Container and Microservice Driven Design for Cloud Infrastructure DevOps

Hui Kang, Michael Le, Shu Tao IBM T. J. Watson Research Center

Membre de l'équipe :

- DZIRI Aghiles
- HUANG Shiyang

Context of the research

- Cloud Infrastructure
- Microservice Driven Design
- Container
- DevOps

Context of the research

Fig. 1. Lifecycle management of infrastructure code using container images.

Research challenge addressed by the authors

- Minimize Cross-configuration
- Maintain State
- Provide Host Resource Access

Fig. 2. A container-based microservice architecture of OpenStack. (a) OpenStack deployment, (b) Service registration and discovery in microservice architecture

TABLE I. NUMBER OF CONFIGURATION POINTS IN DEPLOYING OPENSTACK: CHEF-BASED VS DOCKER IMAGE-BASED APPROACHES.

Complexity metric	Chef-based	Docker-based
Dependencies	22	5
Download links	> 50 https	6 images
Configurable variables	80	26

TABLE IV. EXECUTION TIME OF OPENSTACK DEVOPS TASKS: VM OR CONTAINER-BASED APPROACHES (IN SECOND)

DevOps Tasks	VM	Container
Deployment	535	358
Upgrade the three controller instances	326	207
Failure recovery of a MySQL instance	74	32

Fig. 3. Deployment comparison: containers vs. VMs. (a) Deploy one instance of each type on three hosts respectively; (b) Scale out instances on three hosts; (c) Host CPU utilization.

TABLE VI. SNAOPSHOT/MIGRATION COMPARISON OF VM AND CONTAINER (THE SERVICE INSIDE IS MYSQL HANDLING OPENSTACK KEYSTONE USER CREATION REQUESTS

Snapshot/migration cost	VM	Container
Image size	530MB	107MB
Snapshot duration	7s	< 1s
Restore duration	2s	< 1s
Image transfer duration (via scp)	5s	< 1s

Fig. 5. Average and 95th percentile latency of user authentication under different number of controller containers (lower is better))

Fig. 6. Scale the database performance (higher is better) by increasing the number of MySQL containers under increased workload with fixed number of controller containers (three controller containers).

Threats to validity

• One case study (OpenStack)

Analysis of the obtained result

Pros:

- Performance
- Isolation process
- Portable

Cons:

- Security
- In-memory state