http://licence-info.univ-lyon1.fr/LIFAMI

LIFAMI MATH INFO APP

LIFAMI APPLICATIONS EN MATH ET INFO

DÉRIVÉES ET MÉCANIQUE DU POINT SYSTÈME DE PARTICULES

Alexandre Meyer Equipe SAARA, Laboratoire LIRIS Université Lyon 1

Math/info et la physique

- Les physiciens programment
 - Offre de formation Lyon 1
 - Mention physique, parcours Physique
 - 2e année, semestre 3
 - → UE Programmation C/C++

```
S3-UE1 [UE Obligatoire] (6 Crédits):

Electromagnétisme (6 cts)

S3-UE2 [UE Obligatoire] (6 Crédits):

Mathématiques 3 (Mécanique, Physique, SPI) (6 cts)

S3-UE3 [UE Obligatoire] (6 Crédits):

Programmation C/C++ (6 cts)

S3-UE4 [UE Obligatoire] (6 Crédits):

Mécanique des systèmes de solides et de points matériels (6 cts)
```


Math/info et la physique

La physique utilise la simulation numérique tout le temps

- Mécanique
- Aérodynamique
- Simulation de fluide
- Thermique
- Etc.

Math/info et la physique

- Les équations en physique
 - Souvent des équations différentielles
 - = relation entre une fonction et ses dérivées

$$af''+bf'+cf+d=0$$

Par exemple, une très simple : Position = Vitesse x temps :

$$x(t) = v.t = \frac{dx(t)}{dt}.t$$

- Mais aussi
 - Equation de la chaleur
 - Dynamique : F=m.x"
 - Etc.
- Rarement de solution analytique
 - Sauf dans des cas simples ou théorique
 - en général ce que vous avez étudiez aux lycée

Physique en informatique graphique

- Jeux vidéo
- Films

• . . .

Système de particules

- On voudrait faire des particules en mouvement ... pour commencer ...
 - On reste en 2D
 - Pas de fluide mais car uniquement en collisions avec le sol

Besoin de Newton

- Accélération = masse * Force
 - Dérivée de la vitesse
 - Dérivée de la position
- Mais en informatique pas de calcul analytique
 - Toujours cette histoire de discret / continue
 - Plutôt un calcul itératif = une simulation

LIFAMI APPLICATIONS EN MATH ET INFO

Dérivée et intégrale en informatique (sous entendu avec des données discrètes), ca change quoi ?

Pente d'une droite

$$A(-5,0)$$
 $B(0,3)$

Entre x et x+1, on monte de 0.6

$$p_{AB} = \frac{\Delta y}{\Delta x}$$

$$= \frac{f(b) - f(a)}{b - a}$$

$$= \frac{3 - 0}{0 - (-5)} = \frac{3}{5} = 0.6$$

Dérivée

La dérivée en un point de la fonction est la pente de la

tangente à la courbe

$$f'(x_i) \simeq rac{y_{i+1} - y_{i-1}}{x_{i+1} - x_{i-1}}$$

Dérivée

On peut approcher une fonction f par développement limité

$$f(x+h)=f(x)+f'(x)\cdot h+rac{f''(x)}{2}\cdot h^2+\mathrm{O}(h^2)$$

Une approximation

$$f'(x) \simeq rac{f(x+h)-f(x)}{h} - rac{f''(x)}{2} \cdot h \simeq rac{f(x+h)-f(x)}{h}$$

$$f'(x) \cong \frac{\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}}{h}$$

Dérivée

$$f'(x) = \frac{df(x)}{dx} \cong \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

- Dérivée de f par rapport à x
 - Notation f'(x) ou $\frac{df(x)}{dx}$
 - Signifie : variation de f quand on fait varier un petit peu x
 - Ou : différence de f divisé par différence de x
 - Ou : de combien augmente f quand on augmente un petit peu x

Dérivée : question 1

Soit *f* la fonction définie par $f(x) = 3x^2 + 2$

La fonction analytique dérivée f'est définie par?

a.
$$f'(x) = 3$$
 b. $f'(x) = 3x$ **c.** $f(x) = 6x$

On peut aussi faire $\frac{df(x)}{dx} \cong \frac{f(x+h)-f(x)}{h}$ $= \frac{3(x+h)^2 - 3x^2 - 2}{h}$ = ... Dérivée numérique

Dérivée : question 2

Soit *f* la fonction définie sur [–1 ; 4] représentée ci-contre.

