LINGUAGENS FORMAIS: Teoria, Modelagem e Implementação

Material adicional, versão do dia 11 de abril de 2018 às 11:02

1. Página 32, imediatamente depois do Exemplo 1.8:

acrescentar:

A teoria de conjuntos apresentada nesta seção é um resumo da chamada Teoria Ingênua de Conjuntos (do inglês *Naïve Set Theory*) elaborada por Georg Cantor no final do século XIX. Tal teoria, apesar de simples, permite enunciar alguns paradoxos, entre os quais o mais famoso é o Paradoxo de Russell, proposto por Bertrand Russell em 1901, e que envolve apenas os conceitos de formação de conjunto e de pertencimento:

Seja *S* o conjunto formado por todos os conjuntos que não são elementos de si mesmos, e considere a pergunta: "*S* é elemento de si mesmo?"

Para tentar responder à essa pergunta, pode-se considerar duas situações distintas. Na primeira, supõe-se que *S* seja um elemento de si mesmo. Então, de acordo com a definição, *S* não deveria fazer parte de *S*, uma vez que *S* contém apenas conjuntos que não são elementos de si mesmos. Por outro lado, pode-se supor o caso contrário, ou seja, que *S* não seja um elemento de si mesmo. Então, pela definição, *S* se qualifica como um elemento de si mesmo. Portanto, qualquer que seja o caso que se considere, temos uma contradição. Logo, a hipótese é falsa e não existe um conjunto *S* com tal característica.

A fim de evitar a formulação de paradoxos como esse, foram desenvolvidas teorias de conjuntos alternativas, como é o caso da Teoria de Tipos do próprio Russell e também a Teoria Axiomática de Zermelo, que posteriormente serviu de base para a Teoria Axiomática de Zermelo-Fraenkel com o Axioma da Escolha (ZFC). Essa última é considerada um dos principais fundamentos da matemática moderna.

2. Página 35, Teorema 1.2:

onde se lê:

"Considere-se $A \subseteq C$ e $B \subseteq C$, de forma que ..."

leia-se:

"Considere-se a condição (1) e, além disso, $A \subseteq C$ e $B \subseteq C$, de forma que ..."

antes de "Portanto...", acrescentar o seguinte parágrafo:

"No caso da relação (ii), é possível ainda supor que $A=\emptyset$ e $B\neq\emptyset$. Se isto acontecer, então temos que $A\cap\overline{B}=\emptyset$, configurando assim uma possibilidade alternativa para satisfazer a condição (1). No entanto, se isto for verdadeiro, então a condição (2) não poderá ser satifeita, pois $\overline{A}\cap B\neq\emptyset$. O mesmo raciocínio pode ser aplicado para a condição (2), se $A\neq\emptyset$ e $B=\emptyset$.

3. Página 37, imediatamente antes do Exemplo 1.23:

acrescentar:

Teorema:

Seja R uma relação binária reflexiva, simétrica e transitiva sobre um conjunto A. Então existe uma partição $P_0, P_1, ..., P_n$ de A tal que:

- Se aRb, então $a, b \in P_i$, para algum $0 \le i \le n$;
- Se $(a,b) \notin R$, então $a \in P_i$ e $b \in P_j$, com $i \neq j$.

Prova-

Para cada $a \in A$, considere o conjunto $classe(a) = \{b | aRb\}$. Tais conjuntos recebem o nome de classes de equivalência.

• Primeira parte:

Considere $c \in classe(a)$. Portanto, aRc. Por outro lado, como a R é reflexiva, segue que bRa. Como ela

também é simétrica, bRa e aRc, segue que bRc, ou seja, que $c \in class(b)$. Portanto, todo elemento de classe(a)também é elemento de classe(b). Considere agora $c \in classe(b)$. Como a relação é simétrica, então bRc. Pela transitividade de R, temos que aRc, pois bRb e bRc. Logo, $c \in class(a)$ e todo elemento de classe(b) também é elemento de classe(a). Segue que class(a) = class(b), e portanto que a e b pertencem à mesma classe de equivalência pois, pela reflexividade, $a \in class(a)$ e $b \in classe(b)$.

