Modern Processor Design (V): Try everything

Hung-Wei Tseng

Recap: Data hazards

- An instruction currently in the pipeline cannot receive the "logically" correct value for execution
- Data dependencies
 - The output of an instruction is the input of a later instruction
 - May result in data hazard if the later instruction that consumes the result is still in the pipeline

Recap: Solution 1: Let's try "stall" again

 Whenever the input is not ready when the consumer is decoding, just stall — the consumer stays at ID.

```
① movl (%rdi), %eax
② movl (%rsi), %edx
③ movl %edx, (%rdi)
④ movl %eax, (%rsi)
```

we have the value for %edx already!
Why another cycle?

Recap: Data "forwarding"

Recap: Solution 2: Data forwarding

 Whenever the input is not ready when the consumer is decoding, just stall — the consumer stays at ID.

```
① movl (%rdi), %eax
② movl (%rsi), %edx
③ movl %edx, (%rdi)
④ movl %eax, (%rsi)
```


Recap: Let's extend the example a bit...

6

```
for(i = 0; i < count; i++) {
     int64_t temp = a[i];
     a[i] = b[i];
     b[i] = temp;
  .L9:
            (%rdi,%rax), %rsi
     movq
            (%rcx,%rax), %r8
     movq
             %r8, (%rdi,%rax)
     movq
             %rsi, (%rcx,%rax)
     movq
             $8, %rax
     addq
             %r9, %rax
     cmpq
     jne
             .L9
             (%rdi,%rax), %rsi
     movq
             (%rcx,%rax), %r8
     movq
             %r8, (%rdi,%rax)
     movq
             %rsi, (%rcx,%rax)
     movq
     addq
             $8, %rax
             %r9, %rax
     cmpq
             .L9
     jne
```

	IF	ID	ALU/BR/M1	M2	М3	M4/XORL	WB	
1	(1)							
2	(2)	(1)				10 cycl	es fo	r 7
3	(3)	(2)	(1)			instru	ction	15
4	(4)	(3)	(2)	(1)				
5	(4)	(3)		(2)	(1)	CPI =	1.43	5
6	(4)	(3)			(2)	(1)	_	
7	(4)	(3)				(2)	(1)	
8	(5)	(4)	(3)				(2)	
9	(6)	(5)	(4)	(3)				
10	(7)	(6)	(5)	(4)	(3)			
11	(8)	(7)	(6)	(5)	(4)	(3)		
12	(9)	(8)	(7)	(6)	(5)	(4)	(3)	
13	(10)	(9)	(8)	(7)	(6)	(5)	(4)	
14	(11)	(10)	(9)	(8)	(7)	(6)	(5)	
15	(11)	(10)		(9)	(8)	(7)	(6)	
16	(11)	(10)			(9)	(8)	(7)	
17	(11)	(10)				(9)	(8)	
18	(12)	(11)	(10)				(9)	
19	(13)	(12)	(11)	(10)				
20	(14)	(13)	(12)	(11)	(10)			
21		(14)	(13)	(12)	(11)	(10)		
22			(14)	(13)	(12)	(11)	(10)	

The effect of code optimization

 By reordering which pair of the following instruction stream can we reduce stalls without affecting the correctness of the code?

```
① movq (%rdi,%rax), %rsi
② movq (%rcx,%rax), %r8
③ movq %r8, (%rdi,%rax)
④ movq %rsi, (%rcx,%rax)
⑤ addq $8, %rax
⑥ cmpq %r9, %rax
⑦ jne .L9
```

- A. (1) & (2)
- B. (2) & (3)
- C. (3) & (5)
- D. (4) & (6)
- E. No ordering can help reduce the stalls

for(i = 0; i < count; i++) {</pre>

```
int64_t temp = a[i];
      a[i] = b[i];
      b[i] = temp;
                              .L9:
         (%rdi,%rax), %rsi
                                         (%rcx,%rax), %r8
movq
                                 mova
                                         (%rdi,%rax), %rsi
         (%rcx,%rax), %r8
movq
                                 movq
                                         %r8, (%rdi,%rax)
        %r8, (%rdi,%rax)
                                 mova
movq
                                         %rsi, (%rcx,%rax)
                                 mova
        %rsi, (%rcx,%rax)
movq
                                         $8, %rax
                                 addq
addq
        $8, %rax
                                         %r9, %rax
                                 cmpq
        %r9, %rax
cmpq
                                         .L9
                                 jne
         .L9
jne
                                         (%rcx,%rax), %r8
                                 movq
         (%rdi,%rax), %rsi
movq
                                         (%rdi,%rax), %rsi
                                 movq
        (%rcx,%rax), %r8
mova
                                         %r8, (%rdi,%rax)
                                 movq
        %r8, (%rdi,%rax)
movq
                                         %rsi, (%rcx,%rax)
                                 movq
        %rsi, (%rcx,%rax)
movq
                                         $8, %rax
                                 addq
        $8, %rax
addq
                                         %r9, %rax
                                 cmpq
        %r9, %rax
cmpq
                                 jne
                                         .L9
         .L9
jne
                                                 8
```

		IF	ID	ALU/BR/M1	M2	МЗ	M4/XORL	WB
	1	(1)					_	
	2	(2)	(1)			9	cycles:	for 7
	3	(3)	(2)	(1)		ir	nstructi	ons
	4	(4)	(3)	(2)	(1)	•	_	
	5	(4)	(3)		(2)	(1)	CPI = 1.	29
	6	(4)	(3)			(2)	(1)	
	7	(5)	(4)	(3)			(2)	(1)
	8	(6)	(5)	(4)	(3)			(2)
	9	(7)	(6)	(5)	(4)	(3)		
-	10	(8)	(7)	(6)	(5)	(4)	(3)	
	11	(9)	(8)	(7)	(6)	(5)	(4)	(3)
	12	(10)	(9)	(8)	(7)	(6)	(5)	(4)
	13	(11)	(10)	(9)	(8)	(7)	(6)	(5)
	14	(11)	(10)		(9)	(8)	(7)	(6)
	15	(11)	(10)			(9)	(8)	(7)
	16	(12)	(11)	(10)			(9)	(8)
	17	(13)	(12)	(11)	(10)			(9)
	18	(14)	(13)	(12)	(11)	(10)		
	19		(14)	(13)	(12)	(11)	(10)	
	20			(14)	(13)	(12)	(11)	(10)
	21				(14)	(13)	(12)	(11)
	22					(14)	(13)	(12)

