TESTE N.º 3 - Proposta de resolução

1.

1.1. O número de casos possíveis pode ser dado por: ${}^{52}A_5$

O número de casos favoráveis pode ser dado por: $^{13}C_4 \times ^{39}C_1 \times 5!$

Logo, a probabilidade é igual a $\frac{^{13}C_4 \times ^{39}C_1 \times 5!}{^{52}A_r} = \frac{^{3346200}}{^{311875200}} = \frac{^{143}}{^{13328}} \approx 0.01.$

1.2. Opção (B)

$$\underbrace{\frac{A \quad F \quad F \quad E \quad A}{4 \times 12 \times 11 \times 10 \times 3}}_{4 \times 12 \times 11 \times 10 \times 3} = {}^{4}A_{2} \times {}^{12}A_{3} = 12 \times 1320 = 15840$$

2.

2.1. Consideremos os acontecimentos:

M: "ser do sexo masculino"

S: "ir para uma estância de esqui nas férias de Natal"

Sabemos que:

•
$$P(M) = \frac{1}{3}$$

•
$$P(M \cap S) = \frac{1}{4}$$

$$P(M|S) = \frac{3}{7}$$

Pretendemos determinar $P(\overline{M} \cap \overline{S})$.

$$P(M|S) = \frac{3}{7} \Leftrightarrow \frac{P(M \cap S)}{P(S)} = \frac{3}{7} \Leftrightarrow \frac{\frac{1}{4}}{P(S)} = \frac{3}{7}$$
$$\Leftrightarrow \frac{\frac{1}{4}}{\frac{3}{7}} = P(S)$$
$$\Leftrightarrow P(S) = \frac{7}{12}$$

Organizando toda a informação numa tabela:

	M	M	Total
S	$\frac{1}{4}$		$\frac{7}{12}$
<u>s</u>			$\frac{5}{12}$
Total	$\frac{1}{3}$	$\frac{2}{3}$	1

$$P(\overline{M}) = 1 - \frac{1}{3} = \frac{2}{3}$$

$$P(\overline{M}) = 1 - \frac{1}{3} = \frac{2}{3}$$

 $P(\overline{S}) = 1 - \frac{7}{12} = \frac{5}{12}$

$$P(\overline{S} \cap M) = \frac{1}{3} - \frac{1}{4} = \frac{1}{12}$$

	M	<u>M</u>	Total
S	$\frac{1}{4}$		$\frac{7}{12}$
<u>s</u>	$\frac{1}{12}$		$\frac{5}{12}$
Total	$\frac{1}{3}$	$\frac{2}{3}$	1

$$P(\overline{S} \cap \overline{M}) = \frac{5}{12} - \frac{1}{12} = \frac{4}{12} = \frac{1}{3}$$

	M	M	Total
S	$\frac{1}{4}$		$\frac{7}{12}$
<u>s</u>	$\frac{1}{12}$	$\frac{1}{3}$	$\frac{5}{12}$
Total	$\frac{1}{3}$	$\frac{2}{3}$	1

Logo, a probabilidade pedida é igual a $\frac{1}{3}$.

2.2. Uma vez que um terço dos alunos é do sexo masculino, se n for o número total de alunos da turma, então $\frac{1}{3}n$ é o número de rapazes da turma. Assim:

$$\frac{\frac{1}{3}n \times \frac{2}{3}n}{{}^{n}C_{2}} = \frac{32}{69} \Leftrightarrow \frac{\frac{2}{9}n^{2}}{\frac{n(n-1)}{2}} = \frac{32}{69} \Leftrightarrow \frac{4n^{2}}{9n(n-1)} = \frac{32}{69}$$
$$\Leftrightarrow \frac{4n}{9(n-1)} = \frac{32}{69}$$
$$\Leftrightarrow 276n = 288n - 288$$
$$\Leftrightarrow -12n = -288$$
$$\Leftrightarrow n = 24$$

Como o número total de alunos da turma é igual a 24, então $\frac{2}{3} \times 24 = 16$ é o número de raparigas da turma.

3. Opção (C)

$$2^n = 4096 \Leftrightarrow 2^n = 2^{12} \Leftrightarrow n = 12$$

Sabemos tratar-se da linha de ordem n=12, logo existem 13 elementos.

O número de casos possíveis é dado $\mathrm{por}^{13}\mathcal{C}_2$.

O número de casos favoráveis é dado por 6×1 , pois, dos 13 elementos, existem 6 conjuntos de dois elementos iguais ($^{12}C_0=^{12}C_{12}$, $^{12}C_1=^{12}C_{11}$, $^{12}C_2=^{12}C_{10}$,..., $^{12}C_5=^{12}C_7$).

