Arizona State University CEE 598: Transportation Modeling and Simulation, 2018

Tuesday, Thursday, 07:30 PM-08:45 PM, CAVC455

Instructor: Xuesong Zhou, xzhou74@asu.edu, Office: CAVC 474, Whatspp: 801-696-5651: skype: xzhou99, wechat: xzhou99 Co-Instructor: Jiangtao (Tony) Liu, jiangtao.liu@asu.edu Office: CAVC 321: Office Hours: T, TH 11AM -12PM noon Programming TA: Pan SHANG pshang@asu.edu; Yongxiang ZHANG yzhan800@asu.edu

Course Overview

Students will develop a deep understanding on the major topics of network modeling and optimization, stochastic system analysis, transportation simulation. Students will be able to apply stochastic, simulation and optimization models to analyze and improve the performance of dynamic transportation systems with multiple origin-destination pairs, a large number of agents (travelers, pedestrian, vehicles and service providers) on congested corridors and networks. The simulation tools to be used in this class include (1) models that the students develop in the class, (2) DTALite, and (3) VISSIM.

Reference books

(1) Urban Operations Research Hardcover – by Richard C. Larson and Amedeo R. Odoni http://web.mit.edu/urban_or_book/www/book/

- (2) Tentative book: Transportation Modeling and Simulation: Theory and Applications
- (3) Multi-agent transportation simulation by Kai Nagel (2004)

Software Packages

GAMS: https://www.gams.com/; VISSIM: https://www.vissim.com/;

DTALite/NeXTA: https://github.com/xzhou99/dtalite_software_release

Selected research papers and handouts will be distributed in class, such as reference manual for VISSIM

Course Requirements/Evaluation/Grading

7 weekly homework assignments	70 %
Mid-term (open-book, in person with professor)	10%
Final examination (open-book, in person with professor)	15%
Group presentation and paper	5%

Grading

A	A-	B+	В	B-	C+	С	C-
92	90	85	80	77	75	67	65
100	92	90	85	80	77	75	67

	Topic No.		Specific Topics	C++ implementation	Homework: Model, pseudo code for algorithms,		
				(advanced programming)	implementation (e.g., in Excel, GAMS, and Visual C++),		
					test cases and report		
	1.	Introduction to Optimization	Linear programming 1:	Read and display network, OD	HW 1: DTALite and NEXTA		
	Models		Models Linear programming 2:		HW 2: Transportation Optimization models		
			Excel and Integer programming,		Transportation problem,		
			GAMS software package	Input_node, input_link, input	Assignment problem,		
· ·				demand, input_agent	Shortest path problem		

			(familiar with NEXTA visualization) DTALite introduction	If-then constraints in location applications Implemented in both GAMS and Excel
2.	Network algorithms and applications	Shortest path applications Label correction Algorithm Vehicle Routing Problem 1 (introduction) Vehicle Routing Problem 2 (insertion algorithm and swapping algorithm) (Ch 6 of Urban Operations Research)	Label correcting algorithm for large scale network Lagrangian relaxation (Advanced) Vehicle routing in dynamic programming framework	HW 3: Shortest path formation Implemented in Matlab or C++ Vehicle routing formulation Solved in GAMS (read the sample code in C++)
3.	Probability and queuing theory	Review of probability and statistics Random distributions Queuing theory and M/M/1 queues Queuing theory and cumulative flow counts	Bottleneck simulation Implement a single deterministic queueing model in C++	HW 4: Mean and Variance Arrival and departure as Poisson and exponential distributions Queue model (workzone or toll plaza) Queue implement in Excel
4.	From discrete event simulation to agent-based traffic simulation	Introduction for simulation Discrete-event simulation Random number generation, Queueing related performance evaluation	Discrete event simulation Random number generation, Stochastic queueing related performance evaluation Vehicle generation in DTALite	HW 5: Random number generation and statistics testing (uniform) in Excel Random number generation (Normal and Lognormal) in Excel Queue implement in Matlab or C++
5.	World for agents: Spatial and temporal representation for transportation systems	Car following model VISSIM 1 VISSIM 2 Traffic network assignment	Static Traffic Assignment in Excel, in GAMS, and in C++	HW 6: Car following summary Car following in Excel VISSIM test networks Traffic Assignment in GAMS
6.	Network Simulation and route assignment and routing applications	Workzone applications Signal application Tolling and traveler information provision application Vehicle routing for mobility as services Mobility as service simulation	Scenario testing Calibration and Validation OD demand estimation Vehicle routing in C++	HW 7: (In DTALite) Workzone applications Signal application Tolling and traveler information provision application Vehicle routing for mobility as services

	August 2018							
	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	
		13	14	15	16	17	18	
					Introduction	Release HW1		
1		20	21	22	23	24	25	
			Linear programming 1		Linear programming 2	Release HW2		

Weekend teaching Video

DTALite and Nexta

				HW 1			
2	27	28	29	30	31		C, python for transportation optimization,
		Excel and Integer programming		GAMS software package	Release HW3		Reading and display network
				Thursday			
						1	Label correcting algorithm
1	3	4	5	6	7	8	Lagrangian relaxation (advanced)
-		Shortest path applications		Label correction Algorithm HW 2			Lugi angam remantion (au vanceu)
2	10	11	12	13	14	15	Vehicle routing algorithm
2		Vehicle Routing Problem		Vehicle Routing Problem 2	Release HW4		venice routing argorithm
1	17	18	19	20	21	22	Bottleneck simulation
		Review of probability and statistics		Random distributions			
2	24	25	26	27	28	29	Single deterministic queueing
2		Queuing theory and M/M/1 queues		Cumulative flow counts	Release HW5		Single deterministic queueing
			October 2018				
				Thursday			
1	1	2	3	4	5	6	Discrete event simulation
		Introduction for simulation		Discrete-event simulation HW 4			
2	8	9	10	11	12	13	Random number generation
		Fall break		In-class midterm exam			

1		22	16 Random number generation 23 Car following model	24	18 Queueing related performance evaluation HW 5 25 VISSIM 1	19 Release HW6	27	Vehicle generation in DTALite Static Traffic Assignment in Excel
		29	30 VISSIM 2	31				
				Wednesday	Thursday 1 Traffic network assignment HW6	Friday 2	Saturday 4	Static Traffic Assignment in GAMS
	Release HW7	5	6 Workzone applications	7	8 Signal application	9	11	Static Traffic Assignment in C++
	Release HW8	12	Tolling and traveler information	14	Vehicle routing for mobility as services HW7	16	17	OD demand estimation
		19	20 Mobility as service simulation	21	22 Thanksgiving	23	24	Scenario Testing
Final week Literature review paper		26	27 Student presentation	28	29 Student presentation	30		