Τριγωνομετρία Γενική Εξίσωση Ευθείας

Κωνσταντίνος Λόλας

Αχχχχ! Μεγαλώνουμε

Μέχρι στιγμής καμαρώνουμε τις ευθείες σε μία μορφή

$$y = \alpha x + \beta$$

Aν και όχι πάντα (π.χ. x = a)

Αχχχχ! Μεγαλώνουμε

Μέχρι στιγμής καμαρώνουμε τις ευθείες σε μία μορφή

$$y = \alpha x + \beta$$

Αν και όχι πάντα (π.χ. x = a)

Τι γνωρίζουμε?

- γραμμή ονομάζουμε οποιαδήποτε εξίσωση με τουλάχιστον μία μεταβλητή
- ② έχουμε δύο περιπτώσεις (λόγω κλίσης λ)
- ③ άρα...

Τι γνωρίζουμε?

- γραμμή ονομάζουμε οποιαδήποτε εξίσωση με τουλάχιστον μία μεταβλητή
- ② έχουμε δύο περιπτώσεις (λόγω κλίσης λ)
- ③ άρα...

Τι γνωρίζουμε?

- γραμμή ονομάζουμε οποιαδήποτε εξίσωση με τουλάχιστον μία μεταβλητή
- ② έχουμε δύο περιπτώσεις (λόγω κλίσης λ)
- ③ άρα...

Τι γνωρίζουμε?

- γραμμή ονομάζουμε οποιαδήποτε εξίσωση με τουλάχιστον μία μεταβλητή
- έχουμε δύο περιπτώσεις (λόγω κλίσης λ)
- ③ άρα...

Τι γνωρίζουμε?

- γραμμή ονομάζουμε οποιαδήποτε εξίσωση με τουλάχιστον μία μεταβλητή
- έχουμε δύο περιπτώσεις (λόγω κλίσης λ)
- ③ άρα...

YEAHHHHH!

Θα μας έκανε κάτι τέτοιο?

$$Ax + By + \Gamma = 0$$
, $\mu \epsilon A^2 + B^2 \neq 0$

Υπάρχει η $y=\alpha x+\beta$ στην $\mathbf{A}x+\mathbf{B}y+\Gamma=0$, με $\mathbf{A}^2+\mathbf{B}^2\neq 0$? Φυσικά, αρκεί $\mathbf{B}\neq 0$

$$Ax + By + \Gamma = 0$$
$$By = -Ax - \Gamma$$
$$y = -\frac{A}{B}x - \frac{\Gamma}{A}$$

Υπάρχει η $y=\alpha x+\beta$ στην $\mathbf{A}x+\mathbf{B}y+\Gamma=0$, με $\mathbf{A}^2+\mathbf{B}^2\neq 0$? Φυσικά, αρκεί $\mathbf{B}\neq 0$

$$Ax + By + \Gamma = 0$$
$$By = -Ax - \Gamma$$
$$y = -\frac{A}{B}x - \frac{\Gamma}{A}$$

Υπάρχει η $y=\alpha x+\beta$ στην $\mathbf{A}x+\mathbf{B}y+\Gamma=0$, με $\mathbf{A}^2+\mathbf{B}^2\neq 0$? Φυσικά, αρκεί $\mathbf{B}\neq 0$

$$\begin{aligned} \mathbf{A}x + \mathbf{B}y + \Gamma &= 0 \\ \mathbf{B}y &= -\mathbf{A}x - \Gamma \\ y &= -\frac{\mathbf{A}}{\mathbf{B}}x - \frac{\Gamma}{\mathbf{A}} \end{aligned}$$

Υπάρχει η $x = \alpha$ στην $Ax + By + \Gamma = 0$, με $A^2 + B^2 \neq 0$? Φυσικά,

$$Ax + 0y + \Gamma = 0$$
$$Ax = \Gamma$$
$$x = \frac{\Gamma}{A}$$

6/20

Υπάρχει η $x=\alpha$ στην $\mathbf{A}x+\mathbf{B}y+\Gamma=0$, με $\mathbf{A}^2+\mathbf{B}^2\neq 0$? Φυσικά, αρκεί $\mathbf{B}=0$ και $\mathbf{A}\neq 0$

$$Ax + 0y + \Gamma = 0$$
$$Ax = \Gamma$$
$$x = \frac{\Gamma}{A}$$

Υπάρχει η $x=\alpha$ στην $\mathbf{A}x+\mathbf{B}y+\Gamma=0$, με $\mathbf{A}^2+\mathbf{B}^2\neq 0$? Φυσικά, αρκεί $\mathbf{B}=0$ και $\mathbf{A}\neq 0$

$$Ax + 0y + \Gamma = 0$$

$$Ax = \Gamma$$

$$x = \frac{\Gamma}{A}$$

Γράφεται η $y=\alpha x+\beta$ στην $\mathbf{A}x+\mathbf{B}y+\Gamma=0$, με $\mathbf{A}^2+\mathbf{B}^2\neq 0$? Φυσικά

