- (a) $MA[q](\mathbb{R}^n) = Vol_n(\Delta_q)$, where Δ_q is the Newton polytope of q.
- (b) (Tropical Bernstein Theorem) $MA[q_1, \ldots, q_n](\mathbb{R}^n) = Vol(\Delta_{q_1}, \ldots, \Delta_{q_n})$, where Vol is the mixed volume.

Corollary 5.16. Assume that $\alpha_i, \beta_i \in \mathbb{Z}^n$ for i = 1, ..., n. Let $q_i = \max\{\langle \alpha_i, x \rangle, \langle \beta_i, x \rangle\}$ be n tropical polynomials. Then,

$$n! \widetilde{\mathrm{MA}}[q_1, \ldots, q_n] = \kappa \delta_0,$$

where κ is given by the volume zonotope of the Minkowski sum of the vectors $\sum_{i=1}^{n} [\alpha_i -$

Proof. Note that Δ_{q_i} is the line segment between α_i and β_i . Moreover, in the definition of $\widetilde{\mathrm{MA}}[\mathfrak{q}_1,\ldots,\mathfrak{q}_n]$ only $\mathrm{Vol}(\sum_{i=1}^n [\alpha_i-\beta_i])$ possibly has a non-zero *n*-dimensional volume. Finally, the origin is the only 0-dimensional cell of the tropical variety of polynomial $\mathfrak{q}_1+\cdots+\mathfrak{q}_n$, if and only if, $\{\alpha_1-\beta_1,\cdots,\alpha_n-\beta_n\}$ forms a linearly independent set. Therefore, $n! MA[q_1 + \cdots + q_n] = \kappa \delta_0$.

6. SLICING TROPICAL CURRENTS

Proposition 6.1. Let C be a p-dimensional tropical cycle in \mathbb{R}^n , and $S \subseteq (\mathbb{C}^*)^n$ be an algebraic hypersurface with transversal intersection with $\mathcal{T}_{\mathcal{C}}$. Then, $[S] \wedge \mathcal{T}_{\mathcal{C}}$ is admissible and it is a closed positive current of bidimension (p-1, p-1) given by

$$[S] \wedge \mathfrak{I}_{\mathcal{C}} = \sum_{\sigma \in \mathcal{C}} w_{\sigma} \int_{x \in S_{N(\sigma)}} \mathbb{1}_{\operatorname{Log}^{-1}(\sigma^{\circ})} \big[S \cap \pi_{\operatorname{aff}(\sigma)}^{-1}(x) \big] \ d\mu(x).$$

Proof. The idea of the proof is similar to that of [BH17, Proposition 4.11]. Let f be a degring function of S in $(\mathbb{C}^*)^n$. Assume that $\mathrm{Log}^{-1}(\sigma^\circ) \cap S \neq \emptyset$, for a p-dimensional cone $\sigma \in \mathcal{C}$, then for each fiber $\pi_{\sigma}^{-1}(x)$, the transversality assumption allows for application of the Lelong-Poincaré formula to deduce

$$dd^{c}\left(\log|f|\mathbb{1}_{\operatorname{Log}^{-1}(\sigma^{\circ})}\left[\pi_{\sigma}^{-1}(x)\right]\right) = \mathbb{1}_{\operatorname{Log}^{-1}(\sigma^{\circ})}\left[S \cap \pi_{\sigma}^{-1}(x)\right] + \mathcal{R}_{\sigma}(x)$$

where $\mathcal{R}_{\sigma}(x)$ is a (p-1,p-1)-bidimensional current. The support of $\mathcal{R}_{\sigma}(x)$ lies in the boundary of $Log^{-1}(\sigma)$, as $\mathcal{R}_{\sigma}(x)$ is the difference of two currents that coincide in any set of form $\text{Log}^{-1}(B)$, where $B \subseteq \mathbb{R}^n$ is a small ball with

$$B \cap \sigma^{\circ} \neq \emptyset$$
, $B \cap \partial \sigma = \emptyset$.

should it be

 $B \cap \sigma^{\circ} \neq \emptyset$, $B \cap \partial \sigma = \emptyset$, and both vanish outside $B \cap \sigma^{\circ} \neq \emptyset$. Integrating along the fibers, and adding for all $B \cap \sigma^{\circ} \neq \emptyset$. dimensional cones $\sigma \in \mathcal{C}$, we obtain

$$[S] \wedge \mathfrak{I}_{\mathcal{C}} = \sum_{\sigma \in \mathcal{C}} w_{\sigma} \int_{x \in S_{N(\sigma)}} \mathbb{1}_{\operatorname{Log}^{-1}(\sigma^{\circ})} \left[S \cap \pi_{\operatorname{aff}(\sigma)}^{-1}(x) \right] d\mu(x) + \mathcal{R}_{\mathcal{C}},$$

where $\mathcal{R}_{\mathcal{C}}$ is (p-1,p-1)-dimensional current. We claim that $\mathcal{R}_{\mathcal{C}}$ is normal, i.e. $\mathcal{R}_{\mathcal{C}}$ and $d\mathcal{R}_{\mathcal{C}}$ have measure coefficients; $\mathcal{R}_{\mathcal{C}}$ is a difference of two normal currents, where the first current $[S] \wedge \mathcal{T}_{\mathcal{C}}$ is a positive closed current, and the second current is an addition of normal pieces. Moreover, the support of $\mathcal{R}_{\mathcal{C}}$ is a subset of S as it is a difference of two currents that both vanish outside S. As a result, the current $\mathcal{R}_{\mathcal{C}}$ is supported on

121

 $S \cap \bigcup_{\sigma} \partial \text{Log}(\sigma)$. This set is a real manifold of Cauchy–Riemann dimension less than p-1, therefore by Demailly's first theorem of support the normal current $\mathcal{R}_{\mathcal{C}}$ vanishes; see also the discussion following [BH17, Proposition 4.11].

