Funkcje odwrotne

(b) Niech $f: \mathbb{R}^2 \to \mathbb{R}$ będzie określona wzorem

$$f(x, y) = \begin{cases} (x^2 + y^2)\sin\frac{1}{\sqrt{x^2 + y^2}}, & \text{gdy} \quad (x, y) \neq 0, \\ 0, & \text{gdy} \quad (x, y) = 0. \end{cases}$$

Pokazać, że f jest różniczkowalna także w punkcie (0,0), ale $D_t f$ nie są ciągłe w (0,0).

2.33. Pokazać, że z założeń twierdzenia 2.8 można wyeliminować ciągłość $D_1 f^j$ w a.

2.34. Funkcja $f: \mathbb{R}^n \to \mathbb{R}$ jest jednorodna stopnia m, jeżeli $f(tx) = t^m f(x)$ dla wszystkich $x \in \mathbb{R}^n$ i $t \in \mathbb{R}$. Pokazać, że jeżeli f jest także różniczkowalna, to

$$\sum_{i=1}^{n} x^{i}D_{i}f(x) = mf(x).$$

Wskazówka. Znaleźć g'(1) dla g(t) = f(tx).

2.35. Dowieść, że jeżeli $f: \mathbb{R}^n \to \mathbb{R}$ jest różniczkowalna i f(0) = 0, to istnieją takie $g_i: \mathbb{R}^n \to \mathbb{R}$, że

$$f(x) = \sum_{i=1}^{n} x^{i} g_{i}(x).$$

Wskazówka. Jeżeli $h_x(t)=f(tx)$, to $f(x)=\int_0^1 h_x'(t)dt$.

Funkcje odwrotne

Przypuśćmy, że $f: R \rightarrow R$ ma ciągłą pochodną na zbiorze otwartym zawierającym a i $f'(a) \neq 0$. Jeżeli f'(a) > 0, to istnieje taki odcinek otwarty V zawierający a, że f'(x) > 0 dla $x \in V$ (a dla f'(a) < 0 mielibyśmy f'(x) < < 0). Zatem f rośnie (lub maleje) na V, więc jest 1-1 i dlatego ma funkcję odwrotną f^{-1} określoną na pewnym odcinku otwartym W zawierającym f(a). Ponadto można łatwo pokazać, że f^{-1} jest różniczkowalna i że dla $y \in W$ zachodzi

$$(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}.$$

Analogiczne rozumowanie dla wyższych wymiarów jest o wiele bardziej skomplikowane, lecz jego wynik (twierdzenie 2.11) jest bardzo ważny. Zaczniemy od prostego lematu.

2.10. Lemat. Niech $A \subset \mathbb{R}^n$ będzie przedziałem i niech $f: A \to \mathbb{R}^n$ ma ciąglą pochodną. Jeżeli istnieje taka liczba M, że $|D_j f^i(x)| \leq M$ dla wszystkich x z wnętrza A, to

$$|f(x)-f(y)| \leq n^2 M|x-y|$$

dla wszystkich $x, y \in A$.

Dowód. Mamy

$$f^{i}(y)-f^{i}(x) = \sum_{j=1}^{n} \left[f^{i}(y^{1}, \dots, y^{j}, x^{j+1}, \dots, x^{n}) - -f^{i}(y^{1}, \dots, y^{j-1}, x^{j}, \dots, x^{n}) \right].$$

Stosując twierdzenie o wartości średniej otrzymujemy

$$f^{i}(y^{1}, ..., y^{j}, x^{j+1}, ..., x^{n}) - f^{i}(y^{1}, ..., y^{j-1}, x^{j}, ..., x^{n}) = (y^{j} - x^{j}) \cdot D_{j} f^{i}(z_{ij})$$

dla pewnych z_{ij} . Wartość bezwzględna wyrażenia z prawej strony jest mniejsza lub równa $M \cdot |y^j - x^j|$. Tak więc

$$|f^i(y)-f^i(x)| \leq \sum_{j=1}^n |y^j-x^j| \cdot M \leq nM|y-x|,$$

ponieważ dla każdego j mamy $|y^j - x^j| \le |y - x|$. W końcu

$$|f(y)-f(x)| \leq \sum_{i=1}^{n} |f^{i}(y)-f^{i}(x)| \leq n^{2} M \cdot |y-x|. \blacksquare$$

