2022년 1학기 물리학 I: Quiz 14

김현철^{a1,†} and Hwi-Jae Lee^{1,‡}

¹Hadron Theory Group, Department of Physics, Inha University, Incheon 22212, Republic of Korea (Dated: Spring semester, 2022)

문제 1. (30 pt) 그림 1에서 크기가 10 N인 힘이 질량 10 kg이고 반지름이 0.30 m인 바퀴에 수평방향으로 작용하고 있다. 바퀴는 수평면에 대하여 유연한 굴림 운동을 하며 질량중심에 대한 가속도의 크기는 0.60 m/s²이다.

FIG. 1. 문제 1

- (가) 바퀴에 작용하는 마찰력을 단위벡터로 표기하여라.
- (나) 질량중심을 지나는 회전축에 대한 바퀴의 회전관성은 얼마인가?

풀이: 중력 F_q , 수직항력 N, 마찰력 F_s

FIG. 2. 자유 물체 다이어그램

(가) 바퀴가 회전하도록 하는 힘 = 마찰력, 질량 m, 반지름 r, 가속도 a, 각가속도 α , 돌림힘 τ

$$\alpha = -\frac{a}{r}, \quad \tau = F_s r = I\alpha \tag{1}$$

마찰력은 반대방향으로 작용

$$\vec{F}_s = -\frac{I\alpha}{r}\hat{\boldsymbol{i}} \tag{2}$$

a Office: 5S-436D (면담시간 매주 화요일-16:00~20:00)

[†] hchkim@inha.ac.kr

 $^{^{\}ddagger}\,$ hjlee
6674@inha.edu

(나) 운동 방정식

$$\sum F = ma = F_{app} - F_s. \tag{3}$$

마찰력은

$$F_s = \frac{I\alpha}{r} = F_{app} - ma. \tag{4}$$

문제 2. (30 pt) 그림 3는 질량이 m, 반지름이 R인 원형고리와 질량이 m, 길이 R인 네 개의 가느다란 막대로 만들 어진 정사각형 강체이다. 강체는 주기가 2.5 초인 일정한 속력으로 수직축에 대하여 회전한다. R=0.50 cm, m=2.0 kg이라고 할 때,

FIG. 3. 문제 2

- (가) 회전축에 대한 강체의 회전관성과
- (나) 회전축에 대한 각운동량을 각각 구하여라.

풀이:

(가) 정사각형일 경우 회전축에 수평한 막대, 수직인 막대를 나누어 생각. ho를 고리의 밀도라 하면 수평한 막대의 회전관성 I_p 는,

$$I_p = \int r^2 dm = \rho \int_0^R R^2 dz + 0 = \rho R^3.$$
 (5)

수직인 막대의 회전관성 I_o 는,

$$I_0 = \int r^2 dm = \rho \int_0^R r^2 dr + \rho \int_0^R r^2 dr = \frac{2}{3} \rho R^3.$$
 (6)

정사각형 고리의 회전관성은,

$$I_p + I_0 = \frac{5}{3}\rho R^3 = \frac{5}{3}\left(\frac{m}{R}\right)R^3 = \frac{5}{3}mR^2.$$
 (7)

평행축 정리,

$$I = I_{cm} + mh^2. (8)$$

원형고리의 회전관성 I_{cir} ,

$$I_{cir} = I_{cm} + mR^2 (9)$$

원형고리일 경우 밀도 ρ 는,

$$\rho = \frac{m}{2\pi R}.\tag{10}$$

미소질량 dm'을 생각하면,

$$dm' = \rho R \, d\theta = \frac{m}{2\pi} \, d\theta. \tag{11}$$

 θ 는 축과 중심을 잇는 선, 중심과 dm'을 잇는 선이 이루는 각. $r=R\sin\theta$ 이므로 I_{cm} 은,

$$I_{cm} = \int r^2 dm' = \frac{m}{2\pi} R^2 \int_0^{2\pi} \sin^2 \theta \, d\theta = \frac{m}{2\pi} R^2 \pi = \frac{1}{2} m R^2.$$
 (12)

 $I_{cir} \stackrel{\diamond}{\leftarrow}$,

$$I_{cir} = \frac{1}{2}mR^2 + mR^2 = \frac{3}{2}mR^2. {13}$$

총 회전관성 I,

$$I = I_p + I_o + I_{cir} = \frac{5}{3}mR^2 + \frac{3}{2}mR^2 = \frac{19}{6}mR^2.$$
(14)

(나) 각속도 ω ,

$$\omega = \frac{2\pi}{T}.\tag{15}$$

각운동량 L,

$$L = I\omega = \frac{2\pi I}{T} = \frac{19\pi mR^2}{3T}.$$
 (16)

문제 3. (40pt) 질량이 $4.0~{\rm kg}$ 이고 길이가 $0.50~{\rm m}$ 인 가늘고 균일한 막대가 수평면에서 중심을 지나는 수직축에 대하여 회전할 수 있다. 질량이 $3.0~{\rm g}$ 인 총알이 막대의 회전면에서 정지하고 있는 막대의 왼쪽 끝을 향하여 발사되었다. 위에서 보았을 때 총알의 경로는 그림 4처럼 막대와 $\theta=60^{\circ}$ 의 각도를 이룬다. 총알이 막대에 박히고 충돌 직후 막대의 가속도가 $10~{\rm rad/s}$ 이라면 충돌 직전 총알의 속력은 얼마인가?

