7 Homework (Hilbert Spaces)

1. On \mathbb{R}^n we consider the function that for $x=(x_1,...,x_n)$ and $y=(y_1,...,y_n)$ is defined as

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i y_i.$$

Prove that this defines an inner product on \mathbb{R}^n .

2. Prove that on $L^20,1$] the function

$$\langle f, g \rangle = \int_0^1 f(x)g(x)dx.$$

defines an inner product.

3. On $L^2[-\pi,\pi]$ we consider the inner product

$$\langle f, g \rangle = \int_{-\pi}^{\pi} f(x)g(x)dx.$$

- a) Consider $f(x) = \cos x$ and $g(x) = \sin x$. Calculate $\langle f, g \rangle$.
- b) Consider $f(x) = \sin x$ and $g(x) = \sin 2x$. Calculate $\langle f, g \rangle$.
- c) Find the norm $||f||_2$, with $f(x) = \sin x$.
- 4. On $M_{m,n}(\mathbb{R})$ of $m \times n$ matrices we consider the function

$$\langle A, B \rangle = tr(A^t B),$$

where $tr(C) = \sum_{i=1}^{n} a_{ii}$ is the trace of the matrix C.

- a) Prove that the given function defines an inner product, so $M_{m,n}(\mathbb{R})$ becomes a Hilbert space with this inner rpoduct.
 - b) Find the norm induced by this inner product?
 - c) Find $\begin{bmatrix} 1 & 2 & 2 & -1 \\ 2 & 3 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{bmatrix}$ given in this norm.
 - 5) Prove that in any inner product space we have

$$\langle x, y \rangle = \frac{\|x + y\|^2 - \|x - y\|^2}{4}.$$

6) Prove that in any inner product space we have

$$\|\langle x_1, y_1 \rangle - \langle x_2, y_2 \rangle\| \le \|x_1 - x_2\| \|y_1\| + \|x_2\| \|y_1 - y_2\|.$$