Corollary 6.2. Let $H \subseteq \mathbb{R}^n$ be a rational plane of dimension r and A := a + H, a translation of H for $a \in \mathbb{R}^n$. Assume also that $\mathcal{C} \subseteq \mathbb{R}^n$ is a tropical variety of dimension p that intersects A transversely. Then

2 > n-p

$$[(e^{-a})T_{H\cap \mathbb{Z}^n}]\wedge \mathfrak{I}_{\mathcal{C}}$$

can be viewed as a tropical current of dimension p-(n-r) in the complex subtori $T^A:=(e^{-a})\,T_{H\cap Z^n}\subseteq (\mathbb{C}^*)^n$.

Proof. Note that the hypothesis implies that the intersection $T^A \cap \pi_{\mathrm{aff}(\sigma)}^{-1}(x)$ is transversal for any $x \in S_{N(\sigma)}$. By translation, it is sufficient to prove the statement for a = 0. By preceding theorem,

$$[T^A] \wedge \Im_{\mathcal{C}} = \sum_{\sigma \in \mathcal{C}} w_{\sigma} \int_{x \in S_{N(\sigma)}} \mathbb{1}_{\operatorname{Log}^{-1}(\sigma^{\circ})} \big[T^A \cap \pi_{\operatorname{aff}(\sigma)}^{-1}(x) \big] \ d\mu(x).$$

The sets $T^A \cap \pi_{\mathrm{aff}(\sigma)}^{-1}(x)$ can be understood as a translation toric sets in T^A and $d\mu_{\sigma}(x)$ are Haar measures, which imply the assertion.

maybe keep the holation pr(x)

Theorem 6.3. Let $M \subseteq (\mathbb{C}^*)^{n-p}$ and $N \subseteq (\mathbb{C}^*)^p$ be two bounded open subsets such that N contains the real torus $(S^1)^p$. Let $\pi: M \times N \longrightarrow M$ be the canonical projection. Let \mathfrak{T}_n be a sequence of positive closed (p,p)-bidimensional currents on $M \times N$ such that $\overline{\sup}(\mathfrak{T}_n) \cap (M \times \partial \overline{N}) = \emptyset$. Assume that $\mathfrak{T}_n \longrightarrow \mathfrak{T}$ and $\supp(\mathfrak{T}) \subseteq M \times (S^1)^p$. Then we have the following convergence of slices

$$\langle \mathcal{T}_n | \pi | x \rangle \longrightarrow \langle \mathcal{T} | \pi | x \rangle$$
 for every $x \in M$.

Note that all the above slices are well-defined for all $x \in M$.

Proof. Since all the currents \mathcal{T}_n and \mathcal{T} are horizontal-like, the slices are well-defined, and we prove that the slices have the same cluster value. Let \mathcal{S} be any cluster value of $(\mathcal{T}_n|\pi|x)$. Note that such \mathcal{S} always exists by Banach-Alaoglu theorem. As both measures \mathcal{S} and $(\mathcal{T}|\pi|x)$ are supported $\{x\} \times (\mathcal{S}^1)^p$ to prove their equality, it suffices to prove that they have the same Fourier coefficients. By Theorem 2.11, we have

$$\langle \mathcal{S}, \phi \rangle \leq \langle \mathcal{T} | \pi | x \rangle \langle \phi \rangle,$$

for every plurisubharmonic function ϕ on \mathbb{C}^n , and the mass of S coincides with the mass of $\langle T|\pi|x\rangle$. Now, note that if ϕ is pluriharmonic, then $-\phi$ and ϕ are plurisubharmonic. As a result,

$$\langle \mathcal{S}, \phi \rangle = \langle \mathcal{T} | \pi | x \rangle \langle \phi \rangle,$$

for every pluriharmonic function. Recall that if f is a holomorphic function, then Re(f) and Im(f) are pluriharmonic. We now consider the elements of the Fourier basis $f(\theta) = \exp 2\pi i \langle \nu, \theta \rangle$ for $\nu \in \mathbb{Z}^n$, then we have the equality

$$\langle S, f \rangle = \langle \mathfrak{I} | \pi | x \rangle (f)$$

This implies that the Fourier measure coefficients of both S and $\langle \Im | \pi | x \rangle$ coincide.

