

11

SEQUENCE LISTING

<110> Adams, Sean H
Chui, Clarissa
Goddard, Audrey D
Grimaldi, J. Christopher

<120> BFIT COMPOSITIONS AND METHODS OF USE

<130> 9800081-0066

<140> 10/055,624
<141> 2002-01-22

<150> US 60/263,362
<151> 2002-01-22

<160> 23

<170> PatentIn version 3.2

<210> 1
<211> 1857
<212> DNA
<213> Homo sapiens

<400> 1

gtggaattgc ctttcaaataat gatccagaat gtcggaaatc acctgcgacg gggcttggcc	60
tctgtttctt ccaaccgcac atccccgaag tcagccttac gtgcgggaa cgacagtgcc	120
atggcagacg gcgaggata ccggAACCCAC acggaggtgc agatgagcca gctggtgctg	180
ccctgccaca ccaaccaacg tggtagactg agcgtcgggc agctgctaa gtggattgac	240
accacggctt gcctgtccgc ggagaggcac gctggctgcc cctgtgtcac agcttccatg	300
gatgacatct attttgagca caccattagt gttggacaag tggtaatat caaggccaag	360
gtgaaccggg ctttcaactc cagcatggag gtgggcattcc aggtggcctc ggaggacctg	420
tgctctgaga agcagtggaa tgtgtcaag gccttggca ctttcgtggc ccggccagag	480
atcaccaagg tgaagctgaa gcagatcacg ccgcggacag aagaggagaa gatggagcac	540
agtgtggcgg ctgagcgcgg ggcgcattgc cttgtctatg cagacaccat caaggacctc	600
ctggccaaact gcccattca gggcgatctg gagagcagag actgttagccg catggtgccg	660
gctgagaaga cccgtgtggaa gagtgtggag ctggcctgc ctccccacgc caatcaccag	720
ggcaacacct ttgggggcca gatcatggcc tggatggaga atgtggccac cattgcagcc	780
agccggctct gccgtgccc ccctacgctg aaggccattg aaatgttcca cttccgaggc	840
ccgtcccagg tcggcgaccg tctggtgctc aaagccatcg tgaacaatgc cttcaaacat	900
agcatggagg tggcggtgtg cgtggaggcc tatgccagg aggctgagac ccaccggcgc	960
cacatcaaca gtgccttat gaccttgtg gtcctggacg cagatgacca gccccagttg	1020
ctgcccgttga ttccggccca gcccggcgat ggtgagcggc ggtaccgaga gcccagtgcc	1080

agaaaagaaga	tccgcctgga	caggaagtac	atcgtgtcct	gtaagcagac	agaggtgcc	1140
ctctccgtcc	cctgggaccc	tagcaaccag	gtgtacctga	gctacaataa	cgtctcctcc	1200
ttgaagatgc	tttgtggccaa	ggacaactgg	gtgctgtcct	cgagatcag	tcaaggccgc	1260
ctgtacactc	tggaggatga	caagttcctc	tccttccaca	tggagatgg	ggtgcatgtg	1320
gatgcagccc	aggccttcct	gctgctctcg	gacctgcgtc	agaggccaga	gtgggacaag	1380
caactaccgga	gcgtggagct	agtgcagcag	gtagacgagg	acgacgccat	ctaccacgtc	1440
accagccctg	ccctcggagg	tcacacaaag	ccccaggact	tcgtgatcct	ggcctcgagg	1500
cggaagcctt	gtgacaatgg	ggacccctat	gtcatcgcc	tgaggtcggt	cacgctgcc	1560
acacaccgag	agacgcccaga	gtacagacgc	ggagagaccc	tctgctcagg	cttctgcctc	1620
tggcgcgagg	gggaccagct	gaccaagtgc	tgctgggtta	gggtctccct	gactgagctg	1680
gtctcggcaa	gtggcttcta	ttcctgggg	ctcgaatcca	ggtcaaaggg	tcgcaggagc	1740
gacggttgga	atggaaaact	agctggagga	cacctgagta	ctcttaaagc	aatccccgtg	1800
gccaaaatca	acagccgatt	tggataacctt	caagacacct	gaaaccttat	catgagc	1857

