US Patent & Trademark Office Patent Public Search | Text View

United States Patent Application Publication 20250256463 Kind Code **Publication Date** August 14, 2025 MacNeish; William et al. Inventor(s)

Α1

APPARATUS, SYSTEM AND METHOD OF PROCESS MONITORING AND CONTROL IN AN ADDITIVE MANUFACTURING ENVIRONMENT

Abstract

Apparatuses, systems and methods capable of controlling an additive manufacturing print process on an additive manufacturing printer. The disclosed embodiments may include: a plurality of sensors capable of monitoring at least one of an input of print filament to a print head of the printer, and a temperature of a nozzle of the printer, as indicative of a state of the additive manufacturing print process; at least one processor associated with at least one controller and capable of receiving sensor data regarding the monitoring from the plurality of sensors, and comprising non-transitory computing code for applying to the sensor data at least one correct one of the state of the additive manufacturing print process; a comparator embedded in the non-transitory computing code for assessing a lack of compliance of the print process to the correct one of the state; and at least one modifying output of the at least one controller to revise the compliance of the print process to the correct one of the state.

MacNeish; William (St. Petersburg, FL), Gjovik; Erik (St. Petersburg, FL) **Inventors:**

Applicant: JABIL INC. (St. Petersburg, FL)

Family ID: 1000008561287

Appl. No.: 19/054007

Filed: **February 14, 2025**

Related U.S. Application Data

parent US continuation 17393563 20210804 parent-grant-document US 12257782 child US 19054007

Publication Classification

Int. Cl.: B29C64/393 (20170101); B29C64/118 (20170101); B33Y10/00 (20150101); B33Y30/00 (20150101); B33Y50/02 (20150101)

U.S. Cl.:

CPC **B29C64/393** (20170801); **B29C64/118** (20170801); **B33Y10/00** (20141201); **B33Y30/00** (20141201); **B33Y50/02** (20141201);

Background/Summary

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] The present disclosure claims priority to U.S. patent application Ser. No. 17/393,563 filed on Aug. 4, 2021, which claims priority to U.S. patent application Ser. No. 15/723,874 filed Oct. 3, 2017, the entirety of which are incorporated herein by reference.

BACKGROUND

Field of the Disclosure

[0002] The present disclosure relates to additive manufacturing, and, more specifically, to an apparatus, system and method of process monitoring and control in an additive manufacturing environment.

Description of the Background

[0003] Additive manufacturing, including three dimensional printing, has constituted a very significant advance in the development of not only printing technologies, but also of product research and development capabilities, prototyping capabilities, and experimental capabilities, by way of example. Of available additive manufacturing (collectively "3D printing") technologies, fused deposition of material ("FDM") printing is one of the most significant types of 3D printing that has been developed.

[0004] FDM is an additive manufacturing technology that allows for the creation of 3D elements on a layer-by-layer basis, starting with the base, or bottom, layer of a printed element and printing to the top, or last, layer via the use of, for example, heating and extruding thermoplastic filaments into the successive layers. Simplistically stated, an FDM system includes a print head from which the print material filament is fed to a heated nozzle, an X-Y planar control form moving the print head in the X-Y plane, and a print platform upon which the base is printed and which moves in the Z-axis as successive layers are printed.

[0005] More particularly, the FDM printer nozzle heats the thermoplastic print filament received from the print head to a semi-liquid state, and deposits the semi-liquid thermoplastic in variably sized beads along the X-Y planar extrusion path plan provided for the building of each successive layer of the element. The printed bead/trace size may vary based on the part, or aspect of the part, then-being printed. Further, if structural support for an aspect of a part is needed, the trace printed by the FDM printer may include removable material to act as a sort of scaffolding to support the aspect of the part for which support is needed. Accordingly, FDM may be used to build simple or complex geometries for experimental or functional parts, such as for use in prototyping, low volume production, manufacturing aids, and the like.

[0006] However, the use of FDM in broader applications, such as medium to high volume production, is severely limited due to a number of factors affecting FDM, and in particular affecting the printing speed, quality, and efficiency for the FDM process. As referenced, in FDM printing it is typical that a heated thermoplastic is squeezed outwardly from a heating nozzle onto either a print plate/platform or a previous layer of the part being produced. The nozzle is moved about by the robotic X-Y planar adjustment of the print head in accordance with a pre-entered

geometry, such as may be entered into a processor to control the robotic movements to form the part desired.

[0007] In typical FDM print processes, the printing is "open loop", at least in that feedback is not provided so that printing may be correctively modified when flaws occur, or so that printing may be stopped when a fatal flaw occurs. For example, it is typical in known FDM printing that the print material may be under- or overheated, and thereby eventually cause clogging or globbing, or that the print material feed to and through the print head may go askew, causing the printer to jam or otherwise mis-feed. However, in the known art, upon such fatal print flaws, the printer will generally continue to print until, for example, a ball of print material is formed about the print nozzle, or a clogged nozzle overheats or suffers a fatal breakdown, or the print material unspools in an undesirable manner.

