On va utiliser la bascule JK 7476 pour réaliser les compteurs.

#### 1. Compteur asynchrone modulo 10

|         | état | Q3 | Q2 | Q1 | Q0 |
|---------|------|----|----|----|----|
| <b></b> | 0    | 0  | 0  | 0  | 0  |
|         | 1    | 0  | 0  | 0  | 1  |
|         | 2    | 0  | 0  | 1  | 0  |
|         | 3    | 0  | 0  | 1  | 1  |
|         | 4    | 0  | 1  | 0  | 0  |
|         | 5    | 0  | 1  | 0  | 1  |
|         | 6    | 0  | 1  | 1  | 0  |
|         | 7    | 0  | 1  | 1  | 1  |
|         | 8    | 1  | 0  | 0  | 0  |
| L       | 9    | 1  | 0  | 0  | 1  |
|         | 10   | 0  | 0  | 0  | 0  |

On se sert de l'état 10 (1010 ou Q3Q2Q1Q0) pour remettre le compteur à zéro. Et puisque c'est la première fois qu'on a Q3 = 1 et Q1 = 1, alors on utilise seulement Q3Q1 pour remettre les bascules Q3 et Q1 à zéro (les bascules Q2 et Q0 passent automatiquement à zéro).



#### 2. Compteur asynchrone modulo 13

On se sert de l'état 13 (1101 ou Q3Q2Q1Q0) pour remettre le compteur à zéro (la remise à zéro se fait par application du niveau zéro sur l'entrée R). Et puisque c'est la première fois qu'on a Q3 = Q2 = Q0 = 1, alors on utilise seulement Q3Q2Q1 pour remettre les bascules Q3, Q2 et Q0 à zéro (la bascule Q1 passe automatiquement à zéro).



## 3. Compteur synchrone modulo 10

| J | K | Q               |
|---|---|-----------------|
| 0 | 0 | Q0              |
| 0 | 1 | 0               |
| 1 | 0 | 1               |
| 1 | 1 | $\overline{Q0}$ |

Pour réaliser des compteurs synchrones à base des bascules JK, on utilise la table suivante :

| Etat présent | Etat future | J | K |
|--------------|-------------|---|---|
| Qn           | Qn+1        |   |   |
| 0            | 0           | 0 | X |
| 0            | 1           | 1 | X |
| 1            | 0           | X | 1 |
| 1            | 1           | X | 0 |

X : indifférent (X = 0 ou X = 1)

|         | Etat | Q3 | Q2 | Q1 | Q0 |
|---------|------|----|----|----|----|
| <b></b> | 0    | 0  | 0  | 0  | 0  |
|         | 1    | 0  | 0  | 0  | 1  |
|         | 2    | 0  | 0  | 1  | 0  |
|         | 3    | 0  | 0  | 1  | 1  |
|         | 4    | 0  | 1  | 0  | 0  |
|         | 5    | 0  | 1  | 0  | 1  |
|         | 6    | 0  | 1  | 1  | 0  |
|         | 7    | 0  | 1  | 1  | 1  |
|         | 8    | 1  | 0  | 0  | 0  |
| L       | 9    | 1  | 0  | 0  | 1  |
|         | 10   | 0  | 0  | 0  | 0  |

| Q | 3 |    |    |
|---|---|----|----|
| P | F | J3 | K3 |
| 0 | 0 | 0  | X  |
| 0 | 0 | 0  | X  |
| 0 | 0 | 0  | X  |
| 0 | 0 | 0  | X  |
| 0 | 0 | 0  | X  |
| 0 | 0 | 0  | X  |
| 0 | 0 | 0  | X  |
| 0 | 1 | 1  | X  |
| 1 | 1 | X  | 0  |
| 1 | 0 | X  | 1  |

| Q | 2 |    |    |
|---|---|----|----|
| P | F | J2 | K2 |
| 0 | 0 | 0  | X  |
| 0 | 0 | 0  | X  |
| 0 | 0 | 0  | X  |
| 0 | 1 | 1  | X  |
| 1 | 1 | X  | 0  |
| 1 | 1 | X  | 0  |
| 1 | 1 | X  | 0  |
| 1 | 0 | X  | 1  |
| 0 | 0 | 0  | X  |
| 0 | 0 | 0  | X  |

| Q | 1 |    |    |
|---|---|----|----|
| P | F | J1 | K1 |
| 0 | 0 | 0  | X  |
| 0 | 1 | 1  | X  |
| 1 | 1 | X  | 0  |
| 1 | 0 | X  | 1  |
| 0 | 0 | 0  | X  |
| 0 | 1 | 1  | X  |
| 1 | 1 | X  | 0  |
| 1 | 0 | X  | 1  |
| 0 | 0 | 0  | X  |
| 0 | 0 | 0  | X  |

| Q | 0 |    |    |
|---|---|----|----|
| P | F | J0 | K0 |
| 0 | 1 | 1  | X  |
| 1 | 0 | X  | 1  |
| 0 | 1 | 1  | X  |
| 1 | 0 | X  | 1  |
| 0 | 1 | 1  | X  |
| 1 | 0 | X  | 1  |
| 0 | 1 | 1  | X  |
| 1 | 0 | X  | 1  |
| 0 | 1 | 1  | X  |
| 1 | 0 | X  | 1  |

