Adversarial Machine Learning

28th Vienna Deep Learning Meetup

June 24th 2019

Rudolf Mayer, SBA Research

rmayer@sba-research.org / mayer@ifs.tuwien.ac.at

AI/ML/DL is everywhere

- AI, ML and Deep Learning severely hyped
 - A lot of hype, AND tremendous advances
 - Surpassing human-level performance on a number of tasks
 - Based on a number of new learning concepts

Autonomous Vehicles Medical Diagnosis

Machine Translation

What about security?

Agenda

- Setting
 - Learning paradigms/domains considered

- Attacks
 - Attack vectors specific to Machine Learning

- Defences
 - How to secure Machine Learning

About myself

- Senior Researcher at SBA Research
 - "COMET" Competence Centre, founded 2006
 - 85 FTE

- Research & commercial services
 - Security consulting, security testing, training, audit, ...
- **Lecturer** at TU Wien (since 2007)
 - Machine Learning, Self-organising Systems, Information Retrieval
 - Lecturer at FH Technikum Wien (ML)

SBA

Research

Research

- Text and Music, (e-)health data
- Feature extraction, Unsupervised methods, Classification

Data/ML security & privacy

ADVERSARIAL MACHINE LEARNING

Machine Learning Pipeline & Security Setting

Machine Learning Workflow

- Two steps:
 - Training (offline):
 estimate model parameters Θ from X and Y
 - Prediction: apply Θ in prediction function $f_{\Theta}: X \rightarrow Y$

Specific ML Setting considered

- Classification / categorisation
 - Assign samples to a predefined list of categories
 - Input
 - Vectors X (n-dimensional, real numbers)
 - Labels $Y = \{0, 1\}$
 - \circ Space separated by prediction function f (decision boundary)

SVM Poly Kernel

Multi-Layer Perceptron

Logistic Regression

ML & security

- Shares similarities with real-world security
 - No real-world system is perfectly secure
 - Easy to break in someone's house or forge their credit card
 - Goal: raising the threshold for an attack to be successful
 - → Balancing the cost of protection with the cost of recovering from an attack

ATTACKS AGAINST MACHINE LEARNING

Types of Attacks & Attack Vectors

Security & Machine Learning

- New research area: Adversarial machine learning
 - Attacks & defences
 - History of approx. 15 years
 - Adversarial examples lately gained a lot of publicity

"gibbon"
99.3 % confidence

- Historically: rather focused on optimising accuracy / generalisation power
 - Security was not a major topic: assumed training data comes from a natural or well-behaved distribution
 - Does not generally hold in security-sensitive settings.
 - → Adversaries not considered

Adversarial Machine Learning

Do you mean GANs?

GenerativeAdversarialNetworks

- Not really!
 - Need an actual adversary, i.e. a malicious user
 - Wants to exploit an ML model/service for a specific purpose
 - GANs per-se are not malicious
 - (but could be used for malicious activities)

Vulnerabilities and Attacks

- Different attack vectors on the supply chain
 - Training and/or prediction phase

Types of Attacks

- **Evasion attacks**
 - Avoid being classified as what you are

Poisoning (Backdoor) attacks

Benign

Malicious

Model inference, Model stealing & Model inversion

Evasion Attack: Adversarial Examples

- Fooling the prediction step
 - Minimal perturbation t of input x leads to misclassification
 - Often not perceptible for human vision!

- Effective and robust
 - Small perturbations sufficient
 - Not only for D-NNs!
 - Often resistant against digital analog digital conversion (e.g. scanning a printout)
- Attacks against *integrity* of prediction

Szegedy et al. Intriguing properties of neural networks. International Conference on Learning Representations. 2014

Adversarial Input: Simple Example

- Adversarial input generated using various algorithms
 - Needs to query the model
 - Simple approach: greedy search for decision boundary by changing pixels (minimising changes)

Fast Gradient Signs, Iterative Gradient Signs, ...

adv. label	1	9	5	4	3	4	7	8	1	1
FGS	Ø.		2	8	4	5	6	7	2	4
IFGS	0	\mathcal{F}	2	8	9	3	0	7	2	4
CW	Ø.	1	2	8	4	5	O	7	N.	*

Adversarial Input: More Realistic

- Adversarial examples for object recognition
 - State-of-the-art attack against deep neural network
 - Perturbations visible (?) but irrelevant to human observer

Adversarial Input: More Realistic

"panda" 57.7% confidence

"gibbon" 99.3 % confidence

Who cares about the panda?

 $+.007 \times$

Adversarial Input: A real Threat!?

- Attacks implemented on Face Recognition DNN
 - "Dodging" = Untargeted attack
 - "Impersonation" = Targeted attack (more on that later)

Dodging attack by perturbing an entire face Left: original image of actress Eva Longoria Middle: perturbed image for dodging. Right: The applied perturbation, after multiplying the absolute value of pixels' channels ×20.