Assim, a probabilidade pedida é igual a $\frac{6}{^{13}C_2} = \frac{6}{78} = \frac{1}{13}$.

4.1.
$$f(x) = \sqrt{1-x} - x$$

No domínio considerado, tem-se que:

$$f'(x) = \left(\sqrt{1-x} - x\right)' = \left((1-x)^{\frac{1}{2}}\right)' - x' = \frac{1}{2}(1-x)^{\frac{1}{2}-1} \times (1-x)' - 1 =$$

$$= -\frac{1}{2}(1-x)^{-\frac{1}{2}} - 1$$

$$f''(x) = \left(-\frac{1}{2}(1-x)^{-\frac{1}{2}} - 1\right)' = -\frac{1}{2} \times \left(-\frac{1}{2}\right) \times (1-x)^{-\frac{1}{2}-1} \times (1-x)' - 0 =$$

$$= \frac{1}{4} \times (1-x)^{-\frac{3}{2}} \times (-1) =$$

$$= -\frac{1}{4} \times (1-x)^{-\frac{3}{2}} =$$

$$= -\frac{1}{4\sqrt{(1-x)^3}}$$

Como $f''(x) < 0, \forall x \in]-\infty, 1[$, conclui-se que o gráfico de f tem a concavidade voltada para baixo em todo o seu domínio.

4.2. Opção (C)

Temos que $\lim_{x\to 0} f(x) = \sqrt{1-0} - 0 = 1$ e $\lim_{x\to 0} g(x) = -\infty$.

Assim:

$$\lim_{x\to 0} \frac{f(x)}{g(x)} = \frac{1}{-\infty} = 0$$
 (a opção (A) é verdadeira.)

$$\lim_{x\to 0} \frac{g(x)}{f(x)} = \frac{-\infty}{1} = -\infty$$
 (a opção (B) é verdadeira.)

Também sabemos que:

$$\lim_{x \to -\infty} f(x) = \sqrt{1 - (-\infty)} - (-\infty) = +\infty + (+\infty) = +\infty$$

e:

$$\lim_{x\to -\infty} g(x) = 0^-$$

Assim, $\lim_{x\to-\infty}\frac{f(x)}{g(x)}=\frac{+\infty}{0^-}=-\infty$ e não $+\infty$, como é apresentado na opção (C) que é, por isso,

$$\lim_{x\to-\infty}\frac{g(x)}{f(x)}=\frac{0^-}{+\infty}=0$$
 (a opção (D) é verdadeira.)

4.3.
$$h(x) = \frac{f(x)}{x} = \frac{\sqrt{1-x}-x}{x}$$
 $D_h =]-\infty, 1[\setminus \{0\}]$

Assíntotas verticais

$$\lim_{x \to 1^{-}} h(x) = \frac{\sqrt{1-1}-1}{1} = -1$$

$$\lim_{x \to 0} h(x) = \frac{\sqrt{1 - 0} - 0}{0} = \frac{1}{0}$$

Se $x \to 0^+$, $\lim_{x \to 0^+} h(x) = +\infty$.

Se
$$x \to 0^-$$
, $\lim_{x \to 0^-} h(x) = -\infty$.

A reta de equação x = 0 é assíntota vertical ao gráfico de h e é a única assíntota vertical, visto a função h ser contínua em todos os pontos do seu domínio, já que se trata do quociente de funções contínuas.

Assíntotas não verticais

Como o domínio de h é limitado superiormente, só faz sentido procurar assíntota não vertical quando $x \to -\infty$:

$$\lim_{x \to -\infty} h(x) = \lim_{x \to -\infty} \frac{\sqrt{1 - x} - x}{x} \stackrel{\binom{\infty}{\infty}}{=} \lim_{x \to -\infty} \left(\frac{\sqrt{1 - x}}{x} - \frac{x}{x} \right) = \lim_{x \to -\infty} \frac{\sqrt{x^2 \left(\frac{1}{x^2} - \frac{1}{x} \right)}}{x} - 1 =$$

$$= \lim_{x \to -\infty} \frac{|x| \sqrt{\frac{1}{x^2} - \frac{1}{x}}}{x} - 1 =$$

$$= \lim_{x \to -\infty} \frac{-x \sqrt{\frac{1}{x^2} - \frac{1}{x}}}{x} - 1 =$$

$$= -\sqrt{\frac{1}{x^2} - \frac{1}{x^2}} - 1 =$$

$$= -\sqrt{0} - 1 =$$

$$= -1$$

A reta de equação y = -1 é assíntota horizontal ao gráfico de h quando $x \to -\infty$.

5.

