

Accession Number

1981-91349D [50] WPIX Full Text

Title

Acyl-phosphine photoinitiator for photopolymerisable compsns. - is prepared by reacting acid halide with phosphide or (silyl) phosphine.

Derwent Class

A60 E11 G02 P42 P83

Inventor

BUETHE, I; HELL, G; HENNE, A; HESSE, A

Patent Assignee

(BADI) BASF AG

Abstract

EP 40721 A UPAB: 19930915

New acyl-phosphine cpds. are of formula R1R2P-CO-R3 (I)

R1 is n- or branched 1-6C alkyl, cyclohexyl, cyclopentyl, Ph, naphthyl, a halogen-, 1-4C alkyl- or 1-4C alkoxy-substd. Ph or naphthyl gp., or an S- or N-containing 5- or 6-membered heterocyclic ring. R2 can be an R1 gp. R1 and R2 together can be linked to form a 4-10C ring, opt. substd. by 1-6 further 1-4C alkyl gps. and combined with 1 or 2 condensed-on benzene rings.

R3 is an at least di-substd. Ph-, pyridyl-, furyl-, pyrrol- or thieryl gp., carrying the substituents A and B at least at the 2C atoms adjacent to the linking position with the carbonyl gp. A and B are 1-6C alkyl, alkoxy or alkylthio, 3-7C cycloalkyl, Ph or halogen, especially Cl or Br. R3 can also be alpha-naphthyl substd. by A and B in at least the 2,8-posn., or beta-naphthyl substd. by A and B in at least the 1,3-posns., or the grouping (II) where C and D can be A and B and opt, at least one of R1 and R2 is olefinically unsatd. (I) are used as photo-initiators in photo-polymerisable compsns., partic for the production of coatings or pre-pregs. and especially for the production of articles from unsatd. polyester resins containing further additives, especially glass fibres. (I) do not cause the yellowing of the hardened lacquers or coatings.

Patent Information

PATENT NO.	KIND	DATE	WEEK	LA	PG	MAIN IPC
(1)EP 40721	A	19811202	(198150)*	GE	27	
DE 3020092	A	19811210	(198151)			
JP 57021395	A	19820204	(198211)			
(2)EP 40721	B	19840321	(198413)	GE		
DE 3162760	G	19840426	(198418)			
JP 02009596	B	19900302	(199013)			

(1) R: BE CH DE FR GB IT LI NL

(2) R: BE CH DE FR GB IT LI NL

Priority Application Information

DE 1980-3020092 19800527

Application Details

EP 40721 A EP 1981-103417 19810506; JP 57021395 A JP 1981-78176 19810525

Country Count

9

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 81103417.2

(51) Int. Cl.³: **C 07 F 9/50, C 08 F 2/50,**
G 03 C 1/68
// C08G63/52

(22) Anmeldetag: 06.05.81

(30) Priorität: 27.05.80 DE 3020092

(71) Anmelder: **BASF Aktiengesellschaft,**
Carl-Bosch-Strasse 38, D-6700 Ludwigshafen (DE)

(43) Veröffentlichungstag der Anmeldung: 02.12.81
Patentblatt 81/48

(72) Erfinder: Henne, Andreas, Dr., Bruesseler Ring 34,
D-6700 Ludwigshafen (DE)
Erfinder: Hesse, Anton, Dr., Peter-Nickel-Strasse 15,
D-6946 Lutzenachsen (DE)
Erfinder: Buethe, Ingolf, Dr., Am Wasserturm 1,
D-6737 Boehl-Iggelheim (DE)
Erfinder: Hell, Guenter, Dr., Dirmsteiner Weg 41,
D-6700 Ludwigshafen (DE)

(84) Benannte Vertragsstaaten: BE CH DE FR GB IT LI NL

(54) Acylphosphinverbindungen und Ihre Verwendung.

(55) Die Erfindung betrifft Acylphosphinverbindungen, Verfahren zu ihrer Herstellung und ihre Verwendung. Die Acylphosphinverbindungen weisen die allgemeine Formel

auf, worin R' für einen Alkylrest, einen Cycloalkyl-, einen gegebenenfalls substituierten Phenyl- oder Naphthalenrest oder einen heterocyclischen Ring steht; R² die Bedeutung von R' hat, wobei R' und R² untereinander gleich oder verschieden sein können oder R' und R² miteinander zu einem Ring verknüpft sind, R² für einen mindestens zweifach substituierten Phenyl-, Naphthyl-, Pyridyl-, Furyl-, Pyrrolyl- oder Thienylrest steht, der mindestens an den beiden zur Verknüpfungsstelle mit der Carbonylgruppe benachbarten Kohlenstoffatomen die Substituenten A und B trägt, die gleich oder verschieden sein können und für Alkyl-, Alkoxy- oder Alkylthioreste, Cycloalkylreste, Phenylreste oder Halogenatome stehen oder R² für die Gruppierung

steht, wobei die Reste C und D die gleiche Bedeutung haben wie A und B.

Sie können aus Säurehalogenid und Phosphid oder Silylphosphin hergestellt und als Photoinitiatoren in photopolymerisierbaren Massen verwendet werden.

EP 0 040 721 A2

"Acylphosphinverbindungen und ihre Verwendung"

Die vorliegende Erfindung betrifft neue Acylphosphinverbindungen, Verfahren zu ihrer Herstellung und ihre Verwendung als Photoinitiatoren in photopolymerisierbaren Massen.

