Algorithm Foundations of Data Science and Engineering Welcome Tutorial :-) Tutorial 2

GAO Ming

DaSE @ ECNU

7 Mar., 2019

1. Compute the Jaccard similarities of each pair of the following three sets: $\{1,2,3,4\}$, $\{2,3,5,7\}$, and $\{2,4,6\}$. Let $A = \{1,2,3,4\}$, $B = \{2,3,5,7\}$, and $C = \{2,4,6\}$. $sim(A,B) = \frac{|A \cap B|}{|A \cup B|} = \frac{1}{3}$; $sim(A,C) = \frac{|A \cap C|}{|A \cup C|} = \frac{2}{5}$; $sim(B,C) = \frac{|B \cap C|}{|B \cup C|} = \frac{1}{6}$

2. Prove that if the Jaccard similarity of two columns is 0, then minhashing always gives a correct estimate of the Jaccard similarity. Let X be a doc(set of shingles), $y \in X$ is a shingle. Let y be $s.t.\pi(y) = min(\pi(C_1 \cup C_2))$, then $\pi(y) = min(\pi(C_1))$ or $\pi(y) = min(\pi(C_2))$ Thus, the prob. that both are true is the prob. $y \in C_1 \cap C_2$. Final, we have $P(min(\pi(C_1)) = min(\pi(C_2))) = \frac{|C_1 \cap C_2|}{|C_1 \cup C_2|} = sim(C_1, C_2)$ So, if $sim(C_1, C_2) = 0$, then $P(min(\pi(C_1)) = min(\pi(C_2))) = 0$

3. a. Compute the Jaccard similarity of each of the pairs of columns.

$$\begin{aligned} sim(S_1, S_2) &= \frac{|S_1 \cap S_2|}{|S_1 \cup S_2|} = \frac{1}{4} \\ sim(S_1, S_3) &= \frac{|S_1 \cap S_3|}{|S_1 \cup S_3|} = \frac{1}{4} \\ sim(S_2, S_3) &= \frac{|S_2 \cap S_3|}{|S_2 \cup S_3|} = \frac{0}{4} = 0; \end{aligned}$$

b. Compute the minhash signature for each column if we use the following three hash functions: $h_1(x) = 7x + 1 \mod 6$; $h_2(x) = 11x + 2 \mod 6$; $h_3(x) = 5x + 2 \mod 6$.

Element	S_1	S_2	S_3
0	1	1	0
1	0	1	0
2	1	0	0
3	0	0	1
4	1	0	1
5	0	0	0

3. b.

Table: Element location after hash.

h1	h2	h3
1	2	2
2	1	1
3	0	0
4	5	5
5	4	4
0	3	3

Table: Minhash Signature

hash	s ₁	<i>s</i> ₂	<i>5</i> ₃
h_1	1	1	4
h ₂	0	1	4
h ₃	0	1	4

4. For LSH, please to determine the similarity threshold t, i.e., the value of similarity t at which the probability of becoming a candidate is 1/2, which can be a function of b and r.

Prob. that all rows in band equal $= t^r$

Prob. that some row in band unequal $= 1 - t^r$

Prob. that no band identical = $(1-t^r)^b$

Prob. that at least 1 band identical = $1 - (1 - t^r)^b$

5. Let two sets S_1 and S_2 be presented in the form of binary vectors, $\{h_1,\cdots,h_k\}$ be k random permutations, and $h_i(S)$ record the first 1 in each column after permutation. Please prove that $\widehat{JS}(S_1,S_2)=\frac{1}{k}\sum_{i=1}^k X_i$ is within ε error with probability at leat $1-\delta$ if $k=\frac{2\ln(1/\delta)}{\varepsilon^2}$, where $JS(A,B)=\frac{|A\cap B|}{|A\cup B|}$, and $X_i=\begin{cases} 1, & \text{if } h_i(S_1)=h_i(S_2); \\ 0, & \text{otherwise.} \end{cases}$ We want to prove that $P(|\hat{JS}-JS|>\varepsilon JS)<\delta$

The left-hand side is equal to $P(\hat{JS} > (1+\varepsilon)JS + P(\hat{JS} < (1-\varepsilon)JS) < 2exp(-\mu\varepsilon^2/4), \quad \mu = kp$ So, $2exp(-kp\varepsilon^2/4) = \delta$ $k = \frac{4ln(1/\delta)}{p\varepsilon^2}$