PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C12N 15/82, 9/10, 15/11, C08B 30/04

A1

(11) International Publication Number:

WO 98/37213

- 1

(43) International Publication Date:

27 August 1998 (27.08.98)

(21) International Application Number:

PCT/IB98/00270

(22) International Filing Date:

23 February 1998 (23.02.98)

(30) Priority Data:

9703663.6 9706060.2

21 February 1997 (21.02.97) 24 March 1997 (24.03.97)

GB GB

(71) Applicant (for all designated States except US): DANISCO A/S [DK/DK]; Langebrogade 1, P.O. Box 17, DK-1001 Copenhagen K (DK).

(72) Inventor; and

(75) Inventor/Applicant (for US only): POULSEN, Peter [DK/DK]; Danisco a/s, Langebrogade 1, P.O. Box 17, DK-1001 Copenhagen K (DK).

(74) Agents: MASCHIO, Antonio et al.; D Young & Co., 21 New Fetter Lane, London EC4A 1DA (GB). (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: ANTISENSE INTRON INHIBITION OF STARCH BRANCHING ENZYME EXPRESSION

(57) Abstract

A method of inhibiting gene expression is described. The method, which affects enzymatic activity in a plant, comprises expressing in a plant (or a cell, a tissue or an organ thereof) a nucleotide sequence wherein the nucleotide sequence codes, partially or completely, for an intron in an antisense orientation of a class A SBE; and wherein the nucleotide sequence does not contain a sequence that is antisense to an exon sequence normally associated with the intron.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Armenia Austria Australia Azerbaijan	FI FR GA	Spain Finland France	LS LT	Lesotho Lithuania	SI	Slovenia
Australia	FR					
			LU		SK	Slovakia
Azerbaijan		Gabon	LV	Luxembourg	SN	Senegal
	GB	United Kingdom		Larvia	SZ	Swaziland
Bosnia and Herzegovina	GE	Georgia	MC	Monaco	TD	Chad
Barbados	GH	Ghana	MD	Republic of Moldova	TG	Togo
Belgium	GN	Guinea	MG	Madagascar	TJ	Tajikistan
Burkina Faso			MK	The former Yugoslav	TM	Turkmenistan
						Turkey
					TT	Trinidad and Tobago
•					UA	Ukraine
				••	ŬĠ	Uganda
	-				US	United States of America
		•		Mexico	UZ	Uzbekistan
	_	-		Niger	VN	Viet Nam
_		•	NL	Netherlands	YU	Yugoslavia
			NO	Norway	zw	Zimbabwe
	KP		NZ	New Zealand		
			PL	Poland		
		Republic of Korea	PT	Portugal		
	KZ	Kazakstan	RO			
	LC	Saint Lucia	RU			
	LI	Liechtenstein	SD			
	LK	Sri Lanka				
Estonia	LR	Liberia	SG	Singapore		
	Bulgaria Benin Brazil Belarus Canada Central African Republic Congo Switzerland Côte d'Ivoire Cameroon China Cuba Czech Republic Germany Denmark Estonia	Bulgaria HU Benin IE Brazil II Belarus IS Canada IT Central African Republic JP Congo KE Switzerland KG Côte d'Ivoire KP Cameroon China KR Cuba KZ Czech Republic LC Germany LI Denmark LK	Bulgaria HU Hungary Benin IE Ireland Brazil IL Israel Belarus IS Iceland Canada IT Italy Central African Republic JP Japan Congo KE Kenya Switzerland KG Kyrgyzstan Côte d'Ivoire KP Democratic People's Cameroon Republic of Korea China KR Republic of Korea China KR Republic of Korea Cuba KZ Kazakstan Czech Republic LC Saint Lucia Germany LI Liechtenstein Denmark LK Sri Lanka	Bulgaria HU Hungary ML Benin IE Ireland MN Brazil IL Israel MR Belarus IS Iceland MW Canada IT Italy MX Central African Republic JP Japan NE Congo KE Kenya NL Switzerland KG Kyrgyzstan NO Cote d'Ivoire KP Democratic People's NZ Cameroon Republic of Korea PL China KR Republic of Korea PT Cuba KZ Kazakstan RO Czech Republic LC Saint Lucia RU Germany LI Liechtenstein SD Denmark LK Sri Lanka SE	Bulgaria HU Hungary ML Mali Benin IE Ireland MN Mongolia Brazil IL Israel MR Mauritania Belarus IS Iceland MW Malawi Canada IT Italy MX Mexico Central African Republic JP Japan NE Niger Congo KE Kenya NL Netherlands Switzerland KG Kyrgyzstan NO Norway Côte d'Ivoire KP Democratic People's NZ New Zealand Cameroon Republic of Korea PL Poland China KR Republic of Korea PT Portugal Cuba KZ Kazakstan RO Romania Czech Republic LC Saint Lucia RU Russian Federation Germany LI Liechtenstein SD Sudan Denmark LK Sri Lanka SE Sweden	Bulgaria HU Hungary ML Mali TT Benin IE Ireland MN Mongolia UA Brazil IL Israel MR Mauritania UG Belarus IS Iceland MW Malawi US Canada IT Italy MX Mexico UZ Central African Republic JP Japan NE Niger VN Congo KE Kenya NL Netherlands YU Switzerland KG Kyrgyzstan NO Norway ZW Côte d'Ivoire KP Democratic People's NZ New Zealand Cameroon Republic of Korea PL Poland China KR Republic of Korea PL Poland Cuba KZ Kazakstan RO Romania Czech Republic LC Saint Lucia RU Russian Federation Germany LI Liechtenstein SD Sudan Denmark LK Sri Lanka SE Sweden

ANTISENSE INTRON INHIBITION OF STARCH BRANCHING ENZYME EXPRESSION

The present invention relates to a method of inhibiting gene expression, particularly inhibiting gene expression in a plant. The present invention also relates to a nucleotide sequence useful in the method. In addition, the present invention relates to a promoter that is useful for expressing the nucleotide sequence.

Starch is one of the main storage carbohydrates in plants, especially higher plants. The structure of starch consists of amylose and amylopectin. Amylose consists essentially of straight chains of α -1-4-linked glycosyl residues. Amylopectin comprises chains of α -1-4-linked glycosyl residues with some α -1-6 branches. The branched nature of amylopectin is accomplished by the action of *inter alia* an enzyme commonly known as the starch branching enzyme ("SBE"). SBE catalyses the formation of branch points in the amylopectin molecule by adding α -1,4 glucans through α -1,6-glucosidic branching linkages. The biosynthesis of amylose and amylopectin is schematically shown in Figure 1, whereas the α -1-4-links and the α -1-6 links are shown in Figure 2.

10

15

20

25

30

In Potato, it is known that two classes of SBE exist. In our copending international patent applications PCT/EP96/03052 and PCT/EP96/03053, class B potato SBE and a gene encoding it are discussed. In international patent application WO96/34968, class A potato SBE and a cDNA encoding it are disclosed.

It is known that starch is an important raw material. Starch is widely used in the food, paper, and chemical industries. However, a large fraction of the starches used in these industrial applications are post-harvest modified by chemical, physical or enzymatic methods in order to obtain starches with certain required functional properties.

Within the past few years it has become desirable to make genetically modified plants which could be capable of producing modified starches which could be the same as the post-harvest modified starches. It is also known that it may be possible to prepare such genetically modified plants by expression of antisense nucleotide coding sequences. In this regard, June Bourque provides a detailed summary of antisense strategies for the genetic manipulations in plants (Bourque 1995 Plant Science 105 pp 125-149). At this stage, reference could be made to Figure 3 which is a schematic diagram of one of the proposed mechanisms of antisense-RNA inhibition.

2

In particular, WO 92/11375 reports on a method of genetically modifying potato so as to form amylose-type starch. The method involves the use of an anti-sense construct that can apparently inhibit, to a varying extent, the expression of the gene coding for formation of the branching enzyme in potato. The antisense construct of WO 92/11375 consists of a tuber specific promoter, a transcription start sequence and the first exon of the branching enzyme in antisense direction. However, WO 92/11375 does not provide any antisense sequence data. In addition, WO 92/11375 only discloses the use of the potato GBSS promoter.

5

10

15

20

25

30

WO 92/14827 reports on a plasmid that, after insertion into the genome of a plant, can apparently cause changes in the carbohydrate concentration and carbohydrate composition, such as the concentration and composition of amylose and amylopectin, in the regenerated plant. The plasmid contains part of the coding sequence of a branching enzyme in an antisense orientation.

EP-A-0647715 reports on the use of antisense endogenous mRNA coding DNA to alter the characteristics and the metabolic pathways of ornamental plants.

EP-A-0467349 reports on the expression of sequences that are antisense to sequences upstream of a promoter to control gene expression.

EP-A-0458367 and US-A-5107065 report on the expression of a nucleotide sequence to regulate gene expression in a plant. The nucleotide sequence is complementary to a mRNA sequence of a gene and may cover all or a portion of the non-coding region of the gene. In other words, the nucleotide sequences of EP-A-0458367 and US-A-5107065 must at least comprise a sequence that is complementary to a coding region. EP-A-0458367 and US-A-5107065 contain minimal sequence information.

WO96/34968 discusses the use of antisense sequences complementary to sequences which encode class A and class B potato SBE to downregulate SBE expression in potato plants. The sequences used are complementary to SBE coding sequences.

Kuipers et al in Mol. Gen. Genet. [1995] 246 745-755 report on the expression of a series of nucleotides that are antisense to part of the genomic intron sequences of potato granule bound starch synthetase. Here the antisense intron sequences are attached to a part of the antisense exon sequences - wherein the intron sequences and the exon

. št

10

15

20

25

30

sequences are naturally associated with each other. In addition, the expressed antisense intron sequences are at most 231 bp in length.

Likewise, Kull et al in J. Genet & Breed. [1995] 49 69-76 report on the expression of a series of nucleotides that are antisense to part of the genomic intron sequences of potato granule bound starch synthetase. Likewise, here the antisense intron sequences are attached to a part of the antisense exon sequences - wherein the intron sequences and the exon sequences are naturally associated with each other. In addition, likewise, the expressed antisense intron sequences are at most 231 bp in length.

Shimada et al in Theor. Appl. Genet. [1993] <u>86</u> 665-672 report on the expression of a series of nucleotides that are antisense to part of the genomic intron sequences of rice granule bound starch synthetase. Here the antisense intron sequences are attached to a part of the antisense exon sequences - wherein the intron sequences and the exon sequences are naturally associated with each other. In addition, the expressed antisense intron sequences are less than 350 bp in length.

Reviews on how enzymatic activity can be affected by expression of particular nucleotide sequences may be found in the teachings of Finnegan and McElroy [1994] Biotechnology 12 883-888; and Matzke and Matzke [1995] TIG 11 1-3.

Whilst it is known that enzymatic activity can be affected by expression of particular nucleotide sequences there is still a need for a method that can more reliably and/or more efficiently and/or more specifically affect enzymatic activity.

According to a first aspect of the present invention there is provided a method of affecting enzymatic activity in a plant (or a cell, a tissue or an organ thereof) comprising expressing in the plant (or a cell, a tissue or an organ thereof) a nucleotide sequence wherein the nucleotide sequence partially or completely codes for (is) an intron of the potato class A SBE gene in an antisense orientation optionally together with a nucleotide sequence which codes, partially or completely, for an intron of a class B starch branching enzyme in an antisense or sense orientation; and wherein the nucleotide sequence does not contain a sequence that is antisense to an exon sequence normally associated with the intron.

According to a second aspect of the present invention there is provided a method of affecting enzymatic activity in a starch producing organism (or a cell, a tissue or an

5

10

15

20

25

4

organ thereof) comprising expressing in the starch producing organism (or a cell, a tissue or an organ thereof) a nucleotide sequence wherein the nucleotide sequence codes, partially or completely, for an intron of the potato class A SBE gene, in an antisense orientation optionally together with a nucleotide sequence which codes, partially or completely, for an intron of a class B starch branching enzyme in an antisense or sense orientation; and wherein starch branching enzyme activity is affected and/or the levels of amylopectin are affected and/or the composition of starch is changed.

Preferably, the class A SBE gene antisense intron construct is used in combination with a potato class B SBE gene antisense intron construct as defined in PCT/EP96/03052. However, it may also be used independently thereof, to target class A SBE alone, or in combination with other transgenes, to further manipulate starch quality in potato plants.

According to a third aspect of the present invention, therefore, there is provided an antisense sequence comprising the nucleotide sequence shown as any one of SEQ.I.D. No. 15 to SEQ.I.D. No. 27 and the complement of SEQ. ID. No.38, or a variant, derivative or homologue thereof.

According to a fourth aspect of the present invention there is provided a promoter comprising the sequence shown as SEQ.I.D. No. 14 or a variant, derivative or homologue thereof.

According to a fifth aspect of the present invention there is provided a construct capable of comprising or expressing the present invention.

According to a sixth aspect of the present invention there is provided a vector comprising or expressing the present invention.

According to a seventh aspect of the present invention there is provided a cell, tissue or organ comprising or expressing the present invention.

According to an eighth aspect of the present invention there is provided a transgenic starch producing organism comprising or expressing the present invention.

According to a ninth aspect of the present invention there is provided a starch obtained from the present invention.

According to a tenth aspect of the present invention there is provided pSS17 and pSS18.

.5

10

15

20

30

According to an eleventh aspect of the present invention there is provided a nucleotide sequence that is antisense to any one or more of the intron sequences obtainable from class A SBE, and especially those obtainable from intron 1of class A SBE as set forth in SEQ. ID. No. 38.

A key advantage of the present invention is that it provides a method for preparing modified starches that is not dependent on the need for post-harvest modification of starches. Thus the method of the present invention obviates the need for the use of hazardous chemicals that are normally used in the post-harvest modification of starches.

In addition, the present invention provides inter alia genetically modified plants which are capable of producing modified and/or novel and/or improved starches whose properties would satisfy various industrial requirements.

Thus, the present invention provides a method of preparing tailor-made starches in plants which could replace the post-harvest modified starches.

Also, the present invention provides a method that enables modified starches to be prepared by a method that can have a more beneficial effect on the environment than the known post-harvest modification methods which are dependent on the use of hazardous chemicals and large quantities of energy.

An other key advantage of the present invention is that it provides a method that may more reliably and/or more efficiently and/or more specifically affect enzymatic activity when compared to the known methods of affecting enzymatic activity. With regard to this advantage of the present invention it is to be noted that there is some degree of homology between coding regions of SBEs. However, there is little or no homology with the intron sequences of SBEs.

Thus, antisense intron expression provides a mechanism to affect selectively the 25 expression of a particular class A SBE. This advantageous aspect could be used, for example, to reduce or eliminate a particular SBE enzyme, especially a class A SBE enzyme, and replace that enzyme with another enzyme which can be another branching enzyme or even a recombinant version of the affected enzyme or even a hybrid enzyme which could for example comprise part of a SBE enzyme from one source and at least a part of another SBE enzyme from another source. This particular feature of the present

6

invention is covered by the combination aspect of the present invention which is discussed in more detail later.

Thus the present invention provides a mechanism for selectively affecting class A SBE activity. This is in contrast to the prior art methods which are dependent on the use of for example antisense exon expression whereby it would not be possible to introduce new SBE activity without affecting that activity as well.

5

10

15

20

25

In the context of the present invention, class B SBE is synonymous with SBE I: class A SBE is synonymous with SBE II. Class A SBE is as defined in WO96/34968, incorporated herein by reference. Preferably, the antisense intron construct used comprises intron 1 of class A SBE, which is 2.0 kb in length and is located starting at residue 45 of the coding sequence of class A SBE. The boundaries of the intron may be calculated by searching for consensus intron boundary sequences, and are shown in attached figure 13. Class B SBE is substantially as defined in the sequences given herein and in PCT/EP96/03052.

Preferably with the first aspect of the present invention starch branching enzyme activity is affected and/or the levels of amylopectin are affected and/or the composition of starch is changed.

Preferably with the second aspect of the present invention the nucleotide sequence does not contain a sequence that is antisense to an exon sequence normally associated with the intron.

Preferably with the fourth aspect of the present invention the promoter is in combination with a gene of interest ("GOI").

Preferably the enzymatic activity is reduced or eliminated.

Preferably the nucleotide sequence codes for at least substantially all of at least one intron in an antisense orientation.

Preferably the nucleotide sequence codes, partially or completely, for two or more introns and wherein each intron is in an anti-sense orientation.

Preferably the nucleotide sequence comprises at least 350 nucleotides (e.g. at least 350 bp), more preferably at least 500 nucleotides (e.g. at least 500 bp).

٠. کت

Preferably the nucleotide sequence comprises the complement of the sequence shown in SEQ. ID. No. 38, or a fragment thereof.

10

15

20

25

30

Preferably the nucleotide sequence is expressed by a promoter having a sequence shown as SEQ. I.D. No 14 or a variant, derivative or homologue thereof.

Preferably the transgenic starch producing organism is a plant.

A preferred aspect of the present invention therefore relates to a method of affecting enzymatic activity in a plant (or a cell, a tissue or an organ thereof) comprising expressing in the plant (or a cell, a tissue or an organ thereof) a nucleotide sequence wherein the nucleotide sequence codes, partially or completely, for an intron in an antisense orientation; wherein the nucleotide sequence does not contain a sequence that is antisense to an exon sequence normally associated with the intron; and wherein starch branching enzyme activity is affected and/or the levels of amylopectin are affected and/or the composition of starch is changed.

A more preferred aspect of the present invention therefore relates to a method of affecting enzymatic activity in a plant (or a cell, a tissue or an organ thereof) comprising expressing in the plant (or a cell, a tissue or an organ thereof) a nucleotide sequence wherein the nucleotide sequence codes, partially or completely, for an intron in an antisense orientation; wherein the nucleotide sequence does not contain a sequence that is antisense to an exon sequence normally associated with the intron; wherein starch branching enzyme activity is affected and/or the levels of amylopectin are affected and/or the composition of starch is changed; and wherein the nucleotide sequence comprises the sequence shown as any one of SEQ.I.D. No. 15 to SEQ.I.D. No. 27 or a variant, derivative or homologue thereof, including combinations thereof.

The term "nucleotide" in relation to the present invention includes DNA and RNA. Preferably it means DNA, more preferably DNA prepared by use of recombinant DNA techniques.

The term "intron" is used in its normal sense as meaning a segment of nucleotides, usually DNA, that is transcribed but does not encode part or all of an expressed protein or enzyme.

The term "exon" is used in its normal sense as meaning a segment of nucleotides, usually DNA, encoding part or all of an expressed protein or enzyme.

Thus, the term "intron" refers to gene regions that are transcribed into RNA molecules, but which are spliced out of the RNA before the RNA is translated into a

8

protein. In contrast, the term "exon" refers to gene regions that are transcribed into RNA and subsequently translated into proteins.

5

10

15

20

25

The terms "variant" or "homologue" or "fragment" in relation to the nucleotide sequence of the present invention include any substitution of, variation of, modification of, replacement of, deletion of or addition of one (or more) nucleic acid from or to the respective nucleotide sequence providing the resultant nucleotide sequence can affect enzyme activity in a plant, or cell or tissue thereof, preferably wherein the resultant nucleotide sequence has at least the same effect as the complement of the sequence shown as SEQ.I.D. No. 38. In particular, the term "homologue" covers homology with respect to similarity of structure and/or similarity of function providing the resultant nucleotide sequence has the ability to affect enzymatic activity in accordance with the present invention. With respect to sequence homology (i.e. similarity), preferably there is more than 80% homology, more preferably at least 85% homology, more preferably at least 90% homology, even more preferably at least 95% homology, more preferably at least 98% homology. The above terms are also synonymous with allelic variations of the sequences.

Likewise, the terms "variant" or "homologue" or "fragment" in relation to the promoter of the present invention include any substitution of, variation of, modification of, replacement of, deletion of or addition of one (or more) nucleic acid from or to the respective promoter sequence providing the resultant promoter sequence allows expression of a GOI, preferably wherein the resultant promoter sequence has at least the same effect as SEQ.I.D. No. 14. In particular, the term "homologue" covers homology with respect to similarity of structure and/or similarity of function providing the resultant promoter sequence has the ability to allow for expression of a GOI, such as a nucleotide sequence according to the present invention. With respect to sequence homology (i.e. similarity), preferably there is more than 80% homology, more preferably at least 85% homology, more preferably at least 90% homology, even more preferably at least 95% homology, more preferably at least 98% homology. The above terms are also synonymous with allelic variations of the sequences.

. 3

10

15

20

25

30

The term "antisense" means a nucleotide sequence that is complementary to, and can therefore hybridise with, any one or all of the intron sequences of the present invention, including partial sequences thereof.

With the present invention, the antisense intron can be complementary to an entire intron of the gene to be inhibited. However, in some circumstances, partial antisense sequences may be used (i.e. sequences that are not or do not comprise the full complementary sequence) providing the partial sequences affect enzymatic activity. Suitable examples of partial sequences include sequences that are shorter than the full complement of SEQ. ID. No. 38 but which comprise nucleotides that are at least antisense to the sense intron sequences adjacent the respective exon or exons.

With regard to the second aspect of the present invention (i.e. specifically affecting SBE activity), the nucleotide sequences of the present invention may comprise one or more sense or antisense exon sequences of the SBE gene, including complete or partial sequences thereof, providing the nucleotide sequences can affect SBE activity, preferably wherein the nucleotide sequences reduce or eliminate SBE activity. Preferably, the nucleotide sequence of the second aspect of the present invention does not comprise an antisense exon sequence.

The term "vector" includes an expression vector and a transformation vector. The term "expression vector" means a construct capable of *in vivo* or *in vitro* expression. The term "transformation vector" means a construct capable of being transferred from one species to another - such as from an *E. Coli* plasmid to a fungus or a plant cell, or from an *Agrobacterium* to a plant cell.

The term "construct" - which is synonymous with terms such as "conjugate", "cassette" and "hybrid" - in relation to the antisense nucleotide sequence aspect of the present invention includes the nucleotide sequence according to the present invention directly or indirectly attached to a promoter. An example of an indirect attachment is the provision of a suitable spacer group such as an intron sequence, such as the *Sh1*-intron or the ADH intron, intermediate the promoter and the nucleotide sequence of the present invention. The same is true for the term "fused" in relation to the present invention which includes direct or indirect attachment. The terms do not cover the natural

WO 98/37213

5

10

15

20

25

30

. 2

combination of the wild type SBE gene when associated with the wild type SBE gene promoter in their natural environment.