[0008] Many other significant or fatal print flaws may occur in the current art, such as wherein the print head or the nozzle heater fails to properly shut off. Because of the frequency of occurrence of the afore-discussed printing breakdowns, there are typically a great many settings needed to engage in an additive manufacturing print. For example, because bleeding and globbing are frequent, whereby nipples or bumps may be undesirably created on a print build, a myriad of settings are generally provided in order to provide for desired printer turn on, turn off, heat levels, and the like. Further, other settings unrelated to the nozzle or print head may be needed, such as refined temperature control for the build plate so that the build plate temperature does not become excessive and consequently deform the print build.

[0009] However, in the known art, the print performance resultant from such settings remains unmonitored. Accordingly, in the event a setting does not suitably anticipate a particular breakdown, a mis-setting occurs, or an unforeseen breakdown results even from a proper initial setting, the current art does not provide solutions that enable successful print runs in such cases. [0010] Therefore, the need exists for an apparatus, system, and method for process monitoring and control in at least an FDM additive manufacturing environment.

SUMMARY

[0011] The disclosed exemplary apparatuses, systems and methods are capable of controlling an additive manufacturing print process on an additive manufacturing printer. The disclosed embodiments may include: a plurality of sensors capable of monitoring at least one of an input of print filament to a print head of the printer, and a temperature of a nozzle of the printer, as indicative of a state of the additive manufacturing print process; at least one processor associated with at least one controller and capable of receiving sensor data regarding the monitoring from the plurality of sensors, and comprising non-transitory computing code for applying to the sensor data at least one correct one of the state of the additive manufacturing print process; a comparator embedded in the non-transitory computing code for assessing a lack of compliance of the print process to the correct one of the state; and at least one modifying output of the at least one controller to revise the compliance of the print process to the correct one of the state.

[0012] Thus, the disclosed embodiments provide an apparatus, system, and method for process monitoring and control in an additive manufacturing environment.

Description

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] The disclosed non-limiting embodiments are discussed in relation to the drawings appended hereto and forming part hereof, wherein like numerals indicate like elements, and in which:

[0014] FIG. **1** is an illustration of an additive manufacturing printer;

[0015] FIG. **2** is an illustration of an exemplary additive manufacturing system;

[0016] FIG. 3 illustrates an exemplary sensor and feedback-based additive manufacturing system;

- [0017] FIG. **4** illustrates an exemplary graph of achieving a set temperature in an additive manufacturing system;
- [0018] FIG. **5** illustrates an exemplary graph of power consumption in an additive manufacturing system;
- [0019] FIG. **6** illustrates an exemplary graph of temperature at the hot end versus filament velocity in an additive manufacturing system;
- [0020] FIG. 7 illustrates an exemplary additive manufacturing system;
- [0021] FIG. 8 illustrates an exemplary motor system for additive manufacturing;
- [0022] FIG. **9** illustrates an exemplary sensing and control embodiment for additive manufacturing;
- [0023] FIG. **10** illustrates an exemplary additive manufacturing print head and nozzle;
- [0024] FIG. **11** is an illustration of an exemplary multi-axis additive manufacturing system;
- [0025] FIG. **12** illustrates an exemplary embodiment of a multi-axis additive manufacturing embodiment; and
- [0026] FIG. **13** illustrates an exemplary computing system.

DETAILED DESCRIPTION

[0027] The figures and descriptions provided herein may have been simplified to illustrate aspects that are relevant for a clear understanding of the herein described apparatuses, systems, and methods, while eliminating, for the purpose of clarity, other aspects that may be found in typical similar devices, systems, and methods. Those of ordinary skill may thus recognize that other elements and/or operations may be desirable and/or necessary to implement the devices, systems, and methods described herein. But because such elements and operations are known in the art, and because they do not facilitate a better understanding of the present disclosure, for the sake of brevity a discussion of such elements and operations may not be provided herein. However, the present disclosure is deemed to nevertheless include all such elements, variations, and modifications to the described aspects that would be known to those of ordinary skill in the art. [0028] Embodiments are provided throughout so that this disclosure is sufficiently thorough and fully conveys the scope of the disclosed embodiments to those who are skilled in the art. Numerous specific details are set forth, such as examples of specific components, devices, and methods, to provide a thorough understanding of embodiments of the present disclosure. Nevertheless, it will be apparent to those skilled in the art that certain specific disclosed details need not be employed, and that embodiments may be embodied in different forms. As such, the embodiments should not be construed to limit the scope of the disclosure. As referenced above, in some embodiments, wellknown processes, well-known device structures, and well-known technologies may not be described in detail.

