

Description

These N-Channel enhancement mode power field effect transistors are using split gate trench DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and with stand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency fast switching applications.

Features

- 100V,80A, $R_{DS(on),max} = 8.0 \text{m}\Omega @V_{GS} = 10V$
- Improved dv/dt capability
- Fast switching
- ♦ 100% EAS Guaranteed
- Green device available

Applications

- Motor Drives
- UPS
- ◆ DC-DC Converter

Product Summary

 $\begin{array}{ll} V_{DSS} & 100V \\ R_{DS(on),max} @ V_{GS} {=} 10V & 8.0 m\Omega \\ I_D & 80A \end{array}$

Pin Configuration

TO-252

Schematic

Absolute Maximum Ratings T_C = 25°C unless otherwise noted

Parameter	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	100	V
Continuous drain current (T _C = 25°C)	ID	80	Α
Continuous drain current (T _C = 100°C)		56	Α
Pulsed drain current ¹⁾	I _{DM}	320	Α
Gate-Source voltage	V _{GSS}	±20	V
Avalanche energy ²⁾	Eas	132	mJ
Power Dissipation (T _C = 25°CO) C C TO-220	P _D	113	W
Storage Temperature Range	T _{STG}	-55 to +150	°C
Operating Junction Temperature Range	TJ	-55 to +150	°C

Thermal Characteristics

Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-CaSeC C TO-220	R _{eJC}	1.1	°C/W
Thermal Resistance, Junction-to-Ambien€ C TO-220	Reja	62	°C/W

Package Marking and Ordering Information

Device	Device Package	Marking	Units/Reel
VST10N080-T2	TO-252	VST10N080-T2	2500

Electrical Characteristics T_J = 25°C unless otherwise noted

Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Static characteristics	'					,
Drain-source breakdown voltage	BV _{DSS}	V _{GS} =0 V, I _D =250uA	100			V
Gate threshold voltage	V _{GS(th)}	V _{DS} =V _{GS} , I _D =250uA	2	3	4	V
Drain-source leakage current	I _{DSS}	V _{DS} =100 V, V _{GS} =0V, T _J = 25°C			1	μA
Gate leakage current, Forward	I _{GSSF}	V _{GS} =20 V, V _{DS} =0 V			100	nA
Gate leakage current, Reverse	I _{GSSR}	V _{GS} =-20 V, V _{DS} =0 V			-100	nA
Drain-source on-state resistance	R _{DS(on)}	V _{GS} =10 V, I _D =30 A		7.1	8.0	mΩ
Forward transconductance	g _{fs}	V _{DS} =5V , I _D =30A		65		S
Dynamic characteristics	'					,
Input capacitance	C _{iss}			1895		
Output capacitance	Coss	$V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V},$		572.5		pF
Reverse transfer capacitance	C _{rss}	- F = 1MHz		11.8		
Turn-on delay time	t _{d(on)}			16.6		ns
Rise time	t _r	$V_{DD} = 50V, V_{GS} = 10V, I_D = 30A$		20		
Turn-off delay time	t _{d(off)}			68		
Fall time	t _f			20.8		
Gate resistance	Rg	V _{GS} =0V, V _{DS} =0V, F=1MHz		1.7		Ω
Gate charge characteristics						
Gate to source charge	Q _{gs}			10		
Gate to drain charge	Q_{gd}	V _{DS} =50 V, I _D =50A,		4.2		nC
Gate charge total	Qg	- V _{GS} = 10 V		28.3		
Drain-Source diode characteris	stics and Maxi	mum Ratings				
Continuous Source Current	Is				80	А
Pulsed Source Current ³⁾	Ism				320	А
Diode Forward Voltage	V _{SD}	V _{GS} =0V, I _S =30A, T _J =25℃		0.9		V
Reverse Recovery Time	t _{rr}	I _S =30A, di/dt=100A/us,		50		ns
Reverse Recovery Charge	Q _{rr}			72		nC

Notes:

- 1: Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2: V_{DD} =50V, V_{GS} =10V, L=0.5mH, I_{AS} =23A, R_G =25 Ω , Starting T_J =25 $^{\circ}$ C.
- 3: Pulse Test: Pulse Width $\leqslant\!300\mu\text{s},$ Duty Cycle $\!\leqslant\!2\%.$

Electrical Characteristics Diagrams

Figure 1.On-Region Characteristics

Figure 3.Body-Diode Characteristics

Figure 5.Rds(on) vs. Gate Voltage

Figure 2. Transfer Characteristics

Figure 4.On-Resistance Variation vs.Drain Current

Figure 6.On-Resistance vs.Temperature

Figure 7. Threshold Voltage vs. Temperature

Figure 8. Breakdown Voltage vs. Temperature

Figure 9. Capacitance Characteristics

Figure 10. Gate Charge Characteristics

Fig 11: Drain Current Derating

Figure 12: Power Dissipation

Figure 14. Normalized Maximum Transient Thermal Impedance (RthJC)

Test Circuit & Waveform

Figure 15. Gate Charge Test Circuit & Waveform

Figure 16. Resistive Switching Test Circuit & Waveform

Figure 17. Unclamped Inductive Switching (UIS) Test Circuit & Waveform

Figure 18. Diode Recovery Circuit & Waveform

