1. Budowa modułu w architekturze subsumption.

Każdy moduł jest automatem o skończonej liczbie stanów, rozszerzonym dodatkowo o zmienne wewnętrzne które mogą obsłużyć struktury danych Lispowych.

Moduł ma pewną liczbę wejść i wyjść. Linie wejściowe wyposażone są w jednoelementowe bufory, tak że ostatnia wiadomość jest zawsze dostępna, jednak może ona zostać zgubiona, gdy nie zostanie wykorzystana przed pojawieniem się kolejnej.

Wyróżnia się 4 stany modułu:

- Output stan związany z generowaniem wyjścia (wypluwamy wyjście z modułu)
- Side effect stan pośredni (obliczanie zmiennych na podstawie wejść)
- Conditional dispatch stan z przejściem warunkowym (sprawdzamy jakiegoś if-a i decydujemy co dalej)
- Event dispatch stan z przejściem zdarzeniowym (coś przyszło z wejść i w związku z tym decydujemy, co dalej)

2. Pojęcie (def.) nawigacji reaktywnej + problemy związane z określaniem funkcji odwzorowującej.

Nawigacja reaktywna

Def. Przestrzeń percepcyjna S, jest to przestrzeń, której każda współrzędna reprezentuje sygnał z sensora (wejście systemu nawigacji).

Def. Przestrzeń komend Y, jest to przestrzeń, której każda współrzędna

reprezentuje współrzędną (parametr) komendy sterującej (wyjście systemu nawigacji)

Def. Odwzorowanie: $M: S \rightarrow Y$ przestrzeni percepcyjnej S na przestrzeń komend Y, określamy mianem **nawigacji reaktywnej**.

Problemy związane z określaniem funkcji odwzorowującej

Oznaczmy przez M' odwzorowanie zdolne doprowadzić robota do celu. Przy określaniu odwzorowania M pojawiają się dwa zasadnicze problemy:

- **I.** M musi być lokalnie dobrą aproksymacją odwzorowania M'. Lokalnie oznacza tu, że ono obowiązuje w pewnym regionie przestrzeni percepcyjnej (czyli szczególnym przedziale wartości danych sensorycznych) np.: robot musi zakręcić przed ścianą;
- **II.** M musi przybliżać M' w całej przestrzeni percepcyjnej S (tzn. zapewnić dobrą reakcje w każdej sytuacji percepcyjnej dla każdej kombinacji danych sensorycznych).

3. Architektura sterownika opartego na logice rozmytej.

4. Pojęcie (def.) "podstawowego" problemu planowania ruchu + pojęcie (def.) przestrzeni konfiguracyjnej + pojęcie (def.) siatki punktów decyzyjnych.

• Podstawowy problem planowania ruchu

Mając początkową i końcową pozycję (położenie i orientację) A w W należy, określić τ opisującą ciągłą sekwencję pozycji A unikających kontaktu z przeszkodami B_i,

prowadzącą od pozycji początkowej do końcowej, lub zasygnalizować jej brak - gdy taka ścieżka nie istnieje.

Przestrzeń konfiguracyjna

Koncepcja przestrzeni konfiguracyjnej polega na reprezentowaniu robota jako punktu w odpowiedniej przestrzeni - właśnie przestrzeni konfiguracyjnej robota - oraz odwzorowaniu przeszkód jako przestrzeni.

To odwzorowanie transformuje problem planowania ruchu obiektu wymiarowego w Problem Planowania ruchu Punktu. To z kolei powoduje, że ograniczenie ruchu stają się bardziej jawne.

Siatka punktów decyzyjnych

Każdą rozpoznawalną pozycję robota w W, reprezentowaną przez q = (r, θ) w C_{free} można traktować jako stan (reprezentowany przez q). Spośród tych stanów wybieramy takie, dla których istnieje prosty sposób określenia działania prowadzącego do osiągnięcia sąsiedniego stanu $q' \to q'z \quad q', q'k \in S'(?)$, gdzie: y - działanie, S'- zbiór wyróżnionych stanów spójnego regionu C_{free} . Wyróżnione stany q' określamy mianem **punktów decyzyjnych.**

Dla potrzeb planowania trasy, ze zbioru wszystkich punktów decyzyjnych wybieramy najmniejszą liczbę punktów, które wyznaczają dowolny sposób poruszania się w otoczenia.

Przestrzenny układ tak wybranych stanów określamy mianem **siatki punktów decyzyjnych** i oznaczamy przez S*.

5. Metody planowania trasy (w tym ideologia klasyfikacji).

Metody planowania trasy można sklasyfikować ze względu na sposób reprezentacji wiedzy o otoczeniu.

