

# DATA SCIENCE COMP2200/6200

12 – Second Half Summary (Week 7~11)



## Session 2 LEU Survey



### Provide feedback on teaching and course units

## More are expected!



| COMP2200 | COMP | INT | 31 | 495 | 6% |
|----------|------|-----|----|-----|----|
| COMP6200 | COMP | INT | 36 | 413 | 9% |

## Week-8 Summary



- Learning and machine learning
- Data, model, and parameter spaces
- Supervised learning vs unsupervised learning
- K-NN classifier
- Model selection and model complexity
- Training/testing error
- k-fold cross validation
- Automatic hyperparameter tuning
- Performance Metrics

## Data Mining and ML



- ❖ Data Mining ≈ Database + Machine Learning
  - Database: data management and pre-processing
  - Machine learning: data analysis & knowledge discovery



## What Is Machine Learning?



- A subset of artificial intelligence in the field of computer science
  - Gives computers the ability to "learn" (i.e., progressively improve performance on a specific task) with data
  - Without being explicitly programmed
- Ingredients
  - Model: to represent the form of learning result
  - Learning algorithm: how to generate a model from data
  - Data: input to ML algorithms
- Aims
  - to predict unseen data or to interpret existing data

## Two Stages of Machine Learning



- Training stage
  - Training: to generate a model from observed data
- Testing stage
  - Testing: to use the learned model to predict unseen data



E.g., does a patient with coughing, running nose and fever suffer from COVID-19 or flu?

## Why ML Works & Why Not



- Assumption: the distribution of training examples is identical to the distribution of test examples (including future unseen examples)
  - In practice, this is often violated to certain degree
  - Strong violations will clearly result in poor performance
  - To achieve good accuracy on the test data, training examples must be sufficiently representative of the test data



## Supervised vs Unsupervised



- Label/target of data
  - The interesting attribute(s) for prediction
  - Further,  $d_i \equiv \langle x_i, y_i \rangle$
  - Supervised learning models
    - Regression: y is continuous
    - Classification: y is discrete (binary or multi-class)
- No explicit label/target information
  - Then,  $d_i \equiv \langle x_i, \cdot \rangle$
  - Unsupervised learning models
    - Clustering
- Semi-supervised learning (labeling is often costly)

### Model



- Model: a map from input space to output space
  - i.e.,  $f: \mathcal{X} \to \mathcal{Y}$
  - An infinite number of such maps
  - Input space: space spanned by feature attributes
  - Output space: space spanned by label/target attributes
- ❖ Hypothesis space H: space of all possible maps
  - Functional space:  $\mathcal{H} \equiv \{f \mid \mathcal{X} \to \mathcal{Y}\}$
- Ground truth: underlying true mechanisms of generating the observed data
  - But never known in reality
  - The purpose of learning: to approximate the ground truth

## Parameter Space



- What do we really learn from data for a model?
  - Hypothesis space is usually pre-specified in terms of problem domains
  - Different models are determined by parameters
  - Let  $\theta$  denote the parameter vector, we have

$$\mathcal{H} \equiv \{ f \mid y = f_{\theta}(x) \}$$

- Parameter space
  - Can be real value spaces, e.g.,  $\mathbb{R}^n$
  - Structure of a model (more implicit), e.g., tree or graph structures, as well as partitions of the input space

### Model Selection?



### Model Selection

- Multiple models generated by different algorithm parameter configurations
- Multiple models generated by different learning algorithms

### Model complexity

- Very generally, it refers to the number of degrees of freedom in a learned model
- Often measured as the number of adjustable weights or parameters in the architecture, e.g., weights in regression
- High complexity → stronger capability of capturing information from training data

