Lecture 2: Stochastic calculus

David Nualart

Department of Mathematics Kansas University

Gene Golub SIAM Summer School 2016
Drexel University

The Wiener integral

- Let $B = \{B_t, t \ge 0\}$ be a Brownian motion.
- The integral of a step function $\varphi_t = \sum_{j=0}^{m-1} a_j \mathbf{1}_{(t_j,t_{j+1}]}(t) \in \mathcal{E}$ is defined by

$$\int_0^\infty \varphi_t dB_t = \sum_{j=0}^{m-1} a_j (B_{t_{j+1}} - B_{t_j})$$

• The mapping $\varphi \to \int_0^\infty \varphi_t dB_t$ from $\mathcal{E} \subset L^2(\mathbb{R}_+)$ to $L^2(\Omega)$ is linear and isometric :

$$E\left[\left(\int_0^\infty \varphi_t dB_t\right)^2\right] = \sum_{j=0}^{m-1} a_j^2(t_{j+1} - t_j) = \int_0^\infty \varphi_t^2 dt = \|\varphi\|_{L^2(\mathbb{R}_+)}^2.$$

ullet is a dense subspace of $L^2(\mathbb{R}_+)$. Therefore, the mapping

$$\varphi o \int_0^\infty \varphi_t dB_t$$

can be extended to a linear isometry between $L^2(\mathbb{R}_+)$ and the Gaussian subspace of $L^2(\Omega)$ spanned by the Brownian motion.

White noise

• A white noise on \mathbb{R}^m is a Gaussian centered family of random variables

$$\{W(A), A \in \mathcal{B}(\mathbb{R}^m), |A| < \infty\}$$

such that

$$E[W(A)W(B)] = |A \cap B|.$$

• The mapping $\mathbf{1}_A \to W(A)$ can be extended to a linear isometry from $L^2(\mathbb{R}^m)$ to the Gaussian space spanned by W:

$$\varphi \to \int_{\mathbb{R}^m} \varphi(x) W(dx).$$

• The Brownian motion B defines a white noise on \mathbb{R}_+ by setting

$$B(A) = \int_0^\infty \mathbf{1}_A(t) dB_t, \quad A \in \mathcal{B}(\mathbb{R}_+), \ |A| < \infty.$$

Progressively measurable processes

Let \mathcal{F}_t be the filtration generated by the Brownian motion and the sets of probability sero.

Definition

We say that $u = \{u_t, t \ge 0\}$ is *progressively measurable* if for any $t \ge 0$, the restriction of u to $\Omega \times [0, t]$ is $\mathcal{F}_t \times \mathcal{B}([0, t])$ -measurable.

- Let \mathcal{P} be the σ -field of sets $A \subset \Omega \times \mathbb{R}_+$ such that $\mathbf{1}_A$ is progressively measurable.
- We denote by $L^2(\mathcal{P})$ the Hilbert space $L^2(\Omega \times \mathbb{R}_+, \mathcal{P}, P \times \ell)$, where ℓ is the Lebesgue measure, equipped with the norm

$$||u||^2 = E\left(\int_0^\infty u_s^2 ds\right).$$

Stochastic integrals

• $u = \{u_t, t \ge 0 \text{ is a } simple \text{ } process \text{ if }$

$$u_t = \sum_{j=0}^{n-1} \phi_j \mathbf{1}_{(t_j,t_{j+1}]}(t),$$

where $0 \le t_0 \le t_1 \le \cdots \le t_n$ and ϕ_j are \mathcal{F}_{t_j} -measurable random variables such that $E(\phi_j^2) < \infty$.

• We define the stochastic integral of u as

$$I(u) := \int_0^\infty u_t dB_t = \sum_{j=0}^{n-1} \phi_j \left(B_{t_{j+1}} - B_{t_j} \right).$$

Proposition

The space \mathcal{E} of simple processes is dense in $L^2(\mathcal{P})$.

Proof:

(i) If u belongs to $L^2(\mathcal{P})$, we define

$$u_t^{(n)} = n \int_{(t-\frac{1}{n})\vee 0}^t u_s ds = n \left(\int_0^t u_s ds - \int_0^t u_{(s-\frac{1}{n})\vee 0} ds \right),$$

The processes $u_t^{(n)}$ are continuous in $L^2(\Omega)$ and satisfy

$$\lim_{n\to\infty} E\left(\int_0^\infty \left|u_t-u_t^{(n)}\right|^2 dt\right)=0.$$

Indeed, for each ω we have

$$\int_0^\infty \left| u(t,\omega) - u^{(n)}(t,\omega) \right|^2 dt \stackrel{n\to\infty}{\longrightarrow} 0$$

and we can apply the dominated convergence theorem because

$$\int_0^\infty \left| u^{(n)}(t,\omega) \right|^2 dt \le \int_0^\infty \left| u(t,\omega) \right|^2 dt.$$

←□ → ←□ → ←□ → ←□ → へ○

(iii) Suppose $u \in L^2(\mathcal{P})$ is continuous in $L^2(\Omega)$. In this case, we can choose the approximating processes

$$u_t^{(n,N)} = \sum_{i=0}^{n-1} u_{t_i} \mathbf{1}_{(t_j,t_{j+1}]}(t),$$

where $t_j = \frac{jN}{n}$. The continuity in mean square of u implies that

$$E\left(\int_0^\infty \left|u_t - u_t^{(n)}\right|^2 dt\right) \leq E\left(\int_N^\infty u_t^2 dt\right) + N \sup_{|t-s| < N/n} E\left(|u_t - u_s|^2\right).$$

This converges to zero if we first let $n \to \infty$ and then $N \to \infty$.

Properties of the stochastic integral of simple processes

(i) Linearity:

$$\int_0^\infty \left(au_t+bv_t\right)dB_t=a\int_0^\infty u_tdB_t+b\int_0^\infty v_tdB_t.$$

(ii) Zero mean:

$$E\left(\int_0^\infty u_t dB_t\right) = 0.$$

In fact,

$$E\left(\int_{0}^{\infty} u_{t} dB_{t}\right) = \sum_{j=0}^{n-1} E\left[\phi_{j}\left(B_{t_{j+1}} - B_{t_{j}}\right)\right]$$
$$= \sum_{j=0}^{n-1} E[\phi_{j}] E[B_{t_{j+1}} - B_{t_{j}}] = 0.$$

(iii) Isometry property:

$$E\left[\left(\int_0^\infty u_t dB_t\right)^2\right] = E\left(\int_0^\infty u_t^2 dt\right).$$

