Fiche de modélisations n°6

Variables et classes latentes

Kim Antunez

Table des matières

1	Objectif	1
2	Analyses	1
3	Code et résultats	1
	3.1 Correlation coefficients	2
	3.2 Exploratory Factor Analysis (EFA)	4
	3.3 Latent Categorical Variables	10
	3.4 Confirmatory factor analysis (CFA) des dimensions de la pauvreté	16
	3.5 CFA avec des covariables (MIMIC)	32
	3.6 Structural equation models (SEM)	33
4	Notes méthodologiques	33
Bi	ibliographie	33

1 Objectif

L'objectif de cette sixième série de modèles est de ...

2 Analyses

TODO

3 Code et résultats

```
#chargement des packages
library(knitr)
library(dplyr) #manipuler les bases de données
library(psych) #EFA
library(lavaan) #CFA et SEM
library(semPlot) #path draw CFA SEM
library(poLCA) #pour les Latent Categorical Variables
```

3.1 Correlation coefficients

A correlation coefficient suited for dichotomous data and based on this underlying normal strategy is the tetrachoric correlation. It gives us a single number describing the degree of dependence in the table above with the extreme values of 1 if the off-diagonals are 0 and -1 if the diagonals are 0. In addition, we get estimates for the thresholds tau1 and tau2. polycholoric existe aussi pour deux items polytomous.

We print out the last six eigenvalues and see that the last eigenvalue is negative. Thus, this matrix does not fulfill the properties of a correlation matrix. The trick is now to apply some smoothing on the correlations.

The final criterion is interpretability.

```
s_sentpauv
                            s_risqpauv s_infminidecla
                                                          m_nivie1
                                                                      m_nivie2
s_sentpauv
                1.00000000 -0.61169115
                                           -0.47699835
                                                         0.4394866
                                                                    0.17700036
                             1.00000000
                                                         0.1122074
                                                                    0.12147720
s_risqpauv
               -0.61169115
                                           -0.21941563
s_infminidecla -0.47699835 -0.21941563
                                            1.00000000 -0.5473902 -0.27817577
m nivie1
                             0.11220743
                                                         1.0000000 -0.27389219
                0.43948663
                                           -0.54739017
m nivie2
                0.17700036
                             0.12147720
                                           -0.27817577 -0.2738922
                                                                    1.0000000
m nivie3
               -0.08999267
                             0.08204612
                                           -0.03550473 -0.2757136 -0.23815590
m_nivie4
               -0.24728331 -0.04516964
                                            0.28020447 -0.2669469 -0.22774028
                                            0.59276364 -0.2736265 -0.23483094
m_nivie5
               -0.36445531 -0.21452006
m_locatif
               -0.42268192 -0.18495526
                                            0.43699367 -0.2776909 -0.21860883
                                            0.50749995 -0.2862883 -0.22859129
m_financier
               -0.38016835 -0.25518131
                            0.13004116
                                           -0.42492371
                                                        0.6070170
i_log
                0.49288404
                                                                   0.17755378
                            0.04078294
                                           -0.39890908
                                                        0.6486328 -0.02929894
i_rsa
                0.44017858
i_chom
                0.17847358
                            0.16259637
                                           -0.19360799
                                                        0.2291738
                                                                    0.10878280
i_handi
                0.18637178
                             0.11904696
                                           -0.19205629
                                                         0.2186925
                                                                    0.11589690
                                                        0.4058881
i_hlm
                0.36717594
                            0.16949615
                                           -0.37835726
                                                                    0.17709505
                                                      m_locatif m_financier
                   m_nivie3
                                m_nivie4
                                           m_nivie5
s_sentpauv
               -0.089992672 -0.24728331 -0.3644553 -0.42268192 -0.38016835
s_risqpauv
                0.082046117 -0.04516964 -0.2145201 -0.18495526 -0.25518131
                                          0.5927636
s infminidecla -0.035504730
                             0.28020447
                                                     0.43699367
                                                                  0.50749995
m nivie1
               -0.275713589 -0.26694692 -0.2736265 -0.27769091 -0.28628830
m_nivie2
               -0.238155904 -0.22774028 -0.2348309 -0.21860883 -0.22859129
m nivie3
                1.000000000 -0.22648136 -0.2328622 -0.08775699 -0.09442612
m_nivie4
               -0.226481357
                              1.00000000 -0.2210290
                                                     0.08268827
                                                                  0.05524235
m_nivie5
               -0.232862235 -0.22102897
                                          1.0000000
                                                     0.45649774
                                                                  0.49781210
m_locatif
               -0.087756993
                             0.08268827
                                          0.4564977
                                                     1.0000000
                                                                  0.61121694
m_financier
               -0.094426115
                              0.05524235
                                          0.4978121
                                                     0.61121694
                                                                  1.00000000
               -0.149289213 -0.33336097 -0.4432850 -0.40224067 -0.40972541
i_log
               -0.184244388 -0.25252496 -0.3693635 -0.22111111 -0.21187655
i_rsa
               -0.012275418 -0.13421310 -0.2382888 -0.17770850 -0.18630417
i_chom
               -0.006415386 -0.12957374 -0.2503593 -0.10011997 -0.10202599
i_handi
i_hlm
               -0.052358458 -0.20535458 -0.4039782 -0.46037012 -0.37407010
                    i_log
                                            i_chom
                                                         i_handi
                                                                       i_hlm
                                 i_rsa
```

```
0.4928840 0.44017858 0.17847358 0.186371776
s_sentpauv
                                                                 0.36717594
s_risqpauv
                0.1300412 0.04078294
                                       0.16259637
                                                   0.119046959
                                                                 0.16949615
s_infminidecla -0.4249237 -0.39890908 -0.19360799 -0.192056293 -0.37835726
                           0.64863281
m nivie1
                0.6070170
                                       0.22917379
                                                   0.218692458
                                                                 0.40588808
                0.1775538 -0.02929894
                                       0.10878280
m_nivie2
                                                   0.115896903
                                                                 0.17709505
m_nivie3
               -0.1492892 -0.18424439 -0.01227542 -0.006415386 -0.05235846
m_nivie4
               -0.3333610 -0.25252496 -0.13421310 -0.129573738 -0.20535458
               -0.4432850 -0.36936348 -0.23828876 -0.250359315 -0.40397819
m_nivie5
m_locatif
               -0.4022407 -0.22111111 -0.17770850 -0.100119971 -0.46037012
               -0.4097254 -0.21187655 -0.18630417 -0.102025992 -0.37407010
m_financier
i_log
                1.0000000
                           0.66315036
                                       0.32253411
                                                   0.354662651
                                                                 0.60573548
                0.6631504
                           1.00000000
                                       0.18678644
                                                   0.062453472
                                                                 0.39150437
i_rsa
                           0.18678644
                                       1.00000000
                                                   0.093226305
i_chom
                0.3225341
                                                                 0.19279940
                0.3546627
                           0.06245347
                                       0.09322631
                                                    1.000000000
                                                                 0.28122027
i handi
i_hlm
                0.6057355
                           0.39150437
                                       0.19279940
                                                   0.281220267
                                                                 1.00000000
```

