

66/30/21

Please type a plus sign (+) inside this box

+

12-06-99

Box 526 PTO/SB/05 (2/98)

A

UTILITY PATENT APPLICATION TRANSMITTAL

(Only for nonprovisional applications under 37 CFR § 1.53(b))

Attorney Docket No.

210121.469C4

PTO

First Inventor or Application Identifier

Peter Probst

Title

COMPOSITIONS AND METHODS FOR TREATMENT
AND DIAGNOSIS OF CHLAMYDIAL INFECTION

Express Mail Label No.

EL414545499US

USPS 45784

09/09

12/03/99

APPLICATION ELEMENTS

See MPEP chapter 600 concerning utility patent application contents.

ADDRESS TO:Box Patent Application
Assistant Commissioner for Patents
Washington, D.C. 20231

- | | |
|---|--|
| <p>1. <input type="checkbox"/> General Authorization Form & Fee Transmittal
<i>(Submit an original and a duplicate for fee processing)</i></p> <p>2. <input checked="" type="checkbox"/> Specification [Total Pages] 111
 - Descriptive Title of the Invention
 - Cross References to Related Applications
 - Statement Regarding Fed sponsored R & D
 - Reference to Microfiche Appendix
 - Background of the Invention
 - Brief Summary of the Invention
 - Brief Description of the Drawings (<i>if filed</i>)
 - Detailed Description
 - Claim(s)
 - Abstract of the Disclosure</p> <p>3. <input checked="" type="checkbox"/> Drawing(s) (35 USC 113) [Total Sheets] 11</p> <p>4. Oath or Declaration [Total Pages]
 a. <input type="checkbox"/> Newly executed (original or copy)
 b. <input type="checkbox"/> Copy from a prior application (37 CFR 1.63(d))
 <i>(for continuation/divisional with Box 17 completed)</i>
 i. <input type="checkbox"/> DELETION OF INVENTOR(S)
 Signed statement attached deleting
 inventor(s) named in the prior
 application,
 see 37 CFR 1.63(d)(2) and 1.33(b)</p> <p>5. Incorporation By Reference <i>(useable if box 4b is checked)</i>
 The entire disclosure of the prior application, from which
 a copy of the oath or declaration is supplied under Box
 4b, is considered to be part of the disclosure of the
 accompanying application and is hereby incorporated by
 reference therein.</p> | <p>6. <input type="checkbox"/> Microfiche Computer Program (<i>Appendix</i>)</p> <p>7. Nucleotide and Amino Acid Sequence Submission
<i>(if applicable, all necessary)</i>
 a. <input checked="" type="checkbox"/> Computer-Readable Copy
 b. <input checked="" type="checkbox"/> Paper Copy (identical to computer copy)
 c. <input checked="" type="checkbox"/> Statement verifying identity of above copies</p> |
|---|--|

ACCOMPANYING APPLICATION PARTS

8. Assignment Papers (cover sheet & document(s))
9. 37 CFR 3.73(b) Statement *(when there is an assignee)* Power of Attorney
10. English Translation Document (*if applicable*)
11. Information Disclosure Statement (IDS)/PTO-1449 Copies of IDS Citations
12. Preliminary Amendment
13. Return Receipt Postcard
14. Small Entity Statement(s) Statement filed in prior application,
Status still proper and desired
15. Certified Copy of Priority Document(s)
(if foreign priority is claimed)
16. Other: Certificate of Express Mail

17. If a CONTINUING APPLICATION, check appropriate box and supply the requisite information below and in a preliminary amendment

Continuation

Divisional

Continuation-In-Part (CIP)

of prior Application No.:

Filed on 10/22/99Prior application information: Examiner Not yet availableGroup / Art Unit Not yet available

Claims the benefit of Provisional (or foreign) Application No. _____

CORRESPONDENCE ADDRESS

David J. Maki
Seed and Berry LLP
 6300 Columbia Center
 701 Fifth Avenue
 Seattle, Washington 98104-7092
 (206) 622-4900 phone (206) 682-6031 fax

Respectfully submitted,

TYPED or PRINTED NAME David J. MakiSIGNATURE
C:\CORIXA\3836.docREGISTRATION NO. 31,392Date DECEMBER 3, 1999

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants : Peter Probst, Seattle, WA; Ajay Bhatia, Seattle, WA;
Yasir Skeiky, Seattle, WA; Steve Fling, Bainbridge Island, WA;
Jeff Maisonneuve
Filed : December 3, 1999
For : COMPOSITIONS AND METHODS FOR TREATMENT AND
DIAGNOSIS OF CHLAMYDIAL INFECTION

Docket No. : 210121.469C4
Date : December 3, 1999

Box Patent Application
Assistant Commissioner for Patents
Washington, DC 20231

CERTIFICATE OF MAILING BY "EXPRESS MAIL"

Sir:

I hereby certify that the enclosures listed below are being deposited with the United States Postal Service "EXPRESS MAIL Post Office to Addressee" service under 37 C.F.R. § 1.10, Mailing Label Certificate No. EL414545499US, on December 3, 1999, addressed to Box Patent Application, Assistant Commissioner for Patents, Washington, DC 20231.

Respectfully submitted,
SEED and BERRY LLP

Susan C. Clingerman

DJM:ms

Enclosures:

Postcard
Form PTO/SB/05
Specification, Claims, Abstract (111 pages)
11 Sheets of Drawings (Figures 1-11)
Paper Copy of Sequence Listing (145 pages)
Diskette containing Sequence Listing
Declaration for Sequence Listing

EXPRESS MAIL EL414545499US

COMPOUNDS AND METHODS FOR TREATMENT
AND DIAGNOSIS OF CHLAMYDIAL INFECTION

REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of U.S. Patent Application No. _____, filed October 22, 1999, which is a continuation-in-part of U.S. Patent Application 09/410,568, filed October 1, 1999, which is a continuation-in-part of U.S. Patent Application 09/288,594, filed April 8, 1999, which is a continuation-in-part of U.S. Patent Application No. 09/208,277, filed December 8, 1998.

TECHNICAL FIELD

The present invention relates generally to the detection and treatment of Chlamydial infection. In particular, the invention is related to polypeptides comprising a *Chlamydia* antigen and the use of such polypeptides for the serodiagnosis and treatment of Chlamydial infection.

BACKGROUND OF THE INVENTION

Chlamydiae are intracellular bacterial pathogens that are responsible for a wide variety of important human and animal infections. *Chlamydia trachomatis* is one of the most common causes of sexually transmitted diseases and can lead to pelvic inflammatory disease (PID), resulting in tubal obstruction and infertility. *Chlamydia trachomatis* may also play a role in male infertility. In 1990, the cost of treating PID in the US was estimated to be \$4 billion. Trachoma, due to ocular infection with *Chlamydia trachomatis*, is the leading cause of preventable blindness worldwide. *Chlamydia pneumonia* is a major cause of acute respiratory tract infections in humans and is also believed to play a role in the pathogenesis of atherosclerosis and, in particular, coronary heart disease. Individuals with a high titer of

antibodies to *Chlamydia pneumonia* have been shown to be at least twice as likely to suffer from coronary heart disease as seronegative individuals. Chlamydial infections thus constitute a significant health problem both in the US and worldwide.

Chlamydial infection is often asymptomatic. For example, by the time a woman seeks medical attention for PID, irreversible damage may have already occurred resulting in infertility. There thus remains a need in the art for improved vaccines and pharmaceutical compositions for the prevention and treatment of *Chlamydia* infections. The present invention fulfills this need and further provides other related advantages.

SUMMARY OF THE INVENTION

The present invention provides compositions and methods for the diagnosis and therapy of *Chlamydia* infection. In one aspect, the present invention provides polypeptides comprising an immunogenic portion of a *Chlamydia* antigen, or a variant of such an antigen. Certain portions and other variants are immunogenic, such that the ability of the variant to react with antigen-specific antisera is not substantially diminished. Within certain embodiments,, the polypeptide comprises an amino acid sequence encoded by a polynucleotide sequence selected from the group consisting of (a) a sequence of SEQ ID NO: 1, 15, 21-25, 44-64, 66-76, 79-88, 110-119, 120, 122, 124, 126, 128, 130, 132, 134, 136, 169-174, 181-188, 263, 265 and 267-290; (b) the complements of said sequences; and (c) sequences that hybridize to a sequence of (a) or (b) under moderately stringent conditions. In specific embodiments, the polypeptides of the present invention comprise at least a portion of a *Chlamydial* protein that includes an amino acid sequence selected from the group consisting of sequences recited in SEQ ID NO: 5-14, 17-20, 26, 28, 30-32, 34, 39-43, 65, 89-109, 138-158, 167, 168, 224-262, 246, 247, 254-256, 292, and variants thereof.

The present invention further provides polynucleotides that encode a polypeptide as described above, or a portion thereof (such as a portion encoding at least 15 amino acid residues of a *Chlamydial* protein), expression vectors comprising such polynucleotides and host cells transformed or transfected with such expression vectors.

In a related aspect, polynucleotide sequences encoding the above polypeptides, recombinant expression vectors comprising one or more of these

polynucleotide sequences and host cells transformed or transfected with such expression vectors are also provided.

In another aspect, the present invention provides fusion proteins comprising an inventive polypeptide, or, alternatively, an inventive polypeptide and a known *Chlamydia* antigen, as well as polynucleotides encoding such fusion proteins, in combination with a physiologically acceptable carrier or immunostimulant for use as pharmaceutical compositions and vaccines thereof.

The present invention further provides pharmaceutical compositions that comprise: (a) an antibody, both polyclonal and monoclonal, or antigen-binding fragment thereof that specifically binds to a *Chlamydial* protein; and (b) a physiologically acceptable carrier. Within other aspects, the present invention provides pharmaceutical compositions that comprise one or more *Chlamydia* polypeptides disclosed herein, or a polynucleotide molecule encoding such a polypeptide, and a physiologically acceptable carrier. The invention also provides vaccines for prophylactic and therapeutic purposes comprising one or more of the disclosed polypeptides and an immunostimulant, as defined herein, together with vaccines comprising one or more polynucleotide sequences encoding such polypeptides and an immunostimulant.

In yet another aspect, methods are provided for inducing protective immunity in a patient, comprising administering to a patient an effective amount of one or more of the above pharmaceutical compositions or vaccines.

In yet a further aspect, methods for the treatment of *Chlamydia* infection in a patient are provided, the methods comprising obtaining peripheral blood mononuclear cells (PBMC) from the patient, incubating the PBMC with a polypeptide of the present invention (or a polynucleotide that encodes such a polypeptide) to provide incubated T cells and administering the incubated T cells to the patient. The present invention additionally provides methods for the treatment of *Chlamydia* infection that comprise incubating antigen presenting cells with a polypeptide of the present invention (or a polynucleotide that encodes such a polypeptide) to provide incubated antigen presenting cells and administering the incubated antigen presenting cells to the patient. Proliferated cells may, but need not, be cloned prior to administration to the patient. In certain embodiments, the antigen presenting

cells are selected from the group consisting of dendritic cells, macrophages, monocytes, B-cells, and fibroblasts. Compositions for the treatment of *Chlamydia* infection comprising T cells or antigen presenting cells that have been incubated with a polypeptide or polynucleotide of the present invention are also provided. Within related aspects, vaccines are provided that comprise: (a) an antigen presenting cell that expresses a polypeptide as described above and (b) an immunostimulant.

The present invention further provides, within other aspects, methods for removing *Chlamydial*-infected cells from a biological sample, comprising contacting a biological sample with T cells that specifically react with a *Chlamydial* protein, wherein the step of contacting is performed under conditions and for a time sufficient to permit the removal of cells expressing the protein from the sample.

Within related aspects, methods are provided for inhibiting the development of *Chlamydial* infection in a patient, comprising administering to a patient a biological sample treated as described above. In further aspects of the subject invention, methods and diagnostic kits are provided for detecting *Chlamydia* infection in a patient. In one embodiment, the method comprises: (a) contacting a biological sample with at least one of the polypeptides or fusion proteins disclosed herein; and (b) detecting in the sample the presence of binding agents that bind to the polypeptide or fusion protein, thereby detecting *Chlamydia* infection in the biological sample. Suitable biological samples include whole blood, sputum, serum, plasma, saliva, cerebrospinal fluid and urine. In one embodiment, the diagnostic kits comprise one or more of the polypeptides or fusion proteins disclosed herein in combination with a detection reagent. In yet another embodiment, the diagnostic kits comprise either a monoclonal antibody or a polyclonal antibody that binds with a polypeptide of the present invention.

The present invention also provides methods for detecting *Chlamydia* infection comprising: (a) obtaining a biological sample from a patient; (b) contacting the sample with at least two oligonucleotide primers in a polymerase chain reaction, at least one of the oligonucleotide primers being specific for a polynucleotide sequence disclosed herein; and (c) detecting in the sample a polynucleotide sequence that amplifies in the presence of the oligonucleotide primers. In one embodiment, the oligonucleotide primer comprises at

least about 10 contiguous nucleotides of a polynucleotide sequence peptide disclosed herein, or of a sequence that hybridizes thereto.

In a further aspect, the present invention provides a method for detecting *Chlamydia* infection in a patient comprising: (a) obtaining a biological sample from the patient; (b) contacting the sample with an oligonucleotide probe specific for a polynucleotide sequence disclosed herein; and (c) detecting in the sample a polynucleotide sequence that hybridizes to the oligonucleotide probe. In one embodiment, the oligonucleotide probe comprises at least about 15 contiguous nucleotides of a polynucleotide sequence disclosed herein, or a sequence that hybridizes thereto.

These and other aspects of the present invention will become apparent upon reference to the following detailed description. All references disclosed herein are hereby incorporated by reference in their entirety as if each was incorporated individually.

SEQUENCE IDENTIFIERS

SEQ ID NO: 1 is the determined DNA sequence for the *C. trachomatis* clone 1-B1-66.

SEQ ID NO: 2 is the determined DNA sequence for the *C. trachomatis* clone 4-D7-28.

SEQ ID NO: 3 is the determined DNA sequence for the *C. trachomatis* clone 3-G3-10.

SEQ ID NO: 4 is the determined DNA sequence for the *C. trachomatis* clone 10-C10-31.

SEQ ID NO: 5 is the predicted amino acid sequence for 1-B1-66.

SEQ ID NO: 6 is the predicted amino acid sequence for 4-D7-28.

SEQ ID NO: 7 is a first predicted amino acid sequence for 3-G3-10.

SEQ ID NO: 8 is a second predicted amino acid sequence for 3-G3-10.

SEQ ID NO: 9 is a third predicted amino acid sequence for 3-G3-10.

SEQ ID NO: 10 is a fourth predicted amino acid sequence for 3-G3-10.

SEQ ID NO: 11 is a fifth predicted amino acid sequence for 3-G3-10.

SEQ ID NO: 12 is the predicted amino acid sequence for 10-C10-31.

SEQ ID NO: 13 is the amino acid sequence of the synthetic peptide 1-B1-
66/48-67.

SEQ ID NO: 14 is the amino acid sequence of the synthetic peptide 1-B1-
66/58-77.

SEQ ID NO: 15 is the determined DNA sequence for the *C. trachomatis* serovar LGV II clone 2C7-8

SEQ ID NO: 16 is the determined DNA sequence for a first putative open reading frame from *C. trachomatis* serovar D

SEQ ID NO: 17 is the predicted amino acid sequence encoded by the first putative open reading frame from *C. trachomatis* serovar D

SEQ ID NO: 18 is the amino acid sequence of the synthetic peptide CtC7.8-12

SEQ ID NO: 19 is the amino acid sequence of the synthetic peptide CtC7.8-13

SEQ ID NO: 20 is the predicted amino acid sequence encoded by a second putative open reading frame from *C. trachomatis* serovar D

SEQ ID NO: 21 is the determined DNA sequence for clone 4C9-18 from *C. trachomatis* LGV II

SEQ ID NO: 22 is the determined DNA sequence homologous to Lipoamide Dehydrogenase from *C. trachomatis* LGV II

SEQ ID NO: 23 is the determined DNA sequence homologous to Hypothetical protein from *C. trachomatis* LGV II

SEQ ID NO: 24 is the determined DNA sequence homologous to Ubiquinone Methyltransferase from *C. trachomatis* LGV II

SEQ ID NO: 25 is the determined DNA sequence for clone 4C9-18#2 BL21 pLysS from *C. trachomatis* LGV II

SEQ ID NO: 26 is the predicted amino acid sequence for 4C9-18#2 from *C. trachomatis* LGV II

SEQ ID NO: 27 is the determined DNA sequence for Cp-SWIB from *C. pneumoniae* strain TWAR

SEQ ID NO: 28 is the predicted amino acid sequence for Cp-SWIB from *C. pneumonia* strain TWAR

SEQ ID NO: 29 is the determined DNA sequence for Cp-S13 from *C. pneumonia* strain TWAR

SEQ ID NO: 30 is the predicted amino acid sequence for Cp-S13 from *C. pneumonia* strain TWAR

SEQ ID NO: 31 is the amino acid sequence for a 10mer consensus peptide from CtC7.8-12 and CtC7.8-13

SEQ ID NO: 32 is the predicted amino acid sequence for clone 2C7-8 from *C. trachomatis* LGV II

SEQ ID NO: 33 is the determined DNA sequence of a clone from *C. trachomatis* serovar D which shows homology to clone 2C7-8

SEQ ID NO: 34 is the predicted amino acid sequence encoded by the sequence of SEQ ID NO: 33

SEQ ID NO: 35 is the DNA sequence for C.p. SWIB Nde (5' primer) from *C. pneumonia*

SEQ ID NO: 36 is the DNA sequence for C.p. SWIB EcoRI (3' primer) from *C. pneumonia*

SEQ ID NO : 37 is the DNA sequence for C.p. S13 Nde (5' primer) from *C. pneumonia*

SEQ ID NO: 38 is the DNA sequence for C.p. S13 EcoRI (3' primer) from *C. pneumonia*

SEQ ID NO: 39 is the amino acid sequence for CtSwib 52-67 peptide from *C. trachomatis* LGV II

SEQ ID NO: 40 is the amino acid sequence for CpSwib 53-68 peptide from *C. pneumonia*

SEQ ID NO: 41 is the amino acid sequence for HuSwib 288-302 peptide from Human SWI domain

SEQ ID NO: 42 is the amino acid sequence for CtSWI-T 822-837 peptide from the topoisomerase-SWIB fusion of *C. trachomatis*

SEQ ID NO: 43 is the amino acid sequence for CpSWI-T 828-842 peptide from the topoisomerase-SWIB fusion of *C. pneumonia*

SEQ ID NO: 44 is a first determined DNA sequence for the *C. trachomatis* LGV II clone 19783.3.jen.seq(1>509)CTL2#11-3', representing the 3' end.

SEQ ID NO: 45 is a second determined DNA sequence for the *C. trachomatis* LGV II clone 19783.4.jen.seq(1>481)CTL2#11-5', representing the 5' end.

SEQ ID NO: 46 is the determined DNA sequence for the *C. trachomatis* LGV II clone 19784CTL2_12consensus.seq(1>427)CTL2#12.

SEQ ID NO: 47 is the determined DNA sequence for the *C. trachomatis* LGV II clone 19785.4.jen.seq(1>600)CTL2#16-5', representing the 5' end.

SEQ ID NO: 48 is a first determined DNA sequence for the *C. trachomatis* LGV II clone 19786.3.jen.seq(1>600)CTL2#18-3', representing the 3' end.

SEQ ID NO: 49 is a second determined DNA sequence for the *C. trachomatis* LGV II clone 19786.4.jen.seq(1>600)CTL2#18-5', representing the 5' end.

SEQ ID NO: 50 is the determined DNA sequence for the *C. trachomatis* LGV II clone 19788CTL2_21consensus.seq(1>406)CTL2#21.

SEQ ID NO: 51 is the determined DNA sequence for the *C. trachomatis* LGV II clone 19790CTL2_23consensus.seq(1>602)CTL2#23.

SEQ ID NO: 52 is the determined DNA sequence for the *C. trachomatis* LGV II clone 19791CTL2_24consensus.seq(1>145)CTL2#24.

SEQ ID NO: 53 is the determined DNA sequence for the *C. trachomatis* LGV II clone CTL2#4.

SEQ ID NO: 54 is the determined DNA sequence for the *C. trachomatis* LGV II clone CTL2#8b.

SEQ ID NO: 55 is the determined DNA sequence for the *C. trachomatis* LGV II clone 15-G1-89, sharing homology to the lipoamide dehydrogenase gene CT557.

SEQ ID NO: 56 is the determined DNA sequence for the *C. trachomatis* LGV II clone 14-H1-4, sharing homology to the thiol specific antioxidant gene CT603.

SEQ ID NO: 57 is the determined DNA sequence for the *C. trachomatis* LGV II clone 12-G3-83, sharing homology to the hypothetical protein CT622.

SEQ ID NO: 58 is the determined DNA sequence for the *C. trachomatis* LGV II clone 12-B3-95, sharing homology to the lipoamide dehydrogenase gene CT557.

SEQ ID NO: 59 is the determined DNA sequence for the *C. trachomatis* LGV II clone 11-H4-28, sharing homology to the dnaK gene CT396.

SEQ ID NO: 60 is the determined DNA sequence for the *C. trachomatis* LGV II clone 11-H3-68, sharing partial homology to the PGP6-D virulence protein and L1 ribosomal gene CT318.

SEQ ID NO: 61 is the determined DNA sequence for the *C. trachomatis* LGV II clone 11-G1-34, sharing partial homology to the malate dehydrogenase gene CT376 and to the glycogen hydrolase gene CT042.

SEQ ID NO: 62 is the determined DNA sequence for the *C. trachomatis* LGV II clone 11-G10-46, sharing homology to the hypothetical protein CT610.

SEQ ID NO: 63 is the determined DNA sequence for the *C. trachomatis* LGV II clone 11-C12-91, sharing homology to the OMP2 gene CT443.

SEQ ID NO: 64 is the determined DNA sequence for the *C. trachomatis* LGV II clone 11-A3-93, sharing homology to the HAD superfamily gene CT103.

SEQ ID NO: 65 is the determined amino acid sequence for the *C. trachomatis* LGV II clone 14-H1-4, sharing homology to the thiol specific antioxidant gene CT603.

SEQ ID NO: 66 is the determined DNA sequence for the *C. trachomatis* LGV II clone CtL2#9.

SEQ ID NO: 67 is the determined DNA sequence for the *C. trachomatis* LGV II clone CtL2#7.

SEQ ID NO: 68 is the determined DNA sequence for the *C. trachomatis* LGV II clone CtL2#6.

SEQ ID NO: 69 is the determined DNA sequence for the *C. trachomatis* LGV II clone CtL2#5.

SEQ ID NO: 70 is the determined DNA sequence for the *C. trachomatis* LGV II clone CtL2#2.

SEQ ID NO: 71 is the determined DNA sequence for the *C. trachomatis* LGV II clone CtL2#1.

SEQ ID NO: 72 is a first determined DNA sequence for the *C. trachomatis* LGV II clone 23509.2CtL2#3-5', representing the 5' end.

SEQ ID NO: 73 is a second determined DNA sequence for the *C. trachomatis* LGV II clone 23509.1CtL2#3-3', representing the 3' end.

SEQ ID NO: 74 is a first determined DNA sequence for the *C. trachomatis* LGV II clone 22121.2CtL2#10-5', representing the 5' end.

SEQ ID NO: 75 is a second determined DNA sequence for the *C. trachomatis* LGV II clone 22121.1CtL2#10-3', representing the 3' end.

SEQ ID NO: 76 is the determined DNA sequence for the *C. trachomatis LGV* II clone 19787.6CtL2#19-5', representing the 5' end.

SEQ ID NO: 77 is the determined DNA sequence for the *C. pneumoniae LGV* II clone CpS13-His.

SEQ ID NO: 78 is the determined DNA sequence for the *C. pneumoniae* LGV II clone Cp_SWIB-His.

SEQ ID NO: 79 is the determined DNA sequence for the *C. trachomatis LGV* II clone 23-G7-68, sharing partial homology to the L11, L10 and L1 ribosomal protein.

SEQ ID NO: 80 is the determined DNA sequence for the *C. trachomatis LGV* II clone 22-F8-91, sharing homology to the pmpC gene.

SEQ ID NO: 81 is the determined DNA sequence for the *C. trachomatis LGV* II clone 21-E8-95, sharing homology to the CT610-CT613 genes.

SEQ ID NO: 82 is the determined DNA sequence for the *C. trachomatis LGV* II clone 19-F12-57, sharing homology to the CT858 and recA genes.

SEQ ID NO: 83 is the determined DNA sequence for the *C. trachomatis LGV* II clone 19-F12-53, sharing homology to the CT445 gene encoding glutamyl tRNA synthetase.

SEQ ID NO: 84 is the determined DNA sequence for the *C. trachomatis LGV* II clone 19-A5-54, sharing homology to the cryptic plasmid gene.

SEQ ID NO: 85 is the determined DNA sequence for the *C. trachomatis LGV* II clone 17-E11-72, sharing partial homology to the OppC_2 and pmpD genes.

SEQ ID NO: 86 is the determined DNA sequence for the C. trachomatis LGV II clone 17-C1-77, sharing partial homology to the CT857 and CT858 open reading frames.

SEQ ID NO: 87 is the determined DNA sequence for the C. trachomatis LGV II clone 15-H2-76, sharing partial homology to the pmpD and SycE genes, and to the CT089 ORF.

SEQ ID NO: 88 is the determined DNA sequence for the C. trachomatis LGV II clone 15-A3-26, sharing homology to the CT858 ORF.

SEQ ID NO: 89 is the determined amino acid sequence for the C. pneumoniae clone Cp_SWIB-His.

SEQ ID NO: 90 is the determined amino acid sequence for the C. trachomatis LGV II clone CtL2_LPDA_FL.

SEQ ID NO: 91 is the determined amino acid sequence for the C. pneumoniae clone CpS13-His.

SEQ ID NO: 92 is the determined amino acid sequence for the C. trachomatis LGV II clone CtL2_TSA_FL.

SEQ ID NO: 93 is the amino acid sequence for Ct-Swib 43-61 peptide from *C. trachomatis* LGV II.

SEQ ID NO: 94 is the amino acid sequence for Ct-Swib 48-67 peptide from *C. trachomatis* LGV II.

SEQ ID NO: 95 is the amino acid sequence for Ct-Swib 52-71 peptide from *C. trachomatis* LGV II.

SEQ ID NO: 96 is the amino acid sequence for Ct-Swib 58-77 peptide from *C. trachomatis* LGV II.

SEQ ID NO: 97 is the amino acid sequence for Ct-Swib 63-82 peptide from *C. trachomatis* LGV II.

SEQ ID NO: 98 is the amino acid sequence for Ct-Swib 51-66 peptide from *C. trachomatis* LGV II.

SEQ ID NO: 99 is the amino acid sequence for Cp-Swib 52-67 peptide from *C. pneumoniae*.

SEQ ID NO: 100 is the amino acid sequence for Cp-Swib 37-51 peptide from

C. pneumonia.

SEQ ID NO: 101 is the amino acid sequence for Cp-Swib 32-51 peptide from *C. pneumonia.*

SEQ ID NO: 102 is the amino acid sequence for Cp-Swib 37-56 peptide from *C. pneumonia.*

SEQ ID NO: 103 is the amino acid sequence for Ct-Swib 36-50 peptide from *C. trachomatis.*

SEQ ID NO: 104 is the amino acid sequence for Ct-S13 46-65 peptide from *C. trachomatis.*

SEQ ID NO: 105 is the amino acid sequence for Ct-S13 60-80 peptide from *C. trachomatis.*

SEQ ID NO: 106 is the amino acid sequence for Ct-S13 1-20 peptide from *C. trachomatis.*

SEQ ID NO: 107 is the amino acid sequence for Ct-S13 46-65 peptide from *C. trachomatis.*

SEQ ID NO: 108 is the amino acid sequence for Ct-S13 56-75 peptide from *C. trachomatis.*

SEQ ID NO: 109 is the amino acid sequence for Cp-S13 56-75 peptide from *C. pneumoniae.*

SEQ ID NO: 110 is the determined DNA sequence for the *C. trachomatis* LGV II clone 21-G12-60, containing partial open reading frames for hypothetical proteins CT875, CT229 and CT228.

SEQ ID NO: 111 is the determined DNA sequence for the *C. trachomatis* LGV II clone 22-B3-53, sharing homology to the CT110 ORF of GroEL.

SEQ ID NO: 112 is the determined DNA sequence for the *C. trachomatis* LGV II clone 22-A1-49, sharing partial homology to the CT660 and CT659 ORFs.

SEQ ID NO: 113 is the determined DNA sequence for the *C. trachomatis* LGV II clone 17-E2-9, sharing partial homology to the CT611 and CT 610 ORFs.

SEQ ID NO: 114 is the determined DNA sequence for the *C. trachomatis* LGV II clone 17-C10-31, sharing partial homology to the CT858 ORF.

SEQ ID NO: 115 is the determined DNA sequence for the C. trachomatis LGV II clone 21-C7-66, sharing homology to the dnaK-like gene.

SEQ ID NO: 116 is the determined DNA sequence for the C. trachomatis LGV II clone 20-G3-45, containing part of the pmpB gene CT413.

SEQ ID NO: 117 is the determined DNA sequence for the C. trachomatis LGV II clone 18-C5-2, sharing homology to the S1 ribosomal protein ORF.

SEQ ID NO: 118 is the determined DNA sequence for the C. trachomatis LGV II clone 17-C5-19, containing part of the ORFs for CT431 and CT430.

SEQ ID NO: 119 is the determined DNA sequence for the C. trachomatis LGV II clone 16-D4-22, contains partial sequences of ORF3 and ORF4 of the plasmid for growth within mammalian cells.

SEQ ID NO: 120 is the determined full-length DNA sequence for the C. trachomatis serovar LGV II Cap1 gene CT529.

SEQ ID NO: 121 is the predicted full-length amino acid sequence for the C. trachomatis serovar LGV II Cap1 gene CT529.

SEQ ID NO: 122 is the determined full-length DNA sequence for the C. trachomatis serovar E Cap1 gene CT529.

SEQ ID NO: 123 is the predicted full-length amino acid sequence for the C. trachomatis serovar E Cap1 gene CT529.

SEQ ID NO: 124 is the determined full-length DNA sequence for the C. trachomatis serovar 1A Cap1 gene CT529.

SEQ ID NO: 125 is the predicted full-length amino acid sequence for the C. trachomatis serovar 1A Cap1 gene CT529.

SEQ ID NO: 126 is the determined full-length DNA sequence for the C. trachomatis serovar G Cap1 gene CT529.

SEQ ID NO: 127 is the predicted full-length amino acid sequence for the C. trachomatis serovar G Cap1 gene CT529.

SEQ ID NO: 128 is the determined full-length DNA sequence for the C. trachomatis serovar F1 NII Cap1 gene CT529.

SEQ ID NO: 129 is the predicted full-length amino acid sequence for the C. trachomatis serovar F1 NII Cap1 gene CT529.

SEQ ID NO: 130 is the determined full-length DNA sequence for the C. trachomatis serovar L1 Cap1 gene CT529.

SEQ ID NO: 131 is the predicted full-length amino acid sequence for the C. trachomatis serovar L1 Cap1 gene CT529.

SEQ ID NO: 132 is the determined full-length DNA sequence for the C. trachomatis serovar L3 Cap1 gene CT529.

SEQ ID NO: 133 is the predicted full-length amino acid sequence for the C. trachomatis serovar L3 Cap1 gene CT529.

SEQ ID NO: 134 is the determined full-length DNA sequence for the C. trachomatis serovar Ba Cap1 gene CT529.

SEQ ID NO: 135 is the predicted full-length amino acid sequence for the C. trachomatis serovar Ba Cap1 gene CT529.

SEQ ID NO: 136 is the determined full-length DNA sequence for the C. trachomatis serovar MOPN Cap1 gene CT529.

SEQ ID NO: 137 is the predicted full-length amino acid sequence for the C. trachomatis serovar MOPN Cap1 gene CT529.

SEQ ID NO: 138 is the determined amino acid sequence for the Cap1 CT529 ORF peptide #124-139 of *C. trachomatis* serovar L2.

SEQ ID NO: 139 is the determined amino acid sequence for the Cap1 CT529 ORF peptide #132-147 of *C. trachomatis* serovar L2.

SEQ ID NO: 140 is the determined amino acid sequence for the Cap1 CT529 ORF peptide #138-155 of *C. trachomatis* serovar L2.

SEQ ID NO: 141 is the determined amino acid sequence for the Cap1 CT529 ORF peptide #146-163 of *C. trachomatis* serovar L2.

SEQ ID NO: 142 is the determined amino acid sequence for the Cap1 CT529 ORF peptide #154-171 of *C. trachomatis* serovar L2.

SEQ ID NO: 143 is the determined amino acid sequence for the Cap1 CT529 ORF peptide #162-178 of *C. trachomatis* serovar L2.

SEQ ID NO: 144 is the determined amino acid sequence for the Cap1 CT529 ORF peptide #138-147 of *C. trachomatis* serovar L2.

SEQ ID NO: 145 is the determined amino acid sequence for the Cap1 CT529 ORF peptide #139-147 of *C. trachomatis* serovar L2.

SEQ ID NO: 146 is the determined amino acid sequence for the Cap1 CT529 ORF peptide #140-147 of *C. trachomatis* serovar L2.

SEQ ID NO: 147 is the determined amino acid sequence for the Cap1 CT529 ORF peptide #138-146 of *C. trachomatis* serovar L2.

SEQ ID NO: 148 is the determined amino acid sequence for the Cap1 CT529 ORF peptide #138-145 of *C. trachomatis* serovar L2.

SEQ ID NO: 149 is the determined amino acid sequence for the Cap1 CT529 ORF peptide # F140->I of *C. trachomatis* serovar L2.

SEQ ID NO: 150 is the determined amino acid sequence for the Cap1 CT529 ORF peptide # #S139>Ga of *C. trachomatis* serovar L2.

SEQ ID NO: 151 is the determined amino acid sequence for the Cap1 CT529 ORF peptide # #S139>Gb of *C. trachomatis* serovar L2.

SEQ ID NO: 152 is the determined amino acid sequence for the peptide # 2 C7.8-6 of the 216aa ORF of *C. trachomatis* serovar L2.

SEQ ID NO: 153 is the determined amino acid sequence for the peptide # 2 C7.8-7 of the 216aa ORF of *C. trachomatis* serovar L2.

SEQ ID NO: 154 is the determined amino acid sequence for the peptide # 2 C7.8-8 of the 216aa ORF of *C. trachomatis* serovar L2.

SEQ ID NO: 155 is the determined amino acid sequence for the peptide # 2 C7.8-9 of the 216aa ORF of *C. trachomatis* serovar L2.

SEQ ID NO: 156 is the determined amino acid sequence for the peptide # 2 C7.8-10 of the 216aa ORF of *C. trachomatis* serovar L2.

SEQ ID NO: 157 is the determined amino acid sequence for the 53 amino acid residue peptide of the 216aa ORF within clone 2C7.8 of *C. trachomatis* serovar L2.

SEQ ID NO: 158 is the determined amino acid sequence for the 52 amino acid residue peptide of the CT529 ORF within clone 2C7.8 of *C. trachomatis* serovar L2.

SEQ ID NO: 159 is the determined DNA sequence for the 5' (forward) primer for cloning full-length CT529 serovar L2.

SEQ ID NO: 160 is the determined DNA sequence for the 5' (reverse) primer for cloning full-length CT529 serovar L2.

SEQ ID NO: 161 is the determined DNA sequence for the 5' (forward) primer for cloning full-length CT529 for serovars other than L2 and MOPN.

SEQ ID NO: 162 is the determined DNA sequence for the 5' (reverse) primer for cloning full-length CT529 serovars other than L2 and MOPN.

SEQ ID NO: 163 is the determined DNA sequence for the 5' (forward) primer for cloning full-length CT529 serovar MOPN.

SEQ ID NO: 164 is the determined DNA sequence for the 5' (reverse) primer for cloning full-length CT529 serovar MOPN.

SEQ ID NO: 165 is the determined DNA sequence for the 5' (forward) primer for pBIB-KS.

SEQ ID NO: 166 is the determined DNA sequence for the 5' (reverse) primer for pBIB-KS.

SEQ ID NO: 167 is the determined amino acid sequence for the 9-mer epitope peptide Cap1#139-147 from serovar L2.

SEQ ID NO: 168 is the determined amino acid sequence for the 9-mer epitope peptide Cap1#139-147 from serovar D.

SEQ ID NO: 169 is the determined full-length DNA sequence for the *C. trachomatis* pmpI gene.

SEQ ID NO: 170 is the determined full-length DNA sequence for the *C. trachomatis* pmpG gene.

SEQ ID NO: 171 is the determined full-length DNA sequence for the *C. trachomatis* pmpE gene.

SEQ ID NO: 172 is the determined full-length DNA sequence for the *C. trachomatis* pmpD gene.

SEQ ID NO: 173 is the determined full-length DNA sequence for the *C. trachomatis* pmpC gene.

SEQ ID NO: 174 is the determined full-length DNA sequence for the *C. trachomatis* pmpB gene.

SEQ ID NO: 175 is the predicted full-length amino acid sequence for the *C. trachomatis* pmpI gene.

SEQ ID NO: 176 is the predicted full-length amino acid sequence for the *C. trachomatis* pmpG gene.

SEQ ID NO: 177 is the predicted full-length amino acid sequence for the *C. trachomatis* pmpE gene.

SEQ ID NO: 178 is the predicted full-length amino acid sequence for the *C. trachomatis* pmpD gene.

SEQ ID NO: 179 is the predicted full-length amino acid sequence for the *C. trachomatis* pmpC gene.

SEQ ID NO: 180 is the predicted full-length amino acid sequence for the *C. trachomatis* pmpB gene.

SEQ ID NO: 181 is the determined DNA sequence minus the signal sequence for the *C. trachomatis* pmpI gene.

SEQ ID NO: 182 is a subsequently determined full-length DNA sequence for the *C. trachomatis* pmpG gene.

SEQ ID NO: 183 is the determined DNA sequence minus the signal sequence for the *C. trachomatis* pmpE gene.

SEQ ID NO: 184 is a first determined DNA sequence representing the carboxy terminus for the *C. trachomatis* pmpD gene.

SEQ ID NO: 185 is a second determined DNA sequence representing the amino terminus minus the signal sequence for the *C. trachomatis* pmpD gene.

SEQ ID NO: 186 is a first determined DNA sequence representing the carboxy terminus for the *C. trachomatis* pmpC gene.

SEQ ID NO: 187 is a second determined DNA sequence representing the amino terminus minus the signal sequence for the *C. trachomatis* pmpC gene.

SEQ ID NO: 188 is the determined DNA sequence representing the *C. pneumoniae* serovar MOMPS pmp gene in a fusion molecule with Ra12.

SEQ ID NO: 189 is the predicted amino acid sequence minus the signal sequence for the *C. trachomatis* pmpI gene.

SEQ ID NO: 190 is subsequently predicted amino acid sequence for the *C. trachomatis* pmpG gene.

SEQ ID NO: 191 is the predicted amino acid sequence minus the signal sequence for the *C. trachomatis* pmpE gene.

SEQ ID NO: 192 is a first predicted amino acid sequence representing the carboxy terminus for the *C. trachomatis* pmpD gene.

SEQ ID NO: 193 is a second predicted amino acid sequence representing the Amino terminus minus the signal sequence for the *C. trachomatis* pmpD gene.

SEQ ID NO: 194 is a first predicted amino acid sequence representing the Carboxy terminus for the *C. trachomatis* pmpC gene.

SEQ ID NO: 195 is a second predicted amino acid sequence representing the Amino terminus for the *C. trachomatis* pmpC gene.

SEQ ID NO: 196 is the predicted amino acid sequence representing the *C. pneumoniae* serovar MOMP pmp gene in a fusion molecule with Ra12.

SEQ ID NO: 197 is the determined DNA sequence for the 5' oligo primer for cloning the *C. trachomatis* pmpC gene in the SKB vaccine vector.

SEQ ID NO: 198 is the determined DNA sequence for the 3' oligo primer for cloning the *C. trachomatis* pmpC gene in the SKB vaccine vector.

SEQ ID NO: 199 is the determined DNA sequence for the insertion sequence for cloning the *C. trachomatis* pmpC gene in the SKB vaccine vector.

SEQ ID NO: 200 is the determined DNA sequence for the 5' oligo primer for cloning the *C. trachomatis* pmpD gene in the SKB vaccine vector.

SEQ ID NO: 201 is the determined DNA sequence for the 3' oligo primer for cloning the *C. trachomatis* pmpD gene in the SKB vaccine vector.

SEQ ID NO: 202 is the determined DNA sequence for the insertion sequence for cloning the *C. trachomatis* pmpD gene in the SKB vaccine vector.

SEQ ID NO: 203 is the determined DNA sequence for the 5' oligo primer for cloning the *C. trachomatis* pmpE gene in the SKB vaccine vector.

SEQ ID NO: 204 is the determined DNA sequence for the 3' oligo primer for cloning the *C. trachomatis* pmpE gene in the SKB vaccine vector.

SEQ ID NO: 205 is the determined DNA sequence for the 5' oligo primer for cloning the *C. trachomatis* pmpG gene in the SKB vaccine vector.

SEQ ID NO: 206 is the determined DNA sequence for the 3' oligo primer for cloning the *C. trachomatis* pmpG gene in the SKB vaccine vector.

SEQ ID NO: 207 is the determined DNA sequence for the 5' oligo primer for cloning the amino terminus portion of the *C. trachomatis* pmpC gene in the pET17b vector.

SEQ ID NO: 208 is the determined DNA sequence for the 3' oligo primer for cloning the amino terminus portion of the *C. trachomatis* pmpC gene in the pET17b vector.

SEQ ID NO: 209 is the determined DNA sequence for the 5' oligo primer for cloning the carboxy terminus portion of the *C. trachomatis* pmpC gene in the pET17b vector.

SEQ ID NO: 210 is the determined DNA sequence for the 3' oligo primer for cloning the carboxy terminus portion of the *C. trachomatis* pmpC gene in the pET17b vector.

SEQ ID NO: 211 is the determined DNA sequence for the 5' oligo primer for cloning the amino terminus portion of the *C. trachomatis* pmpD gene in the pET17b vector.

SEQ ID NO: 212 is the determined DNA sequence for the 3' oligo primer for cloning the amino terminus portion of the *C. trachomatis* pmpD gene in the pET17b vector.

SEQ ID NO: 213 is the determined DNA sequence for the 5' oligo primer for cloning the carboxy terminus portion of the *C. trachomatis* pmpD gene in the pET17b vector.

SEQ ID NO: 214 is the determined DNA sequence for the 3' oligo primer for cloning the carboxy terminus portion of the *C. trachomatis* pmpD gene in the pET17b vector.

SEQ ID NO: 215 is the determined DNA sequence for the 5' oligo primer for cloning the *C. trachomatis* pmpE gene in the pET17b vector.

SEQ ID NO: 216 is the determined DNA sequence for the 3' oligo primer for cloning the *C. trachomatis* pmpE gene in the pET17b vector.

SEQ ID NO: 217 is the determined DNA sequence for the insertion sequence for cloning the *C. trachomatis* pmpE gene in the pET17b vector.

SEQ ID NO: 218 is the amino acid sequence for the insertion sequence for cloning the *C. trachomatis* pmpE gene in the pET17b vector.

SEQ ID NO: 219 is the determined DNA sequence for the 5' oligo primer for cloning the *C. trachomatis* pmpG gene in the pET17b vector.

SEQ ID NO: 220 is the determined DNA sequence for the 3' oligo primer for cloning the *C. trachomatis* pmpG gene in the pET17b vector.

SEQ ID NO: 221 is the amino acid sequence for the insertion sequence for cloning the *C. trachomatis* pmpG gene in the pET17b vector.

SEQ ID NO: 222 is the determined DNA sequence for the 5' oligo primer for cloning the *C. trachomatis* pmpI gene in the pET17b vector.

SEQ ID NO: 223 is the determined DNA sequence for the 3' oligo primer for cloning the *C. trachomatis* pmpI gene in the pET17b vector.

SEQ ID NO: 224 is the determined amino acid sequence for the *C. pneumoniae* Swib peptide 1-20.

SEQ ID NO: 225 is the determined amino acid sequence for the *C. pneumoniae* Swib peptide 6-25.

SEQ ID NO: 226 is the determined amino acid sequence for the *C. pneumoniae* Swib peptide 12-31.

SEQ ID NO: 227 is the determined amino acid sequence for the *C. pneumoniae* Swib peptide 17-36.

SEQ ID NO: 228 is the determined amino acid sequence for the *C. pneumoniae* Swib peptide 22-41.

SEQ ID NO: 229 is the determined amino acid sequence for the *C. pneumoniae* Swib peptide 27-46.

SEQ ID NO: 230 is the determined amino acid sequence for the *C. pneumoniae* Swib peptide 42-61.

SEQ ID NO: 231 is the determined amino acid sequence for the *C. pneumoniae* Swib peptide 46-65.

SEQ ID NO: 232 is the determined amino acid sequence for the *C. pneumoniae* Swib peptide 51-70.

SEQ ID NO: 233 is the determined amino acid sequence for the *C. pneumoniae* Swib peptide 56-75.

SEQ ID NO: 234 is the determined amino acid sequence for the *C. pneumoniae* Swib peptide 61-80.

SEQ ID NO: 235 is the determined amino acid sequence for the *C. pneumoniae* Swib peptide 66-87.

SEQ ID NO: 236 is the determined amino acid sequence for the *C. trachomatis* OMCB peptide 103-122.

SEQ ID NO: 237 is the determined amino acid sequence for the *C. trachomatis* OMCB peptide 108-127.

SEQ ID NO: 238 is the determined amino acid sequence for the *C. trachomatis* OMCB peptide 113-132.

SEQ ID NO: 239 is the determined amino acid sequence for the *C. trachomatis* OMCB peptide 118-137.

SEQ ID NO: 240 is the determined amino acid sequence for the *C. trachomatis* OMCB peptide 123-143.

SEQ ID NO: 241 is the determined amino acid sequence for the *C. trachomatis* OMCB peptide 128-147.

SEQ ID NO: 242 is the determined amino acid sequence for the *C. trachomatis* OMCB peptide 133-152.

SEQ ID NO: 243 is the determined amino acid sequence for the *C. trachomatis* OMCB peptide 137-156.

SEQ ID NO: 244 is the determined amino acid sequence for the *C. trachomatis* OMCB peptide 142-161.

SEQ ID NO: 245 is the determined amino acid sequence for the *C. trachomatis* OMCB peptide 147-166.

SEQ ID NO: 246 is the determined amino acid sequence for the *C. trachomatis* OMCB peptide 152-171.

SEQ ID NO: 247 is the determined amino acid sequence for the *C. trachomatis* OMCB peptide 157-176.

SEQ ID NO: 248 is the determined amino acid sequence for the *C. trachomatis* OMCB peptide 162-181.

SEQ ID NO: 249 is the determined amino acid sequence for the *C. trachomatis* OMCB peptide 167-186.

SEQ ID NO: 250 is the determined amino acid sequence for the *C. trachomatis* OMCB peptide 171-190.

SEQ ID NO: 251 is the determined amino acid sequence for the *C. trachomatis* OMCB peptide 171-186.

SEQ ID NO: 252 is the determined amino acid sequence for the *C. trachomatis* OMCB peptide 175-186.

SEQ ID NO: 252 is the determined amino acid sequence for the *C. trachomatis* OMCB peptide 175-186.

SEQ ID NO: 253 is the determined amino acid sequence for the *C. pneumoniae* OMCB peptide 185-198.

SEQ ID NO: 254 is the determined amino acid sequence for the *C. trachomatis* TSA peptide 96-115.

SEQ ID NO: 255 is the determined amino acid sequence for the *C. trachomatis* TSA peptide 101-120.

SEQ ID NO: 256 is the determined amino acid sequence for the *C. trachomatis* TSA peptide 106-125.

SEQ ID NO: 257 is the determined amino acid sequence for the *C. trachomatis* TSA peptide 111-130.

SEQ ID NO: 258 is the determined amino acid sequence for the *C. trachomatis* TSA peptide 116-135.

SEQ ID NO: 259 is the determined amino acid sequence for the *C. trachomatis* TSA peptide 121-140.

SEQ ID NO: 260 is the determined amino acid sequence for the *C. trachomatis* TSA peptide 126-145.

SEQ ID NO: 261 is the determined amino acid sequence for the *C. trachomatis* TSA peptide 131-150.

SEQ ID NO: 262 is the determined amino acid sequence for the *C. trachomatis* TSA peptide 136-155.

SEQ ID NO: 263 is the determined full-length DNA sequence for the *C. trachomatis* CT529/Cap 1 gene serovar I.

SEQ ID NO: 264 is the predicted full-length amino sequence for the *C. trachomatis* CT529/Cap 1 gene serovar I.

SEQ ID NO: 265 is the determined full-length DNA sequence for the *C. trachomatis* CT529/Cap 1 gene serovar K.

SEQ ID NO: 266 is the predicted full-length amino sequence for the *C. trachomatis* CT529/Cap 1 gene serovar K.

SEQ ID NO: 267 is the determined DNA sequence for the *C. trachomatis* clone 17-G4-36 sharing homology to part of the ORF of DNA-directed RNA polymerase beta subunit- CT315 in serD.

SEQ ID NO: 268 is the determined DNA sequence for the partial sequence of the *C. trachomatis* CT016 gene in clone 2E10.

SEQ ID NO: 269 is the determined DNA sequence for the partial sequence of the *C. trachomatis* tRNA syntase gene in clone 2E10.

SEQ ID NO: 270 is the determined DNA sequence for the partial sequence for the *C. trachomatis* clpX gene in clone 2E10.

SEQ ID NO: 271 is a first determined DNA sequence for the *C. trachomatis* clone CtL2gam-30 representing the 5'end.

SEQ ID NO: 272 is a second determined DNA sequence for the *C. trachomatis* clone CtL2gam-30 representing the 3'end.

SEQ ID NO: 273 is the determined DNA sequence for the *C. trachomatis* clone CtL2gam-28.

SEQ ID NO: 274 is the determined DNA sequence for the *C. trachomatis* clone CtL2gam-27.

SEQ ID NO: 275 is the determined DNA sequence for the *C. trachomatis* clone CtL2gam-26.

SEQ ID NO: 276 is the determined DNA sequence for the *C. trachomatis* clone CtL2gam-24.

SEQ ID NO: 277 is the determined DNA sequence for the *C. trachomatis*

clone CtL2gam-23.

SEQ ID NO: 278 is the determined DNA sequence for the *C. trachomatis* clone CtL2gam-21.

SEQ ID NO: 279 is the determined DNA sequence for the *C. trachomatis* clone CtL2gam-18.

SEQ ID NO: 280 is the determined DNA sequence for the *C. trachomatis* clone CtL2gam-17.

SEQ ID NO: 281 is a first determined DNA sequence for the *C. trachomatis* clone CtL2gam-15 representing the 5' end.

SEQ ID NO: 282 is a second determined DNA sequence for the *C. trachomatis* clone CtL2gam-15 representing the 3' end.

SEQ ID NO: 283 is the determined DNA sequence for the *C. trachomatis* clone CtL2gam-13.

SEQ ID NO: 284 is the determined DNA sequence for the *C. trachomatis* clone CtL2gam-10.

SEQ ID NO: 285 is the determined DNA sequence for the *C. trachomatis* clone CtL2gam-8.

SEQ ID NO: 286 is a first determined DNA sequence for the *C. trachomatis* clone CtL2gam-6 representing the 5' end.

SEQ ID NO: 287 is a second determined DNA sequence for the *C. trachomatis* clone CtL2gam-6 representing the 3' end.

SEQ ID NO: 288 is the determined DNA sequence for the *C. trachomatis* clone CtL2gam-5.

SEQ ID NO: 289 is the determined DNA sequence for the *C. trachomatis* clone CtL2gam-2.

SEQ ID NO: 290 is the determined DNA sequence for the *C. trachomatis* clone CtL2gam-1.

SEQ ID NO: 291 is the determined full-length DNA sequence for the *C. pneumoniae* homologue of the CT529 gene.

SEQ ID NO: 292 is the predicted full-length amino acid sequence for the *C.*

pneumoniae homologue of the CT529 gene.

SEQ ID NO: 293 is the determined DNA sequence for the insertion sequence for cloning the *C. trachomatis* pmpG gene in the SKB vaccine vector.

DESCRIPTION OF THE FIGURES

Fig. 1 illustrates induction of INF- γ from a *Chlamydia*-specific T cell line activated by target cells expressing clone 4C9-18#2.

Fig. 2 illustrates retroviral vectors pBIB-KS1,2,3 modified to contain a Kosak translation initiation site and stop codons.

Fig. 3 shows specific lysis in a chromium release assay of P815 cells pulsed with *Chlamydia* peptides CtC7.8-12 (SEQ ID NO: 18) and CtC7.8-13 (SEQ ID NO: 19).

Fig. 4 shows antibody isotype titers in C57Bl/6 mice immunized with *C. trachomatis* SWIB protein.

Fig. 5 shows *Chlamydia*-specific T-cell proliferative responses in splenocytes from C3H mice immunized with *C. trachomatis* SWIB protein.

Fig. 6 illustrates the 5' and 3' primer sequences designed from *C. pneumoniae* which were used to isolate the SWIB and S13 genes from *C. pneumoniae*.

Figs. 7A and 7B show induction of IFN- γ from a human anti-*chlamydia* T-cell line (TCL-8) capable of cross-reacting to *C. trachomatis* and *C. pneumonia* upon activation by monocyte-derived dendritic cells expressing chlamydial proteins.

Fig. 8 shows the identification of T cell epitopes in Chlamydial ribosomal S13 protein with T-cell line TCL 8 EB/DC.

Fig. 9 illustrates the proliferative response of CP-21 T-cells generated against *C. pneumoniae*-infected dendritic cells to recombinant *C. pneumonia*-SWIBprotein, but not *C. trachomatis* SWIB protein.

Fig. 10 shows the *C. trachomatis*-specific SWIB proliferative responses of a primary T-cell line (TCT-10 EB) from an asymptomatic donor.

Fig. 11 illustrates the identification of T-cell epitope in *C. trachomatis* SWIB with an antigen specific T-cell line (TCL-10 EB).

DETAILED DESCRIPTION OF THE INVENTION

As noted above, the present invention is generally directed to compositions and methods for the diagnosis and treatment of Chlamydial infection. In one aspect, the compositions of the subject invention include polypeptides that comprise at least one immunogenic portion of a *Chlamydia* antigen, or a variant thereof.

