Лабораторная работа №6 Матрицы и определители матриц

Задание 1. Выполнить действия над матрицами (см. табл. 1).

<u>Задание 2.</u> Вычислить определитель $\Delta^{(4)}$ (см. табл. 2) четвёртого порядка:

- 1) путем понижения порядка (предварительно получив максимальное количество нулей в строке или столбце);
- 2) путем приведения определителя к треугольному виду.
- 3) при помощи специальной функции в Maple.

<u>Задание 3.</u> Вычислить определитель $\Delta^{(4)}$ четвёртого порядка (см. табл. 3) $(\alpha_1, \alpha_2, \alpha_3, \alpha_4$ — параметры) путем понижения порядка, предварительно получив максимальное количество нулей в строке (столбце). Значения коэффициентов a,b,c,d соответствующего варианта студента берутся из табл. 4.

Таблица 1

Bap	Задание
1	Даны матрицы A,B,C : $A=\begin{pmatrix}1&-1\\2&0\end{pmatrix}, B=\begin{pmatrix}1&-1\\0&1\\2&0\end{pmatrix}, C=\begin{pmatrix}1&0&-1\\2&1&-1\\2&1&0\end{pmatrix}.$ Вычислить матрицу $D=A\cdot B^T\cdot C^{-1}$;
2	Даны матрицы $A = \begin{pmatrix} 3 & 1 \\ 2 & 1 \end{pmatrix}, \ B = \begin{pmatrix} 2 & 1 \\ -1 & 0 \\ 1 & 0 \end{pmatrix}, \ C = \begin{pmatrix} 2 & 1 & 0 \\ -2 & -1 & 0 \\ 3 & 2 & -1 \end{pmatrix}$. Найти матрицу $D = A^{-1} \cdot B^T \cdot (C + E)$, где E — соответствующего размера единичная матрица;
3	Даны матрицы $A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{pmatrix}, B = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}.$ Найти матрицу $C = A^{-1} \cdot B^T \cdot B^{-1}$. Показать, что $(AB)^{-1} = B^{-1} \cdot A^{-1}$;
4	Даны матрицы $A = \begin{pmatrix} -1 & 0 & 0 \\ -2 & -1 & 0 \\ 3 & 2 & -1 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 2 & -3 \\ -4 & 5 & 6 \end{pmatrix}$. Найти матрицу $C = B^{-1} \cdot (B^T - E) \cdot A$. Выяснить, справедливо ли равенство $(AB)^{-1} = A^{-1} \cdot B^{-1}$;
5	Даны матрицы $A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}, B = \begin{pmatrix} -1 & 0 \\ 0 & -1 \\ -2 & 0 \end{pmatrix}, C = \begin{pmatrix} 1 & 2 \\ a & b \\ 0 & 1 \end{pmatrix}$. Найти общий вид матрицы $D = \begin{pmatrix} A^{-1} \cdot B^T \cdot C \end{pmatrix}^{-1}$. Указать, при каком условии, наложенном на числа a,b , можно найти матрицу $D = \begin{pmatrix} A^{-1} \cdot B^T \cdot C \end{pmatrix}^{-1}$;

