한국어 임베딩 (0171참 Al. 2019)

Chapter 2. How Vector Becomes Meaningful

Spring Semester Capstone Study

TEAM Kai.Lib

발표자 : 배세영

2020.04.08 (WED)

이기창님 DevFest 2019 Seoul PPT 참고(링크)

1. 자연어 계산과 이해

임베딩에 **자연어의 의미를 함축**해 넣으려면? 자연어의 **통계적 패턴 정보를 통째로** 집어넣으면 된다!

구분	Bag of Words 가정	언어 모델	분포 가정
내용	어떤 단어가 많이 쓰였는가	단어가 어떤 순서로 쓰였는가	어떤 단어가 같이 쓰였는가
대표 통계량	TF-IDF	-	PMI
대표 모델	Deep Averaging Network	ELMo, BERT	Word2Vec

CAPSTONE STUDY

- Bag of Words 가정
 - "저자가 생각한 주제가 문서에서의 단어 사용에 녹아 있다"는 가정
 - Bag은 중복 원소를 허용한 집합
 - 단어의 등장 순서에 관계없이 문서 내 단어의 등장 빈도를 임베딩으로 쓰는 기법
 - 간단한 방법이지만 정보 검색 분야에서 여전히 많이 쓰이고 있음

별	하나	에	추억	과	사랑	쓸쓸	함	동경	시	와	어머니	,
6	6	6	1	4	1	1	1	1	1	1	2	1

- TF-IDF (Term Frequency-Inverse Document Frequency)
 - 단어의 빈도, 또는 등장 여부를 그대로 임베딩으로 사용하는 것에는 큰 단점이 있음
 - 특정 단어가 많이 나타났다 하더라도 문서의 주제를 가늠하기 어려운 경우가 있기 때문 ('을/를', '이/가')
 - 이러한 단점을 보완하기 위해 만들어진 기법

$$TF - IDF(w)$$

$$= TF(w) \times log(\frac{N}{DF(w)})$$

N : 전체 문서 수

TF: 어떤 단어가 특정 문서에 등장한 횟수

DF: 어떤 단어가 나타난 문서의 수

- TF-IDF (Term Frequency-Inverse Document Frequency)
 - 단어의 빈도, 또는 등장 여부를 그대로 임베딩으로 사용하는 것에는 큰 단점이 있음
 - 특정 단어가 많이 나타났다 하더라도 문서의 주제를 가늠하기 어려운 경우가 있기 때문 ('을/를', '이/가')
 - 이러한 단점을 보완하기 위해 만들어진 기법

구분	메밀꽃 필 무렵	운수 좋은 날	사랑 손님과 어머니	삼포 가는 길
담배	0.2603	0.2875	0.0364	0.2932
를	0	0.0034	0	0

TF-IDF 값이 높은 단어는 해당 문서의 주제 파악을 좀 더 용이하게 해 준다

- Deep Averaging Network
 - Bag of Words 가정의 Neural Network 버전

CAPSTONE STUDY

6

- 통계 기반 언어 모델
 - 언어 모델(Language Model)은 단어 시퀀스에 확률을 부여하는 역할
 - 등장 순서, 즉 시퀀스 정보를 명시적으로 학습하므로 BoW의 대척점에 있음
 - 말뭉치에서 n개 단어가 연속된 시퀀스가 나타날 확률을 반환

이전에 진행했던 LM & Fusioning 발표자료 참고!

https://github.com/sooftware/TIL/blob/master/Capstone-Study/LM-%26-Fusioning.pdf

CAPSTONE STUDY

- 통계 기반 언어 모델
 - n-gram 모델에서도 희소 문제(sparsity problem)은 존재
 - 희소 문제를 해결하기 위한 백오프(Back-off), 스무딩(smoothing) 기법 제안
 - Back-off
 - 목표한 n-gram의 출현 빈도가 0이면, n의 값을 줄여 탐색한 후 확률값을 보정한다

$$Freq("이렇게 긴 시퀀스가 존재할 리 없지")$$
 $\approx \alpha \times Freq("존재할 리 없지") + \beta$

- 통계 기반 언어 모델
 - n-gram 모델에서도 희소 문제(sparsity problem)은 존재
 - 희소 문제를 해결하기 위한 백오프(Back-off), 스무딩(smoothing) 기법 제안
 - Smoothing
 - 출현 빈도 표에 k만큼의 값을 더해 빈도 값 자체를 조정 (Add-k Smoothing)

표현	빈도(조정 전)	k	빈도(조정 후)
이렇게	6	2	8
긴	11	2	13
시퀀스가	5	2	7
존재할	8	2	10
•••			
긴 시퀀스가 존재할 리 없지	0	2	2
이렇게 긴 시퀀스가 존재할 리 없지	0	2	2

- 신경망 기반
 - 주어진 단어 시퀀스를 가지고 다음 단어를 맞추는 과정에서 학습
 - 학습이 완료되면 이들 모델의 중간 혹은 말단 계산 결과물을 단어나 문장의 임베딩으로 활용
 - ELMo, GPT등의 모델이 이에 해당

- Masked Language Model은 위의 방식과 약간 다른 방식
- 문장 중간에 들어갈 단어를 예측하는 과정에서 학습
- 태생적으로 일방향 학습인 위의 모델과는 달리 양방향 학습이 가능
- 기존 언어 모델 기법들 대비 임베딩 품질이 좋다
- BERT가 이에 해당

- 분포 가정
 - 분포: 특정 범위, 즉 Window 내에 동시에 등장하는 이웃 단어 또는 문맥의 집합
 - 어떤 단어 쌍이 비슷한 문맥 환경에서 자주 등장한다면 그 의미 또한 유사할 것 이라는 가정
 - 모국어 화자들이 해당 단어를 실제 어떻게 사용하고 있는지 문맥을 살펴 그 단어의 의미를 유추한다

"단어의 의미는 곧 그 언어에서의 활용이다" 비트겐슈타인 (1889~1951)

- 분포 가정
 - 분포: 특정 범위, 즉 Window 내에 동시에 등장하는 이웃 단어 또는 문맥의 집합
 - 어떤 단어 쌍이 비슷한 문맥 환경에서 자주 등장한다면 그 의미 또한 유사할 것 이라는 가정
 - 모국어 화자들이 해당 단어를 실제 어떻게 사용하고 있는지 문맥을 살펴 그 단어의 의미를 유추한다

에서 속옷빨래를 하는물로빨래할때청소와빨래지만요리

Word2Vec, FastText, Glove, ...