

REPORTEIV

PROYECTO: MEDICIÓN DE LAS FUERZAS EN UNA GOTA DEFORMADA POR CÉLULAS.

IDL

Laboratory for

Reconstrucción 3D de la gota. Se exporta un archivo .OFF

Se obtiene un conjunto de caras y vértices. Se puede trabajar en otro lenguaje.

PYTHON

Se busca implementar las curvaturas y la interfaz en Python.

Reconstrucción en IDL

Ajuste de parámetros

Aún se necesita buscar una correcta elasticidad, rigidez, viscocidad, fuerza externa, entre otros parámetros.

Relativamente sencilla

No sé necesitan muchos conocimientos de programación y la exportación se hace automática.

Calidad y efectividad

El resultado obtenido es de muy buena calidad y está en un formato muy versátil, el cual tiene mucha literatura y métodos implementados

CURVATURAS PRINCIPALES

No depende de la parametrización

Geometria Diferencial

CURVATURA PROMEDIO

$$H = \frac{k_1 + k_2}{2}$$

ESTRÉS ANISOTRÓPICO

$$\delta \sigma_{nn}(\theta, \phi) = 2\gamma \left(H(\theta, \phi) - \frac{1}{R_o} \right)$$

ÁNGULO ENTRE CARAS

El angulo formado entre dos caras puede determinar la cantidad de curvatura.

LARGO DEL LADO

Ponderador que puede determinar cuánto pesa ese ángulo

$$H_i = \frac{1}{4} \sum_{j \in \mathcal{N}(i)} \ell_{ij} \varphi_{ij}$$

Método con el Laplaciano

LAPLACIANO

Se define como la divergencia, o "la suma de las segundas derivadas". Una buena aproximación es:

$$(\nabla^2 u)_i = \frac{1}{2A_i} \sum_{j \in C_i} (\cot(\alpha_{i,j}) + \cot(\beta_{i,j})) (u_j - u_i)$$

$$|H| = \frac{\|\Delta p_i\|}{2} \qquad \langle S\vec{n}_i, -\Delta p_i \rangle$$

Método de Rusinkiewicz

MATRIZ DE WEINGARTEN

El autor propone un algoritmo que permita obtener una matriz, cuyos valores propios son las curvaturas principales. Tiene una implementación en C++.

Otros Métodos

TAUBIN (1995)

También se centra en la búsqueda de una matriz para obtener sus valores propios.

$$\kappa_{ij} = \frac{2n_i \cdot (p_i - p_j)}{|p_i - p_j|^2}$$

IMÁGEN Y CONTORNOS EN 2D

se obtiene la imágen 2D de la gota. Luego, se detecta su contorno y se aplica una serie de filtros. Se acondiciona en ImageJ y se obtienen sus coordenadas en Matlab. Por último, usando Wolfram Mathematica 8 se obtiene una curva cerrada.

PROCESAMIENTO EN 3D

Con el mismo software se utilizó BSpline 2D para obtener toda la superficie continua. Se obtuvo H de manera teórica.

Resultados (Original)

ESFERA PERFECTA

GOTA DE CONTROL

Resultados (Discreto)

ESFERA PERFECTA

GOTA DE CONTROL

Resultados (Laplaciano) \$\sigma \sigma \sigm

ESFERA PERFECTA

GOTA DE CONTROL

Resultados (Taubin)

ESFERA PERFECTA

GOTA DE CONTROL

¿Cómo seguir?

RADIO ORIGINAL

En una esfera es posible obtenerlo, pero ¿En una deformada? Se ha preferido investigar sobre las curvaturas.

CURVATURAS

Todavía se están trabajando en los algoritmos. Se tiene que verificar bien su eficacia. También, hay que decantarse por alguno de los métodos.

INTERFAZ

Ya se tiene una idea de cómo podría ser, mucho más sencilla de lo pensada, pero efectiva.

