_name
                                                           launch_angle_avg
                                               xslg
##
   Length:398
                       Length:398
                                          Min.
                                                 :0.1980
                                                           Min.
                                                                  :-7.900
##
   Class :character
                       Class :character
                                          1st Qu.:0.3453
                                                           1st Qu.: 8.925
   Mode :character
                       Mode :character
                                          Median :0.3940
                                                           Median :12.400
##
                                                 :0.4016
                                                                 :12.227
                                          Mean
                                                           Mean
##
                                          3rd Qu.:0.4530
                                                           3rd Qu.:15.775
##
                                          Max.
                                                 :0.6960
                                                                 :34.300
                                                           Max.
##
   exit_velocity_avg
   Min.
          :78.20
##
## 1st Qu.:86.60
## Median:88.30
## Mean
          :88.22
##
   3rd Qu.:89.90
## Max.
           :95.90
```

c. Order your data by the values of one variable you're interested in.

team_one %>% arrange(desc(xslg))

```
##
     last_name first_name xslg launch_angle_avg exit_velocity_avg
## 1
                                              23.1
         Trout
                     Mike 0.603
                                                                 93.7
## 2
        Buxton
                    Byron 0.544
                                              23.6
                                                                 91.2
## 3
                                              24.2
         Smith
                     Will 0.539
                                                                 90.8
## 4
       Chapman
                     Matt 0.535
                                              24.1
                                                                 93.6
## 5
         Gallo
                     Joey 0.416
                                              26.8
                                                                 91.2
       Greiner
## 6
                  Grayson 0.369
                                              25.1
                                                                 90.0
## 7
       Meadows
                   Austin 0.332
                                              24.4
                                                                 90.1
```

team_two %>% arrange(desc(xslg))

