ADDITIONAL MATHEMATICS

MODULE 8

INDICES AND LOGARITHMS

CHAPTER 5: INDICES AND LOGARITHMS

CO	NTEN'	ΓS	PAGE
5.0	INDI	CES AND LOGARITHM	
	5.1	Concept Map	2
	5.2	Indices and laws of Indices	3
		Exercise 5.2	
	5.3	Simplify Algebraic Expressions	4 - 5
		Exercise 5.3	
	5.4	Equation Involving Indices	5 - 7
		Exercise 5.4	
	5.5	Past Year Questions	8
	5.6	Assessment	9 - 10
		Answers	11

CHAPTER 5: INDICES AND LOGARITHMS

5.1 <u>CONCEPTUAL MAP</u>

5.2 <u>INDICES AND LAWS OF INDICES</u>

Examples	Hit the Buttons
Find the values of the following. 1. $6^3 = 216$	6
$2. 4^{-2} = \frac{1}{4^2} \\ = \frac{1}{16}$	$\begin{array}{ c c c c c }\hline 1 & ab/c & 4 & x^2 & = \\ \hline \end{array}$
$3. 8^{\frac{2}{3}} = (\sqrt[3]{8})^2 = 2^2 = 4$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

EXERCISE 5.2

a) Evaluate the following

1.	0.4^{4}	2.	$\left(\frac{-27}{8}\right)^{\frac{2}{3}}$
	Solution		Solution
3.	$\left(\frac{1}{8}\right)^{-3}$ <u>Solution</u>	4.	$ \frac{1}{4^{-\frac{1}{2}}} $ Solution
			Solution

5.3 <u>SIMPLIFY ALGEBRAIC EXPRESSIONS</u>

	Examples	Solution
Simp		
1.	$2a^2 \times 3a^3$	Sign : $(+) x (+) = (+)$
	= $(2 \times 3) \times (a^2 \times a^3)$ = $6 \times a^{2+3}$	Number : $2 \times 3 = 6$ Unknown/ : $a^2 \times a^3 = a^5$
	$= 6 \times a^{2+3}$	Unknown/ : $a^2 \times a^3 = a^5$
		base
2.	$3^{3n-2} \div 3^{n-3}$	
	$= 3^{3n-2-(n-3)}$	$a^m \div a^n = a^{m-n}$
	$= 3^{3n-2-n+3}$	Use the laws of indices to simplify the
	$= 3^{2n+1}$	division

EXERCISE 5.3

Simplify the following

511	nplify the following		
1.	$(3^4)^{2n} \times 3^n$	2.	$3^{1-2n} \times 3^4 \times 3^{3n+2}$
	Solution		Solution
3.	0n+1 42n-1	4.	$a^2 \times 2a^3 \div (4a)^2$
3.	$8^{n+1} \div 4^{2n-1}$	4.	a x 2a ÷ (4a)
	Solution		Solution

5.	$\frac{p^{n+2} \times p^{3-2n}}{p^{5+3n}}$	6.	$\frac{18a^7b^2}{6a^2b^2}$
	Solution		Solution
7.	$3^{x} - 3^{x-1}$	8.	$2^{n+2} - 2^n + 12(2^{n-1})$
	Solution		Solution

5.4 <u>EQUATIONS INVOLVING INDICES</u>

Examples	Steps / Method
Solve each of the following equations	
1. $3^{3x} = 81$ $3^{3x} = 3^4$ 3x = 4	Express in the and compare the indices
$x = \frac{4}{3}$	the indices
2. $2^{x} \cdot 4^{x+1} = 64$ $2^{x} \cdot 2^{2(x+1)} = 2^{6}$ x + 2x + 2 = 6 3x = 4 $x = \frac{4}{3}$	Use as the same base throughout the indices using the laws of indices

3.
$$8^{x^{2}} - 16^{x+1} = 0$$

$$(2^{3})^{x^{2}} - (2^{4})^{x+1} = 0$$

$$(2^{3})^{x^{2}} = (2^{4})^{x+1}$$

$$2^{3x^{2}} = 2^{4x+4}$$

$$3x^{2} = 4x + 4$$

$$3x^{2} - 4x - 4 = 0$$

$$(3x + 2)(x - 2) = 0$$

$$x = \frac{-2}{3}, \quad x = 2$$

Use 2 as the same base throughout

_____of a quadratic equation

EXERCISE 5.4

1.	Solve $8x^3 = 27$ Solution	2.	Solve $8^x = \frac{1}{4}$ Solution
3.	Solve $2^x \cdot 3^x = 36$ <u>Solution</u>	4.	Solve $4x^{\frac{1}{2}} = 10$ Solution

