

8-bit shift register with output latches (3-state)

Datasheet - production data

Features

- High speed: f_{MAX} = 59 MHz (typ.) at V_{CC} = 6 V
- Low power dissipation: I_{CC} = 4 μA (max.) at T_A = 25 °C
- High noise immunity:
 V_{NIH} = V_{NIL} = 28% V_{CC} (min.)
- Symmetrical output impedance:
 - $|I_{OH}| = I_{OL} = 6$ mA (min.) for QA to QH
 - $|I_{OH}| = I_{OL} = 4 \text{ mA (min.) for QH'}$
- Balanced propagation delays: t_{PLH} ≅ t_{PHL}
- Wide operating voltage range:
 V_{CC} (opr.) = 2 V to 6 V
- Pin and function compatible with 74 series 595

Applications

- Automotive
- Industrial
- Computer
- Consumer

Description

The M74HC595 device is a high speed CMOS 8-bit shift register with output latches (3-state) fabricated with silicon gate C²MOS technology.

This device contains an 8-bit serial in, parallel out shift register that feeds an 8-bit D-type storage register. The storage register has 8 3-state outputs. Separate clocks are provided for both the shift register and the storage register.

The shift register has direct overriding clear, serial input, and serial output (standard) pins for cascading. Both the shift register and storage register use positive edge triggered clocks. If both clocks are connected together, the shift register state will always be one clock pulse ahead of the storage register.

All inputs are equipped with protection circuits against static discharge and transient excess voltage.

Table 1. Device summary

Order code	Temperature range	emperature range Package		Marking
M74HC595RM13TR	-55/+125 °C	SO-16	Tape and reel	74HC595
M74HC595YRM13TR ⁽¹⁾	-40/+125 °C	SO-16 (automotive grade)	Tape and reel	74HC595Y
M74HC595TTR	-55/+125 °C	TSSOP-16	Tape and reel	HC595
M74HC595YTTR ⁽¹⁾	-40/+125 °C	TSSOP-16(automotive grade)	Tape and reel	HC595Y
M74HC595B1R	-55/+125 °C	PDIP-16	Tube	M74HC595B1

Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 and Q002 or equivalent are ongoing.

Contents M74HC595

Contents

1	Pin information	3
2	Functional description	4
3	Electrical description	7
4	Package information	6
5	Revision history	2

M74HC595 Pin information

1 Pin information

G (13) EN3 RCK (12) 16 V_CC QB 1 SCLR (10) R SRG8 QA QC 2 SCK SI (15) QA QD 3 2D (1) QB G QE 4 (2) QC RCK QF 5 (3) QD (4)_ QE SCK QG 6 (5) QF SCLR QH (6) QG QH' (7) QH GND 2D ⊳ 3⊽ (9) QH'

Figure 1. Pin connection and IEC logic symbols

Table 2. Pin description

AM03212

Pin no	Symbol	Name and function							
1, 2, 3, 4, 5, 6, 7, 15	QA to QH	Data outputs							
9	QH'	Serial data outputs							
10	SCLR	Shift register clear input							
11	SCK	Shift register clock input							
13	ĪG	Output enable input							
14	SI	Serial data input							
12	RCK	Storage register clock input							
8	GND	Ground (0 V)							
16	V _{CC}	Positive supply voltage							

AM03213

2 Functional description

Figure 2. Block diagram

1. This block diagram has not be used to estimate propagation delays.

Figure 3. Logic diagram

1. This logic diagram has not be used to estimate propagation delays.

Table 3. Truth table⁽¹⁾

		Inputs		Outrute	
SI	SCK	SCLR	RCK	G	Outputs
Х	Х	Х	Х	Н	QA thru QH outputs disable
Х	Х	Х	Х	L	QA thru QH outputs enable
Х	Х	L	Х	Х	Shift register is cleared
L		Н	Х	Х	First stage of S.R. becomes "L" other stages store the data of previous stage, respectively
Н		Н	Х	Х	First stage of S.R. becomes "H" other stages store the data of previous stage, respectively
Х	7	Н	Х	Х	State of S.R. is not changed
Х	Х	Х		Х	S.R. data is stored into storage register
Х	Х	Х	Z	Х	Storage register state is not changed

^{1.} X: don't care.

