Отчёт по лабораторной работе №1

дисциплина: Операционные системы

Максим Александрович Мишонков

Содержание

1	Цель работы	4
2	Теоретическое введение	5
3	Выполнение лабораторной работы	6
4	Выводы	26

Список иллюстраций

3.1	Запуск виртуальной машины	6
3.2	Окно "Свойства VirtualBox"	7
3.3	Смена хост-клавиши	7
3.4	Окно "Имя машины и тип ОС"	8
3.5	Окно "Размер основной памяти"	8
3.6	Окно создания жёсткого диска на виртуальной машине	9
3.7	Окно определения типа подключения виртуального жёсткого диска	9
3.8	Окно определения формата виртуального ж⊠сткого диска	10
3.9	Размер виртуального динамического жёсткого диска и его распо-	
	ложение	10
3.10	Настройка виртуальной машины	11
3.11	Окно «Носители» виртуальной машины: выбор оптического диска	11
	Окно выбора языка	12
	Окно выбора часового пояса	12
3.14	Окно выбора места установки	12
	Установка операционной системы	13
	Окно создания имя пользователя	13
	Окно установки пароля	14
3.18	Извлечение образа диска	14
3.19	Komaндa sudo -i	15
	Koмaндa dnf -y update	15
3.21	Обновление пакетов, запуск скриптлетов	15
3.22	Пакеты обновлены	16
	Koмaндa dnf install tmux mc	16
	Команда dnf install dnf-automatic	17
3.25	Результат	17
	Окно mc	18
	Koмaндa dnf -y install dkms	18
	Результат	19
	Koмaндa mount /dev/sr0 /media	19
3.30	Установка драйверов	20
3.31	Установка драйверов	20
3.32	Koмaндa dnf -y install pandoc	21
	Результат	21
	Установка texlive texlive-*	22
3.35	texlive texlive-* установлен	22

1 Цель работы

Целью данной лабораторной работы является установка операционной системы Linux (дистрибутив Fedora 36) на виртуальную машину VirtualBox и настройка минимально необходимых параметров для дальнейшей работы с системой.

2 Теоретическое введение

Операционная система (ОС) - это комплекс взаимосвязанных программ, предназначенных для управления ресурсами компьютера и организации взаимодействия с пользователем.

GNU Linux - это семейство переносимых, многозадачных и многопользовательских систем на базе ядра Linux, включающих тот или иной набор утилит и программ проекта GNU, и, возможно, другие компоненты. Как и ядро Linux, системы на его основе, как правило, создаются и распространяются в соответствии с моделью разработки свободного и открытого программного обеспечения.

Дистрибутив GNU Linux - это общее определение ОС, использующих ядро Linux и набор библиотек и утилит, выпускаемых в рамках проекта GNU, а также графическую оконную подсистему X Window System. Кроме ядра и, собственно, операционной системы дистрибутивы обычно содержат широкий набор приложений, таких как редакторы документов и таблиц, мультимедийные проигрыватели, системы для работы с базами данных и т.д.

3 Выполнение лабораторной работы

1. Запустил виртуальную машину, введя в командной строке VirtualBox &. (рис. [3.1])

Рис. 3.1: Запуск виртуальной машины

2. В настройках VirtualBox изменил месторасположение каталога для виртуальных машин, указав учётную запись на месте «имя пользователя». (рис. [3.2])

Рис. 3.2: Окно "Свойства VirtualBox"

3. Сменил комбинацию хост-клавиши, использующейся для освобождения курсора мыши, который может захватывать виртуальная машина. (рис. [3.3])

Рис. 3.3: Смена хост-клавиши

4. Создадал новую виртуальную машину, указав имя виртуальной машины (учётная запись) и тип операционной системы (Linux, Fedora (64-bit)). (рис. [3.4])

Рис. 3.4: Окно "Имя машины и тип ОС"

5. Указал размер основной памяти виртуальной машины (2048 МБ). (рис. [3.5])

Рис. 3.5: Окно "Размер основной памяти"

6. Задал конфигурацию жёсткого диска (загрузочный, VDI, динамический виртуальный диск). (рис. [3.6], [3.7], [3.8])

