ю.е. нестеров

метод решения задачи выпуклого программирования со скоростью сходимости $O\left(\frac{1}{k^2}\right)$

(Представлено академиком Л.В. Канторовичем 9 VII 1982)

- 1. В статье предлагается метод решения задачи выпуклого программирования в гильбертовом пространстве E. В отличие от большинства методов выпуклого программирования, предлагавшихся ранее, этот метод строит минимизирующую последовательность точек $\{x_k\}_{k=0}^{\infty}$, которая не является релаксационной. Эта особенность позволяет свести к минимуму вычислительные затраты на каждом шаге. В то же время для такого метода удается получить неулучшаемую на рассматриваемом классе задач оценку скорости сходимости (см. [1]).
- 2. Рассмотрим сначала задачу безусловной минимизации выпуклой функции f(x). Мы будем предполагать, что функция f(x) принадлежит классу $C^{1,1}(E)$, т.е. что существует константа L>0, для которой при всех $x, y \in E$ выполняется неравенство
- (1) $||f'(x)-f'(y)|| \le L||x-y||$.

Из неравенства (1) следует, что при всех $x, y \in E$

(2)
$$f(y) \le f(x) + \langle f'(x), y - x \rangle + 0.5L \|y - x\|^2$$
.

Для решения задачи $\min\{f(x) \mid x \in E\}$ с непустым множеством минимумов X^* предлагается следующий метод.

- 0) Выбираем точку $y_0 \in E$. Полагаем
- (3) k=0, $a_0=1$, $x_{-1}=y_0$, $\alpha_{-1}=\|y_0-z\|/\|f'(y_0)-f'(z)\|$,

где z — любая точка из $E, z \neq y_0 f'(z) \neq f'(y_0)$.

- 1) k-я Итерация.
- а) Вычисляем наименьший номер $i \ge 0$, для которого выполняется неравенство

(4)
$$f(y_k) - f(y_k - 2^{-i}\alpha_{k-1}f'(y_k)) \ge 2^{-i-1}\alpha_{k-1} \|f'(y_k)\|^2$$
.

б) Полагаем

$$\alpha_k = 2^{-i}\alpha_{k-1}, x_k = y_k - \alpha_k f'(y_k),$$

(5)
$$a_{k+1} = (1 + \sqrt{4a_k^2 + 1})/2,$$

 $y_{k+1} = x_k + (a_k - 1)(x_k - x_{k-1})/a_{k+1}.$

Способ прерывания одномерного поиска (4) аналогичен способу, предложенному в [2]. Разница лишь в том, что в (4) дробление шага на k-й итерации производится, начиная с α_{k-1} (а не с единицы, как в [2]). В силу этого (см. доказательство теоремы 1) при построении методом (3)—(5) последовательности $\{x_k\}_{k=0}^\infty$ будет сделано не более $O(\log_2 L)$ таких дроблений. Пересчет точек y_k в (5) осуществляется с помощью "овражного" шага. Отметим также, что метод (3)—(5) не обеспечивает монотонное убывание функции f(x) на последовательностях $\{x_k\}_{k=0}^\infty$, $\{y_k\}_{k=0}^\infty$.

Теорема 1. Пусть выпуклая функция $f(x) \in C^{1,1}(E)$ и $X^* \neq \phi$. Если последовательность $\{x_k\}_{k=0}^{\infty}$ построена методом (3) - (5), то:

1) для любого $k \ge 0$

(6)
$$f(x_k) - f^* \le C/(k+2)^2$$
,

$$ede\ C = 4L \|y_0 - x^*\|^2$$
, $f^* = f(x^*)$, $x^* \in X^*$;

- 2) для достижения точности є по функционалу необходимо:
- а) вычислить градиент целевой функции не более $NG = |\sqrt{C/\epsilon}|$ раз,
- б) вычислить значение целевой функции не более $NF = 2NG + + \log_2(2L\alpha_{-1})[+1$ раз.

Здесь и далее] (·) [— целая часть числа (·).

