Transformers can learn pairwise — but not three-wise — functions

Clayton Sanford

What is it?

Transformer architecture What is it?

$$f(X) = \operatorname{softmax}(XQK^TX^T)XV$$
 for input $X \in \mathbb{R}^{N \times d}$, model parameters $Q, K, V \in \mathbb{R}^{d \times m}$.

What is it?

Self-attention unit:

 $f(X) = \operatorname{softmax}(XQK^TX^T)XV$ for input $X \in \mathbb{R}^{N \times d}$, model parameters $Q, K, V \in \mathbb{R}^{d \times m}$.

What is it?

Self-attention unit:

$$f(X) = \operatorname{softmax}(XQK^TX^T)XV$$
 for input $X \in \mathbb{R}^{N \times d}$, model parameters $Q, K, V \in \mathbb{R}^{d \times m}$.

Multi-headed attention:

$$L(X) = X + \sum_{h=1}^{H} f_h(X)$$

What is it?

Self-attention unit:

$$f(X) = \operatorname{softmax}(XQK^TX^T)XV$$
 for input $X \in \mathbb{R}^{N \times d}$, model parameters $Q, K, V \in \mathbb{R}^{d \times m}$.

Multi-headed attention:

$$L(X) = X + \sum_{h=1}^{H} f_h(X)$$

• Element-wise multi-layer perceptron (MLP):

$$\phi(X) = (\phi(x_1), ..., \phi(x_N))$$

What is it?

Self-attention unit:

$$f(X) = \operatorname{softmax}(XQK^TX^T)XV$$
 for input $X \in \mathbb{R}^{N \times d}$, model parameters $Q, K, V \in \mathbb{R}^{d \times m}$.

Multi-headed attention:

$$L(X) = X + \sum_{h=1}^{H} f_h(X)$$

Element-wise multi-layer perceptron (MLP):

$$\phi(X) = (\phi(x_1), ..., \phi(x_N))$$

Full transformer:

$$T(X) = (\phi_D \circ L_D \circ \dots \circ L_1 \circ \phi_0)(X)$$

What is it?

Pairwise structure

Self-attention unit:

$$f(X) = \operatorname{softmax}(XQK^TX^T)XV$$
 for input $X \in \mathbb{R}^{N \times d}$, model parameters $Q, K, V \in \mathbb{R}^{d \times m}$.

Multi-headed attention:

$$L(X) = X + \sum_{h=1}^{H} f_h(X)$$

• Element-wise multi-layer perceptron (MLP):

$$\phi(X) = (\phi(x_1), ..., \phi(x_N))$$

Full transformer:

$$T(X) = (\phi_D \circ L_D \circ \dots \circ L_1 \circ \phi_0)(X)$$

What is it?

Self-attention unit:

$$f(X) = \operatorname{softmax}(XQK^TX^T)XV$$
 for input $X \in \mathbb{R}^{N \times d}$, model parameters $Q, K, V \in \mathbb{R}^{d \times m}$.

Multi-headed attention:

$$L(X) = X + \sum_{h=1}^{H} f_h(X)$$

• Element-wise multi-layer perceptron (MLP):

$$\phi(X) = (\phi(x_1), ..., \phi(x_N))$$

• Full transformer:

$$T(X) = (\phi_D \circ L_D \circ \dots \circ L_1 \circ \phi_0)(X)$$

• Attuned to pairwise linguistic structure: self-attention encodes syntactic and semantic linkages between words*

Pairwise structure

What is it?

Self-attention unit:

$$f(X) = \operatorname{softmax}(XQK^TX^T)XV$$
 for input $X \in \mathbb{R}^{N \times d}$, model parameters $Q, K, V \in \mathbb{R}^{d \times m}$.

Multi-headed attention:

$$L(X) = X + \sum_{h=1}^{H} f_h(X)$$

• Element-wise multi-layer perceptron (MLP):

$$\phi(X) = (\phi(x_1), ..., \phi(x_N))$$

Full transformer:

$$T(X) = (\phi_D \circ L_D \circ \dots \circ L_1 \circ \phi_0)(X)$$

 Attuned to pairwise linguistic structure: self-attention encodes syntactic and

Pairwise structure

Head 8-11

- **Noun modifiers** (e.g., determiners) attend to their noun
- 94.3% accuracy at the det relation

semantic linkages between words*

Transformer architecture Pairwise structure Our question

 Attuned to pairwise linguistic structure: self-attention encodes syntactic and semantic linkages between words*

Head 8-11

- **Noun modifiers** (e.g., determiners) attend to their noun
- 94.3% accuracy at the det relation

Pairwise structure

 Attuned to pairwise linguistic structure: self-attention encodes syntactic and semantic linkages between words*

Head 8-11

- **Noun modifiers** (e.g., determiners) attend to their noun
- 94.3% accuracy at the det relation

Our question

How do we formalize these linkages as target functions that elucidate capabilities and limitations of transformers?

