

Neural Graph Matching for Pre-training Graph Neural Networks

Yupeng Hou¹, Binbin Hu², Wayne Xin Zhao¹, Zhiqiang Zhang², Jun Zhou², Ji-Rong Wen¹

Gaoling School of Artificial Intelligence, Renmin University of China
 Ant Group

Background – GNN

Graph Neural Networks (GNNs)

Background – GNN

- Data for Graph Neural Networks (GNNs)
 - Requiring abundant task-specific labeled graph data
 - Sparse (especially for scientific domains)

GNN Pre-training

GNN Pre-training

GNN pre-training strategies

- (1) node-level tasks
- (2) graph-level tasks

Node-level tasks

GNN Pre-training

(b) Attribute Masking

(c) graph structure reconstruction

Weihua Hu et al. Strategies for Pre-training Graph Neural Networks. ICLR 2020. Ziniu Hu et al. GPT-GNN: Generative Pre-Training of Graph Neural Networks. KDD 2020.

Graph-level tasks

GNN Pre-training

Challenge

- Combining both node- and graph-level optimization goals
 - essential for GNN pre-training

 Each individual task is not aware of all the optimization goals at different levels

Challenge

- Combining both node- and graph-level optimization goals
 - essential for GNN pre-training

(c) one single task? 🤒

- Can we have one single GNN pre-training task,
- capturing node- and graph-level characteristics simultaneously

Neural Graph Matching Task

- Neural Graph Matching Task
 - Node-level correspondence (structural matching)

- Neural Graph Matching Task
 - Node-level correspondence (structural matching)
 - Graph-level properties

 (whether containing shared substructure)

- Neural Graph Matching Task
 - Adaptive graph representations (while pre-training)

Methodology, GMPT

self-supervised setting

coarse-grained supervised setting

Graph Matching based GNN Pre-Training, GMPT

Graph Augmentation

Node/edge perturbation Subgraph sampling

... ...

Graph Matching Module

$$egin{aligned} oldsymbol{m}_{s
ightarrow t} &= ext{MSG}_{ ext{intra}} \left(oldsymbol{h}_{s}^{(1)}, oldsymbol{h}_{t}^{(1)}, oldsymbol{e}_{st}
ight), \ oldsymbol{\mu}_{s'
ightarrow t'} &= ext{MSG}_{ ext{inter}} \left(oldsymbol{h}_{s'}^{(1)}, oldsymbol{h}_{t'}^{(2)}
ight), \end{aligned}$$

$$\mu_{s' \to t'} = a_{s' \to t'} \cdot h_{s'}^{(1)},$$

$$a_{s' \to t'} = \frac{\exp(\sin(h_{s'}^{(1)}, h_{t'}^{(2)}))}{\sum_{k \in \tilde{G}_2} \exp(\sin(h_{s'}^{(1)}, h_k^{(2)}))}$$

Neural Graph Matching

Adaptive Graph Representations

$$egin{aligned} oldsymbol{m}_{s
ightarrow t} &= ext{MSG}_{ ext{intra}} \left(oldsymbol{h}_{s}^{(1)}, oldsymbol{h}_{t}^{(1)}, oldsymbol{e}_{st}
ight), \ oldsymbol{\mu}_{s'
ightarrow t'} &= ext{MSG}_{ ext{inter}} \left(oldsymbol{h}_{s'}^{(1)}, oldsymbol{h}_{t'}^{(2)}
ight), \end{aligned}$$

$$m{z}_t = ext{Update}\left(m{h}_t, \sum_{s \in \mathcal{N}_{ ext{intra}}} m{m}_{s o t}, \sum_{s' \in \mathcal{N}_{ ext{inter}}} m{\mu}_{s' o t}
ight),$$

Neural Graph Matching

Graph Matching

- -> node-node similarity calculation
- -> high computation cost
- -> additional $O(m^2 \cdot d)$, where $m = \sum_{i=1}^{2n} |\mathcal{V}_i|$ quadratic time and space cost

Sampling!

