# Developing Efficient SMT Solvers ESARLT 2007

Leonardo de Moura

leonardo@microsoft.com

Microsoft Research

#### Introduction

- Satisfiability Modulo Theories (SMT)
  - ▶ The next generation of verification engines.
  - ▶ SAT solvers + Theories
    - Arithmetic
    - Arrays
    - Uninterpreted Functions
  - Some problems are more naturally expressed in SMT.
  - More automation.

## **Applications**

- Applications have different requirements.
- Predicate abstraction
  - Fast when unsat.
  - May be incomplete.
  - Examples: Microsoft SLAM/SDV (device driver verification).
- Testing
  - Fast when sat.
  - Model generation.
  - May be unsound.
  - Examples: Microsoft MUTT and Sage.

## Applications (cont.)

- Extended Static Checking.
  - Fast when sat & unsat.
  - Must be sound.
  - "Counterexamples" (execution trace).

  - ▶ Examples: ESC/Java, *Microsoft Spec# and ESP*.
- $\blacktriangleright$  Bounded Model Checking (BMC) & k-induction.
- Planning & Scheduling.
- Symbolic Simulation.
- Equivalence Checking.

## Roadmap

- Background
- Architecture
- ▶ Implementation Techniques
- Applications

#### Language

- A signature  $\Sigma$  is a finite set of: function symbols  $\Sigma_F = \{f, g, \ldots\}$ , predicate symbols  $\Sigma_P = \{p, q, \ldots\}$ , and an arity function  $\Sigma \mapsto N$ .
- Function symbols with arity 0 are called constants.
- A countable set  $\mathcal V$  of *variables*  $\{x,y,\ldots\}$  disjoint of  $\Sigma$ .
- Terms:

$$t := f(t_1, \dots, t_n) \mid x$$

▶ Formulas:

$$\phi := p(t_1, \dots, t_n) \mid \phi_1 \lor \phi_2 \mid \phi_1 \land \phi_2 \mid \neg \phi_1 \mid \exists x : \phi_1 \mid \forall x : \phi_1$$

- Free (occurrences) of variables in a formula are those not bound by a quantifier.
- A sentence is a first-order formula with no free variables.

#### **Theories**

- A (first-order) theory  $\mathcal{T}$  (over a signature  $\Sigma$ ) is a set of (deductively closed) sentences (over  $\Sigma$  and  $\mathcal{V}$ ).
- Let  $\mathit{DC}(\Gamma)$  be the deductive closure of a set of sentences  $\Gamma$ .
  - For every theory  $\mathcal{T}$ ,  $\mathit{DC}(\mathcal{T}) = \mathcal{T}$ .
- A theory  $\mathcal T$  is *consistent* if *false*  $otin \mathcal T$ .
- We can view a (first-order) theory  $\mathcal{T}$  as the class of all *models* of  $\mathcal{T}$  (due to completeness of first-order logic).

## Models (Semantics)

- lacktriangle A model M is defined as:
  - Domain S: set of elements.
  - Interpretation  $f^M:S^n\mapsto S$  for each  $f\in \Sigma_F$  with  $\operatorname{\it arity}(f)=n.$
  - Interpretation  $p^M \subseteq S^n$  for each  $p \in \Sigma_P$  with arity(p) = n.
  - Assignment  $x^M \in S$  for every variable  $x \in \mathcal{V}$ .
- $\blacktriangleright$  A formula  $\phi$  is true in a model M if it evaluates to true under the given interpretations over the domain S.
- lacktriangledown M is a model for the theory  ${\mathcal T}$  if all sentences of  ${\mathcal T}$  are true in M .

## Satisfiability and Validity

A formula  $\phi(\vec{x})$  is *satisfiable* in a theory  $\mathcal{T}$  if there is a model of  $DC(\mathcal{T} \cup \exists \vec{x}.\phi(\vec{x}))$ . That is, there is a model M for  $\mathcal{T}$  in which  $\phi(\vec{x})$  evaluates to true, denoted by,

$$M \models_{\mathcal{T}} \phi(\vec{x})$$

- This is also called  $\mathcal{T}$ -satisfiability.
- A formula  $\phi(\vec{x})$  is *valid* in a theory  $\mathcal{T}$  if  $\forall \vec{x}. \phi(\vec{x}) \in \mathcal{T}$ . That is  $\phi(\vec{x})$  evaluates to true in every model M of  $\mathcal{T}$ .
- T-validity is denoted by  $\models_{\mathcal{T}} \phi(\vec{x})$ .
- The quantifier free T -satisfiability problem restricts  $\phi$  to be quantifier free.

#### Combination of Theories

- In practice, we need a combination of theories.
- Examples:

  - $f(f(x) f(y)) \neq f(z), x + z \le y \le x \Rightarrow z < 0$
- Given

$$egin{array}{lcl} \Sigma &=& \Sigma_1 \cup \Sigma_2 \\ {\mathcal T}_1, {\mathcal T}_2 &: & ext{theories over } \Sigma_1, \Sigma_2 \\ {\mathcal T} &=& ext{DC}({\mathcal T}_1 \cup {\mathcal T}_2) \end{array}$$

- $\blacktriangleright$  Is  $\mathcal T$  consistent?
- Given satisfiability procedures for conjunction of literals of  $\mathcal{T}_1$  and  $\mathcal{T}_2$ , how to decide the satisfiability of  $\mathcal{T}$ ?

#### Preamble

- ▶ Disjoint signatures:  $\Sigma_1 \cap \Sigma_2 = \emptyset$ .
- Stably-Infinite Theories.
- Convex Theories.

#### Stably-Infinite Theories

- A theory is stably infinite if every satisfiable QFF is satisfiable in an infinite model.
- ▶ Example. Theories with only finite models are not stably infinite.

$$\mathcal{T}_2 = DC(\forall x, y, z. (x = y) \lor (x = z) \lor (y = z)).$$

The union of two consistent, disjoint, stably infinite theories is consistent.

#### Convexity

- A theory  $\mathcal{T}$  is *convex* iff for all finite sets  $\Gamma$  of literals and for all non-empty disjunctions  $\bigvee_{i\in I} x_i = y_i$  of variables,  $\Gamma \models_{\mathcal{T}} \bigvee_{i\in I} x_i = y_i$  iff  $\Gamma \models_{\mathcal{T}} x_i = y_i$  for some  $i\in I$ .
- Every convex theory  $\mathcal{T}$  with non trivial models (i.e.,  $\models_T \exists x, y. \ x \neq y$ ) is stably infinite.
- All Horn theories are convex this includes all (conditional) equational theories.
- Linear rational arithmetic is convex.