5.	Solve $3(9^{x+4}) = 27^{x+1}$ Solution	6.	Solve $5^{3x} \div 25^{x+1} = \frac{1}{125}$ Solution
7.	Solve $\sqrt{27^{x+4}} = \frac{1}{3^{x+3}9^x}$ Solution	8.	Solve $125^{x-1} = \frac{25}{\sqrt{5^{x+3}}}$ Solution

5.5 PAST YEAR QUESTIONS

1.	Solve the equation $2^{x+4} - 2^{x+3} = 1$	(SPM 05)
	Solution	
2.	Solve the equation $32^{4x} = 4^{8x+6}$	(SPM 04)
		(51 11 04)
	<u>Solution</u>	

Time: 30 minutes

5.6 <u>ASSESSMENT</u>

Answer <u>All</u> the questions

1.	Solve the equation $16^{3x} = 8^{6x+1}$
	Solution
	S_{-1} 1 2^{2x} 1
2.	Solve the equation $3^{2x} = \frac{1}{243}$
	Solution
	0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3.	Solve the equation 8^x . $2^x = 32$
	Solution
1	

	Solve the equation $3^{x^2} - 9^{6-2x} = 0$
4.	
	Solution
	Solve the equation $\sqrt{9^{x-2}} = 1$
5.	Solve the equation $\sqrt{8^{x-2}} = \frac{1}{4^{1-x}2^x}$
	Solution
	σ σ^{2x} . σ^{2x-1}
6.	Solve the equation $5^{2x} - 5^{2x-1} = 100$
	Solution

ANSWERS

EXERCISE 1.1

- 1. 0.0256
- 2. 2.25
- 3. 512
- 2

EXERCISE 2.1

- 1. 3⁹ⁿ 2. 3ⁿ⁺⁷
- $3. \qquad \frac{1}{p^{4n}}$
- 4. $\frac{1}{8}a^3$

- 5. 2^{n+1} 6. $2a^5$

- $2^{n}(9)$ 8.

EQUATION INVOLVING INDICES

- same base, compare
- General form, solving by factorization

EXERCISE 3.1

$$1. \qquad x = \frac{3}{2}$$

5.
$$x = 6$$

2.
$$x = \frac{-2}{3}$$

6.
$$x = -1$$

3.
$$x = 2$$

7.
$$x = -2$$

8. $x = 1$

4.
$$x = 6.25$$

8.
$$x = 1$$

PAST YEAR QUESTIONS

1.
$$x = -1$$

2.
$$x = 3$$

ASSESSMENT

$$1. \qquad x = \frac{-5}{2}$$

4.
$$x = 6, -2$$

$$2. \qquad x = \frac{-1}{2}$$

5.
$$x = 2$$

3.
$$x = \frac{5}{4}$$

6.
$$x = \frac{3}{2}$$

ADDITIONAL MATHEMATICS

MODULE 9

INDICES AND LOGARITHMS

CHAPTER 5: INDICES AND LOGARITHMS

CO	NTE	PAGE	
5.0	IND	ICES AND LOGARITHM	
	5.1	Conceptual Map	2
	5.2	Logarithm and laws of logarithm	3 - 4
		Exercise 5.2	
	5.3	Finding Logarithm of numbers	4 - 6
		Exercise 5.3	
	5.4	Changing the base of logarithm	7 - 9
		Exercise 5.4.1	
		Exercise 5.4.2	
		Exercise 5.4.3	
	5.5	Equation Involving logarithm	10 - 11
		Exercise 5.5	
	5.6	Past Year Questions	11 - 12
	5.7	Assessment	13
		Answers	14

CHAPTER 5: INDICES AND LOGARITHMS

5.1 CONCEPTUAL MAP

5.2 LOGARITHM AND LAWS OF LOGARITHM

Find the value of the following

Find the value of the following					
Examples	Solution				
1. $\log_4 \frac{1}{64}$	Let . $\log_4 \frac{1}{64} = x$ Then $4^x = 4^{-3}$ x = -3				
2. $\log_{5} = \sqrt{5}$	Let . $\log_5 \sqrt{5} = x$				
	Then $5^{x} = 5^{2}$ $x = \frac{1}{2}$				
3. $\log_2 x = -5$	Given $log_2 x = -5$ Then $x = 2^{-5}$				
	$=\frac{1}{2^5} = \frac{1}{32}$				

