Исследование функций

Опр: 1. Точка a называется точкой внутреннего локального минимума (максимума) функции f, если f определена в некоторой окрестности $\mathcal{U}(a)$ точки a и $\forall x \in \mathcal{U}(a), f(x) \geq f(a)$ ($f(x) \leq f(a)$).

Опр: 2. Точка a называется точкой строгого внутреннего локального минимума (максимума) функции f, если f определена в некоторой окрестности $\mathcal{U}(a)$ точки a и $\forall x \in \mathcal{U}'(a), f(x) > f(a)$ (f(x) < f(a)).

Опр: 3. Точки локального минимума или максимума называются точками локального (внутреннего) экстремума f.

Теорема 1. (Ферма) Необходимое условия локального экстремума: Если функция f дифференцируема в точке a и точка a это точка внутреннего локального экстремума, то f'(a) = 0.

Утв. 1. После теоремы Лагранжа было доказано, что

- (1) Если f дифференцируема на (a,b), то $f' \ge 0$ $(f' \le 0) \Leftrightarrow f$ не убывает (не возрастает) на (a,b);
- (2) Если f дифференцируема на (a,b), то f'>0 $(f'<0)\Leftrightarrow f$ возрастает (убывает) на (a,b);

Рис. 1: Внутренние локальные точки экстремума.

 \square Докажем для случая, когда функция неубывающая, для невозрастающей - аналогично, для строгой монотонности - аналогично.

 (\Leftarrow) Пусть функция f - не убывает, тогда

$$\forall x_1, x_2 \in (a, b), \frac{f(x_1) - f(x_2)}{x_1 - x_2} \ge 0 \Rightarrow \lim_{x_1 \to x_2} \frac{f(x_1) - f(x_2)}{x_1 - x_2} = f'(x_2) \ge 0$$

(⇒) По теореме Лагранжа

$$\forall x_1, x_2 \in (a, b), \ x_1 > x_2, \exists \ c \in (x_2, x_1) \colon f(x_1) - f(x_2) = f'(c)(x_1 - x_2) \ge 0 \Rightarrow f(x_1) \ge f(x_2)$$

Таким образом при $x_1>x_2\Rightarrow f(x_1)\geq f(x_2)\Rightarrow$ функция f неубывающая.

Утв. 2. Пусть f непрерывна в $\mathcal{U}(a)$ и дифференцируема в $\mathcal{U}'(a)$, тогда:

- 1) Если $\forall x \in \mathcal{U}'(a) \colon f'(x) \geq 0, \ x < a \land f'(x) \leq 0, \ x > a,$ то a точка локального максимума;
- 2) Если $\forall x \in \mathcal{U}'(a) \colon f'(x) \leq 0, \ x < a \land f'(x) \geq 0, \ x > a,$ то a точка локального минимума;
- 3) Если $\forall x \in \mathcal{U}'(a) \colon f'(x) > 0, \ x < a \land f'(x) < 0, \ x > a,$ то a точка строгого локального максимума;
- 4) Если $\forall x \in \mathcal{U}'(a) \colon f'(x) < 0, \ x < a \land f'(x) > 0, \ x > a,$ то a точка строгого локального минимума;

Рис. 2: Идея доказательства утверждения: $\lim_{y\to a^-} f(y) = f(a) \ge f(x)$.

□ Рассмотрим один случай, остальные доказываются по аналогии:

Пусть $\forall x \in \mathcal{U}'(a) \colon f'(x) \ge 0, \ x < a \land f'(x) \le 0, \ x > a,$ тогда, по предыдущему утверждению

$$\lim_{y \to a^-} f(y) = f(a) \geq f(x), \forall x \in \mathcal{U}'(a) \colon x < a \land \lim_{y \to a^+} f(y) = f(a) \leq f(x), \forall x \in \mathcal{U}'(a) \colon x > a$$

По непрерывности f на $\mathcal{U}(a) \Rightarrow f$ непрерывна в точке $a \Rightarrow a$ - точка локального максимума.

Теорема 2. Достаточное условие локального экстремума в терминах производных высокого порядка: Пусть f n-раз $(n \ge 2)$ дифференцируема в точке a (f определена в $\mathcal{U}(a)$):

$$f'(a) = \dots = f^{(n-1)}(a) = 0 \land f^{(n)}(a) \neq 0$$

Если n=2k+1, то a - не является точкой локального экстремума.

Если n=2k, то

- 1) $f^{(n)}(a) > 0 \Rightarrow a$ точка строгого локального минимума;
- 2) $f^{(n)}(a) < 0 \Rightarrow a$ точка строгого локального максимума;

Идея: равенство нулю производных в точке a означает, что разложение Тейлора в точке a начнется со степени $n \Rightarrow f$ рядом с точкой a выглядит как функция $C \cdot (x-a)^n$, где $C = \frac{f^{(n)}(a)}{n!}$.

(a) n = 2k + 1: нет экстремума.

(b) n = 2k: (1) C > 0 минимум, (2) C < 0 максимум.