## Convexity (cont.)

- Many theories are not convex:
  - Linear integer arithmetic.

$$y = 1, z = 2, 1 \le x \le 2 \models x = y \lor x = z$$

Nonlinear arithmetic.

$$x^{2} = 1, y = 1, z = -1 \models x = y \lor x = z$$

- ▶ Theory of Bit-vectors.
- Theory of Arrays.

$$v_1 = \mathit{read}(\mathit{write}(a,i,v_2),j), v_3 = \mathit{read}(a,j) \models$$
 
$$v_1 = v_2 \lor v_1 = v_3$$

#### Convexity: Example

- Let  $\mathcal{T}=\mathcal{T}_1\cup\mathcal{T}_2$ , where  $\mathcal{T}_1$  is EUF (O(nlog(n))) and  $\mathcal{T}_2$  is IDL (O(nm)).
- $\mathcal{T}_2$  is not convex.
- Satisfiability is NP-Complete for  $\mathcal{T}=\mathcal{T}_1\cup\mathcal{T}_2$ .
  - $\blacktriangleright$  Reduce 3CNF satisfiability to  $\mathcal{T}$ -satisfiability.
  - For each boolean variable  $p_i$  add the atomic formulas:  $0 \le x_i, x_i \le 1$ .
  - For a clause  $p_1 \vee \neg p_2 \vee p_3$  add the atomic formula:  $f(x_1, x_2, x_3) \neq f(0, 1, 0)$

#### Nelson-Oppen Combination

- Let  $\mathcal{T}_1$  and  $\mathcal{T}_2$  be consistent, stably infinite theories over disjoint (countable) signatures. Assume satisfiability of conjunction of literals can decided in  $O(T_1(n))$  and  $O(T_2(n))$  time respectively. Then,
  - 1. The combined theory  $\mathcal{T}$  is consistent and stably infinite.
  - 2. Satisfiability of quantifier free conjunction of literals in  $\mathcal{T}$  can be decided in  $O(2^{n^2} \times (T_1(n) + T_2(n))$ .
  - 3. If  $\mathcal{T}_1$  and  $\mathcal{T}_2$  are convex, then so is  $\mathcal{T}$  and satisfiability in  $\mathcal{T}$  is in  $O(n^4 \times (T_1(n) + T_2(n)))$ .

#### Nelson-Oppen Combination Procedure

▶ The combination procedure:

**Initial State:**  $\phi$  is a conjunction of literals over  $\Sigma_1 \cup \Sigma_2$ .

**Purification:** Preserving satisfiability transform  $\phi$  into  $\phi_1 \wedge \phi_2$ , such that,  $\phi_i \in \Sigma_i$ .

Interaction: Guess a partition of  $\mathcal{V}(\phi_1) \cap \mathcal{V}(\phi_2)$  into disjoint subsets. Express it as conjunction of literals  $\psi$ . Example. The partition  $\{x_1\}, \{x_2, x_3\}, \{x_4\}$  is represented as  $x_1 \neq x_2, x_1 \neq x_4, x_2 \neq x_4, x_2 = x_3$ .

Component Procedures : Use individual procedures to decide whether  $\phi_i \wedge \psi$  is satisfiable.

Return: If both return yes, return yes. No, otherwise.

#### **Purification**

Purification:

$$\phi \wedge P(\dots, s[t], \dots) \leadsto \phi \wedge P(\dots, s[x], \dots) \wedge x = t,$$
  $t$  is not a variable.

- Purification is satisfiability preserving and terminating.
- As most of the SMT developers will tell you, the purification step is not really necessary.
- Given a set of mixed (impure) literal  $\Gamma$ , define a *shared term* to be any term in  $\Gamma$  which is *alien* in some literal or sub-term in  $\Gamma$ .
- In our examples, these were the terms replaced by constants.
- Assume that each satisfiability procedure treats alien terms as constants.

- Each step is satisfiability preserving.
- lacktriangle Say  $\phi$  is satisfiable (in the combination).
  - Purification:  $\phi_1 \wedge \phi_2$  is satisfiable.

- Each step is satisfiability preserving.
- lacktriangle Say  $\phi$  is satisfiable (in the combination).
  - Purification:  $\phi_1 \wedge \phi_2$  is satisfiable.
  - Iteration: for some partition  $\psi$ ,  $\phi_1 \wedge \phi_2 \wedge \psi$  is satisfiable.

- Each step is satisfiability preserving.
- lacktriangle Say  $\phi$  is satisfiable (in the combination).
  - Purification:  $\phi_1 \wedge \phi_2$  is satisfiable.
  - Iteration: for some partition  $\psi$ ,  $\phi_1 \wedge \phi_2 \wedge \psi$  is satisfiable.
  - ▶ Component procedures:  $\phi_1 \wedge \psi$  and  $\phi_2 \wedge \psi$  are both satisfiable in component theories.

- Each step is satisfiability preserving.
- lacktriangle Say  $\phi$  is satisfiable (in the combination).
  - Purification:  $\phi_1 \wedge \phi_2$  is satisfiable.
  - Iteration: for some partition  $\psi$ ,  $\phi_1 \wedge \phi_2 \wedge \psi$  is satisfiable.
  - ▶ Component procedures:  $\phi_1 \wedge \psi$  and  $\phi_2 \wedge \psi$  are both satisfiable in component theories.
  - Therefore, if the procedure return unsatisfiable, then  $\phi$  is unsatisfiable.

- Suppose the procedure returns satisfiable.
  - Let  $\psi$  be the partition and A and B be models of  $\mathcal{T}_1 \wedge \phi_1 \wedge \psi$  and  $\mathcal{T}_2 \wedge \phi_2 \wedge \psi$ .

- Suppose the procedure returns satisfiable.
  - Let  $\psi$  be the partition and A and B be models of  $\mathcal{T}_1 \wedge \phi_1 \wedge \psi$  and  $\mathcal{T}_2 \wedge \phi_2 \wedge \psi$ .
  - ▶ The component theories are stably infinite. So, assume the models are infinite (of same cardinality).

- Suppose the procedure returns satisfiable.
  - Let  $\psi$  be the partition and A and B be models of  $\mathcal{T}_1 \wedge \phi_1 \wedge \psi$  and  $\mathcal{T}_2 \wedge \phi_2 \wedge \psi$ .
  - The component theories are stably infinite. So, assume the models are infinite (of same cardinality).
  - Let h be a bijection between  $S_A$  and  $S_B$  such that  $h(x^A) = x^B$  for each shared variable.