<210> 2
 <211> 607
 <212> PRT
 <213> Homo sapiens

<400> 2

Met Ile Gln Asn Val Gly Asn His Leu Arg Arg Gly Leu Ala Ser Val
 1 5 10 15

Phe Ser Asn Arg Thr Ser Arg Lys Ser Ala Leu Arg Ala Gly Asn Asp
 20 25 30

Ser Ala Met Ala Asp Gly Glu Gly Tyr Arg Asn Pro Thr Glu Val Gln
 35 40 45

Met Ser Gln Leu Val Leu Pro Cys His Thr Asn Gln Arg Gly Glu Leu
 50 55 60

Ser Val Gly Gln Leu Leu Lys Trp Ile Asp Thr Thr Ala Cys Leu Ser
 65 70 75 80

Ala Glu Arg His Ala Gly Cys Pro Cys Val Thr Ala Ser Met Asp Asp
 85 90 95

Ile Tyr Phe Glu His Thr Ile Ser Val Gly Gln Val Val Asn Ile Lys
 100 105 110

Ala Lys Val Asn Arg Ala Phe Asn Ser Ser Met Glu Val Gly Ile Gln

115 120 125

Val Ala Ser Glu Asp Leu Cys Ser Glu Lys Gln Trp Asn Val Cys Lys
130 135 140

Ala Leu Ala Thr Phe Val Ala Arg Arg Glu Ile Thr Lys Val Lys Leu
145 150 155 160

Lys Gln Ile Thr Pro Arg Thr Glu Glu Glu Lys Met Glu His Ser Val
165 170 175

Ala Ala Glu Arg Arg Arg Met Arg Leu Val Tyr Ala Asp Thr Ile Lys
180 185 190

Asp Leu Leu Ala Asn Cys Ala Ile Gln Gly Asp Leu Glu Ser Arg Asp
195 200 205

Cys Ser Arg Met Val Pro Ala Glu Lys Thr Arg Val Glu Ser Val Glu
210 215 220

Leu Val Leu Pro Pro His Ala Asn His Gln Gly Asn Thr Phe Gly Gly
225 230 235 240

Gln Ile Met Ala Trp Met Glu Asn Val Ala Thr Ile Ala Ala Ser Arg
245 250 255

Leu Cys Arg Ala His Pro Thr Leu Lys Ala Ile Glu Met Phe His Phe
260 265 270

Arg Gly Pro Ser Gln Val Gly Asp Arg Leu Val Leu Lys Ala Ile Val
275 280 285

Asn Asn Ala Phe Lys His Ser Met Glu Val Gly Val Cys Val Glu Ala
290 295 300

Tyr Arg Gln Glu Ala Glu Thr His Arg Arg His Ile Asn Ser Ala Phe
305 310 315 320

Met Thr Phe Val Val Leu Asp Ala Asp Asp Gln Pro Gln Leu Leu Pro
325 330 335

Trp Ile Arg Pro Gln Pro Gly Asp Gly Glu Arg Arg Tyr Arg Glu Ala
340 345 350

Ser Ala Arg Lys Lys Ile Arg Leu Asp Arg Lys Tyr Ile Val Ser Cys
355 360 365

Lys Gln Thr Glu Val Pro Leu Ser Val Pro Trp Asp Pro Ser Asn Gln
370 375 380

Val Tyr Leu Ser Tyr Asn Asn Val Ser Ser Leu Lys Met Leu Val Ala
385 390 395 400

Lys Asp Asn Trp Val Leu Ser Ser Glu Ile Ser Gln Val Arg Leu Tyr
405 410 415

Thr Leu Glu Asp Asp Lys Phe Leu Ser Phe His Met Glu Met Val Val
420 425 430

His Val Asp Ala Ala Gln Ala Phe Leu Leu Ser Asp Leu Arg Gln
435 440 445

Arg Pro Glu Trp Asp Lys His Tyr Arg Ser Val Glu Leu Val Gln Gln
450 455 460

Val Asp Glu Asp Asp Ala Ile Tyr His Val Thr Ser Pro Ala Leu Gly
465 470 475 480

Gly His Thr Lys Pro Gln Asp Phe Val Ile Leu Ala Ser Arg Arg Lys
485 490 495

Pro Cys Asp Asn Gly Asp Pro Tyr Val Ile Ala Leu Arg Ser Val Thr
500 505 510

Leu Pro Thr His Arg Glu Thr Pro Glu Tyr Arg Arg Gly Glu Thr Leu
