

BABI PENGENALAN UNIT DAN KOMPONEN

SPESIFIKASI, FUNGSI DAN TUGAS UNIT 1.1.

Gambar 1.1 : OHT CAT 773 E

Spesifikasi 1.1.1.

	Flat Floor		Dual-slope	
A	8637 mm	28° 4"	8535 mm	28' 0"
В	1802 mm	5' 11"	1805 mm	5" 11"
С	6493 mm	21' 4"	6400 mm	21' 0"
D	8815 mm	28' 11"	8787 mm	28° 10"
E	3787 mm	12' 5"	3773 mm	12' 5"
F	661 mm	2" 2"	676 mm	2" 2"
G	551 mm	1' 10"	566 mm	1, 11,
Н	2870 mm	9' 5"	2782 mm	9' 1"
I	4424 mm	14' 6"	4393 mm	14' 5"
J	4350 mm	14" 4"	4350 mm	14" 4"

* Operating width to r.h. mirror

MACHINE SPESIFICATION		
ITEM	UKURAN	OHT CAT 773 E
1. Engine		
V Engine	-	12 silinder turbo charger dengan after cooler
Type engine	3412E	Bahan bakar system Hidrolik Electronic Unit
		Injection
Gross Power /	710 Hp	
Tenaga Kotor	/10 Hb	
Flywheel Power	650 Hp	
Weights unit		
Gross Machine	99300 kg	
weight	99500 kg	
Payload standard	60 ton	

2. Transmissi					
Transmisi			Buatan caterpillar 7 kecepatan gigi maju dan 1		
			kecepatan gigi mundur.		
1ST	10,5 km/jam		Digerakkan Torque converter dan lock up clucth		
2nd	14,3 km	n/jam	Tenaga penggerak direct drive (lock up clutch)		
3nd	19,3 km	n/jam	Tenaga penggerak direct drive (lock up clutch)		
4nd	26,0 km	n/jam	Tenaga penggerak direct drive (lock up clutch)		
5nd	34,9 km	n/jam	Tenaga penggerak direct drive (lock up clutch)		
6nd	46,6 km	n/jam	Tenaga penggerak direct drive (lock up clutch)		
7nd	60,4 km	n/jam	Tenaga penggerak direct drive (lock up clutch)		
R/Mundur	11,9 k	m/jam	Digerakkan oleh Torque converter		
3. Steering					
Kemudi			Full hydraulic power steering, system kemudi dilengkapi Kemampuan kemudi darurat dengan menggunakan tenaga motor untuk emergency steering untuk menggerakan pompa hidrolik steering dan		
			bekerja secara otomatis.		
variable Pump					
	- 2 rod silinder , Double acting				
- Sudut steering kekiri dan kekanan 31,8 °					
4. Brake					
Rem roda belakang			Multiple disc brake didinginkan dengan oli dan diaktifkan kombinasi antara udara dengan hidrolik.		
Rem roda depan			Caliper disc brake memakai system rem cakram tidak didinginkan dengan oli.		
a. Reterder brake : Penggunaan pada RPM 1200					
b. Secondary brake: Mengaktifkan menggunakan tenaga spring					
Melepas / Release menggunakan tenaga hidrolik.					
switch					
front brake cut off pada posisi off					

c. Parkin	g brake : Mengaktifkan menggunakan tenaga spring	
	Melepas / release menggunakan tenaga hidrolik	
5. Body l	noist (Hidrolik system)	
-	2 rod silinder. Single acting.	
-	Kecepatan dump naik dengan RPM tinggi : 15 detik	
-	Kecepatan dump turun : 16 detik.	
6. Monitoring Sistem		
-	Caterpillar Monitoring Sistem (CMS)	
7. Cabin		

ROPS (Roll Over Protection Struckture)

