The Inverse of a function

If a function $f: X \to Y$ is a bijection, then the inverse of f is obtained by exchanging the first and second entries in each pair in f.

Notation:
$$f^{-1}$$

 $f^{-1} = \{(y,x): (x,y) \in f^{2}\}$
i.e. if $f(x) = y$, then $f^{-1}(y) = x$

- Because reversing each pour in a function doesn't always result in a well-defined function, some functions do NOT have an inverse.
- -A function f: X→Y has an invesse if and only if reversing each pour in f results in a well-defined function from Y to X.
 i.e. f-1 :> a well-defined function if every y ∈ Y maps to exactly one element x ∈ X
- A function f has an inverse if and only if f is a bijection.

Solving for inverse of function analytically when a function is defined on an infinite domain:

if f(x)=y, then $f^{-1}(y)=x$ => solve for x to get f^{-1} ex:

 $f: \mathbb{R} \rightarrow \mathbb{R}$, where f(x) = 3x - 2

① check f(x) is 1-to-1: $(x \neq x') \rightarrow (3x-2 \neq 3x'-2)$ contrapositive proof (3x-2=3x'-2), then (x=x')

@ check f(x) is onto: For every y in IR, there is an X f(x) = 3x-2=y

3 solve for x in terms of y:

$$3x-2=y$$

 $3x = y + 3$
 $x = \frac{y+3}{2}$ $\Rightarrow f^{-1} = \frac{y+3}{2} \Rightarrow f^{-1}(y) = \frac{y+3}{2} = f^{-1}(x) = \frac{x+3}{2}$