Fuzzy Description Logic Programs under the Answer Set Semantics for the Semantic Web

Thomas Lukasiewicz

Dipartimento di Informatica e Sistemistica Università di Roma "La Sapienza", Italy Institut für Informationssysteme Technische Universität Wien, Austria

Motivation

Ingredients:

- Expressive description logics behind OWL Lite and OWL DL (SHIF(D) resp. SHOIN(D)).
- Rule-based formalism (normal logic programs under the answer set semantics).
- Fuzzy truth functions (for conjunction and negation).

Motivation:

- Fuzzy query language for multimedia databases, containing images and videos (such as Google's YouTube), along the lines of "R. Fagin. Fuzzy queries in multimedia database systems. In Proceedings PODS-1998".
- Expressing vague terms in natural language interfaces to the Web / Semantic Web.

Outline

- \bigcirc SHIF(D) / SHOIN(D)
- 2 Fuzzy SHIF(D) / SHOIN(D)
- 3 Fuzzy Description Logic Programs
- Fixpoint Semantics
- Summary and Outlook


```
PC \sqcup Camera \sqsubseteq Electronics; PC \sqcap Camera \sqsubseteq \bot;
Book \sqcup Electronics \sqsubseteq Product: Book \sqcap Electronics \sqsubseteq \bot:
Textbook \sqsubseteq Book:
Product = > 1 related;
> 1 related \sqcup > 1 related \sqsubseteq Product;
Textbook(tb_ai); Textbook(tb_lp);
PC(pc\_ibm); PC(pc\_hp);
related(tb_ai, tb_lp); related(pc_ibm, pc_hp);
provides(ibm, pc_ibm); provides(hp, pc_hp).
```

Finite set of truth values $TV = \{\frac{0}{n}, \frac{1}{n}, \dots, \frac{n}{n}\}$ with $n \ge 1$.

A fuzzy atomic concept assertion has the form $C(a) \ge v$, where $C \in \mathbf{A}$, $a \in \mathbf{I}$, and $v \in TV$. A fuzzy abstract (resp., datatype) role assertion has the form $R(a,b) \ge v$ (resp., $U(a,s) \ge v$), where $R \in \mathbf{R}_A$ (resp., $U \in \mathbf{R}_D$), $a,b \in \mathbf{I}$ (resp., $a \in \mathbf{I}$, and $a \in \mathbf{I}$), and $a \in \mathbf{I}$ are data value), $a \in \mathbf{I}$ 0.

A fuzzy description logic knowledge base KB = (L, F) consists of an ordinary description logic knowledge base L and a finite set of fuzzy atomic concept assertions and fuzzy role assertions F.

Example: A simple fuzzy description logic knowledge base KB = (L, F) is given by L above and

 $F = \{ \textit{Inexpensive}(\textit{pc_ibm}) \geq 0.6, \, \textit{Inexpensive}(\textit{pc_hp}) \geq 0.9 \}.$

Here, *F* encodes the different degrees of membership of PCs by IBM and HP to the fuzzy concept *Inexpensive*.

The ordinary equivalent to a set of fuzzy concept and role assertions F, denoted F^* , is obtained from F by replacing each $C(a) \ge v$ (resp., $R(a,b) \ge v$, $U(a,s) \ge v$) by $C^v(a)$ (resp., $R^v(a,b)$, $U^v(a,s)$).

The *v*-layer of *L*, denoted L^v , is obtained from *L* by replacing every $C \in \mathbf{A}$ (resp., $R \in \mathbf{R}_A$, $U \in \mathbf{R}_D$) by C^v (resp., R^v , U^v).

The ordinary equivalent to a fuzzy description logic knowledge base KB = (L, F), denoted KB^* , is defined as

$$\bigcup_{v \in TV, \ v > 0} L^v \cup F^\star \cup \{A^v \sqsubseteq A^{v'} \mid A \in \textbf{A}, \ v \in TV, \ v \ge 2/n, \ v' = v - 1/n\} \cup \{R^v \sqsubseteq R^{v'} \mid R \in \textbf{R}_A, \ v \in TV, \ v \ge 2/n, \ v' = v - 1/n\} \cup \{U^v \sqsubseteq U^{v'} \mid U \in \textbf{R}_D, \ v \in TV, \ v \ge 2/n, \ v' = v - 1/n\}.$$

KB is satisfiable iff KB^* is satisfiable.

F among $C(a) \ge v$, $R(a,b) \ge v$, and $U(a,s) \ge v$ is a logical consequence of KB, denoted $KB \models F$, iff $C^v(a)$, $R^v(a,b)$, and $U^v(a,s)$, respectively, are logical consequences of KB^* .

Finite set of truth values $TV = \{\frac{0}{n}, \frac{1}{n}, \dots, \frac{n}{n}\}$ with $n \ge 1$.

Negation strategies \ominus : $TV \rightarrow TV$ such that

 \ominus is antitonic and satisfies \ominus 0 = 1 and \ominus 1 = 0.

Example: $\ominus v = 1 - v$.

Conjunction strategies \otimes : $TV \times TV \rightarrow TV$ such that

 \otimes is commutative, associative, monotonic, and satisfies $v \otimes 1 = v$ and $v \otimes 0 = 0$.

