

Artificial Intelligence

Christoph Benzmüller and Raul Rojas

Freie Universität Berlin

Block Lecture, SS 2014

(Propositional) Hornlogic

Erfüllbarkeit/Gültigkeit

- ► entscheidbar
- bisher kein "effektiver" Algorithmus bekannt (NP-vollständig)

Erfüllbarkeit/Gültigkeit

- ► entscheidbar
- "effektiver"Algorithmus (P)

Erfüllbarkeit/Gültigkeit

- entscheidbar
- "effektiver"Algorithmus (P)

$$P \stackrel{?}{=} NP$$

(one million dollar question)

Erfüllbarkeit/Gültigkeit

- unentscheidbar (semi-entscheidbar)
- ineffektiveSuchalgorithmen

Erfüllbarkeit/Gültigkeit

- unentscheidbar (semi-entscheidbar)
- effektive Suchalgorithmen (Prolog)

AUSSAGENLOGIK: Syntax und Semantik

Syntax der Aussagenlogik (AL)

$$s, t ::= P \mid \neg s \mid s \lor t \mid s \land t \mid s \Rightarrow t \mid \bot \mid \top$$

Semantik

Interpretationsfunktion

$$I:AL\longrightarrow \{T,F\}$$

- atomare Aussagen P:

wähle
$$I(P) \in \{T, F\}$$

- $I(\neg s)$, $I(s \lor t)$, $I(s \land t)$, $I(s \Rightarrow t)$, $I(\bot)$, $I(\top)$ festgelegt wie folgt

S	t	$\neg s$	$s \lor t$	$s \wedge t$	$s \Rightarrow t$	\perp	Τ
T	T	F	T	T	T	F	T
T	F	F	T	F	F	F	T
F	T	T	T	F	T	F	T
F	F	T	F	F	F	F	T

AUSSAGENLOGIK: Syntax und Semantik

Syntax der Aussagenlogik (AL)

$$s, t ::= P \mid \neg s \mid s \lor t \mid s \land t \mid s \Rightarrow t \mid \bot \mid \top$$

Semantik

Interpretationsfunktion

$$I:AL\longrightarrow \{T,F\}$$

- atomare Aussagen P:

wähle
$$I(P) \in \{T, F\}$$

- $I(\neg s)$, $I(s \lor t)$, $I(s \land t)$, $I(s \Rightarrow t)$, $I(\bot)$, $I(\top)$ festgelegt wie folgt

S	t	$\neg s$	$s \lor t$	$s \wedge t$	$s \Rightarrow t$	7	Т
T	Т	F	T	T	T	A	T
T	F	F	T	F	F	F	T
F	Т	T	T	F	T	F	T
F	F	T	F	F	F	F	T
					$\neg s \lor t$		

definiert als

AUSSAGENLOGIK: Syntax und Semantik

Syntax der Aussagenlogik (AL)

$$s,t ::= P \mid \neg s \mid s \lor t \mid s \land t \mid s \Rightarrow t \mid \bot \mid \top$$

Semantik

Interpretationsfunktion

$$I:AL\longrightarrow \{T,F\}$$

- atomare Aussagen P:

wähle
$$I(P) \in \{T, F\}$$

- $I(\neg s)$, $I(s \lor t)$, $I(s \land t)$, $I(s \Rightarrow t)$, $I(\bot)$, $I(\top)$ festgelegt wie folgt

S	t	$\neg s$	$s \lor t$	$s \wedge t$	$s \Rightarrow t$	\perp	Т
T	T	F	T	T	T	F	T
T	F	F	T	F	F	F	T
F	T	T	T	F	T	F	T
F	F	T	F	F	F	F	T

Definition Hornklausel:

(alternative Sichtweise)

$$P \lor \neg Q_1 \lor \ldots \lor \neg Q_n$$

$$P \Leftarrow Q_1 \wedge \ldots \wedge Q_n$$

Definition Hornklausel:

(alternative Sichtweise)

Definition Hornklausel:

(alternative Sichtweise)

Es gibt drei Typen von Hornklauseln (Beispiele)

C Fakt: 'C gilt'
$$C \Leftarrow \top$$

 $A \lor \neg B \lor \neg D$ Regel: 'A gilt falls B und D gelten' $A \Leftarrow B \land D$
 $\neg B \lor \neg D$ Ziel: 'Gelten B und D?' $\bot \Leftarrow B \land D$

Definition Hornklausel:

(alternative Sichtweise)