Transformer architecture Our question Modeling decisions:

How do we formalize these linkages as target functions that elucidate capabilities and limitations of transformers?

Our question

How do we formalize these linkages as target functions that elucidate capabilities and limitations of transformers?

Modeling decisions:

Model	Context length (N)	#layers <i>(D)</i>	#heads <i>(H)</i>	#param self-attn (m)	#param MLP (k)
GPT-3	2048	96	96	128	12288

Our question

How do we formalize these linkages as target functions that elucidate capabilities and limitations of transformers?

Modeling decisions:

Model	Context length (N)	#layers <i>(D)</i>	#heads (H)	#param self-attn (m)	#param MLP (k)
GPT-3	2048	96	96	128	12288
GPT-4	32k		•••		

Our question

How do we formalize these linkages as target functions that elucidate capabilities and limitations of transformers?

Modeling decisions:

Model	Context length (N)	#layers (D)	#heads <i>(H)</i>	#param self-attn (m)	#param MLP (k)
GPT-3	2048	96	96	128	12288
GPT-4	32k		•••		

• Context length $N\gg$ #params in self-attention unit (depth D, heads H, and embedding dim m)

Our question

How do we formalize these linkages as target functions that elucidate capabilities and limitations of transformers?

Modeling decisions:

Model	Context length (N)	#layers (D)	#heads (H)	#param self-attn (m)	#param MLP (k)
GPT-3	2048	96	96	128	12288
GPT-4	32k		•••		

• Context length $N \gg$ #params in self-attention unit (depth D, heads H, and embedding dim m)

 \Longrightarrow restricted pairwise computation between elements, model size independent of N

Our question

How do we formalize these linkages as target functions that elucidate capabilities and limitations of transformers?

Modeling decisions:

Model	Context length (N)	#layers (D)	#heads (H)	#param self-attn (m)	#param MLP (k)
GPT-3	2048	96	96	128	12288
GPT-4	32k				•••

- Context length $N \gg$ #params in self-attention unit (depth D, heads H, and embedding dim m)
 - \Longrightarrow restricted pairwise computation between elements, model size independent of N
- #params in MLP $k \gg$ #params in self-attention

Our question

How do we formalize these linkages as target functions that elucidate capabilities and limitations of transformers?

Modeling decisions:

Model	Context length (N)	#layers (D)	#heads (H)	#param self-attn (m)	#param MLP (k)
GPT-3	2048	96	96	128	12288
GPT-4	32k		•••		•••

- Context length $N \gg$ #params in self-attention unit (depth D, heads H, and embedding dim m)
 - \Longrightarrow restricted pairwise computation between elements, model size independent of N
- #params in MLP $k \gg$ #params in self-attention
 - ⇒ unlimited element-wise computational power

Our Results Formulation & bounds

Architecture

$$f(X) = \operatorname{softmax}(XQK^TX^T)XV$$
 for input $X \in \mathbb{R}^{N \times d}$, model parameters $Q, K, V \in \mathbb{R}^{d \times m}$.

- . Multi-headed attention: $L(X) = X + \sum_{h=1}^{H} f_h(X)$
- Element-wise multi-layer perceptron (MLP): $\phi(X) = (\phi(x_1), ..., \phi(x_N))$
- Full transformer: $T(X) = (\phi_D \circ L_D \circ \dots \circ L_1 \circ \phi_0)(X)$

Our Results Formulation & bounds

• PairID(X) = $1\{ \exists j : x_i + x_j = 0 \}_{i \in [N]}$

Architecture

$$f(X) = \operatorname{softmax}(XQK^TX^T)XV$$
 for input $X \in \mathbb{R}^{N \times d}$, model parameters $Q, K, V \in \mathbb{R}^{d \times m}$.

- Multi-headed attention: $L(X) = X + \sum_{h=1}^{H} f_h(X)$
- Element-wise multi-layer perceptron (MLP): $\phi(X) = (\phi(x_1), ..., \phi(x_N))$
- Full transformer: $T(X) = (\phi_D \circ L_D \circ \ldots \circ L_1 \circ \phi_0)(X)$

Formulation & bounds

- PairID(X) = $1\{ \exists j : x_i + x_j = 0 \}_{i \in [N]}$
- TriID(X) = $1\{ \exists j_1, j_2 : x_i + x_{j_1} + x_{j_2} = 0 \}_{i \in [N]}$

Architecture

$$f(X) = \operatorname{softmax}(XQK^TX^T)XV$$
 for input $X \in \mathbb{R}^{N \times d}$, model parameters $Q, K, V \in \mathbb{R}^{d \times m}$.