Lemma 6.4. Let $\mathcal{C} \subseteq \mathbb{R}^n$ be a tropical variety of dimension p, and L be a rational (n-p)-dimensional plane such that L is transveral to all the affine extensions $\operatorname{aff}(\sigma)$ for $\sigma \in \mathcal{C}$. Assume that \mathfrak{T} be a positive closed current of bidimension (p,p) on a smooth projective toric variety X_{Σ} compatible with C + L such that $supp(\mathcal{T}) \subseteq supp(\mathcal{T}_C)$. Further, for all $a \in \mathbb{R}^n$, \mathcal{I}

$$\overline{\mathfrak{I}}_{L+a} \wedge \mathfrak{I} = \overline{\mathfrak{I}}_{L+a} \wedge \overline{\mathfrak{I}}_{C}$$

then
$$T = T_C$$
 in $(\mathbb{C}^*)^n$.

Proof. Let us first remark that rec(L+a) = rec(L) for all $a \in \mathbb{R}^n$ and therefore, all \mathfrak{T}_{a+L} are compatible with X_{Σ} and have a continuous super-potential in X_{Σ} and as a result, all the above wedge products are well-defined.

By Demailly's second theorem of support [Dem, III.2.13], there are measures μ_{σ} such

$$\mathfrak{I} = \sum_{\sigma} \int_{x \in S(Z^n \cap H_{\sigma})} \mathbb{1}_{\operatorname{Log}^{-1}(\sigma^{\circ})} \left[\pi_{\sigma}^{-1}(x) \right] d\mu_{\sigma}^{\mathfrak{I}}(x).$$
 not inhaliced

By repeated application of Proposition 6.1,

$$\mathfrak{I}_L \wedge \mathfrak{I} = \sum_{\sigma} \int_{(x,y) \in S(\mathbf{Z}^n \cap H_L) \times S(\mathbf{Z}^n \cap H_\sigma)} \left[\pi_H^{-1}(x) \cap \pi_\sigma^{-1}(y) \right] d\mu_L(x) \otimes \mu_\sigma^{\mathfrak{I}}(y).$$

Applying both sides of the equality $\mathcal{I}_L \wedge \mathcal{I} = \mathcal{I}_L \wedge \mathcal{I}_C$ on test-functions of the form

$$\omega_{\nu} = \exp(-i\langle \nu, \theta \rangle) \rho(r)$$

introduce the where $\rho: \mathbb{R}^n \to \mathbb{R}$ is a smooth function with compact support and $\theta \in [0, 2\pi)^n$, and $\nu \in \mathbb{Z}^n$, completely determines the Fourier coefficients of μ_σ^T which have to coincide with the normalised Haar measures multiplied by the weight of σ , i.e., $\mu_{\sigma}^{\mathcal{I}} = w_{\sigma}\mu_{\sigma}$.

Note that any subtorus of $(\mathbb{C}^*)^n$, can be understood as a fibre of a tropical current. We have the following slicing theorem.

Theorem 6.5. Let $\mathcal{C} \subseteq \mathbb{R}^n$ be a tropical variety and $A \subseteq \mathbb{R}^n$ a rational hyperplane intersecting $\mathcal C$ transversely. Let Σ be a fan compatible with $\mathcal C+A$. Assume that $\overline{\mathcal S}_n$ is a sequence of positive closed currents on X_{Σ} , and denote by S_n the restriction to T_N . Further,

•
$$\overline{\mathbb{S}}_n \longrightarrow \overline{\mathbb{T}}_{\mathcal{C}};$$

• $\operatorname{supp}(\overline{\mathbb{S}}_n) \longrightarrow \operatorname{supp}(\overline{\mathbb{T}}_{\mathcal{C}}).$

We have that

$$\lim_{n\to\infty} \left(\mathcal{S}_n \wedge [T^A] \right) = \mathcal{T}_{\mathcal{C}} \wedge [T^A],$$

as currents on $T_N \subseteq X_{\Sigma}$.

Proof. Assume that $L\subseteq\mathbb{R}^n$ is an (n-p-1)-dimensional affine plane intersecting all $\operatorname{aff}(\sigma)$ for all $\sigma \in \mathcal{C} \cap A$ transversely. Then, on a projective smooth toric variety $X_{\Sigma'}$ compatible with $\mathcal{C}+L+A$ the tropical currents $\overline{\mathfrak{I}}_{a+L}$, $a\in\mathbb{R}^n$, have continuous super-potentials. Therefore, by Proposition 2.6, we have

$$\lim_{m\to\infty} \left(\overline{S}_n \wedge \overline{T}_{a+L}\right) = \overline{T}_{\mathcal{C}} \wedge \overline{T}_{a+L}.$$

Scanned with CamScanner So you assume A=H

FARHAD BABAEE AND TIEN CUONG DINH

Now, for any $x \in \mathcal{C} \cap L \cap A$, let $B \subseteq \mathbb{R}^n$ containing x be a bounded open set containing only z as an isolated point of the intersection. By a translation we can assume that x = 0. Let H be the linear space parallel to A, and

