Fouille de données - Classification non supervisée

G. Forestier

Fouille de données

C. Wemmert, S. Lebre

- 1 Introduction
- 2 Partitionnement
- 3 Autres algorithmes
- 4 Modélisation

Introduction

- ▶ But de la classification automatique : obtenir une représentation simplifiée (structuration) des données initiales
- Organisation d'un ensemble d'objets en un ensemble de regroupements homogènes et/ou naturels
- Deux approches:
 - 1. classification/clustering/regroupement : découverte en extension de ces ensembles \rightarrow notion de classes ou clusters
 - 2. formation de concepts : découverte en intention de ces ensembles \rightarrow notion de concepts

Clustering

Différentes méthodes :

- clustering par partitionnement
- clustering par modélisation
- clustering hiérarchique

Et bien d'autres :

- clustering basé sur la densité
- clustering par "grille"

Clustering

Différentes méthodes :

- clustering par partitionnement
- clustering par modélisation
- clustering hiérarchique

Et bien d'autres :

- clustering basé sur la densité
- clustering par "grille"

- Introduction
- 2 Partitionnement
- 3 Autres algorithmes
- 4 Modélisation

Clustering par partitionnement :

- Placer les différents objets dans des clusters (groupes)
- ▶ Hard clustering : chaque objet est dans une et une seule classe
- ▶ **Soft clustering** : un objet peut être dans plusieurs classes
- Fuzzy clustering : un objet appartient à toutes les classes mais à des degrés différents

▶ Matrice de classification de *n* éléments en *K* classes

$$c_D = \begin{pmatrix} c_{1,1} & \cdots & c_{1,K} \\ & \cdots & \\ c_{n,1} & \cdots & c_{n,K} \end{pmatrix}$$

Partitionnement dur (hard) :

$$\exists k, c_{i,k} = 1, c_{i,j} = 1 \text{ pour } j \neq k$$

Partitionnement souple (soft) :

$$\exists k_1, k_t \dots t.q., c_{i,k_i}, c_{i,j} = 1$$
 pour $j \neq k_i$

Partitionnement flou:

- Le nombre d'objets d'une classe est inférieur au nombre total d'objets : $\forall k = 1 \dots K, \forall x_i \in D, c_{i,k} \in [0,1]$ avec $\forall k = 1 \dots K, 0 < \sum_{i=1}^n c_{i,k} < n$
- ▶ Un objet appartient à différents degrés, à toutes les classes : $\forall x_i \in D, \sum_{k=1}^K c_{i,k} = 1$

Clustering par partitionnement :

- Trouver l'organisation en classes homogènes telles que deux objets d'une même classe sont plus similaires que deux objets de classes différentes
- ► Trouver l'organisation en classes homogènes telles que les classes soient les plus différentes possibles
- Comment évaluer ces (dis)similarités ?

Dissimilarité et distance

▶ On appelle dissimilarité toute application définie par $d: M^2 \to R^+$ telle que :

$$\forall (x,y) \in M^2, d(x,y) = 0 \leftrightarrow x = y$$

Elle est symétrique si :

$$\forall (x,y) \in M^2, d(x,y) = d(y,x)$$

On appelle distance, tout indice de dissimilarité symétrique qui possède en plus l'inégalité triangulaire :

$$\forall (x,y,z) \in M^3, d(x,z) \leq d(x,y) + d(y,z)$$

Distance

Exemple:

▶ La donnée est un vecteur de R^p

$$d_q = \sqrt[q]{|x_{i,1} - x_{j,1}|^q + |x_{i,2} - x_{j,2}|^q + \ldots + |x_{i,p} - x_{j,p}|^q}$$

- ▶ La donnée est un vecteur de $[V, F]^p$
- Définition d'un tableau de contingence avec p attributs binaires et deux objets i₁ et i₂:

i1 \ i2	Vrai	Faux	Somme
Vrai	N1	N2	N1+N2
Faux	N3	N4	N3+N4
Somme	N1+N3	N2+N4	р

 \triangleright N1 = nbre de fois où un attribut est vrai pour les deux objets

- ▶ La donnée est un vecteur de [V, F]^p
- Mesure symétrique :

$$d_{(i,j)} = \frac{N2 + N3}{N1 + N2 + N3 + N4}$$

Mesure asymétrique :

$$d_{(i,j)} = \frac{N2 + N3}{N1 + N2 + N3}$$

Exemple:

