Grundbegriffe der Informatik Tutorium 36

Termin 1 | 28.10.2016 Thassilo Helmold

Inhalt

Organisatorisches

Information

Mengen

Potenzmengen

Paare

Organisatorisches

Information

Mengen

Potenzmengen

Paare

ÃlJber mich

Thassilo Helmold Informatik, 5. Fachsemester (Bachelor)

Tutorium

Hier werden die Inhalte der Vorlesung anhand von Beispielen erläutert und angewendet sowie Aufgaben gemeinsam gerechnet. Hier könnt ihr also aktiv werden.

Wichtig: Dies ist **kein** Ersatz für die Vorlesung. Wir können (und werden) nicht alles im Tutorium wiederholen.

Hier könnt ihr Fragen stellen! (Und bekommt auch meistens eine Antwort...)

Voraussetzungen

- Besuch der Vorlesung oder Ansehen der Aufzeichnung
 - Wirklich!
- Mitarbeit, Fragen stellen
- Interesse an den Inhalten

Übungsblätter

Übungsblätter

Die Übungsblätter bitte handschriftlich, mit Deckblatt (Tutoriums-Nummer!) und getackert rechtzeitig abgeben! Keine Plagiate, keine Gruppenabgabe!

Achtung: Dieses Jahr wird es nur ca. 6–7 Blätter geben! (Ausgabe alle 2 Wochen, jeweils ~ 2 Wochen Bearbeitungszeit)

Leistungen

- Übungsschein: 50% aller erreichbarer Punkte
 Wichtig: Versuchen im ersten Semester (da im Zweiten nicht angeboten)!
- Klausur
 Teilnahme auch ohne Übungsschein möglich.

28 10 2016

Kontaktmöglichkeiten

Tutorium

- Mail: thassilo.helmold@student.kit.edu
- Folien bekommt ihr im ILIAS.

Vorlesung

- Forum: ILIAS
- Bitte alle fachlichen und allgemein organisatorischen Fragen im Forum!
- Dozent: sebastian.stueker@kit.edu (Bitte immer Name und Matrikelnummer mit angeben!)

28 10 2016

Ressourcen

- Vorlesungsfolien
- Skript
- Archiv (gbi.ira.uka.de)

Weitere Ressourcen

- EDX (edx.org)
- Coursera (coursera.org)

Persönliche Empfehlungen

- Design and Analysis of Algorithms (für Algo I)
- From Nand to Tetris
- CS50x

Organisatorisches

Information

Mengen

Potenzmengen

Paare

Nachricht, Information, ...

Nachricht

Mitteilung, bei der vom Medium und den Einzelheiten der Signale abstrahiert wird.

Information

Bedeutung, die einer Nachricht zugeordnet wird (kontextabhängig!).

Informationsgehalt

Bei gleicher Wahrscheinlichkeit: Anzahl der Elemente...

Naturalis: log_e Hartley: log₁₀ Shannon: log₂

Mehr dazu in TGI

Mengen

Problem

Wir haben "ein Universum" an Elementen (Filme, Serien, Schauspieler):

U enthält Sherlock, Benedict Cumberbatch, Lea Thompson, Martin Freeman, The Imitation Game, Mark Gatiss, Christopher Lloyd, Crispin Glover, Zurück in die Zukunft, Michael Fox, Keira Knightley, ...

Mengen

Mengen sind eines der Grundelemente der Mathematik.

Sammelt bitte 5 Minuten lang (alleine / mit eurem Nebensitzer / in Kleingruppen) alles, was ihr über Mengen bereits wisst.

Mengen

Definition

Eine **Menge** *M* ist eine Ansammlung verschiedener Objekte. Ein Objekt aus der Menge nennt man ein **Element** der Menge. Man schreibt

$$m \in M$$
 $M = \{m_1, m_2, m_3\}$ $M = \{m \mid m \geqslant 0\}$ $M = \emptyset = \{\}$

Die Reihenfolge der Aufzählung ist dabei irrelevant, Elemente kommen nicht doppelt vor. Die leere Menge \emptyset enthält keine Elemente.

