General Physics I -2^{nd} Midterm Exam Exam Time: 10:10AM -12:10PM

Q1. (60 pts) Fundamentals.

(a) (20 pts) A uniform rod of mass M and length L is rotated around an axis that is going through a point L/4 away from its end, see figure below. If the initial releasing angle is small, what would be the angular frequency of the swinging rod?

(b) (20 pts) A travelling harmonic wave is travelling in the -x direction, and a snapshot of the wave taken at t = 0 is shown below. Given that the tension is 2 N and the linear mass density of the string is 0.5 kg/m, (1) write down the complete travelling wave expression y(x,t). (2) What is the velocity of the particle of the string at x = 0 at this instant?

(c) (10 pts) Point A sits inside a shell of mass M_1 and radius R_1 , while another massive shell of mass M_2 and radius R_2 is close by, see figure below. Point A is located on the joining line of centers of two shells. And it is at $R_1/2$ away from the center of shell 1, and $4R_2$ away from the center of shell 2. Find the gravitational field strength at point A (it is a vector).

(d) (10 pts) Find the steady state solution of the following differential equation $\gamma dx/dt = -kx + F_0 \cos(\Omega t)$.

Q2. (20 pts) The string wave equation is $\partial^2 y/\partial t^2 = (F/\mu)\partial^2 y/\partial x^2$. Assume that an arbitrary shape of wave y(x,t) travels in the +x-direction, answer the following questions,

- (a) (5 pts) Use an arbitrary shape of wave to determine the string wave velocity.
- (b) (10 pts) At a fixed position x, are the kinetic energy density (dK/dx) and the potential energy density (dU/dx) the same for an arbitrary shape of string wave? Show your proof.
- (c) (5 pts) A snapshot of the string wave is taken at t = 0. Which segment of the string marked in the following figure possesses the largest energy density? Explain.

- Q3. (40 pts) A simple pendulum of mass m_2 , with a mass m_1 at the point of support which can only move horizontally on a frictionless track lying in the plane in which m_2 moves as shown in the figure below. The system is placed in a uniform gravitational field $(\vec{g} = -g\hat{y})$. The length of the rod is ℓ and its mass is negligible. The angle θ DOES NOT have to to be small. (And yes, you have seen this problem in the 1st midterm exam)
- (a) (10 pts) Let's take an inertial frame whose origin is indicated in the figure below. Write down the linear momentum of m_1 and m_2 in terms of m_1 , m_2 , x, ℓ , θ , \dot{x} and $\dot{\theta}$.
- (b) (5 pts) We know that the total momentum in the x-direction is conserved. Use this conservation relation to obtain a relation between \dot{x} and $\dot{\theta}$.
- (c) (15 pts) Write down the equation of the rotational motion (θ does not have to be small). Helpful tips: (1) choose the rotational axis wisely and (2) use the correct form of equation of motion.
- (d) (10 pts) For small oscillations ($\theta \ll 1$), calculate the period of small oscillations.

