Analiza și procesarea datelor prin tehnici de Învățare Automată

1. Introducere în Data Mining

Universitatea Transilvania din Brașov

FACULTATEA DE INGINERIE ELECTRICĂ ȘI ȘTIINȚA CALCULATOARELOR

Contact: horia@amail.com modranhoria@amail.com

Tel: 0770171577

Data Collection and Database Creation (1960s and earlier)

· Primitive file processing

Database Management Systems

(1970s-early 1980s)

- · Hierarchical and network database systems
- · Relational database systems
- Data modeling tools: entity-relational models, etc.
- · Indexing and accessing methods: B-trees, hashing, etc.
- · Query languages: SQL, etc.
- · User interfaces, forms and reports
- · Query processing and query optimization
- · Transactions, concurrency control and recovery
- · On-line transaction processing (OLTP)

Advanced Database Systems

(mid-1980s-present)

- Advanced data models: extended relational, object-relational, etc.
- Advanced applications: spatial, temporal, multimedia, active, stream and sensor, scientific and engineering, knowledge-based

Advanced Data Analysis:

Data Warehousing and Data Mining (late 1980s–present)

- · Data warehouse and OLAP
- Data mining and knowledge discovery: generalization, classification, association, clustering, frequent pattern and structured pattern analysis, outlier analysis, trend and deviation analysis, etc.
- Advanced data mining applications: stream data mining, bio-data mining, time-series analysis, text mining, Web mining, intrusion detection, etc.
- Data mining and society: privacy-preserving data mining

Web-based databases

(1990s-present)

- XML-based database systems
- Integration with information retrieval
- Data and information integration

New Generation of Integrated Data and Information Systems (present–future)

- după ani de exploatare a datelor, încă nu există un răspuns unic la această întrebare
- termenul "Data Mining" nu a fost inventat decât în anii 1990
- definiție posibilă: "Data mining-ul este utilizarea unor tehnici eficiente pentru analiza unor colecții foarte mari de date și extragerea de structuri utile și posibil neașteptate în date."

Data Mining

- Al/Învățare automată/Învățare profundă: avem date pentru a realiza modele mai complexe, care sunt semnificativ mai puternice
 - accent pe descoperirile științifice

- **Data Science:** Datele sunt utile pentru a înțelege un proces și pentru a-l îmbunătăți
 - se concentrează pe aplicații imediate
- **Big Data:** Datele ar trebui procesate colectiv și interconectate. Este nevoie de infrastructură cloud
 - mai mult orientate spre sisteme.

Transilvania din Brașov FACULTATEA DE INGIN RIE EL CALCULATORIE DE CALCULATORI

- creșterea explozivă a datelor: de la terabytes (1000⁴) la yottabytes (1000⁸) -> cantitate foarte mare de date brute!!
 - colectarea datelor și disponibilitatea datelor
 - instrumente automate de colectare, sisteme DB, web
 - surse majore de date
 - business: Web, comerț electronic, tranzacții, stocuri, etc.
 - știință: bioinformatică, cercetare medicală
 - dispozitive mobile/loT, camere digitale etc.
- Cum se analizează datele?
- Data mining analiză automată a seturilor de date masive

Transilvania din Brașov FACULTATEA DE INGIN RIE EL CALCULATORICE DE CALCUL

- cantități mari de date pot fi mai puternice decât algoritmii și modelele complexe
 - Google a rezolvat problemele de procesare a limbajului natural doar analizând datele: greșeli de ortografie, greșeli gramaticale, sinonime
- datele reprezintă cele mai mari active ale companiilor
- avem nevoie de o modalitate de a valorifica inteligența colectivă
- datele sunt foarte complexe: tabele, serii temporale, imagini, grafice, etc.

Ce sunt datele?