Beispiel

Wichtige Mengen sind

$$\mathbb{N}$$
, \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} \mathbb{N}_+ , \mathbb{N}_0

Es gilt:

$$-5 \in \mathbb{Z}$$
 $-5 \notin \mathbb{N}$ {2, 1, 3, 1, 4} = {1, 2, 3, 4}

Teilmengen

Definition

Die Anzahl der Elemente in einer endlichen Menge (Kardinalität) bezeichnet man mit $\mid M \mid$. Es gilt

$$|M \cup N| = |M| + |N| - |M \cap N|$$

Definition

Eine Menge *N* ist eine **Teilmenge** von *M*, wenn jedes Element aus N auch in M enthalten ist.

$$N \subseteq M \iff \forall n \in N : n \in M$$

Definition

Zwei Mengen N und M sind **gleich**, wenn sie die gleichen Elemente enthalten.

$$N = M \iff N \subseteq M \text{ und } M \subseteq N$$

Teilmengen

Beispiel

$$|\{1, 2, 3, 2, 1\}| = 3$$

 $|\emptyset| = 0$
 $\{1, 2\} \subseteq \{1, 2, 3\}$
 $\{1, 2\} \nsubseteq \{Hund, Katze, Maus\}$

Lemma Es gilt:

$$N \subseteq M \iff N \setminus M = \emptyset$$

Mengengleichheit: Beispiel

Sei A und M beliebige Mengen. Zeigen Sie das gilt

$$A = \underbrace{(A \setminus M)}_{T_1} \cup \underbrace{(A \cap M)}_{T_2}$$

- Richtung: $A \subseteq T_1 \cup T_2$
- Wähle $x \in A$ und wende Fallunterscheidung an
- Fall 1: Ist $x \in M$ so gilt $x \in A$ und $x \in M$, und damit $x \in A \cap M = T_2$
- Fall 2 : Ist $x \notin M$ so gilt $x \in T_1$ da $T_1 = \{x \in A \text{ und } x \notin M\}$
- Richtung : $T_1 \cup T_2 \subseteq A$
- Wähle $x \in T_1 \cup T_2$. Dies bedeutet $x \in T_1$ oder $x \in T_2$.
- Fall 1: $x \in T_1$. Aus Definition folgt $x \in A$
- Fall 2: $x \in T_2$. Somit $x \in A$ und $x \in M$.

Zurück zu unserem Problem

 $U = \{$ Sherlock, Benedict Cumberbatch, Lea Thompson, Martin Freeman, The Imitation Game, Mark Gatiss, Christopher Lloyd, Crispin Glover, Zurück in die Zukunft, Michael Fox, Keira Knightley, ... $\}$

Ordnen wir diese in eine Teilmenge M für Filme/Serien und jeweils eine Teilmenge A_m für die Schauspieler eines Films $m \in M$.

```
M = \{ The Imitation Game, Sherlock, Zurück in die Zunkunft \} A_{Sherlock} = \{ Benedict Cumberbatch, Martin Freeman, Mark Gatiss \} A_{ImitationGame} = \{ Benedict Cumberbatch, Keira Knightley \} A_{BTTF} = \{ Michael J. Fox, Christopher Lloyd, Lea Thompson, Crispin Glover \}
```

Schnitt und Vereinigung

Definition

Sind M und N zwei Mengen, so definiert man

$$M \cap N = \{x \mid x \in M \text{ und } x \in N\}$$
 $M \cup N = \{x \mid x \in M \text{ oder } x \in N\}$

als den Durchschnitt und die Vereinigung.

Zwei Mengen *M*, *N* heißen **disjunkt**, wenn ihr Durchschnitt leer ist, sie also keine gemeinsamen Elemente besitzen.

$$M \cap N = \emptyset$$

Beispiel

$$\{1, 2\} \cup \{2, 3\} = \{1, 2, 3\}$$
 $\{1, 2\} \cap \{2, 3\} = \{2\}$

Schnitt und Vereinigung

Definition

Seien A und B zwei beliebige Mengen, so gilt

$$A \setminus B = \{x \in A \text{ und } x \notin B\}$$

Weitere Beispiele

$$A \cup \emptyset = A$$
$$A \cap \emptyset = \emptyset$$
$$\mathbb{N}_{+} \cup \{0\} = \mathbb{N}_{0}$$

Eine Menge Mengen...

