Inferential analysis

Jason G. Fleischer, Ph.D.

Asst. Teaching Professor Department of Cognitive Science, UC San Diego

ifleischer@ucsd.edu

https://jgfleischer.com

During the second quarter of 2020, almost 2.13 billion comments on YouTube videos were removed due to violation of the platform's community guidelines. - J Clement on

We want to learn something about this...

Sampling Inference

....but we can only *actually* collect data from this

Sample

1million comments from 2020

Published in final edited form as:

Epidemiology, 2013 January; 24(1): 23-31, doi:10.1097/HDE 06013e3182770237.

The Effect of Air Pollution Control on Life Expectancy in the United States: An Analysis of 545 US counties for the period 2000 to 2007

Andrew W. Correia.

Department of Biostatistics, Harvard School of Public Health, 655 Huntington Avenue, HSPH Building 2, 4th Floor, Boston, MA 02115

C. Arden Pope III,

Department of Economics, Brigham Young University, 142 Faculty Office Building, Provo, UT 84602

Douglas W. Dockery.

Departments of Environmental Health and Epidemiology, Harvard School of Public Health, 655 Huntington Avenue, HSPH Building 1, 1301B, Boston, MA 02115

Yun Wang.

Department of Biostatistics, Harvard School of Public Health, 655 Huntington Avenue, HSPH Building 2, 4* Floor, Boston, MA 02115

Majid Ezzati, and

MRC-HPA Centre for Environment and Health and Department of Epidemiology and Biostatistics, Imperial College London, Norfolk Place, St Mary's Campus, London W2 1PG

Francesca Dominici

Department of Biostatistics, Harvard School of Public Health, 655 Huntington Avenue, HSPH Building 2, 4th Floor, Boston, MA 02115, fdominic@heph.harvard.edu, P: (617) 432-1056; F: (617)-739-1781

Air pollution ?? Lifespan

Is there a relationship between air pollution control and lifespan?

What if we want to know the effect of air pollution on everyone in the United States?

Approaches to Inference

CORRELATION

COMPARISON OF MEANS

REGRESSION

NON-PARAMETRIC TESTS

ASSOCIATION BETWEEN VARIABLES

i.e. Pearson Correlation, Spearman Correlation, chisquare test

DIFFERENCE IN MEANS BETWEEN VARIABLES

i.e. t-test, ANOVA

DOES CHANGE IN ONE VARIABLE MEAN CHANGE IN ANOTHER?

I.e. simple regression, multiple regression

FOR WHEN ASSUMPTIONS
IN THESE OTHER 3
CATEGORIES ARE NOT
MET

i.e. Wilcoxon ranksum test, Wilcoxon sign-rank test, sign test

Independent Variable

stronger relationship = higher correlation

Dependent Variable positive correlation

The *larger* the independent variable value, the *larger* the dependent variable tends to be

The *smaller* the independent variable value, the *smaller* the dependent variable tends to be

Independent Variable

The *shorter* the father, the shorter his son tends to be

Father's Height

The *smaller* the independent variable value, the *larger* the dependent variable tends to be

The *lower* the number of absences, the *higher* the students' grades tend to be

Pearson's *r*: linear correlation between two variables takes values [-1,1]

Correlation is how close the data are to being in a line... BUT IT HAS NOTHING TO DO WITH THE SLOPE

Anscombe's Quartet

Property	Value	
Meen of x in each case	0 экиеп	
Variance of a in each case	11 (mer)	
Mean of y in each case	7.50 to a continui otaces	
Variance of yin each case	4.122 or 4.127 (a 6 decimal picom)	
Correlation between yand yin each case	0.816 je 3 direktori planost	
Linear regression line in each case	g = 3.00 + 0.500 x your and a second places, respectively.	

Correlation Champ

Which of the following is the Pearson correlation coefficient (r) for this relationship?

Correlation Champ

Which of the following is the Pearson correlation coefficient (r) for this relationship?