6	Даны матрицы $A = \begin{pmatrix} 2 & -1 \\ 1 & 0 \\ 1 & 3 \end{pmatrix}, \ B = \begin{pmatrix} 1 & -2 \\ 3 & -2 \\ 0 & -1 \end{pmatrix}$. Найти, если возможно, матрицу $C = \begin{pmatrix} A \cdot A^T \end{pmatrix}^{-1} + B \cdot B^T$. Выяснить, выполняется ли матричное равенство $\begin{pmatrix} A \cdot A^T \end{pmatrix}^{-1} = \begin{pmatrix} A^T \end{pmatrix}^{-1} A^{-1}$;
7	Даны матрицы $A = \begin{pmatrix} -1 & 0 & 1 \\ 2 & 1 & 0 \\ 0 & 2 & -1 \end{pmatrix}, \ B = \begin{pmatrix} 0 & -1 \\ 2 & -1 \\ 0 & 0 \end{pmatrix}, \ C = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$. Найти матрицы: 1) A^{-1} (сделать проверку); 2) $D = A^T \cdot B \cdot (2C + E)$. 3) Выяснить, существуют ли матрицы $(B \cdot B^T)^{-1}$, $(C \cdot C^T)^{-1}$. Если да, то найти их. Сделать проверку.
8	Даны матрицы $A = \begin{pmatrix} 0 & 1 & 2 \\ -1 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \ B = \begin{pmatrix} 1 & 1 \\ -2 & -2 \\ 3 & 0 \end{pmatrix}, \ C = \begin{pmatrix} -1 & -2 \\ 0 & 1 \end{pmatrix}$. Найти матрицы: 1) A^{-1} (сделать проверку); 2) $D = A^T \cdot B \cdot (E - 2C)$. 3) Выяснить, существуют ли матрицы $(B^T \cdot B)^{-1}$, $(C \cdot C^T)^{-1}$. Если да, то найти их. Сделать проверку;
9	Даны матрицы $A = \begin{pmatrix} 0 & 2 & 3 \\ 0 & 0 & 4 \\ 0 & 0 & 0 \end{pmatrix}, \ B = \begin{pmatrix} 1 & 1 \\ 2 & -1 \\ 0 & -1 \end{pmatrix}, \ C = \begin{pmatrix} 0 & -1 \\ 0 & 1 \end{pmatrix}$. Найти матрицы: 1) $(A + E)^{-1}$ (сделать проверку); 2) $D = (A + E)^{-1} \cdot B \cdot (E - C)$. 3) Выяснить, существуют ли матрицы $(B^T \cdot B)^{-1}$, $(C \cdot C^T)^{-1}$. Если да, то найти их. Сделать проверку;
10	Даны матрицы $A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}, B = \begin{pmatrix} -1 & -1 \\ 0 & 2 \\ 1 & 1 \end{pmatrix}, C = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}$. Найти матрицы: 1) $(A + E)^{-1}$ (сделать проверку); 2) $D = (A + E)^{-1} \cdot B \cdot (E - C)$. 3) Выяснить, существуют ли матрицы $(B^T \cdot B)^{-1}$, $(C \cdot C^T)^{-1}$. Если да, то найти их. Сделать
11	Даны матрицы $A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 2 \end{pmatrix}$, $B = \begin{pmatrix} 2 & 1 & -1 \\ 1 & -2 & 3 \end{pmatrix}$. Найти матрицу

