SMS Spam Detection-06/10/25

SMS Spam Detection Project: Final Report

1. Project Objective

The primary goal of this project was to build and evaluate a machine learning model capable of accurately classifying SMS messages as either "ham" (legitimate) or "spam" (unsolicited commercial/malicious). This task served as an introduction to fundamental Natural Language Processing (NLP) techniques and classification algorithms.

2. Data Preparation and Text Preprocessing

The project began with the SMS Spam Collection Dataset (5,572 total messages).

A. Initial Cleaning

- **Duplicate and Missing Values:** Duplicate messages (403 rows removed) were handled, and missing values were dropped.
- Label Encoding: Text labels were converted to numerical form: Ham $\rightarrow 0$ and Spam $\rightarrow 1$.

B. Text Preprocessing Steps

The raw message text was transformed into a standardized format for machine learning:

- 1. **Normalization:** Converted all text to **lowercase**.
- 2. **Removal:** Eliminated punctuation, numbers, URLs, and HTML tags.
- 3. **Tokenization:** Broke messages into individual words (tokens).
- 4. Stopword Removal: Eliminated common, low-information words (e.g., 'the', 'a', 'is').
- 5. **Lemmatization:** Reduced words to their base or root form (e.g., 'running' \rightarrow 'run').

3. Feature Extraction

Text data was converted into numerical vectors for machine learning using **TF-IDF**.

- Method: TF-IDF (Term Frequency-Inverse Document Frequency) was used to
 assign weights to words. TF-IDF gives a higher score to words that are frequent in a
 specific message (high Term Frequency) but rare across the entire dataset (high
 Inverse Document Frequency), effectively highlighting important, unique words (like
 'URGENT' or 'PRIZE') that indicate spam.
- **Data Split:** The dataset was split into training and testing sets (70% train, 30% test) using a **stratified approach** to ensure the proportion of spam (≈13.4%) was maintained in both subsets.

4. Model Training and Evaluation

Two different classification algorithms were trained on the TF-IDF feature vectors and evaluated using the test set (1,551 messages).

Model	Accuracy	Precision	Recall	F1-score
Logistic Regression	0.9716	0.9691	0.801	0.8771
Naive Bayes (Multinomial)	0.9587	1	0.6735	0.8049

A. Model Comparison Table

				F1-
Model	Accuracy	Precision	Recall	score
Logistic Regression	0.9716	0.9691	0.801	0.8771
Naive Bayes (Multinomial)	0.9587	1	0.6735	0.8049

B. Key Mathematical Metrics

Accuracy=TotalTP+TNPrecision=TP+FPTPRecall=TP+FNTP F1-Score=2×[(Precision+Recall)] / (Precision×Recall)]

C. Final Model Selection

The **Logistic Regression** model was selected as the final solution:

- It achieved the **highest F1-score** (0.8771), representing the best balance between catching spam and avoiding false alarms.
- It provided significantly better **Recall (80.10% vs. 67.35% for NB)**, meaning it missed fewer actual spam messages.
- 5. Final Model Performance Analysis (Logistic Regression)
- The confusion matrix for the final Logistic Regression model showed the following results on the test set:

Outcome	Count	Interpretation	
True Positives (TP)	157	Correctly identified Spam.	
True Negatives (TN)	1350	Correctly identified Ham.	
False Positives (FP)	5	Ham incorrectly marked as Spam (Legitimate messages lost).	
False Negatives (FN)	39	Spam incorrectly marked as Ham (Spam leaked to the inbox).	

The high **Precision** (96.91%) and very low **False Positive** count (5) are ideal for a user-facing spam filter, as user experience dictates that legitimate messages must not be blocked.

6. Deliverables and Conclusion

The project successfully generated all required deliverables:

- A Cleaned Dataset (df['clean_message']).
- Two Trained Models (Naive Bayes and Logistic Regression).
- Complete Evaluation Metrics.
- Visualizations (Confusion Matrix and class distribution).
- A Reusable Script with functions to predict new messages.
- **Saved Models** (Logistic Regression model and TF-IDF vectorizer) for future use. The final **Logistic Regression model** provides robust and reliable spam detection, achieving high accuracy while effectively prioritizing the safety of legitimate user messages.