Доказательство. Пусть $y_k(\alpha) = y_k - \alpha f'(y_k)$. Из неравенства (2) получаем $f(y_k) - f(y_k(\alpha)) \ge 0.5\alpha(2 - \alpha L) \|f'(y_k)\|^2$. Спедовательно, как только $2^{-i}\alpha_{k-1}$ станет меньше, чем L^{-1} , неравенство (4) выполнится и в дальнейшем α_k уменьшаться не будут. Таким образом, $\alpha_k \ge 0.5L^{-1}$ для всех $k \ge 0$.

Пользуясь неравенством (4) и выпуклостью функции f(x), получаем

$$\langle f'(y_{k+1}), y_{k+1} - x^* \rangle \ge f(x_{k+1}) - f^* + 0.5\alpha_{k+1} \| f'(y_{k+1}) \|^2,$$

 $0.5\alpha_{k+1} \| f'(y_{k+1}) \|^2 \le f(y_{k+1}) - f(x_{k+1}) \le f(x_k) - f(x_{k+1}) - a_{k+1}^{-1} \langle f'(y_{k+1}), p_k \rangle.$

Подставим эти два неравенства в предыдущее равенство:

$$\begin{split} &\|p_{k+1} - x_{k+1} + x^*\|^2 - \|p_k - x_k + x^*\|^2 \leqslant 2(a_{k+1} - 1)\alpha_{k+1}\langle f'(y_{k+1}), p_k \rangle - \\ &- 2a_{k+1}\alpha_{k+1}(f(x_{k+1} - f^*) + (a_{k+1}^2 - a_{k+1})\alpha_{k+1}^2 \|f'(y_{k+1})\|^2 \leqslant \\ &\leqslant -2a_{k+1}\alpha_{k+1}(f(x_{k+1}) - f^*) + 2(a_{k+1}^2 - a_{k+1})\alpha_{k+1}(f(x_k) - f(x_{k+1})) = \\ &= 2\alpha_{k+1}a_k^2(f(x_k) - f^*) - 2\alpha_{k+1}a_{k+1}^2(f(x_{k+1}) - f^*) \leqslant 2\alpha_k a_k^2(f(x_k) - f^*) - \\ &- 2\alpha_{k+1}a_{k+1}^2(f(x_{k+1}) - f^*). \end{split}$$

Таким образом,

$$\begin{split} & 2\alpha_{k+1}a_{k+1}^2(f(x_{k+1}) - f^*) \leqslant 2\alpha_{k+1}a_{k+1}^2(f(x_{k+1}) - f^*) + \\ & + \|p_{k+1} - x_{k+1} + x^*\|^2 \leqslant 2\alpha_k a_k (f(x_k) - f^*) + \|p_k - x_k + x^*\|^2 \leqslant \\ & \leqslant 2\alpha_0 a_0^2(f(x_0) - f^*) + \|p_0 - x_0 + x^*\|^2 \leqslant \|y_0 - x^*\|^2. \end{split}$$

Осталось заметить, что $a_{k+1} \ge a_k + 0.5 \ge 1 + 0.5(k+1)$.

Из оценки скорости сходимости (6) следует, что число итераций, необходимое методу (3)—(5) для достижения точности ϵ , не будет больше, чем $]\sqrt{C/\epsilon}[-1]$. При этом на каждой итерации будет вычисляться один градиент и по крайней мере два значения целевой функции. Заметим, однако, что каждому дополнительному вычислению значения целевой функции соответствует уменьшение величины α_k вдвое. Поэтому общее число таких вычислений не превзойдет $]\log_2(2L\alpha_{-1})[+1]$.

Теорема доказана.

Если для градиента целевой функции известна константа Липшица L, то в методе (3)—(5) можно положить $\alpha_k \equiv L^{-1}$ при любом $k \geqslant 0$. В этом случае неравенство (4) будет заведомо выполнено и поэтому утверждения теоремы 1 останутся верными при $C = 2L \|y_0 - x^*\|^2$, $NG = \|y_0 - x^*\| \sqrt{2L/\epsilon} [-1]$ и NF = 0.