Région	Allongée	Texturée	Grande	Isolée	Fréquente
Ville	NON	OUI	OUI	OUI	NON
Quartier	NON	OUI	NON	NON	OUI
Lac	NON	NON	OUI	OUI	NON
Champs	OUI	NON	NON	NON	OUI

Exemple : ville / quartier

Région	Allongée	Texturée	Grande	Isolée	Fréquente
Ville	NON	OUI	OUI	OUI	NON
Quartier	NON	OUI	NON	NON	OUI

	OUI	NON
OUI	1	2
NON	1	1

- ▶ mesure symétrique : $3/5 \rightarrow S(ville, quartier) = 0.4$
- ► mesure asymétrique : 3/4

Pour les autres couples :

Région	Allongée	Texturée	Grande	Isolée	Fréquente
Ville	NON	OUI	OUI	OUI	NON
Quartier	NON	OUI	NON	NON	OUI
Lac	NON	NON	OUI	OUI	NON
Champs	OUI	NON	NON	NON	OUI

- ightharpoonup ville/lac : 1/5 et 1/3 S(ville, lac) = **0.8**
- ightharpoonup ville/champs : 1 et 1 S(ville, champs) = $oldsymbol{0}$
- quartier/champs : 2/5 et 2/3
- quartier/lac : 4/5 et 1
- ▶ lac/champs : 4/5 et 1 S(lac, champs) = 0.2

La donnée est une variable nominale :

- prend des valeurs finies dans un ensemble pouvant être fini
- ▶ sans ordre naturel : couleur ∈ {rouge, bleu, vert}
- ▶ avec : niveau \in {passable, moyen, bon}
- ▶ où passable < moyen < bon</p>

La donnée est complexe :

- histogramme
- structures hétérogènes
- images, videos, etc.

▶ Objectif : trouver l'organisation en classes homogènes telles que deux objets d'une même classe se ressemblent plus que deux objets de classes différentes

▶ d1 et d2 de même classe, d3 d'une classe différente alors dist(d1,d2) < dist(d1,d3) et dist(d1,d2) < dist(d2,d3)</p>

Partitionnement : qualité

▶ **Objectif**: trouver l'organisation en classes homogènes telles que les distances entre les classes soient maximales

Partitionnement : qualité

▶ **Objectif :** trouver l'organisation en classes homogènes telles que les distances entre les classes soient maximales

Critère possible :

▶ minimiser l'inertie **intra**-classe *l_{intra}* (interne aux classes) :

$$I_{intra}(C_k) = \sum_{x_i \in C_k} p_i \times dist(x_i, g_k)^2$$

$$I_{intra} = \sum_{k=1...K} I_{intra}(C_k)$$

Critère possible :

▶ maximiser l'inertie **inter**-classe *l*_{inter} (entre les classes) :

$$I_{inter} = \sum_{k=1,...K} P_k \times dist(g, g_k)^2$$

Inertie totale du système I_{totale}

 $ightharpoonup I_{totale} = I_{intra} + I_{inter}$

$$I_{totale} = \sum_{i=1...n} p_i \times dist(x_i, g)^2$$

g centre de gravité

- ► Exemple pour K = 3
- ► Inertie totale

étape 2 : calcul et somme des distances

► Inertie intra-classe et inter-classe :

étape 1: calcul des g_k

étape 2 : calcul de l'inertie inter-classe et intra-classe

- ▶ Le plus souvent, le critère de qualité retenu est la minimisation de l'inertie intra-classe (et donc la maximisation de l'inertie inter-classe)
- ► Le principe des algorithmes sera donc de trouver des partitions telles que cette inertie soit minimale

Partitionnement: construction

- Comment construire ces classes ?
- Nombre de partitions de k classes à partir de n données définissables sur D :

$$S(n,k) = \frac{1}{k!} \sum_{i=0...k} (-1)^{i-1} C_i^k i^n$$

- ▶ tend vers $S(n,k) \approx \frac{k^n}{k!}$ pour n grand
- ▶ n = 8 et $k = 4 \rightarrow 1701$
- ▶ n = 12 et $k = 3 \rightarrow 86526$

Partitionnement : construction

Critère:

minimiser l'inertie intra-classe (maximiser l'inertie inter-classes)

Processus des KMeans :

- 1. choix aléatoire du nombre K de classes et de K noyaux initiaux
- 2. (ré-)affectation des objets aux noyaux
- 3. calcul des nouveaux noyaux
- 4. le processus s'arrête lorsque deux partitions successives sont identiques (ou presque)

Kmeans

Avec K = 4

Kmeans

K = 4: initialisation aléatoire

Kmeans Allocation:

Kmeans Déplacement des centres :

Kmeans

Déplacement des centres :

Arrêt.