$$y = \alpha x + \beta$$
$$\alpha x - 1y + \beta = 0$$

Γράφεται η $y=\alpha x+\beta$ στην $\mathbf{A}x+\mathbf{B}y+\Gamma=0$, με $\mathbf{A}^2+\mathbf{B}^2\neq 0$? Φυσικά

$$y = \alpha x + \beta$$
$$\alpha x - 1y + \beta = 0$$

Γράφεται η $y=\alpha x+\beta$ στην $\mathbf{A}x+\mathbf{B}y+\Gamma=0$, με $\mathbf{A}^2+\mathbf{B}^2\neq 0$? Φυσικά

$$y = \alpha x + \beta$$
$$\alpha x - 1y + \beta = 0$$

Γράφεται η
$$x=\alpha$$
 στην $\mathbf{A}x+\mathbf{B}y+\Gamma=0$, με $\mathbf{A}^2+\mathbf{B}^2\neq 0$? Φυσικά

$$x = c$$

$$1x + 0y - \alpha = 0$$

Γράφεται η
$$x=\alpha$$
 στην $\mathbf{A}x+\mathbf{B}y+\Gamma=0$, με $\mathbf{A}^2+\mathbf{B}^2\neq 0$? Φυσικά
$$x=\alpha$$

$$1x+0y-\alpha=0$$

Γράφεται η
$$x=\alpha$$
 στην $\mathbf{A}x+\mathbf{B}y+\Gamma=0$, με $\mathbf{A}^2+\mathbf{B}^2\neq 0$? Φυσικά

$$x = \alpha$$
$$1x + 0y - \alpha = 0$$

Μα γιατί να ασχοληθούμε???

Μπορούμε να βρίσκουμε άμεσα το παράλληλο στην ευθεία διάνυσμα

Το παράλληλο 1

Aν $\mathbf{B} \neq 0$ γράφεται ως εξής $y = -\frac{\mathbf{A}}{\mathbf{B}}x - \frac{\Gamma}{\mathbf{A}}$, άρα ένα διάνυσμα παράλληλό της είναι το $(-\mathbf{B},\mathbf{A})$

Το παράλληλο 2

 ${\rm A}\nu~{\rm B}=0$ και ${\rm A}\neq 0$ τότε ένα παράλληλο είναι το $(0,{\rm A})$ (γιατί?) άρα το

$$(-B, A)$$

Γιατί όχι και κάθετα?

Αφού η ευθεία είναι παράλληλη στο (-B, A)

Το κάθετο

η ευθεία $\mathbf{A}x+\mathbf{B}y+\Gamma=0$ είναι κάθετη στο διάνυσμα (\mathbf{A},\mathbf{B})

- 1 ξανά τις ασκήσεις από άλλη σκοπιά
- Θα ξέρουμε κατ' ευθείαν την παράλληλη σε διάνυσμα ευθείο
- Θα ξέρουμε κατ' ευθείαν την κάθετη σε διάνυσμα ευθεία
- ④ θα ξέρουμε κατ' ευθείαν τις συμμετρικές ως προς άξονες ευθείες

- 1 ξανά τις ασκήσεις από άλλη σκοπιά
- Θα ξέρουμε κατ' ευθείαν την παράλληλη σε διάνυσμα ευθεία
- ③ θα ξέρουμε κατ' ευθείαν την κάθετη σε διάνυσμα ευθεία
- Φα ξέρουμε κατ' ευθείαν τις συμμετρικές ως προς άξονες ευθείες

- 1 ξανά τις ασκήσεις από άλλη σκοπιά
- Θα ξέρουμε κατ' ευθείαν την παράλληλη σε διάνυσμα ευθεία
- Θα ξέρουμε κατ' ευθείαν την κάθετη σε διάνυσμα ευθεία
- Φα ξέρουμε κατ' ευθείαν τις συμμετρικές ως προς άξονες ευθείες

- 1 ξανά τις ασκήσεις από άλλη σκοπιά
- Θα ξέρουμε κατ' ευθείαν την παράλληλη σε διάνυσμα ευθεία
- Θα ξέρουμε κατ' ευθείαν την κάθετη σε διάνυσμα ευθεία
- Φα ξέρουμε κατ' ευθείαν τις συμμετρικές ως προς άξονες ευθείες

Δίνεται η ευθεία $\varepsilon: 2x + 3y - 6 = 0$. Να βρείτε:

- την ευθεία ζ που είναι παράλληλη στην ευθεία ε και διέρχεται από το σημείο A(-1,2)

Λόλας Τριγωνομετρία 12/20

Δίνεται η ευθεία $\varepsilon: 2x + 3y - 6 = 0$. Να βρείτε:

- την ευθεία ζ που είναι παράλληλη στην ευθεία ε και διέρχεται από το σημείο A(-1,2)
- τα σημεία τομής της ευθείας ζ με τους άξονες

