Weekly Meeting

Topic: Property α for SOA of strength 3 with 3 levels

Presenter: Heng-Tse, Chou

Date: Mar 13, 2024

Goal

• Make SOA of strength 3 with 3 levels having property α , that is, stratification on $s^2 \times s^2$ grids in all two dimensions.

Recap

Lemma 1. (from Shi and Tang 2020)

$$egin{aligned} D:SOA(n,m,s^3,3)\ A&=(a_1,\ldots,a_m)\ B&=(b_1,\ldots,b_m)\ C&=(c_1,\ldots,c_m) \end{aligned}$$

D exists if and only if A, B and C exist such that (a_i,a_j,a_u) , (a_i,a_j,b_j) and (a_i,b_i,c_i) are OA(n,3,s,3)s for all $i\neq j, i\neq u$ and $j\neq u$.

They are linked through $D=s^2A+sB+C$.

Recap

Proposition 1. (i) (from Shi and Tang, 2020)

An $\mathrm{SOA}(n,m,s^3,3)$ as characterized in Lemma 1 through A,B and C has property α if and only if (a_i,b_i,a_j,b_j) is an OA(n,4,s,4) for all $i\neq j$.

Recap

Theorem 1. (from Shi and Tang, 2020)

If an ${
m SOA}(n,m,s^3,3)$ for s=2 is to be constructed using regular A,B, and C with their columns selected from a saturated design S, then it has property α if and only if:

- 1. A is of resolution IV or higher
- 2. (A,B,B') has resolution III or higher, that is, no repeated columns, where $B'=(b'_1,\ldots,b'_m)$ with $b'_j=a_jb_j$

Breaking down

We first focus on the first two conditions of Lemma 1 and Proposition 1 (i):

- 1. A is of resolution $IV \longleftrightarrow (a_i,a_j,a_u)$ is $\mathrm{OA}(n,3,s,3)$
- 2. (a_i,b_i,a_j,b_j) being $\mathrm{OA}(n,4,s,4) \longrightarrow (a_i,a_j,b_j)$ being $\mathrm{OA}(n,3,s,3)$

Breaking down

For s=2, (a_i,b_i,a_j,b_j) having strength 4

- → No defining words among them
- $\longrightarrow a_i b_i a_j b_j
 eq I$
- $\longrightarrow a_i b_i
 eq a_j b_j$
- \longrightarrow (A,B,B') having no repeated columns can assure this

Breaking down

Finally, to choose c_i :

- \longrightarrow Take c_j to be any column other than $a_j,\,b_j$ and a_jb_j
- $\longrightarrow (a_j,b_j,c_j)$ is $\mathrm{OA}(n,3,s,3)$,

Same idea goes for s=3

- ullet A still need to be of resolution IV or higher for (a_i,a_j,a_u) being $\mathrm{OA}(n,3,s,3)$
- $ullet \ (a_i,b_i,a_j,b_j)$ is strength 4 $\longrightarrow I
 eq a_ib_ia_jb_j$ and $a_ib_ia_jb_j^2$
- ullet It means $a_ib_i
 eq a_jb_j$ and $a_ib_i
 eq a_jb_j^2$
- ullet (A,B,B',B'') having no repeated columns can assure this, where $b_j'=a_jb_j$ and $b_j''=a_jb_j^2$

To sum up

If an ${
m SOA}(n,m,s^3,3)$ for s=3 is to be constructed using regular A,B, and C with their columns selected from a saturated design S, then it has property α if and only if:

- 1. A is of resolution IV or higher
- 2. (A,B,B',B'') has resolution III or higher where $B'=(b'_1,\ldots,b'_m)$ with $b'_j=a_jb_j$, and $B''=(b''_1,\ldots,b''_m)$ with $b''_j=a_jb_j^2$.