Intelligently Evolving Gradient Descent

John Vahedi

Abstract

- Intelligent form of the gradient descent algorithm
- "Semi-stochastic," informed by short-term history
- 3 evolutionary methods
- Compared to plain SGD
- Linear and non-linear examples
- For stable but complex neural & transformer architectures

- 1. Background
- 2. Algorithms
- 3. Method
- 4. Results & Analysis
- 5. Conclusion

Figure 1: The Transformer - model architecture.

1.

Background

Introduction

Cost Function

Inspired Example:

- Business
 - > Reduce cost
 - \rightarrow Two dependent choices (n=2)
 - > Current choices set

Note: Our business will be something different And 'n' may be > 2

What is Gradient Descent?

Gradient Descent Step

Direction

position

Step Size (3 Faux Pas)

Step Size (3 Faux Pas)

Step Size (3 Faux Pas)

Why Stochastic?

Definition:

- "Randomness"
- Avoiding some directions in Gradient randomly
 - o Picks **subset** of gradient

Reason/strategy:

- Redundant: Data or Features
- Avoid Local Minima
- Memory Advantage

Regardless:

 Eventually reach all data (Downside Low, Upside High)

Algorithms

Historical Gradient Descent

Momentum

Remembers old motion; piecemeals out same motion later

Noise

Explicit noise to added gradient; helps initialization

Adjust step size based on gradient or historical frequency

Implicit

Prescient methods; Add complexity but more stable

Too much stochastic....?

- Stochasticity has Benefits
 - > Discussed
- **❖** Total Stochastic Choice
 - > Leaves information on the table

Novel Gradient Descent

Semi-Stochastic Gradient Descent (SSGD)

- Remembers last step
- Gradient as fitness
- Percent fittest, rolls over

Note: Requires sorting

Novel Gradient Descent

Algorithm 1 SSGD

- 1: Import data
- 2: Initialize subset of data, size K call this subset L_k
- 3: Initialize a at initial guess a_0
- 4: **for** i = 1, 2, ..., N **do**
- 5: Set $\nabla_a \Phi = \text{zeros}(\text{input space dimensionality})$
- 6: **for** point = 1, 2, ..., K **do**
- 7: Assess gradient at point L[point] and add to $\nabla_a \Phi$
- 8: end for
- 9: Update $a=a-(\eta/i^p)^*(\nabla_a\Phi/K)$
- 10: Selection on L_k , return $L_{k,selected}$ holding highest-contributing points
- 11: Repopulate $L_{k,selected}$ with random points from dataset, set repopulated array equal to L_k
- 12: end for

"Those who cannot remember the past are condemned to repeat it."

- George Santayana

What is Evolutionary Algorithm?

- → "Population" of solutions running in parallel
- → Inspired by biological systems

Relevant mechanisms:

- Fitness
- Breeding
 - o Recombine
 - Mutation

- A. Initialize **P** random <u>subsets</u>
- B. Calculate accumulated individual **Gradient**
- C. Update **Parameters** individually and **Error**
- D. Select fittest percentage for Breeding

Fitness

3 Factors:

$$fitness = |\nabla_w \Phi^*| * \frac{1}{factor_{age}} * \frac{1}{(1 + |error|)}$$

$$factor_{age} = \begin{cases} 1, & age < C \\ (age - C) + 1, otherwise \end{cases}$$

- 2. Comprehensive Stochastic Gradient Descent (CEvSGD)
 - → Tracks individual's parameters and stored
 - Returns parameter with lowest error
- 3. Efficient Stochastic Gradient Descent (EEvSGD)
 - → Does not track individual's parameters
 - ◆ Global parameter updated with averaged gradient

Algorithm 2 EvSGD Variant 1: CEvSGD (Comprehensive EvSGD)

```
1: Import data
 2: Initialize P subsets of data, each of size K - call this array L
 3: Initialize array A of size P, entries equal to initial guess a_0
 4: for i = 1, 2, ..., N do
       for member = 1, 2, \dots, P do
           Set L_k = L[\text{member}]
           Set \nabla_a \Phi = zeros (input space dimensionality)
           for point = 1, 2, \dots, K do
               Assess gradient at point L_k[point] and add to \nabla_a \Phi[point]
           end for
10:
           a = A[\text{member}]
11:
           Update a=a-(\eta/i^p)^*(\nabla_a\Phi[\text{member}]/K) and correspondingly update
12:
    \boldsymbol{A}
       end for
13:
       Selection on L, return L_{selected} which holds top performing subsets
14:
       Run breeding on L_{selected}, return L_{new}
15:
        Update A, with new members of the population initialized at A[parent]
17: end for
```

Algorithm 3 EvSGD Variant 2: EEvSGD (Efficient EvSGD)

```
1: Import data
 2: Initialize an array L of P subsets of data, each of size K - L corresponds to
    our population
 3: Initialize a equal to initial guess a_0
 4: Initialize an array \nabla_a \Phi of size P, each entry is zeros(P)
 5: for i = 1, 2, ..., N do
        for member = 1, 2, \dots, P do
            Set L_k = L[\text{member}]
            Set \nabla_a \Phi[\text{member}] = zeros(P)
            for point = 1, 2, \dots, K do
 9:
                Assess gradient at L_k[point] and add to \nabla_a \Phi[member]
10:
            end for
11:
        end for
12:
        Selection on L, return L_{selected}, which holds top-performing subsets
13:
        \nabla_{a,ava}\Phi = average(\nabla_a\Phi)
14:
        Update a=a-(\eta/i^p)^*(\nabla_{a,ava}\Phi/K)
15:
        Run breeding on L_{selected}, return L_{new}
16:
17: end for
```