[1] 32.47 12.07 9.49 8.48 8.21 6.56 5.88 4.93 4.37 2.98 2.44 1.37 [13] 0.75 0.00 0.00

Scree plot

3.2 Exploratory Factor Analysis (EFA)

However, in order to get an even clearer picture, in EFA we typically apply a rotation on the loadings matrix. Such a rotation does not change the fit of the model; it is only done for interpretation purposes by transforming the loadings. We distinguish between two basic types of rotations: orthogonal (qui implique que les facteurs sont indépendants) and nonorthogonal rotation (comme oblimin).

In practice, EFA with oblique rotation is often used prior to a CFA in order to explore whether the underlying latent structure theory is reflected by the data.

Différences entre EFA et ACP - Les ACP reposent sur des estimations bien plus simples que les EFA (ML, LS). - L'EFA se concentrent sur l'explication des termes en dehors de la diagonales des éléments de grand sigma (explique les covariances) alors que l'ACP se concentre sur la diagonale (explique principalement la variance, même si pas totalement aveugle aux covariances). - Les scores des facteurs sont calculés post hoc alors que ceux de l'ACP est une conséquence directe du SVD. - En EFA, on fixe p avant de faire tourner le modèle, dans l'ACP on choisit le nombre d'axes a posteriori. - En EFA, les rotations peuvent aider à mieux interpréter sans changer la solution, contrairement à la PCA pour laquelle la solution est changée.

PCA et EFA sont deux techniques de réduction de dimensions mais elles ont des différences.

On utilise la PCA quand les variables sont très corrélées cela permet de réduire le nombre de variables observées en un plus petit nombre de composantes principales qui résument un maximum de variances des variables observées On utilise l'EFA pour identifier le nombre de variables latentes (non mesurée directement) et la structure des facteurs qui découlent d'un ensemble de variables. Elle permet d'estimer les facteurs qui influencent les réponses des variables observées.

Unlike factor analysis, principal components analysis or PCA makes the assumption that there is no unique variance, the total variance is equal to common variance. Recall that variance can be partitioned into common and unique variance. If there is no unique variance then common variance takes up total variance (see figure below). Additionally, if the total variance is 1, then the common variance is equal to the communality.

- PCA suppose l'absence d'outliers. L'EFA suppose une distribution normale multivariée quand la méthode de ML est utilisée
- Les axes de la PCA tiennent compte de la variance maximale des variables observées alors que les facteurs de l'EFA tiennent compte de la variance commune
- La PCA utilise une matrice de corrélation alors que l'EFA utilise une matrice de corrélation ajustée
- Dans une PCA il y a des 1 sur la diagonale de la matrice de corrélation alors que dans l'EFA la diagonale est ajustée avec les facteurs uniques.
- La PCA minimise la somme des carrés perpendiculaire à la distance aux axes des composantes. L'EFA estime des facteurs qui influencent la réponse à des variables observées.
- Les scores des composantes de la PCA est une combinaison linéaire des variables observées pondérées par les vecteurs propres. Les variables observées de l'EFA sont une combinaison linéaire des facteurs uniques

n alternative to factor analysis, which is unfortunately frequently confused withfactoranalysis, isprincipal components analysis. Although the goals of PCA and FA are similar, PCA is a descriptive model of the data, while FA is a structural model. Psychologist stypically use PCA in a manner similar to factor analysis and thus the principal function produces output that is perhaps more understandable than that produced by princompin the stat spackage. Table 4 shows a PCA of the Thurstone 9 variable problem rotated using the Promax function. Note how the loadings from the factor model are similar but smaller than the principal component loadings. This is because the PCA model attempts to account for the entire variance of the correlation matrix, while FA accounts for just the common variance. This distinction becomes most important for small correlation matrices. Also note how the goodness of fit statistics, based upon the residual off diagonal elements, is much worse than the fasolution.

```
Factor analysis with Call: fa(r = bdd_fa_tetra$rho, nfactors = 3, rotate = "oblimin", scores = 'missing = TRUE, impute = "median", fm = "ml", cor = "tet")
```

Test of the hypothesis that 3 factors are sufficient.

The degrees of freedom for the model is 63 and the objective function was 45.01

The root mean square of the residuals (RMSA) is 0.11 The df corrected root mean square of the residuals is 0.14

With factor correlations of

ML3 ML1 ML2

ML3 1.00 -0.55 -0.21

ML1 -0.55 1.00 0.35

ML2 -0.21 0.35 1.00

Factor Analysis

Confirmatory structure

Confirmatory structure

Plot

Plot

Plot

Loadings:

	ML3	ML1	ML2
s_sentpauv	-0.351	0.256	
s_risqpauv	-0.242		
s_infminidecla	0.819		-0.243
m_nivie1		0.204	0.837
m_nivie2	-0.343	0.209	-0.588
m_nivie3	-0.247		-0.301
m_nivie4		-0.316	
m_nivie5	0.701		
m_locatif	0.618		
m financier	0.677		

i_log		0.99	99
i_rsa		0.51	15 0.340
i_chom		0.24	1 5
i_handi		0.32	23
i_hlm	-0.267	0.46	60
	ML3	ML1	ML2
SS loadings	2.488	1.958	1.366
Proportion Var	0.166	0.131	0.091
Cumulative Var	0.166	0.296	0.387

s_sentpauv	s_risqpauv	s_infminidecla	${\tt m_nivie1}$	m_nivie2
0.35	0.06	0.71	1.00	0.42
m_nivie3	m_nivie4	${\tt m_nivie5}$	${\tt m_locatif}$	${\tt m_financier}$
0.14	0.12	0.56	0.44	0.50
i_log	i_rsa	$i_{\tt chom}$	i_handi	i_hlm
1.00	0.54	0.12	0.13	0.42

Premier type de clustering (de variables et non d'individus) avec iclust

ICLUST using tetrachoric correlations

ICLUST diagram

3.3 Latent Categorical Variables

Source: https://m-clark.github.io/sem/mixture-models.html

 $Documentation\ https://raw.githubusercontent.com/dlinzer/poLCA/master/inst/doc/poLCA-manual-1-4.pdf$