• Segunda parte:

Suponha que exista $c \in class(a) \cup class(b)$. Logo, $aRc \in bRc$. Pela simetria, temos que cRb e, pela transitividade, podemos assumir que aRb. Mas aRb contradiz a hipótese de que $(a,b) \notin R$. Logo, a hipótese é falsa e não pode existir tal c. Ou seja, $class(a) \cup class(b) = \emptyset$ e a e b pertencem à classes de equivalência distintas.

Finalmente, resta provar que as classes de equivalência acima definidas constituem uma partição de A. Para isso, basta provar que:

- Todo elemento de A pertence à uma única classe de equivalência (ou seja, as classes são disjuntas duas a duas): Como aRa, segue que $a \in class(a)$. Logo, todo elemento a pertence à alguma classe de equivalência. Para provar que essa classe é única, suponha que $a \in c_1$ e $a \in c_2$, com $c_1 \neq c_2$. Conforme o resultado anterior, isso implicaria na falsidade de aRa, uma vez se tratam de elementos de classes distintas. Mas isso contradiz aRa, logo a hipótese é falsa e a não pode pertencer à duas classes diferentes.
- A união de todas as classes de equivalência resulta em A: Como todo elemento de A pertence a uma única classe de equivalência, a união de tais classes resulta em A.
- 4. Página 53, depois da definição de f(x) e antes do último parágrafo ("A prova de que...")

O gráfico da Figura 1.XX ilustra o comportamento da função f(x) no intervalo 0 a 1. Como se pode perceber, ela efetua um espalhamento do seu domínio de forma a mapear os elementos do mesmo em elementos de \mathbb{R} .

5. Página 54, Exemplo 1.55, logo depois de "diferente de todos eles." acrescentar:

Sejam:

$$\mathbb{R}_{0} = 0, \ \underline{d_{0_{0}}} \ \underline{d_{0_{1}}} \underline{d_{0_{2}}} \underline{d_{0_{3}}}...\underline{d_{0_{n}}}...$$

$$\mathbb{R}_{1} = 0, \underline{d_{1_{0}}} \ \underline{d_{1_{1}}} \ \underline{d_{1_{2}}} \underline{d_{1_{3}}...d_{1_{n}}...}$$

$$\mathbb{R}_{2} = 0, \underline{d_{2_{0}}} \underline{d_{2_{1}}} \ \underline{d_{2_{2}}} \ \underline{d_{2_{3}}...d_{2_{n}}...}$$

$$\mathbb{R}_1 = 0, \overrightarrow{d_{1_0}} \ d_{1_1} \ d_{1_2} d_{1_3} ... d_{1_n} ...$$

$$\mathbb{R}_2 = 0, d_{2_0} d_{2_1} d_{2_2} d_{2_3} ... d_{2_n} ...$$

$$\mathbb{R}_3 = 0, d_{3_0}d_{3_1}d_{3_2}\underbrace{d_{3_3}}...d_{3_n}...$$

Então escolhe-se $0, x_0x_1x_2x_3...x_n...$ com $x_0 \neq d_{0_0}, x_1 \neq d_{1_1}, x_2 \neq d_{2_2}, x_3 \neq d_{3_3}$ etc.

6. Página 80, dois primeiros parágrafos

onde se lê:

Antes de apresentá-las, convém notar a distinção que há entre os seguintes conceitos: cadeia vazia ε , conjunto vazio \emptyset e o conjunto que contém apenas a cadeia vazia $\{\varepsilon\}$.

O primeiro deles, ε , denota a **cadeia** vazia, ou seja, uma cadeia de comprimento zero, ao passo que os dois seguintes são casos particulares de **linguagens** (que por sua vez são conjuntos): \emptyset denota uma linguagem vazia, ou seja, uma linguagem que não contém nenhuma cadeia, e $\{\varepsilon\}$ denota uma linguagem que contém uma única cadeia, a cadeia vazia. Observe-se que $|\emptyset| = 0$ e $|\{\varepsilon\}| = 1$.

leia-se.

Antes de apresentá-las, convém notar a distinção que há entre os seguintes conceitos:

- cadeia vazia ε:
- conjunto vazio ∅;
- conjunto que contém apenas a cadeia vazia $\{\varepsilon\}$;
- conjunto que contém apenas o conjunto vazio {∅}.