REFFILL CAPACITY			
ITEM	KAPASITAS	SATUAN	OIL VISCOSITIES
Fuel (Solar)	700	L	_
Cooling system	151	L	_
Transmision tank	72	L	SAE 30
Difrential & final drive capacity	155	L	SAE 60
Steering tank capacity	34	L	SAE 30
Steering system-inc tank capacity	60	L	SAE 30
Tank for hoist, converter & brake	133	L	SAE 10W
Sytem for hoist,converter & brake	307	L	SAE 10 W

Fuel Consumption			
Low	Medium	High	

*Sumber Data OMM OHT CAT 773 E

1.1.2 Fungsi dan Tugas Unit

Suatu alat angkut yang digunakan untuk mengangkut material pada jarak pendek, menengah, hingga jarak jauh (500 meter Up). Dalam pertambangan OHT 777 D digunakan untuk mengangkut OB (Over Burden), coal (Batubara), Fuel, ataupun sebagai water truck.

1.2 **BASIC ENGINE DAN BASIC HYDRAULIC**

1.2.1. **Basic Engine**

Gambar 1.3: V Engine OHT CAT 773 E

Arti kode engine:

1.2.1.1. Definisi Engine dan Machine

Engine adalah suatu alat yang menghasilkan tenaga melalui proses tertentu, yaitu proses thermis atau panas dirubah menjadi tenaga mekanis.

Machine suatu unit secara keseluruhan, yang mencakup dari engine sampai power train, sehingga alat itu bisa bergerak / jalan.

1.2.1.2. **Fungsi Engine**

Fungsi engine sebagai sumber tenaga penggerak utama (mekanis) untuk diteruskan ke penggerak lainnya.

1.2.1.3. Prinsip Kerja Engine Diesel 4 Langkah

Udara yang dimasukkan kedalam silinder liner, kemudian dikompresikan mencapai tekanan 30 – 40 kg/cm² dan suhunya naik antara 300 – 400 °C, kemudian disemprotkan bahan bakar (solar) sehingga terjadi pembakaran, yang menghasilkan tekanan sebesar 60 -80 kg/cm² dengan suhu sekitar 600 – 800 °C.

Gambar 1.4: 4 langkah engine diesel

A. Intake stroke	Intake valve terbuka, exhaust valve tertutup. Piston bergerak turun dari TDC ke BDC, dan menghisap udara dari intake manifold kedalam ruang bakar (cylinder).
B. Compressio n stroke	Intake valve dan exhaust valve dalam keadaan tertutup. Setelah piston turun sampai BDC, piston akan kembali naik untuk memampatkan udara yang telah dihisap tadi. Temperatur pada saat itu bisa mencapai sekitar 500 – 600 °C
C. Power stroke	Intake valve dan exhaust valve masih dalam keadaan tertutup. Setelah piston mencapai titik yang ditentukan (beberapa derajat sebelum TDC), kemudian solar disemprotkan ke dalam ruang bakar dan terjadilah pembakaran (power) karena udara yang dikompresikan tadi mempunyai suhu tinggi dan bercampur dengan bahan bakar.
D. Exhaust stroke	Setelah langkah power, piston kembali turun dari TDC ke titik BDC. Kemudian naik kembali dari BDC ke TDC untuk membuang sisa-sisa pembakaran melalui exhaust valve. Sedangkan intake valve tetap tertutup.

1.2.1.4. **System Engine**

1.2.1.4.1. Air Intake dan Exhaust System

Air Intake dan Exhaust System adalah sistem yang terdiri dari berbagai komponen yang mengatur aliran udara, sehingga udara tersebut masuk ke ruang bakar dan keluar sebagai gas buang sisa pembakaran. Ada 3 sistem pemasukan udara yaitu Naturaly aspirated, Turbocharger Aspirated dan Turbocharger with aftercooler aspirated.

