Wiederholung: Basen B= {b1,..., bn}, C= {c1,..., cn} fix Kn $V = \sum_{j=1}^{n} X_{j} \cdot b_{j} = \sum_{i=1}^{n} Y_{i} \cdot c_{i} \quad \forall k$ $x = \begin{pmatrix} x_1 \\ x_n \end{pmatrix}$, $y = \begin{pmatrix} y_1 \\ y_n \end{pmatrix}$ Koeffizientenveletoren SB,c kann man benutzen, um aus einem Koessizientenvektor in C einen Koess. vektor

mit SEGCn(x). Fs gict x = II (x-2;) Fûs n=1 ist A=(2,), also gilt die Belauptung Nach Voraussetzung Lat X eine Nullstelle 2, EK, also ist 2, ein Eigenwert. Wir nehmen einen Eigenveltor V, zu 2, und erganzen zu einer Basis EV, , vn & von K. Wir bilden die Matrix S=(v,,,vn) ECLn(k) mit den v. als Spalten Dav, ein Eigenvelstor zum Eigenwert zu, ist Jolgt (2, mm)

mit B \(\begin{aligned} \alpha -1 \) \\ \alpha \\ \ext{B} \\ \ext{B

In d	lieser Darstellung ist die Reilen solge des 2; beliebig.
Es gilt eine nocl	starture Aussage (olne Beweis):
Jede quad	ratiscle Matrix deren Claralteristisches Polynom in
Linear Jakot	rren zer, facht ist ahalick zu einer sogenannten Jordan-Matrix
/J, , ,	ratiscle Matrix, desen charakteristisches Polynom in oren zer, $\int_{a}^{a}(lt)$ ist ahulic $ z_{1} = z_{2} $ and $ z_{3} = z_{4} $ and $ z_{4} =$
7.	mit di 10:2; / ch / da (13) di (2)
	Jordan - Norma Cform
(II) Skala	rprodukt und Orthogonalität
Ve finition Tus	$V = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, W = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \in C$ ist
	$\langle w \rangle = \sum_{i=1}^{n} x_i y_i = v w \in \mathcal{K}$
nicht das Erzeugnis,	das Ska Carprodukt von v und w.

Vektoren v, w Leißen senkrecht (ortLogonal) zueinander Jalls (v, w) = 0.

Fûs einen Unterraum U= K ist U= {v \in K | \langle u, v \rangle = 0 \tau \in U \in \text{}} of thogonales Komplement V=R => intuitiv, euklidische Geometrie
V=C² => (i) E C² ist auf sich selbst senterecht Eigenschaften des Skalarprodukts $(u, v + a \cdot w) = (u, v) + a \cdot (u, w)$ $(u + a \cdot v, w) = (u, w) + a \cdot (v, w)$ biCineas des Matrix - will in the second of $u,v,w \in K^n$, $a \in K$ \cdot $\langle v, w \rangle = \langle w, v \rangle$ (K") = {0} nur der Nullveletor ist zu allem senlerecht

ab jetzt K= R			
Definition Ser VER". Dann ist /v/	= Kv,v, ER = o die lange von v.		
	eulilidische Länge		
Eigenschaften der Länge			
$v, w \in \mathbb{R}^n$, $a \in \mathbb{R}$			
$ \cdot v + \omega \leq v + \omega $	Dreiecksungleichung		
· /av/ = /a//v/ Betrag der z	ZaLC		
· v ≠ 0 => /v/>0			
$ \cdot \langle v, w \rangle \leq v \cdot w $	mit = genan dann, wenn v und w positive Vie Gacle von einander sind		
	ordogena (normiert		
	c 12 Lei Bt OrtLonomalsystem,		
Salls V. und V. Sus i # j o	ortlogonal sind und v; /= / ti.		

Formal: (v, v) = Si, mit Sij = S (Salls i = j) sonst. Wenn $A \in \mathbb{R}$ die Matrix mit den v. als Spalten ist dann Lat man S OrtLonormalsystem (=) $A T A = I_k$. · Die Standardbasis des IR ist Orthonormalsystem

· Die Veltoren v, = 1/27 (?) , v = 1/27 (-1) bilden ein Beispiele OrtLonomalsystem in R3. Begrundung: • | V, | = | (\frac{1}{12} (\frac{1}{0}) \frac{1}{2} (\frac{1}{0}) \rightarrow = \frac{1}{2} (1 + 0 + 1) = \frac{1}{1} = 1 $|v_2| = 1 \text{ analog}$ $|v_2| = 1 \text{ analog}$ $|v_1| = |v_2| = \frac{1}{2} (101) (0) = \frac{1}{2} (1+0-1) = 0$

Satz Orthonorma(systeme in R sind linear unablanging.

Beweis: Sei $S = \{v_1, ..., v_k\} \subset \mathbb{R}^n$ ein Orthonorma(system und sei $a_1v_1 + a_2v_2 + ... + a_kv_k = 0$ mit $a_i \in \mathbb{R}$.

Füs alle $j \in \{1, ..., k\}$ folgt durch Skalarporodukt mit v_j : $0 = \{v_j, 0\} = \{v_j, \sum_{i=1}^k a_i, v_i\} = \{a_i, \{v_j, v_i\} = a_j\}$ $\Rightarrow Das$ zeigt die linear Unablangigkeit.