

Втор Меморијален Математички Натпревар

Александар Блажевски - Цане

Ден 1: Решенија и распределба на поени

Задача 1. Даден е тетивен четириаголник ABCD за кој $\overline{AB} = \overline{AD}$. Нека E и F се точки на страните BC и CD, соодветно, такви што $\overline{BE} + \overline{DF} = \overline{EF}$. Докажете дека $\angle BAD = 2\angle EAF$.

Решение. Нека G е точка на EF таква што $\overline{DF} = \overline{FG}$ и $\overline{EG} = \overline{BE}$ (1 поен). Нека F' е точка на продолжението на BC преку B таква што $\overline{BF'} = \overline{DF}$, и нека E' е точка на продолжението на CD преку D таква што $\overline{DE'} = \overline{BE}$. (1 поен)

Бидејќи четириаголникот ABCD е тетивен, $\angle ADF = \angle ADC = 180^{\circ} - \angle ABC = \angle ABF'$. Од $\overline{AB} = \overline{AD}$ и $\overline{BF'} = \overline{DF}$, признакот CAC повлекува дека $\triangle ABF' \cong \triangle ADF$. Следствено, $\overline{AF} = \overline{AF'}$. (2 поени)

Според ССС, $\triangle AFE \cong \triangle AF'E$ (имено, $\overline{AF} = \overline{AF'}$, $\overline{EF} = \overline{EF'}$, и AE е заедничка страна). Оттука $\angle AEF' = \angle AEF$, т.е., $\angle AEB = \angle AEG$. Според САС, $\triangle ABE \cong \triangle AGE$, што повлекува дека $\angle BAE = \angle GAE$. (1 поен)

Аналогно важи $\triangle ADF \cong \triangle AGF$, од каде што следува $\angle DAF = \angle GAF$. (1 поен) Заклучуваме дека $\angle BAC = 2\angle EAF$. (1 поен)

Задача 2. Даден е прост број p. Нека A е вистинско подмножество од $F = \{0, 1, 2, \dots, p-1\}$ со следната особина:

ако $a, b \in A$, тогаш $ab + 1 \pmod{p} \in A$.

Колку елементи може да има множеството A? (Одговорот да се образложи.)

Решение. Најпрво ќе покажеме дека 0 и 1 не се елементи на A. Имено, ако $0 \in A$, тогаш $1 \in A$. Но, ако $1 \in A$, тогаш A = F, што противречи на тоа дека A е вистинско подмножество на F. Значи, $0,1 \notin A$. (1 поен)

Да претпоставиме дека $A \neq \emptyset$. (Празното множество ја има посакуваната особина независно од тоа за кој прост број p станува збор.) Нека $A = \{a_1, a_2, \ldots, a_k\}$, каде $1 \leq k < p$ и $1 \leq a_1 < q$

 $a_2 < \cdots < a_k \le p-1$. Дефинираме пресликување $f_{a_1}: A \to A$ со:

$$f_{a_1}(x) = a_1 x + 1 \pmod{p}$$
.

Бидејќи $a_1 \neq 0$, бројот a_1 е заемно прост со p. Оттука, f_{a_1} е инјекција. Но ова повлекува и сурјективност на f_{a_1} (затоа што A е конечно множество). Значи, f_{a_1} е биекција. (1 поен)

Применувајќи го f_{a_1} врз секој елемент на A добиваме

(1)
$$f_{a_1}(a_1) + f_{a_1}(a_2) + \dots + f_{a_1}(a_k) = a_1(a_1 + a_2 + \dots + a_k) + k \pmod{p}$$

Од тоа што f_{a_1} е биекција следува дека

(2)
$$f_{a_1}(a_1) + f_{a_1}(a_2) + \dots + f_{a_1}(a_k) = a_{i_1} + a_{i_2} + \dots + a_{i_k} = a_1 + a_2 + \dots + a_k$$

каде (i_1,i_2,\ldots,i_k) е пермутација на $(1,2,\ldots,k)$. (2 поени)

Нека $a = a_1 + a_2 + \cdots + a_k \pmod{p}$. Од (1) и (2) добиваме

$$(3) a = a_1 a + k \pmod{p}.$$

Претпоставувајќи дека k>1, можеме да го разгледуваме и пресликувањето $f_{a_2}:A\to A$ дефинирано со $f_{a_2}(x)=a_2x+1\pmod p$. Аналогно размислување води до следниот заклучок:

$$(4) a = a_2 a + k \pmod{p}.$$

Но 1 < k < p имплицира $a \neq 0$. Тогаш, од (3) и (4) и фактот дека gcd(a, p) = 1, добиваме $a_1 = a_2$. Оваа противречност укажува дека A нема повеќе од еден елемент. (2 поени)

Останува да го забележиме следното: $A=\emptyset$ е добро за p=2, а $A=\{2\}$ за p=3. Значи, A може да има 0 или 1 елемент. (1 поен)

Задача 3. За цел број $n \geq 3$, нека C_n е множеството од сите n-торки $a = (a_1, a_2, \ldots, a_n)$ од ненегативни реални броеви $a_i, i = 1, \ldots, n$, такви што $a_1 + a_2 + \cdots + a_n = 1$. За секои $k \in \{1, \ldots, n-1\}$ и $a \in C_n$, нека $\sigma_k(a) = \{a_1 + \cdots + a_k, a_2 + \cdots + a_{k+1}, \ldots, a_{n-k+1} + \cdots + a_n\}$. Докажете дека:

- (i) Постојат $m_k = \max\{\min \sigma_k(a) : a \in \mathcal{C}_n\}$ и $M_k = \min\{\max \sigma_k(a) : a \in \mathcal{C}_n\}$.
- (ii) Важи $1 \leq \sum_{k=1}^{n-1} (\frac{1}{M_k} \frac{1}{m_k}) \leq n-2$. Притоа, на левата страна, равенство се достигнува само за конечно многу вредности на n, а на десната страна, равенство се достигнува за бесконечно многу вредности на n.