515 520 525

Cys Ser Gly Phe Cys Leu Trp Arg Glu Gly Asp Gln Leu Thr Lys Cys
530 535 540

Cys Trp Val Arg Val Ser Leu Thr Glu Leu Val Ser Ala Ser Gly Phe
545 550 555 560

Tyr Ser Trp Gly Leu Glu Ser Arg Ser Lys Gly Arg Arg Ser Asp Gly
565 570 575

Trp Asn Gly Lys Leu Ala Gly Gly His Leu Ser Thr Leu Lys Ala Ile
580 585 590

Pro Val Ala Lys Ile Asn Ser Arg Phe Gly Tyr Leu Gln Asp Thr
595 600 605

<210> 3
<211> 1818
<212> DNA

<213> Homo sapiens

<400> 3
gttggaaattgc cctttgcata aaatgatcca gaatgtcgga aatcacctgc gacggggc tt
ggcctctgtg ttctccaaacc gcacatcccc gaagtcagcc ttacgtgcgg ggaacgacag 60
tgccatggca gacggcgagg gataccggaa ccccacggag gtgcagatga gccagctgg 120
gctgccctgc cacaccaacc aacgtggta gctgagcg tc gggcagctgc tcaagtggat 180
tgacaccacg gcttgcctgt ccgcggagag gcacgctggc tgccctgtg tcacagcttc 240
catggatgac atctatTTTg agcacaccat tagtgttggaa caagtggta atatcaaggc 300
caaggtgaac cgggccttca actccagcat ggaggtggc atccaggtgg cctcgagga 360
cctgtgtct gagaaggcgt ggaatgtgtg caaggccttgc gcccacccgg tggcccgccg 420
agagatcacc aaggtgaagc tgaagcagat cacgcccgg acagaagagg agaagatgg 480
gcacagtgtg gcggctgagc gcccggcat gccccttgc tatgcagaca ccatcaagga 540
cctcctggcc aactgcgcca ttcaaggcga tctggagagc agagactgta gcccgtgg 600
gcccggctgag aagacccgtg tggagagtgt ggagctggc ctgcctcccc acgccaatca 660
ccagggcaac acctttgggg gccagatcat ggcctggatg gagaatgtgg ccaccattgc 720
agccagccgg ctctgcccgtg cccaccctac gctgaaggcc attgaaatgt tccacttccg 780
aggcccggtcc caggtcggcg accgtctggt gctcaaagcc atcgtgaaca atgccttcaa 840
acatagcatg gaggtggcg tgcgttggaa ggcctatcgc caggaggctg agacccaccg 900
gcccacatc aacagtgcct ttatgacctt tgcgttgcgt gacgcagatg accagcccc 960
gttgcgtccc tggattcggc cccagccgg cgatggtag gggcggtacc gagaggccag 1020
tgccagaaag aagatccgca tggacaggaa gtacatcgtg tcctgttaagc agacagaggt 1080
gcccctctcc gtccctggg accctagcaa ccaggtgtac ctgagctaca ataacgtctc 1140
ctccttgaag atgcttgggg ccaaggacaa ctgggtgctg tcctcgaga tcagtcaggt 1200
ccgcctgtac actctggagg atgacaagtt cctctcccttc cacatggaga tgggtggca 1260
tgtggatgca gcccaggcct tcctgctgct ctcggacctg cgtagaggc cagagtggg 1320
caagcaactac cggagcgtgg agctagtgcg gcaggttagac gaggacgacg ccatctacca 1380
cgtagccacgc cctgcctcg gaggtcacac aaagccccag gacttcgtga tcctggcctc 1440
gaggcggaaag cttgtgaca atggggaccc ctatgtcata gctgtggatgt cggtcacgct 1500
gcccacacac cgagagacgc cagactacag acgcccggagag accctctgct caggcttctg 1560
cctctggcgc gagggggacc agctgaccaa ggtatcctac tacaaccagg ccacccagg 1620
tgttctcaac tatgtgacca ccaacgtggc cggcctctcc tctgagttct acaccacctt 1680
caaggcttgc gacgtttc tcttggacaa ccggaaatgtat ctggccccc gctccagac 1740
1800