Correlation Champ

Which of the following is the Pearson correlation coefficient (r) for this relationship?

Correlation != Causation

Correlation establishes a relationship.

It does **NOT** establish causation.

Number of people who drowned by falling into a pool

correlates with

Films Nicolas Cage appeared in

Divorce rate in Maine

correlates with

Per capita consumption of margarine

CORRELATION

ASSOCIATION BETWEEN VARIABLES

i.e. Pearson Correlation, Spearman Correlation, chisquare test

COMPARISON OF MEANS

DIFFERENCE IN MEANS BETWEEN CONDITIONS

i.e. t-test, ANOVA

REGRESSION

DOES CHANGE IN ONE VARIABLE MEAN CHANGE IN ANOTHER?

I.e. simple regression, multiple regression

NON-PARAMETRIC TESTS

FOR WHEN ASSUMPTIONS IN THESE OTHER 3 CATEGORIES ARE NOT MET

i.e. Wilcoxon ranksum test, Wilcoxon sign-rank test, sign test

CORRELATION

ASSOCIATION BETWEEN VARIABLES

i.e. Pearson
Correlation,
Spearman
Correlation, chisquare test

COMPARISON OF MEANS

DIFFERENCE IN MEANS BETWEEN VARIABLES

i.e. t-test, ANOVA

REGRESSION

DOES CHANGE IN ONE VARIABLE MEAN CHANGE IN ANOTHER?

I.e. simple regression, multiple regression

NON-PARAMETRIC TESTS

FOR WHEN ASSUMPTIONS IN THESE OTHER 3 CATEGORIES ARE NOT MET

i.e. Wilcoxon ranksum test, Wilcoxon sign-rank test, sign test

t-test.

tests for difference in means between groups

William Sealy Gosset (13 June 1878 – 16 October 1937) was an English statistician, chemist and brower who served as Head Brower of Quinness and Head Experimental Brower of Guinness and was a pioneer of modern statistics. He picneered small sample experimental design and analysis with an economic approach to the logic of uncertainty. Gosset published under the pen name Student and developed most famously Student's t-distribution originally called Student's "z" – and "Student's test of statistical significance".

Contents [hide]

- 1 Life and career
- 2 See also
- C Bibliography 4 Feferences
- 5 Further reading
- 6 External inks

Life and career [edt]

Born in Canterbury, England the eldest son of Agnes Sealy Widal and Colonel Frederic Gosset, R.E. Royal Engineers, Gosset attended Winchester College before matriculating as Winchester Scholar in natural sciences and mathematics at New College, Oxford, Upon graduating in 1899, he joined the brewery of Arthur Guinness & Son in Dublin, Ireland; he spent the rest of his 38-year career at Guinness.[1]2]

Gosset had three children with Marjory Gosset (née Philipotts). Harry Gosset (1907-1965) was a consultant paediatrician; Bertha Marian Gosset (1909–2004) was a geographer and nurse; the youngest, Ruth Gosset (1911–1953) married the Oxford mathematician Douglas Roal and had five children.

In his job as Head Experimental Brewer at Guinness, the self-trained Gosset developed new statistical methods - both in the brewery and on the farm new central to the design of experiments, to proper use of significance testing on repeated trials, and to analysis of seconomic significance (an early instance of decision theory interpretation of statistics) and more, such as his small-sample, stratified, and repeated balanced experiments on barley for proving the best violding varieties. [3] Gosset acquired that knowledge by study, by trial and error, by cooperating with others, and by spending two terms in 1906–1907 in the Blometrics laboratory of Karl Pearson, [4] Gosset and Pearson had a good relationship, [4] Fearson helped Gosset with the mathematics of his papers, including the 1908 papers, but had little appreciation of their importance. The papers addressed the brewer's concern with small samples; biometricians like Pearson, on the other hand, typically had hundreds of observations and saw no urgency in developing small-sample methods.[4]