The construct may even contain or express a marker which allows for the selection of the genetic construct in, for example, a plant cell into which it has been transferred. Various markers exist which may be used in, for example, plants - such as mannose. Other examples of markers include those that provide for antibiotic resistance - e.g. resistance to G418, hygromycin, bleomycin, kanamycin and gentamycin.

The construct of the present invention preferably comprises a promoter. The term "promoter" is used in the normal sense of the art, e.g. an RNA polymerase binding site in the Jacob-Monod theory of gene expression. Examples of suitable promoters are those that can direct efficient expression of the nucleotide sequence of the present invention and/or in a specific type of cell. Some examples of tissue specific promoters are disclosed in WO 92/11375.

The promoter could additionally include conserved regions such as a Pribnow Box or a TATA box. The promoters may even contain other sequences to affect (such as to maintain, enhance, decrease) the levels of expression of the nucleotide sequence of the present invention. Suitable examples of such sequences include the *Sh1*-intron or an ADH intron. Other sequences include inducible elements - such as temperature, chemical, light or stress inducible elements. Also, suitable elements to enhance transcription or translation may be present. An example of the latter element is the TMV 5' leader sequence (see Sleat Gene 217 [1987] 217-225; and Dawson Plant Mol. Biol. 23 [1993] 97).

As mentioned, the construct and/or the vector of the present invention may include a transcriptional initiation region which may provide for regulated or constitutive expression. Any suitable promoter may be used for the transcriptional initiation region, such as a tissue specific promoter. In one aspect, preferably the promoter is the patatin promoter or the E35S promoter. In another aspect, preferably the promoter is the SBE promoter.

If, for example, the organism is a plant then the promoter can be one that affects expression of the nucleotide sequence in any one or more of seed, tuber, stem, sprout, root and leaf tissues, preferably tuber. By way of example, the promoter for the

10

15

20

25

30

5:

nucleotide sequence of the present invention can be the α -Amy 1 promoter (otherwise known as the Amy 1 promoter, the Amy 637 promoter or the α -Amy 637 promoter) as described in our co-pending UK patent application No. 9421292.5 filed 21 October 1994. Alternatively, the promoter for the nucleotide sequence of the present invention can be the α -Amy 3 promoter (otherwise known as the Amy 3 promoter, the Amy 351 promoter or the α -Amy 351 promoter) as described in our co-pending UK patent application No. 9421286.7 filed 21 October 1994.

The present invention also encompasses the use of a promoter to express a nucleotide sequence according to the present invention, wherein a part of the promoter is inactivated but wherein the promoter can still function as a promoter. Partial inactivation of a promoter in some instances is advantageous. In particular, with the Amy 351 promoter mentioned earlier it is possible to inactivate a part of it so that the partially inactivated promoter expresses the nucleotide sequence of the present invention in a more specific manner such as in just one specific tissue type or organ. The term "inactivated" means partial inactivation in the sense that the expression pattern of the promoter is modified but wherein the partially inactivated promoter still functions as a promoter. However, as mentioned above, the modified promoter is capable of expressing a gene coding for the enzyme of the present invention in at least one (but not all) specific tissue of the original promoter. Examples of partial inactivation include altering the folding pattern of the promoter sequence, or binding species to parts of the nucleotide sequence, so that a part of the nucleotide sequence is not recognised by, for example, RNA polymerase. Another, and preferable, way of partially inactivating the promoter is to truncate it to form fragments thereof. Another way would be to mutate at least a part of the sequence so that the RNA polymerase can not bind to that part or another part. Another modification is to mutate the binding sites for regulatory proteins for example the CreA protein known from filamentous fungi to exert carbon catabolite repression, and thus abolish the catabolite repression of the native promoter.

The construct and/or the vector of the present invention may include a transcriptional termination region.

The nucleotide according to the present invention can be expressed in combination (but not necessarily at the same time) with an additional construct. Thus the present

12

invention also provides a combination of constructs comprising a first construct comprising the nucleotide sequence according to the present invention operatively linked to a first promoter; and a second construct comprising a GOI operatively linked to a second promoter (which need not be the same as the first promoter). With this aspect of the present invention the combination of constructs may be present in the same vector, plasmid, cells, tissue, organ or organism. This aspect of the present invention also covers methods of expressing the same, preferably in specific cells or tissues, such as expression in just a specific cell or tissue, of an organism, typically a plant. With this aspect of the present invention the second construct does not cover the natural combination of the gene coding for an enzyme ordinarily associated with the wild type gene promoter when they are both in their natural environment.

5

10

15

20

25

An example of a suitable combination would be a first construct comprising the nucleotide sequence of the present invention and a promoter, such as the promoter of the present invention, and a second construct comprising a promoter, such as the promoter of the present invention, and a GOI wherein the GOI codes for another starch branching enzyme either in sense or antisense orientation.

The above comments relating to the term "construct" for the antisense nucleotide aspect of the present invention are equally applicable to the term "construct" for the promoter aspect of the present invention. In this regard, the term includes the promoter according to the present invention directly or indirectly attached to a GOI.

The term "GOI" with reference to the promoter aspect of the present invention or the combination aspect of the present invention means any gene of interest, which need not necessarily code for a protein or an enzyme - as is explained later. A GOI can be any nucleotide sequence that is either foreign or natural to the organism in question, for example a plant.

Typical examples of a GOI include genes encoding for other proteins or enzymes that modify metabolic and catabolic processes. The GOI may code for an agent for introducing or increasing pathogen resistance.

\$

10

15

20

25

30

The GOI may even be an antisense construct for modifying the expression of natural transcripts present in the relevant tissues. An example of such a GOI is the nucleotide sequence according to the present invention.

The GOI may even code for a protein that is non-natural to the host organism - e.g. a plant. The GOI may code for a compound that is of benefit to animals or humans. For example, the GOI could code for a pharmaceutically active protein or enzyme such as any one of the therapeutic compounds insulin, interferon, human serum albumin, human growth factor and blood clotting factors. The GOI may even code for a protein giving additional nutritional value to a food or feed or crop. Typical examples include plant proteins that can inhibit the formation of anti-nutritive factors and plant proteins that have a more desirable amino acid composition (e.g. a higher lysine content than a non-transgenic plant). The GOI may even code for an enzyme that can be used in food processing such as xylanases and α -galactosidase. The GOI can be a gene encoding for any one of a pest toxin, an antisense transcript such as that for α -amylase, a protease or a glucanase. Alternatively, the GOI can be a nucleotide sequence according to the present invention.

The GOI can be the nucleotide sequence coding for the arabinofuranosidase enzyme which is the subject of our co-pending UK patent application 9505479.7. The GOI can be the nucleotide sequence coding for the glucanase enzyme which is the subject of our co-pending UK patent application 9505475.5. The GOI can be the nucleotide sequence coding for the α -amylase enzyme which is the subject of our co-pending UK patent application 9413439.2. The GOI can be the nucleotide sequence coding for the α -amylase enzyme which is the subject of our co-pending UK patent application 9421290.9. The GOI can be any of the nucleotide sequences coding for the α -glucan lyase enzyme which are described in our co-pending PCT patent application PCT/EP94/03397.

In one aspect the GOI can even be a nucleotide sequence according to the present invention but when operatively linked to a different promoter.

The GOI could include a sequence that codes for one or more of a xylanase, an arabinase, an acetyl esterase, a rhamnogalacturonase, a glucanase, a pectinase, a branching enzyme or another carbohydrate modifying enzyme or proteinase. Alternatively, the GOI may be a sequence that is antisense to any of those sequences.

As mentioned above, the present invention provides a mechanism for selectively affecting a particular enzymatic activity. In an important application of the present invention it is now possible to reduce or eliminate expression of a genomic nucleotide sequence coding for a genomic protein or enzyme by expressing an antisense intron construct for that particular genomic protein or enzyme and (e.g. at the same time) expressing a recombinant version of that enzyme or protein - in other words the GOI is a recombinant nucleotide sequence coding for the genomic enzyme or protein. This application allows expression of desired recombinant enzymes and proteins in the absence of (or reduced levels of) respective genomic enzymes and proteins. Thus the desired recombinant enzymes and proteins can be easily separated and purified from the host organism. This particular aspect of the present invention is very advantageous over the prior art methods which, for example, rely on the use of anti-sense exon expression which methods also affect expression of the recombinant enzyme.

5

10

15

20

25

30

Thus, a further aspect of the present invention relates to a method of expressing a recombinant protein or enzyme in a host organism comprising expressing a nucleotide sequence coding for the recombinant protein or enzyme; and expressing a further nucleotide sequence wherein the further nucleotide sequence codes, partially or completely, for an intron in an antisense orientation; wherein the intron is an intron normally associated with the genomic gene encoding a protein or an enzyme corresponding to the recombinant protein or enzyme; and wherein the further nucleotide sequence does not contain a sequence that is antisense to an exon sequence normally associated with the intron. Additional aspects cover the combination of those nucleotide sequences including their incorporation in constructs, vectors, cells, tissues and transgenic organisms.

Therefore the present invention also relates to a combination of nucleotide sequences comprising a first nucleotide sequence coding for a recombinant enzyme; and a second nucleotide sequence which corresponds to an intron in antisense orientation; wherein the intron is an intron that is associated with a genomic gene encoding an enzyme corresponding to the recombinant enzyme; and wherein the second nucleotide sequence does not contain a sequence that is antisense to an exon sequence normally associated with the intron.

رچ .

15

20

25

30

\$.

The GOI may even code for one or more introns, such as any one or more of the intron sequences presented in the attached sequence listings. For example, the present invention also covers the expression of for example an antisense intron (e.g. the complement of SEQ. ID. No. 38) in combination with for example a sense intron which preferably is not complementary to the antisense intron sequence (e.g. SEQ.I.D.No. 2 or another class A SBE intron).

The terms "cell", "tissue" and "organ" include cell, tissue and organ per se and when within an organism.

The term "organism" in relation to the present invention includes any organism that could comprise the nucleotide sequence according to the present invention and/or wherein the nucleotide sequence according to the present invention can be expressed when present in the organism. Preferably the organism is a starch producing organism such as any one of a plant, algae, fungi, yeast and bacteria, as well as cell lines thereof. Preferably the organism is a plant.

The term "starch producing organism" includes any organism that can biosynthesise starch. Preferably, the starch producing organism is a plant.

The term "plant" as used herein includes any suitable angiosperm, gymnosperm, monocotyledon and dicotyledon. Typical examples of suitable plants include vegetables such as potatoes; cereals such as wheat, maize, and barley; fruit; trees; flowers; and other plant crops. Preferably, the term means "potato".

The term "transgenic organism" in relation to the present invention includes any organism that comprises the nucleotide sequence according to the present invention and/or products obtained therefrom, and/or wherein the nucleotide sequence according to the present invention can be expressed within the organism. Preferably the nucleotide sequence of the present invention is incorporated in the genome of the organism. Preferably the transgenic organism is a plant, more preferably a potato.

To prepare the host organism one can use prokaryotic or eukaryotic organisms. Examples of suitable prokaryotic hosts include *E. coli* and *Bacillus subtilis*. Teachings on the transformation of prokaryotic hosts is well documented in the art, for example see Sambrook *et al* (Sambrook *et al*. in Molecular Cloning: A Laboratory Manual, 2nd edition. 1989, Cold Spring Harbor Laboratory Press).

10

15

20

25

30

٠.

Even though the enzyme according to the present invention and the nucleotide sequence coding for same are not disclosed in EP-B-0470145 and CA-A-2006454, those two documents do provide some useful background commentary on the types of techniques that may be employed to prepare transgenic plants according to the present invention. Some of these background teachings are now included in the following commentary.

The basic principle in the construction of genetically modified plants is to insert genetic information in the plant genome so as to obtain a stable maintenance of the inserted genetic material.

Several techniques exist for inserting the genetic information, the two main principles being direct introduction of the genetic information and introduction of the genetic information by use of a vector system. A review of the general techniques may be found in articles by Potrykus (Annu Rev Plant Physiol Plant Mol Biol [1991] 42:205-225) and Christou (Agro-Food-Industry Hi-Tech March/April 1994 17-27).

Thus, in one aspect, the present invention relates to a vector system which carries a nucleotide sequence or construct according to the present invention and which is capable of introducing the nucleotide sequence or construct into the genome of an organism, such as a plant.

The vector system may comprise one vector, but it can comprise two vectors. In the case of two vectors, the vector system is normally referred to as a binary vector system. Binary vector systems are described in further detail in Gynheung An et al. (1980), Binary Vectors, Plant Molecular Biology Manual A3, 1-19.

One extensively employed system for transformation of plant cells with a given promoter or nucleotide sequence or construct is based on the use of a Ti plasmid from Agrobacterium tumefaciens or a Ri plasmid from Agrobacterium rhizogenes An et al. (1986), Plant Physiol. 81, 301-305 and Butcher D.N. et al. (1980), Tissue Culture Methods for Plant Pathologists, eds.: D.S. Ingrams and J.P. Helgeson, 203-208. Several different Ti and Ri plasmids have been constructed which are suitable for the construction of the plant or plant cell constructs described above. A non-limiting example of such a Ti plasmid is pGV3850.

.3

5

10

15

20

25

30

Direct infection of plant tissues by Agrobacterium is a simple technique which has been widely employed and which is described in Butcher D.N. et al. (1980), Tissue Culture Methods for Plant Pathologists, eds.: D.S. Ingrams and J.P. Helgeson, 203-208. For further teachings on this topic see Potrykus (Annu Rev Plant Physiol Plant Mol Biol [1991] 42:205-225) and Christou (Agro-Food-Industry Hi-Tech March/April 1994 17-27). With this technique, infection of a plant may be performed in or on a certain part or tissue of the plant, i.e. on a part of a leaf, a root, a stem or another part of the plant.

Typically, with direct infection of plant tissues by Agrobacterium carrying the GOI (such as the nucleotide sequence according to the present invention) and, optionally, a promoter, a plant to be infected is wounded, e.g. by cutting the plant with a razor blade or puncturing the plant with a needle or rubbing the plant with an abrasive. The wound is then inoculated with the Agrobacterium. The inoculated plant or plant part is then grown on a suitable culture medium and allowed to develop into mature plants.

When plant cells are constructed, these cells may be grown and maintained in accordance with well-known tissue culturing methods such as by culturing the cells in a suitable culture medium supplied with the necessary growth factors such as amino acids, plant hormones, vitamins, etc.

Regeneration of the transformed cells into genetically modified plants may be accomplished using known methods for the regeneration of plants from cell or tissue cultures, for example by selecting transformed shoots using an antibiotic and by subculturing the shoots on a medium containing the appropriate nutrients, plant hormones, etc.

Further teachings on plant transformation may be found in EP-A-0449375.

As reported in CA-A-2006454, a large amount of cloning vectors are available which contain a replication system in *E. coli* and a marker which allows a selection of the transformed cells. The vectors contain for example pBR 322, pUC series, M13 mp series, pACYC 184 etc. In this way, the nucleotide or construct of the present invention can be introduced into a suitable restriction position in the vector. The contained plasmid is then used for the transformation in *E.coli*. The *E.coli* cells are cultivated in a suitable nutrient medium and then harvested and lysed. The plasmid is then recovered. As a method of analysis there is generally used sequence analysis, restriction analysis,

17

The nucleotide sequence or construct of the present invention should preferably be inserted into the Ti-plasmid between the terminal sequences of the T-DNA or adjacent a T-DNA sequence so as to avoid disruption of the sequences immediately surrounding the T-DNA borders, as at least one of these regions appears to be essential for insertion of modified T-DNA into the plant genome.

As will be understood from the above explanation, if the organism is a plant the vector system of the present invention is preferably one which contains the sequences necessary to infect the plant (e.g. the *vir* region) and at least one border part of a T-DNA sequence, the border part being located on the same vector as the genetic construct.

Furthermore, the vector system is preferably an Agrobacterium tumefaciens Tiplasmid or an Agrobacterium rhizogenes Ri-plasmid or a derivative thereof. As these plasmids are well-known and widely employed in the construction of transgenic plants, many vector systems exist which are based on these plasmids or derivatives thereof.

10

15

20

25

30

In the construction of a transgenic plant the nucleotide sequence or construct of the present invention may be first constructed in a microorganism in which the vector can replicate and which is easy to manipulate before insertion into the plant. An example of a useful microorganism is *E. coli*, but other microorganisms having the above properties may be used. When a vector of a vector system as defined above has been constructed in *E. coli*, it is transferred, if necessary, into a suitable *Agrobacterium* strain, e.g. *Agrobacterium tumefaciens*. The Ti-plasmid harbouring the nucleotide sequence or construct of the present invention is thus preferably transferred into a suitable *Agrobacterium* strain, e.g. *A. tumefaciens*, so as to obtain an *Agrobacterium* cell harbouring the promoter or nucleotide sequence or construct of the present invention, which DNA is subsequently transferred into the plant cell to be modified.

If, for example, for the transformation the Ti- or Ri-plasmid of the plant cells is used, at least the right boundary and often however the right and the left boundary of the Ti- and Ri-plasmid T-DNA, as flanking areas of the introduced genes, can be connected. The use of T-DNA for the transformation of plant cells has been intensively studied and is described in EP-A-120516; Hoekema, in: The Binary Plant Vector System Offset-drukkerij Kanters B.B., Alblasserdam, 1985, Chapter V; Fraley, et al., Crit. Rev. Plant Sci., 4:1-46; and An et al., EMBO J. (1985) 4:277-284.

electrophoresis and further biochemical-molecular biological methods. After each manipulation, the used DNA sequence can be restricted and connected with the next DNA sequence. Each sequence can be cloned in the same or different plasmid.

After the introduction of the nucleotide sequence or construct according to the present invention in the plants the presence and/or insertion of further DNA sequences may be necessary - such as to create combination systems as outlined above (e.g. an organism comprising a combination of constructs).

5

10

15

20

25

30

The above commentary for the transformation of prokaryotic organisms and plants with the nucleotide sequence of the present invention is equally applicable for the transformation of those organisms with the promoter of the present invention.

In summation, the present invention relates to affecting enzyme activity by expressing antisense intron sequences.

Also, the present invention relates to a promoter useful for the expression of those antisense intron sequences.

The following samples have been deposited in accordance with the Budapest Treaty at the recognised depositary The National Collections of Industrial and Marine Bacteria Limited (NCIMB) at 23 St Machar Drive, Aberdeen, Scotland, AB2 1RY, United Kingdom, on 13 July 1995:

NCIMB 40753 (which refers to pBEA 8 as described herein);

NCIMB 40751 (which refers to λ -SBE 3.2 as described herein), and NCIMB 40752 (which refers to λ -SBE 3.4 as described herein).

The following sample has been deposited in accordance with the Budapest Treaty at the recognised depositary The National Collections of Industrial and Marine Bacteria Limited (NCIMB) at 23 St Machar Drive, Aberdeen, Scotland, AB2 1RY, United Kingdom, on 9 July 1996:

NCIMB 40815 (which refers to pBEA 9 as described herein).

A highly preferred embodiment of the present invention therefore relates to a method of affecting enzymatic activity in a plant (or a cell, a tissue or an organ thereof) comprising expressing in the plant (or a cell, a tissue or an organ thereof) a nucleotide sequence wherein the nucleotide sequence codes, partially or completely, for an intron in an antisense orientation; wherein the nucleotide sequence does not contain a sequence that

10

15

20

25

:3:

is antisense to an exon sequence normally associated with the intron; wherein starch branching enzyme activity is affected and/or the levels of amylopectin are affected and/or the composition of starch is changed; and wherein the nucleotide sequence is antisense to intron 1 of class A SBE as set forth in SEQ. ID. No. 38, or any other intron of class A SBE, including fragments thereof, and including combinations of class A antisense intron sequences and class B antisense intron sequences. The sequence of introns of class A SBE other than intron 1 may be obtained by sequencing of, for example, potato class A SBE genomic DNA, isolatable by hybridisation screening of a genomic DNA library with class A SBE cDNA obtainable according to WO96/34968 according to methods well known in the art and set forth, for example, in Sambrook *et al.*, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, 1989.

The present invention will now be described only by way of example, in which reference is made to the following attached Figures:

Figure 1, which is a schematic representation of the biosynthesis of amylose and amylopectin;

Figure 2, which is a diagrammatic representation of the α -1-4-links and the α -1-6 links of amylopectin;

Figure 3, which is a diagrammatic representation of a possible antisense-RNA inhibition mechanism;

Figure 4, which is a diagrammatic representation of the exon-intron structure of a genomic SBE clone;

Figure 5, which is a plasmid map of pPATA1, which is 3936 bp in size;

Figure 6, which is a plasmid map of pABE6, which is 5106 bp in size;

Figure 7, which is a plasmid map of pVictorIV Man, which is 7080 bp in size;

Figure 8, which is a plasmid map of pBEA8, which is 9.54 kb in size;

Figure 9, which is a plasmid map of pBEA9, which is 9.54 kb in size;

Figure 10, which is a plasmid map of pBEP2, which is 10.32 kb in size;

Figure 11, which is a plasmid map of pVictor5a, which is 9.12 kb in size;

Figure 12, which shows the full genomic nucleotide sequence for SBE including the promoter, exons and introns:

10

15

20

25

30

Figure 13, which shows the positioning of intron 1 in the class A and class B SBE genes;

Figure 14, which shows the sequence of intron 1 of the potato class A SBE;

Figure 15, which shows the structure of pSS17; and

Figure 16, which shows the structure of pSS18.

Figures 1 and 2 were referred to above in the introductory description concerning starch in general. Figure 3 was referred to above in the introductory description concerning antisense expression.

As mentioned, Figure 4 is a diagrammatic representation of the exon-intron structure of a genomic SBE clone, the sequence of which is shown in Figure 12. This clone, which has about 11.5 k base pairs, comprises 14 exons and 13 introns. The introns are numbered in increasing order from the 5' end to the 3' end and correspond to SEQ.I.D.No.s 1-13, respectively. Their respective antisense intron sequences are shown as SEQ.I.D.No.s 15-27.

In more detail, Figures 4 and 12 present information on the 11478 base pairs of a potato SBE gene. The 5' region from nucleotides 1 to 2082 contain the promoter region of the SBE gene. A TATA box candidate at nucleotide 2048 to 2051 is boxed. The homology between a potato SBE cDNA clone (Poulsen & Kreiberg (1993) Plant Physiol 102: 1053-1054) and the exon DNAs begin at 2083 bp and end at 9666 bp.

The homology between the cDNA and the exon DNA is indicated by nucleotides in upper case letters, while the translated amino acid sequences are shown in the single letter code below the exon DNA. Intron sequences are indicated by lower case letters.