 $\xi: (\mathbb{C}^*)^n \xrightarrow{\sim} T_{\mathbb{Z}^n/(\mathbb{Z}^n \cap H)} \times T_{\mathbb{Z}^n \cap H}$

be the isomorphism, and π_1 and π_2 be the respective projections. Note that for $x \in$ $S_{\mathbf{Z}^n/(\mathbf{Z}^n\cap H)}^1$, we have $\pi_1^{-1}(1)=T^A$. We now set

$$\begin{split} U &:= \pi_1 \circ \xi \left(\operatorname{Log}^{-1}(U) \cap \operatorname{supp}(\mathfrak{I}_{\mathcal{C}} \wedge \mathfrak{I}_{a+L}) \right) \\ V &:= \pi_2 \circ \xi \left(\operatorname{Log}^{-1}(U) \cap T^A \right), \\ \mathfrak{I}_n &:= \xi_* (\mathfrak{S}_n \wedge \mathfrak{I}_{a+L}), \text{ in } T_N, \\ \mathfrak{I} &:= \xi_* (\mathfrak{I}_{\mathcal{C}} \wedge \mathfrak{I}_{a+L}). \end{split}$$

Therefore, for large n, \mathcal{I}_n and $\mathcal{I}_{\mathcal{C}}$ are horizontal-like. By Theorem 6.5, we obtain

$$\lim_{n\to\infty} \left(\mathbb{S}_n \wedge [T^A] \right) \wedge \mathbb{T}_{a+L} = \mathbb{T}_{\mathcal{C}} \wedge [T^A] \wedge \mathbb{T}_{a+L},$$

for every a. We now deduce the convergence on $X_{\Sigma'}$ by Lemma 6.4. Finally the convergence on $(\mathbb{C}^*)^n \simeq T_N$ follows from restriction.

Theorem 6.6. In the situation of Theorem 6.5,

$$\lim_{n\to\infty} \left(\mathbb{S}_n \wedge [\overline{T}^A] \right) = \overline{\mathfrak{T}}_{\mathcal{C}} \wedge [\overline{T}^A],$$

where the extension is considered in a smooth projective toric variety X_{Σ} compatible with trop(W) + A.

what is w?

Lemma 6.7. Let $U \subseteq \mathbb{C}^n$ be an open subset and D an analytic subset. Assume that we have the convergence of closed positive currents $\mathcal{V}_n \longrightarrow \mathcal{V}$ in $U \setminus D$, and \mathcal{V}_n 's and V have a finite local mass near D. Further, assume that for any cluster value of the sequence $\{\overline{\mathcal{V}}_n\}_n$, \mathcal{W} we have

(a) $supp(W) \subseteq supp(\overline{V})$,

(b) supp $(\overline{V}) \cap D$ has the expected Cauchy-Riemann dimension,

 $\overline{\mathcal{V}}_n \longrightarrow \mathscr{W} \Rightarrow \overline{\mathcal{V}}.$

Proof. $\overline{V} - W$ has the Cauchy-Riemann dimension less than or equal to p, therefore, it must be zero. (Density again)

Proof of Theorem 6.6. Applying Theorem 5.2 (or [OP13, Proposition 3.3.2] to each fibre of $\overline{\mathcal{I}}_{\mathcal{C}}$ separately), we obtain supp $(\overline{\mathcal{I}}_{\mathcal{C}}) \cap \overline{\mathcal{T}}_{\mathcal{A}} \cap [D_{\rho}]$ has the expected Cauchy-Riemann dimension p-2. By Demailly's first theorem of support [Dem, Theorem III.2.10] $\overline{S}_{\mathcal{C}} \wedge$ $[\overline{T}_A] = \overline{T_C \wedge [T_A]}$. By assumption $\overline{S}_n \longrightarrow \overline{T}_{\text{trop}(W)}$ and $\text{supp}(\overline{T}_n) \longrightarrow \text{supp}(\overline{T}_{\text{trop}(W)})$. The observation in Lemma 2.12,

$$\limsup_{n \to \infty} (\overline{\mathcal{S}}_n \wedge [\overline{T}^A]) \subseteq \operatorname{supp}(\overline{\mathcal{T}}_{\mathcal{C}} \wedge [\overline{T}^A])$$

 $\limsup_{n \to \infty} (\overline{\mathcal{S}}_n \wedge [\overline{T}^A]) \subseteq \operatorname{supp}(\overline{\mathcal{T}}_{\mathcal{C}} \wedge [\overline{T}^A]).$ Therefore, any cluster value of $\overline{\mathcal{S}}_n \wedge [\overline{T}^A] \subseteq \overline{\mathcal{S}}_n \wedge [\overline{T}^A]$ has a support in $\operatorname{supp}(\overline{\mathcal{T}}_{\mathcal{C}} \wedge [\overline{T}^A])$. Now by setting

(a) $\mathcal{V}_n := \mathcal{S}_n \wedge [\overline{T}^A]$. (b) $\mathcal{V} := \mathcal{T}_C \wedge [\overline{T}^A]$, (c) \mathcal{W} a cluster value of $\overline{\mathcal{T}_n \wedge [T^A]}$.

we are in the situation of Lemma 6.7, and conclude.

Lemma 6.8. Let X_{Σ} be a smooth projective toric variety, and $\bar{\Delta} \subseteq X_{\Sigma}$ be the diagonal. Let S and T be two positive currents on X. Then, for any ray $\rho \in \Sigma$,

$$\operatorname{supp}(\mathcal{S}) \cap \operatorname{supp}(\mathcal{T}) \cap D_{\rho} \subseteq X_{\Sigma}$$

has a Cauchy-Riemann dimension ℓ , if and only if,

$$\operatorname{supp}(\mathbb{S}\otimes\mathfrak{T})\cap\bar{\Delta}\cap D_{(0,\rho)}\subseteq X_{\Sigma}\times X_{\Sigma},$$

has a Cauchy-Riemann dimension ℓ , where $D_{(0,\rho)}$ is the toric invariant divisor corresponding to the ray $(0, \rho)$ in $\Sigma \times \Sigma$.