Conditional item response (column) probabilities, by outcome variable, for each class (row)

\$s_sentpauvrisque

Pr(1) Pr(2) Pr(3)
class 1: 0.7975 0.1845 0.0180
class 2: 0.3633 0.3845 0.2521
class 3: 0.8155 0.1845 0.0000
class 4: 0.2344 0.2650 0.5006
class 5: 0.9471 0.0487 0.0042
class 6: 0.5667 0.3142 0.1191
class 7: 0.2428 0.3217 0.4355

\$s_infminidecla

Pr(1) Pr(2)
class 1: 0.2609 0.7391
class 2: 0.9326 0.0674
class 3: 0.8074 0.1926
class 4: 0.9585 0.0415
class 5: 0.0549 0.9451

class 6: 0.2037 0.7963 class 7: 0.8820 0.1180

\$m_quantilenivie

Pr(1) Pr(2) Pr(3) Pr(4) Pr(5) class 1: 0.0426 0.0000 0.2371 0.4115 0.3088 class 2: 0.3647 0.2495 0.3079 0.0780 0.0000 class 3: 0.2029 0.1859 0.4139 0.1973 0.0000 class 4: 0.0875 0.8997 0.0100 0.0028 0.0000 class 5: 0.0055 0.0000 0.0736 0.1714 0.7496 class 6: 0.3286 0.1387 0.3331 0.1153 0.0843 class 7: 0.3483 0.5438 0.0861 0.0166 0.0052

\$m_locatif

Pr(1) Pr(2)
class 1: 0.9718 0.0282
class 2: 0.9972 0.0028
class 3: 0.8742 0.1258
class 4: 0.9891 0.0109
class 5: 0.6464 0.3536
class 6: 0.9701 0.0299

class 7: 1.0000 0.0000

\$m_financier

Pr(1) Pr(2)
class 1: 0.9799 0.0201
class 2: 0.9942 0.0058
class 3: 0.8932 0.1068
class 4: 0.9880 0.0120
class 5: 0.5842 0.4158
class 6: 0.9519 0.0481
class 7: 1.0000 0.0000

\$i_log

Pr(1) Pr(2)
class 1: 0.9833 0.0167
class 2: 0.8503 0.1497
class 3: 0.9825 0.0175
class 4: 0.1656 0.8344
class 5: 0.9859 0.0141
class 6: 0.3947 0.6053
class 7: 0.0000 1.0000

\$i_rsa

Pr(1) Pr(2)
class 1: 0.9986 0.0014
class 2: 0.9928 0.0072
class 3: 0.9876 0.0124
class 4: 0.6244 0.3756

```
class 5: 0.9990 0.0010
class 6: 0.9158 0.0842
class 7: 1.0000 0.0000
$i_chom
          Pr(1) Pr(2)
class 1: 0.9456 0.0544
class 2: 0.8446 0.1554
class 3: 0.9244 0.0756
class 4: 0.7552 0.2448
class 5: 0.9563 0.0437
class 6: 0.7543 0.2457
class 7: 0.8060 0.1940
$i_handi
          Pr(1) Pr(2)
class 1: 0.9766 0.0234
class 2: 0.9236 0.0764
class 3: 0.9377 0.0623
class 4: 0.9118 0.0882
class 5: 0.9763 0.0237
class 6: 0.8723 0.1277
class 7: 0.6214 0.3786
$i_bourse
          Pr(1) Pr(2)
class 1: 0.9966 0.0034
class 2: 0.9816 0.0184
class 3: 0.9489 0.0511
class 4: 0.8052 0.1948
class 5: 0.9850 0.0150
class 6: 0.8358 0.1642
class 7: 0.9396 0.0604
$i_hlm
          Pr(1) Pr(2)
class 1: 0.8976 0.1024
class 2: 0.6983 0.3017
class 3: 0.9402 0.0598
class 4: 0.4508 0.5492
class 5: 0.9863 0.0137
class 6: 0.5807 0.4193
class 7: 0.1471 0.8529
Estimated class population shares
```

Estimated class population shares 0.2626 0.2348 0.0995 0.1301 0.1486 0.0774 0.047

Predicted class memberships (by modal posterior prob.) 0.3305 0.253 0.0751 0.1368 0.0997 0.0659 0.039

Fit for 7 latent classes:

number of observations: 10555

number of estimated parameters: 111 residual degrees of freedom: 7568 maximum log-likelihood: -55120.34

AIC(7): 110462.7 BIC(7): 111269

G^2(7): 2375.8 (Likelihood ratio/deviance statistic)

X^2(7): 189592.9 (Chi-square goodness of fit)

ALERT: iterations finished, MAXIMUM LIKELIHOOD NOT FOUND

Classe 1 : part de la population = 26.3 %

Classe 2 : part de la population = 23.5 %

Classe 3 : part de la population = 9.9 %

Classe 4 : part de la population = 13 %

Classe 5 : part de la population = 14.9 %

3.4 Confirmatory factor analysis (CFA) des dimensions de la pauvreté

EFA and CFA are mathematically very similar, since we have the same fundamental equation in both cases. In EFA we assumed uncorrelated factors by setting

3.4.1 Modèle sans dimensions de la pauvreté

lavaan 0.6-8 ended normally after 32 iterations

Estimator	DWLS
Optimization method	NLMINB
Number of model parameters	22

Number of	observations	1063	2
Mumper or	observacions	1003.	_

	_		
Model	Test	User	Model:

	Standard	Robust
Test Statistic	963.997	542.800
Degrees of freedom	44	44
P-value (Chi-square)	0.000	0.000
Scaling correction factor		1.855
Shift parameter		23.260
simple second-order correction		

Model Test Baseline Model:

Test statistic	26883.282	14636.449
Degrees of freedom	55	55
P-value	0.000	0.000
Scaling correction factor		1.840

User Model versus Baseline Model:

Comparative Fit Index (CFI)	0.966	0.966
Tucker-Lewis Index (TLI)	0.957	0.957
Robust Comparative Fit Index (CFI)		NA
Robust Tucker-Lewis Index (TLI)		NA

Root Mean Square Error of Approximation:

RMSEA	0.044	0.033
90 Percent confidence interval - lower	0.042	0.030
90 Percent confidence interval - upper	0.047	0.035
P-value RMSEA <= 0.05	1.000	1.000
Robust RMSFA		NΔ