5.1. Opção (B)

f é contínua em x=0 se existir $\lim_{x\to 0} f(x)$, isto é, se $\lim_{x\to 0^-} f(x) = \lim_{x\to 0^+} f(x) = f(0)$.

•
$$f(0) = \cos^2 0 - \sin 0 = 1 - 0 = 1$$

$$\bullet \quad \lim_{x \to 0^+} (\cos^2 x - \sin x) = 1$$

•
$$\lim_{x \to 0^{-}} \left(\frac{\cos^{4} x - 1}{2x} + 2k \right) \stackrel{\binom{0}{0}}{=} \lim_{x \to 0^{-}} \frac{(\cos^{2} x + 1)(\cos^{2} x - 1)}{2x} + 2k =$$

$$= \lim_{x \to 0^{-}} \frac{\cos^{2} x + 1}{2} \times \lim_{x \to 0^{-}} \frac{\cos^{2} x - 1}{x} + 2k =$$

$$= \frac{1 + 1}{2} \times \lim_{x \to 0^{-}} \frac{-\sin^{2} x}{x} + 2k =$$

$$= -1 \times \lim_{\substack{x \to 0^{-} \\ \text{limite notável}}} \frac{\text{sen}x}{x} \times \lim_{x \to 0^{-}} \text{sen}x + 2k =$$

$$= -1 \times 1 \times \text{sen}0 + 2k =$$

$$= 2k$$

Para que 2k = 1, tem-se que $k = \frac{1}{2}$.

5.2. Em $\left[0, \frac{3\pi}{2}\right]$, tem-se que:

$$f'(x) = (\cos^2 x - \sin x)' = 2\cos x \times (\cos x)' - (\sin x)' =$$

$$= 2\cos x \times (-\sin x) - \cos x =$$

$$= -2\sin x \times \cos x - \cos x$$

$$f'(x) = 0$$

$$-2 \operatorname{sen} x \cos x - \cos x = 0$$

$$\Leftrightarrow \cos x(-2\sin x - 1) = 0$$

$$\Leftrightarrow \cos x = 0 \quad \forall \quad -2 \operatorname{sen} x - 1 = 0$$

$$\Leftrightarrow \cos x = 0 \quad \forall \ \text{sen} x = -\frac{1}{2}$$

$$\Leftrightarrow x = \frac{\pi}{2} + k\pi \quad \forall \ x = -\frac{\pi}{6} + 2k\pi \quad \forall \ x = \frac{7\pi}{6} + 2k\pi, k \in \mathbb{Z}$$

Em $\left]0, \frac{3\pi}{2}\right]$, os zeros de f' são $\frac{\pi}{2}, \frac{3\pi}{2}$ e $\frac{7\pi}{6}$.

x	0		$\frac{\pi}{2}$		$\frac{7\pi}{6}$		$\frac{3\pi}{2}$
Sinal de f'		_	0	+	0	_	0
Variação de f		>	mín.	1	Máx.	>	mín.

Cálculos auxiliares

$$f'\left(\frac{\pi}{4}\right) = -2\operatorname{sen}\left(\frac{\pi}{4}\right)\operatorname{cos}\left(\frac{\pi}{4}\right) - \operatorname{cos}\left(\frac{\pi}{4}\right) = -2\frac{\sqrt{2}}{2} \times \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} < 0$$

$$f'(\pi) = -2\operatorname{sen}(\pi)\operatorname{cos}(\pi) - \operatorname{cos}(\pi) = 0 - (-1) = 1 > 0$$

$$f'\left(\frac{5\pi}{4}\right) = -2\operatorname{sen}\left(\frac{5\pi}{4}\right)\operatorname{cos}\left(\frac{5\pi}{4}\right) - \operatorname{cos}\left(\frac{5\pi}{4}\right) = -2 \times \left(-\frac{\sqrt{2}}{2}\right) \times \left(-\frac{\sqrt{2}}{2}\right) - \left(-\frac{\sqrt{2}}{2}\right) = -1 + \frac{\sqrt{2}}{2} < 0$$

$$f\left(\frac{3\pi}{2}\right) = \cos^2\left(\frac{3\pi}{2}\right) - \operatorname{sen}\left(\frac{3\pi}{2}\right) = 0 - (-1) = 1$$

$$f\left(\frac{\pi}{2}\right) = \cos^2\left(\frac{\pi}{2}\right) - \operatorname{sen}\left(\frac{\pi}{2}\right) = 0 - 1 = -1$$

$$f\left(\frac{7\pi}{6}\right) = \cos^2\left(\frac{7\pi}{6}\right) - \operatorname{sen}\left(\frac{7\pi}{6}\right) = \left(-\frac{\sqrt{3}}{2}\right)^2 - \left(-\frac{1}{2}\right) = \frac{3}{4} + \frac{1}{2} = \frac{5}{4}$$

f é decrescente em $\left[0,\frac{\pi}{2}\right]$ e em $\left[\frac{7\pi}{6},\frac{3\pi}{2}\right]$. f é crescente em $\left[\frac{\pi}{2},\frac{7\pi}{6}\right]$.

