COLLECTION SAWD

CHIMIE

WAHAB DIOP

TERMINALES S2 & S1

Notes de cours | Lycée Seydina Limamou Laye

Table des matières

Les aid	COOIS	/
l.	RAPPELS (COURS DE 1ERE S)	7
1	. Définition :	7
2	Classes d'un alcool :	7
3	Nomenclature des alcools:	8
4	l. Tests d'identification des aldéhydes et cétones:	8
II.	PROPRIETES CHIMIQUES	9
1	. Obtention des alcools par hydratation d'un alcène	9
2	Déshydratation d'un alcool	10
4	. Oxydation brutale	10
5	. Oxydation ménagée	11
6	. Estérification directe	13
III.	LES POLYALCOOLS	13
1	. Cas d'un dialcool: le glycol	13
2	Cas d'un trialcool: le glycérol	13
Les an	nines	14
I.	Les amines	14
1	. Définition et formule générale	14
2	Les classes d'amines	14
3	P. Nomenclature	14
II.	Propriétés chimiques des amines	15
1	. Action sur les indicateurs colorés	15
2	Basicité comparée des amines	16
3	2. Action sur les ions métalliques	16
III.	Caractère nucléophile des amines : alkylation des amines	16
1	. Réaction des amines tertiaires avec les dérivés halogénés	16
2	. Réaction des amines primaires ou secondaires avec les dérivés halogénés	16
Les ac	ides carboxyliques et dérivés	18
I.	Généralités	18
1	. Définition	18
2	. Nomenclature	18
3	. Obtention	19

<u>http://physiquechimie.sharepoint.com</u> / Serigne Abdou Wahab Diop – Lycée Limamou Laye

II.	Propriétés chimiques	19
1.	Propriétés acides	19
2.	Décarboxylation	19
3.	. Obtention des anhydrides d'acide	20
4.	Obtention des chlorures d'acyle	21
5.	. Passage à l'amide	22
III.	ESTERIFICATION	24
1.	Estérification directe	24
2.	Exemple de réaction d'estérification	25
3.	Estérification indirecte	26
4.	. Nomenclature	26
5.	. Importance des esters	27
Cinétic	que chimique	29
1.	ÉVOLUTION DU SYSTEME CHIMIQUE	29
1.	Systèmes stables et systèmes chimiquement inertes	29
2.	Classification cinétique des réactions naturelles.	29
II.	ÉTUDE EXPERIMENTALE DE LA CINETIQUE D'UNE REACTION	30
1.	Réaction des ions iodures Γ avec l'eau oxygénée H_2O_2	30
2.	Dosage par iodométrie	30
3.	Détermination de la composition instantanée du mélange réactionnel	30
III.	VITESSE DE REACTION	31
1.	vitesse de formation du diiode	31
2.	. vitesse de disparition	33
3.	. vitesse volumique	34
4.	. Relation entre les vitesses	34
5.	. Temps de demi-réaction	35
IV.	FACTEURS CINETIQUES	36
1.	. Agitation thermique	36
2.	. Chocs efficaces	36
3.	. Influence de la concentration et de la température	36
4.	. Autocatalyse	37
pH d'u	ne solution aqueuse -Autoprotolyse de l'eau - Produit ionique - Indicateurs colorés	38
1.	PH D'UNE SOLUTION AQUEUSE	38

1.	Définition:	. 38
2.	Propriétés mathématiques de la fonction log	. 38
3.	Mesure de pH	. 38
4.	pH et concentration	. 38
II.	EAU PURE	. 39
1.	pH de l'eau pure	. 39
2.	Autoprotolyse de l'eau	. 39
3.	Produit ionique	. 39
III.	CARACTERE ACIDE, BASIQUE OU NEUTRE D'UNE SOLUTION AQUEUSE	. 39
1.	Solution neutre	. 39
2.	Solution acide	. 40
3.	Solution basique	. 40
4.	Relation entre pH et [OH-]	. 40
5.	Électroneutralité	. 41
IV.	Indicateurs colores	. 41
1.	Définition	. 41
2.	Zone de virage des principaux indicateurs colorés	. 41
Acide f	fort – base forte – Réaction acide fort base forte – Dosage	42
I.	SOLUTION D'ACIDES FORTS	. 42
1.	Un acide fort: l'acide chlorhydrique	. 42
2.	Généralisation: notion d'acide fort	. 42
3.	pH d'une solution d'acide fort	. 42
4.	Dilution d'un acide fort	. 42
II.	SOLUTION DE BASE FORTE	. 43
1.	Une base forte: l'hydroxyde de sodium	. 43
2.	Généralisation: notion de base forte	. 43
3.	pH de solution basique	. 43
4.	Dilution de bases fortes	. 43
III.	REACTION ENTRE UN ACIDE FORT ET UNE BASE FORTE	. 44
1.	Équation de la réaction	. 44
2.	Étude pH métrique d'une réaction acide	. 44
Acide f	faible – Base faible - Couples acide/base	49
l.	EXEMPLE D'UN ACIDE FAIBLE: L'ACIDE ETHANOÏQUE	. 49

<u>http://physiquechimie.sharepoint.com</u> | Serigne Abdou Wahab Diop - Lycée Limamou Laye

1.	Ionisation de l'acide acétique	49
2.	Concentration des espèces	50
3.	Généralisation	50
II.	EXEMPLE DE BASE FAIBLE: L'AMMONIAC	50
1.	Ionisation de l'ammoniac dans l'eau	50
2.	Calcul des concentrations	51
3.	Généralisation	51
III.	COUPLE ACIDE BASE	51
1.	Acide base selon Bronsted	51
2.	Couple acide base	52
3.	Généralisation.	52
4.	Couples de l'eau	52
5.	Cas des acides forts et bases fortes	52
IV.	REACTION ACIDE BASE	53
Constar	nte d'acidité - Classification des couples acide/base	54
l. (CONSTANTE DE REACTION	54
1.	Réactions limitées	54
2.	Cas particuliers des réactions en solution aqueuse	54
II.	CONSTANTE D'ACIDITE D'UN COUPLE ACIDE/BASE	54
1.	Équilibre de dissociation d'un acide faible	54
2.	Équilibre de la protonation d'une base faible	55
3.	Constante d'acidité	55
4.	Les couples H ₃ O ⁺ /H ₂ O et H ₂ O/OH ⁻	55
III.	CLASSIFICATION DES COUPLES ACIDE BASE	56
1.	Force d'un acide faible	56
2.	Force d'une base faible	57
3.	Classification (voir fiche annexe)	57
4.	Domaine de prédominance	57
5.	Diagramme de distribution	59
IV.	REACTION ACIDO-BASIQUE	60
1.	Définition	60
2.	Prévision des réactions acido-basiques	60
Réactio	n entre acide faible-base forte et vice versa – Effet tampon	61
	Serigne Abdou Wahab Diop – Lycée Limamou Laye http://physiquechimie.sharepoint.com	

1.	REACTION ENTRE UN ACIDE FAIBLE ET UNE BASE FORTE	51
1.	Exemple de l'acide acétique et de la soude6	51
2.	Étude expérimentale de pH=f(V)6	51
3.	Principales caractéristiques du graphe6	52
4.	Équivalence acido-basique6	52
5.	Demi-équivalence acido-basique6	52
11.	REACTION ENTRE ACIDE FORT ET BASE FAIBLE	53
III.	Effet tampon	53
1.	Définition de l'effet tampon6	53
2.	Solutions tampons6	53
IV.	Applications6	54
1.	Application 16	54
2.	Application 26	54
Locaci	des $lpha$ -aminés : éléments de stéréochimie6	==
res aci	ues (x-amines : elements de stereocnimie	ככ
l.	QUELQUES NOTIONS DE STEREOCHIMIE	
		55
l.	QUELQUES NOTIONS DE STEREOCHIMIE 6 Rappels 6	65 65
l. <i>1.</i>	Quelques notions de stereochimie	55 55 56
l. 1. 2.	QUELQUES NOTIONS DE STEREOCHIMIE	65 65 66
l. 1. 2. 3.	QUELQUES NOTIONS DE STEREOCHIMIE	55 55 56 57
1. 2. 3. 4.	QUELQUES NOTIONS DE STEREOCHIMIE	55 55 56 57 57
I. 1. 2. 3. 4. II.	QUELQUES NOTIONS DE STEREOCHIMIE	55 55 56 57 57 58
I. 2. 3. 4. II.	QUELQUES NOTIONS DE STEREOCHIMIE 6 Rappels 6 Carbone asymétrique 6 Configuration 6 Activité optique 6 LES ACIDES A-AMINES 6 Définition 6	55 55 56 57 57 58 58
I. 2. 3. 4. II. 2.	QUELQUES NOTIONS DE STEREOCHIMIE6Rappels6Carbone asymétrique6Configuration6Activité optique6LES ACIDES A-AMINES6Définition6Nomenclature6	55 55 56 57 57 58 58 58
I. 2. 3. 4. II. 2. 3.	QUELQUES NOTIONS DE STEREOCHIMIE6Rappels6Carbone asymétrique6Configuration6Activité optique6LES ACIDES A-AMINES6Définition6Nomenclature6Structure6	55 55 56 57 57 58 58 58 59
I. 2. 3. 4. II. 2. 3. III.	QUELQUES NOTIONS DE STEREOCHIMIE	55 56 57 57 58 58 58 59 70
I. 2. 3. 4. II. 2. 3. III. 1.	QUELQUES NOTIONS DE STEREOCHIMIE6Rappels6Carbone asymétrique6Configuration6Activité optique6LES ACIDES A-AMINES6Définition6Nomenclature6Structure6PROPRIETES CHIMIQUES7Propriétés acido-basiques7	55 56 67 67 68 68 68 69 70 72

Serigne Abdon Wahab Diop

Email 1: <u>wababdiop@yaboo.fr</u>

Email 2: <u>wababdiop@botmail.fr</u>

Retrouver ce document sur le net: http://physiquechimie.sharepoint.com
Professeur de sciences physiques au lycée Seydina Limamou Laye

Ce document comporte des notes de mes cours en classe de Terminales $S_{1,2}$ au lycée à l'attention de mes élèves et collègues.

Les alcools

I. RAPPELS (COURS DE 1ERE S)

1. <u>Définition</u>:

La molécule d'un alcool est caractérisée par la présence d'un groupe hydroxyle –OH lié à un carbone tétragonal.

Exemples:

Remarque:

Le groupe hydroxyle apparaît dans d'autres types de composés qui ne sont pas des alcools car dans ces cas l'atome de carbone porteur du groupe hydroxyle n'est pas tétragonal. Voici quelques exemples:

Acide carboxylique énol phénol

La formule générale d'un alcool saturé est C_nH_{2n+2}O ou C_nH_{2n+1}-OH ou R-OH.

2. Classes d'un alcool:

La classe d'un alcool dépend du nombre d'atomes de carbone lié au carbone fonctionnel (atome de carbone relié au groupe – OH).

➤ Si cet atome de carbone fonctionnel est, par ailleurs, relié à un seul atome de carbone, il est primaire. L'alcool est également primaire ou de classe (I).

$$CH_3$$
 — OH CH_3 — CH_2 — CH_2 — OH

➤ Si cet atome de carbone fonctionnel est, par ailleurs, relié à deux atomes de carbone, il est secondaire. L'alcool est également secondaire ou de classe (II).

OH
Si cet atome de carbone fonctionnel est, par ailleurs, relié à trois atomes de carbone, il est tertiaire. L'alcool est également tertiaire ou classe (III).

<u>http://physiquechimie.sharepoint.com</u> / Serigne Abdou Wahab Diop – Lycée Limamou Laye

Remarque: dans le cas du méthanol CH₃OH, le carbone fonctionnel n'est relié à aucun atome de carbone néanmoins il constitue une exception classée dans le groupe des alcools primaires.

3. Nomenclature des alcools:

Le nom d'un alcool s'obtient à partir du nom de l'alcane correspondant en remplaçant la terminaison "ane" par "ol", précédé, entre tirets, de l'indice de position du groupe hydroxyle. La chaîne principale est la chaîne la plus longue contenant le groupe –OH. Elle est numérotée de telle sorte que le groupe –OH porte l'indice le plus petit possible.

Exemples: Nommons et classons les alcools de formule brute $C_4H_{10}O$.

4. Tests d'identification des aldéhydes et cétones:

Réactifs	Expériences	Résultat du test		
neactio	Experiences	Cétone	Aldéhyde	
DNPH	 Préparer deux tubes à essai contenant respectivement environ 1mL de DNPH. Ajouter dans le premier tube quelques gouttes de la solution d'éthanal. Ajouter dans le second tube quelques gouttes de propanone. Observer. 	Précipité jaune orangé	Précipité jaune orangé	
réactif de Schiff	 Préparer deux tubes à essai contenant respectivement environ 1mL de réactif de Schiff. Ajouter dans le premier tube quelques gouttes de la solution d'éthanal. Ajouter dans le second tube quelques gouttes de propanone. Observer. 	La solution reste incolore	La solution devient rose violacée	

liqueur de Fehling	 Dans un tube à essai, verser environ 2mL de liqueur de Fehling. Ajouter environ 1mL de la solution d'éthanal. Tiédir légèrement à la flamme du bec Bunsen en maintenant le tube avec une pince en bois. Observer. 	Formation d'un précipité rouge brique
Réactif de Tollens	Ajouter environ 1mL de la solution d'éthanal dans le tube contenant le réactif de Tollens et placer au bain marie une dizaine de minutes.	Dépôt d'argent sur les parois du tube: miroir d'argent

<u>Remarque</u>: la DNPH (2,4-dinitrophénylhydrazine) ne permet pas d'identifier un aldéhyde d'une cétone mais elle met en évidence la présence du groupe carbonylé.

II. PROPRIETES CHIMIQUES

1. Obtention des alcools par hydratation d'un alcène

L'addition d'eau sur un alcène conduit à un alcool selon la réaction d'équation bilan:

$$C_{n}H_{2n} + H_{2}O \xrightarrow{H_{3}PO_{4}OUH_{2}SO_{4}} C_{n}H_{2n+1}OH$$

L'hydratation d'un alcène symétrique conduit à un produit unique

L'hydratation d'un alcène dissymétrique conduit préférentiellement à l'alcool de la classe la plus élevée.

<u>NB</u>: l'obtention d'un alcool primaire (excepté l'éthanol) ne peut donc pas se faire par hydratation d'un alcène .

2. <u>Déshydratation d'un alcool</u>

• déshydratation en alcène

La déshydratation d'un alcool conduit à un alcène. La réaction est catalysée par l'alumine Al_2O_3 portée à 350°C. On obtient de manière préférentielle l'alcène le plus substitué (c'est-à-dire le moins hydrogéné sur les deux atomes de carbone qui s'engagent dans la double liaison).

• déshydratation en éther-oxyde

Dans des conditions moins douce caractérisées par un chauffage vers 140°C en présence d'acide sulfurique concentré, ou à 200°C sur l'alumine on obtient un éther-oxyde.

$$2 \text{ CH}_3 - \text{CH}_2 - \text{OH} \qquad \xrightarrow{-\text{Al}_2\text{O}_3} \qquad \text{CH}_3 - \text{CH}_2 - \text{O} - \text{CH}_2 - \text{CH}_3 \qquad + \qquad \qquad \text{H}_2\text{O}$$

3. Réaction avec le sodium

La réaction entre un alcool et le sodium est une réaction d'oxydoréduction résultant d'un transfert d'électron du sodium vers l'alcool.

$$CH_3CH_2OH + Na \rightarrow CH_3CH_2O^- + Na^+ + \frac{1}{2} H_2$$

4. <u>Oxydation brutale</u>

C'est la combustion dans le dioxygène de l'air d'un composé organique. Dans le cas des alcools, Il se forme toujours du CO_2 et H_2O selon l'équation générale:

$$C_nH_{2n+2}O + \frac{3n}{2}O_2 \rightarrow nCO_2 + (n+1)H_2O$$

L'oxydation brutale détruit la chaîne carbonée du composé. Pour éviter cette destruction, on fait appel à une oxydation douce dite oxydation ménagée.

5. Oxydation ménagée

Une oxydation ménagée est une oxydation douce qui s'effectue sans rupture de chaîne carbonée à l'aide d'oxydants tels que l'ion dichromate $(Cr_2O_7^{-2})$, l'ion permanganate (MnO_4) , etc....

a) Oxydation ménagée des alcools primaires

L'oxydation ménagée d'un alcool primaire conduit à la formation de l'aldéhyde correspondant. Si l'oxydant est en excès, l'aldéhyde est oxydé à son tour en acide carboxylique.

