CS 4248 Natural Language Processing

Professor NG Hwee Tou

Department of Computer Science
School of Computing
National University of Singapore
nght@comp.nus.edu.sg

Materials

• NNM4NLP Chapter 3, 4

Limitations of Linear Models

- XOR problem
- No parameters $w \in \mathbb{R}^2$, $b \in \mathbb{R}$ such that

$$(0,0) \cdot w + b < 0$$

 $(1,1) \cdot w + b < 0$
 $(0,1) \cdot w + b \ge 0$
 $(1,0) \cdot w + b \ge 0$

 No straight line can separate the two classes

Limitations of Linear Models

Apply a nonlinear input transformation:

$$\phi(x_1, x_2) = [x_1 + x_2, x_1 \times x_2]$$

 ϕ maps the data into a representation suitable for linear classification

$$\hat{y} = \phi(x)W + b$$

Limitations of Linear Models

Another effective mapping function:

$$\phi(\mathbf{x}) = g(\mathbf{x}\mathbf{W}' + \mathbf{b}')$$
 $\mathbf{W}' = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$
 $\mathbf{b}' = (0 & -1)$
 $g(\mathbf{x}) = \max(0, \mathbf{x}) = \text{ReLU}(\mathbf{x})$ applied to each dimension

- Many neuron-like threshold units
- Many weighted connections among units
- Highly parallel and distributed processing
- Automatic weight tuning

Perceptron

A linear model

$$NN_{Perceptron}(x) = xW + b$$

$$\boldsymbol{x} \in \mathbb{R}^{d_{in}} \quad \boldsymbol{W} \in \mathbb{R}^{d_{in} \times d_{out}} \quad \boldsymbol{b} \in \mathbb{R}^{d_{out}}$$

Parameters:

W: weight matrix

b: bias term

Multilayer perceptron (MLP) with one hidden layer

$$NN_{\text{MLP1}}(x) = g(xW^{1} + b^{1})W^{2} + b^{2}$$

$$x \in \mathbb{R}^{d_{in}} \quad W^{1} \in \mathbb{R}^{d_{in} \times d_{1}} \quad b^{1} \in \mathbb{R}^{d_{1}}$$

$$W^{2} \in \mathbb{R}^{d_{1} \times d_{2}} \quad b^{2} \in \mathbb{R}^{d_{2}}$$

g: nonlinear activation function

Multilayer perceptron with one hidden layer

$$NN_{MLP1}(x) = g(xW^1 + b^1)W^2 + b^2$$

- First layer transforms the data into a good representation $g(xW^1 + b^1)$
- Second layer applies a linear classifier to that representation

Multilayer perceptron with two hidden layers

$$NN_{MLP2}(x) = (g^2(g^1(xW^1 + b^1)W^2 + b^2))W^3 + b^3$$

Equivalently,

$$h^{1} = g^{1}(xW^{1} + b^{1})$$
 $h^{2} = g^{2}(h^{1}W^{2} + b^{2})$
 $y = h^{2}W^{3} + b^{3}$
 $NN_{MLP2}(x) = y$

- NNs with many hidden layers: "deep" NNs ("deep" learning)
- Output of a NN: d_{out} dimensional vector
- $d_{out} = 1$: regression (scoring)
- Binary classification: sign() = 1 or -1
- $d_{out} = k$: k-class classification (find the dimension (class) with the maximal value)
- $d_{out} = k$: softmax() transforms output vector into a probability distribution

Representation Power

• MLP1 is a universal approximator – it can approximate with any desired non-zero amount of error a family of functions that includes all continuous functions on a closed and bounded subset of \mathbb{R}^n , and any function mapping from any finite dimensional discrete space to another.

Representation Power

- The theory states that a representation exists but does not say how easy or hard it is to set the parameters
- Does not guarantee that a training algorithm will find the correct function
- Does not state how large the hidden layer should be
 - There exist NNs with many layers of bounded size that cannot be approximated by NNs with fewer layers unless these layers are exponentially large

Representation Power

 In practice, it is beneficial to use more complex architectures than MLP1

Activation Functions

- Sigmoid (logistic)
- tanh
- Hard tanh
- Rectified linear unit (ReLU)

Sigmoid Function

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Sigmoid function

Nice property:

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

$$\sigma'(x) = \frac{e^{-x}}{(1 + e^{-x})^2} = \frac{1}{1 + e^{-x}} \cdot (1 - \frac{1}{1 + e^{-x}})$$

$$\sigma'(x) = \sigma(x) \cdot (1 - \sigma(x))$$

Hyperbolic Tangent (tanh)

$$\tanh(x) = \frac{e^{2x} - 1}{e^{2x} + 1} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

Hyperbolic Tangent (tanh)

Nice property:

$$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

$$\frac{d}{dx}\tanh(x) = \frac{(e^x + e^{-x})^2 - (e^x - e^{-x})^2}{(e^x + e^{-x})^2}$$
$$= 1 - \left(\frac{e^x - e^{-x}}{e^x + e^{-x}}\right)^2 = 1 - [\tanh(x)]^2$$

Hard Hyperbolic Tangent

$$hardtanh(x) = \begin{cases} -1 & x < -1 \\ 1 & x > 1 \\ x & otherwise \end{cases}$$

Rectified Linear Unit (ReLU)

ReLU(x) = max(0, x) =
$$\begin{cases} 0 & x < 0 \\ x & \text{otherwise} \end{cases}$$

Activation Functions

Dropout Regularization for NNs

- Prevent a NN from overfitting the training data (prevent it from learning to rely on specific weights)
- Randomly dropping (setting to 0) some of the neurons in the NN during stochastic gradient descent

Dropout Regularization for NNs

$$h^{1} = g^{1}(xW^{1} + b^{1})$$

$$m^{1} \sim \text{Bernoulli}(r^{1})$$

$$\tilde{h}^{1} = m^{1} \odot h^{1}$$

$$h^{2} = g^{2}(\tilde{h}^{1}W^{2} + b^{2})$$

$$m^{2} \sim \text{Bernoulli}(r^{2})$$

$$\tilde{h}^{2} = m^{2} \odot h^{2}$$

$$y = \tilde{h}^{2}W^{3} + b^{3}$$

 $NN_{MLP2}(x) = y$

Without dropout:

$$h^{1} = g^{1}(xW^{1} + b^{1})$$

 $h^{2} = g^{2}(h^{1}W^{2} + b^{2})$
 $y = h^{2}W^{3} + b^{3}$
 $NN_{MLP2}(x) = y$

 m^1 , m^2 : random masking vectors (elements = 0 or 1)

⊙: element—wise multiplication