Proof. The fan of $X_{\Sigma} \times X_{\Sigma}$ is $\Sigma \times \Sigma$, we have that $D_{(0,\rho)} \simeq X_{\Sigma} \times D_{\rho}$ and the assertion

Theorem 6.9. Let $C_1, C_2 \subseteq \mathbb{R}^n$ be two tropical cycles intersecting properly. Assume that X_{Σ} is a smooth toric projective variety compatible with $C_1 + C_2$. If moreover, for two sequence of positive closed currents \overline{V}_n and \overline{W}_n we have

(a) $\overline{\mathcal{W}}_n \longrightarrow \overline{\mathfrak{I}}_{\mathcal{C}_1}$ and $\overline{\mathcal{V}}_n \longrightarrow \overline{\mathfrak{I}}_{\mathcal{C}_2}$,

(b) $\operatorname{supp}(\overline{\mathcal{W}}_n) \longrightarrow \operatorname{supp}(\overline{\mathcal{T}}_{\mathcal{C}_1})$ and $\operatorname{supp}(\overline{\mathcal{V}}_n) \longrightarrow \operatorname{supp}(\overline{\mathcal{T}}_{\mathcal{C}_2})$,

(c) For any n, supp $(\overline{V}_n) \cap \text{supp}(\overline{V}_n)$ has the expected dimension.

(d) For any n, and any ray $\rho \in \Sigma$, $\operatorname{supp}(\overline{\mathcal{V}}_n) \cap \operatorname{supp}(\overline{\mathcal{V}}_n) \cap D_{\rho}$ has the expected dimension.

Then

$$\overline{\mathcal{W}}_n \wedge \overline{\mathcal{V}}_n \longrightarrow \overline{\mathcal{I}}_{\mathcal{C}} \wedge \overline{\mathcal{I}}_{\mathcal{C}'}.$$

Proof. For two closed currents S and T on X_{Σ} we naturally identify $S \wedge T = \pi_*(S \otimes T)$ $\mathfrak{T} \wedge [\bar{\Delta}]$, where $\pi: X_{\Sigma} \times X_{\Sigma} \longrightarrow X_{\Sigma}$ is the projection. In $T_N \times T_N \subseteq X_{\Sigma} \times X_{\Sigma}$ we $\mathfrak{T}_n:=\mathcal{W}_n\otimes\mathcal{V}_n$ and $\mathfrak{T}_{\mathcal{C}}:=\mathfrak{T}_{\mathcal{C}_1}\otimes\mathfrak{T}_{\mathcal{C}_2}$. Now note that the diagonal in the open torus is the complete intersection of the tori $x_i = y_i$, i = 1, ..., n. This together with assumption (c) allows for a repeated application of Theorem 6.5 to obtain

$$W_n \otimes V_n \wedge [\Delta] \longrightarrow \mathcal{T}_{C_1} \otimes \mathcal{T}_{C_2} \wedge [\Delta].$$

By assumption (c), and Lemma 6.8, for large n and rays $\rho \in \Sigma$.

$$\operatorname{supp}(\overline{\mathcal{W}}_n \otimes \overline{\mathcal{V}}_n) \cap [\overline{\Delta}] \cap D_{\rho}$$

have the expected dimension. Lemma 6.8, and the compatibility assumption imply that $\operatorname{supp}(\mathcal{W}_n \otimes \mathcal{V}_n) \cap \Delta \cap D_{(0,\rho)}$ and $\operatorname{supp}(\mathcal{T}_{\mathcal{C}} \otimes \mathcal{T}_{\mathcal{C}'}) \cap \overline{\Delta} \cap D_{(0,\rho)}$ have the expected Cauchy-Riemann dimension. Therefore, Lemma 2.12 brings us to the situation of Lemma 6.7 and we conclude.

Can we drop assumption (b)?

? May be to (d) Should be a similar condition Jor the limits?

7. DYNAMICAL TROPICALISATION WITH NON-TRIVIAL VALUATIONS

7.1. Dynamical tropicalisation with a non-trivial valuation. Recall that for a field K, $\nu : K \longrightarrow \mathbb{R} \cup \{\infty\}$, is called a valuation if it satisfies the following properties for every $a, b \in K$:

- (a) $\nu(a) = \infty$ if and only if a = 0;
- (b) $\nu(ab) = \nu(a) + \nu(b);$
- (c) $\nu(a+b) \ge \min\{\nu(a), \nu(b)\}.$

A valuation is called *trivial*, if the valuation of any non-zero element is 0. For an element $a \in \mathbb{K}$, we denote by \bar{a} its image in the residue field. We are interested in the case where $\mathbb{K} = \mathbb{C}((t))$, is the field of *formal Laurent series* with the parameter t, with the usual valuation. That is, for $g(t) = \sum_{j \geq k} a_j t^j$, with $a_k \neq 0$, the valuation equals the the minimal exponent $\nu(q) = k \in \mathbb{Z}$.

