Duality in Finite Element Exterior Calculus

Yakov Berchenko-Kogan

Washington University in St. Louis

November 9-10, 2018

Triangulate the domain into simplices. On a simplex T, we have spaces $\mathcal{P}_r \Lambda^k(T)$ and $\mathcal{P}_r^- \Lambda^k(T)$ of k-forms on T with polynomial coefficients of degree at most r.

Triangulate the domain into simplices. On a simplex T, we have spaces $\mathcal{P}_r \Lambda^k(T)$ and $\mathcal{P}_r^- \Lambda^k(T)$ of k-forms on T with polynomial coefficients of degree at most r.

Special cases

- scalar fields
 - Lagrange
 - Discontinuous Galerkin

Triangulate the domain into simplices. On a simplex T, we have spaces $\mathcal{P}_r \Lambda^k(T)$ and $\mathcal{P}_r^- \Lambda^k(T)$ of k-forms on T with polynomial coefficients of degree at most r.

Special cases

- scalar fields
 - Lagrange
 - Discontinuous Galerkin
- vector fields
 - Brezzi–Douglas–Marini elements
 - Raviart-Thomas elements
 - Nédélec elements

Triangulate the domain into simplices. On a simplex T, we have spaces $\mathcal{P}_r \Lambda^k(T)$ and $\mathcal{P}_r^- \Lambda^k(T)$ of k-forms on T with polynomial coefficients of degree at most r.

Special cases

- scalar fields
 - Lagrange
 - Discontinuous Galerkin
- vector fields
 - ► Brezzi–Douglas–Marini elements
 - Raviart–Thomas elements
 - Nédélec elements

Example

In three dimensions, $\mathcal{P}_r\Lambda^1(T)$ and $\mathcal{P}_r^-\Lambda^1(T)$ are Nédélec H(curl) elements of the 2nd and 1st kinds, respectively.

Triangulate the domain into simplices. On a simplex T, we have spaces $\mathcal{P}_r \Lambda^k(T)$ and $\mathcal{P}_r^- \Lambda^k(T)$ of k-forms on T with polynomial coefficients of degree at most r.

Special cases

- scalar fields
 - Lagrange
 - Discontinuous Galerkin
- vector fields
 - Brezzi–Douglas–Marini elements
 - Raviart–Thomas elements
 - Nédélec elements

Example

In three dimensions, $\mathcal{P}_r\Lambda^1(T)$ and $\mathcal{P}_r^-\Lambda^1(T)$ are Nédélec H(curl) elements of the 2nd and 1st kinds, respectively.

See (Arnold, Falk, Winther, 2006).

Let Ω be an 3-dimensional domain. Given $\alpha \in \Lambda^1(\Omega)$ and $\beta \in \Lambda^2(\Omega)$, we can compute

$$\int_{\Omega} \alpha \wedge \beta.$$

Let Ω be an 3-dimensional domain. Given $\alpha \in \Lambda^1(\Omega)$ and $\beta \in \Lambda^2(\Omega)$, we can compute

$$\int_{\Omega} \alpha \wedge \beta.$$

Integration is a perfect pairing $\Lambda^1(\Omega) \times \Lambda^2(\Omega) \to \mathbb{R}$.

► For any nonzero $\alpha \in \Lambda^1(\Omega)$, there exists a $\beta \in \Lambda^2(\Omega)$ such that $\int_{\Omega} \alpha \wedge \beta > 0$, and vice versa.

Let Ω be an 3-dimensional domain. Given $\alpha \in \Lambda^1(\Omega)$ and $\beta \in \Lambda^2(\Omega)$, we can compute

$$\int_{\Omega} \alpha \wedge \beta.$$

Integration is a perfect pairing $\Lambda^1(\Omega) \times \Lambda^2(\Omega) \to \mathbb{R}$.

► For any nonzero $\alpha \in \Lambda^1(\Omega)$, there exists a $\beta \in \Lambda^2(\Omega)$ such that $\int_{\Omega} \alpha \wedge \beta > 0$, and vice versa.