2.11. TWIERDZENIE (o funkcji odwrotnej). Załóżmy, że $f: \mathbb{R}^n \to \mathbb{R}^n$ ma ciąglą pochodną na zbiorze otwartym zawierającym a oraz det $f'(a) \neq 0$. Wtedy istnieją zbiór otwarty V zawierający a i zbiór otwarty W zawierający f(a) takie, że $f: V \to W$ ma ciąglą funkcję odwrotną $f^{-1}: W \to V$, która jest różniczkowalna i dla wszystkich $y \in W$ spełnia

$$(f^{-1})'(y) = [f'(f^{-1}(y))]^{-1}.$$

Dowód. Niech λ będzie odwzorowaniem liniowym Df(a). Wtedy λ jest odwracalne, ponieważ det $f'(a) \neq 0$. A więc $D(\lambda^{-1} \circ f)(a) = D(\lambda^{-1})$ $(f(a)) \circ Df(a) = \lambda^{-1} \circ Df(a)$ jest odwzorowaniem liniowym identycznościowym. Jeżeli twierdzenie jest prawdziwe dla $\lambda^{-1} \circ f$, to jest oczywiście prawdziwe dla f. Dlatego możemy od razu założyć, że λ jest identycznościa. Tak wiec, jeśli tylko f(a+h)=f(a), to mamy

$$\frac{|f(a+h)-f(a)-\lambda(h)|}{|h|} = \frac{|h|}{|h|} = 1 \cdot \frac{|h|}{|h|} = 1 \cdot \frac{|h|}{|h|} = 1 \cdot \frac{|h|}{|h|} = \frac$$

Ale

$$\lim_{h\to 0} \frac{|f(a+h)-f(a)-\lambda(h)|}{|h|} = 0.$$

Znaczy to, że nie może zachodzić f(x) = f(a) dla x dowolnie bliskiego, lecz różnego od a. Dlatego istnieje taki przedział domkniety U zawierający a w swoim wnetrzu, że

(1) $f(x) \neq f(a)$, jeżeli $x \in U$ i $x \neq a$.

Skoro f ma ciągłą pochodną na zbiorze otwartym zawierającym a, to możemy także założyć, że bo jesti f ciągna h olet f'(x) (2) $\det f'(x) \neq 0$ dla $x \in U$.

(3) $|D_i f^i(x) - D_i f^i(a)| < 1/2n^2$ dla wszystkich i, j oraz $x \in U$.

Zauważmy, że stosując (3) i lemat 2.10 do funkcji g(x)=f(x)-x $|f(x_1)-x_1-(f(x_2)-x_2)| \le \frac{1}{2}|x_1-x_2|$ Digi(x) = Digi(x) dostajemy

dla $x_1, x_2 \in U$. Ponieważ

 $|x_1-x_2|-|f(x_1)-f(x_2)| \le |f(x_1)-x_1-(f(x_2)-x_2)| \le \frac{1}{2}|x_1-x_2|,$ 1 Digi(x)- Digi(a) | < /21/12 więc otrzymujemy

(4) $|x_1 - x_2| \le 2|f(x_1) - f(x_2)| \text{ dla } x_1, x_2 \in U.$

Obraz brzegu U przez f jest więc zbiorem zwartym, który na mocy (1) nie zawiera f(a) (rysunek 2.3).

• a obraz brzegu U przez Rys. 2.3

Dlatego istnieje taka liczba d>0, że $|f(a)-f(x)| \ge d$ dla x z brzegu U. Niech $W = \{y: |y - f(a)| < \frac{1}{2}d\}$. Jeżeli $y \in W$ i x należy do brzegu U, to

(5)
$$|y-f(a)| < |y-f(x)|$$
.

