Peramalan Jumlah Kendaraan Listrik di *State* Washington Menggunakan Analisis Runtun Waktu ARIMA

Team Statset
Diki Wahyudi | Jefta Adriel Heryadi | Kamal Muftie Yafi

TABLE OF CONTENTS

01Latar Belakang

02Preprocessing

03 EDA 04

Pemodelan

05

Kesimpulan dan Saran

01

Latar Belakang

Di zaman *modern* sekarang ini, teknologi semakin cepat mengalami perkembangan. Munculnya kendaraan listrik menambah "pilihan" lain masyarakat dalam memilih jenis kendaraan yang akan dibeli/digunakan. Oleh karena itu, penting untuk mengetahui tren dalam penggunaan kendaraan listrik. Dalam project ini, kami akan menggunakan data Electric Vehicle Title and Registration Activity untuk memodelkan jumlah kendaraan listrik di state Washington.

Batasan Masalah

Batasan State

Kami hanya akan **berfokus** pada *state* **Washington**

Sumber: https://geology.com/state-map/washington.shtml#google_vignette

Transaction Type

Kami hanya tertarik pada pembelian kendaraan baru dan bukan transaksi kendaraan bekas. Informasi jumlah mobil di jalan dari waktu ke waktu didapatkan dengan menjumlahkan transaksi "Original Title" bulanan untuk setiap *county* secara kumulatif.

02

Preprocessing

Drop Kolom

Drop Kolom yang Tidak Digunakan

drop_column = ['2015 HB 2778 Exemption Eligibility', '2019 HB 2042 Clean Alternative Fuel Vehicle (CAFV)
Eligibility', 'Meets 2019 HB 2042 Electric Range Requirement', 'Meets 2019 HB 2042 Sale Date
Requirement', 'Meets 2019 HB 2042 Sale Price/Value Requirement', '2019 HB 2042: Battery Range
Requirement', '2019 HB 2042: Purchase Date Requirement', '2019 HB 2042: Sale Price/Value Requirement',
'Electric Vehicle Fee Paid', 'Transportation Electrification Fee Paid', 'Hybrid Vehicle Electrification
Fee Paid', '2020 Census Tract', 'Legislative District', 'Electric Utility']
df.drop(drop_column, axis = 1, inplace = True)

Drop Kolom dengan Informasi Redundan

```
drop_column2 = ['Sale Date', 'Transaction Year', 'Base MSRP']
df.drop(drop_column2, axis = 1, inplace = True)
```

Proses Selanjutnya

Kami akan fokus pada title transaction untuk menghitung jumlah kendaraan listrik yang ada di jalan

Membuat Kolom Month/Year

Mengubah Index Dataframe

Mengubah 'DOL Transaction Date' ke format datetime dan menjadikannya sebagai index

Data Duplikat

Persis Sama

Tidak ada data duplikat yang persis sama

m/y, DOL Vehicle ID, County

138 baris data duplikat


```
df.drop_duplicates(subset = ['m/y', 'DOL Vehicle ID', 'County'], keep = 'last', inplace = True)
```


m/y, DOL Vehicle ID

84 baris data duplikat

df.drop_duplicates(subset = ['m/y', 'DOL Vehicle ID'], keep = 'last', inplace = True)

Missing Values

Selain kolom yang ada berikut, tidak memiliki *missing value*.

County	9
City	21
State of Residence	1
Postal Code	3

Analisis kami akan difokuskan pada negara bagian (state) Washington. Oleh karena itu, kami tidak akan menyimpan kendaraan dengan pemilik yang tinggal di luar WA (Washington).

