Krzysztof Pszeniczny

nr albumu: 347208 str. 1/2 Seria: 2

Zadanie 1

Oznaczmy te wektory własne ν_1,\ldots,ν_{n+1} zaś odpowiadające im wartości własne $\lambda_1,\ldots,\lambda_{n+1}$. Każdy wybór n wektorów spośród ν_1,\ldots,ν_{n+1} daje bazę, w której f diagonalizuje się. Mamy więc, że dla każdego $i=1,\ldots,n-1$ zachodzi, że f ma w pewnej bazie postać diag $(\lambda_1,\ldots,\lambda_{i-1},\lambda_{i+1},\ldots,\lambda_n)$. Zatem $\chi_f(t)=\prod_{j\neq i}(t-\lambda_j)$.

Z jednoznaczności rozkładu wielomianu na czynniki nierozkładalne (której dowodzi się analogicznie jak dla liczb całkowitych – wykonalny jest algorytm Euklidesa (przy dzieleniu z resztą maleje stopień), zatem zachodzi lemat Euklidesa, co łatwo implikuje jednoznaczność rozkładu) mamy, że $\lambda_1 = \ldots = \lambda_n$. Istotnie, gdyby dla pewnych i, j było $\lambda_i \neq \lambda_j$, to moglibyśmy zapisać $\chi_f(t)$ na dwa sposoby różniące się liczbą czynników $(t-\lambda_i)$ (mianowcie wzięlibyśmy bazy $\nu_1,\ldots,\nu_{i-1},\nu_{i+1},\ldots,\nu_n$ oraz $\nu_1,\ldots,\nu_{j-1},\nu_{j+1},\ldots,\nu_n$.

Teraz zaś mamy, że $f - \lambda_1$ id ma w jądrze n liniowo niezależnych wektorów: ν_1, \ldots, ν_n , zatem $f = \lambda_1$ id.

Zadanie 2

Zapiszmy $\mathfrak{u}_n=\frac{p_n}{q_n}$. Wtedy $\frac{p_{n+1}}{q_{n+1}}=\mathfrak{u}_{n+1}=\frac{3\frac{p_n}{q_n}+2}{\frac{p_n}{q_n}+4}=\frac{3p_n+2q_n}{p_n+4q_n}$. Możemy zatem przyjąc, że $p_{n+1}=3p_n+2q_n$, $q_{n+1}=p_n+4q_n$. Stąd $\binom{p_{n+1}}{q_{n+1}}=\binom{3}{1}=\binom{3}{1}=\binom{2}{1}$.

Oznaczmy $A = \begin{pmatrix} 3 & 2 \\ 1 & 4 \end{pmatrix}$. Widzimy łatwo, że $A(1,1)^T = 5(1,1)^T$ oraz $A(2,-1)^T = 2(2,-1)^T$, zatem $A = (1,1)^T$

$$\begin{pmatrix} 1 & 2 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 5 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} \begin{pmatrix} 1 & 2 \\ 1 & -1 \end{pmatrix} \end{pmatrix}^{-1}, \text{ skąd łatwo } A^n = \begin{pmatrix} 1 & 2 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 5^n & 0 \\ 0 & 2^n \end{pmatrix} \begin{pmatrix} \frac{1}{3} & \frac{2}{3} \\ \frac{1}{3} & -\frac{1}{3} \end{pmatrix}. \text{ Zatem ponieważ } (p_n, q_n)^T = A^n(p_0, q_0)^T = A^n(0, 1)^T, \text{ to } \begin{pmatrix} p_n \\ q_n \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 5^n & 0 \\ 0 & 2^n \end{pmatrix} \begin{pmatrix} \frac{1}{3} & \frac{2}{3} \\ \frac{1}{3} & -\frac{1}{3} \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 5^n & 0 \\ 0 & 2^n \end{pmatrix} \begin{pmatrix} \frac{2}{3} \\ -\frac{1}{3} \end{pmatrix} = \begin{pmatrix} \frac{2 \cdot 5^n - 2 \cdot 2^n}{3} \\ \frac{2 \cdot 5^n + 2^n}{3} \end{pmatrix}$$

Skąd już łatwo $u_n=\frac{2\cdot 5^n-2\cdot 2^n}{2\cdot 5^n+2^n}=\frac{2-2\cdot \left(\frac{2}{5}\right)^n}{2+\left(\frac{2}{5}\right)^n}$, co oczywiście jest zbieżne do $\frac{2}{2}=1$.

