Principal Components Analysis (part I)

Predictive Modeling & Statistical Learning

Gaston Sanchez

CC BY-SA 4.0

Introduction

NBA Team Stats

- ▶ NBA Team Stats: regular season (2016-17)
- ► Github file: data/nba-teams-2017.csv
- Source: stats.nba.com
- ▶ http://stats.nba.com/teams/traditional/#!
 ?sort=GP&dir=-1

Stats Stats Home				Players Tea				Ac	ced Scores			Schedule Hus			stle Stats					EARCH	FOR A	PLAYI	ER OR TE	AM	Q	SAP	
SEASON 2016-17					SEASON TYPE Regular Season						PER MODE Per Game					SEASON SEGMENT All Games					Advanced Filters						
																			© RECENT FILTERS		 GLOSSARY		ARY	<\$ SHARE			
	TEAM	GP	w	L	WIN%	MIN	PTS	FGM	FGA	FG%	3РМ	3PA	3P%	FTM	FTA	FT%	OREB	DREB	REB	AST	TOV	STL	BLK	BLKA	PF	PFD	+/-
1	Miami Heat	82	41	41	.500	48.2	103.2	39.0	85.8	45.5	9.9	27.0	36.5	15.2	21.6	70.6	10.6	33.0	43.6	21.2	13.4	7.2	5.7	4.9	20.5	18.7	1.1
1	Atlanta Hawks	82	43	39	.524	48.5	103.2	38.1	84.4	45.1	8.9	26.1	34.1	18.1	24.9	72.8	10.3	34.1	44.3	23.6	15.8	8.2	4.8	5.2	18.2	21.6	-0.9
1	Brooklyn Nets	82	20	62	.244	48.2	105.8	37.8	85.2	44.4	10.7	31.6	33.8	19.4	24.6	78.8	8.8	35.1	43.9	21.4	16.5	7.2	4.7	5.6	21.0	20.4	-6.7
1	Charlotte Hornets	82	36	46	.439	48.4	104.9	37.7	85.4	44.2	10.0	28.6	35.1	19.4	23.8	81.5	8.8	34.8	43.6	23.1	11.5	7.0	4.8	5.5	16.6	19.9	0.2
1	Chicago Bulls	82	41	41	.500	48.2	102.9	38.6	87.1	44.4	7.6	22.3	34.0	18.0	22.5	79.8	12.2	34.1	46.3	22.6	13.6	7.8	4.8	4.6	17.7	18.8	0.4
1	Cleveland Cavaliers	82	51	31	.622	48.5	110.3	39.9	84.9	47.0	13.0	33.9	38.4	17.5	23.3	74.8	9.3	34.4	43.7	22.7	13.7	6.6	4.0	4.3	18.1	20.6	3.2
1	Dallas Mavericks	82	33	49	.402	48.2	97.9	36.2	82.3	44.0	10.7	30.2	35.5	14.8	18.5	80.1	7.9	30.7	38.6	20.8	11.9	7.5	3.7	3.4	19.1	19.4	-2.9
1	Denver Nuggets	82	40	42	.488	48.2	111.7	41.2	87.7	46.9	10.6	28.8	36.8	18.7	24.2	77.4	11.8	34.6	46.4	25.3	15.0	6.9	3.9	4.9	19.1	20.2	0.5
1	Detroit Pistons	82	37	45	.451	48.3	101.3	39.9	88.8	44.9	7.7	23.4	33.0	13.9	19.3	71.9	11.1	34.6	45.7	21.1	11.9	7.0	3.8	4.1	17.9	17.5	-1.1
1	Golden State Warriors	82	67	15	.817	48.2	115.9	43.1	87.1	49.5	12.0	31.2	38.3	17.8	22.6	78.8	9.4	35.0	44.4	30.4	14.8	9.6	6.8	3.8	19.3	19.4	11.6

Exploratory Data Analysis

For illustration purposes, let's focus on the following variables:

- wins
- ► losses
- ▶ points
- ▶ field_goals
- assists
- turnovers
- steals
- blocks

EDA: Objects and Variables Perspectives

Data Perspectives

We are interested in analyzing a data set from both perspectives: **objects** and **variables**

At its simplest we are interested in 2 fundamental purposes:

- ► Study resemblance among individuals (resemblance among NBA teams)
- Study relationship among variables (relationship among team statistics)

EDA

Exploration

Likewise, we can explore variables at different stages:

- Univariate: one variable at a time
- Bivariate: two variables simultaneously
- Multivariate: multiple variables

Let's see a shiny-app demo (see apps/ folder of github repo)

PhonxSns

Phldlp76

NwYrkKnc

Correlation heatmap

9/70

What if we could get a better low-dimensional summary of the data?

