DEPARTMENT OF COMPUTER SCIENCE SERIES OF PUBLICATIONS A REPORT A-2015-0

Deep Learning Algorithms for Control

Yuan Gao

To be presented in ... text of a long permission notice. Text of a long permission notice.

University of Helsinki Finland

Supervisor

Dorota Glowacka, University of Helsinki, Finland Leo Kärkkäinen, Nokia Research Center, Finland Honkala Mikko Nokia Research Center

Pre-examiners

Opponent

Custos

Contact information

Department of Computer Science P.O. Box 68 (Gustaf Hällströmin katu 2b) FI-00014 University of Helsinki Finland

 $Email\ address:\ info@cs.helsinki.fi$

URL: http://cs.helsinki.fi/

Telephone: +358 2941 911, telefax: +358 9 876 4314

Copyright © 2015 Yuan Gao ISSN 1238-8645 ISBN 000-00-0000-0 (paperback) ISBN 000-00-0000-0 (PDF) Computing Reviews (1998) Classification: A.0, C.0.0 Helsinki 2015 Unigrafia

Deep Learning Algorithms for Control

Yuan Gao

Department of Computer Science P.O. Box 68, FI-00014 University of Helsinki, Finland gaoyuankidult@gmail.com http://www.cs.helsinki.fi/u/yuangao/

PhD Thesis, Series of Publications A, Report A-2015-0 Helsinki, September 2015, 7 pages ISSN 1238-8645 ISBN 000-00-0000-0 (paperback) ISBN 000-00-0000-0 (PDF)

Abstract

One sub-field of machine learning called deep learning gained a lot of attention recently as a method attempting to model high-level abstractions by using model architectures composed by multiple non-linear layers. (for example [KSH12]). Several architectures of deep learning networks like deep belief network [HOT06], deep Boltzman machine [SH09], convolutional neural network [KSH12] and deep de-noising auto-encoder [VLL+10] have shown its advantages in specific areas. One interesting example is convolutional neural network invented by Krizhevsky in 2012, which outperformed all the traditional feature-based machine learning techniques

Computing Reviews (1998) Categories and Subject Descriptors:

A.0 Example Category C.0.0 Another Example

General Terms:

Additional Key Words and Phrases:

Acknowledgements

This is a sample sentence that should look like normal text, and this is another. This is a sample sentence that should look like normal text, and this is another. This is a sample sentence that should look like normal text, and this is another.

Contents

1	Reinforcement Learning					
	1.1	Markov Decision Process				
	1.2	Partia	ally Observable Markov Decision Process	1		
	1.3	Dynamic Programming				
	1.4	Reinforcement Learning Methods				
		1.4.1	Temporal Difference Learning	1		
		1.4.2	Q-Learning	1		
		1.4.3	Adaptive Heuristic Critic	1		
		1.4.4	Prioritised Sweeping	1		
		1.4.5	Policy Gradient Methods	1		
	1.5	Classi	fication of the Regarded RL Problems	1		
		1.5.1	High-Dimensionality	1		
		1.5.2	Partial-Observability	1		
		1.5.3	Continuous State and Action Spaces	1		
		1.5.4	Data-Efficiency	1		
2	Rec	urrent	t Neural Networks	3		
_	2.1		orward Neural Networks	4		
	2.2	Recurrent Neural Networks				
	2.2	2.2.1	Finite Unfolding in Time	$\frac{4}{4}$		
		2.2.2	Overshooting	4		
		2.2.3	Dynamical Consistency	4		
	2.3		rsal Approximation	4		
	2.0	2.3.1	Approximation by FFNN	4		
		2.3.2	Approximation by RNN	4		
	2.4		ing of RNN	4		
	2.1	2.4.1	Shared Weight Extended Backpropagation	4		
		2.4.2	Learning Methods	4		
		2.4.3	Learning Long-Term Dependencies	4		
	2.5	_	wed Model-Building with RNN	4		
	4.0	mpro	wea model-panank ann mu	4		

