Lista 1 - Limite

1. Um tanque com capacidade para 1.000 litros de água é drenado pela base em meia hora. Os valores na tabela mostram o volume V de água remanescente no tanque (em litros) após t minutos.

t (min)	5	10	15	20	25	30
V(L)	694	444	250	111	28	0

- a) Se P é o ponto (15, 250) sobre o gráfico de V, encontre as inclinações das retas secantes PQ, onde Q é o ponto sobre o gráfico com t = 5, 10, 20, 25 e 30.
- b) Estime a inclinação da reta tangente em P pela média das inclinações de duas retas secantes.
- c) Use um gráfico da função para estimar a inclinação da tangente em P. (Essa inclinação representa a razão na qual a água flui do tanque após 15 minutos.)
- 2. Calcule os limites:

a)
$$\lim_{t \to -3} \frac{t^2 - 9}{2t^2 + 7t + 3}$$

b)
$$\lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{x}$$

c)
$$\lim_{t \to -4} \frac{\frac{1}{4} + \frac{1}{x}}{4 + x}$$

${\bf Gabarito}$

t (min)	5	10	20	25	30
V(L)	694	444	111	28	0
m_{PQ}	-44.4	-38.8	-27.8	-22.2	$-16.\bar{6}$

- 1. a)
 - b) -33.3
 - c) $-33.\bar{3}$
- 2. a) 6/5
 - b) 1
 - c) -1/16