A. **Naturally Aspirated**

	Keterangan:
1.	Pre cleaner
2.	Air cleaner
3.	Intake valve
4.	Piston
5.	Cylinder liner
6.	Exhaust valve
7.	Muffler
8.	Exhaust pipe
9.	Dust indicator
Α	Combustion chamber

Gambar 1.5: Naturally Aspirated

В. **Turbocharger Aspirated**

	<u>Keterangan</u>
1.	Precleaner
2.	Air cleaner
3.	Intake valve
4.	Piston
5.	Cylinder linier
6.	Exhaust valve
7.	Muffler
8.	Exhaust pipe
9.	Dust indicator
10.	Turbochaeger

Gambar 1.6: Turbocharger Aspirated

C. Turbocharger with Aftercooler Aspirated

	Keterangan:
1.	Precleaner
2.	Air cleaner
3.	Intake valve
4.	Piston
5.	Cylinder linier
6.	Exhaust valve
7.	Muffler
8.	Exhaust pipe
9.	Dust indicator
10.	Turbocharger
11.	After cooler
A.	Combustion chamber

Gambar 1.7: Turbocharger With After Cooler Aspirated

1.2.1.5. Turbocharger

Turbocharger adalah Meningkatkan jumlah udara yang masuk ke dalam ruang bakar sehingga lebih banyak bahan bakar yang terbakar dan tenaga engine meningkat dengan tanpa merubah bentuk kontruksi dari engine.

Gambar 1.8: Turbocharger

Turbocharger ini mempunyai dua impeller, yaitu turbin dan blower. Turbin di putar oleh gas buang dengan kecepatan yang sangat tinggi. Pada ujung poros turbin ini dipasang blower dengan ikatan nut (mur), sehingga putaran blower akan sama dengan putaran turbin.

Putaran dari turbocharger ini berkisar antara 50.000 – 150.000 RPM. Pada tengah – tengah rumah turbin dilengkapi dengan saluran oil untuk pelumasan bearing. Pelumasan ini menggunakan oil engine.

1.2.1.6. After Cooler

Engine tertentu dilengkapi dengan sebuah aftercooler tujuan (kegunaan) aftercooler ini untuk mendinginkan udara dengan air atau udara sebagai media pendingin. Udara didinginkan karena adanya panas akibat dari turbocharger sebelum masuk ke ruang pembakaran, sehingga molekul-molekul udara menjadi lebih padat. Manfaat aftercooler untuk menaikkan power engine sampai 5 - 10 %, selain itu, aftercooler digunakan untuk mengurangi oksidasi nitrogen pada gas buang.

1.2.1.7. **Fuel System**

Fuel system adalah rangkaian komponen yang menyalurkan bahan bakar ke ruang bakar dengan jumlah, tekanan dan waktu tertentu sehingga terjadi proses pembakaran. Fuel system yang terdapat pada unit OHT 773 E:

A. Electronic Unit Injector (HEUI)

Gambar 1.9: Skema HEUI

NO	KOMPONEN	FUNGSI	
1.	Fuel tank	Sebagai tempat penampungan bahan bakar,	
		pengendapan kotoran dan kondensasi.	
		Untuk memisahkan bahan bakar dengan air dan	
2.	Primary fuel filter	menyaring kotoran dari tangki sebelum masuk ke	
		ruang bakar.	
3.	Fuel transfer pump	Untuk mensuplai bahan bakar dari tanki ke	
		sistem.	
4.	ECM (Electronic control	Untuk mensuplai bahan bakar ke system	
T.	module).	dengan	
		pressure dan kapasitas tertentu.	
		Selain sebagai penyaring kotoran	
6.	Secondary fuel filter	Tempat penampungan bahan bakar	
		bertekanan sebelum	
		Diinjeksikan	
7.	Fuel priming pump	Digunakan untuk mengisi filter, setelah	
/ .	r der prinning pump	dilakukan	
		penggantian.	
8.	Injector	Untuk menyemprotkan dan mengabutkan	
	•	bahan	
		bakar dengan tekanan tinggi ke ruang bakar.	
9.	Retrun fuel	Saluran (pipa), untuk mengembalikan fuel dari sisa	
		pembakaran di injector.	

1.2.1.8. **Lubricating System**

Lubricating system adalah sistem yang terdiri dari berbagai komponen yang mengatur aliran oli pelumas keseluruh komponen engine yang bergerak dan membutuhkan pelumasan sehingga engine dapat bertahan lama.

