

Einführung erste Woche

Der rote Faden

Diskussion

• Können Sie in einem Satz erklären, wozu Sie all diese Methoden/Techniken brauchen? Was wollen Sie als Physiker:in mit diesen Methoden wirklich erreichen?

• Unser nächstes Thema in der Vorlesung ist Maschinelles Lernen, also Lernen aus Daten. Welche Methoden die Sie bisher gelernt haben, könnten als *Maschinelles Lernen* bezeichnet werden?

Maschinelles Lernen (T. Mitchell)

A computer program is said to **learn** from experience with respect to some class of tasks, if its performance at these tasks improves with experience.

Datenanalyse in der Physik

Gegeben

- Mathematisches Modell (Hypothese / Theorie)
- Daten eines Experiments

Aufgabe

• Verifizieren des Modells mit den Daten aus den Experimenten

Maschinelles Lernen – Gleich und doch anders

- **Gegeben** Daten (Messwerte / Beobachtungen) Oft nicht systematisch gesammelt
- Aufgabe Modell finden, welches neue Vorhersagen machen kann
- Physikalischer Zusammenhang oft nicht gegeben oder nicht von primären Interesse

Agenda der letzten 3 Vorlesungen

- **Heute**: Linearer Regression zu Neuronalen Netzen
 - Anknüpfung an Bestehendes.
 - Aufbauen der Intuition für neuronale Netze.
- Nächste Woche: Trainieren und Validieren von Modellen Deep Learning
 - Wie trainieren und validieren wir richtig? Wie bestimmen wir Parameter?
 - Deep Learning Anwendungen und Architekturen
- Übernächste Woche: Weitere Themen im Maschinellen Lernen
 - Wie arbeite ich mit nicht numerischen Daten
 - Was gibt es noch für Arten von Maschinellem Lernen ausser Überwachtes Lernen

Überwachtes Lernen (supervised learning)

Einfachstes Beispiel: Lineare Regression

Daten

$$D = \{(x_1, y_1), ..., (x_n, y_n)\}, x \in \mathbb{R}, y \in \mathbb{R}$$

Modell

$$f(x, \mathbf{w}) = f(x, a, b) = ax + b$$

Parameter

• Steigung a, Achsenabschnitt bParameter vector $\mathbf{w} = \begin{pmatrix} a \\ b \end{pmatrix}$

Verlustfunktion

$$L(y, \hat{y}) = (y - f(x, a, b))^2$$

Optimieren

• Optimale Lösung für $\min_{a,b} \sum_{i=1}^{n} (y_i - f(x_i, a, b))^2$ durch Normalgleichungen.

Lineare Regression in höheren Dimensionen

Daten

$$D = \{(x_1, y_1), ..., (x_n, y_n)\}, x \in \mathbb{R}^d, y \in \mathbb{R}$$

Parameter:

• $\mathbf{w} = (w_0, w_1, w_2, ..., w_d)^T$

Modell

$$f(x, w) = w_1 x_1 + \dots + w_d x_d + w_0 \cdot 1$$

Verlustfunktion

$$L(y, \hat{y}) = (y - f(x, w))^{2}$$

Optimierung

• Optimale Lösung für $\min_{\mathbf{w}} \sum_{i=1}^{n} (y_i - f(\mathbf{x}_i, \mathbf{w}))^2$ durch Normalgleichungen.

Lineare Basisfunktionsmodelle

Daten

$$D = \{(x_1, y_1), \dots, (x_n, y_n)\}, x \in \mathbb{R}, y \in \mathbb{R}$$

Basisfunktionen

$$\phi_1, \dots, \phi_m, \phi_i \colon \mathbb{R} \to \mathbb{R}$$

Merkmalstransformation

$$\phi(x) = (\phi_1(x), \dots, \phi_m(x))^T : \mathbb{R} \to \mathbb{R}^m$$

Model

$$f(x, \mathbf{w}) = w_1 \phi_1(x) + \dots + w_m \phi_m(x) + w_0 1$$

Optimierung

• Optimale Lösung für $\min_{\mathbf{w}} \sum_{i=1}^{n} (y_i - f(\mathbf{x}_i, \mathbf{w}))^2$ durch Normalgleichungen.

Beispiel: Polynomiale Regression

Merkmalstransformation

$$\phi(x) = (\phi_1(x), \phi_2(x))^T = (x, x^2)$$

Beispiele von Basisfunktionen

- Polynome $\phi_i(x) = x^i$
- Fourierbasis $\phi_{2i-1}(x) = \sin(2\pi i\omega x)$, $\phi_{2i}(x) = \cos(2\pi i\omega x)$
- Sigmoid Funktionen $\sigma_i(x) = \frac{1}{1+e^{-x}}$

Diskussion

Gegeben Datenpunkte (blau) und Vorhersagen (schwarze Linie) mit verschiedenen Basisfunktionen (graue Linien)

- Welche Vorhersage würden Sie bevorzugen? Weshalb?
- Sind die benutzten Basisfunktionen sinnvoll gewählt für die Daten?
- Was sind Eigenschaften, die gute Vorhersagen haben sollte?

