### Week5 friday

We are ready to introduce a formal model that will capture a notion of general purpose computation.

- Similar to DFA, NFA, PDA: input will be an arbitrary string over a fixed alphabet.
- Different from NFA, PDA: machine is deterministic.
- Different from DFA, NFA, PDA: read-write head can move both to the left and to the right, and can extend to the right past the original input.
- Similar to DFA, NFA, PDA: transition function drives computation one step at a time by moving within a finite set of states, always starting at designated start state.
- Different from DFA, NFA, PDA: the special states for rejecting and accepting take effect immediately.

(See more details: Sipser p. 166)

Formally: a Turing machine is  $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$  where  $\delta$  is the **transition function** 

$$\delta:Q\times\Gamma\to Q\times\Gamma\times\{L,R\}$$

The **computation** of M on a string w over  $\Sigma$  is:

- Read/write head starts at leftmost position on tape.
- Input string is written on |w|-many leftmost cells of tape, rest of the tape cells have the blank symbol. **Tape alphabet** is  $\Gamma$  with  $\bot \in \Gamma$  and  $\Sigma \subseteq \Gamma$ . The blank symbol  $\bot \notin \Sigma$ .
- Given current state of machine and current symbol being read at the tape head, the machine transitions to next state, writes a symbol to the current position of the tape head (overwriting existing symbol), and moves the tape head L or R (if possible).
- Computation ends if and when machine enters either the accept or the reject state. This is called halting. Note:  $q_{accept} \neq q_{reject}$ .

The language recognized by the Turing machine M, is  $L(M) = \{w \in \Sigma^* \mid w \text{ is accepted by } M\}$ , which is defined as

 $\{w \in \Sigma^* \mid \text{computation of } M \text{ on } w \text{ halts after entering the accept state}\}$ 



The language recognized by this machine is ...

Describing Turing machines (Sipser p. 185) To define a Turing machine, we could give a

- Formal definition: the 7-tuple of parameters including set of states, input alphabet, tape alphabet, transition function, start state, accept state, and reject state; or,
- Implementation-level definition: English prose that describes the Turing machine head movements relative to contents of tape, and conditions for accepting / rejecting based on those contents.
- **High-level description**: description of algorithm (precise sequence of instructions), without implementation details of machine. As part of this description, can "call" and run another TM as a subroutine.

Fix  $\Sigma = \{0, 1\}$ ,  $\Gamma = \{0, 1, \bot\}$  for the Turing machines with the following state diagrams:



Example of string accepted: Example of string rejected:

Implementation-level description

High-level description



Example of string accepted: Example of string rejected:

Implementation-level description

High-level description



| Example | of | string | accepted  |
|---------|----|--------|-----------|
| Example | of | string | rejected: |

Implementation-level description

High-level description

$$\begin{array}{c}
1; \square, R \\
0; \square, R \\
\square; \square, R
\end{array}$$
start  $\longrightarrow q0$ 

Example of string accepted: Example of string rejected:

 $Implementation-level\ description$ 

High-level description

# Week6 monday

Sipser Figure 3.10

Conventions in state diagram of TM:  $b \to R$  label means  $b \to b, R$  and all arrows missing from diagram represent transitions with output  $(q_{reject}, \cup, R)$ 



