Amendment to the Claims:

This listing of claims will replace all prior version and listings of claims in the application:

Listing of Claims:

1. (Currently amended) A method of processing a workpiece, the method comprising the steps of:

applying a liquid adhesive to a work carrier,

wherein the work carrier comprises a porous material including a plurality of pores at least a portion of which are interconnected;

fastening a workpiece to be processed to a work carrier by means of a solid that is applied in liquefied form,

wherein the workpiece is in intimate contact with the solid,
wherein the work carrier comprises a porous material including a
plurality of pores at least a portion of which are interconnected, and
applying a vacuum pressure to the work carrier.

wherein the plurality of pores accommodate a portion of the liquefied solid upon application of <u>the</u> vacuum pressure to the work carrier; placing the workpiece in intimate contact with the liquified adhesive;

hardening the liquefied solid adhesive while maintaining the vacuum pressure to form a solid adhesive and to secure the workpiece to the work carrier;

processing the workpiece while holding the workpiece on the work carrier; and

applying a solvent through the plurality of pores to dissolve the solid adhesive and to release the workpiece from the work carrier.

2. (Previously presented) The method as claimed in claim 1, wherein the work carrier comprises a gas-permeable work carrier.

- 3. (Previously presented) The method as claimed in claim 1, wherein the solid functions to separate the workpiece and the work carrier.
 - 4. (Cancelled)
- 5. (Previously presented) The method as claimed in claim 1, wherein the porous material comprises a ceramic, a glass, a glass ceramic, a metal, a sintered metal, a metal ceramic or a sintered material.
- 6. (Previously presented) The method as claimed in claim 1, wherein processing the workpiece comprises thinning the workpiece on the work carrier.
- 7. (Currently amended) The method as claimed in claim 1, wherein the solid liquified adhesive comprises a material selected from a group consisting of: wax, adhesive an epoxy resin, a plastic material, or adhesive on a double-sided adhesive tape.
- 8. (Previously presented) The method as claimed in claim 1, wherein the workpiece contains a semiconductor material.
- 9. (Currently amended) The method as claimed in claim 1, wherein the solid liquid adhesive fills at least a portion of an intermediate space between the workpiece and the work carrier.
- 10. (Currently amended) A work carrier for processing a workpiece, said work carrier comprising a porous material including a plurality of pores at least a portion of which are interconnected, wherein the plurality of pores are configured to accommodate a portion of a liquefied solid adhesive upon application of vacuum pressure to the work carrier, the liquefied solid adhesive configured with a workpiece in intimate contact therewith, and to accommodate the solid liquefied adhesive upon hardening the to a solid adhesive, and to provide for flow of a solvent therethrough to dissolve the hardened solid adhesive.

- 11. (Previously presented) The work carrier as claimed in claim 10, wherein the workpiece comprises a semiconductor wafer, and wherein the diameter of the work carrier is equal to the diameter of the semiconductor wafer.
 - 12. (Cancelled)
 - 13. (Cancelled)
- 14. (Currently amended) The method of claim 4 claim 1 wherein, applying a solvent to separate release the workpiece and from the work carrier[[,]] said comprises penetrating the solvent penetrates into passages from a pore or from the plurality of pores through the work carrier up to the liquefied solid.
- 15. (Previously presented) The method of claim 1, wherein releasing the workpiece from the work carrier further comprises releasing the workpiece by generating a positive pressure on a backside of the work carrier.
- 16. (Previously presented) The method as claimed in claim 1, wherein the porous material comprises a porous material having average pore size of between 20µm and 500µm, and a porosity of between 20% and 50%.
- 17. (Previously presented) The method as claimed in claim 1, wherein the porous material comprises a porous material having an open porosity of between 10% and 60%.
- 18. (Previously presented) The method as claimed in claim 1, wherein a portion of the plurality of pores include pore passages, wherein the pore passages comprise at least 10% of the pore volume, and wherein the pore passage traverse the porous material from a top side to a backside of the work carrier.
- 19. (Previously presented) The method as claimed in claim 1, wherein the porous material comprises a ceramic material manufactured according to one

Appl. Ser. No. 10/729,882 Response to Office Action of March 13, 2007 Reply dated June 6, 2007

of German Institute Standard DIN 51056, 1985 or European Standard 623-2, 1992, and wherein the pores are arranged irregularly.

- 20. (Previously presented) The method as claimed in claim 1, wherein the porous material comprises a porous material having an average pore size ranging from 50µm to 100µm.
- 21. (Previously presented) The method as claimed in claim 1, wherein the porous material comprises a porous material having an open porosity of between 20% and 50%.
- 22. (Previously presented) The work carrier as claimed in claim 10, wherein the plurality of pores comprise a branched pore network within the work carrier.
- 23. (Previously presented) The work carrier as claimed in claim 10, wherein a portion of the plurality of pores include pore passages, wherein the pore passages comprise at least 10% of the pore volume, and wherein the pore passages traverse the work carrier from a top side to a rear side of the work carrier.