В заключение этого раздела покажем, как можно модифицировать метод (3)—(5) для решения задачи минимизации сильно выпуклой функции.

Предположим, что для функции f(x) при всех $x \in E$ выполняется неравенство $f(x) - f^* \ge 0.5 m \|x - x^*\|^2$, где m > 0, и пусть константа m нам известна.

Введем в метод (3)-(5) следующее правило прерывания:

в) Останавливаемся, если

$$(7) k \ge 2\sqrt{2/(m\alpha_k)} - 2.$$

Пусть прерывание произошло на N-м шаге. Так как в методе (3) – (5) $\alpha_k \ge 0.5L^{-1}$, то $N \le 14\sqrt{L/m}[-1]$. В то же время

$$f(x_N) - f^* \leqslant \frac{2\|y_0 - x^*\|^2}{\alpha_N (N+2)^2} \leqslant 0.25m \|y_0 - x^*\|^2 \leqslant 0.5(f(y_0) - f^*).$$

После того как получена точка x_N , необходимо обновить метод и опять начать счет методом (3)-(5), (7) из точки x_N как из начальной и т.д.

В результате получаем, что за каждые $]4\sqrt{L/m}[-1]$ итераций невязка по функции убывает вдвое. Таким образом, метод (3)—(5) с обновлением (7) является неулучшаемым (с точностью до безразмерной константы) среди методов первого порядка на классе сильно выпуклых функций из $C^{1,1}(E)$ (см. [1]).

3. Рассмотрим следующую экстремальную задачу:

(8)
$$\min\{F(\bar{f}(x))|x\in Q\},\$$

где Q — выпуклое замкнутое множество из E, F(u), $u \in R^m$, — выпуклая на всем R^m положительно-однородная степени единица функция, $\bar{f}(x) = (f_1(x), f_2(x), \ldots, f_m(x))$ — вектор выпуклых непрерывно дифференцируемых на E функций. Множество X^* решений задачи (8) всегда предполагается непустым. Кроме того, мы всегда будем предполагать, что система функций $\{F(\cdot), \bar{f}(\cdot)\}$ обладает следующим свойством:

(*) Если существует вектор $\lambda \in \partial F(0)$ такой, что $\lambda^{(k)} < 0$, то $f_k(x) -$ линейная функция.

Через $\partial F(0)$ в (*) обозначен субдифференциал функции F(u) в нуле.

Как известно, для выпуклых положительно-однородных степени единица функций справедливо тождество $F(u) \equiv \max\{\langle \lambda, u \rangle | \lambda \in \partial F(0) \}$. Поэтому из предположения (*) следует выпуклость функции $F(\bar{f}(x))$ на всем E.

Задачу (8) можно записать в минимаксной форме:

(9)
$$\min\{\max\{\langle \lambda, \bar{f}(x)\rangle | \lambda \in \partial F(0)\} | x \in Q\}.$$

Можно показать, что из непустоты множества X^* и предположения (*) следует существование у задачи (9) седловой точки (λ^*, x^*) . Поэтому множество седловых точек задачи (9) представимо в виде $\Omega^* = \Lambda^* \times X^*$, где $\Lambda^* = \operatorname{Arg\,max} \{\Psi(\lambda) \mid \lambda \in \partial F(0)\}$, $\Psi(\lambda) = \min\{\langle \lambda, f(x) \rangle \mid x \in Q\}$. Задачу

$$\max \{\Psi(\lambda) | \lambda \in \partial F(0) \cap \operatorname{dom} \Psi(\cdot) \}.$$

мы будем называть задачей, двойственной к (8).

Пусть в задаче (8) функции $f_k(x)$, $k=1,2,\ldots,m$, принадлежат, классу $C^{1,1}(E)$ с константами $L^{(k)} \ge 0$. Обозначим $\bar{L} = (L^{(1)},L^{(2)},\ldots,L^{(m)})$.

