Basic Proporties, "antiderivatives" & Fundamental theory of Calculus.

O Basic Properties: $f,g: [a,b] \to \mathbb{R}$, two continuous functions with $f(x) \in g(x)$ $\forall x \in [a,b]$

then $\int_a^b f(x) dx \ll \int_a^b g(x) dx$

why? For any [xi-1, xi] of any partition P

we have m_i^f , m_i^9 , M_i^f , M_i^9

= $f(s_i)$ < $g(e_i)$ = $f(u_i)$ = $g(v_i)$

fosi) & frei) & grei) fruis & fruis & grei)

Mit « Mig Mit « Mig

Lp (P) & Lg(P) Up (P) & Ug (P)

=) $\int_a^b f(x) dx < \int_a^b g(x) dx$

 $f(x) < g(x) \Rightarrow \int_a^b f(x) dx < \int_a^b g(x) dx$

fies strictly positive -> Ja frx, doe is too

 $f(1 =) \int_a^b f(x) dx (\int_a^b 1 dx = b - a)$

Easy Examples

$$f(x) = 1$$
 $\forall x$
 $\int_a^b f(x) dx = b-a$

why? for any
$$[x_{i-1}, x_i]$$
 of any P .

 $m_{i=1} M_{i-1}$

$$L_{\beta}(P) = Cmi Axi = Ci Axi = b-a$$

Ug (P) =
$$\Sigma \text{ Mi Ax}$$
; = $\Sigma 1 \cdot \Delta x$; = $b - \alpha$
= $\int_{a}^{b} f(x) dx = b - \alpha$

area
$$f(x)=1-2\epsilon$$

$$L_{f}(P_{n}) = \hat{\Sigma}_{m;\Delta x;} = \hat{\mathcal{C}}_{n} \cdot \hat{\Lambda}_{n}$$

Lp(Pn) =
$$\frac{1}{n} \sum_{i=1}^{n} n_{i} = \frac{1}{n} \sum_{i=0}^{n} j = \frac{1}{n} \sum_{i=0}$$

```
"Antiderinative" and Fundamental Theory of Calculus.
Theorm f. [a, b] > R entegrable
       \Rightarrow FI [u,b] \longrightarrow \mathbb{R}, F(x) = \int_0^{\infty} f(t) dt.
           is uniformally continuous.
Proof Lie p65 of notes and poragraph of section 5.2]
Theorn [ Derwalive of Integrals ]
     If f: [a,b] \rightarrow \mathbb{R} continuous \mathbb{R} then f[a,b] \rightarrow \mathbb{R}, F(\mathbf{z}) = \int_{a}^{\infty} f(t) dt
             is differentiable & 1= (x) = (cx) +/x
Proof given any E>0, 35>0 | 1x-c1<5 => 1f(x)-f(c)|(E x>0)
          & la (fie)-fier) de | < la (fie)-fier) de < la edt

x-c
     Je (f(f)-f(c)) dt = Je f(f) de -f(c)
                  =\frac{F(x)-F(c)}{x-c}-f(c) \rightarrow 0
                             difference quotient & > c
      i.e F(x)-F(c) => f(c) as x-> c
                            F'(c) = F(c)
```

Theorm [Integral of a derivative]

Suppose f: [a, b] -> R is integrable

Suppose $F: [a,b] \rightarrow R$ is an antiderivative of f"

Then $\int_{0}^{b} f(x) dx = F(b) - F(a)$

Priore By the MVT for F on any [xin, xi]

 $M_{i} \le \frac{F(x_{i}) - F(x_{i-1})}{x_{i} - x_{i-1}} = F'(\xi_{i}) \le M_{i}$ for some $\xi_{i} \in [x_{i-1}, x_{i}]$

m; Δα; (F(x,)-F(x;-ι) (M; Δx;

Lf(P) $\langle F(x_i) - F(x_{i-1}) \rangle \langle U_F(P) \rangle$ $\int_{\alpha}^{b} f(x) dx \langle F(x_i) - F(x_{i-1}) \rangle \int_{\alpha}^{b} f(x) dx$

=) la f(x)dx = F(x;)-F(x;-1)

 $\int_{0}^{1} (1-x^{2}) dx \qquad (x-\frac{1}{2}x^{2})' = 1-x$ $= (1-\frac{1}{2}1^{2}) - (0-\frac{1}{2}0^{2})$

Jun = - cos