Al Seminar

Week 2

Overview

Linear Regression

Hands-on Exercise

Supervised Learning --> Regression

Slides Credit:

Emily Fox, **University of Washington**

CSE 446 Machine Learning

Website: https://courses.cs.washington.edu/courses/cse446/17wi/

Regression Recap - Supervised Learning

What is regression?

From features to predictions

Credit:https://courses.cs.washington.edu/courses/cse446/17wi/slides/intro.pdf

Stock prediction

- Predict the price of a stock (y)
- Depends on $\mathbf{x} =$
 - Recent history of stock price
 - News events
 - Related commodities

Credit:https://courses.cs.washington.edu/courses/cse446/17wi/slides/intro.pdf

Tweet popularity

How many people will retweet your tweet? (y)

Depends on x = # followers,
 # of followers of followers,
 features of text tweeted,
 popularity of hashtag,
 # of past retweets,...

Credit: https://courses.cs.washington.edu/courses/cse446/17wi/slides/intro.pdf

Quiz: Which of the following is a Regression Problem?

- 1) Predict if a project is going to be a SUCCESS or FAILURE?
- 2) Predict if an image is a CAT or DOG?
- 3) Predict the NUMBER of CARS at 9:00am on interstate I-40?

Quiz - Which of the following is a Regression Problem?

- 1) Predict if project is going to be a SUCCESS or FAILURE?
- 2) Predict if the the image is of CAT or DOG? CLASSIFICATION
- 3) Predict the NUM of CAR at 9:00am on I-40? Regression

Predict House price

How much is my house worth?

Predict House price

Data

$$(x_1 = sq.ft., y_1 = \$)$$

$$(x_2 = \text{sq.ft.}, y_2 = \$)$$

$$(x_3 = sq.ft., y_3 = \$)$$

$$(x_4 = sq.ft., y_4 = \$)$$

$$(x_5 = \text{sq.ft.}, y_5 = \$)$$

Input vs. Output:

- **y** is the quantity of interest
- assume y can be predicted from x

Predict House price

Simple linear regression model

Simple linear regression model

Predict House price: Linear Regression

Interpreting the coefficients – Simple linear regression

What about a quadratic function?

Even higher order polynomial

Polynomial Regression

Polynomial regression

```
Model:
y_i = w_0 + w_1 x_i + w_2 x_i^2 + ... + w_p x_i^p + \varepsilon_i
       treat as different features
feature 1 = 1 (constant) parameter 1 = w_0
                            parameter 2 = W_1
feature 2 = x
                            parameter 3 = W_2
feature 3 = x^2
                            parameter p+1 = w_p
feature p+1 = x^p
```

Adding more input features data

Adding more input features data

Interpreting the coefficients – Two linear features

Many possible inputs

- Square feet
- # bathrooms
- # bedrooms
- Lot size
- Year built

– ...

Training Regression Model

Feature_input_1	Feature_input_2	Feature_inputN	Output/Target
x_1_1	x_2_1	x_N_1	y1
x_1_2	x_2_2	x_N_2	y2
x_1_3	x_2_3	x_N_3	yn

Data Preparation

- Simplest method of splitting data is to split it serially.
 - Take first 80% rows and put into training set.
 - Take remaining 20% rows and put into test set.

Credit: https://www.slideshare.net/AndrewFerlitsch/machine-learning-splitting-datasets

Hands-On

Week 2 Jupyter NoteBook:

https://github.com/balasub/ai-seminar/blob/master/week-2/ai_seminar_week2.ipynb