Es gibt drei Typen von Hornklauseln (Beispiele)

$$C \qquad \qquad Fakt : 'C \ gilt' \qquad \qquad C \Leftarrow \top$$

$$A \lor \neg B \lor \neg D \qquad Regel : 'A \ gilt \ falls \ B \ und \ D \ gelten' \qquad A \Leftarrow B \land D$$

$$\neg B \lor \neg D \qquad Ziel : 'Gelten \ B \ und \ D?' \qquad \bot \Leftarrow B \land D$$

$$A \lor C \lor \neg B \lor \neg D \qquad \qquad A \lor C \Leftarrow B \land D$$

Definition Hornklausel:

(alternative Sichtweise)

Es gibt drei Typen von Hornklauseln (Beispiele)

Es gibt drei Typen von Hornklauseln (Beispiele)

$$C \qquad Fakt: 'C \ gilt' \qquad C \Leftarrow \top$$

$$A \lor \neg B \lor \neg D \qquad Regel: 'A \ gilt \ falls \ B \ und \ D \ gelten' \qquad A \Leftarrow B \land D$$

$$\neg B \lor \neg D \qquad Ziel: 'Gelten \ B \ und \ D?' \qquad \bot \Leftarrow B \land D$$

$$A \lor D \lor A \lor D \lor A \lor D \not \Leftrightarrow B \lor C$$

Definition Hornformel:

 $Hornformel = Konjunktionen\ von\ Hornklauseln$

HORNLOGIK: (als Mengen)

Definition Hornformel:

Hornformel = Konjunktionen von Hornklauseln

$$\wedge$$
 (D)

Beispiel

$$\land$$
 $(B \lor \neg C)$

$$\land \quad (A \lor \neg B \lor \neg D)$$

$$\land \quad (\neg A \lor \neg D)$$

$$\wedge$$
 $(\neg A \lor \neg D)$

Definition Hornformel:

 $Hornformel = Konjunktionen\ von\ Hornklauseln$

Definition Hornformel:

 $Hornformel = Konjunktionen\ von\ Hornklauseln$

Beispiel

$$\left\{
\begin{array}{c}
\{C\}\\
\{D\}\\
\{B,\neg C\}\\
\{A,\neg B,\neg D\}\\
\{\neg A,\neg D\}
\end{array}
\right\}$$

Definition Hornformel:

 $Hornformel = Konjunktionen\ von\ Hornklauseln$

Beispiel $\begin{cases} \{C\} & \text{Programm:} \\ \{D\} & \text{Fakten} \end{cases}$ $\{B, \neg C\} & \text{Regeln} \\ \{A, \neg B, \neg D\} & \text{ein Ziel/Anfrage} \\ \{\neg A, \neg D\} & \text{Gelten A und D'} \end{cases}$

Definition Resolution:

$$\frac{\{\neg P, N_1, \dots, N_n\} \qquad \{P, M_1, \dots, M_m\}}{P}$$

Definition Resolution:

$$\frac{\{\neg P, N_1, \dots, N_n\}}{\{P, M_1, \dots, M_m\}}$$
komplementär

Definition Resolution:

$$\frac{\{\neg P, N_1, \dots, N_n\} \qquad \{P, M_1, \dots, M_m\}}{\{N_1, \dots, N_n, M_1, \dots, M_m\}}$$

Definition Resolution:
$$\frac{\{\neg P, N_1, \dots, N_n\} \quad \{P, M_1, \dots, M_m\}}{\{N_1, \dots, N_n, M_1, \dots, M_m\}}$$

$$\frac{\{\neg P, N_1, \dots, N_n\} \qquad \{P, M_1, \dots, M_m\}}{\{N_1, \dots, N_n, M_1, \dots, M_m\}}$$

$$\frac{\{\neg P, N_1, \dots, N_n\} \quad \{P, M_1, \dots, M_m\}}{\{N_1, \dots, N_n, M_1, \dots, M_m\}}$$

$$\frac{\{\neg P, N_1, \dots, N_n\} \quad \{P, M_1, \dots, M_m\}}{\{N_1, \dots, N_n, M_1, \dots, M_m\}}$$

Definition Resolution:
$$\frac{\{\neg P, N_1, \dots, N_n\} \qquad \{P, M_1, \dots, M_m\}}{\{N_1, \dots, N_n, M_1, \dots, M_m\}}$$

