Scores	
1.	
2.	
3.	
4.	
5.	
6.	
7.	

Total:

ANA-I	Foundations	of Analysis
Final Ex	xamination B	- 9 Feb 2021

Name

General Instructions: Please answer the following, showing all your work and writing neatly. You may have 1 handwritten A4-sized sheet of paper, but no other notes, books, or calculators.

110 total points.

- 1. (6 points each) Calculate the following limits, or explain why they diverge. You may use any theorems we have proved in class or on homework.
 - (a) $\lim_{n \to \infty} \frac{\sqrt{2n^2 n + 3}}{3n + 4}$
 - (b) $\lim_{n \to \infty} \sqrt[3]{\frac{n^2 + 1}{n^3 1}}$
 - (c) $\lim_{x\to 3} \frac{x^2-9}{x^2-5}$
 - (d) $\lim_{x \to 2} \frac{x^2 4}{x^2 3x + 2}$
 - (e) $\lim_{x\to 0} \frac{|x|}{x}$.
- 2. Series
 - (a) (6 points) Determine whether $\sum_{n=1}^{\infty} \frac{(-1)^n \cdot n^2 + 5n + 2}{(1 + \frac{1}{10})^n}$ converges absolutely, converges conditionally, or diverges.
 - (b) (7 points) Let $f(x) = \sum_{n=0}^{\infty} x^n$. For what values of x does the expression converge? For these values of x, write f(x) in the form of an elementary function.
- 3. (6 points each) Examples. Justify your answers briefly.
 - (a) There is a function $f: \mathbb{R} \to \mathbb{R}$ so that f(-1) = -1 and f(1) = 1, but so that f is never 0. What else can you say about f?
 - (b) Explain briefly why $\{x \in \mathbb{Q}^{\geq 0} : x < 5\} \mid \{x \in \mathbb{Q}^{\geq 0} : x \geq 5\}$ is a Dedekind cut. What positive real number does it represent?
 - (c) Give an example of a sequence a_n whose image set $\{a_n : n \in \mathbb{N}\}$ is not compact.
 - (d) Give an example of a subset of \mathbb{R}^2 that is neither open nor closed.
- 4. (10 points) Let a_n be recursively defined by $a_0 = 2$, $a_{n+1} = \sqrt{5a_n}$ for $n \ge 0$. Show that the sequence converges, and find $\lim_{n \to \infty} a_n$.

- 5. (11 points) How many terms are needed to estimate $\sum_{n=0}^{\infty} \frac{10 + (-1)^n \cdot n}{5^n}$ to within 0.1? Justify your answer!
- 6. (12 points) Show directly from definition that if a_n, b_n are sequences so that $\lim_{n\to\infty} a_n = 2$ and $\lim_{n\to\infty} b_n = 4$, then $\lim_{n\to\infty} a_n \cdot b_n = 8$.
- 7. (10 points) Prove that if f is a continuous function from [2,5] to [2,5], then f has a fixed point.