Рис. 3.6: Окно создания жёсткого диска на виртуальной машине

Рис. 3.7: Окно определения типа подключения виртуального жёсткого диска

Рис. 3.8: Окно определения формата виртуального ж⊠сткого диска

7. Задал расположение диска и его размер (80 ГБ). (рис. [3.9])

Рис. 3.9: Размер виртуального динамического жёсткого диска и его расположение

8. В настройках виртуальной машины во вкладке «дисплей -> экран» увеличил доступный объём видеопамяти до 128 МБ. (рис. [3.10])

Рис. 3.10: Настройка виртуальной машины

9. В настройках виртуальной машины добавил новый привод оптических дисков. (рис. [3.11])

Рис. 3.11: Окно «Носители» виртуальной машины: выбор оптического диска

10. Скорректировал настройки системы (раскладку клавиатуры, часовой пояс, место установки). (рис. [3.12], [3.13], [3.14])

Рис. 3.12: Окно выбора языка

Рис. 3.13: Окно выбора часового пояса

Рис. 3.14: Окно выбора места установки

11. Запустил установку операционной системы. (рис. [3.15])

Рис. 3.15: Установка операционной системы

12. Создал имя пользователя, используя свой логин в дисплейном классе, и установил пароль. (рис. [3.16], [3.17])

Рис. 3.16: Окно создания имя пользователя

Рис. 3.17: Окно установки пароля

13. Выключил систему и совершил изъятие образа диска из дисковода. (рис. [3.18])

Рис. 3.18: Извлечение образа диска

- 14. Вошёл в ОС под заданной мной при установке учётной записью. Нажала комбинацию Win+Enter для запуска терминала.
- 15. Переключился на роль супер-пользователя и ввёл пароль. (рис. [3.19])

[mamishonkov@mamishonkov ~]\$ sudo -i [sudo] пароль для mamishonkov:

Рис. 3.19: Команда sudo -i

16. Обновил все пакеты. (рис. [3.20], [3.21], [3.22])

```
[root@mamishonkov ~]# dnf -y update
```

Рис. 3.20: Команда dnf -y update

```
mamishonkov [Работает] - Oracle VM VirtualBox
Файл Машина Вид Ввод Устройства Справка
Файл Правка Вид Терминал Вкладки Справка
                    : xz-libs-5.4.1-1.fc37.x86_64
 Обновление
                   : libxm12-2.10.3-2.fc37.x86_64
: expat-2.5.0-1.fc37.x86_64
 Обновление
                                                                             35/852
 Обновление
                                                                             36/852
                    : libdrm-2.4.114-1.fc37.x86_64
 Обновление
                    : libzstd-1.5.4-1.fc37.x86_64
                                                                             38/852
 Обновление
                      grub2-common-1:2.06-75.fc37.noarch
                                                                             39/852
 Обновление
 Обновление
                    : alternatives-1.21-1.fc37.x86_64
                                                                             40/852
                    : audit-libs-3.1-2.fc37.x86_64
 Обновление
                                                                             41/852
                    : readline-8.2-2.fc37.x86_64
 Обновление
                                                                             42/852
                    : sqlite-libs-3.40.0-1.fc37.x86_64
: elfutils-libelf-0.188-3.fc37.x86_64
                                                                             43/852
 Обновление
 Обновление
                                                                             44/852
                    : libidn2-2.3.4-1.fc37.x86_64
                                                                             45/852
 Обновление
                    : alsa-lib-1.2.8-2.fc37.x86_64
                                                                             46/852
 Обновление
                    : libX11-xcb-1.8.4-1.fc37.x86_64
                                                                             47/852
 Обновление
 Обновление
                    : nspr-4.35.0-3.fc37.x86_64
                                                                             48/852
 Обновление
                      lcms2-2.14-1.fc37.x86_64
                                                                             49/852
                    : libsss_idmap-2.8.2-1.fc37.x86_64
 Обновление
                                                                             50/852
                    : libxcrypt-4.4.33-4.fc37.x86_64
: mkpasswd-5.5.15-1.fc37.x86_64
 Обновление
                                                                             51/852
 Обновление
                                                                             52/852
                      shadow-utils-2:4.12.3-4.fc37.x86_64
                                                                             53/852
 Обновление
 Обновление
                      lz4-libs-1.9.4-1.fc37.x86_64
                                                                             54/852
                      systemd-libs-251.11-2. [=======
                                                                             55/852
 Обновление
```