Figure 4. Timing chart

INPUT OUTPUT

GND GND

AM03206

Figure 5. Input and output equivalent circuit

3 Electrical description

Table 4. Absolute maximum ratings⁽¹⁾

Symbol	Parameter		Value	Unit	
V_{CC}	Supply voltage	Supply voltage			
V _I	DC input voltage		-0.5 to V _{CC} + 0.5	V	
V _O	DC output voltage		-0.5 to V _{CC} + 0.5	V	
I _{IK}	DC input diode current	± 20	mA		
I _{OK}	DC output diode current	± 20	mA		
Io	DC output current	± 35	mA		
I _{CC} or I _{GND}	DC V _{CC} or ground current		± 70	mA	
		DIP	750 ⁽²⁾	mW	
P_{D}	Power dissipation	SOP	500 ⁽²⁾	mW	
		TSSOP			
T _{stg}	Storage temperature	Storage temperature			
T _L	Lead temperature (10 sec.)	300	°C		

Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

Table 5. Recommended operating conditions

Symbol	Parameter		Value	Unit
V _{CC}	Supply voltage	2 to 6	V	
V _I	Input voltage	0 to V _{CC}	V	
V _O	Output voltage	0 to V _{CC}	V	
T _{op}	Operating temperature		-55 to 125	°C
		V _{CC} = 2.0 V	0 to 1000	ns
t _r , t _f	Input rise and fall time	V _{CC} = 4.5 V	0 to 500	ns
		0 to 400	ns	

^{2.} Power dissipation at 65 °C. Derating from 65 °C to 125 °C: DIP package -10 mW/°C; SO package -7 mW/°C; TSSOP package -6.1 mW/°C.

Table 6. DC specifications

		Test condition					Value	•			
Symbol	Parameter			T,	_A = 25 °	°C	-40 to	85 °C	-55 to	125 °C	Unit
		V _{CC} (V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
		2.0		1.5			1.5		1.5		
V_{IH}	High level input voltage	4.5		3.15			3.15		3.15		V
		6.0		4.2			4.2		4.2		
	V _{IL} Low level input voltage	2.0				0.5		0.5		0.5	
V_{IL}		4.5				1.35		1.35		1.35	V
, and the second	6.0				1.8		1.8		1.8		
	High level output	2.0	I _O = -20 μA	1.9	2.0		1.9		1.9		
		4.5	I _O = -20 μA	4.4	4.5		4.4		4.4		
V_{OH}	voltage	6.0	I _O = -20 μA	5.9	6.0		5.9		5.9		٧
	(for QH' outputs)	4.5	I _O = -4.0 mA	4.18	4.31		4.13		4.10		
	6.0	I _O = -7.8 mA	5.68	5.8		5.63		5.60			
	2.0	I _O = -20 μA	1.9	2.0		1.9		1.9			
	High level output	4.5	I _O = -20 μA	4.4	4.5		4.4		4.4		
V_{OH}	voltage (for QA to QH	6.0	I _O = -20 μA	5.9	6.0		5.9		5.9		V
	outputs)	4.5	I _O = -6.0 mA	4.18	4.31		4.13		4.10		
		6.0	I _O = -7.8 mA	5.68	5.8		5.63		5.60		
		2.0	I _O = 20 μA		0.0	0.1		0.1		0.1	
	Low level output	4.5	I _O = 20 μA		0.0	0.1		0.1		0.1	
V_{OL}	voltage	6.0	I _O = 20 μA		0.0	0.1		0.1		0.1	٧
	(for QH' outputs)	4.5	I _O = 4.0 mA		0.17	0.26		0.33		0.40	
		6.0	I _O = 7.8 mA		0.18	0.26		0.33		0.40	
		2.0	I _O = 20 μA		0.0	0.1		0.1		0.1	
	Low level output	4.5	I _O = 20 μA		0.0	0.1		0.1		0.1	
V_{OL}	voltage (for QA to QH	6.0	I _O = 20 μA		0.0	0.1		0.1		0.1	٧
	outputs)	4.5	I _O = 6.0 mA		0.17	0.26		0.33		0.40	
		6.0	I _O = 7.8 mA		0.18	0.26		0.33		0.40	
I _I	Input leakage current	6.0	V _I = V _{CC} or GND			± 0.1		± 1		± 1	μА
I _{OZ}	High impedance output leakage current	6.0	$V_I = V_{IH} \text{ or } V_{IL}$ $V_O = V_{CC} \text{ or GND}$			± 0.5		± 5		± 10	μА
I _{CC}	Quiescent supply current	6.0	V _I = V _{CC} or GND			4		40		80	μА

Table 7. AC electrical characteristics (C_L = 50 pF, input t_r = t_f = 6 ns)

