

LIMPOPO

PROVINCIAL GOVERNMENT REPUBLIC OF SOUTH AFRICA

DEPARTMENT OF

EDUCATION

LIMPOPO PROVINCE

GRADE 12

MATHEMATICS P1
MEMORANDUM
SEPTEMBER 2021

MARKS: 150

ı

This memorandum consists of 17 pages.

E1

1.1	1.1.1	$x^2 + 4x - 45 = 0$		
		(x+9)(x-5) = 0	✓both factors	
		x = -9 or $x = 5$	$\checkmark x = -9$	
			$\sqrt{x} = 5$	(3)
	1.1.2	1		
	3.	$x = \frac{-(-14) \pm \sqrt{(-14)^2 - 4(7)(3)}}{2(7)}$	✓ substitution into the correct formula	
		$x = {2(7)}$		
		$x = \frac{14 \pm \sqrt{112}}{14}$		
:		14	/ 176	
		x = 1,76 or x = 0,24	$\sqrt{x} = 1,76$ $\sqrt{x} = 0,24$	(2)
			3 0,24	(3)
	1.1.3	$(x+3)(2-x) \le 0$		
		Critical values $x = -3$ or $x = 2$	✓critical values	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	√ √ answer	
		3 5 61 X 2 2		
		O.D.	OR	
		OR	OK	
		$(x+3)(x-2) \ge 0$	✓ critical values	
		Critical values $x = -3$ or $x = 2$		
				
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	√√answer	
		$x \le -3 \text{ or } x \ge 2$		
	¥0			(3)
	1.1.4	$\sqrt{x+34}-x=4$		
		$\sqrt{x+34} = x+4$	✓ isolating the square	
		$\left(\sqrt{x+34}\right)^2 = \left(x+4\right)^2$	root	
		$x + 34 = x^2 + 8x + 16$	$\sqrt{x+34} = x^2 + 8x + 16$	
		$x^2 + 7x - 18 = 0$	✓ standard form	
		(x+9)(x-2)=0	$\sqrt{x} \neq -9$	
		$x \neq -9 \text{ or } x = 2$	$\sqrt{x}=2$	(5)

NSC-Memorandum

	1.1.5	$\frac{3}{27^{x-y}} = 1$	$\checkmark 3^{2x-2y}$	
		$\frac{3^{y} \times 3^{2x-2y}}{3^{3x-3y}} = 1$	$\checkmark 3^{3x-3y}$	
		$3^{2y-x} = 3^0$	$\checkmark 3^{2y-x} = 3^0$	
		$\begin{vmatrix} 2y - x = 0 \end{vmatrix}$		
		x = 2y	$\checkmark x = 2y$	(4)
1.2		$ \left(\sqrt{\sqrt{4} - \sqrt{3}} \right) \left(\sqrt{\sqrt{4} + \sqrt{3}} \right) $ $ = \sqrt{\left(\sqrt{4} \right)^2 - \left(\sqrt{3} \right)^2} $	$\checkmark \sqrt{\left(\sqrt{4}\right)^2 - \left(\sqrt{3}\right)^2}$	
		$= \sqrt{4-3}$ $= 1$	$\sqrt{4-3}=1$	(2)
1.3		y = 2 - 3x(1)	$\checkmark y = 2 - 3x$	
		$x^{2} + y = xy + x$ (2) substitute (1) into (2) $x^{2} + (2-3x) = x(2-3x) + x$ $x^{2} - 3x + 2 = 2x - 3x^{2} + x$	✓substitution	
		$4x^2 - 6x + 2 = 0$	✓ standard form	
		$2(2x-1)(x-1) = 0$ $x = \frac{1}{2} \text{ or } x = 1$	✓both values of x	
		$y = \frac{1}{2} \text{ or } y = -1$	✓both values of y	
				:
		5:		
			3	

OB	On	
OR	OR	
$x = \frac{2-y}{3} \dots (1)$	$\checkmark x = \frac{2 - y}{3}$	
$x^2 + y = xy + x \dots (2)$		
substitute (1) into (2)		
$\left(\frac{2-y}{3}\right)^2 + y = \left(\frac{2-y}{3}\right)y + \frac{2-y}{3}$	✓ substitution	
$\left(\frac{4-4y+y^2}{9}\right) + y = \frac{2y-y^2}{3} + \frac{2-y}{3}$	Substitution	
$y^{2} + 5y + 4 = 6 + 3y - 3y^{2}$ $2y^{2} + y - 1 = 0$	✓standard form	
$y = \frac{1}{2} \text{ or } y = -1$	✓both values of y	
$x = \frac{1}{2} \text{ or } x = 1$	✓ both values of x	(5)
		[25]

