Содержание

1.	Основные понятия	2
	1.1. Комплексное число	2
	1.2. Комплексная плоскость	2
	1.3. Предел	4
	1.4. Комплексная функция	5
	1° Определение	5
	2° Предел	6
	3° Элементарные комплексные функции	7
	4° Лифференцирование ФКП	8

1. Основные понятия

1.1. Комплексное число

 $Mem. \ \mathbb{C} = \{(a, b) \mid a, b \in \mathbb{R}\}\$

Обозначение: z = (a, b) = a + bi, где $i = (0, -1) = \sqrt{-1}$

Основные операции:

- 1. $\operatorname{Re} z = a$ вещественная часть, $\operatorname{Im} z = b$ мнимая часть
- 2. $z_1 + z_2 = (a_1, b_1) + (a_2, b_2) = (a_1 + a_2, b_1 + b_2) = (a_1 + a_2) + i(b_1 + b_2)$
- 3. $z_1 \cdot z_2 = (a_1 + b_1 i) * (a_2 + b_2 i) = (a_1 a_2 b_1 b_2) + i(a_1 b_2 + a_2 b_1)$
- 4. $z^n = \rho^n(\cos n\varphi + i\sin n\varphi)$ формула Муавра, где $\rho = |z|, \varphi = \arg z$
- 5. $\sqrt[n]{z} = \sqrt[n]{\rho} \left(\cos\frac{\varphi + 2\pi k}{n} + i\sin\frac{\varphi + 2\pi k}{n}\right)$, где $\rho = |z|, \varphi = \arg z, k \in \mathbb{Z}$

6. При
$$n=2$$
 $\sqrt{z}=\sqrt{a+bi}=\pm(c+di),$ где $c=\sqrt{\frac{a+\sqrt{a^2+b^2}}{2}}, d=\mathrm{sign}(b)\sqrt{\frac{-a+\sqrt{a^2+b^2}}{2}}$

Тригонометрическая форма:

$$z=a+bi=
ho(\cos\varphi+i\sin\varphi),$$
 где $\rho=|z|=\sqrt{a^2+b^2}, \varphi=$ $\arg z\in[0;2\pi)$

 $\operatorname{Arg} z = \operatorname{arg} z + 2\pi k, k \in \mathbb{Z}$

По формуле Эйлера $z = \rho(\cos \varphi + i \sin \varphi) = \rho e^{i\varphi}$

1.2. Комплексная плоскость

Def. Окрестность точки $z_0 \in \mathbb{C}$ определяется как $U_\delta(z_0) = \{z \in \mathbb{C} \mid |z-z_0| < \delta\}$

Тогда $\overset{\circ}{U}_{\delta}(z_0) = U_{\delta}(z_0) \setminus \{z_0\}$ - выколотая окрестность

 ${f Def.}$ Для данной множества точек A точка z_0 считается

- ullet внутренней, если для любого δ $U_{\delta}(z_0)\subset A$
- ullet граничной, если для любого δ $\exists z \in U_\delta(z_0) \Big| z \in A$ и $\exists z \in U_\delta(z_0) \Big| z \notin A$
- **Def.** Открытое множество состоит только из внутренних точек
- **Def.** Закрытое множество содержит все свои граничные точки
- $\mathbf{Def.}$ Границой $\Gamma_{\!D}$ (иногда обозн. $\delta D)$ для множества D называют множество всех граничных точек D
- **Def.** Если любые две точки множества можно соединить ломаной линией конечной длины, то множество считается связным
- $\mathbf{Def.}$ Множество $D\subset\mathbb{C}$ называется областью, если D открытая и связная

Def. Кривая $l\subset \mathbb{C}$ считается непрерывной, если $l=\{z\in \mathbb{C}\ |\ z=\varphi(t)+i\psi(t), t\in \mathbb{R}\}$, где $\varphi(t),\psi(t)$ - непрерывные функции

Nota. Если $\varphi(t)$ и $\psi(t)$ дифференцируемы и их производные непрерывные, то кривая l гладкая Def. Непрерывная замкнутая (то есть начальная и конечная точки совпадают) без самопересечений кривая называется контуром

