

电子种被大学





# Medical Image Registration Meets Vision Foundation Model: Prototype Learning and Contour Awareness

ITTIII
2025

Hao Xu<sup>1</sup>, Tengfei Xue<sup>1</sup>, Jianan Fan<sup>1</sup>, Dongnan Liu<sup>1</sup>, Yuqian Chen<sup>2,4</sup>, Fan Zhang<sup>3</sup>,

Carl-Fredrik Westin<sup>2,4</sup>, Ron Kikinis<sup>2,4</sup>, Lauren J. O'Donnell<sup>2,4</sup>, Weidong Cai<sup>1</sup>

<sup>1</sup> University of Sydney, Australia <sup>2</sup> Harvard Medical School, USA <sup>3</sup> UESTC, China <sup>4</sup> BWH, USA

#### Introduction

- Medical image registration methods, which rely solely on intensity-based similarity, often struggle in cases with complex anatomy or ambiguous boundaries.
- Segment Anything Model (SAM) provides high-quality segmentation masks, enabling direct incorporation of structural priors into the registration process.
- We propose a novel SAM-assisted registration framework that incorporates prototype learning and contour awareness to enhance medical image registration.

## Methodology

#### 1. SAM Mask Generation

 Segmentation masks are generated for both the fixed and moving images using SAM with text prompts. These masks serve as anatomical priors to guide the registration process.

## 2. Prototype Contrast and Alignment

- Extract feature prototypes of different anatomical regions of the image according to the SAM mask.
- Introduce contrast loss to aggregate features of similar regions and align prototypes of the same region in different images.

#### 3. Contour-Aware Loss

- Extract the contour point sets of the fixed and moving mask.
- Introduce the Chamfer Loss to minimize the Euclidean distance between the fixed and moved point sets.

$$\mathcal{L}_{\text{contour}} = \frac{1}{|C_m|} \sum_{i \in C_m} \min_{j \in C_f} ||i - j||^2 + \frac{1}{|C_f|} \sum_{j \in C_f} \min_{i \in C_m} ||j - i||^2$$



## **Evaluation on the Abdomen CT dataset**

| Methods              | DSC (%) ↑ |       |       |      |      |      |      |      |      | SDlogJ ↓ |       |       |                 |          |
|----------------------|-----------|-------|-------|------|------|------|------|------|------|----------|-------|-------|-----------------|----------|
| Wiethous             | Spl       | Kid R | Kid L | Eso  | Liv  | Sto  | Aor  | IVC  | Vei  | Pan      | Adr R | Adr L | AVG             | SDIOG3 + |
| Initial              | 30.5      | 23.0  | 27.2  | 10.9 | 50.2 | 19.2 | 21.9 | 20.1 | 1.9  | 7.1      | 3.7   | 3.8   | 17.1            | <u> </u> |
| VoxelMorph [1]       | 61.1      | 55.3  | 55.6  | 30.7 | 70.1 | 31.2 | 44.4 | 44.0 | 16.7 | 19.3     | 18.3  | 14.4  | $38.4 \pm 16.6$ | 0.143    |
| TransMorph [4]       | 60.3      | 54.3  | 54.0  | 30.1 | 70.7 | 33.5 | 45.4 | 46.1 | 19.3 | 18.5     | 18.2  | 16.3  | $39.0 \pm 16.2$ | 0.254    |
| TransMatch [5]       | 65.3      | 58.4  | 56.3  | 33.4 | 72.3 | 36.4 | 49.3 | 54.5 | 21.3 | 20.6     | 19.9  | 18.7  | $42.2 \pm 14.7$ | 0.101    |
| CorrMLP [21]         | 68.2      | 60.1  | 63.7  | 38.4 | 73.4 | 45.6 | 51.2 | 56.9 | 24.7 | 29.1     | 24.6  | 24.0  | $46.7 \pm 13.2$ | 0.099    |
| SAM Masks [33]       | 92.8      | 88.1  | 89.5  | 72.2 | 95.5 | 89.4 | 88.4 | 84.5 | 68.5 | 79.7     | 64.2  | 62.6  | 81.2            | -        |
| VoxelMorph [1] + SAM | 64.2      | 61.1  | 59.6  | 40.7 | 70.3 | 44.4 | 52.1 | 53.5 | 19.2 | 34.1     | 24.8  | 25.9  | $45.8 \pm 12.7$ | 0.065    |
| TransMorph [4] + SAM | 71.0      | 68.7  | 68.6  | 49.2 | 73.1 | 47.4 | 66.3 | 61.1 | 21.6 | 38.2     | 33.9  | 31.7  | $52.6 \pm 12.2$ | 0.088    |
| TransMatch [5] + SAM | 74.0      | 70.4  | 69.6  | 70.2 | 74.3 | 54.3 | 67.1 | 67.9 | 32.8 | 52.9     | 46.3  | 47.1  | $60.5 \pm 11.4$ | 0.095    |
| CorrMLP $[21]$ + SAM | 77.1      | 72.8  | 75.7  | 55.1 | 77.7 | 57.2 | 76.1 | 73.1 | 35.1 | 50.0     | 44.6  | 41.8  | $61.3 \pm 11.3$ | 0.103    |
| Ours                 | 83.9      | 79.3  | 76.0  | 55.2 | 83.8 | 82.5 | 74.5 | 73.2 | 36.9 | 56.4     | 44.8  | 48.5  | $66.3\pm10.6$   | 0.091    |

