The complexity class NP

Consider this problem: Given an undirected graph G, does G have a Hamiltonian path?

Given a graph G, if we guess a list π then it is easy to check whether π is a Hamiltonian path of G

- Check that the items of π are a permutation of nodes(G)
- Check that successive nodes of π are adjacent in G

These checks can be carried out in p-time.

Thus the problem becomes easy (p-time) if we guess the path. The Hamiltonian path π acts as a certificate that HamPath(G).

If we guess π and we discover that π is not a Hamiltonian path of G, then we are none the wiser, since it might be that:

- G has a (different) Hamiltonian path or
- G has no Hamiltonian path

Nevertheless, it remains the case that if G has a Hamiltonian path then some guess will prove correct.

To make this more precise, let us define the associated verification problem which we call Ver-HamPath:

• Given a graph G and a list , is π a Hamiltonian path of G?

Note that $Ver\text{-}HamPath(G,\pi)$ is in P. Also,

$$HamPath(G) \iff \exists \pi. Ver\text{-}HamPath(G, \pi)$$

A decision problem D(x) is in NP (non-deterministic polynomial time) if there is a problem E(x, y) in P and a polynomial p(n) such that

- $D(x) \iff \exists y. E(x,y)$
- $E(x,y) \implies |y| \le p(|x|)$ (E is polynomially balanced)

We require that the certificate y is polynomially bounded in x since otherwise it would take too long to guess y.

The guess for the Hamiltonian path can be p-bounded in the size of G. Therefore, $HamPath \in NP$ according to the definition of NP.

To sum up the difference between P and NP, we have:

- P class of decision problems which can be efficiently solved
- NP class of decision problems which can be efficiently verified

We now introduce a famous decision problem from logic: Boolean satisfiability

A formula ϕ of propositional logic is in conjunctive normal form (CNF) if it is of the form:

where each a_{ij} is either a variable x or its negation $\neg x$

- Terms a_{ij} are called *literals*
- Terms $\bigvee_{j} a_{ij}$ are called *clauses*

The SAT (satisfiability) problem is:

• Given a formula ϕ in CNF, is ϕ satisfiable (is there an assignment v to the variables of ϕ which makes ϕ true)?

It seems that SAT is not decidable in p-time: we have to try all possible truth assignments. If ϕ has m variables there are 2^m assignments — exponentially many.

We can let $|\phi|$ be the number of symbols in ϕ and |v| be m (size of the domain of v). Notice that m can be of similar size to $|\phi|$ - every literal could be a different variable.

However SAT does belong to NP, as we can see using the guess and verify method. Given a formula ϕ :

- guess a truth assignment v
- verify in p-time that v satisfies ϕ

As we did with the Hamiltonian Path problem, we define the associated verification problem VER-SAT: $VER\text{-}SAT(\phi,v)\iff \phi$ is in CNF and v satisfies ϕ

Then:

- $SAT(\phi) \iff \exists v. VER\text{-}SAT(\phi, v)$
- $VER\text{-}SAT(\phi, v) \implies |v| \le |\phi|$ (VER-SAT is p-balanced)

So we have confirmed that $SAT \in NP$

If a decision problem is in P then it is in NP, i.e. $P \subseteq NP$

Proof. Suppose that problem *D* is in P.

Idea: to verify that D(x) holds we don't need to guess a certificate y — we can decide D(x) directly.

More formally, we define E(x,y) iff D(x) and $y = \varepsilon$ (the empty string — a dummy guess). Then clearly

$$D(x)$$
 iff $\exists y. E(x, y)$ and $|y| \le p(|x|)$

It remains unknown whether P = NP despite many researchers' attempts.

Most researchers believe that $P \neq NP$