In this setting, given α , it is easy to construct such a dual β . If $\alpha = \alpha_x dx + \alpha_y dy + \alpha_z dz$, then we can set

$$\beta = \alpha_x \, dy \wedge dz + \alpha_y \, dz \wedge dx + \alpha_z \, dx \wedge dy = *\alpha.$$

Let Ω be an 3-dimensional domain. Given $\alpha \in \Lambda^1(\Omega)$ and $\beta \in \Lambda^2(\Omega)$, we can compute

$$\int_{\Omega} \alpha \wedge \beta.$$

Integration is a perfect pairing $\Lambda^1(\Omega) \times \Lambda^2(\Omega) \to \mathbb{R}$.

For any nonzero $\alpha \in \Lambda^1(\Omega)$, there exists a $\beta \in \Lambda^2(\Omega)$ such that $\int_{\Omega} \alpha \wedge \beta > 0$, and vice versa.

In this setting, given α , it is easy to construct such a dual β . If $\alpha = \alpha_x dx + \alpha_y dy + \alpha_z dz$, then we can set

$$\beta = \alpha_x \, dy \wedge dz + \alpha_y \, dz \wedge dx + \alpha_z \, dx \wedge dy = *\alpha.$$

Let Ω be an 3-dimensional domain. Given $\alpha \in \Lambda^1(\Omega)$ and $\beta \in \Lambda^2(\Omega)$, we can compute

$$\int_{\Omega} \alpha \wedge \beta.$$

Integration is a perfect pairing $\Lambda^1(\Omega) \times \Lambda^2(\Omega) \to \mathbb{R}$.

For any nonzero $\alpha \in \Lambda^1(\Omega)$, there exists a $\beta \in \Lambda^2(\Omega)$ such that $\int_{\Omega} \alpha \wedge \beta > 0$, and vice versa.

In this setting, given α , it is easy to construct such a dual β . If $\alpha = \alpha_x \, dx + \alpha_y \, dy + \alpha_z \, dz$, then we can set

$$\beta = \alpha_x \, dy \wedge dz + \alpha_y \, dz \wedge dx + \alpha_z \, dx \wedge dy = *\alpha.$$

- \blacktriangleright β only depends on α pointwise.

Duality in finite element exterior calculus

Let T be a simplex. Given $\alpha \in \Lambda^k(T)$ and $\beta \in \Lambda^{n-k}(T)$, we consider the pairing

$$(\alpha,\beta)\mapsto \int_{\mathcal{T}} \alpha \wedge \beta.$$

Duality in finite element exterior calculus

Let T be a simplex. Given $\alpha \in \Lambda^k(T)$ and $\beta \in \Lambda^{n-k}(T)$, we consider the pairing

$$(\alpha,\beta)\mapsto \int_{\mathcal{T}} \alpha \wedge \beta.$$

Arnold, Falk, and Winther show that integration is a perfect pairing in the two settings

$$\begin{split} \mathcal{P}_r^- \Lambda^k(T) \times \mathring{\mathcal{P}}_{r+k} \Lambda^{n-k}(T) &\to \mathbb{R}, \\ \mathcal{P}_r \Lambda^k(T) \times \mathring{\mathcal{P}}_{r+k+1}^- \Lambda^{n-k}(T) &\to \mathbb{R}. \end{split}$$

• $\mathring{\mathcal{P}}$ denotes forms with vanishing tangential trace on ∂T .

Duality in finite element exterior calculus

Let T be a simplex. Given $\alpha \in \Lambda^k(T)$ and $\beta \in \Lambda^{n-k}(T)$, we consider the pairing

$$(\alpha,\beta)\mapsto \int_{\mathcal{T}} \alpha \wedge \beta.$$

Arnold, Falk, and Winther show that integration is a perfect pairing in the two settings

$$\begin{split} \mathcal{P}_r^- \Lambda^k(T) \times \mathring{\mathcal{P}}_{r+k} \Lambda^{n-k}(T) &\to \mathbb{R}, \\ \mathcal{P}_r \Lambda^k(T) \times \mathring{\mathcal{P}}_{r+k+1}^- \Lambda^{n-k}(T) &\to \mathbb{R}. \end{split}$$

 $ightharpoonup \mathring{\mathcal{P}}$ denotes forms with vanishing tangential trace on $\partial \mathcal{T}$.

Problem

Given $\alpha \in \mathcal{P}_r \Lambda^k(T)$, find a dual $\beta \in \mathring{\mathcal{P}}_{r+k+1}^- \Lambda^{n-k}(T)$ such that

- $\int_{\mathcal{T}} \alpha \wedge \beta > 0$, and
- \triangleright β only depends on α pointwise.