[0029] The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting. For example, as used herein, the singular forms "a", "an" and "the" may be intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms "comprises," "comprising," "including," and "having," are inclusive and therefore specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. The steps, processes, and operations described herein are not to be construed as necessarily requiring their respective performance in the particular order discussed or illustrated, unless specifically identified as a preferred or required order of performance. It is also to be understood that additional or alternative steps may be employed, in place of or in conjunction with the disclosed aspects.

[0030] When an element or layer is referred to as being "on", "engaged to", "connected to" or

"coupled to" another element or layer, it may be directly on, engaged, connected or coupled to the other element or layer, or intervening elements or layers may be present, unless clearly indicated otherwise. In contrast, when an element is referred to as being "directly on," "directly engaged to", "directly connected to" or "directly coupled to" another element or layer, there may be no

intervening elements or layers present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., "between" versus "directly between," "adjacent" versus "directly adjacent," etc.). Further, as used herein the term "and/or" includes any and all combinations of one or more of the associated listed items.

[0031] Yet further, although the terms first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, layer or section from another element, component, region, layer or section. Terms such as "first," "second," and other numerical terms when used herein do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the embodiments. [0032] In order to address the print flaws discussed above without the need for a large number of selectable print settings, the embodiments provide at least print process monitoring and control, such as may include a variety of sensing. For example, sensing in the embodiments may include optical sensing, motor encoding, camera based sensing, time of flight sensing, and the like. One or more of the foregoing manner of sensing may monitor aspects of the print build process, such as the feed rate and profile at the print head input, at the print head output, the heat level or melt level at the nozzle and/or at aspects of the hot end, and the like. Further, combinations of multiple ones of the foregoing sensor systems may provide extraordinary levels of process monitoring heretofore unknown in the available art.

[0033] Thereby, while sensors monitor the print process, feedback gained from the sensor data may enable modification of the print process, such as to allow for corrective action. Such corrective action may include modifying a print process plan to account for and correct a minor flaw, or the cessation of a print in the event of a fatal flaw. As will be understood to the skilled artisan, the use of the sensor data, the feedback assessed thereby and resultant therefrom, and the print action resultant therefrom may be the result of the algorithms applied by a control system connectively associated with the printer and the sensors.

[0034] Thus, in the myriad embodiments provided herein, particularly to the extent such embodiments include one or more sensors sensing the printing process, the print process may be subjected to process control such that heretofore unknown process enhancements maybe enabled. For example, various process aspects, such as including power delivered to heat the print melt, heat delivered to the print melt, servo rotation of one or more of the print hobs of the print head, and the like may be readily controlled by association of these aforementioned devices and systems with one or more computer processors having resident thereon control software.

[0035] FIG. **1** is a block diagram illustrating an exemplary FDM printer **106**. In the illustration, the printer includes an X-Y axis driver **20** suitable to move the print head **22**, and thus the print nozzle **26**, in a two dimensional plane, i.e., along the X and Y axes. Further included in the printer **106** for additive manufacturing are the aforementioned print head **22** and print nozzle **26**. As is evident from FIG. **1**, printing may occur upon the flow of heated print material outwardly from the nozzle **26** along a Z axis with respect to the X-Y planar movement of the X-Y driver **20** and onto the build plate **24**. Thereby, layers of printed material **30** may be provided from the nozzle **26** along a path dictated by the X-Y driver **20** to form a print build **101**.

[0036] FIG. **2** illustrates with greater particularity a print head **104** and nozzle **106** system for an exemplary additive manufacturing device, such as a 3-D printer, such as a FDM printer. As illustrated, the print material **110** is extruded via hobs **103** of the head **104** from a spool of print material **110***a* into and through the heated nozzle **106**. As the nozzle **106** heats the print material **110**, the print material is at least partially liquefied for output from an end port **106***a* of the nozzle at a point along the nozzle distal from the print head **104**. Thereby, the extruded material is "printed" outwardly from the port **106***a* via the Z axis along a X-Y planar path determined by the

X-Y driver (see FIG. 1) connectively associated with the print head 104.

[0037] As illustrated in FIG. **3**, two principle elements of the additive manufacturing system, namely the heat delivered at the hot end **106** and the velocity, V.sub.f, at which the print filament **110** is delivered to the hot end **106** by print head **104** may be subjected to a one or more sensors **302**, such as a load assessment sensor **302**, and to control by one or more controllers **310**. More particularly, the hot end **106**, as illustrated, may include one or more heating elements **303** that provide a sensed load **302** on the power delivery system **306** that causes the heating of the heating element **303**. This power delivery system **306** may, in turn, be connected to one or more processor-driven controllers **310**, such as a proportional integral derivative (PID) controller, which drive deliver of power to the heating element(s) **302**. Alternatively, the skilled artisan will appreciate that various types of direct temperature sensors **302** may also be employed in the hot end, and may provide sensed data to control **310**.

