

Classifying Bird Species With Image Recognition

BRENDON BOTTLE

AND

SEAN MCMANUS

Problem Description

- Project goal: Classify images of birds into the correct species
- Potential use case: Bird population counts
- Method: A convolutional neural network optimized for image classification

Dataset

- The full dataset contains 525 unique species of birds with 100-200 images per species
- The training data was reduced to 20 species with 100 images per species
- The validation and test sets contain 5 image for each type of bird
- Each image contains only one bird, which comprises at least 50% of the pixels

Base Model Performance

EfficeintNetB0

Weights Applied ImageNet

Epochs Run 5

Best Validation Accuracy 100%

Best Validation Loss 0.0015

Simple Model Performance

Layer (type)	Output Shape	Param #
input_1 (InputLayer)	[(None, 224, 224, 3)]	 0
conv2d (Conv2D)	(None, 222, 222, 32)	896
<pre>max_pooling2d (MaxPooling2 D)</pre>	(None, 111, 111, 32)	0
flatten (Flatten)	(None, 394272)	0
dense (Dense)	(None, 20)	7885460
======================================		

Epochs Run	21
Validation Accuracy	81%
Validation Loss	0.8571

50 - Val Loss Train Loss 40 - Val Loss - Train Loss

Simple Model Evaluation

Simple Model Evaluation – Correct Birds

- Good Classification
 - Large, colorful patches
 - Unique characteristics (Quail's Crest)

- Bad Classification
 - Muted/blended Colors
 - Color Variance

Model: "sequential"

Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 222, 222, 32)	
<pre>max_pooling2d (MaxPooling2 D)</pre>	(None, 111, 111, 32)	0
conv2d_1 (Conv2D)	(None, 109, 109, 32)	9248
<pre>max_pooling2d_1 (MaxPoolin g2D)</pre>	(None, 54, 54, 32)	0
conv2d_2 (Conv2D)	(None, 52, 52, 32)	9248
<pre>max_pooling2d_2 (MaxPoolin g2D)</pre>	(None, 26, 26, 32)	0
flatten (Flatten)	(None, 21632)	0
dense (Dense)	(None, 20)	432660

Total params: 452052 (1.72 MB)
Trainable params: 452052 (1.72 MB)
Non-trainable params: 0 (0.00 Byte)

Proposed Improvements

- Increase Model Complexity
 - Add more CNN layers to differentiate features more
 - Included MaxPooling to support model invariance

Complex Model Evaluation

Improvements

- More species 100% correctly classified
- Some classes improved their predictions

Challenges

- Significant decrease in some species
- Model overfitting

Validating Assumptions

- Distinctive features still taking precedent
- Grayscale model resulted in significant drop in accuracy

Progressive Resizing

- Models trained on progressively higher quality images
- Layered together to build a complex model
- Weights of smaller scale models are locked to avoid learning noise from higher quality images
- Filters, Dropout, and Epochs adjusted

conv2d_9 (Conv2D)	(None, 224, 224, 16)	1168
max_pooling2d_5 (MaxPoolin g2D)	(None, 112, 112, 16)	0
conv2d_5 (Conv2D)	(None, 112, 112, 32)	4640
max_pooling2d_3 (MaxPoolin g2D)	(None, 56, 56, 32)	0
conv2d_1 (Conv2D)	(None, 56, 56, 128)	36992
max_pooling2d (MaxPooling2 D)	(None, 28, 28, 128)	0
conv2d_2 (Conv2D)	(None, 26, 26, 64)	73792
max_pooling2d_1 (MaxPoolin g2D)	(None, 13, 13, 64)	0
conv2d_3 (Conv2D)	(None, 11, 11, 32)	18464
max_pooling2d_2 (MaxPoolin g2D)	(None, 5, 5, 32)	0
dropout (Dropout)	(None, 5, 5, 32)	0
flatten (Flatten)	(None, 800)	0
dense (Dense)	(None, 128)	102528
dense_1 (Dense)	(None, 20)	2580

Total params: 240388 (939.02 KB)
Trainable params: 1392 (5.44 KB)
Non-trainable params: 238996 (933.58 KB)

Progressive Model Evaluation

	56x56	112x112	224x224
Accuracy	88.99%	89.99%	87.99%
Loss	0.8063	0.6321	0.5862

- Overfitting improved on this version
- 56x56 model gave a significant boost in accuracy
- 112x112 improved accuracy
- 224x224 dropped accuracy but loss improved

Additional Images

- 224x224 image quality not learning correct features for poorly classified birds
- Added additional images to diversify poorly classified species

Validation	91%
Accuracy	
Validation	0.3924
Loss	

Final Test

Accuracy	82.99%
Loss	0.5899

- · Accuracy declined but loss was reasonably low
- Structure of the validation set likely contributed to this
- Next Steps include creating more robust validation set, increasing complexity, and introducing more image augmentation

