UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO FAKULTETA ZA RAČUNALNIŠTVO IN INFORMATIKO

Računalništvo in matematika – 2. stopnja

Tim Kalan **VEČSTRANSKI PODPISI**

Magistrsko delo

Mentor: doc. dr. Tilen Marc

Zahvala

Neobvezno. Zahvaljujem se ...

Kazalo

1 Uvod				1
2	Kri	ptogra	ifske osnove	1
	2.1	Aritm	etika v \mathbb{Z}_p^*	. 1
	2.2	Pridol	bivanje velikih naključnih praštevil	. 2
	2.3	Zgošč	evalne funkcije	. 2
	2.4	Kripto	ografija javnega ključa	. 3
	2.5		ılni podpisi	
	2.6	Varnost		
3	Schnorrov podpis			
	3.1	Varno	st Schnorrovega podpisa	9
		3.1.1	Schnorrova identifikacijska shema	
		3.1.2	Pretvorba identifikacijske sheme v digitalni podpis	
4	Pregled skupinskih podpisov			10
	4.1	_	nski podpisi	. 10
	4.2		vni podpisi	
	4.3	_	ranski podpisi	
	4.4		irani podpisi	
5	Večstranski Schnorrov podpis			
	5.1		ranski podpis podskupine z odgovornostjo	. 12
		5.1.1	Robustnost, varnost in napadalec	
		5.1.2	Model slučajnega oraklja	
	5.2			
		5.2.1	Naivna verzija	
		5.2.2	Generiranje parametrov: Predpostavka DL	
		5.2.3	Napad na generiranje ključev: Dokazi brez razkritja znanja	16
		5.2.4	Učinkovitost podpisovanja: Merklova drevesa	
	5.3	Defini	cija večstranskega Schnorrovega podpisa	
		5.3.1	Skupni parametri	20
		5.3.2	Generiranje ključev	20
		5.3.3	Podpisovanje	
		5.3.4	Preverjanje	
	5.4	Varno	st večstranskega Schnorrovega podpisa	
6	Več	éstranski podpisi v splošnem 22		
Literatura				23

Program dela

Mentor naj napiše program dela skupaj z osnovno literaturo.

Osnovna literatura

1. S. Micali, K. Ohta in L. Reyzin, *Accountable-subgroup multisignatures*, v: Proceedings of the 8th ACM conference on Computer and Communications Security (ur. P. Samarati), ACM, Philadelphia, PA, USA, 2001, str. 245–254, DOI: 10.1145/501983.502017, dostopno na https://doi.org/10.1145/501983.502017.

Podpis mentorja:

Večstranski podpisi

Povzetek

Tukaj napišemo povzetek vsebine. Sem sodi razlaga vsebine in ne opis tega, kako je delo organizirano.

Multisignatures

Abstract

An abstract of the work is written here. This includes a short description of the content and not the structure of your work.

Math. Subj. Class. (2020): 94A60, 11T71 Ključne besede: digitalni podpis, kriptografija

Keywords: digital signature, cryptography

1 Uvod

Odkar se je na svetu pojavil koncept (ročnega) podpisa, je večina primerov uporabe temeljila na pridobivanju podpisov več deležnikov. Odličen primer je npr. Deklaracija neodvisnosti Združenih držav Amerike 1.

Slika 1: Deklaracija neodvisnosti Združenih držav Amerike s podpisi podpornikov spodaj.

V prejšnjem stoletju je vzpon računalnika in napredek v kriptografiji privedel do digitalnih podpisov. Ti odlično nadomeščajo ročni podpis, prav tako omogočajo, da se skupina podpiše tako, da vsak član poda svoj podpis. Vendar tu lahko z malo matematike poskrbimo, da se skupina lahko podpiše na način, da vsi člani skupaj oddajo en sam podpis, ki priča o podpisu celotne skupine. Tako razbremenimo preverjalca podpisov, kar je ključno v sistemih, kjer je računska moč omejena ali pa draga (npr. pri tehnologiji veriženja blokov).

2 Kriptografske osnove

Preden si lahko pogledamo točno kako lahko skupina generira en sam podpis besedila, si moramo pogledati nekaj kriptografskih osnov. Bolj komplicirane stvari bodo opisane sproti, ideja tega poglavja je predstaviti stvari, ki so predpogoj za branje kakršnegakoli kriptografskega besedila.

2.1 Aritmetika v \mathbb{Z}_p^*

V kriptografiji imamo pogosto opravka z multiplikativnimi grupami, najenostavnejša med njimi (in tudi tradicionalno največ uporabljena) je multiplikativna grupa naravnih števil modulo $p \mathbb{Z}_p^*$. Njeni elementi so števila v $\{0, 1, \ldots, p-1\}$, ki so tuja

številu p. V posebnem primeru, ko je p praštevilo, so to torej števila $\{1, 2, \ldots, p - 1\}$ in je red grupe $\operatorname{ord}(\mathbb{Z}_p^*) = |\mathbb{Z}_p^*| = p - 1$. Operacija v tej grupi je, kot ime že nakazuje, množenje modulo p.

Spomnimo se, da je red elementa g najmanjše naravno število q, da velja $g^q \equiv 1 \pmod{p}$, kjer je 1 enota za množenje. V primeru, da je p praševilo, je grupa grupa \mathbb{Z}_p^* ciklična, kar pomeni, da v njej obstaja element g, katerega red je enak redu grupe, torej ord(g) = p - 1. V tem primeru se g imenuje generator.

Primer 2.1 (Grupa \mathbb{Z}_{11}^*). Ker je 11 praštevilo, v grupi \mathbb{Z}_{11}^* obstaja generator, oz. je grupa ciklična z redom 10 = 11 - 1. Z zaporednim računanjem potenc lahko vidimo, da je ord(2) = 10, torej je 2 generator.

$$2^{1} \equiv 2 \pmod{11}$$
 $2^{6} \equiv 9 \pmod{11}$ $2^{2} \equiv 4 \pmod{11}$ $2^{3} \equiv 8 \pmod{11}$ $2^{8} \equiv 3 \pmod{11}$ $2^{2} \equiv 5 \pmod{11}$ $2^{2} \equiv 6 \pmod{11}$ $2^{2} \equiv 10 \pmod{11}$ $2^{2} \equiv 10 \pmod{11}$ $2^{2} \equiv 1 \pmod{11}$

 \Diamond

Opomba 2.2. Spomnimo se kongruence: $a \equiv b \pmod{m} \iff m \mid a - b$.

2.2 Pridobivanje velikih naključnih praštevil

2.3 Zgoščevalne funkcije

V grobem so (kriptografske) zgoščevalne funkcije funkcije, ki prejmejo poljubno dolg binarni niz (ki lahko predstalja besede, številke, celotne dokumente, ...), vrnejo pa binarni niz, ki ima vnaprej določeno dolžino. Tem rezultatom pravimo zgostitve. Namen zgoščevalnih funkcij je za dokument ustvariti unikaten niz, ki zelo verjetno identiificira dokument. V grobem si od zgoščevalnih funkcij želimo naslednje lastnosti:

- **Določenost** pomeni, da bo zgoščevanje enakih nizov vedno privedlo do enake zgostitve.
- **Učinkovitost** pomeni, da lahko računalnik izračuna poljubno zgostitev v doglednem času. Izračun zgostitve mora biti računsko učinkovit.
- Enosmernost pomeni, da iz predložene zgostitve zelo težko ugotovimo, kater niz je funkcija prejela kot vhod. Tej lastnosti pravimo tudi odpornost na prasliko.
- Odpornost na drugo prasliko pomeni, da če poznamo niz in njegovo zgostitev, je zelo težko najdemo drug niz z enako zgostitvijo.
- Skoraj brez trčenj pomeni, da je verjetnost, da imata dva izraza enako zgostitev, majhna. Želimo tudi, da je zelo težko najti dva niza z enako zgostitvijo.
- **Učinek plazu** pomeni, da majhna sprememba v vhodnem nizu povzroči veliko spremembo v zgostitvi.

Definicija 2.3. Kriptografska zgoščevalna funkcija $H: \{0,1\}^* \to \{0,1\}^n$ je funkcija, ki slika binarne nize m poljubne dolžine v njihove zgostitve H(m), tj. binarne nize vnaprej določene dolžine n. Zadoščati mora naslednjim lastnostim:

- (določenost) $\forall m : ((h_1 = H(m) \land h_2 = H(m)) \implies h_1 = h_2).$
- (učinkovitost) Izračun funkcije H mora biti računsko učinkovit (v polinomskem času).
- (odpornost na prasliko) Če poznamo zgostitev h je računsko neizvedljivo najti niz m, da velja h=H(m).
- (odpornost na drugo prasliko) Če poznamo niz m_1 je računsko neizvedljivo najti zgostitev m_2 , da velja $H(m_1) = H(m_2)$.
- (odpornost na trčenja) Računsko neizvedljivo je najti dva niza m_1 in m_2 , da velja $H(m_1) = H(m_2)$.
- (učinek plazu) Vsaka sprememba vhoda povzroči, veliko spremembo v zgostitvi. Vsak bit zgostitve se spremeni z verjetnostjo vsaj 1/2.

