Consider a triangle with vertices

$$\mathbf{A} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}, \ \mathbf{B} = \begin{pmatrix} 0 \\ -5 \end{pmatrix}, \ \mathbf{C} = \begin{pmatrix} -1 \\ 3 \end{pmatrix} \tag{1}$$

1 Vectors

parameters	values	description	
m ₁	$\begin{pmatrix} -2 \\ -5 \end{pmatrix}$	AB	
m ₂	$\begin{pmatrix} -1\\8 \end{pmatrix}$	ВС	
m ₃	$\begin{pmatrix} 3 \\ -3 \end{pmatrix}$	CA	
A - B	5.38	length of AB	
B-C	8.06	length of BC	
C - A	4.24	length of CA	
$rank \begin{pmatrix} 1 & 1 & 1 \\ \mathbf{A} & \mathbf{B} & \mathbf{C} \end{pmatrix}$	3	non collinear	
n ₁	$\begin{pmatrix} -5\\2 \end{pmatrix}$	AB	
c_1	-10		
n ₂	$\binom{8}{1}$	ВС	
c_2	-5		
n ₃	$\begin{pmatrix} -3 \\ -3 \end{pmatrix}$	CA	
<i>c</i> ₃	-6		
Area	10.5	Area of Triangle	
∠A	113.19°	Angles	
∠B	28.92°		
∠C	37.874°		

TABLE 1: Vectors.

Fig. 1: triangle plotted using python

2 Median

parameters	value	description			
	(-0.5)				
D	$\begin{pmatrix} -1 \end{pmatrix}$	BC midpoint			
E	(0.5)	CA midpoint			
	(1.5)	C/1 imapoint			
F	$\begin{pmatrix} 1 \\ -2.5 \end{pmatrix}$	AB midpoint			
	(-2.5)				
m ₄	$\begin{pmatrix} -1 \\ -1 \end{pmatrix}$	4.0			
n ₄	(-1)	AD			
114	(2.5)				
C4	-2				
m ₅	$\begin{pmatrix} 0.5 \\ 1.5 \end{pmatrix}$				
	(6.5)	BE			
n ₅	$\begin{pmatrix} 6.5 \\ -0.5 \end{pmatrix}$				
c ₅	2.5				
m ₆	(2)				
1116	(-5.5)	CF			
n ₆	$\left(-5.5\right)$				
	(-2)				
<i>c</i> ₆	-0.5				
G	$\begin{pmatrix} 0.33 \\ 0.66 \end{pmatrix}$	Centroid			
RG.	(-0.66)				
$\frac{BG}{GE}$		5			
CG GF AG	2	Division ratio by G			
GD					
$\begin{bmatrix} \operatorname{rank} \begin{pmatrix} 1 & 1 & 1 \\ \mathbf{A} & \mathbf{D} & \mathbf{G} \end{pmatrix} \end{bmatrix}$					
	2	collinear			
$\operatorname{rank}\begin{pmatrix} 1 & 1 & 1 \\ G & D & G \end{pmatrix}$					
C F G					
TADIE A.M. 1'					

TABLE 2: Median.

Fig. 3: altitudes plotted using python

4 Perpendicular Bisector

description

value

 $\left(-2\right)$

parameters

3 ALTITUDE

			m ₁₀	$\begin{pmatrix} -2 \\ 1 \end{pmatrix}$	AD_1
parameters	value	description	n ₁₀	$\begin{pmatrix} -1 \\ -2 \end{pmatrix}$	ΛD ₁
· •	(-0.58)		c ₁₀	-7.5	
$\mathbf{D_1}$	(-0.32)	Foot of altitude from A	oot of altitude from A	(3)	
T	(3.5)	Foot of altitude from B	. m ₁₁	(3)	BE_1
$\mathbf{E_1}$	(-1.5)	root of altitude from b	n ₁₁	$\left(-3\right)$	DL ₁
TF.	(2.62)	Foot of altitude from C	***************************************	(3)	
$\mathbf{F_1}$	(1.55)	root of altitude from C	c_{11}	3	
m	(-2.58)		\mathbf{m}_{12}	$\left(-5\right)$	
\mathbf{m}_7	(-0.32)	4.5	11112	(-2)	CF_1
n	(-0.32)	AD_1	\mathbf{n}_{12}	(2)	
\mathbf{n}_7	(2.58)		112	(-5)	
c ₇	-0.64		c_{12}	-10.5	
m ₈	$\begin{pmatrix} 3.5 \\ 3.5 \end{pmatrix}$	D.C.	O	$\begin{pmatrix} 1.83 \\ 2.83 \end{pmatrix}$	Circumcentre
	(3.5)	BE_1	$ \mathbf{O} - \mathbf{A} $		
n_8	(-3.5)		$ \mathbf{O} - \mathbf{B} $		
c_8	17.5		$ \mathbf{O} - \mathbf{C} $	2.83	OA = OB = OC = R
	(3.62)		R		
\mathbf{m}_{9}	(-1.44)	CE	∠BOC	46.39°	.DOG 2.DAG
	(-1.44)	CF_1	∠BAC	23.19°	$\angle BOC = 2\angle BAC$
n ₉	(-3.62)		∠AOC	96.7°	100 2.100
<i>C</i> 9	-9.41		∠ABC	48.36°	$\angle AOC = 2\angle ABC$
п	(5.42)	0.4	∠AOB	216.86°	.10P 2.PG1
п	\mathbf{H} $\begin{pmatrix} 3.42 \\ 0.42 \end{pmatrix}$ Orthocentre	∠BCA	108.43°	$\angle AOB = 2\angle BCA$	

TABLE 3: Altitude.

TABLE 4: Perpendicular Bisector.

Fig. 4: perpendicular bisectors plotted using python

5 Angle Bisector

parameters	value	description		
m ₁₃	$\begin{pmatrix} 1.07 \\ -0.22 \end{pmatrix}$	AI		
n ₁₃	$\begin{pmatrix} 0.22 \\ -1.07 \end{pmatrix}$			
c_{13}	0.44			
m ₁₄	$\begin{pmatrix} 0.24 \\ 1.92 \end{pmatrix}$	BI		
n ₁₄	$\begin{pmatrix} -1.92 \\ 0.24 \end{pmatrix}$			
c_{14}	-1.23			
m ₁₅	$\begin{pmatrix} -0.831 \\ 1.69 \end{pmatrix}$	CI		
n ₁₅	$\begin{pmatrix} -1.69 \\ -0.83 \end{pmatrix}$			
c_{15}	-0.79			
I	$\begin{pmatrix} 0.60 \\ -0.28 \end{pmatrix}$	Incentre		
\mathbf{D}_3	$\begin{pmatrix} -0.57 \\ -0.43 \end{pmatrix}$	Point of contact with BC		
E_3	$\begin{pmatrix} 1.44 \\ 0.55 \end{pmatrix}$	Point of contact with AC		
$\mathbf{F_3}$	$\begin{pmatrix} 1.70 \\ -0.72 \end{pmatrix}$	Point of contact with AB		
$\ I-D_3\ $				
$\ I-E_3\ $		$ID_3 = IE_3 = IF_3 = r$		
$ I-F_3 $	0.43			
r				
∠BAI	56.500	(DAI (CAI		
∠CAI	56.59°	$\angle BAI = \angle CAI$		
∠ABI	14.460	(ADI (CDI		
∠CBI	14.46°	$\angle ABI = \angle CBI$		
∠ACI	10.020	$\angle ACI = \angle BCI$		
∠BCI	18.93°			

TABLE 5: Angle Bisectors.

Fig. 5: Angle bisectors plotted using python