O primeiro deles, ε , denota a cadeia vazia, ou seja, uma cadeia de comprimento zero, ao passo que os demais são casos particulares de conjuntos: \emptyset denota uma linguagem vazia, ou seja, uma linguagem que não contém nenhuma cadeia, $\{\varepsilon\}$ denota uma linguagem que contém uma única cadeia (a cadeia vazia), e $\{\emptyset\}$ denota um conjunto que contém um único elemento, o conjunto vazio. Observe-se que $|\varepsilon| = |\emptyset| = 0$ e $|\{\varepsilon\}| = |\{\emptyset\}| = 1$.

7. Página 93, Exemplo 2.24

onde se lê:

Considere $G_2 = (V_2, \Sigma_2, P_2, S)$, com:

$$\begin{array}{lcl} V_2 &=& \{a,b,c,S,B,C\} \\ \Sigma_2 &=& \{a,b,c\} \\ P_2 &=& \{S \rightarrow aSBC,S \rightarrow abC,CB \rightarrow BC,bB \rightarrow bb,bC \rightarrow bc,cC \rightarrow cc\} \end{array}$$

A linguagem gerada por G_2 é $\{a^nb^nc^n|n \geq 1\}$. De fato, a seqüência de derivações iniciada com a regra $S \to abC$ conduz à geração da sentença abc ($S \Rightarrow abC \Rightarrow abc$). Seqüências iniciadas com a aplicação repetida da regra $S \to aSBC$ conduzem às seguintes formas sentenciais subseqüentes:

$$S \Rightarrow^{i} a^{i}S(BC)^{i} \Rightarrow a^{i}abC(BC)^{i} \Rightarrow^{i} a^{i+1}bB^{i}C^{i+1} \Rightarrow^{i} a^{i+1}b^{i+1}C^{i+1}$$

A aplicação da regra $bC \rightarrow bc$, seguida da aplicação sucessiva da regra $cC \rightarrow cc$, resulta em:

$$\Rightarrow a^{i+1}bb^iC^i \Rightarrow^i a^{i+1}b^{i+1}c^{i+1}$$

gerando, portanto, as sentenças *aabbcc*, *aaabbbccc* etc. A sentença *aabbcc*, por exemplo, é derivada da seguinte forma nessa gramática:

$$S \Rightarrow aSBC \Rightarrow aabCBC \Rightarrow aabBCC \Rightarrow aabbCC \Rightarrow aabbcC \Rightarrow aabbcC$$

pela aplicação, respectivamente, das produções:

$$S \rightarrow aSBC, S \rightarrow abC, CB \rightarrow BC, bB \rightarrow bb, bC \rightarrow bc \ e \ cC \rightarrow cc$$

<u>leia-se</u>:

Considere $G_2 = (V_2, \Sigma_2, P_2, S)$, com:

$$V_2 = \{a,b,c,S,B,C\}$$

$$\Sigma_2 = \{a,b,c\}$$

$$P_2 = \{S \rightarrow aSBC,S \rightarrow abC,CB \rightarrow BC,bB \rightarrow bb,bC \rightarrow bc,cC \rightarrow cc\}$$

A linguagem gerada por G_2 é $\{a^nb^nc^n|n\geq 1\}$. De fato, a seqüência de derivações iniciada com a regra $S\to abC$ conduz à geração da sentença abc ($S\Rightarrow abC\Rightarrow abc$). Por outro lado, seqüências iniciadas com a aplicação repetida i vezes da regra $S\to aSBC$ conduzem à geração da seguinte forma sentencial subseqüente:

$$S \Rightarrow^i a^i S(BC)^i$$

A posterior aplicação da regra $S \rightarrow abC$ faz com que:

$$a^{i}S(BC)^{i} \Rightarrow a^{i}abC(BC)^{i} = a^{i+1}b(CB)^{i}C$$

Através da aplicação sucessiva da regra $CB \rightarrow BC$, obtém-se agora:

$$a^{i+1}b(CB)^{i}C \Rightarrow^{*} a^{i+1}bB^{i}C^{i}C = a^{i+1}bB^{i}C^{i+1}$$

Finalmente, a aplicação i vezes da regra $bB \to bb$ faz com que todos os símbolos B sejam substituídos por símbolos b:

$$a^{i+1}bB^{i}C^{i+1} \Rightarrow^{i} a^{i+1}bb^{i}C^{i+1} = a^{i+1}b^{i+1}C^{i+1}$$