2.1	2.1.1	2p-2-(2p+1)=4p-3-(2p-2)	√equating	
		-3 = 2p - 1		
25		p = -1	✓answer	(2)
	2.1.2	-1; -4; -7	√√answers	
				(2)
	2.1.3	a=-1 and $d=-3$		
		$T_n = a + (n-1)d$		
		$T_{50} = -1 + 49(-3)$	✓substitution	
		=-148	✓answer	(0)
		W.		(2)

3.1	$ar = 24$ $\sum_{n}^{\infty} T_{n} = \frac{a}{1-r} = 100$ $a = 100(1-r)$ $r = \frac{24}{a}$ $a = 100\left(1 - \frac{24}{a}\right)$ $a = 100 - \frac{2400}{a}$	✓ both $\frac{a}{1-r} = 100$ and and $ar = 24$ ✓ $a = 100(1-r)$ ✓ $r = \frac{24}{a}$ ✓ substitution
	$a^{2}-100a+2400=0$ $(a-40)(a-60)=0$ $a = 40 \text{ or } a = 60$	✓ standard form ✓ both values of a

	OR	OR
	$ar = 24$ $\sum_{n=1}^{\infty} T_n = \frac{a}{1-r} = 100$ $\therefore a = 100(1-r)$	✓both $\frac{a}{1-r} = 100$ and and $ar = 24$ ✓ $a = 100(1-r)$ ✓ substitution
	$\Rightarrow 100(1-r)r = 24$ $100r - 100r^{2} = 24$ $100r^{2} - 100r + 24 = 0$ $25r^{2} - 25r + 6 = 0$ $(5r - 2)(5r - 3) = 0$ $r = \frac{2}{5} \text{ or } r = \frac{3}{5}$	✓ standard form ✓ both values of r
	a = 60 or a = 40	✓ both values of a (6)
3.2	$\sum_{k=1}^{m} 2.2^{k} < 131068$ $4+8+16+ \text{ to m terms}$ $S_{n} = \frac{a(r^{n}-1)}{r-1} = \frac{4(2^{m}-1)}{2-1}$ $\frac{4(2^{m}-1)}{2-1} < 131068$	✓4+8+16+to m terms ✓ substitution into the correct formula
	$2-1$ $2^{m} - 1 < 32767$ $2^{m} < 32768$ $2^{m} < 2^{15}$ $m < 15$ $m = 14$	$\checkmark 2^m < 32768$ $\checkmark 2^m < 2^{15}$ $\checkmark m = 14$

OR	OR	
$4+8+16+ \text{ to m terms}$ $\frac{4(2^{m}-1)}{2-1} < 131068$ $2^{m}-1 < 32767$ $2^{m} < 32768$	$\sqrt{4+8+16+}$ to m terms $\sqrt{3}$ substitution into the correct formula $\sqrt{2}^m < 32768$	
$\log 2^{m} < \log 32768$ $m < \frac{\log 32768}{\log 2}$	✓ correct use of logs	(5)
$\log 2$ $m < 15$ $m = 14$	$\sqrt{m}=14$	
		[11]

4.1	x = 4	$\checkmark x = 4$	
	y = -2	✓ y = -2	(2)
4.2	x-intercept: $y = 0$	✓ y = 0	
	$\frac{2}{x-4}-2=0$		-
	2 = 2(x-4) $x = 5$		
v	x = 5	✓answer	(2)

5.1	$y - y_1 = m(x - x_1)$ $y = \frac{-8}{3+1}(x+1)$ $= -2(x+1)$ $= -2x - 2$	✓ substitution of points T and R into the correct formula ✓ gradient ✓ answer
		Ga _{gg}