##		last_name	first_name	xslg	launch_angle_avg	exit_velocity_avg
##	1	Soto	Juan	0.696	4.3	92.1
##	2	Freeman	Freddie	0.660	17.2	92.4
##	3	Harper	Bryce	0.658	16.0	92.5
##	4	Seager	Corey	0.647	11.9	93.2
##	5	Ozuna	Marcell	0.635	16.4	93.0
##	6	Rios	Edwin	0.623	14.5	91.5
##	7	Perez	Salvador	0.618	14.2	91.0
##	8	Tatis Jr.	Fernando	0.614	8.7	95.9
##	9	Hernandez	Teoscar	0.611	15.3	93.3
##	10	Belt	Brandon	0.597	18.0	90.7
##	11	Acuna Jr.	Ronald	0.596	18.6	92.4
##	12	Abreu	Jose	0.587	10.9	92.9
##	13	Myers	Wil	0.584	13.4	91.0
##	14	Voit III	Luke	0.584	15.2	88.9
##	15	Springer III	George	0.563	18.3	88.7

##	16	Cmi+h	Dominic	0 562	10.8	89.8
## ##		Smith Stassi		0.561	15.0	91.6
	18	Lowe	Brandon		18.1	89.8
##		Walsh	Jared		13.1	88.1
##		Turner	Justin		17.5	90.3
##		Jimenez		0.544	5.7	90.3
##		Castellanos			16.5	91.0
##		Machado		0.542	15.6	90.2
##		Cruz Jr.	Manny Nelson		9.4	91.6
##		Slater	Austin			89.2
##		Stanton	Giancarlo		10.9 8.3	91.1
##		Cronenworth		0.539		89.8
					10.6	
##		Judge	Aaron		15.7	92.2
##		d'Arnaud	Travis		8.1	93.4
##		Bichette		0.532	12.0	89.2
##		Dalbec	Bobby		14.8	89.9
##		Longoria		0.522	10.7	91.7
##		Winker	Jesse		10.5	92.1
##		Cooper	Garrett		9.5	90.1
##		Hosmer		0.516	8.7	90.8
##		Cabrera	Miguel		12.1	93.2
##		Castro	Willi		11.3	85.3
##		Goldschmidt		0.510	11.7	89.2
##		Calhoun		0.509	17.0	89.4
##		Turner		0.509	9.5	90.5
##		Anderson		0.506	6.7	87.2
##		Gyorko		0.505	15.3	88.6
##		Pollock		0.499	13.0	89.6
##		Iglesias		0.498	7.6	86.2
##		Realmuto		0.498	11.6	90.2
##		Arozarena	Randy		9.2	90.3
##		Dickerson		0.494	17.8	90.9
##		Tellez	Rowdy		10.6	90.7
##		Taylor	Chris		9.1	88.0
##		Urshela		0.488	12.3	91.4
##		Yastrzemski		0.488	18.4	88.2
##		Soler	Jorge		15.5	92.5
##		Bellinger	-	0.487	16.6	89.3
##		Hayes	Ke'Bryan		7.4	92.8
##		Castro		0.485	19.7	92.7
##		Cron		0.484	20.6	85.5
##		Gurriel Jr.	Lourdes		10.5	90.8
##		Grisham	Trent		13.5	88.3
##		Cano	Robinson		6.2	90.4
##		Miller		0.481	11.2	89.8
##		Betts	Mookie		18.5	90.7
##		France	•	0.481	14.8	85.7
##		Taylor	Michael A.		12.4	89.0
##		Sano	Miguel		20.2	95.2
##		McCutchen	Andrew		18.2	89.7
##		Votto	•	0.478	15.4	87.4
##		Conforto	Michael		11.0	88.4
##		Jeffers	•	0.477	10.3	91.6
##	69	Dietrich	Derek	0.476	12.6	85.4

##	70	Moreland	Mitch	0 476	12.5	88.2
##		Moran	Colin		8.3	91.9
	72	Braun		0.474	15.3	89.8
##		Bohm	•	0.474	4.8	90.2
##				0.474	14.2	88.5
	7 4 75	Muncy Bruce		0.473	15.3	89.0
	76		=		17.9	89.1
	77	Suarez	Eugenio		17.7	89.1
	77 78	Seager	•	0.472	14.7	89.1
	79	Osuna	Dansby		14.7	89.1
	80	Swanson			8.7	89.0
##		Bogaerts	Xander		13.0	91.7
		Naquin	•	0.469		
##		Candelario	Jeimer		13.3	90.2
##		Yelich	Christian		7.1	94.0
##		Riley	Austin		13.6	91.0
##		Nola	Austin		12.5	89.7
##		Rendon	Anthony		19.5	90.1
##		Happ		0.464	9.0	91.1
##		Grichuk	Randal		12.6	88.9
##		Moore	Dylan		17.3	90.4
##		Alonso		0.459	15.5	90.2
##		Gomes		0.458	17.6	89.9
##		McCann		0.458	15.0	90.5
##		Devers	Rafael		10.6	93.0
##		Robert		0.458	16.7	87.9
##		Choo	Shin-Soo		11.4	90.0
	96	Story	Trevor		20.8	89.9
##		McBroom	•	0.455	20.1	89.0
	98	LeMahieu		0.453	2.3	91.3
##		Trevino		0.453	10.1	87.9
	100	Valaika		0.453	18.2	88.7
	101	Arraez		0.453	12.1	87.5
	102	Pham	-	0.452	2.4	92.8
	103	Aguilar		0.452	16.0	89.3
	104	Walker	Christian		11.5	90.4
	105	Heyward		0.451	11.3	87.6
