Grado en Ingeniería Informática y Matemáticas

Modelos matemáticos I (curso 22/23)

Ejercicios 1, tema 2

- 1 Encuentra las ecuaciones en diferencias homogéneas y reales de orden mínimo que tienen por solución las siguientes expresiones:
 - (a) $2^{n-1} 5^{n+1}$.
 - (b) $3\cos\left(\frac{n\pi}{2}\right) \sin\left(\frac{n\pi}{2}\right)$.
 - (c) $(n+2)5^n \sin\left(\frac{n\pi}{4}\right)$.
 - (d) $(1+\sqrt{2}n+n^2)7^n$.
 - (e) $1 + 3n 5n^2 + 6n^3$.
- 2 Calcula la solución de la ecuación

$$x_{n+2} + 3x_{n+1} + 2x_n = 0$$
,

con condiciones iniciales $x_0 = 1, x_1 = 0.$

- **3** Un productor fija el precio de su producto haciendo la media de los precios de los dos años anteriores. Si los precios de los dos primeros años son p_0 y p_1 , proporciona la expresión del precio en función del año y calcula su valor a largo plazo.
- **4** Dado $\alpha \in \mathbb{R}$, encuentra una sucesión $\{x_n\}_{n \geqslant 0}$ que satisfaga

$$x_{n+2} = x_{n+1} + x_n, \quad n \geqslant 0,$$

 $x_0 = 1, \quad x_1 = \alpha.$

 ${f 5}$ Determina, en función de $a\in \mathbb{R},$ el valor del determinante tridiagonal siguiente:

$$D_n = \begin{vmatrix} a & 1 & 0 & \dots & 0 \\ 1 & a & 1 & \dots & 0 \\ 0 & 1 & a & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a \end{vmatrix}.$$

Para ello, desarrolla por elementos de una línea con el fin de obtener una ecuación de orden 2.

6 Determina el valor de $\sum_{n=0}^{+\infty} x_n$, donde

$$2x_{n+2} - x_{n+1} + x_n = 0$$
, $x_0 = x_1 = 1$.