(19) World Intellectual Property Organization International Burcau

(43) International Publication Date 12 July 2001 (12.07.2001)

PCT

(10) International Publication Number WO 01/49831 A2

(51) International Patent Classification7:

C12N 9/00

(21) International Application Number: PCT/EP00/13311

.

(22) International Filing Date:

28 December 2000 (28.12.2000)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

99126194.2 00126233.6 30 December 1999 (30.12.1999) E 1 December 2000 (01.12.2000) E

(71) Applicant and

(72) Inventor: KLEESIEK, Knut [DE/DE]; Goethestrasse 14, 32545 Bad Oeynhausen (DE).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BRINKMANN, Thomas [DE/DE]; Estelistrasse 9, 33739 Bielefeld (DE). GOETTING, Christian [DE/DE]; Bahnhofstrasse 84, 32584 Loehne (DE). KUHN, Joachim [DE/DE]; Am Heischberg 19, 66822 Lebach (DE). (74) Agent: BENZ, Juergen; Kanzlei Heumann, Benz, Spessartring 63, 64287 Darmstadt (DE).

(81) Designated States (national): AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

 Without international search report and to be republished upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: XYLOSYLTRANSFERASE AND ISOFORMS THEREOF

(57) Abstract: The invention relates to the isolation, purification and characterization of the enzyme xylosyltransferase (defined as "XT"). The invention describes for the first time that XT occurs in at least two isoforms ("XT-I", "XT-II"). The invention relates furthermore to the recombinant cloning and expression of human and rat XT-I and XT-II and discloses their DNA and protein sequences. The enzymes according to the invention can be used as therapeutic agents and as diagnostic markers, e.g. for the determination of enhanced proteoglycan biosynthesis, and as biochemical markers for determination of several pathological processes such as systemic sclerosis.

WO 01/49831 PCT/EP00/13311

Xylosyltransferase and Isoforms thereof

The invention relates to the isolation, purification and characterization of the enzyme xylosyltransferase (defined as "XT"). The invention describes for the first time that XT occurs in at least two isoforms ("XT-I", "XT-II"). The invention relates furthermore to the recombinant cloning and expression of human and rat XT-I and XT-II and discloses their DNA and protein sequences. The enzymes according to the invention can be used as therapeutic agents and as diagnostic markers, e.g. for the determination of enhanced proteoglycyn biosynthesis, and as biochemical markers for determination of several pathological processes such as systemic sclerosis.

Background of the Invention

10

Proteoglycans are polyanionic molecules widely expressed in animal cells and virtually every tissue. These abundant molecules are present in the extracellular matrix and on the cell surface and serve a wide range of functions. They are increasingly implicated as important regulators in many biological processes, such as extracellular matrix deposition, cell membrane signal transfer, morphogenesis, cell migration, normal and tumor cell growth and viral infection (Ruoslahti, 1989, *J. Biol. Chem.* 264, 13369-1372; Herold *et al.*, 1994, *J. Gen. Virol.* 75, 1211-1222). Proteoglycans mediate diverse cellular processes through interaction with a variety of protein ligands. In most of these bindings electrostatic interactions with the glycosaminoglycan chains attached to the core protein are involved (Kjellen & Lindahl, 1991, *Annu. Rev. Biochem.* 60, 443-475). Thus, the biological activity of proteoglycans is intimately related to the glycosaminoglycan biosynthesis.

The sulfated glycosaminoglycans chondroitin sulfate, heparan sulfate, heparin and dermatan sulfate are bound to the proteoglycan core protein by a xylose-galactose-galactose binding region (Kjellen & Lindahl, 1991, l.c.). UDP-D-xylose:proteoglycan core protein β-D-

10

various species (Hoffmann et al., 1984, Connect. Tissue. Res. 12, 151-164), and it was shown that the enzyme is secreted from the endoplasmatic reticulum into the extracellular space together with chondroitin sulfate proteoglycans (Kähnert et al., 1991, Eur. J. Clin. Chem. Clin. Biochem. 29, 624-625; Götting et al., 1999, J. Invest. Dermatol. 112, 919-924). However, the processes resulting in the release of XT from the endoplasmatic reticulum or the Golgi compartments and the role of XT in the extracellular matrix are not yet known.

As XT is the initial step enzyme in the biosynthesis of the glycosaminoglycan linkage region and as it is secreted into the extracellular matrix to a great extent, XT activity was proposed to be a diagnostic marker for the determination of an enhanced proteoglycan biosynthesis and of tissue destruction (Weilke et al., 1997, Clin. Chem. 43, 45-51). XT activities in the synovial fluid were found to be significantly increased in chronic inflammatory joint diseases (Kleesiek et al., 1987, J. Clin. Chem. Clin. Biochem. 25, 473-481). Recent studies have shown that serum XT activity is a biochemical marker for the determination of fibrotic activity in systemic sclerosis (Götting et al., 1999, l.c., Götting et al., 2000, Acta Derm. Venereol. 80, 60-61.).

Up to now there was no success to isolate or characterize xylosyltransferase (XT), however some methods were described to measure and determine the activity of said enzyme from blood or body fluid samples of patients showing pathological effects such as scleroderma or chronic joint diseases (Stoolmiller, 1972, J. Biol. Chem. 247, 3525-3532). The samples were incubated with UDP-[14C]xylose and an appropriate acceptor. The incorporated radioactivity indicated the amount of XT activity. Acceptors used so far are proteoglycans, silk fibroin (Campbell et al., 1984, Anal. Biochem. 137, 505-516) and several peptides (Bourdon et al., 1987, Proc. Natl. Acad. Sci. USA 84, 3194-3198). However, the all activity tests used herein did not allow precise determination of the lower XT activity in serum. A more specific acceptor protein is recombinant bikunin, the inhibitory component of human inter-α-trypsin inhibitor. Bikunin carries a single chondroitin, which is essential for the structure of the inhibitor. The chondroitin sulfate attachement site in the N-terminal region contains all elements responsible for recognition by XT. The complete recognition sequence is composed of the amino acids a-a-a-a- $G-\underline{S}$ -G-a-b-a, with a=E or D and b=G, E or D. This sequence was confirmed by determination of the Michaelis-Menten (Km) constants for in vitro xylosylation of different synthetic proteins and peptides using an enriched XT preparation from conditioned cell culture

supernatant of human chondrocytes. The constant was determined to be 22 μM, which was decreased 9-fold in comparison to deglycosylated core protein from bovine cartilage (188 μM) (Brinkmann et al., 1997, *J. Biol. Chem. 272, 11171-11175*). With recombinant bikunin as acceptor, a sensitive assay was developed that allows precise determination of XT activity in human serum and other body fluids (see: Weilke et al., 1997, l.c.). Using this assay an increased xylosyltransferase activity was determined in blood of patients with sclerotic processes of scleroderma, closely related to an elevated proteoglycan biosynthesis (Götting et al., 1999, l.c.).

The biosynthesis of glycosaminoglycans requires the coordinated action of a large number of glycosyltransferases. Isolation and cloning of these glycosyltransferases has been targeted for a long time, since the majority of these enzymes are only present in minute amounts. The structure and sequence of the glycosyltransferases involved in biosynthesis of the common glycosaminoglycan-protein linkage region has long remained unknown. Recent cDNA cloning of galactosyltransferase I (Okajima et al., 1999, *J. Biol. Chem. 274, 22915-22918*) and glucuruonyltransferase I (Kitagawa et al., 1998, *J. Biol. Chem. 273, 6615-6618*) identified 2 of the at least 4 enzymes involved in synthesis of the GlcAβ1-3Galβ1-3Galβ1-4Xylβ1-O-Ser structure.

Isolation, purification and characterization of XT involved in biosynthesis of the common carbohydrate-protein linkage structure has been hampered by difficulties in obtaining a sufficient amount of the source material. Since, as above mentioned, XT can be used as an additional biochemical marker for the determination of sclerotic activity in systemic sclerosis and some inflammatory disorders, it is a real need for an isolated, highly purified XT which can be produced by recombinant methods, which is necessary for diagnostic and therapeutic purposes. Moreover, the knowledge of the cDNA sequence of XT allows to use it on gene level such as in gene diagnostic or gene therapy.

Definitions

10

20

Above and below the term "XT" means xylosyltransferase (UDP-D-xylose:proteoglycan core protein β-D-xylosyltransferase (EC 2.4.2.26) deriving from any origin and includes all possible isoforms, if not otherwise pointed out. The term "hXT" has the meaning of human XT; the term "rXT" of rat XT. The terms "XT-I", "XT-II", "hXT-II", "hXT-II", "rXT-I2,

- "rXT-II" mean the specific isoforms 1 and 2 of XT according to the invention, wherein h and r have the indicated meanings.
- Above and below the term "protein" means a protein, a protein fragment or a peptide, if not otherwise explained.
- Above and below the term "recombinant protein" is defined as a protein which was
 produced by recombinant and biotechnological methods.
 - Above and below the term "XT" or "XT protein(s)" has the meaning of (a) protein(s) deriving from any source, if not otherwise stated out, having the biological activity and / or function of UDP-D-xylose:proteoglycan core protein β-D-xylosyltransferase.
- Above and below the term "a protein having the biological activity of UDP-D-xylose:proteoglycan core protein β-D-xylosyltransferase" is defined as a protein which has XT identical or XT like functions and activities and comprises XT itself and possible mutations, variants, isoforms thereof, including insertions, deletions and substitutions of one ore more amino acids. The term includes also fragments or longer forms of XT as well as dimeric or multimeric forms thereof showing XT functions.
 - Above and below the term "isoform" means a second naturally occurring enzyme having the same biological activity as a first naturally occurring enzyme, however differing by another amino acid sequence.

20 Summary of the Invention

It was found that XT can be purified 4,700-fold with 1% yield from serum-free JAR choriocarcinoma cell culture supernatant. The isolation procedure includes a combination of ammonium sulfate precipitation, heparin affinity chromatography, ion exchange chromatography and protamine affinity chromatography. Amongst other proteins an unknown protein was detected by matrix-assisted laser desorption ionization mass spectrometry-time of flight analysis (MALDI-TOF) in the purified sample. The molecular weight of this isolated and purified XT protein was determined as 120.000 by SDS-polyacrylamide gel electrophoresis. The isolated protein was enzymatically cleaved by trypsin and endoproteinase Lys-C. Peptide fragments were sequenced by Edman degradation. Searches with the amino acid sequences in protein and EST databases showed no homology to known sequences. XT was enriched by immunoaffinity chromatography with an immobilized antibody against a synthetic peptide deduced from the sequenced peptide fragments and was specifically eluted with the antigen. In

WO 01/49831

- 5 -

addition, XT was purified alternatively with an aprotinin affinity chromatography and was detected by western blot analysis in the enzyme-containing fraction.

Based on the partial amino acid sequence of their isolated and purified new enzyme (XT) derived from human JAR choriocarcinoma cell culture supernatant a novel cDNA was isolated according to the invention, encoding human XT-I enzyme using the degenerate reverse transcriptase-polymerase chain reaction method. The enzyme belongs to a novel family of glycosyltransferases having no homology to proteins of prior art. 5'- and 3'-RACE were performed to isolate a novel cDNA fragment of 3726 bp with a single open reading frame encoding at least 827 amino acids with a molecular mass of 91.000. The human XT-I gene was located on chromosome 16p13.1 using radiation hybrid mapping, and extracts from CHO-K1 cells transfected with the XT-I cDNA in an expression vector exhibited marked XT activity. Furthermore, a new 3608-bp cDNA fragment encoding a novel protein of 865 amino acids was also isolated by PCR using degenerate primers based on the amino acid sequence of human XT-I. The amino acid sequence of this XT-II isoform displays 55% identity to the human XT-I. The XT-II gene is located on chromosome 17q21.3-17q22, and the exon/intron structure of the 15 kb gene was determined. RT-PCR analyses of XT-I and XT-II mRNA from various tissues confirmed that both XT-I and XT-II transcripts are ubiquitously expressed in the human tissues, although with different levels of transcription. Furthermore, the cDNAs encoding XT-I and XT-II from rat were cloned. The deduced amino acid sequences of rat xylosyltransferases displayed 94% identity to the corresponding human enzyme.

Therefore, it is an object of this invention to provide the following subject-matters:

- An isoform of UDP-D-xylose: $proteoglycan\ core\ protein\ \beta$ -D-xylosyltransferase(XT);
- a protein comprising a sequence of said isoform or a fragment thereof, having the biological 25 activity of XT;
 - a corresponding protein deriving from human or rat sources (hXT, rXT);
 - a corresponding protein isolated from specific human tissue, wherein said hXT has a molecular weight of 120.000 under SDS PAGE conditions;
- a corresponding recombinant protein, wherein said protein is hXT-I comprising at least 827 30 amino acids and having the amino acid sequence as depicted in Fig. 7B;

WO 01/49831

- 6 **-**

- a corresponding isoform of hXT-I, termed as hXT-II, comprising 865 amino acids, exhibiting approximately 55% overall sequence identity to human hXT-I, and having, in more detail, the amino acid sequence as depicted in Fig. 8B.
- a process for isolating and purifying a protein having the biological activity of human UDP-D-xylose:proteoglycan core protein \(\beta \)-xylosyltransferase (EC 2.4.2.26), said process is 5 characterized by the following steps:
 - (i) culturing from human tissue showing an enhanced XT activity, preferably from JAR choriocarcinoma cells (ATCC HTB-144), and harvesting the cell culture supernatant,
- fractionated ammonium sulfate precipitation of the supernatant of step (i), (ii) 10
 - (iii) heparin affinity chromatography of the precipitate of step (ii),
 - (iv) ion exchange chromatography of the step (iii) product, and
 - affinity chromatography of the step (iv) product, and optionally (v)
 - a SDS-Polyacrylamide gel elektrophoresis of step (v); (vi

20

25

- recombinant forms of hXT and rXT, the corresponding DNA sequences (Fig. 7A, 8A, 9, 10) 15 included as well as suitable expression vectors and expression host cell systems;
 - antibodies directed against any of the above or below mentioned XT proteins and their uses in immunological assays and diagnostic tools for determining said XT proteins;
 - pharmaceutical compositions comprising a XT protein as defined above and below, optionally together with a suitable pharmacologically acceptable carrier, diluent or excipient;
 - uses of said XT proteins for the manufacture of a medicament for the treatment of XT relevant diseases and disorders, wherein the xylosyltransferase enzymes according to the invention can either be used directly as therapeutic drug in pathological situations where a deficiency of said enzyme and its isoforms can be detected;
 - uses of said XT enzymes for the manufacture of a medicament for the treatment of diseases and disorders which are caused or accompanied by increased levels of said enzymes, e.g. in sclerotic diseases and chronic joint diseases, wherein said medicament is an inhibitor or antagonist of said XT proteins;
- uses of said XT proteins as diagnostic markers for the diagnosis of above- and below-30 mentioned diseases and pathological symptoms and uses of said DNA molecules as gene markers;

methods of screening for compounds which are capable to inhibit the activity of said XT
proteins according to the invention using known methods for determining the activity of
XT.

5 Detailed Description:

General

10

20

UDP-D-xylose: proteoglycan core protein β-D-xylosyltransferase can be isolated and purified from JAR choriocarcinoma cell culture. The isolated protein according to the invention is a single stranded polypeptide with a molecular weight of 120.000. The protein was enzymatically cleaved and eleven peptide fragments were sequenced by Edman degradation (see Examples). XT is present only in very small amounts in animal tissues but unlike other glycosyltransferases, more than 90% of XT is enriched in the medium of cultured cells. The highest secretion of XT activity was measured in JAR choriocarcinoma cell culture, in which sternal cartilage chondrocytes and 21 different human cell lines were examined. To produce a highly enriched XT solution for the isolation of XT, JAR choriocarcinoma cells were adapted to hollow fiber culture conditions using a novel bioreactor (TECNOMOUSE) and Ultradoma-PF medium without serum addition as nutrient. For purification of XT a combination of classic separation methods and new affinity matrices was employed. Therefore, a heparin matrix was used as an affinity ligand for the XT. When applied to immobilized heparin, XT was completely adsorbed at the matrix and the XT activity was eluted only with a high salt concentration after most contaminating proteins have been removed from the matrix. Protamine chloride is well-known as cationic activator for several sulfotransferases, so the effect of protamine chloride on the XT was investigated. An increased XT activity was measured when protamine chloride was added to the XT assay solution (see Examples), indicating an interaction of these arginine rich proteins with XT. Therefore, a protamine chloride affinity matrix was synthesized using an aldehyde activated perfusion medium as support. The interaction of XT with this affinity matrix resulted in a 13.6 times enrichment of XT. The protamine chloride affinity chromatography was the most efficient purification step during the isolation of the XT. Immobilized aprotinin, a Kunitz-type proteinase inhibitor, was found to be another appropriate affinity matrix for enrichment of XT, as it was able to adsorb XT quantitatively. Therefore, it was used for alternative purification of XT. Different lines of evidence showed that the isolated protein corresponds to the XT: (a) XT activity was enriched

WO 01/49831 PCT/EP00/13311

using immobilized antibodies raised against a synthetic peptide deduced from the 120.000 protein, and the XT activity could be competitively eluted with this peptide. (b) Immunoblot analysis of aprotinin affinity purified XT corresponds with the 120.000 protein. However, non-reducing and non-denaturating gel filtration chromatography with heparin affinity-purified XT from JAR cell culture supernatant shows an additional peak of XT activity at a molecular weight of approximately 500.000. XT is associated with proteoglycans. Treatment of XT with N-glycosidase F resulted in a decrease of the molecular weight from 120.000 to 116.000, suggesting that the XT is a glycoprotein. A comparison of the molecular mass of XT with other glycosyltransferases involved in biosynthesis of proteoglycans shows that the XT is larger than the other enzymes. Another difference is that nearly all proteoglycan glycosyltransferases are tightly bound to the membrane of the endoplasmic reticulum, whereas XT is secreted into the extracellular space. XT according to the invention contains like many glycosyltransferases a DxD motif, suggesting that this motif is involved in binding the metal-ion cofactor and the donator substrate (Gastinel et al., 1999, EMBO J. 18, 3546-3557). A DxD sequence was also found in peptide 8 obtained from the enzymatically cleaved XT.

The invention discloses for the first time the molecular cloning and expression of human and rat XT. Surprisingly, XT is found in at least two isomeric forms, which are termed according to the invention as XT-I and XT-II. Based on the amino acid sequence a novel cDNA was cloned, which encodes a protein of at least 827 amino acids with a molecular mass of 91.000. A DxD motif was identified in the XT-I amino acid sequence using hydrophobic cluster analysis. This motif has been observed in many glycosyltransferases, and is involved in the coordination of a divalent cation in the binding of the nucleotide-sugar (Breton & Imberty, 1999, Curr. Opin. Struct. Biol. 9, 563-571.). The translation initiation codon of the XT-I cDNA could not be yet cloned probably due to strong secondary structures in the 5'-region of the XT-I mRNA. The XT-I protein isolated from human JAR choriocarcinoma cell culture supernatant migrated on SDS-PAGE with a molecular mass of 120.000 and the protein size could be further reduced after N-glycanase digestion. These findings indicate that the cloned cDNA represents at least 90% of the coding region of human XT-I.

30

15

Another cDNA was completely identified from human placenta RNA, which was similar but not identical to the hXT-I cDNA. The new cDNA encodes a protein of 865 amino acids with a molecular weight of 97.000. This novel protein termed XT-I has a proline-rich region located

WO 01/49831 PCT/EP00/13311

9 -

near the amino-terminus and the type II transmembrane topology characteristic of many other glycosyltransferases cloned to date. The hXT-II protein was similar to the human XT-I with an overall sequence identity of 55%. The similarity of the predicted amino acid sequences was low (<10%) at the amino-terminal end. However, large stretches at the C-terminal region, where the catalytic domain was found to be located in glycosyltransferases, are very conserved with an identity of more than 80% in both proteins. These findings let conclude that the XT-II gene encodes another human xylosyltransferase, although the catalytic activity and the biological role of XT-II remain to be elucidated in detail.

Since alterations in XT activity have been reported to be associated with fibrotic and sclerotic 10 alterations of connective tissue (Götting et al., 1999; Götting et al., 2000, l.c.), the present findings provide molecular tools to study the function and the regulated expression of human XT as well as the molecular mechanisms of these diseases.

Production of XT

JAR choriocarcinoma cells which had been adapted to growth in the serum-free Ultradoma-PF medium secreted XT activity into the cell culture supernatant. During the exponential growth XT activity and total protein concentration in the supernatant of a traditional cell culture system (T-flasks) were determined as 0.2 mU/l and 0.1 g/l, respectively. The cells were cultivated using three "Tecnomouse"® bioreactor systems. Each bioreactor contained five culture casettes. About 10⁷ cells per culture casette were inoculated and medium probes of about 0.5 ml were taken every day to determine the viability of the cells and the glucose, and lactate concentration as well as the XT activity of the cell culture supernatant. The cells amounted in the probes varies from 10⁵ to 10⁷ cells per ml with viability between 40 and 70%. XT production increased within three weeks after cell inoculation, reaching a plateau of approximately 30 mU/l. After three months the culture cassette was removed. Harvesting was carried out every two days, collecting 10 ml cell culture supernatant per culture cassette. The cell-free supernatant was collected and stored at -75°C. Mean XT activity in the supernatant of the high density culture was determined as 29.0 mU/l, while the total protein concentration was estimated as 4.8 g/l. In total 18.5 l high density cell culture supernatant was collected and yielded 535.8 mU XT.

WO 01/49831 PCT/EP00/13311

- 10 -

Isolation and purification of XT from cell culture supernatant

XT was purified form 18.5 l supernatant (equivalent to 2.000 l normal cell culture supernatant) of serum-free cultivated JAR choriocarcinoma cells to an apparent homogeneity of about 4700-fold purification. A summary of the purification steps for isolation of XT is shown in Table 1.

- 5 XT activity of the crude supernatant was approximately 0.006 mU/mg protein. The purification method according to the invention comprises four, preferably five different steps. It is possible, that one step can be achieved more than once if necessary.
 - Step 1: Fractionated ammonium sulfate precipitation XT of the ammonium sulfate precipitable fraction was dissolved in 0.46 l buffer A with solubilization of 79.5% of the original activity.
- Step 2: Heparin affinity chromatography on POROS 20 HE 4 ml of XT-enriched solution from step 1 was loaded onto the POROS 20 HE column. XT activity was completely retained on the column. More than 70% of total protein passed through the column. Contaminating protein was eluted at a low NaCl concentration. 44% of the XT activity bound to the heparin matrix emerged at 0.5 M NaCl (Fig. 1A).
- Step 3: Ion exchange chromatography on POROS 20 HQ 4 ml of the desalted XT-containing fraction from step 2 was loaded onto the POROS 20 HQ column equilibrated in buffer A. More than 98% of the XT activity bound to the resin. The column was then eluted stepwise with NaCl in buffer A (Fig. 1B). XT-containing fractions were collected.
 - Step 4: Affinity chromatography on protamine chloride The product of step 3 was desalted and concentrated using dia- and ultrafiltration. 100 µl of the protein solution was applied to the POROS protamine chloride column previously equilibrated with buffer A. Approximately 95% of the transferase activity bound to the column, whereas 75% of the contaminating protein did not. Additional proteins were eluted with buffer A containing low NaCl concentrations.
- Enzyme activity was eluted at approximately 0.15 M NaCl (Fig. 1C). The enzyme activity was stable for at least 6 months at -75°C.
 - Step 5: SDS-Polyacrylamide gel electrophoresis (SDS-PAGE) XT-containing fractions from step 1-4 were subjected to SDS-PAGE on a 4-12% gradient polyacrylamide gel (Fig. 2, panel A). Coomassie-stained protein bands were excised and characterized by MALDI-TOF mass spectrometry after tryptic digestion. The molecular weight of an unknown protein was determined as 120.000 (Fig. 2, panel B).
- Step 5 is an optionally step.