Proof: Set $\Delta B_i = B_{t_{i+1}} - B_{t_i}$. Then

$$E\left(\phi_{i}\phi_{j}\Delta B_{i}\Delta B_{j}\right) = \begin{cases} 0 & \text{if} \quad i \neq j \\ E\left(\phi_{j}^{2}\right)\left(t_{j+1} - t_{j}\right) & \text{if} \quad i = j \end{cases}$$

because if i < j the random variables $\phi_i \phi_j \Delta B_i$ and ΔB_j are independent and if i = j the random variables ϕ_i^2 and $(\Delta B_i)^2$ are independent. So, we obtain

$$E\left[\left(\int_{0}^{\infty} u_{t} dB_{t}\right)^{2}\right] = \sum_{i,j=0}^{n-1} E\left(\phi_{i} \phi_{j} \Delta B_{i} \Delta B_{j}\right) = \sum_{i=0}^{n-1} E\left(\phi_{i}^{2}\right) (t_{i+1} - t_{i})$$

$$= E\left(\int_{0}^{\infty} u_{t}^{2} dt\right).$$

Proposition

The stochastic integral can be extended to a linear isometry:

$$I: L^2(\Omega \times \mathbb{R}_+, \mathcal{P}, P \times \ell) \to L^2(\Omega).$$

Proof : This follows form the fact that \mathcal{E} is dense in $L^2(\mathcal{P})$. \square .

• The stochastic integral has the following properties :

$$E[I(u)]=0$$

and

$$E[I(u)I(v)] = E\left(\int_0^\infty u_s v_s ds\right).$$

Example

$$\boxed{\int_0^T B_t dB_t = \frac{1}{2}B_T^2 - \frac{1}{2}T}$$

Proof : The process B_t being continuous in mean square, we can choose as approximating sequence

$$u_t^{(n)} = \sum_{j=1}^n B_{t_{j-1}} \mathbf{1}_{(t_{j-1},t_j]}(t),$$

where $t_j = \frac{jT}{n}$, and we obtain

$$\int_{0}^{T} B_{t} dB_{t} = \lim_{n \to \infty} \sum_{j=1}^{n} B_{t_{j-1}} \left(B_{t_{j}} - B_{t_{j-1}} \right) \\
= \frac{1}{2} \lim_{n \to \infty} \sum_{j=1}^{n} \left(B_{t_{j}}^{2} - B_{t_{j-1}}^{2} \right) - \frac{1}{2} \lim_{n \to \infty} \sum_{j=1}^{n} \left(B_{t_{j}} - B_{t_{j-1}} \right)^{2} \\
= \frac{1}{2} B_{T}^{2} - \frac{1}{2} T.$$

Indefinite stochastic integrals

For $u \in L^2(\mathcal{P})$, we define the stochastic process

$$\int_0^t u_s dB_s := \int_0^\infty u_s \mathbf{1}_{[0,t]}(s) dB_s$$

Properties:

1. Additivity: For any $a \le b \le c$ we have

$$\int_a^b u_s dB_s + \int_b^c u_s dB_s = \int_a^c u_s dB_s.$$

2. Factorization : If a < b and F is a bounded and \mathcal{F}_a -measurable random variable, then

$$\int_a^b Fu_s dB_s = F \int_a^b u_s dB_s.$$

3. Martingale property:

Proposition

Let $u \in L^2(\mathcal{P})$. The indefinite stochastic integral

$$M_t = \int_0^t u_s dB_s$$

is a square integrable martingale with respect to the filtration \mathcal{F}_t and admits a continuous version.

Proof:

(i) We first prove the martingale property. Suppose that $u \in \mathcal{E}$ has the form

$$u_t = \sum_{i=0}^{n-1} \phi_i \mathbf{1}_{(t_i,t_{i+1}]}(t).$$

Then, for any s < t,

$$E\left(\int_{0}^{t} u_{v} dB_{v} | \mathcal{F}_{s}\right) = \sum_{j=0}^{n-1} E\left(\phi_{j}(B_{t_{j+1} \wedge t} - B_{t_{j} \wedge t}) | \mathcal{F}_{s}\right)$$

$$= \sum_{j=0}^{n-1} E\left(E\left(\phi_{j}(B_{t_{j+1} \wedge t} - B_{t_{j} \wedge t}) | \mathcal{F}_{t_{j} \vee s}\right) \mathcal{F}_{s}\right)$$

$$= \sum_{j=0}^{n-1} E\left(\phi_{j} E\left(B_{t_{j+1} \wedge t} - B_{t_{j} \wedge t} | \mathcal{F}_{t_{j} \vee s}\right) \mathcal{F}_{s}\right)$$

$$= \sum_{j=0}^{n-1} \phi_{j}(B_{t_{j+1} \wedge s} - B_{t_{j} \wedge s}) = \int_{0}^{s} u_{v} dB_{v}.$$

- (ii) So, $M_t = \int_0^t u_s dB_s$ is an \mathcal{F}_t -martingale if $u \in \mathcal{E}$.
- (iii) If $u^{(n)}$ is a sequence of simple processes that converge to u in $L^2(\mathcal{P})$, then for each $t \geq 0$,

$$\int_0^t u_s^{(n)} dB_s \stackrel{L^2(\Omega)}{\longrightarrow} \int_0^t u_s dB_s.$$

Taking into account that the convergence in $L^2(\Omega)$ implies the convergence in $L^2(\Omega)$ of the conditional expectations, we deduce that $\int_0^t u_s dB_s$ is a martingale.

(iv) Let us prove the continuity. Let $u \in L^2(\mathcal{P})$ and consider a sequence of simple processes $u^{(n)}$ which converges to u in $L^2(\mathcal{P})$. By the continuity of the paths of the Brownian motion, the stochastic integral $M_t^{(n)} = \int_0^t u_s^{(n)} dB_s$ has a continuous trajectories. Then, Doob's maximal inequality yields for any $T \geq 0$

$$P\left(\sup_{0\leq t\leq T}|M_t^{(n)}-M_t^{(m)}|>\lambda\right) \leq \frac{1}{\lambda^2}E\left(|M_T^{(n)}-M_T^{(m)}|^2\right)$$
$$=\frac{1}{\lambda^2}E\left(\int_0^T\left|u_t^{(n)}-u_t^{(m)}\right|^2dt\right)\stackrel{n,m\to\infty}{\longrightarrow}0.$$

We can choose an increasing sequence of natural numbers n_k , k = 1, 2, ... such that

$$P\left(\sup_{0 \leq t \leq T} |M_t^{(n_{k+1})} - M_t^{(n_k)}| > 2^{-k}
ight) \leq 2^{-k}.$$

