DeepLearning.AI

Linear Regression with Multiple Variables

Multiple Features

Multiple features (variables)

one ->	Size in feet ² (x)	Price (\$) in 1000 's (y)		
feature	2104	400		
	1416	232		
	1534	315		
	852	178		
	•••			

$$f_{w,b}(x) = wx + b$$

Multiple features (variables)

	Size in feet²	Number of bedrooms	Number of floors	Age of home in years	Price (\$) in \$1000's	j=14
	X1	X2	Хз	Хų		n=4
	2104	5	1	45	460	-
i=2	1416	3	2	40	232	
	1534	3	2	30	315	
	852	2	1	36	178	

$$x_i = j^{th}$$
 feature

n = number of features $\vec{x}^{(i)} = \text{features of } i^{th} \text{ training example}$

 $\mathbf{x}_{i}^{(i)}$ = value of feature j in i^{th} training example

$$\frac{1}{2}$$
 = [1416 3 2 40]

$$X_3^{(2)} = 2$$

Model:

Previously:
$$f_{w,b}(x) = wx + b$$

$$f_{w,b}(x) = w_1 x_1 + w_2 x_2 + w_3 x_3 + w_4 x_4 + b$$
example
$$f_{w,b}(x) = 0.1 x_1 + 4 x_2 + 10 x_3 + -2 x_4 + 80$$

$$f_{w,b}(x) = 0.1 x_1 + 4 x_2 + 10 x_3 + -2 x_4 + 80$$
size #bedrooms #floors years price

$$f_{w,b}(\mathbf{x}) = w_1 x_1 + w_2 x_2 + \dots + w_n x_n + b$$

$$f_{\overrightarrow{w},b}(\overrightarrow{x}) = w_1x_1 + w_2x_2 + \cdots + w_nx_n + b$$

$$\overrightarrow{w} = [w_1 \ w_2 \ w_3 \dots w_n] \quad \text{parameters} \quad \text{of the model}$$

$$b \text{ is a Number}$$

$$vector \overrightarrow{\chi} = [\chi_1 \ \chi_2 \ \chi_3 \dots \chi_n]$$

$$f_{\overrightarrow{w},b}(\overrightarrow{x}) = \overrightarrow{w} \cdot \overrightarrow{x} + b = w_1\chi_1 + w_2\chi_2 + w_3\chi_3 + \cdots + w_n\chi_n + b$$

$$dot \text{ product} \quad \text{multiple linear regression}$$

$$(not \text{ multivariate regression})$$

DeepLearning.AI

Linear Regression with Multiple Variables

Vectorization
Part 1

Parameters and features

$$\overrightarrow{\mathbf{w}} = \begin{bmatrix} w_1 & w_2 & w_3 \end{bmatrix} \qquad \mathbf{n} = \mathbf{3}$$

b is a number

$$\vec{\mathbf{x}} = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \mathbf{x}_3 \end{bmatrix}$$

linear algebra: count from 1

$$w = np.array([1.0,2.5,-3.3])$$

$$b = 4 \qquad x[0] x[1] x[2]$$

$$x = np.array([10,20,30])$$

code: count from 0

Without vectorization $\Lambda = 100,000$

$$f_{\overrightarrow{w},b}(\overrightarrow{x}) = w_1 x_1 + w_2 x_2 + w_3 x_3 + b$$

$$f = w[0] * x[0] + w[1] * x[1] + w[2] * x[2] + b$$

Without vectorization

$$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = \left(\sum_{j=1}^{n} w_j x_j\right) + b \quad \stackrel{\bigwedge}{\underset{j=1}{\sum}} \rightarrow j = 1... \bigwedge$$

range(
$$o, n$$
) $\rightarrow j = 0 \dots n-1$

Vectorization

$$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = \overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{x}} + b$$

$$f = np.dot(w,x) + b$$

DeepLearning.AI

Linear Regression with Multiple Variables

Vectorization
Part 2

Without vectorization

```
for j in range (0,16):
     f = f + w[j] * x[j]
    f + w[0] * x[0]
    f + w[1] * x[1]
t_{15}
    f + w[15] * x[15]
```

Vectorization

efficient -> scale to large datasets

Gradient descent
$$\overrightarrow{w} = (w_1 \ w_2 \ \cdots \ w_{16})$$
 parameters derivatives $\overrightarrow{d} = (d_1 \ d_2 \ \cdots \ d_{16})$

$$w = \text{np.array}([0.5, \ 1.3, \ \dots \ 3.4])$$

$$d = \text{np.array}([0.3, \ 0.2, \ \dots \ 0.4])$$

$$\text{compute } w_j = w_j - 0.1d_j \text{ for } j = 1 \dots 16$$

Without vectorization

$$w_1 = w_1 - 0.1d_1$$

 $w_2 = w_2 - 0.1d_2$
 \vdots
 $w_{16} = w_{16} - 0.1d_{16}$

DeepLearning.AI

Linear Regression with Multiple Variables

Gradient Descent for Multiple Regression

repeat { $w_j = w_j - \alpha \frac{\partial}{\partial w_j} J(\underline{w_1, \cdots, w_n, b})$ $b = b - \alpha \frac{\partial}{\partial b} J(\underline{w_1, \cdots, w_n, b})$