- Es sind bereits eine Reihe von Photoinitiatoren verschiedener Strukturen bekannt, z.B. Benzildimethylketal (DE-OS 22 61 383), Benzoinäther (DE-OS 16 94 149), Thioxanthone (DE-OS 20 03 132) u.a. In der US-PS 3 668 093 sind ferner Aroylphosphine als Photoinitiatoren beschrieben.
- Photopolymerisierbare Massen, die mit derartigen Initiatorsystemen, insbesondere auch mit den in der US-PS 3 668 093 beschriebenen Aroylphosphinen gehärtet werden, zeigen eine unerwünschte Vergilbung, die eine Verwendung dieser Systeme auf hellen (bzw. weißen) Flächen oder als Überzug für farbtreue Abbildungen unbrauchbar macht. Außerdem zeigen diese Verbindungen in Acrylatlacken nur geringe Härtungsgeschwindigkeiten. Nachteilig ist auch, daß diese Verbindungen sich in Gegenwart von Aminbeschleunigern zersetzen. Überraschenderweise wurde nun gefunden, daß die beschriebenen Nachteile der Acylphosphine der US-PS 3 668 093 vermieden werden, wenn der Arylrest der Aroylgruppe in den beiden zur Carbonylgruppe benachbarten Stellungen substituiert ist. Solche Verbindungen waren bisher nicht bekannt.
- Gegenstand der Erfindung sind Acylphosphin-Verbindungen der allgemeinen Formel (I)

5 " worin R¹ für einen geradkettigen oder verzweigten Alkylrest mit 1 bis 6 Kohlenstoffatomen, einen Cyclohexyl-, Cyclopentyl-, Phenyl-, Naphthyl-, einen halogen-, C₁ bis C₄-alkyl- oder C₁ bis C₄-alkoxyl-substituierten Phenyl- oder Naphthylrest oder einen S- oder N-haltigen fünf- oder sechsgliedrigen heterocyclischen Ring steht.

10 R² die Bedeutung von R¹ hat, wobei R¹ und R² untereinander gleich oder verschieden sein können oder R¹ und R² miteinander zu einem Ring verknüpft sind, der 4 bis 10 Kohlenstoffatome enthält und durch 1 bis 6 weitere Alkylreste mit je 1 bis 4 Kohlenstoffatomen substituiert sein kann sowie 1 oder 2 ankondensierte Benzolringe besitzen kann und

15 R³ für einen mindestens zweifach substituierten Phenyl-, Pyridyl-, Furyl-, Pyrrolyl- oder Thienylrest steht, der mindestens an den beiden zur Verknüpfungsstelle mit der Carbonylgruppe benachbarten Kohlenstoffatomen die Substituenten A und B trägt, die untereinander gleich oder verschieden sein können und für 1 bis 6 Kohlenstoffatome enthaltende Alkyl-, Alkoxy- oder Alkylthioreste, 3 bis 7 Kohlenstoffatome enthaltende Cycloalkylreste, Phenylreste oder Halogen-, vorzugsweise Chlor- oder Brom-Atome stehen, oder R³ für einen mindestens in den 2,8-Stellungen durch A und B substituierten α -Naphthylrest oder mindestens in den 1,3-Stellungen durch A und B substituierten β -Naphthylrest oder für die Gruppierung

35

steht, wobei die Reste A, B, C und D untereinander gleich oder verschieden sind und C und D die gleiche Bedeutung haben wie A und B und wobei gegebenenfalls mindestens einer der Reste R¹ und R² olefinisch ungesättigt ist.

5

Bezüglich der allgemeinen Formel (I) der erfindungsgemäßen Acylphosphinoxid-Verbindungen ist im einzelnen folgendes auszuführen:

10 R¹ kann sein ein geradkettiger oder verzweigter Alkylrest mit 1 bis 6 Kohlenstoff-Atomen wie Methyl, Äthyl, i-Propyl, n-Propyl, n-Butyl, sec.-Butyl, iso-Butyl, t-Butyl, Amyl, n-Hexyl; ein Cyclopentyl- oder Cyclohexylrest; ein Phenyl- oder Naphthylrest; ein halogensubstituierter beispielsweise Chlor-, Brom- oder Fluor-substituierter Phenyl- oder Naphthylrest, wie z.B. Mono- oder Dichlorphenyl, ein C₁ bis C₄-alkylsubstituierter Phenyl- oder Naphthylrest, wie Methylphenyl, Äthylphenyl, Isopropylphenyl, tert.-Butylphenyl, Dimethylphenyl, Trimethylphenyl, ein C₁ bis C₄-alkoxysubstituierter Phenyl- oder Naphthylrest, wie Methoxyphenyl, Äthoxyphenyl, Dimethoxyphenyl; ein S- oder N-haltiger fünf- oder sechsgliedriger heterocyclischer Ring, wie z.B. ein Thienyl-, Pyridyl-, Pyrrolyl- oder Furylrest;

25

R² hat die gleiche Bedeutung wie R¹, wobei R¹ und R² untereinander gleich oder verschieden sein und in der Weise untereinander verknüpft sein können, daß sie miteinander einen Ring R¹-P-R² bilden, der 4 bis 10 Kohlenstoffatome enthält und mit 1 bis 6 weiteren Alkylresten mit je 1 bis 4 Kohlenstoffatomen substituiert sein kann sowie 1 oder 2 ankondensierte Benzolringe haben kann.

35 R³ kann für einen mindestens zweifach substituierten Phenyl-, Pyridyl-, Furyl-, Pyrrolyl- oder Thienylrest stehen,

„

der mindestens an den beiden zur Verknüpfungsstelle mit der Carbonylgruppe benachbarten Kohlenstoffatomen die Substituenten A und B trägt, die untereinander gleich oder verschieden sein können und für 1 bis 6 Kohlenstoffatome
 5 enthaltende Alkyl-, Alkoxy- oder Alkylthioreste, 3 bis 7 Kohlenstoffatome enthaltende Cycloalkylreste, Phenylreste oder Halogen-, vorzugsweise Chlor- oder Bromatome oder für einen mindestens in den 2,8-Stellungen durch A und B substituierten α -Naphthylrest oder einen mindestens in
 10 1,3-Stellungen durch A und B substituierten β -Naphthylrest oder für die Gruppierung

15

stehen, wobei die Reste A, B, C und D untereinander gleich
 20 oder verschieden sind und C und D die gleiche Bedeutung haben wie A und B und wobei gegebenenfalls mindestens einer der Reste R¹ und R² olefinisch ungesättigt ist.