cctctagatg ccctcagc

1818

<210> 4
<211> 594
<212> PRT
<213> Homo sapiens

<400> 4

Met Ile Gln Asn Val Gly Asn His Leu Arg Arg Gly Leu Ala Ser Val
1 5 10 15

Phe Ser Asn Arg Thr Ser Arg Lys Ser Ala Leu Arg Ala Gly Asn Asp
20 25 30

Ser Ala Met Ala Asp Gly Glu Gly Tyr Arg Asn Pro Thr Glu Val Gln
35 40 45

Met Ser Gln Leu Val Leu Pro Cys His Thr Asn Gln Arg Gly Glu Leu
50 55 60

Ser Val Gly Gln Leu Leu Lys Trp Ile Asp Thr Thr Ala Cys Leu Ser
65 70 75 80

Ala Glu Arg His Ala Gly Cys Pro Cys Val Thr Ala Ser Met Asp Asp
85 90 95

Ile Tyr Phe Glu His Thr Ile Ser Val Gly Gln Val Val Asn Ile Lys
100 105 110

Ala Lys Val Asn Arg Ala Phe Asn Ser Ser Met Glu Val Gly Ile Gln
115 120 125

Val Ala Ser Glu Asp Leu Cys Ser Glu Lys Gln Trp Asn Val Cys Lys
130 135 140

Ala Leu Ala Thr Phe Val Ala Arg Arg Glu Ile Thr Lys Val Lys Leu
145 150 155 160

Lys Gln Ile Thr Pro Arg Thr Glu Glu Lys Met Glu His Ser Val
165 170 175

Ala Ala Glu Arg Arg Arg Met Arg Leu Val Tyr Ala Asp Thr Ile Lys
180 185 190

Asp Leu Leu Ala Asn Cys Ala Ile Gln Gly Asp Leu Glu Ser Arg Asp
195 200 205

Cys Ser Arg Met Val Pro Ala Glu Lys Thr Arg Val Glu Ser Val Glu

210

215

220

Leu Val Leu Pro Pro His Ala Asn His Gln Gly Asn Thr Phe Gly Gly
225 230 235 240

Gln Ile Met Ala Trp Met Glu Asn Val Ala Thr Ile Ala Ala Ser Arg
245 250 255

Leu Cys Arg Ala His Pro Thr Leu Lys Ala Ile Glu Met Phe His Phe
260 265 270

Arg Gly Pro Ser Gln Val Gly Asp Arg Leu Val Leu Lys Ala Ile Val
275 280 285

Asn Asn Ala Phe Lys His Ser Met Glu Val Gly Val Cys Val Glu Ala
290 295 300

Tyr Arg Gln Glu Ala Glu Thr His Arg Arg His Ile Asn Ser Ala Phe
305 310 315 320

Met Thr Phe Val Val Leu Asp Ala Asp Asp Gln Pro Gln Leu Leu Pro
325 330 335

Trp Ile Arg Pro Gln Pro Gly Asp Gly Glu Arg Arg Tyr Arg Glu Ala
340 345 350

Ser Ala Arg Lys Lys Ile Arg Leu Asp Arg Lys Tyr Ile Val Ser Cys
355 360 365

Lys Gln Thr Glu Val Pro Leu Ser Val Pro Trp Asp Pro Ser Asn Gln
