Diseño Digital Moderno

Álgebra booleana y compuertas lógicas

M.I. Bryan Emmanuel Alvarez Serna

Facultad de Ingeniería Universidad Nacional Autónoma de México

"Lo que con mucho trabajo se adquiere, más se ama"

Aristóteles

- Álgebra booleana
- 2 Compuertas

Álgebra booleana

Axioma

Propiedad dentro de un conjunto que se asume como cierta sin probarse.

Por lo tanto, $\mathcal S$ es un conjunto de dos elementos $\{0, 1\}$.

El conjunto $\mathcal S$ tiene los siguientes axiomas, considerando que \forall $A,B\in\mathcal S$.

- **1** Es cerrado si, y sólo si A + B y $A \cdot B \in \mathcal{S}$.
- 2 Si $A = 0 \iff A \neq 1$.
- 3 Si A = 0, su valor negado sería $\overline{A} = 1$.
- 4 Si $A = B = 1 \implies A \cdot B = 1$, en caso contrario $A \cdot B = 0$.
- **6** Si $A = B = 0 \Longrightarrow A + B = 0$, en caso contrario A + B = 1.

Nota

De estos axiomas surgen las tres operaciones básicas suma (AND), multiplicación (OR) y negación (NOT).

Álgebra booleana

Teorema

Proposición matemática que no es completamente obvia y debe ser demostrable a partir de los axiomas u otros teoremas ya demostrados.

Considerado que $A \in \mathcal{S}$.

•
$$A \cdot 0 = 0$$

$$A + 0 = A$$

•
$$A \cdot \overline{A} = 0$$

•
$$A + 1 = 1$$

•
$$A \cdot A = A$$

•
$$A + \bar{A} = 1$$

•
$$A \cdot 1 = A$$

$$\bullet \quad A + A = A$$

•
$$\overline{\overline{A}} = A$$

Nota

Estos teoremas también se conocen como teoremas de una sola variable.

Principio de dualidad

Es una propiedad que nos permite transformar cualquier teorema a un segundo teorema únicamente cambiando (+) por (\cdot) y 0 por 1.

Nombre	Teorema	Dual
Conmutatividad	A + B = B + A	$A \cdot B = B \cdot A$
Asociatividad	(A + B) + C = A + (B + C)	$(A \cdot B) \cdot C = A \cdot (B \cdot C)$
Distributividad	$A + B \cdot C = (A + B) \cdot (A + C)$	$A \cdot (B+C) = A \cdot B + A \cdot C$
Absorción	$A + (A \cdot B) = A$	$A \cdot (A+B) = A$
Combinación	$(A+B)\cdot(A+\overline{B})=A$	$A \cdot B + A \cdot \overline{B} = A$
Cancelación	$A + \overline{A} \cdot B = A + B$	$A \cdot (\overline{A} + B) = A \cdot B$
Consenso	$A \cdot C + \overline{A} \cdot B \cdot C = A \cdot C + B \cdot C$	$A \cdot B + \overline{A} \cdot C + B \cdot C = A \cdot B + \overline{A} \cdot C$
De Morgan	$\overline{A + B} = \overline{A} \cdot \overline{B}$	$\overline{A \cdot B} = \overline{A} + \overline{B}$

Prioridad de operadores

$$() \rightarrow NOT \rightarrow AND \rightarrow OR$$

Demostración

Ejemplo

Demostrar el teorema de absorción A + (AB) = A.

$$A + (AB) = A(1 + B)$$
 Distribución
 $\Rightarrow A + AB = A(1)$ Identidad
 $\therefore A + AB = A$
Por dualidad $A(A + B) = A$

Con tabla de verdad.

A	В	AB	A + (AB)
0	0	0	0
0	1	0	0
1	0	0	1
1	1	1	1

Una función booleana o lógica se define como

$$f(A, B, C) = f \quad \forall A, B, C \in \mathscr{S}.$$

Estas funciones f se pueden expresar de tres formas diferentes.

- Forma algebraica.
- 2 Tablas de verdad.
- 3 Forma canónica.
 - · Mintérminos.
 - Maxtérminos.

