

Roteiro

- Introdução
 - Inspiração biológica
 - Motivação
 - Histórico
 - Onde utilizar
- O Algoritmo
 - Visão Geral
 - Representação individual
 - Avaliação de sucesso
 - Inicialização
 - Operadores
 - Parâmetros
 - Critérios de parada
 - Pseudo-código
 - Variações

- Funcionamento
- Referências

INTRODUÇÃO

Baseado na teoria da evolução

Inspiração biológica

- Compartilha as demais inspirações das outras técnicas evolucionárias, tais como:
 - Ser baseada na teoria da evolução
 - Os indivíduos mais aptos tem maiores chances de sobrevivência
- Diferencial:
 - As mutações são efetuadas com o cruzamento aleatório dos próprios indivíduos da população

Motivação

- Evolução Diferencial é uma técnica estocástica de otimização de funções não-lineares no espaço contínuo baseada em populações de indivíduos.
- Surgiu das tentativas de resolver o problema de ajuste polinomial de Chebychev.
- Considera-se que uma boa inicialização dos indivíduos provê uma boa representação do espaço de busca.
- Os novos indivíduos são gerados por um vetor de diferenças produzido pela população.
- Menor número de chamadas a função fitness.

Histórico

- 1995 Foi apresentado por Rainer Storn e Kenneth Price seus primeiros resultados iniciais no ICSI.
- 1996 Em maio, Rainer e Ken participaram de um concurso de otimização evolucionária, onde terminaram em terceiro lugar, porém perdendo para métodos não tão versáteis.
- 1997 Em abril, foi escrito um dos principais artigos sobre o algoritmo, que ganhou amplo conceito internacional

Rainer Storn

R. Storn and K. Price. **Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces.** *Journal of Global Optimization*, 11(4):431–359, 1997.

K.V. Price, R.M. Storn, and J.A. Lampinen. **Differential Evolution: A Practical Approach to Global Optimization.** *Springer*, 2005.

Onde utilizar

- Problemas de otimização de funções não-lineares, de espaços contínuos, ambientes estáticos multidimensionais (mais de uma dimensão)
 - Múltiplos objetivos
 - Treinamento de redes MLP
 - Problemas reais de otimização:
 - Processamento de imagens
 - Identificação de objetos
 - ...
 - Em fim, Busca!

O ALGORITMO

Detalhes da implementação do algoritmo

Visão geral

- Deve ser levado em consideração uma boa inicialização dos indivíduos
- Há uma inversão dos operadores:
 - Primeiro a mutação
 - Depois o cruzamento
- A idéia principal consiste na criação de vetores experimentais, pela adição da diferença entre dois indivíduos aleatórios da população a um terceiro indivíduo aleatório.

Representação individual

- Cada indivíduo representa uma possível solução no espaço de busca.
- Os indivíduos são codificados com valores reais, em um vetor.

Avaliação de sucesso

- Baseada em uma função de avaliação fitness
 - Utiliza uma heurística, ou função matemática para descrever o ambiente.

- Simulação de uma solução proposta
 - Na ausência de uma heurística, a técnica de simulação pode ser utilizada como avaliação do fitness.
- Pode ser utilizado restrições na busca.

Inicialização

- Distribuição uniforme aleatória dos indivíduos pelo espaço de busca
 - Uma distribuição não-uniforme pode comprometer a qualidade da solução encontrada
- Estudos empíricos demonstram que o número de indivíduos deve ser 10x o número de dimensões do problema

- Operador de Mutação:
 - Para cada pai da população:
 - São escolhidos aleatoriamente 2 indivíduos (diferentes);
 - É calculada a diferença vetorial entre eles;
 - Essa diferença é amplificada pelo fator de escala (β);
 - Esse resultado é atribuído a um terceiro vetor (destino), que resulta no vetor experimental:

$$\mathbf{u}_i(t) = \mathbf{x}_{i_1}(t) + \beta(\mathbf{x}_{i_2}(t) - \mathbf{x}_{i_3}(t))$$

- O vetor de destino pode ser:
 - Um terceiro indivíduo qualquer da população, ou
 - O melhor indivíduo da população atual.

- Operador de Cruzamento:
 - Proporciona o aumento da diversidade
 - Para cada dimensão, é gerado um número aleatório que caso seja menor que a probabilidade de recombinação (p_r)
 - A componente do vetor experimental será utilizada
 - Caso contrário
 - A própria componente do pai sem alterações será utilizada

$$x'_{ij}(t) = \begin{cases} u_{ij}(t) & \text{if } j \in \mathcal{J} \\ x_{ij}(t) & \text{otherwise} \end{cases}$$

- Existem dois tipos de operadores de cruzamento:
 - Binomial
 - Os pontos de cruzamento são selecionados aleatoriamente dentro da dimensão do problema
 - Exponencial
 - Os pontos de cruzamento são selecionados em seqüência dentro da dimensão do problema, em forma de uma lista circular

```
\begin{array}{l} {\rm qtd} = 0 \\ {\rm j} = {\rm U(0,\ nx-1)} \\ {\bf repete} \\ {\rm x_{ij}} = {\rm u_{ij}} \\ {\rm j} = ({\rm j}+1) \ {\rm mod\ nx} \\ {\rm qtd} = {\rm qtd}+1 \\ {\bf at\'e} \ {\rm U(0,1)} \ \geq p_r \ ou \ qtd = nx \end{array}
```


