# \* 旋转的力量 ---Splay Tree 初探

南京大学 杜星亮

- \*目前我们接触到的数据结构:
  - \*数组
  - \*栈,队列
  - \*树, 堆
  - \*二叉搜索树
  - \*
- \*多用于维护一段序列或一个集合

### \*许多数据结构的本质是序列

- \*大家可能会说:
- \*
- \*好麻烦?
- \*不好写?
- \*难调试?
- \*不灵活?
- \*

# \*平衡二叉搜索树?

- \*C++ STL 中自带 红黑树实现的 set, map
- \*很是方便
- \*但其封装过于严密,难以扩展
- \*只能处理较为简单的序列与集合操作
- \*面对复杂的操作要求
- \*手中只有 set 和 map 往往只能望而却步



- \*首先是性能问题
  - \*广义上的平衡二叉树种类很多
  - \*AVL, RB-Tree, Treap 等等
  - \*性能上,它们都能满足要求
- \*如果考虑实现复杂度
  - \*传统 AVL 和 RB-Tree 的实现都需要众多的情况讨论
- \*如果考虑灵活性
  - \*等等?什么是灵活性?

\*

# \*自己实现 BST

# \*第一印象

#### **Splay Tree**

Insert Delete Find Print

B



### \*旋转,旋转,再旋转?

除了旋转以外,还有什么?

- \*缓存性质!
  - \*最近访问过的结点会在离根较近的位置
- \*为什么要这么做?



# \*Splay Tree, 从何而来?

- \*Splay Tree 由 Daniel Dominic Sleator 和 Robert Endre Tarjan 发明
  - \*(1985) "Self-Adjusting Binary Search Trees"

# \*动态树结构!

- \*但其实
- \*(1983) "A Data Structure for Dynamic Trees"
- \*他们已经使用与 Splay 基本相同的数据结构来维护动态树结构
- \*他们提出的维护动态树结构的方法中,经常需要 将BST中某个结点旋转到根的操作

# \*动态树结构!

- \*对于BST中的插入,删除,查询等等操作
- \*执行结束后
- \*都将对应节点通过一些旋转操作移到树根
- \*插入,删除,查询等操作的实现为传统实现

# \*核心思想: 自调整

- \*定义对某个结点 X 的操作
- \*Splay(X)
- \*通过一些旋转对树进行调整
- \*使 X 成为树根

# \*核心操作: Splay

- \*其旋转操作分三种情况
- \*以下设
- \*待旋转结点 X
- \*X 的父结点 P
- \*P的父结点 G















- \*以下为均摊分析
- \*设 结点 X
- \*Size(X) 为以 X 为根的子树中结点总数
- \*rank $(x) = log_2(size(x))$
- \*定义在 Splay 树组成的集合上的势能函数
- $\varphi(Tree) = \sum_{x \in Tree} rank(x)$

\*首先, 计算势能函数变化

\*Zig 操作

 $\Delta \Phi = \operatorname{rank}'(p) - \operatorname{rank}(p) + \operatorname{rank}'(x) - \operatorname{rank}(x)$  [since only p and x change ranks]  $= \operatorname{rank}'(p) - \operatorname{rank}(x)$  [since  $\operatorname{rank}'(x) = \operatorname{rank}(p)$ ]  $\leq \operatorname{rank}'(x) - \operatorname{rank}(x)$  [since  $\operatorname{rank}'(p) < \operatorname{rank}'(x)$ ]

#### \*Zig-Zig 操作

```
\Delta \Phi = \operatorname{rank}'(g) - \operatorname{rank}(g) + \operatorname{rank}'(p) - \operatorname{rank}(p) + \operatorname{rank}'(x) - \operatorname{rank}(x)
= \operatorname{rank}'(g) + \operatorname{rank}'(p) - \operatorname{rank}(p) - \operatorname{rank}(x) \quad [\operatorname{since rank}'(x) = \operatorname{rank}(g)]
\leq \operatorname{rank}'(g) + \operatorname{rank}'(x) - 2 \quad [\operatorname{since rank}(x) < \operatorname{rank}(p) \text{ and } \operatorname{rank}'(x) > \operatorname{rank}'(p)]
\leq 3(\operatorname{rank}'(x) - \operatorname{rank}(x)) - 2 \quad [\operatorname{due to the concavity of the log function}]
```

