Exercício_04

Para todos os exercícios faça/mostre a resolução do exercício.

1. Para a reação:

$$N_2(g) + 3 H_2(g) = 2 NH_3(g)$$

a) Escreva a expressão da constante de equilíbrio para a reação direta e para a reação inversa.

b) Calcule a constante de equilíbrio para a reação direta quando as concentrações de equilíbrio são:

$$[N_2]$$
= 0,602 M
 $[H_2]$ = 0,420 M
 $[NH_3]$ = 0,113 M

2. Considerando os dados apresentados abaixo:

$H_2(g) + I_2(g) \rightleftharpoons 2 HI(g)$					
	H _{2(g)}	I _{2(g)}	$HI_{(g)}$		
Conc. Inicial (M)	0,0175	0,0175	0		
Conc. Equilíbrio (M)	?	?	0,0276		

a) Calcule a concentração de HI supondo que esta reação não é um sistema em equilíbrio e a reação é completa e compare com a situação real (reação em equilíbrio [HI]= 0,0276M).				
b) Calcule as concentrações de equilíbrio de H ₂ e I ₂ .				
c) Calcule a constante de equilíbrio nestas condições.				
3) Explique sucintamente por que as constantes de equilíbrio são adimensionais.				

4) Escreva as expressões das constantes de equilíbrio Kc, para as seguintes reações:

a)
$$HF_{(aq)} + H_2O_{(l)} \rightleftharpoons H_3O^+_{(aq)} + F^-_{(aq)}$$

b)
$$2NO_{(g)} + O_{2(g)} \rightleftharpoons 2NO_{2(g)}$$

c)
$$CH_3COOH_{(aq)} + C_2H_5OH_{(aq)} \rightleftharpoons CH_3COOC_2H_{5(aq)} + H_2O_{(l)}$$

d)
$$PCI_{5(g)} + 2NO_{(g)} \rightleftharpoons 2NOCI_{(g)} + PCI_{3(g)}$$

e)
$$Ni_{(s)} + 4CO_{(q)} \rightleftharpoons Ni(CO)_{4(q)}$$

5) Considerando a reação em equilíbrio:

$$CO(g) + H_2O(g) \Rightarrow CO_2(g) + H_2(g) (K_c = 1,0 å 830 °C)$$

A concentração molar dos componentes de um sistema à 830 °C é mostrada abaixo:

CO	H ₂ O	CO ₂	H_2
1,0	1,0	2,0	2,0

Justifique se este sistema se encontra no estado de equilíbrio ou não? Caso não se encontre em equilíbrio, indique em que sentido está caminhando a reação para que o equilíbrio seja obtido.