viii Contents

		2.5.1 Handling Data Noise	4				
		2.5.2 Handling the Uncertainty of the Initial State	4				
		2.5.3 Optimal Weight Initialisation	4				
3	Prior Arts of Combining RNN and RL						
	3.1	Neural Actor-Critic(idasi's group)	5				
	3.2	LSTM with POMDP objective function	5				
	3.3	PhD thesis, by Remi Coulom?	5				
	3.4	DQN?	5				
	3.5	Hybrid Approch(RL with RNN)	5				
	3.6	Recurrent Models of Visual Attention?	5				
	3.7	stanley gecco021 2002?	5				
4	Exp	eriment	7				
	4.1	RNN(LSTM) Implementation	7				
	4.2	Cart-pole Balancing Simulator	7				
	4.3	Learning a task of stacking wooden blocks	7				
Re	efere	nces	9				

Reinforcement Learning

- 1.1 Markov Decision Process
- 1.2 Partially Observable Markov Decision Process
- 1.3 Dynamic Programming
- 1.4 Reinforcement Learning Methods
- 1.4.1 Temporal Difference Learning
- 1.4.2 Q-Learning
- 1.4.3 Adaptive Heuristic Critic
- 1.4.4 Prioritised Sweeping
- 1.4.5 Policy Gradient Methods
- 1.5 Classification of the Regarded RL Problems
- 1.5.1 High-Dimensionality
- 1.5.2 Partial-Observability
- 1.5.3 Continuous State and Action Spaces
- 1.5.4 Data-Efficiency

Recurrent Neural Networks

2.	1	Feedforward	Neural	Network	c
╼.		recuioi wai u	reurar	TICOMOTE	3

- 2.2 Recurrent Neural Networks
- 2.2.1 Finite Unfolding in Time
- 2.2.2 Overshooting
- 2.2.3 Dynamical Consistency
- 2.3 Universal Approximation
- 2.3.1 Approximation by FFNN
- 2.3.2 Approximation by RNN
- 2.4 Training of RNN
- 2.4.1 Shared Weight Extended Backpropagation
- 2.4.2 Learning Methods
- 2.4.3 Learning Long-Term Dependencies
- 2.5 Improved Model-Building with RNN
- 2.5.1 Handling Data Noise
- 2.5.2 Handling the Uncertainty of the Initial State
- 2.5.3 Optimal Weight Initialisation

Prior Arts of Combining RNN and RL

- 3.1 Neural Actor-Critic(idasi's group)
- 3.2 LSTM with POMDP objective function
- 3.3 PhD thesis, by Remi Coulom?
- 3.4 DQN?
- 3.5 Hybrid Approch(RL with RNN)
- 3.6 Recurrent Models of Visual Attention?
- 3.7 stanley gecco021 2002?

Experiment

- 4.1 RNN(LSTM) Implementation
- 4.2 Cart-pole Balancing Simulator
- 4.3 Learning a task of stacking wooden blocks

This is a sample sentence that should look like normal text, and this is another. This is a sample sentence that should look like normal text, and this is another. This is a sample sentence that should look like normal text, and this is another.

Theorem 4.1 This is a sample sentence that should look like normal text, and this is another:

$$y = x + 3$$

Proof. This is a sample sentence. \Box

8 4 Experiment

References

- [HOT06] Geoffrey E. Hinton, Simon Osindero, and Yee Whye Teh. A fast learning algorithm for deep belief nets. *Neural computation*, 18:1527–54, 2006.
- [KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet Classification with Deep Convolutional Neural Networks. Advances In Neural Information Processing Systems, pages 1–9, 2012.
- [SH09] Ruslan Salakhutdinov and Geoffrey Hinton. Deep Boltzmann Machines. Artificial Intelligence, 5:448–455, 2009.
- [VLL⁺10] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-Antoine Manzagol. Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion. *Journal of Machine Learning Research*, 11:3371–3408, 2010.