# Time-Series Models

**Recurrent Neural Network** 

# Examples



| Year | Population(in Million) |
|------|------------------------|
| 1921 | 251                    |
| 1931 | 279                    |
| 1941 | 319                    |
| 1951 | 361                    |
| 1961 | 439                    |
| 1971 | 548                    |
| 1981 | 685                    |

#### Time Series

- Time series is a sequence of observations often ordered in time.
- Popular Problem: Given a sequence, predict future samples.
- Applications:
  - Meteorology,
  - Finance,
  - Marketing etc.
- We want a machine learning model to understand sequences, not samples.
- Assume we have a sequence of measurements, and we want to take N sequential measurements and predict the next one.

#### Notation and Problem

- Notation: x[0], x[1], x[2], ..., x[N].
- x[t], Where t is the time or index in the sequence.
- Assumption: Measurement at time t depends on three previous ones.
  - i.e., t-1, t-2 and t-3
- Why 3? We can have a different number.

| Feature Vector |                |  |
|----------------|----------------|--|
| Feature        | Y <sub>i</sub> |  |
| $V_1$          | $X_4$          |  |
| V <sub>2</sub> | X <sub>5</sub> |  |
| $V_3$          | X <sub>6</sub> |  |
| V <sub>4</sub> | X <sub>7</sub> |  |

| Rearranged Data |                |                |                |  |
|-----------------|----------------|----------------|----------------|--|
| Feature-1       | Feature-2      | Feature-3      | Y <sub>i</sub> |  |
| $X_1$           | $X_2$          | $X_3$          | X <sub>4</sub> |  |
| $X_2$           | X <sub>3</sub> | $X_4$          | X <sub>5</sub> |  |
| $X_3$           | $X_4$          | $X_5$          | X <sub>6</sub> |  |
| $X_4$           | X <sub>5</sub> | X <sub>6</sub> | X <sub>7</sub> |  |

| Raw Data |                |  |
|----------|----------------|--|
| Time     | Sample         |  |
| 1        | X <sub>1</sub> |  |
| 2        | X <sub>2</sub> |  |
| 3        | X <sub>3</sub> |  |
| 4        | X <sub>4</sub> |  |
| 5        | X <sub>5</sub> |  |
| 6        | X <sub>6</sub> |  |
| 7        | X <sub>7</sub> |  |

# A Simple Model

•  $X[t] = w_1 X[t-1] + w_2 X[t-2] + w_3 X[t-3] + n$ 

n is noise

- Given the sequence  $X[0], X[1], \dots X[N]$ , we find the coefficients  $w_1, w_2, w_3$  such that the prediction error is minimal.

# Neural Networks for Time Series Forecasting



# Classical Models (AR and MA)

- Auto Regressive (AR) Model assumes:  $X_t = \alpha X_{t-1} + \epsilon_t$ , ( $\epsilon_t$  is random uncorrelated)
  - Predict the next term in a sequence from a fixed number of previous terms.
- AR: A model of order p is  $X_t = \sum_{i=1}^p \alpha_i X_{t-i} + \epsilon_t$
- Moving Average (MA) model assumes:  $X_t = \epsilon_t + \beta \epsilon_{t-1}$
- MA: A model of order q is  $X_t = \epsilon_t + \sum_{j=1}^q \beta_j \epsilon_{t-j}$

# Classical Models (ARMA & ARIMA)

- ARMA (p,q):  $X_t = \sum_{i=1}^p \alpha_i X_{t-i} + \sum_{j=0}^q \beta_j \epsilon_{t-j}$ , with  $\beta_0 = 1$ 
  - ARMA is combined from the AR and MA models to model stationary nonseasonal time series data.

#### ARIMA (p, d, q):

- ARIMA is quite similar to ARMA model, with the I standing for Integrated, i.e. differencing.
- A process is ARIMA (p, q, d) if  $\nabla^d X$  is ARMA (p,q), where  $\nabla X_t = X_t X_{t-1}$  and  $\nabla^2 X_t = \nabla(\nabla X_t)$
- ARIMA is a combination of a number of differences already applied on the model to make it stationary, the number of previous lags along with residuals errors in order to forecast future values.

# Many Comparisons

- MLP vs ARMA/ARIMA:
  - "Forecasting with artificial neural networks: The state of the art"
    - -1998
      - Shows that ANNs are at par or better.
  - "Time series forecasting using a hybrid ARIMA and neural network model" G.P. Zhang (2003)
    - Shows how to get advantages of "both" worlds
- We now know more NN than what we did in 1998 or 2003!!

# Prediction using ARIMA and MLP



# CNNs or MLPs shortcomings

- MLPs/CNNs require fixed input and output size.
- MLPs/CNNs can't classify inputs in multiple places.
- A fully connected network will not distinguish the order and therefore will be missing some information.
- Predicting the next term in a sequence blurs the distinction between supervised and unsupervised learning.
  - Uses method designed for supervised learning, but it doesn't require a separate teaching signal.
  - The network needs to have a memory.