TODUDU TUTBE	in.				1411
90 Percent	confidence	${\tt interval}$	-	lower	ΝA
90 Percent	confidence	${\tt interval}$	-	upper	ΝA

Standardized Root Mean Square Residual:

SRMR	0.361	0.361

Parameter Estimates:

Standard errors	Robust.sem
Information	Expected
Information saturated (h1) model	Unstructured

Latent Variables:

	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
pauvrete =~						
$s_sentpauv$	1.000				0.678	0.678
$s_{infminidecla}$	-1.077	0.023	-47.555	0.000	-0.730	-0.730
s_risqpauv	0.366	0.023	15.690	0.000	0.248	0.248
m_nivie1	1.320	0.026	50.397	0.000	0.895	0.895
m_nivie2	0.427	0.024	17.572	0.000	0.290	0.290
m_nivie3	-0.250	0.023	-10.901	0.000	-0.169	-0.169
${\tt m_nivie4}$	-0.805	0.026	-30.429	0.000	-0.546	-0.546
m_nivie5	-1.351	0.031	-43.800	0.000	-0.916	-0.916
i_log	1.105	0.023	48.199	0.000	0.749	0.749
i_rsa	1.089	0.027	39.780	0.000	0.738	0.738
i_chom	0.484	0.024	19.782	0.000	0.328	0.328
Intercepts:						
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
.s_sentpauv	0.000			- (1-1)	0.000	0.000
.s_infminidecla	0.000				0.000	0.000
.s_risqpauv	0.000				0.000	0.000
.m_nivie1	0.000				0.000	0.000
.m_nivie2	0.000				0.000	0.000
.m_nivie3	0.000				0.000	0.000
.m_nivie4	0.000				0.000	0.000
.m_nivie5	0.000				0.000	0.000
_	0.000				0.000	0.000
.i_log	0.000				0.000	0.000
.i_rsa					0.000	0.000
.i_chom	0.000					
pauvrete	0.000				0.000	0.000
Thresholds:						
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
s_sentpauv t1	0.998	0.015	68.218	0.000	0.998	0.998
$s_{infmindcl t1}$	0.147	0.012	12.060	0.000	0.147	0.147
s_risqpauv t1	0.710	0.013	53.206	0.000	0.710	0.710
$m_nivie1 t1$	0.735	0.013	54.735	0.000	0.735	0.735
$m_nivie2 t1$	0.948	0.014	65.979	0.000	0.948	0.948
$m_nivie3 t1$	0.781	0.014	57.419	0.000	0.781	0.781
$m_nivie4 t1$	0.911	0.014	64.251	0.000	0.911	0.911
$m_nivie5 t1$	0.846	0.014	60.991	0.000	0.846	0.846
i_log t1	0.686	0.013	51.743	0.000	0.686	0.686
i_rsa t1	1.563	0.019	80.419	0.000	1.563	1.563
i_chom t1	1.150	0.016	73.813	0.000	1.150	1.150
Variances:						
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
.s_sentpauv	0.541			. 1-17	0.541	0.541
.s_infminidecla	0.467				0.467	0.467
.s_risqpauv	0.938				0.938	0.938
.m_nivie1	0.200				0.200	0.200
	0.200				0.200	0.200

$.{\tt m_nivie2}$	0.916				0.916	0.916
$.{\tt m_nivie3}$	0.971				0.971	0.971
$.{\tt m_nivie4}$	0.702				0.702	0.702
$.{\tt m_nivie5}$	0.162				0.162	0.162
.i_log	0.439				0.439	0.439
.i_rsa	0.456				0.456	0.456
.i_chom	0.892				0.892	0.892
pauvrete	0.459	0.016	28.933	0.000	1.000	1.000
Scales y*:						
·	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
s_sentpauv	1.000				1.000	1.000
s_infminidecla	1.000				1.000	1.000
s_risqpauv	1.000				1.000	1.000
m_nivie1	1.000				1.000	1.000
m_nivie2	1.000				1.000	1.000

3.4.2 Modèle avec 3 dimensions de la pauvreté (i,m,s)

1.000

1.000

1.000

1.000

1.000

1.000

 m_nivie3

 m_nivie4

 m_nivie5

i_log

i_rsa

 i_chom

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

lavaan 0.6-8 ended normally after 48 iterations

Estimator	DWLS
Optimization method	NLMINB
Number of model parameters	25

Number of observations	10632	
Model Test User Model:		
	Standard	Robust
Test Statistic	627.336	493.780
Degrees of freedom	41	41
P-value (Chi-square)	0.000	0.000

simple second-order correction

Model Test Baseline Model:

Shift parameter

Scaling correction factor

Test statistic	27207.377	18634.349
Degrees of freedom	55	55
P-value	0.000	0.000
Scaling correction factor		1.461

1.307 13.778

User Model versus Baseline Model:

Comparative Fit Index (CFI)	0.978	0.976
Tucker-Lewis Index (TLI)	0.971	0.967
Robust Comparative Fit Index (CFI)		NA
Robust Tucker-Lewis Index (TLI)		NA

Root Mean Square Error of Approximation:

0.037	0.032
0.034	0.030
0.039	0.035
1.000	1.000
	NA
	0.034

90 Percent confidence interval - lower NA90 Percent confidence interval - upper NA

Standardized Root Mean Square Residual:

SRMR 0.282 0.282

Parameter Estimates:

Standard errors Robust.sem Information Expected Information saturated (h1) model Unstructured

Latent Variables:

