Di Wang

Bio

I am a Ph.D. candidate at Carnegie Mellon University working with Jan Hoffmann. My research focuses are programming languages, quantitative verification, and probabilistic programming; my broader interests include type theory, program synthesis, concurrency, and Bayesian inference. I built an effective toolkit for rigorous and automatic analysis of probabilistic programs (PLDI'18, MFPS'19, ICFP'20, PLDI'21), the first coroutine-based paradigm for sound programmable Bayesian inference (PLDI'21), the first sound and relatively complete worst-case input generation algorithm (POPL'19), and the first resource-aware synthesizer for recursive programs (PLDI'19, ICFP'20).

Education

Carnegie Mellon University

Pittsburgh, PA, USA

Aug 2017 – present

Ph.D. in Computer Science

GPA: 4.0/4.0

Advisor: Prof. Jan Hoffmann

Thesis: Static Analysis of Probabilistic Programs: An Algebraic Approach

Beijing, China

Bachelor of Science (with Honors) in Computer Science & Technology

sachelor of Science (with Honors) in Computer Science & Technolo

GPA: 3.83/4.0 (ranked 3rd out of ~200)

Advisor: Prof. Yingfei Xiong

Peking University

Thesis: Accelerating Program Analyses by Conditional Summarization with Datalog

Sep 2013 – Jun 2017

Research Experiences

Facebook Seattle, WA, USA

Research intern, supervised by Dr. Herman Venter

May 2020 – Aug 2020

Topics: Formal Verification of Rust Code, Side Channel Analysis of Blockchain Code

Massachusetts Institute of Technology

Boston, MA, USA

Research intern, supervised by Prof. Adam Chlipala

Sep 2016 – Jan 2017

Topics: Type System for Complexity Analysis, Complexity Preserved Compiler

University of Wisconsin-Madison

Madison, WI, USA

Research intern, supervised by Prof. Thomas Reps

Jun 2016 – Aug 2016

Topics:Probabilistic Reasoning about Side Channel Attacks, Expectation Invariant Analysis of Probabilistic Programs

Peking University Beijing, China

Research assistant, supervised by Prof. Lu Zhang and Prof. Yingfei Xiong

Sep 2015 – Jun 2017

Topics: Complete Library Summarization for Program Analyses, Pointer Analysis for Java

Publications

Refereed Conference Papers.....

[1] **Di Wang**, Jan Hoffmann, and Thomas Reps. Sound Probabilistic Inference via Guide Types. In *42nd Conference* on Programming Language Design and Implementation (PLDI'21), 2021.

- [2] **Di Wang**, Jan Hoffmann, and Thomas Reps. Central Moment Analysis for Cost Accumulators in Probabilistic Programs. In *42nd Conference on Programming Language Design and Implementation (PLDI'21*), 2021.
- [3] **Di Wang**, David M. Kahn, and Jan Hoffmann. Raising Expectations: Automating Expected Cost Analysis with Types. In *International Conference on Functional Programming (ICFP'20)*, 2020.
- [4] Tristan Knoth, **Di Wang**, Adam Reynolds, Jan Hoffmann, and Nadia Polikarpova. Liquid Resource Types. In *International Conference on Functional Programming (ICFP'20)*, 2020.
- [5] Tristan Knoth, **Di Wang**, Nadia Polikarpova, and Jan Hoffmann. Resource-Guided Program Synthesis. In *40th Conference on Programming Language Design and Implementation (PLDI'19*), 2019.
- [6] **Di Wang**, Jan Hoffmann, and Thomas Reps. A Denotational Semantics for Low-Level Probabilistic Programs with Nondeterminism. In *Mathematical Foundations of Programming Semantics XXXV (MFPS'19)*, 2019.
- [7] **Di Wang** and Jan Hoffmann. Type-Guided Worst-Case Input Generation. In 46th Symposium on Principles of Programming Languages (POPL'19), 2019.
- [8] **Di Wang**, Jan Hoffmann, and Thomas Reps. PMAF: An Algebraic Framework for Static Analysis of Probabilistic Programs. In *39th Conference on Programming Language Design and Implementation (PLDI'18)*, 2018.
- [9] Peng Wang, **Di Wang**, and Adam Chlipala. TiML: A Functional Language for Practical Complexity Analysis with Invariants. In *International Conference on Object-Oriented Programming, Systems, Languages, & Applications (OOPSLA'17)*, 2017.
- [10] Hao Tang, **Di Wang**, Yingfei Xiong, Lingming Zhang, Xiaoyin Wang, and Lu Zhang. Conditional Dyck-CFL Reachability Analysis for Complete and Efficient Library Summarization. In *26th European Symposium on Programming (ESOP'17)*, 2017.