Regel Regel
$$\{A, \neg B, \neg D\}$$
 $\{B, \neg C\}$

Definition Resolution:

$$\frac{\{\neg P, N_1, \dots, N_n\} \quad \{P, M_1, \dots, M_m\}}{\{N_1, \dots, N_n, M_1, \dots, M_m\}}$$

Regel Regel
$$\frac{\{A, \neg B, \neg D\} \qquad \{B, \neg C\}}{\{A, \neg D, \neg C\}}$$
Regel

$$\frac{\{\neg P, N_1, \dots, N_n\} \qquad \{P, M_1, \dots, M_m\}}{\{N_1, \dots, N_n, M_1, \dots, M_m\}}$$

Regel Regel Regel Fakt
$$\frac{\{A, \neg B, \neg D\} \quad \{B, \neg C\}}{\{A, \neg D, \neg C\}}$$
Regel Fakt
$$\frac{\{A, \neg B, \neg D\} \quad \{D\}}{\{D\}}$$

$$\frac{\{\neg P, N_1, \dots, N_n\} \qquad \{P, M_1, \dots, M_m\}}{\{N_1, \dots, N_n, M_1, \dots, M_m\}}$$

Algorithmus: SLD-Resolution

```
while Ziel ≠ ∅ do

— wähle Literal L und komplementäre

Regel/Fakt K

— if kein K then backtrack/'No'

— else Ziel := resolviere(Ziel,K)
done
return 'Yes';
```

```
S Selektion (& Backtracking)
```

 Definite Klauseln (haben genau ein pos. Literal
 → in jedem Schritt beteiligt

```
Programm:  \{C\} 
 \{D\} 
 \{B, \neg C\} 
 \{A, \neg B, \neg D\} 
 \{\neg A, \neg D\}
```

$$\{\neg A, \neg D\}$$

Algorithmus: SLD-Resolution

```
while Ziel ≠ ∅ do

— wähle Literal L und komplementäre

Regel/Fakt K

— if kein K then backtrack/'No'

— else Ziel := resolviere(Ziel,K)
done
return 'Yes';
```

S Selektion (& Backtracking)

 D Definite Klauseln (haben genau ein pos. Literal
 → in jedem Schritt beteiligt

```
Programm:  \{C\} 
 \{D\} 
 \{B, \neg C\} 
 \{A, \neg B, \neg D\} 
 \{\neg A, \neg D\}
```

 $\{\neg A, \neg D\}$

Algorithmus: SLD-Resolution

```
while Ziel ≠ ∅ do

— wähle Literal L und komplementäre

Regel/Fakt K

— if kein K then backtrack/'No'

— else Ziel := resolviere(Ziel,K)
done
return 'Yes';
```

S Selektion (& Backtracking)

 D Definite Klauseln (haben genau ein pos. Literal
 → in jedem Schritt beteiligt

```
Programm:  \{C\}   \{D\}   \{B, \neg C\}   \{A, \neg B, \neg D\}   \{\neg A, \neg D\}
```

$$\{\neg A, \neg D\}$$
 $\{A, \neg B, \neg D\}$

Algorithmus: SLD-Resolution

```
while Ziel ≠ ∅ do

— wähle Literal L und komplementäre

Regel/Fakt K

— if kein K then backtrack/'No'

— else Ziel := resolviere(Ziel,K)
done
return 'Yes';
```

- Selektion (& Backtracking)
- D Definite Klauseln
 (haben genau ein pos. Literal

 → in iedem Schritt beteiligt

```
Programm:  \{C\} 
 \{D\} 
 \{B, \neg C\} 
 \{A, \neg B, \neg D\} 
 \{\neg A, \neg D\}
```

```
\{\neg A, \neg D\} \qquad \{A, \neg B, \neg D\}
\{\neg D, \neg B\}
```


Algorithmus: SLD-Resolution

```
while Ziel ≠ ∅ do

— wähle Literal L und komplementäre

Regel/Fakt K

— if kein K then backtrack/'No'

— else Ziel := resolviere(Ziel,K)
done
return 'Yes';
```

- Selektion (& Backtracking)
- D Definite Klauseln
 (haben genau ein pos. Literal

 → in jedem Schritt beteiligt

```
Programm:  \{C\}   \{D\}   \{B, \neg C\}   \{A, \neg B, \neg D\}   \{\neg A, \neg D\}
```

```
\{\neg A, \neg D\} \qquad \{A, \neg B, \neg D\}
\{\neg D, \neg B\}
```



```
while Ziel ≠ ∅ do

— wähle Literal L und komplementäre

Regel/Fakt K

— if kein K then backtrack/'No'

— else Ziel := resolviere(Ziel,K)
done
return 'Yes';
```

