CSP-S 2020 模拟赛

第二试 题目解析

时间: 2020 年 10 月 dd 日 hh:mm ~ hh:mm

AHSOFNU

${\bf PinkRabbit}$

题目名称	朝比奈实玖瑠的采购	长门有希的序列	古泉一树的游戏
题目类型	传统型	传统型	传统型
输入文件名	asahina.in	nagato.in	koizumi.in
输出文件名	asahina.out	nagato.out	koizumi.out
每个测试点时限	1.0 秒	3.0 秒	1.0 秒
内存限制	512 MB	512 MB	512 MB
测试点数目	25	10	25
测试点是否等分	是	是	是

提交源程序文件名

对于 C++ 语言	asahina.cpp	nagato.cpp	koizumi.cpp
-----------	-------------	------------	-------------

朝比奈实玖瑠的采购(asahina)

【题目大意】

有n个盒装的茶叶,你可以购买其中的一部分,每一盒只能买一次。

对于第 i 个盒装的茶叶,其中含有 c_i 包茶叶,每包茶叶的清香度为 w_i ,这一盒的价格为 v_i 。有 m 种茶水的制作方法,这些方法也不能重复使用。

第 j 种方法需要 C_j 包茶叶,每包茶叶的清香度都应至少为 W_j ,制作后可以增加 V_j 的收入。你可以购买 n 盒茶叶其中的一部分,然后选择一些制作方法来获得收入。

请你求出利润的最大值,也即最大化卖茶水带来的收入与购买茶叶的支出的差。

【数据范围】

对于所有测试点: $1 \le n, m \le 2000$, $1 \le c_i, C_j \le 50$, $1 \le w_i, W_j, v_i, V_j \le 10^9$ 。 每个测试点的具体限制见下表:

测试点编号	$n \leq$	$m \leq$	特殊限制
$1 \sim 4$	15	2000	无
$5\sim 8$	2000	15	
$9 \sim 12$	100		$c_i = C_j = 1$
$13 \sim 16$	2000		$w_i = W_j = 1$
$\boxed{17 \sim 20}$			$v_i = V_j = 1$
$21 \sim 25$			无

【算法一(100分)】

对每盒茶叶以及每种方法按照清香度从大到小排序。

按顺序考虑每种方法,能满足这种方法的清香度需求的茶叶是一个前缀。

结合另外两维: 茶包数与价值, 这启发我们考虑背包问题, 并使用动态规划解决。

令 f[i][j] 表示考虑了清香度 $\geq i$ 的所有茶叶和方法后,此时剩余还未使用的茶包的个数为 j 时,能够确定的利润的最大值(可能为负)。

对于茶叶: 从 f[*][j] 转移到 f[*][j+c],代价为 -v。

对于方法: 从 f[*][j] 转移到 f[*][j-C], 代价为 V。

任何时刻 f[i][j] 中的 j 值均不能小于 0 (不能透支清香度高的茶叶)。

为了节省空间,可以把 i 所在的那一维滚动掉。

时间复杂度为 $\mathcal{O}((n+m)\sum c)$, 期望得分 100 分。

长门有希的序列(nagato)

【题目大意】

请你维护一个长度为 n 的整数序列 $[a_1, a_2, \ldots, a_n]$, 执行 q 次操作, 有如下两种操作:

- 1. 1 1 r: 将区间 [l,r] 中的每个元素变为自身的平方。即对每个 $l \le i \le r$,执行 $a_i \leftarrow a_i^2$ 。
- 2. 2 1 r: 询问区间 [l,r] 中的所有元素的和,对 p = 998244353 取模。即输出 $\left(\sum_{i=l}^{r} a_i\right) \mod p$ 。

【数据范围】

对于所有测试点: $1 \le n, q \le 2 \times 10^5$, $1 \le a_i < p$, $op \in \{1, 2\}$, $1 \le l \le r \le n$ 。 其中 p = 998244353。

每个测试点的具体限制见下表:

测试点编号	$n,q \leq$	特殊限制
1	5000	无
$2 \sim 3$		对于 1 操作有 $l=r$
$\phantom{00000000000000000000000000000000000$	2×10^{5}	对于 2 操作有 $l=r$
$6 \sim 10$		无

【算法一(10分)】

暴力模拟两种操作。

时间复杂度为 $\mathcal{O}(qn)$, 期望得分 10 分。

【算法二(20分)】

对于 1 操作有 l=r 时,相当于单点修改区间求和。

使用线段树或树状数组维护即可。

时间复杂度为 $\mathcal{O}(n+q\log n)$, 期望得分 20 分。

【算法三(100分)】

假设 a 序列的某个位置的初始值为 v。考虑对 v 进行若干次 1 操作后的结果:

形成序列 $[v^1, v^2, v^4, v^8, v^{16}, v^{32}, \ldots]$ 。形式化地,每一项有通式 v^{2^i} 。

注意到 p = 998244353 是质数,应用费马小定理: $v^{2^i} \equiv v^{2^i \bmod (p-1)} \pmod{p}$ 。

注意到 $p-1=119\cdot 2^{23}$,所以序列 $e_i=2^i$ 在模 p-1 意义下会在 23 步内进入循环节。

而循环节长度,即 $\operatorname{ord}_{119}(2)$,应为 $\varphi(119) = \varphi(7 \cdot 17) = 96$ 的因数,实际计算可知长度为 24。