Example: $v_1 \otimes v_2 = \min(v_1, v_2)$ and $v_1 \otimes v_2 = v_1 \cdot v_2$.

Syntax Semantics Positive Fuzzy DL-Programs Stratified Fuzzy DL-Programs General Fuzzy DL-Programs

A normal fuzzy rule r is of form (with atoms a, b_1, \ldots, b_m):

$$a \leftarrow_{\otimes_0} b_1 \wedge_{\otimes_1} b_2 \wedge_{\otimes_2} \cdots \wedge_{\otimes_{k-1}} b_k \wedge_{\otimes_k} \\ not_{\ominus_{k+1}} b_{k+1} \wedge_{\otimes_{k+1}} \cdots \wedge_{\otimes_{m-1}} not_{\ominus_m} b_m \ge v,$$

$$(1)$$

A normal fuzzy program *P* is a finite set of normal fuzzy rules.

A dl-query $Q(\mathbf{t})$ is of one of the following forms:

- a concept inclusion axiom F or its negation ¬F;
- C(t) or $\neg C(t)$, with a concept C and a term t;
- $R(t_1, t_2)$ or $\neg R(t_1, t_2)$, with a role R and terms t_1, t_2 .

A fuzzy dl-rule r is of form (1), where any $b \in B(r)$ may be a dl-atom, which is of form $DL[S_1op_1p_1, \ldots, S_mop_mp_m; Q](\mathbf{t})$.

A fuzzy dl-program KB = (L, P) consists of a description logic knowledge base L and a finite set of fuzzy dl-rules P.

- $(1) \ pc(pc_{-}1) \ge 1; \ pc(pc_{-}2) \ge 1; \ pc(pc_{-}3) \ge 1;$
- (2) $brand_new(pc_1) \ge 1$; $brand_new(pc_2) \ge 1$;
- (3) offer(X) $\leftarrow_{\otimes} DL[PC \uplus pc; Electronics](X) \land_{\otimes} not_{\ominus} brand_new(X) \ge 1;$
- (4) $buy(C, X) \leftarrow_{\otimes} needs(C, X) \land_{\otimes} offer(X) \geq 0.7$;
- (5) buy(C, X) ← $_{\otimes}$ needs(C, X) ∧ $_{\otimes}$ DL[Inexpensive](X) ≥ 0.3.
- (4) A customer who needs a product on offer buys this product with degree of truth of at least 0.7.
- (5) A customer who needs an inexpensive product buys this product with degree of truth of at least 0.3.
- \ominus and \otimes are given by \ominus v = 1 v and $v_1 \otimes v_2 = \min(v_1, v_2)$.

An interpretation I (relative to P) is a mapping $I: HB_P \to TV$.

The truth value of $a = DL[S_1 \uplus p_1, ..., S_m \uplus p_m; Q](\mathbf{c})$ under L, denoted $I_L(a)$, is defined as the maximal truth value $v \in TV$ such that $L \cup \bigcup_{i=1}^m A_i(I) \models Q(\mathbf{c}) \geq v$, where

$$A_i(I) = \{S_i(\mathbf{e}) \ge I(p_i(\mathbf{e})) \mid I(p_i(\mathbf{e})) > 0, \ p_i(\mathbf{e}) \in HB_P\}.$$

I is a model of a ground fuzzy dl-rule r of the form (1) under L, denoted $I \models_L r$, iff

$$I_L(a) \geq v \otimes_0 I_L(b_1) \otimes_1 I_L(b_2) \otimes_2 \cdots \otimes_{k-1} I_L(b_k) \otimes_k$$

$$\ominus_{k+1} I_L(b_{k+1}) \otimes_{k+1} \cdots \otimes_{m-1} \ominus_m I_L(b_m),$$

I is a model of a fuzzy dl-program KB = (L, P), denoted $I \models KB$, iff $I \models_L r$ for all $r \in ground(P)$.

Syntax Semantics Positive Fuzzy DL-Programs Stratified Fuzzy DL-Programs General Fuzzy DL-Programs

A fuzzy dl-program KB = (L, P) is positive iff P is "not"-free.

Theorem: Positive fuzzy dl-programs KB are satisfiable and have a unique least model, denoted M_{KB} , as a natural semantics.

Example: Consider the fuzzy dl-program *KB* consisting of the above fuzzy description logic knowledge base and the fuzzy dl-rules

- (0) $needs(john, pc_ibm) \ge 1$;
- (1) $pc(pc_1) \ge 1$; $pc(pc_2) \ge 1$; $pc(pc_3) \ge 1$;
- (2) $brand_new(pc_1) \ge 1$; $brand_new(pc_2) \ge 1$;
- (4) buy(C, X) ← $_{\otimes}$ needs(C, X) ∧ $_{\otimes}$ offer(X) ≥ 0.7;
- (5) buy(C, X) ← $_{\otimes}$ $needs(C, X) \land_{\otimes} DL[Inexpensive](X) ≥ 0.3.$

Then, *KB* is positive, and $M_{KB}(buy(john, pc_ibm)) = 0.3$.

