(19)日本国特許庁 (JP)

2/055

(12) 公開特許公報(A)

(11)特許出職公開番号 特開2000-94673 (P2000-94673A)

(48)公開日 平成12年4月4日(2000.4.4)

(51) Int CL 2/045 B41J

徽則記号

ΡI B41J 3/04 ゲービュート。(参考)

103A 2C057

審査請求 未請求 請求項の数5 OL (全 12 頁)

(21) 出願番号

特票平10~269091

(22)出題日

平成10年9月24日(1998.9.24)

(71) 出票人 000008747

株式会社リコー

東京都大田区中馬达1丁目3番6号

(72)発明者 木村 陸

東京都大田区中局込1丁目3番6号 株式

会社リコー内

(74)代理人 230100631

弁護士 相元 宮保

ドターム(多考) 20057 AF93 AG15 AG54 AG55 AG84

AG85 AG88 AG89 AG80 AG83 AG94 AP02 AP14 AP25 AP52

AP53 AP54 AQ01 AQ02

(54) 【発明の名称】 インクジェット記録基礎

(57)【要約】

【課題】 電極とプリント基板を接続する時電性材料が はみ出して導電性の部材に接触する。

【解決手段】 プリント基板25と個別電極21とを接 続した後の異方導電性膜26がプリント基板25の端部 より内側に位置するようにした。

【特許請求の範囲】

【請求項1】 インク海を吐出するノズルと、このノズ ルが連通する被室と、この被室内のインクを加圧して前 記ノズルからインク箔を吐出させる圧力を発生する圧力 発生手段とを備えたインクジェットヘッドを有し、この 圧力発生手段を動作させるための電圧を印加する基板上 に形成した電極に導電性材料を介してブリント基板を接 続したインクジェット記録装置において、前記導電性材 料は接続前の状態で前記プリント基板の端部より内側に 位置することを特徴とするインクジェット記録装置。

【請求項2】 インク滴を吐出するノズルと、このノズ ルが速通する液室と、この液室内のインクを加圧して前 記ノズルからインク滴を吐出させる圧力を発生する圧力 発生手段とを備えたインクジェットヘッドを有し、この 圧力発生手段を動作させるための電圧を印加する基板上 に形成した電極に導電性材料を介してプリント基板を接 続したインクジェット記録装置において、前記導電性材 料は前記プリント基板の端部より内側に位置することを 特徴とするインクジェット記録装置。

置において、前記インクジェットヘッドの圧力発生手段 が前記の少なくとも一つの壁面を形成する振動板と、こ の振動板に対向配置した電極とを有し、前部振動板と電 極との間に電圧を印加することで前配振動板が静電力に よって変形して前記液室のインクを加圧する手段であ り、前記振動板を形成する部材が導体又は半導体からな ることを特徴とするインクジェット記録装置。

【請求項4】 インク摘を吐出するノズルと、このノズ ルが連通する液室と、この液室の少なくとも一つの壁面 を形成する振動板と、この振動板に対向配置した電攝と 30 を有し、前記振動板と電極との間に電圧を印加すること で前記振動板を静電力によって変形させて前記ノズルか らインク滴を吐出させるインクジェットヘッドを有し、 このインクジェットヘッドの基板上に形成した電極に導 電性材料を介してプリント基板を接続したインクジェッ ト記録装置において、前記振動板を形成する基板と前記 プリント基板の始部との間に絶縁性を有する隔壁部材を 設けたことを特徴とするインクジェット記録装置。

【請求項5】 請求項4に記載のインクジェット記録装 一体的に形成した凸部であることを特徴とするインクジ エット記録装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明はインクジェット記録装置 に関し、特にインクジェットヘッドとプリント基板との 接続部を保護するようにしたインクジェット記録装置に 関する。

画像記録装置として用いるインクジェット記録装置にお いて使用するインクジェットヘッドは、インク滴を吐出 するノズル孔と、このノズル孔が連通する吐出室(圧力 室、加圧液室、液室、インク流路等とも称される。) と、この吐出室内のインクを加圧するエネルギーを発生 するエネルギー発生手段とを備えて、エネルギー発生手 段を駆動することで吐出室内インクを加圧してノズル孔 からインク液を吐出させるものであり、記録の必要なと きにのみインク滴を吐出するインク・オン・デマンド方 10 式のものが主流である。そして、インク商(配録液体) の発生方法及び飛翔方向を制御するための制御方法によ り、幾つかの方式に大別される。

【0003】第1の方式は、例えば米国特許第3060 429号明細書に開示されているものである。これは、 Tele type方式と称され、インク滴の発生を静電吸引的 に行い、発生したインク摘を記録信号に応じて電界制御 し、被記録体上にこのインク滴を選択的に付着させて記 録を行うものである。

【0004】より詳細には、ノズルと加速電極間に電界 【請求項3】 請求項2に記載のインクジェット記録装 20 をかけて、一様に帯電したインク滴をノズルより吐出さ せ、吐出したインク滴を記録信号に応じて電気制御可能 なように構成されたXY偏向電極間を飛翔させ、電界の 強度変化によって選択的にインク摘を被記録体上に付着 させるものである。

【0005】第2の方式は、例えば米国特許第3596 275号明細書、米国特許第3298030号明細書等 に開示されているものである。これは、Sweet方式と称 され、連続振動発生法により搭電量の制御されたインク 液を発生させ、この帯電量の制御されたインク液を、一 模電界がかけられている偏向電極間を飛翔させて、被記 録体上に記録を行わせるものである。

【0006】具体的には、ピエソ振動素子の付設されて いる記録ヘッドを構成する一部であるノズルのオリフイ ス(吐出口)の前に記録信号が印加されるようにした帯電 電極を所定距離離間させて配置し、前記ピエゾ振動素子 に一定周波数の電気信号を印加することでピエゾ振動素 子を機械的に振動させ、オリフィスよりインク滴を吐出 させる。この時、吐出するインク摘には帯電電框により 電荷が静電誘導され、インク裔は記録信号に応じた電荷 置において、前記帷隔手段が前記電極を形成する基板と 40 量で帯電される。帯電量の制御されたインク商は、一定 電界が一様にかけられている偏向電極間を飛翔する時 に、付加された帯電量に応じて偏向を受け、記録信号を 担うインク濱のみが被記録体上に付着することになる。 【0007】第3の方式は、例えば米国特許第3416 153号明細書に開示されているものである。これは、 Hertz方式と称され、ノズルとりング状の帯電電極間に 電界をかけ、連続振動発生法によって、インク商を発生 **器化させて記録する方式である。すなわち、ノズルと帯** 電電極限にかける電界強度を記録信号に応じて変調する 【従来の技術】プリンタ、ファクシミリ、複写装置等の 50 ことによりインク摘の象化状態を制御し、記録画像の階 .9

· 調性を出して記録させるものである。

【0008】第4の方式は、例えば米国特許第3747 120号明細書に開示されているものである。これは、 Stemme方式と称され、上記第1~3の方式とは根本的 に原理が異なるものである。 すなわち、第1~3の方式 が、いずれもノズルより吐出されたインク滴を、飛翔し ている途中で電気的に制御し、記録信号を担ったインク 滴を選択的に被記録体上に付着させて記録を行わせるの に対し、このSteme方式では、記録信号に応じて吐出 【0009】つまり、Stemme方式は、記録液体を吐出 する吐出口を有する記録ヘッドに付設されているピエゾ 振動素子に、電気的な記録信号を印加してピエソ振動素 子の機械的振動に変え、この機械的振動に従い吐出口よ りインク商を吐出飛翔させて被配録体に付着させるもの である。

【0010】これらの4方式は、各々に特長を有する が、同時に、不利な点もある。先ず、第1~第3の方式 は、インク滴を発生させるための直接的エネルギーが電 気的エネルギーであり、かつ、インク液の偏向制御も電 20 界劍御による。したがって、第1の方式は、構成上はシ ンプルであるが、小酒の発生に高電圧を要し、かつ、記 **録ヘッドのマルチノズル化が困難で高速記録には不向き** である。

【0011】また、第2の方式は、記録ヘッドのマルチ ノズル化が可能で高速記録に向くが、構成上複雑であ り、かつ、インク橋の電気的制御が高度で困難であり、 被記録体上にサテライトドットが生じやすい。第3の方 式は、インク演を選化することにより階調性に優れた記 る。また、記録画像にカプリが生じたり、記録ヘッドの マルチノメル化が困難で高速記録には不向きであるとい った不利な点がある。

【0012】一方、第4の方式は、比較的多くの利点を 持っている。つまり、まず、構成が簡単であり、また、 オンデマンドでインク演をノズルより吐出させて記録を 行うために、第1~第3の方式のように吐出飛翔するイ ンク橋の、画像記録に要しなかったインク商を回収する 必要がない。さらに、第1、2の方式のように、導電性 のインクを使用する必要はなく、インクの物質上の選択 40 自由度が大きい。

【0013】しかしながら、所望の共振周波数を有する ビエゾ振動素子の小型化が極めて困難である等の理由か ら、記録ヘッドのマルチノズル化が難しい。また、ピエ ゾ振勤索子の機械的振動という機械的エネルギーによっ てインク楠の吐出飛翔を行わせるために、上記のマルチ ノズル化の困難さと相俟って、高速記録には不向きのも のとなっている。

【0014】そこで、例えば特開昭56-9429号公 報に開示されているように、被室内のインクを加熱して 50 出し部とプリント基板とを上途した異方性導電膜或いは

気泡を発生させて、インクに圧力上昇を生じさせ、微細 な毛細管ノズルからインクを吐出させる方式や特公昭6 1-59914号公報に開示されているように、液体を 所定の方向に吐出させるための吐出口に連通する液路中 の液体の一部を熟して膜沸騰を生起させることにより、 吐出口より吐出される液体の飛翔的液滴を形成し、この 液滴を被記録体に付着させて記録させるものなどがあ

【0015】この方式の記録ヘッドは、特公昭62-5 ロよりインク滴を吐出飛翔させて記録するものである。 10 9672号公報に記載されているように、基板上の所定 位置にインクに液摘発生のためのエネルギーを与えるエ ネルギー発生手段としての発熱素子、圧電素子等の能動 素子を複数個固定的に設置した後(電極は適宜形成され る)、基板表面に所定厚さで感光性組成物層を塗布法等 により形成し、通常のフオトリソグラフイー法により、 オリフィス部、作用部、インク供給路部、インク吐出路 部等のインク流路を形成するためのインク流路溝を形成 し、この後、上蓋を接合させて記録ヘッドを製造するよ うにしている。

【0016】このようにフオトリソ技術を用いることに より、高密度化が可能となるが、インクの中で発熱体を **両温に発熱させること、さらには気泡を瞬間的に膨張・** 消滅させるため、その熱ストレスや、衝撃で発熱体が劣 化しやすく、また、発熱体が直接インクに接触するため に、使用できるインクの自由度が少ないという欠点があ వ.