30

PCT/EP00/13311 WO 01/49831

- 11 -

Table 1: Summary of single purification steps employed for isolation of XT from 18.5 I of high density JAR cell culture supernatant.

Step	Volume	Total activity	Total protein	Spec. activity I	urification	Recovery
	ml	10-3 x units	mg	10-3 x units/mg	-fold	%
JAR high density cell	culture					•
Supernatant	18,500	535.8	89,355.0	0.006	1	100
Ammonium sulfate					· · · · · · · · · · · · · · · · · · ·	
precipitation	460	426.0	8,937.8	0.048	8	79
Heparin affinity						
chromatography	50	108.3	473.0	0.229	40	35
Ion exchange						
Chromatography	5	91.0	43.1	2.090	348	17
Protamine affinity						÷
chromatography	1	6.83	0.24	28.458	4,743	1

- 5 Amino acid sequence analysis of XT. The MW 120.000 protein from the excised band was digested with trypsin and endoproteinase Lys-C. The proteolytic fragments were separated by reversed-phase HPLC, and selected peptides were subjected to automatic amino acid sequence analysis. Table II shows the obtained 11 amino acid sequences determined by Edman degradation and mass spectrometry.
- Table II. X represent a not identified residue. The masses of three peptides were observed in the MALDI mass spectrum of the enzymatically digested MW 120.000 protein. Calculated mass values were obtained from the sequence obtained.

Peptide	observed mass	calculated mass	
	$(M + H^{\dagger})$	$(M + H^{\dagger})$	
(I) E L G A K			
(2) E L L K		X-	
(3) DMNFLK			
(4) I A S P P S D F G R	1045.5	1045.5	
(5) LLLD			
(6) DFENVDNSNFAPR	1524.7	1525.7	
(7) PTFFAR			
(8) LQFSEVGTDXDA			
(9) ELGAVKPDGRL	1152.6	1153.7	
(10)ELLKRKLEQQEK			
(11) LGLLMPEK			

WO 01/49831

- 12 -

Immunochemical detection of XT

Polyclonal antibodies against the synthetic peptide CSRQKELLKRKLEQQEK deduced from the peptides 2 and 10 of the enzymatically cleaved MW 120.000 protein were covalently bound on POROS 20 PA. About 50% of the XT activity of an applied sample was bound (Fig. 3, panel A) when a partially purified XT sample obtained by heparin affinity chromatography (purification step 2) was loaded onto the column. 58% of the adsorbed XT activity was eluted with 150 mM NaCl, and the rest was eluted with 12 mM HCl. Furthermore, the adsorbed XT activity was also eluted from the solid phase when 100 µl (1 mg/ml) of the synthetic peptide was added to the mobile phase (Fig. 3, panel C). When immobilized preimmune serum was used as affinity matrix (negative control) no XT activity was adsorbed to or eluted from the matrix (Fig. 3, panel B). The desalted XT fraction after heparin affinity chromatography (purification step 2) was loaded on an aprotinin affinity column. The elution profile shows four major protein peaks (Fig. 4, panel I). 61% of the XT activity adsorbed to the aprotinin matrix emerged at 0.30 M NaCl and another 21% at 0.54 M NaCl. A single MW 120.000 band of the XT-containing fractions was detected by western blot analysis with the polyclonal antibodies (Fig. 4, panel B).

Determination of the molecular weight of XT

100 µl of heparin affinity purified XT was separated under non-reducing and nondenaturating conditions using a TSK G3000 SW column. Two XT activity maxima were detected at MW 500.000 and 120.000 (Fig. 5, panel A). The molecular mass of the MW 120,000 protein was reduced about 3 % after N-glycosidase F digestion as shown by SDS-PAGE (Fig. 5, panel B).

PCR-based cloning of human XT-I cDNA

20

Based upon the amino acid sequence of 4 peptides degenerate primers were designed for cloning the XT-I cDNA (Figure 6). When primers SPPS1 and Lysc-inv were used in a PCR with the first strand cDNA of SW1353 chondrosarcoma poly(A)⁺ mRNA as template, a major band of approximately 690 bp was observed. After subcloning and sequencing a previously unknown DNA sequence was obtained from clone pCG114-29. PCR amplification with the primers DF1 and a mixture of Inv2b and Inv2c resulted in a 1724 bp fragment, which was subcloned and sequenced. The deduced amino acid sequence of the clone pCG111-4 was identical to 6 of the sequenced peptides from human XT-I. The cloning strategy of rapid

amplification of cDNA ends (RACE) (Chenchik et al., 1996, BioTechniques 21, 526-534) was employed to clone the complete coding sequence of the XT-I cDNA. The largest DNA fragment obtained from the 3'-RACE reaction was 1.6 kb and consisted of a 3'-untranslated region of 1240 bp. The 5' RACE reaction was performed with different primers derived from the nucleotide sequence of XT-I cDNA, but the 5'-untranslated region of human XT-I cDNA could not be cloned using this method. All DNA fragments obtained contained just the known cDNA sequence and an additional 80 bp of coding sequence. Thus, a PCR-based screening approach using cDNA libraries as template was employed for cloning of the 5'-untranslated region. All DNA fragments obtained from the screening of 3 different human cDNA libraries stopped at the same nucleotide, indicating that stable secondary structures of the XT-I mRNA prevent the synthesis of cDNA of the 5' untranslated region during the reverse transcription reaction. However, the translation initiation codon of human XT-I could not be yet cloned. The combined cDNA of human XT-I contained 3726 bp (Fig. 7A) with a single open reading frame encoding at least 827 amino acids with a molecular mass of a least 91.000. The deduced amino acid sequence contained 3 potential N-glycosylation sites (Figure 7B). Analysis of the amino acid sequence using the hydrophobic cluster analysis (Gaboriaud et al., 1987,) revealed the presence of a common DxD motif at position 182, which has been shown to be essential for binding nucleotide-sugars in glycosyltransferases.

20 PCR-based cloning of human XT-II isoform cDNA

The degenerate primers PFF-sense and Lysc-inv1 which were designed upon the amino acid sequence of proteolytic cleaved peptides of human XT-I were used in a PCR reaction with first strand cDNA of placenta poly(A)⁺ mRNA as template. The PCR amplification resulted in a minor band of 1.1 kb, which was cloned and sequenced. The determined nucleotide sequence was similar but not identical to the XT-I cDNA sequence, indicating that the fragment encodes a XT-II isoform. To clone the complete coding sequence of the novel cDNA, the RACE strategy was employed. The cDNA finally obtained was 3608 bp (Figure 8A) and contained a single open reading frame encoding a protein of 865 amino acids with a molecular mass of 97.000. The 3'-untranslated region is 850 bp and a 5'-untranslated region of 149 bp was identified with an in-frame stop codon upstream of the ATG codon. A Kyte-Doolittle hydropathy analysis (Kyte & Doolittle, 1982, J. Mol. Biol. 157, 105-132) of the deduced amino acid sequence revealed one potential membrane-spanning region consisting of 16 hydrophobic amino acid residues at position 16 to 32, which appears to result in a type II transmembrane

orientation characteristic of many of the glycosyltransferases. The predicted amino acid sequence contains a proline-rich profile pattern from position 110 to 118 and 3 potential N-glycosylation sites (Figure 8B). The human XT-II isoform protein exhibits 55% overall sequence identity to the human XT-I including stretches in the XT-II protein with more than 80% homology to the human XT-I.

Cloning of rat XT-I and XT-II cDNA

For amplification of the XT-I and XT-II cDNA from rat tissue gene-specific primers were designed based upon the nucleotide sequence of human XT-I and XT-II cDNA. Theses oligonucleotides were employed in PCR, 5' RACE and 3' RACE reactions with rat liver cDNA as template and a 2593 bp cDNA fragment (Fig. 9) coding for rat XT-I was obtained. 5' RACE reactions using a diversity of gene-specific primers were performed for identification of the 5' end of the XT-I cDNA. All cDNA fragments obtained stopped at exactly the same nucleotide position as observed in the human XT-I cDNA, indicating that stable secondary structures of the XT-I mRNA inhibit cDNA synthesis of the 5' region. The XT-II cDNA fragment finally obtained after PCR amplification with rat liver cDNA was 2782 bp (Fig. 10) and included the entire coding region of rat XT-II. The deduced amino acid sequences of XT-I and XT-II (SEQ IDs 6, 8) from rat each displayed 94% identity to the corresponding human xylosyltransferase. Alignment of all amino acid sequences revealed the presence of highly conserved amino acid clusters in the central and carboxyterminal regions of the proteins.

Identification of the chromosomal localization of the human XT-I and XT-II genes

The gene coding for human XT-I could be assigned to the short arm of chromosome 16 at the
region 16p13.1. The radiation hybrid mapping using the Genebridge 4 radiation hybrid
screening panel located the position of the PCR fragment 5.98 cR distal to the STS marker
CHLC.GATA42E11 and 4.40 cR proximal to marker D16S499. The XT-II gene was identified
on chromosome 17 at the position 17q21.3-17q22 and was found to be located distal to the STS
marker WI-11424 and proximal to the marker WI-14315.

30

Expression of recombinant XT

To prove the function of the cDNA product, a recombinant form of XT-I was generated by fusing the cloned XT-I to an aminoterminal peptide tag. The fused protein was expressed in

CHO-K1 cells and absorbed from the medium by immunoprecipitation with anti-Xpressantibodies and protein G agarose beads to eliminate endogenous XT activity. The enzymebound beads were used as an enzyme source and assayed for XT activity as shown in Table 3 (see below). No detectable XT activity was recovered by the affinity purification from a control transfection sample. The substrate specificity of the recombinant XT-I was similar to that of the XT-I isolated from human body fluids and cell culture supernatants. The recovered enzyme activity of the recombinantly expressed XT-I could be completely inhibited by addition of 250 U of heparin. As specific inhibition of human XT activity by heparin has been demonstrated previously (Kleesiek et al., 1987, l.c.), these results clearly indicate that the expressed protein is the human XT. However, no enzymatic transfer of xylose to the acceptor peptides used in this study was observed when expressing XT-II fused to the aminoterminal peptide tag in CHO-K1 cells.

To identify the XT-I reaction products, the bikunin peptide was labeled with [14Cl-D-xvlose using the XT-I-bound beads as an enzyme source. The products were subsequently subjected to the linkage-specific digestion of the bound $[^{14}C]$ -D-xylose with α - and β -xylosidase and alkaline β-elimination. Incubation of the reaction products with β-xylosidase resulted in the release of 74% of the incorporated [14C]xylose, whereas only less than 4% of the peptide-bound xylose was digested after treatment with α-xylosidase. The alkaline cleavage of the Oglycosidic linkage between the xylose and the β-hydroxyamino acid serine in the presence of borohydride lead to the liberation of more than 97% of the enzymatically transferred [14C]xylose. In all the experiments performed no significant amount of [14C]-D-xylose was incorporated without the addition of the bikunin peptide as acceptor. These results clearly indicate that a xylose residue was transferred to the hydroxyamino acid serine of the bikunin peptide through a β-linkage. In conclusion the expressed protein was identified as UDP-Dxylose:proteoglycan core protein β-D-xylosyltransferase (EC 2.4.2.26). Table 3:

30

Xylosyltransferase activity of recombinant XT-I expressed in CHO-K1 cells. XT activity of the enzyme fractions using different acceptors and the inhibition of enzyme activity by addition of heparin is shown. The synthetic bikunin, L-APP and L-APLP2 homologous peptides have been previously proved to be good acceptors for XT mediated xylosylation (Brinkmann et al., 1997; Götting et al., 1998). No XT activity was detected in samples from mock-transfected cells after affinity purification. n.d., not detected (detection limit, 20 µU/l).

. Acceptor	XT Activitiy pCG227-XT		
		+ heparin	
Recombinant bikunin	2854	n.d.	
Bikunin peptide QEEGSGGGGQK	463	n.d.	
L-APLP2 peptide SENEGSGMAEQK	515	n.d.	
L-APP peptide TENEGSGLTNIK	492	n.d.	
Peptide SGG	n .d.	n.đ.	
Chondroitin sulfate A	n.d.	n.d.	
Chondroitin sulfate C	n.d.	n.d.	

Tissue-specific expression of XT-I and the XT-II isoform

The expression of XT-I and XT-II isoform gene was examined in various human tissues using a RT-PCR based method with normalized first-strand cDNA. Each PCR yielded a single product with predicted nucleotide lengths of 490 bp for XT-I and 717 bp for XT-II, although the amount of the amplified product varied (Figure 11). Amplification of XT-I and XT-II fragments resulted in a product visible by ethidium bromide staining after 36 cycles, whereas the DNA fragment corresponding to the abundant glyceraldehyde-3-phosphate dehydrogenase transcript was visible after 20 cycles. The greatest abundance of XT-I expression was detected in the placenta, kidney and pancreas and only a very weak expression was detected in skeletal muscle. The greatest abundance of XT-II isoform is expressed in the kidney and pancreas.

Cellular distribution of XT activity in cultured CHO-K1 cells

After an incubation period of 3 days cultured CHO-K1 cells were harvested and the XT activity was determined in the spent culture supernatant and the cell lysates. 92% of the total XT activity was found to be located in the cell culture medium (93.1 mU/10⁶ cells, SD 9.58), whereas only 2% was detected in the cell lysates (2.03 mU/10⁶ cells, SD 0.44). 6% of the total XT activity (5.82 mU/10⁶ cells, SD 2.18) was released from the membrane-containing fractions after addition of the detergence Triton X-100 indicating that less than 1/10th of XT is bound to cellular membranes.

Pharmaceutical and diagnostic use

20

25

The xylosyltransferase enzymes according to the invention can be used directly as therapeutic drug in pathological situations where a deficiency of said enzyme and its isoforms can be detected. As pointed out above XT enzyme may be overexpressed in some diseases and

PCT/EP00/13311 WO 01/49831

- 17 -

disorders. In these cases inhibitors and / or antagonists of XT-I and or XT-II can be used. Thus, the invention relates also to the use for the manufacture of a medicament for the treatment of diseases which are caused by increased levels of said enzymes, wherein said medicament is an inhibitor or antagonist of xylosyltransferase.

- As mentioned above the protein according to this invention can be used as diagnostic means to evaluate pathological conditions. As used herein, the term "pharmaceutically acceptable carrier" means an inert, non toxic solid or liquid filler, diluent or encapsulating material, not reacting adversely with the active compound or with the patient. Suitable, preferably liquid carriers, are well known in the art. The formulations according to the invention may be administered as unit doses containing conventional non-toxic pharmaceutically acceptable carriers, diluents, adjuvants and vehicles which are typical for parenteral administration. The term "parenteral" includes herein subcutaneous, intravenous, intra-articular and intratracheal injection and infusion techniques. Also other administrations such as oral administration and topical application are suitable. Parenteral compositions and combinations
 - are most preferably adminstered intravenously either in a bolus form or as a constant fusion according to known procedures. Tablets and capsules for oral administration contain conventional excipients such as binding agents, fillers, diluents, tableting agents, lubricants, disintegrants, and wetting agents. The tablets may be coated according to methods well known in the art.
- Unit doses according to the invention may contain daily required amounts of the protein 20 according to the invention, or sub-multiples thereof to make up the desired dose. The optimum therapeutically acceptable dosage and dose rate for a given patient (mammals, including humans) depends on a variety of factors, such as the activity of the specific active material employed, the age, body weight, general health, sex, diet, time and route of administration, rate of clearance, enzyme activity (units/mg protein), the object of the treatment, i. e., therapy or prophylaxis and the nature of the disease to be treated.
 - Therefore, in compositions and combinations in a treated patient (in vivo) a pharmaceutical effective daily dose of the protein of this invention (hXT, hXT-I, hXT-II) is between about 0.01 and 100 mg/kg body weight (based on a specific activity of 100 kU/mg), preferably between 0.1 and 10 mg/kg body weight. According to the application form one single dose may contain
 - between 0.5 and 10 mg of hXT.

WO 01/49831

- 18 -

Short Description of the Figures

Purification of XT Figure 1:

Panel A, Heparin affinity chromatography on POROS 20 HE: The dissolved ammonium sulfate precipitate from JAR choriocarcinoma supernatant was applied to a POROS 20 HE column. After equilibration with buffer A, the column was eluted stepwise with NaCl (----). Protein elution was monitored at wavelength A_{280} (——), and fractions of 38 ml were assayed for XT activity (). The horizontal bracket indicates fractions collected for further purification. Panel B, Ion exchange chromatography on POROS 20 HQ: The desalted and concentrated product from heparin affinity chromatography was loaded onto a POROS 20 HQ column. The column was washed with buffer A. Adsorbed proteins were eluted stepwise with NaCl (- - -). Protein elution was monitored at A₂₈₀ (——), and fractions of 50 ml were assayed for XT activity (**II**). The horizontal brackets indicate the fractions collected for further purification. Panel C, Protamine chloride affinity chromatography: The desalted and concentrated product from ion exchange chromatography was applied to a protamine chloride POROS column. After a washing step with buffer A, the column was eluted stepwise with NaCl (----). Elution was monitored at A₂₈₀ (----), and fractions of 6 ml were assayed for XT activity (). The horizontal bracket indicates the fractions collected. SDS-PAGE of XT fractions at various purification steps Figure 2 Panel A: XT fractions at various purification steps were subjected to 4-12% gradient polyacrylamide gel for SDS-PAGE. Lane I, JAR cell culture supernatant (crude material); lane II, ultrafiltration retentate; lane III, dissolved ammonium sulfate precipitate; lane IV, protein eluted with NaCl from the POROS 20 HE column; lane V, protein eluted with NaCl from the POROS 20 HQ column; lane VI, protein eluted with NaCl from the protamine chloride POROS column. Lane M, molecular size standard: myosin (200.000), phosphorylase b (97.000), bovine serum albumin (66.000), glutamic dehydrogenase (55.000), carbonic anhydrase (31.000), trypsin inhibitor (22.000). The gel was silver-stained. Panel B: Collected XT fractions from protamine affinity chromatography were subjected to SDS-PAGE on a 4-12% gradient polyacrylamide gel. The arrows indicate the stained bands corresponding to the unknown protein, which was shown to be XT (120.000) (1), hexose-6phosphate dehydrogenase (89.000) (2), ezrin (68.600) (3), quiescin Q6 (64.000) (4), plasminogen activator (47.000) (5), aldolase A (39.000) (6) and low molecular artefacts (7). All

PCT/EP00/13311 WO 01/49831

- 19 -

protein bands were excised, enzymatically digested, and the peptide mixture was characterized by MALDI-TOF mass spectrometry. The gel was stained with Coomassie Brilliant Blue.

Immunoaffinity chromatography of xylosyltransferase

Panel A, 100 µl of the desalted XT-containing fractions eluted from heparin affinity matrix was 5 applied to a column of immobilized polyclonal antibodies. After washing with buffer D, the column was eluted as indicated by the arrow with buffer D / 0.15 M NaCl (1) followed by 12 mM HCl (2). Fractions of 1 ml were collected into tubes containing 1 ml of 0.1 M Tris/HCl, pH 8.0. Protein elution was monitored at 280 nm (——) and the XT activities () of each fraction were assayed.

- Panel B. Negative control of the immunoaffinity chromatography with immobilized preimmune serum. For conditions see Panel A.
 - Panel C, Immunoaffinity chromatography with immobilized polyclonal antibodies. The column was eluted with buffer D containing 100 µl (1 mg/ml) of the peptide antigen indicated by the arrow. Fractions of 1 ml were collected into tubes containing 1 ml of 0.1 M Tris/HCl, pH 8.0.
- Protein elution was monitored at 280 nm (——) and the XT activities (**II**) of each fraction were assayed.

Aprotinin affinity chromatography of partially purified XT and Figure 4: immunoblot analysis of the separated fractions

Panel A, 200 µl desalted XT fraction from the heparin purification step was applied to an aprotinin column previously equilibrated with buffer A. After washing with buffer A, the adsorbed proteins were eluted stepwise with NaCl (------). Protein elution was monitored at A280 (——) and fractions of 2 ml were assayed for XT activity (■).

Panel B, Aliquots of fraction 3, fraction 7, fraction 12 and fraction 16 were analyzed by western blot. The MW 120.000 protein was detected in the XT-containing fraction 7 and 12.

- Immunological detections were performed using a polyclonal rabbit antiserum raised against the synthetic peptide CSRQKELLKRKLEQQEK deduced from the peptides 2 and 10 of the enzymatically cleaved unknown protein. Prestained molecular size standard were myosin (190.000), BSA (64.000), glutamic dehydrogenase (51.000).
 - Figure 5: Gel filtration chromatography and N-glycosidase F digestion
- Panel A, 100 µl of the XT containing fraction from heparin affinity HPLC was applied to a TSK G3000 SW column (30 cm X 7.5 mm, 10 µm particle size) previously equilibrated with buffer A / 0.15 M NaCl. Elution was performed with the same buffer. Fractions of 200 µl were collected and assayed for XT activity (18). Protein elution was monitored at A280 (----). The

WO 01/49831

- 20 -

arrows indicate the elution positions of thyroglobulin (669.000) (1), ferritin (440.000) (2), aldolase (158.000) (3), albumin (67.000) (4), ovalbumin (43.000) (5), chymotrypsinogen A (25.000) (6), and ribonuclease A (13.700) (7).

Panel B, An aliquot of 1 µg of the MW 120.000 protein was analyzed by SDS-PAGE 5 (I). Aliquots (1 μ g) of the MW 120.000 protein were digested with 3,1 x 10⁻³ units of Nglycosidase F at 37°C for 1 h (II) and 12 h (III). The samples were then subjected to SDS-PAGE, and protein bands were detected by silver staining. The molecular size standard were myosin (200.000), b-galactosidase (116.000), phosphorylase b (97.000).