Kmeans (propriétés)

Soit à l'instant t :

- ▶ $P_K(t) = \{C1, C2, Ck\}$ la partition
- ullet $L_K(t) = \{g1, g2,, gk\}$ l'ensemble des centres de gravité

$$P4(0) = D,$$

 $L4(0) = \{n1, n2, n3, n4\}$

Soit à l'instant t :

- ▶ $P_K(t) = \{C1, C2, Ck\}$ la partition
- $L_K(t) = \{g1, g2, ..., gk\}$ l'ensemble des centres de gravité

$$P4(1) = \{C1, C2, C3, C4\}, L4(0) = \{n1, n2, n3, n4\}$$

Soit à l'instant t:

- ▶ $P_K(t) = \{C1, C2, Ck\}$ la partition
- ullet $L_K(t)=\{g1,g2,...,gk\}$ l'ensemble des centres de gravité

$$P4(1) = \{C1, C2, C3, C4\},\$$

$$L4(1) = \{g1, g2, g3, g4\}$$

Soit $Q(P_K(t), L_K(t))$ l'inertie totale interne des classes pour la partition $P_K(t) = \{C1, C2, ..., Ck\}$ et l'ensemble des centres de gravité $L_K(t) = \{g1, g2, ..., gk\}$

$$Q(P_K(t), L_K(t)) = \sum_{k=1}^K \sum_{x \in C_k} dist(x, g_k)^2$$

 Montrons qu'à chaque étape, ce critère s'améliore (donc qu'il décroît)

- ▶ Montrons que $Q(P_K(t+1), L_K(t)) \leq Q(P_K(t), L_K(t))$?
- La réallocation des objets

$$P_4(1) = \{C1, C2, C3, C4\}, L_4(1) = \{g1, g2, g3, g4\}$$

à

$$P_4(2) = \{\textit{C}'1, \textit{C}'2, \textit{C}'3, \textit{C}'4\}, \textit{L}_4(1) = \{\textit{g}1, \textit{g}2, \textit{g}3, \textit{g}4\}$$

diminue-t-elle l'inertie ?

$$P_4(1) = \{C1, C2, C3, C4\}, L_4(1) = \{g1, g2, g3, g4\}$$

$$P_4(2) = \{C'1, C'2, C'3, C'4\}, L_4(1) = \{g1, g2, g3, g4\}$$

Lors de la construction de $P_K(t+1)$, pour une donnée x, de classe k(x)

- ▶ soit x était déjà associé à cette classe : comme ni le centre de gravité, ni x n'ont bougé, cette $dist(x, g_{k(x)})$ est la même que dans la partition précédente
- ▶ soit x était dans la classe @k(x). Or x ne change de classe que si $dist(x, g_{k(x)}) < dist(x, g_{@k(x)})$

$$\rightarrow Q(P_K(t+1), L_K(t)) \leq Q(P_K(t), L_K(t))$$

- d'où $\sum_{x} dist(x, g_{k(x)})^2 \leq \sum_{x} dist(x, g_{@k(x)})^2$
- ▶ comme $Q(P_K(t), L_K(t)) = \sum_{k=1}^K \sum_{k \in C_k} dist(x, g_{k(x)})^2$
- ▶ peut se réécrire en $Q(P_K(t), L_K(t)) = \sum_x dist(x, g_{k(x)})^2$
- on a bien

$$Q(P_K(t+1),L_K(t)) \leq Q(P_K(t),L_K(t))$$

- ▶ Montrons que $Q(P_K(t+1), L_K(t+1)) \le Q(P_K(t+1), L_K(t))$
- Le recalcul des centres de gravité de

$$P_4(2) = \{\mathit{C}'1, \mathit{C}'2, \mathit{C}'3, \mathit{C}'4\}, L_4(1) = \{\mathit{g1}, \mathit{g2}, \mathit{g3}, \mathit{g4}\}$$

