1 Prostori in preslikave

1.1 Metrični prostori

Naj bo (M,d) metrični prostor. Za $S \subseteq M$, $S \neq \emptyset$ definiramo funkcijo razdalje $d(-,S): M \to \mathbb{R}$ s predpisom $d(x,S):=\inf\{d(x,y)\mid y\in S\}$. Velja

- d(-,S) je dobro definirana zvezna preslikava.
- $\overline{S} = d(-, S)^*(\{0\})$. S je zaprta $\Leftrightarrow S = d(-, S)^*(\{0\})$.

1.2 Topologija

- Dovolj, da preverimo presek nič množic in dveh množic.
- Presek poljubne družine topologij je topologija.
- Naj bo $A+B = \{ \operatorname{in}_1(a) \mid a \in A \} \cup \{ \operatorname{in}_2(b) \mid b \in B \}$. \mathcal{T}_{A+B} je topologija porojena z bazo $\{ \operatorname{in}_{1*}(\mathcal{T}_A) \} \cup \{ \operatorname{in}_{2*}(\mathcal{T}_B) \}$. Torej $\mathcal{T}_{A+B} = \{ \operatorname{in}_{1*}(U) \cup \operatorname{in}_{2*}(V) \mid U \in \mathcal{T}_A \land V \in \mathcal{T}_B \}$.
- $\mathcal{B}_S = \{[a,b) \mid a \in \mathbb{R}, b \in \mathbb{R}, a < b\}$ generira \mathcal{T}_S , ki jo imenujemo Sorgenfreyeva premica. Oznaka: \mathbb{R}_S .

1.3 Zvezne preslikave

1.3.1 Slike in praslike

Definicija. Naj bo $f: A \to B$ preslikava.

- Praslika podmnožice $S \in B$ je $f^*(S) := \{x \in A \mid f(x) \in S\}.$
- Slika podmnožice $T \in A$ je $f_*(T) := \{ y \in B \mid \exists x \in T . f(x) = y \}.$

Trditev. Naj bo $f: A \to B$ preslikava.

- Praslike so monotone: $S \subseteq T \subseteq B \Rightarrow f^*(S) \subseteq f^*(T)$.
- Slike so monotone: $X \subseteq Y \subseteq A \Rightarrow f_*(X) \subseteq f_*(Y)$.

Trditev. Praslike ohranjajo preseke in unije.

Trditev. Slike ohranjajo in unije. Če je preslikava injektivna, potem slika ohranja tudi preseke.

Trditev. Naj bo $f: A \to B$ preslikava. Za $S \subseteq B$ velja $f^*(S^c) = (f^*(S))^c$.

Trditev. Naj bo $f: A \to B$ preslikava, $S \subseteq A$, $T \subseteq B$. Velja:

- $S \subseteq f^*(f_*(S))$.
- $f_*(f^*(T)) \subseteq T$.

1.4 Zvezne preslikave in homeomorfizmi

- Lahko si pomagamo z vektorji. Vse vektorske operacije v evklidske topologije so zvezne.
- Lahko si pomagamo s kompleksni števili, ker jih znamo tudi množiti (korenjenje ni enolična preslikava).
- Vse p-norme so med sabo ekvivalentne. Porodijo isto topologijo in isto konvergenco.
- Zvezne preslikave slikajo konvergentna zaporedja v konvergentna zaporedja z isto limito.
- Ni zaprtost preslikave lahko pokažemo s pomočjo slike zaporedja.
- Najboljša izbira za homeomorfizem $(-1,1) \approx \mathbb{R}$ je $f: (-1,1) \to \mathbb{R}, \ f(x) = \frac{x}{1-|x|}$ in $g: \mathbb{R} \to (-1,1), \ g(x) = \frac{x}{1+|x|}$.

1.5 Baze in predbaze

1.5.1 Baza in lokalna baza

Definicija. Naj bo (X, \mathcal{T}) prostor, $x \in X$. Družina $\mathcal{B}_x \subseteq \mathcal{T}$, $\forall B \in \mathcal{B}_x$. $x \in B$ je **lokalna baza okolic** točke x, če za vsako odprto okolico $U \in \mathcal{T}$ točke x, obstaja $B \in \mathcal{B}_x$, da $x \in B \subseteq U$.

Opomba. Običajno prevzamemo, da so množice iz \mathcal{B}_x okolice točke x. S tem lahko poskusimo si predstaviti, kako zgleda prostor okoli vsake točke.