In specific embodiments, the subject invention discloses polypeptides comprising an immunogenic portion of a *Chlamydia* antigen, wherein the *Chlamydia* antigen comprises an amino acid sequence encoded by a polynucleotide molecule including a sequence selected from the group consisting of (a) nucleotide sequences recited in SEQ ID NO: 1, 15, 21-25, 44-64, 66-76, 79-88, 110-119, 120, 122, 124, 126, 128, 130, 132, 134, 136, 169-174, 181-188, 263, 265 and 267-290 (b) the complements of said nucleotide sequences, and (c) variants of such sequences.

As used herein, the term "polypeptide" encompasses amino acid chains of any length, including full length proteins (*i.e.*, antigens), wherein the amino acid residues are linked by covalent peptide bonds. Thus, a polypeptide comprising an immunogenic portion of one of the inventive antigens may consist entirely of the immunogenic portion, or may contain additional sequences. The additional sequences may be derived from the native *Chlamydia* antigen or may be heterologous, and such sequences may (but need not) be immunogenic.

The term "polynucleotide(s)," as used herein, means a single or double-stranded polymer of deoxyribonucleotide or ribonucleotide bases and includes DNA and corresponding RNA molecules, including HnRNA and mRNA molecules, both sense and anti-sense strands, and comprehends cDNA, genomic DNA and recombinant DNA, as well as wholly or partially synthesized polynucleotides. An HnRNA molecule contains introns and corresponds to a DNA molecule in a generally one-to-one manner. An mRNA molecule corresponds to an HnRNA and DNA molecule from which the introns have been excised. A polynucleotide may consist of an entire gene, or any portion thereof. Operable anti-sense polynucleotides may comprise a fragment of the corresponding polynucleotide, and the definition of "polynucleotide" therefore includes all such operable anti-sense fragments.

An "immunogenic portion" of an antigen is a portion that is capable of reacting with sera obtained from a *Chlamydia*-infected individual (*i.e.*, generates an absorbance reading with sera from infected individuals that is at least three standard deviations above the absorbance obtained with sera from uninfected individuals, in a representative ELISA assay described herein). Such immunogenic portions generally comprise at least about 5 amino acid residues, more preferably at least about 10, and most

preferably at least about 20 amino acid residues. Methods for preparing and identifying immunogenic portions of antigens of known sequence are well known in the art and include those summarized in Paul, *Fundamental Immunology*, 3rd ed., Raven Press, 1993, pp. 243-247 and references cited therein. Such techniques include screening polypeptides for the ability to react with antigen-specific antibodies, antisera and/or T-cell lines or clones. As used herein, antisera and antibodies are "antigen-specific" if they specifically bind to an antigen (*i.e.*, they react with the protein in an ELISA or other immunoassay, and do not react detectably with unrelated proteins). Such antisera and antibodies may be prepared as described herein, and using well known techniques. An immunogenic portion of a native *Chlamydia* protein is a portion that reacts with such antisera and/or T-cells at a level that is not substantially less than the reactivity of the full length polypeptide (*e.g.*, in an ELISA and/or T-cell reactivity assay). Such immunogenic portions may react within such assays at a level that is similar to or greater than the reactivity of the full length polypeptide. Such screens may generally be performed using methods well known to those of ordinary skill in the art, such as those described in Harlow and Lane, *Antibodies: A Laboratory Manual*, Cold Spring Harbor Laboratory, 1988. For example, a polypeptide may be immobilized on a solid support and contacted with patient sera to allow binding of antibodies within the sera to the immobilized polypeptide. Unbound sera may then be removed and bound antibodies detected using, for example, ¹²⁵I-labeled Protein A.

Examples of immunogenic portions of antigens contemplated by the present invention include, for example, the T cell stimulating epitopes provided in SEQ ID NO: 9, 10, 18, 19, 31, 39, 93-96, 98, 100-102, 106, 108, 138-140, 158, 167, 168, 246, 247 and 254-256. Polypeptides comprising at least an immunogenic portion of one or more *Chlamydia* antigens as described herein may generally be used, alone or in combination, to detect Chlamydial infection in a patient.

The compositions and methods of the present invention also encompass variants of the above polypeptides and polynucleotide molecules. Such variants include, but are not limited to, naturally occurring allelic variants of the inventive sequences. In particular, variants include other *Chlamydiae* serovars, such as serovars D, E and F, as well as the several LGV serovars which share homology to the inventive polypeptide and

polynucleotide molecules described herein. Preferably, the serovar homologues show 95-99% homology to the corresponding polypeptide sequence(s) described herein.

A polypeptide "variant," as used herein, is a polypeptide that differs from the recited polypeptide only in conservative substitutions and/or modifications, such that the antigenic properties of the polypeptide are retained. In a preferred embodiment, variant polypeptides differ from an identified sequence by substitution, deletion or addition of five amino acids or fewer. Such variants may generally be identified by modifying one of the above polypeptide sequences, and evaluating the antigenic properties of the modified polypeptide using, for example, the representative procedures described herein. In other words, the ability of a variant to react with antigen-specific antisera may be enhanced or unchanged, relative to the native protein, or may be diminished by less than 50%, and preferably less than 20%, relative to the native protein. Such variants may generally be identified by modifying one of the above polypeptide sequences and evaluating the reactivity of the modified polypeptide with antigen-specific antibodies or antisera as described herein. Preferred variants include those in which one or more portions, such as an N-terminal leader sequence or transmembrane domain, have been removed. Other preferred variants include variants in which a small portion (*e.g.*, 1-30 amino acids, preferably 5-15 amino acids) has been removed from the N- and/or C-terminal of the mature protein. Polypeptide variants preferably exhibit at least about 70%, more preferably at least about 90% and most preferably at least about 95% identity (determined as described below) to the identified polypeptides.

As used herein, a "conservative substitution" is one in which an amino acid is substituted for another amino acid that has similar properties, such that one skilled in the art of peptide chemistry would expect the secondary structure and hydropathic nature of the polypeptide to be substantially unchanged. Amino acid substitutions may generally be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity and/or the amphipathic nature of the residues. For example, negatively charged amino acids include aspartic acid and glutamic acid; positively charged amino acids include lysine and arginine; and amino acids with uncharged polar head groups having similar hydrophilicity values include leucine, isoleucine and valine; glycine and alanine; asparagine and glutamine; and

serine, threonine, phenylalanine and tyrosine. Other groups of amino acids that may represent conservative changes include: (1) ala, pro, gly, glu, asp, gln, asn, ser, thr; (2) cys, ser, tyr, thr; (3) val, ile, leu, met, ala, phe; (4) lys, arg, his; and (5) phe, tyr, trp, his. A variant may also, or alternatively, contain nonconservative changes. In a preferred embodiment, variant polypeptides differ from a native sequence by substitution, deletion or addition of five amino acids or fewer. Variants may also (or alternatively) be modified by, for example, the deletion or addition of amino acids that have minimal influence on the immunogenicity, secondary structure and hydropathic nature of the polypeptide. Variants may also, or alternatively, contain other modifications, including the deletion or addition of amino acids that have minimal influence on the antigenic properties, secondary structure and hydropathic nature of the polypeptide. For example, a polypeptide may be conjugated to a signal (or leader) sequence at the N-terminal end of the protein which co-translationally or post-translationally directs transfer of the protein. The polypeptide may also be conjugated to a linker or other sequence for ease of synthesis, purification or identification of the polypeptide (e.g., poly-His), or to enhance binding of the polypeptide to a solid support. For example, a polypeptide may be conjugated to an immunoglobulin Fc region.

A polynucleotide "variant" is a sequence that differs from the recited nucleotide sequence in having one or more nucleotide deletions, substitutions or additions such that the immunogenicity of the encoded polypeptide is not diminished, relative to the native protein. The effect on the immunogenicity of the encoded polypeptide may generally be assessed as described herein. Such modifications may be readily introduced using standard mutagenesis techniques, such as oligonucleotide-directed site-specific mutagenesis as taught, for example, by Adelman et al. (*DNA*, 2:183, 1983). Nucleotide variants may be naturally occurring allelic variants as discussed below, or non-naturally occurring variants. Variant nucleotide sequences preferably exhibit at least about 70%, more preferably at least about 80% and most preferably at least about 90% identity (determined as described below) to the recited sequence.

The polypeptides provided by the present invention include variants that are encoded by polynucleotide sequences which are substantially homologous to one or more of the polynucleotide sequences specifically recited herein. "Substantial homology," as used

herein, refers to polynucleotide sequences that are capable of hybridizing under moderately stringent conditions. Suitable moderately stringent conditions include prewashing in a solution of 5X SSC, 0.5% SDS, 1.0 mM EDTA (pH 8.0); hybridizing at 50°C-65°C, 5X SSC, overnight or, in the event of cross-species homology, at 45°C with 0.5X SSC; followed by washing twice at 65°C for 20 minutes with each of 2X, 0.5X and 0.2X SSC containing 0.1% SDS. Such hybridizing polynucleotide sequences are also within the scope of this invention, as are nucleotide sequences that, due to code degeneracy, encode a polypeptide that is the same as a polypeptide of the present invention.

Two nucleotide or polypeptide sequences are said to be "identical" if the sequence of nucleotides or amino acid residues in the two sequences is the same when aligned for maximum correspondence as described below. Comparisons between two sequences are typically performed by comparing the sequences over a comparison window to identify and compare local regions of sequence similarity. A "comparison window" as used herein, refers to a segment of at least about 20 contiguous positions, usually 30 to about 75, 40 to about 50, in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned.

Optimal alignment of sequences for comparison may be conducted using the Megalign program in the Lasergene suite of bioinformatics software (DNASTAR, Inc., Madison, WI), using default parameters. This program embodies several alignment schemes described in the following references: Dayhoff, M.O. (1978) A model of evolutionary change in proteins – Matrices for detecting distant relationships. In Dayhoff, M.O. (ed.) *Atlas of Protein Sequence and Structure*, National Biomedical Research Foundation, Washington DC Vol. 5, Suppl. 3, pp. 345-358; Hein J. (1990) Unified Approach to Alignment and Phylogenies pp. 626-645 *Methods in Enzymology* vol. 183, Academic Press, Inc., San Diego, CA; Higgins, D.G. and Sharp, P.M. (1989) Fast and sensitive multiple sequence alignments on a microcomputer *CABIOS* 5:151-153; Myers, E.W. and Muller W. (1988) Optimal alignments in linear space *CABIOS* 4:11-17; Robinson, E.D. (1971) *Comb. Theor* 11:105; Santou, N. Nes, M. (1987) The neighbor joining method. A new method for reconstructing phylogenetic trees *Mol. Biol. Evol.* 4:406-425; Sneath, P.H.A. and Sokal, R.R. (1973) *Numerical Taxonomy – the Principles and Practice of Numerical Taxonomy*, Freeman Press,

San Francisco, CA; Wilbur, W.J. and Lipman, D.J. (1983) Rapid similarity searches of nucleic acid and protein data banks *Proc. Natl. Acad. Sci. USA* 80:726-730.

Preferably, the "percentage of sequence identity" is determined by comparing two optimally aligned sequences over a window of comparison of at least 20 positions, wherein the portion of the polynucleotide sequence in the comparison window may comprise additions or deletions (i.e. gaps) of 20 percent or less, usually 5 to 15 percent, or 10 to 12 percent, as compared to the reference sequences (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical nucleic acid bases or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the reference sequence (i.e. the window size) and multiplying the results by 100 to yield the percentage of sequence identity.

Also included in the scope of the present invention are alleles of the genes encoding the nucleotide sequences recited in herein. As used herein, an "allele" or "allelic sequence" is an alternative form of the gene which may result from at least one mutation in the nucleic acid sequence. Alleles may result in altered mRNAs or polypeptides whose structure or function may or may not be altered. Any given gene may have none, one, or many allelic forms. Common mutational changes which give rise to alleles are generally ascribed to natural deletions, additions, or substitutions of nucleotides. Each of these types of changes may occur alone or in combination with the others, one or more times in a given sequence. In specific embodiments, the subject invention discloses polypeptides comprising at least an immunogenic portion of a *Chlamydia* antigen (or a variant of such an antigen), that comprises one or more of the amino acid sequences encoded by (a) a polynucleotide sequence selected from the group consisting of SEQ ID NO: 1-4, 15 21-25, 44-64, 66-76 and 79-88; (b) the complements of such DNA sequences or (c) DNA sequences substantially homologous to a sequence in (a) or (b). As discussed in the Examples below, several of the *Chlamydia* antigens disclosed herein recognize a T cell line that recognizes both *Chlamydia trachomatis* and *Chlamydia pneumoniae* infected monocyte-derived dendritic cells, indicating that they may represent an immunoreactive epitope shared by *Chlamydia*.

trachomatis and *Chlamydia pneumoniae*. The antigens may thus be employed in a vaccine for both *C. trachomatis* genital tract infections and for *C. pneumonia* infections. Further characterization of these *Chlamydia* antigens from *Chlamydia trachomatis* and *Chlamydia pneumonia* to determine the extent of cross-reactivity is provided in Example 6. Additionally, Example 4 describes cDNA fragments (SEQ ID NO: 15, 16 and 33) isolated from *C. trachomatis* which encode proteins (SEQ ID NO: 17-19 and 32) capable of stimulating a *Chlamydia*-specific murine CD8+ T cell line.

In general, *Chlamydia* antigens, and polynucleotide sequences encoding such antigens, may be prepared using any of a variety of procedures. For example, polynucleotide molecules encoding *Chlamydia* antigens may be isolated from a *Chlamydia* genomic or cDNA expression library by screening with a *Chlamydia*-specific T cell line as described below, and sequenced using techniques well known to those of skill in the art. Additionally, a polynucleotide may be identified, as described in more detail below, by screening a microarray of cDNAs for *Chlamydia*-associated expression (*i.e.*, expression that is at least two fold greater in *Chlamydia*-infected cells than in controls, as determined using a representative assay provided herein). Such screens may be performed using a Synteni microarray (Palo Alto, CA) according to the manufacturer's instructions (and essentially as described by Schena et al., *Proc. Natl. Acad. Sci. USA* 93:10614-10619, 1996 and Heller et al., *Proc. Natl. Acad. Sci. USA* 94:2150-2155, 1997). Alternatively, polypeptides may be amplified from cDNA prepared from cells expressing the proteins described herein.. Such polynucleotides may be amplified via polymerase chain reaction (PCR). For this approach, sequence-specific primers may be designed based on the sequences provided herein, and may be purchased or synthesized.

Antigens may be produced recombinantly, as described below, by inserting a polynucleotide sequence that encodes the antigen into an expression vector and expressing the antigen in an appropriate host. Antigens may be evaluated for a desired property, such as the ability to react with sera obtained from a *Chlamydia*-infected individual as described herein, and may be sequenced using, for example, traditional Edman chemistry. See Edman and Berg, *Eur. J. Biochem.* 80:116-132, 1967.

Polynucleotide sequences encoding antigens may also be obtained by screening an appropriate *Chlamydia* cDNA or genomic DNA library for polynucleotide sequences that hybridize to degenerate oligonucleotides derived from partial amino acid sequences of isolated antigens. Degenerate oligonucleotide sequences for use in such a screen may be designed and synthesized, and the screen may be performed, as described (for example) in Sambrook et al., *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratories, Cold Spring Harbor, NY (and references cited therein). Polymerase chain reaction (PCR) may also be employed, using the above oligonucleotides in methods well known in the art, to isolate a nucleic acid probe from a cDNA or genomic library. The library screen may then be performed using the isolated probe.

An amplified portion may be used to isolate a full length gene from a suitable library (e.g., a *Chlamydia* cDNA library) using well known techniques. Within such techniques, a library (cDNA or genomic) is screened using one or more polynucleotide probes or primers suitable for amplification. Preferably, a library is size-selected to include larger molecules. Random primed libraries may also be preferred for identifying 5' and upstream regions of genes. Genomic libraries are preferred for obtaining introns and extending 5' sequences.

For hybridization techniques, a partial sequence may be labeled (e.g., by nick-translation or end-labeling with ^{32}P) using well known techniques. A bacterial or bacteriophage library is then screened by hybridizing filters containing denatured bacterial colonies (or lawns containing phage plaques) with the labeled probe (see Sambrook et al., *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratories, Cold Spring Harbor, NY, 1989). Hybridizing colonies or plaques are selected and expanded, and the DNA is isolated for further analysis. cDNA clones may be analyzed to determine the amount of additional sequence by, for example, PCR using a primer from the partial sequence and a primer from the vector. Restriction maps and partial sequences may be generated to identify one or more overlapping clones. The complete sequence may then be determined using standard techniques, which may involve generating a series of deletion clones. The resulting overlapping sequences are then assembled into a single contiguous sequence. A full length cDNA molecule can be generated by ligating suitable fragments, using well known

techniques.

Alternatively, there are numerous amplification techniques for obtaining a full length coding sequence from a partial cDNA sequence. Within such techniques, amplification is generally performed via PCR. Any of a variety of commercially available kits may be used to perform the amplification step. Primers may be designed using techniques well known in the art (see, for example, Mullis et al., *Cold Spring Harbor Symp. Quant. Biol.* 51:263, 1987; Erlich ed., *PCR Technology*, Stockton Press, NY, 1989), and software well known in the art may also be employed. Primers are preferably 22-30 nucleotides in length, have a GC content of at least 50% and anneal to the target sequence at temperatures of about 68°C to 72°C. The amplified region may be sequenced as described above, and overlapping sequences assembled into a contiguous sequence.

One such amplification technique is inverse PCR (see Triglia et al., *Nucl. Acids Res.* 16:8186, 1988), which uses restriction enzymes to generate a fragment in the known region of the gene. The fragment is then circularized by intramolecular ligation and used as a template for PCR with divergent primers derived from the known region. Within an alternative approach, sequences adjacent to a partial sequence may be retrieved by amplification with a primer to a linker sequence and a primer specific to a known region. The amplified sequences are typically subjected to a second round of amplification with the same linker primer and a second primer specific to the known region. A variation on this procedure, which employs two primers that initiate extension in opposite directions from the known sequence, is described in WO 96/38591. Additional techniques include capture PCR (Lagerstrom et al., *PCR Methods Applic.* 1:111-19, 1991) and walking PCR (Parker et al., *Nucl. Acids. Res.* 19:3055-60, 1991). Transcription-Mediated Amplification, or TMA is another method that may be utilized for the amplification of DNA, rRNA, or mRNA, as described in Patent No. PCT/US91/03184. This autocatalytic and isothermal non-PCR based method utilizes two primers and two enzymes: RNA polymerase and reverse transcriptase. One primer contains a promoter sequence for RNA polymerase. In the first amplification, the promoter-primer hybridizes to the target rRNA at a defined site. Reverse transcriptase creates a DNA copy of the target rRNA by extension from the 3' end of the promoter-primer. The RNA in the resulting complex is degraded and a second primer binds to the DNA copy.

A new strand of DNA is synthesized from the end of the primer by reverse transcriptase creating double stranded DNA. RNA polymerase recognizes the promoter sequence in the DNA template and initiates transcription. Each of the newly synthesized RNA amplicons re-enters the TMA process and serves as a template for a new round of replication leading to the exponential expansion of the RNA amplicon. Other methods employing amplification may also be employed to obtain a full length cDNA sequence.

In certain instances, it is possible to obtain a full length cDNA sequence by analysis of sequences provided in an expressed sequence tag (EST) database, such as that available from GenBank. Searches for overlapping ESTs may generally be performed using well known programs (*e.g.*, NCBI BLAST searches), and such ESTs may be used to generate a contiguous full length sequence. Full length cDNA sequences may also be obtained by analysis of genomic fragments.

Polynucleotide variants may generally be prepared by any method known in the art, including chemical synthesis by, for example, solid phase phosphoramidite chemical synthesis. Modifications in a polynucleotide sequence may also be introduced using standard mutagenesis techniques, such as oligonucleotide-directed site-specific mutagenesis (*see* Adelman et al., *DNA* 2:183, 1983). Alternatively, RNA molecules may be generated by *in vitro* or *in vivo* transcription of DNA sequences encoding a *Chlamydial* protein, or portion thereof, provided that the DNA is incorporated into a vector with a suitable RNA polymerase promoter (such as T7 or SP6). Certain portions may be used to prepare an encoded polypeptide, as described herein. In addition, or alternatively, a portion may be administered to a patient such that the encoded polypeptide is generated *in vivo* (*e.g.*, by transfecting antigen-presenting cells, such as dendritic cells, with a cDNA construct encoding a *Chlamydial* polypeptide, and administering the transfected cells to the patient).

A portion of a sequence complementary to a coding sequence (*i.e.*, an antisense polynucleotide) may also be used as a probe or to modulate gene expression. cDNA constructs that can be transcribed into antisense RNA may also be introduced into cells of tissues to facilitate the production of antisense RNA. An antisense polynucleotide may be used, as described herein, to inhibit expression of a *Chlamydial* protein. Antisense technology can be used to control gene expression through triple-helix formation, which

compromises the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors or regulatory molecules (*see* Gee et al., *In Huber and Carr, Molecular and Immunologic Approaches*, Futura Publishing Co. (Mt. Kisco, NY; 1994)). Alternatively, an antisense molecule may be designed to hybridize with a control region of a gene (e.g., promoter, enhancer or transcription initiation site), and block transcription of the gene; or to block translation by inhibiting binding of a transcript to ribosomes.

A portion of a coding sequence, or of a complementary sequence, may also be designed as a probe or primer to detect gene expression. Probes may be labeled with a variety of reporter groups, such as radionuclides and enzymes, and are preferably at least 10 nucleotides in length, more preferably at least 20 nucleotides in length and still more preferably at least 30 nucleotides in length. Primers, as noted above, are preferably 22-30 nucleotides in length.

Any polynucleotide may be further modified to increase stability *in vivo*. Possible modifications include, but are not limited to, the addition of flanking sequences at the 5' and/or 3' ends; the use of phosphorothioate or 2' O-methyl rather than phosphodiester linkages in the backbone; and/or the inclusion of nontraditional bases such as inosine, queosine and wybutosine, as well as acetyl-, methyl-, thio- and other modified forms of adenine, cytidine, guanine, thymine and uridine.

Nucleotide sequences as described herein may be joined to a variety of other nucleotide sequences using established recombinant DNA techniques. For example, a polynucleotide may be cloned into any of a variety of cloning vectors, including plasmids, phagemids, lambda phage derivatives and cosmids. Vectors of particular interest include expression vectors, replication vectors, probe generation vectors and sequencing vectors. In general, a vector will contain an origin of replication functional in at least one organism, convenient restriction endonuclease sites and one or more selectable markers. Other elements will depend upon the desired use, and will be apparent to those of ordinary skill in the art.

Synthetic polypeptides having fewer than about 100 amino acids, and generally fewer than about 50 amino acids, may be generated using techniques well known in the art. For example, such polypeptides may be synthesized using any of the commercially

available solid-phase techniques, such as the Merrifield solid-phase synthesis method, where amino acids are sequentially added to a growing amino acid chain. See Merrifield, *J. Am. Chem. Soc.* 85:2149-2146, 1963. Equipment for automated synthesis of polypeptides is commercially available from suppliers such as Perkin Elmer/Applied BioSystems Division, Foster City, CA, and may be operated according to the manufacturer's instructions.

As noted above, immunogenic portions of *Chlamydia* antigens may be prepared and identified using well known techniques, such as those summarized in Paul, *Fundamental Immunology*, 3d ed., Raven Press, 1993, pp. 243-247 and references cited therein. Such techniques include screening polypeptide portions of the native antigen for immunogenic properties. The representative ELISAs described herein may generally be employed in these screens. An immunogenic portion of a polypeptide is a portion that, within such representative assays, generates a signal in such assays that is substantially similar to that generated by the full length antigen. In other words, an immunogenic portion of a *Chlamydia* antigen generates at least about 20%, and preferably about 100%, of the signal induced by the full length antigen in a model ELISA as described herein.

Portions and other variants of *Chlamydia* antigens may be generated by synthetic or recombinant means. Variants of a native antigen may generally be prepared using standard mutagenesis techniques, such as oligonucleotide-directed site-specific mutagenesis. Sections of the polynucleotide sequence may also be removed using standard techniques to permit preparation of truncated polypeptides.

Recombinant polypeptides containing portions and/or variants of a native antigen may be readily prepared from a polynucleotide sequence encoding the polypeptide using a variety of techniques well known to those of ordinary skill in the art. For example, supernatants from suitable host/vector systems which secrete recombinant protein into culture media may be first concentrated using a commercially available filter. Following concentration, the concentrate may be applied to a suitable purification matrix such as an affinity matrix or an ion exchange resin. Finally, one or more reverse phase HPLC steps can be employed to further purify a recombinant protein.

Any of a variety of expression vectors known to those of ordinary skill in the art may be employed to express recombinant polypeptides as described herein. Expression

may be achieved in any appropriate host cell that has been transformed or transfected with an expression vector containing a polynucleotide molecule that encodes a recombinant polypeptide. Suitable host cells include prokaryotes, yeast and higher eukaryotic cells. Preferably, the host cells employed are *E. coli*, yeast or a mammalian cell line, such as COS or CHO. The DNA sequences expressed in this manner may encode naturally occurring antigens, portions of naturally occurring antigens, or other variants thereof.

In general, regardless of the method of preparation, the polypeptides disclosed herein are prepared in an isolated, substantially pure, form. Preferably, the polypeptides are at least about 80% pure, more preferably at least about 90% pure and most preferably at least about 99% pure.

Within certain specific embodiments, a polypeptide may be a fusion protein that comprises multiple polypeptides as described herein, or that comprises at least one polypeptide as described herein and an unrelated sequence, such as a known *Chlamydial* protein. A fusion partner may, for example, assist in providing T helper epitopes (an immunological fusion partner), preferably T helper epitopes recognized by humans, or may assist in expressing the protein (an expression enhancer) at higher yields than the native recombinant protein. Certain preferred fusion partners are both immunological and expression enhancing fusion partners. Other fusion partners may be selected so as to increase the solubility of the protein or to enable the protein to be targeted to desired intracellular compartments. Still further fusion partners include affinity tags, which facilitate purification of the protein. A DNA sequence encoding a fusion protein of the present invention may be constructed using known recombinant DNA techniques to assemble separate DNA sequences encoding, for example, the first and second polypeptides, into an appropriate expression vector. The 3' end of a DNA sequence encoding the first polypeptide is ligated, with or without a peptide linker, to the 5' end of a DNA sequence encoding the second polypeptide so that the reading frames of the sequences are in phase to permit mRNA translation of the two DNA sequences into a single fusion protein that retains the biological activity of both the first and the second polypeptides.

A peptide linker sequence may be employed to separate the first and the second polypeptides by a distance sufficient to ensure that each polypeptide folds into its

secondary and tertiary structures. Such a peptide linker sequence is incorporated into the fusion protein using standard techniques well known in the art. Suitable peptide linker sequences may be chosen based on the following factors: (1) their ability to adopt a flexible extended conformation; (2) their inability to adopt a secondary structure that could interact with functional epitopes on the first and second polypeptides; and (3) the lack of hydrophobic or charged residues that might react with the polypeptide functional epitopes. Preferred peptide linker sequences contain Gly, Asn and Ser residues. Other near neutral amino acids, such as Thr and Ala may also be used in the linker sequence. Amino acid sequences which may be usefully employed as linkers include those disclosed in Maratea et al., *Gene* 40:39-46, 1985; Murphy et al., *Proc. Natl. Acad. Sci. USA* 83:8258-8562, 1986; U.S. Patent No. 4,935,233 and U.S. Patent No. 4,751,180. The linker sequence may be from 1 to about 50 amino acids in length. As an alternative to the use of a peptide linker sequence (when desired), one can utilize non-essential N-terminal amino acid regions (when present) on the first and second polypeptides to separate the functional domains and prevent steric hindrance.

The ligated DNA sequences are operably linked to suitable transcriptional or translational regulatory elements. The regulatory elements responsible for expression of DNA are located only 5' to the DNA sequence encoding the first polypeptides. Similarly, stop codons required to end translation and transcription termination signals are only present 3' to the DNA sequence encoding the second polypeptide.

Fusion proteins are also provided that comprise a polypeptide of the present invention together with an unrelated immunogenic protein. Preferably the immunogenic protein is capable of eliciting a recall response. Examples of such proteins include tetanus, tuberculosis and hepatitis proteins (see, for example, Stoute et al. *New Engl. J. Med.*, 336:86-91, 1997).

Within preferred embodiments, an immunological fusion partner is derived from protein D, a surface protein of the gram-negative bacterium *Haemophilus influenza B* (WO 91/18926). Preferably, a protein D derivative comprises approximately the first third of the protein (e.g., the first N-terminal 100-110 amino acids), and a protein D derivative may be lipidated. Within certain preferred embodiments, the first 109 residues of a Lipoprotein D fusion partner is included on the N-terminus to provide the polypeptide with additional

exogenous T-cell epitopes and to increase the expression level in *E. coli* (thus functioning as an expression enhancer). The lipid tail ensures optimal presentation of the antigen to antigen presenting cells. Other fusion partners include the non-structural protein from influenzae virus, NS1 (hemagglutinin). Typically, the N-terminal 81 amino acids are used, although different fragments that include T-helper epitopes may be used.

In another embodiment, the immunological fusion partner is the protein known as LYTA, or a portion thereof (preferably a C-terminal portion). LYTA is derived from *Streptococcus pneumoniae*, which synthesizes an N-acetyl-L-alanine amidase known as amidase LYTA (encoded by the LytA gene; *Gene* 43:265-292, 1986). LYTA is an autolysin that specifically degrades certain bonds in the peptidoglycan backbone. The C-terminal domain of the LYTA protein is responsible for the affinity to the choline or to some choline analogues such as DEAE. This property has been exploited for the development of *E. coli* C-LYTA expressing plasmids useful for expression of fusion proteins. Purification of hybrid proteins containing the C-LYTA fragment at the amino terminus has been described (*see Biotechnology* 10:795-798, 1992). Within a preferred embodiment, a repeat portion of LYTA may be incorporated into a fusion protein. A repeat portion is found in the C-terminal region starting at residue 178. A particularly preferred repeat portion incorporates residues 188-305. Additionally, the fusion protein Ra12 may be linked to the inventive polynucleotides to facilitate protein expression.

In another aspect, the present invention provides methods for using one or more of the above polypeptides or fusion proteins (or polynucleotides encoding such polypeptides or fusion proteins) to induce protective immunity against Chlamydial infection in a patient. As used herein, a "patient" refers to any warm-blooded animal, preferably a human. A patient may be afflicted with a disease, or may be free of detectable disease and/or infection. In other words, protective immunity may be induced to prevent or treat Chlamydial infection.

In this aspect, the polypeptide, fusion protein or polynucleotide molecule is generally present within a pharmaceutical composition or a vaccine. Pharmaceutical compositions may comprise one or more polypeptides, each of which may contain one or more of the above sequences (or variants thereof), and a physiologically acceptable carrier.

Vaccines may comprise one or more of the above polypeptides and an immunostimulant, such as an adjuvant or a liposome (into which the polypeptide is incorporated). Such pharmaceutical compositions and vaccines may also contain other *Chlamydia* antigens, either incorporated into a combination polypeptide or present within a separate polypeptide.

Alternatively, a vaccine may contain polynucleotides encoding one or more polypeptides or fusion proteins as described above, such that the polypeptide is generated *in situ*. In such vaccines, the polynucleotides may be present within any of a variety of delivery systems known to those of ordinary skill in the art, including nucleic acid expression systems, bacterial and viral expression systems. Appropriate nucleic acid expression systems contain the necessary polynucleotide sequences for expression in the patient (such as a suitable promoter and terminating signal). Bacterial delivery systems involve the administration of a bacterium (such as *Bacillus-Calmette-Guerrin*) that expresses an immunogenic portion of the polypeptide on its cell surface. In a preferred embodiment, the polynucleotides may be introduced using a viral expression system (*e.g.*, vaccinia or other pox virus, retrovirus, or adenovirus), which may involve the use of a non-pathogenic (defective) virus. Techniques for incorporating polynucleotides into such expression systems are well known to those of ordinary skill in the art. The polynucleotides may also be administered as "naked" plasmid vectors as described, for example, in Ulmer et al., *Science* 259:1745-1749, 1993 and reviewed by Cohen, *Science* 259:1691-1692, 1993. Techniques for incorporating DNA into such vectors are well known to those of ordinary skill in the art. A retroviral vector may additionally transfer or incorporate a gene for a selectable marker (to aid in the identification or selection of transduced cells) and/or a targeting moiety, such as a gene that encodes a ligand for a receptor on a specific target cell, to render the vector target specific. Targeting may also be accomplished using an antibody, by methods known to those of ordinary skill in the art.

Other formulations for therapeutic purposes include colloidal dispersion systems, such as macromolecule complexes, nanocapsules, microspheres, beads, and lipid-based systems including oil-in-water emulsions, micelles, mixed micelles, and liposomes. A preferred colloidal system for use as a delivery vehicle *in vitro* and *in vivo* is a liposome (*i.e.*, an artificial membrane vesicle). The uptake of naked polynucleotides may be increased by

incorporating the polynucleotides into and/or onto biodegradable beads, which are efficiently transported into the cells. The preparation and use of such systems is well known in the art.

In a related aspect, a polynucleotide vaccine as described above may be administered simultaneously with or sequentially to either a polypeptide of the present invention or a known *Chlamydia* antigen. For example, administration of polynucleotides encoding a polypeptide of the present invention, either "naked" or in a delivery system as described above, may be followed by administration of an antigen in order to enhance the protective immune effect of the vaccine.

Polypeptides and polynucleotides disclosed herein may also be employed in adoptive immunotherapy for the treatment of *Chlamydial* infection. Adoptive immunotherapy may be broadly classified into either active or passive immunotherapy. In active immunotherapy, treatment relies on the *in vivo* stimulation of the endogenous host immune system with the administration of immune response-modifying agents (for example, vaccines, bacterial adjuvants, and/or cytokines).

In passive immunotherapy, treatment involves the delivery of biologic reagents with established immune reactivity (such as effector cells or antibodies) that can directly or indirectly mediate anti-*Chlamydia* effects and does not necessarily depend on an intact host immune system. Examples of effector cells include T lymphocytes (for example, CD8+ cytotoxic T-lymphocyte, CD4+ T-helper), killer cells (such as Natural Killer cells, lymphokine-activated killer cells), B cells, or antigen presenting cells (such as dendritic cells and macrophages) expressing the disclosed antigens. The polypeptides disclosed herein may also be used to generate antibodies or anti-idiotypic antibodies (as in U.S. Patent No. 4,918,164), for passive immunotherapy.

The predominant method of procuring adequate numbers of T-cells for adoptive immunotherapy is to grow immune T-cells *in vitro*. Culture conditions for expanding single antigen-specific T-cells to several billion in number with retention of antigen recognition *in vivo* are well known in the art. These *in vitro* culture conditions typically utilize intermittent stimulation with antigen, often in the presence of cytokines, such as IL-2, and non-dividing feeder cells. As noted above, the immunoreactive polypeptides described herein may be used to rapidly expand antigen-specific T cell cultures in order to

generate sufficient number of cells for immunotherapy. In particular, antigen-presenting cells, such as dendritic, macrophage, monocyte, fibroblast, or B-cells, may be pulsed with immunoreactive polypeptides, or polynucleotide sequence(s) may be introduced into antigen presenting cells, using a variety of standard techniques well known in the art. For example, antigen presenting cells may be transfected or transduced with a polynucleotide sequence, wherein said sequence contains a promoter region appropriate for increasing expression, and can be expressed as part of a recombinant virus or other expression system. Several viral vectors may be used to transduce an antigen presenting cell, including pox virus, vaccinia virus, and adenovirus; also, antigen presenting cells may be transfected with polynucleotide sequences disclosed herein by a variety of means, including gene-gun technology, lipid-mediated delivery, electroporation, osmotic shock, and particulate delivery mechanisms, resulting in efficient and acceptable expression levels as determined by one of ordinary skill in the art. For cultured T-cells to be effective in therapy, the cultured T-cells must be able to grow and distribute widely and to survive long term *in vivo*. Studies have demonstrated that cultured T-cells can be induced to grow *in vivo* and to survive long term in substantial numbers by repeated stimulation with antigen supplemented with IL-2 (see, for example, Cheever, M., *et al*, "Therapy With Cultured T Cells: Principles Revisited," *Immunological Reviews*, 157:177, 1997).

The polypeptides disclosed herein may also be employed to generate and/or isolate chlamydial-reactive T-cells, which can then be administered to the patient. In one technique, antigen-specific T-cell lines may be generated by *in vivo* immunization with short peptides corresponding to immunogenic portions of the disclosed polypeptides. The resulting antigen specific CD8+ or CD4+ T-cell clones may be isolated from the patient, expanded using standard tissue culture techniques, and returned to the patient.

Alternatively, peptides corresponding to immunogenic portions of the polypeptides may be employed to generate *Chlamydia* reactive T cell subsets by selective *in vitro* stimulation and expansion of autologous T cells to provide antigen-specific T cells which may be subsequently transferred to the patient as described, for example, by Chang *et al*, (*Crit. Rev. Oncol. Hematol.*, 22(3), 213, 1996). Cells of the immune system, such as T cells, may be isolated from the peripheral blood of a patient, using a commercially available

cell separation system, such as Isolex™ System, available from Nexell Therapeutics, Inc. Irvine, CA. The separated cells are stimulated with one or more of the immunoreactive polypeptides contained within a delivery vehicle, such as a microsphere, to provide antigen-specific T cells. The population of antigen-specific T cells is then expanded using standard techniques and the cells are administered back to the patient.

In other embodiments, T-cell and/or antibody receptors specific for the polypeptides disclosed herein can be cloned, expanded, and transferred into other vectors or effector cells for use in adoptive immunotherapy. In particular, T cells may be transfected with the appropriate genes to express the variable domains from chlamydia specific monoclonal antibodies as the extracellular recognition elements and joined to the T cell receptor signaling chains, resulting in T cell activation, specific lysis, and cytokine release. This enables the T cell to redirect its specificity in an MHC-independent manner. See for example, Eshhar, Z., *Cancer Immunol Immunother*, 45(3-4):131-6, 1997 and Hwu, P., et al, *Cancer Res*, 55(15):3369-73, 1995. Another embodiment may include the transfection of chlamydia antigen specific alpha and beta T cell receptor chains into alternate T cells, as in Cole, DJ, et al, *Cancer Res*, 55(4):748-52, 1995.

In a further embodiment, syngeneic or autologous dendritic cells may be pulsed with peptides corresponding to at least an immunogenic portion of a polypeptide disclosed herein. The resulting antigen-specific dendritic cells may either be transferred into a patient, or employed to stimulate T cells to provide antigen-specific T cells which may, in turn, be administered to a patient. The use of peptide-pulsed dendritic cells to generate antigen-specific T cells and the subsequent use of such antigen-specific T cells to eradicate disease in a murine model has been demonstrated by Cheever et al, *Immunological Reviews*, 157:177, 1997). Additionally, vectors expressing the disclosed polynucleotides may be introduced into stem cells taken from the patient and clonally propagated *in vitro* for autologous transplant back into the same patient.

Within certain aspects, polypeptides, polynucleotides, T cells and/or binding agents disclosed herein may be incorporated into pharmaceutical compositions or immunogenic compositions (*i.e.*, vaccines). Pharmaceutical compositions comprise one or more such compounds and a physiologically acceptable carrier. Vaccines may comprise one

or more such compounds and an immunostimulant. An immunostimulant may be any substance that enhances or potentiates an immune response to an exogenous antigen. Examples of immunostimulants include adjuvants, biodegradable microspheres (e.g., polylactic galactide) and liposomes (into which the compound is incorporated; *see e.g.*, Fullerton, U.S. Patent No. 4,235,877). Vaccine preparation is generally described in, for example, M.F. Powell and M.J. Newman, eds., "Vaccine Design (the subunit and adjuvant approach)," Plenum Press (NY, 1995). Pharmaceutical compositions and vaccines within the scope of the present invention may also contain other compounds, which may be biologically active or inactive. For example, one or more immunogenic portions of other *Chlamydial* antigens may be present, either incorporated into a fusion polypeptide or as a separate compound, within the composition or vaccine.

A pharmaceutical composition or vaccine may contain DNA encoding one or more of the polypeptides as described above, such that the polypeptide is generated *in situ*. As noted above, the DNA may be present within any of a variety of delivery systems known to those of ordinary skill in the art, including nucleic acid expression systems, bacteria and viral expression systems. Numerous gene delivery techniques are well known in the art, such as those described by Rolland, *Crit. Rev. Therap. Drug Carrier Systems* 15:143-198, 1998, and references cited therein. Appropriate nucleic acid expression systems contain the necessary DNA sequences for expression in the patient (such as a suitable promoter and terminating signal). Bacterial delivery systems involve the administration of a bacterium (such as *Bacillus-Calmette-Guerrin*) that expresses an immunogenic portion of the polypeptide on its cell surface or secretes such an epitope. In a preferred embodiment, the DNA may be introduced using a viral expression system (e.g., vaccinia or other pox virus, retrovirus, or adenovirus), which may involve the use of a non-pathogenic (defective), replication competent virus. Suitable systems are disclosed, for example, in Fisher-Hoch et al., *Proc. Natl. Acad. Sci. USA* 86:317-321, 1989; Flexner et al., *Ann. N.Y. Acad. Sci.* 569:86-103, 1989; Flexner et al., *Vaccine* 8:17-21, 1990; U.S. Patent Nos. 4,603,112, 4,769,330, and 5,017,487; WO 89/01973; U.S. Patent No. 4,777,127; GB 2,200,651; EP 0,345,242; WO 91/02805; Berkner, *Biotechniques* 6:616-627, 1988; Rosenfeld et al., *Science* 252:431-434, 1991; Kolls et al., *Proc. Natl. Acad. Sci. USA* 91:215-219, 1994;

Kass-Eisler et al., *Proc. Natl. Acad. Sci. USA* 90:11498-11502, 1993; Guzman et al., *Circulation* 88:2838-2848, 1993; and Guzman et al., *Cir. Res.* 73:1202-1207, 1993. Techniques for incorporating DNA into such expression systems are well known to those of ordinary skill in the art. The DNA may also be "naked," as described, for example, in Ulmer et al., *Science* 259:1745-1749, 1993 and reviewed by Cohen, *Science* 259:1691-1692, 1993. The uptake of naked DNA may be increased by coating the DNA onto biodegradable beads, which are efficiently transported into the cells.

While any suitable carrier known to those of ordinary skill in the art may be employed in the pharmaceutical compositions of this invention, the type of carrier will vary depending on the mode of administration. Compositions of the present invention may be formulated for any appropriate manner of administration, including for example, topical, oral, nasal, intravenous, intracranial, intraperitoneal, subcutaneous or intramuscular administration. For parenteral administration, such as subcutaneous injection, the carrier preferably comprises water, saline, alcohol, a fat, a wax or a buffer. For oral administration, any of the above carriers or a solid carrier, such as mannitol, lactose, starch, magnesium stearate, sodium saccharine, talcum, cellulose, glucose, sucrose, and magnesium carbonate, may be employed. Biodegradable microspheres (*e.g.*, polylactate polyglycolate) may also be employed as carriers for the pharmaceutical compositions of this invention. Suitable biodegradable microspheres are disclosed, for example, in U.S. Patent Nos. 4,897,268 and 5,075,109.

Such compositions may also comprise buffers (*e.g.*, neutral buffered saline or phosphate buffered saline), carbohydrates (*e.g.*, glucose, mannose, sucrose or dextrans), mannitol, proteins, polypeptides or amino acids such as glycine, antioxidants, chelating agents such as EDTA or glutathione, adjuvants (*e.g.*, aluminum hydroxide) and/or preservatives. Alternatively, compositions of the present invention may be formulated as a lyophilizate. Compounds may also be encapsulated within liposomes using well known technology.

Any of a variety of immunostimulants may be employed in the vaccines of this invention. For example, an adjuvant may be included. Most adjuvants contain a substance designed to protect the antigen from rapid catabolism, such as aluminum hydroxide

or mineral oil, and a stimulator of immune responses, such as lipid A, *Bordetella pertussis* or *Mycobacterium tuberculosis* derived proteins. Suitable adjuvants are commercially available as, for example, Freund's Incomplete Adjuvant and Complete Adjuvant (Difco Laboratories, Detroit, MI); Merck Adjuvant 65 (Merck and Company, Inc., Rahway, NJ); aluminum salts such as aluminum hydroxide gel (alum) or aluminum phosphate; salts of calcium, iron or zinc; an insoluble suspension of acylated tyrosine; acylated sugars; cationically or anionically derivatized polysaccharides; polyphosphazenes; biodegradable microspheres; monophosphoryl lipid A and quill A. Cytokines, such as GM-CSF or interleukin-2, -7, or -12, may also be used as adjuvants.

Within the vaccines provided herein, under select circumstances, the adjuvant composition may be designed to induce an immune response predominantly of the Th1 type or Th2 type. High levels of Th1-type cytokines (*e.g.*, IFN- γ , TNF α , IL-2 and IL-12) tend to favor the induction of cell mediated immune responses to an administered antigen. In contrast, high levels of Th2-type cytokines (*e.g.*, IL-4, IL-5, IL-6 and IL-10) tend to favor the induction of humoral immune responses. Following application of a vaccine as provided herein, a patient will support an immune response that includes Th1- and Th2-type responses. Within a preferred embodiment, in which a response is predominantly Th1-type, the level of Th1-type cytokines will increase to a greater extent than the level of Th2-type cytokines. The levels of these cytokines may be readily assessed using standard assays. For a review of the families of cytokines, see Mosmann and Coffman, *Ann. Rev. Immunol.* 7:145-173, 1989.

Preferred adjuvants for use in eliciting a predominantly Th1-type response include, for example, a combination of monophosphoryl lipid A, preferably 3-de-O-acylated monophosphoryl lipid A (3D-MPL), together with an aluminum salt. MPL adjuvants are available from Ribi ImmunoChem Research Inc. (Hamilton, MT) (*see* US Patent Nos. 4,436,727; 4,877,611; 4,866,034 and 4,912,094). CpG-containing oligonucleotides (in which the CpG dinucleotide is unmethylated) also induce a predominantly Th1 response. Such oligonucleotides are well known and are described, for example, in WO 96/02555. Another preferred adjuvant is a saponin, preferably QS21, which may be used alone or in combination with other adjuvants. For example, an enhanced system involves the combination of a monophosphoryl lipid A and saponin derivative, such as the combination of QS21 and 3D-

MPL as described in WO 94/00153, or a less reactogenic composition where the QS21 is quenched with cholesterol, as described in WO 96/33739. Other preferred formulations comprises an oil-in-water emulsion and tocopherol. A particularly potent adjuvant formulation involving QS21, 3D-MPL and tocopherol in an oil-in-water emulsion is described in WO 95/17210. Any vaccine provided herein may be prepared using well known methods that result in a combination of antigen, immune response enhancer and a suitable carrier or excipient.

The compositions described herein may be administered as part of a sustained release formulation (*i.e.*, a formulation such as a capsule, sponge or gel (composed of polysaccharides, for example) that effects a slow release of compound following administration). Such formulations may generally be prepared using well known technology and administered by, for example, oral, rectal or subcutaneous implantation, or by implantation at the desired target site. Sustained-release formulations may contain a polypeptide, polynucleotide or antibody dispersed in a carrier matrix and/or contained within a reservoir surrounded by a rate controlling membrane. Carriers for use within such formulations are biocompatible, and may also be biodegradable; preferably the formulation provides a relatively constant level of active component release. The amount of active compound contained within a sustained release formulation depends upon the site of implantation, the rate and expected duration of release and the nature of the condition to be treated or prevented.

Any of a variety of delivery vehicles may be employed within pharmaceutical compositions and vaccines to facilitate production of an antigen-specific immune response that targets *Chlamydia*-infected cells. Delivery vehicles include antigen presenting cells (APCs), such as dendritic cells, macrophages, B cells, monocytes and other cells that may be engineered to be efficient APCs. Such cells may, but need not, be genetically modified to increase the capacity for presenting the antigen, to improve activation and/or maintenance of the T cell response, to have anti-*Chlamydia* effects *per se* and/or to be immunologically compatible with the receiver (*i.e.*, matched HLA haplotype). APCs may generally be isolated from any of a variety of biological fluids and organs, and may be autologous, allogeneic, syngeneic or xenogeneic cells.

Certain preferred embodiments of the present invention use dendritic cells or progenitors thereof as antigen-presenting cells. Dendritic cells are highly potent APCs (Banchereau and Steinman, *Nature* 392:245-251, 1998) and have been shown to be effective as a physiological adjuvant for eliciting prophylactic or therapeutic immunity (see Timmerman and Levy, *Ann. Rev. Med.* 50:507-529, 1999). In general, dendritic cells may be identified based on their typical shape (stellate *in situ*, with marked cytoplasmic processes (dendrites) visible *in vitro*), their ability to take up, process and present antigens with high efficiency, and their ability to activate naïve T cell responses. Dendritic cells may, of course, be engineered to express specific cell-surface receptors or ligands that are not commonly found on dendritic cells *in vivo* or *ex vivo*, and such modified dendritic cells are contemplated by the present invention. As an alternative to dendritic cells, secreted vesicles antigen-loaded dendritic cells (called exosomes) may be used within a vaccine (see Zitvogel et al., *Nature Med.* 4:594-600, 1998).

Dendritic cells and progenitors may be obtained from peripheral blood, bone marrow, lymph nodes, spleen, skin, umbilical cord blood or any other suitable tissue or fluid. For example, dendritic cells may be differentiated *ex vivo* by adding a combination of cytokines such as GM-CSF, IL-4, IL-13 and/or TNF α to cultures of monocytes harvested from peripheral blood. Alternatively, CD34 positive cells harvested from peripheral blood, umbilical cord blood or bone marrow may be differentiated into dendritic cells by adding to the culture medium combinations of GM-CSF, IL-3, TNF α , CD40 ligand, LPS, flt3 ligand and/or other compound(s) that induce differentiation, maturation and proliferation of dendritic cells.

Dendritic cells are conveniently categorized as "immature" and "mature" cells, which allows a simple way to discriminate between two well characterized phenotypes. However, this nomenclature should not be construed to exclude all possible intermediate stages of differentiation. Immature dendritic cells are characterized as APC with a high capacity for antigen uptake and processing, which correlates with the high expression of Fc γ receptor and mannose receptor. The mature phenotype is typically characterized by a lower expression of these markers, but a high expression of cell surface molecules responsible for T cell activation such as class I and class II MHC, adhesion molecules (*e.g.*, CD54 and CD11)

and costimulatory molecules (*e.g.*, CD40, CD80, CD86 and 4-1BB).

APCs may generally be transfected with a polynucleotide encoding a *Chlamydial* protein (or portion or other variant thereof) such that the *Chlamydial* polypeptide, or an immunogenic portion thereof, is expressed on the cell surface. Such transfection may take place *ex vivo*, and a composition or vaccine comprising such transfected cells may then be used for therapeutic purposes, as described herein. Alternatively, a gene delivery vehicle that targets a dendritic or other antigen presenting cell may be administered to a patient, resulting in transfection that occurs *in vivo*. *In vivo* and *ex vivo* transfection of dendritic cells, for example, may generally be performed using any methods known in the art, such as those described in WO 97/24447, or the gene gun approach described by Mahvi et al., *Immunology and cell Biology* 75:456-460, 1997. Antigen loading of dendritic cells may be achieved by incubating dendritic cells or progenitor cells with the *Chlamydial* polypeptide, DNA (naked or within a plasmid vector) or RNA; or with antigen-expressing recombinant bacterium or viruses (*e.g.*, vaccinia, fowlpox, adenovirus or lentivirus vectors). Prior to loading, the polypeptide may be covalently conjugated to an immunological partner that provides T cell help (*e.g.*, a carrier molecule). Alternatively, a dendritic cell may be pulsed with a non-conjugated immunological partner, separately or in the presence of the polypeptide.

Routes and frequency of administration of pharmaceutical compositions and vaccines, as well as dosage, will vary from individual to individual. In general, the pharmaceutical compositions and vaccines may be administered by injection (*e.g.*, intracutaneous, intramuscular, intravenous or subcutaneous), intranasally (*e.g.*, by aspiration) or orally. Between 1 and 3 doses may be administered for a 1-36 week period. Preferably, 3 doses are administered, at intervals of 3-4 months, and booster vaccinations may be given periodically thereafter. Alternate protocols may be appropriate for individual patients. A suitable dose is an amount of polypeptide or DNA that, when administered as described above, is capable of raising an immune response in an immunized patient sufficient to protect the patient from *Chlamydial* infection for at least 1-2 years. In general, the amount of polypeptide present in a dose (or produced *in situ* by the DNA in a dose) ranges from about 1 pg to about 100 mg per kg of host, typically from about 10 pg to about 1 mg, and

preferably from about 100 pg to about 1 μ g. Suitable dose sizes will vary with the size of the patient, but will typically range from about 0.1 mL to about 5 mL.

While any suitable carrier known to those of ordinary skill in the art may be employed in the pharmaceutical compositions of this invention, the type of carrier will vary depending on the mode of administration. For parenteral administration, such as subcutaneous injection, the carrier preferably comprises water, saline, alcohol, a fat, a wax or a buffer. For oral administration, any of the above carriers or a solid carrier, such as mannitol, lactose, starch, magnesium stearate, sodium saccharine, talcum, cellulose, glucose, sucrose, and magnesium carbonate, may be employed. Biodegradable microspheres (e.g., polylactic galactide) may also be employed as carriers for the pharmaceutical compositions of this invention. Suitable biodegradable microspheres are disclosed, for example, in U.S. Patent Nos. 4,897,268 and 5,075,109.

In general, an appropriate dosage and treatment regimen provides the active compound(s) in an amount sufficient to provide therapeutic and/or prophylactic benefit. Such a response can be monitored by establishing an improved clinical outcome in treated patients as compared to non-treated patients. Increases in preexisting immune responses to a *Chlamydial* protein generally correlate with an improved clinical outcome. Such immune responses may generally be evaluated using standard proliferation, cytotoxicity or cytokine assays, which may be performed using samples obtained from a patient before and after treatment.

In another aspect, the present invention provides methods for using the polypeptides described above to diagnose Chlamydial infection. In this aspect, methods are provided for detecting Chlamydial infection in a biological sample, using one or more of the above polypeptides, either alone or in combination. For clarity, the term "polypeptide" will be used when describing specific embodiments of the inventive diagnostic methods. However, it will be clear to one of skill in the art that the fusion proteins of the present invention may also be employed in such methods.

As used herein, a "biological sample" is any antibody-containing sample obtained from a patient. Preferably, the sample is whole blood, sputum, serum, plasma, saliva, cerebrospinal fluid or urine. More preferably, the sample is a blood, serum or plasma

sample obtained from a patient. The polypeptides are used in an assay, as described below, to determine the presence or absence of antibodies to the polypeptide(s) in the sample, relative to a predetermined cut-off value. The presence of such antibodies indicates previous sensitization to *Chlamydia* antigens which may be indicative of *Chlamydia*-infection.