【0017】これらの問題点を解決し、しかもフオトリ ソ技術の使用による高密度化を実現するものとして、特 開平4-52214号公報、特開平3-293141号 **録が可能ではあるが、他方、霧化状態の制御が困難であ 30 公報などに記載されているように、シリコン基板からな** る第1の基板(振動板基板)にエッチングによって液塞 とこの液室の一壁面を形成する振動板とを形成し、この 第1の基板の下側に電極を形成した第2の基板(電極基 板)を配置して、振動板に所定ギャップを置いて電極を 対向させ、振動板と電極間に電圧を印加することで、静 電力によって振動板を据ませて液宝の内容積を変化させ て被室に連通するノズルからインク滴を吐出させる静電 型インクジェットヘッドが知られている。

【0018】この静管型インクジェットヘッドの電極 (個別電極) に駆動被形を印加するための構成として は、例えば特開平7-246706号公報に記載されて いるように、インクジェットヘッドの個別電極とプリン ト板とを異方導電性膜で接続するものが知られている。 [0019]

【発明が解決しようとする課題】上述したような電極基 板上に振動板基板を設けた静電型インクジェットヘッド にあっては、電極の取り出しのために電極基板を振動板 基板より大きく形成し、電極基板上の電極を振動板基板 より外側に延設して電板取り出し部とし、この電極取り

5

ハンダなどの導電性材料を介して接続することになる。 【0020】この場合、呉方導電性膜やハンダなどの導 **常性材料がプリント基板と電極とを接続するときにはみ** 出して、振動板や隣接電板間に接触したり、極めて近接 することになる。ところが、特に、振動板の変位方向が インク預吐出方向に一致するいわゆるサイドシュータ方 式の静電型インクジェットヘッドの場合にあっては、電 極基板の個別電極を形成する電極形成面はノズル面と同 方向の面になり、しかも、ヘッドの小型化に従って電極 形成面とノズル面とが近接するので、電極とプリント基 10 加することで前記振動板が静電力によって変形して前記 板との接続部がノズル面に極めて近接した状態にある。

【0021】一方、インクジェット記録装置において は、インク商吐出やノズル面のワイビング、ノズル内の インクの吸引排出などの信頼性維持動作を行うために、 この信頼性回復動作によってノズル面に残留したインク が、振動板や電極とこれに極めて近接している導電性材 料との間に侵入してリークが発生し、吐出不能になった り、誤動作をするチャンネルが発生することがあり、長 期安定性及び信頼性に欠けることがある。

【0022】なお、上述したような各問題は、アクチュ 20 エータ手段として振動板に対向配置した電極を有する静 電型インクジェットヘッドに限らず、例えば基板上に積 **層型圧電素子を配置したインクジェットヘッドにあって** も、基板上に電気機械変換素子に駆動波形を与えるため の電板取り出し部(電板パターン)を設けて、この管極 取り出し部とプリント基板とを接続するような場合には 同様に発生するものである。ただし、積層型圧電素子を 用いる場合にはノズル面と電極パターンとが静電型イン クジェットヘッドに比べて離れているので、前者の問題 は静電型インクジェットヘッドの場合ほど顕著ではな W

【0023】本発明は上記の課題に鑑みてなされたもの であり、低コストで信頼性を向上したインクジェットへ ッド記録装置を提供することを目的とする。

[0024]

【課題を解決するための手段】上記の課題を解決するた め、請求項1のインクジェット記録装置は、インク摘を 吐出するノズルと、このノズルが連通する被室と、この 被室内のインクを加圧して前記ノズルからインク濱を吐 出させる圧力を発生する圧力発生手段とを備えたインク 40 ジェットヘッドを有し、この圧力発生手段を動作させる ための電圧を印加する基板上に形成した電極に導電性材 料を介してプリント基板を接続したインクジェット記録 装置において、前記導電性材料は接続前の状態で前記プ リント基板の端部より内側に位置する構成とした。

【0025】 節求項2のインクジェット記録装置は、イ ンク商を吐出するノズルと、このノズルが連通する被室 と、この被室内のインクを加圧して前記ノズルからイン ク滴を吐出させる圧力を発生する圧力発生手段とを備え たインクジェットヘッドを有し、この圧力発生手段を動 50 る。この振動板基板10上に被室16に対応する質通穴

作させるための常圧を印加する基板上に形成した電極に 導電性材料を介してプリント基板を接続したインクジェ ット記録装置において、前記導電性材料は前記プリント 基板の端部より内側に位置する構成とした。

【0026】請求項3のインクジェット配録装置は、上 記請求項2のインクジェット記録装置において、前配イ ンクジェットヘッドの圧力発生手段が前記の少なくとも 一つの壁面を形成する振動板と、この振動板に対向配置 した電極とを有し、前記振動板と電極との間に電圧を印 液室のインクを加圧する手段であり、前記振動板を形成 する部材が導体又は半導体からなる構成とした。

【0027】請求項4のインクジェット記録装置は、イ ンク滴を吐出するノズルと、このノズルが連通する液室 と、この液室の少なくとも一つの壁面を形成する振動板 と、この振動板に対向配置した電極とを有し、前記振動 板と電極との間に電圧を印加することで前記振動板を静 電力によって変形させて前記ノズルからインク箱を吐出 させるインクジェットヘッドを有し、このインクジェッ トヘッドの基板上に形成した電機に導電性材料を介して プリント基板を接続したインクジェット記録装置におい て、前記振動板を形成する基板と前記プリント基板の端 部との間に絶縁性を有する隔壁部材を設けた柄成とし た。

【0028】請求項5のインクジェット記録装置は、上 記請求項4のインクジェット記録装置において、前記離 隔手段が前記電極を形成する基板と一体的に形成した凸 部である構成とした。

[0029]

【発明の実施の形態】以下、本発明の実施の形態につい て添付図面を参照して説明する。図1は本発明の第1実 施形態に係るインクジェット記録装置のヘッド部の斜視 図、図2は同ヘッド部のインクジェットヘッドの斜視 図、図3は図1のA-Aに沿う要部拡大断面図、図4は 図1のB-B線に沿う要部拡大断面図である。

【0030】インクジェットヘッド1は、図2乃至図4 に示すように、振動板基板10と、この振動板基板10 の上側に設けた液室基板11と、振動板基板10の下側 に設けた電極基板12と、被室基板11の上側に設けた ノズルプレート13とを備え、複数のノズル15、各ノ ズル15が連通する被室16などを形成している。

[0031]振動板基板10には、液室16及びこの液 室16の底部をなし、第1の電極で共通電極となる振動 板18を形成する凹部17と、各被室16にインクを供 給する図示しない共通インク室、共通インク室と被室1 6 とを速通する図示しない流体抵抗部などを形成する凹 部、溝等を形成している。この振動板基板10は、SU S基板などの金属基板、シリコン基板等をエッチングす ることで所望の微細な液室パターンを形成したものであ

19等を形成した被室基板11を接合している。

【0032】 電極基板12には凹部20を形成して、こ の凹部20の底面に振動板18に所定(ここでは、1μ 血としている。) のギャップを置いて対向する第2の電 極となる個別電極21を形成し、この個別電極21と振 動板18によって、振動板18を変位させて被室16の 内容積を変化させるアクチュエータ部を構成している。 この電極基板12の個別電極21上には短絡、放電によ って個別電極21が破損するのを防止するためのSiQ などの絶縁層22を成膜し、また、個別電極21は振動 10 板基板10より外側に延設してプリント基板と接続する ための電極パッド23を設けている。

【0033】この電極基板12は、SUSなどの金属 や、ガラス、Si等をエッチングして凹部20を形成 し、この凹部20にNi、A1、Ti/Pt、Cuなどの管 極材料を、スパッタ、CVD、蒸着などの成膜技術で所 望の厚さに成膜し、その後、フォトレジストを形成して エッチングすることにより、凹部20にのみ個別電極2 1を形成したものである。

【0034】ノズルブレート13は、NiやSUSなど 20 電極に接触して、電極間の導通がとれるものである。 の金属板、ガラス、或いは樹脂などで形成し、エッチン グやニッケルのエレクトロフォーミング法などの周知の 方法で作製することができる。このノズルブレート13 にはノズル15を2列千島状に配列してノズル密度を高 くしたものであり、これに対応して前途した振動板基板 10、被室基板11には被室16、振動板18を、電極 基板13には個別電極21を、それぞれ2列配列して設 けている。さらに、ノズルプレート13のノズル面(吐 出方向の表面)には、インクとの擬水性を確保するた め、メッキ被膜、あるいは搬水剤コーティングなどの周 30 知の方法で接水膜を形成している。

【0035】これらの援勁板碁板10、被望基板11、 電視基板12及びノズルプレート13は、接着剤や陽幅 接合などの直接接合法、共晶接合法等によって接合して

【0036】このインクジェットヘッド1は、振動板1 8と個別電極21との間に駆動電圧を印加することによ って静電力によって振動板18が変形して、液氢16の 内容積(体積)が変化することによって、ノズル15か らインク摘が吐出される。

【0037】そこで、このインクジェットヘッド1の個 別電極21の電極パッド23には、図3に示すように個 別電極21に駆動披形を与えるために外部回路(駆動 I C等)に接続したフレキシブルブリントケーブル(FP C) からなるブリント基板25を導電性材料である異方 導電性膜(或いはハンダなどでもよい。) 26を介して 接続している。

【0038】このプリント基板25は、ガラスエポキシ 樹脂やフェノール樹脂等からなる板状のプリント基板べ ースや、ポリイミド樹脂、PET樹脂等からなるフィル 50 プリント基板の端部より内側に位置する構成とすること

ム状のプリント基板ベースを用いることができ、このブ リント基板ペース27上に個別電板21に電圧を印加す るための電極リード28を形成したものである。

【0039】プリント基板25上の電極リード28と個 別電極21の電極パッド23を電気的に接続する方法と しては、例えば、半田を熱圧着する方法、異方導電性接 着剤で熱圧着する方法、電極間同士を圧接する方法、ワ イヤボンディングで接続する方法、パンプで接続する方 法などがある。これらの中でも、半田や異方導電性接着 剤、圧接などの方法を用いることで、複数の電極間同士 の接続を一度に行うことができ、接続作業が効率的で、 低コスト化を図れる。

【0040】ここで、このインクジェットヘッドにおい ては異方導電性膜26を介して個別電極21とブリント 基板25とを電気的に接続している。 異方導電性膜(異 方導電フィルム) 26は、既知のように、熱可塑性、或 いは無硬化性の樹脂の中に、フィラと呼ばれる導電性の 粒子を分散させたもので、電極の間に挟んで加熱、加圧 することによって、異方導電膜が齎れて、フィラーが両

【0041】ここで、この異方導電性膜26による接続 について図5を参照して説明する。先ず、同図(a)に 示すように、圧着ヘッド29を用いてプリント基板25 の電極リード28に異方等電性膜26を仮圧着する。な お、異方導電性膜26には保護フィルム26aが貼着さ れている。この異方導電性膜26は、プリント基板25 の端面より内側に位置合せして仮圧着している。このと き、異方導常膜26のプリント基板25からの後退量a は、異方導電性膜26の膜厚にもよるが、圧着実験に基 づくと、好ましくは膜厚以上、より好ましくは膜厚の2 倍以上にする。

【0042】そして、同図(b) に示すように、果方導 電性膜26の保護フィルム26aを除去し、電極基板1 2の電極パッド部とプリント基板25の電極リード28 との位置合せを行なって、加熱した圧着ヘッド29を電 極幅以上の領域に押し当てて熱圧着する。これにより、 同図 (c) に示すように、プリント基板25は呉方導電 性膜26を介して個別電極21の電極パッド23に接続 される。

【0043】このとき、異方導電性膜26はプリント基 板25の端部方向に広がるが、予め広がる量を見越し て、異方導電性膜26をプリント基板25の端部より後 退量 a だけ後退させているので、同図(c)に示すよう に異方導電性膜26ポプリント基板25の端部からはみ 出すことがなくなる。なお、異方導電性膜26を電極2 1 側に仮圧着する場合には、プリント基板25の位置合 せで、プリント基板25の端部より内側に異方導電性膜 26が位置するように位置合せして熱圧着すればよい。 【0044】このように、導電性材料は接続前の状態で

