חישוביות וסיבוכיות מצגת 4- משפט רייס

המחלקות R ו-R (תזכורת)

• קבוצת השפות שקיימת עבורן מכונת טיורינג **שמקבלת** אותן:

 $RE = \{L \subseteq \Sigma^* | \text{ there exista a turing mechine } M \text{ such that } L(M) = L\}$

• קבוצת השפות שקיימן עבורן מכונת טיורינג **המכריעה** אותן:

 $R = \{L \subseteq \Sigma^* | \text{ there exists a turing mechine } M \text{ such that } L(M) = L \text{ and } M \text{ halts on every input.} \}$

משפט רייס - הקדמה

עד עכשיו, כשראינו שפה מהצורה $L = \{ < M > | L(M) \ has \ a \ particular \ property \}$ ניסינו להתאים לה רדוקציה ספציפית כדי להוכיח עבורה לאיזה מחלקה היא איננה שייכת.

• במקרים כאלה, משפט רייס נותן לנו קיצור דרך.

הגדרה- תכונה של שפות ב-RE

אבחנה: כשמדברים על תכונה מסויימת, נוח לדבר על **הקבוצה** של האובייקטים אשר מקיימים את התכונה. לדוגמא:

• התכונה "עיניים חומות" ≡ קבוצת האנשים בעלי עיניים חומות.

אנו נתמקד בתכונות של שפות למשל:

- שפות בעלות לפחות 5 מילים.
- שפות בעלות מספר אינסופי של מילים.
- שפות המכילות רק מילים בעלות אורך זוגי.
 - arepsilon שפות המכילות את המילה $oldsymbol{\circ}$

הגדרה- תכונות לא טריוויאליות

משפט רייס עוסק בתכונות של שפות שהמאפיין אותן הוא היותן תתיREקבוצות לא ריקות החלקיות ממש ל-RE.

הגדרה- תכונות לא טריוויאליות

משפט רייס עוסק בתכונות של שפות שהמאפיין אותן הוא היותן תתיREקבוצות לא ריקות החלקיות ממש ל-RE.

 $S \subseteq RE$ -הגדרה: תכונות **לא טריויאליות** בREהן תכונות S כך ש $Ø \neq S \neq RE$ וכן

הגדרה- תכונות לא טריוויאליות

משפט רייס עוסק בתכונות של שפות שהמאפיין אותן הוא היותן תתיREקבוצות לא ריקות החלקיות ממש ל-RE.

 $S \subseteq RE$ -הגדרה: תכונות **לא טריויאליות** ב-RE הן תכונות S כך ש $Ø \neq S \neq RE$ וכן

S אבחנה: לכל תכונה לא טריויאלית S-קיימת לפחות שפה אחת ב-S-ולפחות שפה אחת ב- $RE \setminus S$ -

נסמן: \emptyset - קבוצה ריקה של שפות, $-\varphi$

L_S הגדרה- השפה

 $S \subseteq RE$ הגדרה: בהינתן תכונה

נגדיר את השפה $L_s = \{< M > | L(M) \in S\}$ היא שפת גדיר את השפה כך ששפת המכונה שייכת לתכונה כך ששפת המכונה שייכת לתכונה כך ש

דוגמאות:

- $L_{s_1}=\{\langle M
 angle||L(M)|\geq 2\}$ מתאימה השפה $s_1=\{L\in RE|\ |L|\geq 2\}$ לתכונה $s_1=\{L\in RE|\ |L|\geq 2\}$
 - $L_{s_2}=\{\langle M \rangle|arepsilon\in L(M)\}$ מתאימה השפה $s_2=\{L\in RE|arepsilon\in L\}$ לתכונה
 - $L_{s_3}=\{\langle M
 angle | L(M) \in s_3\}$ מתאימה השפה $s_3=\{arphi,\Sigma^*,\{11,0\}\}$
 - מתאימה השפה $s_4 = \{L \in RE | \ |L| \ is \ infinite \}$ •

$$L_{\infty} = \{ \langle M \rangle | |L(M)| \text{ is infinite} \}$$

נסמן: \emptyset - קבוצה ריקה של שפות, $-\varphi$

משפט רייס

משפט רייס:

 $L_S \notin R$ מתקיים $\emptyset \neq S \subsetneq RE$ לכל תכונה לא טריוויאלית

נסמן: \emptyset - קבוצה ריקה של שפות, $-\varphi$

משפט רייס

משפט רייס:

 $L_S \notin R$ מתקיים $\emptyset \neq S \subsetneq RE$ לכל תכונה לא טריוויאלית

משפט רייס המורחב:

בנוסף,

- $L_S \notin coRE$ אז גם $\varphi \notin S$ אם \bullet
 - $L_S \notin RE$ אז גם $\varphi \in S$ אם \bullet

נסמן: \emptyset - קבוצה ריקה של שפות, $-\varphi$ השפה הריקה

משפט רייס - הוכחה

רעיון ההוכחה:

- $L_S \notin coRE$ אם $\varphi \notin S$ אז נראה כי $P \leq L_S$ ומזה נובע כי $\phi \notin S$ אם
 - $L_S \notin RE$ אז נראה כי $\overline{HP} \leq L_S$ ומזה נובע כי $\varphi \in S$ אם $\varphi \in S$ בשני המקרים, נקבל כי $L_S \notin R$

נחלק למקרים:

- $\varphi \notin S$.1
- $\varphi \in S$.2

RES PLA

משפט רייס – הוכחה (מקרה 1)

S כלומר השפה הריקה לא מקיימת את התכונה S. $\varphi \notin S$ כלומר השפה הריקה לא מקיימת את התכונה $\varphi \in RE \setminus S$ מ"ט המקבלת L_1 את L_1 .

 $HP \leq L_s$ נוכיח ש

 $f(\langle M, x \rangle) = \langle M_x \rangle$ פונקצית הרדוקציה:

בך ש:

 $y \in \Sigma^*$ על קלט M_x

- .x על M על ...
- ... מריצה את M_{L_1} על y ועונה כמוה.

משפט רייס – הוכחה (מקרה 1)

הפונקציה מלאה (מהגדרה) וניתנת לחישוב (פעולת קומפליציה פשוטה), כי ראינו שניתן לקודד כל מכונת טיורינג.

תקפות הרדוקציה:

• $\langle M, x \rangle \in HP$

• $\langle M, x \rangle \notin HP$

משפט רייס – הוכחה (מקרה 1)

הפונקציה מלאה (מהגדרה) וניתנת לחישוב (פעולת קומפליציה פשוטה), כי ראינו שניתן לקודד כל מכונת טיורינג.

תקפות הרדוקציה:

• $\langle M, x \rangle \in HP \rightarrow M_x$ answers on y as M_{L_1} and stops $\rightarrow M_1$ stops on $y \rightarrow L_1 = L(M_1) = L(M_x) \rightarrow f(\langle M \rangle, \langle x \rangle) \in L_s$

• $\langle M, x \rangle \notin HP \to M_x$ runs infinite is step 1 for each $y \to L(M_x) = \Phi$ $\to f(\langle M \rangle, \langle x \rangle) = M_x \notin L_s$

משפט רייס – הוכחה (מקרה 2

S השפה הריקה מקיימת את התכונה $\varphi \in S$ תהי L_2 שפה ב- $RE \backslash S$, ותהי M_{L_2} ותהי $RE \backslash S$, ותהי $\overline{HP} \leq L_{\rm s}$ -עוכיח ש

$$f(\langle M, x \rangle) = \langle M_x \rangle$$

פונקצית הרדוקציה:

בך ש:

:y על קלט M_{x}

- x על M על .1
- .ם מריצה את M_{L_2} על y ועונה כמוה.

משפט רייס – הוכחה (מקרה 2

הפונקציה מלאה וניתנת לחישוב, כי ראינו שניתן לקודד כל מכונת טיורינג.

תקפות הרדוקציה:

•
$$\langle M, x \rangle \in \overline{HP}$$

• $\langle M, x \rangle \notin \overline{HP}$

משפט רייס – הוכחה (מקרה 2)

הפונקציה מלאה וניתנת לחישוב, כי ראינו שניתן לקודד כל מכונת טיורינג.

תקפות הרדוקציה:

•
$$\langle M, x \rangle \in \overline{HP} \to L(M_x) = \Phi \in S \to \langle M_x \rangle \in L_S$$

$$\bullet \langle M, x \rangle \notin \overline{HP} \to L(M_{\chi}) = L(M_{L_2}) = L_2 \notin S \to < M_{\chi} > \notin L_S$$

משפט רייס – הוכחה (מקרה 2

 $(\varphi \in S \)$ עבור מקרה (עבור מקרה בי $L_S \notin R \)$ עבור מקרה נוספת להוכחה כי נתבונן בשפה המשלימה

$$\overline{L_S} = \{ \langle M \rangle | L(M) \in RE \setminus S \}$$

$$= \{ \langle M \rangle | L(M) \in \overline{S} \} = L_{\overline{S}}$$

עבור $ar{S}$ מתקיים ש $ar{\varphi}
otin G$ מכאן שלפי משפט רייס (המקרה הראשון) עבור $L_{ar{S}} = \overline{L_S}$ איננה ב-R.

