МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Кафедра «Информационная безопасность систем и технологий»

Отчет

по лабораторной работе №1 на тему «ИССЛЕДОВАНИЕ ПОМЕХОУСТОЙЧИВОСТИ АППАРАТУРА УПС-16ТЧ»

Дисциплина: СиСПИ

Группа: 21ПИ1

Выполнил: Гусев Д. А.

Количество баллов:

Дата сдачи:

Принял: Иванов А. П.

1 Цель работы: Изучить основные характеристики и режимы работы аппаратуры УПС16ТЧ.

- 2 Задание на лабораторную работу.
- 2.1 Изучить основные характеристики и режимы работы аппаратуры УПС16ТЧ. Изучить принцип работы аппаратуры УПС-16ТЧ. Изучить возможности прибора КП-ИАТС-М. Познакомится со структурой лабораторного стенда. Подготовить аппаратуру УПС-16ТЧ для проведения исследований. Настроить программу управления прибором КП-ИАТС-М.
- 2.2 Провести исследование влияние уровня аддитивного шума в канале на помехоустойчивость аппаратуры УПС-16ТЧ.
- 2.3 Провести исследование влияние параметров импульсной помехи в канале на помехоустойчивость аппаратуры УПС-16ТЧ.
- 2.4 Провести исследование влияние параметров фазового дрожания в канале на помехоустойчивость аппаратуры УПС-16ТЧ.
- 2.5 Провести исследование влияние параметров скачков уровня в канале на помехоустойчивость аппаратуры УПС-16ТЧ.
- 2.6 Построить графики зависимости коэффициента ошибок (вероятности ошибочного приёма бит) от параметров дестабилизирующих факторов (аддитивного шума, импульсной помехи, фазового дрожания и скачков уровня).
 - 3 Выполнение работы.
- 3.1 Было изучены основные характеристики и режимы работы аппаратуры УПС16ТЧ. Изучены принципы работы аппаратуры УПС-16ТЧ. Изучены возможности прибора КП-ИАТС-М. Изучена структура лабораторного стенда и подготовлена аппаратура УПС-16ТЧ для проведения исследований. Настроена программа управления прибором КП-ИАТС-М.
- 3.2 Было проведено исследование влияние уровня аддитивного шума в канале на помехоустойчивость аппаратуры УПС-16ТЧ. Результаты измерений представлены в таблице 1.

Таблица 1 – Аддитивный шум

Pc	P _{III}	Рс/ш	Кол-во ошибок	Кош
-6,3	-31,7	25,4	0	0,00000
-6,3	-30,7	24,4	0	0,00000
-6,3	-29,7	23,4	3	0,00003
-6,3	-28,7	22,4	24	0,00024
-6,3	-27,7	21,4	75	0,00075
-6,3	-26,7	20,4	175	0,00175
-6,3	-25,7	19,4	423	0,00423
-6,3	-24,7	18,4	984	0,00984
-6,3	-23,7	17,4	1464	0,01464
-6,3	-22,7	16,4	3096	0,03096
-6,3	-21,7	15,4	5511	0,05511
-6,3	-20,7	14,4	8768	0,08768
-6,3	-19,7	13,4	13801	0,13801

3.3 Было проведено исследование влияние параметров импульсной помехи в канале на помехоустойчивость аппаратуры УПС-16ТЧ. измерений представлены в таблице 2.

Таблица 2 – Импульсная помеха

Частота, Гц	Амплитуда, В	Кол-во ошибок	Кош
	0,1	203	0,000203
	0,2	298	0,000298
0,25	0,3	421	0,000421
	0,4	517	0,000517
	0,5	521	0,000521
	0,1	420	0,00042
	0,2	674	0,000674
0,5	0,3	893	0,000893
	0,4	1011	0,001011
	0,5	1166	0,001166
	0,1	781	0,000781
	0,2	1383	0,001383
1	0,3	1725	0,001725
	0,4	1998	0,001998
	0,5	2313	0,002313
	0,1	1805	0,001805
	0,2	2795	0,002795
2	0,3	3543	0,003543
	0,4	3961	0,003961
	0,5	4563	0,004563
5	0,1	4191	0,004191

	0,2	6804	0,006804
	0,3	8642	0,008642
	0,4	9944	0,009944
	0,5	11825	0,011825
	0,1	8429	0,008429
	0,2	13461	0,013461
10	0,3	16946	0,016946
	0,4	19654	0,019654
	0,5	23680	0,02368
	0,1	17234	0,017234
	0,2	26498	0,026498
20	0,3	33666	0,033666
	0,4	38760	0,03876
	0,5	46972	0,046972

3.4 Было проведено исследование влияние параметров фазового дрожания в канале на помехоустойчивость аппаратуры УПС-16ТЧ. Результаты измерений представлены в таблице 3.