- Suppose the procedure returns satisfiable.
  - Let  $\psi$  be the partition and A and B be models of  $\mathcal{T}_1 \wedge \phi_1 \wedge \psi$  and  $\mathcal{T}_2 \wedge \phi_2 \wedge \psi$ .
  - The component theories are stably infinite. So, assume the models are infinite (of same cardinality).
  - Let h be a bijection between  $S_A$  and  $S_B$  such that  $h(x^A) = x^B$  for each shared variable.
  - Extend B to  $\bar{B}$  by interpretations of symbols in  $\Sigma_1$ :  $f^{\bar{B}}(b_1,\ldots,b_n)=h(f^A(h^{-1}(b_1),\ldots,h^{-1}(b_n)))$

- Suppose the procedure returns satisfiable.
  - Let  $\psi$  be the partition and A and B be models of  $\mathcal{T}_1 \wedge \phi_1 \wedge \psi$  and  $\mathcal{T}_2 \wedge \phi_2 \wedge \psi$ .
  - The component theories are stably infinite. So, assume the models are infinite (of same cardinality).
  - Let h be a bijection between  $S_A$  and  $S_B$  such that  $h(x^A) = x^B$  for each shared variable.
  - Fixtend B to  $\bar{B}$  by interpretations of symbols in  $\Sigma_1$ :  $f^{\bar{B}}(b_1,\ldots,b_n)=h(f^A(h^{-1}(b_1),\ldots,h^{-1}(b_n)))$
  - ▶ *B* is a model of:

$$\mathcal{T}_1 \wedge \phi_1 \wedge \mathcal{T}_2 \wedge \phi_2 \wedge \psi$$

#### NO deterministic procedure

▶ Instead of *guessing*, we can *deduce* the equalities to be shared.

Purification: no changes.

**Interaction:** Deduce an equality x = y:

$$\mathcal{T}_1 \vdash (\phi_1 \Rightarrow x = y)$$

Update  $\phi_2 := \phi_2 \wedge x = y$ . And vice-versa. Repeat until no further changes.

Component Procedures : Use individual procedures to decide whether  $\phi_i$  is satisfiable.

▶ Remark:  $\mathcal{T}_i \vdash (\phi_i \Rightarrow x = y)$  iff  $\phi_i \land x \neq y$  is not satisfiable in  $\mathcal{T}_i$ .

- Assume the theories are convex.
  - Suppose  $\phi_i$  is satisfiable.

- Assume the theories are convex.
  - Suppose  $\phi_i$  is satisfiable.
  - Let E be the set of equalities  $x_j = x_k$  ( $j \neq k$ ) such that,  $\mathcal{T}_i \not\vdash \phi_i \Rightarrow x_j = x_k$ .

- Assume the theories are convex.
  - Suppose  $\phi_i$  is satisfiable.
  - Let E be the set of equalities  $x_j = x_k$  ( $j \neq k$ ) such that,  $\mathcal{T}_i \not\vdash \phi_i \Rightarrow x_j = x_k$ .
  - $\blacktriangleright$  By convexity,  $\mathcal{T}_i \not\vdash \phi_i \Rightarrow \bigvee_E x_j = x_k$ .

- Assume the theories are convex.
  - Suppose  $\phi_i$  is satisfiable.
  - Let E be the set of equalities  $x_j = x_k$  ( $j \neq k$ ) such that,  $\mathcal{T}_i \not\vdash \phi_i \Rightarrow x_j = x_k$ .
  - $\blacktriangleright$  By convexity,  $\mathcal{T}_i \not\vdash \phi_i \Rightarrow \bigvee_E x_j = x_k$ .
  - $\bullet$   $\phi_i \land \bigwedge_E x_j \neq x_k$  is satisfiable.

- Assume the theories are convex.
  - Suppose  $\phi_i$  is satisfiable.
  - Let E be the set of equalities  $x_j = x_k$  ( $j \neq k$ ) such that,  $\mathcal{T}_i \not\vdash \phi_i \Rightarrow x_j = x_k$ .
  - $\blacktriangleright$  By convexity,  $\mathcal{T}_i \not\vdash \phi_i \Rightarrow \bigvee_E x_j = x_k$ .
  - $\bullet$   $\phi_i \land \bigwedge_E x_j \neq x_k$  is satisfiable.
  - ▶ The proof now is identical to the nondeterministic case.

- Assume the theories are convex.
  - Suppose  $\phi_i$  is satisfiable.
  - Let E be the set of equalities  $x_j = x_k$  ( $j \neq k$ ) such that,  $\mathcal{T}_i \not\vdash \phi_i \Rightarrow x_j = x_k$ .
  - $\blacktriangleright$  By convexity,  $\mathcal{T}_i \not\vdash \phi_i \Rightarrow \bigvee_E x_j = x_k$ .

  - ▶ The proof now is identical to the nondeterministic case.
  - Sharing equalities is sufficient, because a theory  $\mathcal{T}_1$  can assume that  $x^B \neq y^B$  whenever x=y is not implied by  $\mathcal{T}_2$  and vice versa.

# Roadmap

- Background
- Implementing SMT solvers
- Applications

#### **Architecture**

- Preprocessor/Simplifier.
- > SAT solver.
- ▶ Blackboard: "bus" used to connect the theories.
- Theories:
  - Arithmetic,
  - Bit-vectors,
  - Arrays,
  - etc.
- Heuristic quantifier instantiation.

### Preprocessor/Simplifier

- Apply simplification rules:
  - Normalization:
    - Sort arguments of commutative operators.
    - Flat associative operators:

$$\mathit{or}(p_1,\mathit{or}(p_2,p_3)) \leadsto \mathit{or}(p_1,p_2,p_3)$$

Rewrite arithmetic expressions as sums of monomials.

$$x(y+3) = 5 \rightsquigarrow 3x + xy = 5$$

- Hash-consing.
- Lift term if-then-else.
- $x = t \wedge C[x] \leadsto C[t].$
- etc.

#### Preprocessor/Simplifier

- CNF translation.
- Rewrite formula to simplify atoms that are asserted during the search.
- Example:

$$x \ge 0 \land (x + y \le 2 \lor x + 2y \ge 6) \land (x + y = 2 \lor x + 2y > 4)$$

$$(s_1 = x + y \land s_2 = x + 2y) \land$$

$$(x \ge 0 \land (s_1 \le 2 \lor s_2 \ge 6) \land (s_1 = 2 \lor s_2 > 4))$$

- Only bounds (e.g.,  $s_1 \le 2$ ) are asserted during the search.
- Unconstrained variables can be eliminated before the beginning of the search.

#### SMT solvers before SAT breakthrough

- Ad-hoc support for boolean combination of literals.
- Ad-hoc support for (non-convex) theories.
- "Case-splits" should be avoided.
- Few real benchmarks.
- Breakthrough in SAT solving changed everything.