Outline

- Dynamic instruction scheduling and OoO (out-of-order) execution
- Superscalar: ILP < 1
- Case studies: pipeline in modern processors

```
for(i = 0; i < count; i++) {</pre>
                                                                      ID ALU/BR/M1
                                                                                              M4/XORL
                                                                                    M2
                                                                                         M3
        int64_t temp = a[i];
                                                                  (1)
        a[i] = b[i];
                                                                  (2)
                                                                     (1)
                                                                  (3)
                                                                            (1)
                                                                     (2)
        b[i] = temp;
                                                                  (4)
                                                                            (2)
                                                                                    (1)
                                                                     (3)
                                                                                    (2)
                                                                                          (1)
                                                                                                 (1)
                                                                  (4)
                                                                                          (2)
                                                                     (3)
                                                                  (5)
                                                                            (3)
                                                                                                 (2)
                                                                                                        (1)
                                                                     (4)
                                                                                                        (2)
                               .L9:
                                                                 (6)
                                                                            (4)
                                                                                    (3)
                                                                     (5)
         (%rcx,%rax), %r8
movq
                                           (%rcx,%rax), %r8
                                  mova
                                                                                          (3)
                                                                            (5)
                                                                                    (4)
                                                                     (6)
         (%rdi,%rax), %rsi
movq
                                           (%rdi,%rax), %rsi<sub>10</sub>
                                  mova
                                                                                          (4)
                                                                 (8)
                                                                            (6)
                                                                                                 (3)
                                                                                    (5)
        %r8, (%rdi,%rax)
movq
                                           %r8, (%rdi,%rax)
                                  mova
                                                                 (9)
                                                                            (7)
                                                                                    (6)
                                                                                         7 cycles for 7
        %rsi, (%rcx,%rax)
                                           %rsi, (%rcx,%rax)<sub>12</sub> (10)
movq
                                  mova
                                                                            (8)
                                                                                    (7)
addq
         $8, %rax
                                           $8, %rax
                                  addq
                                                              13 (11) (10)
                                                                                    (8)
                                                                            (9)
        %r9, %rax
cmpq
                                           (%rcx,%rax), %r8
                                  mova
jne
         .L9
                                                              14 (12) (11)
                                                                            (10)
                                                                                    (9)
                                           (%rdi,%rax), %rsi
                                  movq
         (%rcx,%rax), %r8
movq
                                                              15 (13) (12)
                                                                            (11)
                                                                                    (10)
                                                                                          (9)
                                                                                                 (8)
                                                                                                        (7)
                                           %r9, %rax
                                  cmpq
         (%rdi,%rax), %rsi
movq
                                                                                                        (8)
                                                              16 (14) (13)
                                                                            (12)
                                                                                    (11)
                                                                                         (10)
                                                                                                 (9)
                                            .L9
                                  jne
        %r8, (%rdi,%rax)
movq
                                                                            (13)
                                                                                    (12)
                                                                                         (11)
                                                                                                        (9)
                                           %r8, (%rdi,%rax)
                                                                     (14)
                                                                                                (10)
                                  mova
        %rsi, (%rcx,%rax)
movq
                                           %rsi, (%rcx,%rax)18
                                                                                                        (10)
                                                                            (14)
                                                                                    (13)
                                                                                         (12)
                                                                                                 (11)
                                  mova
        $8, %rax
addq
        Compiler cannot optimize across branch 20
                                                                                    (14)
                                                                                         (13)
                                                                                                (12)
                                                                                                        (11)
cmpq
                                                                                         (14)
                                                                                                (13)
                                                                                                        (12)
jne
             since it's predicted during runtime!
                                                              21
                                                                                                        (13)
                                                                                                (14)
                                                              22
                                                                                                        (14)
```

Limitations of Compiler Optimizations

- If the hardware (e.g., pipeline changes), the same compiler optimization may not be that helpful
- The compiler can only optimize on static instructions, but cannot optimize dynamic instruction
 - Compiler cannot predict branches
 - Compiler does not know if cache has the data/instructions

Dynamic instruction scheduling/ Out-of-order (OoO) execution

What do you need to execution an instruction?

- Whenever the instruction is decoded put decoded instruction somewhere
- Whenever the inputs are ready all data dependencies are resolved
- Whenever the target functional unit is available

Scheduling instructions: based on data dependencies

Draw the data dependency graph, put an arrow if an instruction depends on the other.

```
(%rdi,%rax), %rsi
  movq
          (%rcx,%rax), %r8
  movq
          %r8, (%rdi,%rax)
  movq
          %rsi, (%rcx,%rax)
  movq
  addq
          $8, %rax
          %r9, %rax
  cmpq
  jne
           .L9
          (%rdi,%rax), %rsi
  movq
          (%rcx,%rax), %r8
  movq
          %r8, (%rdi,%rax)
10 movq
① movq
          %rsi, (%rcx,%rax)
          $8, %rax
12 addq
13 cmpq
          %r9, %rax
14 jne
           .L9
```


- In theory, instructions without dependencies can be executed in parallel or out-of-order
- Instructions with dependencies (on the same path) can never be reordered

If we can predict the future ...

Consider the following dynamic instructions:

```
(%rdi,%rax), %rsi
① movq
           (%rcx,%rax), %r8
  movq
          %r8, (%rdi,%rax)
  movq
          %rsi, (%rcx,%rax)
  movq
          $8, %rax
  addq
          %r9, %rax
 cmpq
  jne
           .L9
          (%rdi,%rax), %rsi
  movq
          (%rcx,%rax), %r8

  movq

10 movq
          %r8, (%rdi,%rax)
          %rsi, (%rcx,%rax)
11) movq
12 addq
          $8, %rax
13 cmpq
          %r9, %rax
14 jne
           .L9
```


Which of the following pair can we reorder without affecting the correctness if the **branch prediction is perfect**?

- A. (1) and (2)
- B. (3) and (5)
- C. (4) and (6)
- D. (3) and (8)
- E. (11) and (12)

If we can predict the future ...

Consider the following dynamic instructions:

```
(%rdi,%rax), %rsi
① movq
           (%rcx,%rax), %r8
② movq
          %r8, (%rdi,%rax)
3 movq
          %rsi, (%rcx,%rax)
@ movq
          $8, %rax
  addq
          %r9, %rax
© cmpq
⑦ jne
           .L9
          (%rdi,%rax), %rsi
® movq
           (%rcx,%rax), %r8

  movq

10 movq
          %r8, (%rdi,%rax)
          %rsi, (%rcx,%rax)
11) movq
12 addq
          $8, %rax
(13) cmpq
          %r9, %rax
14 jne
           .L9
```


Which of the following pair can we reorder without affecting the correctness if the branch prediction is perfect?

- A. (1) and (2)
- B. (3) and (5)
- C. (4) and (6)
- D. (3) and (8)
- E. (11) and (12)

False dependencies

- We are still limited by false dependencies
- They are not "true" dependencies because they don't have an arrow in data dependency graph
 - WAR (Write After Read): a later instruction powerwrites the source of an earlier one
 - 5 and 1, 5 and 2, 12 and 8, 12 and 9
 - WAW (Write After Write): a later instruction overwrites the output of an earlier one

20

addq

cmpq

ine

\$8, %rax

.L9

%r9, %rax

False dependencies

We are still limited by false dependencies

.L9

- They are not "true" dependencies because they don't have an arrow in data dependency graph
 - WAR (Write After Read): a later instruction powerwrites the source of an earlier one
 - 5 and 1, 5 and 2, 12 and 8, 12 and 9

ine

 WAW (Write After Write): a later instruction overwrites the output of an earlier one (%rdi,%rax), %rsi movq • 8 and 1 (%rcx,%rax), %r8 mova cmpq jne movq 7 3 (%rcx,%rax), %r8 movq 13 %r8, (%rdi,%rax) movq %rsi, (%rcx,%rax) movq \$8, %rax addq 11 %r9, %rax cmpq 21

What if we can use more registers...

```
(%rdi,%rax), %t0
        (%rdi,%rax), %rsi
movq
                                         movq
        (%rcx,%rax), %r8
                                                  (%rcx,%rax), %t1
                                         movq
movq
                                                  %t1, (%rdi,%rax)
        %r8, (%rdi,%rax)
                                         movq
movq
        %rsi, (%rcx,%rax)
                                                  %t0, (%rcx,%rax)
movq
                                         movq
        $8, %rax
                                         addq
                                                  $8, %t2
addq
                                                  %r9, %t2
        %r9, %rax
                                         cmpq
cmpq
         .L9
                                                  .L9
jne
                                         jne
        (%rdi,%rax), %rsi
                                                  (%rdi, %t2), %t3
movq
                                         movq
        (%rcx,%rax), %r8
                                                  (%rcx, %t2), %t4
movq
                                         movq
        %r8, (%rdi,%rax)
                                                  %t4, (%rdi,%t2)
                                         movq
movq
        %rsi, (%rcx,%rax)
                                                  %t3, (%rcx, %t2)
                                         movq
movq
                                                  $8, %t5
        $8, %rax
                                         addq
addq
        %r9, %rax
                                                  %r9, %t5
                                         cmpq
cmpq
        .L9
                                         jne
                                                  .L9
jne
```

All false dependencies are gone!!!

The mechanism of OoO: Register renaming + speculative execution

• K. C. Yeager, "The MIPS R10000 superscalar microprocessor," in IEEE Micro, vol. 16, no. 2, pp. 28-41, April 1996.

Register renaming + OoO

- Redirecting the output of an instruction instance to a physical register
- Redirecting inputs of an instruction instance from architectural registers to correct physical registers
 - You need a mapping table between architectural and physical registers
 - You may also need reference counters to reclaim physical registers
- OoO: Executing an instruction all operands are ready (the values of depending physical registers are generated)
 - You will need an issue logic to issue an instruction to the target functional unit

Can we really execute instructions OoO?