- Oxydation par le Cr₂O₇²⁻

La réaction entre l'éthanol et les ions dichromate met en jeu les couples redox suivant: $Cr_2O_7^{2-}/Cr^{3+}$ et CH_3 - CH_3 - C

$$Cr_{2}O_{7}^{2^{-}} + 14H^{+} + 6e^{-} \rightarrow 2Cr^{3^{+}} + 7 H_{2}O$$

$$(CH_{3} - CH_{2} - OH \rightarrow CH_{3} - CHO + 2H^{+} + 2e^{-}) \times 3$$

$$Cr_{2}O_{7}^{2^{-}} + 3CH_{3} - CH_{2} - OH + 14H^{+} \rightarrow 2Cr^{3^{+}} + 3CH_{3} - CHO + 6H^{+} + 7H_{2}O$$
En simplifiant par H⁺, on a: $Cr_{2}O_{7}^{2^{-}} + 3CH_{3} - CH_{2} - OH + 8H^{+} \rightarrow 2Cr^{3^{+}} + 3CH_{3} - CHO + 7H_{2}O$

Si l'oxydant est en excès, on obtient de l'acide carboxylique (acide éthanoïque ou acide acétique) suivant l'équation:

$$(Cr_2O_7^{2-} + 14 H^+ + 6e^- \rightarrow 2Cr^{3+} + 7 H_2O) \times 2$$

$$(CH_3 - CH_2 - OH + H_2O \rightarrow CH_3 - COOH + 4 H^+ + 4e^-) \times 3$$

$$2Cr_2O_7^{2-} + 16 H^+ + 3CH_3 - CH_2 - OH \rightarrow 4Cr^{3+} + 11H_2O + 3CH_3 - COOH$$

Oxydation par le MnO₄²

La réaction entre l'éthanol et les ions permanganate met en jeu les couples redox suivants: MnO_4^{-1}/Mn^{2+} et CH_3 - CH_2 -OH

$$(MnO_4^- + 8 H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O) \times 2$$

$$(CH_3 - CH_2 - OH \rightarrow CH_3 - CHO + 2 H^+ + 2e^-) \times 5$$

$$2MnO_4^- + 6H^+ + 5CH_3 - CH_2 - OH \rightarrow 2Mn^{2+} + 8H_2O + 5CH_3 - CHO$$

Oxydation catalytique par le dioxygène de l'air (lampe sans flamme)

L'oxydation ménagée de l'éthanol est catalysée par le cuivre. Elle produit de l'éthanal et de l'acide acétique.

Introduisons alors à l'ouverture du bécher

- Un papier imbibé de réactif de Schiff rosit, ce qui confirme la formation d'éthanal CH₃-CHO;
- Un papier pH mouillé rougit, mettant donc en évidence l'apparition d'un acide qui ne peut être que l'acide éthanoïque CH₃-COOH.

L'oxydation de l'éthanol en éthanal par le O₂ donne:

$$CH_3-CH_2-OH\,+\,\frac{1}{2}\,\,O_2\rightarrow CH_3-CHO\,+\,H_2O$$

L'oxydation d'une partie de l'éthanal ainsi formée conduit à l'acide carboxylique.

$$CH_3 - CHO + \frac{1}{2} O_2 \rightarrow CH_3 - COOH$$

Oxydation par déshydrogénation catalytique

En faisant passer les vapeurs d'éthanol en absence d'air sur le cuivre catalyseur maintenu à une température d'environ 300°C. On obtient de l'éthanal et d'un dégagement de dihydrogène.

$$CH_{3}CH_{2}OH \xrightarrow{Cu} CH_{3}CHO + H_{2}$$

Cette réaction est endothermique, elle cesse si on ne maintient pas le catalyseur à une température suffisante.

b) Oxydation ménagée des alcools secondaires

L'oxydation ménagée d'un alcool secondaire conduit à une cétone. L'oxydation ménagée du propan-2-ol par le permanganate de potassium met en jeu les couples redox suivant:

$$MnO_4^-/Mn^{2^+}$$
 et $CH_3^-CO - CH_3/CH_3 - CH(OH) - CH_3$

$$(MnO_4^- + 8 H^+ + 5e^- \rightarrow Mn^{2^+} + 4H_2O) \times 2$$

$$(CH_3 - CH(OH) - CH_3 \rightarrow CH_3 - CO - CH_3 + 2H^+ + 2e^-) \times 5$$

$$2MnO_4^- + 6H^+ + 5CH_3 - CH(OH) - CH_3 \rightarrow 2Mn^{2^+} + 8H_2O + 5CH_3 - CO - CH_3$$

Remarque: les alcools tertiaires ne s'oxydent pas.

6. <u>Estérification directe</u>

Les acides carboxyliques réagissent avec les alcools pour donner un ester et de l'eau.

L'estérification directe est une réaction lente, athermique et limitée (réversible) par une réaction inverse appelée hydrolyse:

Ester + Eau ≒ Acide + Alcool

Lorsque la vitesse de la réaction d'hydrolyse est égale à celle de la réaction d'estérification, il s'établit un équilibre chimique.

LOI DE LE CHATELIER OU LOI DE MODERATION

Toute modification d'un facteur d'équilibre (concentration, température, quantité de matière, ...) déplace l'équilibre dans le sens qui s'oppose à cette modification.

Exemple: on peut déplacer l'équilibre chimique dans le sens 1 en évaporant l'eau par chauffage.

III. LES POLYALCOOLS

1. <u>Cas d'un dialcool: le glycol</u>

Le glycol ou éthane-1,2-diol de formule $OH - CH_2 - CH_2 - OH$ est le plus simple des dialcools. Il est utilisé comme antigel pour les circuits de refroidissement des moteurs et la fabrication de polyesters.

2. <u>Cas d'un trialcool: le glycérol</u>

Le glycérol (commercialisé sous le nom de glycérine) ou propane-1,2,3-triol de formule $OH - CH_2 - CH(OH) - CH_2 - OH$ se retrouve généralement dans les corps gras (huile, graisse, ...)

Les amines

I. Les amines

1. <u>Définition et formule générale</u>

La formule d'une amine aliphatique s'obtient à partir de la formule de l'ammoniac NH_3 en remplaçant un, deux ou trois atomes H par des groupements alkyles ou aryles. La formule générale d'une amine est $C_nH_{2n+3}N$.

Exemples:

$$H_3C-NH_2$$
 $H_3C-CH_2\cdot NH-CH_3$ H_3C-N

2. Les classes d'amines

La classe d'une amine dépend du nombre d'atomes d'hydrogène remplacé dans la molécule d'ammoniac. Pour un atome d'hydrogène remplacé l'amine est dite primaire, secondaire si deux atomes de H sont remplacés et tertiaire si les 3 atomes de H sont remplacés. (Exemples: voir cidessus)

3. Nomenclature

- Nomenclature radico-fonctionnelle

Le mot amine est précédé du nom des substituants alkyles (ou aryle) de l'atome d'azote, énumérés dans l'ordre alphabétique.

Exemple:

Nomenclature substitutive

a) Amines primaires

Pour une amine primaire, on nomme l'alcane correspondant en remplaçant le "e" final par la terminaison "amine" précédé, entre tirets, de l'indice de position du groupe – NH₂

Exemples:

b) Amines secondaires ou tertiaires

Les formules des amines secondaires et tertiaires sont respectivement représentées ci-dessous:

Pour nommer une amine secondaire ou tertiaire, on cherche celui des groupes R₁, R₂, R₃ qui possède la chaîne carbonée la plus longue et l'on forme à partir de cette chaîne le nom de l'amine primaire correspondant. Les noms des autres groupes carbonés liés à l'atome d'azote sont mentionnés devant celui de l'amine précédés par la lettre N pour indiquer qu'ils sont directement liés à l'atome d'azote.

Exemples:

N-ethyl-N-methylpropan-1-amine

II. Propriétés chimiques des amines

1. Action sur les indicateurs colorés

Introduisons quelques gouttes de chaque indicateur dans un tube à essai contenant une solution aqueuse d'amine. On observe le résultat ci-contre.

<u>Conclusion</u>: Les amines ont un caractère basique en solution aqueuse:

$$H_3C$$
— NH_2 + H_2O \longrightarrow H_3C — NH_3^+ + HO^- ion méthylammonium

http://physiquechimie.sharepoint.com | Serigne Abdou Wahab Diop - Lycée Limamou Laye

Basicité comparée des amines 2.

Une solution de NH₃ a un pH=11,1; une solution d'éthanamine pH=11,8 et une solution de diethylamine a un pH=12,2. Les solutions ont la même concentration.

L'amine tertiaire est plus basique que l'amine secondaire qui elle est plus basique que l'amine primaire.

3. Action sur les ions métalliques

$$Fe^{2+} + 2(C_2H_5NH_3^+,OH_-) \longrightarrow Fe(OH)_2 + 2C_2H_5NH_3^+$$

Une solution aqueuse d'amine donne avec les ions métalliques une réaction de précipitation d'hydroxyde métallique.

III. Caractère nucléophile des amines : alkylation des amines

Le doublet libre de l'atome d'azote des amines intervient dans les réactions acide/base et met en jeu une autre propriété, très importante, des amines : leur caractère nucléophile.

Réaction des amines tertiaires avec les dérivés halogénés

Au cours de la réaction entre une amine tertiaire et un dérivé halogéné, le doublet libre de l'atome d'azote est attiré par l'atome de carbone, chargé positivement, du dérivé halogéné.

Prenons l'exemple de la réaction entre une amine primaire, la méthanamine et l'iodoéthane.

La première étape est identique à celle vue avec les amines tertiaires avec la formation d'un ion éthylméthylammonium:

Réaction des amines primaires ou secondaires avec les dérivés halogénés

ion tétraalkylammonium

$$H_3C-NH_2 + H_5C_2-I - H_3C-NH_2^+-C_2H_5 + I^-$$

Cette réaction est lente et la totalité de l'amine ne disparaît pas immédiatement.

L'ion ammonium formé est susceptible de libérer un proton. Il réagit avec une molécule d'amine primaire encore présente dans le milieu réactionnel selon la réaction :

$$H_3C - NH_2^+ - CH_3 + H_3C - NH_2 \iff H_3C - NH - C_2H_5 + H_3C - NH_3^+$$

Cette réaction, réversible, conduit à la formation d'une amine secondaire : l'éthylméthylamine.

Serigne Abdou Wahab Diop – Lycée Limamou Laye | http://physiquechimie.sharepoint.com

2.

• L'amine secondaire peut à son tour réagir avec une molécule de dérivé halogéné selon un bilan analogue au premier :

$$H_3C-NH-C_2H_5 + H_5C_2-I \longrightarrow H_3C-NH^+-C_2H_5 I$$

• Une des molécules d'amine, encore présente dans le milieu peut réagir avec l'ion ammonium formé dans l'étape précédente. La réaction aboutit à la formation de la diethylméthylamine, amine tertiaire :

$$H_{3}C - NH^{+} - C_{2}H_{5} + H_{3}C - NH_{2} \rightleftharpoons H_{3}C - N - C_{2}H_{5} + H_{3}C - NH_{3}^{+}$$
 $C_{2}H_{5} - C_{2}H_{5}$

• Enfin, l'amine tertiaire, peut à son tour réagir avec l'iodoéthane en donnant un ion ammonium quaternaire, particulièrement stable :

$$H_3C - N - C_2H_5 + H_5C_2 - I \longrightarrow H_3C - N - C_2H_5 + I - C_2H_5$$

<u>Conclusion</u>: la réaction d'une amine primaire sur un dérivé halogéné conduit à un mélange complexe contenant, entre autres, des molécules d'amines secondaire et tertiaire et l'ion quaternaire.

Les acides carboxyliques et dérivés

I. Généralités

1. Définition

Les acides carboxyliques sont des composés organiques renfermant dans leur molécule le groupe caractéristique (–COOH) appelé groupe carboxyle.

Leur formule générale est $C_nH_{2n}O_2$ ou R— où R- est un groupe alkyle ou aryle ou même une

chaîne carbonée insaturée. L'atome de carbone du groupe caractéristique est le carbone fonctionnel. Certains composés possèdent plusieurs groupes carboxyles: ce sont des polyacides.

2. Nomenclature

Le nom d'un acide carboxylique s'obtient en remplaçant le « e » final du nom de l'alcane correspondant par la terminaison « oïque » en le faisant précéder du mot *acide*.

Lorsque la chaîne carbonée est ramifiée, la chaîne principale est la chaîne la plus longue contenant le groupe carboxyle; elle est numérotée à partir du carbone fonctionnel.

Remarque: certaines molécules d'acide carboxylique ont des noms usuels.

3. Obtention

On peut obtenir les acides carboxyliques par une oxydation ménagée des alcools primaires (avec passage à l'aldéhyde).

II. Propriétés chimiques

1. Propriétés acides

- Les acides carboxyliques s'ionisent partiellement dans l'eau selon l'équation:

$$R \longrightarrow R \longrightarrow R \longrightarrow R \longrightarrow H_3O^+$$

Cette réaction n'est pas totale, elle est limitée par une réaction inverse: on dit que les acides carboxyliques sont des acides faibles.

 les solutions aqueuses d'acides carboxyliques peuvent être dosées par des solutions aqueuses basiques telles que NaOH, KOH, Ca(OH)₂ selon l'équation:

$$R - C + HO^{-} \rightarrow R - C + H_{2}O$$

2. Décarboxylation

Les acides carboxyliques peuvent par chauffage dans certaines conditions chimiques conduire à une perte d'une molécule de CO₂.

En présence de nickel vers 200°C, les acides carboxyliques conduisent à la formation d'un alkyle ou aryle.

$$R-C \xrightarrow{\text{Ni}} R-H + CO_2$$
OH

En présence d'alumine vers les 400°C, on obtient la formation d'une cétone selon l'équation suivante:

$$_{2}$$
 $_{R}$ $_{OH}$ $_{QO}$ $_{R}$ $_{R}$ $_{QO}$ $_{R}$ $_{R}$ $_{QO}$ $_{R}$ $_{R}$ $_{QO}$ $_{R}$ $_{R}$ $_{QO}$

Cas particulier de l'acide malonique

Remarquer que l'acide malonique ne subit qu'une seule décarboxylation.

3. Obtention des anhydrides d'acide

Par élimination d'une molécule d'eau entre deux molécules d'acides carboxyliques on obtient formellement une molécule d'anhydride d'acide de formule (R-CO)₂O.

a) Déshydratation intermoléculaire

En chauffant une solution d'acide carboxylique en présence de P₂O₅ (pentaoxyde de diphosphore) ou du P₄O₁₀ (décaoxyde de tétraphosphore) on obtient un anhydride d'acide et de l'eau selon l'équation:

Exemple:

b) <u>Déshydratation intramoléculaire</u>

La déshydratation intramoléculaire est valable pour les diacides. Elle consiste en l'élimination d'une molécule d'eau dans la molécule du diacide.

Remarque: l'hydrolyse d'un anhydride d'acide donne deux acides carboxyliques.

c) Nomenclature

Le nom d'un anhydride d'acide s'obtient en remplaçant le terme "acide" du nom de l'acide carboxylique correspondant par le terme "anhydride".

$$H_3C$$
— CH_2 O C CH_2 — CH_3

anhydride propanoïque

<u>Remarque</u>: il existe des anhydrides d'acide mixtes c'est-à-dire des anhydrides d'acide dont les deux chaînes carbonées sont différentes.

4. Obtention des chlorures d'acvle

Formellement on passe d'une molécule d'acide carboxylique à une molécule de chlorure d'acyle en remplaçant le groupe -OH de l'acide carboxylique par un atome de chlore: R—COCI

Le groupe caractéristique d'un chlorure d'acyle est: R—C

a) Nomenclature

Le nom d'un chlorure d'acyle s'obtient par suppression du mot "acide" du nom de l'acide carboxylique correspondant que l'on remplace par le terme "chlorure de"; et remplacement de la terminaison "oïque" par la terminaison "oyle".

Remarque: la chaîne principale est toujours numérotée à partir du carbone fonctionnel.

<u>http://physiquechimie.sharepoint.com</u> / Serigne Abdou Wahab Diop – Lycée Limamou Laye

b) Préparation

Le passage de l'acide carboxylique au chlorure d'acyle peut se faire suivant trois méthodes:

Par action du PCl₅ (pentachlorure de phosphore)

Par action du PCl₃ (trichlorure de phosphore)

Par action du SOCl₂ (chlorure de thionyle)

Cette dernière méthode est préférable puisque les produits secondaires formés sont gazeux et se dégagent au fur et à mesure de leur formation.

Les chlorures d'acyle sont très réactifs d'où leur grande utilisation en synthèse chimique. Ils réagissent rapidement avec l'eau pour donner l'acide carboxylique correspondant.

$$R \longrightarrow R \longrightarrow R \longrightarrow HCI$$

Cette réaction est exothermique.