12	Даны матрицы $A = \begin{pmatrix} -1 & 2 \\ 0 & -1 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 2 \end{pmatrix}$, $C = \begin{pmatrix} 1 & 0 & 3 \\ 0 & 2 & -1 \\ 1 & 2 & 0 \end{pmatrix}$. Вычислить
	матрицу $D = (A + E) \cdot B \cdot (C - E)^{-1}$;
13	Даны матрицы $A = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 2 \\ 1 & 3 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 2 \\ 0 & 0 \\ -1 & -1 \end{pmatrix}$, $C = \begin{pmatrix} -2 & 1 \\ 0 & -1 \end{pmatrix}$. Найти матрицы: 1) $(A + E)^{-1}$ (сделать проверку); 2) $D = (A + E)^{-1} \cdot B \cdot (E - C)$. 3) Выяснить, существуют ли матрицы $(B^T \cdot B)^{-1}$, $(C \cdot C^T)^{-1}$. Если да, то найти их. Сделать проверку;
14	Даны матрицы A,B,C : $A=\begin{pmatrix}0&1\\2&1\end{pmatrix},\ B=\begin{pmatrix}1&-1\\0&1\\2&0\end{pmatrix},\ C=\begin{pmatrix}1&0&0\\2&1&0\\2&-1&1\end{pmatrix}$. Вычислить матрицу $D=A^{-1}\cdot\begin{pmatrix}-B^T\end{pmatrix}\cdot C^{-1}$;
15	Даны матрицы $A = \begin{pmatrix} 2 & 2 & -2 \\ 0 & 1 & 4 \\ 0 & 1 & -1 \end{pmatrix}$, $B = \begin{pmatrix} -1 & -2 \\ 2 & 1 \\ 0 & -1 \end{pmatrix}$, $C = \begin{pmatrix} -2 & 1 \\ 0 & -1 \end{pmatrix}$. Найти матрицы: 1) $(A + E)^{-1}$ (сделать проверку); 2) $D = (A - E)^{-1} \cdot B \cdot (E - C)$. 3) Выяснить, существуют ли матрицы $(B^T \cdot B)^{-1}$, $(C \cdot C^T)^{-1}$. Если да, то найти их.
16	Сделать проверку; Найти значение многочлена $f(x) = x^2 - 2x$ от матрицы $A = \begin{pmatrix} -1 & 0 & 0 \\ 2 & 1 & 0 \\ 4 & -2 & 1 \end{pmatrix}^{-1}$
17	Даны матрицы $A = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix}$, $B = \begin{pmatrix} 2 & 1 \\ -1 & 0 \\ 1 & 0 \end{pmatrix}$, $C = \begin{pmatrix} 2 & 0 & 0 \\ 2 & 0 & 0 \\ 1 & -3 & 2 \end{pmatrix}$. Найти матрицу
	$D = A^{-1} \cdot B^{T} \cdot (C - E)^{-1}$, E — соответствующего размера единичная матрица;
18	Даны матрицы $A = \begin{pmatrix} -1 & 2 & 0 \\ 0 & 1 & 1 \\ -1 & 2 & 1 \end{pmatrix}, \ B = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \ C = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 0 & -1 \end{pmatrix}$. Найти матрицу $D = \begin{pmatrix} 2A^{-1} - B \end{pmatrix} \cdot C$. Проверить, выполняется ли для данных матриц A, B матричное равенство $(A + B)^{-1} = A^{-1} + B^{-1}$;
	Найти значение многочлена $f(x) = x^2 - 3x + 1$ от матрицы A (вычислить
19	$f(A) = A^2 - 3A + E \text{ (2)} 1) A = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}; 2) A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 1 \\ 3 & -1 & 0 \end{pmatrix};$

20 Даны матрицы
$$A = \begin{pmatrix} 1 & -2 & 3 \\ 2 & 1 & 0 \\ 0 & 1 & -1 \end{pmatrix}, \ B = \begin{pmatrix} 1 & -2 \\ 2 & 1 \\ 0 & 1 \end{pmatrix}, \ C = \begin{pmatrix} -2 & 1 \\ 1 & 0 \end{pmatrix}$$
. Найти матрицу $D = (A + E)^{-1} \cdot B \cdot (E + C)$. Выяснить, существуют ли матрицы $(B^T \cdot B)^{-1}$, $(C \cdot C^T)^{-1}$. Если да, то найти их. Сделать проверку;

Таблица 2

Bap	Определитель	Bap	Определитель	Bap	Определитель
1	$ \begin{vmatrix} 8 & 7 & 2 & 0 \\ -8 & 2 & 4 & 3 \\ 5 & 1 & 0 & 1 \\ 3 & 7 & 2 & -2 \end{vmatrix} $	2	$ \begin{vmatrix} 2 & 3 & -3 & 4 \\ 2 & 4 & -2 & -2 \\ 3 & 1 & 0 & -2 \\ 1 & 2 & 4 & 1 \end{vmatrix} $	3	$\begin{vmatrix} 0 & 1 & 2 & -3 \\ -1 & 0 & 5 & 2 \\ -2 & -5 & 0 & 4 \\ 3 & -2 & -4 & 0 \end{vmatrix}$
4	3 4 3 6 9 8 5 9 3 7 1 2 1 2 3 4	5	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	1 2 4 8 1 -3 9 -27 1 4 16 64 1 -2 4 -8
7	1 2 3 4 2 3 4 5 3 4 5 6 4 5 6 7	8	1 0 1 0 2 1 2 1 3 2 3 2 4 3 4 1	9	$ \begin{vmatrix} 2 & -1 & 1 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & -3 & -4 & 2 \\ 4 & 2 & 0 & 1 \end{vmatrix} $
10	-3 0 3 9 0 1 2 4 2 3 1 -2 -1 2 2 -3	11	$ \begin{vmatrix} -1 & -2 & -3 & -4 \\ 4 & 5 & 6 & -2 \\ 2 & 0 & 1 & 0 \\ 0 & 1 & 0 & 3 \end{vmatrix} $	12	3 0 1 3 2 -1 2 -1 -1 1 3 3 5 -5 -3 7
13	$ \begin{vmatrix} 2 & 3 & -3 & 4 \\ 2 & 4 & -2 & -2 \\ 3 & 1 & 0 & -2 \\ 1 & 2 & 4 & 1 \end{vmatrix} $	14	$ \begin{vmatrix} 1 & 2 & 4 & -3 \\ 2 & 5 & 6 & -4 \\ 4 & 5 & -2 & 3 \\ 3 & 8 & 24 & -19 \end{vmatrix} $	15	2 7 4 5 4 4 8 5 1 -9 -3 -5 3 5 7 5
16	5 3 2 4 3 1 0 2 4 -1 3 7 2 2 3 -3	17	1 3 -2 3 2 4 1 3 3 5 -2 3 2 8 -3 9	18	1 3 5 7 3 -1 -5 9 7 3 5 1 7 5 3 1