10 : Skema lubricating system

NO	KOMPONEN	FUNGSI
1.	Oil Pan	Tempat penampung dan pendingin oli.
2.	Strainer	Penyaring oli dari kotoran yang kasar.
3.	Oil Main Pump	Sebagai pompa oli utama, memberikan oli bertekanan dari oil Pan ke system / bagian-bagian yang perlu di lumasi.
4.	Scavenging Pump	Membantu memompakan oli pada waktu unit mendaki maupun menurun sehingga selalu ada pelumasan pada lubrication system.
5.	Oil Filter	Membersihkan oli dari kotoran dan partikel lain yang timbul selama sirkulasi sehingga dapat memperpanjang daya tahan umur engine
6.	Oil Cooler	Untuk mendinginkan oli dengan perantara sirkulasi air pendingin atau dengan media pendinginannya adalah air.
7.	Regulator Valve/ Relief Valve	Mengatur tekanan oli dalam system dengan tekanan yang di tentukan 2 s/d 5 kg/cm².
8.	Safety Valve	Menjadi by pass waktu oil filter kotor / buntu atau menjaga oli tetap ada dalam system bila di lengkapi dengan caution lamp oil filter. Lampu akan menyala bila filter buntu.
9.	Oil Pressure Gauge	Sebagai petunjuk tekanan oli mesin.
10.	Main gallery	Sebagai tempat bertemunya oli dan mendistribusikan oli pada komponen engine.
11.	Bypass Filter	Menyaring oli dari oil pan melalui main gallery dan sebagai pendingin oli karena tempatnya diluar engine.
12.	Oli	 Membentuk lapisan film minyak. Sebagai pendingin. Sebagai penyekat. Sebagai pembersih. Sebagai pencegah anti karat. Sebagai media pemindah tenaga (hydraulic system) Sebagai media pemindah daya pada torque converter.

Viscositas Minyak Pelumas

Viscositas menunjukkan derajat kekentalan minyak pelumas, semakin besar nilai viscositas minyak pelumas, menunjukkan oli semakin kental.

Viscositas dinyatakan SAE (Seociety of Automatic Engineer). Contoh SAE 10, SAE 40 dll.

Klasifikasi Minyak Pelumas

Klasifikas dinyatakan API Service (American Petrolium Institute). Klasifikasi menunjukkan kwalitas oli.

1.2.1.9. Cooling System

Sistem yang terdiri dari berbagai komponen yang mengatur aliran pendingin keseluruh komponen engine yang menbutuhkan pendingin sehingga suhu engine selama bekerja dapat tetap stabil pada suhu yang telah di tentukan dan system ini juga dapat mengatur pencapaian suhu kerja engine. Suhu kerja engine normal adalah 70-90°C.

Gambar 1.11: Skema cooling system

NO	KOMPONEN	FUNGSI
1.	Radiator	Tempat menampung air pendingin engine dan pendingin air tersebut dengan bantuan udara luar.
2.	Fan	Untuk menghembuskan udara ke arah sirip – sirip radiator agar sirkulasi udara akan lebih sempurna, sehinggas air panas di sirip – sirip radiator cepat dingin.

3.	Thermostat	Untuk mengatur air bekas pendinginan ke radiator atau ke engine lagi hingga temperatur air pendingin tetap konstan 70–90 °C atau mempercepat temperatur kerja engine saat bekerja maupun mencegah engine overheat.
4.	Water pump	Mensuplai / memompakan air dengan aliran yang bertekanan