The events $A_k := \left\{ \sup_{0 \leq t \leq T} |M_t^{(n_{k+1})} - M_t^{(n_k)}| > 2^{-k}
ight\}$ verify

$$\sum_{k=1}^{\infty} P(A_k) < \infty.$$

Hence, Borel-Cantelli lemma implies that $P(\limsup_k A_k) = 0$. Set $N = \limsup_k A_k$. Then for any $\omega \notin N$ there exists $k_1(\omega)$ such that for all $k \ge k_1(\omega)$

$$\sup_{0 \le t \le T} |M_t^{(n_{k+1})}(\omega) - M_t^{(n_k)}(\omega)| \le 2^{-k}.$$

As a consequence, if $\omega \notin N$, the sequence $M_t^{(n_k)}(\omega)$ is uniformly convergent on [0,T] to a continuous function $J_t(\omega)$. On the other hand, we know that for any $t \in [0,T]$, $M_t^{(n_k)}$ converges in L^2 to $\int_0^t u_s dB_s$. So, $J_t(\omega) = \int_0^t u_s dB_s$ almost surely, for all $t \in [0,T]$.

Since T > 0 is arbitrary, this implies the existence of a continuous version for M_t . \square

5. Maximal inequality:

$$P\left(\sup_{t\geq 0}|M_t|>\lambda
ight)\leq rac{1}{\lambda^2}E\left(\int_0^\infty u_t^2dt
ight).$$

and

$$E\left(\sup_{t\geq 0}|M_t|^2\right)\leq 4E\left(\int_0^\infty u_t^2dt\right).$$

Quadratic variation of a martingale

Theorem

Let M_t be a continuous and square integrable martingale such that $M_0 = 0$. Then, there is a unique continuous and increasing process $\langle M \rangle_t$ such that $\langle M \rangle_0 = 0$ and the process

$$M_t^2 - \langle M \rangle_t$$

is a martingale.

• For each sequence of partitions $\pi^n = \{0 = t_0^n < t_1^n < \cdots < t_{k_n}^n = t\}$ such that $|\pi^n| \to 0$, we have

$$\sum_{j=0}^{k_n-1} (M_{t_{j+1}^n} - M_{t_j^n})^2 \stackrel{P}{\to} \langle M \rangle_t.$$

6. Quadratic variation of the integral process

Proposition

If u_t is a progressively measurable process such that $E\left(\int_0^t u_s^2 ds\right) < \infty$ for each t>0, then

$$\left\langle \int_0^{\cdot} u_{s} dB_{s} \right\rangle_t = \int_0^t u_{s}^2 ds.$$

Proof : Since $\int_0^t u_s^2 ds$ is an increasing continuous process that vanishes at 0, it suffices to show that

$$\left(\int_0^t u_s dB_s\right)^2 - \int_0^t u_s^2 ds$$

is a martingale. This is easy if $u \in \mathcal{E}$, and in the general case follows form the density of \mathcal{E} in $L^2(\mathcal{P})$. \square

6. Stochastic integration up to a stopping time :

Proposition

Suppose that $u \in L^2(\mathcal{P})$ and let τ is be a finite stopping time. Then the process $u\mathbf{1}_{[0,\tau]}$ also belongs to $L^2(\mathcal{P})$ and we have :

$$\int_0^\infty u_t \mathbf{1}_{[0,\tau]}(t) dB_t = \int_0^\tau u_t \ dB_t.$$

Proof:

(i) Suppose first that $u_t = F1_{(a,b]}(t)$, where $0 \le a < b$, $F \in L^2(\Omega, \mathcal{F}_a, P)$ and τ takes values in a finite set $\{0 \le t_1 \le \cdots \le t_n\}$. One one hand, we have

$$\int_0^\tau u_t \ dB_t = F(B_{b\wedge \tau} - B_{a\wedge \tau}).$$

On the other hand, the process $\mathbf{1}_{[0,\tau]}$ si simple because

$$\mathbf{1}_{(0,\tau]}(t) = \sum_{j=1}^{n} \mathbf{1}_{\{\tau \geq t_j\}} \mathbf{1}_{(t_{j-1},t_j]}(t)$$

and $\mathbf{1}_{\{ au\geq t_j\}}=\mathbf{1}_{\{ au\leq t_{j-1}\}^c}\in\mathcal{F}_{t_{j-1}}.$ Therefore,

$$\int_{0}^{\infty} u_{t} \mathbf{1}_{[0,\tau]}(t) dB_{t} = F \sum_{j=1}^{n} \mathbf{1}_{\{\tau \geq t_{j}\}} \int_{0}^{\infty} \mathbf{1}_{(a,b] \cap (t_{j-1},t_{j}]}(t) dB_{t}$$

$$= F \sum_{i=1}^{n} \mathbf{1}_{\{\tau = t_{i}\}} \int_{0}^{\infty} \mathbf{1}_{(a,b] \cap [0,t_{i}]}(t) dB_{t}$$

$$= F(B_{b \wedge \tau} - B_{a \wedge \tau}).$$

- (ii) For a finite stopping time τ , we approximate τ by the sequence of stopping times $\tau_n = \sum_{i=1}^{n2^n} \frac{i}{2^n} \mathbf{1}_{\{\frac{i-1}{2^n} \leq \tau < \frac{i}{2^n}\}}$, that satisfy $\tau_n \downarrow \tau$. Taking the limit as n tends to infinity we deduce the equality in the case of a simple process.
- (iii) In the general case, we approximate u by simple processes $u^{(n)}$ in the norm of $L^2(\mathcal{P})$.

The convergence

$$\int_0^{\tau} u_t^{(n)} dB_t \stackrel{L^2(\Omega)}{\longrightarrow} \int_0^{\tau} u_t dB_t$$

follows from Doob's maximal inequality.

Integral of general processes

• Let $L_{loc}^2(\mathcal{P})$ the set of progressively measurable processes $u = \{u_t, t \geq 0\}$, such that for all $t \geq 0$

$$P\left(\int_0^t u_s^2 ds < \infty\right) = 1.$$

• Suppose that $u \in L^2_{loc}(\mathcal{P})$. For each $n \ge 1$ we define the stopping time

$$T_n = \inf \left\{ t \geq 0 : \int_0^t u_s^2 ds = n \right\}$$

and the sequence of processes $u_t^{(n)} = u_t \mathbf{1}_{[0,T_n]}(t)$, which belong to $L^2(\mathcal{P})$.

