제11장 상태공간모형

11.1 상태공간모형(state-space model)의 표현

■ 상태공간모형

관측방정식	$Y_t = \mu_t + w_t$
상태방정식	$\mu_t = \mu_{t-1} + v_t$

• 관측방정식: 관측변수와 상태변수 간의 관계를 표현한 식

• 상태방정식: 상태변수의 시간에 따른 변화를 나타내는 식

- 관측변수: Y_t

- 상태변수[<mark>확률변수</mark>]: μ_t (시간 t에서의 수준)

• $w_t \sim N(0, \sigma_w^2)$

• $v_t \sim N(0, \sigma_v^2)$

■ 일반적인 상태공간모형

관측방정식	$y_t = Gx_t + w_t$	$w_t \sim WN(0,R)$
상태방정식	$x_t = Fx_{t-1} + v_t$	$v_t \sim \mathit{WN}(0,\mathit{Q})$

• y_t : 크기 d의 관측변수벡터

• *x_t* : 크기 *k*의 상태변수벡터

• $G_{(d \times k)}, F_{(k \times k)}$: 계수행렬(이 행렬에 미지의 상수가 포함된 경우, 그 상수는 추정 대상)

• w_t 와 v_t 는 서로 독립

■ 보다 일반적인 상태공간모형: 각 방정식에 외생변수벡터가 포함될 수 있다.