000		OR	OR	
		The gradient $m = \frac{-8}{4} = -2$	√gradient	(3)
	15	y = mx + c $-8 = -2(3) + c$	✓ substitution of point R	
		c = -2 $y = -2x - 2$	✓answer	
5.2		$y = a(x-x_1)(x-x_2)$ = $a(x+1)(x-5)$ -8 = $a(3+1)(3-5)$ $a = 1$	✓ substitution of points T and W into the correct formula ✓ use of point R. ✓ value of a	
		y = (x+1)(x-5) $y = x^2 - 4x - 5$	✓value of b	
		y=x-4x-3	✓ value of c	(5)
5.3	5.3.1	$x = -\frac{b}{2a}$ $x = -\frac{-4}{2(1)}$ $x = 2$ $f(2) = -9$ $V(2; -9)$	✓ substitution of c and b ✓ value of x ✓ $f(2) = -9$	
ð		OR	OR	
		$x = \frac{x_1 + x_2}{2}$ $x = \frac{-1 + 5}{2}$ $x = 2$	$\sqrt{x} = \frac{-1+5}{2}$	
		f(2) = -9 V(2; -9)	✓ f(2) = -9	

		OR	OR	T
		f'(x) = 2x - 4		
		2x-4=0	$\checkmark f'(x) = 0$	
		x = 2	\checkmark value of x	
		f(2) = -9		
		V(2; -9)	$\checkmark f(2) = -9$	(3)
5	5.3.2	$\therefore \text{Range: } y \ge -9 \qquad \text{OR} \qquad y \in [-9; \infty)$	✓✓answer	(2)
5.4		$f(x) = x^2 - 4x - 5 \text{ and turning point } (2; -9)$		
		$f(x) = a(x+p)^{2} + q$ $f(x) = (x-2)^{2} - 9$		
		$k(x) = (x-4-2)^2 - 9 + 5$	$\checkmark f(x) = (x-2)^2 - 9$	
			$\sqrt{x-6}$	
		$k(x) = \left(x-6\right)^2 - 4$	√ -4	(3)
5.5		$-1 \le x \le 2 \tag{.}$	√√answer	(2)
				[18]

6.1	R(0;1)	✓answer	(1)
6.2	$y = b^{x}$ $64 = b^{-3}$ $b^{3} = \frac{1}{4^{3}}$ $b = \frac{1}{4}$	✓ substitution of point $P(-3; 64)$ $✓ b^3 = \frac{1}{4^3}$ ✓ value of b.	(3)
6.3	$y = \left(\frac{1}{4}\right)^{x}$ $x = \left(\frac{1}{4}\right)^{y}$ $p^{-1}(x) = \log_{\frac{1}{4}} x$	✓ swapping x and y ✓ answer	(2)

6.4	$0 < \log_{\frac{1}{4}} x < 1$		
	$\left \left(\frac{1}{4} \right)^0 > \left(\frac{1}{4} \right)^{\log_{\frac{1}{4}} x} > \frac{1}{4} \right $	✓exponential form	
13	$\therefore \frac{1}{4} < x < 1$	✓answer	
	OR ·	OR	
	$\Rightarrow \log_{\frac{1}{4}} x > 0 \text{ and } \log_{\frac{1}{4}} x < 1$	√method	
	$\Rightarrow x < \left(\frac{1}{4}\right)^0 \text{ and } x > \left(\frac{1}{4}\right)^1$		
	$\therefore \frac{1}{4} < x < 1$	✓answer	(2)
			[8]

7.1	The value of the car $A=P(1-i)^{n}$ $A=P(1-0.15)^{5}$ =155 296, 85	✓ substitution into correct formula ✓ value of <i>i</i> ✓ answer	(3)
7.2 7.2.1	$P = \frac{x \left[1 - (1 + i)^{-n}\right]}{i}$ $500000 = \frac{9500 \left[1 - \left(1 + \frac{0.115}{12}\right)^{-n}\right]}{\frac{0.115}{12}}$ $\log \left[1 - \frac{500000 \left(\frac{0.115}{12}\right)}{9500}\right]$ $-n = \frac{\log \left(1 + \frac{0.115}{12}\right)}{\log \left(1 + \frac{0.115}{12}\right)}$ $n = 73,59819249 \text{ months} = 74 \text{ months}$	✓value of <i>i</i> ✓substitution into the correct formula ✓correct use of logs	(4)

7.2.2	The	balance	at the	end	of	73	months:
-------	-----	---------	--------	-----	----	----	---------

$$P = \frac{9500 \left[1 - \left(1 + \frac{0,115}{12} \right)^{-0,59819249} \right]}{\frac{0,115}{12}}$$