Cloning strategy for human XT-I and XT-II isoform. Figure 6:

- (A) The peptides 4, 6, 7, and 9 are sequences that were most favorable for the design of degenerate PCR primers. The amino acid sequence of the peptides was obtained after proteolytic digestion of the purified human XT. The strategy for cloning of XT-I cDNA (B) and XT-II isoform (C) is illustrated. The open reading frame of XT-I and XT-II is shown as a filled box, and the location of the peptides 4, 6, 7 and 9 is illustrated by open boxes. The location and orientation of the degenerate primers employed for cloning of XT-I and XT-II are marked by arrows. XT-I and XT-II cDNA inserts contained within the indicated plasmids were obtained using RT-PCR with degenerate primers (pCG111-4, pCG114-29, pCG110-7), 5' RACE (pCG185-21, pCG212-19, pCG319-23, 3' RACE (pCG204-38, pCG211-4) and RT-PCR with gene-specific primers (pCG176-1). H = A + C + T, Y = C + T, R = A + G, N = A + G + C + T, I= deoxyinosine.
 - Nucleotide (A) and deduced amino acid (B) sequence of the hXT-I. Figure 7A, B: The position of the peptide sequences obtained by digestion of the purified human XT are underlined (B). Potential N-glycosylation sites are double underlined. The DxD motif is intensified depicted. The figures are identical with SEQ ID 1 and 2.
- Nucleotide (A) and amino acid (B) sequence of the hXT-II isoform. Figure 8A, B: Potential N-glycosylation sites are double underlined (B). The putative transmembrane domain is underlined. The figures are identical with SEQ ID 3 and 4.
 - Nucleotide sequence of rXT-I (SEQ ID 5). The corresponding protein sequence is Figure 9: depicted in SEQ ID 6.
- 30 Figure 10: Nucleotide sequence of rXT-II (SEQ ID 7). The corresponding protein sequence is depicted in SEO ID 8.
 - Figure 11: Differential expression of the XT-I, XT-II gene in human tissues. Semiquantitative RT-PCR with normalized first-strand cDNA was used to examine the abundance of XT-I and

WO 01/49831

- 21 -

XT-II transcripts. A 983 bp fragment of the housekeeping gene glyceraldehyde-3-phosphate dehydrogenase cDNA was amplified as control (A). The 490 bp XT-I cDNA fragment (B) and the 717 bp fragment amplified from XT-II isoform cDNA (C) were detected in each tissue indicating that both enzymes are ubiquitously expressed. The arrows indicate the expected 5 position for each PCR product.

The following examples describe the invention in more detail without to limit scope of the technical teaching.

Example 1: Materials for Isolation and Purifications. Human JAR choriocarcinoma cells were purchased from ATCC (Rockville, MD). Dried UltraDOMA-PF medium was obtained from BioWhittaker (Vervier, Belgium) and aqua ad injecta from Braun (Melsungen, Germany). Heat-inactivated fetal calf serum, Dulbecco's phosphate-buffered saline, antibiotic/antimycotic solution, trypsin-EDTA solution, trypan blue, protamine chloride and the Bicinchoninic Acid Protein Assay Kit were purchased from Sigma (Deisenhofen, Germany). Cell culture 15 flasks, serological pipettes, and sterile tubes were purchased from Becton Dickinson (Heidelberg, Germany). The hybrid hollow-fiber bioreactor TECNOMOUSE® was supplied by Integra Biosciences (Fernwald, Germany), the ACA analyzer by Dade Diagnostica (München, Germany) and the Super G analyzer by RLT (Möhnesee, Germany). UDP-[14 C]xylose (9.88 kBq / nmol) came from DuPont (Bad Homburg, Germany), 25 mm diameter nitrocellulose discs from Sartorius (Göttingen. Germany), scintillation mixture and the liquid scintillation counter LS500TD was obtained from Beckman Coulter (Fullerton, CA). Ultrafiltration cells, YM1 membranes and PVDF membranes (Immobilon P) were purchased from Millipore (Eschborn, Germany). The chromatography media POROS 20 HQ, POROS 20 HE2, POROS 20 AL, POROS 20 EP and the HPLC workstation Biocad Sprint were supplied by Perseptive Biosystems (Framingham, MA). The gel filtration column TSK G3000 SW (30 cm x 7.5 mm, 10 um particle size) was obtained from TosoHaas (Montgomeryville, PA). The MALDI mass spectrometer Reflex II was from Bruker Daltonik GmbH (Bremen, Germany) and protein sequencer Procise 494 cLC was purchased from PE Biosystems (Framingham, MA). Precast 30 polyacrylamide gels, buffers, and NuPAGE electrophoresis system XCell II Mini-Cell and Blot Module were from Novex (San Diego, CA). The synthetic peptide CSRQKELLKRKLEQQEK and the rabbit antiserum were purchased from BioScience (Göttingen, Germany). Peroxidase-

conjugated affinipure F(ab')2 fragment goat anti-rabbit IgG (H+L) was purchased from

PCT/EP00/13311

Dianova (Hamburg, Germany). N-glycosidase F was obtained from Roche (Mannheim, Germany).

- 22 -

Example 2: Cell culture. JAR choriocarcinoma cells releasing XT in the cell culture supernatant were cultured in Ultradoma-PF medium containing 10% heat-inactivated fetal calf serum, 100 U/ml penicillin, 100 µg/ml streptomycin and 250 ng/ml amphotericin B in a humidified atmosphere of 5% CO2 and 95% air at 37°C. After incubation for 24 h in the serumcontaining medium, the cell cultivation was adapted to serum-free conditions as described previously (6). Scaling up of XT production was carried out in three hybrid hollow-fiber bioreactors TECNOMOUSE®. During the exponential growth the cells from three 175 cm 2 Tflasks (> 3 x 10 ⁷ cells) were detached with 0.5% trypsin and 0.2% EDTA in Dulbecco's phosphate-buffered saline by incubation at 37°C for 10 min. After centrifugation (5 min, 1000 x g) of the cell suspension the cell pellet was resuspended in 10 ml 37°C warm serum-free and protein-free Ultradoma-PF medium and washed three times with 20 ml of the same medium. The cell suspension was drawn into a 10 ml syringe and then inoculated into the extracapillary space (EC space) of the reactor. The bioreactor was connected with a 2 liter medium bottle and set to 150 ml/h in the recirculation mode, and the oxygenation pump was set as described in the operating manual. Five days after inoculation a 10 ml syringe was connected to the left hand EC port and 10 ml of cell culture supernatant was harvested from the EC space. The harvesting was continued every two days over a period of 3 months. Glucose and lactate concentration of the cell culture supernatant were controlled using the Super G analyzer and the ACA analyzer, respectively. The 2 liter medium bottle was replaced every three days. The viability of the cells was determined by trypan blue exclusion.

Example 3: Synthesis of the protamine affinity matrix. Protamine chloride was immobilized as ligand on POROS 20 AL. 30 mg ligand was dissolved in 10 ml of 10 mM phosphate / 0.15 M NaCl, pH 7.4. After the protein had been dissolved, 5 ml of 100 mM phosphate / 1.50 M NaCl, pH 7.4 was added. NaCNBH3 was dissolved in the ligand/buffer solution to a final concentration of 5 mg/ml and 1.0 g POROS 20 AL was suspended in the same solution.

The suspension was mixed gently on a shaker for 1 minute at RT. An additional 2 ml of 100 mM phosphate / 1.50 M NaCl, pH 7.4 was added to the suspension and the mixture was shaken continuously. This step was repeated every five minutes until the mixture volume was 25 ml. After additional shaking for 2 h, the medium was filtered on a sintered glass funnel. The matrix was suspended in 20 ml of 0.2 M Tris/HCl / 5 g/l NaCNBH3, pH 7.2 and mixed gently on a shaker for 30 min at RT. After the media had been washed in a sintered glass funnel using 100

WO 01/49831 PCT/EP00/13311

- 23 -

ml of 10 mM phosphate, pH 7.4, 100 ml of 1.0 M NaCl and another 100 ml of 10 mM phosphate, pH 7.4, the matrix was packed in a PEEK column (4.6 x 50 mm).

Example 4: Synthesis of the aprotinin affinity matrix. Aprotinin affinity matrix was synthesized according to the synthesis of the protamine affinity matrix, but using aprotinin as ligand. After immobilization of the ligand the matrix was packed in a PEEK column (4.6 x 50 mm).

Example 5: Purification of xylosyltransferase from JAR cell culture supernatant.

Fractionated ammonium sulfate precipitation and chromatography steps were performed at RT, ultrafiltration and diafiltration were carried out at 4°C. 18.5 liters JAR cell culture supernatant collected from three hybrid hollow-fiber bioreactors, TECNOMOUSE®, each containing 5

culture cassettes, was concentrated to 800 ml with ultrafiltration cells using YM1 cellulose membranes. The retentate was centrifuged at $4,000 \times g$ for 1 h. The supernatant was decanted, and the pellet was discarded.

Step 1: Fractionated ammonium sulfate precipitation - Solid ammonium sulfate was added to the supernatant to 28% saturation. After 1 h at RT the suspension was centrifuged at $4,000 \times g$ for 2 h, the supernatant was decanted, and the precipitate was removed. Additional ammonium sulfate was added to the solution to the point of 40% saturation, and the suspension was allowed to stand for 1 h. To recover the precipitate the supernatant was decanted after the suspension was centrifuged at $4,000 \times g$ for 2 h. Before chromatography on immobilized heparin the precipitate was dissolved in 460 ml buffer A (20 mM sodium acetate, pH 6.0).

20 <u>Step 2:</u> Heparin affinity chromatography on POROS 20 HE2 - The step 1 product was passed through a 0.2 μm filter. 4.0 ml of the filtrate was applied to a POROS 20 HE2 column (16 x 100 mm) equilibrated with buffer A at a flow rate of 40 ml/min. After washing the column with 100 ml of buffer A the XT activity was eluted with the same buffer containing NaCl. The NaCl concentration was increased stepwise: 20 ml buffer A / 0.09 M NaCl; 20 ml buffer A / 0.15 M

NaCl; 30 ml buffer A / 0.24 M NaCl; 24 ml buffer A / 0.30 M NaCl; 24 ml buffer A / 0.60 M NaCl; 24 ml buffer A / 1.00 M NaCl; and 24 ml buffer A / 1.89 M NaCl. Fractions of 38 ml each were collected and the XT activity was measured. The procedure was repeated 115 times by cyclic chromatography and the fractions containing XT activity (115 x 38 ml) were collected.

Step 3: Ion exchange chromatography on POROS 20 HQ - Collected fractions from step 2 were desalted using diafiltration with YM1 cellulose membranes and ultrafiltration cells. After concentration of the desalted protein solution to 0.05 liter using analogous techniques the XT-enriched solution was subjected to ion exchange chromatography. 4.0 ml of the XT solution

20

was applied onto the POROS 20 HQ column (16 x 100 mm) previously equilibrated with buffer A at a flow rate of 40 ml/min. The column was washed with 80 ml buffer A, and the adsorbed protein was eluted stepwise using the same buffer containing 0.07 M NaCl (88 ml), 0.18 M NaCl (120 ml), and 0.36 M NaCl (120 ml) followed by a linear gradient of 0.36 – 1.00 M NaCl (200 ml) and another step of buffer A / 2.0 M NaCl (120 ml). 50 ml fractions were collected and assayed for activity and evaluated by SDS-PAGE. Chromatography was repeated 13 times, and the fractions exhibiting XT activity (13 x 50 ml) were collected for affinity chromatography.

Step 4: Affinity chromatography on protamine chloride - XT-containing solution from step 3 was desalted as described above and concentrated to 5 ml by ultrafiltration with YM1 cellulose membranes. The ultrafiltration product was passed through a 0.2 μm filter. 100 μl of the filtrate was loaded onto a protamine chloride - POROS column (4.6 x 50 mm) equilibrated with buffer A. The flow rate was 10 ml/min. The column was washed with 10.0 ml of buffer A, and the adsorbed fraction was eluted with the same buffer containing NaCl by a stepwise increase of the NaCl concentration: 6.6 ml buffer A / 0.04 M NaCl; 6.6 ml buffer A / 0,06 M NaCl; 6.6 ml buffer A / 0.23 M NaCl followed by a linear gradient of 0.23 – 1.20 M NaCl (4.2 ml) in buffer A. Fractions of 6.0 ml were collected, assayed for XT activity and evaluated by SDS-PAGE. Cyclic chromatography was repeated 50 times. The purified enzyme was collected, concentrated to 1.0 ml using ultrafiltration techniques and stored at – 75 °C.

Step 5: SDS-Polyacrylamide gel electrophoresis (SDS-PAGE) - The protein composition of various fractions was estimated by SDS-PAGE. Briefly, 12.1 μl of sample was added to 4.7 μl of sample buffer (1.00 M Tris/HCl / 1.17 M sucrose, 0.28 M SDS, 2.08 mM EDTA, 0.88 mM Serva Blue G250, 0.70 mM phenol red, 0.10 M DTT, pH 8.5) and heated for 10 minutes at 99°C. After the sample had been loaded, SDS-polyacrylamide gel electrophoresis was carried out on a 4-12% bis-tris polyacrylamide gel with 3-(N-morpholino) propanesulfonic acid (MOPS) running buffer (1.00 M MOPS/Tris / 69.3 mM SDS, 20.5 mM EDTA, pH 7.7). Protein bands were detected by Coomassie Brilliant Blue or by silver staining. The Coomassie bands were excised and characterized by MALDI mass spectrometry and amino acid sequence analysis.

Example 6: MALDI mass spectrometry. Coomassie-stained proteins were excised from the gel, repeatedly washed with H₂O and H₂O/acetonitrile and digested overnight with trypsin and endoproteinase Lys-C at 37°C. The peptides generated in the supernatant were analyzed by MALDI mass spectrometry. Sample preparation was achieved following the thin film

preparation techniques (13). Briefly, aliquots of 0.3 µl of a nitrocellulose containing saturated solution of a-cyano-4- hydroxycinnamic acid in acetone were deposited onto individual spots on the target. Subsequently, 0.8 µl 10% formic acid and 0.4 µl of the digest sample was loaded on top of the thin film spots and allowed to dry slowly at ambient temperature. To remove salts from the digestion buffer the spots were washed with 10% formic acid and with H₂O. MALDI mass spectra were recorded in the positive ion mode with delayed extraction on a Reflex II time-of-flight instrument equipped with a SCOUT multiprobe inlet and a 337 nm nitrogen laser. Ion acceleration voltage was set to 20.0 kV, the reflector voltage was set to 21.5 kV and the first extraction plate was set to 15.4 kV. Mass spectra were obtained by averaging 50-200 individual laser shots. Calibration of the spectra was performed internally by a two-point linear 10 fit using the autolysis products of trypsin at m/z 842.50 and m/z 2211.10. Example 7: Amino acid sequence analysis of XT. The MW 120.000 Coomassie-stained protein was excised from the gel, repeatedly washed with H₂O and H₂O/acetonitrile and digested with trypsin and endoproteinase Lys-C overnight. For HPLC separation the excised gel fragment was extracted twice with 0.1% TFA/60% acetonitrile. The extracted enzymatic fragments were separated on a capillary HPLC system equipped with a 140B solvents delivery system (PE Biosystems), Acurate splitter (LC-Packings), UV absorbance detector 759A (PE Biosystems), U-Z capillary flow cell (LC-Packings) and Probot fraction collector (BAI) using reversed-phase column (Hypersil C18 BDS, 3 μm, 0.3 x 150 mm) and a linear gradient from 12% acetonitrile, 0.1% TFA to 64% acetonitrile, 0.08% TFA in 90 min with a flow rate of 4 µl/min at RT. Peptide elution was monitored at 214 nm and individual fractions from the HPLC separation were analysed by MALDI mass spectrometry. Sequence analysis of separated fragments was performed on a Procise Protein Sequencer 494 cLC using standard programs supplied by PE Biosystems.

Example 8: Determination of XT activity. Determination of XT activity is based on the incorporation of [14 C]-D-xylose into the recombinant bikunin according to a previously described method (Brinkmann et al., 1997, J. Biol. Chem., 272, 11171-11175). For analysis of the substrate specificity of the recombinant xylosyltransferases synthetic peptides containing the XT recognition sequence were used as acceptor. The reaction mixture for the assay contained, in a total volume of 100 μl: 50 μl of XT solution, 25 mM 4-morpholineethanesulfonic acid (pH 6.5), 25 mM KCl, 5 mM KF, 5 mM MgCl₂, 5 mM MnCl₂, 1.0 μM UDP-[¹⁴C]-D-xylose, and 1.5 μM of the synthetic peptides. After incubation for 75 min at 37°C, the reaction mixtures were placed on discs (25 mm diameter) of Immobilon-

10

30

AV membrane, which immobilizes even small peptides by covalent links (Pfund & Bourdage, 1990, *Mol. Immunol.* 27, 495-502), and allowed to dry. It was then washed for 10 min with 10% trichloroacetic acid and three times with 5% trichloroacetic acid solution. Incorporated radioactivity was determined by liquid scintillation counting.

Example 9: Antiserum Preparation. The synthetic peptide CSRQKELLKRKLEQQEK deduced from the sequenced peptides 2 and 10 of the enzymatically cleaved XT was synthesized, purified by HPLC and used for immunization of rabbits (BioScience, Germany). Polyclonal antiserum was obtained by injection of the above antigen followed Example 10:

Preparation of solid-phase antigen. The antigen CSRQKELLKRKLEQQEK was immobilized on POROS 20 EP. After 1.6 mg antigen was dissolved in 1.2 ml of 10 mM phosphate / 0.15 M NaCl, pH 7.4 0.60 ml of 100 mM phosphate / 1.50 M NaCl, pH 7.4 was added. 400 mg POROS 20 EP was suspended in the solution and the suspension was mixed gently on a shaker at RT. At 10-min intervals, five times in total, an additional 0.24 ml of 100 mM phosphate / 1.50 M NaCl, pH 7.4 was added to the suspension. After additional shaking for 5 days at RT the suspension was filtered on a sintered glass funnel. The matrix was suspended in 4 ml 0.2 M phosphate / 0.1 M 2-mercaptoethanol, pH 7.4 and mixed on a shaker for 2 h at RT. The matrix was washed in a sintered glass funnel using 20 ml of 10 mM phosphate / 0.15 M NaCl, pH 7.4 and 20 ml of 1.0 M NaCl. After additional washing with 20 ml of 10 mM phosphate, pH 7.4, the matrix was packed in a PEEK column (4.6 x 50 mm).

Example 11: Antibody purification. Antiserum was adjusted to 50 mM Tris/HCl, pH 8.0. The solution was clarified by passage through a 0.2 μm filter. 0.4 ml filtrate was applied at 10 ml/min to the antigen column previously equilibrated with buffer B (50 mM Tris/HCl, pH 8.0). After the column was washed with 4.1 ml buffer B and with 12.5 ml buffer B / 0.15 M NaCl, the adsorbed antibody was eluted using 12.4 ml of 50 mM sodium citrate / 0.15 M NaCl, pH 3.0 followed by 3.4 ml of 100 mM sodium citrate / 1.5 M NaCl, pH 3.0. The eluate was collected as 10 ml fractions in tubes containing 2 ml of 0.5 M Tris/HCl, pH 8.0, to immediately neutralize the citric acid.

Example 12: Preparation of immunoaffinity column. Purified antibody was concentrated to a protein concentration of 0.3 mg/ml using ultrafiltration with YM1 cellulose membranes.

The antibody solution was adjusted to 10 mM phosphate / 0.15 M NaCl, pH 7.4. After filtration

of the solution through a 0.2 µm filter 100 µl filtrate was applied at 0.2 ml/min to a POROS 20 PA column (2.1 x 30 mm). This step was repeated 17 times. Adsorbed antibody was cross-linked using cross-linking solution (100 mM triethanolamine, pH 8.5). After the column was

washed with 5 ml of buffer C (10 mM phosphate / 0.15 M NaCl, pH 7.4) 2 ml cross-linking solution was applied at 0.5 ml/min onto the cartridge. The procedure was repeated 6 more times, using a total volume of 14 ml cross-linking solution. To block unreacted functional groups on the cross-linking reagents 2 ml of 100 mM monoethanolamine, pH 9.0

- (quenching solution), was loaded onto the cartridge at 0.5 ml/min. The column was washed using 2 ml of buffer C and the cross-linking step was repeated using another 2 ml quenching solution. The immunoaffinity column was cycled between buffer C and 12 mM HCl / 0.15 M NaCl 3 times using a total volume of 12 ml of solution.
- Example 13: Immunoaffinity column purification of XT. XT-containing fractions eluted from the heparin affinity matrix were desalted using diafiltration with YM1 cellulose membranes and passed through a 0.2 μm filter. 100 μl of this XT-sample was applied to the immunoaffinity column equilibrated with buffer D (20 mM Tris/HCl, pH 8.0) at a flow rate of 1 ml/min. The column was washed with 1.4 ml of buffer D and with 8.5 ml of buffer D / 0.15 M NaCl. The XT activity was eluted with 4.2 ml of 12 mM HCl followed by 1.2 ml of 12 mM
- 15 HCl / 1.5 M NaCl. Alternatively the elution was performed using 100 µl of antigen at 1 mg/ml in buffer D. Fractions (1 ml) were collected into tubes containing 1 ml of 0.1 M Tris/HCl, pH 8.0. The XT activities of the fractions were determined.
 - Example 14: Aprotinin affinity chromatography. 200 µl of desalted XT solution from the heparin purification step was applied at 10 ml/min to the aprotinin column previously equilibrated with buffer A. After washing the column with 6.6 ml of buffer A the adsorbed protein was eluted stepwise using the same buffer containing 0.3 M NaCl (10.0 ml), 0.54 M NaCl (10.0 ml), 1.00 M NaCl (10.0 ml) and 1.50 M NaCl (2.4 ml). Example 15: Western Blot Analysis. For western blot analysis, proteins were transferred to polyvinylidene difluoride membrane in a semi-dry instrument (Novex). After transfer nonspecific antibody binding sites were blocked with 2% BSA in 0.1 M Tris/HCl, pH 7.2, for 1 h at RT.
 - The membrane was incubated with antiserum in 50 mM phosphate / 0.15 M NaCl, 0.5 ml/l Tween 20, pH 7.4 at 1:1000 dilution for 1 h. Bound antibody was detected using a second anti-rabbit goat immunoglobulin coupled to horse-radish peroxidase at a 1:1000 dilution. The blot was developed using 4-chloro-1-naphthol.
- 30 Example 16: Gel filtration chromatography. A sample of 100 μl from the heparin purification step was applied at 1.0 ml/min to a TSK G3000 SW column (30 cm x 7.5 mm, 10 μm particle size) which had previously been equilibrated with buffer A / 0.15 M NaCl. Proteins were eluted with the same buffer. Fractions of 200 μl were collected and tested for XT activity.

Column calibration was performed using thyroglobulin (669.000), ferritin (440.000), aldolase (158.000), albumin (67.000), ovalbumin (43.000).

Example 17: N-glycosidase F digestion. Aliquots (1 μg) of XT were digested with 3,1 x 10⁻³ units of N-glycosidase F at 37°C for 1 h and 12 h (Table II). The samples were then subjected to SDS-PAGE, and protein bands were detected by silver staining.