- Exceptions may occur anytime divided by 0, page fault
 - A later instruction cannot write back its own result otherwise the architectural states won't be correct
 - Instructions after the one causes the exception should not be executed
- Hardware can schedule instruction across branch instructions with the help of branch prediction
 - Fetch instructions according to the branch prediction
 - However, branch predictor can never be perfect

Abort an instruction?

- During how many of the following states can we still abort an instruction and change the execution flow even without a branch instruction or branch misprediction?
 - ① Fetching instruction from the memory
 - ② Decoding an instruction
 - ③ Executing arithmetic operations in an ALU
 - Accessing memory
 - ⑤ Write back register values
 - A. 1
 - B. 2
 - C. 3
 - D. 4
 - E. 5

Abort an instruction?

- During how many of the following states can we still abort an instruction and change the execution flow even without a branch instruction or branch misprediction?
 - ① Fetching instruction from the memory

 - ② Decoding an instruction

 - Accessing memory
 - Write back register values
 - A. 1
 - B. 2
 - C. 3
 - D. 4
 - E. 5

- page fault, illegal address
- unknown instruction
- ③ Executing arithmetic operations in an ALU divide by zero, overflow, underflow
 - page fault, illegal address

Speculative Execution

- Speculative execution mode: an executing instruction is considered as speculative before the processor hasn't determined if the instruction should be executed or not
- Reorder buffer (ROB)
 - The processor allocates an entry for each instruction in a reorder buffer
 - Store results in reorder buffer and physical registers when the instruction is still speculative
 - If an earlier instruction failed to commit due to an exception or mis-prediction, the physical registers and all ROB entries after the failed-to-commit instruction are flushed
- Commit/Retire
 - Present the execution result to the running program and in architectural registers when all prior instructions are non-speculative
 - Release the ROB entry

Data "forwarding"

Register renaming + OoO + RoB

Register renaming
Only 1 of them can have a instruction at the same cycle

```
movq (%rdi,%rax), %rsi
movq (%rcx,%rax), %r8
movq %r8, (%rdi,%rax)
movq %rsi, (%rcx,%rax)
addq $8, %rax
cmpq %r9, %rax
jne .L9
movq (%rdi,%rax), %rsi
movq (%rcx,%rax), %r8
movq %r8, (%rdi,%rax)
movq %rsi, (%rcx,%rax)
addq $8, %rax
```

① cmpq %r9, %rax

jne .L9

IF ID REN M1 M2 M3 M4 ALU MUL BR ROB 1 (1) (2) (1)	
2 (2) (1)	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	

	Physical Register
rax	P6
rcx	
rdi	
rsi	P4
r8	P5

	Valid	Value	In use		Valid	Value	In use
P1				P6			
P2				P7			
Р3				P8			
P4				P9			
P5				P10			

```
o movq (%rdi,%rax), %rsi → P1
```

- @ movq (%rcx,%rax), %r8
- movq %r8, (%rdi,%rax)
- movq %rsi, (%rcx,%rax)
- ⑤ addq \$8, %rax
- © cmpq %r9, %rax
- [→] jne .L9
- ® movq (%rdi,%rax), %rsi
- movq (%rcx,%rax), %r8
- 10 movq %r8, (%rdi,%rax)
- 11) movq %rsi, (%rcx,%rax)
- 12 addq \$8, %rax
- 13 cmpq %r9, %rax
- 14 jne .L9

Only 1 of them can ha	ave a instruc	ction at the	same cycle

	IF	ID	REN	M1	M2	M3	M4	ALU	MUL	BR	ROB
1	(1)										
2	(2)	(1)									
3	(3)	(2)	(1)								
4	(4)	(3)	(2)	(1)							
5											
6											
7											
8											
9											
10											
11											
12											
13											
14											
15											
16											

	Physical Register
rax	
rcx	
rdi	
rsi	P1
r8	

	Valid	Value	In use		Valid	Value	In use
P1	0		1	P6			
P2				P7			
Р3				P8			
P4				P9			
P5				P10			

```
    movq (%rdi,%rax), %rsi → P1
```

- ② movq (%rcx,%rax), %r8 → P2
- movq %r8, (%rdi,%rax)
- movq %rsi, (%rcx,%rax)
- ⊚ addq \$8, %rax
- © cmpq %r9, %rax
- [⊙] jne .L9
- ® movq (%rdi,%rax), %rsi
- movq (%rcx,%rax), %r8
- 10 movq %r8, (%rdi,%rax)
- 11) movq %rsi, (%rcx,%rax)
- 12 addq \$8, %rax
- 13 cmpq %r9, %rax
- 14) jne .L9

Only 1 of them can ha	ave a instruc	ction at the	same cycle

	IF	ID	REN	M1	M2	M3	M4	ALU	MUL	BR	ROB
1	(1)										
2	(2)	(1)									
3	(3)	(2)	(1)								
4	(4)	(3)	(2)	(1)							
5	(5)	(4)	(3)	(2)	(1)						
6											
7											
8											
9											
10											
11											
12											
13											
14											
15											
16											

	Physical Register
rax	
rcx	
rdi	
rsi	P1
r8	P2

	Valid	Value	In use		Valid	Value	In use
P1	0		1	P6			
P2	0		1	P7			
Р3				P8			
P4				P9			
P5				P10			

```
  movq (%rdi,%rax), %rsi → P1
```

- ② movq (%rcx,%rax), %r8 → P2
- movq %r8, (%rdi,%rax)
- movq %rsi, (%rcx,%rax)
- ⑤ addq \$8, %rax
- © cmpq %r9, %rax
- [⊙] jne .L9
- ® movq (%rdi,%rax), %rsi
- movq (%rcx,%rax), %r8
- 10 movq %r8, (%rdi,%rax)
- 11) movq %rsi, (%rcx,%rax)
- 12 addq \$8, %rax
- 13 cmpq %r9, %rax
- 14 jne .L9

Only 1 of them can	have a instruc	tion at the	same cycle

	IF	ID	REN	M1	M2	M3	M4	ALU	MUL	BR	ROB
1	(1)										
2	(2)	(1)									
3	(3)	(2)	(1)								
4	(4)	(3)	(2)	(1)							
5	(5)	(4)	(3)	(2)	(1)						
6	(6)	(5)	(3)(4)		(2)	(1)					
7											
8											
9											
10											
11											
12											
13											
14											
15											
16											

	Physical Register
rax	
rcx	
rdi	
rsi	P1
r8	P2

	Valid	Value	In use		Valid	Value	In use
P1	0		1	P6			
P2	0		1	P7			
Р3				P8			
P4				P9			
P5				P10			

```
    movq (%rdi,%rax), %rsi → P1
    movq (%rcx,%rax), %r8 → P2
    movq %r8, (%rdi,%rax)
    movq %rsi, (%rcx,%rax)
```

- ⑤ addq \$8, %rax → P3
- © cmpq %r9, %rax
- [⊙] jne .L9
- ® movq (%rdi,%rax), %rsi
- movq (%rcx,%rax), %r8
- 10 movq %r8, (%rdi,%rax)
- 10 movq %rsi, (%rcx,%rax)
- 12 addq \$8, %rax
- 13 cmpq %r9, %rax
- 14 jne .L9

Only 1 of them can have a	instruction at the same cycle

		IF	ID	REN	M1	M2	М3	M4	ALU	MUL	BR	ROB
	1	(1)										
	2	(2)	(1)									
	3	(3)	(2)	(1)								
	4	(4)	(3)	(2)	(1)							
	5	(5)	(4)	(3)	(2)	(1)						
	6	(6)	(5)	(3)(4)		(2)	(1)					
	7	(7)	(6)	(3)(4)(5)			(2)	(1)				
	8											
	9											
•	10											
,	11											
•	12											
•	13											
•	14											
	15											
	16											

