FISH 604 Module 6: Generalized Linear Models

Instructor: Franz Mueter Lena Point, Rm 315 796-5448 fmueter@alaska.edu

Objectives and Outcomes

Objectives

 Introduce Generalized Linear Models to understand their structure and differences

Outcomes

- Understand at least 5 types GLMs, know when to use them, and be able to fit them to data
 - Logistic regression (binomial models)
 - Regression for count data
 - Poisson regression and Negative binomial regression
 - Models for zero-inflated count data
 - Multinomial models

Regression models

- Linear Models (LM)
 - Simple / multiple linear regression
 - Analysis of (co)variance (ANO(C)VA)
- Generalized Linear Models (GLM)
 - Binomial models (Logistic regression)
 - Poisson & negative binomial models
 - Multinomial & Zero-inflated models
- Generalized Additive Models (GAM)
 - Non-parametric smoothers
- Mixed-effects models (linear/non-linear)
- Non-linear models (NLM)

Generalized Linear Models

Why "Generalized"?

- Accomodates <u>non-normal</u> response distribution
 - <u>Family</u>: Binomial, Poisson, Gamma, and other distributions from the <u>exponential family</u> can be chosen
- Accomodates (smooth) <u>transformations</u> of linear predictor:
 - Link: The expected value of the response is a smooth function of a linear predictor $(X\beta)$:

$$E(y) = \mu = \eta(\mathbf{X}\boldsymbol{\beta})$$

The inverse of η is called the link function:

$$l(\mu) = \mathbf{X}\boldsymbol{\beta}$$
 Linear predictor

→ The model is linear on the transformed scale

The exponential family

- In linear modeling we apply the Gaussian (=normal) distribution to the responses (residuals)
- Ecological data often do NOT follow a normal distribution, e.g. binomial data, Poisson counts, abundance data (positive only, often right-skewed)
- These, and many other distributions can be written in a general formulation:

The exponential family

- In linear modeling we apply the Gaussian (=normal) distribution to the responses (residuals)
- Ecological data often do NOT follow a normal distribution, e.g. binomial data, Poisson counts, abundance data (positive only, often right-skewed)
- These, and many other distributions can be written in a general formulation:

$$f(y;\theta,\phi) = e^{\frac{y\cdot\theta-b(\theta)}{a(\phi)}+c(y,\theta)}$$

For example, show that: $\theta = \log(\lambda)$; $\phi = 1$; $a(\phi) = 1$ $b(\theta) = \exp(\theta)$; $c(y, \theta) = \log(y!)$

The exponential family

- Advantage of using the exponential family
 - One set of equations can be used for all distributions in exponential family to estimate parameters via maximum likelihood
 - Mean and variance can be specified by single set of equations using the first and second derivatives of b:

$$E(Y) = b'(\theta)$$
$$Var(Y) = b''(\theta) \cdot a(\phi)$$

GLM vs. LM

"Ordinary" linear models are a special case of GLM with:

- family = Gaussian
- scale parameter = variance (σ^2)
- Link function = identity ($l(\mu) = \mu$)

$$E(y) = \mu = \mathbf{X}\boldsymbol{\beta}$$
$$y = \mathbf{X}\boldsymbol{\beta} + \varepsilon$$
$$y \sim N(\mu, \sigma^2) \iff \varepsilon \sim N(0, \sigma^2)$$

Fitting GLMs

- Specify linear predictor (as in LM)
- Specify 'family', based on nature of random variability, e.g.:
 - Gaussian (normal) for continuous data
 - Binomial / multinomial for categorical response
 - Poisson (or negative binomial) for positive counts
- 3. Specify link function
 - Examples: Identity, log, logit, probit
 - Only certain link function are appropriate for a given distribution

Fitting GLMs

- Fit model using <u>iterative algorithm</u>
 (No closed-form solution as in LM)
 - Maximize likelihood (or, equivalently, minimize 'deviance')
 - Usually implemented through "Iterative weighted least-squares" or IWLS algorithm
 - More difficult to fit, may not always work!
 - Provide starting values for parameters if necessary!

Common GLMs

Family:	Gaussian	Binomia	l Poisson
Default link:	identity	logit	log
Variance:	Constant σ^2	μ (1-μ)	μ
Variance constant		Logistic regression (binary response)	Poisson regression (response: counts or rates)
not depend on r	•	Variance depends	epends on mean!

