Q: Prove case 3 of Master Theorem.

Lemma 4.2 states:

Let a>0 and b>1 be constants and let f(n) be a function defined over real numbers $n\geq 1$. Then the recurrence $T(n)=\begin{cases} \Theta(1) & \text{if } 0\leq n<1\\ aT\left(\frac{n}{b}\right)+f(n) & \text{if } n\geq 1 \end{cases}$ has solution $T(n)=\Theta\left(n^{\log_b a}\right)+\sum_{j=0}^{\lfloor\log_b n\rfloor}a^jf\left(\frac{n}{b^j}\right)$.

Lemma 4.3 states:

Let a>0 and b>1 be constants and let f(n) be function defined over real numbers $n\geq 1$. Then the asymptotic behavior of the function $g(n)=\sum_{j=0}^{\lfloor\log_b n\rfloor}a^jf\left(\frac{n}{b^j}\right)$, defined for $n\geq 1$, can be characterized as follows:

Case 3: If there exists a constant c in the range 0 < c < 1 s.t. $0 < af\left(\frac{n}{b}\right) \le cf(n) \ \forall n \ge 1$, then $g(n) = \Theta(f(n))$.

Proof of case 3:

- 1. Let a > 0, b > 0, $\epsilon > 0$ and c < 1.
- 2. Let $f(n) = \Omega(n^{\log_b a + \epsilon})$ and $g(n) = \sum_{j=0}^{\lfloor \log_b n \rfloor} a^j f\left(\frac{n}{b^j}\right)$.
- 3. We can see that $g(n) = \Omega(f(n))$ because f(n) is a term of g(n).
- 4. Choose ϵ s.t. $c = b^{-\epsilon} < 1$.
- 5. Show that $a^j f\left(\frac{n}{b^j}\right) \le c^j f(n)$. Proof by induction.
 - a. Base case: Let j = 0.

i.
$$a^0 f\left(\frac{n}{h^0}\right) \le c^0 f(n) \to f(n) \le f(n)$$

b. Inductive case: Assume $a^j f\left(\frac{n}{b^j}\right) \le c^j f(n)$ is true.

i.
$$a^{j+1}f\left(\frac{n}{b^{j+1}}\right) = a^{j+1}\left(\frac{n}{b^{j+1}}\right)^{\log_b a + \epsilon} = aa^j\left(\frac{n}{b^j}\right)^{\log_b a + \epsilon} b^{-\log_b a + \epsilon} = aa^jf\left(\frac{n}{b^j}\right)b^{-\log_b a}b^{-\epsilon} = aa^jf\left(\frac{n}{b^j}\right)a^{-1}b^{-\epsilon} = a^jf\left(\frac{n}{b^j}\right)b^{-\epsilon} \le c^jf(n)b^{-\epsilon} = c^jf(n)c = c^{j+1}f(n).$$

- 6. Now show that g(n) = O(f(n))
 - a. $g(n) = \sum_{j=0}^{\lfloor \log_b n \rfloor} a^j f\left(\frac{n}{b^j}\right)$
 - b. Use $a^j f\left(\frac{n}{b^j}\right) \le c^j f(n)$: $g(n) \le \sum_{j=0}^{\lfloor \log_b n \rfloor} c^j f(n)$.
 - c. Extract f(n) from the sum: $g(n) \le f(n) \sum_{j=0}^{\lfloor \log_b n \rfloor} c^j$
 - d. Increasing the sigma upper bound would make the right side bigger, holding the inequality.
 - e. Thus: $g(n) \le f(n) \sum_{j=0}^{\infty} c^j$.
 - f. The infinite geometric series states that $\sum_{j=0}^{\infty} ar^k = \frac{a}{1-r}$ when 0 < r < 1.
 - g. Therefore, we can use it to get: $g(n) \le f(n) \frac{1}{1-c}$.
 - h. Because $\frac{1}{1-c}$ is a constant, we have $g(n) \le O(f(n))$.
- 7. Therefore, because $g(n) = \Omega(f(n)) = O(f(n))$ then $g(n) = \Theta(f(n))$.

Master theorem states:

Let a>0 and b>1 be constants and let f(n) be deriving function that is defined and nonnegative on all sufficiently large reals. Define the algorithmic recurrence T(n) on the positive real numbers by $T(n)=aT\left(\frac{n}{b}\right)+f(n)$. Then the asymptotic behavior of T(n) can be characterized as follows:

Case3: If there exist a constant $\epsilon > 0$ s.t. $f(n) = \Omega(n^{\log_b a + \epsilon})$, and if f(n) additionally satisfies the regularity condition $af\left(\frac{n}{h}\right) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then T(n) = $\Theta(f(n)).$

Proof of case 3:

- 1. Let a > 0, b > 1 be constants, $T(n) = aT\left(\frac{n}{b}\right) + f(n)$ where $f(n) = \Omega\left(n^{\log_b a + \epsilon}\right)$ and $af\left(\frac{n}{b}\right) \le cf(n)$ is satisfied for some c < 1.
- 2. By lemma 4.2 we know that if $n \ge 1$, the equation $T(n) = aT\left(\frac{n}{b}\right) + f(n)$ has solution $T(n) = aT\left(\frac{n}{b}\right) + f(n)$ $\Theta(n^{\log_b a}) + \sum_{j=0}^{\lfloor \log_b n \rfloor} a^j f\left(\frac{n}{b^j}\right).$
- 3. Then, by lemmas 4.3 we know that $\sum_{j=0}^{\lfloor \log_b n \rfloor} a^j f\left(\frac{n}{b^j}\right) = \Theta(f(n))$.
- 4. Thus, $T(n) \leq \Theta\left(n^{\log_b a}\right) + \sum_{j=0}^{\lfloor \log_b n \rfloor} c^j f(n) = \Theta\left(n^{\log_b a}\right) + \Theta\left(f(n)\right)$.
- 5. Using $f(n) = \Omega(n^{\log_b a + \epsilon})$, we have that $\Theta(f(n)) = \Theta\left(\Omega(n^{\log_b a + \epsilon})\right) = \Theta(n^{\log_b a + \epsilon})$. 6. Thus, $T(n) = \Theta(n^{\log_b a}) + \Theta(n^{\log_b a + \epsilon}) = \Theta(n^{\log_b a + \epsilon}) = \Theta(n^{\log_b a + \epsilon})$.
- 7. Therefore, $T(n) = \Theta(f(n))$.