Figures 5 to 7 are discussed below. As mentioned, Figure 8 is a plasmid map of pBEA8, which is 9.54 k base pairs in size; and Figure 9 is a plasmid map of pBEA9, which is 9.54 k base pairs in size. Each of pBEA 8 and pBEA 9 comprises an antisense sequence to the first intron sequence of the potato SBE gene. This first intron sequence, which has 1177 base pairs, is shown in Figure 4 and lies between the first exon and the second exon.

These experiments and aspects of the present invention are now discussed in more detail.

10

15

20

EXPERIMENTAL PROTOCOL

ISOLATION, SUBCLONING IN PLASMIDS, AND SEQUENCING OF GENOMIC CLASS B SBE CLONES

Various clones containing the potato class B SBE gene are isolated from a Desiree potato genomic library (Clontech Laboratories Inc., Palo Alto CA, USA) using radioactively labelled potato SBE cDNA (Poulsen & Kreiberg (1993) Plant Physiol. 102:1053-1054) as probe. The fragments of the isolated λ-phages containing SBE DNA (λSBE 3.2 - NCIMB 40751 - and λSBE-3.4 - NCIMB 40752) are identified by Southern analysis and then subcloned into pBluescript II vectors (Clontech Laboratories Inc., Palo Alto CA, USA). λSBE 3.2 contains a 15 kb potato DNA insert and λSBE-3.4 contains a 13 kb potato DNA insert. The resultant plasmids are called pGB3, pGB11, pGB15, pGB16 and pGB25 (see discussion below). The respective inserts are then sequenced using the Pharmacia Autoread Sequencing Kit (Pharmacia, Uppsala) and a A.L.F. DNA sequencer (Pharmacia, Uppsala).

In total, a stretch of 11.5 kb of the class B SBE gene is sequenced. The sequence is deduced from the above-mentioned plasmids, wherein: pGB25 contains the sequences from 1 bp to 836 bp, pGB15 contains the sequences from 735 bp to 2580 bp, pGB16 contains the sequences from 2580 bp to 5093 bp, pGB11 contains the sequences from 3348 bp to 7975 bp, and pGB3 contains the sequences from 7533 bp to 11468 bp.

In more detail, pGB3 is constructed by insertion of a 4 kb EcoRI fragment isolated from λSBE 3.2 into the EcoRI site of pBluescript II SK (+). pGB11 is constructed by insertion of a 4.7 kb XhoI fragment isolated from λSBE 3.4 into the XhoI site of pBluescript II SK (+). pGB15 is constructed by insertion of a 1.7 kb SpeI fragment isolated from λSBE 3.4 into the SpeI site of pBluescript II SK (+). pGB16 is constructed by insertion of a 2.5 kb SpeI fragment isolated from λSBE 3.4 into the SpeI site of pBluescript II SK (+). For the construction of pGB25 a PCR fragment is produced with the primers

5' GGA ATT CCA GTC GCA GTC TAC ATT AC 3'

(SEQ. ID. No.30)

. 2

30

25

and

5' CGG GAT CCA GAG GCA TTA AGA TTT CTG G 3'

(SEQ. ID. No. 31)

and λ SBE 3.4 as a template.

The PCR fragment is digested with BamHI and EcoRI, and inserted in pBluescript

II SK (+) digested with the same restriction enzymes.

A class A SBE clone is derived similarly.

CONSTRUCTION OF CLASS B SBE ANTISENSE INTRON PLASMIDS pBEA8 and pBEA9

The SBE intron 1 is amplified by PCR using the oligonucleotides:

5' CGG GAT CCA AAG AAA TTC TCG AGG TTA CAT GG 3'

(SEQ. ID. No. 32)

and

5' CGG GAT CCG GGG TAA TTT TTA CTA ATT TCA TG 3'

15

20

25

(SEQ. ID. No. 33)

and the λSBE 3.4 phage containing the SBE gene as template.

The PCR product is digested with BamHI and inserted in an antisense orientation in the BamHI site of plasmid pPATA1 (described in WO 94/24292) between the patatin promoter and the 35S terminator. This construction, pABE6, is digested with KpnI, and the 2.4 kb "patatin promoter-SBE intron 1- 35S terminator" KpnI fragment is isolated and inserted in the KpnI site of the plant transformation vector pVictorIV Man. The KpnI fragment is inserted in two orientations yielding plasmids pBEA8 and pBEA9. pVictorIV Man is shown in Figure 7 and is formed by insertion of a filled in XbaI fragment containing a E35S promoter-manA-35S terminator cassette isolated from plasmid pVictorIV SGiN Man (WO 94/24292) into the filled in XhoI site of pVictor IV. The pVictor regions of pVictor IV Man contained between the co-ordinates 2.52 bp to 0.32 bp (see Figure 7).

24

CONSTRUCTION OF CLASS A SBE ANTISENSE INTRON PLASMIDS pSS17 and pSS18

Construction of plasmid pSS17.

The 2122 bp intron 1 sequence of the potato SBEII gene is amplified by PCR from a genomic SBEII subclone using the primers 5' - CGG GAT CCC GTA TGT CTC ACT GTG TTT GTG GC - 3' (SEQ. ID. No. 34) and 5' - CGG GAT CCC CCT ACA TAC ATA TAT CAG ATT AG - 3' (SEQ. ID. No. 35). The PCR product is digested with BamHI and inserted in antisense orientation after a patatin promoter in the BamHI site of a plant transformation vector in which the NPTII gene is used as selectable marker (see figure 15).

Construction of plasmid pSS18.

The 2122 bp intron 1 sequence of the potato SBEII gene is amplified by PCR from a genomic SBEII subclone using the primers 5' - CGG GAT CCC GTA TGT CTC ACT GTG TTT GTG GC - 3' (SEQ. ID. No. 34) and 5' - CGG GAT CCC CCT ACA TAC ATA TAT CAG ATT AG - 3' (SEQ. ID. No. 35). The PCR product is digested with BamHI and inserted in antisense orientation after a patatin promoter in the BamHI site of a plant transformation vector in which the *manA* gene is used as selectable marker (see figure 16).

PRODUCTION OF TRANSGENIC POTATO PLANTS

Axenic stock cultures

Shoot cultures of *Solanum tuberosum* 'Bintje' and 'Dianella' are maintained on a substrate (LS) of a formula according to Linsmaier, E.U. and Skoog, F. (1965), Physiol. Plant. 18: 100-127, in addition containing 2 μ M silver thiosulphate at 25°C and 16 h light/8 h dark.

The cultures are subcultured after approximately 40 days. Leaves are then cut off the shoots and cut into nodal segments (approximately 0.8 cm) each containing one node.

. 5

25

5

10

15

20

Inoculation of potato tissues

Shoots from approximately 40 days old shoot cultures (height approximately 5-6 cms) are cut into internodal segments (approximately 0.8 cm). The segments are placed into liquid LS-substrate containing the transformed *Agrobacterium tumefaciens* containing the binary vector of interest. The *Agrobacterium* are grown overnight in YMB-substrate (di-potassium hydrogen phosphate, trihydrate (0.66 g/l); magnesium sulphate, heptahydrate (0.20 g/l); sodium chloride (0.10 g/l); mannitol (10.0 g/l); and yeast extract (0.40 g/l)) containing appropriate antibiotics (corresponding to the resistance gene of the *Agrobacterium* strain) to an optical density at 660 nm (OD-660) of approximately 0.8, centrifuged and resuspended in the LS-substrate to an OD-660 of 0.5.

The segments are left in the suspension of Agrobacterium for 30 minutes and then the excess of bacteria are removed by blotting the segments on sterile filter paper.

Co-cultivation

10

15

20

25

30

The shoot segments are co-cultured with bacteria for 48 hours directly on LS-substrate containing agar (8.0 g/l), 2,4-dichlorophenoxyacetic acid (2.0 mg/l) and trans-zeatin (0.5 mg/l). The substrate and also the explants are covered with sterile filter papers, and the petri dishes are placed at 25°C and 16 h light/ 8 dark.

"Washing" procedure

After the 48 h on the co-cultivation substrate the segments are transferred to containers containing liquid LS-substrate containing 800 mg/l carbenicillin. The containers are gently shaken and by this procedure the major part of the *Agrobacterium* is either washed off the segments and/or killed.

Selection

After the washing procedure the segments are transferred to plates containing the LS-substrate, agar (8 g/l), trans-zeatin (1-5 mg/l), gibberellic acid (0.1 mg/l), carbenicillin (800 mg/l), and kanamycin sulphate (50-100 mg/l) or phosphinotricin (1-5 mg/l) or mannose (5 g/l) depending on the vector construction used. The segments are sub-cultured to fresh substrate each 3-4 weeks.

26

In 3 to 4 weeks, shoots develop from the segments and the formation of new shoots continued for 3-4 months.

Rooting of regenerated shoots

The regenerated shoots are transferred to rooting substrate composed of LS-substrate, agar (8 g/l) and carbenicillin (800 mg/l).

The transgenic genotype of the regenerated shoot is verified by testing the rooting ability on the above mentioned substrates containing kanamycin sulphate (200 mg/l), by performing NPTII assays (Radke, S. E. et al, Theor. Appl. Genet. (1988), 75: 685-694) or by performing PCR analysis according to Wang et al (1993, NAR 21 pp 4153-4154). Plants which are not positive in any of these assays are discarded or used as controls. Alternatively, the transgenic plants could be verified by performing a GUS assay on the co-introduced β-glucuronidase gene according to Hodal, L. et al. (Pl. Sci. (1992), 87: 115-122).

15

20

5

10

Transfer to soil

The newly rooted plants (height approx. 2-3 cms) are transplanted from rooting substrate to soil and placed in a growth chamber (21°C, 16 hour light 200-400uE/m²/sec). When the plants are well established they are transferred to the greenhouse, where they are grown until tubers had developed and the upper part of the plants are senescing.

Harvesting

The potatoes are harvested after about 3 months and then analysed.

25 BRANCHING ENZYME ANALYSIS

The class A and class B SBE expression in the transgenic potato lines is measured using the SBE assays described by Blennow and Johansson (Phytochemistry (1991) 30:437-444) and by standard Western procedures using antibodies directed against potato SBE.

. 3.

30

\$.

STARCH ANALYSIS

Starch is isolated from potato tubers and analysed for the amylose:amylopectin ratio (Hovenkamp-Hermelink et al. (1988) Potato Research 31:241-246). In addition, the chain length distribution of amylopectin is determined by analysis of isoamylase digested starch on a Dionex HPAEC.

The number of reducing ends in isoamylase digested starch is determined by the method described by N. Nelson (1944) J. Biol.Chem. 153:375-380.

The results reveal that there is a reduction in the level of synthesis of SBE and/or the level of activity of SBE and/or the composition of starch SBE in the transgenic plants.

10

20

25

5

CONSTRUCTION OF SBE PROMOTER CONSTRUCT

An SBE promoter fragment is amplified from λ -SBE 3.4 using primers:

5. CCA TCG ATA CTT TAA GTG ATT TGA TGG C 3'

(SEQ. ID. No. 36)

15

and

5' CGG GAT CCT GTT CTG ATT CTT GAT TTC C 3'.

(SEQ. ID. No. 37)

The PCR product is digested with *ClaI* and *BamHI*. The resultant 1.2 kb fragment is then inserted in pVictor5a (see Figure 11) linearised with *ClaI* and *BgIII* yielding pBEP2 (see Figure 10).

STARCH BRANCHING ENZYME MEASUREMENTS OF POTATO TUBERS

Potatoes from potato plants transformed with pBEA8, pBEA9, pSS17 or pSS18 are cut in small pieces and homogenised in extraction buffer (50 mM Tris-HCl pH 7.5, Sodium-dithionite (0.1 g/l), and 2 mM DTT) using a Ultra-Turax homogenizer; 1 g of Dowex xl. is added pr. 10 g of tuber. The crude homogenate is filtered through a miracloth filter and centrifuged at 4°C for 10 minutes at 24.700 g. The supernatant is used for starch branching enzyme assays.

The starch branching enzyme assays are carried out at 25°C in a volume of 400 µl composed of 0.1 M Na citrate buffer pH 7.0, 0.75 mg/ml amylose, 5 mg/ml bovine serum albumin and the potato extract. At 0, 15, 30 and 60 minutes aliquots of 50 µl are

WO 98/37213

*

removed from the reaction into 20 μ l 3 N HCl. 1 ml of iodine solution is added and the decrease in absorbance at 620 nm is measured with an ELISA spectrophotometer.

The starch branching enzyme (SBE) levels are measured in tuber extracts from 34 transgenic Dianella potato plants transformed with plasmid pBEA8, pSS17 and pSS18.

The transformed transgenic lines produce tubers which have SBE levels that are 10% to 15% of the appropriate class A or class B SBE levels found in non transformed Dianella plants.

In a further experiment, plasmids pSS17 and pBEA8 are cotransfected into potato plants, as described above. In the cotransfectants, when analysed as set forth above, simultaneous reduction of class A and class B SBE levels are observed.

SUMMATION

5

10

15

20

30

The above-mentioned examples relate to the isolation, sequencing and utilisation of antisense intron constructs derived from a gene for potato class A and class B SBE. These SBE intron antisense constructs can be introduced into plants, such as potato plants. After introduction, a reduction in the level of synthesis of SBE and/or the level of activity of SBE and/or the composition of starch in plants can be achieved.

Without wishing to be bound by theory it is believed that the expressed anti-sense nucleotide sequence of the present invention binds to sense introns on pre-mRNA and thereby prevents pre-mRNA splicing and/or subsequent translation of mRNA. This binding therefore is believed to reduce the level of plant enzyme activity (in particular class A and class B SBE activity), which in turn for SBE activity is believed to influence the amylose:amylopectin ratio and thus the branching pattern of amylopectin.

Thus, the present invention provides a method wherein it is possible to manipulate the starch composition in plants, or tissues or cells thereof, such as potato tubers, by reducing the level of SBE activity by using an antisense-RNA technique using antisense intron sequences.

The simultaneous reduction or elimination of class A and class B SBE sequences from the doubly transformed potato plants, moreover, offers the possibility to transform such plants with different SBE genes at will, thus allowing the manipulation of branching in starch according to the desired result.

Other modifications of the present invention will be apparent to those skilled in the art without departing from the scope of the present invention.

The following pages present a number of sequence listings which have been consecutively numbered from SEQ.I.D. No. 1 - SEQ.I.D. No. 38. In brief, SEQ.I.D. No. 1 - SEQ.I.D. No. 13 represent sense intron sequences (genomic DNA); SEQ.I.D. No. 14 represents the SBE promoter sequence (genomic sequence); SEQ.I.D. No. 15 - SEQ.I.D. No. 27 represent antisense intron sequences; and SEQ. I.D. No. 28 represents is the sequence complementary to the SBE promoter sequence - i.e. the SBE promoter sequence in antisense orientation. The full genomic nucleotide sequence for class B SBE including the promoter, exons and introns is shown as SEQ. I.D. No. 29 and is explained by way of Figures 4 and 12 which highlight particular gene features. SEQ. ID. No. 30 to 37 show primers used in the methods set forth above. SEQ. ID. No. 38 shows the sequence of intron 1 of class A SBE.

SEQUENCE LISTING

5	(1) GENERAL INFORMATION:	
10	(i) APPLICANT: (A) NAME: DANISCO A/S (B) STREET: LANGEBROGADE 1 (C) CITY: COPENHAGEN K (E) COUNTRY: DENMARK	
	(F) POSTAL CODE (ZIP): DK-1001	
15	(ii) TITLE OF INVENTION: INHIBITION OF GENE EXPRESSION	
13	(iii) NUMBER OF SEQUENCES: 38	
20	 (iv) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (EPO) 	
0.5	(2) INFORMATION FOR SEQ ID NO: 1:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1165 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: single	
30	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
35	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
	•	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:	
	GTAATTTTTA CTAATTTCAT GTTAATTTCA ATTATTTTTA GCCTTTGCAT TTCATTTTCC	60
45	AATATATCTG GATCATCTCC TTAGTTTTTT ATTTTATTTT	120
	GAAAAATGAC ACTTGTAGAG CCATATGTAA GTATCATGTG ACAAATTTGC AAGGTGGTTG	180
50	AGTGTATAAA ATTCAAAAAT TGAGAGATGG AGGGGGGGTG GGGGAAGACA ATATTTAGAA	240
50	AGAGTGTTCT AGGAGGTTAT GGAGGACACG GATGAGGGT AGAAGGTTAG TTAGGTATTT	300
	GAGTGTTGTC TGGCTTATCC TTTCATACTA GTAGTCGTGG AATTATTTGG GTAGTTTCTT	3,60
55	GTTTTGTTAT TTGATCTTTG TTATTCTATT TTCTGTTTCT TGTACTTCGA TTATTGTATT	420
	ATATATCTTG TCGTAGTTAT TGTTCCTCGG TAAGAATGCT CTAGCATGCT TCCTTTAGTG	480

VO 98/37213	PCT/IB98/00270

	TTTTATCATG CCTTCTTTAT ATTCGCGTTG CTTTGAAATG CTTTTACTTT AGCCGAGGGT	540
_	CTATTAGAAA CAATCTCTCT ATCTCGTAAG GTAGGGGTAA AGTCCTCACC ACACTCCACT	600
5	TGTGGGATTA CATTGTGTTT GTTGTTGTAA ATCAATTATG TATACATAAT AAGTGGATTT	660
	TTTACAACAC AAATACATGG TCAAGGGCAA AGTTCTGAAC ACATAAAGGG TTCATTATAT	720
10	GTCCAGGGAT ATGATAAAAA TTGTTTCTTT GTGAAAGTTA TATAAGATTT GTTATGGCTT	780
	TTGCTGGAAA CATAATAAGT TATAATGCTG AGATAGCTAC TGAAGTTTGT TTTTTCTAGC	840
	CTTTTAAATG TACCAATAAT AGATTCCGTA TCGAACGAGT ATGTTTTGAT TACCTGGTCA	900
15	TGATGTTTCT ATTTTTACA TTTTTTTGGT GTTGAACTGC AATTGAAAAT GTTGTATCCT	960
	ATGAGACGGA TAGTTGAGAA TGTGTTCTTT GTATGGACCT TGAGAAGCTC AAACGCTACT	1020
20	CCAATAATTT CTATGAATTC AAATTCAGTT TATGGCTACC AGTCAGTCCA GAAATTAGGA	1080
•	TATGCTGCAT ATACTTGTTC AATTATACTG TAAAATTTCT TAAGTTCTCA AGATATCCAT	1140
	GTAACCTCGA GAATTTCTTT GACAG	1165
25	(2) INFORMATION FOR SEQ ID NO: 2:	,
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 317 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	•
35	(ii) MOLECULE TYPE: DNA (genomic)	
33	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
40		·
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:	
45	GTATGTTTGA TAATTTATAT GGTTGCATGG ATAGTATATA AATAGTTGGA AAACTTCTGG	60
	ACTGGTGCTC ATGGCATATT TGATCTGTGC ACCGTGTGGA GATGTCAAAC ATGTGTTACT	120
٠	TCGTTCCGCC AATTTATAAT ACCTTAACTT GGGAAAGACA GCTCTTTACT CCTGTGGGCA	180
50	TTTGTTATTT GAATTACAAT CTTTATGAGC ATGGTGTTTT CACATTATCA ACTTCTTTCA	240
	TGTGGTATAT AACAGTTTTT AGCTCCGTTA ATACCTTTCT TCTTTTTGAT ATAAACTAAC	300
55		31

(2) INFORMATION FOR SEQ ID NO: 3:

5	(1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 504 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
10	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
15		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:	
20	GTAACAGCCA AAAGTTGTGC TTTAGGCAGT TTGACCTTAT TTTGGAAGAT GAATTGTTTA	60
20	TACCTACTTT GACTTTGCTA GAGAATTTTG CATACCGGGG AGTAAGTAGT GGCTCCATTT	12
	AGGTGGCACC TGGCCATTTT TTTGATCTTT TAAAAAGCTG TTTGATTGGG TCTTCAAAAA	180
25	AGTAGACAAG GTTTTTGGAG AAGTGACACA CCCCCGGAGT GTCAGTGGCA AAGCAAAGAT	240
	TTTCACTAAG GAGATTCAAA ATATAAAAAA AGTATAGACA TAAAGAAGCT GAGGGGATTC	30
30	AACATGTACT ATACAAGCAT CAAATATAGT CTTAAAGCAA TTTTGTAGAA ATAAAGAAAG	36
30	TCTTCCTTCT GTTGCTTCAC AATTTCCTTC TATTATÇATG AGTTACTCTT TCTGTTCGAA	426
	ATAGCTTCCT TAATATTAAA TTCATGATAC TTTTGTTGAG ATTTAGCAGT TTTTTCTTGT	48
35	GTAAACTGCT CTCTTTTTT GCAG	50
	(2) INFORMATION FOR SEQ ID NO: 4:	
40	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 146 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
45	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
50	(iv) ANTI-SENSE: NO	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:	
	GTAGGTCCTC GTCTACTACA AAATAGTAGT TTCCATCATC ATAACAGATT TTCCTATTAA	6

wo	0.0	/377	1	2
wu	77.	(3) / 2		•

PCT/IB98/00270

33

	AGCATGATGT TGCAGCATCA TTGGCTTTCT TACATGTTCT AATTGCTATT AAGGTTATGC	120
	TTCTAATTAA CTCATCCACA ATGCAG	146
5	(2) INFORMATION FOR SEQ ID NO: 5:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 218 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
15	(iii) HYPOTHETICAL: NO	-
	(iv) ANTI-SENSE: NO	
20		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:	
	GTTTTGTTAT TCATACCTTG AAGCTGAATT TTGAACACCA TCATCACAGG CATTTCGATT	60
25	CATGTTCTTA CTAGTCTTGT TATGTAAGAC ATTTTGAAAT GCAAAAGTTA AAATAATTGT	120
	GTCTTTACTA ATTTGGACTT GATCCCATAC TCTTTCCCTT AACAAAATGA GTCAATTCTA	180
30	TAAGTGCTTG AGAACTTACT ACTTCAGCAA TTAAACAG	218
50		210
35	(2) INFORMATION FOR SEQ ID NO: 6: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 198 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
40	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
45	(iv) ANTI-SENSE: NO	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:	· · · · · · · · · · · · · · · · · · ·
	GTATTTTAAA TTTATTTCTA CAACTAAATA ATTCTCAGAA CAATTGTTAG ATAGAATCCA	60
	AATATATACG TCCTGAAAGT ATAAAAGTAC TTATTTTCGC CATGGGCCTT CAGAATATTG	120
55	GTAGCCGCTG AATATCATGA TAAGTTATTT ATCCAGTGAC ATTTTTATGT TCACTCCTAT	180
	TATGTCTGCT GGATACAG	198

