ПРИЛОЖЕН СЕМИНАР ПО ЕЛЕКТРОНИКА И СОФТУЕР

РУСЕНСКИ УНИВЕРСИТЕТ "АНГЕЛ КЪНЧЕВ" 2015 г.

Серво усилвател и позиционен контролер за DC мотор

автор: Симеон Иванов

Цел

 Управление на постоянотоков мотор по зададен момент, скорост и позиция

Постоянотокови мотор

- Постоянотоковите мотори (**DC Motors**) се делят на две големи групи:
- 1. Четкови
- 2. Безчеткови (**BLDC**)
- о При четковите мотори комутацията на тока през намотките се осъществява механично
- Безчетковите мотори ползват електронен комутатор

Базов модел на DC motor

 ○ Момента на мотор М [Nm] е пропорционален на тока през мотора I !

Блокова схема на серво усилвател

 Система за автоматично регулиране изградена с два затворени контура (Closed-loop)

Токов регулатор Класически метод

- о Пропорционално интегрален (PI) регулатор
- Напреженов **ШИМ** (**PWM**)

Токов регулатор реализиран с токов ШИМ

 Ползва се ШИМ ограничаващ запълването си във всеки период

Силова част – общ изглед

Скоростен регулатор

• Аналогов пропорционално - интегрален регулатор

Управляваща платка - общ изглед

Аналогов контрол на позиция

 Добавя се трети управляващ контур – позиционен регулатор

Цифров позиционен регулатор

- Замяна на аналоговия PID с цифров регулатор
- Системата става много по-универсална и лесна за настройка
- Добавя се комуникация осигоряваща връзка с други устроиства

Контролер на движението Motion Controller