370 375 380

Val Tyr Leu Ser Tyr Asn Asn Val Ser Ser Leu Lys Met Leu Val Ala
385 390 395 400

Lys Asp Asn Trp Val Leu Ser Ser Glu Ile Ser Gln Val Arg Leu Tyr
405 410 415

Thr Leu Glu Asp Asp Lys Phe Leu Ser Phe His Met Glu Met Val Val
420 425 430

His Val Asp Ala Ala Gln Ala Phe Leu Leu Leu Ser Asp Leu Arg Gln
435 440 445

Arg Pro Glu Trp Asp Lys His Tyr Arg Ser Val Glu Leu Val Gln Gln
450 455 460

Val Asp Glu Asp Asp Ala Ile Tyr His Val Thr Ser Pro Ala Leu Gly
465 470 475 480

Gly His Thr Lys Pro Gln Asp Phe Val Ile Leu Ala Ser Arg Arg Lys
485 490 495

Pro Cys Asp Asn Gly Asp Pro Tyr Val Ile Ala Leu Arg Ser Val Thr
500 505 510

Leu Pro Thr His Arg Glu Thr Pro Glu Tyr Arg Arg Gly Glu Thr Leu
515 520 525

Cys Ser Gly Phe Cys Leu Trp Arg Glu Gly Asp Gln Leu Thr Lys Val
530 535 540

Ser Tyr Tyr Asn Gln Ala Thr Pro Gly Val Leu Asn Tyr Val Thr Thr
545 550 555 560

Asn Val Ala Gly Leu Ser Ser Glu Phe Tyr Thr Thr Phe Lys Ala Cys
565 570 575

Glu Gln Phe Leu Leu Asp Asn Arg Asn Asp Leu Ala Pro Ser Leu Gln
580 585 590

Thr Leu

<210> 5
<211> 2699
<212> DNA
<213> Mus musculus

<400> 5
ctagagatcc ctcgacacctg acccacgcgt ccggagacccc cccacagcct ggcaacccag 60
caaacggagc agcaatgatt cagaatgtgg gcaaccactt gcgaaggggc ttcgcctcta 120
tgttctctaa tcgcacatcc cgaaagtcaa tctccatcc ggagtctggc gaccctccta 180
ccatggcaga gggtaagga taccggAACCC ccacggaggt gcagatgagc cagctggtagc 240
tgccctgcca caccaaccac cgtggggagc tgagcattgg acagttgctc aagtggatcg 300
acaccacagc ctgcctatca gcggagaggc atgctggctg tccctgcgtc acagcctcta 360
tggatgacat ctacttcgac cataccatta gtgtcgccca agtggtaat atcaaggcca 420
aggtaacccg ggccttcaac tccagcatgg aggtggaaat ccaggtggc tctgaggatc 480
tgtgctctga gaagcagtgg agtgtctgca aggcttggc caccttggc gcccaccggg 540
agctctccaa ggtgaagctg aagcagggtca tcccattgac cgaggaggag aagactgaac 600
atgggggtggc ggctgagcgc cggcgtatgc gactggctca tgcagacacc atcaaagatc 660

