# Materiais Elétricos e Magnéticos para Engenharia

**Professor: Marcus V. Batistuta** 

Laboratório #3

**Termistores** 

1º Semestre de 2018

FGA - Universidade de Brasília

# **Modelo para o Termistor**



Coeficiente Térmico

$$\alpha_T = \frac{1}{R(T)} \frac{dR}{dT} \bigg|_T$$

$$P_E = P_T$$

$$I^2 R = K [T(R) - T_0]$$

$$T_0 = T(R) - \frac{I^2 R}{K}$$

(ar parado)

# Resistivities and Temperature Coefficients of Resistivity for Various Materials

| Material              | Resistivity <sup>a</sup> (Ω · m) | Temperature Coefficient α [(°C) <sup>-1</sup> ] |
|-----------------------|----------------------------------|-------------------------------------------------|
| Silver                | $1.59 \times 10^{-8}$            | $3.8 \times 10^{-3}$                            |
| Copper                | $1.7 \times 10^{-8}$             | $3.9 \times 10^{-3}$                            |
| Gold                  | $2.44 \times 10^{-8}$            | $3.4 \times 10^{-3}$                            |
| Aluminum              | $2.82 \times 10^{-8}$            | $3.9 \times 10^{-3}$                            |
| Tungsten              | $5.6 \times 10^{-8}$             | $4.5 \times 10^{-3}$                            |
| Iron                  | $10 \times 10^{-8}$              | $5.0 \times 10^{-3}$                            |
| Platinum              | $11 \times 10^{-8}$              | $3.92 \times 10^{-3}$                           |
| Lead                  | $22 \times 10^{-8}$              | $3.9 \times 10^{-3}$                            |
| Nichrome <sup>b</sup> | $1.50 \times 10^{-6}$            | $0.4 \times 10^{-3}$                            |
| Carbon                | $3.5 \times 10^{-5}$             | $-0.5 \times 10^{-3}$                           |
| Germanium             | 0.46                             | $-48 \times 10^{-3}$                            |
| Silicon               | 640                              | $-75 \times 10^{-3}$                            |
| Glass                 | $10^{10}$ to $10^{14}$           |                                                 |
| Hard rubber           | $\sim 10^{13}$                   |                                                 |
| Sulfur                | $10^{15}$                        |                                                 |
| Quartz (fused)        | $75 \times 10^{16}$              |                                                 |

<sup>&</sup>lt;sup>a</sup>All values are at 20°C.

<sup>&</sup>lt;sup>b</sup>Nichrome is a nickel-chromium alloy commonly used in heating elements.

#### **Termistores PTC**



#### Termistores PTC são feitos de Materiais Cerâmicos ou Compósitos Plásticos

Cerâmica Policristalina Dopada contendo Titanato de Bário (BaTiO<sub>3</sub>), ou ainda variações com misturas de Titanatos de Bário, Chumbo, Estrôncio com a adição de Ítrio, Manganês, Tântalo e Sílica..

Compósito Plástico contendo Partículas ou Grãos de Carbono ou Metais

#### **Termistores NTC**



Termistores NTC são feitos de Óxidos Metálicos Sinterizados Dopados Semicondutores.

Óxido Férrico ( $Fe_2O_3$ ) dopado com Titânio (Ti) [tipo-n]

Óxido de Nickel (NiO) dopado com Lítio (Li) [tipo-p]



# Termistores PTC de Compósitos Plásticos



Grãos de Níquel em Fluoreto de Polivinilideno

#### Modelo Alfa de Termistor PTC

$$\alpha = \frac{\ln\left(\frac{R_2}{R_1}\right)}{T_2 - T_1}$$

#### **Onde:**

 $R_1$  = Resistência em  $T_1$  [Ohms]

 $R_2$  = Resistência em  $T_2$  [Ohms]

 $T_1 = Temperatura-1 [K]$ 

 $T_2 = Temperatura-2$  [K]

#### Modelo Beta de Termistor NTC

$$\beta = \frac{\ln(\frac{R_{T1}}{R_{T2}})}{(\frac{1}{T_1} - \frac{1}{T_2})}$$

#### **Onde:**

 $R_{T1}$  = Resistência em  $T_1$  [Ohms]

 $R_{T2}$  = Resistência em  $T_2$  [Ohms]

 $T_1 = Temperatura-1 [K]$ 

 $T_2$ = Temperatura-2 [K]

# Modelo do NTC: Equação de Steinhart-Hart

$$\frac{1}{T} = \frac{1}{T_0} + \frac{1}{B} \ln \left( \frac{R}{R_0} \right)$$

$$T_0$$
 (25 °C = 298.15 K).

$$R = R_0 e^{-B\left(\frac{1}{T_0} - \frac{1}{T}\right)}$$

$$R = r_{\infty}e^{B/T}$$
  $r_{\infty} = R_0e^{-B/T_0}$ 

### Modelo do PTC

$$\alpha = \frac{\ln\left(\frac{R_2}{R_1}\right)}{T_2 - T_1} \qquad \Rightarrow \qquad R_2 = R_1 \cdot e^{\alpha \cdot \left(T_2 - T_1\right)}$$

$$R(T) = R_0 e^{\alpha (T - T_0)}$$

$$T = \frac{1}{\alpha} ln \left[ \frac{R(T)}{R_0} \right] + T_0$$

# Modelo Dinâmico dos Termistores

$$P = V \times I = \frac{dH}{dt} = K[T(R) - T_0] + C_T \frac{dT(R)}{dt}$$

 $C_T$  = Capacidade Calorífica [Joule / K]

*H* – Calor [Joules]

P – Potência Elétrica

V – Tensão [volts]

*I* – Corrente [amps]

K – Constante de Dissipação de Calor por Convecção Natural [W / K]

# **<u>Desafio</u>**: Modelo Dinâmico I(t) vs. V(t) do Termistor NTC para Grandes Sinais

$$P = V \times I = \frac{dH}{dt} = K[T(R) - T_0] + C_T \frac{dT(R)}{dt}$$
Dissipação Térmica (Convecção)

Inércia Térmica

$$P(t) = V^{2}(t)/R(t) \qquad I(t) = V(t)/R(t)$$

$$R = R_0 e^{-B(\frac{1}{T_0} - \frac{1}{T})}$$

## **Circuito de Medidas**



#### Efeito Memória em Circuitos com Termistores



#### Efeito Memória em Circuitos com Termistores



#### Aplicação Tecnológica: Termistor PTC como Medidor de Fluxo



FIG. 2. Schematic structure of a PTC based flow sensing head.



FIG. 8. Output voltage response of a PTC flow sensor with varying cross section of the tube.