Milestone-3

```
# import library
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
```

Tasks of Milestone - 3

- To perform Isolation forest with the visualization of anomalies.
- To perform Elliptic Envelope algorithm with visualization.
- To perform OneClassSvm algorithms.

Read the data

```
# preprocessed dataset for visulization of categorical features
org_df=pd.read_csv('preprocessed.csv')
org_df.head()
```

₹		Credentials of the Provider	of the of the		City of the Provider	State Code of the Provider	Country Code of the Provider	Provider Type	Part
	0	MD	F	I	SAINT LOUIS	МО	US	Internal Medicine	
	1	MD	F	1	FAYETTEVILLE	NC	US	Obstetrics & Gynecology	
	2	DPM	M	1	NORTH HAVEN	СТ	US	Podiatry	
	3	MD	М	1	KANSAS CITY	МО	US	Internal Medicine	
	4	DO	М	I	JUPITER	FL	US	Internal Medicine	

Encoded dataset for the machine learning model training and anomay detectiona
df=pd.read_csv('encoded.csv')
df.head()

→	Credentials of the Provider	City of the Provider	State Code of the Provider	Provider Type	HCPCS Code	Number of Services	Number of Medicare Beneficiaries	Ni I I Benefic: Day !
0	73827	500	1997	11366	1297	27.0	24.0	
1	73827	209	3725	1028	243	175.0	175.0	
2	1915	10	1403	2027	44	32.0	13.0	
3	73827	317	1997	11366	460	20.0	18.0	
4	6176	51	7263	11366	732	33.0	24.0	
5	rows × 27 column	S						

df.info()

```
<class 'pandas.core.frame.DataFrame'>
    RangeIndex: 100000 entries, 0 to 99999
    Data columns (total 27 columns):
     # Column
                                                                   Non-Null Count
                                                                                    Dtype
         Credentials of the Provider
                                                                   100000 non-null
                                                                                    int64
         City of the Provider
                                                                   100000 non-null
                                                                                    int64
         State Code of the Provider
                                                                    100000 non-null
                                                                                    int64
         Provider Type
                                                                    100000 non-null
                                                                                    int64
                                                                    100000 non-null
         HCPCS Code
                                                                                    int64
         Number of Services
                                                                    100000 non-null
                                                                                     float64
                                                                    100000 non-null
         Number of Medicare Beneficiaries
                                                                                     float64
         Number of Distinct Medicare Beneficiary/Per Day Services
                                                                   100000 non-null
                                                                                    float64
         Average Medicare Allowed Amount
                                                                    100000 non-null
                                                                                    float64
         Average Submitted Charge Amount
                                                                    100000 non-null
                                                                                     float64
     10 Average Medicare Payment Amount
                                                                    100000 non-null
                                                                                     float64
                                                                   100000 non-null
     11 Average Medicare Standardized Amount
                                                                                    float64
     12 Gender of the Provider_F
                                                                    100000 non-null
                                                                                    bool
         Gender of the Provider_M
                                                                    100000 non-null
     14 Gender of the Provider_O
                                                                   100000 non-null
                                                                                    bool
                                                                    100000 non-null
     15 Entity Type of the Provider_I
                                                                                    bool
         Entity Type of the Provider_O
                                                                    100000 non-null
                                                                                     bool
                                                                   100000 non-null
     17 Country Code of the Provider DE
                                                                                    bool
     18 Country Code of the Provider_JP
                                                                   100000 non-null
                                                                                    bool
         Country Code of the Provider_TR
                                                                    100000 non-null
                                                                                     bool
     20 Country Code of the Provider_US
                                                                    100000 non-null
                                                                    100000 non-null
     21 Medicare Participation Indicator_N
                                                                                    bool
     22 Medicare Participation Indicator_Y
                                                                   100000 non-null
                                                                                    bool
     23 Place of Service_F
                                                                    100000 non-null
     24 Place of Service_0
                                                                    100000 non-null
     25 HCPCS Drug Indicator_N
                                                                   100000 non-null
                                                                                    bool
     26 HCPCS Drug Indicator_Y
                                                                    100000 non-null
                                                                                    bool
    dtypes: bool(15), float64(7), int64(5)
    memory usage: 10.6 MB
```

