SASKATCHEWAN RYE FORECASTING & PEA CLUSTERING

Alex D'Ippolito

July 31, 2023

Problem Statement

- Is it possible to predict Fall Rye yield based solely on historical data?
- Can we find clusters of similar RMs for Pea yield in Saskatchewan?

Data Collection and Preprocessing

- Historical RM yield data for 16 crops from 1938 -2022 https://dashboard.saskatchewan.ca/agriculture/rm-yields/rm-yields-data
- Geographical boundaries of Saskatchewan Rural Municipalities from

https://github.com/ruhidm/Palette_Cohort_3_Data

Exploratory Data Analysis

Exploratory Data Analysis

Exploratory Data Analysis

Time Series Analysis

- Partial autocorrelation function to help decide how many lags make sense to use for an AR model
- 4 lags seems reasonable for this analysis

AR Modelling

AR Model with 4 Lags for RM 344 Fall Rye Forecasting

AR Model Comparison for RM 344 Fall Rye Forecasting

ARIMA Model Comparison for RM 344 Fall Rye Forecasting 50 Order (4, 0, 1) Order MAE **RMSE** Order (4, 0, 2) 6.93 10.26 4,0,1 45 Order (4, 1, 1) 6.96 4,0,2 10.24 Order (4, 1, 2) 4,1,1 7.83 10.03 ■ Test 9.96 4,1,2 11.31 40 35 30 Fall Rye 25 20 15 10 2011 2015 2016 2017 2018 2020 2021 2022 2023 2010 2012 2013 2014 2019 Year

XGBoost Modelling

- Utilized 4 Lags as Features
- Built 3 Different XGBoost Models

Model #	n_estimators	max_depth	learning
1	100	3	0.1
2	500	4	0.1
3	1000	5	0.1

XGBoost Model Comparison for RM 344 Fall Rye Forecasting 50 Model 1 Model# n_estimators max_depth learning Model MAE **RMSE** Model 2 9.66 12.6 100 0.1 Model 3 500 0.1 9.55 12.02 Test 1000 5 0.1 9.47 12.12 40 35 30 20 15 10 2011 2012 2014 2016 2017 2010 2013 2015 2018 2019 2020 2021 2022 2023 Year

Results Summary and Next Steps

- AR model with 4 lags had the lowest MAE
- ARIMA model with order (4,1,1) had the lowest RMSE
- Look into improving XGBoost models through more thorough hyperparameter tuning (GridSearch or Optuna)
- Consider adding more features
 - Yields for nearby RMs
 - Weather forecast data
 - Soil property data
- Try forecasting for other RMs and compare results

Model	MAE	RMSE	
AR 1	7.72	12.01	
AR 2	7.65	11.9	
AR 3	7.21	11.73	
AR 4	6.86	11.28	
ARIMA (4,0,1)	6.93	10.26	
ARIMA (4,0,2)	6.96	10.24	
ARIMA (4,1,1)	7.83	10.03	
ARIMA (4,1,2)	9.96	11.31	
XGBoost #1	9.66	12.6	
XGBoost #2	9.55	12.02	
XGBoost #3	9.47	12.12	

Unsupervised Learning Analysis

Saskatchewan RM Pea Yield Means from 2013-2022

Saskatchewan RM Pea Yield Standard Deviations from 2013-2022

K Means Clustering

K Means Clustering

Summary and Future Work

 Able to find 3 distinct clusters of pea yields in Saskatchewan

- Experiment with adding soil data, weather data, etc.
- Try K Means clustering with other pulses and compare results

Thank You