Impersonation using frames
Left: Actress Reese Witherspoon
(Image classified correctly with probability 1)
Middle: Perturbing frames to impersonate
actor Russel Crowe
Right: The target

Universal Adversarial Perturbations

	VGG-F	CaffeNet	GoogLeNet	VGG-16	VGG-19	ResNet-152
VGG-F	93.7%	71.8%	48.4%	42.1%	42.1%	47.4 %
CaffeNet	74.0%	93.3%	47.7%	39.9%	39.9%	48.0%
GoogLeNet	46.2%	43.8%	78.9%	39.2%	39.8%	45.5%
VGG-16	63.4%	55.8%	56.5%	78.3%	73.1%	63.4%
VGG-19	64.0%	57.2%	53.6%	73.5%	77.8%	58.0%
ResNet-152	46.3%	46.3%	50.5%	47.0%	45.5%	84.0%

Generalizability of perturbations across different networks Rows indicate architecture for which perturbations is computed, columns indicate architecture for which fooling rate is reported

Moosavi-Dezfooli et al. Universal adversarial perturbations. Computer Vision and Pattern Recognition (CVPR) 2017

Poisoning and Backdoors

- Attacks manipulating the learning model
 - Manipulation using some inputs, creating "poisoned" training data
- 7
- Generally for one class (10-50% of those samples)

- Attacker requires access to training data or model
 - → Supply chain attack
 - E.g. when training in the cloud, using a pre-trained model in transfer learning, ...
- Attacks against integrity of model

Backdoored Neural Networks (BadNet)

Benign Network

Behave identically on clean inputs

Clean Input

BadNet

Gu et al. BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain. ML and Security 2017

Backdoored Neural Networks (BadNet)

Benign Network

BadNet

BadNets
misbehave on
backdoored
inputs....

Backdoored Input

Gu et al. BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain. ML and Security 2017

Backdoors: Simple Example

Backdoor in the form of a pixel (or pixel pattern) on

MNIST dataset

 Very effective, without affecting classification of clean examples too much

Backdoors: Realistic Example

- Poisoning of traffic-sign recognition
 - Targets state-of-the-art Convolutional NNs
 - Backdoor symbol is noticeable, but not suspicious

Gu et al. BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain. ML and Security 2017

Backdoored Neural Networks (BadNet)

Why do backdoors work?

Models in general have too much memory capacity!

- Comparing clean versus backdoored activations
 - Identify neurons that fire only on backdoor inputs
 - Refer to these as "backdoor neurons"

Membership Inference Attack

 Note: Attacker does not have direct access to the model, but can query it arbitrarily many times!

Membership Inference Attack

Membership Inference Attack

Train Attack Model using Shadow Models

Train the attack model

to predict if an input was a member of the training set (in) or a non-member (out)

Model Extraction/Stealing

• Adversary seeks to learn close approximation of model f_{θ} in as few queries as possible Target: $f'(x) = f_{\theta}(x)$ on

Cloud service $f_{\theta}(x)$ Data

- Efficient attacks could:
 - Undermine pay-for-prediction (AI-as-a-Service) model
 - Facility privacy attacks
 - Enable evasion attacks

Model Inversion: Face recognition

• Can Adversary use θ to recover images of training members?

- Approach (slightly simplified)
 - Given (θ,y') ="Bob": find input **x** that is most likely to match "Bob"
 - Search for x that maximizes p_{hoh}
 - Can search efficiently using gradient descent
 - Repeat for all class labels

A Realistic Example

- Model inversion attack against face recognition
 - Reconstructs input data for specific class (person)
 - Not perfect, yet scary 80% of faces recognized by humans

Target

Generated

Target

Softmax

MLP

DAE

DEFENCES FOR MACHINE LEARNING

Can we defend against these attacks?

Defences against Attacks on ML

- Defence against adversary is often an arms race
- Adversary is often "in the drivers seat"

- Decides which data to present to model
- Training data hard to verify / sanitise

 Often direct access to model / parameters / service

- Often a trade off: security vs. model performance / user experience ("cost")
- Operational vs. integrated (model robustness)

Operational Defence

- Access to service/model/... monitored
 - Rate limit, etc...
 - Relies on well-known concepts from IT security

- Analysis of per-user inputs
 - Detection of unusual request patterns

- Against model stealing etc., and also evasion attacks...
- Limitations
 - Only feasible for "as-a-service"
 - Might impair legit access patterns
 - Attacks using multiple accounts not easily prevented

Defence: Robustness Testing

Testing around boundary / corner cases

- Analysis of neural coverage
 - I.e. which units are not active
 - Requires test set known to be clean!