tcctaaccca	ctgtgtcatc	caggacgatt	tggacaagga	ctgcagcaat	atggtgccag	720
ccgagaagac	ccgagtggag	agtgtggagc	tggtgctgcc	tcctcacgcc	aatcatcagg	780
gcaataacctt	cggggacag	atcatggctt	ggatggagaa	tgtggccacc	attgcagcca	840
gccggctctg	tcacgcccac	cctacgctca	aggccatcga	gatgttccat	ttccgaggcc	900
cgtctcaggt	gggggaccgt	ctgggtctca	aggccatcgt	gaataacgcc	tttaaggcaca	960
gcatggaggt	gggtgtgtgt	gtggaggcgt	accgccagga	agctgagacc	cagcgccggc	1020
acatcaacag	cgccttcatg	accttcgtgg	tcctggacaa	agatgaccag	cctcagaagc	1080
tgcctggat	tcgtccccag	cctggagagg	gtgaacggcg	ataccgagaa	gccagtgcc	1140
ggaagaagat	ccgcctggac	aggaaatacc	ttgtgtcctg	taagcaggca	gaagtggccc	1200
tgtctgtccc	ctgggaccct	agcaaccagg	tatacctgag	ctactacaac	gtgtcctctc	1260
tgaagacgct	catggccaag	gacaactggg	tgctgtccgt	ggagatcagc	gagggtcgcc	1320
tgtacatcct	agaagaggac	ttcctctcct	ttcacttgga	gatggtgta	aatgtggatg	1380
ccgcccaggt	cttcagctg	ctgtcagacc	tgcgccaggag	accagagtgg	gacaagcatt	1440
accggagtgt	ggagctggtg	cagcaagtgg	atgaggatga	cgccatctac	cacgtcatca	1500
ccccgcct	gagcgggaac	accaagcccc	aggactttgt	gatcctggcc	tctaggcgga	1560
agccttgta	caatggggac	ccctatgtca	ttgccttgag	gtcggtcag	ctgcccacgc	1620
accatgagac	accggaatac	caacgtgggg	agactctctg	ttcaggcttc	tgtctgtggc	1680
gtgaggggga	ccagatgact	aaggttctt	actacaacca	ggccacccccc	ggctttctca	1740
actatgtgac	caccaatgtg	tccggctgt	cctcagaatt	ctacaacact	ttcaaggctt	1800
gtgagagttt	tctgttggac	aaccggaatg	acctagctcc	cagcctccag	accctctaga	1860
caccaccat	gtgccttccag	gtcttacaca	gtgcgtggaa	caaagcagag	acatttattc	1920
accttgactc	cccagggaaag	ccttccacac	tagatggtcc	aatcctactg	gatggtcggt	1980
tgctgctcac	atctgcctgc	aagtcttcc	agtactcctg	ggatatcctg	taatagactc	2040
gggtcctgtc	cacggccctg	gccgcccaca	atccagccca	caaatccaca	tggctgttcc	2100
cagcagtgt	gtggtacact	gtgacagtgg	ctctagggga	ggaggccagg	agcctggcca	2160
cagtgttggc	tggactctga	ctcagtggcc	cagcctgcag	ctggaaggac	acaggttgcc	2220
ggagtcctg	acacagctcc	agcatatctg	tgaccatctg	ctcctgataa	ccactgtcca	2280
gcatctcttc	ggccagccc	ggtgccacgg	tcacatgggg	gaagacttca	gccacagctg	2340
tgagcagctc	tctgccagct	atgtggccag	ggaccacaaa	actaccatgt	gagactgtgg	2400
accccaccca	cacaggccag	ggcagatggc	caagggtaga	aaggtgtct	aacgtggcca	2460
gggatggccg	gagagcttcg	ggttccacta	tgttcacatg	gatgccccag	cgcctgggg	2520

gaacagccag acgcagcaga cacgactcca gtgtcagagc agggccacct ggggtgtgt 2580
 ggatgggtac agggttccca gcctcagggtt cctggaggcc aatgtccagc aagatcatgc 2640
 cttctctgtc tggaagaggc aacagttgg agatcctgtc atcaaaaaaa aaaaaaaaaa 2699