		ke dalam system pendingin air.
5.	Water temperature gauge	Untuk mengetahui suhu air pendingin engine
6.	Water manifold	Menampung / membagi air ke bagian-bagian yang memerlukan pendinginan.
7.	Corrosion resistor	Mencegah korosi, sebagai pembersih endapan karat pada sistem pendingin air.
8.	Oil cooler	Mendinginkan oli baik oli engine, transmissi maupun oli hidrolik dengan media pendingin
9.	Radiator Cup:	
	a. Pressure Valve	Membebaskan tekanan lebih yang ada didalam sistem pendinginan. Jika tekanan didalam sistem naik 0,75 kg/cm² diatas tekanan udara luar.
	b. Vacum Valve	Mencegah kevakuman didalam radiator, jika tekanan dalam sistem pendingin kurang/lebih kecil dari tekanan udara luar maka vacuum valve akan terbuka.
10.	Oil cooler	Mendinginkan oli baik oli engine, transmissi maupun oli hidrolik dengan media pendingin air.

1.2.1.10. Electric System

Untuk menunjang kerja unit dibutuhkan tenaga listrik karena beberapa komponen atau system tergantung pada arus listrik, sistem kelistrikan pada unit antara lain :

A. Strarting System

Starter

B

B

C

Safety

Relay

Starter Switch

Sistem vang berfungsi sebagai penggerak awal untuk menghidupkan engine.

Gambar 1.12 : Skema starting system

Komponen yang digunakan starting sistim:

NO	KOMPONEN	FUNGSI
1.	Alternator	Fungsinya sebagai sumber listrik untuk mensuplay ke battery
		pada saat engine hidup dengan merubah energi mekanik
		menjadi energi elektrik
2.	Battery	Fungsinya sebagai penyimpan arus listrik dengan merubah
		energi kimia menjadi tenaga listrik
3.	Battery relay	Fungsinya untuk memutus dan menghubungkan arus battery
		dengan body secara automatis dan mencegah atau memperkecil
		hubungan singkat bila battery tidak digunakan
4.	Safety relay	Sebagai pengaman starting motor. Pada saat engine hidup,
		starting motor tidak bisa difungsikan
5.	Regulator	Fungsinya untuk menjaga agar arus yang keluar dari alternator
		tetap konstan pada saat engine dalam putaran rendah atau
		putaran tinggi
6.	Starting switch	Fungsinya untuk menghubungkan atau memutuskan arus listrik
7.	Starting motor	Fungsinya untuk menghidupkan engine atau merubah energi
		listrik menjadi energi mekanik
8.	Fuse	Sebagai pengaman arus listrik
9.	Cable	Sebagai penghubung system kelistrikkan

Charging system

Charging system atau sistem pengisian battery adalah sistem pengisian battery sebagai sumber arus listrik yang digunakan untuk menggerakkan aksesoris engine dan unit secara keseluruhan, selama engine dalam keadaan hidup.

Gambar 1.13 : Skema charging system

Komponen yang digunakan charging sistim:

1. Starting switch 2. Battery relay 3. Alternator 4. Battery

B. Electric Accessories

Accessoris electric adalah perlengkapan electric yang mendukung kerja unit saat beroperasi, yaitu antara lain :

5. Chassis

a. Lighting b. Rotary lamp c. Timer autolube (jika dilengkapi) d. Radio komunikasi

e. Horn f. Wiper d. Lock out – take off (Loto).

1.2.2. Basic Hydraulic

1.2.2.1. Definisi Dan Fungsi Hydraulic System

Hydraulic system adalah sistem pengontrolan dan pemindahan gaya dengan perantara zat cair (Fluida).

Fungsinya untuk menggerakkan peralatan kerja (attachment), pada Cat 777 D attachment adalah vessel / dump body.

Gambar 1.14: penggunaan system hydraulic pada Cat 773E

Skema Hidraulic System 1.2.2.2.

