Pattern Recognition

Yukyung Choi

yk.choi@rcv.sejong.ac.kr

Summary

- Decision Tree & Random Forests I
 - Hand on Labs: Data Classification using library
- Decision Tree & Random Forests II
 - Hand on Labs: Implementation of DT-RF

Content

- Decision Tree
- Random Decision Trees
- Random Forests
- Random Forests with discriminative decision tree

Classifier

Classifier

Definition

Tree structure based Classifier

Classification method by using several rules and constrains.

tree 1: a tree is a widely-used data structure that emulates a hierarchical tree structure with a set of linked nodes.

Definition

Tree structure based Classifier

Classification method by using several rules and constrains.

Training

build the tree

Consideration in this step

- 1) How many splits should there be at each node?
- 2) How to select the query attribute?
- 3) When to stop growing the tree?
- 4) Which class to allow leaf nodes?

Training

build the tree

Consideration in this step

1) How many splits should there be at each node?

Multi-valued tree

Binary tree

Training

build the tree

Consideration in this step

2) How to select the query attribute?

Ready to Candidate query attributes:

Collect all possible attributes

Training

build the tree

Consideration in this step

2) How to select the query attribute?

Ready to Candidate query attributes:

Collect all possible attributes

Select the best query attributes:

Find the maximal decrease in *impurity(entropy)*

Training

build the tree

Consideration in this step

2) How to select the query attribute?

Ready to Candidate query attributes:

Collect all possible attributes

Select the best query attributes:

Find the maximal decrease in *impurity(entropy)*

$$\Delta im(T) = im(T) - \frac{|X_{Tleft}|}{|X_T|} im(T_{left}) - \frac{|X_{Tright}|}{|X_T|} im(T_{right})$$

$$\Delta im(T) = \frac{|X_{Tleft}|}{|X_{T}|} \frac{|X_{Tright}|}{|X_{T}|} \left(\sum_{i=1}^{M} |p(w_{i} | T_{left}) - p(w_{i} | T_{right})| \right)^{2}$$

Training

build the tree

Consideration in this step

2) How to select the query attribute?

Impurity functions

Entropy, Gini, Misclassification

Entropy	$im(T) = 1 - \sum_{i=1}^{M} p(w_i \mid T)^2 = \sum_{i \neq j} p(w_i \mid T) p(w_j \mid T)$
Gini	$im(T) = -\sum_{i=1}^{M} p(w_i T) \log_2 p(w_i T)$
Misclassification	$im(T) = 1 - \max_{i} p(w_{i} \mid T)$

Training

build the tree

Consideration in this step

3) When to stop growing the tree?

Stop conditions

$$im(T) = 0$$

Overfitting

Training

build the tree

Consideration in this step

3) When to stop growing the tree?

Stop conditions

$$im(T) = 0$$

the number of $X_t <=$ threshold
argmax $\triangle im(T) <=$ threshold

Overfitting

Premature convergence

Training

build the tree

Consideration in this step

3) When to stop growing the tree?

Avoiding overfitting & premature convergence

Make the largest tree and then do pruning

Example of pruning

Training

build the tree

Consideration in this step

4) Which class to allocate leaf nodes?

Classification

recognize the sample

Classification

recognize the sample

Advantages

Very fast "Yes/NO" operation
Just h-1 times comparison (h : depth level)

Characteristics

+Handling the metric and non-metric data

weight height gender Blood type job

cost Brand name

Metric data Non-Metric data

- +Handling the metric and non-metric data
- +Visualization

- +Handling the metric and non-metric data
- +Visualization
- +Fast recognition

- +Handling the metric and non-metric data
- +Visualization
- +Fast recognition
- -Instability

- +Handling the metric and non-metric data
- +Visualization
- +Fast recognition
- -Instability -Greedy algorithms

- +Handling the metric and non-metric data
- +Visualization
- +Fast recognition
- -Instability
- -Greedy algorithms
- +Handling the missing data

Algorithms

CART, ID3, C4.5 L.Breiman CART

L.Breiman	R.Quinlan		
CART	ID3		
	\downarrow	e	xtension
	C4.5		
	V	C	ommercialization
	C5.0		