25 R³ kann beispielsweise ein 2,6-Dimethylphenyl-, 2,6-Dimethoxyphenyl-, 2,6-Dichlorphenyl, 2,6-Dibromphenyl-, 2-Chlor-6-methoxyphenyl-, 2-Chlor-6-methylthio-phenyl-, 2,4,6-Trimethylphenyl-, 2,4,6-Trimethoxyphenyl-, 2,3,4,6-Tetramethylphenyl-, 2,6-Dimethyl-4-tert.butyl-phenyl-, 1,3-Dimethylnaphthalin-2-, 2,8-Dimethylnaphthalin-1,
 30 1,3-Dimethoxynaphthalin-2-, 1,3-Dichlornaphthalin-2, 2,8-Dimethoxynaphthalin-1-, 2,4,6-Trimethylpyridin-3-, 2,4-Dimethoxy-furan-3 oder ein 2,4,5-Trimethylthiophen-3-Rest sein.

Als Beispiele für die erfindungsgemäßen, als Photoinitiatoren geeigneten Acylphosphinverbindungen seien genannt:

- 2,6-Dimethylbenzoyl-diphenylphosphin
5 2,6-Dimethoxybenzoyl-diphenylphosphin
2,4,6-Trimethylbenzoyldiphenylphosphin
2,3,6-Trimethylbenzoyldiphenylphosphin
2,4,6-Trimethoxybenzoyldiphenylphosphin
2,6-Dichlorbenzoyldiphenylphosphin
10 2-Chlor-6-methylthio-benzoyldiphenylphosphin
2,6-Bis-(methylthio)-benzoyl-diphenylphosphin
2,3,4,6-Tetramethylbenzoyldiphenylphosphin
2-Phenyl-6-methylbenzoyldiphenylphosphin
15 1,3-Dimethylnaphthalin-2-carbonyl-diphenylphosphin
2,8-Dimethylnaphthalin-1-carbonyl-diphenylphosphin
1,3-Dimethoxynaphthalin-1-carbonyl-diphenylphosphin
1,3-Dichlornaphthalin-2-carbonyl-diphenylphosphin
2,4,6-Trimethylpyridin-3-carbonyl-diphenylphosphin
2,4-Dimethylfuran-3-carbonyl-diphenylphosphin
20 2,4-Dimethoxyfuran-3-carbonyl-di(n-butyl)phosphin
2,4,5-Trimethyl-thiophen-3-carbonyldiphenylphosphin
2,4,5-Trimethyl-thiophen-3-carbonyl-diphenylphosphin
2,6-Dimethoxybenzoyl-bis-(p-tolyl)-phosphin
2,4,6-Trimethoxybenzoyl-bis-(o-tolyl)-phosphin
25 2,6-Dimethoxybenzoyl-bis-(p-chlorphenyl)-phosphin
2,4,6-Trimethoxybenzoyl-bis-(p-chlorphenyl)-phosphin
2,6-Dimethoxybenzoyl-di-tert.-butylphosphin
2,4,6-Trimethoxybenzoyl-di-tert.-butylphosphin
30 Die Herstellung derartiger Verbindungen kann beispielsweise nach folgenden drei Verfahren erfolgen:

1. Durch Umsetzen von Säurehalogeniden der allgemeinen Formel II

mit Metallphosphiden der allgemeinen Formel (III)

Me = Li, Na, K

15 zweckmäßigerweise in einem wasserfreien aprotischen Lösungsmittel in einer Inertgasatmosphäre von vorzugsweise Stickstoff, Argon oder Wasserstoff bei Temperaturen zwischen -30 und 130°C, bevorzugt zwischen -10 und 100°C. Bevorzugte Lösungsmittel sind Kohlenwasserstoffe wie Toluol, Cyclohexan oder Petroläther sowie aliphatische oder aromatische Äther wie Diäthyläther, Dibutyläther, Tetrahydrofuran, Dioxan, Diäthylenglycoldimethyläther, Diphenyläther. Die dabei entstehende Lösung des Acylphosphins kann durch Filtration oder durch Waschen mit Wasser vom gleichzeitig entstandenen Alkalihalogenid getrennt werden.

25 Nach Abdampfen des Lösungsmittels verbleibt das Acylphosphin, welches durch Destillation oder Umkristallisieren weiter gereinigt werden kann.

Dieses Herstellverfahren lässt sich folgendermaßen beispielhaft beschreiben:

10 2. Durch Umsetzen eines Acylchlorides der Formel (II) mit einem Silylphosphin der allgemeinen Formel (IV)

wobei R^4 , R^5 , R^6 gleich oder verschieden sind und für C_1 bis C_6 -Alkyl oder Phenylreste stehen; bevorzugt sind Methyl- oder Äthylgruppen.

20 Diese Umsetzung wird zweckmäßigerweise in einem wasserfreien aprotischen Lösungsmittel in einer Inertgasatmosphäre von Stickstoff, Argon oder Wasserstoff bei Temperaturen zwischen -30 und 130°C , bevorzugt 0 bis 100°C , durchgeführt. Bevorzugte Lösungsmittel sind die bei Verfahren 1 genannten. Das Acylphosphin fällt dabei entweder während der Reaktion als Niederschlag aus oder es verbleibt nach Abziehen des Lösungsmittels als Rückstand und kann durch Destillation oder Umkristallisieren weiter gereinigt werden.

25

30

Dieses Verfahren kann folgendermaßen beispielhaft beschrieben werden:

35

5

10

3. Durch Umsetzen eines Acylchlorides der allgemeinen Formel (II) mit einem Phosphin der allgemeinen Formel (V)

15

20

25

zweckmäßigerweise in Gegenwart von etwa äquimolaren Mengen tertiären Amins in einer Inertgasatmosphäre von Argon, Stickstoff oder Wasserstoff in einem Lösungsmittel wie einem Kohlenwasserstoff oder Kohlenwasserstoffgemisch wie Petroläther, Toluol, Cyclohexan, einem Äther oder anderen üblichen organischen Lösungsmitteln bei Temperaturen zwischen -30 und +130°C bevorzugt bei 10 bis 100°C. Geeignete tertiäre Amine sind z.B. Triäthylamin, Tributylamin, Diäthylanilin, Methylidiphenylamin.

