2020年全国高等院校数学能力挑战赛初赛真题

一、判断题: 1-16 题, 每小题 3 分, 共 48 分。

1. 定积分
$$\int_0^{\pi} \sqrt{\sin^3 x - \sin^5 x} dx = 0$$
.

参考答案: 错

2. 若 x_0 点为y = f(x)的极值点,则必有 $f'(x_0) = 0$ 。

参考答案: 错

3.
$$\lim_{x \to \infty} \frac{(x+6)e^{\frac{1}{x}}}{x} = 1$$

参考答案:对

4. 若 z = f(x, y) 在 (x_0, y_0) 处的两个一阶偏导数存在,则函数 z = f(x, y) 在 (x_0, y_0) 处可微。

参考答案: 错

5. 若 f(x) 在 [a,b] 上可积, g(x) 在 [a,b] 上不可积,则 f(x)+g(x) 在 [a,b] 上必不可积。

参考答案:对

6. $(y'')^2 = -2xy' - e^x y$ 的通解中含有两个独立任意常数。

参考答案:对

7. 函数 ln ln x 在 [1, e] 满足拉格朗日中值定理条件。

参考答案: 错

8. 设 $L: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$,则曲线积分 $\oint_L \frac{-ydx + xdy}{x^2 + y^2}$ 与L取向无关,与a,b大小有关。

参考答案: 错

9. 设 f(x) 在 I 内可积,那么 f'(x) 在 I 内也可积。

参考答案: 错

10. 曲线 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 上存在两点关于直线 $l: y = k(x - x_0)$ 对称的充要条

件是
$$x_0^2 \le \frac{(a^2 - b^2)^2}{a^2 + b^2 k^2}$$
。

参考答案:对

11. 函数 $f(x) = \sin x$ 在 x = 0 点的拉格朗日型余项为 0。

参考答案: 错

12. 方程 $xy' = y \ln y$ 满足 $y|_{x=1} = e^2$ 的特解是 $y=e^{2x}$ 。

参考答案:对

13. 曲线 $\rho^2 = 5\cos 2\theta$ 所围成的区域面积等于 5。

参考答案:对

14. 已知函数 f(x) 具有任意阶导数, 且 $f'(x) = [f(x)]^2$, 则当 n 为大于 2 的正整数时, f(x) 的 n 阶导数 $f^{(n)}(x)$ 是 $n![f(x)]^{n+1}$ 。

参考答案: 错

15. 已知微分方程为 $y'' - 5y' + 6y = e^x \sin x + 6$,则其特解形式为 $e^x (a \cos x + b \sin x) + c$ 。

参考答案:对

16. 设 f(x) 是可微函数,导函数 f'(x) 严格单调递增,若 f(a) = f(b)(a < b),则对一切 $x \in (a, b)$ 有 f(x) < f(a) = f(b)。

参考答案:对

二、单选题: 17-29 题, 每小题 4 分, 共 52 分。

17. 极限
$$\lim_{\substack{x \to 0 \ y \to 0}} \frac{x^2 y}{x^4 + y^2} = ($$
)

- A. 0

- B. 不存在 C. $\frac{1}{2}$ D. 0 或 $\frac{1}{2}$

参考答案: B

18. 设
$$f(x) = \begin{cases} x^2 \cos \frac{1}{x} + a \sin x, x < 0 \\ bx + c, x \ge 0 \end{cases}$$
, 且 $f(x)$ 在 $x = 0$ 处可导,则()

- A. a = -b, c = 0 B. a = b, c = 0 C. a = -b, c 任意 D. a = b, c 任意

参考答案: B

19. 与原点距离为 6,且在坐标轴上的截距之比为a:b:c=1:3:2的平面方程是 ()

A.
$$6x + 2y + 3z + 42 = 0$$
 B. $6x + 2y + 3z \pm 42 = 0$

B.
$$6x + 2y + 3z \pm 42 = 0$$

C.
$$6x + 2y + 3z - 42 = 0$$
 D. $3x + 4y + z + 7 = 0$

D.
$$3x + 4y + z + 7 = 0$$

参考答案: B

20.
$$\frac{\pi}{3} \int_0^{2R} (4(\rho - 1)R^3 + 3Rx^2 - x^3) dx = ($$
)

A.
$$\frac{2\pi R^4}{3}(2\rho - 1)$$

B.
$$\frac{4\pi R^4}{3}(\rho-1)$$

C.
$$\frac{\pi R^4}{3} (\rho - 1)$$

D.
$$\frac{4\pi R^4}{3}(2\rho-1)$$

参考答案: D

21. 将 $f(x) = \ln(1+x)$	按照麦克劳林	公式展开后的 x^2 项	的系数是())
A. −1 参考答案: C	B. $\frac{1}{2}$	C. $-\frac{1}{2}$	D. 1	
22. 极限 $\lim_{x\to 0} \frac{ x }{x} = 0$ A. -1 参考答案: D) B. 0	C. 1	D.	不存在
23. 函数 $f(x) = (x+1)$	$ x^2-2x-3 $ 的	」不可导点的个数是	()	
A. 3 B. 2 参考答案: C	C. 1	C. 0		
24. 设 $f(x)$ 有连续的 $x \to 0$ 时, $F'(x)$ 与 x			$f(x) = \int_0^x \left(x^2 - t^2\right) f(x)$	t)dt,且当
A.1 B.2 参考答案: C	C.3 D.4	4		
B. 连续的多元函数 C. 在有界闭区域。 一次;	定义域上至少 ¹¹ 数,在闭区域 <i>I</i> <i>D</i> 上的多元函数	可取得它的最大值、 力上至少可取得最大 改,在该区域上一定	最小值各一次; 定、最小值各一次 它可取得最大值和	和最小值各
D. 在有界闭区域。 各一次	D上连续的多元	元函数,在该区域 上	:至少取得最大(直、最小值
参考答案: D				

26. 定积分所表示的和式极限是()

$$A.\lim_{n\to\infty}\frac{b-a}{n}\sum_{i=1}^n f\left[\frac{i}{n}(b-a)\right]$$

$$B.\lim_{n\to\infty}\frac{b-a}{n}\sum_{i=1}^n f\left[\frac{i-1}{n}(b-a)\right]$$

$$C.\lim_{n\to\infty}\sum_{i=1}^n f(\xi_i)\Delta x_i(\xi_i\in[x_{i-1},\ x_i])$$

$$D.\lim_{\lambda\to 0}\sum_{i=1}^n f(\xi_i)\Delta x_i (\lambda = \max\{\Delta x_i | i = 1, 2, \dots n\}, \quad \xi_i \in [x_{i-1}, x_i])$$

- 27. 设 $f(x) = (x-a)\varphi(x)$,而 $\varphi(x)$ 在x = a连续但不可导,则 f(x)在x = a处(
- A. 连续但不可导

B. 可能可导, 也可能不可导

C. 仅有一阶导数

D. 可能有二阶导数

参考答案: C

28. 计算
$$\lim_{n\to\infty} \left(\frac{1}{n^2} + \frac{1}{(n+1)^2} + \dots + \frac{1}{(2n)^2}\right) = ($$
)

- A. 0 B. $\frac{1}{2}$ C. 1 D. ∞

参考答案: A

- 29. 从原点向 $\nu=1-\ln x$ 作切线(不是 ν 轴)求由曲线,切线和 κ 轴所围成的图形 面积时,以y为积分变量,则面积元素 dA为()

- A. $(e^{y-1}-ey)dy$ B. $(e^{1-y}-ey)dy$ C. $(e^{-y}-e^2y)dy$ D. $(e^{1-y}+e^2y)dy$

参考答案: D