Федеральное государственное автономное учебное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Мегафакультет компьютерных технологий и управления Факультет программной инженерии и компьютерной техники

Отчёт по лабораторной работе №5 по дисциплине «Вычислительная математика»

Вариант №4

Группа: Р3218

Студент: Горло Евгений Николаевич

Преподаватель: Бострикова Дарья Константиновна

Содержание

1	Цель	3
2	Задание	3
3	Рабочие формулы	5
4	Вычислительная часть	6
5	Листинг программы	7
6	Результаты выполнения программы 6.1 Пример 1	10 10
7	Вывод	12

1 Цель

Решить задачу интерполяции, найти значения функции при заданных значениях аргумента, отличных от узловых точек.

2 Задание

Программная реализация

- 1. Исходные данные задаются тремя способами:
 - (а) в виде набора данных (таблицы х, у), пользователь вводит значения с клавиатуры;
 - (b) в виде сформированных в файле данных (подготовить не менее трех тестовых вариантов);
 - (c) на основе выбранной функции, из тех, которые предлагает программа, например, $\sin x$. Пользователь выбирает уравнение, исследуемый интервал и количество точек на интервале (не менее двух функций).
- 2. Сформировать и вывести таблицу конечных разностей;
- 3. Вычислить приближенное значение функции для заданного значения аргумента, введенного с клавиатуры, указанными методами (см. табл. 2). Сравнить полученные значения;
- 4. Построить графики заданной функции с отмеченными узлами интерполяции и интерполяционного многочлена Ньютона/Гаусса (разными цветами);
- 5. Программа должна быть протестирована на различных наборах данных, в том числе и некорректных;
- 6. Проанализировать результаты работы программы.

Методы для реализации в программе по варианту:

- 1. Многочлен Лагранжа;
- 2. Многочлен Ньютона с разделенными разностями;
- 3. Многочлен Ньютона с конечными разностями;

Вычислительная реализация

- 1. Выбрать из табл. 1 заданную по варианту таблицу y = f(x) (таблица 1.1 таблица 1.5);
- 2. Построить таблицу конечных разностей для заданной таблицы. Таблицу отразить в отчете;
- 3. Вычислить значения функции для аргумента X_1 (см. табл.1), используя первую или вторую интерполяционную формулу Ньютона. Обратить внимание какой конкретно формулой необходимо воспользоваться;
- 4. Вычислить значения функции для аргумента X_2 (см. табл. 1), используя первую или вторую интерполяционную формулу Гаусса. Обратить внимание какой конкретно формулой необходимо воспользоваться;
- 5. Подробные вычисления привести в отчете.

Таблица по варианту:

X	У			
1,05	0,1213			
1,15	1,1316			
1,25	2,1459			
1,35	3,1565			
1,45	4,1571			
1,55	5,1819			
1,65	6,1969			

$$X_1 = 1,051$$

$$X_2 = 1,277$$

3 Рабочие формулы

Многочлен Лагранжа

$$L_n(x) = \sum_{i=0}^{n} y_i \prod_{j=0, j \neq i}^{n} \frac{x - x_j}{x_i - x_j}$$

Первая интерполяционная формула Ньютона:

$$N_n(x) = y_0 + t\Delta y_0 + \frac{t(t-1)}{2!}\Delta^2 y_0 + \dots + \frac{t(t-1)\dots(t-n+1)}{n!}\Delta^n y_0$$

Вторая интерполяционная формула Ньютона:

$$N_n(x) = y_n + t\Delta y_{n-1} + \frac{t(t+1)}{2!}\Delta^2 y_{n-2} + \dots + \frac{t(t+1)\dots(t+n-1)}{n!}\Delta^n y_0$$

Первая интерполяционная формула Гаусса:

$$P_{n}(x) = y_{0} + t\Delta y_{0} + \frac{t(t-1)}{2!}\Delta^{2}y_{-1} + \frac{(t+1)t(t-1)}{3!}\Delta^{3}y_{-1} + \dots + \frac{(t+n-1)...(t-n+1)}{(2n-1)!}\Delta^{2n-1}y_{-(n-1)} + \frac{(t+n-1)...(t-n)}{(2n)!}\Delta^{2n}y_{-n}$$