Primer 2.4. Ena izmed najbolj znanih zgoščevalnih funkcij je SHA-256. Njeno ime pomeni *Secure Hash Algorithm* (slov. varen zgoščevalni algoritem), 256 pa predstavlja dolžino zgostitve. Pogostokrat to ime zasledimo pri nameščanju programske opreme, služi kot avtentikator, da smo res naložili pravo stvar.

Za primer si lahko ogledamo zgostitvi dveh podobnih nizov, *Ljubljana* in *Ljubljena*. Kljub podobnosti bomo videli, da sta rezultata popolnoma drugačna, kar si tudi želimo pri zgoščevalnih funkcijah.

```
SHA-256(Ljubljana) = b7f147d8b4a6703a951336654355071f9752385f85d0860379e99b484aee7a82
SHA-256(Ljubljena) = 995d2d8ffb40e1838219e65dd2c665701ba34a90e11f7195a4b791838b6787fe
```

Za preglednost nismo prevajali besed v binarne nize, to bi storili npr. z ASCII ali UTF-8 tabelo. Prav tako smo rezultat napisali v šestnajstiškem sistemu, saj je tako krajši.

2.4 Kriptografija javnega ključa

Prve šifre, ki smo jih uporabljaji ljudje, so bile *simetrične*, kar pomeni, da sta osebi za komunikacijo obe morali poznati skriven *ključ*, ki je definiral, kako je bila šifra ustvarjena.

Primer 2.5 (Cezarjeva šifra). Ena najbolj znanih šifer, ki izvira iz Antičnega Rima, je *Cezrjeva šifra*. Njen ključ je število, ki je krajše od dolžine naše abecede, v Cezarjevem primeru je bilo to število 3. Šifra potem deluje tako, da vsako črko zamaknemo za toliko mest v abecedi, kolikor definira ključ. Npr. za slovensko abecedo, bi šifra zamaknila črke:

A B C Č D E F G H I J K L M N O P R S Š T U V Z Ž Č D E F G H I J K L M N O P R S Š T U V Z Ž A B C

To bi izraz JAVNI KLJUČ preslikalo v MČARL NOMŽF. Cezarjeva šifra se imenuje tudi zamična šifra.

V prejšnjem stoletju pa se je pojavila alternativa, imenovana asimetrična kriptografija, oz. kriptografija javnega ključa. Glavna prednost te je, da osebi za komunikacijo ne rabita poznati enakega skrivnega ključa, vendar ima vsak od njiju par ključev, ki ju imenujemo javni ključ (angl. public key) in zasebni ključ (angl. secret/private key)in označimo kot par (pk, sk). Vsaka oseba objavi svoj javni ključ in poskrbi, da nihče ne izve, kaj je njen zasebni ključ.

Šifriranje potem poteka tako, da pridobimo javni ključ od osebe, s katero želi komunicirati, ga uporabi za šifriranje in objavi šifrirano sporočilo. Lastnik ustreznega zasebnega ključa (vsakemu javnemu pripada natanko en zasebni) potem pridobi šifrirano sporočilo in ga z zasebnim ključem odšifrira. Kriptosistemi delujejo na način, da lahko sporočilo, šifrirano z javnim ključem odšifrira samo ustrezen zasebni ključ. Tako zagotovimo varno komunikacijo.

Primer 2.6 (RSA). En prvih algoritmov javnega ključa, ki se uporablja še danes, je RSA. Njegova varnost izhaja iz (domnevne) težavnosti problema iskanja prafaktorjev. Svoj ključ definiramo tako, da si izberemo dve (zelo veliki) praštevili p in q, ter ju zmnožimo v n=pq. Za primer vzemimo p=23 in q=17. n je potem enak 391. Izbrati si moramo še eksponent e, vzemimo npr. e=3. Naš javni ključ je potem par

$$(n,e) = (391,3).$$

Postopek šifriranja poteka tako, da oseba, s katero komuniciramo, izbere sporočilo m, npr. m=10, pridobi naš javni ključ, in izračuna šifro c kot

$$c = m^e \mod n = 10^3 \mod n = 218.$$

Dogovoriti se moramo še o zasebnem ključu. Za to bomo potrebovali eksponent za odšifriranje d, tako da bo veljalo

$$(m^e)^d \equiv 1 \pmod{\varphi(n)},$$

kjer φ označuje Eulerjevo funkcijo fi. Iščemo torej multiplikativni inverz eksponenta e, modulo $\varphi(n)$. V našem primeru je to d=235. Zasebni ključ je potem

$$(p,q,d) = (23,17,235).$$

Iz zasebnega ključa torej lahko kadarkoli izračunamo javnega, saj enostavno zmnožimo p in q ter izračunamo inverz, v splošnem pa iz n učinkovito ne moremo pridobiti faktorjev p in q, kar nam daje varnost.

Ko prejmemo šifrirano sporočilo c, ga odšifriramo tako, da izračunamo

$$m = c^d \mod n = 218^{235} \mod 391 = 10.$$

Poleg šifriranja, brez da bi si delili ključ, pa je kriptografija javnega ključa omogočila tudi digitalne podpise. Ti so uporabljeni vsakič, ko pošljemo e-pošto ali dostopamo do katerekoli spletne strani. Delujejo na podoben način, kot šifriranje z javnim ključem, le da najprej uporabimo zasebni ključ na sporočilu, prek javnega ključa pa preverjamo veljavnost podpisa. Ponavadi sta šifrianje in podisovanje uporabljena hkrati, saj tako pošljemo šifrirano sporočilo, za katerega lahko oseba, s katero komuniciramo preveri, da je res prišlo od nas.

2.5 Digitalni podpisi

Ideja kriptografskih ali digitalnih podpisov je, da služijo kot izboljšava človeškega ročnega podpisa. Za razliko od ročnega podpisa, lahko z digitalnim dosežemo pravo identifikacijo posameznika, ki temelji na njegovem zasebnem ključu. Tako smo lahko za digitalno podpisan dokument prepričani, da ga je res podpisal lastnik točno določenega zasebnega ključa.

Podpis dokumenta poteka nekoliko drugače, kot pri ročnih podpisih. Pri ročnem podpisu ta postane del dokumenta, digitalni podpis pa je od njega ločen, vseeno pa nastane s pomočjo zgostitve podpisanega dokumenta, zato bo podpis za dva različna dokumenta vedno drugačen.

Ostane še vprašanje preverjanja avtentičnosti podpisa. Pri ročnem podpisu to lahko storimo prek primerjave z znanim, preverjeno avtentičnim podpisom. Ta postopek je zamuden in nenatančen, veliko večino ročnih podpisov je moč ponarediti z nekaj prakse. Preverjanje digitalnega podpisa pa temelji na kriptografiji javnega ključa. Ker je podpis nastal s pomočjo podpisnikovega zasebnega ključa, lahko s pomočjo ujemajočega javnega ključa preverimo avtentičnost.

Definicija 2.7. Digitalni ali kriptografski podpis $S = (\mathcal{G}, \mathcal{S}, \mathcal{V})$ je trojica učinkovitih algoritmov \mathcal{G} za ustvarjanje ključa, \mathcal{S} za podpisovanje in \mathcal{V} za preverjanje podpisa. Definirana je nad končno množico možnih sporočil \mathcal{M} , vrnjeni podpis pa leži v v končni množici podpisov Σ .

- \mathcal{G} je naključnostni algoritem za ustvarjanje para ključev (pk, sk), ki ne prejme nobenega argumenta. pk je javni kljč za preverjanje avtentičnosti podpisa, sk pa je zasebni ključ za podpisovanje.
- S je naključnostni algoritem, ki za svoja argumenta prejme zasebni ključ sk in sporočilo m, vrne pa podpis σ spročila m z zasebnim ključem sk oz.

$$\sigma = \mathcal{S}(sk, m).$$

• \mathcal{V} je determinističen algoritem, ki preverja veljavnost podpisov. Za svoje arugmente prejme javni ključ pk, sporočilo m in podpis σ , vrne veljaven, če je podpis veljaven in neveljaven, sicer. Velja torej

$$\mathcal{V}(\mathbf{pk}, m, \sigma) = \begin{cases} veljaven, & \sigma = \mathcal{S}(\mathbf{sk}, m), \\ neveljaven, & \sigma \neq \mathcal{S}(\mathbf{sk}, m). \end{cases}$$

2.6 Varnost

Glavna stvar, ki nas zanima pri obravnavi kateregakoli kriptosistema, je njegova *varnost*. Ker je cilj digitalnih podpisov sogovorniku zagotoviti, da sporočilo res pošiljamo mi, nas glede varnosti najbolj skrbi, da bi *napadalec* lahko ponaredil naš podpis in nam s tem ukradel identiteto. Pri tem je lahko uspešen na več nivojih, ki so od najmanj do najbolj škodljivega:

- Eksistencialno ponarejanje (angl. existential forgery) pomeni, da napadalec lahko ponaredi vsaj en podpis. To pomeni, da lahko najde vsaj en par (m, σ) , da velja $\mathcal{V}(pk, m, \sigma) = veljaven$.
- Selektivno ponarejanje (angl. selective forgery) pomeni, da lahko napadalec z nezanemarljivo verjetnostjo podpiše sporočilo, ki mu ga da nekdo drug in ga mi še nismo podpisali. Torej, če napadalcu nekdo predloži spročilo m, lahko z nezanemarljivo verjetnostjo najde podpis σ , da velja $\mathcal{V}(pk, m, \sigma) = veljaven$.
- **Popoln zlom** (angl. *total break*) pomeni, da je napadalec ugotovil naš zasebni ključ in s tem podpisovalni algoritem. V našem imenu lahko podpiše karkoli.