Comparisons

Property	CART	ID3	C4.5
Float data	0	X	0
Tree type	Binary	Multi	Multi
Prune	0	X	0
Classification	0	0	0
Regression	0	X	X
Missing data	Surrogate split	X	skip
Multi variable	0	Х	Х

Randomized Decision Trees (Amit & German 1997) Multiple classifier of several trees

Randomized Decision Trees (Amit & German 1997) Multiple classifier of several trees

Idea: randomized attribute selection

Randomized Decision Trees (Amit & German 1997) Multiple classifier of several trees

Idea: randomized attribute selection

Instead randomly use subset of K attributes (K << All cases)

- Reduce correlation between different trees
- Typical choice : K = 10 for root node, K = 100*d (d : depth level)

All cases of possible attributes

Randomized Decision Trees (Amit & German 1997) Multiple classifier of several trees

Idea: randomized attribute selection

Instead randomly use subset of K attributes (K << All cases)

- Typical choice : K = 10 for root node, K = 100*d (d:depth level)
- Reduce correlation between different trees.

Choose best splitting attribute

- Minimizing entropy (impurity)

Randomized Forests (Breiman 2001) Multiple classifier of several trees

Randomized Forests (Breiman 2001) Multiple classifier of several trees

Idea: Randomness = 1)Bootstrap sampling + 2)randomized attribute selection

Randomized Forests (Breiman 2001) Multiple classifier of several trees

Idea: Randomness = ¹⁾Bootstrap sampling + ²⁾randomized attribute selection Bootstrap sampling

Select a subset by choosing N times with replacement from all training data.

Randomized Forests (Breiman 2001) Multiple classifier of several trees

Idea: Randomness = ¹⁾Bootstrap sampling + ²⁾randomized attribute selection Bootstrap sampling

Select a subset by choosing N times with replacement from all training data.


```
Randomized Forests (Breiman 2001)
Multiple classifier of several trees
```

Idea: Randomness = 1)Bootstrap sampling + 2)randomized attribute selection

Bootstrap sampling

Select a subset by choosing N times with replacement from all training data.

Randomized attribute selection

Instead randomly use subset of K attributes

- Typical choice : $K = \sqrt{N}$ (N : the number of subset)

Randomized Forests (Breiman 2001) Multiple classifier of several trees

Idea: Randomness = 1)Bootstrap sampling + 2)randomized attribute selection

Advantage

Resistant to Overfitting

Randomized Forests (Breiman 2001)

Multiple classifier of several trees

Idea: Randomness = 1)Bootstrap sampling + 2)randomized attribute selection

Advantage

Resistant to Overfitting
Well suited for large training data


```
Randomized Forests (Breiman 2001)
Multiple classifier of several trees
```

Idea: Randomness = $^{1)}$ Bootstrap sampling + $^{2)}$ randomized attribute selection

Advantage

Resistant to Overfitting Well suited for large training data Empirically very good results. (≥ SVM, ≥ Boosting)

Randomized Forests (Breiman 2001) Multiple classifier of several trees

Idea: Randomness = 1)Bootstrap sampling + 2)randomized attribute selection

Advantage

Resistant to Overfitting
Well suited for problems with large training data
Empirically very good results. (≥ SVM, ≥ Boosting)

Disadvantage

Memory consumption

Comparison with various classifier

- CIFAR-10: Image Classification
- Comparison with various classifier
 - https://github.com/PhilippeCodes/Image-Classifier
 - https://github.com/PhilippeCodes/Image-Classifier/blob/master/Decision%20trees%20and%20random%20forests.ipynb

	Estimator	Test Accuracy	
0	Baseline (dummy)	0.222	
1	KNeighbors	0.776	
2	DecisionTree	0.646	
3	RandomForest	0.800	
4	LogisticRegression	0.840	
5	SVM Linear Kernel	0.817	
6	SVM RBF Kernel	0.823	
7	Multilayer Neural Network	0.821	
8	Convolutional Neural Network	0.777	

Hands on Lab

- Decision Tree from scratch
- Random Forests from scratch

Application

- Titanic: Machine Learning from Disaster
- Solution: Random Forests
 - https://www.kaggle.com/mukultiwari/titanic-top-14-with-random-forest

Application

- Bike Sharing Demand
- Solution: Random Forests
 - https://www.kaggle.com/kwonyoung234/for-beginner