Вторая интерполяционная формула Гаусса:

$$P_{n}(x) = y_{0} + t\Delta y_{0} + \frac{t(t-1)}{2!}\Delta^{2}y_{-1} + \frac{(t+1)t(t-1)}{3!}\Delta^{3}y_{-1} + \dots + \frac{(t+n-1)...(t-n+1)}{(2n-1)!}\Delta^{2n-1}y_{-(n-1)} + \frac{(t+n)(t+n-1)...(t-n+1)}{(2n)!}\Delta^{2n}y_{-n}$$

4 Вычислительная часть

Таблица конечных разностей

			Α -	A 2	A 3	A /	A 5	A 6
i	x_i	y_i	Δy_i	$\Delta^2 y_i$	$\Delta^3 y_i$	$\Delta^4 y_i$	$\Delta^5 y_i$	$\Delta^6 y_i$
0	1,05	0,1213	1,0103	0,0040	-0,0077	0,0014	0,0391	-0,1478
1	1,15	1,1316	1,0143	-0,0037	-0,0063	0,0405	-0,1087	0
2	1,25	2,1459	1,0106	-0,0100	0,0342	-0,0682	0	0
3	1,35	3,1565	1,0006	0,0242	-0,0340	0	0	0
4	1,45	4,1571	1,0248	-0,0098	0	0	0	0
5	1,55	5,1819	1,0150	0	0	0	0	0
6	1,65	6,1969	0	0	0	0	0	0

Интерполяционная формула Ньютона для равноотстоящих узлов $X_1=1,051$

$$t = \frac{x - x_0}{h} = \frac{1,051 - 1,05}{0,1} = 0,1$$

$$N_n(x) = y_0 + t\Delta y_0 + \frac{t(t-1)}{2!} \Delta^2 y_0 + \dots + \frac{t(t-1)\dots(t-n+1)}{n!} \Delta^n y_0$$

$$N_6(1.051) = 0.1213 + 0.01 \cdot 1.0103 + \frac{0.01(0.01 - 1)}{2!} \cdot 0.0040$$

$$+ \frac{0.01(0.01 - 1)(0.01 - 2)}{3!} \cdot (-0.0077)$$

$$N_6(1.051) \approx 0.1314$$

Интерполяционный многочлен Гаусса

$$X_2 = 1,277$$

x < a,используем вторую интерполяционную формулу Гаусса

$$P_{n}(x) = y_{0} + t\Delta y_{-1} + \frac{t(t+1)}{2!}\Delta^{2}y_{-1} + \frac{(t+1)t(t-1)}{3!}\Delta^{3}y_{-2} + \frac{(t+2)(t+1)t(t-1)}{4!}\Delta^{4}y_{-2} + \dots + \frac{(t+n-1)\dots(t-n+1)}{(2n-1)!}\Delta^{2n-1}y_{-n} + \frac{(t+n)(t+n-1)\dots(t-n+1)}{(2n)!}\Delta^{2n}y_{-n}$$

$$t = \frac{1.277 - 1,25}{0.1} = 0.27$$

$$P_n(1.277) = 2.1459 + 0.27 \cdot 1.0106 + \frac{0.27(0.27+1)}{2!} \cdot (-0.0037) + \frac{0.27(0.27+1)(0.27-1)}{3!} \cdot 0.0342$$
$$P_n(1.277) = 2.1459 + 0.272862 - 0.000636 - 0.001167$$
$$P_n(1.277) \approx 2.417$$

5 Листинг программы

Ссылка на Github репозиторий

Метод Лагранжа:

Метод Ньютона с разделенными разностями:

Метод Ньютона с конечными разностями:

```
def newton_interpolation_with_finite_difference(x, y, inter_point):
   name = "
2
                                       11
                                         1.1
       diff_table = create_finite_differences_table(x, y)
3
4
       n = len(x)
       h = x[1] - x[0]
       def t_forward(x_val):
6
           return (x_val - x[0]) / h
       def t_backward(x_val):
         return (x_val - x[-1]) / h
       def forward(x_val):
           result = y[0]
           for i in range(1, n):
12
                term = diff_table[0][i]
13
                prod = 1
14
                for j in range(i):
                    prod *= (t_forward(x_val) - j)
16
                term *= prod / math.factorial(i)
17
                result += term
18
           return result
19
       def backward(x_val):
20
           result = y[-1]
21
           for i in range(1, n):
22
                term = diff_table[-i - 1][i]
23
                prod = 1
24
25
                for j in range(i):
                    prod *= (t_backward(x_val) + j)
26
                term *= prod / math.factorial(i)
27
                result += term
28
           return result
29
       if (x[-1] - x[0]) / 2 < inter_point:
30
           return forward(inter_point)
31
32
           return backward(inter_point)
33
```

