

Compilation Principle 编译原理

第14讲: 语义分析(2)

张献伟

xianweiz.github.io

DCS290, 4/12/2022

Review Questions

- Why context analysis is not performed in parsing stage?
 Parsing relies on CFG, which is context free.
- Give some examples of semantic analysis.
 Def-before-use, no redefinition, same type, scoping ...
- What is Syntax Directed Translation? The parsing process and parse trees are to direct semantic analysis and the translation of the program (a.k.a., CFG-driven translation)
- How to augment grammar for semantic analysis?
 Semantic attributes for symbols, rules/actions for productions
- What are SDD and SDT?
 SDD = Syntax Directed Definitions, SDT = SD Translation Schemes
- What is an synthesized attribute?
 Defined by attribute values of node N's children and N itself

Example: Synthesized Attribute (cont.)

Side effect (副作用)

Input:

$$3*5+4$$

E.val = 15

T.val = 15

Annotated parse tree (标注分析树)

E.*val* = 19

digit.lexval = 3

T.val = 4

 $\mathbf{F}.val = 4$

Example: Inherited Attribute[继承]

SDD:

Production Rules	Semantic Rules		
(1) D -> T L (2) T -> int (3) T -> float	L.inh = T.type T.type = int T.type = float		Thas synthesized attribute <i>type</i> Lhas inherited attribute <i>inh</i>
(4) L -> L ₁ , id	$L_1.inh = L.inh$	Pointing	to a symbol-table[符号表] object
	addtype (id.entry)		
(5) L -> id	addtype(id.entry,	L.inh)	

Variable declaration of type int/float followed by a list of IDs:

- (1) Declaration: a type T followed by a list of L identifiers
- (2) Evaluate the synthesized attribute *T.type* (int)
- (3) Evaluate the synthesized attribute *T.type* (float)
- (4) Pass down type, and add type to symbol table entry for the identifier
- (5) Add type to symbol table

Example: Inherited Attribute (cont.)

SDD:

Production Rules	Semantic Rules
(1) D -> T L	L.inh = T.type
(2) T -> int	T. <i>type</i> = int
(3) T -> float	T.type = float
(4) L -> L ₁ , id	$L_1.inh = L.inh$
	addtype(id. <i>entry</i> , L. <i>inh</i>)
(5) L -> id	addtype(id. <i>entry,</i> L. <i>inh</i>)

Input:

float a, b, c

type depends on child inh depends on sibling or parent

id.lexeme = a

The Concepts

- Side effect[副作用]
 - 一般属性值计算(基于属性值或常量进行的)之外的功能
 - 例如: code generation, print results, modify symbol table ...
- Attribute grammar[属性文法]
 - 一个没有副作用的SDD
 - The rules define the value of an attribute purely in terms of the value of other attributes and constants[属性文法的规则仅仅通过其他属性值和常量来定义一个属性值]
- Annotated parse-tree[标注分析树]
 - 每个节点都带有属性值的分析树
 - A parse tree showing the value(s) of its attribute(s)
 - a.k.a., attribute parse tree[属性分析树]
 - Can also have actions being annotated[也可标注语义动作]

Dependence Graph[依赖图]

- Dependence relationship[依赖关系]
 - Before evaluating an attribute at a node of a parse tree, we must evaluate all attributes it depends on[按照依赖顺序计算]
- Dependency graph[依赖图]
 - While the annotated parse tree shows the values of attributes, a dependency graph helps determine <u>how those values can be</u> computed[依赖图决定属性值的计算]
 - Depicts the flow of info among the attribute instances in a particular parse tree[描绘了分析树的属性信息流]
 - Directed graph where edges are dependence relationships between attributes
 - For each parse-tree node X, there's a graph node for each attr of X
 - If attr X.a depends on attr Y.b, then there's one directed edge from Y.b to X.a

Example: Dependency Graph

SDD:

Production Rules	Semantic Rules
(1) D -> T L	L.inh = T.type
(2) T -> int	T. <i>type</i> = int
(3) T -> float	T.type = float
(4) L -> L ₁ , id	$L_1.inh = L.inh$
	addtype(id. <i>entry</i> , L. <i>inh</i>)
(5) L -> id	addtype(id. <i>entry</i> , L. <i>inh</i>)