		To	est condi	tion				Value)			
Symbol	Parameter	.,	O (E)		T	_A = 25°	C	-40 to	85°C	-55 to	125°C	Unit
	V _{CC} (C _L (pF)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	•
	Output	2.0				25	60		75		90	
t_{TLH} , t_{THL}	transition time	4.5	50			7	12		15		18	ns
	(Qn)	6.0				6	10		13		15	
	Output	2.0				30	75		95		115	
t_{TLH} , t_{THL}	transition time	4.5	50			8	15		19		23	ns
	(QH')	6.0				7	13		16		20	
	Propagation	2.0				45	125		155		190	
t_{PLH},t_{PHL}	delay time	4.5	50			15	25		31		38	ns
(SCK - QH')	(SCK - QH')	6.0				13	21		26		32	
	Propagation	2.0				60	175		220		265	
t_{PLH},t_{PHL}	delay time	4.5	50			18	35		44		53	ns
(SCLR	(SCLR - QH')	6.0				15	30		37		45	
		2.0				60	150		190		225	
	Propagation	4.5	50			20	30		38		45	ns
t _{PLH} , t _{PHL}	delay time	6.0				17	26		32		38	
	(RCK - Qn)	2.0				75	190		240		285	
		4.5	150			25	38		48		57	ns
		6.0				22	32		41		48	
		2.0				45	135		170		205	
	Lliab	4.5	50	$R_L = 1 K\Omega$		15	27		34		41	ns
	High impedance	6.0				13	23		29		35	
t _{PZL} , t _{PZH}	output enable time	2.0				60	175		220		265	
	uille	4.5	150	R _L = 1 KΩ		20	35		44		53	ns
		6.0				17	30		37		45	
	High	2.0				30	150		190		225	\dagger
t_{PLZ} , t_{PHZ}	impedance output disable	4.5	50 I	R _L = 1 KΩ		15	30		38		45	ns
	time	6.0				14	26		32		38]

Table 7. AC electrical characteristics ($C_L = 50 \text{ pF}$, input $t_r = t_f = 6 \text{ ns}$) (continued)

		Te	est condit	ion		, ,	-	Value				
Symbol	Parameter		0 (5)		T,	_A = 25°	C	-40 to	85°C	-55 to 125°C		Unit
		V _{CC} (V)	C _L (pF)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
		2.0			6.0	17		4.8		4		
		4.5	50		30	50		24		20		MHz
f	Maximum clock	6.0			35	59		28		24		
f _{MAX}	frequency	2.0			5.2	14		4.2		3.4		
		4.5	150		26	40		21		17		MHz
		6.0			31	45		25		20		
	Minimum pulse	2.0				17	75		95		110	
t _{W(H)}	width	4.5	50			6	15		19		22	ns
(SCK, RCK)	(SCK, RCK)	6.0				6	13		16		19	
	Minimum pulse	2.0				20	75		95		110	
t _{W(L)} width	width	4.5	50			6	15		19		22	ns
	(SCLR)	6.0				6	13		16		19	
	Minimum setup	2.0				25	50		65		75	
t _s	time	4.5	50			5	10		13		15	ns
	(SI - CCK)	6.0				4	9		11		13	
	Minimum setup	2.0				35	75		95		110	
t _s	time	4.5	50			8	15		19		22	ns
	(SCK - RCK)	6.0				6	13		16		19	
	Minimum setup	2.0				40	100		125		145	
t _s	time	4.5	50			10	20		25		29	ns
	(SCRL - RCK)	6.0				7	17		21		25	
		2.0					0		0		0	
t _h	Minimum hold time	4.5	50				0		0		0	ns
		6.0					0		0		0	
		2.0				15	50		65		75	
t _{REM}	Minimum clear removal time	4.5	50			3	10		13		15	ns
		6.0				3	9		11		13	

Table 8. Capacitive characteristics

Symbol		Test condition		Value							
	Parameter	V _{CC} (V)	T _A = 25 °C			-40 to 85 °C		-55 to 125 °C		Unit	
			Min.	Тур.	Max.	Min.	Max.	Min.	Max.		
C _{IN}	Input capacitance			5	10		10		10	pF	
C _{PD}	Power dissipation capacitance ⁽¹⁾			184						pF	

 C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to *Figure 6: Test circuit*t). Average operating current can be obtained by the following equation: $I_{CC(opr)} = C_{PD} \times V_{CC} \times f_{IN} + I_{CC}$.