Gambar 1.15 : Skema hydraulic single acting Dump Truck

Secara garis besar system hydraulic mempunyai komponen-komponen utama :

KOMPONEN	FUNGSI
	Sebagai tempat penampungan oli dari sistem.
Tangki hidrolik (hydraulic tank)	Selain itu juga berfungsi sebagai pendingin oli
	yang kembali.
	Sebagai pemindah oli dari tangki ke dalam
Pompa hidrolik (hydraulic pump)	sistem. Dan bersama komponen lain
Formpa muronk (myuraune pump)	menimbulkan
	hydraulic pressure (tenaga hidrolik).
Control valve	Untuk mengarahkan jalannya oli ke tempat
	yang diinginkan
Main relief valve	Untuk membatasi tekanan maksimum yang
ivialit tellet valve	diijinkan dalam hydraulic system, agar sistem
	sendiri tidak rusak akibat
Actuator (hydraulic cylinder)	Sebagai perubah dari tenaga hidrolik menjadi
	tenaga mekanik.
Filter Oil Hydraulic	Untuk menyaring kotoran-kotoran agar tidak
The on Hydraune	ikut bersirkulasi.

Keterangan:

- Vesel 1.
- Cabin 2.
- Roda belakang 3.
- Roda depan. 4.

1.3.1. **Power Train**

Adalah suatu urutan / rangkaian penggerak tenaga yang di mulai dari Torque converter hingga final drive sehingga unit itu dapat bergerak / berjalan.

Gambar 1.17: Skema power train OHT 773 E

1.3.1.1. Torque converter

Berfungsi sebagai pemindah tenaga dari engine ke transmissi dengan perantara media zat cair (oli). Torque converter terletak antara front drive shaft dan torq flow transmission. Untuk unit OHT 777D, Menggunakan jenis Lockup clutch Torque converter.

Gambar 1.19: Komponen Utama Torque Converter

Keterangan

- 1. **Impeler**
- 2. Turbine
- 3. Stator

Prinsip kerja

Merubah tenaga mekanis menjadi kinetis (oil flow), kemudian tenaga kinetis tersebut dirubah kembali menjadi tenaga mekanis melalui out put shaftnya.

1.3.1.2 Lockup Cluth

Menghubungkan dan memutus putaran engine ke transmisi pada saat perpindahan gigi transmisi sehingga perpindahan gigi menjadi lebih halus.

1.3.1.3 Torque Converter Pump

Untuk mengalirkan oli hidrolik dari tangki ke dalam torque converter dan mengembalikan oli hidrolik dari torque converter ke tangki penampungan

1.3.1.4 Drive Shaft

Berfungsi untuk meneruskan putaran dari torque converter ke transmisi.

Gambar 1.20: drive shaft

1.3.1.5 Universal joint

Berfungsi untuk menjaga keseimbangan putaran propeller shaft pada saat propeller shaft harus berputar dengan posisi propeller shaft tidak lurus.

Gambar 1.21: Universal joint

1.3.1.6 Transfer Gear

Berfungsi untuk mereduksi putaran dari drive shaft sebelum diteruskan ke transmisi.

1.3.1.7 Transmisi

Berfungsi untuk mengatur kecepatan gerak maju , mundur dan untuk meningkatkan torsi dengan cara mereduksi putarannya melalui perbandingan jumlah tiap gear transmissi.

Transmissi terletak antara Transfer gear dan differential.

1.3.1.8. Differential

Berfungsi untuk meneruskan putaran transmisi ke final drive dan digunakan untuk membedakan putaran antara roda kanan dan roda kiri pada saat unit membelok.

Gambar 1.22: Differential

- 1. Pinion gear
- 2. Bevel gear
- 3. Drive shaft

Traction Control system / TCS

OHT 773E menggunakan differential konvensional dengan traction control system (TCS) Komponen ini berfungsi untuk mengurangi spin pada roda ketika sedang slip.

TCS mengijinkan dalam kondisi traksi terhadap tanah yang baik sehingga dapat menerima beban dengan torsi yang besar.

Gambar 1.23: Prinsip kerja TCS

Prinsip kerja Traction Control System / TCS

Menyamakan torsi putaran pada kedua titik roda belakang ketika terjadi slip pada salah satu titik roda kanan atau roda kiri.

1.3.1.9. Final Drive

Berfungsi untuk mereduksi putaran akhir untuk mendapatkan torque yang lebih besar.