Proposition

There exists an adapted and continuous process $\int_0^t u_s dB_s$ such that for any $n \ge 1$,

$$\int_0^t u_s^{(n)} dB_s = \int_0^t u_s dB_s, \quad \text{on} \quad t \leq T_n.$$

Proof : If $n \le m$, on the set $\{t \le T_n\}$ we have

$$\int_0^t u_s^{(n)} dB_s = \int_0^t u_s^{(m)} dB_s,$$

and $T_n \uparrow \infty$. \square

• The process $M_t := \int_0^t u_s dB_s$ is a continuous *local martingale*, that is, there exist a sequence of stopping times $T_n \uparrow \infty$, such that for each $n \ge 1$, $M_{t \land T_n}$ is a uniformly integrable martingale.

• Instead of the isometry property, the stochastic integral of processes in $L^2_{loc}(\mathcal{P})$ has the following continuity property in probability :

Proposition

Suppose that $u \in L^2_{loc}(\mathcal{P})$. For all $K, \delta > 0, T > 0$ we have :

$$\left|P\left(\left|\int_0^T u_s dB_s
ight| \geq K
ight) \leq P\left(\int_0^T u_s^2 ds \geq \delta
ight) + rac{\delta}{K^2}.$$

Proof:

Consider the stopping time defined by

$$au = \inf \left\{ t \geq 0 : \int_0^t u_s^2 ds = \delta
ight\},$$

with the convention that $\tau = T$ if $\int_0^T u_s^2 ds < \delta$.

We have

$$\begin{split} P\left(\left|\int_0^T u_s dB_s\right| \geq K\right) & \leq & P\left(\int_0^T u_s^2 ds \geq \delta\right) \\ & + P\left(\left|\int_0^T u_s dB_s\right| \geq K, \int_0^T u_s^2 ds \leq \delta\right). \end{split}$$

On the other hand,

$$\begin{split} P\left(\left|\int_{0}^{T}u_{s}dB_{s}\right|\geq K, \int_{0}^{T}u_{s}^{2}ds\leq\delta\right) &=& P\left(\left|\int_{0}^{T}u_{s}dB_{s}\right|\geq K, \tau=T\right)\\ &\leq& P\left(\left|\int_{0}^{\tau}u_{s}dB_{s}\right|\geq K\right)\\ &\leq& \frac{1}{K^{2}}E\left(\left|\int_{0}^{\tau}u_{s}dB_{s}\right|^{2}\right)\\ &=& \frac{1}{K^{2}}E\left(\int_{0}^{\tau}u_{s}^{2}ds\right)\leq\frac{\delta}{K^{2}}. \end{split}$$

Stochastic integrals with respect to local martingales

- Let M_t be a continuous local martingale with respect to a filtration \mathcal{F}_t satisfying conditions (i) and (ii), such that $M_0 = 0$.
- We can defined the integral $I_M(u) = \int_0^\infty u_t dM_t$ for progressively measurable processes u_t such that

$$E\left(\int_0^\infty u_s^2 d\langle M\rangle_s\right)<\infty.$$

Basic properties :

- 1. $E(I_M(u)^2) = E\left(\int_0^\infty u_s^2 d\langle M\rangle_s\right)$.
- 2. If $M_t = \int_0^t \theta_s dB_s$ and $u\theta \in L^2(\mathcal{P})$, we have

$$\int_0^t u_s dM_s = \int_0^t u_s \theta_s dB_s.$$

3. We have

$$\left\langle \int_0^{\cdot} u_s dM_s \right\rangle_t = \int_0^t u_s^2 d\langle M \rangle_s.$$

Itô's formula

- Itô's stochastic integral does not follow the chain rule of classical calculus.
- Example:

$$\int_{0}^{t} B_{s} dB_{s} = \frac{1}{2} B_{t}^{2} - \frac{t}{2},$$

whereas if x_t is a differentiable function such that $x_0 = 0$,

$$\int_{0}^{t} x_{s} dx_{s} = \int_{0}^{t} x_{s} x'_{s} ds = \frac{1}{2} x_{t}^{2}.$$

In differential form

$$d(B_t^2) = 2B_t dB_t + dt,$$

and dt comes from $(dB_t)^2 \sim dt$ and the Taylor expansion up to the second order.

- Let \mathcal{F}_t be the filtration generated by the Brownian motion B and the null sets.
- Denote by $L^1_{loc}(\mathcal{P})$ the space of progressively measurable processes $v = \{v_t, t \geq 0\}$ such that for all t > 0,

$$P\left(\int_0^t |v_s|\,ds<\infty\right)=1.$$

Definition

A continuous and adapted stochastic process $\{X_t, t \geq 0\}$ is called an *Itô* process if

$$X_t = X_0 + \int_0^t u_s dB_s + \int_0^t v_s ds,$$

where $u \in L^2_{loc}(\mathcal{P})$ and $v \in L^1_{loc}(\mathcal{P})$.

In differential notation we will write

$$dX_t = u_t dB_t + v_t dt$$

• We say that a function $f:[0,\infty)\times\mathbb{R}\to\mathbb{R}$ is of class $C^{1,2}$ if f(t,x) is twice differentiable with respect to x and once differentiable with respect to t, with continuous partial derivatives.

Theorem (Itô's formula)

Suppose that X is an Itô process. Let $f \in C^{1,2}$. Then, the process $Y_t = f(t, X_t)$ is again an Itô process with the representation

$$Y_{t} = f(0, X_{0}) + \int_{0}^{t} \frac{\partial f}{\partial t}(s, X_{s}) ds + \int_{0}^{t} \frac{\partial f}{\partial x}(s, X_{s}) u_{s} dB_{s}$$
$$+ \int_{0}^{t} \frac{\partial f}{\partial x}(s, X_{s}) v_{s} ds + \frac{1}{2} \int_{0}^{t} \frac{\partial^{2} f}{\partial x^{2}}(s, X_{s}) u_{s}^{2} ds.$$

In differential notation Itô's formula can be written as

$$df(t,X_t) = \frac{\partial f}{\partial t}(t,X_t)dt + \frac{\partial f}{\partial x}(t,X_t)dX_t + \frac{1}{2}\frac{\partial^2 f}{\partial x^2}(s,X_s)(dX_t)^2,$$

where $(dX_t)^2$ is computed using the product rule

×	dB _t	dt
dB _t	dt	0
dt	0	0

• In the particular case $u_t = 1$, $v_t = 0$, $X_0 = 0$, the process X_t is the Brownian motion B_t , and Itô's formula has the following simple version

$$f(t, B_t) = f(0,0) + \int_0^t \frac{\partial f}{\partial x}(s, B_s) dB_s + \int_0^t \frac{\partial f}{\partial t}(s, B_s) ds + \frac{1}{2} \int_0^t \frac{\partial^2 f}{\partial x^2}(s, B_s) ds.$$

Proof:

