التطورات الرتبيبة

الكتاب الأول

دراسة ظواهر كهريائية

الوحدة 03

GUEZOURI Aek - lycée Maraval - Oran

الدرس الأول

21 / 11 / 2014

في هذا الدرس نغذي دارة كهربائية بواسطة منبع للتيار أو منبع للتوتر ونستعمل أجهزة لقياس التيار في الدارة والتوترات بين مختلف نقط الدارة ، وهذا جدول يجمع المغذّي (بكسر الذال) والمغذّى (بفتح الذال) وأجهزة القياس .

أجهزة القيــاس	المغذّى	المغذّي
- الأمبير متر	- النــاقل أومي	
- الفولطمتر	- المكثّفة	- مولّد للتيار (منبع التيار)
- راسم الاهتزاز المهبطي	- الوشـيعة	- مولّد للتوتر (منبع التوتّر)

ىماذا نغذّى ؟

1 - مولّد التيار : Un générateur de courant أو Un générateur de courant هو مولّد يَعطي تيارا ثـابتا مهما كانت الدارة التي يُغذّيها .

شكل التيار الذي يعطيه:

هذا معناه أن عند غلق القاطعة في دارة يغذّيها مولّد للتيار فإن في اللحظة t=0 ، تنتقل قيمة شدة التيار من القيمة . صفر إلى القيمة $\,I\,$ في مدة زمنية عمليا تساوي الصفر

ملاحظة : نستعمل منبع التيار في هذا الدرس فقط لشحن مكثّفة .

2 − مولّد التوتر: Un générateur de tension أو Un générateur de tension

رمزه:

شكل التوتر بين طرفيه :

هذا معناه أن عند غلق القاطعة في دارة يغذّيها مولّد للتوتّر فإن في اللحظة t=0 ، تنتقل قيمة التوتّر بين قطبيه من القيمة صفر إلى القيمة $\,E\,$ في مدة زمنية عمليا تساوي الصفر إذا كان المولّد مثاليا .

. (V) وهي قيمة التوتّر بين طرفيه عندما لا يكون مربوطا لأية دارة ، تقاس بالفولط (E) . وهي قيمة التوتّر بين طرفيه عندما الا

E

- مقاومته الداخلية (r) : إذا كانت هذه المقاومة معدومة $(r\simeq 0)$ ، نقول عن المولّد أنه مثالي ، لأن أصلا التوتر بين طرفيه لما يكون مربوطا لدارة كهربائية هو u=E-ri ، فإذا كانت r=0 ، فإن التوتر بين طرفيه يصبح u=E سواء كان مربوطا أو غير مربوط ونسمّيه ′**مولّد مثالي ′** . $\begin{array}{c|c}
i & A + & -B \\
\hline
U_{AB} = V_A - V_B
\end{array}$

 U_{AB} = E : التوتر بين طرفي المولّد المثالي

A هو كمون النقطة $V_{\scriptscriptstyle A}$ B هو كمون النقطة $V_{\scriptscriptstyle R}$

ملاحظة : كل مولدات التوتر التي نستعملها في هذا الدرس هي مولَّدات مثالية .

ماذا نغذّى ؟

1 – الناقل الأومي : عنصر كهربائي مصنوع عادة من مزائج معدنية تقاوم مرور التيار ، يحوّل كل الطاقة الكهربائية التي يستقبلها إلى حرارة بفعل جول .

رمزه : ________

ميزته : هي مقاومته R وتقاس بالأوم (Ohm) ورمزه Ω ، أي أن قيمة هذه المقاومة يكتبها عليه الصانع ، فهي تبقى ثابتة مهما كانت الدارة التي يُربط فيها .

 $\left(1M\,\Omega=1\,0^6\,\Omega
ight)$ ، أو الميغا أوم الكيلو أوم الكيلو أوم أو الميغا أوم أو الميغا أوم الميغا أوم الميلو أوم

 $oxedsymbol{U_{AB}=RI}$: التوتر بين طرفي ناقل أومي

نمثّل التوتر بين نقطتين بسهم موجّه عكس جهة التيار ، أي أنه متّجه من النقطة ذات $U_{AB}=V_A-V_B$ نحو النقطة ذات الكمون الأكبر $\left(V_A\right)$ ، حيث أن $\left(V_B\right)$ نحو النقطة ذات الكمون الأكبر

. i الكمون يكون أكبر في النقطة التي يصلها i وأصغر في النقطة التي يغادرها

ربط النواقل الأومية :

$$R_{\acute{e}q} = R_1 + R_2 + \dots$$
 $R_{\acute{e}q} = R_1 + R_2 + \dots$ $R_{\acute{e}q} = R_1 + R_2 + \dots$

$$\frac{1}{R_{\acute{e}q}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots$$
 $\stackrel{R_{\acute{e}q}}{\longleftarrow}$: (او التوازي : ملى التفرّع (أو التوازي : R_1

ملاحظة : عند الربط على التسلسل نحصل على مقاومة أكبر من الكبيرة .