Рис. 3.21: Обновление пакетов, запуск скриптлетов

```
[root@mamishonkov ~]# dnf -y update
Последняя проверка окончания срока действия метаданных: 0:40:45 назад, Чт 16
фев 2023 17:24:02.
Зависимости разрешены.
Отсутствуют действия для выполнения.
Выполнено!
[root@mamishonkov ~]#
```

Рис. 3.22: Пакеты обновлены

17. Я использовал программы для удобства работы в консоли. (рис. [3.23])

Рис. 3.23: Команда dnf install tmux mc

18. Я использовал автоматическое обновление. (рис. [3.24], [3.25])

Рис. 3.24: Команда dnf install dnf-automatic

```
Файл Правка Вид Терминал Вкладки Справка
Объем загрузки: 47 k
Объем изменений: 74 k
Продолжить? [д/Н]: у
Загрузка пакетов:
dnf-automatic-4.14.0-1.fc37.noarch.rpm
                                             120 kB/s | 47 kB
                                                                     00:00
                                              7.8 kB/s | 47 kB
Общий размер
Проверка транзакции
Проверка транзакции успешно завершена.
Идет проверка транзакции
Тест транзакции проведен успешно.
Выполнение транзакции
 Подготовка
                 : dnf-automatic-4.14.0-1.fc37.noarch
 Запуск скриптлета: dnf-automatic-4.14.0-1.fc37.noarch
                                                                            1/1
                  : dnf-automatic-4.14.0-1.fc37.noarch
 становлен:
 dnf-automatic-4.14.0-1.fc37.noarch
[root@mamishonkov ~]#
```

Рис. 3.25: Результат

19. Открыл в mc и в файле /etc/selinux/config заменил значение SELINUX=enforcing на значение SELINUX=permissive. (рис. [3.26])

Рис. 3.26: Окно тс

20. Установил пакет DKMS. (рис. [3.27], [3.28])

```
Архитектура
Пакет
                                      Версия
                                                              Репозиторий Размер
/становка:
                                      3.0.10-1.fc37
                                                                            88 k
dkms
                           noarch
                                                              updates
<sup>/</sup>становка зависимостей:
kernel-devel-matched
                           x86_64
                                      6.1.11-200.fc37
                                                              updates
                                                                           120 k
Результат транзакции
становка 2 Пакета
Общий размер: 208 k
Объем изменений: 188 k
Продолжить? [д/H]:
```

Рис. 3.27: Команда dnf -y install dkms

```
Файл Правка Вид Терминал Вкладки Справка
                       m4-1.4.19-4.fc37.x86_64
  Проверка
                     : zlib-devel-1.2.12-5.fc37.x86_64
: dkms-3.0.10-1.fc37.noarch
  Проверка
  Проверка
                      : elfutils-libelf-devel-0.188-3.fc37.x86_64
  Проверка
                     : kernel-devel-6.1.11-200.fc37.x86_64
: kernel-devel-matched-6.1.11-200.fc37.x86_64
  Проверка
                                                                                     7/9
  Проверка
  Проверка
                      : openssl-devel-1:3.0.8-1.fc37.x86_64
 становлен:
  bison-3.8.2-3.fc37.x86_64
  dkms-3.0.10-1.fc37.noarch
  elfutils-libelf-devel-0.188-3.fc37.x86_64
  flex-2.6.4-11.fc37.x86_64
  kernel-devel-6.1.11-200.fc37.x86_64
  kernel-devel-matched-6.1.11-200.fc37.x86_64
  m4-1.4.19-4.fc37.x86_64
openssl-devel-1:3.0.8-1.fc37.x86_64
  zlib-devel-1.2.12-5.fc37.x86_64
[root@mamishonkov ~]#
```