	2 -1 1 2		3 0 1 -2		3	0 1	2
19	6 - 2 2 4	20	2 -2 2 1		2 -	-1 -2	-1
	6 -3 4 8		1 0 3 -2	21	1	1 3	3
	4 -9 1 1		1 -3 3 5		5	5 6	7

Таблица 3

Bap	Определитель $\Delta^{(4)}$	Bap	Определитель $\Delta^{(4)}$			
1–7	$\Delta^{(4)} = \begin{vmatrix} \alpha_1 & \alpha_2 & \alpha_3 & \alpha_4 \\ 2 & a & b & c \\ b & 2c & a+b & -a \\ -d & -a & c+b & 0 \end{vmatrix}$	8–14	$\Delta^{(4)} = \begin{vmatrix} a+b & b+c & c+d & a+d \\ 1 & -a & -b & -c \\ -b & 2 & b-c & a-d \\ \alpha_1 & \alpha_2 & \alpha_3 & \alpha_4 \end{vmatrix}$			
15–22	$\Delta^{(4)} = \begin{vmatrix} a-b & 1 & 2c & \alpha_1 \\ b-c & -a & 3b & \alpha_2 \\ c-d & -b & 2a & \alpha_3 \\ d-a & -c & 0 & \alpha_4 \end{vmatrix}$					

Таблица 4

Bap	а	b	С	d	Bap	а	b	С	d
1	2	2	3	4	11	2	3	1	3
2	2	4	3	1	12	1	3	3	4
3	3	2	1	4	13	3	4	3	2
4	4	1	2	3	14	2	2	3	4
5	2	4	1	3	15	3	3	2	3
6	2	1	3	2	16	3	4	4	2
7	1	3	4	2	17	3	2	4	1
8	2	3	1	2	18	2	3	4	3
9	2	3	1	4	19	4	4	2	1
10	3	2	1	4	20	2	2	4	3

<u>Задание 4.</u> Вычислить обратную матрицу для матрицы А при помощи нахождения алгебраических дополнений, т.е. опираясь на формулу

$$A^{-1} = \frac{1}{|A|} \cdot \begin{pmatrix} A_{11} & A_{21} & A_{31} & A_{41} \\ A_{12} & A_{22} & A_{32} & A_{42} \\ A_{13} & A_{23} & A_{33} & A_{43} \\ A_{14} & A_{24} & A_{34} & A_{44} \end{pmatrix}$$