A aplicação uma única vez da regra $bC \rightarrow bc$ substitui o primeiro símbolo da cadeia de símbolos C pelo símbolo c:

$$a^{i+1}b^{i+1}C^{i+1} \Rightarrow a^{i+1}b^{i+1}cC^{i}$$

Para terminar, a aplicação i vezes da regra $cC \rightarrow cc$ substitui todos os demais símbolos C por símbolos c:

$$a^{i+1}b^{i+1}cC^{i} \Rightarrow^{i} a^{i+1}b^{i+1}cc^{i} = a^{i+1}b^{i+1}c^{i+1}$$

A forma sentencial:

$$a^{i+1}b^{i+1}c^{i+1}$$

gera, portanto, as sentenças *aabbcc*, *aaabbbccc* etc. A sentença *aabbcc*, por exemplo, é derivada da seguinte forma nessa gramática:

$$S \Rightarrow aSBC \Rightarrow aabCBC \Rightarrow aabBCC \Rightarrow aabbCC \Rightarrow aabbbcC \Rightarrow aabbbcC$$

pela aplicação, respectivamente, das produções:

$$S \rightarrow aSBC, S \rightarrow abC, CB \rightarrow BC, bB \rightarrow bb, bC \rightarrow bc \ e \ cC \rightarrow cc$$

8. Página 169, Teorema 3.4, imediatamente antes do Algoritmo 3.5

acrescentar:

O mecanismo de mapeamento é baseado na elimnação sistemática das transições em vazio do autômato original, substituindo-as por transições não-vazias de modo que o autômato resultante aceite as mesmas cadeias que o autômato original.

Se o autômato original possui uma transição em vazio de um estado q_i para um estado q_j , e se do estado q_j existem transições para, por exemplo, os estados q_k e q_l , respectivamente com os símbolos a e b, então o autômato modificado deverá adicionar transições de q_i para q_k com o símbolo a e de q_i para q_l com o símbolo b. Dessa maneira, o conjunto de cadeias que são processadas a partir do estado q_i permanece o mesmo em ambos os casos. Se q_j for um estado final, então q_i deverá ser tornado final, a fim de permitir a aceitação das cadeias que conduzem o autômato resultante a uma configuração final nesse estado. As Figuras 3.XX e 3.YY ilustram essa idéia.

Figura 3.XX Situação com transição em vazio original

Figura 3.YY Situação sem transição em vazio equivalente à da Figura 3.XX

9. Página 170, imediatamente antes do último parágrafo

acrescentar:

Conforme mencionado anteriormente, o Algoritmo 3.5 pode não produzir o resultado desejado caso o autômato *M* possua um ou mais ciclos de transições em vazio. Um detalhamento dessa questão, no entanto, revela a condição exata em que o algoritmo falha (note-se que a simples existência de ciclos formado por transições em vazio não é condição suficiente para caracterizar a situação em que o algoritmo deixa de produzir o resultado desejado):

- (a) M possui pelo menos um ciclo formado formado por transições em vazio;
- (b) Existe em M pelo menos um estado q_i , não pertencente ao ciclo, um estado q_j , pertencente ao ciclo, e um caminho formado por transições em vazio que tem q_i como origem e q_i como destino.

Num caso como esse, se a escolha da transição a ser eliminada recair sobre uma transição pertencente ao caminho que conduz de q_i até q_j , antes de se eliminar pelo menos uma das transições pertencente ao ciclo, ela trará como conseqüência o ressurigmento recorrente da transição original e a conseqüente impossibilidade de se alcançar o objetivo inicial. As Figuras 3.XX até 3.XX ilustram a situação.

Figura 3.XX Tentativa de eliminação da transição em vazio externa ao ciclo, passo 1

Figura 3.XX Tentativa de eliminação da transição em vazio externa ao ciclo, passo 2

Figura 3.XX Tentativa de eliminação da transição em vazio externa ao ciclo, passo 3

Figura 3.XX Tentativa de eliminação da transição em vazio externa ao ciclo, passo 4

Para evitar que isso aconteça, uma possível solução seria eliminar inicialmente alguma transição pertencente ao ciclo, para apenas depois considerar as demais transições do ciclo e as do caminho entre q_i e q_j , não importando a ordem em que isso for feito. As Figuras 3.XX até 3.XX ilustram a situação.

