

Brevi Matteo - 77081600 Creelle Robbe - 36931700 Diriken Axel - 33821700 Ibrahim Muhammad - 14442000 Marchal Youri -61701700 Peres Hugo - 44541600 Philipin Aurélien - 46221700

Group A5

SUMMARY

- Introduction of the project
 - Preliminary VS Current design
- Dimensioning
 - Platform
 - Cables
 - Vertical column + Sewing ring
 - Trolley
 - Main beams
 - Shaft, bearings, motor, rollers
- Sensors

Preliminary layout

Definitive layout 2000 1 1200 2000 ינוחולים והיות מינונונו בעב בען סיינעוני 540 3000

Modifications

Modifications

DIMENSIONING – Force Analysis

DIMENSIONING - Platform

Assumptions

- Security factor : $\gamma = 2$
- Material : A36 steel

$$\rho = 7800$$
 [kg/m³] $\sigma_y = 250$ [MPa]

- No shear/axial stress
- Shape → Rectangular section
 - \rightarrow I = bh 3 /12
- Loading → 15 tons in the middle

DIMENSIONING - Platform

DIMENSIONING - Cable

Assumptions

- Safety factor : γ = 8
- Tension only
- Material:

W_L depends on diameter [kg/m]

$$\sigma_{y} = 1700$$
 [MPa]

- Ltot = 150m
- Weight uniformly divided by 8

DIMENSIONING – Vertical column and slewing ring

Assumptions

Material : A36 steel

$$\rho = 7800$$
 [kg/m³]
 $\sigma_y = 250$ [MPa]
Tau_y = 144 [Mpa]

- Tension due to the weight of the platform and the piece
- Torsion due to moment of inertia of the components
- Bending due to x-y displacement
- Shape \rightarrow Hollow cylinder with ratio D/d = 1.2 ... 1.5
- Built-in beam at the slewing ring

$$\sigma_y \ge \frac{F_{load}}{A}$$

$$\tau_y \ge \frac{M_{torsion} \cdot r}{J}$$

$$\sigma_y \ge \frac{F_{radial} \cdot h \cdot y}{I}$$

DIMENSIONING – Vertical column and slewing ring

- $F_{Load} = 174 [kN]$
- $M_{torsion} = 14.3 [kNm]$
- M_{bending} = 6 [kNm]
- Slewing ring outer diameter : 67.2 [cm]
- Vertical column outer diameter :
 54 [cm]
- Vertical column height: 2 [m]
- Mass (column + ring): 1200 [kg]

DIMENSIONING — Trolley

Assumptions

- Security factor : $\gamma = 2$
- Material: A36 steel

$$\rho = 7800$$
 [kg/m³] $\sigma_y = 250$ [MPa]

- No shear/axial stress
- Shape → Rectangular section
 - \rightarrow I = bh 3 /12
- Loading \rightarrow 19 tons

DIMENSIONING - Trolley

$$\underline{M_{max}} = FL/4$$

- L = 2 m
- b = 1 m
- B = 3 m
- s = 0.3 m

DIMENSIONING – Main beams

Main beams, two loadings

Assumptions

- Trolley's width negligible VS beam's width
- Total deformation = sum of two deformations
- Beam's weigth not negligible
- Load uniformly distributed
- Problem is isostatique

Bending moments

Main beams, cross section

Main dimensions

- H = 150 cm
- B = 80 cm
- t = 2.5 cm

- $A = 0.185 \text{ m}^2$
- I = 0.04716 m4

Density of steel = \pm 8000 [kg/m³]

- q = 14.8 [kN/m]
- M_max_2 = 4671.366 [kNm]

Main beams, two displacements

Displacements

•
$$f_1 = 0.03$$
 [m]
• $f_2 = 0.12$ [m]

Ok for rack and pinion

Main beams, check of the maximal stress

Rack and pinion selection

- 1. For the application: High Precision Rack
- 2. Compute the minimal feed force required

$$Fpermissible \\ = \frac{F_{tab}}{K_S KA fn L} \\ F_{permissible} > Ftangential \\ F_{tangential} = m (g \mu + a)$$

Once the minimal Feed Force is found : check the availability of both rack and pinion in catalogue \rightarrow need to iterate