Рис. 3.28: Результат

21. В меню виртуальной машины я подключил образ диска дополнений гостевой ОС. Подмонтировал диск. Установил драйвера:/media/VBoxLinuxAdditions.run. Перезагрузил виртуальную машину с помощью команды reboot.(рис. [3.29])

```
Выполнено!
[root@mamishonkov ~]# mount /dev/sr0 /media/
mount: /media: no medium found on /dev/sr0.
dmesg(1) may have more information after failed mount system call.
[root@mamishonkov ~]#
```

Рис. 3.29: Koмaндa mount /dev/sr0 /media

```
Файл Правка Вид Терминал Вкладки Справка
Выполнено!
[root@mamishonkov ~]# mount /dev/sr0 /media/
nount: /media: no medium found on /dev/sr0
       dmesg(1) may have more information after failed mount system call.
[root@mamishonkov ~]# /media/VBoxLinuxAdditions.run
-bash: /media/VBoxLinuxAdditions.run: Нет такого файла или каталога
[root@mamishonkov ~]# /media/VBoxLinuxAdditions.run
 bash: /media/VBoxLinuxAdditions.run: Нет такого файла или каталога
[root@mamishonkov ~]# mount /dev/sr0 /media/
nount: /media: no medium found on /dev/sr0
       dmesg(1) may have more information after failed mount system call.
[root@mamishonkov ~]# /media/VBoxLinuxAdditions.run
-bash: /media/VBoxLinuxAdditions.run: Нет такого файла или каталога
[root@mamishonkov ~]# mount /dev/sr0 /media/
mount: /media: WARNING: source write-protected, mounted read-only
[root@mamishonkov ~]# /media/VBoxLinuxAdditions.run
Verifying archive integrity... 100% MD5 checksums are OK. All good.
Uncompressing VirtualBox 7.0.6 Guest Additions for Linux 100%
VirtualBox Guest Additions installer
```

Рис. 3.30: Установка драйверов

```
Файл Правка Вид Терминал Вкладки Справка
-bash: /media/VBoxLinuxAdditions.run: Нет такого файла или каталога
[root@mamishonkov ~]# mount /dev/sr0 /media/
mount: /media: WARNING: source write-protected, mounted read-only.
[root@mamishonkov ~]# /media/VBoxLinuxAdditions.run
Verifying archive integrity... 100% MD5 checksums are OK. All good.
Uncompressing VirtualBox 7.0.6 Guest Additions for Linux 100%
VirtualBox Guest Additions installer
VirtualBox Guest Additions: Starting.
VirtualBox Guest Additions: Setting up modules
VirtualBox Guest Additions: Building the VirtualBox Guest Additions kernel
modules. This may take a while
VirtualBox Guest Additions: To build modules for other installed kernels, run
VirtualBox Guest Additions:
                             /sbin/rcvboxadd quicksetup <version>
VirtualBox Guest Additions: or
VirtualBox Guest Additions: /sbin/rcvboxadd quicksetup all
VirtualBox Guest Additions: Building the modules for kernel
6.1.11-200.fc37.x86_64.
VirtualBox Guest Additions: Running kernel modules will not be replaced until
the system is restarted
[root@mamishonkov ~]#
```

Рис. 3.31: Установка драйверов

22. Нажал комбинацию Win+Enter для запуска терминала. Запустил терминальный мультиплексор tmux. Переключился на роль супер-пользователя: sudo -i. Установил pandoc. (рис. [3.32], [3.33])

```
[mamishonkov@mamishonkov ~]$ sudo -i
[sudo] пароль для mamishonkov:
[root@mamishonkov ~]# dnf -y install pandoc
Последняя проверка окончания срока действия метаданных: 1:30:21 назад, Чт 16
фев 2023 17:24:02.
Зависимости разрешены.
Пакет
                 Архитектура Версия
                                                    Репозиторий Размер
/становка:
pandoc
                 x86_64 2.14.0.3-18.fc37
                                                     fedora
                                                                  21 M
/становка зависимостей:
                noarch 2.14.0.3-18.fc37
pandoc-common
                                                     fedora
                                                                 472 k
Результат транзакции
Установка 2 Пакета
Объем загрузки: 22 М
Объем изменений: 159 М
Загрузка пакетов:
```

