

MA3005 Cheat Sheet

Control Theory (Nanyang Technological University)

Scan to open on Studocu

1. Final value theorem: $\lim_{t \to \infty} f(t) = \lim_{t \to \infty} sF(s)$. Poles of F(s) lie in left half s-plane and at most 1 pole on imaginary axis. [Steady state behaviour]

0.05

0.02

2. Initial value theorem: $f(0^+) = \lim sF(s)$. No restriction on poles location, applicable for sinusoidal functions.

Allowable tolerance

 $t_{s} = 4T = \frac{4}{\sigma} = \frac{4}{\zeta \omega_{n}}$ $t_{s} = 4T = \frac{4}{\sigma} = \frac{4}{\zeta \omega_{n}}$ (2% criterion) $t_{s} = 3T = \frac{3}{\sigma} = \frac{3}{\zeta \omega_{n}}$ (5% criterion) $= \frac{\pi - \beta}{\omega_{d}} = \frac{\pi - \cos^{-1} \zeta}{\omega_{d}}$ $\zeta = \cos \beta$ $\zeta = \frac{-\ln(M_{p})}{\sqrt{\pi^{2} + \ln^{2}(M_{p})}}$

Occurrence of entire row of zeros

i.e. $(-\sigma, +\sigma)$, or $(-j\omega, +j\omega)$ Solution: Form auxiliary polynomial from the or $(-\sigma \pm i\omega, +\sigma \pm i\omega)$

Block diagram reduction

1) Moving summing point ahead of block

2) Consecutive summation blocks are swappable:

3) Moving a branch point ahead of a block

4) Moving a branch point behind a block

- 1. Determine desired closed loop poles
- 2. Sub Kd(S+Zc) into controller and find CLTF
- 3. Express CE=0 in terms of K and Zc $I_{p} = \frac{\pi}{\omega_{n} \sqrt{1 - \zeta^{2}}} = \frac{\pi}{\omega_{d}} \% M_{p} = e^{-\frac{\pi_{b}}{\sqrt{1 - \zeta^{2}}}} \times 100\% = e^{-\frac{\pi\sigma}{\omega_{d}}} \times 100\%$ and substitute desired poles and solve

read compensator. Ogg	$(s+p_c)$	
Choose: $z_c \leq z_c'$ 0	f PD controller	

PI Controller: $G_c(s) = \frac{K_p(s + z_c)}{s}$ G(s)Plant PI Controlle

Same steps as PD controller but sub K(S+Zc)/S into controller instead for step 2

Input	Desired ess Steady-state error formula	Type O		type I		1900 2	
		Static error constant	Error	Static error constant	Error	Static error constant	Error
Step, $u(t) = 1$	$\frac{1}{5}$ $\frac{1}{1+K_p}$	K _p = Constant	$\frac{1}{1+K_p}$	$K_p = \infty$	0	$K_p = \infty$	0
Ramp,	1 1	$K_v = 0$	00	$K_{\nu} =$ Constant	1	<i>K</i> _v = ∞	0

Steady-state error constant
$$Error$$
 $Error$ $Error$

$$K_p = \lim_{s \to 0} G(s) = G(0)$$

$$K_{v} = \lim_{s \to 0} sG(s)$$

$$K_a = \lim_{s \to 0} s^2 G(s)$$

Lag Compensator:

$$G_c(s) = K \frac{(s + z_c)}{(s + p_c)}$$
$$p_c \ll z_c \ll 1$$

Lag, just multiply the equations and then sub into controller

For PID/Lead-

H(s)

Root Locus Sketching

Starting and ending points of the locus

Starting points – open-loop GH poles

Ending points open-loop GH zeros

The number of branches equals to the order of CL Ending points $(K = \infty)$ are finite GH or infinite zeros Root Locus symmetrical about the real axis

- Asymptotes (infinite open-loop zeros)
 - Angles
 - Location

n = no. of poles, m = no. of zeroes

Unity-feedback system

b.

c(t)

Locus on real axis | Segments on the real axis to the left of odd number realaxis open-loop poles and zeros are parts of root locus.

 $\angle s = \frac{\pi(1+2q)}{[n-m]}, q = 0, ..., n-m-1$

Departure and arrival angles

(for complex poles/zeros)

Real axis intercept: $\sigma_a = \frac{\sum GH \text{ finite poles} - \sum GH \text{ finite zeros}}{2}$

Break-in and break-out points

Break-in (minimum K)

4. Imaginary axis intersection

Break-out (maximum K)

CE = 0, express K in terms of S, then

Set $s = j\omega$ in CE This document is available on

Departure angle:

Arrival angle: $\left| \sum_{i=1}^{m} \angle(s+z_i) - \sum_{i=1}^{n} \angle(s+p_i) = \pi \right|$

Bode Plot Sketching

Downloaded by bra ther (brather@googl.win)