Wizualizacja Danych za Pomocą Biblioteki Matplotlib

Laboratorium z Analizy Danych

Contents

1	Wprowadzenie	5
2	Instalacja Matplotlib	5
3	Podstawy Matplotlib	6
4	Podstawowe Typy Wykresów	6
	4.1 Wykres Liniowy	6
	4.2 Wykres Słupkowy	7
	4.3 Histogram	7
	4.4 Wykres Kołowy	8

5	Dostosowywanie Wykresów	9
	5.1 Kolory, Linie i Style Markerów	9
	5.2 Dodawanie Siatki	9
	5.3 Dodawanie Adnotacji	10
6	Zaawansowane Typy Wykresów	11
	6.1 Wykres Punktowy (Scatter Plot)	11
	6.2 Wykres 3D	11
7	Podsumowanie Matplotlib	12
8	Wizualizacja Danych za Pomocą Biblioteki Plotly	13
	8.1 Wprowadzenie do plotly	13
	8.2 Instalacja Plotly	13
9	Podstawy Plotly	13
10	Tworzenie Podstawowych Wykresów	14
	10.1 Wykres Liniowy	14
	10.2 Wykres Słupkowy	
	10.3 Wykres Kołowy	15
	10.4 Histogram	15

11 Dostosowywanie Wykresów	16
11.1 Kolory i Styl	16
11.2 Dodawanie Adnotacji	
12 Tworzenie Zaawansowanych Wykresów	17
12.1 Wykres Punktowy (Scatter Plot)	17
12.2 Wykres 3D	18
13 Tworzenie Wykresów z Subplotami	19
14 Podsumowanie plotly	19
15 Wprowadzenie do biblioteki plotnine	20
15.1 Instalacja Biblioteki plotnine	20
15.2 Podstawy plotnine	
15.3 Tworzenie Podstawowych Typów Wykresów	
15.4 Wykres Punktowy (Scatter Plot)	
15.5 Wykres Liniowy	22
	22 22
15.5 Wykres Liniowy	22 22

	16.2 Dodawanie Linii Trendu	24
17	Zaawansowane Wykresy 17.1 Facetowanie Wykresów	25 25 25
18	B Dodawanie Motywów do Wykresów	26
19	9 Podsumowanie	27
2 0	Wizualizacja Geoprzestrzenna Danych za Pomocą Plotly w Pythonie 20.1 Wprowadzenie	27 27 27
21	Mapy Punktowe (Scatter Maps) 21.1 Przykład: Wyświetlanie Lokalizacji Miast na Mapie	28 28
22	2 Mapy Choropleth (Mapy o Zmiennych Kolorach Obszarów) 22.1 Przykład: Wizualizacja Populacji Krajów na Mapie Świata	29
23	8 Mapy Cieplne (Heatmaps) 23.1 Przykład: Gęstość Lokalizacji na Mapie	30

	23.3 Przykład: Mapy Stanów w USA	31
24	Podsumowanie - mapy geoprzestrzenne	32
25	Zadanie	33

1 Wprowadzenie

Celem tego tutorialu jest zapoznanie się z biblioteką Matplotlib w języku Python, która jest popularnym narzędziem do tworzenia wykresów i wizualizacji danych. Matplotlib oferuje szeroki zakres możliwości, od prostych wykresów słupkowych po bardziej złożone wykresy 3D. Praca z wizualizacjami jest kluczowa dla analizy i interpretacji danych.

2 Instalacja Matplotlib

Przed rozpoczęciem pracy upewnij się, że masz zainstalowaną bibliotekę Matplotlib. Możesz ją zainstalować za pomocą poniższej komendy:

pip install matplotlib

3 Podstawy Matplotlib

Matplotlib najczęściej używa się wraz z modułem pyplot. Moduł ten oferuje zestaw funkcji do tworzenia wykresów podobnych do funkcji z Matlab.

```
import matplotlib.pyplot as plt
```