	Physical Register
rax	Р3
rcx	
rdi	
rsi	P1
r8	P2

	Valid	Value	In use		Valid	Value	In use
P1	0		1	P6			
P2	0		1	P7			
Р3	0		1	P8			
P4				P9			
P5				P10			

Register renaming
Only 1 of them can have a instruction at the same cycle

```
movq (%rdi,%rax), %rsi → P1
movq (%rcx,%rax), %r8 \rightarrow P2
movq %r8, (%rdi,%rax)
movq %rsi, (%rcx,%rax)
addq $8, %rax
```

- cmpq %r9, %rax
- jne .L9
- movq (%rdi,%rax), %rsi
- movq (%rcx,%rax), %r8
- 10 movq %r8, (%rdi,%rax)
- movq %rsi, (%rcx,%rax)
- addq \$8, %rax
- cmpq %r9, %rax
- jne .L9

	Offiny 1 Of					arrio oyolo
IF ID	REN	M1 M2 M3	M4 ALU	MUL	BR	ROB

	IF	ID	REN	M1	M2	M3	MA	ALU	MUL	ЬR	ROB
1			KLIN	IVI	1712	IVIO	101-4	ALO	IVIOL	- DK	- KOD
	(1)	(4)									
2	(2)	(1)						Ins	struct	ion (4) is
3	(3)	(2)	(1)							_	
4	(4)	(3)	(2)	(1)				rur	nning	ahead	10 k
5	(5)	(4)	(3)	(2)	(1)					21	
6	(6)	(5)	(3)(4)		(2)	(1)			(,	3)	
7	(7)	(6)	(3)(4)(5)			(2)	(1)				
8	(8)	(7)	(3)(5)(6)	(4)			(2)				(1)
9											
10											
11											
12											
13											
14											
15											
16											

	Physical Register
rax	Р3
rcx	
rdi	
rsi	P1
r8	P2

	Valid	Value	In use		Valid	Value	In use
P1	1		1	P6			
P2	0		1	P7			
Р3	0		1	P8			
P4				P9			
P5				P10			

```
movq (%rdi,%rax), %rsi → P1
movq (%rcx,%rax), %r8 → P2
movq %r8, (%rdi,%rax)
movq %rsi, (%rcx,%rax)
addq $8, %rax → P3
cmpq %r9, %rax
```

- jne .L9
- ® movq (%rdi,%rax), %rsi
- movq (%rcx,%rax), %r8
- 10 movq %r8, (%rdi,%rax)
- 11) movq %rsi, (%rcx,%rax)
- 12 addq \$8, %rax
- 13 cmpq %r9, %rax
- 14 jne .L9

Offig 1 Of t	Helli Call Have a	IIISH UCHOH at	tile Saille Cycle

	IF	ID	REN	M1	M2	М3	M4	ALU	MUL	ЬR	ROB
1	(1)										
2	(2)	(1)									
3	(3)	(2)	(1)								
4	(4)	(3)	(2)	(1)							
5	(5)	(4)	(3)	(2)	(1)						
6	(6)	(5)	(3)(4)		(2)	(1)					
7	(7)	(6)	(3)(4)(5)			(2)	(1)				
8	(8)	(7)	(3)(5)(6)	(4)			(2)				-(1) -
9	(9)	(8)	(5)(6)(7)	(3)	(4)						(2)
10											
11											
12											
13											
14											
15											
16											

	Physical Register
rax	Р3
rcx	
rdi	
rsi	P1
r8	P2

	Valid	Value	In use		Valid	Value	In use
P1	1		1	P6			
P2	1		1	P7			
Р3	0		1	P8			
P4				P9			
P5				P10			

Register renaming
Only 1 of them can have a instruction at the same cycle

```
    movq (%rdi,%rax), %rsi → P1
    movq (%rcx,%rax), %r8 → P2
    movq %r8, (%rdi,%rax)
    movq %rsi, (%rcx,%rax)
    addq $8, %rax → P3
    cmpq %r9, %rax
```

- ∅ jne .L9
- ® movq (%rdi,%rax), %rsi
- movq (%rcx,%rax), %r8
- 10 movq %r8, (%rdi,%rax)
- 10 movq %rsi, (%rcx,%rax)
- 12 addq \$8, %rax
- ① cmpq %r9, %rax
- 14 jne .L9

	Offiny 1 of					
IF ID	REN	M1 M2 M3 M4	ALU	MUL	ЬR	ROB

	IF	ID	REN	M1	M2	M3	M4	ALU	MUL	BR	ROB
1	(1)										
2	(2)	(1)									
3	(3)	(2)	(1)								
4	(4)	(3)	(2)	(1)							
5	(5)	(4)	(3)	(2)	(1)						
6	(6)	(5)	(3)(4)		(2)	(1)					
7	(7)	(6)	(3)(4)(5)			(2)	(1)				
8	(8)	(7)	(3)(5)(6)	(4)			(2)				(1)
9	(9)	(8)	(5)(6)(7)	(3)	(4)						(2)
10											
11											
12											
13											
14											
15											
16											

	Physical Register
rax	Р3
rcx	
rdi	
rsi	P1
r8	P2

	Valid	Value	In use		Valid	Value	In use
P1	1		1	P6			
P2	1		1	P7			
Р3	0		1	P8			
P4				P9			
P5				P10			

Register renaming
Only 1 of them can have a instruction at the same cycle

```
    movq (%rdi,%rax), %rsi → P1
    movq (%rcx,%rax), %r8 → P2
    movq %r8, (%rdi,%rax)
    movq %rsi, (%rcx,%rax)
    addq $8, %rax → P3
    cmpq %r9, %rax
```

- ® movq (%rdi,%rax), %rsi → P4
- movq (%rcx,%rax), %r8
- 10 movq %r8, (%rdi,%rax)
- 11 movq %rsi, (%rcx,%rax)
- 12 addq \$8, %rax

jne .L9

- ① cmpq %r9, %rax
- 14 jne .L9

IF.	ID	REN	M1	M2	М3	M4	ALU	MUL	BR	ROB
1 (1)										
2 (2)	(1)									
3 (3)	(2)	(1)								
4 (4)	(3)	(2)	(1)							
5 (5)	(4)	(3)	(2)	(1)						
6 (6)	(5)	(3)(4)		(2)	(1)					
7 (7)	(6)	(3)(4)(5)			(2)	(1)				
8 (8)	(7)	(3)(5)(6)	(4)			(2)				(1)
9 (9)	(8)	(5)(6)(7)	(3)	(4)						(2)
10 (10)	(9)	(6)(7)(8)		(3)	(4)		(5)			
11										
12										

	Physical Register
rax	Р3
rcx	
rdi	
rsi	P4
r8	P2

13

14

15

16

	Valid	Value	In use		Valid	Value	In use
P1	1		1	P6			
P2	1		1	P7			
Р3	0		1	P8			
P4	0		1	P9			
P5				P10			

```
    movq (%rdi,%rax), %rsi → P1
    movq (%rcx,%rax), %r8 → P2
    movq %r8, (%rdi,%rax)
    movq %rsi, (%rcx,%rax)
    addq $8, %rax → P3
```

- ⑦ jne .L9
- ® movq (%rdi,%rax), %rsi → P4
- \odot movq (%rcx,%rax), %r8 \rightarrow P5
- 10 movq %r8, (%rdi,%rax)

cmpq %r9, %rax

- 11) movq %rsi, (%rcx,%rax)
- 12 addq \$8, %rax
- ① cmpq %r9, %rax
- 14 jne .L9

Only 1 of the	em can nave a	Instruc	tion at	tne same cycle
	L ,			

	IF	ID	REN	M1	M2	M3	M4	ALU	MUL	BR	ROB
1	(1)										
2	(2)	(1)									
3	(3)	(2)	(1)								
4	(4)	(3)	(2)	(1)							
5	(5)	(4)	(3)	(2)	(1)						
6	(6)	(5)	(3)(4)		(2)	(1)					
7	(7)	(6)	(3)(4)(5)			(2)	(1)				
8	(8)	(7)	(3)(5)(6)	(4)			(2)				-(1) -
9	(9)	(8)	(5)(6)(7)	(3)	(4)						(2)
10	(10)	(9)	(6)(7)(8)		(3)	(4)		(5)			
11	(11)	(10)	(7)(8)(9)			(3)	(4)	(6)			(5)
12											
13											
14											
15											
16											