Решение.

(i) За постоењето на $\max\{\min\sigma_k(a):a\in\mathcal{C}_n\}$, прво воочуваме дека за секој $a\in\mathcal{C}_n$ важи

$$\min \sigma_k(a) \leq \min \{a_1 + \dots + a_k, a_{k+1} + \dots + a_{2k}, \dots, a_{\left(\lfloor \frac{n}{k} \rfloor - 1\right)k+1} + \dots + a_{\lfloor \frac{n}{k} \rfloor k}\}
\leq \frac{(a_1 + \dots + a_k) + (a_{k+1} + \dots + a_{2k}) + \dots + (a_{\left(\lfloor \frac{n}{k} \rfloor - 1\right)k+1} + \dots + a_{\lfloor \frac{n}{k} \rfloor k})}{\lfloor \frac{n}{k} \rfloor}
\leq \frac{1}{\lfloor \frac{n}{k} \rfloor}.$$

(1 поен)

Од друга страна, за конкретниот избор на $\acute{a} \in \mathcal{C}_n$ дефиниран со

имаме $\sigma_k(\acute{a})=\{\frac{1}{\lfloor\frac{n}{k}\rfloor}\}$. Ова го потврдува постоењето на m_k . Уште повеќе, докажува дека $m_k=\frac{1}{\lfloor\frac{n}{k}\rfloor}$.

(1 поен)

За постоењето на $\min\{\max\sigma_k(a):a\in\mathcal{C}_n\}$, прво воочуваме дека за секој $a\in\mathcal{C}_n$ важи

$$\max \sigma_k(a) \geq \min\{a_1 + \dots + a_k, a_{k+1} + \dots + a_{2k}, \dots, a_{\lfloor \frac{n-1}{k} \rfloor k+1} + \dots + a_n\}$$

$$\geq \frac{(a_1 + \dots + a_k) + (a_{k+1} + \dots + a_{2k}) + \dots + (a_{\lfloor \frac{n-1}{k} \rfloor k+1} + \dots + a_n)}{\lfloor \frac{n-1}{k} \rfloor + 1}$$

$$= \frac{1}{\lfloor \frac{n-1}{k} \rfloor + 1}.$$

(1 поен)

Од друга страна, за конкретниот избор на $\grave{a} \in \mathcal{C}_n$ дефиниран со

$$\grave{a}_i = egin{cases} rac{1}{\lfloor rac{n-1}{k}
floor + 1} & \quad ext{ako } k \mid i-1 \ 0 & \quad ext{во спротивно} \end{cases}$$

имаме $\sigma_k(\grave{a})=\{\frac{1}{\lfloor\frac{n-1}{k}\rfloor+1}\}$. Ова го потврдува постоењето на M_k . Уште повеќе, докажува дека $M_k=\frac{1}{\lfloor\frac{n-1}{k}\rfloor+1}$.

(1 поен)

(ii) Равенствата изведени во (i) ни даваат $\sum_{k=1}^{n-1} (\frac{1}{M_k} - \frac{1}{m_k}) = \sum_{k=1}^{n-1} (1 + \lfloor \frac{n-1}{k} \rfloor - \lfloor \frac{n}{k} \rfloor)$. Така, од очигледниот факт

$$\lfloor \frac{n}{k} \rfloor - \lfloor \frac{n-1}{k} \rfloor = \begin{cases} 1 & \text{ако } k \mid n \\ 0 & \text{во спротивно} \end{cases}$$

добиваме дека

$$\sum_{k=1}^{n-1} \left(\frac{1}{M_k} - \frac{1}{m_k}\right) = (n-1) - (\tau(n) - 1) = n - \tau(n).$$

(1 поен)

(Тука, $\tau(n)$ го означува вкупниот број природни делители на n.) Бидејќи $1, n \mid n$ и $n-1 \nmid n$, важи $2 \leq \tau(n) \leq n-1$. Следствено,

$$1 \le \sum_{k=1}^{n-1} \left(\frac{1}{M_k} - \frac{1}{m_k}\right) \le n - 2.$$

(1 поен)

На левата страна се достигнува равенство ако и само ако $\tau(n) = n - 1$, т.е., само за $n \in \{3,4\}$. (Имено, $\tau(n) = n - 1$ повлекува $n - 2 \mid n$, што дава $n - 2 \mid 2$). На десната страна се достигнува равенство ако и само ако $\tau(n) = 2$, т.е., точно кога n е прост број. Останува да се присетиме на Евклидовата теорема што кажува дека постојат бесконечно многу прости броеви. (1 поен)