Example 18: Measurement of protein concentration. Protein concentration was estimated by absorbance at 280 nm assuming E $^{1\%}$ 1 cm = 10.0 or with the Bicinchoninic Acid Protein Assay using bovine serum albumin as a standard.

Example 19: PCR-based cloning of human xylosyltransferase. Degenerate oligonucleotide primers with deoxyinosine substitution were designed based upon the amino acid sequence of peptides obtained after digestion of the isolated human XT with trypsin or Lys-C. The first strand of cDNA was synthesized by the reverse transcription reaction using poly(A)⁺ RNA isolated from the chondrosarcoma cell line SW1353 as template and oligo(dT) as primer. The reverse transcription reaction was performed at 37°C for 2 h using 50 pmol of oligo(dT) primers, 1 µg of poly(A)⁺ RNA, a 0.5 mM concentration of each dNTP, 1x RT buffer and 200 units of RNase H deficient Moloney murine leukemia virus reverse transcriptase (Life Technologies, Eggenstein, Germany) in a final volume of 20 µl. For PCR amplification the reaction mixture contained 4 µl of the reverse transcription reaction solution, 50 pmol of each primer, a 0.25 mM concentration of each dNTP, 50 mM KCl, 10 mM Tris-HCl (pH 8.3), 1.5 mM MgCl₂ and 2.5 units of hot start Taq polymerase (Life Technologies) in a final volume of 50 ul. Amplification with degenerate oligonucleotide primers was carried out by 40 cycles at 94°C for 1 min, 48°C for 1 min, and 72°C for 2 min, followed by a final extension step at 72°C for 15 min. After agarose electrophoresis of the PCR products, DNA fragments were excised, subcloned into the pCR2.1 vector (Invitrogen. Groningen, Netherlands) and sequenced by the dideoxy chain termination method using Taq DNA polymerase (Big-dye terminator cycle sequencing kit, Perkin-Elmer, Norwalk, CT, USA) with an automated DNA sequencer (Applied Biosystems, Weiterstadt, Germany). Several clones were sequenced to compensate for misreading by Taq polymerase.

Example 20: Rapid amplification of 5' and 3' cDNA ends (RACE). For amplification of the 5' and 3' ends of the XT-I and XT-II isoform cDNA RACE experiments were performed using commercially available systems (Clontech, Heidelberg, Germany; Life Technologies) according to the manufacturers' instructions. For 3'-RACE 1 µg placenta poly(A)⁺ mRNA (Clontech) was reverse transcribed with a 3'-CDS primer (Clontech). PCR amplification of the 3' cDNA end of

human XT-I was accomplished according to a touch-down PCR protocol (5 cycles: 94°C for 30 s, 72°C for 3 min, 5 cycles: 94°C for 30 s, 70°C for 45 s, 72°C for 3 min, 25 cycles: 94°C for 30 s, 65°C for 45 s, 72°C for 3 min) with the gene-specific primer GSP1b 5'-GTGGGTATGCAGAAGTGGGGAAGGGAC-3' and the UPM primer mix (Clontech). An 5 aliquot of the first PCR was subjected to semi-nested PCR (30 cycles) using the primer Con2111 5'-CCCTCCGCAATGCCTACA-3' and the UPM primer mix. The DNA fragments obtained were subcloned into the vector pCR2.1 (Invitrogen) and sequenced, PCR amplification of the 3' cDNA end of the XT-II isoform was carried out with the primers AB10267 5'-ACTGAGGTCACGCAATACAA-3' and UPM using the touch-down PCR protocol. For 5'-RACE 1 μg of placenta poly(A)⁺ mRNA was subjected to a reverse transcription and 5' tailing reaction with the 5'-CDS primer and the SMART oligo (Clontech) according to the manufacturer's protocol. The 5' end of the XT-I cDNA was amplified using the primer GSP 776L 5'-GCCGCACTCAG-GTGATGAAGAAGT-3' and UPM with a touch-down PCR protocol. An aliquot was used as template in a second semi-nested PCR reaction with the primers GSP 503L 15 5'-ACCA-CCAGGACAAAGGCGATTCTGA-3' and UPM. The 5'-cDNA end of XT-II was obtained by 5'-RACE amplification using the primers AB10315L 5'-AGTCGAACAGTCCAGG-GCCC-3' and UPM mix. A new primer for a 5'-RACE reaction was designed based upon the nucleotide sequence of the largest fragment obtained (2 kbp), and the experiment was repeated with the primer AB5846L 5'-CACGATCTCGCACTTGGGGG-3' as described above. The 20 nucleotide sequences of human XT-I and XT-II cDNA have been submitted to the GenBank/EBI Data Bank with the accession numbers AJ277441 and AJ277442. Example 21: Isolation of XT-I cDNA from human brain and chondrocyte cDNA libraries. Plasmid-DNA was isolated from a human whole brain cDNA library (Life Technologies) and a human chondrocyte cDNA library (Clontech) and used as template in a PCR-based approach for isolation of the 5' end of the XT-I cDNA. Briefly, GSP_776L and 5'ADLD 5'-CTATTCGATGATGAAGATACCCCACCAAACCC-3' primers were used in a PCR reaction with I ug of plasmid DNA as template. The DNA fragments were subjected to agarose gel electrophoresis and 0.7-3 kb long fragments were excised from the gel and used as a template in a semi-nested PCR reaction with GSP_503L and 5'-ADLD primers. DNA fragments were then 30 subcloned into the vector pCR2.1 and sequenced. Example 22: Cloning of rat XT-I and XT-II cDNA. A RT-PCR based approach using primers

based upon the nucleotide sequence of human XT-I and XT-II was employed for amplification

of XT-I and XT-II cDNA from rat. The first strand of cDNA was synthesized by the reverse

transcription reaction using poly(A)⁺ RNA isolated from the rat liver cell line BRL3A as template and oligo(dT) as primer. DNA fragments obtained after PCR amplification using moderate stringent conditions were subcloned into the vector pCR2.1 and sequenced. The 5' and 3' ends of the XT-I and XT-II cDNA from rat tissue were amplified using the RACE strategy with gene-specific primers as described above. The nucleotide sequences of rat XT-I and XT-II cDNA have been submitted to the GenBank/EBI Data Bank with the accession numbers AJ295748 and AJ295749.

Example 23: Expression levels of the XT-I and the XT-II isoform in human tissues.

A Human Multiple Tissue cDNA Panel (Clontech) was used for the analysis of expression levels. Levels of amplification of the housekeeping gene glyceraldehyde-3-phosphate dehydrogenase, whose transcript is always present in the tissues at an almost constant level, were determined in parallel for quality control. For amplification of the XT-I encoding transcript the primers 128U and 601L were used, whereas primers AB10267U and AB12394L 5'-GGAAGAGCTGGGTGTGGAAT-3' were employed for the XT-II. PCR reactions were carried out by 22-36 cycles at 94°C for 30 s, 60-65°C for 45 s and 72°C for 2 min. Amplification of a transcript was performed using a serial number of cycles to find the conditions for semiquantitative amplification, and aliquots were analyzed by agarose gel electrophoresis. Example 24: Transfection and transient expression of XT. For construction of a eukaryotic expression vector a DNA fragment including the known coding sequence of XT-I cDNA was amplified by PCR using XT_Exp1L 5'-TTTCCCGTTGAGATCCTGCT-3' and XT_Exp3U 5'-ACAGACAGCAACAACGAGAA-3' as primers and placenta first-strand cDNA (Clontech) as template. The 2450 bp fragment obtained was cloned into the vector pcDNA4/HisMax-TOPO (Invitrogen) resulting in the fusion of XT-I to the Xpress epitope. The plasmid pCG227-XT-I was then transiently transfected into CHO-K1 cells. The coding region of the XT-II cDNA was amplified by PCR using the primers AB_Exp9U 5'-AAAGGAAGGCAGAGGAAGC-3' and AB Exp3L 5'-ACCCCTCCACTGT-CTGTAAG-3' and placenta first-strand cDNA as template. The obtained 2440 bp DNA fragment was cloned into the expression vector pcDNA4/HisMax-TOPO resulting in the fusion of XT-II to the aminoterminal Xpress epitope. The plasmid termed pCG226-XT-II was transiently transfected into CHO-K1 cells. 2x10⁵ cells precultured for 1 day in a 35 mm diameter cell culture dish were transfected with 2 µg of plasmid DNA and 6 ul of Fugene 6 transfection reagent (Roche, Mannheim, Germany). For determination of transfection efficiency CHO-K1 cells were transfected with 2 µg of the control plasmid

pcDNA4/HisMax-TOPO-lacZ. 48 h after transfection the cell culture medium was harvested.

counting.

Protein G agarose beads (Sigma, Deisenhofen, Germany) and mouse anti-Xpress monoclonal antibody (Invitrogen) were added to the cell culture supernatant and incubated at 4°C for 1 h. After centrifugation at 10.000 g for 1 min the absorbed proteins were twice washed with PBS and resuspended in a final volume of 50 µl. XT activity was then assayed in the samples. Example 25: Characterization of the reaction products. For characterization of the reaction product of recombinant XT-I the peptide QEEEGSGGGQK, which is homologous to the amino terminus of bikunin (Brinkmann et al., 1997, l.c.), was used as acceptor in the XT activity assay. After incubation for 75 min at 37°C the enzyme was heat-inactivated by incubation for 15 min at 65°C and the reaction mixture was used for α- and β-xylosidase treatment and alkaline β -elimination. For the linkage-specific digestion of the bound [14 C]-D-xylose 4 mU of α-xylosidase (Seikagaku Corporation, Tokyo, Japan) or 4 mU of β-xylosidase (Sigma, Dreieich, Germany) were added to the samples and incubated for 60 min at 37°C. The reaction mixtures were then placed on Immobilion-AV membrane discs and allowed to dry. The discs were washed with trichloroacetic acid as described above and the remaining incorporated radioactivity was determined against appropriate controls. The alkaline cleavage of the Oglycosidic linkage between the [¹⁴C]-D-xylose and the β-hydroxyamino acid serine was performed as described elsewhere (Montreuil et al., 1994). Briefly, the reaction mixture was adjusted to pH 10 with diluted NaOH and an equal volume of cold, freshly prepared sodiumboro-hydride solution (2 M sodiumborohydride in 0.1 M NaOH) and was added. After incubation at 45°C for 16 h the cooled solution was neutralized by adding 50% acetic acid and placed on Immobilon-AV membrane discs. After drying the discs were washed with trichloroacetic acid and the remaining radioactivity was measured by liquid scintillation

Patent Claims

15

20

25

30

- 1. An isoform of UDP-D-xylose:proteoglycan core protein β -D-xylosyltransferase(XT).
- 2. A protein comprising an amino acid sequence of the isoform of claim 1 or a portion thereof, having the biological activity of XT.
 - 3. A protein of claim 1 or 2 deriving from human or rat sources (hXT, rXT)
- 4. An isolated protein according to claim 3, wherein said hXT has a molecular weight of 120.000 under SDS polyacrlylamide gel electrophoresis conditions.
 - 5. A recombinant protein of claim 3, wherein said protein is hXT-I comprising at least 827 amino acids.
 - 6. A protein according claim 5, having the amino acid sequence as depicted in Fig. 7B.
 - 7. A protein according to claim 3, wherein said protein is hXT-II comprising 865 amino acids and is an isoform of hXT-I.
 - 8. A protein according to claim 7 exhibiting approximately 55% overall sequence identity to hXT-I
 - 9. A protein according claim 8, having the amino acid sequence as depicted in Fig. 8B.
 - 10. A DNA sequence coding for a protein of any of the claims 1-9.
 - 11. A DNA sequence according to claim 10 comprising the nucleotide sequence coding for hXT-I as depicted in Fig. 7A, or rXT-I as depicted in Fig. 9.
 - 12. A DNA sequence according to claim 10 comprising the nucleotide sequence coding for hXT-II as depicted in Fig. 8A or rXT-II as depicted in Fig. 10.

PCT/EP00/13311

- 13. An expression vector comprising a promotor sequence, a DNA sequence of claim 10 and optionally a signal sequence.
- 14. An expression host cell comprising a vector of claim 13, said host cell being capable of expressing a protein of any of the claims 1-9.
- 15. An antibody directed against a protein as defined in any of the claims 1-9.

5

15

30

- 16. A process for isolating and purifying a protein as defined in claims 1 4, characterized by
 the following steps:
 - (i) culturing cells having an increased level of XT, and harvesting the supernatant of said cell culture,
 - (ii) fractionated ammonium sulfate precipitation of the supernatant of step (i),
 - (iii) heparin affinity chromatography of the precipitate of step (ii),
 - (iv) ion exchange chromatography of the step (iii) product,
 - (v) affinity chromatography of the step (iv) product, and
 - (vi) SDS-Polyacrylamide gel elektrophoresis of step (v).
- 17. A pharmaceutical composition comprising a protein of any of the claims 1 9 and a
 pharmacologically acceptable carrier, diluent or excipient.
 - 18. Use of a protein of any of the claims 1-9 for the manufacture of a medicament for the treatment of sclerotic diseases and chronic inflammatory joint diseases.
- 25 19. Use of claim 18, wherein said medicament is an inhibitor or antagonist of said protein.
 - 20. Use of a protein of any of the claims 1-9 as diagnostic marker.
 - 21. Use of a DNA molecule of any of the claims 10 12 as gene marker.
 - 22. Use of an antibody as defined in claim 15 in an immunological assay for determination of a protein having the biological activity of hXT as diagnostic tool.

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

WO 01/49831 PCT/EP00/13311

6/13

Fig. 6

SPPS1 5'-ATH GCI AGY CCI CCI AGY GA-3'

Peptide 4 Ile Ala Ser Pro Pro Ser Asp Phe Gly Arg

Inv2b 5'-TAD CGN AGI GGN GGI AGI CT-3'

Inv2c 5'-TAD CGN TCR GGI GGI TCR CT-3'

DF1 5'-GAY TTY GAR AAY GTI GAY AA-3'

Peptide 6 Asp Phe Glu Asn Val Asp Asn Ser Asn Phe Ala Pro Arg

PFF-sense 5'-CCI ACI TTY TTY GCN CG-3'

Peptide 7 Pro Thr Phe Phe Ala Arg

Peptide 9 Glu Leu Gly Ala Val Lys Pro Asp Gly Arg Leu Lysc-invl 3'-CCN CGI CAN TTY GGN CTR CC-5'

Fig. 7A

GTCCCCAAAGACTTTGAGAATGTGGACAACAGCAACTTCGCACCCAGGACTCAAAAGCAGAAGCACCAG CCTGAGTTGGCGAAGAAGCCACCGAGTAGACAGAAGGAGCTTTTGAAAAAGGAAGCTGGAACAGCAGGAG AAAGGAAAAGGACATACATTCCCTGGGAAAGGCCCCGGTGAGGTGCTGCCTCCCGGGGACAGAGCCGCA GCCAACAGCAGCCACGGGAAGGATGTGTCCAGACCGCCTCATGCCAGGAAAACTGGGGGCAGCTCCCCC GAGACCAAGTATGACCAGCCCCCTAAGTGTGACATCTCAGGCAAGGAGGCCATCTCTGCCCTGTCCCGT GCTAAGTCCAAGCACTGCCGCCAGGAGATTGGGGAGACTTACTGCCGCCACAAGTTAGGGCTGCTGATG CCTGAGAAGGTGACTCGGTTCTGCCCCCTCGAGGGTAAAGCCAACAAGAACGTGCAGTGGGACGAGGAC TCCGTGGAGTACATGCCAGCCAACCCGGTCAGAATCGCCTTTGTCCTGGTGGTCCACGGCCGTGCCTCT CGGCAGTTGCAGCGCATGTTCAAGGCCATCTACCACAAAGACCACTTCTACTACATCCACGTGGACAAG CGCTCTAATTACCTGCATCGGCAAGTGCTCCAGGTCTCCAGGCAGTACAGCAATGTCCGCGTCACCCCC CTGGAGATGACCGACTGGCCCTGGGACTTCTTCATCAACCTGAGTGCGGCCGACTACCCCATCAGGACA AATGACCAGTTGGTGGCGTTTCTCTCCCGATACCGAGATATGAATTTCTTGAAGTCACACGGCCGGGAC AATGCAAGGTTCATTCGGAAGCAGGGCCTGGATCGGCTCTTCCTGGAGTGCGACGCTCACATGTGGCGC CTGGGAGATCGGCGGATCCCAGAGGGCATTGCCGTGGATGGCGGTTCGGACTGGTTCCTGCTGAACCGG AGGTTTGTAGAATATGTGACCTTCTCCACAGACGATCTGGTGACCAAGATGAAACAGTTCTACTCCTAC ACCCTGCTTCCTGAGTCCTTCTTCCATACGGTCCTGGAGAACAGCCCCCACTGCGACACCATGGTG GACAACAACCTGCGCATCACCAACTGGAATCGCAAGCTGGGCTGCAAGTGCCAGTACAAGCACATCGTG GACTGGTGCGGCTGCTCCCCCAATGACTTCAAGCCGCAGGACTTCCACCGCTTCCAGCAGACAGCCCGG CCTACCTTCTTTGCCCGCAAGTTTGAAGCCGTGGTGAATCAGGAAATCATTGGGCAGCTGGACTATTAC CTGTACGGGAACTACCCTGCAGGTACCCCGGGCCTGCGCTCCTACTGGGAAATGTCTACGATGAGCCT GACGGCATCCACAGCCTGAGCGACGTGACACTCACCTTGTACCACTCCTTTGCCCGCCTGGGTCTTCGA CGGCTGAGACGTCCCTGCACACGGATGGGGAGAACAGCTGCCGATACTACCCAATGGGCCACCCAGCA TCTGTGCACCTCTACTTCCTTGCTGACCGCTTCCAGGGCTTTCTGATCAAGCATCATGCTACCAATCTG GCTGTGAGCAAACTAGAGACTCTGGAGACCTGGGTGATGCCGAAAAAAGTCTTCAAGATCGCAAGCCCA CGCAACTTTGGGGGTCTTCTGGGGCCCATGGATGAGCCGGTGGGTATGCAGAAGTGGGGGAAGGGACCT AATGTGACCGTGACCGTCATTTGGGTGGATCCCGTCAATGTCATCGCAGCCACCTACGACATCCTCATT GAGTCCACTGCCGAATTCACACACTACAAGCCCCCTTTGAACTTGCCCCTGAGGCCTGGGGTCTGGACA GTGAAAATTCTCCACCACTGGGTGCCAGTTGCAGAGACCAAATTCCTCGTTGCGCCTCTGACCTTCTCG AACAGGCAGCCCATCAAACCTGAGGAGGCACTGAAGCTGCACAATGGGCCCCTCCGCAATGCCTACATG GAGCAGAGCTTCCAGAGCCTAAACCCCGTCCTCAGCCTGCCCATCAACCCCGCCCAGGTGGAACAGGCA CGGAGGAACGCAGCCTCCACGGGCACAGCGCTGGAGGGATGGCTGGACTCGTTGGTGGGCGGGATGTGG ACTGCCATGGACATCTGTGCCACGGGCCCCACAGCCTGCCCGGTCATGCAGACCTGCAGCCAGACGGCC TGGAGCTCCTTCAGCCCTGACCCCAAGTCGGAGCTGGGTGCCGTCAAACCTGATGGCCGGCTCAGGTAG CACTGGGCACGAGGAGTGGGCCACAGCAGGATCTCAACGGGAAAGCAGCCAGAGGGGTTGTGGGGCCTG AACCCCGGCCTCCACCCTGGGGGAGGCCCTCTGTGAATGGGTCTCTCCTGGCCATAGAATGATGGAAAG GGAAGGTCAGCAGGTCAAAGCAGGATCAGCCAACAACCTGCCTTTGGCAAGCTGCGGTGGGATGGCTC AGTCCCTGCACTGTGACTGTCTCACCTCTTCTGSTTGATCCTCAAGTCCTACAGGTTCCTTGTCTTCCC TTTACGGAGCACAGTCATAAGTGRAGGTTCAGGGTGCTGACGAAATCCAAGCTGCTCTGGTTGAAGCTG ACAAGTGCGAGGTTCCCTCCCAAAGCTCAGCCCTCTGGGCGGTCCCCTTGCCCAGGGTATCTCCTACGG CAAACTCCAGCCCTGCCCTTTGGTTCATTTTTCTGCTTCTCTTGGCTGGGGGGACTCTGGTGCCAGCCTT GAAAGTCATGGTCGTGGGCCCTTTCCCATGGAGGCTGCAGCCTTAGGAGAGCTCTGAGCCTCTCAGCAG CCCTCCTTGGGTTGAACTATTCTCCTTAGTAACTAGGTAAGTGGGAAAGCCTTTTGATGTGGCATGGCC AAGGTCCAGCCACAAGTGCAACTGCCACCTGTCCAGGGGTCTGGGCCTCCTTCCCTCAAGGCTGCCACA CAAAGTAGCAGAAATAGGATGTTTGTGAGCACCAGACTCAAGACCATGACCTTCTTTGATCCTTGA **AAATGGGAACTTTGACAGCCATGACCATGAAACTCACAAGGCAACGCGGATGAAACTCACAAAGCAATG** CTTGGAGCAAAACTCCTGAGCTAGACAGCACCAGCACCCATCCCCTGCCAGAGCCCTTCCGTTTGAG GTCAGACACACAAAACCTTCGTCAATTGCACACCGGTGCTGTTGGGAGTGACCAAACCACATGAACCAG ACTTTTCCCGTCCAGGAAATAGCATTTCAGATTTGGTTTTTAATTTCATGCCCTTCGGCCACAGGCTCA