Standardized the data

```
# Standardized the data
from sklearn.preprocessing import StandardScaler
ss=StandardScaler()

numerical_cols=df.iloc[:,:12].columns
scaled_data=ss.fit_transform(df[numerical_cols])
temp_df=pd.DataFrame(scaled_data,columns=df.iloc[:,:12].columns)
temp_df.head()
```

```
Number of
                                State
                                                                                                   Average
                                                                                                             Average
                                                                                                                       Average
       Credentials
                     City of
                                                                       Number of
                                                                                        Distinct
                                                            Number
                                                   HCPCS
                              Code of Provider
                                                                                                  Medicare
                                                                                                           Submitted
                                                                                                                     Medicare
            of the
                        the
                                                               of
                                                                        Medicare
                                                                                        Medicare
                                  the
                                                    Code
                                                                                                   Allowed
                                                                                                                       Payment Sta
                                           Type
                                                                                                              Charge
          Provider Provider
                                                          Services Beneficiaries
                                                                                 Beneficiary/Per
                             Provider
                                                                                                    Amount
                                                                                                              Amount
                                                                                                                        Amount
                                                                                    Day Services
           0.594983
                    1.571686 -0.737342
                                      1.336743
                                                 0.397579
                                                         -0.085301
                                                                        -0.059308
                                                                                        -0.070183
                                                                                                  0.385450
                                                                                                            -0.046433
                                                                                                                      0.400082
     1
           0.594983
                    0.189180 -0.004973
                                      -0.940500
                                                -0.439989
                                                         -0.025939
                                                                         0.076775
                                                                                         0.020049
                                                                                                  0.086673
                                                                                                             0.182805
                                                                                                                      0.207649
     2
          -1.684316 -0.756245 -0.989093 -0.720441 -0.598126
                                                         -0.083296
                                                                        -0.069222
                                                                                        -0.067135
                                                                                                 -0.041922
                                                                                                            -0.187794 -0.064687
     3
           -0.064716
                                                                                        -0.074451 -0.380709
                                                                                                            -0.328957 -0.370166
```

```
scaled_df=temp_df.join(df.iloc[:,12:])
scaled_df.head()
```

_	Credentials of the Provider	City of the Provider	State Code of the Provider	Provider Type	HCPCS Code	Number of Services	Number of Medicare Beneficiaries	Number of Distinct Medicare Beneficiary/Per Day Services	Average Medicare Allowed Amount	Average Submitted Charge Amount	 Coun Code of Provider
(0.594983	1.571686	-0.737342	1.336743	0.397579	-0.085301	-0.059308	-0.070183	0.385450	-0.046433	 F
1	0.594983	0.189180	-0.004973	-0.940500	-0.439989	-0.025939	0.076775	0.020049	0.086673	0.182805	 F
2	-1.684316	-0.756245	-0.989093	-0.720441	-0.598126	-0.083296	-0.069222	-0.067135	-0.041922	-0.187794	 F
3	0.594983	0.702275	-0.737342	1.336743	-0.267549	-0.088109	-0.064716	-0.074451	-0.380709	-0.328957	 F
4	-1.549260	-0.561459	1.494517	1.336743	-0.051402	-0.082895	-0.059308	-0.067744	-0.291221	-0.296019	 F

