COMPUTER SCIENCE

Database Management System

Query Language

Lecture_3

Vijay Agarwal sir

Basic Operators

Derived Operators

Selection [0]

Projection [TI]

Union (U)

Set Dibberence [-]

Intersection [1)

CROSS Product

Join 2 its type.

(1) Natural Join

& Equi Join

1 Conditional Join

(1) Left Outer Join

3) Right Outer Join

6 Full Outer Join

Relational Algebra

Basic operators

 $\sqrt{\pi}$: Projection operator

ெ : Selection operator

: Cross-product operator

U: Union

: Set difference.

g: Rename operator

Relational Algebra

Derived operators

```
: Intersection {using "_"}
```

join {using X, σ }

or \div : Division {using π , x, -}

Rename operator ([])

- Rename Table
- 2 Rename all Attributes.
- Rename Specific Attribute.

Rename operator (g)

It is used to rename table name and attribute names for query processing.

Example:

- (I) Stud (Sid, Sname, age) → Revolute
 g(Temp, Stud): Temp (Sid, Sname, age)
- (II) g_{I, N, A} (Stud): Stud (I, N, A)
 - All attributes renaming
- (III) $Q \operatorname{Sid} \to I$ (Stud): Stud (I, Sname, A) $age \to A$

STUD (Sid Sname Age)

9 (Temp. STUD)

Some attribute renaming

(ii) STUD

Division: It is Derived operator.

- It is used to retrieve attribute value of R which has paired with every attribute value of other relation S.
- \square $\pi_{AB}(R)/\pi_B(S)$: It will retrieve values of attribute 'A' from R for which there must be pairing 'B' value for every 'B' of S.

Expansion of '/' by using basic operator

- Example: Retrieve sid's who enrolled every course.
- Result:

```
\pi_{\text{sidcid}}(\text{Enroll})/\pi_{\text{cid}}(\text{Course})
```

Step 1: Sid's not enrolled every course of course relation.

(Sid's enrolled proper subset of course)

$$\pi_{sid}((\pi_{sid}(Enroll) \times \pi_{cid}(course)) - \pi_{sidcid}(Enroll))$$

Step 2:

[sid's enrolled every course] = [sid's enrolled some course] - [sid's
not enrolled every course]

$$\therefore \pi_{\text{sidcid}}(E)/\pi_{\text{cid}}(c) = \pi_{\text{sid}}(E) - \pi_{\text{sid}}((\pi_{\text{sid}}(E) \times \pi_{\text{cid}}(C) - \pi_{\text{sidcid}}(E))$$

Q.

Retrieve all student who are Enrolled Some course or Any

course or at least one course?

Solution Π_{Sid} (Enrolled)

Enrolled				
Sid	Cid			
S_1	C_1			
S_1	C ₂			
S_1	C ₃			
S ₂	C_1			
S ₂	C ₃			
S_3	C_1			

Course
Cid
C_1
C
C_3

Q.

Retrieve all student who are Enrolled every course?

Sid

Solution

Enrolled				
Sid	Cid			
S_1	. C ₁			
S_1	· C ₂			
S_1	C ₃			
S_2	C_1			
S_2	C ₃			
S_3	C_1			

Course
Cid
C_1
Ca
C_3

C₁ C₂

Retrieve all student who are Enrolled every course?

Enrolled

Sid Cid

 S_1 C_1

 $S_1 \rightarrow C_2$

 $S_1 \hookrightarrow C_3$

 $S_2 \mid C_1$

 S_2 C_3

 S_3 C

St

Course

Cid

 C_1

 C_{2}

 C_3

Solution

 Π_{Sid} (Enrolled) – Π_{Sid} [Π_{Sid} (Enrolled) × Π_{Cid} (Course) – Enrolled]

> TTsid cid (Enrulled)

Ticid (Course).

$$\Pi_{Sid}$$
 (Enrolled) – Π_{Sid} [Π_{Sid} (Enrolled) × Π_{Cid} (Course) – Enrolled]

$$T_{AB}(R)/T_{B}(S) \equiv T_{A}(R) - T_{A} \left(T_{A}(R) \times T_{B}(S) - T_{AB}(R)\right)$$

$$T_{ABCD}(R) = T_{AB}(R) - T_{AB}(R) \times T_{CD}(S) - T_{ABCD}(R)$$

$$\Pi_{AB}(R) / \Pi_{B}(S) = \Pi_{A}(R) - \Pi_{A}[\Pi_{A}(R) \times \Pi_{B}(S) - R]$$

Find Connection

Gyding

$$\Pi_{ABCD}(R) / \Pi_{CD}(S) \Rightarrow \Pi_{AB}(R) - \left(\Pi_{AB} \left[\Pi_{AB}(R) \times \Pi_{CD}(S) - R\right]\right)$$