Zadanie 4

Oznaczmy $A=(\mathfrak{a}_{i,j})_{i,j=0}^{12}.$ Wtedy łatwo $\mathfrak{a}_{i,j}=\varepsilon^{ij}.$ Ponadto niech $A=M(\phi)_{st}^{st}.$

Policzmy $A^2 = (b_{i,j})_{i,j=0}^{12}$. Mamy $b_{i,j} = \sum_{k=0}^{12} \alpha_{i,k} \alpha_{k,j} = \sum_{k=0}^{12} \epsilon^{ik} \epsilon^{kj} = \sum_{k=0}^{12} \left(\epsilon^{i+j} \right)^k$. Zauważmy jednak, że jeśli $\epsilon^{i+j} = 1$, to suma ta jest równa 13, zaś gdy tak nie jest, to ϵ^{i+j} jest pierwiastkiem pierwotnym z jedności stopnia 13, a więc powyższa suma jest zerowa (korzystam tu z wiedzy o pierwiastkach pierwotnych z pierwszego semestru).

Ale $e^{i+j}=1$ wtedy i tylko wtedy, gdy 13|i+j, co jak łatwo widać jest spełnione jedynie dla (i,j)=(0,0) oraz (i,j)=(k,13-k) dla $k=1,2,\ldots,12$. Zatem

$$A^{2} = \begin{pmatrix} 13 & 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & 13 \\ 0 & 0 & 0 & \dots & 13 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 13 & \dots & 0 & 0 \\ 0 & 13 & 0 & \dots & 0 & 0 \end{pmatrix}$$

To przekształcenie zatem przemnaża pierwszą współrzędną przez 13 (w bazie standardowej), zaś pozostałe przemnaża przez 13 i zapisuje wspak (tzn. druga współrzędna staje się trzynastą, trzecia dwunastą, ..., trzynasta drugą).

Zauważmy, że gdy s_1, \ldots, s_{13} będą wektorami bazy standardowej, to wektorami własnymi tego przekształcenia są wektory: s_1 z wartością własną 13, oraz $s_k + s_{15-k}$ dla $k = 2, \ldots, 7$ z wartością własną 13, oraz $s_k - s_{15-k}$ dla $k = 2, \ldots, 7$ z wartością własną -13. Są one oczywiście wszystkie liniowo niezależne, gdyż bardzo łatwo

Krzysztof Pszeniczny

nr albumu: 347208 str. 2/2 Seria: 2

można sprowadzić je do bazy standardowej operacjami elementarnymi, zatem 13 i -13 są jedynymi wartościami własnymi φ^2 i przekształcenie to diagonalizuje się, zaś krotnościami 13 i -13 są odpowiednio 7 i 6.

Teraz zauważmy, że możemy φ zapisać w postaci górnotrójkątnej, zaś podnosząc taką górnotrójkątną macierz do kwadratu uzyskamy, że ona też będzie górnotrójkatna, zaś wartości na diagonali podnosą się do kwadratu – ale to są dokładnie wartości własne φ .

Zatem dokładnie 7 wartości własnych φ ma kwadrat równy 13, zaś dokładnie 6 ma kwadrat równy -13.

Zatem jest s wartości własnych równych $\sqrt{13}$, t równych $-\sqrt{13}$, u równych i $\sqrt{13}$ i v równych $-i\sqrt{13}$.

Jednak wtedy tr $A = (s-t)\sqrt{13} + (u-v)i\sqrt{13}$. Ale ponieważ $|\operatorname{tr} A| = \sqrt{13}$, to $(s-t)^2 + (u-v)^2 = 1$. Zatem $|s-t|, |u-v| \in \{0,1\}$. Jednak u+v=6, zatem i u-v jest parzyste, zatem u=v, analogicznie $s=t\pm 1$.

Stąd łatwo mamy jedynie dwie możliwości: s = 4, t = 3, u = 3, v = 3 oraz s = 3, t = 4, u = 3, v = 3. Jednak w tej drugiej wyznacznik ma znak dodatni, gdyż $(-1)^4 i^3 (-i)^3 = 1$. Zatem wartościami własnymi są $\sqrt{13}$ (czterokrotnie), $-\sqrt{13}$ (trzykrotnie), i $\sqrt{13}$ (trzykrotnie) oraz $-i\sqrt{13}$ (trzykrotnie).

Zadanie 5

Liczbę nazwę ciekawą, jeśli spełnia warunek zadania, tzn. ma same cyfry nieparzyste, a każde dwie kolejne różnią się o dwa. Niech a_n będzie liczbą tych n-cyfrowych liczb ciekawych, które się końcą na 1 lub 9; b_n kończących się na 3 lub 7, zaś c_n – kończących się na 5.