Nota. Односвязную область можно стянуть в точку

 $Ex.\ 1.\ D=\{z\in\mathbb{C}\ \Big|\ 0<|z|<\delta\}$ - область свя-

заная, но не односвязная, ее нельзя стянуть $Ex.\ 2.\ D = \{z \in \mathbb{C} \ |\ 0 < |z| < \delta, \arg z \neq 0\}$ - область связная и односвязная

$$Ex.\ 3.\ D=\{z\in\mathbb{C}\ \Big|\ |\operatorname{Re}z|<\delta\}$$
 - несвязная область

$$Ex. \ 4. \ D = \{z \in \mathbb{C} \ \Big| \ \mathrm{Im} \ z \geq 0, z \notin [0,i] \} \ - \ \mathrm{здесь}$$

$$Ex. \ 3. \ D = \{z \in \mathbb{C} \ \Big| \ |\mathrm{Re} \ z| < \delta \} \ - \ \mathrm{несвязная} \ \mathrm{of-} \ \ \mathrm{под} \ [0,i] \ \mathrm{подразумевается} \ \mathrm{линейный} \ \mathrm{отрезок}$$
 на оси

Nota. Дальше все рассматриваемые Γ_D будут состоять из кусочногладких и изолированных кривых

1.3. Предел

Mem. Последовательность $\{z_n\} = z_1, z_2, z_3, \dots, z_n, \dots$

Def. Пределом $\{z_n\}$ называют число z такое, что $\forall \varepsilon > 0$ $\exists n_0 = \mathbb{N} \mid \forall n > n_0 \mid z_n - z \mid < \varepsilon$ Обозначается $\lim_{n \to \infty} z_n = z$

 $Nota. \{z_n\}$ можно представить как $x_n + iy_n$, то есть двумя \mathbb{R} -последовательностями

Th.
$$\exists \lim_{n \to \infty} z_n = x + iy \iff \exists \lim_{n \to \infty} x_n = \lim_{n \to \infty} \operatorname{Re} z_n = x$$

 $\exists \lim_{n \to \infty} y_n = \lim_{n \to \infty} \operatorname{Im} z_n = y$

Nota. Для комплексных чисел работают теоремы для пределов (сумма пределов, произведение пределов и т.д.), критерий Коши и другие

Def.
$$\lim_{n\to\infty} z_n = \infty \iff \forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \left| \ n > n_0 \ |z| > \varepsilon \right|$$

Def. Точка z, определенная как предел, равный ∞ , называется бесконечно удаленной. Но существует множество последовательностей, чьи пределы удаляются на бесконечность разными путями на плоскости

Def. Стереографическая проекция (сфера Римана)

Поместим сферу на комплексную плоскость и сделаем биекцию точек плоскости на точки сферы: проведем из верхней точки сферы лучи вниз на плоскость, и точка, где луч пересекает сфера, будет считаться отображением для данной точки. Заметим, что в этом случае бесконечно удаленные точки будут отображаться в верхнюю точку сферы

Def. $\mathbb{C} \cup \{\infty\} = \overline{\mathbb{C}}$ - расширенная комплексная плоскость Однако $z + \infty$ не определена, $\infty + \infty$ не определена. Но $\infty = \lim_{n \to \infty} \frac{1}{z_n}$ при $z_n \xrightarrow[n \to \infty]{} 0$; $\infty = \infty \cdot \lim_{n \to \infty} z_n$ при $z_n \longrightarrow z$

Записью $[-\infty; +\infty]$ обозначается ось $\overline{\mathbb{R}}$;

 $[-i\infty;+i\infty]$ - мнимая расширенная ось

Путь $x \pm i \infty$ при фикс. x - вертикальная прямая;

 $iy\pm\infty$ - горизонтальная прямая;

 $e^{i\varphi}\cdot\infty$ - прямая, проходящая через начало координат

1.4. Комплексная функция

1° Определение

 $\textit{Mem. } f: E \subset \mathbb{R} \longrightarrow D \subset \mathbb{R} \iff \text{ отображение такое, что } \forall x \in E \ \exists ! y \in D \ | \ y = f(x)$

Def. $f:D\subset\mathbb{C}\longrightarrow G\subset\mathbb{C}\iff$ отображение такое, что $\forall z\in D\ \exists w\in G\ |\ f(z)=w$

 $\mathbf{Def.}$ Если $\forall z \in D \ \exists ! w \in G,$ то f называется однозначной функцией