=R5 639,667634

The final payment will be:

$$\mathbf{A} = P(1+i)^n$$

$$=5639,667634\left(1+\frac{0,115}{12}\right)^{1}$$

=R5 693,71

OR

Balance = $A - F_v$

$$=500000 \left(1 + \frac{0,115}{12}\right)^{73} - \frac{9500 \left(\left(1 + \frac{0,115}{12}\right)^{73} - 1\right)}{\frac{0,115}{12}}$$

R5 639,667634

The final payment will be:

$$A = P(1+i)^n$$

$$=5639,667634\left(1+\frac{0,115}{12}\right)^{1}$$

=R5 693,71

✓ value of n

✓ substitution into correct formula

✓R5 639,67

$$\sqrt{n} = 1$$

✓R5 693,71

OR

✓ value of n

✓ substitution into correct

formulae

✓R5 639,67

 $\sqrt{n} = 1$

√R5 693,71

	T		
	OR	OR	
	$500000 = \frac{9500 \left[1 - \left(1 + \frac{0,115}{12} \right)^{-73} \right]}{\frac{0,115}{12}} + x \left(1 + \frac{0,115}{12} \right)^{-74}$ $500000 - \frac{9500 \left[1 - \left(1 + \frac{0,115}{12} \right)^{-73} \right]}{\frac{0,115}{12}}$	$\sqrt{n} = -73$ $\sqrt{n} = -74$ $\sqrt{9500} \left[1 - \left(1 + \frac{0,115}{12} \right)^{-73} \right]$ $\sqrt{x} \left(1 + \frac{0,115}{12} \right)^{-74}$	(5)
	$x = \frac{12}{\left(1 + \frac{0,115}{12}\right)^{-74}}$ $x = R5 693,71$	√answer	
7.2.3	Interest = Total repayments – (Loan amount – Last	√method	
	repayment)		
	$= R9 500 \times 73 - (R500000 - R5 639,67)$		
	= R199 139,67	✓answer	
	1		(2)
	=		[14]

8.1	$f(x) = -2x^{2} + 1$ $f(x+h) = -2(x+h)^{2} + 1$	
	$= -2x^{2} - 4xh - 2h^{2} + 1$ $f'(x) = \lim_{h \to 0} \frac{f(x+h) + f(x)}{h}$	✓expansion
	$= \lim_{h \to 0} \frac{-2x^2 - 4xh - 2h^2 + 1 - (-2x^2 + 1)}{h}$	✓ correct substitution
	$= \lim_{h \to 0} \frac{-4xh - 2h^2}{h}$ $= \lim_{h \to 0} \frac{h(-4x - 2h)}{h}$	✓simplification
	$=\lim_{h\to 0}(-4x-2h)$	✓ common factor ✓ answer
	=-4x	

NSC-Memorandun

		OR	OR	
		$f'(x) = \lim_{h \to 0} \frac{f(x+h) + f(x)}{h}$		
		$= \lim_{h \to 0} \frac{-2(x+h)^2 + 1 - (-2x^2 + 1)}{h}$	✓ correct substitution	
		$= \lim_{h \to 0} \frac{-2x^2 - 4xh - 2h^2 + 1 + 2x^2 - 1}{h}$	✓ expansion	
		$=\lim_{h\to 0}\frac{-4xh-2h^2}{h}$	✓simplification	
		$=\lim_{h\to 0}\frac{h(-4x-2h)}{h}$	✓ common factor	
		$= \lim_{h \to 0} (-4x - 2h)$ $= -4x$	✓answer	(5)
8.2	8.2.1	$y = 2 - x - x^3$		
		$\frac{dy}{dx} = -1 - 3x^2$	$\sqrt{-1}$ $\sqrt{-3}x^2$	(2)
	8.2.	$D_{x}\left(-\frac{2x}{\sqrt{x}} - \frac{1}{x}\right)$ $= D_{x}\left(-2x^{\frac{1}{2}} - x^{-1}\right)$	$\begin{array}{c} \checkmark -2x^{\frac{1}{2}} \\ \checkmark -x^{-1} \end{array}$	
62		$=-x^{-\frac{1}{2}}+x^{-2}$	$\begin{array}{c} \sqrt{-x^{-\frac{1}{2}}} \\ \sqrt{x^{-2}} \end{array}$	(4)
	8.2.2	$f(x) = \frac{2x^2 - 16x + 14}{2x - 2}$ $= \frac{2(x - 1)(x - 7)}{2(x - 1)}$ $= x - 7$ $f'(x) = 1$	✓ factors ✓ simplification ✓ answer	(3)
				[14]