4 Podstawowe Typy Wykresów

4.1 Wykres Liniowy

Wykresy liniowe są używane do wizualizacji zmian wartości na osi czasu lub w zależności od zmiennej.

```
import matplotlib.pyplot as plt

# Dane
x = [1, 2, 3, 4, 5]
y = [2, 3, 5, 7, 11]

# Tworzenie wykresu
plt.plot(x, y, marker='o', linestyle='-', color='b', label="Liniowy")
plt.xlabel("O X")
plt.ylabel("O Y")
```

```
plt.title("Wykres Liniowy")
plt.legend()
plt.show()
```

4.2 Wykres Słupkowy

Wykresy słupkowe są używane do porównywania wartości między różnymi kategoriami.

```
# Dane
kategorie = ['A', 'B', 'C', 'D']
wartosci = [5, 7, 3, 8]

# Tworzenie wykresu s upkowego
plt.bar(kategorie, wartosci, color='orange')
plt.xlabel("Kategorie")
plt.ylabel("Warto ci")
plt.title("Wykres S upkowy")
plt.show()
```

4.3 Histogram

Histogramy są używane do przedstawiania rozkładu danych liczbowych.

```
import numpy as np

# Dane
dane = np.random.normal(0, 1, 1000)

# Tworzenie histogramu
plt.hist(dane, bins=30, color='purple', alpha=0.7)
plt.xlabel("Warto ci")
plt.ylabel("Cz stotliwo ")
plt.title("Histogram")
plt.show()
```

4.4 Wykres Kołowy

Wykresy kołowe są używane do przedstawienia procentowego udziału kategorii.

```
# Dane
kategorie = ['A', 'B', 'C', 'D']
wartosci = [15, 30, 45, 10]

# Tworzenie wykresu ko owego
plt.pie(wartosci, labels=kategorie, autopct='%1.1f%%', startangle=90)
```

```
plt.title("Wykres Ko owy")
plt.show()
```

5 Dostosowywanie Wykresów

5.1 Kolory, Linie i Style Markerów

Matplotlib pozwala na łatwe dostosowanie kolorów, stylów linii i markerów. Przykład:

```
x = [1, 2, 3, 4, 5]
y = [10, 20, 25, 30, 35]

plt.plot(x, y, color='green', marker='x', linestyle='--', linewidth=2)
plt.xlabel("X")
plt.ylabel("Y")
plt.title("Dostosowany Wykres Liniowy")
plt.show()
```

5.2 Dodawanie Siatki

Siatka pomaga w odczytywaniu wartości na wykresie. Można ją dodać za pomocą funkcji plt.grid().

```
plt.plot(x, y, color='blue', marker='o')
plt.grid(True)
plt.xlabel("X")
plt.ylabel("Y")
plt.title("Wykres z Siatk ")
plt.show()
```

5.3 Dodawanie Adnotacji

Adnotacje pozwalają dodać opisy lub oznaczenia do punktów na wykresie.

6 Zaawansowane Typy Wykresów

6.1 Wykres Punktowy (Scatter Plot)

Wykresy punktowe są przydatne do analizy zależności między dwoma zmiennymi.

```
x = np.random.rand(50)
y = np.random.rand(50)
sizes = 1000 * np.random.rand(50)

colors = np.random.rand(50)

plt.scatter(x, y, s=sizes, c=colors, alpha=0.5, cmap='viridis')
plt.colorbar()
plt.xlabel("X")
plt.ylabel("Y")
plt.title("Wykres Punktowy")
plt.show()
```

6.2 Wykres 3D

Matplotlib umożliwia tworzenie wykresów 3D przy użyciu modułu Axes3D.

```
from mpl_toolkits.mplot3d import Axes3D
```

```
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')

x = np.linspace(-5, 5, 100)
y = np.linspace(-5, 5, 100)
X, Y = np.meshgrid(x, y)
Z = np.sin(np.sqrt(X**2 + Y**2))

ax.plot_surface(X, Y, Z, cmap='plasma')
plt.title("Wykres 3D")
plt.show()
```

7 Podsumowanie Matplotlib

Biblioteka Matplotlib oferuje wiele możliwości wizualizacji danych, od prostych wykresów liniowych po zaawansowane wykresy 3D. Zrozumienie podstawowych typów wykresów i sposobu ich dostosowywania umożliwia lepszą interpretację danych oraz komunikację wyników. Zachęcamy do dalszej eksploracji Matplotlib oraz eksperymentowania z różnymi rodzajami wykresów.