によって、プリント基板を導電性材料で接続したときに プリント基板の先端から導電性材料がはみ出すことを防 止でき、導電性材料が振動板や隣接電極間に接触するこ とがなくなり、信頼性が向上する。

【0045】特に、このインクジェットヘッド1のよう に、インク滴の噴射方向が振動板面と垂直方向である、 いわゆるサイドシュータ型インクジェツトヘッドの場 合、この電極面はノズル面と同方向になり、しかもヘッ ドの小型化のために、電極面とノズル面が近接した状態 となる。そのため、インク滴吐出や、ノズル面のワイビ 10 クタンクかちインクが供給できるようにした。 ング、ノズル15内インクの吸引排出などの信頼性を維 持するための動作により、インクが個別電極21とプリ ント基板25との接続部に入り込み、水性インクの場 合、導電性を有しているため、入り込んだインクによっ て隣接する個別電概21がリークしたり、プリント基板 25の電極リード28が電気的に関った個別電極21に 接続されて、吐出不良や誤吐出が生じる。本発明は、こ のようなサイドシュータ型のインクジェットヘッドの対 して特に効果的である。

【0046】また、プリント基板の先端から導電性材料 20 がはみ出すことがないので、プリント基板を振動板基 板、ノズル基板の近傍まで配置することができ、常極パ ッドとの接触面積を大きくとることができるようにな る。これによって、接触抵抗が小さくなると共に、接着 力が大きくなり、電気的、機械的な信頼性が向上する。 【0047】なお、導電性材料としては異方導電性膜に 限られるものではなく、ハングなども使用することがで きる。この場合には、プリント基板の電極リード面への ハンダめっき位置を、プリント基板の端部より内側の位 低にとどめるようにすればよい。

【0048】ここで、インクジェットヘッド1の具体的 な構成について説明する。ここで採用したインクジェッ トヘッドは、インク液室6の幅は0.2mm、臭行き 2.0mm、ピッチを0.28mmとした。Si基板を エッチングして厚さ10μmの振動板18を形成した板 厚O、2mmの振動板基板10と、パイレックスガラス 基板に 0.5μ 皿の溝(凹部 20、ギャップとなる)の 底部に、Niの個別電極21を幅0.2mm、ピッチ 0.28mmで形成し、更に個別電框21上に1000 AのSiO2の絶縁層22を形成した電極基板12とを接 40 着剤で接合し、振勁板基板10の上に、板厚150μm の液室基板11、板厚30μmのノズルプレート13と を順次接着剤で接合して、静電型インクジェットヘッド を作製した。このヘッドのノズルピッチは0.28m m、ノズル数は64チャンネルである。

【0049】そして、FPC (プリント基板) 25の電 極リード28には異方導電性フィルム(株式会社スリー ポンド製3370C:商品名)を仮圧着した。この仮圧 若は、圧着機の圧着ヘッド担度を150℃、圧着圧力を 30kg/cm。、圧着時間を1秒で行なった。さら

に、このFPC(プリント基板)25の電極リード28 をインクジェットヘッドの電極パッド23に位置合せし た状態で、本圧着した。この本圧着は、圧岩機の圧着へ ッド温度を150℃、加圧力を30kg/cmf、圧岩 時間を20秒で行なった。

【0050】これにより、FPC25を異方導電性膜フ ィルムを介して個別電極21に接続して駆動電圧を供給 できるようにした。 また、このインクジェットヘッドの インク被室16に速通したインク供給口を通して、イン

【0051】このヘッドは、

: $200 \mu m \times 2mm$ 振動板サイズ

振動板の配列密度 : 90 dpi (=ノズルの配列密度) :32個×2列=64個(ノズルの 振動板の数

数)

構成である。

【0052】次に、このようにして形成された記録へッ ドチップは、例えば次のような方法でインク飛翔記録へ ッドユニットとして完成する。このインク飛翔記録へッ ドユニットは、インク供給管(インク供給手段)に接続 された中空のインク供給室を有して形成されたマニホー ルドをペース材として構成し、マニホールドの頂部には 記録ペッドチップを固定し、インク供給管から供給され たインクをインク供給室を通して、マニホールドの頂部 に導き、記録ヘッドチップの端に設けたインク供給口か ら記録ヘッドチップの共通インク室に供給し、その後 は、各インク供給チャンネルの毛管現象により、各エネ ルギー作用部まで運ばれる。さらに、記録ヘッドチップ は周囲を覆い、枠状の保持部材により押え固定される。

【0053】そして、このインクジェットヘッドにおい ては、インク供給管よりインク供給口に供給されたイン クが共通インク室を通ってインク供給チャンネル全域に 満たされている状態で、画像情報に応じて各個別電極に 対して個別に駆動電圧を与えることで、個別電極と振動 板との間で静電気力が発生し、振動板が個別電極側に変 位する。この状態から、通電をオフすると、振動板は元 の状態に戻ろうとし、この時の急激な容積変化により、 インクがノズルより液滴となって飛翔する。

【0054】そこで、このインクジェットヘッドの振動 板基板10をグランドにして、個別電極21に、

: 120V 壓勁健圧 : 3 0 μ sec パルス姫

: 2 k H z (ベタ印写時) **連続駆動周波数**

の駆動波形を印可し、その駆動波形をオシロスコープで 観察したところ、グランドとのリーク、隣接電極とのリ 一クの発生は認められなかった。

【0055】これに対して、本発明のように、導電性材 料は接続前の状態でプリント基板の端部より内側に位置 する構成としないときには、図6に示すように、プリン 50 ト基板25の端部で間に介した異方導電性膜26 (蔵い はハンダなどの導電性材料)が熟圧着時の圧力によって はみ出して、振動板基板10に接触してグランドとリー クしたり、隣接する個別電極21間でのリークが発生す

【0056】次に、本発明の第2実施形態について図7 及び図8を参照して説明する。なお、図7は本発明の第 2 実施形態に保るインクジェット記録装置のヘッド部の 要部所面図、図8は同実施形態における異方導電膜によ る接続工程を説明する説明図である。 なお、第1実施形 態と対応する部分には同一符号を付して説明を省略す

【0057】この実施形態は、プリント基板25と個別 電極21とを接続した後の異方導電性膜26がプリント 基板25の端部より内側に位置するようにした例であ る。すなわち、図8 (a) に示すように、圧着ヘッド2 9を用いてプリント基板25の電極リード28に異方導 電性膜26を仮圧着する。なお、異方導電性膜26には 保護フィルム26 a が貼着されている。

【0058】ここで、異方導電性膜26は、上配第1実 施形態のようにプリント基板25の蟾面より内側に位置 20 合せして仮圧着する必要はない。 したがって、異方等電 性膜26は、位置合せの容易なプリント基板25の端部 に合せても良い(図示の例)し、端部から多少はみ出し ていても、端部より若干内側入り込んでいてもよい。こ れにより、仮接着時に高精度の位置合せが必要でなくな り、作業時間の短縮、歩留まりの向上を図れる。

【0059】そして、同図(b)に示すように、異方導 電性膜26の保護フィルム26aを除去し、電極基板1 2の電極パッド部とプリント基板25の電極リード28 との位置合せを行なって、加熱した圧着ヘッド29を電30 極幅以上の領域に押し当てて熱圧着する。

【0060】このとき、異方導電性膜26はプリント基 板25の端部方向に広がり、場合によっては、同図

(c) に示すように異方導管性膜26がプリント基板2 5の端部よりはみ出すので、圧着後にはみ出した部分2 6 b を除去して、図7に示すように異方導電性膜26を プリント基板25の端部に揃える。

【0061】このように、導電性材料は接続後の状態で プリント基板の端部より内側に位置する構成とすること によって、プリント基板を導電性材料で接続したとき に、振動板などの部材に接触することがなくなり、信頼 性が向上する。

【0062】 特に、このインクジェットヘッド1のよう に、インク摘の噴射方向が振動板面と垂直方向である、 いわゆるサイドシュータ型インクジェツトヘッドの場 合、この電極面はノズル面と同方向になり、しかもヘッ ドの小型化のために、電極面とノズル面が近接した状態 となる。そのため、インク演吐出や、ノズル面のワイビ ング、ノズル15内インクの吸引排出などの信頼性を維 持するための動作により、インクが個別電極21とプリ 50 合せした状態で、本圧着した。この本圧着は、圧着機の

ント基板25との接続部に入り込み、水性インクの場 合、導電性を有しているため、入り込んだインクによっ て隣接する個別電極21がリークしたり、プリント基板 25の電極リード28が電気的に誤った個別電極21に 接続されて、吐出不良や碘吐出が生じる。本発明は、こ のようなサイドシュータ型のインクジェットヘッドの対 して特に効果的である。

【0063】また、プリント基板の先端から導電性材料 がはみ出していないので、プリント基板を振動板基板、 10 ノズル基板の近傍まで配置することができ、電極パッド との接触面積を大きくとることができるようになる。こ れによって、接触抵抗が小さくなると共に、接着力が大 きくなり、電気的、機械的な信頼性が向上する。

【0064】なお、導電性材料としては異方導電性膜2 6 に限られるものではなく、ハンダなども使用すること ができる。

【0065】また、振動板装板10として絶縁性の材料 にポロン等の金属などの導電性材料を性膜して共通電極 (扱動板) とした場合にも、振動板基板の端部におい て、露出した共通電極とはみ出した異方導電性膜とが接 触してリークが生じるという不都合がなくなるが、さら に、共通電極形成工程の必要のない、振動板自体が金属 や半導体で形成された場合には、振動板基板の端部で大 きく共通電極が露出することになるが、この場合でもリ ークが発生せず、より効果的である。

【0066】ここで、インクジェットヘッド1の具体的 な構成について説明する。ここで採用したインクジェッ トヘッドは、インク液室6の幅は0.2mm、奥行き 2. 0mm、ピッチを0. 28mmとした。Si基板を エッチングして厚さ10μmの振動板18を形成した板 厚0.2mmの振動板基板10と、パイレックスガラス 基板に 0. 5 μ m の溝 (凹部 2 0 、ギャップとなる) の 底部に、Niの個別電梯21を幅0.2mm、ピッチ 0. 28mmで形成し、更に個別電極21上に1000 AのSiO,の絶縁層22を形成した電極基板12とを接 着剤で接合し、振動板基板 1 0 の上に、板厚 1 5 0 μ m の被室基板11、板厚30μmのノズルブレート13と を順次接着剤で接合して、静電型インクジェットヘッド を作製した。このヘッドのノズルピッチは0.28m 40 m、ノズル数は64チャンネルである。

【0067】そして、FPC (プリント基板) 25の電 極リード28には異方導電性フィルム(株式会社スリー ポンド製3370C;商品名)を仮圧着した。10枚の プリント基板を仮圧着したところ、端部からのばらつき は土20μmであった。この仮圧着は、圧着機の圧着へ ッド祖庭を150℃、圧着圧力を30kg/cm*、圧 着時間を1秒で行なった。さらに、このFPC(ブリン ト基板)25の先端が振動板器板10の端面から50μ mの位置で、電極リード28と電極パッド23とを位置 13