Poleg zgoraj definiranih *ciljev napadalca*, lahko za vsak kriptosistem definiramo tudi *model napada*, in pa *tip varnosti*, ki ga zagotavlja shema. Varnost večine shem za digitalne podpise temelji na (domnevni) težavnosti določenih matematičnih problemov.

Stinson [7] definira naslednje modele napada:

- Napad samo s ključem je napad, kjer napadalec pozna samo naš javni ključ pk. Pozna torej algoritem za preverjanje podpisov \mathcal{V} .
- Napad z znanimi sporočili je napad, kjer napadalec poseduje seznam parov sporočil in njihovih podpisov $(m_1, \sigma_1), (m_2, \sigma_2), \ldots$, kjer za vsak i velja $\sigma_i = \mathcal{S}(\operatorname{sk}, m_i)$.
- Napad z izbranimi sporočili je napad, kjer nam napadalec da seznam sporočil m_1, m_2, \ldots , mi pa mu vrnemo seznam podpisov, da za vsak i velja $\sigma_i = \mathcal{S}(\operatorname{sk}, m_i)$.

Ostane nam še pregled varnosti, ki jo lahko pričakujemo oz. zahtevamo od sheme za podpisovanje. Takšna shema ne more biti $brezpogojno\ varna$, kar bi pomenilo, da je tudi z neomejenimi računskimi zmožnostmi nemogoče ponarediti podpis. To je zato, ker lahko napadalec sistematično preveri vse podpise za neko sporočilo s pomočjo algoritma \mathcal{V} , dokler ne najde pravega. Pričakujemo pa lahko $računsko\ varnost$, kar pomeni, da napadalec ne more najti ponaredka v doglednem času, če ima omejene računske sposobnosti, ali pa $dokazljivo\ varnost$, kar pomeni, da lahko varnost prevedemo na težavnost nekega matematičnega problema.

3 Schnorrov podpis

Eden izmed najenostavnejših, dokazano varnih podpisov je ravno *Schnorrov podpis* [2]. Kot vsi podpisi, tudi ta potrebuje tri algoritme: za generiranje ključa, podpisovanje in preverjanje podpisa.

Za generiranje para ključev, je potrebno najprej generirati dve praštevili p in q, tako da q deli p-1. Potem je potrebno izbrati element g iz multiplikativne grupe modulo p, torej $g \in \mathbb{Z}_p^*$, ki je reda q. Za konec je potreben še izbor naključnega števila $s \in [0, q-1]$ in izračun

$$I = g^s \bmod p.$$

Ko vse to opravimo, smo uspešno ustvarili par ključev

$$pk = (p, q, g, I),$$
$$sk = s.$$

Ideja v ozadju teh števil je, da p določa multiplikativno grupo števil \mathbb{Z}_p^* . Za podpis je potrebno najti podgrupo, katere red je praštevilo, je pa vseeno dovolj velika, da omogoča varnost. Red te podgrupe je q, določa pa jo generator g. Iz varnostnih razlogov mora p imeti 2048 bitov, q pa 224. Čeprav je grupa \mathbb{Z}_p^* zelo velika, je Schnorrov podpis vseeno učinkovit, saj večinoma deluje znotraj podgurpe, ki jo generira g.

KAKO DOBIMO PARAMETRE??

Poleg parametrov p,q in g, morata podpisnik in preverjalec določiti oz. imeti dostop do varne kriptografske zgoščevalne funkcije $H:\{0,1\}^* \to \mathbb{Z}_q$. Za varno funkcijo smatramo vsako, ki zadošča lastnostim iz definicije 2.3. Velikost kodomene te funkcije definira velikost končnega podpisa. Iz zgostitve, dolge $\log_2 q$ bitov, dobimo podpis, dolg $2\log_2 q$ bitov [7]. Tu se pokaže glavna prednost Schnorrovega podpisa. Vrača relativno kratke podpise, hkrati pa lahko izkoristi velikost grupe \mathbb{Z}_p^* za varnost.

Za podpis enega sporočila mora podpisnik generirati naključno število $r \in [0, q-1]$ in izračunati zavezo

$$X = g^r \mod p$$
.

Ta korak je podoben zadnjemu delu generiranja ključev, le da je skrivni del ključa s uporabljen večkrat, r pa mora biti generiran za vsako sporočilo znova. Potem z uporabo funkcije H izračunamo izziv

$$e = H(X||m),$$

kjer || označuje stikanje nizov. Za konec je potrebno izračunati še

$$y = es + r \mod q$$
,

podpis sporočila m pa je potem par (X, y) oz.

$$S(s,m) = (X,y).$$

Za preverjanje veljavnosti podpisa (X', y') sporočila m, je potrebno izračunati

$$e' = H(X'||m)$$

in preveriti, če velja

$$g^{y'} \stackrel{?}{\equiv} X' \cdot I^{e'} \pmod{p}. \tag{3.1}$$

Za to moramo uporabiti nekaj lastnosti cikličnih grup in modularne aritmetike.

Trditev 3.1. Naj bosta p in q praštevili, $q \mid p-1$. Naj bo g element grupe \mathbb{Z}_p^* reda q, kar pomeni, da je $g^q \equiv 1 \pmod{p}$. Naj bo k naravno število. Potem velja

$$g^k \bmod p = g^{k \bmod q} \bmod p.$$

Dokaz. Po osnovnem izreku o deljenju naravnih števil, lahko k na en sam način zapišemo kot k=nq+r, kjer velja $n\in\mathbb{N},r< q$.

Leva stran enačbe se potem prepiše

$$g^k \mod p = g^{nq+r} \mod p =$$

$$= (g^q)^n g^r \mod p =$$

$$= 1^n g^r \mod p =$$

$$= g^r \mod p.$$

Desna stran pa se prepiše kot

$$g^{k \bmod q} \bmod p = g^{(nq+r) \bmod q} \bmod p =$$

$$= g^r \bmod p.$$

Ker sta obe strani enaki, je trditev dokazana.

Po trditvi 3.1 lahko levo stran enačbe za preverjanje Schnorrovega podpisa (3.1) prepišemo

$$g^{y'} \mod p = g^{es+r \mod q} \mod p =$$

= $g^{es+r} \mod p$.

Za pretvorbo desne strani moramo uporabiti nekaj lastnosti modularne aritmetike.

Trditev 3.2. Naj bodo a, b in p naravna števila. Potem za modularno množenje in potenciranje velja

$$a \cdot b \bmod p = (a \bmod p) \cdot (b \bmod p) \bmod p, \tag{3.2}$$

$$a^b \bmod p = (a \bmod p)^b \bmod p. \tag{3.3}$$

 $Dokaz.\ a$ in blahko po osnovnem izreku o deljenju naravinih števil na en sam način zapišemo kot

$$a = n_a p + r_a,$$

$$b = n_b p + r_a,$$

kjer velja $r_a < p$.

(3.2): Levo stran preoblikujemo

$$a \cdot b \mod p = (n_a p + r_a) \cdot (n_b p + r_b) \mod p =$$

= $(n_a n_b p^2 + n_a p r_b + n_b p r_a + r_a r_b) \mod p =$
= $r_a r_b \mod p$,

desno pa

$$(a \bmod p) \cdot (b \bmod p) \bmod p = (n_a p + r_a \bmod p) \cdot (n_b p + r_b \bmod p) \bmod p =$$

= $r_a r_b \bmod p$.

Ker se strani ujemata, je trditev dokazana.

- (3.3): Ker je potenciranje samo zaporedna uporaba množenj, lahko trditev pokažemo z indukcijo na b in enačbo (3.2):
 - b=2: Primer, ko je b=1 (ali b=0) je trivialen, če pa je b=2, pa se problem reducira v

$$a \cdot a \mod p \stackrel{?}{=} (a \mod p) \cdot (a \mod p) \mod p,$$

kar drži neposredno po enačbi (3.2).