Fig. 7B

Thr Gln Asp Gly Tyr Phe Ser His Arg Pro Lys Glu Lys Val Arg Thr Asp Ser Asn Asn Glu Asn Ser Val Pro Lys Asp Phe Glu Asn Val Asp Asn Ser Asn Phe Ala Pro Arg Thr Gln Lys Gln Lys His Gln Pro Glu Leu Ala Lys Lys Pro Pro Ser Arg Gln Lys Glu Leu Leu Lys Arg Lys Leu Glu Gln Gln Glu Lys Gly Lys Gly His Thr Phe Pro Gly Lys Gly Pro Gly Glu Val Leu Pro Pro Gly Asp Arg Ala Ala Ala Asn Ser Ser His Gly Lys Asp Val Ser Arg Pro Pro His Ala Arg Lys Thr Gly Gly Ser Ser Pro Glu Thr Lys Tyr Asp Gln Pro Pro Lys Cys Asp Ile Ser Gly Lys Glu Ala Ile Ser Ala Leu Ser Arg Ala Lys Ser Lys His Cys Arg Gln Glu Ile Gly Glu Thr Tyr Cys Arg His Lys Leu Gly Leu Leu Met Pro Glu Lys Val Thr Arg Phe Cys Pro Leu Glu Gly Lys Ala Asn Lys Asn Val Gln Trp Asp Glu Asp Ser Val Glu Tyr Met Pro Ala Asn Pro Val Arg Ile Ala Phe Val Leu Val Val His Gly Arg Ala Ser Arg Gln Leu Gln Arg Met Phe Lys Ala Ile Tyr His Lys Asp His Phe Tyr Tyr Ile His Val Asp Lys Arg Ser Asn Tyr Leu His Arg Gln Val Leu Gln Val Ser Arg Gln Tyr Ser Asn Val Arg Val Thr Pro Trp Arg Met Ala Thr Ile Trp Gly Gly Ala Ser Leu Leu Ser Thr Tyr Leu Gln Ser Met Arg Asp Leu Leu Glu Met Thr Asp Trp Pro Trp Asp Phe Phe Ile Asn Leu Ser Ala Ala Asp Tyr Pro Ile Arg Thr Asn Asp Gln Leu Val Ala Phe Leu Ser Arg Tyr Arg Asp Met Asn Phe Leu Lys Ser His Gly Arg Asp Asn Ala Arg Phe Ile Arg Lys Gln Gly Leu Asp Arg Leu Phe Leu Glu Cys Asp Ala His Met Trp Arg Leu Gly Asp Arg Arg Ile Pro Glu Gly Ile Ala Val Asp Gly Gly Ser Asp Trp Phe Leu Leu Asn Arg Arg Phe Val Glu Tyr Val Thr Phe Ser Thr Asp Asp Leu Val Thr Lys Met Lys Gln Phe Tyr Ser Tyr Thr Leu Leu Pro Ala Glu Ser Phe Phe His Thr Val Leu Glu Asn Ser Pro His Cys Asp Thr Met Val Asp Asn Asn Leu Arg Ile Thr Asn Trp Asn Arg Lys Leu Gly Cys Lys Cys Gln Tyr Lys His Ile Val Asp Trp Cys Gly Cys Ser Pro Asn Asp Phe Lys Pro Gln Asp Phe His Arg Phe Gln Gln Thr Ala Arg Pro Thr Phe Phe Ala Arg Lys Phe Glu Ala Val Val Asn Gln Glu Ile Ile Gly Gln Leu Asp Tyr Tyr Leu Tyr Gly Asn Tyr Pro Ala Gly Thr Pro Gly Leu Arg Ser Tyr Trp Glu Asn Val Tyr Asp Glu Pro Asp Gly Ile His Ser Leu Ser Asp Val Thr Leu Thr Leu Tyr His Ser Phe Ala Arg Leu Gly Leu Arg Arg Ala Glu Thr Ser Leu His Thr Asp Gly Glu Asn Ser Cys Arg Tyr Tyr Pro Met Gly His Pro Ala Ser Val His Leu Tyr Phe Leu Ala Asp Arg Phe Gln Gly Phe Leu Ile Lys His His Ala Thr Asn Leu Ala Val Ser Lys Leu Glu Thr Leu Glu Thr Trp Val Met Pro Lys Lys Val Phe Lys Ile Ala Ser Pro Pro Ser Asp Phe Gly Arg Leu Gln Phe Ser Glu Val Gly Thr Asp Trp Asp Ala Lys Glu Arg Leu Phe Arg Asn Phe Gly Gly Leu Leu Gly Pro Met Asp Glu Pro Val Gly Met Gln Lys Trp Gly Lys Gly Pro Asn Val Thr Val Thr Val Ile Trp Val Asp Pro Val Asn Val Ile Ala Ala Thr Tyr Asp Ile Leu Ile Glu Ser Thr Ala Glu Phe Thr His Tyr Lys Pro Pro Leu Asn Leu Pro Leu Arg Pro Gly Val Trp Thr Val Lys Ile Leu His His Trp Val Pro Val Ala Glu Thr Lys Phe Leu Val Ala Pro Leu Thr Phe Ser Asn Arg Gln Pro Ile Lys Pro Glu Glu Ala Leu Lys Leu His Asn Gly Pro Leu Arg Asn Ala Tyr Met Glu Gln Ser Phe Gln Ser Leu Asn Pro Val Leu Ser Leu Pro Ile Asn Pro Ala Gln Val Glu Gln Ala Arg Arg Asn Ala Ala Ser Thr Gly Thr Ala Leu Glu Gly Trp Leu Asp Ser Leu Val Gly Gly Met Trp Thr Ala Met Asp Ile Cys Ala Thr Gly Pro Thr Ala Cys Pro Val Met Gln Thr Cvs Ser Gln Thr Ala Trp Ser Ser Phe Ser Pro Asp Pro Lys Ser Glu Leu Gly Ala Val Lys Pro Asp Gly Arg Leu Arg

Fig.8A

CGCAGGCCCCGCCCCGGCCCCGGCGCGCGCCCGGCCCGCCTCCCTAGGCGTGGAGGAGGGGGGG CGGCTCAGCCCGCGCCCCGTGCGCGCGCTCGCGGCCGGGTTGCAGGGCTGGGCCGCGCGCCCCGCGTCCCG GGCAGGAAGATGGTGGCGAGCGCGCGAGTGCAGAAGCTGGTGCGGCGCTACAAGCTGGCGATTGCCACGG CGCTGGCCATCCTGCTGCAGGGCCTGGTAGTGTGGAGCTTCAGCGGCCTGGAGGAGGACGAGGCGGG GCAGGGCGACGGGGCACACAGGCAGAAGGCATGGGCGCTGGCGGGGCCGTGCTGAGAGCCCAGGAGTGC TCCGGAAGCCCCAGGCCGCCAGAACCTGAGTGGGGCAGCAGCTGGGGAGGCGCTGGTAGGGGCAGCTGGC TTCCCACCACAGGAGATACAGGGAGCGTGGAGGGCGCCCCCCAGCCCACGGACAATGGCTTCACCCCCA AGTGCGAGATCGTGGGCAAGGACGCACTGTCTGCACTGGCCCGGGCCAGCACCAAGCAGTGCCAGCAGGA GATCGCCAATGTGGTGTGCCTGCACCAGGCTGGGAGCCTCATGCCCAAGGCTGTGCCCCGGCACTGTCAG CGGTGCGAATCGCCTACATGCTGGTGGTTCACGGCCGCCCATCCGCCAGCTGAAGCGTCTCCTCAAGGC CGTTTATCACGAGCACCACTTCTTTTACATCCATGTGGACAAGCGTTCCGACTACCTGCACCGGGAGGTG GTGGAGCTGGCCCAGGGCTATGATAACGTGCGGGTGACGCCCTGGCGCATGGTTACCATCTGGGGCGGGG CTTCATCAACCTCAGTGCCACTGACTATCCAACCAGGACCAATGAGGAGCTGGTGGCATTCCTATCCAAG AACCGGGACAAGAATTTCCTCAAGTCACATGGCCGGGACAACTCCAGGTTCATCAAGAAACAGGGCCTGG ACCGGCTCTTCCATGAGTGCGACTCACACATGTGGCGCCTGGGCGAGCGGCAGATCCCAGCAGGCATTGT GGTGGATGGCGGTTCTGACTGGTTCGTGCTGACACGCAGCTTTGTGGAGTATGTGGTGTACACAGATGAC CCGCTTGTGGCCCAGCTGCGCCAGTTCTACACATACACACTGCTCCCAGCCGAGTCCTTCTTCCACACGG TGCTGGAGAACAGCCTGGCCTGTGAGACCCTCGTGGACAACAACCTGCGGGTCACCAACTGGAACCGCAA GCTGGGCTGCAAGTGCCAGTACAAGCACATTGTGGACTGGTGTGGCTGCTCCCCCAACGACTTCAAGCCA CAGGACTTCCTCCGGCTGCAGCAAGTCTCCAGACCCACCTTCTTCGCCCGGAAGTTCGAGTCGACTGTGA ACCAGGAGGTGCTGGAAATCCTGGACTTCCACCTGTACGGCAGCTACCCCCCGGCACGCCAGCCCTCAA GGCCTACTGGGAGAACACCTACGACGCGGCTGATGGCCCCAGTGGGCTCAGTGATGTCATGCTCACTGCT TACACAGCCTTCGCCCGCCTCAGCCTGCACCATGCCGCCACTGCTGCACCCCCAATGGGCACCCCACTCT GCAGGTTTGAGCCCAGGGGCTTGCCGTCCAGCGTGCACCTGTATTTCTATGACGACCATTTCCAGGGCTA CCTGGTGACGCAGGCGGTGCAGCCCTCAGCCCAGGGGCCGGCAGAGACGCTTGAGATGTGGCTGATGCCC CAAGGGTCGCTGAAGCTGTTGGGGCCCAGTGACCAGGCCAGCCCGGCTCCAGAGTCTGGAAGTTTGGCACTG ATTGGGACCCCAAAGAGCGTCTTTTCCGGAACTTTGGGGGGTTACTGGGGCCGCTGGACGAGCCTGTGGC CGTGCAGCGCTGGGCCCGGGGCCCCAACCTCACAGCCACAGTGGTCTGGATCGACCCAACCTATGTGGTG GCCACATCTTATGACATCACAGTAGATACGGAGACTGAGGTCACGCAATACAAGCCCCCACTGAGCCGGC $\verb|CCCTGCGGCCAGGGCCCTGGACTGTTCGACTCCTTCAGTTCTGGGAACCGCTGGGTGAGACCCGCTTCCT|\\$ CCACCCACAACGAGTACATGGAGCAGAGTTTCCAGGGCCTGAGTAGCATCCTGAACCTGCCTCAGCCGG CCCTGCAGACTGACCAGCTGGAGCTCTCTGTCCCCCGACCCCAAATCAGAGCTGGGGCCTGTCAAAGCAG ACGGGCGACTCAGGTAGCAGGGCCCCAGCCAGTACCCGTGGAGGACCCGGGAAATTGCACCTTACAGACA GTGGAGGGTGTCCCCTCCCACAGGCAAGAACCAGAGGCCCAGGCTGCACACCCATTTCAGCCATCAAGA ACCCACACAGACGGCAGGGAAGGTGGACACAGTATGAACTACTGCTGATGTCTCTGTTGGGGATCAGAGG GCTGGCGGGAACGCGAGAAGGGCACCAGCATTCCACACCCAGCTCTTCCTCACCTTCCTGTCTAGTT **AACTAGAACAGAAGATGTGCAATAGGGCTCAGAGCAGCCCCAGGAAGTGGGCCATGTCTGTGGGGAGCAG** CCCATTCTGGGCCTGTGGTGCTCGTGGCTGAGGCTCCACAGGGCTGCAAGTGCCCTGCCAGGCTCTAAGG CCCGAAGAACAGGTGATATCGGGGGCGCTGCAGAGCTGGGCTCTAGCAGGACAGTTCTTTTGTAGCCAGG GGACCCTAGAAGTGGGGTGGGGCGCTCCAGGGCTTTCCAGCATACCCTGCCCCTGGATGGGAAAGGCAG GGTCAGGGCCCACTGAGACCCATGCAGAGTTTCCAGGTGTGCACTGGAAGTGAGGTCACATGAGCAGCGT GGGAAGAAGACTCTGTCAAGACTCTCAGAAGAACCTGGAGTAATTGTGCCTGAAGCTCAGCGTGAAGTCT GAAATATGCAACAGAAGAAATATATCTCTATCTCTCTA

Fig. 8B

```
Met Val Ala Ser Ala Arg Val Gln Lys Leu Val Arg Arg Tyr Lys Leu Ala
Ile Ala Thr Ala Leu Ala Ile Leu Leu Gln Gly Leu Val Val Trp Ser
Phe Ser Gly Leu Glu Glu Asp Glu Ala Gly Glu Lys Gly Arg Gln Arg Lys
Pro Arg Pro Leu Asp Pro Gly Glu Gly Ser Lys Asp Thr Asp Ser Ser Ala
Gly Arg Arg Gly Ser Thr Gly Arg Arg His Gly Arg Trp Arg Gly Arg Ala
Glu Ser Pro Gly Val Pro Val Ala Lys Val Val Arg Ala Val Thr Ser Arg
Gln Arg Ala Ser Arg Arg Val Pro Pro Ala Pro Pro Pro Glu Ala Pro Gly
Arg Gln Asn Leu Ser Gly Ala Ala Ala Gly Glu Ala Leu Val Gly Ala Ala
Gly Phe Pro Pro His Gly Asp Thr Gly Ser Val Glu Gly Ala Pro Gln Pro
Thr Asp Asn Gly Phe Thr Pro Lys Cys Glu Ile Val Gly Lys Asp Ala Leu
Ser Ala Leu Ala Arg Ala Ser Thr Lys Gln Cys Gln Gln Glu Ile Ala Asn
Val Val Cvs Leu His Gln Ala Gly Ser Leu Met Pro Lys Ala Val Pro Arg
His Cys Gln Leu Thr Gly Lys Met Ser Pro Gly Ile Gln Trp Asp Glu Ser
Gln Ala Gln Gln Pro Met Asp Gly Pro Pro Val Arg Ile Ala Tyr Met Leu
Val Val His Gly Arg Ala Ile Arg Gln Leu Lys Arg Leu Leu Lys Ala Val
Tyr His Glu Gln His Phe Phe Tyr Ile His Val Asp Lys Arg Ser Asp Tyr
Leu His Arg Glu Val Val Glu Leu Ala Gln Gly Tyr Asp Asn Val Arg Val
Thr Pro Trp Arg Met Val Thr Ile Trp Gly Gly Ala Ser Leu Leu Thr Met
Tyr Leu Arg Ser Met Arg Asp Leu Leu Glu Val Pro Gly Trp Ala Trp Asp
Phe Phe Ile Asn Leu Ser Ala Thr Asp Tyr Pro Thr Arg Thr Asn Glu Glu
Leu Val Ala Phe Leu Ser Lys Asn Arg Asp Lys Asn Phe Leu Lys Ser His
Gly Arg Asp Asn Ser Arg Phe Ile Lys Lys Gln Gly Leu Asp Arg Leu Phe
His Glu Cys Asp Ser His Met Trp Arg Leu Gly Glu Arg Gln Ile Pro Ala
Gly Ile Val Val Asp Gly Gly Ser Asp Trp Phe Val Leu Thr Arg Ser Phe
Val Glu Tyr Val Val Tyr Thr Asp Asp Pro Leu Val Ala Gln Leu Arg Gln
Phe Tyr Thr Tyr Thr Leu Leu Pro Ala Glu Ser Phe Phe His Thr Val Leu
Glu Asn Ser Leu Ala Cys Glu Thr Leu Val Asp Asn Asn Leu Arg Val Thr
Asn Trp Asn Arg Lys Leu Gly Cys Lys Cys Gln Tyr Lys His Ile Val Asp
Trp Cys Gly Cys Ser Pro Asn Asp Phe Lys Pro Gln Asp Phe Leu Arg Leu
Gln Gln Val Ser Arg Pro Thr Phe Phe Ala Arg Lys Phe Glu Ser Thr Val
Asn Gln Glu Val Leu Glu Ile Leu Asp Phe His Leu Tyr Gly Ser Tyr Pro
Pro Gly Thr Pro Ala Leu Lys Ala Tyr Trp Glu Asn Thr Tyr Asp Ala Ala
Asp Gly Pro Ser Gly Leu Ser Asp Val Met Leu Thr Ala Tyr Thr Ala Phe
Ala Arg Leu Ser Leu His His Ala Ala Thr Ala Ala Pro Pro Met Gly Thr
Pro Leu Cys Arg Phe Glu Pro Arg Gly Leu Pro Ser Ser Val His Leu Tyr
Phe Tyr Asp Asp His Phe Gln Gly Tyr Leu Val Thr Gln Ala Val Gln Pro
Ser Ala Gln Gly Pro Ala Glu Thr Leu Glu Met Trp Leu Met Pro Gln Gly
Ser Leu Lys Leu Gly Arg Ser Asp Gln Ala Ser Arg Leu Gln Ser Leu
Glu Val Gly Thr Asp Trp Asp Pro Lys Glu Arg Leu Phe Arg Asn Phe Gly
Gly Leu Leu Gly Pro Leu Asp Glu Pro Val Ala Val Gln Arg Trp Ala Arg
Gly Pro Asn Leu Thr Ala Thr Val Val Trp Ile Asp Pro Thr Tyr Val Val
Ala Thr Ser Tyr Asp Ile Thr Val Asp Thr Glu Thr Glu Val Thr Gln Tyr
Lys Pro Pro Leu Ser Arq Pro Leu Arg Pro Gly Pro Trp Thr Val Arg Leu
Leu Gln Phe Trp Glu Pro Leu Gly Glu Thr Arg Phe Leu Val Leu Pro Leu
Thr Phe Asn Arg Lys Leu Pro Leu Arg Lys Asp Asp Ala Ser Trp Leu His
Ala Gly Pro Pro His Asn Glu Tyr Met Glu Gln Ser Phe Gln Gly Leu Ser
Ser Ile Leu Asn Leu Pro Gln Pro Glu Leu Ala Glu Glu Ala Ala Gln Arg
His Thr Gln Leu Thr Gly Pro Ala Leu Glu Ala Trp Thr Asp Arg Glu Leu
Ser Ser Phe Trp Ser Val Ala Gly Leu Cys Ala Ile Gly Pro Ser Pro Cys
Pro Ser Leu Glu Pro Cys Arg Leu Thr Ser Trp Ser Ser Leu Ser Pro Asp
Pro Lys Ser Glu Leu Gly Pro Val Lys Ala Asp Gly Arg Leu Arg
```

Fig. 9

TACTTCTCTCACCGGCCCAAAGAGAAAGTTCGGACCGACAGCAACAATGAGAACTCAGTCCCCAA AGTTGGCAAAGAAGCCCCTCAGCAGGCAGAAAGAGCGTTTGCAGAGAAAGCTGGGCGCCCAGGAC AAAGGACAGGGGCAGTCAGTCCTAGGAAAAGGCCCCAAGGAGGTGCTGCCTCCTCGGGAAAAAGC CCCAGGCAACAGTAGCCAAGGGAAGGATCTCTCAAGACACAGCCATAGCAGGAAGAGTGGTGGCG GTGGGTCCCCGGAAACTAAGTCTGACCAGGTCCCCAAGTGTGACATCTCTGGCAAGGAGGCCATC TCAGCGCTGACCCGCGCTAAGTCCAAGCACTGTCGCCAGGAGATTGCAGAAACCTACTGTCGCCA CAAGCTGGGGCTGCTGATGCCAGAGAAGGTGGCTCGATTCTGTCCCCTGGAAGGCAAAGCCAACA AGAATGTCCAGTGGGATGAGGATGCTGTTGAGTACATGCCCCCCAACCCAGTCAGAATCGCCTTT GTCCTGGTGGTCCATGGCCGTGCCTCTCGACAGCTGCAGCGCATGTTTAAGGCCATCTACCACAA AGACCATTTCTACTATATCCATGTGGATAAGCGTTCCAATTACCTGCATCGGCAAGTGCTCCAGT TCTCCAGGCAGTACGACAACGTCCGAGTCACTTCCTGGAGGATGGCCACCATTTGGGGCGGAGCC CTTCTTCATCAACCTGAGTGCGGCTGACTACCCCATCAGGACAAATGACCAGCTCGTAGCATTTC TTTCCAGATACCGAGATATGAATTTCCTGAAGTCACATGGTCGGGACAATGCAAGGTTCATCCGG AAGCAGGACCTGGACCGTCTCTTCCTGGAGTGTGATACACACATGTGGCGCCCTGGGGGGACCGGCG AATCCCAGAGGGCATTGCTGTAGATGGCGGCTCTGATTGGTTCCTGCTAAACCGGAAGTTTGTAG AGTATGTGGCATTCTCCACAGATGACCTGGTGACCAAGATGAAGCAGTTCTACTCTTATACCCTC CTCCCTGCTGAGTCCTTTTTCCACACGGTCCTGGAGAACAGCCCCCACTGTGACACCATGGTGGA TAACAACCTGCGCATCACCAATTGGAACCGCAAGCTGGGCTGCAAGTGCCAGTACAAGCATATTG TGGACTGGTGTGGCTGCTCTCCCAATGACTTCAAGCCTCAGGACTTCCATCGCTTCCAGCAGACG GCCCGGCCCACCTTCTTTGCCCGAAAGTTCGAAGCCATAGTGAACCAGGAAATCATTGGGCAGTT GGACTCTTACCTGTATGGCAACTATCCTGCGGGCACCCCGGGCCTCCGCTCTTACTGGGAGAATG TCTATGACGAACCAGATGGCATCCAGAGCCTCAGCGATGTGGCACTCACCATGTATCATTCCTTC ATCCGCCTGGGTCTTCGAAGGGCTGAGTCATCGCTACACACGGATGGGGAGAACAGCTGCAGGTA CTATCCAATGGGCCACCCAGCGTCTGTCCACCTCTACTTCCTGGCTGACCGATTCCAGGGCTTTC TGATCAAGCACCATGTGACCAACCTTGCTGTGAGCAAACTGGAGACACTGGAGACATGGATGATG CCAAAGAAAGTCTTCAAGGTCGCAAGTCCCCCAGTGACTTTGGGAGGCTTCAGTTTTCTGAGGT TGGCACTGACTGGGATGCCAAGGAGAGACTATTCCGGAACTTTGGTGGTCTTTTGGGGCCCATGG ATGAGCCGGTGGGAATGCAGAAATGGGGGAAGGGACCCAATGTGACCGTGACTGTTATTTGGGTG GATCCTGTCAATGTCATCGCAGCCACCTATGATATCCTGATCGAGTCCACTGCGGAATTCACACA CTACAAACCCCCTTTGAATCTGCCTCTGAGGCCTGGTGTCTGGACAGTGAAGATTCTCCATCACT GGGTACCAGTTGCAGAGACCAAATTCCTTGTCGCACCTCTGACCTTCTCCAACAAGCAGCCCATC AAACCAGAGGAGGCTTTGAAGCTGCACAATGGGCCACCTCGCAGTGCCTACATGGAGCAGAGTTT CCAGAGCCTAAACCCAGTCCTCAGCCTGCACATCAATCCTGCCCAAGTGGAGCAGGCCCGGAAGA GTCTGTGCCACAGGCCCCACTGCCTGCCCAGTCATGCAAACCTGCAGCCAAACAGCCTGGAGTTC CTTCAGCCCTGATCCCAAGTCAGAGCTGGGTGCAGTGAAGCCTGATGGTCGGCTCAGGTAGCACT GGCCACATGGGACTGATACAGCCTGAACCCTGGCCTCTGATCTTATATGGGGGAGGGGTTCCTTC TGTTCAAGGACCTCTGTTGCCTGTAGGACAGTGGAAAGAGAGGATTTGGAGGCCAGA