R-לכן, גם L_S איננה ב

R-נניח בשלילה ש- L_S ב- R, מכיוון ש-R סגורה למשלים, נובע ש- L_S גם ב- L_S

מ.ש.ל

S מה קורה כאשר התכונה S כן טריוויאלית

אם נתון ש-S טריוויאלית אז:

- אם $m{S} = m{RE}$, אז אפשר לקבל כל קידוד של מכונת טיורינג. מכיוון שהנחנו כי כל מחרוזת מתארת מכונת טיורינג כלשהי, נקבל כי השפה L_S מכילה את כל המחרוזות, כלומר $L_S = \Sigma^*$, ואכן $\Sigma^* \in R$.
 - אם $\pmb{S}=\emptyset$, אז אפשר לדחות כל קידוד של מכונת טיורינג. $\varphi\in R$, ואכן $L_S=\varphi$, ואכן כלומר, השפה לא מכילה מילים כלל, כלומר

מסקנה, אם התכונה טריוויאלית, משפט רייס "לא עובד".

מתי מותר להשתמש במשפט רייס?

מותר להשתמש במשפט רייס רק כשהשפה הנתונה לנו L היא אכן קבוצת - S אובייקטים של תכונה מסוימת של שפות, כלומר, קיימת תכונה $L = L_s = \{ < M > | L(M) \in S \}$

- לפעמים התכונה נראית מסובכת, אבל היא טריוויאלית.
 - ?איך מוכיחים שתכונה היא לא טריוויאלית?

מראים דוגמא לשפה שמקיימת את התכונה ושפה שלא מקיימת את התכונה.

מתי מותר להשתמש במשפט רייס?

 אם התכונה המדוברת היא תכונה של המכונה ולא תכונה של השפה של המכונה אז משפט רייס לא עובד.

 $L = \{ \langle M \rangle | M \text{ halts on every input} \}$ דוגמא:

עצירה היא תכונה של מכונה ולא של שפה – בהינתן תכונה לא טריוויאלית S, יתכן שישנן מכונות שתמיד עוצרות שהשפה שלהן ב-S, אבל ישנן מכונות שמקבלות את אותה שפה שלא עוצרות על מילים שלא בשפה.

 $_{r}S=R$ היא $_{r}L$ -היא להתאים ל-תכונה היחידה של משפט רייס שעשויה להתאים ל

אבל, אפשר לחשוב על מכונה שמקבלת שפה ב-R ולא עוצרת על מילים שלא בשפה. (למה זה לא סותר את זה שהשפה ב-R?)

במקרה כזה, צריך להוכיח בדרכים שונות (כלומר ע"י רדוקציה...)

:כמה דוגמאות

האם ניתן להשתמש ברייס?	RE-שייכות ל	R-שייכות ל	השפה
			$L_1 = \{ < M > L(M) \le 3 \}$
			$L_2 = \{ \langle M \rangle L(M) \subseteq \Sigma^* \}$
			$L_3 = \{ \langle M \rangle M \text{ accepts the word } \epsilon \}$
			$L_4 = \{ < M > \varepsilon \in L(M) \}$
			$L_5 = \{ \langle M \rangle L(M) \in coRE \}$
			$L_6 = \{ \langle M \rangle L(M) \notin R \}$
			$L_7 = \{ \langle M \rangle L(M) \text{ is odd, and } \langle M \rangle \leq 1000 \}$

:כמה דוגמאות

האם ניתן להשתמש ברייס?	RE-שייכות ל	R-שייכות ל	השפה
כן +רייס המורחב	(רייס המורחב) X	(רייס) X	$L_1 = \{ < M > L(M) \le 3 \}$
תכונה טריוויאלית	V	V	$L_2 = \{ \langle M \rangle L(M) \subseteq \Sigma^* \}$
כן, שימו לב שזו לא תכונה של מכונה.	V	(רייס)X	$L_3 = \{ \langle M \rangle M \text{ accepts the word } \epsilon \}$
כן	V	(רייס)X	$L_4 = \{ < M > \varepsilon \in L(M) \}$
כן	(רייס המורחב) X	(רייס) X	$L_5 = \{ \langle M \rangle L(M) \in coRE \}$
כן	צריך רדוקציה) X מ \overline{HP}	(רייס) X	$L_6 = \{ \langle M \rangle L(M) \notin R \}$
השפה סופית!	V	V	$L_7 = \{ \langle M \rangle L(M) \text{ is odd, and } \langle M \rangle \leq 1000 \}$