Sur [-1; 4], la fonction dérivée f':

- a. Est positive.
- b. Est négative.
- c. Change de signe.

Dérivée: croissante/nulle/décroissante

Soit une fonction f définie sur [a, b]

• Remarque : a et b, les bornes, sont automatiquement des nombres critiques car la dérivée n'y existe pas.

Dérivée discrète

- En math, souvent calcul de dérivées analytique
 - cos'(x) = sin(s)
 - $(x^2+3x+5)' = 2x+3$
- En informatique
 - Souvent une fonction est représentée par une version discrète
 - Tableau de valeurs : float f[10000];
 - La dérivée est alors ?

Exemple

 f(t): fonction donnant la hauteur de la Saône chaque jour en centimètres

Jour	 105	106	107	108	109	110	111	112	113	114	115
Hauteur en cm	233	230	234	240	245	247	248	241	237	243	246

- f(109) = 245
 - au 109^e jour la Saône a une hauteur de 245cm
- Dérivée de la fonction f au jour 109 est donc de +2cm/jour

$$\frac{df(t)}{dt} \cong \frac{f(t+dt)-f(t)}{dt} = \frac{f(109+1)-f(109)}{1} = 247-245=2$$

Question

 F(t): fonction donnant la hauteur de la Saône chaque jour en centimètres

Jour	 105	106	107	108	109	110	111	112	113	114	115
Hauteur en cm	233	230	234	240	245	247	248	241	237	243	246

- f(112) = 241
 - au 112e jour la Saône a une hauteur de 241cm
- Dérivée de cette fonction f au jour 112 est donc de ?

$$\frac{df(t)}{dt} \cong \frac{f(t+dt)-f(t)}{dt} = \frac{f(112+1)-f(112)}{1} = ?$$

Dérivée discrète

- En informatique
 - Souvent une fonction est représentée par une version discrète
 - Tableau de valeurs : float f[10000];
 - La dérivée est alors la différence entre 2 cases du tableau

LIFAMI APPLICATIONS EN MATH ET INFO

Mécanique du point / système de particules

Démo du TD/TP

Démo 1 des particules

• F: les forces en N

• m : la masse en kg

• a : accélération en m.s⁻²

L'accélération c'est quoi ?

L'accélération c'est quoi ?

- C'est le fait d'aller plus vite ?
- En physique c'est aussi le fait d'aller moins vite
- L'accélération est une valeur, qui change au cours du temps
- Si l'accélération est nulle, la vitesse ne change pas
- Si l'accélération est positive, la vitesse augmente
- ~L'accélération est la variation de vitesse entre deux moments du temps

L'accélération est la variation de vitesse en 1 seconde

- Comme la vitesse est en m/s
- → l'accélération est en m/s²

Comment se calcule l'accélération ?

- Vitesse de pointe du <u>sprinter Usain Bolt</u> pendant son record du monde du 100 m
 - 12.42 m/s = 44km/h = qu'il attend en environ 7s
 - Après sa vitesse se stabilise

$$t=0 s$$
 $v=0 m/s$ $t=7 s$ $v=12.42 m/s$

$$a = \frac{v_2 - v_1}{t_2 - t_1} = \frac{12.42 - 0}{7 - 0} = 1.77 m/s^2$$

Chaque seconde, sa vitesse augmente de 1.77m/s donc de 6.3 km/h

Comment se calcule l'accélération ?

- Voiture qui accélère le plus fort
 - De 0 à 300km en 13.6s

$$t=0 s$$

 $v=0 m/s$

$$a = \frac{v_2 - v_1}{t_2 - t_1} = \frac{83.33 - 0}{13.6 - 0} = 6.127 m/s^2$$

Chaque seconde, sa vitesse augmente de 6.127 m/s donc de 22 km/h

Comment se calcule l'accélération ?