5. Passage à l'amide

a) Formules générales

Formellement on obtient une amide en remplaçant le groupe -OH de l'acide carboxylique par l'un des groupes suivants: -NH₂, R-NH-, R-N-R₁, on obtient ainsi trois types d'amide.

- Les amides monosubstituées à l'atome d'azote:

b) Nomenclature

- **Amides non substituées:** on obtient le nom par suppression du mot "acide" du nom de l'acide carboxylique correspondant et remplacement de la terminaison "oïque" par la terminaison "amide".
- <u>Amides substituées</u>: les groupes alkyles ou aryles liés à l'atome d'azote sont précédés de la lettre N et cités avant le nom de l'amide non substituée de même chaîne principale.

c) Préparation

Action de l'ammoniac sur un acide carboxylique

$$R \longrightarrow \begin{pmatrix} O \\ + \\ O \end{pmatrix} + NH_3 \qquad \Longrightarrow \begin{pmatrix} R \longrightarrow \begin{pmatrix} O \\ NH_4^+ \end{pmatrix} \\ C \longrightarrow \begin{pmatrix} O \\ NH_4 \end{pmatrix} \end{pmatrix} \longrightarrow R \longrightarrow \begin{pmatrix} O \\ + \\ NH_2 \end{pmatrix}$$
carboxylate d'ammonium amide

Action de l'ammoniac sur un chlorure d'acyle

$$R - C + NH_3 \longrightarrow HCI + R - C NH_2$$

Pour obtenir une amide substituée on utilise à la place de l'ammoniac une amine primaire ou secondaire.

<u>http://physiquechimie.sharepoint.com</u> | Serigne Abdou Wahab Diop - Lycée Limamou Laye

Action de l'ammoniac sur un anhydride d'acide

III. ESTERIFICATION

1. Estérification directe

C'est l'action d'un acide carboxylique sur un alcool, on obtient un ester et de l'eau.

Cette réaction est lente, elle est limitée par une réaction inverse appelée réaction d'hydrolyse. Ces deux réactions (estérification et hydrolyse) sont inverses l'une de l'autre et se déroulent simultanément en se compensant parfaitement au bout d'un certain temps: on dit qu'on a atteint l'équilibre chimique d'estérification - hydrolyse. L'état final est le même que l'on parte d'un mélange équimolaire d'acide et d'alcool ou d'un mélange équimolaire d'ester et d'eau. A l'état final les quatre constituants coexistent dans le milieu: on a un état d'équilibre chimique.

On détermine ainsi une grandeur caractéristique de cette réaction: la constante d'estérification K_E.

$$K_{E} = \frac{n_{eau} \times n_{ester}}{n_{acide} \times n_{alcool}} = \frac{\frac{2n}{3} \times \frac{2n}{3}}{\frac{n}{3} \times \frac{n}{3}} = 4$$

K_E ne dépend que de la température.

2. Exemple de réaction d'estérification

Considérons la réaction entre l'acide méthanoïque et l'éthanol. L'étude de l'influence d'un catalyseur et de la température étant effectuée, on obtient la courbe ci-dessous.

La courbe montre l'évolution du nombre de moles d'ester formé au cours du temps.

- La limite d'estérification est indépendante de la température. L'élévation de la température accroît seulement la vitesse de la réaction.
- La présence d'un catalyseur permet d'atteindre plus rapidement la limite d'estérification, mais ne la modifie pas.
- Pour améliorer un rendement on peut :
 - o Introduire l'un des réactifs en excès.
 - Extraire l'ester ou l'eau au fur et à mesure de leur formation.
 - Influence de la nature des réactifs: Le taux d'avancement (rapport entre le nombre de moles dissociés sur le nombre de moles initial) de l'estérification ne dépend pratiquement pas de la nature de l'acide carboxylique utilisé. Par contre la classe de l'alcool est déterminante comme le montre les valeurs indicatives concernant un mélange équimolaire d'acide et d'alcool donné dans le tableau ci-dessous:

pour un alcool primaire R'—CH₂—OH	67%
pour un alcool secondaire R'—CHOH—R"	60%
pour un alcool tertiaire	5%

<u>http://physiquechimie.sharepoint.com</u> / Serigne Abdou Wahab Diop – Lycée Limamou Laye

3. Estérification indirecte

a) À partir d'un chlorure d'acyle

Cette réaction est rapide et totale.

b) À partir d'un anhydride d'acide

Cette réaction est lente mais totale.

Exemple: synthèse de l'aspirine (ou acide acétylsalicylique)

4. Nomenclature

Le nom d'un ester comporte deux termes:

- le premier, avec la terminaison « oate », désigne la chaîne principale provenant de l'acide carboxylique R-COOH.
- Le second, avec la terminaison "yle", est le nom du groupe alkyle présent dans l'alcool R₁-OH

Ces deux chaînes carbonées, chaîne principale et groupe alkyle, sont numérotées à partir du groupe fonctionnel.

Serigne Abdou Wahab Diop – Lycée Limamou Laye | http://physiquechimie.sharepoint.com

5. Importance des esters

a) Polyesters

Les industries du textile utilisent de plus en plus les fibres polyesters; ces polyesters sont des polymères qui sont obtenus par poly estérification d'un diacide et d'un alcool.

Exemple: pour obtenir le tergal on part de l'acide téréphtalique et de l'éthan-1,2-diol ou glycol.

b) Réaction de saponification d'un ester

C'est l'action des ions HO (ion hydroxyde) sur un ester, elle donne un ion carboxylate et un alcool suivant la réaction:

$$R \longrightarrow R \longrightarrow R \longrightarrow R_1 \longrightarrow R_1$$

Cette réaction est lente mais elle est totale, c'est la réaction de saponification. Elle est utilisée pour la fabrication des savons à partir des corps gras.

saponification des corps gras (triesters du propan-1,2,3-triol) – savons

Les corps gras sont essentiellement constitués de triglycérides. Ce sont des triesters du propan-1, 2, 3-triol (glycérol) et d'acides gras (acide à chaîne non ramifiée, à nombre pair d'atomes de carbone, en général de 4 à 22 atomes C).

La saponification des triesters gras (triglycérides) conduit au propan-1,2,3-triol (glycérol) et à des carboxylates de sodium ou de potassium qui sont des savons.

<u>http://physiquechimie.sharepoint.com</u> / Serigne Abdou Wahab Diop – Lycée Limamou Laye

Remarque: le savon est dur lorsque le cation de la base utilisé est l'ion sodium Na⁺; il est mou lorsque le cation est l'ion potassium K⁺.

<u>Préparation d'un savon</u>: un mélange d'huile et de soude est chauffé, à reflux, vers 120 °C pendant une demi-heure (voir le schéma).

PREPARATION D'UN SAVON

Afin de favoriser le contact entre l'huile et la soude, ces deux réactifs sont mis en solution dans l'éthanol.

Le savon formé est séparé du glycérol et de l'excès de soude par relargage dans une solution concentrée de chlorure de sodium. Le savon est en effet très peu soluble dans l'eau salée. Il précipite donc et ne reste qu'à le recueillir par filtration sur un filtre Büchner.

Cinétique chimique

ÉVOLUTION DU SYSTEME CHIMIQUE I.

1. Systèmes stables et systèmes chimiquement inertes

Lorsqu'on met en contact différents corps purs, il arrive parfois qu'on ne décèle aucune évolution du système pendant la durée des observations. Cette apparente inertie peut correspondre à deux situations différentes:

🖶 le système n'évolue pas, car aucune réaction naturelle ne peut s'y dérouler: le système est stable.

Exemple: métal cuivre en présence d'acide chlorhydrique

Faisons l'inventaire des espèces chimiques présentes (en rouge) dans la solution, puis appliquons la règle du gamma γ. Aucune réaction naturelle ne peut se dérouler.

👃 le système n'évolue pas, car la réaction naturelle qui peut s'y dérouler est très lente, voire infiniment lente: le système est cinétiquement inerte.

Exemple: considérons une solution aqueuse de permanganate de potassium.

L'équation de la réaction en appliquant la règle du gamma est:

$$4MnO_4^- + 2H_2O \rightarrow 4MnO_2 + 3O_2 + 4OH^-$$

L'apparente stabilité de la réaction provient donc de la grande lenteur de la réaction dans les conditions de l'expérience.

2. Classification cinétique des réactions naturelles.

a) réaction instantanée

Une réaction est dite instantanée lorsque l'évolution du système est si rapide qu'à nos yeux la réaction semble achevée à l'instant où les réactifs entre en contact. Exemple: les réactions de précipitation

b) réaction lente

Une réaction est dite lente lorsque son déroulement dure de quelques secondes à plusieurs minutes, voire plusieurs dizaines de minutes. Exemple: action des ions MnO₄ sur l'acide oxalique H₄C₂O₄

c) réaction très lente

Une réaction est dite très lente lorsqu'elle ne s'achève qu'au bout de plusieurs heures voire plusieurs jours. Exemple: les réactions d'estérification directe.

<u>http://physiquechimie.sharepoint.com</u> | Serigne Abdou Wahab Diop - Lycée Limamou Laye

II. ÉTUDE EXPERIMENTALE DE LA CINETIQUE D'UNE REACTION

1. Réaction des ions iodures 1- avec l'eau oxygénée H₂O₂

Pour étudier la cinétique de cette réaction on cherche à déterminer l'évolution du nombre de moles de diiode formé au cours du temps. L'équation de la réaction de la cinétique étudiée est:

$$H_2O_2$$
 H_2O $H_2O_2 + 2e + 2H^+ \rightarrow 2 H_2O$ $2l^- \rightarrow l_2 + 2e$ $H_2O_2 + 2l^- + 2 H^+ \rightarrow l_2 + 2H_2O$

2. <u>Dosage par iodométrie</u>

On détermine la quantité de I_2 formé en dosant la solution par le thiosulfate de sodium $Na_2S_2O_3$ afin de suivre l'évolution du nombre de mole de I_2 formé en fonction du temps. L'équation de la réaction du dosage est:

$$\begin{array}{c} I_{2} & I_{2} + 2e \rightarrow 2I^{-} \\ & 2S_{2}O_{3}^{2-} \rightarrow S_{4}O_{6}^{2-} + 2e \end{array}$$

$$\begin{array}{c} 2S_{2}O_{3}^{2-} \rightarrow S_{4}O_{6}^{2-} + 2e \\ \hline \\ 2S_{2}O_{3}^{2-} + I_{2} \rightarrow 2I^{-} + S_{4}O_{6}^{2-} \end{array}$$

A l'équivalence du dosage iodométrique: $2n_0(I_2) = n_{\text{éq}}(S_2O_3^{2-})$; soit $n_0(I_2) = \frac{1}{2}C_{S_2O_3^{2-}}V_{S_2O_3^{2-}}$

3. <u>Détermination de la composition instantanée du mélange réactionnel</u> **a)** <u>détermination de la quantité instantanée de diiode</u>

Analyse en parallèle:

Afin d'étudier le déroulement temporel de la réaction des ions iodures I^- avec H_2O_2 (peroxyde d'hydrogène), mélangeons les réactifs, en quantités connues, à un instant pris comme origine. Après avoir homogénéisé le mélange, fractionnons le en plusieurs échantillons de même volume v_0 . Tous les systèmes obtenus S_1 , S_2 , S_3 ,..., sont identiqu

es : ils ont le même volume, la même composition initiale et évolue donc en parallèle, de façon identique.

Trempe:

A l' instant t où nous souhaitons étudier l'échantillon S_i, on dilue et refroidie brutalement l'échantillon d'eau et de glace pilée. Le système S_i voit ainsi son évolution fortement ralentie voire négligeable: il subit une trempe; la trempe fige donc le système dans un état cinétiquement inerte. On dit que la réaction est stoppée.

Résultats:

A un instant t=0 (déclencher un chronomètre), mélangeons 50 mL d'eau oxygénée à 0,056 mol/L préalablement acidifié avec 1 mL d'acide sulfurique à 3 mol/L avec 50 mL d'une solution d'iodure de potassium à 0,2 mol/L. Le mélange est réparti entre dix bécher à raison de 10 mL par bécher.

Serigne Abdou Wahab Diop – Lycée Limamou Laye | <u>http://physiquechimie.sharepoint.com</u>

A un instant t quelconque, dosons un échantillon par une solution de thiosulfate de sodium de concentration $C_{red} = 0.04$ mol/L, en présence d'un peu d'emploi d'amidon. En dressant le tableau des volumes équivalents et en calculant pour chaque échantillon la quantité de I_2 ou de H_2O_2 , on obtient le tableau de résultats suivant:

t(s)	n(I ₂)(t) mmol	n(H ₂ O ₂)(t)mmol
0	0	0,28
60	0,044	0,236
180	0,096	0,184
270	0,126	0,154
350	0,146	0,134
510	0,180	0,100
720	0,213	0,067
890	0,235	0,045
1080	0,254	0,026
1440	0,274	0,006
1800	0,277	0,003

b) courbes d'évolution du système étudié

La représentation de la courbe d'évolution donne la figure ci-dessous.

III. VITESSE DE REACTION

1. <u>vitesse de formation du diiode</u>

a) vitesse moyenne de formation

La vitesse moyenne de formation d'un produit pendant la durée $t_2 - t_1$ est donnée par la relation:

$$\overline{\mathbf{V}} = \frac{n(t_2) - n(t_1)}{t_2 - t_1}$$

La vitesse s'exprime en mol/s

La vitesse de formation d'un produit entre t_1 et t_2 est égale au coefficient directeur de la sécante $[M_1M_2]$ passant par les points de \mathscr{C} d'abscisses t_1 et t_2 .

Application: Déterminer la vitesse de formation moyenne de I_2 entre les dates t_1 =440 s et t_2 =800s $v = \frac{0,2291 - 0,1691}{800 - 440} = 1,7.10^{-4} \text{ mmol/s}$

b) vitesse instantanée de formation

La vitesse instantanée de formation d'un produit à l'instant t_1 est égale au coefficient directeur (pente) de la tangente à la courbe \mathscr{C} au point M d'abscisse t_1 .

$$v = \left(\frac{dn}{dt}\right)_{t=t_1}$$

Application: déterminer la vitesse instantanée de formation du diiode à la date t=1400 s.

2. <u>vitesse de disparition</u>

a) vitesse moyenne de disparition d'un réactif

La vitesse moyenne de disparition d'un réactif pendant la durée $\Delta t = t_2 - t_1$ est donnée par la relation:

$$\overline{V} = -\frac{n(t_2) - n(t_1)}{t_2 - t_1}$$

<u>Application</u>: calculer la vitesse de disparition de H_2O_2 entre les dates t_1 =440s et t_2 =800s:

b) vitesse instantanée de disparition

La vitesse instantanée de disparition d'un réactif, à l'instant de date t_1 est égale à l'opposé de la valeur, à la date t_1 , de la fonction dérivé de n.

$$v = -\left(\frac{dn}{dt}\right)_{t=t_1}$$

<u>http://physiquechimie.sharepoint.com</u> | Serigne Abdou Wahab Diop - Lycée Limamou Laye

Application: calculer $v_d(H_2O_2)$ à la date t=0. ($v_{dt=0} = 5.10^{-3}$ mmol/s)

3. vitesse volumique

lacksquare pour une réaction se déroulant dans un volume υ : on définit la vitesse volumique de formation d'un produit D(ou de disparition d'un réactif A) comme le quotient de la vitesse de formation D(ou de disparition A) par le volume.

$$v_f^D = \frac{1}{v} \frac{dn_D}{dt}$$
 et $v_d^A = -\frac{1}{v} \frac{dn_A}{dt}$

Cette vitesse s'exprime en mol.m⁻³.s⁻¹ ou plus fréquemment mol.L⁻¹.s⁻¹.