Consider the following three relations in a relational database:

Employee (eld, Name), Brand (bld, bName), Own (eld, bld)

Which of the following relational algebra expressions return the set of elds who own all the brands? [GATE: 2022]

 π_{eld} ($\pi_{eld, bld}$ (Own/ π_{bld} (Brand))

 π_{eld} (Own) $-\pi_{\text{eld}}$ (π_{eld} (Own) $\times \pi_{\text{bld}}$ (Brand)) $-\pi_{\text{eld, bld}}$ (Own))

 $\pi_{eld} \left(\pi_{eld, bld} \left(Own \right) / \pi_{bld} \left(Own \right) \right)$

 $\pi_{\text{eld}} \left(\left(\pi_{\text{eld}} \left(\text{Own} \right) \times \pi_{\text{bld}} \left(\text{Own} \right) / \pi_{\text{bld}} \left(\text{Brand} \right) \right)$

Brand

bid	brame
61	AT
be	WC

eid bid
ey bi
ey bi
ez bi
ez bi
ez bi

OWN

Treid (own) - Treid Treid (own) X Thid (board) - Treidbid (own)

Conside given b	er the two	relation	Suppliers	and	Parts	are
Sup	pliers	Parts				(
Sno	Pno	P _{no}]			1
S ₁ S ₁	P_1 P_2	P ₂ P ₄	2/2			
Sisi	P₃ P₄ È		Sie			

$$\pi_{S_{no}P_{no}}$$
 (Suppliers) / $\pi_{P_{no}}$ (Parts)

S₂ S₃ S₄ S₄

The number of tuples are there in the result when the above relational algebra query executes is

Consider the Database with relations:

- S Supplier (Sid, Sname) Rating)
- P Parts (Pid Pname Color)
- S Catalog (Sid Pid, Cost)

P.Pid = C. Pid C. Sid = S. Sid

Find the Sid of Supplier whose Rating greater than 9?

Gnest In RDBMs then

Consider the Database with relations:

- S Supplier (Sid, Sname, Rating)
- P Parts (Pid, Pname, Color)
- S Catalog (Sid Pid, Cost)

Find the Sid of Supplier whose Rating greater than 9?

Find the Pid of Red Color Parts?

Retrieve Sid of Supplier whose cost is greater than 20,000?

3 Tobble
Tsname Color-Red Subblies M Pasts M Catalog)

Retrieve Sid of Supplier who supplied some Red color parts?

All are Correct But Query I Query 4

is efficient. Tsid C.Pid=P.Pid (Catalog X Parts)

P.Color=Red TIsid C. Pid-P.Pid Color-Red (Pasts) X Catalog Theid Colore Red Points M Catalog amosh III

Coway II = Optimize

TIsid Color= Red (Pasits) M Catalog

Catalog. Parts 500 Tuples 400 Tuples 'Red Color P.Pid = C.Pid Total 200 Tubles (in Which Pid Motch) 7 Tubles Suchthat in Which Color= Red 4 Tuples (in Which Pid Match & Color = Red) But Pid Not Moton

Note: Let an Attribute A belongs to R only then

$$\sigma_{A='a'}(R \bowtie S) = \sigma_{A='a'}(R) \bowtie S \rightarrow More efficiency query$$

Note: Let an Attribute A belongs to R only and Attribute B belongs to S

only then

$$\sigma_{A='a' \wedge B='b'}(R \bowtie S) = \sigma_{A='a'}(R) \bowtie \sigma_{B='b'}(S)$$

More efficient Query.

Gind Sid having CGPA greater than 8 & State = 'AP'

The State: AP (State) State: AP

Academic (Sid

We DATABASE of have State: 20 State UT: 7 Union Teritory

Personal Sid

Best

CGPA>8 (Acadenic) IXI 5 State: AP (Personal)

19 State + FUT

J Exclude

exclude 0408CGPA

Consider the following relation schemas:

b-Schema = (b-name, b-city, assets)

a-Schema = (a-num, b-name, bal)

d-Schema = (c-name, a-number)

Let branch, account and depositor be respectively instances of the above schemas. Assume that account and depositor relations are much bigger than the branch relation.