EXERCISE 5.2

Find the value of each of the following

1. log ₂ 128	$2 \log_5 \sqrt{125}$
3 $\log_8 \frac{1}{64}$	$4. \log_{10}\left(\frac{2}{5}\right)^3$

5. log ₁₀₀ 10	6. log _{√4} 64
7. $\log_9 x = -1$	8. $\log_{x} \frac{1}{25} = -2$

5.3 <u>FINDING LOGARITHM OF NUMBERS</u>

Examples	Solution		
Evaluate the following	2. $\log_4 2 + \log_4 8$		
1. $\log_3 18 - \log_3 6$	$= \log_4 (2 \times 8)$		
$=\log_3\frac{18}{6}$	$= \log_4 4^2$		
6	$= 2 \log_4 4$		
$= \log_3 3$	= 2(1)		
= 1	= 2		
2. Given that $\log 2 = 0.123$ and $\log 3 = 0.256$ calculate the following			

3. Given that log_a 2 = 0.123 and log_a 3 = 0.256, calculate the following

a)
$$\log_a 12 = \log_a (2 \times 2 \times 3)$$

 $= \log_a 2^2 + \log_a 3$
 $= 2\log_a 2 + \log_a 3$
 $= 2(0.123) + 0.256$
 $= 0.502$

b)
$$\log_a \sqrt{6} = \log_a (6)^{\frac{1}{2}}$$

 $= \frac{1}{2} \log_a (2 \times 3)$
 $= \frac{1}{2} [\log_a 2 + \log_a 3]$
 $= \frac{1}{2} [0.123 + 0.256]$
 $= 0.1895$

4. Given that $\log_x 2 = a$ and $\log_x 3 = b$, write $\log_x \frac{4}{9x^2}$ in term of a and b.

$$Log_{x} \frac{4}{9x^{2}} = log_{x} 4 - log_{x} 9x^{2}$$

$$= log_{x} 2^{2} - [log_{x} 9 + log_{x} x^{2}]$$

$$= 2 log_{x} 2 - log_{x} 3^{2} - 2 log_{x} x$$

$$= 2a - 2log_{x} 3 - 2(1)$$

$$= 2a - 2b - 2$$

EXERCISE 5.3

Simplify each of the following logarithms expression

$1. \log_4 2 + \log_4 32$	$2. \log_2 48 + \log_2 3 - \log_2 9$
8 1 8 1 8 1	
$3. 2 \log_5 10 + 3 \log_5 2 - \log_5 32$	$4.4\log_{x} 2 - 3\log_{x} 4 + \log_{x} 6$

5. Express $log_a \frac{b^2}{c}$ in terms of $log_a b$ and $log_a c$

Solution

6. Given that $log_2 6 = 2.59$ and $log_2 5 = 2.32$ find the value of $log_{10} 30$

Solution

- 7. Given $log_3 2 = 0.631$ and $log_3 5 = 1.465$, find the values of
 - a) $\log_3 20$
 - b) $\log_3 \frac{4}{5}$
 - c) log₃ 7.5

Solution

5.4 CHANGING THE BASE OF LOGARITHM

Examples				
Find the value of the logarithm				
1. $\log_3 5 = \frac{\log_{10} 5}{\log_{10} 3}$				
$=\frac{0.699}{0.4771}$				
= 1.465				

EXERCISE 5.4.1

Find the value of the logarithm by changing the base of the logarithm

1.	Log ₄ 3	2.	Log ₃ 10
3.	$Log_2 0.1$	4.	Log ₅ 0.048
5.	$Log_4 \frac{1}{5}$	6.	$Log_2\left(\frac{3}{4}\right)$

Examples			
Fine	the value	e of t	the logarithm
1.	$\log_4 5$	_	$\log_2 5$
1.	1084 5	_	$\log_2 4$
		_	2.322
		=	$\overline{2\log_2 2}$
		=	$\frac{2.322}{2}$
		=	1.161

EXERCISE 5.4.2

Given that $log_2 5 = 2.322$ and $log_2 3 = 1.585$, find the value of the logarithm

1.	Log ₃ 5	2.	Log ₈ 15
3.	Log ₉ 125	4.	Log ₈ 25

Examples				
Find the value of the logarithm				
1. $\log_{10} p^2 = \frac{\log_4 p^2}{\log_4 16}$				
$=\frac{2\log_4 p}{2\log_4 4}$				
$=\frac{2m}{2}$				
= m				