Si le volume v est constant la vitesse de formation de D et de disparition de A peuvent se mettre sous la forme:

$$v_{\partial}^{A} = -\frac{1}{v} \frac{dn_{A}}{dt} = -\frac{d\left(\frac{n_{A}}{v}\right)}{dt} = -\frac{d[A]}{dt}$$

$$d'où: v_{\partial}^{A} = -\frac{d[A]}{dt} \text{ et } v_{f}^{P} = \frac{d[D]}{dt}$$

4. Relation entre les vitesses

Soit la réaction d'équation bilan: $\alpha A + \beta B \rightarrow \gamma C + \delta D$. Les variations de quantité de matière entre les dates t et t + Δt satisfont aux relations:

$$-\frac{\Delta n(A)}{\alpha} = -\frac{\Delta n(B)}{\beta} = \frac{\Delta n(C)}{\gamma} = \frac{\Delta n(D)}{\delta}$$

En divisant tous les termes par Δt , nous obtenons des relations semblables entre les vitesses moyennes.

$$-\frac{1}{\alpha} \frac{\Delta n(A)}{\Delta t} = -\frac{1}{\beta} \frac{\Delta n(B)}{\Delta t} = \frac{1}{\gamma} \frac{\Delta n(C)}{\Delta t} = \frac{1}{\delta} \frac{\Delta n(D)}{\Delta t}$$

En faisant tendre Δt vers 0, nous établissons enfin les relations concernant les vitesses instantanées:

$$-\frac{1}{\alpha} \frac{dn(A)}{dt} = -\frac{1}{\beta} \frac{dn(B)}{dt} = \frac{1}{\gamma} \frac{dn(C)}{dt} = \frac{1}{\delta} \frac{dn(D)}{dt}$$
$$\frac{v_{d(A)}}{\alpha} = \frac{v_{d(B)}}{\beta} = \frac{v_{f(C)}}{\gamma} = \frac{v_{d(D)}}{\delta}$$

Application:

En solution dans un mélange d'acétone et d'eau, le 2-bromo-2-méthylpropane (noté RBr, par la suite) réagit avec une molécule d'eau selon une réaction de substitution pour donner le 2-méthylpropan-2-ol selon l'équation-bilan:

$$(CH_3)_3CBr + H_2O \rightarrow (CH_3)_3COH + H^+ + Br^-$$

t(h)	0	3,15	4,10	6,20	8,20	10,0	13,5	18,3	26,0	30,8	37,3
[RBr](mmol/L)	104	90	86	77	70	64	53	39	27	21	14

- a) Tracer la courbe donnant la concentration en RBr en fonction du temps. Quels sont les facteurs cinétiques qu'elle met en évidence? Déterminer la vitesse volumique de disparition de RBr à l'instant initial, puis lorsque sa concentration prend les valeurs 104, 75, 50 et 25 mmol.L⁻¹
- b) On reprend la même expérience avec la même concentration en bromoalcane RBr, mais la proportion d'eau du mélange initial est doublée. La vitesse volumique initiale de disparition de RBr est 5,2 mmol.L⁻¹.h⁻¹. Que peut-on en conclure?

Résolution:

a) L'aspect de la courbe montre que la vitesse volumique de disparition du bromoalcane $V_{d\ RBr}$ décroît au fur et à mesure de la consommation des réactifs.

La vitesse volumique de disparition de RBr est l'opposée de la pente de la tangente à la courbe pour les valeurs indiquées:

[RBr] (mmol.L ⁻¹)	104	75	50	25
$V_{d RBr} (mmol.L^{-1}h^{-1})$	5,2	3,7	2,6	1,5

b) Dans ces deux expériences, seule la concentration initiale en eau diffère. Or V_{dRBr} , à t=0, est la même: V_{dRBr} est donc indépendant de [H₂0].

La concentration en eau n'est pas un facteur cinétique de cette réaction.

5. <u>Temps de demi-réaction</u>

On appelle temps de demi-réaction $t_{1/2}$ ou τ la durée nécessaire pour consommer la moitié du réactif limitant initialement présent. (Cas des réactions quantitatives)

C'est aussi le temps noté $t_{1/2}$ qu'il faut à l'avancement pour atteindre la moitié de sa valeur finale. Ce temps permet d'évaluer la rapidité d'une réaction chimique par une seule valeur numérique.

Attention: L'avancement final x_f peut-être inférieur ou égal à l'avancement maximal x_{max} .

http://physiquechimie.sharepoint.com | Serigne Abdou Wahab Diop - Lycée Limamou Laye

On a: $\tau = 328s$

IV. FACTEURS CINETIQUES

Les facteurs cinétiques sont des paramètres sur lesquels on peut agir pour faire varier la vitesse d'apparition ou de disparition d'un corps. Les principaux facteurs cinétiques sont: la température, la concentration des réactifs et l'utilisation d'un catalyseur. L'expérience montre que la vitesse d'évolution d'un système chimique augmente avec ses facteurs cinétiques. Faisons une interprétation microscopique de l'influence de ses facteurs cinétiques sur la vitesse.

1. Agitation thermique

Les entités chimiques (atomes, ions ou molécules) présentes dans un fluide sont en mouvements rapides incessants et totalement désordonnés. Plus la température est élevée, plus l'agitation est forte.

2. Chocs efficaces

Dans un milieu réactionnel l'agitation entraîne des chocs entre les réactifs et toutes les autres espèces chimiques présentes, y compris les molécules d'eau.

Ce sont les chocs entre réactifs qui permettent à la réaction chimique de se faire car ils permettent le contact entre les réactifs et ils peuvent provoquer la rupture des liaisons s'ils sont suffisamment violents.

Ces chocs sont efficaces s'ils permettent la transformation des réactifs en de nouvelles espèces chimiques qui sont les produits de la réaction.

Mais beaucoup de chocs au sein du mélange réactionnel sont inefficaces: les chocs entre réactifs et solvant, entre réactifs et produits de réaction, entre réactifs et d'autres espèces chimiques présentes dans l'eau, les chocs entre réactifs avec une mauvaise orientation, ou les chocs trop faibles qui ne provoquent pas de rupture de liaison. (Certains chocs entre produits de réaction peuvent même provoquer la réaction inverse à celle recherchée, dans ce cas la réaction ne peut pas être totale.)

3. *Influence de la concentration et de la température.*

Les chocs sont aléatoires et leur efficacité aussi, mais leur nombre augmentent avec la concentration et la température. De plus la violence des chocs devient plus grande avec l'accroissement de la température.

La fréquence des chocs efficaces augmente donc avec la température et la concentration, ce qui explique l'augmentation de vitesse de réaction.

On peut aussi en déduire que les réactions sont plus rapides entre deux réactifs en phase liquide qu'entre un réactif en phase liquide et un solide car la fréquence des chocs est alors réduite à la surface de contact entre le solide et le liquide. Par contre augmenter la surface de contact avec le solide en le broyant permet d'augmenter la vitesse de la réaction.

4. Autocatalyse

Une réaction chimique catalysée par l'un de ses produits est dite autocatalytique. Ce type de réaction est appelée autocatalyse.

La réaction entre les ions MnO₄ et H₂C₂O₄ est catalysée par les ions Mn²⁺ dont l'équation bilan est la suivante:

$$2MnO_4^- + 6H_3O^+ + 5H_2C_2O_4 \rightarrow 2Mn^{2+} + 10CO_2 + 14H_2O$$

pH d'une solution aqueuse – Autoprotolyse de l'eau – Produit ionique - Indicateurs colorés

I. PH D'UNE SOLUTION AQUEUSE

1. Définition:

Le pH (potentiel d'hydrogène) d'une solution aqueuse est l'opposé du logarithme décimal de sa concentration en ion hydronium H_3O^+ exprimée en mol.L⁻¹.

$$pH = -\log[H_3O^+]$$

Cette relation est équivalente à $[H_3O^+] = 10^{-pH}$ et est valable pour: 10^{-6} mol/L $\leq [H_3O^+] \leq 10^{-1}$ mol/L

2. <u>Propriétés mathématiques de la fonction log</u>

$$\log(a^n) = n \cdot \log(a); \log(a \times b) = \log(a) + \log(b); \log\left(\frac{a}{b}\right) = \log(a) - \log(b)$$

3. Mesure de pH

On mesure le pH d'une solution à l'aide d'un papier pH (mesure imprécise) ou d'un pH-mètre (mesure précise).

Remarque: la valeur du pH doit être exprimée en 1/100 près.

4. pH et concentration

Soient deux solutions aqueuses notées S_1 et S_2 tel que $[H_3O^+]_1 > [H_3O^+]_2 \Rightarrow log[H_3O^+]_1 > log[H_3O^+]_2$ car la fonction log est croissante.

$$-\log[H_3O^+]_1 < -\log[H_3O^+]_2 \Rightarrow pH(S_1) < pH(S_2)$$

Le pH d'une solution est d'autant plus faible que sa concentration en ion H_3O^+ est élevée.

Application:

- 1) Calculer le pH d'une solution d'acide chlorhydrique de concentration C=4,6.10⁻³ mol/L
- 2) L'étiquette d'une eau minérale gazeuse indique pH=6,5. En déduire la concentration des ions H_3O^+ de cette eau.

Résolution: 1) pH=-log[
$$H_3O^+$$
]=-log4,5.10⁻³=2.35; 2) [H_3O^+]=10^{-pH}=10^{-6,5} \approx 3,2.10⁻⁷ mol/L.

II. <u>Eau pure</u>

1. pH de l'eau pure

A 25°C le pH de l'eau pure est égale à 7. L'eau pure contient donc des ions H_3O^+ tel que $[H_3O^+]=10^{-7}$ mol/L.

2. Autoprotolyse de l'eau

La présence dans l'eau des ions H₃O⁺ résulte de l'ionisation partielle de l'eau selon l'équation:

$$H_2O + H_2O \implies OH^- + H_3O^+$$
 $2H_2O \implies OH^- + H_3O^+$

Cette réaction est limitée et connue sous le nom d'autoprotolyse de l'eau. Dans l'eau pure à 25°C: $[H_3O^+]=[OH^-]=10^{-7}$ mol/L.

3. <u>Produit ionique</u>

- toute solution aqueuse contient, entre autres, des ions hydronium H₃O⁺ et des ions hydroxyde OH⁻
- A une température donnée, le produit des concentrations des ions H₃O⁺ et des ions OH⁻ est constant. Ce produit, appelé *produit ionique* est noté Ke et ne dépend que de la température. Il est indépendant de la présence et de la nature des substances dissoutes.

$$Ke=[H_3O^{\dagger}][OH^{-}]$$
 où $[H_3O^{\dagger}]$ et $[OH^{-}]$ sont exprimées en mol/L.

- On définit aussi le pKe=-logKe ou Ke=10^{-pKe}

t(°C)				
25°C	25°C Ke=[H ₃ O ⁺][OH ⁻]=10 ⁻⁷ ×10 ⁻⁷ =10 ⁻¹⁴			
40°C	40°C 2,95.10 ⁻¹⁴			
100°	55.10 ⁻¹⁴	12.26		
Rmq: ke augmente avec la température				

III. CARACTERE ACIDE. BASIOUE OU NEUTRE D'UNE SOLUTION AOUEUSE

1. Solution neutre

Une solution aqueuse est neutre si elle contient autant d'ions H₃O⁺ que d'ion OH⁻.

$$[H_3O^+]=[OH^-] \Rightarrow Ke=[H_3O^+][OH^-] \Rightarrow [OH^-] = \frac{ke}{[H_3O^+]} \Rightarrow Ke = [H_3O^+]^2$$

$$-log[H_3O^+]^2 = -logKe \Rightarrow 2log[H_3O^+] = -logKe \Rightarrow 2pH = pKe \Rightarrow \boxed{pH = \frac{1}{2}pKe}$$

A 25°C
$$pH_{neutre} = \frac{1}{2}pKe = \frac{1}{2} \times 14 = 7$$

<u>http://physiquechimie.sharepoint.com</u> / Serigne Abdou Wahab Diop – Lycée Limamou Laye

pH d'une solution aqueuse -Autoprotolyse de l'eau - Produit ionique - Indicateurs colorés

A 100°C (pke=12,26)
$$pH_{neutre} = \frac{1}{2}pKe = \frac{1}{2} \times 12,26 = 6,13$$

2. Solution acide

Une solution aqueuse est acide si elle contient plus d'ions H₃O⁺ que d'ions OH⁻.

$$[\mathsf{H}_3\mathsf{O}^+] > [\mathsf{OH}^-] \Rightarrow [\mathsf{H}_3\mathsf{O}^+] > \frac{\mathit{Ke}}{[\mathsf{H}_3\mathsf{O}^+]} \Rightarrow [\mathsf{H}_3\mathsf{O}^+]^2 > \mathsf{Ke} \Rightarrow -\log[\mathsf{H}_3\mathsf{O}^+]^2 < -\log\mathsf{Ke} \Rightarrow 2\mathit{pH} < \mathit{pKe}$$

$$\boxed{\mathit{pH} < \frac{1}{2}\mathit{pKe}}$$

A 100°C une solution acide à un pH < 6,13

3. Solution basique

Une solution est basique si elle contient plus d'ions OH que d'ions H₃O⁺

$$[\mathsf{H}_3\mathsf{O}^*] < [\mathsf{OH}^-] \Rightarrow [H_3\mathsf{O}^+] < \frac{\mathit{Ke}}{[H_3\mathsf{O}^+]} \Rightarrow [H_3\mathsf{O}^+]^2 < \mathsf{Ke} \Rightarrow -\log[H_3\mathsf{O}^+]^2 > -\log\mathsf{Ke} \Rightarrow 2\mathit{pH} > \mathit{pKe}$$

$$\boxed{\mathit{pH} > \frac{1}{2}\mathit{pKe}}$$

A 60°C (pKe=13,02): une solution basique a un pH>6,51

Acide Neutre Basique

0
$$[H_3O^+]>[OH^-]$$
 1/2 pKe $[H_3O^+]<[OH^-]$ pKe

$$[H_3O^+]=[OH^-]$$

4. Relation entre pH et [OH-]

■ du pH à la [OH⁻]

$$[OH^{-}] = \frac{Ke}{[H_{3}O^{+}]} = \frac{10^{-pKe}}{10^{-pH}} = 10^{-pKe+pH} \Rightarrow \boxed{[OH^{-}] = 10^{-pKe+pH}}$$

de la [OH⁻] au pH

$$\rho H = -\log[H_3O^+] \Rightarrow pH = -\log\left(\frac{\kappa e}{[oH^-]}\right) \Rightarrow \rho H = \log\kappa e + \log[HO^-] = \rho\kappa e + \log[HO^-]$$
$$\rho H = \rho\kappa e + \log[OH^-]$$

Application: Compléter le tableau suivant à 25°C (il s'agit de trouver les valeurs en rouge)

[H₃O [†]]	[HO ⁻]	рΗ	
4.10 ⁻¹⁰	2,5.10 ⁻⁵	9,4	
2,2.10 ⁻¹³	4,5.10 ⁻²	12,65	
6,2.10 ⁻⁹	1,6.10 ⁻⁶	8,21	

5. <u>Électroneutralité</u>

Une solution étant électriquement neutre, le nombre de charge positive doit être égal au nombre de charge négative. En d'autre terme, on a:

$$\sum q^{\{-\}}[cation]_i = \sum q^{\{+\}}[anion]_i$$

<u>Exemple</u>: soit une solution aqueuse de Na₂SO₄. Les espèces chimiques présentes sont : Na⁺, H₃O⁺, SO₄²⁻, HO⁻. L'équation d'électroneutralité s'écrit sous la forme: $[Na^+]+[H_3O^+]=2[SO_4^{2-}]+[HO^-]$

IV. INDICATEURS COLORES

1. Définition

Un indicateur coloré est une substance qui en solution aqueuse change de couleur pour un intervalle de pH appelé *zone de virage*.

2. Zone de virage des principaux indicateurs colorés

Principaux indicateurs colorés	Teinte acide	Zone de virage	Teinte basique
Vert de malachite (1 ^e vir.)	Jaune	0,1 – 2,0	Vert
Hélianthine	Rouge	3,1 – 4,4	Jaune
Bleu de bromophénol	Jaune	3,0 – 4,6	Bleu
Vert de bromocrésol	Jaune	3,8 – 5,4	Bleu
Rouge de méthyle	Rouge	4,2 – 6,2	Jaune
Bleu de bromothymol	Jaune	6,0 – 7,6	Bleu
Rouge de crésol	Jaune	7,2 – 8,8	Rouge
Phénolphtaléïne	Incolore	8,2 – 10,0	Rose
Vert de malachite (2 ^e vir.)	Vert	11,5 – 13,2	incolore
Carmin d'indigo (2 ^e vir.)	bleu	11,6 – 14,0	Jaune

<u>http://physiquechimie.sharepoint.com</u> / Serigne Abdou Wahab Diop – Lycée Limamou Laye

Acide fort – base forte – Réaction acide fort base forte – Dosage

I. SOLUTION D'ACIDES FORTS

1. <u>Un acide fort: l'acide chlorhydrique</u>

L'acide chlorhydrique est une solution aqueuse de HCℓ qui colore en jaune le bleu de bromothymol : il est acide.

La dissolution du chlorure d'hydrogène dans l'eau est une réaction totale: HC ℓ s'ionise totalement dans l'eau en donnant, entre autres, des ions H_3O^+ ; on dit pour cela que l'acide chlorhydrique est un acide fort.

$$HC\ell+H_2O \rightarrow H_3O^+ + C\ell^-$$

2. <u>Généralisation: notion d'acide fort</u>

Un acide fort est une espèce chimique qui s'ionise totalement dans l'eau pour donner, entre autres, des ions hydronium H_3O^+ .