<210> 6
 <211> 594
 <212> PRT
 <213> Mus musculus

<400> 6

Met	Ile	Gln	Asn	Val	Gly	Asn	His	Leu	Arg	Arg	Gly	Phe	Ala	Ser	Met
1				5				10						15	

Phe	Ser	Asn	Arg	Thr	Ser	Arg	Lys	Ser	Ile	Ser	His	Pro	Glu	Ser	Gly
				20			25						30		

Asp	Pro	Pro	Thr	Met	Ala	Glu	Gly	Glu	Gly	Tyr	Arg	Asn	Pro	Thr	Glu
				35		40				45					

Val	Gln	Met	Ser	Gln	Leu	Val	Leu	Pro	Cys	His	Thr	Asn	His	Arg	Gly
				50		55			60						

Glu	Leu	Ser	Ile	Gly	Gln	Leu	Leu	Lys	Trp	Ile	Asp	Thr	Thr	Ala	Cys
65				70				75						80	

Leu	Ser	Ala	Glu	Arg	His	Ala	Gly	Cys	Pro	Cys	Val	Thr	Ala	Ser	Met
				85			90					95			

Asp	Asp	Ile	Tyr	Phe	Asp	His	Thr	Ile	Ser	Val	Gly	Gln	Val	Val	Asn
				100			105					110			

Ile	Lys	Ala	Lys	Val	Asn	Arg	Ala	Phe	Asn	Ser	Ser	Met	Glu	Val	Gly
					115		120					125			

Ile	Gln	Val	Val	Ser	Glu	Asp	Leu	Cys	Ser	Glu	Lys	Gln	Trp	Ser	Val
					130		135			140					

Cys	Lys	Ala	Leu	Ala	Thr	Phe	Val	Ala	His	Arg	Glu	Leu	Ser	Lys	Val
145					150				155			160			

Lys	Leu	Lys	Gln	Val	Ile	Pro	Leu	Thr	Glu	Glu	Glu	Lys	Thr	Glu	His
					165			170				175			

Gly	Val	Ala	Ala	Glu	Arg	Arg	Met	Arg	Leu	Val	Tyr	Ala	Asp	Thr	
				180			185				190				

Ile	Lys	Asp	Leu	Leu	Thr	His	Cys	Val	Ile	Gln	Asp	Asp	Leu	Asp	Lys
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