Рассмотрим функцию $\Phi(y,A,z) = F(\bar{f}(y,z)) + 0.5A\|y-z\|^2$, где $\bar{f}(y,z) = (f^{(1)}(y,z),f^{(2)}(y,z),\dots,f^{(m)}(y,z)),$ $f^{(k)}(y,z) = f_k(y) + \langle f'(y),z-y\rangle,$ $k=1,2,\dots$..., m,A — положительная константа. Обозначим

$$\Phi^*(y, A) = \min \{ \Phi(y, A, z) | z \in Q \}, \quad T(y, A) = \operatorname{argmin} \{ \Phi(y, A, z) | z \in Q \}.$$

Отметим, что отображение $y \to T(y, A)$ является естественным обобщением для задачи (8) "градиентного" отображения, введенного в [1] в связи с исследованием методов минимизации функций вида $\max_{1 \le k \le m} f_k(x)$. Для отображения $y \to T(y, A)$

(как и для "градиентного" отображения" из [1]) при всех $x \in Q$, $y \in E$, $A \geqslant 0$ выполняется неравенство

(10)
$$\Phi^*(y,A) + A\langle y - T(y,A), x - y \rangle + 0,5A \| y - T(y,A) \|^2 \le F(\bar{f}(x)),$$
 причем если $A \ge F(L)$, то

$$\Phi^*(y,A) \geqslant F(\bar{f}(T(y,A))).$$

Для решения задачи (8) предлагается следующий метод.

0) Выбираем точку $y_0 \in E$. Полагаем

(11)
$$k = 0$$
, $a_0 = 1$, $x_{-1} = y_0$, $A_{-1} = F(\bar{L}_0)$,

где $\overline{L}_0 = (L_0^{(1)}, L_0^{(2)}, \dots, L_0^{(m)}), L_0^{(k)} = \|f_k'(y_0) - f_k'(z)\|/\|y_0 - z\|, z - \text{произвольная}$ точка из $E, z \neq y_0$.

- 1) k-я Итерация.
- а) Вычисляем наименьший номер $i \ge 0$, для которого выполняется неравенство
- $(12) \quad \Phi^*(y_k, 2^i A_{k-1}) \geqslant F(\bar{f}(T(y_k, 2^i A_{k-1}))).$
 - б) Полагаем $A_k = 2^i A_{k-1}$, $x_k = T(y_k, A_k)$,

(13)
$$a_{k+1} = (1 + \sqrt{4a_k^2 + 1})/2, \\ y_{k+1} = x_k + (a_k - 1)(x_k - x_{k-1})/a_{k+1}.$$

Нетрудно заметить, что метод (3)—(5) является просто другой формой записи метода (11)—(13) для задачи безусловной минимизации (т.е. когда в (8) m=1, F(y)=y, Q=E).

Теорема 2. Если последовательность $\{x_k\}_{k=0}^{\infty}$ построена методом (11)—

- 1) для любого $k \ge 0$ $F(\bar{f}(x_k)) F(\bar{f}(x^*)) \le C_1/(k+2)^2$, где $C_1 = 4F(\bar{L})\|y_0 x^*\|^2$, $x^* \in X^*$.
 - 2) для достижения точности є по функционалу необходимо:
- а) решить вспомогательную задачу $\min\{\Phi(y_k, A, x) | x \in Q\}$ не более $]\sqrt{C_1/\epsilon}[+]\max\{\log_2(F(\bar{L})/A_{-1}), 0\}[$ раз,
- б) вычислить набор градиентов $f_1'(y), f_2'(y), \ldots, f_m'(y)$ не более $\sqrt{C_1/\epsilon}$ [раз,
- в) вычислить вектор-функцию $\bar{f}(x)$ не более $2]\sqrt{C_1/\epsilon}[+]\max \log_2(F(\bar{L})/A_{-1})$, 0}[раз.

Теорема 2 доказывается практически так же, как и теорема 1. Необходимо только вместо неравенства (2) использовать неравенство (10), при этом аналогом вектора $\alpha_k f'(y_k)$ будет вектор $y_k - T(y_k, A_k)$, а аналогом α_k — величины A_k^{-1} .