Exemples:

$$HNO_3 + H_2O \rightarrow H_3O^+ + NO_3^ HBr + H_2O \rightarrow H_3O^+ + Br^-$$

3. <u>pH d'une solution d'acide fort</u>

Soit une solution d'acide fort AH de concentration C: AH + $H_2O \rightarrow A^- + H_3O^+$

$$pH = -log[H_3O^+]$$
 or d'après l'équation d'ionisation $[H_3O^+] = C$ d'où $pH = -logC$

Cette relation est valable dans le domaine de concentrations suivant: $1.10^{-6} \leqslant \textit{C} \leqslant 5.10^{-2} \, \text{mol/L}$

REMARQUE: pour un diacide tel que H_2SO_4 de concentration C, on a: $[H_3O^+] = 2C$ d'après l'équation d'ionisation: $H_2SO_4 + 2H_2O \rightarrow 2H_3O^+ + SO_4^{2-}$

Ainsi pour un diacide: $pH = -\log 2C$

4. <u>Dilution d'un acide fort</u>

Soit une solution S_1 d'acide fort de volume v_1 et de $pH = pH_1$. Diluons n fois la solution: on obtient une solution fille S_2 de volume $v_2 = n \times v_1$, n est le facteur de dilution.

Au cours d'une dilution le nombre de moles se conserve : $C_1v_1 = C_2v_2$

$$\Rightarrow c_2 = \frac{v_1}{v_2} c_1 = \frac{v_1}{n v_1} c_1 = \frac{c_1}{n} \text{ d'où } c_2 = \frac{c_1}{n}$$

$$\Rightarrow pH_2 = -\log C_2 = -\log \left(\frac{C_1}{n}\right) = -\log C_1 + \log n = pH_1 + \log n \Rightarrow \boxed{pH_2 = pH_1 + \log n}$$

<u>Conclusion</u>: lorsqu'on dilue n fois une solution d'acide fort AH de concentration C (telle que $\frac{C}{n} \ge 10^{-6} \text{M}$), la concentration des ions H_3O^+ et A^- est divisée par n et le pH augmente de $\log n$.

II. SOLUTION DE BASE FORTE

1. <u>Une base forte: l'hydroxyde de sodium</u>

La dissolution de l'hydroxyde de sodium dans l'eau est une réaction totale. L'équation bilan s'écrit:

$$NaOH_{solide} \rightarrow Na^+ + OH^-$$

La solution obtenue, appelée soude fait virer au bleu le BBT: elle est basique. La dissociation est totale, on dit que l'hydroxyde de sodium est une base forte.

2. <u>Généralisation: notion de base forte</u>

Une base forte est une espèce chimique qui se dissocie totalement dans l'eau pour donner, entre autres des ions hydroxydes HO⁻.

Exemples:

$$KOH \rightarrow K^{+} + OH^{-}$$

$$C_2H_5O^- + H_2O \rightarrow C_2H_5OH + OH^-$$
 noter: $C_2H_5O^-$ (ion éthanolate)

3. pH de solution basique

Soit une solution de base forte B de concentration C: B + $H_2O \rightarrow BH + OH^-$

D'après l'équation $[B] = [OH^-] = C$ d'où $pH = pKe + \log C$ avec 1.10^{-6} $M \le C \le 5.10^{-2}$ M

$$pH = pKe + \log C$$

Remarque: pour une dibase telle que l'hydroxyde de calcium Ca(OH)₂ de concentration C.

$$pH = pKe + \log_2 C$$

4. Dilution de bases fortes

Soit une solution S_1 de base forte, de volume v_1 , de concentration C_1 et de $pH = pH_1$. Diluons n fois cette solution. Soit S_2 la solution fille obtenu de volume $v_2 = n \times v_1$.

$$n_1 = n_2 \Rightarrow C_1 v_1 = C_2 v_2 \Rightarrow C_2 = \frac{v_1}{v_2} C_1 = \frac{v_1}{n v_1} C_1 = \frac{C_1}{n} \Rightarrow \boxed{C_2 = \frac{C_1}{n}}$$

http://physiquechimie.sharepoint.com | Serigne Abdou Wahab Diop - Lycée Limamou Laye

$$pH_2 = pKe + \log C_2 = pKe + \log \frac{C_1}{n} = pKe + \log C_1 - \log n = pH_1 - \log n$$

$$pH_2 = pH_1 - \log n$$

Conclusion: lorsqu'on dilue n fois une solution de base forte de concentration C (telle que $\frac{C}{n} \ge 10^{-6}$ M), la concentration des ions hydroxyde OH^- est divisée par n et le pH diminue de $\log n$.

III. REACTION ENTRE UN ACIDE FORT ET UNE BASE FORTE

1. Équation de la réaction

Un acide fort et une base forte réagissent par une réaction chimique rapide et exothermique. L'équation bilan de la réaction qui se produit est : $H_3O^+ + OH^- \rightarrow 2H_2O$

Exemple: réaction entre l'acide chlorhydrique et l'hydroxyde de sodium

$$(H_3O^+, C\ell^-) + (Na^+, OH^-) \rightarrow 2 H_2O + (Na^+, C\ell^-)$$

En simplifiant les ions spectateurs Na^+ et Cl^- : on obtient: $H_3O^+ + OH^- \rightarrow 2H_2O$. Cette réaction est un transfert de protons des ions H_3O^+ vers les ions OH^- .

2. <u>Étude pH métrique d'une réaction acide</u> a) <u>Dispositif expérimental</u>

Le montage pour effectuer le dosage est schématisé ci-dessous.

On ajoute V_B (mL) d'une solution de soude de concentration C_B = 2.10⁻² mol/L à 10 mL d'une solution d'acide chlorhydrique de concentration inconnue Ca. En relevant le pH après chaque ajout, on obtient les résultats suivants:

V _B	0	1	2	3	4	5	6	6.5
рН	1.80	1.90	2.05	2.15	2.30	2.5	2.70	2.90

V _B	7	7.5	8	8.5	9	10	11	12
рН	3.25	6.95	10.75	11.05	11.2	11.4	11.5	11.60

b) Graphe $pH=f(v_B)$

Le tracé de la courbe correspondant au tableau ci-dessus donne la représentation suivante.

c) Principales caractéristiques du graphe pH = $f(v_B)$

La courbe est croissante ; elle présente 3 parties distinctes :

- Partie AB: la courbe est presque rectiligne et le pH varie peu lors de l'addition de base
- <u>Partie BC</u>: nous observons un *saut de pH* et la courbe change de concavité (présence d'un point d'inflexion)
- Partie CD: le pH varie ensuite faiblement, la courbe tend vers une asymptote horizontale

d) Point d'équivalence

Définition

Il y a équivalence lorsque les réactifs sont mélangés dans les proportions stœchiométriques de la réaction du dosage.

A l'équivalence n(OH⁻)_{ajoutés à l'équivalence} = n(H₃O⁺)_{initialement présents}

<u>http://physiquechimie.sharepoint.com</u> | Serigne Abdou Wahab Diop - Lycée Limamou Laye

$$\Rightarrow$$
 $C_A V_A = C_B V_{BE}$

V_{BE} est le volume de base versé à l'équivalence

♣ pH à l'équivalence

A l'équivalence:
$$n(H_3O^+)_{initial} = n(OH^-)_{ai}$$
.

La réaction s'effectue mole à mole: $n(H_3O^+)_{réagit} = n(OH^-)_{réagit}$

$$n(H_3O^+)_{initial} - n(H_3O^+)_{r\acute{e}agit} = n(OH^-)_{r\acute{e}agit}$$

$$n(H_3O^+)_{restant} = n(OH^-)_{restant}$$

Par suite $[H_3O^{\dagger}]_E = [OH^{\dagger}]_E$. La solution est donc neutre son pH vaut 7 à 25°C.

Détermination du point équivalent

Le point équivalent E est le point de la courbe $pH = f(V_B)$ tel que $V_B = V_{BE}$. Le point d'inflexion correspondant au point d'équivalent. On le détermine par la méthode des tangentes.

- On trace deux tangentes à la courbe, parallèles entre elles et situées de part et d'autres du point équivalent.
- On trace ensuite la parallèle à ces deux tangentes, équidistantes de celles-ci. Son point d'intersection avec la courbe détermine le point équivalent E.

On trouve sur la courbe: $pH_E = 7$ et $V_{BE} = 7,86$ mL

On peut ainsi calculer la concentration de la solution d'acide chlorhydrique dosée:

$$C_A = C_B \frac{V_{BE}}{V_A} = \frac{0.02 \times 7.86}{10} = 1.5.10^{-2} \, mol L^{-1}$$

Influence de la concentration

Recommençons l'expérience en faisant modifiant à chaque fois la concentration de l'acide chlorhydrique (C_A , $\frac{C_A}{10}$ et $\frac{C_A}{100}$).

Afin de comparer les différents résultats obtenus, traçons, sur un même graphe, les trois courbes $pH = f(V_B)$

L'observation des courbes ci-dessus montre que:

- à l'équivalence, le pH est toujours égal à 7,0;
- le saut de pH et la pente de la courbe $pH = f(V_B)$ diminue autour du point équivalent E lorsque les concentrations des solutions utilisées diminuent.

<u>http://physiquechimie.sharepoint.com</u> | Serigne Abdou Wahab Diop - Lycée Limamou Laye

- L'ajout d'eau distillée à la solution à doser ne modifie ni le volume équivalent V_E , ni le pH à l'équivalence: $pH_E = 7$. Il a simplement pour but de faciliter l'agitation du mélange et de favoriser l'immersion des électrodes du pH-mètre.
- ♣ Ajout d'une solution d'acide fort à une solution de base forte

Étudions de même l'évolution du pH d'une solution de base forte à laquelle on ajoute une solution d'acide fort. ($C_A = C_B = 0,1 \text{ mo/L}^{-1}$; $V_B = 10 \text{ mL}$)

L'équivalence, encore obtenue pour pH = 7, est telle que: $n(OH^-)_{int} = n(H_3O^+)_{aj} \Rightarrow C_BV_B = C_AV_A$ Les conséquences de la dilution sont les mêmes que celles observées ci-dessus.

Acide faible - Base faible - Couples acide/base

I. EXEMPLE D'UN ACIDE FAIBLE: L'ACIDE ETHANOÏOUE

1. <u>Ionisation de l'acide acétique</u>

a) Conductibilité

L'acide éthanoïque pur CH₃COOH ne conduit pas le courant électrique: il n'est pas alors ionisé.

La solution aqueuse d'acide acétique conduit le courant électrique: elle contient des ions. Ces ions proviennent de son ionisation dans l'eau selon l'équation:

$$H_3C - C + H_2O \longrightarrow H_3C - C + H_3O^+$$

b) Ionisation partielle de l'acide acétique.

Considérons une solution d'acide éthanoïque de concentration C=10⁻² mol/L à 25°C, son pH mesuré donne 3,4. Exploitons ces valeurs.

- *pH* < 7: la solution est acide.
- $[H_3O^+] = 10^{-pH} = 10^{-3.4} = 4.10^{-4} \text{ mol/L} \Rightarrow [H_3O^+] < C \Rightarrow \text{ ionisation partielle: l'acide acétique est un acide faible.}$
- Si la réaction était totale, nous aurions [H₃O⁺] = C et pH = 2.
 - c) <u>Conclusion</u>

Dans une solution d'acide éthanoïque de concentration C:

- $[H_3O^{\dagger}]$ <C ce qui équivaut à $pH > -\log C$
- L'acide acétique se dissocie partiellement: c'est un acide faible.
 - d) Degré d'ionisation ou taux d'avancement final:

Considérons l'ionisation de n_o mol d'acide acétique et dressons le tableau d'avancement de la réaction.

$$H_3C - C + H_2O \implies H_3C - C + H_3O^{\dagger}$$
A la date t=0
$$n_0 \qquad 0 \qquad 0$$
A la date t
$$n_0 - x \qquad x \qquad x$$

<u>http://physiquechimie.sharepoint.com</u> | Serigne Abdou Wahab Diop - Lycée Limamou Laye

Le coefficient d'ionisation α est défini par la relation $\alpha = \frac{x}{n_0}$ avec x (nombre de mol dissocié ou

avancement) et n_0 le nombre de mole initial. Cette relation est équivalente d'après l'équation à:

$$\alpha = \frac{[H_3O^+]}{C} = \frac{[CH_3COO^-]}{C}$$

<u>Remarque</u>: la dilution favorise la dissociation de l'acide acétique: le coefficient d'ionisation augmente lorsque la dilution augmente.

2. <u>Concentration des espèces</u>

A 25°C une solution d'acide acétique de C=10⁻² mol/L a un pH=3,4. Calculons la concentration de l'ensemble des espèces chimiques présentes dans la solution.

Espèces chimiques présentes: CH₃COOH, CH₃COO⁻, H₃O⁺ et HO⁻

- $[H_3O^+]=10^{-pH}=10^{-3,4}=4.10^{-4} \text{ mol/L}$
- $[HO^{-}] = 10^{(pH-pKe)} = 10^{(3,4-14)} = 2,5.10^{-11} \text{ mol/L}$
- L'électroneutralité: $[CH_3COO^-] + [HO^-] = [H_3O^+] \Rightarrow [CH_3COO^-] = [H_3O^+] [HO^-] \Rightarrow [CH_3COO^-] = 4.10^{-4} 2,5.10^{-11} = 4.10^{-4} \text{ mol/L}$
- Conservation de la matière: C= [CH₃COOH] + [CH₃COO $^{-}$] \Rightarrow [CH₃COOH] = C - [CH₃COO $^{-}$] = 10^{-2} – 4.10^{-4} mol/L = $9,6.10^{-3}$ mol/L
- On peut remarquer le taux d'ionisation est $\alpha = \frac{[H_3O^+]}{C} = \frac{4.10^{-4}}{10^{-2}} = 0.04 \approx 4\%$ (ionisation partielle)

3. <u>Généralisation</u>

Un acide est faible en solution aqueuse si sa réaction avec l'eau est limitée ; ce qui est équivalent à $[H_3O^+]$ < C ou $pH > -\log C$.

Exemple: les acides carboxyliques sont des acides faibles.

II. <u>Exemple de base faible: L'ammoniac</u>

1. Ionisation de l'ammoniac dans l'eau

Soit une solution aqueuse de NH_3 de concentration $C=10^{-1}$ mol/L, à 25°C. La mesure du pH donne 11,1 au lieu de 13 (valeur du pH si l'ammoniac s'était totalement dissocié).

- $pH > 7 \Rightarrow$ la solution d'ammoniac est basique
- $[HO^{-}] = 10^{11,1-14} = 10^{-2,9} = 1,26.10^{-3} < 10^{-1} \Rightarrow [HO^{-}] < C$: la dissociation est partielle: c'est une base faible.
- $[HO^{-}] < C \Rightarrow \log[HO^{-}] < \log C \Rightarrow pKe + \log[HO^{-}] < pKe + \log C$

$$\Rightarrow \qquad \boxed{PH < pKe + \log C}$$

Pour une base faible: $[HO^{-}] < C$ ce qui est équivalent à $pH < pKe + \log C$

L'ionisation de l'ammoniac dans l'eau est partielle: c'est un équilibre chimique suivant l'équation:

$$NH_3 + H_2O \hookrightarrow NH_4^+ + OH^-$$

2. <u>Calcul des concentrations</u>

Considérons une solution d'ammoniac de concentration C=0,1 mol/L et de pH=11,1 à 25°C. Calculons la concentration de l'ensemble des espèces présentes dans la solution.

Espèces chimiques présentes: NH₃, NH₄⁺, H₃O⁺ et HO⁻

- $[H_3O^+]=10^{-pH}=10^{-11,1}=7,9.10^{-12} \text{ mol/L}$
- $[HO^{-}] = 10^{(pH-pKe)} = 10^{(11,1-14)} = 1,26.10^{-3} \text{ mol/L}$
- L'électroneutralité: $[NH_4^+] + [H_3O^+] = [HO^-] \Rightarrow [NH_4^+] = [HO^-] [H_3O^+] \Rightarrow [NH_4^+] = 1,26.10^{-3} 7,9.10^{-12} = 1,26.10^{-3} \text{ mol/L}$
- Conservation de la matière: C= [NH₃] + [NH₄⁺]

$$\Rightarrow$$
 [NH₃]_{restante} = C - [NH₄⁺] = 10^{-1} - 1,26. 10^{-3} mol/L = 9,87. 10^{-2} mol/L

On peut remarquer le taux d'ionisation est $\alpha = \frac{[NH_4^+]}{C} = \frac{1,26.10^{-3}}{10^{-1}} \approx 1,26 \%$ (ionisation partielle)

3. <u>Généralisation</u>

Une base est faible en solution aqueuse si sa réaction avec l'eau est limitée ; ce qui équivaut à $[OH^-]< C$ ou pH< pKe+ log C

Exemples: les carboxylates et les amines son des bases faibles.

$$H_3C-COO- + H_2O \longrightarrow H_3C-COOH + HO^-$$

$$H_5C_6-NH_2 + H_2O \implies H_5C_6-NH_3^+ + HO$$

III. COUPLE ACIDE BASE

1. Acide base selon Bronsted

Un acide est une substance chimique (molécule ou ion) capable de libérer un ou plusieurs protons.