	(2) INFORMATION FOR SEQ ID NO: 7:	
,5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 208 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
. 10	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
15	(iv) ANTI-SENSE: NO	-
•		
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:	
	GTTTGTCTGT TTCTATTGCA TTTTAAGGTT CATATAGGTT AGCCACGGAA AATCTCACTC	60
	TTTGTGAGGT AACCAGGGTT CTGATGGATT ATTCAATTTT CTCGTTTATC ATTTGTTTAT	120
25	TCTTTTCATG CATTGTGTTT CTTTTCAAT ATCCCTCTTA TTTGGAGGTA ATTTTTCTCA	180
	TCTATTCACT TTTAGCTTCT AACCACAG	208
30	(2) INFORMATION FOR SEQ ID NO: 8:	
35	(i) SEQUENCE CHARACTERISTICS;(A) LENGTH: 293 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
40	(iii) HYPOTHETICAL: NO (iv) ANTI-SENSE: NO	
45		•
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:	
	GTATGTCTTA CATCTTTAGA TATTTTGTGA TAATTACAAT TAGTTTGGCT TACTTGAACA	60
50	AGATTCATTC CTCAAAATGA CCTGAACTGT TGAACATCAA AGGGGTTGAA ACATAGAGGA	120
	AAACAACATG ATGAATGTTT CCATTGTCTA GGGATTTCTA TTATGTTGCT GAGAACAAAT	180
55	GTCATCTTAA AAAAAACATT GTTTACTTTT TTGTAGTATA GAAGATTACT GTATAGAGTT	240
_	TICENDETICE TOTOTTECE DETAILED ADDRESS TO DESCRIPTION TO DESCRIPTION OF THE DESCRIPTION O	202

	~~			-
wΩ	YX.	/ 47	77.1	4

PCT/IB98/00270

	(2) INFORMATION FOR BLQ ID NO. 3.	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 376 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
10	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
15	(iv) ANTI-SENSE: NO	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:	
20	GTTCAAGTAT TTTGAATCGC AGCTTGTTAA ATAATCTAGT AATTTTTAGA TTGCTTACTT	60
•	GGAAGTCTAC TTGGTTCTGG GGATGATAGC TCATTTCATC TTGTTCTACT TATTTTCCAA	120
25	CCGAATTTCT GATTTTTGTT TCGAGATCCA AGTATTAGAT TCATTTACAC TTATTACCGC	180
23	CTCATTTCTA CCACTAAGGC CTTGATGAGC AGCTTAAGTT GATTCTTTGA AGCTATAGTT	240
	TCAGGCTACC AATCCACAGC CTGCTATATT TGTTGGATAC TTACCTTTTC TTTACAATGA	300
30	AGTGATACTA ATTGAAATGG TCTAAATCTG ATATCTATAT TTCTCCGTCT TTCCTCCCCC	360
	TCATGATGAA ATGCAG	376
35	(2) INFORMATION FOR SEQ ID NO: 10:	
40	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 172 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	,
	(ii) MOLECULE TYPE: DNA (genomic)	
4.5	(iii) HYPOTHETICAL: NO	
45	(iv) ANTI-SENSE: NO	
50		
-	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:	
	GTAAAATCAT CTAAAGTTGA AAGTGTTGGG TTTATGAAGT GCTTTAATTC TATCCAAGGA	60
55	CAAGTAGAAA CCTTTTTACC TTCCATTTCT TGATGATGGA TTTCATATTA TTTAATCCAA	120
	TAGCTGGTCA AATTCGGTAA TAGCTGTACT GATTAGTTAC TTCACTTTGC AG	172

PCT/IB98/00270

36

	(2) INFORMATION FOR SEQ ID NO: 11:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 145 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
10	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
15	(iv) ANTI-SENSE: NO	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:	٠
20	GTATATATGT TTTACTTATC CATGAAATTA TTGCTCTGCT TGTTTTTAAT GTACTGAACA	60
	AGTTTTATGG AGAAGTAACT GAAACAAATC ATTTTCACAT TGTCTAATTT AACTCTTTTT	120
25	TCTGATCCTC GCATGACGAA AACAG	145
	(2) INFORMATION FOR SEQ ID NO: 12:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 242 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
35	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
40	(iv) ANTI-SENSE: NO	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:	
73	GTAAGGATTT GCTTGAATAA CTTTTGATAA TAAGATAACA GATGTAGGGT ACAGTTCTCT	60
٠	CACCAAAAAG AACTGTAATT GTCTCATCCA TCTTTAGTTG TATAAGATAT CCGACTGTCT	120
50	GAGTTCGGAA GTGTTTGAGC CTCCTGCCCT CCCCCTGCGT TGTTTAGCTA ATTCAAAAAG	180

GAGAAAACTG TTTATTGATG ATCTTTGTCT TCATGCTGAC ATACAATCTG TTCTCATGAC

AG

(2) INFORMATION FOR SEQ ID NO: 13:

55

3

5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 797 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
•	(ii) MOLECULE TYPE: DNA (genomic)	
10	(iii) HYPOTHETICAL: NO	
10	(iv) ANTI-SENSE: NO	
•		
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:	
	GTACAGTTCT TGCCGTGTGA CCTCCCTTTT TATTGTGGTT TTGTTCATAG TTATTTGAAT	6.0
20	GCGATAGAAG TTAACTATTG ATTACCGCCA CAATCGCCAG TTAAGTCCTC TGAACTACTA	120
	ATTTGAAAGG TAGGAATAGC CGTAATAAGG TCTACTTTTG GCATCTTACT GTTACAAAAC	180
25	AAAAGGATGC CAAAAAAATT CTTCTCTATC CTCTTTTTCC CTAAACCAGT GCATGTAGCT	240
23	TGCACCTGCA TAAACTTAGG TAAATGATCA AAAATGAAGT TGATGGGAAC TTAAAACCGC	300
	CCTGAAGTAA AGCTAGGAAT AGTCATATAA TGTCCACCTT TGGTGTCTGC GCTAACATCA	360
30	ACAACAACAT ACCTCGTGTA GTCCCACAAA GTGGTTTCAG GGGGAGGGTA GAGTGTATGC	420
	AAAACTTACT CCTATCTCAG AGGTAGAGAG GATTTTTTCA ATAGACCCTT GGCTCAAGAA	480
35	AAAAAGTCCA AAAAGAAGTA ACAGAAGTGA AAGCAACATG TGTAGCTAAA GCGACCCAAC	540
33	TTGTTTGGGA CTGAAGTAGT TGTTGTTGTT GAAACAGTGC ATGTAGATGA ACACATGTCA	600
	GAAAATGGAC AACACAGTTA TTTTGTGCAA GTCAAAAAAA TGTACTACTA TTTCTTTGTG	660
40	CAGCTTTATG TATAGAAAAG TTAAATAACT AATGAATTTT GCTAGCAGAA AAATAGCTTG	720
	GAGAGAAATT TTTTATATTG AACTAAGCTA ACTATATTCA TCTTTCTTTT TGCTTCTTCT	780
45	TCTCCTTGTT TGTGAAG	797
73	(2) INFORMATION FOR SEQ ID NO: 14:	•
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2169 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
55	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:

5

ATCATGGCCA ATTACTGGTT CAAATGCATT ACTTCCTTTC AGATTCTTTC GAGTTCTCAT 60 10 GACCGGTCCT ACTACAGACG ATACTAACCC GTGGAACTGT TGCATCTGCT TCTTAGAACT 120 CTATGGCTAT TTTCGTTAGC TTGGCGTCGG TTTGAACATA GTTTTTGTTT TCAAACTCTT 180 CATTTACAGT CAAAATGTTG TATGGTTTTT GTTTTCCTCA ATGATGTTTA CAGTGTTGTG 240 15 TTGTCATCTG TACTTTTGCC TATTACTTGT TTTGAGTTAC ATGTTAAAAA AGTGTTTATT 300 TTGCCATATT TTGTTCTCTT ATTATTATTA TCATACATAC ATTATTACAA GGAAAAGACA 360 20 AGTACACAGA TCTTAACGTT TATGTTCAAT CAACTTTTGG AGGCATTGAC AGGTACCACA 420 AATTTTGAGT TTATGATTAA GTTCAATCTT AGAATATGAA TTTAACATCT ATTATAGATG 480 CATAAAAATA GCTAATGATA GAACATTGAC ATTTGGCAGA GCTTAGGGTA TGGTATATCC 540 25 AACGTTAATT TAGTAATTTT TGTTACGTAC GTATATGAAA TATTGAATTA ATCACATGAA 600 660 CGGTGGATAT TATATTATGA GTTGGCATCA GCAAAATCAT TGGTGTAGTT GACTGTAGTT 30 GCAGATTTAA TAATAAAATG GTAATTAACG GTCGATATTA AAATAACTCT CATTTCAAGT 720 780 GGGATTAGAA CTAGTTATTA AAAAAATGTA TACTTTAAGT GATTTGATGG CATATAATTT AAAGTTTTTC ATTTCATGCT AAAATTGTTA ATTATTGTAA TGTAGACTGC GACTGGAATT 840 35 900 ATTATAGTGT AAATTTATGC ATTCAGTGTA AAATTAAAGT ATTGAACTTG TCTGTTTTAG AAAATACTTT ATACTTTAAT ATAGGATTTT GTCATGCGAA TTTAAATTAA TCGATATTGA 960 40 ACACGGAATA CCAAAATTAA AAAGGATACA CATGGCCTTC ATATGAACCG TGAACCTTTG 1020 ATAACGTGGA AGTTCAAAGA AGGTAAAGTT TAAGAATAAA CTGACAAATT AATTTCTTTT 1080 ATTTGGCCCA CTACTAAATT TGCTTTACTT TCTAACATGT CAAGTTGTGC CCTCTTAGTT 1140 45 GAATGATATT CATTTTCAT CCCATAAGTT CAATTTGATT GTCATACCAC CCATGATGTT 1200 CTGAAAAATG CTTGGCCATT CACAAAGTTT ATCTTAGTTC CTATGAACTT TATAAGAAGC 1260 50 TTTAATTTGA CATGTTATTT ATATTAGATG ATATAATCCA TGACCCAATA GACAAGTGTA 1320 TTAATATTGT AACTTTGTAA TTGAGTGTGT CTACATCTTA TTCAATCATT TAAGGTCATT 1380 AAAATAAATT ATTTTTTGAC ATTCTAAAAC TTTAAGCAGA ATAAATAGTT TATCAATTAT 1440 55 TAAAAACAAA AAACGACTTA TTTATAAATC AACAAACAAT TTTAGATTGC TCCAACATAT 1500 .

55

WO 98/37213		·
W (J 90/3/213		PC*T/TR08/00270

	39	
	TTTTCCAAAT TAAATGCAGA AAATGCATAA TTTTATACTT GATCTTTATA GCTTATTTTT	156
	TTTAGCCTAA CCAACGAATA TTTGTAAACT CACAACTTGA TTAAAAGGGA TTTACAACAA	162
5	GATATATATA AGTAGTGACA AATCTTGATT TTAAATATTT TAATTTGGAG GTCAAAATTT	168
	TACCATAATC ATTTGTATTT ATAATTAAAT TTTAAATATC TTATTTATAC ATATCTAGTA	174
	AACTTTTAAA TATACGTATA TACAAAATAT AAAATTATTG GCGTTCATAT TAGGTCAATA	180
10	AATCCTTAAC TATATCTGCC TTACCACTAG GAGAAGTAA AAAACTCTTT ACCAAAAATA	186
	CATGTATTAT GTATACAAAA AGTCGATTAG ATTACCTAAA TAGAAATTGT ATAACGAGTA	192
15	AGTAAGTAGA AATATAAAAA AACTACAATA CTAAAAAAAA TATGTTTTAC TTCAATTTCG	198
	AAACTAATGG GGTCTGAGTG AAATATTCAG AAAGGGGAGG ACTAACAAAA GGGTCATAAT	204
	GTTTTTTTAT AAAAAGCCAC TAAAATGAGG AAATCAAGAA TCAGAACATA CAAGAAGGCA	210
20	GCAGCTGAAG CAAAGTACCA TAATTTAATC AATGGAAATT AATTTCAAAG TTTTATCAAA	216
	ACCCATTCG	216
25	(2) INFORMATION FOR SEQ ID NO: 15:	
30	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 1165 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
35 .	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: YES	
40		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:	
	CTGTCAAAGA AATTCTCGAG GTTACATGGA TATCTTGAGA ACTTAAGAAA TTTTACAGTA	6
45	TAATTGAACA AGTATATGCA GCATATCCTA ATTTCTGGAC TGACTGGTAG CCATAAACTG	12
	AATTTGAATT CATAGAAATT ATTGGAGTAG CGTTTGAGCT TCTCAAGGTC CATACAAAGA	18
50	ACACATTCTC AACTATCCGT CTCATAGGAT ACAACATTTT CAATTGCAGT TCAACACCAA	. 24
	, · · · · · · · · · · · · · · · · · · ·	

AAAAATGTAA AAAATAGAAA CATCATGACC AGGTAATCAA AACATACTCG TTCGATACGG

AATCTATTAT TGGTACATTT AAAAGGCTAG AAAAAACAAA CTTCAGTAGC TATCTCAGCA

TTATAACTTA TTATGTTTCC AGCAAAAGCC ATAACAAATC TTATATAACT TTCACAAAGA

300

360

	WO 98/37213 PCT/I	B98/00270
	40	
	AACAATTTTT ATCATATCCC TGGACATATA ATGAACCCTT TATGTGTTCA GAACTTTGCC	2 480
	CTTGACCATG TATTTGTGTT GTAAAAAATC CACTTATTAT GTATACATAA TTGATTTAC	A 540
5	ACAACAAACA CAATGTAATC CCACAAGTGG AGTGTGGTGA GGACTTTACC CCTACCTTA	600
	GAGATAGAGA GATTGTTTCT AATAGACCCT CGGCTAAAGT AAAAGCATTT CAAAGCAAC	G 660
	CGAATATAAA GAAGGCATGA TAAAACACTA AAGGAAGCAT GCTAGAGCAT TCTTACCGA	G 720
10	GAACAATAAC TACGACAAGA TATATAATAC AATAATCGAA GTACAAGAAA CAGAAAATA	G 780
	AATAACAAAG ATCAAATAAC AAAACAAGAA ACTACCCAAA TAATTCCACG ACTACTAGT	A 840
15	TGAAAGGATA AGCCAGACAA CACTCAAATA CCTAACTAAC CTTCTACCCC TCATCCGTG	т 900
	CCTCCATAAC CTCCTAGAAC ACTCTTTCTA AATATTGTCT TCCCCCACCC CCCCTCCAT	C 960
	TCTCAATTTT TGAATTTTAT ACACTCAACC ACCTTGCAAA TTTGTCACAT GATACTTAC	A 1020
20	TATGGCTCTA CAAGTGTCAT TTTTCTTCCA TATTTGATAT TATAAAAAAT AAAATAAAA	A 1080
	ACTAAGGAGA TGATCCAGAT ATATTGGAAA ATGAAATGCA AAGGCTAAAA ATAATTGAA	A 1140
25	TTAACATGAA ATTAGTAAAA ATTAC	1165
	(2) INFORMATION FOR SEQ ID NO: 16:	
30	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 317 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
35	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
40	(iv) ANTI-SENSE: YES	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:	·
45	GCAAGCAATG CACCACAGTT AGTTTATATC AAAAAGAAGA AAGGTATTAA CGGAGCTA	AA 6
	AACTGTTATA TACCACATGA AAGAAGTTGA TAATGTGAAA ACACCATGCT CATAAAGA	TT 12
50	GTAATTCAAA TAACAAATGC CCACAGGAGT AAAGAGCTGT CTTTCCCAAG TTAAGGTA	TT 18

ATAAATTGGC GGAACGAAGT AACACATGTT TGACATCTCC ACACGGTGCA CAGATCAAAT

ATGCCATGAG CACCAGTCCA GAAGTTTTCC AACTATTTAT ATACTATCCA TGCAACCATA

55

TAAATTATCA AACATAC

240

300

	(2) INFORMATION FOR SEQ ID NO: 17:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 504 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
10	(ii) MOLECULE TYPE: DNA (genomic)	
10	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: YES	
15		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:	
20	CTGCAAAAAA AGAGAGCAGT TTACACAAGA AAAAACTGCT AAATCTCAAC AAAAGTATCA	60
	TGAATTTAAT ATTAAGGAAG CTATTTCGAA CAGAAAGAGT AACTCATGAT AATAGAAGGA	120
25	AATTGTGAAG CAACAGAAGG AAGACTTTCT TTATTTCTAC AAAATTGCTT TAAGACTATA	180
25	TTTGATGCTT GTATAGTACA TGTTGAATCC CCTCAGCTTC TTTATGTCTA TACTTTTTTT	240
	ATATTTTGAA TCTCCTTAGT GAAAATCTTT GCTTTGCCAC TGACACTCCG GGGGTGTGTC	3,00
30	ACTTCTCCAA AAACCTTGTC TACTTTTTTG AAGACCCAAT CAAACAGCTT TTTAAAAGAT	360
	CAAAAAAATG GCCAGGTGCC ACCTAAATGG AGCCACTACT TACTCCCCGG TATGCAAAAT	420
35	TCTCTAGCAA AGTCAAAGTA GGTATAAACA ATTCATCTTC CAAAATAAGG TCAAACTGCC	480
	TARAGCACAA CTTTTGGCTG TTAC	504
	(2) INFORMATION FOR SEQ ID NO: 18:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 146 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: single	
45	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
50	(iv) ANTI-SENSE: YES	
•		
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:	

CTGCATTGTG GATGAGTTAA TTAGAAGCAT AACCTTAATA GCAATTAGAA CATGTAAGAA 60

w	റ	98	/37	721	13

	AGCCAATGAT GCTGCAACAT CATGCTTTAA TAGGAAAATC TGTTATGATG ATGGAAACTA	120
_	CTATTTTGTA GTAGACGAGG ACCTAC	146
5	(2) INFORMATION FOR SEQ ID NO: 19:	
10	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 218 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
15	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: YES	
20		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:	
25	CTGTTTAATT GCTGAAGTAG TAAGTTCTCA AGCACTTATA GAATTGACTC ATTTTGTTAA	60
	GGGAAAGAGT ATGGGATCAA GTCCAAATTA GTAAAGACAC AATTATTTTA ACTTTTGCAT	120
20	TTCAAAATGT CTTACATAAC AAGACTAGTA AGAACATGAA TCGAAATGCC TGTGATGATG	180
30	GTGTTCAAAA TTCAGCTTCA AGGTATGAAT AACAAAAC	218
	(2) INFORMATION FOR SEQ ID NO: 20:	
35	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 198 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single	
40	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
46	(iii) HYPOTHETICAL: NO	
45	(iv) ANTI-SENSE: YES	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:	
	CTGTATCCAG CAGACATAAT AGGAGTGAAC ATAAAAATGT CACTGGATAA ATAACTTATC	60
55	ATGATATTCA GCGGCTACCA ATATTCTGAA GGCCCATGGC GAAAATAAGT ACTTTTATAC	120
	TTTCAGGACG TATATATTTG GATTCTATCT AACAATTGTT CTGAGAATTA TTTAGTTGTA	180

2.