30

Das entstehende Hydrochlorid des tertiären Amins kann durch Filtration oder durch eine Wäsche der organischen Phase mit Wasser abgetrennt werden. Aus der in dieser Weise erhaltenen Lösung des Acylphosphins kann dieses durch Abkühlen der Lösung oder durch Abziehen des Lösungsmittels als Rohprodukt gewonnen werden und durch Destillation, Umkristallisation oder Chromatographie weiter gereinigt werden.

35

Dieses Verfahren kann in folgender Weise beispielhaft beschrieben werden:

15 Bevorzugte Verfahren zur Herstellung der erfindungsgemäßen Aroylphosphine sind die Verfahren 1 und 2.

20 Die Gewinnung der Säurehalogenide R^3COX (vgl. Weygand-Hilgetag, organisch-chemische Experimentierkunst, 4. Aufl., S. 246 bis 256; J.A. Barth-Verlag, Leipzig 1970), der Phosphine und ihrer Alkalosalze (vgl. K. Issleib und A. Tzschach, Chem. Ber. 92, 704 (1959); K. Sasse in Houben-Weyl, Methoden der organischen Chemie, Bd. 12/I, S. 52 ff) sowie der Silylphosphine (vgl. K. Sasse, op. cit., S. 77) erfolgt nach Verfahren, die dem Fachmann aus der Literatur bekannt sind.

30 Als Ausgangsmaterialien geeignete Phosphine sind z.B. Dimethylphosphin, Dibutylphosphin, Diphenylphosphin, Bis-(*p*-tolyl)-phosphin, Di-tert.butylphosphin, Bis-(*p*-chlor-phenyl)phosphin; geeignete Silylphosphine sind z.B. Verbindungen wie Trimethylsilyldimethylphosphin, Trimethylsilyldibutylphosphin, Trimethylsilyldiphenylphosphin, Triäthylsilyl-bis-(*p*-tolyl)-phosphin, Tripropylsilyl-di-tert.-butylphosphin. Geeignete Phosphide gehen aus den

obengenannten Phosphinen hervor, wenn man das am Phosphor gebundene Wasserstoffatom durch Li, Na, K ersetzt.

Als Beispiele für die nach den erfindungsgemäßen Verfahren
5 hergestellten neuen Acylphosphin-Verbindungen seien, ohne dies als Beschränkung zu sehen, folgende genannt:

10

15

20

25

30

35

35
30
25
20
15
10
5

Tabelle 1: Beispiele der erfindungsgemäßen Acylphosphin-Verbindungen (Ph = Phenyl)

Verbindung	Hergestellt nach Verfahren	Schmp.	Ausbeute	Analyse		
				C	H	P
	2	98°	69 % gef 79,1	ber 79,52 gef 79,1	6,33 6,27	9,34 8,98
	2	113-115°	92 % gef 71,5	ber 72,0 gef 71,5	5,43 5,4	8,86 8,7
	1	113-115°	82 % gef 71,7	ber 72,0 gef 71,7	5,43 5,4	8,86 8,8
	3	113-115°	10 %			

Die erfindungsgemäßen Acylphosphinverbindungen zeigen eine sehr gute Reaktivität als Photoinitiatoren für photopolymerisierbare Monomere mit mindestens einer C-C-Mehr-fachbindung und Mischungen derselben miteinander und mit bekannten Zusatzstoffen. Die erfindungsgemäßen Acylphosphinverbindungen eignen sich besonders gut als Photoinitiatoren in photopolymerisierbaren Massen für Überzüge und Lacke. Sie sind hinsichtlich der Vergilbung der so erhaltenen Lacke bzw. Überzüge bekannten Photoinitiatoren (z.B. dem aus der US-PS 3.668 093 bekannten Aroylphosphinen sowie Benzildimethylketal) weit überlegen. Die erfindungsgemäßen Acylphosphinverbindungen sind außerdem sehr vorteilhaft als Photoinitiatoren für die Lichthärtung von styrolischen Polyestern, die gegebenenfalls Glasfasern und andere Hilfsstoffe enthalten können, verwendbar.

Als photopolymerisierbare Monomere eignen sich die üblichen Verbindungen und Stoffe mit polymerisierbaren C-C-Doppelbindungen, die durch z.B. Aryl-, Carbonyl, Amino-, Amid-, Amido-, Ester-, Carboxy- oder Cyanid-Gruppen, Halogenatome oder C-C-Doppel- oder C-C-Dreifachbindungen aktiviert sind. Genannt seien beispielsweise Vinyläther und Vinylester, Styrol, Vinyltoluol, Acrylsäure und Methacrylsäure sowie deren Ester mit ein- und mehrwertigen Alkoholen mit bis zu 20, vorzugsweise 1 bis 8 Kohlenstoffatomen, deren Nitrile oder Amide, Malein- und Fumarester von Alkoholen mit 1 bis 20, vorzugsweise 1 bis 8 Kohlenstoffatomen sowie N-Vinylpyrrolidon, N-Vinylcaprolactam, N-Vinylcarbazol und Allylester wie Diallylpthalat.

Als photopolymerisierbare höhermolekulare Verbindungen sind beispielsweise geeignet: ungesättigte Polyester, hergestellt aus α,β -ungesättigten Dicarbonsäuren wie Maleinsäure, Fumarsäure oder Itaconsäure, gegebenenfalls im Gemisch mit gesättigten bzw. aromatischen Dicarbonsäuren

wie Adipinsäure, Phthalsäure oder Terephthalsäure, durch Umsetzung mit Alkandiolen wie Äthylenglykol, Propylenglykol, Butandiol, Neopentylglykol oder oxalkyliertem Bisphenol A; Epoxidacrylate, hergestellt aus Acryl- oder 5 Methacrylsäure und aromatischen oder aliphatischen Diglycidyläthern und Urethanacrylate (z.B. hergestellt aus Hydroxyalkylacrylaten und Polyisocyanaten), sowie Polyesteracrylate (z.B. hergestellt aus hydroxylgruppenhaltigen gesättigten Polyester und Acryl- oder Methacrylsäure). 10

Den photopolymerisierbaren Verbindungen, deren Zusammensetzung für den jeweiligen Verwendungszweck dem Fachmann geläufig ist, können in bekannter Weise gesättigte 15 und/oder ungesättigte Polymere sowie weitere Zusatzstoffe wie Inhibitoren gegen die thermische Polymerisation, Paraffin, Pigmente, Farbstoffe, Peroxide, Verlaufshilfsmittel, Füllstoffe und Glasfasern sowie Stabilisatoren gegen thermischen oder photochemischen Abbau zugesetzt sein.