[0038] The filament **110** entering the hot end **106** to form the print melt may also have associated therewith a print head driver **314** that is associated with the print head **104** and which drives the filament **110** from the spool **110***a* and ultimately into the hot end **106**. This print head drive **314**, such as may include one or more servo-driven print hobs **103**, may sense **302** a provided load on the one or more motors **320**, such as servo or stepper motors, that drive either or both of the hobs **103**. In turn, this motor **320** may be subjected to a motor driver **326**, which motor drive **326** may also be communicatively associated with one or more motor drive sensors **302** and controller(s) **310**, such as the aforementioned PID controller(s).

[0039] Those skilled in the art will appreciate that although any of various types of controllers **310** may be employed, certain of the embodiments may include a PID controller. A PID controller may be employed to calculate an error value that represents the difference between a desired set point and a measured process variable. Further, a PID controller may apply a correction value that is calculated as a function of the aforementioned difference. Thus, for example, a difference in temperate at the hot end **106** from a desired set point may represent a necessary adjustment by the PID controller of the thermocouple connectively associated with the heating element **303** of the hot end **106**.

[0040] Of course, it will be understood that the embodiments are not limited to PID controllers, and thus that other types of controllers **310** and control systems may be employed in certain embodiments. By way of non-limiting example, individual controllers **310** may be communicative with, either locally or remotely via at least one network, either directly or indirectly, or either integral with or distinct from, one or more processing systems **1100**. In such embodiments, the one or more processing systems **1100** may receive input from the one or more sensors **302** and may apply one or more control algorithms thereto in order to assess, for example, abnormal operation, inefficient operation, catastrophic operation, and may accordingly provide controls to make curative process adjustments.

[0041] In accordance with the foregoing, the controller **310** and/or the control system **310/1100** provided in the embodiments may provide not only lagging adjustments as may occur in the known art, but also algorithmically-generated leading, or anticipatory, adjustments. For example, leading adjustments to power levels may be based on prior print runs, calibration runs for a printer, or the like. This is illustrated with greater particularity in the graph of FIG. **4**. As shown, a set temperature for the hot end may not be directly reflective of the power delivered to the hot end, as is known in the art. As such, efforts to reach a desired set temperature for the hot end may require continuous significant lagging adjustments in the known art based on, for example, temperature sensor readings. However, a more uniform temperature ramp to a desired set point, such as may be followed by a decreased necessity for power delivery to maintain the desired temperature set point, may be provided by the leading adjustments enabled by the control algorithms associated with controller **310** in the embodiments discussed throughout.

[0042] The foregoing is likewise illustrated in the graph of FIG. 5, wherein it is shown that a

leading adjustment better maintains a balance with the reality of temperature increases and decreases at the hot end, whereas the lagging adjustments provided in the known art suffer greater swings of necessary power delivery, and are hence more inefficient and less refined than the provided embodiments. As referenced, such leading adjustments may be assessed in one or more initial runs, such as may be used to formulate one or more control algorithms embedded in controller **310** unique to one or more print materials.

[0043] Moreover, the foregoing algorithmic adjustments may be suitable to address multivariable variations. For example, not only does the heat on a nozzle decrease as the power delivered to the heating element decreases, but further the temperature delivered to the hot end goes down as the filament material is pushed into the hot end at higher velocity. This is illustrated graphically in FIG. **6**. Thereby, in such a circumstance, the controller discussed herein may adjust the temperature not only based on the heat loss rate of the hot end as power is decreased to the heating element, but may additionally adjust based on the rate of filament material being pushed into the hot end. [0044] Environmental variations may constitute ones of the variables in the herein-discussed multivariable monitoring and control system. For example, power delivery algorithms may account for current or recorded environmental temperature, number of hours of print nozzle use, particular filament materials or spool providers, the physical makeup of the head end and/or the hot end, and the like. Thus, contrary to the known art, certain of the embodiments may provide close loop control for additive manufacturing systems, which may enable the aforementioned leading control adjustments. For example, sensors may be provided to assess the thickness or height of a trace as it is laid, as well as the temperature of the hot end as the trace is laid, and various characteristics of the print filament entering the head, entering the hobs, exiting the hobs, and/or entering the hot end, such as filament material, filament velocity, filament diameter, filament jitter, and the like. The control system **310/1100** may include an algorithm that takes into account all of these factors, and recognizes that the ambient temperature has risen 3 degrees C., which has caused a slight variation in V.sub.f. Upon recognition of these process variables, the control algorithm may recognize that the hot end temperature should be lowered by 10 degrees C. to maintain desired trace characteristics, and this recognition may occur before the trace length undesirably varies. [0045] As more particularly illustrated in the block diagram of FIG. 7, in an embodiment, the foregoing aspects may be assessed, by way of non-limiting example, using two variables. These variables may be the force on the filament 110 towards the hot end 106, i.e., the extrusion force, Fe, and the reactive force on the filament **110** against the print head **104**, Fr. As will be understood to the skilled artisan, the disclosed control system **310/1100** may include an algorithm whereby the laying of no trace is deemed indicative that Fr is equal to or greater than Fe. Likewise, if the trace thickness is thinner than desired, Fr is deemed too great in comparison to Fe, which may deemed to be caused by too little extrusion force, a lower hot end temperature than is desired, or the like. Further, an undesirably thick trace may indicate excessive Fe, unnecessarily high temperature, or the like. Not only may the disclosed sensors **302** allow for the foregoing assessments, but the control system **310/1100** discussed herein may allow for control adjustments of various printer aspects to account for these issues. For example, the controller **310** may indicate an increase or decrease in the print head hob speed, or may increase or decrease the delivery of power to the heating element **303** of the hot end **106**.