Metody mapy dróg

Polegają na uchwyceniu i odwzorowaniu spójności przestrzeni swobodnej za pomocą sieci 1-wymiarowych krzywych, zwanej **mapą dróg** $R, R \subseteq C_{free}$. Planowanie ścieżki sprowadza się do połączenia konfiguracji początkowej q_{init} i końcowej q_{goal} z R i w poszukiwaniu ścieżki w R.

Metody dekompozycji komórkowej

Polegają na podziale przestrzeni swobodnej na regiony wypukłe, zwane komórkami $K, K \subset C_{free}$ wewnątrz których ścieżka r łącząca dwie dowolne konfiguracje

 $q_i,\ q_j\in K_S$ jest odcinkiem prostej. Sąsiedztwo komórek ($K_i,\ K_j$) opisuje graf spójności, w którym wierzchołki połączone krawędzią reprezentują sąsiednie komórki. Kształt komórek odwzorowuje rzeczywisty kształt fragmentów przestrzeni swobodnej C_{free} a ich suma: $\bigcup_i K_i = C_{free}$ daje całą przestrzeń.

Metody rastrowe

Stosują podział całej przestrzeni konfiguracyjnej C na komórki równomiernej i poprzez odpowiednie kodowanie tych komórek wyznaczają sposób (kierunek) poruszania się robota w każdym punkcie przestrzeni swobodnej.

Metody pól potencjałów

Niech robot będzie robotem mobilnym o tylko dwóch stopniach swobody (tylko translacje), w przestrzeni konfiguracji, która leży poza przeszkodami powiększonymi o rozmiar robota. Wówczas robota można traktować jako punkt. W punkcie startowym ustawiamy pewien dodatni, odizolowany ładunek elektryczny. Następnie powiększone przeszkody ładujemy dodatnio, a pozycję docelową ujemnie. Wówczas taki odizolowany ładunek będzie w naturalny sposób przyciągany do celu i jednocześnie odpychany od przeszkód.

Metody wektorowe

6. Metoda VG grafu widzialności (koncepcja).

Graf widzialności jest grafem nieskierowanym, którego wierzchołkami są konfiguracja początkowa, docelowa oraz wszystkie wierzchołki C-przeszkód, a krawędziami odcinki proste łączące wszystkie widzące się wierzchołki.

Sieć R stanowi punkt wyjścia dla określenia grafu widzialności VG. W ujęciu formalnym graf taki jest trójką (Q, S, F), gdzie Q - zbiór wierzchołków, S - zbiór krawędzi, F - funkcja przyporządkowująca krawędziom koszt związany z ich długością.

Zmodyfikowany graf widzialności

skierowanych huków są pokazane jako "podwójnie" skierowane krawędzie).

7. Metoda diagramu Voronoi'a (koncepcja).

Diagram Voronoi'a jest zbiorem konfiguracji zachowujących minimalny dystans do więcej niż jednego punktu otoczenia B przestrzeni $C_{\it free}$.

Diagramem Voronoi'a przestrzeni Circe nazywamy zbiór konfiguracji:

$$Vor(C_{free}) = \{ \mathbf{q} \in C_{free} \mid card (near(\mathbf{q})) > 1 \}.$$

gdzie: card E - oznacza liczność (cardinality) zbioru E.

Konstrukcja diagramu

Gdy przestrzeń swobodna Cfree jest ograniczona wielobokami, to diagram składa się z odcinków prostych i paraboli. Każdy odcinek prostej jest zbiorem konfiguracji położonych najbliżej pary "krawędź-krawędź" lub "wierzchołek-wierzchołek". Każdy odcinek paraboli jest zbiorem konfiguracji położonych najbliżej pary "krawędź-wierzchołek".

8. Metoda Retrakcji.

Metoda ta należy do grupy metod Mapy Dróg. Polega na zdefiniowaniu ciągłego odwzorowania wolnej przestrzeni Cfree na jednowymiarową sieć krzywych R położoną w Cfree. Retrakcja jest klasycznym pojęciem w topologii.

Def: Niech X będzie przestrzenią topologiczną/ Niech Y c X. Odwzorowanie p: X->Y, które jest ciągłe i którego ograniczenie do Y jest odwzorowaniem identycznym nazywane jest retrakcją X w Y.

Tw: Niech p : Cfree->R, gdzie R c Cfree jest siatką 1-wymiarowych krzywych, będzie zachowującą spójność retrakcją. Pomiędzy dwiema konfiguracjami qi qg należącymi do Cfree istnieje ścieżka wtedy, gdy istnieje ścieżka pomiędzy ich odwzorowaniami.