9.1	$f(x) = x^3 - 3x^2 - 9x + 27$		
	$f'(x) = 3x^2 - 6x - 9$	$\checkmark f'(x)$	
	$3x^2 - 6x - 9 = 0$	$\checkmark f'(x)$ $\checkmark f'(x) = 0$	
	3(x-3)(x+1) = 0		
	x = 3 or $x = -1$	\checkmark vales of x	
	For maximum turning point, $x = -1$		
	$\therefore f(-1) = 32$		
	C(-1; 32)	✓point C	(4)
9.2	$f'(x) = 3x^2 - 6x - 9$		
	$f'(-2) = 3(-2)^2 - 6(-2) - 9$	✓substitution of	
	=15	x = -2 into $f'(x)$	
	y-25=15(x+2)	✓answer	
	y = 15x + 55	$\sqrt{y-25}=15(x+2)$	
		$\checkmark y = 15x + 55$	(4)
9.3	The line $y = k$ intersects with the graph of f at only one		
	point when	$\checkmark k < 0$	
	k < 0 or k > 32	$\checkmark k > 32$	(2)
9.4	$f'(x) = 3x^2 - 6x - 9$		
	f''(x) = 6x - 6	$\checkmark f''(x) = 6x - 6$	
	6x-6<0	$\checkmark f''(x) = 6x - 6$ $\checkmark 6x - 6 < 0$	
	x < 1	✓answer	
		- diswei	(3)
			[13]

10.1	Height $(h) = (30-x)$ and radius $(r) = \frac{1}{2}x$	$\sqrt{r} = \frac{1}{2}x$	
	$V(x) = \pi r^2 \times h$	2	:
	$V(x) = \pi \left(\frac{x}{2}\right)^2 (30 - x)$	✓ substitution into the correct formula	
	$= \frac{30\pi x^2}{4} - \frac{\pi x^3}{4}$		
	$=\frac{15\pi x^2}{2}-\frac{\pi x^3}{4}$		(2)
10.2	$V(x) = \frac{15\pi x^2}{2} - \frac{\pi x^3}{4}$		
	For maximum volume:		
	$V'(x) = 15\pi x - \frac{3\pi x^2}{4}$	✓V'(x)	
	$15\pi x - \frac{3\pi x^2}{4} = 0$	\checkmark V $^{\prime}(x)=0$	
	$3\pi x \left(5 - \frac{x}{4}\right) = 0$	√factors	
	$x \neq 0 \text{ or } x = 20$	$\checkmark x \neq 0 \text{ or } x = 20$	(4)
10.3	$V(x) = \frac{15\pi x^2}{2} - \frac{\pi x^3}{4}$		
	$V(20) = \frac{15\pi (20)^2}{2} - \frac{\pi (20)^3}{4}$	✓substitution of 20	
	$= 3141,59 \text{ cm}^3$	✓answer	
			(2)
			[8]

	11.3.2	P(vowels will follow each other) = $\frac{1080}{10080} = \frac{3}{28}$	$\frac{2!}{2!}$ $\checkmark \frac{6!}{2!}$ $\checkmark \text{answer}$	(3) [15]
	11.5.2	Number of arrangements: $-\times -=1080$	1' =	
11.3	11.3.1	Number of arrangements: $\frac{8!}{2! \times 2!} = 10080$ Number of arrangements: $\frac{3!}{2!} \times \frac{6!}{2!} = 1080$	$\sqrt{3!}$	(2)
11.2	11.3.1	P(A or B) = P(A) + P(B) - P(A and B) P(A and B) = 0,48+0,31-0,67 = 0,12 But P(A)×P(B) = 0,48×0,31 = 0,1488 P(A and B) ≠ P(A)× P(B) ∴ A and B are not independent	✓substitution into the correct formula ✓0,12 ✓0,1488 ✓conclusion	(4)
11.2	11.1.2	P(a learner takes either of the two subjects but not Mathematics) $= \frac{5}{60} + \frac{6}{60} + \frac{17}{60}$ $= \frac{28}{60} = \frac{7}{15}$ P(A or B) = P(A) + P(B) P(A and B)	$\sqrt{\frac{5}{60} + \frac{6}{60} + \frac{17}{60}}$ $\sqrt{\frac{28}{60}} = \frac{7}{15}$	(2)
11.1	11.1.1	M 4 10 5 S S 17 L 2	✓M ✓S ✓L ✓2	(4)

TOTAL: 150