Me Chain Rule (Case 2) that z=f(x,y) is a differentiable of are differentiable functions of Then he Chain Rule (General version) Suppose that (1) is a differentiables each x; is a differentiable the m variables tytz, ..., to sa function of the interpolation of the and of: oxi of: oxi oxi

defines (y) implicitly as a differ. Function of x, that is, y = f(x), F(x, f(x)) = 0. C. x = x + x + x + y = 0. x = x + x + y = 0. If F is differentiable, we obtain #0, we obtain (4) Now, we suppose is given implicitly by an equation of the form F(x,y,z)=0.

F(x,y,f(x,y)) = 0 for all (x,y)
$$\in$$
 Rom(f).

If F and f are differentiable, then

$$\frac{\partial F}{\partial x} = \frac{\partial X}{\partial x} + \frac{\partial F}{\partial y} = \frac{\partial X}{\partial x} = 0$$
But $\frac{\partial X}{\partial x} = 1$ and $\frac{\partial X}{\partial y} = 0$.

Hence, $\frac{\partial F}{\partial x} + \frac{\partial F}{\partial y} = \frac{\partial F}{\partial x} = 0$

If $\frac{\partial F}{\partial x} \neq 0$, then
$$\frac{\partial F}{\partial x} = \frac{\partial F}{\partial x} = \frac{\partial F}{\partial x} = 0$$
Similarly, $\frac{\partial F}{\partial y} = \frac{\partial F}$

y as a function of (a,b) and the function is given by (1) Inclient Function Theorem:

is defined within containing (a, b, c), where Fz (a, b, c) = 0, and Fx, Fy, and Fz continuous inside the sphere, F(x,y,z) = 0 defines 2 as a function of or and y near the point (a,b,c) and this function is differentiable, with partial derivatives given by (2)

Examples

1. If
$$z = x^2y + 3xy^4$$
, where $x = \sin 2t$ and $y = \cos t$, find $\frac{dz}{dt}$ when $t = 0$.

Solution

$$\frac{\partial x}{\partial x} = 2xy + 3y^4$$

$$\frac{\partial x}{\partial x} = 2\cos 2x$$

$$\frac{3^{\frac{2}{5}}}{6x} = 2xy + 3y^4$$

$$\frac{9^{\frac{2}{5}}}{6y} = x^2 + 12xy^3$$

$$\frac{dy}{d\theta} = -\sin \theta$$

$$\frac{d2}{dt}\Big|_{t=0} = (0+3)(2\cdot\cos0) + (0+0)(-\sin0) = 6.$$

 $\frac{32}{35} = e^{x} \sin y \cdot t^{2} + e^{x} \cos y \cdot 2st =$ $= e^{x} \sin(s^{2}t)t^{2} + e^{x} \cos(s^{2}t) 2st$ 25 = 25 xx + 25 24 $\frac{22}{3k} = e^{x} \sin y \cdot 23k + e^{x} \cos y \cdot s^{2} =$ $= e^{3k^{2}} \sin(s^{2}k) 25k + e^{3k^{2}} \cos(s^{2}k) s^{2}$ $u = x^4y + y^2z^3$, where x = rset, s^2e^{-t} , $z = r^2s$ sint, find the of $x = x^2s$ sint, x = x = x, x = x = x, x = x = xor - or or - or or or or or = $(4x^3y)$ ret + $(x^4+2yz^3)2rse^{-t}$ + $3z^2y^2 \cdot r^2sint$

$$\frac{2u}{\sqrt{3}}\Big|_{v=2,S=1,t>0} = (4\cdot 2^3\cdot 2)2\cdot 1 + (2^4+2\cdot 2\cdot 0).$$

$$2\cdot 2\cdot 1\cdot 1 + 3\cdot 0\cdot 2^2\cdot 2^2\cdot 0 =$$

$$= 8\cdot 8\cdot 2 + 16\cdot 4 = 64\cdot 2 + 64 = 64\cdot 3 = 192.$$
4. If $g(s+) = f(s^2+t^2, t^2-s^2)$ and f is differentiable, show that g satisfies the equation
$$t = \frac{3}{3} + s = 0.$$
Solution
$$\frac{1}{3} + s = \frac{3}{3} = 0.$$
Solution
$$\frac{1}{3} + s = \frac{3}{3} = 0.$$

$$\frac{3}{3} = \frac{3}{3} \cdot \frac{2}{3} + \frac{2}{3} \cdot \frac{3}{3} = 0.$$

$$\frac{3}{3} = \frac{3}{3} \cdot \frac{2}{3} + \frac{2}{3} \cdot \frac{3}{3} = 0.$$

$$\frac{3}{3} = \frac{3}{3} \cdot \frac{2}{3} + \frac{2}{3} \cdot \frac{2}{3} = 0.$$

$$\frac{3}{3} = \frac{3}{3} \cdot \frac{2}{3} + \frac{2}{3} \cdot \frac{2}{3} = 0.$$

$$\frac{3}{3} = \frac{3}{3} \cdot \frac{2}{3} + \frac{2}{3} \cdot \frac{2}{3} = 0.$$

$$\frac{3}{3} = \frac{3}{3} \cdot \frac{2}{3} + \frac{2}{3} \cdot \frac{2}{3} = 0.$$

$$\frac{3}{3} = \frac{3}{3} \cdot \frac{2}{3} + \frac{2}{3} \cdot \frac{2}{3} = 0.$$

$$\frac{3}{3} = \frac{3}{3} \cdot \frac{2}{3} \cdot \frac{2}{3} + \frac{2}{3} \cdot \frac{2}{3} = 0.$$

$$\frac{3}{3} = \frac{3}{3} \cdot \frac{2}{3} \cdot \frac{2}{3} + \frac{2}{3} \cdot \frac{2}{3} = 0.$$

$$\frac{3}{3} = \frac{3}{3} \cdot \frac{2}{3} \cdot \frac{2}{3} + \frac{2}{3} \cdot \frac{2}{3} = 0.$$

$$\frac{3}{3} = \frac{3}{3} \cdot \frac{2}{3} \cdot \frac{2}{3} = 0.$$

$$\frac{3}{3} = \frac{3}{3} \cdot \frac{2}{3} \cdot \frac{2}{3} = 0.$$

$$\frac{3}{3} = \frac{3}{3} \cdot \frac{2}{3} \cdot \frac{2}{3} = 0.$$

$$\frac{3}{3} = \frac{3}{3} \cdot \frac{2}{3} \cdot \frac{2}{3} = 0.$$

Solution

$$\frac{dy}{dx} = \frac{2x^{3} + y^{3} - 6xy}{3x^{2} - 6y} = \frac{2x^{2} - 2y}{3x^{2} - 6x}$$

$$\frac{dy}{dx} = \frac{7x}{7} = \frac{3x^{2} - 6y}{3y^{2} - 6x} = \frac{3y^{2} - 2y}{3y^{2} - 2x}$$

6. Find
$$\frac{92}{9x}$$
 and $\frac{92}{9y}$ if $x^3 + y^3 + 2^3 + 6xy^2 = 1$.

Solution

$$F(x,y,z) = x^{3} + y^{3} + 2^{3} + 6xyz - 1$$

$$2z - Fx = 3x^{2} + 6yz = -x^{2} + 2yz$$

$$2x - Fz - 3z^{2} + 6xy - z^{2} + 2xy$$