### Breakthrough in SAT solving

- Breakthrough in SAT solving influenced the way SMT solvers are implemented.
- Modern SAT solvers are based on the DPLL algorithm.
- Modern implementations add several sophisticated search techniques.
  - Backjumping
  - Learning
  - Restarts
  - Watched literals

#### The Original DPLL Procedure

- lacktriangleright DPLL tries to build incrementally a satisfying truth assignment M for a CNF formula F.
- lacksquare M is grown by
  - lacktriangle deducing the truth value of a literal from M and F, or
  - guessing a truth value.
- If a wrong guess leads to an inconsistency, the procedure backtracks and tries the opposite one.

#### Lazy approach: SAT solvers + Theories

- This approach was independently developed by several groups: CVC (Stanford), ICS (SRI), MathSAT (Univ. Trento, Italy), and Verifun (HP).
- It was motivated also by the breakthroughs in SAT solving.
- SAT solver "manages" the boolean structure, and assigns truth values to the atoms in a formula.
- Efficient theory solvers are used to validate the (partial) assignment produced by the SAT solver.
- When theory solver detects unsatisfiability → a new clause (*lemma*) is created.

### SAT solvers + Theories (cont.)

- Example:
  - Suppose the SAT solver assigns

$$\{x=y\to T, y=z\to T, f(x)=f(z)\to F\}.$$

- ▶ Theory solver detects the conflict, and a *lemma* is created  $\neg(x=y) \lor \neg(y=z) \lor f(x) = f(z)$ .
- Some theory solvers use the "proof" of the conflict to build the lemma.
- Problems in these tools:
  - ▶ The lemmas are imprecise (not minimal).
  - The theory solver is "passive": it just detects conflicts. There is no propagation step.
  - Backtracking is expensive, some tools restart from scratch when a conflict is detected.

#### Blackboard/Bus

- ▶ The Blackboard/Bus stores the equalities/disequalities known by the solver.
- ▶ The set of known equalities is represented as a set of equivalence classes.
  - Union-Find data structure.
- ▶ The bus is used to connect the theories.

### Combining theories in practice

- Propagate all implied equalities.
  - Deterministic Nelson-Oppen.
  - Complete only for convex theories.
  - It may be expensive for some theories.
- Delayed Theory Combination.
  - Nondeterministic Nelson-Oppen.
  - Create set of interface equalities (x = y) between shared variables.
  - Use SAT solver to guess the partition.
  - Disadvantage: the number of additional equality literals is quadratic in the number of shared variables.

### Combining theories in practice (cont.)

- Common to these methods is that they are pessimistic about which equalities are propagated.
- Model-based Theory Combination
  - Optimistic approach.
  - $lackbox{ Use a candidate model } M_i$  for one of the theories  $\mathcal{T}_i$  and propagate all equalities implied by the candidate model, hedging that other theories will agree.

if 
$$M_i \models \mathcal{T}_i \cup \Gamma_i \cup \{u=v\}$$
 then propagate  $u=v$  .

- If not, use backtracking to fix the model.
- It is cheaper to enumerate equalities that are implied in a particular model than of all models.

$$x = f(y - 1), f(x) \neq f(y), 0 \le x \le 1, 0 \le y \le 1$$

**Purifying** 

$$x = f(z), f(x) \neq f(y), 0 \le x \le 1, 0 \le y \le 1, z = y - 1$$

| ${\mathcal T}_{\mathcal E}$ |               |                                         | ${\mathcal T}_{\mathcal A}$ |                        |
|-----------------------------|---------------|-----------------------------------------|-----------------------------|------------------------|
| Literals                    | Eq. Classes   | Model                                   | Literals                    | Model                  |
| x = f(z)                    | $\{x, f(z)\}$ | $x^{\mathcal{E}} = *_1$                 | $0 \le x \le 1$             | $x^{\mathcal{A}} = 0$  |
| $f(x) \neq f(y)$            | $\{y\}$       | $y^{\mathcal{E}} = *_2$                 | $0 \le y \le 1$             | $y^{\mathcal{A}} = 0$  |
|                             | $\{z\}$       | $z^{\mathcal{E}} = *_3$                 | z = y - 1                   | $z^{\mathcal{A}} = -1$ |
|                             | $\{f(x)\}$    | $f^{\mathcal{E}} = \{ *_1 \mapsto *_4,$ |                             |                        |
|                             | $\{f(y)\}$    | $*_2 \mapsto *_5,$                      |                             |                        |
|                             |               | $*_3 \mapsto *_1,$                      |                             |                        |
|                             |               | $\textit{else} \mapsto *_6\}$           |                             |                        |

Assume x = y

| ${\mathcal T}_{\mathcal E}$ |                  |                                         | ${\mathcal T}_{\mathcal A}$ |                        |
|-----------------------------|------------------|-----------------------------------------|-----------------------------|------------------------|
| Literals                    | Eq. Classes      | Model                                   | Literals                    | Model                  |
| x = f(z)                    | $\{x, y, f(z)\}$ | $x^{\mathcal{E}} = *_1$                 | $0 \le x \le 1$             | $x^{\mathcal{A}} = 0$  |
| $f(x) \neq f(y)$            | $\{z\}$          | $y^{\mathcal{E}} = *_1$                 | $0 \le y \le 1$             | $y^{\mathcal{A}} = 0$  |
| x = y                       | $\{f(x), f(y)\}$ | $z^{\mathcal{E}} = *_2$                 | z = y - 1                   | $z^{\mathcal{A}} = -1$ |
|                             |                  | $f^{\mathcal{E}} = \{ *_1 \mapsto *_3,$ | x = y                       |                        |
|                             |                  | $*_2 \mapsto *_1,$                      |                             |                        |
|                             |                  | $\textit{else} \mapsto *_4\}$           |                             |                        |

Unsatisfiable

| ${\mathcal T}_{\mathcal E}$ |               |                                         | ${\mathcal T}_{\mathcal A}$ |                        |
|-----------------------------|---------------|-----------------------------------------|-----------------------------|------------------------|
| Literals                    | Eq. Classes   | Model                                   | Literals                    | Model                  |
| x = f(z)                    | $\{x, f(z)\}$ | $x^{\mathcal{E}} = *_1$                 | $0 \le x \le 1$             | $x^{\mathcal{A}} = 0$  |
| $f(x) \neq f(y)$            | y             | $y^{\mathcal{E}} = *_2$                 | $0 \le y \le 1$             | $y^{\mathcal{A}} = 0$  |
| $x \neq y$                  | $\{z\}$       | $z^{\mathcal{E}} = *_3$                 | z = y - 1                   | $z^{\mathcal{A}} = -1$ |
|                             | f(x)          | $f^{\mathcal{E}} = \{ *_1 \mapsto *_4,$ | $x \neq y$                  |                        |
|                             | $\{f(y)\}$    | $*_2 \mapsto *_5,$                      |                             |                        |
|                             |               | $*_3 \mapsto *_1,$                      |                             |                        |
|                             |               | else $\mapsto *_6$                      |                             |                        |

Backtrack, and assert  $x \neq y$ .

