Partielle Differentialgleichungen I – Prof. Hieber WS15/16

Fabian Gabel

23. September 2016

1 Der Raum der Testfunktionen $D(\Omega)$ und der Raum der Distributionen $D'(\Omega)$

In diesem Abschnitt sei $\Omega \subseteq \mathbb{R}^n$ offen. Wir setzen $D(\Omega) := C_c^{\infty}(\Omega)$.

Beispiel.

$$\varphi(x) := \begin{cases} e^{-\frac{1}{1-|x|^2}} & : |x| < 1\\ 0 & : sonst \end{cases}$$

Dann gilt $\varphi \in D(\mathbb{R}^n)$.

1.1 Definition

Seien $(\varphi_j) \subseteq D(\mathbb{R}^n)$, $\varphi \in D(\Omega)$. Wir sagen $\varphi \to \varphi$ in $D(\Omega)$, fall

- i) es existiert $K \subseteq \Omega$ kompakt mit supp $\varphi_j \subseteq K$ für alle $j \in \mathbb{N}$.
- ii) $\lim_{j\to\infty} \|D^{\alpha}\varphi_j D^{\alpha}\varphi\|_{\infty} = 0$ für alle Multiindizes α .

Bemerkung. $D(\Omega)$ mit diesem Konvergenzbegriff nicht metrisierbar.

1.2 Satz

Seien $\varphi_j \to \varphi$, $\psi_j \to \psi$ in $D(\Omega)$. Dann:

i) für $\beta_1, \beta_2 \in \mathbb{R}$ gilt:

$$\beta_1 \varphi_j + \beta_2 \psi_j \to \beta_1 \varphi + \beta_2 \psi.$$

ii) $D^{\alpha}\varphi \to D^{\alpha}\varphi$ in $D(\Omega)$ für alle Multiindices α , mit anderen Worten: D^{α} sit stetige Abbildung auf $D(\Omega)$

1.3 Defintion

Wir setzen $D'(\Omega) := \{T : D(\Omega) \to \mathcal{C} \text{ stetig, linear} \}$. Die Elemente von $D'(\Omega)$ heißen <u>Distributionen</u>.

Notation. $\langle \varphi, T \rangle := T(\varphi) \text{ für } \varphi \in D(\Omega).$

1.4 Satz

Sei $T: D(\Omega) \to \mathcal{C}$ linear. Dann sind äquivalent:

i) $T \in D'(\Omega)$, d.h. T stetig.

ii) für $K \subseteq \Omega$ kompakt gibt es $C \ge 0$, N = N(K,T), sodass für $\varphi \in D(\Omega)$ mit supp $\varphi \subseteq K$

$$|T(\varphi)| \le C \sum_{|\alpha| \le N} ||D^{\alpha} \varphi||_{\infty} \tag{*}$$

 $Beweis. ii) \Rightarrow i) \checkmark$

i) \Rightarrow ii): Ang. Beh. falsch. Dann gibt es $K \subseteq \mathbb{R}^n$ kompakt, sodass für alle $N \in \mathbb{N}$ ein $\varphi_N \in D(\Omega)$ ex. mit supp $\varphi_N \subseteq K$ und $|T\varphi_N| > N \sum_{|\alpha| < N} \|D^{\alpha}\varphi_N\|_{\infty}$. Sei $\phi_j := \frac{\varphi_j}{|T\varphi_j|}$. Dann $\phi_j \to 0$ in $D(\Omega)$ aber $|T\phi_j|=1$. Widerspruch.

Denn für alle Multiindices α gilt $\|D^{\alpha}\phi_j\|_{\infty} < \frac{1}{i}$, falls $\|D^{\alpha}(\varphi_j)\|_{\infty} \neq 0$

Definition

Falls (*) gilt, so heißt T von Ordnung N auf K. Falls T für alle kompakten $K \subseteq \Omega$ von Ordnung N auf K ist, so heißt T von Ordnung N auf Ω . Falls T von Ordnung $N \in \mathbb{N}$ auf Ω ist, so heißt T von endlicher Ordnung auf Ω .