- . Multi-headed attention: $L(X) = X + \sum_{h=1}^{n} f_h(X)$
- Element-wise multi-layer perceptron (MLP): $\phi(X) = (\phi(x_1), ..., \phi(x_N))$
- Full transformer: $T(X) = (\phi_D \circ L_D \circ \dots \circ L_1 \circ \phi_0)(X)$

Formulation & bounds

- PairID(X) = $1\{ \exists j : x_i + x_j = 0 \}_{i \in [N]}$
- TriID(X) = 1{ $\exists j_1, j_2 : x_i + x_{j_1} + x_{j_2} = 0$ }_{i \in [N]}

Result	Target	Architecture	Bound
[+]	PairID	Self-attention unit, MLP input	m = O(1)

Architecture

$$f(X) = \operatorname{softmax}(XQK^TX^T)XV$$
 for input $X \in \mathbb{R}^{N \times d}$, model parameters $Q, K, V \in \mathbb{R}^{d \times m}$.

- . Multi-headed attention: $L(X) = X + \sum_{h=1}^{n} f_h(X)$
- Element-wise multi-layer perceptron (MLP): $\phi(X) = (\phi(x_1), ..., \phi(x_N))$
- Full transformer: $T(X) = (\phi_D \circ L_D \circ \dots \circ L_1 \circ \phi_0)(X)$

Formulation & bounds

- PairID(X) = $1\{ \exists j : x_i + x_j = 0 \}_{i \in [N]}$
- TriID(X) = 1{ $\exists j_1, j_2 : x_i + x_{j_1} + x_{j_2} = 0$ }_{i \in [N]}

Result	Target	Architecture	Bound
[+]	PairID	Self-attention unit, MLP input	m = O(1)
[-]	TriID	Multi-headed attention, MLP input	$\max(H, m) \ge N^{\Omega(1)}$

Architecture

$$f(X) = \operatorname{softmax}(XQK^TX^T)XV$$
 for input $X \in \mathbb{R}^{N \times d}$, model parameters $Q, K, V \in \mathbb{R}^{d \times m}$.

- . Multi-headed attention: $L(X) = X + \sum_{h=1}^{n} f_h(X)$
- Element-wise multi-layer perceptron (MLP): $\phi(X) = (\phi(x_1), ..., \phi(x_N))$
- Full transformer: $T(X) = (\phi_D \circ L_D \circ \dots \circ L_1 \circ \phi_0)(X)$

Formulation & bounds

- PairID(X) = $1\{ \exists j : x_i + x_j = 0 \}_{i \in [N]}$
- TriID(X) = 1{ $\exists j_1, j_2 : x_i + x_{j_1} + x_{j_2} = 0$ }_{i \in [N]}

Result	Target	Architecture	Bound
[+]	PairID	Self-attention unit, MLP input	m = O(1)
[-]	TriID	Multi-headed attention, MLP input	$\max(H, m) \ge N^{\Omega(1)}$
[-]	Modified TriID	Full transformer	$\max(D, H, m) \ge N^{\Omega(1)}$

Architecture

$$f(X) = \operatorname{softmax}(XQK^TX^T)XV$$
 for input $X \in \mathbb{R}^{N \times d}$, model parameters $Q, K, V \in \mathbb{R}^{d \times m}$.

- . Multi-headed attention: $L(X) = X + \sum_{h=1}^{n} f_h(X)$
- Element-wise multi-layer perceptron (MLP): $\phi(X) = (\phi(x_1), ..., \phi(x_N))$
- Full transformer: $T(X) = (\phi_D \circ L_D \circ \dots \circ L_1 \circ \phi_0)(X)$

Formulation & bounds

- PairID(X) = $1\{ \exists j : x_i + x_j = 0 \}_{i \in [N]}$
- TriID(X) = 1{ $\exists j_1, j_2 : x_i + x_{j_1} + x_{j_2} = 0$ }_{i \in [N]}

Result	Target	Architecture	Bound
[+]	PairID	Self-attention unit, MLP input	m = O(1)
[-]	TriID	Multi-headed attention, MLP input	$\max(H, m) \ge N^{\Omega(1)}$
[-]	Modified TriID	Full transformer	$\max(D, H, m) \ge N^{\Omega(1)}$
[+]	TriID	"Three-wise tensor self-attention unit"	m = O(1)

