saeSim: Simulation Tools for Small Area Estimation Sebastian Warnholz & T. Schmid

Sebastian.Warnholz@fu-berlin.de

Introduction

- Unified markup/tools for the composition of simulation studies in the context of small area estimation.
- Small area estimation summarises the development and application of statistical methods to report statistics for small groups. *Small* refers to the small number of sampled units.
- Model and design based simulation studies have been used to introduce new methods to the field.
- The package highlights a specific way to map a simulation study into R, namely in terms of a pipeline where a data frame is modified in each step. Also frequently used tools are ready to use which make the composition of such studies considerably more easy.
- With this package the composition of a simulation study is reduced to *chaining the steps together*.

Data Generation

Predefined setups and functions to generate random numbers as random effects including spatial correlation. Also a simple interface to universate random number generators in R.

Outliers

- Set the frequency or probability for adding contaminated observations
- Specify contamination within domains or across the population
- Change between area and unit level contamination

autoplot(setup)
autoplot(setup %>% sim_gen_vc()) # contamination on area-level

Basc idea

Define scenarios, explain differences!

```
setup1 <- sim_base_lm() %>% sim_sample(sample_number(5))
setup2 <- sim_base_lm() %>% sim_sample(sample_fraction(0.05))
```

- setup1 and setup2 differ in the specific way samples are drawn. sim_sample is responsible to find the position in the process
- Every sim_* function expects a simulation setup or data. frame as first argument
- Every sim_* controls at which position in the process a function is called
- For every step in the process tools are named using the corresponding prefix, i.e. <code>gen_generic</code> or <code>sample_fraction</code>

Sampling

Sampling schemes like simple random sampling in domains and cluster sampling.

Parallel computations

Simulation studies are embarrassingly parallel. For parallel computations we utilize parallelMap which makes it easy to switch between different parallel back ends in R (multicore, socket, mpi, BatchJobs).

Conclusions

- Remark 1
- Remark 2

References

Alfons, A., Templ, M. & Filzmoser, P. (2010), 'An object-oriented framework for statistical simulation: The R package simFrame', *Journal of Statistical Software* **37**(3), 1–36.

URL: http://www.jstatsoft.org/v37/i03/

Bache, S. M. & Wickham, H. (2014), *magrittr: A Forward-Pipe Operator for R*. R package version 1.5.

URL: http://CRAN.R-project.org/package=magrittr

Warnholz, S. & Schmid, T. (2015), saeSim: Simulation Tools for Small Area Estimation. R package version 0.7.0.

URL: http://CRAN.R-project.org/package=saeSim

Wickham, H. & Francois, R. (2015), *dplyr: A Grammar of Data Manipulation*. R package version 0.4.1.

URL: http://CRAN.R-project.org/package=dplyr

Timo Schmid

Department of Economics
Freie Universität Berlin
D-14195 Berlin, Germany
Timo.Schmid@fu-berlin.de

Sebastian Warnholz