Computation on input string 01#01

| $\begin{array}{ c c c c }\hline q_1\downarrow & & & \\\hline 0 & 1 & & & \end{array}$ |          |   |   |   |   |
|---------------------------------------------------------------------------------------|----------|---|---|---|---|
| 0 1                                                                                   | #        | 0 | 1 | J | J |
|                                                                                       |          | T |   |   |   |
|                                                                                       |          |   |   |   |   |
|                                                                                       |          |   |   |   |   |
|                                                                                       |          |   |   |   |   |
|                                                                                       |          |   |   |   |   |
|                                                                                       |          |   |   |   |   |
|                                                                                       |          |   |   |   |   |
|                                                                                       |          |   |   |   |   |
|                                                                                       |          |   |   |   |   |
|                                                                                       | <u> </u> |   | 1 |   |   |
|                                                                                       |          |   |   |   |   |
|                                                                                       |          |   |   |   |   |
|                                                                                       |          |   |   |   |   |
|                                                                                       |          |   |   |   |   |
|                                                                                       |          |   |   |   |   |
|                                                                                       |          |   |   |   |   |
|                                                                                       |          |   |   |   |   |
|                                                                                       |          |   |   |   |   |
|                                                                                       |          |   |   |   |   |
|                                                                                       |          |   |   |   |   |
|                                                                                       |          |   |   |   |   |
|                                                                                       |          |   |   |   |   |
|                                                                                       |          |   |   |   |   |
|                                                                                       |          |   |   |   |   |
|                                                                                       |          |   |   |   |   |
|                                                                                       |          |   |   |   |   |
|                                                                                       | ·        | ı | 1 | · | · |
|                                                                                       |          |   |   |   |   |
| '                                                                                     |          |   |   |   |   |
|                                                                                       |          |   |   |   |   |
|                                                                                       |          | Γ | I |   |   |
|                                                                                       |          |   |   |   |   |
|                                                                                       |          | 1 | I |   |   |

Implementation level description of this machine:

Zig-zag across tape to corresponding positions on either side of # to check whether the characters in these positions agree. If they do not, or if there is no #, reject. If they do, cross them off.

Once all symbols to the left of the # are crossed off, check for any un-crossed-off symbols to the right of #; if there are any, reject; if there aren't, accept.

The language recognized by this machine is

 $\{w\#w \mid w \in \{0,1\}^*\}$ 

|                    |         | _            |          |         |      |
|--------------------|---------|--------------|----------|---------|------|
| 11. 1              | 11      | description  |          | 1       | •    |
| $H10^{\circ}N_{-}$ | 100001  | abserintion. | OT This  | machina | 10   |
| 111211-            | 10,70,1 | いしいしけいけいけ    | OI UIIIO | THOWITH | - 10 |

#### $Extra\ practice$

Computation on input string 01#1

| $q_1 \downarrow$   |   |      |   |   |   |   |
|--------------------|---|------|---|---|---|---|
| $q_1 \downarrow 0$ | 1 | #    | 1 | J | J | J |
|                    |   | - 11 |   |   |   |   |
|                    |   |      |   |   |   |   |
|                    |   |      |   |   |   |   |
|                    |   |      |   |   |   |   |
|                    |   |      |   |   |   |   |
|                    |   |      |   |   |   |   |
|                    |   |      |   |   |   |   |
|                    |   |      |   |   |   |   |
|                    |   | l    |   |   |   |   |
|                    |   |      |   |   |   |   |
|                    |   |      |   |   |   |   |
|                    |   |      |   |   |   |   |
|                    |   |      |   |   |   |   |
|                    |   |      |   |   |   |   |
|                    |   |      |   |   |   |   |
|                    |   |      |   |   |   |   |
|                    |   |      |   |   |   |   |
|                    |   |      |   |   |   |   |
|                    |   |      |   |   |   |   |
|                    |   |      |   |   |   |   |
|                    |   |      |   |   |   |   |
|                    |   |      |   |   |   |   |
|                    |   |      |   |   |   |   |
|                    |   |      |   |   |   |   |
|                    |   |      |   |   |   |   |
|                    |   |      |   |   |   |   |
|                    |   | Γ    |   |   |   |   |
|                    |   |      |   |   |   |   |
|                    | I |      |   | I |   |   |
|                    |   |      |   |   |   |   |
|                    |   |      |   |   |   |   |
|                    |   |      |   |   |   |   |
|                    | I |      | I | I |   |   |
|                    |   |      |   |   |   |   |
|                    | 1 |      |   |   |   |   |
|                    |   |      |   |   |   |   |
|                    |   |      |   |   |   |   |
|                    |   |      |   |   |   |   |
|                    |   |      |   |   |   |   |
|                    |   |      |   |   |   |   |

