

Text Book:

Introduction to the Design and Analysis of Algorithms Author: Anany Levitin 2nd Edition

Chapter 2 section 2.2

Orders of growth of an algorithm's basic operation count is important.

We compare order of growth of functions using asymptotic notations.

Asymptotic notations

A way of comparing functions that ignores constant factors and small input sizes

O(g(n)): class of functions f(n) that grow <u>no faster</u> than g(n)

 $\Omega(g(n))$: class of functions f(n) that grow <u>at least as fast</u> as g(n)

 Θ (g(n)): class of functions f(n) that grow <u>at same rate</u> as g(n)

o(g(n)): class of functions f(n) that grow <u>at slower rate</u> than g(n)

w(g(n)): class of functions f(n) that grow at faster rate than g(n)

Big O notation

Formal definition

A function t(n) is said to be in O(g(n)), denoted $t(n) \in O(g(n))$, if t(n) is bounded above by some constant multiple of g(n) for all large n, i.e., if there exist some positive constant c and some nonnegative integer n_0 such that

 $t(n) \le cg(n)$ for all $n \ge n_0$

Example: $100n+5 \in O(n)$

Big Omega Notation

Formal definition

A function t(n) is said to be in $\Omega(g(n))$, denoted $t(n) \in \Omega(g(n))$, if t(n) is bounded below by some constant multiple of g(n) for all large n,

i.e., if there exist some positive constant c and some nonnegative integer n_0 such that

$$t(n) \geq cg(n) \text{ for all } n \geq n_0$$

Example: $10n^2 \in \Omega(n^2)$

Theta Notation

Formal definition

A function t(n) is said to be in $\Theta(g(n))$, denoted $t(n) \in \Theta(g(n))$, if t(n) is bounded both above and below by some positive constant multiples of g(n) for all large n,

i.e., if there exist some positive constant c_1 and c_2 and some nonnegative integer n_0 such that

$$c_2 g(n) \le t(n) \le c_1 g(n)$$
 for all $n \ge n_0$

Example: $(1/2)n(n-1) \in \Theta(n^2)$

Small o notation

Formal Definition:

A function t(n) is said to be in Little-o(g(n)), denoted $t(n) \in o(g(n))$,

if for any positive constant c and some nonnegative integer n_0

$$0 \le t(n) < cg(n)$$
 for all $n \ge n_0$

Example:

If
$$f(n) = n \& g(n) = n^2$$
,
then for any value of c>0,

$$f(n) < c(n^2)$$

$$f(n) \in o(g(n))$$

Small omega notation

Formal Definition:

A function t(n) is said to be in Little- w(g(n)), denoted $t(n) \in w(g(n))$, if for any positive constant c and some nonnegative integer n_0

$$t(n) > cg(n) \ge 0 \text{ for all } n \ge n_0$$
Example: If $f(n) = 3 n + 2$, $g(n) = n$
then for any value of $c > 0$

$$f(n) > cg(n)$$

$$f(n) \in w(n)$$

Theorems

If
$$t_1(n)\in O(g_1(n))$$
 and $t_2(n)\in O(g_2(n))$, then
$$t_1(n)+t_2(n)\in O(\max\{g_1(n),g_2(n)\}).$$
 For example,
$$5n^2+3nlogn\in O(n^2)$$

$$>$$
 If t1 (n) ∈ Θ (g1 (n)) and t2 (n) ∈ Θ (g2 (n)), then
t1 (n) + t2 (n) ∈ Θ(max{g1 (n), g2 (n)})

$$ightharpoonup$$
 t1(n) $\in \Omega(g1(n))$ and t2(n) $\in \Omega(g2(n))$, then t1(n) + t2(n) $\in \Omega(\max\{g1(n), g2(n)\})$