

Introduction to Generative Adversarial Networks.

Adalberto Claudio Quiros - a.claudio-quiros.1@research.gla.ac.uk April 22, 2020

Computing Science Department

HIGH LEVEL PERSPECTIVE

What's a GAN? Where do they fall in the Machine Learning perspective?

- · Deep Learning Model.
- · Unsupervised Learning: Generative Models.

What's the goal of a GAN then?

- Learn a distribution of data whether if it is images, sound, vectors, anything.
- · Learn it in an unsupervised way: no label or initial knowledge about the data, just samples.

Figure 1: Generative Models - Goodfellow NIPS 2016 Tutorial: Generative Adversarial Networks.

)

Model Diagram:

Core Idea:

- · Two modules: Generator G and Discriminator D.
- \cdot The Generator G and Discriminator D compete between each other. G to recreate real data samples and D to distinguish between real and generated samples.

1. Generator:

- · Goal: Replicate real data.
- · How: Modifies an prior distribution $p_z(z)$ (latent space) into a distribution $p_g(x)$, making it as close as possible to the real data distribution $p_{data}(x)$
- · $G(z; \theta_g)$: Function that maps a latent sample $z = \{z_1, ..., z_m\} \sim p_z(z)$ to a data sample $x = \{x_1, ..., x_n\} \sim p_g(x)$.

$$G:z\to x$$

where $z \in \Re^m$; $x \in \Re^n$

2. Discriminator:

- · Goal: Distinguish between real and fake samples.
- **How**: Measures the probability of a sample x_{real} or x_{fake} of coming from the real data distribution $p_{data}(x)$.
- $\cdot D(x; \theta_d)$: Function that maps a data sample x to a scalar d. d=0 if the discriminator assumes $x=x_{fake}$ and d=1 if the discriminator assumes $x=x_{real}$.

$$D: x \rightarrow d$$

where $x \in \Re^n$: $d \in \Re$

3. Generator G and Discriminator D compete to 'trick' each other. Discriminator pushes Generator to replicate the real data distribution $p_{data}(x)$

Loss Function:

- · Cross entropy loss.
- · Generator G tries to minimize accuracy of the Discriminator D, .

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{x \sim p_{data}(x)}[log \ D(x)] + \mathbb{E}_{z \sim p_{z}(z)}[log(1 - D(G(z)))]$$

Discriminator D:

- · First part: Improve the probability of recognizing real data.
- Second part: Improve the probability of recognizing fake data.

$$\max_{D} V(D) = \mathbb{E}_{x \sim p_{data}(x)}[log \ D(x)] + \mathbb{E}_{z \sim p_{z}(z)}[log(1 - D(G(z)))]$$

Generator G:

 \cdot Improve quality of the generated samples so they will fool the Discriminator D.

$$\min_{G}V(G) = \mathbb{E}_{z \sim p_z(z)}[log(1 - D(G(z)))]$$

Discriminator D and Generator G gradients:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m [log \; D(x^i) + log(1 - D(G(z^i)))] \; \text{and} \; - \nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^m [log(1 - D(G(z^i)))]$$

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our experiments.

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \dots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \dots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.

Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^{m} \left[\log D\left(\boldsymbol{x}^{(i)}\right) + \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right) \right].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \dots, z^{(m)}\}$ from noise prior $p_g(z)$.
- · Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right).$$

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

Figure 2: Training Algorithm Goodfellow et al.[1].

Figure 3: Generated data distribution over training [1].

Let's see it: GAN training

Let's assume a fixed Generator G(z), and find the optimal Discriminator $D^*(x)$, the best Discriminator that we can train for a fixed Generator (This is what we do in the first part of the algorithm!):

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{x \sim p_{data}(x)}[log \ D(x)] + \mathbb{E}_{z \sim p_{z}(z)}[log(1 - D(G(z)))]$$

If Discriminator D(x) wants to maximize the loss function V(D,G), which Discriminator achieves this maximum:

$$\begin{split} V(D,G) &= \mathbb{E}_{x \sim p_{data}(x)}[log \ D(x)] + \mathbb{E}_{z \sim p_z(z)}[log(1-D(G(z)))] = \\ &\int_x p_{data}(x)log \ D(x)dx + \int_z p_z(z)log(1-D(G(z)))dz = \\ &\int_x (p_{data}(x)log \ D(x)dx + p_g(x)log[1-D(x))])dx \\ \\ &\frac{\partial V(D,G)}{\partial D} = 0 \rightarrow p_{data}(x)\frac{1}{D(x)} - p_g(x)\frac{1}{1-D(x)} = 0 \\ &D^*(x) = \frac{p_{data}(x)}{p_{data}(x) + p_g(x)} \end{split}$$

What's the loss function for the Optimal Discriminator $D^*(x)$?