à

$$P_4(2) = \{C'1, C'2, C'3, C'4\}, L_4(2) = \{g'1, g'2, g'3, g'4\}$$

diminue-t-il l'inertie?

$$P_4(2) = \{C'1, C'2, C'3, C'4\}, L_4(1) = \{g1, g2, g3, g4\}$$

$$P_4(2) = \{C'1, C'2, C'3, C'4\}, L_4(2) = \{g'1, g'2, g'3, g'4\}$$

- ightharpoonup Par définition, les g_k sont les centres de gravité des classes
- Or la propriété d'optimalité du centre de gravité (théorème de Huygens) entraîne l'inégalité sur l'inertie :
 - Pour toute classe C_k , l'inertie de C_k par rapport au centre de gravité est inférieure à l'inertie par rapport à tout autre point
 - En particulier l'inertie C par rapport à g_k est inférieure à l'inertie de C par rapport à @g_k

d'où:

$$\sum_{k=1}^{K} Intertie(C_k, g_k) \leq \sum_{k=1}^{K} Intertie(C_k, @g_k)$$

d'où:

$$\sum_{k=1}^K \sum_{x \in C_k} dist(x, g_k)^2 \le \sum_{k=1}^K \sum_{x \in C_k} dist(x, @g_k)^2$$

d'où:

$$Q(P_{\mathcal{K}}(t+1), L_{\mathcal{K}}(t+1)) \leq Q(P_{\mathcal{K}}(t+1), L_{\mathcal{K}}(t))$$

- ▶ Ces deux propriétés entraînent la décroissance de $Q(P_K(t), L_K(t))$
- De plus, le nombre de partitions de D est fini. de fait, le nombre d'ensembles L est lui aussi fini.
- ▶ $Q(P_K(t+1), L_K(t))$ est donc une suite
 - décroissante
 - qui ne peut prendre qu'un nombre fini de valeur,
- ▶ Elle est donc stationnaire

- Kmeans est donc un algorithme qui cherche à minimiser l'inertie inter-classe
- Néanmoins, l'algorithme ne fournit pas nécessairement le meilleur résultat mais simplement une suite de couples dont la valeur décroît
 - $\rightarrow \text{optimisation locale}$

- Plus précisément, c'est un algorithme d'optimisation alternée en deux étapes :
 - ightharpoonup recherche de la partition : minimisation de Q(P,L) avec L fixé
 - ightharpoonup recherche des centres : minimisation de Q(P,L) avec P fixé
- L'expérience montre que la convergence est en fait assez rapide (moins de 10 tours), même avec de gros volumes de données et une initialisation "malheureuse"

Partitionnement : méthode séquentielle

Méthode séquentielle (MacQueen, 1967)

- Les K noyaux initiaux sont tirés au hasard dans les D points
- ▶ A chaque itération *q*, un individu *x*_i est choisi au hasard :
 - 1. détermination du noyau N_k le plus proche de x_i
 - 2. affectation de x_i à la classe k
 - 3. déplacement du noyau N_k par : $N'_k = \frac{x_i + n_k \times N_k}{n_k + 1}$
 - 4. où n_k est le cardinal de N_k .

Nuées dynamiques :

- L'idée est de remplacer les centres de gravité par des représentants adaptés au problème que l'on cherche à résoudre.
- On utilise les principes de Kmeans

Partitionnement par réallocation : problèmes

Deux problèmes principaux aux méthodes par réallocation

- Minimum local : Kmeans donne des résultats différents suivant le choix des centres initiaux
- Choix du nombre de classes : comment combiner/comparer deux partitions à nombre de classes différents

Partitionnement par réallocation : minimums locaux

Premier problème : pour un K donné, comment initialiser les centres ?

- On utilise des informations supplémentaires
- On étudie les données avant : histogrammes, etc.
- On teste des initialisations différentes et on garde le meilleur
- On s'en sert comme résultat intermédiaire

 Les formes fortes sont obtenues par superposition (ou intersection des différentes partitions)

► Les formes fortes sont obtenues par superposition (ou intersection des différentes partitions)

▶ On garde les 4 "meilleures" formes

▶ Puis on effectue un Kmeans en prenant les centres de gravité de formes fortes pour centres initiaux

▶ Puis on effectue un Kmeans en prenant les centres de gravité de formes fortes pour centres initiaux

Etude d'histogramme

Deuxième problème : comment choisir K ?