- Operador de Seleção:
 - Se o vetor experimental possuir fitness melhor que o vetor escolhido, então esse será substituído pelo experimental
 - Caso o vetor escolhido seja maior que o experimental, o vetor escolhido permanece na população

Parâmetros

- Número de indivíduos na população
 - Controla a quantidade de indivíduos na população
 - Estudos empíricos mostram que um bom valor é 10x o número de dimensões
- Fator de escala (β)
 - Controla a amplificação da variação diferencial
 - Valores pequenos demais comprometem a convergência
 - Valores grandes demais facilitam a exploração porém o algoritmo pode ficar "saltando" do ponto ótimo
- Probabilidade de recombinação (p_r)
 - Influencia diretamente na diversidade, controlando a quantidade de elementos que irão mudar
 - Valores altos aumentam a diversidade e exploração
 - Valores baixos aumentam a robustez da busca

Critérios de parada

- Número máximo de gerações for atingido.
- Não for observado nenhuma melhoria no melhor indivíduo em um número consecutivo de gerações.
- Não for observado nenhuma alteração na população em um número de gerações.
- Uma solução aceitável for encontrada.
- O delta da função objetivo for aproximadamente zero.

Pseudo-código

Segue abaixo o pseudo-código do algoritmo original:

```
Inicializa o contador de gerações, t = 0;
Inicializa os parâmetros de controle \beta e p_r;
Cria e inicializa uma população nx-dimensional;
repete
  para cada indivíduo da população faça
      Calcular o fitness f(x_i(t))
      Cria um vetor experimental pelo operador de mutação
      Cria um filho x; (t) aplicando o operador de cruzamento
      se f(x',(t)) é melhor que f(x_i(t)) então
         Adiciona x'; (t) para a próxima população;
      caso contrário
         Adiciona x; (t) para a próxima população;
      fim
   fim
até a condição de parada ser verdadeira;
Retornar o indivíduo com o melhor fitness como sendo a solução
```

Variações

- Os algoritmos de Evolução Diferencial são conhecidos na literatura como DE/x/y/z
 - x indica o método de seleção do vetor de destino
 - y indica o número de vetores diferenciais utilizados
 - z indica o método de cruzamento utilizado

Variações

Número	Mutação	Notação
1	$V^{(q+1)} = X_{\alpha}^{(q)} + F(X_{\beta}^{(q)} - X_{\gamma}^{(q)})$	ED/rand/1/bin
2	$V^{(q+1)} = X_{best}^{(q)} + F(X_{\beta}^{(q)} - X_{\gamma}^{(q)})$	ED/best/1/bin
3	$V^{(q+1)} = X_{\alpha}^{(q)} + F(X_{\lambda}^{(q)} - X_{\beta}^{(q)} + X_{\gamma}^{(q)} - X_{\delta}^{(q)})$	ED/rand/2/bin
4	$V^{(q+1)} = X_{best}^{(q)} + F(X_{\alpha}^{(q)} - X_{\beta}^{(q)} + X_{\gamma}^{(q)} - X_{\delta}^{(q)})$	ED/best/2/bin
5	$V^{(q+1)} = X_{old}^{(q)} + F(X_{best}^{(q)} - X_{old}^{(q)} + X_{\gamma}^{(q)} - X_{\delta}^{(q)})$	ED/rand-to-best/2/bin
6	$V^{(q+1)} = X_{\alpha}^{(q)} + F(X_{\beta}^{(q)} - X_{\gamma}^{(q)})$	ED/rand/1/exp
7	$V^{(q+1)} = X_{best}^{(q)} + F(X_{\beta}^{(q)} - X_{\gamma}^{(q)})$	ED/best/1/exp
8	$V^{(q+1)} = X_{\alpha}^{(q)} + F(X_{\lambda}^{(q)} - X_{\beta}^{(q)} + X_{\gamma}^{(q)} - X_{\delta}^{(q)})$	ED/rand/2/exp
9	$V^{(q+1)} = X_{\textit{best}}^{(q)} + F(X_{\alpha}^{(q)} - X_{\beta}^{(q)} + X_{\gamma}^{(q)} - X_{\delta}^{(q)})$	ED/best/2/exp
10	$V^{(q+1)} = X_{old}^{(q)} + F(X_{best}^{(q)} - X_{old}^{(q)} + X_{\gamma}^{(q)} - X_{\delta}^{(q)})$	ED/rand-to-best/2/exp

FUNCIONAMENTO

Exemplo prático do uso de ED

REFERÊNCIAS

Referências importantes com maiores informações sobre o ED

Referências

- Storn R, Price K. Differential Evolution A simple and efficient adaptive scheme for global optimization over continuous spaces. International Computer Science Institute, 1995.
- Storn R, Price K. Differential Evolution A simple evolution strategy for fast optimization.
 Dr. Dobb's Journal of Software Tools. 1997
- Storn R, Price K. Differential Evolution A Simple and Efficient Heuristic for global
 Optimization over Continuous Spaces. Journal of Global Optimization, 11(4):431–359, 1997.
- K.V. Price, R.M. Storn, and J.A. Lampinen. Differential Evolution: A Practical Approach to Global Optimization. Springer, 2005.
- Storn R, Price K. Differential Evolution for Continuous Function Optimization. Disponível em: http://www.icsi.berkeley.edu/~storn/code.html Acesso em 20 de março. 2010.
- Engelbrecht A. Computational intelligence: An introduction. Wiley, 2007.