In embodiments in which more than one polypeptide is employed, the polypeptides used are preferably complementary (*i.e.*, one component polypeptide will tend to detect infection in samples where the infection would not be detected by another component polypeptide). Complementary polypeptides may generally be identified by using each polypeptide individually to evaluate serum samples obtained from a series of patients known to be infected with *Chlamydia*. After determining which samples test positive (as described below) with each polypeptide, combinations of two or more polypeptides may be formulated that are capable of detecting infection in most, or all, of the samples tested.

A variety of assay formats are known to those of ordinary skill in the art for using one or more polypeptides to detect antibodies in a sample. See, *e.g.*, Harlow and Lane, *Antibodies: A Laboratory Manual*, Cold Spring Harbor Laboratory, 1988, which is incorporated herein by reference. In a preferred embodiment, the assay involves the use of polypeptide immobilized on a solid support to bind to and remove the antibody from the sample. The bound antibody may then be detected using a detection reagent that contains a reporter group. Suitable detection reagents include antibodies that bind to the antibody/polypeptide complex and free polypeptide labeled with a reporter group (*e.g.*, in a semi-competitive assay). Alternatively, a competitive assay may be utilized, in which an antibody that binds to the polypeptide is labeled with a reporter group and allowed to bind to the immobilized antigen after incubation of the antigen with the sample. The extent to which components of the sample inhibit the binding of the labeled antibody to the polypeptide is indicative of the reactivity of the sample with the immobilized polypeptide.

The solid support may be any solid material known to those of ordinary skill in the art to which the antigen may be attached. For example, the solid support may be a test well in a microtiter plate, or a nitrocellulose or other suitable membrane. Alternatively, the support may be a bead or disc, such as glass, fiberglass, latex or a plastic material such as

polystyrene or polyvinylchloride. The support may also be a magnetic particle or a fiber optic sensor, such as those disclosed, for example, in U.S. Patent No. 5,359,681.

The polypeptides may be bound to the solid support using a variety of techniques known to those of ordinary skill in the art. In the context of the present invention, the term "bound" refers to both noncovalent association, such as adsorption, and covalent attachment (which may be a direct linkage between the antigen and functional groups on the support or may be a linkage by way of a cross-linking agent). Binding by adsorption to a well in a microtiter plate or to a membrane is preferred. In such cases, adsorption may be achieved by contacting the polypeptide, in a suitable buffer, with the solid support for a suitable amount of time. The contact time varies with temperature, but is typically between about 1 hour and 1 day. In general, contacting a well of a plastic microtiter plate (such as polystyrene or polyvinylchloride) with an amount of polypeptide ranging from about 10 ng to about 1 μ g, and preferably about 100 ng, is sufficient to bind an adequate amount of antigen.

Covalent attachment of polypeptide to a solid support may generally be achieved by first reacting the support with a bifunctional reagent that will react with both the support and a functional group, such as a hydroxyl or amino group, on the polypeptide. For example, the polypeptide may be bound to supports having an appropriate polymer coating using benzoquinone or by condensation of an aldehyde group on the support with an amine and an active hydrogen on the polypeptide (*see, e.g.*, Pierce Immunotechnology Catalog and Handbook, 1991, at A12-A13).

In certain embodiments, the assay is an enzyme linked immunosorbent assay (ELISA). This assay may be performed by first contacting a polypeptide antigen that has been immobilized on a solid support, commonly the well of a microtiter plate, with the sample, such that antibodies to the polypeptide within the sample are allowed to bind to the immobilized polypeptide. Unbound sample is then removed from the immobilized polypeptide and a detection reagent capable of binding to the immobilized antibody-polypeptide complex is added. The amount of detection reagent that remains bound to the solid support is then determined using a method appropriate for the specific detection reagent.

More specifically, once the polypeptide is immobilized on the support as described above, the remaining protein binding sites on the support are typically blocked. Any suitable blocking agent known to those of ordinary skill in the art, such as bovine serum albumin (BSA) or Tween 20TM (Sigma Chemical Co., St. Louis, MO) may be employed. The immobilized polypeptide is then incubated with the sample, and antibody is allowed to bind to the antigen. The sample may be diluted with a suitable dilutent, such as phosphate-buffered saline (PBS) prior to incubation. In general, an appropriate contact time (*i.e.*, incubation time) is that period of time that is sufficient to detect the presence of antibody within an HGE-infected sample. Preferably, the contact time is sufficient to achieve a level of binding that is at least 95% of that achieved at equilibrium between bound and unbound antibody. Those of ordinary skill in the art will recognize that the time necessary to achieve equilibrium may be readily determined by assaying the level of binding that occurs over a period of time. At room temperature, an incubation time of about 30 minutes is generally sufficient.

Unbound sample may then be removed by washing the solid support with an appropriate buffer, such as PBS containing 0.1% Tween 20TM. Detection reagent may then be added to the solid support. An appropriate detection reagent is any compound that binds to the immobilized antibody-polypeptide complex and that can be detected by any of a variety of means known to those in the art. Preferably, the detection reagent contains a binding agent (such as, for example, Protein A, Protein G, immunoglobulin, lectin or free antigen) conjugated to a reporter group. Preferred reporter groups include enzymes (such as horseradish peroxidase), substrates, cofactors, inhibitors, dyes, radionuclides, luminescent groups, fluorescent groups and biotin. The conjugation of binding agent to reporter group may be achieved using standard methods known to those of ordinary skill in the art. Common binding agents may also be purchased conjugated to a variety of reporter groups from many commercial sources (*e.g.*, Zymed Laboratories, San Francisco, CA, and Pierce, Rockford, IL).

The detection reagent is then incubated with the immobilized antibody-polypeptide complex for an amount of time sufficient to detect the bound antibody. An appropriate amount of time may generally be determined from the manufacturer's

instructions or by assaying the level of binding that occurs over a period of time. Unbound detection reagent is then removed and bound detection reagent is detected using the reporter group. The method employed for detecting the reporter group depends upon the nature of the reporter group. For radioactive groups, scintillation counting or autoradiographic methods are generally appropriate. Spectroscopic methods may be used to detect dyes, luminescent groups and fluorescent groups. Biotin may be detected using avidin, coupled to a different reporter group (commonly a radioactive or fluorescent group or an enzyme). Enzyme reporter groups may generally be detected by the addition of substrate (generally for a specific period of time), followed by spectroscopic or other analysis of the reaction products.

To determine the presence or absence of anti-*Chlamydia* antibodies in the sample, the signal detected from the reporter group that remains bound to the solid support is generally compared to a signal that corresponds to a predetermined cut-off value. In one preferred embodiment, the cut-off value is the average mean signal obtained when the immobilized antigen is incubated with samples from an uninfected patient. In general, a sample generating a signal that is three standard deviations above the predetermined cut-off value is considered positive for *Chlamydia*-infection. In an alternate preferred embodiment, the cut-off value is determined using a Receiver Operator Curve, according to the method of Sackett et al., *Clinical Epidemiology: A Basic Science for Clinical Medicine*, Little Brown and Co., 1985, pp. 106-107. Briefly, in this embodiment, the cut-off value may be determined from a plot of pairs of true positive rates (*i.e.*, sensitivity) and false positive rates (100%-specificity) that correspond to each possible cut-off value for the diagnostic test result. The cut-off value on the plot that is the closest to the upper left-hand corner (*i.e.*, the value that encloses the largest area) is the most accurate cut-off value, and a sample generating a signal that is higher than the cut-off value determined by this method may be considered positive. Alternatively, the cut-off value may be shifted to the left along the plot, to minimize the false positive rate, or to the right, to minimize the false negative rate. In general, a sample generating a signal that is higher than the cut-off value determined by this method is considered positive for Chlamydial infection.

In a related embodiment, the assay is performed in a rapid flow-through or strip test format, wherein the antigen is immobilized on a membrane, such as nitrocellulose.

In the flow-through test, antibodies within the sample bind to the immobilized polypeptide as the sample passes through the membrane. A detection reagent (e.g., protein A-colloidal gold) then binds to the antibody-polypeptide complex as the solution containing the detection reagent flows through the membrane. The detection of bound detection reagent may then be performed as described above. In the strip test format, one end of the membrane to which polypeptide is bound is immersed in a solution containing the sample. The sample migrates along the membrane through a region containing detection reagent and to the area of immobilized polypeptide. Concentration of detection reagent at the polypeptide indicates the presence of anti-*Chlamydia* antibodies in the sample. Typically, the concentration of detection reagent at that site generates a pattern, such as a line, that can be read visually. The absence of such a pattern indicates a negative result. In general, the amount of polypeptide immobilized on the membrane is selected to generate a visually discernible pattern when the biological sample contains a level of antibodies that would be sufficient to generate a positive signal in an ELISA, as discussed above. Preferably, the amount of polypeptide immobilized on the membrane ranges from about 25 ng to about 1 μ g, and more preferably from about 50 ng to about 500 ng. Such tests can typically be performed with a very small amount (e.g., one drop) of patient serum or blood.

Of course, numerous other assay protocols exist that are suitable for use with the polypeptides of the present invention. The above descriptions are intended to be exemplary only. One example of an alternative assay protocol which may be usefully employed in such methods is a Western blot, wherein the proteins present in a biological sample are separated on a gel, prior to exposure to a binding agent. Such techniques are well known to those of skill in the art.

The present invention further provides agents, such as antibodies and antigen-binding fragments thereof, that specifically bind to a *Chlamydial* protein. As used herein, an antibody, or antigen-binding fragment thereof, is said to "specifically bind" to a *Chlamydial* protein if it reacts at a detectable level (within, for example, an ELISA) with a *Chlamydial* protein, and does not react detectably with unrelated proteins under similar conditions. As used herein, "binding" refers to a noncovalent association between two separate molecules such that a complex is formed. The ability to bind may be evaluated by, for example,

determining a binding constant for the formation of the complex. The binding constant is the value obtained when the concentration of the complex is divided by the product of the component concentrations. In general, two compounds are said to "bind," in the context of the present invention, when the binding constant for complex formation exceeds about 10^3 L/mol. The binding constant may be determined using methods well known in the art.

Binding agents may be further capable of differentiating between patients with and without a *Chlamydial* infection using the representative assays provided herein. In other words, antibodies or other binding agents that bind to a *Chlamydial* protein will generate a signal indicating the presence of a *Chlamydial* infection in at least about 20% of patients with the disease, and will generate a negative signal indicating the absence of the disease in at least about 90% of individuals without infection. To determine whether a binding agent satisfies this requirement, biological samples (e.g., blood, sera, sputum urine and/or tissue biopsies) from patients with and without *Chlamydial* infection (as determined using standard clinical tests) may be assayed as described herein for the presence of polypeptides that bind to the binding agent. It will be apparent that a statistically significant number of samples with and without the disease should be assayed. Each binding agent should satisfy the above criteria; however, those of ordinary skill in the art will recognize that binding agents may be used in combination to improve sensitivity.

Any agent that satisfies the above requirements may be a binding agent. For example, a binding agent may be a ribosome, with or without a peptide component, an RNA molecule or a polypeptide. In a preferred embodiment, a binding agent is an antibody or an antigen-binding fragment thereof. Antibodies may be prepared by any of a variety of techniques known to those of ordinary skill in the art. See, e.g., Harlow and Lane, *Antibodies: A Laboratory Manual*, Cold Spring Harbor Laboratory, 1988. In general, antibodies can be produced by cell culture techniques, including the generation of monoclonal antibodies as described herein, or via transfection of antibody genes into suitable bacterial or mammalian cell hosts, in order to allow for the production of recombinant antibodies. In one technique, an immunogen comprising the polypeptide is initially injected into any of a wide variety of mammals (e.g., mice, rats, rabbits, sheep or goats). In this step, the polypeptides of this invention may serve as the immunogen without modification.

Alternatively, particularly for relatively short polypeptides, a superior immune response may be elicited if the polypeptide is joined to a carrier protein, such as bovine serum albumin or keyhole limpet hemocyanin. The immunogen is injected into the animal host, preferably according to a predetermined schedule incorporating one or more booster immunizations, and the animals are bled periodically. Polyclonal antibodies specific for the polypeptide may then be purified from such antisera by, for example, affinity chromatography using the polypeptide coupled to a suitable solid support.

Monoclonal antibodies specific for an antigenic polypeptide of interest may be prepared, for example, using the technique of Kohler and Milstein, *Eur. J. Immunol.* 6:511-519, 1976, and improvements thereto. Briefly, these methods involve the preparation of immortal cell lines capable of producing antibodies having the desired specificity (*i.e.*, reactivity with the polypeptide of interest). Such cell lines may be produced, for example, from spleen cells obtained from an animal immunized as described above. The spleen cells are then immortalized by, for example, fusion with a myeloma cell fusion partner, preferably one that is syngeneic with the immunized animal. A variety of fusion techniques may be employed. For example, the spleen cells and myeloma cells may be combined with a nonionic detergent for a few minutes and then plated at low density on a selective medium that supports the growth of hybrid cells, but not myeloma cells. A preferred selection technique uses HAT (hypoxanthine, aminopterin, thymidine) selection. After a sufficient time, usually about 1 to 2 weeks, colonies of hybrids are observed. Single colonies are selected and their culture supernatants tested for binding activity against the polypeptide. Hybridomas having high reactivity and specificity are preferred.

Monoclonal antibodies may be isolated from the supernatants of growing hybridoma colonies. In addition, various techniques may be employed to enhance the yield, such as injection of the hybridoma cell line into the peritoneal cavity of a suitable vertebrate host, such as a mouse. Monoclonal antibodies may then be harvested from the ascites fluid or the blood. Contaminants may be removed from the antibodies by conventional techniques, such as chromatography, gel filtration, precipitation, and extraction. The polypeptides of this invention may be used in the purification process in, for example, an affinity chromatography step.

Within certain embodiments, the use of antigen-binding fragments of antibodies may be preferred. Such fragments include Fab fragments, which may be prepared using standard techniques. Briefly, immunoglobulins may be purified from rabbit serum by affinity chromatography on Protein A bead columns (Harlow and Lane, *Antibodies: A Laboratory Manual*, Cold Spring Harbor Laboratory, 1988) and digested by papain to yield Fab and Fc fragments. The Fab and Fc fragments may be separated by affinity chromatography on protein A bead columns.

Monoclonal antibodies of the present invention may be coupled to one or more therapeutic agents. Suitable agents in this regard include radionuclides, differentiation inducers, drugs, toxins, and derivatives thereof. Preferred radionuclides include ⁹⁰Y, ¹²³I, ¹²⁵I, ¹³¹I, ¹⁸⁶Re, ¹⁸⁸Re, ²¹¹At, and ²¹²Bi. Preferred drugs include methotrexate, and pyrimidine and purine analogs. Preferred differentiation inducers include phorbol esters and butyric acid. Preferred toxins include ricin, abrin, diphtheria toxin, cholera toxin, gelonin, Pseudomonas exotoxin, Shigella toxin, and pokeweed antiviral protein.

A therapeutic agent may be coupled (*e.g.*, covalently bonded) to a suitable monoclonal antibody either directly or indirectly (*e.g.*, via a linker group). A direct reaction between an agent and an antibody is possible when each possesses a substituent capable of reacting with the other. For example, a nucleophilic group, such as an amino or sulfhydryl group, on one may be capable of reacting with a carbonyl-containing group, such as an anhydride or an acid halide, or with an alkyl group containing a good leaving group (*e.g.*, a halide) on the other.

Alternatively, it may be desirable to couple a therapeutic agent and an antibody via a linker group. A linker group can function as a spacer to distance an antibody from an agent in order to avoid interference with binding capabilities. A linker group can also serve to increase the chemical reactivity of a substituent on an agent or an antibody, and thus increase the coupling efficiency. An increase in chemical reactivity may also facilitate the use of agents, or functional groups on agents, which otherwise would not be possible.

It will be evident to those skilled in the art that a variety of bifunctional or polyfunctional reagents, both homo- and hetero-functional (such as those described in the catalog of the Pierce Chemical Co., Rockford, IL), may be employed as the linker group.

Coupling may be effected, for example, through amino groups, carboxyl groups, sulfhydryl groups or oxidized carbohydrate residues. There are numerous references describing such methodology, *e.g.*, U.S. Patent No. 4,671,958, to Rodwell et al.

Where a therapeutic agent is more potent when free from the antibody portion of the immunoconjugates of the present invention, it may be desirable to use a linker group which is cleavable during or upon internalization into a cell. A number of different cleavable linker groups have been described. The mechanisms for the intracellular release of an agent from these linker groups include cleavage by reduction of a disulfide bond (*e.g.*, U.S. Patent No. 4,489,710, to Spitzer), by irradiation of a photolabile bond (*e.g.*, U.S. Patent No. 4,625,014, to Senter et al.), by hydrolysis of derivatized amino acid side chains (*e.g.*, U.S. Patent No. 4,638,045, to Kohn et al.), by serum complement-mediated hydrolysis (*e.g.*, U.S. Patent No. 4,671,958, to Rodwell et al.), and acid-catalyzed hydrolysis (*e.g.*, U.S. Patent No. 4,569,789, to Blattler et al.).

It may be desirable to couple more than one agent to an antibody. In one embodiment, multiple molecules of an agent are coupled to one antibody molecule. In another embodiment, more than one type of agent may be coupled to one antibody. Regardless of the particular embodiment, immunoconjugates with more than one agent may be prepared in a variety of ways. For example, more than one agent may be coupled directly to an antibody molecule, or linkers which provide multiple sites for attachment can be used. Alternatively, a carrier can be used.

A carrier may bear the agents in a variety of ways, including covalent bonding either directly or via a linker group. Suitable carriers include proteins such as albumins (*e.g.*, U.S. Patent No. 4,507,234, to Kato et al.), peptides and polysaccharides such as aminodextran (*e.g.*, U.S. Patent No. 4,699,784, to Shih et al.). A carrier may also bear an agent by noncovalent bonding or by encapsulation, such as within a liposome vesicle (*e.g.*, U.S. Patent Nos. 4,429,008 and 4,873,088). Carriers specific for radionuclide agents include radiohalogenated small molecules and chelating compounds. For example, U.S. Patent No. 4,735,792 discloses representative radiohalogenated small molecules and their synthesis. A radionuclide chelate may be formed from chelating compounds that include those containing nitrogen and sulfur atoms as the donor atoms for binding the metal, or metal oxide,

radionuclide. For example, U.S. Patent No. 4,673,562, to Davison et al. discloses representative chelating compounds and their synthesis.

A variety of routes of administration for the antibodies and immunoconjugates may be used. Typically, administration will be intravenous, intramuscular, subcutaneous or in site-specific regions by appropriate methods. It will be evident that the precise dose of the antibody/immunoconjugate will vary depending upon the antibody used, the antigen density, and the rate of clearance of the antibody.

Antibodies may be used in diagnostic tests to detect the presence of *Chlamydia* antigens using assays similar to those detailed above and other techniques well known to those of skill in the art, thereby providing a method for detecting Chlamydial infection in a patient.

Diagnostic reagents of the present invention may also comprise DNA sequences encoding one or more of the above polypeptides, or one or more portions thereof. For example, at least two oligonucleotide primers may be employed in a polymerase chain reaction (PCR) based assay to amplify *Chlamydia*-specific cDNA derived from a biological sample, wherein at least one of the oligonucleotide primers is specific for a DNA molecule encoding a polypeptide of the present invention. The presence of the amplified cDNA is then detected using techniques well known in the art, such as gel electrophoresis. Similarly, oligonucleotide probes specific for a DNA molecule encoding a polypeptide of the present invention may be used in a hybridization assay to detect the presence of an inventive polypeptide in a biological sample.

As used herein, the term "oligonucleotide primer/probe specific for a DNA molecule" means an oligonucleotide sequence that has at least about 80%, preferably at least about 90% and more preferably at least about 95%, identity to the DNA molecule in question. Oligonucleotide primers and/or probes which may be usefully employed in the inventive diagnostic methods preferably have at least about 10-40 nucleotides. In a preferred embodiment, the oligonucleotide primers comprise at least about 10 contiguous nucleotides of a DNA molecule encoding one of the polypeptides disclosed herein. Preferably, oligonucleotide probes for use in the inventive diagnostic methods comprise at least about 15 contiguous oligonucleotides of a DNA molecule encoding one of the polypeptides disclosed

herein. Techniques for both PCR based assays and hybridization assays are well known in the art (see, for example, Mullis *et al. Ibid*; Ehrlich, *Ibid*). Primers or probes may thus be used to detect *Chlamydia*-specific sequences in biological samples. DNA probes or primers comprising oligonucleotide sequences described above may be used alone or in combination with each other.

The following Examples are offered by way of illustration and not by way of limitation.

EXAMPLE 1

ISOLATION OF DNA SEQUENCES ENCODING CHLAMYDIA ANTIGENS

Chlamydia antigens of the present invention were isolated by expression cloning of a genomic DNA library of *Chlamydia trachomatis* LGV II essentially as described by Sanderson *et al.* (*J. Exp. Med.*, 1995, 182:1751-1757) and were shown to induce PBMC proliferation and IFN- γ in an immunoreactive T cell line.

A *Chlamydia*-specific T cell line was generated by stimulating PBMCs from a normal donor with no history of chlamydial genital tract infection with elementary bodies of *Chlamydia trachomatis* LGV II. This T cell line, referred to as TCL-8, was found to recognize both *Chlamydia trachomatis* and *Chlamydia pneumonia* infected monocyte-derived dendritic cells.

A randomly sheared genomic library of *Chlamydia trachomatis* LGV II was constructed in Lambda ZAP (Stratagene, La Jolla, CA) and the amplified library plated out in 96 well microtiter plates at a density of 30 clones/well. Bacteria were induced to express recombinant protein in the presence of 2 mM IPTG for 3 h, then pelleted and resuspended in 200 μ l of RPMI 10% FBS. 10 μ l of the induced bacterial suspension was transferred to 96 well plates containing autologous monocyte-derived dendritic cells. After a 2 h incubation, dendritic cells were washed to remove free *E. coli* and *Chlamydia*-specific T cells were added. Positive *E. coli* pools were identified by determining IFN- γ production and proliferation of the T cells in response to the pools.

Four positive pools were identified, which were broken down to yield four pure clones (referred to as 1-B1-66, 4-D7-28, 3-G3-10 and 10-C10-31), with insert sizes of

481 bp, 183 bp, 110 bp and 1400 bp, respectively. The determined DNA sequences for 1-B1-66, 4-D7-28, 3-G3-10 and 10-C10-31 are provided in SEQ ID NO: 1-4, respectively. Clone 1-B1-66 is approximately in region 536690 of the *C. trachomatis* genome (NCBI *C. trachomatis* database). Within clone 1-B1-66, an open reading frame (ORF) has been identified (nucleotides 115 - 375) that encodes a previously identified 9 kDa protein (Stephens, et al. Genbank Accession No. AE001320), the sequence of which is provided in SEQ ID NO: 5). Clone 4-D7-28 is a smaller region of the same ORF (amino acids 22-82 of 1-B1-66). Clone 3-G3-10 is approximately in region 74559 of the *C. trachomatis* genome. The insert is cloned in the antisense orientation with respect to its orientation in the genome. The clone 10-C10-31 contains an open reading frame that corresponds to a previously published sequence for S13 ribosomal protein from *Chlamydia trachomatis* (Gu, L. et al. *J. Bacteriology*, 177:2594-2601, 1995). The predicted protein sequences for 4-D7-28 and 10-C10-31 are provided in SEQ ID NO: 6 and 12, respectively. Predicted protein sequences for 3-G3-10 are provided in SEQ ID NO: 7-11.

In a related series of screening studies, an additional T cell line was used to screen the genomic DNA library of *Chlamydia trachomatis* LGV II described above. A *Chlamydia*-specific T cell line (TCT-1) was derived from a patient with a chlamydial genital tract infection by stimulating patient PBMC with autologous monocyte-derived dendritic cells infected with elementary bodies of *Chlamydia trachomatis* LGV II. One clone, 4C9-18 (SEQ ID NO: 21), containing a 1256 bp insert, elicited a specific immune response, as measured by standard proliferation assays, from the *Chlamydia*-specific T cell line TCT-1. Subsequent analysis revealed this clone to contain three known sequences: lipoamide dehydrogenase (Genbank Accession No. AE001326), disclosed in SEQ ID NO: 22; a hypothetical protein CT429 (Genbank Accession No. AE001316), disclosed in SEQ ID NO: 23; and part of an open reading frame of ubiquinone methyltransferase CT428 (Genbank Accession No. AE001316), disclosed in SEQ ID NO: 24.

In further studies involving clone 4C9-18 (SEQ ID NO: 21), the full-length amino acid sequence for lipoamide dehydrognase (SEQ ID NO: 22) from *C. trachomatis* (LGV II) was expressed in clone CtL2-LPDA-FL, as disclosed in SEQ ID NO: 90.

To further characterize the open reading frame containing the T cell

stimulating epitope(s), a cDNA fragment containing nucleotides 1-695 of clone 4C9-18 with a cDNA sequence encoding a 6X-Histidine tag on the amino terminus was subcloned into the NdeI/EcoRI site of the pET17b vector (Novagen, Madison, WI), referred to as clone 4C9-18#2 BL21 pLysS (SEQ ID NO: 25, with the corresponding amino acid sequence provided in SEQ ID NO: 26) and transformed into *E. coli*. Selective induction of the transformed *E. coli* with 2 mM IPTG for three hours resulted in the expression of a 26 kDa protein from clone 4C9-18#2 BL21 pLysS, as evidenced by standard Coomassie-stained SDS-PAGE. To determine the immunogenicity of the protein encoded by clone 4C9-18#2 BL21 pLysS, *E. coli* expressing the 26 kDa protein were titered onto 1×10^4 monocyte-derived dendritic cells and incubated for two hours. The dendritic cell cultures were washed and 2.5×10^4 T cells (TCT-1) added and allowed to incubate for an additional 72 hours, at which time the level of IFN- γ in the culture supernatant was determined by ELISA. As shown in Fig. 1, the T-cell line TCT-1 was found to respond to induced cultures as measured by IFN-g, indicating a *Chlamydia*-specific T-cell response against the lipoamide dehydrogenase sequence. Similarly, the protein encoded by clone 4C9-18#2 BL21 pLysS was shown to stimulate the TCT-1 T-cell line by standard proliferation assays.

Subsequent studies to identify additional *Chlamydia trachomatis* antigens using the above-described CD4+ T-cell expression cloning technique yielded additional clones. The TCT-1 and TCL-8 *Chlamydia*-specific T-cell lines, as well as the TCP-21 T-cell line were utilized to screen the *Chlamydia trachomatis* LGVII genomic library. The TCP-21 T-cell line was derived from a patient having a humoral immune response to *Chlamydia pneumoniae*. The TCT-1 cell line identified 37 positive pools, the TCT-3 cell line identified 41 positive pools and the TCP-21 cell line identified 2 positive pools. The following clones were derived from 10 of these positive pools. Clone 11-A3-93 (SEQ ID NO: 64), identified by the TCP-21 cell line, is a 1339 bp genomic fragment sharing homology to the HAD superfamily (CT103). The second insert in the same clone shares homology with the fab I gene (CT104) present on the complementary strand. Clone 11-C12-91 (SEQ ID NO: 63), identified using the TCP-21 cell line, has a 269 bp insert that is part of the OMP2 gene (CT443) and shares homology with the 60 kDa cysteine rich outer membrane protein of *C. pneumoniae*.

Clone 11-G10-46, (SEQ ID NO: 62), identified using the TCT-3 cell line, contains a 688 bp insert that shares homology to the hypothetical protein CT610. Clone 11-G1-34, (SEQ ID NO: 61), identified using the TCT-3 cell line, has two partial open reading frames (ORF) with an insert size of 1215 bp. One ORF shares homology to the malate dehydrogenase gene (CT376), and the other ORF shares homology to the glycogen hydrolase gene (CT042). Clone 11-H3-68, (SEQ ID NO: 60), identified using the TCT-3 cell line, has two ORFs with a total insert size of 1180 bp. One partial ORF encodes the plasmid-encoded PGP6-D virulence protein while the second ORF is a complete ORF for the L1 ribosomal gene (CT318). Clone 11-H4-28, (SEQ ID NO: 59), identified using the TCT-3 cell line, has an insert size of 552 bp and is part of the ORF for the dnaK gene (CT396). Clone 12-B3-95, (SEQ ID NO: 58), identified using the TCT-1 cell line, has an insert size of 463 bp and is a part of the ORF for the lipoamide dehydrogenase gene (CT557). Clones 15-G1-89 and 12-B3-95 are identical, (SEQ ID NO: 55 and 58, respectively), identified using the TCT-1 cell line, has an insert size of 463 bp and is part of the ORF for the lipoamide dehydrogenase gene (CT557). Clone 12-G3-83, (SEQ ID NO: 57), identified using the TCT-1 cell line, has an insert size of 1537 bp and has part of the ORF for the hypothetical protein CT622.

Clone 23-G7-68, (SEQ ID NO: 79), identified using the TCT-3 cell line, contains a 950 bp insert and contains a small part of the L11 ribosomal ORF, the entire ORF for L1 ribosomal protein and a part of the ORF for L10 ribosomal protein. Clone 22-F8-91, (SEQ ID NO: 80), identified using the TCT-1 cell line, contains a 395 bp insert that contains a part of the pmpC ORF on the complementary strand of the clone. Clone 21-E8-95, (SEQ ID NO: 81), identified using the TCT-3 cell line, contains a 2,085 bp insert which contains part of CT613 ORF, the complete ORF for CT612, the complete ORF for CT611 and part of the ORF for CT610. Clone 19-F12-57, (SEQ ID NO: 82), identified using the TCT-3 cell line, contains a 405 bp insert which contains part of the CT 858 ORF and a small part of the recA ORF. Clone 19-F12-53, (SEQ ID NO: 83), identified using the TCT-3 cell line, contains a 379 bp insert that is part of the ORF for CT455 encoding glutamyl tRNA synthetase. Clone 19-A5-54, (SEQ ID NO: 84), identified using the TCT-3 cell line, contains a 715 bp insert that is part of the ORF3 (complementary strand of the clone) of the cryptic plasmid. Clone 17-E11-72, (SEQ ID NO: 85), identified using the TCT-1 cell line,

contains a 476 bp insert that is part of the ORF for Opp_2 and pmpD. The pmpD region of this clone is covered by the pmpD region of clone 15-H2-76. Clone 17-C1-77, (SEQ ID NO: 86), identified using the TCT-3 cell line, contains a 1551 bp insert that is part of the CT857 ORF, as well as part of the CT858 ORF. Clone 15-H2-76, (SEQ ID NO: 87), identified using the TCT-1 cell line, contains a 3,031 bp insert that contains a large part of the pmpD ORF, part of the CT089 ORF, as well as part of the ORF for SycE. Clone 15-A3-26, (SEQ ID NO: 88), contains a 976 bp insert that contains part of the ORF for CT858. Clone 17-G4-36, (SEQ ID NO: 267), identified using the TCT-10 cell line, contains a 680 bp insert that is in frame with beta-gal in the plasmid and shares homology to part of the ORF for DNA-directed RNA polymerase beta subunit (CT315 in SerD).

Several of the clones described above share homology to various polymorphic membrane proteins. The genomic sequence of *Chlamydia trachomatis* contains a family of nine polymorphic membrane protein genes, referred to as pmp. These genes are designated pmpA, pmpB, pmpC, pmpD, pmpE, pmpF, pmpG, pmpH and pmpI. Proteins expressed from these genes are believed to be of biological relevance in generating a protective immune response to a *Chlamydial* infection. In particular, pmpC, pmpD, pmpE and pmpI contain predictable signal peptides, suggesting they are outer membrane proteins, and therefore, potential immunological targets.

Based on the *Chlamydia trachomatis* LGVII serovar sequence, primer pairs were designed to PCR amplify the full-length fragments of pmpC, pmpD, pmpE, pmpG, pmpH and pmpI. The resulting fragments were subcloned into the DNA vaccine vector JA4304 or JAL, which is JA4304 with a modified linker (SmithKline Beecham, London, England). Specifically, PmpC was subcloned into the JAL vector using the 5' oligo GAT AGG CGC GCC GCA ATC ATG AAA TTT ATG TCA GCT ACT GCT G and the 3' oligo CAG AAC GCG TTT AGA ATG TCA TAC GAG CAC CGC A, as provided in SEQ ID NO: 197 and 198, respectively. PCR amplification of the gene under conditions well known in the art and ligation into the 5' ASCI/3' MluI sites of the JAL vector was completed after inserting the short nucleotide sequence GCAATC (SEQ ID NO: 199) upstream of the ATG to create a Kozak-like sequence. The resulting expression vector contained the full-length pmpC gene comprising 5325 nucleotides (SEQ ID NO: 173) containing the hypothetical

signal sequence, which encodes a 187 kD protein (SEQ ID NO: 179). The pmpD gene was subcloned into the JA4304 vaccine vector following PCR amplification of the gene using the following oligos: 5' oligo- TGC AAT CAT GAG TTC GCA GAA AGA TAT AAA AAG C (SEQ ID NO: 200) and 3' oligo- CAG AGC TAG CTT AAA AGA TCA ATC GCA ATC CAG TAT TC (SEQ ID NO: 201). The gene was ligated into the a 5' blunted HIII/3' MluI site of the JA4304 vaccine vector using standard techniques well known in the art. The CAATC (SEQ ID NO: 202) was inserted upstream of the ATG to create a Kozak-like sequence. This clone is unique in that the last threonine of the HindIII site is missing due to the blunting procedure, as is the last glycine of the Kozak-like sequence. The insert, a 4593 nucleotide fragment (SEQ ID NO: 172) is the full-length gene for pmpD containing the hypothetical signal sequence, which encodes a 161 kD protein (SEQ ID NO: 178). PmpE was subcloned into the JA4304 vector using the 5' oligo- TGC AAT CAT GAA AAA AGC GTT TTT CTT TTT C (SEQ ID NO: 203), and the 3' oligo- CAG AAC GCG TCT AGA ATC GCA GAG CAA TTT C (SEQ ID NO: 204). Following PCR amplification, the gene was ligated into the 5' blunted HIII/3' MluI site of JA4304. To facilitate this, a short nucleotide sequence, TGCAATC (SEQ ID NO: 293), was added upstream of the initiation codon for creating a Kozak-like sequence and reconstituting the HindIII site. The insert is the full-length pmpE gene (SEQ ID NO: 171) containing the hypothetical signal sequence. The pmpE gene encodes a 105 kD protein (SEQ ID NO: 177). The pmpG gene was PCR amplified using the 5' oligo- GTG CAA TCA TGA TTC CTC AAG GAA TTT ACG (SEQ ID NO: 205), and the 3' oligo- CAG AAC GCG TTT AGA ACC GGA CTT TAC TTC C (SEQ ID NO: 206) and subcloned into the JA4304 vector. Similar cloning strategies were followed for the pmpI and pmpK genes. In addition, primer pairs were designed to PCR amplify the full-length or overlapping fragments of the pmp genes, which were then subcloned for protein expression in the pET17b vector (Novagen, Madison, WI) and transfected into E. coli BL21 pLysS for expression and subsequent purification utilizing the histidine-nickel chromatographic methodology provided by Novagen. Several of the genes encoding the recombinant proteins, as described below, lack the native signal sequence to facilitate expression of the protein. Full-length protein expression of pmpC was accomplished through expression of two overlapping fragments, representing the amino and

carboxy termini. Subcloning of the pmpC-amino terminal portion, which lacks the signal sequence, (SEQ ID NO: 187, with the corresponding amino acid sequence provided in SEQ ID NO: 195) used the 5' oligo- CAG ACA TAT GCA TCA CCA TCA CCA CGA GGC GAG CTC GAT CCA AGA TC (SEQ ID NO: 207), and the 3' oligo- CAG AGG TAC CTC AGA TAG CAC TCT CTC CTA TTA AAG TAG G (SEQ ID NO: 208) into the 5' NdeI/3' KPN cloning site of the vector. The carboxy terminus portion of the gene, pmpC-carboxy terminal fragment (SEQ ID NO: 186, with the corresponding amino acid sequence provided in SEQ ID NO: 194), was subcloned into the 5' NheI/3' KPN cloning site of the expression vector using the following primers: 5' oligo- CAG AGC TAG CAT GCA TCA CCA TCA CCA TCA CGT TAA GAT TGA GAA CTT CTC TGG C (SEQ ID NO: 209), and 3' oligo- CAG AGG TAC CTT AGA ATG TCA TAC GAG CAC CGC AG (SEQ ID NO: 210). PmpD was also expressed as two overlapping proteins. The pmpD-amino terminal portion, which lacks the signal sequence, (SEQ ID NO: 185, with the corresponding amino acid sequence provided in SEQ ID NO: 193) contains the initiating codon of the pET17b and is expressed as a 80 kD protein. For protein expression and purification purposes, a six-histidine tag follows the initiation codon and is fused at the 28th amino acid (nucleotide 84) of the gene. The following primers were used, 5' oligo, CAG ACA TAT GCA TCA CCA TCA CCA TCA CGG GTT AGC (SEQ ID NO: 211), and the 3' oligo- CAG AGG TAC CTC AGC TCC TCC AGC ACA CTC TCT TC (SEQ ID NO: 212), to splice into the 5' NdeI/3' KPN cloning site of the vector. The pmpD-carboxy terminus portion (SEQ ID NO: 184) was expressed as a 92 kD protein (SEQ ID NO: 192). For expression and subsequent purification, an additional methionine, alanine and serine was included, which represent the initiation codon and the first two amino acids from the pET17b vector. A six-histidine tag downstream of the methionine, alanine and serine is fused at the 691st amino acid (nucleotide 2073) of the gene. The 5' oligo- CAG AGC TAG CCA TCA CCA TCA CCA TCA CGG TGC TAT TTC TTG CTT ACG TGG (SEQ ID NO: 213) and the 3' oligo- CAG AGG TAC TTn AAA AGA TCA ATC GCA ATC CAG TAT TCG (SEQ ID NO: 214) were used to subclone the insert into the 5' NheI/3' KPN cloning site of the expression vector. PmpE was expressed as a 106kD protein (SEQ ID NO: 183 with the corresponding amino acid sequence provided in SEQ ID NO: 191). The pmpE insert also

lacks the native signal sequence. PCR amplification of the gene under conditions well known in the art was performed using the following oligo primers: 5' oligo- CAG AGG ATC CAC ATC ACC ATC ACC ATC ACG GAC TAG CTA GAG AGG TTC (SEQ ID NO: 215), and the 3' oligo- CAG AGA ATT CCT AGA ATC GCA GAG CAA TTT C (SEQ ID NO: 216), and the amplified insert was ligated into a 5' BamHI/3' EcoRI site of JA4304. The short nucleotide sequence, as provided in SEQ ID NO: 217, was inserted upstream of the initiation codon for creating the Kozak-like sequence and reconstituting the HindIII site. The expressed protein contains the initiation codon and the downstream 21 amino acids from the pET17b expression vector, i.e., MASMTGGQQMGRDSSLVPSSDP (SEQ ID NO: 218). In addition, a six-histidine tag is included upstream of the sequence described above and is fused at the 28th amino acid (nucleotide 84) of the gene, which eliminates the hypothetical signal peptide. The sequences provided in SEQ ID NO: 183 with the corresponding amino acid sequence provided in SEQ ID NO: 191 do not include these additional sequences. The pmpG gene (SEQ ID NO: 182, with the corresponding amino acid sequence provided in SEQ ID No; 190) was PCR amplified under conditions well known in the art using the following oligo primers: 5' oligo- CAG AGG TAC CGC ATC ACC ATC ACC ATC ACA TGA TTC CTC AAG GAA TTT ACG (SEQ ID NO: 219), and the 3' oligo- CAG AGC GGC CGC TTA GAA CCG GAC TTT ACT TCC (SEQ ID NO: 220), and ligated into the 5' KPN/3' NotI cloning site of the expression vector. The expressed protein contains an additional amino acid sequence at the amino end, namely, MASMTGGQQNGRDSSLVPHHHHHH (SEQ ID NO: 221), which comprises the initiation codon and additional sequence from the pET17b expression vector. The pmpI gene (SEQ ID NO: 181, with the corresponding amino acid sequence provided in SEQ ID No; 189) was PCR amplified under conditions well known in the art using the following oligo primers: 5' oligo- CAG AGC TAG CCA TCA CCA TCA CCA TCA CCT CTT TGG CCA GGA TCC C (SEQ ID NO: 222), and the 3' oligo- CAG AAC TAG TCT AGA ACC TGT AAG TGG TCC (SEQ ID NO: 223), and ligated into the expression vector at the 5' NheI/3' SpeI cloning site. The 95 kD expressed protein contains the initiation codon plus an additional alanine and serine from the pET17b vector at the amino end of the protein. In addition, a six-histidine tag is fused at the 21st amino acid of the gene, which eliminates the hypothetical signal peptide.

Clone 14H1-4, (SEQ ID NO: 56), identified using the TCT-3 cell line, contains a complete ORF for the TSA gene, thiol specific antioxidant – CT603 (the CT603 ORF is a homolog of CPn0778 from *C. pneumoniae*). The TSA open reading frame in clone 14-H1-4 was amplified such that the expressed protein possess an additional methionine and a 6x histidine tag (amino terminal end). This amplified insert was sub-cloned into the Nde/EcoRI sites of the pET17b vector. Upon induction of this clone with IPTG, a 22.6 kDa protein was purified by Ni-NTA agarose affinity chromatography. The determined amino acid sequence for the 195 amino acid ORF of clone 14-H1-4 encoding the TSA gene is provided in SEQ ID NO: 65. Further analysis yielded a full-length clone for the TSA gene, referred to as CTL2-TSA-FL, with the full-length amino acid sequence provided in SEQ ID NO: 92.

Further studies yielded 10 additional clones identified by the TCT-1 and TCT-3 T-cell lines, as described above. The clones identified by the TCT-1 line are: 16-D4-22, 17-C5-19, 18-C5-2, 20-G3-45 and 21-C7-66; clones identified by the TCT-3 cell line are: 17-C10-31, 17-E2-9, 22-A1-49 and 22-B3-53. Clone 21-G12-60 was recognized by both the TCT-1 and TCT-3 T cell lines. Clone 16-D4-22 (SEQ ID NO: 119), identified using the TCT-1 cell line contains a 953 bp insert that contains two genes, parts of open reading frame 3 (ORF3) and ORF4 of the *C. trachomatis* plasmid for growth within mammalian cells. Clone 17-C5-19 (SEQ ID NO: 118), contains a 951 bp insert that contains part of the ORF for DT431, encoding for clpP_1 protease and part of the ORF for CT430 (diaminopimelate epimerase). Clone 18-C5-2 (SEQ ID NO: 117) is part of the ORF for S1 ribosomal protein with a 446 bp insert that was identified using the TCT-1 cell line. Clone 20-G3-45 (SEQ ID NO: 116), identified by the TCT-1 cell line, contains a 437 bp insert that is part of the pmpB gene (CT413). Clone 21-C7-66 (SEQ ID NO: 115), identified by the TCT-1 line, contains a 995bp insert that encodes part of the dnaK like protein. The insert of this clone does not overlap with the insert of the TCT-3 clone 11-H4-28 (SEQ ID NO: 59), which was shown to be part of the dnaK gene CT396. Clone 17-C10-31 (SEQ ID NO: 114), identified by the TCT-3 cell line, contains a 976 bp insert. This clone contains part of the ORF for CT858, a protease containing IRBP and DHR domains. Clone 17-E2-9 (SEQ ID NO: 113) contains part of ORFs for two genes, CT611 and CT610, that span a 1142 bp insert. Clone 22-A1-49

(SEQ ID NO: 112), identified using the TCT-3 line, also contains two genes in a 698 bp insert. Part of the ORF for CT660 (DNA gyrase{gyrA_2}) is present on the top strand whereas the complete ORF for a hypothetical protein CT659 is present on the complementary strand. Clone 22-B3-53 (SEQ ID NO: 111), identified by the TCT-1 line, has a 267 bp insert that encodes part of the ORF for GroEL (CT110). Clone 21-G12-60 (SEQ ID NO: 110), identified by both the TCT-1 and TCT-3 cell lines contains a 1461 bp insert that contains partial ORFs for hypothetical proteins CT875, CT229 and CT228.

Additional *Chlamydia* antigens were obtained by screening a genomic expression library of *Chlamydia trachomatis* (LGV II serovar) in Lambda Screen-1 vector (Novagen, Madison, WI) with sera pooled from several *Chlamydia*-infected individuals using techniques well known in the art. The following immuno-reactive clones were identified and the inserts containing *Chlamydia* genes sequenced: CTL2#1 (SEQ ID NO: 71); CTL2#2 (SEQ ID NO: 70); CTL2#3-5' (SEQ ID NO: 72, a first determined genomic sequence representing the 5' end); CTL2#3-3' (SEQ ID NO: 73, a second determined genomic sequence representing the 3' end); CTL2#4 (SEQ ID NO: 53); CTL2#5 (SEQ ID NO: 69); CTL2#6 (SEQ ID NO: 68); CTL2#7 (SEQ ID NO: 67); CTL2#8b (SEQ ID NO: 54); CTL2#9 (SEQ ID NO: 66); CTL2#10-5' (SEQ ID NO: 74, a first determined genomic sequence representing the 5' end); CTL2#10-3' (SEQ ID NO: 75, a second determined genomic sequence representing the 3' end); CTL2#11-5' (SEQ ID NO: 45, a first determined genomic sequence representing the 5' end); CTL2#11-3' (SEQ ID NO: 44, a second determined genomic sequence representing the 3' end); CTL2#12 (SEQ ID NO: 46); CTL2#16-5' (SEQ ID NO: 47); CTL2#18-5' (SEQ ID NO: 49, a first determined genomic sequence representing the 5' end); CTL2#18-3' (SEQ ID NO: 48, a second determined genomic sequence representing the 3' end); CTL2#19-5' (SEQ ID NO: 76, the determined genomic sequence representing the 5' end); CTL2#21 (SEQ ID NO: 50); CTL2#23 (SEQ ID NO: 51; and CTL2#24 (SEQ ID NO: 52).

Additional *Chlamydia trachomatis* antigens were identified by serological expression cloning. These studies used sera pooled from several *Chlamydia*-infected individuals, as described above, but, IgA, and IgM antibodies were used in addition to IgG as a secondary antibody. Clones screened by this method enhance detection of antigens

recognized by an early immune response to a *Chlamydial* infection, that is a mucosal humoral immune response. The following immunoreactive clones were characterized and the inserts containing *Chlamydia* genes sequenced: CTL2gam-1 (SEQ ID NO: 290), CTL2gam-2 (SEQ ID NO: 289), CTL2gam-5 (SEQ ID NO: 288), CTL2gam-6-3' (SEQ ID NO: 287, a second determined genomic sequence representing the 3' end), CTL2gam-6-5' (SEQ ID NO: 286, a first determined genomic sequence representing the 5' end), CTL2gam-8 (SEQ ID NO: 285), CTL2gam-10 (SEQ ID NO: 284), CTL2gam-13 (SEQ ID NO: 283), CTL2gam-15-3' (SEQ ID NO: 282, a second determined genomic sequence representing the 3' end), CTL2gam-15-5' (SEQ ID NO: 281, a first determined genomic sequence representing the 5' end), CTL2gam-17 (SEQ ID NO: 280), CTL2gam-18 (SEQ ID NO: 279), CTL2gam-21 (SEQ ID NO: 278), CTL2gam-23 (SEQ ID NO: 277), CTL2gam-24 (SEQ ID NO: 276), CTL2gam-26 (SEQ ID NO: 275), CTL2gam-27 (SEQ ID NO: 274), CTL2gam-28 (SEQ ID NO: 273), CTL2gam-30-3' (SEQ ID NO: 272, a second determined genomic sequence representing the 3' end) and CTL2gam-30-5' (SEQ ID NO: 271, a first determined genomic sequence representing the 5' end).

EXAMPLE 2

INDUCTION OF T CELL PROLIFERATION AND INTERFERON- γ PRODUCTION BY CHLAMYDIA TRACHOMATIS ANTIGENS

The ability of recombinant *Chlamydia trachomatis* antigens to induce T cell proliferation and interferon- γ production is determined as follows.

Proteins are induced by IPTG and purified by Ni-NTA agarose affinity chromatograph (Webb et al., *J. Immunology* 157:5034-5041, 1996). The purified polypeptides are then screened for the ability to induce T-cell proliferation in PBMC preparations. PBMCs from *C. trachomatis* patients as well as from normal donors whose T-cells are known to proliferate in response to *Chlamydia* antigens, are cultured in medium comprising RPMI 1640 supplemented with 10% pooled human serum and 50 μ g/ml gentamicin. Purified polypeptides are added in duplicate at concentrations of 0.5 to 10 μ g/mL. After six days of culture in 96-well round-bottom plates in a volume of 200 μ l, 50 μ l

of medium is removed from each well for determination of IFN- γ levels, as described below. The plates are then pulsed with 1 μ Ci/well of tritiated thymidine for a further 18 hours, harvested and tritium uptake determined using a gas scintillation counter. Fractions that result in proliferation in both replicates three fold greater than the proliferation observed in cells cultured in medium alone are considered positive.

IFN- γ is measured using an enzyme-linked immunosorbent assay (ELISA). ELISA plates are coated with a mouse monoclonal antibody directed to human IFN- γ (PharMingen, San Diego, CA) in PBS for four hours at room temperature. Wells are then blocked with PBS containing 5% (W/V) non-fat dried milk for 1 hour at room temperature. The plates are washed six times in PBS/0.2% TWEEN-20 and samples diluted 1:2 in culture medium in the ELISA plates are incubated overnight at room temperature. The plates are again washed and a polyclonal rabbit anti-human IFN- γ serum diluted 1:3000 in PBS/10% normal goat serum is added to each well. The plates are then incubated for two hours at room temperature, washed and horseradish peroxidase-coupled anti-rabbit IgG (Sigma Chemical So., St. Louis, MO) is added at a 1:2000 dilution in PBS/5% non-fat dried milk. After a further two hour incubation at room temperature, the plates are washed and TMB substrate added. The reaction is stopped after 20 min with 1 N sulfuric acid. Optical density is determined at 450 nm using 570 nm as a reference wavelength. Fractions that result in both replicates giving an OD two fold greater than the mean OD from cells cultured in medium alone, plus 3 standard deviations, are considered positive.

Using the above methodology, recombinant 1B1-66 protein (SEQ ID NO: 5) as well as two synthetic peptides corresponding to amino acid residues 48-67 (SEQ ID NO: 13; referred to as 1-B1-66/48-67) and 58-77 (SEQ ID NO: 14, referred to as 1B1-66/58-77), respectively, of SEQ ID NO: 5, were found to induce a proliferative response and IFN- γ production in a Chlamydia-specific T cell line used to screen a genomic library of *C. trachomatis* LGV II.

Further studies have identified a *C. trachomatis*-specific T-cell epitope in the ribosomal S13 protein. Employing standard epitope mapping techniques well known in the art, two T-cell epitopes in the ribosomal S13 protein (rS13) were identified with a *Chlamydia*-specific T-cell line from donor CL-8 (T-cell line TCL-8 EB/DC). Fig. 8

illustrates that the first peptide, rS13 1-20 (SEQ ID NO: 106), is 100% identical with the corresponding *C. pneumoniae* sequence, explaining the cross-reactivity of the T-cell line to recombinant *C. trachomatis*- and *C. pneumoniae*-rS13. The response to the second peptide rS13 56-75 (SEQ ID NO: 108) is *C. trachomatis*-specific, indicating that the rS13 response in this healthy asymptomatic donor was elicited by exposure to *C. trachomatis* and not to *C. pneumoniae*, or any other microbial infection.

As described in Example 1, Clone 11-C12-91 (SEQ ID NO: 63), identified using the TCP-21 cell line, has a 269 bp insert that is part of the OMP2 gene (CT443) and shares homology with the 60 kDa cysteine rich outer membrane protein of *C. pneumoniae*, referred to as OMBC. To further define the reactive epitope(s), epitope mapping was performed using a series of overlapping peptides and the immunoassay previously described. Briefly, proliferative responses were determined by stimulating 2.5×10^4 TCP-21 T-cells in the presence of 1×10^4 monocyte-derived dendritic cells with either non-infectious elementary bodies derived from *C. trachomatis* and *C. pneumoniae*, or peptides derived from the protein sequence of *C. trachomatis* or *C. pneumoniae* OMBC protein (0.1 μ g/ml). The TCP-21 T-cells responded to epitopes CT-OMCB #167-186, CT-OMCB #171-190, CT-OMCB #171-186, and to a lesser extent, CT-OMCB #175-186 (SEQ ID NO: 249-252, respectively). Notably, the TCP-21 T-cell line also gave a proliferative response to the homologous *C. pneumoniae* peptide CP-OMCB #171-186 (SEQ ID NO: 253), which was equal to or greater than the response to the *C. trachomatis* peptides. The amino acid substitutions in position two (i.e., Asp for Glu) and position four (i.e., Cys for Ser) did not alter the proliferative response of the T-cells and therefore demonstrating this epitope to be a cross-reactive epitope between *C. trachomatis* and *C. pneumoniae*.

To further define the epitope described above, an additional T-cell line, TCT-3, was used in epitope mapping experiments. The immunoassays were performed as described above, except that only peptides from *C. trachomatis* were tested. The T-cells gave a proliferative response to two peptides, CT-OMCB #152-171 and CT-OMCB #157-176 (SEQ ID NO: 246 and 247, respectively), thereby defining an additional immunogenic epitope in the cysteine rich outer membrane protein of *C. trachomatis*.

Clone 14H1-4, (SEQ ID NO: 56, with the corresponding full-length amino

acid sequence provided in SEQ ID NO: 92), was identified using the TCT-3 cell line in the CD4 T-cell expression cloning system previously described, and was shown to contain a complete ORF for the, thiol specific antioxidant gene (CT603), referred to as TSA. Epitope mapping immunoassays were performed, as described above, to further define the epitope. The TCT-3 T-cells line exhibited a strong proliferative response to the overlapping peptides CT-TSA #96-115, CT-TSA #101-120 and CT-TSA #106-125 (SEQ ID NO: 254-256, respectively) demonstrating an immunoreactive epitope in the thiol specific antioxidant gene of *C. trachomatis* serovar LGVII.

EXAMPLE 3

PREPARATION OF SYNTHETIC POLYPEPTIDES

Polyptides may be synthesized on a Millipore 9050 peptide synthesizer using FMOC chemistry with HPTU (O-Benzotriazole-N,N,N',N'-tetramethyluronium hexafluorophosphate) activation. A Gly-Cys-Gly sequence may be attached to the amino terminus of the peptide to provide a method of conjugating or labeling of the peptide. Cleavage of the peptides from the solid support may be carried out using the following cleavage mixture: trifluoroacetic acid:ethanedithiol:thioanisole:water:phenol (40:1:2:2:3). After cleaving for 2 hours, the peptides may be precipitated in cold methyl-t-butyl-ether. The peptide pellets may then be dissolved in water containing 0.1% trifluoroacetic acid (TFA) and lyophilized prior to purification by C18 reverse phase HPLC. A gradient of 0-60% acetonitrile (containing 0.1% TFA) in water (containing 0.1% TFA) may be used to elute the peptides. Following lyophilization of the pure fractions, the peptides may be characterized using electrospray mass spectrometry and by amino acid analysis.

