

VIGILADA MINEDUCACIÓN - SNIES 1732

## MÉTODOS NUMÉRICOS

#### **ERRORES**

¿Cuántas cifras significativas tienen los siguientes números?

- 0.000468
- 0.00468
- 0.0468

Los ceros no siempre son cifras significativas.

#### **ERRORES**

¿Cuántas cifras significativas tienen los siguientes números?

- 0.000468
- 0.00468
- 0.0468

Los ceros no siempre son cifras significativas.

Cifras Significativas



#### **ERRORES**

- Los métodos numéricos proporcionan resultados aproximados. Por tanto, se requiere que se determinen qué tan confiables pueden ser los resultados. Una forma es mediante las cifras significativas.
- Existen cantidades que representan valores específicos pero no se pueden representar en su totalidad. Tal es el caso del número π, la raíz cuadrada de un número o una fracción. Para efectos de cálculos a través de los computadores (los cuales permiten un número finito de cifras significativas), es necesario hacer un redondeo (omitir algunos dígitos) → error de redondeo.

## **EXACTITUD Y PRECISIÓN**

Para caracterizar un error, es posible usar la exactitud y la precisión.

• Exactitud: ¿qué tan cercano está el valor calculado o medido al real?.

Precisión: ¿qué tan cercano están unos de otros, un conjunto de

valores calculados o medidos?.

Imagen tomada de: Chapra, S. C., & Canale, R. P. (2007). Métodos numéricos para ingenieros. McGraw-Hill.



## **EXACTITUD Y PRECISIÓN**

Inexactitud o sesgo: desviación sistemática del valor verdadero. a) y
 c) son iguales de inexactos.

Impresición o incertidumbre: magnitud de la dispersión de los datos.

d) es más preciso que b).

Ejemplo de la prueba saber

Imagen tomada de: Chapra, S. C., & Canale, R. P. (2007). Métodos numéricos para ingenieros. McGraw-Hill.



Los errores numéricos se producen a raíz de la aplicación de aproximaciones en el momento de representar operaciones y cantidades matemáticas exactas.

¿Qué diferencia se encuentra entre el truncamiento y el redondeo? De un ejemplo.

24365.879

Valor verdadero = valor aproximado + error

E<sub>t</sub> = valor verdadero – valor aproximado

No tiene en cuenta el orden de la magnitud que se estima

Error relativo fraccional verdadero =  $\frac{error \ verdadero}{valor \ verdadero}$ 

Error relativo porcentual verdadero =  $\varepsilon_t = \frac{error verdadero}{valor verdadero} * 100$ 

#### Ejercicio:

En el mes de Enero, la predicción de temperatura promedio para una ciudad fue de 25.3°C; mientras que según el reporte de la estación meteorológica de la ciudad, el promedio fue de 27.7°C. ¿Cuál fue el error relativo porcentual de la predicción?

#### Ejercicio:

En el mes de Enero, la predicción de temperatura promedio para una ciudad fue de 25.3°C; mientras que según el reporte de la estación meteorológica de la ciudad, el promedio fue de 27.7°C. ¿Cuál fue el error relativo porcentual de la predicción?

$$\mathcal{E}_{\xi} = \frac{(27.7 - 25.3)}{27.7} *100 = 8,664\%$$

#### Ejercicio:

Dentro de un proceso experimental, se está calculando la distancia de un objeto a un punto determinado, a partir de los datos capturados con un sensor. Antes de la calibración del dispositivo que posee el sensor, se obtuvo el valor de 2.42 m, mientras que posterior a este proceso se obtuvo el valor de 1.9 m. ¿Cuál fue el error relativo porcentual?

#### Ejercicio:

Dentro de un proceso experimental, se está calculando la distancia de un objeto a un punto determinado, a partir de los datos capturados con un sensor. Antes de la calibración del dispositivo que posee el sensor, se obtuvo el valor de 2.42 m, mientras que posterior a este proceso se obtuvo el valor de 1.9 m. ¿Cuál fue el error relativo porcentual?

$$\mathcal{E}_{\xi} = |1, 9 - 2, 42| \times 100 =$$

#### Ejercicio:

Dentro de un proceso experimental, se está calculando la distancia de un objeto a un punto determinado, a partir de los datos capturados con un sensor. Antes de la calibración del dispositivo que posee el sensor, se obtuvo el valor de 2.42 m, mientras que posterior a este proceso se obtuvo el valor de 1.9 m. ¿Cuál fue el error relativo porcentual?

$$\mathcal{E}_{\xi=11,9-2,42}/_{*100} = 27,36\%$$

#### Ejercicio:

Suponga que se tiene que medir la longitud de un puente y la de un remache, y se obtiene 9 999 y 9 cm, respectivamente. Si los valores verdaderos son 10 000 y 10 cm, calcule a) el error verdadero y b) el error relativo porcentual verdadero en cada caso.