Die Diracsche Distribution δ_a 1.6

Sei $a \in \Omega$. Wir setzen $\langle \varphi, \delta_y \rangle := \varphi(a)$ für $\varphi inD(\Omega)$. dann ist $\delta_a \in D'(\Omega)$, denn: Sei $\varphi_j \to \varphi inD(\Omega)$, dann $|langle\varphi_i, \delta_a\rangle| = |\varphi_i(a) - \varphi(a)| \le ||\varphi_i - \varphi||_{\infty} \stackrel{\alpha = \emptyset}{\to} 0.$

Notation. $\delta := \delta_0$

Der Cauchysche Hauptwert

Sei $\Omega = \mathbb{R}$. Dann $f(x) = \frac{1}{x} \in L^1_{loc}(\mathbb{R} \setminus \{0\}, \text{ aber } \int_{\mathbb{R}} \frac{\varphi(x)}{x} dx$ existiert nicht für alle $\varphi \in D(\mathbb{R})$. Man setze:

$$\langle \varphi,\operatorname{pv}\frac{1}{x}\rangle:=\lim_{\varepsilon\to 0}\int_{|x|>\varepsilon}\frac{\varphi(x)}{x}dx,\quad \varphi\in D(\mathbb{R}).$$

Dann ist pv $\frac{1}{x} \in D'(\mathbb{R})$, denn:

Sei $\varphi_j \to 0$ in $D(\mathbb{R})$. Dann ex. a > 0, sodass für $j \in \mathbb{N}$ gilt : supp $\varphi_j \in [-a, a]$. Nun:

$$\lim_{\varepsilon \to 0} \int_{|x| \ge \varepsilon} \frac{\varphi_j(x)}{x} dx = \lim_{\varepsilon \to 0} \left[\varphi_j(0) \underbrace{\int_{\varepsilon \le |x| \le a} \frac{1}{x} dx}_{=0 \text{ Symmetrie}} + \int_{\varepsilon \le |x| \le a} \frac{\varphi_j(x) - \varphi_j(0)}{x} dx \right]$$
$$= \int_{-a}^{a} \frac{\varphi_j(x) - \varphi_j(0)}{x} dx,$$

denn $|\frac{\varphi_j(x)-\varphi_j(0)}{x}| \leq ||\varphi_j'||_{C([-a,a])}$. Da pv $\frac{1}{x} \colon D(\mathbb{R}) \to \mathcal{C}$ linear folgt aus

$$|\lim_{\varepsilon} \to 0 \int_{|x| > \varepsilon} \frac{\varphi_j(x)}{x} dx | M \overset{\leq}{W} S2a \| \varphi_j' \|_{\infty} \to 0,$$

dass pv $\frac{1}{x}$ stetig und somit Distribution ist.

1.8 Weiteres Beispiel

$$\langle \varphi, \frac{1}{x \pm i0} \rangle := \lim_{\varepsilon \to 0} \int_{-\infty}^{\infty} \frac{1}{x \pm i\varepsilon} \varphi(x) dx, \quad \varphi \in D(\mathbb{R})$$

Dann $\frac{1}{x \pm i0} \in D'(\mathbb{R})$ und $\frac{1}{x \pm i0} = \text{pv } \frac{1}{x} \pm i\pi \delta$.

Beweis siehe Übung 9.

1.9 Satz

Sei $f \in L^1_{loc}(\Omega)$.

a) Dann def. die Abbildung $T_f: D(\Omega) \to \mathcal{C}$ gegeben durch:

$$\langle \varphi, T_f \rangle := \int_{\Omega} f \varphi dx$$

eine Distribution T_f in $D'(\Omega)$.

b) $T_f = 0$ in $D'(\Omega) \iff f = 0$ f.ü.

Beweis. a) Sei $\varphi_j \to \varphi$ in $D(\Omega)$. Dann ex. $K \subseteq \Omega$ kompakt, sodass supp $\varphi_j \subseteq K$ für $j \in \mathbb{N}$, supp $\varphi \subseteq K$ und $\|\varphi_j - \varphi\|_{\infty} \to 0$.

$$\implies |\langle \varphi_j - \varphi, T_f \rangle| = |\int_{\Omega} (\varphi_j - \varphi)f| \le ||\varphi_j - \varphi|| \int_K f dx \to 0.$$

b) Fundamentallemma.

1.10 Lemma

Sei $f \in L^1_{loc}(\Omega)$ mit $\int_{\psi} f = 0$ für alle $\psi \in C_c(\Omega)$. Dann f = 0 f.ü.

1.11 Definition

Seien $T_j, T \in D'(\Omega)$ für $j \in \mathbb{N}$. dann $T_j \to T$ in $D'(\Omega)$, falls $T_j(\varphi) \to T(\varphi)$ für $\varphi \in D(\Omega)$. Der Konvergenzbegriff auf $D'(\Omega)$ ist also der der schwach-*-Konvergenz.

