Equação diferencial Equação diferencial ordinária EDO's Soluções

Análise Matemática III

Equações diferenciais ordinárias

Ricardo Moura

Escola Naval

21 de setembro de 2021

Equações diferenciais

Definição (Equação diferencial)

Uma equação diferencial é uma equação que relaciona funções (variáveis dependentes ou incógnitas) com as suas derivadas (derivadas da variável dependente em relação a uma ou mais variáveis).

Exemplo

y'=y, y''=-g - $com\ g\in\mathbb{R}$, Lei de arrefecimento de Newton - a taxa de perda de calor de um corpo é proporcional à diferença entre as temperaturas do corpo, T, e do meio ambiente. T_m .

$$\frac{dT}{dt} = -k \ (T - T_m), k \in \mathbb{R}$$

Equações diferenciais

Definição (Equação diferencial ordinária - EDO)

Uma equação diferencial diz-se ordinária (EDO) se a função incógnita depender apenas de uma variável.

$$F(x, y, y', y'', \dots, y^{(n)}) = 0$$

Definição (Equação diferencial com derivadas parciais - EDP)

Uma equação diferencial diz-se com derivadas parciais (EDP) se a função incógnita depender de duas ou mais variáveis.

Definição (Ordem de uma equação diferencial)

Uma equação diferencial diz-se de ordem n se a derivada de maior grau for n.

EDO's

Definição (Forma normal)

Uma EDO de ordem n que possa ser representada na forma

$$y^{(n)} = f(x, y, y', \dots, y^{(n-1)})$$

diz-se representada na forma normal.

Definição (Equação diferencial linear)

Diz-se que uma equação diferencial é linear se a função dependente e as suas derivadas não possuem grau (valor do expoente) diferente de 1 (algumas poderão ter expoente nulo) e os coeficientes dependem apenas da variável independente.

Nota

$$a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y = g(x)$$
 é uma

EDO's

Definição (equação diferencial linear homogénea)

Uma equação diferencial linear diz-se homogénea se o termo independente g(x) for identicamente nula.

Definição

 $a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \cdots + a_1(x)y' + a_0(x)y = g(x)$ é uma EDO linear de ordem n de coeficientes constantes se $a_i(x), i = 1, \ldots, n$, forem funções constantes, caso contrário, será de coeficientes variáveis.

Exemplo (equação diferencial linear homogénea)

Indique o tipo e classificação de cada uma das equações diferenciais seguintes:

$$yy' + 2x = 0$$

$$y' + 3ty^{2} - t^{2} = 0$$

$$(y'')^{4} - 2x(y')^{5} - xy = 0$$

$$y'' + y + x = 0$$

$$\frac{\partial^{2}f}{\partial y^{2}} - 3\frac{\partial f}{\partial x^{2}} = 0$$

$$yy'' + \cos(y) = 2x$$

$$3y\frac{\partial f}{\partial x} - 3x\frac{\partial f}{\partial y} = 0$$

Solução de uma EDO

Definição (Solução de uma equação diferencial)

Uma solução de um equação diferencial um intervalo I será toda a função definida e derivável em I, tantas vezes quanto a ordem da equação diferencial, que ao ser substituída na função incógnita verifica uma relação de igualdade.

Nota

A função f(x) é solução da EDO de ordem n em \mathbf{I} , $F(x,y,y',\ldots,y^{(n)})=0$, se $F(x,f(x),f'(x),\ldots,f^{(n)}(x))$ estiver definida para todo $x\in\mathbf{I}$ e se $F(x,f(x),f'(x),\ldots,f^{(n)}(x))=0$ for uma proposição verdadeira para todo $x\in\mathbf{I}$.

Nota

Quando a solução é apresentada na forma implícita (a solução é apresentada em forma de equação relacionando as diversas variáveis), dá-se o nome de solução implícita ou solução integral.

Solução de uma EDO

Exemplo

Qualquer uma das equações $y = \sin(2x)$, $y = \cos(2x)$ é solução da equação diferencial y'' + 4y = 0. (Veremos à posteriori que qualquer combinação linear de cada uma das duas funções apresentadas é também solução desta equação diferencial)

A equação $y^2+x^2=1$ é uma solução implícita de yy'+x=0 no intervalo $\left[-\frac{1}{2},\frac{1}{2}\right]$.

Curva integral

Definição (Curva integral)

Uma curva integral de uma EDO corresponde ao gráfico (geométrico) da solução da EDO. No caso da solução geral da EDO, a curva integral é na verdade uma família de curvas e, no caso de uma solução particular, representa uma dessas curvas.

Definição (Campo de direções)

Um campo de direções de uma equação diferencial na forma y'=f(x,y) é a representação gráfica dos versores das retas tangentes às soluções particulares da EDO, numa malha de pontos definidas em $\mathbf{I}_x \times \mathbf{I}_y \subset D_f$

Equação diferencial Equação diferencial ordinária EDO's Soluções

Exemplo

Como descobrir as curvas integrais da eq. dif. xy' - 2y = 0 através dos campos de direções?

Exemplo

Como descobrir as curvas integrais da eq. dif. xy' - 2y = 0 através dos campos de direções?

Figura: Campo de direções.

Exemplo

Como descobrir as curvas integrais da eq. dif. xy' - 2y = 0 através dos campos de direções?

Figura: Campo de direções e 4 curvas integrais.

Problema de valores iniciais

Definição (PVI)

Um problema de valores iniciais (PVI) associado a uma equação diferencial consiste em determinar a solução particular desta que satisfaça uma condição inicial (se a equação diferencial é de ordem n terão de ser dados os valores da função incógnita e das suas derivadas até à ordem n-1 num mesmo ponto do domínio).

Nota

No caso de uma EDO linear de 1.ª ordem, o PVI pode ser apresentado apenas através de:

$$\begin{cases} \frac{dy}{dx} = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

Problema de valores iniciais

Teorema (Existência e unicidade de um PVI)

Considerando um PVI de uma EDO linear de 1.ª ordem

$$\begin{cases} \frac{dy}{dx} = f(x, y) \\ y(x_0) = y_0 \end{cases},$$

então, para $\forall (x_0,y_0) \in D_f$, existe uma única solução y(x) da equação diferencial num intervalo $[x_0-h,x_o+h]$, com h>0, tal que $y(x_0)=y_0$, se satisfizerem as seguintes condições

- ▶ f for contínua num aberto $D_f \subset \mathbb{R}^2$;
- ▶ $\frac{\partial f}{\partial v}$ for contínua em D_f ;

Problema de valores iniciais

Exemplo

Verifique que
$$y = C_1 e^x + C_2 e^{-2x} - 1$$
 é solução da EDO $y'' + y' - 2y = 2$. Qual a solução particular desta EDO, se se considerarem as seguintes condições iniciais: $y(0) = 0 \land y'(0) = 4$