		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
S	=~						
	s_sentpauv	1.000				0.718	0.718
	$s_infminidecla$	-1.094	0.023	-46.995	0.000	-0.786	-0.786
	s_risqpauv	0.384	0.023	16.543	0.000	0.276	0.276
m	=~						
	m_nivie1	1.000				0.735	0.735
	m_nivie2	0.332	0.019	17.868	0.000	0.244	0.244
	m_nivie4	-0.608	0.017	-35.196	0.000	-0.447	-0.447
	m_nivie5	-1.019	0.017	-61.290	0.000	-0.749	-0.749
i	=~						
	i_log	1.000				0.837	0.837
	i_rsa	0.927	0.022	42.606	0.000	0.776	0.776
	i_chom	0.423	0.020	20.645	0.000	0.353	0.353
	i_handi	0.412	0.023	17.725	0.000	0.345	0.345
	_						
Cov	ariances:						
		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
s	~~						
	m	0.608	0.012	50.380	0.000	1.152	1.152
	i	0.460	0.012	39.775	0.000	0.766	0.766
m	~~						
	i	0.671	0.010	66.111	0.000	1.090	1.090
Int	orconta.						
TILL	ercepus.						
1110	ercepts:	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
	_		Std.Err	z-value	P(> z)		
	.s_sentpauv	0.000	Std.Err	z-value	P(> z)	0.000	0.000
	.s_sentpauv .s_infminidecla	0.000	Std.Err	z-value	P(> z)	0.000	0.000
	.s_sentpauv .s_infminidecla .s_risqpauv	0.000 0.000 0.000	Std.Err	z-value	P(> z)	0.000 0.000 0.000	0.000 0.000 0.000
	.s_sentpauv .s_infminidecla .s_risqpauv .m_nivie1	0.000 0.000 0.000 0.000	Std.Err	z-value	P(> z)	0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000
	.s_sentpauv .s_infminidecla .s_risqpauv .m_nivie1 .m_nivie2	0.000 0.000 0.000 0.000 0.000	Std.Err	z-value	P(> z)	0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000
	.s_sentpauv .s_infminidecla .s_risqpauv .m_nivie1 .m_nivie2 .m_nivie4	0.000 0.000 0.000 0.000 0.000	Std.Err	z-value	P(> z)	0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000
	.s_sentpauv .s_infminidecla .s_risqpauv .m_nivie1 .m_nivie2 .m_nivie4 .m_nivie5	0.000 0.000 0.000 0.000 0.000 0.000	Std.Err	z-value	P(> z)	0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000
	.s_sentpauv .s_infminidecla .s_risqpauv .m_nivie1 .m_nivie2 .m_nivie4 .m_nivie5 .i_log	0.000 0.000 0.000 0.000 0.000 0.000 0.000	Std.Err	z-value	P(> z)	0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000
	.s_sentpauv .s_infminidecla .s_risqpauv .m_nivie1 .m_nivie2 .m_nivie4 .m_nivie5 .i_log .i_rsa	0.000 0.000 0.000 0.000 0.000 0.000 0.000	Std.Err	z-value	P(> z)	0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000
	.s_sentpauv .s_infminidecla .s_risqpauv .m_nivie1 .m_nivie2 .m_nivie4 .m_nivie5 .i_log .i_rsa .i_chom	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Std.Err	z-value	P(> z)	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
	.s_sentpauv .s_infminidecla .s_risqpauv .m_nivie1 .m_nivie2 .m_nivie4 .m_nivie5 .i_log .i_rsa .i_chom .i_handi	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Std.Err	z-value	P(> z)	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
	.s_sentpauv .s_infminidecla .s_risqpauv .m_nivie1 .m_nivie2 .m_nivie4 .m_nivie5 .i_log .i_rsa .i_chom .i_handi s	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Std.Err	z-value	P(> z)	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
	.s_sentpauv .s_infminidecla .s_risqpauv .m_nivie1 .m_nivie2 .m_nivie4 .m_nivie5 .i_log .i_rsa .i_chom .i_handi s m	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Std.Err	z-value	P(> z)	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
	.s_sentpauv .s_infminidecla .s_risqpauv .m_nivie1 .m_nivie2 .m_nivie4 .m_nivie5 .i_log .i_rsa .i_chom .i_handi s	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Std.Err	z-value	P(> z)	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
	.s_sentpauv .s_infminidecla .s_risqpauv .m_nivie1 .m_nivie2 .m_nivie4 .m_nivie5 .i_log .i_rsa .i_chom .i_handi s m	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Std.Err	z-value	P(> z)	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
	.s_sentpauv .s_infminidecla .s_risqpauv .m_nivie1 .m_nivie2 .m_nivie4 .m_nivie5 .i_log .i_rsa .i_chom .i_handi s m	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000				0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
	.s_sentpauv .s_infminidecla .s_risqpauv .m_nivie1 .m_nivie2 .m_nivie4 .m_nivie5 .i_log .i_rsa .i_chom .i_handi s m i	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Std.Err	z-value	P(> z)	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
	.s_sentpauv .s_infminidecla .s_risqpauv .m_nivie1 .m_nivie2 .m_nivie4 .m_nivie5 .i_log .i_rsa .i_chom .i_handi s m i esholds: s_sentpauv t1	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Std.Err 0.015	z-value 68.218	P(> z) 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
	.s_sentpauv .s_infminidecla .s_risqpauv .m_nivie1 .m_nivie2 .m_nivie4 .m_nivie5 .i_log .i_rsa .i_chom .i_handi s m i esholds: s_sentpauv t1 s_infmindcl t1	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Std.Err 0.015 0.012	z-value 68.218 12.060	P(> z) 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Std.all 0.998 0.147
	.s_sentpauv .s_infminidecla .s_risqpauv .m_nivie1 .m_nivie2 .m_nivie4 .m_nivie5 .i_log .i_rsa .i_chom .i_handi s m i esholds: s_sentpauv t1 s_infmindcl t1 s_risqpauv t1	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Std.Err 0.015 0.012 0.013	z-value 68.218 12.060 53.206	P(> z) 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
	.s_sentpauv .s_infminidecla .s_risqpauv .m_nivie1 .m_nivie2 .m_nivie4 .m_nivie5 .i_log .i_rsa .i_chom .i_handi s m i esholds: s_sentpauv t1 s_infmindcl t1 s_risqpauv t1 m_nivie1 t1	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Std.Err 0.015 0.012 0.013 0.013	z-value 68.218 12.060 53.206 54.735	P(> z) 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
	.s_sentpauv .s_infminidecla .s_risqpauv .m_nivie1 .m_nivie2 .m_nivie4 .m_nivie5 .i_log .i_rsa .i_chom .i_handi s m i esholds: s_sentpauv t1 s_infmindcl t1 s_risqpauv t1	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Std.Err 0.015 0.012 0.013	z-value 68.218 12.060 53.206	P(> z) 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