 $\mathcal{T}_{\mathcal{A}}$  model need to be fixed.

| ${\mathcal T}_{\mathcal E}$ |               |                                         | ${\mathcal T}_{\mathcal A}$ |                       |
|-----------------------------|---------------|-----------------------------------------|-----------------------------|-----------------------|
| Literals                    | Eq. Classes   | Model                                   | Literals                    | Model                 |
| x = f(z)                    | $\{x, f(z)\}$ | $x^{\mathcal{E}} = *_1$                 | $0 \le x \le 1$             |                       |
| $f(x) \neq f(y)$            | $  \{y\}$     | $y^{\mathcal{E}} = *_2$                 | $0 \le y \le 1$             |                       |
| $x \neq y$                  | $\{z\}$       | $z^{\mathcal{E}} = *_3$                 | z = y - 1                   | $z^{\mathcal{A}} = 0$ |
|                             | f(x)          | $f^{\mathcal{E}} = \{ *_1 \mapsto *_4,$ | $x \neq y$                  |                       |
|                             | f(y)          | $*_2 \mapsto *_5,$                      |                             |                       |
|                             |               | $*_3 \mapsto *_1,$                      |                             |                       |
|                             |               | $\textit{else} \mapsto *_6\}$           |                             |                       |

Assume x = z

|                  | ${\mathcal T}_{\mathcal A}$         |                                         |                 |                       |
|------------------|-------------------------------------|-----------------------------------------|-----------------|-----------------------|
| Literals         | Eq. Classes                         | Model                                   | Literals        | Model                 |
| x = f(z)         | $\left\{ x, z, f(x), f(z) \right\}$ | $x^{\mathcal{E}} = *_1$                 | $0 \le x \le 1$ | $x^{\mathcal{A}} = 0$ |
| $f(x) \neq f(y)$ | $\{y\}$                             | $y^{\mathcal{E}} = *_2$                 | $0 \le y \le 1$ | $y^{\mathcal{A}} = 1$ |
| $x \neq y$       | $\{f(y)\}$                          | $z^{\mathcal{E}} = *_1$                 | z = y - 1       | $z^{\mathcal{A}} = 0$ |
| x = z            |                                     | $f^{\mathcal{E}} = \{ *_1 \mapsto *_1,$ | $x \neq y$      |                       |
|                  |                                     | $*_2 \mapsto *_3,$                      | x = z           |                       |
|                  |                                     | $\textit{else} \mapsto *_4\}$           |                 |                       |

Satisfiable

|                  | ${\mathcal T}_{\mathcal A}$       |                                         |                 |                       |
|------------------|-----------------------------------|-----------------------------------------|-----------------|-----------------------|
| Literals         | Eq. Classes                       | Model                                   | Literals        | Model                 |
| x = f(z)         | $\left\{x, z, f(x), f(z)\right\}$ | $x^{\mathcal{E}} = *_1$                 | $0 \le x \le 1$ | $x^{\mathcal{A}} = 0$ |
| $f(x) \neq f(y)$ | $\{y\}$                           | $y^{\mathcal{E}} = *_2$                 | $0 \le y \le 1$ | $y^{\mathcal{A}} = 1$ |
| $x \neq y$       | $\{f(y)\}$                        | $z^{\mathcal{E}} = *_1$                 | z = y - 1       | $z^{\mathcal{A}} = 0$ |
| x = z            |                                   | $f^{\mathcal{E}} = \{ *_1 \mapsto *_1,$ | $x \neq y$      |                       |
|                  |                                   | $*_2 \mapsto *_3,$                      | x = z           |                       |
|                  |                                   | $\textit{else} \mapsto *_4\}$           |                 |                       |

Let h be the bijection between  $S_{\mathcal{E}}$  and  $S_{\mathcal{A}}$ .

$$h = \{ *_1 \mapsto 0, *_2 \mapsto 1, *_3 \mapsto -1, *_4 \mapsto 2, \ldots \}$$

|                  | ${\mathcal T}_{\mathcal E}$             |                 | ${\mathcal T}_{\mathcal A}$       |
|------------------|-----------------------------------------|-----------------|-----------------------------------|
| Literals         | Model                                   | Literals        | Model                             |
| x = f(z)         | $x^{\mathcal{E}} = *_1$                 | $0 \le x \le 1$ | $x^{\mathcal{A}} = 0$             |
| $f(x) \neq f(y)$ | $y^{\mathcal{E}} = *_2$                 | $0 \le y \le 1$ | $y^{\mathcal{A}} = 1$             |
| $x \neq y$       | $z^{\mathcal{E}} = *_1$                 | z = y - 1       | $z^{\mathcal{A}} = 0$             |
| x = z            | $f^{\mathcal{E}} = \{ *_1 \mapsto *_1,$ | $x \neq y$      | $f^{\mathcal{A}} = \{0 \mapsto 0$ |
|                  | $*_2 \mapsto *_3,$                      | x = z           | $1 \mapsto -1$                    |
|                  | $\textit{else} \mapsto *_4\}$           |                 | $\textit{else} \mapsto 2\}$       |

Extending A using h.

$$h = \{ *_1 \mapsto 0, *_2 \mapsto 1, *_3 \mapsto -1, *_4 \mapsto 2, \ldots \}$$

### Simplex: a model base theory solver

lacktriangle Tableau:  ${\cal B}$  and  ${\cal N}$  denote the set of basic and nonbasic variables.

$$x_i = \sum_{x_i \in \mathcal{N}} a_{ij} x_j \quad x_i \in \mathcal{B},$$

- Solver stores upper and lower bounds  $l_i$  and  $u_i$ , and a mapping  $\beta$  that assigns a value  $\beta(x_i)$  to every variable.
- The bounds on nonbasic variables are always satisfied by  $\beta$ , that is, the following invariant is maintained

$$\forall x_j \in \mathcal{N}, \ l_j \leq \beta(x_j) \leq u_j.$$

lacktriangle Bounds constraints for basic variables are not necessarily satisfied by eta, but pivoting steps can be used to fix bounds violations.

#### Simplex: a model based theory solver

- The current model for the simplex solver is given by  $\beta$ .
- Bound propagation
  - Equations + Bounds can be used to derive new bounds.
  - Example: x = y z,  $y \le 2$ ,  $z \ge 3 \rightsquigarrow x \le -1$ .

### Opportunistic equality propagation

- ▶ Efficient (and incomplete) methods for propagating equalities.
- Notation
  - A variable  $x_i$  is *fixed* iff  $l_i = u_i$ .
  - A linear polynomial  $\sum_{x_j \in \mathcal{V}} a_{ij} x_j$  is fixed iff  $x_j$  is fixed or  $a_{ij} = 0$ .
  - Given a linear polynomial  $P=\sum_{x_j\in\mathcal{V}}a_{ij}x_j$ ,  $\beta(P)$  denotes  $\sum_{x_j\in\mathcal{V}}a_{ij}\beta(x_j)$ .

