### O Graphical Representation: -

Let us consider a 
$$s/g$$
  $\alpha(n)$  with values  $\alpha(-2) = -3$ ,  $\alpha(-1) = 2$ ,  $\alpha(0) = 0$ ,  $\alpha(1) = 3$   $\alpha(2) = 1$  and  $\alpha(3) = 2$ .



#### @ Functional Representation:

In this, amplifude of the signal is written against the value of in?  $ex:=0 \ 9C(n) = 0 \ 0 \ for \ n = 0$ 

privare of measuring The instantance values of continues time 4/9 in a discreti form

# 3 Tabular representation:

the magnitude of instant are Sampling instant m' and the signal at the sampling represented in labelar form.

| n    | -2 | -910 | 0 | 1 | 2   | 3 |
|------|----|------|---|---|-----|---|
| n(n) | -3 | 2    | Ö | 3 | 0.0 | 2 |

# (4) Sequence Representation: -

$$g((n) = S-3, 2, 0, 3, 1, 2)$$

\* Arviow marek 1' denotes that n=0 lerm.
When no arviow is indicated, the first lurm corversponde to n=0

$$x(n) = \frac{2}{3} - 3, 1, = 0, 3, 1, 2$$

ABB AND SINE

= (m) = (D)



#### 1 UNIT Step-function

Step function: exists only for the positive line & is zero for negative

Foldowick Tolday

Unit step function: - if a step function has unity magnitude.

Continuous-time unit step function in(+)

defined as,

u(+) = \[ \begin{center} 1 & for & 1 > 0 \\ 0 & for & 1 < 0 \end{center} \]

shifted unit step function u(1-a) defined as,

$$u(t-a) = \begin{cases} 1, & \text{for } t > a \\ 0, & \text{for } t < a \end{cases}$$

$$t-a < 0$$