1.12 Beispiele

a) Sei $(f_j) \subseteq C(\mathbb{R}^n)$ mit $f_j \to f$ gleichmäßig auf allen $K \subseteq \mathbb{R}^n$ kompakt. Dann:

$$\lim_{j} \int_{\mathbb{R}^{n}} f_{j}(x)\varphi(x)dx = \int_{\mathbb{R}^{n}} f(x)\varphi(x)dx$$

für alle $\varphi \in D(\mathbb{R}^n)$, d.h. $T_{f_i} \to T_f$ in $D'(\mathbb{R}^n)$.

b) Sei $f \in L^1(\mathbb{R})$ mit $||f||_{L^1} = 1$ und $f \ge 0$. Für $\varepsilon > 0$ setze $\varphi_{\varepsilon}(x) = \frac{1}{\varepsilon^n} f(\frac{x}{\varepsilon})$. Dann

$$T_{f_{\varepsilon}} \to \delta$$

in $D(\mathbb{R}^n)$.

c) expliziges Beispile: Gauß Kern

$$K(x) = \frac{1}{(2\pi)^{\frac{n}{2}}} e^{-\frac{|x|^2}{2}}$$

Dann $||K||_{L^1} = 1$ und

$$\frac{1}{\varepsilon^n} \frac{1}{(2\pi)^{fracn2}} e^{-\frac{|x|^2}{2\varepsilon}} \to \delta$$

d) $\langle \varphi, T_j \rangle := \int_{|x| > \frac{1}{i}} \frac{\varphi(x)}{x} dx.$

Dann $T_j \to \operatorname{pv} \frac{1}{x}$ in $D'(\Omega)$. (Trick wie in 8.7 benutzen)

1.13 Elementare Operationen mit Distributionen: Multiplikation mit einer Funktion

Sei $a \in C^{\infty}(\Omega), T \in D'(\Omega)$. Man setzt:

$$\langle aT, \varphi \rangle := \langle T, a\varphi \rangle$$
 für $\varphi \in D(\Omega)$.

Beispiel. i) $(a\delta) = a(0)\delta$ für alle $a \in C^{\infty}(\mathbb{R}^n)$, denn:

$$\langle a\delta, \varphi \rangle = \langle \delta, a\varphi \rangle = a(0)\varphi(0) = a(0)\langle \delta, \varphi \rangle.$$

ii) $x \operatorname{pv} \frac{1}{x} = 1$, denn

$$\langle x \operatorname{pv} \frac{1}{x}, \varphi \rangle = \langle \operatorname{pv} \frac{1}{x}, x \varphi \rangle = \lim_{\varepsilon \to 0} \int_{|x| > \varepsilon} \frac{x \varphi(x)}{x} dx = \lim_{\varepsilon \to 0} \int_{|x| > \varepsilon} \varphi(x) dx = \int_{\mathbb{R}} \varphi(x) dx = \langle 1, \varphi \rangle,$$

 $f\ddot{u}r \ alle \ \varphi \in D(\mathbb{R}).$

1.14 Ableitung einer Distribution

Sei $f \in C^1(\mathbb{R}^n) \implies T_f \in D'(\mathbb{R}^n)$. Also für $\varphi \in D(\mathbb{R}^n)$:

$$\langle T_{D_j f}, \varphi \rangle \stackrel{\text{Def}}{=} \int_{\mathbb{R}^n} (D_j f) \varphi dx = -\int_{\mathbb{R}^n} f D_j \varphi ds = -\langle T_f, D_j \varphi \rangle$$

Allgemein: $f \in C^k(\mathbb{R}^n), |\alpha| \leq k$. Dann

$$\langle T_{D^{\alpha}f}, \varphi \rangle = \int_{\mathbb{R}^n} (D^{\alpha}f) \varphi dx = (-1)^{|\alpha|} \int_{\mathbb{R}^n} f D^{\alpha} \varphi dx = (-1)^{|\alpha|} \langle T_f, D^{\alpha} \varphi \rangle.$$

Daher ist folgende Definition natürlich:

1.15 Definition

Sei $T \in D'(\Omega)$. Dann ist $D\alpha T$ definiert durch

$$\langle D^{\alpha}T, \varphi \rangle := (-1)^{|\alpha|} \langle T, D^{\alpha}\varphi \rangle \quad , \varphi \in D(\Omega), \alpha \text{ Multiindex.}$$