#### Ejercicio:

Suponga que se tiene que medir la longitud de un puente y la de un remache, y se obtiene 9 999 y 9 cm, respectivamente. Si los valores verdaderos son 10 000 y 10 cm, calcule a) el error verdadero y b) el error relativo porcentual verdadero en cada caso.

#### Ejercicio:

Suponga que se tiene que medir la longitud de un puente y la de un remache, y se obtiene 9 999 y 9 cm, respectivamente. Si los valores verdaderos son 10 000 y 10 cm, calcule a) el error verdadero y b) el error relativo porcentual verdadero en cada caso.

b) Prente 
$$\xi_{k} = \frac{1}{100000} *100 = 0,01\%$$

Remache  $\xi_{k} = \frac{1}{100} *100 = 10\%$ 



Imagen tomada de: Chapra, S. C., & Canale, R. P. (2007). Métodos numéricos para ingenieros. McGraw-Hill.

#### FIGURA 3.4

La representación de un entero decimal –173 en una computadora de 16 bits usando el método de magnitud con signo.



Imagen tomada de: Chapra, S. C., & Canale, R. P. (2007). Métodos numéricos para ingenieros. McGraw-Hill.

18

#### Ejemplo:

Expanda el número 1563 usando base 10

$$1563 = (1 \times 10^3) + (5 \times 10^2) + (6 \times 10^1) + (3 \times 10^0).$$

Ejemplo:

Expanda el número 77 usando base 2



Ejercicios: expanda los siguientes números según la base indicada.

- 34210 (base 10)
- 697 (base 2)
- 96 (base 2)
- 419 (base 10)
- 315 (base 2)

Error relativo porcentual verdadero =  $\varepsilon_t = \frac{error\ verdadero}{valor\ verdadero} * 100$ 

En ocasiones es difícil obtener el valor verdadero, por lo que se recurre a un valor aproximado.

error aproximado

 $\varepsilon_{a} = \frac{error\ aproximado}{valor\ aproximado} * 100$ 

Y para hallar las aproximaciones, comúnmente se utiliza un método iterativo.

$$\epsilon_{\text{a}} = \frac{(aproximación\ actual\ -aproximación\ anterior)}{aproximación\ actual} * 100$$

Al final lo que se busca es que

$$|\varepsilon_a| < \varepsilon_s$$

Donde,  $\varepsilon_s$  hace referencia al error tolerado.

Si se relaciona el error con la cantidad de cifras significativas, se tiene que el error tolerado para **n** cifras significativas está dado por:

$$\varepsilon_{s} = (0.5 \times 10^{2-n})\%$$

Muchas funciones se representan a través de series infinitas.

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!}$$

Ejemplo: calcule el valor de  $e^{0.5}$ , iniciando la iteración en  $e^x = 1$ .

Tenga presente que el valor verdadero de  $e^{0.5}$ =1.648721271 Agregue términos, hasta que el valor absoluto del error aproximado  $\epsilon_a$  sea menor que un criterio de error preestablecido  $\epsilon_s$  con **tres cifras** significativas.

Solución:

$$\varepsilon_{s} = (0.5 \times 10^{2-n})\%$$

$$\varepsilon_{\rm s} = (0.5 \times 10^{2-3})\% = 0.05\%$$

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!}$$

$$e^{0.5}=1.648721271$$

| Término | Resultado | ε <sub>t</sub> (%) | ε <sub>a</sub> (%) |
|---------|-----------|--------------------|--------------------|
| 1       |           | -                  |                    |
| 2       |           |                    |                    |
| 3       |           |                    |                    |
| 4       |           |                    |                    |
| 5       |           |                    |                    |
| 6       |           |                    |                    |
| 7       |           |                    |                    |
| 8       |           |                    |                    |
| 9       |           |                    |                    |
| 10      |           |                    |                    |
| 11      |           |                    |                    |