9. Metody Dekompozycji Komórkowej.

Podejście dekompozycji komórkowej polega na podziale przestrzeni swobodnej na proste obszary, zwane *komórkami k*, $k \subset C_{free}$, o takiej własności, że we wnętrzu (interior) int (k_s) , każdej komórki można łatwo określić ścieżkę τ łączącą dowolne dwie konfiguracje \mathbf{q}_i , $\mathbf{q}_j \in k_s$.

Następnie można określić i przeszukiwać nieskierowany graf *G* reprezentujący sąsiedztwo komórek *k*. Taki graf jest nazywany *grafem spójności*. Jego węzłami są komórki wolnej przestrzeni. Dwa węzły są połączone łukiem, wtedy i tylko wtedy, gdy odpowiadające im komórki sąsiadują ze sobą.

Wynikiem przeszukiwania grafu spójności jest sekwencja komórek zwana *korytarzem*. Na podstawie tej sekwencji komórek można wyliczyć ciągłą ścieżkę swobodna.

Metody dekompozycji komórkowej można podzielić na:

(a) metody rzeczywistej dekompozycji komórkowej – dzielące przestrzeń swobodną na komórki, których kształt odwzorowuje konfigurację ograniczeń przestrzeni swobodnej C_{free} , a ich suma: $\bigcup k_i = C_{free}$ daje całą przestrzeń.

Do tej grupy metod należą m.in.:

- dekompozycja trapezoidalna (wertykalna);
- metoda c-komórek;
- metoda maksymalnych obszarów wypukłych,
- (b) metody przybliżonej dekompozycji komórkowej dzielące całą przestrzeń konfiguracyjną C na komórki o z góry ustalonym kształcie (komórki rastra); kształt ten nie zależy kształtu ograniczeń przestrzeni; suma komórek reprezentujących przestrzeń swobodną jest podzbiorem tej przestrzeni $\bigcup k_i \subset C_{free}$.

Do tej grupy metod należy dekompozycja "quad tree" (drzewa czwórkowego).

10. Metody Rastrowe planowania trasy.

Metoda transformaty odległości

Metoda transformaty odległości polega na propagacji odległości, począwszy od komórki, w której znajduje się cel, przez całą przestrzeń swobodną (każda komórka ma ośmiu sąsiadów). Czoło powstałej w ten sposób fali opływa przeszkody i przechodzi przez wszystkie wolne komórki zaznaczając w nich ich odległość od celu (wartość transformaty odległości). Przy takim kodowaniu najkrótsza ścieżka do celu przebiega po malejących wartościach transformaty, przechodząc po najbardziej stromym spadku.

Metoda transformaty ścieżki

W tej metodzie używa się fali, która jest kombinacją odległości od celu i miary wyrażającej poruszanie się zbyt blisko przeszkód. W efekcie tworzy to specyficzną transformatę wykazującą cechy metod pól potencjalnych. Wyliczenie tej transformaty przebiega dwuetapowo. Najpierw obliczana jest transformata przeszkód, w której komórki przeszkód są celami. W efekcie otrzymuje się funkcję kosztu "obstacle(c)" wyrażającą wpływ najbliższej przeszkody na komórkę c.

Metoda sztucznych pól potencjalnych

Niech robot będzie robotem mobilnym o tylko dwóch stopniach swobody (tylko translacje), w przestrzeni konfiguracji, która leży poza przeszkodami powiększonymi o rozmiar robota. Wówczas robota można traktować jako punkt. W punkcie startowym ustawiamy pewien dodatni, odizolowany ładunek elektryczny. Następnie powiększone przeszkody ładujemy dodatnio, a pozycję docelową ujemnie. Wówczas taki odizolowany ładunek będzie w naturalny sposób przyciągany do celu i jednocześnie odpychany od przeszkód.

Metoda Jacobi'ego

Aby obliczyć wartości pola w obszarze Ω , na model otoczenia zostaje nałożona siatka o określonych rozmiarach, a na niej punkt docelowy oraz granice obszaru, do których należą powierzchnie przeszkód. Funkcja $\Phi(x, y)$ jest, więc określona wartościami w kolejnych, dyskretnych punktach. Jeśli wielkości oczek siatki są równe w całym obszarze, wówczas stosując metodę różnicową, równanie Laplace'a dla przypadku dwuwymiarowego może być przedstawione jako następująca dyskretna (iteracyjna) zależność:

$$\Phi_{i,j}^{n+1} = \frac{1}{4} (\Phi_{i+1,j}^n + \Phi_{i-1,j}^n + \Phi_{i,j+1}^n + \Phi_{i,j-1}^n)$$

Metoda Gauss-Seidel'a

- Zmieniona metoda Gauss-Seidel'a
- Metoda SOR (Simultaneous Over-Relaxation)
- Metoda Elementów Skończonych (Finite Element Method)

Czy pytania będą łatwe?