- Semi-Stochastic Gradient Descent (SSGD)
- 2. Comprehensive Stochastic Gradient Descent (CEvSGD)
- 3. Efficient Stochastic Gradient Descent (EEvSGD)

Other "similar" algos

- "Evolutionary stochastic gradient descent for optimization of deep neural networks" by Xiaodong Cui et al.
- Momentum based SGDs

Method

Imported Packages

MatPlotLib

Generate graphs of plots

Numpy

Used for parallel computation, and random value generator

Regression Problem

$$F(a,x) = a_1 \cdot f_1(x) + a_2 \cdot f_2(x) + \dots + a_N \cdot f_N(x) = \sum_{n=1}^{N} a_n \cdot f_n(x)$$
 (3)

$$\nabla_a F(a, x) = [f_1(x), f_2(x), ..., f_N(x)]^T$$
(4)

$$\Phi(a) = \frac{1}{M} \sum_{i=1}^{M} \phi_j(a).$$
 $\phi_j(a) = (y_j - F(a, x_j))^2.$

$$\nabla_a \Phi(a) = \frac{1}{M} \sum_{j=1}^{M} \nabla_a \phi_j(a) = \frac{1}{M} \sum_{j=1}^{M} 2 \cdot (y_j - F(a, x_j)) \cdot \nabla_a F(a, x_j)$$
 (8)

Regression Problem

$$\Phi^*(a) = \frac{1}{\sum_{j=1}^M w_j} \sum_{j=1}^M w_j \phi_j(a) = \frac{1}{K} \sum_{j=1}^M w_j \phi_j(a)$$

$$\nabla_a \Phi(a) \approx \nabla_a \Phi^*(a)$$
.

$$\nabla_a \Phi(a) = \nabla_a \Phi^*(a) + err, \quad err \sim N(0, \sigma) \Rightarrow$$

$$E[\nabla_a \Phi(a)] = E[\nabla_a \Phi^*(a)]$$

$$a_{i+1} = a_i - \eta_i \cdot \nabla_a \Phi^*(a_i) \tag{10}$$

Created Packages

Utils

EA_Utils

Generator

Dependencies

none

Parameter Tuning

Initial step size

p

Power of series used in division to slow down step sizes over iteration

other

%Retained, %Mutation, %Inheritance, Age Cutoff

Parameter Tuning

p

Power of series used in division to slow down step sizes over iteration

Effect of different p values for a fixed η =0.000001 on SSGD

Parameter Tuning

Algorithm	Optimal p	Optimal η_0
1: SSGD	0.07	9×10^{-6}
2: EEvSGD	0	1.5×10^{-7}
3: CEvSGD	0.07	8.1×10^{-6}

Search done: **p** in [0,.5] and **eta** in $[1 \times 10^{-7}, 5 \times 10^{-5}]$

Normalization

Normalized Discovered Version:

$$y = a_0^* + a_1^*(X)_s + a_2^*(X^2)_s + a_3^*(X^3)_s$$

$$= a_0^* + a_1^* \frac{(X - \mu_1)}{\sigma_1} + a_2^* \frac{(X^2 - \mu_2)}{\sigma_2} + a_3^* \frac{(X^3 - \mu_3)}{\sigma_3}$$

$$= (a_0^* - \sum_{i=0}^3 \frac{a_i^* \mu_i}{\sigma_i}) + \frac{a_1^*}{\sigma_1} X + \frac{a_2^*}{\sigma_2} X^2 + \frac{a_3^*}{\sigma_3} X^3$$

$$a_0 = a_0^* - \sum_{i=0}^3 \frac{a_i^* \mu_i}{\sigma_i}, \quad a_i = \frac{a_i^*}{\sigma_i}$$

Helps Stability

4.

Results & Analysis

Figure 4: Models regressed over dataset at 30k steps (above)

Figure 5: Models regressed over dataset at 60k steps (above)

5 Avg. Runs

5 Avg. Runs

Higher Accuracy

Time Complexity (n runs)

~100X Accuracy

Stability

- ♦ CEvSGD ~ 50%
- **♦** EEvSGD ~ 80%
- **♦** SGD/ SSGD > 95%

5.

Conclusion & Future

Issues

- Normalization
- Stability Considerations

Success

- CEvSGD most robust
 - > Even if unstable
 - Restart
- EEvSGD most efficient and accurate
 - > 100x accurate
- SSGD performs better per iteration

Speedups

- Use different norm
- Parallelization
- Find and remove redundant calculations
- Better sort or remove if possible

Future

- Non-Linear
- Parallelization
- More types of Parameter Tuning
- Fitness Criteria

References

- [1] William M Spears. "Crossover or mutation?" In: Foundations of genetic algorithms. Vol. 2. Elsevier, 1993, pp. 221–237.
- [2] David E Goldberg. "Genetic and evolutionary algorithms come of age". In: Communications of the ACM 37.3 (1994), pp. 113–120.
- [3] Panos Toulis and Edoardo M Airoldi. "Implicit stochastic gradient descent for principled estimation with large datasets". In: ArXiv e-prints (2014).
- [4] Xiaodong Cui et al. "Evolutionary stochastic gradient descent for optimization of deep neural networks". In: arXiv preprint arXiv:1810.06773 (2018).

Thank you.