Name:	Class:	Date:	ID: A

AP CSP

Multiple Choice

Identify the choice that best completes the statement or answers the question.

1. Consider the program below which outputs the season.

```
x ← <input>
y ← <input>
z ← x + y

IF (x < 4)

{
    DISPLAY ("Winter")
}
ELSE

{
    IF (z < 7)
    {
        DISPLAY ("Spring")
}
    ELSE
    {
        IF (z > 6 && z < 10)
        {
            DISPLAY ("Summer")
        }
        ELSE
        {
            DISPLAY ("Fall")
        }
}
```

What is the output results with the initial values of x is 3 and y is 5?

a. Winter

c. Summer

b. Spring

d. Fall

2. Recently Jessica gave a speech while running for officer of her club. Her debate coach wants Jessica to refine her public speaking skills by analyzing a transcript he made of her speech. What results will the following program segment create for Jessica's consideration?

count =0
for each k in list
 count=count+1
Display

- a. The program counts the number of people who like Jessica's speech
- b. The program will count the number of times the word "like" was said by Jessica
- c. The program counts the number of words in the speech named "list"
- d. The program will be an infinite loop adding 1 to the variable count

3. What is output by the code below?

DISPLAY (20 mod 4) + 3

- a. 8
- b. 3

- c. 19
- d. 27

4. The question below uses a robot in a grid of squares. The robot is represented as a triangle, which is initially in the top-left square of the grid and facing downward. The robot can move into a white or gray square, but cannot move into a black region.

Which of the following code segments can be used to move the robot to the gray square?

a. REPEAT 2 TIMES

{

 MOVE_FORWARD
 ROTATE_RIGHT
}

REPEAT 3 TIMES

{

 MOVE_FORWARD()
 ROTATE_RIGHT ()
 MOVE_FORWARD ()
 MOVE_FORWARD ()
 ROTATE_LEFT ()
}

c. MOVE_FORWARD ()
 ROTATE_LEFT ()
 REPEAT 4 TIMES
{
 MOVE_FORWARD ()
 MOVE_FORWARD ()
 ROTATE_LEFT ()
}

b. MOVE_FORWARD ()
 ROTATE_LEFT ()
 REPEAT 2 TIMES
 {
 MOVE_FORWARD()
 }
 ROTATE_RIGHT
 REPEAT 2 TIMES
 {
 MOVE_FORWARD ()
 MOVE_FORWARD ()
 ROTATE_RIGHT ()
}

d. MOVE_FORWARD ()
 ROTATE_LEFT ()
 REPEAT 2 TIMES
 {
 MOVE_FORWARD ()
 }
 ROTATE_RIGHT
 REPEAT 3 TIMES
 {
 MOVE_FORWARD ()
 MOVE_FORWARD ()
 ROTATE_LEFT ()
 }
}

5. An algorithm can be visually represented by a flowchart. The flowchart below uses the following building blocks.

	Shape	Explanation
Oval	0	Start/End
Rectangle		Process
Diamond	\Diamond	Decision
Parallelogram		Input/Output

What is displayed as a result of executing the algorithm in the flowchart?

a. 0

c. 41

b. 40

d. 45

6. Consider the following code segment. What is displayed as a result of execution?

 $d \leftarrow 10$ $e \leftarrow 20$ $f \leftarrow 30$ $e \leftarrow d$ DISPLAY (e)
DISPLAY (d + e)

a. 10 10

b. 10 20

c. 10 30

d. 10 40

7. Consider the code below.

line 11 l ←25

line 12 $m \leftarrow 3$

line 13 DISPLAY (l mod m)

line 14

line 15 $n \leftarrow l * m$

line 16 $o \leftarrow l + m$

What is the output from line 13?

a. 1

b. 9

c.

d. 28

8

8. Two grids are shown below. Each grid contains a robot represented as a triangle with the initial position facing downward. Each robot can move into a white or gray square, but cannot move into a black region.

Grid I Grid II

For each grid, the program below is intended to move the robot to the gray square. The program uses the procedure Finish_Race, which evaluates true if the robot is in the gray square and evaluates to false otherwise.

```
REPEAT UNTIL (Finish_Race ( ))
{
    IF (CAN_MOVE (forward))
    {
        MOVE_FORWARD ( )
    }
    IF (CAN_MOVE (left))
    {
        ROTATE_LEFT ( )
    }
    ELSE
        {
        ROTATE_RIGHT ( )
    }
}
```

For which of the grids does the program correctly move the robot to the gray square

a. Grid I Only

c. Both Grid I and Grid II

b. Grid II Only

- d. Neither Gird I nor Grid II
- 9. What is the output of the program segment below?
 - a ← "popcorn"
 - b ← "candy"
 - c ← "cotton"

DISPLAY "Do you want cotton" + b + "or" + a + "?"

- a. Do you want popcorn or candy?
- c. Do you want candy or popcorn?

b. Do you want candy?

d. Do you want cotton candy or popcorn?

Multiple Response

Identify one or more choices that best complete the statement or answer the question.

10. The question below uses a robot grid of squares. The robot is represented as a triangle, which initially starts in the top-left square facing toward the right side of the grid (④) with the robot's ending position indicated by a diamond (♦):

Code for the procedure Vacation is shown below. Assume that the parameter p has been assigned a positive integer value (e.g., 1, 2, 3...) Which procedure calls could potentially get the robot to the ending position above? (select 2 responses)

a.

```
b. PROCEDURE Vacation q
    REPEAT q TIMES
    {
        MOVE_FORWARD ()
        MOVE_FORWARD ()
        ROTATE_RIGHT ()
        MOVE_FORWARD ()
        ROTATE_LEFT ()
    }
}
```


d. PROCEDURE Vacation q
 REPEAT q TIMES
 {
 REPEAT q TIMES
 {
 MOVE_FORWARD()
 ROTATE_RIGHT()
 MOVE_FORWARD()
 ROTATE_LEFT()

____ 11. Consider the program segment below. Which statements best describe num2 when num1 is any positive integer. (2 responses)

```
IF (num1 < 0)
{
    num2 ← num1 + 10
}
ELSE
{
    num2 ← num1 + 20
}</pre>
```

- a. A positive integer
- b. num1 + 20

- c. num1 + 10
- d. 0