

Práctica 09

DOCENTE	CARRERA	CURSO
MSc. Vicente Machaca Arceda	Escuela Profesional de Ciencia	Bioinformática
	de la Computación	

PRÁCTICA	TEMA	DURACIÓN	
09	UPGMA	3 horas	

1. Resultados del estudiante

- (a) Conocimientos en computación
- (b) Análisis de problemas.
- (c) Diseño y desarrollo de soluciones.
- (d) Trabajo individual y en equipo.
- (h) Uso de herramientas modernas.

2. Competencias de la práctica

- Implementa el algoritmo UPGMA para la construcción árboles filogenéticos.
- Utiliza herramientas como BioPython y ETE para la implementación y análisis de árboles filogenéticos.

3. Equipos y materiales

- Latex
- Python
- BioPython

4. Entregables

- Se debe elaborar un informe en Latex.
- El informe debe contener un enlace a github, pruebas y conclusiones.

5. Ejercicios

- 1. Instale las librerías BioPython, scikit-bio y ETE para el análisis de árboles filogenéticos. Además describa las librerías, en un parrafo de no mas de 5 lineas.
- 2. Evalue el código a continuación y describa su funcionamiento.

```
from ete3 import PhyloTree, TreeStyle
from skbio import DistanceMatrix
from skbio.tree import nj

data = [[0, 8, 4, 6],
       [8, 0, 8, 8],
       [4, 8, 0, 6],
       [6, 8, 6, 0]]
ids = list('abcd')

dm = DistanceMatrix(data, ids)
tree = nj(dm) # build a tree using neigbors joining algorithm
print(tree.ascii_art())

newick_str = nj(dm, result_constructor=str) # return newick format
print(newick_str)

t = PhyloTree(newick_str) # plot three using ETE
t.show()
```

3. Evalue el código a continuación y describa su funcionamiento.

```
from ete3 import PhyloTree, TreeStyle
from skbio import DistanceMatrix
from skbio.tree import nj

fasta_txt = """
>seqA
MAEIPDETIQQFMALT---HNIAVQYLSEFGDLNEALNSYYASQTDDIKDRREEAH
>seqB
MAEIPDATIQQFMALTNVSHNIAVQY--EFGDLNEALNSYYAYQTDDQKDRREEAH
>seqC
MAEIPDATIQ---ALTNVSHNIAVQYLSEFGDLNEALNSYYASQTDDQPDRREEAH
>seqD
MAEAPDETIQQFMALTNVSHNIAVQYLSEFGDLNEAL------REEAH
"""

# Load a tree and link it to an alignment.
t = PhyloTree("(((seqA,seqB),seqC),seqD);")
t.link_to_alignment(alignment=fasta_txt, alg_format="fasta")
t.show()
```

4. Implemente el algoritmo UPGMA. Este debe tomar como entrada una matriz de distancias y debe retornar el árbol filogenético en formato newick. Luego utilice la librería ete3 para visualizar el árbol. Puede tomar como entrada la matriz de la pregunta 2.

6. Rúbricas

Rúbrica	Cumple	Cumple con obs.	No cumple
Implementación: Implementa de manera eficiente y correcta el algoritmo UPGMA [b, c].	10	5	0
Uso de herramientas: Aprende el correcto uso de las librerías scikit-bio y ETE durante el desarrollo de las preguntas 1, 2 y 3 [h].	5	2.5	0
Informe y presentación: Desarrolla un informe en Latex. Además, el alumno demuestra el trabajo en equipo (github) y dominio del tema durante la exposición [d].	5	2.5	0
Errores ortográficos: Por cada error ortográfico, se descontará 1 punto.	-	-	-