	Physical Register
rax	Р3
rcx	
rdi	
rsi	P4
r8	P5

	Valid	Value	In use		Valid	Value	In use
P1	1		1	P6			
P2	1		1	P7			
Р3	1		1	P8			
P4	0		1	P9			
P5	0		1	P10			

```
    movq (%rdi,%rax), %rsi → P1
    movq (%rcx,%rax), %r8 → P2
    movq %r8, (%rdi,%rax)
    movq %rsi, (%rcx,%rax)
    addq $8, %rax → P3
    cmpq %r9, %rax
```

- ® movq (%rdi,%rax), %rsi → P4

 ® movq (%rcx,%rax), %r8 → P5
- 10 movq %r8, (%rdi,%rax)
- 10 movq %rsi, (%rcx,%rax)
- 12 addq \$8, %rax

jne .L9

- ① cmpq %r9, %rax
- 14 jne .L9

	IF	ID	REN	M1	M2	М3	M4	ALU	MUL	BR	ROB
1	(1)										
2	(2)	(1)									
3	(3)	(2)	(1)								
4	(4)	(3)	(2)	(1)							
5	(5)	(4)	(3)	(2)	(1)						
6	(6)	(5)	(3)(4)		(2)	(1)					
7	(7)	(6)	(3)(4)(5)			(2)	(1)				
8	(8)	(7)	(3)(5)(6)	(4)			(2)				-(1)-
9	(9)	(8)	(5)(6)(7)	(3)	(4)						(2)
10	(10)	(9)	(6)(7)(8)		(3)	(4)		(5)			
11	(11)	(10)	(7)(8)(9)			(3)	(4)	(6)			(5)
12	(12)	(11)	(9)(10)				(3)			(7)	(4)(5)(6)
19											

	Physical Register
rax	Р3
rcx	
rdi	
rsi	P4
r8	P5

14

15

16

	Valid	Value	In use		Valid	Value	In use
P1	1		1	P6			
P2	1		1	P7			
Р3	1		1	P8			
P4	0		1	P9			
P5	0		1	P10			

```
movq (%rdi,%rax), %rsi → P1
movq (%rcx,%rax), %r8 → P2
movq %r8, (%rdi,%rax)
movq %rsi, (%rcx,%rax)
addq $8, %rax → P3
cmpq %r9, %rax
```

- ⑦ jne .L9
 ⑧ movq (%rdi,%rax), %rsi → P4
- \odot movq (%rcx,%rax), %r8 \rightarrow P5
- 10 movq %r8, (%rdi,%rax)
- 11 movq %rsi, (%rcx,%rax)
- 12 addq \$8, %rax
- 13 cmpq %r9, %rax
- 14 jne .L9

	IF	ID	REN	M1	M2	М3	M4	ALU	MUL	BR	ROB
1	(1)										
2	(2)	(1)									
3	(3)	(2)	(1)								
4	(4)	(3)	(2)	(1)							
5	(5)	(4)	(3)	(2)	(1)						
6	(6)	(5)	(3)(4)		(2)	(1)					
7	(7)	(6)	(3)(4)(5)			(2)	(1)				
8	(8)	(7)	(3)(5)(6)	(4)			(2)				-(1)-
9	(9)	(8)	(5)(6)(7)	(3)	(4)						-(2)-
10	(10)	(9)	(6)(7)(8)		(3)	(4)		(5)			
11	(11)	(10)	(7)(8)(9)			(3)	(4)	(6)			(5)
12	(12)	(11)	(9)(10)				(3)			(7)	(4)(5)(6)

	Physical Register
rax	Р3
rcx	
rdi	
rsi	P4
r8	P5

(10)(11)

(8)

13 (13) (12)

14

15

16

	Valid	Value	In use		Valid	Value	In use
P1	1		1	P6			
P2	1		1	P7			
Р3	1		1	P8			
P4	0		1	P9			
P5	0		1	P10			

(3)(4)(5)(6)(7)

```
    movq (%rdi,%rax), %rsi → P1
    movq (%rcx,%rax), %r8 → P2
    movq %r8, (%rdi,%rax)
    movq %rsi, (%rcx,%rax)
    addq $8, %rax → P3
    cmpq %r9, %rax
    jne .L9
```

- ® movq (%rdi,%rax), %rsi → P4

 ® movq (%rcx,%rax), %r8 → P5
- 10 movq %r8, (%rdi,%rax)
- ① movq %rsi, (%rcx,%rax)
- 12 addq \$8, %rax
- 13 cmpq %r9, %rax
- 14 jne .L9

			•								
	IF	ID	REN	M1	M2	М3	M4	ALU	MUL	BR	ROB
1	(1)										
2	(2)	(1)									
3	(3)	(2)	(1)								
4	(4)	(3)	(2)	(1)							
5	(5)	(4)	(3)	(2)	(1)						
6	(6)	(5)	(3)(4)		(2)	(1)					
7	(7)	(6)	(3)(4)(5)			(2)	(1)				
8	(8)	(7)	(3)(5)(6)	(4)			(2)				(1)
9	(9)	(8)	(5)(6)(7)	(3)	(4)						(2)
10	(10)	(9)	(6)(7)(8)		(3)	(4)		(5)			
11	(11)	(10)	(7)(8)(9)			(3)	(4)	(6)			(5)
12	(12)	(11)	(9)(10)				(3)			(7)	(4)(5)(6)
13	(13)	(12)	(10)(11)	(8)							(3)(4)(5)(6)(7)
14				(9)	(8)						
15											

Physical Register
P3
P4
P5

	Valid	Value	In use		Valid	Value	In use
P1	1		1	P6			
P2	1		1	P7			
Р3	1		1	P8			
P4	0		1	P9			
P5	0		1	P10			

```
movq (%rdi,%rax), %rsi → P1
movq (%rcx,%rax), %r8 \rightarrow P2
movq %r8, (%rdi,%rax)
movq %rsi, (%rcx,%rax)
addq $8, %rax
cmpq %r9, %rax
jne .L9
movq (%rdi,%rax), %rsi → P4
movq (%rcx,%rax), %r8 \rightarrow P5
movq %r8, (%rdi,%rax)
movq %rsi, (%rcx,%rax)
addq $8, %rax
                        → P6
cmpq %r9, %rax
```

jne .L9

			•								
	IF	ID	REN	M1	M2	М3	M4	ALU	MUL	BR	ROB
1	(1)										
2	(2)	(1)									
3	(3)	(2)	(1)								
4	(4)	(3)	(2)	(1)							
5	(5)	(4)	(3)	(2)	(1)						
6	(6)	(5)	(3)(4)		(2)	(1)					
7	(7)	(6)	(3)(4)(5)			(2)	(1)				
8	(8)	(7)	(3)(5)(6)	(4)			(2)				(1)
9	(9)	(8)	(5)(6)(7)	(3)	(4)						(2)
10	(10)	(9)	(6)(7)(8)		(3)	(4)		(5)			
11	(11)	(10)	(7)(8)(9)			(3)	(4)	(6)			(5)
12	(12)	(11)	(9)(10)				(3)			(7)	(4)(5)(6)
13	(13)	(12)	(10) (11)	(8)							(3)(4)(5)(6)(7)
14	(14)	(13)	(10)(11)(12)	(9)	(8)						
15		(14)	(10)(11)(12)(13)		(9)	(8)					

Physical Register
P6
P4
P5

16

	Valid	Value	In use		Valid	Value	In use
P1	1		1	P6	0		1
P2	1		1	P7			
Р3	1		1	P8			
P4	0		1	P9			
P5	0		1	P10			

```
movq (%rdi,%rax), %rsi → P1
movq (%rcx,%rax), %r8 \rightarrow P2
movq %r8, (%rdi,%rax)
movq %rsi, (%rcx,%rax)
addq $8, %rax
cmpq %r9, %rax
jne .L9
movq (%rdi,%rax), %rsi → P4
movq (%rcx,%rax), %r8 \rightarrow P5
movq %r8, (%rdi,%rax)
movq %rsi, (%rcx,%rax)
                       → P6
addq $8, %rax
```

cmpq %r9, %rax

jne .L9

		Only 1 of the	truction	ı at <u>t</u> ne s	ame cycle		
		•					
IF	ID	REN	M1 M2 M3 M4	ALU	MUL	BR	ROB
7.43							