 L'accélération entre t₁ et t₂ est la différence de vitesse divisée par la différence de temps

$$a = \frac{v_2 - v_1}{t_2 - t_1}$$

 L'accélération est la dérivée de la vitesse par rapport au temps

$$a(t) = \frac{dv(t)}{dt} \cong \frac{v(t+dt) - v(t)}{dt}$$

La vitesse c'est quoi ?

La vitesse c'est quoi ?

Distance parcourue durant un intervalle de temps

$$v = \frac{x_2 - x_1}{t_2 - t_1}$$

La vitesse c'est quoi ?

La vitesse est la variation de position en 1 seconde

→en m/s

La vitesse est la dérivée de la position par rapport au temps

$$v(t) = \frac{dp(t)}{dt} \cong \frac{p(t+dt) - p(t)}{dt}$$

On a donc

L'accélération est la dérivée de la vitesse par rapport au temps

$$a(t) = \frac{dv(t)}{dt} \cong \frac{v(t+dt) - v(t)}{dt}$$

 La vitesse est la dérivée de la position par rapport au temps

$$v(t) = \frac{dp(t)}{dt} \cong \frac{p(t+dt) - p(t)}{dt}$$

On peut donc mettre à jour

 la vitesse en fonction de l'accélération et de la vitesse au pas de temps précédent

$$v(t+dt) = v(t) + a(t).dt$$

 la position en fonction de la vitesse et de la position au pas de temps précédent

$$p(t+dt) = p(t) + v(t).dt$$

Comme
$$F = m.a(t) \Leftrightarrow a(t) = \frac{F}{m}$$

 la vitesse en fonction de l'accélération et de la vitesse au pas de temps précédent

$$v(t+dt) = v(t) + \frac{F}{m}.dt$$

 la position en fonction de la vitesse et de la position au pas de temps précédent

$$p(t+dt) = p(t) + v(t).dt$$

Les forces indiquent comment change l'accélération (F=ma)

• Sur terre, poids P

$$P = mG$$
 avec $G = \begin{pmatrix} 0 & g \end{pmatrix}$
avec $g = -9.81$

Les forces ? + demo du code

Les forces indiquent comment change l'accélération (F=ma)

Sur terre, poids P

$$P = mG$$
 avec $G = \begin{pmatrix} 0 & g \end{pmatrix}$
avec $g = -9.81$

• **Les astres.** Deux astres de position A et B et de masse m_A et m_B s'attirent avec une force

$$F_{A/B} = \frac{g.m_A.m_B}{d^2} AB$$

Une particule en 2D

- Une particule à l'écran est en 2D
 - Masse
 - Position
 - Vitesse

- Qu'est-ce que ca change pour les calculs ?
 - Vitesse: (v_x,v_y) en m/s
 - Position: (p_x,p_v) en m
 - Masse: 1 scalaire en kg
 - F: (f_x, f_y) en N=Newton
- Vitesse et position sont des Vecteurs à 2 dimensions
 - Comme des complexes vus au cours 1

Et le code?

On a besoin de Vecteur 2D

```
struct Vec2
{
    float x, y;
};

Vec2 make_vec2(float x, float y);

Vec2 operator+(const Vec2& a, const Vec2& b);

Vec2 operator-(const Vec2& a, const Vec2& b);

Vec2 operator*(float a, const Vec2& b);

float norm(const Vec2 v);
```

Ceux sont les mêmes fonctions que pour les complexes

Et le code?

On a besoin d'une particule

Tant qu'on y est codons plusieurs particules

```
struct World
{
     Particle part[NPMAX];
     int np;
     float dt;
};
```

Et le code?

Et pour dt?

- dt petit c'est mieux mais allonge le temps de calcul
- dt trop grand peut être instable (cf. démo masses-ressorts)
- En pratique dt=0.01 ou 0.001

Collisions avec le sol

- Collisions avec 4 murs: horizontaux et verticaux
 - 4 cas simples, par exemple avec sol
 - Remettre la particule au dessus du sol
 - Changer V=vecteur vitesse de manière symétrique

 v_t = symétrique de v_t par rapport à y

Masses-ressorts

Démo du code

$$F_{ressort} = k.(l - l_{repos})$$

Conclusion

- Une première simulation physique
 - Finalement pas si compliqué que ca !