### Opportunistic equality propagation

Equality propagation in arithmetic:

#### FixedEq

$$l_i \leq x_i \leq u_i, \ l_j \leq x_j \leq u_j \Longrightarrow \ x_i = x_j \ \text{if} \ l_i = u_i = l_j = u_j$$

#### **EqRow**

$$x_i = x_j + P$$
  $\Longrightarrow x_i = x_j$  if  $P$  is fixed, and  $\beta(P) = 0$ 

#### **EqOffsetRows**

$$x_i = x_k + P_1 \\ x_j = x_k + P_2 \qquad \Longrightarrow \quad x_i = x_j \quad \text{if} \quad \begin{cases} P_1 \text{ and } P_2 \text{ are fixed, and} \\ \beta(P_1) = \beta(P_2) \end{cases}$$

#### **EqRows**

$$x_i=P+P_1 \implies x_i=x_j \text{ if } \begin{cases} P_1 \text{ and } P_2 \text{ are fixed, and} \\ \beta(P_1)=\beta(P_2) \end{cases}$$

### Opportunistic theory/equality propagation

- These rules can miss some implied equalities.
- lacktriangle Example: z=w is detected, but x=y is not because w is not a fixed variable.

$$x = y + w + s$$

$$z = w + s$$

$$0 \le z$$

$$w \le 0$$

$$0 \le s \le 0$$

Remark: bound propagation can be used imply the bound  $0 \le w$ , making w a fixed variable.

#### Non Stably-Infinite Theories in practice

- Bit-vector theory is not stably-infinite.
- How can we support it?
- Solution: add a predicate is-bv(x) to the bit-vector theory (intuition: is-bv(x) is true iff x is a bitvector).
- ▶ The result of the bit-vector operation op(x, y) is not specified if  $\neg is-bv(x)$  or  $\neg is-bv(y)$ .
- ▶ The new bit-vector theory is stably-infinite.

#### Precise Lemmas

Lemma:

$$\{a_1 = \mathit{T}, a_1 = \mathit{F}, a_3 = \mathit{F}\}$$
 is inconsistent  $\leadsto \neg a_1 \lor a_2 \lor a_3$ 

- lacktriangle An inconsistent A set is *redundant* if  $A' \subset A$  is also inconsistent.
- ▶ Redundant inconsistent sets → Imprecise Lemmas → Ineffective pruning of the search space.
- Noise of a redundant set:  $A \setminus A_{min}$ .
- ▶ The imprecise lemma is useless in any context (partial assignment) where an atom in the noise has a different assignment.
- ▶ Example: suppose  $a_1$  is in the noise, then  $\neg a_1 \lor a_2 \lor a_3$  is useless when  $a_1 = F$ .

#### Precise Lemmas

- Simple approach: track dependencies.
- Record the antecedents  $\psi_1, \ldots, \psi_n$  of a consequent  $\phi$ .
- It is the same approach used in SAT solvers: Record the clause  $C \vee l$  used to imply a literal l.
- It may be imprecise.

$$x + w + 3 = 0$$
 (1)  
 $x + z + 1 = 0$  (2)  
 $x + y + 1 = 0$  (3)

$$x + w + 3 = 0$$
 (1)  

$$x + z + 1 = 0$$
 (2)  

$$x + y + 1 = 0$$
 (3)  

$$-w + z - 2 = 0$$
 (4) = (2) - (1)

$$x + w + 3 = 0$$

$$x + z + 1 = 0$$

$$x + y + 1 = 0$$

$$-w + z - 2 = 0$$

$$-w + y - 2 = 0$$

$$(1)$$

$$(2)$$

$$(3)$$

$$(4) = (2) - (1)$$

$$(5) = (3) - (1)$$

$$x + w + 3 = 0$$

$$x + z + 1 = 0$$

$$x + y + 1 = 0$$

$$-w + z - 2 = 0$$

$$-w + y - 2 = 0$$

$$y - z = 0$$

$$(1)$$

$$(2)$$

$$(3)$$

$$(3)$$

$$(4) = (2) - (1)$$

$$(5) = (3) - (1)$$

$$(6) = (5) - (4)$$

▶ Example: assume equations (1), (2) and (3) were asserted into the logical context.

$$x + w + 3 = 0$$

$$x + z + 1 = 0$$

$$x + y + 1 = 0$$

$$-w + z - 2 = 0$$

$$-w + y - 2 = 0$$

$$y - z = 0$$

$$(1)$$

$$(2)$$

$$(3)$$

$$(3)$$

$$(4) = (2) - (1)$$

$$(5) = (3) - (1)$$

$$(6) = (5) - (4)$$

• Equation (6) implies that y = z. It depends on (1), (2), and (3).

$$x + w + 3 = 0$$

$$x + z + 1 = 0$$

$$x + y + 1 = 0$$

$$-w + z - 2 = 0$$

$$-w + y - 2 = 0$$

$$y - z = 0$$

$$(1)$$

$$(2)$$

$$(3)$$

$$(3)$$

$$(4) = (2) - (1)$$

$$(5) = (3) - (1)$$

$$(6) = (5) - (4)$$

- ▶ Equation (6) implies that y = z. It depends on (1), (2), and (3).
- Equation (1) is not necessary to derive y=z.

#### Precise Lemmas: auxiliary variables

Use <u>auxiliary/zero variables</u> to "name" linear polynomials.

$$x + w + 3 = s_1$$

$$x + z + 1 = s_2$$

$$x + y + 1 = s_3$$

#### Precise Lemmas: auxiliary variables

Use <u>auxiliary/zero variables</u> to "name" linear polynomials.

$$\begin{array}{rcl}
 x + w + 3 & = & s_1 \\
 x + z + 1 & = & s_2 \\
 x + y + 1 & = & s_3 \\
 -w + z - 2 & = & s_2 - s_1
 \end{array}$$

#### Precise Lemmas: auxiliary variables

Use auxiliary/zero variables to "name" linear polynomials.

$$x + w + 3 = s_1$$

$$x + z + 1 = s_2$$

$$x + y + 1 = s_3$$

$$-w + z - 2 = s_2 - s_1$$

$$-w + y - 2 = s_3 - s_1$$

#### Precise Lemmas: auxiliary variables

Use <u>auxiliary/zero variables</u> to "name" linear polynomials.

$$x + w + 3 = s_{1}$$

$$x + z + 1 = s_{2}$$

$$x + y + 1 = s_{3}$$

$$-w + z - 2 = s_{2} - s_{1}$$

$$-w + y - 2 = s_{3} - s_{1}$$

$$y - z = s_{3} - s_{1} - s_{2} + s_{1}$$

#### Precise Lemmas: auxiliary variables

Use auxiliary/zero variables to "name" linear polynomials.

$$x + w + 3 = s_1$$

$$x + z + 1 = s_2$$

$$x + y + 1 = s_3$$

$$-w + z - 2 = s_2 - s_1$$

$$-w + y - 2 = s_3 - s_1$$

$$y - z = s_3 - s_2$$

lacktriangle The last equation implies y=z when  $s_2$  and  $s_3$  are equal to 0.