1.16 Bemerkung

- a) $T \in D'(\Omega)$, dann $D^{\alpha}T \in D'(\Omega)$ für jedes α , denn:
 - $D^{\alpha}T$ linear \checkmark
 - $D^{\alpha}T$ stetig. Z.z.: $\varphi_j \to \varphi$ in $D(\Omega) \Longrightarrow D^{\alpha}\varphi_j \to D^{\alpha}\varphi$ in $D(\Omega)$. T stetig $\Longrightarrow (-1)^{|\alpha|}\langle T, D^{\alpha}\varphi_j \rangle \to (-1)^{|\alpha|}\langle T, D^{\alpha}\varphi \rangle$ $\Longrightarrow \langle D^{\alpha}T, \varphi_j \rangle \to \langle D^{\alpha}T, \varphi \rangle$
- b) Leibniz-Regel/Produktregel:

Seien $a \in C^{\infty}(\Omega), T \in D'(\Omega)$. Dann $aT \in D'(\Omega)$ (8.13) und

$$D^{\alpha}(aT) = \sum_{\beta \subset \alpha} {\alpha \choose \beta} D^{\beta} a D^{\alpha - \beta} T$$

Beweis Übungsaufgabe.

c) Sei $f \in C^k(\Omega)$ und $|\alpha| \leq k$. Dann stimmt $D^{\alpha}f$ im distributionellen Sinne mit der klassischen Ableintung $f^{(\alpha)}$ überein, denn

$$\langle T_{D^{\alpha}f}, \varphi \rangle = \int_{\mathbb{R}^n} (D^{\alpha}f)\varphi dx = \int_{\mathbb{R}^n} f^{(\alpha)}\varphi = \langle T_{f(\alpha)}, \varphi \rangle.$$

1.17 Beispiele

a) Die Heavyside-Funktion ist gegeben durch

$$H(x) = \begin{cases} 1, x > 0 \\ 0, x \le 0 \end{cases} .$$

Dann $H \in D'(\mathbb{R})$

$$\implies \langle H', \varphi \rangle \stackrel{\text{Def}}{=} -\langle H, \varphi' \rangle = -\int_0^\infty \varphi'(x) dx = \varphi(0) = \langle \delta, \varphi \rangle,$$

für alle $\varphi \in D(\Omega) \implies H' = \delta$

b)
$$\langle D^{\alpha} \delta, \varphi \rangle = (-1)^{|\alpha|} \langle \delta, D^{\alpha} \varphi \rangle = (-1)^{|\alpha|} D^{\alpha} \varphi(0)$$

c) $D(\ln(|x|)) = \operatorname{pv}(\frac{1}{x})$, denn:

$$\begin{split} \langle D(\ln|x|), \varphi \rangle &= -\langle \ln|x|, D\varphi \rangle = -\int_{\mathbb{R}} \ln|x| \varphi'(x) dx \\ &= -\lim_{\varepsilon \to 0} \left[\varphi(-\varepsilon) \ln(\varepsilon) - \int_{-\infty}^{-\varepsilon} \frac{\varphi(x)}{x} dx - \ln(\varepsilon) \varphi(\varepsilon) - \int_{\varepsilon}^{\infty} \frac{\varphi(x)}{x} dx \right] \\ &= \lim_{\varepsilon \to 0} \left[-\underbrace{(\varphi(\varepsilon) - \varphi(-\varepsilon)) \ln(\varepsilon)}_{\to 0} + \int_{\infty}^{-\varepsilon} \frac{\varphi(x)}{x} dx + \int_{\varepsilon}^{\infty} \frac{\varphi(x)}{x} dx \right] \\ &= \lim_{\varepsilon \to 0} \int_{|x| > \varepsilon} \frac{\varphi(x)}{x} dx = \langle \operatorname{pv} \frac{1}{x}, \varphi \rangle, \quad \varphi \in D(\mathbb{R}). \end{split}$$

Der vorletzte Schritt folgt aus Mittelwertsatz und l'Hospital, denn

$$\frac{2\varepsilon(\varphi(\varepsilon)-\varphi(-\varepsilon))}{2\varepsilon}\ln(\varepsilon) \le 2\sup_{x\in[-\varepsilon,\varepsilon]}|\varphi'(x)|\varepsilon\ln(\varepsilon) \to 0$$

