

Reasoning with Ontologies in Real Time for Non-Player Character's Al in Video Games

Sylvain Lapeyrade, Christophe Rey, Bruno Bachelet and Loïc Yon Université Clermont Auvergne, CNRS, LIMOS, Clermont-Ferrand, France

Objectives

- 1. Improve Artificial Intelligence (AI) credibility in games.
- 2. Simplify the Al implementation for developers and game designers.
- 3. **Optimise** to allow a real-time execution.

Game Al

Why video games for Al?

Video games are an ideal platform for experimentation in Al [1]:

- ► The virtual environment allows us to **free ourselves** from the **physical constraints** of the real world.
- ► Costs associated with development are reduced to software programming.
- ▶ It is **easier and quicker to model and solve** problems in a virtual environment where you can easily change the rules of the game and therefore the world.

Context

- ▶ It is not uncommon to see **non-credible Non-Player Character (NPC)** behaviour in video games. This can result in absurd actions, such as illogical movement or inconsistent and incoherent dialogue [2].
- ► To **enhance the credibility** of these Als, we propose to use **logic programming** which has proven its efficiency for several decades [3], but which is almost absent in game Al [1].

Ontological reasoning

How does logic programming works?

- 1. Represent knowledge also called ontologies e.g. facts or rules.
- 2. Specify a problem declaratively e.g. by asking a question.
- 3. The **inference engine** (usually a Prolog engine) answers the problem by **reasoning logically** about ontologies.

Advantages

Why logic programming?

- Logic programming is based on **formal logic**. Unlike popular machine learning techniques, it is in line with the principles of Explainable Al (XAI): **explainability, interpretability, transparency** and **accountability**.
- ➤ Scalability and maintainability of the Al algorithm are simplified by the declarative aspect of logic programming and the ease of adding and removing rules.
- ► The use of **backward-chaining** allows one to try to prove a given goal by using rules to generate sub goals and by trying to satisfy them recursively. Among other things, it allows for efficient **planning**.

Challenges and leads

- 1. The approach is not **directly usable** by the developers.
 - ▶ Need to interface game engine (Unity) and inference engine (Prolog).
 - Developing a library would help to use Prolog from Unity.
- 2. Make the Al more complex while keeping its behaviour understandable for developers and players.
 - Using the **Belief-Desire-Intention (BDI)** [4] standard to generate action plans.
 - Using the **Well-Founded Semantic (WFS)** [5] to introduce uncertainty and negation.
- 3. Scaling up from one agent to thousands is not trivial.
 - Description of Description Description of Description Description
 - ▶ Determining algorithmically the resources i.e. the reasoning power to be allocated to each agent.

Prototype

We have **developed a prototype** inspired by the game "Wumpus World" [3] with the **Unity game engine** and the **SWI-Prolog inference engine** in order to test the quality and efficiency of our approach.

Figure 1: Snapshot of a game played by the AI on the prototype – agent view.

Figure 2: Snapshot of a game played by the AI on the prototype – world view.

Collaboration

Research collaboration with the independent game development studio Wako Factory to test the approach on a real commercial game.

Figure 3: Game project.

Why this collaboration?

- 1. Developing a real commercial game allows to have:
- ▶ Feedback from real players and developers.
- **▶ Game data** for **analysis**.
- 2. This game would be a **showcase** for the **approach**.
- ▶ Willingness to put the Al at the centre of the game.
- ▶ The Al's decisions will be visible and justified.

Acknowledgements

This research was funded in equal parts by the French National Research Agency (ANR) and the European Regional Economic Development Fund (FEDER).

References

- [1] Georgios N. Yannakakis and Julian Togelius. *Artificial Intelligence and Games*. Springer International Publishing: Imprint: Springer, Cham, 1st ed. 2018 edition, 2018.
- [2] Ian Millington. Al for games. Taylor & Francis, a CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic division of T&F Informa, plc, Boca Raton, third edition edition, 2019.
- [3] Stuart J. Russell and Peter Norvig. *Artificial intelligence: a modern approach*. Pearson series in artificial intelligence. Pearson, Hoboken, fourth edition edition, 2021.
- [4] Michael Bratman. *Intention, Plans, and Practical Reason*. Cambridge, MA: Harvard University Press, 1987. Issue: 2 Pages: 198-199.
- [5] Allen Van Gelder, Kenneth A. Ross, and John S. Schlipf. The well-founded semantics for general logic programs. *Journal of the ACM*, 38(3):619–649, July 1991.