• $n \to n+1$: Predpostavimo, da enačba (3.3) drži za b=n (I.P.). Ko je b=n+1, dobimo

$$a^{n+1} \mod p = a^n a \mod p =$$

$$\stackrel{\text{(3.2)}}{=} (a^n \mod p)(a \mod p) \mod p =$$

$$\stackrel{\text{I.P.}}{=} (a \mod p)^n (a \mod p) \mod p =$$

$$= (a \mod p)^{n+1} \mod p.$$

S tem je indukcija končana in trditev dokazana.

Desno stran enačbe (3.1) torej lahko prepišemo

$$X' \cdot I^{e'} \bmod p = g^r \bmod p \cdot (g^s \bmod p)^e \bmod p =$$

$$= (g^r \bmod p) \cdot (g^{es} \bmod p) \bmod p =$$

$$= g^{es+r} \bmod p,$$

kjer smo pri prehodu v drugo vrstico uporabili lastnost (3.3), pri prehodu v tretjo pa lastnost (3.2). Ker se obe strani ujemata za veljavne podpisne vrednosti, ta enačba res preveja Schnorrov podpis.

KAKO PA POKAŽEMO, DA SE ZA NAPAČNE VREDNOSTI NE UJEMA??

3.1 Varnost Schnorrovega podpisa

Najbolj očitna nevarnost kateregakoli kriptosistema z javnimi ključi bi bila možnost izračuna zasebnega ključa iz javnega. Slednji je dostopen vsem, zato bi lahko kdorkoli pridobil zasebni ključ, kar popolnoma izniči pomen šifriranja ali podpisovanja.

Pri Schnorrovem podpisu je javni ključ poleg parametrov uporabljene grupe p,q in g, še število I, izračunano kot

$$I = q^s \bmod p$$
.

Za izračun je torej neposredno uporabljen zasebni ključ s. Zaradi notacije bi morda kdo hitro pomislil, da lahko zgornjo enačbo obrnemo in s izračunamo kot

$$s = \log_a(I) \bmod p$$
.

Taki izračuni v grupah \mathbb{Z}_p^* žal niso tako enostavni, prišli smo do koncepta diskretnega logaritma.

3.1.1 Schnorrova identifikacijska shema

3.1.2 Pretvorba identifikacijske sheme v digitalni podpis

Definicija 3.3 (Problem diskretnega logaritma [1]). Naj bo G ciklična grupa reda q, ki jo generira element g. Naj bo h naključni element iz grupe G. Naj velja $g^x = h$. x Potem imenujemo **Diskretni logaritem** (**DL**).

Zamislimo si igro, kjer izzivalec in nasprotnik kot vhod prejmeta opis grupe G (torej q in $g \in G$). Izzivalec potem izbere naključen element $\alpha \in G$ in izračuna $h = g^{\alpha}$. h pošlje nasprotniku, le-ta pa mora odgovoriti nazaj z elementom α . To igro imenujemo **problem diskretnega logaritma (PDL)** (angl. discrete logarithm problem).

Pri tej igri nas zanima verjetnost pravilnega odgovora nasprotnika, ki je računsko omejen. S tem mislimo, da ima na voljo polinomsko mnogo časa (glede na velikost grupe). Če je grupa G takšna, da je verjetnost zanemarljiva, pravimo, da za grupo G drži $predpostavka \ diskretnega \ logaritma.$

Izkaže se, da za grupe, kot je \mathbb{Z}_p^* , ne poznamo učinkovitega algoritma za izračun diskretnega logaritma, torej v njih drži predpodstavka DL. To torej pomeni, da ob pridobljenem javnem ključu, napadalec ne more učinkovito izračunati zasebnega.

4 Pregled skupinskih podpisov

Ko pridemo do podpisovanja skupin, si lahko zamislimo več različnih rešitev. Micali v [6] definira dve lastnosti oz. spektra, ki jim lahko zadošča podpis skupine:

- **Prilagodljivost** (angl. *flexibility*): Popolnoma prilagodljiv podpis skupine je takšen, ki ga lahko proizvede katerakoli podskupina originalne skupine podpisnikov. Ko je podpis preverjen, se mora tisti, ki ga je preveril odločiti, če je ustrezen del skupine podal svoj podpis. Popolnoma neprilagodljiv podpis bi bil takšen, ki ga lahko v imenu skupine ustvari katerkoli član.
- Odgovoronost (angl. accountability): Če lahko iz podpisa ugotovimo, kateri člani so sodelovali pri ustvarjanju, nam podpis omogoča odgovornost. Ta lastnost je lahko zaželena, če se želimo prepričati, ali je ustrezen del skupine sodeloval pri podpisu (npr. ali je pri podpisovanju sodeloval generalni direktor podjetja). V drugih primerih pa si želimo anonimnost posameznih članov (npr. če bi generiranje podpisa predstavljalo nekakšno glasovanje, bi želeli vedeti samo, koliko članov je sodelovalo).

V nadaljevanju bomo skupino potencialnih podpisnikov (torej podpisnikov, ki imajo možnost sodelovati pri podpisovanju) označili z $G = P_1, \ldots, P_L$, kjer ima skupina L članov. Dejanski podpis pa bo generiral samo del skupine $S \subseteq G$.

4.1 Skupinski podpisi

Skupinski podpis (angl. group signature) v imenu celotne skupine G ustvari en anonimen član. To torej pomeni, da je podpis popolnoma neprilagodljiv, saj ni možno prisiliti skupine, da bi podpis ustvaril več kot en član. Prav tako v splošnem noben

član, niti tisti, ki preverja podpis, ne more ugotoviti, kdo je podpis ustvaril. Da skupinski podpisi omogočijo vsaj delno odgovornost, skupina določi *vodjo skupine*, ki ima možnost razkriti identiteto podpisnika, če pride do težav. V tem primeru seveda vodja predstavlja atraktivno tarčo za napad.

4.2 Pragovni podpisi

Ce želimo zagotoviti, da se s podpisom strinja zadosten delež skupine, lahko uporabimo pragovni podpis (angl. threshold signature). Ta nam omogoča določeno mero prilagodljivosti, saj lahko katerkoli zadosten delež skupine ustvari podpis. Še vedno je nemogoče upoštevati morebitno hierarhično strukturo skupine. Pragovni podpisi omogočajo tudi popolno anonimnost podpisnikov, in s tem torej nično odgovornost. Intuicija tu je, da večina pragovnih podpisov temelji na interpolaciji polinoma (l-1)-stopnje z l točkami. Podpis je potem ustvarjen s pomočjo vrednosti polinoma v neki točki. Po interpolaciji se informacija o tem, točno katere točke smo uporabili, izgubi. Take podpise imenujemo tudi l-od-L sheme. Primer uporabe je odklepanje sefa v banki. Recimo, da ne zaupamo samo osebi z odklepanjem in želimo, da je prisotnih l od L pooblaščenih oseb, ni nam pa važno, katerih. Tu je pragovni podpis odlična rešitev.

4.3 Večstranski podpisi

Za nekatere uporabe podpisov, bi si od njih želeli podobne lastnosti, kot jih ima večstranski ročen podpis. Pri njem lahko hitro preberemo podpisnike, torej imamo popolno prilagodljivost. Vidimo lahko seznam podpisnikov, torej lahko presodimo, če so med njimi tisti, ki smo jih želeli. Prav tako podpisniki nosijo popolno odgovornost, saj na papirju piše njihovo ime.

Podoben učinek bi z digitalnimi podpisi lahko dosegli, če bi namesto enega podpisa skupine, od članov zbrali individualne podpise in jih nanizali v seznam. Dobili bi torej digitalni podpis skupine, ki ponuja popolno prilagodljivost in odgovornost. Težava je samo, da je dolžina podpisa (in s tem čas preverjanja) proporcionalna številu podpisnikov. *Večstranski podpisi* (angl.multisignatures) ohranijo lastnosti seznama podpisov, rezultat sheme je pa en sam podpis, ki je enako dolg ne glede na število podpisnikov, prav tako je od števila neodvisen čas preverjanja. Tega s seznamom podpisov ni mogoče doseči, saj tako dolžina podpisa, kot čas preverjanja podpisa rasteta linearno s številom podpisnikov (vsak doda en podpis seznamu, ki ga je potrebno preveriti). Večstranski podpisi so torej odlična posplošitev ročnih podpisov skupin, ki vseeno ohrani učinkovito preverjanje.

Primer 4.1. Recimo, da imamo nek organ, ki izdaja certifikate avtentičnosti uporabnikov (npr. potrjuje avtentičnost javnih ključev). Za večjo robustnost in varnost, je lahko ta organ razporejen na več strežnikov. Tako preprečimo razpad sistema v primeru izpada enega strežnika. Zato je torej tudi pomembno, da certifikacijo uporabnika potrdi nekaj strežnikov, ne pa nujno vsi. Tu lahko torej neka podskupina vseh strežnikov organa skupaj izda en večstranski podpis, ki potrjuje avtentičnost uporabnika.