Other Publications

- [11] Ankush Das, Di Wang, and Jan Hoffmann. Probabilistic Resource-Aware Session Types. Working paper, 2021.
- [12] **Di Wang**, Jan Hoffmann, and Thomas Reps. Expected-Cost Analysis for Probabilistic Programs and Semantics-Level Adaption of Optional Stopping Theorems. Working paper, 2021.

Teaching and Mentoring Experience

o Guest Lecturer – Foundations of Quantitative Program Analysis, Carnegie Mellon University	2019
 Teaching Assistant – Bug Catching: Automated Program Verification, Carnegie Mellon University Teaching Assistant – Programming Language Semantics, Carnegie Mellon University Teaching Assistant – Introduction to Computer Systems, Peking University 	2020 2019 2015
 Mentor – Vanshika Chowdhary, Programmable Gibbs sampling with linear types Mentor – Mohamed Lotfi, Synthesis of probabilistic programs that generate handwritten digits Mentor – Charles Yuan, Exact Bayesian inference with distribution transformers 	2021 2021 2019

Professional Activities

- Artifact Evaluation Committee Member POPL'19, POPL'20, CAV'20
- o External Reviewer ICALP'18, LICS'19, LICS'20, LICS'21, ESOP'20, ESOP'21, POPL'22

Scholarships and Awards

o China National Scholarship	2014, 2016
o Huawei Scholarship	2015
 Silver Medal (5th place) in the 39th Annual ACM-ICPC World Finals 	2015
 Gold Medal (1st place) in the 39th ACM-ICPC Asia Regionals Anshan site 	2014
o Gold Medal (9 th place) in the 38 th ACM-ICPC Asia Regionals Changchun site	2013

Talks

Conference Presentations.		
o Sound Probabilistic Inference via Guide Types, PLDI'21.	Jun 2021	
• Central Moment Analysis for Cost Accumulators in Probabilistic Programs, PLDI'21.	Jun 2021	
• Raising Expectations: Automating Expected Cost Analysis with Types, ICFP'20.	Aug 2020	
○ Liquid Resource Types, <i>ICFP'20</i> .	Aug 2020	
• A Denotational Semantics for Low-Level Probabilistic Programs with Nondeterminism, MFPS'19.	Jun 2019	
• Type-Guided Worst-Case Input Generation, POPL'19.	Jan 2019	
o PMAF: An Algebraic Framework for Static Analysis of Probabilistic Programs, <i>PLDI'18</i> .	Jun 2018	
Seminar Presentations.		
o Type-Based Resource-Guided Search, Peking University, Programming Language Seminar.	Oct 2020	
o Taint Analysis for Blockchain Code, <i>Facebook</i> , Novice Seminar.	Aug 2020	
 Automating Expected Cost Analysis with Types, Facebook, Novice Seminar. 	Jun 2020	

Projects

Static Tag Analysis of Rust Code

Research Intern at Facebook

May 2020 - Aug 2020

- Studied the formal semantics of Rust and the static analysis tool MIRAI.
- Proposed and implemented a static tag analysis for Rust; the analysis keeps track of inter-procedural information flow, and allows user to customize tag propagation behavior of primitive operations.
- o Applied the static tag analysis to analyze side-channel vulnerabilities of blockchain code.

SIMD Vectorization in In-Memory DBMSs for OLAP Applications

Optimizing Compilers for Modern Architectures, Carnegie Mellon University

Feb 2018 – May 2018

- o Proposed an optimization that uses vectorization in just-in-time query compilation.
- o Implemented two approaches that use LLVM to emit SIMD instructions to vectorize predicate evaluation in Peloton, an in-memory DBMS developed by Carnegie Mellon Database Group.
- Achieved a significant speedup (avg. 1.5×) on complex SQL queries.

Predicting the Efficiency of Exact Inference Methods in Bayesian Network

Graduate Artificial Intelligence, Carnegie Mellon University

April 2018 – May 2018

- o Reviewed exact inference methods for Bayesian networks from both the statistics and the programming languages community.
- Proposed and implemented a machine-learning-based algorithm that predicts which exact inference method would work best on a given Bayesian network.
- Achieved 72% prediction accuracy on a synthetic test set.