SHASHANK TRIPATHI

PhD candidate, MPI Tübingen, Germany shashank.tripathi123@gmail.com | Phone: +49 17627432172 Home Page: https://sha2nkt.github.io

EDUCATION

Max Planck Institute for Intelligent Systems, Tübingen

Germany

Ph.D., Computer Science

Advisor: Prof. Michael Black

Feb 2021 - present

Carnegie Mellon University, School of Computer Science

Pittsburgh, USA

Master of Science in Computer Vision (MSCV) GPA: 4.15/4.33, Advised by Prof. Kris Kitani

Dec 2018

Birla Institute of Technology and Science (BITS), Pilani

Hyderabad, India

Bachelor of Engineering with Honors in Electronics and Communication

July 2016

Engineering, Minor in Finance

GPA: 9.16/10 (top 2% among 1500 students, Merit scholarship recipient)

PUBLICATIONS

· 3D Human Pose Estimation via Intuitive Physics

S Tripathi, L Muller, P C Huang, D Tzionas, M J Black. (ongoing)

· Occluded Human Mesh Recovery

R Khirodkar, S Tripathi, K Kitani. CVPR 2022

https://cvml.page.link/ochmr

· AGORA: Avatars in Geography Optimized for Regression Analysis

P Patel, P C Huang, J Tesch, D T Hoffman, S Tripathi, M J Black. CVPR 2021

https://cvml.page.link/agora

PoseNet3D: Unsupervised 3D Human Shape and Pose Estimation

S Tripathi, S Ranade, A Tyagi, A Agarwal. 3DV 2020 (oral)

https://cvml.page.link/pose

· Learning to Generate Synthetic Data via Compositing

S Tripathi, S Chandra, A Agarwal, A Tyagi, J Rehg, V. Chari. *CVPR 2019*

https://cvml.page.link/learn

· C2F: Coarse-to-fine Vision Control System for Automated Microassembly

S Tripathi, D Jain, H Sharma. *Nanotechnology and Nanoscience Asia, 2018*

https://cvml.page.link/c2f

 \cdot Sub-cortical morphology and voxel based features for Alzheimer's disease classification

S Tripathi, SH Nozadi, M Shakeri, S Kadoury. *ISBI 2017*

https://cvml.page.link/shape

Deep spectral-based shape features for Alzheimer's Disease classification

M Shakeri, H Lombaert, S Tripathi, S Kadoury. MICCAI-SESAMI, 2016

https://cvml.page.link/spec

PATENTS

· Learning Temporally Consistent 3D Human Pose via Knowledge Distillation.

S Tripathi, S Ranade, A Tyagi, A Agarwal. US Patent 16/814,526

 \cdot VBC: Task aware synthetic data generation by inserting 3D avatars in real world images and videos.

S Tripathi, S Chandra, A Agarwal, A Tyagi, J Rehg, V. Chari. US Patent 16/450,499

· Reconstruct-Embellish-Misclassify: Synthetic data generation to fill gaps in data distribution

S Tripathi, S Chandra, A Agarwal, A Tyagi, J Rehg, V. Chari. *US Patent 16/192,433*

RESEARCH EXPERIENCE

3D Human Pose Estimation via Intuitive Physics

Dec 2021 – present

Advisor: Prof. Dimitrios Tzionas, Prof. Michael Black

MPI-IS, Tubingen

- · Proposed novel biomechanically-inspired intuitive physics terms that are simple, differentiable and compatible with parametric body models such as SMPL/SMPLX
- · Demonstrated that incorporating differentiable physics in 3D human pose estimation pipelines results in physically-plausible meshes
- · Collected Mocap data with extreme poses to demonstrate the effectiveness of our approach in challenging scenarios

Occluded Human Mesh Recovery

Aug 2021 – Dec 2021

Advisor: Prof. Kris Kitani

CMU

· Proposed a novel top-down mesh recovery architecture capable of leveraging image spatial context for handling multi-person occlusion and crowding