• Suppose $v_t = 0$ and f does not depend on t, that is,

$$X_t = X_0 + \int_0^t u_s dB_s.$$

We claim that

$$f(X_t) = f(X_0) + \int_0^t f'(X_s) u_s dB_s + \frac{1}{2} \int_0^t f''(X_s) u_s^2 ds.$$

(i) By a localization argument we may assume that $f \in C_b^2(\mathbb{R})$, $\int_0^\infty u_s^2 ds \le N$ and $\sup_{t \ge 0} |X_t| \le N$. In fact, consider the sequence of stopping times

$$\mathcal{T}_{N}=\inf\left\{ t\geq0:\int_{0}^{t}u_{s}^{2}ds\geq N,\operatorname{or}\left|X_{t}\right|\geq N
ight\} .$$

Let f_N be a function in $C_0^2(\mathbb{R})$ such that $f(x)=f_N(x)$ for $|x|\leq N$. Then, if $u_t^{(N)}=u_t\mathbf{1}_{[0,T_N]}(t)$ and

$$X_t^{(N)} = X_0 + \int_0^t u_s^{(N)} dB_s = X_0 + \int_0^{T_N \wedge t} u_s dB_s,$$

we have

$$f_N(X_t^{(N)}) = f_N(X_0) + \int_0^t f_N'(X_s^{(N)}) u_s^{(N)} dB_s + \frac{1}{2} \int_0^t f_N''(X_s^{(N)}) (u_s^{(N)})^2 ds.$$

which implies

$$f(X_{T_N\wedge t})=f_N(X_0)+\int_0^{T_N\wedge t}f'(X_s)u_sdB_s+\frac{1}{2}\int_0^{T_N\wedge t}f''(X_s)u_s^2ds.$$

Then we let $N \to \infty$ to get the result.

(ii) Consider the uniform partition $0 = t_0 < t_1 < \cdots < t_n = t$, where $t_i = \frac{it}{n}$. We can write, using Taylor's formula

$$f(X_t) - f(X_0) = \sum_{i=0}^{n-1} \left[f(X_{t_{i+1}}) - f(X_{t_i}) \right]$$

$$= \sum_{i=0}^{n-1} f'(X_{t_i})(X_{t_{i+1}} - X_{t_i}) + \frac{1}{2} \sum_{i=0}^{n-1} f''(\widetilde{X}_i)(X_{t_{i+1}} - X_{t_i})^2,$$

where \widetilde{X}_i is a random point between X_{t_i} and $X_{t_{i+1}}$.

(iii) It is an easy exercise to show that

$$\sum_{i=0}^{n-1} f'(X_{t_i})(X_{t_{i+1}}-X_{t_i}) \stackrel{L^2(\Omega)}{\longrightarrow} \int_0^t f'(X_s)u_s dB_s.$$

(iv) For the second term we write

$$\begin{split} &\int_{0}^{t} f''(X_{s}) u_{s}^{2} ds - \sum_{i=0}^{n-1} f''(\widetilde{X}_{i}) (X_{t_{i+1}} - X_{t_{i}})^{2} \\ &= \sum_{i=0}^{n-1} \int_{t_{i}}^{t_{i+1}} \left[f''(X_{s}) - f''(X_{t_{i}}) \right] u_{s}^{2} ds \\ &+ \sum_{i=0}^{n-1} f''(X_{t_{i}}) \left(\int_{t_{i}}^{t_{i+1}} u_{s}^{2} ds - \left(\int_{t_{i}}^{t_{i+1}} u_{s} dB_{s} \right)^{2} \right) \\ &+ \sum_{i=0}^{n-1} \left[f''(X_{t_{i}}) - f''(\widetilde{X}_{i}) \right] \left(\int_{t_{i}}^{t_{i+1}} u_{s} dB_{s} \right)^{2} \\ &=: A_{1}^{n} + A_{2}^{n} + A_{3}^{n}. \end{split}$$

Then, it suffices to show that each term A_i^n converges to zero in probability.

(v) We have

$$A_1^n \le \sup_{|s-r| \le t/n} |f''(X_s) - f''(X_r)| \int_0^t u_s^2 ds$$

and

$$A_3^n \leq \sup_{0 \leq i \leq n-1} |f''(X_{t_i}) - f''(\widetilde{X}_i)| \sum_{i=0}^{n-1} \left(\int_{t_i}^{t_{i+1}} u_s dB_s \right)^2.$$

Clearly both expressions converge to zero in probability as *n* tends to infinity.

(vi) Using that the sequence $\xi_i = \int_{t_i}^{t_{i+1}} u_s^2 ds - \left(\int_{t_i}^{t_{i+1}} u_s dB_s\right)^2$ is bounded and satisfies

$$E[\xi_i|\mathcal{F}_{t_i}]=0,$$

we obtain

$$\begin{split} E[(A_n^2)^2] &= \sum_{i=0}^{n-1} E[f''(X_{t_i})^2 \xi_i^2] \leq \|f''\|_{\infty}^2 \sum_{i=0}^{n-1} E[\xi_i^2] \\ &= 2\|f''\|_{\infty}^2 \sum_{i=0}^{n-1} \left[\left(\int_{t_i}^{t_{i+1}} u_s^2 ds \right)^2 + \left(\int_{t_i}^{t_{i+1}} u_s dB_s \right)^4 \right] \\ &\leq 2\|f''\|_{\infty}^2 \left(N \sup_i \int_{t_i}^{t_{i+1}} u_s^2 ds \right. \\ &\left. + \sup_i |X_{t_{i+1}} - X_{t_i}|^2 \sum_{i=0}^{n-1} \left(\int_{t_i}^{t_{i+1}} u_s dB_s \right)^2 \right), \end{split}$$

which converges to zero in probability as $n \to \infty$. \square

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 釣 ९ ○

Examples:

1. $f(x) = x^2$ and $X_t = B_t$. We obtain

$$B_t^2 = 2\int_0^t B_s dB_s + t,$$

because f'(x) = 2x and f''(x) = 2.

2. $f(x) = x^3$ and $X_t = B_t$, we obtain

$$B_t^3 = 3 \int_0^t B_s^2 dB_s + 3 \int_0^t B_s ds,$$

because $f'(x) = 3x^2$ and f''(x) = 6x. More generally, if $n \ge 2$ is a natural number,

$$B_t^n = n \int_0^t B_s^{n-1} dB_s + \frac{n(n-1)}{2} \int_0^t B_s^{n-2} ds.$$

3.
$$f(t,x) = e^{ax - \frac{a^2}{2}t}$$
, $X_t = B_t$, and $Y_t = e^{aB_t - \frac{a^2}{2}t}$, we obtain

$$Y_t = 1 + a \int_0^t Y_s dB_s$$

because

$$\frac{\partial f}{\partial t} + \frac{1}{2} \frac{\partial^2 f}{\partial x^2} = 0. \tag{1}$$

In differential form

$$dY_t = aY_t dB_t$$
.