HPR Racks Module 2-8

ATLANTA-Quality 7

Order			N°							N٥								т
Code	Module	L ₁	of Teeth	b	h _k	h_0	f	a	- 1	of Holes	h	d_1	d_2	t	a_1	I ₁	d_3	kg
28 20 107	2	1005.3	160	24	24	22	2	62.8	125.66	8	8	7	11	7	31.3	942.7	5.7	4.2
28 30 107	3	1017.9	108	29	29	26	2	63.6	127.23	8	9	10	15	9	34.4	949.1	7.7	6.0
28 40 107	4	1005.3	80	39	39	35	2	62.8	125.66	8	12	14	20	13	37.5	930.3	7.7	10.5
28 50 107	5	1005.3	64	49	39	34	2.5	62.8	125.66	8	12	14	20	13	30.1	945.0	11.7	13.4
28 60 107	6	1017.88	54	59	49	43	2.5	63.6	127.23	8	16	18	26	17	31.4	955.00	15.7	20.20
28 80 107	8	1005.30	40	79	79	71	2.5	62.8	125.66	8	25	22	33	21	26.6	952.00	19.7	44.76

Gearwheels with Ground Teeth - Module 5-10

Straight Tooth System, with Bore ØH6 and Keyway acc. to DIN 6885

		N°										
Order Code	Fig.	of Teeth									kg	Shrink-Disk
		Z	d	d _k	d₁ ^{H6}	d _N	b ₁	b ₂	u	t	kg	on Page GH-1
Module 5												
24 56 421		21	105	115	45	68	50	85.0	14	48.8	3.7	80 80 068
24 57 421		21	105	115	55	80	50	90.0	16	59.3	3.7	80 87 080
24 56 425		25	125	135	45	68	50	85.0	14	48.8	5.2	80 80 068
24 57 425		25	125	135	55	80	50	90.0	16	59.3	5.1	80 87 080
24 58 425		25	125	135	75	110	50	110.0	20	80.4	4.7	80 80 110
Module 6												
24 67 421		21	126	138	55	80	60	100.0	16	59.3	5.6	80 87 080
24 68 421		21	126	138	75	110	60	120.0	20	79.9	4.7	80 80 110
24 67 425		25	150	162	55	80	60	100.0	16	59.3	8.0	80 87 080
24 68 425		25	150	162	75	110	60	120.0	20	79.9	7.1	80 80 110
Module 8												
24 88 420*		20	160	176	75	110	80	140	20	79.9	12.0	80 80 110
24 89 420*		20	160	176	85	125	80	145	22	90.4	12.1	80 80 125
Module 10												
24 09 620*		20	200	220	85	125	100	165	22	90.4	23	80 80 125

^{*} Gearing quality 5 f 23

Motor selection

- 1. Compute maximal torque for the maximal acceleration
- 2. Compute the maximal power required
- 3. Choose a motor matching those
- 4. Choose a reducer fitting motor speed and pinion speed

POWER REQUIRED

We calculate the power needed to move trolley at max velocity of 0.3m/s

Power = force * velocity = 2.3kw

From catalogue we select four pole motor running at 1500rpm to give a power of 3.0kw and a torque of 20Nm.

ELECTRICAL PERFORMANCE DATA 50Hz

				NO	MINAL	VALUES		9	STARTING	own atio	EFFICIENCY					Weight	Level A		
	MOTOR TYPE	HOUSING	Power		Speed	Current	Torque	Current (la/ln)		Torque (Ma/Mn)		¥ -		η %		Cos	1	We	
			kW	НР	rpm	Α	Nm	Y	Δ	Y	Δ	Breako	4/4	3/4	2/4	4/4	kgm2	kg	Sound
	4 pole 1500 r	pm																	
	Q2E71M4C *	aluminum	0,25	1/3	1415	0,7	1,7	4,4		2,3		3,4	68,5	68,8	68,8	0,74	0,00095	9	45
	Q2E71M4D *	aluminum	0,37	1/2	1415	1,1	2,5	4,4		2,3	•	3,4	72,7	73,1	72,0	0,75	0,00095	8,5	45
	Q2E80M4B *	aluminum	0,55	3/4	1415	1,5	3,7	4,8	-	2,8		3,2	77,1	77,6	76,4	0,76	0,00205	10,5	49
380 V	Q2E80M4D	aluminum	0,75	1,0	1435	2	5,1	5,2		2,9		3,2	79,6	78,9	75,3	0,7	0,00268	12	49
220/3	Q2E90L4C	aluminum	1,1	1,5	1430	2,5	7,4	6,7	-	2,9	•	3,3	81,4	80,8	78,1	0,81	0,00365	18	54
	Q2E90L4D	aluminum	1,5	2,0	1430	3,5	10,0	7,0	-	3,2	-	3,6	82,8	82,0	79,3	0,76	0,00365	18	55
	Q2E100L4C	aluminum	2,2	3,0	1430	5,0	14,6	7,1	-	3,9	-	4,2	84,3	83,8	81,2	0,77	0,00545	26	56
	Q2E100L4D	aluminum	3,0	4,0	1440	6,4	20,0	7,1		3,4		3,8	85,5	85,1	83,0	0,75	0,00581	26	56

Motor selected: Q2E100L4D

The output shaft diameter and lenght is of our interest because we need to find exact gear reducer according to the that.