# Training/Testing Errors



\* Training error (or empirical error) of a trained model  $\hat{f}$  on a training data set of size N

$$E_{emp}(\hat{f}) = \frac{1}{N} \sum_{i=1}^{N} L(y_i, \hat{f}(x_i))$$

- Note that the loss function  $L(\cdot,\cdot)$  requires instantiation for a specific model, e.g., the squared error in linear regression
- ❖ Testing error on a test data set with size N'

$$E_{test}(\hat{f}) = \frac{1}{N'} \sum_{i=1}^{N'} L(y_i, \hat{f}(x_i))$$

Indicating the generalisation capability of a learned model

## Overfitting vs Underfitting





- Overfitting: a model is too strong and captures the very details of training samples, lacking generalization capability
  - Data is noisy, and the model is fitted to noise
  - Fighting against overfitting is important in machine learning!
- Underfitting: increasing model complexity can help

## k-fold Cross Validation







# DATA SCIENCE COMP2200/6200

### 08 – K-Nearest Neighbors Classifier



## Nearest Neighbors Classification



- Idea: instance-based learning
  - Similar examples have similar labels
  - Classify new examples like similar training examples

### Algorithm

- Given some new example x for which we need to predict its class y
- Find the most similar training examples
- Classify x "like" these most similar examples

### Questions:

- How to determine similarity?
- How many similar training examples to consider?

## **KNN Limitations**



- $\bullet$  Each prediction takes O(n) computational complexity
  - Use fancy data structures such as KD-trees to accelerate the search of nearest neighbours
  - Or use locality-sensitive hashing to approximate nearest neighbours with constant computational complexity
- Prediction performance degrades when number of attributes grows
  - Curse of dimensionality: when the number of attributes is big, similarity/distance measures become less reliable
  - Remedy
    - Remove irrelevant attributes in pre-processing
    - Weight attributes differently



# DATA SCIENCE COMP2200/6200

09 – Naïve Bayes Classifier



## How to Get Probability?



- \* If we assume that each outcome occurs with an equal chance, the probability is  $\frac{1}{|\Omega|}$  (theoretical probability)
  - E.g., fair coin flipping,  $Pr\{X = H\} = Pr\{X = T\} = 1/2$
  - E.g., fair die tossing,  $Pr\{X = 1\} = \cdots = Pr\{X = 6\} = 1/6$
- Estimation from relative frequency
  - Repeat random experiments N times
  - Count the occurrence/frequency of an outcome x,  $N_x$
  - Relative frequency  $\frac{N_x}{N}$
  - Estimate  $\Pr\{X = x\} = \lim_{N \to +\infty} \frac{N_x}{N}$  (law of large numbers)
  - In practice, make N large enough to have a good estimation

## Probabilistic Modelling



- How can we model classification with probability?
- \* Each attribute is a random variable
  - Target is a discrete random variable with distribution P(C)
  - Features are a random vector with joint distribution P(X)
  - Whole data can be captured by joint distribution P(X, C)
- \* Then, classification problem is to estimate P(C|X=x)
  - x is the feature vector of a testing instance
  - Distribution P(C|x) can tell the probability of each class label
  - The label with the highest probability is the predicted label Label(x) ←  $\arg\max_{\mathcal{C}_k} \{p(\mathcal{C}_k | \mathbf{x})\}$ 
    - This can minimize classification error

# Probabilistic Modelling (Cont'd)



- \* The key is to estimate conditional distribution P(C|X)
  - Question: is  $\mathcal{C}$  and X independent?
- In terms of product rule

$$P(C|X) = \frac{P(C, X)}{P(X)}$$

- Option I: estimate joint distribution P(C, X) directly
  - Then, P(X) can be estimate by sum rule

$$P(X) = \sum_{\mathcal{C}} P(\mathcal{C}, X)$$

This is Bayes optimal classifier

## Naïve Bayes Classifier



- \* Challenge of estimating P(X|C): still need to model the joint probability of all features of  $\mathbf{x} = \langle x_1, x_2, ..., x_M \rangle$ 
  - Many parameters to estimate (much more than # of features)
- Naïve Bayes assumption: all input features are conditionally independent of each other
  - Strong assumption (hard to achieve in reality)