Aufgabe

Es seien $A = \{1, 2\}, B = \{3\}, C = \{1, 3\} \subseteq M = \{1, 2, 3\}$ Mengen.

Man berechne folgende Mengen:

$$A \cup B = \{1, 2, 3\}$$

$$A \cap C = \{1\}$$

$$A \setminus C = \{2\}$$

$$B \setminus A = \{3\}$$

$$A \cup (B \setminus C) = \{1, 2\}$$

$$C = \{1, 3\}$$

$$(A \setminus C) \cup B = \{2, 3\}$$

$$A \cap B = \emptyset$$

28 10 2016

Potenzmengen

... in einer Menge! (Potenzmengen)

Definition

Die **Potenzmenge** 2^M oder auch $\mathcal{P}(M)$ ist die Menge aller möglicher Teilmengen von M. Es gilt also

$$2^{M} = \{N \mid N \subseteq M\}$$

Beispiel

Betrachten wir nun $M = \{1, 2, 0\}.$

Dann gilt

$$2^{M} = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0, 1\}, \{0, 2\}, \{1, 2\}, \{0, 1, 2\}\}\$$

Beachte: Es gilt immer $M \in 2^M$ und $\emptyset \in 2^M$

Potenzmengen

Aufgabe

Wie viele Elemente enthält 2^{M} ?

 $2^{|M|}$

Aufgabe

Geben Sie eine Abbildung $\phi \colon 2^M \longrightarrow 2^M$ so an, dass für jedes $L \in 2^M$ und für jedes $w \in M$ gilt:

 $w \in L$ genau dann, wenn $w \notin \Phi(L)$.

$$\phi\colon 2^M \longrightarrow 2^M,$$

$$L \mapsto M \setminus L.$$

Zurück zu unserem Problem

Ordnen wir diese in eine Teilmenge M für Filme/Serien und jeweils eine Teilmenge A_m für die Schauspieler eines Films $m \in M$.

```
\begin{split} &M = \{ \text{ The Imitation Game, Sherlock, Zurück in die Zunkunft } \} \\ &A_{Sherlock} = \{ \text{ Benedict Cumberbatch, Martin Freeman, Mark Gatiss } \} \\ &A_{ImitationGame} = \{ \text{ Benedict Cumberbatch, Keira Knightley } \} \\ &A_{BTTF} = \{ \text{ Michael J. Fox, Christopher Lloyd, Lea Thompson, Crispin Glover } \} \end{split}
```

```
A_{Sherlock} \cap A_{ImitationGame} = \{Benedict Cumberbatch\}
```

Organisatorisches

Information

Mengen

Potenzmengen

Paare

Paare

Definition

Seien A und B zwei Mengen und $a \in A$, $b \in B$.

heißt **Paar** mit der ersten Komponente *a* und der zweiten Komponente *b*.

In Paaren können Elemente mehrfach vorkommen, und die Reihenfolge der Elemente ist wichtig.

Beispiel

$$(KI, T) = (KI, T)$$
 $(KI, T) \neq (T, KI)$ $(1, 1)$

Paare

Das Konzept der Paare lässt sich auf das Konzept der Mengen zurückführen.

Aufgabe

Gegeben sei die Menge $M = \{m_1, m_2\}.$

Wie kann man die Paare (m_1, m_2) und (m_2, m_1) eindeutig darstellen, nur unter Verwendung von Mengen und m_1, m_2 ?

Lösung

Wir definieren:

$$(m_1, m_2) := \{m_1, m_2, \{m_1\}\} \text{ und } (m_2, m_1) := \{m_1, m_2, \{m_2\}\}\$$

Was ihr nun wissen solltet

- wie man mit Mengen umgeht
- wie man mit noch mehr Mengen umgeht
- was Paare sind

Was nächstes Mal kommt

- wie man mehr als zwei Elemente geordnet zusammenbringt (Tupel)
- wie man mit Relationen Ordnung in das Chaos bringt
- ... und noch vieles mehr!

Abbildung: http://xkcd.com/844

Credits

Vorgänger dieses Foliensatzes wurden erstellt von:

Thassilo Helmold Philipp Basler Nils Braun Dominik Doerner Ou Yue