Задача А. Два числа

Имя входного файла: stdin
Имя выходного файла: stdout
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мебибайт

Даны два целых числа A и B ($1\leqslant A,\,B\leqslant 100$). Найдите два таких целых числа X и Y, что выполнено равенство AX+BY=1.

Формат входных данных

Во входном файле записаны два числа A и B, разделённые пробелом.

Формат выходных данных

В выходной файл выведите два числа X и Y, разделённые пробелом. Требуется, чтобы выполнялись неравенства $|X|\leqslant 10\,000,\ |Y|\leqslant 10\,000.$ Если правильных ответов несколько, разрешается вывести любой из них. Если же таких чисел не существует, выведите вместо них два нуля.

stdin	stdout
2 3	2 -1
4 6	0 0
100 51	-5075 9951

Задача В. Самая большая буква

Имя входного файла: stdin
Имя выходного файла: stdout
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мебибайт

Дана строка. Найдите в ней букву, алфавитный номер которой — самый большой среди букв этой строки.

Формат входных данных

В первой строке входного файла задана строка длины от 1 до 100 символов, включительно. Строка состоит из строчных букв латинского алфавита.

Формат выходных данных

В первой строке выходного файла выведите одну букву — ту букву строки, алфавитный номер которой максимален.

stdin	stdout
aab	Ъ
dabyx	У

Задача С. Разложение числа

Имя входного файла: stdin
Имя выходного файла: stdout
Ограничение по времени: 1 секунда
Ограничение по памяти: 256 мегабайт

Напишите программу, которая по данному натуральному числу n выводит все его простые натуральные делители с учетом кратности.

Формат входных данных

Программа получает на вход одно целое число $n\ (1\leqslant n<2^{31}).$

Формат выходных данных

Программа должна вывести все простые натуральные делители числа n с учетом кратности в порядке неубывания.

stdin	stdout
6	2 3

Задача D. Коллекционер

Имя входного файла: stdin
Имя выходного файла: stdout
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

В Байтландии за всю её историю было выпущено 15000 различных почтовых марок. Известный коллекционер почтовых марок планирует собрать полную коллекцию марок Байтландии. Какое-то количество марок (возможно, с дубликатами) у него есть на данным момент). По заданному списку марок, имеющихся в наличии, вычислить, какое минимальное количество марок коллекционер должен докупить, чтобы коллекция стала полной.

Формат входных данных

Входной файл состоит из двух строк. В первой строке задано одно целое число n ($1 \le n \le 3\,000\,000$) — количество имеющихся на данный момент у коллекционера экземпляров байтландских марок. Во второй строке заданы n целых чисел, каждое из которых лежит в интервале [1,15000] — номер марки, представленной соответствующим экземпляром.

Формат выходных данных

Одно число — минимальное количество марок, которое коллекционер должен докупить, чтобы коллекция стала полной.

stdin	stdout
8	14995
3 6 2 2 4 6 3 7	

Задача Е. Разбиения на слагаемые

Имя входного файла: stdin
Имя выходного файла: stdout
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

Перечислите все разбиения целого положительного числа N ($1\leqslant N\leqslant 40$) на целые положительные слагаемые. Разбиения должны обладать следующими свойствами:

- 1. Слагаемые в разбиениях идут в невозрастающем порядке.
- 2. Разбиения перечисляются в лексикографическом порядке.

stdin	stdout
4	1 1 1 1
	2 1 1
	2 2
	3 1
	4

Задача F. Компоненты связности

Имя входного файла: stdin
Имя выходного файла: stdout
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

Вам задан неориентированный граф с N вершинами и M ребрами (1 $\leq N \leq 20\,000$, $1 \leq M \leq 200\,000$). В графе отсутствуют петли и кратные ребра.

Определите компоненты связности заданного графа.

Формат входных данных

Граф задан во входном файле следующим образом: первая строка содержит числа N и M. Каждая из следующих M строк содержит описание ребра — два целых числа из диапазона от 1 до N — номера концов ребра.

Формат выходных данных

На первой строке выходного файла выведите число L — количество компонент связности заданного графа. На следующей строке выведите N чисел из диапазона от 1 до L — номера компонент связности, которым принадлежат соответствующие вершины. Компоненты связности следует занумеровать от 1 до L произвольным образом.

stdin	stdout
4 2	2
1 2	1 1 2 2
3 4	

Задача G. Общий предок

Имя входного файла: stdin
Имя выходного файла: stdout
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

Отображение результатов: Р

Дано подвешенное дерево с корнем в 1-й вершине и M запросов вида "найти у двух вершин наименьшего общего предка".

