University of Manchester Al ML Society - Introduction to ML

Workshop 4 20th of November 2019

Intro to ML timetable

Workshop 1 - Introduction to Machine Learning

Workshop 2 - Data preprocessing

Workshop 3 - Fundamental Algorithms I

Workshop 4-5 - Neural Networks Part I

Workshop 6 - Neural Networks Part II

Today's session

- Revise logistic regression, gradient descent
- Neural network architecture
- Backpropagation
- Activation functions + batches

What is modeling?

- Come up with a model that describes data
- Measure how it describes the data
- Calculate error = difference of real data vs model
- Find model with lowest error

 \Rightarrow This is <u>exactly</u> what we are doing with neural networks

Logistic regression and gradient descent

Recall logistic regression and gradient descent

- Binary classification linear model + sigmoid function
- Formalizing the problem using negative log likelihood
- 2nd line is the error we are trying to minimize

$$NLL(w) = -\sum_{i=1}^{N} log[\mu_i^{I(y_i=1)} * (1 - \mu_i)^{I(y_i=0)}]$$
$$= -\sum_{i=1}^{N} [y_i log \mu_i + (1 - y_i) log(1 - \mu_i)]$$

where

$$\mu_i = sigm(w^T x_i)$$

Gradient descent

Gradient descent for logistic regression

Gradient:

$$g(w) = \frac{\partial (Err(w))}{\partial w} = -\sum_{i=1}^{N} x_i (y_i - \sigma(w^T x_i))$$

Gradient descent:

Given initial vector
$$w_0$$
do for k=1, 2, ...
$$w_{k+1} = w_k - \alpha_k * g(w_k)$$
stop if:
$$|w_{k+1} - w_k| < \epsilon$$

Artificial neural networks

Artificial neural networks

= stacking multiple logistic regressions and training simultaneously

ANN - hidden layers

ANN - hidden layers

ANN- output layer

Output's activation funciton

- We can use ANNs for linear regression out(z) = z
- Or for binary classification out(z) = sigmoid(z)
- Or for multi label classification with multiple output nodes

Architecture properties

- We can have multiple hidden layers
- No cross connection between nodes in a layer
- No backward connection
- Usually fully connected

Multiple layers

$$\begin{split} \mathbf{h}^0 &= \mathbf{x} & \text{Initialize} \\ &\text{for i=1...H:} & \text{Compute each hidden} \\ &\mathbf{h}^{(i)} = \sigma(\mathbf{W}^{(i)}\mathbf{h}^{(i-1)} + \mathbf{b}^{(i)}) & \text{layer sequentially} \\ &\hat{\mathbf{y}} = \phi_{\text{out}}(\mathbf{W}_{\text{out}}\mathbf{h}^{(H)} + \mathbf{b}_{\text{out}}) & \text{Compute the output} \end{split}$$

- So now we only left one thing to do and that finding the optimal weights
- Optimal weights = lowest error
- -> use gradient descent

Backpropagation

Recall Gradient descent

- Calculates error, takes the derivative
- Modifies the weight by the gradient times a number
- ANN: each layer depends on the previous one
- If we change something, it will have a domino effect
- Want to calculate each edges share to the error
- How can we do this fast?

```
Given initial vector w_0
do for k=1, 2, ...
w_{k+1} = w_k - \alpha_k * g(w_k)
stop if:
|w_{k+1} - w_k| < \epsilon
```

$$\begin{split} \mathbf{h}^0 &= \mathbf{x} & \text{Initialize} \\ \text{for i=1...H:} & \text{Compute each hidden} \\ \mathbf{h}^{(i)} &= \sigma(\mathbf{W}^{(i)}\mathbf{h}^{(i-1)} + \mathbf{b}^{(i)}) & \text{layer sequentially} \\ \hat{\mathbf{y}} &= \phi_{\text{out}}(\mathbf{W}_{\text{out}}\mathbf{h}^{(H)} + \mathbf{b}_{\text{out}}) & \text{Compute the output} \end{split}$$

Backpropagation

- Forward mode
 - Goes from source(s) to sink.
 - At each node, sum all the incoming edges/derivatives.
- Reverse mode:
 - Goes from sink to source(s).
 - At each node, sum all the outgoing edges/derivatives.
- Both only touch each edge once!

Derivatives

Calculate X's effect on Z:

$$\frac{\partial Z}{\partial X} = \alpha \delta + \alpha \epsilon + \alpha \zeta + \beta \delta + \beta \epsilon + \beta \zeta + \gamma \delta + \gamma \epsilon + \gamma \zeta$$

$$\frac{\partial Z}{\partial X} = (\alpha + \beta + \gamma)(\delta + \epsilon + \zeta)$$

Backpropagation

- Forward mode
 - Goes from source(s) to sink.
 - At each node, sum all the incoming edges/derivatives.
- Reverse mode:
 - Goes from sink to source(s).
 - At each node, sum all the outgoing edges/derivatives.
- Both only touch each edge once!

Putting everything together

What we have so far

- Multiple logistic regressions
- Lot of nodes and layers
- Backpropagation
- We can use backpropagation for calculating every derivative in one go

We just put everything together and use gradient descent for the optimization

Putting everything together

- Initialize all weights to small random numbers.
- Repeat until convergence:
 - Pick a training example, x.
 - Feed example through network to compute output y.
 - For the output unit, compute the correction:

$$\frac{\partial J}{\partial \mathbf{w}_{\mathrm{out}}} = \delta_{\mathrm{out}} \mathbf{x}$$

For each hidden unit *j*, compute its share of the correction:

$$\frac{\partial J}{\partial \mathbf{w}_j} = \delta_{\text{out}} w_{out,j} \sigma(\mathbf{w}_j^{\top} \mathbf{x} + b) (1 - \sigma(\mathbf{w}_j^{\top} \mathbf{x} + b)) \mathbf{x}$$

Update each network weight:
$$\mathbf{w}_j = \mathbf{w}_j - \alpha \frac{\partial J}{\partial \mathbf{w}_j} \ \forall j, \qquad \mathbf{w}_{out} = \mathbf{w}_{out} - \alpha \frac{\partial J}{\partial \mathbf{w}_{out}}$$

Activation functions

Activation Functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

tanh(x)

ReLU

 $\max(0, x)$

Leaky ReLU

 $\max(0.1x, x)$

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Batches

- How often we update the weights?
- Every training example?
- After the whole data-set
- In between : mini-batch

Questions?

- Multiple logistic regression
- Trained together
- By gradient descent
- Using backpropagation

- Batches
- Activation functions

Thank you!

Resources:

- http://colah.github.io/posts/2015-08-Backprop/
- https://www.cs.mcgill.ca/~wlh/comp551/