Рис. 3.32: Команда dnf -y install pandoc

```
Файл Правка Вид Терминал Вкладки Справка
(1/2): pandoc-common-2.14.0.3-18.fc37.noarch 625 kB/s | 472 kB
00:06
Общий размер
                                              254 kB/s | 22 MB
                                                                     01:26
Проверка транзакции
Проверка транзакции успешно завершена.
Идет проверка транзакции
Тест транзакции проведен успешно.
Выполнение транзакции
 Подготовка : 
Установка : pandoc-common-2.14.0.3-18.fc37.noarch
Установка : pandoc-2.14.0.3-18.fc37.x86_64
                                                                           1/1
                                                                           2/2
 Запуск скриптлета: pandoc-2.14.0.3-18.fc37.x86_64
                                                                           2/2
 Проверка : pandoc-2.14.0.3-18.fc37.x86_64
Проверка : pandoc-common-2.14.0.3-18.fc37.noarch
                                                                           1/2
Установлен:
 pandoc-2.14.0.3-18.fc37.x86_64 pandoc-common-2.14.0.3-18.fc37.noarch
Выполнено!
[root@mamishonkov ~]#
```

Рис. 3.33: Результат

24. Установил дистрибутив TeXlive. (рис. [3.34])

```
tellue-particule-3 wn/1878 #-59 f-67 march
tellue-samenthuccent-3 wn/1878 #-59 f-67 march
tellue-samenthuccent-3 wn/1878 #-59 f-67 march
tellue-tellue-particule-3 wn/1878 #-59 f-67 march
tellue-tellue-particule-3 wn/1878 #-59 f-67 march
tellue-tellue-tellue-particule-3 wn/1878 #-59 f-67 march
tellue-tellue-particule-3 wn/1878 #-59 f-67 march
tellue-wn/1878 #-
```

Рис. 3.34: Установка texlive texlive-*

```
Выполнено!
[root@mamishonkov ~]# dnf install texlive texlive-/*
Последняя проверка окончания срока действия метаданных: 2:06:58 назад, Чт 16
фев 2023 17:24:02.
Пакет texlive-9:2021-59.fc37.noarch уже установлен.
```

Рис. 3.35: texlive texlive-* установлен

Домашнее задание

1. Версия ядра Linux: 5.2.0-kali2-amd64.

2. Частота процессора: 1995.390 МГц.

3. Модель процессора: Intel(R)Core(TM)i3-5005U CPU @ 2.00GHz.

4. Объём доступной оперативной памяти: 2096628 Кб.

5. Тип обнаруженного гипервизора: Vmware

6. Тип файловой системы корневого раздела: ЕХТ4.

Ответы на контрольные вопросы

1. Учётная запись пользователя – это необходимая для системы информация о пользователе, хранящаяся в специальных файлах. Информация используется Linux для аутентификации пользователя и назначения ему прав доступа. Аутентификация – системная процедура, позволяющая Linux

определить, какой именно пользователь осуществляет вход. Вся информация о пользователе обычно хранится в файлах /etc/passwd и /etc/group. Учётная запись пользователя содержит: -Имя пользователя (user name) -Идентификационный номер пользователя (UID) -Идентификационный номер группы (GID) -Пароль (password) -Полное имя (full name) -Домашний каталог (home directory) -Начальную оболочку (login shell)

- 2. Команды терминала: -Для получения справки по команде: man [команда]. Например, команда «man ls» выведет справку о команде «ls». -Для перемещения по файловой системе: cd [путь]. Например, команда «cd newdir» осуществляет переход в каталог newdir. -Для просмотра содержимого каталога: ls [опции] [путь]. Например, команда «ls –a ~/newdir» отобразит имена скрытых файлов в каталоге newdir. -Для определения объёма каталога: du [опция] [путь]. Например, команда «du –k ~/newdir» выведет размер каталога newdir в килобайтах. -Для создания / удаления каталогов / файлов: mkdir [опции] [путь] / rmdir [опции] [путь] / rm [опции] [путь]. Например, команда «mkdir – p ~/newdir1/newdir2» создаст иерархическую цепочку подкаталогов, создав каталоги newdir1 и newdir2; команда «rmdir -v ~/newdir» удалит каталог newdir; команда «rm –r ~/newdir» так же удалит каталог newdir. -Для задания определённых прав на файл / каталог: chmod [опции] [путь]. Например, команда «chmod g+r ~/text.txt» даст группе право на чтение файла text.txt. -Для просмотра истории команд: history [опции]. Например, команда «history 5» покажет список последних 5 команд.
- 3. Файловая система имеет два значения: с одной стороны это архитектура хранения битов на жестком диске, с другой это организация каталогов в соответствии с идеологией Unix. Файловая система (англ. «file system») это архитектура хранения данных в системе, хранение данных в оперативной памяти и доступа к конфигурации ядра. Файловая система устанавливает физическую и логическую структуру файлов, правила их создания и управ-