To illustrate, focus on dim T=2. The standard simplex T sits inside the first orthant \mathbf{O} as those points that satisfy x+y+z=1.

To illustrate, focus on dim T=2. The standard simplex T sits inside the first orthant \mathbf{O} as those points that satisfy x+y+z=1.

Key ideas

To illustrate, focus on dim T=2. The standard simplex T sits inside the first orthant $\mathbf{0}$ as those points that satisfy x+y+z=1.

Key ideas

▶ Identify $\mathcal{P}_r \Lambda^k(T)$ and $\mathcal{P}_r^- \Lambda^k(T)$ with spaces $\mathbf{P}_r \Lambda^k(\mathbf{O})$ and $\mathbf{P}_r^- \Lambda^k(\mathbf{O})$ of differential forms on \mathbf{O} .

To illustrate, focus on dim T=2. The standard simplex T sits inside the first orthant $\mathbf{0}$ as those points that satisfy x+y+z=1.

Key ideas

- ▶ Identify $\mathcal{P}_r \Lambda^k(T)$ and $\mathcal{P}_r^- \Lambda^k(T)$ with spaces $\mathbf{P}_r \Lambda^k(\mathbf{O})$ and $\mathbf{P}_r^- \Lambda^k(\mathbf{O})$ of differential forms on \mathbf{O} .
- Exploit a natural duality relationship between the P and Pspaces.

Let E be a vector space, let $H \subset E$ be a hyperplane, and let X be a vector not in the hyperplane. To illustrate, focus on dim E = 3.

Let E be a vector space, let $H \subset E$ be a hyperplane, and let X be a vector not in the hyperplane. To illustrate, focus on dim E = 3.

► Choose a basis for $E^* = \langle e^1, e^2, e^3 \rangle$ so that $e^3(Y) = 0$ for all $Y \in H$ and $e^1(X) = e^2(X) = 0$.

Let E be a vector space, let $H \subset E$ be a hyperplane, and let X be a vector not in the hyperplane. To illustrate, focus on dim E = 3.

- ► Choose a basis for $E^* = \langle e^1, e^2, e^3 \rangle$ so that $e^3(Y) = 0$ for all $Y \in H$ and $e^1(X) = e^2(X) = 0$.
- ► This splitting of E^* extends to a splitting of $\Lambda^{\bullet}E^*$ into vertical and horizontal subspaces $(\Lambda^{\bullet}E^*)^{\perp}$ and $(\Lambda^{\bullet}E^*)^{\top}$.

Let E be a vector space, let $H \subset E$ be a hyperplane, and let X be a vector not in the hyperplane. To illustrate, focus on dim E = 3.

- ► Choose a basis for $E^* = \langle e^1, e^2, e^3 \rangle$ so that $e^3(Y) = 0$ for all $Y \in H$ and $e^1(X) = e^2(X) = 0$.
- ► This splitting of E^* extends to a splitting of $\Lambda^{\bullet}E^*$ into vertical and horizontal subspaces $(\Lambda^{\bullet}E^*)^{\perp}$ and $(\Lambda^{\bullet}E^*)^{\top}$.

	vertical	horizontal
$\Lambda^0 E^*$		$\langle 1 \rangle$
$\Lambda^1 E^*$	$\langle e^3 \rangle$	$\langle e^1, e^2 \rangle$
$\Lambda^2 E^*$	$\langle e^1 \wedge e^3, e^2 \wedge e^3 \rangle$	$\langle e^1 \wedge e^2 \rangle$
$\Lambda^3 E^*$	$\langle e^1 \wedge e^2 \wedge e^3 \rangle$,

Let E be a vector space, let $H \subset E$ be a hyperplane, and let X be a vector not in the hyperplane. To illustrate, focus on dim E = 3.

