知识点

▼ 题

- 冯诺依曼结构计算机采用二进制编码主要原因是 (二进制运算规则简单、制造两个稳态的物理器件容易、便于用逻辑门电路时间算术运算)
- 存放欲执行的指令的寄存器是IR
- 加法器中每位的进位生成信号g为 (X_iY_i)
- 加法器采用并行进位的目的是(提高加法器运算速度)
- 四片74181ALU和一片74182CLA配合,具有进位传递功能,在片内进行**先行进位**。
- 计算机操作的最小单位时间是 时钟周期
- 串行进位的并行加法器中,影响加法器运算速度的关键因素是(进位传递延迟)
- 多级存储系统在速度上接近Cache, 在容量和价格上接近外存
- 机器指令存在主存储器,微指令存储在控制存储器。
- CPU不包括地址译码器(在存储器中)
- CPU的状态寄存器对用户完全透明
- 指令周期指 CPU从主存取出指令加上执行这条指令的时间
- 双端口存储器具有两套相互独立的读写系统
- 通用数据寄存器与cache的编址是不同的
- 主存由ROM和RAM组成,容量分别为2的x次方和2的y次方,则主存地址位数至少应为x+y。 错误(主存的地址位数应为x和y中的较大者)
- ROM (只读) 不能做Cache, 因为Cache需要连接CPU和主存, 需要读和写
- 屏蔽字要屏蔽自身
- 基础的三级存储系统是:内存、外存、Cache
- 多级存储系统是 —级Cache、二级Cache、内存、外存
- 内存=主存+Cache
- 闪存的读写速度一样快

- 若I/O采用独立编址方式, CPU需要设备专门的输入/输出指令。
- 在微程序控制器中,取指后形成微程序入口地址的是机器指令的操作码字段。 (指令是指机器指令)
- 微指令包括**微操作码字段**(用于指定具体的操作)和**微地址码字段**(用于确定下一条微指令的地址)
- 微程序控制器的速度比硬布线控制器慢,主要是因为增加了从控制存储器读取 微指令的时间。
- 未格式化的硬盘容量要大于格式化后的实际容量。
- 存储器-存储器型指令可在存储单元之间直接连接,完成数据传输。
- 真正的数据交互是内存和设备接口, D**MA 控制器**只是负责控制整个**数据传送** 流程。

类 别对比项目	CISC	RISC
指令系统	复杂, 庞大	简单,精简
指令数目	一般大于200条	一般小于100条
指令字长	不固定	定长
可访存指令	不加限制	只有Load/Store指令
各种指令执行时间	相差较大	绝大多数在一个周期内完成
各种指令使用频度	相差很大	都比较常用
通用寄存器数量	较少	多
目标代码	难以用优化编译生成高效的目标代码程序	采用优化的编译程序,生成代码较为高效
控制方式	绝大多数为微程序控制	绝大多数为组合逻辑控制
指令流水线	可以通过一定方式实现	必须实现

名称	代表机型
单指令流单数据流 (SISD)	单处理机
单指令流多数据流 (SIMD)	向量处理机。
多指令流单数据流 (MISD)	无,未实现过
多指令流多数据流 (MIMD)	多处理机和机群系统。

名称	代表机型
单指令流单数据流 (SISD)	单处理机
单指令流多数据流 (SIMD)	向量处理机。
多指令流单数据流 (MISD)	无,未实现过
多指令流多数据流 (MIMD)	多处理机和机群系统。

▼ 知识点 (补充)

- 存储单元:在存储器中把保存一个数的几个触发器(与字长有关)称为一个存储单元。存储器是由很多个存储单元组成的。
- 地址:每个存储单元都有编号,称为地址。
- 存储容量:存储器中所有存储单元的总数。
- 内存储器: 半导体存储器
- 外存储器:磁盘存储器和光盘存储器。
- 存储程序:将解题程序存放到存储器中。
- 程序控制:控制器根据存储程序来控制全机协调地完成计算任务。
- 存储程序并按地址顺序执行是冯诺依曼计算机的思想,也是机器自动化工作的 关键。
- 冯诺依曼结构: 指令和数据放到同一个存储器
- 哈弗机构:指令和数据放到不同存储器
- 中央处理器(处理器、CPU): 运算器和控制器
- 计算机软件一般分为:系统程序(简化程序设计,提高计算机使用效率,包括服务性程序、语言程序、操作系统、数据库管理系统)和应用程序(用户利用计算机解决问题的程序,如工程设计程序)
- 手编程序(目的程序):用机器指令编写,计算机完全可以识别
- 汇编语言:用一些文字、符号和数字按规定格式编写指令,用这些指令编写程序