Τριγωνομετρία 12/20

Να αποδείξετε ότι οι ευθείες

$$\varepsilon_1: x - 3y + 2 = 0$$

$$\varepsilon_1 : x - 3y + 2 = 0$$
 $\varepsilon_2 : 2x - y - 1 = 0$ $\varepsilon_3 : 5x - 3y - 2 = 0$

$$\varepsilon_3: 5x - 3y - 2 = 0$$

διέρχονται από το ίδιο σημείο

Δίνεται η εξίσωση:

$$(\lambda^2-1)x+(\lambda^2-\lambda)y+\lambda+1=0,\lambda\in\mathbb{R}$$

Να βρείτε για ποιες τιμές του λ η εξίσωση παριστάνει:

- 🗅 ευθεία
- ② ευθεία παράλληλη στον άξονα x'x
- ③ ευθεία παράλληλη στον άξονα y'y

Δίνεται η εξίσωση:

$$(\lambda^2-1)x+(\lambda^2-\lambda)y+\lambda+1=0,\lambda\in\mathbb{R}$$

Να βρείτε για ποιες τιμές του λ η εξίσωση παριστάνει:

- 💵 ευθεία
- $oxed{2}$ ευθεία παράλληλη στον άξονα x'x
- @ ευθεία παράλληλη στον άξονα y'y

Δίνεται η εξίσωση:

$$(\lambda^2-1)x+(\lambda^2-\lambda)y+\lambda+1=0,\lambda\in\mathbb{R}$$

Να βρείτε για ποιες τιμές του λ η εξίσωση παριστάνει:

- 🗓 ευθεία
- $oxed{2}$ ευθεία παράλληλη στον άξονα x'x
- \odot ευθεία παράλληλη στον άξονα y'y

Λόλας

Δίνονται οι ευθείες:

- $\bullet \ \varepsilon_{\text{\tiny 1}} : (\mu 1)x (\mu 2)y \mu = 0$
- $\bullet \ \varepsilon_2 : (\mu 2)x (\mu + 1)y 3 = 0$

Να βρείτε το μ ώστε:

- **1** οι ευθείες ε_1 και ε_2 να τέμνονται

Δίνονται οι ευθείες:

- $\bullet \ \varepsilon_{\text{\tiny 1}} : (\mu 1)x (\mu 2)y \mu = 0$
- $\bullet \ \varepsilon_2 : (\mu 2)x (\mu + 1)y 3 = 0$

Να βρείτε το μ ώστε:

- **1** οι ευθείες ε_1 και ε_2 να τέμνονται
- $2 \varepsilon_1 \parallel \varepsilon_2$

Δίνονται οι ευθείες:

- $\bullet \ \varepsilon_{\text{\tiny 1}} : (\mu 1)x (\mu 2)y \mu = 0$
- $\bullet \ \varepsilon_2 : (\mu 2)x (\mu + 1)y 3 = 0$

Να βρείτε το μ ώστε:

- **1** οι ευθείες ε_1 και ε_2 να τέμνονται
- $2 \varepsilon_1 \parallel \varepsilon_2$
- \bullet $\varepsilon_1 \perp \varepsilon_2$

Να βρείτε την οξεία γωνία των ευθειών

$$\varepsilon_1:y=(-2+\sqrt{3})x$$

και

$$\varepsilon_2:y=-x$$

Να βρείτε τις ευθείες που διέρχονται από το σημείο P(1,-1) και σχηματίζουν με την ευθεία $\eta: x+y-1=0$ οξεία γωνία ίση με 45°

Λόλας Τριγωνομετρία 17/20

Να αποδείξετε ότι όλες οι ευθείες που ορίζονται από την εξίσωση:

$$\varepsilon_{\lambda}:(\lambda+1)x+(\lambda-1)y+2\lambda=0$$
, ópou $\lambda\in\mathbb{R}$

διέρχονται από το ίδιο σημείο ${\bf A}$ και στη συνέχεια, να βρείτε εκείνη την ευθεία ε που ορίζεται από την εξίσωση αυτή και είναι κάθετη στην ευθεία $\zeta:y=2x$

Λόλας Τριγωνομετρία 18/20

Δίνεται η εξίσωση: $x^2 - 3y^2 - 2x + 1 = 0$

- **1** Να αποδείξετε ότι παριστάνει δύο ευθείες ε_1 και ε_2 συμμετρικές ως προς τον άξονα x'x

Λόλας Τριγωνομετρία 19/20

Δίνεται η εξίσωση: $x^2 - 3y^2 - 2x + 1 = 0$

- $\ \, \textbf{1}$ Να αποδείξετε ότι παριστάνει δύο ευθείες ε_1 και ε_2 συμμετρικές ως προς τον άξονα x'x
- \mathbf{Q} Να βρείτε την οξεία γωνία που σχηματίζουν οι ευθείες ε_1 και ε_2

Λόλας

Στο moodle θα βρείτε τις ασκήσεις που πρέπει να κάνετε, όπως και αυτή τη παρουσίαση