	106	Pinder		0.451	13.7	92.3
	107	Kendrick III	Howie		7.3	88.8
	108	Garcia	Leury		7.5	87.3
	109	Pederson		0.450	12.5	93.0
	110	Harrison		0.449	15.4	83.8
	111	Tucker	•	0.449	14.9	91.1
	112	Ruf	Darin		12.5	89.4
	113	Olson		0.447	19.6	92.3
	114	Frazier		0.447	11.6	89.4
	115	Santana	Carlos		12.2	88.0
	116	Marmolejos		0.445	10.5	90.5
	117	Martinez		0.444	14.7	89.5
	118	Farmer	•	0.443	18.2	89.6
	119	Contreras	Willson		9.1	89.8
	120	Jansen	Danny		16.3	85.1
	121	Carlson	Dylan		9.3	87.4
	122	Murphy		0.440	14.7	92.2
##	123	Merrifield	Whit	0.439	15.8	86.1

##	124	Lindor	Francisco	0.439	13.5	89.9
	125	Cervelli	Francisco		13.3	89.0
##	126	Guerrero Jr.	Vladimir	0.437	4.6	92.5
##	127	Shaw	Travis	0.436	19.8	90.9
##	128	Pence	Hunter	0.435	4.2	87.6
##	129	Rosario	Eddie	0.435	18.1	87.5
##	130	Reyes	Franmil	0.434	11.2	92.4
##	131	Schwarber		0.434	8.8	92.8
##	132	Hiura	Keston		14.3	87.4
##	133	Hicks	Aaron	0.432	11.1	88.2
##	134	Nunez	Renato	0.431	21.1	86.3
##	135	Lewis	Kyle	0.431	11.1	88.3
##	136	Upton	Justin	0.430	18.6	91.7
##	137	Kemp	Matt	0.430	11.9	85.3
##	138	Moustakas	Mike	0.430	16.3	88.8
##	139	Flores	Wilmer	0.430	19.0	87.9
##	140	Mountcastle	Ryan	0.430	10.8	87.4
##	141	Blackmon	Charlie	0.429	13.5	86.9
##	142	Pillar	Kevin	0.429	13.4	87.1
##	143	Ohtani	Shohei	0.429	9.2	89.1
##	144	Davis	J.D.	0.428	3.3	90.1
##	145	Reyes	Victor	0.428	10.7	90.0
##	146	Cabrera	Asdrubal	0.427	13.7	89.5
##	147	Lamb	Jake	0.427	16.7	90.2
##	148	Sanchez	Gary	0.427	19.2	91.8
##	149	Severino	Pedro	0.427	9.5	87.6
##	150	Anderson	Brian	0.426	9.6	87.4
##	151	Jones	JaCoby	0.425	11.0	89.5
##	152	Arcia	Orlando	0.425	9.6	89.0
##	153	Nimmo	Brandon	0.425	7.6	87.2
##	154	Kepler	Max	0.422	21.9	88.5
##	155	Bader	Harrison	0.422	15.7	86.0
##	156	Tsutsugo	Yoshi		17.2	90.2
##	157	La Stella	Tommy		17.1	88.0
##	158	Ramos	Wilson		6.5	89.0
	159	Guzman	Ronald	0.419	6.0	86.3
	160	Bote	David		9.3	92.4
	161	Marte	Starling		6.5	87.1
	162	Polanco	Gregory		20.8	92.9
	163	Odor	Rougned		20.7	86.0
	164	Albies		0.417	17.8	86.7
	165	Solano	Donovan		15.5	88.5
	166	Brosseau		0.415	15.1	90.9
	167	Brantley Jr.	Michael		10.2	88.7
	168	Donaldson		0.413	6.2	92.8
	169	Rizzo	Anthony		16.7	87.7
	170	Canha		0.411	19.4	89.7
	171	Knapp	Andrew		11.9	86.8
	172	Arroyo	Christian		7.8	89.9
	173	Barnhart	Tucker		19.7	85.4
	174	Vogelbach	Daniel		10.2	89.5
	175	Davis		0.407	18.9	87.7
	176	Gamel		0.407	11.5	87.9
₩Ŧ	177	Profar	Jurickson	0.406	11.0	87.2

##	178	Castro	Harold	0.406	11.6	89.0
	179	DeJong		0.406	21.7	89.2
	180	McNeil		0.405	11.5	86.6
	181	Gurriel		0.404	13.9	89.3
##	182	Carpenter	Matt	0.404	17.0	88.2
##	183	Perez	Michael	0.404	14.5	87.3
##	184	Grandal	Yasmani	0.403	15.6	90.3
##	185	Laureano	Ramon	0.403	12.3	87.7
##	186	Reynolds	Bryan	0.403	10.2	87.5
##	187	Dubon	Mauricio	0.402	16.7	86.2
##	188	Gonzalez	Marwin	0.401	12.6	89.2
##	189	Correa	Carlos	0.401	11.4	88.6
##	190	Nottingham	Jacob	0.401	20.1	87.0
##	191	Dickerson	Corey	0.400	11.1	85.7
##	192	Piscotty	Stephen	0.398	13.5	88.1
##	193	Grossman	Robbie	0.397	15.2	89.0
##	194	Hernandez	Cesar	0.396	5.6	89.1
##	195	Crawford	Brandon	0.396	12.4	88.7
##	196	Diaz	Elias	0.396	12.9	87.4
##	197	Ward	Taylor	0.396	10.4	91.1
##	198	Renfroe	Hunter	0.395	17.3	89.4
##	199	Pujols	Albert	0.394	16.4	88.6
##	200	Escobar	Eduardo	0.394	18.1	88.6
	201	Gregorius		0.394	17.8	83.8
