

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Institute for Operations Research ETH Zurich HG G21-22

Stephan Artmann stephan.artmann@ifor.math.ethz.ch Christoph Glanzer christoph.glanzer@student.ethz.ch

Mathematical Optimization — Solution 1

https://moodle-app2.let.ethz.ch/course/view.php?id=3610

Exercise 1: Knapsack Problem and Branch and Bound

a) The integer program (IP) for the Knapsack Problem can be formulated as follows

$$\max \sum_{i=1}^{n} p_i x_i$$
s.t.
$$\sum_{i=1}^{n} w_i x_i \leq W$$

$$x_i \in \{0,1\} \quad i = 1, \dots, n$$

The variables x_i , i = 1, ..., n, are interpreted as

$$x_i = \begin{cases} 1 & \text{if item } i \text{ is chosen} \\ 0 & \text{otherwise.} \end{cases}$$

b) The relaxed LP problem is

$$\max \sum_{i=1}^{n} p_i x_i$$
s.t.
$$\sum_{i=1}^{n} w_i x_i \leq W$$

$$x_i \leq 1 \quad i = 1, \dots, n$$

$$x_i > 0 \quad i = 1, \dots, n$$

$$(1)$$

Trivially, if $\sum_{i=1}^{n} w_i \leq W$, we choose all items, and if $\forall i \in \{1, ..., n\} : w_i > W$, we choose no item. So let us assume from now on that we are in neither of these two cases. Then, the following holds:

Lemma 1

Assume that $p_1/w_1 > p_2/w_2 > \cdots > p_n/w_n$. Denote by $k \in \{1, \ldots, m\}$ the index such that $\sum_{i=1}^k w_i \leq W$, $\sum_{i=1}^{k+1} w_i > W$. Then an optimal solution to (1) is given by $x^*(W)$, where

$$x_i^*(W) = \begin{cases} 1, & \text{if } i \leq k, \\ \frac{W - \sum_{i=1}^k w_i}{w_{k+1}}, & \text{if } i = k+1, \\ 0, & \text{otherwise} \end{cases}$$

We give a sketch of the proof for those who are interested.

Proof (Sketch). First, observe that since by assumption (1, ..., 1) is not a solution to (1), there exists an optimal solution y to (1) which fulfills $w^{T}y = W$. It thus suffices to show that $x^{*}(W)$ is optimal for

$$\max \sum_{i=1}^{n} p_i x_i$$
s.t.
$$\sum_{i=1}^{n} w_i x_i = W$$

$$x_i \leq 1 \quad i = 1, \dots, n$$

$$x_i \geq 0 \quad i = 1, \dots, n$$

$$(2)$$

Let y be optimal for (2). We first show that for all $1 \le i \le k : y_i = 1$: Namely, if there was an $l \le k$ with $y_l < 1$, $w^T y = w^T x^*(W)$ would imply that there is a o > k such that $y_o > 0$. This would imply that there exists $\epsilon > 0$ small enough so that z fulfills $0 \le z \le 1$, with z being

$$z_i = \begin{cases} y_i, & \text{if } i \neq l, o, \\ y_i + \epsilon, & \text{if } i = l, \\ y_i - \frac{w_l}{w_o} \epsilon, & \text{if } i = o \end{cases}.$$

Note that $w^{\mathrm{T}}z = \sum_{i \neq l,o} w_i y_i + w_l (y_l + \epsilon) + w_o (y_o - w_l \epsilon/w_o) = w^{\mathrm{T}}y = W$ and thus, z is feasible for (2). But then, since $p_l/w_l > p_o/w_o$, $p^{\mathrm{T}}z = p^{\mathrm{T}}y + p_l \epsilon - p_o w_l \epsilon/w_o > p^{\mathrm{T}}y$, contradicting our choice of y.

Thus, both $x^*(W)$ and y are solutions to $\max\{p^Tx \colon w^Tx = W, \ 0 \le x \le 1, x_1 = \dots = x_k = 1\}$. It is not hard to see that by the choice of our ordering, $y = x^*(W)$.

By the above Lemma, we can apply the following algorithm:

- (i) Sort the variables according to their 'efficiency' $\frac{p_i}{w_i}$.
- (ii) Fill the knapsack with items $1, 2, \ldots$ consecutively as long as the total weight does not exceed W
- (iii) If the total weight is still strictly less than W, fill the next unused item with the maximum fraction possible.

The variables are already sorted by their 'efficiency' $\frac{p_i}{m}$:

$$\frac{10}{1} > \frac{80}{9} > \frac{40}{5} > \frac{30}{4} > \frac{22}{3}$$
.

The algorithm of the above lemma yields as an optimal solution $x^*(P) = (1, 1, \frac{3}{5}, 0, 0)^T$ with optimal value z(P) := 114.

c) The solution to the linear relaxation provides an upper bound on the optimal value of the IP, hence, UB := 114 is an upper bound for our IP. We use the (trivial) solution $(0,0,0,0,0)^T$ to get the (trivial) lower bound LB := 0 for our IP.

Denote by $P_{x_J=d}$ the problem $\max\{p^Tx \colon w^Tx = W, \ 0 \le x \le 1, x_J=d\}$, where $J \subseteq \{1, \ldots, n\}$ and $d \in \{0, 1\}^{|J|}$. We will gradually set certain variables of x to 0 and 1 to find an optimal integral solution.

We first 'branch' (i.e. decide on a variable value) on x_3 (which is an arbitrary choice), cf. Figure 1. Call $(P_{x_{\{3\}}=1})=(P_1)$. Note that (P_1) can be reduced to a Knapsack problem, since it can be written as $\max\{10x_1+80x_2+40+30x_4+22x_5\colon x_1+9x_2+5+4x_4+5x_3\leq 13\}$, which can be reformulated as $\max\{10x_1+80x_2+30x_4+22x_5\colon x_1+9x_2+4x_4+5x_3\leq 8\}$. We can thus solve it using the algorithm from part b) of this exercise.