Łatwo teraz mamy, że $a_n = b_{n-1}$, $b_n = a_{n-1} + 2c_{n-1}$ zaś $c_n = b_{n-1}$. Istotnie, każdą liczbę kończącą się na 1 lub 9 mogę uzyskać tylko z liczb kończących się na 3 lub 7 i to na dokładnie jeden sposób. Każdą liczbę kończącą się na 3 lub 7 mogę uzyskać albo z liczby kończącej się na 1 lub 9 (w sposób bijektywny) lub z liczby kończącej się na 5 (tutaj na dwa sposoby – mogę dopisać 3 lub 7), zaś liczbę kończącą się na 5 mogę uzyskać tylko z liczb kończących sie na 3 lub 7.

Stąd łatwo wstawiając mamy $b_n=b_{n-2}+2b_{n-2}=3b_{n-2}.$ Łącząc to z $a_1=2,b_1=2,c_1=1,$ skąd $\alpha_2 = 2, b_2 = 4, c_2 = 2 \text{ mamy } b_{999} = 3^{499}b_1 = 2 \cdot 3^{499}, \ b_{1000} = 3^{499}b_2 = 4 \cdot 3^{499}, \text{ skąd } \alpha_{1000} = c_{1000} = 2 \cdot 3^{499}, \text{ skąd } \alpha_{1000} = c_{1000} = 2 \cdot 3^{499}, \text{ skąd } \alpha_{1000} = c_{1000} = 2 \cdot 3^{499}, \text{ skąd } \alpha_{1000} = c_{1000} = 2 \cdot 3^{499}, \text{ skąd } \alpha_{1000} = c_{1000} = 2 \cdot 3^{499}, \text{ skąd } \alpha_{1000} = c_{1000} = 2 \cdot 3^{499}, \text{ skąd } \alpha_{1000} = c_{1000} = 2 \cdot 3^{499}, \text{ skąd } \alpha_{1000} = c_{1000} = 2 \cdot 3^{499}, \text{ skąd } \alpha_{1000} = c_{1000} = 2 \cdot 3^{499}, \text{ skąd } \alpha_{1000} = c_{1000} = 2 \cdot 3^{499}, \text{ skąd } \alpha_{1000} = c_{1000} = 2 \cdot 3^{499}, \text{ skąd } \alpha_{1000} = c_{1000} = 2 \cdot 3^{499}, \text{ skąd } \alpha_{1000} = c_{1000} = 2 \cdot 3^{499}, \text{ skąd } \alpha_{1000} = c_{1000} = 2 \cdot 3^{499}, \text{ skąd } \alpha_{1000} = c_{1000} = 2 \cdot 3^{499}, \text{ skąd } \alpha_{1000} = c_{1000} = 2 \cdot 3^{499}, \text{ skąd } \alpha_{1000} = c_{1000} = 2 \cdot 3^{499}, \text{ skąd } \alpha_{1000} = c_{1000} = 2 \cdot 3^{499}, \text{ skąd } \alpha_{1000} = 2 \cdot 3^{499}, \text$ zatem wynikiem jest $a_{1000} + b_{1000} + c_{1000} = 8 \cdot 3^{499}$.

Zadanie 6

Oznaczmy $S = M_1 + ... + M_r$.

Mamy wtedy łatwo, że $M_i S = S$, gdyż mnożenie grupy przez jeden z jej elementów permutuje ją.

Sumując to po wszystkich i = 1, 2, ..., r uzyskujemy $(M_1 + ... + M_r)S = rS$, zatem $S^2 = rS$.

Niech v będzie wektorem własnym S (nad ciałem liczb zespolonych) o wartości własnej λ . Wtedy $S^2v = rSv$ daje $\lambda^2 v = r \lambda v$. Z niezerowości v uzyskujemy łatwo, że $\lambda = 0$ lub $\lambda = r$.

Jednak tr $S=\sum \operatorname{tr} M_1=0$, zatem jedyną wartością własną S jest 0 (w przeciwnym razie ślad jako suma wartości własnych z krotnościami byłby dodatnią wielokrotnością r). Niech więc ψ będzie przekształceniem wyznaczanym przez macierz S (w bazach standardowych). Możemy wtedy znaleźć bazę Β, że ψ ma w niej postać górnotrójkatną. Wtedy łatwo musi mieć zera na przekatnej (wartości własne). Stąd w tej bazie łatwo uzyskujemy, że ψ – rid jest pełnego rzędu (ma postać górnotrójkątną z liczbami niezerowymi na przekątnej). Wtedy $\psi^2 = r\psi$, zatem $\psi(\psi - rid) = 0$, jednak ponieważ $\psi - rid$ jest pełnego rzędu, to jest odwracalne, zatem $\psi = 0$, skad S = 0.