			DEM		140	140	2.4.4				DOD
	IF_	ID	REN	M1	M2	M3	M4	ALU	MUL	BR	ROB
1	(1)										
2	(2)	(1)									
3	(3)	(2)	(1)								
4	(4)	(3)	(2)	(1)							
5	(5)	(4)	(3)	(2)	(1)						
6	(6)	(5)	(3)(4)		(2)	(1)					
7	(7)	(6)	(3)(4)(5)			(2)	(1)				
8	(8)	(7)	(3)(5)(6)	(4)			(2)				(1)
9	(9)	(8)	(5)(6)(7)	(3)	(4)						-(2)-
10	(10)	(9)	(6)(7)(8)		(3)	(4)		(5)			
11	(11)	(10)	(7)(8)(9)			(3)	(4)	(6)			(5)
12	(12)	(11)	(9)(10)				(3)			(7)	(4)(5)(6)
13	(13)	(12)	(10) (11)	(8)							(3)(4)(5)(6)(7)
14	(14)	(13)	(10)(11)(12)	(9)	(8)						
15		(14)	(10)(11)(12)(13)		(9)	(8)					
16						(9)	(8)				

	Physical Register
rax	P6
rcx	
rdi	
rsi	P4
r8	P5

	Valid	Value	In use		Valid	Value	In use
P1	1		1	P6	0		1
P2	1		1	P7			
Р3	1		1	P8			
P4	0		1	P9			
P5	0		1	P10			

			16
1	movq	(%rdi,%rax), %rsi →	P1
2	movq	(%rcx,%rax), %r8 →	P2
3	movq	%r8, (%rdi,%rax)	
4	movq	%rsi, (%rcx,%rax)	
5	addq	\$8, %rax →	P3
6	cmpq	%r9, %rax	
7	jne	.L9	
8	movq	(%rdi,%rax), %rsi→	P4
9	movq	(%rcx,%rax), %r8 →	P5
10	movq	%r8, (%rdi,%rax)	
11	movq	%rsi, (%rcx,%rax)	
12	addq	\$8, %rax →	P6
13	cmpq	%r9, %rax	
14	jne	.L9	
15	movq	(%rdi,%rax), %rsi	
16	movq	(%rcx,%rax), %r8	
17)	movq	%r8, (%rdi,%rax)	
18	movq	%rsi, (%rcx,%rax)	
19	addq	\$8, %rax	
20	cmpq	%r9, %rax	
<i>-</i>	•		

jne

.L9

			Only 1 of the	nem	ı ca	n na	ave	a ins	truction	at the	e same cycle
	IF	ID	REN	M1	M2	M3	M4	ALU	MJL	ЬR	ROB
1	(1)										
2	(2)	(1)									
3	(3)	(2)	(1)								
4	(4)	(3)	(2)	(1)							
5	(5)	(4)	(3)	(2)	(1)						
6	(6)	(5)	(3)(4)		(2)	(1)					
7	(7)	(6)	(3)(4)(5)			(2)	(1)				
8	(8)	(7)	(3)(5)(6)	(4)			(2)				- (1)-
9	(9)	(8)	(5)(6)(7)	(3)	(4)						(2)
10	(10)	(9)	(6)(7)(8)		(3)	(4)		(5)			
11	(11)	(10)	(7)(8)(9)			(3)	(4)	(6)			(5)
12	(12)	(11)	(9)(10)				(3)			(7)	(4)(5)(6)
13	(13)	(12)	(10) (11)	(8)							(3)(4)(5)(0)(7)
14	(14)	(13)	(10)(11)(12)	(9)	(8)						
15	(15)	(14)	(10)(11)(13)		(9)	(8)		(12)			
16	(16)	(15)	(10)(11)(14)			(9)	(8)	(13)			(12)
17	(17)	(16)	(10)(14)(15)	(11)			(9)				(8)(12)(13)

			16
1	movq	(%rdi,%rax), %rsi →	P1
2	movq	(%rcx,%rax), %r8 →	P2
3	movq	%r8, (%rdi,%rax)	
4	movq	%rsi, (%rcx,%rax)	
5	addq	\$8, %rax →	P3
6	cmpq	%r9, %rax	
7	jne	.L9	
8	movq	(%rdi,%rax), %rsi→	P4
9	movq	(%rcx,%rax), %r8 →	P5
10	movq	%r8, (%rdi,%rax)	
11	movq	%rsi, (%rcx,%rax)	
12	addq	\$8, %rax →	P6
13	cmpq	%r9, %rax	
14	jne	.L9	
15	movq	(%rdi,%rax), %rsi	
16	movq	(%rcx,%rax), %r8	
17)	movq	%r8, (%rdi,%rax)	
18	movq	%rsi, (%rcx,%rax)	
19	addq	\$8, %rax	
20	cmpq	%r9, %rax	
21)	jne	.L9	

			Only 1 of the	nem	ca	n ha	ave	a ins	truction	at the	e same cycle
	IF	ID	REN	M1	M2	M3	M4	ALU	MJL	ЬR	ROB
1	(1)										
2	(2)	(1)									
3	(3)	(2)	(1)								
4	(4)	(3)	(2)	(1)							
5	(5)	(4)	(3)	(2)	(1)						
6	(6)	(5)	(3)(4)		(2)	(1)					
7	(7)	(6)	(3)(4)(5)			(2)	(1)				
8	(8)	(7)	(3)(5)(6)	(4)			(2)				(1)
9	(9)	(8)	(5)(6)(7)	(3)	(4)						(2)
10	(10)	(9)	(6)(7)(8)		(3)	(4)		(5)			
		(10)	(7)(8)(9)			(3)	(4)	(6)			(5)
	(12)		(9)(10)				(3)			(7)	(4)(5)(6)
		(12)	(10) (11)	(8)							(3)(4)(5)(0)(7)
		(13)	(10)(11)(12)	(9)	(8)						
		(14)	(10) (11) (13)		(9)	(8)	-	(12)			
		(15)	(10)(11)(14)			(9)	(8)	(13)			(12)
			(10)(14)(15)	(11)			(9)				(8) (12) (13)
18	(18)	(17)	(14)(15)(16)	(10)	(11)						(9) (12)(13)

			16
1	movq	(%rdi,%rax), %rsi →	P1
2	movq	(%rcx,%rax), %r8 →	P2
3	movq	%r8, (%rdi,%rax)	
4	movq	%rsi, (%rcx,%rax)	
5	addq	\$8, %rax →	P3
6	cmpq	%r9, %rax	
7	jne	.L9	
8	movq	(%rdi,%rax), %rsi→	P4
9	movq	(%rcx,%rax), %r8 →	P5
10	movq	%r8, (%rdi,%rax)	
11	movq	%rsi, (%rcx,%rax)	
12	addq	\$8, %rax →	P6
13	cmpq	%r9, %rax	
14	jne	.L9	
15	movq	(%rdi,%rax), %rsi	
16	movq	(%rcx,%rax), %r8	
17)	movq	%r8, (%rdi,%rax)	
18	movq	%rsi, (%rcx,%rax)	
19	addq	\$8, %rax	
20	cmpq	%r9, %rax	
21)	jne	.L9	