Input:

float a, b, c

'entry' is dummy attribute for the addtype()

Evaluation Order[属性值计算顺序]

- Ordering the evaluation of attributes[计算顺序]
 - Dependency graph characterizes possible orders in which we can evaluate the attributes at the various nodes of a parse-tree
- If the graph has an edge from node *M* to node *N*, then the attribute associated with *M* must be evaluated before *N*[用图的边来确定计算顺序]
 - Thus, the only allowable orders of evaluation are those sequences of nodes N_1 , N_2 , ..., N_k such that if there is an edge of the graph from N_i to N_i , then i < j
 - Such an ordering embeds a directed graph into a linear order,
 and is called a topological sort[拓扑排序] of the graph
 - If there's any cycle in the graph, then there are no topological sorts, i.e., no way to evaluate the SDD on this parse tree
 - If there are no cycles, then there is always at least one topological sort

Example: Evaluation Order

SDD:

Production Rules	Semantic Rules
(1) D -> T L	L.inh = T.type
(2) T -> int	T. <i>type</i> = int
(3) T -> float	T.type = float
(4) L -> L ₁ , id	$L_1.inh = L.inh$
	addtype(id. <i>lexeme</i> , L. <i>inh</i>)
(5) L -> id	addtype(id. <i>lexeme</i> , L. <i>inh</i>)

Input:

float a, b, c

Evaluation Order (cont.)

- Before evaluating an attribute at a node of a parse tree, we must evaluate all attributes it depends on[依赖关系]
 - Synthesized: evaluate children first, then the node itself
 Any bottom-up order is fine
 - For SDD's with both inherited and synthesized attributes,
 there's no guarantee that there is even one evaluation order
- Difficult to determine whether exist any circularities[非常难确定是否有循环依赖]
 - But, there are useful subclasses of SDD's that are sufficient to guarantee that an evaluation order exists
 - Such classes do not permit graphs with cycles

Production

A.s = B.i;

 $A \rightarrow B$

B.i = A.s + 1;

Semantic Rules

S-Attributed Definitions[s-属性定义]

- An SDD is **S-attributed** if every attribute is <u>synthesized</u>[只 具有综合属性]
- If an SDD is S-attributed (S-SDD)
 - We can evaluate its attributes in any bottom-up order of the nodes of the parse-tree[任何自底向上的顺序计算属性值]
 - Can be implemented during bottom-up parsing[LR分析中实现]

Production Rules	Semantic Rules
(1) L -> E	print(E. <i>val</i>)
(2) E -> E ₁ + T	$E.val = E_1.val + T.val$
(3) E -> T	E.val = T.val
(4) T -> T ₁ * F	$T.val = T_1.val \times F.val$
(5) T -> F	T.val = F.val
(6) F -> (E)	F.val = E.val
(7) F -> digit	F.val = digit.lexval

L-Attributed Definitions[L-属性定义]

- An SDD is L-attributed (L-SDD) if
 - Between the attributes associated with a production body, dependency-graph edges can go from left to right, but not from right to left[依赖图的边只能从左到右]
 - More precisely: each attribute must be either **synthesized**, or **inherited** but with the rules limited as follows: suppose A -> X₁X₂...X_n, the inherited attribute X_i.a only depends on Why not synthesized?

 Inherited attributes associated with A Cycle: X_i depends on A, A.s depends on X_i

 - \blacksquare Either syn or inh attributes of X_1 , X_2 , ..., X_{i-1} located to the left of X_i
 - □ Either syn or inh attributes of X_i itself, but no cycles formed by the attributes of this X_i
- Can be implemented during top-down parsing[LL分析中]

S-SDD or L-SDD?

Production Rules Semantic Rules

A -> B C

Not S-SDD: B.i is inh

A.s = B.b

Not L-SDD: A.s is syn attr

B.i = f(C.c)(A.s)

Syntax Directed Trans. Impl.[实现]

- Learnt how to specify translation: SDD and SDT[定义]
 - SDT is an executable specification of the SDD
 - CFG with <u>semantic actions</u> embedded in production bodies
- SDT can be implemented in two ways[具体实现]
 - Using a parse tree or AST[基于预先构建的分析树]
 - First build a parse tree, and then apply rules or actions at each node while traversing the tree
 - All SDDs (without cycles) and SDTs can be implemented
 - Since the tree can be traversed freely, implements any ordering
 - During parsing, without building a parse tree[语法分析过程中]
 - Apply rules or actions at each production while parsing
 - Only a subset of SDDs and SDTS can be implemented
 - Evaluation ordering restricted to parser derivation order

Syntax Directed Trans. Impl. (cont.)