$$p(\mathbf{x}|\mathcal{C}_k) = p(x_1, \dots, x_M|\mathcal{C}_k)$$

$$= p(x_1|x_2, \dots, x_M, \mathcal{C}_k)p(x_2, \dots, x_M|\mathcal{C}_k)$$

$$= p(x_1|\mathcal{C}_k)p(x_2, \dots, x_M|\mathcal{C}_k)$$

$$= p(x_1|\mathcal{C}_k) \cdots p(x_M|\mathcal{C}_k) = \prod_{i=1}^{M} p(x_i|\mathcal{C}_k)$$
Product of individual probabilities

# Naïve Bayes Classifier (Cont'd)



Now comes the decision rule

Classification is easy, just have probabilities multiplied

$$Label(\mathbf{x}) \leftarrow \arg \max_{\mathcal{C}_k} P(\mathcal{C}_k) \prod_{i=1}^{M} p(x_i | \mathcal{C}_k)$$

- Scalable (linear # of parameters w.r.t. M features)
- \* In practice, we just need to simply compute the relative frequencies from training data to estimate the probabilities  $P(C_k)$  and  $p(x_i|C_k)$
- Performance is comparably good even though the conditionally-independent assumption is very strong

## Example: Training/Learning



#### *PlayTennis*: training examples

|     |          | J           |          | 1      |            |
|-----|----------|-------------|----------|--------|------------|
| Day | Outlook  | Temperature | Humidity | Wind   | PlayTennis |
| D1  | Sunny    | Hot         | High     | Weak   | No         |
| D2  | Sunny    | Hot         | High     | Strong | No Z       |
| D3  | Overcast | Hot         | High     | Weak   | Yes        |
| D4  | Rain     | Mild        | High     | Weak   | Yes        |
| D5  | Rain     | Cool        | Normal   | Weak   | Yes        |
| D6  | Rain     | Cool        | Normal   | Strong | No         |
| D7  | Overcast | Cool        | Normal   | Strong | Yes        |
| D8  | Sunny    | Mild        | High     | Weak   | No         |
| D9  | Sunny    | Cool        | Normal   | Weak   | Yes        |
| D10 | Rain     | Mild        | Normal   | Weak   | Yes        |
| D11 | Sunny    | Mild        | Normal   | Strong | Yes        |
| D12 | Overcast | Mild        | High     | Strong | Yes        |
| D13 | Overcast | Hot         | Normal   | Weak   | Yes        |
| D14 | Rain     | Mild        | High     | Strong | No         |

$$P(Play=No) = 5/14$$

$$P(Play=No) = 5/14$$
  
 $P(Play=Yes) = 9/14$ 

| Outlook  | Play=Yes | Play=No |
|----------|----------|---------|
| Sunny    | 2/9      | 3/5     |
| Overcast | 4/9      | 0/5     |
| Rain     | 3/9      | 2/5     |

| Temp. | Play=Yes | Play=No |
|-------|----------|---------|
| Hot   | 2/9      | 2/5     |
| Mild  | 4/9      | 2/5     |
| Cool  | 3/9      | 1/5     |

| Wind   | Play=Yes | Play=No |
|--------|----------|---------|
| Strong | 3/9      | 3/5     |
| Weak   | 6/9      | 2/5     |

| Humidity | Play=Yes | Play=No |
|----------|----------|---------|
| High     | 3/9      | 4/5     |
| Normal   | 6/9      | 1/5     |

### **NBC** Pros and Cons



### Pros

- Very simple, and easy to implement.
- Work well in practice even if NB assumption doesn't hold.
- Highly scalable and fast, as it scales linearly with the number of features and data instances.
- Can be used for both binary and multi-class classification.
- Can make probabilistic predictions.
- Can handle both continuous and discrete attributes.
- Insensitive to irrelevant features.