4. If a function $f \in C^{1,2}$ satisfies the equality (1), then,

$$f(t,B_t)=f(0,0)+\int_0^t \frac{\partial f}{\partial x}(s,B_s)dB_s.$$

This implies that $f(t, B_t)$ is a continuous local martingale. It is a square integrable martingale if:

$$E\left[\int_0^t \left(\frac{\partial f}{\partial x}(s,B_s)\right)^2 ds\right] < \infty$$

for all $t \ge 0$.

The stochastic calculus can be extended to continuous semimartingales of the form

$$X_t = X_0 + A_t + M_t,$$

where M_t is a continuous local martingale with $M_0 = 0$ and A_t is a continuous process with trajectories of bounded variation on any finite interval with $A_0 = 0$. In this case,

$$df(X_t) = f'(X_t)dX_t + \frac{1}{2}f''(X_t)d\langle M \rangle_t,$$

where $\langle M \rangle_t$ is the quadratic variation of M.

Stratonovich integral

Proposition

Consider two continuous semimartingales X_t and Y_t . Then, for every sequence $\pi^{(n)} = \{0 = t_0^n \le t_1^n \le \cdots \le t_n^n = t\}$ of partitions of [0,t] such that $|\pi^{(n)}| \to 0$, the following limit in probability exists :

$$\lim_{n\to\infty}\sum_{i=0}^{n-1}\frac{1}{2}(Y_{t_i^n}+Y_{t_{i+1}^n})(X_{t_{i+1}^n}-X_{t_i^n})=\int_0^tY_s\circ dX_s,$$

and it is called the Stratonovich integral of Y with respect to X.

We have

$$\int_0^t Y_s \circ dX_s = \int_0^t Y_s dX_s + \frac{1}{2} \langle X, Y \rangle_t,$$

where $\langle X, Y \rangle_t$ is the covariation between the local martingale components of X and Y.

• The Stratonovich integral follows the rules of the classical calculus. That is, if $f \in C^3(\mathbb{R})$,

$$f(X_t) = f(X_0) + \int_0^t f'(X_s) \circ dX_s.$$

Proof:

$$\begin{split} f(X_t) &= f(X_0) + \int_0^t f'(X_s) dX_s + \frac{1}{2} \int_0^t f''(X_s) d\langle X \rangle_t \\ &= f(X_0) + \int_0^t f'(X_s) \circ dX_s - \frac{1}{2} \langle f'(X), X \rangle_t + \frac{1}{2} \int_0^t f''(X_s) d\langle X \rangle_t. \end{split}$$

Finally, taking into account that the local martingale part of f'(X) is $\int_0^t f''(X_s) dM_s$, we obtain

$$\langle f'(X), X \rangle_t = \int_0^t f''(X_s) d\langle M \rangle_s. \quad \Box$$

Multidimensional Itô formula

• Suppose that $B_t = (B_t^1, B_t^2, \dots, B_t^m)$ is an m-dimensional Brownian motion. Consider an n-dimensional Itô process of the form

$$X_t = X_0 + \int_0^t u_s dB_s + \int_0^t v_s ds,$$

where v_t is an n-dimensional process and u_t is a process with values in the set of $n \times m$ matrices and we assume that the components of u belong to $L^2_{loc}(\mathcal{P})$ and those of v belong to $L^1_{loc}(\mathcal{P})$.

• Then, if $f:[0,\infty)\times\mathbb{R}^n\to\mathbb{R}$ is a function of class $C^{1,2}$, the process $Y_t=f(t,X_t)$ is again an Itô process with the representation

$$dY_t = \frac{\partial f}{\partial t}(t, X_t)dt + \sum_{i=1}^n \frac{\partial f}{\partial x_i}(t, X_t)dX_t^i$$
$$+ \frac{1}{2} \sum_{i,j=1}^n \frac{\partial^2 f}{\partial x_i \partial x_j}(t, X_t)dX_t^i dX_t^j.$$

• The product of differentials $dX_t^i dX_t^j$ is computed by means of the product rules : $dB_t^i dt = 0$, $(dt)^2$ and

$$dB_t^i dB_t^j = \begin{cases} 0 & \text{if} \quad i \neq j \\ dt & \text{if} \quad i = j \end{cases}$$

Exercise: Show that if $i \neq j$, $\lim_{|\pi| \to 0} \sum_{k=1}^{n} \Delta B_k^i \Delta B_k^j = 0$ in L^2 .

《□》《□》《□》《□》 (□》 (□)

In this way we obtain

$$dX_t^i dX_t^j = \left(\sum_{k=1}^m u_t^{ik} u_t^{jk}\right) dt = \left(u_t u_t'\right)_{ij} dt,$$

which implies

$$dY_t = \frac{\partial f}{\partial t}(t, X_t)dt + \nabla f(t, X_t)dX_t + \frac{1}{2}\sum_{i, i=1}^n \frac{\partial^2 f}{\partial x_i \partial x_j}(t, X_t)(u_t u_t')_{ij}dt.$$

 As a consequence we can deduce the following integration by parts formula: Suppose that X_t and Y_t are Itô processes. Then,

$$X_tY_t = X_0Y_0 + \int_0^t X_s dY_s + \int_0^t Y_s dX_s + \int_0^t dX_s dY_s.$$

Recurrence and transience of the Brownian motion

Proposition

Let $f \in C^{1,2}(\mathbb{R}_+ \times \mathbb{R}^d)$ and let B_t be a d-dimensional Brownian motion. Then, the process

$$X_t = f(t, B_t) - \int_0^t \left(\frac{1}{2}\Delta f(s, B_s) + \frac{\partial f}{\partial t}(s, B_s)\right) ds$$

is a local martingale. If moreover,

$$\sum_{i=1}^{d} \left(\frac{\partial f}{\partial x_i}(t, x) \right)^2 \le \phi(t) e^{K||x||},$$

for some continuous function ϕ , then X_t is a martingale.

