LP Duality and Optimum Matching

Seth Pettie EECS 477

Aaron Bernstein: Negative-Weight Single-Source Shortest Paths in Near-linear Time

Aaron Berstein

Rutgers University

WHERE: 3725 Beyster Building

MAP

WHEN: Friday, November 4, 2022 @ 3:00 pm - 4:00 pm

This event is free and open to the public

ADD TO GOOGLE CALENDAR

WEB: Event Website

SHARE:

Zoom link

LPs and Duality.

- Primal LP: $x \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $c \in \mathbb{R}^n$
 - Maximize $c^T x$ $(\sum_{i=1}^n c_i x_i)$
 - Subject to: $Ax \leq b$, $x \geq 0$.
- Dual LP: $y \in \mathbb{R}^m$
 - Minimize $y^T b$
 - Subject to: $c^T \leq y^T A$, $y \geq 0$.

- Weak Duality Theorem. If x, y are feasible, $c^T x \le y^T b$.
- Strong Duality Theorem. If x^* , y^* are opt., $c^T x^* = y^{*T} b$

Duality Cheatsheet

Primal

If the primal is in

"standard" format...

Dual

Maximize	Minimize
<i>i</i> th constraint ≤	$y_i \ge 0$
<i>i</i> th constraint ≥	$y_i \leq 0$
ith constraint =	y_i unconstrained
$x_j \geq 0$	<i>j</i> th constraint ≥
$x_j \leq 0$	<i>j</i> th constraint ≤
x_j unconstrained	jth constraint =

... the dual is also in "standard" format...

LPs and Duality.

• Strong Duality Theorem. If x^* , y^* are opt., $c^T x^* = y^{*T} b$

- An implication of Strong Duality.
 - Suppose j^{th} constraint is "loose" $\left(\sum_{i=1}^{n} a_{i,j} x_i^*\right) < b_j$.
 - What does this tell us about y_j^* ? It must be 0.

Complementary Slackness Conditions:

- If $y_i \neq 0$ then the j^{th} constraint in the primal is tight (=).
- If the j^{th} constraint in the primal is *loose* then $y_i = 0$.
- If $x_i \neq 0$ then the i^{th} constraint in the dual is tight (=).
- If the i^{th} constraint in the dual is *loose* then $x_i = 0$.

Max Weight Perfect Matching

• Given *bipartite* graph $G = (A \cup B, E), E = A \times B$, and *weight function* $w: E \to \mathbb{R}$, find the maximum weight perfect matching.

— A matching is a set of edges that share no endpoints.

- A *perfect matching* is one in which all vertices are graph adjacent to a matching edge.

Complementary Slacemens

X(U,V) >0 -> Y(U)+Y(V) = W(U,V)

Max Weight Perfect Matching

- Given *bipartite* graph $G = (A \cup B, E)$, $E = A \times B$, and *weight function* $w: E \to \mathbb{R}$, find the maximum weight perfect matching.
- LP:
 - Maximize $\sum_{e \in E} w(e)x(e)$ subject to:
 - $-\forall v \in V: \sum_{u \in V} x(v, u) = 1$
 - $-x(u,v) \geq 0$
- Dual LP:
 - Minimize $\sum_{v \in V} y(v)$ subject to:
 - $-\forall (u,v) \in E \colon y(u) + y(v) \ge w(u,v)$
 - y unconstrained.

The Hungarian Algorithm

THE HUNGARIAN METHOD FOR THE ASSIGNMENT PROBLEM!

1955

H. W. Kuhn Bryn Mawr College

Kőnig, Dénes (1931), "Gráfok és mátrixok", Matematikai és Fizikai Lapok, **38**: 116–119. Egerváry, Jenő (1931), "Matrixok kombinatorius tulajdonságairól", Matematikai és Fizikai Lapok, **38**: 16–28

DE AEQUATIONUM DIFFERENTIALIUM SYSTEMATE NON NORMALI AD FORMAM NORMALEM REVOCANDO

ATICTODE

C. G. J. JACOBI, PROF. ORD. NATH. REGION. Written 1836, left on a shelf, published posthumously in 1890, discovered & translated in 2006.

The Hungarian Algorithm

- A *primal-dual* algorithm:
 - Maintain a feasible dual solution at all times.
 - Maintain a primal solution, that is usually infeasible.
 - In each step do one of two things:
 - Do a "dual adjustment" reduce the dual objective.
 - Do a "primal adjustment" make the primal <u>less infeasible</u>.
 - Halt when you have a feasible dual & feasible primal with the same objective. By **Strong Duality**, they are both optimal.

Augmenting Paths

- An augmenting path is one that
 - Starts and ends at free (unmatched) vertices
 - Alternates between unmatched & matched edges

• Observation. If M is a matching and P an augmenting path wrt M, then $M' = (M \cup P) - (M \cap P)$ is also a matching and |M'| = |M| + 1.

M matching exM => x(e)=1 Invariant(A) Maintain (M, y) If invarious & holds and Mis perfect, then M is a max weight perfect matching. 1) (UNEM > w(M)= 5, w(e) Counterey y rame y (u)+y(u)=(u(y,v) exactly one 2.(4,0) (A) e6M y (w) tylu> w(4,0) = \(\gamma y (u) \quad ("tightney" from (0)) $\geq \leq \omega(e) = \omega(M')$ from front tight tight tight troubt Hungarian ((x, w): ueA your= maxu(Z) 46B y(4)=0 2times "(bumc/ V= = 911 vertices reachesu from FA by 91+. Pathin only" > if $(V = \Lambda F_B) \neq \emptyset =)$ and path P. Set $M = (MUP)/(M\Lambda P)$ "dual