عند الربط على التفرّع نحصل على مقاومة أصغر من الصغيرة .

2 – المكثّفة :

نهتمّ فقط بالمكثّفة المسطّحة ، وهي عبارة عن صفيحتين معدنيتن متوازيتين ناقلتين يفْصل بينهما عازل كهربائي . تسمّى الصفيحتان ` لَبُوســا المكثّفة (المفرد : لَبُوس) .

. (F) ورمزه (Farad) ورمزه ، وتُقاس بالفاراد ، وتُقاس عن مدى استيعاب المكثّفة للكهرباء ، وتُقاس بالفاراد ، والتي تعبّر عن مدى استيعاب المكثّفة للكهرباء

. هو سطح أحد اللبوسين S ، (arepsilon=1 هو سطح أحد اللبوسين e عنه e هو سطح أحد اللبوسين .

- الفاراد قيمة كبيرة جدا بالنسبة لسعة مكثفة مسطّحة ، لهذا نعبّر عن السعة بأجزاء الفاراد ، منها :

 $1~\eta \text{F} = 10^{-9}~\text{F}$: (ηF) النانو فاراد $1~\mu \text{F} = 10^{-6}~\text{F}$: (μF) الميكروفاراد

- عندما نشحن مكثّفة تتجمّع على أحد لبوسيها شحنة كهربائية موجبة (+Q) وعلى اللبوس الآخر شحنة كهربائية سالبة (-Q) . وعندما نتكلّم عن شحنة مكثّفة نقول اختصارا : شحنتها Q .

ملاحظة : المكثّفة تُخزّن الطاقة الكهربائية ، على عكس الناقل الأومي الذي يحوّلها كلها إلى حرارة .

$U_{AB} = rac{Q}{C}$: التوتر بين طرفي مكثّفة -

ملاحظة : إني أسمعك وأنت تقول : كيف يمكن للتيار أن يمر رغم أن بين اللبوسين يوجد عازل كهربائي ؟ وأنا أقول لك : لا تتعجّل سأشرح لك هذا لما يحين الوقت ...

: خلال المدة الزمنية $\, \Delta \, t \,$ تكتسب المكثفة شحنة $\, \Delta \, Q \,$ عندما يمر تيار $\, I \,$ في الدارة ، حيث $\,$

$$I = \frac{\Delta Q}{\Delta t}$$

 $i = \frac{dq}{dt}$

مشتق الشحنة المتغيّرة بالنسبة للزمن . dt عندما يمر في الدارة تيار dt عندما يمر في الدارة تيار dt عندما يمر في الدارة تيار dt

- من خصائص المكثّفة أنها تُشحن وتُفرّغ كذلك .

ربط المكثفات :

على التسلسل : $\frac{1}{C_{\text{éq}}} = \frac{1}{C_1} + \frac{1}{C_2}$ ، حيث $\frac{C_1}{C_2} \Rightarrow \frac{C}{C_1}$: السعة المكافئة أصغر من الصغيرة C_1

على التفرع : $\mathbf{C}_{\mathrm{\acute{e}q}} = \mathbf{C}_{1} + \mathbf{C}_{2}$ حيث ، حيث ، $\mathbf{C}_{\mathrm{\acute{e}q}} = \mathbf{C}_{1} + \mathbf{C}_{2}$ السعة المكافئة أكبر من الكبيرة - على التفرع : على التفرع : حيث المحافئة أكبر من الكبيرة - على التفرع : حيث المحافئة أكبر من الكبيرة - على التفرع : حيث المحافئة أكبر من الكبيرة - على التفرع : حيث المحافئة أكبر من الكبيرة - حيث المحافئة أكبر من الكبر المحافظة المحافظة المحافظة - حيث المحافظة المحافظة - حيث المحافظة - حيث

3 – الوشيعة

عبارة عن سلك ناقل ملفوف على شكل حلقات . (السنة الثانية ثانوي) .

رمزها : ______

ممیّزاتها :

مقــاومتها (r) : نسـمّيها أحيانا : المقاومة الداخلية للوشـيعة . وهي مقاومة السـلك الذي صنعنا منه الوشـيعة ، شـأنها ullet شـأن مقاومة الناقل الأومي .

هذه الميزة عند هذه الميزة عند الداتية السلك ، حيث لا نتكلم عن هذه الميزة عند (L'inductance) : (L) هذه الميزة عند (H) . (Henry) ، رمزه (H) ، رمزه الوشيعة) بالهنري

- تتعلق الذاتية فقط بالأبعاد الهندسية للوشيعة (طولها ، نصف قطرها ، عدد لفاتها) ، ويمكن تغييرها بوضع صفائح حديدية داخلها . .

