## Причинно-ориентированное снижение размерности для анализа данных нейроинтерфейсов

Владимиров Э.А.

Московский физико-технический институт

Научный руководитель: д. ф.-м. н. В. В. Стрижов

2025

# Причинно-следственный анализ в данных высокой размерности

## Проблема

- Нелинейные, лагированные во времени зависимости не выявляются корреляцией и линейной регрессией.
- Высокая размерность данных усиливает мультиколлинеарность и усложняет поиск причинно-следственной сявзи

#### Цель исследования

Найти компактное и интерпретируемое скрытое пространство, в котором причинное воздействие  $\mathbf{X} \to \mathbf{Y}$  обнаруживается устойчиво и статистически значимо.

#### Предлагаемая модель CaSCA

Предлагается подход CaSCA – Канонический анализ каузальных подпространств.

CaSCA проецирует данные на два взаимно ортогональных подпространства: **каузальное**, где лагированное представление X максимально предсказывает Y, и **реконструктивное**, которое объясняет оставшуюся дисперсию сигналов.

## Основная идея метода CaSCA

#### Ключевая мысль:

CaSCA строит общее латентное пространство, где первом этапе извлекаются низкоразмерные причинные компоненты, а во втором — восстанавливается остальная вариативность данных.

## Постановка задачи каузального снижения размерности

Даны два синхронных многомерных временных ряда  $\mathbf{X}_t \in \mathbb{R}^{n_x}, \ \mathbf{Y}_t \in \mathbb{R}^{n_y}, \ t=1,\ldots,T.$ 

Общий энкодер каждой строки

$$\varphi_{\mathsf{enc}} : \mathbb{R}^{n_{\mathsf{x}}} \times \mathbb{R}^{n_{\mathsf{y}}} \to \mathbb{R}^{m}, \quad \psi_{\mathsf{enc}} : \mathbb{R}^{n_{\mathsf{x}}} \times \mathbb{R}^{n_{\mathsf{y}}} \to \mathbb{R}^{m}$$

создаёт скрытые представления

$$\mathbf{P}_t = \varphi_{\mathsf{enc}}(\mathbf{X}_t, \mathbf{Y}_t), \qquad \mathbf{Q}_t = \psi_{\mathsf{enc}}(\mathbf{X}_t, \mathbf{Y}_t).$$

Разбиение скрытого пространства.  $m = d_c + d_r$ ,  $\mathbf{P}_t = \begin{bmatrix} \mathbf{P}_t^c \mid \mathbf{P}_t^r \end{bmatrix}, \ \mathbf{Q}_t = \begin{bmatrix} \mathbf{Q}_t^c \mid \mathbf{Q}_t^r \end{bmatrix}, \ \mathbf{P}_t^c, \ \mathbf{Q}_t^c \in \mathbb{R}^{d_c}, \ d_c \ll d_r \ll \min(n_x, n_y).$ 

Декодеры и реконструкция.

$$\widehat{\mathbf{X}}_t = \varphi_{\mathrm{dec}}(\mathbf{P}_t), \qquad \widehat{\mathbf{Y}}_t = \psi_{\mathrm{dec}}(\mathbf{Q}_t).$$

## Постановка задачи каузального снижения размерности

Необходимо построить *низкоразмерное* и *причинно-информативное* латентное пространство, в котором

- причинные компоненты  $(\mathbf{P}_t^{\mathrm{c}}, \mathbf{Q}_t^{\mathrm{c}})$  максимально объясняют влияние  $\mathbf{X}_{t-\tau} \! \to \! \mathbf{Y}_t;$
- реконструктивные компоненты  $(\mathbf{P}_t^{\mathrm{r}}, \mathbf{Q}_t^{\mathrm{r}})$  сохраняют оставшуюся дисперсию сигналов;

#### Задача моделирования

Найти преобразования  $arphi_{
m enc}, \psi_{
m enc}, arphi_{
m dec}, \psi_{
m dec}$  и задержку  $au^{\star}$ , минимизируя

$$\mathcal{L} = \lambda_{\mathsf{rec}} \big( \| \mathbf{X}_t - \widehat{\mathbf{X}}_t \|_F + \| \mathbf{Y}_t - \widehat{\mathbf{Y}}_t \|_F \big) + \lambda_{\mathsf{c}} \, \mathcal{L}_{\mathsf{c}} \big( \mathbf{P}_{t-\tau}^{\mathsf{c}}, \mathbf{Q}_t^{\mathsf{c}} \big),$$

- $\mathcal{L}_{\mathsf{c}}$  любая мера зависимости (корреляция/ССМ).
- Сканируем  $au = [0, \dots, au_{\sf max}]$ , чтобы найти задержку.