An optimal solution of (P_1) is $x(P_1) = (1, \frac{7}{9}, 1, 0, 0)^T$ with $z(P_1) = 112.2$. We now consider subproblems of (P_1) by branching on the variable x_2 (again an arbitrary choice). Denote by (P_{11}) the problem $(P_{x_{\{2,3\}}=(1,1)})$. As $w_2 + w_3 = 14 > W$, (P_{11}) is infeasible and hence, no subproblem of (P_{11}) needs to be considered.

Figure 1: Illustration of our 'branch and bound' approach.

Let (P_{12}) denote the problem $(P_{x_{\{2,3\}}=(0,1)})$. An optimal solution of (P_{12}) (which can again be found by stating the problem as a Knapsack problem) is $x(P_{12}) = (1,0,1,1,1)^T$ with optimal value $z(P_{12}) = 102$. $x(P_{12})$ is integral, and thus we may update our lower bound for the optimal solution: LB := 102. Furthermore, since $x(P_{12})$ is integral, no subproblem of P_{12} needs to be considered.

Let (P_2) denote the problem $(P_{x_{\{3\}}=(0)})$. Our relaxed Knapsack algorithm yields the optimal solution $x(P_2)=(1,1,0,\frac{3}{4},0)^T$ with $z(P_2)=112.5$. We now consider subproblems of P_2 by branching on the variable x_4 (yet again, this is an arbitrary choice), and call $(P_{x_{\{3,4\}}=(1,1)})=:(P_{21})$ and $(P_{x_{\{3,4\}}=(1,0)})=:(P_{22})$. The optimal solution of (P_{21}) is $x(P_{21})=(1,\frac{8}{9},0,1,0)^T$ with $z(P_{21})=111.1$. The optimal solution of P_{22} is $x(P_{22})=(1,1,0,0,1)^T$ with $z(P_{22})=112$. $z(P_{22})$ is integral. We update the lower bound: $z(P_{21})=112$. As $z(P_{22})=112$, and $z(P_{22})=112$. As there is no 'open' branch/subproblem left, the optimal solution is $z(P_{22})=(1,1,0,0,1)^T$ and the optimal objective function value is 112.

Exercise 2: Polyhedral Cones

- (a) We check condition (i) and (ii) in the definition of a cone. For (i) let $c \in P$, i.e., $Ac \leq 0$. It follows that $A(\lambda c) = \lambda(Ac) \leq 0$ for all $\lambda \geq 0$. For (ii) let $c, d \in P$, i.e., $Ac \leq 0$ and $Ad \leq 0$. This implies $A(c+d) = Ac + Ad \leq 0$ and thus $c+d \in P$. Therefore, P is a cone.
- (b) As C is a polyhedron, there are $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$ with $C = \{x \in \mathbb{R}^n \mid Ax \leq b\}$. We need to prove that b = 0. Each nonempty cone contains the origin $\mathbf{0}$ (choose any $x \in C$, then also $0x \in C$). Thus, it holds $A\mathbf{0} = \mathbf{0} \leq b$.

Next, assume there was an $\bar{x} \in P$ with $(A\bar{x})_i > 0$. Then, were would exist a $\bar{\lambda} \geq 0$ with $(A\bar{\lambda}\bar{x})_i = \bar{\lambda}(A\bar{x})_i = b_i$. For any $\lambda > \bar{\lambda}$ the point $\lambda \bar{x} \notin C$ as $(A\lambda \bar{x})_i > b_i$, which would contradict condition (i) in the definition of a cone. We may thus set b = 0.

Exercise 3: Polyhedral Cone with Extreme Point

- a)Let $x \in C$ be nonzero. Then $3x/2 \in C$, $x/2 \in C$, and $\frac{3x/2+x/2}{2} = x$. Thus x is not an extreme point.
- b) Given $C := \{x \in \mathbb{R}^n : Ax \leq \mathbf{0}\}$, set $c^T := -\mathbf{1}^T A$. Since x = 0 is an extreme point, the only solution to the equation system $Ax = \mathbf{0}$ is the trivial one, as otherwise it would contain a whole line and having an extreme point is equivalent to not containing a line. In other words, for every non-zero $x \in C$ there is an index i such that $(Ax)_i < 0$ while $(Ax)_j \leq 0$ for all other $j \neq i$. Thus, we have $c^T x = -\mathbf{1}^T Ax > 0$ for every non-zero $x \in C$.

Exercise 4: The Minkowski Sum of Convex Sets

We have to show that $\lambda x + (1 - \lambda)y$ is contained in A + B for all $x, y \in A + B$ and all $\lambda \in [0, 1]$. Let $x, y \in A + B$. By definition, there are $a_x, a_y \in A$ and $b_x, b_y \in B$ such that $x = a_x + b_x$ and $y = a_y + b_y$. Now consider

$$\lambda x + (1 - \lambda)y = \lambda(a_x + b_x) + (1 - \lambda)(a_y + b_y) = (\lambda a_x + (1 - \lambda)a_y) + (\lambda b_x + (1 - \lambda)b_y).$$

As A and B are convex, it follows that $\lambda a_x + (1 - \lambda)a_y \in A$ and $\lambda b_x + (1 - \lambda)b_y \in B$. This shows that $\lambda x + (1 - \lambda)y \in A + B$.

The opposite direction is not true, however. Consider for example the following sets on real line

$$A = \{0, 1\}$$
 $B = [0, 1].$

While A is clearly not convex, we have A + B = [0, 2], which is a convex set.