[0046] Of course, sensing of the aforementioned variables may also allow for different assessments and control adjustments to be made, as will be understood to those skilled in the art. For example, sufficient Fr that leads to the lack of a trace may be deemed by control system **310/1100** to be an indication of a clog. Further, sensors not explicitly discussed above, such as a hob-driving motor **602** having motor encoder **604** to indicate motor position as shown in FIG. **8**, and thus velocity and/or motor torque, may also be used to assess relative forces which may indicate to a motor controller **310** that control adjustments are necessary.

[0047] FIG. **9** illustrates an exemplary sensing and control embodiment. The embodiment may

include hot end **106**, with nozzle port **106***a*, and the nozzle **106** may have associated therewith a heating element **303** under the control of power delivery system **306**. The heating element **303** may be or include a resistive wire wrapping around nozzle **106**. The heating element **303** may respond to power delivery system **306** under the control of controller **310** (which may include or be communicative with computing system **1100**).

[0048] Controller **310** may modify control based on, by way of non-limiting example, sensing by nozzle-embedded sensor **302**. Sensor **302** may be proximate to nozzle port **106***a*, and may thus read the temperature of the nozzle proximate to the output point of the print melt. Correspondingly, process control **310** may control the temperature proximate to nozzle port **106***a* based on feedback of the sensing of that temperature.

[0049] Of course, although the sensor **302** shown is on-board the nozzle **106**, the sensor may be embedded in or on, or otherwise physically associated with, the nozzle **106**. The sensor **302** may receive, directly or indirectly, the heat reading. The sensor **302** may additionally or alternatively comprise embedded traces or other inter- or intra-connective elements, as will be understood to the skilled artisan.

[0050] Yet further, for a variety of reasons, such as the typical unevenness of filaments **110** (i.e., filaments **110** are often uneven, such as thinner in some areas and thicker in others), additional sensors may be associated with a filament and/or the print output from nozzle port **106***a*. FIG. **10** illustrates a filament feed **1010** entering and passing through print head **104**. A motor having encoding **1004** may be provided so that filament pull, grabbing, jamming, or crimping may be sensed to allow for ultimate adjustment of motor speed. The motor may drive hobs **1003**, **1005**. To the extent one hob **1005** is non-driven, it may be associated with one or more sensors **1006** that sense the force on filament **1010** by the non-driven hob.

[0051] The illustrated embodiment may include sensors **1012** that may sense the speed of rotation of hobs **1003**, **1005**. Additionally providing information to controller(s) **310** may be one or more of line scanners **1002** (to sense filament **1010** at entry point to head **104**), **1018** (at entry point to the hobs **1003**, **1005**), **1020** (at exit point from hobs **1003**, **1005**), and **1802** (at exit from port **106***a*). These sensors may also or rather, by way of example, provide information on the force upon, temperature of, position of, velocity of, or other information on filament **1010**, hobs **1003**, **1003**, motor **1004**, or print output, by way of non-limiting example.

[0052] In short and as discussed throughout, the disclosed control system **310/1100** assures that machine time and materials are not wasted, at least in that if the desired result is not obtained, leading adjustments or system shutdown may be performed at a point earlier than in the known art. More particularly and as will be understood from FIG. **10**, the motor **1004** that drives the print head hobs **1003**, **1005** experiences and provides a relative torque that extrudes the filament **1010** into and through the hot end **104**. As shown, one or more line scanners **1002**, **1018**, **1020**, **1802**, or other sensors, may be placed at, by way of non-limiting example, the nozzle port **106***a*, the print head entry point, or within the print head **104**.

[0053] Accordingly, if the extrusion hobs **1003**, **1005** are turned, the correct printing response should be obtained. If the motor torque and heat level indicate that the hobs should be extruding material, but no or the incorrect print output is seen, it is likely the case that the controller should assess that the hot end is clogged, or that there is another systematic issue that may require the raising or lowering of heat levels. For example, if no torque on the hob driver is assessed, either the hot end heat is much too high or the nozzle has been blown. Thereby, the disclosed embodiments may allow for both leading and lagging adjustments.