#### Precise Lemmas: auxiliary variables

Use auxiliary/zero variables to "name" linear polynomials.

$$x + w + 3 = s_1$$

$$x + z + 1 = s_2$$

$$x + y + 1 = s_3$$

$$-w + z - 2 = s_2 - s_1$$

$$-w + y - 2 = s_3 - s_1$$

$$y - z = s_3 - s_2$$

- ▶ The last equation implies y = z when  $s_2$  and  $s_3$  are equal to 0.
- This is the approach used in the Simplex based solver.
- A similar approach is used to implement incremental SAT solvers.

What is the "explanation" for the implied equality below?

What is the "explanation" for the implied equality below?

$$x_i=x_k+P_1 \Longrightarrow x_i=x_j \text{ if } \begin{cases} P_1 \text{ and } P_2 \text{ are fixed, and} \\ \beta(P_1)=\beta(P_2) \end{cases}$$

What is the "explanation" for the implied equality below?

#### **EqOffsetRows**

$$x_i=x_k+P_1 \Longrightarrow x_i=x_j \text{ if } \begin{cases} P_1 \text{ and } P_2 \text{ are fixed, and} \\ \beta(P_1)=\beta(P_2) \end{cases}$$

• Explanation:  $P_1$  and  $P_2$  are fixed and  $\beta(P_1) = \beta(P_2)$ .

What is the "explanation" for the implied equality below?

$$x_i=x_k+P_1 \Longrightarrow x_i=x_j \text{ if } \begin{cases} P_1 \text{ and } P_2 \text{ are fixed, and} \\ \beta(P_1)=\beta(P_2) \end{cases}$$

- Explanation:  $P_1$  and  $P_2$  are fixed and  $\beta(P_1) = \beta(P_2)$ .
- The union of the explanations for the lower and upper bounds of  $x \in vars(P_1) \cup vars(P_2)$ .

What is the "explanation" for the implied equality below?

$$x_i=x_k+P_1 \Longrightarrow x_i=x_j \text{ if } \begin{cases} P_1 \text{ and } P_2 \text{ are fixed, and} \\ \beta(P_1)=\beta(P_2) \end{cases}$$

- Explanation:  $P_1$  and  $P_2$  are fixed and  $\beta(P_1) = \beta(P_2)$ .
- The union of the explanations for the lower and upper bounds of  $x \in \mathit{vars}(P_1) \cup \mathit{vars}(P_2)$ .
- Valley proof problem. Example: arithmetic propagated  $x_1 = x_2$  and  $x_1 = x_3$  using the rule above.

What is the "explanation" for the implied equality below?

$$x_i = x_k + P_1$$
  $\implies x_i = x_j$  if  $\begin{cases} P_1 \text{ and } P_2 \text{ are fixed, and} \\ \beta(P_1) = \beta(P_2) \end{cases}$ 

- Explanation:  $P_1$  and  $P_2$  are fixed and  $\beta(P_1) = \beta(P_2)$ .
- The union of the explanations for the lower and upper bounds of  $x \in \mathit{vars}(P_1) \cup \mathit{vars}(P_2)$ .
- Valley proof problem. Example: arithmetic propagated  $x_1 = x_2$  and  $x_1 = x_3$  using the rule above.
- What is the "explanation" for  $x_2 = x_3$ ?

## Efficient Backtracking

- One of the most important improvements in SAT was efficient backtracking.
- Until recently, backtracking was ignored in the design of theory solvers.
- Extreme (inefficient) approach: restart from scratch on every conflict.
- Other approaches:
  - Functional data-structures.
  - Backtrackable data-structures
  - Trail-stack.
- Restore to a logically equivalent state.

#### Reduction Functions

- A *reduction function* reduces the satisfiability problem for a theory  $\mathcal{T}_1$  to the satisfiability problem of a simpler theory  $\mathcal{T}_2$ .
- Reduction functions simplify the implementation.
- Potential disadvantages:
  - "Information loss".
  - Eager addition of irrelevant information.
- Theory of commutative functions.
  - ▶ Deductive closure of:  $\forall x, y. f(x, y) = f(y, x)$
  - Reduction to  $\mathcal{T}_{\mathcal{E}}$ .
  - For every f(a,b) in  $\phi$ , add the equality f(a,b)=f(b,a).

#### Reduction Functions: Ackermann's reduction

- Ackermann's reduction is used to remove uninterpreted functions.
  - For each application  $f(\vec{a})$  in  $\phi$  create a fresh variable  $f_{\vec{a}}$ .
  - For each pair of applications  $f(\vec{a})$ ,  $f(\vec{c})$  in  $\phi$  add the clause  $\vec{a} \neq \vec{c} \lor f_{\vec{a}} = f_{\vec{c}}$ .
  - Replace  $f(\vec{a})$  with  $f_{\vec{a}}$  in  $\phi$ .
- It is used in some SMT solvers to reduce  $\mathcal{T}_{\mathcal{LA}} \cup \mathcal{T}_{\mathcal{E}}$  to  $\mathcal{T}_{\mathcal{LA}}$ .
- Main problem: quadratic number of new clauses.
- It is also problematic to use this approach in the context of several theories and when combining SMT solvers with quantifier instantiation.

#### Reduction Functions: Ackermann's reduction

Congruence closure based algorithms miss the following inference rule

$$f(\overline{n}) \neq f(\overline{m}) \implies \bigvee n_i \neq m_i$$

Following simple formula takes  $\mathcal{O}(2^N)$  time to be solved using SAT + Congruence closure.

$$\bigwedge_{i=1}^{N} (p_i \vee x_i = v_0), \ (\neg p_i \vee x_i = v_1), \ (p_i \vee y_i = v_0), \ (\neg p_i \vee y_i = v_1),$$
$$f(x_N, \dots, f(x_2, x_1) \dots) \neq f(y_N, \dots, f(y_2, y_1) \dots)$$

- It can be solved in polynomial time with Ackermann's reduction.
- A similar behavior is also observed in several pipeline verification problems.