Architecture

- Self-attention unit:
 - $f(X) = \operatorname{softmax}(XQK^TX^T)XV$ for input $X \in \mathbb{R}^{N \times d}$, model parameters $Q, K, V \in \mathbb{R}^{d \times m}$.
- . Multi-headed attention: $L(X) = X + \sum_{h=1}^{n} f_h(X)$
- Element-wise multi-layer perceptron (MLP): $\phi(X) = (\phi(x_1), ..., \phi(x_N))$
- Full transformer:

$$T(X) = (\phi_D \circ L_D \circ \dots \circ L_1 \circ \phi_0)(X)$$

Formulation & bounds

Methodology

- PairID(X) = $1\{ \exists j : x_i + x_j = 0 \}_{i \in [N]}$
- TriID(X) = 1{ $\exists j_1, j_2 : x_i + x_{j_1} + x_{j_2} = 0$ }_{i \in [N]}

Result	Target	Architecture	Bound
[+]	PairID	Self-attention unit, MLP input	m = O(1)
[-]	TriID	Multi-headed attention, MLP input	$\max(H, m) \ge N^{\Omega(1)}$
[-]	Modified TriID	Full transformer	$\max(D, H, m) \ge N^{\Omega(1)}$
[+]	TriID	"Three-wise tensor self-attention unit"	m = O(1)

Formulation & bounds

- PairID(X) = $1\{ \exists j : x_i + x_j = 0 \}_{i \in [N]}$
- TriID(X) = 1{ $\exists j_1, j_2 : x_i + x_{j_1} + x_{j_2} = 0$ }_{i \in [N]}

Result	Target	Architecture	Bound
[+]	PairID	Self-attention unit, MLP input	m = O(1)
[-]	TriID	Multi-headed attention, MLP input	$\max(H, m) \ge N^{\Omega(1)}$
[-]	Modified TriID	Full transformer	$\max(D, H, m) \ge N^{\Omega(1)}$
[+]	TriID	"Three-wise tensor self-attention unit"	m = O(1)

Methodology

[+] Simple constructions with trigonometric embeddings

Formulation & bounds

- PairID(X) = $1\{ \exists j : x_i + x_j = 0 \}_{i \in [N]}$
- TriID(X) = 1{ $\exists j_1, j_2 : x_i + x_{j_1} + x_{j_2} = 0$ }_{i \in [N]}

Result	Target	Architecture	Bound
[+]	PairID	Self-attention unit, MLP input	m = O(1)
[-]	TriID	Multi-headed attention, MLP input	$\max(H, m) \ge N^{\Omega(1)}$
[-]	Modified TriID	Full transformer	$\max(D, H, m) \ge N^{\Omega(1)}$
[+]	TriID	"Three-wise tensor self-attention unit"	m = O(1)

Methodology

- [+] Simple constructions with trigonometric embeddings
- [-] Reduction to set disjointness communication complexity

Formulation & bounds

- PairID(X) = $1\{ \exists j : x_i + x_j = 0 \}_{i \in [N]}$
- TriID(X) = 1{ $\exists j_1, j_2 : x_i + x_{j_1} + x_{j_2} = 0$ }_{i \in [N]}

Result	Target	Architecture	Bound
[+]	PairID	Self-attention unit, MLP input	m = O(1)
[-]	TriID	Multi-headed attention, MLP input	$\max(H, m) \ge N^{\Omega(1)}$
[-]	Modified TriID	Full transformer	$\max(D, H, m) \ge N^{\Omega(1)}$
[+]	TriID	"Three-wise tensor self-attention unit"	m = O(1)

Methodology

- [+] Simple constructions with trigonometric embeddings
- [-] Reduction to set disjointness communication complexity
 - #MLP params ≫ #self-attention params
 ⇒ key representational bottleneck as limitations on pairwise communication

Formulation & bounds

- PairID(X) = $1\{ \exists j : x_i + x_j = 0 \}_{i \in [N]}$
- TriID(X) = 1{ $\exists j_1, j_2 : x_i + x_{j_1} + x_{j_2} = 0$ }_{i \in [N]}

Result	Target	Architecture	Bound
[+]	PairID	Self-attention unit, MLP input	m = O(1)
[-]	TriID	Multi-headed attention, MLP input	$\max(H, m) \ge N^{\Omega(1)}$
[-]	Modified TriID	Full transformer	$\max(D, H, m) \ge N^{\Omega(1)}$
[+]	TriID	"Three-wise tensor self-attention unit"	m = O(1)

Formulation & bounds

- PairID(X) = $1\{ \exists j : x_i + x_j = 0 \}_{i \in [N]}$
- TriID(X) = 1{ $\exists j_1, j_2 : x_i + x_{j_1} + x_{j_2} = 0$ }_{i \in [N]}