EXAMPLE 4

ISOLATION AND CHARACTERIZATION OF DNA SEQUENCES ENCODING
CHLAMYDIA ANTIGENS USING RETROVIRAL EXPRESSION VECTOR SYSTEMS
 AND SUBSEQUENT IMMUNOLOGICAL ANALYSIS

A genomic library of *Chlamydia trachomatis* LGV II was constructed by limited digests using BamHI, BglII, BstYI and MboI restriction enzymes. The restriction digest fragments were subsequently ligated into the BamHI site of the retroviral vectors pBIB-KS1,2,3. This vector set was modified to contain a Kosak translation initiation site and stop codons in order to allow expression of proteins from short DNA genomic fragments, as shown in Fig. 2. DNA pools of 80 clones were prepared and transfected into the retroviral packaging line Phoenix-Ampho, as described in Pear, W.S., Scott, M.L. and Nolan, G.P., Generation of High Titre, Helper-free Retroviruses by Transient Transfection. Methods in Molecular Medicine: Gene Therapy Protocols, Humana Press, Totowa, NJ, pp. 41-57. The *Chlamydia* library in retroviral form was then transduced into H2-Ld expressing P815 cells, which were then used as target cells to stimulate an antigen specific T-cell line.

A *Chlamydia*-specific, murine H2^d restricted CD8+ T-cell line was expanded in culture by repeated rounds of stimulation with irradiated *C. trachomatis*-infected J774 cells and irradiated syngeneic spleen cells, as described by Starnbach, M., in *J. Immunol.*, 153:5183, 1994. This *Chlamydia*-specific T-cell line was used to screen the above *Chlamydia* genomic library expressed by the retrovirally-transduced P815 cells. Positive DNA pools were identified by detection of IFN- γ production using Elispot analysis (SEE Lalvani et al., *J. Experimental Medicine* 186:859-865, 1997).

Two positive pools, referred to as 2C7 and 2E10, were identified by IFN- γ Elispot assays. Stable transductants of P815 cells from pool 2C7 were cloned by limiting dilution and individual clones were selected based upon their capacity to elicit IFN- γ production from the *Chlamydia*-specific CTL line. From this screening process, four positive clones were selected, referred to as 2C7-8, 2C7-9, 2C7-19 and 2C7-21. Similarly, the positive pool 2E10 was further screened, resulting in a an additional positive clone,

which contains three inserts. The three inserts are fragments of the CT016, tRNA syntase and clpX genes (SEQ ID NO: 268-270, respectively).

Transgenic DNA from these four positive 2C7.8 clones were PCR amplified using pBIB-KS specific primers to selectively amplify the *Chlamydia* DNA insert. Amplified inserts were gel purified and sequenced. One immunoreactive clone, 2C7-8 (SEQ ID NO: 15, with the predicted amino acid sequence provided in SEQ ID NO: 32), is a 160 bp fragment with homology to nucleotides 597304-597145 of *Chlamydia trachomatis*, serovar D (NCBI, BLASTN search; SEQ ID NO: 33, with the predicted amino acid sequence provided in SEQ ID NO: 34). The sequence of clone 2C7-8 maps within two putative open reading frames from the region of high homology described immediately above, and in particular, one of these putative open reading frames, consisting of a 298 amino acid fragment (SEQ ID NO: 16, with the predicted amino acid sequence provided in SEQ ID NO: 17), was demonstrated to exhibit immunological activity.

Full-length cloning of the 298 amino acid fragment (referred to as CT529 and/or the Cap1 gene) from serovar L2 was obtained by PCR amplification using 5'-tttgaaggcaggttaggtaatatg (forward) (SEQ ID NO: 159) and 5'-ttaagaaattaaaaatccctta (reverse) (SEQ ID NO: 160) primers, using purified *C. trachomatis* L2 genomic DNA as template. This PCR product was gel-purified, cloned into pCRBlunt (Invitrogen, Carlsbad, CA) for sequencing, and then subcloned into the EcoRI site of pBIB-KMS, a derivative of pBIB-KS for expression. The *Chlamydia pneumoniae* homologue of CT529 is provided in SEQ ID NO: 291, with the corresponding amino acid sequence provided in SEQ ID NO: 292.

Full-length DNA encoding various CT529 serovars were amplified by PCR from bacterial lysates containing 10^5 IFU, essentially as described (Denamur, E., C. Sayada, A. Souriau, J. Orfila, A. Rodolakis and J. Elion. 1991. J. Gen. Microbiol. 137: 2525). The following serovars were amplified as described: Ba (SEQ ID NO: 134, with the corresponding predicted amino acid sequence provided in SEQ ID NO: 135); E (BOUR) and E (MTW447) (SEQ ID NO: 122, with the corresponding predicted amino acid sequence provided in SEQ ID NO: 123); F (NI1) (SEQ ID NO: 128, with the corresponding predicted amino acid sequence provided in SEQ ID NO: 129); G; (SEQ ID NO: 126, with the

corresponding predicted amino acid sequence provided in SEQ ID NO: 127); Ia (SEQ ID NO: 124, with the corresponding predicted amino acid sequence provided in SEQ ID NO: 125); L1 (SEQ ID NO: 130, with the corresponding predicted amino acid sequence provided in SEQ ID NO: 131); L3 (SEQ ID NO: 132, with the corresponding predicted amino acid sequence provided in SEQ ID NO: 133); I (SEQ ID NO: 263, with the corresponding predicted amino acid sequence provided in SEQ ID NO: 264); K (SEQ ID NO: 265, with the corresponding predicted amino acid sequence provided in SEQ ID NO: 266); and MoPn (SEQ ID NO: 136, with the corresponding predicted amino acid sequence provided in SEQ ID NO: 137). PCR reactions were performed with Advantage Genomic PCR Kit (Clontech, Palo Alto, CA) using primers specific for serovar L2 DNA (external to the ORF). Primers sequences were 5'-ggtataatatctctctaaattttg (forward-SEQ ID NO: 161) and 5'-agataaaaaaggctgttc' (reverse-SEQ ID NO: 162) except for MoPn which required 5'-tttgaaggcaggttaggtaatatg (forward-SEQ ID NO: 163) and 5'-tttacaataagaaaagctaagcacttgt (reverse-SEQ ID NO: 164). PCR amplified DNA was purified with QIAquick PCR purification kit (Qiagen, Valencia, CA) and cloned in pCR2.1 (Invitrogen, Carlsbad, CA) for sequencing.

Sequencing of DNA derived from PCR amplified inserts of immunoreactive clones was done on an automated sequencer (ABI 377) using both a pBIB-KS specific forward primer 5'-ccttacacagtccctgctgac (SEQ ID NO: 165) and a reverse primer 3'-gttccggccctcacattg (SEQ ID NO: 166). PCRBlunt cloned DNA coding for CT529 serovar L2 and pCR2.1 cloned DNA coding for CT529 serovar Ba, E (BOUR), E (MTW447), F (NI1), G, Ia, K, L1, L3 and MoPn were sequenced using T7 promoter primer and universal M13 forward and M13 reverse primers.

To determine if these two putative open reading frames (SEQ ID NO: 16 and 20) encoded a protein with an associated immunological function, overlapping peptides (17-20 amino acid lengths) spanning the lengths of the two open reading frames were synthesized, as described in Example 3. A standard chromium release assay was utilized to determine the per cent specific lysis of peptide-pulsed H2^d restricted target cells. In this assay, aliquots of P815 cells (H2^d) were labeled at 37° C for one hour with 100 µCi of ⁵¹Cr in the presence or absence of 1 µg/ml of the indicated peptides. Following this incubation,

labeled P815 cells were washed to remove excess ^{51}Cr and peptide, and subsequently plated in duplicate in microculture plates at a concentration of 1,000 cells/well. Effector CTL (*Chlamydia*-specific CD8 T cells) were added at the indicated effector:target ratios. Following a 4 hour incubation, supernatants were harvested and measured by gamma-counter for release of ^{51}Cr into the supernatant. Two overlapping peptides from the 298 amino acid open reading frame did specifically stimulate the CTL line. The peptides represented in SEQ ID NO: 138-156 were synthesized, representing the translation of the L2 homologue of the serovar D open reading frame for CT529 (Cap1 gene) and 216 amino acid open reading frame. As shown in Fig. 3, peptides CtC7.8-12 (SEQ ID NO: 18, also referred to as Cap1#132-147, SEQ ID NO: 139) and CtC7.8-13 (SEQ ID NO: 19, also referred to as Cap1#138-155, SEQ ID NO: 140) were able to elicit 38 to 52% specific lysis, respectively, at an effector to target ratio of 10:1. Notably, the overlap between these two peptides contained a predicted H2^d (K^d and L^d) binding peptide. A 10 amino acid peptide was synthesized to correspond to this overlapping sequence (SEQ ID NO: 31) and was found to generate a strong immune response from the anti-*Chlamydia* CTL line by elispot assay. Significantly, a search of the most recent Genbank database revealed no proteins have previously been described for this gene. Therefore, the putative open reading frame encoding clone 2C7-8 (SEQ ID NO: 15) defines a gene which encompasses an antigen from *Chlamydia* capable of stimulating antigen-specific CD8+ T-cells in a MHC-I restricted manner, demonstrating this antigen could be used to develop a vaccine against *Chlamydia*.

To confirm these results and to further map the epitope, truncated peptides (SEQ ID NO: 138-156) were made and tested for recognition by the T-cells in an IFN- γ ELISPOT assay. Truncations of either Ser139 (Cap1#140-147, SEQ ID NO: 146) or Leu147 (Cap1#138-146, SEQ ID NO: 147) abrogate T-cell recognition. These results indicate that the 9-mer peptide Cap1#139-147 (SFIGGITYL, SEQ ID NO: 145) is the minimal epitope recognized by the *Chlamydia*-specific T-cells.

Sequence alignments of Cap1 (CT529) from selected serovars of *C. trachomatis* (SEQ ID NO: 121, 123, 125, 127, 129, 131, 133, 135, 137 and 139) shows one of the amino acid differences is found in position 2 of the proposed epitope. The homologous serovar D peptide is SIIGGITYL (SEQ ID NO: 168). The ability of

SFIGGITYL and SIIGGITYL to target cells for recognition by the *Chlamydia* specific T-cells was compared. Serial dilutions of each peptide were incubated with P815 cells and tested for recognition by the T-cells in a ^{51}Cr release assay, as described above. The *Chlamydia*-specific T-cells recognize the serovar L2 peptide at a minimum concentration of 1 nM and the serovar D peptide at a minimum concentration of 10 nM.

Further studies have shown that a Cap1#139-147-specific T-cell clone recognizes *C. trachomatis* infected cells. To confirm that Cap1₁₃₉₋₁₄₇ is presented on the surface of *Chlamydia* infected cells, Balb-3T3 (H-2^d) cells were infected with *C. trachomatis* serovar L2 and tested to determine whether these cells are recognized by a CD8+ T-cell clone specific for Cap1#139-147 epitope (SEQ ID NO: 145). The T-cell clone specific for Cap1#139-147 epitope was obtained by limiting dilution of the line 69 T-cells. The T-cell clone specifically recognized the *Chlamydia* infected cells. In these experiments, target cells were *C. trachomatis* infected (positive control) or uninfected Balb/3T3 cells, showing 45%, 36% and 30% specific lysis at 30:1, 10:1 and 3:1 effector to target ratios, respectively; or Cap1#139-147 epitope (SEQ ID NO: 145) coated, or untreated P815 cells, showing 83%, 75% and 58% specific lysis at 30:1, 10:1 and 3:1 effector to target ratios, respectively (negative controls having less than 5% lysis in all cases). This data suggests that the epitope is presented during infection.

In vivo studies show Cap1#139-147 epitope-specific T-cells are primed during murine infection with *C. trachomatis*. To determine if infection with *C. trachomatis* primes a Cap1#139-147 epitope-specific T-cell response, mice were infected i.p. with 10^8 IFU of *C. trachomatis* serovar L2. Two weeks after infection, the mice were sacrificed and spleen cells were stimulated on irradiated syngeneic spleen cells pulsed with Cap1#139-147 epitope peptide. After 5 days of stimulation, the cultures were used in a standard ^{51}Cr release assay to determine if there were Cap1#139-147 epitope-specific T-cells present in the culture. Specifically, spleen cells from a *C. trachomatis* serovar L2 immunized mouse or a control mouse injected with PBS after a 5 days culture with Cap1#139-147 peptide-coated syngeneic spleen cells and CD8+ T-cells able to specifically recognize Cap1#139-147 epitope gave 73%, 60% and 32% specific lysis at a 30:1, 10:1 and 3:1 effector to target ratios, respectively. The control mice had a percent lysis of approximately 10% at a 30:1 effector to target ratio,

and steadily declining with lowering E:T ratios. Target cells were Cap1#139-147 peptide-coated, or untreated P815 cells. These data suggest that Cap1#139-147 peptide-specific T-cells are primed during murine infection with *C. trachomatis*.

EXAMPLE 5

GENERATION OF ANTIBODY AND T-CELL RESPONSES IN MICE IMMUNIZED WITH CHLAMYDIA ANTIGENS

Immunogenicity studies were conducted to determine the antibody and CD4+ T cell responses in mice immunized with either purified SWIB or S13 proteins formulated with Montanide adjuvant, or DNA-based immunizations with pcDNA-3 expression vectors containing the DNA sequences for SWIB or S13. SWIB is also referred to as clone 1-B1-66 (SEQ ID NO: 1, with the corresponding amino acid sequence provided in SEQ ID NO: 5), and S13 ribosomal protein is also referred to as clone 10-C10-31 (SEQ ID NO: 4, with the corresponding amino acid sequence provided in SEQ ID NO: 12). In the first experiment, groups of three C57BL/6 mice were immunized twice and monitored for antibody and CD4+ T-cell responses. DNA immunizations were intradermal at the base of the tail and polypeptide immunizations were administered by subcutaneous route. Results from standard ³H-incorporation assays of spleen cells from immunized mice shows a strong proliferative response from the group immunized with purified recombinant SWIB polypeptide (SEQ ID NO: 5). Further analysis by cytokine induction assays, as previously described, demonstrated that the group immunized with SWIB polypeptide produced a measurable IFN- γ and IL-4 response. Subsequent ELISA-based assays to determine the predominant antibody isotype response in the experimental group immunized with the SWIB polypeptide were performed. Fig. 4 illustrates the SWIB-immunized group gave a humoral response that was predominantly IgG1.

In a second experiment, C3H mice were immunized three times with 10 μ g purified SWIB protein (also referred to as clone 1-B1-66, SEQ ID NO: 5) formulated in either PBS or Montanide at three week intervals and harvested two weeks after the third

immunization. Antibody titers directed against the SWIB protein were determined by standard ELISA-based techniques well known in the art, demonstrating the SWIB protein formulated with Montanide adjuvant induced a strong humoral immune response. T-cell proliferative responses were determined by a XTT-based assay (Scudiero, et al, *Cancer Research*, 1988, 48:4827). As shown in Fig. 5, splenocytes from mice immunized with the SWIB polypeptide plus Montanide elicited an antigen specific proliferative response. In addition, the capacity of splenocytes from immunized animals to secrete IFN- γ in response to soluble recombinant SWIB polypeptide was determined using the cytokine induction assay previously described. The splenocytes from all animals in the group immunized with SWIB polypeptide formulated with montanide adjuvant secreted IFN- γ in response to exposure to the SWIB Chlamydia antigen, demonstrating an *Chlamydia*-specific immune response.

In a further experiment, C3H mice were immunized at three separate time points at the base of the tail with 10 μ g of purified SWIB or S13 protein (*C. trachomatis*, SWIB protein, clone 1-B1-66, SEQ ID NO: 5, and S13 protein, clone 10-C10-31, SEQ ID NO: 4) formulated with the SBAS2 adjuvant (SmithKline Beecham, London, England). Antigen-specific antibody titers were measured by ELISA, showing both polypeptides induced a strong IgG response, ranging in titers from 1×10^4 to 1×10^5 . The IgG1 and IgG2a components of this response were present in fairly equal amounts. Antigen-specific T-cell proliferative responses, determined by standard 3 H-incorporation assays on spleen cells isolated from immunized mice, were quite strong for SWIB (50,000 cpm above the negative control) and even stronger for s13 (100,000 cpm above the negative control). The IFN γ production was assayed by standard ELISA techniques from supernatant from the proliferating culture. *In vitro* restimulation of the culture with S13 protein induced high levels of IFN γ production, approximately 25 ng/ml versus 2 ng/ml for the negative control. Restimulation with the SWIB protein also induced IFN γ , although to a lesser extent.

In a related experiment, C3H mice were immunized at three separate time points with 10 μ g of purified SWIB or S13 protein (*C. trachomatis*, SWIB protein, clone 1-B1-66, SEQ ID NO: 5, and S13 protein, clone 10-C10-31, SEQ ID NO: 4) mixed with 10 μ g of Cholera Toxin. Mucosal immunization was through intranasal inoculation. Antigen-specific antibody responses were determined by standard ELISA techniques. Antigen-

specific IgG antibodies were present in the blood of SWIB-immunized mice, with titers ranging from 1×10^3 to 1×10^4 , but non-detectable in the S13-immunized animals. Antigen-specific T-cell responses from isolated splenocytes, as measured by IFN γ production, gave similar results to those described immediately above for systemic immunization.

An animal study was conducted to determine the immunogenicity of the CT529 serovar LGVII CTL epitope, defined by the CT529 10mer consensus peptide (CSFIGGITYL – SEQ ID NO: 31), which was identified as an H2-Kd restricted CTL epitope. BALB/c mice (3 mice per group) were immunized three times with 25 μ g of peptide combined with various adjuvants. The peptide was administered systemically at the base of the tail in either SKB Adjuvant System SBAS-2'', SBAS-7 (SmithKline Beecham, London, England) or Montanide. The peptide was also administered intranasally mixed with 10ug of Cholera Toxin (CT). Naive mice were used as a control. Four weeks after the 3rd immunization, spleen cells were restimulated with LPS- blasts pulsed with 10ug/ml CT529 10mer consensus peptide at three different effector to LPS- blasts ratios : 6, 1.5 and 0.4 at 1×10^6 cell/ml. After 2 restimulations, effector cells were tested for their ability to lyse peptide pulsed P815 cells using a standard chromium release assay. A non-relevant peptide from chicken egg ovalbumin was used as a negative control. The results demonstrate that a significant immune response was elicited towards the CT529 10mer consensus peptide and that antigen-specific T-cells capable of lysing peptide-pulsed targets were elicited in response to immunization with the peptide. Specifically, antigen-specific lytic activities were found in the SBAS-7 and CT adjuvanted group while Montanide and SBAS-2'' failed to adjuvant the CTL epitope immunization.

EXAMPLE 6

EXPRESSION AND CHARACTERIZATION OF *CHLAMYDIA PNEUMONIAE* GENES

The human T-cell line, TCL-8, described in Example 1, recognizes *Chlamydia trachomatis* as well as *Chlamydia pneumoniae* infected monocyte-derived dendritic cells, suggesting *Chlamydia trachomatis* and *pneumoniae* may encode cross-reactive T-cell

epitopes. To isolate the *Chlamydia pneumonia* genes homologous to *Chlamydia trachomatis* LGV II clones 1B1-66, also referred to as SWIB (SEQ ID NO: 1) and clone 10C10-31, also referred to as S13 ribosomal protein (SEQ ID NO: 4), HeLa 229 cells were infected with *C. pneumonia* strain TWAR (CDC/CWL-029). After three days incubation, the *C. pneumonia*-infected HeLa cells were harvested, washed and resuspended in 200 µl water and heated in a boiling water bath for 20 minutes. Ten microliters of the disrupted cell suspension was used as the PCR template.

C. pneumonia specific primers were designed for clones 1B1-66 and 10C10-31 such that the 5' end had a 6X-Histidine tag and a Nde I site inserted, and the 3' end had a stop codon and a BamHI site included (Fig. 6). The PCR products were amplified and sequenced by standard techniques well known in the art. The *C. pneumonia*-specific PCR products were cloned into expression vector pET17B (Novagen, Madison, WI) and transfected into *E. coli* BL21 pLysS for expression and subsequent purification utilizing the histidine-nickel chromatographic methodology provided by Novagen. Two proteins from *C. pneumonia* were thus generated, a 10-11 kDa protein referred to as CpSWIB (SEQ ID NO: 27, and SEQ ID NO: 78 having a 6X His tag, with the corresponding amino acid sequence provided in SEQ ID NO: 28, respectively), a 15 kDa protein referred to as CpS13 (SEQ ID NO: 29, and SEQ ID NO: 77, having a 6X His tag, with the corresponding amino acid sequence provided in SEQ ID NO: 30 and 91, respectively).

EXAMPLE 7

INDUCTION OF T CELL PROLIFERATION AND INTERFERON- γ PRODUCTION BY CHLAMYDIA PNEUMONIAE ANTIGENS

The ability of recombinant *Chlamydia pneumoniae* antigens to induce T cell proliferation and interferon- γ production is determined as follows.

Proteins are induced by IPTG and purified by Ni-NTA agarose affinity chromatography (Webb et al., *J. Immunology* 157:5034-5041, 1996). The purified polypeptides are then screened for the ability to induce T-cell proliferation in PBMC

preparations. PBMCs from *C. pneumoniae* patients as well as from normal donors whose T-cells are known to proliferate in response to *Chlamydia* antigens, are cultured in medium comprising RPMI 1640 supplemented with 10% pooled human serum and 50 µg/ml gentamicin. Purified polypeptides are added in duplicate at concentrations of 0.5 to 10 µg/mL. After six days of culture in 96-well round-bottom plates in a volume of 200 µl, 50 µl of medium is removed from each well for determination of IFN- γ levels, as described below. The plates are then pulsed with 1 µCi/well of tritiated thymidine for a further 18 hours, harvested and tritium uptake determined using a gas scintillation counter. Fractions that result in proliferation in both replicates three fold greater than the proliferation observed in cells cultured in medium alone are considered positive.

IFN- γ was measured using an enzyme-linked immunosorbent assay (ELISA). ELISA plates are coated with a mouse monoclonal antibody directed to human IFN- γ (PharMingen, San Diego, CA) in PBS for four hours at room temperature. Wells are then blocked with PBS containing 5% (W/V) non-fat dried milk for 1 hour at room temperature. The plates are washed six times in PBS/0.2% TWEEN-20 and samples diluted 1:2 in culture medium in the ELISA plates are incubated overnight at room temperature. The plates are again washed and a polyclonal rabbit anti-human IFN- γ serum diluted 1:3000 in PBS/10% normal goat serum is added to each well. The plates are then incubated for two hours at room temperature, washed and horseradish peroxidase-coupled anti-rabbit IgG (Sigma Chemical So., St. Louis, MO) is added at a 1:2000 dilution in PBS/5% non-fat dried milk. After a further two hour incubation at room temperature, the plates are washed and TMB substrate added. The reaction is stopped after 20 min with 1 N sulfuric acid. Optical density is determined at 450 nm using 570 nm as a reference wavelength. Fractions that result in both replicates giving an OD two fold greater than the mean OD from cells cultured in medium alone, plus 3 standard deviations, are considered positive.

A human anti-*Chlamydia* T-cell line (TCL-8) capable of cross-reacting to *C. trachomatis* and *C. pneumoniae* was used to determine whether the expressed proteins described in the example above, (i.e., CpSWIB, SEQ ID NO: 27, and SEQ ID NO: 78 having a 6X His tag, with the corresponding amino acid sequence provided in SEQ ID NO: 28, respectively, and the 15 kDa protein referred to as CpS13 SEQ ID NO: 29, and SEQ ID NO:

77, having a 6X His tag, with the corresponding amino acid sequence provided in SEQ ID NO: 30 and 91, respectively), possessed T-cell epitopes common to both *C. trachomatis* and *C. pneumoniae*. Briefly, *E. coli* expressing *Chlamydial* proteins were titered on 1×10^4 monocyte-derived dendritic cells. After two hours, the dendritic cells cultures were washed and 2.5×10^4 T cells (TCL-8) added and allowed to incubate for an additional 72 hours. The amount of INF- γ in the culture supernatant was then determined by ELISA. As shown in Figs. 7A and 7B, the TCL-8 T-cell line specifically recognized the S13 ribosomal protein from both *C. trachomatis* and *C. pneumoniae* as demonstrated by the antigen-specific induction of IFN- γ , whereas only the SWIB protein from *C. trachomatis* was recognized by the T-cell line. To validate these results, the T cell epitope of *C. trachomatis* SWIB was identified by epitope mapping using target cells pulsed with a series of overlapping peptides and the T-cell line TCL-8. ^3H -thymidine incorporation assays demonstrated that the peptide, referred to as C.t.SWIB 52-67, of SEQ ID NO: 39 gave the strongest proliferation of the TCL-8 line. The homologous peptides corresponding to the SWIB of *C. pneumoniae* sequence (SEQ ID NO: 40), the topoisomerase-SWIB fusion of *C. pneumoniae* (SEQ ID NO: 43) and *C. trachomatis* (SEQ ID NO: 42) as well as the human SWI domain (SEQ ID NO: 41) were synthesized and tested in the above assay. The T-cell line TCL-8 only recognized the *C. trachomatis* peptide of SEQ ID NO: 39 and not the corresponding *C. pneumoniae* peptide (SEQ ID NO: 40), or the other corresponding peptides described above (SEQ ID NO: 41-43).

Chlamydia-specific T cell lines were generated from donor CP-21 with a positive serum titer against *C. pneumoniae* by stimulating donor PBMC with either *C. trachomatis* or *C. pneumoniae*-infected monocyte-derived dendritic cells, respectively. T-cells generated against *C. pneumoniae* responded to recombinant *C. pneumoniae*-SWIB but not *C. trachomatis*-SWIB, whereas the T-cell line generated against *C. trachomatis* did not respond to either *C. trachomatis*- or *C. pneumoniae*-SWIB (see Fig. 9). The *C. pneumoniae*-SWIB specific immune response of donor CP-21 confirms the *C. pneumoniae* infection and indicates the elicitation of *C. pneumoniae*-SWIB specific T-cells during *in vivo* *C. pneumoniae* infection.

Epitope mapping of the T-cell response to *C. pneumoniae*-SWIB has shown

that Cp-SWIB-specific T-cells responded to the overlapping peptides Cp-SWIB 32-51 (SEQ ID NO: 101) and Cp-SWIB 37-56 (SEQ ID NO: 102), indicating a *C. pneumoniae*-SWIB-specific T-cell epitope Cp-SWIB 37-51 (SEQ ID NO: 100).

In additional experiments, T-cell lines were generated from donor CP1, also a *C. pneumoniae* seropositive donor, by stimulating PBMC with non-infectious elementary bodies from *C. trachomatis* and *C. pneumoniae*, respectively. In particular, proliferative responses were determined by stimulating 2.5×10^4 T-cells in the presence of 1×10^4 monocyte-derived dendritic cells and non-infectious elementary bodies derived from *C. trachomatis* and *C. pneumoniae*, or either recombinant *C. trachomatis* or *C. pneumoniae* SWIB protein. The T-cell response against SWIB resembled the data obtained with T-cell lines from CP-21 in that *C. pneumoniae*-SWIB, but not *C. trachomatis*-SWIB elicited a response by the *C. pneumoniae* T-cell line. In addition, the *C. trachomatis* T-cell line did not proliferate in response to either *C. trachomatis* or *C. pneumoniae* SWIB, though it did proliferate in response to both CT and CP elementary bodies. As described in Example 1, Clone 11-C12-91 (SEQ ID NO: 63), identified using the TCP-21 cell line, has a 269 bp insert that is part of the OMP2 gene (CT443) and shares homology with the 60 kDa cysteine rich outer membrane protein of *C. pneumoniae*, referred to as OMBC. To further define the reactive epitope(s), epitope mapping was performed using a series of overlapping peptides and the immunoassay previously described. Briefly, proliferative responses were determined by stimulating 2.5×10^4 TCP-21 T-cells in the presence of 1×10^4 monocyte-derived dendritic cells with either non-infectious elementary bodies derived from *C. trachomatis* and *C. pneumoniae*, or peptides derived from the protein sequence of *C. trachomatis* or *C. pneumoniae* OMBC protein (0.1 μ g/ml). The TCP-21 T-cells responded to epitopes CT-OMCB #167-186, CT-OMCB #171-190, CT-OMCB #171-186, and to a lesser extent, CT-OMCB #175-186 (SEQ ID NO: 249-252, respectively). Notably, the TCP-21 T-cell line also gave a proliferative response to the homologous *C. pneumoniae* peptide CP-OMCB #171-186 (SEQ ID NO: 253), which was equal to or greater than the response to the to the *C. trachomatis* peptides. The amino acid substitutions in position two (i.e., Asp for Glu) and position four (i.e., Cys for Ser) did not alter the proliferative response of the T-cells and therefore demonstrating this epitope to be a cross-reactive epitope between *C. trachomatis*

and *C. pneumoniae*.

EXAMPLE 8

IMMUNE RESPONSES OF HUMAN PBMC AND T-CELL LINES AGAINST *CHLAMYDIA* ANTIGENS

The examples provided herein suggest that there is a population of healthy donors among the general population that have been infected with *C. trachomatis* and generated a protective immune response controlling the *C. trachomatis* infection. These donors remained clinically asymptomatic and seronegative for *C. trachomatis*. To characterize the immune responses of normal donors against *chlamydial* antigens which had been identified by CD4 expression cloning, PBMC obtained from 12 healthy donors were tested against a panel of recombinant *chlamydial* antigens including *C. trachomatis*-, *C. pneumoniae*-SWIB and *C. trachomatis*-, *C. pneumoniae*-S13. The data are summarized in Table I below. All donors were seronegative for *C. trachomatis*, whereas 6/12 had a positive *C. pneumoniae* titer. Using a stimulation index of >4 as a positive response, 11/12 of the subjects responded to *C. trachomatis* elementary bodies and 12/12 responded to *C. pneumoniae* elementary bodies. One donor, AD104, responded to recombinant *C. pneumoniae*-S13 protein, but not to recombinant *C. trachomatis*-S13 protein, indicating a *C. pneumoniae*-specific response. Three out of 12 donors had a *C. trachomatis*-SWIB, but not a *C. pneumoniae*-SWIB specific response, confirming a *C. trachomatis* infection. *C. trachomatis* and *C. pneumoniae*- S13 elicited a response in 8/12 donors suggesting a chlamydial infection. These data demonstrate the ability of SWIB and S13 to elicit a T-cell response in PBMC of normal study subjects.

Table I.

Donor	Sex	<i>Chlamydia</i> IgGtitre	CT	CP	CT	CP	CT	CP	CT	CT
			EB	EB	Swib	Swib	SI3	SI3	lpdA	TSA
DI00	male	negative	++	+++	+	-	++	++	-	nt
DI04	female	negative	+++	++	-	-	-	++	-	nt
DI08	male	CP 1:256	++	++	+	+/-	+	+	+	nt
DI12	female	negative	++	++	+	-	+	-	+/-	nt
DI20	male	negative	-	+	-	-	-	-	-	nt
DI24	female	CP 1:128	++	++	-	-	-	-	-	nt
DI28	male	CP 1:512	+	++	-	-	++	+	++	-
DI32	female	negative	++	++	-	-	+	+	-	-
DI36	female	CP 1:128	+	++	-	-	+/-	-	-	-
DI40	male	CP 1:256	++	++	-	-	+	+	-	-
DI42	female	CP 1:512	++	++	-	-	+	+	+	-
DI46	female	negative	++	++	-	-	++	+	+	-

CT= *Chlamydia trachomatis*; CP= *Chlamydia pneumoniae*; EB= *Chlamydia* elementary bodies; Swib= recombinant *Chlamydia* Swib protein; S13= recombinant *Chlamydia* S13 protein; lpdA= recombinant *Chlamydia* lpdA protein; TSA= recombinant *Chlamydia* TSA protein. Values represent results from standard proliferation assays. Proliferative responses were determined by stimulating 3×10^5 PBMC with 1×10^4 monocyte-derived dendritic cells pre-incubated with the respective recombinant antigens or elementary bodies (EB). Assays were harvested after 6 days with a ^3H -thymidine pulse for the last 18h.

SI: Stimulation index

- +/-: SI ~ 4
- +: SI > 4
- ++: SI 10-30
- +++: SI > 30

In a first series of experiments, T-cell lines were generated from a healthy female individual (CT-10) with a history of genital exposure to *C. trachomatis* by stimulating T-cells with *C. trachomatis* LGV II elementary bodies as previously described. Although the study subject was exposed to *C. trachomatis*, she did not seroconvert and did not develop clinical symptoms, suggesting donor CT-10 may have developed a protective immune response against *C. trachomatis*. As shown in Fig. 10, a primary *Chlamydia*-specific T-cell line derived from donor CT-10 responded to *C. trachomatis*-SWIB, but not *C. pneumoniae*-SWIB recombinant proteins, confirming the exposure of CT-10 to *C. trachomatis*. Epitope mapping of the T-cell response to *C. trachomatis*-SWIB showed that this donor responded to the same epitope Ct-SWIB 52-67 (SEQ ID NO: 39) as T-cell line TCL-8, as shown in Fig. 11.

Additional T-cell lines were generated as described above for various *C. trachomatis* patients. A summary of the patients' clinical profile and proliferative responses to various *C. trachomatis* and *C. pneumoniae* elementary bodies and recombinant proteins are summarized in Table II .

Table II.

NGU= Non-Gonococcal Urethritis; BV= Bacterial Vaginosis; CT= *Chlamydia trachomatis*; CP= *Chlamydia pneumoniae*; EB= *Chlamydia* elementary bodies; Swib= recombinant *Chlamydia* Swib protein; S13= recombinant *Chlamydia* S13 protein; lpdA= recombinant *Chlamydia* lpdA protein; TSA= recombinant *Chlamydia* TSA protein

Values represent results from standard proliferation assays. Proliferative responses were determined by stimulating 3×10^5 PBMC with 1×10^4 monocyte-derived dendritic cells pre-incubated with the respective recombinant antigens or elementary bodies (EB). Assays were harvested after 6 days with a ^3H -thymidine pulse for the last 18 hours.

SI: Stimulation index

+/-:	SI ~	4
+:	SI >	4
++:	SI	10-30
+++:	SI >	30

Using the panel of asymptomatic (as defined above) study subjects and *C. trachomatis* patients, as summarized in Tables I and II, a comprehensive study of the immune responses of PBMC derived from the two groups was conducted. Briefly, PBMCs from *C. pneumoniae* patients as well as from normal donors are cultured in medium comprising RPMI 1640 supplemented with 10% pooled human serum and 50 µg/ml gentamicin. Purified polypeptides, a panel of recombinant *chlamydial* antigens including *C. trachomatis*-, *C. pneumoniae*-SWIB and S13, as well as *C. trachomatis* lpdA and TSA are added in duplicate at concentrations of 0.5 to 10 µg/mL. After six days of culture in 96-well round-bottom plates in a volume of 200 µl, 50 µl of medium is removed from each well for determination of IFN-γ levels, as described below. The plates are then pulsed with 1 µ Ci/well of tritiated thymidine for a further 18 hours, harvested and tritium uptake determined using a gas scintillation counter. Fractions that result in proliferation in both replicates three fold greater than the proliferation observed in cells cultured in medium alone are considered positive.

Proliferative responses to the recombinant *Chlamydiae* antigens demonstrated that the majority of asymptomatic donors and *C. trachomatis* patients recognized the *C. trachomatis* S13 antigen (8/12) and a majority of the *C. trachomatis* patients recognized the *C. pneumonia* S13 antigen (8/12), with 4/12 asymptomatic donors also recognizing the *C. pneumonia* S13 antigen. Also, six out of twelve of the *C. trachomatis* patients and four out of twelve of the asymptomatic donors gave a proliferative response to the lpdA antigen of *C. trachomatis*. These results demonstrate that the *C. trachomatis* and *C. pneumonia* S13 antigen, *C. trachomatis* Swib antigen and the *C. trachomatis* lpdA antigen are recognized by the asymptomatic donors, indicating these antigens were recognized during exposure to *Chlamydia* and an immune response elicited against them. This implies these antigens may play a role in conferring protective immunity in a human host. In addition, the *C.*

trachomatis and *C. pneumonia* S13 antigen is recognized equally well among the *C. trachomatis* patients, therefore indicating there may be epitopes shared between *C. trachomatis* and *C. pneumonia* in the S13 protein. Table III summarizes the results of these studies.

Table III.

Antigen	Normal Donors	C.t. Patients
C.t.-Swib	3/12	0/12
C.p.-Swib	0/12	0/12
C.t.-S13	8/12	8/12
C.p.-S13	4/12	8/12
lpdA	4/12	6/12
TSA	0/12	2/12

A series of studies were initiated to determine the cellular immune response to short-term T-cell lines generated from asymptomatic donors and *C. trachomatis* patients. Cellular immune responses were measured by standard proliferation assays and IFN- γ , as described in Example 7. Specifically, the majority of the antigens were in the form of single *E. coli* clones expressing Chlamydial antigens, although some recombinant proteins were also used in the assays. The single *E. coli* clones were titered on 1×10^4 monocyte-derived dendritic cells and after two hours, the culture was washed and 2.5×10^4 T-cells were added. The assay using the recombinant proteins were performed as previously described. Proliferation was determined after four days with a standard ^3H -thymidine pulse for the last 18 hours. Induction of IFN- γ was determined from culture supernatants harvested after four days using standard ELISA assays, as described above. The results show that all the *C. trachomatis* antigens tested, except for C.T. Swib, elicited a proliferative response from one or more different T-cell lines derived from *C. trachomatis* patients. In addition, proliferative responses were elicited from both the *C. trachomatis* patients and asymptomatic donors for the following *Chlamydia* genes, CT622, groEL, pmpD, CT610 and rS13.

The 12G3-83 clone also contains sequences to CT734 and CT764 in addition to CT622, and therefore these gene sequence may also have immunoreactive epitopes. Similarly, clone 21G12-60 contains sequences to the hypothetical protein genes CT229 and CT228 in addition to CT875; and 15H2-76 also contains sequences from CT812 and CT088, as well as sharing homology to the sycE gene. Clone 11H3-61 also contains sequences sharing homology to the PGP6-D virulence protein.

Table IV.

Clone	C. t. Antigen (putative*)	TCL from Asymp. Donors	TCL from C. t. Patients	SEQ ID NO::
1B1-66 (E. coli)	Swib	2/2	0/4	5
1B1-66 (protein)	Swib	2/2	0/4	5
12G3-83 (E. coli)	CT622*	2/2	4/4	57
22B3-53 (E. coli)	groEL	1/2	4/4	111
22B3-53 (protein)	groEL	1/2	4/4	111
15H2-76 (E. coli)	PmpD*	1/2	3/4	87
11H3-61 (E. coli)	rL1*	0/2	3/4	60
14H1-4 (E. coli)	TSA	0/2	3/4	56
14H1-4 (protein)	TSA	0/2	3/4	56
11G10-46 (E. coli)	CT610	1/2	1/4	62
10C10-17 (E. coli)	rS13	1/2	1/4	62
10C10-17 (protein)	rS13	1/2	1/4	62
21G12-60 (E. coli)	CT875*	0/2	2/4	110
11H4-32 (E. coli)	dnaK	0/2	2/4	59
21C7-8 (E. coli)	dnaK	0/2	2/4	115
17C10-31 (E. coli)	CT858	0/2	2/4	114

EXAMPLE 9
PROTECTION STUDIES USING CHLAMYDIA ANTIGENS

Protection studies were conducted in mice to determine whether immunization with chlamydial antigens can impact on the genital tract disease resulting from chlamydial inoculation. Two models were utilized; a model of intravaginal inoculation that uses a human isolate containing a strain of *Chlamydia psittaci* (MTW447), and a model of intrauterine inoculation that involves a human isolate identified as *Chlamydia trachomatis*, serovar F (strain NI1). Both strains induce inflammation in the upper genital tract, which resemble endometritis and salpingitis caused by *Chlamydia trachomatis* in women. In the first experiment, C3H mice (4 mice per group) were immunized three times with 100 µg of pcDNA-3 expression vector containing *C. trachomatis* SWIB DNA (SEQ ID NO: 1, with the corresponding amino acid sequence provided in SEQ ID NO: 5). Inoculations were at the base of the tail for systemic immunization. Two weeks after the last immunization, animals were progesterone treated and infected, either thru the vagina or by injection of the inoculum in the uterus. Two weeks after infection, the mice were sacrificed and genital tracts sectioned, stained and examined for histopathology. Inflammation level was scored (from + for very mild, to +++++ for very severe). Scores attributed to each single oviduct /ovary were summed and divided by the number of organs examined to get a mean score of inflammation for the group. In the model of uterine inoculation, negative control-immunized animals receiving empty vector showed consistent inflammation with an ovary /oviduct mean inflammation score of 6.12, in contrast to 2.62 for the DNA-immunized group. In the model of vaginal inoculation and ascending infection, negative control-immunized mice had an ovary /oviduct mean inflammation score of 8.37, versus 5.00 for the DNA-immunized group. Also, in the later model, vaccinated mice showed no signs of tubal occlusion while negative control vaccinated groups had inflammatory cells in the lumen of the oviduct.

In a second experiment, C3H mice (4 mice per group) were immunized three times with 50 µg of pcDNA-3 expression vector containing *C. trachomatis* SWIB DNA (SEQ ID NO: 1, with the corresponding amino acid sequence provided in SEQ ID NO: 5) encapsulated in Poly Lactide co-Glycolide microspheres (PLG); immunizations were made

intra-peritoneally. Two weeks after the last immunization, animal were progesterone treated and infected by inoculation of *C. psittaci* in the vagina. Two weeks after infection, mice were sacrificed and genital tracts sectioned, stained and examined for histopathology. Inflammation level was scored as previously described. Scores attributed to each single oviduct /ovary were summed and divided by the number of examined organs to get a mean of inflammation for the group. Negative control-immunized animals receiving PLG-encapsulated empty vector showed consistent infammation with an ovary /oviduct mean inflammation score of 7.28, versus 5.71 for the PLG-encapsulated DNA immunized group. Inflammation in the peritoneum was 1.75 for the vaccinated group versus 3. 75 for the control.

In a third experiment, C3H mice (4 per group) were immunized three times with 10 µg of purified recombinant protein, either SWIB (SEQ ID NO: 1, with the corresponding amino acid sequence provided in SEQ ID NO: 5, or S13 (SEQ ID NO: 4, with the corresponding amino acid sequence provided in SEQ ID NO: 12) mixed with Cholera Toxin (CT); the preparation was administered intranasally upon anaesthesia in a 20 uL volume. Two weeks after the last immunization, animal were progesterone treated and infected, either by vaginal inoculation of *C. psittaci* or by injection of *C. trachomatis* serovar F in the uterus. Two weeks after infection, the mice were sacrificed and genital tracts sectioned, stained and examined for histopathology. The degree of inflammation was scored as described above. Scores attributed to each single oviduct /ovary were summed and divided by the number of examined organs to get a mean score of inflammation for the group. In the model of uterine inoculation, negative control- immunized animals receiving cholera toxin alone showed an ovary /oviduct mean inflammation score of 4.25 (only 2 mice analyzed ; 2 other died) versus 5.00 for the s13 plus cholera toxin-immunized group, and 1.00 for the SWIB plus cholera toxin. Untreated infected animals had an ovary /oviduct mean inflammation score of 7. In the model of vaginal inoculation and ascending infection, negative control-immunized mice had an ovary /oviduct mean inflammation score of 7.37 versus 6.75 for the s13 plus cholera toxin-immunized group and 5.37 for the SWIB plus cholera toxin-immunized group. Untreated infected animals had an ovary /oviduct mean inflammation score of 8.

The three experiments described above suggest that SWIB-specific protection is obtainable. This protective effect is more marked in the model of homologous infection but is still present when in a heterologous challenge infection with *C. psittaci*.

Although the present invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, changes and modifications can be carried out without departing from the scope of the invention which is intended to be limited only by the scope of the appended claims.

Claims

1. An isolated polypeptide comprising an immunogenic portion of a *Chlamydia* antigen, wherein said antigen comprises an amino acid sequence encoded by a polynucleotide sequence selected from the group consisting of: (a) sequences recited in SEQ ID NO: 1, 15, 21-25, 44-64, 66-76, 79-88, 110-119, 120, 122, 124, 126, 128, 130, 132, 134, 136, 169-174, 181-188, 263, 265 and 267-290 ; (b) sequences complementary to a sequence of (a); and (c) polynucleotide sequences that hybridize to a sequence of (a) or (b) under moderately stringent conditions.

2. The polypeptide of claim 1 wherein the polypeptide comprises a sequence selected from the group consisting of SEQ ID NO: 5, 26, 32, 65, 90, 92-98, 103-108, 121, 123, 125, 127, 129, 131, 133, 135, 137, 175-180, 189-196, 264 and 266.

3. An isolated polynucleotide molecule comprising a nucleotide sequence encoding a polypeptide according to any one of claims 1 and 2.

4. A recombinant expression vector comprising a polynucleotide molecule according to claim 3.

5. A host cell transformed with an expression vector according to claim 4.

6. The host cell of claim 5 wherein the host cell is selected from the group consisting of *E. coli*, yeast and mammalian cells.

7. A fusion protein comprising a polypeptide according to any one of claims 1 and 2.

8. A fusion protein according to claim 7, wherein the fusion protein

comprises an expression enhancer that increases expression of the fusion protein in a host cell transfected with a polynucleotide encoding the fusion protein.

9. A fusion protein according to claim 7, wherein the fusion protein comprises a T helper epitope that is not present within the polypeptide of claim 1.

10. A fusion protein according to claim 7, wherein the fusion protein comprises an affinity tag.

11. An isolated polynucleotide encoding a fusion protein according to claim 7.

12. An isolated monoclonal antibody, or antigen-binding fragment thereof, that specifically binds to a Chlamydia protein that comprises an amino acid sequence that is encoded by a polynucleotide sequence according to claim 1, or a complement of any of the foregoing polynucleotide sequences.

13. A pharmaceutical composition comprising a polypeptide according to claim 1, and a physiologically acceptable carrier.

14. A pharmaceutical composition comprising a polynucleotide molecule according to claim 3 and a physiologically acceptable carrier.

15. A pharmaceutical composition comprising a polypeptide and a physiologically acceptable carrier, wherein the polypeptide is encoded by polynucleotide molecule selected from the group consisting of: (a) sequences recited in SEQ ID NO: 1-4, 15, 16, 21-25, 27, 29, 33, 44-64, 66-88, 110-119, 122, 124, 126, 128, 130, 132, 134, 136, 169-174, 181-188, 263, 265 and 267-291; (b) sequences complementary to a sequence of (a); and (c) sequences that hybridize to a sequence of (a) or (b) under moderately stringent conditions.

16. A pharmaceutical composition comprising a polynucleotide molecule and a physiologically acceptable carrier, wherein the polynucleotide molecule comprises a sequence selected from the group consisting of: (a) sequences recited in SEQ ID NO: 1-4, 15, 16, 21-25, 27, 29, 33, 44-64, 66-88, 110-119, 122, 124, 126, 128, 130, 132, 134, 136, 169-174, 181-188, 263, 265 and 267-291; (b) sequences complementary to a sequence of (a); and (c) sequences that hybridize to a sequence of (a) or (b) under moderately stringent conditions.

17. A pharmaceutical composition comprising a physiologically acceptable carrier and at least one component selected from the group consisting of:

- (a) a fusion protein according to claim 7;
- (b) a polynucleotide according to claim 11; and
- (c) an antibody according to claim 12.

18. A vaccine comprising a polypeptide according to claim 1, and an immunostimulant.

19. A vaccine comprising a polynucleotide molecule according to claim 3 and an immunostimulant.

20. A vaccine comprising a polypeptide and an immunostimulant, wherein the polypeptide is encoded by a sequence selected from the group consisting of: (a) sequences recited in SEQ ID NO: 1-4, 15, 16, 21-25, 27, 29, 33, 44-64, 66-88, 110-119, 122, 124, 126, 128, 130, 132, 134, 136, 169-174, 181-188, 263, 265 and 267-291 ; (b) sequences complementary to a sequence of (a); and (c) sequences that hybridize to a sequence of (a) or (b) under moderately stringent conditions.

21. A vaccine comprising a DNA molecule and an immunostimulant, wherein the DNA molecule comprises a sequence selected from the group consisting of: (a)

sequences recited in SEQ ID NO: 1-4, 15, 16, 21-25, 27, 29, 33, 44-64, 66-88, 110-119, 122, 124, 126, 128, 130, 132, 134, 136, 169-174, 181-188, 263, 265 and 267-291; (b) sequences complementary to a sequence of (a); and (c) sequences that hybridize to a sequence of (a) or (b) under moderately stringent conditions.

22. A vaccine comprising an immunostimulant and at least one component selected from the group consisting of:

- (a) a fusion protein according to claim 7;
- (b) a polynucleotide according to claim 11; and
- (c) an antibody according to claim 12.

23. The vaccine of any one of claims 18-22 wherein the immunostimulant is an adjuvant.

24. A method for inducing protective immunity in a patient, comprising administering to a patient a pharmaceutical composition according to any one of claims 13-17.

25. A method for inducing protective immunity in a patient, comprising administering to a patient a vaccine according to any one of claims 18-22.

26. An isolated polyclonal antibody, or antigen-binding fragment thereof, that specifically binds to a *Chlamydia* protein that comprises an amino acid sequence that is encoded by a polynucleotide sequence according to claim 1, or a complement of any of the foregoing polynucleotide sequences.

27. A method for detecting *Chlamydia* infection in a patient, comprising:
(a) obtaining a biological sample from the patient;
(b) contacting the sample with a polypeptide comprising an immunogenic portion of a *Chlamydia* antigen, wherein said antigen comprises an amino acid sequence

encoded by a polynucleotide sequence selected from the group consisting of: (i) a sequence recited in SEQ ID NO: 1-4, 15, 16, 21-25, 27, 29, 33, 44-64, 66-88, 110-119, 120, 122, 124, 126, 128, 130, 132, 134, 136, 169-174, 181-188, 263, 265 and 267-291. (ii) sequences complementary to a sequence of (i), and (c) polynucleotide sequences that hybridize to a sequence of (i) or (ii) under moderately stringent conditions; and

- (c) detecting the presence of antibodies that bind to the polypeptide.

28. A method for detecting *Chlamydia* infection in a patient, comprising:

- (a) obtaining a biological sample from the patient;

(b) contacting the sample with a fusion protein comprising a polypeptide, the polypeptide comprising an immunogenic portion of a *Chlamydia* antigen, wherein said antigen comprises an amino acid sequence encoded by a polynucleotide sequence selected from the group consisting of (i) a sequence recited in SEQ ID NO: 1-4, 15, 16, 21-25, 27, 29, 33, 44-64, 66-88, 110-119, 120, 122, 124, 126, 128, 130, 132, 134, 136, 169-174, 181-188, 263, 265 and 267-291 (ii) sequences complementary to a sequence of (i), and (c) polynucleotide sequences that hybridize to a sequence of (i) or (ii) under moderately stringent conditions; and

- (c) detecting the presence of antibodies that bind to the fusion protein.

29. The method of any one of claims 27 and 28 wherein the biological sample is selected from the group consisting of whole blood, serum, plasma, saliva, cerebrospinal fluid and urine.

30. A method for detecting *Chlamydia* infection in a biological sample, comprising:

- (a) contacting the sample with at least two oligonucleotide primers in a polymerase chain reaction, wherein at least one of the oligonucleotide primers is specific for a polynucleotide molecule comprising a sequence of SEQ ID NO: 1-4, 15, 16, 21-25, 27, 29, 33, 44-64, 66-88, 110-119, 120, 122, 124, 126, 128, 130, 132, 134, 136, 169-174, 181-188, 263, 265 and 267-291; and

(b) detecting in the sample a polynucleotide sequence that amplifies in the presence of the oligonucleotide primers, thereby detecting *Chlamydia* infection.

31. The method of claim 30, wherein at least one of the oligonucleotide primers comprises at least about 10 contiguous nucleotides of a polynucleotide sequence of SEQ ID NO: 1-4, 15, 16, 21-25, 27, 29, 33, 44-64, 66-88, 110-119, 120, 122, 124, 126, 128, 130, 132, 134, 136, 169-174, 181-188, 263, 265 and 267-291.

32. A method for detecting *Chlamydia* infection in a biological sample, comprising:

(a) contacting the sample with one or more oligonucleotide probes specific for a polynucleotide molecule comprising a sequence of SEQ ID NO: 1-4, 15, 16, 21-25, 27, 29, 33, 44-64, 66-88, 110-119, 120, 122, 124, 126, 128, 130, 132, 134, 136, 169-174, 181-188, 263, 265 and 267-291; and

(b) detecting in the sample a polynucleotide sequence that hybridizes to the oligonucleotide probe, thereby detecting *Chlamydia* infection.

33. The method of claim 32 wherein the probe comprises at least about 15 contiguous nucleotides of a polynucleotide sequence of SEQ ID NO: 1-4, 15, 16, 21-25, 27, 29, 33, 44-64, 66-88, 110-119, 120, 122, 124, 126, 128, 130, 132, 134, 136, 169-174, 181-188, 263, 265 and 267-291.

34. A method for detecting *Chlamydia* infection in a biological sample, comprising:

(a) contacting the biological sample with a binding agent which is capable of binding to a polypeptide comprising an immunogenic portion of a *Chlamydia* antigen, wherein said antigen comprises an amino acid sequence encoded by a polynucleotide sequence selected from the group consisting of: (i) a sequence recited in SEQ ID NO: 1-4, 15, 16, 21-25, 27, 29, 33, 44-64, 66-88, 110-119, 120, 122, 124, 126, 128, 130, 132, 134, 136, 169-174, 181-188, 263, 265 and 267-291, (ii) sequences complementary to a sequence

of (i), and (c) polynucleotide sequences that hybridize to a sequence of (i) or (ii) under moderately stringent conditions; and

(b) detecting in the sample a polypeptide that binds to the binding agent, thereby detecting *Chlamydia* infection in the biological sample.

35. A method of detecting *Chlamydia* infection in a biological sample, comprising:

(a) contacting the biological sample with a binding agent which is capable of binding to a fusion protein comprising a polypeptide, the polypeptide comprising an immunogenic portion of a *Chlamydia* antigen, wherein said antigen comprises an amino acid sequence encoded by a polynucleotide sequence selected from the group consisting of: (i) a sequence recited in SEQ ID NO: 1-4, 15, 16, 21-25, 27, 29, 33, 44-64, 66-88, 110-119, 120, 122, 124, 126, 128, 130, 132, 134, 136, 169-174, 181-188, 263, 265 and 267-291, (ii) sequences complementary to a sequence of (i), and (c) polynucleotide sequences that hybridize to a sequence of (i) or (ii) under moderately stringent conditions; and

(b) detecting in the sample a polypeptide that binds to the binding agent, thereby detecting *Chlamydia* infection in the biological sample.