WO 98/37213	PCT/IB09/0027

	GAAATAAATT TAAAATAC	198
	(2) INFORMATION FOR SEQ ID NO: 21:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 208 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
10	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
15	(iv) ANTI-SENSE: YES	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:	•
	CTGTGGTTAG AAGCTAAAAG TGAATAGATG AGAAAAATTA CCTCCAAATA AGAGGGATAT	60
25	TGAAAAAGAA ACACAATGCA TGAAAAGAAT AAACAAATGA TAAACGAGAA AATTGAATAA	120
	TCCATCAGAA CCCTGGTTAC CTCACAAAGA GTGAGATTTT CCGTGGCTAA CCTATATGAA	180
	CCTTAAAATG CAATAGAAAC AGACAAAC	208
30	(2) INFORMATION FOR SEQ ID NO: 22:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 293 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
40	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: YES	
45		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:	
50	CTGTACAAGT TCATCAAACA TTTCACAATT ACTCCAAAAC AGACACACTT GCAAACTCTA	60
	TACAGTAATC TTCTATACTA CAAAAAAGTA AACAATGTTT TTTTTAAGAT GACATTTGTT	120
	CTCAGCAACA TAATAGAAAT CCCTAGACAA TGGAAACATT CATCATGTTG TTTTCCTCTA	180
55	TGTTTCAACC CCTTTGATGT TCAACAGTTC AGGTCATTTT GAGGAATGAA TCTTGTTCAA	240
	GTAAGCCAAA CTAATTGTAA TTATCACAAA ATATCTAAAG ATGTAAGACA TAC	293

1	1

	(2) INFORMATION FOR SEQ ID NO: 23:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 376 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
10	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
15	(iv) ANTI-SENSE: YES	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:	
20	CTGCATTTCA TCATGAGGGG GAGGAAAGAC GGAGAAATAT AGATATCAGA TTTAGACCAT	60
	TTCAATTAGT ATCACTTCAT TGTAAAGAAA AGGTAAGTAT CCAACAAATA TAGCAGGCTG	120
25	TGGATTGGTA GCCTGAAACT ATAGCTTCAA AGAATCAACT TAAGCTGCTC ATCAAGGCCT	180
	TAGTGGTAGA AATGAGGCGG TAATAAGTGT AAATGAATCT AATACTTGGA TCTCGAAACA	240
30	AAAATCAGAA ATTCGGTTGG AAAATAAGTA GAACAAGATG AAATGAGCTA TCATCCCCAG	300
30	AACCAAGTAG ACTTCCAAGT AAGCAATCTA AAAATTACTA GATTATTTAA CAAGCTGCGA	360
	TTCAAAATAC TTGAAC	376
35	(2) INFORMATION FOR SEQ ID NO: 24:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 172 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
45	(iii) HYPOTHETICAL: NO	
•	(iv) ANTI-SENSE: YES	
50		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:	
	CTGCAAAGTG AAGTAACTAA TCAGTACAGC TATTACCGAA TTTGACCAGC TATTGGATTA	60
55	AATAATATGA AATCCATCAT CAAGAAATGG AAGGTAAAAA GGTTTCTACT TGTCCTTGGA	120

w	n	98	n.	771	3

PCT/IB98/00270

	TAGAATTAAA GCACTTCATA AACCCAACAC TTTCAACTTT AGATGATTTT AC	172
	(2) INFORMATION FOR SEQ ID NO: 25:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 145 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
10	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
15	(iv) ANTI-SENSE: YES	
		•
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:	
	CTGTTTTCGT CATGCGAGGA TCAGAAAAAA GAGTTAAATT AGACAATGTG AAAATGATTT	60
25	GTTTCAGTTA CTTCTCCATA AAACTTGTTC AGTACATTAA AAACAAGCAG AGCAATAATT	120
23	TCATGGATAA GTAAAACATA TATAC	145
	(2) INFORMATION FOR SEQ ID NO: 26:	;
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 242 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
35	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	•
40	(iv) ANTI-SENSE: YES	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:	
	CTGTCATGAG AACAGATTGT ATGTCAGCAT GAAGACAAAG ATCATCAATA AACAGTTTTC	60
50	TCCTTTTTGA ATTAGCTAAA CAACGCAGGG GGAGGGCAGG AGGCTCAAAC ACTTCCGAAC	120
50	TCAGACAGTC GGATATCTTA TACAACTAAA GATGGATGAG ACAATTACAG TTCTTTTTGG	180
	TGAGAGAACT GTACCCTACA TCTGTTATCT TATTATCAAA AGTTATTCAA GCAAATCCTT	240
55	AC	242
	(2) INFORMATION FOR SEO ID NO. 27	

WO 98/37213

5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 797 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
10	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: YES	
15		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27:	
20	CTTCACAAAC AAGGAGAAGA AGAAGCAAAA AGAAAGATGA ATATAGTTAG CTTAGTTCAA	60
20	TATAAAAAAT TTCTCTCCAA GCTATTTTTC TGCTAGCAAA ATTCATTAGT TATTTAACTT	120
	TTCTATACAT AAAGCTGCAC AAAGAAATAG TAGTACATTT TTTTGACTTG CACAAAATAA	180
25	CTGTGTTGTC CATTTTCTGA CATGTGTTCA TCTACATGCA CTGTTTCAAC AACAACAACT	240
	ACTTCAGTCC CAAACAAGTT GGGTCGCTTT AGCTACACAT GTTGCTTTCA CTTCTGTTAC	300
30	TTCTTTTTGG ACTTTTTTC TTGAGCCAAG GGTCTATTGA AAAAATCCTC TCTACCTCTG	360
30	AGATAGGAGT AAGTTTTGCA TACACTCTAC CCTCCCCTG AAACCACTTT GTGGGACTAC	420
	ACGAGGTATG TTGTTGTAGA TGTTAGCGCA GACACCAAAG GTGGACATTA TATGACTATT	480
35	CCTAGCTTTA CTTCAGGGCG GTTTTAAGTT CCCATCAACT TCATTTTGA TCATTTACCT	540
	AAGTTTATGC AGGTGCAAGC TACATGCACT GGTTTAGGGA AAAAGAGGAT AGAGAAGAAT	600
40	TTTTTTGGCA TCCTTTTGTT TTGTAACAGT AAGATGCCAA AAGTAGACCT TATTACGGCT	660
40	ATTCCTACCT TTCAAATTAG TAGTTCAGAG GACTTAACTG GCGATTGTGG CGGTAATCAA	720
	TAGTTAACTT CTATCGCATT CAAATAACTA TGAACAAAAC CACAATAAAA AGGGAGGTCA	780
45	CACGGCAAGA ACTGTAC	797
	(2) INFORMATION FOR SEQ ID NO: 28:	
50	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2169 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
55	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	

WO 98/37213

47

(iv) ANTI-SENSE: YES

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28:

10	CGAATGGGTT	TTGATAAAAC	TTTGAAATTA	ATTTCCATTG	ATTAAATTAT	GGTACTTTGC	60
	TTCAGCTGCT	GCCTTCTTGT	ATGTTCTGAT	TCTTGATTTC	CTCATTTTAG	TGGCTTTTTA	120
,	TAAAAAAACA	TTATGACCCT	TTTGTTAGTC	CTCCCCTTTC	TGAATATTTC	ACTCAGACCC	180
15	CATTAGTTTC	GAAATTGAAG	TAAAACATAT	TTTTTTTAGT	ATTGTAGTTT	TTTTATATTT	240
	CTACTTACTT	ACTCGTTATA	CAATTTCTAT	TTAGGTAATC	TÄATCGACTT	TTTGTATACA	300
20	TAATACATGT	ATTTTTGGTA	AAGAGTTTTT	TACTTTCTCC	TAGTGGTAAG	GCAGATATAG	360
	TTAAGGATTT	ATTGACCTAA	TATGAACGCC	ААТААТТТТА	TATTTTGTAT	ATACGTATAT	420
	TTAAAAGTTT	ACTAGATATG	TATAAATAAG	АТАТТТАААА	TTTAATTATA	AATACAAATG	480
25	ATTATGGTAA	AATTTTGACC	тссаааттаа	AAATTTAAA	ATCAAGATTT	GTCACTACTT	540
	ATATATATCT	TGTTGTAAAT	CCCTTTTAAT	CAAGTTGTGA	GTTTACAAAT	ATTCGTTGGT	600
30	TAGGCTAAAA	AAAATAAGCT	ATAAAGATCA	AGTATAAAAT	TATGCATTTT	CTGCATTTAA	660
	TTTGGAAAAA	TATGTTGGAG	СААТСТАААА	TTGTTTGTTG	ATTTATAAAT	AAGTCGTTTT	720
	TTGTTTTTAA	TAATTGATAA	ACTATTTATT	CTGCTTAAAG	TTTTAGAATG	тсаааааата	780
35	ATTTATTTTA	ATGACCTTAA	ATGATTGAAT	AAGATGTAGA	CACACTCAAT	TACAAAGTTA	840
	CAATATTAAT	ACACTTGTCT	ATTGGGTCAT	GGATTATATC	ATCTAATATA	AATAACATGT	900
40	CAAATTAAAG	CTTCTTATAA	AGTTCATAGG	AACTAAGATA	AACTTTGTGA	ATGGCCAAGC	960
+0	ATTTTTCAGA	ACATCATGGG	TGGTATGACA	ATCAAATTGA	ACTTATGGGA	TGAAAAATGA	1020
	ATATCATTCA	ACTAAGAGGG	CACAACTTGA	CATGTTAGAA	AGTAAAGCAA	ATTTAGTAGT	1080
45	GGGCCAAATA	AAAGAAATTA	ATTTGTCAGT	TTATTCTTAA	ACTTTACCTT	CTTTGAACTT	1140
•	CCACGTTATC	AAAGGTTCAC	GGTTCATATG	AAGGCCATGT	GTATCCTTTT	TAATTTTGGT	1200
• 50	ATTCCGTGTT	CAATATCGAT	TAATTTAAAT	TCGCATGACA	AAATCCTATA	TTAAAGTATA	1260
50	ÄAGTATTTC	TAAAACAGAC	AAGTTCAATA	CTTTAATTTT	ACACTGAATG	CATAAATTTA	1320
	CACTATAATA	ATTCCAGTCG	CAGTCTACAT	TACAATAATT	AACAATTTTA	GCATGAAATG	1380
55	AAAAACTTTA	AATTATATGC	CATCAAATCA	CTTAAAGTAT	ACATTTTTT	AATAACTAGT	1440
	TCTAATCCCA	CTTGAAATGA	GAGTTATTTT	AATATCGACC	GTTAATTACC	ATTTTATTAT	1500

- 4	O
4	o

	46						
	TAAATCTGCA ACTACAGTCA ACTACACCAA TGATTTTGCT GATGCCAACT CATAATATAA	1560					
	TATCCACCGT TCATGTGATT AATTCAATAT TTCATATACG TACGTAACAA AAATTACTAA	1620					
5	ATTAACGTTG GATATACCAT ACCCTAAGCT CTGCCAAATG TCAATGTTCT ATCATTAGCT.	1680					
	ATTTTTATGC ATCTATAATA GATGTTAAAT TCATATTCTA AGATTGAACT TAATCATAAA	1740					
10	CTCAAAATTT GTGGTACCTG TCAATGCCTC CAAAAGTTGA TTGAACATAA ACGTTAAGAT	1800					
	CTGTGTACTT GTCTTTTCCT TGTAATAATG TATGTATGAT AATAATAATA AGAGAACAAA	1860					
	ATATGGCAAA ATAAACACTT TTTTAACATG TAACTCAAAA CAAGTAATAG GCAAAAGTAC	1920					
15	AGATGACAAC ACAACACTGT AAACATCATT GAGGAAAACA AAAACCATAC AACATTTTGA	1980					
	CTGTAAATGA AGAGTTTGAA AACAAAAACT ATGTTCAAAC CGACGCCAAG CTAACGAAAA	2040					
20	TAGCCATAGA GTTCTAAGAA GCAGATGCAA CAGTTCCACG GGTTAGTATC GTCTGTAGTA	2100					
	GGACCGGTCA TGAGAACTCG AAAGAATCTG AAAGGAAGTA ATGCATTTGA ACCAGTAATT	2160					
	GGCCATGAT	2169					
25	(2) INFORMATION FOR SEQ ID NO: 29:						
30	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 11469 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 						
35	(ii) MOLECULE TYPE: DNA (genomic)						
-	(iii) HYPOTHETICAL: NO						
	(iv) ANTI-SENSE: NO						
40							
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 29:						
45	ATCATGGCCA ATTACTGGTT CAAATGCATT ACTTCCTTTC AGATTCTTTC GAGTTCTCAT	60					
	GACCGGTCCT ACTACAGACG ATACTAACCC GTGGAACTGT TGCATCTGCT TCTTAGAACT	120					
	CTATGGCTAT TTTCGTTAGC TTGGCGTCGG TTTGAACATA GTTTTTGTTT TCAAACTCTT	180					

45 ATCATGGCCA ATTACTGGTT CAAATGCATT ACTTCCTTTC AGATTCTTC GAGTTCTCAT 60

GACCGGTCCT ACTACAGACG ATACTAACCC GTGGAACTGT TGCATCTGCT TCTTAGAACT 120

CTATGGCTAT TTTCGTTAGC TTGGCGTCGG TTTGAACATA GTTTTTGTTT TCAAACTCTT 180

CATTTACAGT CAAAATGTTG TATGGTTTTT GTTTTCCTCA ATGATGTTTA CAGTGTTGTG 240

TTGTCATCTG TACTTTTGCC TATTACTTGT TTTGAGTTAC ATGTTAAAAA AGTGTTTATT 300

55 TTGCCATATT TTGTTCTCTT ATTATTATTA TCATACATAC ATTATTACAA GGAAAAGACA 360

AGTACACAGA TCTTAACGTT TATGTTCAAT CAACTTTTGG AGGCATTGAC AGGTACCACA 420

\$

•	AATTTTGAGT	TTATGATTAA	GTTCAATCTT	AGAATATGAA	TTTAACATCT	ATTATAGATG	480
5	САТАААААТА	GCTAATGATA	GAACATTGAC	ATTTGGCAGA	GCTTAGGGTA	TGGTATATCC	540
J	AACGTTAATT	TAGTAATTTT	TGTTACGTAC	GTATATGAAA	TATTGAATTA	ATCACATGAA	600
	CGGTGGATAT	TATATTATGA	GTTGGCATCA	GCAAAATCAT	TGGTGTAGTT	GACTGTAGTT	660
10	GCAGATTTAA	TAATAAAATG	GTAATTAACG	GTCGATATTA	AAATAACTCT	CATTTCAAGT	720
	GGGATTAGAA	CTAGTTATTA	AAAAATGTA	TACTTTAAGT	GATTTGATGG	CATATAATTT	780
1.5	AAAGTTTTTC	ATTTCATGCT	AAAATTGTTA	ATTATTGTAA	TGTAGACTGC	GACTGGAATT	840
15	ATTATAGTGT	AAATTTATGC	ATTCAGTGTA	AAATTAAAGT	ATTGAACTTG	TCTGTTTTAG	900
	AAAATACTTT	ATACTTTAAT	ATAGGATTTT	GTCATGCGAA	TTTAAATTAA	TCGATATTGA	960
20	ACACGGAATA	CCAAAATTAA	AAAGGATACA	CATGGCCTTC	ATATGAACCG	TGAACCTTTG	1020
	ATAACGTGGA	AGTTCAAAGA	AGGTAAAGTT	TAAGAATAAA	CTGACAAATT	AATTTCTTTT	1080
25	ATTTGGCCCA	CTACTAAATT	TGCTTTACTT	TCTAACATGT	CAAGTTGTGC	CCTCTTAGTT	1140
23	GAATGATATT	CATTTTTCAT	CCCATAAGTT	CAATTTGATT	GTCATACCAC	CCATGATGTT	1200
	CTGAAAAATG	CTTGGCCATT	CACAAAGTTT	ATCTTAGTTC	CTATGAACTT	TATAAGAAGC	1260
30	TTTAATTTGA	CATGTTATTT	ATATTAGATG	ATATAATCCA	TGACCCAATA	GACAAGTGTA	. 1320
	TTAATATTGT	AACTTTGTAA	TTGAGTGTGT	CTACATCTTA	TTCAATCATT	TAAGGTCATT	1380
35	TTAAATAAAA	ATTTTTTGAC	ATTCTAAAAC	TTTAAGCAGA	ATAAATAGTT	TATCAATTAT	1440
33	TAAAAACAAA	AAACGACTTA	TTTATAAATC	AACAAACAAT	TTTAGATTGC	TCCAACATAT	1500
	TTTTCCAAAT	TAAATGCAGA	AAATGCATAA	TTTTATACTT	GATCTTTATA	GCTTATTTTT	1560
40	TTTAGCCTAA	CCAACGAATA	TTTGTAAACT	CACAACTTGA	TTAAAAGGGA	TTTACAACAA	1620
	GATATATATA	AGTAGTGACA	AATCTTGATT	TTAAATATTT	TAATTTGGAG	GTCAAAATTT	1680
45	TACCATAATC	ATTTGTATTT	ATAATTAAAT	TTTAAATATC	TTATTTATAC	ATATCTAGTA	174
40	AACTTTTAAA	TATACGTATA	TACAAAATAT	AAAATTATTG	GCGTTCATAT	TAGGTCAATA	180
•	AATCCTTAAC	TATATCTGCC	TTACCACTAG	GAGAAAGTAA	AAAACTCTTT	ACCAAAAATA	186
50	CATGTATTAT	GTATACAAAA	AGTCGATTAG	ATTACCTAAA	TAGAAATTGT	ATAACGAGTA	192
	AGTAAGTAGA	. ААТАТАААА	AACTACAATA	. СТААААААА	TATGTTTAC	TTCAATTTCG	198
55	AAACTAATGG	GGTCTGAGTG	AAATATTCAG	AAAGGGGAGG	ACTAACAAAA	GGGTCATAAT	204
در	GTTTTTTAT	AAAAAGCCAC	TAAAATGAGG	AAATCAAGAA	TCAGAACATA	CAAGAAGGCA	210

	GCAGCTGAAG C	AAAGTACCA	TAATTTAATC	AATGGAAATT	AATTTCAAAG	TTTTATCAAA	2160
	ACCCATTCGA G	GATCTTTTC	CATCTTTCTC	ACCTAAAGTT	TCTTCAGGGG	TAATTTTTAC	2220
5	TAATTTCATG T	TAATTTCAA	TTATTTTAG	CCTTTGCATT	TCATTTTCCA	ATATATCTGG	2280
	ATCATCTCCT T	AGTTTTTTA	TTTTATTTT	TATAATATCA	AATATGGAAG	AAAAATGACA	2340
	CTTGTAGAGC C	ATATGTAAG	TATCATGTGA	CAAATTTGCA	AGGTGGTTGA	GTGTATAAAA	2400
10	TTCAAAAATT G	AGAGATGGA	GGGGGGTGG	GGGAAGACAA	TATTTAGAAA	GAGTGTTCTA	2460
	GGAGGTTATG G	AGGACACGG	ATGAGGGGTA	GAAGGTTAGT	TAGGTATTTG	AGTGTTGTCT	2520
15	GGCTTATCCT I	TCATACTAG	TAGTCGTGGA	ATTATTTGGG	TAGTTTCTTG	TTTTGTTATT	2580
	TGATCTTTGT T	TATTCTATTT	TCTGTTTCTT	GTACTTCGAT	TATTGTATTA	TATATCTTGT	2640
20	CGTAGTTATT C	STTCCTCGGT	AAGAATGCTC	TAGCATGCTT	CCTTTAGTGT	TTTATCATGC	2700
20	CTTCTTTATA 1	TTCGCGTTGC	TTTGAAATGC	TTTTACTTTA	GCCGAGGGTC	TATTAGAAAC	2760
	AATCTCTCTA 3	CTCGTAAGG	TAGGGGTAAA	GTCCTCACCA	CACTCCACTT	GTGGGATTAC	2820
25	ATTGTGTTTG	ITGTTGTAAA	TCAATTATGT	ATACATAATA	AGTGGATTTT	TTACAACACA	2880
	AATACATGGT (CAAGGGCAAA	GTTCTGAACA	CATAAAGGGT	TCATTATATG	TCCAGGGATA	2940
20	TGATAAAAAT '	TGTTTCTTTG	TGAAAGTTAT	ATAAGATTTG	TTATGGCTTT	TGCTGGAAAC	3000
30	ATAATAAGTT .	ATAATGCTGA	GATAGCTACT	GAAGTTTGTT	TTTTCTAGCC	TTTTAAATGT	3060
	ACCAATAATA	GATTCCGTAT	CGAACGAGTA	TGTTTTGATT	ACCTGGTCAT	GATGTTTCTA	3120
35	TTTTTTACAT	TTTTTTGGTG	TTGAACTGCA	ATTGAAAATG	TTGTATCCTA	TGAGACGGAT	3180
	AGTTGAGAAT	GTGTTCTTTG	TATGGACCTT	GAGAAGCTCA	AACGCTACTC	CAATAATTTC	3240
40	TATGAATTCA	AATTCAGTTT	ATGGCTACC	A GTCAGTCCAC	AAATTAGGAT	T ATGCTGCATA	3300
40	TACTTGTTCA	ATTATACTGT	AAAATTTCTT	r aagttctca	A GATATCCATO	TAACCTCGAG	3360
	AATTTCTTTG	ACAGGCTTCT	AGAAATAAGA	A TATGTTTC	TTCTCAACA	r AGTACTGGAC	3420
45	TGAAGTTTGG	ATCTCAGGAA	CGGTCTTGG	3 ATATTTCTT	CACCCCAAA	A TCAAGAGTTA	3480
	GAAAAGATGA	AAGGGTATGT	TTGATAATT	TATEGTTG	C ATGGATAGT	A TATAAATAGT	3540
50	TGGAAAACTT	CTGGACTGGT	GCTCATGGC	A TATTTGATC	r GTGCACCGT	G TGGAGATGTC	3600
50	AAACATGTGT	TACTTCGTTC	CGCCAATTT.	а таатасстт.	A ACTTGGGAA	A GACAGCTCTT	3660
	TACTCCTGTG	GGCATTTGTT	TATTTGAATT	A CAATCTTTA	T GAGCATGGT	G TTTTCACATT	3720
55	ATCAACTTCT	TTCATGTGGT	TATAACAG	T TTTTAGCTC	C GTTAATACC	T TTCTTCTTTT	3780
	ጥሮእጥእጥ እ እ እ ሮ	та а стетеет	י ככי איייניריייי	G CATGAAGCA	C AGTTCAGCT	A TTTCCGCTGT	3840

	TTTGACCGAT	GACGACAATT	CGACAATGGC	ACCCCTAGAG	GAAGATGTCA	AGACTGAAAA	3900
5	TATTGGCCTC	CTAAATTTGG	ATCCAACTTT	GGAACCTTAT	CTAGATCACT	TCAGACACAG	3960
5	AATGAAGAGA	TATGTGGATC	AGAAAATGCT	CATTGAAAAA	TATGAGGGAC	CCCTTGAGGA	4020
	ATTTGCTCAA	GGTAACAGCC	AAAAGTTGTG	CTTTAGGCAG	TTTGACCTTA	TTTTGGAAGA	4080
10	TGAATTGTTT	ATACCTACTT	TGACTTTGCT	AGAGAATTTT	GCATACCGGG	GAGTAAGTAG	4140
	TGGCTCCATT	TAGGTGGCAC	CTGGCCATTT	TTTTGATCTT	TTAAAAAGCT	GTTTGATTGG	4200
15	GTCTTCAAAA	AAGTAGACAA	GGTTTTTGGA	GAAGTGACAC	ACCCCCGGAG	TGTCAGTGGC	4260
13	AAAGCAAAGA	TTTTCACTAA	GGAGATTCAA	AATATAAAAA	AAGTATAGAC	ATAAAGAAGC	4320
	TGAGGGGATT	CAACATGTAC	TATACAAGCA	TCAAATATAG	TCTTAAAGCA	ATTTTGTAGA	4380
20	AATAAAGAAA	GTCTTCCTTC	TGTTGCTTCA	CAATTTCCTT	CTATTATCAT	GAGTTACTCT	4440
	TTCTGTTCGA	AATAGCTTCC	TTAATATTAA	ATTCATGATA	CTTTTGTTGA	GATTTAGCAG	4500
25	TTTTTTCTTG	TGTAAACTGC	TCTCTTTTTT	TGCAGGTTAT	TTAAAATTTG	GATTCAACAG	4560
23	GGAAGATGGT	TGCATAGTCT	ATCGTGAATG	GGCTCCTGCT	GCTCAGTAGG	TCCTCGTCTA	4620
	CTACAAAATA	GTAGTTTCCA	TCATCATAAC	AGATTTTCCT	ATTAAAGCAT	GATGTTGCAG	4680
30	CATCATTGGC	TTTCTTACAT	GTTCTAATTG	CTATTAAGGT	TATGCTTCTA	ATTAACTCAT	4740
•	CCACAATGCA	GGGAAGCAGA	AGTTATTGGC	GATTTCAATG	GATGGAACGG	TTCTAACCAC	4800
35	ATGATGGAGA	AGGACCAGTT	TGGTGTTTGG	AGTATTAGAA	TTCCTGATGT	TGACAGTAAG	4860
	CCAGTCATTC	CACACAACTC	CAGAGTTAAG	TTTCGTTTCA	AACATGGTAA	TGGAGTGTGG	4920
	GTAGATCGTA	TCCCTGCTTG	GATAAAGTAT	GCCACTGCAG	ACGCCACAAA	GTTTGCAGCA	4980
40	CCATATGATG	GTGTCTACTG	GGACCCACCA	CCTTCAGAAA	GGTTTTGTTA	TTCATACCTT	5040
	GAAGCTGAAT	TTTGAACACC	ATCATCACAG	GCATTTCGAT	TCATGTTCTT	ACTAGTCTTG	5100
45	TTATGTAAGA	CATTTTGAAA	TGCAAAAGTT	AAAATAATTG	TGTCTTTACT	AATTTGGACT	5160
	TGATCCCATA	CTCTTTCCCT	TAACAAAATG	AGTCAATTCT	ATAAGTGCTT	GAGAACTTAC	5220
·	TACTTCAGCA	ATTAAACAGG	TACCACTTCA	AATACCCTCG	CCCTCCCAAA	CCCCGAGCCC	5280
50	CACGAATCTA	TGAAGCACAT	GTCGGCATGA	GCAGCTCTGA	GCCACGTGTA	AATTCGTATC	5340
	GTGAGTTTGC	AGATGATGTT	TTACCTCGGA	TTAAGGCAAA	TAACTATAAT	ACTGTCCAGT	5400
55	TGATGGCCAT	AATGGAACAT	TCTTACTATG	GATCATTTGG	ATATCATGTT	ACAAACTTTT	5460
	TTGCTGTGAG	CAGTAGATAT	ĠGAAACCCGG	AGGACCTAAA	GTATCTGATA	GATAAAGCAC	5520