圧着ヘッド温度を150℃、加圧力を30kg/c m*、圧着時間を20秒で行なった。

【0068】このとき、異方導電性膜26のFPC25 の端部からのはみ出し量を測定すると、5μmから50 μm (振動板基板10に接触) の範囲であった。その 後、異方導電性膜26のプリント基板25の端部からの はみ出し部分を除去した。このはみ出し部分の除去は、 例えば、鋭利なカッターなどで機械的に除去する方法を 用いて行なった。これにより、製作したFPC25はす べて振動板基板10と接触することがなく、すべて使用 10 可能となった。

【0069】これにより、FPC25を吳方導電性膜フ ィルムを介して個別電極21に接続して駆動電圧を供給 できるようにした。 また、このインクジェットヘッドの インク液室16に連通したインク供給口を通して、イン クタンクからインクが供給できるようにした。

【0070】このヘッドは、

: $200 \mu m \times 2mm$ 振動板サイズ

振動板の配列密度 : 9 Odpi (ニノズルの配列密度)

摂動板の数

数)

構成である。

【0071】次に、このようにして形成された記録へッ ドチップは、例えば次のような方法でインク飛翔記録へ ッドユニットとして完成する。このインク飛翔記録ヘッ ドユニットは、インク供給管(インク供給手段)に接続 された中空のインク供給室を有して形成されたマニホー ルドをペース材として構成し、マニホールドの頂部には 記録ヘッドチップを固定し、インク供給管から供給され たインクをインク供給室を通して、マニホールドの頂部 30 とき、異方導電性膜28は潰されてプリント基板25の に導き、記録ヘッドチップの端に設けたインク供給口か ら記録ヘッドチップの共通インク室に供給し、その後 は、各インク供給チャンネルの毛管現象により、各エネ ルギー作用部まで運ばれる。さらに、記録ヘッドチップ は周囲を覆い、枠状の保持部材により押え固定される。

[0072] そして、このインクジェットヘッドにおい ては、インク供給管よりインク供給口に供給されたイン **クが共通インク室を通ってインク供給チャンネル全域に 満たされている状態で、両像情報に応じて各個別電極に** 対して個別に駆動電圧を与えることで、個別電極と振動 40 板との間で静電気力が発生し、援動板が個別電極側に変 位する。この状態から、通電をオフすると、振動板は元 の状態に戻ろうとし、この時の念徴な容積変化により、 インクがノズルより液滴となって飛翔する。

【0073】そこで、図7に示すように、このインクジ エットヘッドの振動板基板10をグランドにして、個別 電極21に、

取動電圧

: 120V

パルス幅

: 3 0 µ sec

連続駆動周波数

: 2 k H z (ペタ印写時)

の駆動波形を印可し、その駆動波形をオシロスコープで 観察したところ、グランドとのリーク、隣接電極とのリ 一クの発生は認められなかった。

【0074】次に、本発明の第3実施形態について図9 を参照して説明する。なお、同図は、同実施形態のイン クジェット記録装置のヘッド部の要部断面図である。こ の実施形態は、振動板基板10とプリント基板25との 間に異方導電性膜26のはみ出しを阻止する絶縁性を有 する隔壁部材30を設けたものである。

【0075】この隔襞部材30としては、セラミックス や成形が容易な樹脂材料を用いることが好ましい。ま た、隔壁部材30の大きさは、振動板基板10とプリン ト基板25との絶縁を行なえば良いので、加工作業中に 壊れない程度に小さくて良い。 また、あまり大きすぎる と、商さがノズル面より高くなったり、幅方向では、ブ リント基板25と電極との接続面積を確保する必要があ るため、電極基板が大きくなったりすることからも、で きるだけ小さい方が好ましい。したがって、隔壁部材3 0の幅は1mm以下、好ましくは0.5mm以下であ :32個×2列=64個 (ノズルの 20 り、高さもノズル面以下となるようにする。

【0076】この実施形態におけるプリント基板25の 接続方法は、先ず、上記第2実施形像と同様に、プリン ト基板25の電極リード28に異方導電性膜26を仮圧 . 着し、他方、電極基板12上にヘッドの振動板基板10 の端面に接して隔壁部材30を接着剤などで固定して設 ける。

【0077】そして、ヘッドの個別電框21と與方導電 性膜26を仮接着したプリント基板25の電極リード2 8とを位置合せした後、圧着ヘッドで本圧着する。この 端部からはみ出してくるが、隔壁部材30によって阻止 されて、異方導電性膜26が振動板基板10に接触する ことがなく、プリント基板25を介して駆動波形を印加 したときに、グランドに接続した振動板基板25とリー クすることがなくなる。

【0078】なお、隔壁部材30は、例えば図10に示 **すように、ノズル面13aの周縁部を覆うノズルカバー** 31を設けるときには、このノズルカバー31と一体に 形成することもできる。

【0079】次に、本発明の第4実施形態について図1 1及び図12を参照して説明する。なお、図11は、同 実施形態のインクジェット記録装置のヘッド部の要部断 面図、図12は同実施形態の隔壁部材の形成工程を説明 する説明図である。この実施形態は、振動板基板10と プリント基板25との間に、電板基板12と一体に形成 した、異方導常性膜26のはみ出しを阻止する絶縁性を 有する隔壁部材32を設けたものである。

【0080】すなわち、図12(a)に示すように、電 極基板12上に電極21のパターンを形成した後、ドラ 50 イフィルムレジスト (DFR) 33をラミネートし、露 光、現像することで、隔壁部材32となる部分を残して DFR33を除去する。たとえば、ネガ型DFR33を 用いた場合には、同図(b)に示すように、隔壁部材と なる部分に対応する関口部34aを形成したマスク34 を用いて露光して、DFR33の隔壁部材となる部分を 硬化させ、現像液でスプレー現像、或いは、ディップ現 像することで、同図 (c) に示すように、隔壁部材32 となる部分(硬化部分)を残してDFR33を除去する ことができる。

15

【0081】なお、電極基板12と一体の隔壁部材32 は、SiO2層の成膜、エッチングなどによっても形成す ることができる。

【0082】なお、上記各実施形態においては本発明を 静電型インクジェットヘッドを搭載するインクジェット 記録装置に適用した例で説明したが、特に、アクチュエ 一夕部(例えば、積層型圧電素子などの電気機械変換素 子、発熱抵抗体等の電気熱変換素子を用いるもの)より もこのアクチュエータ部に駆動波形を与えるための電極 の取り出し部を形成した基板が大きく、電極を外部に露 出させてプリント基板と接続するインクジェットヘッド を搭載するいかなるインクジェット記録装置にも適用す ることができる。

[0083]

【発明の効果】以上説明したように、請求項1のインク ジェット記録装置によれば、インクジェットヘッドの圧 力発生手段を動作させるための電圧を印加する基板上に 形成した常極に導電性材料を介してプリント基板を接続 したインクジェット記録装置において、導電性材料は接 錠前の状態でプリント基板の端部より内側に位置する構 成としたので、加圧、加熱による接着時に導電性材料が プリント基板の粉部からはみ出て振動板などの導電性の 部材に接触することがなくなり、吐出不良や誤吐出が防 止されて信頼性が向上する。

【0084】請求項2のインクジェット記録装置によれ は、インクジェットヘッドの圧力発生手段を動作させる ための電圧を印加する基板上に形成した電極に導電性材 料を介してプリント基板を接続したインクジェット記録 装置において、導電性材料はプリント基板の端部より舟 側に位置する構成としたので、導電性材料が振動板など の導電性の部材に接触することがなくなり、吐出不良や 製吐出が防止されて信頼性が向上する。

【0085】請求項3のインクジェット記録装置によれ は、上記請求項2のインクジェット記録装置において、 インクジェットヘッドの圧力発生手段がの少なくとも一 つの壁面を形成する振動板と、この振動板に対向配置し た電極とを有し、振動板と電極との間に電圧を印加する ことで振動板が静電力によって変形して被室のインクを 加圧する手段であり、振勁板を形成する部材が導体又は 半導体からなる構成としたので、振動板を形成する振動 板基板を導電性の材料で形成しなければならない静電型 インクジェットヘッドの信頼性を向上することができ

16

【0086】請求項4のインクジェット記録装置によれ ば、静電型インクジェットヘッドの基板上に形成した電 極に導電性材料を介してプリント基板を接続したインク ジェット記録装置において、振動板を形成する基板とプ リント基板の端部との間に絶縁性を有する隔壁部材を設 けた構成としたので、プリント基板の端部からはみ出す **専営性材料が隔壁部材阻止されて振動板に接触すること** がなくなり、吐出不良や誤吐出が防止されて信頼性が向 上する。

【0087】請求項5のインクジェット記録装置によれ は、上記請求項4のインクジェット記録装置において、 種隔手段が電極を形成する基板と一体的に形成した凸部 である構成としたので、隔壁部材の形成を容易に行なう ことができ、低コスト化を図れる。

【図面の簡単な説明】

【図1】本発明の第1実施形態に保るインクジェット記 最装置のヘッド部の斜視図

- 【図 2 】同ヘッド部のインクジェットヘッドの斜視図
- 【図3】図1のA-Aに沿う要部拡大断面図
- 【図4】図1のB-B線に沿う要部拡大斯面図
- 【図5】同実施形態のプリント基板と常極の接続工程を 説明する説明図
- 【図6】同実施形態の作用説明に供する從前のインクジ エットヘッドの要部断面図
- 【図7】本発明の第2実施形能に係るインクジェット記 録装置のヘッド部の要部断面図
- 【図8】同実施形態のプリント基板と電極の接続工程を 説明する説明図
- 【図9】本発明の第3実施形態に保るインクジェット配 録装置のヘッド部の要部断面図
- 【図10】同実施形態の他の例を示すヘッド部の要部断
- 【図11】本発明の第3実施形態に係るインクジェット 記録装置のヘッド部の要部断面図
- 【図12】同実施形態における隔壁部材の形成工程を説 明する説明図

【符号の説明】

1…インクジェットヘッド、10…振動板基板、11… 被室基板、12…電極基板、13…ノズルプレート、1 3a…ノズル面、15…ノズル、21…個別電極、23 …電極パッド、25…プリント基板、26…具方導電性 膜、30、32…隔壁部材、31…ノズルカバー。

JP0600012. DAT

[3311]

INK JET RECORDER

Patent Number:

JP2000094873

Publication date:

2000-04-04

Inventor(s):

KIMURA TAKASHI

Applicant(s):

RICOH CO LTD

Requested Patent:

... JP2000094673

Application Number: JP19980269091 19980924

Priority Number(s):

IPC Classification:

B41J2/045; B41J2/055

EC Classification:

Equivalents:

Abstract

PROBLEM TO BE SOLVED: To prevent incomplete or erroneous ejection by connecting a printed board with electrodes formed on a substrate through a conductive material disposed on the Inside of the end part of the printed board before connection.

SOLUTION: A recess 20 is made in an electrode substrate 12 and a second electrode, i.e., an individual electrode 21, facing a diaphragm 18 through a specified gap is formed on the bottom face of the recess 20. Electrode pad 23 of the individual electrode 21 is connected through a conductive material, i.e., an anisotropic conductive film 26, with a printed board 25 comprising a flexible print cable connected with an external circuit in order to apply a driving waveform to the individual electrode 21. The anisotropic conductive film 26 is disposed on the inside of the end part of the printed board 25 before connection. Since the anisotropic conductive film 26 does nottouch a conductive member, e.g. the diaphragm 18, incomplete or erroneous ejection can be prevented.

Data supplied from the esp@cenet database - 12

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-094673

(43)Date of publication of application: 04.04.2000

i1)Int.CI.