Consider the following query:

 $\Pi_{\text{c-name}} \left(\sigma_{\text{b-city} = \text{"agra"} \land \text{bal} < 0} \right) \text{ (branch } \bowtie \text{ account } \bowtie \text{ depositor}$

- A $\Pi_{\text{c-name}} \left(\sigma_{\text{bal} < 0} \left(\sigma_{\text{b-city} = \text{"Agra"}} \text{ branch} \bowtie \text{account} \right) \bowtie \text{depositor} \right)$
- B $\Pi_{\text{c-name}} \left(\sigma_{\text{b-city} = \text{"Agra"}} \text{ branch} \bowtie \left(\sigma_{\text{bal} < 0} = \text{account} \right) \bowtie \text{depositor} \right)$
- $\Pi_{\text{c-name}} \left(\sigma_{\text{b-city} = \text{"Agra"}} \text{ branch } \bowtie \sigma_{\text{b-city} = \text{"Agra} \land \text{bal} < 0} \text{ account } \bowtie \text{ depositor} \right)$
- D Π_{c-name} $(\sigma_{b-city = "Agra"} branch \bowtie (\sigma_{b-city = "Agra \land bal < 0} account \bowtie depositor))$

Consider two relations $R_1(A, B)$ with the tuples (1, 5), (3, 7) and $R_2(A, C) = (1, 7)(4, 9)$

Assume that R(A, B, C) is the full natural outer join of R_1 and R_2 . Consider the following tuples of the form (A, B, C); a = (1, 5, null), b = (1, null, 7), c = (3, null, 9), d = (4, 7, null), e = (1, 5, 7), f = (3, 7, null), g = (4, null, 9). Which one of the following statements is correct? [GATE-2015: 1 Mark]

- A R contains a, b, e, f, g, but not c, d
- B R contains all of a, b, c, d, e, f, g
- C R contains e, f, g, but not a, b
- P R contains e but not f, g

Q.

Consider the following relations given below:

R

A	В
6	6
7	6
8	8

S

С	D
6	7
8	9
8	10

$$\Pi_{AD}(R \times S) - P_{A \leftarrow B}(\Pi_{BD}(R \bowtie_{B=C} S))$$

Number of tuples return by the above query when it is executed on the above instance of relation R and S is ____

Summary

OPERATION	PURPOSE	NOTATION
SELECT	Selects all tuples that satisfy the selection condition from a relation R.	σ _{<selection condition=""></selection>} (R)
PROJECT	Produces a new relation with only some of the attributes of R, and removes duplicate tuples.	π _{<attribute list=""></attribute>} (R)
THETA JOIN	Produces all combinations of tuples from R_1 and R_2 that satisfy the join condition.	R ₁ ⋈ _{<join condition=""></join>} R ₂
EQUIJOIN	Produces all the combinations of tuples from R ₁ and R ₂ that satisfy a join condition with only equality comparisons.	$R_1 \bowtie_{< join condition>} R_2$, $OR R_1 \bowtie_{(< join condition 1)} R_2$ >), (< join condition 1 >) R_2
NATURAL JOIN	Same as EQUIJOIN except that the join attributes of R ₂ are not included in the resulting relation; if the join attributes have the same names, they do not have to be specified at all.	R_1^* <pre></pre>

OPERATION	PURPOSE	NOTATION
UNION	Produces a relation that includes all the tuples in R_1 or R_2 or both R_1 and R_2 ; R_1 and R_2 must be union compatible.	$R_1 \cup R_2$
INTERSECTION	Produces a relation that includes all the tuples in both R_1 and R_2 ; R_1 and R_2 must be union compatible.	$R_1 \cap R_2$
DIFFERENCE	Produces a relation that includes all the tuples in R ₁ and that are not in R ₂ ; R ₁ and R ₂ must be union compatible.	R ₁ - R ₂
CARTESIAN PRODUCT	Produces a relation that has the attributes of R_1 and R_2 and includes as tuples all possible combinations of tuples from R_1 and R_2 .	$R_1 \times R_2$
DIVISION	Produces a relation $R(X)$ that includes all tuples $t[X]$ in $R_1(Z)$ that appear in R_1 in combination with every tuple from $R_2(Y)$, where $Z = X \cup Y$	R ₁ (Z) ÷ R ₂ (Y)

Enjoying the Concept

CC

Dorbt

NAT

Consider a database that has the relation schema CR(StudentName, CourseName). An instance of the schema CR is as given below:

The following query is made on the database.

$$T1 \leftarrow \pi_{CourseName}$$

$$(\sigma_{StudentName='SA'}(C.S)$$

 $T2 \leftarrow CR \div T1;$

The number of rows in T2 is _____.