### Dynamic Ackermann's reduction

- This performance problem reflects a limitation in the current congruence closure algorithms used in SMT solvers.
- It is not related with the theory combination problem.
- Dynamic Ackermannization: clauses corresponding to Ackermann's reduction are added when a congruence rule participates in a conflict.

|       | CC        |          | Ack       |          | Dyn Ack   |          |
|-------|-----------|----------|-----------|----------|-----------|----------|
|       | conflicts | time (s) | conflicts | time (s) | conflicts | time (s) |
| c10bi | 217232    | 143.87   | 6880      | 6.09     | 5885      | 1.75     |
| f10id | > 8752181 | > 1800   | 22038     | 16.20    | 21220     | 7.20     |

### Modularity issues

- Modular implementations are attractive.
- Potential problem: theories fail to share relevant information.
  - *Arithmetic:* i = s + 1, j = s + 2
  - Array theory:

$$v_1 = read(write(a_0, i, v_0), j), v_2 = read(a_0, j).$$

- Arithmetic implies  $i \neq j$ . If this disequality is shared with array theory, then  $v_1 = v_2$ .
- It is infeasible to propagate all implied disequalities.
- Blackboard solution:
  - Theories post on the blackboard the equations they are "interested".

## Delaying inference rules

- ▶ A commonly used approach: delay the application of "expensive" inference rules.
- Examples:
  - Inference rules that produce new case-splits.
  - Non-linear arithmetic.
- Potential problem: solver may waste time searching an infeasible part of the search space.

#### Quantifiers

- Since first-order logic is undecidable, satisfiability is not solvable for arbitrary quantified formulas.
- Some theories, e.g., datatypes, linear arithmetic over integers, arithmetic over reals, support quantifier elimination.
- Existential quantifiers can be skolemized, but the problem of instantiating universal quantifiers for detecting unsatisfiability remains.

#### Heuristic Quantifier Instantiation

- Semantically,  $\forall x_1, \dots, x_n.F$  is equivalent to the infinite conjunction  $\bigwedge_{\beta} \beta(F)$ .
- Solvers use heuristics to select from this infinite conjunction those instances that are "relevant".
- The key idea is to treat an instance  $\beta(F)$  as relevant whenever it contains enough terms that are represented in the solver state.
- Non ground terms p from F are selected as patterns.
- *E-matching* (matching modulo equalities) is used to find instances of the patterns.
- **Example:** f(a,b) matches the pattern f(g(x),x) if a=g(b).

## E-matching

- ▶ E-matching is NP-hard.
- The number of matches can be exponential.
- ▶ It is not refutationally complete.
- In practice:
  - Indexing techniques for fast retrieval.
  - Incremental E-matching.

## E-matching: example

- $\forall x. f(g(x)) = x$
- ▶ Pattern: f(g(x))
- lacksquare instantiate f(g(b)) = b

#### Quantifiers in Z3

- Z3 uses a E-matching abstract machine.
  - ▶ Patterns ~> code sequence.
  - Abstract machine executes the code.
- ▶ Z3 uses new algorithms that identify matches on E-graphs incrementally and efficiently.
  - ▶ E-matching code trees.
  - Inverted path index.
- Z3 garbage collects clauses, together with their atoms and terms, that were useless in closing branches.

## E-matching code trees

- In practice, there are several similar patterns.
- Idea: combine several code sequences in a code tree.
- Factor out redundant work.
- Match several patterns simultaneously.
- Saturation based theorem provers use a different kind of code tree to implement:
  - Forward subsumption.
  - Forward demodulation.

#### Incremental E-matching

- Z3 uses a backtracking search.
- New terms are created during the search.
  - A code tree for each function symbol f.

    Patterns that start with a f-application.
  - Execute code-tree for each new term.
- New equalities are asserted during the search.
  - New equalities → new E-matching instances.
  - Example:

$$f(a,b)$$
 matches  $f(g(x),x)$  after  $a=g(b)$  is asserted.

## Inverted path index

- It is used to find which patterns may have new instances after an equality is asserted.
- Inverted path index for pc-pair (f,g) and patterns  $f(f(g(x),a),x),\,h(c,f(g(y),x)),\,f(f(g(x),b),y),\,f(f(a,g(x)),g(y)).$



## E-matching limitations

- E-matching needs ground (seed) terms.
  - It fails to prove simple properties when ground (seed) terms are not available.
  - Example:

$$(\forall x. f(x) \le 0) \land (\forall x. f(x) > 0)$$

Matching loops

$$(\forall x. f(x) = g(f(x))) \land (\forall x. g(x) = f(g(x)))$$

- Inefficiency and/or non-termination.
- Some solvers have support for detecting matching loops based on instantiation chain length.

#### Quantifiers: future work

- Model checking.
- Superposition calculus + SMT.
- Decidable fragments.

# Roadmap

- Background
- Architecture
- Applications

## Spec#: Extended Static Checking

- http://research.microsoft.com/specsharp/
- Superset of C#
  - non-null types
  - pre- and postconditions
  - object invariants
- Static program verification
- Example:

#### Spec#: Architecture

Verification condition generation:

**Spec# compiler:** Spec# → MSIL (bytecode).

Bytecode translator: MSIL → Boogie PL.

V.C. generator: Boogie PL → SMT formula.

- SMT solver is used to prove the verification conditions.
- Counterexamples are traced back to the source code.
- ▶ The formulas produces by Spec# are not quantifier free.

#### SLAM: device driver verification

- http://research.microsoft.com/slam/
- SLAM/SDV is a software model checker.
- Application domain: device drivers.
- Architecture
  - c2bp C program → boolean program (*predicate abstraction*).
     bebop Model checker for boolean programs.
     newton Model refinement (*check for path feasibility*)
- SMT solvers are used to perform predicate abstraction and to check path feasibility.
- c2bp makes several calls to the SMT solver. The formulas are relatively small.

### MUTT: MSIL Unit Testing Tools

- http://research.microsoft.com/projects/mutt
- Unit tests are popular, but it is far from trivial to write them.
- It is quite laborious to write enough of them to have confidence in the correctness of an implementation.
- Approach: symbolic execution.
- Symbolic execution builds a path condition over the input symbols.
- A path condition is a mathematical formula that encodes data constraints that result from executing a given code path.

### MUTT: MSIL Unit Testing Tools

- When symbolic execution reaches a if-statement, it will explore two execution paths:
  - 1. The if-condition is conjoined to the path condition for the then-path.
  - 2. The negated condition to the path condition of the else-path.
- SMT solver must be able to produce models.
- SMT solver is also used to test path feasibility.

#### Conclusion

- SMT is the next generation of verification engines.
- More automation: it is push-button technology.
- SMT solvers are used in different applications.
- ▶ The breakthrough in SAT solving influenced the new generation of SMT solvers:
  - Precise lemmas.
  - Theory Propagation.
  - Incrementality.
  - Efficient Backtracking.
- Z3 website:

http://research.microsoft.com/projects/z3