Normal Subgroups

A subgroup H of a group G is **normal** in G if gH = Hg for all $g \in G$. That is, a normal subgroup of a group G is one in which the right and left cosets are precisely the same.

Example 1. Let G be an abelian group. Every subgroup H of G is a normal subgroup. Since gh=hg for all $g \in G$ and $h \in H$, it will always be the case that gH = Hg.

Example 2. Let H be the subgroup of S_3 consisting of elements (1) and (12). Since

$$(123)H = \{(123), (13)\} \text{ and } H(123) = \{(123), (23)\},$$

H cannot be a normal subgroup of S_3 . However, the subgroup N, consisting of the permutations (1), (123), and (132), is normal since the cosets of N are

$$N = \{(1), (123), (132)\}$$

$$(12)N = N (12) = \{(12), (13), (23)\}$$

The following theorem is fundamental to our understanding of normal subgroups.

Theorem 10.1 Let G be a group and N be a subgroup of G. Then the following statements are equivalent.

- 1. The subgroup N is normal in G.
- 2. For all $g \in G$, $gNg^{-1} \subset N$.
- 3. For all $g \subseteq G$, $gNg^{-1} = N$.

Proof. (1) \Rightarrow (2). Since N is normal in G, gN = Ng for all g \in G. Hence, for a given g \in G and n \in N, there exists an n' in N such that gn=n'g. Therefore, gng⁻¹ = n' \in N or gNg⁻¹ \subset N.

- (2)⇒(3). Let g ∈ G. Since $gNg^{-1} ⊂ N$, we need only to show $N ⊂ gNg^{-1}$. For n ∈ N, $g^{-1}ng = g^{-1}n(g^{-1})^{-1} ∈ N$. Hence, $g^{-1}ng = n'$ for some n' ∈ N. Therefore, $n = gn'g^{-1}$ is in gNg^{-1} .
- (3)⇒(1). Suppose that $gNg^{-1} = N$ for all $g \in G$. Then for any $n \in N$ there exists an $n' \in N$ such that $gng^{-1} = n'$. Consequently, gn = n'g or $gN \subset Ng$. Similarly, $Ng \subset gN$.

Factor Groups

If N is a normal subgroup of a group G, then the cosets of N in G form a group G/N under the operation (aN)(bN) = abN. This group is called the factor or quotient group of G and N. Our first task is to prove that G/N is indeed a group.

Theorem 10.2 Let N be a normal subgroup of a group G. The cosets of N in G form a group G/N of order [G:N].

Proof. The group operation on G/N is (aN)(bN) = abN. This operation must be shown to be well-defined; that is, group multiplication must be independent of the choice of coset representative. Let aN = bN and cN = dN. We must show that

```
(aN)(cN) = acN = bdN = (bN)(dN).
```

Then $a=bn_1$ and $c=dn_2$ for some n_1 and n_2 in N. Hence,

```
acN = bn_1dn_2N
```

- $= bn_1 dN$
- $= bn_1Nd$
- = bNd
- = bdN.

The remainder of the theorem is easy: eN = N is the identity and $g^{-1}N$ is the inverse of gN. The order of G/N is, of course, the number of cosets of N in G.

STATE OF THE STATE

It is very important to remember that the elements in a factor group are sets of elements in the original group.

Example 3. Consider the normal subgroup of S_3 , $N = \{(1), (123), (132)\}$. The cosets of N in S_3 are N and (12)N. The factor group S_3 /N has the following multiplication table.

N (12)N

N N (12)N

(12) N (12)N N

This group is isomorphic to Z_2 . At first, multiplying cosets seems both complicated and strange; however, notice that S_3/N is a smaller group. The factor group displays a certain amount of information about S_3 . Actually, $N = A_3$, the group of even permutations, and $(12)N = \{(12), (13), (23)\}$ is the set of odd permutations. The information captured in G/N is parity; that is, multiplying two even or two odd permutations results in an even permutation, whereas multiplying an odd permutation by an even permutation yields an odd permutation.

$$0 + 3Z = \{..., -3, 0, 3, 6, ...\}$$

$$1 + 3Z = \{..., -2, 1, 4, 7, ...\}$$

$$2 + 3Z = {\ldots, -1, 2, 5, 8, \ldots}.$$

The group Z/3Z is given by the multiplication table below.

In general, the subgroup nZ of Z is normal. The cosets of Z/nZ are

The sum of the cosets k+Z and l+Z is k+l+Z. Notice that we have written our cosets additively, because the group operation is integer addition.

