

You cannot write the value of the ratio between a circle's perimeter and its diameter, π ; it is necessarily inexact.

$$\frac{23}{24} = .95833 + \text{ lies bet}^{2} \cdot 9583 \text{ and } .9584$$

If we express $\frac{23}{24}$ as .9583 we undershoot by .00003+

If we express $\frac{23}{24}$ as .9584 we overshoot by .00007 +

Better choice is 9583

If we are discarding di after declinal point:

(a) di(5 => di-1 unchanged

what if we did not know that true value is '95833?

True value could be '95830, '95831,..., '958399....

So max error we make is '0001 or $\frac{1}{104}$ or 10^{-4}

We may write .9583+[0,104]

Approximation in Addition
•234673
·234673 ·322135 ve know upto six digits (rounded perhaps) ·114342
·
+ '56 3217
1.734367 - can we say the sum is this!
when we discarded 7 th digit of 234673 we may have
incurred an error of .0000005. For example, say true value
was .2346725 so difference is .2346732346725
or 0000005. This is true for other numbers.
so, we may have 4 x 0.0000005 = 0.000002 evrus in the sum
Thus the sum 1.234367 can be unywhere decreed
1.234365 and 1.234369; either case rounding rule gives
1.23437. Even though we knew 6 digits for each numbers.
for the sun though we know 5 digits after decimal point.
If we added more numbers, things could be worse; in that
case we may go back and see if we could measure the
individual numbers more accurately.
5.866314
3.715918
0.568286
+ 4.342233
14.492.751 ← How much are we certain about this?
(±°000002)
we can say 14.49275 with rounding / Book says 5thing
we can say 14.49275 with rounding Book says 5thing else +27

Approximation in subtraction

- ·329528 (possible error ·0000005)
- •238647
- ·090881 (possible error 2x0.0000005 =0.000001)

we can say (with rounding) .09088

Approximation in multiplication

3·14159 × 3·14159
2827431
1570795
314159
1256636
314159
942477

98695877281

 ~ 9.8696

shortcut if we wanted only 4 digits in the product: left - right, we need z extra disits

> 3.14159 3.14159

9.42477

.314159

.1256/64 .0031/42/

~9.8696

'0015 71

.0002(83)

.00058

9.8695 89

9'86938

~ 9:8894

9.42477

.31416 .12566

.00314

.00157

we only need this much extra to round up to

4 digits

How does error in multiplier or multiplicand affect the product,

Exercise 19

1.

23.4562 23.45/61/7 937.3421 937.34/21/2

42.3176

42.31/75/9 532.2335 532.23346 +141.4238 141.423798

2. 993.624 -987.642

32.4736 3. × 24.7955 680

$$a = \prod_{i=1}^{m} p_{i}^{a_{i}}$$
 where $a_{i} \ge 0$ and p_{i} are primes

$$b = \prod_{i=1}^{n} p_i^{b_i}$$
, $c = \prod_{i=1}^{q} p_i^{c_i}$

say
$$m \leq n \leq 9$$

$$lcm(a,b,c) = \frac{q}{\prod_{i=1}^{max\{a_i,b_i,c_i\}}}$$

$$lcm(2,3,4,5) = 2^{max\{0,1,2\}} \cdot 3^{max\{0,1\}} \cdot 5$$

$$4 = 2^{2} \cdot 3^{\circ} \cdot 5^{\circ}$$

 $5 = 2^{\circ} \cdot 3^{\circ} \cdot 5^{\circ}$
 $= 60$

$$\gcd(a,b,c) = \frac{m}{\prod_{i} p_{i}} \min\{a_{i},b_{i},c_{i}\}$$

$$gcd(9,18,36,54) = 2^{\circ} \cdot 3^{2} = 9$$

$$9 = 2^{\circ} \cdot 3^{2}$$
 $18 = 2^{\circ} \cdot 3^{2}$
 $36 = 2^{\circ} \cdot 3^{2}$

$$50 = 2^{1} \cdot 3^{3}$$

(1.)
$$(d_{n}d_{n-1}...d_{1}d_{0})_{10}$$
 if $2|d_{0}$, then $2|(d_{n}d_{n+1}...d_{1}d_{0})_{10}|$ $(d_{n}d_{n+1}...d_{1}d_{0})_{10}$ if $2|d_{0}$, then $2|(d_{n}d_{n+1}...d_{1}d_{0})_{10}|$ $\sum_{i=0}^{n} d_{i}\cdot 10^{i}$, for $i>0$, $2|10^{i}$, so...

(2.) Say $\mathcal{X} = (d_{n}d_{n-1}...d_{1}d_{0})_{10}$. If $d_{0}=0$ or $d_{0}=5$, then $5|\mathcal{X}$.

