Chapter 2 Number Systems and Codes

Binary Number System

n=4 ->	24-16	Combinations	
Binary 1	Decimal		
8421	CECTITON		
0000	0		
0001	1		
0010	2		
0011	3		
0100	4		
0101	5	_	
0110	6		
0111	7		
1000	8		A.1
1001	9	,	
1010	10		
1011	11	/ x .	
-			
1100	12		
1101	13		
1110	14	Binary Add	ition.
1111	15		5+812
m m		4+8	5 > 0101
MSB LSB1		4-> 0100	27 0101
		+8+1000	+12 > 1100
	_	12-1100	11-10 001
		11/11/11	

2's complement Signed Number System

Range:
$$-2^{n-1}$$
 to $+(2^{n-1}-1)$
 $n=4 \Rightarrow -2^{4-1}$ to $+(2^{4-1}-1)$
 $= -2^3$ to $+(2^3-1)$
 $= -8$ to $+7$

Sign Bit

Sign Bit = 0 → Positive Number
Sign Bit = 1 → Negative Number

chilly prove

Binary - 8 1 2 1	Decimal	- 5.6 oc 1-	
0000	+2	Algebraic Addition	
0100 0101 0110 0111	+4 +5 +6 +7	x+y	
$ \begin{array}{r} 1000 \\ \hline 1001 \\ \hline 1010 \\ \hline 1011 \end{array} $	-8 -7 -6 -5		
$\frac{100}{1100}$	-4 -3 -2		<u>(</u>
1111	-1		* ************************************

$$[++]$$
 $x=3, y=2$
 $3 \rightarrow 0011$
 $2 \rightarrow 0010$
 $5 \rightarrow 0101$

$$\chi = 4$$
, $\chi = 5$
 $4 \rightarrow 0100$
 $5 \rightarrow 0101$
 $9 \rightarrow 1001$ (Overflow)

$$(4)_{10} = (0100)_{2} \xrightarrow{25} (1100)_{2} = (-4)_{10}$$

$$(4)_{10} = (0100)_{2} \xrightarrow{25} (1100)_{2} = (-4)_{10}$$

$$-3 \rightarrow 00011$$

$$-4 \rightarrow 1100$$

$$\begin{bmatrix}
 -+ \\
 3 \\
 10 = (0011) \\
 25 \\
 3 \rightarrow (1101) \\
 -3 \rightarrow (1101) \\
 4 \rightarrow (0100)$$

$$1 \rightarrow (110001)$$
Discard

$$\begin{array}{c}
\chi = -4, \ \xi = -5 \\
(4)_{10} = (0100)_{2} \xrightarrow{2'3} & (1100)_{2} = (-4)_{10} \\
(5)_{10} = (0101)_{2} \xrightarrow{2'3} & (1011)_{2} = (-5)_{10} \\
-4 & 7 & 1100 \\
-5 & 1011 \\
\hline
-9 & > 11011 & (Underflow)
\end{array}$$

Subtraction: x-y=x+(-y) where -y=23 complement of y4+1 x = 4, y = 2 $2^{2}-3^{2}-4-2=4+(-2)(2)_{10}=(0010)_{2}\frac{2^{2}}{2}(1110)_{2}$ $4 \rightarrow 0100$ $=(-2)_{1}$ 2-710010 Discard

$$(2)_{10} = (0010)_{2} \xrightarrow{2'5} (1110)_{2}$$

$$= (-2)_{10}$$

$$x = 2, y = 4$$

$$2 - y = 2 - 4 = 2 + (4)$$

$$2 \rightarrow 0010$$

$$-4 \rightarrow 1100$$

$$-2 \rightarrow 1110$$

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} -1 \\ 2 - 3 \end{array} & \begin{array}{c} 3 \\ -3 \end{array} & \begin{array}{c} -$$

$$x = -5$$
, $y = 4$
 $x = -3$, $y = 4$
 $x = -3$, $y = 4$
 $-5 \rightarrow 1011$
 $-4 \rightarrow 1100$
 $-9 \rightarrow 1011$ (Underl'law)
Discard

Examples

Addition in 2's Complement Signed Number System

Example 1:
$$7 \Rightarrow 0111$$
 Minuend
 $-5 \Rightarrow (+) 1011$ 2's complement of subtrahend
 $+2 = (1)0010$
Discard end carry

The answer is 0010, which is equivalent to $(+2)_{10}$.

Example 2:
$$5 \longrightarrow 0101$$
 Minuend
 $-7 \longrightarrow (+) 1001$ 2's complement of subtrahend
 $-2 \longrightarrow 1110$

Examples

Subtraction in 2's Complement Signed Number System

Example 1:
$$48-23=48+(-23)=+25$$

$$48 \longrightarrow 00110000 \text{ 8-bit 2's complement representation of } +48$$

$$+(-23) \longrightarrow (+) 11101001 \text{ 8-bit 2's complement representation of } -23$$

$$+25 \qquad (1)00011001 \text{ 8-bit 2's complement representation of } +25$$

$$Discard end carry$$

Example 2:
$$23 - 48 = 23 + (-48) = -25$$

 $23 \rightarrow \underline{00010111} \underline{8}$ -bit 2's complement representation of + 23 + $(-48) \rightarrow (+) \underline{11010000} \underline{8}$ -bit 2's complement representation of - 48

- 25 <u>11100111</u> 8-bit 2's complement representation of - 25

Examples

```
Example 3: 48 - (-23) = 48 + 23 = +71
             48 → 00110000 8-bit 2's complement representation of + 48
           +23 \rightarrow (+) 00010111 8-bit 2's complement representation of +23 or -(-23)
           +71 01000111 8-bit 2's complement representation of +71
Example 4: -48-23=(-48)+(-23)=-71
             - 48 → 11010000 8-bit 2's complement representation of - 48
             -23 \rightarrow (+) 11101001 8-bit 2's complement representation of -23
             -71 (1)10111001 8-bit 2's complement representation of -71
                       → Discard end carry
```