Definition 7.1. (a) Let $f = \sum_{\alpha \in \mathbb{N}} c_{\alpha} z^{\alpha} \in \mathbb{K}[z^{\pm 1}]$, be a Laurent polynomial in n variables. The tropicalisation of f with respect to ν ,

$$\operatorname{trop}_{\nu}(f) : \mathbb{R}^n \longrightarrow \mathbb{R},$$

 $x \mapsto \max\{-\nu(c_{\alpha}) + \langle x, \alpha \rangle\}.$

(b) Let $I \subseteq \mathbb{K}[z^{\pm 1}]$ be an ideal. The tropical variety associated to I, as a set, is defined as

$$\operatorname{Trop}_{\nu}(I) := \bigcap_{f \in I} \operatorname{Trop}(\operatorname{trop}_{\nu}(f)),$$

where $\operatorname{Trop}(\operatorname{trop}_{\nu}(f))$ is the set of points where $\operatorname{trop}_{\nu}(f)$ is not differentiable; see Remark 4.5.

- (c) For an algebraic subvariety of the torus $Z \subseteq (\mathbb{K}^*)^n$, with the associated ideal $\mathbb{I}(Z)$, the tropicalisation of Z, as a set, is $\operatorname{Trop}_{\nu}(Z) := \operatorname{Trop}_{\nu}(\mathbb{I}(Z))$.
- (d) In all the situations above, trop₀ denotes the tropicalisation with respect to the trivial valuation.

We need to relate a non-trivial valuation to the trivial valuation.

Lemma 7.2. Consider the ideal $I \subseteq \mathbb{C}[t^{\pm 1}, z^{\pm 1}] \xrightarrow{\iota} \mathbb{C}((t))[z]$. Assume that (u, x) are the coordinates in $\mathbb{R} \times \mathbb{R}^n$. Then, we have the following equality of sets

$$\operatorname{Trop}_0(I) \cap \{u = -1\} = \operatorname{Trop}_{\nu}(\iota(I)).$$

That is, the tropicalisation of I as an ideal in $\mathbb{C}[t,x]$ with respect to the trivial valuation intersected with $\{u=-1\}$ coincides with the tropicalisation of $I=\iota(I)$ with respect to the usual valuation in $\mathbb{C}((t))$.

The proof of the lemma becomes clear with the following example.

Example 7.3. Let

$$f(x,t) = 4(t^3 + t^{-1})z_1z_2 + (1+t+t^2)z_1.$$

Then, the tropicalisation of $f \in \mathbb{C}[t, z]$, with respect to the trivial valuation equals:

$$\operatorname{trop}_0(f) = \max \left\{ \max\{3u + x_1 + x_2, -u + x_1 + x_2\}, \max\{x_1, u + x_1 + 2u + x_1\} \right\}$$

Letting $u := -1$, $\operatorname{trop}_0(f)(-1, x) = \max\{1 + x_1 + x_2, x_1\}$. The latter equals $\operatorname{trop}_{\nu}(f)$ as an element of $\mathbb{C}((t))[z]$.

Proof of Lemma 7.2. If f is a monomial in $\mathbb{C}[t][z]$, then it is clear that

$$\operatorname{trop}_0(f)(-1,x) = \operatorname{trop}_{\nu}(\iota(f)).$$

Therefore, we have the equality for any polynomial in $f \in \mathbb{C}[t,z]$. To prove the main statement, note that

$$\operatorname{Trop}_{\nu}(\iota(I)) = \bigcap_{f \in \iota(I)} \operatorname{Trop}(\operatorname{trop}_{\nu}(f))$$

$$= \bigcap_{f \in I} \left(\operatorname{Trop}(\operatorname{trop}_{0}(f)) \cap \{u = -1\}\right)$$

$$= \operatorname{Trop}_{0}(I) \cap \{u = -1\}.$$

Remark 7.4. Bergman in [Ber71], shows that for an algebraic subvariety $Z \subseteq (\mathbb{C}^*)^n$, one has

$$\lim \operatorname{Log}_{t}(Z) \subseteq \operatorname{Trop}_{0}(\mathbb{I}(Z)),$$

and he conjectured the equality. This conjecture was later proved by Bieri and Groves in [BG84]. More precisely, Bieri and Grove prove that $\lim \operatorname{Log}_t(Z) \cap (S^1)^n$ is a polyhedral sphere of real dimension equal to (the complex dimension) $\dim(Z) - 1$. Therefore, the fan $\lim \operatorname{Log}_t(Z)$ is a cone over their spherical complex. See also [MS15, Theorem 1.4.2].

Remark 7.5. The above lemma is related to the results of Markwig and Ren in [MR20]. They considered the tropicalisation of an ideal $J \subseteq R[[t]][x]$, where R is the ring of integers of a discrete valuation ring K, which is non-trivially valued. To obtain finiteness properties, however, the authors consider the associated tropical variety in the half-space $\mathbb{R}_{\leq 0} \times \mathbb{R}^n$. Note that such a variety is almost never balanced. The authors also prove that for an ideal $I \subseteq K[x]$, the tropicalisation of the natural inverse image $\pi^{-1}I \subseteq R[[t]][x]$ with respect to trivial valuation, intersected with $\{u = -1\}$ equals $\operatorname{trop}_{\nu}(I)$; [MR20, Theorem 4].

