WASTEWATER STABILIZATION POND/ LAGOON SYSTEMS

Waste Stabilization Ponds/Lagoons

A structure constructed to contain and to facilitate the operation and control of a complex process of treating or stabilizing wastewater.

Waste Stabilization Ponds/Lagoons

Physical Processes

Chemical Processes

Biological Processes

BACTERIA Types

Aerobic

Bacteria that can use only oxygen that is "free" or not chemically combined.

<u>Anaerobic</u>

Bacteria that can live in the absence of "free" oxygen.

<u>Facultative</u>

Bacteria that use either "free" or combined oxygen.

Zonal Relationships in a Lagoon

ANAEROBIC ZONE

Sedimentation

SOLIDS

Stabilization

Organics

Organic Acids

Organic Acids

AEROBIC ZONE

Bacteria Use Soluble Organics

FACULTATIVE ZONE

Organisms Utilize Dissolved Oxygen or Combined Oxygen

Adapt to Changing Conditions

Continue Decomposition during
Changing Conditions

DO

ABSORPTION from ATMOSHERE PHOTOSYNTHESIS

Efficient Treatment

Preventing Odors

OXYGEN SOURCES

Surface Aeration Provides

2.7 Kg per Acre per Day

At Lagoon D.O. of 2.0 mg/L Temperature Permitting 8.0 mg/L

Algae (Photosynthesis) Provides

45 Kg per Acre per Day

Each 27 Kg of Algae Produce 45 pounds Oxygen

ACTIVITY IN FACULTATIVE PONDS

Influence of Wind

Adds Oxygen

Increases Mixing

Influence of Light

Photosynthesis

Disinfection

Influence of Temperature

Rate of Bacterial Activity

Growth of Algae

D.O. Saturation

Daily Fluctuations

Temperature DO nH

Summer

Sludge Layer

Winter

ADVANTAGES

- 1. Economical to Construct & Operate.
- 2. Low Monitoring & Control Requirements.
- 3. Rapid Recovery from "Shock" Loads.
- 4. Low Energy & Chemical Usage.
- 5. Low Mechanical Failure.
- 6. Minimal Sludge Disposal.
- 7. Long Life.

DISADVANTAGES

- 1. Large Land Usage.
- 2. Low Control Options.
- 3. Operations Dependant on Climate.
- 4. Often High Suspended Solids.
- 5. Seasonal Odors.
- 6. Possible Ground Water Contamination.
- 7. Not Good In High Loading Situations.

GOOD PRACTICES

- Process Is In Balance
- Properly Designed Facility
- Process Is Controlled
- System Is Maintained

Design of Ponds and Lagoons

BOD_{in} = BOD_{out} + BOD_{consumed}

Q So = Q S + V (kS)

S/So =
$$1/(1+(k \text{ V/Q})) = 1/(1+k \theta)$$

S = soluble BOD remaining, mg/L
So = initial Soluble BOD, mg/L

k = reaction rate coefficient, d⁻¹ θ = hydraulic retention time, d
V = reactor volume, m³
Q = flow rate, m³/d

Series

Placing Majority of Load on First Cell Summer Operation

Dividing Organic Load Between At Least Two Cells
Winter Operation

Thank you!