





|    | Any point on the root lows must satisfy angle condition                                                                |
|----|------------------------------------------------------------------------------------------------------------------------|
|    | (KG(s)+1(s) = 180 (2K+1)                                                                                               |
| ۷. | LL is Symmetric about real aris.                                                                                       |
| 3. | Court the no of poles and zeros (finite) of OL on the sight of the                                                     |
|    | test point, the number must be odd then the point is                                                                   |
|    | part of the LL (real axis only)                                                                                        |
|    |                                                                                                                        |
|    | De la lange                                                                                                            |
|    |                                                                                                                        |
|    | P <sub>4</sub> -3 S <sub>3</sub> P <sub>1</sub> S <sub>2</sub> - P <sub>1</sub> S <sub>1</sub>                         |
|    | $\frac{S+2}{S+3} = \frac{S+2}{S+3}$                                                                                    |
|    | $\sum_{k=1}^{\infty} \frac{7.6_{32}}{S+3}$                                                                             |
|    | angle contribution at $S_1$ $\begin{cases} 2_{11} - \theta_{11} \\ 2_{12} - 360 - \theta_{11} = 0. \end{cases}$        |
|    |                                                                                                                        |
|    | $(z_{12} - 360 - \theta_{11} = \theta_{21})$                                                                           |
|    | $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$                                    |
|    | $\rho_{3\nu} - 360 - \theta_{3i} = \theta_{32}$                                                                        |
|    | P - 0°                                                                                                                 |
|    |                                                                                                                        |
|    | Total angle = $\phi_z - \phi_p$                                                                                        |
|    | $= \Theta_{11} + 360 - \Theta_{11} - \left(0^{\circ} + 0^{\circ} + \Theta_{31} + 360 - \Theta_{31} + 0^{\circ}\right)$ |
|    | = 0                                                                                                                    |
|    | S, is not part of root docus.                                                                                          |