Let us also recall the main result of [Bab23].

Theorem 7.6. Let $Z \subseteq (\mathbb{C}^*)^n$ be an irreducible subvariety of dimension p, and \overline{Z} the closure of Z in the compatible smooth projective toric variety X. Then,

$$\frac{1}{m^{n-p}}\Phi_m^*[\overline{Z}] \longrightarrow \overline{\mathfrak{T}}_{\mathcal{C}}, \quad \text{as } m \to \infty,$$

where $\Phi_m: X \longrightarrow X$ is the continuous extension of $\Phi_m: (\mathbb{C}^*)^n \longrightarrow (\mathbb{C}^*)^n$, and $\overline{\mathcal{T}}_{\operatorname{trop}_0(Z)}$ is the extension by zero of $\mathcal{T}_{\operatorname{trop}_0(Z)}$ to X. Moreover, the supports also converge in Hausdorff metric.

Note that since the limit of a sequence of closed currents is closed, the above theorem implies that $trop_0(Z)$ can be equipped with weights to become balanced. Note that the compatibility is in the following sense of Tevelev and Sturmfels:

Theorem 7.7. (a) The closure \bar{Z} of Z in X_{Σ} is complete, if and only if, $\operatorname{trop}(Z) \subseteq |\Sigma|$; see [Tev07].

(b) We have $|\Sigma| = \operatorname{trop}(Z)$, if and only if, for every $\sigma \in \Sigma$ the intersection $\mathcal{O}_{\sigma} \cap \overline{Z}$ is non-empty and of pure dimension $p - \dim(\sigma)$; see [ST08].

on not degined.

Theorem 7.8. Let $I \subseteq \mathbb{C}[t^{\pm 1}, x^{\pm 1}]$ be an ideal with the associated (p+1)-dimensional algebraic variety $W = V(I) \subseteq (\mathbb{C}^*)^{n+1}$. Assume that the projection onto the first coordinate $\pi_1:W\longrightarrow \mathbb{C}^*$ is surjective and Zariski closed. We denote the fibers as $W_t := \pi_1^{-1}(t)$. We have that

(a)

$$\frac{1}{m^{n-p}}\Phi_m^*[W_{e^m}] \longrightarrow \Im_{\operatorname{Trop}_\nu(I)}, \quad \text{as } m \to \infty \ ,$$

in the sense of currents in $\mathcal{D}_p((\mathbb{C}^*)^n)$.

(b) Trop_ν(I) can be equipped with weights to become balanced.

(c) $\limsup_{m \to p} (\frac{1}{m^{n-p}} \Phi_m^*[W_{e^m}]) = \sup_{m \to p} (\mathfrak{T}_{\operatorname{Trop}_{\nu}(I)}).$ (d) On a toric variety X_{Σ} compatible with $\operatorname{trop}_0(W) + \{u = -1\},$

$$\frac{1}{m^{n-p}}\Phi_m^{\bullet}[\overline{W_{e^m}}] \longrightarrow \overline{\mathcal{I}}_{\mathrm{Trop}_{\nu}(I)}, \quad \text{as } m \to \infty$$

We need the following

Lemma 7.9. Let $W \subseteq (\mathbb{C}^{\bullet})^{n+1}$ be a (p+1)-dimensional smooth subvariety, such that the projection onto the first factor, $\pi_1: (\mathbb{C}^*)^{n+1} \longrightarrow \mathbb{C}^*$ is surjective and a Zariski closed morphism. Assume that W Then for a sufficiently large $|t_0| >> 0$

$$[W_{t_0}] = [\pi_1^{-1}(t_0)] = [\{t = t_0\}] \wedge [W].$$

Proof. We first prove that the set of singular points of W, together with the set of points where $[\{t=t_0\}] \wedge [W]$ has a multiplicity greater than 1, is contained in a Zariski closed set in W. We define the critical set,

$$C = \{ w \in W_{\text{reg}} : \dim (T_w W \cap \ker \nabla_w t) = p + 1 \},$$

which is the set of points where the tangent space of T_wW_{reg} is included in the tangent space of $T_w\{t=t_0\}$, and this set contains the set of points $w\in W_{reg}$ points the intersection multiplicity of $\{t=t_0\}$ and W exceeds 1. We fix an ideal associated to $I = \mathbb{I}(W) = \langle f_1, \ldots, f_k \rangle \subseteq \mathbb{C}[t,x]$. At any regular point $w \in W_{\text{reg}}$, T_wW is of dimension p+1, and the rank of the Jacobian matrix $J(f)(w) = \left(\frac{\partial f_i}{\partial z_i}(w)\right)_{k\times(n+1)}$ equals codimension of W, (n+1)-(p+1)=n-p. We have that $\nabla_w t=e_1$, where e_1 is the first element of the standard basis for the C-vector space \mathbb{C}^{n+1} . We have $w \in C$, if and only if,

$$\ker \begin{pmatrix} e_1 \\ Jf(w) \end{pmatrix} = \ker (Jf(w)).$$

As a result, C is an algebraic variety given as the intersection of $W \setminus W_{\text{sing}}$ with the intersection of zero loci of $(q+1) \times (q+1)$ -minors of $\begin{pmatrix} e_1 \\ Jf(w) \end{pmatrix}$. Therefore, the closure of C in W, \overline{C} union W_{sing} is a Zariski-closed subset of W. Since W is not contained in $\{t=t_0\}$, as π_1 is surjective, then $\pi_1(\overline{C}\cup W_{\rm sing})$ is a Zariski closed proper subset in $\mathbb{C}^{\bullet} \subseteq \mathbb{C}$, and hence finite.