Deviance

 Goodness of fit is measured in deviance instead of RSS based (e.g. R²):

$$D = -2\log L$$

- The likelihood function L depends on the GLM family (error distribution)
- Statistical programs will typically return the deviance as part of the output
- Deviance plays similar role as residual sum of squares in linear models

Analysis of deviance

- Testing effects of explanatory variables and their interactions
- Equivalent to F-test in linear models
- Instead of F-test, use likelihood ratio test
- Test statistic has a χ^2 -distribution (D_{full} , $D_{reduced}$ are the deviances of the full and reduced model, respectively, p and q are the corresponding numbers of parameters, and ϕ is the scale parameter)

$$\frac{D_{reduced} - D_{full}}{\phi} \sim \chi_{p-q}^2$$

(equivalent to ratio of respective likelihoods because $D = -2\log L$)

Likelihood ratio test

$$\begin{split} D_{reduced} - D_{full} &= -2\log L_{reduced} - (-2\log L_{full}) \\ &= 2*(\log L_{full} - \log L_{reduced}) \\ &= 2*\log \left(\frac{L_{full}}{L_{reduced}}\right) \quad \text{(Likelihood ratio)} \end{split}$$

- Null-hypothesis H₀:
 - reduced (simpler) model is the "true" model, i.e. any 'extra' parameters in the full model are zero ($\beta_{i(full)} = 0$)
- If difference in deviance is large (i.e. if $L_{full} >> L_{reduced}$) \rightarrow reject H_0

Example: Effects of a toxin on moths

LOGISTIC REGRESSION

sex	dose	dead	alive
M	1	1	19
M	2	4	16
M	4	9	11
M	8	13	7
M	16	18	2
M	32	20	0
F	1	0	20
F	2	2	18
Œ	4	6	14
F	8	10	10
۴	16	12	8
F	32	16	4

- Example: Effect of a toxin on moths.
- Batches of 20 moths of each sex were exposed to different doses of a toxin
- Number of animals alive after
 3 days were recorded
- Response: dead or alive
- Response variable is binomial (# of "successes", i.e. # dead moths out of total)

- Response: Number dead / alive per batch
- Explanatory variables: Sex and log(Dose) with interaction (to allow different response by sex)
- Family = binomial
- Link = logit (see below)
- Mean response for a given sex at a given dose (what we actually model!) is the probability of dying (p), which is related to linear predictor through the <u>link function</u>: ="odds-ratio"

$$logit(p) = log(p/(1-p)) = X\beta$$
="log-odds"

Effect of logit-transformation of proportions:

GLM

Logit model:

$$\log\left(\frac{p}{1-p}\right) = \mathbf{X}\boldsymbol{\beta}$$

$$\frac{p}{1-p} = e^{X\beta}$$

$$p = e^{X\beta} (1-p)$$

$$p = e^{X\beta} - e^{X\beta} p$$

$$p + e^{X\beta} p = e^{X\beta}$$

$$p(1+e^{X\beta}) = e^{X\beta}$$

Logistic function:

$$\rho = \frac{e^{\mathbf{X}\boldsymbol{\beta}}}{1 + e^{\mathbf{X}\boldsymbol{\beta}}} = \frac{1}{e^{-\mathbf{X}\boldsymbol{\beta}} + 1}$$

Effect of logit-transformation of proportions:

Logistic function is inverse of logit!
Back-transformation from logit (p) to p guarantees that: 0

Logistic regression: $logit(p) = \beta_0 + \beta_1 x_1 + ... + \beta_p x_p$

Likelihood of observing k_i dead moths in a batch of n_i = 20 moths:

$$L_{i}(k_{i}) = \binom{n_{i}}{k_{i}} p_{i}^{k_{i}} (1 - p_{i})^{n_{i} - k_{i}}$$

Likelihood of observing $\{k_1, k_2, ...\}$ dead moths in batches of n = 20 moths (every batch had 20 moths in the experiment, but n may differ):

$$L(k_1, k_2, k_3, ...) = \prod_{i} {n \choose k_i} p_i^{k_i} (1 - p_i)^{n - k_i}$$

