RACHUNEK PRAWDOPODOBIEŃSTWA

Wydział Elektroniki

WYKŁAD V

1. Dwuwymiarowe zmiene losowe

Analizując różne zjawiska losowe, bardzo często musimy obserwować kilka, a nawet bardzo wiele różnych zmiennych losowych. Na przykład, gdy rzucamy jednocześnie dwiema kostkami do gry, to wyniki rzutów na każdej kostce z osobna są opisywane przez dwie różne zmienne losowe przyjmujące wartości od 1 do 6. Prowadzi to do naturalnego uogólnienia pojęcia zmiennej losowej o wartościach rzeczywistych, tzw. wielowymiarowych zmiennych losowych (wektorów losowych). My ograniczymy się do omówienia własności zmiennych dwuwymiarowych.

1.1. Podstawowe pojęcia i definicje. Niech $(\Omega, \mathcal{F}, \mathbb{P})$ będzie przestrzenią probabilistyczną.

Definicja. Jeśli X i Y są zmiennymi losowymi na (Ω, \mathcal{F}) o wartościach rzeczywistych, to parę (X, Y) nazwiemy **dwuwymiarową zmienną losową** (lub **wektorem losowym**).

Uwaga. Dwuwymiarowy wektor losowy jest zatem funkcją $\Omega \ni \omega \longmapsto (X(\omega), Y(\omega)) \in \mathbb{R}^2$, która dla dowolnych liczb $a, b \in \mathbb{R}$ spełnia warunek

$$\{\omega \in \Omega : (X(\omega), Y(\omega)) \in (-\infty, a] \times (-\infty, b]\} \in \mathcal{F}.$$

Jest to konsekwencją równości

$$\left\{\omega \in \Omega : (X(\omega), Y(\omega)) \in (-\infty, a] \times (-\infty, b]\right\} = \left\{\omega \in \Omega : X(\omega) \in (-\infty, a], Y(\omega) \in (-\infty, b]\right\}.$$

Podobnie jak w przypadku jednowymiarowym, dla wektórów losowych określamy rozkład i dystrybuante.

Przypomnijmy, że rodziną zbiorów borelowskich $\mathcal{B}(\mathbb{R}^2)$ nazywamy najmniejszą rodzinę podzbiorów płaszczyzny \mathbb{R}^2 , która posiada własności z definicji σ -ciała \mathcal{F} i zawiera wszystkie prostokąty.

Definicja. Rozkładem wektora losowego (X,Y) nazywamy funkcję zbioru na $\mathcal{B}(\mathbb{R}^2)$ daną wzorem

$$\mu_{(X,Y)}(A) \stackrel{def}{=} \mathbb{P}((X,Y) \in A), \quad A \in \mathcal{B}(\mathbb{R}^2).$$

Definicja. Dystrybuantą rozkładu $\mu_{(X,Y)}$ nazywamy funkcję $F_{(X,Y)}:\mathbb{R}^2\to\mathbb{R}$ daną wzorem

$$F_{(X|Y)}(t_1, t_2) = \mu_{(X|Y)}((-\infty, t_1] \times (-\infty, t_2]) = \mathbb{P}(X \le t_1, Y \le t_2), \quad t_1, t_2 \in \mathbb{R}.$$

Przykład. Dwuwymiarowa zmienna losowa (X,Y) przyjmuje cztery wartości (1,2), (3,4), (1,4) i (2,3) z prawdopodobieństwami 1/3, 1/3, 1/6 i 1/6 odpowiednio. Jak wygląda dystrybuanta rozkładu wektora (X,Y)?

Jest to przykład dwuwymiarowego rozkładu dyskretnego. Definicja takiego rozkładu uogólnia tę jednowymiarową.

Definicja. Jeżeli istnieje zbiór skończony lub nieskończony i przeliczalny $S \subset \mathbb{R}^2$ taki, że $\mu_{(X,Y)}(S) = 1$, to mówimy, że rozkład $\mu_{(X,Y)}$ jest **rozkładem dyskretnym**. Wówczas wektor losowy (X,Y) nazywamy dyskretnym.

