A novel notation for quantum cryptography Applications to some recent quantum cryptographic protocols

and their equivalences

Zef Wolffs External Research Supervisor: Boris Škorić Internal Thesis Advisor: Jacco de Vries

January 11, 2020

Outline

- Introduction
 - Quantum Information
 - Quantum Cryptography
 - The Diagrammatic Notation
- The Classical One Time Pad
 - Diagrammatic Implementation
- The Quantum One Time Pad
 - Diagrammatic Implementation
 - Equivalence: Quantum Teleportation
- Quantum Key Recycling
 - Diagrammatic Implementation
 - Equivalences
- Discussion and Conclusions

Introduction

Quantum Information

 The classical bit vs. the qubit

Mutual unbiasedness

Representation of a classical bit (Left) and a qubit (right) [5].

Measuring $|0\rangle_z$ in the Z and X bases [4].

Quantum Cryptography

 Quantum cryptographic protocols: Sending a message securely using quantum mechanics

Alice, Bob, and Eve's roles in (quantum) cryptographic protocols [2].

Dirac notation is not very intuitive

The Diagrammatic Notation

Diagrams in ecology: food webs [3].

Diagrams in particle physics: Feynman diagrams [6].

The Dagrammatic Notation

 Proposed by Coecke and Kissinger in 2017, in Picturing Quantum Processes [1].

The Classical One Time Pad

Ideal situation:

Real situation:

(1)

The Classical One Time Pad

• The OTP solution: xor with secret random variable k

The Classical One Time Pad

 If Eve does not interfere, can Alice and Bob still communicate?

The Quantum One Time Pad

The Quantum One Time Pad

Equivalence: Quantum Teleportation

Equivalence: Quantum Teleportation

Equivalence: Quantum Teleportation

Quantum Teleportation The Quantum One Time Pad

Quantum Key Recycling

Discussion

References

Bob Coecke and Aleks Kissinger.

Picturing Quantum Processes.

Cambridge University Press, Cambridge, 2017.

Mathieu Cunche.

À l'attaque des codes secrets.

Interstices, 2011.

Randi Glaser.

Food Web Examples.

Blendspace.

Nimish Mishra.

Understanding the Basics of Quantum Computation.

Towards Data Science, 2019.

