Assignment 3: Report bonus

a) **Improvements**

	lambda	batc h	Architecture	eta_m in	eta_ma x	n_s	acc_train	acc_valid	acc_test
Basic	0.005164	100	3NN	1e-5	0.1	2250	0.61871	0.5372	0.5355
1) Augmentation	0.005164	100	3NN	1e-5	0.1	2250	0.6091	0.545	0.5351
2) BN after ReLu	0.005164	100	3NN	1e-5	0.1	2250	0.6326	0.5492	0.5376
3) Dropout	0.005164	80	3NN	1e-5	0.1	2250	0.67675	0.5424	0.5357
4) All above + deeper NN	0.001164	100	4NN	1e-5	0.1	2250	0.67675	0.5628	0.5523

1) Augmentation with Gauss noise(std=0.125)

nn = Network()

- 1. nn.add(Dense(n_in, 50)), nn.add(ReLU()), nn.add(BatchNorm(50))
- 2. nn.add(Dense(50, 50)), nn.add(ReLU()), nn.add(BatchNorm(50))
- 3. nn.add(Dense(**50**, **10**))

N_batch = 100 n_s = $5*n / n_batch$, eta_min = 1e-5, eta_max= 1e-1 n_epochs = $(2*n_s*n_batch/n)*5 = 5$ cycles $\lambda = 0.005164$ Train set accuracy: 0.6091 Validation set accuracy: 0.545 **Test set accuracy: 0.5351**

2) BN after ReLu

nn = Network()

- 4. nn.add(Dense(n_in, 50)), nn.add(ReLU()), nn.add(BatchNorm(50))
- 5. nn.add(Dense(50, 50)), nn.add(ReLU()), nn.add(BatchNorm(50))
- 6. nn.add(Dense(50, 10))

N_batch = 100 n_s = $5*n / n_b$ atch, eta_min = 1e-5, eta_max= 1e-1 n_epochs = $(2*n_s*n_b$ atch/n)*7 = 7 cycles $\lambda = 0.005164$ Train set accuracy: 0.6326222 Validation set accuracy: 0.5492 **Test set accuracy: 0.5376**

3) Dropout

nn = Network()

- 1. nn.add((Dropout(0.3)), nn.add(Dense(n_in, 50)), nn.add(ReLU()), nn.add((BatchNorm(50))
- 2. nn.add(Dense(50, 50)), nn.add(ReLU()), nn.add((BatchNorm(50))
- 3. nn.add((Dropout(0.3)), nn.add(Dense(50, 10))

N_batch = 100 n_s = $5*n / n_batch$, eta_min = 1e-5, eta_max= 1e-1 n_epochs = $(2*n_s*n_batch/n)*8 = 8$ cycles $\lambda = 0.005164$ Train set accuracy: 0.61306 Validation set accuracy: 0.5424 **Test set accuracy: 0.5357**

4) All improvements combined

```
nn = Network()
```

- 1. nn.add(Dropout(0.3)), nn.add(Dense(n_in, 100)), nn.add(ReLU()), nn.add(BatchNorm(100))
- 2. nn.add(Dense(100, 50)), nn.add(ReLU()), nn.add(BatchNorm(50))
- 3. nn.add(Dropout(0.3)), nn.add(Dense(50, 100)), nn.add(ReLU()), nn.add(BatchNorm(100))
- 4. nn.add(Dropout(0.2)), nn.add(Dense(100, 10))

Train set accuracy: 0.67675 Validation set accuracy: 0.5628 **Test set accuracy: 0.5523**

 $N_batch = 100$ $n_s = 5*n / n_batch, eta_min = 1e-5, eta_max = 1e-1$ $n_epochs = (2*n_s*n_batch/n)*6 = 6 cycles$ $\lambda = 0.001164$

In order to achieve this accuracy I trained for 4 more epochs after the 6th cycle with eta=1e-7.