

Обзор некоторых подходов к шумоподавлению

Юрий Чернышов

Video Group

CS MSU Graphics & Media Lab

Содержание

- Введение
 - Источники и виды шумов
 - Цели шумоподавления
- Алгоритмы
 - Общие сведения
 - STVF
 - 3D K-SVD
 - MHMCF
 - BM3D-SAPCA
- Заключение

Источники и виды шумов

- Старение носителей информации (например, отслоение эмульсии)
- Артефакты кодирования

Ringing

Источники и виды шумов

- Зернистость аналаговых носителей
- Проблемы при передаче данных по каналам
- Плохие сенсоры и условия съемки (белый Гауссов шум)

Echo added

Grain

Цели шумоподавления

Хорошее шумоподавление повышает степень сжатия:

Цели шумоподавления

Увеличивается и субъективное качество изображения:

Содержание

- Введение
 - Источники и виды шумов
 - Цели шумоподавления
- Алгоритмы
 - Общие сведения
 - STVF
 - 3D K-SVD
 - MHMCF
 - BM3D-SAPCA
- Заключение

Классификация алгоритмов

Три вида алгоритмов:

- Временные усреднение текущего кадра с предыдущими или последующими
- Пространственные усреднение текущей области (пикселя) кадра с его окружением
- Пространственно-временные наиболее эффективные, сочетают оба подхода

Последние достижения

Последние достижения основаны на:

- Gaussian Scale Mixtures
 - Bilaterial filtering
 - NLM
- Learned Dictionaries
 - K-SVD
 - K-LLD
- Частотная фильтрация
- Markov Random Field

«BM3D Image Denoising with Shape-Adaptive Principal Component Analysis» (2009)

Содержание

- Введение
 - Источники и виды шумов
 - Цели шумоподавления
- Алгоритмы
 - Общие сведения
 - STVF
 - 3D K-SVD
 - Multihypotheses temporal-only algorithm
 - BM3D-SAPCA
- Заключение

STVF: определение шума

Алгоритм подавляет как белый, так и импульсный шум:

			X _{i-1,j}	
$P_{i,j}$		X _{i,j-1}	$X_{i,j}$	X _{i,j+1}
			X _{i+1,j}	

Пиксель поврежден импульсным шумом, если он достаточно (больше, чем на T_1) отличается от каждого из пяти своих соседей.

«A novel content-adaptive video denoising filter» (ICASSP 2005)

STVF: фильтрация

Подавление импульсного шума:

$$y_{ij} = \frac{x_{i-1,j} + x_{i+1,j} + x_{i,j-1} + x_{i,j+1}}{4}$$

Подавление белого шума:

$$y_{ij} = \frac{\sum_{x \in S} f(|x - x_{ij}|) * x}{\sum_{x \in S} f(|x - x_{ij}|)}, where S = \{x_{i-1, j}, x_{i+1, j}, x_{i, j-1}, x_{i, j+1}, p_{ij}\}$$

$$f(i) = 2^{|T_1/8| - |i/8|}$$

«A novel content-adaptive video denoising filter» (ICASSP 2005)

STVF: регуляризация

Нововведением стала регуляризация изображений:

$$z_{ij} = \begin{cases} y_{ij}, & |(y_{ij} - x_{ij})| \le T_2 \lor x_{ij} \text{ marked as impulsive} \\ x_{ij} - T_2, & y_{ij} < x_{ij} - T_2 \\ x_{ij} + T_2, & y_{ij} > x_{ij} + T_2 \end{cases}$$

STVF: результаты (1)

STVF: результаты (2)

«A novel content-adaptive video denoising filter» (ICASSP 2005)

STVF: результаты (3)

«A novel content-adaptive video denoising filter» (ICASSP 2005)

THE WATCH

STVF: результаты (4)

«A novel content-adaptive video denoising filter» (ICASSP 2005)

STVF: выводы

Достоинства:

- Скорость (линейная сложность, один проход)
- Независимость вычислений

Недостатки:

- Неочевидность значений T₁ и T₂
- Подавление только пиксельных шумов

Содержание

- Введение
 - Источники и виды шумов
 - Цели шумоподавления
- Алгоритмы
 - Общие сведения
 - STVF
 - 3D K-SVD
 - Multihypotheses temporal-only algorithm
 - BM3D-SAPCA
- Заключение

K-SVD: идея метода

Назовем патчем некоторый блок изображения.

Представим каждый патч кадра как линейную комбинацию известных патчей (атомов) из словаря.

В словаре – порядка 300 атомов 6х6 пикселей каждый.

K-SVD: словарь

Качество работы алгоритма напрямую зависит от словаря.

Необходимо обучать словарь.