Figure 6. Test circuit

Table 9. Propagation delay time configuration

Test	Switch
t _{PLH} , t _{PHL}	Open
t _{PZL} , t _{PLZ}	V _{CC}
t _{PZH} , t _{PHZ}	GND

 C_L = 50 pF/150 pF or equivalent (includes jig and probe capacitance) R_1 = 1 $K\Omega$ or equivalent R_T = Z_{OUT} of pulse generator (typically 50 Ω). Note:

Figure 7. Waveform 1: SCK to QH' propagation delay times, SCK minimum pulse width (f = 1 MHz; 50% duty cycle)

Figure 9. Waveform 3: SI to SCK setup and hold times (f = 1 MHz; 50% duty cycle)

Figure 11. Waveform 5: SCLR minimum pulse width, minimum removal time (f = 1 MHz; 50% duty cycle)

Figure 13. Waveform 7: input waveform (f = 1 MHz; 50% duty cycle)

Package information M74HC595

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

Figure 14. Plastic DIP-16 (0.25) package outline

Table 10. Plastic DIP-16 (0.25) package mechanical data

	Dimensions									
Symbol		mm			inch					
	Min.	Тур.	Max.	Min.	Тур.	Max.				
a1	0.51			0.020						
В	0.77		1.65	0.030		0.065				
b		0.5			0.020					
b1		0.25			0.010					
D			20			0.787				
E		8.5			0.335					
е		2.54			0.100					
e3		17.78			0.700					
F			7.1			0.280				
I			5.1			0.201				
L		3.3			0.130					
Z			1.27			0.050				

Package information M74HC595

Figure 15. SO-16 package outline

Table 11. SO-16 package mechanical data

Dimensions						
Symbol	mm			inch		
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α			1.75			0.068
a1	0.1		0.2	0.004		0.008
a2			1.65			0.064
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
С		0.5			0.019	
c1			45° ((typ.)		
D	9.8		10	0.385		0.393
E	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		8.89			0.350	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
М			0.62			0.024
S	8° (max.)					

M74HC595 Package information

A PO SO-16-TR

Figure 16. Tape and reel SO-16 outline

1. Drawing is not in scale.

Table 12. Tape and reel SO-16 mechanical data

	Dimensions					
Symbol		mm			inch	
	Min.	Тур.	Max.	Min.	Тур.	Max.
А			330			12.992
С	12.8		13.2	0.504		0.519
D	20.2			0.795		
N	60			2.362		
Т			22.4			0.882
Ao	6.45		6.65	0.254		0.262
Во	10.3		10.5	0.406		0.414
Ko	2.1		2.3	0.082		0.090
Po	3.9		4.1	0.153		0.161
Р	7.9	-	8.1	0.311		0.319

Package information M74HC595

PIN 1 IDENTIFICATION 1

0080338D

Figure 17. TSSOP-16 package outline

Table 13. TSSOP-16 package mechanical data

	Dimensions						
Symbol		mm			inch		
	Min.	Тур.	Max.	Min.	Тур.	Max.	
А			1.2			0.047	
A1	0.05		0.15	0.002	0.004	0.006	
A2	0.8	1	1.05	0.031	0.039	0.041	
b	0.19		0.30	0.007		0.012	
С	0.09		0.20	0.004		0.0079	
D	4.9	5 5	.1	0.193	0.197	0.201	
Е	6.2	6.4	6.6	0.244	0.252	0.260	
E1	4.3	4.4	4.48	0.169	0.173	0.176	
е		0.65 BSC			0.0256 BSC		
K	0°		8°	0°		8°	
L	0.45	0.60	0.75	0.018	0.024	0.030	

M74HC595 Package information

Figure 18. Tape and reel TSSOP-16 outline

1. Drawing is not in scale.

Table 14. Tape and reel TSSOP-16 mechanical data

	Dimensions						
Symbol		mm			inch		
	Min.	Тур.	Max.	Min.	Тур.	Max.	
Α			330			12.992	
С	12.8		13.2	0.504		0.519	
D	20.2			0.795			
N	60			2.362			
Т			22.4			0.882	
Ao	6.7		6.9	0.264		0.272	
Во	5.3		5.5	0.209		0.217	
Ko	1.6		1.8	0.063		0.071	
Po	3.9		4.1	0.153		0.161	
Р	7.9		8.1	0.311		0.319	

Revision history M74HC595

5 Revision history

Table 15. Document revision history

Date	Revision	Changes
18-Apr-2013	5	Added Applications to page 1. Updated Table 1 (updated data, removed M74HC595M1R order code, added M74HC595RM13TR, M74HC595YRM13TR, M74HC595TTR, and M74HC595YTTR order code, temperature range, marking, updated package and packaging). Redrawn Figure 1 to Figure 4 and Figure 7 to Figure 13. Moved Figure 1 to page 3. Added Contents. Added titles to Section 1 to Section 5 (reformatted Section 1 and Section 2). Added title to Table 9. Added cross-reference to note 1. below Table 8. Added ECOPACK text to Section 4, reformatted Section 4 (reversed order of figures and tables, added titles to Figure 14 to Figure 18 and Table 10 to Table 14, moved notes below Figure 16 and Figure 18). Added Table 15. Minor corrections throughout document.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

DocID1989 Rev 5 23/23