Combinational Logic Design

Dr. Chandan Karfa CSE IIT Guwahati

- Code conversion
- Parity bit generator
- Comparator
- Multiplexer

Source

• Chapter 4: M. M. Mano and M. D. Ciletti, Digital Design, 5th Ed., Pearson Education.

• Chapter 5: Z. Kohavi and N. Jha, Switching and Finite Automata Theory, 3rd Ed., Cambridge University Press, 2010.

Basic

- The number of gate inputs that can be driven by the output of a single gate is limited. The maximum such number is called the **fanout** of the gate.
- The bound on the number of inputs that a single gate may have is referred to as the **fanin** of the gate.
- A finite amount of time is required to propagate a signal through a gate, or to switch a gate output from one value to another is known as the **propagation delay**.

Logic design with integrated circuits

Integrated circuits are produced in packages, or chips, and are historically classified into four categories:

- 1. Small-scale integration (SSI) usually refers to packages containing single gates, e.g., AND, OR, NOT, NAND, NOR, XOR, or small packages containing two or four gates of the same type.
- **2. Medium-scale integration (MSI)** refers to intermediate packages containing up to about 100 gates. They usually realize standard circuits that are used often in logic design, e.g., code converters, adders, etc.
- **3. Large-scale integration (LSI),** may contain many hundreds or thousands of gates in a single package. Some LSI circuits are standard, e.g., subsystems for computer control or for a computer arithmetic unit, while other LSI circuits are manufactured to the specification of the logic designer.
- **4. Very-large-scale integration (VLSI)** is what we currently observe, in chips in which there may be millions of gates.

ANALYSIS OF COMBINATIONAL CIRCUITS

A combinational circuit is analyzed by tracing the output of each gate, starting from the circuit inputs and continuing toward each circuit output.

The output, designated CO, is given by

CO = AB + (A + B)C = AB + AC + BC

The second output, designated S, is found to be

S = (A + B + C)[AB + (A + B)C]' + ABC

= (A + B + C)(A' + B')(A' + C')(B' + C') + ABC

= AB'C' + A'BC' + A'B'C + ABC

= A \(\oplus B \oplus C\)

Design Procedure

- From the specifications of the circuit, determine the required number of inputs and outputs and assign a symbol to each.
- Derive the truth table that defines the required relationship between inputs and outputs.
- Obtain the simplified Boolean functions for each output as a function of the input variables.
- Draw the logic diagram and verify the correctness of the design (manually or by simulation).

Code Conversion Example: BCD to Excess-3

Truth Table for Code Conversion Example

Input BCD				Output Excess-3 Code			
Α	В	C	D	w	X	y	Z
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
0	0	1	0	0	1	0	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	1	1
0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	0	1	1
1	0	0	1	1	1	0	0

$$z = D'$$

 $y = CD + C'D' = CD + (C + D)'$
 $x = B'C + B'D + BC'D' = B'(C + D) + BC'D'$
 $= B'(C + D) + B(C + D)'$
 $w = A + BC + BD = A + B(C + D)$

,					C	
A	B^{CI}	00	01	11	10	`
	00	m ₀	<i>m</i> ₁	<i>m</i> ₃	1	
	01	1	<i>m</i> ₅	<i>m</i> ₇	1	$\left \cdot \right _{B}$
A	11	т ₁₂ Х	м ₁₃ Х	M ₁₅	<i>т</i> ₁₄ Х	
A	10	m ₈	m ₉	M ₁₁	т ₁₀	
				\widetilde{D}		
			z =	D'		

Code Conversion Example

$$z = D'$$

 $y = CD + C'D' = CD + (C + D)'$
 $x = B'C + B'D + BC'D' = B'(C + D) + BC'D'$
 $= B'(C + D) + B(C + D)'$
 $w = A + BC + BD = A + B(C + D)$

Parity-bit generator

- Produce an output value 1 if and only if an odd number of its inputs have the value 1.
- p = x'y'z + x'yz' + xy'z' + xyz.

COMPARATORS

An **n-bit comparator** is a circuit that compares the magnitude of two numbers X and Y . It has three outputs

f1, f2, and f3, such that:

$$f3 = 1 \text{ iff } X < Y.$$

$$f_1 = x_1 x_2 y_2' + x_2 y_1' y_2' + x_1 y_1'$$

$$= (x_1 + y_1') x_2 y_2' + x_1 y_1',$$

$$f_2 = x_1' x_2' y_1' y_2' + x_1' x_2 y_1' y_2 + x_1 x_2' y_1 y_2' + x_1 x_2 y_1 y_2$$

$$= x_1' y_1' (x_2' y_2' + x_2 y_2) + x_1 y_1 (x_2' y_2' + x_2 y_2)$$

$$= (x_1' y_1' + x_1 y_1) (x_2' y_2' + x_2 y_2),$$

$$f_3 = x_2' y_1 y_2 + x_1' x_2' y_2 + x_1' y_1$$

$$= x_2' y_2 (y_1 + x_1') + x_1' y_1.$$

$x_1 x_2 \\ y_1 y_2 \\ 00 \\ 01 \\ 11 \\ 10$							
1 ₁ y ₂	00	01	11	10			
00	2	1	1	1			
01	3	2	1	1			
11	3	3	2	3			
10	3	3	1	2			
			·	_			

(a) Block diagram.

