Exercise 14.6: Find all maximal ideals in

a. Z_8 {0, 2, 4, 6}

b. Z_{10} {0, 5}, {0, 2, 4, 6, 8}

c. Z_{12} {0, 2, 4, 6, 8, 10}, {0, 3, 6, 9}

d. Z_n If $n=p_1^{k_1}p_2^{k_2}\cdots$ in terms of prime factorization then $< p_1>_+, < p_2>_+, \cdots$ are all maximal ideals in Z_n .

Exercise 14.8: Prove that the intersection of any set of ideals of a ring is an ideal. Suppose ring R with ideals A and B. Choose some arbitrary element $r \in R$ and choose $x \in A \cap B$. Note that $rx \in A$ and $rx \in B$ thus $rx \in A \cap B$ and thus $A \cap B$ is an ideal.

Exercise 14.11: In the ring of integers, find a positive integer a such that

a. < a > = < 2 > + < 3 >a = 1

b. < a > = < 6 > + < 8 >a = 2

c. < a > = < m > + < n > $a = \gcd(m, n)$

Exercise 14.13: Find a positive integer *a* such that

a. < a > = < 3 > < 4 >a = 12

b. < a > = < 6 > < 8 >a = 48

c. < a > = < m > < n >a = mn

Exercise 14.18: Suppose that in the ring Z, the ideal < 35 > is a proper ideal of J and J is a proper ideal of I. What are the possibilities for J? What are the possibilities for I? J = < 35a > where a is some natural bigger than 1 and I = < 35ab > where b is some natural bigger than 1.

Exercise 14.22: Let I = <2>. Prove that I[x] is not a maximal ideal of Z[x] even though I is a maximal ideal of Z.

If we were to add anything to I to try to find a ideal J containing I it must be a odd integer, thus if we simply subtract off the previous integer, witch is even and thus in I and J we conclude that $1 \in J$ and thus J = Z. We can now note that I is maximal.

Note that I[x] is all polynomials with even coefficients. Recall that the set of all polynomials where the constant term is even is a ideal of Z[x] and since I[x] is a subset of that set witch is itself not Z[x] we conclude that I[x] is not a maximal ideal of Z[x].

Exercise 14.35: In $R = Z \bigoplus Z$, let $I = \{(a, 0) \mid a \in Z\}$. Show that I is a prime ideal but not a maximal ideal.

Suppose $(a, b) \in R$ and $(c, 0) \in I$. Note that $(a, b)(c, 0) = (ac, 0) \in I$ thus I is ideal. Suppose $(a, b), (c, d) \in R$. Further suppose that $(a, b)(c, d) \in I$. Note that ether b = 0 or d = 0. WLoG take b = 0. Note that $(a, b) = (a, 0) \in I$. Thus I is prime.

Note that $J = \{(a, 2b) \mid a, b \in Z\}$ is ideal and that $I \subset J \subset R$. Note that I is not maximal.