Def. Если $\forall z_1,z_2 \in D(z_1 \neq z_2) \Longrightarrow f(z_1) \neq f(z_2),$ то f называется однолистной функцией

 $Ex.\ 1.\ w = \sqrt{z}$ - неоднозначная функция

$$\exists z = 1 = 1(\cos 0 + i \sin 0)$$
$$\sqrt{z} = \sqrt{1} \left(\cos \frac{2\pi k}{2} + i \sin \frac{2\pi k}{2} \right)$$
$$w_1 = 1 \qquad w_2 = -1$$

$$Ex.\ 2.\ \mathbf{w} = \mathbf{z}^2$$
 - неоднолистная функция

$$z_1 = 1, z_2 = -1$$
 $w(z_1) = w(z_2) = 1$

Nota. Если f(z) однозначна и однолистна, то f(z) - взаимно однозначное соответствие (биекция). Тогда $\exists q(x) \mid q(f(x)) = x$

Комплексную функцию f(z) можно представить как u(x,y)+iv(x,y), где x+iy=z

Ex.
$$w = z^2 = (x + iy)^2 = x^2 + 2ixy - y^2 = (x^2 - y^2) + i \cdot 2xy$$

 $u(x, y) = (x^2 - y^2),$ $v(x, y) = 2xy$

2° Предел

Def.
$$L \in \mathbb{C}, f: D \longrightarrow G, \quad L \stackrel{def}{=} \lim_{z \to z_0} f(z) \Longrightarrow \forall \varepsilon > 0 \ \exists \delta > 0 \ \middle| \ z \in D, z \in \overset{\circ}{U}_{\delta}(z_0) \ f(x) \in U_{\varepsilon}(L)$$

В определении существование и значение L не должно зависеть от пути, по которому z приближается к точке сгущения z_0 . Может быть так, что для любого направления стремления предел есть, но в общем смысле не существует

$$Ex. \ f(z) = \frac{1}{2i} \left(\frac{z}{\overline{z}} - \frac{\overline{z}}{z} \right) \qquad \exists z = \rho e^{i\varphi}$$

$$f(z) = \frac{1}{2i} \left(\frac{\rho e^{i\varphi}}{\rho e^{-i\varphi}} - \frac{\rho e^{-i\varphi}}{\rho e^{i\varphi}} \right) = \frac{1}{2i} \left(e^{2i\varphi} - e^{-2i\varphi} \right) = \frac{1}{2i} (\cos 2\varphi + i \sin 2\varphi) = \sin 2\varphi$$

Зафиксируем $\varphi = \varphi^* \in [0; 2\pi)$, тогда $\sin 2\varphi^* \in [-1; 1]$

$$\lim_{z\to 0} f(z) = \lim_{\begin{subarray}{c} \rho\to 0\\ \varphi=\varphi^*\end{subarray}} f(z) = \lim_{\begin{subarray}{c} \rho\to 0\\ \varphi=\varphi^*\end{subarray}} \sin 2\varphi = \sin 2\varphi^* \in [-1;1]$$

Значения предела занимает отрезок [-1;1] $\Longrightarrow \lim_{z\to 0} f(z)$

На рисунке изображена $\sin 2\varphi$, на оси Oz изображена Re w. Черные линии - это возможные пути приближе-

ния z к 0

Nota. Путь следования предела аналогичен левостороннему и правостороннему пределами \mathbb{R} -функций

Def. Непрерывность функций в точке z_0 .

 $f:D\longrightarrow G, z_0\in D, \ f(z)$ называется непрерывной в $z_0,\ \mathrm{если}\lim_{z\longrightarrow z_0}f(z)=f(z_0)$

На языке приращений: $\Delta f = f(z_0 + \Delta z) - f(z_0) \xrightarrow{\Delta z \to 0} 0$

$$\Delta z = z - z_0 = \Delta x + i \Delta y \to 0 \Longrightarrow \begin{cases} \Delta x \to 0 \\ \Delta y \to 0 \end{cases} \Longrightarrow \Delta \rho \to 0$$

3° Элементарные комплексные функции

Ex. 1. Линейная f(z) = az + b,

Эта функция однозначная, однолистная $\Longrightarrow \exists f^{-1}(z) = g(z) = \frac{z-b}{a}$

