Quantitative Textanalyse 1: Stilometrie

Vorlesung Einführung in die Digital Humanities MSc Digital Humanities | Wintersemester 2019/20

Prof. Dr. Christof Schöch

Einstieg

Semesterüberblick

- 29.10.: Digital Humanities im Überblick
- 05.11.: Digitalisierung: Text und Bild
- 12.11.: Grundbegriffe des Programmierens
- 19.11.: Datenmodellierung 1: Modellierung
- 26.11.: Datenmodellierung 2: Datenbanken
- 03.12.: Datenmodellierung 3: Text, Markup, XML
- 10.12.: Digitale Edition
- 17.12.: Geschichte der Digital Humanities
- 21.12.-5.1.: Weihnachtspause
- 07.01.: Informationsvisualisierung
- 14.01.: Natural Language Processing
- 21.01.: Quantitative Analyse 1: Stilometrie
- 28.01.: Quantitative Analyse 2: Superv. Machine Learning
- 04.02.: Open Humanities
- 11.02.: Klausurtermin

Sitzungsüberblick

- 1. Quantitative Textanalyse: Einführung
- 2. Werkzeuge und Tools im Überblick
- 3. Stilometrie (Textähnlichkeit)

1. Quantitative Textanalyse: Überblick

Anwendungsbereiche

- Autorschaftsattribution
- Gattungsstilistik
- Netzwerkanalyse
- Inhaltsanalyse (Begriffe, Topics)
- Automatische Kartierung
- Extraktion von Zeitstrukturen
- Erkennung erzähltheoretischer Kategorien
- uvm.

Grundlegende Verfahren

- Suche nach Mustern
- Kontrastive Analyse
- Gruppen ähnlicher Texte entdecken
- Verteilungen und Entwicklungen finden
- Informationen explizit machen
- Dimensionsreduktion
- Texte klassifizieren

Perspektiven der digitalen Textanalyse

- Quantitative vs. qualitative Verfahren
- Informationsextraktion vs. Datenvisualisierung
- GUI vs. CLI
- Klassifikation vs. Clustering

Zwei Typen von ML

unüberwacht	überwacht	
Clustering	Klassifikation	
Bilden von Gruppen	Zuordnung zu Klassen	
keine Klassen	vorher bekannte Klassen	
ein Datensatz	Training/Test/Anwendung	
eher explorativ	hypothesengeleitet	
Evaluation möglich	Evaluation leicht	
Topic Modeling PCA, CA	Annotation OCR, NER	

2. Werkzeuge

Natural Language Processing: NLTK

1 Using a Tagger

A part-of-speech tagger, or **POS-tagger**, processes a sequence of words, and attaches a part of speech tag to each word (don't forget to import nltk):

```
>>> text = word_tokenize("And now for something completely different")
>>> nltk.pos_tag(text)
[('And', 'CC'), ('now', 'RB'), ('for', 'IN'), ('something', 'NN'),
('completely', 'RB'), ('different', 'JJ')]
```

Here we see that and is CC, a coordinating conjunction; now and completely are RB, or adverbs; for is IN, a preposition; something is NN, a noun; and different is JJ, an adjective.

Note

NLTK provides documentation for each tag, which can be queried using the tag, e.g. <code>nltk.help.upenn_tagset('RB')</code>, or a regular expression, e.g. <code>nltk.help.upenn_tagset('NN.*')</code>. Some corpora have README files with tagset documentation, see <code>nltk.corpus.???.readme()</code>, substituting in the name of the corpus.

Let's look at another example, this time including some homonyms:

```
>>> text = word_tokenize("They refuse to permit us to obtain the refuse permit")
>>> nltk.pos_tag(text)
[('They', 'PRP'), ('refuse', 'VBP'), ('to', 'TO'), ('permit', 'VB'), ('us', 'PRP'),
('to', 'TO'), ('obtain', 'VB'), ('the', 'DT'), ('refuse', 'NN'), ('permit', 'NN')]
```

Notice that *refuse* and *permit* both appear as a present tense verb (VBP) and a noun (NN). E.g. *refUSE* is a verb meaning "deny," while *REFuse* is a noun meaning "trash" (i.e. they are not homophones). Thus, we need to know which word is being used in order to pronounce the text correctly. (For this reason, text-to-speech systems usually perform POS-tagging.)

Maschinelles Lernen: scikit-learn

Korpusanalyse: TXM

http://textometrie.ens-lyon.fr; Alternative: Antconc

Principal Components Analysis

Diverse Tools: stylo, Python, etc.