Uwaga. Oznacza to, że istnieje (być może skończony) ciąg punktów (x_n, y_k) takich, że

$$\mathbb{P}(X = x_n, Y = y_k) = p_{n,k} > 0, \quad \sum_k \sum_n p_{n,k} = 1.$$

Przykład. W urnie znajduje się 49 kul ponumerowanych od 1 do 49. Losujemy (bez zwracania) 2 kule i niech X i Y oznaczają odpowiednio numer kuli wylosowanej w pierwszym i drugim losowaniu. Opisz rozkład wektora losowego (X,Y).

Podobnie jak w przypadku jednowymiarowym, będziemy też rozważać wektory losowe o rozkładach absolutnie ciągłych.

Definicja. Jeżeli istnieje nieujemna, całkowalna funkcja $f_{(X,Y)}: \mathbb{R}^2 \to [0,\infty)$ taka, że

$$\mu_{(X,Y)}(A) = \iint_A f_{(X,Y)}(x,y) dx dy, \quad A \in \mathcal{B}(\mathbb{R}^2),$$

to rozkład $\mu_{(X,Y)}$ nazywamy absolutnie ciągłym o gęstości f.

Uwaga. Podobnie jak w przypadku jednowymiarowym, dla dostatecznie regularnych funkcji $g: \mathbb{R}^2 \to \mathbb{R}$, zachodzą wzory

$$\mathbb{E}g(X,Y) = \iint g(x,y)f_{(X,Y)}(x,y)dxdy,$$

gdy wektor (X,Y) ma rozkład absolutnie ciągły o gęstości f, oraz

$$\mathbb{E}g(X,Y) = \sum_{n} \sum_{k} g(x_n, y_k) p_{n,k},$$

gdy (X,Y) ma rozkład dyskretny dany przez (x_n,y_k) oraz prawdopodobieństwa $p_{n,k}$.

1.2. Rozkłady brzegowe. Mając dany rozkład wektora losowego (X,Y), możemy policzyć rozkłady poszczególnych współrzędnych, tzn. zmiennych losowych X i Y. Rozkłady takie nazywamy rozkładami brzegowymi tego wektora.

Definicja. Rozkłady brzegowe wektora losowego (X,Y) (tj. rozkłady zmiennych X i Y) dane są wzorami

$$\mu_X(A) = \mathbb{P}(X \in A) = \mathbb{P}(X \in A, Y \in \mathbb{R}) = \mu_{(X,Y)}(A \times \mathbb{R}), \quad A \in \mathcal{B}(\mathbb{R}),$$

oraz

$$\mu_Y(A) = \mathbb{P}(Y \in A) = \mathbb{P}(X \in \mathbb{R}, Y \in A) = \mu_{(X,Y)}(\mathbb{R} \times A), \quad A \in \mathcal{B}(\mathbb{R}).$$

Uwaga. W powyższej definicji A jest już podzbiorem borelowskim prostej (bo X i Y są jednowymiarowe).

Jeżeli wektor losowy (X,Y) ma rozkład absolutnie ciągły, to rozkład brzegowy X otrzymujemy całkując gęstość rozkładu łącznego tego wektora po całej prostej względem y (analogicznie dla Y). Dokładniej, mamy

$$f_X(x) = \int_{-\infty}^{\infty} f_{(X,Y)}(x,y)dy$$

oraz

$$f_Y(y) = \int_{-\infty}^{\infty} f_{(X,Y)}(x,y) dx.$$

W przypadku dyskretnym mamy

$$\mathbb{P}(X = x_n) = \sum_{k} \mathbb{P}(X = x_n, Y = y_k)$$

i analogicznie

$$\mathbb{P}(Y = y_k) = \sum_n \mathbb{P}(X = x_n, Y = y_k).$$

Przykład. Wyznaczmy rozkłady brzegowe dla wektora losowego z pierwszego przykładu.

Przykład. Niech (X,Y) będzie wektorem losowym o rozkładzie jednostajnym na kwadracie o wierzchołkach w punktach (1,0), (0,1), (-1,0), (0,-1). Wyznacz rozkład brzegowy μ_X .

1.3. Niezależność zmiennych losowych. Jak już wiemy, jednym z najważniejszych pojęć rachunku prawdopodobieństwa jest niezależność. Przypomnijmy: jeśli $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$, to mówimy, że zdarzenia A i B są niezależne. Ta definicja przenosi się naturalnie na zmienne losowe.