回到原问题,考虑使用线段树维护,在节点上记录子树中的所有位置是否都已经进入循环节。

如果没有进入,修改时递归到底层;否则打标记,只需处理长度为24的数组的循环移位。

时间复杂度为 $\mathcal{O}(24(n+q)\log n)$, 期望得分 100 分。

古泉一树的游戏(koizumi)

【题目大意】

试求三行 Chomp 游戏的策略。

规定序列 $[a_1, a_2, \ldots, a_n]$ 对应了 n 行 Chomp 游戏的一个状态,具体地说,对应了第 i 行的长度为 a_i 的状态。

每个测试点有 T 组数据。

【数据范围】

对于所有测试点:

 $1 \le T \le 1000, 1 \le n \le 3$

 $1 \le a_1, a_2 \le 10^9$ (如果 a_2 存在)

 $1 \le a_3 \le 1000$ (如果 a_3 存在)

保证输入的是一个合法的状态,且至少有一种状态转移方式,即 $a_i \geq a_{i+1}$ 且 $a_1 \geq 1$ 。每个测试点的具体限制见下表:

测试点编号	$n \leq$	特殊限制
1	1	无
2		$a_1 \leq 9$
3	2	$a_1 \le 10^3$
4		无
$5 \sim 7$		$a_3 = 1$
$8 \sim 10$		$a_3 \leq 3$
$11 \sim 13$	3	$a_1 \le 80$
$14 \sim 18$	J	$a_3 \le 80$
$19 \sim 23$		$a_3 \le 150$
$24 \sim 25$		无

【算法一(4分)】

对于 n=1 的情况,当 $a_1=1$ 时输出 Lose,否则输出 1。 期望得分 4 分。

【算法二(16分)】

对于 n=2 的情况 (n=1) 时算作 $a_2=0$ 的 n=2 的情况):

不难发现 $[a_1, a_2]$ 是必败态当且仅当 $a_2 = a_1 - 1$ 。

所以如果 $a_2 = a_1 - 1$ 输出 Lose,否则如果 $a_2 = a_1$ 输出 $[a_1, a_1 - 1]$,否则输出 $[a_2 + 1, a_2]$ 。 期望得分 16 分。

【算法三(28分)】

对于 $0 \le a_3 \le 1$ 的情况 (n = 2) 时算作 $a_3 = 0$ 的情况):

当 $a_3=0$ 时已经在算法二中考虑过了,所以仅考虑 $a_3=1$ 。

不难证明仅有 [3,1,1] 和 [2,2,1] 是当 $a_3=1$ 时的必败态。

如果输入的是必胜态,要么可以转移到[3,1,1],要么可以转移到[2,2,1]。

除了 [1,1,1] 和 [2,1,1], 它们分别转移到 [1,0,0] 和 [2,1,0]。

期望得分28分。

【算法四(40分)】

在算法三的基础上,考虑 $2 \le a_3 \le 3$ 的情况。

对于 $a_3 = 2$,可以证明 $[a_1, a_2, 2]$ 是必败态当且仅当 $a_2 = a_1 - 2$ 。

对于 $a_3 = 3$,可以证明仅有的三个必败态是 [6,3,3]、[7,4,3] 和 [5,5,3]。

如果输入的是必胜态,有更多的细节需要处理,请读者自行考虑。

期望得分 40 分。

【算法五(12分)】

对于 n=3 且 $a_1 \le 80$ 的情况,可以设计一个三维的动态规划状态:

令 f[a][b][c] 表示第一行有 a 列,第二行有 b 列,第三行有 c 列的游戏是否是必胜态。

状态转移时枚举要选取哪个格子,有 $\mathcal{O}(a+b+c)$ 种转移方式。

预处理的时间复杂度为 $\mathcal{O}((\max a_1)^4)$ 。

记录下范围内的所有必败态,在回答询问时,直接枚举这些必败态进行判断。

当 $a_1 \le k$ 时,猜想必败态数量是 $\mathcal{O}(k^2)$ 的。

总时间复杂度为 $\mathcal{O}\left(\left(\max a_1\right)^4 + T\left(\max a_1\right)^2\right)$ 。

期望得分 12 分,结合算法四期望得分 52 分。

【算法六(100分)】

请阅读同目录下的 *chomp/study-3-rowed-chomp.pdf*。

使用其中图解计算过程中提到的方法, 用程序实现后表现优异。

时间复杂度为 $\mathcal{O}(k^3 + Tk)$, 其中 $k = \max a_3$ 。

这里的时间复杂度记号基于几个文中提到的猜想,它们在本题的数据范围内可以看作是成立的。

由于算法的固有特征,程序的时间常数较小,所以可以在规定的时限内通过本题。

代码中使用了并查集等优化,但效果并不明显,朴素实现就可以做到几乎相同的常数。

期望得分 100 分。

【算法七($72 \sim 92$ 分)】

如果你实现了在同目录下的 *chomp/study-3-rowed-chomp.pdf* 中提到的比较劣的打表程序。 也就是直接从算法五继承而来,再加上寻找循环节的部分。其时间复杂度应该是 $\mathcal{O}(k^4)$ 的。 应该能在规定时间内通过 $a_3 \leq 80$ 的测试点。 对于 $a_3 \leq 150$ 的测试点,得到了打出的表后,可以尝试将表压缩(或不用压缩,表的大小并不算太大,是否要压缩取决于代码长度限制),然后硬编码进程序中,不需要预处理,询问时直接访问状态即可。

期望得分 72~92 分。