Stratified fuzzy dl-programs are composed of hierarchic layers of positive fuzzy dl-programs linked via default negation:

A stratification of KB = (L, P) with respect to DL_P is a mapping $\lambda: HB_P \cup DL_P \rightarrow \{0, 1, \dots, k\}$ such that

- $\lambda(H(r)) \ge \lambda(a)$ (resp., $\lambda(H(r)) > \lambda(a)$) for each $r \in ground(P)$ and $a \in B^+(r)$ (resp., $a \in B^-(r)$), and
- $\lambda(a) \ge \lambda(a')$ for each input atom a' of each $a \in DL_P$,

where $k \ge 0$ is the length of λ . A fuzzy dl-program KB = (L, P) is stratified iff it has a stratification λ of some length $k \ge 0$.

Theorem: Every stratified fuzzy dl-program *KB* is satisfiable and has a canonical minimal model via a finite number of iterative least models (which does not depend on the stratification of *KB*).

Example: Consider the fuzzy dl-program *KB* consisting of the above fuzzy description logic knowledge base and the fuzzy dl-rules

- (0) $needs(john, pc_ibm) \ge 1$;
- (1) $pc(pc_{-}1) \ge 1$; $pc(pc_{-}2) \ge 1$; $pc(pc_{-}3) \ge 1$;
- (2) $brand_new(pc_1) \ge 1$; $brand_new(pc_2) \ge 1$;
- (3) offer(X) \leftarrow_{\otimes} DL[$PC \uplus pc$; Electronics](X) \land_{\otimes} not $_{\ominus}$ brand_new(X) \geq 1;
- (4) $buy(C, X) \leftarrow_{\otimes} needs(C, X) \land_{\otimes} offer(X) \geq 0.7$;
- (5) buy(C, X) ← $_{\otimes}$ needs(C, X) ∧ $_{\otimes}$ DL[Inexpensive](X) ≥ 0.3.

Then, KB is stratified, and it holds in particular $M_{KB}(offer(pc_ibm)) = 1$ and $M_{KB}(buy(john, pc_ibm)) = 0.7$.

Let KB = (L, P) be a fuzzy dl-program. The fuzzy dl-transform of P relative to L and an interpretation $I \subseteq HB_P$, denoted P_L^I , is the set of all fuzzy dl-rules obtained from ground(P) by replacing all default-negated atoms $not_{\ominus_i}a$ by the truth value $\ominus_i I_L(a)$.

An answer set of KB is an interpretation $I \subseteq HB_P$ such that I is the least model of (L, P_I^I) .

Theorem: Let *KB* be a fuzzy dl-program, and let *M* be an answer set of *KB*. Then, *M* is a minimal model of *KB*.

Theorem: Let KB be a positive (resp., stratified) fuzzy dl-program. Then, M_{KB} is its only answer set.

For a fuzzy dl-program KB = (L, P), define the operator T_{KB} as follows. For every $I \subseteq HB_P$ and $a \in HB_P$, let $T_{KB}(I)(a)$ be defined as the maximum of v subject to $r \in ground(P)$, H(r) = a, and v being the truth value of r's body under I and L. Note that if there is no such rule r, then $T_{KB}(I)(a) = 0$.

Lemma: Let KB = (L, P) be a positive fuzzy dl-program. Then, the operator T_{KB} is monotonic.

Theorem: Let KB = (L, P) be a positive fuzzy dl-program. Then, $Ifp(T_{KB}) = M_{KB}$. Furthermore,

$$Ifp(T_{KB}) = \bigcup_{i=0}^{n} T_{KB}^{i}(\emptyset) = T_{KB}^{n}(\emptyset)$$
, for some $n \ge 0$.

 M_{KB} of a stratified fuzzy dl-program KB can be characterized by a sequence of fixpoint iterations along a stratification:

Let
$$\widehat{T}^i_{KB}(I) = T^i_{KB}(I) \cup I$$
, for all $i \geq 0$.

Theorem: Let KB = (L, P) be a fuzzy dl-program with stratification λ of length $k \ge 0$. Let $M_i \subseteq HB_P$, $i \in \{-1, 0, \dots, k\}$, be defined by $M_{-1} = \emptyset$, and $M_i = \widehat{T}_{KB_i}^{n_i}(M_{i-1})$ for every $i \ge 0$, where n_i such that $\widehat{T}_{KB_i}^{n_i}(M_{i-1}) = \widehat{T}_{KB_i}^{n_i+1}(M_{i-1})$. Then, $M_k = M_{KB}$.

Summary:

- Simple fuzzy extensions of $SHIF(\mathbf{D})$ and $SHOIN(\mathbf{D})$.
- Unique least model and iterative least model semantics of positive resp. stratified fuzzy dl-programs.
- Answer set semantics of general fuzzy dl-programs. Coincides with the canonical semantics in the positive and stratified case.
- Fixpoint and iterative fixpoint characterization of the canonical semantics of positive resp. stratified fuzzy dl-programs.

Outlook:

- Computational complexity, efficient algorithms (especially for general fuzzy dl-programs), and implementation.
- Integration of more expressive fuzzy description logics.