### **Evaluation on the ACDC MRI dataset**

| Methods              |      | SDlogJ ↓ |      |                                |          |
|----------------------|------|----------|------|--------------------------------|----------|
| Methods              | LV   | Myo      | RV   | AVG                            | ppioga 1 |
| Initial              | 58.1 | 35.8     | 74.5 | 56.1                           | -        |
| VoxelMorph [1]       | 83.2 | 60.1     | 80.5 | $74.6 \pm 7.1$                 | 0.041    |
| TransMorph [4]       | 82.5 | 58.8     | 80.4 | $73.9 \pm 7.4$                 | 0.031    |
| TransMatch [5]       | 82.3 | 58.6     | 82.1 | $74.4 \pm 6.9$                 | 0.037    |
| CorrMLP [21]         | 82.8 | 72.9     | 83.2 | $79.7 \pm 4.6$                 | 0.054    |
| SAM Masks [33]       | 89.2 | 79.2     | 76.2 | 81.6                           | -        |
| VoxelMorph [1] + SAM |      |          |      |                                | 0.077    |
| TransMorph [4] + SAM | 86.0 | 60.7     | 81.3 | $76.0 \pm 5.5$                 | 0.026    |
| TransMatch [5] + SAM | 87.6 | 61.8     | 82.8 | $77.5 \pm 5.1$                 | 0.073    |
| CorrMLP $[21]$ + SAM | 83.4 | 74.2     | 84.2 | $80.6 \pm 4.2$                 | 0.047    |
| Ours                 | 91.9 | 77.6     | 83.9 | $\textbf{84.6}\pm\textbf{3.7}$ | 0.049    |
|                      |      |          |      |                                |          |

## **Ablation Study**

| Dataset | $L_{prototype}$ | $L_{contour}$ | DSC (%) ↑ | $SDlogJ \downarrow$ |
|---------|-----------------|---------------|-----------|---------------------|
|         | X               | X             | 62.8      | 0.089               |
| Abdomen | <b>✓</b>        | X             | 63.3      | 0.086               |
|         | 1               | /             | 66.3      | 0.091               |
|         | X               | X             | 83.0      | 0.053               |
| ACDC    | <b>✓</b>        | X             | 83.5      | 0.045               |
|         | <b>✓</b>        | <b>✓</b>      | 84.6      | 0.049               |









Scan the QR code for the full paper