B41J 2/045 B41J 2/055

!1)Application number: 10-269091

!2)Date of filing:

: 10-269091 24.09.1998 (71)Applicant: RICOH CO LTD

(72)Inventor: KIMURA TAKASHI

34) INK JET RECORDER

i7)Abstract:

ROBLEM TO BE SOLVED: To prevent incomplete or erroneous ejection y connecting a printed board with electrodes formed on a substrate trough a conductive material disposed on the inside of the end part of the printed board before connection.

OLUTION: A recess 20 is made in an electrode substrate 12 and a scond electrode, i.e., an individual electrode 21, facing a diaphragm 18 brough a specified gap is formed on the bottom face of the recess 20. lectrode pad 23 of the individual electrode 21 is connected through a onductive material, i.e., an anisotropic conductive film 26, with a printed oard 25 comprising a flexible print cable connected with an external ircuit in order to apply a driving waveform to the individual electrode 21. he anisotropic conductive film 26 is disposed on the inside of the end art of the printed board 25 before connection. Since the anisotropic onductive film 26 does nottouch a conductive member, e.g. the iaphragm 18, incomplete or erroneous ejection can be prevented.

EGAL STATUS

Date of request for examination]

11.10.2002

Date of sending the examiner's decision of rejection]

Kind of final disposal of application other than the xaminer's decision of rejection or application converted agistration]

Date of final disposal for application]

⊃atent number]

Date of registration]

Number of appeal against examiner's decision of ejection]

Date of requesting appeal against examiner's decision f rejection

Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

NOTICES *

pan Patent Office is not responsible for any mages caused by the us of this translation.

This document has been translated by computer. So the translation may not reflect the original precisely. **** shows the word which can not be translated.

In the drawings, any words are not translated.

LAIMS

laim(s)

laim 1] The nozzle which carries out the regurgitation of the ink drop. The liquid room which this nozzle opens for se passage. A pressure generating means to generate the pressure which the ink of this liquid interior of a room is essurized [pressure], and makes an ink drop breathe out from the aforementioned nozzle. It is the ink-jet recording vice equipped with the above, and the aforementioned conductive material is characterized by being located inside e edge of the aforementioned printed circuit board in the state before connection.

laim 2] The nozzle which carries out the regurgitation of the ink drop. The liquid room which this nozzle opens for se passage. A pressure generating means to generate the pressure which the ink of this liquid interior of a room is essurized [pressure], and makes an ink drop breathe out from the aforementioned nozzle. It is the ink-jet recording vice equipped with the above, and the aforementioned conductive material is characterized by being located inside

e edge of the aforementioned printed circuit board.

laim 3] The ink-jet recording device according to claim 2 to which it has the following, and it is a means for the orementioned diaphragm to deform by electrostatic force by impressing voltage between the aforementioned aphragm and an electrode, and to pressurize the ink of the aforementioned liquid room, and the member which forms e aforementioned diaphragm is characterized by the bird clapper from a conductor or a semiconductor. The aphragm in which the pressure generating means of the aforementioned ink-jet head forms at least one orementioned wall surface. The electrode which carried out opposite arrangement at this diaphragm. laim 4] The ink-jet recording device characterized by providing the following. The nozzle which carries out the gurgitation of the ink drop. The liquid room which this nozzle opens for free passage. The diaphragm which forms at ast one wall surface of this liquid room. the septum which has the electrode which carried out opposite arrangement this diaphragm, has the ink-jet head which makes the aforementioned diaphragm deform by electrostatic force by pressing voltage between the aforementioned diaphragm and an electrode, and makes an ink drop breathe out from e aforementioned nozzle, and has insulation between the edges of the substrate which forms the aforementioned aphragm, and the aforementioned printed circuit board in the ink-jet recording device which connected a printed rcuit board to the electrode which formed on the substrate of this ink-jet head through a conductive material -- a ember

laim 5] The ink-jet recording device characterized by being the substrate in which the aforementioned isolation eans forms the aforementioned electrode, and the heights formed in one in an ink-jet recording device according to

aim 4.

'ranslation done.]

NOTICES*

pan Patent Office is not responsible for any mages caused by the use of this translation.

This document has been translated by computer. So the translation may not reflect the original precisely. **** shows the word which can not be translated. In the drawings, any words are not translated.

ETAILED DESCRIPTION

Detailed Description of the Invention

0011

adustrial Application] Especially this invention relates to the ink-jet recording device which protected the connection an ink-jet head and a printed circuit board about an ink-jet recording device.

0021

Description of the Prior Art] The ink-jet head used in the ink-jet recording device used as image recording uipments, such as a printer, facsimile, and a reproducing unit the ** nozzle which breathes out an ink drop -- a hole d this nozzle -- the **** room (it is called a pressure room, a pressurization liquid room, a liquid room, ink passage, 2.) which a hole opens for free passage It has an energy generation means to generate the energy which pressurizes e ink of this **** interior of a room. driving an energy generation means -- **** indoor ink -- pressurizing -- a vzzle -- the thing of the ** ink on demand which is made to breathe out an ink drop from a hole, and breathes out an k drop only when record is required is in use And it is divided roughly into some methods by the control method for introlling the generating method of an ink drop (record liquid), and the flight direction. 003] The 1st method is indicated by for example, the U.S. Pat. No. 3060429 specification. This is called a Tele type ethod, generates an ink drop, carries out electric-field control of the ink drop generated in electrostatic suction cording to a record signal, on the recorded body, makes this ink drop adhere alternatively, and records. 004] Apply electric field to a detail between a nozzle and an accelerating electrode, between XY deflecting ectrodes constituted according to the record signal in the ink drop which was made to breathe out from a nozzle the

k drop charged uniformly, and breathed it out so that electric control might be possible is made to fly more, and an k drop is made to adhere on the recorded body alternatively by on-the-strength change of electric field. 005] The 2nd method is indicated by for example, the U.S. Pat. No. 3596275 specification, the U.S. Pat. No. 198030 specification, etc. This is called a Sweet method, generates the ink drop by which the amount of ectrifications was controlled by continuation oscillating evolution method, makes between the deflecting electrodes which the ink drop by which this amount of electrifications was controlled is applied to uniform electric field fly,

id makes it record on the recorded body. 006] Predetermined distance alienation of the electrification electrode by which the record signal was made to be pressed before the orifice (delivery) of the nozzle which is the part which specifically constitutes the recording head which the piezo oscillating element is attached is carried out, it arranges, a piezo oscillating element is mechanically brated by impressing the electrical signal of constant frequency to the aforementioned piezo oscillating element, and 1 ink drop is made to breathe out from an orifice. At this time, electrostatic induction of the charge is carried out to e ink drop which carries out the regurgitation by the electrification electrode, and an ink drop is charged in the nount of charges according to the record signal. The ink drop by which the amount of electrifications was controlled ill receive a deviation according to the amount of electrifications added when fixed electric field flew between the eflecting electrodes applied uniformly, and only the ink drop which bears a record signal will adhere on the recorded

1007] The 3rd method is indicated by for example, the U.S. Pat. No. 3416153 specification. This is a method which is illed a Hertz method, applies electric field to the electrification inter-electrode of the shape of a nozzle and ** NGU, made to carry out generating atomization of the ink drop by continuation oscillating evolution method, and is corded. That is, the atomization state of an ink drop is controlled and the gradation nature of a record picture is made take out and record by modulating the field strength applied to a nozzle and electrification inter-electrode according a record signal.

1008] The 4th method is indicated by for example, the U.S. Pat. No. 3747120 specification. This is called a Stemme ethod and, as for the 1-3rd methods of the above, principles differ fundamentally. That is, to controlling electrically

- e ink drop breathed out from the nozzle while flying, and making it record by making the ink drop which bore the cord signal adhere on the recorded body alternatively, according to a record signal, each of 1-3rd methods carries out gurgitation flight, and records an ink drop from a delivery by this Stemme method.
- 1009] That is, a Stemme method impresses an electric record signal to the piezo oscillating element attached to the cording head which has the delivery which carries out the regurgitation of the record liquid, changes it into the echanical oscillation of a piezo oscillating element, carries out regurgitation flight of the ink drop, and is made to lhere to the recorded body from a delivery according to this mechanical oscillation.
- 1010] Although these four methods have the feature to each, they also have a disadvantageous point simultaneously. rst, the direct energy for generating an ink drop is electric energy, and the 1st the 3rd method also depend deviation introl of an ink drop on electric-field control. Therefore, although the 1st method is simple constitutionally, enerating of a globule takes the high voltage, and the formation of a multi-nozzle of a recording head is difficult, and is necessarily support to the support of the su
- Moreover, although the formation of a multi-nozzle of a recording head is possible for the 2nd method and it is t for high-speed record, it is complicated constitutionally, and electric control of an ink drop is difficult for it at titude, and a satellite dot tends to produce it on the recorded body. Although the record which was excellent in adation nature by atomizing an ink drop is possible for the 3rd method, control of another side and a atomization ate is difficult. Moreover, fogging arises in a record picture, or the formation of a multi-nozzle of a recording head is fficult, and there is a disadvantageous point of being unsuitable in high-speed record.
- 012] On the other hand, the 4th method has comparatively many advantages. That is, probably, composition is easy, and in order to record by making an ink drop breathe out from a nozzle by on demand one, it is not necessary to collect e ink drops which the image recording of the ink drop which carries out regurgitation flight like the 1st the 3rd ethod did not take. Furthermore, it is not necessary to use conductive ink and the selection flexibility on the matter of k is large like the 1st and 2 method.
- 013] however, the miniaturization of a piezo oscillating element which has desired resonance frequency is very fficult -- etc. -- the formation of a multi-nozzle of a reason to a recording head is difficult Moreover, in order to make e mechanical energy of the mechanical oscillation of a piezo oscillating element perform **** flight of an ink drop, is the difficulty of the above-mentioned formation of a multi-nozzle, and what is unsuitable for high-speed record onjointly.
- 1014] There as indicated by JP,56-9429,A As heat the ink of the liquid interior of a room, generate air bubbles, ink is ade to produce a pressure buildup and it is indicated by the method and JP,61-59914,B which make ink breathe out om a detailed capillary tube nozzle By heating some liquids in the liquid route which opens a liquid for free passage the delivery for making it breathe out in the predetermined direction, and making film boiling occur, the flight-drop the liquid breathed out from a delivery is formed and there is a thing on which make this drop adhere to the recorded ody, and it is made to record.
- 1015] The recording head of this method as indicated by JP,62-59672,B The heater element as an energy generation eans which gives the energy for a liquid exposure student to ink in the predetermined position on a substrate, After stalling two or more active elements, such as a piezoelectric device, fixed (an electrode is formed suitably), a notosensitive constituent layer is formed in a substrate front face by the applying method etc. by predetermined ickness, by the usual photolithography method The ink passage slot for forming ink passage, such as the orifice action, the operation section, ink supply ****, and the ink discharge passage section, is formed, and a top cover is ined and it is made to manufacture a recording head after this.
- 1016] Thus, although densification becomes possible by using photolithography, in order that a heating element may not to deteriorate with the heat stress and a shock in order to expand and extinguish a foam momentarily further, aking a heating element generate heat to an elevated temperature in ink, and, and a heating element may contact rect ink, there is a fault that there is little flexibility of the ink which can be used.
- 1017] As these troubles are solved and it is indicated by JP,4-52214,A, JP,3-293141,A, etc. as what moreover realizes ensification by use of photolithography The 2nd substrate (electrode substrate) which formed the diaphragm which rms one wall surface of a liquid room and this liquid room by etching in the 1st substrate (diaphragm substrate) hich consists of a silicon substrate, and formed the electrode in this 1st substrate bottom is arranged. Put a redetermined gap on a diaphragm, an electrode is made to counter, and the electrostatic-type ink-jet head which takes an ink drop breathe out from the nozzle which a diaphragm is sagged, and the content volume of a liquid room changed, and is open for free passage in a liquid room by impressing voltage to a diaphragm and inter-electrode with ectrostatic force is known.
- 1018] As composition for impressing a drive wave to the electrode (individual electrode) of this electrostatic-type inkt head, what connects the individual electrode and the printed circuit board of an ink-jet head by the different

rection conductivity film is known as indicated by JP,7-246706,A, for example.