$$\begin{split} & \min_{G} V(D^*,G) = \int_{x} (p_{data}(x)log \ D^*(x)dx + p_g(x)log(1-D^*(x))))dx = \\ & \int_{x} (p_{data}(x)log[\frac{p_{data}(x)}{p_{data}(x) + p_g(x)}] + p_g(x)log[\frac{p_g(x)}{p_{data}(x) + p_g(x)}])dx = \\ & \int_{x} (p_{data}(x)(-log(2)) + p_g(x)(-log(2)))dx + \\ & \int_{x} (p_{data}(x)log[\frac{p_{data}(x)}{p_{data}(x) + p_g(x)}] + p_g(x)log[\frac{p_{data}(x)}{p_{data}(x) + p_g(x)}])dx = \\ & \int_{x} (p_{data}(x) + p_g(x))(-log(2)))dx + \\ 2[\frac{1}{2}D_{KL}(p_r(x)||\frac{p_{data}(x) + p_g(x)}{2}) + \frac{1}{2}D_{KL}(p_g(x)||\frac{p_{data}(x) + p_g(x)}{2})] \to \\ & \min_{G} \mathbf{V}(\mathbf{D}^*, \mathbf{G}) = \mathbf{D_{JS}}(\mathbf{p_r(x)}||\mathbf{p_g(x)}) - \mathbf{log(4)} \end{split}$$

Assuming a fixed G(z), and optimal $D^*(x) \rightarrow$

$$\begin{split} D^*(x) &= \frac{p_{data}(x)}{p_{data}(x) + p_g(x)} \\ \min_G V(D^*, G) &= D_{JS}(p_r(x)||p_g(x)) - log(4) \end{split}$$

So minimizing our GAN cost is the same as minimizing the Jensen-Shannon Distance between $p_r(x)$ and $p_{data}(x)$:

$$D_{JS}(p_r(x)||p_g(x))$$

For our GAN optimal point, our generator $G^*(z)$ matches the real data:

$$p_r(x) = p_{data}(x) \label{eq:problem}$$

$$V(D^*, G^*) = -log(4) \label{eq:problem}$$

BROAD RESEARCH LINES

Training-Objective Function:

- · WGAN/WGAN-GP.
- · Relativistic GAN.
- · Geometric GAN.
- · f-GAN.
- · Spectral Normalization GAN.
- · BigGAN.

Structural Networks Changes:

- · Self-Attention GAN.
- · StyleGAN.
- · ProGAN.
- · DCGAN.

Image Quality and Diversity:

- · ProGAN/StyleGAN.
- · BigGAN.
- · Self-Attention GAN.

Representation Learning:

- · InfoGAN.
- · BiGAN/BigBiGAN.
- · StyleGAN/StyleGAN2.

Transfer Learning:

- · Star-GAN.
- · Cycle-GAN.

ImageNet: 1M images and 20K classes.

Figure 4: Generated and uncurated images from a BigGAN. [2]

This person does not exist.

Figure 5: Generated and uncurated images from a StyleGAN2. Karras et al. 2020.

Figure 6: Style mixing on StyleGAN. Karras et al. 2018

BIGBIGAN

Representation learning on ImageNet (1M images and 20K classes)

Architecture	Top-1	Top-5
ResNet-50	76.3	93.1
ResNet-101	77.8	93.8
RevNet-50	71.8	90.5
RevNet-50 ×2	74.9	92.2
RevNet-50 ×4	76.6	93.1

Method	Architecture	Feature	Top-1	Top-5
BigBiGAN (ours)	ResNet-50	AvePool	55.4	77.4
	ResNet-50	BN+CReLU	56.6	78.6
	RevNet-50 ×4	AvePool	60.8	81.4
	RevNet-50 ×4	BN+CReLU	61.3	81.9

Figure 7: Image enconding/reconstruction and representation learning accuracy on BigBiGAN. Donahue et al. 2019. []

Figure 8: Cycle-GAN Zhu et al. 2017

FURTHER DIP INTO GANS

- · GANs:
 - · Maximum Likelihood Models vs GANs.
- · GAN Problems
 - · Non-convergence.
 - · Diminished Gradient.
 - · Unstable Gradients.
 - · Mode Collapse.
- · Evaluation:
 - · Inception Score.
 - · Frechet Inception Distance.
- · General lines of research:
 - · Stabilizing training and Improving learning.
 - · Image Quality and Variety.
 - · Representation learning.
 - · Structural Changes.
 - · Transfer Learning.

INTRODUCTION POST/PAPER/CODE

- Further dip into GANs: Myself 2020
- · Another GAN introduction and models review: Myself 2020
- · Brief introduction to GANs: Jonathan Hui Medium
- GAN models reading list, this is a good introduction to relevant models: Jonathan Hui Medium
- Goodfellow NIPS 2016 Tutorial:
 - · Paper
 - · Video
- · Play with Generative Adversarial Networks in your browser: Link
- Pytorch DCGAN Tutorial: Link

[1] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron C. Courville, and Yoshua Bengio.

Generative adversarial nets.

In Zoubin Ghahramani, Max Welling, Corinna Cortes, Neil D. Lawrence, and Kilian Q. Weinberger, editors, Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada, pages 2672–2680, 2014.

[2] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale GAN training for high fidelity natural image synthesis. CORR, abs/1809.11096, 2018.