4.4 Agregirani podpisi

5 Večstranski Schnorrov podpis

Micali et al. [6] so prvi definirali formalni model za večstranske podpise in podali formalni dokaz varnosti. Zamislili so si večstranski podpis, ki temelji na Schnorrovem in ga poimenovali večstranski podpis podskupine z odvoronostjo (angl. Accountable-Subgroup Multisignature (ASM)). V tem razdelku predstavimo njihov model, podpis in argument varnosti.

5.1 Večstranski podpis podskupine z odgovornostjo

Kljub daljšemu imenu, večstranski podpis podskupine z odgovornostjo le bolj formalno definira idejo večstarnskega podpisa, predstavljeno v razdelku 4.3. Ideja oz. cilj večstranskega podpisa je torej, da lahko katerakoli podskupina podpisnikov S, neke skupine G, brez potrebe po centru zaupanja (angl. trusted third party (TTP)) ustvari podpis. Generiranje ključev je torej popolnoma v domeni skupine G. Podpis, ki ga ustvari S predstavlja splošno preverljiv dokaz strukture S in dejstva, da vsak član skupine stoji za (torej podpisuje) sporočilom M.

Definicija 5.1 (Večstranski podpis (podskupine z odgovornostjo)). Skupina G je sestavljena iz L podpisnikov, torej

$$G = P_1, P_2, \dots, P_L$$

Podpisnik predstavlja verjetnostni Turingov stroj, omejen s polinomskim časom. Vsak podpisnik pozna svojo identifikacijsko številko (eno od števil $1, \ldots, L$) in pa $varnostni\ parameter\ k$, ki je enak za vse podpisnike.

Kot vsi digitalni podpisi 2.7, ima tudi ta tri glavne komponente:

• \mathcal{G} je algoritem za ustvarjanje ključev. Za neko skupino podpisnikov G je pognan samo enkrat, na začetku sodelovanja. Vsak podpisnik i dobi kot vhod seznam vseh podpisnikov v G in požene \mathcal{G} , ki vrne par ključev (pk_i, sk_i). Zapišemo lahko torej

$$\mathcal{G}_i(L) = (\mathrm{pk}_i, \mathrm{sk}_i),$$

kjer smo brez škode za splošnost predpostavili, da velikost skupine L enolično opiše skupino G.

- S je algoritem za podpisovanje. Pognan je vsakič, ko neka podskupina S želi ustvariti podpis. Vsak podpisnik kot vhod prejme seznam vseh podpisnikov S, njihove javne ključe pk $_j$, kjer j teče po identifikacijskih številkah vseh članov S, sporočilo m in lasten zasebni ključ sk $_i$. Algoritem S je porazdeljen protokol, pri izvedbi morajo sodelovati vsi člani S. Po uspešni izvedbi lahko en od članov objavi podpis σ .
- \mathcal{V} je algoritem za preverjanje veljavnosti podpisa. Požene ga tisti, ki želi preveriti veljavnost večstranskega podpisa. Ni nujno, da je to eden izmed

podpisnikov iz G. Kot vhod algoritem dobi seznam podpisnikov S, pripadajoče javne ključe, sporočilo m in morebiten podpis σ . Algoritem potem vrne

$$\mathcal{V}((id_1,\ldots,id_l),(\mathrm{pk}_{id_1},\ldots,\mathrm{pk}_{id_l}),m,\sigma) = \begin{cases} veljaven, & \sigma = podpis(S,m), \\ neveljaven, & \sigma \neq podpis(S,m). \end{cases}$$

5.1.1 Robustnost, varnost in napadalec

Definiran večstranski podpis ni robusten. To pomeni, da v primeru izpada enega od podpisnikov P_i , ki je del podskupine S, ta ne more ustvariti večstranskega podpisa. Podpis še vedno lahko ustvari $S \setminus \{P_i\}$. To dejstvo nam dovoli definicijo napadalca, ki ima zelo velik vpliv na celoten sistem, saj ne iščemo robustnosti.

Definicija 5.2 (Napadalec pri ASM). Napadalec v modelu večstranskih podpisov podskupine z odgovornostjo ima naslednje zmožnosti:

- Ima popoln nadzor nad vsemi komunikacijskmi kanali med člani skupine G.
 Lahko bere, spreminja in preprečuje dostavo vseh sporočil. Prav tako lahko v imenu kateregakoli podpisnika pošlje sporočilo.
- Kadarkoli lahko *pokvari* kateregakoli podpisnika. Ko je igralec pokvarjen, napadalec izve celotno stanje igralca, vključno z vsemi skrivnostmi.
- Nadzira lahko vhod algoritma za ustvarjanje ključev \mathcal{G} za vse podpisnike. Vsakemu lahko poda drugačno skupino G.
- Od kateregakoli nepokvarjenega igralca lahko kadarkoli zahteva podpis nekega sporočila skupaj s podskupino, ki jo določi napadalec. To je napad z izbranim sporočilom in podskupino.

Zaradi obširnih zmožnosti napadalca, ta lahko kadarkoli prepreči podpis sporočila. Naš cilj, kar se tiče varnosti, je, da preprečimo eksistencialno ponarejanje podpisa. Želimo torej, da napadalec ni zmožen ponarediti podpisa za katerololi sporočilo v imenu katerekoli podskupine.

Definicija 5.3 (Varnost pri ASM). Naj bo k varnostni parameter (ki si ga delijo vsi podpisniki). Naj bo c > 0 poljubna konstanta. Naj bo F napadalec, ki je omejen s polinomskim časom v parametru k. Naj bo p verjetnost, da F vrne trojico (σ, m, S) , za katero velja:

- σ je veljaven večstranski podpis sporočila m s strani skupine S.
- Obstaja nepokvarjen igralec P iz skupine S, od katerega F ni zahteval podpisa sporočila m s strani skupine S.

Shemi za večstranske podpise podskupine z odgovornostjo bomo rekli, da je *varna*, če velja

$$p < k^{-c}$$
.

Kot ponavadi pri digitalnih podpisih, tudi tu predpostavimo, da preverjalec podpisov lahko vedno pridobi prave javne ključe podpisnikov iz S. Zaradi močnega napadalca pri ASM, lahko tudi pridemo v situacijo, ko podpisnik P_1 ne ve, kdo je zares podpisnik P_2 . Tukaj predpostavimo, da preverjalec natančno ve, kdo je P_2 v resnici, in lahko pridobi ustrezen javni ključ.

5.1.2 Model slučajnega oraklja

Ko obravnavamo varnost kriptosistemov, ponavadi pogovarjamo o *standardnemu* modelu kriptografije. Ta model ima samo eno predpostavko: napadalec je omejen samo s časom in količino računske moči, ki mu je na voljo. Občasno se znajdemo v primeru, ko moramo za dokaz varnosti sprejeti dodatne predpostavke. V tem primeru se znajdemo v alternativnih modelih kriptografije.

Ko imamo opravka z zgoščevalnimi funkcijami, je pogosto potrebno sprejeti dodatne predpostavke, da lahko pokažemo varnost. Specifično, ko imamo opravka z zgoščevalno funkcijo $H:A\to B$ predpostavimo, da je bila ta funkcija izbrana naključno med vsemi funkcijami, ki slikajo A v B. To idealizirano verzijo zgoščevalne funkcije imenujemo **slučajni orakelj** (angl. $random\ oracle$).

Model slučajnega oraklja (angl. random oracle model) je model kriptografije, kjer poleg standardnih predpostavk, vsako uporabo zgoščevalne funkcije nadomestimo s slučajnim orakljem [1]. Predpostavimo, da imajo do oraklja dostop vsi vpleteni v kriptosistem, vključno z napadalcem.

Definicija 5.4 (Slučajni oraklelj pri ASM). Varnostna obravnava shem za večstranske podpise podskupine z odgovornostjo zahteva model slučajnega oraklja. Zato predpostavimo, da je k_2 še en varnostni parameter. Vsi člani skupine G in napadalec imajo dostop do slučajnega oraklja $H: \{0,1\}^* \to \{0,1\}^{k_2}$, ki je naključno izbrana funkcija med vsemi funkcijami, ki slikajo med $\{0,1\}^*$ in $\{0,1\}^{k_2}$.

5.2 Konstrukcija večstranskega Schnorrovega podpisa

Večstranska verzija temelji na Schnorrovem podpisu, predstavljenemu v poglavju 3. Ideja konstrukcije je, da začnemo z naivno verzijo, nato pa rešimo njene probleme, kar nas privede do formalne definicije v razdelku 5.3 in dokaza v razdelku 5.4.

5.2.1 Naivna verzija

Vsi podpisniki v skupini G poznajo skupne parametre p,q in g. Vsak podpisnik P_i si neodvisno in naključno izbere $s_i \in [0, \dots q-1]$ in izračuna

$$I_i = q^{s_i} \mod p$$
.