- ► Choose a basis for $E^* = \langle e^1, e^2, e^3 \rangle$ so that $e^3(Y) = 0$ for all $Y \in H$ and $e^1(X) = e^2(X) = 0$.
- ► This splitting of E^* extends to a splitting of $\Lambda^{\bullet}E^*$ into vertical and horizontal subspaces $(\Lambda^{\bullet}E^*)^{\perp}$ and $(\Lambda^{\bullet}E^*)^{\top}$.

	vertical	horizontal
$\Lambda^0 E^*$		$\langle 1 \rangle$
$\Lambda^1 E^*$	$\langle e^3 \rangle$	$\langle e^1, e^2 \rangle$
$\Lambda^2 E^*$	$\langle e^1 \wedge e^3, e^2 \wedge e^3 \rangle$	$\langle e^1 \wedge e^2 \rangle$
$\Lambda^3 E^*$	$\langle e^1 \wedge e^2 \wedge e^3 \rangle$,

Note that

$$\Lambda^k H^* \cong (\Lambda^k E^*)^\top.$$

Let E be a vector space, let $H \subset E$ be a hyperplane, and let X be a vector not in the hyperplane. To illustrate, focus on dim E = 3.

- ► Choose a basis for $E^* = \langle e^1, e^2, e^3 \rangle$ so that $e^3(Y) = 0$ for all $Y \in H$ and $e^1(X) = e^2(X) = 0$.
- ► This splitting of E^* extends to a splitting of $\Lambda^{\bullet}E^*$ into vertical and horizontal subspaces $(\Lambda^{\bullet}E^*)^{\perp}$ and $(\Lambda^{\bullet}E^*)^{\top}$.

	vertical	horizontal
$\Lambda^0 E^*$		$\langle 1 \rangle$
$\Lambda^1 E^*$	$\langle e^3 \rangle$	$\langle e^1, e^2 \rangle$
$\Lambda^2 E^*$	$\langle e^1 \wedge e^3, e^2 \wedge e^3 \rangle$	$\langle e^1 \wedge e^2 \rangle$
$\Lambda^3 E^*$	$\langle e^1 \wedge e^2 \wedge e^3 \rangle$. ,

Note that

$$\Lambda^k H^* \cong (\Lambda^{k+1} E^*)^{\perp}, \qquad \Lambda^k H^* \cong (\Lambda^k E^*)^{\top}_{\mathbb{R}}.$$

Let $\mathbf{x} = (x, y, z) \in T$. Apply the above discussion $E = \mathbb{R}^3 = T_{\mathbf{x}}\mathbf{0}$, $H = T_{\mathbf{x}}T$, $e^3 = dx + dy + dz$, and $X = x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y} + z\frac{\partial}{\partial z}$.

Let $\mathbf{x} = (x, y, z) \in T$. Apply the above discussion $E = \mathbb{R}^3 = T_{\mathbf{x}}\mathbf{0}$, $H = T_{\mathbf{x}}T$, $e^3 = dx + dy + dz$, and $X = x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y} + z\frac{\partial}{\partial z}$.

Definition

Let $P_r \Lambda^k(\mathbf{O})$ denote those (k+1)-forms on \mathbf{O} that

- ightharpoonup are vertical at every point $\mathbf{x} \in \mathcal{T}$, and
- ▶ whose coefficients are homogeneous polynomials of degree *r*.

Let $\mathbf{x} = (x, y, z) \in T$. Apply the above discussion $E = \mathbb{R}^3 = T_{\mathbf{x}}\mathbf{0}$, $H = T_{\mathbf{x}}T$, $e^3 = dx + dy + dz$, and $X = x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y} + z\frac{\partial}{\partial z}$.

Definition

Let $P_r \Lambda^k(\mathbf{O})$ denote those (k+1)-forms on \mathbf{O} that

- ightharpoonup are vertical at every point $\mathbf{x} \in \mathcal{T}$, and
- ▶ whose coefficients are homogeneous polynomials of degree *r*.

Let $P_r^- \Lambda^k(\mathbf{O})$ denote those k-forms on \mathbf{O} that

- ▶ are horizontal at every point $\mathbf{x} \in T$, and
- ▶ whose coefficients are homogeneous polynomials of degree *r*.

Let
$$\mathbf{x} = (x, y, z) \in T$$
. Apply the above discussion $E = \mathbb{R}^3 = T_{\mathbf{x}}\mathbf{0}$, $H = T_{\mathbf{x}}T$, $e^3 = dx + dy + dz$, and $X = x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y} + z\frac{\partial}{\partial z}$.

Definition

Let $P_r \Lambda^k(\mathbf{O})$ denote those (k+1)-forms on \mathbf{O} that

- ightharpoonup are vertical at every point $\mathbf{x} \in \mathcal{T}$, and
- ▶ whose coefficients are homogeneous polynomials of degree *r*.