Recall: High-level descriptions of Turing machine algorithms are written as indented text within quotation marks. Stages of the algorithm are typically numbered consecutively. The first line specifies the input to the machine, which must be a string.

| Α | language  | L | is | recognized    | $\mathbf{b}\mathbf{v}$ | a | Turing   | machine $M$      | means    |
|---|-----------|---|----|---------------|------------------------|---|----------|------------------|----------|
|   | Turis aus | _ | 10 | 1 CCC SIIIZCG | $\sim$                 | œ | <u> </u> | 111000111110 111 | IIICOIII |

A Turing machine M recognizes a language L means

A Turing machine M is a **decider** means

A language L is **decided by** a Turing machine M means

A Turing machine M decides a language L means

Fix  $\Sigma = \{0,1\}$ ,  $\Gamma = \{0,1,\bot\}$  for the Turing machines with the following state diagrams:



## Week6 wednesday

A **Turing-recognizable** language is a set of strings that is the language recognized by some Turing machine. We also say that such languages are recognizable.

A **Turing-decidable** language is a set of strings that is the language recognized by some decider. We also say that such languages are decidable.

An unrecognizable language is a language that is not Turing-recognizable.

An undecidable language is a language that is not Turing-decidable.

True or False: Any decidable language is also recognizable.

True or False: Any recognizable language is also decidable.

True or False: Any undecidable language is also unrecognizable.

True or False: Any unrecognizable language is also undecidable.



|        | ( C . l . l . l . l                 | T                         |                            |
|--------|-------------------------------------|---------------------------|----------------------------|
|        | (over a fixed alphabet $\Sigma$ ) a | are Turing-decidable, the | en their union is as well. |
| Proof: |                                     |                           |                            |
|        |                                     |                           |                            |
|        |                                     |                           |                            |
|        |                                     |                           |                            |
|        |                                     |                           |                            |
|        |                                     |                           |                            |
|        |                                     |                           |                            |
|        |                                     |                           |                            |
|        |                                     |                           |                            |
|        |                                     |                           |                            |
|        |                                     |                           |                            |
|        |                                     |                           |                            |
|        |                                     |                           |                            |
|        |                                     |                           |                            |
|        |                                     |                           |                            |
|        |                                     |                           |                            |
|        |                                     |                           |                            |
|        |                                     |                           |                            |
|        |                                     |                           |                            |
|        |                                     |                           |                            |
|        |                                     |                           |                            |
|        |                                     |                           |                            |
|        |                                     |                           |                            |
|        |                                     |                           |                            |
|        |                                     |                           |                            |
|        |                                     |                           |                            |
|        |                                     |                           |                            |

Claim: If two languages (over a fixed alphabet  $\Sigma$ ) are Turing-recognizable, then their union is as well.

**Proof**:

### Week7 wednesday

The Church-Turing thesis posits that each algorithm can be implemented by some Turing machine.

**Describing algorithms** (Sipser p. 185) To define a Turing machine, we could give a

- Formal definition: the 7-tuple of parameters including set of states, input alphabet, tape alphabet, transition function, start state, accept state, and reject state. This is the low-level programming view that models the logic computation flow in a processor.
- Implementation-level definition: English prose that describes the Turing machine head movements relative to contents of tape, and conditions for accepting / rejecting based on those contents. This level describes memory management and implementing data access with data structures.
  - Mention the tape or its contents (e.g. "Scan the tape from left to right until a blank is seen.")
  - Mention the tape head (e.g. "Return the tape head to the left end of the tape.")
- **High-level description** of algorithm executed by Turing machine: description of algorithm (precise sequence of instructions), without implementation details of machine. High-level descriptions of Turing machine algorithms are written as indented text within quotation marks. Stages of the algorithm are typically numbered consecutively. The first line specifies the input to the machine, which must be a string.
  - Use other Turing machines as subroutines (e.g. "Run M on w")
  - Build new machines from existing machines using previously shown results (e.g. "Given NFA A construct an NFA B such that  $L(B) = \overline{L(A)}$ ")
  - Use previously shown conversions and constructions (e.g. "Convert regular expression R to an NFA N")

#### Formatted inputs to Turing machine algorithms

The input to a Turing machine is always a string. The format of the input to a Turing machine can be checked to interpret this string as representing structured data (like a csv file, the formal definition of a DFA, another Turing machine, etc.)