Atribute = coloanele tabelului

colecție de obiecte și atributele acestora

un atribut este o proprietate sau o caracteristică a unui obiect

exemple: culoarea

Obiecte = rândurile
din tabel

o colecție de atribute descriu un obiect

obiectul este cunoscut și ca înregistrare, punct, entitate, instanță

}					
ı	Tid	Refund	Marital Status	Taxable Income	Cheat
_	1	Yes	Single	125K	No
	2	No	Married	100K	No
	3	No	Single	70K	No
	4	Yes	Married	120K	No
	5	No	Divorced	95K	NULL
	6	No	Married	60K	No
	7	Yes	Divorced	220K	No
	8	No	NULL	85K	Yes
	9	No	Married	75K	No
	10	No	Single	90K	Yes

Size: Number of objects

Dimensionality: Number of attributes

Sparsity: Number of populated object-attribute pairs

, i

Tipuri de atribute

Există diferite tipuri de atribute

Categoriale

- exemple: culoarea ochilor, coduri poștale, cuvinte, clasificare (bun/rău), înălțime în {înalt, mediu, scund}
- nominal (fără ordine sau comparație) vs ordinal (descrie o anumită oridine)

Numeric

- exemple: data, temperatura, ora, lungimea, valoarea, etc.
- discrete (ora) sau continue (temperatura)
- caz special: atribute binare (da/nu, există/nu există)

Date numerice

- dacă obiectele de date au același set fix de atribute numerice, atunci obiectele de date pot fi văzute ca puncte într-un spațiu multidimensional, unde fiecare dimensiune reprezintă un atribut distinct

	Temperature	Humidity	Pressure
O 1	30	0.8	90
O2	32	0.5	80
О3	24	0.3	95

30	0.8	90
32	0.5	80
24	0.3	95

Date numerice

- datelor numerice pot fi tratate ca puncte sau vectori
- pentru dimensiuni mici putem reprezenta grafic datele
- putem folosi analogi geometrici pentru a defini concepte precum distanța sau asemănarea
- putem folosi algebra liniară pentru a procesa matricea de date

vom vorbi adesea despre puncte sau vectori

ansilvania n Brașov Cultate de Inginerie el Ctrid ate relaționale mixte

Date care constau dintr-o colecție de înregistrări, fiecare dintre ele constând dintr-un set fix de atribute atât numerice, cât și categoriale

ia valori numerice, dar este de fapt categoric

ID	Cod poștal	Vârstă	Stare civilă	Salariu	Treaptă venit	Refund
1129842	45221	55	Single	250000	High	0
2342345	45223	25	Married	30000	Low	1
1234542	45221	45	Divorced	200000	High	0
1243535	45224	43	Single	150000	Medium	0

Atributele booleene pot fi considerate atât numerice, cât și categoriale Când apar împreună cu alte atribute, ele au pot fi privite drept categoriale Acestea sunt adesea reprezentate numeric.

Transilvania din Brașov FACULTATEA DE INGINERIE EL CTRID ate relaționale mixte

- uneori este convenabil să se reprezinte atributele categoriale ca date de tip boolean
 - se adaugă un atribut boolean pentru fiecare valoare posibilă

ID	Zip 45221	Zip 45223	Zip 45224	Vârstă	Sin gle	Married	Divorced	Venit	Refund
1129842	1	0	0	55	1	0	0	250000	0
2342345	0	1	0	25	0	1	0	30000	1
1234542	1	0	0	45	0	0	1	200000	0
1243535	0	0	1	43	1	0	0	150000	0

Acum putem vedea întregul vector ca numeric

ansilvania n Brașov cultarea de inginerie el Cital de la columna de la c

- în alte situații este convenabil să se reprezinte atributele numerice drept categoriale
 - se grupează valorile atributelor numerice în bin-uri

ID Number	Zip Code	Age	Marital Status	Income	Income Bracket	Refund
1129842	45221	50s	Single	High	High	0
2342345	45223	20s	Married	Low	Low	1
1234542	45221	40s	Divorced	High	High	0
1243535	45224	40s	Single	Medium	Medium	0

■ Idee: se împarte intervalul domeniului atributului numeric în bins (intervale).