P: présent F: future

A partir de la table  $Q_0 \: J_0 \: K_0$  on peut tirer  $J_0 = K_0 = 1$ 

|    |    | Q1 |    | Q0 |
|----|----|----|----|----|
|    | 0  | 2  | 3  | 1  |
| Q3 | 8  | 10 | 11 | 9  |
|    | 12 | 14 | 15 | 13 |
| Q2 | 4  | 6  | 7  | 5  |

Les cases 10 à 15 ne sont pas utilisées (compteur modulo 10).

On peut, donc, les remplir par des X.

|    |   | Q1 |   | Q0 |
|----|---|----|---|----|
|    |   |    |   |    |
| Q3 |   | X  | X |    |
|    | X | X  | X | X  |
| Q2 |   |    |   |    |

$$J_1 = K_1 = Q_0 \overline{Q}_3$$

| K1 |   | Q1 | _ | Q0 |
|----|---|----|---|----|
|    | X | 0  | 1 | X  |
| Q3 | X | X  | X | X  |
|    | X | X  | X | X  |
| Q2 | X | 0  | 1 | X  |

| J2 | Q1 |   |   | Q0 |
|----|----|---|---|----|
|    | 0  | 0 | 1 | 0  |
| Q3 | 0  | X | X | 0  |
|    | X  | X | X | X  |
| Q2 | X  | X | X | X  |

$$J_2 = K_2 = Q_0 Q_1$$

| K2 | Q1 |   |   |   |
|----|----|---|---|---|
|    | X  | X | X | X |
| Q3 | X  | X | X | X |
|    | X  | X | X | X |
| Q2 | 0  | 0 | 1 | 0 |





Compteur synchrone modulo 8 à base des bascules D

|          |      | Qi présent |    |    | Qi future = Di |    |    |
|----------|------|------------|----|----|----------------|----|----|
|          | Etat | Q2         | Q1 | Q0 | D2             | D1 | D0 |
| <b>-</b> | 0    | 0          | 0  | 0  | 0              | 0  | 1  |
|          | 1    | 0          | 0  | 1  | 0              | 1  | 0  |
|          | 2    | 0          | 1  | 0  | 0              | 1  | 1  |
|          | 3    | 0          | 1  | 1  | 1              | 0  | 0  |
|          | 4    | 1          | 0  | 0  | 1              | 0  | 1  |
|          | 5    | 1          | 0  | 1  | 1              | 1  | 0  |
|          | 6    | 1          | 1  | 0  | 1              | 1  | 1  |
| L        | 7    | 1          | 1  | 1  | 0              | 0  | 0  |
|          | 8    | 0          | 0  | 0  |                |    |    |



$$D_0 = \overline{Q}_0$$



$$\begin{aligned} D_1 &= \overline{Q}_0 Q_1 + Q_0 \overline{Q}_1 \\ D_2 &= \overline{Q}_0 Q_2 + \overline{Q}_1 Q_2 + Q_0 Q_1 \overline{Q}_2 \end{aligned}$$









3. Le chronogramme montre que le modulo de ce compteur est 10.

### Exercice 4

2.



Le compteur formé par les bascules A, B, C et D est un compteur asynchrone modulo 10 (la remise à zéro se fait par QD et QB ce qui correspond à 1010). Donc, en A, on a un diviseur de fréquence par 10 et :  $f_A = 120 \ kHz \ / \ 10 = 12 \ kHZ$ 

Le compteur formé par les bascules E et F est un compteur synchrone modulo 3 et  $f_B = f_A \, / \, 3 = 4 kHz$ 

### Exercice 5



On a un compteur asynchrone modulo 12.



- 1.  $J_A = K_A = 1$
- $J_B = Q_A \\$
- $K_B = Q_A Q_C \\$
- $J_C = Q_A Q_B$
- $K_C = Q_A \\$



3. D'après les chronogrammes, ce compteur a pour modulo 6

| Fréquence       | Rapport cyclique                  |
|-----------------|-----------------------------------|
| $f_C = f_H / 6$ | $\alpha_{C} = 2 / 6 = 33,3\%$     |
| $F_B = f_H / 6$ | $\alpha_{\rm B} = 4 / 6 = 66,6\%$ |
| $F_A = f_H / 2$ | $\alpha_A=1\:/\:2=50\%$           |