20 Solche Gemische sind dem Fachmann bekannt. Art und Menge der Zusätze hängen vom jeweiligen Verwendungszweck ab.

Die erfindungsgemäßen Acylphoshin-Verbindungen werden 25 dabei im allgemeinen in einer Konzentration von 0,01 bis 15 Gew.-%, vorzugsweise von 0,1 bis 5 Gew.-%, bezogen auf die photopolymerisierbare Masse eingesetzt. Sie können gegebenenfalls mit Beschleunigern kombiniert werden, die den hemmenden Einfluß des Luftsauerstoffs auf die Photopolymerisation beseitigen. 30

Solche Beschleuniger bzw. Synergisten sind beispielsweise sekundäre und/oder tert. Amine wie Methyldiäthanolamin, Dimethyläthanolamin, Triäthylamin, Triäthanolamin, p-Dimethylaminobenzoesäureäthylester, Benzyl-dimethylamin, 35

- Dimethylaminoäthylacrylat, N-Phenylglycin, N-Methyl-N-phenylglycin und analoge, dem Fachmann bekannte Verbindungen. Zur Beschleunigung der Aushärtung können weiterhin aliphatische und aromatische Halogenide dienen wie 2-Chlormethyl-naphthalin, 1-Chlor-2-chlormethyl-naphthalin sowie gegebenenfalls Radikalbildner wie Peroxide und Azo-Verbindungen, die in Mengen von bis zu 15 Gew.-%, bezogen auf die photopolymerisierbare Masse zugesetzt werden können.
- Als Strahlungsquellen für das die Polymerisation solcher Mischungen auslösende Licht verwendet man solche, die Licht vorzugsweise im Absorptionsbereich der erfindungsgemäßen Verbindungen aussenden, d.h. zwischen 230 und 450 nm. Besonders geeignet sind Quecksilber-Niederdruckstrahler, -Mitteldruck- und Hochdruckstrahler sowie supraktinische Leuchtstoffröhren oder Impulsstrahler. Die genannten Lampen können gegebenenfalls dotiert sein.
- Die in den nachstehenden Beispielen genannten Teile und Prozente beziehen sich, soweit nicht anders angegeben, auf das Gewicht. Volumenteile verhalten sich zu Teilen wie Liter zu Kilogramm. Soweit Lösungsmittel als "trocken" bezeichnet werden, wurden sie vor Einsatz über Natrium-Draht getrocknet.
- Beispiel 1
- Es wird eine Suspension von 10 Teilen 2,6-Dimethoxybenzoylchlorid in 20 Volumenteilen trockenem Heptan hergestellt.
- Im Reaktionsgefäß wird dann durch zweimaliges Evakuieren und Füllen mit trockenem Stickstoff eine Inertgasatmosphäre hergestellt. Unter Rühren wird bei Raumtemperatur innerhalb von 30 Minuten eine Lösung aus 15.5 Teilen Trimethylsilyldiphenylphosphin in 30 Volumenteilen trockenem Heptan hergestellt.

nem Heptan zugetropft. Nach zwanzigstündigem Rühren bei Raumtemperatur wird der Kolbeninhalt abgesaugt und getrocknet.

5 Ausbeute: 16,1 Teile 2,6-Dimethoxybenzoyldiphenylphosphin (92 % d. Th.)

Schmp. 113 - 115° NMR (CDCl_3 , δ): 3,55 (s, 6H), 6,23 (d, 2H), 6,9 - 7,5 (m, 11H)

10 Analyse: $\text{C}_{21}\text{H}_{19}\text{O}_3\text{P}$ (350) C 72,0 H 5,43 P 8,86
gef. C 71,5 H 5,4 P 8,7

Beispiel 2

15 9,1 Teile 2,4,6-Trimethylbenzoësäurechlorid werden in 20 Volumenteilen trockenem Heptan gelöst vorgelegt und im Reaktionsgefäß durch zweimaliges Evakuieren und Füllen mit trockenem Stickstoff eine Inertgasatmosphäre hergestellt. Unter Rühren wird bei Raumtemperatur innerhalb von 30 Minuten eine Lösung von 15,5 Teilen Trimethylsilyldiphenylphosphin in 30 Volumenteilen trockenem Heptan zugetropft. Dann wird 72 Stunden bei Raumtemperatur nachgerührt. Der ausgefallene Niederschlag wird abgesaugt, mit wenig Heptan gewaschen und getrocknet.

25 Ausbeute: 11,5 Teile (69 % d.Th.) Schmp.: 98° NMR (CDCl_3 , δ): 2,06 (s, 6H), 2,20 (s, 3H), 6,68 (s, 2H) 7,2-7,7 (m, 10H)

MS: Molmasse 332

30 Analyse: $\text{C}_{22}\text{H}_{21}\text{OP}$ (332) C 79,52 H 6,33 P 9,34
gef C 79,1 H 6,27 P 8,98

Beispiel 3

In einem Reaktionsgefäß wird durch zweimaliges Evakuieren und Befüllen mit Argon eine Inertgasatmosphäre hergestellt. Während der folgendenden Reaktionen wird im Reaktionsgefäß ein geringer Überdruck von Argon aufrecht erhalten. Das Reaktionsgefäß wird mit 10 Volumenteilen Diphenylphosphin und 50 Volumenteilen getrocknetem Tetrahydrofuran gefüllt und unter Röhren und Kühlung 38 Volumenteile einer 1.64-molaren Lösung von n-Butyl-Lithium in Hexan in 10 Minuten zugetropft, wobei eine tiefrote Lösung von Lithiumdiphenylphosphid erhalten wird. 10 Teile 2,6-Dimethoxybenzoylchlorid werden in 30 Volumenteilen trockenem Tetrahydrofuran gelöst und in der oben beschriebenen Weise eine Inertgasatmosphäre in dem Gefäß hergestellt. Zu dieser Lösung wird bei einer Innentemperatur von unter 20°C unter Röhren, Eiskühlung und Inertgasatmosphäre die oben hergestellte Lösung von Lithiumdiphenylphosphid so lange tropfenweise zugegeben, bis die Lösung im Reaktionsgefäß nach Zugabe von 2 - 3 Tropfen länger als 5 Minuten eine deutlich rote Farbe zeigte. Dann wird 16 Stunden bei 25°C nachgerührt und anschließend der Inhalt des Reaktionsgefäßes in 300 Volumenteile Methylenchlorid und 100 Volumenteile gesättigte Ammoniumchloridlösung eingerührt. Die organische Phase wird dreimal mit je 200 Volumenteilen Wasser gewaschen, über Magnesiumsulfat getrocknet und zur Trockene eingeengt.