Ejemplo

Simplificar la función $f = AB + A\overline{B} + \overline{A}B$, y obtener su tabla de verdad.

$$f = A(B + \overline{B}) + \overline{A}B$$
$$f = A + \overline{A}B$$

Distributiva y complemento Identidad

$$f = AB + A\overline{B} + \overline{A}B = A + \overline{A}B$$

A	B	$\overline{A}B$	f
0	0	0	0
0	1	1	1
1	0	0	1
1	1	0	1

Ejemplo

Simplificar la función $f = (A + \overline{B})(A + B)$ y obtener su tabla de verdad.

$$f = \overline{AB}(A+B) = \overline{A}B(A+B)$$
 De Morgan
$$f = (\overline{A}BA) + (\overline{A}BB) = (\overline{A}AB) + (\overline{A}BB)$$

$$\overline{A} \cdot A = 0 \text{ y } B \cdot B = B$$

$$f = \overline{A}B$$

De Morgan
$$\overline{A} \cdot A = 0$$
 y $B \cdot B = B$

$$f = \overline{(A + \overline{B})}(A + B) = \overline{A} B$$

$$\begin{array}{c|ccc}
A & B & f \\
\hline
0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 0 \\
1 & 1 & 0
\end{array}$$

Ejemplo

Obtener la función \overline{f} de la función $f = \overline{(A + \overline{B})}(A + B)$.

$$f = \overline{(A + \overline{B})}(A + B)$$

$$f = \overline{A}B(A + B)$$

$$f = \overline{A}BA + \overline{A}BB$$

$$\overline{A} + B = \overline{A}B$$

$$\overline{f} = A + \overline{B}$$

A	В	f	\bar{f}
0	0	0	1
0	1	1	0
1	0	0	1
1	1	(0)	√]

Ejemplo

Obtener la función f a partir de la tabla de verdad y simplificarla.

$$\begin{array}{c|cccc} A & B & f \\ \hline 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \end{array}$$

$$f = \overline{A}\overline{B} + \overline{A}B + A\overline{B}$$

$$f = \overline{A}\overline{B} + \overline{A}B + A\overline{B}$$

$$f = \overline{A}(\overline{B} + B) + A\overline{B}$$

$$f = \overline{A}(\overline{B} + B) + A\overline{B}$$

$$f = \overline{A} + A\overline{B}$$

$$\overline{B} + B = 1$$

 $f = \overline{A}\overline{B} + \overline{A}B + A\overline{B} = \overline{A} + A\overline{B}$

Ejemplo con 3 variables

Reducir la función $f = \overline{A + B} \overline{A + C} + BC$.

$$f = \overline{A + B} \overline{A + C} + BC$$
 De Morgan
$$f = \overline{A} \overline{B} \overline{A} \overline{C} + BC$$

$$f = \overline{A} \overline{A} \overline{B} \overline{C} + BC$$

$$A \cdot A = A$$

$$f = \overline{A} \overline{B} \overline{C} + BC$$

$$f = \overline{A}\overline{B}\overline{C} + BC$$

Ejemplo con 4 variables

Reducir la función $f = ADBC + AD\overline{B}C + ADB\overline{C} + AD\overline{B}\overline{C}$

$$f = ABCD + A\overline{B}CD + AB\overline{C}D + A\overline{B}\overline{C}D$$

$$f = ACD(B + \overline{B}) + A\overline{C}D(B + \overline{B})$$

$$f = AD(C + \overline{C}) = AD$$

$$f = AD$$

Ejemplo con 4 variables

Simplificar la función
$$f = ABCD + ABC\overline{D} + A\overline{B}CD + A\overline{B}C\overline{D} + \overline{A}BCD$$

$$f = AC + BCD$$

Ejemplo con 4 variables

Simplificar la función $f = ABCD + ABC\overline{D} + A\overline{B}CD + A\overline{B}C\overline{D} + \overline{A}BCD$

$$f = ABCD + ABC\overline{D} + A\overline{B}CD + A\overline{B}C\overline{D} + \overline{A}BCD$$

$$f = ABCD + ABC\overline{D} + A\overline{B}CD + A\overline{B}C\overline{D} + \overline{A}BCD + ABCD \quad \text{para aplicar } A + A = A$$

$$f = ABC(D + \overline{D}) + A\overline{B}C(D + \overline{D}) + BCD(A + \overline{A})$$

$$f = ABC + A\overline{B}C + BCD$$

$$f = AC(B + \overline{B}) + BCD = AC + BCD$$

f = AC + BCD

16 / 39

Otra forma de expresar funciones u obtener funciones es por mintérminos (m_i) y maxitérminos (M_i) .

- Los m_i son una SOP de las salidas que valen 1.
- Los M_i son un POS de las salidas que valen 0.
- Suma de productos (SOP, siglas de *sum of products*) $f = AB + ... + \overline{AB}$.
- Producto de sumas (POS, siglas en inglés de *product of sums*) $f = (A + B)...(\overline{A} + \overline{B})$.

\boldsymbol{A}	B	m_i	M_i
0	0	$\bar{A}\bar{B}$	A + B
0	1	$\bar{A}B$	$A + \overline{B}$
1	0	$A\overline{B}$	$\overline{A} + B$
1	1	AB	$\overline{A} + \overline{B}$

Condiciones

- En los m_i se niegan los 0.
- En los M_i se niegan los 1.
- Los m_i se representan $\sum (m_0, ..., m_x)$.
- Los M_i se representan $\prod (M_0, ..., M_x)$.