Diameter of shaft: 28 mm

Lenght of shaft : 60mm

DIMENSIONS

					Mair mensi	Main ensions		Foot Mounted Motors						Sh	aft		Bearing		Seal	
	Power (kW)	Number of Poles	Motor Type	AC	٦	0	В	Α	н	HD	к	O	D ⁽¹⁾	Е	GA	F ⁽²⁾	Drive Side	Non drive Side	Drive Side	Non drive Side
ľ		2	Q2E 90L2DE	193	316.5	1*M25	125	140	90	222	10	56	24	50	27	8	6305-2Z	6205-2Z	25*40*7	25*40*7
ı	3	2	Q2E100L2C	217	352.0	1*M25	140	160	100	241	12	63	28	60	31	8	6306-2Z	6205-2Z	30*47*7	25*40*7
ı	3	4	Q2E100L4D	217	352.0	1*M25	140	160	100	241	12	63	28	60	31	8	6306-2Z	6205-2Z	30*47*7	25*40*7
		6	Q2E132M6A	279	475.5	2*M32	140	216	132	314	12	89	38	80	41	10	6208-2Z	6208-2Z	40*62*10	40*62*10

At Pinon(to have a max velocity of 0.3m/s)

Torque at pinon : 713Nm Rpm at the pinon : 46 rpm Dia of the pinon : 0.126m

At motor:

Power: 3kw

Rpm: 1500

At reducer:

1500 rpm → 46 rpm Reduction ratio = 33

GEAR REDUCER

		Stage	Ratio	PGL-42	PG L -60 / 60T	PG L -90 / 90T	PG L -115 / 115T	PG L -142 / 142T	PG L -180 / 180T	PG L -220 / 220T
			15	13.8	44.2	95.2	283	482	1151	1670
			20	11.9	35.9	74.6	249	490	1055	1574
Nominal Output Torque T _{2N}	N•m		25	13.8	43.0	95.2	283	473	1151	1670
Nomina Output Torque 12N	14 - 111		30	13.8	43.0	95.2	283	473	1151	1670
			35	13.8	43.0	95.2	283	473	1151	1670
			40	13.8	43.0	95.2	283	473	1151	1670
		2	45	13.8	43.0	95.2	283	473	1151	1670
			50	13.8	43.0	95.2	283	473	1151	1670
			60	12.5	39.4	90.9	266	436	1055	1574
			70	11.9	36.0	85.6	219	400	1055	1574
			80	10.9	32.4	85.0	216	363	860	1184
			90	9.8	28.7	80.0	210	320	764	1185
			100	10.1	25.0	75.0	210	320	763	1184
Emergency Stop Torque T _{2NOT}	N • m			(*			minal Output =60% of Emer		orque)	
Nominal Input Speed N _{1N}	rpm	1,2	3-100	3000	3000	3000	2500	2000	2000	2000
Max. Input Speed n_{1max}	rpm	1,2	3-100	6000	6000	6000	5000	4000	4000	4000
14: B 11 1 B0		1	3-10	-	-	-	≦ 3	≦3	≦ 3	≦3
Micro Backlash P0	arcmin	2	12-100	-	-	-	≦ 5	≦ 5	≦ 5	≦ 5

We select a planetary gear reducer for this application,

- 2 stage reducer
- Reduction ratio of 35
- Max input rpm 4000
- Max output torque 1151 Nm

DIMENSIONING REDUCER

Motor shaft dia : 28 mm Input end reducer ≤ 50mm

Couples shaft through a dynamic balanced collar mechanism system for zero slip at high rpms.