Definicja. Mówimy, że zmienne losowe X_1, \ldots, X_n o wartościach w \mathbb{R} są **niezależne**, jeżeli dla dowolnych zbiorów $A_1, \ldots, A_n \in \mathcal{B}(\mathbb{R})$ zachodzi równość

$$\mathbb{P}(X_1 \in A_1, X_2 \in A_2 \dots, X_n \in A_n) = \mathbb{P}(X_1 \in A_1)\mathbb{P}(X_2 \in A_2) \cdot \dots \cdot \mathbb{P}(X_n \in A_n).$$

Przykład. Rozkład zmiennej losowej (X, Y) dany jest tabelką

X\ Y	-2	0	1	2
1	0,1	0,1	0	0,2
2	0,1	0	0,1	0,2
3	0	0	0,1	0,1

Czy zmienne X i Y są niezależne?

Przykład. Z talii 52 kart losujemy jedną. Niech X będzie jej wartością a Y jej kolorem (kolory numerujemy od 1 do 4). Czy zmienne X i Y są niezależne?

Wiemy już jak wyznaczyć rozkłady brzegowe, gdy dany jest rozkład łączny wektora losowego (X,Y). Operacja odwrotna, tj. wyznaczanie rozkładu łącznego wektora losowego (X,Y) przy pomocy rozkładów brzegowych, jest możliwa w sytuacji, gdy zmienne X i Y są niezależne.

Twierdzenie 1. Dla zmiennych losowych X i Y o wartościach w \mathbb{R} poniższe warunki są równoważne:

- (1) zmienne losowe X i Y są niezależne;
- (2) dla dowolnych zbiorów $A, B \in \mathcal{B}(\mathbb{R})$ zachodzi równość

$$\mu_{(X,Y)}(A \times B) = \mu_X(A)\mu_Y(B)$$

(tj. rozkład łączny jest produktem rozkładów brzegowych);

(3) dla dowolnych $t_1, t_2 \in \mathbb{R}$ zachodzi równość

$$F_{(X,Y)}(t_1, t_2) = F_X(t_1)F_Y(t_2);$$

W przypadku rozkładów dyskretnych i absolutnie ciągłych równoważności z powyższego twierdzenia przybierają bardziej bezpośrednią postać.

Wniosek 1. Niech X i Y będą zmiennymi losowymi o wartościach $w \mathbb{R}$.

• Jeśli X i Y mają rozkłady dyskretne, to są one niezależne wtedy i tylko wtedy, gdy

$$\mathbb{P}(X = x_n, Y = y_k) = \mathbb{P}(X = x_n)\mathbb{P}(Y = y_k).$$

• Jeśli X i Y mają rozkłady absolutnie ciągłe o gęstościach f_X i f_Y , to zmienne te są niezależne wtedy i tylko wtedy, gdy rozkład $\mu_{(X,Y)}$ jest rozkładem absolutnie ciągłym o gęstości

$$f_{(X,Y)}(x,y) = f_X(x)f_Y(y)$$

(tj. gdy gęstość rozkładu łącznego jest iloczynem gęstości brzegowych).

Niezależność ułatwia obliczanie wartości oczekiwanej iloczynów zmiennych losowych i wariancji sumy zmiennych losowych.

Twierdzenie 2. Jeżeli zmienne losowe X_1, \ldots, X_n o wartościach w \mathbb{R} są niezależne i mają wartość oczekiwaną, to

$$\mathbb{E}(X_1 \cdot \ldots \cdot X_n) = \mathbb{E}X_1 \cdot \ldots \cdot \mathbb{E}X_n$$

(tj. wartość oczekiwana iloczynu jest iloczynem wartości oczekiwanych). Ogólniej, jeżeli $\mathbb{E}|g_i(X_i)| < \infty$ dla funkcji borelowskich $g_i : \mathbb{R} \to \mathbb{R}$, to

$$\mathbb{E}(g_1(X_1)\cdot\ldots\cdot g_n(X_n))=\mathbb{E}g_1(X_1)\cdot\ldots\cdot\mathbb{E}g_n(X_n).$$

Uwaga. W szczególności: jeżeli X_1,\ldots,X_n o wartościach w $\mathbb R$ są niezależne i mają skończone wariancje, to

$$Var(X_1 + \ldots + X_n) = Var X_1 + \ldots + Var X_n.$$

1.4. **Macierz kowariancji wektora losowego.** Wprowadzimy teraz ważny parametr rozkładu dwuwymiarowego, który charakteryzuje związek między współrzędnymi wektora losowego.