### Cons

 Strong assumption on NB conditional independence: any two features are independent given the output class.

25



# DATA SCIENCE COMP2200/6200

### 10 – Artificial Neural Networks



## Artificial Neuron



- Computational model
  - Activation function on weighted sum of inputs



## Neural Network Layers



### Input layer

Determined by input features, usually one unit for one feature

### Output layer

- Determined by output results
- E.g., one unit for regression, multiple units for classification

## Hidden layer(s)

- Determined by users
- # of layers
- # of units in each layer
- How to connect units
- Which activation function to use



## Multi-Layer Perceptron



- One or more hidden layers
- Here we consider one hidden layer
- Consider following setting
  - # Input feature: M
  - # Output dimension: L
  - # Hidden units: N
  - Weights:  $W_{MN}$  and  $V_{NL}$
  - Activation function h
  - Output function g
  - Note: bias terms included for denotation convenience



\* Model: 
$$y = f(x|W, V) = g(hV_{NL}) = g(h(xW_{MN})V_{NL})$$

## **Model Training**



- What to learn?
  - Model parameters: W, V
  - # of model parameters: M \* N + N \* L
- Network topology is a hyperparameter
  - Not a model parameter
  - Determine the number of model parameters
  - Control model complexity
  - Note that activation functions also affect model complexity
- How to learn?
  - Minimize cost function w.r.t. a data set to obtain W, V
  - An optimization problem

## Error Back Propagation



Partial derivatives (can be used for weight update)

- Observations (consider a single data instance update)
  - Let error signal  $(g_k t_k) \equiv \delta$
  - For the output layer:  $\frac{\partial E_n(W,V)}{\partial v_{ik}} = \delta_k h_j$ ,  $\delta_k \equiv \delta g_k'$
  - For hidden layers:  $\frac{\partial E_n(W,V)}{\partial w_{ij}} = \delta_j x_i$ ,  $\delta_j \equiv (\sum_{k=1}^L \delta_k v_{jk}) h_j'$
  - Error signal  $\delta_i$  is calculated from  $\delta_k$ , i.e., back propagation!

# Error Back Propagation (Cont'd)



- Back propagation of error signals
  - $\delta = (g_k t_k)$ . Note: this error will be different for other cost functions, e.g., cross-entropy.
  - $\delta_k = \delta g_k'$
  - $\bullet \ \delta_j = (\sum_{k=1}^L \delta_k v_{jk}) h_j'$



# BP Example (Cont'd)





## **BP** Example





### **ANN Pros and Cons**



### Pros

- The model is powerful with high accuracy and can be applied to complex non-linear problems.
- Can work with large-scale datasets (big data).
- Prediction is fast.
- No need for feature engineering in deep learning models.
- Now many deep learning frameworks, e.g., <u>PyTorch</u>.

#### Cons

- Model training is computation intensive, e.g., GPUs are often required for deep learning models.
- Data intensive, otherwise, overfitting is likely to occur
- Poor interpretability, i.e., difficult in explaining the prediction



# DATA SCIENCE COMP2200/6200

### II – Decision Tree



## **Training**



- Training: construct a (decision) tree structure
  - Decision nodes: tracking partitioning (tree structure)
  - Terminal nodes: representing decision regions

| Tid | Refund | Marital<br>Status | Taxable Income | Cheat |
|-----|--------|-------------------|----------------|-------|
| 1   | Yes    | Single            | 125K           | No    |
| 2   | No     | Married           | 100K           | No    |
| 3   | No     | Single            | 70K            | No    |
| 4   | Yes    | Married           | 120K           | No    |
| 5   | No     | Divorced          | 95K            | Yes   |
| 6   | No     | Married           | 60K            | No    |
| 7   | Yes    | Divorced          | 220K           | No    |
| 8   | No     | Single            | 85K            | Yes   |
| 9   | No     | Married           | 75K            | No    |
| 10  | No     | Single            | 90K            | Yes   |

