Simulation, Semester II 2023-2024

ST3247: Tutorial 1^1

!! For your convenience, the first two problems are theoretical problems and the last two are coding problems.

- 1. In the sequential inversion algorithm, to generate Y with $P(Y = k) = p_k$ for $k = 0, 1, 2, \dots$, we follow the pseudo-code:
 - Step 1. Generate $X \sim Unif(0,1)$
 - Step 2. Generate Y by comparing X with the CDF of Y, in the way that

$$Y = \min\{y : x \le \sum_{k=0}^{y} p_k\}.$$

Step 3. Return Y.

Now the question is, will the generated Y follow the distribution of interest? To answer it, please solve the following questions:

(a) We start with a concrete example. Consider the distribution that

$$P(Y = 0) = 0.2$$
, $P(Y = 1) = 0.3$, $P(Y = 2) = 0.4$, $P(Y = 4) = 0.1$.

We apply the sequential inversion algorithm.

- (i) Given X, how do we decide Y? Please specify the numbers we are comparing in each iteration.
- (ii) What is the probability that Y = 2?
- (b) Now we consider the general case
 - (i) According to the formula $Y = \min\{y : x \leq \sum_{k=0}^{y} p_k\}$, figure out the interval of X on which we will get Y = k.
 - (ii) By (i), find the probability of Y = k.
- 2. Consider the distribution that

$$P(Y = k) = \frac{1}{k(k+1)}, k = 1, 2, \cdots$$

We want to simulate Y by the inversion by truncation method.

(a) For any
$$i = 1, 2, 3, \dots$$
, find $F(i) = P(Y \le i)$.

¹All rights reserved by NUS. Reproduction or distribution of lecture notes/tutorials/quiz/exam without the written permission of the sponsor is prohibited.

- (b) Find out G on $(0, \infty)$, so that G(i + 1) = F(i), and G is monotone increasing.
- (c) Find out $G^{-1}(x)$.
- (d) According to the previous steps, write out the pseudo-code.
- 3. For the following integrals, please write out the pseudo code to calculate them with the Monte Carlo integration
 - (a) $\int_{-2}^{2} e^{x+x^2} dx$;
 - (b) $\int_{-\infty}^{\infty} e^{-x^2} dx$;
 - (c) $\int_0^1 \int_0^1 e^{(x+y)^2} dy dx$;
 - (d) $\int_0^\infty \int_0^x e^{-(x+y)} dy dx.$
- 4. Use simulation to approximate $Cov(U, e^U)$, where $U \sim Unif(0, 1)$. Please give the mean and standard deviation of your estimate.