Komponen final drive

- 1. Sun gear
- 2. Planetary gear
- 3. Ring gear

Gambar 1.24: Final drive

1.3.2. Lower Structure

Adalah kerangka bagian bawah dari komponen unit yang digunakan untuk menopang sistem kerja unit.

Lower structure OHT 777 D terdiri dari:

- Frame
- Suspensi
- Equalizer bar
- A (arm) frame

A. Frame

Dengan konstruksi yang kokoh tahan terhadap kondisi ekstrim dan menghilangkan pemusatan tegangan pada rangkaian chassis, sehingga mempunyai daya tahan yang bagus.

Gambar 1.25 : Frame

B. Suspension system

Berfungsi sebagai penyangga berat chassis unit dan menyerap kejutan yang timbul dari permukaan jalan, untuk memberikan kenyamanan operasi bagi operator.

Nama dan fungsi komponen:

1. Front suspension (Suspensi depan)

Berfungsi sebagai peredam kejutan dari permukaan jalan. Sistem suspensi yang digunakan adalah sistem Independent Hydro-Pneumatic, Pada sistem suspensi ini cylinder suspensi diisi oleh Oli & Gas Nitrogen (N2). Bila terjadi sesuatu gaya kejutan pada chassis dari permukaan tanah, maka oli dan gas nitrogen akan menyerap kejutan tersebut, karena sifat gas tersebut, compressible & expansion.

2. Equalizer bar

Berfungsi untuk mempertahankan differential dari sisi atas dengan bergerak berayun (oscillate) sesuai dengan permukaan jalan .

3. Rear suspension (Suspensi belakang)

Berfungsi sebagai peredam kejutan dari permukaan jalan. Sistem suspensi yang digunakan adalah sistem **Independent Hydro-Pneumatic**, Pada sistem suspensi ini cylinder suspensi diisi oleh **Oli & Gas Nitrogen (N2)**. Bila terjadi sesuatu gaya kejutan pada chassis dari permukaan tanah, maka oli dan gas nitrogen akan menyerap kejutan tersebut, karena sifat gas tersebut, compressible & expansion.

4. A (arm) frame

Berfungsi untuk mempertahankan roda belakangselalu kontak dengan permukaan jalan dengan bergerak berayun (oscillate). Terletak dibagian differential dengan frame.

1.3.3 Sistem Steering

Fungsi umum :Suatu sistim pengendali peralatan yang digunakan untuk merubah arah unit, dari gerak lurus menjadi kekiri atau kekanan pada sudut-sudut tertentu, dari 0° sampai 360° kearah gerak semula.

24 I Pengoperasian OHT 773E

darurat dengan menggunakan tenaga accumulator untuk menggerakan pompa hidrolik steering dan bekerja secara otomatis.

1.3.4 Rem / Brake

Definisi brake: Adalah sistem mekanisme pengendalian kecepatan suatu kendaraan.

Fungsi brake: Menghentikan sisa putaran roda dan mengurangi kecepatan unit/ kendaraan, ketika beroperasi maupun posisi parkir dan sebagai pengaman operator saat operasional.

Gambar 1.26 : Prinsip kerja brake

Jenis – jenis brake, komponen dan bidang kontaknya:

Prinsip kerja brake

Merubah energi gerak menjadi energi panas. Rem/ brake bekerja disebabkan adanya sistem gabungan penekanan, melawan sistem gerak putar. Efek pengereman (bracking effect), diperoleh adanya gesekan yang ditimbulkan dari dua obyek benda.

1. Foot Brake

Pengereman terjadi saat brake ini diaktifkan, adalah disemua roda (4 titik tumpu).

a. Front brake

Berfungsi untuk memberhentikan sisa putaran roda. Bidang kontak pengereman berada di dua titik roda depan, dengan menggunakan tipe dry caliper disc plate.

b. Rear Brake:

Brake ini menggunakan tipe multi disc (disc dan plate). Terdiri dari susunan disc dan plate yang berjumlah banyak. Adapun power untuk mengengge adalah tenaga udara yang bertekanan dan release dengan tenaga spring. Kelebihan dari brake ini terletak pada sistem pendinginnya, dimana susunan multi disc dan plate tersebut direndam dengan oli.