About PCA

Data Structure

Principal Components Analysis (PCA) is a multivariate method that allows us to study and explore a set of quantitative variables measured on some objects.

Landmarks

- ► PCA was first introduced by Karl Pearson (1904)

 On lines and planes of closest fit to systems of points in space
- ► Further developed by Harold Hotelling (1933)

 Analysis of a complex of statistical variables into principal components
- ► Singular Value Decomposition (SVD) theorem by Eckart-Young (1936)

 The approximation of a matrix by another of a lower rank
- Computationally implemented in the 1960s

Core Idea

With PCA we seek to **reduce the dimensionality** (condense information in variables) of a data set while retaining as much as possible of the variation present in the data

PCA: Overall Goals

- ► Summarize a data set with the help of a small number of synthetic variables (i.e. the Principal Components).
- ▶ Visualize the position (resemblance) of individuals.
- Visualize how variables are correlated.
- Interpret the synthetic variables.

Applications

PCA can be used for

- 1. Dimension Reduction
- 2. Visualization
- 3. Feature Extraction
- 4. Data Compression
- 5. Smoothing of Data
- 6. Detection of Outliers
- 7. Preliminary process for further analyses

About PCA

Approaches:

PCA can be presented using various—different but equivalent—approaches. Each approach corresponds to a unique perspective and a way of thinking about data.

- ▶ Data dispersion from the individuals standpoint
- Data variability from the variables standpoint
- Data that follows a decomposition model

I will present PCA by mixing and connecting all of these approaches.

Geometric Approach

Overall Goal

PCA Visualization

One way to present PCA is based on a data visualization approach.

We look for the "best" graphical representation that allows us to visualize the cloud of individuals in a low dimensional space (usually 2-dimensions).

Geometric mindset

To help you understand the main idea of PCA from a geometric standpoint, I'd like to begin showing you my *mug-data* example.

Imagine we have some data in a "high-dimensional space"

We are looking for Candidate Subspaces

with the best low-dimensional representation

Best low-dimensional projection

Geometric Idea

Under a purely geometric approach, PCA aims to represent the cloud of points in a space with reduced dimensionality in an "optimal" way.

Objects in a high-dimensional space

We look for a subspace such that

the projection of points on it

is the best low-dimensional representation

Focus on Distances

Distances between individuals

Looking for the best low-dimensional projection means that we want to find a subspace in which the projected distances among points are as much similar as possible to the original distances.

Focus on distances between objects

We want projected dists to preserve original dists

 $d^2(\mathbf{i}, \mathbf{h})$ as close as possible to $d_H^2(\mathbf{i}, \mathbf{h})$

Focus on projected distances

The idea is to project the cloud of points on a plane (or a low-dim space) of \mathbb{R}^p , chosen in such a manner as to minimize distorting the distances between individuals as little as possible.

Distances and Dispersion

Dispersion of Data

Focusing on distances among all pairs of objects implicitly entails taking into account the **dispersion** or spread (i.e. variation) of the data.

Data Configuration

The reason to pay attention to distances and dispersion is to summarize in a quantitative way the original configuration of the data points.

How to measure dispersion?

Sum of Square Distances

Pair-wise Square distances

One way to consider the dispersion of data (in a mathematical form) is by adding the square distances among all pairs of points.

Square distances from centroid

Another way to measure the dispersion of data is by considering the square distances of all points around the center of gravity (i.e. centroid)

Imagine 3 points and its centroid

Centroid ${\bf g}$ is the "average" team.

Dispersion: Sum of square distances

$$SSD = d^{2}(LAL, GSW) + d^{2}(LAL, UTA) + d^{2}(GSW, UTA)$$

Sum of $2 \times$ square distances w.r.t. centroid

$$SSD = 2d^2(LAL, \mathbf{g}) + 2d^2(GSW, \mathbf{g}) + 2d^2(UTA, \mathbf{g})$$

Inertia

Inertia

One way to take into account the dispersion of the data is with the concept of **Inertia**.

