

Réseaux, information et communication

Entropie d'une source aléatoire 1^{er} théorème de Shannon : codage parfait Compression sans pertes

Yves Roggeman

FACULTÉ DES SCIENCES - DÉPARTEMENT D'INFORMATIQUE

Boulevard du Triomphe - CP212 B-1050 Bruxelles (Belgium)

Tél.: +32-2-650 5598

E-mail: yves.roggeman@ulb.ac.be

vves.roddeman@ulb.ac.be

Compression

- Idée : Extension de la source
 - ► Travailler par blocs de *n* symboles
 - Utiliser le code optimal (Huffman) sur ces blocs
 - ► ⇒ Longueur <u>par symbole</u> décroît ⇒ limite (n→∞) ?
- Exemple : $1 \rightarrow 0.844 \rightarrow 0.823 \rightarrow ... (\rightarrow .8113)$

4/4	0	1						
Proba	3/4	1/4						
Code	0	1						
27/32	00	01	10	11				
Proba	9/16	3/16	3/16	1/16				VINCER
Code	0	11	100	101			(3)	SIL
158/192	000	001	010	100	011	101	110	111
Proba	27/64	9/64	9/64	9/64	3/64	3/64	3/64	1/64
Code	1	001	010	011	00000	00001	00010	00011

(Quantité d') Information

- Information de s_i de proba p_i : I(p_i)
 - I(p) ≥ 0 et I(p) ≠ 0
 - ► $I(p_1.p_2) = I(p_1)+I(p_2) \leftarrow \approx \text{arbitraire, mais...}$
 - ► I(p) continue en p
- Théorème de Shannon
 - ► I(p) = -k.In(p) = -log_b(p) = log_b(1/p) [p > 0] avec k > 0 ou b > 1
 - Démonstration... [l(p^t) = t l(p)]
 - Propriétés : I(1) = 0 et monotone

Entropie d'une source

- Définition : « information moyenne »
 - $\vdash \mathsf{H}(\mathsf{S}) = \mathsf{H}(\mathsf{p}_1, \, \mathsf{p}_2, \, \dots \, \mathsf{p}_q) = \mathsf{H}(\mathbb{P}) = \mathscr{E}_{\mathbb{P}}[\mathsf{I}(\mathsf{p}_i)]$
 - ► $H(S) = -\sum_{i} p_{i} \log_{b} p_{i}$ où $0.\log(0) = 0.\log(1/0) = 0$
- Propriétés
 - ► H(S) ≥ 0 ; H(S) continue, symétrique...
 - + « Cohérence »:

$$H(p_{1}...p_{q}) = H((p_{1}+p_{2})p_{3}...p_{q}) + (p_{1}+p_{2}) \cdot H\left(\frac{p_{1}}{p_{1}+p_{2}}, \frac{p_{2}}{p_{1}+p_{2}}\right)$$

- Normalisation : définition du « bit »
 - Poser b = r = |C|; 2 en binaire : I(p) = log₂ p
 - Ainsi bit = $H(\frac{1}{2}, \frac{1}{2}) = 1$ = pile ou face (idem si q = r)

Entropie minimale et maximale

- Min : $H(S) = 0 \Leftrightarrow \exists j : p_i = 1$
 - ▶ Donc autres $p_i = 0$, car $\sum p_i = 1$
 - ▶ Démonstration : $-p_i \log p_i \ge 0 \dots$
- Max : H(S) = $\log_r q \Leftrightarrow \forall i : p_i = 1/q$
 - ► Lemme : log x ≤ x-1
 - Démonstration :
 - ← : Direct
 - \Rightarrow : $\log_r q H(S) = ... \ge 0$ et égalité si...

Symb	Moy	Α	В	С	D	E	F	CE
Proba		12/32	6/32	5/32	4/32	3/32	2/32	MIL
Info	2.347	1.415	2.415	2.678	3.000	3.415	4.000	3/15
Sh-F	2.438	2	2	3-2	3	3-4	3-4	
Huff	2.406	1	3	3	3	4	4	tas

Extension de la source

- Définition (cf. compression)
 - Étant donné une source S, regrouper en bloc de n symboles : Sⁿ
- Théorème 1
 - $\vdash H(S^n) = n H(S)$
 - ▶ Démonstration...
 - ▶ Donc : par symbole, ça ne change pas...
- Théorème 2 : c'est une borne inférieure
 - **► ∀ K** : **L**(**K**) ≥ **H**(**S**)
 - Démonstration...

1^{er} théorème de Shannon: codage parfait de la source

- Shannon's Noiseless Coding Theorem
- Lien entre les 2 théorèmes précédents
 - $ightharpoonup H(S) \leq L_{min}(S) \leq H(S)+1$
 - \bullet = H(S)+1 seulement si p₀ = 1 & p₁ = 0

$$\lim_{k \to \infty} \frac{L_{min}(S^k)}{k} = H(S)$$

- Démonstration...
- Compression maximale:
 - ► Message de *n* symboles (de S) en *n* H(S) bits

Codes optimaux

Huffman

- $ightharpoonup \exists n_0, \forall n: n > n_0 \Rightarrow L(S^n) = n H(S)$
- ▶ Pas de meilleure compression si *n* grand
- ► Mais il faut connaître les p_i!
- Shannon-Fano?
 - ► Il existe un code avec [I(p_i)] = ℓ_i
 - Shannon-Fano fait mieux : ℓ_i-1 ≤ I(p_i) ≤ ℓ_i+1
 - Huffman fait encore mieux
 - Réduit ℓ_i des plus probables

yves.roggeman@ulb.ac.be

Compression sans perte

- Comment estimer les p_i à la volée ?
- Codes par dictionnaire
 - Liv-Zempel (LZ77) : fenêtre glissante
 - Symbole = référence à occurrence précédente
 - « Deflate » → NTFS
 - Aussi LZMA (chaîne de Markov)
 - LZ78 (breveté): dict. global → ZIP...
 - ~-Welch (LZW 84, breveté) → GIF, TIFF, PNG...
 - Dict. reconstruit à la volée au décodage

s.roggeman@ulb.ac.be

Algorithme LZW

- Encodage
 - Initialiser

```
Dictionnaire = {caractères} w = \emptyset
```

Algorithme :

```
si w+c \in Dictionnaire

w = w+c

sinon

w+c \rightarrow Dictionnaire

output(index(w))

w = c
```

- **Code**: accroître quand |Dictionnaire| ≥ 2^k
- Décodage : idem

vves.roggeman@ulb.ac.be

Codes adaptatifs

- Faller-Gallager-Knuth (FGK 85), Vitter (87)
 - ► Arbre pondéré et labellisé (№ de création)
 - + feuille « Vide » (poids nul), Bloc = {même poids}
 - ► Algorithme Λ de Vitter (linéaire) : Encode ≡ Décode

```
Chercher c
output(code(c))
Si c = Vide
    output('c') // en « clair »
    éclater Vide en 2 nouveaux fils : d = 'c' et g = Vide
    poids[père] = poids[c] = 1
    c = père[c]
Ttq c ≠ racine
    si c ≠ 1er(Bloc) ≠ père : swap(c,1er)
    ++ poids[c]
    c = père[c]
```