نسمّي هذه الصفائح : نواة حديدية . - عندما يمر في الوشيعة تيار شدّته ثابتة ، أي شكله هكذا :

افإن الوشيعة تسلك سلوك ناقل أومي ، أي أن التوتر بين طرفيها : $\frac{B}{U_{AB} = rI}$

- إذا مرّ في الوشيعة تيار متغيّر ، مثلا شكله هكذا :

فإن الوشيعة تصبح منشأ لقوّة محركة كهربائية $egin{pmatrix} (e) & -in &$

. حيث $\dfrac{di}{dt}$ هو مشـتق شـدة التيار بالنسـبة للزمن

 L الدارة المكافئة لوشيعة مقاومتها r وذاتيتها

: أي ، $u_{AB} = ri - e$ ، أي التوتر بين طرفي الو شيعة

$$u_{AB} = ri + L\frac{di}{dt}$$

. او يكون عندها $U_{AB}=rI$ ، ويكون عندها ، $\frac{di}{dt}=0$ ، ويكون عندها ، أي تصبح الوشيعة ناقلا أوميا في سلوكها

ملاحظة عامة

نسمي كل من المولدين والناقل الأومي والمكتّفة والوشيعة عناصر كهربائية ، كما نسميها كذلك **ثنائيات أقطاب** ،ويمكن أن نحصل على ثنائي قطب بربط أكثر من عنصر . فمثلا ناقل أومي مربوط مع مكثفة نسميه ثنائي القطب RC .

أجهزة القياس

: (L'ampèremètre) – الأمبير متر – 1

يربط دائما على التسلسل مع عناصر الدارة .

مقاومته صغيرة جدا ، وبالتالي نهملها حتى لا تؤثّر على شدة التيار في الدارة .

: (Le voltmètre) – 2

يُربط على التفرع بين نقطتين نريد قياس التوتر بينهما .

مقاومته كبيرة جدّا حتى يُمكن إهمال التيار المار به .

: (L'oscilloscope) حرابط الاهتزاز المهبطي – 3

عبارة عن فولطمتر يقيس التوتربين نقطتين ويرسم هذا التوتر بدلالة الزمن.

يتوسط الشاشة محوران متعامدان ، المحور الشاقولي هو التوتر والمحور الأفقي هو الزمن .

لكي نشاهد توترا بين نقطتين نربط النقطة ذات الكمون الأصغر (B) لأرضي راسم

. (A) الاهتزاز المهبطي ، ونربط النقطة ذات الكمون الأكبر (A) لأحد المدخلين ، إما (A)

 $u_{\scriptscriptstyle AB}$ التوتر الذي نشاهده هو

ملاحظة : إذا عكسنا الربط ، أي ربطنا الأرضي في A وأحد المدخلين في B ، نشاهد التوتر $u_{BA} = -u_{AB}$ ، حيث نشاهد صورة $u_{BA} = -u_{AB}$ بالنسبة لمحور الزمن .

يوجد زرّ يسمى (INV) ، نضغط عليه فينقلب التوتر نحو الأعلى .

- إذا كان هذا التوتر ثابتا نشاهد خطا أفقيا على الشاشة في النصف العلوي أو السفلي منها ، وذلك حسب إشارته .
 - مقدار انحراف الخط يتعلق بقيمة التوتر بين النقطتين.

الحساسية الشاقولية : هي السلم على محور التراتيب ، أي هي عدد الفولطات لكل تدريجة على المحور الشاقولي . **الحساسية الأفقية** (سرعة المسح الأفقي) : هي السلم على محور الفواصل ، أي عدد الثواني أو أجزاء الثواني لكل تدريجة على المحور الأفقي .

ملاحظة : قلنا سابقا أن راسم الاهتزاز عبارة عن مقياس فولط وليس مقياس أمبير ، فهو يرسم التوتر بين نقطتين بدلالة الزمن ، لا يرسم شدة التيار بدلالة الزمن .

لكن يمكن أن نشاهد عليه صورة لشدة التيار بدلالة الزمن ، فإذا أردنا هذا نربط إليه طرفي ناقل أومي فنشاهد التوتر u=Ri معناه u=Ri معناه مناهد مناه مناهد عليه مناه مناهد التوتر u=Ri معناه مناهد مناهد مناهد عليه مناهد التوتر u=Ri

- راسم اهتزاز ذو ذاكرة معناه أنه يمكن أن يرسم توترا في مرحلتين مختلفتين ، مثلا عندما يكون التوتر يتغير ، يحتفظ راسم الاهتزاز بالبيان في ذاكرته ، ثم يرسمه مع شكل التوتر عندما يصبح ثابتا .

تصوّر أن لك توترا بين نقطتين شكله هكذا: (الشكل -1)

. هذا التوتر يتغير من اللحظة t=0 حتى اللحظة التوتر يتغير من اللحظة t=0 المحلنا راسم اهتزاز بدون ذاكرة ، نشاهد الشكل t=0

الشكل – 2

الحبكة المعلوماتية (La carte d'acquisition) : توصل بالكمبيوتر مع لواحق (L'exao) ، ثم توصل المجموعة بالدارة الكهربائية ، وبواسطة برنـام (Logiciel) يمكن مشاهدة كل البيانات بما فيها شدة التيار في الدارة .