Exemples:

$$H_3C$$
—COOH \longrightarrow H^+ $+$ H_3C —COO-
 NH_4^+ \longrightarrow H^+ $+$ NH_3

Une base est une substance chimique (molécule ou ion) capable de capter un ou plusieurs protons.

<u>http://physiquechimie.sharepoint.com</u> | Serigne Abdou Wahab Diop - Lycée Limamou Laye

$$H_3C$$
— COO - $+$ H ⁺ \longrightarrow H_3C — $COOH$

2. <u>Couple acide base</u>

Dans une solution aqueuse d'acide éthanoïque ou d'éthanoate de sodium, les ions éthanoates et les molécules d'acide éthanoïque sont en équilibre chimique selon l'équation :

$$CH_3$$
-COOH + $H_2O \leftrightarrows CH_3$ -COO $^-$ + H_3O^+

En éliminant une molécule d'eau, on obtient : CH₃COOH ≒ CH₃COO + H +

L'acide éthanoïque et l'ion éthanoate constituent un couple acide/base : CH₃-COOH/CH₃-COO

CH₃-COOH est l'acide conjugué de la base CH₃-COO CH₃-COO est la base conjuguée de l'acide CH₃-COOH

3. Généralisation.

Lorsqu'un acide et sa base conjuguée sont en équilibre dans l'eau, ils forment un couple acide/base.

Acide
$$\leftrightarrows$$
 Base + H⁺; Acide/Base
 $NH_4^+ \leftrightarrows NH_3 + H^+$; NH_4^+/NH_3
 $NO_2^- + H^+ \leftrightarrows HNO_2$; HNO_2/NO_2^-

4. <u>Couples de l'eau</u>

L'ion H_3O^+ est un acide car il peut libérer un proton selon l'équation : $H_3O^+ \hookrightarrow H^+ + H_2O$ où l'on associe le couple H_3O^+/H_2O . Dans ce couple l'eau se comporte comme une base.

L'ion OH⁻ est une base, il peut capter un proton selon l'équation : OH⁻ + H⁺ \leftrightarrows H₂O associée au couple H₂O/OH⁻. Dans ce couple l'eau se comporte comme un acide.

L'eau est la base du couple H_3O^+/H_2O et l'acide du couple H_2O/OH^- : l'eau est une espèce amphotère ou ampholyte.

5. <u>Cas des acides forts et bases fortes</u>

- ♣ HCl se dissocie totalement dans l'eau : c'est un acide fort. HCl → H⁺ + Cl⁻ (couple HCl/Cl⁻).

 L'ion Cl⁻ est la base conjuguée de HCl, il ne réagit pas avec l'eau : on dit que c'est une base indifférente à l'eau.
- La soude est une base qui se dissocie totalement dans l'eau : c'est une base forte.

 NaOH ——→ Na⁺ + OH⁻ (couple Na⁺/NaOH). L'ion Na⁺ est l'acide conjugué de NaOH. Il ne réagit pas avec l'eau : c'est un acide indifférent à l'eau.

Serigne Abdou Wahab Diop – Lycée Limamou Laye | http://physiquechimie.sharepoint.com

IV. REACTION ACIDE BASE

Exemple 1 : réaction entre l'acide chlorhydrique et l'ammoniac.

$$HCI \rightarrow H^+ + CI^ NH_3 + H^+ \leftrightarrows NH_4^+$$
 $HCI + NH_3 \rightarrow CI^- + NH_4^+$

Exemple 2 : dissociation de l'acide éthanoïque

$$CH_{3}COOH \leftrightarrows H^{+} + CH_{3}COO^{-}$$

$$H_{2}O + H^{+} \leftrightarrows H_{3}O^{+}$$

$$CH_{3}COOH + H_{2}O \leftrightarrows CH_{3}COO^{-} + H_{3}O^{+}$$

Conclusion : une réaction acide base est un transfert de proton de l'acide vers la base

Constante d'acidité - Classification des couples acide/base

I. CONSTANTE DE REACTION

1. Réactions limitées

Soit la réaction suivante: $R_1 + R_2 \leftrightarrows P_1 + P_2$. Les concentrations des quatre corps en équilibre sont liées par une constante appelée constante de réaction, quotient de réaction ou constante d'équilibre notée Q ou K.

$$Q = K = \frac{[P_1][P_2]}{[R_1][R_2]}$$

Remarque : cette constante ne dépend que de la température

2. <u>Cas particuliers des réactions en solution aqueuse</u>

Lorsque l'un des réactifs ou des produits est en très grand excès par rapport aux autres (cas de l'eau dans les solutions diluées), on définit une constante de réaction K_r , dite constante réduite, pour laquelle ce constituant en excès ne figure pas.

Exemple : dissociation de l'acide acétique dans l'eau.

$$CH_3COOH + H_2O \leftrightarrows H_3O^+ + CH_3COO^-$$

$$K = \frac{[H_3O^+][\mathsf{CH}_3COO]}{[H_2O][\mathsf{CH}_3COOH]} \Rightarrow K_r = \frac{[H_3O^+][\mathsf{CH}_3COO]}{[\mathsf{CH}_3COOH]} \text{ (sans unité)}$$

II. CONSTANTE D'ACIDITE D'UN COUPLE ACIDE/BASE

1. <u>Équilibre de dissociation d'un acide faible.</u>

Soit AH un acide faible du couple AH/A⁻. AH + $H_2O \hookrightarrow A^- + H_3O^+$

La constante de réaction, notée ici Ka est appelée constante d'acidité du couple AH/A-. Par

définition :
$$K_r = Ka = \frac{[A^-][H_3O^+]}{[AH]}$$

On définit aussi le pKa du couple AH/A selon la relation : $pka = -\log Ka$ ou $Ka = 10^{-pKa}$

Exemple: mise en solution de l'acide benzoïque

$$C_5H_6COOH + H_2O \leftrightarrows C_6H_5COO^- + H_3O^+$$

Serigne Abdou Wahab Diop – Lycée Limamou Laye | http://physiquechimie.sharepoint.com

$$Ka = \frac{[C_6 H_5 COO^-][H_3 O^+]}{[C_6 H_5 COOH]}$$

A 25°C,
$$Ka = 6.3.10^{-5}$$
 soit $pKa = 4.20$

2. <u>Équilibre de la protonation d'une base faible</u>

Soit A une base faible du couple AH/A. A se protonise partiellement dans l'eau selon l'équation :

$$A^- + H_2O \hookrightarrow AH + OH^-$$

$$K_{\Gamma} = \frac{[OH^{-}][AH]}{[A]}$$

Multiplions l'expression par $\frac{[H_3O^+]}{[H_3O^+]}$, on obtient :

$$K_r = \frac{[OH^-][AH]}{[A]} \times \frac{[H_3O^+]}{[H_3O^+]} = \frac{[AH]}{[A^-][H_3O^+]} \times [OH^-][H_3O^+] \Rightarrow \boxed{k_r = \frac{Ke}{Ka}}$$

La constante de protonation K_r est appelée constante de basicité notée K_B.

Exemple: $HN_3 + H_2O \hookrightarrow NH_4^+ + OH^-$

Pour le couple NH₄/NH₃ ;
$$\kappa a = 6.3.10^{-10}$$
 à 25°C $\Rightarrow \kappa_r = \frac{\kappa e}{\kappa a} = \frac{10^{-14}}{6.3.10^{-10}} = 1.6.10^{-5}$

3. Constante d'acidité

Un couple acide faible/ base faible noté AH/A⁻ est caractérisé par une seule constante, notée Ka appelée constante d'acidité et définit par :

$$Ka = \frac{[A^-][H_3O^+]}{[AH]}$$
 (valeurs des Ka et pKa à 25°C, voir fiche documents annexes)

4. Relation entre pH et le pK_A

$$-\log Ka = -\log \left(\frac{[A^{-}][H_3O^{+}]}{[AH]} \right) = -(\log([A^{-}][H_3O^{+}]) - \log[AH])$$

$$\Rightarrow pKa = -\log[A^{-}] - \log[H_3O^{+}] + \log[AH] \quad \Rightarrow pKa = pH - \log[A^{-}] + \log[AH]$$

$$\Rightarrow pKa = -\log[A^{-}] - \log[H_3O^{+}] + \log[AH] \quad \Rightarrow pKa = pH - \log[A^{-}] + \log[AH]$$

5. <u>Les couples H_3O^+/H_2O et H_2O/OH^- </u>

Les couples acide/base auxquels participe l'eau, peuvent également être caractérisés par une constante Ka, déduite des résultats suivants.

http://physiquechimie.sharepoint.com | Serigne Abdou Wahab Diop - Lycée Limamou Laye

$$H_3O^+ + H_2O = H_2O + H_3O^+$$
; $K_A = \frac{[H_3O^+]}{[H_3O^+]} = 1$

Pour le couple H_3O^+/H_2O : Ka = 1 et pKa = 0

$$H_2O + H_2O = OH^- + H_3O^+$$
; $K_A = [OH^-] \times [H_3O^+] = Ke = 10^{-14} 25^{\circ}C$

Pour le couple H_2O/OH^- : $Ka = 10^{-14}$ et pKa = 14 à 25°C.

↓ Pour tout couple acide faible/base faible : 0 ≤ pKa ≤ 14

L'ion hydronium H_3O^+ est l'acide le plus fort existant dans l'eau. En solution aqueuse, tous les acides forts sont plus forts que l'acide H_3O^+ .

L'ion hydroxyde OH⁻ est la base la plus forte existant dans l'eau. En solution aqueuse, toutes les bases fortes sont plus fortes que la base OH⁻.

III. CLASSIFICATION DES COUPLES ACIDE BASE

1. Force d'un acide faible

Un acide faible est d'autant plus fort qu'il cède plus facilement un proton H⁺. On peut utiliser deux méthodes pour comparer la force de deux acides faibles.

a) Comparaison des pH

Considérons à 25°C deux solutions S_1 d'acide formique, l'autre S_2 d'acide acétique, toutes deux de concentration $C=10^{-2}$ mol/L. Nous mesurons pour S_1 , pH $_1$ = 2,9 et pour S_2 , pH $_2$ = 3,4

- Dans S_1 : HCOOH + $H_2O \hookrightarrow$ HCOO⁻ + H_3O^+ [HCOO⁻]₁=[H_3O^+]₁= 10^{-pH} = $10^{-2,9}$ = 1,26. 10^{-3} mol/L

- Dans S_2 : $CH_3COOH + H_2O \hookrightarrow H_3O^+ + CH_3COO^-$

$$[CH_3COO^-]_2 = [H_3O^+]_2 = 10^{-pH} = 10^{-3,4} = 4.10^{-4} \text{ mol/L}$$

Nous constatons que $[H_3O^{\dagger}]_1 > [H_3O^{\dagger}]_2$ donc l'acide méthanoïque est le plus dissocié donc le plus fort.

<u>Conclusion</u>: pour comparer deux acides faibles, il suffit de comparer les pH des deux solutions de même concentration de ces acides: l'acide le plus fort est celui qui donne la solution dont le pH est plus faible.

b) Comparaison des constantes d'acidité

AH + H₂O
$$\stackrel{(1)}{=}$$
 A⁻ +H₃O⁺
(2)
$$Ka = \frac{[A^{-}][H_3O^{+}]}{[AH]}$$

Plus l'acide AH est fort, plus l'équilibre est déplacé dans le sens (2), plus les concentrations $[A^-]$ et $[H_3O^+]$ sont élevées et plus celle de [AH] est faible.

<u>Conclusion</u>: un acide faible est d'autant plus fort que sa constante d'acidité Ka est élevée donc son pKa est faible.

Exemple: acide méthanoïque ($Ka_1 = 1.8.10^{-4}$, soit p $Ka_1 = 3.8$) est plus fort que l'acide éthanoïque ($Ka_2 = 1.8.10^{-5}$, soit p $Ka_2 = 4.8$)

2. <u>Force d'une base faible</u>

a) Comparaison des pH

Pour deux bases faibles de même concentration, la plus forte est celle qui a la valeur de pH la plus élevée.

b) Comparaison des Ka

Pour deux bases faibles, la plus forte est celle qui a le Ka le plus faible, soit le pKa le plus élevé.

- 3. <u>Classification (voir fiche annexe)</u>
- 4. <u>Domaine de prédominance</u>
 - a) Cas général : diagramme de prédominance

<u>http://physiquechimie.sharepoint.com</u> / Serigne Abdou Wahab Diop – Lycée Limamou Laye

Lorsque des espèces acido-basiques conjuguées coexistent en solution, l'expression du pH s'écrit sous la forme : $pH = pKa + log\left(\frac{A^-}{A^-}\right)$. Une espèce chimique A est dite prédominante devant une espèce B dès que [A]>[B].

Pour pH<pKa, l'espèce acide prédomine dans la solution. L'intervalle de pH<pKa est le domaine de prédominance de l'espèce acide.

- Si pH>pKa
$$\Rightarrow \log\left(\frac{A^{-1}}{AH}\right)>0 \Rightarrow \frac{A^{-1}}{AH}>1 \Rightarrow A^{-1}>AH$$

Pour pH>pKa, la base A¯ est l'espèce prédominante. L'intervalle de pH>pKa est de domaine de prédominance de l'espèce A¯.

- Si pH=pKa
$$\Rightarrow \log \left(\frac{A^{-}}{AH} \right) = 0 \Rightarrow \frac{A^{-}}{AH} = 1 \Rightarrow A^{-} = AH$$

Pour pH=pKa, les deux espèces ont la même concentration molaire.

b) Application aux indicateurs colorés

Définition

Les indicateurs colorés sont constitués par des couples acides faibles/bases faibles dont les espèces conjuguées ont des teintes différentes.

Zone de virage et teinte sensible

Soient HInd et Ind⁻ les espèces acide et basique d'un indicateur coloré : HInd + $H_2O \hookrightarrow Ind^- + H_3O^+$, associée au pKa_i(HInd/Ind⁻).

La teinte d'un indicateur coloré en solution aqueuse dépend de l'espèce qui prédomine donc du pH de la solution.

$$pH = pKa_{j} + \log\left(\frac{[Ind^{-}]}{[HInd]}\right)$$

Serigne Abdou Wahab Diop – Lycée Limamou Laye | http://physiquechimie.sharepoint.com

Nous admettrons que l'indicateur prend sa teinte acide, c'est-à-dire celle de HInd si $\frac{[Hind]}{[Ind]} > 10$

$$\Rightarrow \left(\frac{\left[\mathit{Ind}^{-}\right]}{\left[\mathit{HInd}\right]}\right) < \frac{1}{10} \ \Rightarrow \ \log\left(\frac{\left[\mathit{Ind}^{-}\right]}{\left[\mathit{HInd}\right]}\right) < -1 \ \Rightarrow \ \boxed{\mathit{pH} < \mathit{pKa}_{i} - 1}$$

Pour $pH < pKa_i - 1$, l'indicateur prend sa teinte acide.

L'indicateur prend sa teinte basique, c'est-à-dire celle de Ind si $\left(\frac{[Ind]}{[HInd]}\right)$ >10

$$\Rightarrow \log \left(\frac{[Ind^{-}]}{[HInd]} \right) > 1 \Rightarrow [pH > pKa_{i} + 1].$$

Pour $pH > pKa_i + 1$, l'indicateur prend sa teinte basique.

Les conventions précédentes conduisent à définir un domaine de pH tel que :

$$\boxed{pKa_{i}-1 < pH < pKa_{i}+1}$$

Ce domaine de pH dans lequel l'indicateur coloré possède alors une teinte plus ou moins variable est appelé zone de virage. Cette teinte, dite sensible, est la superposition de teinte basique et de la teinte acide.

5. Diagramme de distribution

Soit une solution contenant l'acide du couple AH et sa base conjuguée A⁻. On définit les pourcentages de forme acide et de forme basique par %[AH] et %[A-] tels que :

$$%[AH] = \frac{[AH]}{[AH] + [A^{-}]} \times 100$$
 et $%[A^{-}] = \frac{[A^{-}]}{[AH] + [A^{-}]} \times 100$

$$%[A^{-}] = \frac{[A^{-}]}{[AH] + [A^{-}]} \times 100$$

Le pK_A du couple AH/A⁻ correspondant au pH lorsque les deux espèces ont mêmes concentrations, il est donc déterminé par le point d'intersection des courbes %[AH] et %[A-] en fonction du pH.

