longchain • EN

Long Chain (longchain)

You are given a tree with N vertices, numbered from 1 to N (a tree is an undirected connected graph in which there are no cycles). You are asked to partition it into edge-disjoint simple paths such that the length of the shortest one is maximized.

In this task, the length of a path is defined as the number of edges it has.

Among the attachments of this task you may find a template file longchain.* with a sample incomplete implementation.

Figure 1: A tree with a bunch of vertices.

Input

The first line contains an integer N. The next N-1 lines contain 2 integers u_i, v_i , denoting an edge of the tree.

Output

You need to write a single line with an integer: the maximum length of the shortest path over all partitions of the tree into edge-disjoint simple paths.

Constraints

- 2 < N < 100000.
- $1 \le u_i, v_i \le N$.

Scoring

Your program will be tested against several test cases grouped in subtasks. In order to obtain the score of a subtask, your program needs to correctly solve all of its test cases.

- Subtask 1 (0 points)	Examples.
- Subtask 2 (20 points)	$N \leq 8$.
- Subtask 3 (25 points)	$N \le 100.$
- Subtask 4 (30 points)	$N \le 1000.$
- Subtask 5 (25 points)	No additional limitations.

longchain Page 1 of 3

Examples

input	output
0	4
9 9 8	4
7 4	
7 8	
2 1	
6 3	
5 1	
5 8	
3 8	
5	2
1 2	_
2 3	
3 4	
2 5	
10	4
7 6	
9 6	
8 5	
4 2	
1 3	
5 6	
1 10	
7 10	
2 6	
6	5
1 2	
2 3	
3 4	
4 5	
5 6	

Explanation

In the first sample case, an optimal split would be into 2 edge-disjoint paths, each of length 4: 2-1-5-8-9 and 4-7-8-3-6.

longchain Page 2 of 3

In the **second sample case**, an optimal split would be into 2 edge-disjoint paths, each of length 2: 1-2-5 and 2-3-4.

In the **third sample case**, an optimal split would be into 2 edge-disjoint paths, one of length 4: 4-2-6-5-8 and the other one of length 5: 3-1-10-7-6-9.

In the **fourth sample case**, the whole tree consists of only one path of length 5.

longchain Page 3 of 3