Topic Modeling: MALLET

```
😰 🖨 📵 christof@DELL: ~/Programs/mallet
christof@DELL:~$ cd Programs/mallet
christof@DELL:~/Programs/mallet$ bin/mallet import-dir --input /home/christof/Re
pos/clgs/polar/txt10d --output polar.mallet --keep-sequence --token-regex '\p{L
}[\p{L}\p{P}]*\p{L}' --remove-stopwords TRUE --stoplist-file stoplists/fr3.txt
Labels =
   /home/christof/Repos/clgs/polar/txt10d
christof@DELL:~/Programs/mallet$ bin/mallet train-topics --input polar.mallet -
-num-topics 30 --optimize-interval 200 --num-iterations 4000 --num-top-words 30
--word-topic-counts-file results/polar10d words-by-topics.txt --output-state top
ic-state.gz --output-topic-keys results/polar-10d_topics-with-words.txt --output
-doc-topics results/polar10d topics-in-texts.txt --doc-topics-max 30
```

Stilometrie: stylo for R

Netzwerkanalyse: Gephi

https://gephi.org/; Alternative: networkX

Kartierung: DARIAH Geobrowser

https://de.dariah.eu/geobrowser; Alternative: folium

3. Stilometrie

Stilometrie: Definition

Die Stilometrie ist eines von mehreren Verfahren, die dem Bereich der quantitativen Textanalyse zugerechnet werden können. Der Begriff Stilometrie bezeichnet dabei computergestützte Verfahren der Erhebung lexikalischer bzw. stilistischer Merkmale und ihrer Häufigkeiten in Texten, die Nutzung dieser Merkmale und Häufigkeiten als Indikatoren für die mehr oder weniger große Ähnlichkeit von Texten, sowie das Clustering oder die Klassifikation von Texten auf Grundlage dieser Ähnlichkeit.

Anwendungsfälle

- Shakespeare vs. Zeitgenossen
- J.K. Rowling, "The Cuckoo's Calling"
- Elena Ferrante
- uvm.

Stilometrie "step-by-step" (1)

Bildquelle: Steffen Pielström in Evert et al. 2017

Stilometrie "step-by-step" (2)

- 1. Ausgangspunkt: Textsammlung in XML-TEI.
- 2. Vorbereitung der Texte: Text extrahieren, Tokenisierung
- 3. Berechnung der relativen Häufigkeiten jedes Wortes in jedem Text: => Merkmals-Matrix (Text als Wortvektor)
- 4. Feature-Auswahl: bspw. Anzahl der häufigsten Wörter
- 5. Feature-Skalierung, bspw. Berechnung der z-scores:
 - => skalierte Merkmals-Matrix

Stilometrie "step-by-step" (3)

- 1. Anwendung eines Distanz-Maßes auf die Text-Vektoren:=> Distanz-Matrix
- 2. Transformation in eine hierarchische Struktur durch Cluster Analyse: => Linkage Matrix
- 3. Visualisierung der Linkage Matrix: => Dendrogramm
- 4. Interpretation des Dendrogramms: => Aussage

Textsammlung (Metadaten)

	А	В	С	D	E	F
1	idno	author	title	year	genre	form
2	tc0189	CorneilleP	Sertorius	1662	Tragédie	vers
3	tc0196	CorneilleP	ConqueteToison	1661	Tragédie	vers
4	tc0200	CorneilleT	Ariane	1672	Tragédie	vers
5	tc0222	CorneilleT	MortAchille	1673	Tragédie	vers
6	tc0226	CorneilleT	Stilicon	1660	Tragédie	vers
7	tc0656	RacineJ	Britannicus	1669	Tragédie	vers
8	tc0661	RacineJ	Phèdre	1677	Tragédie	vers