#### Предположения.

- Аттрактор допускает задержанное вложение при умеренном шуме.
- Вся значимая причинная информация содержится в  $d_c$ -мерном подпространстве.

## Критерии качества модели снижения размерности

#### 1. Устранение мультиколлинеарности

Максимальный Variance Inflation Factor (VIF) 
$$\max_{j} \frac{1}{1 - R_{j}^{2}}$$

Condition Number 
$$\max(\varkappa(\mathbf{P}_t^\mathsf{T}\mathbf{P}_t), \varkappa(\mathbf{Q}_t^\mathsf{T}\mathbf{Q}_t)) = \frac{\sigma_{\max}}{\sigma_{\min}}$$

Чем меньше — тем более устойчивы линейные модели в скрытом пространстве

#### 2. Точность реконструкции сигналов

$$\mathsf{RMSE}_X = \sqrt{rac{1}{T} \sum_t \lVert \widehat{\mathbf{X}}_t - \mathbf{X}_t \rVert^2} \; ext{(аналогично для } \mathbf{Y} ext{)}$$

Explained Variance Ratio — доля дисперсии, восстановленная декодером

#### 3. Прогностическая полезность причинных эмбеддингов

- (i) модель  $Y_t$  по собственным лагам  $\mathbf{Y}_{t-\tau}$
- (ii) модель  $Y_t$  по  $\mathbf{Y}_t$  и исходным  $\mathbf{X}_t$
- (iii) модель  $Y_t$  по  $\mathbf{Y}_t$  и причинным эмбеддингам  $\mathbf{P}_t^c$   $\Delta Score = Perf(модель (iii)) max{Perf((i)), Perf((ii))}$ 
  - ▶ Perf снижение RMSE / рост  $R^2$  или F1 (для классификации)

## Алгоритм CaSCA

#### CaSCA: причинно-ориентированное снижение размерности

**Require:** Временные ряды  $\mathbf{X}_t \in \mathbb{R}^{T \times n_x}, \ \mathbf{Y}_t \in \mathbb{R}^{T \times n_y}$ , лаги  $\mathcal{T}$ , размерности  $d_c, d_{\mathsf{hid}}$ 

**Ensure:** Каузальные проекции  $\mathbf{P}_t^{\mathrm{c}}, \mathbf{Q}_t^{\mathrm{c}}$ , реконструктивные проекции  $\mathbf{P}_t^{\mathrm{r}}, \mathbf{Q}_t^{\mathrm{r}}$  Шаг 1. Автовыбор лага

- 1: for  $\tau \in \mathcal{T}$  do
- 2:  $\rho(\tau) \leftarrow \operatorname{corr}(\operatorname{CCA}_1(\mathbf{X}_{t-\tau}, \mathbf{Y}_t))$
- 3: end for
- 4:  $\tau^* \leftarrow \arg\max_{\tau} \rho(\tau)$  Шаг 2. Канонический блок (каузальный)
- 5:  $\left[\mathbf{W}_{x}^{c}, \mathbf{W}_{y}^{c}\right] \leftarrow \mathsf{CCA}\left(\mathbf{X}_{t-\tau^{\star}}, \mathbf{Y}_{t}, d_{c}\right)$
- 6:  $\mathbf{P}_{t}^{c} \leftarrow \mathbf{X}_{t} \mathbf{W}_{x}^{c}, \mathbf{Q}_{t}^{c} \leftarrow \mathbf{Y}_{t} \mathbf{W}_{y}^{c}$ 
  - **Шаг 3**. Дефляция остатка
- 7:  $\mathbf{X}_{\mathsf{res}} \leftarrow \mathbf{X}_t \mathbf{P}_t^{\mathsf{c}} \mathbf{W}_x^{\mathsf{c} \mathsf{T}}$ ,  $\mathbf{Y}_{\mathsf{res}} \leftarrow \mathbf{Y}_t \mathbf{Q}_t^{\mathsf{c}} \mathbf{W}_y^{\mathsf{c} \mathsf{T}}$  Шаг 4. *PCA-блок (реконструктивный)*
- 8:  $\mathbf{W}_{x}^{r} \leftarrow \mathsf{PCA}(\mathbf{X}_{\mathsf{res}}, d_{r}), \ \mathbf{W}_{y}^{r} \leftarrow \mathsf{PCA}(\mathbf{Y}_{\mathsf{res}}, d_{r})$
- 9:  $\mathbf{P}_t^{\mathrm{r}} \leftarrow \mathbf{X}_{\mathsf{res}} \mathbf{W}_{\mathsf{x}}^{\mathrm{r}}$ ,  $\mathbf{Q}_t^{\mathrm{r}} \leftarrow \mathbf{Y}_{\mathsf{res}} \mathbf{W}_{\mathsf{y}}^{\mathrm{r}}$