5 rows × 27 columns

scaled_df.info()

```
<<class 'pandas.core.frame.DataFrame'>
    RangeIndex: 100000 entries, 0 to 99999
    Data columns (total 27 columns):
    # Column
                                                                  Non-Null Count
                                                                                 Dtype
    0 Credentials of the Provider
                                                                  100000 non-null float64
         City of the Provider
                                                                  100000 non-null float64
     2 State Code of the Provider
                                                                  100000 non-null float64
    3 Provider Type4 HCPCS Code
                                                                  100000 non-null float64
                                                                  100000 non-null float64
     5 Number of Services
                                                                  100000 non-null float64
                                                                  100000 non-null float64
        Number of Medicare Beneficiaries
         Number of Distinct Medicare Beneficiary/Per Day Services
                                                                 100000 non-null float64
     8 Average Medicare Allowed Amount
                                                                  100000 non-null float64
        Average Submitted Charge Amount
                                                                  100000 non-null float64
     10 Average Medicare Payment Amount
                                                                  100000 non-null float64
     11 Average Medicare Standardized Amount
                                                                  100000 non-null float64
     12 Gender of the Provider_F
                                                                  100000 non-null bool
     13 Gender of the Provider_M
                                                                  100000 non-null bool
     14 Gender of the Provider_O
                                                                  100000 non-null bool
     15 Entity Type of the Provider_I
                                                                  100000 non-null
     16 Entity Type of the Provider O
                                                                  100000 non-null bool
     17 Country Code of the Provider_DE
                                                                  100000 non-null bool
     18 Country Code of the Provider_JP
                                                                  100000 non-null bool
     19 Country Code of the Provider_TR
                                                                  100000 non-null bool
     20 Country Code of the Provider_US
                                                                  100000 non-null bool
     21 Medicare Participation Indicator_N
                                                                  100000 non-null bool
     22 Medicare Participation Indicator_Y
                                                                  100000 non-null bool
     23 Place of Service_F
                                                                  100000 non-null bool
     24 Place of Service_0
                                                                  100000 non-null bool
     25 HCPCS Drug Indicator_N
                                                                  100000 non-null bool
     26 HCPCS Drug Indicator_Y
                                                                  100000 non-null bool
    dtypes: bool(15), float64(12)
    memory usage: 10.6 MB
```

Anomaly detection

1- Isolation Forest

```
from sklearn.ensemble import IsolationForest
# Step 1: Use the scaled dataset (final_df)
# Step 2: Apply Isolation Forest
iso_forest=IsolationForest(n_estimators=200,contamination=0.01,random_state=42)
iso_forest.fit(scaled_df)
anomaly_labels=iso_forest.predict(scaled_df)

df[anomaly_labels==-1]
```

-	_	_
-	→	4

•	Credentials of the Provider	City of the Provider	State Code of the Provider	Provider Type	HCPCS Code	Number of Services	Number of Medicare Beneficiaries	Number of Distinct Medicare Beneficiary/Per Day Services	Average Medicare Allowed Amount	Average Submitted Charge Amount	 Cc Pr
221	73827	592	1997	447	17	13.0	13.0	13.0	1686.694615	6785.660000	
224	73827	7	3333	507	645	78.0	78.0	78.0	191.303846	209.564359	
340	73827	298	787	512	19	19.0	18.0	18.0	1311.228947	6343.348421	
375	73827	244	1994	999	3	13.0	13.0	13.0	3102.210000	7884.615385	
439	73827	406	1753	1745	24	149.0	57.0	149.0	4213.732148	7374.000000	
99640	73827	96	1423	512	6	27.0	23.0	25.0	777.024815	1525.000000	
99678	73827	2	3333	1240	438	4140.0	2995.0	4140.0	13.320000	82.169345	
99774	73827	28	1520	512	5	13.0	13.0	13.0	550.430769	3408.050000	
99914	73827	5	7775	512	13	34.0	25.0	34.0	3605.580000	8500.000000	
99932	73827	23	6361	12537	8	16.0	15.0	16.0	18112.740000	47000.000000	

1000 rows × 27 columns

- · These above are the rows which are anomalies in the dataset
- There are 1000 anomalies present in the dataset

Visualization for the isolation forest results

Scatter plots for the isolation forest

```
# Map the anomaly labels to colors
colors = np.array(['b', 'r'])  # Normal points: blue, Anomalies: orange
anomaly_colors = np.where(anomaly_labels == 1, colors[0], colors[1])

# Plot the graph of the result of Isolation forest b/w 'Number of Services' and 'Number of Medicar
# Step 3: Visualize the results
features = df[['Number of Services', 'Number of Medicare Beneficiaries']].values
plt.figure(figsize=(10, 6))
plt.scatter(features[:, 0], features[:, 1], c=anomaly_colors, marker='o', edgecolor='k', s=50)
plt.title('Isolation Forest Anomaly Detection')
plt.xlabel('Number of Services')
plt.ylabel('Number of Medicare Beneficiaries')
plt.grid(True)
plt.show()
```


__

Isolation Forest Anomaly Detection


```
# plot the graph between 'Average Medicare Allowed Amount' and 'Average Submitted Charge Amount'
plt.figure(figsize=(10, 6))
plt.scatter(x=df.loc[:,'Average Medicare Allowed Amount'],
            y=df.loc[:,'Average Submitted Charge Amount'],c=anomaly_colors, marker='o', edgecolor='
plt.title('Isolation Forest Anomaly Detection')
plt.xlabel('Average Medicare Allowed Amount')
plt.ylabel('Average Submitted Charge Amount')
plt.grid(True)
plt.show()
```


• Above plot shows that the red point are the anomalies and the blue points are the Normal datapoint.