Definicija. Naj bo (X, \mathcal{T}) prostor. Družina $\mathcal{B} \subseteq \mathcal{T}$ je **baza** topologije \mathcal{T} , če lahko vse elemente \mathcal{T} zapišemo kot unije elementov \mathcal{B} .

Trditev. Naj bo (X, \mathcal{T}) topološki prostor. Velja:

- Če je \mathcal{B} baza topologije \mathcal{T} , potem je $B_x = \{B \in \mathcal{B} \mid x \in B\}$ je lokalna baza okolic x.
- Obratno: $\mathcal{B} := \bigcup_{x \in X} \mathcal{B}_x$ je baza topologije X.

Trditev. Naj bo \mathcal{B} baza prostora (X,\mathcal{T}) , \mathcal{B}' baza prostora (X',\mathcal{T}') in $f:X\to X'$ poljubna funkcija. Velja:

- 1. $U \subseteq X$ je odprta $\Leftrightarrow \forall x \in U . \exists B \in \mathcal{B} . x \in B \subseteq U$.
- 2. f je zvezna $\Leftrightarrow \forall B' \in \mathcal{B}'$. $f^*(B') \in \mathcal{T}$.
- 3. f je odprta $\Leftrightarrow \forall B \in \mathcal{B} . f_*(B) \in \mathcal{T}'$.

1.5.2 Topologija generirana z bazo

Trditev. Naj bo \mathcal{B} družina podmnožic X, ki ustreza pogojema

- 1. Unija elementov \mathcal{B} je cel X (vzemimo točko $x \in X$ in najdemo neko bazno množico B, da je $x \in B$).
- 2. Presek dveh baznih je unija baznih (vzemimo dve bazni okolici in točko v preseku, ter najdemo poljubno bazno okolico točke, ki še vedno v preseku)

Definicija. Produktna topologija $\mathcal{T}_{X\times X'}$ je topologija, ki jo kot baza generirana $\{U\times U'\mid U\in\mathcal{T}, U'\in\mathcal{T}'\}$.

Opomba. Če sta \mathcal{B} in \mathcal{B}' bazi \mathcal{T} in \mathcal{T}' , potem družina $\{U \times U' \mid U \in \mathcal{B}, U' \in \mathcal{B}'\}$ generira produktno topologijo.

Trditev. Naj bo $(X \times Y, \mathcal{T}_{X \times Y})$ produktna. Projekciji $\operatorname{pr}_x : X \times Y \to X, \ \operatorname{pr}_y : X \times Y \to Y \text{ sta zvezni in odprti.}$

1.5.3 Predbaza

Trditev. Naj bo \mathcal{P} poljubna družina podmnožic X. Če je \mathcal{P} pokritje X, potem je \mathcal{T} topologija, ki jo kot baza generirajo končni preseki elementov \mathcal{P} . Pravimo, da je \mathcal{P} predbaza topologije \mathcal{T} .

Trditev. Naj bosta $(X, \mathcal{T}_X), (Y, \mathcal{T}_Y)$ prostora. Naj bo \mathcal{P} predbaza \mathcal{T}_Y . Velja:

Funkcija
$$f: X \to Y$$
 je zvezna $\Leftrightarrow \forall B \in \mathcal{P} \cdot f^*(B) \in \mathcal{T}_X$.

Pozor! Odprtost funkcije f v splošnem ne moremo testirati na predbaze. Saj slike ne ohranjajo preseke.

Trditev. Naj bodo X, Y, Z prostori. Velja:

Funkcija
$$f: X \to Y \times Z$$
, $f = (f_Y, f_Z)$ je zvezna $\Leftrightarrow f_Y, f_Z$ sta zvezni.

1.5.4 Aksiomi števnosti

Definicija (1. aksiom števnosti). Naj bo (X, \mathcal{T}) prostor. Vsaka točka $x \in X$ ima števno bazo okolic.

Definicija (2. aksiom števnosti). Naj bo (X,\mathcal{T}) prostor. Obstaja kaka števna baza za topologijo \mathcal{T} .

Opomba. Očitno, da 2-števnost implicira 1-števnost.

