- Google colab: <u>https://colab.research.google.com/drive/1kDGHPQKIn8OABSt99zCrLzfWUp0EDrgY?</u> <u>usp=sharing</u>
- Github: https://github.com/samuelsemmler/Mackenzie-Data-Science/tree/develop/ParadigmasDeLinguagensDeProgramacaoParaCienciaDeDados/tril ha4

Emissão de carbono é uma expressão que faz referência ao lançamento de gases de efeito estufa na atmosfera, principalmente o dióxido de carbono (CO2) — ou gás carbônico.

Os gases de efeito estufa são assim chamados por reterem parte da radiação solar que chega ao planeta, tornando-o mais quente. A organização WWF Brasil explica que esse fenômeno, por si só, é natural. O problema é o volume de gases oriundo da interferência humana no meio ambiente. O excesso faz a temperatura da Terra aumentar de modo preocupante.

O aquecimento global pode ter (e tem) numerosas consequências, como aumento de eventos climáticos extremos. Tsunamis, períodos prolongados de seca e inundações fora de época são alguns exemplos. O aumento de doenças respiratórias também é um efeito possível.

Importar as bibliotecas necessárias

```
1 import requests
2 import pandas as pd
3 import matplotlib.pyplot as plt
4 import seaborn as sns
5 import numpy as np
6 from IPython.display import display_html
7
8 import sys
9 if sys.version_info[0] < 3:
10    from StringIO import StringIO
11 else:
12    from io import StringIO</pre>
```

Ler o dataset

```
1 LOCAL_EXEC = False
2
3 if LOCAL_EXEC:
4    df = pd.read_csv('data/co2_emissions_tonnes_per_person.csv')
5 else:
6    data = requests.get('https://raw.githubusercontent.com/samuelsemmler/Mackenzie-Data
7    data = StringIO(data)
8    df = pd.read_csv(data)
```

1 df.head()

	country	1799	1800	1801	1802	1803	1804	1805	1806	1807	• • •	2008	2009
0	Afghanistan	NaN		0.238	0.29								
1	Angola	NaN		1.230	1.24								
2	Albania	NaN		1.470	1.5€								
3	Andorra	NaN		6.120	6.12								
4	United Arab Emirates	NaN		20.900	18.30								

5 rows × 220 columns

Perguntas

Quais foram os 10 países que mais emitiram CO2 em 1990?

```
1 df_1990_largest = df[['country', '1990']].nlargest(10, '1990')
2 df_1990_largest.head()
```

7	1990	country	
'	36.2	Qatar	145
	32.3	Luxembourg	105
	29.3	United Arab Emirates	4
	23.3	Bahrain	17
	22.0	Estonia	54

```
1 fig = plt.figure(figsize=(20, 10))
```

² sns.barplot(

³ data=df_1990_largest,

```
4     x=df_1990_largest['country'],
5     y=df_1990_largest['1990'],
6     palette='Spectral'
7 )
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f8172caa390>

Quais foram os 10 países que menos emitiram CO2 em 1990?

```
1 df_1990_smallest = df[['country', '1990']].nsmallest(10, '1990')
2 df_1990_smallest.head()
```

```
country 1990

1 fig = plt.figure(figsize=(20, 10))
2 sns.barplot(
3    data=df_1990_smallest,
4    x=df_1990_smallest['country'],
5    y=df_1990_smallest['1990'],
6    palette='coolwarm'
7 )
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f815b68d190>

Quais foram os 10 países que mais emitiram CO2 em 2017?

```
1 df_2017_largest = df[['country', '2017']].nlargest(10, '2017')
2 df_2017_largest.head()
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f815bc90890>

Quais foram os 10 países que menos emitiram CO2 em 2017?

```
1 df_2017_smallest = df[['country', '2017']].nsmallest(10, '2017')
2 df_2017_smallest.head()
```

	country	2017	1)+						
35	Congo, Dem. Rep.	0.0243							
156	Somalia	0.0466							
11	Burundi	0.0467							
28	Central African Republic	0.0651							
167	Chad	0.0656							
<pre>1 fig = plt.figure(figsize=(20, 10)) 2 sns.barplot(3 data=df_2017_smallest, 4 x=df_2017_smallest['country'], 5 y=df_2017_smallest['2017'], 6 palette='coolwarm' 7)</pre>									

<matplotlib.axes._subplots.AxesSubplot at 0x7f815b56be10>


```
1 columns = [str(x) for x in list(range(1970, 2018))]
2 columns.insert(0, 'country')
3 df_brasil = df[columns].loc[df['country'] == 'Brazil']
4 df_brasil
```

	country	1970	1971	1972	1973	1974	1975	1976	1977	1978	 2008	2009	26
23	Brazil	1.05	1.14	1.29	1.37	1.4	1.41	1.44	1.53	1.59	 1.86	2.1	2

1 rows × 49 columns

```
1 # get list of values from 1990 to 2017
2 columns.remove('country')
3 sns.lineplot(
4    data=[df_brasil[x].item() for x in columns],
5 )
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f815b45cb10>

Conclusão

Paises que mais emitiram CO2 em 1990 e 2017

	Max CO2 1990)	Max CO2 2017					
	country	1990		country	2017			
145	Qatar	36.200000	145	Qatar	38.000000			
105	Luxembourg	32.300000	174	Trinidad and Tobago	31.300000			
4	United Arab Emirates	29.300000	95	Kuwait	23.700000			
17	Bahrain	23.300000	4	United Arab Emirates	21.400000			
54	Estonia	22.000000	17	Bahrain	19.800000			
25	Brunei	19.900000	25	Brunei	18.500000			

Os países citados acima foram os que mais emitiram CO2 no ano de 1990 e no ano de 2017, por este motivo, podemos dizer que são os que mais contribuem para mudanças climáticas no mundo.

Paises que menos emitiram CO2 em 1990 e 2017

	Min CO2 19	990	Min CO2 2017	
	country	1990	country	2017
34	Cameroon	0.004650	35 Congo, Dem. Rep.	0.024300
11	Burundi	0.042800	156 Somalia	0.046600
180	Uganda	0.043700	11 Burundi	0.046700
114	Mali	0.050300	28 Central African Republic	0.065100
130	Nepal	0.055300	167 Chad	0.065600
55	Ethiopia	0.059700	122 Malawi	0.076200
167	Chad	0.062500	148 Rwanda	0.091300
148	Rwanda	0.066700	125 Niger	0.103000
125	Niger	0.068800	180 Uganda	0.135000
14	Burkina Faso	0.069300	55 Ethiopia	0.137000

Emissao de CO2 do Brasil entre 1990 e 2017

1 df_brasil

	country	1970	1971	1972	1973	1974	1975	1976	1977	1978	 2008	2009	26
23	Brazil	1.05	1.14	1.29	1.37	1.4	1.41	1.44	1.53	1.59	 1.86	2.1	2

Compreendendo dados de 1970 a 2017, é possível distinguir que a curva de emissões brasileiras mudou de trajetória algumas vezes nas últimas décadas.

No período de 1990 a 2004, houve um crescimento intenso das emissões. Foram os anos de aumento expressivo no desmatamento da Amazônia, mas também os outros setores cresceram. Entre 2004 e 2010, uma mudança de trajetória em que o combate ao desmatamento surte efeito, e as emissões caem. De 2010 até hoje, temos o cenário atual: emissões estagnadas mais ou menos no mesmo patamar.

Produtos pagos do Colab - Cancelar contratos

✓ 0s conclusão: 23:46