

Analisis de regresión con R

CNE/ISCIII

Estructura del curso

- 1. Correlación (cor)
- 2. Regresión lineal simple (lm)
- 3. Regresión múltiple
- 4. Regresión logística (glm)

Correlación

Asociación entre dos variables

IMC versus porcentaje de grasa corporal

Motivos para medir la asociación

En estudios epidemiologicos

Objetivos del estudio:

- · Etiología (determinar factores de riesgos involucrados en una enfermedad)
- · Intervención (impacto de una vacuna en la evolución de una epidemia)
- Predicción (diseñar pruebas diagnosticas para una enfermedad)

Diseño del estudio:

- Sesgo de confusión (asociación del café con el riesgo de cáncer de pulmón)
- · Sesgo de selección (selección de los controles asociada con la exposición)
- · Sesgo de medición (demencia asociada con el recuerdo de la exposición)

Coeficiente de correlación de Pearson (R)

Medida (simétrica e invariante por cambio de escala) de asociación lineal entre dos variables X e Y:

$$R = \frac{\sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}, \quad -1 \le R \le 1$$

Un ejemplo sencillo

[1] 0.1338842

```
starwars=read.csv("data/starwars.csv")
str(starwars)

## 'data.frame': 87 obs. of 3 variables:
## $ name : chr "Luke Skywalker" "C-3PO" "R2-D2" "Darth Vader" ...
## $ height: int 172 167 96 202 150 178 165 97 183 182 ...
## $ mass : num 77 75 32 136 49 120 75 32 84 77 ...

# Calculo de la correlación lineal entre peso y altura
cor(starwars$mass, starwars$height)

## [1] NA

cor(starwars$mass, starwars$height, use="pairwise.complete.obs")
```

```
plot(mass~height, data=starwars)
outlier=subset(starwars,mass>1000)
text(outlier$height,outlier$mass,outlier$name, pos=4, cex=1.5)
```



```
sin.jabba=subset(starwars, mass<1000)
cor(sin.jabba$mass, sin.jabba$height, use="pairwise.complete.obs")</pre>
```

[1] 0.7612612

plot(mass~height, data=sin.jabba)

Asociaciones en una base de datos

```
neonatos <- read.csv("data/neonatos.csv")
str(neonatos) #peso de neonatos según tiempo gestación, color, educación y habito tabaquico de la madre

## 'data.frame': 1092 obs. of 5 variables:
## $ color : logi FALSE FALSE FALSE FALSE TRUE ...
## $ educacion: int 0 2 2 2 5 6 7 7 7 8 ...
## $ fuma : logi TRUE FALSE TRUE FALSE TRUE FALSE ...
## $ gestacion: int 40 38 37 38 40 40 41 39 39 38 ...
## $ peso : int 2898 3977 3040 3523 3100 3670 3097 3040 3239 2955 ...
```

cor(neonatos)

```
## color educacion fuma gestacion peso
## color 1.0000000 -0.14504912 0.04957376 -0.17463028 -0.2566835
## educacion -0.14504912 1.00000000 -0.22140608 0.06556138 0.1249150
## fuma 0.04957376 -0.22140608 1.00000000 -0.12360134 -0.2202095
## gestacion -0.17463028 0.06556138 -0.12360134 1.00000000 0.5385007
## peso -0.25668349 0.12491498 -0.22020949 0.53850072 1.00000000
```


Regresión lineal simple

Controlar las variaciones

¿Porqué no nacemos todos con el mismo peso?

Controlar las variaciones

Efecto de la edad gestacional sobre el peso al nacer

El modelo

Asumiendo un efecto constante

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

donde el residuo ε tiene una **distribución normal** de **media cero** y desviación típica σ **constante**.

Interpretación

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

- · β_0 : valor promedio de Y cuando X = 0.
- \cdot β_1 : cambio promedio en Y cuando X aumenta de una unidad.
- · σ : variabilidad de Y no explicada por X.