	ATAGCTTGGG	TTTACAGGTT	CTGGTGGATG	TAGTTCACAG	TCATGCAAGC	AATAATGTCA	5580
	CTGATGGCCT	CAATGGCTTT	GATATTGGCC	AAGGTTCTCA	AGAATCCTAC	TTTCATGCTG	5640
5	GAGAGCGAGG	GTACCATAAG	TTGTGGGATA	GCAGGCTGTT	CAACTATGCC	AATTGGGAGG	5700
	TTCTTCGTTT	CCTTCTTTCC	AACTTGAGGT	GGTGGCTAGA	AGAGTATAAC	TTTGACGGAT	5760
10	TTCGATTTGA	TGGAATAACT	TCTATGCTGT	ATGTTCATCA	TGGAATCAAT	ATGGGATTTA	5820
10	CAGGAAACTA	TAATGAGTAT	TTCAGCGAGG	CTACAGATGT	TGATGCTGTG	GTCTATTTAA	5880
	TGTTGGCCAA	TAATCTGATT	CACAAGATTT	TCCCAGATGC	AACTGTTATT	GCCGAAGATG	5940
15	TTTCTGGTAT	GCCGGGCCTT	GGCCGGCCTG	TTTCTGAGGG	AGGAATTGGT	TTTGTTTACC	6000
	GCCTGGCAAT	GGCAATCCCA	GATAAGTGGA	TAGATTATTT	AAAGAATAAG	AATGATGAAG	6060
20	ATTGGTCCAT	GAAGGAAGTA	ACATCGAGTT	TGACAAATAG	GAGATATACA	GAGAAGTGTA	6120
20	TAGCATATGC	GGAGACCCAT	GATCAGGTAT	ATTTAAATTTA	TTTCTACAAC	TAAATAATTC	6180
	TCAGAACAAT	TGTTAGATAG	AATCCAAATA	TATACGTCCT	GAAAGTATAA	AAGTACTTAT	6240
25	TTTCGCCATG	GGCCTTCAGA	ATATTGGTAG	CCGCTGAATA	TCATGATAAG	TTATTTATCC	6300
	AGTGACATTT	TTATGTTCAC	TCCTATTATG	TCTGCTGGAT	ACAGTCTATT	GTTGGTGACA	6360
30	AGACCATTGC	ATTTCTCCTA	ATGGACAAAG	AGATGTATTC	TGGCATGTCT	TGCTTGACAG	6420
30	ATGCTTCTCC	TGTTGTTGAT	CGAGGAATTG	CGCTTCACAA	GGTTTGTCTG	TTTCTATTGC	6480
	ATTTTAAGGT	TCATATAGGT	TAGCCACGGA	AAATCTCACT	CTTTGTGAGG	TAACCAGGGT	6540
35	TCTGATGGAT	TATTCAATTT	TCTCGTTTAT	CATTTGTTTA	TTCTTTTCAT	GCATTGTGTT	6600
	TCTTTTTCAA	TATCCCTCTT	ATTTGGAGGT	AATTTTTCTC	ATCTATTCAC	TTTTAGCTTC	6660
40	TAACCACAGA	TGATCCATTT	TTTCACAATG	GCCTTGGGAG	GAGAGGGGTA	CCTCAATTTC	6720
40	ATGGGTAACG	AGGTATGTCT	TACATCTTTA	GATATTTTGT	GATAATTACA	ATTAGTTTGG	6780
	CTTACTTGAA	CAAGATTCAT	TCCTCAAAAT	GACCTGAACT	GTTGAACATC	AAAGGGGTTG	6840
45	AAACATAGAG	GAAAACAACA	TGATGAATGT	TTCCATTGTC	TAGGGATTTC	TATTATGTTG	6900
	CTGAGAACAA	ATGTCATCTT	AAAAAAAACA	TTGTTTACTT	TTTTGTAGTA	TAGAAGATTA	6960
50	CTGTATAGAG	TTTGCAAGTG	TGTCTGTTTI	GGAGTAATTG	TGAAATGTTT	GATGAACTTG	7020
50	TACAGTTTGG	CCATCCTGAG	TGGATTGACI	TCCCTAGAGA	GGGCAATAAT	TGGAGTTATG	7080
	ACAAATGTAG	ACGCCAGTGG	AACCTCGCGG	ATAGCGAACA	CTTGAGATAC	AAGGTTCAAG	7140
55	TATTTTGAAT	CGCAGCTTGT	TAAATAATCI	AGTAATTTT	G AGATTGCTTA	CTTGGAAGTC	7200
	ጥል ርጥጥርርጥጥ ር	TGGGGATGAT	י אכירייר אידיידיר	י איירידינידירי	ACTTATTTC	CAACCGAATT	7260

	TCTGATTTTT	GTTTCGAGAT	CCAAGTATTA	GATTCATTTA	CACTTATTAC	CGCCTCATTT	7320
5	CTACCACTAA	GGCCTTGATG	AGCAGCTTAA	GTTGATTCTT	TGAAGCTATA	GTTTCAGGCT	7380
J	ACCAATCCAC	AGCCTGCTAT	ATTTGTTGGA	TACTTACCTT	TTCTTTACAA	TGAAGTGATA	7440
	CTAATTGAAA	TGGTCTAAAT	CTGATATCTA	TATTTCTCCG	TCTTTCCTCC	CCCTCATGAT	7500
10	GAAATGCAGT	TTATGAATGC	ATTTGATAGA	GCTATGAATT	CGCTCGATGA	AAAGTTCTCA	7560
	TTCCTCGCAT	CAGGAAAACA	GATAGTAAGC	AGCATGGATG	ATGATAATAA	GGTAAAATCA	7620
15	TCTAAAGTTG	AAAGTGTTGG	GTTTATGAAG	TGCTTTAATT	CTATCCAAGG	ACAAGTAGAA	7680
13	ACCTTTTTAC	CTTCCATTTC	TTGATGATGG	ATTTCATATT	ATTTAATCCA	ATAGCTGGTC	7740
	AAATTCGGTA	ATAGCTGTAC	TGATTAGTTA	CTTCACTTTG	CAGGTTGTTG	TGTTTGAACG	7800
20	TGGTGACCTG	GTATTTGTAT	TCAACTTCCA	CCCAAAGAAC	ACATACGAAG	GGTATATATG	7860
	TTTTACTTAT	CCATGAAATT	ATTGCTCTGC	TTGTTTTTAA	TGTACTGAAC	AAGTTTTATG	7920
25	GAGAAGTAAC	TGAAACAAAT	CATTTTCACA	TTGTCTAATT	TAACTCTTTT	TTCTGATCCT	7980
	CGCATGACGA	AAACAGGTAT	AAAGTTGGAT	GTGACTTGCC	AGGGAAGTAC	AGAGTTGCAC	8040
	TGGACAGTGA	TGCTTGGGAA	TTTGGTGGCC	ATGGAAGAGT	AAGGATTTGC	TTGAATAACT	8100
30	TTTGATAATA	AGATAACAGA	TGTAGGGTAC	AGTTCTCTCA	CCAAAAAGAA	CTGTAATTGT	8160
	CTCATCCATC	TTTAGTTGTA	TAAGATATCC	GACTGTCTGA	GTTCGGAAGT	GTTTGAGCCT	8220
35	CCTGCCCTCC	CCCTGCGTTG	TTTAGCTAAT	TCAAAAAGGA	GAAAACTGTT	TATTGATGAT	8280
33	CTTTGTCTTC	ATGCTGACAT	ACAATCTGTT	CTCATGACAG	ACTGGTCATG	ATGTTGACCA	8340
	TTTCACATCA	CCAGAAGGAA	TACCTGGAGT	TCCAGAAACA	AATTTCAATG	GTCGTCCAAA	8400
40	TTCCTTCAAA	GTGCTGTCTC	CTGCGCGAAC	ATGTGTGGTA	CAGTTCTTGC	CGTGTGACCT	8460
	CCCTTTTTAT	TGTGGTTTTG	TTCATAGTTA	TTTGAATGCG	ATAGAAGTTA	ACTATTGATT	8520
45	ACCGCCACAA	TCGCCAGTTA	AGTCCTCTGA	ACTACTAATT	TGAAAGGTAG	GAATAGCCGT	8580
43	AATAAGGTCT	ACTTTTGGCA	TCTTACTGTT	ACAAAACAAA	AGGATGCCAA	AAAAATTCTT	8640
•	CTCTATCCTC	TTTTTCCCTA	AACCAGTGCA	TGTAGCTTGC	ACCTGCATAA	ACTTAGGTAA	870
50	ATGATCAAAA	ATGAAGTTGA	TGGGAACTTA	AAACCGCCCT	GAAGTAAAGC	TAGGAATAGT	876
	CATATAATGI	CCACCTTTGG	TGTCTGCGCT	AACATCAACA	ACAACATACC	TCGTGTAGTC	882
55	CCACAAAGTG	GTTTCAGGGG	GAGGGTAGAG	TGTATGCAAA	ACTTACTCCT	ATCTCAGAGG	888
55	TAGAGAGGAT	TTTTTCAATA	GACCCTTGGG	TCAAGAAAA	AAGTCCAAAA	AGAAGTAACA	894

	GAAGTGAAAG CAACATGTGT AGCTAAAGCG ACCCAACTTG TTTGGGACTG AAGTAGTTGT	9000
	TGTTGTTGAA ACAGTGCATG TAGATGAACA CATGTCAGAA AATGGACAAC ACAGTTATTT	9060
5	TGTGCAAGTC AAAAAAATGT ACTACTATTT CTTTGTGCAG CTTTATGTAT AGAAAAGTTA	9120
	AATAACTAAT GAATTTTGCT AGCAGAAAAA TAGCTTGGAG AGAAATTTTT TATATTGAAC	9180
	TAAGCTAACT ATATTCATCT TTCTTTTTGC TTCTTCTTCT CCTTGTTTGT GAAGGCTTAT	9240
10	TACAGAGTTG ATGAACGCAT GTCAGAAACT GAAGATTACC AGACAGACAT TTGTAGTGAG	9300
	CTACTACCAA CAGCCAATAT CGAGGAGAGT GACGAGAAAC TTAAAGATTC GTTATCTACA	9360
15	AATATCAGTA ACATTGACGA ACGCATGTCA GAAACTGAAG TTTACCAGAC AGACATTTCT	9420
	AGTGAGCTAC TACCAACAGC CAATATTGAG GAGAGTGACG AGAAACTTAA AGATTCGTTA	9480
	TCTACAAATA TCAGTAACAT TGATCAGACT GTTGTAGTTT CTGTTGAGGA GAGAGACAAG	9540
20	GAACTTAAAG ATTCACCGTC TGTAAGCATC ATTAGTGATG TTGTTCCAGC TGAATGGGAT	9600
	GATTCAGATG CAAACGTCTG GGGTGAGGAC TAGTCAGATG ATTGATCGAC CCTTCTACCG	9660
25	ATTGGTGATC GCTATCCTTG CTCTCTGAGA AATAGGTGAG GCGAAACAAA AAATAATTTG	9720
	CATGATAAAA AGTCTGATTT TATGATCGCT ATCCTCGCTC TCTGAGAAAG AAGCGAAACA	9780
	AAGGCGACTC CTGGACTCGA ATCTATAAGA TAACAAAGGC GACTCCTGGG ACTCGAATCT	9840
30	ATAAGATAAC AAAGGCAATT CCAAGACTTG AATCTATAAA AAATTTAGTT AAGAATGATT	9900
	AACGTCCGAT CCTAATTCGA ATCGAGGCAT CTTACCACTC CATTGATAAT TATATAAGTC	9960
35	AATAAGTCAT ATAAAGTATT AAAAACTAAA TTGACTTGAT CGGTCTATCA AAAATAGATA	10020
	AATTGTGTTC ATATGTAACA TTTTTGTTGT CACAATTAGC TTAATTACAT CTTTCATGTG	10080
	CAATAACAAA GAAATGATAG GAATTTAGAG ATTCCAATTT TTTTGTTGCC ACAATTAACT	10140
40	TAATTACATC TTTCATTTGC AATAACAAAG AAATGATAGG AATTTAGAGA TCCAGTGTCA	10200
	ATACACAACC TAGGCCAACA TCGAAAGCAT AACTGTAAAC TCATGCATGA AGAAATCAGT	10260
45	CGTAAAAATG AATAAATGCG ACATAAAAAC AAATTGCATG TATCATTAAT GTGACTTAAC	10320
	TACAAGTAAA AATAAATTTA ACAAATGTAA CTTAACTACA AGTAAAAATA AATTGCTTCT	1038
	ATCATTAACA AACAAACAGA ATTAAAAAGA AAAAAACATA CTAAATCTTA CCGTCATTCG	1044
50	ATAAAAAAA ATACCAAATT CATAATGCAA GGAAAACGAA ACGCGTCCTG ATCGGGTATC	1050
	AACGATGAAA TGGACCAGTT GGATCGACTG CCTGCACAAC GTTAGGTATG CCAAAAAAAA	1056
55	GAACACGATC CTTTGCACCC GTTCGATGAT TATCAGTATG TTCACAAAAA AAACTTAAGT	1062
	TCATCCCAGT GTACAACAGC CCCAACATCT GCCCCAAGTA ACAAAAAACA ACCAATTTAT	1068

PCT/IB98/00270

		•					•
	CTTATTCTTA	TCTGCCACAA	AATAATCGGT	TTCACACTAT	TCTCTTGTTA	TACAAAATTG	10740
	ACAAGTAGGA	AGGAGAGGAG	TCATCCAAAT	AAACGGTGCA	CGTTCTTTGA	GAAAAGTCTT	10800
5	ATTTTTCGTA	AGATCCAATT	TCAACAAACT	TTTCTTCAAG	TCAAAATTCC	TGATAGTGTA	10860
	TCTCCTCTCG	ACGACCTCTT	GCATTGAACG	ATCTCCGCTT	ATCATGAAAA	GTTGCTTGGA	10920
10	TAACAAGTAT	TGCAAGGGGG	GGACAGTAGC	TATTAAGTTA	GTCGGCCCAA	GGAAATGGAG	10980
	GAGTGATAGT	CTCGAATATT	ATTCACCTCT	TTAGCATTAC	CCGGTCTGGC	TTTAAGGAGT	11040
1.5	TACGTCTTTT	ACGCTCGCCA	ATTTCTTTTT	TTAGAATGGT	TGGTGTCAAA	ATCGCGAGTT	11100
15	GTGGAAGGTT	CAAGTTACTC	GATTCGTGAT	TTTCAAGTAT	GAGTGGTGAG	AGAGATTCGA	11160
	TATTTTCACG	AGGTGTATTC	GAGGTCTAGT	AGAACGAAGG	GTGTCACTAA	TGAAAGTTTC	11220
20 ′	AAGAGTTCAT	CATCATCTTC	TTCTAGTAGA	TTTTCGCTTT	CAAATGAGTA	TGAAAATTCT	11280
	тсстсттттс	TATTGATTT	CTTCATTGTT	TTCTTCATTG	TTGTGGTTGT	TATTGAAAAG	11340
25	AAAGAAAATT	TATAACAGAA	AAAGATGTCA	AAAAAAAGGT	AAAATGAAAG	AGTATCATAT	11400
25	ACTTAAAGAG	TTGCGTAGAG	ATAAGTCAAA	AGAAACAGAA	TTATAGTAAT	TTCAGCTAAG	11460
	TTAGAATTC		,	· .			11469
30	(2) INFORM	MATION FOR S	SEQ ID NO: 3	30:			•
	(i) :	SEQUENCE CHA	ARACTERISTIC : 26 base pa				

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: YES

45

55

40

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 30:
- 50 GGAATTCCAG TCGCAGTCTA CATTAC
 - (2) INFORMATION FOR SEQ ID NO: 31:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 28 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single

		(D) TOPOLOGY: linear	
5	(ii)	MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "Synthetic DNA Primer"	
	(iii)	HYPOTHETICAL: NO	
	(iv)	ANTI-SENSE: YES	
10			
	,		
1.5		SEQUENCE DESCRIPTION: SEQ ID NO: 31:	
15		G AGGCATTAAG ATTTCTGG	28
	(2) INFOR	MATION FOR SEQ ID NO: 32:	
20	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
25	(ii)	MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "Synthetic DNA Primer"	
	(iii) :	HYPOTHETICAL: NO	
30	(iv)	ANTI-SENSE: YES	
35	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 32:	
	CGGGATCCA	A AGAAATTCTC GAGGTTACAT GG	32
40	(2) INFOR	MATION FOR SEQ ID NO: 33:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
45		(D) TOPOLOGY: linear	
•	(ii) 1	MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "Synthetic DNA Primer"	
50	(iii)	HYPOTHETICAL: NO	
	(iv)	ANTI-SENSE: YES	
55			
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 33:	
		The state of the s	

	CGGGATCCGG GGTAATTTTT ACTAATTTCA TG	32
5	(2) INFORMATION FOR SEQ ID NO: 34:	
J	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs	
10	(B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	<pre>(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "Synthetic DNA Primer"</pre>	
15	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: YES	
20		
20	A CONTRACT PROGRESSION OF TRACT	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 34:	2.2
25	CGGGATCCCG TATGTCTCAC TGTGTTTGTG GC	32
	(2) INFORMATION FOR SEQ ID NO: 35:	
30	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 32 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
35	<pre>(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "Synthetic DNA Primer"</pre>	
	(iii) HYPOTHETICAL: NO	
40	(iv) ANTI-SENSE: YES	
.0		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 35:	
45	CGGGATCCCC CTACATACAT ATATCAGATT AG	. 32
	(2) INFORMATION FOR SEQ ID NO: 36:	
50	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 28 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single	
55	(D) TOPOLOGY: linear	
	<pre>(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "Synthetic DNA Primer"</pre>	

	(iii) HYPOTHETICAL: NO				
5	(iv) ANTI-SENSE: YES				
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 36: CCATCGATAC TTTAAGTGAT TTGATGGC	28			
	(2) INFORMATION FOR SEQ ID NO: 37:				
15	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 28 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single				
20	(D) TOPOLOGY: linear	•			
20	<pre>(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "Synthetic DNA Primer"</pre>				
25	(iii) HYPOTHETICAL: NO				
25	(iv) ANTI-SENSE: YES				
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 37:				
	CGGGATCCTG TTCTGATTCT TGATTTCC	28			
35	(2) INFORMATION FOR SEQ ID NO: 38:				
40	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2122 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 				
	(ii) MOLECULE TYPE: DNA (genomic)				
45	(iii) HYPOTHETICAL: NO				
٠	(iv) ANTI-SENSE: NO				
50					
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 38:				
	GTATGTCTCA CTGTGTTTGT GGCTGTGTGT GTTTTTTCT CTGTCTTTTT GTGTTTTGTG	60			
55	TAATTGGGGC TCTTTAAAGT TGGTATTGTG TATACCCTTT TGAGTATAGT CTTTGAGGAA	120			

