

Methodology of CS

Introduction to algorithms Dustin Xu

What is an algorithm?

How to use addition(+), subtraction(-), multiplication(*), and division(/)?

How to draw one line and visit all edges in a graph?

What is an algorithm?

a set of rules that precisely defines a sequence of operations

addition(+), subtraction(-),
multiplication(*), and division(/)

Euclid's Algorithm to obtain greatest common divisor (gcd)

Sort Algorithms

Eulerian Path Algorithm

Shortest Path Algorithms (Dijkstra, SPFA, Floyd)

How to design a delivery route for a courier in S.F. Express?

How to play chess with AlphaGo?

How to analyze big data?

How to evaluate an algorithm?

Computational Computational Complexity

Computational Complexity

Time Complexity

Rough Space Complexity Estimation

Time needed for a sequence of operations

 Space needed for data structures used in a program

Time Efficiency

Specific Evaluation

Space Efficiency

- Running time is always measured to evaluate an algorithm.
- Memory is always measured to evaluate an algorithm.

- It also depends on CPU and other factors.
- It also depends on programming language and other factors.

Computational Complexity

Big O Notation

- *0*(1) Constant Complexity
- $O(log_2n)$ Logarithmic Complexity
- O(n) Linear Complexity
- $O(n \log_2 n)$ Linearithmic Complexity
- $O(n^2)$ $O(n^3)$... Polynomial Complexity
- $O(a^n)$ Exponential Complexity
- O(n!) Factorial Complexity

Big O Notation evaluates the magnitude of complexity of an algorithm based on input size *n*

Core Ideas

Coefficients O(kn) \times

Constant O(n+C) *

Some Examples

Look for a number in this perfect binary tree with *n* nodes from the root.

```
count = 0
for i in range(n):
    for j in range(i,n):
        count += 1
```

Time: $O(n^2)$ Space: O(1)

The depth of a perfect binary tree with n nodes is $int(\log_2 n)$

Some Examples

```
count = 0
for i in range(n):
    for j in range(i,n):
        count += 1
```

Time: $O(n^2)$ Space: O(1) Look for a number in this perfect binary tree with *n* nodes from the root.

Time: $O(\log n)$

Space: $O(n \log n)$

A Task For You

Fibonacci Numbers

Algorithm A

```
f = [1,1]
for i in range(2,n):
                                     Time: O(n)
    f.append(f[i-1]+f[i-2])
                                     Space: O(n)
print(f[n-1])
f = [1,1]
for i in range(2,n):
                                     Time: O(n)
    f[i%2] += f[(i+1)%2]
                                     Space: O(1)
print(f[(n-1)%2])
```

Algorithm B

```
def f(n):
        if n <= 2:
           return 1
        return f(n-1) + f(n-2)
    print(f(n))
stack Overflow!
```

An exponential time algorithm

Algorithm C

$$f_{\rm n} = \frac{1}{\sqrt{5}} \cdot \left[\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right]$$

```
In [3]: n = 100
In [4]: f = [1,1]
        for i in range(2,n):
            f.append(f[i-1]+f[i-2])
        print(f[n-1])
        354224848179261915075
In [5]: f = [1,1]
        for i in range(2,n):
            f[i%2] += f[(i+1)%2]
        print(f[(n-1) %2])
        354224848179261915075
In [6]: sqrt5 = 5**0.5
        print(int(1/sqrt5*(((1+sqrt5)/2)**n-((1-sqrt5)/2)**n)))
        354224848179263111168
```

The Best Algorithm?

```
f = [1,1]
for i in range(2,n):
    f[i%2] += f[(i+1)%2]
print(f[(n-1)%2])
```

Time: O(n)

Space: 0(1)

A Better Algorithm

Fast Matrix Exponentiation

Matrix Multiplication & Divide and Conquer

Time: $O(\log n)$ Space: O(1)

Thank you!