Рис. 3: Общий вид функций $C \cdot (x-a)^n$ и их экстремумы.

□ По формуле Тейлора с остаточным членом в форме Пеано:

$$f(x) = f(a) + \frac{f^{(n)}(a) \cdot (x - a)^n}{n!} + \bar{o}((x - a)^n) \Rightarrow f(x) - f(a) = (x - a)^n \left(\frac{f^{(n)}(a)}{n!} + \bar{o}(1)\right)$$

Так как $\bar{o}(1)$ это функция, которая стремится к 0 при $x \to a$, тогда $\underset{x \to a}{\overset{}{}_{}}$

$$\exists \mathcal{U}'(a) \colon \operatorname{sgn}\left(\frac{f^{(n)}(a)}{n!} + \bar{o}(1)\right) = \operatorname{sgn}\left(f^{(n)}(a)\right)$$

Рассмотрим следующие случаи:

- (1) Если $n=2k+1 \Rightarrow (x-a)^n$ меняет знак при переходе x через $a \Rightarrow$ меняет знак выражение $f(x)-f(a) \Rightarrow$ точка a не является точкой экстремума;
- (2) Если $n=2k\Rightarrow \forall x\in \mathcal{U}'(a),\, (x-a)^n>0\Rightarrow \mathrm{sgn}\,(f(x)-f(a))=\mathrm{sgn}\,(f^{(n)}(a)).$ Тогда:
 - (a) Если $f^{(n)}(a) > 0$, то f(x) f(a) > 0 и a это строгий минимум;
 - (b) Если $f^{(n)}(a) < 0$, то f(x) f(a) < 0 и a это строгий максимум;

Выпуклость функций

Пусть f определена на интервале (a,b)

Опр: 4. Функция f называется выпуклой на (a,b), если

$$\forall x_1, x_2 \in (a, b) \land \forall \alpha \in [0, 1], f(\alpha x_1 + (1 - \alpha)x_2) \le \alpha f(x_1) + (1 - \alpha)f(x_2)$$

Перепишем точку $\alpha x_1 + (1-\alpha)x_2 = x_2 - \alpha(x_2 - x_1) \Rightarrow$ отрезок $[x_1, x_2]$ делится в отношении $(1-\alpha): \alpha$.

Рис. 4: Геометрический смысл выпуклости функции.

Мы знаем, что в каком отношении делится хорда, в таком же будет делиться её проекция на ось y, но хорда делится в таком же отношении, в каком делится её проекция на ось x, $(1 - \alpha)$: α .

Геометрический смысл: хорда не ниже дуги графика, который она стягивает.

Утв. 3. Функция
$$f$$
 выпукла на $(a,b) \Leftrightarrow \forall x_1, x, x_2 \in (a,b) \colon x_1 < x < x_2, \frac{f(x) - f(x_1)}{x - x_1} \le \frac{f(x_2) - f(x)}{x_2 - x}.$

Рис. 5: Наклоны хорд не убывают: $\frac{f(x) - f(x_1)}{x - x_1} \le \frac{f(x_2) - f(x)}{x_2 - x}$.

Rm: 1. Выпуклая функция - это функция у которой наклоны хорд, если их располагать вдоль графика, не убывают.

Пусть $\alpha x_1 + (1 - \alpha)x_2 = x$, тогда перепишем веса в следующем виде:

$$\alpha = \frac{x - x_2}{x_1 - x_2} = \frac{x_2 - x}{x_2 - x_1}, \ 1 - \alpha = \frac{x - x_1}{x_2 - x_1}$$

Подставим такой вид весов в определение выпуклой функции:

$$f(\alpha x_1 + (1 - \alpha)x_2) = f(x) \le \alpha f(x_1) + (1 - \alpha)f(x_2) \Rightarrow f(x) \le \frac{x_2 - x}{x_2 - x_1}f(x_1) + \frac{x - x_1}{x_2 - x_1}f(x_2)$$

Поскольку $x_2 > x_1 \Rightarrow$ домножаем полученное неравенство на $(x_2 - x_1)$:

$$(x_2 - x_1)f(x) \le (x_2 - x)f(x_1) + (x - x_1)f(x_2)$$

Заметим, что $(x_2-x_1)=(x_2-x)+(x-x_1)$, тогда получим:

$$(x_2 - x)(f(x) - f(x_1)) \le (x - x_1)(f(x_2) - f(x))$$

Поскольку $x_2 > x > x_1 \Rightarrow$ разделим неравенство на $(x-x_1)$ и (x_2-x) :

$$\frac{f(x) - f(x_1)}{x - x_1} \le \frac{f(x_2) - f(x)}{x_2 - x}$$

Поскольку преобразования были тождественны, то они будут справедливы и в обратную сторону.

Rm: 2. Данное утверждение не эквивалентно определению выпуклости, поскольку в определении неравенство будет справедливо и в граничных случаях: $x_1 = x = x_2 \lor \alpha = 0 \lor \alpha = 1$.