			Only 1 of the	hem	ca	n ha	ave	a ins	truction	at the	e same cycle
	IF	ID	REN	M1	M2	M3	M4	ALU	MJL	ЬR	ROB
1	(1)										
2	(2)	(1)									
3	(3)	(2)	(1)								
4	(4)	(3)	(2)	(1)							
5	(5)	(4)	(3)	(2)	(1)						
6	(6)	(5)	(3)(4)		(2)	(1)					
7	(7)	(6)	(3)(4)(5)			(2)	(1)				
8	(8)	(7)	(3)(5)(6)	(4)			(2)				(1)
9	(9)	(8)	(5)(6)(7)	(3)	(4)						(2)
10	(10)	(9)	(6)(7)(8)		(3)	(4)		(5)			
11	(11)	(10)	(7)(8)(9)			(3)	(4)	(6)			(5)
12	(12)	(11)	(9)(10)				(3)			(7)	(4)(5)(6)
13	(13)	(12)	(10)(11)	(8)							(3)(4)(5)(6)(7)
14	(14)	(13)	(10) (11) (12)	(9)	(8)						
15	(15)	(14)	(10)(11)(13)		(9)	(8)		(12)			
	(16)		(10) (11) (14)			(9)	(8)	(13)			(12)
	(17)		(10) (14) (15)	(11)			(9)				(8)(12)(13)
			(14) (15) (16)	(10)	(11)						(0) (12)(13)
19	(19)	(18)	(15) (16) (17)		(10)	(11)				(14)	(12)(13)

			TE
1	movq	(%rdi,%rax), %rsi →	P1
2	movq	(%rcx,%rax), %r8 →	P2
3	movq	%r8, (%rdi,%rax)	
4	movq	%rsi, (%rcx,%rax)	
5	addq	\$8, %rax →	P3
6	cmpq	%r9, %rax	
7	jne		
8	movq	(%rdi,%rax), %rsi →	P4
9	movq	(%rcx,%rax), %r8 →	P5
10	movq	%r8, (%rdi,%rax)	
11	movq	%rsi, (%rcx,%rax)	
12	addq	\$8, %rax →	P6
13	cmpq	%r9, %rax	
14)	jne	.L9	
15	movq	(%rdi,%rax), %rsi	
16	movq	(%rcx,%rax), %r8	
17)	movq	%r8, (%rdi,%rax)	
18	movq	%rsi, (%rcx,%rax)	
19	addq	\$8, %rax	
20	cmpq	%r9, %rax	
21)	jne	.L9	

			Only 1 of the	hem	ca	n ha	ave	a ins	truction a	at the	e same cycle
	IF	ID	REN	M1	M2	M3	M4	ALU	MJL	ЬR	ROB
1	(1)										
2	(2)	(1)									
3	(3)	(2)	(1)								
4	(4)	(3)	(2)	(1)							
5	(5)	(4)	(3)	(2)	(1)						
6	(6)	(5)	(3)(4)		(2)	(1)					
7	(7)	(6)	(3)(4)(5)			(2)	(1)				
8	(8)	(7)	(3)(5)(6)	(4)			(2)				(1)
9	(9)	(8)	(5)(6)(7)	(3)	(4)						-(2) -
10	(10)	(9)	(6)(7)(8)		(3)	(4)		(5)			
11	(11)	(10)	(7)(8)(9)			(3)	(4)	(6)			(5)
12	(12)	(11)	(9)(10)				(3)			(7)	(4)(5)(6)
13	(13)	(12)	(10) (11)	(8)							(3)(4)(5)(6)(7)
14	(14)	(13)	(10)(11)(12)	(9)	(8)						
15	(15)	(14)	(10)(11)(13)		(9)	(8)		(12)			
16	(16)	(15)	(10) (11) (14)			(9)	(8)	(13)			(12)
	(17)		(10) (14) (15)	(11)			(9)				(8)(12)(13)
		(17)	(14) (15) (16)	(10)	(11)						- (0) (12)(13)
		(18)	(15) (16) (17)		(10)	(11)				(14)	(12)(13)
20	(20)	(19)	(16) (17) (18)	(15)		(10)	(11)				(12)(13)(14)

			16
1	movq	(%rdi,%rax), %rsi →	P1
2	movq	(%rcx,%rax), %r8 →	P2
3	movq	%r8, (%rdi,%rax)	
4	movq	%rsi, (%rcx,%rax)	
5	addq	\$8, %rax →	P3
6	cmpq	%r9, %rax	
7	jne	.L9	
8	movq	(%rdi,%rax), %rsi →	P4
9	movq	(%rcx,%rax), %r8 →	P5
10	movq	%r8, (%rdi,%rax)	
1	movq	%rsi, (%rcx,%rax)	
12	addq	\$8, %rax →	P6
13	cmpq	%r9, %rax	
14	jne	.L9	
15	movq	(%rdi,%rax), %rsi	
16	movq	(%rcx,%rax), %r8	
17)	movq	%r8, (%rdi,%rax)	
18	movq	%rsi, (%rcx,%rax)	
19	addq	\$8, %rax	
20	cmpq	%r9, %rax	
(21)	ine	.19	

			Only 1 of the	nem	ca	n ha	ave	a inst	truction	at the	e same cycle
	IF	ID	REN	M1	M2	M3	M4	ALU	MJL	ЬR	ROB
1	(1)										
2	(2)	(1)									
3	(3)	(2)	(1)								
4	(4)	(3)	(2)	(1)							
5	(5)	(4)	(3)	(2)	(1)						
6	(6)	(5)	(3)(4)		(2)	(1)					
7	(7)	(6)	(3)(4)(5)			(2)	(1)				
8	(8)	(7)	(3)(5)(6)	(4)			(2)				(1)
9	(9)	(8)	(5)(6)(7)	(3)	(4)						(2)
10	(10)	(9)	(6)(7)(8)		(3)	(4)		(5)			
11	(11)	(10)	(7)(8)(9)			(3)	(4)	(6)			(5)
12	(12)	(11)	(9)(10)				(3)			(7)	(4)(5)(6)
13	(13)	(12)	(10)(11)	(8)							(3)(4)(5)(6)(7)
14	(14)	(13)	(10)(11)(12)	(9)	(8)						
15	(15)	(14)	(10)(11)(13)		(9)	(8)		(12)			
16	(16)	(15)	(10)(11)(14)			(9)	(8)	(13)			(12)
17	(17)	(16)	(10)(14)(15)	(11)			(9)				(8) (12)(13)
18	(18)	(17)	(14)(15)(16)	(10)	(11)						(9) (12)(13)
19	(19)	(18)	(15)(16)(17)		(10)	(11)				(14)	(12)(13)
20	(20)	(19)	(16)(17)(18)	(15)		(10)	(11)				(12)(13)(14)
21	(21)	(20)	(17)(18)(19)	(16)	(15)		(10)				(11)(12)(13)(14)

			10
1	movq	(%rdi,%rax), %rsi →	P1
2	movq	(%rcx,%rax), %r8 →	P2
3	movq	%r8, (%rdi,%rax)	
4	movq	%rsi, (%rcx,%rax)	
5	addq	\$8, %rax →	P3
6	cmpq	%r9, %rax	
7	jne	.L9	
8	movq	(%rdi,%rax), %rsi →	P4
9	movq	(%rcx,%rax), %r8 →	P5
10	movq	%r8, (%rdi,%rax)	
1	movq	%rsi, (%rcx,%rax)	
12	addq	\$8, %rax →	P6
13	cmpq	%r9, %rax	
14	jne	.L9	
15	movq	(%rdi,%rax), %rsi	
16	movq	(%rcx,%rax), %r8	
17)	movq	%r8, (%rdi,%rax)	
18	movq	%rsi, (%rcx,%rax)	
19	addq	\$8, %rax	
20	cmpq	%r9, %rax	
(21)	ine	19	