• For a > 0 and $x \in \mathbb{R}^d$, consider the stopping time

$$T_a^x=\inf\{t\geq 0: \|B_t+a\|=x\}.$$

Proposition

For a < ||x|| < b,

$$P(T_a^x < T_b^x) = \begin{cases} \frac{\log b - \log ||x||}{\log b - \log a}, d = 2\\ \\ \frac{||x||^{2-d} - b^{2-d}}{a^{2-d} - b^{2-d}}, d \ge 3 \end{cases}$$

Proof:

Consider the function

$$f(x) = \Psi(||x||) = \begin{cases} \log ||x||, & d = 2 \\ ||x||^{2-d}, & d \ge 3 \end{cases}$$

Because $\Delta f = 0$, $f(B_{t \wedge T_a^x \wedge T_b^x})$ is a martingale, which implies

$$E(f(B_{T_a^x \wedge T_b^x})) = f(x).$$

This yields

$$\Psi(a)P(T_a^x < T_b^x) + \Psi(b)P(T_b^x < T_a^x) = f(x),$$

and together with

$$P(T_a^x < T_b^x) + P(T_b^x < T_a^x) = 1$$

we obtain the result. \square

Letting $b \to \infty$ we get :

Corollary

For 0 < a < ||x||

$$P(T_a^x < \infty) = \begin{cases} 1, & d = 2 \\ \frac{\|x\|^{2-d}}{a^{2-d}}, & d \ge 3. \end{cases}$$

As a consequence, for d=2 the Brownian motion is recurrent, that is, for every non-empty set $\mathcal{O}\subset\mathbb{R}^2$,

$$P(B_t \in \mathcal{O}, \text{ for some } t \ge 0) = 1.$$

Martingale representation theorem

Suppose that \mathcal{F}_t is the filtration generated by the Brownian motion B_t and the null sets.

Theorem

Let $F \in L^2(\Omega, \mathcal{F}_\infty, P)$. Then, there exists a unique process u in the space $L^2(\mathcal{P})$ such that

$$F=E(F)+\int_0^\infty u_s dB_s.$$

Example: $F = B_T^3$. By Itô's formula and integrating by parts

$$\begin{split} B_T^3 &= \int_0^T 3B_t^2 dB_t + 3 \int_0^T B_t dt = \int_0^T 3B_t^2 dB_t + 3 \left(TB_T - \int_0^T t dB_t \right) \\ &= \int_0^T 3B_t^2 dB_t + 3 \int_0^T (T - t) dB_t \\ &= \int_0^T 3 \left[B_t^2 + (T - t) \right] dB_t. \end{split}$$

Proof:

(i) Suppose first that

$$F = \exp\left(\int_0^\infty h_s dB_s - \frac{1}{2} \int_0^\infty h_s^2 ds\right), \tag{2}$$

where $h \in L^2(\mathbb{R}_+)$. Define

$$Y_t = \exp\left(\int_0^t h_s dB_s - rac{1}{2}\int_0^t h_s^2 ds
ight).$$

By Itô's formula applied to the function $f(x) = e^x$ and the process $X_t = \int_0^t h_s dB_s - \frac{1}{2} \int_0^t h_s^2 ds$, we obtain

$$Y_t = 1 + \int_0^t Y_s h(s) dB_s.$$

Hence,

$$F = 1 + \int_0^\infty Y_s h_s dB_s$$

and we get the desired representation because E(F) = 1.

- (ii) By linearity, the representation holds for linear combinations of exponentials of the form (2).
- (iii) In the general case, any random variable $F \in L^2(\Omega, \mathcal{F}_{\infty}, P)$ can be approximated in L^2 by a sequence F_n of linear combinations of exponentials of the form (2). Then, we have

$$F_n = E(F_n) + \int_0^\infty u_s^{(n)} dB_s.$$

By the isometry of the stochastic integral

$$\begin{split} E\left[\left(F_{n}-F_{m}\right)^{2}\right] & \geq & \operatorname{Var}(F_{n}-F_{m}) \\ & = & E\left[\left(\int_{0}^{\infty}\left(u_{s}^{(n)}-u_{s}^{(m)}\right)dB_{s}\right)^{2}\right] \\ & = & E\left[\int_{0}^{\infty}\left(u_{s}^{(n)}-u_{s}^{(m)}\right)^{2}ds\right]. \end{split}$$

- (iv) Hence, $u^{(n)}$ is a Cauchy sequence in $L^2(\mathcal{P})$ and it converges to a process u in $L^2(\mathcal{P})$.
- (v) Applying again the isometry property, and taking into account that $E(F_n)$ converges to E(F), we obtain

$$F = \lim_{n \to \infty} F_n = \lim_{n \to \infty} \left(E(F_n) + \int_0^\infty u_s^{(n)} dB_s \right)$$
$$= E(F) + \int_0^\infty u_s dB_s.$$

(vi) Uniqueness : Suppose that $u^{(1)}$ and $u^{(2)}$ are processes in $L^2(\mathcal{P})$ such that

$$F = E(F) + \int_0^\infty u_s^{(1)} dB_s = E(F) + \int_0^\infty u_s^{(2)} dB_s.$$

Then

$$0 = E\left[\left(\int_0^\infty \left(u_s^{(1)} - u_s^{(2)}\right) dB_s\right)^2\right] = E\left[\int_0^\infty \left(u_s^{(1)} - u_s^{(2)}\right)^2 ds\right]$$

and, hence, $u_s^{(1)}(\omega) = u_s^{(2)}(\omega)$ for almost all (s, ω) .

- ◆ロト ◆御 ト ◆注 ト ◆注 ト · 注 · かへで

Corollary

Suppose that $\{M_t, t \geq 0\}$ is a square integrable martingale with respect to \mathcal{F}_t . Then there exists a unique progressively measurable process u such that $E\left(\int_0^t u_s^2 ds\right)^2 < \infty$ for all t and

$$M_t = E(M_0) + \int_0^t u_s dB_s.$$

• In particular, M_t has a continuous version.

Theorem (Burkholder-Davis-Gundy)

For any p > 0 we have

$$c_{p}E\left[\left|\int_{0}^{T}u_{s}^{2}ds\right|^{\frac{p}{2}}\right]\leq E\left[\sup_{t\in[0,T]}\left|\int_{0}^{t}u_{s}dB_{s}\right|^{p}\right]\leq C_{p}E\left[\left|\int_{0}^{T}u_{s}^{2}ds\right|^{\frac{p}{2}}\right].$$

More generally, for any continuous local martingale,

$$c_{p}E\left[\langle M
angle_{t}^{rac{
ho}{2}}
ight]\leq E\left[\sup_{t\in[0,T]}\left|M_{t}
ight|^{p}
ight]\leq C_{p}E\left[\langle M
angle_{t}^{rac{
ho}{2}}
ight].$$

Change of measures

• Let $L \ge 0$ be a nonnegative random variable such that E(L) = 1. Then,

$$Q(A) = E(\mathbf{1}_A L)$$

defines a new probability and we say that *L* is the *density* of *Q* with respect to *P*, that is, $\frac{dQ}{dP} = L$.

