Drone Image generation using GAN

(Generative Adversarial Networks)

Tamotsu Tanabe SightLine Applications inc.

What is GAN?

- Generative Adversarial Network
- Generates images using NN
- Ian Goodfellow, et al, (2014)

Variety of GANs: CycleGAN (2017)

zebra → horse

horse \rightarrow zebra

Variety of GANs: DiscoGAN (2017)

(b) Handbag images (input) & Generated shoe images (output)

Variety of GANs: PGGAN (2018), StyleGAN (2019)

How does GAN work?

Forger (Generator)

GAN Implementation

GAN Loss function

$$\min_{G} \max_{D} V(D,G)$$

$$V(D,G) = \mathbb{E}_{x \sim p_{data}(x)}[\log D(x)] + \mathbb{E}_{z \sim p_z(z)}[\log(1 - D(G(z)))]$$

D(x) = probability that Discriminator judges x is real (0..1)

G(z) = image generated by Generator.

D gets better: \rightarrow D(x) \oslash , D(G(z)) \hookrightarrow \rightarrow V \oslash

G gets better: \rightarrow D(G(z)) \nearrow

 $\rightarrow V \lor$

My Project -- generates drone images with GAN

- Our company have a product to classify if an object in Video is a drone or not.
- It is based on a simple NN classifier (using Caffe)
- It works relatively well considering the limited number of training images.
- Having more images will improve the accuracy.

Implementation

- Python Keras + TensorFlow
- DCGAN: Deep Convolutional GAN -- Using Convolution layer

Training images (~800 images)

Training...

(another slide)