GLM MSL FISH 604

Logistic regression: binomial response example

Probability of a moth in batch i dying due to the toxin is modeled as a function of the dose of the toxin (where l is the logit function):

$$l(p_i) = \alpha + \beta \cdot x_i$$

$$p_i = 1/(1 + e^{-(\alpha + \beta \cdot x_i)})$$
 (=logistic function)

• Hence, find parameters α and β that maximize the likelihood of the observations $k_1, k_2, ...$:

$$L(k_1, k_2, \dots) = \prod_{i} \binom{n}{k_i} \left(\left(1 + e^{-(\alpha + \beta \cdot x_i)} \right)^{-1} \right)^{k_i} \left(1 - \left(1 + e^{-(\alpha + \beta \cdot x_i)} \right)^{-1} \right)^{n-k_i}$$

Linear predictor $(X\beta)$ is handled exactly as in LM:

$$logit(p) = X\beta = Sex_i + \beta_i * log_2(dose)$$
Slope by sex

```
R code
```

- > ldose <- log2(dose)</pre>
- > moths.lr <- glm(DA ~ sex*ldose, family = binomial)
- > summary(moths.lr)

Intercept by sex (i = male OR female) through an interaction v = binomial)

DA is a matrix with two columns:

Coefficients:

	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	-2.9935			6.09e-08	
sexM	0.1750	0.7783	0.225	0.822	z scores because
ldose	0.9060	0.1671	5.422	5.89e-08	variance assumed
sexM:ldose	0.3529	0.2700	1.307	0.191	known (binomial)

Null deviance: 124.8756 on 11 degrees of freedom Residual deviance: 4.9937 on 8 degrees of freedom

AIC: 43.104

No overall F-test, but can use χ^2 -test {anova()} to test for significant reduction in deviance!

Dead Alive

Implement

Dead Alive			
19	1		
16	4		
11	9		
8	12		
4	16		

Linear fits on logit (log-odds) scale

Model fit on "response" scale: estimated probability of dying by sex and dose

How to interpret parameters:

```
R code
   > moths.lr <- glm(DA ~ sex*log(dose), family = binomial)
   > glm(DA ~ sex/log(dose), family = binomial)
   > summary(moths.lr)
                                                            Equivalent
                                                              models!
   Coefficients:
                Estimate
                                    Intercept for females (on logit scale)
   (Intercept) -2.9935 ←
                                    Difference in intercept (male - female)
\alpha_d sexM
                0.1750←
           0.9060←
   ldose

    Slope for females (on logit scale)

   sexM:ldose 0.3529 	
                                     Difference in slope (male - female)
       Null deviance: 124.8756 on 11 degrees of freedom
   Residual deviance:
                                           degrees of freedom
                          4.9937
                                   on
```


Computing predicted values:

To compute predicted values (logit-scale) for **female moths** at different doses:

$$logit(p) = \widehat{\alpha_F} + \widehat{\beta_F} * log_2(dose)$$

To compute predicted values (logit-scale) for **male moths** at different doses:

$$logit(p) = (\widehat{\alpha_F} + \widehat{\alpha_d}) + (\widehat{\beta_F} + \widehat{\beta_d}) * log_2(dose)$$

Intercept (males) Slope (males)

To compute these same values in R:

> predict(moths.lr)

To compute predicted values on the back-transformed scale: $p = \eta(\mathbf{X}\boldsymbol{\beta}) = \eta(\mathbf{X}\boldsymbol{\beta})$

> predict(moths.lr, type = "response")

$$p = \eta(\mathbf{X}\boldsymbol{\beta}) = \frac{e^{\mathbf{X}\boldsymbol{\beta}}}{1 + e^{\mathbf{X}\boldsymbol{\beta}}}$$

Analysis of deviance:

```
> anova(moths.lr, test="Chisq")
Analysis of Deviance Table
Model: binomial, link: logit
Response: DA
```

Terms added sequentially (first to last)

```
Df Deviance Resid. Df Resid. Dev P(>|Chi|)
                                 124.876
NULL
                           11
          1 6.077
                           10
                                 118.799 0.014
sex
     1 112.042
                                   6.757 3.499e-26
ldose
                                            (0.184)
sex:ldose
               1.763
                                   4.994
```

similar to p-value from z-test (slide 24)

