End-to-End Task-Oriented Dialogue Systems

~ Nalin Kumar

About Me

- Int. MSc. (Major: Mathematics | Minor: CS) NISER (2016-2021)
 - Supervisor: Dr. Subhankar Mishra
 - Thesis: Neural Machine Translation for Low-Resource Languages
- MS in CS Computational Linguistics Charles University (Prague) (2021-24)
 - Supervisor: Mgr. Ondřej Dušek, Ph.D.
 - Thesis: Neural Models for Multilingual Natural Language Generation and Understanding
- Started PhD this Oct (2024-)
 - Supervisor: Mgr. Ondřej Dušek, Ph.D.
 - Thesis: Efficient Methods for Natural Language Generation Systems
- Contact me:
 - Email: nkumar@ufal.mff.cuni.cz
 - LinkedIn: https://www.linkedin.com/in/nalin-kumar-7b92aa174/
 - Website(s): https://knalin55.github.io/

Introduction 2

Content

- What are dialogue systems?
- 2. Basic Types
- 3. Modules ASR, NLU, DM, **NLG**, TTS
- 4. End-to-end systems
- 5. Evaluation

LEEETs-Dial: Linguistic Entrainment in End-to-End Task-oriented Dialogue systems

Introduction to Dialogue Systems

Slides taken from the course NPFL099 at UFAL, Charles University

https://ufal.mff.cuni.cz/courses/npfl099/2023#lectures

Paper Accepted at NAACL Findings 2024

https://aclanthology.org/2024.findings-naacl.46/

Content 3

What are Dialogue Systems

Definition:

 A (spoken) dialogue system is a computer system designed to interact with users in (spoken) natural language

Wide definition – covers lots of different cases

- "smart speakers" / phone OS assistants
- phone hotline systems (even tone-dial ones)
- in-car systems
- assistive technologies: therapy, elderly care, companions
- entertainment: video game NPCs, chatbots

What are Dialogue Systems

Example - Smart Speakers

- Google, Amazon, Apple & others, Mycroft: open-source
- Really good microphones
 - and not much else they work online only
- Huge knowledge bases
 - Google: combined with web search
- Lots of domains programmed in, but all by hand
 - integration with a lot of services (calendar, music, shopping, weather, news...)
 - you can add your own (with limitations)
- Can keep some context
- Conversational capabilities limited

Example - ChatGPT

- Huge neural network
 - ~10B parameters (details unknown)
 - 1. Pretrained on web text
 - Trained on instructions + solutions
 - much more on point for the task
 - 3. Trained on lots of human feedback
 - for different outputs
 - trained to be convincing
- Black box, hard to control
- Can answer anything, but no guarantee on accuracy
 - o "Confidently" hallucinates

What are Dialogue Systems

Basic Types

Task-oriented

- focused on completing a certain task/tasks
- booking restaurants/flights, finding bus schedules, smart home...

Non-task-oriented

- chitchat social conversation, entertainment
- getting to know the user, specific persona
- gaming the Turing test

Basic Types

Communication Domains

• "domain" = conversation topic / area of interest

- traditional: single/closed-domain
 - one well-defined area, small set of specific tasks
 - e.g. banking system on a specific phone number
- multi-domain
 - basically joining several single-domain systems (Google/Alexa/Siri)
- open-domain
 - "responds to anything" the goal, but now mostly chitchat-only

Basic Types 8

Modes of Communication

text

- most basic/oldest
- easiest to implement, most robust
- not completely natural

voice

- more difficult, but can be more natural
- emotions, tone, personality
- easy to deploy over the phone
- hands-free

multimodal

- voice/text + graphics
- additional modalities: video gestures, mimics; touch
- most complex

Basic Types

Modules

traditional main DS pipeline: speech recognition voice \rightarrow text what's the time? text → meaning meaning → reaction reaction \rightarrow text request (time) text → voice access to backend backend for anything better than basic chit-chat inform(time=15:30) multimodal systems need additional components it is currently \$:30 p.m. speech synthesis

Modules

traditional main DS pipeline:

- \circ voice \rightarrow text
- \circ text \rightarrow meaning
- \circ meaning \rightarrow reaction
- \circ reaction \rightarrow text
- \circ text \rightarrow voice

Automatic Speech Recognition (ASR)

- Converting speech signal (acoustic waves) into text
- Typically produces several possible hypotheses with confidence scores
 - n-best list
 - lattice
 - confusion network
- Very good in ideal conditions
- Problems:
 - o noise, accents, longer distance, echo cancellation, channel (phone)...