- Selektion (& Backtracking)
- D Definite Klauseln
 (haben genau ein pos. Literal

 → in iedem Schrift beteiligt

```
Programm:  \{C\}   \{D\}   \{B, \neg C\}   \{A, \neg B, \neg D\}   \{\neg A, \neg D\}
```

$$\{\neg A, \neg D\} \qquad \{A, \neg B, \neg D\}$$

$$\{\neg D, \neg B\} \qquad \{D\}$$


```
while Ziel ≠ ∅ do

- wähle Literal L und komplementäre

Regel/Fakt K

- if kein K then backtrack/'No'

- else Ziel := resolviere(Ziel,K)

done
return 'Yes';
```

- S Selektion (& Backtracking)
- D Definite Klauseln
 (haben genau ein pos. Literal
 → in jedem Schritt beteiligt

```
Programm:  \{C\}   \{D\}   \{B, \neg C\}   \{A, \neg B, \neg D\}   \{\neg A, \neg D\}
```

```
\{\neg A, \neg D\} \qquad \{A, \neg B, \neg D\}
\{\neg D, \neg B\} \qquad \{D\}
\{\neg B\}
```



```
while Ziel ≠ ∅ do

- wähle Literal L und komplementäre

Regel/Fakt K

- if kein K then backtrack/'No'

- else Ziel := resolviere(Ziel,K)

done
return 'Yes';
```

- S Selektion (& Backtracking)
- D Definite Klauseln

 (haben genau ein pos. Literal
 → in jedem Schritt beteiligt)

```
Programm:  \{C\} 
 \{D\} 
 \{B, \neg C\} 
 \{A, \neg B, \neg D\} 
 \{\neg A, \neg D\}
```

```
\{\neg A, \neg D\} \qquad \{A, \neg B, \neg D\}
\{\neg D, \neg B\} \qquad \{D\}
\{\neg B\}
```



```
while Ziel ≠ ∅ do

- wähle Literal L und komplementäre

Regel/Fakt K

- if kein K then backtrack/'No'

- else Ziel := resolviere(Ziel,K)
done
return 'Yes';
```

- S Selektion (& Backtracking)
- D Definite Klauseln (haben genau ein pos. Literal
 → in jedem Schritt beteiligt)

```
Programm:  \{C\}   \{D\}   \{B, \neg C\}   \{A, \neg B, \neg D\}   \{\neg A, \neg D\}
```

```
\{\neg A, \neg D\} \qquad \{A, \neg B, \neg D\}
\{\neg D, \neg B\} \qquad \{D\}
\{\neg B\} \qquad \{B, \neg C\}
```



```
while Ziel ≠ ∅ do

- wähle Literal L und komplementäre
Regel/Fakt K

- if kein K then backtrack/'No'

- else Ziel := resolviere(Ziel,K)
done
return 'Yes';
```

- S Selektion (& Backtracking)

 Linear
- (haben genau ein pos. Literal

 → in iedem Schritt beteiliet)

```
Programm: \{C\}

\{D\}

\{B, \neg C\}

\{A, \neg B, \neg D\}

\{\neg A, \neg D\}
```

```
\{\neg A, \neg D\} \qquad \{A, \neg B, \neg D\}
\{\neg D, \neg B\} \qquad \{D\}
\{\neg B\} \qquad \{B, \neg C\}
\{\neg C\}
```



```
while Ziel ≠ ∅ do

— wähle Literal L und komplementäre

Regel/Fakt K

— if kein K then backtrack/'No'

— else Ziel := resolviere(Ziel,K)

done
return 'Yes';
```

- S Selektion (& Backtracking)
 L Linear
- (haben genau ein pos. Literal

 → in jedem Schritt beteiligt)

```
Programm: \{C\}

\{D\}

\{B, \neg C\}

\{A, \neg B, \neg D\}

\{\neg A, \neg D\}
```

```
\{\neg A, \neg D\} \qquad \{A, \neg B, \neg D\}
\{\neg D, \neg B\} \qquad \{D\}
\{\neg B\} \qquad \{B, \neg C\}
\{\neg C\}
```



```
while Ziel ≠ ∅ do

— wähle Literal L und komplementäre

Regel/Fakt K

— if kein K then backtrack/'No'

— else Ziel := resolviere(Ziel,K)

done
return 'Yes';
```

