Synthesis and Optimization of Digital Systems (02LVNOV)

Low-power contest

Simone Baratta (s208978) Michele Iacobone (s207617) Francesco Giancane (s211327)

Abstract

The main goal of this contest is to perform static power optimization of combinational circuits, using the two benchmark designs c1908 and c5315 using the Dual- V_{th} technique.

Since an exhaustive search was not viable, the only possible solution was to develop a heuristic algorithm, so we chose an approach based on genetic algorithms: this approach has the advantage that the static power consumption of the single cells is not necessarily taken into account.

In order to manage the cell mapping problem using a genetic algorithm, the individuals were chosen to be strings of 1's and 0's; each digit represents the threshold voltage to be used with a specific cell of the network; the fitness function is computed as the total static power consumption of the network, which makes it unnecessary to know the static power of the single cells.

1 The algorithm

The algorithm is written in TCL, which makes it easy to handle strings of digits (such as the representation of our individuals as strings of 0 and 1 characters); several procedures were developed, which are responsible for manipulating the most promising genes in semi-random ways.

At every iteration, the main loop chooses the 3 individuals having the best fitness value (i.e. static power consumption), combines their genes into 17 new individuals using these procedures (so that we have a total of 20 individuals), and then sorts the individuals again, before starting the next generation, according to their fitness values.

The algorithm is implemented in both a low-effort and a high-effort mode: in the low-effort mode, a check is added that stops iterating if the cost function doesn't improve over a certain number of generations (i.e. recombining genes doesn't yield any individuals with better fitness); the high-effort mode, on the other hand, performs a predefined number of iterations, with higher chances of stepping out of local minima.

2 Overall performance

The proposed approach is not as fast as other heuristic approaches, but it obtains remarkable results in terms of power saving; additionally, the algorithm is easily adapted to similar problems, by only modifying the fitness function and tweaking the number of kept/generated individuals at every generation.

As an example, running the algorithm on the c1908 benchmark achieved an arrival time of 1.0625ns with a static power saving of 96% compared to the original design.