Bap	Матрица <i>А</i>	Bap	Матрица <i>А</i>
1	$A = \begin{pmatrix} 1 & 4 & 1 & 3 \\ 0 & -1 & 3 & -1 \\ 3 & 1 & 0 & 2 \\ 1 & -2 & 5 & 1 \end{pmatrix}$	2	$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 4 & 2 & 3 \\ 1 & 10 & 3 & 6 \\ 6 & 10 & 1 & 4 \end{pmatrix}$
3	$A = \begin{pmatrix} 1 & 2 & 3 & -2 \\ 2 & -1 & -2 & -3 \\ 3 & 2 & -1 & 2 \\ 2 & -3 & 2 & 1 \end{pmatrix}$	4	$A = \begin{pmatrix} -2 & 2 & 1 & 0 \\ 1 & -3 & 3 & 7 \\ 2 & -1 & 2 & -3 \\ -5 & 4 & -1 & 2 \end{pmatrix}$
5	$A = \begin{pmatrix} 1 & -1 & -1 & 1 \\ -1 & 2 & 2 & 0 \\ 0 & -1 & 1 & 4 \\ 1 & 1 & -1 & -1,5 \end{pmatrix}$	6	$A = \begin{pmatrix} 3 & -2 & 2 & 0 \\ 2 & 1 & 1 & -2 \\ 3 & -1 & 2 & 1 \\ 1 & 2 & -1 & -1 \end{pmatrix}$
7	$A = \begin{pmatrix} 5 & -4 & 0 & 2 \\ -1 & 1 & 1 & -1 \\ 2 & 3 & -1 & 6 \\ 1 & 2 & 0 & -1 \end{pmatrix}$	8	$A = \begin{pmatrix} 4 & -1 & 0 & 1 \\ 3 & 2 & -1 & 2 \\ 0 & 2 & 2 & 1 \\ -1 & 1 & -3 & -1 \end{pmatrix}$
9	$A = \begin{pmatrix} 1 & 2 & 0 & 1 \\ -1 & -3 & 3 & -1 \\ 0 & 4 & -10 & 2 \\ 1 & -1 & 2 & -1 \end{pmatrix}$	10	$A = \begin{pmatrix} 1 & 4 & -3 & 0 \\ 0 & 4 & 1 & 2 \\ -1 & 2 & 4 & 1 \\ 1 & 0 & -1 & 5 \end{pmatrix}$
11	$A = \begin{pmatrix} 2 & -1 & 1 & 2 \\ 1 & 2 & -1 & 1 \\ 3 & 0 & -1 & -3 \\ 1 & -1 & 1 & 3 \end{pmatrix}$	12	$A = \begin{pmatrix} 2 & 1 & 2 & 0 \\ -1 & -3 & 3 & -1 \\ 1 & 3 & -8 & 1 \\ 1 & -1 & 2 & -1 \end{pmatrix}$
13	$A = \begin{pmatrix} 2 & 3 & 0 & 1 \\ -1 & 1 & 3 & 0 \\ 0 & 2 & -1 & 1 \\ 3 & -1 & 1 & -2 \end{pmatrix}$	14	$A = \begin{pmatrix} 1 & 0 & 3 & 2 \\ -1 & 2 & 2 & 0 \\ 0 & 2 & 2 & 0 \\ -1 & 3 & 3 & 3 \end{pmatrix}$
15	$A = \begin{pmatrix} 1 & 0 & 3 & 24 \\ 0 & 1 & 5 & 6 \\ -3 & 4 & 10 & 6 \\ 0 & -6 & 0 & -6 \end{pmatrix}$	16	$A = \begin{pmatrix} 3 & 1 & 3 & 3 \\ 2 & 2 & 1 & 3 \\ 1 & 0 & 2 & 0 \\ 1 & 1 & 1 & 3 \end{pmatrix}$

17	$A = \begin{pmatrix} 2 & 1 & 0 & 1 \\ 2 & 3 & 2 & 0 \\ 0 & 1 & 2 & 0 \\ 1 & 0 & -2 & 1 \end{pmatrix}$	18	$A = \begin{pmatrix} -2 & -2 & -1 & 3 \\ 2 & 1 & 0 & -1 \\ 3 & 2 & 1 & -3 \\ 4 & 3 & 2 & -4 \end{pmatrix}$
19	$A = \begin{pmatrix} 1 & 1 & 2 & 3 \\ 3 & -1 & -1 & -2 \\ 2 & 3 & -1 & -1 \\ 1 & 2 & 3 & -1 \end{pmatrix}$	20	$A = \begin{pmatrix} 1 & 2 & 3 & -2 \\ 2 & -1 & -2 & -3 \\ 3 & 2 & -1 & 2 \\ 2 & -3 & 2 & 1 \end{pmatrix}$