			Only 1 of t	hem	n ca	n ha	ave	a inst	truction	at the	same cycle
	IF	ID	REN	M1	M2	M3	M4	ALU	MJL	ЬR	ROB
1	(1)										
2	(2)	(1)									
3	(3)	(2)	(1)								
4	(4)	(3)	(2)	(1)							
5	(5)	(4)	(3)	(2)	(1)						
6	(6)	(5)	(3)(4)		(2)	(1)					
7	(7)	(6)	(3)(4)(5)			(2)	(1)				
8	(8)	(7)	(3)(5)(6)	(4)			(2)				(1)
9	(9)	(8)	(5)(6)(7)	(3)	(4)						(2)
10	(10)	(9)	(6)(7)(8)		(3)	(4)		(5)			
11	(11)	(10)	(7)(8)(9)			(3)	(4)	(6)			(5)
12	(12)	(11)	(9)(10)				(3)			(7)	(4)(5)(6)
13	(13)	(12)	(10) (11)	(8)							(3)(4)(5)(0)(7)
14	(14)	(13)	(10)(11)(12)	(9)	(8)						
15	(15)	(14)	(10)(11)(13)		(9)	(8)		(12)			
16	(16)	(15)	(10)(11)(14)			(9)	(8)	(13)			(12)
17	(17)	(16)	(10)(14)(15)	(11)			(9)				(8) (12)(13)
18	(18)	(17)	(14)(15)(16)	(10)	(11)						(9) (12)(13)
19	(19)	(18)	(15)(16)(17)		(10)	(11)				(14)	(12)(13)
20	(20)	(19)	(16) (17) (18)	(15)		(10)	(11)				(12)(13)(14)
21	(21)	(20)	(17) (18) (19)	(16)	(15)		(10)				(11)(12)(13)(14)
22		(21)	(17)(18)(20)		(16)	(15)		(19)			(10)(11)(12)(13)(14)

			10
1	movq	(%rdi,%rax), %rsi →	P1
2	movq	(%rcx,%rax), %r8 →	P2
3	movq	%r8, (%rdi,%rax)	
4	movq	%rsi, (%rcx,%rax)	
5	addq	\$8, %rax →	P3
6	cmpq	%r9, %rax	
7	jne	.L9	
8	movq	(%rdi,%rax), %rsi →	P4
9	movq	(%rcx,%rax), %r8 →	P5
10	movq	%r8, (%rdi,%rax)	
1	movq	%rsi, (%rcx,%rax)	
12	addq	\$8, %rax →	P6
13	cmpq	%r9, %rax	
14	jne	.L9	
15)	movq	(%rdi,%rax), %rsi	
16	movq	(%rcx,%rax), %r8	
17)	movq	%r8, (%rdi,%rax)	
18	movq	%rsi, (%rcx,%rax)	
19	addq	\$8, %rax	
20	cmpq	%r9, %rax	
(21)	ine	.L9	

			Only 1 of the	nem	ca	n ha	ave	a ins	truction	at the	e same cycle
	IF	ID	REN	M1	M2	M3	M4	ALU	MJL	ЬR	ROB
1	(1)										
2	(2)	(1)									
3	(3)	(2)	(1)								
4	(4)	(3)	(2)	(1)							
5	(5)	(4)	(3)	(2)	(1)						
6	(6)	(5)	(3)(4)		(2)	(1)					
7	(7)	(6)	(3)(4)(5)			(2)	(1)				
8	(8)	(7)	(3)(5)(6)	(4)			(2)				(1)
9	(9)	(8)	(5)(6)(7)	(3)	(4)						-(2)-
10	(10)	(9)	(6)(7)(8)		(3)	(4)		(5)			
11	(11)		(7)(8)(9)			(3)	(4)	(6)			(5)
12	(12)	(11)	(9)(10)				(3)			(7)	(4)(5)(6)
	(13)		(10) (11)	(8)							(3)(4)(5)(6)(7)
14	(14)	(13)	(10)(11)(12)	(9)	(8)						
15	(15)	(14)	(10)(11)(13)		(9)	(8)		(12)			
16	(16)	(15)	(10)(11)(14)			(9)	(8)	(13)			(12)
	(17)		(10) (14) (15)	(11)			(9)				(8) (12) (13)
	(18)		(14)(15)(16)	(10)	(11)						- (0) (12)(13)
19	(19)	(18)	(15)(16)(17)		(10)	(11)				(14)	(12)(13)
	(20)		(16)(17)(18)	(15)			(11)				(12)(13)(14)
	(21)	(20)	(17) (18) (19)	(16)	(15)		(10)				(11)(12)(13)(14)
22		(21)	(17)(18)(20)		(16)	(15)		(19)			(10)(11)(12)(13)(14)
23			(17) (18) (21)			(16)	(15)	(20)			(19)

		•	
1	movq	(%rdi,%rax), %rsi →	P1
2	movq	(%rcx,%rax), %r8 →	P2
3	movq	%r8, (%rdi,%rax)	
4	movq	%rsi, (%rcx,%rax)	
5	addq	\$8, %rax →	P3
6	cmpq	%r9, %rax	
7	jne	.L9	
8	movq	(%rdi,%rax), %rsi →	P4
9	movq	(%rcx,%rax), %r8 →	P5
10	movq	%r8, (%rdi,%rax)	
1	movq	%rsi, (%rcx,%rax)	
12	addq	\$8, %rax →	P6
13	cmpq	%r9, %rax	
14	jne	.L9	
15	movq	(%rdi,%rax), %rsi	
16	movq	(%rcx,%rax), %r8	
17)	movq	%r8, (%rdi,%rax)	
18	movq	%rsi, (%rcx,%rax)	
19	addq	\$8, %rax	
20	cmpq	%r9, %rax	
21)	jne	.L9	

			Only 1 of the	nem	ca	n ha	ave	a ins	struction at t	he sai	me cycle
	IF	ID	REN	M1	M2	M3	M4	ALU	MJL LF	R	ROB
1	(1)										
2	(2)	(1)									
3	(3)	(2)	(1)								
4	(4)	(3)	(2)	(1)							
5	(5)	(4)	(3)	(2)	(1)						
6	(6)	(5)	(3)(4)		(2)	(1)					
7	(7)	(6)	(3)(4)(5)			(2)	(1)				
8	(8)	(7)	(3)(5)(6)	(4)			(2)				(1)
9	(9)	(8)	(5)(6)(7)	(3)	(4)						(2)
10	(10)	(9)	(6)(7)(8)		(3)	(4)		(5)			
11	(11)	(10)	(7)(8)(9)			(3)	(4)	(6)			(5)
12	(12)	(11)	(9)(10)				(3)		(7))	(4)(5)(6)
13	(13)	(12)	(10) (11)	(8)						(3))(4)(5)(0)(7)
14	(14)	(13)	(10)(11)(12)	(9)	(8)				7 cycles t	or /	
15	(15)	(14)	(10)(11)(13)		(9)	(8)		(12)	instructi	one	_
	(16)		(10)(11)(14)			(9)	(8)	(13)	IIISH UCH	0115	(12)
17	(17)	(16)	(10)(14)(15)	(11)			(9)		CPI =	1 -	(8) (12) (13)
	(18)		(14)(15)(16)	(10)	(11)				<u> </u>		(9) (12) (13)
	(19)		(15)(16)(17)		(10)	(11)			(14	!)	(12)(13)
	(20)		(16)(17)(18)	(15)		(10)	(11)			(12)(13)(14)
21	(21)	(20)	(17)(18)(19)	(16)	(15)		(10)			(11)(12)(13)(14)
22		(21)	(17) (18) (20)		(16)	(15)		(19)		(10)	(11)(12)(13)(14)
23			(17)(18)(21)			(16)	(15)	(20)			(19)
24			(17) (21)	(18)			(16)				15) (19)(20)

Through data flow graph analysis

Announcements

- Assignment 4 due tonight
 - A "Completeness" question means we don't grade on the correctness of answer itself.
 - It does not mean you can put random answer and you must complete all completeness question to have credits
 - You should check the generated "assignment.turnin.ipynb" before submission
- Reading Quiz 7 due next Tuesday before the lecture
- iEVAL starting from the next Monday
 - Submit the prove of your participation in iEVAL through Gradescope
 - It can become a full credit reading quiz (it helps to amortize the penalty of another least performing one)
- Assignment 5 is released due 6/06/2024
 - The same programming assignment as Assignment 3 but you need to speedup by 4x on Gradescope this time
- Final exam
 - 6/14 8a-11a @ BOYHL 1471
 - Closed book, no cheatsheet the same rules as the midterm
 - Two questions can be used as CSMS comprehensive examine questions one is memory-hierarchy related, and the other is OoO scheduling and code optimization (yes — today's lecture)

Computer Science & Engineering

203

