24 Friday, April 8, 2011

Category Theory

Definition. A *category* is a collection of objects, together with morphisms (maps) between objects satisfying the following axioms:

• Composition of morphisms is defined.

$$x \xrightarrow{f} y \xrightarrow{g} z$$
 $f \circ g \text{ is defined}$

• Associative law: If we have

$$f \xrightarrow{f} y \xrightarrow{g} z \xrightarrow{h} w,$$

then
$$(h \circ g) \circ f = h \circ (g \circ f)$$

• For all objects y, there exists an identity $y \xrightarrow{i_y} y$ such that $g \circ i_y = g$, $i_y \circ f = f$ for all f and g with the appropriate domains and ranges.

Examples of categories include the category of: sets; topological spaces, algebras.

Definition. Let C and D be categories. Then a functor F is a map $C \xrightarrow{F} D$ which maps $\operatorname{morph}(C) \to \operatorname{morph}(D)$ and maps $\operatorname{morph}(C) \to \operatorname{morph}(D)$ and which (1) is compatible with composition and (2) maps identity morphisms to identity morphisms.

Example. (top) \rightarrow (sets), $x \sim$ underlying set

Example. (groups) \rightarrow (abelian groups), $G \rightarrow G/(aba^{-1}b^{-1} = 1)$

Example. (top) $\xrightarrow{1-1_q}$ abelian groups, $x \sim H_q(x)$ homology

Example. pointed path connected topologies \rightarrow groups, $x \sim \pi_1(x)$ (homology group)

Definition. The dual category C° of a category C is defined by:

$$\mathrm{morph}(C^\circ) = \mathrm{morph}(C)$$

A morphism A morphism
$$x^{\circ} \xleftarrow{f^{\circ}} y^{\circ} = x \xrightarrow{f} y$$
 in C° in C

Definition. A contravariant functor is a functor F on C from $C^{\circ} \to D$.

Example. (vect) = category of complex vector spaces. (vect) $^{\circ} \rightarrow$ (vect), $v \rightsquigarrow v^*$. This functor takes a vector space to its dual space.

Example. (top) \rightarrow (abelian groups), $x \sim H^q(x)$ cohomology

Example. Let X be a topological space. Then let (opens) denote the category where the objects are open sets in X, and the morphisms are inclusions $U \subset V$; if $U \subset V$, $\exists ! U \to V$, and if $U \not\subset V$, $\not\exists U \to V$.

Definition. The sheaf of functions F on X is the contravariant functor on (opens): (opens) $\stackrel{F}{\rightarrow}$ (algebras), $U \rightsquigarrow F(U) = \text{complex valued functions with domain } U$ (an algebra).

If $V \to U$ (i.e., $V \subset U$), then we can restrict a function on U to V; we get $F(U) \stackrel{\text{rest}_V}{\leftarrow} F(U)$, $f|_{V} \leadsto f$.

Sheaf Axiom for F: Functions on U can be defined "locally." More formally, suppose U is open in X and U^i are open subsets of U that together cover U. Let U^{ij} denote $U^i \cap U^j$.

$$U \leftarrow \{U^i\} \leftrightharpoons \{U^{ij}\}$$

$$U^i \longrightarrow U^{ij}$$

$$U^{ij}$$

Then, given functions f^i on U^i such that the restriction of f^i and f^j to U^{ij} are equal for all i, j, the sheaf axiom requires that there exists a unique function f on U such that the restriction of f to U^i is f^i .

Example. Let X = U be the real line. Let $U^1 = (-\infty, 1)$ and let $U^2 = (0, \infty)$. Then $U = U^1 \cup U^2$. Let $U^1 \cap U^2 = U^{12}$ (= (0, 1)). Then if f^1 and f^2 are functions on U^1 and U^2 and if the restriction of f^1 to U^{12} is equal to the restriction of f^2 to U^{12} , then $\exists ! f$ on U, such that its restriction to $U^i = f^i$.

Definition. A sheaf on a topological space X is a contravariant functor (opens) $\stackrel{M}{\rightarrow} C$ (some category), $U \sim M(U)$ which satisfies the sheaf axiom:

Suppose $\{U^i\}$ covers U and let $U^{ij} = U^i \cap U^j$. Given an element $\alpha^i \in M(U^i)$, if the restriction of α^i and α^j to $M(U^{ij})$ are equal for all i, j, then $\exists! \alpha \in M(U)$ whose restriction to U^i is α^i for all i.

We want to (eventually) write the sheaf axiom more compactly. First, we rewrite it in terms of M(U). Recall

Then

$$0 \to M(U) \to \prod_i M(U^i) \overset{d_0^*}{\underset{d_1^*}{\Longrightarrow}} \prod_{i,j} M(U^{ij})$$
$$U \leftarrow \{U^i\} \overset{d_0}{\underset{d_1}{\rightleftarrows}} \{U^{ij}\}$$

Then the sheaf axiom says that the above sequence is exact² if we replace \Rightarrow by the difference $d_0^* - d_1^*$.³

Think about for next time: The structure sheaf on $X = \mathbb{A}^1$ (with the Zariski topology): U open X = X - S (with X = X - S). Let X = X - S (with X = X - S). Let X = X - S (with X = X - S). Let X = X - S (with X = X - S). Let X = X - S (with X = X - S). Let X = X - S (with X = X - S). Let X = X - S (with X = X - S). Let X = X - S (with X = X - S). Let X = X - S (with X = X - S). Let X = X - S (with X = X - S). Let X = X - S (with X = X - S). Let X = X - S (with X = X - S). Let X = X - S (with X = X - S). Let X = X - S (with X = X - S). Let X = X - S (with X = X - S).

¹If $V \to U$, then $M(V) \xleftarrow{\text{"restriction"}} M(U)$.

²A sequence is exact if the kernel of each map is equal to the image of the preceding map.

 $^{^{3}}$ We're assuming that the category we're mapping into has a - (e.g., that of abelian groups), i.e., that each M(U) has a zero element and subtraction.