Ejemplo

Obtener la función simplificada de la siguiente tabla de verdad usando minitérminos y maxtérminos.

$$\begin{array}{c|cccc} A & B & f \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \end{array}$$

$$f = \sum (1,3) = \overline{A}B + AB$$

$$f = B(\overline{A} + A) = B$$

$$f = \prod (0,2) = (A+B)(\overline{A} + B)$$

f = B por combinación

$$f = B$$

Ejemplo

Obtener la *f* simplificada con la siguiente tabla de verdad.

A	B	C	f
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

$$f = \sum (1,3,5,7) = \overline{A}\overline{B}C + \overline{A}BC + A\overline{B}C + ABC$$

$$f = \overline{B}C(\overline{A} + A) + BC(\overline{A} + A)$$

$$f = \overline{B}C + BC = C(\overline{B} + B)$$

$$f = C$$

Ejercicio Obtener la función por maxitérminos.

Ejemplo

Obtener la f simplificada con la siguiente tabla de verdad.

\boldsymbol{A}	B	C	f
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

$$f = \prod (0,2,4,6)$$

$$f = (A+B+C)(A+\overline{B}+C)(\overline{A}+B+C)(\overline{A}+\overline{B}+C)$$

$$f = \dots$$

Ejemplo

Obtener la tabla de verdad de la función f(A, B, C) = AB + C.

$$f = AB(C + \overline{C}) + C(A + \overline{A})(B + \overline{B})$$

$$f = ABC + AB\overline{C} + ABC + A\overline{B}C + \overline{A}BC + \overline{A}BC$$

$$f = ABC + AB\overline{C} + A\overline{B}C + \overline{A}BC + \overline{A}BC$$

$$f = \sum (1, 3, 5, 6, 7)$$

\boldsymbol{A}	B	C	f
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Ejemplo

Obtener la tabla de verdad de la función $f(A, B, C) = (A + C)(\overline{B} + A)(B + C)$.

$$f = (A+C)(\overline{B}+A)(B+C)$$

$$f = (A+C+0)(\overline{B}+A+0)(B+C+0)$$

$$f = (A+C+B\overline{B})(\overline{B}+A+C\overline{C})(B+C+A\overline{A})$$

$$f = (A+B+C)(A+\overline{B}+C)(A+\overline{B}+C)...$$

$$...(A+\overline{B}+\overline{C})(A+B+C)(\overline{A}+B+C)$$

$$f = (A+B+C)(A+\overline{B}+C)(A+B+C)$$

$$f = (A+B+C)(A+B+C)(A+B+C)$$

$$f = (A+B+C)(A+B+C)(A+B+C)$$

$$1 0 0 0$$

$$1 1 1$$

$$1 1 0 1$$

$$1 1 1 1 1$$

- 1 Álgebra booleana
- 2 Compuertas

Compuertas básica

Las compuertas son dispositivos electrónicos construidos a partir de transistores y su función es realizar operaciones booleanas.

A	В	Y	
0	0	0	
0	1	0	
1	0	0	
1	1	1	
$Y = A \cdot B$			

$$\begin{array}{c|cccc}
1 & 0 & 1 \\
1 & 1 & 1
\end{array}$$

$$Y = A + B$$

$$\begin{array}{c|c}
A & Y \\
\hline
0 & 1 \\
1 & 0
\end{array}$$

 $Y = \overline{A}$

Compuertas básicas

Ejemplo

Representar con compuertas la función $Y = AB + \overline{B}$.

Compuertas básicas

Ejemplo

Representar con compuertas la función $Y = AB + \overline{B}$.

Compuertas complementarias

Combinan las operaciones AND y OR con NOT.

_A	В	Y	
0	0	1	
0	1	1	
1	0	1	
1	1	0	
$Y = \overline{A \cdot B}$			

A	D	<u> </u>	
0	0	1	
0	1	0	
1	0	0	
1	1	0	

 $Y = \overline{A + B}$

Compuerta suplementaria

Existe una compuerta suplementaria XOR u OR exclusiva y su complemento XNOR.

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	0

77 A - D				3.7	A -	ь	
	1	1	0		1	1	1
	1	0 1	1		1	1 0 1	0
	0	1	1		0	1	0
		U			U	U	1

$$Y = \overline{A}B + A\overline{B}$$

$$A \longrightarrow Y$$

$$B \longrightarrow Y$$

XOR

$$Y = A \ominus B$$

$$Y = \overline{A}\overline{B} + AB$$

$$A \longrightarrow A$$

Λ

Λ

En resumen

Teoremas de De Morgan

Universalidad de NAND

Universalidad de NOR

Ejercicio

Obtener la función F y simplificarla si es posible.