Result	Target	Architecture	Bound
[+]	PairID	Self-attention unit, MLP input	m = O(1)
[-]	TriID	Multi-headed attention, MLP input	$\max(H, m) \ge N^{\Omega(1)}$
[-]	Modified TriID	Full transformer	$\max(D, H, m) \ge N^{\Omega(1)}$
[+]	TriID	"Three-wise tensor self-attention unit"	m = O(1)

Further work

Apply communication complexity to obtain matching bounds

Formulation & bounds

- PairID(X) = $1\{ \exists j : x_i + x_j = 0 \}_{i \in [N]}$
- TriID(X) = $1\{ \exists j_1, j_2 : x_i + x_{j_1} + x_{j_2} = 0 \}_{i \in [N]}$

Result	Target	Architecture	Bound
[+]	PairID	Self-attention unit, MLP input	m = O(1)
[-]	TriID	Multi-headed attention, MLP input	$\max(H, m) \ge N^{\Omega(1)}$
[-]	Modified TriID	Full transformer	$\max(D, H, m) \ge N^{\Omega(1)}$
[+]	TriID	"Three-wise tensor self-attention unit"	m = O(1)

- Apply communication complexity to obtain matching bounds
- How apt is the "sparse pairwise connectedness" framework for understanding language?

Formulation & bounds

- PairID(X) = $1\{ \exists j : x_i + x_j = 0 \}_{i \in [N]}$
- TriID(X) = 1{ $\exists j_1, j_2 : x_i + x_{j_1} + x_{j_2} = 0$ }_{i∈[N]}

Result	Target	Architecture	Bound
[+]	PairID	Self-attention unit, MLP input	m = O(1)
[-]	TriID	Multi-headed attention, MLP input	$\max(H, m) \ge N^{\Omega(1)}$
[-]	Modified TriID	Full transformer	$\max(D, H, m) \ge N^{\Omega(1)}$
[+]	TriID	"Three-wise tensor self-attention unit"	m = O(1)

- Apply communication complexity to obtain matching bounds
- How apt is the "sparse pairwise connectedness" framework for understanding language?

Formulation & bounds

- PairID(X) = $1\{ \exists j : x_i + x_j = 0 \}_{i \in [N]}$
- TriID(X) = 1{ $\exists j_1, j_2 : x_i + x_{j_1} + x_{j_2} = 0$ }_{i∈[N]}

Result	Target	Architecture	Bound
[+]	PairID	Self-attention unit, MLP input	m = O(1)
[-]	TriID	Multi-headed attention, MLP input	$\max(H, m) \ge N^{\Omega(1)}$
[-]	Modified TriID	Full transformer	$\max(D, H, m) \ge N^{\Omega(1)}$
[+]	TriID	"Three-wise tensor self-attention unit"	m = O(1)

- Apply communication complexity to obtain matching bounds
- How apt is the "sparse pairwise connectedness" framework for understanding language?

Formulation & bounds

- PairID(X) = $1\{ \exists j : x_i + x_j = 0 \}_{i \in [N]}$
- TriID(X) = 1{ $\exists j_1, j_2 : x_i + x_{j_1} + x_{j_2} = 0$ }_{i \in [N]}

Result	Target	Architecture	Bound
[+]	PairID	Self-attention unit, MLP input	m = O(1)
[-]	TriID	Multi-headed attention, MLP input	$\max(H, m) \ge N^{\Omega(1)}$
[-]	Modified TriID	Full transformer	$\max(D, H, m) \ge N^{\Omega(1)}$
[+]	TriID	"Three-wise tensor self-attention unit"	m = O(1)

Further work

- Apply communication complexity to obtain matching bounds
- How apt is the "sparse pairwise connectedness" framework for understanding language?

• Are there practical "intrinsically three-wise" learning tasks where modern transformers fail?

Formulation & bounds

- PairID(X) = $1\{ \exists j : x_i + x_j = 0 \}_{i \in [N]}$
- TriID(X) = 1{ $\exists j_1, j_2 : x_i + x_{j_1} + x_{j_2} = 0$ }_{i \in [N]}

Result	Target	Architecture	Bound
[+]	PairID	Self-attention unit, MLP input	m = O(1)
[-]	TriID	Multi-headed attention, MLP input	$\max(H, m) \ge N^{\Omega(1)}$
[-]	Modified TriID	Full transformer	$\max(D, H, m) \ge N^{\Omega(1)}$
[+]	TriID	"Three-wise tensor self-attention unit"	m = O(1)

Thank you!

Want to discuss or learn more? Check out the poster at 2pm.