0.8 I'm looking for a restaurant

0.4 uhm looking for a restaurant

0.2 looking for a rest tour rant

(Kazemian et al., ICMR 2008) https://doi.org/10.1145/1460096.1460112

Modules

traditional main DS pipeline:

 \circ voice \rightarrow text

- text → meaning
- \circ meaning \rightarrow reaction
- \circ reaction \rightarrow text
- \circ text \rightarrow voice

Natural/Spoken Language understanding (NLU/SLU)

- Extracting the meaning from the (now textual) user utterance
- Converting into a structured semantic representation
 - o dialogue acts:
 - act type/intent (inform, request, confirm)
 - slot/attribute (price, time...)
 - value (11:34, cheap, city center...)
 - typically intent detection + slot-value tagging
 - other, more complex e.g. syntax trees
- Specific steps:
 - named entity resolution (NER)
 - identifying task-relevant names (London, Saturday)
 - coreference resolution
 - ("it" -> "the restaurant")

inform(food=Chinese, price=cheap)
request(address)

Natural/Spoken Language understanding (NLU/SLU)

Problems:

- recovering from bad ASR
- ambiguities
- variation

S: Leaving Baltimore. What is the arrival city?

U: fine Portland [ASR error]

S: Arriving in Portland. On what date?

U: No not Portland Frankfurt Germany

[On a Tuesday]
U: I'd like to book a flight from London to New York for **next Friday**

U: Chinese city center

U: uhm I've been wondering if you could find me a restaurant that has Chinese food close

to the city center please

Modules

traditional main DS pipeline:

 \circ voice \rightarrow text

- text → meaning
- meaning → reaction
- \circ reaction \rightarrow text
- \circ text \rightarrow voice

Dialogue Manager (DM)

- Given NLU input & dialogue so far, responsible for deciding on next action
 - keeps track of what has been said in the dialogue
 - keeps track of user profile
 - interacts with backend (database, internet services)
- Dialogue so far = dialogue history, modelled by dialogue state
 - managed by dialogue state tracker
- System actions decided by dialogue policy

Modules

traditional main DS pipeline:

 \circ voice \rightarrow text

- text → meaning
- meaning → reaction
- reaction → text
- \circ text \rightarrow voice

Natural Language Generation (NLG) / Response Generation

- Representing system dialogue act in natural language (text)
 - reverse NLU
- How to express things might depend on context
 - Goals: fluency, naturalness, avoid repetition (...)
- Traditional approach: templates
 - Fill in (=lexicalize) values into predefined templates (sentence skeletons)
 - Works well for limited domains

inform(name=Golden Dragon, food=Chinese, price=cheap)
<name> is a <price>-ly priced restaurant serving <food> food
Golden Dragon is a cheaply priced restaurant serving Chinese food.

Natural Language Generation (NLG) / Response Generation

Grammar-based approaches

- grammar/semantic structures instead of templates
- NLG realizes them (=converts to linear text) by applying syntactic transformation rules

Statistical approaches

- most prominent: neural networks (RNN/Transformer)
- generating word-by-word
- input: encoded semantics + previous words

(Kale & Rastogi, 2020) https://aclanthology.org/2020.emnlp-main.527/

Modules

traditional main DS pipeline:

- \circ voice \rightarrow text
- text → meaning
- meaning → reaction
- \circ reaction \rightarrow text
- \circ text \rightarrow voice

Text-to-speech (TTS) / Speech Synthesis

- Generate a speech signal corresponding to NLG output
 - \circ text \rightarrow sequence of phonemes
 - minimal distinguishing units of sound (e.g. [p], [t], [η] "ng", [ə] "eh/uh", [i:] "ee")
 - + pitch/intonation, speed, pauses, volume/accents •
- Standard pipeline:
 - text normalization
 - abbreviations
 - punctuation
 - numbers, dates, times
 - \circ pronunciation analysis (grapheme \rightarrow phoneme conversion)
 - intonation/stress generation
 - waveform synthesis

take bus number 3 at 5:04am take bus number three at five o four a m teik b A s n A m b ə 0 r i; æt f ai v ə ʊ f ɔ; r ei ɛm

Organizing the Components

- Basic pipeline:
 - \circ ASR \rightarrow NLU \rightarrow DM \rightarrow NLG \rightarrow TTS
 - components oblivious of each other
- Joining the modules (experimental)
 - ASR + NLU
 - NLU + state tracking
 - NLU & DM & NLG

