Prova scritta di Logica Matematica 26 luglio 2016

Cognome Nome Matricola

Scrivete **subito** il vostro nome, cognome e numero di matricola, e tenete il tesserino universitario sul banco. Svolgete gli esercizi direttamente sul testo a penna. Dovete consegnare solo il foglio del testo: nessun foglio di brutta.

Per ogni esercizio è indicato il relativo punteggio. Nella prima parte se la riposta è corretta, il punteggio viene aggiunto al totale, mentre se la risposta è errata il punteggio viene sottratto (l'assenza di risposta non influisce sul punteggio totale). Per superare l'esame bisogna raggiungere 18 punti, di cui almeno 5 relativi alla prima parte.

PRIMA PARTE

I ILIVIA I AILIE	
Barrate la risposta che ritenete corretta. Non dovete giustificare la risposta.	
1. $((p \to q) \to \neg (q \to p)) \land r \equiv (r \land q \to p) \to p \land \neg (r \to q).$	1pt
2. Se $G \models H$ allora $F \lor G \models H$ per ogni F .	1pt
3. Una β -formula è logicamente equivalente	
ad almeno uno dei suoi ridotti. $ \mathbf{V} \mathbf{F} $	1pt
4. Quante delle seguenti formule sono δ -formule? $\exists x \forall y r(x,y)$,	
$\neg \forall x p(x) \to q(x), \exists x \neg r(x, x), \neg \forall x (p(x) \to q(x)) $ $\boxed{0 \boxed{1} \boxed{2} \boxed{3} \boxed{4}}$	1pt
5. Sia I un'interpretazione con $D^I = \{0, 1, 2, 3\}, f^I(0) = f^I(2) = 2,$	
$f^{I}(1) = 0, f^{I}(3) = 1, p^{I} = \{0, 2\} \text{ e } r^{I} = \{(1, 0), (1, 2), (3, 2), (3, 3)\}.$	
Allora $I \models \forall x (p(f(x)) \lor \exists z (p(f(z)) \land \neg p(z) \land r(z, f(x)))).$	1pt
6. $\exists x p(x) \land \neg \exists x q(f(x)) \equiv \exists z \forall v(p(z) \land \neg q(f(v))).$ $\boxed{\mathbf{V} \mid \mathbf{F}}$	1pt
7. Sia φ un omomorfismo forte non suriettivo di I in J e σ uno stato di I .	
Se $I, \sigma \models p(x) \land r(x, f(y, a))$ allora $J, \varphi \circ \sigma \models p(x) \land r(x, f(y, a))$. $\boxed{\mathbf{V} \mid \mathbf{F}}$	1pt
8. Esiste un insieme di Hintikka che contiene le formule	
$\forall x (p(x) \to \exists y \neg r(y, x)) \in p(a) \land \forall z r(z, a).$	1pt
9. Se $T, p(x) \triangleright q(x)$ allora $T, p(x) \triangleright \forall x q(x)$.	1pt
SECONDA PARTE	
10. Sul retro del foglio dimostrate che	4pt
$\forall x (\exists y r(y,x) \to p(x) \lor q(g(x))), \forall z r(z,f(z)), \forall x (q(g(x)) \to p(x)) \models \forall y p(f(y)).$	
11. Sul retro del foglio dimostrate che l'insieme di enunciati	4pt
$\{\forall x(\forall y r(y,x) \rightarrow \neg p(x)), \forall x \forall y(r(x,y) \vee (\neg p(x) \wedge p(y))), \exists x p(x)\}$	

è soddisfacibile.

- 12. Sia $\mathcal{L} = \{a, b, md, p, m, i\}$ un linguaggio dove a e b sono simboli di costante, md e p sono simboli di funzione unari, m è un simbolo di relazione unario e i è un simbolo di relazione binario. Interpretando a come "Arianna", b come "Bob", md(x) e p(x) come "la madre di x" e "il padre di x", m(x) come "x è un musicista", i(x,y) come "x è innamorato di y", traducete le seguenti frasi:
 - (i) Bob è un musicista innamorato di Arianna, la cui madre (di Arianna) è musicista;

3pt

(ii) Ogni musicista il cui padre è un musicista è innamorato di una musicista o della figlia di (almeno) un musicista.

3pt

13. Usando il metodo dei tableaux stabilite se

3pt

$$q \to p, p \to r, \neg r \land s \to q, \neg s \to \neg t \lor p \models t \to r.$$

Se la conseguenza logica non vale definite un'interpretazione che lo mostra. (Utilizzate il retro del foglio)

14. Dimostrate che

5pt

$$\exists z (p(z) \land \neg q(g(z))), \forall x (p(x) \to q(f(x))) \rhd \exists y \ q(y) \land \exists y \ \neg q(y).$$

Usate solo le regole della deduzione naturale predicativa, comprese le sei regole derivate. (Utilizzate il retro del foglio)

15. Usando l'algoritmo di Fitting e utilizzando lo spazio qui sotto, mettete in forma normale congiuntiva la formula

$$\neg \big((\neg p \lor \neg (q \lor \neg r)) \land ((\neg s \to t) \to u) \big).$$

