Yuliang(Leo) Chen

□ 805-637-4650 | @ yuc204@ucsd.edu | ♥ GitHub | ♥ Portfolio | ♥ San Diego, CA

EDUCATION

University of California, San Diego

M.S. in Data Science

GPA: 3.97/4.00

San Diego, California Sep 2023 - Jun 2025

University of California, Santa Barbara

B.S. in Statistics - Data Science | B.S. in Mathematics

GPA: 3.43/4.00

Santa Barbara, California Sep 2018 - Jun 2022

Relevant coursework: Design & Analysis of Algorithm, Distributed Computing, Advanced Machine Learning, Computer Vision, Natural Language Processing, Text Mining, Interpretable ML, Probability Theory, Convex Optimization, Linear Algebra, Abstract Algebra, Mathematical Analysis

SKILLS

Languages: Python, SQL, R, C/C++

Technologies: PyTorch, TensorFlow, Kubernetes, Docker, Ray, Git, Jupyter Notebook, OpenCV, MySQL

Publication

Anonymous. Toward Foundation Model for Multivariate Wearable Sensing of Physiological Signals. Submitted to The Thirteenth International Conference on Learning Representations (ICLR), 2025. Under review.

EXPERIENCE

Halıcıoğlu Data Science Institute, UC San Diego

San Diego, California

July 2024 - Present

Graduate Student Researcher

- Contributed to the implementation of advanced self-supervised learning algorithms, driving progress in addressing cardiovascular disease research challenges.
- Designed and conducted comprehensive ablation studies, enhancing understanding of model performance.
- Created effective visualizations that facilitated interdisciplinary collaboration, improving comprehension of complex research findings among team members.
- Developed theoretical guarantees for the proposed foundation model, providing a strong foundation for its robustness and applicability in downstream classification tasks.

MOSAIC Lab San Diego, California Research Assistant Mar 2024 - Present

• Collaboratively developed a novel foundation model for wearable sensing data that efficiently processes diverse multivariate signals from various physiological sources, enhancing health monitoring and personalized healthcare applications.

- Integrated large language models (LLMs) to perform zero-shot inference, using a fusion mechanism specifically adapted for human sensing data to enhance model efficacy.
- Designed and conducted experiments on a Kubernetes-based cluster, utilizing parallel computing to accelerate model training and optimize resource efficiency.

Micro Ingredients Montclair, California Oct 2022 - Sep 2023

Supply Chain Analyst

- Led a team of three to implement and deploy a Random Forest model for demand forecasting, achieving 83% accuracy and improving product availability by 27%.
- Collaborated with software engineers to establish a robust database system using Amazon RDS Aurora, utilizing web scraping tools for efficient data collection and storage, thereby facilitating comprehensive data analysis.
- Developed and deployed an interactive Python-based Streamlit dashboard, effectively transforming raw data into actionable insights and supporting strategic decision-making.

E-StyTR2: Efficient Image Style Transfer with Transformers | GitHub

Spring 2024

• Investigated various fusion modules based on StyTr2 to effectively blend style and content, evaluating their efficiency and aesthetic quality using quantitative metrics.

Vivid Panels: Deep Neural Networks for Manga Colorization | GitHub Spring 2024

• Explored fine-tuning pre-trained GAN-based models for manga colorization, highlighting the performance gains achieved by addressing distribution differences between task-specific inputs and pre-training data.

VitT: Vision-Topological Transformer for Medical Image Classification \mid *GitHub* Spring 2024

• Introduced the VitT model, strengthening Vision Transformer (ViT) with lightweight task-specific encoder and fusion layer, resulting in better performance with minimal computational cost.

Foundation Model On Retinal Images using Masked Autoencoders \mid GitHub

Fall 2023, Winter 2024

• Developed foundation model for fundus image analysis using Masked Autoencoders (MAE) under the supervision of Professor Pengtao Xie.

Image-to-Image Retrieval with CLIP | GitHub

Winter 2024

• Developed an image-to-image retrieval system using CLIP, demonstrating its superior ability to capture robust and generalized image representations compared to traditional CNNs like ResNet.