Ejemplo: Efecto de la gestación sobre el peso al nacer

Peso(gramos) =
$$\beta_0 + \beta_1$$
Gestación(semanas) + ε

- β_0 : no se puede aqui interpretar!
- · β_1 : variación promedia del peso al aumentar la gestación de una semana.
- · σ : variabilidad del peso entre neonatos con la misma edad gestacional.

función 1m

```
simple = lm(peso~gestacion, data=neonatos) # 1m: linear model
summary(simple)
```

```
##
## Call:
## lm(formula = peso ~ gestacion, data = neonatos)
##
## Residuals:
## Min 1Q Median 3Q
                                        Max
## -1508.40 -302.41 -12.64 296.86 1580.35
##
## Coefficients:
##
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2941.381 294.642 -9.983 <2e-16 ***
## gestacion 158.744 7.524 21.099 <2e-16 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 454.1 on 1090 degrees of freedom
## Multiple R-squared: 0.29, Adjusted R-squared: 0.2893
## F-statistic: 445.2 on 1 and 1090 DF, p-value: < 2.2e-16
```

coef(simple) #ordenada en el origen y pendiente

```
## (Intercept) gestacion
## -2941.3815 158.7445
```

```
plot(peso~gestacion, data=neonatos)
abline(reg=simple,col="blue4") #recta de regresión
```


Chequeo de las asunciones

```
par(mfrow=c(2,2))
plot(simple)
```


Regresión lineal simple versus test de Student

```
tabaco = lm(peso~fuma, data=neonatos)
summary(tabaco)$coef
##
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3334.4928 18.20218 183.191961 0.000000e+00
## fumaTRUE -279.1052 37.44767 -7.453206 1.851559e-13
t.test(peso~fuma, data=neonatos, var.equal=TRUE) # se asume misma varianza en los dos grupos
##
   Two Sample t-test
##
## data: peso by fuma
## t = 7.4532, df = 1090, p-value = 1.852e-13
## alternative hypothesis: true difference in means between group FALSE and group TRUE is not equal to 0
## 95 percent confidence interval:
## 205.6275 352.5829
## sample estimates:
## mean in group FALSE mean in group TRUE
##
          3334.493
                          3055.388
```

Regresión múltiple

Regresión con más de un predictor

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k + \varepsilon$$

- · β_0 : valor promedio de Y cuando $X_1 = X_2 = \ldots = X_k = 0$.
- · β_j : cambio promedio en Y cuando X_j aumenta de una unidad... y los demás predictores permanecen constantes.
- · σ : variabilidad de Y no explicada por los predictores del modelo.

Ejemplo:

Peso =
$$\beta_0 + \beta_1$$
Gestación + β_2 Raza + ε

- · eta_1 : variación del peso al aumentar la gestación de una semana entre neonatos de una misma raza.
- · β_2 : diferencia de peso de neonatos de diferente raza y misma edad gestacional.
- · σ : variabilidad del peso entre neonatos de misma raza y misma edad gestacional.

Ajuste

Efecto crudo versus efecto ajustado

¡Interpretar!

Intervalos de confianza

función confint

summary(ajustado)\$coef

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2495.6582 296.848595 -8.407176 1.301190e-16
## gestacion 150.1083 7.496326 20.024244 3.417816e-76
## colorTRUE -183.5025 27.815521 -6.597125 6.528576e-11
```

confint(ajustado) #cálculo del intervalo de confianza de los coeficientes

```
## 2.5 % 97.5 %

## (Intercept) -3078.1182 -1913.1983

## gestacion 135.3994 164.8171

## colorTRUE -238.0805 -128.9244
```

Predicción

función predict

```
prediccion = predict(ajustado) #por defecto, predicción de Y para valores de X observados
head(cbind(neonatos, prediccion))
```

```
color educacion fuma gestacion peso prediccion
## 1 FALSE
                            40 2898
                                   3508.672
               0 TRUE
## 2 FALSE
               2 FALSE
                           38 3977 3208.455
## 3 FALSE
                         37 3040 3058.347
               2 TRUE
             2 FALSE 38 3523 3208.455
## 4 FALSE
                        40 3100 3508.672
             5 TRUE
## 5 FALSE
                         40 3670 3325.169
## 6 TRUE
             6 FALSE
```

```
# Predicción fuera de la muestra: peso medio de un neonato negro con 30 semanas de edad gestacional
nuevo = data.frame(gestacion=30, color= TRUE)
predict(ajustado, newdata = nuevo , interval="confidence")
```