Figura 3.XX Eliminação da transição em vazio pertencente ao ciclo, passo 1

Figura 3.XX Eliminação da transição em vazio pertencente ao ciclo, passo 2

Figura 3.XX Eliminação da transição em vazio pertencente ao ciclo, passo 3

Essa solução, no entanto, exige que se determine antecipadamente se *M* possui ciclos formados por transições em vazio, para apenas depois determinar a ordem em que a eliminação das suas transições em vazio poderá acontecer. Uma outra solução, que independe desse tipo de análise, e portanto se configura geral, será apresentada mais adiante. Exemplo 3.XX:

Como exemplo, considere o autômato da Figura 3.XX. Nesse caso, qualquer tentativa de eliminar as transições em vazio que vão de q_0 para q_1 , de q_1 para q_2 , ou mesmo de q_3 para q_2 , sem antes eliminar os respectivos ciclos formados por transições em vazio que são atingidos, respectivamente, a partir dos estados q_0 , q_1 e q_3 , resultará em insucesso, com a iteração infinita dos passos do algoritmo. Essas soluções não funcionam pois, nelas, os estados de origem dos caminhos formados por transições em vazio $(q_0, q_1 e q_3)$ não fazem parte do ciclo em questão.

Uma solução, nesse caso, seria eliminar inicialmente a transição em vazio que vai de q_2 para q_1 e depois as demais, em qualquer ordem. Ou ainda, a que vai de q_2 para q_3 , seguida das demais. Esses casos funcionam pois o estado de origem do caminho formado por transições em vazio (q_2) é também parte do ciclo que é atingido pelo caminho.

Figura 3.XX Eliminação da transição em vazio pertencente ao ciclo, passo 3

10. Página 198, logo depois do primeiro parágrafo e antes do Exemplo 3.33 *acrescentar:*

As figuras seguintes ilustram a operação do Algoritmo 3.13. Cada figura representa o mesmo sistema de equações, em momentos diferentes do seu processamento. Em todos os casos, elas representam um sistema com m equações e m variáveis, com uma equação em cada linha. Assim, a primeira linha representa a primeira equação (da variável X_1), a segunda linha a segunda equação (da variável X_2) e assim por diante. Dentro de cada célula, o número i que varia de 1 a m indica que a equação em questão pode conter referência para a variável correspondente (X_i). Desta forma, na condição inicial do sistema, cada equação pode conter referências à todas as demais variáveis do sistema. Na medida em que o passo 2 do algoritmo é executado, no entanto, vão sendo eliminadas referências às variáveis das equações seguintes. No final do passo 2, a última equação (da variável X_m) refere-se apenas à própria variável que está sendo definida. Terminado o movimento descendente, tem início o movimento ascendente representado pelo passo 4 do algoritmo. Na primeira passagem, ele resolve a última equação, por aplicação do Teorema 3.18, e substitui o valor da variável X_m em todas as anteriores. Desta forma, todas as equações vão sendo resolvidas de forma a não conter referências à nenhuma variável. Na última passagem do passo 4, todas as variáveis do sistema estão representadas por equações regulares que não contêm variáveis.

Situação inicial:

1	2	3	4	 m-3	m-2	m-1	m
1		3	4	 m-3	m-2	m-1	m
1	2	3	4	 m-3	m-2	m-1	m
1	2	3	4	 m-3	m-2	m-1	m
1	2	3	4	 m-3	m-2	m-1	m
1	2	3	4	 m-3	m-2	m-1	m
1	2	3	4	 m-3	m-2	m-1	m
1	2	3	4	 m-3	m-2	m-1	m

Passo 2, linha 1:

1	2	3	4	•••	m-3	m-2	m-1	m
	2	3	4		m-3	m-2	m-1	m
	2	3	4		m-3	m-2	m-1	m
	2	3	4		m-3	m-2	m-1	m
	2	3	4		m-3	m-2	m-1	m
	2	3	4		m-3	m-2	m-1	m
	2	3	4		m-3	m-2	m-1	m
	2	3	4	•••	m-3	m-2	m-1	m