$m_nivie5 t1$	0.846	0.014	60.991	0.000	0.846	0.846
i_log t1	0.686	0.013	51.743	0.000	0.686	0.686
i_rsa t1	1.563	0.019	80.419	0.000	1.563	1.563
i_chom t1	1.150	0.016	73.813	0.000	1.150	1.150
i_handi t1	1.453	0.018	79.896	0.000	1.453	1.453
Variances:						
varianoos.	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
.s_sentpauv	0.484			- (1-1)	0.484	0.484
.s_infminidecla	0.383				0.383	0.383
.s_risqpauv	0.924				0.924	0.924
.m_nivie1	0.459				0.459	0.459
_ .m_nivie2	0.940				0.940	0.940
.m_nivie4	0.800				0.800	0.800
_ .m_nivie5	0.438				0.438	0.438
- .i_log	0.300				0.300	0.300
.i_rsa	0.398				0.398	0.398
.i_chom	0.875				0.875	0.875
.i_handi	0.881				0.881	0.881
S	0.516	0.019	27.332	0.000	1.000	1.000
m	0.541	0.234	2.313	0.021	1.000	1.000
i	0.700	0.021	33.791	0.000	1.000	1.000
Scales y*:						
200 <u>2</u> 02 j	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
s_sentpauv	1.000				1.000	1.000
s_infminidecla	1.000				1.000	1.000
s_risqpauv	1.000				1.000	1.000
m_nivie1	1.000				1.000	1.000
m_nivie2	1.000				1.000	1.000
m_nivie4	1.000				1.000	1.000
m_nivie5	1.000				1.000	1.000
i_log	1.000				1.000	1.000
i_rsa	1.000				1.000	1.000
i_chom	1.000				1.000	1.000
i_handi	1.000				1.000	1.000

- p-valeur du test du chi-2 de 0, très mauvais car un résultat non significatif veut dire que le modèle "fits" mais il ne faut pas faire très attention à cette statistique car elle est très souvent significative quand l'échantillon est grand.
- Le CFI doit être supérieur à 0,95. Ici 0,98 OK
- Le RMSEA doit être dans l'intervalle [0.05,0.10]. Ici $[0,03,\,0.04]$ pas tout à fait le cas donc.
- Le SRMR doit être inférieur à 0.08, pas du tout le cas ici 0,24.

3.4.3 Comment améliorer le modèle?

	lhs	op	rhs	est	se	Z	pvalue	ci.lower	ci.upper
1	s	=~	s_sentpauv	1.000	0.000	NA	NA	1.000	1.000
2	s	=~	${\tt s_infminidecla}$	-1.094	0.023	-46.995	0	-1.139	-1.048
3	s	=~	s_risqpauv	0.384	0.023	16.543	0	0.338	0.429

```
m_nivie1 1.000 0.000
                                                        1.000
                                                                 1.000
4
                                         NA
                                                  NA
5
               m_nivie2 0.332 0.019 17.868
                                                   0
                                                        0.296
                                                                 0.368
               m_nivie4 -0.608 0.017 -35.196
                                                   0
                                                       -0.642
                                                                -0.575
    m =~
  id
            lhs
                           rhs nobs row col obs.freq obs.prop est.prop
                                                                               X2
  1 s_sentpauv s_infminidecla 10632
                                                  4464
                                                          0.420
                                                                   0.419
                                                                            0.034
                                            1
  1 s_sentpauv s_infminidecla 10632
                                                  1474
                                                          0.139
                                                                   0.140
                                                                            0.103
                                            1
3 1 s_sentpauv s_infminidecla 10632
                                            2
                                                  4477
                                                          0.421
                                                                   0.422
                                                                            0.034
  1 s_sentpauv s_infminidecla 10632
                                            2
                                                   217
                                                          0.020
                                                                   0.019
                                                                            0.746
  2 s_sentpauv
                    s_risqpauv 10632
                                        1
                                                  6400
                                                          0.602
                                                                   0.656 47.207
                                            1
6 2 s_sentpauv
                    s_risqpauv 10632
                                                  1691
                                                          0.159
                                                                   0.105 294.669
                                            1
                                           epc sepc.lv sepc.all sepc.nox
          lhs
               op
                         rhs
                                    \mathtt{mi}
76
            m
                       i_log 54307.649 69.986 51.465
                                                         51.465
                                                                  51.465
            s =~ s_sentpauv 12575.682 23.967
                                                                  17.218
1
                                                17.218
                                                         17.218
40 s_sentpauv ~*~ s_sentpauv 12575.682 23.967
                                                23.967
                                                          1.000
                                                                   1.000
73
               =~ s_sentpauv 6894.099 11.120
                                                                   8.177
                                                 8.177
                                                          8.177
69
                              6001.029 8.809
                                                 6.328
                                                          6.328
                                                                   6.328
                       i_log
80
               =~ s_sentpauv
                              2330.673 3.285
                                                 2.748
                                                          2.748
                                                                   2.748
```

3.4.4 Quelques indicateurs écartés

lavaan 0.6-8 ended normally after 49 iterations

Estimator	DWLS
Optimization method	NLMINB
Number of model parameters	28
Number of observations	10632

Model Test User Model:

	Standard	Robust
Test Statistic	842.670	471.213
Degrees of freedom	38	38
P-value (Chi-square)	0.000	0.000
Scaling correction factor		1.868
Shift parameter		19.985
simple second-order correction		

Parameter Estimates:

Standard errors	Robust.sem
Information	Expected
Information saturated (h1) model	Unstructured

Latent Variables:

		Estimate	Std.Err	z-value	P(> z)
s	=~				
	s_sentpauv	1.000			
	$s_{\tt infminidecla}$	-1.081	0.023	-46.539	0.000
m	=~				
	m_nivie1	1.000			
	m_nivie2	0.326	0.019	17.484	0.000
	m_nivie3	-0.188	0.017	-11.099	0.000
	m_nivie4	-0.609	0.017	-35.067	0.000
	m_nivie5	-1.019	0.017	-60.847	0.000
i	=~				
	i_log	1.000			
	i_rsa	0.949	0.023	41.217	0.000
p	=~				
	i_chom	1.000			
	s_risqpauv	0.769	0.056	13.642	0.000

Covariances:

ovaria	uces.				
		Estimate	Std.Err	z-value	P(> z)
s ~~					
m		0.611	0.012	49.610	0.000
i		0.465	0.012	37.843	0.000
р		0.232	0.015	15.696	0.000
m ~~					
i		0.673	0.010	65.976	0.000
р		0.287	0.015	19.141	0.000
i ~~					
р		0.219	0.016	13.691	0.000

Intercepts:

1	Estimate	Std.Err	z-value	P(> z)
.s_sentpauv	0.000			
.s_infminidecla	0.000			
.m_nivie1	0.000			

$.{\tt m_nivie2}$	0.000
.m_nivie3	0.000
.m_nivie4	0.000
.m_nivie5	0.000
.i_log	0.000
.i_rsa	0.000
.i_chom	0.000
.s_risqpauv	0.000
S	0.000
m	0.000
i	0.000
p	0.000

Thresholds:

