REPAS ALGEBRA: APLICACIONS

7.1 Definicions, exemples i propietats

Siguin E i F dos \mathbb{K} -espais vectorials. Una aplicació $f: E \to F$ és **lineal** si satisfà:

(a1) per tot
$$u, v \in E$$
, $f(u + v) = f(u) + f(v)$

(a2) per tot
$$u \in E$$
 i tot $\lambda \in \mathbb{K}$, $f(\lambda u) = \lambda f(u)$

Si E = F, direm que f és un **endomorfisme**

Exemples

▶ Aplicació trivial.
$$f: E \to F$$
 on $f(u) = 0_F$, $u \in E$, és lineal

▶ Aplicació identitat.
$$I_E: E \to E$$
 on $I_E(u) = u$, $u \in E$, és lineal

$$f: \mathcal{M}_{2\times 2}(\mathbb{R}) \to \mathbb{R}_2[x], \quad f\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) = x^2 - (a+d)x + (2c-b)$$

L'aplicació
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
, $f(x,y) = (x^2y^2, x+y)$ no és lineal

PROPIETATS

Sigui $f: E \to F$ una aplicació lineal. Aleshores

- $f(\mathbf{0}_E) = \mathbf{0}_F$
- f(-u) = -f(u), per a tot $u \in E$
- \triangleright si S és un subespai d'E, f(S) és un subespai d'F
- ▶ si S' és un subespai d'F, $f^{-1}(S')$ és un subespai d'E

Proposició

Sigui $B = \{b_1, \dots, b_n\}$ una base d'E. Aleshores f està univocament determinada per $f(b_1), \dots, f(b_n)$

És a dir, a partir de la imatge d'una base podem obtenir la imatge de qualsevol vector d'E:

si
$$u = \alpha_1 b_1 + \cdots + \alpha_n b_n$$
, aleshores $f(u) = \alpha_1 f(b_1) + \cdots + \alpha_n f(b_n)$

Corol·lari

Si $S = \langle v_1, \dots, v_k \rangle$ és un subespai d'E, aleshores

$$f(S) = \langle f(v_1), \ldots, f(v_k) \rangle$$

Siguin $B = \{b_1, \dots, b_n\}$ una base d'E, W una base de F i m la dimensió de F

La matriu associada a f en les bases B i W és la matriu que té per columnes les imatges dels vectors de la base B expressades en coordenades en la base W. La denotem per $\mathbf{M}_{\mathbf{W}}^{\mathbf{B}}(\mathbf{f})$

$$M_W^B(f) = \begin{pmatrix} \vdots & \vdots & & \vdots \\ f(b_1)_W & f(b_2)_W & \dots & f(b_n)_W \\ \vdots & \vdots & & \vdots \end{pmatrix} \in \mathcal{M}_{m \times n}(\mathbb{K})$$

Per trobar el vector de coordenades de la imatge d'un vector $u \in E$ n'hi ha prou en fer el següent producte matricial:

$$f(u)_W = M_W^B(f)u_B,$$

posant els vectors de coordenades en columna

NUCLI I IMATGE

Sigui $f: E \rightarrow F$ una aplicació lineal

El nucli d'f és

$$Ker(f) = \{u \in E : f(u) = \mathbf{0}_F\}$$

La imatge d'f és

$$Im(f) = \{v \in F : v = f(u) \text{ per algun } u \in E\} = \{f(u) : u \in E\}$$

Proposició

Ker(f) i Im(f) són subespais vectorials d'E i F, respectivament

NUCLI I IMATGE

Siguin $B = \{b_1, \ldots, b_n\}$ i $W = \{w_1, \ldots, w_m\}$ bases d'E i F, resp., i sigui $M = M_W^B(f)$ la matriu associada a f en aquestes bases

<u>Nucli:</u> treballant amb coordenades, els vectors del nucli són les solucions del sistema homogeni de m equacions i n incògnites

$$M\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

La dimensió del nucli és n - rang(M)

Imatge: Im(f) = \langle f(b_1), ..., f(b_n) \rangle
La dimensió de la imatge és el rang de M
Considerant una matriu escalonada equivalent a M, les
columnes on hi ha els pivots corresponen a les columnes de M
que són vectors LI, i per tant formen una base de la imatge

APLICACIONS

Ker(f) = nucli de f, Im(f) = Imatge de f, M = $matrix{in}$ associada a f

Teorema: dim(E) = dim(Ker(f)) + dim(Im(f))

Caracteritzacions

- f és injectiva si, i només si, Ker(f) = {0_E} ⇔ rang(M) = dim(E)
- f és exhaustiva si, i només si, dim(lm(f)) = dim(F) ⇔ rang(M) = dim(F)
- f és un isomorfisme (bijectiva) si, i només si, rang(M) = dim(E) = dim(F)
- Si E i F tenen la mateixa dimensió, llavors f és un isomorfisme ⇔ f és injectiva ⇔ f és exhaustiva

COMPOSICIÓ D'APLICACIONS LINEALS

Proposició

Si $f: E \to F$ i $g: F \to G$ són aplicacions lineals, l'aplicació composició $g \circ f: E \to G$ també és lineal

Proposició

Si $f: E \to F$ és un isomorfisme, $f^{-1}: F \to E$ també ho és

Si les bases d'E, F i G són B, W i V respectivament, tenim:

$$M_V^B(g \circ f) = M_V^W(g)M_W^B(f)$$

$$M_B^W(f^{-1}) = (M_W^B(f))^{-1}$$

CANVIS DE BASE

Veiem com es relacionen dues matrius associades a una mateixa aplicació lineal fixant bases diferents a l'espai de sortida i/o a l'espai d'arribada.

Siguin $f: E \to F$ una aplicació lineal, B i B' bases d'E, i W i W' bases d'F

$$E_{B} \xrightarrow{f} F_{W}$$

$$I_{E} \uparrow P_{B}^{B'} \qquad P_{W'}^{W} \downarrow I_{F}$$

$$E_{B'} \xrightarrow{f} F_{W'}$$

$$F_{W'} \downarrow I_{F}$$

$$M_{W'}^{B'}(f) = P_{W'}^{W} M_{W}^{B}(f) P_{B}^{B'}$$