

2.7. Radiated Spurious Emissions

2.7.1. Requirement

According to FCC section 2.1051, the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43+10*log(P)dB. This calculated to be -13dBm.

Additional requirement for LTE Band 7:

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 55 + 10 log(P) dB. This calculated to be -25dBm.

2.7.2. Test Description

(For the test frequency from 30MHz to1GHz)

(For the test frequency above 1GHz)

The EUT is located in a 3m Full-Anechoic Chamber, the cable loss, air loss and so on of the site as factors are pre-calibrated using the "Substitution" method, and calculated to correct the reading. A call is established between the EUT and the SS via a Common Antenna. The EUT is commanded by the SS to operate at the maximum and minimum output power, and only the test result of the maximum output power was recorded.

In the frequency range above 30MHz, Bi-Log Test Antenna (30MHz to 1GHz) and Horn Test Antenna (above 1GHz) are used. Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground and the Turn Table is actuated to turn from 0° to 360° to determine the maximum value of the radiated power. The emission levels at both horizontal and vertical polarizations should be tested. The Filters consists of Notch Filters and High Pass Filter.

Note: when doing measurements above 1GHz, the EUT has been within the 3dB cone width of the horn antenna during horizontal antenna.

2.7.3. Test procedure

KDB 971168 D01v03 Section 5.8 and ANSI/TIA-603-E-2016.

2.7.4. Test Result

The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. Test Antenna height is varied from 1m to 4m above the ground, and the Turn Table is actuated to turn from 0° to 360°, both horizontal and vertical polarizations of the Test Antenna are used to find the maximum radiated power. Mid channels on all channel bandwidth verified. Only the worst RB size/offset presented.

The substitution corrections are obtained as described below:

 $A_{SUBST} = P_{SUBST_TX} - P_{SUBST_RX} - L_{SUBST_CABLES} + G_{SUBST_TX_ANT}$

 $A_{TOT} = L_{CABLES} + A_{SUBST}$

Where A_{SUBST} is the final substitution correction including receive antenna gain.

P_{SUBST TX} is signal generator level,

P_{SUBST RX} is receiver level,

L_{SUBST_CABLES} is cable losses including TX cable,

G_{SUBST_TX_ANT} is substitution antenna gain.

A_{TOT} is total correction factor including cable loss and substitution correction

During the test, the data of A_{TOT} was added in the Test Spectrum Analyze, so Spectrum Analyze reading is the final values which contain the data of A_{TOT} .

Note1: The power of the EUT transmitting frequency should be ignored.

Note2: All Spurious Emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

Note3: All bandwidth and test channel were considered and evaluated respectively by performing full test for each band, only the worst cases were recorded in this test report.

Annex A Test Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for test performed on the EUT as specified in CISPR 16-1-2:

<u>'</u>	
Test items	Uncertainty
Output Power	±2.22 dB
Bandwidth	±5%
Conducted Spurious Emission	±2.77 dB
Band Edge	±2.77 dB
Equivalent Isotropic Radiated Power	±2.22 dB
Radiated Spurious Emissions	±6 dB

This uncertainty represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

Tel: 86-755-36698555

Http://www.morlab.cn

Annex B Testing Laboratory Information

1. Identification of the Responsible Testing Laboratory

Company Name:	Shenzhen Morlab Communications Technology Co., Ltd.
Department:	Morlab Laboratory
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang
	Road, Block 67, BaoAn District, ShenZhen, GuangDong
	Province, P. R. China
Responsible Test Lab	Mr. Su Fong
Manager:	Mr. Su Feng
Telephone:	+86 755 36698555
Facsimile:	+86 755 36698525

2. Identification of the Responsible Testing Location

Namai	Shenzhen Morlab Communications Technology Co., Ltd.
Name:	Morlab Laboratory
	FL.3, Building A, FeiYang Science Park, No.8 LongChang
Address:	Road, Block 67, BaoAn District, ShenZhen, GuangDong
	Province, P. R. China

3. Facilities and Accreditations

All measurement facilities used to collect the measurement data are located at FL.3, Building A, FeiYang Science Park, Block 67, BaoAn District, Shenzhen, 518101 P. R. China. The test site is constructed in conformance with the requirements of ANSI C63.10-2013 and CISPR Publication 22; the FCC designation number is CN1192, the test firm registration number is 226174.

4. Test Equipments Utilized

4.1 Conducted Test Equipments

Equipment Name	Serial No.	Type	Manufacturer	Cal. Date	Cal. Due
Power Splitter	NW521	1506A	Weinschel	2018.04.17	2019.04.16
Attenuator 1	(N/A.)	10dB	Resnet	2018.04.17	2019.04.16
Attenuator 2	(N/A.)	3dB	Resnet	2018.04.17	2019.04.16
EXA Signal Analzyer	MY53470836	N9010A	Agilent	2017.12.03	2018.12.02
USB Power Sensor	MY54210011	U2021XA	Agilent	2018.04.17	2019.04.16
System Simulator	152038	CMW500	R&S	2018.05.08	2019.05.07
RF cable (30MHz-26GHz)	CB01	RF01	Morlab	N/A	N/A
Coaxial cable	CB02	RF02	Morlab	N/A	N/A
SMA connector	CN01	RF03	HUBER-SUHNER	N/A	N/A
Temperature Chamber	(N/A)	HUT705P	CHONGQING HANBA EXPERIMENTAL EQUIPMENT CO.,LTD	2018.04.17	2019.04.16

4.2Auxiliary Test Equipment

Equipment Name	Model No.	Brand Name	Manufacturer	Cal.Date	Cal. Due
Computer	T430i	Think Pad	Lenovo	N/A	N/A

4.3 Radiated Test Equipments

Equipment	Serial No.	Type	Manufacturer	Cal. Date	Cal. Due
Name					
System Simulator	152038	CMW500	R&S	2018.08.04	2019.08.03
Receiver	MY54130016	N9038A	Agilent	2018.05.18	2019.05.17
Test Antenna -	9163-519	VULB 9163	Schwarzbeck	2018.03.03	2019.03.02
Bi-Log					
Test Antenna -	9170C-531	BBHA9170	Schwarzbeck	2018.08.06	2019.08.05
Horn	01700 001	BBH , 1017 0	Convaizbook	2010.00.00	2013.00.00
Test Antenna -	01774	BBHA 9120D	Schwarzbeck	2018.08.02	2019.08.01
Horn	01774	BBI IA 9120D	Scriwarzbeck	2016.06.02	2019.06.01
Coaxial cable					
(N male)	CB04	EMC04	Morlab	N/A	N/A
(9KHz-30MHz)					
Coaxial cable					
(N male)	CB02	EMC02	Morlab	N/A	N/A
(30MHz-26GHz)					
Coaxial cable					
(N male)	CB03	EMC03	Morlab	N/A	N/A
(30MHz-26GHz)					
1-18GHz	MA02	TS-PR18	Rohde&	2018.05.08	2019.05.07
pre-Amplifier	IVIAUZ	13-PK10	Schwarz	2016.05.06	2019.05.07
18-26.5GHz	MAGS	TS-PR18	Rohde&	2019 05 09	2010 05 07
pre-Amplifier	MA03	13-4410	Schwarz	2018.05.08	2019.05.07
Anechoic	N/A	9m*6m*6m	CRT	2017.11.19	2020.11.18
Chamber	IN/A	3111 0111 0111	UNI	2017.11.19	2020.11.10

END OF REPORT