Output shaft diameter : 55mm

Dimensions	PGL42	PGL60	PGL90	PGL115	PGL142	PGL180
D1	50	70	100	130	165	215
D2	3.4	5.5	6.5	8.5	10.5	13
D3 h6	13	16	22	32	40	55
C1 ²	46	70	90	115	145	200
C2 ²	M4x0.7P	M5x0.8P	M6x1.0P	M8x1.25P	M8x1.25P	M12x1.75P
C3 ²	≦8	≦14	≦19/≦24	≦24/≦28	≦35	≦50

DIMENSIONING — Shaft

Power = 2.3 kW Torque = 712.5 Nm Dia of pinon on shaft = 0.126 m Dia of gear on shaft = 0.15 m Bore of gear on shaft = 75 mm

Radial force : $F_r = F_t \tan(20) = 4.12 \text{ kN}$

Tangential force : $F_t = m \cdot (\mu \cdot g + a) = 11.31 \text{ kN}$

With μ = 0.005 and a = 0.3 [m/s²]

Solving Σ V = 0 and Σ M_V = 0; Σ H = 0; Σ M_H = 0

1.
$$V_{B1} = -(V_{B2} + V_p + V_g) = -4.4515 \text{ kN}$$

2.
$$V_{B2} = -5 (0.5V_p + 0.1 V_g) = 12.0285 \text{ kN}$$

3.
$$H_{B1} = -(H_{B2} + H_p + H_g) = 12.2155 \text{ KN}$$

4.
$$H_{B2} = -5 (0.1 H_g + 0.5 H_p) = -33.0245 KN$$

DIMENSIONING — Shaft

$$M_{\text{max}} = (M_{\text{VB2}}^2 + M_{\text{HB2}}^2)^{1/2} = 6.02 \text{ [kNm]}$$

MAX BENDING MOMENT:

$$\sigma = 32 \cdot M_{max} / \pi d^3 = 145.35 \text{ MPa}$$

The equivalent stress : $\sigma_{eq} = (\sigma^2 + 3 \cdot \tau^2)^{1/2} = 146.11$ [MPa]

For safety : $\sigma_{eq} < \sigma_{y}$

Material selection from Juvinall: Carbon alloy steel (1212 HR – see Juvinal) - Yield strength of 193MPa

MAX TWISTING MOMENT:

 $\tau = 16 \cdot T / \pi \cdot d^3 = 8.6 \text{ MPa}$

DIMENSIONING – Ball Bearings

3.1 Single row angular contact ball bearings d 65 – 75 mm

1) Static dimesioning

Equivalent static load : $P_0 = X_0 F_r + Y0 F_a = 35.15 [kN]$

Assuming no axial force : $Y_0 = 0$, $X_0 = 1$

Safety coefficient for high certitude on $s_0 = 2$

$$C_0 = s_0 P_0 = 70 [kN]$$

2) Rating life dimensioning

For 25 000[h] at maximal speed : $L_{10} = \left(\frac{c}{P}\right)^p$

C = 11.273 [kN]

Based on C and C0: in the SKF catalogue: ball bearings with angular contact – dimensions: D = 160 [mm]; B = 37 [mm] and C and C_0 higher than the values computed

DIMENSIONING – Rollers

• X-Translation :

Maximum mass to lift: ~170t

Critical case when all weight on one side

~170t supported by rollers on one side

3 Rollers

Lifting capacity: 60t each

Diamater: 630mm

•X-Translation:

Maximum mass to lift: 22.5t?

Weight distributed between 4 rollers

Maximum 22.5/4t per rollers

4 Rollers

Lifting capacity: 7t each

Diameter: 160mm

Ref: DEMAG, DRS 160

Assure bridge alignement

Laser sensor:

Measure distance between crane and support on both side of the crane

Adjust to have same distance

Reference: KEYENCE, Série LK-G

• Position in hangar : Laser distance sensor

Z-Position

Range: 0.2-35m

Repeatability:>=0.5mm

Reference : SICK, DL35-B15552

Y-Position

Range: 0.2-50m

Repeatability: >=0.25

Reference : SICK, DL50-N2225

Z-Position

Range: 0.15-300m

Repeatability: 2mm

Reference: SICK,DL100-23AA2101

Overload protection :
 Replace pin in the sheave with a load pin with bonded strain gauge

- 3-5% precision --> protection
- Need to calibrate

Lift capacity: 1 to 1000t

Reference: SENSY, Axe dynamométrique 5000

• Speed check: Avoid collision with the wall

Slow speed Full speed STOP

Reference: Telemecanique Sensor, XCKMR44D1H29

- Anti-sway system :
- 1-) Estimate and calculate load swing

2-) Automaticaly adjustate crane travelling motion: anti-sway software to work with a crane's PLC

Remove load swing for any load

Reference: SmartCrane, Anti Sway Crane Controle

Thank you for your attention!

Any questions?

