Generalized Euler characteristic for Selmer groups of non-CM elliptic curves Yukako Kezuka

31 Setups & Introduction

G a compact p-adic lie grp.

N(c) = lim Ip[G|u], r = Ip.

We have a structure theory for

f.g. N= NID ~ IPETI-modules:

M f.g. N-mobile, then

 $M \sim N^r \oplus \left(\bigoplus_{i} N / (p^{ri}) \right) \oplus \left(\bigoplus_{i} N / (f_i(\tau)^{r_i}) \right)$

(c.f. structure theory for fg. ab grp G = I ⊕ (⊕ II (ni)).) If G is torsin then #G= IT ni.

The corresponding invariant for a f.g. torsim (r=0) Λ -mod is called a characteristic element, which is $(f_{in}) = (p^n.f)$, $p_i = \sum_{j} p_i$, $f_j = \prod_{j=1}^{n_j} p_j$.

F number field or global func field. Foo/F p-alic Lie ext'n, $\Sigma = Gal(Foo/F)$. Call Foo admissible if

- (1) Folf wran outside a finite set of places
- (2) Forc For, Force and Ip-ext'n of F.
- (3) I has no elt of order p.

- Def.1 Given a discrete p-primary Σ -module Y.

 if $H^{'}(\Sigma, Y)$ are finite, say Y has a finite Σ -Euler characteristic $\chi(\Sigma, Y) = \prod_{i \in S} \#(H^{i}(\Sigma, Y)^{(-i)^{i}})$.
- If M is a f.g. torsion N-mod, the char elt

 for in Pontryagin dual M= Hom(M, Op/IIp)

 via Ifm(o)|_1 = X(T, M).

Set $\Gamma = Gul(F^{cyc}/F)$, $H = Gul(F_{oo}/F^{cyc})$. We restrict to the cut of mods $M_H(\Sigma) := f.g. \ \Lambda(\Sigma) - mods \ M$ $S.f. \ M/M(p) \ is \ a.f.g. \ \Lambda(H) - mod.$

- Given MEMH(G), Coafes Schneider Svjetla introduced "Akashi series" which coincides with the char elt when M is a f.g. torsion N-mod.
- § Eliptic curves over global func fields

 F global func field of char l ≥ 5.

 E/F ell curve.

 Defis Say E has CM if dim (End E ⊗ Q) > 1.
- The (Deving) E ell curve IF of char >0.
 Then E has (M (2) F is a finite field.

Now p>5 prime, p + l.

Factor admissible p-adic lie extin.

T = Gal(Factor), \(\Sigma = \text{Gal(Foolf)}.

Sel(\(\E \) \(\frac{1}{2} \

Prop (Sechi. 2006)

Let EIF ell cure with no CM.

S set of places in F where E has bad ted'n or no potentially good red'n. Assume $F_{\infty} = F(E_{p^{\infty}})$ and assume Sel(E/F) is finite. Then $X(Z, Sel(E/F_{\infty})) = X(T, Sel(E/F^{cys})) \cdot Tesl L(E,1)|_{p}$ where Lr(E,s) = Euler factor of L(E,s) at v.

We extend Sechi's result in 2 directions:

- (1) Let Fo = more general adm p-adic Lie ext's.
- (2) Let Sel(E/F) be infinite, by allowing E(F) to be infinite & assuming LU(E/F)(p) is finite.

Book When Sel(EIF) is infinite. Sel(EIFo) does not have finite Z-Euler char.

Strategy Assume an additional finiteness condition (Fin).

just exough so we can show the Pontryagin dust

X(E/Fo) = Sel(E/Fo) & My(S).

Theorem (Deng - Kezuka - Li)

let Foo/F = an alm p-adic Lie extin.

E/F ell curve with no CM.

Assume LII(E/F)(p) is finite & (Fin).

Then Sel(F/Fo) has finite "generalized Z-Euler char" (A) Sel(E/F^O) has finite "generalized T-Euler char".

In this case we have

 $\chi(\Sigma, Sel(E/F_{\infty})) = \chi(\Sigma, Sel(E/F^{eye})) \cdot T_{ves}[L_{ves}, 1)|_{p}$ where S is the set of primes of F whose inertia subgrps in Σ are finite.

Ceneralized Euler char

Given a discrete p-primary T-mod Y, define $H^{\circ}(H,Y) \qquad H^{\circ}(H,Y)$ $d_{\circ}: H^{\circ}(\Sigma,Y) = H^{\circ}(\Gamma,Y^{H}) \longrightarrow H^{\prime}(\Gamma,Y^{H}) \longrightarrow H^{\prime}(\Sigma,Y)$ $(Y^{H})^{\Gamma} \qquad (Y^{H})_{\Gamma}$

Similarly define d. Then $(H^i(\Sigma, Y), di)$ form a complex w cohom H_i .

Def 2 If all Hi are finite, define the generalized Σ - Fuller char of Y to be $\chi(\Sigma,Y) := \prod \# H_i^{(-i)}$.

Books (1) If all H'(Z,Y) are finite, then Def 2 = Def 1.

(A) If H°(Z,Y) & H'(Z,Y) are infinite

but H'(Z,Y) are finite for i=1.

then Y has finite gen Z-Enter char

iff her do & wher do are finite,

in which case

X(Z,Y) = #ker do. TT # (H'(Z,Y))(H)i

(cf. Zubes 2008, CSS 2003 in number field case.)