Model comparison:

Re-fit model without interaction:

```
> moths.lr2 <- update(moths.lr, ~ . - sex:ldose)</pre>
```

Compare models using Analysis of Deviance (likelihood-ratio test):

Model diagnostics

- As for LM, diagnostics use residuals from the fitted model
- For GLM, several different types of residuals are available:

Pearson residuals $\varepsilon_i = \frac{y_i - \hat{\mu}_i}{\sqrt{Var(\hat{\mu}_i)}}$ approximately mean 0 and equal variance for all i

- often badly skewed (asymmetric around 0)
- measure of goodness of fit for binomial & Poisson models (Sum of squared Pearson residuals = Pearson's χ^2 statistic)
- Deviance residuals (=contribution of each residual to overall deviance, with appropriate sign, standardized)
 - most useful for diagnostics, default residuals in many R functions (approximately normal, should have equal variances)
- Response residuals (= observed predicted response)

Model diagnostics

Deviance residuals

- Instead of number of "successes" as response variable (binomial response), we use binary response variable (0/1) in the form of a string of zeros and ones corresponding to each "success" or "failure"
- Example: presence/absence of skates in Gulf of Alaska trawl samples
- Goal: Test for differences in the probability of occurrence between years

Logistic regression: binary response

- Response: Absence/presence (0/1)
- Explanatory variables: Year (primary variable of interest), Covariates: stratum and /or depth
- Family = binomial
- Link = logit
- What we model: The probability of catching skates (p) in a trawl sample for a given year and stratum and at a given depth; which is related to the linear predictor through the link function:

$$\log(p_{ij}/(1-p_{ij})) = \text{Year}_i + \text{Stratum}_j + \beta * \text{Depth}$$

Logistic regression: binary response

Model in R:

Data:

Binary response!

Year	Stratum	Depth	Skates
2001	Α	120	0
2001	Α	78	0
2001	Α	25	0
2001	Α	90	1
2001	Α	146	0
2001	В	54	1
2001	В	180	0
2001	В	123	0
•••			
2003	Α	44	1
2003	Α	126	0
2003	Α	67	0
2003	Α	35	1
•••			
2003	В	134	0

Regression models

- Linear Models (LM)
 - Simple / multiple linear regression
 - Analysis of (co)variance (ANO(C)VA)
- Generalized Linear Models (GLM)
 - Binomial models (logistic regression)
 - Poisson & negative binomial models
 - Multinomial & Zero-inflated models
- Generalized Additive Models (GAM)
 - Non-parametric smoothers
- Mixed-effects models (linear/non-linear)
- Non-linear models (NLM)

Poisson regression

An artificial example

Covariate

Mean response:

$$\mu_i = \exp(0.01 + 0.03 * X)$$

$$\log(\mu_i) = 0.01 + 0.03 * X$$

Observations Y_i

$$E(Y_i) = \mu_i$$

$$var(Y_i) = \mu_i$$

Poisson regression

Same data! Different view!

Poisson regression

Probability distribution of observed values at various levels of covariate

Covariate

Poisson regression example

- Observational study of salamanders. Number of salamanders per unit area at randomly selected sites
- Explanatory variables:
 - Percent cover
 - Forest age

```
SITE: 1 2 3 4 5 6 7 8 9 10 ...

SALAMAN: 13 11 11 9 8 7 6 6 5 5 ...

PCTCOVER: 85 86 90 88 89 83 83 91 88 90 ...

FORESTAGE: 316 88 548 64 43 368 200 71 42 551 ...
```

 Problem: Predict salamander density as a function of %cover and forest age **Forest**

Poisson regression example

- Response: Counts of salamanders per unit area
- Explanatory variables: Cover and forest age
- Family = poisson
- Link = log ("log-linear model", could also use other links, for example identity)
- What we model: The number of salamanders in a given area μ ; which is related to the linear predictor through the link function:

$$\log(\mu) = \alpha + \beta_1 * \operatorname{cover} + \beta_2 * \operatorname{age} + \beta_3 * (\operatorname{age} * \operatorname{cover})$$

GLM MSL FISH 604

Poisson regression example

"raw" scale

log scale log(y+1)