# Memory

Somehow the computational unit should remember what it has seen before

We'll call the information the unit's state





# Handling Individual Time Steps



#### Recurrent Neural Networks

The memory or state can be written to a file but in RNNs, we keep it inside the recurrent unit.



# Handling Individual Time Steps



### **Unrolled RNNs**

**Key Idea**: RNNs have an "internal state" that is updated as a sequence is processed

- Temporal dependencies
- Variable Sequence Length



$$\widehat{y}_t = f(x_t, h_{t-1})$$



# RNN hidden state update

• We can process a sequence of vectors  $\mathbf{x}$  by applying a recurrence formula at every time step:  $\mathbf{h}_t = f_W(\mathbf{h}_{t-1}, \mathbf{x}_t)$ 

 $h_t$ : new state,  $h_{t-1}$ : old state,  $x_t$ : input vector at the time step

**f**<sub>W</sub>: some function with parameters W

Note: The same function and the same set of parameters are used at every time step.

The output  $y_t$  is represented by another function of parameters,  $W_{hy}$ , where  $\mathbf{y_t} = \mathbf{f}_{W_{hy}}(\mathbf{h_t})$ 



# RNN State Update and Output



#### **Output Vector**

$$\hat{y}_t = W_{hy}^T h_t$$

#### **Update Hidden State**

$$h_{t} = \tanh(W_{hh}^{T}h_{t-1} + W_{xh}^{T}x_{t})$$

$$h_{t} = f_{W}(h_{t-1}, x_{t})$$

$$Input Vector$$

$$x_{t}$$

#### Recurrent Neural Network



- lacksquare 3 sets of parameters  $W_I$ ,  $W_y$ ,  $W_R$  shared for each time-step.
- Reuse the same weight matrix at every time-step.

Sequence Modelling: Design Criteria

To model sequences, we need to:

- 1. Handle variable-length sequences
- 2. Track long-term dependencies
- 3. Maintain information about order
- 4. Share parameters across the sequence



Recurrent Neural Networks meets the Sequence Modelling Design Criteria



#### RNN Gradient Flow

$$h_{t} = \tanh(W_{hh}h_{t-1} + W_{xh}x_{t})$$

$$= \tanh\left((W_{hh} \ W_{xh})\binom{h_{t-1}}{x_{t}}\right)$$

$$= \tanh\left(W\binom{h_{t-1}}{x_{t}}\right)$$

$$\frac{\partial h_t}{\partial h_{t-1}} = \tanh'(W_{hh}h_{t-1} + W_{xh}x_t)W_{hh}$$

Backpropagation in time: 
$$\frac{\partial L}{\partial W} = \sum_{t=1}^{T} \frac{\partial L_t}{\partial W}$$
$$\frac{\partial L_t}{\partial W} = \frac{\partial L_T}{\partial h_T} \frac{\partial h_t}{\partial h_{t-1}} \dots \frac{\partial h_1}{\partial W} = \frac{\partial L_T}{\partial h_T} \left( \prod_{t=2}^{T} \frac{\partial h_t}{\partial h_{t-1}} \right) \frac{\partial h_1}{\partial W}$$



#### **RNN Gradient Flow**

$$h_{t} = \tanh\left(W\begin{pmatrix} h_{t-1} \\ x_{t} \end{pmatrix}\right)$$

$$\frac{\partial h_{t}}{\partial h_{t-1}} = \tanh'(W_{hh}h_{t-1} + W_{xh}x_{t})W_{hh}$$



#### Backpropagation in time:

$$\frac{\partial L_t}{\partial W} = \frac{\partial L_T}{\partial h_T} \left( \prod_{t=2}^T \frac{\partial h_t}{\partial h_{t-1}} \right) \frac{\partial h_1}{\partial W} = \frac{\partial L_T}{\partial h_T} \left( \prod_{t=2}^T \frac{\tanh'(W_{hh} h_{t-1} + W_{xh} x_t) W_{hh}}{\partial W} \right) \frac{\partial h_1}{\partial W}$$

Value almost always less than one, vanishing gradient problem

#### **RNN Gradient Flow**

What if we assumed no non-linearity?

$$h_t = W_{hh}h_{t-1} + W_{xh}x_t$$
$$\frac{\partial h_t}{\partial h_{t-1}} = W_{hh}$$

Backpropagation in time:  $\frac{\partial L}{\partial W} = \sum_{t=1}^{T} \frac{\partial L_t}{\partial W}$ 

$$\frac{\partial L_t}{\partial W} = \frac{\partial L_T}{\partial h_T} \left( \prod_{t=2}^T \frac{\partial h_t}{\partial h_{t-1}} \right) \frac{\partial h_1}{\partial W} = \frac{\partial L_T}{\partial h_T} \left( \prod_{t=2}^T W_{hh} \right) \frac{\partial h_1}{\partial W} = \frac{\partial L_T}{\partial h_T} W_{hh}^{T-1} \frac{\partial h_1}{\partial W}$$

- Largest singular value > 1: Exploding Gradient →
- Largest singular value < 1: Vanishing Gradient</li>



Go with gradient clipping, scale gradient if it's norm is too big Change RNN architecture

# Backpropagation through time

Forward through entire sequence to compute loss, then backward through entire sequence to compute gradient



# Truncated Backpropagation through time



Run forward and backward through chunks of the sequence instead of whole sequence

# Truncated Backpropagation through time



Carry hidden states forward in time forever, but only backpropagate for some smaller number of steps

### Standard RNN Architecture



The repeating module in a standard RNN contains a single layer.

