Пример 21. Пусть $a_{n+1} = \frac{1}{2} \left(a_n + \frac{2}{a_n} \right)$, $a_1 = 2$. Заметим, что

$$a_{n+1} = \frac{1}{2} \left(a_n + \frac{2}{a_n} \right) \ge \frac{1}{2} \cdot 2\sqrt{a_n \cdot \frac{2}{a_n}} = \sqrt{2}.$$

Поэтому $a_n \ge \sqrt{2}$. Кроме того $a_{n+1} = \frac{1}{2} \left(a_n + \frac{2}{a_n} \right) \le \frac{1}{2} \left(a_n + \frac{a_n^2}{a_n} \right) = a_n$. По доказанной теореме у последовательности $\{a_n\}_{n=1}^\infty$ существует предел a. Т.к. $a_n \ge \sqrt{2} > 0$, то и a > 0. Тогда, по арифметике предела получаем $a = \frac{1}{2} \left(a + \frac{2}{a} \right)$, откуда $a = \sqrt{2}$.

Исследуем теперь скорость сходимости:

$$|a_{n+1} - \sqrt{2}| = \frac{|a_n^2 - 2a_n\sqrt{2} + 2|}{2a_n} = \frac{(a_n - \sqrt{2})^2}{2a_n} \le \frac{(a_n - \sqrt{2})^2}{2\sqrt{2}} \le (a_n - \sqrt{2})^2.$$

Индуктивно получаем

$$|a_{n+1} - \sqrt{2}| \le (a_n - \sqrt{2})^2 \le (a_{n-1} - \sqrt{2})^4 \le (a_{n-2} - \sqrt{2})^8 \le (a_1 - \sqrt{2})^{2^{n+1}} = (2 - \sqrt{2})^{2^{n+1}}.$$

Заметим, что $q := 2 - \sqrt{2} < 1$, поэтому полученная скорость сходимость q^{2^n} быстрее экспоненциальной q^n (в смысле количества применений рекуррентной формулы для достижения заданной точности).

Число е.

Пусть $a_n = \left(1 + \frac{1}{n}\right)^n$. По биному Ньютона

$$a_n = \sum_{k=0}^n C_n^k \frac{1}{n^k} = 2 + \sum_{k=2}^n \frac{1}{k!} \frac{n \cdot (n-1) \cdot \ldots \cdot (n-k+1)}{n^k} = 2 + \sum_{k=2}^n \frac{1}{k!} \left(1 - \frac{1}{n}\right) \cdot \ldots \cdot \left(1 - \frac{k-1}{n}\right).$$

Отсюда, во-первых, получаем, что

$$a_n \le 2 + \sum_{k=2}^n \frac{1}{k!} \le 2 + \sum_{k=2}^n \frac{1}{2^{k-1}} < 3,$$

где было использовано неравенство $k! = 1 \cdot 2 \cdot 3 \cdot \ldots \cdot k \ge 2^{k-1}$ при $k \ge 2$. Во-вторых,

$$a_n = 2 + \sum_{k=2}^n \frac{1}{k!} \left(1 - \frac{1}{n} \right) \cdot \dots \cdot \left(1 - \frac{k-1}{n} \right) \le 2 + \sum_{k=2}^n \frac{1}{k!} \left(1 - \frac{1}{n+1} \right) \cdot \dots \cdot \left(1 - \frac{k-1}{n+1} \right)$$

$$\le 2 + \sum_{k=2}^{n+1} \frac{1}{k!} \left(1 - \frac{1}{n+1} \right) \cdot \dots \cdot \left(1 - \frac{k-1}{n+1} \right) = a_{n+1}.$$

Таким образом, последовательность a_n — неубывает и ограничена сверху, а значит имеет предел, который называют **числом** e.