	202	Gonzalez		0.394	5.5	88.5
	203	Franco	Maikel		8.4	86.7
	204	McMahon	•	0.394	9.2	90.1
	205	Ford		0.393	8.4	89.7
	206	Arenado		0.392	19.1	87.8
	207	Stewart		0.392	17.8	91.4
	208	Adames	Willy		12.5	88.8
	209	Tromp	Chadwick		10.1	90.1
	210	Segura		0.391	11.2	87.7
	211	Machin	Vimael		6.4	89.9
	212	Bregman	Lewis	0.391	17.3	88.9
	213	Brinson			7.9	88.1 85.3
	214215	Kingery Andrus	Scott Elvis		16.9 9.2	88.5
	216			0.388	13.9	93.0
	217	Torrens	Garrett		14.4	86.3
	218	Hampson Chavis	Michael		10.0	88.3
	219	Solak		0.388	9.4	89.9
	220	Castro	Starlin		16.8	87.1
	221	Eaton		0.387	5.7	87.8
	222	White		0.387	13.7	91.7
	223	Haggerty		0.387	13.0	90.6
	224	Schoop	Jonathan		8.7	87.2
	225	Plawecki	Kevin		12.7	88.9
	226	Molina	Yadier		12.3	84.7
	227	O'Hearn		0.384	11.9	90.7
	228	Senzel	•	0.384	16.3	88.3
	229	Hernandez	Enrique		16.2	88.5
	230	Dozier	Hunter		17.0	86.4
	231	Naylor		0.383	7.8	86.8
		J				

##	232	Diaz	Aledmys	0 383	10.2	87.3
	233	Rojas	Miguel		11.9	87.3
	234	Goodwin	Brian		20.7	89.9
	235	Polanco	Jorge		16.1	86.6
	236	Bell	•	0.381	5.9	91.7
	237	Torres	Gleyber		14.9	88.6
	238	Baez	Javier		10.3	89.4
	239	Tejeda	Anderson		14.3	90.8
	240	Thames		0.379	14.6	88.7
	241	Adams		0.379	21.4	90.1
	242	Alfaro	Jorge		2.8	89.2
	243	Taveras	Leody		14.3	88.9
	244	Margot	Manuel		7.5	89.4
	245	Kiermaier	Kevin		-0.4	87.7
	246	Locastro		0.377	17.3	85.6
	247	Lowe	Nathaniel		7.1	88.9
	248	Garcia		0.377	-3.6	83.5
	249	Frazier		0.376	12.3	85.5
	250	Engel		0.376	14.0	87.2
	251	O'Neill	Tyler		15.1	88.0
	252	Sisco	Chance		20.0	88.8
	253	Garcia	Avisail		8.7	87.4
	254	Marte	Ketel		10.0	89.2
	255	Ahmed		0.374	9.4	87.7
	256	Bradley Jr.	Jackie		4.4	88.3
	257	Maybin	Cameron		8.9	87.8
	258	Peralta	David		6.4	89.2
##	259	Gardner	Brett	0.370	15.0	89.2
	260	Wendle		0.370	5.1	86.7
##	261	Verdugo	-	0.369	5.9	87.0
##	262	Olivares	Edward	0.366	7.6	82.7
##	263	Edman	Tommy	0.366	8.2	86.5
	264	Mazara	Nomar		6.7	91.0
##	265	Frazier	Todd	0.363	20.5	87.8
##	266	Markakis	Nick	0.361	9.5	89.0
##	267	Gimenez	Andres	0.361	13.5	86.8
##	268	Maldonado	Martin	0.360	19.1	86.1
##	269	Gosselin	Phil	0.359	13.8	85.3
##	270	Reddick	Josh	0.358	19.1	85.9
##	271	Galvis	Freddy	0.358	13.6	87.0
##	272	Peterson	Jace	0.358	7.4	89.2
##	273	Peraza	Jose	0.357	20.0	85.4
##	274	Crawford	J.P.	0.357	11.5	85.8
##	275	Arauz	Jonathan	0.357	9.4	85.6
##	276	Martinez	Jose	0.356	6.2	87.9
##	277	Vazquez	Christian	0.356	14.4	88.4
##	278	Phillips	Brett	0.355	13.7	84.9
##	279	Ruiz	Rio	0.354	10.5	87.9
##	280	Mondesi	Adalberto	0.353	13.7	90.6
##	281	Gordon	Alex	0.352	11.6	82.8
	282	Hays	Austin	0.352	11.0	87.0
	283	Fowler	Dexter		11.2	84.5
	284	Kelly	Carson		16.7	86.3