```
## fit lwr upr
## 1 1824.087 1689.391 1958.783
```

No linealidad

El modelo de regresión lineal simple no se ajusta bien a los datos si el efecto de X no es constante.

El modelo de regresión múltiple es muy flexible y permite estimar efectos no lineales.

$$Y = \beta_0 + \beta_1 X + \beta_2 X^2 + ... + \beta_k X^k + \varepsilon$$
 (regresión polinomial / splines)
= $\beta_0 + \beta_1 (X \text{ medio}) + \beta_2 (X \text{ alto}) + \varepsilon$ (regresión politomica)

Indice de Masa Corporal en jovenes

Regresión spline

```
# Estimación del efecto de la gestación
fit.spline = lm(peso~ns(gestacion,3), data=neonatos) # require(splines)
rango=data.frame(gestacion=30:45)
pred.spline= predict(fit.spline, rango)

plot(peso~gestacion, data=neonatos); grid()
lines(rango$gestacion, pred.spline, col="blue3", lwd=2)
```


Regresión politomica

```
categoriza <-function(x) cut(x, c(0,10,13,20),
                           labels=c(".primaria",".segundaria",".superior"),
                           include.lowest=TRUE)
neonatos$educacion_cat=categoriza(neonatos$educacion)
table(neonatos$educacion cat)
##
    .primaria .segundaria .superior
##
          166
                      689
                                  237
summary( fit.politomica <- lm(peso~educacion_cat, data=neonatos))$coef # Estimación del efecto de la educación
##
                             Estimate Std. Error t value
                                                              Pr(>|t|)
## (Intercept)
                           3157.32530 41.46437 76.145497 0.000000e+00
## educacion cat.segundaria 96.08108 46.19006 2.080125 3.774751e-02
## educacion cat.superior
                            233.15571 54.06964 4.312138 1.763431e-05
```

```
rango=data.frame(educacion=seq(0,17,.01))
rango$educacion_cat = categoriza(rango$educacion)
pred.politomica= predict(fit.politomica, rango)

plot(peso~educacion, data=neonatos); grid()
lines(rango$educacion, pred.politomica, col="blue3", lwd=2)
```


Selección de modelo

Descomposición de la variabilidad y Test de ajuste

anova(simple)

summary(simple)\$r.squared # R^2 = VE / VT proporción de variabilidad explicada por el modelo

[1] 0.289983

```
## Analysis of Variance Table
##
## Model 1: peso ~ gestacion
## Model 2: peso ~ gestacion + fuma
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 1090 224747921
## 2 1089 217159026 1 7588895 38.056 9.674e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Evitando el sobre ajuste

Criterio de información de Akaike

AIC: Variabilidad residual penalizada por el número de predictores

$$AIC = n \log(VNE) + 2k + Constante$$

donde n es el tamaño muestral y k el número de predictores (n > k + 1).

```
for(k in 1:4) {
  fit=lm(peso~ ns(gestacion,k), data=neonatos)
  cat("AIC para spline con",k,"grados de libertad:",AIC(fit),"\n")
}
```

```
## AIC para spline con 1 grados de libertad: 16465.28
## AIC para spline con 2 grados de libertad: 16453.41
## AIC para spline con 3 grados de libertad: 16454.91
## AIC para spline con 4 grados de libertad: 16456.7
```

El modelo que minimiza el AIC es el más parsimonioso: optimiza compromiso entre bondad del ajuste y estabilidad del modelo.

Selección automatica (¡sólo para fines predictivos!)

```
summary( todo <- lm(peso~., data=neonatos) ) # modelo completo</pre>
##
## Call:
## lm(formula = peso ~ ., data = neonatos)
##
## Residuals:
                 1Q Median
       Min
                                  3Q
                                         Max
## -1452.35 -293.52 -0.63 287.07 1568.08
##
## Coefficients:
                         Estimate Std. Error t value Pr(>|t|)
                        -2220.957 332.187 -6.686 3.67e-11 ***
## (Intercept)
                          -172.630 27.669 -6.239 6.30e-10 ***
-5.257 15.146 -0.347 0.729
## colorTRUE
## educacion
                         -182.257 32.224 -5.656 1.98e-08 ***
## fumaTRUE
## gestacion
                           144.300 7.435 19.408 < 2e-16 ***
## educacion cat.segundaria 46.676 54.917 0.850 0.396
## educacion cat.superior 111.949 102.127 1.096 0.273
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 438.2 on 1085 degrees of freedom
## Multiple R-squared: 0.3419, Adjusted R-squared: 0.3383
## F-statistic: 93.95 on 6 and 1085 DF, p-value: < 2.2e-16
```