Bucketization

- **Equi-width bins**: toate intervalele au aceeași dimensiune
 - example: împărțirea timpului în decade
 - problemă: unele intervale pot conține puține puncte
- Equi-size (depth) bins: selectarea intervalelor astfel încât ele să conțină un număr egal de puncte
 - de exemplu, acest procedeu împarte datele astfel: primele 10%, următoarele 10%. etc.
 - problemă: unele intervale pot fi foarte mici
- Equi-log bins: log end-log start este constant
 - dimensiunea zonei anterioare este o fracțiune din cea curentă

Albastru: Equi-width [20,40,60,80]

Roșu: Equi-depth (2 points per bin)

Verde: Equi-log
$$(\frac{end}{start} = 2)$$

Transilvania din Brașov FACULTATEA DE INGINERIE ELECT ICĂ IP de date – exemplu

TID	Articole
1	Pâine, Coca-Cola, Lapte
2	Bere, Pâine
3	Bere, Coca-Cola, Lapte
4	Bere, Pâine, Lapte
5	Coca-Cola, Lapte, Miere

Date tranzacționale

Date spațiale

Date ordonate

	team	coach	pla y	ball	score	game	wi n	lost	timeout	season
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

Date documente

2024-2025

Tipuri de date

- Date numerice: fiecare obiect este un punct dintr-un spațiu multidimensional
- Date categoriale: fiecare obiect este un vector de valori categoriale
- Set de date: fiecare obiect este un set de valori (cu sau fără ordin de comparație)
- Secvențe ordonate: fiecare obiect este o secvență ordonată de valori
- Date grafice

- Punct de vedere comercial (companii Facebook, Google, etc.)
 - datele au devenit avantajul competitiv cheie al companiilor
 - capacitatea de a extrage informații utile din date este esențială pentru exploatarea lor comercială.

Punct de vedere științific

- poziție fără precedent- se colectează TB de date (date de la senzori, date bancare, date ale rețele sociale, etc.)
- **a** avem nevoie de instrumente specifice pentru a analiza astfel de date.

Transilvania din Brașov FACULTATEA DE INGINE DE ELETTRĂ III ZĂRI A CALCULATOAR CALCULATOA

- Câteva utilizări uzuale ale Data Mining:
 - seturi frecvente de itemi (extragere de text, recomandări)
 - asociere și extragerea regulilor
 - analiza exploratorie
 - asemănări
 - grupare
 - clasificare

Analiză exploratorie

- Se realizează o analiză pentru a înțelege cum arată datele
- exemplu: postări social media
 - Cât de des postează utilizatorii, câte postări per utilizator, când postează, există o corelație între numărul de postări și numărul de prieteni, etc.
- Acesta este unul dintre primii paşi după colectarea datelor
 - metrici: este important să se decidă ce să măsoare

Transilvania din Brașov FACULTATEA DE INCE DI ORACE SI SI MILITATE DI LERIE EL XPIC DI ORACE SI SI MILITATE A CALCULATORI CAL

- Se consideră următoarele date despre utilizatori:
 - de câte ori au dat click pe postările din aceste pagini

Ce concluzii putem trage?

	NBA	ESPN	Sports.com	MSNBC	NY Times	Wall Street	Politico
Α	100	50	73	10	1	1	4
В	500	200	400	20	10	4	1
С	80	100	60	1	3	1	1
D	4	2	1	12	90	100	80
Е	9	3	4	9	100	80	70
F	3	4	5	30	300	200	500

Cum determinăm similaritatea?
Cum grupăm utilizatori similari? Clustering

Realizarea de predicții

- completarea unei valorii lipsă ~ sarcină de predicție
- Tipuri de sarcini de predicție:
 - prezicearea unei valori reale: Regresie
 - prezicerea unei valori binare (DA/NU): Clasificare binară
 - predicția pe mai multe clase : Clasificare
- Vă puteți gândi la sarcini de predicție/clasificare pentru o rețeaua de socializare?

