

REPRESENTACIÓN EN BASES

ALAN REYES-FIGUEROA TEORÍA DE NÚMEROS

(AULA 10) 04.AGOSTO.2023

Bases

La notación usual para números naturales es llamada la notación **base 10,** con dígitos $0,1,2,\ldots,9$. Esto significa por ejemplo, que

$$196883 = 1 \cdot 10^5 + 9 \cdot 10^4 + 6 \cdot 10^3 + 8 \cdot 10^2 + 8 \cdot 10^1 + 3 \cdot 10^0.$$

El siguiente resultado muestra cómo escribir cualquier natural en cualquier base d > 1.

Teorema (Representación en Bases)

Sean $n \in \mathbb{N}$, y d > 1. Existe una única secuencia (los dígitos de n en la base d) $a_0, a_1, \ldots, a_k, \ldots$ con las siguientes propiedades

- **1.** para todo $k \in \mathbb{N}$, $0 \le a_k < d$,
- **2.** existe $m \in \mathbb{N}$ tal que $a_k = 0$, para todo $k \ge m$,
- 3. $n=\sum_{k\geq 0}a_kd^k$.

<u>Prueba</u>: Usando el Algoritmo de la División, escribimos $n = n_0 = n_1 d + a_0$, $0 \le a_0 < d$, $n_1 = n_2 d + a_1$, $0 \le a_1 < d$; y en general, $n_k = n_{k+1} d + a_k$, con $0 \le a_k < d$, y vale (1).

Bases

Afirmamos primero que $n_k = 0$, para algún $k \in \mathbb{N}$. De hecho, si $n_0 < d^m$, entonces $n_1 = \lfloor \frac{n_1}{d} \rfloor < d^{m-1}$, y, más generalmente, por inducción se muestra que $n_k < d^{m-k}$. En particular, para $k \ge m$, tenemos $n_k < 1 \Rightarrow n_k = 0$. Se sigue de ahí que $a_k = 0$, para todo k > m, lo que muestra (2).

Para mostrar (3), procedemos por inducción sobre m+1 el número de dígitos a_j no nulos. Para m=0, $n=n_0 < d$ $n=0 \cdot d+a_0 \Rightarrow n=a_0=a_0 \cdot d^0$. Supongamos válida la propiedad para todo número entero con a lo sumo m dígitos en su representación base d. Entonces, si $n=(a_m\cdots a_1a_0)_d$, tenemos que $n_1=dn+a_0$. En particular $n_1=(a_m\cdots a_1)_d$. Por la hipótesis inductiva aplicada a n_1

$$n = dn + a_0 = d\left(\sum_{j=0}^{m-1} a_{j+1}d^j\right) + a_0 = \sum_{j=0}^{m-1} a_{j+1}d^{j+1} + a_0 = \sum_{j=1}^m a_jd^j + a_0 = \sum_{j=0}^m a_jd^j.$$

Para la unicidad, suponga que n admite dos representaciones en base d: $\sum_{j\geq 0} a_k d^k = n = \sum_{k\geq 0} b_k d^k$. Si las secuencias $\{a_k\}$ y $\{b_k\}$ son distintas, existe un menor índice j tal que $a_i \neq b_i$. Tomamos

Bases

$$a_j + \sum_{k>j} a_k d^{k-j} = b_j + \sum_{k>j} b_k d^{k-j} \quad \Rightarrow \quad a_j - b_j = \sum_{k>j} (b_k - a_k) d^{k-j},$$

lo que muestra que $d \mid a_j - b_j$. Pero $o \le a_k, b_k < d \Rightarrow o \le |a_j - b_j| < d$, implica que $a_j - b_j = o$, y portanto $a_j - b_j$ no puede ser un múltiplo de d, un absurdo. Esto muestra que la representación en base d es única. \Box

Notación: Ignorando los ceros iniciales, escribimos $n = (a_m a_{m-1} \cdots a_1 a_0)_d = \sum_{k=0}^m a_k d^k$, y llamamos a ésta la **representación en base** d **de** n.

Ejemplo: La representación binaria de n = 105 es

$$105 = 1\dot{2}^6 + 1 \cdot 2^5 + 0 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 0\dot{2} + 1 = 2^6 + 2^5 + 2^3 + 1,$$

o, en forma compacta, $105 = (1101001)_2$.