Ausbeute: 14,5 Teile (82,5 % d. Th.),
30 Schmp.: 113-115°C
NMR: wie Beispiel 1

Analyse: C₂H₁₉O₃ (350) C 72,0 H 5,43 P 8,86
gef C 71,7 H 5,4 P 8,8

Beispiel 4

Wie in Beispiel 3 wird im Reaktionsgefäß eine Inertgasatmosphäre hergestellt und 4,65 Teile Diphenylphosphin, 2,5
5 Teile Triäthylamin und 50 Volumenteile Diäthyläther vorgelegt. Bei 20°C Innentemperatur wird unter Rühren eine Lösung von 5 Teilen 2,6-Dimethoxybenzoylchlorid in 10 Volumenteilen Äther zugetropft, anschließend 5 Stunden unter Rückfluß erhitzt und das ausgeschiedene Triäthylamin-Hydrochlorid abfiltriert. Nach Abziehen des Lösungsmittels wird ein öliges Rohprodukt erhalten, das durch Chromatographie an Kieselgel (Laufmittel Toluol/Äther 2 :1) gereinigt wird.

15 Ausbeute: 1.7 Teile (10 % d. Th.), Schmp. 113 - 115°C
NMR: wie oben (Beispiel 1)

Beispiel 5

20 Zur Messung der Härtungsaktivität der erfindungsgemäßen Verbindungen wurde der Temperaturverlauf im ungesättigten Polyesterharz (UP-Harz) während der UV-Belichtung aufgezeichnet; dazu taucht ein mit einer Wachsschicht überzogener Thermofühler, der mit einem Temperaturschreiber (Tastotherm Script 3 N, Standardfühler T 300 der Deutschen Gulton GmbH) verbunden ist, in einen mit 10 g UP-Harz gefüllten Weißblechdeckel mit einem Durchmesser von 5 cm (Schichtdicke des UP-Harzes 4,8 mm). Zur Vermeidung von Wärmeverlusten während der UV-Belichtung ist der Deckel in 25 Polyurethan-Hartschaum eingebettet. Als Strahlungsquelle dient ein UV-Feld aus 5 Leuchtstoffröhren (TLAK 40 W/05, Philips) nebeneinander. Der Abstand Strahler/UP-Harzoberfläche betrug 8,5 cm.

30

Aus den registrierten Temperatur-Zeitkurven werden als charakteristische Kenngrößen für die Härtungsaktivität die Härtungszeit $HZ_{25^{\circ}\text{C}-T}$ und die maximal erreichte Härtungstemperatur T_{\max}^{max} entnommen. Als Härtungszeit gilt die 5 Zeitspanne, in der die Probentemperatur von 25°C auf T_{\max}^{max} ansteigt.

Folgende Harze wurden dazu hergestellt:

10 Harz A

Harz A ist eine mit 0,01 % Hydrochinon stabilisierte 65 %ige styrolische Lösung eines ungesättigten Polyesters aus Maleinsäure, o-Phthalsäure, Äthylenglykol und Propylen-glykol-1,2 im Molverhältnis 1 : 2 : 2,3 : 0,70. Der ungesättigte Polyester hat eine Säurezahl von 50.

15 Harz B Harz B ist eine mit 0,01 % Hydrochinon stabilisierte 66%ige styrolische Lösung eines ungesättigten Polyesters aus Maleinsäure, o-Phthalsäure und Propylen-glykol-1,2 im Molverhältnis 1 : 0,5 : 1,5. Der ungesättigte Polyester hat eine Säurezahl von 50.

20 Harz C

Harz C ist eine mit 0,01 % Hydrochinon stabilisierte 25 72%ige styrolische Lösung eines ungesättigten Polyesters aus Maleinsäure, Propylenglykol und Dipropylenglykol im Molverhältnis 1 : 0,78 : 0,33.

30

35

35
30
25
20
15
10

Tabelle 2: Temperaturverlauf während der Photopolymerisation

lfd. Nr.	Photoinitiator	Konzentration	UP-Harz HZ 25°C-T _{max}	Härtung vor Lagerung Härtungszeit maxima Proben-Tempe- ratur T _{max} (°C)	Farbe des Formstoffs
1	2,4,6-Trimethyl- benzoyldiphenyl- phosphin	0,2 %	A	4 min 15 s	112 farblos
		0,1 %	A	4 min 8 s	109 farblos
		0,2 %	B	3 min 23 s	125 farblos
		0,2 %	C	3 min 8 s	121 gelblich
2	2,6-Dimethoxy- benzoyldiphenyl- phosphin	0,2 %	A	5 min 25 s	110 farblos
		0,2 %	A	31 min	43 gelb
3	Benzoyldiphenyl- phosphin	0,2 %	A	20 min	42 gelb
4	p-Dimethylamino- benzoyldiphenyl- phosphin	0,2 %	A	8 min	114 gelb
5	Benzildimethylketal	0,2 %	A	13 min 22 s	104 gelb
6	Benzoiniso- propyläther	0,2	A	13 min 22 s	100 gelb
7	Methylolbenzoin- methyläther	0,2	B		

- Die mit diesen Harzen erhaltenen Meßwerte sind in Tabelle 2 zusammengefaßt. Danach zeichnen sich die erfindungsmaßen Initiatoren (lfd. Nr. 1,2) gegenüber dem Stand der Technik (lfd. Nr. 3 - 7) durch schnellere Härtung und geringere Vergilbung der damit hergestellten Formstoffe aus.

