Modelo Geométrico Directo e Inverso de manipuladores

HOMEWORK #2

Data de Entrega: 11 de Novembro 2018

 Observe o esquemático do manipulador RPRRP que se apresenta. Atribua os sistemas de coordenadas de cada elo e indique os parâmetros cinemáticos do manipulador usando o algoritmo de Denavith-Hartenberg.

- Considere o manipulador de cinco graus de mobilidade (RPPRR) cujo diagrama se apresenta na figura.
 - 1. Recorrendo à representação de Denavit-Hartenberg obtenha ${}^{\it B}T_{\it G}$.
 - 2. Sabendo que ${}^{\it B}T_{\it G}$ para a posição de Home do manipulador é igual a

$${}^{B}T_{G} = \begin{bmatrix} 0.7071 & -0.5 & 0.5 & 28.2843 \\ -0.7071 & -0.5 & 0.5 & 28.2843 \\ 0 & -0.7071 & -0.7071 & 30.0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

obtenha os valores de $\theta_1, d_2, d_3, \theta_4$ e θ_5 para essa posição.

 Considere o manipulador PRR cuja tabela de Denavit-Hartenberg é apresentada de seguida. O sistema referencial da 1ª junta está relacionado com um sistema de coordenadas base através da transformação expressa na 1ª linha da tabela (transformação corpo-rígido).

- 1. Obtenha o desenho esquemático do manipulador na sua posição de "home" (variáveis de junta nulas).
- 2. Dado ${}^{B}d_{B,G}$, obtenha ${}^{0}d_{0,G}$
- 3. Conhecendo $^0d_{0,G}$ é possivel obter uma das váriáveis de junta independentemente das restantes variáveis. Indique qual a variável de junta e obtenha a equação de cinemática inversa para essa variável de junta.
- 4. Obtenha as equações de cinemática inversa para as restantes variáveis do manipulador, mantendo a consideração de que apenas é conhecido ${}^0d_{0.G}$.
- Analise o manipulador PRR que se apresenta em anexo. Assumindo comprimentos genéricos para os elos, obtenha a tabela dos parâmetros de D-H (standard). Transfira o esquemático do manipulador para a folha de prova e acrescente os referenciais necessários à obtenção do modelo geométrico directo do manipulador.
 - 1. Apresente as matrizes de transformação associadas a cada elo (^{i-1}T).
 - 2. Apresente a função de configuração da ferramenta para o robot, isto é, os 6 graus de liberdade $w(q) = \begin{bmatrix} p_x & p_y & p_z & roll & pitch & yaw \end{bmatrix}^T$.
 - 3. Apresente a solução de cinemática inversa que assegura ${}^{0}p_{4.org} = \begin{bmatrix} -L_{2} & L_{3} & d_{1} \end{bmatrix}^{T}$.
 - 4. Assumindo que $L_2 = 2L_3 = 0.5m$ e que $0.5m \le d_1 \le 1.0m$, $-\pi \le \theta_2 \le 0$ e $-\frac{\pi}{2} \le \theta_3 \le 0$, apresente o espaço de trabalho 3D do manipulador.

• Identifique os parâmetros de Denavit-Hartenberg $\left[heta,d,a,lpha
ight]$ da matrix

$$i^{-1}T = \begin{bmatrix} \sqrt{2}/2 & 0 & -\sqrt{2}/2 & -\sqrt{2} \\ \sqrt{2}/2 & 0 & \sqrt{2}/2 & -\sqrt{2} \\ \sqrt{2}/2 & 0 & \sqrt{2}/2 & -\sqrt{2} \\ 0 & -1 & 0 & 5 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Considere que os parâmetros de rotação apresentam valores no intervalo $\left[0..2\pi\right]$.

Desenho o esquemático do elo i.

• Analise o manipulador PRRR que se apresenta na figura. Assumindo os comprimentos de elo (I_1 =2, I_2 =2, I_3 = I_4 =1), obtenha a tabela dos parâmetros de D-H (standart). Transfira o esquemático do manipulador para a folha de prova e acrescente os referenciais necessários à obtenção do modelo geométrico directo

do manipulador. Apresente as matrizes de transformação associadas a cada elo (^{i-1}T).