## Теоретические свойства модели CaSCA

## Теорема (ортогональность и блочная дисперсия)

Пусть после центрирования данные приведены к единичной ковариации  $\Sigma_{XX} = I_p, \ \Sigma_{YY} = I_q.$  Тогда проекции  $\mathbf{P}_t^c, \mathbf{P}_t^r$  и ортогональные веса  $\mathbf{W}_x^c, \mathbf{W}_x^r$  модели обладают следующими свойствами:

- 1. **Ортогональность весов:**  $W_x^{\mathrm{c} \top} W_x^{\mathrm{r}} = \mathbf{0}_{d_c \times d_r}$  и аналогично для Y-блока.
- 2. Разложение ковариации:  $I_p = \mathbf{W}_x^\mathrm{c} \mathbf{\Sigma}_{pp}^\mathrm{cc} \mathbf{W}_x^\mathrm{cT} + \mathbf{W}_x^\mathrm{r} \mathbf{\Sigma}_{pp}^\mathrm{rr} \mathbf{W}_x^\mathrm{rT}$  (кросс-блочные элементы обнуляются).
- 3. **Независимость латентных координат:**  $\mathbf{P}_t^{\mathrm{c} \top} \mathbf{P}_t^{\mathrm{r}} = \mathbf{0}_{d_c \times d_r}$ , т.е. причинные и реконструктивные факторы некоррелированы.

#### Интерпретация.

Причинные оси  $\mathbf{W}^c$  изолируют подпространство, достаточное для прогноза  $\mathbf{Y}_t$  по  $\mathbf{X}_{t- au}$ .

Реконструктивные оси  $W^{\mathrm{r}}$  содержат оставшуюся дисперсию, не мешая оценке причинных связей.

Блочное разложение дисперсии упрощает downstream-модели:  $\mathbf{P}_t^c$  используется в регрессии/классификации,  $\mathbf{P}_t^r$  — в реконструкции и фильтрации шума.

## Расширение 1: переход в траекторное пространство

Вместо исходных наблюдений  $\mathbf{X}_t$ ,  $\mathbf{Y}_t$  строим их отложенные векторы и применяем **CaSCA** уже к этим псевдонаблюдениям. Это раскрывает внутреннюю динамику системы и улучшает выявление причинных лагов.

**Require:** временные ряды  $\{\mathbf{X}_t\}_{t=1}^T, \{\mathbf{Y}_t\}_{t=1}^T$ , лаговое окно E, au

**Шаг** 1. Построение траекторий

1: 
$$\mathbf{X}_t^{(\text{traj})} = [\mathbf{X}_t, \mathbf{X}_{t-\tau}, \dots, \mathbf{X}_{t-(E-1)\tau}]$$

2: Аналогично  $\mathbf{Y}_t^{(\mathrm{traj})}$ 

**Шаг 2.** Применение CaSCA

3: 
$$(\mathbf{P}^c, \mathbf{P}^r, \mathbf{Q}^c, \mathbf{Q}^r) \leftarrow \mathsf{CaSCA}(\mathbf{X}^{(\mathrm{traj})}, \mathbf{Y}^{(\mathrm{traj})})$$

Шаг 3. Восстановление сигналов

4: 
$$\widehat{\mathbf{X}}_t = \overline{\mathbf{X}} + \mathbf{P}_{\underline{t}}^c W_x^{c^{\mathsf{T}}} + \mathbf{P}_t^r W_x^{r^{\mathsf{T}}}$$

5: аналогично  $\mathbf{Y}_t$ 

## Расширение 1: переход в траекторное пространство



Выигрыш: фазовое пространство Такенса «распутывает» нелинейные зависимости, и CaSCA находит «чистые» причинные координаты даже при длинных лагах.

Параметры E, au подбираются autocorrelation или false-nearest-neighbors.

## Расширение 2: Риманово скрытое пространство

#### Мотивация

- EEG-сигналы многоканальны, шумны и содержат коррелированные компоненты.
- Ковариационные матрицы каналов естественно живут на многообразии SPD(n).
- Проекция в касательное пространство = «локальная евклидизация»: работает линейная CaSCA.