Selección automatica (función step)

```
mejor=step(todo, trace=0) # "mejor" modelo con fines de predicción
summary(mejor)
##
## Call:
## lm(formula = peso ~ color + educacion + fuma + gestacion, data = neonatos)
##
## Residuals:
       Min 10 Median 30
## -1456.38 -296.42 1.04 294.37 1570.48
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2365.604 305.399 -7.746 2.17e-14 ***
## colorTRUE -173.242 27.606 -6.276 5.02e-10 ***
## educacion 9.851 6.599 1.493 0.136
## fumaTRUE -181.613 32.201 -5.640 2.17e-08 ***
## gestacion 144.635 7.423 19.486 < 2e-16 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 438 on 1087 degrees of freedom
## Multiple R-squared: 0.3412, Adjusted R-squared: 0.3387
## F-statistic: 140.7 on 4 and 1087 DF, p-value: < 2.2e-16
```

Modificación del efecto

Interacción (*)

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_{12} X_1 \times X_2 = \begin{cases} \beta_0 + \beta_1 X_1 & \text{si } X_2 = 0\\ (\beta_0 + \beta_2) + (\beta_1 + \beta_{12}) X_1 & \text{si } X_2 = 1 \end{cases}$$

summary(lm(peso ~ color*educacion, data=neonatos))\$coef

```
## (Intercept) 3299.52876 131.49927 25.091612 5.380434e-110
## colorTRUE -614.78502 191.37962 -3.212385 1.354991e-03
## educacion 10.61017 10.22406 1.037765 2.996101e-01
## colorTRUE:educacion 28.31774 15.34100 1.845886 6.518022e-02
```

Interpretación: el peso del neonato "aumenta" en promedio de 10.6g por cada año de estudio de la madre si es blanca y de $10.6 + 28.3 \simeq 39$ g si la madre es negra.

Selección automatica de interacciones

interacciones=lm(peso~(.-educacion_cat)^2, data=neonatos) #todos los modelos con interacción
summary(step(interacciones, trace=0))\$coef #mejor modelo

```
##
                         Estimate Std. Error t value
                                                            Pr(>|t|)
## (Intercept)
                      2604.381140 1982.716064 1.3135422 1.892785e-01
## colorTRUE
                      -740.634023 169.735199 -4.3634675 1.402506e-05
## educacion
                      -374.277061 157.095582 -2.3824799 1.736825e-02
## fumaTRUE
                      -1461.741756 653.059835 -2.2382968 2.540430e-02
## gestacion
                        25.064585 50.427382 0.4970432 6.192595e-01
## colorTRUE:educacion
                      41.505578 13.304905 3.1195698 1.859015e-03
## colorTRUE:fumaTRUE
                     264.895025 67.404243 3.9299459 9.035207e-05
## educacion:gestacion 9.292652 3.994529 2.3263451 2.018395e-02
## fumaTRUE:gestacion
                      28.561911 16.509816 1.7299957 8.391594e-02
```

Regresión logística

Odds

Medida de ocurrencia de un evento o enfermedad

Odds =
$$\frac{P(Y=1)}{P(Y=0)}$$
, $P(Y=1) = \frac{\text{Odds}}{1 + \text{Odds}}$

neonatos40=subset(neonatos, gestacion == 40) # neonatos con una edad de gestación de 40 semanas neonatos40\$peg = (neonatos40\$peso <= 2800) # niños pequeños para su edad gestacional (PEG) table(neonatos40\$peg)

```
##
## FALSE TRUE
## 345 29
```

Odds =
$$\frac{P \text{ (PEG = 1)}}{P \text{ (PEG = 0)}} = \frac{29}{345}$$

Odds ratio (OR)

Medida de asociación para variables dicotomicas

Definición: Ratio entre el odds de enfermedad dada una exposición particular y el odds de dicha enfermedad en ausencia de esa exposición.

```
xtabs(~ fuma + peg, data=neonatos40)
```

```
## peg
## fuma FALSE TRUE
## FALSE 276 17
## TRUE 69 12
```

Efecto del hábito tabáquico de la madre sobre el riesgo de PEG:

$$OR = \frac{Odds \text{ de PEG en fumadoras}}{Odds \text{ de PEG en no fumadoras}} = \frac{12/69}{17/276} = 2.82$$

Interpretación: el riesgo de PEG en madres fumadoras es casi 3 veces mayor que en mujeres no fumadoras!