Let $P_r^- \Lambda^k(\mathbf{O})$ denote those k-forms on \mathbf{O} that

- ▶ are horizontal at every point $\mathbf{x} \in T$, and
- ▶ whose coefficients are homogeneous polynomials of degree *r*.

Theorem

$$\mathcal{P}_r \Lambda^k(T) \cong \mathbf{P}_r \Lambda^k(\mathbf{O}), \qquad \qquad \mathcal{P}_r^- \Lambda^k(T) \cong \mathbf{P}_r^- \Lambda^k(\mathbf{O})$$

Problem (reframed)

Given $\alpha \in \mathbf{P}_r \Lambda^k(\mathbf{O})$, find a dual $\beta \in \mathring{\mathbf{P}}_{r+k+1}^- \Lambda^{n-k}(\mathbf{O})$ such that

- ▶ $\int_{\mathbf{T}} \alpha \wedge \beta > 0$, and
- \blacktriangleright β only depends on α pointwise.

Problem (reframed)

Given $\alpha \in \mathbf{P}_r \Lambda^k(\mathbf{O})$, find a dual $\beta \in \mathring{\mathbf{P}}_{r+k+1}^- \Lambda^{n-k}(\mathbf{O})$ such that

- ▶ $\int_{\mathbf{T}} \alpha \wedge \beta > 0$, and
- β only depends on α pointwise.

Theorem

We explictly construct such a map $\mathbf{P}_r \Lambda^k(\mathbf{O}) \to \mathring{\mathbf{P}}_{r+k+1}^- \Lambda^{n-k}(\mathbf{O})$.

Problem (reframed)

Given $\alpha \in \mathbf{P}_r \Lambda^k(\mathbf{O})$, find a dual $\beta \in \mathring{\mathbf{P}}_{r+k+1}^- \Lambda^{n-k}(\mathbf{O})$ such that

- ▶ $\int_{\mathbf{T}} \alpha \wedge \beta > 0$, and
- β only depends on α pointwise.

Theorem

We explictly construct such a map $\mathbf{P}_r \Lambda^k(\mathbf{O}) \to \mathring{\mathbf{P}}_{r+k+1}^- \Lambda^{n-k}(\mathbf{O})$.

Example

▶ Let dim T = 2, and let $\alpha \in \mathbf{P}_r \Lambda^1(\mathbf{O})$, a vertical 2-form on \mathbf{O} .

Problem (reframed)

Given $\alpha \in \mathbf{P}_r \Lambda^k(\mathbf{O})$, find a dual $\beta \in \mathring{\mathbf{P}}_{r+k+1}^- \Lambda^{n-k}(\mathbf{O})$ such that

- ▶ $\int_{\mathbf{T}} \alpha \wedge \beta > 0$, and
- ightharpoonup eta only depends on lpha pointwise.

Theorem

We explictly construct such a map $\mathbf{P}_r \Lambda^k(\mathbf{O}) \to \mathring{\mathbf{P}}_{r+k+1}^- \Lambda^{n-k}(\mathbf{O})$.

- ▶ Let dim T = 2, and let $\alpha \in \mathbf{P}_r \Lambda^1(\mathbf{O})$, a vertical 2-form on \mathbf{O} .
- ▶ Write $\alpha = \alpha_x dy \wedge dz + \alpha_y dz \wedge dx + \alpha_z dx \wedge dy$.

Problem (reframed)

Given $\alpha \in \mathbf{P}_r \Lambda^k(\mathbf{O})$, find a dual $\beta \in \mathring{\mathbf{P}}_{r+k+1}^- \Lambda^{n-k}(\mathbf{O})$ such that

- ▶ $\int_{\mathbf{T}} \alpha \wedge \beta > 0$, and
- β only depends on α pointwise.

Theorem

We explictly construct such a map $\mathbf{P}_r \Lambda^k(\mathbf{O}) \to \mathring{\mathbf{P}}_{r+k+1}^- \Lambda^{n-k}(\mathbf{O})$.

- ▶ Let dim T = 2, and let $\alpha \in \mathbf{P}_r \Lambda^1(\mathbf{O})$, a vertical 2-form on \mathbf{O} .
- ▶ Write $\alpha = \alpha_x dy \wedge dz + \alpha_y dz \wedge dx + \alpha_z dx \wedge dy$.
- Set $\beta = \alpha_x yz \, dx + \alpha_y zx \, dy + \alpha_z xy \, dz$.