8 Wizualizacja Danych za Pomocą Biblioteki Plotly

8.1 Wprowadzenie do plotly

Plotly to potężna biblioteka do wizualizacji danych w języku Python, która pozwala tworzyć interaktywne wykresy o wysokiej jakości. Jest szczególnie przydatna w analizie danych, ponieważ oferuje szeroką gamę typów wykresów, takich jak wykresy liniowe, słupkowe, kołowe, wykresy 3D, mapy geoprzestrzenne i wiele innych.

8.2 Instalacja Plotly

Przed rozpoczęciem pracy z Plotly należy upewnić się, że biblioteka jest zainstalowana. Możesz ją zainstalować za pomocą poniższej komendy:

pip install plotly

9 Podstawy Plotly

Plotly oferuje dwa główne sposoby tworzenia wykresów:

- plotly.express do szybkiego tworzenia wykresów opartego na uproszczonej składni.
- plotly.graph_objects umożliwia bardziej zaawansowane i złożone ustawienia wykresów.

10 Tworzenie Podstawowych Wykresów

10.1 Wykres Liniowy

Wykresy liniowe są używane do prezentacji zmian w wartościach ciągłych. Plotly pozwala łatwo stworzyć wykresy liniowe za pomocą modułu plotly.express.

```
import plotly.express as px

# Dane
x = [1, 2, 3, 4, 5]
y = [10, 15, 13, 17, 10]

# Tworzenie wykresu
fig = px.line(x=x, y=y, title="Wykres Liniowy", labels={'x':"0 X", 'y':"0 Y"})
fig.show()
```

10.2 Wykres Słupkowy

Wykresy słupkowe są przydatne do porównania danych między kategoriami.

```
# Dane
kategorie = ['A', 'B', 'C', 'D']
```

```
wartosci = [4, 7, 1, 8]

# Tworzenie wykresu s upkowego
fig = px.bar(x=kategorie, y=wartosci, title="Wykres S upkowy", labels={'x':"Kategorie", 'y':"Warto ci"})
fig.show()
```

10.3 Wykres Kołowy

Wykresy kołowe są używane do wizualizacji procentowego udziału kategorii.

```
# Dane
kategorie = ['A', 'B', 'C', 'D']
wartosci = [15, 30, 45, 10]

# Tworzenie wykresu ko owego
fig = px.pie(names=kategorie, values=wartosci, title="Wykres Ko owy")
fig.show()
```

10.4 Histogram

Histogramy są używane do wizualizacji rozkładu danych.

```
import numpy as np

# Dane
dane = np.random.normal(0, 1, 1000)

# Tworzenie histogramu
fig = px.histogram(x=dane, nbins=30, title="Histogram", labels={'x':"Warto ci", 'y':"Cz stotliwo "})
fig.show()
```

11 Dostosowywanie Wykresów

11.1 Kolory i Styl

Plotly umożliwia dostosowanie koloru wykresu oraz stylów poprzez parametry w funkcjach.

```
fig = px.line(x=x, y=y, title="Wykres Liniowy z Dostosowanymi Kolorami")
fig.update_traces(line=dict(color="purple", width=4))
fig.show()
```

11.2 Dodawanie Adnotacji

Adnotacje pozwalają na wyróżnienie określonych punktów na wykresie.

```
fig = px.line(x=x, y=y, title="Wykres z Adnotacjami")
fig.add_annotation(x=3, y=13, text="Wyr niony Punkt", showarrow=True, arrowhead=1)
fig.show()
```

12 Tworzenie Zaawansowanych Wykresów

12.1 Wykres Punktowy (Scatter Plot)

Wykresy punktowe są przydatne do wizualizacji zależności między dwoma zmiennymi.

```
# Dane
x = np.random.rand(50)
y = np.random.rand(50)
sizes = 1000 * np.random.rand(50)
colors = np.random.rand(50)

fig = px.scatter(x=x, y=y, size=sizes, color=colors, title="Wykres Punktowy")
fig.show()
```

