Magnitude Comparator

- Comparator compares two binary number.
- The magnitude comparator for comparison of single bit numbers
 - outputs:
 - A>B,
 - A=B,
 - A<B
- 2²ⁿ entries too cumbersome for large n
- Use inherent regularity of the problem
 - reduce design efforts
 - reduce human errors

Single or one bit comparator truth table is as shown

Input		Output		
Α	В	A < B	A = B	A > B
0	0	0	1	0
0	1	1	0	0
1	0	0	0	1
1	1	0	1	0

Output A < B

Output A = B

Output A > B

For A < B is

For A = B is

For A > B is

Single or one bit comparator truth table is as shown

	Inpu t				Output		
	A1	A0	B1	В0	A < B	A = B	A > B
0	0	0	0	0	0	1	0
1	0	0	0	1	0	0	1
2	0	0	1	0	0	0	1
3	0	0	1	1	0	0	1
4	0	1	0	0	1	0	0
5	0	1	0	1	0	1	0
6	0	1	1	0	0	0	1
7	0	1	1	`1	0	0	1
8	1	0	0	0	1	0	0
9	1	0	0	1	1	0	0
10	1	0	1	0	0	1	0
11	1	0	1	1	0	0	1
12	1	1	0	0	1	0	0
13	1	1	0	1	1	0	0
14	1	1	1	0	1	0	0
15	9-2 <mark>1</mark> 015	1	1	1	1	1	0

	Input				Output		
	A1	A0	B1	В0	A < B	A = B	A > B
0	0	0	0	0	0	1	0
1	0	0	0	1	0	0	1
2	0	0	1	0	0	0	1
3	0	0	1	1	0	0	1
4	0	1	0	0	1	0	0
5	0	1	0	1	0	1	0
6	0	1	1	0	0	0	1
7	0	1	1	`1	0	0	1
8	1	0	0	0	1	0	0
9	1	0	0	1	1	0	0
10	1	0	1	0	0	1	0
11	1	0	1	1	0	0	1
12	1	1	0	0	1	0	0
13	1	1	0	1	1	0	0
14	1	1	1	0	1	0	0
15	1	1	1	1	1	1	0

Output A < B

Output A = B

For A > B is

26-09-2015

For A = B is

For A < B is

4

Drown the Circuit implementation of 2bit magnitude comparator

For
$$A > B =$$

For
$$A = B =$$