#### \*Zig-Zag 操作

```
\Delta\Phi = \operatorname{rank}'(g) - \operatorname{rank}(g) + \operatorname{rank}'(p) - \operatorname{rank}(p) + \operatorname{rank}'(x) - \operatorname{rank}(x)
\leq \operatorname{rank}'(g) + \operatorname{rank}'(p) - 2 \operatorname{rank}(x) \quad [\operatorname{since rank}'(x) = \operatorname{rank}(g) \text{ and } \operatorname{rank}(x) < \operatorname{rank}(p)]
\leq 2(\operatorname{rank}'(x) - \operatorname{rank}(x)) - 2 \quad [\operatorname{due to the concavity of the log function}]
```

- \*而每个操作的实际代价小于等于2
- \*由计算总摊还代价可得
  - \*参见《算法导论》式17.3
- \*将 X 移到根,总摊还代价有上界  $O(\log_2 n)$
- \*故 m 次操作,总复杂度  $O(m\log_2 n)$

- \*为使得势能函数始终非负 \*参见《算法导论》 17.3 节
- \*引入初态到终态最大势能差

$$\Phi_i - \Phi_f = \sum_x \operatorname{rank}_i(x) - \operatorname{rank}_f(x) = O(n \log n)$$

\*故总复杂度  $O(m\log_2 n + n\log_2 n)$ 

# \*为什么用 Splay Tree?

#### \*重新看看基本操作

我们现在有了 Splay 操作

- \*查找?
  - \*前驱?后继?
- \*插入?
- \*删除?
- \*查找排名?
- \*查找某排名的元素?

- \*给定树和元素 X, 得到两个新树
- \*一个包含小于或等于 X 的所有元素
- \*另一个包含大于 X 的所有元素。

#### \*分离

BST 的拆分?

- \*将 X 旋转到根
- \*其左侧的树包含小于 X 的所有元素, 并且其右侧的树包含大于 X 的所有 元素。
- \*断开根与右孩子之间的边即可

### \*连接

BST 的拼接?

- \*给定两个树 S 和 T, 且 S 的所有元素 小于 T 的元素
- \*可以很快地将两树合并:
- \*将 S 中最大元素旋转到根
- \*此时它有一个右孩子为空。
- \*将其右孩子设为 T

#### \*再来看看基本操作

我们现在有了 分离 和 连接 操作

- \*截取一段排名连续的元素?
- \*删除一段排名连续的元素?

\*

- \*查找,插入,删除
- \*截取,分割,连接
- \*
- \*到处都是 Splay
- \*没有严格维护平衡的条件
- \*只要每次都 Splay 一下

### \*旋转的力量!

# \*客观看待

难道 Splay Tree 没有缺点吗?

#### 优点

- \* 平摊复杂度优秀
- \*缓存性质
- \*结构灵活
- \*维护树结构不需要额外空间

#### 缺点

- \* 时间复杂度基于均摊,最坏情况复杂度目前无法保证
- \* 大多数操作都可能导致树的 结构发生较大改变,不适合 纯函数式编程与并发处理

# \*客观看待

- \*https://www.cs.usfca.edu/~galles/visualizatio n/SplayTree.html
- \*https://en.wikipedia.org/wiki/Splay\_tree
- \*Sleator, D. D.; Tarjan, R. E. (1985). "Self-Adjusting Binary Search Trees"
- \*Sleator, D. D.; Tarjan, R. E. (1983). "A Data Structure for Dynamic Trees"



# \*谢谢大家