	Estimate	Std.Err	z-value	P(> z)
s_sentpauv t1	0.998	0.015	68.218	0.000
s_infmindcl t1	0.147	0.012	12.060	0.000
$m_nivie1 t1$	0.735	0.013	54.735	0.000
$m_nivie2 t1$	0.948	0.014	65.979	0.000
$m_nivie3 t1$	0.781	0.014	57.419	0.000
$m_nivie4 t1$	0.911	0.014	64.251	0.000
$m_nivie5 t1$	0.846	0.014	60.991	0.000
i_log t1	0.686	0.013	51.743	0.000
i_rsa t1	1.563	0.019	80.419	0.000
i_chom t1	1.150	0.016	73.813	0.000
s_risqpauv t1	0.710	0.013	53.206	0.000

Variances:

	Estimate	Std.Err	z-value	P(> z)
.s_sentpauv	0.491			
$.s_infminidecla$	0.405			
.m_nivie1	0.492			
.m_nivie2	0.946			
.m_nivie3	0.982			
$.{\tt m_nivie4}$	0.812			
.m_nivie5	0.472			
.i_log	0.301			
.i_rsa	0.370			
.i_chom	0.768			
.s_risqpauv	0.863			
S	0.509	0.019	26.616	0.000
m	0.508	0.216	2.352	0.019
i	0.699	0.023	30.747	0.000
р	0.232	0.030	7.818	0.000

Scales y*:

Estimate Std.Err z-value P(>|z|) s_sentpauv 1.000

s_infminidecla 1.000

m_nivie1	1.000
m_nivie2	1.000
m_nivie3	1.000
m_nivie4	1.000
m_nivie5	1.000
i_log	1.000
i_rsa	1.000
i_chom	1.000
s_risqpauv	1.000

3.4.5 Carrément à partir de l'EFA

lavaan 0.6-8 did NOT end normally after 74 iterations
** WARNING ** Estimates below are most likely unreliable

Estimator	DWLS
Optimization method	NLMINB
Number of model parameters	15
Number of observations	10632
Model Test User Model:	
Test statistic	NA
Degrees of freedom	NA

Parameter Estimates:

Standard errors	Robust.sem
Information	Expected

Information	saturated	(h1)	model	Unstructured

Latent Variables:	Estimate	St.d.Err	z-value	P(> z)
i =~	Ботшаос	Dourli	2 valuo	1 (7 (2))
i_log	1.000			
i_rsa	0.960	NA		
s =~				
${ t s_infminidecla}$	1.000			
m_nivie5	1.404	NA		
m =~				
m_nivie1	1.000			
m_nivie2	0.308	NA		

Covariances:

	Estimate	Std.Err	z-value	P(> z)
i ~~				
S	-0.431	NA		
m	0.682	NA		
s ~~				
m	-0.692	NA		

Intercepts:

	Estimate	Std.Err	z-value	P(> z)
.i_log	0.000			
.i_rsa	0.000			
$. \verb s_infminidecla \\$	0.000			
$.{\tt m_nivie5}$	0.000			
.m_nivie1	0.000			
.m_nivie2	0.000			
i	0.000			
S	0.000			
m	0.000			

Thresholds:

	Estimate	Std.Err	z-value	P(> z)
i_log t1	0.686	NA		
i_rsa t1	1.563	NA		
$s_{infmindcl t1}$	0.147	NA		
$m_nivie5 t1$	0.846	NA		
$m_nivie1 t1$	0.735	NA		
$m_nivie2 t1$	0.948	NA		

Variances:

	Estimate	Std.Err	z-value	P(> z)
.i_log	0.308			
.i_rsa	0.363			
.s_infminidecla	0.492			
.m nivie5	-0.001			

.m_nivie1	2.000	
.m_nivie2	1.095	
i	0.692	NA
s	0.508	NA
m	-1.000	NA

Scales y*:

	Estimate	Std.Err	z-value	P(> z)
i_log	1.000			
i_rsa	1.000			
$s_infminidecla$	1.000			
m_nivie5	1.000			
m_nivie1	1.000			
m_nivie2	1.000			

3.4.6 CFA hiérarchique

lavaan 0.6-8 ended normally after 48 iterations

Estimator	DWLS
Optimization method	NLMINB
Number of model parameters	25
Number of observations	10632

Model Test User Model:

	Standard	Robust
Test Statistic	844.834	485.183
Degrees of freedom	41	41
P-value (Chi-square)	0.000	0.000

Scaling correction	on factor				1.8	
Shift parameter					21.0	25
simple secon	nd-order c	orrection				
Model Test Baseline	e Model:					
Test statistic			2	6883.282	14636.4	49
Degrees of freed	om			55		55
P-value				0.000	0.0	00
Scaling correction	on factor				1.8	40
User Model versus I	Baseline M	odel:				
Comparative Fit	Index (CFI)		0.970	0.9	70
Tucker-Lewis Inde		•		0.960		
Robust Comparativ	ve Fit Ind	ex (CFI)				NA
Robust Tucker-Let	wis Index	(TLI)				NA
Root Mean Square En	rror of Ap	proximati	on:			
DMCEA				0 042	0 0	20
RMSEA 90 Percent confid	donas into	m		0.043 0.040	0.0	
90 Percent confid P-value RMSEA <=		rvar - up	pper	0.045 1.000	0.0 1.0	
r-value midea <-	0.05			1.000	1.0	00
Robust RMSEA						NA
90 Percent confid	dence inte	rval - lo	wer			NA
90 Percent confid						NA
Standardized Root 1						
SRMR				0.356	0.3	56
Parameter Estimates	S:					
Standard errors			Ro	bust.sem		
Information				Expected		
Information satur	rated (h1)	model		ructured		
Latent Variables:						
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
s =~						
s_sentpauv	1.000				0.723	0.723
s_risqpauv	0.370	0.023		0.000	0.268	0.268
s_infminidecla	-1.083	0.023	-46.589	0.000	-0.783	-0.783
m =~						
m_nivie1	1.000				0.713	0.713
m_nivie2	0.326	0.019	17.518	0.000	0.232	0.232