1.18 Der adjungierte Operator

Sei $A := \sum_{|\alpha| \leq m} a_{\alpha} D^{\alpha}$ ein Differentialoperator mit konstanten Koeffizienten $a_{\alpha} \in \mathcal{C}$. Sei $T \in D'(\Omega)$. Dann:

$$\langle AT, \varphi \rangle = \langle \sum_{|\alpha| \le m} a_{\alpha} D^{\alpha} T, \varphi \rangle \stackrel{8.10, 8.13}{=} \sum_{|\alpha| \le m} (-1)^{|\alpha|} a_{\alpha} \langle T, D^{\alpha} \varphi \rangle$$
$$= \langle T, \sum_{|\alpha| \le m} (-1)^{|\alpha|} a_{\alpha} D^{\alpha} \varphi \rangle = \langle T, A^* \varphi \rangle$$

 $\begin{array}{l} \text{mit } A^* := \sum_{|\alpha| \leq m} (-1)^{|\alpha|} a_\alpha D^\alpha \ \underline{\text{Adjungierte von } A}. \\ \text{Also } \langle AT, \varphi \rangle = \langle T, A^* \varphi \rangle \ \text{für } \varphi \in \overline{D(\Omega)}. \end{array}$

Beispiel. Δ . Dann $\Delta * = \Delta$.

1.19 Translation

Für $a \in \mathbb{R}^n, T \in D'(\mathbb{R}^n)$ sei τ_a gegeben durch $\tau_a \varphi(x) := \varphi(x-a), \varphi \in D(\mathbb{R}^n)$. Definiere daher die <u>Translation von T</u> via

$$\langle \tau_a T, \varphi \rangle := \langle T, \tau_{-a} \varphi \rangle, \quad \varphi \in D(\mathbb{R}^n)$$

Zur Motivation betrachte $f \in L^1_{\mathrm{loc}}$. Dann gilt mit der Substitution y = x - a:

$$\langle \tau_a T_f, \varphi \rangle = \int_{\mathbb{R}} \tau_a f(x) \varphi(x) dx = \int_{\mathbb{R}} f(y) \varphi(y+a) dy = \langle f, \tau_{-a} \varphi \rangle.$$

1.20 Spiegelung

Sei $\varphi \colon \mathbb{R}^n \to \mathcal{C}$ und $\tilde{\varphi}(x) := \varphi(-x)$. Setze dann

$$\langle \tilde{T}, \varphi \rangle := \langle T, \tilde{\varphi} \rangle \quad \varphi D(\mathbb{R}^n), T \in D'(\mathbb{R}^n)$$

Motivation analog zu Translation

Sei $f \in L^1_{loc}(\mathbb{R}^n), g \in D(\mathbb{R}^n)$. Setze h(y) := f(y)g(x-y). Falls $h \in L^1(\mathbb{R}^n)$, so ist

$$(f * g)(x) = \int_{\mathbb{D}^n} g(x - y) f(y) dy$$

wohldefiniert.

Betrachte $\varphi \mapsto \langle T_f, \varphi \rangle = \int f(y)\varphi(y)dy$. Dann $(f * g)(x) = T_f(\tilde{\tau}_x g)$ mit $\tilde{\tau}_x g(y) = g(x - y)$ Daher ist die folgende Definition natürlich:

1.21 Definition

Sei $T \in D'(\mathbb{R}^n), \varphi \in D(\mathbb{R}^n)$. Definiere $T * \varphi$ durch

$$(T * \varphi)(x) := \langle T, \tilde{\tau}_x \varphi \rangle, \quad x \in \mathbb{R}^n$$

1.22 Beispiel (Faltung mit δ)

$$(\delta * \varphi) \stackrel{\text{Def}}{=} \langle \delta, \tilde{\tau}_x \varphi \rangle = (\tilde{\tau}_x \varphi)(0) = \varphi(x),$$

das heißt $\delta * \varphi = \varphi$. Mit anderen Worten: δ ist Identität bezüglich *.

