【选必二 晶体】【考点精华】晶体密度计算题型(重要)

【2018全国II卷】 FeS_2 晶体的晶胞如图所示。晶胞边长为a nm、 FeS_2 相对式量为M,阿伏加德罗常数的值为 N_A ,其晶体密度的计算表达式为

【2016 全国 I 卷】晶胞有两个基本要素:

 $g \cdot cm^{-3}$;

原子坐标参数,表示晶胞内部各原子的相对位置。如图为 Ge 单晶的晶胞,其中原子坐标参数

A 为(0, 0, 0); B 为($\frac{1}{2}$, 0, $\frac{1}{2}$); C 为($\frac{1}{2}$, $\frac{1}{2}$, 0)。则 D 原子的坐标参数为_____。

晶胞参数,描述晶胞的大小和形状。已知 Ge 单晶的晶胞参数 $a=565.76 \, \mathrm{pm}$,其密度为_____g·cm⁻³(列出计算式即可)(Ge=73)。

【2018 全国I卷】 Li_2O 具有反萤石结构,晶胞如图所示。已知晶胞参数为 0.4665 nm,阿伏加德罗常数的值为 N_A ,则 Li_2O 的密度为 ______g·cm⁻³ (列出计算式)。

【2019全国I卷】图是MgCu2 的拉维斯结构,Mg以金刚石方式堆积, 八面体空隙和半数的四面体空隙中,填入以四面体方式排列的Cu。 设阿伏加德罗常数的值为NA,则MgCu2 的密度是_______g·cm⁻³ (列出计算表达式)。

【2019 全国 2 卷】一种四方结构的超导化合物的晶胞结构如图 1 所示,晶胞中 Sm 和 As 原子的投影位置如图 2 所示。

图中 F^- 和 O^2 -共同占据晶胞的上下底面位置,若两者的比例依次用 x 和 1-x 代表,则该化合物的化学式表示为_______,通过测定密度 ρ 和晶胞参数,可以计算该物质的 x 值,完成它们关系表达式: ρ = g·cm $^{-3}$ 。(O=16、F=19、Fe=56、As=75、Sm=150)

【2021 广东新高考】理论计算预测,由汞(Hg)、锗(Ge)、锑(Sb)形成的一种新物质 X 为潜在的拓扑绝缘体材料。X 的晶体可视为 Ge 晶体(晶胞如图 a 所示)中部分 Ge 原子被 Hg 和 Sb 取代后形成。

- 1. 图 c 为 X 的晶胞, X 的晶体中与 Hg 距离最近的 Sb 的数目为______; 该晶胞中粒子个数比 Hg: Ge: Sb ______
- 2. 设 X 的最简式的式量为 M_r,则 X 晶体的密度为______g/cm³(列出算式)。