(1)
$$x_1 = x_2 = x \Rightarrow f(\alpha x + (1 - \alpha)x) = f(x) < \alpha f(x) + (1 - \alpha)f(x) = f(x)$$
;

(2)
$$\alpha = 0 \Rightarrow f(0 \cdot x_1 + (1 - 0) \cdot x_2) = f(x_2) \le 0 \cdot f(x_1) + (1 - 0) \cdot f(x_2) = f(x_2);$$

(3)
$$\alpha = 1 \Rightarrow f(1 \cdot x_1 + (1-1) \cdot x_2) = f(x_1) \le 1 \cdot f(x_1) + (1-1) \cdot f(x_2) = f(x_1);$$

Теорема 3. (Липшицево условие) Пусть f выпукла на (a,b). Тогда

$$\forall [c,d] \subset (a,b), \exists M > 0 \colon |f(x) - f(y)| \le M|x - y|, \forall x,y \in [c,d]$$

В частности, выпуклая функция на интервале (a,b) непрерывна.

Rm: 3. Определение выпуклости можно дать без изменения на отрезке. Но в теореме интервал нельзя заменить отрезком, поскольку на концах отрезка функция может быть разрывной, но при этом она останется выпуклой на самом отрезке.

Рис. 6: Выпуклая на отрезке [a, b] функция, с разрывами на концах отрезка.

 \square Пусть $u \in (a, c) \land v \in (d, b)$.

Рис. 7: Фиксируем точки u и v.

По свойству хорд выпуклой функции

$$\frac{f(c) - f(u)}{c - u} \le \frac{f(y) - f(x)}{y - x} \le \frac{f(v) - f(d)}{v - d}$$

c,u - фиксированные точки $\Rightarrow \frac{f(c)-f(u)}{c-u}$ - число и v,d - фиксированные точки $\Rightarrow \frac{f(v)-f(d)}{v-d}$ - число, а точки x,y - любые внутри (c,d). Берем M>0 таким, что:

$$-M \le \frac{f(c) - f(u)}{c - u} \land M \ge \frac{f(v) - f(d)}{v - d} \Rightarrow \forall x, y \in [c, d], -M \le \frac{f(x) - f(y)}{x - y} \le M \Rightarrow 0$$

$$\forall x, y \in [c, d], |f(x) - f(y)| \le M|x - y|$$

На каждом отрезке функция непрерывна, поскольку модуль разности значений функции оцениваются через модуль разницы аргументов. Поскольку отрезок произвольный \Rightarrow любая точка интервала включается в какой-то из таких отрезков \Rightarrow функция f там непрерывна.

Теорема 4. Пусть f - дифференцируема на интервале (a,b), тогда следующие утверждения эквивалентны:

- $(1) \ f$ выпукла на (a,b);
- (2) f' не убывает на (a, b);
- $(3) \ f(x) \ge f(y) + f'(y)(x-y), \ \forall x,y, \in (a,b), \ \text{то есть график функции лежит не ниже своей касательной;}$

Рис. 8: (3) Во всех точках $x \in (a, b)$ график дифференцируемой функции лежит не ниже касательной.

 $(1) \Rightarrow (2)$: Возьмем две точки $x_1, x_2 \in (a, b)$: $x_1 < x_2$. Возьмем также точку $u \in (a, b)$: $u < x_1$ и точку $v \in (a, b)$: $v > x_2$.

Рис. 9: Доказательство $(1) \Rightarrow (2)$.

Тогда

$$\frac{f(x_1) - f(u)}{x_1 - u} \le \frac{f(v) - f(x_2)}{v - x_2} \Rightarrow \lim_{v \to x_2} \frac{f(v) - f(x_2)}{v - x_2} = f'(x_2) \Rightarrow \frac{f(x_1) - f(u)}{x_1 - u} \le f'(x_2)$$

$$\lim_{u \to x_1} \frac{f(x_1) - f(u)}{x_1 - u} = f'(x_1) \Rightarrow f'(x_1) \le f'(x_2), \forall x_1, x_2 \in (a, b) \colon x_1 < x_2$$

- $(2) \Rightarrow (3)$: Рассмотрим несколько случаев:
 - 1) Пусть $x > y \Rightarrow$ по теореме Лагранжа: $\exists c \in (y, x) : \frac{f(x) f(y)}{x y} = f'(c)$, по пункту (2): $c > y \Rightarrow f'(c) \ge f'(y) \Rightarrow f(x) f(y) \ge f'(y)(x y) \Rightarrow f(x) \ge f(y) + f'(y)(x y)$
 - 2) Пусть $y > x \Rightarrow$ по теореме Лагранжа: $\exists c \in (x,y) \colon \frac{f(y) f(x)}{y x} = f'(c)$, по пункту (2): $c < y \Rightarrow f'(c) \le f'(y) \Rightarrow f(y) f(x) \le f'(y)(y x) \Rightarrow f(x) \ge f(y) + f'(y)(x y)$