12.2 Wykres 3D

Plotly umożliwia tworzenie wykresów 3D, które mogą być szczególnie przydatne do wizualizacji zależności trójwymiarowych.

```
import plotly.graph_objects as go
  # Dane
x = np.linspace(-5, 5, 100)
y = np.linspace(-5, 5, 100)
[X, Y = np.meshgrid(x, y)]
Z = \text{np.sin}(\text{np.sqrt}(X**2 + Y**2))
9 # Tworzenie wykresu 3D
fig = go.Figure(data=[go.Surface(z=Z, x=X, y=Y)])
fig.update_layout(title="Wykres 3D", scene=dict(
                       xaxis_title='X',
12
                       yaxis_title='Y',
13
                       zaxis_title='Z'))
14
15 fig.show()
```

13 Tworzenie Wykresów z Subplotami

W Plotly można tworzyć wykresy z subplotami, aby jednocześnie przedstawić różne dane.

```
from plotly.subplots import make_subplots

# Dane
x = [1, 2, 3, 4, 5]
y1 = [10, 15, 13, 17, 10]
y2 = [5, 6, 2, 3, 8]

# Tworzenie subplot w
fig = make_subplots(rows=1, cols=2, subplot_titles=("Wykres 1", "Wykres 2"))
fig.add_trace(go.Scatter(x=x, y=y1, mode='lines+markers', name="Liniowy 1"), row=1, col=1)
fig.add_trace(go.Scatter(x=x, y=y2, mode='lines+markers', name="Liniowy 2"), row=1, col=2)
fig.update_layout(title="Subploty w Plotly")
fig.show()
```

14 Podsumowanie plotly

Biblioteka Plotly oferuje zaawansowane możliwości interaktywnej wizualizacji danych, które są użyteczne zarówno w analizie danych, jak i prezentacji wyników. Plotly pozwala na łatwe tworzenie atrakcyjnych i dynamicznych wykresów, które można dostosować do specyficznych

potrzeb. Dalsze zgłębianie możliwości tej biblioteki oraz eksperymentowanie z różnymi wykresami pomoże w lepszym zrozumieniu i prezentacji danych.

15 Wprowadzenie do biblioteki plotnine

Biblioteka plotnine jest inspirowana biblioteką ggplot2 z języka R, która opiera się na filozofii tzw. "Grammar of Graphics". Umożliwia ona tworzenie eleganckich i czytelnych wizualizacji w Pythonie, zachowując składnię podobną do ggplot2. plotnine jest szczególnie przydatna do eksploracyjnej analizy danych i tworzenia różnorodnych typów wykresów.

15.1 Instalacja Biblioteki plotnine

Aby korzystać z plotnine, należy najpierw ją zainstalować. Można to zrobić za pomocą poniższej komendy:

```
pip install plotnine
```

15.2 Podstawy plotnine

Podobnie jak w ggplot2, tworzenie wykresów w plotnine opiera się na komponowaniu różnych elementów wykresu, takich jak dane, estetyki oraz geomy (elementy graficzne wykresu). Wszystkie wykresy zaczynają się od funkcji ggplot().

```
from plotnine import *
import pandas as pd
```

```
# Przyk adowe dane
data = pd.DataFrame({
    'x': [1, 2, 3, 4, 5],
    'y': [2, 4, 6, 8, 10]
}

# Tworzenie podstawowego wykresu
(ggplot(data) + aes(x='x', y='y') + geom_point())
```

15.3 Tworzenie Podstawowych Typów Wykresów

15.4 Wykres Punktowy (Scatter Plot)

Wykres punktowy jest używany do wizualizacji zależności między dwoma zmiennymi.

```
# Wykres punktowy
(ggplot(data) + aes(x='x', y='y') + geom_point() +
ggtitle("Wykres Punktowy") +
xlab("O X") + ylab("O Y"))
```