Gosset's first publication came in 1907, "On the Error of Counting with a Haemacytometer," in which - unbeknownst to Gosset aka "Student" - he

rediscovered the Poisson distributor. [3] Another researcher at Guinness had previously published a paper containing trade secrets of the Guinness

William Sealy Gosset

William Sealy Gosse: (ska Student) in 1908 (ace 22)

	index and
orn	13 June 1876

В

•	100000			
	Canterbu	ry.	Kent.	England

16 Oxtober 1937 (aced 61) Died Beaconstield, Buckinghamshire,

England

her	namae	Student
-		

101	namee	Student	

Alma mater New College, Oxford, Winchester

College

Known for Student's t-distribution, statistical

experiments, Monte Carlo methed, quality control. Modern synthesis, agricultural

economics, economotrics

Scientific career

Children 5, including Isaac Henry Gosset

significance, design of

t-test Assumptions

- 1. Data are continuous
- 2. Normally distributed
- 3. Equal variance b/w groups (but can use Welch's test!)
- 4. Not paired (will talk more about this later)

sample size affects statistic

N=10,000

data are continuous

N=10,000

t-statistic: -95.6

p-value << 0.001

95% CI for true difference in means [-5.43, -5.21]

Yes.

p-value: the probability of getting the observed results (or results more extreme) by chance alone

https://forms.gle/ 6MCyp7qFsaHgGKi5A If we flip a coin 16 times and record the number of heads....
....and then do that 1M times

What would be the p-value of you flipping 16 heads?

number of heads

Do the heights between males and females differ?

t-statistic: -95.6

p-value << 0.001

The probability of seeing this difference in means by random chance alone is much less than 1 in 1000

95% CI for true difference in means [-5.43, -5.21]

Yes.

Difference in Means

Why would a t-test *not* be appropriate for these data?

Would a t-test find a significant difference in means?

Paired data

Independent samples 1-lest

Is there a **difference** between two groups

Paired samples t-test

Is there a difference in a group between two points in time

CORRELATION

DIFFEDENCE IN MEAN

COMPARISON OF MEANS

REGRESSION

NON-PARAMETRIC TESTS

ASSOCIATION BETWEEN VARIABLES

> i.e. Pearson Correlation, Spearman Correlation, chisquare test

DIFFERENCE IN MEANS BETWEEN VARIABLES

i.e. t-test, ANOVA

DOES CHANGE IN ONE VARIABLE MEAN CHANGE IN ANOTHER?

I.e. simple regression, multiple regression

FOR WHEN ASSUMPTIONS
IN THESE OTHER 3
CATEGORIES ARE NOT
MET

i.e. Wilcoxon ranksum test, Wilcoxon sign-rank test, sign test

CORRELATION

DIFFEDENCE IN MEAN

COMPARISON OF MEANS

REGRESSION

NON-PARAMETRIC TESTS

ASSOCIATION BETWEEN VARIABLES

> i.e. Pearson Correlation, Spearman Correlation, chisquare test

DIFFERENCE IN MEANS BETWEEN VARIABLES

i.e. t-test, ANOVA

DOES CHANGE IN ONE VARIABLE MEAN CHANGE IN ANOTHER?

I.e. simple regression, multiple regression

FOR WHEN ASSUMPTIONS
IN THESE OTHER 3
CATEGORIES ARE NOT
MET

i.e. Wilcoxon ranksum test, Wilcoxon sign-rank test, sign test

Independent Variable

This line is a model of the data

Models are mathematical equations generated to *represent* the real life situation

This line is a model of the data

Models are mathematical equations generated to *represent* the real life situation

2.3 Parsimony

Since all models are wrong the scientist cannot obtain a "correct" one by excessive elaboration. On the contrary following William of Occam he should seek an economical description of natural phenomena. Just as the ability to devise simple but evocative models is the signature of the great scientist so overelaboration and overparameterization is often the mark of mediocrity.

