

REGRESSION

REGRESSION

	CONTINUOUS	CATEGORICAL
SUPERVISED	?	?
UNSUPERVISED	?	?

REGRESSION

	CONTINUOUS	CATEGORICAL
SUPERVISED	REGRESSION	CLASSIFICATION
UNSUPERVISED	DIMENSION REDUCTION	CLUSTERING

HOW DOES REGRESSION WORK?

Size in feet² (x)	Price in 1000\$ (y)	
2104	460	
1416	232	
1534	315	
852	178	

Hypothesis

$$y = h(x) = \beta_0 + \beta_1 x$$

Size in feet² (x)	Price in 1000\$ (y)	
2104	460	
1416	232	
1534	315	
852	178	

Size in feet² (x)	Price in 1000\$ (y)	
2104	460	
1416	232	
1534	315	
852	178	

Hypothesis

$$y = h(x) = \beta_0 + \beta_1 x$$

How do I determine the βs?

IDEA: choose the βs to minimize distance of h(x) from training data (x, y)

DISTANCE

DISTANCE

Define Hypothesis Define Cost

MANY FEATURES

Size in feet ² (x1)	Age (x2)	Number of rooms (x3)		Price in 1000\$ (y)
2104	12	3	•••	460
1416	4	2	•••	232
1534	23	3		315
852	7	1		178
				•••

MANY FEATURES

Size in feet ² (x1)	Age (x2)	Number of rooms (x3)	 Price in 1000\$ (y)
2104	12	3	 460
1416	4	2	 232
1534	23	3	 315
852	7	1	 178
	•••	•••	 •••

No problem!

$$y = h(x) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_n x_n$$

NON LINEAR RELATION

NON LINEAR RELATION

No problem! => polynomial features

$$y = h(x) = \beta_0 + \beta_1 x + \beta_2 f(x^2) + ... + \beta_n f(x^n)$$

APPLICATIONS

OVERFITTING

OVERFITTING

REGRESSION LAB

- python 02_regression.py
- Load a dataset
- Fit a linear model
- Discuss result

