La Pédale de Guitare Numérique

> PME In Multi Eff

Pédale Multi-Effets

Sommaire

Spécifications techniques (3-5)

- Schémas Electriques
- Effets numérique

Software (6-16)

- DAC / ADC

Spécifications techniques - schéma Bloc de la pédale

Spécifications techniques - schéma Bloc de la pédale

Spécifications techniques - schéma électrique

• Coder un Effet en FAUST et le générer en C

Reverb effect control

Capturer et afficher IN/OUT Audio sur STM32

Objectif Finale

With effect

Capturer et afficher IN/OUT Audio sur STM3

Objectif pour tester l'effet avant de se lancer dans l'utilisation du CODEC

Capturer et afficher IN/OUT Audio sur STM32

Dans un premier temps :

Démarrage avec le DAC (partie avec l'ADC déductible)

Étape 1 : afficher un signal qui monte jusqu'à 4095 et qui redescend à 0

DAC codé sur 12 bits

Valeur comprise entre 0 et 4095

Capturer et afficher IN/OUT Audio sur STM32 CubeIDE

Étape 2: Utilisation d'un DMA (Direct memory access)

Étape 2 : Utilisation d'un DMA

Déclenchement par TIMER (et non plus pas Trigger)

<u>Création du DMA</u>

Stocker une période et la jouer en boucle (12bits)

Configuration du TIMER

Fréquence Audio 48kHz

Le taux d'échantillonnage pour l'audio "professionnel"

 $(180.10^6)/(48.10^3) = 3750$

ARR * PSC = 3750

ARR = 3750 - 1 PSC = 1

Configuration du TIMER

Relie TIM8 automatiquement

Création du Buffer

Dent de scie pour 48kHz, MAX 4096 MIN 0

On mesure bien une fréquence de 1kHz à l'oscilloscope

ADC fonctionne entre 0 et 3,3 V \bigwedge [-0,7; +3,3] \Longrightarrow **GBF** sinus 1V/div. **Mise en Place d'interruptions**

Software **ADC**

Capturer et afficher IN/OUT Audio sur STM32 CubeIDE

Capturer et afficher IN/OUT Audio sur STM32