This string may be the encoding of some object or list of objects.

**Notation:**  $\langle O \rangle$  is the string that encodes the object O.  $\langle O_1, \ldots, O_n \rangle$  is the string that encodes the list of objects  $O_1, \ldots, O_n$ .

**Assumption**: There are algorithms (Turing machines) that can be called as subroutines to decode the string representations of common objects and interact with these objects as intended (data structures). These algorithms are able to "type-check" and string representations for different data structures are unique.

For example, since there are algorithms to answer each of the following questions, by Church-Turing thesis, there is a Turing machine that accepts exactly those strings for which the answer to the question is "yes"

- Does a string over  $\{0,1\}$  have even length?
- Does a string over {0,1} encode a string of ASCII characters?<sup>1</sup>
- Does a DFA have a specific number of states?
- Do two NFAs have any state names in common?
- Do two CFGs have the same start variable?

A computational problem is decidable iff language encoding its positive problem instances is decidable.

The computational problem "Does a specific DFA accept a given string?" is encoded by the language

```
{representations of DFAs M and strings w such that w \in L(M)} ={\langle M, w \rangle \mid M is a DFA, w is a string, w \in L(M)}
```

The computational problem "Is the language generated by a CFG empty?" is encoded by the language

{representations of CFGs 
$$G$$
 such that  $L(G) = \emptyset$ } ={ $\langle G \rangle \mid G \text{ is a CFG}, L(G) = \emptyset$ }

The computational problem "Is the given Turing machine a decider?" is encoded by the language

```
{representations of TMs M such that M halts on every input} = \{\langle M \rangle \mid M \text{ is a TM and for each string } w, M \text{ halts on } w\}
```

Note: writing down the language encoding a computational problem is only the first step in determining if it's recognizable, decidable, or . . .

Deciding a computational problem means building / defining a Turing machine that recognizes the language encoding the computational problem, and that is a decider.

Some classes of computational problems will help us understand the differences between the machine models we've been studying. (Sipser Section 4.1)

<sup>&</sup>lt;sup>1</sup>An introduction to ASCII is available on the w3 tutorial here.

```
Acceptance problem
...for DFA
                                         A_{DFA}
                                                      \{\langle B, w \rangle \mid B \text{ is a DFA that accepts input string } w\}
...for NFA
                                         A_{NFA}
                                                      \{\langle B, w \rangle \mid B \text{ is a NFA that accepts input string } w\}
... for regular expressions
                                         A_{REX}
                                                      \{\langle R, w \rangle \mid R \text{ is a regular expression that generates input string } w\}
... for CFG
                                                      \{\langle G, w \rangle \mid G \text{ is a context-free grammar that generates input string } w\}
                                         A_{CFG}
...for PDA
                                                      \{\langle B, w \rangle \mid B \text{ is a PDA that accepts input string } w\}
                                         A_{PDA}
Language emptiness testing
... for DFA
                                         E_{DFA}
                                                      \{\langle A \rangle \mid A \text{ is a DFA and } L(A) = \emptyset\}
...for NFA
                                         E_{NFA}
                                                      \{\langle A \rangle \mid A \text{ is a NFA and } L(A) = \emptyset\}
... for regular expressions
                                         E_{REX}
                                                      \{\langle R \rangle \mid R \text{ is a regular expression and } L(R) = \emptyset\}
... for CFG
                                         E_{CFG}
                                                      \{\langle G \rangle \mid G \text{ is a context-free grammar and } L(G) = \emptyset\}
... for PDA
                                         E_{PDA}
                                                      \{\langle A \rangle \mid A \text{ is a PDA and } L(A) = \emptyset\}
Language equality testing
...for DFA
                                                      \{\langle A, B \rangle \mid A \text{ and } B \text{ are DFAs and } L(A) = L(B)\}
                                        EQ_{DFA}
                                                      \{\langle A, B \rangle \mid A \text{ and } B \text{ are NFAs and } L(A) = L(B)\}
...for NFA
                                        EQ_{NFA}
                                                      \{\langle R, R' \rangle \mid R \text{ and } R' \text{ are regular expressions and } L(R) = L(R')\}
... for regular expressions
                                        EQ_{REX}
                                                      \{\langle G, G' \rangle \mid G \text{ and } G' \text{ are CFGs and } L(G) = L(G')\}
... for CFG
                                        EQ_{CFG}
... for PDA
                                                      \{\langle A,B\rangle \mid A \text{ and } B \text{ are PDAs and } L(A)=L(B)\}
                                        EQ_{PDA}
```