End-to-End Systems

- typical for non-task-oriented
 - single network, trained e.g. on movie subtitles
- task oriented experimental
- the whole system (NLU/DM/NLG) is a single neural network
 - joint training ("end-to-end")
 - more elegant
 - o potentially easily retrainable
- typically still needs annotation
 - same as individual modules
 - can be less predictable
- connecting the database is a problem

End-to-End Systems 2

AuGPT (Kulhánek et al., 2021)

- GPT2 based model
- two stages:
 - finetuned GPT-2 LM predicts a belief.
 - database results are obtained using the belief and everything is passed to the GPT-2 again to predict a final delexicalized response.
 - possible auxiliary tasks (belief consistency, intent classification, system action classification).

(Kulhánek et al., 2021) https://arxiv.org/pdf/2102.05126

End-to-End Systems

Example

U:I want to find a moderately priced restaurant.

GBF:restaurant {price range = moderate}

D: restaurant 31 matches

GT:I have many options available for you! Is there a certain area or cuisine that interests you?

GTD:I have many options available for you! Is there a certain area or cuisine that interests you?

U:Yes I would like the restaurant to be located in the center of the attractions.

GBF:restaurant {area = centre, price range = moderate}

D: restaurant 21 matches

GT:There are 21 restaurants available in the centre of town. How about a specific type of cuisine?

GTD:There are 21 restaurants available in the [area] of town. How about a specific type of cuisine?

U:i need to know the food type and postcode and it should also have mutliple sports

GBF:restaurant {area = centre, price range = moderate}

D: restaurant 21 matches

GT:I am sorry I do not understand what you just said. Please repeat in a way that makes sense.

GTD:I am sorry I do not understand what you just said. Please repeat in a way that makes sense.

U:get me the food type and the post code

GBF:restaurant {area = centre, price range = moderate}

D: restaurant 21 matches

GT:My favorite it The Copper Kettle at 4 Kings Parade City Centre CB21SJ. It serves British food. Does that interest you?

GTD:My favorite it [name] at [address] [postcode]. It serves [food] food. Does that interest you?

End-to-End Systems 2

Evaluation

- Depends on dialogue system type / specific component
- Types:
 - **extrinsic** = how the system/component works in its intended purpose (ideal)
 - effect of the system on something outside itself, in the real world (i.e. user)
 - o **intrinsic** = checks properties of systems/components in isolation,
 - self-contained
 - subjective = asking users' opinions,
 - e.g. questionnaires (~manual/human)
 - should be more people, so overall not so subjective
 - objective = measuring properties directly from data (~automatic)
 - might or might not correlate with users' perception
- Evaluation discussed here is mostly quantitative
 - i.e. measuring & processing numeric values
 - (qualitative ~ e.g. in-depth interviews, more used in social science)

Subjective Evaluation: Getting Subjects

- Can't do without people
 - simulated user = another (simple) dialogue system
 - can help & give guidance sometimes, but it's not the real thing more for intrinsic
- In-house = ask people to come to your lab (or access your website)
 - students, friends/colleagues, hired people
 - o expensive, time-consuming
 - doesn't scale (difficult to get subjects)
- Crowdsourcing = hire people over the web
 - o much cheaper, faster, scales (unless you want e.g. Czech)
 - not real users mainly want to get their reward
- Real users = deploy your system and wait
 - best, but needs time & advertising & motivation
 - you can't ask too many questions
 - Ethics and privacy implications

Subjective Evaluation — Some examples

- Success rate (task-oriented):
 - Did you get all the information you wanted?
 - typically different from objective measures!
- Future use:
 - Would you use the system again?
- Likeability/engagement:
 - Did you enjoy the conversation?
- ASR/NLU:
 - Do you think the system understood you well?
- NLG:
 - Were the system replies fluent/well-phrased?
- TTS
 - Was the system's speech natural?