[0054] Similarly, hyperspectral scanning may be performed, by way of non-limiting example, at the hob entry point **1018**. Such scanning may indicate to the control system the type of material loaded into the print head, may automatically load such material, and/or may set system parameters, such as heating levels, to enable a preset trace size. Further, hyperspectral and other types of scanning may allow for adequate feedback to allow for the leading adjustment discussed herein, such as

whether the material entering the print head is as manually indicated, whether the color of the print materials is as desired, whether the build outcome is as desired, and the like. As such, in-process monitoring, as well as build volume monitoring, may be provided and overseen by the disclosed control systems.

[0055] More particularly, the controller feedback loop, such as the PID controller feedback loop, discussed throughout may assess element performance based on, for example, the voltage and or current drawn by the load of the element. Such a load may indicate, by way of non-limiting example, position, torque, velocity, heat, power, or the like. For example, a hob driver motor may indicate, based on the load that it provides, that it has a spend rate of 5 rpm. However, the specific characteristics may indicate that the motor rotation at 5 rpm requires 1 amp of current to maintain that rotation rate, whereas the control algorithm indicates that, if printing is occurring as expected, 0.1 amps of current should be drawn. Thereby, a system failure is indicated to the controller. [0056] By way of additional example and as illustrated in FIG. 11, if the print head, including the hob motor and motor controller, is taken as an "E Axis" 1202, and the hot end is taken as the "H Axis" **1204**, the disclosed control systems **310** may make assessments from sensing feedback **1206**, and leading or lagging adjustments, based on the characteristics of each axis. For example, if the H Axis **1204** must be at a temperature set of 200 degrees Celsius for a given E Axis **1202** rate, once a temperature sensor indicates that the temperature is at 200 degrees Celsius, the power supplied to the H Axis **1204** may be decreased in an effort to maintain the precise current temperature. However, if the E Axis **1202** is unable to maintain a material feed rate based on, for example, the electrical load indicated on the E Axis **1202**, this may indicate that the temperature of the H Axis 1204 has fallen, that a clog in the nozzle has occurred, or that the filament material has unexpectedly changed.

[0057] Moreover, the disclosed control systems may include an algorithmic series of efforts to check for and remedy when a sensed problem occurs within the system. For example, a control system may engage in a checklist of the foregoing example. For example, if the H Axis **1204** indicates that it is at the proper temperature, an error in the foregoing example may be assessed as either a clog or a change in material. Consequently, the control system may increase the heat on the H Axis **1204**, and may back up the filament on the E Axis, in an attempt to clear the clog. If neither of the foregoing efforts are successful to clear the error, the control system may automatically indicate that an unexpected material change has occurred.

[0058] As referenced throughout, the embodiments allow for leading adjustments. For example, if the H Axis **1204** indicates it is currently at the proper set temperature, but the build plan indicates to the E Axis **1202** that the extrusion rate is to increase, the H Axis **1204** may preemptively be instructed to increase the temperature in anticipation of the increase in extrusion rate. Of course, such leading adjustment may include various other factors, such as may include an assessment of the material being printed, or the best factors to be applied to the current print material in order to best obtain the desired build, by way of non-limiting example. Further for example, the control algorithm may make an assessment of the best temperatures and velocities for a particular build, and may adjust these variables in real time as the print occurs, such as in the event an unknown print material is placed into the printer.

[0059] Correspondingly, the feedback loop **1206** from the sensors **302** to the control system **310** and back to the controlled print elements in the disclosed embodiments may allow for adjustments to any of multiple process variables in real time. Moreover, this control feedback loop **1206** may enable adjustments to multiple variables, such as the balancing or weighting thereof, to obtain desired results in accordance with build plan in real time.

[0060] It should also be noted that the sensors **302** discussed throughout are non-limiting. For example, force feedback may be obtained based on motor performance, as discussed herein, may be assessed at the nozzle of the hot end, at the nozzle mount of the hot end, or the like. Further, one or more cameras, in place of or in addition to the line scanner(s) discussed herein, may be placed to

