Curso Análisis Matemático Nombre y apellido:

<u>Problema</u>: Formas diferenciales, producto exterior y pullback de formas diferenciales

Sea A una 1-forma en \mathbb{R}^3 , $A(q) = A_1(q)dq^1 + A_2(q)dq^2 + A_3(q)dq^3$, donde $q = (q^1, q^2, q^3)$ denota un elemento de \mathbb{R}^3 y sea $t_A : (\mathbb{R}^3 \times \mathbb{R}^3) \to (\mathbb{R}^3 \times \mathbb{R}^3)$ definida como

$$t_A(q^1, q^2, q^3, p_1, p_2, p_3) = (q^1, q^2, q^3, p_1 + A_1, p_2 + A_2, p_3 + A_3).$$

Sea Θ una 1-forma en $\mathbb{R}^3 \times \mathbb{R}^3$, $\Theta = p_1 dq^1 + p_2 dq^2 + p_3 dq^3$ y $\pi_{\mathbb{R}^3} : (\mathbb{R}^3 \times \mathbb{R}^3) \to \mathbb{R}^3$ la proyeccion sobre la primer copia de \mathbb{R}^3 .

a) Probar que $\pi_{\mathbb{R}^3} \circ t_A = \pi_{\mathbb{R}^3}$ y calcular la 2-forma exacta Ω dada por $\Omega = -d\Theta$.

Resolución:

$$\pi_{\mathbb{R}^3} \circ t_A(q^1,q^2,q^3,p_1,p_2,p_3) = \pi_{\mathbb{R}^3}(q^1,q^2,q^3,p_1 + A_1,p_2 + A_2,p_3 + A_3) = (q^1,q^2,q^3) = \pi_{\mathbb{R}^3}(q^1,q^2,q^3,p_1,p_2,p_3).$$
 Con lo cual, $\pi_{\mathbb{R}^3} \circ t_A = \pi_{\mathbb{R}^3}$.

Además, claramente un simple cálculo muestra que $d\Theta = dp_1 \wedge dq^1 + dp_2 \wedge dq^2 + dp_3 \wedge dq^3$ y por lo tanto, usando la antisimetía del producto exterior, $-d\Theta = dq^1 \wedge dp_1 + dq^2 \wedge dp_2 + dq^3 \wedge dp_3 =: \Omega$.

b) Calcular $\pi_{\mathbb{R}^3}^* A$ y probar que $t_A^* \Theta = \Theta + \pi_{\mathbb{R}^3}^* A$.

Resolución:

Usando la definicion de pullback (y la definicion de proyeccion), $\pi_{\mathbb{R}^3}^*A = A_1dq^1 + A_2dq^2 + A_3dq^3$. Luego, usando que la imagen por t_A de $(q^1,q^2,q^3,p_1,p_2,p_3)$ es $(q^1,q^2,q^3,p_1+A_1,p_2+A_2,p_3+A_3)$ se tiene que

$$t_A^*\Theta = t_A^*(p_1dq^1 + p_2dq^2 + p_3dq^3) = (p_1 + A_1)dq^1 + (p_2 + A_2)dq^2 + (p_3 + A_3)dq^3 = p_1dq^1 + p_2dq^2 + p_3dq^3 + A_1dq^1 + A_2dq^2 + A_3dq^3 = \Theta + \pi_{\mathbb{R}^3}^*A, \text{ dado que para calcular } t_A^*(p_1dq^1 + p_2dq^2 + p_3dq^3) \text{ sustituimos } p_i \text{ por } p_i + A_i \text{ en } \Theta, \ i = 1, 2, 3.$$

c) (i) Sea $\Omega = -d\Theta$ la dos forma del punto (a), probar que $t_A^*\Omega = \Omega - \pi_{\mathbb{R}^3}^*dA$. (Ayuda: usar que el pullback de formas conmuta con el diferencial).

Resolución

 $t^*\Omega = t_A^*(-d\Theta) = -d(t_A^*\Theta) = -d\Theta - d(\pi_{\mathbb{R}^3}^*A)$ por (b) y usando que el diferencial conmuta con el pullback. Entonces, $t_A^*\Omega = -d\Theta - d(\pi_{\mathbb{R}^3}^*A) = \Omega - \pi_{\mathbb{R}^3}^*dA$ ya que (de nuevo) el diferencial conmuta con el pullback.

(ii) Una transformación lineal $t_A: (\mathbb{R}^3 \times \mathbb{R}^3) \to (\mathbb{R}^3 \times \mathbb{R}^3)$ se llama transformación canónica cuando $t_A^*\Omega = \Omega$ para una 2-forma Ω . ¿Cuál es una condición suficiente para que t_A sea una transformación canónica?

Resolución:

 $t_A^*\Omega=\Omega$ si y sólo si dA=0 ya que la proyeccion de $\overrightarrow{0}$ da $\overrightarrow{0}$ (y con lo cual pedir que dA=0 es menos que pedir que $\pi_{\mathbb{R}^3}^*dA=0$).

d) (OPTATIVO) Términos magnéticos: Sean B y \widetilde{B} 2-formas exactas en \mathbb{R}^3 y asumimos que $B - \widetilde{B} = dA$. Probar que la aplicación t_A^* transforma $\Omega_{\widetilde{B}} := \Omega - \pi_{\mathbb{R}^3}^* \widetilde{B}$ en $\Omega_B := \Omega - \pi_{\mathbb{R}^3}^* B$; esto es, $t_A^* \Omega_{\widetilde{B}} = \Omega_B$. (Ayuda: Usar los apartados (c) y (a)). El término $\pi_{\mathbb{R}^3}^* B$ es usualmente llamado término magnético.

Resolución:

Por (c) $t_A^*\Omega = \Omega - \pi_{\mathbb{R}^3}^*dA = \Omega - \pi_{\mathbb{R}^3}^*(B - B') = \Omega - \pi_{\mathbb{R}^3}^*B + \pi_{\mathbb{R}^3}^*B'$. Entonces, $t_A^*\Omega - \pi_{\mathbb{R}^3}^*B' = \Omega - \pi_{\mathbb{R}^3}^*B$, y luego, por (a) y usando la propiedad de composicion de funciones por el pullback Ω_B

(esto es,
$$(f \circ g)^* = g^* \circ f^*$$
), se tiene que $t_A^* \underbrace{(\Omega - \pi_{\mathbb{R}^3}^* B')}_{\Omega_{B'}} = \Omega_B$. Por lo tanto, $t_A^* \Omega_{B'} = \Omega_B$.