0191

roblem(s) to be Solved by the Invention] If it is in the electrostatic-type ink-jet head which prepared the diaphragm betrate on an electrode substrate which was mentioned above, an electrode substrate is formed more greatly than a aphragm substrate for the ejection of an electrode, and the electrode on an electrode substrate will be installed outside liaphragm substrate, and it will consider as an electrode takeoff connection, and will connect through conductive aterial, such as an anisotropy electric conduction film which mentioned above this electrode takeoff connection and inted circuit board, or a pewter.

020] In this case, it overflows, when conductive material, such as a different direction conductivity film and a wter, connects a printed circuit board and an electrode, and a diaphragm and contiguity inter-electrode will be ntacted or it will approach extremely. However, since especially the electrode forming face that forms the individual extrode of an electrode substrate if it is in the case of the so-called electrostatic-type ink-jet head of the side shooter ethod whose displacement direction of a diaphragm corresponds with an ink drop discharge direction turns into a tizzle side and a field of this direction and an electrode forming face and a nozzle side moreover approach according the miniaturization of a head, it is in the state where the connection of an electrode and a printed circuit board proached the nozzle side extremely.

021] On the other hand, in order to perform reliability maintenance operation of suction discharge of wiping of ink **** or a nozzle side, and the ink in a nozzle etc. in an ink-jet recording device, the ink which remained to the zzle side by this reliability recovery action invades between a diaphragm, an electrode, and a conductive material at is extremely close to this, leak occurs, the channel which carries out a malfunction may occur and long term ibility and reliability may be **** may become impossible or missing.

022] In addition, each problem which was mentioned above is similarly generated, when preparing the electrode ceoff connection (electrode pattern) for giving a drive wave to an electric machine sensing element on a substrate and nnecting this electrode takeoff connection and printed circuit board, even if it is in the ink-jet head which has ranged the laminating type piezoelectric device to the diaphragm for example, not only the electrostatic-type ink-jet ad that has the electrode which carried out opposite arrangement but on a substrate as an actuator means. However, not the nozzle side and the electrode pattern are separated compared with the electrostatic-type ink-jet head in using a minating type piezoelectric device, the former problem is not so remarkable as the case of an electrostatic-type ink-

023] this invention is made in view of the above-mentioned technical problem, and it aims at offering the ink-jet ad recording device which improved reliability by the low cost.

leans for Solving the Problem] In order to solve the above-mentioned technical problem, the ink-jet recording device a claim 1 It has the ink-jet head equipped with the ** nozzle which breathes out an ink drop, the liquid room which is nozzle opens for free passage, and a pressure generating means to generate the pressure which the ink of this liquid terior of a room is pressurized [pressure], and makes an ink drop breathe out from the aforementioned nozzle. In the k-jet recording device which connected the printed circuit board to the electrode formed on the substrate which apresses the voltage for operating this pressure generating means through a conductive material, the aforementioned inductive material was considered as the composition located inside the edge of the aforementioned printed circuit and in the state before connection.

025] The ** nozzle for which the ink-jet recording device of a claim 2 breathes out an ink drop, It has the ink-jet and equipped with the liquid room which this nozzle opens for free passage, and a pressure generating means to merate the pressure which the ink of this liquid interior of a room is pressurized [pressure], and makes an ink drop eathe out from the aforementioned nozzle. In the ink-jet recording device which connected the printed circuit board the electrode formed on the substrate which impresses the voltage for operating this pressure generating means rough a conductive material, the aforementioned conductive material was considered as the composition located side the edge of the aforementioned printed circuit board.

026] The ink-jet recording device of a claim 3 is set to the ink-jet recording device of the above-mentioned claim 2. ne diaphragm in which the pressure generating means of the aforementioned ink-jet head forms at least one orementioned wall surface, It had the electrode which carried out opposite arrangement in this diaphragm, and it is a eans for the aforementioned diaphragm to deform by electrostatic force by impressing voltage between the orementioned diaphragm and an electrode, and to pressurize the ink of the aforementioned liquid room, and insidered as the composition which the member which forms the aforementioned diaphragm becomes from a inductor or a semiconductor.

027] The ** nozzle for which the ink-jet recording device of a claim 4 breathes out an ink drop, The liquid room

hich this nozzle opens for free passage, and the diaphragm which forms at least one wall surface of this liquid room, ave the electrode which carried out opposite arrangement in this diaphragm, and it has the ink-jet head which makes e aforementioned diaphragm deform by electrostatic force by impressing voltage between the aforementioned aphragm and an electrode, and makes an ink drop breathe out from the aforementioned nozzle. In the ink-jet cording device which connected the printed circuit board to the electrode formed on the substrate of this ink-jet head rough a conductive material, it considered as the composition which prepared the septum member which has sulation between the edges of the substrate which forms the aforementioned diaphragm, and the aforementioned inted circuit board.

028] The ink-jet recording device of a claim 5 was taken as the composition which is the substrate in which the orementioned isolation means forms the aforementioned electrode, and the heights formed in one in the ink-jet cording device of the above-mentioned claim 4.

0291

mbodiments of the Invention] Hereafter, the form of operation of this invention is explained with reference to an companying drawing. The important section expanded sectional view to which the perspective diagram of the head ction of the ink-jet recording device which drawing 1 requires for the 1st operation form of this invention, and awing 2 meet the perspective diagram of the ink-jet head of this head section, and drawing 3 meets A-A of drawing , and drawing 4 are important section expanded sectional views which meet the B-B line of drawing 1.

030] As shown in drawing 2 or drawing 4, the ink-jet head 1 is equipped with the diaphragm substrate 10, the liquid om substrate 11 prepared in this diaphragm substrate 10 bottom, the electrode substrate 12 prepared in the diaphragm bstrate 10 bottom, and the nozzle plate 13 prepared in the liquid room substrate 11 bottom, and forms the liquid

om 16 which two or more nozzles 15 and each nozzle 15 open for free passage.

- 031] A crevice, a slot, etc. which form the flow-resistance section which opens for free passage the crevice 17 which rms the diaphragm 18 which serves as a common electrode by nothing and the 1st electrode in the liquid room 16 d the bottom of this liquid room 16, and the common ink room and common ink room which supply ink to each juid room 16, and which are not illustrated, and the liquid room 16, and which is not illustrated are formed in the aphragm substrate 10. This diaphragm substrate 10 forms a desired detailed liquid room pattern by ********ing etal substrates, such as an SUS substrate, a silicon substrate, etc. The liquid room substrate 11 in which the throughle 19 grade corresponding to the liquid room 16 was formed on this diaphragm substrate 10 is joined.
- 032] A crevice 20 is formed in the electrode substrate 12, the 2nd electrode which puts a predetermined (here, it may : 1 micrometer.) gap on a diaphragm 18, and counters it, and the becoming individual electrode 21 are formed in the se of this crevice 20, and the actuator section to which the variation rate of the diaphragm 18 is carried out, and the intent volume of the liquid room 16 is changed by this individual electrode 21 and diaphragm 18 is constituted. orming [and] the insulating layers 22 for preventing that the individual electrode 21 is damaged by the short circuit d electric discharge on the individual electrode 21 of this electrode substrate 12, such as SiO2, the individual ectrode 21 has formed the electrode pad 23 for installing outside the diaphragm substrate 10 and connecting with a inted circuit board.

033] This electrode substrate 12 forms the individual electrode 21 only in a crevice 20 by *******ing metals, ch as SUS, glass, Si, etc., forming a crevice 20, forming membranes in the thickness of the request of electrode aterials, such as nickel, A1, Ti/Pt, and Cu, to this crevice 20 with membrane formation technology, such as a spatter, VD, and vacuum evaporationo, forming a photoresist after that and *******ing.

- 034] A nozzle plate 13 can be formed by metal plates, such as nickel and SUS, glass, or the resin, and can be oduced by the well-known methods, such as etching and the electro foaming method of nickel. To this nozzle plate the nozzle 15 was arranged alternately two trains, the liquid room 16 and the diaphragm 18 were arranged to the aphragm substrate 10 and the liquid room substrate 11 which made nozzle density high and were mentioned above rresponding to this, two trains of individual electrodes 21 were arranged to the electrode substrate 13, respectively, id it has prepared. Furthermore, in order to secure water repellence with ink, the water-repellent film is formed in the ozzle side (front face of a discharge direction) of a nozzle plate 13 by the method of common knowledge, such as a ating coat or water-repellent coating.
- 035] These diaphragm substrates 10, the liquid room substrate 11, the electrode substrate 12, and the nozzle plate 13 e joined by direct conjugation methods, such as adhesives and anode plate junction, the eutectic-bonding method, etc.
- 036] This ink-jet head 1 deforms a diaphragm 18 by electrostatic force by impressing driver voltage between a aphragm 18 and the individual electrode 21, and when the content volume (volume) of the liquid room 16 changes, ink drop is breathed out from a nozzle 15.
- 037] Then, as shown in drawing 3, in order to give a drive wave to the individual electrode 21, the printed circuit

pard 25 which consists of a flexible printed cable (FPC) linked to external circuits (drive IC etc.) is connected to the ectrode pad 23 of the individual electrode 21 of this ink-jet head 1 through the different direction conductivity film r a pewter etc. is sufficient.) 26 which is a conductive material.

038] The printed circuit board base of the shape of a film which consists of the printed circuit board base of the bular which consists of a glass epoxy resin, phenol resin, etc., polyimide resin, PET, etc. can be used for this printed reuit board 25, and it forms the electrode lead 28 for impressing voltage to the individual electrode 21 on this printed reuit board base 27.

039] As a method of connecting the electrode pad 23 of the individual electrode 21 with the electrode lead 28 on a inted circuit board 25 electrically, there are the method of carrying out thermocompression bonding of the solder, the ethod of carrying out thermocompression bonding by the different direction electroconductive glue, the method of rrying out the pressure welding of inter-electrode, a method of connecting by wirebonding, the method of connecting the bump, etc., for example. Also in these, by using methods, such as solder, and a different direction ectroconductive glue, a pressure welding, inter-electrode [two or more] is connectable at once, connection is ficient and it can attain low-cost-ization.

040] Here, in this ink-jet head, the individual electrode 21 and the printed circuit board 25 are electrically connected rough the different direction conductivity film 26. By having distributed like known the conductive particle called ler into a thermoplastic or thermosetting resin, heating, and facing across and pressurizing between electrodes, a fferent direction electric conduction film is crushed, a filler contacts two electrodes, and the different direction inductivity film (different direction electric conduction film) 26 can take an inter-electrode flow.