- ▶ Inertia is a term borrowed from the *moment of inertia* in mechanics.
- We use the term Inertia to convey the idea of dispersion in the data.
- ► In multivariate methods, the term Inertia generalizes the notion of variance.
- ▶ Think of Inertia as a "multidimensional variance"

Cloud of teams in p-dimensional space

Centroid (i.e. the average team)

Formula of Total Inertia

The Total Inertia, I, is a weighted sum of square distances among all pairs of objects:

$$I = \frac{1}{2n^2} \sum_{i=1}^{n} \sum_{h=1}^{n} d^2(i,h)$$

Overall variation/spread (around centroid)

Formula of Total Inertia

Equivalently, the Total Inertia can be calculated in terms of the centoid g:

$$I = \frac{1}{n} \sum_{i=1}^{n} d^{2}(\mathbf{x_i}, \mathbf{g})$$

The Inertia is an average sum of square distances around the centroid g

Centered data: centroid is the origin

Computing Inertia

$$Inertia = \sum_{i=1}^{n} m_i d^2(\mathbf{x_i}, \mathbf{g})$$

$$= \sum_{i=1}^{n} \frac{1}{n} (\mathbf{x_i} - \mathbf{g})^{\mathsf{T}} (\mathbf{x_i} - \mathbf{g})$$

$$= \frac{1}{n} tr(\mathbf{X}^{\mathsf{T}} \mathbf{X})$$

$$= \frac{1}{n} tr(\mathbf{X} \mathbf{X}^{\mathsf{T}})$$

where m_i is the mass (i.e. weight) of individual i, usually 1/n

Inertia Concept

Inertia and PCA

In PCA we look for a low-dimensional subspace having Projected Inertia as close as possible to the Original Inertia.

Criterion

The criterion used for dimensionality reduction implies that the inertia of a cloud of points in the optimal subspace is maximum (but less than the inertia in the original space).

Criterion

Maximize Projected Inertia

We want to maximize the Projected Inertia on subspace H:

$$max$$
 projected $\sum_{i} d_{H}^{2}(\mathbf{x_{i}}, \mathbf{g})$

Axis of Inertia

To find the subspace H we can look for each of its axes $\Delta_1, \Delta_2, \ldots, \Delta_k$ and its corresponding vectors $\mathbf{v_1}, \mathbf{v_2}, \ldots, \mathbf{v_k}$ (k < p).

Finding Principal Components

Looking for an axis 1

NBA teams in a p-dimensional space

1st axis

We want a 1st axis that retains most of the projected inertia

First Axis and Principal Component

Projection of object i on axis Δ_1 generated by vector $\mathbf{v_1}$

$$\mathbf{x}_{\mathbf{i}}^{\mathsf{T}} \mathbf{v}_{1} = \sum_{j=1}^{p} x_{ij} v_{1j}$$

Projection of all points on v_1

$$\mathbf{X}\mathbf{v_1}=\mathbf{z_1}$$

First Axis and Principal Component

- ► The axis Δ_1 passes through the centroid g (with centered data, g is the origin)
- ► The axis Δ_1 is created by the unit-norm vector $\mathbf{v_1}$, eigenvector of $\frac{1}{n}\mathbf{X}^\mathsf{T}\mathbf{X}$, associated to the largest eigenvalue λ_1
- ▶ The explained inertia by the axis Δ_1 is equal to λ_1
- With standardized data, the proportion of explained inertia by Δ_1 is λ_1/p

2nd axis

We want a 2nd axis, orthogonal to Δ_1 , that retains most of the remaining projected inertia

Second Axis and Principal Component

- ▶ The axis Δ_2 passes through the centroid ${\bf g}$ and it is perpendicular to Δ_1
- ▶ The axis Δ_2 is created by the unit-norm vector $\mathbf{v_2}$, eigenvector of $\frac{1}{n}\mathbf{X}^\mathsf{T}\mathbf{X}$, associated to the second largest eigenvalue λ_2
- ▶ The explained inertia by the axis Δ_2 is equal to λ_2
- \blacktriangleright With standardized data, the proportion of explained inertia by Δ_2 is λ_2/p

Computational note

In practice, most software routines for PCA don't really work with the *population covariance* matrix $\frac{1}{n}\mathbf{X}^\mathsf{T}\mathbf{X}$.

Instead, most programs work with the sample covariance matrix: $\frac{1}{n-1}\mathbf{X}^\mathsf{T}\mathbf{X}$

Notice that with standardized data, $\frac{1}{n-1}X^TX = R$, is the correlation matrix.