Problem (reframed)

Given $\alpha \in \mathbf{P}_r \Lambda^k(\mathbf{O})$, find a dual $\beta \in \mathring{\mathbf{P}}_{r+k+1}^- \Lambda^{n-k}(\mathbf{O})$ such that

- ▶ $\int_{\mathbf{T}} \alpha \wedge \beta > 0$, and
- β only depends on α pointwise.

Theorem

We explictly construct such a map $\mathbf{P}_r \Lambda^k(\mathbf{O}) \to \mathring{\mathbf{P}}_{r+k+1}^- \Lambda^{n-k}(\mathbf{O})$.

- ▶ Let dim T = 2, and let $\alpha \in \mathbf{P}_r \Lambda^1(\mathbf{0})$, a vertical 2-form on $\mathbf{0}$.
- ▶ Write $\alpha = \alpha_x dy \wedge dz + \alpha_y dz \wedge dx + \alpha_z dx \wedge dy$.
- ► Set $\beta = \alpha_x yz dx + \alpha_y zx dy + \alpha_z xy dz$.
- ▶ Then β is horizontal, has vanishing tangential trace on the boundary, and has coefficients of degree r + 2.

Problem (reframed)

Given $\alpha \in \mathbf{P}_r \Lambda^k(\mathbf{O})$, find a dual $\beta \in \mathring{\mathbf{P}}_{r+k+1}^- \Lambda^{n-k}(\mathbf{O})$ such that

- ▶ $\int_{\mathbf{T}} \alpha \wedge \beta > 0$, and
- ightharpoonup eta only depends on lpha pointwise.

Theorem

We explictly construct such a map $\mathbf{P}_r \Lambda^k(\mathbf{O}) \to \mathring{\mathbf{P}}_{r+k+1}^- \Lambda^{n-k}(\mathbf{O})$.

- ▶ Let dim T = 2, and let $\alpha \in \mathbf{P}_r \Lambda^1(\mathbf{O})$, a vertical 2-form on \mathbf{O} .
- ▶ Write $\alpha = \alpha_x dy \wedge dz + \alpha_y dz \wedge dx + \alpha_z dx \wedge dy$.
- Set $\beta = \alpha_x yz \, dx + \alpha_y zx \, dy + \alpha_z xy \, dz$.
- ▶ Then β is horizontal, has vanishing tangential trace on the boundary, and has coefficients of degree r + 2.
- $\alpha \wedge \beta = (\alpha_x^2 yz + \alpha_y^2 zx + \alpha_z^2 xy)$ **dvol**, a positive multiple of **dvol** on the interior.

Thank you

	vertical	horizontal
$\Lambda^0 E^*$		${\langle 1 \rangle}$
$\Lambda^1 E^*$	$\langle e^3 \rangle$	$\langle e^1, e^2 \rangle$
$\Lambda^2 E^*$	$\langle e^1 \wedge e^3, e^2 \wedge e^3 \rangle$	$\langle e^1 \wedge e^2 \rangle$
$\Lambda^3 E^*$	$\langle e^1 \wedge e^2 \wedge e^3 \rangle$	

	vertical	horizontal
$\Lambda^0 E^*$		$\langle 1 \rangle$
$\Lambda^1 E^*$	$\langle e^3 \rangle$	$\langle e^1, e^2 \rangle$
$\Lambda^2 E^*$	$\langle e^1 \wedge e^3, e^2 \wedge e^3 \rangle$	$\langle e^1 \wedge e^2 \rangle$
$\Lambda^3 E^*$	$\langle e^1 \wedge e^2 \wedge e^3 \rangle$. ,

	vertical	horizontal
$\Lambda^0 E^*$		$\langle 1 \rangle$
$\Lambda^1 E^*$	$\langle e^3 \rangle$	$\langle e^1, e^2 \rangle$
$\Lambda^2 E^*$	$\langle e^1 \wedge e^3, e^2 \wedge e^3 \rangle$	$\langle e^1 \wedge e^2 \rangle$
$\Lambda^3 E^*$	$\langle e^1 \wedge e^2 \wedge e^3 \rangle$,

$$ho$$
 $\alpha \wedge e^3 = 0$.

