LectureNote2: CS229 (SPRING2022, Stanford)

Supervised Learning

Set Up

• Prediction:

- · Given: training set
 - $\circ \ \{ \, (x^{(1)},y^{(1)}),...,(x^{(n)},y^{(n)}) \, \}$
 - \circ y = supervision
- ullet Do: find $oldsymbol{good}\ h(hypothesis): x
 ightarrow y$
 - \circ we care about $\mathbf{new}\ x$'s that are not in our training set
 - $\circ \hspace{0.1in}$ if y is $\emph{discrete} o ext{Classification}$
 - $\circ \hspace{0.1in}$ if y is $continuous
 ightarrow \mathsf{Regression}$
- How do we represent h?
 - $h(x) = \theta_0 + \theta_1 x_1$

Generalization

Training Set

$$size(x_1) \ bedroom(x_2) \ lot \ size(x_3) \ ... \ feature(x_d) \ price(y)$$
 $x^{(1)} \ 2104 \ 4 \ 45k \ ... \ x_d^{(1)} \ 400$
 $x^{(2)} \ 2500 \ 3 \ 30k \ ... \ x_d^{(2)} \ 900$
 $\vdots \ \vdots \ \vdots \ \vdots \ \vdots \ \vdots \ \vdots \ \vdots$
 $x^{(n)} \ x_1^{(n)} \ x_2^{(n)} \ x_3^{(n)} \ ... \ x_d^{(n)} \ x_1^{(n)} \ y^{(n)}$

$$\circ \ h(x) = heta_0 x_0 + heta_1 x_1 + ... + heta_d x_d \ = \ \sum_{j=0}^d heta_j x_j \ (x_0 = 1)$$

$$\circ \ \theta_{parameters} = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_d \end{bmatrix} \quad x_{features}^{(i)} = \begin{bmatrix} x_0^{(i)} \\ x_1^{(i)} \\ \vdots \\ x_d^{(i)} \end{bmatrix}$$

 $\circ \ \left(x^{(i)}, y^{(i)}\right) \leftarrow \text{i-th training example}$

$$\circ \hspace{0.1cm} X_{train\hspace{0.1cm} data} = egin{bmatrix} -x^{(1)} - \ -x^{(2)} - \ dots \ -x^{(n)} - \end{bmatrix} \in \mathbb{R}^{n(d+1)}$$

- $X_{train\ data}$ does not contain y's
- lacksquare +1 is the extra dimension x_0 , whose value is set to be 1 above

$$\circ \ \ h_{ heta}(x) = \sum_{j=0}^d heta_j x_j \ (x_0=1),$$
 I want $h_{ heta}(x) \simeq y$

$$\circ \ J(heta)_{cost\ function} = rac{1}{2} \sum_{i=1}^n \left(h_ heta(x^{(i)}) - y^{(i)}
ight)^2_{\ least\ squares}$$

- $\frac{1}{2}$ is for convenience purpose (It cancels out with 2 when we take the derivative)
- we only care about the minimizer, which is the θ that minimizes $J(\theta)$. The "actual value" of $J(\theta)$ is not important.
- This process is called "Optimization"
- Gradient Descent
 - $\theta^{(0)} = 0$

•
$$heta_j^{(t+1)} = heta_j^{(t)} - lpha \; rac{\partial}{\partial heta_j} J(heta^{(t)})$$
 ($lpha$ = learning rate, $j=0\cdots d$)

$$lacksquare rac{\partial}{\partial heta_i} J(heta^{(t)}) = \sum_{i=1}^n \left(h_ heta(x^{(i)}) - y^{(i)}
ight) rac{\partial}{\partial heta_i} h_ heta(x^{(i)})$$

$$lacksquare h_{ heta}(x)= heta_0x_0+ heta_1x_1+...+ heta_dx_d, \;\; rac{\partial}{\partial heta_j}h_{ heta}(x^{(i)})=x_j^{(i)}$$

$$lacksquare :: heta_j^{(t+1)} = heta_j^{(t)} - lpha \sum_{i=1}^n (h_ heta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

• i-th data point, j-th component

$$ullet$$
 for all j 's, $heta^{(t+1)} = heta^{(t)} - lpha \sum_{i=1}^n \left(h_ heta(x^{(i)}) - y^{(i)}
ight) x^{(i)}$

• α can be changed throughout the iteration

· Batch vs Stochastic Minibatch

- Minibatch: randomly select a small subset B of the training data (B << n)
- ullet calculate a noisy estimation $heta^{(t+1)} = heta^{(t)} lpha_B \sum_{i \in B} (h_ heta(x^{(i)}) y^{(i)}) x^{(i)}$