Метод Стирлинга:

```
def stirling_interpolation(x, y, value):
      name = "
2
      n = len(x)
3
      central_differences_table = create_central_differences_table(y)
      alpha_index = n // 2
5
      h = x[1] - x[0]
6
      dts = generate_array_offset(n // 2)
      f1 = first_interpolation_gauss_form(n, x, y, alpha_index, dts, h,
         central_differences_table, value)
      f2 = second_interpolation_gauss_form(n, x, y, alpha_index, dts, h,
9
          central_differences_table, value)
      return (f1 + f2) / 2
```

Метод Бесселя:

```
def bessel_interpolation(x, y, value):
       name = "
2
3
       n = len(x)
       central_differences_table = create_central_differences_table(y)
       alpha_index = n // 2
5
       h = x[1] - x[0]
6
       dts = generate_array_offset(n // 2)
       t = (value - x[alpha_index - 1]) / h
       result = (y[alpha_index - 1] + y[alpha_index]) / 2
9
       k = 0
       1 = 0
11
       for i in range(1, n):
           if i % 2 == 1:
               current = (t - 0.5)
14
               for j in range(i - 1):
                    current = current * (t + dts[j])
16
               current /= (math.factorial(i))
17
               current *= central_differences_table[i][alpha_index-1- k]
18
               result += current
19
               k += 1
20
           else:
21
               current = 1
22
               for j in range(i):
24
                    current *= (t + dts[j])
               current /= (math.factorial(i))
25
               current *= (central_differences_table[i][alpha_index-1 -2]
26
                   central_differences_table[i][
                    alpha_index - 1 - 1]) / 2
27
               1 += 1
28
               result += current
29
       return result
```

6 Результаты выполнения программы

6.1 Пример 1

Функция: sin(x) Интервал: [1,5]

Количество точек: 5

Точка интерполяции: 1.5

Таблица конечных разностей:

 $0\ 1.000\ 0.841\ 0.068\ \text{-}0.836\ 0.706\ 0.119$

 $1\ 2.000\ 0.909\ \hbox{--}0.768\ \hbox{--}0.130\ 0.826$

2 3.000 0.141 -0.898 0.696

3 4.000 -0.757 -0.202

4 5.000 -0.959

Метод Лагранжа: 1.0193662122216782

Невозможно построить интерполяционный многочлен Ньютона с разделенными разностями из-за некорректных входных данных Проверьте значения x, они не должны быть равноотстоящими

Метод Ньютона с конечными разностями: 1.0193662122216784

Метод Стирлинга: 1.019366212221678

Невозможно построить интерполяционный многочлен Бесселя из-за некорректных входных данных Проверьте значения x, они должны быть равноотстоящими и их количество должно быть четным

7 Вывод

В ходе данной лабораторной работы, было изучено несколько численных методов интерполирования, а именно:

Метод Лагранжа:

Преимущества: Простота реализации и понятность.

Недостатки: При добавлении новых узлов требуется пересчет всего многочлена, что делает его менее эффективным при большом количестве точек.

Применение: Хорошо подходит для небольшого количества узлов (до 20), после чего вычислительная сложность значительно увеличивается.

Метод Ньютона:

Преимущества: Позволяет легко добавлять новые узлы без пересчета предыдущих значений. Метод более гибкий по сравнению с Лагранжем.

Недостатки: Сложность реализации из-за необходимости использования нескольких формул в зависимости от структуры данных.

Применение: Удобен для последовательного добавления новых узлов, что делает его эффективным для задач, где требуется динамическое обновление интерполяции.

Метод Гаусса:

Преимущества: Хорошо подходит для интерполяции в случае, когда узлы находятся ближе к центральной точке отрезка. Метод позволяет улучшить точность интерполяции относительно опорной точки.

Недостатки: Требует более сложных вычислений и не всегда применим, если узлы не симметричны относительно центра.

Применение: Подходит для узлов, расположенных ближе к центру интервала, обеспечивая более точную интерполяцию для таких задач.

Методы Бесселя и Стирлинга:

Преимущества: Эти методы учитывают симметричное расположение узлов относительно центральной точки, что делает их точными для задач с равномерно распределенными узлами.

Недостатки: Требуют симметрии узлов и могут быть менее точными для неравномерно расположенных данных.

Применение: Используются для интерполяции в задачах с симметричными узлами, где важно минимизировать погрешности при центральных значениях.