Rem belakang adalah multiple disc brake menggunakan pendingin oil yang juga bekerja sebagai retarder. Retarder sendiri digunakan untuk mengontrol, mengurangi kecepatan kendaraan saat akan menurun, besar efek pengereman dapat distel bebas dengan pengontrol retarder didalam cabin.

2. Retarder Brake

Berfungsi sebagai rem/ brake untuk mengurangi kecepatan unit. Pengereman yang

terjadi saat brake ini diaktifkan, adalah pada kedua titik roda belakang.

Automatic Retarder Control (ARC)

Berfungsi untuk memodulasi sistem pengereman (retarding) ketika sedang menuruni jalan panjang, bertujuan untuk menjaga putaran engine tetap constant. ARC system akan mengengagekan retarder brake.

ARC aktif ketika switch diposisikan ON, dan ARC akan aktif jika throttle pedal (accelerator pedal) tidak diinjak dan parking, secondary brake posisi dilepas/ release. ARC sistem tidak aktif jika throttle diinjak atau parking, seconday brake aktif/ enganged.

Aktifkan Automatic Retarder Control /ARC, saat mengoperasikan unit.

3. Parking Brake

Berfungsi sebagai rem/brake pada saat unit parkir.

Pengereman yang terjadi saat brake ini diaktifkan, adalah pada kedua titik roda belakang. Aktifkan parking brake ketika unit pada posisi benar-benar berhenti.

4. Emergency Brake

Pengereman yang berfungsi untuk semua komponen utama brake. Tergantung kepada brake – brake yang diikutinya : front brake, rear brake dan parking brake, semuanya menjadi satu dengan brake tersebut, hanya saluran masuk pada system udaranya yang berbeda.

5. Slack Adjuster

Berfungsi sebagai penyeimbang pressure oli dan adjustment keausan pada disc brake roda belakang kiri dan kanan

1.3.5 Wheel / Roda

Roda adalah komponen unit terdiri dari **tyre** dan **rim** yang berfungsi sebagai media penerus tenaga yang di hasilkan rangkaian power train ke permukaan jalan sehingga unit bisa bergerak/berjalan maju dan mundur.

1.3.5.1. Tyre:

Fungsi utama tyre adalah sebagai:

- Penahan beban unit.
- Penyerap getaran, goncangan akibat kondisi jalan.
- Untuk meneruskan fungsi pengereman dan meneruskan traksi ke permukaan jalan.
- Mengendalikan arah gerak unit.

Gambar 1.28: Tyre Radial & tyre Bias

1.3.5.2. Rim

Fungsi Rim adalah bracket/ tempat untuk penempatan tyre.

KOMPONEN RIM

- 1. Flange.
- 2. Rim base.
- 3. Driver.
- Bead set band. 4.

Gambar 1.29 : RIM

Komponen tambahan untuk pengaman tyre:

A. Rock Ejector

Komponen ini terletak pada dump body bagian belakang bawah, berfungsi untuk membersihkan material yang masuk disela-sela tyre kanan dan kiri roda belakang.

KOMPONEN ROCK EJECTOR

- 1. Pin
- 2. Rock ejector arm
- 3. Cotter pin
- Rock ejector bracket 4.

Gambar 1.30: Rock Ejector

1.4. 1. ATTACHMENT

Suatu perlengkapan kerja yang digerakkan oleh system hydraulic.

Gambar 1.31: Attachment vessel

1.4.1.1. Komponen support dump body

A. Hoist Dump (Silinder dump)

Berfungsi untuk menaikkan, menurunkan dan memposisikan vessel mengambang.

Spesifikasi:

Hoist silinder, tipe telescopic 2 rod.

Kecepatan dumping

28 | Naik (Raise) : 15 detik. *Pengoperasian OHT 773E*

- Turun (Lower): 16 detik.