Probabilités et Extrêmes CC I

CC I:

- 7 Octobre 2025
- Master I ISIFAR
- Durée : 1 heure 30
- Probabilités
- Aide-mémoire : une feuille A4 recto verso autorisée
- Aucun autre document autorisé
- Aucun moyen de communication électronique autorisé

Exercice 1.

Soit X une variable binomiale à paramètres n (fixé) et V aléatoire uniformément distribué sur [0,1] ($X \sim \text{Binom}(n,V)$).

- i. Calculer la fonction génératrice des probabilités de la loi de X
- ii. Quelle est l'espérance de X?
- iii. Que vaut $P\{X = k\}$ pour $k \in \{0, n\}$?

Exercice 2.

On se donne un processus de branchement avec une distribution de reproduction Poissonienne de paramètre $\mu > 0$. On note $Z_0 = 1, Z_1, ...$ les effectifs des différentes générations.

- i. Calculer la fonction génératrice de la loi de \mathbb{Z}_2
- ii. Quelle est la probabilité que l'extinction ait lieu exactement à la génération 2?
- iii. Quelle est la probabilité que que l'extinction ait lieu exactement à la génération n?

Exercice 3.

Soit $X \sim \mathrm{U}(-\pi/2, \pi/2)$ (loi uniforme sur $[-\pi/2, \pi/2]$), on définit $Y = \cos(X)$.

- i. La loi de Y est-elle absolument continue?
- ii. Si oui, déterminer une version de sa densité.

Exercice 4.

Soit X_1,\ldots,X_n,\ldots des variables aléatoires distribuées indépendamment selon une loi de Pareto de paramètre $\alpha>0,\ P\{X_1\geq t\}=t^{-\alpha},t\geq 1.$ Soit N indépendante des X_i , distribuée selon une loi de Poisson de paramètre $\mu>0.$ On définit Z par $Z=\max_{i\leq N}X_i.$

Remarque : Si N = 0, on convient de $\max_{i < N} X_i = 0$.

- i. Calculer la fonction de répartition de la loi de Z.
- ii. La loi de Z possède-t-elle une espérance finie?