Ad click prediction

Like prediction

Predict if a post is offensive

Predict if a photo contains nudity

Ad clickthrough prediction

Predict if a user will like a post over another: Learning to rank

Clasificare

- Procesul de clasificare:
 - găsiți caracteristici care descriu o entitate
 - folosiți exemple de clase pentru a prezice
 - dezvoltă un model (funcție) care face redicția
- Clasificarea este «motorul» din spatele Revoluției Inteligenței Artificiale (IA)
 - utilizat în toate sistemele care iau decizii
 - a devenit foarte puternic cu Deep Learning
 - aplicații uriașe în computer vision

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Clustering

- fiind dat un set de puncte, fiecare având un set de atribute și o măsură de similitudine între ele, găsiți grupuri astfel încât:
 - punctele de date dintr-un cluster să fie cât mai asemănătoare între ele
 - punctele de date din clustere diferite sunt cât mai puțin asemănătoare între ele
 - Măsuri de similaritate?

distanța euclidiană

alte măsuri specifice problemei

Distanțele intracluster sunt minimizate

Distanțele dintre grupuri sunt maximizate

Deep Learning

- Sisteme de învățare automată care utilizează rețele neuronale cu mai multe straturi și sunt antrenate pe cantități mari de date
 - capabil să învețe reprezentări complexe și modele puternice
 - aplicații în recomandări, analiză de rețea, analiză de text, recunoaștere de imagini, conducere autonomă, etc.

necesită mai puțină procesare a datelor

Tasov Pagov Data Mining pipeline

- Data Mining nu este singurul pas în procesul de analiză
- partea de data mining se referă la metodele analitice și algoritmii pentru extragerea informaților utile din date
- pre- și post-procesarea sunt adesea sarcini de extragere a

Colectarea datelor

- eșantionarea este tehnica principală folosită pentru selectarea datelor
 - este adesea folosit atât pentru investigarea preliminară a datelor, cât și pentru analiza finală a datelor
- statisticienii eșantionează deoarece obținerea întregului set de date de interes este prea costisitoare sau consumatoare de timp
 - exemplu: care este înălțimea medie a unei persoane în România?
- eșantionarea este utilizată în data mining
 - exemplu: Avem un set de 1M documente. Ce procent de perechi de documente are cel puțin 100 de cuvinte în comun?

Transiliano impensione din Bracov impensione de pantioane lo restina de la constitución d

Ce dimensiune a eșantionului este necesară pentru a obține cel puțin un obiect din fiecare dintre cele 10 grupuri

Curățarea datelor

- datele trebuie curățate
- trebuie să extragem caracteristicile reprezentative a datelor

Examples of data quality problems:

Noise and outliers Missing values Duplicate data

Greșeală sau milionar?

Valoare lipsă

Date inconsistente/duplicate

5:	Tid	Refund	Marital Status	Taxable Income	Cheat	
	1	Yes	Single	125K	No	
	2	No	Married	100K	No	
	3	No	Single	70K	No	
	4	Yes	Married	120K	No	
	5	No	Divorced	10000K	Yes	
	6	No	NULL	60K	No	
	7	Yes	Divorced	220K	NULL	
	8	No	Single	85K	Yes	
	9	No	Married	90K	No	
	9	No	Single	90K	No	

Transilva din Braşde Vttragerea gerea caracteristicilor

- datele pe care le obținem nu sunt neapărat un tabel relațional
- datele pot fi într-un formă brută
 - exemple: text, vorbire, mișcări ale mouse-ului etc.
- trebuie să extragem caracteristicile din date
- extragerea caracteristicilor:
 - selectând caracteristicile reprezentative
 - necesită anumite cunoștințe de domeniu despre date
 - depinde de aplicație
- Învățare profundă elimină acest pas

- în multe cazuri este importantă normalizarea datelor
- tipul de normalizare pe care îl folosim depinde de ceea ce vrem să realizăm
- Normalizarea coloanelor
 - scădeți valoarea minimă și împărțiți la diferența dintre valoarea maximă și valoarea minimă pentru fiecare atribut
 - transformă valorile în intervalul [0,1]

Temperature	Humidity	Pressure
30	0.8	90
32	0.5	80
24	0.3	95

Temperature	Humidity	Pressure
0.75	1	0.66
1	0.40	0
0	0	1

new value = (old value - min column value) / (max col. value - min col. value)

Universitatea Transilvania din Brașov FALUNTA CALCIU ATORISI DE INGINE IL ALEITO TIMA III ZAITE A FALUNTA CALCIU ATORISI DE INGINE IL ALEITO TIMA I CALCIU ATORIS DE INGINE IL ALE

- împărțiți valoarea la suma valorilor pentru fiecare document (rând din matrice)
- transforma un vector într-o distribuție*

	Word 1	Word 2	Word 3
Doc 1	28	50	22
Doc 2	12	25	13

Sunt aceste documente similare?