Геометрический смысл:

 $a \in \mathbb{C}, z \in \mathbb{C}$

 $az = |a||z|(\cos(\varphi_a + \varphi_z) + i\sin(\varphi_a + \varphi_z))$ - поворот и растяжение $(\varphi_a = \arg a, \varphi_z = \arg z)$ $az + b = (x_{az} + x_b) + i(y_{az} + y_b)$ - сдвиг

То есть линейная функция - композиция из поворота, растяжения и сдвига

 $Ex.\ 2.\$ Степенная $w=z^n,\quad n\in\mathbb{N}$ - однозначная, может быть неоднолистной

Для $n \in \mathbb{Q}$ функция становится неоднозначной

Ex.
$$w = z^2$$
 $z = \rho e^{i\varphi}, w = \rho^2 e^{2i\varphi}$

$$z = \rho e^{i\varphi}, w = \rho^2 e^{2i\varphi}$$

Пусть $z_1 \neq z_2$ и $w(z_1) = w(z_2)$, тогда $\arg z_1 = \arg z_2 \pm \pi$

$$w(z_1) = \rho^2 e^{2i \arg z_1} = \rho^2 e^{2i(\arg z_1 + 2\pi k)}$$

$$w(z_2) = \rho^2 e^{2i \arg z_2} = \rho^2 e^{2i(\arg z_1 + \pi)} = \rho^2 e^{i(2 \arg z_1 + 2\pi)} = w(z_1)$$

Область однолистности z^2 - множество точек, для которых $\arg z \in [0;\pi)$

Точку w = 0 называют точкой разветвления

Ex.
$$w = z^{-1} = \frac{1}{z}$$

$$w(0) = \infty, w(\infty) = 0$$

$$z \in \mathbb{C} \setminus \{0\}$$
 - функция обратима $w = re^{i\psi} = \frac{1}{\rho e^{i\phi}} = \frac{1}{\rho} e^{-i\varphi} \Longrightarrow |w| = \frac{1}{|z|}, \arg w = -\arg z$

Преобразование $|w| = \frac{1}{|z|}$ называется инверсией, а $\arg w = -\arg z$ дает симметрию относительно $\operatorname{Re} z$

$$n, m \in \mathbb{N}$$

Ex. 4. Показательная $w = e^z = e^x \cdot e^{iy} = e^x (\cos y + i \sin y)$ Свойства:

2.
$$(e^{z_1})^{z_2} = e^{z_1 z_2}$$

3. $e^{z+2\pi i}=e^z\cdot e^{2\pi i}=e^z$ - показательная функция периодична с периодом $2\pi i$

Ex. 5. Логарифмическая w = Ln z

Если $e^w = e^{u+vi} = e^u(\cos v + i\sin v) = z = |z|e^{i\arg z}$, то $u = \ln|z|$, $v = \arg z + 2\pi k$

Тогда $\operatorname{Ln} z = \ln |z| + i(\arg z + 2\pi k)$

 $\ln z = \operatorname{Ln} z$ при k = 0 - т. н. главное значение

Заметим, что $w=e^z=e^x(\cos y+i\sin y)$ - многолистная функция, а $w=\operatorname{Ln} z=\ln \rho+i(\arg z+2\pi k)$ - многозначная

Ех. 6. Тригонометрические и гиперболические

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i}$$

$$\cos z = \frac{e^{iz} + e^{-iz}}{2}$$

$$\cosh z = \frac{e^z - e^{-z}}{2}$$

$$\cosh z = \frac{e^z + e^{-z}}{2}$$

Nota. Рассмотрим уравнение $\sin z = A \in \mathbb{C}$

$$\frac{e^{iz} - e^{-iz}}{2i} = A \Longrightarrow e^{2iz} - 2iAe^{iz} - 1 = 0$$

При $t = e^{iz}$ получаем квадратное уравнение, у которого в \mathbb{C} всегда будет два корня. Это значит, что в \mathbb{C} sin и сов принимают любые значения (то есть $|\sin z| > 1$)

4° Дифференцирование $\Phi K\Pi$

 $\mathbf{Def.}\ w = f(z), w: D \subset \mathbb{C} \longrightarrow \mathbb{C}, z_0 \in D.$ Производная функции $w(z_0)$ - это предел $\lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} = \lim_{\Delta z \to 0} \frac{\Delta f}{\Delta z}$, если он существует и не зависит от пути $z \to z_0$