NOTA : A configuração apresentada na figura corresponde à posição de "home".

• Considere um manipulador cilíndrico (*PRP*) equipado com uma garra esférica ao qual corresponde a tabela de DH que se apresenta. O vector das variáveis de junta é dado por $q = \left[d_1, \theta_2, d_3, \theta_4, \theta_5, \theta_6\right]$.

	$oldsymbol{ heta}_{_{i}}$	$d_{_i}$	a_{i}	$\alpha_{_i}$
0->1	0°	$d_{_1}$	0	0°
1->2	$ heta_{\scriptscriptstyle 2}$	0	0	−90°
2->3	0°	d_3	0	−90°
3->4	$ heta_{_4}$	2	0	90°
4->5	$ heta_{\scriptscriptstyle 5}$	0	0	−90°
5->6	$ heta_{_{6}}$	1	0	0°

Obtenha:

- 1. O desenho esquemático do manipulador na sua posição de "home";
- 2. As expressões de cinemática inversa do manipulador;
- Considere um manipulador RRP equipado com uma garra esférica ao qual corresponde a tabela de Denavit-Hartenberg que se apresenta. O vector das variáveis de junta é dado por $q = \left[\theta_1, \theta_2, d_3, \theta_4, \theta_5, \theta_6\right]^T$.

	θ_{i}	d _i	a _i	$lpha_{i}$
0 -> 1	pi/2 + θ_1	10	0	-pi/2
1 -> 2	-pi/2 + θ_2	0	0	-pi/2
2 -> 3	0°	d₃	0	0°
3 -> 4	$ heta_4$	0	0	-pi/2
4 -> 5	$ heta_{5}$	0	0	pi/2
5 -> G	θ_6	1	0	0°

Obtenha:

- a) O desenho esquemático do manipulador na sua posição de "home";
- b) O modelo geométrico direto do manipulador;
- c) As expressões de cinemática inversa do manipulador;
- Considere o manipulador PRRRP que se apresenta na figura.

Obtenha a tabela dos parâmetros de D-H (standard).

 a) Transfira o esquemático do manipulador para a folha de prova e acrescente os referenciais necessários à obtenção do modelo geométrico direto do manipulador.

- b) Apresente as matrizes de transformação //// associadas a cada elo (${}^{i-1}T$) e a matriz de transformação ${}^{0}T$.
- c) Desenhe o espaço de trabalho do manipulador, considerando as seguintes amplitudes de movimento para as juntas:

$$d_1 = [0..25]cm; \quad q_2 = [0^{\circ}..+180^{\circ}]; \quad q_3 = [-90^{\circ}..+90^{\circ}]; \quad q_4 = [-90^{\circ}..+90^{\circ}]; \\ d_5 = [0..25]cm;$$

NOTA : A configuração apresentada na figura corresponde à posição de "home".

• Considere o manipulador RRRR cujos parâmetros de DH são apresentados na tabela.

	$oldsymbol{ heta}_{i}$	d_{i}	a_{i}	$\alpha_{_i}$	Offset
0 →1	$ heta_{\scriptscriptstyle 1}$	0	l_1	$-\frac{\pi}{2}$	0
1→2	$ heta_2$	0	l_2	$\frac{\pi}{2}$	0
$2 \rightarrow 3$	$ heta_3$	0	0	$\frac{\pi}{2}$	$\frac{\pi}{2}$
3 →4	$ heta_{_4}$	d	0	0	0