041] Here, connection by this different direction conductivity film 26 is explained with reference to drawing 5. First, shown in this drawing (a), temporary sticking by pressure of the different direction conductivity film 26 is carried it at the electrode lead 28 of a printed circuit board 25 using the sticking-by-pressure head 29. In addition, protection m 26a is stuck on the different direction conductivity film 26. This different direction conductivity film 26 is aligned side the end face of a printed circuit board 25, and is carrying out temporary sticking by pressure. Although the nount a of retreat from the printed circuit board 25 of the different direction electric conduction film 26 is based also the thickness of the different direction conductivity film 26 at this time, if based on a sticking-by-pressure periment, it will be preferably made more desirable more than thickness more than the double precision of thickness.

042] And as shown in this drawing (b), protection film 26a of the different direction conductivity film 26 is removed, in alignment with the electrode pad section of the electrode substrate 12 and the electrode lead 28 of a printed circuit pard 25 is performed, and the heated sticking-by-pressure head 29 is pressed against the field more than electrode idth of face, and carries out thermocompression bonding. Thereby, as shown in this drawing (c), a printed circuit pard 25 is connected to the electrode pad 23 of the individual electrode 21 through the different direction conductivity m 26.

043] Although the different direction conductivity film 26 spreads in the direction of an edge of a printed circuit bard 25 at this time, since the amount which spreads beforehand is foreseen and only the amount a of retreat is treating the different direction conductivity film 26 from the edge of a printed circuit board 25, it is lost that the fferent direction conductivity film 26 overflows the edge of a printed circuit board 25 as shown in this drawing (c). In Idition, what is necessary is to align and just to carry out thermocompression bonding by alignment of a printed reuit board 25, so that the different direction conductivity film 26 may be located inside the edge of a printed circuit pard 25 in carrying out temporary sticking by pressure of the different direction conductivity film 26 at an electrode side.

044] Thus, by considering as the composition located inside the edge of a printed circuit board in the state before nnection, a conductive material can prevent that a conductive material overflows the nose of cam of a printed circuit pard, when a printed circuit board is connected with a conductive material, it is lost that a conductive material intacts a diaphragm and contiguity inter-electrode of it, and its reliability improves.

045] Especially, like this ink-jet head 1, when the injection directions of an ink drop are a diaphragm side and the solled perpendicular side shooter type ink-jet head, this electrode side becomes in a nozzle side and this direction, and, oreover, will be in the state where the electrode side and the nozzle side approached for the miniaturization of a head. y therefore, operation for maintaining reliability, such as ink drop regurgitation, and wiping of a nozzle side, suction crisis of the ink in a nozzle 15 Since ink enters into the connection of the individual electrode 21 and a printed circuit pard 25 and has conductivity in the case of water color ink, The individual electrode 21 which adjoins in the ink hich entered leaks, or the electrode lead 28 of a printed circuit board 25 is connected to the electrically mistaken dividual electrode 21, and the poor regurgitation and the incorrect regurgitation arise. Such a side shooter type ink-jet and especially receives, and this invention is effective.

046] Moreover, since a conductive material does not overflow the nose of cam of a printed circuit board, a printed rcuit board can be arranged to near a diaphragm substrate and the nozzle substrate, and a large touch area with an ectrode pad can be taken. By this, while contact resistance becomes small, adhesive strength becomes large and ectric and mechanical reliability improves.

047] In addition, as a conductive material, it is not restricted to a different direction conductivity film, and a pewter c. can be used. In this case, what is necessary is just to limit the pewter plating position to the electrode lead side of a

inted circuit board to the position inside the edge of a printed circuit board.

048] Here, the concrete composition of the ink-jet head 1 is explained. As for the ink-jet head adopted here, the idth of face of the ink liquid room 6 set 0.2mm, the depth of 2.0mm, and the pitch to 0.28mm. The diaphragm bstrate 10 of 0.2mm of board thickness which ********ed Si substrate and formed the diaphragm 18 with a ickness of 10 micrometers, To a Pyrex-glass substrate, at the pars basilaris ossis occipitalis of a 0.5-micrometer slot becomes a crevice 20 and a gap) The individual electrode 21 of nickel is formed by width-of-face [of 0.2mm], and tch 0.28mm. Furthermore, the electrode substrate 12 in which the insulating layer 22 of 1000A SiO2 was formed on e individual electrode 21 is joined with adhesives. On the diaphragm substrate 10, the liquid room substrate 11 of 150 icrometers of board thickness and the nozzle plate 13 of 30 micrometers of board thickness were joined with lhesives one by one, and the electrostatic-type ink-jet head was produced. The nozzle pitch of this head is 0.28mm, id the number of nozzles is 64 channels.

049] And temporary sticking by pressure of the different direction conductivity film (3370made from incorporated impany three bond C: tradename) was carried out at the electrode lead 28 of FPC (printed circuit board)25. This mporary sticking by pressure performed 150 degrees C and the sticking-by-pressure pressure by 30 kg/cm2, and rformed sticking-by-pressure time for the sticking-by-pressure head temperature of a sticking-by-pressure machine 1 second. Furthermore, actual sticking by pressure of the electrode lead 28 of this FPC (printed circuit board)25 was rried out in the state where it aligned to the electrode pad 23 of an ink-jet head. This sticking by pressure of this rformed sticking-by-pressure head temperature of a sticking-by-pressure machine at 150 degrees C, and performed) kg/cm2 and sticking-by-pressure time for welding pressure in 20 seconds.

050] FPC25 is connected to the individual electrode 21 through a different direction conductivity film film, and it labled it to supply driver voltage by this. Moreover, it lets the ink feed hopper which was open for free passage in the k liquid room 16 of this ink-jet head pass, and enabled it to supply ink from an ink tank.

051] This head is diaphragm size. : Array density of a 200 micrometerx2mm diaphragm : 90dpi (array density of = zzle)

ne number of diaphragms: 32 piece x2 train = 64 pieces (the number of nozzles)

is composition.

052] Next, the recording head chip formed by doing in this way is completed, for example as an ink flight recording ad unit by the following methods. This ink flight recording head unit constitutes the manifold formed by having the k supply room of the hollow connected to the ink supply pipe (ink supply means) as base material. Fix a recording and chip to the crowning of a manifold, and it lets an ink supply room pass for the ink supplied from the ink supply pe. It leads to the crowning of a manifold, the common ink room of a recording head chip is supplied from the ink ed hopper prepared in the edge of a recording head chip, and the capillarity of each ink supply channel progresses to ich energy operation section after that. Furthermore, a recording head chip covers the circumference, is pressed down the frame-like attachment component and fixed.

053] And in this ink-jet head, it is in the state where the ink supplied to the ink feed hopper from the ink supply pipe filled throughout the ink supply channel through the common ink room, and it is giving driver voltage individually to e electrode according to each according to image information, and an electrostatic force occurs between an individual ectrode and a diaphragm, and a diaphragm displaces to an individual electrode side. From this state, if energization is rned off, a diaphragm tends to return to the original state, and by rapid capacity change at this time, ink will serve as drop from a nozzle and it will fly.

1054] Then, the diaphragm substrate 10 of this ink-jet head is made into a gland, and it is driver voltage to the dividual electrode 21.: 120V pulse width: 30microsec continuation drive frequency: 2kHz (at the time of a solid ark copy)

hen the seal of approval of the ***** wave was carried out and the drive wave was observed with the oscilloscope, enerating of leak with a gland and leak with a contiguity electrode was not accepted.

1055] on the other hand, like this invention, when not considering as the composition located inside the edge of a inted circuit board in the state before connection, a conductive material As shown in drawing 6, the different rection conductivity film 26 (or conductive material, such as a pewter) minded in between at the edge of a printed rcuit board 25 overflows with the pressure at the time of thermocompression bonding, the diaphragm substrate 10 is ntacted, it leaks with a gland or leak between the adjoining individual electrodes 21 occurs.

056] Next, the 2nd operation form of this invention is explained with reference to <u>drawing 7</u> and <u>drawing 8</u>. In dition, the important section cross section of the head section of the ink-jet recording device which <u>drawing 7</u> quires for the 2nd operation form of this invention, and <u>drawing 8</u> are explanatory drawings explaining the nnection process by the different direction electric conduction film in this operation form. In addition, the same sign given to the 1st operation form and a corresponding portion, and explanation is omitted.

057] This operation form is the example to which it was made for the different direction conductivity film 26 after nnecting a printed circuit board 25 and the individual electrode 21 to be located inside the edge of a printed circuit ard 25. That is, as shown in drawing 8 (a), temporary sticking by pressure of the different direction conductivity film is carried out at the electrode lead 28 of a printed circuit board 25 using the sticking-by-pressure head 29. In dition, protection film 26a is stuck on the different direction conductivity film 26.

058] Here, it is not necessary to align the different direction conductivity film 26 inside the end face of a printed reuit board 25 like the above-mentioned 1st operation form, and it does not need to carry out temporary sticking by essure. therefore, you may set the different direction conductivity film 26 by the edge of the easy printed circuit ard 25 of alignment -- even if it carries out (example of illustration) and is beginning to see some from an edge, you ay enter the inside side of some from the edge Thereby, highly precise alignment is less necessary at the time of mporary adhesion, and shortening of working hours and improvement in the yield can be aimed at.

059] And as shown in this drawing (b), protection film 26a of the different direction conductivity film 26 is removed, d alignment with the electrode pad section of the electrode substrate 12 and the electrode lead 28 of a printed circuit ard 25 is performed, and the heated sticking-by-pressure head 29 is pressed against the field more than electrode idth of face, and carries out thermocompression bonding.

060] Since the different direction conductivity film 26 overflows from the edge of a printed circuit board 25 as the fferent direction conductivity film 26 spreads in the direction of an edge of a printed circuit board 25 and it is shown this drawing (c) depending on the case at this time, partial 26b protruded after sticking by pressure is removed, and shown in drawing 7, the different direction conductivity film 26 is arranged with the edge of a printed circuit board

061] Thus, when a printed circuit board is connected with a conductive material by considering as the composition cated inside the edge of a printed circuit board in the state after connection, contacting members, such as a aphragm, of a conductive material is lost, and its reliability improves.

062] Especially, like this ink-jet head 1, when the injection directions of an ink drop are a diaphragm side and the solled perpendicular side shooter type ink-jet head, this electrode side becomes in a nozzle side and this direction, and, oreover, will be in the state where the electrode side and the nozzle side approached for the miniaturization of a head. It is interested into the connection of the individual electrode 21 and a printed circuit board 25 and has inductivity by operation for maintaining reliability, such as ink ******, and wiping of a nozzle side, suction scharge of the ink in a nozzle 15, in the case of water color ink, the individual electrode 21 which adjoins in the ink hich entered leaks, or the electrode lead 28 of a printed circuit board 25 is connected to the electrically mistaken dividual electrode 21, and poor **** and incorrect **** arise. Such a side shooter type ink-jet head especially ceives, and this invention is effective.

063] Moreover, since a conductive material has not overflowed the nose of cam of a printed circuit board, a printed reuit board can be arranged to near a diaphragm substrate and the nozzle substrate, and a large touch area with an ectrode pad can be taken. By this, while contact resistance becomes small, adhesive strength becomes large and ectric and mechanical reliability improves.

064] In addition, as a conductive material, it is not restricted to the different direction conductivity film 26, and a swter etc. can be used.