2.4 Worrying Selectively

Since all models are wrong the scientist must be alert to what is importantly wrong. It is inappropriate to be concerned about mice when there are tigers abroad.

of absences

Effect size (β) can be estimated using the slope of the line

Effect size (β) can be estimated using the slope of the line

Assumptions of linear regression

- 1. Linear relationship
- 2. Multivariate normality
- 3. No multicollinearity
- 4. No autocorrelation
- 5. Homoscedasticity

Linear regression assumes no multicollinearity. Multicollinearity occurs when the independent variables (in multiple linear regression) are too highly correlated with each other.

100

Time

200

250

Autocorrelation occurs when the observations are *not* independent of one another (i.e. stock prices)

Does Poverty Percentage affect Teen Birth Rate?

What is the relationship between Poverty Percentage & Teen Birth Rate?

What's your hypothesis?

	Location [‡]	PovPct [‡]	Brth15to17	Brth18to19	ViolCrimê	TeenBrth
1	Alabama	20.1	31.5	88.7	11.2	54.5
2	Alaska	7.1	18.9	73.7	9.1	39.5
3	Arizona	16.1	35.0	102.5	10.4	61.2
4	Arkansas	14.9	31.6	101.7	10.4	59.9
5	California	16.7	22.6	69.1	11.2	41.1
6	Colorado	8.8	26.2	79.1	5.8	47.0
7	Connecticut	9.7	14.1	45.1	4.6	25.8
8	Delaware	10.3	24.7	77.8	3.5	46.3
9	District_of_Columbia	22.0	44.8	101.5	65.0	69.1
10	Florida	16.2	23.2	78.4	7.3	44.5
11	Georgia	12.1	31.4	92.8	9.5	55.7
12	Hawaii	10.3	17.7	66.4	4.7	38.2
13	Idaho	14.5	18.4	69.1	4.1	39.1
14	Illinois	12.4	23.4	70.5	10.3	42.2
15	Indiana	9.6	22.6	78.5	8.0	44.6
16	Iowa	12.2	16.4	55.4	1.8	32.5
17	Kansas	10.8	21.4	74.2	6.2	43.0

Normal(ish) distributions

Effect size interpretation

Sales	
(Million	Advertising
Euro)	(Million Euro)
651	23
762	26
856	30
1,063	34
1,190	43
1,298	48
1,421	52
1,440	57
1,518	58

The effect size (β) between the advertising and sales is 23M. What does this mean?

Confounding

Big shoes Literate Adult

Variable2 Variable1 Confounder

Confounding

Your analysis sees an increase in crime rate whenever popsicle sales increase. What could confound this analysis?

You can plan ahead to avoid confounding and/or include confounders in your models to account for their role on the outcome variable.

Ignoring confounders will lead you to draw incorrect conclusions

Spine Surgery Results

Sample: 400 patients with index vertebral fractures

...looks like vertebroplasty was *way* worse for patients!

Vertebroplasty	Conservative care	Relative risk (95% confidence interval)
30/200 (15%)	15/200 (7.5%)	2.0 (1.1–3.6)

subsequent fractures

But wait...at time of initial fracture...

	Vertebroplasty N = 200	Conservative care N = 200
Age, y, mean ± SD	78.2 ± 4.1	79.0 ± 5.2
Weight, kg, mean ± SD	54.4 ± 2.3	53.9 ± 2.1
Smoking status, No. (%)	110 (55)	16 (8)

Age and weight are similar between groups. **Smoking Status** differs vastly.

So...let's stratify those results real quick

Smoke		No smoke		
Vertebroplasty Conse	ervative RR (95% confidence	Vertebroplasty	Conservative	RR (95% confidence
	interval)			interval)
23/110 (21%) 3/16	(19%) (1.1 (0.4, 3.3)	7/90 (8%)	12/184(7%)	1.2 (0.5, 2.9)

Risk of re-fracture is now similar within group