Standarisasi Nama pada Kolom Model

Terdapat **132** nama model yang unik

Standardisasi

```
df['Model'] = df['Model'].map(lambda model: model.title())
df['Model'].unique()
# Kemudian
df['Model'].replace('Prius Plug-In', 'Prius', inplace = True)
```


Sesudah

Terdapat **131** nama model yang unik

EDA

Exploratory Data Analysis

Filter berdasarkan County

Filter Original Title Transaction

```
1 county_dict = {}
2 for county in list(df['County'].unique()):
3     county_dict[county] = df[(df['County']==county) & (df['Transaction Type']=='Original Title')].resample('M').size().cumsum()
4 # resample('M'): month
```


Bentuk dataframe

```
1 df_cumsum = pd.DataFrame(county_dict)
2 df_cumsum.fillna(0, inplace = True)
3 df_cumsum = df_cumsum.reset_index()
```

Jumlah Kendaraan Listrik

Pada **Negara Bagian Washington**

ada 180 Ribu kendaraan di tahun 2023


```
1 fig, ax = plt.subplots(figsize = (6, 3))
2 sns.lineplot(x = 'DOL Transaction Date', y = 'State Total', data = df_cumsum, ax = ax)
3 ax.set_xlabel('Waktu')
4 ax.set_ylabel('Jumlah Total Kendaraan Listrik')
5 ax.set_title('Kendaraan Listrik yang Dijalankan di Negara Bagian Washington (2010-2023)')
```

6 ax.set_vticks(range(0, 200000, 30000))

7 plt.tight layout()

Jumlah kendaraan listrik meningkat secara eksponensial selama 3 tahun terakhir.

Filter Top 10 County EV Terbanyak

King	113658
Snohomish	24021
Pierce	16988
Clark	12063
Thurston	7112

Jumlah EV berdasarkan County

County King meningkat jauh lebih cepat dibandingkan County lainnya.

^{*}Berdasarkan data sensus 2020, populasi pada King County ada sebanyak 2.3 juta jiwa.

Jumlah EV berdasarkan County

Snohomish

Jumlah kendaraan terbanyak kedua.

Pierce & Clark

Kemudian diikuti urutan ketiga dan keempat

Jumlah EV berdasarkan Model

Tesla Model 3

Kendaraan terbanyak pertama

Tesla **Model Y**

Kendaraan terbanyak kedua

Nissan Leaf

Kendaraan terbanyak ketiga

Kendaraan di atas adalah top 3 kendaraan listrik yang paling banyak digunakan pada setiap county.


```
sns.barplot(x = 'Model', y = 'Count', data = model_count_df.head(top_n), ax = ax[i])
ax[i].set_title(f'Top {top_n} Model yang Dibeli di County {county} (2010-2023)')
plt.tight layout();
```


Pemodelan

Semakin banyak data yang digunakan (diasumsikan sudah di-*preprocessing*) untuk melatih model, maka model akan semakin baik

Yes / No

No

Tell Me Why

Estimated plug-in electric light vehicle sales in the United States from 2016 to 2022 (in 1,000 units)

Penjualan EV mulai mengalami peningkatan yang drastis dimulai dari 2020

Sumber: https://www.statista.com/statistics/665823/sales-of-plug-in-light-vehicles-in-the-us/

Data yang akan digunakan untuk melatih model akan dimulai dari 2020

Langkah Pemilihan Model

Step 1

Gunakan data 2010-2023, lakukan feature engineering & hyperparameter tuning

Plot model yang diperoleh dari *Step* 1 dengan data *test*, perhatikan nilai *metrics* yang diperoleh

Step 3

Lakukan *Step* 1 & 2 dengan data 2020-2023, kemudian bandingkan nilai *metrics* yang diperoleh dengan model (2010-2023)

Feature Engineering & Hyperparameter Tuning

```
def evaluate model(model):
  display(model.summary())
  model.plot_diagnostics()
  plt.tight_layout()
```

- Membuat custom *function* untuk mengecek signifikansi parameter, nilai AIC, BIC, dll.
- Digunakan auto arima() untuk menentukan orde p,d,q dan P,D,Q terbaik

```
. .
auto model = pm.auto arima(train king, start p = 0, start d = 0, start q = 0, max p = 4,
                           \max d = 3, \max q = 4, start P = 0, start D = 0, start Q = 0, \max P = 3,
                           \max D = 3, \max Q = 3, m = 12)
auto model.summary()
```