PCA of NBA Team Stats

Eigenvalues

Assume standardize data. From the EVD of $\frac{1}{n-1}\mathbf{X}^\mathsf{T}\mathbf{X}$ we have:

```
eigenvalue percentage cumulative perc
comp 1 3.6806 46.007
                            46.01
comp 2 1.6177 20.221
                            66.23
comp 3 1.0185 12.732
                          78.96
comp 4 0.6214 7.768
                          86.73
comp 5 0.4720 5.900
                        92.63
comp 6 0.4619 5.774
                        98.40
comp 7 0.1279 1.598
                       100.00
comp 8 0.0000
               0.000
                           100.00
```

What's going on with eigenvalue of PC8?

Eigenvectors

	v1	v2	v3	v4	v5	v6	ν7
wins	0.412	-0.437	0.054	-0.187	-0.138	-0.255	-0.129
losses	-0.412	0.437	-0.054	0.187	0.138	0.255	0.129
points	0.425	0.138	-0.449	0.160	-0.163	-0.048	0.738
field_goals	0.405	0.164	-0.330	0.412	-0.203	0.400	-0.573
assists	0.398	0.127	-0.030	-0.127	0.897	0.047	-0.042
turnovers	0.102	0.669	-0.049	-0.191	-0.146	-0.649	-0.246
steals	0.297	0.313	0.418	-0.544	-0.260	0.512	0.118
blocks	0.243	0.097	0.711	0.622	0.005	-0.149	0.132

Principal Components

PCs are given by: $\mathbf{Z} = \mathbf{X}\mathbf{V}$

```
PC1
                  PC2
                         PC3
                               PC4
                                      PC5
                                             PC6
                                                    PC7
GldnSt.t.W
        7.150
               0.848 1.324 0.369 0.687
                                           0.606
                                                  0.024
SnAntnSp 2.208 -1.475 1.521 0.186 -0.086 -0.546 -0.261
HstnRckt 3.010 0.294 -1.418 -0.842 -0.194 -0.454 0.646
BstnCltc 1.098 -1.298 -0.827 -0.875 0.869 -0.340
                                                  0.257
UtahJazz -1.200 -1.961 0.770 0.147 -0.341 -1.686 -0.295
TrntRptr 0.394 -1.318 0.560 -0.162 -2.078 0.553
                                                  0.401
ClvlndCv 0.699 -1.290 -2.052 0.398 -0.059 -0.848 -0.018
LAClpprs 0.805 -1.313 -0.982 -0.232 -0.295 0.071 0.195
WshngtnW
        1.986 0.242 -1.002 -0.802 -0.491 0.878 -0.492
OklhmCtT 0.640 0.197 0.208 -0.023 -1.104 -0.631 -0.227
```

first 10 rows of each PC

Correlations between variables and PCs

	PC1	PC2	PC3	PC4	PC5	PC6	PC7
wins	0.790						
losses	-0.790	0.556	-0.055	0.148	0.095	0.174	0.046
points	0.815	0.175	-0.453	0.126	-0.112	-0.032	0.264
field_goals	0.777	0.209	-0.333	0.325	-0.140	0.272	-0.205
assists	0.763	0.162	-0.030	-0.100	0.616	0.032	-0.015
turnovers	0.195	0.851	-0.049	-0.150	-0.101	-0.441	-0.088
steals	0.571	0.398	0.422	-0.428	-0.179	0.348	0.042
blocks	0.466	0.124	0.718	0.490	0.003	-0.101	0.047

Principal Components?

Meaning of Principal

The term **Principal**, as used in PCA, has to do with the notion of **principal axis** from geometry and linear algebra

Principal Axis

A *principal axis* is a certain line in a Euclidean space associated to an ellipsoid or hyperboloid, generalizing the major and minor axes of an ellipse

References

- ► Exploratory Multivariate Analysis by Example Using R by Husson, Le and Pages (2010). Chapter 1: Principal Component Analysis (PCA). CRC Press.
- ► An R and S-Plus Companion to Multivariate Analysis by Brian Everitt (2004). *Chapter 3: Principal Components Analysis*. Springer.
- ▶ **Principal Component Analysis** by Ian jolliffe (2002). Springer.
- ▶ Data Mining and Statistics for Decision Making by Stephane Tuffery (2011). *Chapter 7: Factor Analysis*. Editions Technip, Paris.

References (French Literature)

- ► La Regression PLS: Theorie et Pratique by Michel Tenenhaus (1998). Editions, Technip.
- ▶ **Probabilites, analyse des donnees et statistique** by Gilbert Saporta (2011). *Chapter 6: Analyse en Composantes Principaux*. Editions Technip, Paris.