Yes No No MarSt Single, Divorced Married NO TaxInc NO YES

**Training Data** 

**Model: Decision Tree** 

## Testing



Predicting: traverse the built decision tree for a region



### How to Partition Data?



- Two fundamental questions!
- Which axis (dimension/feature) should be chosen?
  - To minimise classification error
  - Computationally infeasible to try all possible tree structures
    - $\circ$  E.g., for 10 binary features, search space size is  $2^{10}$
  - Greedy optimisation: use a heuristics
    - E.g., information gain
- What values of the chosen attribute for splitting?
  - Depending on data types: categorical or continuous
  - Continuous features (or dimension) need discretisation
  - Binary or multiway tree structure

## Splitting Heuristics



Which partition are more expected after splitting?



- Answer: C. Why?
  - No/few splits are required
  - Voting for class label is easier (similar to KNN classifier)
  - Impurity refers to this quality
    - o Entropy (information), Gini impurity, etc.

### Information Gain



\* Assume a data set D, the distribution of label  $t_D$  is

| Class | $\mathcal{C}_1$ | •••   | $\mathcal{C}_{\mathcal{K}}$ | Total |
|-------|-----------------|-------|-----------------------------|-------|
| Count | $c_{p1}$        | • • • | $c_{pK}$                    | $N_D$ |

- Information (entropy) of  $t_D$ :  $Info(t_D) = -\sum_{i=1}^K p_i \log_2(p_i)$
- Probability  $p_i = c_{pi}/N_D$
- \* Partition D by feature  $\phi_j$ , producing  $\{D_1, ..., D_v\}$ 
  - $t_D$ 's information after partition:

$$Info_{\phi_j}(\boldsymbol{t}_D) = \sum_{i=1}^{V} rac{N_{D_i}}{N_D} Info(D_i)$$

Information gain of this partition

$$Gain_D(\phi_j) = Info(oldsymbol{t}_D) - Info_{\phi_j}(oldsymbol{t}_D)$$

## Gain Ratio



- Info gain issue: prefer attributes with more values
  - Extreme case: prefer unique identifiers e.g., instance IDs
- Solution
  - Normalisation on information gain for each feature
- $\diamond$  Split information of a feature  $\phi_j$  (w.r.t. original dataset)

$$SplitInfo_{\mathcal{D}}(\phi_j) = -\sum_{i=1}^{V} \frac{N_{\mathcal{D}_i}}{N_{\mathcal{D}}} \log_2(\frac{N_{\mathcal{D}_i}}{N_{\mathcal{D}}})$$

Gain Ratio: normalised information gain

$$GainRatio_D(\phi_j) = Gain_D(\phi_j)/SplitInfo_D(\phi_j)$$

## Gini impurity



### Gini impurity

 Probability of two samples having different labels when being randomly chosen from a dataset

$$Gini(D) = 1 - \sum_{i=1}^{K} p_i^2 = \sum_{i=1}^{K} p_i (1 - p_i)$$

• Partition D by feature  $\phi_i$ 

$$Gini_D(\phi_j) = \sum_{i=1}^{V} \frac{N_{D_i}}{N_D} Gini(D_i)$$

- The lower the better for splitting
  - Zero Gini impurity implies perfect classification
- Selection of splitting heuristic is data dependent

# Example: Algorithm (Cont'd)





### Decision Tree Pros and Cons



### Pros

- Simplicity & interpretability: easy to understand and interpret
- Can work with both numerical and categorical data
- Capture non-linear relationships
- Provide insight into feature importance
- Fast to train and predict

#### Cons

- Overfitting: can easily become too complex
- The splitting decisions are made based on local optimality, which may not lead to the global best tree structure
- Lack of Smoothness: piecewise constant predictions, which car lead to abrupt changes in predicted values.

45