- S Selektion (& Backtracking)
 L Linear
- D Definite Klauseln
 (haben genau ein pos. Literal

 → in jedem Schritt beteiligt)

```
Programm: \{C\}

\{D\}

\{B, \neg C\}

\{A, \neg B, \neg D\}

\{\neg A, \neg D\}
```

```
\{\neg A, \neg D\} \quad \{A, \neg B, \neg D\}
\{\neg D, \neg B\} \quad \{D\}
\{\neg B\} \quad \{B, \neg C\}
\{\neg C\} \quad \{C\}
```



```
while Ziel ≠ ∅ do

— wähle Literal L und komplementäre

Regel/Fakt K

— if kein K then backtrack/'No'

— else Ziel := resolviere(Ziel,K)
done
return 'Yes';
```

- S Selektion (& Backtracking)
 L Linear
- (haben genau ein pos. Literal

 → in jedem Schritt beteiligt

```
Programm:  \{C\}   \{D\}   \{B, \neg C\}   \{A, \neg B, \neg D\}   \{\neg A, \neg D\}
```

```
\{\neg A, \neg D\} \{A, \neg B, \neg D\}
\{\neg D, \neg B\}
                          {D}
   \{\neg B\}
                       \{B, \neg C\}
                           {C}
   \{\neg C\}
```



```
while Ziel ≠ ∅ do

— wähle Literal L und komplementäre

Regel/Fakt K

— if kein K then backtrack/'No'

— else Ziel := resolviere(Ziel,K)

done
return 'Yes';
```

- S Selektion (& Backtracking)L Linear
- (haben genau ein pos. Literal

 → in jedem Schritt beteiligt

```
Programm:  \{C\}   \{D\}   \{B, \neg C\}   \{A, \neg B, \neg D\}   \{\neg A, \neg D\}
```

```
\{\neg A, \neg D\} \{A, \neg B, \neg D\}
\{\neg D, \neg B\}
                         {D}
   \{\neg B\}
                      \{B, \neg C\}
                          {C}
   \{\neg C\}
                    return 'Yes'
```


Algorithmus: SLD-Resolution

```
while Ziel ≠ ∅ do

— wähle Literal L und komplementäre

Regel/Fakt K

— if kein K then backtrack/'No'

— else Ziel := resolviere(Ziel,K)
done
return 'Yes';
```

S Selektion (& Backtracking)

- L Linear

Programm: $\{C\}$ $\{D\}$ $\{B, \neg C\}$ $\{A, \neg B, \neg D\}$ $\{\neg A, \neg D\}$


```
while Ziel ≠ ∅ do

- wähle Literal L und komplementäre

Regel/Fakt K

- if kein K then backtrack/'No'

- else Ziel := resolviere(Ziel,K)

done

return 'Yes';
```

- S Selektion (& Backtracking)
- L Linear
- Definite Klauseln (haben genau ein pos. Literal
 → in jedem Schritt beteiligt

Programm:
$$\{C\}$$

$$\{D\}$$

$$\{B, \neg C\}$$

$$\{A, \neg B, \neg D\}$$

$$\{\neg A, \neg D\}$$

Algorithmus: SLD-Resolution

Programm: $\{C\}$ $\{D\}$ $\{B, \neg C\}$ $\{A, \neg B, \neg D\}$ $\{\neg A, \neg D\}$

- while $\operatorname{Ziel} \neq \emptyset$ do
- wähle Literal L und komplementäre
 - Regel/Fakt K
- if kein K then backtrack/'No'
- else Ziel := resolviere(Ziel,K)
- return 'Yes';
- S Selektion (& Backtracking)
- L Linear -
- D Definite Klauseln
 (haben genau ein pos. Literal

 → in jedem Schritt beteiligt)

 $\{\neg A, \neg D\}$ $\{A, \neg B, \neg D\}$

- $\neg B$ $\{B, \neg C\}$
- { C} { C}

return 'Yes'

HORNLOGIK: Es gibt noch viel zu sagen!

- ► Hornlogik-Fragment der Prädikatenlogik
 - ▶ andere Algorithmen: Markierungsalgorithmus, Gentzenkalkül,
 - ▶ Vollständigkeit & Korrektheit der Verfahren
 - Komplexität der Verfahren
- ► Hornlogik-Fragment der Prädikatenlogik erster Stufe

 - PROLOG
 - **•** ...
- Hornlogik-Fragment der Logik höherer Stufe
 - **.** . . .
 - λ-PROLOG
 - **.** . . .