SHOW ALL YOUR WORK! Make sure you give reasons to support your answers. If you have any questions, do not hesitate to ask! For this exam **no calculators are to be used.**

- 1. Let A be the matrix $A = \begin{bmatrix} 1 & 1 & 0 & -2 \\ 2 & -2 & 1 & 1 \\ 1 & 0 & -2 & -1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$
 - (a) Compute $\det A$.
 - (b) Compute $\det(A^{-1})$ without computing A^{-1} .
 - (c) Use Cramer's Rule to find x_4 so that $A \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ 0 \\ 0 \end{bmatrix}$.
- 2. Find the volume of the parallelepiped determined by the vectors $\begin{bmatrix} 3 \\ 6 \\ 7 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 4 \\ 1 \end{bmatrix}$, and $\begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$.
- 3. Let $A = \begin{bmatrix} 1 & 2 & 1 & 0 & -1 \\ -1 & -2 & 0 & 1 & 3 \\ 2 & 4 & 4 & 2 & 2 \end{bmatrix}$. Find bases for Col A and Nul A. What should the sum of the dimensions of these two subspaces be? Does your answer check?
- 4. Define a transformation $T: \mathbb{P}_3 \to \mathbb{R}^2$ by $T(\mathbf{p}) = \begin{bmatrix} \mathbf{p}(0) \\ \mathbf{p}(2) \end{bmatrix}$.
 - (a) Show that T is a linear transformation.
 - (b) Describe the kernel and range of this linear transformation.
 - (c) Write the matrix A of this linear transformation in terms of the standard bases for \mathbb{P}_3 and \mathbb{R}_2 .
 - (d) Compute a basis for $\operatorname{Nul} A$.
 - (e) Compute a basis for $\operatorname{Col} A$.
- 5. Find the dimensions of Nul A and Col A for the matrix $A = \begin{bmatrix} 1 & 3 & -4 & 2 & -1 & 6 \\ 0 & 0 & 1 & -3 & 7 & 0 \\ 0 & 0 & 0 & 1 & 4 & -3 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$.

- 6. If A is a 4×3 matrix, what is the largest possible dimension of the row space of A? What is the smallest possible dimension? What if A is 3×4 matrix? Explain!
- 7. Prove or Disprove and Salvage if possible:
 - (a) If A is a 2×2 matrix with a zero determinant, then one column of A is multiple of the other.
 - (b) If λ is an eigenvalue of an $n \times n$ matrix M, then λ^2 is an eigenvalue of M^2 .
 - (c) If A and B are $n \times n$ matrices with det A = 2 and det B = 3, then $\det(A + B) = 5$.
 - (d) Let A and B be $n \times n$ matrices. If B is obtained from A by adding to one row of A a linear combination of other rows of A, then det $B = \det A$.
 - (e) $\det A^T = -\det A$.
- 8. Decide whether each statement below is True of False. Justify your answer.
 - (a) The number of pivot columns of a matrix equals the dimension of its column space.
 - (b) Any plane in \mathbb{R}^3 is a two-dimensional subspace of \mathbb{R}^3 .
 - (c) The dimension of the vector space \mathbb{P}^4 is 4.
 - (d) If $\dim V = n$ and S is a linearly independent set in V, then S is a basis for V.
 - (e) If there exists a linearly dependent set $\{v_1, \ldots, v_p\}$ that spans V, then dim $V \leq p$.
 - (f) The eigenvectors of any $n \times n$ matrix are linearly independent in \mathbb{R}^n .
- 9. Prove or Disprove and Salvage if possible:
 - (a) The null space of an $m \times n$ matrix is in \mathbb{R}^m
 - (b) The range of a linear transformation is a vector subpace of the codomain.
 - (c) Let A and B be $n \times n$ matrices. If B is obtained from A by adding to one row of A a linear combination of other rows of A, then det $B = \det A$.
 - (d) The row space of A^T is the same as the column space of A.
- 10. Let $S = \{1 t^2, t t^2, 2 2t + t^2\}.$
 - (a) Is S linearly independent in \mathbb{P}_2 ? Explain!
 - (b) Is S a basis for \mathbb{P}_2 ? Explain!
 - (c) Express $\mathbf{p}(t) = 3 + t 6t^2$ as a linear combination of elements of \mathcal{S} .
 - (d) Is the expression unique? Explain!
- 11. Suppose a nonhomogeneous system of six linear equations in eight unknowns has a solution with two free variables. Is it possible to change some constants on the equations' right sides to make the new system inconsistent? Explain!
- 12. Go back over your old homework and quizzes to review and make sure you understand any problem on which you lost points.