浙江工业大学 线性代数期末试卷 (2016~2017第二学期)

任课教师:	学院:	班级:			
学号:		姓名:		÷:	
题号	<u> </u>	=	Ξ	四	
得分					

一. 填空题(每空 3 分, 共 30 分)

本题得分	
------	--

1. 设
$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}$$
, $\mathbf{B} = \begin{pmatrix} 2 & b \\ c & 7 \end{pmatrix}$, 且 $\mathbf{A} = \mathbf{B}$ 可交换, 即

$$AB = BA$$
, $\emptyset b = ____, c = _____$

2. 设
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 2 & 0 \\ 3 & 4 & 5 \end{pmatrix}$$
, $A^* \in A$ 的伴随矩阵,则 $(A^*)^{-1} = \underline{\hspace{1cm}}$ 。

3. 行列式
$$D = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 2 \\ -2 & -1 & 0 & -3 \\ 3 & 1 & 2 & -5 \end{vmatrix}$$
, 则 $A_{41} + A_{42} + A_{43} + A_{44} =$ _______。

- 4. 设三元齐次线性方程组 $AX = \mathbf{0}$ 的系数矩阵 A 的秩 R(A) = 2,则该方程组的解集 X_A 的秩 $R(X_A) = \underline{\hspace{1cm}}$ 。
- 5. 向量 α = $(1,1,1,1)^T$, 向量 β = $(2,0,3,3)^T$,则向量 α 的模长 $\|\alpha\|$ =_____,向量 α 与向量 β 的内积 $<\alpha$, β >=_____。

1

7. 设矩阵
$$\mathbf{A} = \begin{pmatrix} 1 & 2 & -2 \\ 4 & t & 3 \\ 3 & -1 & 1 \end{pmatrix}$$
, \mathbf{B} 为 3 阶非零方阵,且 $\mathbf{AB} = O$,则 $t = \underline{\hspace{1cm}}$ 。

二. 单项选择题(每小题 2 分,共 10 分)

本题得分

- 1. 下列命题正确的是 ()。
 - (A) 设 $A \in n$ 阶方阵,且A 可逆,则 A^T 也可逆。
 - (B) 若 $A \cap B$ 都是 n 阶可逆方阵,则 A + B 也可逆。
 - (C) 若 AB = O,且 $A \neq O$,则必有B = O。
 - (D)若 $A \in n$ 阶方阵, 且 $A \neq O$, 则A可逆。

$$2. \ \ \overset{\text{\tiny LL}}{\boxtimes} \ A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}, \quad B = \begin{pmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \\ a_{31} + a_{21} & a_{32} + a_{22} & a_{33} + a_{23} \end{pmatrix}, \quad P_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

$$P_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$
,则必有()。

(A) $AP_1P_2 = B$

(B) $P_1P_2A = B$

(C) $AP_2P_1 = B$

(D) $P_2P_1A = B$

3.设 $A \neq m \times n$ 矩阵, $C \neq n$ 阶可逆矩阵,矩阵B = AC, $R(A) = r_1$, $R(B) = r_2$,

则 ()。

- (A) $r > r_1$ (B) $r < r_1$ (C) $r = r_1$ (D) $r = r_1$ 的关系依C而定

4. 设向量组 $\mathbf{a}_1 = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}^T$, $\mathbf{a}_2 = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}^T$, $\mathbf{a}_3 = \begin{pmatrix} 1 & 3 & t \end{pmatrix}^T$ 线性相关, 则()。

- (A) t > 5 (B) t < 5 (C) t = 5 (D) $t \neq 5$

5. 设A 是n ($n \ge 3$) 阶方阵, A^* 是其伴随矩阵,则必有(3A)*= ()。

- (A) $3A^*$ (B) $3^{-1}A^*$ (C) 3^nA^* (D) $3^{n-1}A^*$

三、计算题(每题10分,共50分)

1	2	3	4	5	本题总得分

1. 计算行列式
$$D = \begin{vmatrix} 2 & 1 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 8 & 6 \\ 0 & 0 & 2 & 1 & 2 \\ 0 & 0 & 3 & 0 & 7 \end{vmatrix}$$
 的值

2. 求向量组
$$\mathbf{\alpha}_1 = \begin{pmatrix} 1 \\ 4 \\ 1 \\ 0 \end{pmatrix}$$
, $\mathbf{\alpha}_2 = \begin{pmatrix} 2 \\ 1 \\ -1 \\ -3 \end{pmatrix}$, $\mathbf{\alpha}_3 = \begin{pmatrix} 1 \\ 0 \\ -3 \\ -1 \end{pmatrix}$, $\mathbf{\alpha}_4 = \begin{pmatrix} 0 \\ 2 \\ -6 \\ 3 \end{pmatrix}$ 的秩和一个极大无关组,并用

该极大无关组表示其余向量。

3. 设
$$A = \begin{pmatrix} 4 & 2 & 3 \\ 1 & 1 & 0 \\ -1 & 2 & 3 \end{pmatrix}$$
, $AX = A + 2X$, 求矩阵 X .

4. 当λ取什么值时,线性方程组

$$\begin{cases}
-x_1 + \lambda x_2 + 2x_3 = 1 \\
x_1 - x_2 + \lambda x_3 = 2 \\
-5x_1 + 5x_2 + 4x_3 = -1
\end{cases}$$

(1)有唯一的解? (2)没有解? (3)有无穷多解?并在有无穷多解时给出该方程组的通解。

5. 设矩阵
$$\mathbf{A} = \begin{pmatrix} 1 & 2 & -3 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

(1) 求A的特征值与特征向量。(2) A能否对角化?若能对角化,求出相应的相似变换矩阵P,使得 $P^{-1}AP=\Lambda$ 为对角矩阵。

四、证明题(共10分)

1	2	本题总得分

1. (6 分) 已知n阶方阵A满足 $A^2+2A-16E=O$,证明A-3E可逆,并求 $(A-3E)^{-1}$ 。

2. (4 分)设 n维向量组 $\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \cdots \boldsymbol{\beta}_t$ 可由 n维向量组 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots \boldsymbol{\alpha}_s$ 线性表示,即 $(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \cdots \boldsymbol{\beta}_t) = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots \boldsymbol{\alpha}_s) K$,其中 K 是由表示系数构成的 $s \times t$ 矩阵。若向量组 $\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \cdots \boldsymbol{\beta}_t$ 线性无关,向量组 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots \boldsymbol{\alpha}_s$ 也线性无关,证明:矩阵 K 的秩 R(K) = t 。