	Word 1	Word 2	Word 3
Doc 1	0.28	0.5	0.22
Doc 2	0.24	0.5	0.26

new value = old value / Σ old values in the row

^{*} de exemplu, valoarea celulei (Doc1, Word2) este probabilitatea ca un cuvânt ales aleatoriu din Doc1 să fie Word2

Universitatea Transilvania din Brașov FACULIATO DE INGINE DE ENGINE DE ENGINE DE ENGINE DE CALCULATO DE FACULIATO DE FACUL

- Acești doi utilizatori evaluează filmele în mod similar?
- scădeți valoarea medie pentru fiecare utilizator (rând)
- capturează abaterea de la comportamentul mediu

	Movie 1	Movie 2	Movie 3
User 1	1	2	3
User 2	2	3	4

	Movie 1	Movie 2	Movie 3
User 1	-1	0	+1
User 2	-1	0	+1

new value = (old value - mean row value)

Post-procesare

- Vizualizare
 - ochiul uman este un instrument analitic puternic!!
- dacă vizualizăm datele în mod corespunzător, putem descoperi tipare și putem demonstra tendințe
- văzute văzute vizualizare prezentați datele astfel încât modelele să poată fi
 - histogramele şi diagramele sunt o formă de vizualizare
 - există mai multe tehnici

Figure 1.1: Plotting cholera cases on a map of London

Transi ration din Brasov Acultate a Cultura de Nino Merie Cette Cucerea dimensionalității

- ochiul uman este limitat la procesarea vizualizărilor în două (cel mult trei) dimensiuni
- una dintre marile provocări în vizualizare este vizualizarea datelor multi-dimensionale într-un spațiu bidimensional
 - reducerea dimensionalității
 - înglobări care păstrează distanța
- Reducerea dimensionalității este, de asemenea, o tehnică de **preprocesare**:
 - reduce cantitatea de date
 - extrageți informațiile utile

Transition din Brasov Columna di November de l'accultate de l'accu

Se considerară următorul set de date cu 6 dimensiuni:

$$D = \begin{bmatrix} 1 & 2 & 3 & 0 & 0 & 0 \\ 2 & 4 & 6 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 2 & 4 & 6 \\ 1 & 2 & 3 & 1 & 2 & 3 \\ 2 & 4 & 6 & 2 & 4 & 6 \end{bmatrix}$$
 Figure 6

Fiecare rând este un multiplu a doi vectori

$$x = [1, 2, 3, 0, 0, 0]$$

 $y = [0, 0, 0, 1, 2, 3]$

Ce observați? Putem reduce dimensiunea datelor?

Putem rescrie **D** ca:

$$D = \begin{bmatrix} 2 & 0 \\ 0 & 1 \\ 0 & 2 \\ 1 & 1 \\ 2 & 2 \end{bmatrix}$$

Analiza exploratorie

- Statistici sumare: numere care rezumă proprietățile datelor
- Proprietățile rezumate includ frecvența, locația și răspândirea
 - exemple: locație medie

răspândire (*spread*) - abatere standard

- frecvența unei valori de atribut este procentul de apariție a valorii în setul de date
 - de exemplu, având în vedere atributul "gen" și o populație reprezentativă de oameni, genul "feminin" apare în aproximativ 50% din timp
- modul unui atribut este cea mai frecventă valoare a atributului
- putem vizualiza frecvențele datelor folosind o histogramă

Exemple

<100K

2024-2025

[100K,200K]

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	10000K	Yes
6	No	NULL	60K	No
7	Yes	Divorced	220K	NULL
8	No	Single	85K	Yes
9	No	Married	90K	No
10	No	Single	90K	No

Mod: Single

Single	Married	Divorced	NULL
4	3	2	1

Single	Married	Divorced
44%	33%	22%

>200K

REFUND

Yes

45%

INCOME

■<100K ■[100K,200K] ■>200K

38

33%

Percentile

- pentru datele continue, noțiunea de percentile este mai utilă
- dat fiind un oridinal sau continuu x și un număr p între 0 și 100, percentila p este o valoare x_p a lui x astel încât p% din valorile observate a lui x sunt mai mici sau egale decât x_p .
- de exemplu, percentila 80 este valoarea $x_{80\%}$ care este mai mare sau egală cu 80% din toate valorile lui x pe care le avem în setul de date.