Feature Engineering & Hyperparameter Tuning

 Masukkan orde yang telah dihasilkan di auto arima() itu ke dalam variabel "model" untuk membuat model SARIMAX secara manual

County King (2010-2023)

County King (2020-2023)

Mean Absolute Percentage Error

MAPE	Forecasting power
<10%	Highly accurate forecasting
10%~20%	Good forecasting
20%~50%	Reasonable forecasting
>50%	Weak and inaccurate forecasting

Source: Lewis (1982)

$$MAPE = \frac{100\%}{n} \sum_{i=1}^{n} \left| \frac{y_i - \hat{y}_i}{y_i} \right|$$

Perbandingan Model County King

2010-2023

- Value pada data test masuk ke dalam Confidence Interval (CI) model 2020-2023 vs tidak masuk ke CI model 2010-2023
- Metrics pengukuran lebih baik pada model 2020-2023
- Kesimpulan = model 2020-2023 lebih baik

Prediksi Jumlah EV County King

Pada Juli 2026, diprediksi akan ada 224.552 jumlah EV di County King

Perbandingan Model County Snohomish

2010-2023

Snohomish	2010-2023	2020-2023
Mean Absolute Percentage Error	15%	3%
Mean Squared Error	9.548.501	470.624
Root Mean Squared Error	3.090	686
R-Squared	0,02	0,76

- Value pada data test lebih berdekatan ke Confidence Interval
 (CI) model 2020-2023 dibanding CI model 2010-2023
- Metrics pengukuran lebih baik pada model 2020-2023
- Kesimpulan = model 2020-2023 lebih baik

Prediksi Jumlah EV County Snohomish

Pierce	2010-2023	2020-2023
Mean Absolute Percentage Error	13%	4%
Mean Squared Error	3.035.718	255.836
Root Mean Squared Error	1.742	506
R-Squared	0,32	0,71

Clark	2010-2023	2020-2023
Mean Absolute Percentage Error	17%	2%
Mean Squared Error	2.794.525	78.695
Root Mean Squared Error	1,672	281
R-Squared	0,10	0,84

Thurston	2010-2023	2020-2023
Mean Absolute Percentage Error	14%	1%
Mean Squared Error	609.168	6.118
Root Mean Squared Error	780	78
R-Squared	0,12	0,95

Kitsap	2010-2023	2020-2023
Mean Absolute Percentage Error	10%	1%
Mean Squared Error	357.052	12.295
Root Mean Squared Error	598	111
R-Squared	0,45	0,87

Spokane	2010-2023	2020-2023	Whatcom	2010-2023	2020-2023
Mean Absolute Percentage Error	17%	1%	Mean Absolute Percentage Error	10%	3%
Mean Squared Error	460.540	4.482	Mean Squared Error	152.136	14.860
Root Mean Squared Error	679	67	Root Mean Squared Error	390	122
R-Squared	0,14	0,94	R-Squared	0,45	0,69

•		
C	-1	

Benton	2010-2023	2020-2023
Mean Absolute Percentage Error	13%	5%
Mean Squared Error	68.820	14.641
Root Mean Squared Error	262	121
R-Squared	0,34	0,21

Island	2010-2023	2020-2023
Mean Absolute Percentage Error	13%	2%
Mean Squared Error	40.528	1.194
Root Mean Squared Error	201	35
R-Squared	0,34	0,87

Prediksi Jumlah EV Untuk Juli 2026 di Semua County

Nama County	Prediksi
King	224.552
Snohomish	55.869
Pierce	26.924
Clark	21.544
Thurston	10.660

Nama County	Prediksi
Kitsap	9.869
Spokane	8.193
Whatcom	7.169
Benton	3.516
Island	3.098

Dashboard

Kesimpulan dan Saran

Kesimpulan dan Saran

Kesimpulan

 Forecasting yang dilakukan sudah baik karena MAPE < 10%.

Saran

- Memperbanyak charging station di county-county dengan jumlah EV yang banyak.
- Menyertakan adaptor untuk Tesla,
 Nissan Leaf, dan Chevy Volt di charging station baru

THANKS!