Passo 2, linha 2:

1	2	3	4	 m-3	m-2	m-1	m
	2	3	4	 m-3	m-2	m-1	m
		3	4	 m-3	m-2	m-1	m
		3	4	 m-3	m-2	m-1	m
		3	4	 m-3	m-2	m-1	m
		3	4	 m-3	m-2	m-1	m
		3	4	 m-3	m-2	m-1	m
		3	4	 m-3	m-2	m-1	m

Passo 2, linha 3:

1	2	3	4	 m-3	m-2	m-1	m
	2	3	4	 m-3	m-2	m-1	m
		3	4	 m-3	m-2	m-1	m
			4	 m-3	m-2	m-1	m
			4	 m-3	m-2	m-1	m
			4	 m-3	m-2	m-1	m
			4	 m-3	m-2	m-1	m
			4	 m-3	m-2	m-1	m

Passo 2, linha m-1:

1	2	3	4		m-3	m-2	m-1	m
	2	3	4		m-3	m-2	m-1	m
		3	4		m-3	m-2	m-1	m
			4		m-3	m-2	m-1	m
					m-3	m-2	m-1	m
						m-2	m-1	m
							m-1	m
				,				m

Passo 4, linha m:

1	2	3	4	 m-3	m-2	m-1	
	2	3	4	 m-3	m-2	m-1	
		3	4	 m-3	m-2	m-1	
			4	 m-3	m-2	m-1	
				m-3	m-2	m-1	
					m-2	m-1	
						m-1	

Passo 4, linha m-1:

1	2	3	4	 m-3	m-2	
	2	3	4	 m-3	m-2	
		3	4	 m-3	m-2	
			4	 m-3	m-2	
				m-3	m-2	
					m-2	

Passo 4, linha m-2:

1	2	3	4	 m-3		
	2	3	4	 m-3		
		3	4	 m-3		
			4	 m-3		
				m-3		

Passo 4, linha 1:

		_	_	_	

11. Página 248, Teorema 3.24, imediatamente depois do segundo parágrafo

acrescentar:

Uma outra forma de entender esse resultado é a seguinte: admita-se, por hipótese, que não exista nenhuma cadeia $w \in L$ tal que $0 \le |w| < n$, e considere-se a cadeia w' como sendo aquela que possui o menor comprimento entre todas as cadeias de L cujo comprimento é maior ou igual a n (se L é não-vazia e não há em L, por hipótese, cadeias de comprimento menor que n, então deve haver pelo menos uma cadeia que satisfaça essa condição). Como $|w'| \ge n$, então w' = xyz, com $1 \le |y| \le n$, |xz| < |w'| e $xz \in L(M)$. Seguem duas possibilidades:

- (a) Se $|xz| \ge n$, isso contradiz a hipótese de que w' seria a cadeia de L com o menor comprimento entre todas as que possuem comprimento maior ou igual a n;
- (b) Se |xz| < n, isso contradiz a hipótese de que não existiria nenhuma cadeia de L com comprimento maior ou igual a 0 e menor que n.

Portanto, em qualquer caso a hipótese é falsa e deve existir pelo menos uma cadeia $w \in L$ tal que $0 \le |w| < n$.

12. Página 249, Teorema 3.25, imediatamente depois do antepenúltimo parágrafo *acrescentar:*

Uma outra forma de entender esse resultado é a seguinte: admita-se, por hipótese, que não exista nenhuma cadeia $w \in L$ tal que $n \le |w| < 2n$, e considere-se a cadeia w' como sendo aquela que possui o menor comprimento entre todas as cadeias de L cujo comprimento é maior ou igual a 2n (se L é infinita, então deve haver pelo menos uma cadeia que satisfaça essa condição). Como $|w'| \ge n$, então w' = xyz, com $1 \le |y| \le n$, |xz| < |w'| e $xz \in L(M)$. Além disso, como $|w'| \ge 2n$ e $1 \le |y| \le n$, então $|xz| \ge n$. Seguem duas possibilidades:

- (a) Se $|xz| \ge 2n$, isso contradiz a hipótese de que w' seria a cadeia de L com o menor comprimento entre todas as que possuem comprimento maior ou igual a 2n;
- (b) Se |xz| < 2n, isso contradiz a hipótese de que não existiria nenhuma cadeia de L com comprimento maior ou igual a n e menor que 2n.

