AMENDMENTS TO THE CLAIMS

Docket No.: 64845-225737

- (Original) An apparatus for providing a regenerated data sequence, said apparatus comprising:
- a channel identification unit receiving, from a communication channel, a transmitted signal (\tilde{r}) and a training control sequence (\mathbf{p}^{raum}) to provide a plurality of channel coefficients representative of said communication channel (\hat{h}_i ... \hat{h}_k); and
- a channel modeling unit filtering said plurality of channel coefficients representative of said communication channel $(\hat{h}_i...\hat{h}_k)$ with a known training data sequence (X) to provide said regenerated data sequence (Y).
- 2. (Original) The apparatus as claimed in claim 1, wherein said training sequence (X) comprises said training control sequence (p^{train}), further wherein said regenerated data sequence (Y) comprises a regenerated control sequence (r^{pilot}), further wherein said channel modeling unit comprises a channel control modeling unit filtering said plurality of channel coefficients representative of said communication channel ($\hat{h}_i...\hat{h}_k$) with said training control sequence (p^{train}) to provide said regenerated control sequence (r^{pilot}).
- 3. (Original) The apparatus as claimed in claim 2, further comprising a control signal cancellation unit, subtracting said regenerated control sequence (r^{pilot}) from said transmitted signal (\tilde{r}') to provide a control sequence free (r^{pilot}) from said control sequence.
- 4. (Original) The apparatus as claimed in claim 1, wherein said training sequence (X) comprises a training data sequence (b^{rain}), further wherein said regnerated data sequence (Y) comprises a regenerated training sequence (t^{rain}), further wherein said channel modeling unit comprises a channel data modeling unit filtering said plurality of channel coefficients representative of said communication channel ($\hat{h}_i...\hat{h}_k$) with said training data sequence (b^{rain}) to provide said regenerated training sequence (t^{rain}).

Docket No.: 64845-225737

- 5. (Original) The apparatus as claimed in claim 4, wherein said channel modeling unit further comprises a channel control modeling unit filtering said plurality of channel coefficients representative of said communication channel ($\hat{h}_i...\hat{h}_k$) with said training control sequence (\mathbf{p}^{train}) to provide a regenerated control sequence (\mathbf{r}^{tilos}).
- 6. (Original) An indirect adaptation receiver for providing an estimated payload data sequence (\hat{b}) , said receiver comprising:
- an apparatus for generating a regenerated data sequence free of said control sequence comprising:
- a channel identification unit receiving, from a communication channel, a transmitted signal (\tilde{r}) and a training control sequence (p^{train}) to provide a plurality of channel coefficients representative of said communication channel ($\hat{h}_i...\hat{h}_e$); and
- a channel modeling unit filtering said plurality of channel coefficients representative of said communication channel ($\hat{h}_i...\hat{h}_k$) with said training control sequence (p^{orain}) to provide regenerated control sequence (r^{ollod});
- a control signal cancellation unit, subtracting said regenerated control sequence (r^{pilot}) from said transmitted signal (\tilde{r}) to provide said control sequence free (r^{pilot}) of said control sequence; and
- a filtering unit receiving said regenerated data sequence free of said control sequence and further selectively receiving a training data sequence (b^{train}) to provide said estimated payload data sequence (\hat{b}); and
- wherein said filtering unit is adapted in accordance with said training data sequence (b^{train}).
- (Original) A method apparatus for providing a regenerated data sequence, said method comprising:

receiving, from a communication channel, a transmitted signal (\tilde{r}) and a training control sequence (p^{tram}) to provide a plurality of channel coefficients representative of said communication channel ($\hat{h}_1...\hat{h}_k$); and

filtering said plurality of channel coefficients representative of said communication channel $(\hat{h}_l...\hat{h}_k)$ with a known training dasta sequence (X) to provide said regenerated data sequence (Y).

- 8. (Original) The method as claimed in claim 7, wherein said training sequence (X) comprises said training control sequence (p^{train}), further wherein said regenerated data sequence (Y) comprises a regenerated control sequence (r^{pilot}), further comprising filtering said plurality of channel coefficients representative of said communication channel (\hat{h}_t ... \hat{h}_k) with said training control sequence (p^{train}) to provide said regenerated control sequence (t^{pilot}).
- (Original) The method as claimed in claim 8, further comprising subtracting said regenerated control sequence (r^{pilot}) from said transmitted signal (r) to provide a control sequence free (r^{pilot/ree}) of said control sequence.
- 10. (Original) The method as claimed in claim 7, wherein said training sequence (X) comprises a training data sequence (b^{rain}), further wherein said regenerated data sequence (Y) comprises a regenerated training sequence (r^{rain}), further comprising filtering said plurality of channel coefficients representative of said communication channel ($\hat{h}_1...\hat{h}_k$) with said training data sequence (b^{rain}) to provide said regenerated training sequence (r^{rain}).
- 11. (Original) The method as claimed in claim 10, further comprising filtering said plurality of channel coefficients representative of said communication channel $(\hat{h}_i...\hat{h}_k)$ with said training control sequence (\mathbf{p}^{main}) to provide a regenerated control sequence (\mathbf{p}^{main})

12. (Withdrawn) An adaptive method for optimizing the parameters of a filter at a receiver, the method comprises:

using first and second data sequences transmitted through a same communication channel, wherein said first data sequence includes as payload data and said second data sequence includes as training data;

using said training data to adapt the filter parameters at the receiver;

wherein said filter parameters are adapted in presence of varying channels that are received at the receiver at the same time as said data sequences are transmitted.