Pokażemy, że dla każdego $y \in W$ istnieje dokładnie jeden taki punkt x z wnętrza U, że f(x) = y. Aby tego dowieść, rozważmy funkcję $g: U \rightarrow R$ określoną wzorem

$$g(x) = |y - f(x)|^2 = \sum_{i=1}^{n} (y^i - f^i(x))^2.$$

Funkcja ta jest ciągła i dlatego przyjmuje minimum na U. Na mocy (5) dla x z brzegu U mamy g(a) < g(x). Dlatego g nie przyjmuje minimum na brzegu U. Z twierdzenia 2.6 wynika istnienie takiego punktu x z wnetrza U, że $D_i g(x) = 0$ dla wszystkich j, to znaczy

$$\sum_{i=1}^{n} 2(y^{i} - f^{i}(x)) = D_{j} f^{i}(x) = 0 \quad \text{dla wszystkich } j.$$

Na mocy (2) macierz $(D_i f^i(x))$ ma niezerowy wyznacznik. Dlatego musi zachodzić $y^i - f^i(x) = 0$ dla wszystkich i, czyli y = f(x). Dowodzi to istnienia x. Jego jedyność wynika natychmiast z (4).

Niech V będzie przekrojem wnętrza U z $f^{-1}(W)$. Pokazaliśmy, że funkcja $f: V \rightarrow W$ ma funkcje odwrotną $f^{-1}: W \rightarrow V$. Możemy zapisać (4) inaczej:

(6)
$$|f^{-1}(y_1)-f^{-1}(y_2)| \le 2|y_1-y_2|$$
 dla $y_1, y_2 \in W$.

Funkcie odwrotne

49

Stąd widać, że f^{-1} jest ciągła.

Pozostaje jedynie dowieść, że f^{-1} jest różniczkowalna. Niech $\mu = Df(x)$. Pokażemy, że f^{-1} jest różniczkowalna w y = f(x) i ma pochodną μ^{-1} . Tak jak w dowodzie twierdzenia 2.2 dla $x_1 \in V$ mamy

$$f(x_1)=f(x)+\mu(x_1-x)+\varphi(x_1-x),$$

gdzie

$$\lim_{x_1\to x}\frac{|\varphi(x_1-x)|}{|x_1-x|}=0.$$

Dlatego

$$\mu^{-1}(f(x_1)-f(x))=x_1-x+\mu^{-1}(\varphi(x_1-x)).$$

Ponieważ każdy $y_1 \in W$ jest postaci $f(x_1)$ dla pewnego $x_1 \in V$, więc można to zapisać następująco:

$$f^{-1}(y_1) = f^{-1}(y) + \mu^{-1}(y_1 - y) - \mu^{-1}(\varphi[f^{-1}(y_1) - f^{-1}(y)]),$$

i dlatego wystarczy pokazać, że

$$\lim_{y_1 \to y} \frac{\left| \mu^{-1} (\varphi [f^{-1}(y_1) - f^{-1}(y)]) \right|}{|y_1 - y|} = 0.$$

W tym celu (zadanie 1.10) wystarczy pokazać, że

$$\lim_{y_1 \to y} \frac{\left| \varphi(f^{-1}(y_1) - f^{-1}(y)) \right|}{|y_1 - y|} = 0.$$

Ale

$$\frac{|\varphi(f^{-1}(y_1)-f^{-1}(y))|}{|y_1-y|} = \frac{|\varphi(f^{-1}(y_1)-f^{-1}(y))|}{|f^{-1}(y_1)-f^{-1}(y)|} \cdot \frac{|f^{-1}(y_1)-f^{-1}(y)|}{|y_1-y|}.$$

Ponieważ f^{-1} jest ciągła, więc $f^{-1}(y_1) \rightarrow f^{-1}(y)$, gdy $y_1 \rightarrow y$. Dlatego pierwszy czynnik dąży do 0. Ponieważ, na mocy (6), drugi czynnik jest mniejszy niż 2, więc ich iloczyn także dąży do 0.