allow for process monitoring. For example, cameras may be placed in association with the head end, the hot end, a spool feed, the print build, or the like. Such a head camera may include, by way of non-limiting example, a VIS camera, a thermal camera, a time of flight camera, or the like. [0061] Further, the disclosed feedback systems may be hardware and/or software agnostic. That is, the controller(s) may be a deployable kernel; may be hosted in association with any system software; and/or may be for use with a generic hardware set. Of course, the skilled artisan will appreciate in light of the discussion herein that, in such hardware and software agnostic use cases, an operator may be needed to set initial parameters when a controlled system kernel is deployed. [0062] FIG. **12** illustrates an exemplary control system **1302** such as may be explicitly associated with the hardware disclosed herein. For example, the hardware characteristics **1300** may provide the various sensed feedback indicated, such as, by way of example, the motor and encoder characteristics of the E Axis **1304**, **1306**, the temperature and power characteristics of the H Axis **1306**, **1308**, the build characteristics of the print output **1310**, and any secondary sensors **1312** associated with the hardware, such as a camera **1312** associated with the print head. [0063] The control system may then associate variables with each of the foregoing sensed hardware elements, such as: the extruder force versus unit time and/or the extrusion amount or rate versus unit time in association with the E Axis **1318**, **1320**; the nozzle temperature versus power, extrusion rate, and/or unit time **1322**; the power consumption versus temperature and unit time of the H Axis **1324**; the build leveling and extrusion amount and forces versus unit time **1326**; and the trace width and quality **1330**, by way of non-limiting example.

[0064] FIG. **13** depicts an exemplary computing system **1100** for use in association with the herein described control systems and methods. Computing system **1100** is capable of executing software, such as an operating system (OS) and/or one or more computing applications **1190**, such as applications applying the control algorithms discussed herein, and may execute such applications using data, such as sensor data, gained via the I/O port.

[0065] By way of non-limiting example, an exemplary algorithm applied by a control application embedded in or otherwise associated with controller **310** and receiving data from sensors **320** may be as follows: [0066] IF Torque motor (TQm) as a function [of, e.g., Nozzle temperature, TN, material type, etc.] exceeds preset X for more than time tX, throw a flag; [0067] OR [0068] IF RATIO of Force on nozzle (FN) to TQm as a function exceeds X for more than T time: [0069] throw a flag; or [0070] increase TN; or [0071] decrease extrusion velocity, Vextr.

[0072] The operation of exemplary computing system **1100** is controlled primarily by computer readable instructions, such as instructions stored in a computer readable storage medium, such as hard disk drive (HDD) **1115**, optical disk (not shown) such as a CD or DVD, solid state drive (not shown) such as a USB "thumb drive," or the like. Such instructions may be executed within central processing unit (CPU) **1110** to cause computing system **1100** to perform the operations discussed throughout. In many known computer servers, workstations, personal computers, and the like, CPU **1110** is implemented in an integrated circuit called a processor.

[0073] It is appreciated that, although exemplary computing system **1100** is shown to comprise a single CPU **1110**, such description is merely illustrative, as computing system **1100** may comprise a plurality of CPUs **1110**. Additionally, computing system **1100** may exploit the resources of remote CPUs (not shown), for example, through communications network **1170** or some other data communications means.

[0074] In operation, CPU **1110** fetches, decodes, and executes instructions from a computer readable storage medium, such as HDD **1115**. Such instructions may be included in software such as an operating system (OS), executable programs, and the like. Information, such as computer instructions and other computer readable data, is transferred between components of computing system **1100** via the system's main data-transfer path. The main data-transfer path may use a system bus architecture **1105**, although other computer architectures (not shown) can be used, such as architectures using serializers and deserializers and crossbar switches to communicate data between

devices over serial communication paths. System bus **1105** may include data lines for sending data, address lines for sending addresses, and control lines for sending interrupts and for operating the system bus. Some busses provide bus arbitration that regulates access to the bus by extension cards, controllers, and CPU **1110**.

[0075] Memory devices coupled to system bus **1105** may include random access memory (RAM) **1125** and/or read only memory (ROM) **1130**. Such memories include circuitry that allows information to be stored and retrieved. ROMs **1130** generally contain stored data that cannot be modified. Data stored in RAM **1125** can be read or changed by CPU **1110** or other hardware devices. Access to RAM **1125** and/or ROM **1130** may be controlled by memory controller **1120**. Memory controller **1120** may provide an address translation function that translates virtual addresses into physical addresses as instructions are executed. Memory controller **1120** may also provide a memory protection function that isolates processes within the system and isolates system processes from user processes. Thus, a program running in user mode may normally access only memory mapped by its own process virtual address space; in such instances, the program cannot access memory within another process' virtual address space unless memory sharing between the processes has been set up.

[0076] In addition, computing system **1100** may contain peripheral communications bus **135**, which is responsible for communicating instructions from CPU **1110** to, and/or receiving data from, peripherals, such as peripherals **1140**, **1145**, and **1150**, which may include printers, keyboards, and/or the sensors discussed herein throughout. An example of a peripheral bus is the Peripheral Component Interconnect (PCI) bus.

[0077] Display **1160**, which is controlled by display controller **1155**, may be used to display visual output and/or presentation generated by or at the request of computing system **1100**, responsive to operation of the aforementioned computing program. Such visual output may include text, graphics, animated graphics, and/or video, for example. Display **1160** may be implemented with a CRT-based video display, an LCD or LED-based display, a gas plasma-based flat-panel display, a touch-panel display, or the like. Display controller **1155** includes electronic components required to generate a video signal that is sent to display **1160**.