15.5 Wykres Liniowy

Wykres liniowy jest przydatny do przedstawienia trendów na przestrzeni danych ciągłych.

```
# Wykres liniowy
(ggplot(data) + aes(x='x', y='y') + geom_line(color='blue') +
ggtitle("Wykres Liniowy") +
xlab("O X") + ylab("O Y"))
```

15.6 Wykres Słupkowy

Wykresy słupkowe są stosowane do porównywania wartości między różnymi kategoriami.

```
# Dane do wykresu s upkowego
data_bar = pd.DataFrame({
    'kategorie': ['A', 'B', 'C', 'D'],
    'warto ci': [4, 7, 1, 8]
})

# Wykres s upkowy
(ggplot(data_bar) + aes(x='kategorie', y='warto ci') +
    geom_bar(stat='identity', fill='skyblue') +
    ggtitle("Wykres S upkowy") +
```

```
xlab("Kategorie") + ylab("Warto ci"))
```

15.7 Histogram

Histogramy są używane do przedstawienia rozkładu danych.

```
import numpy as np

# Dane
data_hist = pd.DataFrame({
    'warto ci': np.random.normal(0, 1, 1000)
}

# Histogram
(ggplot(data_hist) + aes(x='warto ci') +
geom_histogram(bins=30, fill='purple', alpha=0.7) +
ggtitle("Histogram") +
xlab("Warto ci") + ylab("Cz stotliwo "))
```

16 Dostosowywanie Wykresów

16.1 Kolory i Style

Możemy dostosować kolory punktów, linii oraz styl wykresów za pomocą różnych parametrów w funkcjach geom.

```
# Wykres punktowy z dostosowanymi kolorami
(ggplot(data) + aes(x='x', y='y') +
geom_point(color='red', size=3) +
ggtitle("Wykres Punktowy z Dostosowanymi Kolorami") +
xlab("O X") + ylab("O Y"))
```

16.2 Dodawanie Linii Trendu

Linia trendu jest użyteczna do analizy wzorców w danych punktowych.

```
# Wykres punktowy z lini trendu
(ggplot(data) + aes(x='x', y='y') +
geom_point() + geom_smooth(method='lm') +
ggtitle("Wykres z Lini Trendu") +
xlab("O X") + ylab("O Y"))
```

17 Zaawansowane Wykresy

17.1 Facetowanie Wykresów

Facetowanie umożliwia podział danych na podgrupy i tworzenie osobnych wykresów dla każdej z nich.

```
# Przyk adowe dane
data_facet = pd.DataFrame({
    'x': np.tile([1, 2, 3, 4], 2),
    'y': [1, 2, 3, 4, 2, 3, 4, 5],
    'grupa': ['A']*4 + ['B']*4
})

# Wykres z facetowaniem
(ggplot(data_facet) + aes(x='x', y='y') +
    geom_point() + facet_wrap('~grupa') +
    ggtitle("Wykres z Facetowaniem") +
    xlab("O X") + ylab("O Y"))
```

17.2 Wykres Pudłowy (Box Plot)

Wykres pudłowy przedstawia rozkład danych i pomaga w identyfikacji wartości odstających.

```
# Przyk adowe dane
data_box = pd.DataFrame({
    'kategorie': np.random.choice(['A', 'B', 'C'], 100),
    'warto ci': np.random.randn(100)
}

# Wykres pud owy
(ggplot(data_box) + aes(x='kategorie', y='warto ci') +
    geom_boxplot(fill='lightblue') +
    ggtitle("Wykres Pud owy") +
    xlab("Kategorie") + ylab("Warto ci"))
```

18 Dodawanie Motywów do Wykresów

Plotnine oferuje różne motywy, które można dodać do wykresów, aby zmienić ich styl.

```
# Dodanie motywu
(ggplot(data) + aes(x='x', y='y') + geom_point() +
ggtitle("Wykres z Motywem") +
theme_minimal())
```

19 Podsumowanie

Biblioteka plotnine to potężne narzędzie do tworzenia wizualizacji w Pythonie. Dzięki składni inspirowanej ggplot2, pozwala na szybkie i efektywne tworzenie wykresów o wysokiej jakości. Zachęcamy do dalszej eksploracji plotnine oraz eksperymentowania z różnymi rodzajami wykresów.