Zauważmy, że ze wzoru na pochodną funkcji f^{-1} wynika, że pochodna ta jest w istocie ciągła (i jeśli f jest klasy C^{∞} to f^{-1} też jest klasy C^{∞}). Rzeczywiście, wystarczy zauważyć, że wyrazy macierzy odwrotnej do macierzy A to funkcje klasy C^{∞} zmiennych, będących wyrazami macierzy A.

Wynika to ze wzorów Cramera: $(A^{-1})_{ji} = (\det A^{ij})/(\det A)$, gdzie A^{ij} jest macierzą otrzymaną z A przez usunięcie i-tego wiersza i j-tej kolumny.

Warto też zauważyć, że funkcja odwrotna f^{-1} może istnieć nawet jeśli $\det f'(a) = 0$. Na przykład, jeżeli $f: \mathbf{R} \to \mathbf{R}$ jest określona jako $f(x) = x^3$, to f'(0) = 0, ale f ma funkcję odwrotną $f^{-1}(x) = \sqrt[3]{x}$. Niemniej jedno jest pewne: jeśli $\det f'(a) = 0$, to f^{-1} nie może być różniczkowalna w f(a). Aby tego dowieść, zauważmy, że $(f \circ f^{-1})(x) = x$. Gdyby f^{-1} była różniczkowalna w f(a), to zasada różniczkowania funkcji złożonej dawałaby $f'(a) \cdot (f^{-1})'(f(a)) = I$, skąd mielibyśmy $\det f'(a) \cdot \det (f^{-1})'(f(a)) = I$, co zaprzecza temu, że $\det f'(a) = 0$.

Zadania

2.36*. Niech $A \subset \mathbb{R}^n$ będzie zbiorem otwartym i $f: A \to \mathbb{R}^n$ funkcją 1-1 mającą ciągłą pochodną taką, że $\det f'(x) \neq 0$ dla wszystkich x. Pokazać, że f(A) jest zbiorem otwartym i $f^{-1}: f(A) \to A$ jest różniczkowalna. Pokazać także, że f(B) jest otwarty dla każdego zbioru otwartego $B \subset A$.

2.37. (a) Niech funkcja $f: \mathbb{R}^2 \to \mathbb{R}$ ma ciągłą pochodną. Pokazać, że f nie jest 1-1.

Wskazówka. Jeżeli na przykład $D_1 f(x, y) \neq 0$ dla wszystkich (x, y) z pewnego zbioru otwartego A, to rozważmy $g: A \rightarrow \mathbb{R}^2$ określoną jako g(x, y) = (f(x, y), y).

(b) Uogólnić ten wynik na przypadek funkcji mającej ciągłą pochodną $f: \mathbb{R}^n \to \mathbb{R}^m$, gdzie m < n.

2.38. (a) Pokazać, że jeżeli $f: R \rightarrow R$ spełnia $f'(a) \neq 0$ dla wszystkich $a \in R$, to f jest 1-1 (na całej R).

(b) Określmy $f: \mathbb{R}^2 \to \mathbb{R}^2$ wzorem $f(x, y) = (e^x \cos y, e^x \sin y)$. Pokazać, że det $f'(x, y) \neq 0$ dla wszystkich (x, y), lecz f nie jest 1-1.

2.39. Wykorzystać funkcję $f: R \rightarrow R$ określoną wzorem

$$f(x) = \begin{cases} \frac{1}{2}x + x^2 \sin \frac{1}{x_1}, & \text{gdy} & x \neq 0, \\ 0, & \text{gdy} & x = 0, \end{cases}$$

by pokazać, że z założeń twierdzenia 2.11 nie można wyeliminować ciągłości pochodnej.