195

200

205

Asp Cys Ser Asn Met Val Pro Ala Glu Lys Thr Arg Val Glu Ser Val
210 215 220

Glu Leu Val Leu Pro Pro His Ala Asn His Gln Gly Asn Thr Phe Gly
225 230 235 240

Gly Gln Ile Met Ala Trp Met Glu Asn Val Ala Thr Ile Ala Ala Ser
245 250 255

Arg Leu Cys His Ala His Pro Thr Leu Lys Ala Ile Glu Met Phe His
260 265 270

Phe Arg Gly Pro Ser Gln Val Gly Asp Arg Leu Val Leu Lys Ala Ile
275 280 285

Val Asn Asn Ala Phe Lys His Ser Met Glu Val Gly Val Cys Val Glu
290 295 300

Ala Tyr Arg Gln Glu Ala Glu Thr Gln Arg Arg His Ile Asn Ser Ala
305 310 315 320

Phe Met Thr Phe Val Val Leu Asp Lys Asp Asp Gln Pro Gln Lys Leu
325 330 335

Pro Trp Ile Arg Pro Gln Pro Gly Glu Gly Glu Arg Arg Tyr Arg Glu
340 345 350

Ala Ser Ala Arg Lys Lys Ile Arg Leu Asp Arg Lys Tyr Leu Val Ser
355 360 365

Cys Lys Gln Ala Glu Val Ala Leu Ser Val Pro Trp Asp Pro Ser Asn
370 375 380

Gln Val Tyr Leu Ser Tyr Tyr Asn Val Ser Ser Leu Lys Thr Leu Met
385 390 395 400

Ala Lys Asp Asn Trp Val Leu Ser Val Glu Ile Ser Glu Val Arg Leu
405 410 415

Tyr Ile Leu Glu Glu Asp Phe Leu Ser Phe His Leu Glu Met Val Val
420 425 430

Asn Val Asp Ala Ala Gln Val Phe Gln Leu Leu Ser Asp Leu Arg Arg
435 440 445

Arg Pro Glu Trp Asp Lys His Tyr Arg Ser Val Glu Leu Val Gln Gln
450 455 460

Val Asp Glu Asp Asp Ala Ile Tyr His Val Ile Ser Pro Ala Leu Ser
465 470 475 480

Gly Asn Thr Lys Pro Gln Asp Phe Val Ile Leu Ala Ser Arg Arg Lys
485 490 495

Pro Cys Asp Asn Gly Asp Pro Tyr Val Ile Ala Leu Arg Ser Val Thr
500 505 510

Leu Pro Thr His His Glu Thr Pro Glu Tyr Gln Arg Gly Glu Thr Leu
515 520 525

Cys Ser Gly Phe Cys Leu Trp Arg Glu Gly Asp Gln Met Thr Lys Val
530 535 540

Ser Tyr Tyr Asn Gln Ala Thr Pro Gly Phe Leu Asn Tyr Val Thr Thr
545 550 555 560

Asn Val Ser Gly Leu Ser Ser Glu Phe Tyr Asn Thr Phe Lys Ala Cys
565 570 575

Glu Ser Phe Leu Leu Asp Asn Arg Asn Asp Leu Ala Pro Ser Leu Gln
580 585 590

Thr Leu

<210> 7
<211> 19
<212> DNA
<213> artificial sequence

<220>
<223> primer oligonucleotide

<400> 7
tgaaggatac cggaaccccc 19

<210> 8
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> probe oligonucleotide

<400> 8
cgaggtgca gatgagccag ctg 23

<210> 9	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer oligonucleotide	
<400> 9	
tactgccctg ccacaccaa	19
<210> 10	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer oligonucleotide	
<400> 10	
tgctgggtta gggtctccct	20
<210> 11	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> probe oligonucleotide	
<400> 11	
actgagctgg tctcggcaag tggc	24
<210> 12	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer oligonucleotide	
<400> 12	
tctattcctg ggggctcga	19
<210> 13	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer oligonucleotide	
<400> 13	
tctcttggac aaccggaatg a	21
<210> 14	
<211> 20	

```

<212> DNA
<213> Artificial Sequence

<220>
<223> probe oligonucleotide

<400> 14
tggcccccag cctccagacc                                20

<210> 15
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> primer oligonucleotide

<400> 15
tctagatgcc ctcaagtggcc                                20

<210> 16
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> primer oligonucleotide

<400> 16
gtaagaaggg agcctgggag                                20

<210> 17
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> primer oligonucleotide

<400> 17
tctagaccac cctttctccg                                20

<210> 18
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> primer oligonucleotide

<400> 18
ccagaccctc tagatgccct ca                                22

<210> 19
<211> 24
<212> DNA
<213> Artificial Sequence

```

<220>		
<223> primer oligonucleotide		
<400> 19		
atgatccaga atgtcgaaaa tcac		24
<210> 20		
<211> 26		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer oligonucleotide		
<400> 20		
agacacacctga aaccttatca tgagcc		26
<210> 21		
<211> 25		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer oligonucleotide		
<400> 21		
gccactgagt cagagtccag ccaac		25
<210> 22		
<211> 21		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer oligonucleotide		
<400> 22		
ccagcctgca gctggaagga c		21
<210> 23		
<211> 47		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> probe oligonucleotide		
<400> 23		
aaatccacat ggctgttccc agcagtgctg tggtagactg tgacagt		47