36. The method of any one of claims 34 and 35 wherein the binding agent is a monoclonal antibody.

37. The method of any one of claims 34 and 35 wherein the binding agent is a polyclonal antibody.

38. The method of any one of claims 34 and 35 wherein the biological sample is selected from the group consisting of whole blood, sputum, serum, plasma, saliva, cerebrospinal fluid and urine.

39. A diagnostic kit comprising:

(a) a polypeptide comprising an immunogenic portion of a *Chlamydia* antigen, wherein said antigen comprises an amino acid sequence encoded by a polynucleotide sequence selected from the group consisting of: (i) a sequence recited in SEQ ID NO: 1-4, 15, 16, 21-25, 27, 29, 33, 44-64, 66-88, 110-119, 120, 122, 124, 126, 128, 130, 132, 134, 136, 169-174, 181-188, 263, 265 and 267-291, (ii) sequences complementary to a sequence of (i), and (c) polynucleotide sequences that hybridize to a sequence of (i) or (ii) under moderately stringent conditions; and

(b) a detection reagent.

40. A diagnostic kit comprising:

(a) a fusion protein comprising a polypeptide, the polypeptide comprising an immunogenic portion of a *Chlamydia* antigen, wherein said antigen comprises an amino acid sequence encoded by a polynucleotide sequence selected from the group consisting of: (i) a sequence recited in SEQ ID NO1-4, 15, 16, 21-25, 27, 29, 33, 44-64, 66-88, 110-119, 120, 122, 124, 126, 128, 130, 132, 134, 136, 169-174, 181-188, 263, 265 and 267-291 (ii) sequences complementary to a sequence of (i), and (c) polynucleotide sequences that hybridize to a sequence of (i) or (ii) under moderately stringent conditions; and

(b) a detection reagent.

41. The kit of claims 39 or 40 wherein the polypeptide is immobilized on a solid support.

42. The kit of claims 39 or 40 wherein the detection reagent comprises a reporter group conjugated to a binding agent.

43. The kit of claim 42 wherein the binding agent is selected from the group consisting of anti-immunoglobulins, Protein G, Protein A and lectins.

44. The kit of claim 42 wherein the reporter group is selected from the group consisting of radioisotopes, fluorescent groups, luminescent groups, enzymes, biotin and dye particles.

45. A diagnostic kit comprising at least two oligonucleotide primers, at least one of the oligonucleotide primers being specific for a polynucleotide molecule comprising a polynucleotide sequence of SEQ ID NO: 1-4, 15, 16, 21-25, 27, 29, 33, 44-64, 66-88, 110-119, 120, 122, 124, 126, 128, 130, 132, 134, 136, 169-174, 181-188, 263, 265 and 267-291.

46. A diagnostic kit according to claim 43, wherein at least one of the oligonucleotide primers comprises at least about 10 contiguous nucleotides of a sequence of SEQ ID NO: 1-4, 15, 16, 21-25, 27, 29, 33, 44-64, 66-88, 110-119, 120, 122, 124, 126, 128, 130, 132, 134, 136, 169-174, 181-188, 263, 265 and 267-291.

47. A diagnostic kit comprising at least one oligonucleotide probe, the oligonucleotide probe being specific for a polynucleotide molecule comprising a sequence of SEQ ID NO: 1-4, 15, 16, 21-25, 27, 29, 33, 44-64, 66-88, 110-119, 120, 122, 124, 126, 128, 130, 132, 134, 136, 169-174, 181-188, 263, 265 and 267-291.

48. A kit according to claim 47, wherein the oligonucleotide probe comprises at least about 15 contiguous nucleotides of a polynucleotide sequence of SEQ ID NO: 1-4, 15, 16, 21-25, 27, 29, 33, 44-64, 66-88, 110-119, 120, 122, 124, 126, 128, 130, 132, 134, 136, 169-174, 181-188, 263, 265 and 267-291.

49. A diagnostic kit comprising:

- (a) at least one antibody, or antigen-binding fragment thereof, according to claim 22; and
- (b) a detection reagent.

50. A method for treating *Chlamydia* infection in a patient, comprising the steps of:

- (a) obtaining peripheral blood cells from the patient;
- (b) incubating the cells in the presence of at least one polypeptide, the polypeptide comprising an immunogenic portion of a *Chlamydia* antigen, wherein said antigen comprises an amino acid sequence encoded by a polynucleotide sequence selected from the group consisting of: (i) a sequence recited in SEQ ID NO: 1-4, 15, 16, 21-25, 27, 29, 33, 44-64, 66-88, 110-119, 120, 122, 124, 126, 128, 130, 132, 134, 136, 169-174, 181-188, 263, 265 and 267-291 (ii) sequences complementary to a sequence of (i), and (c) polynucleotide sequences that hybridize to a sequence of (i) or (ii) under moderately stringent conditions, such that T cells proliferate; and

- (c) administering to the patient the proliferated T cells.

51. A method for treating *Chlamydia* infection in a patient, comprising the steps of:

- (a) obtaining peripheral blood cells from the patient;
- (b) incubating the cells in the presence of at least one polynucleotide, comprises a polynucleotide sequence selected from the group consisting of: (i) a sequence recited in SEQ ID NO: 1-4, 15, 16, 21-25, 27, 29, 33, 44-64, 66-88, 110-119, 120, 122, 124, 126, 128, 130, 132, 134, 136, 169-174, 181-188, 263, 265 and 267-291 (ii) sequences complementary to a sequence of (i), and (c) polynucleotide sequences that hybridize to a sequence of (i) or (ii) under moderately stringent conditions, such that T cells proliferate; and

- (c) administering to the patient the proliferated T cells.

52. The method of any one of claims 50 and 51 wherein the step of incubating the T cells is repeated one or more times.

53. The method of any one of claims 50 and 51 wherein step (a) further comprises separating T cells from the peripheral blood cells, and the cells incubated in step (b) are the T cells.

54. The method of any one of claims 50 and 51 wherein step (a) further comprises separating CD4+ cells or CD8+ T cells from the peripheral blood cells, and the cells proliferated in step (b) are CD4+ or CD8+ T cells.

55. The method of any one of claims 50 and 51 wherein step (a) further comprises separating gamma/delta T lymphocytes from the peripheral blood cells, and the cells proliferated in step (b) are gamma/delta T lymphocytes.

56. The method of any one of claims 50 and 51 wherein step (b) further comprises cloning one or more T cells that proliferated in the presence of the polypeptide.

57. A pharmaceutical composition for the treatment of *Chlamydia* infection in a patient, comprising T cells proliferated in the presence of a polypeptide of claim 1, in combination with a physiologically acceptable carrier.

58. A pharmaceutical composition for the treatment of *Chlamydia* infection in a patient, comprising T cells proliferated in the presence of a polynucleotide of claim 3, in combination with a physiologically acceptable carrier.

59. A method for treating *Chlamydia* infection in a patient, comprising the steps of:

- (a) incubating antigen presenting cells in the presence of at least one polypeptide of claim 1;
- (b) administering to the patient the incubated antigen presenting cells.

60. A method for treating *Chlamydia* infection in a patient, comprising the steps of:

- (a) introducing at least one polynucleotide of claim 3 into antigen presenting cells;
- (b) administering to the patient the antigen presenting cells.

61. The method of claims 59 or 60 wherein the antigen presenting cells are selected from the group consisting of dendritic cells, macrophage cells, B cells fibroblast cells, monocyte cells, and stem cells.

62. A pharmaceutical composition for the treatment of *Chlamydia* infection in a patient, comprising antigen presenting cells incubated in the presence of a polypeptide of claim 1, in combination with a physiologically acceptable carrier.

63. A pharmaceutical composition for the treatment if *Chlamydia* infection in a patient, comprising antigen presenting cells incubated in the presence of a polynucleotide of claim 3, in combination with a physiologically acceptable carrier.

64. A polypeptide comprising an immunogenic portion of a *Chlamydia* antigen, wherein said immunogenic portion comprises a sequence of SEQ ID NO: 18, 19, 31, 39, 93-96, 98, 100-102, 106, 108, 138-140, 158, 167, 168, 246, 247 and 254-256.

65. An immunogenic epitope of a *Chlamydia* antigen, comprising a sequence of SEQ ID NO: 31, 98, 106, 108, 138-140, 158, 167, 168, 246, 247 or 254-256.

66. An isolated polypeptide comprising a sequence recited in any one of SEQ ID NO: 5-14, 17-20, 26, 28, 30-32, 34, 39-43, 65, 89-109, 138-158, 167, 168, 224-262, 246, 247, 254-256 and 292.

COMPOUNDS AND METHODS FOR TREATMENT
AND DIAGNOSIS OF CHLAMYDIAL INFECTION

ABSTRACT OF THE DISCLOSURE

Compounds and methods for the diagnosis and treatment of Chlamydial infection are disclosed. The compounds provided include polypeptides that contain at least one antigenic portion of a *Chlamydia* antigen and DNA sequences encoding such polypeptides. Pharmaceutical compositions and vaccines comprising such polypeptides or DNA sequences are also provided, together with antibodies directed against such polypeptides. Diagnostic kits containing such polypeptides or DNA sequences and a suitable detection reagent may be used for the detection of Chlamydial infection in patients and in biological samples.

L:\DJM\210121\469c4.doc

Fig. 1

Retroviral vector
pBIB-KS

Kozak-Start

Reading Frame 1

KS1+

Kozak-Start

Reading Frame 2

KS2-

Kozak-Start

Reading Frame 3

KS3-

Fig. 2

Fig. 3

*Antibody Production in Chlamydia Antigen
Immunized C57BL/6 Mice*

Fig. 4

Proliferation (XTT) assay for splenocyte proliferation to recombinant SWIB *in vitro*

Fig. 5

PRIMER SEQUENCES- CP SWIB AND CP S13

CP SWIB Nde (5' primer)

5' GATATACATAATGCCATCACCATCACCATCACATGAGTCAAAAAAATAAAAAAACTCT

CP SWIB EcoRI (3' primer)

5' CTCGAGGAATTCTTATTTTACAAATATCTTGGAA

CP S13 Nde (5' primer)

5' GATATACATAATGCCATCACCATCACCATCACATGCCACCCATCATTGCAATGAT

CP S13 EcoRI (3' primer)

5' CTCGAGGAATTCTTATTTCTTACCTGC

Fig. 6

- T cell line TCL-8 EBDC responds to *E. coli* expressing ribosomal S13 from *C. trachomatis* and from *C. pneumoniae*

Fig. 7A

T cell line TCL-8 EBDC responds to *E. coli* expressing SW1B from *C. trachomatis* but not SW1B from *C. pneumoniae*

Fig. 7B

Figure 8: Identification of T cell epitopes in chlamydial ribosomal S13 protein with TCL8 EB/DC

Proliferative responses were determined by stimulating 2.5×10^4 T cells in the presence of 1×10^4 monocyte-derived dendritic cells and Ct-EB (1 $\mu\text{g}/\text{ml}$). Ct-, Cp S13 (2 $\mu\text{g}/\text{ml}$) or the respective peptide (0.2 $\mu\text{g}/\text{ml}$). Assay was harvested after 4 days with a ^{3}H -thymidine pulse for the last 18h.

Fig. 8

Figure 9: CP-21 T cells generated against *C. pneumoniae*-infected DC responded to recombinant Cp-Swib but not Ct-Swib

T cell lines were generated against monocyte-derived dendritic cells infected for 72h with *C. trachomatis* LGV II (Ct-RB) or *C. pneumoniae* (Cp-RB) respectively.
Proliferative responses were determined by stimulating 2.5×10^4 T cells in the presence of 1×10^4 monocyte-derived dendritic cells and the respective antigen Ct-groEL 2 μ g/ml, Cp-Swib 2 μ g/ml, Ct-Swib 2 μ g/ml Cp-EB 1 μ g/ml and Ct-EB 1 μ g/ml. Assay was harvested after 4 days with a ^3H -thymidine pulse for the last 18h.

Fig. 9

Figure 10: A primary T cell line (TCT-10 EB) from an asymptomatic donor has a *C. trachomatis*-specific Swib response

T cell line TCT-10 EB was generated by stimulating PBMC with 1 µg/ml killed *C. trachomatis* LGV2 elementary body (EB). Proliferative responses were determined by stimulating 2.5×10^4 T cells in the presence of 1×10^4 monocyte-derived dendritic cells and the respective antigen. Assay was harvested after 4 days with a ^{3}H -thymidine pulse for the last 18h.

Fig. 10

Figure 11: Identification of T cell epitope in *C. trachomatis* Swib with TCL-10 EB

Proliferative responses were determined by stimulating 2.5×10^4 T cells in the presence of 1×10^4 monocyte-derived dendritic cells and Ct-Swib 2 $\mu\text{g}/\text{ml}$ or the respective peptide 0.2 $\mu\text{g}/\text{ml}$. Assay was harvested after 4 days with a ^{3}H -thymidine pulse for the last 18h.

Fig. 11

EXPRESS MAIL NO. EL414545499US

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants : Peter Probst, Ajay Bhatia, Yasir Skeiky, Steve Fling
and Jeff Maisonneuve
Filed : December 3, 1999
For : COMPOSITIONS AND METHODS FOR TREATMENT
AND DIAGNOSIS OF CHLAMYDIAL INFECTION
Docket No. : 210121.469C4
Date : December 3, 1999

Box Patent Application
Assistant Commissioner for Patents
Washington, D.C. 20231

DECLARATION

Sir:

I, Lawrence Teague, in accordance with 37 C.F.R. § 1.821(f) do hereby declare that, to the best of my knowledge, the content of the paper entitled "Sequence Listing" and the computer readable copy contained within the floppy disk are the same.

I declare further that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true and further that these statements are made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issuing thereon.

Dated this 3rd day of December, 1999.

Lawrence Teague
Legal Assistant

6300 Columbia Center
Seattle, WA 98104-7092
(206) 622-4900
FAX (206) 682-6031

J:\sequence\new rule\210121\469c4 dec

SEQUENCE LISTING

<110> Probst, Peter
 Bhatia, Ajay
 Skeiky, Yasir
 Fling, Steve
 Maisonneuve, Jeff

<120> COMPOSITIONS AND METHODS FOR TREATMENT AND
 DIAGNOSIS OF CHLAMYDIAL INFECTION

<130> 210121.469C4

<140> US
 <141> 1999-12-03

<160> 303

<170> FastSEQ for Windows Version 3.0/4.0

<210> 1
 <211> 481
 <212> DNA
 <213> Chlamydia trachomatis

<400> 1

ctgaagactt ggctatgttt tttatittga cgataaacct agttaaggca taaaagagt	60
gcgaaggaag agccctcaac ttttcttatac accttcttta actaggagtc atccatgagt	120
caaaataaga actctgctt catgcagcct gtgaacgtat ccgctgattt agctgccatc	180
gttggtgcaag gacctatgcc tcgcacagag atcattaaga aaatgtggga ttacattaag	240
gagaatagtc ttcaagatcc tacaaacaaa cgtaatatca atcccgtatga taaattggct	300
aaagtttttg gaactgaaaaa acctatcgat atgttccaaa tgacaaaaat ggtttctcaa	360
cacatcatta aataaaatag aaattgactc acgtgttccct cgtcttaag atgaggaact	420
agttcattct ttttgttcgt ttttgtgggt attactgtat cttaacaac tatcttagca	480
g	481

<210> 2

<211> 183
 <212> DNA
 <213> Chlamydia trachomatis

<400> 2

atcggttgtc caggacctat gcctcgacata gagatcatta agaaaatgtg ggattacatt	60
aaggagaata gtcttcaaga tcctacaaac aaacgtaata tcaatcccga tgataaattg	120
gctaaagttt ttggaactga aaaacctatac gatatgttcc aatgacaaa aatggttct	180
caa	183

<210> 3

<211> 110
 <212> DNA
 <213> Chlamydia trachomatis

<400> 3

gctgcgacat catgcgagct tgcaaaccua catggacatc tccaatttcc cttctaaact	60
---	----

cgctctttgg aactaatgct gctaccgagt caatcacaat cacatcgacc 110

<210> 4
<211> 555
<212> DNA
<213> Chlamydia trachomatis

<400> 4

cggcacgagc ctaagatgct tatactactt taaggaggc ctttcgtatg ccgcgcata	60
tttgaataga tattcctcg aaaaagaat taaaataag tcttacatat atttatggaa	120
tagggccagc tcttctaaa gagattattg ctagattgca gt.tgaatccc gaagcttagag	180
ctgcagagtt gactgaggaa gaggttggc gactaaacgc tctttacag tcggattacg	240
tttgttgaagg ggatttgcgc cgtcgtgtgc aatctgatataaaacgtctg attactatcc	300
atgcttatcg tggacaaaga catagacttt ctttgcctgt tcgtggcag agaacaaaaa	360
caaattctcg cacgcgtaaag ggttaaacgtaaactattgc aggttaagaag aaataataat	420
ttttaggaga gagtgttttg gttaaaaatc aagcgcaaaa aagaggcgtaaaagaaaaac	480
aagtaaaaaa cattcctcg ggcgttgc atgttaaggc tactttaat aatacaattt	540
taaccataac agacc	555

<210> 5

<211> 86
<212> PRT
<213> Chlamydia trachomatis

<400> 5

Met Ser Gln Asn Lys Asn Ser Ala Phe Met Gln Pro Val Asn Val Ser	
1 5 10 15	
Ala Asp Leu Ala Ala Ile Val Gly Ala Gly Pro Met Pro Arg Thr Glu	
20 25 30	
Ile Ile Lys Lys Met Trp Asp Tyr Ile Lys Glu Asn Ser Leu Gln Asp	
35 40 45	
Pro Thr Asn Lys Arg Asn Ile Asn Pro Asp Asp Lys Leu Ala Lys Val	
50 55 60	
Phe Gly Thr Glu Lys Pro Ile Asp Met Phe Gln Met Thr Lys Met Val	
65 70 75 80	
Ser Gln His Ile Ile Lys	
85	

<210> 6

<211> 61
<212> PRT
<213> Chlamydia trachomatis

<400> 6

Ile Val Gly Ala Gly Pro Met Pro Arg Thr Glu Ile Ile Lys Lys Met	
1 5 10 15	
Trp Asp Tyr Ile Lys Glu Asn Ser Leu Gln Asp Pro Thr Asn Lys Arg	
20 25 30	
Asn Ile Asn Pro Asp Asp Lys Leu Ala Lys Val Phe Gly Thr Glu Lys	
35 40 45	
Pro Ile Asp Met Phe Gln Met Thr Lys Met Val Ser Gln	
50 55 60	

<210> 7

<211> 36

<212> PRT
<213> Chlamyida trachomatis

<400> 7
Ala Ala Thr Ser Cys Glu Leu Ala Asn Gln His Gly His Leu Gln Phe
1 5 10 15
Pro Leu Leu Thr Arg Ser Leu Glu Leu Met Leu Leu Pro Ser Gln Ser
20 25 30
Gln Ser His Arg
35

<210> 8
<211> 18
<212> PRT
<213> Chlamydia trachomatis

<400> 8
Leu Arg His His Ala Ser Leu Gln Thr Asn Met Asp Ile Ser Asn Phe
1 5 10 15
Pro Phe

<210> 9
<211> 5
<212> PRT
<213> Chlamydia trachomatis

<400> 9
Leu Ala Leu Trp Asn
1 5

<210> 10
<211> 11
<212> PRT
<213> Chlamydia trachomatis

<400> 10
Cys Cys Tyr Arg Val Asn His Asn His Ile Asp
1 5 10

<210> 11
<211> 36
<212> PRT
<213> Chlamydia trachomatis

<400> 11
Val Asp Val Ile Val Ile Asp Ser Val Ala Ala Leu Val Pro Lys Ser
1 5 10 15
Glu Leu Glu Gly Glu Ile Gly Asp Val His Val Gly Leu Gln Ala Arg
20 25 30
Met Met Ser Gln
35

<210> 12
<211> 122

<212> PRT
<213> Chlamydia trachomatis

<400> 12
Met Pro Arg Ile Ile Gly Ile Asp Ile Pro Ala Lys Lys Lys Leu Lys
1 5 10 15
Ile Ser Leu Thr Tyr Ile Tyr Gly Ile Gly Pro Ala Leu Ser Lys Glu
20 25 30
Ile Ile Ala Arg Leu Gln Leu Asn Pro Glu Ala Arg Ala Ala Glu Leu
35 40 45
Thr Glu Glu Glu Val Gly Arg Leu Asn Ala Leu Leu Gln Ser Asp Tyr
50 55 60
Val Val Glu Gly Asp Leu Arg Arg Val Gln Ser Asp Ile Lys Arg
65 70 75 80
Leu Ile Thr Ile His Ala Tyr Arg Gly Gln Arg His Arg Leu Ser Leu
85 90 95
Pro Val Arg Gly Gln Arg Thr Lys Thr Asn Ser Arg Thr Arg Lys Gly
100 105 110
Lys Arg Lys Thr Ile Ala Gly Lys Lys Lys
115 120

<210> 13
<211> 20
<212> PRT
<213> Chlamydia trachomatis

<400> 13
Asp Pro Thr Asn Lys Arg Asn Ile Asn Pro Asp Asp Lys Leu Ala Lys
1 5 10 15
Val Phe Gly Thr
20

<210> 14
<211> 20
<212> PRT
<213> Chlamydia trachomatis

<400> 14
Asp Asp Lys Leu Ala Lys Val Phe Gly Thr Glu Lys Pro Ile Asp Met
1 5 10 15
Phe Gln Met Thr
20

<210> 15
<211> 161
<212> DNA
<213> Chlymidia trachomatis

<400> 15
atctttgtgt gtctcataag cgcatcgcc ctgcggctgt ctgttagcttc atcggaggaa 60
ttacacctt cgcgacattc ggagctatcc gtccgattct gtttgtcaac aaaatgctgg 120
cgcaaccgtt tctttcttcc caaactaaag caaatatggg a 161

<210> 16
<211> 897

<212> DNA

<213> Chlymidia trachomatis

<400> 16

atggcttcta tatgcggacg	tttagggct	gttacaggg	atgcctctaaa	agctttttt	60
acacagccca acaaataaaat	ggcaagggt	taataaga	cgaaggaaat	ggataagact	120
attaagggtt	ccaaagtctgc	tgccgaaatt	accgcaaata	ttttggaaaca	180
gcgggctt	ccgcacacat	tacagttcc	caagtgtcca	aaggattagg	240
actgttgtcg	ctttagggaa	tgccttaac	ggagcgttgc	caggaacagt	300
caaagcttct	tctctcacat	gaaagctgct	agtcagaaaa	cgcaagaagg	360
ctcacagcag	atctttgtgt	gtctcataag	cgcagagcgg	ggatgagggg	420
atcgaggaa	ttacacct	cgcacattc	ggagctatcc	gtccgattct	480
aaaatgctgg	caaaccgtt	tctttcttcc	caaactaaag	caaatatggg	540
agctatatta	tggcggctaa	ccatgcagcg	tctgtggtgg	gtgctggact	600
gcggaaagag	cagattgcga	agcccgtgc	gctcgttattg	cgagagaaga	660
gaagtgccgg	gagaggaaaa	tgcttgcgag	aagaaaagtgc	ctggagagaa	720
ttcacgcgca	tcaagtatgc	actcctca	atgctcgaga	agtttttgg	780
gacgtttca	aattggtgcc	gctgcctatt	acaatgggt	atgcgttgc	840
ggatgtacgt	tcacttctgc	aattattgga	tttgtcactt	tctgcgccag	897

<210> 17

<211> 298

<212> PRT

<213> Chlamydia trachomatis

<400> 17

Met	Ala	Ser	Ile	Cys	Gly	Arg	Leu	Gly	Ser	Gly	Thr	Gly	Asn	Ala	Leu
1				5				10					15		
Lys	Ala	Phe	Phe	Thr	Gln	Pro	Asn	Asn	Lys	Met	Ala	Arg	Val	Val	Asn
				20				25					30		
Lys	Thr	Lys	Gly	Met	Asp	Lys	Thr	Ile	Lys	Val	Ala	Lys	Ser	Ala	Ala
				35				40				45			
Glu	Leu	Thr	Ala	Asn	Ile	Leu	Glu	Gln	Ala	Gly	Gly	Ala	Gly	Ser	Ser
				50				55			60				
Ala	His	Ile	Thr	Ala	Ser	Gln	Val	Ser	Lys	Gly	Leu	Gly	Asp	Ala	Arg
65					70				75				80		
Thr	Val	Val	Ala	Leu	Gly	Asn	Ala	Phe	Asn	Gly	Ala	Leu	Pro	Gly	Thr
					85				90				95		
Val	Gln	Ser	Ala	Gln	Ser	Phe	Phe	Ser	His	Met	Lys	Ala	Ala	Ser	Gln
					100				105			110			
Lys	Thr	Gln	Glu	Gly	Asp	Glu	Gly	Leu	Thr	Ala	Asp	Leu	Cys	Val	Ser
					115				120			125			
His	Lys	Arg	Arg	Ala	Ala	Ala	Val	Cys	Ser	Ile	Ile	Gly	Gly	Ile	
					130				135			140			
Thr	Tyr	Leu	Ala	Thr	Phe	Gly	Ala	Ile	Arg	Pro	Ile	Leu	Phe	Val	Asn
145					150				155			160			
Lys	Met	Leu	Ala	Lys	Pro	Phe	Leu	Ser	Ser	Gln	Thr	Lys	Ala	Asn	Met
					165				170			175			
Gly	Ser	Ser	Val	Ser	Tyr	Ile	Met	Ala	Ala	Asn	His	Ala	Ala	Ser	Val
					180				185			190			
Val	Gly	Ala	Gly	Leu	Ala	Ile	Ser	Ala	Glu	Arg	Ala	Asp	Cys	Glu	Ala
					195				200			205			
Arg	Cys	Ala	Arg	Ile	Ala	Arg	Glu	Glu	Ser	Leu	Leu	Glu	Val	Pro	Gly
				210				215			220				
Glu	Glu	Asn	Ala	Cys	Glu	Lys	Va	Ala	Gly	Glu	Lys	Ala	Lys	Thr	

225	230	235	240
Phe Thr Arg Ile Lys Tyr Ala Leu Leu Thr Met Leu Glu Lys Phe Leu			
245	250	255	
Glu Cys Val Ala Asp Val Phe Lys Leu Val Pro Leu Pro Ile Thr Met			
260	265	270	
Gly Ile Arg Ala Ile Val Ala Ala Gly Cys Thr Phe Thr Ser Ala Ile			
275	280	285	
Ile Gly Leu Cys Thr Phe Cys Ala Arg Ala			
290	295		
 <210> 18			
<211> 18			
<212> PRT			
<213> Chlamydia trachomatis			
 <400> 18			
Arg Ala Ala Ala Ala Ala Val Cys Ser Phe Ile Gly Gly Ile Thr			
1	5	10	15
Tyr Leu			
 <210> 19			
<211> 18			
<212> PRT			
<213> Chlamydia trachomatis			
 <400> 19			
Cys Ser Phe Ile Gly Gly Ile Thr Tyr Leu Ala Thr Phe Gly Ala Ile			
1	5	10	15
Arg Pro			
 <210> 20			
<211> 216			
<212> PRT			
<213> Chlamydia trachomatis			
 <400> 20			
Met Arg Gly Ser Gln Gln Ile Phe Val Cys Leu Ile Ser Ala Glu Arg			
1	5	10	15
Leu Arg Leu Ser Val Ala Ser Ser Glu Glu Leu Pro Thr Ser Arg His			
20	25	30	
Ser Glu Leu Ser Val Arg Phe Cys Leu Ser Thr Lys Cys Trp Gln Asn			
35	40	45	
Arg Phe Phe Leu Pro Lys Leu Lys Gln Ile Trp Asp Leu Leu Ala			
50	55	60	
Ile Leu Trp Arg Leu Thr Met Gln Arg Leu Trp Trp Val Leu Asp Ser			
65	70	75	80
Leu Ser Val Arg Lys Glu Gln Ile Ala Lys Pro Ala Ala Leu Val Leu			
85	90	95	
Arg Glu Lys Ser Arg Tyr Ser Lys Cys Arg Glu Arg Lys Met Leu Ala			
100	105	110	
Arg Arg Lys Ser Leu Glu Arg Lys Pro Arg Arg Ser Arg Ala Ser Ser			
115	120	125	
Met His Ser Ser Leu Cys Ser Arg Ser Phe Trp Asn Ala Leu Pro Thr			

130	135	140
Phe Ser Asn Trp Cys Arg	Cys Leu Leu Gln Trp Val Phe Val Arg	Leu
145	150	155
Trp Leu Leu Asp Val Arg	Ser Leu Leu Gln Leu Leu Asp	Cys Ala Leu
165	170	175
Ser Ala Pro Glu His Lys	Gly Phe Phe Lys Phe Leu Lys	Lys Lys Ala
180	185	190
Val Ser Lys Lys Gln Pro	Phe Leu Ser Thr Lys Cys	Leu Ala Phe
195	200	205
Leu Ile Val Lys Ile Val Phe	Leu	
210	215	

<210> 21
<211> 1256
<212> DNA
<213> Chlamydia trachomatis

<400> 21	
ctcgtgccgg cacgagcaaa gaaatccctc aaaaaatggc cattattggc ggtggtgtga	60
tccgttgcga attcgcttcc ttattccata cgtaggctc cgaagttct gtgatcgaag	120
caagctctca aatccttgct ttgaataatc cagatatttc aaaaaccatg ttcgataaat	180
tcacccgaca aggactccgt ttctgtacttag aagcctctgt atcaaatatt gaggatata	240
gagatcgcgt tcggtaact atcaatggga atgtcgaaga atacgattac gttctcgat	300
ctataggacg ccgttgaat acagaaaata ttggcttggaa taaagctggt gttatttgg	360
atgaacgcgg agtcatccct accgatgcca caatgcgcac aaacgtacct aacatttat	420
ctattggaga tattcacagga aaatggcaac ttgcccattgt agcttctcat caaggaatca	480
ttgcagcacg gaatatacggt ggccataaaag aggaaatcgta ttactctgt gtccttctg	540
tgatcttac ctccctgaa gtcgcttcag taggcctctc cccaaacagca gctcaacaac	600
atctccctct tcgcttactt tttctgaaaa atttgataca gaagaagaat tcctcgcaca	660
cttgcgagga ggagggcgtc tggaagacca gttgaattta gctaagttt ctgagcggtt	720
tgattcttg cgagaattat ccgcttaagct tggttacgat agcgatggag agactgggaa	780
tttcttcaac gaggagtacg acgacgaaga agaggaaatc aaacccaaga aaactacgaa	840
acgtggacgt aagaagagcc gttcataaagc cttgcttttta aggttggta gttttactt	900
tctaaaatcc aaatggttgc tggccaaaa agtagtttgc gtttccggat agggcgtaaa	960
tgcgtgcattt gaaagattgc ttgcagagcg gcatcgctg ggagatcccc gatactttt	1020
ttcagatacg aataagcata gctgttccca gaataaaaaac ggccgacgct aggaacaaca	1080
agatttagat agagttgtgt tagcaggtaa actgggttat atgttgcgtt ggcgtgttagt	1140
tctagaatac ccaagtgtcc tccagggtgt aataactcgat acactccct aagagccct	1200
aatggatagg ataagttccg taatccatag gccatagaag ctaaacgaaa cgtatt	1256

<210> 22
<211> 601
<212> DNA
<213> Chlamydia trachomatis

<400> 22	
ctcgtgccgg cacgagcaaa gaaatccctc aaaaaatggc cattattggc ggtggtgtga	60
tccgttgcga attcgcttcc ttattccata cgtaggctc cgaagttct gtgatcgaag	120
caagctctca aatccttgct ttgaataatc cagatatttc aaaaaccatg ttcgataaat	180
tcacccgaca aggactccgt ttctgtacttag aagcctctgt atcaaatatt gaggatata	240
gagatcgcgt tcggtaact atcaatggga atgtcgaaga atacgattac gttctcgat	300
ctataggacg ccgttgaat acagaaaata ttggcttggaa taaagctggt gttatttgg	360
atgaacgcgg agtcatccct accgatgcca caatgcgcac aaacgtacct aacatttat	420
ctattggaga tattcacagga aaatggcaac ttgcccattgt agcttctcat caaggaatca	480
ttgcagcacg gaatatacggt ggccataaaag aggaaatcgta ttactctgt gtccttctg	540

tgatcttac cttccctgaa gtcgcttcag taggcctctc cccaacagca gctcaacaac a	600 601
<210> 23	
<211> 270	
<212> DNA	
<213> Chlamydia trachomatis	
<400> 23	
acatctcctt cttcgcttac ttttctgaa aaatttgata cagaagaaga attcctcgca cacttgcgag gaggaggcg tctggaaagac cagttgaatt tagctaagtt ttctgagcgt tttatttt tgcgagaatt atccgctaag ctgggttagc atagcgatgg agagactgg gatttcttca acgaggagta cgacgacgaa gaagaggaaa tcaaaccgaa gaaaactacg aaacgtggac gtaagaagac ccgttataaa	60 120 180 240 270
<210> 24	
<211> 363	
<212> DNA	
<213> Chlamydia trachomatis	
<400> 24	
ttacttctct aaaatccaaa tgggtgctgc gccaaaaagt agtttgcgtt tccggatagg gcgtaaaatgc gctgcatgaa agattgcttc gagagcggca tcgcgtggga gatcccggat actttcttc agatacgaat aagcatagct gtccccagaa taaaaacggc cgacgctagg aacaacaaga ttttagataga gcttgcgttag caggtaaact gggttatatg ttgctggcg tgtagttct agaataaccca agtgtcctcc agttgtaat actcgatata cttccctaaag agcctctaattt ggataggata agttccgtaa tccataggcc atagaagcta aacgaaacgt att	60 120 180 240 300 360 363
<210> 25	
<211> 696	
<212> DNA	
<213> Chlamydia trachomatis	
<400> 25	
gctcggtcg gcacgagcaa agaaatccct caaaaaatgg ccattattgg cgggtgggttg atcggttgcg aattcgcttc cttattccat acgttggct ccgaagtttc tgtgatcgaa gcaagcttc aaatccttgc tttgaataat ccagatattt caaaaaccat gttcgataaa ttcacccgac aaggactccg tttcgacta gaagcctctg tatcaaataat tgaggatata ggagatcgcg ttcggtaac tatcaatggg aatgtcgaag aatacgatta cgttctcgta tctataggac gccgtttgaa tacagaaaat attggcttg ataaagctgg tgttatttgt gatgaacgcg gagtcatccc taccgatgcc acaatgcgc caaacgtacc taacatttat gctattggag atatcacagg aaaatggcaa cttgcccattg tagcttctca tcaaggaatc attgcagcac ggaatatagg tggccataaa gaggaaatcg attactctgc tgccttct gtgatcttac cttccctgaa agtcgcttca gtggcctct ccccaacagc agtcacaa catctccttc ttgccttact ttttctgaaa aatttgatac agaagaagaa ttccctcgac acttgcgagg aggagggcgt ctggaaagacc agttga	60 120 180 240 300 360 420 480 540 600 660 696
<210> 26	
<211> 231	
<212> PRT	
<213> Chlamydia trachomatis	
<400> 26	
Ala Arg Ala Gly Thr Ser Lys Glu Ile Pro Gln Lys Met Ala Ile Ile	

1	5	10	15												
Gly	Gly	Gly	Val	Ile	Gly	Cys	Glu	Phe	Ala	Ser	Leu	Phe	His	Thr	Leu
				20				25					30		
Gly	Ser	Glu	Val	Ser	Val	Ile	Glu	Ala	Ser	Ser	Gln	Ile	Leu	Ala	Leu
				35			40				45				
Asn	Asn	Pro	Asp	Ile	Ser	Lys	Thr	Met	Phe	Asp	Lys	Phe	Thr	Arg	Gln
				50			55			60					
Gly	Leu	Arg	Phe	Val	Leu	Glu	Ala	Ser	Val	Ser	Asn	Ile	Glu	Asp	Ile
	65				70				75			80			
Gly	Asp	Arg	Val	Arg	Leu	Thr	Ile	Asn	Gly	Asn	Val	Glu	Glu	Tyr	Asp
					85				90			95			
Tyr	Val	Leu	Val	Ser	Ile	Gly	Arg	Arg	Leu	Asn	Thr	Glu	Asn	Ile	Gly
					100			105			110				
Leu	Asp	Lys	Ala	Gly	Val	Ile	Cys	Asp	Glu	Arg	Gly	Val	Ile	Pro	Thr
					115			120			125				
Asp	Ala	Thr	Met	Arg	Thr	Asn	Val	Pro	Asn	Ile	Tyr	Ala	Ile	Gly	Asp
					130			135			140				
Ile	Thr	Gly	Lys	Trp	Gln	Leu	Ala	His	Val	Ala	Ser	His	Gln	Gly	Ile
	145				150				155			160			
Ile	Ala	Ala	Arg	Asn	Ile	Gly	Gly	His	Lys	Glu	Glu	Ile	Asp	Tyr	Ser
					165				170			175			
Ala	Val	Pro	Ser	Val	Ile	Phe	Thr	Phe	Pro	Glu	Val	Ala	Ser	Val	Gly
					180			185			190				
Leu	Ser	Pro	Thr	Ala	Ala	Gln	Gln	His	Leu	Leu	Leu	Arg	Leu	Leu	Phe
					195			200			205				
Leu	Lys	Asn	Leu	Ile	Gln	Lys	Lys	Asn	Ser	Ser	His	Thr	Cys	Glu	Glu
					210			215			220				
Glu	Gly	Val	Trp	Lys	Thr	Ser									
					225			230							

<210> 27

<211> 264

<212> DNA

<213> Chlamydia pneumoniae

<400> 27

atgagtcaaa	aaaataaaaa	ctctgtttt	atgcatcccg	tgaatatttc	cacagattta	60
gcagttatag	ttggcaagggg	acctatgcc	agaaccgaa	ttgtaaagaa	agtttggaa	120
tacattaaaa	aacacaactg	tcaggatcaa	aaaaataaaac	gtaatatcct	tcccgatg	180
aatcttgcca	aagtctttgg	ctcttagt	ctatcgaca	tgttccaaat	gaccaaagcc	240
ctttccaaac	atattgtaaa	ataaa				264

<210> 28

<211> 87

<212> PRT

<213> Chlamydia pneumoniae

<400> 28

Met	Ser	Gln	Lys	Asn	Lys	Asn	Ser	Ala	Phe	Met	His	Pro	Val	Asn	Ile
1				5				10			15				
Ser	Thr	Asp	Leu	Ala	Val	Ile	Val	Gly	Lys	Gly	Pro	Met	Pro	Arg	Thr
					20			25			30				
Glu	Ile	Val	Lys	Lys	Val	Trp	Glu	Tyr	Ile	Lys	Lys	His	Asn	Cys	Gln
					35			40			45				
Asp	Gln	Lys	Asn	Lys	Arg	Asn	Ile	Leu	Pro	Asp	Ala	Asn	Leu	Ala	Lys

50	55	60
Val Phe Gly Ser Ser Asp Pro Ile Asp Met Phe Gln Met Thr Lys Ala		
65	70	75
Leu Ser Lys His Ile Val Lys		
	85	

<210> 29
 <211> 369
 <212> DNA
 <213> Chlamydia pneumoniae

<400> 29
 atgccacgca tcatttggaaat tgatatttcct gcaaagaaaa agttaaaaat aagtctgaca 60
 tatattttatg gaataggatc agctcggtct gatgaaatca ttaaaaagtt gaagtttagat 120
 cctgaggcaa gagcctctga attaactgaa gaagaagtag gacgactgaa ctctctgcta 180
 caatcagaat ataccgtaga aggggatttg cgacgtcggt ttcaatcgga tatcaaaaga 240
 ttgatcgcca tccattctta tcgaggtcag agacatagac tttctttacc agtaagagga 300
 caacgtacaa aaactaattc tcgtactcga aaaggtaaaa gaaaaacagt cgcaggtaag 360
 aagaaataaa 369

<210> 30
 <211> 122
 <212> PRT
 <213> Chlamydia pneumoniae

<400> 30
 Met Pro Arg Ile Ile Gly Ile Asp Ile Pro Ala Lys Lys Lys Leu Lys 15
 1 5 10 15
 Ile Ser Leu Thr Tyr Ile Tyr Gly Ile Gly Ser Ala Arg Ser Asp Glu 20 25 30
 Ile Ile Lys Lys Leu Lys Leu Asp Pro Glu Ala Arg Ala Ser Glu Leu 35 40 45
 Thr Glu Glu Glu Val Gly Arg Leu Asn Ser Leu Leu Gln Ser Glu Tyr 50 55 60
 Thr Val Glu Gly Asp Leu Arg Arg Arg Val Gln Ser Asp Ile Lys Arg 65 70 75 80
 Leu Ile Ala Ile His Ser Tyr Arg Gly Gln Arg His Arg Leu Ser Leu 85 90 95
 Pro Val Arg Gly Gln Arg Thr Lys Thr Asn Ser Arg Thr Arg Lys Gly 100 105 110
 Lys Arg Lys Thr Val Ala Gly Lys Lys Lys 115 120

<210> 31
 <211> 10
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Made in the lab

<400> 31
 Cys Ser Phe Ile Gly Gly Ile Thr Tyr Leu 10
 1 5 10

<210> 32
 <211> 53
 <212> PRT
 <213> Chlamydia trachomatis

<400> 32
 Leu Cys Val Ser His Lys Arg Arg Ala Ala Ala Val Cys Ser Phe
 1 5 10 15
 Ile Gly Gly Ile Thr Tyr Leu Ala Thr Phe Gly Ala Ile Arg Pro Ile
 20 25 30
 Leu Phe Val Asn Lys Met Leu Ala Gln Pro Phe Leu Ser Ser Gln Thr
 35 40 45
 Lys Ala Asn Met Gly
 50

<210> 33
 <211> 161
 <212> DNA
 <213> Chlamydia trachomatis

<400> 33
 atcttttgtt gtctcataag cgtagacgg ctgcggctgt ctgttagcatc atcggaggaa 60
 ttacacctt cgcgacattc ggagctatcc gtcggattct gtttgtaaac aaaatgtgg 120
 caaaaccgtt tcttttttcc caaactaaag caaatatggg a 161

<210> 34
 <211> 53
 <212> PRT
 <213> Chlamydia trachomatis

<400> 34
 Leu Cys Val Ser His Lys Arg Arg Ala Ala Ala Val Cys Ser Ile
 1 5 10 15
 Ile Gly Gly Ile Thr Tyr Leu Ala Thr Phe Gly Ala Ile Arg Pro Ile
 20 25 30
 Leu Phe Val Asn Lys Met Leu Ala Lys Pro Phe Leu Ser Ser Gln Thr
 35 40 45
 Lys Ala Asn Met Gly
 50

<210> 35
 <211> 55
 <212> DNA
 <213> Chlamydia pneumoniae

<400> 35
 gatatacata tgcatcacca tcaccatcac atgagtcaaa aaaaataaaaa actct 55

<210> 36
 <211> 33
 <212> DNA
 <213> Chlamydia pneumoniae

<400> 36
 ctcgaggaaat tccttatttta caatatgttt gga 33

<210> 37
 <211> 53
 <212> DNA
 <213> Chlamydia pneumoniae

<400> 37
 gatatacata tgcacatcac tcaccatcac atgccacgca tcattggaaat gat 53

<210> 38
 <211> 30
 <212> DNA
 <213> Chlamydia pneumoniae

<400> 38
 ctcgaggaat tcttatttct tcttacctgc 30

<210> 39
 <211> 16
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Made in the lab

<400> 39
 Lys Arg Asn Ile Asn Pro Asp Asp Lys Leu Ala Lys Val Phe Gly Thr
 1 5 10 15

<210> 40
 <211> 16
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> made in the lab

<400> 40
 Lys Arg Asn Ile Leu Pro Asp Ala Asn Leu Ala Lys Val Phe Gly Ser
 1 5 10 15

<210> 41
 <211> 15
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> made in the lab

<400> 41
 Lys Glu Tyr Ile Asn Gly Asp Lys Tyr Phe Gln Gln Ile Phe Asp
 1 5 10 15

<210> 42

<211> 16
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> made in the lab

<400> 42
 Lys Lys Ile Ile Ile Pro Asp Ser Lys Leu Gln Gly Val Ile Gly Ala
 1 5 10 15

<210> 43
 <211> 15
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> made in the lab

<400> 43
 Lys Lys Leu Leu Val Pro Asp Asn Asn Leu Ala Thr Ile Ile Gly
 1 5 10 15

<210> 44
 <211> 509
 <212> DNA
 <213> Chlamydia

<400> 44
 ggagctcgaa ttcggcacga gagtgcctat tgtttgcag gctttgtctg atgatagcga 60
 taccgtacgt gagattgctg tacaagttagc tgtttatgtat ggttctagtt gcttaactgcg 120
 cggcgtgggc gatttagcga aaaatgatcc ttctattcaa gtacgcata ctgcttatcg 180
 tgctgcagcc gtgttggaga tacaagatct tgtgcctcat ttacgagttg tagtccaaaa 240
 tacacaatta gatggaacgg aaagaagaga agcttggaga tctttatgtg ttcttactcg 300
 gcctcatagt ggtgtattaa ctggcataga tcaagctta atgacctgtg agatgttaaa 360
 ggaatatcct gaaaagtgtt cggagaaca gatttgtaca ttattggctg cagatcatcc 420
 agaagtgcag gtagctactt tacagatcat tctgagagga ggttagagtat tccggtcatc 480
 ttctataatg gaatcggttc tcgtgccgg 509

<210> 45
 <211> 481
 <212> DNA
 <213> Chlamydia

<220>
 <221> unsure
 <222> (23)
 <223> n=A,T,C or G

<400> 45
 gatccgaatt cggcacgagg cantatttac tcccaacatt acggttccaa ataagcgata 60
 aggtcttcta ataaggaagt taatgttaaga ggcttttta ttgcctttcg taaggttagta 120
 ttgcaaccgc acgcgattga atgatacgca agccattcc atcatggaaa agaacccttg 180
 gacaaaaata caaaggaggt tcactcctaa ccagaaaaag ggagagttt taggagccgc 240
 ttttccttat atacacccgt ttcacacacaat taggagccgc gtctgttatt tggaaatacaa 300

attgtccccca agcgaatttt gttcctgtt cagggatttc tcctaattgt tctgtcagcc 360
 atccgcctat ggtaacgcaa ttagctgtag taggaagatc aactccaaac aggtcataga 420
 aatcagaaaag ctcataggtg cctgcagcaa taacaacatt cttgtctgag tgagcgaatt 480
 g

<210> 46
 <211> 427
 <212> DNA
 <213> Chlamydia

<220>
 <221> unsure
 <222> (20)
 <223> n=A,T,C or G

<400> 46

gatccgaatt cggcacgagn ttttcctgt ttttcttag ttttagtgt tcccgagca 60
 ataacacaga tcaaagaacg gccattcagt ttaggtctg actcaacaaa acctatgtcc 120
 tctaaggcct gacacattct ttgaacaacc ttatgcccgt gttcggata agccaactct 180
 cgccccccgaa acataacaaga aacctttact ttatttcctt tctcaataaaa ggctctagct 240
 tgctttgctt tcgtaaagaaa gtcgttatca tcgatattag gcttaagctt aaccttttg 300
 atacgcacctt ggtgtgtgc tttcttacta tcttttctt ttttagttt gtgtaacga 360
 tacttcccgt agtccatgtat tttgcacaca ggaggctctg agtttgaagc aacctcggtgc 420
 cgaattc 427

<210> 47
 <211> 600
 <212> DNA
 <213> Chlamydia

<220>
 <221> unsure
 <222> (522)
 <223> n=A,T,C or G

<400> 47

gatccgaatt cggcacgaga tgcttctatt acaattggtt tggatgcgga aaaagcttac 60
 cagcttattc tagaaaaagggtt gggagatcaa attcttggtg gaattgtctga tactattgtt 120
 gatagtacag tccaaagatattttt ttttagacaaa atcacaacag acccttctctt aggtttgttg 180
 aaagcttttta acaactttcc aatcactaat aaaattcaat gcaacgggtt attcactccc 240
 aggaacatggaa aacatttttattt aggaggaact gaaataggaa aattcacttgcgtt cacacccaaa 300
 agctctggga gcattttttttt agtctcagca gatatttttg catcaagaat ggaaggccgc 360
 gttgttcttag ctgggttacg agaagggtatc tctaaaggccct acgcgtttagt ttatggatac 420
 tcatcaggcg ttcctaattt atgtatgtctt agaaccagaa ttattaatac aggattgact 480
 ccgacaacgtt attcattacg tttttttttttt ttagaaagcg gngtggatgtt ggttaatgcc 540
 ctttctaatg gcaatgtat ttttaggaata acaaattttttttaatgtatct tttttggagg 600

<210> 48
 <211> 600
 <212> DNA
 <213> Chlamydia

<400> 48

ggagctcgaa ttccggcacgaa gctctatgaa tatccaattt tctaaactgt tcggataaaaa 60
 atgatgcagg aatttaggtcc acactatctt tttttgtttc gcaaatgtattt gattttaaat 120

cgtttcatgt gtatactatg tcgtgtaaac cttttgggtt acttctgaca ctagccccca 180
 atccagaaga taaattggat tgcgggtcta ggtcagcaag taacactttt ttccctaaaa 240
 attggggccaa gttgcatccc acgttttagag aaagtgttgc tttccagtt cttcccttaa 300
 aagagcaaaa aactaagggtg tgcaaataa ctccaaacgtt agagtaagtt atctattcag 360
 cttggaaaaa catgtctttt ctagacaaga taagcataat caaagcctt ttttagctta 420
 aactgttatac ctctaattttt tcaagaacag gagagtctgg gaataatcctt aaagagtttt 480
 ctattgttg aagcagtccctt agaatttagtgc agacactttt atggtagagt tctaaggggag 540
 aatttaagaa agttactttt tccttggttta ctcgtatttt taggtctaat tcggggaaat 600

<210> 49
<211> 600
<212> DNA
<213> Chlamydia

<400> 49
 gatccgaatt cgccacgaga tgcttctatt acaattgggtt tggatgcggaa aaaagcttac 60
 cagcttattt tagaaaagtt gggagatcaa attcttgggtt gaattgtgtt tactattgtt 120
 gatagtacag tccaaagatattttttagacaaaatcacaacag acccttctctt aggttgggtt 180
 aaagctttta acaactttcc aatcactaat aaaattcaat gcaacgggtt attcactccc 240
 aggAACATG aaacttttattt aggagggactt gaaataggaa aattcacagt cacacccaaa 300
 agctctggaa gcatgttctt agtctcagca gatattattt catcaagaat ggaaggcggc 360
 gttgttctttag ctgggtttagtgc agaagggttgc tctaaggccctt acgcgattttt 420
 tcatcaggcg ttccaaattttt atgttgtcta agaaccagaa ttattaatac aggattgact 480
 ccgacaacgtt attcatttacg tggtaggcgggtt tagaaagcgttgtggatgtt ggttaatgcc 540
 ctttctaaatgataatgtttaggaata acaaataactt ctaatgttac ttgggag 600

<210> 50
<211> 406
<212> DNA
<213> Chlamydia

<400> 50
 gatccgaatt cgccacgagt tcttagcttg cttaatttacg taattaacca aactaaagg 60
 gctatcaaatttca gtcatttcattt agttaaacgtt tctttcttagt ccatgactca 120
 tcctatgttc tttagtctataaaaacttc ttaaaacttg atatgtgtt atcaaataatcat 180
 cattaaccac aacataatca aatttcgttagt cggcagcaat ttgcacagcg ctatgctcta 240
 atctttctttt ctgtggaaa tctttctcttgc aatcccgagc attcaaacgg cgctcaagttt 300
 cttagtggaga gggagcttgc ataaaaatgtt gactgcggc atttgcttct tcagagccaa 360
 agtccttgc acatcaatca cggctatgca gtctcgtgcc gaattt 406

<210> 51
<211> 602
<212> DNA
<213> Chlamydia

<400> 51
 gatccgaatt cgccacgaga tatttttagac aaaatcacaa cagacccttc tcttaggtttt 60
 ttgaaaggtt ttaacaactt tccaaatctt aataaaaattt aatgcacgg gttatttactt 120
 cccagggaca ttgaaactttt attaggaggtt actgaaatag gaaaatttacat agtcacaccc 180
 aaaagctctg ggagcatgtt cttagtctca gcagatattt ttgcacatggaaatggaaaggc 240
 ggcgttgttc tagctttgggtt acgagaagggtt gattcttgc cttacgcgtt tagttatggaa 300
 tactcatcgttgcgttccaa ttatgtgttgc ttaaagaacca gaatttattaa tacaggatttgc 360
 actccgacaa cgtatttactt acgtgttaggc ggttttagaaa gcggtgtggatgtt ggttaat 420
 gccccttcttca atggcaatgtt tatttttagga ataaacaaata cttctaatgtt atcttttttgc 480
 gaggttaatac ctcaaaacaaa cgcttaaaca atttttatttgc gatttttctt ataggtttta 540

tat tagaga aaaaagttcg aattacgggg tttgttatgc aaaataaaact cgtgccaat 600
 tc 602

<210> 52
 <211> 145
 <212> DNA
 <213> Chlamydia

<400> 52
 gatccgaatt cggcacgagc tcgtgccat gtgttcaaca gcatccatag gatggcagt 60
 caaatatact ccaagtaatt cttttctct tttcaacaac tccttaggag agcgttggat 120
 aacattttca gctcgccg aattc 145

<210> 53
 <211> 450
 <212> DNA
 <213> Chlamydia

<400> 53
 gatccgaatt cggcacgagg taatcgac acactcatct cctcgagctc 60
 gatcaaacc acacttggga caagtaccta caacataacg gtccgctaaa aacttccctt 120
 cttcctcaga atacagctgt tcggtcacct gattctctac cagtcgcgt tcctgcaagt 180
 ttcgatagaa atcttcaca atagcaggat gataagcgtt cgtagttctg gaaaagaaaat 240
 ctacagaaat tcccaatttc ttgaaggtat ctttatgaag cttatgatac atgtcgacat 300
 attcttgata ccccatgcct gccaactctg cattaagggt aattgcgatt ccgtattcat 360
 cagaaccaca aatatacataaa acctctttgc cttgttgtct ctgaaaacgc gcataaaacat 420
 ctgcaggcaa ataagcctcg tgccgaattc 450