Trditev. Naj bo prostor (X, \mathcal{T}) 1-števen. Velja:

1. Za vsako množico $A \subseteq X$ je $\overline{A} = L(A) = \{x \mid x \text{ je limita zaporedja v } A\}.$

1.5.5 Separabilnost

Definicija. Podmnožica A je **povsod gosta** v X, če seka vsako odprto množico X, ali ekvivalentno, če je $\overline{A} = X$.

Definicija. Prostor (X, \mathcal{T}) je separabilen, če v X obstaja števna gosta podmnožica.

Trditev. 2-števnost implicira separabilnost.

Izrek. Metrični prostor (X,d) je 2-števen natanko takrat, ko v njem obstaja števna povsod gosta podmnožica.

Opomba. V metričnih prostorih je 2-števnost ekvivalentna separabilnosti, slednjo pa je pogosto lažje dokazati (ali ovreči).

1.6 Podprostori

1.6.1 Podprostori

Naj bo (X, \mathcal{T}) prostor, $A \subseteq X$. Definiramo $\mathcal{T}_A := \{A \cap U \mid U \in T\}$.

Trditev. \mathcal{T}_A topologija na A.

Definicija. Topologiji \mathcal{T}_A pravimo **inducirana** topologija na A. Prostor (A, \mathcal{T}_A) je **podprostor** prostora (X, \mathcal{T}) .

Opomba. Pri delu s podprostori moramo upoštevati, da so topološki pojmi praviloma odvisni od tega, v katerem prostoru jih gledamo.

Trditev. Naj bo (X, \mathcal{T}) prostor in (A, \mathcal{T}_A) njegov podprostor.

- 1. Če je \mathcal{B} neka baza topologije \mathcal{T} , potem je $\mathcal{B}_A := \{A \cap B \mid B \in \mathcal{B}\}$ baza topologije \mathcal{T}_A . Analogna trditev velja za predbaze.
- 2. Množica $B \subseteq A$ je zaprta v topologiji \mathcal{T}_A , če in samo če je $F = A \cap F$ za neko množico F, ke je zaprta v topologiji \mathcal{T} .
- 3. Veljajo formule: $\operatorname{Cl}_A B = A \cap \operatorname{Cl}_X B$, $\operatorname{Int}_A B \supseteq A \cap \operatorname{Int}_X B$, $\operatorname{Fr}_A B \subseteq A \cap \operatorname{Fr}_X B$.

Množica, ki je odprta v podprostoru, ni nujno odprta v celem prostoru: na primer množica A, ki ni odprta v X, je vendarle odprta v sami sebi. Te teževa izognemo, če je A odprta v X. Torej

Trditev. Naj bo (X, \mathcal{T}) prostor in (A, \mathcal{T}_A) njegov podprostor.

- 1. Podmnožica odprtega podprostora odprta natanko tedaj, ko je odprta v celem prostoru.
- 2. Podmnožica zaprtega podprostora zaprta natanko tedaj, ko je zaprta v celem prostoru.

1.6.2 Dednost

Definicija. Topološka lastnost je **dedna**, če iz prevzetka, da (X, \mathcal{T}) ima to lastnost sledi, da jo imajo tudi vsi podprostori.

Opomba. Odprt podprostor separabilnega podprostora je separabilen.

1.6.3 Odsekoma definirane funkcije

Definicija. Naj bo $\{X_{\lambda}\}$ pokritje X. Za družino $f_{\lambda}: X_{\lambda} \to Y$ rečemo, da je **usklajena**, če je $f_{\lambda|X_{\lambda} \cap X_{\mu}} = f_{\mu|X_{\lambda} \cap X_{\mu}}$ za poljubna indeksa λ, μ .

Trditev. Vsaka usklajena družina določa funkcijo $f: X \to Y$, za katero je $f_{|X_{\lambda}} = f_{\lambda}$.

Lema. Naj bo $\{X_{\lambda}\}$ odprto pokritje X. Tedaj je $A \subseteq X$ odprta natanko tedaj, ko je $X_{\lambda} \cap A$ odprta v X_{λ} za vse λ .

Definicija. Pokritje $\{X_{\lambda}\}$ za X je **lokalno končno**, če za vsako točko $x \in X$ obstaja okolica, ki seka le končno mnogo različnih X_{λ} .

Lema. Naj bo $\{X_{\lambda}\}$ zaprto pokritje X, ki je lokalno končno. Tedaj je $A \subseteq X$ zaprta natanko tedaj, ko je $X_{\lambda} \cap A$ zaprta v X_{λ} za vse λ .