Portanto, em qualquer caso a hipótese é falsa e deve existir pelo menos uma cadeia $w \in L$ tal que $n \le |w| < 2n$.

13. Página 352, imediatamente depois do Exemplo 4.37

acrescentar:

Exemplo 4.XX Considere a gramática abaixo, que gera a linguagem do Exemplo 4.37 e que não foi convertida para a Forma Normal de Greibach.

$$\begin{cases} E & \rightarrow & T|T+E, \\ T & \rightarrow & F|F*T, \\ F & \rightarrow & (E)|a \end{cases}$$

A aplicação do Algoritmo 4.8 resulta no autômato de pilha não-determinístico cuja função de transição δ é:

$$\begin{cases} (q, \varepsilon, E) & \rightarrow & \{(q, T), (q, T + E)\}, \\ (q, \varepsilon, T) & \rightarrow & \{(q, F), (q, F * T)\}, \\ (q, \varepsilon, F) & \rightarrow & \{(q, (E)), (q, a)\}, \\ (q, a, a) & \rightarrow & \{(q, \varepsilon)\}, \\ (q, (, () & \rightarrow & \{(q, \varepsilon)\}, \\ (q,),)) & \rightarrow & \{(q, \varepsilon)\}, \\ (q, +, +) & \rightarrow & \{(q, \varepsilon)\}, \\ (q, *, *) & \rightarrow & \{(q, \varepsilon)\} \end{cases}$$

Entre as várias possibilidades de movimentação que esse autômato possui para a cadeia de entrada a + a * a, e que simulam derivações mais à esquerda na gramática, a sequência abaixo conduz o autômato à aceitação da mesma:

$$\begin{array}{l} (q,a+a*a,E)\Rightarrow (q,a+a*a,T+E)\Rightarrow (q,a+a*a,F+E)\Rightarrow (q,a+a*a,a+E)\Rightarrow (q,+a*a,+E)\Rightarrow (q,a*a,E)\Rightarrow (q,a*a,F*T)\Rightarrow (q,a*a,a*T)\Rightarrow (q,a*a,F)\Rightarrow (q,a,F)\Rightarrow (q$$

14. Página 353, Algoritmo 4.13

<u>onde se lê</u>:

para qualquer seqüência de $q_i \in Q, 2 \le j \le (k+1)$;

<u>leia-se</u>.

para toda e qualquer sequência de estados $q_2, q_3, ..., q_k, q_{k+1}$ que possa ser obtida a partir de Q (repetições são permitidas);

15. Página 355, Exemplo 4.38, entre a primeira e a segunda linha

<u>acrescentar</u>:

A obtenção de G, tal que L(G) = V(M), tem como ponto de partida as regras:

$$S \rightarrow [q_0 Z_0 q_0]$$

$$S \rightarrow [q_0 Z_0 q_1]$$

Analisando-se as transições de M individualmente, as seguintes regras adicionais são obtidas:

• Para $\delta(q_0, a, Z_0) = (q_0, XZ_0)$, considerar $[q_0Z_0] \to a[q_0X][Z_0]$ com as listas (q_0, q_0) , (q_0, q_1) , (q_1, q_0) e (q_1, q_1) , gerando:

$$\begin{array}{lcl} [q_0Z_0q_0] & \to & a[q_0Xq_0][q_0Z_0q_0] \\ [q_0Z_0q_1] & \to & a[q_0Xq_0][q_0Z_0q_1] \\ [q_0Z_0q_0] & \to & a[q_0Xq_1][q_1Z_0q_0] \\ [q_0Z_0q_1] & \to & a[q_0Xq_1][q_1Z_0q_1] \end{array}$$

• Para $\delta(q_0, a, X) = (q_0, XX)$, considerar $[q_0X _] \rightarrow a[q_0X _][_X _]$ com as listas (q_0, q_0) , (q_0, q_1) , (q_1, q_0) e (q_1, q_1) , gerando:

$$egin{array}{lll} [q_0 X q_0] &
ightarrow & a[q_0 X q_0][q_0 X q_0] \ [q_0 X q_1] &
ightarrow & a[q_0 X q_1][q_1 X q_0] \ [q_0 X q_1] &
ightarrow & a[q_0 X q_1][q_1 X q_1] \ [q_0 X q_1] &
ightarrow & a[q_0 X q_1][q_1 X q_1] \end{array}$$