<210> 54
 <211> 716
 <212> DNA
 <213> Chlamydia

<400> 54
 gatcgaaatt cggcacgagc ggcacgagtt ttctgatagc gatttacaat cctttattca 60
 actttgcct agagaggcac actataactaa gaagtttctt ggggtgttgg cacagtctg 120
 tcgtcagggg attctgctag aggggttaggg gaaaaaaaccc ttattactat gaccatgegc 180
 atgtgaaatt acatccata gacttcgca tcattccaa catttacaca gctctacacc 240
 tcttaagaag aggtgacgtg gattgggtgg ggcagccttgc acaccaagggtt attccttttgc 300
 agcttcggac tacctctgt ctctacaccc attaccctgt agatggcaca ttctggctt 360
 ttcttaatcc caaagatcct gtactttctt ctctatctaa tcgtcagcga ttgattgctg 420
 ccatccaaaa ggaaaaactg gtgaagcaag cttaggaac acaatatcga gtagctgaaa 480
 gctctccatc tccagaggga atcatagctc atcaagaagc ttctactcct tttcctggga 540
 aaattacttt gatatatccc aataatatta cgcgtgtca gcgtttggcc gaggtatcca 600
 aaaaatgatc gacaaggagc acgctaaatt tgtacatacc caaaaatcaa tcagccatct 660
 aggcaaatgg aatatcaaag taaacagttt acaactgggg atctcgccatc gaattc 716

<210> 55
 <211> 463
 <212> DNA
 <213> Chlamydia trachomatis

<400> 55
 tctcaaattcc ttgttttggaa taatccagat attcaaaaaa ccatgttcga taaattcacc 60
 cgacaaggac tccgtttcgt actagaagcc tctgtatcaa atattgagga tataggagat 120

cgcgttcggg taactatcaa tggaaatgtc gaagaatacg attacgttct cgtatctata 180
 ggacgcccgtt tgaatacaga aaatattggc ttggataaag ctgggtttat ttgtgtatgaa 240
 cgcggagtca tccctaccga tgccacaatg cgcacaaacg tacctaacat ttatgttatt 300
 ggagatatca caggaaaatg gcaacttgcc catgtagctt ctcataagg aatcattgca 360
 gcacggaata taggtggcca taaagagggaa atcgattact ctgctgtccc ttctgtatc 420
 tttaccttcc ctgaagtcgc ttcagtaggc ctctccccaa cag 463

<210> 56
 <211> 829
 <212> DNA
 <213> Chlamydia trachomatis

<400> 56
 gtactatggg atcattagtt ggaagacagg ctccggattt ttctggtaaa gccgttgtt 60
 gtggagaaga gaaagaaaatc tctctagcag acttcgtgg taagtatgtt gtgtcttct 120
 tttatctaa agattttacc tatgtttgtc ctacagaatt acatgtttt caagatagat 180
 tggtagatt tgaagagcat ggtgcagtcg tccttgggtc ctccgttgc gacattgaga 240
 cacattctcg ttggctcaact gtagcgagag atgcaggagg gatagagggaa acagaatatc 300
 ctctgttagc agaccctct tttaaaatat cagaagctt tgggttttg aatccctgaag 360
 gatcgctcgc tttaagagct actttccta tcgataaaaca tggggttatt cgtcatgcgg 420
 ttatcaatga tcttcctta gggcgttcca ttgacgagga attgcgtatt ttagattcat 480
 tgatcttctt tgagaaccac ggaatggtt gtccagctaa ctggcgttct ggagagcgtg 540
 gaatggtggc ttctgaagag ggattaaaag aataacttcca gacgatggat taagcatctt 600
 tgaaagtaag aaagtcgtac agatcttgc ctgaaaaagag aagaaggctt tttaatttc 660
 tgcagagagc cagcgggct tcaataatgt tgaagtctcc gacaccaggg aatgctaagg 720
 cgacgatatt agtttgtgaa gtctgagttt taaggaaatg aaggccaaag aaatagctat 780
 caataaaagaa gccttcttcc ttgactctaa agaatagttt gtcgttatcc 829

<210> 57
 <211> 1537
 <212> DNA
 <213> Chlamydia trachomatis

<400> 57
 acatcaagaa atagcggact cgccttagt gaaaaaagct gaggagcaga ttaatcaagc 60
 acaacaagat attcaaacga tcacacctag tggtttggat attcctatcg ttggtccgag 120
 tgggtcagct gctccgcag gaagtgcggc aggagcgttgc aaatcctcta acaattcagg 180
 aagaatttcc ttgttgcttgc atgatgtaga caatgaaatg gcagcgttgc caatgcaagg 240
 ttttcgatct atgatcgaac aatttaatgt aaacaatctt gcaacagctt aagagctaca 300
 agctatggag gtcagctga ctgcgtatgc agatcaactt gttggcgttgc atggcgttgc 360
 cccagccgaa atacaagcaa tcaaagatgc tcttgcgca gctttgaac aaccatcagc 420
 agatggtta gtcacagctt tgggacaagt ggctttgc gctgccaagg ttggaggagg 480
 ctccgcagga acagctggca ctgtccagat gaatgtaaaaa cagctttaca agacagcgtt 540
 ttcttcgact tcttccagct cttatgcgc agcaacttcc gatggatatt ctgcttacaa 600
 aacactgaac tctttatatt ccgaaagcag aagcggcgttgc cagtcagctt ttagtcaaac 660
 tgcaaatccc ggccttccaa gaagcgtttc tcgttctggc atagaaatgc aaggacgcag 720
 tgcagatgtt agccaaagag cagcagaaac tattgtcaga gatagccaaa cgttaggtga 780
 tgtatataatgc cgcttacagg ttctggattt tttgtatgttgc acgattgttgc gcaatccgca 840
 agccaaatcaa gaagagatta tgcagaagct cacggcatctt attagcaaaatgc ctccacaattt 900
 tgggtatctt gctgttcaga attctgtggc tagcttgcgaa aagtttgcg cacaatttgg 960
 aagagatgtt gttgtatgggg aacgtatgttgc cgcagaatctt caagagaatgc cgttttagaaa 1020
 acagcccgctt ttcattcaac aggtgttgcgaa aacattgttgc tctctatttctt ctggttatctt 1080
 ttcttaacgt gtgattgttgc gttgtatgttgc aaaaaaaaaaaa ttctttttttt 1140
 ggctctttttt tcttttcaaa ggaatctgttgc ttcacagaa gtcttttcaa taataagttc 1200
 tttagttccaa aagaagaaaa tatataaaatgc aaaaaaaaaacttcc taatttattt aaaaatgttgc 1260

cggcagactt cgtggaaaat gtctgtaaaag ctggagggga atcagcagaa agatgcaaga 1320
 tatccgagaa aaaaggctca ggctcgtgcc gaattcgca cgagactacg aaagaaaaggt 1380
 cttttcttc ggaatctgtc attggatctg cgtaagactt aaagttcgcc aacacaggct 1440
 ctgtcttctc tttaggttcc ttgcgcgaga aaaatttct caagtaacaa gaagatttct 1500
 tttacagcc ggcattccggc ttctcgccaa gtataac 1537

<210> 58
 <211> 463
 <212> DNA
 <213> Chlamydia trachomatis

<400> 58
 tctcaaattcc ttgctttgaa taatccagat atttcaaaaa ccatgttgcga taaattcacc 60
 cgacaaggac tccgtttgcgt actagaagcc tctgtatcaa atattgagga tataggagat 120
 cgcgttcgggt taactatcaa tggaaatgtc gaagaatacg attacgttct cgttatctata 180
 ggacgcgcgtt tgaatacaga aaatattggc ttggataaaag ctgggtttat ttgtgtgaa 240
 cgccggagtca tccctaccga tgccacaatg cgcacaaacg tacctaacat ttatgctatt 300
 ggagatatac cagggaaaatg gcaacttgcc catgtagctt ctcatcaagg aatcattgca 360
 gcacggaata taggtggcca taaagagggaa atcgattact ctgctgtccc ttctgtgatc 420
 tttaccttcc ctgaagtcgc ttcatgttgc ctctccccaa cag 463

<210> 59
 <211> 552
 <212> DNA
 <213> Chlamydia trachomatis

<400> 59
 acattcctcc tgctcctcgc ggcattccac aaattgaggt aaccttcgat attgatgcca 60
 acggaattttt acacgtttct gctaaagatg ctgttagtgg acgcgaacaa aaaatccgta 120
 ttgaagcaag ctctggatta aaagaagatg aaatcaaca aatgatccgc gatgcagagc 180
 ttcataaaaga ggaagacaaa caacgaaaag aagcttctga tgtaaaaat gaagccgatg 240
 gaatgatctt tagagccgaa aaagctgtga aagattacca cgacaaaatt cctgcagaac 300
 ttgttaaaga aattgaagag catattgaga aagtacgca agcaatcaaa gaagatgctt 360
 ccacaacagc tatcaaagca gcttctgatg agtttagtac tcgtatgcaa aaaatccggag 420
 aagctatgca ggctcaatcc gcatccgcag cagcatctc tgccgcgaat gctcaaggag 480
 ggc当地acat taactccgaa gatctgaaaa aacatagttt cagcacacga cctccagcag 540
 gaggaagcgc ct 552

<210> 60
 <211> 1180
 <212> DNA
 <213> Chlamydia trachomatis

<400> 60
 atccttagcgg taaaactgct tactggtcag ataaaaatcca tacagaagca acacgtactt 60
 ctttttaggag aaaaaatcta taatgctaga aaaatccctga gtaaggatca ctctcctca 120
 acaacttttt catcttggat agagtttagtt tttagaacta agtcttctgc ttacaatgct 180
 cttgcattt acgagctttt tataaacccctc cccaaacccaa ctctacaaaaa agagttccaa 240
 tcgatccccct ataaaatccgc atatatttg gccgcttagaa aaggcgattt aaaaaccaag 300
 gtcgatgtga tagggaaagt atgtgaaatc tcgtgcccga ttccggcacga gcggcacgag 360
 gatgttaggt aatttagttaa agagctgcatt aattatgaca aagcatggaa aacgcattcg 420
 tggatccaa gagacttacg atttagctaa gtcgtattct ttgggtgaag cgatagat 480
 tttaaaacag tgtcctactg tgccgttcc tcaaaacgggtt gatgtgtctg taaaatttagg 540
 gatcgatcca agaaagagtg atcagcaaat tcgtgggtcg gtttcttac ctacggatc 600
 aggtaaagtt ttgcgaattt tagttttgc tgctggat aaggctgcag aggctattga 660

agcaggagcg gactttgttgc tagcgacga cttggtagaa aaaatcaaag gtggatgggt 720
 tgacttcgat gttgcggttt ccactccga tatgatgaga gaggtcgaa agctaggaaa 780
 agtttttaggt ccaagaaacc ttatgcctac gcctaaagcc ggaactgtaa caacagatgt 840
 ggtaaaaact attgcggaaac tgcgaaaagg taaaattgaa tttaaagctg atcgagctgg 900
 tgtatgcaac gtcggagttt cgaagcttc ttgcatagtg cgccaaatca aagaaaaatgt 960
 tgaaggcttg tgcgaccc tagttaaagc taagccgca actgctaaag gacaatattt 1020
 agttaaatttc actatccct cgaccatggg gccagggtt accgtggata cttagggagtt 1080
 gattgcgtta taattctaag tttaaagagg aaaaatgaaa gaagagaaaa agttgctgct 1140
 tcgcgaggtt gaagaaaaaga taaccgcttc tcggcacgag 1180

<210> 61
 <211> 1215
 <212> DNA
 <213> Chlamydia trachomatis

<400> 61
 attacagcgt gtgcaggtaa cgacatcatt gcatgatgct tttgatggca ttgatgcggc 60
 attccttata gggtcagttc ctagaggccc aggaatggag agaagagatc ttctaaagaa 120
 aaatggggag attgttgcta cgcaaggaaa agcttgcac acaacagccca agcgggatgc 180
 aaagattttt gttgtggga accctgtgaa taccaattgc tggatagcaa tgaatcatgc 240
 tcccgattt ttgagaaaga actttcatgc gatgctacga ttggaccaga atcgatgc 300
 tagcatgcta tcgcatacgag cagaagtacc ttatcggtt gtatcacaag ttgtggttt 360
 gggaaatcac tccgccaaac aagtgcctga tttacgca gctctgatta atgaccgtcc 420
 tatcgccagag acgatagcgg atcgtgattt gtttagagaat attatggtc cttctgtaca 480
 gagtcgttgtt agtgcagtaa ttgaagcagc agggaaagtct tcggcagctt ctgcagcacg 540
 agcttttagca gaggctgctc gatcaatata tcagccaaaaa gaaggactcg tgccgaattc 600
 ggcacgagta tcgaaattgc aggcatattt agtgaatggt cgtatgccta taaactacgt 660
 ggtacagact tgagctctca aaagtttgc acagattctt acatgcgaga cccttattct 720
 aagaatatct actccctctca actatatttgc tccccctaaac aagaaaaagga ttacgcattt 780
 agttacctga aatatgagga ttttgcatttgc gaaaggcaca ctccttgca cttccaaaa 840
 gaaaattact tcatttatga aatgcattttt cggtcattca cccgagatcc gtctcccaag 900
 gtttcccatc ctggactt ctttgcatttgc atcgaaaaaaa tagaccacct caaacaacta 960
 ggcgttcatg cagttgact ctttgcatttgc atgaaacgcgt ccattttttttt 1020
 aaaaatcagg acttcccccac cctgtgtaac tattgggggtt atttttcggtt gaatttttc 1080
 tgccccctctc gccgttatac ttatggggca gacccttgcg ctccggcccg agagttcaag 1140
 actcttgcata aagcgttaca ccgtgcggga atcgaagtca ttctcgatgt cgtttcaat 1200
 catacaggtt ttgaa 1215

<210> 62
 <211> 688
 <212> DNA
 <213> Chlamydia trachomatis

<400> 62
 gtggatccaa aaaaagatct aaaaagccat acaaagattt cgttacttct tgcgatgcct 60
 ctaacactt atcagcgtca tctttgagaa gcatctcaat gagcgctttt tcttctctag 120
 catgccgcac atccgcttct tcatgttctg tgaaatatgc atagtctca ggattggaaa 180
 atccaaagta ctcagtcaat ccacgaattt tctctctagc gatacgttgc atttgactct 240
 cataagaata caaagcagcc actccctgcag ctaaagaatc tcctgtacac caccgcata 300
 aagtagctac ttgcgtttt gctgcttcc taggctcatg agcctctaaac tcttctggag 360
 taactcctag agcaaacaca aactgcatttcc acaaataatc atgatttaggg taaccgttct 420
 cttcatccat caagtttatct aacaataact tacgcgcctc taaatcatgc caacgactat 480
 gaatcgcaga taaatattta ggaaaggctt tgatatgtaa ataatgtct ttggcacgag 540
 cctgtatgtt ctcttagta agctcccccct tcgaccattt cacataaaac gtgtgttcta 600
 gcatatgcattt attttgaata attaaatcta actgatctaa aaaattcata aacacctcca 660

tcatttcttt tcttgactcc acgtaacc 688
 <210> 63
 <211> 269
 <212> DNA
 <213> Chlamydia trachomatis
 <400> 63
 atgttggaaat cacacaagct gttcctaaat atgcgtacggt aggtatctccc tatcctgttg 60
 aaattactgc tacaggtaaa agggattgtg ttgtatgttat cattactcg caattaccat 120
 gtgaaggcaga gttcgatgcg agtgcgtccag cgacaactcc tactgcgtat ggtaagctag 180
 tttggaaaat tgaccgctta gcacaaggcg aaaagagtaa aattactgta tgggtaaaac 240
 ctcttaaaga aggttgcgtc tttacagct 269
 <210> 64
 <211> 1339
 <212> DNA
 <213> Chlamydia trachomatis
 <400> 64
 cttttattat ggcttctggg gatgtatgtca acgatatacgaa cctgctatct cgaggagatt 60
 ttaaaattgt tatacagacg gtcggcaggagg agatgcgttgc attagcgac tttttggctc 120
 ccccgccgaa ggatcttgcgtt attctctccg cctggaaagc tggtgagctg cgttacaaac 180
 agcttagttaa tccttaggaa acatttctgg acctatgcgc atcacatgg ctccgtgatc 240
 cacatagaga gtttctcccg taattgcgtt agctagggga gagactaaga aggctgctgc 300
 tgccgcctact tgctcgttgc ttccatggaga aggtatgttgc gcccagtctt ggtatgtatc 360
 caccattctc tcaataaaatc caatagctt tcctgcacgg ctatgcgttgc gcccgtccgaa 420
 gatagtatttcc actcgactc cccaaacgtcg gcccgttcc caagccagta cttttgtatc 480
 acutttctaaa gcagcttttgc tgcgttcat tcctccgcca taccctgttgc cagcacgtatc 540
 ggaaggcaaga taagtttagag agatgggtgttgc agctcctgtca ttcataatttgc ggcggaaatgc 600
 agagagaagg ctgataaaagg agtagcttgc tgtaatgttgc gcccgttgc ggcggcaagat 660
 agaggtatca agtaatgttgc tgtaatgttgc gcccgttgc gcccgttgc ggcggcaagat 720
 atcaatgttgc cccaaatctt tttcacatgc ttctacaact tcggatacag tgcgttgc 780
 aagatcttttgc taacgtttat tttccaaaat ttccatggatc atatcttgc ggggtgttgc 840
 actggcatcc atggataga ttttagtgcgaa agttatgcgttgc tctccatgg agatgttgc 900
 agatgttgc aattttccatgc actccaaaga ttggatggaaa attttataatgc taggaaccatc 960
 ggtccccaca agtatgggttgc cgcctgttc tgctaacatt ttggcaatgc cccagccata 1020
 cccgttataca tgcgttgc cggctatgttgc agcaattttt cctgtttaat caatgttgc 1080
 catgagctaa ccccatgttgc ttttgcgttgc agaggagatc agcagatttgc ttatgttgc 1140
 gaaacggggcc tcataatataca taaggatgttgc atttactgttgc tggatccagg ttttgcgttgc 1200
 aaagatgttgc ttttgcgttgc ttatgttgc tggatccagg ttttgcgttgc tcaatgttgc 1260
 tatgttgc ttttgcgttgc ttatgttgc tggatccagg ttttgcgttgc tcaatgttgc 1320
 tgaaaaacatc ttttgcgttgc ttatgttgc tggatccagg ttttgcgttgc tcaatgttgc 1339
 <210> 65
 <211> 195
 <212> PRT
 <213> Chlamydia trachomatis
 <400> 65
 Met Gly Ser Leu Val Gly Arg Gln Ala Pro Asp Phe Ser Gly Lys Ala
 5 10 15
 Val Val Cys Gly Glu Glu Lys Glu Ile Ser Leu Ala Asp Phe Arg Gly
 20 25 30

Lys Tyr Val Val Leu Phe Phe Tyr Pro Lys Asp Phe Thr Tyr Val Cys
 35 40 45

Pro Thr Glu Leu His Ala Phe Gln Asp Arg Leu Val Asp Phe Glu Glu
 50 55 60

His Gly Ala Val Val Leu Gly Cys Ser Val Asp Asp Ile Glu Thr His
 65 70 75 80

Ser Arg Trp Leu Thr Val Ala Arg Asp Ala Gly Gly Ile Glu Gly Thr
 85 90 95

Glu Tyr Pro Leu Leu Ala Asp Pro Ser Phe Lys Ile Ser Glu Ala Phe
 100 105 110

Gly Val Leu Asn Pro Glu Gly Ser Leu Ala Leu Arg Ala Thr Phe Leu
 115 120 125

Ile Asp Lys His Gly Val Ile Arg His Ala Val Ile Asn Asp Leu Pro
 130 135 140

Leu Gly Arg Ser Ile Asp Glu Glu Leu Arg Ile Leu Asp Ser Leu Ile
 145 150 155 160

Phe Phe Glu Asn His Gly Met Val Cys Prc Ala Asn Trp Arg Ser Gly
 165 170 175

Glu Arg Gly Met Val Pro Ser Glu Glu Gly Leu Lys Glu Tyr Phe Gln
 180 185 190

Thr Met Asp
 195

<210> 66
 <211> 520
 <212> DNA
 <213> Chlamydia

<400> 66

```

gatccgaatt cggcacgagg aggaatggaa gggccctccg attttaaatc tgctaccatg 60
ccattcacta gaaaactccat aacagcggtt ttctctgatg gcgagtaaga agcaagcatt 120
tgatgttaat tagcgaatt agagggggat gaggttactt ggaaatataa ggagcgaagc 180
gatgaaggag atgtatttc tctggaagca aaggttctg aagctaacag aacattgcgt 240
cctccaacaa tcgcctgagg attctggctc atcagtttat gctttgcctg aatgagagcg 300
gacttaagt tcccatcaga gggagctatt tgaatttagat aatcaagagc tagatccttt 360
attgtggat cagaaaattt acttgtgagc gcatcgagaa tttcgtcaga agaagaatca 420
tcatcgaacg aattttcaa tcctcgaaaa tcttctccag agacttcgga aagatcttct 480
gtgaaacgat cttcaagagg agtatcgct ttttcctctg 520
  
```

<210> 67
 <211> 276
 <212> DNA
 <213> Chlamydia

<400> 67

gatccgaatt cggcacgagg tattgaagga gaaggatctg actcgatcta tgaaatcatg 60
 atgcctatct atgaagttat gaatatggat ctagaaacac gaagatctt tgcgttacag 120
 caagggcact atcaggaccc aagagcttca gattatgacc tcccacgtgc tagcgactat 180
 gatttgccctt gaagccccata tcctactcca ctttcgcctt ctagatatca gctacagaat 240
 atggatgttag aaggcagggtt ccgtgaggca gtttat 276

<210> 68

<211> 248

<212> DNA

<213> Chlamydia

<400> 68

gatccgaatt cggcacgagg ttttcaagaa tatgtccttc aagaatgggt taaaattgaaa 60
 gatctaccgg tagaaaggtt gctagaaaaa cgatatcaga aattccgaac gataggctta 120
 tatgaaacctt cttctgaaag cgattctgag gcataagaag catttatgtt tattcggttt 180
 ttctctttta tccatatttag ggctaacat aacgtctcaa gcagaaattt ttctcttagg 240
 tcttatttg 248

<210> 69

<211> 715

<212> DNA

<213> Chlamydia

<220>

<221> unsure

<222> (34)

<223> n=A,T,C or G

<400> 69

gatccgaatt cggcacgaga aggttagatcc gatntcagca aaagtgcctcc taaaggaaga 60
 ttccttcggt atcctgcagc aaataagggt gcacactcca tctcggacag tttgagcttt 120
 attttcatat agtttcgac ggaactcttt attaaactcc caaaaaccgaa tggtagtcgt 180
 gtgggtgatg cctatatggt aaggggagtt tttggcttcg agaatattgg tgatcatttt 240
 ttgtacgaca aaattagcta atgcaggac ctctgggggg aagtatgcat ctgatgttcc 300
 atcttttcgg atgctagcaa cagggacaaa ataatctctt atttggtagt gggatcttaa 360
 gcctccgcac atgccaaca tgatcgctgc tggtagcattt ggaaggaaa aacacagatc 420
 tacggtaaga gctgctctg gagagcctaa tttaaaatcg atgattgagg tggtaatttg 480
 aggccatgc gctgccgaaa acatggatcc tcgagaaaca gggacctgtat agatttcgc 540
 gaaaacatcc acggtaatac ccmaaattttg taagaaggag atagggttgg aactcttgaa 600
 tggtagagcc ggtatagcgc tctagcatgt cacaggcgtat ttctcttcg ctgatctttt 660
 tatgtttagt ggtcataaat cacagatatt ataatggta gagaatcttt ttttc 715

<210> 70

<211> 323

<212> DNA

<213> Chlamydia

<400> 70

gatccgaatt cggcacgagc agaacgtaaa cagcacactt aaaccgtgtt tgaggtttaa 60
 cactgtttgg caagcaaaca accattcctc ttccacatc gttttacca atacctctga 120
 ggagcaatcc aacattctct cctgcacac ctctggggat ttctttctg aacatttcaa 180
 ccccaatcc aatcggtttt ttagtatctc taagaccgac caactgaact ttatcgaaa 240
 cttaacaat tccacgctca atacgtccag ttactacagt tcctcgccg gagatagaga 300

acacgtcctc aatggcatt aag

323

<210> 71
<211> 715
<212> DNA
<213> Chlamydia

<400> 71
gatccgaatt cgccacgagg aaaaaaaagat tctctaacca ttataatatac tgtgatttat 60
gaccatcaa cataaaaaaa tcagcgaaga aacaatcgcc tgtgacatgc tagagcggct 120
ataccggctc taccattcaa gagttccagc cctatctcct tcttactaat tttgggtatt 180
acgtggatgt tttcgtgaa atctatcagg tccctgtttc tcgaggatcc atgtttcgg 240
gcagcgcattg cgcctcaa atcacaccca atcatcgatt ttaaatttagg ctctccagga 300
gcagctctta ccgttagatct gtgttcttc ct.tcccaatg ctacagcagc gatcatgttg 360
ggcatgtgcg gaggcttaag atcccactac caaataggag attatttgt ccctgttgct 420
agcatccgaa aagatggAAC atcagatgca tactcccc cagaggtccc tgcattagct 480
aattttgtcg tacaaaaaaat gatcaccaat attctcgaag ccaaaaacct cccttaccat 540
ataggcatca cccacacgac taacattcgg ttttggagt ttaataaaaga gttccgtcga 600
aaactatatg aaaataaaAGC tcaaactgtc gagatggagt gtgccacctt atttgctgca 660
ggataccgaa ggaatcttcc ttttaggagca ctttgctga tatcgatct acctt 715

<210> 72
<211> 641
<212> DNA
<213> Chlamydia

<220>
<221> unsure
<222> (550)
<223> n=A,T,C or G
<221> unsure
<222> (559)
<223> n=A,T,C or G
<221> unsure
<222> (575)
<223> n=A,T,C or G
<221> unsure
<222> (583)
<223> n=A,T,C or G
<221> unsure
<222> (634)
<223> n=A,T,C or G
<221> unsure
<222> (638)
<223> n=A,T,C or G

<400> 72
gatccgaatt cgccacgaga tctcctcgag ctgcgtcaaa cccacacttg ggacaagtac 60
ctacaacata acggccgct aaaaacttcc cttttccctc agaatacagc tgttcggtca 120
cctgattctc taccaggccg cggtccgtca agtttcgata gaaatctgc acaatagcag 180
gatgataagc gttcgtagtt ctggaaaaga aatctacaga aattcccaat ttcttgaagg 240
tatctttatg aagcttatga tacatgtcga catattctt ataccccatg cctgccaact 300
ctgcattaaag ggtatttgcg attccgtatt catcagaacc acaaataatac aaaaacctt 360
tgccttgcgtatc tctctgaaaa cgcgcataaa catctgcagg caaataagca cgcgtaatat 420
gtccaaaatg caaaggacca tttgcgtaaag gcaacgcaga agtaataaga atacggaaag 480

attccactat ttcacgtcgc tccagttgta cagagaagga tctttcttc tggatgttcc 540
 gaaaccttgn tctcttcgnc tctctcctgt agcanacaaa tgnctctc gacatctt 600
 tcagcgtatt cgactgtatg ccctaaagat cccnggangt t 641

<210> 73
 <211> 584
 <212> DNA
 <213> Chlamydia

 <220>
 <221> unsure
 <222> (460)
 <223> n=A,T,C or G
 <221> unsure
 <222> (523)
 <223> n=A,T,C or G
 <221> unsure
 <222> (541)
 <223> n=A,T,C or G
 <221> unsure
 <222> (546)
 <223> n=A,T,C or G

<400> 73

gaattcggca cgagacattt ctagaatgga accggcaaca aacaaaaact ttgttatctga 60
 agatgacttt aagcaatctt tagataggga agatttttg gaatgggtct ttttattttgg 120
 gacttattac ggaacgagta aggccggagat ttcttagagtt ctgcaaaagg gtaagcactg 180
 catagccgtg attgatgtac aaggagctt ggctctgaag aagcaaatgc cggcagtcac 240
 tattttattt caagctccct ctcaagaaga acttgagcgc cgttgaatg ctcgggattc 300
 agagaaaat ttccagaaga aagaaagatt agagcatagc gctgtcgaaa ttgctgccgc 360
 tagcgaattt gattatgtt tggttaatga tgatttgatt acagcatatc aagtttaag 420
 aagtatttt atagctgaag aacataggat gagtcatggn tagaaaaagat cgtttaacta 480
 atgaaaagact gaataagcta tttgatagcc ccttttagttt ggntaattac gtaattaagc 540
 nagctnagaa caaaattgct agaggagatg ttcgttcttc taac 584

<210> 74
 <211> 465
 <212> DNA
 <213> Chlamydia

<400> 74

gatccgaatt cggcacgagc tcgtgccgtt tgggatcgtg taatcgcatc ggagaatgg 60
 taagaaaatta ttttcgagtg aaagagctag gcgtaatcat tacagatagc catactactc 120
 caatgcggcg tggagtaactg ggtatcgggc tgtgttggta tggattttct ccattacaca 180
 actatataagg atcgctagat ttttcggcgt gtccttaca gatgacgcaa agtaatctt 240
 tagatgcctt agcagttgcg gctgttggtt gtatggaga gggaaatgag caaacaccgt 300
 tagcgggtat agagcaggca cctaataatgg tctaccattc atatcctact tctcgagaag 360
 agtattgttc tttgcgcata gatgaaacag aggactata cgacatcttt ttgcaagcgg 420
 ttaccgtgga gtcaagaaaa gaaatgatgg aggtgtttat gaatt 465

<210> 75
 <211> 545
 <212> DNA
 <213> Chlamydia

<400> 75

gaattcggca cgagatgaaa agtttagcgtc acaggggatt ctcctaccaa agaattccga 60
aaagtttct tccaaaaacc ttttcctctc ttgatttagtg atccctctgc aactactta 120
ctatatgttc tgtgaaatat gcatagtcgtt caggattgga aaatccaaag tactcagtca 180
atccacgaat ttctctctca gcgatacgtg gaatttgact ctcataagaa tacaaagcag 240
ccactcctgc agctaaagaa tctcctgtac accaccgtat gaaagtagct acttcgctt 300
ttgctgcttc acttaggctca tgagcctcta actcttctgg agtaactcct agagcaaaca 360
caaactgctt ccacaaaatca atatgattag ggtaaccgtt ctcttcattcc atcaagttat 420
ctaacaataa cttacgcgcc tctaaatcat cgcaacgact atgaatcgca gataaaatatt 480
taggaaaggc tttgatatgt aaataatagt cttaggcata cgccgtata tgctctttag 540
taagc 545

<210> 76

<211> 797

<212> DNA

<213> Chlamydia

<220>

<221> unsure
<222> (788)
<223> n=A,T,C or G
<221> unsure
<222> (789)
<223> n=A,T,C or G

<400> 76

gatccgaatt cggcacgaga tacgctagat gcgataaatg cggttatcct 60
aaaccagggtg acttcccacg atcttccttc tctagtagtcgc tcctcatgc tccagttacct 120
caatctgaga ttccaaacgtc acctacctca acacagcctc catcacccta acttgtaaaa 180
actgtataataa aaagagcgcg ctccctttat gcaaatcaa tttgaacaac tccttactga 240
attagggact caaatcaaca gccctttac tcctgattcc aataatgcct gtatagttcg 300
ctttggatac aacaatgttgc tgtagccaaat tgaagaggat ggtaattcag gatttttatg 360
tgctggagtc atgcttgaa aacttccaga gaatacctt agacaaaaaaa tttcaaaagc 420
tgctttgtct atcaatggat ctccgcaatc taatattaaa ggcactctag gatacgggtga 480
aatctctaact caactctatc tctgtgatcg gcttaacatg acctatctaa atggagaaaa 540
gctcgccccgt tacttagttc tttttcgca gcatgccaat atctggatgc aatctatctc 600
aaaaggagaaa cttccagatt tacatgctt aggtatgtat cacctgtaaa ttatgcgcgc 660
attatcccaa tcccgcgtt tcatccagca atctccatt cgaaagattt ggaatcagat 720
agatacttct cctaagcatg ggggtatgcg taccggttat tttctcttc atactcaaaa 780
aaagttgnng gggataa 797

<210> 77

<211> 399

<212> DNA

<213> Chlamydia

<400> 77

catatgcattt accatcacca tcacatgcca cgcatcattt gaaattgatat tcctgcaaag 60
aaaaagttaa aaataagtct gacatatatt tatgaaatag gatcagatcg ttctgatgaa 120
atcattaaaa agttgaagtt agatcctgag gcaagagcct ctgaattaac tgaagaagaa 180
gtaggacgac tgaactcttct gctacaatca gaatataccg tagaagggga tttgcgcacgt 240
cgtgttcaat cggatataaa aagattgatc gccatccatt ttatcgagg tcagagacat 300
agactttctt taccagtaag aggacaacgt acaaaaaacta attctcgatc tcgaaaaggt 360
aaaagaaaaaa cagtcgcagg taagaagaaa taagaattc 399

<210> 78
<211> 285
<212> DNA
<213> Chlamydia

<400> 78

atgcatcacc atcaccatca catgagtc aaataaaaaa actctgcttt tatgcattcc 60
gtgaacattt ccacagattt agcagttata gttggcaagg gacctatgcc cagaaccgaa 120
attgtaaaga aagtggta atacattaaa aaacacaact gtcaggatca aaaaaataaa 180
cgtaatatcc ttcccgatgc gaatcttgcc aaagtcttg gctctatgtga tcctatcgac 240
atgttccaaa tgaccaaagc cctttccaaa catattgtaa aataa 285

<210> 79

<211> 950

<212> DNA

<213> Chlamydia

<400> 79

aaaattaactc gagcacaaat tacggcaatt gctgagcaaa agatgaagga catggatgtc 60
gttcttttag agtccgcccga gagaatggtt gaagggactg cccgaagcat gggtagat 120
gtagagtaat tagttaaaga gctgcataat tatgacaaag catggaaaac gcattcgtgg 180
tatccaagag acttacgatt tagctaagtc gtattcttg ggtgaagcga tagatatttt 240
aaaacagtgt cctactgtgc gtttcgatca aacggttgc gtgtctgtta aattaggat 300
cgatccaaga aagagtgate agcaaaattcg tgggtcggtt tctttaccc acgtacagg 360
taaagtttg cgaatttttag ttttgcgtc tggagataag gctgcagagg ctattgaagc 420
aggagcggac tttgttggta gcgacgactt ggtagaaaaaa atcaaagggtg gatgggttga 480
cttcgatgtt gcgggttgcgc ctccccat gatgagagag gtcggaaagc tagaaaaagt 540
tttaggtcca agaaaacctt tgcctacgccc taaagccyga actgtaaaca cagatgtgg 600
taaaaactatt gcggaaactgc gaaaaggtaa aattgaattt aaagctgatc gagctgggt 660
atgcaacgtc ggagttgcga agctttctt cgatagtgcg caaatcaaag aaaatgttga 720
agcgttgtgt gcagccttag ttaaagctaa gcccgcaact gctaaaggac aatattttgt 780
taatttcaact atttcctcga ccatggggcc aggggttacc gtggatacta gggagttgt 840
tgcgttataa ttcttaagttt aaagaggaaa aatgaaaagaa gagaaaaagt tgctgcttcg 900
cgagggttga gaaaagataa ccgcttctca aggtttatt ttgtttagat 950

<210> 80

<211> 395

<212> DNA

<213> Chlamydia

<400> 80

tttcaaggat tttttttcc cgatcatctt actaaatgca gctccaacaa tcacatcatg 60
ggctggtttta gcatcttaagg caacagaagc tcctctgtg taataagtga attcttcaga 120
agtaggtgtt cctacttgcg atagcatctgt tccttagtctt gatatccaca ggttggata 180
gctaacttca tcaaagcgag ctagattcat tttatcggtt agcaagcctt gtttgactgt 240
gaccattgac atttggatc ccagaatcga gttcgcatag aaatgattgt ctctaggtac 300
ataagcccat tgtctataag agtcaaattt ccagagcgct gagatcggtc cattttgttag 360
ttgatcagga tccagagtga gtgttgcgtt atatc 395

<210> 81

<211> 2085

<212> DNA

<213> Chlamydia

<400> 81

atttggcgaa ggagttggg ctacgctat taataaatca ttcgtgttcg ctgcctccaa 60
gaccagattg tgtactttct tatgaagaat ctcctattga gcaaagtgtt cggtggggag 120
agtctcagtt agaacaattt gctcaagtag gtttagatac aagtggcaa gttgtttcg 180
atccagaat aggatttggg aagactcccg ttcatcgat gttattgtg gatggagtaa 240
agcagttaa acgtgttttta gagtgccctg tattaatagg ccattctaga aaatcgttt 300
tgagtagtt gggccgattt aatagtgacg atcgtgattt ggaaacgatc ggctgttctg 360
tatctttca tgatcgagga gttgattatc tacgtgtgca tcaggttcaa ggtaacagac 420
gtgccttagc cgctgctgct tgggctggta tggttgcatt atccaagcaa caggtatcgt 480
tgctattgtat cccagaggag tgatggagc tttaggcaag ctcccttggaa gttatcccg 540
agatctacgt tttttgcag aaaccattcg aaatcatccc atcattatgg gacgaaaagac 600
ttgggagtct ctccagaca agtataagca tgggcgggat atcgttgtct tttctcgac 660
gatgcattca ccacaatgca taggagtttcc ttcccttgcg gagtatggaa cactatctt 720
gaatcatccg tttttattt ggggagcggaa gctctttggaa agtttttcc aacaaaacct 780
tctgaaagct tggtttgtca cacatataa aaagaaaatat tggggcgata ctttcttccc 840
tatcacgcga ttatcaggat ggaagaagga atgtattttt aatacagagg atttcagtt 900
ttattattt gaaaataact ccgatcaaaa cacgtaaagt atttgcacat gattcgctt 960
aagagatctt gcaagaggct ttgccgcctc tgcaagaacg gagtgtggta gttgtcttt 1020
caaagattgt gagtttatgt gaaggcgctg tcgctgatgc aagaatgtgc aaagcagagt 1080
tgataaaaaaa agaagcggat gcttattttt tttgtgagaa aagcgggata tatctaacga 1140
aaaaagaagg tattttgatt ctttctgcag ggattgtatga atcgaataacg gaccagcctt 1200
ttgtttata tcctaaagat attttggat cgtgtaatcg catcgagaa tggttaagaa 1260
attattttcg agtggaaagag cttaggcgtaa tcattacaga tagccatact actccaaatgc 1320
ggcgtggagt actgggtatc gggctgtgtt ggtatggatt ttctccattt cacaactata 1380
taggatcgct agattttttc ggtcgccct tacagatgac gcaaagtaat cttgttagatg 1440
ccttagcagt tgccgctgtt gtttgcattt gggggggaa tgagcaaaaca ccgttagcgg 1500
tgatagagca ggcacctaattt atggcttacc attcatatcc tactctcgaa gaagagtatt 1560
gttctttgcg catagatgaa acagaggact tatacggacc tttttgcattt gcggttacgt 1620
ggagtcaaga aaagaaaatgaa tggaggtgtt tatgaattttt ttagatcagt tagatttaat 1680
tattcaaaat aagcatatgc tagaacacac gttttatgtt aaatggtcga agggggagct 1740
tactaaagag caattacagg cgtatgccaat agactattat ttacatataa aagccttcc 1800
taaatattta tctgcgattt atagtcgtt cgtatgatca gaggcgctg agttattgtt 1860
agataactt atggatgaag agaacggta ccctaattcat attgattttt ggaagcagtt 1920
tgtgtttgtt cttaggagttt ctccagaaga gtttagaggct catgagccata gtgaagcagc 1980
aaaagcgaaa gtagctactt tcatgcgggtt gtttgcattt gatttttttag ctgcaggagtt 2040
ggctacttttq tattttatq aqagtcaaat tccacgtatc gcctc 2085

<210> 82
<211> 405
<212> DNA
<213> Chlamydia

```

<400> 82
ttcatcggtc tagttcgcta ttctactctc caatggttcc gcattttgg gcagagcttc 60
gcaatcatta tgcAACGAGT ggttggaaaa gcgggtacaa tattgggagt accgatgggt 120
ttctccctgt cattgggcct gtttatatggg agtcggaggg tctttccgc gcttatattt 180
cttcggtgac tgatggggat ggtaagagcc ataaagttagg atttctaaga attcctacat 240
atagttggca ggacatggaa gatTTGATC ctTCAGGACC gcCTCCCTGG gaagaattgt 300
atgggcTCCA taaaggagg agaaaacttc gatataggga atcgtatcaa ggtgaaagta 360
qcaaaaaata aattagctcc tccattccga actgcagaat ttgat 405

```

<210> 83
<211> 379
<212> DNA
<213> Chlamydia

<400> 83

tataccattc gtttgaaaagt gcctttgacg ggagaaaagtg tttttgaaga tcaatgc当地 60
 ggtcgtgtcg ttttcccttg ggcagatgtt gacgatcaag ttttggtaa atcagacggg 120
 ttccctacgt atcactttgc taatgttagtt gatgatcatt tgatggggat taccatgtg 180
 ttgcgagggg aagagtgggtt aagttctaca cctaaacacc ttcttc当地 caaagcttt 240
 ggggtggagc ctccgcagtt tttccatatg ccgcttc当地 taaatcctga tggaaagtaag 300
 ctttccaaga gaaagaatcc tacttctatt ttttactatc gggatgctgg atacaaaaaaa 360
 gaagcggttca tgaatttcc 379

<210> 84

<211> 715

<212> DNA

<213> Chlamydia

<400> 84

tcaatcctgt attaataatt ctgggttctta gactacataa attaggaacg cctgatgagt 60
 atccataact aatcgctag ggcttagaat cacccctcg taccaaagct agaacaacgc 120
 cgccttccat tcttgc当地 ataataatctg ctgagactaa gaacatgctc ccagagctt 180
 tgggtgtgac tgtgaatttt cctatttc当地 tccctc当地 taaagttca atttcctgg 240
 gagtgaataa cccgttgc当地 tgaattttat tagtattgg aaagtttca aaagctttca 300
 acaaaccctag agaagggtct gttgtgattt tgtctaaaat atcttggact gtactatcaa 360
 caatagttatc agcaatttca ccaagaattt gatccccaa ctttctt当地 ataagctgg 420
 aagcttttc cgc当地 ccaaa ccaatttgc当地 tagaaggcatt ggttgc当地 ttattggaga 480
 ctgtt当地 aagaatttca gaagctgtca ttttggctgc gacagggtt gatgttgc当地 540
 caaggattat ttgttgc当地 ttgagcggct ctgtt当地 cccaaattt当地 atattatc当地 600
 caaagacgca gtttgc当地 ttatac当地 aaaaaccaga atttccc当地 ttaaaactct 660
 ttttatttt gagctt当地 taaatttaggt ttttgc当地 aagtttgc当地 ttaat 715

<210> 85

<211> 476

<212> DNA

<213> Chlamydia

<400> 85

ctcgccgc tcgtgccgct cgtgccggc当地 ttttagaaga gcgtgaagct taaaataatt 60
 cgattacgtt tatcatggat aagcgtaatt ggatagaaac cgagtctgaa caggtacaag 120
 tgggtttc当地 agatagtaca gcttgc当地 gagggaggc当地 tattgc当地 caagaaattt 180
 tttctt当地 gaacaatc当地 gctgggattt ccttgc当地 gaggtt当地 agtttgc当地 240
 gaggtt当地 gtgtt当地 ttttctt当地 caggc当地 gtgc当地 ttctgtt当地 gggactattt 300
 atatttgc当地 gaattttaggc gc当地 atttgc当地 tctctgc当地 ttatgtacg acctc当地 360
 taggacaat ggaggaccag ggaggaggag ctctattt当地 tgaaaatatt tctt当地 ctg 420
 agaatgc当地 tgtgctc当地 tttaaagaca acattgtgaa gactttgc当地 tc当地 476

<210> 86

<211> 1551

<212> DNA

<213> Chlamydia

<400> 86

gcgtatcgat atttcttctg ttacattt当地 tataaggatt ctgttggctg ttaatgc当地 60
 aacctactct catgtattac gggattt当地 ttttagt当地 gatgc当地 ctgtt当地 120
 cacgctt当地 gttt当地 tagc当地 tt当地 gataatgtgc cattagtc当地 180
 tgcaacaata ggtatgtatg acttacattt当地 gaacgatctt当地 ctgtt当地 ggaaac tc当地 240
 tacagcaggc acaggggaa gtattctcat cattggatcc gctgc当地 ggatg 300
 gggatggaa aaagttagt当地 tc当地 ggatggta tgtcaaacac gcttctt当地 ttgtt当地 360

cagttatTTT ggaggcttag cagtctattt tctaATggaa aattgtgtga atttgTTcgt 420
 ttgaggtagt cagtatggca gagTTTcttt aaaaattctt ttaataaaaag gtttctctgc 480
 ctattctagg cccCTTTTg aatggaaaaa TggTTTTg gagaacatcg attatgaaaa 540
 tgaataggat ttggcttatta ctgcttacct tttcttctgc catacattct cctgtacgag 600
 gagaAAGCTT ggTTTcaag aatgctctc aagatttgag TTTTTtagag catttattac 660
 aggttaaata tgctcctaaa acatggaaag agcaataactt aggtggat cttgttcaaa 720
 gCTCCGTTTc tgcacagcag aagttcgtc cacaagaaaa Tccatcaaca agttttGCC 780
 agcaggctc TGCTGATTtT atcggaggat taaatgactt tcacgctgga gtaactttct 840
 ttgcgataga aagtgcTTac cttcTTata ccgtacaaaa aagttagtgc gGCCGTTCT 900
 actttgtaga tatcatgact tttcttcag agatccgtgt tggagatgag ttgctagagg 960
 tggatggggc gcctgtccaa gatgtgtcg ctactctata tggaaAGCAAT cacaAAGGGa 1020
 ctgcagctga agagtccgct gCTTTaAGAA cactatTTc tcgcATGCC tCTTAgGGC 1080
 acaaagtacc ttctgggcgc actacttta agattcgtcg tcCTTTGgt actacgagag 1140
 aagttcgtgt gaaatggcgt tatgttccgt aaggtgtagg agatttgct accatagctc 1200
 cttctatcag ggctccacag ttacagaaat cgatgagaag CTTTCCCT aagaaAGATg 1260
 atgcgttca tcggcttagt tcgctattct actctccaat ggttccgcattttggcag 1320
 agcttcgcaa tcattatgca acgagtgggt tgaaaAGCGG gtacaatatt gggagtaccg 1380
 atgggttct ccctgtcatt gggcctgtta tatgggagtc ggagggtctt ttcgcgcTT 1440
 atatttcttc ggtgactgat ggggatggta agagccataa agtaggattt ctaagaattc 1500
 ctacatatac ttggcaggac atgaaagatt ttgatccttc aggaccgcct c 1551

<210> 87
<211> 3031
<212> DNA
<213> Chlamydia

<400> 87

atgttaggccc tcaAGCggTT ttattgttag accaaattcg agatctattc gttgggtcta 60
 aagatagtca ggctgaagga cagtataggt taattgtagg agatccaagt tctttccaag 120
 agaaaAGATgc agatactctt cccgggaagg tagacaaag tactttgttc tcagtaacca 180
 atccccgttgt tttccaaggT gtggaccaac aggatcaagt ctcttccaa gggttaattt 240
 gtagTTTAC gaggcagcaac cttgatttcc cccgtgacgg agaatcttt ttaggtattg 300
 ctTTTgttgg ggatagtagt aaggctggaa tcacattaac tgacgtgaaa gcttctttgt 360
 ctggagcggc tttatattct acagaagatc ttatcttga aaagattaag ggtggattgg 420
 aatttgcattc atgttcttct ctagaacagg ggggagcttg tgcaGCTCAA agtattttga 480
 ttcatgatttgc tcaaggatttgc caggttaaac actgtactac agccgtgaat gctgaggggt 540
 cttagtgcgaa tgatcatctt ggatttggag gaggcgcTTT ctttgttacg ggttctctt 600
 ctggagagaa aagtctctat atgcctgcag gagatatggt agttgcgaat tggatgggg 660
 ctatataCTTT tgaaggaaac agcgcgaact ttgtaatgg aggagcgtt gctgcctctg 720
 gggaaAGTgCT ttttgcgtc aatgataaaa agacttcttt tataAGAGAAC cgagctttgt 780
 ctggaggagc gattgcagcc ttttctgata ttgcCTTTca aaactgcgcA gaactagttt 840
 tcaaaggccaa ttgtgcattt ggaacacaggg ataaagggtt tttagggtgg ggggctatAT 900
 ctTCTCTAGG caccgttctt ttgcAaggGA atcacgggt aacttgcgtat aataatgagt 960
 ctgcttcgca aggaggcgcC atTTTgcA aaaattgtca gatttgcac aacgaggggc 1020
 cagtggTTT cagagatgt acagcttgct taggaggagg cgctattgca gctcaagAAA 1080
 ttgtttctat tcagaacaat caggctgggA tttcCTTCGA gggaggttaag gctagttcg 1140
 gaggaggtat tgcgtgtggA tCTTTCTTCCGcaggcgg tgcttctgtt ttagggacta 1200
 ttgatatttgc aagaatttgc ggcgcgattt cgttctctcg tactttatgt acgacctcag 1260
 atttaggaca aatgggatgc caggaggagg gagctctatt tggtaaaaatttatttcttt 1320
 ctgagaatgc tggTGTGCTC acctttaaag acaacattgt gaagactttt gcttcgaatg 1380
 gggaaattctt gggaggaggA gcgattttAG ctactggtaa ggtggAAattt accaataatt 1440
 cccggaggaaat ttctttaca ggaaatgcga gagctccaca agctcttcca actcaagagg 1500
 agtttctttt attcagcaaa aaagaaggGC gaccactctc ttcaggatat tctgggggag 1560
 gagcgtttt aggaagagaa gtagctattc tccacaacgc tgcaGtagta tttgagcaaa 1620
 atcgTTTgcA gtgcagcga gaagaagcga cattattagg ttgttgcgg gggcgcgt 1680

ttcatggat ggatagcact tcgattgtt gcaactcttc agtaagattt ggtaataatt 1740
 acgcaatggg acaaggagtc tcaggaggag ctctttatc taaaacagtg cagtagctg 1800
 gaaatggaaag cgtcgatttt tctcgaaaata ttgctagttt gggaggacgc aatgttctgt 1860
 tagcttcaga aaccttgct tccagagcaa atacatctcc ttcatcgctt cgctccttat 1920
 atttccaagt aacccatcc ccctctaatt gcgcataattt acatcaaatg cttgcttctt 1980
 actcgccatc agagaaaacc gctgttatgg agtttctagt gaatggcatg gtagcagatt 2040
 taaaatcgga gggcccttcc attcctctg caaaatttgc agtatataatg acggaactaa 2100
 gcaatctcca agccttacac tctgttagata gcttttttga tagaaatattt gggacttgg 2160
 aaaatagctt aaagcatgaa ggacatgccc ctattccatc cttaacgaca gggaaatttaa 2220
 cttaaaacctt cttacaatta gtagaagata aattcccttc ctcttccaaa gctcaaaagg 2280
 cattaaatga actgttaggc ccagatactg gtcctcaaac tgaagtttta aacttattct 2340
 tccgcgctct taatggctgt tcgccttagaa tattctctgg agctgaaaaaa aaacagcagc 2400
 tggcatcggt tatacacaat acgcttagatg cgataaaatgc ggataatgag gattatccta 2460
 aaccagggtga cttcccacga tcttccttct ctgtacgccc tcctcatgtt ccagtacctc 2520
 aatctgagat tccaaacgtca cctacctcaa cacagcctcc atcacccctaa cttgtaaaaaa 2580
 ctgtaataaaa aagagcgcgc ttccctttatg caaaatcaat ttgaacaact ccttactgaa 2640
 tttagggactc aaatcaacag cccttctact cctgattcca ataatgcctg tatagttcgc 2700
 tttggatataca acaatgttgc tgtacaaattt gaagaggatg gtaattcagg attttagtt 2760
 gctggagtca tgcttggaaa acttccagag aataccctta gacaaaaaaaaat tttcaagct 2820
 gctttgtcta tcaatggatc tccgcaatct aatattaaag gcaactttagg atacggtgaa 2880
 atctctaacc aactctatct ctgtgatcgg cttaacatga cctatctaaa tggagaaaag 2940
 ctgcggcgtt acttagttct ttttcgcag catgccaata tctggatgca atctatctca 3000
 aaaggagaac ttccagattt acatgctcta g 3031

<210> 88
 <211> 976
 <212> DNA
 <213> Chlamydia

<400> 88

aggtggatgg ggcgcctgtc caagatgtgc tcgctactct atatggaagc aatcacaaag 60
 ggactgcagc tgaagagtcg gctgctttaa gaacactatt ttctcgcatg gcctcttttag 120
 ggcacaaaatg accttctggg cgcactactt taaagattcg tcgctctttt ggtactacga 180
 gagaagttcg tgtgaaatgg cggtatgttc ctgaagggtgt aggagatgg gctaccatag 240
 ctccctctat cagggctcca cagttacaga aatcgatgag aagcttttc cctaagaaaag 300
 atgatgcgtt tcatcggtct agttcgctat tctactctcc aatggttccg catttttggg 360
 cagagcttcg caatcattat gcaacgagtg gtttggaaaag cgggtacaat attgggagta 420
 ccgatgggtt tctccctgtc attgggcctg ttatatggg gtcggagggt ctccctcg 480
 ctatatttc ttgcgtgact gatggggatg gtaagagcca taaagtagga tttctaaagaa 540
 ttccctacata tagtggcag gacatggaa atttgatcc ttccaggaccg ccccttggg 600
 aagaatttgc taagattttt caagtattttt cttctaatac agaagcttg attatcgacc 660
 .aaacgaacaa cccaggtgtt agtgtccctt atctttatgc actgcttcc atgttgcac 720
 accgtccctt agaacttctt aaacatagaa tgattctgac tcaggatgaa gtggttgatg 780
 cttagattt gtttaccctg ttggaaaacg tagacacaaa cgtggagttt cgccttgctc 840
 tgggagacaa catgaaagga tatactgtgg atctacaggt tgccgagttt taaaaaagct 900
 ttggacgtca agtattgaat tggttggatgaa aaggggatat cgagttatca acacctattc 960
 ctcttttggg ttttgc 976

