MAT 415 - Introduction to Combinatorics

Instructor: Dr. Susanna Fishel Notes written by Brett Hansen

Contents

1	Week of August 14th, 2016	2
	1.1 Principle Definitions	2
	1.1.1 Product Principle	2
	1.1.2 Sum Principle	2
	1.1.3 Bijection Principle	2
	1.1.4 Quotient Principle	2
2	Week of August 21st, 2016	3
3	Week of August 28th, 2016	3
4	Week of September 4th, 2016	3
5	Week of September 11th, 2016	3
6	Week of September 18th, 2016	3
7	Week of September 25th, 2016	3
8	Week of October 2nd, 2016	3
9	Week of October 9th, 2016	3
10	Week of October 16th, 2016	3
11	Week of October 23rd, 2016	3
12	Week of October 30th, 2016	3
13	Week of November 6th, 2016	3
14	Week of November 13th, 2016	3
15	Week of November 20th, 2016	3
16	Week of November 27th, 2016	3

1 Week of August 14th, 2016

1.1 Principle Definitions

1.1.1 Product Principle

Suppose a task can be broken into k subtasks, t_1, t_2, \ldots, t_k , and further suppose there are c_i ways to perform subtask t_i and each way leads to an unique result. Then the number of ways to perform the task is $c_1 \cdot c_2 \cdot \ldots \cdot c_k$.

1.1.2 Sum Principle

Suppose the objects in a counting problem can be divided into k disjoint and exhaustive cases. If there are n_i objects in the i^{th} case for i = 1, 2, ..., k then there are $n_1 + n_2 + ... + n_k$ objects.

1.1.3 Bijection Principle

Two finite sets have the same cardinality if and only if there exists a bijection between them.

Example How many subsets does $\{k_1, k_2, k_3, k_4\}$ have? Find a bijection between the binary string $b_1b_2b_3b_4$ and $\{k_1, k_2, k_3, k_4\}$.

$$S \subseteq \{k_1, k_2, k_3, k_4\} \longleftrightarrow b_1 b_2 b_3 b_4 \quad \text{where} \quad b_i = \begin{cases} 0 & \text{if} \quad k_i \notin S \\ 1 & \text{if} \quad k_i \in S \end{cases}$$

There are $2^4 = 16$ possibilites for the binary string so the set has 16 subsets.

1.1.4 Quotient Principle

A partition of a set, S, is a division of a set into disjoint subsets whose union is S. The subsets in a set of partitions are often called blocks of the partition.

Suppose a set S has p elements. If we partition S into q blocks of size r, then q = p/r and r = p/q.

- 2 Week of August 21st, 2016
- 3 Week of August 28th, 2016
- 4 Week of September 4th, 2016
- 5 Week of September 11th, 2016
- 6 Week of September 18th, 2016
- 7 Week of September 25th, 2016
- 8 Week of October 2nd, 2016
- 9 Week of October 9th, 2016
- 10 Week of October 16th, 2016
- 11 Week of October 23rd, 2016
- 12 Week of October 30th, 2016
- 13 Week of November 6th, 2016
- 14 Week of November 13th, 2016
- 15 Week of November 20th, 2016
- 16 Week of November 27th, 2016