FIG. 4. 문제 3

풀이: 막대 질량 m_1 , 막대 길이 d, 총알 질량 m_2 총알 속력 v_2 . 운동량 보존 법칙 초기 운동량 L_1 ,

$$L_1 = |\vec{r} \times \vec{p}| = \frac{1}{2} m_2 v_2 d \sin \theta. \tag{17}$$

나중 각운동량 L_2 ,

$$L_2 = I_1 \omega + I_2 \omega. \tag{18}$$

 I_1 막대 회전관성, I_2 총알 회전관성. I_1 은,

$$I_1 = \int r^2 dm = \rho \int_{-\frac{1}{2}d}^{\frac{1}{2}d} r^2 dr = \left(\frac{m_1}{d}\right) \left(\frac{1}{24}d^3 - \left(-\frac{1}{24}d^3\right)\right) = \frac{1}{12}m_1d^2.$$
 (19)

 I_2 는,

$$I_2 = mr^2 = \frac{1}{4}m_2d^2. (20)$$

 L_2 는,

$$L_2 = \left(\frac{1}{12}m_1 + \frac{1}{4}m_2\right)\omega d^2. \tag{21}$$

운동량 보존 법칙 $L_1 = L_2$,

$$\frac{1}{2}m_2v_2d\sin\theta = \left(\frac{1}{12}m_1 + \frac{1}{4}m_2\right)\omega d^2. \tag{22}$$

 v_2 는,

$$v_2 = \left(\frac{1}{6}m_1 + \frac{1}{2}m_2\right) \frac{\omega d}{m_2 \sin \theta} \tag{23}$$

문제 4. (60pt) 난이도 상: 그림 5에서 질량 $30\,\mathrm{kg}$ 의 아이가 질량이 $100\,\mathrm{kg}$, 반지름이 $2.0\,\mathrm{m}$ 인 정지해 있는 원판의 가장자리에 서 있다. 원판의 중심에 있는 회전축에 대한 회전관성은 $150\,\mathrm{kg}\cdot\mathrm{m}^2$ 이다. 이때 친구가 던진 질량이 $1.0\,\mathrm{kg}$ 인 공을 아이가 잡았다. 공을 잡기 직전에 수평방향인 공의 속도 \overline{v} 의 크기는 $12\,\mathrm{m/s}$ 이고 원판의 가장자리의 접선과 \overline{v} 가 이루는 각도는 37° 이다. 아이가 공을 잡은 직후 원판의 각속력을 구하여라.

FIG. 5. 문제 4

풀이 : 원판 질량 m_1 , 원판 반지름 R, 원판의 회전관성 I_1 , 아이 질량 m_2 , 공 질량 m_3 , 공 속력 v_3 . 각운동량 보존 법칙, 공을 잡기 직전 각운동량 L_i

$$L_i = |\vec{r} \times \vec{p}| = m_3 v_3 R \sin(270^\circ - \phi). \tag{24}$$

공을 잡은 후 아이와 공의 회전관성 I_2 ,

$$I_2 = mr^2 = (m_2 + m_3)R^2. (25)$$

전체 회전관성 I,

$$I = I_1 + I_2 = I_1 + (m_2 + m_3)R^2. (26)$$

공을 잡은 후 각운동량 L_f ,

$$L_f = I\omega = (I_1 + (m_2 + m_3)R^2)\omega. \tag{27}$$

각운동량 보존 법칙에 의해 $L_i = L_f$,

$$m_3 v_3 R \sin(270^\circ - \phi) = (I_1 + (m_2 + m_3)R^2)\omega.$$
 (28)

각속도 ω ,

$$\omega = \frac{m_3 v_3 R}{2(I_1 + (m_2 + m_3)R^2)} \sin(270^\circ - \phi)$$

$$= \frac{(1.0 \text{ kg})(12 \text{ m/s})(2.0 \text{ m})}{(150 \text{ kg} \cdot \text{m}^2) + ((30 \text{ kg}) + (1.0 \text{ kg}))(2.0 \text{ m})^2} \sin 233^\circ - 0.070 \text{ rad/s}.$$
(29)