## Пошаговый алгоритм

- 1. **XdawnCovariance.** Из N каналов формируем  $n \ll N$  пространственных паттернов  $\Sigma_t \in \text{SPD}(n)$  внутри окна  $\Delta t$ .
- 2. Log-Tangent.

$$\mathbf{C}_t = \log \! \left( \mathbf{\Sigma}_{\star}^{-1/2} \, \mathbf{\Sigma}_t \, \mathbf{\Sigma}_{\star}^{-1/2} 
ight) \; \in \; T_{\mathbf{\Sigma}_{\star}} \, \mathsf{SPD}(\mathit{n}),$$
 где  $\mathbf{\Sigma}_{\star}$  — геометрическое среднее.

#### Ключевая идея

Ковариации EEG являются точками на кривой SPD-многообразия; перевод в касательное пространство делает их «плоскими», после чего CaSCA отделяет динамически-причинные направления от реконструктивного шума.

## Итоговые преимущества

Устойчивость к масштабированию и к артефактам отдельных электродов.

Геометрически корректная обработка SPD-данных.

Улучшенная предсказательная точность 11/18

## Расширение CaSCA на глубокие сети

Заменяем линейную пару  $\varphi_{\rm enc}, \psi_{\rm enc}$  на двухголовый **Cross-Attention** (CA) – она одновременно учится находить канонические представления, реализует задержки благодаря механизмам self-attention.

## Модель Deep-CaSCA

**Кодеры**:  $(P_t^c, P_t^r) = \Phi_{\theta}(\mathbf{X}_{1:t}), \ (Q_t^c, Q_t^r) = \Psi_{\theta}(\mathbf{Y}_{1:t})$  — трансформеры с С.А-блоками.

Декодеры:  $\widehat{\mathbf{X}}_t = \Phi_{\theta}^{-1}(P_t^r), \ \widehat{\mathbf{Y}}_t = \Psi_{\theta}^{-1}(Q_t^r).$ 

Функция потерь:

где corr вычисляется батчево.

## Расширение CaSCA на глубокие сети

## Теорема (Эквивалентность СА и ССА)

Пусть  $\mathrm{CA}_k(\mathbf{X},\mathbf{Y})$  — одноголовая cross-attention без нелинейностей с k ключами. Если  $\mathbf{X},\mathbf{Y}$  предварительно whiten-ированы, то выходные представления  $U=\mathrm{CA}_k(\mathbf{X},\mathbf{Y}),\ V=\mathrm{CA}_k(\mathbf{Y},\mathbf{X})$  максимизируют выборочную корреляцию так же, как первые k канонических пар CCA. Cross-attention обучается поворачивать скрытое пространство так, чтобы каждая голова совпадала с каноническим направлением; сам механизм self-attention неявно реализует сдвиги  $\mathbf{X}_{t-\tau} \to \mathbf{X}_t$ .

## Регуляризатор Сугихары: вспоминаем метод

## Сходящийся перекрестный анализ

#### Теневое вложение:

$$\textit{M}_{\textit{X},t} = \left(\textit{X}_t,\,\textit{X}_{t-\tau},\,\ldots,\,\textit{X}_{t-(\textit{E}-1)\tau}\right) \;\in\; \mathbb{R}^{\textit{E}},$$

где E — размерность вложения, au — временной лаг.

#### Реконструкция:

$$\widehat{Y}_t|M_{X,t}=\sum_{i=1}^k w_i Y_{n_i},$$

здесь  $n_i$  — индексы ближайших соседей точки  $M_{X,t}$  в пространстве  $M_X$ , а  $w_i$  — веса, зависящие от расстояния до  $M_{X,t}$ .

#### Критерий причинности:

$$\rho_{X\to Y}=\mathrm{corr}\Big(Y_t,\,\widehat{Y}_t|M_{X,t}\Big).$$

Если при увеличении размера "библиотеки" (множества рассматриваемых соседей)  $\rho_{X \to Y}$  сходится монотонно, считается, что  $\mathbf{Y}(t)$  вримост на  $\mathbf{Y}(t)$ 

## Регуляризатор Сугихары: статистические тесты

#### сходимости

Проверяем, что  $ho_{X o Y}(L)$  «устойчиво растёт» при увеличении длины библиотеки L

Шаг 1. Формируем последовательность оценок

$$\rho_{X\to Y}(L_0), \ \rho_{X\to Y}(L_1), \dots, \rho_{X\to Y}(L_{\max}), \quad L_0=E, \ L_{\max}=T.$$

**Шаг 2.** Тест Кендалла au — проверяем наличие значимого монотонного тренда  $ho_{X o Y}(L_i) \nearrow$  при росте  $L_i$ .

$$H_0: \ au = 0 \implies p_ au < lpha$$
 (тренд есть)