Proof of Theorem 7.8. By the preceding lemma, and the fact that Φ_m preserves transversal intersection, we have

$$\frac{1}{m^{n-p}}\Phi_m^{\bullet}[W_{e^m}] = \frac{1}{m^{n-(p+1)}}\Phi_m^{\bullet}[W] \wedge \frac{1}{m}\Phi_m^{\bullet}[\{t=e^m\}],$$

for a large m. Since $\operatorname{trop}_0(W)$ is a fan and it is transversal to the plane $\{u=-1\}\subset \mathbb{R}^{n+1}$ are transversal, we can use Theorem 6.5 to write

$$\lim \frac{1}{m^{n-p}} \Phi_m^{\star}[W_{e^m}] = \Big(\lim \frac{1}{m^{n-(p+1)}} \Phi_m^{\star}[W] \Big) \wedge \Big(\lim \frac{1}{m} \Phi_m^{\star}[\{t = e^m\}] \Big)$$

By Theorem 7.6, restricted to $(\mathbb{C}^*)^{n+1}$, and the fact that we used $\text{Log} = (-\log | \cdot |, \ldots, -\log | \cdot |)$ in the definition of tropical currents, the above limits yield

$$\lim \frac{1}{m^{n-p}} \Phi_m^*[W_{e^m}] = \mathfrak{I}_{\operatorname{Trop}_0(W)} \wedge \mathfrak{I}_{\{u=-1\}}.$$

Applying Theorems 5.11 and Lemma 7.2, we obtain the equality. For the assertion (b), note that the limit $\mathcal{T}_{\text{Trop}_{\nu}(I)}$ is a closed current and Theorem 4.3 implies that $\text{Trop}_{\nu}(I)$ is naturally balanced. To observe (c), note that (a) implies

$$\limsup (\frac{1}{m^{n-p}} \Phi_m^*[W_{e^m}]) \supseteq \sup (\mathfrak{T}_{\mathrm{Trop}_{\nu}(I)}).$$

However, because of transversality, $\operatorname{supp}(\mathfrak{I}_{\operatorname{Trop}_{\nu}(I)}) = \operatorname{supp}(\mathfrak{I}_{\operatorname{Trop}_{0}(W)}) \cap \operatorname{supp}(\mathfrak{I}_{\{u=-1\}})$. At the same time,

$$\limsup (\Phi_m^*[W_{e^m}]) = \limsup (\Phi_m^*[W]) \cap \sup (\Phi_m^*[\{t = e^m\}]).$$

Moreover, for the Hausdorff limit of sets $\lim (A_i \cap B_i) \subseteq (\lim A_i) \cap (\lim B_i)$. This implies

$$\limsup(\Phi_m^*[W_{e^m}]) \subseteq \sup(\mathfrak{T}_{\mathrm{Trop}_0(W)}) \cap \sup(\mathfrak{T}_{\{u=-1\}}),$$

which implies (c). Now, (d) is implied by Theorem 6.6.

Let us first prove the analogous result to the main result of Bogart Jensen, Speyer, Sturmfels, and Thomas in [BJS⁺07]. See also [OP13] for generalisation.

Theorem 7.10. Assume that W and Z? ? respectively. Further,

- (a) the supports converge in the Hausdorff metric
- (b) C and C' intersect properly.

Then, $W_n \wedge V_n$ converges to $\mathcal{T}_C \wedge \mathcal{T}_{C'}$.

Proof to be completed. When C and C' intersect properly, it implies that the fibres of \mathcal{I}_{C} and $\mathcal{I}_{C'}$ intersect transversely. In this situation,

Let $I \subseteq \mathbb{C}[t^{\pm 1}, x^{\pm 1}]$ be an ideal with the associated (p+1)-dimensional algebraic variety $W = \mathbb{V}(I) \subseteq (\mathbb{C}^*)^{n+1}$. Assume that the projection onto the first coordinate $\pi_1: W \longrightarrow \mathbb{C}^*$ is surjective and Zariski closed. We denote the fibres as $W_t := \pi_1^{-1}(t)$. We have that

$$\frac{1}{m^{n-p}}\Phi_m^*[W_{e^m}] \longrightarrow \mathfrak{I}_{\operatorname{trop}_{\nu}(I)}, \quad \text{as } m \to \infty ,$$

in the sense of currents in $\mathcal{D}_p((\mathbb{C}^*)^n)$. In particular, $\operatorname{trop}_{\nu}(I)$ can be equipped with weights to become balanced. Moreover, if Σ is a toric variety compatible with $\operatorname{trop}_0(W)$ and $\{u=-1\}$, then on X_{Σ} ,

$$\frac{1}{m^{n-p}}\Phi_m^*[\overline{W}_{e^m}] \longrightarrow \overline{\mathfrak{I}}_{\operatorname{trop}_{\nu}(I)}, \quad \text{as } m \to \infty \; .$$

П