• Para $\delta(q_0, \varepsilon, X) = (q_1, X)$, considerar $[q_0 X _] \rightarrow [q_1 X _]$ com as listas (q_0) e (q_1) , gerando:

$$\begin{array}{ccc} [q_0Xq_0] & \rightarrow & [q_1Xq_0] \\ [q_0Xq_1] & \rightarrow & [q_1Xq_1] \end{array}$$

• Para $\delta(q_1, b, X) = (q_1, \varepsilon)$:

$$[q_1Xq_1] \rightarrow b$$

• Para $\delta(q_1, \varepsilon, X) = (q_1, XX)$, considerar $[q_1X _] \rightarrow [q_1X _][_X _]$ com as listas (q_0, q_0) , (q_0, q_1) , (q_1, q_0) e (q_1, q_1) , gerando:

$$\begin{array}{lcl} [q_1Xq_0] & \to & [q_1Xq_0][q_0Xq_0] \\ [q_1Xq_1] & \to & [q_1Xq_0][q_0Xq_1] \\ [q_1Xq_0] & \to & [q_1Xq_1][q_1Xq_0] \\ [q_1Xq_1] & \to & [q_1Xq_1][q_1Xq_1] \end{array}$$

• Para $\delta(q_1, b, Z_0) = (q_1, \varepsilon)$:

$$[q_1Z_0q_1] \rightarrow b$$

A renomeação dos símbolos não-terminais e o agrupamento das regras produz como resultado o conjunto:

Finalmente, a eliminação de símbolos inacessíveis e inúteis resulta em:

$$\begin{array}{ccc} S & \rightarrow & B \\ B & \rightarrow & aDF \\ D & \rightarrow & aDH|H \\ F & \rightarrow & b \\ H & \rightarrow & b|HH \end{array}$$

ou seja, $L(G) = V(M) = \{a^i b^j | i \ge 1 \text{ e } j > i\}$. O procedimento ora apresentado é dirigido pelas transições do autômato, e por isso ele gera todas as regras e todos os símbolos não-terminais previstos pelo algoritmo, independentemente de eles serem de fato utilizados ou necessários na gramática final. Por isso, um procedimento alternativo pode ser adotado, procedimento esse que é dirigido não pelas transições do autômato, mas sim pelo próprio conjunto de regras que está sendo gradativamente construído, trazendo com isso a vantagem de evitar a geração de regras e símbolos que não sejam relevantes para a gramática resultante. Esse procedimento alternativo é apresentado a seguir.

16. Página 357, primeira linha

onde se lê: ou seja,
$$L(G) = V(M) = \{a^i b^j | i \ge 1 \text{ e } j > i\}$$
. leia-se:

Note-se que, exceto pela mudança de nome de alguns símbolos não-terminais, a gramática gerada no segundo procedimento é a mesma que foi gerada no primeiro procedimento.

17. Página 359

```
onde se lê:
```

"Como $vwx = \alpha_1$, então então $2 \le |vwx| \le 2^k$;"

leia-se.

"Como $vwx = \alpha_1$, então então $2 \le |vwx| \le 2^k$, ou seja, $|vwx| \le (n-1) * 2$;"

<u>onde se lê</u>:

"Como $1 \le |w|$ e $2 \le |vwx|$, então $|vx| \ge 1$;"

<u>leia-se</u>:

"Como $1 \le |w|$ e $2 \le |vwx|$, então $|vx| \ge 1$, ou seja, $v \in x$ não podem ser ambas vazias;"

18. Página 359

inserir no final do parágrafo "Através desta figura...":

"Em outras palavras, árvores com altura i+1 geram sentenças de comprimento máximo 2^i . Logo, se uma sentença tem comprimento mínimo (maior ou igual a) 2^i , então a árvore de derivação correspondente possuirá altura mínima (maior ou igual a) i+1. De fato, é necessária uma árvore com altura pelo menos i+1 para gerar uma sentença de comprimento 2^i e, além disso, são necessárias árvores com alturas maiores para sentenças ainda mais longas."