# Long Short-Term Memory

 LSTM networks, add additional gating units in each memory cell.

- Forget gate
- Input gate
- Output gate





### LSTM Network Architecture



#### Cell State

- Maintains a vector  $C_t$  that is the same dimensionality as the hidden state,  $h_t$
- Information can be added or deleted from this state vector via the forget and input gates.



## Forget Gate

- Forget gate computes a 0-1 value using a logistic sigmoid output function from the input,  $x_t$ , and the current hidden state,  $h_{t-1}$ :
- Multiplicatively combined with cell state, "forgetting" information where the gate outputs something close to 0.



$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

### Input Gate

- First, determine which entries in the cell state to update by computing 0-1 sigmoid output.
- Then determine what amount to add/subtract from these entries by computing a tanh output (valued –1 to 1) function of the input and hidden state.



$$i_t = \sigma \left( W_i \cdot [h_{t-1}, x_t] + b_i \right)$$
  
$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

# Updating the Cell State

 Cell state is updated by using component-wise vector multiply to "forget" and vector addition to "input" new information.



$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

## **Output Gate**

- Hidden state is updated based on a "filtered" version of the cell state, scaled to -1 to 1 using tanh.
- Output gate computes a sigmoid function of the input and current hidden state to determine which elements of the cell state to "output".



$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

$$\begin{pmatrix} \mathbf{f}_{t} \\ \mathbf{i}_{t} \\ \mathbf{o}_{t} \\ \tilde{\mathbf{C}}_{t} \end{pmatrix} = \begin{pmatrix} \boldsymbol{\sigma} \\ \boldsymbol{\sigma} \\ \boldsymbol{\sigma} \\ \tanh \end{pmatrix} W_{g} \begin{pmatrix} h_{t-1} \\ \boldsymbol{\chi}_{t} \end{pmatrix}$$

$$C_{t} = f_{t} \odot c_{t-1} + i_{t} \odot \tilde{C}_{t}$$

$$h_{t} = o_{t} \odot \tanh C_{t}$$



- Forget gate  $(f_t)$ : Defines how much of the previous state you want to let through.
- Input gate (i<sub>t</sub>): Defines how much of the newly computed state for the current input you want to let through.
- Output gate  $(o_t)$ : Defines how much of the internal state you want to expose to the external network.
- $C_t$ : "candidate" hidden state that is computed based on the current input and the previous hidden state.
- C<sub>t</sub>: the internal memory of the unit. Intuitively it is a combination of how we want to combine previous memory and the new input.
- Given the memory C<sub>t</sub> we finally compute the output hidden state h<sub>t</sub> by multiplying the memory with the output gate.

# Do LSTMs solve the vanishing gradient problem?

- The LSTM architecture makes it easier for the RNN to preserve information over many timesteps.
  - e.g., if the f = 1 and the i = 0, then the information of that cell is preserved indefinitely.
  - By contrast, it's harder for vanilla RNN to learn a recurrent weight matrix W that preserves info in hidden state
- LSTM doesn't guarantee that there is no vanishing/exploding gradient, but it does provide an easier way for the model to learn long-distance dependencies.

# Gated Recurrent Unit (GRU)

1. Update gate: 
$$z_t = \sigma(W^{(z)}x_t + U^{(z)}h_{t-1})$$

2. Reset gate: 
$$r_t = \sigma(W^{(r)}x_t + U^{(r)}h_{t-1})$$

3. New memory 
$$h'_{t} = \tanh(Wx_{t} + r_{t} \odot Uh_{t-1})$$
 content:

4. Final memory: 
$$h_t = z_t \odot h_{t-1} + (1 - z_t) \odot h_t'$$



Learning phrase representations using rnn encoder-decoder for statistical machine translation, Cho et al. 2014

### **RNN Summary**

- Can process any length input. Computation for step t can use information from many steps back.
- Vanilla RNNs are simple but don't work very well Common to use LSTM or GRU: their additive interactions improve gradient flow.
- Model size doesn't increase for longer input Same weights applied on every timestep, so there is symmetry in how inputs are processed.
- LSTMs, better at capturing long-term dependencies compared to vanilla RNNs, may still struggle with very long sequences or maintaining context over extended periods.
- Computationally Intensive, Difficult in Parallelization, Limited Interpretability.
- Architectures like Transformers with their self-attention mechanisms have addressed these.

# Further Readings

- https://karpathy.github.io/2015/05/21/rnn-effectiveness/
- https://cs231n.stanford.edu/slides/2023/lecture 8.pdf
- https://cs231n.stanford.edu/slides/2020/lecture 10.pdf