Формат входных данных

В первой строке файла записано одно число N — количество вершин. В следующих N-1 строках записаны числа. Число x на строке $2\leqslant i\leqslant N$ означает, что x — отец вершин i. (x< i). На следующей строке число M. Следующие M строк содержат запросы вида (x,y) — найти наименьшего предка вершин x и y Ограничения: $1\leqslant N\leqslant 5\cdot 10^4, 0\leqslant M\leqslant 5\cdot 10^4$.

Формат выходных данных

M ответов на запросы.

stdin	stdout
5	1
1	1
1	
2	
3	
2	
2 3	
4 5	

Задача Н. Сумма трёх

Имя входного файла: stdin
Имя выходного файла: stdout
Ограничение по времени: 1 секунда
Ограничение по памяти: 256 мегабайт

Даны три массива целых чисел A, B, C и целое число S.

Найдите такие i, j, k, что $A_i + B_j + C_k = S$.

Формат входных данных

На первой строке число S ($1 \leqslant S \leqslant 10^9$). Следующие три строки содержат описание массивов A,B,C в одинаковом формате: первое число задает длину n соответствующего массива ($1 \leqslant n \leqslant 15\,000$), затем заданы n целых чисел от 1 до 10^9 —сам массив.

Формат выходных данных

Если таких i, j, k не существует, выведите единственное число -1. Иначе выведите на одной строке три числа -i, j, k. Элементы массивов нумеруются с нуля. Если ответов несколько, выведите лексикографически минимальный.

stdin	stdout
3	0 1 1
2 1 2	
2 3 1	
2 3 1	
10	-1
1 5	
1 4	
1 3	
5	0 1 2
4 1 2 3 4	
3 5 2 1	
4 5 3 2 2	

Задача І. Неявный Ключ

Имя входного файла: stdin
Имя выходного файла: stdout
Ограничение по времени: 1 секунда
Ограничение по памяти: 256 мегабайт

Научитесь быстро делать две операции с массивом: \circ add \mathbf{i} \mathbf{x} — добавить после i-го элемента x $(0 \leqslant i \leqslant n)$ \circ del \mathbf{i} — удалить i-й элемент $(1 \leqslant i \leqslant n)$

Формат входных данных

На первой строке n_0 и m ($1 \le n_0, m \le 10^5$) — длина исходного массива и количество запросов. На второй строке n_0 целых чисел от 0 до $10^9 - 1$ — исходный массив. Далее m строк, содержащие запросы. Гарантируется, что запросы корректны: например, если просят удалить i-й элемент, он точно есть.

Формат выходных данных

Выведите конечное состояние массива. На первой строке количество элементов, на второй строке сам массив.

stdin	stdout
3 4	3
1 2 3	9 2 8
del 3	
add 0 9	
add 3 8	
del 2	

Задача Ј. Быстрое пересечение множеств

Имя входного файла: stdin
Имя выходного файла: stdout
Ограничение по времени: 1 секунда
Ограничение по памяти: 64 мегабайта

Даны N множеств. Множества занумерованы целыми числами от 1 до N. Для каждого множества i=1..N нужно найти такое множество $j=1..N, j\neq i$, что их непохожесть минимальна. Непохожестью двух множеств A и B называется количество элементов, присутствующих ровно в одном из множеств A и B.

Формат входных данных

На первой строке целое число N от 2 до 10^4 — количество множеств. Далее собственно множества. Каждое множество задается следующим образом: сперва целое число k от 0 до 32 — размер множества, далее k целых чисел от 0 до 31 — элементы множества. Все элементы множества различны.

Формат выходных данных

Выведите N строк, в i-й строке выведите номер j — номер множества, которое вы считаете наименее непохожим на i-е), и собственно "непохожесть" данных множеств. Если для некоторого i существует несколько оптимальных j, выведите любое.

stdin	stdout
6	2 2
6 1 2 3 4 5 6	3 0
4 1 2 3 4	2 0
4 1 2 3 4	1 2
6 0 1 2 3 4 5	6 3
4 31 30 29 28	5 3
3 1 30 31	

Задача К. Скалярное произведение

Имя входного файла: stdin
Имя выходного файла: stdout
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мебибайт

Даны два вектора: $v_1 = (x_1, x_2, \dots, x_n)$ и $v_2 = (y_1, y_2, \dots, y_n)$. Скалярным произведением этих векторов называется значение, вычисляемое по формуле: $x_1y_1 + x_2y_2 + \dots + x_ny_n$.