Modelo logistico

Controlando las variaciones del odds

$$log(Odds) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_k X_k$$

- $\exp(\beta_0)$: valor promedio del odds cuando X=0
- · $\exp(\beta_j)$: cambio relativo en el odds cuando X_j aumenta de una unidad y las demás variables permanecen constantes

Ejemplo: Odds de PEG en función del hábito tábaquico de la madre:

$$\log(\text{Odds}) = \beta_0 + \beta_1 \text{fumadora}$$

- $\exp(eta_0)$: Odds de PEG entre madres que no fuman
- $\exp(\beta_1)$: efecto (OR) del hábito tabáquico de la madre sobre el odds de PEG

función glm

```
(12/69)/(17/276) #Cálculo a mano del OR
## [1] 2.823529
or = glm(peg~fuma, data=neonatos40, family=binomial) # glm: generalized linear model
exp(cbind(coef(or),confint(or)))
##
                             2.5 %
                                       97.5 %
## (Intercept) 0.0615942 0.03631059 0.09730624
## fumaTRUE 2.8235294 1.26184096 6.15040233
ors = glm(peg~fuma*color, data=neonatos40, family=binomial)
exp(cbind(coef(ors), confint(ors)))
##
                                     2.5 %
                                                97.5 %
## (Intercept)
                  0.04225353 0.01658271 0.08747496
## fumaTRUE
                    6.10752611 1.98784810 19.77160353
## colorTRUE
                    1.94278582 0.71832538 5.77573672
## fumaTRUE:colorTRUE 0.20995353 0.03725610 1.04443963
```

Análisis con datos agregados

Supervivencia en la tragedia del Titanic

```
require(data.table)
temp=data.table(Titanic)
str(temp)

## Classes 'data.table' and 'data.frame': 32 obs. of 5 variables:
## $ Class : chr "1st" "2nd" "3rd" "Crew" ...
## $ Sex : chr "Male" "Male" "Male" ...
## $ Age : chr "Child" "Child" "Child" "Child" ...
## $ Survived: chr "No" "No" "No" ...
## $ N : num 0 0 35 0 0 0 17 0 118 154 ...
## - attr(*, ".internal.selfref") =<externalptr>
```

```
titanic=dcast(temp, Class+Sex+Age~Survived, value.var="N")
head(titanic)
##
     Class
              Sex
                   Age No Yes
## 1:
      1st Female Adult 4 140
## 2:
       1st Female Child 0 1
## 3: 1st Male Adult 118 57
## 4: 1st Male Child 0 5
## 5: 2nd Female Adult 13 80
## 6: 2nd Female Child 0 13
supervivencia = glm(cbind(Yes, No)~., data=titanic, family=binomial)
exp(cbind(coef(supervivencia), confint(supervivencia)))
##
                             2.5 %
                                      97.5 %
## (Intercept) 7.72017801 5.58826444 10.7961800
## Class2nd 0.36128255 0.24530635 0.5291859
## Class3rd 0.16901595 0.12032127 0.2358425
## ClassCrew 0.42414659 0.31152317 0.5774746
```

SexMale 0.08891625 0.06724914 0.1166490 ## AgeChild 2.89082630 1.79245896 4.6710188

Predicción del evento

Supervivencia en la tragedia del Titanic

Publicación de resultados

Tablas de resultados de la regresión

Paquete gtsummary

gtsummary::tbl_regression(supervivencia, exp=TRUE)

Characteristic	OR ¹	95% CI ¹	p-value
Class			
1st	_	_	
2nd	0.36	0.25, 0.53	<0.001
3rd	0.17	0.12, 0.24	<0.001
Crew	0.42	0.31, 0.58	<0.001
Sex			
Female	_	_	
Male	0.09	0.07, 0.12	<0.001
Age			
Adult	_	_	
Child	2.89	1.79, 4.67	<0.001
¹ OR = Odds Ratio, CI = Confidence Interval			