Izrek. Naj bo $\{X_{\lambda}\}$ pokritje za X, ki je bodisi odprto bodisi lokalno končno in zaprto. Tedaj vsaka usklajena družina preslikav $f_{\lambda}: X_{\lambda} \to Y$ enolično določa preslikavo $f: X \to Y$, za katero je $f_{|X_{\lambda}} = f_{\lambda}$.

Posledica. Naj bo $\{X_{\lambda}\}$ pokritje za X, ki je bodisi odprto bodisi lokalno končno in zaprto. Tedaj je funkcija $f: X \to Y$ zvezna natanko tedaj, ko so zvezne vse zožitve $f_{|X_{\lambda}}$.

1.6.4 Vložitve

Definicija. Preslikava $f: X \to Y$ je **vložitev**, če je f homeomorfizem med X in $f_*(X)$ (glede na od Y podedovano topologijo).

Opomba. Potreben primer za homeomorfizem je injektivnost preslikave f.

Trditev. Naj bo $f: X \to Y$ injektivna preslikava.

- Če je f(X) odprt v Y, potem je f vložitev natanko tedaj, ko je preslikava $f: X \to Y$ odprta.
- Če je f(X) zaprt v Y, potem je f vložitev natanko tedaj, ko je preslikava $f: X \to Y$ zaprta.

2 Topološki lastnosti

2.1 Ločljivost

Definicija. Za topologjo \mathcal{T} na množici X pravimo, da **loči** podmnožico $A \subseteq X$ od pomnožice $B \subseteq X$, če obstaja $U \in \mathcal{T}$, za katero je $A \subseteq U$ in $B \cap U = \emptyset$.

Definicija. Za topologjo \mathcal{T} na množici X pravimo, da **ostro loči** podmnožici $A \subseteq X$ in $B \subseteq X$, če obstajata $U, V \in \mathcal{T}$, za kateri je $A \subseteq U$, $B \subseteq V$ in $U \cap V = \emptyset$.

2.1.1 Hausdorffova in Frechetova lastnosti

Definicija. Za prostor (X, \mathcal{T}) pravimo, da je **Hausdorffov**, če \mathcal{T} ostro loči vsaki dve različni točki X.

Trditev. Ekvivalentne so naslednje izjave:

- 1. X je Hausdorffov.
- 2. $\forall x \in X \cdot \bigcap_{U \in \mathcal{U}} \overline{U} = \{x\}$, kjer je \mathcal{U} družina vseh okolic x (ekvivalentno $x \neq y \Rightarrow \exists U \in \mathcal{T} \cdot x \in U \land y \notin \overline{U}$).
- 3. Diagonala $\Delta = \{(x, x) \in X \times X \mid x \in X\}$ je zaprt podprostor produkta $X \times X$.

Izrek. Naj bo prostor Y Hausdorffov. Velja:

- 1. Vsaka končna podmnožica Y je zaprta. Posebej, točke so zaprte.
- 2. Točka y je stekališče množice $A \subseteq Y$ natanko tedaj, ko vsaka okolica Y vsebuje neskončno točk iz A.
- 3. Zaporedje v Y ima največ eno limito.
- 4. Množica točk ujemanja $\{x \in X \mid f(x) = g(x)\}$ je zaprta v X za poljubni preslikavi $f, g: X \to Y$.
- 5. Če se preslikavi $f, g: X \to Y$ ujemata na neki gosti podmnožici X, potem je f = g.
- 6. Graf preslikave $f: X \to Y$ je zaprt podprostor produkta $X \times Y$.

Izrek. Naj bo prostor X 1-števen, prostor Y pa Hausdorffov. Potem je funkcija $f: X \to Y$ zvezna natanko takrat, ko za vsako konvergentno zaporedje (x_n) v X velja $\lim f(x_n) = f(\lim x_n)$.

Definicija. Prostor (X, \mathcal{T}) je **Frechetov**, če \mathcal{T} vsako točko X loči od vsake druge točke X.

Opomba. V Frechetovem prostoru lahko za vsak par različnih točk najdemo okolico ene, ki ne vsebuje druge. V Hausdorffovem prostoru pa lahko okolici izberemo tako, da sta disjunktni.

Trditev. Prostor X je Frechetov natanko tedaj, ko so vse enojčki zaprte.