Soluzioni

- 1. V come si verifica per esempio con le tavole di verità.
- **2.** F ad esempio se $G \in H$ sono $p \in F \ e \neg p$ si ha $G \models H$ ma $F \lor G \not\models H$.
- **3.** F una β -formula è logicamente equivalente alla disgiunzione dei suoi ridotti. Ad esempio $p \vee q$ non è logicamente equivalente né a p né a q.
- **4.** 3 la seconda formula è una β -formula, le altre sono δ -formule.
- **5.** F $I, \sigma[x/3] \nvDash p(f(x)) \vee \exists z (p(f(z)) \wedge \neg p(z) \wedge r(z, f(x))).$
- **6.** V come segue dai lemmi 7.47 e 7.66 delle dispense (quest'ultimo va utilizzato due volte).
- 7. V dato che la formula è priva di quantificatori si può usare la seconda parte del Lemma 9.8 delle dispense.
- 8. **F** se un insieme di Hintikka T contiene $p(a) \land \forall z \, r(z,a)$ deve contenere sia p(a) che $\forall z \, r(z,a)$. Inoltre $\forall x (p(x) \to \exists y \, \neg r(y,x)) \in T$ implica $p(a) \to \exists y \, \neg r(y,a) \in T$. Quindi, dato che $\neg p(a) \notin T$ (perché T non contiene coppie complementari di letterali) deve essere $\exists y \, \neg r(y,a) \in T$. Allora $\neg r(b,a) \in T$ per qualche simbolo di costante b (che potrebbe anche coincidere con a). Tornando a $\forall z \, r(z,a) \in T$ si ottiene $r(b,a) \in T$ che è impossibile.
- **9.** F la regola $(\forall i)$ richiede che la variabile su cui si introduce il quantificatore universale (nel nostro caso x) non sia libera in nessuna delle ipotesi, mentre nel nostro caso è libera in p(x). Per un esempio concreto sia $\forall x(p(x) \rightarrow q(x))$ l'unico elemento di T: allora $T, p(x) \rhd q(x)$, ma $T, p(x) \rhd \forall x q(x)$ violerebbe il teorema di correttezza, dato che $T, p(x) \nvDash \forall x q(x)$ come si può mostrare per esempio con un'interpretazione con due elementi nel dominio.
- 10. Supponiamo che un'interpretazione I soddisfi i tre enunciati (che indichiamo con F, G e H) a sinistra del simbolo di conseguenza logica. L'obiettivo è mostrare che I soddisfa anche l'enunciato sulla destra, che è universale. Fissato uno stato σ e un arbitrario $d \in D^I$ basta mostrare che I, $\sigma[y/d] \models p(f(y))$.

Dato che $I \models G$ si ha $(d, f^I(d)) \in r^I$ e quindi $I, \sigma[x/f^I(d)] \models \exists y \, r(y, x)$. Perciò, da $I \models F$, segue che $I, \sigma[x/f^I(d)] \models p(x) \lor q(g(x))$. Se $f^I(d) \in p^I$ abbiamo già ottenuto $I, \sigma[y/d] \models p(f(y))$.

Altrimenti $g^I(f^I(d)) \in q^I$ e possiamo sfruttare $I \models H$: dato che $I, \sigma[x/f^I(d)] \models q(g(x)) \rightarrow p(x)$ si ha anche in questo caso $f^I(d) \in p^I$ e quindi $I, \sigma[y/d] \models p(f(y))$.

11. Dobbiamo definire un'interpretazione che soddisfa i tre enunciati dell'insieme. Ecco un'interpretazione con queste caratteristiche:

$$D^I = \{0,1\}, \quad p^I = \{0\}, \quad r^I = \{(0,0),(0,1),(1,1)\}.$$

- **12.** (i) $m(b) \wedge i(b, a) \wedge m(md(a))$;
 - (ii) $\forall x (m(x) \land m(p(x)) \rightarrow \exists y (i(x,y) \land (m(y) \lor m(p(y)) \lor m(md(y))))).$

13. Per stabilire se la conseguenza logica vale utilizziamo l'Algoritmo 4.39 delle dispense e costruiamo (utilizzando le convenzioni 4.30 e 4.31) un tableau con la radice etichettata dalle formule a sinistra e dalla negazione della formula a destra del simbolo di conseguenza logica. In ogni passaggio sottolineiamo le formule su cui agiamo.

Il tableau è chiuso e quindi la conseguenza logica vale.

14. Ecco una deduzione naturale che mostra quanto richiesto:

15. Utilizziamo l'Algoritmo 3.16 delle dispense, adottando le semplificazioni suggerite nella Nota 3.28:

$$\begin{split} & \left\langle \left[\neg \left((\neg p \vee \neg (q \vee \neg r)) \wedge ((\neg s \to t) \to u) \right) \right] \right\rangle \\ & \left\langle \left[\neg (\neg p \vee \neg (q \vee \neg r)), \neg ((\neg s \to t) \to u) \right] \right\rangle \\ & \left\langle \left[p, \neg ((\neg s \to t) \to u) \right], \left[q \vee \neg r, \neg ((\neg s \to t) \to u) \right] \right\rangle \\ & \left\langle \left[p, \neg s \to t \right], \left[p, \neg u \right], \left[q, \neg r, \neg ((\neg s \to t) \to u) \right] \right\rangle \\ & \left\langle \left[p, s, t \right], \left[p, \neg u \right], \left[q, \neg r, \neg s \to t \right], \left[q, \neg r, \neg u \right] \right\rangle \\ & \left\langle \left[p, s, t \right], \left[p, \neg u \right], \left[q, \neg r, s, t \right], \left[q, \neg r, \neg u \right] \right\rangle \end{split}$$

La formula in forma normale congiuntiva ottenuta è

$$(p \lor s \lor t) \land (p \lor \neg u) \land (q \lor \neg r \lor s \lor t) \land (q \lor \neg r \lor \neg u).$$