20 Wizualizacja Geoprzestrzenna Danych za Pomocą Plotly w Pythonie

20.1 Wprowadzenie

Biblioteka Plotly umożliwia tworzenie interaktywnych map geoprzestrzennych w Pythonie. Mapy te mogą być używane do wizualizacji lokalizacji, rozmieszczenia punktów, a także do przedstawienia danych o zmiennych kolorach na mapie (choropleth). W tym tutorialu omówimy, jak używać Plotly do nakładania danych na mapy.

20.2 Instalacja Biblioteki Plotly

Jeśli jeszcze nie zainstalowałeś biblioteki Plotly, możesz to zrobić za pomocą poniższej komendy:

pip install plotly

21 Mapy Punktowe (Scatter Maps)

Mapy punktowe są używane do wyświetlania lokalizacji punktów na mapie na podstawie ich szerokości i długości geograficznej.

21.1 Przykład: Wyświetlanie Lokalizacji Miast na Mapie

W tym przykładzie na mapie zaznaczymy lokalizacje kilku miast za pomocą punktów.

```
fig.update_layout(mapbox_style="open-street-map")
fig.update_layout(title="Lokalizacja Wybranych Miast na Mapie")
fig.show()
```

W tym przykładzie wykorzystujemy funkcję px.scatter_mapbox, aby nałożyć punkty reprezentujące miasta na mapę. Użyliśmy stylu mapy open-street-map, ale Plotly oferuje również inne style map.

22 Mapy Choropleth (Mapy o Zmiennych Kolorach Obszarów)

Mapy choropleth są używane do reprezentowania danych związanych z regionami, gdzie kolor obszaru reprezentuje wartości zmiennej.

22.1 Przykład: Wizualizacja Populacji Krajów na Mapie Świata

W tym przykładzie na mapie świata przedstawimy dane o populacji różnych krajów, gdzie intensywność koloru wskazuje wielkość populacji.

```
labels={'pop': 'Populacja'})

# Ustawienia mapy

fig.update_layout(title="Populacja Kraj w na wiecie w 2007 roku")

fig.show()
```

W tym kodzie używamy gotowego zestawu danych gapminder dostępnego w Plotly, który zawiera dane o populacji krajów. Funkcja px.choropleth generuje mapę choropleth, a kolor zmienia się zgodnie z wartościami zmiennej populacji.

23 Mapy Cieplne (Heatmaps)

Mapy cieplne mogą być używane do przedstawiania gęstości występowania punktów w określonych obszarach.

23.1 Przykład: Gęstość Lokalizacji na Mapie

Poniżej przykład mapy cieplnej, która przedstawia gęstość rozmieszczenia punktów.

```
import plotly.graph_objects as go

# Przyk adowe dane z losowymi wsp rz dnymi
import numpy as np
np.random.seed(0)
lats = np.random.normal(37.7749, 0.5, 100) # rednia szeroko geogr.
```

W tym przykładzie użyliśmy funkcji Densitymapbox do stworzenia mapy cieplnej, w której dane o szerokości i długości geograficznej określają położenie punktów. Parametr radius kontroluje wielkość rozmycia ciepła wokół punktów.

23.2 Mapy z Danymi na Poziomie Stanów

'Plotly' pozwala również na wizualizację danych specyficznych dla regionów wewnątrz kraju (np. stanów USA).

23.3 Przykład: Mapy Stanów w USA

Poniższy przykład ilustruje mapę stanów USA z danymi populacyjnymi.

```
import plotly.express as px
```

24 Podsumowanie - mapy geoprzestrzenne

Biblioteka Plotly umożliwia tworzenie interaktywnych map w Pythonie, co jest przydatne do eksploracji i analizy danych geoprzestrzennych. Omówiliśmy różne typy map, takie jak mapy punktowe, choropleth, cieplne i mapy stanów. Te mapy można dostosowywać i integrować z różnorodnymi danymi, co czyni Plotly potężnym narzędziem do wizualizacji danych.

25 Zadanie

Zadanie dotyczy tworzenia wszystkich możliwych wykresów w celu eksploracji zbioru danych