Beispiel 6

- 10 In einem Bindemittel aus 65 Teilen eines Umsetzungsproduktes aus Bisphenol-A-gcidäther und Acrylsäure, 35 Teilen Hexan-1,6-dioldiacrylat werden 3 Teile Photoinitiator gelöst. Die fertige Mischung wird auf Glasplatten in einer Schicht von 60 μ Dicke aufgerackelt und in 10 cm Abstand unter einer Quecksilberhochdurcklampe (Leistung 80 W/cm Bogenlänge) vorbeigeführt. Die Reaktivität ist als die maximal mögliche Transportbandgeschwindigkeit angegeben, bei der noch eine nagelharte kratzfeste Aushärtung des Überzuges erzielt wird.

20

25

30

35

5

10

5

20

25

30

35

Tabelle 3

Photoinitiator	maximale Transportbandgeschwindigkeit in m/min unter Luft unter Inert- gas	unter Luft, Zusatz 3 % Methyldiethanol amin	Farbe des gehärteten Lackfilms
2,4,6-Trimethyl- benzoyl-diphenyl- phosphin	13	72	farblos
2,6-Dimethoxybenzoyl- diphenylphosphin	< 12	72	farblos
Benzoyldiphenylphosphin + p-Dimethylaminobenzoyl- diphenylphosphin	< 12	< 12	gelblich
	12	12	intensiv Gelb

+ Vergleich nach US-PS 668093

Die Ergebnisse in Tabelle 3 zeigen, daß die erfindungsgemäßen Acylphosphin-Verbindungen den in der US-PS 3 668 093 beschriebenen Acylphosphin-Verbindungen bezüglich Vergilbung und Reaktivität überlegen sind.

5

Beispiel 7

Zu einem nach Beispiel 6 hergestellten Lack werden 3 % Methyldiäthanolamin gegeben. Anschließend wird wie in 10 Beispiel 6 auf Glasplatten aufgezogen und belichtet. Die Ergebnisse sind in Tabelle 3 zusammengefaßt. Im Gegensatz zu den Verbindungen der US-PS 3 668 093 lässt sich die Härtung der erfindungsgemäßen Verbindungen an Luft durch Zusatz eines Aminbeschleunigers beschleunigen.

15

20

h

25

30

35

Patentansprüche

1. Acylphosphin-Verbindungen der allgemeinen Formel (I)

5

worin R^1 für einen geradkettigen oder verzweigten Alkylrest mit 1 bis 6 Kohlenstoffatomen, einen Cyclohexyl-, Cyclopentyl-, Phenyl-, Naphthyl, einen halogen-, C_1 bis C_4 -alkyl- oder C_1 bis C_4 -alkoxy-substituierten Phenyl- oder Naphthylrest oder einen S- oder N-haltigen fünf- oder sechsgliedrigen heterocyclischen Ring steht;

20

R^2 die Bedeutung von R^1 hat, wobei R^1 und R^2 untereinander gleich oder verschieden sein können oder R^1 und R^2 miteinander zu einem Ring verknüpft sind, der 4 bis 10 Kohlenstoffatome enthält und durch 1 bis 6 weitere Alkylreste mit je 1 bis 4 Kohlenstoffatomen substituiert sein kann sowie 1 oder 2 ankondensierte Benzolringe besitzen kann;

30

R^3 für einen mindestens zweifach substituierten Phenyl-, Pyridyl-, Furyl-, Pyrrolyl- oder Thienylrest steht, der mindestens an den beiden zur Verknüpfungsstelle mit der Carbonylgruppe benachbarten Kohlenstoffatomen die Substituenten A und B trägt, die untereinander gleich oder verschieden sein können und für 1 bis 6 Kohlenstoffatome enthaltende Alkyl-, Alkoxy- oder Alkylthioreste, 3 bis 7 Kohlenstoffatome enthaltende Cycloalkylreste, Phenylreste oder

35

- Halogen-, vorzugsweise Chlor- oder Bromatome stehen
oder R³ für einen mindestens in den 2,8-Stellungen
durch A und B substituierten α -Naphthylrest oder
einen mindestens in 1,3-Stellungen durch A und B
5 substituierten β -Naphthylrest oder für die Gruppierung

10

15

steht, wobei die Reste A, B, C und D untereinander
gleich oder verschieden sind und C und D die gleiche
Bedeutung haben wie A und B und wobei gegebenenfalls
mindestens einer der Reste R¹ und R² olefinisch unge-
sättigt ist.

20

2. Verfahren zur Herstellung der Acylphosphine nach
Anspruch 1 dadurch gekennzeichnet, daß Säurehalo-
genide der allgemeinen Formel (II),

25

worin X für Cl oder Br steht und R³ die obengenannte
Bedeutung hat, in Gegenwart eines inerten Lösungsmittels
bei Temperaturen zwischen -30 und 110°C mit ei-
nem Phosphid der allgemeinen Formel (III),

30

35

worin R¹ und R² die obengenannte Bedeutung haben und

Me für die Alkalimetalle Li, Na oder K steht, umgesetzt werden.

3. Verfahren zur Herstellung der Acylphosphine nach Anspruch 1, dadurch gekennzeichnet, daß Säurehalogenide der allgemeinen Formel (II) bei Temperaturen zwischen -10° und 130°C , gegebenenfalls in einem inerten organischen Lösungsmittel mit einem Silylphosphin der allgemeinen Formel (IV)

umgesetzt werden, worin R^1 und R^2 die unter Anspruch 1 angegebene Bedeutung haben und R^4 , R^5 , R^6 gleich oder verschieden sind und für C_1 bis C_6 -Alkyl- oder Phenylreste, stehen.

4. Verfahren zur Herstellung der Acylphosphine nach Anspruch 1, dadurch gekennzeichnet, daß Säurehalogenide der allgemeinen Formel (II) mit Phosphinen der allgemeinen Formel (V),

worin R^1 und R^2 die unter Anspruch 1 genannte Bedeutung haben, in Gegenwart von etwa äquimolaren Mengen eines tertiären Amins bei Temperaturen zwischen -10° und 200°C in einem inerten Lösungsmittel umgesetzt werden.

5. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß das Metallphosphid der allgemeinen Formel (III)

in einem inerten organischen Lösungsmittel in an sich bekannter Weise erzeugt und ohne Isolierung weiter umgesetzt wird.

- 5 6. Verwendung der Acylphosphine nach Anspruch 1, als Photoinitiatoren in photopolymerisierbaren Massen.
7. Verwendung der Acylphosphine nach Anspruch 1 in Kombination mit sekundären und/oder tertiären Aminen als Photoinitiatoren in photopolymerisierbaren Massen.
- 10 10. Verwendung nach Anspruch 6 oder 7 zur Herstellung von Überzügen oder Imprägnierungen.
- 15 9. Verwendung nach Anspruch 6 oder 7 zur Herstellung von Kunststoff-Formteilen auf Basis ungesättigter Polyesterharze, die gegebenenfalls weitere Hilfsstoffe, insbesondere Glasfasern, enthalten.

20

25

30

35

(12) EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 81103417.2

(51) Int. Cl.³: C 07 F 9/50

(22) Anmeldetag: 06.05.81

C 08 F 2/50, G 03 C 1/68
 //C08G63/52

(1) Priorität: 27.05.80 DE 3020092

(71) Anmelder: BASF Aktiengesellschaft
 Carl-Bosch-Strasse 38
 D-6700 Ludwigshafen(DE)

(43) Veröffentlichungstag der Anmeldung:
 02.12.81 Patentblatt 81/48

(72) Erfinder: Henne, Andreas, Dr.
 Brüsseler Ring 34
 D-6700 Ludwigshafen(DE)

(88) Veröffentlichungstag des später
 veröffentlichten Recherchenberichts: 02.06.82

(72) Erfinder: Hesse, Anton, Dr.
 Peter-Nickel-Strasse 15
 D-6946 Lutzelsachsen(DE)

(84) Benannte Vertragsstaaten:
 BE CH DE FR GB IT LU NL

(72) Erfinder: Buethe, Ingolf, Dr.
 Am Wasserturm 1
 D-6737 Boehl-Iggelheim(DE)

(72) Erfinder: Heil, Guenter, Dr.
 Dirmsteiner Weg 41
 D-6700 Ludwigshafen(DE)

(54) Acylphosphinverbindungen und ihre Verwendung.

(57) Die Erfindung betrifft Acylphosphinverbindungen, Verfahren zu ihrer Herstellung und ihre Verwendung. Die Acylphosphinverbindungen weisen die allgemeine Formel

auf, worin R¹ für einen Alkylrest, einen Cycloalkyl-, einen gegebenenfalls substituierten Phenyl- oder Naphthylrest oder einen heterocyclischen Ring steht;

R² die Bedeutung von R¹ hat, wobei R¹ und R² untereinander gleich oder verschieden sein können oder R¹ und R² miteinander zu einem Ring verknüpft sind,

R³ für einen mindestens zweifach substituierten Phenyl-, Naphthyl-, Pyridyl-, Furyl-, Pyrrolyl- oder Thienylrest steht, der mindestens an den beiden zur Verknüpfungsstelle mit der Carbonylgruppe benachbarten Kohlenstoffatomen die Substituenten A und B trägt, die gleich oder verschieden sein können und für Alkyl-, Alkoxy- oder Alkylthioreste, Cycloalkylreste, Phenylreste oder Halogenatome stehen oder R³ für die Gruppierung

steht, wobei die Reste C und D die gleiche Bedeutung haben wie A und B.

Sie können aus Säurehalogenid und Phosphid oder Silylphosphin hergestellt und als Photoinitiatoren in photopolymerisierbaren Massen verwendet werden.

EINSCHLÄGIGE DOKUMENTE

Kategorie	Kennzeichnung des Dokuments mit Angabe, soweit erforderlich, der maßgeblichen Teile	betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int. Cl.)
			RECHERCHIERTE SACHGEBiete (Int. Cl.)
Y	<u>EP - A2 - 0 007 508 (BASF)</u> * Ansprüche 1, 3 bis 8; Seite 5, Zeile 7 bis Seite 7, Zeile 4 * * Ansprüche 10, 11, 12, 13, 22 *	1 6,8,9	C 07 F 9/50 C 08 F 2/50 G 03 C 1/68 //C 08 G 63/52
Y	<u>EP - A1 - 0 007 086 (BASF)</u> * Seite 21, Zeile 13 bis Seite 24, Zeile 14 * * Ansprüche 1, 3, 4 *	1 6,8,9	
D,A	<u>US - A - 3 668 093 (E.I. DU PONT DE NE-MOURS)</u> * ganzes Dokument *	1,4,6, 8	
A	Chemical Abstracts Band 78, Nr. 17 30. April 1973 Columbus, Ohio, USA H. KUNZEK et al. "Reaction of acid chlorides with trimethylsilyldiphenylphosphine. II. Preparation and properties of aromatic acid phosphides" Seite 499, Spalte 1, abstract nr. 111448g	1,3	C 07 F 9/28 C 07 F 9/50 C 07 F 9/53 C 08 F 2/50 G 03 C 1/68
A	& J. Organometal. Chem., Band 49, Nr. 1 1973, Seiten 149 bis 156		
			X: von besonderer Bedeutung allein betrachtet Y: von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie A: technologischer Hintergrund O: nichtschriftliche Offenbarung P: Zwischenliteratur T: der Erfindung zugrunde liegende Theorien oder Grundsätze E: älteres Patentdokument, das jedoch erst am oder nach dem Anmelde datum veröffentlicht worden ist D: in der Anmeldung angeführtes Dokument L: aus andern Gründen angeführtes Dokument B: Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument
	<input checked="" type="checkbox"/> Der vorliegende Recherchenbericht wurde für alle Patentansprüche erstellt.		
Recherchenort	Berlin	Abschlußdatum der Recherche 25-02-1982	Ruler PHILLIPS