

4.8 Grundschaltungen

4.8.1 Reihenschaltung

In der Reihenschaltung (**Bild 1**) fließt überall derselbe Strom. Die Gesamtspannung ist gleich der Summe der Teilspannungen.

Beispiel 1: Widerstandsberechnung

Die Reihenschaltung von R_1 und R_2 hat einen Ersatzwiderstand von 1k Ω . Die Gesamtspannung beträgt 12V. An R2 liegen 5V. Wie groß ist der Widerstand von R2?

Lösung:

$$\frac{R_2}{R} = \frac{U_2}{U}$$

$$\Rightarrow R_2 = \left(\frac{U_2}{U}\right) \cdot R = \left(\frac{5 \text{ V}}{12 \text{ V}}\right) \cdot 1 \text{ k}\Omega = 417 \Omega$$

Aufgaben zu 4.8.1

- 1. Es wird ein Widerstand von 1340Ω benötigt. Zur Verfügung stehen die festen Widerstände $R_1=1\,\mathrm{k}\Omega,\ R_2=250\Omega$ und ein von 0Ω bis auf 250Ω veränderbarer Widerstand R_3 . Auf welchen Widerstand ist R_3 einzustellen?
- 2. Mit welchen drei Widerständen aus dem Sortiment $100\,\Omega$, $150\,\Omega$, $220\,\Omega$, $330\,\Omega$, $470\,\Omega$ und $680\,\Omega$ (Reihe E6) lässt sich der Ersatzwiderstand von $1\,\mathrm{k}\Omega$ verwirklichen?
- 3. Die Widerstände $R_1 = 100 \,\Omega$, $R_2 = 150 \,\Omega$ und $R_3 = 680 \,\Omega$ liegen in Reihe an 230 V. Berechnen Sie a) Ersatzwiderstand R, b) Teilspannung am Widerstand R1.
- 4. Die Reihenschaltung $R_1 = 150 \Omega$, $R_2 = 125 \Omega$ und $R_3 = 400 \Omega$ liegt an 150 V. Berechnen Sie a) Ersatzwiderstand R, b) größte Teilspannung.
- 5. Berechnen Sie von Schaltung **Bild 1** a) Stromstärke, b) Teilspannungen.
- 6. Wie hoch sind die sechs verschiedenen Spannungen, die in der Schaltung Bild 2 gemessen werden können?
- 7. Eine Relaisspule 600Ω 48V soll von einem Gleichrichter mit 100V Ausgangsspannung gespeist werden. Berechnen Sie a) Widerstand $R_{\rm v}$, b) Leistung $P_{\rm v}$ des Vorwiderstandes.
- Eine Glühlampe 12 V 0,5 A soll über einen Vorwiderstand an 48 V angeschlossen werden. Berechnen Sie den Vorwiderstand und seine Nennleistung.

Reihenschaltungen }
Parallelschaltungen

Gemischte Schaltungen, z.B. belasteter Spannungsteiler, Brückenschaltung

 $U = U_1 + U_2 + ...$

$$R = R_1 + R_2 + ...$$

$$\frac{U_1}{U_2} = \frac{R_1}{R_2}$$

$$\frac{U_1}{U} = \frac{R_1}{R}$$

U Gesamtspannung
U₁, U₂, ... Teilspannungen
R Ersatzwiderstand
R₁, R₂, ... Einzelwiderstände

- 9. Die Reihenschaltung $R_1 = 1 \,\mathrm{k}\Omega$, $R_2 = 1.6 \,\mathrm{k}\Omega$, $R_3 = 10 \,\mathrm{k}\Omega$ und $R_4 = 4 \,\mathrm{k}\Omega$ besteht aus 0,25-W-Widerständen. Welche Stromstärke I ist höchstens zulässig?
- 10. Eine Magnetspule hat einen Widerstand von 120 mΩ und soll während 10s einen Strom von 80 A führen. Der Anschluss erfolgt über zwei 12 m lange Kupferleiter von 4 mm² Querschnitt. Welche Spannung muss der Spannungserzeuger haben?
- Ein Heizelement 230 V 50 W soll vorübergehend nur 35 W leisten. Berechnen Sie den Vorwiderstand zum Anschluss an 230 V.
- 12. Ein Widerstand R_1 mit dem Temperaturkoeffizienten $\alpha_1 = 0,0044 \frac{1}{K}$ und ein Widerstand R_2 mit einem Temperaturkoeffizienten $\alpha_2 = -0,0025 \frac{1}{K}$ sollen in Reihenschaltung einen temperaturunabhängigen Widerstand R von $16 \, \mathrm{k}\Omega$ ergeben. Berechnen Sie die Widerstände von R_1 und R_2 .