AGORA: Avatars in Geography Optimized for Regression Analysis

Aug 2020 – Dec 2020

MPI-IS, Tubingen

Advisor: Prof. Michael Black

· Developed a 3D human shape and pose estimation model trained on synthetic data that generalizes to real scenes using various 2D and 3D losses

- Added robustness to occluded scenes and support for the SMIL child model
- · Evaluated our model on several 2D and 3D datasets and ran ablation studies

PoseNet3D: Unsupervised 3D Human Shape and Pose Estimation

Feb 2019 - Nov 2019

Collaborators: Dr. Amit Agarwal, Dr. Ambrish Tyagi

Amazon Lab126

· Proposed self-consistency and adversarial losses to train a novel unsupervised teacher model to estimate

3D human pose from RGB videos

- · Weak supervision from the teacher was used to train a student model for estimating SMPL body mesh
- · Solved issues such as occlusion, domain-gap and temporal jitter leading to realistic and smooth 3D sequence reconstructions on multiple in-the-wild video datasets

Learning to Generate Synthetic Data via Compositing

May 2018 – Nov 2018

Advisors: Prof. James Rehg, Dr. Amit Agrawal, Dr. Ambrish Tyagi

Amazon Lab126

- · Proposed a network for generating novel composite images that retain scene context and realism
- · Developed algorithms for efficient training of object detection and image classification models on synthetic composite data, using an online hard-positive mining approach
- · Improved baseline Faster-RCNN mAP by 3.5% and baseline SSD mAP by 2.7% on various datasets.

ClassPaths: Weakly supervised class-specific subnets for faster-inference

Dec 2017 – Dec 2018

Advisors: Prof. Kris Kitani, Dr. Ambrish Tyagi, Dr. Varsha Hedau

CMU

- · Exploited class-wise parameter redundancy and activation map sparsity for finding class-specific subnets (ClassPaths) for faster inference
- · Proposed an auxiliary supervisor network trained on a multi-loss formulation to jointly optimize accuracy, sparsity, pair-wise selectivity and quantization on the learned class-specific subnets
- · Deep-networks employing ClassPaths achieved similar performance as a full capacity network, with 40%-60% FLOPS reduction during inference

Deep Spectral-based Shape Features for Alzheimer's Disease Classification

Feb 2016 - Jul 2016

Undergraduate Thesis, Advisor: Dr. Samuel Kadoury

Univ. of Montreal

- · Developed an unsupervised framework for classification of Alzheimer's disease patients using noisy T1weighted MRI brain images
- · Proposed a combination of grey-matter voxel-based intensity variations and 3D structural (shape) features parameterized with a spherical-harmonics representation
- Results presented near state-of-the-art accuracies (>89%) outperformed conventional MRI shape-based strategies by 22%-27%

C2F: Coarse-to-Fine Vision Control System for Automated Microassembly May 2014 – Dec 2014 Central Electronics Engineering Research Institute, Pilani Advisor: Dr. H D Sharma

- · Developed a completely automated, visual-servoing based closed loop system to perform 3D micromanipulation and microassembly tasks
- · Solved challenges around object recognition/tracking, scene understanding, path planning and obstacle avoidance
- · Results led to a ~75% reduction in setup and run time as compared to manual operation, while mitigating any risk of collision during grasp-and-drop experiments

AND AWARDS

SCHOLARSHIPS • Best business model and best pitch, Cyber Valley Startup Incubation Program 2022, Germany 2022 for our startup "YOGI – a virtual yoga classroom"

> 2015 • IISc Bangalore Summer Research Fellowship – top 20 across India 2014 Best Technical Association Award, BITS-Pilani 2013

> • Tournament Winner, Cricket, Arena'13 National Sports Festival 2012 • Undergraduate MERIT scholarship, BITS Pilani – top 2% students 2011 • Founder President's Scholarship, Amity International – top student for 6 years