	GCAAAATGAT	GAATCTTGAT	TGACATTAGT	AAGGGTTGTA	ACTTTTTGAA	GTTTGGTTAG	180
	GTGTAATTGA	GTTTGGCTTG	TGTGTCTGTG	TGTCGAGGTT	ATTTTTTGG	TTTGTGTTAT	240
5	TGGGGATTCT	TAAAAGTTGG	TATTGTGTAT	ACCCTTTTGA	GTATAGTCTT	TGAGGAAGCA	300
	AAAATGATGA	ATCTTGATTG	GCATTAGTAA	AGGTTGTAGC	TTTTTGAAGT	GTGGTTAGGT	360
	GTAATTGAGT	TTGGCTTGTG	TGTCTGTGTG	TTTTGGAATC	CTGATGTGTG	TCAAGTCCTG	420
10	ATATGGGTCG	AGGTTCTTTC	TTTGGTTTGT	GTAATTGGGG	GTTCTTAAAA	GTTGGTATTA	480
	TGTACCTTTT	TAAGAATAGT	GTCTGAGAAA	GCAAAATCGA	TGAATTTTGA	TTGACAGCAT	540
15	ATTCTTTGAG	AAAGCAAAAA	ATGGTGAGTT	TTCATGGAGA	AACTTGATTG	ACATTACTAA	600
	AGGTAGCAAC	TTTTTCAACT	CCTGATATGG	GTCAAGGTTC	TTTGTTTGGT	TTGTGTAATT	660
	TGGGGTTCTT	TGAAGTTTTG	AGAAAGAAAA	ATTATGATTT	TTCATGGAGA	AATTTGATTT	720
20	ACATTAATAA	AGGTAGTAGC	TTTTTAAAGT	GTGGTCAGCT	GTAATGAGTT	CAGCTTGGTT	780
	TAAAGGGGCC	CTACATATGG	TGCTTTCTGG	TGAGATATTT	GTTGCTCCAC	CATACGAGTT	840
25	ATAAGAATCA	TAGTGTTAGG	ATCTTTTTC	TTTTTTTT	CATTTTTCAC	TTGACTAGCT	900
	ACTAGAGGAG	TGATCTTGAC	GGCGGAAAAT	CTTAGAAAGG	GGAAGGTTGT	TTGCATCAAC	960
20	TGGTGTTATA	TGTGCAAGGA	GACGGGAGAT	GATGTAGATC	ATCTTCTTCT	TCATTGTGGT	1020
30	CTTTCCATGA	GGTTATGATG	TGATATGTTT	GAATGGTTTG	GTACTTCTTG	GCTATGCCAA	1080
	GAACTGTGAA	AGAATTGATA	TTCAGTTGGA	AGTGTGGAGT	TGGAAGAGTG	GAAGAATTGA	1140
35	CACTTGGTTC	CATTAGCTTT	AATGTGGGTG	GTGTGGAGAG	AGAGAGAAAT	AGGAGAGCTT	. 1200
	TTGAGGGGGT	AGAGTTGAGC	TTTCCTCAGT	TGAGAAGTAG	CCTTTGATAT	CTTTTTTTT	1260
40	TTTTTTTGTA	CACCCATAGA	ATTCCCAATT	GTATAGAAGA	TTGGGTGGAG	TTTGTAGAGA	1320
+0 .	ATCATCTTTT	GTAGTAGATT	CTTTACCTTT	TGGTATATCC	ATTGTATACA	GCCAGGCCTT	1380
•	TGACTATGTT	TATGAATGAA	TATACATTAC	TTGAAAAAAA	AAGAAGTGAA	GCCAGŢCTGT	1440
45	TGTACCTTTG	TAGACAATGT	TGTTGCAGCA	TCTTGATAAT	TCCCTGAAAA	TTGTCTCCCT	1500
	GAAGGAATAG	TTTGGTTGAT	ATTGATTATT	TCTTGGTTTG	TTTAATTCGG	TGTTCTTGAA	1560
50	GGCCATTTTA	AATCCTTTGA	CATTGTTAAA	GGTGTTTACA	AGTGTTGGTC	TGGGTTTAAA	1620
30	AGCACCTCTT	GTATGGTGCT	TTCTGGAGTG	ATCTTTCTTC	CTCCAAAAGA	GAAGTTGCAA	168
	GAATCAGTGT	GTGTACTTTT	TTCTCTTGTA	TGATCAGATC	TTTTTTCAAT	TTTTCCGTTT	174
55	TAGTTGATTT	ATCCATATAG	TGAAAGTTGG	TGTCATAGTT	GCTGTTTGTG	GACTTCCTGT	180
	AAAAGTTTTT	TGATATACTT	AAAAAATTGT	CACACAGAAG	AAAGAGTTTT	TTACCATTAC	186

	-	ſ	١
1	٦.	Ţ	1
	·	•	,

5	TTAAGCTAGA	TGGGACTGTT	TGATTCTTAG	ACCAAATAAT	GAACCTTTTT	GTTCTCTTAA	1920
	CGTGTACTTG	AAATAGTTTG	GTAAAATTGT	GATAGGAAAA	AAGATAATTC	TTGATTGCTT	1980
	TTGGAGCATC	ACTTCTAATC	ATAAAAGTCT	TTGCTCTCTT	CAACCATGAA	TGATAAATTG	2040
	GACACTTATG	TGGCCCTAAG	TTGCTCTCAG	TAGTGGTCTT	TAATTGTGGA	GATATAACTA	210
0	ATCTGATATA	TGTATGTAGG	GA				212

CLAIMS

- 1. A method of affecting enzymatic activity in a plant (or a cell, a tissue or an organ thereof) comprising expressing in the plant (or a cell, a tissue or an organ thereof) a nucleotide sequence wherein the nucleotide sequence codes, partially or completely, for an intron of a class A potato starch branching enzyme in an antisense orientation, optionally together with a nucleotide sequence which codes, partially or completely, for an intron of a class B starch branching enzyme in an antisense or sense orientation; and wherein the nucleotide sequence does not contain a sequence that is antisense to an exon sequence normally associated with the intron.
- 2. A method according to claim 1 wherein starch branching enzyme activity is affected and/or wherein the levels of amylopectin are affected and/or the composition of starch is changed.

15

10

5

3. A method of affecting enzymatic activity in a starch producing organism (or a cell, a tissue or an organ thereof) comprising expressing in the starch producing organism (or a cell, a tissue or an organ thereof) a nucleotide sequence wherein the nucleotide sequence codes, partially or completely, for an intron of a class A starch branching enzyme in an antisense orientation, optionally together with a nucleotide sequence which codes, partially or completely, for an intron of a class B starch branching enzyme in an antisense or sense orientation; and wherein starch branching enzyme activity is affected and/or the levels of amylopectin are affected and/or the composition of starch is changed.

25

- 4. A method according to claim 3 wherein the nucleotide sequence does not contain a sequence that is antisense to an exon sequence normally associated with the intron.
- 30
- 5. A method according to any one of the preceding claims wherein the enzymatic activity is reduced or eliminated.

6. A method according to any one of the preceding claims wherein the nucleotide sequence codes for at least substantially all of at least one intron in an antisense orientation.

5

15

- 7. A method according to any one of the preceding claims wherein the nucleotide sequence codes for all of at least one intron in an antisense orientation.
- 8. A method according to any one of the preceding claims wherein the nucleotide sequence comprises the complement of SEQ. ID. No. 38, or a fragment thereof.
 - 9. A method according to any one of the preceding claims wherein the nucleotide sequence is expressed by a promoter having a sequence shown as SEQ.I.D. No. 14 or a variant, derivative or homologue thereof.
 - 10. An antisense sequence comprising the nucleotide sequence as defined in claim 8 or a variant, derivative or homologue thereof.
- 20 11. A promoter having a sequence shown as SEQ.I.D. No. 14, or a variant, derivative or homologue thereof.
 - 12. A promoter according to claim 11 in combination with a gene of interest ("GOI").

- 13. A construct capable of comprising or expressing the invention according to any one of claims 10 to 12.
- 14. A vector comprising or expressing the invention according to any one of 30 claims 10 to 13.

5

10

*

- 15. A combination of nucleotide sequences comprising a first nucleotide sequence coding for a recombinant enzyme; and a second nucleotide sequence which corresponds to an intron in antisense orientation; wherein the intron is an intron that is associated with a genomic gene encoding an enzyme corresponding to the recombinant enzyme; and wherein the second nucleotide sequence does not contain a sequence that is antisense to an exon sequence normally associated with the intron.
- 16. A cell, tissue or organ comprising or expressing the invention according to any one of claims 10 to 15.
- 17. A transgenic starch producing organism comprising or expressing the invention according to any one of claims 10 to 16.
- 18. A transgenic starch producing organism according to claim 17 wherein the organism is a plant.
 - 19. A starch obtained from the invention according to any one of the preceding claims.
- 20. A nucleotide sequence that is antisense to an intron of class A SBE.
- 21. A method for modifying starch production in an organism, comprising transforming the organism with a transgene capable of expressing an antisense intron sequence relating to class A SBE and a transgene capable of expressing an antisense intron sequence relating to class B SBE, thereby reducing or eliminating endogenous class A and class B production, and a further sequence encoding a SBE from a heterologous source.

1/27

SUBSTITUTE SHEET (rule 26)

\$

SUBSTITUTE SHEET (rule 26)

SUBSTITUTE SHEET (rule 26)

SUBSTITUTE SHEET (rule 26)

......

SUBSTITUTE SHEET (rule 26)

SUBSTITUTE SHEET (rule 26)

WO 98/37213 PCT/IB98/00270

9/27

WO 98/37213 PCT/IB98/00270

SUBSTITUTE SHEET (rule 26)

						·
10 123456789012345	20 56789012345	30 678901234	. 40 5678901234	50 15678901234	60 567890	,
ATCATGGCCAATTAC						60
GACCGGTCCTACTAC	_AGACGATACT	AACCCGTGG	AACTGTTGC	ATCTGCTTCTT	AGAACT	120
CTATGGCTATTTTC	GTTAGCTTGGC	GTCGGTTTC	AACATAGTTI	TTGTTTTCAA	ACTCTT	180
CATTTACAGTCAAA	ATGTTGTATGG	TTTTTGTT	TCCTCAATG	ATGTTTACAGT	GTTGTG	240
TIGTCATCTGTACT	ITTGCCTATTA	CTTGTTTTC	SAGTTACATG	TTAAAAAAGTG	TTTATT	300
TTGCCATATTTTGT	ICTCTTATTAT	PTATTATCAT	TACATACATT	ATTACAAGGAA	AAGACA	360
AGTACACAGATCTT	AACGTTTATGT	PTCAATCAA(TTTTGGAGG	CATTGACAGGT	ACCACA	420
AATTTTGAGTTTAT	GATTAAGTTC	AATCTTAGA/	ATATGAATTT	AACATCTATTA	TAGATG	480
CATAAAAATAGCTA	ATGATAGAAC	ATTGACATT:	rggcagagct	TAGGGTATGGT	TATATCC	540
AACGTTAATTTAGT	AATTTTTGTT	ACGTACGTA:	ratgaaatat	TGAATTAATCA	CATGAA	600
CGGTGGATATTATA	TTATGAGTTG	GCATCAGCA	AAATCATTGG	TGTAGTTGACT	GTAGTT	660
GCAGATTTAATAAT	AAAATGGTAA	TTAACGGTC	AKAATTATAE	TAACTCTCATT	TCAAGT	720
GGGATTAGAACTAG	TTATTAAAAA	AATGTATAC	ITTAAGTGAT	TTGATGGCATA	TAATTT	780
AAAGTTTTTCATTT	'CATGCTAAAA'	TTGTTAATT	attgtaatgt	AGACTGCGACT	GGAATT	840
ATTATAGTGTAAAT	TTATGCATTC	agtg†aaaa'	TTAAAGTATT	GAACTTGTCT	STTTTAG	900
AAAATACTTTATAC	TTTAATATAG	GATTTTGTC	ATGCGAATŤT	'AAATTAATCG!	ATATTGA	960
ACACGGAATACCAA	ааттааааа	GATACACAT	GGCCTTCATA	TGAACCGTGA	ACCTTTG	1020
ATAACGTGGAAGTT	'CAAAGAAGGT	'AAAGTTTAA	GAATAAACTG	ACAAATTAAT	TCTTTT	1080
ATTTGGCCCACTAC	TAAATTTGCT	TTACTTTCT	AACATGTCAA	GTTGTGCCCT	CTTAGTT	1140
GAATGATATTCATT	TTTCATCCCA	TAAGTTCAA	TTTGATTGTC	'ATACCACCCA'	TGATGTT	1200
CTGAAAAATGCTTC	GCCATTCACA	AAGTTTATC	TTAGTTCCTA	TGAACTTTAT	AAGAAGC	1260
TTTAATTTGACATC	GTTATTTATAT	TAGATGATA	TAATCCATGA	CCCAATAGAC	aagtgta	1320
TTAATATTGTAACT	ITTGTAATTGA	GTGTGTCTA	CATCTTATTO	CAATCATTTAA	GGTCATT	·1380
TTATTAAATAAAA	ITTTGACATTC	TAAAACTTI	'AAGCAGAAT <i>I</i>	LAATAGTTTAT	CAATTAT	1440
TAAAAACAAAAAA	CGACTTATTTA	ATAAATCAAC	AAACAATTT	ragattgctcc	AACATAT	1500

FIG. 12

WO 98/37213 PCT/IB98/00270

13 / 27

10	20 45678901234	30 5678901234	40 5678901234	50 1567890123456789	0
				TTTATAGCTTATTT	
TTTAGCCTAACCA	ACGAATATTTC	TAAACTCACA	ACTTGATTA	AAAGGGATTTACAAC	A 1620
GATATATATAAGT	AGTGACAAATO	TTGATTTTA	AKTTTTAK	TTTGGAGGTCAAAAT	rt 1680
TACCATAATCATT	TGTATTTATA	ATTAAATTTT	AATATCTTA	TTTATACATATCTAG	ra 1740
AACTTTTAAATAT	ACGTATATAC	AAAATATAAAA	ATTATTGGCG	TTCATATTAGGTCAA	ra 1800
AATCCTTAACTAT	'ATCTGCCTTA	CCACTAGGAG	AAAGTAAAAA	ACTCTTTACCAAAA	TA 1860
CATGTATTATGTA	TACAAAAAGT	CGATTAGATT	ACCTAAATAG	AAATTGTATAACGAG	TA 1920
AGTAAGTAGAAAT	ЭААААААТА:	TACAATACTA	ТАТАААААА	GTTTTACTTCAATTT	CG 1980
AAACTAATGGGGT	CTGAGTGAAA	TATTCAGAAA	GGGGAGGACT	'AACAAAAGGGTCATA	AT 2040
CTTTTTTEATEA	AAAGCCACTAA	AATGAGGAAA	TCAAGAATC	GAACATACAAGAAGG	CA 2100
GCAGCTGAAGCAI	A AGTACCATAA	TTTAATCAAT M	GGAAATTAAT E I N	TTCAAAGTTTTATCA F K V L S	AA 2160 K
ACCCATTCGAGG		CTTTCTCACC		MTCAGGGgtaattttt S G	ac 2220
				attttccaatatatct	gg 2280
atcatctcctta	gttttttattt	tatttttat	aatatcaaat	tatggaagaaaaatga	aca 2340
cttgtagagcca	tatgtaagtat	catgtgacaa	atttgcaag	gtggttgagtgtata	aaa 2400
ttcaaaaattga	gagatggaggg	ggggtgggg	pbaragacaa	tatttagaaagagtg	ttc 2460
taggaggttatg	gaggacacgga	atgaggggtag	gaaggttagt	taggtatttgagtgt	tgt 2520
ctggcttatcct	ttcatactag	tagtcgtggaa	attatttggg	tagtttcttgttttg	tta 2580
tttgatctttgt	tattctattt	tctgtttcttg	gtacttcgat	tattgtattatatat	ctt 2640
gtcgtagttatt	gttcctcggt	aagaatgctc	tagcatgctt	cctttagtgttttat	cat 2700
gccttcttata	ttcgcgttgc	tttgaaatgc	tttacttta	gccgagggtctatta	gaa 2760
acaatctctcta	tctcgtaagg	taggggtaaa	gtcctcacca	cactccacttgtggg	att 2820
acattgtgttt	gttgttgtaaa	tcaattatgt	atacataata	agtggatttttaca	aca 2880
caaatacatggt	caagggcaaa	gttctgaaca	cataaagggt	tcattatatgtccag	rgga 2940
tatgataaaaat	tgtttctttg	tgaaagttat	ataagatttg	gttatggcttttgctg	gaa 3000

FIG. 12 CONTINUED

10 20 30 40 50 60 12345678901234567890123456789012345678901234567890	
acataataagttataatgctgagatagctactgaagtttgttt	3060
gtaccaataatagattccgtatcgaacgagtatgttttgattacctggtcatgatgtttc	3120
tattttttacatttttttggtgttgaactgcaattgaaaatgttgtatcctatgagacgg	3180
atagttgagaatgtgttctttgtatggaccttgagaagctcaaacgctactccaataatt	3240
tctatgaattcaaattcagtttatggctaccagtcagtccagaaattaggatatgctgca	3300
tatacttgttcaattatactgtaaaatttcttaagttctcaagatatccatgtaacctcg	3360
agaatttctttgacagGCTTCTAGAAATAAGATATGTTTTCCTTCTCAACATAGTACTGG	3420
ACTGAAGTTTGGATCTCAGGAACGGTCTTGGGATATTTCTTCCACCCCAAAATCAAGAGT	3480
TAGAAAAGATGAAAGGgtatgtttgataatttatatggttgcatggatagtatataaata	3540
R K D E R gttggaaaacttctggactggtgctcatggcatatttgatctgtgcaccgtgtggagatg	3600
tcaaacatgtgttacttcgttccgccaatttataataccttaacttgggaaagacagctc	3660
tttactcctgtgggcatttgttatttgaattacaatctttatgagcatggtgttttcaca	3720
ttatcaacttctttcatgtggtatataacagtttttagctccgttaatacctttcttctt	3780
tttgatataaactaactgtggtgcattgcttgcbkkkATGAAGCACAGTTCAGCTATTTC	3840
CGCTGTTTTGACCGATGACGACAATTCGACAATGGCACCCCTAGAGGAAGATGTCAAGAC A V L T D D D N S T M A P L E E D V K T	3900
TGAAAATATTGGCCTCCTAAATTTGGATCCAACTTTGGAACCTTATCTAGATCACTTCAG ENIGLUNLDPTLEPYLDHFR	3960
ACACAGAATGAAGAGATATGTGGATCAGAAAATGCTCATTGAAAAATATGAGGGACCCCT H R M K R Y V D Q K M L I E K Y E G P L	4020
TGAGGAATTTGCTCAAGgtaacagccaaaagttgtgctttaggcagtttgaccttatttt E E F A Q G	4080
ggaagatgaattgtttatacctactttgactttgctagagaattttgcataccggggagt	4140
aagtagtggctccatttaggtggcacctggccatttttttgatcttttaaaaagctgttt	4200
gattgggtcttcaaaaagtagacaaggtttttggagaagtgacacacccccggagtgtc	4260
agtggcaaagcaaagattttcactaaggagattcaaaatataaaaaagtatagacataa	4320
agaagctgaggggattcaacatgtactatacaagcatcaaatatagtcttaaagcaattt	4380
tgtagaaataaagaaagtetteettetgttgetteacaattteettetattateatgagt	4440
tactctttctgttcgaaatagcttccttaatattaaattcatgatacttttgttgagatt	4500

FIG. 12 CONTINUED

10 20 30 40 50 60	
123456789012345678901234567890123456789012345678901234567890	
tagcagttttttcttgtgtaaactgctctctttttttgcagGTTATTTAAAATTTGGATT Y L K F G F	4560
CAACAGGGAAGATGGTTGCATAGTCTATCGTGAATGGGCTCCTGCTCAGtaggtcct	4620
	4680
cgtctactacaaaatagtagtttccatcatcataacagattttcctattaaagcatgatg	
ttgcagcatcattggctttcttacatgttctaattgctattaaggttatgcttctaatta	4740
actcatccacaatgcagGAAGCAGAAGTTATTGGCGATTTCAATGGAACGGTTCT E A E V I G D F N G W N G S	4800
AACCACATGATGGAGAAGGACCAGTTTGGTGTTTTGGAGTATTAGAATTCCTGATGTTGAC N H M M E K D O F G V W S I R I P D V D	4860
N H M M E K D Q F G V W S I R I P D V D AGTAAGCCAGTCATTCCACACACTCCAGAGTTAAGTTTCGTTTCAAACATGGTAATGGA	4920
SKPVIPHNSRVKFRFKHGNG	
GTGTGGGTAGATCGTATCCCTGCTTGGATAAAGTATGCCACTGCAGACGCCACAAAGTTT V W V D R I P A W I K Y A T A D A T K F	4980
GCAGCACCATATGATGGTGTCTACTGGGACCCACCACCTTCAGAAAGgttttgttattca	5040
A A P Y D G V Y W D P P P S E R taccttgaagctgaattttgaacaccatcatcacaggcatttcgattcatgttcttacta	5100
gtcttgttatgtaagacattttgaaatgcaaaagttaaaataattgtgtctttactaatt	5160
tggacttgatcccatactctttcccttaacaaaatgagtcaattctataagtgcttgaga	5220
acttactacttcagcaattaaacagGTACCACTTCAAATACCCTCGCCCTCCCAAACCCC	5280
Y H F K Y P R P P K P R	5340
GAGCCCCACGAATCTATGAAGCACATGTCGGCATGAGCAGCTCTGAGCCACGTGTAAATT A P R I Y E A H V G M S S S E P R V N S	2240
CGTATCGTGAGTTTGCAGATGATGTTTTACCTCGGATTAAGGCAAATAACTATAATACTG	5400
Y R E F A D D V L P R I K A N N Y N T V	
TCCAGTTGATGGCCATAATGGAACATTCTTACTATGGATCATTTGGATATCATGTTACAA	5460
Q L M A I M E H S Y Y G S F G Y H V T N	
ACTITITIGCTGTGAGCAGTAGATATGGAAACCCGGAGGACCTAAAGTATCTGATAGATA	5520
F F A V S S R Y G N P E D L K Y L I D K	
AAGCACATAGCTTGGGTTTACAGGTTCTGGTGGATGTAGTTCACAGTCATGCAAGCAA	
AHSLGLQVLVDVVHSHASNN	2
ATGTCACTGATGGCCTCAATGGCTTTGATATTGGCCAAGGTTCTCAAGAATCCTACTTTC	
V T D G L N G F D I G Q G S Q E S Y F H	
ATGCTGGAGAGCGAGGGTACCATAAGTTGTGGGATAGCAGGCTGTTCAACTATGCCAATT A G F R G Y H K I. W D S R I. F N Y A N W	
	-
GGGAGGTTCTTCGTTTCCTTCTTTCCAACTTGAGGTGGTGGCTAGAAGAGTATAACTTTC E V L R F L L S N L R W W L E E Y N F I	
E V L R F L L S N L R W W L E E Y N F I ACGGATTTCGATTTGATGGAATAACTTCTATGCTGTATGTTCATCATGGAATCAATATGC	
G F R F D G I T S M L Y V H H G I N M (
GATTTACAGGAAACTATAATGAGTATTTCAGCGAGGCTACAGATGTTGATGCTGTGGTCT	
	<u> </u>
ATTTAATGTTGGCCAATAATCTGATTCACAAGATTTTCCCAGATGCAACTGTTATTGCC	-
	E
AAGATGTTTCTGGTATGCCGGGCCTTGGCCGGCCTGTTTCTGAGGGAGG	
	V