1.23 Satz

Seien $T \in D'(\mathbb{R}^n), \varphi \in D(\mathbb{R}^n)$. Dann $T * \varphi \in C^{\infty}(\mathbb{R}^n)$ und

$$D_i(T * \varphi) = (D_i T) * \varphi = T * (D_i \varphi).$$

Beweis. a) $T * \varphi$ stetig:

$$(\tilde{\tau}_{x'}\varphi)(y) - (\tilde{\tau}_{x}\varphi)(y) = \varphi(x'-y) - \varphi(x-y)$$

$$\implies \tilde{\tau}_{x'}\varphi \to \tilde{\tau}_{x}\varphi \text{ in } D(\mathbb{R}^n) \text{ für } x' \to x$$

$$\stackrel{\text{T Dist.}}{\Longrightarrow} \langle T, \tilde{\tau}_{x'}\varphi \rangle \to \langle T, \tilde{\tau}_{x}\varphi \rangle,$$

das heißt $\lim_{x'\to x} (T*\varphi)(x') = (T*\varphi)(x)$. Zur Stetigkeit der Abbildung $x\mapsto \tau_x\varphi$ vergleiche Roch S.83 b) Sei $h\in\mathbb{R}\setminus\{0\}$. Dann

$$\frac{1}{h}(\tilde{\tau}_{x+he_i}\varphi - \tilde{\tau}_x\varphi)(y) = \frac{1}{h}(\varphi(x+he_i-y) - \varphi(x-y))$$

$$= \frac{1}{h}(\varphi(x-y+he_i) - \varphi(x-y)) \to (\frac{\partial}{\partial_i}\varphi)(x-y)$$

$$\Longrightarrow \frac{1}{h}(\tilde{\tau}_{x+he_i}\varphi - \tilde{\tau}_x\varphi) \to \tilde{\tau}_x(\frac{\partial}{\partial_i}\varphi) \text{ in } D(\mathbb{R})$$

$$\Longrightarrow D_i(T * \varphi)(x) = \lim_{h \to 0} \frac{1}{h}(\langle T, \tilde{\tau}_{x+he_i}\varphi - \tilde{\tau}_x\varphi \rangle)$$

$$= \lim_{h \to 0} \langle T, \frac{1}{h}(\tilde{\tau}_{x+he_i}\varphi - \tilde{\tau}_x\varphi) \rangle \stackrel{T \text{ stetig}}{=} \langle T, \tilde{\tau}_x \frac{\partial}{\partial_i}\varphi \rangle$$

$$\stackrel{\text{Def}}{=} (T * \frac{\partial}{\partial_i}\varphi)(x)$$

 $\implies (T * \varphi)$ besitzt pratielle Ableitung und

$$\frac{\partial}{\partial_i}(T*\varphi) = T*(\frac{\partial}{\partial_i}\varphi)$$

Iteriere

$$\frac{partial}{\partial x_i} \frac{\partial}{\partial x_i} (T * \varphi) = T * (\partial_j \partial_i \varphi) \implies T * \varphi \in C^{\infty}(\mathbb{R}^n)$$

und damit

$$\begin{split} \frac{\partial}{\partial_i} (T * \varphi)(x) &= (T * \frac{\partial}{\partial_i} \varphi)(x) \stackrel{\text{Def}}{=} \langle T, \tilde{\tau}_x(\frac{\partial}{\partial_i} \varphi) \rangle \\ &= \langle T, -\frac{\partial}{\partial_i} (\tilde{\tau}_x \varphi) \rangle \stackrel{\text{Def Abl}}{=} \langle \frac{\partial}{\partial_i} T, \tilde{\tau}_x \varphi \rangle = (\frac{\partial}{\partial_i} T * \varphi)(x) \end{split}$$

Zusammenfassend gilt

1.24 Theorem

Sei $A = \sum_{|\alpha| \leq m} a_{\alpha} D^{\alpha}$ ein Differentialoperator mit konstanten Koeffizienten $a_{\alpha} \in \mathcal{C}$. Sei $T \in D'(\mathbb{R}^n)$ mit $AT = \delta$ und sei $f \in D(\mathbb{R}^n)$. Dann ist die Funktion

$$u := T * f \in C^{\infty}(\mathbb{R}^n)$$

und eine Lösung der Gleichung Au = f im Sinne von Distributionen.

Beweis.

$$Au = A(T * f) \stackrel{8.23}{=} AT * f \stackrel{\text{Vor.}}{=} \delta * f \stackrel{8.22}{=} f \quad \Box$$

1.25 Definition

Sei $A = \sum_{|\alpha| \leq m} a_{\alpha} D^{\alpha}$, $\alpha \in \mathcal{C}$ ein Differentialoperator. Dann heißt $T \in D'(\mathbb{R}^n)$ mit Eigenschaft $AT = \delta$ Fundamentallösung von A.

Beispiel. i) $A = \Delta$

- ii) $A = \partial_t \Delta$
- $iii) A = \partial_{tt} \Delta = \square$
- iv) $A = \partial_t i\Delta$