no of OL poles

$$G(s)H(s) = \frac{1}{s^{n-m} + (a_{n-1} - b_{m-1})} A^{n-m-1} + \dots$$

$$G(s)H(s) = \frac{1}{(s+\alpha)^{n-m}} + (n-m) \alpha s^{m-m-1} + \dots$$

$$G(s)H(s) = \frac{1}{s^{n-m} + (n-m)} \alpha s^{n-m-1} + \dots$$

$$G(s)H(s) = \frac{1}{s^{n-m} + (n-m)} \alpha s^{n-m-1} + \dots$$

$$G(s)H(s) = \frac{1}{s^{n-m} + (n-m)} \alpha s^{n-m-1} + \dots$$

$$G(s)H(s) = \frac{1}{s^{n-m} + (n-m)} \alpha s^{n-m-1} + \dots$$

$$G(s)H(s) = \frac{1}{s^{n-m} + (n-m)} \alpha s^{n-m-1} + \dots$$

$$G(s)H(s) = \frac{1}{s^{n-m} + (n-m)} \alpha s^{n-m-1} + \dots$$

$$G(s)H(s) = \frac{1}{s^{n-m} + (n-m)} \alpha s^{n-m-1} + \dots$$

$$G(s)H(s) = \frac{1}{s^{n-m} + (n-m)} \alpha s^{n-m-1} + \dots$$

$$G(s)H(s) = \frac{1}{s^{n-m} + (n-m)} \alpha s^{n-m-1} + \dots$$

$$G(s)H(s) = \frac{1}{s^{n-m} + (n-m)} \alpha s^{n-m-1} + \dots$$

$$G(s)H(s) = \frac{1}{s^{n-m} + (n-m)} \alpha s^{n-m-1} + \dots$$

$$G(s)H(s) = \frac{1}{s^{n-m} + (n-m)} \alpha s^{n-m-1} + \dots$$

$$G(s)H(s) = \frac{1}{s^{n-m} + (n-m)} \alpha s^{n-m-1} + \dots$$

$$G(s)H(s) = \frac{1}{s^{n-m} + (n-m)} \alpha s^{n-m-1} + \dots$$

$$G(s)H(s) = \frac{1}{s^{n-m} + (n-m)} \alpha s^{n-m-1} + \dots$$

$$G(s)H(s) = \frac{1}{s^{n-m} + (n-m)} \alpha s^{n-m-1} + \dots$$

$$G(s)H(s) = \frac{1}{s^{n-m} + (n-m)} \alpha s^{n-m-1} + \dots$$

$$G(s)H(s) = \frac{1}{s^{n-m} + (n-m)} \alpha s^{n-m-1} + \dots$$

$$G(s)H(s) = \frac{1}{s^{n-m} + (n-m)} \alpha s^{n-m-1} + \dots$$

$$G(s)H(s) = \frac{1}{s^{n-m} + (n-m)} \alpha s^{n-m-1} + \dots$$

$$G(s)H(s) = \frac{1}{s^{n-m} + (n-m)} \alpha s^{n-m-1} + \dots$$

$$G(s)H(s) = \frac{1}{s^{n-m} + (n-m)} \alpha s^{n-m-1} + \dots$$

$$G(s)H(s) = \frac{1}{s^{n-m} + (n-m)} \alpha s^{n-m-1} + \dots$$

$$G(s)H(s) = \frac{1}{s^{n-m} + (n-m)} \alpha s^{n-m-1} + \dots$$

$$G(s)H(s) = \frac{1}{s^{n-m} + (n-m)} \alpha s^{n-m-1} + \dots$$

$$G(s)H(s) = \frac{1}{s^{n-m} + (n-m)} \alpha s^{n-m-1} + \dots$$

$$G(s)H(s) = \frac{1}{s^{n-m} + (n-m)} \alpha s^{n-m-1} + \dots$$

$$G(s)H(s) = \frac{1}{s^{n-m} + (n-m)} \alpha s^{n-m-1} + \dots$$

$$G(s)H(s) = \frac{1}{s^{n-m} + (n-m)} \alpha s^{n-m-1} + \dots$$

$$G(s)H(s) = \frac{1}{s^{n-m} + (n-m)} \alpha s^{n-m-1} + \dots$$

$$G(s)H(s) = \frac{1}{s^{n-m} + (n-m)} \alpha s^{n-m-1} + \dots$$

$$G(s)H(s) = \frac{1}{s^{n-m} + (n-m)} \alpha s^{n-m-1} + \dots$$

$$G(s)H(s) = \frac{1}{s^{n-m} + (n-m)} \alpha s^{n-m-1} + \dots$$

$$G(s)H(s) = \frac{1}{s^{n-m} + (n-m)} \alpha s^{n-m-1} + \dots$$

$$G(s)H(s) = \frac{1}{s^{n-m} + (n-m)} \alpha s^{n-m-1} + \dots$$

$$G(s)H(s) = \frac{1}{s^{n-m} + (n-m)} \alpha s^{n-m} + \dots$$

$$G(s)H(s) = \frac{1}{s^{n-m} + (n-m)} \alpha s^{n-m} + \dots$$

$$G(s)H(s) = \frac{1}{s^{n-m} + (n-m)} \alpha s^{n-m}$$

$$\theta = \frac{(80(0+1)}{3} = 60^{\circ}$$

$$R = 1$$

$$\theta = \frac{(80(0+1)}{3} = 120^{\circ}$$

$$R = 1$$

$$\theta = \frac{(80(0+1)}{3} = 120^{\circ}$$

$$R = 1$$

$$\theta = \frac{(80(0+1)}{3} = 120^{\circ}$$

$$R = 1$$

$$R$$

$$\frac{k}{ds}\left(\frac{n(s)}{d(s)}\right) = k\left(d(s)\frac{d}{ds}n(s) - n(s)\frac{d}{ds}d(s)\right) = 0$$

$$(d(s))^{2}$$

Now consider

$$\begin{array}{c|c}
 & + & k & q(s) & = 0 \\
\hline
 & k & q(s) & = -1 \\
\hline
 & d(s) & = -1 \\
\hline
 & k & = - & cl(s) \\
\hline
 & n(s) & \\
\hline
\end{array}$$

$$\frac{dk}{ds} = 0 = -\frac{d}{ds} \left( \frac{d(s)}{n(s)} \right) = -\left( \frac{n(s)}{d(s)} - \frac{d(s)}{d(s)} - \frac{d(s)}{n(s)} \right) = 0$$