**Шаг 3.** Тест Фишера  $\Delta Z$  — оцениваем, отличается ли  $ho_{X \to Y}(L_{\text{max}})$  от  $ho_{X \to Y}(L_0)$  статистически значимо:

$$Z = rac{\mathrm{atanh}\,
ho(L_{\mathrm{max}}) - \mathrm{atanh}\,
ho(L_{0})}{\sqrt{rac{1}{L_{\mathrm{max}}-3} + rac{1}{L_{0}-3}}}, \qquad 
ho_{Z} < lpha.$$

**Решение.** Считаем кросс-мап подтверждённым, если одновременно  $p_{\tau}$  и  $p_{Z}$  меньше порога  $\alpha$  (обычно  $\alpha=0.05$ ).

## Регуляризатор Сугихары: обучение с учётом динамики

**Цель CaSCA+CCM.** Обучаемые параметры энкодеров/декодеров  $\varphi, \psi$  и весов A, B минимизируют

$$\mathcal{L} = \lambda_{\mathsf{rec}} \underbrace{\left( \| \mathbf{X}_t - \widehat{\mathbf{X}}_t \|_F + \| \mathbf{Y}_t - \widehat{\mathbf{Y}}_t \|_F \right)}_{\mathcal{L}_{\mathsf{rec}}} + \lambda_{\rho} \underbrace{\left( -\rho_{\mathsf{X} \to \mathsf{Y}}^{\mathsf{CCM}}(A, B) \right)}_{\mathsf{causal} \, \mathsf{score}} + \lambda_{\mathsf{mono}} \, P^{\mathsf{mono}} \, + \, \lambda_{\mathsf{gap}} \, P^{\mathsf{gap}}$$

- 1.  $ho_{X o Y}^{\mathsf{CCM}}(A,B) = \mathrm{corr}\Big(Y_t, \ \widehat{Y}_t \ | \ M_{X,t}(A)\Big)$  «skill» перекрёстной реконструкции (чем он выше, тем сильнее причинное влияние X o Y).
- 2.  $P^{\mathsf{mono}} = \sum_{i=2}^{|\mathcal{L}|} \mathsf{softplus}\Big( \rho(L_{i-1}) \rho(L_i) + \varepsilon \Big)$  штраф за любое немонотонное уменьшение ССМ-корреляции при увеличении объёма библиотеки
- 3.  $P^{\mathsf{gap}} = \mathsf{softplus}\Big(\delta \Delta z\Big), \quad \Delta z = z\Big(\rho(L_{\mathsf{max}})\Big) z\Big(\rho(L_{\mathsf{min}})\Big), \quad z(p) = \frac{1}{2}\ln\frac{1+p}{1-p}$  штраф, если преобразованный прирост корреляции между минимальной и максимальной библиотеками меньше заданного порога  $\delta$ .

## Вычислительный эксперимент на данных ЭЭГ - ИИМ

#### Данные

У 25 участников были записаны показания ЭЭГ, ИИМ, МРТ во время игры в настольный теннис. С каждым участником было сыграно 4 сессии, длительность каждой из них составляет 7-10 минут.



|   | Block 1          |             | Block 2          |             | Block 3     |                  | Block 4     |                  |
|---|------------------|-------------|------------------|-------------|-------------|------------------|-------------|------------------|
|   | Machine<br>Rally | Cooperative | Machine<br>Serve | Competitive | Cooperative | Machine<br>Serve | Competitive | Machine<br>Rally |
| - | 230 230 230      | 7:30        |                  |             |             |                  |             |                  |

## Выносится на защиту

- 1. **Metog CaSCA.** Предложен причинный метод снижения размерности, выделяющий отдельное латентное подпространство для причинных компонент и обеспечивающий точную реконструкцию сигналов.
- 2. **Теоретические гарантии.** Доказано ортогональное разложение выборочной ковариации и строгая разделимость вариации на «причинный» и «реконструктивный» блоки в ортогональном пространстве состояний.
- 3. **Четыре расширения.** Разработаны модификации метода в траекторном, римановом и глубоком обучающих пространствах, а также регуляризатор ССМ, вводящий динамическое ограничение Сугихары через дифференцируемый штраф.
- 4. Выборка критериев оценки. Сформулирован комплекс метрических показателей (мультиколлинеарность, реконструкция, улучшение качества прогноза) для объективного сравнения методов причинного анализа.
- 5. Вычислительный эксперимент. Проведены тесты на двух наборах данных (два IMU-датчика и EEG-IMU). CaSCA и его глубинная версия показали стабильное превосходство над PCA, CCA, PLS, LiNGAM и рядом современных CRL-подходов в исходном и траекторном пространствах.