-1 e 1 são mínimos de f e $\frac{5}{4}$ é máximo.

5.3. Opção (D)

A equação reduzida da reta t é da forma y = mx + b, onde $m = f'(\pi)$.

Como, para x > 0, se tem $f'(x) = -2 \operatorname{sen} x \cos x - \cos x$ (determinado na alínea anterior), então $m = f'(\pi) = -2 \operatorname{sen} \pi \cos \pi - \cos \pi = 0 - (-1) = 1$.

Assim, y = x + b.

Como o ponto de coordenadas $(\pi, f(\pi)) = (\pi, 1)$ pertence à reta t, então:

$$f(\pi) = \cos^2 \pi - \sin \pi = 1 - 0 = 1$$

$$1 = \pi + b \Leftrightarrow b = 1 - \pi$$

Assim, $y = x + 1 - \pi$ é a equação reduzida da reta t.

A interseção da reta t com o eixo das abcissas é o ponto de coordenadas ($\pi - 1,0$), já que:

$$0 = x + 1 - \pi \Leftrightarrow x = \pi - 1$$

Assim, a equação reduzida da reta p é da forma y=mx+b, onde $m=-\frac{1}{m_t}=-1$.

Logo, y = -x + b.

Como o ponto $(\pi - 1,0)$ pertence à reta p, então:

$$0 = -(\pi - 1) + b \Leftrightarrow b = \pi - 1$$

A equação reduzida da reta p é $y = -x + \pi - 1$.

6. Comecemos por determinar o declive da reta AB: $A(a, \sqrt{a+1}-1)$ e $B(2a, \sqrt{2a+1}-1)$

$$m_{AB} = \frac{\sqrt{2a+1} - 1 - \sqrt{a+1} + 1}{2a - a} = \frac{\sqrt{2a+1} - \sqrt{a+1}}{a}$$

A reta AB será paralela à reta definida por y=ax se e só se $\frac{\sqrt{2a+1}-\sqrt{a+1}}{a}=a$, o que é equivalente a $\frac{\sqrt{2a+1}-\sqrt{a+1}}{a}-a=0$.

Consideremos a função g, de domínio $\left[\frac{1}{4},1\right]$, definida por $g(x)=\frac{\sqrt{2x+1}-\sqrt{x+1}}{x}-x$.

- g é contínua em $\left[\frac{1}{4},1\right]$, por se tratar da diferença entre duas funções contínuas.
- $g\left(\frac{1}{4}\right) = \frac{\sqrt{\frac{1}{2}+1} \sqrt{\frac{1}{4}+1}}{\frac{1}{4}} \frac{1}{4} = 4\left(\sqrt{\frac{3}{2}} \sqrt{\frac{5}{4}}\right) \frac{1}{4} \approx 0,177$

$$g(1) = \frac{\sqrt{2+1} - \sqrt{1+1}}{1} - 1 = \sqrt{3} - \sqrt{2} - 1 \approx -0.682$$

$$g(1) < 0 < g\left(\frac{1}{4}\right)$$

Logo, pelo teorema de Bolzano-Cauchy, concluímos que:

$$\exists a \in \left| \frac{1}{4}, 1 \right| : g(a) = 0$$

isto é:

$$\exists a \in \left] \frac{1}{4}, 1 \right[: \frac{\sqrt{2a+1} - \sqrt{a+1}}{a} - a = 0$$

$$\Leftrightarrow \exists a \in \left] \frac{1}{4}, 1 \right[: \frac{\sqrt{2a+1} - \sqrt{a+1}}{a} = a$$

7. Sabemos que:

$$d(3\alpha) = d(\alpha) - 0.1d(\alpha), \quad 0^{\circ} < \alpha < 120^{\circ}$$

$$\Leftrightarrow d(3\alpha) = 0.9d(\alpha), \quad 0^{\circ} < \alpha < 120^{\circ}$$

$$\Leftrightarrow \frac{8.63}{1 + 0.09\cos(3\alpha)} = 0.9 \times \frac{8.63}{1 + 0.09\cos(\alpha)}$$

Recorrendo às capacidades gráficas da calculadora, e usando x como variável independente, tem-se:

O valor de α é, aproximadamente, 109,7°.