	vertical	horizontal
$\Lambda^0 E^*$		$\langle 1 \rangle$
$\Lambda^1 E^*$	$\langle e^3 \rangle$	$\langle e^1, e^2 \rangle$
$\Lambda^2 E^*$	$\langle e^1 \wedge e^3, e^2 \wedge e^3 \rangle$	$\langle e^1 \wedge e^2 \rangle$
$\Lambda^3 E^*$	$\langle e^1 \wedge e^2 \wedge e^3 \rangle$	

- ho $\alpha \wedge e^3 = 0$.
- α is of the form $\gamma \wedge e^3$ for some γ .

	vertical	horizontal
$\Lambda^0 E^*$		$\langle 1 \rangle$
$\Lambda^1 E^*$	$\langle e^3 \rangle$	$\langle e^1, e^2 \rangle$
$\Lambda^2 E^*$	$\langle e^1 \wedge e^3, e^2 \wedge e^3 \rangle$	$\langle e^1 \wedge e^2 \rangle$
$\Lambda^3 E^*$	$\langle e^1 \wedge e^2 \wedge e^3 \rangle$	

- ho $\alpha \wedge e^3 = 0$.
- α is of the form $\gamma \wedge e^3$ for some γ .
- ▶ The restriction of α to H is zero.

	vertical	horizontal
$\Lambda^0 E^*$		$\langle 1 \rangle$
$\Lambda^1 E^*$	$\langle e^3 \rangle$	$\langle e^1, e^2 \rangle$
$\Lambda^2 E^*$	$\langle e^1 \wedge e^3, e^2 \wedge e^3 \rangle$	$\langle e^1 \wedge e^2 \rangle$
$\Lambda^3 E^*$	$\langle e^1 \wedge e^2 \wedge e^3 \rangle$	

Characterizations of α being vertical.

- $\sim \alpha \wedge e^3 = 0.$
- α is of the form $\gamma \wedge e^3$ for some γ .
- ▶ The restriction of α to H is zero.

	vertical	horizontal
$\Lambda^0 E^*$		$\langle 1 \rangle$
$\Lambda^1 E^*$	$\langle e^3 \rangle$	$\langle e^1, e^2 \rangle$
$\Lambda^2 E^*$	$\langle e^1 \wedge e^3, e^2 \wedge e^3 \rangle$	$\langle e^1 \wedge e^2 \rangle$
$\Lambda^3 E^*$	$\langle e^1 \wedge e^2 \wedge e^3 \rangle$	

Characterizations of α being vertical.

- $\sim \alpha \wedge e^3 = 0.$
- α is of the form $\gamma \wedge e^3$ for some γ .
- ▶ The restriction of α to H is zero.

$$\triangleright i_X \beta = 0.$$

	vertical	horizontal
$\Lambda^0 E^*$		$\langle 1 \rangle$
$\Lambda^1 E^*$	$\langle e^3 \rangle$	$\langle e^1, e^2 \rangle$
$\Lambda^2 E^*$	$\langle e^1 \wedge e^3, e^2 \wedge e^3 \rangle$	$\langle e^1 \wedge e^2 \rangle$
$\Lambda^3 E^*$	$\langle e^1 \wedge e^2 \wedge e^3 \rangle$	

Characterizations of α being vertical.

- $\sim \alpha \wedge e^3 = 0.$
- α is of the form $\gamma \wedge e^3$ for some γ .
- ▶ The restriction of α to H is zero.

- \triangleright $i_X\beta=0.$
- $\beta = i_X \gamma$ for some γ .

	vertical	horizontal
$\Lambda^0 E^*$		$\langle 1 \rangle$
$\Lambda^1 E^*$	$\langle e^3 \rangle$	$\langle e^1, e^2 \rangle$
$\Lambda^2 E^*$	$\langle e^1 \wedge e^3, e^2 \wedge e^3 \rangle$	$\langle e^1 \wedge e^2 \rangle$
$\Lambda^3 E^*$	$\langle e^1 \wedge e^2 \wedge e^3 \rangle$	

Characterizations of α being vertical.

- $\sim \alpha \wedge e^3 = 0.$
- α is of the form $\gamma \wedge e^3$ for some γ .
- ▶ The restriction of α to H is zero.

- $\triangleright i_X \beta = 0.$
- $\beta = i_X \gamma$ for some γ .
- \triangleright β is orthogonal to all vertical tensors.