Tako vsak podpisnik ustvari svoj par ključev

$$pk_i = (p, q, g, I_i),$$

$$sk_i = s_i.$$

Poljubna podskupina $S = \{P_{id_1}, \dots, P_{id_l}\}$ skupine G podpiše sporočilo m s tremi krogi komunikacije:

1. Vsak podpisnik P_i iz podskupine S si izbere naključen element $r_i \in [0, q-1]$ in izračuna zavezo

$$X_i = q^{r_i} \mod p$$
.

Podpisniki potem pošljejo svoje zaveze izbranemu podpisniku D.

2. D izračuna skupno zavezo

$$\tilde{X} = (X_{id_1} \cdot X_{id_2} \cdot \dots \cdot X_{id_l}) \bmod p.$$

in jo pošlje vsem podpisnikom.

3. Vsak podpisnik s pomočjo slučajnega oraklja izračuna izziv

$$e = H(\tilde{X}||m||S)$$

in svoje individualne podpise

$$y_{id_i} = es_{id_i} + r_{id_i} \bmod q.$$

Individualni podpisi so potem spet poslani podpisniku D, ta pa sedaj lahko izračuna

$$\tilde{y} = (y_{id_1} + y_{id_2} + \dots + y_{id_l}) \bmod q$$

in vrne končen večstranski podpis

$$\sigma = (\tilde{X}, \tilde{y}).$$

Preverjanje veljavnosti podpisa je podobno kot pri navadnemu Schnorrovemu podpisu. Da preverimo podpis (\tilde{X}', \tilde{y}') sporočila m najprej izračunamo

$$e' = H(\tilde{X}'||m||S)$$

in preverimo, če velja

$$g^{\tilde{y}'} \stackrel{?}{\equiv} \tilde{X}' \cdot \left(\prod_{P_i \in S} I_i\right)^{e'} \pmod{p}.$$

5.2.2 Generiranje parametrov: Predpostavka DL

Micali et al. [6] so izpostavili in rešili več problemov z zgornjo naivno idejo. Prvi problem je generiranje skupnih parametrov javnega ključa p,q in g. Ker si podpisniki delijo samo varnostni parameter k in pa slučajnega oraklja H, morajo za parametre uporabiti nek dogovorjen način uporabe H. Napadalec bo tako poznal točen postopek ustvarjanja skupnih parametrov, kar mu potencialno da prednost. Izkaže se, da lahko s primerno uporabo H poskrbimo, da to ne predstavlja nevarnosti, in generiranje parametrov dodamo k predpostavki diskretnega logaritma za večstranske podpise.

Definicija 5.5 (Predpostavka diskretnega logaritma pri ASM). Predpostavka o varnosti je poleg standardnega PDL tu razširjena še z algoritmom za pridobivanje deljenih parametrov in jo lahko zapišemo:

- Parametri: Verjetnostni algoritem Gen(k) 1 teče v pričakovanem polinomskem času:
- Težavnost PDL: Naj bo A algoritem, ki za svoje parametre sprejme

Algoritem 1 Algoritem Gen(k) za generiranje praštevil.

```
q \leftarrow naključno izbran k-bitni niz p \leftarrow 2q + 1 while q ni praštevilo in p ni praštevilo do q \leftarrow naključno izbran k-bitni niz p \leftarrow 2q + 1 end while return p, q
```

- praštevili p in q, da velja p = 2q + 1 in q je dolg k-bitov,
- naključni element $g \in \mathbb{Z}_p^*$ reda q,
- naključni element I iz podgrupe \mathbb{Z}_{n}^{*} , ki jo generira g.

Naj p_k^A označuje verjetnost, da A vrne $s \in [0, q-1]$, tako da velja

$$I \equiv g^s \pmod{p}$$
.

Potem za vsak verjetnostni algoritem A, ki teče v polinomskem času, za vsako konstanto c>0 in za vsak dovolj velik k velja

$$p_k^A < k^{-c}$$
.

Če torej predpostavimo 5.5 (kar mora veljati za varnost), nas prvi problem ne skrbi več.

5.2.3 Napad na generiranje ključev: Dokazi brez razkritja znanja

Naslednja težava nastopi v obliki napada na generiranje ključev. Ker napadalec nadzoruje vso komunikacijo, si lahko privošči vstopiti v podpisovanje kot eden izmed podpisnikov P_L , in lahko zadnji generira svoj par ključev. Če si torej izbere naključen $s \in [0, q-1]$, lahko izračuna svoj javni ključ kot

$$I_L = \left(\prod_{i=1}^{L-1} I_i\right)^{-1} \cdot g^s \pmod{p}.$$

To mu omogoča, da se podpisuje v imenu celotne podskupine S.

Za rešitev tega problema potrebujemo nekaj novih kriptografskih orodij. Prvo izmed njih so **dokazi brez razkritja znanja** (angl. *zero-knowledge proofs*). Za intuicijo si najprej poglejmo primer.

Primer 5.6 (Jama Ali Babe [3]). V zgodbi o Jami Ali Babe nastopata Ana in Bojan. Živita ob Jami Ali Babe, ki je v obliki prstana. Pri vhodu sta na levo in desno vidni dve poti, ki se kasneje združita, vendar prehod preprečujejo vrata, ki jih lahko odpre samo skrivno geslo. Ana je ugotovila, kaj to geslo je, vendar ga ne želi povedati Bojanu, vseeno pa ga želi prepričati, da geslo pozna.

Da Ana Bojanu dokaže svoje znanje, si zamisli igro. Najprej bo ona odšla v jamo po eni izmed poti. Potem bo v jamo vstopil Bojan in povedal, če želi da se Ana vrne po levi ali desni poti. Če se bo Ana dovolj velikokrat vrnila po poti, ki jo je povedal Bojan (in nikoli po napačni), bo lahko z veliko verjetnostjo prepričan, da Ana res pozna geslo. Primer enega kroga protokola je prikazan na sliki 2.

Slika 2: Igra Ane in Bojana v jami Ali Babe.

Dokazi brez razkritja znanja so torej orodje, s katerim lahko pokažemo, da nekaj vemo, brez da bi izdali skrivnost. V osnovi so to interaktivni protokoli med dokazovalcem in preverjalcem. Dokazovalec želi preverjalca prepričati, da pozna skrivnost, brez da bi mu jo izdal. Taki protokoli sodijo med **interaktivne dokaze**, kar pomeni, da zadoščajo dvema lastnostima:

- **Polnost** (angl. *completeness*): Če trditev, ki se dokazuje, drži, potem bo preverjalec sprejel dokaz dokazovalca (če noben od njiju ne bo goljufal).
- **Trdnost** (angl. *soundness*): Če trditev, ki se dokazuje, ne drži, potem noben dokazovalec (tudi tak, ki goljufa) ne more predložiti dokaza, ki bi ga preverjalec sprejel, razen z zelo majhno verjetnostjo.

Poleg teh dveh lastnosti, mora dokaz brez razkritja znanja zadoščati še eni, o njej govori že samo ime:

• Brez razkritja znanja (angl. zero-knowledge): Če trditev, ki se dokazuje, drži, potem noben preverjalec (tudi tak, ki goljufa) ne bo iz dokaza izvedel ničesar več, kot samo to, da trditev drži.

Opomba 5.7. Dokazi brez razkritja znanja niso zares dokazi v matematičnem smislu. Vedno obstaja določena verjetnost, da lahko goljuvif dokazovalec prepriča iskrenega preverjalca o trditvi, ki ne drži.

SIGMA PROTOCOLS, PROOF OF KNOWLEDGE FIAT-SHAMIR??

Torej, da preprečimo napad na generiranje ključev, od vsakega podpisnika P_i zahtevamo, da poleg svojega javnega ključa I_i objavi tudi dokaz o znanju brez razkritja znanja za svoj zasebni ključ glede na javni ključ. Objaviti mora torej dokaz, da pozna diskretni logaritem I_i modulo g. Ta dokaz je neinteraktiven, saj obravnavmo model slučajnega oraklja in lahko uporabimo Fiat-Shamirjevo hevristiko.

Ker tovrstni dokazi brez preverjalca nimajo smisla, se na tej točki vredno vprašati, kdo bo preverjal veljavnost dokazov. Izkaže se, da je najbolj enostavno, da se dokaze doda v posamezne javne ključe. Tako pade breme preverjanja na tistega, ki bo preverjal podpis. Problematično je dejstvo, da taka sprememba podaljša javne ključe in privede do izgube učinkoitosti. Preverjanje veljavnosti podpisa bo sedaj poleg dveh modularnih potenciranj potrebovalo še dodatnih 2|S|, saj je potrebno preveriti vse dokaze javnih ključev. Posamezni preverjalec podpisov lahko sicer dodatno delo opravi le enkrat za vsako skupino, če natančno beleži rezulate preverjanja dokazov.