Probleme von obigem Ansatz

- Schwierig, korrektes Modell (Basisfunktionen) zu finden
- Basisfunktionen sind global definiert
 - Jeder Punkt beeinflusst Lösung
- Anzahl Basisfunktionen muss im Voraus festgelegt werden – Unabhängig von Daten

Lösungsansatz: Radiale Basisfunktionen (RBF)

$$\phi_i(x) = \exp\left(\frac{-\|x - \mu_i\|^2}{s^2}\right)^{\frac{10}{0.8}}$$

Parameter:

- μ_i Mean der Funktion
- *s*²- Breite der Funktion

- Lokal: Wert nahe 0 weit Weg von Zentrum
 - Vorhersagen werden am stärksten von benachbarten Punkten beeinflusst.
- Datenabhängig:
 - μ_i kann als Zentrum der Daten gewählt werden
 - → Mehr Daten führen zu komplexeren Erklärungen

→ Jupyter-Notebook

Overfitting

Modell lernt nicht nur relevantes Muster, sondern auch Rauschen.

• Tritt bei "komplexen" Modellen auf.

Regularisierung

Einfache Lösungen sollen bevorzugt werden

Einfache Umsetzung: Ridge regression

Idee: Bestrafe Parameter mit grossen Werten

$$\min_{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x, \mathbf{w}))^2 + \lambda ||\mathbf{w}||^2$$

 Lösung: Gegeben durch lineares Gleichungssystem (ähnlich Normalgleichungen)

Quelle: Wikipedia

Einschub: Bayes'sche Lineare regression

- Definiere Wahrscheinlichkeitsverteilung $w_i \sim N(0, \alpha)$, i = 1 ..., n auf Parameter
 - Bevorzugt wie Ridge regression kleine Parameter
- Posteriorverteilung der Parameter gegeben der Daten ist wieder Normalverteilt: $p(w|D) \sim N(\mu, \Sigma)$
 - Mittelwert μ (beste Vorhersage) und Kovarianz Σ (Unsicherheit) durch Gleichungssystem bestimmt.

→Notebook

Lineare Basisfunktionsmodelle: Zwischenfazit

- ✓ Komplexe Zusammenhänge in Daten können gelernt werden.
- ✓ Verschiedene Möglichkeiten, Funktionen zu wählen. Lösung jeweils durch Gleichungssystem gegeben.
- ✓ Komplexität der Funktionen regulierbar und kann von Daten abhängen.
- ✓ Verteilung über mögliche Erklärungen der Daten mit Bayes'schen linearen Regression.

Organisationseinheit verbal

Limitierungen von RBFs (und anderen Basisfunktionmodellen)

- Funktionen sind nicht angepasst auf Daten.
- In hochdimensionalen Räumen werden zu viele Basisfunktionen benötigt.
 - Lösung nicht mehr effizient berechenbar.

Quelle: Hubblesite.org

Neuronale Netze:

Basisfunktionen werden aus Daten gelernt und somit an Daten angepasst.

Neuronen: Lernbare Basisfunktionen

Neuron: Linearkombination der Eingaben, gefolgt von einer Aktivierungsfunktion

$$z_j(x, \mathbf{w_j}) = a(\sum_{i=1}^n w_{ji}x_i + w_{j0})$$

Einfaches neuronales Netz

- $z_1, ..., z_m$ entsprechen gelernten Basisfunktionen $\phi_1, ..., \phi_m$
- Wegen nichtlinearer Aktivierungsfunktion keine analytische Lösung möglich

Multilayer neural networks

- Beliebig tiefe Verschachtelung möglich
- Beliebig hochdimensionale Eingaben möglich
- In jeder Ebene werden Merkmale etwas besser an Problem angepasst

Multilayer neural networks für Klassifikation

- Alles bleibt gleich aber:
 - Fehlerquadrate keine ideale Verlustfunktion
 - Bessere Wahl: Cross entropy Loss

Cross Entropy Loss für $y \in \{0, 1\}$

$$L(y, \hat{y}) = L(y, \sigma(f(x, \mathbf{w})))$$

= $-y \log(\sigma(f(x, \mathbf{w}))) - (1 - y)\log(1 - \sigma(f(x, \mathbf{w})))$

Verhalten – Cross entropy loss

Übungen und Ausblick

Übungen

Anwendung von linearer Regression und Neuronalen Netzen in Scikit Learn

Nächstes Mal

- Wie trainieren wir Modelle?
- Anwendungen von Neuronalen Netzen Deep Learning

27