Fig. 10

GCGCTCGCGGCCGGGTTGCAGGGCCGGACGCGCGCCCCCGCGTCCCGGGCAGGAAGATGGTGGCGA GCGCGCGGGTGCAGAAGCTGGTGCGGCGCTACAAGCTGGCGATCGCCACCGCGCTGGCCATCCTG CTGCTGCAGGGCCTGGTGGTGTGGAGCTTCAGCGGCCTGGAGGAGGACGAGCCGGGCGAGAAAGG AAGGCAGAGAAAGCCACGGCCGCTAGACCCTGGAGAGGGTTCCAAGGACACGGACAGCTCTGCAG GGCGTAGGGGCAGTGCTGGGAGAAGGCACGGACGGTGGCGGGGCCGCGCGAGAGCCCAGGTGTG CCCACCTCCAGAGGCACCAGGCCGCCAGAACCTGAGTGGAGCAGCAGCCGGGGAAGCACTGATAG GTGCCGCCGGCTTCCCACAACATGGAGACACAGGGAGTGTGGAGGGTGCCCCTCAGCCCACGGAT AACAGCTTCACTCCGAAGTGTGAGATTGTGGGCCAAGGATGCACTGTCAGCACTGGCCCGGGCCAG CACCAAGCATTGTCAACAAGAGATTGCTAATGTAGTGTGCCTGCACCAAGCTGGGAACCTAATGC CCAAGTCTGTGCCCCGGCACTGCCAGCTGGCAAGGTGAGCCCTGGCATCCAGTGGGAAGAG GTCCGGGCCCAGCAGCCTGTGAGTGGCCCTCTGGTACGCATCGCCTACATGCTGGTGGTTCACGG CCGTGCTGTGCGCCAGCTGAAGCGTCTTCTGAAGGCCGTCTACCACGAGGAGCACTTCTTTTATA TTCATGTGGACAAGCGTTCCAACTACCTGTACCGGGAGGTGGTAGAGCTGGCCCAGCACTACGAC AATGTACGGGTAACACCTTGGCGCATGGTCACCATCTGGGGTGGGGCTAGCCTTCTGAGGATGTA GCGCTACTGACTATCCAACCAGGACGAATGAGGAGCTGGTAGCGTTCTTATCCAAGAACCGGGAC AAGAATTTCCTCAAGTCACACGGGCGAGACAATTCCAGGTTCATCAAGAAACAAGGCCTGGACCG TGGTGGATGGTGGCTCTGACTGGTTCGTGCTGACACGCAGCTTTGTGGAATATGTGGTGTATACA CTTCCACACAGTGCTGGAGAACAGCCCAGCCTGTGAGAGCCTAGTGGACAACAACCTGCGGGTTA CCAACTGGAACCGGAAGCTGGGCTGCAAGTGCCAGTACAAGCACATCGTGGACTGGTGTGGCTGC TCCCCCAACGACTTCAAGCCACAGGACTTCCTGCGGCTTCAGCAAGTCTCCAGACCCACCTTCTT TGCCCGGAAGTTTGAGTCGACTGTGAACCAGGAAGTCCTGGAAATTTTGGACTTCCACCTGTATG GCAGCTACCCACCCGGCACCCCAGCCCTCAAGGCCTACTGGGAGAACATCTACGACATGGCCGAT GGCCCTAGTGGACTCAGCGATGTCCTACTCACTGCTTACACAGCCTTTGCCCGTATCAGTCTGCG TCATGCTGCCACTGTTTCCCCACTGGCCACTGCAGTCTGCAGGTTTGAGCCCAGGGGGTTGCCGT CCCTCAGCCCAGGGGCCAGCAGAGACACTTGAGATGTGGCTGATGCCCCAGAGGTTGCTGAAGCC GTTGGGGCACAGTGACCAGGCCAGCCGGCTCCAGAGTCTGGAGGTTGGCACTGAGTGGGACCCCA AAGAACGTCTCTCCGGAACTTTGGGGGCCTGTTGGGACCACTGGATGAACCTGTGGCCATGCAG CGCTGGGCCCGGGGCCCCAACCTCACAGCCACTGTGGTCTGGATTGACCCCACCTATGTTGTGGC CACATCCTATGACATCACGGTAGATGCGGACACTGAAGTCACGCAGTACAAGCCCCCCACTGAGCC TGCCACTGCGGCCAGGAGCCTGGACTGTTCGATTGCTTCAGTTCTGGGAGCCCCTGGGTGAGACC CGCTTCCTCGTGCTGCCATTGACCTTCAACCACAAACTACCTCTCAGGAAAGATGATGCCAGCTG GCTGCATGCGGGACCACCCCACAACGAATACATGGAACAGAGTTTCCAGGGACTAAGTGGCATCC TGAATCTGCCTCAGCCAGAGGCCGTGGAGGAGGCTGCCCGGCGGCACACAGAGCTCACAGGTCCT GCACTTGAGGCCTGGACAGATGGGGAACTGAGCAGTTTCTGGTCTGTTGCAGGATTGTGTGCCAT AGGGCCTTCTTCTTGTCCCTCCCTGGAGCTCTGCAGACTGACCAGCTGGAGCTCTCTGTCTCCTG CACAACCCGGAGGAGCCGGGGAATTGCACCTTACAGACAATGGAGGGACGTCTCTCCTCTGGTAG

Fig. 11

SEQUENCE LISTING

```
<110> Kleesiek, Knut
<120> Xylosyltransferase and isoforms thereof
<130> Xylosyltransferase
<140>
<141>
<160> 36
<170> PatentIn Ver. 2.1
<210> 1
<211>. 3726
<212> DNA
<213> Homo sapiens ·
<220> 1
<221> CDS
<222> (1)..(2484)
<223> human XT-I
                    (not completely)
<220>
<221> misc binding
<222> (544)..(552)
. <223> binding motif for nucleotide-sugars
<220>
<221> misc_feature
 <222> (280)..(282)
 <223> N-glycosylation site
 <220>
 <221> misc feature
 <222> (865)..(867)
 <223> N-glycosylation site
 <220>
 <221> misc feature
 <222> (1933)..(1935)
 <223> N-glycosylation site
 <400> 1
                                                                     48
 act cag gat ggc tac ttt tct cat cgg ccg aaa gag aaa gtg cga aca
 Thr Gln Asp Gly Tyr Phe Ser His Arg Pro Lys Glu Lys Val Arg Thr
 gac agc aac aac gag aac tot gto coc aaa gac ttt gag aat gtg gac
 Asp Ser Asn Asn Glu Asn Ser Val Pro Lys Asp Phe Glu Asn Val Asp
                                                                     144
 aac agc aac ttc gca ccc agg act caa aag cag aag cac cag cct gag
 Asn Ser Asn Phe Ala Pro Arg Thr Gln Lys Gln Lys His Gln Pro Glu
          35
                               40
 ttg gcg aag aag cca ccg agt aga cag aag gag ctt ttg aaa agg aag
                                                                     192
 Leu Ala Lys Lys Pro Pro Ser Arg Gln Lys Glu Leu Lys Arg Lys
      50
                          55
                                               60
```

								2	/ 3	2						
				gag Glu												240
ccc Pro	ggt Gly	gag Glu	gtg Val	ctg Leu 85	cct Pro	ccc Pro	Gly ggg	gac Asp	aga Arg 90	gcc Ala	gca Ala	gcc Ala	aac Asn	agc Ser 95	agc Ser	288
				gtg Val												336
				acc Thr												384
ggc Gly	aag Lys 130	gag Glu	gcc Ala	atc Ile	tct Ser	gcc Ala 135	ctg Leu	tcc Ser	cgt Arg	gct Ala	aag Lys 140	tcc Ser	aag Lys	cac His	tgc Cys	432
cgc Arg 145	cag Gln	gag Glu	att Ile	GJ À ààà	gag Glu 150	act Thr	tac Tyr	tgc Cys	cgc Arg	cac His 155	aag Lys	tta Leu	ggg Gly	ctg Leu	ctg Leu 160	480
atg Met	cct Pro	gag Glu	aag Lys	gtg Val 165	act Thr	cgg Arg	ttc Phe	tgc Cys	ccc Pro 170	ctc Leu	gag Glu	ggt Gly	aaa Lys	gcc Ala 175	aac Asn	528
aag Lys	aac Asn	gtg Val	cag Gln 180	tgg Trp	gac Asp	gag Glu	gac Asp	tcc Ser 185	gtg Val	gag Glu	tac Tyr	atg Met	cca Pro 190	gcc Ala	aac Asn	576
ccg Pro	gtc Val	aga Arg 195	atc Ile	gcc Ala	ttt Phe	gtc Val	ctg Leu 200	gtg Val	gtc Val	cac His	ggc	cgt Arg 205	gcc Ala	tct Ser	cgg Arg	624
		Gln		atg Met												672
tac Tyr 225	Ile	cac His	gtg Val	gac Asp	aag Lys 230	Arg	tct Ser	aat Asn	tac Tyr	ctg Leu 235	cat His	cgg Arg	caa Gln	gtg Val	ctc Leu 240	720
				cag Gln 245	Tyr					Val					Met	768
gcc Ala	acc Thr	atc	tgg Trp 260	gga Gly	gga Gly	gcc Ala	agc Ser	ctc Leu 265	Leu	tcc Ser	acc Thr	tac Tyr	ctg Leu 270	Gln	agc Ser	816
atç Met	g cgg : Arg	gac Asp 275	Let	ctg Leu	gag Glu	r atg ı Met	acc Thr 280	Asp	tgg Trp	ecc Pro	tgg Trp	gac Asp 285	Phe	ttc Phe	atc Ile	864
aac Asr	cto Lev 290	Ser	gcg Ala	g gcc Ala	gac Asp	tac Tyr 295	Pro	ato	agg Arg	aca Thr	aat Asn 300	Asp	caç Glr	g ttg Leu	gtg Val	912
	Phe					Arc					e Lev				ggc Gly 320	960

					3	/ 3	2				
		gca Ala			aag	cag	ggc				1008
		gac Asp 340									1056
		gcc Ala									1104
		gaa Glu									1152
		ttc Phe									1200
		ctg Leu									1248
		atc Ile 420									1296
		atc Ile									1344
		ttc Phe									1392
		ttt Phe									1440
		ctg Leu									1488
		gag Glu 500									1536
		aca Thr									1584
	Ala	gag							Asn		1632
Tyr		atg Met		Pro				Leu			1680
		cag Gln	Phe				His				1728

								4	/ 3	2						
				gag Glu												1776
				agc Ser												1824
				gac Asp												1872
				Gly ggg												1920
				aat Asn 645												1968
				gcc Ala												2016
				aag Lys												2064
				att Ile												2112
				cct Pro												2160
				aag Lys 725						Leu						2208
gag Glu	cag Gln	agc Ser	ttc Phe 740	cag Gln	agc Ser	cta Leu	aac Asn	ccc Pro 745	gtc Val	ctc Leu	agc Ser	ctg Leu	ccc Pro 750	atc Ile	aac Asn	2256
				gaa Glu												2304
		Glu		tgg Trp			Ser					Met				2352
	Āsp			gcc Ala		Gly					Pro					2400
tgc Cys	agc Ser	cag Gln	acg Thr	gcc Ala 805	tgg Trp	agc Ser	tcc Ser	ttc Phe	ago Ser 810	Pro	gac Asp	ccc Pro	aag Lys	tcg Ser 815		2448
				: aaa . Lys					Leu			cac	tggg	cac		2494

gaggagtggg ccacagcagg atctcaacgg gaaagcagcc agaggggttg tggggcctga 2554 accordant ccaccetggg qqaqqcoctc tgtgaatggg tototototgq ccataqaatq 2614 atggaaaggg aaggtcagca ggtcaaagca ggatcagcca acaacctgcc tttggcaagc 2674 tgcqqqtqqq atqqctcaqt ccctqcactq tgactqtctc acctcttctq sttqatcctc 2734 aagtoctaca ggttccttgt cttccccttc cagtgaccca cccctgaccc cagacgtgtg 2794 attttcagac ttttctttcg agcagcagaa cttcgtttac ggagcacagt cataagtgra 2854 ggttcagggt gctgacgaaa tccaagctgc tctggttgaa gctgacaagt gcgaggttcc 2914 ctcccaaagc tcagccctct gggcggtccc cttgcccagg gtatctccta cggtacctct 2974 teagaaceca agggetetge aaatgecagt ttgacaagea etgeceagae caaceatggg 3034 ttcaaactcc agccctgccc tttggttcat ttttctgctt ctcttggctg ggggactctg 3094 gtgccagect tgaaagteat ggtcgtggge cettteceat ggaggetgea geettaggag 3154 agetetqage eteteageag eceteettgg gttgaactat teteettagt aactaggtaa 3214 gtgggaaagc cttttgatgt ggcatggcca aggtccagcc acaagtgcaa ctgccacctg 3274 tecaggggte tgggeetect teceteaagg etgeeacaea aagtageaga aataggatga 3334 tgtttgtgag caccagactc aagaccatga ccttctttga tccttgaaaa tgggaacttt 3394 gacagecatg accatgaaac teacaaggea aegeggatga aacteacaaa geaatgettg 3454 qaqcaaaact cctgaqctag acaqcacagc agcacccatc ccctgccaga gcccttccgt 3514 ttgaggtcag acacacaaa ccttcgtcaa ttgcacaccg gtgctgttgg gagtgaccaa 3574 accacatgaa ccagactttt cccgtccagg aaatagcatt tcagatttgg tttttaattt 3634 catqcccttc ggccacaggc tcaacgggac atgcaacata aaaatgggaa ggttattcaa 3694 cccqcqqqaa aaaaaaaaaa aaaaaaaaaa aa

```
<210> 2
<211> 827
<212> PRT
<213> Homo sapiens
Thr Gln Asp Gly Tyr Phe Ser His Arg Pro Lys Glu Lys Val Arg Thr
Asp Ser Asn Asn Glu Asn Ser Val Pro Lys Asp Phe Glu Asn Val Asp
                                 25
Asn Ser Asn Phe Ala Pro Arg Thr Gln Lys Gln Lys His Gln Pro Glu
Leu Ala Lys Lys Pro Pro Ser Arg Gln Lys Glu Leu Leu Lys Arg Lys
Leu Glu Gln Gln Glu Lys Gly Lys Gly His Thr Phe Pro Gly Lys Gly
                      70
Pro Gly Glu Val Leu Pro Pro Gly Asp Arg Ala Ala Asn Ser Ser
His Gly Lys Asp Val Ser Arg Pro Pro His Ala Arg Lys Thr Gly Gly
                                105
Ser Ser Pro Glu Thr Lys Tyr Asp Gln Pro Pro Lys Cys Asp Ile Ser
        115
                            120
Gly Lys Glu Ala Ile Ser Ala Leu Ser Arg Ala Lys Ser Lys His Cys
Arg Gln Glu Ile Gly Glu Thr Tyr Cys Arg His Lys Leu Gly Leu Leu
145
Met Pro Glu Lys Val Thr Arg Phe Cys Pro Leu Glu Gly Lys Ala Asn
```

170

6 / 32 Lys Asn Val Gln Trp Asp Glu Asp Ser Val Glu Tyr Met Pro Ala Asn 185 Pro Val Arg Ile Ala Phe Val Leu Val Val His Gly Arg Ala Ser Arg Gln Leu Gln Arg Met Phe Lys Ala Ile Tyr His Lys Asp His Phe Tyr 215 Tyr Ile His Val Asp Lys Arg Ser Asn Tyr Leu His Arg Gln Val Leu 230 235 Gln Val Ser Arg Gln Tyr Ser Asn Val Arg Val Thr Pro Trp Arg Met Ala Thr Ile Trp Gly Gly Ala Ser Leu Leu Ser Thr Tyr Leu Gln Ser 265 Met Arg Asp Leu Leu Glu Met Thr Asp Trp Pro Trp Asp Phe Phe Ile 280 Asn Leu Ser Ala Ala Asp Tyr Pro Ile Arg Thr Asn Asp Gln Leu Val Ala Phe Leu Ser Arg Tyr Arg Asp Met Asn Phe Leu Lys Ser His Gly 310 305 Arg Asp Asn Ala Arg Phe Ile Arg Lys Gln Gly Leu Asp Arg Leu Phe 330 Leu Glu Cys Asp Ala His Met Trp Arg Leu Gly Asp Arg Arg Ile Pro 350 Glu Gly Ile Ala Val Asp Gly Gly Ser Asp Trp Phe Leu Leu Asn Arg Arg Phe Val Glu Tyr Val Thr Phe Ser Thr Asp Asp Leu Val Thr Lys 375 Met Lys Gln Phe Tyr Ser Tyr Thr Leu Leu Pro Ala Glu Ser Phe Phe 395 His Thr Val Leu Glu Asn Ser Pro His Cys Asp Thr Met Val Asp Asn 410 Asn Leu Arg Ile Thr Asn Trp Asn Arg Lys Leu Gly Cys Lys Cys Gln 425 420 Tyr Lys His Ile Val Asp Trp Cys Gly Cys Ser Pro Asn Asp Phe Lys 440 Pro Gln Asp Phe His Arg Phe Gln Gln Thr Ala Arg Pro Thr Phe Phe 450 Ala Arg Lys Phe Glu Ala Val Val Asn Gln Glu Ile Ile Gly Gln Leu 470 475 Asp Tyr Tyr Leu Tyr Gly Asn Tyr Pro Ala Gly Thr Pro Gly Leu Arg

Ser Tyr Trp Glu Asn Val Tyr Asp Glu Pro Asp Gly Ile His Ser Leu

505

WO 01/49831 PCT/EP00/13311

7 / 32 Ser Asp Val Thr Leu Thr Leu Tyr His Ser Phe Ala Arg Leu Gly Leu 520 Arg Arg Ala Glu Thr Ser Leu His Thr Asp Gly Glu Asn Ser Cys Arg 535 Tyr Tyr Pro Met Gly His Pro Ala Ser Val His Leu Tyr Phe Leu Ala 555 Asp Arg Phe Gln Gly Phe Leu Ile Lys His His Ala Thr Asn Leu Ala 570 Val Ser Lys Leu Glu Thr Leu Glu Thr Trp Val Met Pro Lys Lys Val 585 Phe Lys Ile Ala Ser Pro Pro Ser Asp Phe Gly Arg Leu Gln Phe Ser 600 Glu Val Gly Thr Asp Trp Asp Ala Lys Glu Arg Leu Phe Arg Asn Phe 615 Gly Gly Leu Leu Gly Pro Met Asp Glu Pro Val Gly Met Gln Lys Trp 630 635 Gly Lys Gly Pro Asn Val Thr Val Thr Val Ile Trp Val Asp Pro Val Asn Val Ile Ala Ala Thr Tyr Asp Ile Leu Ile Glu Ser Thr Ala Glu Phe Thr His Tyr Lys Pro Pro Leu Asn Leu Pro Leu Arg Pro Gly Val 680 675 685 Trp Thr Val Lys Ile Leu His His Trp Val Pro Val Ala Glu Thr Lys Phe Leu Val Ala Pro Leu Thr Phe Ser Asn Arg Gln Pro Ile Lys Pro 715 Glu Glu Ala Leu Lys Leu His Asn Gly Pro Leu Arg Asn Ala Tyr Met Glu Gln Ser Phe Gln Ser Leu Asn Pro Val Leu Ser Leu Pro Ile Asn Pro Ala Gln Val Glu Gln Ala Arg Arg Asn Ala Ala Ser Thr Gly Thr 755 Ala Leu Glu Gly Trp Leu Asp Ser Leu Val Gly Gly Met Trp Thr Ala 775 Met Asp Ile Cys Ala Thr Gly Pro Thr Ala Cys Pro Val Met Gln Thr 790 Cys Ser Gln Thr Ala Trp Ser Ser Phe Ser Pro Asp Pro Lys Ser Glu

Leu Gly Ala Val Lys Pro Asp Gly Arg Leu Arg

<210> 3 <211> 3608 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (150)..(2744) <223> human XT-II <220> <221> misc_feature <222> (513)..(515) <223> N-glycosylation site <221> misc feature <222> (1128)..(1130) <223> N-glcosylation site <220> <221> misc feature <222> (2196)..(2198) <223> N-glycosylation site <400> 3 cgcaggcccc gcccccggc ccgccccggc gcgcgcccgg cccgcctccc taggcgtgga 60 ggagggggg cggctcagec ccgcgcccgt gcgcgcgctc gcggccgggt tgcagggctg 120 ggcgcgcgcc ccgcgtcccg ggcaggaag atg gtg gcg agc gcg cga gtg cag Met Val Ala Ser Ala Arg Val Gln aag ctg gtg cgg cgc tac aag ctg gcg att gcc acg gcg ctg gcc atc 221 Lys Leu Val Arg Arg Tyr Lys Leu Ala Ile Ala Thr Ala Leu Ala Ile 269 ctq ctq ctq caq ggc ctg gta gtg tgg agc ttc agc ggc ctg gag gag Leu Leu Gln Gly Leu Val Val Trp Ser Phe Ser Gly Leu Glu Glu 25 gac gag gcg ggc gag aaa gga agg cag agg aag cca cgg cca ctg gac 317 Asp Glu Ala Gly Glu Lys Gly Arg Gln Arg Lys Pro Arg Pro Leu Asp cet ggc gaa ggt tee aag gae aca gae agt tea gea ggg ega egg gge 365 Pro Gly Glu Gly Ser Lys Asp Thr Asp Ser Ser Ala Gly Arg Arg Gly 413 age aca gge aga agg cat ggg cgc tgg gge cgt gct gag age cca Ser Thr Gly Arg Arg His Gly Arg Trp Arg Gly Arg Ala Glu Ser Pro gga gtg ccc gtg gcc aag gtg gta cgg gca gta acc agc cgg cag aga 461 Gly Val Pro Val Ala Lys Val Val Arg Ala Val Thr Ser Arg Gln Arg 90 gec age egg egg gte eca eet gec eca eet eeg gaa gee eca gge ege 509 Ala Ser Arg Arg Val Pro Pro Ala Pro Pro Pro Glu Ala Pro Gly Arg 105 110 115 cag aac ctg agt ggg gca gct ggg gag gcg ctg gta ggg gca gct Gln Asn Leu Ser Gly Ala Ala Gly Glu Ala Leu Val Gly Ala Ala 125 130 135