EXERCISE 5.4.3

Given that $log_4 p = m$. Express the following in terms of m

1.	Log _p 4		Log ₈ p
3.	Log _{4p} 64	4.	$Log_p \frac{1}{256}$

5.5 **EQUATION INVOLVING LOGARITHMS**

1. Solve the equation:

$$Log_{10}(x-5) = log_{10}(x-1) + 2$$

Solution
Log
$$_{10}(x-5) = \log_{10}(x-1) + 2$$

Log $_{10}(x-5) - \log_{10}(x-1) = -2$

$$Log _{10} \frac{x-5}{x-1} = 2$$

$$\frac{x-5}{x-1} = 10^2$$

$$x-5 = 100(x-1)$$

$$x-5 = 100x - 100$$

$$99x = 95$$

$$x = \frac{95}{99}$$

2. Solve the equation: $3^x = 5^{2x+1}$

$$3^{x} = 5^{2x+1}$$

Solution

$$\begin{aligned} x\log_{10}3 &= (2x+1)\log_{10}5\\ x\log_{10}3 &= 2x\log_{10}5 + \log_{10}5\\ x\log_{10}3 &- 2x\log_{10}5 = \log_{10}5\\ x(\log_{10}3 - 2\log_{10}5) &= \log_{10}5\\ x &= \frac{\log_{10}5}{\log_{10}3 - 2\log_{10}5} \end{aligned}$$

$$x = -0.7591$$

EXERCISE 5.5

Solve each of the equation

1.	$5^{x} = 27$	2.	$5^{x} = 0.8$
3.	$3^{x+1} = 18$	4.	$5^{x-2} = 4^{x+1}$

5.	$2^x 3^x = 5^{x+1}$	6.	$3^{x} \cdot 4^{x+1} = 6$

5.6 <u>SPM QUESTIONS</u>

SPM 2005(Paper 1)

1. Solve the equation $\log_3 4x - \log_3 (2x - 1) = 1$ [3 marks]

SPM 2005(Paper 1)

2. Given that $\log_m = p$ and $\log_m 3 = r$, express $\log_m \left(\frac{27m}{4}\right)$ in term of p and r [4 marks]

SPM 2004(Paper 1)			
3. Given that $\log_5 2 = m$ and $\log_5 = p$, express $\log_5 4.9$ in term of m and p			
	[4 marks]		
CD1/ 2002/D 1)			
SPM 2003(Paper1)	in town of V		
4. Given that $\log_2 T - \log_4 V = 3$, express T in term of V. Express T in			
	[4 marks]		
SPM 2003(Paper1)			
5. Solve the equation $4^{2x-1} = 7^x$	[4 marks]		

Time: 30 minutes

5.7 <u>ASSESSMENT</u>

Answer <u>All</u> the questions

1.	Solve the equation $\log_5(8x-4) = 2\log_5 3 + \log_5 4$
2.	Given $x = \log_3 k = m$ and $\log_2 k = n$. Find the value of $\log_k 24$ in term of m and n
3.	Given that $\log_3 T + \log_9 V = 4$, express T in terms of V
4.	Solve the equation $5^{2x+1} = 9^x$

ANSWERS

EXERCISE 5.2

- 1. 7
- 2.
- 3.

- 4 -1.1938
- 5.
- 6.

- 7.
- 5 8.

EXERCISE 5.3

- 2. 4
- 3. 2
- 4. $\log_x \frac{3}{2}$

- 5. $2 \log_a b - \log_a c$
- 6. 4.91
- 7. a) 2.727
- c) 1.834
- b) 0.203

EXERCISE 5.4.1

- 1. 0.7924
- 2. 2.096

- 3. -3.322
- -1.887

EXERCISE 5.4.2

- 1. 1.465
- 2. 1.302

- 3. 2.1975
- -1.548 4.

EXERCISE 5.4.3

- $2. \qquad \frac{2}{3}m$

- 3.

EXERCISE 5.5

- 1. 2.048
- 2. -0.1386
- 3. 1.630

- 4. 20.64
- 8.827 5.
- 0.1632

SPM QUESTIONS

- 1.
- 3r 2p + 12.
- 2p m -1

$T = 8\sqrt{v}$ 4.

1.677 5.

ASSESSMENT

- 1. 5
- $2. \qquad \frac{1}{m} + \frac{3}{n}$

- $T = \frac{81}{\sqrt{v}}$ 3.
- 4. -1.575