Comparison from $2n \times 2n$ to $q \times 2n$

Additional Cost	Naive	Approximate Contrastive Training
Time	$O(m^2 \cdot d)$	$O(rac{q}{2n} \cdot m^2 \cdot d)$

Gradients Accumulation

Additional Cost	Naive	Approximate Contrastive Training
Time	$O(m^2 \cdot d)$	$O(\frac{q}{2n} \cdot m^2 \cdot d)$
Space	$O(m^2 \cdot d)$	$O\left(\frac{1}{2n}\cdot m^2\cdot d\right)$

Both theoretically and empirically verified

LEMMA 3.2. Optimizing Eqn. (3.5) with approximate contrastive training algorithm has the same optimization lower bound as originally in expectation.

Additional Cost	Naive	Approximate Contrastive Training
Time	$O(m^2 \cdot d)$	$O(rac{q}{2n} \cdot m^2 \cdot d)$
Space	$O(m^2 \cdot d)$	$O\left(\frac{1}{2n} \cdot m^2 \cdot d\right)$

Supervised Pre-training GMPT-Sup

Supervised pre-training with coarse-grained labeled graphs

Jointly predict graph properties

Supervised Pre-training GMPT-Sup

Continuous labels as real-value vectors

$$s_p = \sin(\boldsymbol{y}_1, \boldsymbol{y}_2), s_g = \sin(\boldsymbol{z}_{G_1}, \boldsymbol{z}_{G_2}),$$

Similar graphs ~ similar labels

$$\ell_c = \mathrm{MSE}(s_p, s_g)$$

Supervised Pre-training GMPT-Sup++

Discrete labels

$$\ell_d = \sum_{k=1,2} \mathrm{BCE}(oldsymbol{y}_k, oldsymbol{W}_k \cdot oldsymbol{z}_{G_k} + oldsymbol{b}_k),$$

Benchmark datasets

Dataset	Bio	Chem
#(sub)graphs for self-supervised PT	307K	2,000K
#(sub)graphs for supervised PT/FT	88K	456K
#Coarse-grained labels for PT	5,000	1,310
#Downstream FT tasks	40	678*

Pre-training methods	GCN	GraphSAGE	Bio GAT	GIN	Average	Chem
w/o pre-training	63.20 ± 1.00	65.70 ± 1.20	68.20 ± 1.10	64.80 ± 1.00	65.48	67.0
Infomax	62.83 ± 1.22	67.21 ± 1.84	66.94 ± 2.61	64.10 ± 1.50	65.27	70.3
$\operatorname{EdgePred}$	63.18 ± 1.12	66.05 ± 0.78	65.72 ± 1.17	65.70 ± 1.30	65.16	70.3
$\operatorname{ContextPred}$	62.81 ± 1.87	66.47 ± 1.27	67.86 ± 1.19	65.20 ± 1.60	65.59	71.1
${ m AttrMasking}$	62.40 ± 1.35	63.32 ± 1.01	61.72 ± 2.70	64.40 ± 1.30	62.96	70.9
$\operatorname{GraphCL}$	67.05 ± 1.16	71.53 ± 0.46	65.68 ± 3.98	67.88 ± 0.85	68.04	70.8
L2P-GNN	66.48 ± 1.59	69.89 ± 1.63	69.15 ± 1.86	70.13 ± 0.95	68.91	70.4
GMPT-CL	70.65 ± 0.53	70.29 ± 0.21	71.07 ± 0.14	72.53 ± 0.42	71.13	71.5

Pre-training methods	Bio	Chem
w/o pre-training PropPred	64.8 ± 1.0 69.0 ± 2.4	67.0 70.0
$\begin{array}{c} \operatorname{GMPT-Sup} \\ \operatorname{GMPT-Sup}_{++} \end{array}$	70.84 ± 0.59 70.73 ± 0.42	70.4

Conclusion & QA

Yupeng Hou houyupeng@ruc.edu.cn

- GMPT: Graph Matching tasks for pre-training GNNs
 - Node- and graph-level characteristics in one single task;
 - Adaptive graph representations;
 - https://github.com/RUCAIBox/GMPT for code & pre-trained models