K-SVD: обучение словаря

Смоделируем изображение: Y = X + V, $V \sim N(0, \sigma^2)$

Введем некоторую функцию штрафа:

$$f_{error}(\{\alpha_{ij}\}_{ij}, X) = \lambda \|Y - X\|_{2}^{2} + \sum_{i, j \in \Omega} \|D\alpha_{ij} - R_{ij}X\|_{2}^{2} + \sum_{i, j \in \Omega} \mu_{ij} \|\alpha_{ij}\|_{0}$$

Смысл функции штрафа: результат слабо отличается от исходного изображения, каждый патч изображения (извлекается оператором R) представляется вектором коэффициенты, при этом эти коэффициенты малы.

K-SVD: фильтрация

K-SVD: поиск представления

Предположим, что Х фиксирован.

$$\hat{\alpha}_{ij} = arg \min_{\alpha} (\|D\alpha - R_{ij} X\|_{2}^{2} + \mu \|\alpha\|_{0})$$

Для минимизации будем использовать ОМР-алгоритм

- ullet Пусть d- словарь, r- раскладываемый вектор
- Найдем атом с наибольшей корреляцией: $k = arg \max_{k} \left| d_k^T r \right|$
- Вычтем полученную величину из r
- Повторим операцию достаточное число раз

K-SVD: изменение словаря

Добавим в словарь то представление каждого патча, которое мы получили на предыдущем этапе.

$$D = D \cup D \alpha_{ij} \partial n$$
я всех i , j

K-SVD: получение результата

Для получения итогового результата после нескольких итераций минимизируем следующий функционал, исходя из предположения, что разложения для каждого патча фиксированы.

$$\hat{X} = arg \min_{X} (\lambda \|X - Y\|_{2}^{2} + \sum_{i, j} \|D \alpha_{ij} - R_{ij} X\|_{2}^{2})$$

Изменение функции штрафа:

$$f_{video}^{t \pm \Delta t}(\{\alpha_{ijk}\}_{ijk}, X_t, D_t) = \lambda \|X_t, Y_t\|_2^2 + \sum_{i, j \in \Omega} \sum_{k=t-\Delta t}^{t+\Delta t} \mu_{ijk} \|\alpha_{ijk}\|_0 + \sum_{i, j \in \Omega} \sum_{k=t-\Delta t}^{t+\Delta t} \|D_t \alpha_{ijk} - R_{ijk} X\|_2^2$$

- Словарь для текущего кадра будет похож на словарь для предыдущего
- Использование трехмерных атомов (6х6х5 пикселей)

3D K-SVD: результаты (1)

3D K-SVD: результаты (2)

Source Noisy Filtered

3D K-SVD: результаты (3)

Source Noisy Filtered

3D K-SVD: результаты (4)

Source Noisy **Filtered**

3D K-SVD: результаты (5)

3D K-SVD: выводы

Достоинства:

- Успешное подавление сильных шумов
- Высокое субъективное качество изображения
- Баланс скорость/качество (число итераций)

Недостатки:

- Низкая скорость работы
- Наличие словаря не допускает аппаратной реализации

Содержание

- Введение
 - Источники и виды шумов
 - Цели шумоподавления
- Алгоритмы
 - Общие сведения
 - STVF
 - 3D K-SVD
 - MHMCF
 - BM3D-SAPCA
- Заключение

MHMCF: введение

Будем использовать только временную избыточность.

Для каждой точки найдем несколько соответствующих ей точек на предыдущих кадрах (назовем их гипотезами компенсации).

Усредним значения гипотез между собой.

«A multihypothesis motion-compensated temporal filter for video denoising» (ICIP 2006)

MHMCF: модель сигнала

Будем использовать следующую модель сигнала:

- S_0 текущий пиксель изображения
- ${ullet} Z_j$ ошибка, возникшая из-за смещения объектов и неверной компенсации движения
- ullet C_j гипотезы компенсации для S_0
- ullet N_{i} шум, который мы хотим подавить
- $C_m' = C_m + N_m$

«A multihypothesis motion-compensated temporal filter for video denoising» (ICIP 2006)

МНМСF: фильтрация (1)

Оценим текущий кадр:

$$\vec{Y} = \vec{H} s_0 + \vec{Z} + \vec{N}$$
, where $\vec{Y} = [s_0', c_1', ..., c_n']^T$, $\vec{H} = [1, 1 ... 1]^T$

$$\hat{s}_0 = \vec{B} \vec{Y} + d$$
, where $d = E Z_n$

Постараемся минимизировать разницу между s_0 и $\hat{s_0}$, основываясь на методе наименьших квадратов.