Ce diagramme permet de choisir correctement un indicateur coloré en fonction de la zone de pH dans laquelle on veut travailler.

<u>http://physiquechimie.sharepoint.com</u> | Serigne Abdou Wahab Diop - Lycée Limamou Laye

IV. REACTION ACIDO-BASIQUE

1. <u>Définition</u>

Soient les couples A_1/B_1 et A_2/B_2 . Mélangeons A_1 et B_2 , il y a transfert de H^+ de A_1 vers B_2 selon l'équation : $A_1 + B_2 \hookrightarrow B_1 + A_2$

$$K_r = \frac{[B_1][A_2]}{[A_1][B_2]}$$
 constante de la réaction.

$$K_r = \frac{\begin{bmatrix} B_1 \end{bmatrix} \begin{bmatrix} A_2 \end{bmatrix}}{\begin{bmatrix} A_1 \end{bmatrix} \begin{bmatrix} B_2 \end{bmatrix}} \times \frac{\begin{bmatrix} H_3 O^+ \end{bmatrix}}{\begin{bmatrix} H_3 O^+ \end{bmatrix}} = \frac{\begin{bmatrix} B_1 \end{bmatrix} \begin{bmatrix} H_3 O^+ \end{bmatrix}}{\begin{bmatrix} A_1 \end{bmatrix}} \times \frac{\begin{bmatrix} A_2 \end{bmatrix}}{\begin{bmatrix} B_2 \end{bmatrix} \begin{bmatrix} H_3 O^+ \end{bmatrix}} \implies K_r = Ka_1 \times \frac{1}{Ka_2}$$

$$K_r = \frac{Ka_1}{Ka_2}$$

 Ka_1 (Constante d'acidité du couple jouant le rôle d'acide) et Ka_2 (Constante d'acidité du couple jouant le rôle de base).

Si $K_r > 10^4$ la réaction est totale ou est dite quantitative

2. <u>Prévision des réactions acido-basiques</u>

Selon les valeurs des constantes d'acidité K_{A_1} et K_{A_2} des deux couples A_1/B_1 et A_2/B_2 , trois possibilités peuvent être envisagées.

- $K_{A_1} < K_{A_2}$ ou $pK_{A_1} > pK_{A_2}$: la constante d'équilibre de la réaction K est plus petite que 1. L'acide et la base ont des domaines de prédominance communs. La réaction est bloquée si $pK_{A_1} > pK_{A_2}$
- K_{A1} = K_{A2} ou pK_{A1} = pK_{A2}: la constante de réaction est égale à 1. Les deux formes acides et les deux formes basiques ont des domaines de prédominance égaux.
 La réaction acido-basique n'évolue pas.
- $K_{A_1} > K_{A_2}$ ou p $K_{A_1} <$ p K_{A_2} : la constante d'équilibre K est supérieure à 1. L'acide et la base ont des domaines de prédominance complètement disjoints. Ils réagissent donc ensemble et la réaction est considérée comme totale si K > 10^4 .

Réaction entre acide faible-base forte et vice versa – Effet tampon

I. REACTION ENTRE UN ACIDE FAIBLE ET UNE BASE FORTE

1. <u>Exemple de l'acide acétique et de la soude</u>

On a : $pKa(CH_3COOH/CH_3COO^-) = 4.8$ et $pKa(H_2O/OH^-) = 14$

L'équation de la réaction est : CH₃COOH + OH⁻ ¾ CH₃COO⁻ + H₂O. Évaluons la constante de la

réaction :
$$K_r = \frac{Ka(acide)}{Ka(base)} = \frac{10^{-4,8}}{10^{-14}} = 1,6.10^9$$

 $K_r > 10^4$ la réaction entre l'acide acétique et la soude est quantitative et l'équation de la réaction peut s'écrire sous la forme : CH₃COOH + OH⁻ \rightarrow CH₃COO⁻ + H₂O

Remarque: la réaction entre un acide faible et une base forte est toujours totale.

2. <u>Étude expérimentale de pH=f(V)</u>

Le dosage de V_A =20 mL d'une solution d'acide acétique de concentration C_A inconnue par une solution de soude à C_B = 10^{-2} mol/L permet de tracer le graphe pH=f(V_B) ci-dessous.

<u>http://physiquechimie.sharepoint.com</u> | Serigne Abdou Wahab Diop - Lycée Limamou Laye

3. Principales caractéristiques du graphe

La courbe $pH=f(V_B)$ est croissante et peut être décomposée en quatre parties :

- Une partie AB où le pH croit assez nettement.
- Une partie BC où le pH varie peu, la courbe étant quasi rectiligne.
- Une partie CD où l'on observe une variation brusque du pH moins importante que dans le cas d'un acide fort.
- Une partie DF où le pH varie faiblement et tend vers une asymptote horizontale.

Par ailleurs la courbe change deux fois de concavité : elle présente donc deux points d'inflexions. Étudions les propriétés de ces deux points d'inflexion.

4. Équivalence acido-basique

A l'équivalence la quantité de base versée est égale à celle de l'acide initialement présent.

$$n_{H_3O^+} = n_{HO^-} \Rightarrow C_A V_A = C_B V_{BE}$$

Dans l'exemple du cours :
$$C_A = C_B \frac{V_{BE}}{V_A} = 10^{-2} \text{ mol/L}$$

Remarque: On détermine les coordonnées du point équivalent par la méthode des tangentes.

pH_F = 8,2, à l'équivalence la solution est basique car on a une solution aqueuse d'acétate de sodium.

5. <u>Demi-équivalence acido-basique</u>

A la demi-équivalence correspond à $V_B = \frac{V_{BE}}{2}$.

Soit n_0 le nombre de mole de CH_3COOH initial et $n_i(OH^-)$ le nombre de mole de OH^- introduit à la demi-équivalence.

$$CH_3COOH + OH^- \rightarrow CH_3COO^- + H_2O$$

A la demi-équivalence :
$$n_{\text{CH}_3\text{COO}^-} = n_{\text{CH}_3\text{COOH}} - n_{\text{i}} \text{(OH}^-) = n_0 - \frac{n_0}{2} \ \Rightarrow \ n_{\text{CH}_3\text{COO}^-} = \frac{n_0}{2} \ .$$

Nous avons aussi à la 1/2 équivalence :

n
CH₃COOH, restant = n CH₃COOH, initial - n CH₃COO = n 0 - $\frac{^{n}$ 0 - $\frac{^{n}}{2}$ = $\frac{^{n}}{2}$

Donc à la demi-équivalence : $n_{CH_3COO^-} = n_{CH_3COOH}$ soit $[CH_3COO^-] = [CH_3COOH]$

D'où
$$pH = pKa + \log \left(\frac{\left[CH_3COO^{-} \right]}{\left[CH_3COOH \right]} \right) = pKa$$

Serigne Abdou Wahab Diop – Lycée Limamou Laye | http://physiquechimie.sharepoint.com

A la demi-équivalence pH=pKa

Dans le cas de l'exemple du cours : le pKa(CH₃COOH/CH₃COO $^{-}$) = 4,8

II. REACTION ENTRE ACIDE FORT ET BASE FAIBLE

On fera le résumé de cette partie de par ses ressemblances avec les réactions acide faible- base forte

Soit la réaction entre l'acide chlorhydrique et l'ammoniac : $NH_3 + H_3O^+ \subseteq NH_4^+ + H_2O^+$

$$K_r = \frac{Ka(acide)}{Ka(base)} = \frac{10^0}{6.3.10^{-10}} = 1,6.10^9$$

La réaction entre un acide fort et une base faible est toujours totale (quantitative).

A l'équivalence le pH est acide car on a une solution aqueuse de chlorure d'ammonium qui est acide.

III. <u>Effet tampon</u>

1. Définition de l'effet tampon

Un système en solution a un effet tampon lorsqu'une addition modérée d'acide, de base ou une dilution modérée, n'entraine pratiquement pas une variation de pH de cette solution.

2. Solutions tampons

Une solution tampon contient un acide faible et sa base conjuguée en concentration voisine : le pH d'une telle solution est voisin du pKa de ce couple.

<u>http://physiquechimie.sharepoint.com</u> | Serigne Abdou Wahab Diop - Lycée Limamou Laye

Les mélanges obtenus vers la demi-équivalence du dosage d'un acide faible par une base forte ou du dosage d'une base faible par un acide fort sont des solutions tamponnées.

IV. APPLICATIONS

1. <u>Application 1</u>

On dispose d'un volume V=20 mL d'une solution d'acide acétique et d'acétate de sodium, chacun à la concentration $C=10^{-2}$ mol/L.

On ajoute alors un volume $V_B=1~mL$ d'une solution d'hydroxyde de sodium à $C_B=10^{-2}~mol/L$.

- 1. Sachant que pKa(CH₃COOH/CH₃COO⁻)=4,8 ; déterminer le pH de la solution initiale.
- 2. Écrire l'équation bilan de la réaction qui se produit. Déterminer sa constante. Que peut-on en déduire ?
- 3. Le pH de la solution vaut 4,9. Vérifier le. Conclure.

<u>Solution</u>: 1) pH=pKa=4,8; 2) $CH_3COOH + OH^- \rightarrow CH_3COO^- + H_2O$; $K_r=1,6.10^9$ réaction totale 3) pH=4,9 (faire le tableau d'avancement)

2. Application 2

Soit une solution d'acide éthanoïque

- 1. Établir la relation qui lie α , C et Ka où α représente le coefficient d'ionisation, Ka la constante d'acidité et C la concentration molaire volumique.
- 2. Montrer que pour un acide faible, α étant négligeable devant 1, le pH de la solution peut s'écrire : $pH = \frac{1}{2} (pKa \log C)$. Calculer pH pour Ka=2.10⁻⁵ et C=2.10⁻¹ mol/L.
- 3. On mélange un volume V_1 =3L de la solution aqueuse d'acide éthanoïque de concentration C_1 =2.10⁻¹ mol/L avec V_2 = 2L de soude à C_2 = 2.10⁻¹ mol/L. Calculer le pH de la solution obtenue.

Solution : 1) $Ka=C\alpha^2/(1-\alpha)$ 2) $\alpha <<1 \Rightarrow Ka=C\alpha^2 \Rightarrow pH=1/2(pKa-logC)=2,69$ 3) pH=5

Les acides α-aminés : éléments de stéréochimie

I. **QUELQUES NOTIONS DE STEREOCHIMIE**

La stéréochimie étudie les positions relatives dans l'espace des atomes d'une molécule et les propriétés physico-chimiques qui en découlent.

1. **Rappels**

a) Géométrie de quelques molécules

Molécule de méthane : CH4

$$\widehat{HCH}$$
 =109°28'; d_{C-H} = 109 pm (1 pm = 10⁻¹²m)

Un carbone qui échange quatre liaisons covalentes simples est un carbone tétraédrique. La molécule de méthane est un tétraèdre.

CONVENTION PO	OUR LA REPRESENTATION EN PERSPECTIVE	H
	liaison dans le plan	
	liaison en avant du plan	c
	liaison en arrière du plan	H

Molécule d'éthylène : C2H4

Molécule d'acétylène : C₂H₂

н-с=с-н	la molécule est linéaire : d_{C-H} = 109 pm ; $d_{C=C}$ = 121 pm

http://physiquechimie.sharepoint.com | Serigne Abdou Wahab Diop - Lycée Limamou Laye

b) Conformation

La conformation est l'ensemble des positions relatives des atomes dans l'espace du fait de la rotation autour des axes de liaisons covalentes. On passe d'une conformation à une autre par une simple rotation autour des liaisons de covalence.

Exemple : représentation de Newman de la molécule d'éthane

2. <u>Carbone asymétrique</u>a) <u>Définition</u>

Un atome de carbone tétraédrique lié à quatre atomes ou groupe d'atomes différents est un carbone asymétrique. On le note C^* .

Exemple : le 1-bromo-1-chloroéthane.

b) Énantiomères:

Lorsqu'une molécule possède un C*, pour la représenter dans l'espace on peut construire deux molécules différentes car elles ne sont pas superposables. Ces deux molécules sont symétriques l'une de l'autre par rapport à un plan ; on dit aussi qu'elles sont images l'une de l'autre dans un miroir plan. Ces deux molécules sont appelées énantiomères ou énantiomorphes.

Serigne Abdou Wahab Diop – Lycée Limamou Laye | http://physiquechimie.sharepoint.com

c) Chiralité

Un objet non superposable à son image dans un miroir est dit chiral. Lorsque deux molécules sont des énantiomères chacune d'elles est chirale.

3. <u>Configuration</u>

La configuration d'une molécule possédant un carbone asymétrique (C^{*}) est déterminée par la façon dont sont disposés les 4 atomes ou groupes d'atomes liés au C^{*}.

La configuration est différente de la conformation ; en effet pour passer d'une configuration à une autre des rotations autour des liaisons covalentes ne suffisent pas. Il faut rompre des liaisons et échanger les dispositions des différents atomes liés au C^* .

4. Activité optique

a) Lumière polarisée

La lumière polarisée est obtenue en faisant passer de la lumière naturelle à travers un polarisateur (miroir). Un rayon de lumière polarisée est une onde électromagnétique qui se propage le long d'un rayon. En chaque point du rayon lumineux vibrent en phase un champ électrique \overrightarrow{E} et un champ magnétique \overrightarrow{B} (tels que $\overrightarrow{E} \perp \overrightarrow{B}$). Le plan formé par \overrightarrow{E} et \overrightarrow{B} est perpendiculaire à la direction de propagation. Le plan formé par \overrightarrow{E} et la direction de propagation du rayon lumineux est le plan de vibration.

http://physiquechimie.sharepoint.com | Serigne Abdou Wahab Diop - Lycée Limamou Laye

b) pouvoir rotatoire

Lorsqu'une substance qui est traversée par une lumière polarisée provoque une rotation du plan de vibration d'un angle α : on dit que cette substance est optiquement active ou qu'elle possède un pouvoir rotatoire.

Pour un observateur qui reçoit la lumière :

- s'il voit la rotation se faire vers la droite (sens des aiguilles d'une montre), la substance est dite dextrogyre (+).
- S'il voit la rotation se faire vers la gauche (sens trigonométrique) la substance est dite *lévogyre (-)*.
- Les énantiomères ont des activités optiques : l'un est (+) l'autre (-).

<u>Remarque</u> : un mélange équimolaire (50%) de chacun est optiquement inactif : c'est un mélange *racémique*.

II. LES ACIDES A-AMINES

1. <u>Définition</u>

Un acide α -aminé est un composé organique qui possède un groupe carboxylique –COOH et un groupe amino –NH₂ liés au même atome de carbone (position 2 ou α). Leur formule générale est :

Remarque : il existe des acides β-aminés, le groupe amino $-NH_2$ se trouve en position 3 ou β.

2. Nomenclature

Les acides α -aminés dérivent des acides carboxyliques par remplacement d'un atome d'hydrogène de la chaine carbonée par un groupe $-NH_2$, ainsi le groupe carboxylique est désigné par la terminaison « oïque » et le groupe $-NH_2$ par le préfixe « amino ».

Exemples:

$$H_2N$$
— CH_2 — $COOH$ H_3C — CH — CH — $COOH$ H_3C NH_2 acide 2-aminoéthanoïque acide 2-amino-3-méthylbutanoïque

Remarque : la plus part des acides α -aminés portent des noms usuels

acide 2-amino-4-méthylpentanoïque ou La leucine(Leu)

3. Structure

a) Carbone asymétrique

A l'exception de la glycine toutes les molécules d'acides α -aminés possèdent un C^* donc pour toutes molécule d'acides α -aminés exceptée la glycine il y a deux énantiomères.

b) Représentation spatiale

Par convention on dispose la molécule d'acide α -aminé de la façon suivante :

- Le groupe carboxyle -COOH est placé en haut et le groupe alkyle -R est placé en bas.
- Ces deux groupes (-COOH et –R) sont situés en arrière par rapport au plan contenant le carbone asymétrique.
- Le groupe amino −NH₂ et l'atome d'hydrogène H sont situés en avant du carbone asymétrique.

COOH
$$\begin{array}{c|c}
COOH \\
\hline
\vdots \\
C \longrightarrow NH_2 \\
\vdots \\
R
\end{array}$$

$$\begin{array}{c|c}
COOH \\
\hline
\vdots \\
H_2N \longrightarrow C \longrightarrow H \\
\vdots \\
R$$

c) Représentation de Fischer

Pour obtenir la représentation de Fischer on projette orthogonalement sur le plan de la molécule d'acide α -aminé ainsi disposée dans l'espace.

$$\begin{array}{c|c} \mathsf{COOH} & \mathsf{COOH} \\ \mathsf{I} & \mathsf{I} \\ \mathsf{C-NH}_2 & \mathsf{H}_2 \mathsf{N-C-H} \\ \mathsf{I} & \mathsf{I} \\ \mathsf{R} & \mathsf{R} \\ \end{array}$$

Remarque : deux énantiomères ont des représentations de Fischer différentes.