Opomba. Topologija je Frechetova natanko tedaj, ko vsebuje topologijo končnih komplementov.

2.1.2 Regularnost in normalnost

Ostrejše zahteve za ločljivost dobimo, če točke nadomestimo z zaprtimi množicami.

Definicija. Prostor (X, \mathcal{T}) je regularen če je Frechetov in če \mathcal{T} ostro loči točke od zaprtih množic.

Definicija. Prostor (X, \mathcal{T}) je **normalen**, če je Frechetov in če \mathcal{T} ostro loči disjunktne zaprte množice.

Opomba. Ker so v Frechetovem prostoru točke zaprte velja: Noramalnost \Rightarrow Regularnost \Rightarrow Hausdorff.

Trditev. Vsak metričen prostor je normalen.

Trditev. Zaprt podprostor normalnega prostora je normalen.

Izrek (Izrek Tihonova). Prostor, ki je regularen in 2-števen je normalen.

Opomba. Iz izreka sledi, da je poljuben podprostor normalnega 2-števnega prostora normalen. Podobno je tudi produkt 2-števnih normalnih prostorov normalen.

2.1.3 Aksiomi ločljivosti

- **X** je T_0 : Za različni točki $x, x' \in X$ obstaja okolica ene izmed točk x, x', ki jo loči od druge točke.
- **X je** T_1 : Za različni točki $x, x' \in X$ obstaja okolica x, ki jo loči od x' in obenem obstaja okolica točke x', ki jo loči od x.
- **X** je T_2 : Za različni točki $x, x' \in X$ obstajata okolici, ki ostro ločita x in x'.
- **X je** T_3 : Za točko $x \in X$ in zaprto množico $A \subseteq X$, ki ne vsebuje x, obstajata okolici, ki ostro ločita x in A.
- **X je** T_4 : Za disjunktni zaprti množici $A, B \subseteq X$ obstajata okolici, ki ostro ločita A in B.

Opomba. T_1 je Frechetova lastnost, T_2 je Hausdorffova lastnost. Regularnost je $T_1 + T_3$, normalnost je $T_1 + T_4$.

Trditev. Prostor X ima lastnost T_3 natanko tedaj, ko za vsak $x \in X$ in vsako odprto okolico U za x obstaja taka odprta množica V, da velja $x \in V \subseteq \overline{V} \subseteq U$.

Trditev. Prostor X ima lastnost T_4 natanko tedaj, ko za vsako zaprto podmnožico $A \subseteq X$ in vsako odprto okolico U za A obstaja taka odprta množica V, da velja $A \subseteq V \subseteq \overline{V} \subseteq U$.

3 Splošno

Lastnost	Top	Mul	Ded	Primeri	Proti primeri
Metrizabilnost	+	+	+	m. pr., \mathcal{T}_{disk}	$\mathcal{T}_{ ext{triv}},\mathcal{T}_{ ext{kk}}$
1-števnost	+	+	+	m. pr., \mathbb{R}_S , $\mathcal{T}_{\text{evkl}}$	
2-števnost	+	+	+	$\mathcal{T}_{ ext{evkl}}$	$(X^{ ext{neštevna}}, \mathcal{T}_{ ext{disk}}), \mathbb{R}_S$
Separabilnost (baza)	+	+		$(\mathbb{R}^n, \mathcal{T}_{\text{evkl}}), \mathbb{R}_S$	
T_0 (baza)	+	+	+	m. pr., \mathbb{R}_S	$\mathcal{T}_{ ext{triv}}$
T_1 (baza)	+	+	+	m. pr., \mathcal{T}_{kk} , \mathbb{R}_S	$\mathcal{T}_{ ext{triv}}$
T_2 (baza)	+	+	+	m. pr., \mathbb{R}_S	$\mathcal{T}_{\mathrm{triv}},(X^{\mathrm{neskon\check{c}na}},\mathcal{T}_{\mathrm{kk}})$
T_3	+	+	+	m. pr., $\mathcal{T}_{\text{triv}}$, \mathbb{R}_S	
T_4	+			m. pr., \mathcal{T}_{triv} , \mathbb{R}_S	
Regularnost $(T_0/T_1 + T_3)$	+	+	+	m. pr.	$\mathcal{T}_{ ext{triv}}$
Normalnost $(T_0/T_1 + T_4)$	+			m. pr.	$\mathcal{T}_{ ext{triv}}$