 $= 5imilar$ logic as $in(1)$
(3) Say $\mathcal{X} = (d_{n}d_{n+1}...d_{1}d_{0})_{10}$. If $4|(d_{0}d_{0})_{10}$, then $4|\mathcal{X}$.

If $25|(d_{1}d_{0})_{10}$, thun $25|\mathcal{X}$.

(4) Say $\mathcal{X} = (d_{n}d_{n-1}...d_{1}d_{1}d_{0})_{10}$. If $8|(d_{2}d_{1}d_{0})_{10}$, then $8|\mathcal{X}$.

 $\mathcal{X} = d_{n}\cdot 10^{n} + d_{n-1}\cdot 10^{n+1} + + d_{3}\cdot 10^{3} + (d_{2}d_{1}d_{0})_{10}$

$$\frac{2^{3}\cdot 5^{3}}{=8}$$
(5) If $9|\sum_{i=0}^{n} d_{i}$, then $9|\mathcal{X}$.

 $\mathcal{X} = 10^{n} \cdot d_{n} + 10^{n+1} \cdot d_{n-1} + ... + 10^{3} \cdot d_{3} + 10^{3} \cdot d_{2} + 10^{4} \cdot d_{1} + 10^{6} \cdot d_{0}$
 $= (10^{n}-1) \cdot d_{n} + d_{n} + + (10^{n}-1) \cdot d_{1} + d_{1} + d_{0}$
 $\mathcal{X} = \sum_{i=1}^{n} d_{i}\cdot (10^{i}-1) + \sum_{i=0}^{n} d_{i}\cdot (10^{n}-1) \cdot d_{n} + d_{n} + + (n-1) \cdot d_{n} +$

 $-(7362)_{10}$ has digit sum(18) $_{10}$ 91(18), so 91(7362), $_{10}$

(6) Say
$$\mathcal{R} = (d_n d_{n-1} \cdots d_1 d_0)_{10}$$

If $3|\sum_i d_i|$, then $3|\mathcal{X}$. Since $3|9$, $\log(6)$...

(7) If $2|\mathcal{X}$ and $3|\mathcal{X}$, then $6|\mathcal{X}$.

- 2 and 3 are primes, so if 2 and 3 divides \mathcal{X} ; then \mathcal{R} must have both 2 and 3 in its prime factorization. Thus 6 must be a factor of \mathcal{X} .

(8) If $\sum_i d_i = \sum_j d_j$, then $11|\mathcal{X}$.

$$11|\mathcal{X} = 1 \cdot 10^3 + 1 \cdot 10^2 + 1 \cdot 10^4 + 1$$

$$= (1001 - 1) d_3 + (99 + 1) d_2 + (11 - 1) d_4 + 1 \cdot d_0$$

$$10^3 = 1000 = (1001 - 1)$$

$$10^2 = 1000 = (99 + 1)$$

Lemma: If $2|\mathcal{X}|n$, then $1|(10^n + 1) \cdot 5$ as $n = 2k + 1$, $k > 0$

$$10^{2k+1} + 1 = 10^{2k} \cdot 10 + 1$$

$$= (99 + 1)^k \cdot 10 + 1$$

$$= (100 + 10 + 1)$$

$$= (100 + 10 + 1)$$

$$= (100 + 10 + 1)$$

If
$$2(n, then 1! ((io^{n}-i) \cdot Say n = 2k, k \ge 0.$$
 $10^{2k}-1 = 100^{k}-1$
 $= (99+1)^{k}-1$
 $= [99^{k}+(k_{1})99^{k-1}+\cdots+(k_{n-1})99+1]-1$
 $= 99\cdot \square$

So, $1!(10^{2k}-1)$.

• Corollary

If $\sum_{i:2ki} d_{i} - \sum_{i:4i} d_{i} = m\cdot 1!$, then $1!/\kappa$.

 $\kappa = (d_{1}d_{1}-1) \cdot d_{1}d_{0})_{10}$
 $\kappa = \sum_{i:2ki} d_{i} \cdot 10^{i}$

$$\chi = (d_{0}d_{0-1} \cdots d_{1}d_{0})_{10}$$

$$= \sum_{i:2 \neq i} d_{i} \cdot 10^{i} + \sum_{i:2 \neq i} d_{i} \cdot 10^{i}$$

$$= \sum_{i:2 \neq i} d_{i} \cdot 10^{2k_{i}+1} + \sum_{i:2 \neq i} d_{i} \cdot 10^{2k_{i}}$$

$$= \sum_{i:2ki} d_{i} \cdot 10^{i} + \sum_{i:2li} d_{i} \cdot (0^{2k_{i}} + 1) - 1 + \sum_{i:2li} d_{i} \cdot (0^{2k_{i}} - 1) + 1$$