<210> 89
 <211> 94
 <212> PRT
 <213> Chlamydia

<400> 89

Met His His His His His Met Ser Gln Lys Asn Lys Asn Ser Ala

5

10

15

Phe Met His Pro Val Asn Ile Ser Thr Asp Leu Ala Val Ile Val Gly
 20 25 30

Lys Gly Pro Met Pro Arg Thr Glu Ile Val Lys Lys Val Trp Glu Tyr
 35 40 45

Ile Lys Lys His Asn Cys Gln Asp Gln Lys Asn Lys Arg Asn Ile Leu
 50 55 60

Pro Asp Ala Asn Leu Ala Lys Val Phe Gly Ser Ser Asp Pro Ile Asp
 65 70 75 80

Met Phe Gln Met Thr Lys Ala Leu Ser Lys His Ile Val Lys
 85 90

<210> 90

<211> 474

<212> PRT

<213> Chlamydia

<400> 90

Met Ala Ser His His His His His Met Asn Glu Ala Phe Asp Cys
 5 10 15

Val Val Ile Gly Ala Gly Pro Gly Gly Tyr Val Ala Ala Ile Thr Ala
 20 25 30

Ala Gln Ala Gly Leu Lys Thr Ala Leu Ile Glu Lys Arg Glu Ala Gly
 35 40 45

Gly Thr Cys Leu Asn Arg Gly Cys Ile Pro Ser Lys Ala Leu Leu Ala
 50 55 60

Gly Ala Glu Val Val Thr Gln Ile Arg His Ala Asp Gln Phe Gly Ile
 65 70 75 80

His Val Glu Gly Phe Ser Ile Asn Tyr Pro Ala Met Val Gln Arg Lys
 85 90 95

Asp Ser Val Val Arg Ser Ile Arg Asp Gly Leu Asn Gly Leu Ile Arg
 100 105 110

Ser Asn Lys Ile Thr Val Phe Ser Gly Arg Gly Ser Leu Ile Ser Ser
 115 120 125

Thr Glu Val Lys Ile Leu Gly Glu Asn Pro Ser Val Ile Lys Ala His
 130 135 140

Ser Ile Ile Leu Ala Thr Gly Ser Glu Pro Arg Ala Phe Pro Gly Ile
 145 150 155 160

Pro Phe Ser Ala Glu Ser Pro Arg Ile Leu Cys Ser Thr Gly Val Leu

165	170	175
Asn Leu Lys Glu Ile Pro Gln Lys Met Ala Ile Ile Gly Gly Gly Val		
180	185	190
Ile Gly Cys Glu Phe Ala Ser Leu Phe His Thr Leu Gly Ser Glu Val		
195	200	205
Ser Val Ile Glu Ala Ser Ser Gln Ile Leu Ala Leu Asn Asn Pro Asp		
210	215	220
Ile Ser Lys Thr Met Phe Asp Lys Phe Thr Arg Gln Gly Leu Arg Phe		
225	230	235
Val Leu Glu Ala Ser Val Ser Asn Ile Glu Asp Ile Gly Asp Arg Val		
245	250	255
Arg Leu Thr Ile Asn Gly Asn Val Glu Glu Tyr Asp Tyr Val Leu Val		
260	265	270
Ser Ile Gly Arg Arg Leu Asn Thr Glu Asn Ile Gly Leu Asp Lys Ala		
275	280	285
Gly Val Ile Cys Asp Glu Arg Gly Val Ile Pro Thr Asp Ala Thr Met		
290	295	300
Arg Thr Asn Val Pro Asn Ile Tyr Ala Ile Gly Asp Ile Thr Gly Lys		
305	310	315
Trp Gln Leu Ala His Val Ala Ser His Gln Gly Ile Ile Ala Ala Arg		
325	330	335
Asn Ile Gly Gly His Lys Glu Glu Ile Asp Tyr Ser Ala Val Pro Ser		
340	345	350
Val Ile Phe Thr Phe Pro Glu Val Ala Ser Val Gly Leu Ser Pro Thr		
355	360	365
Ala Ala Gln Gln Lys Ile Pro Val Lys Val Thr Lys Phe Pro Phe		
370	375	380
Arg Ala Ile Gly Lys Ala Val Ala Met Gly Glu Ala Asp Gly Phe Ala		
385	390	395
Ala Ile Ile Ser His Glu Thr Thr Gln Gln Ile Leu Gly Ala Tyr Val		
405	410	415
Ile Gly Pro His Ala Ser Ser Leu Ile Ser Glu Ile Thr Leu Ala Val		
420	425	430
Arg Asn Glu Leu Thr Leu Pro Cys Ile Tyr Glu Thr Ile His Ala His		
435	440	445
Pro Thr Leu Ala Glu Val Trp Ala Glu Ser Ala Leu Leu Ala Val Asp		
450	455	460

Thr Pro Leu His Met Pro Pro Ala Lys Lys
465 470

<210> 91
<211> 129
<212> PRT
<213> Chlamydia

<400> 91
Met His His His His His Met Pro Arg Ile Ile Gly Ile Asp Ile
5 10 15

Pro Ala Lys Lys Lys Leu Lys Ile Ser Leu Thr Tyr Ile Tyr Gly Ile
20 25 30

Gly Ser Ala Arg Ser Asp Glu Ile Ile Lys Lys Leu Lys Leu Asp Pro
35 40 45

Glu Ala Arg Ala Ser Glu Leu Thr Glu Glu Glu Val Gly Arg Leu Asn
50 55 60

Ser Leu Leu Gln Ser Glu Tyr Thr Val Glu Gly Asp Leu Arg Arg Arg
65 70 75 80

Val Gln Ser Asp Ile Lys Arg Leu Ile Ala Ile His Ser Tyr Arg Gly
85 90 95

Gln Arg His Arg Leu Ser Leu Pro Val Arg Gly Gln Arg Thr Lys Thr
100 105 110

Asn Ser Arg Thr Arg Lys Gly Lys Arg Lys Thr Val Ala Gly Lys Lys
115 120 125

Lys

<210> 92
<211> 202
<212> PRT
<213> Chlamydia

<400> 92
Met His His His His His Met Gly Ser Leu Val Gly Arg Gln Ala
5 10 15

Pro Asp Phe Ser Gly Lys Ala Val Val Cys Gly Glu Glu Lys Glu Ile
20 25 30

Ser Leu Ala Asp Phe Arg Gly Lys Tyr Val Val Leu Phe Phe Tyr Pro
35 40 45

Lys Asp Phe Thr Tyr Val Cys Pro Thr Glu Leu His Ala Phe Gln Asp

50	55	60
Arg Leu Val Asp Phe Glu Glu His Gly Ala Val Val Leu Gly Cys Ser		
65	70	75
Val Asp Asp Ile Glu Thr His Ser Arg Trp Leu Thr Val Ala Arg Asp		
85	90	95
Ala Gly Gly Ile Glu Gly Thr Glu Tyr Pro Leu Leu Ala Asp Pro Ser		
100	105	110
Phe Lys Ile Ser Glu Ala Phe Gly Val Leu Asn Pro Glu Gly Ser Leu		
115	120	125
Ala Leu Arg Ala Thr Phe Leu Ile Asp Lys His Gly Val Ile Arg His		
130	135	140
Ala Val Ile Asn Asp Leu Pro Leu Gly Arg Ser Ile Asp Glu Glu Leu		
145	150	155
Arg Ile Leu Asp Ser Leu Ile Phe Phe Glu Asn His Gly Met Val Cys		
165	170	175
Pro Ala Asn Trp Arg Ser Gly Glu Arg Gly Met Val Pro Ser Glu Glu		
180	185	190
Gly Leu Lys Glu Tyr Phe Gln Thr Met Asp		
195	200	

<210> 93
 <211> 19
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> made in a lab

<400> 93
 Glu Asn Ser Leu Gln Asp Pro Thr Asn Lys Arg Asn Ile Asn Pro Asp
 1 5 10 15
 Asp Lys Leu

<210> 94
 <211> 20
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Made in a lab

<400> 94
 Asp Pro Thr Asn Lys Arg Asn Ile Asn Pro Asp Asp Lys Leu Ala Lys

1	5	10	15
Val Phe Gly Thr			
20			

<210> 95
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> Made in a lab

<400> 95
Lys Arg Asn Ile Asn Pro Asp Asp Lys Leu Ala Lys Val Phe Gly Thr.
1 5 10 15
Glu Lys Pro Ile
20

<210> 96	<211> 20	<212> PRT	<213> Artificial Sequence
----------	----------	-----------	---------------------------

<220>
<223> Made in a lab

<400> 96
Asp Asp Lys Leu Ala Lys Val Phe Gly Thr Glu Lys Pro Ile Asp Met
1 5 10 15
Phe Gln Met Thr
20

<210> 97	<211> 20	<212> PRT	<213> Artificial Sequence
----------	----------	-----------	---------------------------

<220>
<223> Made in a lab

<400> 97
Lys Val Phe Gly Thr Glu Lys Pro Ile Asp Met Phe Gln Met Thr Lys
1 5 10 15
Met Val Ser Gln
20

<210> 98	<211> 20	<212> PRT	<213> Artificial Sequence
----------	----------	-----------	---------------------------

<220>
<223> Made in a lab

<400> 98

Asn Lys Arg Asn Ile Asn Pro Asp Asp Lys Leu Ala Lys Val Phe Gly
 1 5 10 15

Thr Glu Lys Pro
 20

<210> 99
 <211> 16
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Made in a lab

<400> 99
 Asn Lys Arg Asn Ile Leu Pro Asp Ala Asn Leu Ala Lys Val Phe Gly
 1 5 10 15

<210> 100
 <211> 15
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Made in a lab

<400> 100
 Lys Met Trp Asp Tyr Ile Lys Glu Asn Ser Leu Gln Asp Pro Thr
 1 5 10 15

<210> 101
 <211> 20
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Made in a lab

<400> 101
 Thr Glu Ile Val Lys Lys Val Trp Glu Tyr Ile Lys Lys His Asn Cys
 1 5 10 15

Gln Asp Gln Lys
 20

<210> 102
 <211> 20
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Made in a lab

<400> 102
 Lys Val Trp Glu Tyr Ile Lys Lys His Asn Cys Gln Asp Gln Lys Asn
 1 5 10 15

Lys Arg Asn Ile

20

<210> 103

<211> 15

<212> PRT

<213> Artificial Sequence

<220>

<223> Made in a lab

<400> 103

Lys	Val	Trp	Glu	Tyr	Ile	Lys	Lys	His	Asn	Cys	Gln	Asp	Gln	Lys
1														15

<210> 104

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

<223> Made in a lab

<400> 104

Ala	Glu	Leu	Thr	Glu	Glu	Val	Gly	Arg	Leu	Asn	Ala	Leu	Leu	Gln
1														15

Ser Asp Tyr Val

20

<210> 105

<211> 21

<212> PRT

<213> Artificial Sequence

<220>

<223> Made in a lab

<400> 105

Leu	Gln	Ser	Asp	Tyr	Val	Val	Glu	Gly	Asp	Leu	Arg	Arg	Arg	Val	Gln
1														15	

Ser Asp Ile Lys Arg

20

<210> 106

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

<223> Made in a lab

<400> 106

Met	Pro	Arg	Ile	Ile	Gly	Ile	Asp	Ile	Pro	Ala	Lys	Lys	Lys	Leu	Lys
1														15	

Ile Ser Leu Thr

20

<210> 107

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

<223> Made in a lab

<400> 107

Ala Glu Leu Thr Glu Glu Glu Val Gly Arg Leu Asn Ala Leu Leu Gln.

1

5

10

15

Ser Asp Tyr Val

20

<210> 108

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

<223> Made in a lab

<400> 108

Leu Asn Ala Leu Leu Gln Ser Asp Tyr Val Val Glu Gly Asp Leu Arg

1

5

10

15

Arg Arg Val Gln

20

<210> 109

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

<223> Made in a lab

<400> 109

Leu Asn Ser Leu Leu Gln Ser Glu Tyr Thr Val Glu Gly Asp Leu Arg

1

5

10

15

Arg Arg Val Gln

20

<210> 110

<211> 1461

<212> DNA

<213> Chlamydia

<400> 110

ctatctatga agttatgaat atggatctag aaacacgaag atctttgcg gtacagcaag 60

ggcactatca ggacccaaga gcttcagatt atgacacctcc acgtgctagc gactatgatt 120

tgcctagaag cccatatcct actccaccct tgccttctag atatcagcta cagaatatgg 180

atgtagaagc agggttccgt gaggcagttt atgcttcttt ttagcaggg atgtacaatt 240

atgtatgtac acagccgcaa gagcgtattc ccaatagtca gcaggtggaa gggattctgc 300

gtatatgtt taccaacggg tcacagacat tttagcaacct gatgcagcgt tggatagag 360

aagtcgatag ggaataaaact ggtatctacc ataggtttg atcaaaaaac taagcccacc 420
 aagaagaaat tctcttggc gggcttctt ttttattcaa aaaagaaaagc cctcttcaag 480
 attatctcg gccgcctcgcc cgaaattcgg cacgagcggc acgaggagct gtaagtaagt 540
 attgccaaga gttggaagaa aaaatattag atttggtaa gcgtcatgcc gcaacaattt 600
 gctccattga ggaggatgct aaacaagaaa ttgcgtcatca gacagaagg tttaaacagc 660
 ggttgcaaca aaatcagaac acttgcagtc aattaacagc agagttgtgt aaattgagat 720
 ctgagaataa ggcattatcg gagcggctgc aggtgcaggc atccgcgtcg aaaaaataat 780
 taaagactcc tcagatattg catctgagag ttaggggttc ctttgcctt cggcgcttta 840
 gttctgcatttggc ttgcggattt atagtgattt gcgagtaaag cgccgttctg atacagttt 900
 tccgcattaa aaataaaaaag gtggaaaaat gagtactact attagcggag acgcttctc 960
 tttaccgttg ccaacagctt cctgcgtaga gacaaaaatct acttcgtctt caacaaaagg 1020
 gaataacttgt tccaaaattt tgatatagc tttagctatc gtaggcgctt tagttgtgt 1080
 cgctgggta ttagcttggc ttttgcgc tagcaatgtc atatttactg taataggtat 1140
 tcctgcatttattattggat ctgcttgcgtt gggtgcggga atatctcgat ttatgtatcg 1200
 atcctcttat gctagcttag aagcaaaaaa tgtttggct gagcaacgtt tgctaatct 1260
 ttcagaagag aaggacgctt tggcctcgat ctcttcatt aataagatgt ttctgcgagg 1320
 tcttacggac gatctccaag ctggaaagc taaggtatg gaatttgaga ttgattgttt 1380
 ggacagatta gagaaaaatg agcaagctt attgtccgat gtgcgcctt tagttatctag 1440
 ctacacaaga tggtggata g 1461

<210> 111
<211> 267
<212> DNA
<213> Chlamydia

<400> 111
gtcctcttct tattatagca gaagacattt aaggcgaagc tttagctact ttggcgtga 60
 acagaattcg tggaggattc cgggttgcg cagtaaagc tccaggctt ggagatagaa 120
 gaaaagctat gttgaaagac atcgctatct taactggcg tcaactcatt agcgaagagt 180
 tgggcattgaa attagaaaaac gctaacttag ctatgttagg taaagctaaa aaagttatcg 240
 tttctaaaga agacacgacc atcgtcg 267

<210> 112
<211> 698
<212> DNA
<213> Chlamydia

<400> 112
tgataagcaa gcaaccgctc aacttagcagc tctaactatt aaaaaatcc tctgtttga 60
 tggaaattcc tacgagaagg agctggcatg ctttagaaaag aaacgcagta gcgtacaaaa 120
 agatctgagc caactgaaaa aatacacagt tctctacatc aagaagctgc tcgaaaccta 180
 cagacaactc gggcatcgaa agacaaaaat tgcaaaaattt gatgacccatc ctaccgagag 240
 agtctccgct cataagaaaag caaaaagaact cgctgcgtc gatcaagaag agaacttcta 300
 aaacgtgact cggcccttga gatcctaaa ctctcggcc aaaaagacta cagtttctc 360
 gagaagaaaa acgggttag aaaatacgcg cgctaagact ttctctaaca atgactcaaa 420
 aagctgtaaa cgtatacgtt taccgctt ccataatttc taggctact ttcacattat 480
 ctcgacttgc tacggaaacc aataaaagtac ggatagcctt aatagtgcgt ccttctttac 540
 cgataattt accgatatct cccttagcaa cagtcattc gtatgataatc gtattggttc 600
 cctgcacctc tttagatgc acttcctctg gcttatcaac aagatttttt acaatgtacg 660
 ctaaaaactc ttcatgcga agcaaattc acacaagc 698

<210> 113
<211> 1142
<212> DNA
<213> Chlamydia

<400> 113

ctcttcaaag atttgagtt tatgtgaagg cgctgtcgct gatgcaagaa tgcataaaggc 60
 agagttgata aaaaaagaag cggatgccta ttgtttgt gagaaggcg ggatatatct 120
 aacgaaaaaaaaa gaaggtatt tgattccctc tgcaggatt gatgaatcga atacggacca 180
 gcctttgtt ttatatccta aagatatttt gggatcgtgt aatcgcatcg gagaatggtt 240
 aagaaattat ttgcgtgt aagagctagg cgtaatcatt acagatagcc atactactcc 300
 aatgcggcgt ggagactgg gtatcggct gtgttgtat ggattttctc cattacacaa 360
 ctatataggc tcgcttagatt ttgcgtgtc tcccttacag atgacgcaca gtaatctgt 420
 agatgcctta gcagttgcgg ctgtgtttg tatgggagag gggatgagc aaacaccgtt 480
 agcgggtata gagcaggcac ctaatatggt ctaccattca tattctactt ctcgagaaga 540
 gtattgttct ttgcgcatacg atgaaacaga ggacttatac ggacctttt tgcaagcggt 600
 tacgtggagt caagaaaaga aatgatggag gtgttatga attttttaga tcagtttagat 660
 ttaattattc aaaataagca tatgctagaa cacacgttt atgtgaaatg gtcgaagggg 720
 gagcttacta aagagcaatt acaggcgat gccaaggact attatttaca tatcaaagcc 780
 ttccctaaat atttatctgc gattcatagt cggtgcgtat atttagaggg gcgttaagtt 840
 ttgttagata acttgatggta tgaagagaeac ggtaacccta atcatatgtt tttgtggaa 900
 cagtttgcgtt ttgcgtctagg agttactcca gaagagttttag aggctcatga gcctagtgaa 960
 gcagcaaaag cgaaagtagc tactttcatg cgggtggta caggagattc ttttagctgca 1020
 ggagtggtcg ctgttatttc ttatgagatg caaatccac gtatcgctag agagaaaatt 1080
 cgtggattga ctgagttactt tggattttcc aatcctgaag actatgcata ttccacagaa 1140
 ca 1142

<210> 114

<211> 976

<212> DNA

<213> Chlamydia

<400> 114

aggtggatgg ggccctgtc caagatgtgc tcgtactct atatggaaagc aatcacaaag 60
 ggactgcacg tgaagagtgc gctgcttaa gaacactatt ttctcgcatg gcctctttt 120
 ggcacaaagt accttctggg cgcactactt taaagattcg tcgtcctttt ggtactacga 180
 gagaagttcg tgtgaaatgg cggtatgtt ctgttttttggt aggagatgg gctaccatag 240
 ctccctctat cagggctcca cagttacaga aatcgatgag aagcttttc cctaagaaaag 300
 atgatgcgtt tcatcggtct agttcgctat tctactctcc aatgggtcccg catttttggg 360
 cagagcttcg caatcattat gcaacgagtg gtttggaaag cgggtacaat attgggagta 420
 ccgatgggtt tctccctgtc attgggcctg ttatatggta gtcggagggt ctccctcg 480
 cttatatttc ttccgtgact gatggggatg gtaagagcca taaagtagga tttctaaagaa 540
 ttccctacata tagtggcag gacatggaaat ttttgcattt tcaggaccg ccccttggg 600
 aagaatttgc taagattttt caagtattttt cttctaaatc agaagctttt attatcgacc 660
 aaacgaacaa cccaggtgtt agtgcctttt atctttatgc actgcttcc atgttgcac 720
 accgtcctttt agaacttcctt aaacatagaa tgattctgac tcaggatgaa gtgggtatg 780
 cttagattt gtttaccctg ttggaaaacg tagacacaaa cgtggatct cgccttgctc 840
 ttggagacaa catggaaagga tatactgtgg atctacaggt tgccgatgtt taaaaagct 900
 ttggacgtca agtattgaat ttgttggatgaa aaggggatat cgagttatca acacctattt 960
 ctctttttgg ttttga 976

<210> 115

<211> 995

<212> DNA

<213> Chlamydia

<400> 115

ttatcctaga aatttggtgt tcaatatgag cgaaaaaaga aagtctaaaca aaatttattgg 60
 tattcgaccta gggacgacca actcttgcgt ctctgtttagt gaaagggtggcc aacctaagg 120

tattgcctct tctgaaggaa ctcgtactac tccttctatc gttgcttta aagggtggcg 180
 aactcttgtt ggaatttcctg caaaaacgtca ggcagtaacc aatcctgaaa aaacattggc 240
 ttctactaag cgattcatcg gtagaaaatt ctctgaagtc gaatctgaaa ttaaaacagt 300
 cccctacaaa gttgctccta actcgaaaagg agatgcggtc tttgatgtgg aacaaaaact 360
 gtacactcca gaagaaaatcg gcgctcagat cctcatgaag atgaaggaaa ctgctgaggc 420
 ttatctcgga gaaacagtaa cggaagcagt cattaccgt a ccagcttact ttaacgattc 480
 tcaaagagct tctacaaaag atgctggacg tattgcagga ttagatgtta aacgcattat 540
 tcctgaacca acagcggccg ctcttgctta tggattgtat aaggaaggag ataaaaaaat 600
 cggcgtctc gacttaggag gaggaactt cgatatttct atcttggaaa tcgggtgacgg 660
 agttttgaa gttctctcaa ccaacgggaa tactcacttg ggaggagacg acttcgacgg 720
 agtcatcatc aactggatgc ttgatgaatt caaaaaacaa gaaggcattt atctaagcaa 780
 agataaacatg gcttgcaaa gattgaaaga tgctgctgaa aaagcaaaaa tagaattgtc 840
 tggtgtatcg tctactgaaa tcaatcagcc attcatcact atcgacgcta atggacctaa 900
 acatttgct ttaactctaa ctgcgctca attcgaacac cttagttct ctctcattga 960
 gcgaaccaaa caacccttgcg ctcaggctt aaaag 995

<210> 116

<211> 437

<212> DNA

<213> Chlamydia

<400> 116

gtcacagcta aaggcgggtgg gctttatact gataagaatc tttcgattac taacatcaca 60
 ggaatttatcg aaattgcaaa taacaaagcg acagatgttgc gaggtgggtgc ttacgtaaaa 120
 ggaaccctta ctgtaaaaa ctctcaccgt ctacaatttt tgaaaaactc ttccgataaa 180
 caaggtggag gaatctacgg agaagacaac atcaccctat ctaatttgac agggaaagact 240
 ctattccaag agaataactgc caaaaaagag ggcgggtggac tcttcataaaa aggtacagat 300
 aaagctctta caatgacagg actggatagt ttctgtttaa ttaataacac atcagaaaaaa 360
 catggtggtg gacgccttgc taccaaagaa atctctcaga cttacaccctc tgatgtggaa 420
 acaattccag gaatcac 437

<210> 117

<211> 446

<212> DNA

<213> Chlamydia

<400> 117

aagtttacct agaccaaact gaagatgacg aaggaaaaagt ttttttatcc agagaaaaag 60
 caacaagaca acgacaatgg gaatacattc ttgctcactg cgaggaaggt tctattgtta 120
 agggacaaat taccggaaaa gttaaagggtg gtttgcgtt agatattgtt atgaaagcct 180
 tccttccagg atccaaataa gacaataaga agatcaagaa cttagatgtat tacgtaggca 240
 aggtttgtga gttcaaaattt ctcaaaatca acgtggatcg tcggAACGTT gtttatcta 300
 gaagagaact tctcgaagct gaacgcattt ctaagaaagc agatgtgatc gagcaaata 360
 ctatcggtga acgtcgcaaa ggtatcgta agaatatcac agatttcgga gtattttgg 420
 atcttgatgg cattgacggc ctactc 446

<210> 118

<211> 951

<212> DNA

<213> Chlamydia

<400> 118

agtattgcga aatattactg tgagaagcaa tgctgagagc gggttctagta aaagtgggg 60
 gagagctgtc agaagggatc gctcaggaag cgagacaacg tttggctgtat ttatttaggaa 120
 gattccctct ttatccctgaa atcgatctgg aaacgcgtt ttagtggag actctatgcc 180

tgaaggggaa atgatgcata agttgcaaga tgtcatagat agaaagtgt tggattctcg 240
tcgtatttc ttctccgaac ctgtaacgga gaaaagtgc gcagaaggca tcaaaaaagct 300
tttgttattt gaactcacca atcctggca gccaattgtt tttgtcatta atagccctgg 360
agggtctgtt gatgtcggtt ttgctgttt ggaccaaatt aaaatgatct ctttccttt 420
gactacagtt gttacaggtt tagcagcatc tatggatct gtattgagtt tttgtgtgt 480
tccaggaaga cggttgcta cgccatgc gcgcattatg attcaccagc cttctattgg 540
aggaaccatt actggtcaag ccacggactt ggatattcat gctcgtaaaa tttaaaaac 600
aaaagcagc attattgtt tgatgtcga ggcaactgga caatctccag aggtgataga 660
gaaagctatc gatcgagata tgatggatgag tgcaaatgaa gcaatggagt ttggactgtt 720
agatgggatt ctctctctt ttaacgactt gtatgtatct tttatattct ggagcaggaa 780
acagtttcat tttggagaa tcgatgcctt ctcttgagga tgatgtcttt ttatgccagg 840
aagagatggt tgatgggat ttatgtgttag agtcttctga aatagcagat gctaaactca 900
ctgttttaa tagtgatgga tctatcgctt ctatgtgcgg gaatgggtt c 951

<210> 119

<211> 953

<212> DNA

<213> Chlamydia

<400> 119

atataaaggat tggccaaatg acagagccgc tcaaggacca gcaaataatc cttgggacaa 60
catcaacacc tgcgcagcc aaaatgacag cttctgtatgg aatatctta acagtctcca 120
ataatccatc aaccaatgct tcttattacaa ttgggttggaa tgccggaaaaa gcttaccagc 180
ttattctaga aaagttggga gatcaaattc ttgggtggaa tgctgataactt attgttata 240
gtacagtcca agatattttt gacaaaatca caacagaccc ttctcttaggt ttgttgaaag 300
cttttaacaa ctttccaaatc actaataaaaa ttcaatgcaaa cgggttattt actcccccaggaa 360
acattgaaac ttatttagga ggaactgaaa tagaaaaatt cacagtccaca cccaaaaagct 420
ctgggagcat gttcttagtc tcagcagata ttattgcata aagaatggaa ggcggcgtt 480
ttcttagctt ggtacgagaa ggtgattctt agccctacgc gattagttt ggtactcat 540
caggcggttcc taatttatgt agtctaagaa ccagaattat taatacagga ttgactccga 600
caacgtatttcc attacgtgtt ggcgggtttag aaagcggtgt ggtatgggtt aatgcccctt 660
ctaattggcaaa tgatattttt ggaataacaa atacttctaa tgatgtttt ttggaggtaa 720
tacctcaaaac aaacgctttaa acaattttt ttggattttt cttatagttt ttatatttt 780
agaaaaaaat tcgaatttacg gggtttggta tgcaaaaat aagcaaaatgtt agggacgatt 840
ttattttttat tgatggatgat ttcttgatc ggtctgcgtat tccgactcgtt ccaacatcaa 900
tacaacctat taattcccc tcgtcaaaaaa taaggttatac aagtggagaaa tca 953

<210> 120

<211> 897

<212> DNA

<213> Chlamydia

<400> 120

atggcttcta tatgcggacg ttttagggtct ggtacaggaa atgctctaaa agctttttt	60
acacagccca gcaataaaaat ggcaagggtt gtaataaaga cgaaggaaat ggataagact	120
gttaagggtcg ccaagtctgc tgccgaattt accgcaataa ttttggaaaca agctggaggc	180
gcgggctttt ccgcacacat tacagcttcc caagtgttcca aaggatagg ggtatgcgaga	240
actgttctcg ctttagggaa tgccttaac ggagcggttc caggaacagt tcaaagtgcg	300
caaagcttct tcttttacat gaaagctgtt agtcagaaac cgcaagaagg ggatgagggg	360
ctcgtagcag atctttgtgt gtctcataag cgcanagcgg ctgcggctgt ctgtagcttc	420
atcgaggaa ttaccttacat cgcgcacattt ggagctatcc gtccgattct gtttgcataac	480
aaaatgttgg cgcaaccgtt tctttcttcc caaattaaag caaatatggg atcttctgtt	540
agctatatta tggcggttcaaa ccatgcagcg tttgtgggtt gttctgcgtt cgctatcagt	600
gcggaaagag cagattgcga agcccgctgc gtcgtattt cggagagaaga gtcgtcactc	660

gaattgtcgg gagagggaaa tgcttgcgag aggagagtgc ctggagagaa agccaagacg	720
ttcacgcgc tcaagtatgc actcctcaact atgctcgaga agtttttggaa atgcgttgcc	780
gacgtttca aatttgggcc gttgcctatt acaatgggta ttctgtcaat tgtggctgcg	840
ggatgtacgt tcacttctgc agttatttggaa ttgtggactt tctgcgccag agcataaa	897

<210> 121
 <211> 298
 <212> PRT
 <213> Chlamydia

<400> 121	
Met Ala Ser Ile Cys Gly Arg Leu Gly Ser Gly Thr Gly Asn Ala Leu	
1 5 10 15	
Lys Ala Phe Phe Thr Gln Pro Ser Asn Lys Met Ala Arg Val Val Asn	
20 25 30	
Lys Thr Lys Gly Met Asp Lys Thr Val Lys Val Ala Lys Ser Ala Ala	
35 40 45	
Glu Leu Thr Ala Asn Ile Leu Glu Gln Ala Gly Gly Ala Gly Ser Ser	
50 55 60	
Ala His Ile Thr Ala Ser Gln Val Ser Lys Gly Leu Gly Asp Ala Arg	
65 70 75 80	
Thr Val Leu Ala Leu Gly Asn Ala Phe Asn Gly Ala Leu Pro Gly Thr	
85 90 95	
Val Gln Ser Ala Gln Ser Phe Phe Ser Tyr Met Lys Ala Ala Ser Gln	
100 105 110	
Lys Pro Gln Glu Gly Asp Glu Gly Leu Val Ala Asp Leu Cys Val Ser	
115 120 125	
His Lys Arg Arg Ala Ala Ala Val Cys Ser Phe Ile Gly Gly Ile	
130 135 140	
Thr Tyr Leu Ala Thr Phe Gly Ala Ile Arg Pro Ile Leu Phe Val Asn	
145 150 155 160	
Lys Met Leu Ala Gln Pro Phe Leu Ser Ser Gln Ile Lys Ala Asn Met	
165 170 175	
Gly Ser Ser Val Ser Tyr Ile Met Ala Ala Asn His Ala Ala Phe Val	
180 185 190	
Val Gly Ser Gly Leu Ala Ile Ser Ala Glu Arg Ala Asp Cys Glu Ala	
195 200 205	
Arg Cys Ala Arg Ile Ala Arg Glu Glu Ser Ser Leu Glu Leu Ser Gly	
210 215 220	
Glu Glu Asn Ala Cys Glu Arg Arg Val Ala Gly Glu Lys Ala Lys Thr	
225 230 235 240	
Phe Thr Arg Ile Lys Tyr Ala Leu Leu Thr Met Leu Glu Lys Phe Leu	
245 250 255	
Glu Cys Val Ala Asp Val Phe Lys Leu Val Pro Leu Pro Ile Thr Met	
260 265 270	
Gly Ile Arg Ala Ile Val Ala Ala Gly Cys Thr Phe Thr Ser Ala Val	
275 280 285	
Ile Gly Leu Trp Thr Phe Cys Ala Arg Ala	
290 295	

<210> 122
 <211> 897
 <212> DNA
 <213> Chlamydia .

<400> 122
atggcttcta tatgcggacg tttagggtct ggtacaggga atgctctaaa agctttttt 60
acacagccca gcaataaaat ggcaagggtta gtaaataaga cgaaggaaat ggataagact 120
gttaaggctcg ccaagtctgc tgccgaattt accgcaaata ttttggaaaca agctggaggc 180
gcgggctttt ccgcacacat tacagcttcc caagtgtcca aaggattagg ggatacgaga 240
actgttgcg cttagggaa tgcccttaac ggagcgttc caggaacagt tcaaagtgcg 300
caaagcttct tcttcacat gaaagctgtc agtcagaaaa cgcaagaagg ggatgagggg 360
ctcacagcag atctttgtgt gtctcataaag cgccagacgg ctgcggctgt ctgtggcttc 420
atcggaggaa ttacctacat cgccacatc ggagttatcc gtccgattct gtttgtcaac 480
aaaatgctgg tgaacccgtt tctttcttcc caaactaaag caaatatggg atcttctgtt 540
agctatatta tggccgctaa ccatgcagcg tctgtgtgg gtgctggact cgctatcagt 600
gcggaaagag cagattgcga agccccgtgc gctcgtattt cgagagaaga gtcgttactc 660
gaagtgtcgg gagaggaaaa tgcttgcag aagagactg ctggagagaa agccaagacg 720
ttcacgcgca tcaagtatgc actcctcaact atgctcgaga agtttttggg atgcgttgcc 780
gacgtttca aatttgggcc gctgcctatt acaatggta ttctgtgcgat tgtggctgct 840
ggatgtacgt tcacttctgc aattatttggg ttgtgcactt tctgcgccag agcataa 897

<210> 123

<211> 298

<212> PRT

<213> Chlamydia

<400> 123
Met Ala Ser Ile Cys Gly Arg Leu Gly Ser Gly Thr Gly Asn Ala Leu 1 5 10 15
Lys Ala Phe Phe Thr Gln Pro Ser Asn Lys Met Ala Arg Val Val Asn 20 25 30
Lys Thr Lys Gly Met Asp Lys Thr Val Lys Val Ala Lys Ser Ala Ala 35 40 45
Glu Leu Thr Ala Asn Ile Leu Glu Gln Ala Gly Gly Ala Gly Ser Ser 50 55 60
Ala His Ile Thr Ala Ser Gln Val Ser Lys Gly Leu Gly Asp Thr Arg 65 70 75 80
Thr Val Val Ala Leu Gly Asn Ala Phe Asn Gly Ala Leu Pro Gly Thr 85 90 95
Val Gln Ser Ala Gln Ser Phe Phe Ser His Met Lys Ala Ala Ser Gln 100 105 110
Lys Thr Gln Glu Gly Asp Glu Gly Leu Thr Ala Asp Leu Cys Val Ser 115 120 125
His Lys Arg Arg Ala Ala Ala Val Cys Gly Phe Ile Gly Gly Ile 130 135 140
Thr Tyr Leu Ala Thr Phe Gly Val Ile Arg Pro Ile Leu Phe Val Asn 145 150 155 160
Lys Met Leu Val Asn Pro Phe Leu Ser Ser Gln Thr Lys Ala Asn Met 165 170 175
Gly Ser Ser Val Ser Tyr Ile Met Ala Ala Asn His Ala Ala Ser Val 180 185 190
Val Gly Ala Gly Leu Ala Ile Ser Ala Glu Arg Ala Asp Cys Glu Ala 195 200 205
Arg Cys Ala Arg Ile Ala Arg Glu Glu Ser Leu Leu Glu Val Ser Gly 210 215 220
Glu Glu Asn Ala Cys Glu Lys Arg Val Ala Gly Glu Lys Ala Lys Thr 225 230 235 240
Phe Thr Arg Ile Lys Tyr Ala Leu Leu Thr Met Leu Glu Lys Phe Leu 245 250 255

Glu Cys Val Ala Asp Val Phe Lys Leu Val Pro Leu Pro Ile Thr Met
 260 265 270
 Gly Ile Arg Ala Ile Val Ala Ala Gly Cys Thr Phe Thr Ser Ala Ile
 275 280 285
 Ile Gly Leu Cys Thr Phe Cys Ala Arg Ala
 290 295

<210> 124

<211> 897

<212> DNA

<213> Chlamydia

<400> 124

atggcttcta tatgcggacg tttagggtct ggtacaggga atgctctaaa agctttttt	60
acacagccca acaataaaaat ggcaagggtta gtaaataaga cgaaggaaat ggataagact	120
attaagggtt ccaagtctgc tgccgaattt accgcaaata ttttggaaaca agctggaggc	180
gcgggctttt ccgcacacat tacagctcc caagtgtcca aaggatttagg ggatgcgaga	240
actgttgcg cttagggaa tgcccttaac ggagcggtgc caggaacagt tcaaagtgcg	300
caaagcttct tcttcacat gaaagctgct agtcagaaaaa cgcaagaagg ggatgagggg	360
ctcacagcag atcttgcgt gtctcataag cgtagcggtc ctgcggctgt ctgtacatc	420
atcgaggaa ttacacctt cgcacattt ggagctatcc gtccgattct gttgtcaac	480
aaaatgctgg caaaaccgtt tcttccttcc caaactaaag caaatatggg atcttctgtt	540
agctatatta tggcggtta ccatgcagcg tctgtgggt ggctgtggact cgctatcagt	600
gcggaaagag cagattgcga agcccgcgtc gctgtattt cgagagaaga gtcgttactc	660
gaagtgcgg gagaggaaaa tgcttgcgag aagaaagtgc ctggagagaa agccaagacg	720
ttcacgcgca tcaagtatgc actcctact atgctcgaga agtttttggg atgcgttgcc	780
gacgttttca aattggtgcc gctgcctatt acaatgggtt ttctgtgcgtat tggtggctgt	840
ggatgtacgt tcacttctgc aattatttggg ttgtgcactt tctgcgccag agcataa	897

<210> 125

<211> 298

<212> PRT

<213> Chlamydia

<400> 125

Met Ala Ser Ile Cys Gly Arg Leu Gly Ser Gly Thr Gly Asn Ala Leu	
1 5 10 15	
Lys Ala Phe Phe Thr Gln Pro Asn Asn Lys Met Ala Arg Val Val Asn	
20 25 30	
Lys Thr Lys Gly Met Asp Lys Thr Ile Lys Val Ala Lys Ser Ala Ala	
35 40 45	
Glu Leu Thr Ala Asn Ile Leu Glu Gln Ala Gly Gly Ala Gly Ser Ser	
50 55 60	
Ala His Ile Thr Ala Ser Gln Val Ser Lys Gly Leu Gly Asp Ala Arg	
65 70 75 80	
Thr Val Val Ala Leu Gly Asn Ala Phe Asn Gly Ala Leu Pro Gly Thr	
85 90 95	
Val Gln Ser Ala Gln Ser Phe Phe Ser His Met Lys Ala Ala Ser Gln	
100 105 110	
Lys Thr Gln Glu Gly Asp Glu Gly Leu Thr Ala Asp Leu Cys Val Ser	
115 120 125	
His Lys Arg Arg Ala Ala Ala Val Cys Ser Ile Ile Gly Gly Ile	
130 135 140	
Thr Tyr Leu Ala Thr Phe Gly Ala Ile Arg Pro Ile Leu Phe Val Asn	
145 150 155 160	

Lys Met Leu Ala Lys Pro Phe Leu Ser Ser Gln Thr Lys Ala Asn Met
 165 170 175
 Gly Ser Ser Val Ser Tyr Ile Met Ala Ala Asn His Ala Ala Ser Val
 180 185 190
 Val Gly Ala Gly Leu Ala Ile Ser Ala Glu Arg Ala Asp Cys Glu Ala
 195 200 205
 Arg Cys Ala Arg Ile Ala Arg Glu Glu Ser Leu Leu Glu Val Pro Gly
 210 215 220
 Glu Glu Asn Ala Cys Glu Lys Lys Val Ala Gly Glu Lys Ala Lys Thr
 225 230 235 240
 Phe Thr Arg Ile Lys Tyr Ala Leu Leu Thr Met Leu Glu Lys Phe Leu
 245 250 255
 Glu Cys Val Ala Asp Val Phe Lys Leu Val Pro Leu Pro Ile Thr Met
 260 265 270
 Gly Ile Arg Ala Ile Val Ala Ala Gly Cys Thr Phe Thr Ser Ala Ile
 275 280 285
 Ile Gly Leu Cys Thr Phe Cys Ala Arg Ala
 290 295

<210> 126
 <211> 897
 <212> DNA
 <213> Chlamydia

<400> 126
 atggcttcta tatgcggacg tttagggtct ggtacaggga atgctctaaa agctttttt 60
 acacagccca acaataaaat ggcaagggtt gtaataaga cgaaggaaat ggataagact 120
 attaagggtt ccaagtctgc tgccgaattt accgcaaata ttttggaaaca agctggaggc 180
 gcgggcttcc cgcacacat tacagcttcc caagtgtcca aaggattagg ggatgcgaga 240
 actgttgcg ctttagggaa tgccttaac ggagcggtgc caggaacagt tcaaagtgcg 300
 caaagcttct tcttcacat gaaagctgtc agtcagaaaa cgcaagaagg ggatgagggg 360
 ctcacagcag atctttgtgt gtctcataag cgcagagcgg ctgcggctgt ctgtagcatc 420
 atcggaggaa ttacctaccc cgcgacattc ggagctatcc gtccgattct gttgtcaac 480
 aaaatgttgcg caaaaaccgtt tctttcttcc caaactaaag caaatatggg atcttctgtt 540
 agctatatta tggcgctaa ccatgcagcg tctgtgggtgg gtgctggact cgctatcagt 600
 gcggaaagag cagattgcga agcccgcgtc gctcgatattt cgagagaaga gtcgttactc 660
 gaagtgcgg gagagaaaaa tgcttgcgag aagaaagtctg ctggagagaa agccaagacg 720
 ttcacgcgca tcaagtatgc actcctcact atgctcgaga agtttttggaa atgcgttgcc 780
 gacgtttca aattggtgcc gctgcctatt acaatggta ttcgtgcgat tgtggctgct 840
 ggatgtacgt tcacttctgc aattatttggaa ttgtgcactt tctgcgccag agcataa 897

<210> 127
 <211> 298
 <212> PRT
 <213> Chlamydia

<400> 127
 Met Ala Ser Ile Cys Gly Arg Leu Gly Ser Gly Thr Gly Asn Ala Leu
 1 5 10 15
 Lys Ala Phe Phe Thr Gln Pro Asn Asn Lys Met Ala Arg Val Val Asn
 20 25 30
 Lys Thr Lys Gly Met Asp Lys Thr Ile Lys Val Ala Lys Ser Ala Ala
 35 40 45
 Glu Leu Thr Ala Asn Ile Leu Glu Gln Ala Gly Gly Ala Gly Ser Ser
 50 55 60

Ala His Ile Thr Ala Ser Gln Val Ser Lys Gly Leu Gly Asp Ala Arg
 65 70 75 80
 Thr Val Val Ala Leu Gly Asn Ala Phe Asn Gly Ala Leu Pro Gly Thr
 85 90 95
 Val Gln Ser Ala Gln Ser Phe Phe Ser His Met Lys Ala Ala Ser Gln
 100 105 110
 Lys Thr Gln Glu Gly Asp Glu Gly Leu Thr Ala Asp Leu Cys Val Ser
 115 120 125
 His Lys Arg Arg Ala Ala Ala Val Cys Ser Ile Ile Gly Gly Ile
 130 135 140
 Thr Tyr Leu Ala Thr Phe Gly Ala Ile Arg Pro Ile Leu Phe Val Asn
 145 150 155 160
 Lys Met Leu Ala Lys Pro Phe Leu Ser Ser Gln Thr Lys Ala Asn Met
 165 170 175
 Gly Ser Ser Val Ser Tyr Ile Met Ala Ala Asn His Ala Ala Ser Val
 180 185 190
 Val Gly Ala Gly Leu Ala Ile Ser Ala Glu Arg Ala Asp Cys Glu Ala
 195 200 205
 Arg Cys Ala Arg Ile Ala Arg Glu Glu Ser Leu Leu Glu Val Pro Gly
 210 215 220
 Glu Glu Asn Ala Cys Glu Lys Lys Val Ala Gly Glu Lys Ala Lys Thr
 225 230 235 240
 Phe Thr Arg Ile Lys Tyr Ala Leu Leu Thr Met Leu Glu Lys Phe Leu
 245 250 255
 Glu Cys Val Ala Asp Val Phe Lys Leu Val Pro Leu Pro Ile Thr Met
 260 265 270
 Gly Ile Arg Ala Ile Val Ala Ala Gly Cys Thr Phe Thr Ser Ala Ile
 275 280 285
 Ile Gly Leu Cys Thr Phe Cys Ala Arg Ala
 290 295

<210> 128

<211> 897

<212> DNA

<213> Chlamydia

<400> 128

atggcttcta tatgtggacg tttagggtct ggtacaggga atgctctaaa agctttttt 60
 acacagccca gcaataaaat ggcaagggtta gtaaaataaga cgaaggaaat ggataagact 120
 gttaaggctcg ccaagtctgc tgccgaattt accgcaaata ttttggaca agctggaggc 180
 gcgggctctt ccgcacacat tacagcttcc caagtgtcca aaggattagg ggatacgaga 240
 actgttgtcg cttagggaa tgccttaac ggagcgttgc caggaacagt tcaaagtgcg 300
 caaagctctt tctctcacat gaaagctgct agtcagaaaa cgcaagaagg ggatgagggg 360
 ctcacagcag atcttggtgt gtctcataag cgagcagcgg ctgcggctgt ctgtggcttc 420
 atcggaggaa ttacctacat cgcgacattc ggagtatcc gtccgattct gtttgtcaac 480
 aaaatgtctgg tgaaccctgtt tctttcttcc caaactaaag caaatatggg atcttctgtt 540
 agctatatta tggcggtctaa ccatgcacgc tctgtgggt ggctgtggact cgctatcagt 600
 gcgaaagag cagattgcga agccccgtgc gtcgtattt cgagagaaga gtcgttactc 660
 gaagtgtcgg gagagggaaaa tgcttgcgag aagagagtcg ctggagagaa agccaagacg 720
 ttcacgcgca tcaagtatgc actcctcact atgctcgaga agtttttggaa atgcgttgcc 780
 gacgttttca aattggtgcc gtcgcattt acaatggta ttcgtgcgat tttggctgtct 840
 ggtatgtacgt tcacttctgc aattatggaa ttgtgcactt tctgcgccag agcataa 897

<210> 129

<211> 298

<212> PRT
 <213> Chlamydia

<400> 129
 Met Ala Ser Ile Cys Gly Arg Leu Gly Ser Gly Thr Gly Asn Ala Leu
 1 5 10 15
 Lys Ala Phe Phe Thr Gln Pro Ser Asn Lys Met Ala Arg Val Val Asn
 20 25 30
 Lys Thr Lys Gly Met Asp Lys Thr Val Lys Val Ala Lys Ser Ala Ala
 35 40 45
 Glu Leu Thr Ala Asn Ile Leu Glu Gln Ala Gly Gly Ala Gly Ser Ser
 50 55 60
 Ala His Ile Thr Ala Ser Gln Val Ser Lys Gly Leu Gly Asp Thr Arg
 65 70 75 80
 Thr Val Val Ala Leu Gly Asn Ala Phe Asn Gly Ala Leu Pro Gly Thr
 85 90 95
 Val Gln Ser Ala Gln Ser Phe Phe Ser His Met Lys Ala Ala Ser Gln
 100 105 110
 Lys Thr Gln Glu Gly Asp Glu Gly Leu Thr Ala Asp Leu Cys Val Ser
 115 120 125
 His Lys Arg Arg Ala Ala Ala Val Cys Gly Phe Ile Gly Gly Ile
 130 135 140
 Thr Tyr Leu Ala Thr Phe Gly Val Ile Arg Pro Ile Leu Phe Val Asn
 145 150 155 160
 Lys Met Leu Val Asn Pro Phe Leu Ser Ser Gln Thr Lys Ala Asn Met
 165 170 175
 Gly Ser Ser Val Ser Tyr Ile Met Ala Ala Asn His Ala Ala Ser Val
 180 185 190
 Val Gly Ala Gly Leu Ala Ile Ser Ala Glu Arg Ala Asp Cys Glu Ala
 195 200 205
 Arg Cys Ala Arg Ile Ala Arg Glu Glu Ser Leu Leu Glu Val Ser Gly
 210 215 220
 Glu Glu Asn Ala Cys Glu Lys Arg Val Ala Gly Glu Lys Ala Lys Thr
 225 230 235 240
 Phe Thr Arg Ile Lys Tyr Ala Leu Leu Thr Met Leu Glu Lys Phe Leu
 245 250 255
 Glu Cys Val Ala Asp Val Phe Lys Leu Val Pro Leu Pro Ile Thr Met
 260 265 270
 Gly Ile Arg Ala Ile Val Ala Ala Gly Cys Thr Phe Thr Ser Ala Ile
 275 280 285
 Ile Gly Leu Cys Thr Phe Cys Ala Arg Ala
 290 295

<210> 130
 <211> 897
 <212> DNA
 <213> Chlamydia

<400> 130
 atggctgcta tatgtggacg ttttaggtct ggtacaggga atgctctaaa agctttttt 60
 acacagccca gcaataaaat ggcaagggtta gtaaataaga cgaaggaaat ggataagact 120
 gttaaggctcg ccaagtctgc tgccgaattt accgcaaata ttttggaca agctggaggc 180
 gcgggcttcc ccgcacacat tacagcttcc caagtgtcca aaggattagg ggatgcgaga 240
 actgttctcg cttagggaa tgccttaac ggagcggtgc caggaacagt tcaaagtgcg 300
 caaagctct tctttacat gaaagctgct agtcagaaac cgcaagaagg ggatgagggg 360

ctcgtagcag atctttgtgt	gtctcataag cgtagacgg	ctgcggctgt	ctgttagcttc	420
atcggaggaa ttacacct	cgacattc ggagctatcc	gtccgattct	gttggtaaac	480
aaaatgctgg cgaaccgtt	tcttcttcc caaactaaag	caaataatggg	atcttctgtt	540
agctatatta tggcgctaa	ccatgcagcg tttgtgggg	gttctggact	cgctatcagt	600
gcggaaaagag cagattgcga	agcccgctgc gctcgat	cgagagaaga	gtcgactc	660
gaattgtcgg gagagaaaa	tgcttgcag aggggagtcg	ctggagagaa	agccaagacg	720
ttcacgcgca tcaagtatgc	actcctcact atgctcgaga	agtttttggaa	atgcgttgcc	780
gacgtttca aatttgtgcc	gttgcctatt acaatggta	ttcgtcaat	tgtggctgcg	840
ggatgtacgt tcacttctgc	agttatttggaa ttgtggactt	tctgcaacag	agtataa	897

<210> 131
 <211> 298
 <212> PRT
 <213> Chlamydia

<400> 131				
Met Ala Ala Ile Cys Gly Arg Leu Gly Ser Gly Thr Gly Asn Ala Leu				
1	5	10	15	
Lys Ala Phe Phe Thr Gln Pro Ser Asn Lys Met Ala Arg Val Val Asn				
20	25	30		
Lys Thr Lys Gly Met Asp Lys Thr Val Lys Val Ala Lys Ser Ala Ala				
35	40	45		
Glu Leu Thr Ala Asn Ile Leu Glu Gln Ala Gly Gly Ala Gly Ser Ser				
50	55	60		
Ala His Ile Thr Ala Ser Gln Val Ser Lys Gly Leu Gly Asp Ala Arg				
65	70	75	80	
Thr Val Leu Ala Leu Gly Asn Ala Phe Asn Gly Ala Leu Pro Gly Thr				
85	90	95		
Val Gln Ser Ala Gln Ser Phe Phe Ser Tyr Met Lys Ala Ala Ser Gln				
100	105	110		
Lys Pro Gln Glu Gly Asp Glu Gly Leu Val Ala Asp Leu Cys Val Ser				
115	120	125		
His Lys Arg Arg Ala Ala Ala Val Cys Ser Phe Ile Gly Gly Ile				
130	135	140		
Thr Tyr Leu Ala Thr Phe Gly Ala Ile Arg Pro Ile Leu Phe Val Asn				
145	150	155	160	
Lys Met Leu Ala Gln Pro Phe Leu Ser Ser Gln Thr Lys Ala Asn Met				
165	170	175		
Gly Ser Ser Val Ser Tyr Ile Met Ala Ala Asn His Ala Ala Phe Val				
180	185	190		
Val Gly Ser Gly Leu Ala Ile Ser Ala Glu Arg Ala Asp Cys Glu Ala				
195	200	205		
Arg Cys Ala Arg Ile Ala Arg Glu Glu Ser Ser Leu Glu Leu Ser Gly				
210	215	220		
Glu Glu Asn Ala Cys Glu Arg Gly Val Ala Gly Glu Lys Ala Lys Thr				
225	230	235	240	
Phe Thr Arg Ile Lys Tyr Ala Leu Leu Thr Met Leu Glu Lys Phe Leu				
245	250	255		
Glu Cys Val Ala Asp Val Phe Lys Leu Val Pro Leu Pro Ile Thr Met				
260	265	270		
Gly Ile Arg Ala Ile Val Ala Ala Gly Cys Thr Phe Thr Ser Ala Val				
275	280	285		
Ile Gly Leu Trp Thr Phe Cys Asn Arg Val				
290	295			

<210> 132
 <211> 897
 <212> DNA
 <213> Chlamydia

<400> 132

atggctgcta	tatgcggacg	tttagggtct	ggtacaggga	atgctctaaa	agctttttt	60
acacagccca	gcaataaaaat	ggcaagggtta	gtaaataaga	cgaagggaaat	ggataagact	120
gttaaggctcg	ccaagtctgc	tgccgaattt	accgcaaata	ttttggaaaca	agctggaggc	180
gcgggcttt	ccgcacacat	tacagttcc	caagtgtcca	aaggattagg	ggatgcgaga	240
actgttctcg	ctttagggaa	tgccttaac	ggagcgttgc	caggaacagt	tcaaagtgcg	300
caaagctct	tcttttacat	gaaagctgct	agtcagaaac	cgcaagaagg	ggatgagggg	360
ctcgtagcay	atctttgtgt	gtctcataag	cgcagagcgg	ctgcggctgt	ctgtagcttc	420
atcggaggaa	ttacacctac	cgcgacattc	ggagctatcc	gtccgattct	gtttgtcaac	480
aaaatgtctgg	cgcaaccgtt	tctttcttcc	caaactaaag	caaataatggg	atcttctgtt	540
agctatatta	tggcggctaa	ccatgcagcg	tttgggttgg	gttctggact	cgctatcagt	600
gcggaaagag	cagattgcga	agccccgtgc	gctcgatttgc	cgagagaaga	gtcgtcactc	660
gaattgtcgg	gagagaaaaa	tgcttgcgag	aggagagtcg	ctggagagaa	agccaagacg	720
ttcacgcgca	tcaagtatgc	actcctcact	atgctcgaga	agtttttggaa	atgcgttgcc	780
gacgtttca	aattggtgcc	gttgcctatt	acaatggta	ttcgtgcaat	tgtggctgcg	840
ggatgtacgt	tcacttctgc	agttatttggaa	tttgtggactt	tctgcaacag	agtataaa	897