[GATE-2017-CS: 2M]

CR		
Student Name	Course Name	
SA	CA	
SA -	→ CB	
SA ~~~	~~> cc	
SB	СВ	
SB	CC	
SC	CA	
SC	CB	
sc ~~	✓ cc	
SD	CA	
SD -	→ CB	

Student Name	Course Name
SD ~~	~→ cc
SD	CD
SE .	CD
SE	CA
SE	CB
SF	CA
SF	CB
SF ~	~> cc

CR/CA CB

> SA SC SF

Arry (4 Tubles)

MCQ

The following relation records the age of 500 employees of a company, where empNo {indicating the employee number} is the key:

empAge(empNo, age)

Consider the following relational algebra expression:

 $\prod_{empNo} (empAge \bowtie_{(age>age1)} \rho_{empNo1,age1} (empAge))$ What does the above expression generate? [GATE-2020-CS: 1M]

- A Employee numbers of only those employees whose age is the maximum
- B Employee numbers of only those employees whose age is more than the age of exactly one other employee
- Employee numbers of all employees whose age is not the minimum
- D Employee numbers of all employees whose age is the minimum

NAT

Consider the following relations P(X, Y, Z), Q(X, Y, T) and R(Y, V)

	P		
Х	Y	Z	
X1	Y1	Z1	
X1	Y1	Z2	
X2	Y2	Z2	
X2	Y4	Z4	

	Q	
Х	Y	T
X2	Y1	2
X1	Y2	5
X1	Y1	6
Х3	Y3	1

R	
Y	V
Y1	V1
Y3	V2
Y2	V3
Y2	V2

How many tuples will be returned by the following relational algebra query?

 $[\Pi_X(\sigma_{(P,Y=R,Y \land R,V=V2)}(P\times R))-\Pi_X(\sigma_{(Q,Y=R,Y \land Q,T>2)}(Q\times R))];$

[GATE-2019-CS: 2M]

MCQ

Suppose $R_1(\underline{A}, B)$ and $R_2(\underline{C}, D)$ are two relation schemes. Let r_1 and r_2 be the corresponding relation instances. B is a foreign key that refers to C in R_2 . If data in r_1 and r_2 satisfy referential integrity constraints, which of the following is ALWAYS TRUE?

[GATE-2013-CS: 2M]

A
$$\Pi_{B}(r_{1})-\Pi_{C}(r_{2})=\phi$$

B
$$\Pi_{C}(r_{2})$$
- $\Pi_{B}(r_{1})$ =φ

$$\Pi_B(r_1)=\Pi_C(r_2)$$

D
$$\Pi_B(r_1)-\Pi_C(r_2) \neq \phi$$

NAT

Consider the following table named Student in a relational database. The primary key of this table is rollNum. Student

Roll Num	Name	Gender	Marks	
1	Naman	M	62	
2	Aliya	F	70	
3	Aliya	F	80	
4	James	M	82	
5	Swati	F	65	

The SQL query below is executed on this database.

SELECT *

FROM Student

WHERE gender = 'F' AND marks > 65;

The number of rows returned by the query is

[GATE-2023-CS: 2M]

MCQ

Consider the following relation A, B and C:

A		
ID	Name	Age
12	Arun	60
15	Shreya	24
99	Rohit	11

	В		
ID	Name	Age	
15	Shreya	24	
25	Hari	40	
98	Rohit	20	
99	Rohit	11	

C			
ID	Phone	Area	
10	2200	02	
99	2100	01	

How many tuples does the result of the following relational algebra expression contain? Assume that the schema of $A \cup B$ is the same as that of A.

(A∪B) M A.Id > 40 vC.Id < 15 C

[GATE-2012-CS: 2M]

A)

B

C

D

SQL[Structured Query Language]

→DDL(Data Definition Language): Modification allowed at schema (Definition) level

CREATE

ALTER

DROP TABLE

DML(Data Manipulation Language): Modification allowed at data level

UPDATE DELETE

DCL(Data Control Language): Control Transactional Operation

COMMIT

DQL(Data Query Language): Used to Retrieve the Data from DB

FROM

SQL

R.A

SELECT [DISTINCT]
$$A_1 A_2 A_3 A_n = \text{Projection}(\pi)$$

FROM
$$R_1 R_2 R_3 \dots R_m \equiv CROSS Product (x)$$

WHERE Condition
$$\equiv$$
 Selection $[\sigma]$

R.A:
$$\pi_{A1A2A3..An}[\sigma_{Condition}(R_1 \times R_2 \times R_3 ... \times R_m)]$$

Select: Not going to eliminate Duplicate Value.

Pw

1) SELECT AB Output FROM R

A	В
1	2
1	2
2	4

R(ABC)

21	77	(\mathbf{p})
4)	"AB	(\mathbf{n})

A	В
1	2
2	4

A	В	С
1	2	3
1	2	4
2	4	5

3) SELECT [DISTINCT]AB FROM R

Output	A	В
	1	2
	2	4

Any Doubt?