Poisson regression example

```
Default link: log
glm(formula = SALAMAN ~ PCTCOVER * FORESTAGE, family = poisson)
    data = salamander)
                                        Test based on normal distribution
                                       (variance assumed fixed!) H_0: \beta = 0
Coefficients:
                     Estimate Std. Error z value Pr(>|z|)
                                           -2.754
                              5.038e-01
                                                   0.00588
(Intercept)
                   -1.388e+00
                    3.147e-02 6.145e-03
                                          5.121 3.04e-07
PCTCOVER
                   -2.812e-03 6.800e-03
FORESTAGE
                                          -0.414
                                                   0.67918
                    3.141e-05
                              7.625e-05
                                          0.412
                                                   0.68033
PCTCOVER: FORESTAGE
                0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
                                                         <Variance fixed (=mean)</pre>
(Dispersion parameter for poisson family taken to be 1)
                                                          Null model (intercept)
    Null deviance 190.22
                           on 46 degrees of freedom
                                                          This model
                           on 43 degrees of freedom
Residual deviance: 121.13/
AIC: 214.19
                    "RSS equivalent"
                                                No overall F-test, but
```

Model selection criterion!

Number of Fisher Scoring iterations: 6

Iterative solution!

No overall f-test, but can use χ^2 -test {anova()} to test for significant reduction in deviance!

A note on R² values

- What is R²?
 - R² as explained variability
 - R² squared as improvement from null model to fitted model
 - R² as the square of the correlation (between the predicted values and the actual values)
- In OLS, R^2 is based on residual versus total sum of squares: $\sum_{i=1}^{N} (v_i \hat{u}_i)^2$

$$R^{2} = 1 - \frac{\sum_{i=1}^{N} (y_{i} - \hat{\mu}_{i})^{2}}{\sum_{i=1}^{N} (y_{i} - \bar{y}_{i})^{2}}$$

→ Not the same interpretation in GLM (maximum likelihood estimation)

A note on R² values

A number of different 'Pseudo-R2' have been proposed for models fit via maximum likelihood

Efron's:

Pseudo
$$-R^2 = 1 - \frac{\sum_{i=1}^{N} (y_i - \hat{\mu}_i)^2}{\sum_{i=1}^{N} (y_i - \bar{y}_i)^2}$$

McFadden's

$$Pseudo - R^2 = 1 - \frac{Residual\ Deviance}{Null\ Deviance}$$

See https://stats.idre.ucla.edu/other/mult-pkg/faq/general/faq-what-are-pseudo-r-squareds/ for a good discussion

Poisson regression example

→ Heteroscedasticity! (Overdispersion?)

Deviance residuals (should be approx. normally distributed with equal variances)

point

Overdispersion

 Binomial and Poisson models assume the following variances:

```
■ Binomial: Var(Y) = n \ p \ (1 - p)
■ Poisson: Var(Y) = \lambda
No "variance parameter" (unlike, e.g., normal distr.)
```

• In practice, data often have some degree of overdispersion relative to the standard assumption, which can be described by an overdispersion parameter ϕ :

■ Binomial: $Var(Y) = \phi * n p (1 - p)$

• Poisson: $Var(Y) = \phi * \lambda$

GLM MSL FISH 604

Poisson regression example with overdispersion

```
estimated
                                                                  without
fit <- glm(formula = SALAMAN ~ PCTCOVER * FORESTAGE,
         family = quasipoisson)
                                                                  overdispersion
                                                      /\phi \cdot SE^*
> summary(fit)
                                                                  (slide 44)
                                 wider
                    Identical

<u>t-tests</u> (var. estimated)

                                std. err.
                   estimates
Coefficients:
                                                                H_0: \beta = 0
                      Estimate Std. Error t value Pr(>|t|)
(Intercept)
                    -1.388e+00
                                8.507e-01
                                            -1.631
                                                      0.1102
                     3.147e-02
                                 1.038e-02
                                             3.033
                                                      0.0041 **
PCTCOVER
FORESTAGE
                    -2.812e-03
                                 1.148e-02
                                            -0.245
                                                      0.8077
                     3.141e-05
                                 1.287e-04
                                             0.244
                                                      0.8084
PCTCOVER: FORESTAGE
                 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
(Dispersion parameter for quasipoisson family taken to be 2.851019)
    Null deviance: 190.22
                            on 46 degrees of freedom
Residual deviance: 121.13/
                            on 43 degrees of freedom
                                                             Overdispersion
AIC: NA
             Identical to model without overdisperion!
                                                              parameter: \phi
Number of Fisher Scoring iterations: 6
```