Intrinsic Objective Evaluation: NLU

Slot Precision & Recall & F-measure (F1)

true: inform(name=Golden Dragon, food=Chinese)
NLU: inform(name=Golden Dragon, food=Indian, price=high)

precision
$$P = \frac{\# \text{correct slots}}{\# \text{detected slots}}$$
 how much of the identified stuff is identified correctly

recall $R = \frac{\# \text{correct slots}}{\# \text{true slots}}$ how much of the true stuff is identified at all

F-measure $F = \frac{2PR}{P+R}$ harmonic mean – you want both P and R to be high (if one of them is low, the mean is low)

Extrinsic / Intrinsic Objective Evaluation: Dialogue Manager

- Objective measures (task success rate, duration) can be measured with a user simulator
 - works on dialogue act level
 - responds to system actions
- Simulator implementation
 - handcrafted (rules + a bit of randomness)
 - o n-gram models over DA/dialogue turns + sampling from distribution
 - o agenda-based (goal: constraints, agenda: stack of pending DAs)
 - reinforcement learning policy
- Problems:
 - o cost: the simulator is basically another dialogue system
 - might not be fair (depending on the simulation accuracy)
 - typically your system would work better with a simulator than with humans

Extrinsic / Intrinsic Objective Evaluation: NLG

- No single correct answer here
 - many ways to say the same thing
- Word-overlap with reference text(s): BLEU score

range [0,1] (percentage)
$$BLEU = BP \cdot \exp\left(\sum_{n=1}^{4} \frac{1}{4} \log{(p_n)}\right) \qquad \qquad \text{poss to 0 if too short)}$$

$$p_n = \frac{\sum_u \# \text{ matching } n - \text{grams in } u}{\sum_u \# n - \text{grams in } u}$$

- n-gram = span of adjacent n tokens
 - 1-gram (one word) = unigram,
 - o 2-gram (2 words) = bigram,
 - o 3-gram = trigram
- Not reliable still used though
- Alternatives: diversity, slot-error

Extrinsic Objective Evaluation

Metrics:

- Task success (task-oriented):
 - o did the user get what they wanted?
 - \circ testers with agenda \rightarrow check if they found what they were supposed to
 - [warning] sometimes people go off script
 - basic check: did we provide any information at all? (any bus/restaurant)
- Duration: number of turns
 - task oriented: fewer is better,
 - o non-task-oriented: more is better
- Other (not so standard):
 - % returning users
 - % turns with null semantics (task-oriented)
 - % swearing / thanking

Evaluation 3.

Summary

- What are dialogue systems?
- 2. Basic Types
- 3. Modules ASR, NLU, DM, **NLG**, TTS
- 4. End-to-end systems
- 5. Evaluation
- system designed to interact with users

https://www.shutterstock.com/shutterstock/photos/202979124 2/display_1500/stock-vector-illustration-of-a-man-taking-a-dee p-breath-2029791242.jpg

Summary 3

Summary

- 1. What are dialogue systems?
- 2. Basic Types
- 3. Modules ASR, NLU, DM, **NLG**, TTS
- 4. End-to-end systems
- 5. Evaluation
- Task-oriented booking systems
- Non task-oriented chitchat

https://www.shutterstock.com/shutterstock/photos/202979124 2/display_1500/stock-vector-illustration-of-a-man-taking-a-dee p-breath-2029791242.jpg

Summary 3.

Summary

- What are dialogue systems?
- 2. Basic Types
- 3. Modules ASR, NLU, DM, NLG, TTS
- 4. End-to-end systems
- 5. Evaluation
- ASR voice \rightarrow text
- NLU text → meaning
- DM meaning → reaction
- NLG reaction → text
- TTS text → voice

https://www.shutterstock.com/shutterstock/photos/202979124 2/display_1500/stock-vector-illustration-of-a-man-taking-a-dee p-breath-2029791242.jpg

Summary

Summary

- What are dialogue systems?
- 2. Basic Types
- 3. Modules ASR, NLU, DM, NLG, TTS
- 4. End-to-end systems
- 5. Evaluation
- Typical for non task oriented
- Not so trivial of task-oriented
 - AuGPT
 - Given dialogue history, predicts belief state
 - Given dialogue history + belief state, predicts response

https://www.shutterstock.com/shutterstock/photos/202979124 2/display_1500/stock-vector-illustration-of-a-man-taking-a-dee p-breath-2029791242.jpg

Summary 3

Summary

- What are dialogue systems?
- 2. Basic Types
- 3. Modules ASR, NLU, DM, NLG, TTS
- 4. End-to-end systems
- 5. Evaluation
- extrinsic
 - how good the system works in its intended purpose (whole)
- intrinsic
 - o how good the submodules work in isolation
- subjective
 - taking users' opinions

https://www.shutterstock.com/shutterstock/photos/202979124 2/display_1500/stock-vector-illustration-of-a-man-taking-a-dee p-breath-2029791242.jpg

Summary 3

LEEETs-Dial: Linguistic Entrainment in End-to-End Task-oriented Dialogue systems

Nalin Kumar, Ondřej Dušek

Access full paper here

https://aclanthology.org/2024.findings-naacl.46/

Linguistic Entrainment

I would like a taxi from Saint John's college to Pizza Hut Fen Ditton.