- Typically, SDD (i.e., semantic analysis) is implemented during parsing[更为高效]
 - Allows compiler to skip parse tree generation
 - Saves time and memory

- Two important classes of SDD's[两个关键子类]
 - SDD is <u>S-attributed</u>, the underlying grammar is <u>LR-parsable</u>
 - SDD is <u>L-attributed</u>, the underlying grammar is <u>LL-parsable</u>
 - For both classes, semantic rules in an SDD can be converted into an SDT with actions that are executed at the right time[允许 SDD到SDT的转换]
 - During parsing, an action in a production body is executed as soon as all the grammar symbols to the left of the action have been matched

== Implement S-SDD ==

- Convert S-attributed SDD to SDT by[SDD->SDT的转换]
 - Placing each action at the end of the production[将每个语义动作都放在产生式的最后]
 - SDTs with all actions at the right ends of the production bodies are called postfix SDT's[后缀/尾部SDT]

S-SDD

Production Rules	Semantic Rules
(1) L -> E	print (E. <i>val</i>)
(2) $E \rightarrow E_1 + T$	$E.val = E_1.val + T.val$
(3) E -> T	E.val = T.val
(4) T -> $T_1 * F$	$T.val = T_1.val \times F.val$
(5) T -> F	T.val = F.val
(6) F -> (E)	F.val = E.val
(7) F -> digit	F.val = digit.lexval

SDT

(1) L -> E { print (E.val) } (2) E -> E₁ + T { E.val = E₁.val + T.val } (3) E -> T { E.val = T.val } (4) T -> T₁ * F { T.val = T₁.val x F.val } (5) T -> F { T.val = E.val } (6) F -> (E) { F.val = E.val } (7) F -> digit { F.val = digit.lexval }

Implement S-SDD (cont.)

- If the underlying grammar of S-SDD is <u>LR parsable</u>
 - Then the SDT can be implemented during LR parsing
- Implement the converted SDT by[借助归约实现]
 - Executing the action along with the reduction of head <- body

SDT

CFG with actions (1) L -> E { print (E.val) } (2) E -> E₁ + T { E.val = E₁.val + T.val } (3) E -> T { E.val = T.val } (4) T -> T₁ * F { T.val = T₁.val x F.val } (5) T -> F { T.val = F.val } (6) F -> (E) { F.val = E.val } (7) F -> digit { F.val = digit.lexval }

SLR Automaton

Extend LR Parse Stack[扩展分析栈]

- Save synthesized attributes into the stack[栈中额外存放综合属性值]
 - Place the attributes along with the grammar symbols (or LR states that associated with these symbols) in records on stack
 - If there are multiple attributes
 - Make the records large enough or by putting pointers to records on the stack[栈记录足够大,或栈记录中存放指针]
- Example: A -> XYZ {action}
 - x, y, z are attributes of X, Y, Z respectively
 - After the action, A and its attributes are at the top (i.e., m-2)

Stack Manipulation[栈操作]

- Rewrite the actions to manipulate the parser stack[语义动作]
 - The manipulation can be done automatically by the parser

```
stack[top-2].symbol = A
stack[top-2].val = f( stack[top-2].val, stack[top-1].val, stack[top].val )
top = top -2
                                                                        A.a
          A \rightarrow XYZ \{ A.a = f(X.x, Y.y, Z.z) \}
                                                             X.x
       state \rightarrow S<sub>0</sub> ··· S<sub>m-2</sub> S<sub>m-1</sub> S<sub>m</sub>
                                                              state \rightarrow S_0
     symbol → $ ··· X Y Z
                                                            symbol • $ ····
    attribute \rightarrow - ... X.x Y.y Z.z
                                                                                  A.a
                                                          attribute → - ····
```


top

top

Example

- Rewrite the actions to manipulate the parser stack
 - The manipulation can be done automatically by the parser