ления ими. В физическом смысле файловая система Linux представляет собой пространство раздела диска, разбитое на блоки фиксированного размера. Их размер кратен размеру сектора: 1024, 2048, 4096 или 8120 байт. Существует несколько типов файловых систем: XFS — начало разработки 1993 год, фирма Silicon Graphics, в мае 2000 года предстала в GNU GPL, для пользователей большинства Linux систем стала доступна в 2001-2002 гг. Отличительная черта системы — прекрасная поддержка больших файлов и файловых томов, 8 эксбибайт (8260 байт) для 64-х битных систем. ReiserFS (Reiser3) — одна из первых журналируемых файловых систем под Linux, разработана Namesys, доступна с 2001 г. Максимальный объём тома для этой системы равен 16 тебибайт (16240 байт). Тих2 — известная, но так и не анонсированная публично файловая система. Создатель Дэниэл Филипс (Daniel Phillips). Система базируется на алгоритме «Фазового Дерева», который как и журналирование защищает файловую систему от сбоев. Организована как надстройка на ext2.

- 4. Команда «findmnt» или «findmnt –all» будет отображать все подмонтированные файловые системы или искать файловую систему.
- 5. Основные сигналы (каждый сигнал имеет свой номер), которые используются для завершения процесса: -SIGINT самый безобидный сигнал завершения, означает Interrupt. Он отправляется процессу, запущенному из терминала с помощью сочетания клавиш Ctrl+C. Процесс правильно завершает все свои действия и возвращает управление; -SIGQUIT это еще один сигнал, который отправляется с помощью сочетания клавиш, программе, запущенной в терминале. Он сообщает ей что нужно завершиться и программа может выполнить корректное завершение или проигнорировать сигнал. В отличие отпредыдущего, она генерирует дамп памяти. Сочетание клавиш Ctrl+/; -SIGHUP сообщает процессу, что соединение с управляющим терминалом разорвано, отправляется, в основном, системой

при разрыве соединения с интернетом; -SIGTERM – немедленно завершает процесс, но обрабатывается программой, поэтому позволяет ей завершить дочерние процессы и освободить все ресурсы; SIGKILL – тоже немедленно завершает процесс, но, в отличие от предыдущего варианта, он не передается самому процессу, а обрабатывается ядром. Поэтому ресурсы и дочерние процессы остаются запущенными. Также для передачи сигналов процессам в Linux используется утилита kill, её синтаксис: kill [-сигнал] [pid процесса] (PID – уникальный идентификатор процесса). Сигнал представляет собой один из выше перечисленных сигналов для завершения процесса. Перед тем, как выполнить остановку процесса, нужно определить его PID. Для этого используют команды ps и grep. Команда ps предназначена для вывода списка активных процессов в системе и информации о них. Команда grep запускается одновременно с ps (в канале) и будет выполнять поиск по результатам команды ps. Утилита pkill – это оболочка для kill, она ведет себя точно так же, и имеет тот же синтаксис, только в качестве идентификатора процесса ей нужно передать его имя. killall работает аналогично двум предыдущим утилитам. Она тоже принимает имя процесса в качестве параметра и ищет его PID в директории /proc. Но эта утилита обнаружит все процессы с таким именем и завершит их.

4 Выводы

В ходе выполнения данной лабораторной работы я установил операционную систему Linux (дистрибутив Fedora 36) на вирутальную машину VIrtualBox и настроил минимально необходимые параметры для дальнейшей работы с ситемой.