Introduction to the Polar Wave

Brinley Patterson¹

¹Email: brinpat@virginmedia.com

FIG. 1. Top left we have exponential function seen in equation.

INTRODUCTION

POLAR WAVE

All figures below use the following translation from Cartesian to Polar coordinates:

$$x = r\cos(\theta) \tag{1}$$

$$y = rsin(\theta) \tag{2}$$

where,

$$0 \le \theta \le 2\pi \tag{3}$$

For a circle, r = constant, however for a polar wave,

$$r = Asin(f\theta + 2\pi\lambda) \tag{4}$$

We obtain figure by using the following equation,

$$r = \sin(2\theta) \tag{5}$$

which constructs a Polar wave with 4

$$r1 = \sin(10\theta) \tag{6}$$

FIG. 2. Top left we have exponential function seen in equation.

FIG. 3. Top left we have exponential function seen in equation.

$$r2 = 3\sin(\theta + 20) \tag{7}$$

$$r3 = \sin(\theta + 100) \tag{8}$$

$$r3 = \sin(\theta + 147) \tag{9}$$

The summation of polar waves creates a single polar wave interference pattern similar to Cartesian wave interference.

FIG. 4. Top left we have exponential function seen in equation.

(10)

SPIRAL POLAR WAVE POLAR WAVE INTERFERENCE POLAR WAVE MATHEMATICS MODEL ELEMENTARY PARTICLES MODEL RELATIVISTIC OBJECTS MODEL FORCES PARTICLE ENERGY INTERACTIONS CONCLUSION

- [1] J Earman, M Friedman. The meaning and status of Newton's law of inertia and the nature of gravitational forces. (1973). The University of Chicago Press Journals.
- [2] D Breuer, S Labrosse, T Spohn. Thermal evolution and $magnetic\ field\ generation\ in\ terrestrial\ planets\ and\ satel$ lites. (2010). Springer.
- [3] A.P. Vanden Berg, D.A. Yuen, G. Beebe, M.D. Christiansen. The dynamical impact of electronic thermal con $r = sin(10\theta) + 3sin(\theta + 20) + 3sin(\theta + 20) + sin(\theta + 100) + 3sin(\theta + 14\overline{b}) \\ ctivity \ on \ deep \ mantle \ convection \ of \ exosolar \ planets.$ (2010). Elsevier.