								9	/ 3	2						
				cac His				ggg	agc	gtg						605
				ggc Gly												653
				ctg Leu												701
				gtg Val												749
				cac His 205												797
cag Gln	tgg Trp	gat Asp	gag Glu 220	agc Ser	caa Gln	gcc Ala	cag Gln	cag Gln 225	ccc Pro	atg Met	gat Asp	ggc Gly	ccc Pro 230	ccg Pro	gtg Val	845
cga Arg	atc Ile	gcc Ala 235	tac Tyr	atg Met	ctg Leu	gtg Val	gtt Val 240	cac His	ggc	cgc Arg	gcc Ala	atc Ile 245	cgc Arg	cag Gln	ctg Leu	893
aag Lys	cgt Arg 250	ctc Leu	ctc Leu	aag Lys	gcc Ala	gtt Val 255	tat Tyr	cac His	gag Glu	cag Gln	cac His 260	ttc Phe	ttt Phe	tac Tyr	atc Ile	941
				cgt Arg												989
gcc Ala	cag Gln	ggc Gly	tat Tyr	gat Asp 285	aac Asn	gtg Val	cgg Arg	gtg Val	acg Thr 290	ccc Pro	tgg Trp	cgc Arg	atg Met	gtt Val 295	acc Thr	1037
atc Ile	tgg Trp	ggc	300 GJ A GG A	gcc Ala	agc Ser	ctc Leu	ctg Leu	acg Thr 305	atg Met	tac Tyr	ctg Leu	cgg Arg	agc Ser 310	atg Met	cgg Arg	1085
gac Asp	ctg Leu	cta Leu 315	Glu	gtg Val	cct Pro	ggc	tgg Trp 320	Ala	tgg Trp	gac Asp	ttc Phe	ttc Phe 325	Ile	aac Asn	ctc Leu	1133
agt Ser	gcc Ala 330	Thr	gac	tat Tyr	cca Pro	acc Thr 335	Arg	acc	aat Asn	gag Glu	gag Glu 340	Leu	gtg Val	gca Ala	ttc Phe	1181
cta Leu 345	Ser	aag Lys	aac Asn	cgg Arg	gac Asp 350	Lys	aat Asn	tto Phe	ctc Leu	aag Lys 355	Ser	cat His	Gly ggc	cgg Arg	gac Asp 360	1229
aac Asn	tcc Ser	agg Arg	ttc Phe	ato Ile 365	Lys	aaa Lys	cag Gln	ggc Gly	ctg Leu 370	Asp	cgg Arg	g cto	tto Phe	cat His	gag Glu	1277
tgc Cys	gac Asp	tca Ser	cac His	Met	tgg Trp	g cgc	ctg Leu	ggc Gly 385	/ Glu	ı cgç Arç	g caq g Glr	g ato n Ile	e cca Pro 390	Ala	a ggc a Gly	1325

								10) / 3	32							
att Ile	gtg Val	gtg Val 395	gat Asp	Gly	ggt Gly	tct Ser	gac Asp 400	tgg Trp	ttc Phe	gtg Val	ctg Leu	aca Thr 405	cgc Arg	agc Ser	ttt Phe	1373	
gtg Val	gag Glu 410	tat Tyr	gtg Val	gtg Val	tac Tyr	aca Thr 415	gat Asp	gac Asp	ccg Pro	ctt Leu	gtg Val 420	gcc Ala	cag Gln	ctg Leu	cgc Arg	1421	
cag Gln 425	ttc Phe	tac Tyr	aca Thr	tac Tyr	aca Thr 430	ctg Leu	ctc Leu	cca Pro	gcc Ala	gag Glu 435	tcc Ser	ttc Phe	ttc Phe	cac His	acg Thr 440	1469	
gtg Val	ctg Leu	gag Glu	aac Asn	agc Ser 445	ctg Leu	gcc Ala	tgt Cys	gag Glu	acc Thr 450	ctc Leu	gtg Val	gac Asp	aac Asn	aac Asn 455	ctg Leu	1517	
cgg Arg	gtc Val	acc Thr	aac Asn 460	tgg Trp	aac Asn	cgc Arg	aag Lys	ctg Leu 465	ggc Gly	tgc Cys	aag Lys	tgc Cys	cag Gln 470	tac Tyr	aag Lys	1565	
cac His	att Ile	gtg Val 475	gac Asp	tgg Trp	tgt Cys	ggc Gly	tgc Cys 480	tcc Ser	ccc Pro	aac Asn	gac Asp	ttc Phe 485	aag Lys	cca Pro	cag Gln	1613	
gac Asp	ttc Phe 490	ctc Leu	cgg Arg	ctg Leu	cag Gln	caa Gln 495	gtc Val	tcc Ser	aga Arg	ccc Pro	acc Thr 500	ttc Phe	ttc Phe	gcc Ala	cgg Arg	1661	
aag Lys 505	Phe	gag Glu	tcg Ser	act Thr	gtg Val 510	aac Asn	cag Gln	gag Glu	gtg Val	ctg Leu 515	gaa Glu	atc Ile	ctg Leu	gac Asp	ttc Phe 520	1709	
cac His	ctg Leu	tac Tyr	ggc	agc Ser 525	Tyr	ccc Pro	ccc Pro	ggc	acg Thr 530	cca Pro	gcc Ala	ctc Leu	aag Lys	gcc Ala 535	tac Tyr	1757	
tgg Trp	gag Glu	aac Asn	Thr 540	tac Tyr	gac Asp	gcg Ala	gct Ala	gat Asp 545	Gly	ccc	agt Ser	Gly	ctc Leu 550	Ser	gat Asp	1805	
gto Val	atg Met	ctc Leu 555	Thr	gct Ala	tac Tyr	aca Thr	gcc Ala 560	ttc Phe	gcc	cgc	ctc Leu	agc Ser 565	Leu	cac His	cat His	1853	
gco	geo Ala 570	Thr	gct Ala	gca Ala	ccc Pro	cca Pro 575	Met	ggc	acc Thr	cca Pro	cto Leu 580	Cys	agg Arg	ttt Phe	gag Glu	1901	
cco Pro 58	Arg	d GJ7	tto Lev	g cco ı Pro	tco Ser 590	Ser	gtg Val	cac His	ctg Lev	tat Tyr 595	Phe	tat Tyr	gac Asp	gac Asp	cat His 600	1949	
tte Phe	c caq e Glr	g ggo n Gly	tao Ty	c cto Leu 609	ı Val	acç Thr	cag Gln	gco Ala	g gtg Val 610	. Glr	g cco	tca Ser	gco Ala	c cag Glr 615	g Gly	1997	
Pr	g gca	a gaq a Gli	g acc 1 Th: 62	r Lei	gaç ı Glu	g ato 1 Met	g tgg Trp	cto Lev 625	ו Met	g cco	c caa	a ggg	y tcg y Sei 630	c Lei	g aag 1 L ys	2045	
ct Le	g tte	g ggg u Gl; 63	y Ar	c agt g Sei	t gad r Asp	c caç o Glr	g gco n Ala 640	a Se	c cg	g cti	c cad	g agt n Sei 645	c Le	g gaq ı Glu	g gtt ı Val	2093	İ

WO 01/49831 PCT/EP00/13311

•		1	1 / 32			
	tgg gac ccc Trp Asp Pro		Leu Phe			2141
	ccg ctg gac Pro Leu Asp 670					2189
	ctc aca gcc Leu Thr Ala 685					2237
gtg gcc aca Val Ala Thr	tct tat gac Ser Tyr Asp 700	atc aca gta Ile Thr Val 705	Asp Thr	gag act ga Glu Thr Gl 71	u Val Thr	2285
caa tac aag Gln Tyr Lys 715	ccc cca ctg Pro Pro Leu	agc cgg ccc Ser Arg Fro 720	ctg cgg Leu Arg	cca ggg co Pro Gly Pr 725	c tgg act o Trp Thr	2333
	ctt cag ttc Leu Gln Phe					2381
gtg ctg ccc Val Leu Pro 745	ttg acc ttc Leu Thr Phe 750	aac cgc aaa Asn Arg Lys	cta cct Leu Pro 755	ctc agg as Leu Arg Ly	a gat gat s Asp Asp 760	2429
gcc agc tgg Ala Ser Trp	ctg cac gca Leu His Ala 765	ggg cca ccc Gly Pro Pro	cac aac His Asn 770	gag tac at Glu Tyr Me	g gag cag t Glu Gln 775	2477
agt ttc cag Ser Phe Gln	ggc ctg agt Gly Leu Ser 780	agc atc ctg Ser Ile Leu 785	ı Asn Leu	cct cag co Pro Gln Pr 79	o Glu Leu	2525
gcg gag gag Ala Glu Glu 795	gct gcc cag Ala Ala Gln	cgg cac aca Arg His Thr 800	cag ctc Gln Leu	aca ggc co Thr Gly Pr 805	et gcg ctc co Ala Leu	2573
	aca gac agg Thr Asp Arg					2621
ctg tgt gcc Leu Cys Ala 825	ata ggc ccc Ile Gly Pro 830	tct ccc tgc Ser Pro Cys	c ccc tcc s Pro Ser 835	ctg gag co Leu Glu P	cc tgc aga co Cys Arg 840	2669
ctg acc agc Leu Thr Ser	tgg agc tct Trp Ser Ser 845	ctg tcc ccc Leu Ser Pro	gac ccc Asp Pro 850	aaa tca g Lys Ser G	ag ctg ggg Lu Leu Gly 855	2717
	gca gac ggg Ala Asp Gly 860		3	gcc ccagcc	agta	2764
gcaagaacca cagggaaggt gcgggaacgc ctagtttgaa gggtggttgg	acccgggaaa t gaggcccagg c ggacacagta t gagaagggca c tttcttttt t gagagaaact a tgtctgtggg g	tgcacaccc a gaactactg c cagcagcat t tctttcttt t gaacagaag a	tttcagcca tgatgtctc ccacaccca tttttttt tgtgcaata	tcaagaacc tgttgggga gctcttcct tttaattta gggctcaga	c acacagacgg t cagagggctg c accttcctgt a aaaggaaaat g cagccccagg	2884 2944 3004 3064 3124

gaggetggge etgeeteact etceagggee teatgeecea ttetgggeet gtggtgeteg 3244 tggetgagge tecacaggge tgeaagtgee etgeeagget etaaggeecg aagaacaggt 3304 gatategggg gegetgeaga getgggetet ageaggaeag ttettttgta geeaggggae 3364 eetagaagtg gggtggggeg geteeaggge ttteeageat accetgeece tggatgggaa 3424 aggeagggte agggeeceact gagaeceatg eagagttee aggtgtgeae tggaagtgag 3484 gteacatgag eagegtggga agaagaetet gteaagaete teagaagaae etggagtaat 3544 tgtgeetgaa geteagegtg aagtetgaaa tatgeaacag aagaaatata tetetatete 3604 teta

<210> 4

<211> 865

<212> PRT

<213> Homo sapiens

<400> 4

Met Val Ala Ser Ala Arg Val Gln Lys Leu Val Arg Arg Tyr Lys Leu 1 5 10 15

Ala Ile Ala Thr Ala Leu Ala Ile Leu Leu Leu Gln Gly Leu Val Val 20 25 30

Trp Ser Phe Ser Gly Leu Glu Glu Asp Glu Ala Gly Glu Lys Gly Arg
35 40 45

Gln Arg Lys Pro Arg Pro Leu Asp Pro Gly Glu Gly Ser Lys Asp Thr 50 55 60

Asp Ser Ser Ala Gly Arg Arg Gly Ser Thr Gly Arg Arg His Gly Arg 65 70 75 80

Trp Arg Gly Arg Ala Glu Ser Pro Gly Val Pro Val Ala Lys Val Val 85 90 95

Arg Ala Val Thr Ser Arg Gln Arg Ala Ser Arg Arg Val Pro Pro Ala 100 105 110

Pro Pro Pro Glu Ala Pro Gly Arg Gln Asn Leu Ser Gly Ala Ala Ala 115 120 125

Gly Glu Ala Leu Val Gly Ala Ala Gly Phe Pro Pro His Gly Asp Thr 130 135 140

Gly Ser Val Glu Gly Ala Pro Gln Pro Thr Asp Asn Gly Phe Thr Pro 145 150 155 160

Lys Cys Glu Ile Val Gly Lys Asp Ala Leu Ser Ala Leu Ala Arg Ala 165 170 175

Ser Thr Lys Gln Cys Gln Gln Glu Ile Ala Asn Val Val Cys Leu His 180 185 190

Gln Ala Gly Ser Leu Met Pro Lys Ala Val Pro Arg His Cys Gln Leu 195 200 205

Thr Gly Lys Met Ser Pro Gly Ile Gln Trp Asp Glu Ser Gln Ala Gln 210 215 220

Gln Pro Met Asp Gly Pro Pro Val Arg Ile Ala Tyr Met Leu Val Val 225 230 235 240

His Gly Arg Ala Ile Arg Gln Leu Lys Arg Leu Leu Lys Ala Val Tyr 245 250 255 WO 01/49831 PCT/EP00/13311

13 / 32 His Glu Gln His Phe Phe Tyr Ile His Val Asp Lys Arg Ser Asp Tyr 260 265 Leu His Arg Glu Val Val Glu Leu Ala Gln Gly Tyr Asp Asn Val Arg Val Thr Pro Trp Arg Met Val Thr Ile Trp Gly Gly Ala Ser Leu Leu 295 Thr Met Tyr Leu Arg Ser Met Arg Asp Leu Leu Glu Val Pro Gly Trp 310 Ala Trp Asp Phe Phe Ile Asn Leu Ser Ala Thr Asp Tyr Pro Thr Arg Thr Asn Glu Glu Leu Val Ala Phe Leu Ser Lys Asn Arg Asp Lys Asn 345 Phe Leu Lys Ser His Gly Arg Asp Asn Ser Arg Phe Ile Lys Lys Gln Gly Leu Asp Arg Leu Phe His Glu Cys Asp Ser His Met Trp Arg Leu 375 Gly Glu Arg Gln Ile Pro Ala Gly Ile Val Val Asp Gly Gly Ser Asp Trp Phe Val Leu Thr Arg Ser Phe Val Glu Tyr Val Val Tyr Thr Asp 410 Asp Pro Leu Val Ala Gln Leu Arg Gln Phe Tyr Thr Tyr Thr Leu Leu 420 425 Pro Ala Glu Ser Phe Phe His Thr Val Leu Glu Asn Ser Leu Ala Cys Glu Thr Leu Val Asp Asn Asn Leu Arg Val Thr Asn Trp Asn Arg Lys Leu Gly Cys Lys Cys Gln Tyr Lys His Ile Val Asp Trp Cys Gly Cys Ser Pro Asn Asp Phe Lys Pro Gln Asp Phe Leu Arg Leu Gln Gln Val 490 Ser Arg Pro Thr Phe Phe Ala Arg Lys Phe Glu Ser Thr Val Asn Gln 500 505 Glu Val Leu Glu Ile Leu Asp Phe His Leu Tyr Gly Ser Tyr Pro Pro 520 Gly Thr Pro Ala Leu Lys Ala Tyr Trp Glu Asn Thr Tyr Asp Ala Ala 535 Asp Gly Pro Ser Gly Leu Ser Asp Val Met Leu Thr Ala Tyr Thr Ala 550 555 Phe Ala Arg Leu Ser Leu His His Ala Ala Thr Ala Ala Pro Pro Met 565 Gly Thr Pro Leu Cys Arg Phe Glu Pro Arg Gly Leu Pro Ser Ser Val

585

WO 01/49831 PCT/EP00/13311

14 / 32

His Leu Tyr Phe Tyr Asp Asp His Phe Gln Gly Tyr Leu Val Thr Gln 595 600 605

Ala Val Gln Pro Ser Ala Gln Gly Pro Ala Glu Thr Leu Glu Met Trp 610 620

Leu Met Pro Gln Gly Ser Leu Lys Leu Leu Gly Arg Ser Asp Gln Ala 625 630 635 640

Ser Arg Leu Gln Ser Leu Glu Val Gly Thr Asp Trp Asp Pro Lys Glu 645 650 655

Arg Leu Phe Arg Asn Phe Gly Gly Leu Leu Gly Pro Leu Asp Glu Pro 660 665 670

Val Ala Val Gln Arg Trp Ala Arg Gly Pro Asn Leu Thr Ala Thr Val 675 680 685

Val Trp Ile Asp Pro Thr Tyr Val Val Ala Thr Ser Tyr Asp Ile Thr 690 695 700

Val Asp Thr Glu Thr Glu Val Thr Gln Tyr Lys Pro Pro Leu Ser Arg
705 710 715 720

Pro Leu Arg Pro Gly Pro Trp Thr Val Arg Leu Leu Gln Phe Trp Glu 725 730 735

Pro Leu Gly Glu Thr Arg Phe Leu Val Leu Pro Leu Thr Phe Asn Arg
740 745 750

Lys Leu Pro Leu Arg Lys Asp Asp Ala Ser Trp Leu His Ala Gly Pro
755 760 765

Pro His Asn Glu Tyr Met Glu Gln Ser Phe Gln Gly Leu Ser Ser Ile 770 775 780

Leu Asn Leu Pro Gln Pro Glu Leu Ala Glu Glu Ala Ala Gln Arg His 785 790 795 800

Thr Gln Leu Thr Gly Pro Ala Leu Glu Ala Trp Thr Asp Arg Glu Leu 805 810 815

Ser Ser Phe Trp Ser Val Ala Gly Leu Cys Ala Ile Gly Pro Ser Pro 820 825 830

Cys Pro Ser Leu Glu Pro Cys Arg Leu Thr Ser Trp Ser Ser Leu Ser 835 840 845

Pro Asp Pro Lys Ser Glu Leu Gly Pro Val Lys Ala Asp Gly Arg Leu 850 855 860

Arg 865

<210> 5

<211> 2463

<212> DNA

<213> Rat coronavirus

<220>

<221> CDS

<222> (1)..(2463)

<223> rat XT-I

<400> 5

								1	5 / :	32						
tac Tyr 1	ttc Phe	tct Ser	cac His	cgg Arg 5	ccc Pro	aaa Lys	gag Glu	aaa	gtt	cgg	acc Thr	gac Asp	agc Ser	aac Asn 15	aat Asn	48
gag Glu	aac Asn	tca Ser	gtc Val 20	ccc Pro	aag Lys	gac Asp	ttt Phe	gag Glu 25	aat Asn	gtg Val	gac Asp	aac Asn	agc Ser 30	aac Asn	ttc Phe	96
gca Ala	ccc Pro	agg Arg 35	act Thr	caa Gln	aag Lys	cag Gln	aag Lys 40	cac His	cag Gln	cca Pro	gag Glu	ttg Leu 45	gca Ala	aag Lys	aag Lys	144
ccc Pro	ctc Leu 50	agc Ser	agg Arg	cag Gln	aaa Lys	gag Glu 55	cgt Arg	ttg Leu	cag Gln	aga Arg	aag Lys 60	ctg Leu	ggc Gly	gcc Ala	cag Gln	192
				GJ Å āāā												240
				gaa Glu 85												288
				agc Ser												336
				gac Asp												384
				ctg Leu												432
				tac Tyr												480
				ttc Phe 165												528
				gat Asp												576
				ctg Leu												624
				gcc Ala												672
	Asp			tcc Ser												720
agg Arg	cag Gln	tac Tyr	gac Asp	aac Asn 245	gtc Val	cga Arg	gtc Val	act Thr	tcc Ser 250	tgg Trp	agg Arg	atg Met	gcc Ala	acc Thr 255	att Ile	768

				1	6 / 3	32			
	gga Gly								816
	gag Glu 275								864
	gac Asp								912
	tac Tyr								960
	ttc Phe								1008
	cac His								1056
	gat Asp 355								1104
	gtg Val								1152
	tct Ser								1200
	aac Asn								1248
	aat Asn								1296
	gac Asp 435								1344
	cgc Arg								1392
	gcc Ala								1440
	ggc								1488
	gtc Val				Ile				1536

....

gca Ala	ctc Leu	acc Thr 515	atg Met	tat Tyr	cat His	tcc Ser	ttc Phe 520	atc	7 / cgc Arg	ctg	ggt Gly	ctt Leu 525	cga Arg	agg Arg	gct Ala	1584
gag Glu	tca Ser 530	tcg Ser	cta Leu	cac His	acg Thr	gat Asp 535	GJA aaa	gag Glu	aac Asn	agc Ser	tgc Cys 540	agg Arg	tac Tyr	tat Tyr	cca Pro	1632
atg Met 545	ggc Gly	cac His	cca Pro	gcg Ala	tct Ser	gtc Val	cac His	ctc Leu	tac Tyr	ttc Phe 555	ctg Leu	gct Ala	gac Asp	cga Arg	ttc Phe 560	1680
cag Gln	ggc Gly	ttt Phe	ctg Leu	atc Ile 565	aag Lys	cac His	cat His	gtg Val	acc Thr 570	aac Asn	ctt Leu	gct Ala	gtg Val	agc Ser 575	aaa Lys	1728
				gag Glu												1776
				agt Ser												1824
				gcc Ala												1872
ttg Leu 625	Gly	ccc	atg Met	gat Asp	gag Glu 630	ccg Pro	gtg Val	gga Gly	atg Met	cag Gln 635	aaa Lys	tgg Trp	Gly ggg	aag Lys	gga Gly 640	1920
				gtg Val 645												1968
				gat Asp												2016
tac Tyr	aaa Lys	ccc Pro 675	cct Pro	ttg Leu	aat Asn	ctg Leu	cct Pro 680	ctg Leu	agg Arg	cct Pro	ggt Gly	gtc Val 685	tgg Trp	aca Thr	gtg Val	2064
aag Lys	att Ile 690	ctc Leu	cat His	cac His	tgg Trp	gta Val 695	cca Pro	gtt Val	gca Ala	gag Glu	acc Thr 700	aaa Lys	ttc Phe	ctt Leu	gtc Val	2112
gca Ala 705	cct Pro	ctg Leu	acc Thr	ttc Phe	tcc Ser 710	aac Asn	aag Lys	cag Gln	ccc Pro	atc Ile 715	aaa Lys	cca Pro	gag Glu	gag Glu	gct Ala 720	2160
				aat Asn 725												2208
ttc Phe	cag Gln	agc Ser	cta Leu 740	aac Asn	cca Pro	gtc Val	ctc Leu	agc Ser 745	ctg Leu	cac His	atc Ile	aat Asn	cct Pro 750	gcc Ala	caa Gln	2256
gtg Val	gag Glu	cag Gln 755	gcc Ala	cgg Arg	aag Lys	aac Asn	gca Ala 760	gcc Ala	ttc Phe	act Thr	ggg Gly	aca Thr 765	gca Ala	cta Leu	gaa Glu	2304

gcc tgg ctg gtg ggt ggg act tgg act gcc atg gac gtc tgt gcc aca 2352 Ala Trp Leu Val Gly Gly Thr Trp Thr Ala Met Asp Val Cys Ala Thr 770 ggc ccc act gcc tgc cca gtc atg caa acc tgc agc caa aca gcc tgg 2400 Gly Pro Thr Ala Cys Pro Val Met Gln Thr Cys Ser Gln Thr Ala Trp 785 790 agt tcc ttc agc cct gat ccc aag tca gag ctg ggt gca gtg aag cct 2448 Ser Ser Phe Ser Pro Asp Pro Lys Ser Glu Leu Gly Ala Val Lys Pro 810 gat ggt cgg ctc agg 2463 Asp Gly Arg Leu Arg