Entradas

Pull up

Pull down

Salidas

Resistencia para LED.

$$Vcc = V_R + V_{LED}$$

$$V_R = Vcc - V_{LED}$$

$$V_R = IR$$

$$\therefore R = \frac{Vcc - V_{LED}}{I}$$

Circuito integrados

Los circuitos integrados (IC) son un sistema que combina elementos pasivos y activos (transistores) para realizar operaciones booleanas con señales digitales. Los IC integran sus elementos en una capa semiconductora dentro de un encapsulado.

Las tecnologías de IC más usadas son:

- TTL: Transistor-Transistor Logic y se identifican con combinación de números y letras empezando con 74.
- CMOS: Complementary Metal-Oxid Semiconductor y se identifican con la familia 4000.

Datasheet

DM7400 Quad 2-Input NAND Gates

General Description

This device contains four independent gates each of which performs the logic NAND function.

Connection Diagram

Function Table

Inp	Inputs			
Α	В	Y		
L	L	н		
L	н	н		
н	L	н		
н	Н	L		

 $Y = \overline{AB}$

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
V _{CC}	Supply Voltage	4.75	5	5.25	V
V _{IH}	HIGH Level Input Voltage	2			V
V _{IL}	LOW Level Input Voltage			0.8	V
он	HIGH Level Output Current			□0.4	mA
OL	LOW Level Output Current			16	mA
TA	Free Air Operating Temperature	0		70)C

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Switching Characteristics

at $V_{CC} = 5V$ and $T_{\Delta} = 25)C$

Symbol	Parameter	Conditions	Min	Max	Units	
t _{PLH}	Propagation Delay Time	C _L = 15 pF	22		ns	
	LOW-to-HIGH Level Output	R _L = 400		22	115	
t _{PHL}	Propagation Delay Time			15	ns	
	HIGH-to-LOW Level Output			15	115	

Datasheet

HCF4011B

QUAD 2 INPUT NAND GATE

- PROPAGATION DELAY TIME tpp = 60ns (Typ.) at Vpp = 10V
- BUFFERED INPUTS AND OUTPUTS
 STANDARDIZED SYMMETRICAL OUTPUT
- CHARACTERISTICS
- QUIESCENT CURRENT SPECIFIED UP TO 20V
- 5V. 10V AND 15V PARAMETRIC RATINGS
- INPUT LEAKAGE CURRENT
- I_I = 100nA (MAX) AT V_{DD} = 18V T_A = 25°C 100% TESTED FOR QUIESCENT CURRENT
- MEETS ALL REQUIREMENTS OF JEDEC JESD13B " STANDARD SPECIFICATIONS
- FOR DESCRIPTION OF B SERIES CMOS DEVICES"

DESCRIPTION

The HCF4011B is a mondithic integrated circuit fabricated in Metal Oxide Semiconductor technology available in DIP and SOP packages. The HCF4011B GUAD 2 INPUT NAND GASTE provides the system designer with direct implementation of the NAND function and supplement the existing family of CMOS gates. All inputs and outputs are buffered.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V _{DD}	Supply Voltage	3 to 20	V
VI	Input Voltage	0 to V _{DD}	V
T _{op}	Operating Temperature	-55 to 125	°C

DYNAMIC ELECTRICAL CHARACTERISTICS ($T_{amb} = 25^{\circ}C$, $C_{L} = 50pF$, $R_{L} = 200K\Omega$, $t_{r} = t_{f} = 20 ns$)

		Test Condition		Value (*)			Unit
Symbol	Parameter	V _{DD} (V)		Min.	Тур.	Max.	
t _{PLH} t _{PHL}	Propagation Delay Time	5			125	250	
		10			60	120	ns
		15			45	90	
t _{TLH} t _{THL}	Output Transition Time	5			100	200	
		10			50	100	ns
		15			40	80	

(*) Typical temperature coefficient for all Vpp value is 0.3 %/°C.

Tarea 2

Resolver los siguientes ejercicios.

- ① Simplificar la función f = ABC ++ $AB\overline{C} + A\overline{B}\overline{C} + \overline{A}B\overline{C} + \overline{A}\overline{B}\overline{C}$.
- ② Obtener la función simplificada de $f(A, B, C) = \sum (0, 4, 7)$ y su tabla de verdad.
- **3** Representar la tabla de verdad de la función $f = A\overline{C} + BC$.
- Usando compuertas básicas, representar las compuertas XOR y XNOR.

6 Obtener *f* por medio de mintérminos y maxitérminos a partir de la siguiente tabla de verdad.

P	A = E	3 C	$\mid f$
() (0	1
(0	1	1
() 1	. 0	0
() 1	. 1	0
]	0	0	0
]	0	1	1
]	1	. 0	1
]	1	. 1	1