I would like a taxi from Saint John's college to Pizza Hut Fen Ditton.

What time would you like to leave from Saint John's college?

Introduction 4

Linguistic Entrainment

- Conversational partners adapt to each other
- Entrainment = alignment / adaptation at various levels:
 - Phonetic patterns
 - Syntactic constructions
 - Lexical terms
- In context of dialogue system (DS), entrainment improves user experience
- Existing works in task-oriented DS
 - Task success rate
 - Low diversity outputs (content planning ↑, surface realization ↓)
 - Lack of dedicated support for user-system dialogue alignment

Introduction 47

Objective

- Entrainment for end-to-end task-oriented DS
- Primary focus on lexical entrainment
- Three approaches:
 - Instance weighting Data-centric promote "nice" data instances
 - **User Likelihood Loss** Additional loss maximize probability of user tokens
 - Keyword-based conditioning Additional hints concatenated to input assisting model with "important" user tokens

Introduction 42

Instance Weighting (IW)

Training

- Data-centric approach: promote "nice" data instances
 - "nice" = better 1-gram precision(user, system)
- Better 1-gram precision → More system-user overlap → Higher weight
- Two weight functions
 - Objective Discrete (IW₁): Less overlap (p < 0.25) = 1 | More overlap (p >= 0.25) = 10
 - Continuous (IW₂): Sigmoid-like function, with values ranging from 1-10

User Likelihood Loss (ULL)

- Recall: need more overlap between user & system
- Additional loss: maximize probability of user tokens

• Minimize
$$L_t(p(.|x_{< t}), U) = -\alpha \cdot \log \left(\sum_{u \in U} p(u|x_t) \right)$$

U = set of user tokens

Conditioning Generation on Lexical Keywords (LK)

- Keyword-based conditioning: Assisting model with "important" user tokens
 - "<|Keyword|> KEYWORDS_LIST" added to model input
- Training:
 - Keyword = overlapping words in user-system
- Inference:
 - Keyword = select user tokens using self-attention scores
- Blending parameter σ
 - Expose model training to inference keywords with probability σ
 - \circ $\sigma = 0, 0.5, 0.05$

Data & Training Setup

- MultiWOZ 2.1 dataset
 - 10k task-oriented human-human written dialogues spanning over 7 domains.
- Base model: AuGPT (Kulhánek et al., 2021)
 - end-to-end GPT-2 based model
- In addition to cross-entropy loss (CE), we also experiment with Unlikelihood Loss (UnL)
- Baselines
 - Base-Ce: Vanilla Base model without unlikelihood loss.
 - D&J16: Base-Ce + reranking (function based on precision scores) while decoding
- Evaluation Metrics:
 - Standard MultiWOZ metrics for response generation and state tracking
 - 1-gram precision and recall (lex-p₁, lex-r₁) for lexical entrainment
 - 2,3-gram precisions on POS tags (syn-p₂, syn-p₃) for syntactic entrainment

Experiments 46

Automatic Evaluation Metrics

- MultiWOZ metrics: similar to baseline (slight drop for ULL)
- Entrainment scores: LK best recall, D&J16 best precision

Results

Manual Evaluation

Mean Rank (↓)
4.18
5.35
3.16
3.77
4.17
4.33
3.25

- Relative ranking based on naturalness
- Mean Rank
 - IW₁ natural-looking outputs, LK better entrained outputs
 - D&J16 shorter, less polite, less interactive outputs
- In general, slightly inconsistent outputs from alignment-based models
 - Some outputs excellent; some have hallucinations and repetitions.

Results 48

Conclusion

- Entrainment outputs look more natural better user experience
- Three approaches
 - Instance weighting: better task success rate + fluent
 - User likelihood loss: fragile, hallucinates with higher α values
 - Keyword-based conditioning: fluent + better entrainment
- Future directions
 - Syntactic entrainment
 - Retrieval-augmented generation based approaches

LEEETs-Dial: Linguistic Entrainment in End-to-End Task-oriented Dialogue systems

nkumar@ufal.mff.cuni.cz

odusek@ufal.mff.cuni.cz

Follow our work at https://github.com/knalin55/LEEETs-Dial

Contact me:

- Email: nkumar@ufal.mff.cuni.cz
- o LinkedIn: https://www.linkedin.com/in/nalin-kumar-7b92aa174/
- Website(s): https://knalin55.github.io/

Questions?