__

Bar plot for the catogorical features

Create a column as Amomaly Isolations forest which is having Normal and Anomaly category for eac
org_df['Anomaly IsolationForest']=anomaly_labels
org_df['Anomaly IsolationForest'] = org_df['Anomaly IsolationForest'].replace({1: 'Normal', -1: 'A

org_df.head()

₹		Credentials of the Provider	Gender of the Provider	Entity Type of the Provider	City of the Provider	State Code of the Provider	Country Code of the Provider	Provider Type	Medicare Participation Indicator	Place of Service	HCPCS Code	HCPCS Drug Indicator	Number of Services
	0	MD	F	I	SAINT LOUIS	МО	US	Internal Medicine	Υ	F	99223	N	27.0
	1	MD	F	1	FAYETTEVILLE	NC	US	Obstetrics & Gynecology	Υ	0	G0202	N	175.0
	2	DPM	M	1	NORTH HAVEN	СТ	US	Podiatry	Υ	0	99348	N	32.0
	3	MD	М	1	KANSAS CITY	МО	US	Internal Medicine	Υ	0	81002	N	20.0
	4	DO	М	1	JUPITER	FL	US	Internal Medicine	Y	0	96372	N	33.0

```
# count plot for Gender of the Provider
plt.figure(figsize=(10, 6))
sns.countplot(org_df,x='Gender of the Provider',hue='Anomaly IsolationForest')
plt.title('Anomaly for Gender of the Provider-Isolation Forest')
plt.grid(True)
plt.show()
```

```
# count plot for Entity Type of the Provider
plt.figure(figsize=(10, 6))
sns.countplot(org_df,x='Entity Type of the Provider',hue='Anomaly IsolationForest')
plt.title('Anomaly for Entity Type of the Provider - Isolation Forest')
plt.grid(True)
plt.show()
```



```
# Identify the top 10 categories
top_10_categories = org_df['Credentials of the Provider'].value_counts().head(10).index
top_10_data = org_df[org_df['Credentials of the Provider'].isin(top_10_categories)]
# count plot for the top 10 Provider type
plt.figure(figsize=(8, 6))
sns.countplot(top_10_data,x='Credentials of the Provider',hue='Anomaly IsolationForest')
plt.title('Anomaly for Credentials of the Provider - Isolation Forest')
plt.grid(True)
plt.show()
```


- In All the above bar plots blue bara shows the count of normal points
- The orange bars shows the count of anomalies present in the dataset for the different categories

2- Elliptic Envelope

```
# Apply Elliptic Envelope
from sklearn.covariance import EllipticEnvelope
elliptic_env = EllipticEnvelope(contamination=0.01, random_state=42)
elliptic_env.fit(scaled_df)
anomaly_predictions = elliptic_env.predict(scaled_df)
```

df[anomaly_predictions==-1]

_	_	_
Ξ	7	
٠	_	_

		Credentials of the Provider	City of the Provider	State Code of the Provider	Provider Type	HCPCS Code	Number of Services	Number of Medicare Beneficiaries	Number of Distinct Medicare Beneficiary/Per Day Services	Average Medicare Allowed Amount	Average Submitted Charge Amount	•••	Cc Pr
	79	6176	13	1997	3098	49	1568.0	20.0	22.0	12.528068	15.000000		
	120	73827	118	2792	1745	27	15000.0	12.0	20.0	1.060300	3.900000		
	234	73827	124	1136	727	90	1620.0	19.0	27.0	16.891630	35.666667		
	337	73827	60	2020	2495	33	5234.0	26.0	60.0	5.974026	10.387658		
	563	73827	611	2858	1794	21	70700.0	22.0	311.0	0.023652	0.130000		
9	9576	113	634	2791	12537	12	15600.0	77.0	78.0	0.210269	1.000000		
9	9593	73827	40	171	1745	37	1970.0	59.0	197.0	21.903467	88.970000		
9	9872	73827	400	4561	727	6	43000.0	14.0	113.0	7.481456	8.000000		
9	9914	73827	5	7775	512	13	34.0	25.0	34.0	3605.580000	8500.000000		
9	9932	73827	23	6361	12537	8	16.0	15.0	16.0	18112.740000	47000.000000		

