ICLR 2023 (notable top 5%)

IMAGE AS SET OF POINTS

Xu Ma, Yuqian Zhou, Huan Wang, Can Qin, Bin Sun, Chang Liu, Yun Fu

Efficient Learning Lab@POSTECH
Junwon Seo

Prevailing Methods

Convolutional Neural Networks (ConvNets)

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

- Image as a collection of arranged pixels in a rectangle form
- Benefiting from locality and translation equivariance

Prevailing Methods

Vision Transformer(ViT)

- Image as a sequence of patches
- Self-attention operation

Overview

- 1. View image as a set of data points.
- 2. Group all points into clusters
- 3. Aggregate the points into a center
- 4. Dispatch the center point to all points adaptively

Expectations

- Generalization ability
 - In different domain, such as point clouds, RGBD images

- Interpretability
 - By visualizing the clustering in each layer, explicitly understand the learning

Given an input image $I \in \mathbb{R}^{3 \times w \times h}$ 2D coordinates of each Pixel: $I_{i,j}$ Coordinate is presented as $[\frac{i}{w} - 0.5, \frac{j}{h} - 0.5]$

Collection of points $P \in \mathbb{R}^{5 \times n}$

(where $n = w \times h$)

Each point contains color (r,g,b) and position (i,j)

- All neighbors are concatenated along the channel dimension.
- FC layer is used to lower the dimensional number and fuse the information.

- Following the design of ConvNets and pyramid ViTs.
- The pooling operation is used in implementation.
- Avoid heavy indices search work

Context Cluster Box

-Context Clustering-

1. Linearly Project $P \rightarrow P_s$ for similarity computation

$$(P \in \mathbb{R}^{d \times n}, P_s \in \mathbb{R}^{d' \times n})$$

- 2. Evenly propose c centers in space
 - Center feature is computed by averaging its k nearest points¹
- 3. Calculate the pair-wise cosine similarity matrix $S \in \mathbb{R}^{c \times n}$
 - Between P_s and the resulting set of center points
 - Each point contains both feature and position information
 - Implicitly highlight the points' distances(locality) and feature similarity
 - Some clusters may have zero points in extreme cases

-Feature Aggregating-

- Assuming a cluster contains m points (a subset in P)
 - Similarity points and the cluster $s \in \mathbb{R}^m$ (a subset in S)
 - Map the points to a value space to get $P_v \in \mathbb{R}^{m \times d'}$ (Linearly Projected)
 - Projected Center v_c , Projected point v_i
- Aggregated feature $g \in \mathbb{R}^{d'}$ is given by

$$g = \frac{1}{C} \left(v_c + \sum_{i=1}^m \text{sig} (\alpha s_i + \beta) * v_i \right), \quad \text{s.t., } C = 1 + \sum_{i=1}^m \text{sig} (\alpha s_i + \beta).$$

- α and β are learnable scalars to scale and shift similarity
- Sigmoid rescale the similarity to (0,1) (achieve much better results)

-Feature Aggregating-

- Assuming a cluster contains m points (a subset in P)
 - Similarity points and the cluster $s \in \mathbb{R}^m$ (a subset in S)
 - Map the points to a value space to get $P_v \in \mathbb{R}^{m \times d'}$ (Linearly Projected)
 - Projected Center v_c , Projected point v_i
- Aggregated feature $g \in \mathbb{R}^{d'}$ is given by

$$g = \frac{1}{C} \left(v_c + \sum_{i=1}^m \text{sig} (\alpha s_i + \beta) * v_i \right), \quad \text{s.t., } C = 1 + \sum_{i=1}^m \text{sig} (\alpha s_i + \beta).$$

- v_c emphasize the locality
- 1 is added for numerical stability (if zero, not optimized (1e⁻⁵ also doesn't help))

-Feature Dispatching-

• Aggregated feature g is adaptively dispatched to each point in a cluster

$$p'_i = p_i + FC(sig(\alpha s_i + \beta) * g)$$

Skip connection

- Fully-connected(FC) Layer is for matching the feature dimension
 - d' -> d (original dimension)
- By dispatching points, the points can communicate with one another and shares features from all points in the cluster

Results - Classification (ImageNet – 1K)

