Lecture Notes: Areas of Planar Projections

Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk

In this lecture, we will pave a stepping stone for our subsequent discussion on surface integrals by discussing a topic that is interesting in its own right: the relationship between the area of a planar region embedded in \mathbb{R}^3 and the area of its projection onto the xy-plane.

1 Projection of a Parallelogram

Let us start with the following problem. In \mathbb{R}^3 , we are given a parallelogram g that is in a plane ρ with a normal vector u. Now, project g onto the xy-plane, which gives us another parallelogram g_{xy} ; see the figure below. Denote by A the area of g, and by A_{xy} the area of g_{xy} . We want to explore the relationship between A and A_{xy} .

Denote by γ the angle between the directions of \boldsymbol{u} and \boldsymbol{k} (i.e., the positive z-direction). Next, we prove a very neat result:

Lemma 1.
$$A_{xy} = A \cdot |\cos \gamma|$$
.

Proof. If A = 0 (i.e., g degenerates into a point), then A_{xy} is trivially 0, in which case the lemma is obviously true. Next, we consider that $A \neq 0$.

Consider first $\gamma \in [0, \pi/2]$. Let \boldsymbol{a} and \boldsymbol{b} be the vectors corresponding to the two directed segments as shown in the above figure. Let \boldsymbol{a}' and \boldsymbol{b}' be the projections of \boldsymbol{a} and \boldsymbol{b} onto the xy-plane, respectively. If we write out the components of \boldsymbol{a} and \boldsymbol{b} as:

$$\mathbf{a} = [x_1, y_1, z_1]$$

 $\mathbf{b} = [x_2, y_2, z_2]$

then we have

$$a' = [x_1, y_1, 0]$$

 $b' = [x_2, y_2, 0].$

We know that the areas of g and g_{xy} are

$$A = |\mathbf{a} \times \mathbf{b}|$$

$$A_{xy} = |\mathbf{a}' \times \mathbf{b}'|.$$

Define $c = a \times b$ and $c = a' \times b'$. By definition of cross product, we know:

$$c = [y_1z_2 - z_1y_2, z_1x_2 - x_1z_2, x_1y_2 - y_1x_2]$$

 $c' = [0, 0, x_1y_2 - y_1x_2].$

The directions of c and c' are shown in the above figure. Note that γ is also the angle between c and c'.

We thus have:

$$A = |c|$$

$$A_{xy} = |c'|.$$

If c' = 0, then it means that a' and b' have exactly the same or opposite directions, which further implies that $\gamma = \pi/2$. In this case, we trivially have $A_{xy} = 0 = A \cos \gamma$. If $c' \neq 0$, we have

$$\cos \gamma = \frac{\boldsymbol{c} \cdot \boldsymbol{c'}}{|\boldsymbol{c}||\boldsymbol{c'}|} = \frac{(x_1 y_2 - y_1 x_2)^2}{|\boldsymbol{c}||\boldsymbol{c'}|} = \frac{|\boldsymbol{c'}|^2}{|\boldsymbol{c}||\boldsymbol{c'}|} = \frac{|\boldsymbol{c'}|}{|\boldsymbol{c}|} = \frac{A_{xy}}{A}$$

which is precisely what we want to prove.

For the case where $\gamma \in [\pi/2, \pi]$, let $\boldsymbol{v} = -\boldsymbol{u}$. The angle between the directions of \boldsymbol{v} and \boldsymbol{k} is within $[\pi/2, \pi]$. Now we can apply the above argument with respect to the normal vector \boldsymbol{v} to establish the lemma.

Example 1. Consider the plane ρ given by x + 2y + 3z = 4. Let D a rectangle on the xy-plane with area 1, and D' the projection of D onto ρ . What is the area of D'?

Solution. A normal vector of ρ is $\boldsymbol{u} = [1, 2, 3]$. Let γ be the angle between \boldsymbol{u} and $\boldsymbol{k} = [0, 0, 1]$. We know that $\cos \gamma = \frac{\boldsymbol{u} \cdot \boldsymbol{k}}{|\boldsymbol{u}||\boldsymbol{k}|} = \frac{3}{\sqrt{14}}$. Hence, by Lemma 1, the area of D' equals $area(D)/\cos \gamma = \sqrt{14}/3$.

2 Projection of Any Planar Region

We now generalize Lemma 1. In \mathbb{R}^3 , we are given an arbitrary region D that is in a plane ρ with a normal vector \boldsymbol{u} . Suppose that the boundary of D is a smooth curve. Now, project D onto the xy-plane, which gives us another region D_{xy} ; see the figure below.

Denote by γ the angle between the directions of \boldsymbol{u} and \boldsymbol{k} . In general, we still have:

Lemma 2.
$$area(D_{xy}) = area(D) \cdot |\cos \gamma|$$
.

We will not prove the lemma formally, but its key idea is easy to grasp. Imagine that we approximate D as the union of a huge number of very small disjoint parallelograms, and project all those parallelograms onto the xy-plane. The union of those parallelograms' projections approximates D_{xy} . Then, by Lemma 1, there is a $\cos \gamma$ factor between the areas of each parallelogram and its projection, which thus gives Lemma 2.

Example 2. Consider the plane ρ given by x + 2y + 3z = 4. Let D be a circle on the xy-plane with radius 1, and D' the projection of D onto ρ . What is the area of D'?

Solution. A normal vector of ρ is $\boldsymbol{u}=[1,2,3]$. Let γ be the angle between \boldsymbol{u} and $\boldsymbol{k}=[0,0,1]$. We know that $\cos \gamma = \frac{\boldsymbol{u} \cdot \boldsymbol{k}}{|\boldsymbol{u}||\boldsymbol{k}|} = \frac{3}{\sqrt{14}}$. Hence, by Lemma 2, the area of D' equals $area(D)/\cos \gamma = \sqrt{14}\pi/3$.