repeat {
$$w_{j} = w_{j} - \alpha \frac{\partial}{\partial w_{j}} J(\overrightarrow{w}, b)$$

$$b = b - \alpha \frac{\partial}{\partial b} J(\overrightarrow{w}, b)$$

Vector notation

Previous notation

Gradient descent

One feature

repeat {
$$w = w - \alpha \frac{1}{m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)}) x^{(i)}$$

$$\frac{\partial}{\partial w} J(w,b)$$

$$b = b - \alpha \frac{1}{m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})$$

simultaneously update w, b

 $\mathbf{b} = \mathbf{b} - \alpha \frac{1}{m} \sum_{i=1}^{m} (f_{\overrightarrow{\mathbf{w}}, \mathbf{b}}(\overrightarrow{\mathbf{x}}^{(i)}) - \mathbf{y}^{(i)})$ simultaneously update w_i (for $j = 1, \dots, n$) and b

n features $(n \ge 2)$

An alternative to gradient descent

- Normal equation
 - Only for linear regression
 - Solve for w, b without iterations

Disadvantages

- Doesn't generalize to other learning algorithms.
- Slow when number of features is large (> 10,000)

What you need to know

- Normal equation method may be used in machine learning libraries that implement linear regression.
- Gradient descent is the recommended method for finding parameters w,b

DeepLearning.AI

Practical Tips for Linear Regression

Feature Scaling
Part 1

Feature and parameter values

$$\widehat{price} = w_1 x_1 + w_2 x_2 + b$$
size # bedrooms

 x_1 : size (feet²) x_2 : # bedrooms

range: 300 - 2,000 range: 0 - 5large

Small

House: $x_1 = 2000$, $x_2 = 5$, price = \$500k one training example

size of the parameters w_1, w_2 ?

$$w_1 = 50$$
, $w_2 = 0.1$, $b = 50$

$$price = 50 * 2000 + 0.1 * 5 + 50$$

$$price = $100,050.5k = $100,050.5c$$

$$w_1 = 0.1$$
, $w_2 = 50$, $b = 50$
small large
 $price = 0.1 * 2000k + 50 * 5 + 50$
 $200K$ $250K$ $50K$
 $price = $500k$ more reasonable

Feature size and parameter size

	size of feature x_j	size of parameter w_j
size in feet ²		←→
#bedrooms	\longleftrightarrow	←

Feature size and gradient descent

DeepLearning.AI

Practical Tips for Linear Regression

Feature Scaling
Part 2

Feature scaling

Mean normalization

Z-score normalization

Feature scaling

aim for about
$$-1 \le x_j \le 1$$
 for each feature x_j
$$-3 \le x_j \le 3$$
 acceptable ranges
$$-0.3 \le x_j \le 0.3$$

$$0 \le x_1 \le 3$$
 Okay, no rescaling $-2 \le x_2 \le 0.5$ Okay, no rescaling $-100 \le x_3 \le 100$ too large \rightarrow rescale $-0.001 \le x_4 \le 0.001$ too small \rightarrow rescale $98.6 \le x_5 \le 105$ too large \rightarrow rescale

DeepLearning.AI

Practical Tips for Linear Regression

Checking Gradient Descent for Convergence

Gradient descent

$$\begin{cases} w_j = w_j - \alpha \frac{\partial}{\partial w_j} J(\vec{w}, b) \\ b = b - \alpha \frac{\partial}{\partial b} J(\vec{w}, b) \end{cases}$$

Make sure gradient descent is working correctly

Automatic convergence test Let ε "epsilon" be 10^{-3} .

o.oo1

If $J(\vec{w}, b)$ decreases by $\leq \varepsilon$ in one iteration, declare convergence.

(found parameters \vec{w}, b to get close to global minimum)

DeepLearning.AI

Practical Tips for Linear Regression

Choosing the Learning Rate

r learning rate is too large

$$w_1 = w_1 + \alpha d_1$$
 use a minus sign $w_1 = w_1 - \alpha d_1$

Adjust learning rate

With a small enough α , $J(\overrightarrow{w}, b)$ should decrease on every iteration

If α is too small, gradient descent takes a lot more iterations to converge

Values of α to try:

DeepLearning.Al

Practical Tips for Linear Regression

Feature Engineering

Feature engineering

$$f_{\overrightarrow{w},b}(\overrightarrow{x}) = w_{1} x_{1} + w_{2} x_{2} + b$$

frontage depth

$$area = frontage \times depth$$

$$x_3 = x_1 x_2$$
new feature

$$f_{\vec{w},b}(\vec{x}) = w_1 x_1 + w_2 x_2 + w_3 x_3 + b$$

Feature engineering:
Using intuition to design
new features, by
transforming or combining
original features.

DeepLearning.Al

Practical Tips for Linear Regression

Polynomial Regression

Polynomial regression

Choice of features