Оценим вектор В,

$$\vec{B} = (\vec{H}^T (Cov(\vec{Z} + \vec{N}))^{-1} \vec{H})^{-1} \vec{H}^T (Cov(\vec{Z} + \vec{N}))^{-1}$$

И значение d:

$$d = -\vec{B}\vec{Z}$$

МНМСF: фильтрация (2)

$$\vec{B} = [b_{0}, b_{1}, \dots b_{N}]$$

$$b_0 = \frac{\sigma_0^{-2}}{\sum_{k=1}^N \sigma_{p(k)}^{-2} + \sigma_0^{-2}}$$

$$b_{\mu} = \frac{\sigma_{p(\mu)}^{-2}}{\sum_{k=1}^{N} \sigma_{p(k)}^{-2} + \sigma_{0}^{-2}}$$

where
$$\sigma_{p(\mu)}^{2}$$
 is the variance of $(z_{\mu}+n_{\mu})$

$$\sigma_{p(\mu)}^{2}=\sigma_{z(\mu)}^{2}+\sigma_{\mu}^{2}$$

MHMCF: оценка параметров

Необходимо оценить значения $\sigma_{0,\sigma_{p(\mu)}}$, z_{μ} :

 σ_0^2 — среднее значение 10 минимальных дисперсий блоков 16х16

 z_{μ} , $\sigma_{p(\mu)}$: возьмем кадр из шумов компенсации движения. Найдем блок, который соответствует z_{μ} . Посчитаем среднее блока (z_{μ}) и дисперсию $d\!=\!\sigma_{p(\mu)}^2\!+\!\sigma_0^2$

Подставив значения, получим кадр, очищенный от шума.

МНМСF: результаты (1)

Average PSNR (db) for Akiyo sequence

МНМСF: результаты (2)

Original Noisy

МНМСF: результаты (3)

One Hypothesis

Two Hypotheses

MHMCF: выводы

Достоинства:

- Высокая скорость
- Балансирование между скоростью и качеством

Недостатки:

- Требование хорошей компенсации движения
- Необходимость точной оценки параметров

Содержание

- Введение
 - Источники и виды шумов
 - Цели шумоподавления
- Алгоритмы
 - Общие сведения
 - STVF
 - 3D K-SVD
 - MHMCF
 - BM3D-SAPCA
- Заключение

BM3D: схема алгоритма (1)

BM3D: схема алгоритма (2)

- Возьмем пиксель, выделим его окружение (всего N_{el} пикселей)
- Найдем блоки, схожие со ссылочным (всего N_{br})
- Сформируем трехмерный массив

BM3D: схема алгоритма (3)

- Применим 1D-преобразование (декомпозицию Хаара)
 перпендикулярно плоскости блоков
- Выполним сложение слоев (фильтр Виннера)
- Выполним обратное преобразование
- Запишем полученное изображение в результат

SAPCA: расширение BM3D

После поиска блоков:

 $-\frac{N_{\it br}}{N_{\it el}} \le au$: выполним обычную фильтрацию

 $=\frac{N_{br}}{N_{ol}} > au$: выполним Space-Adaptive фильтрацию

SAPCA: схема алгоритма

- На входе N_{br} наборов пикселей
- Представим каждый набор как столбец (v_i) из N_{el} пикселей
- ullet $C = [v_{1,} v_{2,} ... v_{N_{br}}][v_{1,} v_{2,} ... v_{N_{br}}]^T$ матрица вторых моментов
- $U^TCU = S = diag(s_{1,}s_{2,}...,s_{N_{el}})$, где U opmoнopмированная матрица
- s_i отсортированные собственные значения матрицы
- ullet Для декомпозиции возьмем первые N_{trim} столбцов U

$$N_{trim} = \left| \left\{ s_i | s_i > \lambda \, \sigma^2 \right\} \right|$$

BM3D-SAPCA: результаты (1)

BM3D-SAPCA: результаты (2)

Source

BM3D-SAPCA: результаты (3)

Noisy ($\sigma = 100$)

BM3D-SAPCA: результаты (4)

Filtered

BM3D-SAPCA: результаты (5)

Source

Noisy ($\sigma = 50$)

BM3D-SAPCA: результаты (7)

Filtered

BM3D-SAPCA: выводы

Достоинства:

- Высокий показатель PSNR на всевозможных уровнях шума
- Возможность итерирования для повышения качества

Недостатки:

- Скорость (Pentium 2GHz, Matlab, 4 минуты на изображение 256х256)
- Артефакты при сильных шумах

Содержание

- Введение
 - Источники и виды шумов
 - Цели шумоподавления
- Алгоритмы
 - Общие сведения
 - STVF
 - 3D K-SVD
 - MHMCF
 - BM3D-SAPCA
- Заключение

Выводы

- Существует много различных подходов к поставленной задаче
- Большинство методов допускают баланс между качеством и скоростью
- Самым результативным (объективно) является последний метод
- Самым результативным (субъективно) является метод со словарем

Список литературы

- 1. Liwei Guo, Oscar C. Au, Mengyao Ma, Zhiqin Liang, Carman K.M. Yuk «A multihypothesis motion-compensated temporal filter for video denoising» (*ICIP 2006*)
- 2. «YUVsoft Video Denoiser Comparison» (2007)
- 3. Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, and Karen Egiazarian «BM3D Image Denoising with Shape-Adaptive Principal Component Analysis» (2009)
- 4. Matan Protter, Michael Elad «Sparse and Redundant Representations and Motion-Estimation-Free Algorithm for Video Denoising» (SPIE 2007)
- 5. Tai-Wai Chan, Oscar C. Au, Tak-Song Chong, Wing-San Chau «A novel content-adaptive video denoising filter» (*ICASSP 2005*)