• The expectation of a random variable X in the probability space (Ω, \mathcal{F}, Q) is computed by the formula

$$E_Q(X) = E(XL)$$
.

The probability Q is absolutely continuous with respect to P, that means,

$$P(A) = 0 \Longrightarrow Q(A) = 0.$$

• If *L* is strictly positive, then the probabilities *P* and *Q* are *equivalent* (that is, mutually absolutely continuous), that means,

$$P(A) = 0 \iff Q(A) = 0.$$

Girsanov theorem

• Let $\{B_t, t \geq 0\}$ be a Brownian motion. Given a process $\theta \in L^2(\mathcal{P})$, consider the local martingale

$$L_t = \exp\left(\int_0^t \theta_s dB_s - \frac{1}{2} \int_0^t \theta_s^2 ds\right)$$
 (3)

which satisfies the linear stochastic differential equation

$$L_t = 1 + \int_0^t \theta_s L_s dB_s.$$

Lemma (Novikov condition)

Ιf

$$E\left(\exp\left(\frac{1}{2}\int_{0}^{\infty}\theta_{s}^{2}ds\right)\right)<\infty,$$

then $\{L_t, t \geq 0\}$ is a uniformly integrable martingale.

Consequences:

- 1. The random variable L_{∞} is a density in the probability space $(\Omega, \mathcal{F}_{\infty}, P)$ and defines a probability Q such that $L_{\infty} = \frac{dQ}{dP}$.
- 2. For any $t \geq 0$, $L_t = \frac{dQ}{dP}|_{\mathcal{F}_t}$. In fact, if $A \in \mathcal{F}_t$ we have

$$Q(A) = E(\mathbf{1}_A L_\infty) = E(E(\mathbf{1}_A L_\infty | \mathcal{F}_t))$$

$$= E(\mathbf{1}_A E(L_\infty | \mathcal{F}_t))$$

$$= E(\mathbf{1}_A L_t).$$

Theorem (Girsanov theorem)

Suppose θ satisfies Novikov condition. In the probability space $(\Omega, \mathcal{F}_{\infty}, Q)$ the stochastic process

$$W_t = B_t - \int_0^t \theta_s ds,$$

is a Brownian motion.

Proof:

• It is enough to show that in the probability space $(\Omega, \mathcal{F}_{\infty}, Q)$, for all $s < t \le T$ the increment $W_t - W_s$ is independent of \mathcal{F}_s and has the normal distribution N(0, t - s).

These properties follow from the following relation, for all s < t, $A \in \mathcal{F}_s$, $\lambda \in \mathbb{R}$,

$$E_Q\left(\mathbf{1}_A e^{i\lambda(W_t - W_s)}\right) = Q(A)e^{-\frac{\lambda^2}{2}(t-s)}.$$
 (4)

In order to show (4) we write

$$E_{Q}\left(\mathbf{1}_{A}e^{i\lambda(W_{t}-W_{s})}\right) = E\left(\mathbf{1}_{A}e^{i\lambda(W_{t}-W_{s})}L_{t}\right)$$
$$= E\left(\mathbf{1}_{A}L_{s}\Psi_{s,t}\right)e^{-\frac{\lambda^{2}}{2}(t-s)},$$

where

$$\Psi_{s,t} = \exp\left(\int_s^t (i\lambda + heta_v) dB_v - rac{1}{2} \int_s^t (i\lambda + heta_v)^2 dv
ight).$$

Then the desired result follows form

$$E\left[\Psi_{s,t}|\mathcal{F}_{s}
ight]=1.$$

Application

• Let $\{B_t, t \ge 0\}$ be a Brownian motion. Fix a real number θ , and define

$$L_t = \exp\left(heta \mathcal{B}_t - rac{ heta^2}{2} t
ight).$$

• Let Q be the probability on each σ -field \mathcal{F}_t such that for all t > 0

$$\frac{dQ}{dP}|_{\mathcal{F}_t} = L_t.$$

By Girsanov theorem, for all T > 0, in the probability space $(\Omega, \mathcal{F}_T, Q)$ the process $B_t - \theta t := \widetilde{B}_t$ is a Brownian motion in the time interval [0, T]. That is, in this space B_t is a Brownian motion with drift θt .

Set

$$\tau_{a}=\inf\{t\geq0,B_{t}=a\},$$

where $a \neq 0$. For any $t \geq 0$ the event $\{\tau_a \leq t\}$ belongs to the σ -field $\mathcal{F}_{\tau_a \wedge t}$ because for any $s \geq 0$

$$\{ \tau_{a} \leq t \} \cap \{ \tau_{a} \wedge t \leq s \} = \{ \tau_{a} \leq t \} \cap \{ \tau_{a} \leq s \}$$

$$= \{ \tau_{a} \leq t \wedge s \} \in \mathcal{F}_{s \wedge t} \subset \mathcal{F}_{s}.$$

Consequently, using the Optional Stopping Theorem we obtain

$$\begin{aligned} Q\{\tau_{a} \leq t\} &= E\left(\mathbf{1}_{\{\tau_{a} \leq t\}} L_{t}\right) = E\left(\mathbf{1}_{\{\tau_{a} \leq t\}} E(L_{t} | \mathcal{F}_{\tau_{a} \wedge t})\right) \\ &= E\left(\mathbf{1}_{\{\tau_{a} \leq t\}} L_{\tau_{a} \wedge t}\right) = E\left(\mathbf{1}_{\{\tau_{a} \leq t\}} L_{\tau_{a}}\right) \\ &= E\left(\mathbf{1}_{\{\tau_{a} \leq t\}} e^{\theta a - \frac{1}{2}\theta^{2} s} f(s) ds, \end{aligned}$$

where f is the density of the random variable τ_a .

We know that

$$f(s) = \frac{|a|}{\sqrt{2\pi s^3}} e^{-\frac{a^2}{2s}}.$$

Hence, with respect to Q the random variable τ_a has the probability density

$$\frac{|a|}{\sqrt{2\pi s^3}}e^{-\frac{(a-\theta s)^2}{2s}},\ s>0.$$

• Letting, $t \uparrow \infty$ we obtain

$$Q\{ au_a<\infty\}=e^{ heta a}E\left(e^{-rac{1}{2} heta^2 au_a}
ight)=e^{ heta a-| heta a|}.$$

If $\theta=0$ (Brownian motion without drift), the probability to reach the level is one. If $\theta a>0$ (the drift θ and the level a have the same sign) this probability is also one. If $\theta a<0$ (the drift θ and the level a have opposite sign) this probability is $e^{2\theta a}$.