4. Baltian tie -kilpailu

Riika, 11.–15. marraskuuta 1993

- 1. Määritä kaikki sellaiset kolminumeroiset luvut $a_1a_2a_3$, $a_3a_2a_1$, missä a_1 ja a_2 ovat eri suuria ja nollasta eroavia numeroita, joiden neliöt ovat viisinumeroiset luvut $b_1b_2b_3b_4b_5$ ja $b_5b_4b_3b_2b_1$.
- **2.** Onko olemassa positiivisia lukuja a > b > 1 siten, että jokaista positiivilukua k kohden on olemassa n, jolle an + b on jonkin positiivisen kokonaisluvun k:s potenssi?
- **3.** Nimitämme positiivista kokonaislukua mielenkiintoiseksi, jos se on kahden (eri tai yhtä suuren) alkuluvun tulo. Kuinka monta peräkkäistä mielenkiintoista lukua voi enintään olla?
- **4.** Määritä kaikki kokonaisluvut n, joille

$$\sqrt{\frac{25}{2} + \sqrt{\frac{625}{4} - n}} + \sqrt{\frac{25}{2} - \sqrt{\frac{625}{4} - n}}$$

on kokonaisluku.

5. Osoita, että

$$n^{12} - n^8 - n^4 + 1$$

on kaikilla parittomilla positiivisilla kokonaisluvuilla jaollinen 2⁹:llä.

- **6.** Oletamme, että funktiot f ja g on määritelty kaikilla x, 2 < x < 4, ja että ne toteuttavat ehdot 2 < f(x) < 4, 2 < g(x) < 4, f(g(x)) = g(f(x)) = x ja $f(x) \cdot g(x) = x^2$ kaikilla x, 2 < x < 4. Todista, että f(3) = g(3).
- 7. Ratkaise kokonaislukujen joukossa yhtälöryhmä

$$\begin{cases} z^x = y^{2x} \\ 2^z = 4^x \\ x + y + z = 20. \end{cases}$$

- 8. Laske kaikkien sellaisten kokonaislukujen summa, joiden numerot muodostavat joko aidosti kasvavan tai aidosti vähenevän lukujonon.
- 9. Ratkaise yhtälöryhmä

$$\begin{cases} x^5 = y + y^5 \\ y^5 = z + z^5 \\ z^5 = t + t^5 \\ t^5 = x + x^5. \end{cases}$$

10. Olkoot a_1, a_2, \ldots, a_n ja b_1, b_2, \ldots, b_n kaksi äärellistä jonoa, jotka sisältävät 2n eri reaalilukua. Kun jonot kirjoitetaan suuruusjärjestykseen, ne ovat a'_1, a'_2, \ldots, a'_n ja b'_1, b'_2, \ldots, b'_n . Osoita, että

$$\max_{1 \le i \le n} |a_i - b_i| \ge \max_{1 \le i \le n} |a_i' - b_i'|.$$

- 11. Tasasivuinen kolmio on jaettu n^2 :ksi yhteneväksi tasasivuiseksi kolmioksi. Yhden pikkukolmion kärjessä on kärpänen, toisen pikkukolmion kärjessä hämähäkki. Vuoron perään kumpikin siirtyy johonkin olinpaikkansa viereiseen pikkukolmion kärkeen. Osoita, että hämähäkki voi aina saada kärpäsen kiinni.
- 12. Eräässä kuningaskunnassa on 13 kaupunkia. Eräiden kaupunkiparien välillä on suora molemminpuolinen linja-auto-, juna- tai lentokoneyhteys. Kuinka monta yhteyttä vähintään tarvitaan, jotta valittiinpa mitkä hyvänsä kaksi kulkutapaa jokaisesta kaupungista olisi yhteys jokaiseen toiseen kaupunkiin käyttäen vain näitä kahta kuljetusmuotoa.
- 13. Tasasivuinen kolmio ABC on jaettu 100:ksi yhteneväksi tasasivuiseksi kolmioksi. Mikä on suurin määrä pienten kolmioiden kärkiä, joka voidaan valita niin, että mitkään kaksi niistä eivät ole minkään kolmion ABC sivun suuntaisella suoralla?
- 14. Neliö jaetaan 16:ksi yhteneväksi neliöksi; tällöin syntyy 25 eri neliön kärkeä. Kuinka monta kärkeä on ainakin poistettava näiden kärkien joukosta, jotta mitkään neljä jäljelle jääneistä pisteistä eivät olisi sellaisen neliön kärkiä, jonka sivut ovat alkuperäisen neliön sivujen suuntaiset?
- 15. Kahden arpakuution jokaiselle sivulle on kirjoitettu jokin positiivinen kokonaisluku. Arpoja heitetään ja ylöspäin jääneiden sivujen luvut lasketaan yhteen. Voidaanko nopan sivujen luvut valita niin, että mahdollisia summia olisivat 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 ja 13, ja kaikki olisivat yhtä todennäköisiä?
- 16. Kaksi r-säteistä ympyrää on tasossa leikkaamatta toisiaan. Suora leikkaa ensimmäisen ympyrän pisteissä A ja B ja toisen pisteissä C ja D niin, että |AB| = |BC| = |CD| = 14 cm. Toinen suora leikkaa ympyrät pisteissä E, F ja G, H niin, että |EF| = |FG| = |GH| = 6 cm. Määritä ympyröiden säde r.
- 17. Tarkastellaan kolmea tason suoraa, joista mitkään kaksi eivät ole yhdensuuntaisia. Kutakin suoraa pitkin liikkuu piste. Pisteiden nopeudet ovat eri suuret mutta nollasta eroavat, ja liikkeen ajatellaan jatkuneen äärettömän kauan ja jatkuvan äärettömän kauan. Voidaanko suorat, pisteiden nopeudet ja sijainnit jonakin hetkenä määrittää niin, että pisteet eivät koskaan ole olleet eivätkä koskaan tule olemaan samalla suoralla?
- 18. Kolmiossa ABC on |AB|=15, |BC|=12 ja |AC|=13. Olkoon mediaanin AM ja kulmanpuolittajan BK leikkauspiste O ($M \in BC$, $K \in AC$). Oletamme, että $OL \perp AB$, missä $L \in AB$. Todista, että $\angle OLK = \angle OLM$.

- **19.** O-keskisen ympyrän sisään on piirretty kupera nelikulmio ABCD. Kulmat AOB, BOC, COD ja DOA ovat (jossakin järjestyksessä) samat kuin nelikulmion ABCD kulmat. Todista, että ABCD on neliö.
- **20.** Olkoon Q yksikkökuutio. Sanomme, että tetraedri on $hyv\ddot{a}$, jos sen kaikki särmät ovat yhtä pitkät ja kaikki kärjet ovat kuution Q pinnalla. Määritä kaikki hyvien tetraedrien mahdolliset tilavuudet.