5.2.4 Učinkovitost podpisovanja: Merklova drevesa

Za dokaz varnosti je potrebno, da lahko simulator v polinomskem času za vsakega pokvarjenega igralca P_j pridobi diskretni logaritem I_j iz predloženega dokaza o znanju brez razkritja znanja. Izkaže pa se, da če P_j dokaz izračuna s q klici slučajnjega oraklja, potem simulator uspešno pridobi diskretni logaritem z verjetnostjo največ 1/q. Torej, če je k pokvarjenih podpisnikov, bo simulator uspešen z verjetnostjo največ $1/q^k$. Z drugimi besedami, če želimo polinomski simulator, je igralcev lahko največ logaritemsko mnogo.

KAJ POMENI LOGARITEMSKO MNOGO??

Ta problem lahko rešimo tako, da vsak podpisnik P_i najprej izračuna svoj par ključev (s_i, I_i) in tudi zavezo X_i . Potem si izmenjajo I_i in X_i . Vsak podpisnik lahko sedaj izračuna skupni izziv

$$e = H(X_1||I_1||X_2||I_2||\dots||X_L||I_L).$$

Podpisniki za dokaz znanja sedaj uporabijo Schnorrov podpis e s svojim parom ključev. A TO PRAVILNO RAZUMEM?? To pomeni, da za generiranje dokazov k pokvarjenih igralcev sedaj rabi le kq klicev oraklja, torej je polinomski simulator uspešen z verjetnostjo 1/kq. To omogoča, da je podpisnikov več kot logaritemsko mnogo. Pojavi pa se drugačen problem z učinkovitostjo, saj mora sedaj vsak podpisnik v svojem javnem ključu hraniti še Schnorrov podpis sporočila e in pa tudi vse javne ključe soigralcev in njihove zaveze. Brez teh podatkov namreč dokaz znanja ni preverljiv. To pomeni, da je za katerokoli podskupino S velikost ključa proporcionalna velikosti celotne skupine G. Poleg tega mora sedaj preverjalec preveriti, da se vsi vektorji javnih ključev ujemajo. V primerjavi z osnovno naivno idejo, kjer je preverjalec potreboval le |S| navadnih Schnorrovih javnih ključev, je v tej izvedbi velikost javnega ključa nedopusno velika.

Da nazaj pridobimo učinkovit podpis, se lahko zanesemo na slučajnega oraklja in kriptografsko orodje, imenovano **Merklovo drevo** (angl. *Merkle tree*). V osnovi je to *binarno drevo*, torej drevo, kjer ima vsako vozlišče največ dva otroka. Ideja je, da v liste shranimo katerekoli podatke. Drevo potem gradimo navzgor tako, da v vsako vozlišče shranimo zgostitev stika zgostitev levega in desnega otroka. Tako nadaljujemo do korena. Pomembno je, da je za pridobivanje zgostitev uporabljena zgoščevalna funkcija, ki je skoraj brez trčenj ali pa slučajni orakelj. Osnovna struktura je prikazana na sliki 3.

Pomembno je opaziti, da če zgoščevalna funkcija ustvarja zgostitve, dolge k bitov, bodo toliko dolgi vsi podatki, ki jih hranijo vsa vozlišča drevesa. Za Merklova drevesa je ključno, da je v primeru varne zgoščevalne funkcije računsko zelo težko spremeniti katerokoli vrednost v drevesu, brez da bi se spremenila vrednost v korenu. Enako velja za spremembe vhodnih podatkov. Merklova drevesa nam torej omogočajo, da se zavežemo L vrednostim x_1, x_2, \ldots, x_L tako, da enostavno vrnemo en sam k-bitni niz. To storimo tako, da shranimo x_1, x_2, \ldots, x_L v liste drevesa in izračunamo koren. Vrednostim se zavežemo tako, da preverjalcu damo vrednost korena. Ko mu kasneje želimo razkriti vrednosti, mu jih enostavno povemo, on pa lahko z izračunom drevesa preveri, da so vrednosti prave. Povzeto po [4].

Trditev 5.8 (Overjevalna pot [4]). Naj bo A zavezovalec, ki se želi zavezati vrednostim x_1, x_2, \ldots, x_L preverjalcu B. Če se A zaveže tako, da B pove vrednost korena

Slika 3: Primer Merklovega drevesa s štirimi listi. Imamo torej 4 vhodne podatke x_1, x_2, \ldots, x_4 , na vsakem nivoju drevesa se izračuna stik in zgostitev. Ustvarjeno s pomočjo [5].

Merklovega drevesa, izračunanega na podlagi vrednosti $x_1, x_2, ..., x_L$, potem lahko dokaže zavezo eni vrednosti x_i ($1 \le i \le L$) tako, da preverjalcu B pove $1 + \lceil \log L \rceil$ vrednosti: x_i in pa **overjevalno pot**, torej vrednosti, shranjene v sestrskih vozliščih vseh vozlišč na poti med vključno x_i in korenom (brez korena, ki ga B že pozna).

Dokaz. Trditev lahko dokažemo z indukcijo na globino Merklovega drevesa d. Naj bo x vrednost, za katero želimo dokazati zavezo in w_1, w_2, \ldots, w_d overjevalna pot.

- d=2: Če je globina drevesa 2, želimo pokazati, da moramo poleg x povemo samo eno dodatno vrednost. Ta vrednost je torej zgostitev x-ove sosednje vrednosti y. Ko B izračuna H(x||y), je to že koren, in lahko vrednost primerja z zabeleženo.
- $n \to n+1$: Predpostavimo torej, da za globino drevesa n lahko preverimo zavezo s podanimi 1+d vrednostmi. To nam omogoča izračuna vrednosti v enem od korenovih otrok v drevesu globine n+1, po indukcijski predpostavki. Če poznamo še vrednost drugega otroka, je možen izračun korena.

Merklova drevesa lahko sedaj uporabimo, da naredimo večstranski podpis bolj učinkovit. Podpisniki še vedno predložijo dokaze znanja prek Schnorrovega podpisa, po izmenjavi dokazov pa vsak izračuna Merklovo drevo z listi I_1, I_2, \ldots, I_L . To drevo bo torej globine log L. Za svoj javni ključ potem vsak podpisnik P_i nastavi I_i in overjevalno pot za I_i . Ker je ponavadi I_i veliko daljši od dolžine zgostitev, in ker je v overjevalni poti le log L zgostitev, se ključ ne podaljša veliko (npr. če je I_i dolg 2000 bitov in so zgostitve 200-bitne, bo 1000 podpisnikov ustvarilo ključe, dolge manj od 4000 bitov, torej manj kot dvakrat daljše).

Ko sedaj preverjalec preverja podpis sporočila m s strani S, lahko za vsakega podpisnika izračuna vrednost korena Merklovega drevesa in preveri, da se vse ujemajo. Obstoj enega nepokvarjenega podpisnika tako prisili vse pokvarjene, da uporabljajo prave ključe (ali pa najdejo trk v zgoščevalni funkciji, kar je izjemno težko). S to spremembo smo tako uspešno ohranili podpise varne in časovno učinkovite.

5.3 Definicija večstranskega Schnorrovega podpisa

Sedaj smo pripravili vse potrebno, da podamo natančno definicijo končne sheme.

5.3.1 Skupni parametri

Vsi podpisniki se strinjajo o skupnem varnostnem parametru k in sekundarnem varnostnem parametru k', ki je deterministično izračunan iz k (ponavadi kar k' = 100). Za velikost L skupine podpisnikov G predpostavimo, da je polinomska v k.

Shemo obravnavamo v modelu slučajnega oraklja, tako da imajo vsi podpisniki dostop do slučajnega oraklja H. Na dogovorjen način ga uporabijo, da ustvarijo pet neodvisnih orakljev

$$H_1, H_2 : \{0, 1\}^* \to \{0, 1\},$$

 $H_3, H_5 : \{0, 1\}^* \to \{0, 1\}^{k'},$
 $H_4 : \{0, 1\}^* \to \{0, 1\}^{2k'}.$

Prav tako predpostavimo, da imajo vsi podpisniki dostop do algoritma Gen(k) 1.

Za lažjo obravnavo si izberemo še enega izmed podpisnikov, in ga označimo z D. Ta podpisnik bo vrnil končni podpis, ne ve pa nobenih dodatnih skrivnosti. D lahko tudi predstavlja vse podpisnike, a je opis sheme malce lažji, če si izberemo enega.

5.3.2 Generiranje ključev

Vsi podpisniki morajo sami generirati parametre p,q in g. Za prva dva uporabijo algoritem Gen(k) 1. Za izvor naključnosti uporabijo zaporedje $H_1(2^k), H_1(2^k + 1), \ldots$ Za generiranje elementa g reda q uporabijo izvor naključnosti $H_2(2^k), H_2(2^k + 1), \ldots$

Ko ima vsak podpisnik P_i ($1 \le i \le L$) na voljo skupne parametre, si izbere svoj zasebni ključ $s_i \in [0, q-1]$ in izračuna

$$I_i = g^{s_i} \bmod p$$
.