Definicja. Jeżeli zmienne losowe X i Y o wartościach w \mathbb{R} mają drugi moment, tzn. $\mathbb{E}X^2 < \infty$, $\mathbb{E}Y^2 < \infty$, to kowariancję zmiennych X i Y definiujemy wzorem

$$\mathbb{C}$$
ov $(X, Y) = \mathbb{E}(X - \mathbb{E}X)(Y - \mathbb{E}Y).$

Jeżeli Cov(X,Y) = 0, to mówimy, że zmienne losowe X i Y są **nieskorelowane**.

Uwaga. Zachodzą wzory: $\mathbb{C}ov(X,Y) = \mathbb{E}XY - \mathbb{E}X\mathbb{E}Y$ oraz $\mathbb{C}ov(X,X) = \mathbb{V}arX$.

Uwaga. Zauważmy, że w przypadku niezależnych zmiennych losowych $\mathbb{E}(XY) = \mathbb{E}X\mathbb{E}Y$, co daje $\mathbb{C}\text{ov}(X,Y) = 0$. Zatem niezależne zmienne losowe są nieskorelowane, ale **nie wszystkie zmienne losowe** nieskorelowane muszą być niezależne!

W przypadku wektora losowego (X,Y) rolę wariancji odgrywa tzw. macierz kowariancji.

Definicja. Macierzą kowariancji zmiennych losowych X i Y o wartościach w $\mathbb R$ nazywamy macierz

$$\left[\begin{array}{cc} \mathbb{V}\mathrm{ar}X & \mathbb{C}\mathrm{ov}(X,Y) \\ \mathbb{C}\mathrm{ov}(X,Y) & \mathbb{V}\mathrm{ar}Y \end{array}\right].$$

Definicja. Współczynnikiem korelacji zmiennych losowych X i Y o wartościach w \mathbb{R} (gdy $\mathbb{E}X^2 < \infty$ i $\mathbb{E}Y^2 < \infty$) nazywamy liczbę

$$\rho(X,Y) = \frac{\mathbb{C}\mathrm{ov}(X,Y)}{\sqrt{\mathbb{V}\mathrm{ar}X}\sqrt{\mathbb{V}\mathrm{ar}Y}}.$$

Uwaga. Wiadomo, że $\rho(X,Y) \in [-1,1]$.

1.5. Suma niezależnych zmiennych losowych. Jeżeli X i Y są niezależnymi zmiennymi losowymi o wartościach w \mathbb{R} i rozkładach absolutnie ciągłych z gęstościami f_X oraz f_Y , to zmienna losowa Z = X + Y ma rozkład absolutnie ciągły o gęstości danej wzorem

$$f_Z(x) = f_X * f_Y(x) := \int_{-\infty}^{\infty} f_X(x - y) f_Y(y) dy.$$

Jest to tzw. splot gęstości f_X i f_Y .

Przykład. Jak będzie wyglądał rozkład zmiennej Z w przypadku, gdy X i Y mają rozkłady dyskretne?

Przykład. Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładzie wykładniczym z parametrem $\lambda > 0$ (tj. $X, Y \sim Exp(\lambda)$). Wyznacz gęstość rozkładu zmiennej Z = X + Y.

$$f_Z(x) = \int_{-\infty}^{\infty} f_X(x-y) f_Y(y) dy$$
$$= \lambda^2 \int_0^x e^{-\lambda(x-y)} e^{-\lambda y} dy$$
$$= \lambda^2 x e^{-\lambda x}$$

dla x>0. Natomiast dla $x\leq 0$ zachodzi równość

$$f_Z(x) = \int_{-\infty}^{\infty} f_X(x-y) f_Y(y) dy = 0.$$

Zatem jest to rozkład gamma z parametrami $\alpha = \lambda > 0$ oraz $\beta = 2$.