Точно так же, как и в методе (3) – (5), в методе (11) – (13) можно учесть информацию о константе $F(\bar{L})$ и параметре сильной выпуклости функции $F(\bar{f}(x))$ – -m (для этого, правда, необходимо, чтобы $y_0 \in Q$).

В заключение отметим два важных частных случая задачи (8), в которых вспомогательная задача $\min \{ \Phi(y_k, A, x) | x \in Q \}$ оказывается достаточно простой.

а) Минимизация гладкой выпуклой функции на простом множестве. Под простым множеством мы понимаем такое множество, для которого оператор проектирования записывается в явном виде. В этом случае в задаче (8) m = 1, F(y) = y

и в методе (11) - (13)

$$\Phi^*(y,A) = f(y) - 0.5A^{-1} \|f'(y)\|^2 + 0.5A \|T(y,A) - y + A^{-1}f'(y)\|^2,$$

где $T(y, A) = \operatorname{argmin} \{ \| y - A^{-1} f'(y) - z \| \| z \in Q \}.$

б) Безусловная минимизация (в задаче (8) $Q \equiv E$). В этом случае вспомогательная задача $\min\{\Phi(y, A, x) | x \in E\}$ эквивалентна следующей двойственной задаче:

(14)
$$\max \left\{ -0.5A^{-1} \left\| \sum_{k=1}^{m} \lambda^{(k)} f'_{k}(y) \right\|^{2} + \sum_{k=1}^{m} \lambda^{(k)} f_{k}(y) \right\| (\lambda^{(1)}, \lambda^{(2)}, \dots, \lambda^{(m)}) \in \partial F(0) \right\}.$$

При этом
$$T(y,A) = y - A^{-1} \sum_{k=1}^{m} \lambda^{(k)}(y) f'_k(y)$$
, где $\lambda^{(k)}(y)$, $k = 1, 2, ..., m$, — ре-

шения задачи (14) при фиксированном $y \in E$. Отметим, что множество $\partial F(0)$ обычно задается простыми ограничениями – линейными либо квадратичными. В таких случаях запача (14) — стандартная задача квадратичного программирования.

Автор искренне признателен А.С. Немировскому за беседы, которые стимулировали его интерес к рассмотренным вопросам.

Центральный экономико-математический институт Академии наук СССР, Москва

Поступило 19 VII 1982

ЛИТЕРАТУРА

1. Немировский А.С., Юдин Д.Б. Спожность задач и эффективность методов оптимизации. М.: Наука, 1979. 2. Пшеничный Б.Н., Данилин Ю.М. Численные методы в экстремальных задачах. М.: Наука, 1975.

УЛК 515.1

МАТЕМАТИКА

Е.И. НОЧКА

К ТЕОРИИ МЕРОМОРФНЫХ КРИВЫХ

(Представлено академиком В.С. Владимировым 18 V 1982)

1. Пусть задана мероморфная кривая, т.е. мероморфное отображение

$$\widetilde{f}$$
: $\mathbb{C} \to \mathbb{CP}^n$.

и пусть голоморфное отображение

$$f: \ \mathbf{C} \to \mathbf{C}^{n+1}, \quad f = (f_1, f_2, \dots, f_{n+1})$$

 $f: \ \ {
m C} o {
m C}^{n+1}, \ \ f = (f_1, \ f_2, \dots, f_{n+1}),$ является редуцированным представлением кривой $\widetilde{f}.$ Характеристическую цию \widetilde{f} определим, следуя А. Картану [1]:

$$T(\tilde{f}, r) = \frac{1}{2\pi} \int_{0}^{2\pi} \log|f(re^{i\gamma})|^2 d\gamma - \log|f(0)|^2.$$

Пусть A — гиперплоскость в \mathbb{CP}^n и a — единичный вектор такой, что равенство (w, a) = 0 (скобки обозначают эрмитово скалярное произведение) есть уравнение гиперплоскости A в однородных координатах; обозначим $f_A = (f, a)_a$