- ▶ Premier cas : K est choisi a priori
 - information supplémentaire
 - étude des histogrammes des valeurs
- Deuxième cas : K évolue en cours de classification
 - classification interactive : l'utilisateur crée/supprime des classes
 - utilisation d'un critère statistique

Nombre de classes ?

On peut utiliser une mesure qui tient compte de la variance des données dans chaque classe.

$$T = \frac{1}{n} \sum_{k=1}^{K} \sum_{x_i \in C_k} |x_i - g_k|^2$$

- 1 Introduction
- 2 Partitionnement
- 3 Autres algorithmes
- 4 Modélisation

Isodata

Algorithme:

- Répeter
 - 1. effectuer un groupement par k-moyennes
 - 2. éliminer les cluster trop petits
 - 3. scinder les clusters trop dispersés
 - 4. fusionner les groupes trop proches
- Jusqu'à stabilisation

Partitionnement flou

Partitionnement flou:

- $\forall k = 1 \dots K, \forall x_i \in D, c_{i,k} \in [0,1]$
- Le nombre d'objets dans une classe est inférieur au nombre total d'objets :

$$\forall k = 1 \dots K, 0 < \sum_{i=1}^{n} c_{i,k} < n$$

Un objet appartient à différents degrés, à toutes les classes :

$$\forall x_i \in D, \sum_{k=1}^K c_{i,k} = 1$$

C-Moyennes flou (Fuzzy C-means)

On va minimiser un critère heuristique :

$$J_{\textit{fuzzy}} = \sum_{j=1}^{C} \sum_{i=1}^{n} c_{i,j}^{b} ||x_i - \mathsf{centre}_j||^2$$

$$b \ge 1$$

• où b règle le "degré" de flou (en général b = 2)

C-Moyennes flou (Fuzzy C-means)

- ▶ On fixe un nombre de clusters K, et une matrice d'appartenance C :
 - 1. On calcule les centroïdes des classes

centre_k =
$$\frac{\sum_{i=1}^{n} (c_{i,k}^{b}) * x_{i}}{\sum_{i=1}^{n} (c_{i,k}^{b})}$$

 On calcule la nouvelle matrice d'appartenance suivant la position des centres :

$$c_{i,j} = \frac{\left(\frac{1}{d_{i,k}^2}\right)^{1/(b-1)}}{\sum_{j=1}^{C} \left(\frac{1}{d_{i,j}^2}\right)^{1/(b-1)}}$$

3. On recalcule J_{fuzzy} : on reprend à 2 si J_{fuzzy} a augmenté

ISODATA flou

Si K n'est pas connu, on cherche comme dans Isodata avec les critères :

▶ Le coefficient de partionnement flou

$$F(M) = \frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{K} (c_{i,k}^{b})$$

L'entropie

$$H(M) = \frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{K} c_{i,k} * log(c_{i,k})$$

ISODATA flou

Rappel sur l'entropie :

$$H(M) = \sum_{k=1}^{K} p_k * log(p_k)$$
 où $p_k = \frac{|C_k|}{|M|}$

- H(M) est minimale (égale à 0) si les données sont réparties dans une seule classe
- ► *H*(*M*) est maximale (dépend du nombre de classes) si les données sont réparties uniformément dans toutes les classes

- Introduction
- 2 Partitionnement
- 3 Autres algorithmes
- 4 Modélisation

Clustering simple

Différentes méthodes :

- clustering par partitionnement
- clustering par modélisation
- clustering hiérarchique

Et bien d'autres :

- clustering basé sur la densité
- clustering par "grille"

Clustering simple

Différentes méthodes :

- clustering par partitionnement
- clustering par modélisation
- clustering hiérarchique

Et bien d'autres :

- clustering basé sur la densité
- clustering par "grille"

- Le but est de modéliser chaque cluster par une loi de probabilité.
- ▶ Soit une "distribution" des valeurs donnée

- Le but est de modéliser chaque cluster par une loi de probabilité.
- ▶ Soit une "distribution" des valeurs donnée

- ▶ On suppose que cette loi est un fait un mélange de lois tel que à chaque cluster correspond une loi de probabilité normale (mélange gaussien) ou non
- Exemple avec trois classes et un seul attribut