Mem. Дифференцирование y = f(x):

B Φ₁Π:
$$\Delta y = f(x_0 + \Delta x) - f(x_0) = A\Delta x + o(\Delta x)$$

B
$$\Phi_2\Pi$$
: $\Delta f = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) = A\Delta x + B\Delta y + \alpha_1 + \alpha_2 = \frac{\partial f}{\partial x} \Delta x + \frac{\partial f}{\partial y} \Delta y + o(\Delta x) + o(\Delta y)$

Def. f(z) называется дифференцируемой в точке z_0 , если $\exists f'(z_0) \in \mathbb{C}$

Def. Дифференцируемая в точке z_0 функция w = f(z), производная $f'(z_0)$ которой непрерывна в z_0 , называется аналитической (или аналитичной) функцией в z_0

Тh. Критерий аналитичности (или Условие Коши-Римана)

$$f(x) = u(x,y) + iv(x,y) \text{ аналитична в точке } z_0 = x + iy$$

$$\bigoplus$$

$$\exists \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y} \text{ непрерывны в } z \text{ и} \begin{cases} \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \\ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \end{cases}$$

Причем, $f'(z) = u_x + iv_x = v_y - iu_y = u_x - iu_y = v_y + iv_x$

Nota. Используя Условие Коши-Римана, получим равенство $u_x + iv_x = v_y - iu_y = u_x - iu_y = v_y + iv_x$ Nota. Коши-Риман в ПСК:

$$\begin{cases} \frac{\partial u}{\partial \rho} = \frac{1}{\rho} \frac{\partial v}{\partial \varphi} \\ \frac{\partial u}{\partial \varphi} = -\frac{1}{\rho} \frac{\partial v}{\partial \rho} \end{cases}$$
 Тогда $f'(z) = \frac{1}{z} \left(\frac{\partial v}{\partial \varphi} - i \frac{\partial u}{\partial \varphi} \right) = \frac{\rho}{z} \left(\frac{\partial u}{\partial \rho} + i \frac{\partial v}{\partial \rho} \right)$

$$u_{\rho} = u_{x} \frac{\partial x}{\partial \rho} + u_{y} \frac{\partial y}{\partial \rho} = u_{x} \cos \varphi + u_{y} \sin \varphi$$

$$v_{\varphi} = v_{x} \frac{\partial x}{\partial \varphi} + v_{y} \frac{\partial y}{\partial \varphi} = -\rho v_{x} \sin \varphi + \rho v_{y} \cos \varphi = \rho u_{y} \sin \varphi + \rho u_{x} \cos \varphi = \rho u_{\rho}$$

$$\underline{\text{Lab.}} \frac{\partial u}{\partial \varphi} = -\frac{1}{\rho} \frac{\partial v}{\partial \rho}$$

Свойства аналитических функций

Пусть f,g - аналитические функции, тогда:

 $1^\circ\,$ Линейность: af+bg - аналитическая

 2° Композиция: f(g(z)) - аналитическая

 3° Произведение: $f \cdot g$ - аналитическая

Nota. Доказательства свойств элементарные, все сводится к сведению к u и v

$$Ex. \ w = \frac{1}{z} = \frac{1}{x + iy} = \frac{x}{x^2 + y^2} - i\frac{y}{x^2 + y^2} = u(x, y) + iv(x, y)$$

$$u_x = \frac{x^2 + y^2 - 2x^2}{(x^2 + y^2)^2} = \frac{y^2 - x^2}{(x^2 + y^2)^2}$$

$$v_y = \frac{-x^2 - y^2 + 2y^2}{(x^2 + y^2)^2} = \frac{y^2 - x^2}{(x^2 + y^2)^2} = u_x$$

$$u_y = \frac{-2xy}{(x^2 + y^2)^2}$$

$$v_x = \frac{2xy}{(x^2 + y^2)^2} = -u_y$$

Таким образом, $\frac{1}{z}$ - аналитическая функция

$$Ex. \ w = \overline{z} = x - iy$$

 $u_x=1,\; v_y=-1 \neq u_x$ - не аналитическая функция