	Method	Param.	GFLOPs	Top-1	Throughputs (images/s)
MLP	ResMLP-12 (Touvron et al., 2022)	15.0	3.0	76.6	511.4
	ResMLP-24 (Touvron et al., 2022)	30.0	6.0	79.4	509.7
	ResMLP-36 (Touvron et al., 2022)	45.0	8.9	79.7	452.9
	MLP-Mixer-B/16 (Tolstikhin et al., 2021)	59.0	12.7	76.4	400.8
	MLP-Mixer-L/16 (Tolstikhin et al., 2021)	207.0	44.8	71.8	125.2
	gMLP-Ti (Liu et al., 2021a)	6.0	1.4	72.3	511.6
	♣ gMLP-S (Liu et al., 2021a)		4.5	79.6	509.4
Attention	♦ ViT-B/16 (Dosovitskiy et al., 2020)	86.0	55.5	77.9	292.0
	 ViT-L/16 (Dosovitskiy et al., 2020) 	307	190.7	76.5	92.8
	PVT-Tiny (Wang et al., 2021)	13.2	1.9	75.1	-
	◆ PVT-Small (Wang et al., 2021)	24.5	3.8	79.8	-
	◆ T2T-ViT-7 (Yuan et al., 2021a)	4.3	1.1	71.7	-
4	◆ DeiT-Tiny/16 (Touvron et al., 2021)	5.7	1.3	72.2	523.8
	◆ DeiT-Small/16 (Touvron et al., 2021)	22.1	4.6	79.8	521.3
	◆ Swin-T (Liu et al., 2021b)	29	4.5	81.3	-
Convolution	• ResNet18 (He et al., 2016)	12	1.8	69.8	584.9
	ResNet50 (He et al., 2016)	26	4.1	79.8	524.8
	ConvMixer-512/16 (Trockman et al., 2022)	5.4	-	73.8	-
380	♠ ConvMixer-1024/12 (Trockman et al., 2022)	14.6	-	77.8	-
٥	ConvMixer-768/32 (Trockman et al., 2022)	21.1	-	80.16	142.9
	♥ Context-Cluster-Ti (ours)	5.3	1.0	71.8	518.4
Cluster	Context-Cluster-Ti‡ (ours)	5.3	1.0	71.7	510.8
	Context-Cluster-Small (ours)	14.0	2.6	77.5	513.0
	♥ Context-Cluster-Medium (ours)	27.9	5.5	81.0	325.2

- Comparable Performance
 - Even Better than baseline using a similar number of parameters and FLOPs.
- Obviously outperforms MLP
 - Not credited to MLP blocks
 - Contribute to the visual representation
- Cannot achieve SOTA
 - But proving the viability of a new feature extraction paradigm

Results - Classification (ImageNet – 1K)

) interest	 Context-Cluster-Ti (ours) Context-Cluster-Ti‡ (ours) 	5.3 5.3	1.0 1.0	71.8 71.7	518.4 510.8
วี	 Context-Cluster-Small (ours) Context-Cluster-Medium (ours) 	14.0 27.9	2.6 5.5	77.5 81.0	325.2

- ‡ denotes a different region partition
- Performance differences are negligible
 - Demonstrate the robustness of CoC to the local region

Results – Visualization

Figure 4: Visualization of activation map, class activation map, and clustering map for ViT-B/16, ResNet50, our CoC-M, and CoC-T without region partition, respectively. We plot the results of the last block in the four stages from left to right. For ViT-B/16, we select the [3rd, 6th, 9th, 12th] blocks, and show the cosine attention map for the cls-token. The clustering maps show that our Context Cluster is able to cluster similar contexts together, and tell what model learned visually.

- In the last stage, cluster goose as one object and background grass
- Can cluster similar context in very early stage.
- Most cluster emphasize the locality

Results – Point Cloud Classification

Table 3: Classification results on ScanObjectNN. All results are reported on the most challenging variant (PB_T50_RS).

Method	mAcc(%)	OA(%)
• SpiderCNN (Xu et al., 2018)	69.8	73.7
♠ DGCNN (Wang et al., 2019)	73.6	78.1
PointCNN (Li et al., 2018)	75.1	78.5
♠ GBNet (Qiu et al., 2021)	77.8	80.5
♦ PointBert (Yu et al., 2022d)	-	83.1
Point-MAE (Pang et al., 2022)	-	85.2
♦ Point-TnT (Berg et al., 2022)	81.0	83.5
♣ PointNet (Qi et al., 2017a)	63.4	68.2
♣ PointNet++ (Qi et al., 2017b)	75.4	77.9
♣ BGA-PN++ (Uy et al., 2019)	77.5	80.2
PointMLP (Ma et al., 2022)	83.9	85.4
PointMLP-elite (Ma et al., 2022)	81.8	83.8
PointMLP-CoC (ours)	84.4 _{↑0.5}	86.2 _{↑0.8}

- Introduce PointMLP¹ as a foundation for our model
- Generalizability is most important.

Results – Object detection and segmentation

Table 4: COCO object detection and instance segmentation results using Mask-RCNN ($1\times$).

Family	Backbone	Params	APbox	$\mathrm{AP_{50}^{box}}$	AP_{75}^{box}	AP ^{mask}	AP ₅₀ ^{mask}	AP ₇₅ ^{mask}
Conv.	AResNet-18	31.2M	34.0	54.0	36.7	31.2	51.0	32.7
Attention	♦ PVT-Tiny	32.9M	36.7	59.2	39.3	35.1	56.7	37.3
	♥ CoC-Small/4	33.6M	35.9	58.3	38.3	33.8	55.3	35.8
Cluster	♥ CoC-Small/25	33.6M	37.5	60.1	40.0	35.4	57.1	37.9
	♥ CoC-Small/49	33.6M	37.2	59.8	39.7	34.9	56.7	37.0

• Table 4 shows that promising generalizability to downstream tasks.

Conclusion

Introduction of a novel feature extraction paradigm for visual representation

 Image as a set of unorganized points and employ simplified clustering algorithms to extract features

Achieves comparable or even better results than ConvNets and ViT baselines on multiple tasks and domains