1000 rows × 27 columns

- · according to the Ellopic envelope algorithm, The no of present of anomalies present in the dataset are 1000.
- · Above rows are the one which is anomalies in the dataset.

```
# Create a column as Anomaly Elliptic Envelope
org_df['Anomaly EllipticEnvelope']=anomaly_predictions
org_df['Anomaly EllipticEnvelope'] = org_df['Anomaly EllipticEnvelope'].replace({1: 'Normal', -1:
```

```
org_df.head()
```

_

-		Credentials of the Provider	Gender of the Provider	Entity Type of the Provider	City of the Provider	State Code of the Provider	Country Code of the Provider	Provider Type	Medicare Participation Indicator	Place of Service	HCPCS Code	HCPCS Drug Indicator	Number of Services
	0	MD	F	I	SAINT LOUIS	МО	US	Internal Medicine	Υ	F	99223	N	27.0
	1	MD	F	1	FAYETTEVILLE	NC	US	Obstetrics & Gynecology	Υ	0	G0202	N	175.0
	2	DPM	М	1	NORTH HAVEN	СТ	US	Podiatry	Υ	0	99348	N	32.0
	3	MD	М	1	KANSAS CITY	МО	US	Internal Medicine	Υ	0	81002	N	20.0
	4	DO	М	1	JUPITER	FL	US	Internal Medicine	Υ	0	96372	N	33.0

Visualization for the Elliptic Envelope results

Scatter plots for the different features having normal and anomalous points

```
# Map the anomaly labels to colors
colors = np.array(['b', 'r']) # Normal points: blue, Anomalies: red
anomaly_col = np.where(anomaly_predictions == 1, colors[0], colors[1])

# Visualize the results
features = df[['Average Medicare Allowed Amount', 'Average Submitted Charge Amount']].values
plt.figure(figsize=(10, 6))
plt.scatter(features[:, 0], features[:, 1], c=anomaly_col, marker='o', edgecolor='k')
plt.title('Isolation Forest Anomaly Detection')
plt.xlabel('Average Medicare Allowed Amount')
plt.ylabel('Average Submitted Charge Amount')
plt.grid(True)
plt.show()
```

__

- In the above plot we can see the two region in which there are two type of points red and blue
- Red points shows the anomalies and Blue points shows the normal transaction in the dataset.

Barplot for the different features

```
# plot for 'Gender of the Provider'
plt.figure(figsize=(10, 6))
sns.countplot(org_df,x='Gender of the Provider',hue='Anomaly EllipticEnvelope')
plt.title('Anomaly for Gender of the Provider - EllipticEnvelope')
plt.grid(True)
plt.show()
```


- The above pot shows the count plot for the gender of the provider
- There are three type of Gender of the provider-Male, Female and Organization
- · clearly we can see the normal and anomalies count for the gender of the providers

```
plt.figure(figsize=(10, 6))
sns.countplot(org_df,x='Entity Type of the Provider',hue='Anomaly EllipticEnvelope')
plt.title('Anomaly for Entity Type of the Provider - EllipticEnvelope')
plt.grid(True)
plt.show()
```


- According to the above plot we can see the type of provider individual and organization.
- · I category stands for individual type of provider.

0

- O category stands for organization type of provider.
- · Blue and orange bars shows us the count of normal and fraudulent transactions in the dataset.

```
# Identify the top 10 categories
top_10_categories = org_df['Credentials of the Provider'].value_counts().head(10).index
top_10_data = org_df[org_df['Credentials of the Provider'].isin(top_10_categories)]
# count plot for the top 10 Provider type
plt.figure(figsize=(8, 6))
sns.countplot(top_10_data,x='Credentials of the Provider',hue='Anomaly EllipticEnvelope')
plt.title('Anomaly for Credentials of the Provider - EllipticEnvelope')
plt.grid(True)
plt.show()
```

Entity Type of the Provider

Visualization of OneClassSym anomalies

Scattor plots