```
In[@]:= NewtonRE[x0_, error_, f_] :=
  Module[\{xk1, xk = N[x0]\},
    k = 0;
    Output = {{k, x0, f[x0], None}};
    approxE = 10000000;
    While[approxE > error, fPrimexk = f'[xk];
     If[fPrimexk == 0, Print["The derivation of function at ", k,
       " th iteration is zero, we cannot proceed further with iterative scheme"];
      Break[];];
     xk1 = xk - f[xk] / fPrimexk;
     approxE = Abs[xk1 - xk];
     xk = xk1;
     k++;
     Output = Append[Output, {k, xk, f[xk], approxE}];];
    Print[NumberForm[TableForm[Output,
       TableHeadings \rightarrow {None, {"k", "xk", "f[xk]", "Approx Error"}}], 8]];
    Print["Number of iterations required to achieve desired accuracy = ", k];
    Print["Root after ", k, " iterations xk= ", NumberForm[xk, 8]];
    Print["Function value at approximated root, f[xk] = ", NumberForm[f[xk], 8]];];
f[x] := x^3 - 5x + 1;
error = 10^{(-4)};
Plot[f[x], {x, 0, 4}]
```


Question 1

In[*]:= NewtonRE[0.5, error, f]

k	xk	f[xk]	Approx Error
0	0.5	-1.375	None
1	0.17647059	0.12314268	0.32352941
2	0.20156807	0.0003492764	0.025097486
3	0.20163968	3.1004843×10^{-9}	0.000071600749

Number of iterations required to achieve desired accuracy = 3

Root after 3 iterations xk= 0.20163968

Function value at approximated root, $f[xk] = 3.1004843 \times 10^{-9}$

Question 2

In[*]:= NewtonRE[2, error, f];

k	xk	f[xk]	Approx Error
0	2	9	None
1	1.4705882	2.0938327	0.52941176
2	1.2471327	0.30899704	0.22345556
3	1.2006987	0.012278977	0.046433946
4	1.1986949	0.000022485706	0.002003806
5	1.1986912	$7.5904616 \times 10^{-11}$	3.682928×10^{-6}

Number of iterations required to achieve desired accuracy = 5

Root after 5 iterations xk= 1.1986912

Function value at approximated root, $f[xk] = 7.5904616 \times 10^{-11}$