Example strings in  $A_{DFA}$ 

Example strings in  $E_{DFA}$ 

Example strings in  $EQ_{DFA}$ 

#### Week7 friday

 $M_1 =$  "On input  $\langle M, w \rangle$ , where M is a DFA and w is a string:

- 0. Type check encoding to check input is correct type. If not, reject.
- 1. Simulate M on input w (by keeping track of states in M, transition function of M, etc.)
- 2. If the simulations ends in an accept state of M, accept. If it ends in a non-accept state of M, reject. "

What is  $L(M_1)$ ?

Is  $M_1$  a decider?

Alternate description: Sometimes omit step 0 from listing and do implicit type check.

Synonyms: "Simulate", "run", "call".

True / False:  $A_{REX} = A_{NFA} = A_{DFA}$ 

True / False:  $A_{REX} \cap A_{NFA} = \emptyset$ ,  $A_{REX} \cap A_{DFA} = \emptyset$ ,  $A_{DFA} \cap A_{NFA} = \emptyset$ 

A Turing machine that decides  $A_{NFA}$  is:

A Turing machine that decides  $A_{REX}$  is:

 $E_{DFA} = \{\langle A \rangle \mid A \text{ is a DFA and } L(A) = \emptyset\}$ . True/False: A Turing machine that decides  $E_{DFA}$  is

 $M_2 =$  "On input  $\langle M \rangle$  where M is a DFA,

- 1. For integer i = 1, 2, ...
- 2. Let  $s_i$  be the *i*th string over the alphabet of M (ordered in string order).
- 3. Run M on input  $s_i$ .
- 4. If M accepts, \_\_\_\_\_\_. If M rejects, increment i and keep going."

Choose the correct option to help fill in the blank so that  $M_2$  recognizes  $E_{DFA}$ 

- A. accepts
- B. rejects
- C. loop for ever
- D. We can't fill in the blank in any way to make this work

 $M_3 =$  "On input  $\langle M \rangle$  where M is a DFA,

- 1. Mark the start state of M.
- 2. Repeat until no new states get marked:
- 3. Loop over the states of M.
- 4. Mark any unmarked state that has an incoming edge from a marked state.
- 5. If no accept state of A is marked, \_\_\_\_\_\_; otherwise, \_\_\_\_\_"

To build a Turing machine that decides  $EQ_{DFA}$ , notice that

$$L_1 = L_2$$
 iff  $((L_1 \cap \overline{L_2}) \cup (L_2 \cap \overline{L_1})) = \emptyset$ 

There are no elements that are in one set and not the other

 $M_{EQDFA} =$ 

Summary: We can use the decision procedures (Turing machines) of decidable problems as subroutines in other algorithms. For example, we have subroutines for deciding each of  $A_{DFA}$ ,  $E_{DFA}$ ,  $E_{QDFA}$ . We can also use algorithms for known constructions as subroutines in other algorithms. For example, we have subroutines for: counting the number of states in a state diagram, counting the number of characters in an alphabet, converting DFA to a DFA recognizing the complement of the original language or a DFA recognizing the Kleene star of the original language, constructing a DFA or NFA from two DFA or NFA so that we have a machine recognizing the language of the union (or intersection, concatenation) of the languages of the original machines; converting regular expressions to equivalent DFA; converting DFA to equivalent regular expressions, etc.