Разрешено переставлять координаты каждого из векторов любым образом. Выберите такие их перестановки, чтобы скалярное произведение двух полученных векторов было минимальным и выведите его значение.

 $1 \le n \le 800. -100000 \le x_i, y_i \le 100000.$

Формат входных данных

Первая строка входного файла содержит единственное целое число t — количество наборов тестовых данных. Далее следуют сами наборы, по три строки в каждом. Первая строка тестового набора содержит единственное целое число n. Две следующие строки содержат по n целых чисел, задающих координаты соответствующего вектора, каждая.

Формат выходных данных

Для каждого набора выведите строку с номером этого набора и ответом на задачу — значением минимального скалярного произведения. Следуйте формату, указанному в примере.

stdin	stdout
2	Case #1: -25
3	Case #2: 6
1 3 -5	
-2 4 1	
5	
1 2 3 4 5	
1 0 1 0 1	

Задача L. Лабиринт знаний

Имя входного файла: stdin
Имя выходного файла: stdout
Ограничение по времени: 2 секунды
Ограничение по памяти: 64 мегабайта

Участникам сборов подарили билеты на аттракцион "Лабиринт знаний". Лабиринт представляет собой N комнат, занумерованных от 1 до N, между некоторыми из которых есть двери. Когда человек проходит через дверь, показатель его знаний изменяется на определенную величину, фиксированную для данной двери. Вход в лабиринт находится в комнате 1, выход — в комнате N. Каждый участник сборов проходит лабиринт ровно один раз и наибрает некоторое количество знаний (при входе в лабиринт этот показатель равен нулю). Ваша задача — показать наилучший результат.

Формат входных данных

Первая строка входного файла содержит целые числа N ($1 \le N \le 2000$) — количество комнат и M ($1 \le M \le 10000$) — количество дверей. В каждой из следующих M строк содержится описание двери — номера комнат, из которой она ведет и в которую она ведет (через дверь в лабиринте можно ходить только в одну сторону), а также целое число, которое прибавляется к количеству знаний при прохождении через дверь (это число по модулю не превышает 10000). Двери могут вести из комнаты в нее саму, между двумя комнатами может быть более одной двери.

Формат выходных данных

В выходной файл выведите ":)" — если можно пройти лабиринт и получить неограниченно большой запас знаний, ": (" — если лабиринт пройти нельзя, и максимальное количество набранных знаний в противном случае.

stdin	stdout
2 2	5
1 2 5	
1 2 -5	

Задача М. Короля — в угол 3

Имя входного файла: stdin
Имя выходного файла: stdout
Ограничение по времени: 1 секунда
Ограничение по памяти: 64 мегабайта

На каждой клетке шахматной доски размеров 8×8 записано целое неотрицательное число. Двое игроков по очереди переставляют короля, перемещая его только вправо, вверх или по диагонали вправо-вверх. Первоначально король стоит в левом нижнем углу. Игра продолжается до тех пор, пока король не окажется в правой верхней клетке доски. Игрок, переставивший короля в некоторую клетку, получает от другого игрока денежную сумму, равную числу, записанному в этой клетке. Определите стоимость игры — сумму, которая окажется в конце игры у первого игрока, если первый игрок старается её максимизировать, а второй — минимизировать.

Формат входных данных

На вход программе подается восемь строк, каждая строка содержит восемь целых неотрицательных чисел, не превосходящих 1000. В левом нижнем углу всегда записано число 0.

Формат выходных данных

Выведите единственное число — стоимость игры.

stdin	stdout
0 1 0 1 0 1 0 1	4
0 0 0 0 0 0 0	
0 1 0 1 0 1 0 1	
0 0 0 0 0 0 0	
0 1 0 1 0 1 0 1	
0 0 0 0 0 0 0	
0 1 0 1 0 1 0 1	
0 0 0 0 0 0 0	

Cheb-2015-09-15. Homework 2. Knowledge Test. Russia, Saint-Petersburg, September, 15, 2015

stdin	stdout
0 0 0 0 0 0 0	-3
1 0 1 0 1 0 1 0	
0 0 0 0 0 0 0	
1 0 1 0 1 0 1 0	
0 0 0 0 0 0 0	
1 0 1 0 1 0 1 0	
0 0 0 0 0 0 0	
0 0 1 0 1 0 1 0	
9 9 9 9 9 1 9	9
9 9 9 9 9 1 9 2	
9 9 9 9 9 9 1 9	
9 9 9 9 9 9 9 9	
9 9 9 9 9 9 9 9	
9 9 9 9 9 9 9 9	
9 9 9 9 9 9 9	
0 9 9 9 9 9 9	