Do tu je postopek enak, kot pri naivni verziji. Da preprečimo napad na generiranje ključev, mora vsak podpisnik na tem mestu izbrati naključen $r_i \in [0,q-1]$ in izračunati zavezo

$$X_i = g^{r_i} \bmod p$$
.

Potem si podpisniki med seboj izmenjajo vrednosti (X_i, I_i) . Vsak na tem mestu lahko izračuna

$$e = H_3(X_1||I_1||X_2||I_2||...||X_L||I_L),$$

 $y_i = es_i + r_i,$

in pošlje y_i vsem ostalim podpisnikom. Vsak podpisnik je na tem mestu prejel Schnorrove podpise (in s tem dokaze znanja brez razkritja znanja) zasebnih ključev vse ostalih podpisnikov. Na tem mestu mora torej P_i preveriti veljavnost vseh podpisov (X_j, y_j) vseh ostalih podpisnikov P_j $(1 \le j \le L)$. To stori s standardnim izračunom za preverjanje Schnorrovega podpisa (3.1):

$$g^{y_j} \stackrel{?}{\equiv} X_j \cdot I_j^e \pmod{p}.$$

Ko podpisnik P_i ugotovi, da so vsi podpisi veljavni, lahko izračuna Merklovo drevo, ki ima v listih po vrsti razporejene I_1, I_2, \ldots, I_L in za svojo zgoščevalno funkcijo uporablja H_4 . Ko je drevo izračunano, P_i prebere overjevalno pot pot $_i$ svojega ključa I_i in vrne javni ključ

$$pk_i = (p, q, g, I_i, pot_i).$$

5.3.3 Podpisovanje

Naj bo $S = \{P_{id_1}, P_{id_2}, \dots, P_{id_l}\}$ podksupina velikosti l skupine G, ki želi večstransko podpisati sporočilo m. To lahko storijo s tremi krogi komunikacije:

1. Vsak podpisnik $P_{id_j}(1 \leq j \leq l)$ si izbere naključno število $r_j \in [0, q-1]$ in izračuna zavezo

$$X_j = g^{r_j} \bmod p$$
.

Zavezo X_j nato pošlje podpisniku D.

2. D izračuna skupno zavezo

$$\tilde{X} = (X_1 \cdot X_2 \cdot \dots \cdot X_l) \bmod p$$

in jo pošlje vsem podpisnikom $P_{id_j} (1 \le j \le l)$.

3. Vsak podpisnik $P_{id_j} (1 \le j \le l)$ izračuna

$$e = H_5(\tilde{X}||m||S),$$

$$y_j = es_j + r_j$$

in pošlje y_i podpisniku D.

Na tem mestu ima D vse kar rabi, da dokonča podpis. Najprej izračuna

$$\tilde{y} = (y_1 + y_2 + \dots + y_l) \bmod q$$

in nato vrne končni podpis

$$\sigma = (\tilde{X}, \tilde{y}).$$

5.3.4 Preverjanje

Preverjanje je podobno naivni verziji, le da je potrebno dodatno preveriti ustreznost Merklovih korenov. Če torej preverjalec želi preveriti veljavnost podpisa $\sigma = (\tilde{X}, \tilde{y})$ sporočila m, moramo predpostaviti, da lahko dostopa do vseh javnih ključev $\{pk_{id_1}, pk_{id_2}, \dots, pk_{id_l}\}$ vseh podpisnikov $S = \{P_{id_1}, P_{id_2}, \dots, P_{id_l}\}$.

Najprej mora preverjalec preveriti, da se vseh l izvodov skupnih parametrov p,q in g ujema. Da dokončno potrdi veljavnost in ustreznost javnih ključev, za vsakega podpisnika $P_{id_j} (1 \leq j \leq l)$ s pomočjo I_{id_j} in pot $_{id_j}$ izračuna vrednost V_{id_j} v korenu Merklovega drevesa, kot prikazano v trditvi 5.8. Ko izračuna vse vrednosti V_{id_j} , mora preveriti, da so vse enake.

Ko se preverjalec prepriča o veljavnosti ključev, postopa podobno kot pri naivni verziji. Najprej mora izračunati

$$\tilde{I}_S = (I_{id_1} \cdot I_{id_2} \cdot \dots \cdot I_{id_l}) \bmod p.$$

Če si dosledno beleži izračune, lahko preverjalec ta del preverjanja podpisa opravi le enkrat za vsako skupino podpisnikov S.

Potem mora preverjalec izračunati izziv s pomočjo slučajnega oraklja

$$e = H_5(\tilde{X}||m||S)$$

in preveriti, če velja

$$g^{\tilde{y}} \stackrel{?}{\equiv} \tilde{X} \tilde{I}_S^e \pmod{p}. \tag{5.1}$$

Če je torej podpis $\sigma=(\tilde{X},\tilde{y})$ veljaven podpis sporočila m,lahko levo stran enačbe (5.1) zapišemo kot

$$g^{\tilde{y}} \bmod p = g^{(y_1 + y_2 + \dots + y_l) \bmod q} \bmod p$$

$$\stackrel{3.1}{=} g^{y_1 + y_2 + \dots + y_l} \bmod p$$

$$= g^{es_1 + r_1 + es_2 + r_2 + \dots + es_l + r_l} \bmod p$$

$$= g^{r_1 + r_2 + \dots r_l} g^{e(s_1 + s_2 + \dots s_l)} \bmod p,$$

desno pa po trditvi 3.2

$$\tilde{X}\tilde{I}_{S}^{e} \bmod p = ((X_{1} \cdot X_{2} \cdot \cdots \cdot X_{l}) \bmod p)((I_{id_{1}} \cdot I_{id_{2}} \cdot \cdots \cdot I_{id_{l}}) \bmod p)^{e} \bmod p
= ((g^{r_{1}} \bmod p \cdot g^{r_{2}} \bmod p \cdot \cdots \cdot g^{r_{l}} \bmod p) \bmod p) \cdot
\cdot ((g^{s_{1}} \bmod p \cdot g^{s_{2}} \bmod p \cdot \cdots \cdot g^{s_{l}} \bmod p) \bmod p)^{e} \bmod p
\stackrel{3.2}{=} (g^{r_{1}} \cdot g^{r_{2}} \cdot \cdots \cdot g^{r_{l}}) \bmod p)((g^{s_{1}} \cdot g^{s_{2}} \cdot \cdots \cdot g^{s_{l}}) \bmod p)^{e} \bmod p
\stackrel{3.2}{=} (g^{r_{1}} \cdot g^{r_{2}} \cdot \cdots \cdot g^{r_{l}})(g^{s_{1}} \cdot g^{s_{2}} \cdot \cdots \cdot g^{s_{l}})^{e} \bmod p
= g^{r_{1} + r_{2} + \cdots r_{l}} g^{e(s_{1} + s_{2} + \cdots s_{l})} \bmod p.$$

Ker se leva in desna stran ujemata, enačba (5.1) pravilno preveri pravilnost več-stranskega Schnorrovega podpisa.

5.4 Varnost večstranskega Schnorrovega podpisa

6 Večstranski podpisi v splošnem

Literatura

- [1] D. Boneh in V. Shoup, A graduate course in applied cryptography, Stanford University, Stanford, 2023.
- [2] C. P. Schnorr, Efficient identification and signatures for smart cards, v: Advances in Cryptology CRYPTO' 89 Proceedings (ur. G. Brassard), Springer New York, New York, NY, 1990, str. 239–252.
- [3] J.-J. Quisquater in dr. *How to explain zero-knowledge protocols to your children*, v: Advances in Cryptology CRYPTO' 89 Proceedings (ur. G. Brassard), Springer New York, New York, NY, 1990, str. 628–631.
- [4] S. Micali, Computationally sound proofs, SIAM Journal on Computing 30(4) (2000) 1253-1298, DOI: 10.1137/S0097539795284959, eprint: https://doi.org/10.1137/S0097539795284959, dostopno na https://doi.org/10.1137/S0097539795284959.
- [5] Nikhil, P. Mortensen in Jesse, Specifying the depth of a binary tree on the side, [ogled 25.10.2024], dostopno na https://tex.stackexchange.com/questions/176513/specifying-the-depth-of-a-binary-tree-on-the-side.
- [6] S. Micali, K. Ohta in L. Reyzin, Accountable-subgroup multisignatures, v: Proceedings of the 8th ACM conference on Computer and Communications Security (ur. P. Samarati), ACM, Philadelphia, PA, USA, 2001, str. 245–254, DOI: 10.1145/501983.502017, dostopno na https://doi.org/10.1145/501983.502017.
- [7] D. R. Stinson in M. B. Paterson, *Cryptography: theory and practice*, Textbooks in Mathematics, CRC Press, 2018.