The complexity of 3-colouring H-colourable graphs. Andrei Krokhin and Jakub Oprsal, 2019

Szymon Wojtulewicz

Uniwersytet Jagielloński

20.11.2023

Main result

Theorem 3.1

Let ${\bf H}$ be a 3-colourable non-bipartite graph. Then $\mathsf{PCSP}({\bf H},{\bf K}_3)$ is NP-hard.

Dichotomy

If \mathbf{H} is bipartite then the problem can be solved in polynomial time by using an algorithm for 2-colouring.

Reduction

 $\mathsf{PCSP}(\mathbf{H}, \mathbf{K}_3)$ admits a reduction from $\mathsf{PCSP}(\mathbf{C}_k, \mathbf{K}_3)$ where k is the size of an odd cycle in \mathbf{H} .

Theorems 2.13 and 3.3

Theorem 2.13

Let \mathbf{H}, \mathbf{G} be graphs such that $\mathbf{H} \to \mathbf{G}$. Assume that there exists a minion homomorphism $\xi \colon \operatorname{Pol}(\mathbf{H}, \mathbf{G}) \to \mathscr{M}$ for some minion \mathscr{M} on a pair of sets such that \mathscr{M} has bounded essential arity and does not contain a constant function. Then $\operatorname{PCSP}(\mathbf{H}, \mathbf{G})$ is NP-hard.

Definition

Let N be an odd number, we define a minion $\mathscr{Z}_{\leq N}$ to be the set of all functions $f\colon \mathbb{Z}^n \to \mathbb{Z}$ such that $f(x_1,\ldots,x_n) = c_1x_1 + \cdots + c_nx_n$ for some $c_1,\ldots,c_n\in\mathbb{Z}$ with $\sum_{i=1}^n |c_i| \leq N$ and $\sum_{i=1}^n c_i$ odd.

Theorem 3.3

Let $k \geq 3$ be odd and let N be the largest odd number such that $N \leq k/3$. Then there is a minion homomorphism from $\operatorname{Pol}(\mathbf{C}_k, \mathbf{K}_3)$ to $\mathscr{Z}_{\leq N}$.

Graph homology

Vertex chains

 $\mathbf{G}=(V(G),E(G)).$ Let $\Delta_{\mathsf{V}}(\mathbf{G})$ denote the free Abelian group with generators $[v],v\in V(G).$

Edge chains

For an edge (u, v) let [u, v] denote an orientation of the edge from u to v. Let $\Delta_{\mathbf{F}}(\mathbf{G})$ denote the free Abelian group with generators

 $[u,v], (u,v) \in E(G)$, where [u,v] = -[v,u] for every edge.

Group homomorphisms

Definition

For any graph homomorphism $f \colon \mathbf{H} \to \mathbf{G}$ we define group homomorphisms $f_{\mathsf{V}} \colon \Delta_{\mathsf{V}}(\mathbf{H}) \to \Delta_{\mathsf{V}}(\mathbf{G})$ and $f_{\mathsf{E}} \colon \Delta_{\mathsf{E}}(\mathbf{H}) \to \Delta_{\mathsf{E}}(\mathbf{G})$ defined by

$$f_{\mathsf{V}}(\sum_i c_i[v_i]) = \sum_i c_i[f(v_i)],$$

and

$$f_{\mathsf{E}}(\sum_i c_i[u_i,v_i]) = \sum_i c_i[f(u_i),f(v_i)].$$

Map on a group homomorphisms

Definition 2.15

For a graph G, we define a map $\partial \colon \Delta_{\mathsf{E}}(G) \to \Delta_{\mathsf{V}}(G)$ as the group homomorphism such that $[u,v] \mapsto [v] - [u]$. for every $[u,v] \in \Delta_{\mathsf{E}}(G)$

Lemma 2.16

For each graph homomorphism $f \colon \mathbf{H} \to \mathbf{G}$ and each $P \in \Delta_{\mathsf{E}}(\mathbf{H})$, we have $f_{\mathsf{V}}(\partial P) = \partial f_{\mathsf{E}}(P)$.

Degree of a homomorphism

Lemma 5.1

Let $m, l \geq 3$, and let $f: \mathbf{C}_m \to \mathbf{C}_l$ be a homomorphism. Then there is an integer d such that $f_{\mathsf{E}}(O_m) = d \cdot O_l$. Denote this integer d as $\deg f$.

Lemma 5.3

Let $m, l \geq 3$, assume that l is odd, and let $f: \mathbf{C}_m \to \mathbf{C}_l$ be a homomorphism. Then

- $oldsymbol{2}$ the parity of $\deg f$ is the same as the parity of m, and
- 3 if m=4 then $\deg f=0$.

Degree of a polymorphism

Lemma 5.6

Let $n \geq 2$, $f: \mathbf{C}_k^n \to \mathbf{C}_3$ be a polymorphism, and let $i \in \{1, \dots, n\}$. Then

- ① for each edge e of \mathbf{C}_k^{n-1} , there is an integer d such that $f_{\mathsf{E}}(e\times_i O_k)=2d\cdot O_3;$
- $oldsymbol{2}$ the above d does not depend on the choice of e;
- $d = \deg_i f.$

Minor preservation

Definition

Let \mathscr{Z} denote the minion of all linear maps over \mathbb{Z} , i.e., of the functions of the form $\sum c_i x_i$ where all $c_i \in \mathbb{Z}$. Define a mapping $\delta \colon \operatorname{Pol}(\mathbf{C}_k, \mathbf{C}_3) \to \mathscr{Z}$ by

$$\delta(f): (x_1, \dots, x_n) \mapsto \deg_1 f \cdot x_1 + \dots + \deg_n f \cdot x_n.$$

Lemma 5.7

The map δ is a minion homomorphism.

Minor preservation

Lemma 5.7

Let $n \geq 2$. If $f \in \operatorname{Pol}(\mathbf{C}_k, \mathbf{C}_3)$ is n-ary and g is obtained from f by identifying the first two variables, i.e.,

$$g(y, x_3, \dots, x_n) = f(y, y, x_3, \dots, x_n)$$

then $\deg_1 g = \deg_1 f + \deg_2 f$.

Lemma 5.11

Let $f: \mathbf{C}_k^n \to \mathbf{C}_3$ be a polymorphism, and $i \in \{1, \dots, n\}$. If the coordinate i in f is dummy, then $\deg_i f = 0$.

Bounding the essential arity

Lemma 5.12

Let N be the largest odd number such that $N \leq k/3$. Then we have $\delta(f) \in \mathscr{Z}_{\leq N}$ for all $f \in \operatorname{Pol}(\mathbf{C}_k, \mathbf{C}_3)$.