Statistică și probabilitați

Consideram un lot de numere x_1, x_2, \dots, x_n .

Media acestui lot este M=
$$\frac{x_1 + x_2 + ... + x_n}{n} = \frac{1}{n} \sum_{i=1}^{n} x_i.$$

Dispersia lotului este D=
$$\sqrt{\frac{(x_1 - M)^2 + (x_2 - M)^2 + + (x_n - M)^2}{n}} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_1 - M)^2}$$
.

Proprietati ale probabilitatii

Fie U o multime (numita universe) si δ partile multimii U.Elementele lui δ se numesc evenimente. Fie P o functie definite pe δ cu valori in [0,1].tripletul (U, δ , P) este un camp de probabilitate daca, \forall A,B evenimente din δ , avem:

$$1)P(\varnothing)=0$$

$$2)A \subset B \Rightarrow P(A) \leq P(B)$$

$$3)P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$4)A \cap B = \emptyset \Rightarrow P(A \cup B) = P(A) + P(B)$$

Fie U={ $x_1, x_2, ..., x_n$ } un univers finit si P o probabilitate pe $\delta = P(U)$.

Notam $P_i = P(\{x_i\}), i = 1,2,3,...,n$. Atunci:

1)Suma probabilitatilor evenimentelor elementare este:

$$P_1 + P_2 + \dots + P_n = 1 = \sum_{i=1}^n P_i = \sum_{i=1}^n P(\{x_i\}) = \sum_{x=U} P(\{x\})$$

2)Probabilitatea oricarui eveniment este suma probabilitatilor evenimentelor elementare pe care le include, adica $P(A) = \sum_{x \in A} (P\{x\}), A \subset U$

Intr-un camp de evenimente egal probabile (U,P), $\forall A \in \mathcal{S}$ avem $P(A) = \frac{[A]}{[U]}$

$$P(A) = \frac{nr.cazurilor.favorabile.evenimentului}{nr.total.de.cazuri}$$