

Nomenclatura

$\mathbf{Z}\left[\Omega\right]$	Impedancia	I [A]	Corriente
$\mathbf{V}[V]$	Tensión	j	Unidad imaginaria
<i>t</i> [s]	Tiempo	P[W]	Potencia activa
Q [VAr]	Potencia reactiva	S [VA]	Potencia aparente
m	Relación de transformación	\mathbf{I}_{exc} o \mathbf{I}_0 [A]	Corriente de excitación
\mathbf{I}_{Fe} [A]	Corriente debido a pérdidas en el Fe	\mathbf{I}_{μ} [A]	Corriente magnetizante

UNIDAD 1 ACÁ QUIERO PONER LO DE LAS BOBINAS Y ESO... VER UNIDAD 2 **TRANSFORMADORES**

Transformador Ideal en vacío

Transformador Ideal en carga

SIN PÉRDIDAS EN EL NÚCLEO DE FE

Autoinducción
$$L = \frac{\mu N^2 S}{l}$$

CON PÉRDIDAS EN EL NÚCLEO DE FE

Fem
$$\mathscr{F} = N_1 \mathbf{I}_1 = N_1 \mathbf{I}_0$$
 Relación de transfor. $m = \frac{E_1}{E_2} = \frac{N_1}{N_2}$

$$\mathbf{I}_0 = \mathbf{I}_{\mu} + \mathbf{I}_{Fe}$$

CON PÉRDIDAS EN EL NÚCLEO DE FE

$$\begin{aligned} \text{Fem} & \quad \mathscr{F} = N_1 \mathbf{I}_1 - N_2 \mathbf{I}_2 \\ \mathscr{F} = N_1 \mathbf{I}_0 \\ & \quad \mathbf{I}_0 = \mathbf{I}_1 - \frac{N_2}{N_1} \mathbf{I}_2 \end{aligned}$$
 Corriente reducida
$$\mathbf{I'}_2 = \frac{\mathbf{I}_2}{m}$$

Transformador Real en vacío

Transformador Real en carga

$$\mathbf{V}_1 = \mathbf{E}_1 + R_1 \mathbf{I}_0 + j X_1 \mathbf{I}_0$$
 $\mathbf{V}_{20} = \mathbf{E}_2$
En trafos industriales $m \approx \frac{V_1}{V_2}$

Circuito equivalente aproximado

Se muestra el circuito referido al primario. Cuando es referido al secundario se hace un análisis similar.

La rama paralelo siempre permanece del lado de alta tensión.

Ensayo de vacío

Permite determinar las pérdidas en el Fe y los parámetros de la rama paralelo, R_{Fe} y X_{μ} .

Pérdidas en Fe $P_0 = P_{Fe} = V_{1n} \cdot I_0 \cos \phi_0$

$$R_{fe} = \frac{V_{1n}}{I_{fe}}$$

$$X_{\mu} = \frac{V_{1n}}{I_{\mu}}$$

Resistencia de cortocircuito $R_{cc} = R_1 + R'_2$ Reactancia de cortocircuito $X_{cc} = X_1 + X'_2$

Parámetros referidos al primario

Número de espiras $N_2' = mN_2$ Tensión referida $V_2' = mV_2$ Corriente referida $I_2' = \frac{I_2}{m}$ Impedancia referida $Z_2' = m^2 Z_2$

Ensayo de cortocircuito

 $Z_2 = R_2 + jX_2$

Permite determinar las pérdidas en el Cu y los

parámetros de la rama de cortocircuito, R_{cc} y X_{cc} . I_0 es despreciable.

$$P_{cc} = P_{Cu} = V_{cc} \cdot I_{1n} \cos \phi$$

$$R_{cc} = \frac{V_{1cc}}{I_{1n}} \cos \phi_{cc} \quad X_{cc} = \frac{V_{1cc}}{I_{1n}} \sin \phi_{cc}$$

En ambos ensayos, los factores de potencia $\cos\phi_0$ y $\cos\phi_{cc}$ son las incógnitas a determinar para calcular los parámetros.

Regulación de Voltaje

Regulación de voltaje

 $RV = \frac{V_{20} - V_{2pc}}{V_{2pc}}$

$$RV = \frac{V_{1n} - V_2'}{V_{1n}}$$

Eficiencia

$$\eta = \frac{P_{out}}{P_{in}} = \frac{S \, Cos(\phi)}{S \, Cos(\phi) + P_{fe} + P_{\mu}}$$

Eficiencia máxima

 $cos(\phi) = 1 \text{ y } P_{fe} = P_{\mu}$ $P_{out} = S\cos\phi$

Potencia útil Falta revisar esto, después verifico bien las fórmulas... Potencia demandada $P_{in} = P_{out} + P_p$

Pérdidas en potencia $P_p = P_{Fe} + P_{\mu}$

Índice de Carga

$$C = \frac{I}{I_n} \quad C_{opt} = \sqrt{\frac{P_0}{P_{cc}}}$$