Таблица 3 – Фазовое дрожание

Частота, Гц	Амплитуда, Град.	Кол-во ошибок	Кош
20	3	0	0
	7,5	241	0,00241
	10	865	0,00865
	15	6147	0,06147
	3	0	0
50	7,5	18	0,00018
30	10	196	0,00196
	15	4561	0,04561
	3	0	0
100	7,5	9	0,00009
100	10	277	0,00277
	15	3987	0,03987
	3	0	0
300	7,5	78	0,00078
300	10	398	0,00398
	15	5148	0,05148

3.5 Было проведено исследование влияние параметров скачков уровня в канале на помехоустойчивость аппаратуры УПС-16ТЧ. Результаты представлены в таблице 4.

Таблица 4 – Скачки амплитуды

Постото Гуг	Амплитуда,	Кол-во	T/	
Частота, Гц	дБ	ошибок	Кош	
	-7,0	893	0,00893	
	-5,0	54	0,00054	
	-3,0	9	0,00009	
0,1	-1,0	0	0	
0,1	1,0	0	0	
	3,0	12	0,00012	
	5,0	1145	0,01145	
	7,0	1123	0,01123	
	-7,0	2941	0,02941	
	-5,0	1503	0,01503	
	-3,0	651	0,00651	
0,5	-1,0	0	0	
0,3	1,0	0	0	
	3,0	637	0,00637	
	5,0	2060	0,0206	
	7,0	5440	0,0544	
	-7,0	6754	0,06754	
	-5,0	3051	0,03051	
	-3,0	578	0,00578	
1	-1,0	0	0	
1	1,0	0	0	
	3,0	551	0,00551	
	5,0	5273	0,05273	
	7,0	14226	0,14226	

- 3.6 Были построены графики зависимости коэффициента ошибок (вероятности ошибочного приёма бит) от параметров дестабилизирующих факторов (аддитивного шума, импульсной помехи, фазового дрожания и скачков уровня). Графики указаны в приложении А.
- 4 Вывод: Из таблицы 1 можно сделать вывод, что уровень аддитивного шума в канале значительно влияет на помехоустойчивость аппаратуры УПС-16ТЧ. С уменьшением значения отношения сигнал/шум (Рс/ш

от 25,4 до 13,4) наблюдается существенный рост количества ошибок в аппаратуре (до 13801 ошибок на 1 000 000 сигналов). Наименьшее количество ошибок (нулевое) фиксируется при минимальных значениях уровня аддитивного шума, а с уменьшением этого уровня происходит увеличение количества ошибок.

Из таблицы 2 видно, что с увеличением амплитуды импульсной помехи (от 0,1 В до 0,5 В) в канале наблюдается увеличение количества ошибок в аппаратуре УПС-16ТЧ. Наименьшее количество ошибок фиксируется при минимальных значениях амплитуды помехи (0,1 В) при различных частотах(0,25; 0,5; 1; 2; 5; 10; 20 Гц). С увеличением амплитуды помехи (до 0,5 В) наблюдается рост значений ошибок. Также можно отметить, что при увеличении частоты помехи также увеличивается количество ошибок, даже при одинаковых амплитудах (для частоты 0,25 Гц и амплитуды 3 В количество ошибок — 421, для той же амплитуды на частоте 20 Гц — 33666).

Из таблицы 3 можно сделать вывод, что с увеличением частоты фазового дрожания в канале и амплитуды этого дрожания количество ошибок в аппаратуре УПС-16ТЧ также увеличивается. Самые низкие значения ошибок наблюдаются при частоте 20 Гц и амплитуде 3 градуса. Можно заметить, что при увеличении амплитуды фазового дрожания (от 3 до 15 градусов) количество ошибок увеличивается быстрее, чем при увеличении частоты(от 30 до 300 Гц). Это может свидетельствовать о более значительном влиянии амплитуды на помехоустойчивость аппаратуры по сравнению с частотой фазового дрожания. Самый большой К_{ош} наблюдается при частоте 300 Гц и Амплитуде 15 градусов.

Из таблицы 4 видно, что с увеличением амплитуды скачков уровня их влияние на количество ошибок в аппаратуре УПС-16ТЧ также возрастает. Самые низкие значения ошибок наблюдаются при отсутствии скачков (амплитуда 0 дБ). Также видно, что при отрицательных значениях амплитуды (от -7,0 до -1,0 дБ) количество ошибок невелико или равно нулю, при этом с увеличением положительных значений амплитуды (от 1,0 до 7,0 дБ) количество ошибок значительно возрастает.

Приложение А

Графики зависимостей

Рисунок 1 – Аддитивный шум

Рисунок 2 – Импульсная помеха

Рисунок 3 – Фазовое дрожание

Рисунок 4 – Скачки амплитуды