[0078] Further, computing system **1100** may contain network adapter **1165** which may be used to couple computing system **1100** to external communication network **1170**, which may include or provide access to the Internet, an intranet, an extranet, or the like. Communications network **1170** may provide user access for computing system **1100** with means of communicating and transferring software and information electronically. Additionally, communications network **1170** may provide for distributed processing, which involves several computers and the sharing of workloads or cooperative efforts in performing a task. It is appreciated that the network connections shown are exemplary and other means of establishing communications links between computing system **1100** and remote users may be used.

[0079] Network adaptor **1165** may communicate to and from network **1170** using any available wired or wireless technologies. Such technologies may include, by way of non-limiting example, cellular, Wi-Fi, Bluetooth, infrared, or the like.

[0080] It is appreciated that exemplary computing system **1100** is merely illustrative of a computing environment in which the herein described systems and methods may operate, and does not limit the implementation of the herein described systems and methods in computing environments having differing components and configurations. That is to say, the inventive concepts described herein may be implemented in various computing environments using various components and configurations.

[0081] In the foregoing detailed description, it may be that various features are grouped together in individual embodiments for the purpose of brevity in the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that any subsequently claimed embodiments require more features than are expressly recited.

[0082] Further, the descriptions of the disclosure are provided to enable any person skilled in the art to make or use the disclosed embodiments. Various modifications to the disclosure will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other variations without departing from the spirit or scope of the disclosure. Thus, the disclosure is not intended to be limited to the examples and designs described herein, but rather is to be accorded the widest scope consistent with the principles and novel features disclosed herein.

Claims

- 1. A closed loop controller for an additive manufacturing print process on an additive manufacturing printer, comprising: a plurality of sensors capable of monitoring at least one of: an input of print filament to a print head of the printer; and a temperature of a nozzle of the printer, as indicative of a current state of the additive manufacturing print process; a controller capable of receiving sensor data from the plurality of sensors; a comparator capable of comparing the current state to a correct state of the additive manufacturing print process by comparing the sensor data to a database of stored correct states of the print process to assess a lack of compliance of the print process to the correct state; and at least one electronic output from the at least one controller capable of modifying the compliance of the print process to the correct state.
- **2**. The closed loop controller of claim 1, wherein the correct state is the current state, and wherein the modifying comprises a zero adjustment one of the output.
- **3.** The closed loop controller of claim 1, wherein the correct state is a future state based on a current one of the output according to a projection of the current one of the output.
- **4.** The closed loop controller of claim 1, wherein the correct state includes one or more tolerances for the print process.
- **5**. The closed loop controller of claim 4, wherein the one or more tolerances comprise at least one of a melt temperature, a filament velocity, and a trace size.
- **6.** The closed loop controller of claim 1, wherein the modifying comprises one of modifications to the print process or cessation of the print process.
- **7**. The closed loop controller of claim 1, wherein the modifying comprises a modification to a characteristic of the print filament or the temperature of the nozzle.
- **8.** The closed loop controller of claim 7, wherein the modifying comprises modifying a velocity of the print filament.
- **9.** The closed loop controller of claim 7, wherein the modifying comprises raising the temperature of the nozzle.
- **10**. The closed loop controller of claim 7, wherein the modifying comprises raising the temperature of the nozzle.
- **11**. The closed loop controller of claim 7, wherein the modifying occurs without halting of the print process.
- **12**. The closed loop controller of claim 1, wherein the plurality of sensors comprise one of: discrete sensors; line scanners; cameras; time of flight imagers; and combination implementations thereof.
- **13**. The closed loop controller of claim 1, wherein the lack of compliance comprises an over- or under-temperature of the nozzle.
- **14**. The closed loop controller of claim 1, wherein the lack of compliance comprises at least one of a non-print and a crimping of the filament.
- **15**. The closed loop controller of claim 1, wherein the lack of compliance comprises a catastrophic failure.
- **16.** The closed loop controller of claim 1, wherein the plurality of sensors comprise monitoring a motor torque sensor at the print filament input.
- **17**. The closed loop controller of claim 1, wherein feedback from the closed-loop comprises continuous in-process feedback.

18. A closed loop controller for an additive manufacturing print process on an additive manufacturing printer, comprising: a plurality of sensors capable of monitoring at least one of: an input of print filament to a print head of the printer; and a temperature of a nozzle of the printer, as indicative of a current state of the additive manufacturing print process; a controller capable of receiving sensor data from the plurality of sensors; a comparator capable of comparing the current state to a correct state of the additive manufacturing print process by comparing the sensor data to a database of stored correct states of the print process to assess a lack of compliance of the print process to the correct state; and at least one electronic output from the at least one controller capable of modifying the compliance of the print process to the correct state.