 $SE^* = \text{std.err.}$

Negative binomial model

- Alternative to overdispersed Poisson distribution (i.e. when variance is larger than mean)
- Often used for animal counts if individuals have a clustered distribution (if cluster size follows logarithmic series, total number of individuals follows negative binomial)
- \blacksquare Many other derivations/interpretations of the negative binomial, for example as a Poisson process with gamma variance at each mean level μ

Negative binomial regression

Negative binomial regression

Covariate

Poisson
probability
distribution
of observed
values at
various
levels of
covariate

Probability

Negative binomial regression

Covariate

Poisson & **Negative** Binomial(2) probability distribution of observed values at various levels of covariate

Probability

Negative binomial distribution

Probability function with parameters "size" (r) and probability (p):

$$\Pr(X = k) = \binom{r+k-1}{k} p^{r} (1-p)^{k} \qquad k = 0,1,2,...$$

neg.binom.pdf <- function(r, p, k) choose(r+k-1, k) * p^r * (1-p)^k

Same as:

Mean and variance (2 parameterizations)

$$\Rightarrow E(X) = r \frac{1-p}{p} \quad \text{var}(X) = r \frac{1-p}{p^2}$$

or:

$$E(X) = \mu \quad \text{var}(X) = \mu + \mu^2 / r$$
 (theta' (θ) parameter

in 'glm.nb()'

Negative binomial distribution

• A third, common parameterization (e.g. SAS, SPSS, Stata) uses ' α ' to describe the additional variability:

$$E(X) = \mu_i$$

$$var(X) = \mu_i + \alpha \cdot \mu_i^2$$

where:

 $\alpha = 1/r$

Poisson variance

Additional variance

- Examples of negative binomial probability distribution (hatched bars) relative to Poisson distribution (grey) with the same mean
- Variance increases with smaller p

Negative binomial model

- Implementation in R
 - Function glm.nb() in the MASS package
 - Estimates dispersion parameter 'theta' (=inverse of dispersion parameter 'alpha' estimated by some other packages (SAS, SPSS, Stata))
 - gam() has families 'nb' and 'negbin'
 - Function gamlss() in package 'gamlss' with argument: 'family = NBI'

 (Stasinopoulos DM, Rigby RA (2007). Generalized Additive Models for Location Scale and Shape (GAMLSS) in R." Journal of Statistical Software, 23(7). URL http://www.jstatsoft.org/v23/i07/)

Poisson & NB models

- Poisson regression as special case of negative binomial regression
 - Model based on Poisson distribution is <u>nested</u> within the same model based on the NB distribution
 - Hence significance of over-dispersion can be evaluated via likelihood ratio test! (see Lab)

Summary

- Logistic regression for binomial (0/1) data
 - Model probability of "success" (1)
 - Logit as linear function of predictors
- Poisson regression to model counts (0:n)
 - Model mean count or "rate" of a (rare) event
 - ("log-linear models" for contingency tables)
- Overdispersion
 - Quasi-binomial or quasi-Poisson to account for "extra" variation (no true likelihood!)
- Negative binomial models for over-dispersed count data

References

- McCullagh, P., and Nelder, J.A. 1989. Generalized Linear Models. Chapman and Hall, London. Classical, comprehensive reference
- Firth, D. 1991. Generalized linear models. In Statistical theory and modelling. Edited by D.V. Hinkley, N. Reid and E.J. Snell. Chapman and Hall, London. pp. 55-82.
 good but technical review paper - see pdf file!
- Faraway, J.J. (2004). Extending the Linear Model with R. Chapman & Hall/CRC. Basic introduction with R examples.
- Dobson, A.J. and Barnett, A. G. (2008). An Introduction to Generalized Linear Models. 3rd edition. CRC, Boca Raton.
- McCulloch, C.E., and Searle, S.R. (2005). Generalized, Linear, and Mixed Models. John Wiley & Sons. (available through UAF Ebook library!)