• Junior Science Talent Search Examination (JSTSE) Scholarship – Ranked 22 in 20,000 applicants

ACADEMIC DUTIES

Reviewer - CVPR 2022, BMVC 2022 Reviewer - ICCV 2021, CVPR 2021

Reviewer – ECCV 2020 (Outstanding reviewer award)

Reviewer - CVPR 2020

TEACHING EXPERIENCE Teaching Assistant – 16-720: Computer Vision, Prof. Kris Kitani

Fall 2018, CMU

Head Teaching Assistant – 16-385: Computer Vision, Prof. Ioannis Gkioulekas

Summer 2018, CMU

2008

PROFESSIONAL **EXPERIENCE**

Amazon Applied Scientist II (AS-II) (promoted from AS-I in Sep 2020)

Feb 2019 - Feb 2021

Sunnyvale, USA

Improved 3D human activity reconstruction from 2D videos for enhancing action recognition/detection. Supported Computer Vision algorithm development for the new Echo Show. Worked on virtual try-on and body measurement estimation from images.

Cupertino, USA Amazon Lab126

Applied Scientist Intern May 2018 - Aug 2018

Worked on task-aware generation of synthetic image composites for training deep networks

Franklin Templeton Investments

Summer Intern | Project: Financial Modelling for Tactical Asset Allocation

May 2015 - Aug 2015

Hyderabad, India

Built machine-learning models for capturing statistical associations like lead-lag correlation and one directional causality which achieved a 12% improvement in hit-rate for forecasting yield-spreads (US-OAS)

TECHNICAL SKILLS

Programming Languages Python, C++/C, MATLAB Tools and Frameworks Pytorch, Tensorflow, Blender

RELEVANT COURSES

16-826 Visual Learning and Recognition, CMU

10-601 Introduction to Machine Learning, CMU 16-822 Geometry Based Methods in Vision, CMU 16-811 Mathematical Fundamentals for Robotics, CMU

16-720 Computer Vision, CMU

ACADEMIC PROJECTS

Learning Scene Saliency Maps Using Superpixel-augmented Convolutional Neural Networks

Aug 2017 – Dec 2017

- · Extracted SLIC superpixel segmentations in input images and defined a range and color separation vector as input to a Siamese Convolutional Neural Network (CNN)
- · Trained the network on the ECSSD saliency dataset. Superpixels allow for significant speedup (4x) in training while capturing a larger spatial context, leading to more precise saliency maps

Towards Integrating Model Dynamics for Sample Efficient Reinforcement Jan 2017 - May 2017 Learning

- · Developed a principled approach for solving sample inefficiency issues while deploying model-free reinforcement learning in real environments
- · Learned a dynamics model of the world by assuming domain-specific priors on real-world episodes. Used the learned dynamics model to augment real-world episodes as the training progressed
- · Established that augmenting real-world data using an approximate world-model tends to be significantly more sample efficient than naïve model-free reinforcement learning

LEADERSHIP

- Member, External Affairs Committee (Graduate Student Assembly), CMU
- Secretary, Electrical and Electronics Association, BITS Pilani Led a team of 37 members. Organised 25 major events, 6 during the technical festival
- Computer Vision Mentor, Student Mentorship Program (SMP), BITS Pilani Conducted evening classes for teaching 30 junior batch students
- Represented BITS Pilani cricket team in inter-college cricket tournaments and sports festivals
- Organizer of National Seminar on Indian Space Technology (NSIST-2014)

EXTRA-**CURRICULAR** • Teaching volunteer at Nirmaan – BITS Pilani | www.nirmaan.org

Mar 2014 - Dec 2015

• Teaching volunteer at LaSalle Boys and Girls Club, Montreal www.bgclasalle.com

Mar 2016 - Jul 2016

• Teaching volunteer at Amitasha – Teaching the girl child | www.amity.edu/amitasha

Mar 2009 - Mar 2010