FIG. 12 CONTINUED

10	20	30	40	50 60	
1234567890123456					
TTTACCGCCTGGCAAT			ATAGATTATTI I D Y L	CAAAGAATAAGAATG K N K N D	6060
ATGAAGATTGGTCCAT	GAAGGAAGTA	ACATCGAGT	TTGACAAATAC	GAGATATACAGAGA	6120
E D W S M AGTGTATAGCATATGC			L T N R ttttaaattta	RYTEK	6180
CIAYA		0 0			
taattctcagaacaat		-	atatacgtcct	gaaagtataaaagt	6240
acttattttcgccatq	ggccttcaga	atattggta	gccgctgaata	atcatgataagttat	6300
ttatccagtgacatt	ttatgttcac	tcctattat	gtctgctggat	acagTCTATTGTTG	6360
					6430
GTGACAAGACCATTGG					6420
TGACAGATGCTTCTCC	TGTTGTTGAT V V D		GCGCTTCACA A L H K	AGgtttgtctgtttc	6480
tattgcattttaagg				tctttgtgaggtaac	6540
cagggttctgatgga	ttattcaattt	tctcgttta	.tcatttgttt	attcttttcatgcat	6600
tgtgtttcttttca	atatccctctt	atttggagg	taatttttct	catctattcactttt	6660
agcttctaaccacag.	ልጥርልጥርርልጥጥ	тттсасаат	CCCCTTCCGA(GGAGAGGGGTACCTC	6720
	MIHF	F T M	A L G	GEGYL	
AATTTCATGGGTAAC N F M G N	GAGgtatgtct E	tacatcttt	agatattttg	tgataattacaatta	6780
gtttggcttacttga	acaagattcat	tcctcaaaa	tgacctgaac	tgttgaacatcaaag	6840
gggttgaaacataga	ggaaaacaaca	tgatgaatg	rttccattgt	ctagggatttctatt	6900
atgttgctgagaaca	aatgtcatctt	aaaaaaa	attgittact	tttttgtagtataga	6960
agattactgtataga	gtttgcaagtg	tgtctgttt	tggagtaatt	gtgaaatgtttgatg	7020
	GCCATCCTGAG		TTCCCTAGAG	AGGGCAATAATTGGA	7080
GTTATGACAAATGTA	GACGCCAGTGC	AACCTCGC	GATAGCGAAC	ACTTGAGATACAAGg	7140
	•	N L A taaataat		tagattgcttacttg	7200
gaagtctacttggtt	ctggggatgat	agctcatt	catcttgttc	tacttattttccaac	7260
cgaatttctgatttt	tgtttcgagat	ccaagtat	tagattcattt	acacttattaccgcc	7320
tcatttctaccacta	aggccttgato	gagcagctt	aagttgattct	ttgaagctatagttt	7380
caggctaccaatcca	cageetgetat	atttgttg	gatacttacct	tttctttacaatgaa	7440
gtgatactaattgaa	atggtctaaai	ctgatato	tatatttctcc	gtctttcctcccct	7500

FIG. 12 CONTINUED

WO 98/37213 PCT/IB98/00270

17 / 27

10 20 30 40 50 60 1234567890123456789012345678901234567890	
catgatgaaatgcagTTTATGAATGCATTTGATAGAGCTATGAATTCGCTCGATGAAAAG F M N A F D R A M N S L D E K	7560
TTCTCATTCCTCGCATCAGGAAAACAGATAGTAAGCAGCATGGATGATGATAATAAGGEA F S F L A S G K Q I V S S M D D D N K	7620
aaatcatctaaagttgaaagtgtttatgaagtgctttaattctatccaaggacaa	7680
gtagaaacctttttaccttccatttcttgatgatggatttcatattatttaatccaatag	7740
ctggtcaaattcggtaatagctgtactgattagttacttcactttgcagGTTGTTGTGTTT V V V F	.7800
TGAACGTGGTGACCTGGTATTTGTATTCAACTTCCACCCAAAGAACACATACGAAGGGta E R G D L V F V F N F H P K N T Y E G	7860
tatatgttttacttatccatgaaattattgctctgcttgtttttaatgtactgaacaagt	7920
tttatggagaagtaactgaaacaaatcattttcacattgtctaatttaactctttttct	7980
gatcctcgcatgacgaaacagGTATAAAGTTGGATGTGACTTGCCAGGGAAGTACAGAG Y K V G C D L P G K Y R V	8040
TTGCACTGGACAGTGATGCTTGGGAATTTGGTGGCCATGGAAGAGLaaggatttgcttga A L D S D A W E F G G H G R	8100
ataacttttgataataagataacagatgtagggtacagttctctcaccaaaaagaactgt	8160
aattgtctcatccatctttagttgtataagatatccgactgtctgagttcggaagtgttt	8220
gagectectgeectecectgegttgtttagetaattcaaaaaggagaaaactgtttatt	8280
gatgatetttgtetteatgetgaeataeaatetgtteteatgaeagACTGGTCATGATGT T G H D V	8340
TGACCATTTCACATCACCAGAAGGAATACCTGGAGTTCCAGAAACAAATTTCAATGGTCG D H F T S P E G I P G V P E T N F N G R	8400
TCCAAATTCCTTCAAAGTGCTGTCTCCTGCGCGAACATGTGTGGgtacagttcttgccgtg PNSFKVLSPARTCV	8460
tgacctccctttttattgtggttttgttcatagttatttgaatgcgatagaagttaacta	8520
ttgattaccgccacaatcgccagttaagtcctctgaactactaatttgaaaggtaggaat	8580
agccgtaataaggtctacttttggcatcttactgttacaaaacaaaaggatgccaaaaaa	8640
attcttctctatcctcttttcccctaaaccagtgcatgtagcttgcacctgcataaactt	8700
aggtaaatgatcaaaaatgaagttgatgggaacttaaaaccgccctgaagtaaagctagg	8760
aatagtcatataatgtccacctttggtgtctgcgctaacatcaacaacaacatacctcgt	8820
gtagtcccacaaagtggtttcagggggagggtagagtgtatgcaaaacttactcctatct	8880
cagaggtagaggattttttcaatagacccttggctcaagaaaaaagtccaaaaaagaa	8940
gtaacagaagtgaaagcaacatgtgtagctaaagcgacccaacttgtttgggactgaagt	9000

FIG. 12 CONTINUED

	<u></u>
10 20 30 40 50 60 12345678901234567890123456789012345678901234567890	
agttgttgttgttgaaacagtgcatgtagatgaacacatgtcagaaaatggacaacacag	9060
ttattttgtgcaagtcaaaaaatgtactactatttctttgtgcagctttatgtatagaa	9120
aagttaaataactaatgaattttgctagcagaaaaatagcttggagagaaattttttata	9180
ttgaactaagctaactatattcatctttctttttgcttcttcttctccttgtttgt	9240
GCTTATTACAGAGTTGATGAACGCATGTCAGAAACTGAAGATTACCAGACAGA	9300
AGTGAGCTACTACCAACAGCCAATATCGAGGAGAGTGACGAGAAACTTAAAGATTCGTTA S E L L P T A N I E E S D E K L K D S L	9360
TCTACAAATATCAGTAACATTGACGAACGCATGTCAGAAACTGAAGTTTACCAGACAGA	9420
S T N I S N I D E R M S E T E V Y Q T D ATTTCTAGTGAGCTACTACCAACAGCCAATATTGAGGAGAGTGACGAGAAACTTAAAGAT I S S E L L P T A N I E E S D E K L K D	9480
TCGTTATCTACAAATATCAGTAACATTGATCAGACTGTTGTAGTTTCTGTTGAGGAGAGA S L S T N I S N I D Q T V V V S V E E R	9540
GACAAGGAACTTAAAGATTCACCGTCTGTAAGCATCATTAGTGATGTTGTTCCAGCTGAA	9600
D K E L K D S P S V S I I S D V V P A E TGGGATGATTCAGATGCAAACGTCTGGGGTGAGGACTAGTCAGATGATTGAT	9660
W D D S D A N V W G E D CTACCGATTGGTGAT <u>C</u> GCTATCCTTGCTCTGAGAAATAGGTGAGGCGAAACAAAAAAT	9720
AATTTGCATGATAAAAAGTCTGATTTTATGATCGCTATCCTCGCTCTCTGAGAAAGAA	9780
GAAACAAAGGCGACTCCTGGACTCGAATCTATAAGATAACAAAGGCGACTCCTGGGACTC	9840
GAATCTATAAGATAACAAAGGCAATTCCAAGACTTGAATCTATAAAAAATTTAGTTAAGA	9900
ATGATTAACGTCCGATCCTAATTCGAATCGAGGCATCTTACCACTCCATTGATAATTATA	9960
TAAGTCAATAAGTCATATAAWAGTATTAAAAACTAAATTGACTTGATCGGTCTATCAAAA	10020
ATMAGATMAAATTGTGTTCATATGTAACATTTTGTTGTCACAATTAGCTTAATTACATC	10080
TTTCATGTGCAATAACAAAGAAATGATAGGAATTTAGAGATTCCAATTTTTTTGTTGCC	10140
CAATTAACTTAATTACATCTTTCATTTGCAATAACAAAGAAATGATAGGAATTTAGAGA	10200
CCAGTGTCAATACACAACCTAGGCCAACATCGAAAGCATAACTGTAAACTCATGCATG	10260
GAAATCAGTCGTAAAAATGAATAAATGCGACATAAAAAACAAATTGCATGTATCATTAATG	10320
TGACTTAACTACAAGTAAAAATAAATTTAACAAATGTAACTTAACTACAAGTAAAAATA	A 10380
ATTGCTTCTATCATTAACAAACAAACAGAATTAAAAAGAAAAAAAA	10440
CGTCATTCGATAAAAAAAAATACCAAATTCATAATGCAAGGAAAACGAAACGCGTCCTG	A 10500

FIG. 12 CONTINUED

10 12345678901234	20 5678901234	30 15678901234	40 156789012 <u>34</u> 3	50 5 <u>678901234</u>	60 567890_	
TCGGGTATCAACGA	TGAAATGGA	CAGTTGGAT	CGACTGCCTGC	ACAACGTTAG	GTATGC	10560
CAAAAAAAAGAACA	CGATCCTTT	GCACCCGTTC(GATGATTATCA	GTATGTTCAC	AAAAAA	10620
AACTTAAGTTCATC	CCAGTGTAC	AACAGCCCCA	ACATCTGCCCC	AAGTAACAA?	AAACAA	10680
CCAATTTATCTTAT	TCTTATCTG	CCACAAAATA	ATCGGTTTCAC	ACTATTCTCT	TGTTAT	10740
ACAAAATTGACAAC	STAGGAAGGA	GAGGAGTCAT	CCAAATAAACG	GTGCACGTT	CTTTGAG	10800
AAAAGTCTTATTT	TCGTAAGAT	CCAATTTCAA	CAAACTTTTCT	TCAAGTCAA	AATTCCT	10860
GATAGTGTATCTC	CTCTCGACGA	CCTCTTGCAT	TGAACGATCTC	CGCTTATCA	TGAAAAG	10920
TTGCTTGGATAAC	AAGTATTGCA	ACCCCCGAC	AGTAGCTATTA	AGTTAGTCG	GCCCAAG	10980
GAAATGGAGGAGT	GATAGTCTCG	CTTATTATA	ACCTCTTTAG	CATTACCCGG	TCTGGCT	11040
TTAAGGAGTTACG	TCTTTTACGO	TCGCCAATTI	CTTTTTŢTAG	aatggttggt	GTCAAAA	11100
TCGCGAGTTGTGG	AAGGTTCAAG	TTACTCGAT	CGTGATTTTC	aagtatgagt	GGTGAGA	11160
GAGATTCGATATT	TTCACGAGG	rGTATTCGAG(TCTAGTAGAA	CGAAGGGTGT	CACTAAT	11220
GAAAGTTTCAAGA	GTTCATCAT	CATCTTCTTC	ragtagatttt	CGCTTTCAAA	TGAGTAT	11280
GAAAATTCTTCCT	CTTTTCTAT	rgattitctiv	CATTGTTTTCT	TCATTGTTGT	GGTTGTT	11340
ATTGAAAAGAAA	AAAATTTAT.	AACAGAAAAA	GATGTCAAAAA	AAAGGTAAA!	atgaaaga	11400
GTATCATATACTI	`AAAGAGTTG	CGTAGAGATA	AGTCAAAAGAA	ACAGAATTA	TAGTAATT	11460
TCAGCTAAGTTAC	SAATTC					11478

FIG. 12 CONTINUED

.*\$.

20 / 27 ASRNKICFPSQHSTGLKFGSQ INTRON 1: 1.2 kb INTRON 1: 2.0 kb SBEII MYYTLSQVRFPTVPSVYKSNQFSSNQDRRNANISVFLKKHSLSR MEINFKVLSKPIRGSFPSFSPKVSSG EXON 1: 26 aa EXON 1: 44 aa SBEI

10 12345678901234567	20	30	40	50 60 8901234567890	
12343070301234307	705012545071) 70123430.	<u> </u>	×2 × 0 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 ×	
•					
GTATACACTCTCTGGAC	TTCGTTTCC V R F P			AATCTAATGGATT CSNGF	60 .
		SspI BsmI			
CAGCAGTAATGGTGATG S S N G D			OTATTCTTGA V F L I	AAAAAACACTCTCT (K H S L	120
BsaAI ▼					180
TTCACgtatgtctcac S R	tgtgtttgtgg	ctgtgtgtg	ttttttctci	egecetetegegee	100
	Bsp1286I BanII				
ttgtgtaattggggct	ctttaaagttg	gtattgtgt	ataccctttt	gagtatagtctttg	240
aggaagcaaaatgatg	raatcttgatto	racattagta	.agggttgtaa	ctttttgaagtttg	300
		,	- 320		
gttaggtgtaattgag	gtttggcttgtg	gtgtctgtgt	gtcgaggtta	ttttttggtttgt	360
gttattggggatctta	aaagttggta	ttgtgtatac	ccttttgagt	atagtctttgagga	420
					480
agcaaaaatgatgaal	certgartgge	accagcaaag	ggttgtagett	.cccgaagcgcggcc	300
aggtgtaattgagtt	tggcttgtgtg	tctgtgtgt	tttggaatcct	tgatgtgtgtcaagt	540

FIG. 14

10 20 30 40 50 60 1234567890123456789012345678901234567890	
123456789012345678901234567890125456789012545678901254567890	
	•
	600
cctgatatgggtcgaggttctttctttggtttgtgtaattgggggttcttaaaagttggt	000
ClaI	
BspDI	
attatgtacctttttaagaatagtgtctgagaaagcaaaatcgatgaattttgattga	660
accarge account of the control of th	
gcatattctttgagaaagcaaaaatggtgagttttcatggagaaacttgattga	720
ctaaaggtagcaactttttcaactcctgatatgggtcaaggttctttgtttg	780
	•
	840
aatttggggttctttgaagttttgagaaagaaaattatgatttttcatggagaaatttg	040
PvuII	
AseI NspBII	
atttacattaataaaggtagtagctttttaaagtgtggtcagctgtaatgagttcagctt	900
Bsp1286I	
BanII	
ApaI NdeI	
ggtttaaagggggcccctacatatggtgctttctggtgagatatttgttgctccaccatac	960
	•
	1000
gagttataagaatcatagtgttaggatcttttttttttt	1020
	•
tagctactagaggagtgatcttgacggcggaaaatcttagaaaggggaaggttgtttgca	1080
—	

FIG. 14 CONTINUED

10 20 30 40 50 60 12345678901234567890123456789012345678901234567890	
Esp3I BsaBI	1140
tcaactggtgttatatgtgcaaggagacgggagatgatgtagatcatcttcttcttcatt	1140
gtggtctttccatgaggttatgatgtgatatgtttgaatggtttggtacttcttggctat	1200
Earl	
gccaagaactgtgaaagaattgatattcagttggaagtgtggagttggaagagtggaaga	1260
attgacacttggttccattagctttaatgtgggtggtgtggagagaga	1320
ECORV	
agcttttgagggggtagagttgagctttcctcagttgagaagtagcctttgatatctttt	1380
ECORI MunI tttttttttttttttgtacacccatagaattcccaattgtatagaagattgggtggagtttgt	1440
agagaatcatcttttgtagtagattctttaccttttggtatatccattgtatacagccag	1500
StuI gcctttgactatgtttatgaatgaatatacattacttgaaaaaaaa	1560
tctgttgtacctttgtagacaatgttgttgcagcatcttgataattccctgaaaattgtc	1620

FIG. 14 CONTINUED

			•			
10 1234567890123456	20 7890123456	30 578901234	40 56789012345	50 678901234	. 60 567890	
tccctgaaggaatagt						1680
ttgaaggccattttaa	aatcctttgad	cattgttaa	aggtgtttaca	agtgttggt	:ctgggt	1740
ttaaaagcacctcttg	gtatggtgct	ttctggagt	gatetttette	cctccaaaag	jagaagt	1800
tgcaagaatcagtgtg	gtgtactttt	ttetettgt	BclI Bgli		atttttc	1860
cgttttagttgattta	atccatatag	tgaaagtto	ggtgtcatagti	tgctgtttgt	tggactt	1920
cctgtaaaagttttt	tgatatactt	aaaaaatt	gtcacacagaa	gaaagagtt	tttacc	1980
AflII attacttaagctaga	tgggactgtt	tgattett	agaccaaataa	tgaaccttt	ttgttct	2040
AflIII cttaacgtgtacttg	aaatagtttg	gtaaaatt	gtgataggaaa	.aaagat a at	tcttgat	2100
tgcttttggagcatc	acttctaato	ataaaagt	ctttgctctct	EarI tcaaccatg	aatgata	2160

FIG. 14 CONTINUED

10 20 30 40 50 60 12345678901234567890123456789012345678901234567890	
aattggacacttatgtggccctaagttgctctcagtagtggtctttaattgtggagatat	2220
BglII BbsI aactaatctgatatatgtatgtagGGAAGATCTTGGCTGAAAAGTCTTCTTACAATTCCG K · I L A E K S S Y N S E	2280
SfcI AATCCCGACCTTCTACAGTTGCAGCATCG	2309

FIG. 14 CONTINUED

26./27

FIG. 15

RECTIFIED SHEET (RULE 91)
ISA/EP

INTERNATIONAL SEARCH REPORT

Inter and Application No PCT/IB 98/00270

		101/10 90/	00270
A. CLASS IPC 6	C12N15/82 C12N9/10 C12N15/	11 C08B30/04	
According t	o International Patent Classification (IPC) or to both national classific	ation and IPC	
	SEARCHED		
Minimum de IPC 6	ocumentation searched (classification system followed by classification C12N C08B	on symbols)	
1100	CIZN COOD	· ·	
Documenta	tion searched other than minimum documentation to the extent that s	such documents are included in the fields sea	rched
Electronic d	lata base consulted during the international search (name of data ba	se and, where practical, search terms used)	
		•	•
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Category ²	Citation of document, with indication, where appropriate, of the rele	evant passages	Relevant to claim No.
χ	WO 97 04112 A (DANISCO ;POULSEN F (DK)) 6 February 1997	PETER	1-21
	cited in the application see the whole document		· .
Х	WO 97 04113 A (DANISCO ;POULSEN F (DK)) 6 February 1997	PETER	1-21
	cited in the application see the whole document		
Υ	WO 96 34968 A (NAT STARCH CHEM IN ;COOKE DAVID (GB); DEBET MARTINE GIDL) 7 November 1996	VVEST (GB);	1-21
	cited in the application see page 5, paragraph 3 paragra	aph 4	
,	see page 9, paragraph 2 - page 10 paragraph 1		
X	see page 11, paragraph 3 	-/	17-19
		-/	
	her documents are listed in the continuation of box C.	χ Patent family members are listed in	annex.
	tegories of cited documents :	T" later document published after the intern	ational filing date
consid	ent defining the general state of the art which is not lered to be of particular relevance document but published on or after the international	or priority date and not in conflict with it cited to understand the principle or the invention	ory underlying the
filing d. "L" docume	late int which may throw doubts on priority claim(s) or	"X" document of particular relevance; the cla cannot be considered novel or cannot be involve an inventive step when the doc	e considered to
citation "O" docume	is cited to establish the publication date of another n or other special reason (as specified) ant referring to an oral disclosure, use, exhibition or	"Y" document of particular relevance; the cla cannot be considered to involve an inve document is combined with one or more	entive step when the e other such docu-
"P" docume	means ant published prior to the international filing date but nan the priority date claimed	ments, such combination being obvious in the art. "&" document member of the same patent fa	to a person skilled
Date of the	actual completion of theinternational search	Date of mailing of the International search	•
2	9 May 1998	09/06/1998	
Name and n	nailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2	Authorized officer	
	NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Chakravarty, A	

1

INTERNATIONAL SEARCH REPORT

Inter Inal Application No PCT/IB 98/00270

Category '	tion) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Α	WO 92 11375 A (AMYLOGENE HB) 9 July 1992	1-21
^	cited in the application see the whole document	
Y	WO 94 09144 A (ZENECA LTD) 28 April 1994 see page 10, line 1 - line 18	1-21
Y	WO 92 15680 A (UNIV TEXAS) 17 September 1992 see page 6, line 17 - line 28	1-21
		15
X	EP 0 240 208 A (CALGENE INC) 7 October 1987 see page 3, line 10 - line 13 	15
	·	
•		

1

.

INTERNATIONAL SEARCH REPORT.

information on patent family members

Inte: July Application No
PCT/IB 98/00270

							30,002,0
	tent document in search report		Publication date		Patent family member(s)		Publication date
WO	9704112	Α	06-02-1997	AU	6614596	Α	18-02-1997
				EP	0839202		06-05-1998
WO 9704113	9704113	Α	06-02-1997	AU	6614696		18-02-1997
				EP	0839203	Α	06-05-1998
WO	9634968	Ä	07-11-1996	AU	5509996		21-11-1996
				EP	0826061	. A	04-03-1998
WO 9211375	9211375	Α	09-07-1992	· SE	467160		01-06-1992
			•	AU	9109791		22-07-1992
				EΡ	0563201		06-10-1993
			1	PL	169859		30-09-1996
				SE	9004095	Α	01-06-1992
WO !	9409144	Α	28-04-1994	CA	2146998	Α	28-04-1994
				AU	690517		30-04-1998
				AU	2696492		09-05-1994
				EP	0664835	Α	02-08-1995
WO 9	9215680	Α	17-09-1992	AU	663702	В	19-10-1995
				AU	1570492		06-10-1992
				CA	2108144	Α	07-09-1992
			•	EP	0575518		29-12-1993
				US	5747469	Α	05-05-1998
EP (0240208	Α	07-10-1987	AT	114168		15-12-1994
				AU	1301792		03-09-1992
				AU	618234		19-12-1991
			AU	7059787		01-10-1987	
			DE		D	22-12-1994	
			DE		T	18-05-1995	
			EP `		A	27-11-1991	
		•	ES	2066759		16-03-1995	
				JP	2702921		26-01-1998
			·	JP	62296880	Α	24-12-1987
				JP	10052283		24-02-1998
			•	US	5107065		21-04-1992
			US US	5453566 4801540		26-09-1995	
				110	7001E/A	Λ	31-01-1989

THIS PAGE BLANK (USPTC)