

딥러닝 기초

실무형 인공지능 자연어처리

FIN INSIGHT Copyright FIN INSIGHT. All Right Reserved

선형 회귀 (Linear regression)

Y 연속형: 입력변수(X)의 선형결합으로 출력변수(Y)를 표현

$$f(X) = w_0 + w_1 X_1 + w_2 X_2 + ... + w_n X_n$$

로지스틱 회귀

Y 범주형 : 입력변수(X)의 비선형결합으로 출력변수(Y)를 표현

$$f(X) = rac{1}{1 + e^{-(w_0 + w_1 X_1 + w_2 X_2 + ... + w_n X_n)}}$$

로지스틱 회귀

인공 신경망 파라미터

비용함수 (Cost Function)

예측값 Y와 실제값 Y의 차이를 최소로 하는 함수

$$\operatorname{argmin}\sum_{i}L(Y,f(X;w))$$

역전파 (Backpropagation)

- 오차 역전파법(Backpropagation) 또는 오류 역전파 알고리즘은 다층 퍼셉트론 학습에 사용되는 통계적 기법
- 경사 하강법 (Gradient Descent) : 손실함수의 기울기(=가중치의 편미분)에 학습률(learning rate)을 반영하여 가중치(파라미터)를 갱신하여 학습

예제: XOR - Feed forward(1)

예제: XOR - Feed forward(2)

예제: XOR - Loss/Gradient 계산

예제: XOR - Weight(Parameter) 갱신

$$L = \ - rac{1}{N} \sum_{i=1}^{N} y_i \log(\hat{y}) + (1-y_i) \log(1-\hat{y})$$

Hidden layer : 1개 Hidden node : 2개

activation func: sigmoid loss: binary cross entropy

X1	X2	Y
0	0	0
0	1	1
1	0	1
1	1	0

예제 : XOR

X1	X2	Y	ŷ
0	0	0	0.52
0	1	1	0.5
1	0	1	0.52
1	1	0	055

X1	X2	В
0	0	1
0	1	1
1	0	1
1	1	1

X1	X2	Y	ŷ
0	0	0	0.50
0	1	1	0.48
1	0	1	0.50
1	1	0	052

X1	X2	Y	ŷ
0	0	0	0.02
0	1	1	0.98
1	0	1	0.98
1	1	0	0.02

epoch = 10000

감사합니다.

Insight campus Sesac