- Training multiple models
 - Consider differences between learned models
 - Potentially also using non-DNN models as baseline

Defence: Model Robustness

- Training a classifier robust to adversarial attacks
 - Or equivalently, one that minimizes the empirical adversarial risk
 - By pro-actively generating adversarial inputs
 - Letting the classifier learn these inputs
 "Harden" classifier
 - In general impacts clean sample performance

- Cleansing data inputs
 - E.g. by passing it through an auto-encoder
 - Embedded patterns might be removed

Backdoors: Pruning Defence

- Defender prunes not-activated neurons
 - Identified using validation data (if available!)

Pruning Defence: Face Recognition

Chen et al. Targeted Backdoor Attacks on Deep Learning Systems Using Data Poisoning. 2017

Pruning Defence: Traffic Sign

Gu et al. BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain. ML and Security 2017

Pruning Defence: Speech

Clean Digit 0

Backdoored Digit 0

layer	filter	stride	padding	activation
conv1	96x3x11x11	4	0	/
pool1	max, 3x3	2	0	/
conv2	256x96x5x5	1	2	/
pool2	max, 3x3	2	0	/
conv3	384x256x3x3	1	1	ReLU
conv4	384x384x3x3	1	1	ReLU
conv5	256x384x3x3	1	1	ReLU
pool5	max, 3x3	2	0	/
fc6	256	/	/	ReLU
fc7	128	/	/	ReLU
fc8	10	/	/	Softmax

Backdoor disabled without compromising clean set accuracy

Backdoor: Adaptive Attacker

clean + poisoned training data

clean training data

 Adaptive attacker introduces sacrificial neurons in the network to disable pruning defence

Backdoor: Adaptive Attacker

 Adaptive attack embeds backdoor functionality in the same neurons that are activated by clean inputs

Pruning-Aware Attack: Face Recognition

CONCLUSIONS

Conclusions

- Machine Learning needs to consider security
 - Can get easily fooled & exploited
- Attacks can compromise:
 - Confidentiality (e.g. model inversion)
 - Integrity
- Supply chain needs to be considered
 - As-a-service, transfer learning from existing models, ...

Adversaries are everywhere!

Taxonomy of Adversarial ML

Axis	Attack Properties		
Influence	Causative – influences training and test data	Exploratory – influences test data	
Security violation	Integrity – goal is false negatives (FNs)	Availability – goal is false positives (FPs)	
Specificity	Targeted – influence prediction on particular test instance	Indiscriminate – influence prediction on all test instances	

	Causative (manipulating training samples)	Exploratory (manipulating test samples)
Targeted	Training samples that move classifier decision boundary in an intentional direction	Adversarial input crafted to cause an intentional misclassification
Indiscriminate	Training samples that increase FP/FN → renders classifier unusable	N/A

- Level of knowledge of the attacker:
 - Black-box / White-box / Adaptive white-box / Grey-box
- Who goes first Attacker or Defender?

Barreno et al. Can machine learning be secure? ACM Symposium on Information, computer and communications security. 2006

Conclusions

- Take-Away: Security research urgently needed!
 - Current defences still largely ineffective!
 - Arms race between defender and attacker!
 - Need for better integrated and operational security

Questions?

- Rudolf Mayer
- mayer@ifs.tuwien.ac.at; rmayer@sba-research.org
- https://www.sba-research.org/rudolf-mayer/

References

- Biggio et al. Wild patterns: Ten years after the rise of adversarial machine learning. Pattern Recognition(84), 2018
- Szegedy et al. Intriguing properties of neural networks. Int. Conference on Learning Representations, 2014
- Sharif et al. Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face Recognition. ACM CCS,
 2016
- Moosavi-Dezfooli et al. Universal adversarial perturbations. Computer Vision and Pattern Recognition, 2017
- Biggio et al. Poisoning Attacks against Support Vector Machines. Int. Conference on Machine Learning, 2012
- Gu et al. BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain. ML and Security 2017
- Tramèr et al. Stealing Machine Learning Models via Prediction APIs. USENIX Security 2016
- Fredrikson et al. Model Inversion Attacks that Exploit Confidence Information and Basic Countermeasures. 2015
- Liu et al. Fine-Pruning: Defending Against Backdooring Attacks on Deep Neural Networks. 2018
- Chen et al. Targeted Backdoor Attacks on Deep Learning Systems Using Data Poisoning. 2017
- Liu et al. Trojaning attack on neural networks. NDSS 2018
- Rieck. Sicherheitslücken in der der Künstlicen Intelligenz. 2018

Software

CleverHans
 (https://github.com/tensorflow/cleverhans)

• IBM Adversarial Robustness Toolbox (https://github.com/IBM/adversarial-robustness-toolbox)

 Foolbox (https://github.com/bethgelab/foolbox)