Moreover, although un-arranging [that the exposed common electrode and the overflowing different direction inductivity film contact in the edge of a diaphragm substrate, and leak arises] is lost when conductive material, such metals, such as boron, is ****(ed) into an insulating material and it considers as a common electrode (diaphragm) as diaphragm substrate 10 Furthermore, although a common electrode will be greatly exposed at the edge of a aphragm substrate when the diaphragm without the need for a common electrode formation process itself is formed ith a metal or a semiconductor, leak does not occur in this case, either but it is more effective.

066] Here, the concrete composition of the ink-jet head 1 is explained. As for the ink-jet head adopted here, the idth of face of the ink liquid room 6 set 0.2mm, the depth of 2.0mm, and the pitch to 0.28mm. The diaphragm obstrate 10 of 0.2mm of board thickness which ********ed Si substrate and formed the diaphragm 18 with a ickness of 10 micrometers, To a Pyrex-glass substrate, at the bottom of a 0.5-micrometer slot (it becomes a crevice) and a gap) The individual electrode 21 of nickel is formed by width-of-face [of 0.2mm], and pitch 0.28mm.

irthermore, the electrode substrate 12 in which the insulating layer 22 of 1000A SiO2 was formed on the individual ectrode 21 is joined with adhesives. On the diaphragm substrate 10, the liquid room substrate 11 of 150 micrometers board thickness and the nozzle plate 13 of 30 micrometers of board thickness were joined with adhesives one by ie, and the electrostatic-type ink-jet head was produced. The nozzle pitch of this head is 0.28mm, and the number of zzles is 64 channels.

067] And temporary sticking by pressure of the different direction conductivity film (3370made from incorporated mpany three bond C: tradename) was carried out at the electrode lead 28 of FPC (printed circuit board)25. When mporary sticking by pressure of the printed circuit board of ten sheets was carried out, dispersion from an edge was 20 micrometers. This temporary sticking by pressure performed 150 degrees C and the sticking-by-pressure pressure 30 kg/cm2, and performed sticking-by-pressure time for the sticking-by-pressure head temperature of a sticking-byessure machine in 1 second. Furthermore, the nose of cam of this FPC (printed circuit board)25 carried out actual cking by pressure, where the electrode lead 28 and the electrode pad 23 are aligned from the end face of the aphragm substrate 10 in the position of 50 micrometers. This sticking by pressure of this performed sticking-byessure head temperature of a sticking-by-pressure machine at 150 degrees C, and performed 30 kg/cm2 and sticking--pressure time for welding pressure in 20 seconds.

068] When the amount of flashes from the edge of FPC25 of the different direction conductivity film 26 was easured at this time, it was the range of 5 to 50 micrometers (the diaphragm substrate 10 is contacted). Then, the ish portion from the edge of the printed circuit board 25 of the different direction conductivity film 26 was removed. ne sharp cutter etc. performed removal of this flash portion using the method of removing mechanically, for example. nereby, manufactured FPC25 did not contact the diaphragm substrate 10 altogether, and became usable altogether. 069] FPC25 is connected to the individual electrode 21 through a different direction conductivity film film, and it abled it to supply driver voltage by this. Moreover, it lets the ink feed hopper which was open for free passage in the k liquid room 16 of this ink-jet head pass, and enabled it to supply ink from an ink tank.

070] This head is diaphragm size. : Array density of a 200 micrometerx2mm diaphragm : 90dpi (array density of = zzle)

ne number of diaphragms: 32 piece x2 train = 64 pieces (the number of nozzles)

is composition.

071] Next, the recording head chip formed by doing in this way is completed, for example as an ink flight recording ad unit by the following methods. This ink flight recording head unit constitutes the manifold formed by having the k supply room of the hollow connected to the ink supply pipe (ink supply means) as base material. Fix a recording ad chip to the crowning of a manifold, and it lets an ink supply room pass for the ink supplied from the ink supply pe. It leads to the crowning of a manifold, the common ink room of a recording head chip is supplied from the ink ed hopper prepared in the edge of a recording head chip, and the capillarity of each ink supply channel progresses to ch energy operation section after that. Furthermore, a recording head chip covers the circumference, is pressed down the frame-like attachment component and fixed.

072] And in this ink-jet head, it is in the state where the ink supplied to the ink feed hopper from the ink supply pipe filled throughout the ink supply channel through the common ink room, and it is giving driver voltage individually to e electrode according to each according to image information, and an electrostatic force occurs between an individual ectrode and a diaphragm, and a diaphragm displaces to an individual electrode side. From this state, if energization is med off, a diaphragm tends to return to the original state, and by rapid capacity change at this time, ink will serve as drop from a nozzle and it will fly.

073] Then, as shown in drawing 7, the diaphragm substrate 10 of this ink-jet head is made into a gland, and it is iver voltage to the individual electrode 21.: 120V pulse width: 30microsec continuation drive frequency: 2kHz (at e time of a solid mark copy)

hen the seal of approval of the ***** wave was carried out and the drive wave was observed with the oscilloscope, nerating of leak with a gland and leak with a contiguity electrode was not accepted.

074] Next, the 3rd operation gestalt of this invention is explained with reference to drawing 9. In addition, this awing is an important section cross section of the head section of the ink-jet recording device of this operation stalt. the septum which has the insulation from which this operation gestalt prevents the flash of the different rection conductivity film 26 between the diaphragm substrate 10 and a printed circuit board 25 -- a member 30 is

075] this septum -- it is desirable to use ceramics and resin material with easy fabrication as a member 30 moreover, septum -- since the size of a member 30 should just perform the insulation with the diaphragm substrate 10 and a inted circuit board 25, it may be small to the grade which does not break during processing work Moreover, when o not much large, the smaller possible one also from height becoming higher than a nozzle side, or an electrode

bstrate becoming large crosswise, since it is necessary to secure the connection area of a printed circuit board 25 and electrode is desirable. therefore, a septum -- the width of face of a member 30 is 0.5mm or less preferably 1mm or ss, and it is made for height to also become below a nozzle side

076] the connection method of the printed circuit board 25 in this operation form -- first -- the above-mentioned 2nd peration form -- the same -- the electrode lead 28 of a printed circuit board 25 -- the different direction conductivity m 26 -- temporary sticking by pressure -- carrying out -- the another side and electrode substrate 12 top -- the end ce of the diaphragm substrate 10 of a head -- touching -- a septum -- a member 30 is fixed and formed with adhesives

077] And after aligning the electrode lead 28 of the printed circuit board 25 which carried out temporary adhesion of e individual electrode 21 of a head, and the different direction conductivity film 26, actual sticking by pressure is rried out with a sticking-by-pressure head. although the different direction conductivity film 26 is crushed and it gins to see it from the edge of a printed circuit board 25 at this time -- a septum -- when it is prevented by the ember 30, the different direction conductivity film 26 does not contact the diaphragm substrate 10 and a drive wave impressed through a printed circuit board 25, leaking with the diaphragm substrate 25 linked to the gland is lost 078] in addition, a septum -- as shown in drawing 10, a member 30 can also form the periphery section of nozzle le 13a in this nozzle covering 31 and one, when forming the wrap nozzle covering 31

079] Next, the 4th operation gestalt of this invention is explained with reference to drawing 11 and drawing 12. in dition, drawing 11 -- the important section cross section of the head section of the ink-jet recording device of this reration gestalt, and drawing 12 -- the septum of this operation gestalt -- it is explanatory drawing explaining the rmation process of a member the septum which has the insulation which prevents the flash of the different direction inductivity film 26 which formed this operation gestalt between the diaphragm substrate 10 and the printed circuit and 25 at the electrode substrate 12 and one -- a member 32 is formed

080] namely, the thing for which the dry film resist (DFR) 33 is laminated and developed [expose and] after rming the pattern of an electrode 21 on the electrode substrate 12, as shown in <u>drawing 12</u> (a) -- a septum -- it leaves e portion used as a member 32, and DFR33 is removed for example, when negative-mold DFR33 is used In exposing ing the mask 34 in which opening 34a corresponding to the portion used as a septum member was formed, stiffening e portion used as the septum member of DFR33, and spray-developing negatives or DIP developing negatives with a veloper, as shown in this drawing (b) it is shown in this drawing (c) -- as -- a septum -- it can leave the portion (a rt for a hard spot) used as a member 32, and DFR33 can be removed

081] in addition, the electrode substrate 12 and the septum of one -- a member 32 can be formed by SiO two-layer embrane formation, etching, etc.

082] In addition, although the example which applied this invention to the ink-jet recording device which carries an extrostatic-type ink-jet head in each above-mentioned operation gestalt explained especially -- the actuator section or example, electric machine sensing elements, such as a laminating type piezoelectric device, --) The substrate in nich the takeoff connection of the electrode for giving a drive wave to this actuator section was formed is larger than e thing using electric thermal-conversion elements, such as an exoergic resistor. It is applicable to any ink-jet cording devices which carry the ink-jet head which is made to expose an electrode outside and connects with a inted circuit board.

083]

ffect of the Invention] As explained above, according to the ink-jet recording device of a claim 1 In the ink-jet cording device which connected the printed circuit board to the electrode formed on the substrate which impresses e voltage for operating the pressure generating means of an ink-jet head through a conductive material Since inductive material was considered as the composition located inside the edge of a printed circuit board in the state fore connection, a conductive material overflowing the edge of a printed circuit board at the time of adhesion by essurization and heating, and contacting conductive members, such as a diaphragm, is lost, the poor regurgitation and e incorrect regurgitation are prevented, and its reliability improves.

084] In the ink-jet recording device which connected the printed circuit board to the electrode formed on the bstrate which impresses the voltage for operating the pressure generating means of an ink-jet head according to the k-jet recording device of a claim 2 through a conductive material Since conductive material was considered as the mposition located inside the edge of a printed circuit board, it is lost that a conductive material contacts conductive embers, such as a diaphragm, the poor regurgitation and the incorrect regurgitation are prevented, and its reliability iproves.

085] According to the ink-jet recording device of a claim 3, it sets to the ink-jet recording device of the above-entioned claim 2. The diaphragm which forms at least one wall surface of pressure generating ****** of an ink-jet and, Since it is a means to have the electrode which carried out opposite arrangement in this diaphragm, and for a

aphragm to deform by electrostatic force by impressing voltage between a diaphragm and an electrode, and to essurize the ink of a liquid room and considered as the composition which the member which forms a diaphragm comes from a conductor or a semiconductor The reliability of the electrostatic-type ink-jet head which must form the aphragm substrate which forms a diaphragm with a conductive material can be improved.

O86] In the ink-jet recording device which connected the printed circuit board to the electrode formed on the bstrate of an electrostatic-type ink-jet head through a conductive material according to the ink-jet recording device of claim 4 a conductive material which it begins to see from the edge of a printed circuit board since it considered as the mposition which prepared the septum member which has insulation between the edges of the substrate which forms diaphragm, and a printed circuit board -- a septum -- a member -- it being prevented and contacting a diaphragm is st, the poor regurgitation and the incorrect regurgitation are prevented, and reliability improves

O87] since it considered as the substrate in which an isolation means forms an electrode, and the composition which the heights formed in one in the ink-jet recording device of the above-mentioned claim 4 according to the ink-jet cording device of a claim 5 -- a septum -- a member can be formed easily and low-cost-ization can be attained

'ranslation done.]

JOTICES *

pan Pat nt Office is not responsible for any mages caused by the use of this translation.

This document has been translated by computer. So the translation may not reflect the original precisely.

**** shows the word which can not be translated.

In the drawings, any words are not translated.

LAWINGS

Drawing 4]

rawing 5]

rawing 8]

<u>Orawing 11</u>]

ranslation done.]