Лабораторна робота №1
"Розробка програмного забезпечення для розв'язання оптимізаційних задач за допомогою генетичних алгоритмів"

Роботу виконав: Климентьєв Максим 3-го курсу групи ФІ-21

Contents

1	Опис хромосоми	1
2	Опис обраних варіантів схрещування та мутації	1
3	Опис головних гіперпараметрів та їх значення (розмір популя елітизм,) для кожного експерименту, графічні результати	
4	Опис експериментів для кожної функції	1
5	Висновки	2

1 Опис хромосоми

Хромосома — число обране за допомогою рівномірного розподілу на заданому проміжку

2 Опис обраних варіантів схрещування та мутації

Схрещування — число, обране за допомогою рівномірного розподілу на відрізку між мінімальним та максимальним серед батьків **Мутація** — число обране за допомогою рівномірного розподілу на заданому проміжку

3 Опис головних гіперпараметрів та їх значення (розмір популяції, елітизм, ...) для кожного експерименту, графічні результати

Розмір популяції — найкращі, які потім схрещуються і створюють нову, більш кращу популяцію Кількість схрещувань — чим більше значення, тим більше "дітей" буде утворюватися з минулої популяції Ймовірність мутації — ймовірність, що "дитина" може взагалі не походити на батька, бути гірше, або навіть краще.

4 Опис експериментів для кожної функції

Вони були однакові — Для кожної функції було проведено по 3 експерименти:

- 1. Коли розмір популяції великий
- 2. Коли кількість схрещувань велика
- 3. Коли 100% ймовірність мутації

5 Висновки

Branin Function — найкраще вийшло, коли кількість схрещувань велика

Easom function — найкраще вийшло для двох варіантів, коли кількість схрещувань велика та коли 100% ймовірність мутації

The Goldstein-Price Function — відразу знаходить мінімум