<u>http://physiquechimie.sharepoint.com</u> / Serigne Abdou Wahab Diop – Lycée Limamou Laye

d) Nomenclature L et D

Par définition l'énantiomère dont le groupe amino -NH₂ se projette à droite dans la représentation de Fischer est nommée D : on dit qu'il a la configuration D.

L'énantiomère dont le groupe amino -NH2 se projette à gauche dans la représentation de Fischer est nommée L : on dit qu'il a la configuration L.

Remarque: il n'existe pas de relation entre la configuration L ou D d'un acide α -aminé et son caractère dextrogyre ou lévogyre. Exemple : la L-alanine est dextrogyre (+)

A l'exception de la glycine toutes les molécules d'acides α -aminés sont chirales (car ils possèdent un C^{*}) et donc une activité optique.

III. PROPRIETES CHIMIOUES

Propriétés acido-basiques

a) Caractère ampholyte des acides α-aminés

R——CH——COOH $|\\NH_2$ Considérons les molécules d'acide α -aminés, le groupe –COOH est donneur de proton $H^{^\dagger}$ tandis que -NH₂ est capteur de proton. La proximité de ces groupes facilite le transfert intramoléculaire du proton H⁺ du groupe -COOH vers le groupe -NH₂. On a ainsi un équilibre chimique suivant l'équation:

L'ion dipolaire est appelé Amphion ou Zwitterion. C'est la forme majoritaire sous laquelle l'acide αaminé se présente en solution. L'Amphion est un ampholyte car il peut capter un proton H[†] par le groupe -COO ou libérer un proton par le groupe -NH₃⁺.

b) Caractère acide

$$R - CH - COO + H_2O$$
 $R - CH - COO + H_3O^+$
 NH_3
 $R - CH - COO + H_3O^+$
 NH_3
 $R - CH - COO + H_3O^+$
 NH_3

Couple Amphion/anion:

Si R=H \Rightarrow pKa=9,8

c) Caractère basique

Couple cation/Amphion :
$$R - CH - COOH / R - CH - COO-NH_3^+ NH_3^+$$

Si R=H \Rightarrow pKa=2,3

d) Domaine de prédominance

En solution l'acide α -aminé se présente sous 4 formes :

R—CH—COOH, cette espèce est minoritaire quelque soit le pH de la solution
$$NH_2$$

R — CH — COO- , cette espèce est majoritaire si le pH de la solution est tel que pKa₁
$$\leq$$
 pH \leq pKa₂ NH₃ .

R—CH—COOH , cette espèce est majoritaire si pH1
$$\stackrel{+}{N}H_{2}^{+}$$

$$R$$
— CH — COO - , cette espèce est majoritaire si pH>pKa₂ NH_2

Exercice d'application:

Dans un litre d'eau on dissout 1,5g de glycine. Par dissolution de gaz chlorhydrique ou de d'hydroxyde de sodium on peut faire varier le pH de la solution sans modifier son volume. La glycine a pour p $Ka_1=2,4$ et pour p $Ka_2=9,8$.

- 1. Calculer la concentration de la solution.
- 2. Sur un axe gradué en pH situer les domaines de prédominance des diverses espèces.
- 3. On fixe successivement le pH de la solution à 1 ; 8 et 11. Placer ces valeurs sur l'axe gradué de la question 2) et déterminer pour chaque cas la concentration de l'espèce prédominante.
- 4. On se place à pH=6,1; montrer que le cation et l'anion ont la même concentration.

Resolution:

 $A \equiv NH_2-CH_2-COOH$; M=75 g/mol.

1.
$$C = \frac{n}{V} = \frac{m}{MV} = \frac{1.5}{75 \times 1} = 2.10^{-2} \text{ M}.$$

- 3. Calcul des concentrations
- Si pH=1 A⁺ prédomine

 $C=[A]+[A^{+}]+[A^{\pm}$

<u>http://physiquechimie.sharepoint.com</u> / Serigne Abdou Wahab Diop – Lycée Limamou Laye

$$C \approx [A^{+}] + [A^{\pm}] = car A^{-}$$
 est ultra minoritaire : $C = [A^{+}] \left(1 + \frac{[A^{\pm}]}{[A^{+}]}\right)$ (1)

$$Ka_1 = \frac{[H^+][A^{\pm}]}{[A^+]} \Rightarrow \frac{[A^{\pm}]}{[A^+]} = \frac{Ka_1}{[H^+]}$$
 (2)

(1) et (2)
$$\Rightarrow C = [A^+] \left(1 + \frac{Ka_1}{[H^+]} \right) \Rightarrow [A^+] = \frac{C}{1 + \frac{Ka_1}{[H^+]}} = 1,9.10^{-2} \text{ M, noter } [H^+] = 10^{-pH}$$

- si pH=8, l'Amphion est majoritaire

$$C=[A]+[A^{+}]+[A^{+}]+[A^{-}] \approx [A^{\pm}]+[A^{-}] \approx [A^{\pm}]\left(1+\frac{[A^{-}]}{[A^{\pm}]}\right) (3)$$

$$Ka_{2}=\frac{[H^{+}][A^{-}]}{[A^{\pm}]} \Rightarrow \frac{[A^{-}]}{[A^{\pm}]} = \frac{Ka_{2}}{[H^{+}]} (4)$$

(3) et (4)
$$\Rightarrow [A^{\pm}] = \frac{C}{1 + \frac{Ka_2}{[H^{\pm}]}} = 1,97.10^{-2} \text{ M}$$

- si pH=11, l'anion est majoritaire

$$C \approx [A^{-}] + [A^{\pm}] = [A^{-}] (1 + [A^{\pm}]/[A^{-}]) = [A^{-}] (1 + [H^{+}]/Ka_{2}) \Rightarrow [A^{-}] = \frac{C}{1 + \frac{[H^{+}]}{Ka_{2}}} = 1,88.10^{-2} \text{ M}$$

4. si pH=6,1 $[A^{+}]=[A^{-}]$, on a alors $C=[A^{+}]+[A^{\pm}]+[A^{-}]$

En tirant les expressions de $[A^{\pm}]$ dans les équations (2) et (4) et en faisant l'égalité, on obtient la relation suivante : $[A^{\pm}]/[A^{-}] = \frac{[H^{+}]^{2}}{Ka_{1}Ka_{2}} = 1 \Rightarrow [A^{\pm}] = [A^{-}]$

- 2. Condensation entre molécules d'acide α -aminés
 - a) liaison peptidique

La condensation entre deux molécules d'acide α -aminés s'obtient en éliminant une molécule d'eau selon l'équation :

$$R_{1}-CH-C \bigvee_{NH_{2}}^{O} + H_{2}N-CH-C \bigvee_{R_{2}}^{O} \longrightarrow R_{1}-CH-C \bigvee_{NH_{2}}^{O} NH-HC-C \bigvee_{R_{2}}^{O} + H_{2}O$$

La molécule obtenue est un dipeptide. Le groupe acides α -aminés est appelés liaison peptidique.

b) Polycondensation: les polypeptides

Serigne Abdou Wahab Diop – Lycée Limamou Laye | http://physiquechimie.sharepoint.com

$$\dots + \frac{R_{1}}{R_{2}} \cap CH - C \cap C \cap CH - C \cap C$$

On obtient un polypeptide qui est caractérisé par la présence de plusieurs liaisons peptidiques. Comme les polypeptides, les protéines sont des polyamides. Seulement les protéines ont des chaines beaucoup plus longues, se sont des macromolécules. Leur masse moléculaire est supérieure à 10000 g/mol.

Exemples: l'hémoglobine (66000 g/mol); kératine (cheveux); insuline (pancréas).

3. Réaction entres deux acides α-aminés

Considérons un mélange équimolaire de deux acides α -aminés, la condensation entre ces deux peut se faire de différentes manières et on obtient en milieu quatre dipeptides différents.

a) Synthèse sélective d'un dipeptide

<u>http://physiquechimie.sharepoint.com</u> | Serigne Abdou Wahab Diop - Lycée Limamou Laye

Si on veut obtenir d'un seul dipeptide (par exemple le dipeptide HGly-AlaOH ou la glycine est terminal N) à partir d'un mélange équimolaire de glycine et d'alanine, on doit empêcher les autres réactions (2,3 et 4) qui sont des réactions parasites pour cette synthèse. Pour cela il faut :

- Bloquer ou désactiver les groupes qui ne participent pas à la réaction
- Activer l'un des groupes qui participe à la réaction.
- b) Exemple d'une synthèse sélective du dipeptide HGly-AlaOH

1ère étape : blocage du groupe -COOH de l'alanine en le transformant en ester

2ème étape : blocage du groupe -NH2 de la glycine en le transformant en amide

$$R_1 - C + H_2N - CH_2 - C - O + HCI$$

OH

OH

OH

OH

OH

OH

OH

OH

OH

 $3^{\grave{e}^{me}}$ étape : activation du groupe –COOH de la glycine en le transformant en chlorure d'acyle

$$R_1$$
 $\stackrel{\circ}{-}$ $\stackrel{\circ}{-}$

4ème étape : formation de la liaison peptidique

$$R_{1} - \overset{O}{\text{C}} - \text{NH} - \text{CH}_{2} \cdot \overset{O}{\text{C}} + H_{3}\text{C} - \overset{O}{\text{CH}} - \overset{O}{\text{C}} - \overset{O}{\text{CH}} - \overset{O}{\text{C}} - \overset{O}{\text{NH}} - \overset{O}{\text{CH}}_{3}} \overset{O}{\text{C}} + \text{HCI}$$

5ème étape : régénération des groupes bloqués

Remarque : lors de la régénération du groupe $-NH_2$ il ne faut pas rompre la liaison peptidique pour cela on utilise des esters particuliers tels que : C_6H_5 - CH_2 -COOCI ; CH_3 - CH_2 -COOCI qui donnent des amides faciles à détruire.

c) Aspect stéréochimie de la synthèse peptidique

Le blocage, l'activation ou la régénération d'un groupe ne modifie pas sa position dans la molécule ; au cours de la synthèse peptidique la configuration des atomes de carbone asymétrique situés en α se conservent.

Exemple : A partir d'un acide α -aminé de configuration L, on obtient des dipeptides de configuration LL, mais si on part d'un mélange racémique (c'est-à-dire qui contient des acides α -aminés L et des acides α -aminés D) on obtient quatre dipeptides différents suivant leur configuration.

<u>Exemple</u>: considérons un mélange racémique d'alanine et de valine. Si nous synthétisons le dipeptide Ala-Val.

Ala(L)-Val(D)	Ala(L)-Val(L)
Ala(D)-Val(L)	Ala(D)-Val(D)

Documents annexes

CONSTANTES D'ACIDITÉ DE COUPLES ACIDE-BASE

COUPLE		ACIDE	BASE	pKa	remarque	
HBr	/	Br	acide bromhydrique	ion bromure	FORT	
HCI	/	Cl ⁻	acide chlorhydrique	ion chlorure	FORT	
HI	/	ŀ	acide iodhydrique	ion iodure	FORT	
HNO₃	/	NO ₃ -	acide nitrique	ion nitrate	FORT	
HCIO₄	/	CIO ₄ -	acide perchlorique	ion perchlorate	FORT	
H ₂ SO ₄	/	HSO₄⁻	acide sulfurique	ion hydrogénosulfate	FORT	
HBrO₃	/	BrO₃⁻	acide bromique	ion bromate	0.7	
CCl₃-COOH	/	CCI ₃ -COO-	acide trichloroéthanoïque	ion trichloroéthanoate	0.7	
HOOC-COOH	/	HOOC-COO-	éthane dioïque (oxalique)	ion hydrogéno oxalate	1.2	(1)
CHCl2-COOH	/	CHCl ₂ -COO-	acide dichloroéthanoïque	ion dichloroéthanoate	1.3	
H₂SO₃	/	HSO₃⁻	acide sulfureux	ion hydrogénosulfite	1.8	(1)
H₃PO₄	/	H ₂ PO ₄ -	acide ortho phosphorique	ion dihydrogénophosphate	1.9	(2)
HSO₄⁻	/	SO ₄ ²⁻	ion hydrogénosulfate	ion sulfate	2.1	(1)
CH ₂ CI-COOH	/	CH ₂ CI-COO	acide monochloroéthanoïque	ion chloroéthanoate	2.9	
HF	/	F·	acide fluorhydrique	ion fluorure	3.1	
HNO ₂	/	NO ₂ -	acide nitreux	ion nitrite	3.3	
R -COOH	/	R-COO-	acide acétylsalicylique	ion acétyl salicylate	3.7	aspirine
НСООН	/	HCOO-	acide méthanoïque (formique)	ion méthanoate	3.7	
RH ₂	/	RH ⁻	acide ascorbique	ion ascorbate	4.1	(1)
HOOC-COO-	/	OOC-COO2-	ion hydrogéno-oxalate	ion oxalate	4.2	(2)
C ₆ H ₅ -NH ₃ ⁺	/	C ₆ H ₅ -NH ₂	ion anilinium	aniline	4.6	
C ₆ H ₅ -COOH	/	C ₆ H ₅ -COO-	acide benzoïque	ion benzoate	4.7	
CH₃-COOH	/	CH ₃ -COO-	acide éthanoïque (acétique)	ion éthanoate	4.8	
H ₂ CO ₃	/	HCO₃-	acide carbonique	ion hydrogénocarbonate	6.4	CO ₂ , H ₂ O
H ₂ S	/	HS ⁻	acide sulfhydrique	ion hydrogénosulfure	7.0	(1)
HSO₃⁻	/	SO ₃ ²⁻	ion hydrogénosulfite	ion sulfite	7.2	(2)
H ₂ PO ₄ -	/	HPO₄ ²⁻	ion hydrogénophosphate	ion hydrogénophosphate	7.2	(2)
HCIO	/	CIO-	acide hypochloreux	ion hypochlorite	7.5	
HBO ₂	/	BO ₂ -	acide borique	ion borate	9.2	
NH₄ ⁺	/	NH₃	ion ammonium	ammoniac	9.3	
HCN	/	CN⁻	acide cyanhydrique	ion cyanure	9.3	
(CH ₃) ₃ -NH ₃ ⁺	/	$(CH_3)_3$ -NH ₂	ion triméthyl ammonium	triméthyl amine	9.8	
C ₆ H ₅ -OH	/	C ₆ H ₅ -O ⁻	hydroxy benzène (phénol)	ion phénolate	9.9	
HCO₃⁻	/	CO ₃ ² -	ion hydrogénocarbonate	ion carbonate	10.3	
(C ₂ H ₅) ₂ - NH ₂ ⁺	1	(C ₂ H ₅) ₂ - NH	ion diéthyl ammonium	diéthyl amine	10.5	
CH₃-NH₃+	1	CH ₃ -NH ₂	ion méthyl ammonium	méthyl amine	10.6	
(CH ₃) ₂ -NH ₂ ⁺	1	(CH ₃) ₂ -NH	ion diméthyl ammonium	diméthyl amine	10.7	
C ₂ H ₅ -NH ₃ ⁺	1	C ₂ H ₅ -NH ₂	ion éthyl ammonium	éthyl amine	10.8	
(C ₂ H ₅) ₃ -NH ⁺	1	(C ₂ H ₅) ₃ -NH	ion triéthyl ammonium	triéthyl amine	11.0	
R-H ⁻	1	R [.]	ion hydrogéno ascorbate	ion ascorbate	11.8	(2)
HPO ₄ ² -	1	PO ₄ 3-	ion hydrogéno phosphate	ion phosphate	12.3	
HS ⁻	-	S ²⁻	ion hydrogénosulfure	ion sulfure	13.0	

nb. les chiffres en remarque désignent les acidités successives des polyacides.

SERIGNE ABDOU WAHAB DIOP Professeur au lycée de Bambey

Ce document comporte des notes de mes cours en classe de Terminales $S_1 \& S_2$ au lycée Limamou Laye à l'attention de mes élèves et collègues.

Notes de COURS CHIMIE TERMINALES S

Vous pouvez utiliser librement ce document mais en aucun vous ne devez enlever les références de son propriétaire. Ayez un profond respect à la propriété intellectuelle.

références de son propriétaire. Ayez un profond respect à la propriété intellectuelle.

information pour votre propre formation.

Ceci est une note (trace écrite) de cours et ne peut en aucun cas se substituée du cours magistral du professeur. Vous pouvez utiliser ce document en tant que

ompléme