<210> 6 <211> 821 <212> PRT

<213> Rat coronavirus

820

Tyr Phe Ser His Arg Pro Lys Glu Lys Val Arg Thr Asp Ser Asn Asn

Glu Asn Ser Val Pro Lys Asp Phe Glu Asn Val Asp Asn Ser Asn Phe

Ala Pro Arg Thr Gln Lys Gln Lys His Gln Pro Glu Leu Ala Lys Lys

Pro Leu Ser Arg Gln Lys Glu Arg Leu Gln Arg Lys Leu Gly Ala Gln

Asp Lys Gly Gln Gly Gln Ser Val Leu Gly Lys Gly Pro Lys Glu Val 70

Leu Pro Pro Arg Glu Lys Ala Pro Gly Asn Ser Ser Gln Gly Lys Asp

Leu Ser Arg His Ser His Ser Arg Lys Ser Gly Gly Gly Ser Pro

Glu Thr Lys Ser Asp Gln Val Pro Lys Cys Asp Ile Ser Gly Lys Glu

Ala Ile Ser Ala Leu Thr Arg Ala Lys Ser Lys His Cys Arg Gln Glu

Ile Ala Glu Thr Tyr Cys Arg His Lys Leu Gly Leu Leu Met Pro Glu 145 150 155

Lys Val Ala Arg Phe Cys Pro Leu Glu Gly Lys Ala Asn Lys Asn Val 165 170

Gln Trp Asp Glu Asp Ala Val Glu Tyr Met Pro Pro Asn Pro Val Arg 180

Ile Ala Phe Val Leu Val Val His Gly Arg Ala Ser Arg Gln Leu Gln 200 205

19 / 32 Arg Met Phe Lys Ala Ile Tyr His Lys Asp His Phe Tyr Tyr Ile His 215 Val Asp Lys Arg Ser Asn Tyr Leu His Arg Gln Val Leu Gln Phe Ser Arg Gln Tyr Asp Asn Val Arg Val Thr Ser Trp Arg Met Ala Thr Ile 250 Trp Gly Gly Ala Ser Leu Leu Ser Thr Tyr Leu Gln Ser Met Arg Asp 265 Leu Leu Glu Met Thr Asp Trp Pro Trp Asp Phe Phe Ile Asn Leu Ser 280 Ala Ala Asp Tyr Pro Ile Arg Thr Asn Asp Gln Leu Val Ala Phe Leu 295 Ser Arg Tyr Arg Asp Met Asn Phe Leu Lys Ser His Gly Arg Asp Asn 310 Ala Arg Phe Ile Arg Lys Gln Asp Leu Asp Arg Leu Phe Leu Glu Cys 330 Asp Thr His Met Trp Arg Leu Gly Asp Arg Arg Ile Pro Glu Gly Ile Ala Val Asp Gly Gly Ser Asp Trp Phe Leu Leu Asn Arg Lys Phe Val 360 Glu Tyr Val Ala Phe Ser Thr Asp Asp Leu Val Thr Lys Met Lys Gln · 375 Phe Tyr Ser Tyr Thr Leu Leu Pro Ala Glu Ser Phe Phe His Thr Val Leu Glu Asn Ser Pro His Cys Asp Thr Met Val Asp Asn Asn Leu Arg Ile Thr Asn Trp Asn Arg Lys Leu Gly Cys Lys Cys Gln Tyr Lys His Ile Val Asp Trp Cys Gly Cys Ser Pro Asn Asp Phe Lys Pro Gln Asp 440 Phe His Arg Phe Gln Gln Thr Ala Arg Pro Thr Phe Phe Ala Arg Lys 450 455 Phe Glu Ala Ile Val Asn Gln Glu Ile Ile Gly Gln Leu Asp Ser Tyr 470 475 Leu Tyr Gly Asn Tyr Pro Ala Gly Thr Pro Gly Leu Arg Ser Tyr Trp Glu Asn Val Tyr Asp Glu Pro Asp Gly Ile Gln Ser Leu Ser Asp Val Ala Leu Thr Met Tyr His Ser Phe Ile Arg Leu Gly Leu Arg Arg Ala 515 Glu Ser Ser Leu His Thr Asp Gly Glu Asn Ser Cys Arg Tyr Tyr Pro 530 535

WO 01/49831 PCT/EP00/13311

20 / 32

Met Gly His Pro Ala Ser Val His Leu Tyr Phe Leu Ala Asp Arg Phe 545 550 560

Gln Gly Phe Leu Ile Lys His His Val Thr Asn Leu Ala Val Ser Lys 565 570 575

Leu Glu Thr Leu Glu Thr Trp Met Met Pro Lys Lys Val Phe Lys Val 580 585 590

Ala Ser Pro Pro Ser Asp Phe Gly Arg Leu Gln Phe Ser Glu Val Gly 595 600 605

Thr Asp Trp Asp Ala Lys Glu Arg Leu Phe Arg Asn Phe Gly Gly Leu 610 620

Leu Gly Pro Met Asp Glu Pro Val Gly Met Gln Lys Trp Gly Lys Gly 625 630 635 640

Pro Asn Val Thr Val Thr Val Ile Trp Val Asp Pro Val Asn Val Ile 645 650 655

Ala Ala Thr Tyr Asp Ile Leu Ile Glu Ser Thr Ala Glu Phe Thr His
660 665 670

Tyr Lys Pro Pro Leu Asn Leu Pro Leu Arg Pro Gly Val Trp Thr Val 675 680 685

Lys Ile Leu His His Trp Val Pro Val Ala Glu Thr Lys Phe Leu Val 690 695 700

Ala Pro Leu Thr Phe Ser Asn Lys Gln Pro Ile Lys Pro Glu Glu Ala 705 710 715 720

Leu Lys Leu His Asn Gly Pro Pro Arg Ser Ala Tyr Met Glu Gln Ser 725 730 735

Phe Gln Ser Leu Asn Pro Val Leu Ser Leu His Ile Asn Pro Ala Gln 740 745 750

Val Glu Gln Ala Arg Lys Asn Ala Ala Phe Thr Gly Thr Ala Leu Glu 755 760 765

Ala Trp Leu Val Gly Gly Thr Trp Thr Ala Met Asp Val Cys Ala Thr 770 780

Gly Pro Thr Ala Cys Pro Val Met Gln Thr Cys Ser Gln Thr Ala Trp
785 790 795 800

Ser Ser Phe Ser Pro Asp Pro Lys Ser Glu Leu Gly Ala Val Lys Pro 805 810 815

Asp Gly Arg Leu Arg 820

<210> 7

<211> 2858

<212> DNA

<213> Rat coronavirus

1001

<221> CDS

<222> (56)..(2650)

<223> rat XT-2

<400									. / 3							
gcgct	cgc	gg c	cggg	ttgc	a gg	gccg	gacg	cgc	gccc	cgc	gtcc	cggg	ca g	gaag	atg Met 1	58
gtg (Val /	gcg Ala	agc (Ser)	gcg Ala 5	cgg Arg	gtg Val	cag Gln	aag Lys	ctg Leu 10	gtg Val	cgg Arg	cgc Arg	tac Tyr	aag Lys 15	ctg Leu	gcg Ala	106
atc (gcc Ala	acc Thr 20	gcg Ala	ctg Leu	gcc Ala	atc Ile	ctg Leu 25	ctg Leu	ctg Leu	cag Gln	ggc Gly	ctg Leu 30	gtg Val	gtg Val	tgg Trp	154
agc Ser	ttc Phe 35	agc Ser	ggc Gly	ctg Leu	gag Glu	gag Glu 40	gac Asp	gag Glu	ccg Pro	ggc Gly	gag Glu 45	aaa Lys	gga Gly	agg Arg	cag Gln	202
aga Arg 50	aag Lys	cca Pro	cgg Arg	ccg Pro	cta Leu 55	gac Asp	cct Pro	gga G ly	gag Glu	ggt Gly 60	tcc Ser	aag Lys	gac Asp	acg Thr	gac Asp 65	250
agc Ser	tct Ser	gca Ala	GJA āāā	cgt Arg 70	agg Arg	ggc Gly	agt Ser	gct Ala	ggg Gly 75	aga Arg	agg Arg	cac His	gga Gly	cgg Arg 80	tgg Trp	298
cgg Arg	ggc Gly	cgc Arg	gcc Ala 85	gag Glu	agc Ser	cca Pro	ggt Gly	gtg Val 90	cct Pro	gtg Val	gcc Ala	aag Lys	gtg Val 95	gtg Val	cgg Arg	346
gca Ala	gta Val	acc Thr 100	agt Ser	cgg Arg	cag Gln	aga Arg	gcc Ala 105	agc Ser	cga Arg	cgg Arg	gtg Val	ccc Pro 110	cct Pro	gcc Ala	cca Pro	394
cct Pro	cca Pro 115	gag Glu	gca Ala	cca Pro	Gly	cgc Arg 120	cag Gln	aac Asn	ctg Leu	agt Ser	gga Gly 125	gca Ala	gca Ala	gcc Ala	Gly	442
gaa Glu 130	gca Ala	ctg Leu	ata Ile	ggt Gly	gcc Ala 135	gcc Ala	ggc	ttc Phe	cca Pro	caa Gln 140	cat His	gga Gly	gac Asp	aca Thr	ggg Gly 145	490
agt Ser	gtg Val	gag Glu	ggt Gly	gcc Ala 150	cct Pro	cag Gln	Pro	acg Thr	gat Asp 155	Asn	agc Ser	ttc Phe	act Thr	ccg Pro 160	aag Lys	538
tgt Cys	gag Glu	att Ile	gtg Val 165	Gly	aag Lys	gat Asp	gca Ala	ctg Leu 170	Ser	gca Ala	ctg Leu	gcc Ala	cgg Arg 175	Ala	agc Ser	586
acc Thr	aag Lys	cat His 180	Cys	caa Gln	caa Gln	gag Glu	att Ile 185	Ala	aat Asn	gta Val	a gtg L Val	tgc Cys 190	ctg Leu	cac His	caa Gln	634
gct Ala	ggg Gly 195	Asn	cta Leu	atg Met	Pro	aag Lys 200	Ser	gtg Val	r eco	cgo Aro	g cac g His 205	Cys	Gln	g ctg Leu	gct Ala	682
ggc Gly 210	Lys	gtg Val	ago Ser	e cct	ggc Gly 215	Ile	caç Glr	g tgg n Trp	g gaa Glu	gaq 1 Gli 220	g gto u Val	cgg Arg	gco Ala	cag Gln	cag Gln 225	730
cct Pro	gtç Val	, agt . Ser	G17	e cct 7 Pro 230	Let	g gta 1 Val	a cgo	c ato	235	а Ту	c ato r Met	g ctg : Lev	gto Val	g gtt L Val 240	His	778

					2 / :		•			
		cgc Arg								826
		ttt Phe								874
		gta Val								922
		atg Met								970
		agc Ser 310								1018
		atc Ile								1066
		gta Val								1114
		GJ À aaa								1162
		ttc Phe								1210
		ccg Pro 390								1258
		cgc Arg								1306
		cag Gln								1354
		ttc Phe								1402
		aac Asn								1450
		cag Gln 470							Ser	1498
		aag Lys			Leu			Val		1546

	-			2:	3 / 3	32				
		ttt Phe		ttt	gag	tcg				1594
	Glu	ttg Leu								1642
		aag Lys								1690
		ctc Leu 550							ttt Phe	1738
		ctg Leu								1786
		ttt Phe								1834
		gac Asp								1882
		cag Gln								1930
		ctg Leu 630				Ser				1978
		gag Glu								2026
		Gly								2074
		gcc Ala								2122
		tat Tyr								2170
		gtc Val 710				Pro				2218
		Trp			Leu				ctg Leu	2266
		ttc Phe								2314

WC	01/49	9831												I	PCT/EP	0/13311
								2	4 / :	32						
	ctc Leu 755															2362
	gaa Glu															2410
	cct Pro														gag Glu	2458
	aca Thr															2506
	tgg Trp															2554
	ctg Leu 835															2602
	aag Lys														tag 865	2650
gga agg	cgtc	tct cct	cctc agga	tggt aatg	ag co	cagg gacai	gagc tcag	c ct	agaa	cagt	ggt	gggg	ctg	tctg	atggag tetgte cccaet	2770
<21 <21	0> 8 1> 8 2> P 3> R	RT	oron	avir	us											
<400> 8 Met Val Ala Ser Ala Arg Val Gln Lys Leu Val Arg Arg Tyr Lys Leu																

Ala Ile Ala Thr Ala Leu Ala Ile Leu Leu Leu Gln Gly Leu Val Val

Trp Ser Phe Ser Gly Leu Glu Glu Asp Glu Pro Gly Glu Lys Gly Arg 40

Gln Arg Lys Pro Arg Pro Leu Asp Pro Gly Glu Gly Ser Lys Asp Thr

Asp Ser Ser Ala Gly Arg Arg Gly Ser Ala Gly Arg Arg His Gly Arg

Trp Arg Gly Arg Ala Glu Ser Pro Gly Val Pro Val Ala Lys Val Val

Arg Ala Val Thr Ser Arg Gln Arg Ala Ser Arg Arg Val Pro Pro Ala

Pro Pro Pro Glu Ala Pro Gly Arg Gln Asn.Leu Ser Gly Ala Ala Ala 115 120 125

Gly Glu Ala Leu Ile Gly Ala Ala Gly Phe Pro Gln His Gly Asp Thr 130 135 140

Gly Ser Val Glu Gly Ala Pro Gln Pro Thr Asp Asn Ser Phe Thr Pro 145 150 155 160

Lys Cys Glu Ile Val Gly Lys Asp Ala Leu Ser Ala Leu Ala Arg Ala 165 170 175

Ser Thr Lys His Cys Gln Gln Glu Ile Ala Asn Val Val Cys Leu His 180 185 190

Gln Ala Gly Asn Leu Met Pro Lys Ser Val Pro Arg His Cys Gln Leu 195 200 205

Ala Gly Lys Val Ser Pro Gly Ile Gln Trp Glu Glu Val Arg Ala Gln 210 215 220

Gln Pro Val Ser Gly Pro Leu Val Arg Ile Ala Tyr Met Leu Val Val 225 230 235 240

His Gly Arg Ala Val Arg Gln Leu Lys Arg Leu Leu Lys Ala Val Tyr 245 250 255

His Glu Glu His Phe Phe Tyr Ile His Val Asp Lys Arg Ser Asn Tyr
260 265 270

Leu Tyr Arg Glu Val Val Glu Leu Ala Gln His Tyr Asp Asn Val Arg 275 280 285

Val Thr Pro Trp Arg Met Val Thr Ile Trp Gly Gly Ala Ser Leu Leu 290 295 300

Arg Met Tyr Leu Arg Ser Met Lys Asp Leu Leu Glu Thr Pro Gly Trp 305 310 315 320

Thr Trp Asp Phe Phe Ile Asn Leu Ser Ala Thr Asp Tyr Pro Thr Arg
325 330 335

Thr Asn Glu Glu Leu Val Ala Phe Leu Ser Lys Asn Arg Asp Lys Asn 340 345 350

Phe Leu Lys Ser His Gly Arg Asp Asn Ser Arg Phe Ile Lys Lys Gln 355 360 365

Gly Leu Asp Arg Leu Phe His Glu Cys Asp Ser His Met Trp Arg Leu 370 380

Gly Glu Arg Gln Ile Pro Ala Gly Ile Val Val Asp Gly Gly Ser Asp 385 390 395 400

Trp Phe Val Leu Thr Arg Ser Phe Val Glu Tyr Val Val Tyr Thr Glu
405 410 415

Asp Pro Leu Val Ala Gln Leu Arg Gln Phe Tyr Thr Tyr Thr Leu Leu 420 425 430

Pro Ala Glu Ser Phe Phe His Thr Val Leu Glu Asn Ser Pro Ala Cys 435 440 445

Glu Ser Leu Val Asp Asn Asn Leu Arg Val Thr Asn Trp Asn Arg Lys
450 455 460

Leu Gly Cys Lys Cys Gln Tyr Lys His Ile Val Asp Trp Cys Gly Cys 465 470 475 480

Ser Pro Asn Asp Phe Lys Pro Gln Asp Phe Leu Arg Leu Gln Gln Val
485 490 495

Ser Arg Pro Thr Phe Phe Ala Arg Lys Phe Glu Ser Thr Val Asn Gln 500 505 510

Glu Val Leu Glu Ile Leu Asp Phe His Leu Tyr Gly Ser Tyr Pro Pro 515 520 525

Gly Thr Pro Ala Leu Lys Ala Tyr Trp Glu Asn Ile Tyr Asp Met Ala 530 535 540

Asp Gly Pro Ser Gly Leu Ser Asp Val Leu Leu Thr Ala Tyr Thr Ala 545 550 560

Phe Ala Arg Ile Ser Leu Arg His Ala Ala Thr Val Ser Pro Leu Ala 565 570 575

Thr Ala Val Cys Arg Phe Glu Pro Arg Gly Leu Pro Ser Ser Val His 580 585 590

Leu Tyr Phe Tyr Asp Asp His Phe Gln Gly Tyr Leu Val Thr Gln Ala 595 600 605

Val Gln Pro Ser Ala Gln Gly Pro Ala Glu Thr Leu Glu Met Trp Leu 610 615 620

Met Pro Gln Arg Leu Leu Lys Pro Leu Gly His Ser Asp Gln Ala Ser 625 630 635 640

Arg Leu Gln Ser Leu Glu Val Gly Thr Glu Trp Asp Pro Lys Glu Arg 645 650 655

Leu Phe Arg Asn Phe Gly Gly Leu Leu Gly Pro Leu Asp Glu Pro Val 660 665 670

Ala Met Gln Arg Trp Ala Arg Gly Pro Asn Leu Thr Ala Thr Val Val 675 680 685

Trp Ile Asp Pro Thr Tyr Val Val Ala Thr Ser Tyr Asp Ile Thr Val 690 695 700

Asp Ala Asp Thr Glu Val Thr Gln Tyr Lys Pro Pro Leu Ser Leu Pro 705 710 715 720

Leu Arg Pro Gly Ala Trp Thr Val Arg Leu Gln Phe Trp Glu Pro
725 730 735

Leu Gly Glu Thr Arg Phe Leu Val Leu Pro Leu Thr Phe Asn His Lys
740 745 750

Leu Pro Leu Arg Lys Asp Asp Ala Ser Trp Leu His Ala Gly Pro Pro 755 760 765

His Asn Glu Tyr Met Glu Gln Ser Phe Gln Gly Leu Ser Gly Ile Leu 770 775 .780

Asn Leu Pro Gln Pro Glu Ala Val Glu Glu Ala Ala Arg Arg His Thr 785 790 795 800

WO 01/49831 PCT/EP00/13311

825 830

Glu Leu Thr Gly Pro Ala Leu Glu Ala Trp Thr Asp Gly Glu Leu Ser 805 810 815

Ser Phe Trp Ser Val Ala Gly Leu Cys Ala Ile Gly Pro Ser Ser Cys

Pro Ser Leu Glu Leu Cys Arg Leu Thr Ser Trp Ser Ser Leu Ser Pro 835 840 845

Asp Pro Lys Ser Glu Leu Gly Pro Val Lys Ala Asp Gly Arg Leu Arg 850 855 860

<210> 9

<211> 17

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: peptide

<400> 9

Cys Ser Arg Gln Lys Glu Leu Leu Lys Arg Lys Leu Glu Gln Glu
1 5 10 15

Lys

<210> 10

<211> 11

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: peptide

<400> 10

Gln Glu Glu Gly Ser Gly Gly Gly Gln Lys
1 5 10

<210> 11

<211> 12

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: peptide

<400> 11

Ser Glu Asn Glu Gly Ser Gly Met Ala Glu Gln Lys
1 5 10

<210> 12

<211> 12

<212> PRT

<213> Artificial Sequence

(220>

<223> Description of Artificial Sequence: peptide

<400> 12

Thr Glu Asn Glu Gly Ser Gly Leu Thr Asn Ile Lys

PCT/EP00/13311

WO 01/49831 28 / 32 <210> 13 <211> 28 <212> DNA <213> Artificial Sequence

<220> <223> Description of Artificial Sequence: primer

<400> 13 gtgggtatgc agaagtgggg gaagggac

28

<210> 14 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: primer <400> 14

ccctccgcaa tgcctaca 18

<210> 15 <211> 20 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: primer

<400> 15 actgaggtca cgcaatacaa 20

<210> 16 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: primer

<400> 16

gccgcactca ggttgatgaa gaagt 25

25

<210> 17 <211> 25 <212> DNA <213> Artificial Sequence <220>

<400> 17

<223> Description of Artificial Sequence: primer

<210> 18 <211> 20 <212> DNA <213> Artificial Sequence

accaccagga caaaggcgat tctga

<223> Description of Artificial Sequence: primer

<400> 18			
agtcgaacag tccagggccc			20
<210> 19			
<211> 20		•	
<212> DNA			
<213> Artificial Sequence			
<220>		•	
<223> Description of Artificial Sequence:	primer		
<400> 19			
cacgatctcg cacttggggg			20
· .			
<210> 20			
<211> 32			
<212> DNA			
<213> Artificial Sequence			
<220>			
<pre><223> Description of Artificial Sequence:</pre>	primer		
4400> 00			
<400> 20			32
ctattcgatg atgaagatac cccaccaaac cc			32
<210> 21			
<211> 20			
<212> DNA			
<213> Artificial Sequence			
<220>			
<223> Description of Artificial Sequence:	primer		
<400> 21			
ggaagagctg ggtgtggaat			20
-210\ 22			
<210> 22 <211> 20			
<212> DNA			
<213> Artificial Sequence			
V2107 Michilorar Dodaciioc			
<220>			
<pre><223> Description of Artificial Sequence:</pre>	primer		
<400> 22			
tttcccgttg agatcctgct		,	20
<210> 23	at .		
<211> 20			
<212> DNA			
<213> Artificial Sequence			
(220)			
<220>	nuiman		
<223> Description of Artificial Sequence:	brimer		
<400> 23			
acagacagca acaacgagaa			20

```
30 / 32
<210> 24
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: primer
<400> 24
aaaggaaggc agaggaagc
                                                                    19
<210> 25
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: primer
<400> 25
                                                                    20
acccctccac tgtctgtaag
<210> 26
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: digestion
      peptide
<400> 26
Glu Leu Gly Ala Lys
  1
<210> 27
<211> 4
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: digestion
      peptide
<400> 27
Glu Leu Leu Lys
  1
<210> 28
<211> 6
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: digestion
      peptide
<400> 28
Asp Met Asn Phe Leu Lys
```

```
31 / 32
<210> 29
<211> 10
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: digestion
      peptide
<400> 29
Ile Ala Ser Pro Pro Ser Asp Phe Gly Arg
             . 5
<210> 30
<211> 4
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: digestion
<400> 30
Leu Leu Leu Asp
  1
<210> 31
<211> 13
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: digestion
      peptide
<400> 31
Asp Phe Glu Asn Val Asp Asn Ser Asn Phe Ala Pro Arg
                  5
<210> 32
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: digestion
      peptide
<400> 32
Pro Thr Phe Phe Ala Arg
<210> 33
<211> 12
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: digestion
      peptide
Leu Gln Phe Ser Glu Val Gly Thr Asp Xaa Asp Ala
```

10

PCT/EP00/13311

```
32 / 32
<210> 34
<211> 11
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: digestion
     peptide
Glu Leu Gly Ala Val Lys Pro Asp Gly Arg Leu
                5
                                   10
<210> 35
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: digestion
<400> 35
Glu Leu Leu Lys Arg Lys Leu Glu Gln Gln Glu Lys
<210> 36
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: digestion
      peptide
<400> 36
```

Leu Gly Leu Leu Met Pro Glu Lys