Drei Autoren: Thomas und Pierre Corneille sowie Racine

Relative Häufigkeiten

	Α	В	С	D	E
1		CorneilleP_tc0189	CorneilleP_tc0196	CorneilleT_tc0222	CorneilleT_tc0226
2	de	3.5666666667	3.7785192533	3.4143340511	2.9700921039
3	et	2.7333333333	2.7640003607	1.9686250384	2.5302701025
4	vous	2.822222222	2.191360808	1.9686250384	1.3453378868
5	le	1.877777778	2.0290377852	2.4607812981	2.5613163614
6	à	2.1388888889	2.4844440436	2.159335589	2.2301562662
7	I	1.888888889	1.5826494725	2.0547523839	2.6803270206
8	que	1.894444444	1.8351519524	1.956321132	1.5937079582
9	je	1.9611111111	1.3797456939	1.531836358	1.3970816517
10	il	1.494444444	1.3707277482	1.6425715165	1.7127186174
11	un	1.388888889	1.4383623411	1.2488465088	1.6247542171
12	la	1.1611111111	1.5105059068	1.4026453399	1.3401635103
13	en	1.527777778	1.4248354225	1.3903414334	1.5109179344
14	qu	1.422222222	1.3617098025	1.5379883113	1.5057435579
15	les	1.2611111111	1.6322481739	1.1196554906	0.7709820967
16	d	1.3388888889	1.3662187754	1.1811750231	1.4591741695
17	est	1.1388888889	0.9604112183	1.4887726853	1.2470247335

Standardisierung (z-scores)

	А	В	С	D	E
1		CorneilleP_tc0189	CorneilleP_tc0196	CorneilleT_tc0222	CorneilleT_tc0226
2	de	0.1499078729	0.8217586551	-0.3331864738	-1.7420165683
3	et	1.0217971305	1.0964111031	-0.8387654541	0.5277370396
4	vous	1.0822091538	-0.0095321888	-0.3949890303	-1.4736226833
5	le	-1.1206678643	-0.564008828	1.0248706909	1.3948544851
6	à	0.0566725616	1.5330493833	0.1440306397	0.4466104298
7	I	-0.0511188533	-0.7711812699	0.3388768906	1.809793959
8	que	0.7078952579	0.4265714426	1.0014802499	-0.7190026979
9	je	0.6485348916	-1.0497791904	-0.6054842445	-0.9991365133
10	il	0.130171823	-0.3401876567	0.6933373022	0.9600301165
11	un	0.085296816	0.2981974348	-0.5173518384	1.1003032917
12	la	-1.3921359502	1.2926652024	0.463848695	-0.016270901
13	en	0.8709978874	0.4567116762	0.3178923923	0.8031463153
14	qu	0.4674217721	0.2499659708	0.8834356711	0.767561794
15	les	-0.1311125667	0.9118507863	-0.5286288566	-1.508465172
16	d	0.409098182	0.5848113394	-0.6048980286	1.1824532584
17	est	0.0688622182	-0.758505175	1.6908155061	0.5701466176

Distanzmaße

(Quelle: Digital Humanities: eine Einführung)

Relative Häufigkeiten

Mittelwert-Normalisierung

Z-Scores (Standardisierung)

Distanz-Matrix

	А	В	С	D
1		CorneilleP_tc0189	CorneilleP_tc0196	CorneilleT_tc0222
2	CorneilleP_tc0189	0	0.9322543628	1.1478155331
3	CorneilleP_tc0196	0.9322543628	0	1.1417180795
4	CorneilleT_tc0222	1.1478155331	1.1417180795	0
5	CorneilleT_tc0226	1.1997307538	1.1472409053	1.0782741957
6	RacineJ_tc0656	1.1122630299	1.1522653374	1.1985345423
7	RacineJ_tc0661	1.2173503293	1.1504941657	1.1887585769

Linkage Matrix

	Α	В	С	D
1	0	1	1.32176348	2
2	4	5	1.46986165	2
3	2	3	1.52738243	2
4	6	8	1.86503041	4
5	7	9	1.93855356	6

Dendrogramm

Anwendungsbeispiel

(26 Theaterstücke; 5 Autoren; Vers und Prosa)

Abschluss

Fragen?

Lektürehinweise

• Christof Schöch, "Quantitative Analyse", in: *Digital Humanities: Eine Einführung*. Hrsg. von Fotis Jannidis, Hubertus Kohle, Malte Rehbein. Stuttgart: Metzler.

Weitere Empfehlungen

• Jannidis, Fotis (2010). "Methoden der computergestützten Textanalyse". Methoden der literatur- und kulturwissenschaftlichen Textanalyse, hrsg. von A. Nünning und V. Nünning. Stuttgart & Weimar: Metzler, S. 109–32.

Darüber hinaus

- Alpaydin, E. (2010). Introduction to Machine Learning. 2nd ed. Cambridge, Mass: MIT Press.
- Ramsay, Stephen (2011). Reading Machines: Toward an Algorithmic Criticism. Urbana III.: University of Illinois Press.

Nächste Sitzung

• 18.1.2019: "Quantitative Analyse 2: Überwachte Verfahren"

Christof Schöch, 2019 http://www.christof-schoech.de

Lizenz: Creative Commons Attribution 4.0