## Beyond Supervised Learning

August 3, 2019

MMCi Applied Data Science Block 5, Lecture 3

Matthew Engelhard



## Supervised Learning



The learning process: find the equation that best predicts y based on x

## Supervised Learning: Classification



The learning process: find the equation that best predicts y based on x



## Supervised Learning: Classification

#### Goal:

Learn a decision boundary that separates 0s from 1s



## Supervised Learning: Classification

#### Goal:

Learn a decision boundary that separates 0s from 1s



## Supervised Learning: Regression



The learning process: find the equation that best predicts y based on x



## Supervised Learning: Regression

#### Goal:

Learn a function that predicts y based on x



## Supervised Learning: Regression

#### Goal:

Learn a function that predicts y based on x



## Unsupervised Learning



x, data/features for a subject or patient

The learning process: - find structure or patterns in the data

- describe the data or create new, similar data



# Unsupervised Learning



## Unsupervised Learning: Clustering

Goal:

Assign points to distinct groups with shared characteristics



## Unsupervised Learning: Clustering

Goal:

Assign points to distinct groups with shared characteristics



# Example of K-Means Clustering

#### Goal:

Assign points to distinct groups with shared characteristics



- sensitive to initialization
- minimize
  Σdistance²
  from points
  to centers

#### Unsupervised Learning: Dimensionality Reduction

#### <u>Goal</u>:

Describe a large number of features in terms of a smaller number of features



#### Dimensionality Reduction Example: Autoencoder

#### Goal:

- Describe a large
   number of features
   in terms of a smaller
   number of features
- Train to minimize reconstruction loss



#### Dimensionality Reduction Example: Autoencoder

#### Goal:

- Describe a large
   number of features
   in terms of a smaller
   number of features
- Train to minimize reconstruction loss



#### Dimensionality Reduction Example: Autoencoder

#### Goal:

- Describe a large
   number of features
   in terms of a smaller
   number of features
- Train to minimize reconstruction loss



# Semi-Supervised Learning

- Some points are labeled, some are not
- Try to use the unlabeled data to help us reason about the labeled data



## Active Learning

- Some points are labeled, some are not
- We can get additional labels, but at a cost
- Request labels we believe will improve our classifier the most



- Data arrives one point at a time, or in batches
- Continually improve our classifier without having to retrain from scratch with each arrival
- Uses a learning rate, much like RL



- Data arrives one point at a time, or in batches
- Continually improve our classifier without having to retrain from scratch with each arrival
- Uses a learning rate, much like RL



- Data arrives one point at a time, or in batches
- Continually improve our classifier without having to retrain from scratch with each arrival
- Uses a learning rate, much like RL



- Data arrives one point at a time, or in batches
- Continually improve our classifier without having to retrain from scratch with each arrival
- Uses a learning rate, much like RL



# Lifelong Learning

- Similar to lifelong learning; also uses a learning rate
- Data characteristics change over time
- Continually refine our classifier to adjust to these changing characteristics



# Lifelong Learning

- Similar to lifelong learning; also uses a learning rate
- Data characteristics change over time
- Continually refine our classifier to adjust to these changing characteristics



#### WE HAVE COVERED A LOT!



#### Learning Model Parameters



**Training Set** 



$$p_i = \sigma(b_0 + b_1 x_{i1} + b_2 x_{i2} + \dots + b_M x_{iM})$$

Untrained Logistic Regression Model (or "Network")



$$b = (b_0, \dots b_M)$$

Trained Model (with learned parameters)

### Split Data into Separate Groups



#### But some models can be too flexible.



#### Green boundary:

- This is overfitting

#### Black boundary:

- Balance between fit and model complexity
  - -> The black boundary is likely to perform better on new data

By Chabacano - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=3610704

# An Example...





| -1 | 5  | -5 |
|----|----|----|
| 3  | -5 | 9  |
| -1 | 5  |    |

filter

image

 $x_i^R \odot b$ 

# Saliency maps for example images

a. Malignant Melanocytic Lesion





d. Benign Melanocytic Lesion





g. Inflammatory Condition





Saliency maps show gradients for each pixel with respect to the CNN's loss function.

Darker pixels represent those with more influence.

b. Malignant Epidermal Lesion





e. Benign Epidermal Lesion





h. Genodermatosis





c. Malignant Dermal Lesion





f. Benign Dermal Lesion





i. Cutaneous Lymphoma





Q: How much does this visualization help us understand the model?



# Precisely Identify Boundaries



#### Logistic Regression for Text Classification



I passed out and Mom said I was shaking

# We now have a distributed representation of word *meaning* based on *context*



#### Recurrent Neural Network



#### Prediction task B: one label per time step



Goal: predict whether pt will become hypoxemic during the next 5 minutes



#### **GOAL:**

Learn a policy  $\pi: S \to A$ 

that maximizes expected reward over time

#### HOW?

Learn the value Q(s, a) of action a when in state s

Q(current square, down)



# Sequential Medical Decision-Making:

#### Sepsis Management

An agent

takes actions

based on the state of a system

to maximize reward

Treating sepsis: the latest evidence



A clinician

gives fluid and/or vasopressor

based on the patient's physiologic status

to maximize chance of survival

Be in touch: m.engelhard@duke.edu

#### **THANK YOU!**

