# LAYER FOLDING: NEURAL NETWORK DEPTH REDUCTION USING ACTIVATION LINEARIZATION

AMIR BEN DROR, NIV ZEHNGUT, AVRAHAM RAVIV, EVGENY ARTYOMOV, RAN VITEK, ROY JEVNISEK
SAMSUNG ISRAEL RESEARCH CENTER

24.03.07 Juyun Wee EffL@POSTECH

#### **BACKGOUND**

## **NETWORK SIMPLIFICATION: WHY IT MATTERS**

Despite the increasing prevalence of deep neural networks, their applicability in resource-constrained devices is limited due to their computational load. Real-time latency largely depends on the <u>network's depth</u>

#### DILEMMA OF DEPTH

DEEPER

SHALLOWER

Real-time latency problem

width of networks must grow exponentially

#### MINIMUM DEPTH

certain depth required to preserve performance on a given task,

however, many architectures are typically deeper than that! WHY?

#### **BACKGOUND**

## ROLE OF THE ADDED LAYERS

#### 1. CONVERGENCE ACCERELATION

- Act as preconditioners to speed up optimal solution finding
- Enhance feature representation refinement over iterations, improving the efficiency of gradient descent and other optimization algorithms.

#### 2. ACCURACY ENHANCEMENT

- Incremental improvement in prediction accuracy through iterative refinement
- Improved capability in capturing data intricacies, boosting task performance

Hence, some layers can be regarded as crucial for deepening complex feature while others for refining optimization efficiency

#### **MOTIVATION**

## **EDNL**

### **Effective Degree of Non-Linearity (EDNL)**

Identifies minimal depth for optimal functionality, based on non-linear layers' count.

Reduction up to this level may exhibit no impact and yet considerably improve network's efficiency.

For Network efficiency, many architectures have layers exceeding EDNL.

#### **Advantages of Shallower Networks**

Hardware Compatibility: Shallower networks enhance performance on devices by reducing inter-layer computational overhead.

----- Activation Layer Optimization!

#### **MOTIVATION**

## **OPTIMIZING PRE-TRAINED NETWORK**

## **Optimization Perspective**

#### 1. Efficient Fine-tuning:

Optimizing pre-trained models consumes significantly less computational resources than training a new model.

#### 2. Leveraging Pre-trained Depths:

Fine-tuning shallower networks from deeper counterparts utilizes learned representations and local minima, enhancing efficiency

#### **OVERVIEW**

## LAYER FOLDING



#### **OBJECTIVE**

reduce the network's depth (number of layers)



This paper propose to learn which activations can be removed without incurring a significant accuracy degradation. This allows us to merge adjacent linear layers, and in turn, transform deep networks into shallow ones

#### **OVERVIEW**

## PRUNING VS LAYER FOLDING

They both optimize network by removing layer or reducing width

#### PRUNING





Reduce layer size by adopting some layers while allowing compensation during fine-tuning, which force the network to adopt a new intermediate representation

#### LAYER FOLDING



Maintain representation while using foundational-preserving transformation

## CONTRIBUTIONS

#### 1. Innovative Depth Reduction

Introduced Layer Folding to merge consecutive linear layers by removing non-linear activations, optimizing while preserving the network's learned features.

#### 2. Establishing EDNL

Defined the Effective Degree of Non-Linearity (EDNL) to determine the minimal functional depth of networks, highlighting its dependence on task complexity over original depth.

#### 3. Enhanced Mobile Network Performance

Applied Layer Folding to mobile networks for the ImageNet task, achieving reduced latency with minimal accuracy trade-offs.

## LAYER FOLDING

Simplifying Neural Networks by Reducing Non-Linear Activations

Method Overview: Introduces a technique to decrease the count of non-linear activations, by consolidating the neighboring linear layers into a singular layer.

#### STEP 1 ACTIVATION FUNCTION REPLACEMENT

$$\sigma_{\alpha}(x) = \alpha x + (1 - \alpha)\sigma(x), \quad 0 \le \alpha \le 1$$





 $\alpha$  : trainable parameter  $(provides \ an \ interpolation \ between \ \sigma \ and \ the \ identity \ function)$ 

 $\mathbf{F}_{\alpha}$ : network by transforming the activations

initializing with  $\alpha=0$ ,  $F_{\alpha}=F$ 

ReLU

**PReLU** 

## LAYER FOLDING

## $\sigma_{\alpha}(x) = \alpha x + (1 - \alpha)\sigma(x), \quad 0 \le \alpha \le 1$

#### STEP 2 LOSS FUNCTION

to make some activations linear

$$\mathcal{L} = \mathcal{L}_t + \lambda_c \, \mathcal{L}_c$$

**L\_t**: original task loss

 $\mathbf{L_c}$ : auxiliary loss (penalizes smaller  $\alpha$  values, encouraging them to become 1)

L: Achieves the main goal (maximizing classification accuracy) while simultaneously enabling additional goals (network simplification)