m_nivie3	-0.187	0.017	-11.072	0.000	-0.133	-0.133
${\tt m_nivie4}$	-0.609	0.017	-35.076	0.000	-0.434	-0.434
m_nivie5	-1.019	0.017	-60.940	0.000	-0.727	-0.727
i =~						
i_log	1.000				0.832	0.832
i_rsa	0.949	0.023	41.747	0.000	0.789	0.789
i_chom	0.424	0.021	20.400	0.000	0.353	0.353
pauvrete =~						
S	1.000				0.892	0.892
m	1.464	0.034	43.339	0.000	1.325	1.325
i	1.104	0.024	45.324	0.000	0.856	0.856
Intercepts:						
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
.s_sentpauv	0.000				0.000	0.000
.s_risqpauv	0.000				0.000	0.000
.s_infminidecla	0.000				0.000	0.000
.m_nivie1	0.000				0.000	0.000
$.{\tt m_nivie2}$	0.000				0.000	0.000
$.{\tt m_nivie3}$	0.000				0.000	0.000
$.{\tt m_nivie4}$	0.000				0.000	0.000
.m_nivie5	0.000				0.000	0.000
.i_log	0.000				0.000	0.000
.i_rsa	0.000				0.000	0.000
.i_chom	0.000				0.000	0.000
.s	0.000				0.000	0.000
.m	0.000				0.000	0.000
.i	0.000				0.000	0.000
pauvrete	0.000				0.000	0.000
•						
Thresholds:						
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
s_sentpauv t1	0.998	0.015	68.218	0.000	0.998	0.998
s_risqpauv t1	0.710	0.013	53.206	0.000	0.710	0.710
s_infmindcl t1	0.147	0.012	12.060	0.000	0.147	0.147
m_nivie1 t1	0.735	0.013	54.735	0.000	0.735	0.735
m_nivie2 t1	0.948	0.014	65.979	0.000	0.948	0.948
m_nivie3 t1	0.781	0.014	57.419	0.000	0.781	0.781
m_nivie4 t1	0.911	0.014	64.251	0.000	0.911	0.911
m_nivie5 t1	0.846	0.014	60.991	0.000	0.846	0.846
i_log t1	0.686	0.013	51.743	0.000	0.686	0.686
i_rsa t1	1.563	0.019	80.419	0.000	1.563	1.563
i_chom t1	1.150	0.016	73.813	0.000	1.150	1.150
- ·						
Variances:						
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
.s_sentpauv	0.477				0.477	0.477
.s_risqpauv	0.928				0.928	0.928
.s_infminidecla	0.387				0.387	0.387

$.{\tt m_nivie1}$	0.492				0.492	0.492
$.{\tt m_nivie2}$	0.946				0.946	0.946
$.m_nivie3$	0.982				0.982	0.982
$.{\tt m_nivie4}$	0.812				0.812	0.812
$.{\tt m_nivie5}$	0.472				0.472	0.472
.i_log	0.308				0.308	0.308
.i_rsa	0.377				0.377	0.377
.i_chom	0.876				0.876	0.876
. S	0.107	0.014	7.816	0.000	0.204	0.204
.m	-0.384	0.216	-1.773	0.076	-0.755	-0.755
.i	0.185	0.020	9.057	0.000	0.267	0.267
pauvrete	0.416	0.016	26.469	0.000	1.000	1.000

Scales y*:

	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
s_sentpauv	1.000				1.000	1.000
s_risqpauv	1.000				1.000	1.000
$s_{infminidecla}$	1.000				1.000	1.000
m_nivie1	1.000				1.000	1.000
m_nivie2	1.000				1.000	1.000
m_nivie3	1.000				1.000	1.000
${\tt m_nivie4}$	1.000				1.000	1.000
${\tt m_nivie5}$	1.000				1.000	1.000
i_log	1.000				1.000	1.000
i_rsa	1.000				1.000	1.000
i_chom	1.000				1.000	1.000

3.5 CFA avec des covariables (MIMIC)

MIMIC stands for multiple indicators multiple independent causes (Jöreskog and Goldberger, 1975) and is a general structural latent variable concept where CFA is extended in terms of linking covariates with latent variables. MIMIC models can be used to control for sociodemographic or other types of covariates in CFA and more general SEM specifications.

Remarque : ne marche qu'avec les covariates exogènes de moins de 2 facteurs (à transformer en indicatrices j'imagine)

3.6 Structural equation models (SEM)

Structural equation models (SEM) integrate confirmatory factor analysis (CFA) into a larger path analytic framework. Formally, we extend the basic CFA expression (measurement model) by an additional linear specification reflecting dependencies among the latent variables (structural model).

Remarque : ne marche pas pour les facteurs non ordonnés (en gros, considère les facteurs comme des variables numériques)

4 Notes méthodologiques

Pour ces modèles quatre vagues du Baromètre ont été empilées : 2016, 2017, 2018 et 2019 (12 114 observations). Le nombre d'observations utilisées est différent dans chaque modèle, il s'agit uniquement des individus où toutes les variables utilisées dans les modèles sont renseignées (voir notes en bas des tableaux).

Bibliographie

- https://stats.idre.ucla.edu/spss/seminars/efa-spss/ https://support.sas.com/resources/papers/proceedings/proceedings/sugi30/203-30.pdf https://community.jmp.com/t5/JMP-Blog/Principal-components-or-factor-analysis/ba-p/38347 bases de l'EFA
- En bouquins: https://books.google.es/books?hl=fr&lr=&id=qKrumJ4CsboC&oi=fnd&pg=PT 180&ots=TDmmzvQP5X&sig=7gFjzxbPC49Tz7IkGT-4gXMzx8U&redir_esc=y#v=onepage &q&f=false et slides https://slideplayer.com/slide/5080/
- https://m-clark.github.io/posts/2020-04-10-psych-explained/
- https://cran.r-project.org/web/packages/psychTools/vignettes/factor.pdf
- https://rstudio-pubs-static.s3.amazonaws.com/363499_73a1c1a94da148b6ad81e6eb8dc1b771. html
- https://en.wikipedia.org/wiki/Factor analysis
- Analyse en facteurs communs et spécifiques docs en Français. https://www.rocq.inria.fr/axis/m

 $odulad/archives/numero-37/Chaventetal-37, Chaventetal-37. pdf \ http://grumlidesforets.free.fr/cours%20psycho/M1%20psycho/chapitre2/chapitre2.pdf \ http://jeanalain.monfort.free.fr/Dicostat2005/A/Analyse_en_facteurs_communs_etc.pdf \ https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjX-NWssbbxAhUNxoUKHXMzBxEQFnoECAkQAA&url=http%3A%2F%2Fwww.normalesup.org%2F~carpenti%2FNotes%2FAnalyse-factorielle%2FAnalyse-Factorielle-2011.doc&usg=AOvVaw04RFWMowmry0JRVMNZqR7hhttp://jeanalain.monfort.free.fr/Dicostat2005/A/Analyse_en_facteurs_communs_etc.pdfhttps://www.psychometrie.jlroulin.fr/cours/aide_quizz.html?H.html https://www.persee.fr/doc/hism_0982-1783_1997_num_12_3_1544 http://psychologie.psyblogs.net/2012/01/cours-theories-de-lintelligence-en.html$