Second part

Example topics to discuss include

- □ Peer-to-peer systems
- □ Large-scale distributed systems and services
- □ Large-scale distributed systems: use cases
- Border Gateway Protocol (BGP) and internet-wide network measurements
- Autoscaling and cloud computing

Notes based on notes by K.W. Ross, J. Kurose, D. Rubenstein, and others

Today's lecture

- □ General peer-to-peer (P2P) overview
 - Systems and fundamentals
- □ Peer-to-peer application areas
 - File sharing, communication, computation, overlays, DHTs (including storage and lookup services), and more ...
- □ Large-scale content delivery
 - BitTorrent, peer-assisted streaming, content delivery networks (CDNs), and file hosting services
- Other large-scale distributed systems and services
 - [if time] E.g., Bootnets, hadoop, planetlab, facebook, google, and youtube

Material today

- These notes, and ...
- Reading
 - Cohen, "Incentives build robustness in BitTorrent", Proc. Workshop on Economics of Peer-to-Peer Systems, 2003.
 - Stoica et al., "Chord: A scalable peer-to-peer lookup service for Internet applications", Proc. ACM SIGCOMM, 2001.
 - Castro et al. "SplitStream: High-bandwidth multicast in a cooperative environment", Proc. ACM SOSP, 2003.
 - Mahanti et al., "A Tale of the Tails: Power-laws in Internet Measurements", IEEE Network, 2013.
 - Parvez et al., "Insights on Media Streaming Progress using BitTorrent-like Protocols for On-Demand Streaming", IEEE/ACM Transactions on Networking (ToN), 2012.
 - Dán and Carlsson, "Dynamic Content Allocation for Cloud-assisted Service of Periodic Workloads", Proc. IEEE INFOCOM, 2014.

Defintion of P2P

- 1) Significant autonomy from central servers
- 2) Exploits resources at the edges of the Internet
 - storage and content
 - CPU cycles
 - human presence
- 3) Resources at edge have intermittent connectivity, being added & removed

Client-server architecture

server:

- always-on host
- opermanent IP address
- server farms for scaling

clients:

- o communicate with server
- may be intermittently connected
- may have dynamic IP addresses
- do not communicate directly with each other

TDDD36: Peer-to-peer

Pure P2P architecture

- □ no always-on server
- arbitrary end systems directly communicate
- peers are intermittently connected and change IP addresses

Hybrid of client-server and P2P

Skype

- voice-over-IP P2P application
- centralized server: finding address of remote party:
- client-client connection: direct (not through server)

Instant messaging

- chatting between two users is P2P
- centralized service: client presence detection/location
 - user registers its IP address with central server when it comes online
 - user contacts central server to find IP addresses of buddies

Some example areas/systems

- □ P2P file sharing
 - Napster, Gnutella,
 KaZaA, BitTorrent, etc
- DHTs & their apps
 - Chord, CAN, Pastry, Tapestry

- □ P2P communication
 - Instant messaging,Skype

- P2P apps built over emerging overlays
 - PlanetLab

- □ P2P computation
 - o seti@home

Wireless ad-hoc networking not covered here

Overview of P2P

- overlay networks
- □ P2P applications

Overlay networks

—— overlay edge

Overlay graph

<u>Virtual</u> edge

- □ TCP connection
- or simply a pointer to an IP address

Overlay maintenance

- Periodically ping to make sure neighbor is still alive
- Or verify liveness while messaging
- ☐ If neighbor goes down, may want to establish new edge
- □ New node needs to bootstrap

More about overlays

Unstructured overlays

e.g., new node randomly chooses three existing nodes as neighbors

Structured overlays

e.g., edges arranged in restrictive structureProximity

Not necessarily taken into account

Overlays: all in the application layer

Tremendous design flexibility

- Topology, maintenance
- Message types
- Protocol
- Messaging over TCP or UDP

Underlying physical net is transparent to developer

 But some overlays exploit proximity

Examples of overlays

- DNS
- BGP routers and their peering relationships
- Content distribution networks (CDNs)
- Application-level multicast
 - o economical way around barriers to IP multicast
- □ And P2P apps!

1. Overview of P2P

- overlay networks
- current P2P applications
 - P2P file sharing & copyright issues
 - Instant messaging
 - P2P distributed computing

P2P file sharing

- Alice runs P2P client application on her notebook computer
- □ Intermittently connects to Internet; gets new IP address for each connection
- □ Registers her content in P2P system

- □ Asks for "Hey Jude"
- Application displays other peers that have copy of Hey Jude.
- Alice chooses one of the peers, Bob.
- ☐ File is copied from Bob's PC to Alice's notebook: P2P
- While Alice downloads, other users uploading from Alice.

Millions of content servers

Killer deployments

- □ Napster
 - o disruptive; proof of concept
- □ Gnutella
 - open source
- □ KaZaA/FastTrack
- BitTorrent

P2P file sharing software

- Allows Alice to open up a directory in her file system
 - Anyone can retrieve a file from directory
 - Like a Web server
- □ Allows Alice to copy files from other users' open directories:
 - Like a Web client

- Allows users to search the peers for content based on keyword matches:
 - Like Google

Seems harmless to me ...

But often copyright issues!!

Instant Messaging

- Alice runs IM client on her PC
- □ Intermittently connects to Internet; gets new IP address for each connection
- Registers herself with "system"
- Learns from "system" that Bob in her buddy list is active

- Alice initiates direct
 TCP connection with
 Bob: P2P
- Alice and Bob chat.

Can also be voice, video and text.

P2P Distributed Computing

seti@home

- Search for ET intelligence
- Central site collects radio telescope data
- Data is divided into work chunks of 300 Kbytes
- User obtains client, which runs in backgrd

- Peer sets up TCP connection to central computer, downloads chunk
- Peer does FFT on chunk, uploads results, gets new chunk

Not peer <u>to</u> peer, but exploits resources at network edge