$$= \sum_{i:2ki} d_{i} \cdot (0^{2k_{i}} + 1) + \sum_{i:2li} d_{i} \cdot (0^{2k_{i}} - 1) + \sum_{i:2li} d_{i} - \sum_{i:2li} d_{i}$$

$$= \sum_{i:2ki} d_{i} \cdot (0^{2k_{i}} + 1) + \sum_{i:2li} d_{i} \cdot (0^{2k_{i}} - 1) + \sum_{i:2li} d_{i} - \sum_{i:2li} d_{i}$$

$$= \sum_{i:2ki} d_{i} \cdot (0^{2k_{i}} + 1) + \sum_{i:2li} d_{i} \cdot (0^{2k_{i}} - 1) + \sum_{i:2li} d_{i} - \sum_{i:2li} d_{i}$$

$$= \sum_{i:2ki} d_{i} \cdot (0^{2k_{i}} + 1) + \sum_{i:2li} d_{i} \cdot (0^{2k_{i}} - 1) + \sum_{i:2li} d_{i} - \sum_{i:2li} d_{i}$$

$$= \sum_{i:2ki} d_{i} \cdot (0^{2k_{i}} + 1) + \sum_{i:2li} d_{i} \cdot (0^{2k_{i}} - 1) + \sum_{i:2li} d_{i} - \sum_{i:2li} d_{i}$$

$$= \sum_{i:2ki} d_{i} \cdot (0^{2k_{i}} + 1) + \sum_{i:2li} d_{i} \cdot (0^{2k_{i}} - 1) + \sum_{i:2li} d_{i} - \sum_{i:2li} d_{i}$$

$$= \sum_{i:2ki} d_{i} \cdot (0^{2k_{i}} + 1) + \sum_{i:2li} d_{i} \cdot (0^{2k_{i}} - 1) + \sum_{i:2li} d_{i} - \sum_{i:2li} d_{i}$$

$$= \sum_{i:2ki} d_{i} \cdot (0^{2k_{i}} + 1) + \sum_{i:2li} d_{i} \cdot (0^{2k_{i}} - 1) + \sum_{i:2li} d_{i} - \sum_{i:2li} d_{i}$$

$$= \sum_{i:2ki} d_{i} \cdot (0^{2k_{i}} + 1) + \sum_{i:2li} d_{i} \cdot (0^{2k_{i}} - 1) + \sum_{i:2li} d_{i} - \sum_{i:2li} d_{i} - \sum_{i:2li} d_{i}$$

$$= \sum_{i:2ki} d_{i} \cdot (0^{2k_{i}} + 1) + \sum_{i:2li} d_{i} \cdot (0^{2k_{i}} - 1) + \sum_{i:2li} d_{i} - \sum_{$$

34267893

Sum of even place digits = 4+6+8+3

= 21

Sum of odd place digits = 3+2+7+9

= 21

Since diff is 0 and divisible by 11, 11|34261893.

11)
$$\frac{34267893}{33}$$
 (3115263

 $\frac{12}{11}$
 $\frac{16}{11}$
 $\frac{16}{11}$
 $\frac{57}{55}$
 $\frac{28}{22}$
 $\frac{69}{66}$
 $\frac{53}{33}$

Problem 1

364 corn
455 oats

364=2.182=2².91 m
455

546 wheat
$$546 = 2 \cdot 273 = 2 \cdot 3 \cdot 91$$

$$GCD(364, 455, 546) = 91$$

GCD.

 $\frac{360^{\circ}}{24 \text{ hr}} \sim 15^{\circ}/\text{ hr}$

A finishes a job in 6 days B finishes a job in 4 days

If A and B work together (assuming no contention for shared resources), how long it will take to finish?

We may think XX as the whole job.

In 1 day, A does Xa amount, in 2 days A does Xb,...

In I day, B does Te amount, etc.

A needs to work to finish Xd and B needs to work to finish Xd + Yd is the whole work, & is the number of required days.

Basic idea is: \$

If we remove 4 triangles 2 different ways -in one case we are left with square on hypotenuse - in other case we are left with BCGH+ ADEC

$$\frac{b''}{a}$$

$$\frac{1}{2}ax + \frac{1}{2}ay + b'' \cdot a$$

So Pythagosas: $AB^2 = Ac^2 + Bc^2$

$$\frac{1}{2}\alpha(x+y) + \alpha \cdot b''$$

$$\frac{1}{2} \alpha \left(x + y + 2 b'' \right)$$
= $\frac{1}{2} \alpha \left(x + y + b'' + b'' \right)$
= $\frac{1}{2} \alpha \left(b' + b'' \right) \Omega$