##	285	Madrigal	Nick	0.351	4.3	83.7

##	286	Fletcher	David	0.351	4.1	84.7
##	287	Jay	Jon	0.350	12.4	84.8
##	288	Beaty	Matt	0.350	7.9	90.0
##	289	Kemp	Tony	0.349	18.8	85.8
##	290	Mathis	Jeff	0.348	20.6	89.6
##	291	Suzuki	Kurt	0.348	18.0	83.9
##	292	Bryant	Kris	0.348	20.7	86.1
##	293	Altuve	Jose	0.347	9.3	86.7
##	294	Santana	Danny	0.347	14.7	90.9
##	295	Lopes	Tim	0.347	6.5	87.2
##	296	Varsho	Daulton	0.347	18.4	86.2
##	297	Wolters	Tony	0.346	8.2	84.1
##	298	Andujar	Miguel	0.346	13.9	85.9
##	299	Murphy	Daniel	0.345	15.5	85.1
##	300	Santana	Domingo	0.345	5.4	85.5
##	301	Panik	Joe	0.345	9.3	87.5
##	302	VanMeter	Josh	0.345	15.1	89.0
##	303	Chisholm Jr.	Jazz	0.345	15.6	87.1
##	304	Espinal	Santiago	0.345	14.5	87.3
##	305	Semien	Marcus	0.344	19.3	86.2
##	306	Sandoval	Pablo	0.343	8.0	91.9
##	307	Biggio	Cavan	0.343	16.7	87.4
##	308	Aquino	Aristides	0.341	10.6	82.2
##	309	Fuentes	Joshua	0.341	10.6	84.0
##	310	Kiner-Falefa	Isiah	0.340	0.8	87.2
##	311	Haseley	Adam	0.340	0.3	86.6
##	312	Hilliard	Sam	0.338	10.8	88.3
##	313	Guillorme	Luis	0.337	10.7	89.8
##	314	Goodrum	Niko	0.336	16.0	88.8
##	315	Hedges	Austin	0.336	18.6	90.2
##	316	Riddle	JT	0.335	6.8	88.8
##	317	Joyce	Matt	0.334	12.5	86.7
##	318	Toro	Abraham	0.334	7.6	86.1
##	319	Moncada	Yoan	0.334	13.9	87.8
	320	Lux	Gavin	0.334	13.9	87.1
	321	Rosario	Amed	0.333	4.2	86.5
	322	Kipnis		0.332	18.2	86.2
	323	Cave		0.332	8.5	87.4
	324	Tapia	Raimel		1.8	85.3
	325	Newman	Kevin		8.7	85.5
	326	Straw	Myles		15.9	87.4
	327	Smoak	Justin		15.3	89.6
	328	Avila		0.326	12.6	85.3
	329	Wade	•	0.326	13.4	86.6
	330	Akiyama	•	0.324	2.9	85.1
	331	Flowers	•	0.322	16.2	93.0
	332	Tauchman		0.321	10.6	84.9
	333	Stallings		0.320	12.4	88.6
	334	Diaz	Yandy		-7.9	88.3
	335	Heineman		0.318	8.3	87.0
	336	Caratini	Victor		6.2	87.9
	337	Murphy	John Ryan		7.3	83.0
	338	Berti		0.316	7.2	86.6
##	339	Alberto	Hanser	0.316	13.2	82.3

##	340	Camargo	Johan	0.316	9.8	87.3
	341	Gallagher		0.315	14.9	82.7
##	342	Bemboom	Anthony	0.315	11.8	86.7
##	343	Hoerner	-	0.312	0.8	87.5
##	344	Leon	Sandy	0.310	17.9	84.9
##	345	Sogard	•	0.309	15.2	84.4
##	346	Adrianza	Ehire	0.308	16.0	85.9
##	347	Mendick	Danny	0.308	7.4	86.2
##	348	Lopez	Nicky		1.4	84.9
##	349	Vogt	Stephen		21.2	87.3
##	350	Wong	Kolten			86.5
##	351	DeShields	Delino	0.303	5.8	84.0
##	352	Smith Jr.	Dwight	0.303	8.1	89.9
##	353	White	Eli	0.302	15.4	88.1
##	354	Bonifacio	Jorge	0.301	18.3	82.9
##	355	Long Jr.	Shed	0.301	2.6	87.1
##	356	Choi	Ji-Man	0.298	15.7	89.0
##	357	Mullins II	Cedric	0.297	15.6	88.6
##	358	Harrison	Monte	0.295	4.0	81.7
##	359	Rojas	Josh	0.295	5.4	86.0
##	360	Romine	Austin	0.294	7.7	87.9
##	361	Narvaez	Omar	0.294	18.7	81.6
##	362	Bart	Joey	0.292	12.6	89.0
##	363	Estrada	Thairo	0.290	2.9	83.5
##	364	Urias	Luis	0.290	2.3	87.7
	365	Holt	Brock		10.5	84.0
	366	Adell		0.288	11.4	90.6
	367	Dahl	David		17.0	85.9
	368	Barrero		0.282		86.6
	369	Perez	Roberto		-2.5	86.0
	370	Simmons	Andrelton		6.0	86.5
	371	Vargas	Ildemaro		2.1	85.3
	372	Quinn	Roman		9.7	85.8
	373	Sierra	Magneuris		3.8	83.7
	374	Robles	Victor		19.0	82.2
	375	Barnes	Austin		16.2	86.9
	376	Garver	Mitch		18.6	92.4
	377378	Villar	Jonathan	0.277	1.6 9.3	86.6 87.1
	379	Cameron Paredes		0.270		86.5
	380	Calhoun	Willie			89.3
		Strange-Gordon		0.262		79.2
	382	Inciarte	Ender		8.4	78.2
	383	Heineman		0.261	34.3	82.4
	384	Hechavarria	Adeiny			82.9
	385	Tucker	-	0.256		83.1
	386	Chirinos	Robinson			84.5
	387	Starling	Bubba			84.2
	388	Rengifo		0.249		87.6
	389	Dyson	Jarrod			82.7
	390	Velazquez	Andrew			82.4
	391	Lin	Tzu-Wei			85.5