Productions	Semantic Rules	Semantic Actions
(1) L -> E	print (E. <i>val</i>)	{ print(stack[top].val); }
(2) E -> E ₁ +T	$E.val = E_1.val + T.val$	{ stack[top-2].val = stack[top-2].val + stack[top].val; top = top -2; }
(3) E -> T	E.val = T.val	
(4) T -> T ₁ *F	$T.val = T_1.val \times F.val$	{ stack[top-2].val = stack[top-2].val x stack[top].val; top = top -2; }
(5) T -> F	T.val = F.val	
(6) F -> (E)	F.val = E.val	{ stack[top-2].val = stack[top-1].val;
		top = top -2; }
(7) F -> digit	F.val = digit.lexval	

Example

I		d
Productions	Semantic Actions	$\begin{bmatrix} I_{\theta} : & E' \to E \\ E' \to \cdot E \end{bmatrix} \xrightarrow{E} \xrightarrow{I_{1} : E' \to E \cdot T} \xrightarrow{I_{\theta} : E \to E + \cdot T}$
(1) L -> E	{ print(stack[top].val); }	$\begin{bmatrix} E \to \cdot E + T \\ E \to \cdot T \end{bmatrix} T \xrightarrow{E \to E \cdot + T} \begin{bmatrix} F & T \to \cdot T^*F \\ T \to \cdot F \end{bmatrix} \xrightarrow{I_g:} T \xrightarrow{F} T \xrightarrow{F} T$
(2) E -> E ₁ +T	{ stack[top-2].val = stack[top-2].val + stack[top].val;	$T \rightarrow T^*F$ $E \rightarrow T \cdot $ $*$ $F \rightarrow \cdot (E)$ $*$ $E \rightarrow E + T \cdot $ $T \rightarrow T \cdot *F$
	top = top -2; }	$F \rightarrow F$
(3) E -> T		$F \rightarrow d$
(4) T -> T ₁ *F	{ stack[top-2].val = stack[top-2].val x stack[top].val;	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
	top = top -2; }	$F \rightarrow (\cdot E) \qquad F \rightarrow \cdot d \qquad I_g: \qquad \downarrow$
(5) T -> F		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
(6) F -> (E)	{ stack[top-2].val = stack[top-1].val;	$ \begin{array}{c c} \hline F \rightarrow d \\ \hline T \rightarrow \cdot T^*F \\ \hline T \rightarrow \cdot F \end{array} $
	top = top -2; }	$\begin{bmatrix} F \to \cdot (E) \\ F \to \cdot \mathbf{d} \end{bmatrix}$ $I_{II}:$
(7) F -> digit		$F \rightarrow c d$

state
$$\rightarrow$$
 S₀ S₅ S₇ S₅₀ symbol \rightarrow \$ \neq * \neq attribute \rightarrow - 3 - 5

Example (cont.)

		d
Productions	Semantic Actions	$\begin{bmatrix} I_{\theta} : & E' \to E \\ E' \to E \end{bmatrix} \xrightarrow{I_{\theta}} \begin{bmatrix} I_{\theta} : & E \\ E \to E + \cdot T \end{bmatrix}$
(1) L -> E	{ print(stack[top].val); }	$\begin{bmatrix} E \to \cdot E + T \\ E \to \cdot T \end{bmatrix} T \xrightarrow{E \to E \cdot + T} \begin{bmatrix} F & T \to \cdot T * F \\ T \to \cdot F \end{bmatrix} \xrightarrow{I_0:} T \xrightarrow{F} T \xrightarrow$
(2) E -> E ₁ +T	{ stack[top-2].val = stack[top-2].val + stack[top].val;	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
(2) F > T	top = top -2; }	$F \rightarrow \cdot (E)$ F I_{10} :
(3) E -> T		$ F \rightarrow \cdot d $ $T \rightarrow F$.
(4) T -> T ₁ *F	{ stack[top-2].val = stack[top-2].val x stack[top].val;	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
	top = top -2; }	$F \rightarrow \cdot $
(5) T -> F		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
(6) F -> (E)	{ stack[top-2].val = stack[top-1].val;	$ \begin{array}{c c} F \to d \cdot \\ \hline T \to \cdot T^*F \\ \hline T \to \cdot F \end{array} $
	top = top -2; }	
(7) F -> digit		$F \rightarrow \cdot \mathbf{d}$