 $x_{80\%} = 125K$

Taxable Income

10000K

220K

125K

120K

100K

90K

90K

85K

70K

60K

Transilvania din Brașov FACULTATEA DE INGINERIE ATTRA O O TI ME dii Si Mediane

- Valoarea medie (*mean*) este cea mai comună măsură a locației unui set de puncte. $mean(x) = \overline{x} = \frac{1}{m} \sum_{i=1}^{m} x_i$
- Mediana este, de asemenea, frecvent utilizată

$$\operatorname{median}(x) = \left\{ \begin{array}{ll} x_{(r+1)} & \text{if } m \text{ is odd, i.e., } m = 2r+1 \\ \frac{1}{2}(x_{(r)} + x_{(r+1)}) & \text{if } m \text{ is even, i.e., } m = 2r \end{array} \right.$$
 Trimmed mean: valoarea medie după eliminearea valorilor

	Tid	Refund	Marital Status	Taxable Income	Cheat	r
	1	Yes	Single	125K	No	
	2	No	Married	100K	No	
	3	No	Single	70K	No	
	4	Yes	Married	120K	No	
ľ	5	No	Divorced	10000K	Yes	
L	6	No	NULL	60K	No	
Ī	7	Yes	Divorced	220K	NULL	
	8	No	Single	85K	Yes	
	9	No	Married	90K	No	
	10	No	Single	90K	No	

minime și maxime

Mean: 1096K

Trimmed mean (remove min, max): 112.5K

Median: (90+100)/2 = 95K

2024-2025

Relație între atribute

- în multe cazuri este interesant să privim împreună două atribute pentru a înțelege dacă sunt corelate
 - de ex., Cum legătura între starea civilă cu înșelăciunea
 - de exemplu, rambursarea se corelează cu venitul mediu?

Există o relație între anii de studiu și venit?

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	10000K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	90K	No
10	No	Single	90K	No

Cum vizualizăm aceste relații?

Matricea de confuzie

	No	Yes
Single	3	1
Married	4	0
Divorced	1	1

Matricea de distribuție

	No	Yes	
Single	0,3	0,1	
Married	0,4	0	
Divorced	0,1	0,1	

Corelare atribute

- Grafic de tip *Scatter plot*:
 - Axa X reprezintă un atribut, axa Y pe celălalt

Tid	Refund	Marital Status	Taxable Income	Years of Study
1	Yes	Single	125K	4
2	No	Married	100K	5
3	No	Single	70K	3
4	Yes	Married	120K	3
5	No	Divorced	10000K	6
6	No	NULL	60K	1
7	Yes	Divorced	220K	8
8	No	Single	85K	3
9	No	Married	90K	2
10	No	Single	90K	4

- pentru fiecare intrare avem 2 valori
- intrările sunt reprezentate ca puncte bi-dimensionale

Income vs Years of study

Transilvaria din Braştiv FACULTATEA LE INGIN RIEL EFRICE lare atribute numerice

scara logaritmică pe axa Y face ca graficul să arate mai bine

■ După eliminarea outlier-ului există o corelație clară

Transilvania din Brașov Afișarea Atributelor

Year	Product 1	Product 2
2011	100	200
2012	200	250
2013	180	300
2014	300	350
2015	500	490
2016	600	500
2017	650	550
2018	640	540
2019	700	500
2020	200	100

Cum ați vizualiza diferențele dintre vânzările de produse de-a lungul timpului?

Universitatea Transilvania din Brașov FACULTATEA DE INGINERIE ELECTRICĂ ȘI ȘTIINȚA CALCULATOARELOR

ÎNTREBĂRI?