λc: hyperparameter that controls the number of layers to be folded

$$\mathcal{L}_c = \sum_{l \in L} c_l \, h(\alpha_l)$$

 $h(\alpha)$ : monotonically decreasing function for  $0 \le \alpha \le 1$ 

**c\_l**: {cl}l∈L weigh the contribution of each layer to Lc

## LAYER FOLDING

## $\sigma_{\alpha}(x) = \alpha x + (1 - \alpha)\sigma(x), \quad 0 \le \alpha \le 1$

#### $\mathcal{L} = \mathcal{L}_t + \lambda_c \, \mathcal{L}_c$

#### STEP 2 LOSS FUNCTION

$$\mathcal{L}_c = \sum_{l \in L} c_l h(\alpha_l) = \sum_{l \in L} c_l (1 - \alpha_l^p)$$

#### **Choosing Auxiliary Loss Form**

- Sensitivity Near  $\alpha$ =1: Encourages significant loss reduction as  $\alpha$  approaches 1. This effectively reduces network depth.
- Indifference Near  $\alpha$ =0: Design ensures minimal loss change for  $\alpha$  close to 0, avoiding penalizing layers where merging isn't considered, preserving original non-linear functions like ReLU
- Regulating Loss Surface and Strong Push: The hyperparameter p>1 adjusts the flatness of the loss surface around  $\alpha$ =0 and strongly pushes larger  $\alpha$  values towards 1.

#### **OVERVIEW**

## LAYER FOLDING



## LAYER FOLDING

#### PHASE 1 PRE-FOLDING

Fine-tune  $F\alpha$  with the loss defined. When training converges, remove activations whose  $\alpha$ s exceed a threshold  $\tau$  and fold the corresponding adjacent layers, resulting in a shallower network.

#### PHASE 2 POST-FOLDING

fine-tune Ff old once more because the folded network may yet deviate from F $\alpha$  due to <u>various layers' attributes such</u> <u>as padding</u>, resulting in a small accuracy decrease

#### SETTING

#### **MNIST**

- Fully-connected network
- depth L ∈ [2:10]
- ReLU activation
- width d = 256

#### CIFAR-10 & CIFAR-100

- ResNet models
  - $\circ$  depth L  $\in$  {20, 32, 44, 56}
- VGG models
  - $\circ$  depth L ∈ {16, 19}

apply Layer Folding with cI = 1, I = 1: L, p = 2,  $\tau$  = 0.9 while varying  $\lambda c$  to obtain shallower networks of varying depth.

| Dataset   | Model     | Removed (white) and remaining (gray) activations | Depth | Acc. (%) |
|-----------|-----------|--------------------------------------------------|-------|----------|
| CIFAR-10  | ResNet-20 |                                                  | 9     | 89.82    |
|           | ResNet-32 |                                                  | 9     | 90.02    |
|           | ResNet-44 |                                                  | 9     | 89.88    |
|           | ResNet-56 |                                                  | 10    | 90.29    |
|           | VGG16     |                                                  | 9     | 93.89    |
|           | VGG19     |                                                  | 8     | 93.23    |
| CIFAR-100 | ResNet-20 |                                                  | 11    | 67.88    |
|           | ResNet-32 |                                                  | 11    | 68.20    |
|           | ResNet-44 |                                                  | 11    | 67.96    |
|           | ResNet-56 |                                                  | 10    | 67.04    |
|           | VGG16     |                                                  | 12    | 72.82    |
|           | VGG19     |                                                  | 12    | 73.18    |



accuracy is roughly maintained down to a certain depth and drops below it

-> network possesses an EDNL



classification task with the added classes exhibits a slightly larger EDNL
 such depth knee-point is shared for different networks over a particular task





Table 2: Latency and FLOPs reduction obtained by applying Layer Folding on MobileNetV2 (MNV2) and EfficientNet (EffNet) on ImageNet.

| Model        | Acc. (%) / Acc. Drop (%) | Latency<br>Reduction | FLOPs<br>Reduction |
|--------------|--------------------------|----------------------|--------------------|
| MNV2-0.75    | 68.1 / 1.7               | 21%                  | 4%                 |
| MNV2-1.0     | 71.0 / 0.8               | 25%                  | 7%                 |
| MNV2-1.4     | 75.5 / 0.5               | 19%                  | 3%                 |
| EffNet-lite0 | 74.6 / 0.5               | 15%                  | 3%                 |
| EffNet-lite1 | 75.8 / 1.0               | 13%                  | 0%                 |

## CONCLUSION

This paper proposes a novel method for removing non-linear activations

- EDNL: minimal number of non-linear layers to which networks can be reduced while retaining accuracy
- scope of this work is EDNL evaluation of CNNs with ReLU activations
  - future extension to other architectures for future work
- showed reducing depth can aid latency reduction on hardware divices

## QUESTIONS?