**ES**L

To find break away point

$$K = -\frac{d(s)}{n(s)}$$

$$\frac{dk}{ds} = 0 = -\frac{d}{ds} \left( \frac{d(s)}{ds(s)} \right)$$

Solve for s

$$\frac{dk}{ds} = -\frac{d}{ds} \left( S(s+1)(s+2) \right) = 1$$

$$+ \left[ (s+1)(s+2) + s(s+2) + s(s+1) \right] = 0$$

$$-\frac{s^2 + 3s + 2 + s^2 + 3s + s^2 + s}{3s^2 + 6s + 2} = 0$$

$$-\frac{3s^2 + 6s + 2}{s} = 0$$

$$-\frac{s^2 + s + 2}{s} = 0$$

$$|k| = \left| -\frac{d(s)}{d(s)} \right|_{s=-0.42} = 0.384$$

jn- croking

$$(1)^{2}+(1)+(1)+(1)$$

villary polynomial

loop system is stable for 0 < K < G

no of open loop zeros (finite) m= 1

No of branches = 2

Angle of asymptotics

$$K=0 \quad \theta = \frac{\pi}{4-1}$$

$$K=1 \quad \theta = 3\pi$$

$$location of certified 
$$K = (0-2) - (-1)$$

$$R = 1 \quad 0$$

$$R = (0-2) - (-1)$$

$$R = 1 \quad 0$$

$$R = (0-2) - (-1)$$

$$R = 1 \quad 0$$

$$R = (0-2) - (-1)$$

$$R = 1 \quad 0$$

$$R = (0-2) - (-1)$$

$$R = 1 \quad 0$$

$$R = (0-2) - (-1)$$

$$R = 1 \quad 0$$

$$R = (0-2) - (-1)$$

$$R = (0-2) -$$$$



$$\theta = \frac{\pi}{2}, \frac{3\pi}{2}$$

## Certioid

$$\alpha = (0-2-2)-(1) = -\frac{5}{2}$$



## closed loop system is unstable for all of K.

5. 
$$\sum_{k \in (S)} k \in (S+1)$$
  $= \frac{k(S+1)}{S^2 + 4 + 5 + 13}$ 

Angle of asymptotes

touchion of centraid





$$\frac{1 + k(s+1)}{(s^2+2s)(s^2+2s+5)} = 0$$

$$s^{4} + 4s^{3} + 9s^{2} + (k+10)s + k = 0$$

$$C_1 = \frac{26 - k}{4} \times (k + ro) - 4$$

$$K^2 = 260$$
  
 $\Rightarrow K = \sqrt{260} \approx 16$ 

$$\frac{26 - 16 \, \, \text{s}^2 \, + \, 16 \, = \, 0}{4}$$

$$\frac{10}{4} g^{2} + 16 = 0$$

$$S = \pm j \alpha . S$$
 .  $0 < K < 16 - Stable Range$ 

## Angle of departure:

$$|80 = \phi - \phi |_{pole \ at^{-2} \ pole \ at^{-1}}$$

$$|80 = \phi - \phi |_{pole \ at^{-2} \ pole \ at^{-1-j2}}$$

$$|80 = \phi - \phi |_{pole \ at^{-2} \ pole \ at^{-1-j2}}$$

$$|80 = \phi - \phi |_{pole \ at^{-1} \ pole \ at^{-1-j2}}$$

$$|90 - \phi - \phi - \phi |_{pole \ at^{-1} \ pole \ at^{-1-j2}}$$

$$|90 - \phi - \phi - \phi |_{pole \ at^{-1} \ pole \ at^{-1-j2}}$$

$$|90 - \phi - \phi - \phi |_{pole \ at^{-1} \ pole \ at^{-1-j2}}$$

$$|90 - \phi - \phi - \phi |_{pole \ at^{-1} \ pole \ at^{-1-j2}}$$

$$|90 - \phi - \phi - \phi |_{pole \ at^{-1} \ pole \ at^{-1-j2}}$$

$$|90 - \phi - \phi - \phi |_{pole \ at^{-1} \ pole \ at^{-1-j2}}$$

$$|90 - \phi - \phi - \phi - \phi |_{pole \ at^{-1} \ pole \ at^{-1-j2}}$$

The cloped loop system is stable for 0< K<16



$$|K| = \left| -\frac{(s+2)(s+3)(s+4)}{s^2 - 2s + 2} \right|_{s=-2.3s}$$

$$b_1 = (9+k)(26-2k) - 24-2k$$

S = 0

AE: 
$$(9+11.86) 8^2 + (24+2x11.86) = 0$$

stable range 0 < K < 11.856

Angle of againal:

$$180 \stackrel{:}{=} \varphi_{7} - \varphi_{P}$$
 $180 = (\varphi_{A} + 90^{\circ}) - (18.43 + 14.03 + 11.3)$ 
 $\varphi_{4} = 133.7$ 



$$|K| = \left| - \frac{8^2(8+4\cdot5)}{(8+0\cdot5)} \right|_{S=-1\cdot5}$$

The CLS is stable for OCKCDO

## Effect of Adding poles of zeros to KG(5)+1(6)

-> An addition of a pole will move the Root locus to Right half S-plane

1. 
$$kG(s)+t(s) = k$$
  
 $S(s+a)$ 

ESL

$$KG(s)+(s) = \frac{k}{8(8+a)(8+b)}$$

Rajini M.



$$KG(S)H(S) = K$$

$$S(S+a)(S+b)(S+c)$$







$$K = -\frac{1}{N(S)} = -(S_{+}^{4}RS + 36S_{+}^{2}RS)$$

$$\frac{dK}{ds} = -(4S_{+}^{3} + 24S_{+}^{2} + 72S_{+}^{2}RS_{+}^{2}) = 0$$

$$S = -2 \cdot -2 + \sqrt{4} \cdot 44$$

 $64 \times 260$ , A(c) = 265 + 260 = 0  $5^{4} = -260_{26} = 5 = \pm \sqrt{10} = \pm \frac{1}{2} \cdot 16$ 





|          | As angle line cuts the Root Locus at 3 points, there will be 3 values for K. Final K value is chosen based on settling time. |
|----------|------------------------------------------------------------------------------------------------------------------------------|
|          | Since settling time for $s_3$ is smaller, K value for $s_3$ is chosen as final value $K = 39.36$                             |
| ., PESU  |                                                                                                                              |
| Rajini M |                                                                                                                              |
|          |                                                                                                                              |
|          |                                                                                                                              |