Ejemplo: Por otro lado, la representación $(1001111)_2$ corresponde a

$$n = 1 \cdot 2^6 + 0 \cdot 2^5 + 0 \cdot 2^4 + 1 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2 + 1 = 2^6 + 2^3 + 2^2 + 1 = 79.$$

Aplicación: Cálculo de potencias grandes módulo *n*.

Con frecuencia deseamos calcular el valor de una potencia $a^k \pmod{n}$, cuando k es grande. ¿Existe una forma eficiente de obtener este cálculo?

Uno de esos procedimientos, es llamado el **algoritmo exponencial binario**, y se basa en elevar al cuadrado de forma sucesiva, módulo *n*.

Más específicamente, el exponente k se escribe en forma binaria, como

$$k = (a_m a_{m-1} \cdots a_2 a_1 a_0)_2 = \sum_{i=0}^m a_i 2^i,$$

y los valores $a^{2^j} \pmod{n}$ se calculan para las potencias de 2, que corresponden a los 1's en la representación binaria de k. Estos resultados parciales luego se multiplican para dar la respuesta final.

Ejemplo: Calcular 5¹¹⁰ (mod 131).

Primero, expresamos el exponente 110 en base 2 como

$$110 = 64 + 32 + 8 + 4 + 2 = 2^6 + 2^5 + 2^3 + 2^2 + 2^1 = (1101110)_2.$$

Obtenemos ahora las potencias de $5^{2^j} \pmod{131}$, correspondientes a los 1's en la representación anterior:

$$5^2 \equiv 25 \pmod{131},$$
 $5^4 \equiv 25^2 \equiv 625 \equiv 101 \pmod{131},$
 $5^8 \equiv 101^2 \equiv 10201 \equiv 114 \pmod{131},$
 $5^{16} \equiv 114^2 \equiv 12996 \equiv 27 \pmod{131},$
 $5^{32} \equiv 27^2 \equiv 729 \equiv 74 \pmod{131},$
 $5^{64} \equiv 74^2 \equiv 5476 \equiv 105 \pmod{131}.$

Multiplicamos ahora los resultados parciales, correspondientes a los 1's en la expansión binaria del exponente

$$5^{110} = 5^{64} \cdot 5^{32} \cdot 5^8 \cdot 5^4 \cdot 5^2 \equiv 105 \cdot 74 \cdot 114 \cdot 101 \cdot 25 \equiv 60 \pmod{131}.$$

Como una variación del procedimiento anterior, se podrían calcular módulo 131, las potencias 5², 5³, 5⁶, 5¹², 5²⁴, 5⁴⁸, 5⁹⁶ para llegar al resultado

$$5^{110} = 5^{96} \cdot 5^{12} \cdot 5^2 \equiv 41 \cdot 117 \cdot 25 \equiv 60 \pmod{131},$$

lo que requeriría menos multiplicaciones.

Teorema

Sea $P(x) = \sum_{k=0}^{m} c_k x^k$ una función polinomial de x, con coeficientes enteros $c_k \in \mathbb{Z}$. Si $a \equiv b \pmod{n}$, entonces $P(a) \equiv P(b) \pmod{n}$.

<u>Prueba</u>: Como $a \equiv b \pmod{n}$, de las propiedades de congruencias, tenemos que $a^k \equiv b^k \pmod{n}$, para todo k = 0, 1, 2, ..., m. Luego, $c_k a^k \equiv c_k b^k \pmod{m}$, para todo k = 0, 1, 2, ..., n. Sumando todas estas congruencias, se obtiene

$$P(a) = \sum_{k=0}^{m} c_k a^k \equiv \sum_{k=0}^{m} c_k b^k = P(b) \pmod{n}.$$

Corolario

Si a es una solución de $P(x) \equiv O \pmod n$ y $a \equiv b \pmod n$, entonces b también es una solución.

<u>Prueba</u>: Del teorema, $a \equiv \pmod{n}$ implica que $P(a) \equiv P(b) \pmod{n}$. Por tanto, si a es una solución de $P(x) \equiv 0 \pmod{n}$, entonces $P(b) \equiv P(a) \equiv 0 \pmod{n}$, y b una solución.