AI 1103 - Assignment 2

T. Rohan CS20BTECH11064

Download all python codes from

https://github.com/rohanthota/Assignment_2/codes /Assignment_2.py

and latex codes from

https://github.com/rohanthota/Assignment_2/ Assignment 2.tex

Question

A box contains 5 red marbles, 8 white marbles and 4 green marbles. One marble is taken out of the box at random. What is the probability that the marble taken out will be

- 1) red?
- 2) white?
- 3) not green?

Solution

Total number of marbles = 5 + 8 + 4 = 17 marbles.

Here, we define random variable $X \in \{0, 1, 2\}$ Where,

X = 0 refers to the case of picking a red marble

X = 1 refers to the case of picking a white marble

X = 2 refers to the case of picking a green marble

1) The probability that a red marble was picked, can also be written as Pr(X = 0)

$$Pr(X = 0) = \frac{\text{number of red marbles}}{\text{total number of marbles}} = \frac{5}{17}$$
$$\therefore Pr(X = 0) = \frac{5}{17} = 0.294118 \quad (0.0.1)$$

2) The probability that a white marble was picked, can be written as Pr(X = 1)

$$Pr(X = 1) = \frac{\text{number of white marbles}}{\text{total number of marbles}} = \frac{8}{17}$$

$$\therefore Pr(X = 1) = \frac{8}{17} = 0.470589 \quad (0.0.2)$$

3) The probability that the marble picked was not green can be written as $Pr(X \neq 2)$.

(0.0.3)

We know that
$$Pr(X \neq 2) + Pr(X = 2) = 1$$
.
(0.0.4)

(because they are complimentary events.)

Pr (X = 2) =
$$\frac{\text{number of green marbles}}{\text{total number of marbles}} = \frac{4}{17}$$
.
⇒ Pr (X = 2) = $\frac{4}{17}$ = 0.235294
⇒ Pr (X ≠ 2) = 1 - Pr (X = 2) = 0.764706
∴ Pr (X ≠ 2) = 0.764706 (0.0.5)

TABLES AND GRAPHS

Conditions	X = 0	X = 1	X ≠ 2
Pr(X)	<u>5</u> 17	<u>8</u> 17	13 17

TABLE 3: Values of theoretical probabilities

Conditions	X = 0	X = 1	X ≠ 2
Pr(X)	0.2937	0.4710	0.7647

TABLE 3: Values of probabilities after simulations in python.

Drawing the comparison graph with ages on x-axis, probabilities on y-axis, blue bar representing simulations and orange bar representing theoretical value, we get