(b) Map for f_1 , f_2 , and f_3 .

2 bits comparator

4 bits Comparator

$$A > B, A = B, \text{ or } A < B.$$

$$A = A_3 A_2 A_1 A_0$$

$$B = B_3 B_2 B_1 B_0$$

digits are equal: $A_3 = B_3$, $A_2 = B_2$, $A_1 = B_1$, and $A_0 = B_0$.

$$x_i = A_i B_i + A'_i B'_i$$
 for $i = 0, 1, 2, 3$
 $(A = B) = x_3 x_2 x_1 x_0$

A is greater or less than B, we inspect the relative magnitudes of pairs of significant digits, starting from the most significant position. If the two digits of a pair are equal, we compare the next lower significant pair of digits. The comparison continues until a pair of unequal digits is reached. If the corresponding The two numbers are equal if all pairs of significant digit of A is 1 and that of B is 0, we conclude that A > B. If the corresponding digit of A is 0 and that of B is 1, we have A < B

$$(A > B) = A_3B_3' + x_3A_2B_2' + x_3x_2A_1B_1' + x_3x_2x_1A_0B_0'$$

$$(A < B) = A_3'B_3 + x_3A_2'B_2 + x_3x_2A_1'B_1' + x_3x_2x_1A'n_0B_0'$$

4 bits Comparator

$$x_i = A_i B_i + A'_i B'_i$$
 for $i = 0, 1, 2, 3$

$$(A = B) = x_3 x_2 x_1 x_0$$

$$(A > B) = A_3B_3' + x_3A_2B_2' + x_3x_2A_1B_1' + x_3x_2x_1A_0B_0'$$

$$(A < B) = A_3'B_3 + x_3A_2'B_2 + x_3x_2A_1'B_1' + x_3x_2x_1A'n_0B_0'$$

12-bits Comparator

(a) A 4-bit comparator.

(b) A 12-bit comparator.

Initial conditions are inserted at the inputs of the comparator corresponding to the least significant bits in such a way that the outputs of this comparator will depend only on the values of its own x's and y's

Data selectors/Multiplexers

- Multiplexer is an electronic switch that can **connect one out of n inputs to the output**.
- A data selector has n data input lines D_0 , D_1 ,..., D_{n-1} , m select digit inputs s_0 , s_1 ,..., s_{m-1} , and one output.
- The m select digits form a binary select number ranging from 0 to 2^{m-1} , and when this number has the value k then Dk is connected to the output.
- The number of select digits must equal m = log2 n, so that it can identify all the data inputs.

2-to-1 Multiplexer

4-to-1 Multiplexer

S_1	S_0	Y
0 0 1 1	0 1 0 1	$I_0 \\ I_1 \\ I_2 \\ I_3$

(b) Function table

Implementing switching functions with data selectors

- Implementing of the arbitrary switching functions is an important application of data selectors.
- For example: we show how functions of two variables can be implemented by data selector

if s=0, then
$$z=D_0$$

if s=1, then $z=D_1$
 $z = sD_1 + s'D_0$.

- Implementation of EXCLUSIVE-OR operation A \bigoplus B, s=A, D₁=B', D₀=B $z = AB' + A'B = A \bigoplus B$
- Similarly, NAND operation z = A' + B'. S=A, $D_1=B'$, $D_0=1$
- Any logic gate can be realized using a 2-to-1 MUX

Implementing two variable function with data selector

$$z = sD_1 + s'D_0.$$

If
$$s = A$$
, $B = D_0$, and $B' = D_1$ then $z = A \oplus B$.

If
$$s = A$$
, $D_0 = 1$, and $D_1 = B'$ then $z = A' + B'$.

Boolean Function Implementation

- Implementing a Boolean function of n variables with a multiplexer that has n-1 selection inputs.
- The first *n* 1 variables of the function are connected to the selection inputs of the multiplexer.
- The remaining single variable of the function is used for the 2⁽ⁿ⁻¹⁾data inputs.
- If the single variable is denoted by z, each data input of the multiplexer will be z, z^{\prime} , 1, or 0

Boolean Function Implementation

$$F(x, y, z) = \Sigma(1, 2, 6, 7)$$

x	y	z	F	
0	0	0 1	0 1	F = z
0	1 1	0 1	1 0	F = z'
1 1	0 0	0 1	0 0	F = 0
1	1 1	0 1	1 1	<i>F</i> = 1

(a) Truth table

Boolean Function Implementation

$$F(A, B, C, D) = \Sigma(1, 3, 4, 11, 12, 13, 14, 15)$$

Α	B	C	D	F	
0	0 0	0	0 1	0 1	F = D
0	0	1 1	0 1	0 1	F = D
0	1 1	0	0 1	1 0	F = D'
0	1 1	1 1	0 1	0	F = 0
1	0	0	0 1	0	F = 0
1	0 0	1 1	0 1	0 1	F = D
1 1	1 1	0 0	0 1	1 1	F = 1
1	1 1	1 1	0 1	1 1	<i>F</i> = 1

