4.3 Partial Orders

Task: Understand another type of relation with special properties.

Definition: Let A be a set. A relation R on A is called anti-symmetric if $\forall x, y \in A \text{ s.t. } xRy \land yRx$, then x = y.

Definition: A <u>partial order</u> is a relation on a set A that is reflexive, anti-symmetric, and transitive.

Examples:

- 1. $A = \mathbb{R}$ \leq "less than or equal to" is a partial order
 - (a) $\forall x \in \mathbb{R}, x \leq x \to \text{reflexive}$
 - (b) $\forall x, y \in \mathbb{R} \text{ s.t. } x \leq y \land y \leq x \implies x = y \rightarrow \text{anti-symmetric}$
 - (c) $\forall x,y,z\in\mathbb{R}$ s.t. $x\leq y\wedge y\leq z \implies x\leq z \to \text{transitive}$ Same conclusion if $A=\mathbb{Z}$ or $A=\mathbb{N}$
- 2. A is a set. Consider P(A), the power set of A. The relation \subseteq "being a subset of" is a partial order.
 - (a) $\forall B \in P(A), B \subseteq B \to \text{reflexive}.$
 - (b) $\forall B, C \in P(A), B \subseteq C \land C \subseteq B \implies B = C$ (recall the criterion for proving equality of sets) \rightarrow anti-symmetric
 - (c) $\forall B, C, D \in P(A)$ s.t. $B \subseteq C \land C \subseteq D \implies B \subseteq D \to \text{transitive}$

The most important example of a partial order is example (2) "being a subset of".

- **Q:** Why is "being a subset of" a partial order as opposed to a total order?
- **A:** There might exist subsets B, C of A s.t. neither $B \subseteq C$ nor $C \subseteq B$ holds, i.e. where B and C are not related via inclusion.

5 Functions

Task: Define a function rigorously and make sense of terminology associated to functions.

Definition: Let A, B be sets. A function $f: A \to B$ is a rule that assigns to every element of A one and only one element of B, i.e. $\forall x \in A \ \exists ! y \in B$ s.t. f(x) = y. A is called the domain of f and g is called the codomain.

Examples:

1.
$$A = \{1, 3, 7\}$$

 $B = \{1, 2, 5\}$

Is a function.

Not a function; 3 sent to both 1 and 5

Is a function.

2. $A=B=\mathbb{R}$ $F:\mathbb{R}\to\mathbb{R}$ given by f(x)=x is called the identity function.

Definition: Let A, B be sets, and let $f: A \to B$ be a function. The range of f denoted by f(A) is the subset of B defined by $f(A) = \{y \in B \mid \exists x \in A \text{ s.t. } f(x) = y\}.$

Definition: Let A be a set. A <u>Boolean function</u> on A is a function $F: A \to \{T, F\}$, which has A as its domain and the set of truth values $\{T, F\}$ as is

codomain. $f: A \to \{T, F\}$ thus assigns truth values to the elements of A. Function are often represented by graphs. If $f: A \to B$ is a function, the graph of f denoted $\Gamma(f)$ is the subset of the Cartesian product of the domain with the codomain $A \times B$ given by $\{(x, f(x)) \mid x \in A\}$.

Q: Is it possible to obtain every subset of $A \times B$ as the graph of some function?

Q: Is it possible to obtain every subset of $A \times B$ as the graph of some function? **A:** No! For $f: A \to B$ to be a function $\forall x \in A \quad \exists ! y \in B \text{ s.t. } f(x) = y$, so for $\Gamma \subseteq A \times B$ to be the graph of some function, Γ must satisfy that

 $\forall x \in A \quad \exists ! y \in B \text{ s.t. } (x,y) \in \Gamma.$ Then we can define f by letting

NB For the usual set-up of a function $f: \mathbb{R} \to \mathbb{R}$, this observation amounts to the "vertical line test," which you have seen before coming to university.

5.1 Composition of Functions

y = f(x).

Task: Understand the natural operation that allows us to combine functions.

