Name:	SID:
-------	------

MTH4220(2022 Fall): Quiz 1

- This quiz will last for 50 mins.
- $\bullet\,$ No phones or discussion, book and notes closed, no calculators.

1. For a given function f, consider the first order PDE:

$$2\partial_x u + \partial_y u = f(u)$$

- (a) (10pts) What kind of coordinates (x', y') you can introduce so that the terms on the left hand side of the equation can be reduced to $C\partial_{x'}u$ for some constant C.
- (b) (10pts) What are the characteristic lines/curves to the corresponding homogeneous equation, i.e. $f(u) \equiv 0$ in the equation? Sketch these.
- (c) (5pts) A solution u to the equation is constant on any of these characteristic curves/lines. True or false?
- (d) (10pts) Consider f(u) = u. For $k, m \in \mathbb{R}$ and g = g(x) given, discuss the existence and uniqueness of solutions to the equation with prescribed data: u(x, y(x)) = g(x) on the line y(x) = kx + m.

2. Let $a, b \in \mathbb{R}$ be given constants, consider the second order equation

$$\partial_{tt}u - (a+b)\partial_{tx}u + ab\partial_{xx}u = 0.$$

- (a) (10pts) Determine the equation type(elliptic, parabolic or hyperbolic).
- (b) (10pts) Is it possible to introduce some suitable coordinates (ξ, η) such that the equation can be reduced to $\partial_{\xi\eta}u = 0$? If so, what are they?
- (c) (10pts) Solve the equation for the case a=3,b=4.

3.	Let $\Omega \subset \mathbb{R}^n$	be a	${\rm smooth}$	connected	domain,	$T \in$	$(0,\infty)$	a given	constant,	and Ω	$\Omega_T =$
	$\Omega \times [0,T].$										

- (a) (5pts) What is the parabolic boundary, $\partial_p \Omega_T$, of Ω_T ?
- (b) (10pts) If u attains a **minimum** at the point $(\vec{x}_0, t_0) \in \Omega_T \setminus \partial_p \Omega_T$, what can you say about the signs of the first and second derivatives of u there?
- (c) (10pts) Does the **Minimum Principle** holds to the equation $\partial_t u \Delta u \ge 0$ on Ω_T ? If so, describe it.
- (d) (10pts) Give an example of approximate function, v_{ε} , of u in order to show the **Minimum Principle** to the heat equation $\partial_t u \Delta u = 0$ on Ω_T .

Then show that

$$\lim_{\varepsilon \to 0^+} \max_{\Omega_T} v_\varepsilon = \lim_{\varepsilon \to 0^+} \max_{\Omega_T} u.$$