Il faut donc retrouver les trois lois

- On suppose que chaque observation est issue d'une seule source C1,
 C2 ou C3
- ▶ Par exemple, si on suppose que les lois sont normales alors, il faut "retrouver":

$$\mathbf{v} = (\alpha_1, \sigma_1, \mu_1, \alpha_2, \sigma_2, \mu_2, \alpha_3, \sigma_3, \mu_3)$$

avec :

$$p(x|v) = \sum_{k=1}^{3} \alpha_k N(x, \mu_k, \sigma_k)$$
 avec $\sum_{k=1}^{K} \alpha_k = 1$

Dans le cas général, il faut trouver le "meilleur"

$$\mathbf{v} = (\alpha_1, \theta_1, \dots, \alpha_k, \theta_k, \dots, \alpha_K, \theta_K)$$

Estimant:

$$p(x|v) = \sum_{k=1}^{K} \alpha_k * p(x|C_k, \theta_k)$$
 avec $\sum_{k=1}^{K} \alpha_k = 1$

Vraisemblance:

$$L(v|x_1,...,x_n) = \prod_{i=1}^n p(x_i|v) = \prod_{i=1}^n \prod_{k=1}^K \alpha_k * p(x_i|C_k,\theta_k)$$

▶ La vraisemblance quantifie la probabilité que les observations proviennent effectivement de la loi p

On travaille en fait sur le *In* pour simplifier :

$$l(v|x_1,...,x_n) = ln(\prod_{i=1}^n p(x_i|v)) = \sum_{i=1}^n ln(p(x_i|v))$$

$$I(v|x_1,\ldots,x_n) = \sum_{i=1}^n ln(\sum_{k=1}^K \alpha_k p(x_i|C_k,\theta_k))$$

- Il faut donc trouver la valeur de $\theta = \{\theta_k\}$ qui maximise cette vraisemblance
- Maximiser I(X, v) est difficile car il n'y a pas de dérivée pour le logarithme d'une somme
- Il faut trouver un moyen de simplifier le calcul du maximum de vraisemblance
- On va utiliser un processus (itératif) de calcul ou d'estimation du maximum

EM – cas gaussien

- On va donc faire l'hypothèse que chaque objet est issu d'une des lois
 : mais on ne sait pas laquelle
- ▶ Posons *h_i* une variable donnant l'appartenance de l'objet *o_i* :
 - $h_k = 1$ si l'objet o_i appartient à la classe C_k
 - Un objet se décrit donc par : $o_i = (x_i, h_1, \dots, h_K)$

Le but est donc de trouver :

- Les paramètres des lois
- Pour chaque objet la loi qui l'a généré

EM

Deux étapes :

- 1. Etape E (expectation) : avec l'hypothèse θ_j
 - ightharpoonup on calcule h_i pour tous les points
 - on calcule l'espérance de la vraisemblance

$$Q = \sum_{i=1}^{n} \sum_{k=1}^{K} ln(p(C_k|x_i, \theta_j)).p(C_k) + \sum_{i=1}^{n} \sum_{k=1}^{K} ln(p(x_i|\theta_j)).p(C_k|x_i, \theta_j)$$

- 2. Etape M (maximisation) : on maximise E
 - lacktriangle on cherche $heta_{j+1}$ qui maximise cette espérance

EM – cas gaussien

- 1. Etape E (expectation)
- Soient h^t, α^t , etc. les valeurs recherchées à l'étape t alors l'espérance

$$E(h_j^t = 1 | x_i, v^t) = \frac{\alpha_j^t N(x_i, \mu_j^t, \sigma_j^t)}{\sum_{k=1}^K E(h_i | x_i, v)^{(t)}}$$

Posons

$$S_k^{(t+1)} = \sum_{i=1}^n E(h_i|x_i,v)^{(t)}$$

EM – cas gaussien

2. Etape M (maximisation)

$$\alpha_k^{(t+1)} = \frac{1}{n} \sum_{i=1}^n S_k^{(t+1)}$$

$$\mu_k^{(t+1)} = \frac{1}{S_k^{(t+1)}} \sum_{i=1}^n x_i E(h_i | x_i, v)^{(t)}$$

$$\sigma_k^{2(t+1)} = \frac{1}{S_k^{(t+1)}} \sum_{i=1}^n (x_i - \mu_k^{(t+1)})^2 E(h_i | x_i, v)^{(t)}$$

Exemple d'itérations de EM:

source: Expectation maximization Algorithm for Gaussian mixtures from C. M. Bishop's book.