##	392	Mercado	Oscar	0.227	14.4	88.2
##	393	Garcia	Greg	0.221	11.1	83.4

##	394	Kieboom	Carter	0.220	11.9	85.1
##	395	Benintendi	Andrew	0.208	8.6	85.2
##	396	Zimmer	Bradley	0.204	16.4	84.1
##	397	Davis	Chris	0.201	6.2	85.8
##	398	Ervin	Phillip	0.198	16.0	85.4

d. Create a modified version of one of your variables (many of you will *need* to do this, but even if you don't, I want to see that you can)

```
new_dataset2 <- new_dataset %>% mutate(team_1_ave_xslg = mean(team_one$xslg))
glimpse(new_dataset2)
```

e. Look up and try out one new verb for data transformation. The RStudio data transformation cheat sheet is a fantastic place to start: https://github.com/rstudio/cheatsheets/raw/master/data-transformation.pdf

For e., we'd recommend using $group_by + summarize$. You can group your data by one variable, and then see the mean (or similar) of another variable within each of those groups.

Use as many code blocks as you need for a-e

```
team_one %>%
   summarise(mid_slg = median(xslg), mean_slg = mean(xslg))

## mid_slg mean_slg
## 1  0.535  0.4768571

team_two %>%
   summarise(mid_slg = median(xslg), mean_slg = mean(xslg))

## mid_slg mean_slg
## 1  0.394  0.4015955
```

In conclusion, the players having launch angle from 22 to 28 degrees and exit velocity faster than 90 mph have higher number of mean and median values of xslg.

Hints

1.3 Try using these steps:

- Step 1: identify the variables you need
 - Listing neighborhood: neighbourhood
 - Host's neighborhood: host_neighbourhood
- Step 2: Filter the data to only include the rows where those variables are not equal. Look back to Module 2 (or look online) if you need a reminder about how to write "equal", "not equal", and so on in R.
- Step 3: How many rows are left in the filtered data?

Extra food for thought: how do "NA" (missing) values get handled here? Do you think that makes sense? Should you do something else with them, maybe using is.na?

1.4 The variable for number of listings is host_listings_count. You might want to make a new variable indicating if a host is a local host (your answer to 1.3 will help here!). There are many ways to use mean on a subset of data, but the best approach is one we introduce in Module 5: group_by + summarize. Try it out now if you can! For this problem, don't worry about NAs.

2.2

Use mutate for this. You can replace the original price variable, or name it something else. There are a couple things you can use on price inside the mutate:

- parse_number, a function in the readr package, does a good job of converting currency to numbers on its own.
- str_extract with pattern = "\\d+", then as.numeric, will extract numbers from a string, then convert the new (sub)string to a number.
- str_remove_all, with pattern = "[\\\$|,]", then as.numeric, will remove all dollar signs and commas.

2.5

Check out these resources if you're not sure about interpreting box plots:

```
https://magoosh.com/statistics/reading-interpreting-box-plots/
```

 $https://www.youtube.com/watch?v{=}oBREri10ZHk$

3.3

```
a. use select()
b. use filter()
c. use arrange()
d. use mutate()
e. use group by(var1) %>% summarise(mean = mean(var2))
```