图 1.7 C语言的转换层次

- 溢出: 在计算机过程中出现大于字长绝对值的现象1
- 恢复余数法: 在余数为负时恢复原来的余数, 以便继续往下运算
- 加减交替法(不恢复余数法):运算过程中如果出现余数为负数,可以直接往下运算。
- 逻辑运算:逻辑加(每一位进行或操作)、逻辑非(每一位求反)、逻辑乘(每一位进行与操作)、逻辑异(每一位进行异或操作)
- 74181ALU (多功能算术/逻辑运算单元) 是片内先行进位, 加上CLA (先行进位 位发生器) 后是片间先行进位
- 局部性原理:在某个时间内,频繁访问某一局部的存储器地址空间,而对此范围外的地址空间则很少访问。
- 随机存取存储器(RAM)只读存储器(ROM)闪存(FLASH)本质上也是他 ROM的一种 ROM和FLASH弥补了RAM的缺点,断电后仍然保存之前写入的 数据
- 机器指令:介于宏指令和微指令之间,每条指令可以完成一个独立算术运算或 逻辑运算
- 指令系统(指令集): 一台计算机中所有机器指令的集合
- CISC(复杂指令系统计算机):指令字长不固定,不限制访存指令,大多为微程序控制,通用寄存器较少。一些最简单的指令占指令总数的20%,却在程序

中中出现的频率占80%。

- RISC (精简指令系统计算机):指令字长固定,只有Load/Store指令可以访存,通用寄存器较多,多为硬布线
- 指令字:表示一条指令的机器字,通常简称为指令
- SS型: 需多次访问内存 RR型: 需要用到多个通用寄存器或个别专用寄存器
 RS: 既要访问内存单元,又要访问寄存器
- 指令字长度: 一个指令字中包含的二进制代码的位数
- 机器字长: 计算机能直接处理的二进制数据的位数
- 单字长指令:指令字长度=机器字长度 双字长指令、半字长指令
- 扩展操作技术: 向地址码段扩展操作码的长度
- 指令周期:完成一条指令需要的时间
- 机器周期 (CPU周期): 主存工作周期 (存取周期)
- 时钟周期:控制CPU操作的最小时间单位
- 微命令:控制部件通过控制线向执行部件发出的各种控制命令
- 微操作:执行部件接收微命令后所进行的操作
- 微指令: 在机器的一个CPU周期中, 一组实现一定操作功能的微命令的组合
- 微程序: 一条机器指令的功能是由微指令组成的序列来实现的
- 微程序控制器:控制存储器、微指令寄存器(微地址寄存器和微命令寄存器)、地址转移逻辑
- 总线:构成计算机系统的互联网机构,是多个系统功能部件之间进行数据传送的公共通路。
- 内部总线: CPU内部连接各寄存器及运算部件之间的总线
- 系统总线: CPU同计算机系统的其他高速功能部件相互连接的总线
- I/O (通信) 总线: 中、低速I/O设备之间相互连接的总线
- 总线带宽: 总线本身所能达到的最高传输速率
- 通过适配器(接口)可以实现高速CPU与低速外设之间工作速度上的匹配和同步,并完成计算机和外设之间的所有数据传送和控制。I/O接口是指CPU、主存、外围设备之间通过总线进行连接的逻辑部件。

- 主方(主设备)可以同时启动一个总线周期,而从方(从设备)只能响应主方的请求
- 总线内部结构包含:数据传送总线、仲裁总线、中断和同步总线、公用线
- 信息传输方式可以采用: 并行传送、串行传送、复用传送
- 外围设备由存储介质、驱动装置、控制电路组成
- 以可见光的形式传递和处理信息的设备称为显示设备
- 输入设备: 图形输入(键盘输入、鼠标器输入)、图像输入设备、语音输入设备 备
- 中断是一种程序随机切换达到方式。机器内部原因导致出错的中断叫做内中断 (异常),外部设备请求服务的中断叫做外中断。
- 中断向量:中断服务程序入口地址。中断向量地址:中断服务程序入口地址的地址。
- 中断屏蔽触发器(IM)、中断请求触发器(IR)、准备就绪触发器(RD)、 允许中断触发器(EI)
- DMA方式以响应随机请求的方式,实现主存与I/O设备间的快速数据传送。DMA只能处理简单的数据传送,不能在传送数据的同时进行判断和计算
- CPU对外围设备的管理方法由:程序查询方式、程序中断方式、DMA方式、通道方式(一般不考)
- 并行性包括同时性和并发性