- a) Desenhe o esquemático do manipulador na sua posição de repouso ("home"). Apresente os eixos x_i e z_i dos sistemas referenciais associados a cada junta.
- b)Conhecendo a matriz de "pose" do "end-effector" no referencial base $\binom{0}{4}T$), i.e., conhecendo $\binom{0}{4}R$ e $\binom{0}{4}p_{04}$, obtenha a expressão que permite conhecer $\binom{0}{4}p_{02}$.
- c) Obtenha as expressões de cinemática inversa para as juntas do manipulador, i.e, $(\theta_1, \theta_2, \theta_3, \theta_4)$. Considere comprimentos unitários para l_1, l_2, d .
- Considere o robot planar PRRR apresentado na figura.
 - Obtenha o modelo geométrico do manipulador de acordo com a metodologia de D-H standard
 - 2. Assumindo que os três elos apresentam um comprimento L e que o eixo prismático realiza um deslocamento $d_1 = \delta$, obtenha $\theta = f(\delta, L)$. Considere que os pontos de

acoplamento de ambas as extremidades do manipulador estão afastadas $\begin{bmatrix} x & 0 & z \end{bmatrix}$, sendo que x = z = 1.5L.

LABWORK #2

- Observe o rôbo planar com 3-DOF (RRR) da figura. O comprimento dos elos são conhecidos e são iguais a $L_1 = 4$, $L_2 = 3$ e $L_3 = 2$ (m).
 - a. Obtenha a matriz dos parâmetros de D-H: PJ_DH.
 - b. Usando a função $\underline{MGD_DH(PJ_DH)}$ obtenha as matrizes de cinemática directa 0_2A e 0_HA para as situações:

i.
$$q = \begin{bmatrix} \theta_1 & \theta_2 & \theta_3 \end{bmatrix}^T = \begin{bmatrix} 0^\circ & 0^\circ & 0^\circ \end{bmatrix}^T$$

ii.
$$q = \begin{bmatrix} 10^{\circ} & 20^{\circ} & 30^{\circ} \end{bmatrix}_{T}^{T}$$

iii.
$$q = [90^{\circ} \ 90^{\circ} \ 90^{\circ}]^{T}$$

Confirme visualmente (desenho) os resultados obtidos.

- c. Confirme todos os seus resultados usando as funções da toolbox Robotics.
- d. Deduza analiticamente a solução de cinemática inversa para o referido manipulador. Dada uma transformação ${}^0_H T$, calcule todas as possíveis soluções para $(\theta_1, \theta_2, \theta_3)$.
- e. Com base nas expressões deduzidas analiticamente em d), implemente uma função em MATLAB que resolva o problema da cinemática inversa deste manipulador. Teste os resultados para as matrizes $_{H}^{0}A$ obtidas em b) (validação circular). Confirme os valores obtidos comparando-os com os resultados obtidos com a função da toolbox.
- Obtenha os parâmetros de D-H dos 3 manipuladores planares que se apresentam.
 - a. Usando as funções da toolbox Robotics, represente graficamente os robôs.
 - b. Imagine que acoplava um punho esférico a estes manipuladores. Obtenha os parâmetros de D-H e represente-os graficamente usando as funções da toolbox Robotics. Confirme os resultados usando a função MGD_DH(PJ_DH).
 - c. Obtenha o modelo geométrico inverso para os manipuladores apresentados. Verifique a validade das soluções encontradas recorrendo às funções da Toolbox Robotics.
 - d. Confirme a validade da solução encontrada usando as funções da toolbox Robotics.

- Considere o sistema manipulador em malha fechada que se apresenta na figura.
 O sistema é constituído por dois mecanismos cooperantes que permitem o deslocamento linear da garra função do ângulo de orientação φ.
 - 1. Apresente o modelo geométrico direto deste sistema manipulador;
 - 2. Obtenha as expressões para as θ_1 Z_0 variáveis de junta $(\theta_1, \theta_2, \theta_3)$ função da variável de orientação do mecanismo ϕ e amplitude de deslocamento d.
 - 3. Sabendo que $l_1=l_2=\sqrt{2}\cdot l$, calcule o comprimento de elo l_3 que assegura a máxima amplitude de movimento d.
 - 4. Usando as funções disponíveis na Toolbox Robotics, apresente graficamente a estrutura articulada e demonstre a funcionalidade do modelo geométrico inverso anteriormente obtido.