Solución:

$$\varepsilon_{s} = (0.5 \times 10^{2-n})\%$$

$$\varepsilon_{\rm s} = (0.5 \times 10^{2-3})\% = 0.05\%$$

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!}$$

$$e^{0.5}=1.648721271$$

| Término | Resultado   | ε <sub>t</sub> (%) | ε <sub>a</sub> (%) |
|---------|-------------|--------------------|--------------------|
| 1       | 1           | 39,34693404        |                    |
| 2       | 1,5         | 9,02040106         | 33,33333333        |
| 3       | 1,625       | 1,438767815        | 7,692307692        |
| 4       | 1,645833333 | 0,175162274        | 1,265822785        |
| 5       | 1,6484375   | 0,017211581        | 0,157977883        |
| 6       | 1,648697917 | 0,001416512        | 0,015795293        |
| 7       | 1,648719618 | 0,000100256        | 0,001316257        |
| 8       | 1,648721168 | 6,23788E-06        | 9,40183E-05        |
| 9       | 1,648721265 | 3,61737E-07        | 5,87614E-06        |
| 10      | 1,64872127  | 3,52849E-08        | 3,26452E-07        |
| 11      | 1,648721271 | 1,89622E-08        | 1,63226E-08        |

Determine el número de términos necesarios para aproximar cos x a 8 cifras significativas con el uso de la serie de McLaurin.

$$\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \cdots$$

Determine el número de términos necesarios para aproximar  $\cos x$  a 8 cifras significativas con el uso de la serie de McLaurin.

$$\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \dots$$

$$\mathcal{E}_{5} = (0.5 \times 10^{2-n}) \% =$$

Determine el número de términos necesarios para aproximar  $\cos x$  a 8 cifras significativas con el uso de la serie de McLaurin.

$$\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \dots$$

$$\mathcal{E}_{5} = (0.5 * 10^{2-n}) \% = 0.00000005$$

Determine el número de términos necesarios para aproximar  $\cos x$  a 8 cifras significativas con el uso de la serie de McLaurin.

$$\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \dots$$

$$\mathcal{E}_{5} = (0.5 * 10^{2-1}) \% = 0.00000005$$
 $\cos(0.3\pi) =$ 

Determine el número de términos necesarios para aproximar  $\cos x$  a 8 cifras significativas con el uso de la serie de McLaurin.

$$\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \dots$$

$$\mathcal{E}_{5} = (0.5 * 10^{2-1}) \% = 0.00000005$$
 $Cos(0.3\pi) = 0.587785252$ 

$$\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \dots$$

$$\mathcal{E}_{5} = (0.5 \times 10^{2-n})\% = 0.00000005$$

$$Cog(0,3\pi) = 0,587785252$$

| Término | exponente | Resultado | ε <sub>t</sub> (%) | ε <sub>a</sub> (%) |
|---------|-----------|-----------|--------------------|--------------------|
| 1       |           |           |                    |                    |
| 2       |           |           |                    |                    |
| 3       |           |           |                    |                    |
| 4       |           |           |                    |                    |
| 5       | ,         |           |                    |                    |
| 6       |           |           |                    |                    |
| 7       |           |           |                    |                    |
| 8       |           |           |                    |                    |
| 9       |           |           |                    |                    |
| 10      |           |           |                    |                    |
| 11      |           |           |                    |                    |

$$\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \dots$$

$$\mathcal{E}_{5} = (0.5 \times 10^{2-n})\% = 0.00000005$$

$$Cog(0,3\pi) = 0,587785252$$

| exponente | Resultado   | ε <sub>t</sub> (%) | ε <sub>a</sub> (%) |
|-----------|-------------|--------------------|--------------------|
|           | 1           | -70,13016167       |                    |
| 2         | 0,555867802 | 5,430120987        | -79,898889         |
| 4         | 0,58874337  | -0,16300475        | 5,584023513        |
| 6         | 0,587769964 | 0,002601065        | -0,165610123       |
| 8         | 0,587785404 | -2,5752E-05        | 0,002626816        |
| 10        | 0,587785251 | 1,73612E-07        | -2,59256E-05       |
| 12        | 0,587785252 | -8,48347E-10       | 1,74461E-07        |
| 14        | 0,587785252 | 3,11656E-12        | -8,51463E-10       |
| 16        | 0,587785252 | -3,77765E-14       | 3,15434E-12        |
| 18        | 0,587785252 | -3,77765E-14       | 0                  |
| 20        | 0,587785252 | -3,77765E-14       | 0                  |