알고리즘 스터디 10회

Union Find를 알아보자

CONTENTS

01	Union Find란
02	집합이란
03	Union Find 로직
04	Union Find 시뮬레이션
05	Union Find 코드
06	Union Find 활용
07	간단한 예제

Union FInd란

Union Find 알고리즘이란

주어진 그래프에서 각 노드가 서로 연결되어 있으면 Union 즉 집합이라고 합니다

같은 집합인지 판별하는 것과 서로 다른 집합을 합칠 수 있는 것을 Union Find 알고리즘이라고 합니다.

- ✓ 시간 복잡도: N
- ❤ 가장 작은 노드가 대표 값
- 최소 스패닝 트리 알고리즘의 기초

집합이란

현재 집합의 개수는 ?

집합이란

현재 집합의 개수는 ?

집합이란

현재 집합의 개수는 ?

Union Find 로직

현재 집합 중 가장 작은 수가 집합의 번호

Union Find 로직

각 집합의 번호는?

Union Find 로직

Union Find 로직

각 집합의 번호는?

Union Find 로직

1	2	3	4	5	6	7	8	9	10

	1	2	3	4	5	1	7	8	9	10
ı										

1 2 3 4	1 7	8 9	10
---------	-----	-----	----

Union Find 시뮬레이션

더 작은 노드가 부모로 움직임

Union Find 시뮬레이션

5

Union Find 시뮬레이션

5가 속한 그룹의 대표 = 3

Union Find 시뮬레이션

3으로 다시 연결

Union Find 시뮬레이션

2가 속한 그룹 대표 = 1 5가 속한 그룹 대표 = 3

Union Find 시뮬레이션

1 < 3

Union Find 시뮬레이션

각 부모를 찾아 올라가면 대표의 번호가 나오게 됨

5의 대표를 찾는 경우

5의 부모는 3

3의 부모는 1

Union Find 시뮬레이션 - 조회시 시간을 좀 더 줄여보자

부모가 없으니 1이 대표

대표가 1임을 기억

Union Find 시뮬레이션 - 조회시 시간을 좀 더 줄여보자

대표가 1이라는 것을 알고 연결

대표가 1이라는 것을 알고 연결

Union Find 코드

```
int a = find(start, g);
int b = find(end, g);

if (a == b) {
    // 같을 경우 처리
}

g[Math.max(a, b)] = Math.min(a, b);
```

그룹을 합치는 코드

```
int findGroup(int n, int[] group) {
   if (group[n] != n) group[n] = findGroup(group[n], group);
   return group[n];
}
```

대표를 찾는 재귀 코드

Union Find의 활용

싸이클 체크

싸이클 유무를 체크할 수 있습니다.

간선을 순서대로 탐색할 때
어떤 간선이
이미 같은 그룹을 잇는 경우 싸이클이
만들어지는 간선입니다.

최소 신장 트리

최소 신장 트리 관련 알고리즘을 통해 최소 신장 트리를 찾을 수 있습니다. 예) 크루스칼, 프림 알고리즘

간단한 예제

boj.ma/1717

집합의 표현 성공 스페셜 저지

 \Rightarrow

시간 제한	메모리 제한	제출	정답	맞힌 사람	정답 비율
2초	128 MB	118236	38496	23516	28.687%

문제

초기에 n+1개의 집합 $\{0\},\{1\},\{2\},\ldots,\{n\}$ 이 있다. 여기에 합집합 연산과, 두 원소가 같은 집합에 포함되어 있는지를 확인하는 연산을 수행하려고 한다.

집합을 표현하는 프로그램을 작성하시오.

입력

첫째 줄에 n, m이 주어진다. m은 입력으로 주어지는 연산의 개수이다. 다음 m개의 줄에는 각각의 연산이 주어진다. 합집합은 0~a~b의 형태로 입력이 주어진다. 이는 a가 포함되어 있는 집합과, b가 포함되어 있는 집합을 합친다는 의미이다. 두 원소가 같은 집합에 포함되어 있는지를 확인하는 연산은 $1\ a\ b$ 의 형태로 입력이 주어진다. 이는 a와 b가 같은 집합에 포함되어 있는지를 확인하는 연산이다.

출력

1로 시작하는 입력에 대해서 a와 b가 같은 집합에 포함되어 있으면 " YES " 또는 " yes "를, 그렇지 않다면 " N0 " 또는 " no "를 한 줄에 하나씩 출력한다.