<210> 133
 <211> 298
 <212> PRT
 <213> Chlamydia

<400> 133

Met	Ala	Ala	Ile	Cys	Gly	Arg	Leu	Gly	Ser	Gly	Thr	Gly	Asn	Ala	Leu
1							5				10				15
Lys	Ala	Phe	Phe	Thr	Gln	Pro	Ser	Asn	Lys	Met	Ala	Arg	Val	Val	Asn
							20				25				30
Lys	Thr	Lys	Gly	Met	Asp	Lys	Thr	Val	Lys	Val	Ala	Lys	Ser	Ala	Ala
							35				40				45
Glu	Leu	Thr	Ala	Asn	Ile	Leu	Glu	Gln	Ala	Gly	Gly	Ala	Gly	Ser	Ser
							50				55				60
Ala	His	Ile	Thr	Ala	Ser	Gln	Val	Ser	Lys	Gly	Leu	Gly	Asp	Ala	Arg
65							70				75				80
Thr	Val	Leu	Ala	Leu	Gly	Asn	Ala	Phe	Asn	Gly	Ala	Leu	Pro	Gly	Thr
							85				90				95
Val	Gln	Ser	Ala	Gln	Ser	Phe	Phe	Ser	Tyr	Met	Lys	Ala	Ala	Ser	Gln
							100				105				110
Lys	Pro	Gln	Glu	Gly	Asp	Glu	Gly	Leu	Val	Ala	Asp	Leu	Cys	Val	Ser
							115				120				125
His	Lys	Arg	Arg	Ala	Ala	Ala	Ala	Val	Cys	Ser	Phe	Ile	Gly	Gly	Ile
							130				135				140
Thr	Tyr	Leu	Ala	Thr	Phe	Gly	Ala	Ile	Arg	Pro	Ile	Leu	Phe	Val	Asn
145								145				150			160
Lys	Met	Leu	Ala	Gln	Pro	Phe	Leu	Ser	Ser	Gln	Thr	Lys	Ala	Asn	Met
							165				170				175
Gly	Ser	Ser	Val	Ser	Tyr	Ile	Met	Ala	Ala	Asn	His	Ala	Ala	Phe	Val
							180				185				190
Val	Gly	Ser	Gly	Leu	Ala	Ile	Ser	Ala	Glu	Arg	Ala	Asp	Cys	Glu	Ala
							195				200				205
Arg	Cys	Ala	Arg	Ile	Ala	Arg	Glu	Glu	Ser	Ser	Leu	Glu	Leu	Ser	Gly

210	215	220													
Glu	Glu	Asn	Ala	Cys	Glu	Arg	Arg	Val	Ala	Gly	Glu	Lys	Ala	Lys	Thr
225					230				235			240			
Phe	Thr	Arg	Ile	Lys	Tyr	Ala	Leu	Leu	Thr	Met	Leu	Glu	Lys	Phe	Leu
					245				250			255			
Glu	Cys	Val	Ala	Asp	Val	Phe	Lys	Leu	Val	Pro	Leu	Pro	Ile	Thr	Met
					260			265			270				
Gly	Ile	Arg	Ala	Ile	Val	Ala	Ala	Gly	Cys	Thr	Phe	Thr	Ser	Ala	Val
					275			280			285				
Ile	Gly	Leu	Trp	Thr	Phe	Cys	Asn	Arg	Val						
					290			295							

<210> 134

<211> 897

<212> DNA

<213> Chlamydia

<400> 134

atggcttcta	tatgcggacg	tttagggct	ggtagggga	atgctctaaa	agctttttt	60
acacagccca	acaataaaat	ggcaagggtta	gtaaataaga	cgaagggaat	ggataagact	120
attaagggttgc	ccaagtctgc	tgccgaatttgc	accgcaaata	ttttggaaaca	agctggaggc	180
gcgggcttctt	ccgcacacat	tacagttcc	caagtgttca	aaggattagg	ggatgcgaga	240
actgttgcg	cttttagggaa	tgccttttac	ggagcggttc	caggaacagt	tcaaagtgcg	300
caaagcttctt	tctctcacat	gaaagctgct	agtcagaaaa	cgcaagaagg	ggatgaggggg	360
ctcacagcag	atctttgtgt	gtctcataag	cgcagagcgg	ctgcggctgt	ctgtagcatc	420
atcggaggaa	ttaccttac	cgcgcacattc	ggagctatcc	gtccgattct	gtttgtcaac	480
aaaatgttgcg	caaaaccgtt	tctttcttcc	caaactaaag	caaatatggg	atcttctgtt	540
agctatatta	tggcggttac	ccatgcagcg	tctgtgggtgg	gtgctggact	cgctatcagt	600
gcggaaagag	cagattgcga	agcccgtc	gctcgatatttgc	cgagagaaga	gtcgtaactc	660
gaaatgccgg	gagagggaaa	tgcttgcgag	aagaaaagtgc	ctggagagaa	agccaaagacg	720
ttcacgcgca	tcaagtatgc	actcctact	atgctcgaga	agtttttggaa	atgcgttgcc	780
gacgttttca	aattggtgcc	gctgcctatt	acaatgggtt	ttcgtgcgt	tgtggctyct	840
ggatgtacgt	tcacttctgc	aattatttggaa	tttgtgcactt	tctgcgccag	agcataaa	897

<210> 135

<211> 298

<212> PRT

<213> Chlamydia

<400> 135

Met	Ala	Ser	Ile	Cys	Gly	Arg	Leu	Gly	Ser	Gly	Thr	Gly	Asn	Ala	Leu
1					5			10			15				
Lys	Ala	Phe	Phe	Thr	Gln	Pro	Asn	Asn	Lys	Met	Ala	Arg	Val	Val	Asn
					20			25			30				
Lys	Thr	Lys	Gly	Met	Asp	Lys	Thr	Ile	Lys	Val	Ala	Lys	Ser	Ala	Ala
					35			40			45				
Glu	Leu	Thr	Ala	Asn	Ile	Leu	Glu	Gln	Ala	Gly	Gly	Ala	Gly	Ser	Ser
					50			55			60				
Ala	His	Ile	Thr	Ala	Ser	Gln	Val	Ser	Lys	Gly	Leu	Gly	Asp	Ala	Arg
					65			70			75			80	
Thr	Val	Val	Ala	Leu	Gly	Asn	Ala	Phe	Asn	Gly	Ala	Leu	Pro	Gly	Thr
					85			90			95				
Val	Gln	Ser	Ala	Gln	Ser	Phe	Phe	Ser	His	Met	Lys	Ala	Ala	Ser	Gln
					100			105			110				
Lys	Thr	Gln	Glu	Gly	Asp	Glu	Gly	Leu	Thr	Ala	Asp	Leu	Cys	Val	Ser

115	120	125
His Lys Arg Arg Ala Ala Ala Ala Val Cys Ser Ile Ile Gly Gly Ile		
130	135	140
Thr Tyr Leu Ala Thr Phe Gly Ala Ile Arg Pro Ile Leu Phe Val Asn		
145	150	155
Lys Met Leu Ala Lys Pro Phe Leu Ser Ser Gln Thr Lys Ala Asn Met		
165	170	175
Gly Ser Ser Val Ser Tyr Ile Met Ala Ala Asn His Ala Ala Ser Val		
180	185	190
Val Gly Ala Gly Leu Ala Ile Ser Ala Glu Arg Ala Asp Cys Glu Ala		
195	200	205
Arg Cys Ala Arg Ile Ala Arg Glu Glu Ser Leu Leu Glu Met Pro Gly		
210	215	220
Glu Glu Asn Ala Cys Glu Lys Lys Val Ala Gly Glu Lys Ala Lys Thr		
225	230	235
Phe Thr Arg Ile Lys Tyr Ala Leu Leu Thr Met Leu Glu Lys Phe Leu		
245	250	255
Glu Cys Val Ala Asp Val Phe Lys Leu Val Pro Leu Pro Ile Thr Met		
260	265	270
Gly Ile Arg Ala Ile Val Ala Ala Gly Cys Thr Phe Thr Ser Ala Ile		
275	280	285
Ile Gly Leu Cys Thr Phe Cys Ala Arg Ala		
290	295	

<210> 136

<211> 882

<212> DNA

<213> Chlamydia

<400> 136

atggcttctg tatgtggcg attaagtgc ggggtggga acagattaa cgcattttc	60
acgcgtcccg gtaacaagct atcacgttt gtaaaatagcg caaaaggatt agacagatca	120
ataaaggttg ggaagtctgc tgctgaatta acggcgagta ttttagagca aactgggggg	180
gcagggactg atgcacatgt tacggcgcc aaggtgtcta aagcacttgg ggacgcgcga	240
acagtaatgg ctctaggaa tgtcttaat ggtctgtgc cagcaaccat tcaaagtgcg	300
cgaagctgtc tcgcccattt acgagcggcc gcaaagaag aagaaacatg ctccaagggt	360
aaagatctct gtgttctca tagacgaaga gtcgcggctg aggcttgtaa tttattgga	420
ggagcaactt atattacaac ttccggagcg attcgtccga cattactcgtaaagctt	480
cttgc当地 cattccttc ctcccaagcc aaagaagggt tggagcttc ttttgttat	540
atcatggcag cgaaccatgc ggcattgtc cttgggtctg ctttaagtat tagcgcagaa	600
agagcagact gtgaagagcg gtgtatgcg attcgtatgtatgttgg taaaatttgc	660
gaaggcaata aattaacagc tatttcggaa gagaaggcta gatcatggac tctcattaag	720
tacagattcc ttactatgtat agaaaaacta tttgagatgg tggcgatat cttcaagtta	780
attcccttgc caatttcgca tggaaatcgatgttgcgatg tacgttgact	840
tctgcagtttta ttggcttagg tactttttgg tcttagagcat aa	882

<210> 137

<211> 293

<212> PRT

<213> Chlamydia

<400> 137

Met Ala Ser Val Cys Gly Arg Leu Ser Ala Gly Val Gly Asn Arg Phe			
1	5	10	15
Asn Ala Phe Phe Thr Arg Pro Gly Asn Lys Leu Ser Arg Phe Val Asn			

20	25	30
Ser Ala Lys Gly Leu Asp Arg Ser Ile Lys Val Gly Lys Ser Ala Ala		
35	40	45
Glu Leu Thr Ala Ser Ile Leu Glu Gln Thr Gly Gly Ala Gly Thr Asp		
50	55	60
Ala His Val Thr Ala Ala Lys Val Ser Lys Ala Leu Gly Asp Ala Arg		
65	70	75
Thr Val Met Ala Leu Gly Asn Val Phe Asn Gly Ser Val Pro Ala Thr		
85	90	95
Ile Gln Ser Ala Arg Ser Cys Leu Ala His Leu Arg Ala Ala Gly Lys		
100	105	110
Glu Glu Glu Thr Cys Ser Lys Val Lys Asp Leu Cys Val Ser His Arg		
115	120	125
Arg Arg Ala Ala Ala Glu Ala Cys Asn Val Ile Gly Gly Ala Thr Tyr		
130	135	140
Ile Thr Thr Phe Gly Ala Ile Arg Pro Thr Leu Leu Val Asn Lys Leu		
145	150	155
Leu Ala Lys Pro Phe Leu Ser Ser Gln Ala Lys Glu Gly Leu Gly Ala		
165	170	175
Ser Val Gly Tyr Ile Met Ala Ala Asn His Ala Ala Ser Val Leu Gly		
180	185	190
Ser Ala Leu Ser Ile Ser Ala Glu Arg Ala Asp Cys Glu Glu Arg Cys		
195	200	205
Asp Arg Ile Arg Cys Ser Glu Asp Gly Glu Ile Cys Glu Gly Asn Lys		
210	215	220
Leu Thr Ala Ile Ser Glu Glu Lys Ala Arg Ser Trp Thr Leu Ile Lys		
225	230	235
Tyr Arg Phe Leu Thr Met Ile Glu Lys Leu Phe Glu Met Val Ala Asp		
245	250	255
Ile Phe Lys Leu Ile Pro Leu Pro Ile Ser His Gly Ile Arg Ala Ile		
260	265	270
Val Ala Ala Gly Cys Thr Leu Thr Ser Ala Val Ile Gly Leu Gly Thr		
275	280	285
Phe Trp Ser Arg Ala		
290		

<210> 138

<211> 16

<212> PRT

<213> Artificial Sequence

<220>

<223> Made in a lab

<400> 138

Asp Leu Cys Val Ser His Lys Arg Arg Ala Ala Ala Val Cys Ser		
1	5	10
		15

<210> 139

<211> 16

<212> PRT

<213> Artificial Sequence

<220>

<223> Made in a lab

<400> 139
 Arg Ala Ala Ala Ala Val Cys Ser Phe Ile Gly Gly Ile Thr Tyr Leu
 1 5 10 15

<210> 140
 <211> 18
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Made in a lab

<400> 140
 Cys Ser Phe Ile Gly Gly Ile Thr Tyr Leu Ala Thr Phe Gly Ala Ile
 1 5 10 15

Arg Pro

<210> 141
 <211> 18
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Made in a lab

<400> 141
 Tyr Leu Ala Thr Phe Gly Ala Ile Arg Pro Ile Leu Phe Val Asn Lys
 1 5 10 15

Met Leu

<210> 142
 <211> 18
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Made in a lab

<400> 142
 Arg Pro Ile Leu Phe Val Asn Lys Met Leu Ala Gln Pro Phe Leu Ser
 1 5 10 15

Ser Gln

<210> 143
 <211> 17
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Made in a lab

<400> 143
 Met Leu Ala Gln Pro Phe Leu Ser Ser Gln Thr Lys Ala Asn Met Gly
 1 5 10 15
 Ser

<210> 144
 <211> 10
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Made in a lab

<400> 144
 Cys Ser Phe Ile Gly Gly Ile Thr Tyr Leu
 1 5 10

<210> 145
 <211> 9
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Made in a lab

<400> 145
 Ser Phe Ile Gly Gly Ile Thr Tyr Leu
 1 5

<210> 146
 <211> 8
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Made in a lab

<400> 146
 Phe Ile Gly Gly Ile Thr Tyr Leu
 1 5

<210> 147
 <211> 9
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Made in a lab

<400> 147
 Cys Ser Phe Ile Gly Gly Ile Thr Tyr
 1 5

<210> 148

<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Made in a lab

<400> 148
Cys Ser Phe Ile Gly Gly Ile Thr
1 5

<210> 149
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Made in a lab

<400> 149
Cys Ser Ile Ile Gly Gly Ile Thr Tyr Leu
1 5 10

<210> 150
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Made in a lab

<400> 150
Cys Gly Phe Ile Gly Gly Ile Thr Tyr Leu
1 5 10

<210> 151
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Made in a lab

<400> 151
Gly Phe Ile Gly Gly Ile Thr Tyr Leu
1 5

<210> 152
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> Made in a lab

<400> 152
 Gln Ile Phe Val Cys Leu Ile Ser Ala Glu Arg Leu Arg Leu Arg Leu
 1 5 10 15
 Ser Val Ala Ser
 20

<210> 153
 <211> 20
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Made in a lab

<400> 153
 Glu Arg Leu Arg Leu Arg Leu Ser Val Ala Ser Ser Glu Glu Leu Pro
 1 5 10 15
 Thr Ser Arg His
 20

<210> 154
 <211> 20
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Made in a lab

<400> 154
 Ala Ser Ser Glu Glu Leu Pro Thr Ser Arg His Ser Glu Leu Ser Val
 1 5 10 15
 Arg Phe Cys Leu
 20

<210> 155
 <211> 20
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Made in a lab

<400> 155
 Arg His Ser Glu Leu Ser Val Arg Phe Cys Leu Ser Thr Lys Cys Trp
 1 5 10 15
 Arg Asn Arg Phe
 20

<210> 156
 <211> 20
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Made in a lab

<400> 156
 Leu Ser Thr Lys Cys Trp Arg Asn Arg Phe Phe Leu Pro Lys Leu Lys
 1 5 10 15
 Gln Ile Trp Asp
 20

<210> 157
 <211> 53
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Made in a lab

<400> 157
 Ile Phe Val Cys Leu Ile Ser Ala Glu Arg Leu Arg Leu Ser Val Ala
 1 5 10 15
 Ser Ser Glu Glu Leu Pro Thr Ser Arg His Ser Glu Leu Ser Val Arg
 20 25 30
 Phe Cys Leu Ser Thr Lys Cys Trp Arg Asn Arg Phe Phe Leu Pro Lys
 35 40 45
 Leu Lys Gln Ile Trp
 50

<210> 158
 <211> 52
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Made in a lab

<400> 158
 Leu Cys Val Ser His Lys Arg Arg Ala Ala Ala Val Cys Ser Phe
 1 5 10 15
 Ile Gly Gly Ile Thr Tyr Leu Ala Thr Phe Gly Ala Ile Arg Pro Ile
 20 25 30
 Leu Phe Val Asn Lys Met Leu Ala Gln Pro Phe Leu Ser Ser Gln Ile
 35 40 45
 Lys Ala Asn Met
 50

<210> 159
 <211> 24
 <212> DNA
 <213> Chlamydia

<400> 159
 ttttgaagca ggttagtgaa tatg

<210> 160
 <211> 24
 <212> DNA
 <213> Chlamydia

<pre> <400> 160 ttaagaaaatt taaaaaaatcc ctta <210> 161 <211> 24 <212> DNA <213> Chlamydia <400> 161 ggtataatat ctctctaaat tttg <210> 162 <211> 19 <212> DNA <213> Chlamydia <400> 162 agataaaaaa ggctgtttc <210> 163 <211> 24 <212> DNA <213> Chlamydia <400> 163 ttttgaagca ggttaggtgaa tatg <210> 164 <211> 29 <212> DNA <213> Chlamydia <400> 164 tttacaataa gaaaagctaa gcactttgt <210> 165 <211> 20 <212> DNA <213> Chlamydia <400> 165 ccttacacag tcctgctgac <210> 166 <211> 20 <212> DNA <213> Chlamydia <400> 166 gtttccgggc cctcacattg <210> 167 <211> 9 <212> PRT </pre>	24 24 19 24 29 20 20
--	--

<213> Artificial Sequence

<220>

<223> Made in a lab

<400> 167

Ser Phe Ile Gly Gly Ile Thr Tyr Leu
1 5

<210> 168

<211> 9

<212> PRT

<213> Artificial Sequence

<220>

<223> Made in a lab

<400> 168

Ser Ile Ile Gly Gly Ile Thr Tyr Leu
1 5

<210> 169

<211> 2643

<212> DNA

<213> Chlamydia

<400> 169

gcaatcatgc gacctgatca tatgaacttc tgggtctat gtgctgtat tttgtcatcc	60
acagcggtcc tctttggcca ggatccctta ggtgaaaccg ccctcctcac taaaaatcct	120
aatcatgtcg tctgtacatt ttttgaggac tgtaccatgg agagccttcc tcctgcttcc	180
tgtgctcatg catcacaaga cgatccttgc tatgtacttg gaaattcccta ctgttggttc	240
gtatctaaac tccatatacac ggacccaaa gaggtctttt taaaagaaaa aggagatctt	300
tccatccaaa acttcgctt ctttccttc acagattgtc ttccaagga aagctctcc	360
tctattatttc atcaaaaagaa tggtcagttt cccttgcgcataatggtag catgagttc	420
tgtcgaaatc atgctgaagg ctctggagga gccatctctg cggatgcctt ttctctacag	480
cacaactatc tttcacacgc ttttgaagag aattcttcta aaggaaatgg cggagccatt	540
caggctcaaa ccttcctttt atctagaaaat gtgtgcctt tttcttcgc ccgtaatcgt	600
gcggatttaa atggcggcgc tatttgcgtt agtaatctt tttgttcagg gaatgtaaac	660
cctctctttt tcactggaaa ctccgcacg aatggaggcg ctatttgcgtt tatcagcgat	720
ctaaacacact cagaaaaagg ctctctctctt ctgtcttgc accaagaaac gctatttgc	780
agcaattctg ctaaagaaaa aggccccctt atttatgcac agcacatgg attgcgttat	840
aacggtcctg tttccctcat taacaacagg gctaaaatag gtggagctat cggccatccag	900
tccggaggga gtctctctat cttgcaggtaaaggatctg ttctgttcca gaataactcc	960
caacgcaccc cccaccaagg tctagtaaga aacgcctat acttaragaa agatgcgatt	1020
ttttcttcct tagaagctcg caacggagat attctttct ttgatccat tgatacaagaa	1080
agtagcagca aagaatcgcc tcttcctcc tcttgcaag ccagcgtgac ttctcccacc	1140
ccagccaccc catctccctt agttattcag acaagtgcac accgttcagt gatttctcg	1200
agcgaacgtc tttctgaaga agaaaaaaact cctgataacc tcacttccca actacagcag	1260
cctatcgaaac tgaatccgg acgcttagtt taaaagatc ggcgtgtcct ttccgcgcct	1320
tctctctctc aggatcctca agctctctc attatggaaag cgggaacttc tttaaaaact	1380
tcctctgtatt tgaagttgc tacgctaagt attcccttc attccttaga tactgaaaa	1440
agcgtaacta tccacgcccc taatcttct atccaaaaga tcttcctctc taactctgga	1500
gatgagaatt ttatgaaaaa tggtagagtt cttagtaag agcaaaacaa tattcctctc	1560
cttactctcc taaagagca atctcatttt catcttcctg atggaaacct ctcttcac	1620
tttggatatac aaggagattt gactttct tggaaagatt ctgatgaagg gcattctcg	1680

attgcttaatt ggacgcctaa aaactatgtg cctcatccag aacgtcaatc tacactcggtt 1740
gcgaacactc tttggAACAC ctattccgt atgcaagctg tgcaagtcgat gattaataca 1800
acagcgcacg gaggagccta tctatttggg acgtggggat ctgctgttcc taattttatc 1860
tatgttccacg acagctctgg gaaacctatc gataattggc atcatagaag cttggctac 1920
ctattcggtt tcagttactca cagtttagat gaccattctt tctgttggc tgcaggacaa 1980
ttactcggtt aatcgccga ttcccttatt acgtctacag aaacgacctc ctatatagtt 2040
actgtacaag cgcaactcgc tacctctcta atgaaaatct ctgcacaggc atgctacaat 2100
gaaagtatcc atgagctaaa aacaaaatat cgctcccttct ctaaagaagg attcggtatcc 2160
tggcatagcg ttgcgttac ccggagaagtgc tgccatcgat ttccctattgtt atccaatgg 2220
tccggactgt tcagctccctt ctctattttc tctaaaactgc aaggattttc aggaacacag 2280
gacgggttttgg aggagagttc gggagagatt cggccctttt ctgcacaggc ttccagaaat 2340
atttcacttc ctataggaat aacatttgaa aaaaaatccc aaaaaaacacg aacctactat 2400
tactttcttag gagcctacat ccaagacctg aaacgtgtatg tggaatcggtt acctgtatgt 2460
ttactcaaaa atgccgttcc ctggatgtct cctatggcga acttggattc acgagcctac 2520
atgttccggc ttacgaatca aagagctcta cacagacttc agacgctgtt aatatgttct 2580
tgtgtgtgtgc gtgggcaaag ccatagttac tccctggatc tggggaccac ttacaggttc 2640
taq 2643

<210> 170

<211> 2949

<212> DNA

<213> Chlamydia

<400> 170

atgattcctc aaggaattta cgatggggag acgttaactg tatcatttcc ctatactgtt 60
ataggagatc cgagtggac tactgtttt tctgcaggag agttaacatt aaaaaatctt 120
gacaattcta ttgcagctt gccttaagt tgttttggga acttattagg gagttttact 180
gttttaggga gaggacactc gttgactttc gagaacatac ggacttctac aaatggggca 240
gctctaagta atagcgctgc tgatggactg ttactattg agggtttaa agaattatcc 300
tttccaatt gcaattcatt acttgcgtc ctgcctgctg caacgactaa taagggttagc 360
cagactccga cgacaacatc tacaccgtct aatggacta ttattctaa aacagatctt 420
ttgttactca ataatgagaa gttctcatt tatactaatt tagtctctgg agatggggaa 480
gctatagatg ctaagagctt aacggttcaa ggaatttagca agctttgtgt cticcaagaa 540
aatactgctc aagctgatgg gggagcttgt caagtagtca ccagtttctc tgctatggct 600
aacaggagctc ctattgcctt tgttagcgaat gttgcaggag taagaggggg agggattgt 660
gctgttcagg atgggcagca gggagtgta tcatactactt caacagaaga tccagtagta 720
agttttcca gaaatactgc ggtagagttt gatgggaacg tagcccgagt aggaggaggg 780
atttactcct acgggaacgt tgctttcctg aataatggaa aaaccttgtt tctcaacaat 840
gttgcctc ctgttacat tgctgctaag caaccaacaa gtggacaggc ttctaatacg 900
agaataatt acggagatgg aggagctatc ttctgttaaga atgggtgcga agcaggatcc 960
aataactctg gatcagttc ctttgatgga gaggagtag ttttctttag tagcaatgta 1020
gctgtggga aaggggggac tatttatgcc aaaaagctct cggttgctaa ctgtggccct 1080
gtacaatttt taaggaatat cgctaattatgat ggtggagcga tttattttagg agaatctgga 1140
gagctcagtt tatctgctga ttatggagat attatttcg atggaaatct taaaagaacaa 1200
gccaaagaga atgctgccga tgtaatggc gtaactgtgt cctcacaagc catttcgatg 1260
ggatcgggag gaaaaataac gacattaaga gctaaagcag ggcattcagat tctctttaat 1320
gatcccattcg agatggcaaa cggaaataac cagccagcgc agtcttccaa acttctaaaa 1380
attaacgatg gtgaaggata cacagggat attgtttttg ctaatggaaag cagtactttg 1440
tacccaaatg ttacgataga gcaaggaaagg attgttcttc gtgaaaaggc aaaattatca 1500
gtgaattctc taagtccagac aggtggagat ctgttatatgg aagctggag tacattggat 1560
tttgcactc cacaaccacc acaacagcct cctgccccta atcagttgtat cacgctttcc 1620
aatctgcatt tgtctcttcc ttctttgtta gcaaaacaatg cagttacgaa tcctccttacc 1680
aatcctccag cgaagattc tcatccgtca gtcattggta gcacaactgc tggttctgtt 1740
acaatttagtgc ggcttatctt ttttgaggat ttggatgata cagcttatga taggttatgtat 1800
tggcttaggtt ctaatcaaaa aatcaatgtc ctgaaattac agttagggac taagccccca 1860

gctaatgcc	catcagattt	gactctagg	aatgagatgc	ctaagtatgg	ctatcaagga	1920
agctggaa	gc ttgcgtgg	ta tcctaataca	gcaaataatg	gtccttatac	tctgaaagct	1980
acatggact	aaactgggt	ta atccctgg	cctgagcgag	tagcttctt	ggttccaaat	2040
agtttatgg	gatccat	ttt agatatacga	tctgcgcatt	cagcaattca	agcaagtgtg	2100
gatgggcg	cttattgtcg	aggattatgg	gtttctggag	tttcgaattt	cttctatcat	2160
gaccgcgat	ctttaggtca	gggatatcg	tatattatgt	ggggttattc	cttagggagca	2220
aactcctact	ttggatcatc	gatgttgg	ctagcattt	ccgaagtatt	tggttagatot	2280
aaagattatg	tagtgtgtcg	ttccaatcat	catgcttgc	taggatccgt	ttatctatct	2340
acccaacaag	ctttagtgg	atcctat	ttcggagatg	cgttatccg	tgctagctac	2400
gggttggg	atcagcatat	gaaaacctca	tatacattt	cagaggagag	cgatgttgc	2460
tgggataata	actgtctgg	tggagagatt	ggagcgggat	taccgattgt	gattactcca	2520
tctaa	gctct	tttgcgtc	ttcgtgcaag	ctgagtttc	ttatgccat	2580
catgaatctt	ttacagagga	aggcgatcaa	gctcgggcat	tcaagagcgg	acatctccta	2640
aatctatcag	ttcctgttgg	agtgaagttt	gatcgatgtt	ctagtacaca	tcctaataaa	2700
tata	tttgcgttta	tatctgtgat	gtttatcgca	ccatctctgg	tactgagaca	2760
acgctccat	cccatcaaga	gacatggaca	acagatgcct	tttcatattagc	aagacatgg	2820
gttgggtt	gaggatctat	gtatgc	ctaaacaagta	atata	atggccat	2880
ggaagat	atgatcgaga	tgcttc	ggctatgg	tgagtgcagg	magtaaagtc	2940
ygg	ttctaa					2949

<210> 171

<211> 2895

<212> DNA

<213> Chlamydia

<400> 171

atgaaaaaaag	cg	ttttttctt	tttccttatac	gaaaactccc	tatcaggact	agctagagag	60
gttccttcta	gaat	ttttct	tatgccaac	tcagttccag	atcctacgaa	agagtcgcta	120
tcaaataaaa	ttat	gtgtac	aggagacact	cacaatctca	ctaaactgcta	tctcgataac	180
ctacgctaca	tact	ggcttat	tctacaaaaa	actccaaatg	aaggagctgc	tgtcacaata	240
acagattacc	taag	tttttt	tgatacacaa	aaagaaggta	tttattttgc	aaaaaatctc	300
acccctgaaa	gtgg	ttgtgc	gattgg	tttgc	tttgc	tttgc	360
cg	gtatacaa	ttgtcctgt	aatcttgaa	aataataactt	gttgcagact	atttacatgg	420
agaaatcctt	atg	ctgtga	taaaataaga	gaaggcggag	ccattcatgc	tcaaaatctt	480
tacataaaatc	ataat	catga	tgtggcgg	tttgc	tttgc	tttgc	540
ggagccatta	gtacc	cttgc	tac	tttgc	tttgc	tttgc	600
atggacaaca	tctgtattca	aactaataca	gcaggaaa	gtggcgtat	ctatgc	tttgc	660
acgagcaatt	cttttgc	gag	taataactgc	gatcttct	tcatcaataa	cgcctgttgc	720
gcaggaggag	cgat	tttctc	ccctatctgt	tctctaa	gaaatgc	tttgc	780
ttctataaca	atcg	ctgtgtt	taaaaatgt	gaaacagctt	cttc	gatgg	840
ggagcaatta	aagtaactac	tcgcctagat	gttacaggca	atcgttgc	tttgc	tttgc	900
agtgacaata	tcacaaaaaa	ttatggcgg	gttatttac	ctcctgt	tttgc	tttgc	960
gataatggcc	ctac	ctactt	tataaacaat	atcgccaata	ataagggggg	cgctatctat	1020
atagacggaa	ccag	taactc	caaatttct	gcccggcc	atgctattat	tttgc	1080
aatattgtga	cta	atgtaac	taatgcaat	gttaccgt	cgtc	tttgc	1140
agaaatgcaa	taac	actgtac	aagcttct	gttggaaattc	tattaggagc	agggagtagc	1200
caaaatttaa	ttttt	atgt	tttgc	gttggaaattc	tattaggagc	agggagtagc	1260
aataa	gg	tttgc	tttgc	gttggaaattc	tattaggagc	agggagtagc	1320
gat	tttgc	tttgc	tttgc	gttggaaattc	tattaggagc	agggagtagc	1380
tttgc	tttgc	tttgc	tttgc	gttggaaattc	tattaggagc	agggagtagc	1440
gttgg	tttgc	tttgc	tttgc	gttggaaattc	tattaggagc	agggagtagc	1500
gttgg	tttgc	tttgc	tttgc	gttggaaattc	tattaggagc	agggagtagc	1560
gttgg	tttgc	tttgc	tttgc	gttggaaattc	tattaggagc	agggagtagc	1620
gttgg	tttgc	tttgc	tttgc	gttggaaattc	tattaggagc	agggagtagc	1680
gttgg	tttgc	tttgc	tttgc	gttggaaattc	tattaggagc	agggagtagc	1740

tctatttctg aagcttagcga taaccagcta caatcagaaa atatacgattt ttcgggacta	1800
aatgtccctc attatggatg gcaaggactt tggacttgccc gctgggcaaa aactcaagat	1860
ccagaaccag catcttcagc aacaatcact gatccacaaa aagccaatag atttcata	1920
accttactac taacatggct tcctgccggg tatgttccta gcccaaaaaca cagaagtccc	1980
ctcatagcta acaccttatg gggaaatatg ctgcgttgc aaagaaagctt aaaaaatagt	2040
gcagagctga cacctagtgg tcatccccc tgaaaatattt caggaggagg actaggcatg	2100
atggtttacc aagatcctcg agaaaatcat cctggattcc atatgcgctc ttccggat	2160
tctgcgggga tgatagcagg gcagacacac accttctcat tgaaaattcag tcagacctac	2220
accaaaactca atgagcgtta cgcaaaaaac aacgtatctt ctaaaaatattt ctcatgc	2280
ggagaaaatgc tcttctcatt gcaagaaggt ttcttgctga ctaaaattatgt tgggcttac	2340
agctatggag accataactg tcaccatttc tatactcaag gagaaaatct aacatctcaa	2400
gggacgttcc gcagtcaaac gatgggaggt gctgtcttt ttgatctccc tatgaaaccc	2460
tttggatcaa cgcataact gacagctccc ttttttaggtt ctcttggtat ttattctagc	2520
ctgtctcaact ttactgaggt gggagcctat ccgcgaagct tttctacaaa gactccttgc	2580
atcaatgtcc tagtccctat tggagttaaa ggtagcttta tgaatgctac ccacagac	2640
caagcctgga ctgtagaatt ggcataccaa cccgttctgt atagacaaga accagggatc	2700
gcgaccctcgc tcctagccag taaaggatatt tgggttggta gtggaaagccc ctcatcg	2760
catgccccatgt cctataaaaat ctcacacagca acacaaçctt tgagttggtt aactctccat	2820
ttcccgatatac atggattcta ctcctttca accttctgtt attatctcaa tggggaaatt	2880
qctctqcqat tctag	2895

<210> 172

<211> 4593

<212> DNA

<213> Chlamydia

<400> 172

atgagutccg agaaaagatataaaaaggcacc tttcttaagt ttctttgtc tgttagtagca
gctatccctg cctctgttag cgggtagct agttgcgtat atcttcatgc tggaggacag
tctgtaaatg agctggata tgtaggcct caagcggtt tattttaga ccaaattcga
gatctattcg ttgggtctaa agatagtcg gctgaaggac agtataaggtt aatttgttaga
gatccaagtt ct当地ccaaga gaaagatgca gatactctt ccggaaagg agagcaaagt
actttgttct cagtaaccaa tcccgtgggtt ttccaagggt tgaccaca ggatcaagtc
tcttcccaag ggttaatttg tagtttacg agcagcaacc ttgattctcc cctgtacgg
aatcttttt taggtattgc tttgttggg gatagtagta aggcttgaat cacattaact
gacgtgaaag ct当地tttgc tggagcggct ttatattcta cagaagatct tatcttggaa
aagattaagg gtggattgga atttgcatca ttttcttctc tagaacaggg gggagcttgc
gcagctcaaa gtatattgtat tc当地attgt caaggattgc aggttaaaca ctgtactaca
gccgtgaatg ctgaggggtc tagtgc当地 gatcatctt gattttggagg aggccgtt
tttgc当地tacgg gttctcttcc tggagagaaa agtctctata tgcctcagg agatatggta
gttgc当地tatt gtatggggc tatatcttt gaaggaaaca gc当地aactt tgctaatgg
ggagc当地tattt ctgc当地tgg gaaagtgc当地 ttgtcgctt atgataaaaaa gacttctt
atagagaacc gagcttgc当地 tggaggagcg attgc当地cc tttctgatat tgc当地tccaa
aactgc当地cag aactatgttt caaaggcaat ttttgc当地ttt gaacagagga taaaggtt
ttagggtggag gggctatatac ttctctaggc accgttctt tgcaaggaa tcacgggata
acttgc当地tata agaatgagtc tgcttgc当地 ggaggcgcc tttttggcaa aaattgtc
atttctgaca acgaggggccc agtggtttc agagatagta cagctgctt aggaggaggc
gctattgc当地 ctc当地aaaat ttgttctatt cagaacaatc aggctggat ttc当地tgc当地
ggaggtaagg ct当地ttcgg aggaggatt gc当地tggat ct当地tctt cgc当地gg
gttctgttt tagggactat tgatattcg aagaatttag gc当地gatttc gttctct
actttatgtt cgc当地tccaga tttaggacaa atggaggatc aggaggagg agctctat
ggtgaaaata tt当地tcttcc tgagaatgct ggtgtgc当地 cctttaaaga caacattgt
aagacttttgc ct当地gaatgg gaaaattctg ggaggaggag cgatattgc tactggta
gtggaaatta ccaataattc cggaggaaatt tt当地tacag gaaatgc当地 agctcc
gcttccaa ct当地agagga gtttccctt tt当地c当地aaaaa aagaaggc当地 accactct

tcaggatatt	ctgggggagg	agcgatttt	ggaagagaag	tagctattct	ccacaacgct	1740
gcagtagtat	ttgagcaaaa	tcgttgcag	tgca	gcaag	attattaggt	1800
tgttgtggag	gaggcgtgt	tcatggatg	gatagcactt	cgattgttg	caactcttca	1860
gtaagattt	gtaataatta	cgcaatgg	caaggagtct	caggaggac	tcttttatct	1920
aaaacagtgc	agttagctgg	aatggaa	g	tcgattttt	ctcgaaatat	1980
ggaggaggag	ctcttcaagc	ttctgaagga	aattgtgagc	tagttgataa	cggctatgt	2040
ctattcagag	ataatcgagg	gagggtttat	gggggtgcta	tttcttgctt	acgtggagat	2100
gtagtcattt	ctgaaaacaa	gggttagagtt	gaatttaaag	acaacatagc	aacacgtctt	2160
tatgtggaa	aaactgtaga	aaaggtgaa	gaggttagac	cagctcctga	gcaaaaagac	2220
aataatgagc	tttcttctt	agggagtgta	gaacagagtt	ttattactgc	agctaatacaa	2280
gctctttcg	catctgaaga	tggggattta	tcacctgagt	catccatttc	ttctgaagaa	2340
cttgcgaaaa	gaagagagtg	tgctggagga	gctattttt	caaaacgggt	tcgtatttgta	2400
gataaccaag	aggccgttgc	attctcaat	aacttctctg	atatttatgg	cggcgccatt	2460
tttacaggtt	ctttcggaga	agaggataag	ttagatggc	aaatccctga	agtcttgc	2520
tcaggcaatg	cagggatgt	tgtttttcc	gaaattcct	cgaagggtga	tgagcatctt	2580
cctcatacag	gtgggggagc	cattttaact	caaaatttga	cgatttctca	gaatacaggg	2640
aatgttctgt	tttataacaa	cgtggcctgt	tcgggaggag	ctgttcgtat	agaggatcat	2700
ggtaatgttc	ttttagaagc	ttttggagga	gatattgtt	ttaaaggaaa	ttcttcttcc	2760
agagcacaag	gatccgatgc	tatctat	gcaggtaaag	aatcgcatat	taacggcctg	2820
aatgctacgg	aaggacatgc	tattgtttc	cacgacgc	tagttttga	aaatctaaaa	2880
gaaaggaaat	ctgctgaagt	atgttataatc	aatagtcag	aaaatccagg	ttacactgg	2940
tctattcgt	ttttagaagc	agaaaagtaaa	gttcctcaat	gtattcatgt	acaacaaggaa	3000
agccttgcgt	tgctaaatgg	agctacatta	tgttagttatg	gttttaaaca	agatgctgg	3060
gctaagttgg	tattggctgc	tggatctaaa	ctgaagat	tagattcagg	aactcctgt	3120
caagggcatg	ctatcagtaa	acctgaagca	gaaatcgagt	catcttctga	accagagggt	3180
gcacatttctc	tttggattgc	gaagaatgct	caaacaacag	tttctatgg	tgatatccat	3240
actatttctg	tagatttagc	ctccttctct	tctagtcac	aggaggggac	agtagaaagct	3300
cctcaggta	ttgttccctgg	aggaagttat	gtcgatctg	gagagcttaa	tttggagtt	3360
gttaacacaa	caggtactgg	ttatgaaaat	catgcttgc	tgaagaatga	ggctaaagtt	3420
ccattgtatgt	cttcgttgc	ttctagtgat	gaagcttcag	ccgaaaatcg	taacttgc	3480
gtttctgtatt	tacagattca	tgttagcaact	ccagagattt	aagaagacac	atacggccat	3540
atgggagatt	ggtctgaggt	taaaatcaa	gatggaaactc	ttgtcattaa	ttggaatcc	3600
actggatatc	gattagatcc	tcaaaaagca	ggggctttag	tatthaatgc	attatggaa	3660
gaaggggctg	tcttgtctgc	tctgaaaat	gcacgcttgc	ctcataatct	cactgctc	3720
cgtatggaaat	tcgatttattc	tacaaatgtg	tggggattcg	cctttgggtgg	tttccgaact	3780
ctatctgcag	agaatctggt	tgttattgtat	ggatacaaaag	gagcttatgg	ttgtgcttct	3840
gctggagtcg	atattcaatt	gatggaaat	tttgttctag	gagtttagtgg	agctgc	3900
ctaggtaaaa	tggatagtca	gaagtttgat	gcccgggttt	ctcggaaagg	agttgttgg	3960
tctgtatata	caggattttt	agctggatcc	tgttcttca	aaggacaata	tagccttgg	4020
gaaacacaga	acgatatgaa	aacgcgttat	ggagtactag	gaggtc	tgcttcttgg	4080
acatctcgag	gagttactggc	agatgc	ttta	gttgaatacc	gaagtttagt	4140
agacctactt	tttatgc	tttcaat	ccttatgtcg	aagtatctt	tgcttctat	4200
aaattccctg	gctttacaga	acaaggaa	gaagcgcgtt	ctttgaaga	cgcttcc	4260
accaatata	ccatccctt	aggatgaag	tttgaattgg	cgttcataaa	aggacagtt	4320
tcagagggt	actctttggg	aataagttat	gcattggaa	cttac	gaaataggaa	4380
ggcgcgggtc	agctttttaga	agctgggtt	gattgggagg	gagctccaat	ggatcttcc	4440
agacaggagc	tgctgtcgc	tctggaaaat	aatacggaa	ggagttctt	cttcagcaca	4500
gtcttaggat	taacagctt	tttgtggagga	tttacttcta	cagatagtaa	actaggat	4560
gaggcgaata	ctggattgc	attgatctt	taa			4593

<210> 173

<211> 5331

<212> DNA

<213> Chlamydia

4000> 173
gcaatcatga aatttatgtc agctactgct gtatttgctg cagtaactctc ctccgttact 60
gaggcgagct cgatccaaga tcaaataaaag aataaccgact gcaatgttag caaagttagga 120
tattcaactt ctcagaacatt tactgatatg atgcttagcag acaacacaga gtatcgact 180
gctgatagtg tttcattcta tgactttcg acatcttccg gattacctag aaaacatctt 240
agtagtagta gtgaagcttc tccaacgaca gaaggagtgt cttcatctc atctggagaa 300
aatactgaga attcacaaga ttcaagctccc tcttctggag aaactgataa gaaaacagaa 360
gaagaactag acaatggcg aatcattat gctagagaga aactaactat ctcagaatct 420
caggactctc tctctaatcc aagcatagaa ctccatgaca atagttttt cttcggagaa 480
ggtgaagttt tctttgatca cagagttgcc ctcaaaaacg gaggagctat ttatggagag 540
aaagaggtag tctttgaaaa cataaaatct ctactagtag aagtaaatat ctcggtcgag 600
aaagggggta gcgtctatgc aaaagaacga gtatcttag aaaatgttac cgaagcaacc 660
ttctcccca atgggggaa acaagggttgt ggtgaatct atcgagaaca agatatgtta 720
atcagtgatt gcaacaatgt acatttccaa gggaatgctg caggagcaac agcagtaaaa 780
caatgtctgg atgaagaaat gatcgattt ctcacagaat gcgttgatag cttatccgaa 840
gatacactgg atagcactcc agaaacggaa cagactaagt caaatggaaa tcaagatgg 900
tcgtctgaaa caaaagatac acaagtatca gaatcaccag aatcaactcc tagccccgac 960
gatgttttag gtaaagggtgg .tggtatctat acagaaaaat cttgaccat cactgaaatt 1020
acagggacta tagattttgt cagtaacata gctaccgatt ctggagcagg tgtattca 1080
aaagaaaaact tgccttgac caacacgaat gcctacagt tttgaaaaaa ctcggcaggt 1140
caacatggag gaggagccta cgtaactcaa accatgtctg ttactaatac aactagtgaa 1200
agtataacta ctccccctct cgtaggagaa gtgattttct ctgaaaatac agctaaagg 1260
cacgggttgt gtatctgcac taacaaactt tctttatcta attaaaaaac ggtgactctc 1320
actaaaaact ctgcaaaggaa gtctggagga gctattttt cagatctgc gtctatacca 1380
acaacagata ccccagagtc ttctaccccc tcttcctcct cgccctgcaag cactcccgaa 1440
gtagttgctt ctgctaaaat aaatcgatcc ttgcctcta cggcagaacc ggcagcccc 1500
tctctaacag aggctgagtc tgcataacag gatcaaacag aaactctga tactaatagc 1560
gatatacg tgcatttgcga aacattttt aatgtcgcta tcaatcaaaa cacttctgcg 1620
aaaaaaaggag gggctattta cgggaaaaaaaaa gctaaacttt cccgtattaa caatctgaa 1680
ctttcagggaa attcatccca ggtatgttagga ggaggtctct gtttaactga aagcgtagaa 1740
tttgcatttgcga ttggatcgct ttatccac tataactctg ctgctaaaga aggtggggtt 1800
attcatctca aaacggttac tctatcttca ctcagaatctt ctttacttt tgcaataac 1860
actgttaaaag caatagttaga aagcactctt gaaagctccag aagagattcc tccagtagaa 1920
ggagaagagt ctacagcaac agaaaatccg aattctaata cagaaggaag ttccgcttaac 1980
actaaccttg aaggatctca aggggataact gctgatacag ggactgggtgt ttttaacaat 2040
gagtctcaag acacatcaga tactggaaac gctgaatctg gagaacaact acaagattct 2100
acacaatcta atgaagaaaa taccctccc aatagttaga ttgcataatc taacgaaaaac 2160
acagacaaat catctgatag ccacactgag gaaataactg acgagagtgt ctcatcgctcc 2220
tctaaaagtg gatcatctac tctcaagat ggaggagcag ctttttcagg ggctccctca 2280
ggagatcaat ctatctctgc aaacgcttgc tttagctaaaa gctatgctgc gactactgat 2340
agctccctgc tatctaattt ttcagttca gacgttactg catctctga taatccagac 2400
tcttcctcat ctggagatag cgctggagac tctgaaggac cgactgagcc agaagctgg 2460
tctacaacag aaactcctac tttatagga ggaggtgcta tctatggaga aactgttaag 2520
attgagaact tctctggcca aggaatattt tctggaaaca aagctatcga taacaccaca 2580
gaaggctcct ctccaaatc taacgtcctc ggaggtgccc tctatgctaa aacattgttt 2640
aatctcgata gccccggactc tagacyaact gtcaccttcc cgggaatac tgcattttct 2700
caatctacaa caggtcagg tgcgtggagga gctatctact ctcctactgt aaccattgt 2760
actcctgttag tattttctaa aaactctgca acaaacaatg ctaataacgc tacagatact 2820
cagagaaaaag acaccccttg aggagctatc ggagctactt ctgctgtttc tctatcagga 2880
ggggctcatt tcttagaaaa cgttgcgtac ctccgatctg ctattgggtt ggtgccagac 2940
acacaaaaata cagaaacagt gaaatttagag tctggctcct actacttga aaaaaataaaa 3000
gctttaaaac gagctactat ttacgcacct gtcgtttcca ttaaaggccta tactgcccaca 3060
tttaacccaaa acagatctct agaagaagga agcgcgatt actttacaaa agaagcatct 3120
attgagttt taggctctgt tctcttcaca gaaacttag taaccccaac gctaaggcaca 3180
actacagaag gcacaccaggc cacaacctca ggagatgtaa caaaatatgg tgctgtatc 3240

tttggacaaa tagcaagctc aaacggatct cagacggata accttcccgt gaaactcatt	3300
gcttcaggag gaaatatttg ttccgaaac aatgaataacc gtcctacttc ttctgatacc	3360
ggaacctcta ctctctgttag tattgcggga gatgttaat taaccatgca agctgaaaaa	3420
ggaaaaacga tcagttctt tgatgcaatc cgacccctcta ctaagaaaac aggtacacag	3480
gcaactgcct acgataactct cgatattaat aaatctgagg attcagaaac tgtaaactct	3540
gcgttacag gaacgattct gttctcctct gaattacatg aaaataaattc ctatattcca	3600
caaaacgtag ttctacacag tggatctctt gtattgaagc caaataccga gcttcatgtc	3660
atttctttg agcagaaaaga aggctttctt ctcgttatga cacctggatc tgttcttcg	3720
aaccagactg ttgctgatgg agcttggc ataaataaca tgaccattga ttatccagg	3780
gtagagaaaa atggtattgc tgaagggaaat atcttactc ctccagaatt gagaatcata	3840
gacactacta caagtggaaag cggtggaaacc ccatctacag atagtgaaag taaccagaat	3900
agtgtatgata ccaaggagca aaataataat gacgcctcgatc atcaaggaga aagcgcgaat	3960
ggatcgctt ctctgcagt agctgctgca cacacatctc gtacaagaaa ctttggcgct	4020
gcagctacag ccacacccatc gacaacacca acggctacaa ctacaacaag caaccaagta	4080
atcctaggag gagaatcaa actcatcgat cctaattggga ccttcttcca gaaccctgca	4140
ttaagatccg accaacaat ctccttgta gtgtccctca cagactcatc aaaaatgcaa	4200
gctcggaaaa tagtactgac gggtgatatt gctcctcaga aaggatatac aggaacactc	4260
actctggatc ctgtatcaact acaaaatggaa acgatctcag cgctctggaa atttgactct	4320
tatagacaat gggcttatgt acctagagac aatcatttct atgcgaaactc gattctggga	4380
tctcaatgt caatggtcac agtcaaacaa ggcttgctca acgataaaat gaatcttagct	4440
cgctttagt aagtagcta taacaacctg tgatattacg gacttaggaac gatgtatcg	4500
caagtaggaa cacttacttc tgaagaattc atttattaca gcagaggagc ttctgttgcc	4560
ttagatgcta aaccagccca tgatgtgatt gtggagctg catttagtaa gatgtatcg	4620
aaaacaaaat ccttgaaaag agagaataac tacactcaca aaggatccga atattcttac	4680
caagcatcg tatacggagg caaaccattc cactttgtaa tcaataaaaaa aacggaaaaaa	4740
tcgctaccgc tattgttaca aggagtcatc tcttaoggat atatcaaaca tgatacagt	4800
actcaactatc caacgatccg tgaacgaaac caaggagaat gggaaagactt aggtggctg	4860
acagctctcc gtgtctcctc tgccttaaga actcctgcac aaggggatac taaacgtatc	4920
actgtttacg gagaatttgcg atactccatc atccgtcaga aacaattcac agaaacagaa	4980
tacgatcttc gttacttcga caactgcacc tatagaaaact tagcaatcc tatgggtta	5040
gcattcgaag gagagctctc tggtaacgat attttgtatgt acaacagatt ctctgttagca	5100
tacatgccat caatctatcg aaattctcca acatgcaaat accaagtgcctt ctcttcagga	5160
gaaggcggag aaattatttg tggagtaccc acaagaaaact cagctcgcgg agaatacagc	5220
acgcagctgt acccggggacc tttgtggact ctgtatggat cctacacgat agaaggcagac	5280
gcacatacac tagctcatat gatgaactgc ggtgctcgta tgacattcta a	5331

<210> 174
<211> 5265
<212> DNA
<213> Chlamydia

<400> 174	
gcaatcatga aatggctgtc agctactgcg gtgtttgtcg ctgttctccc ctcagttca	60
gggtttgtct tcccagaacc taaagaatta aatttctctc gcgtagaaac ttcttcctct	120
accactttta ctgaaacaat tggagaagct ggggcagaat atatcgctc tggtaacgca	180
tctttcacaa aatttaccaa cattcctact accgatacaa caactccac gaactcaaacc	240
tcctctagct ctacggaga aactgcttcc gttctgagg atagtgactc tacaacaacg	300
actcctgatc ctaaagggtgg cggcgcttt tataacgcgc actccggagt ttgtcctt	360
atgacacgat caggaacaga aggttctta actctgtctg agataaaaat gactggtaa	420
ggcgggtgcta tcttctctca aggagagctg ctatttacag atctgacaag tctaaccatc	480
caaaataact tatcccagct atccggagga gcgattttg gaggatctac aatctcccta	540
tcagggatta ctaaagcgac tttctcctgc aactctgcag aagttcctgc tcctgttaag	600
aaacctacag aacctaaagc tcaaacagca agcgaaacgt cggttctag tagttctagc	660

ggaaatgatt	cgggtgtttc	ccccagttcc	agttagagctg	aaccgcgc	agctaattttt	720
caaagtca	ttatgggtgc	tacagctact	cctgctgctc	aaaccgatac	agaaaacatca	780
actcccttc	ataagccagg	atctggggga	gctatctatg	ctaaaggcg	ccttactatc	840
gcagactctc	aagaggtact	attctcaata	aataaagcta	ctaaagatgg	aggagcgatc	900
tttgctgaga	aagatgtt	tttcgagaat	attacatcat	taaaagtaca	aactaacgg	960
gctgaagaaa	aggaggagc	tatctatgct	aaaggtgacc	tctcaattca	atcttctaaa	1020
cagagtctt	ttaattctaa	ctacagtaaa	caaggtgggg	gggctctata	tgttgaagg	1080
ggtataaact	tccaagatct	tgaagaaatt	cgattaagt	acaataaagc	tggaacgttc	1140
gaaacaaaaa	aaatcacttt	accttctta	aaagctcaag	catctgcagg	aaatgcagat	1200
gcttgggcct	cttcctctcc	tcaatetgg	tctggagcaa	ctacagtctc	cgactcagg	1260
gactctagct	ctggctcaga	ctcgatacc	tcagaaacag	ttccagtcac	agctaaaggc	1320
ggtgggcctt	atactgataa	gaatctt	attactaaca	tcacaggaat	tatcgaatt	1380
gcaaataaca	aaggcacaga	tgttgaggt	ggtgcttacg	taaaaggaac	ccttacttgt	1440
gaaaactctc	accgtctaca	atttttgaaa	aactcttccg	ataaaacaagg	tggaggaatc	1500
tacggagaag	acaacatcac	cctatcta	ttgacaggg	agactctatt	ccaagagaat	1560
actgccaaag	aagagggcgg	tggactcttc	ataaaaggta	cagataaagc	tcttacaatg	1620
acaggactgg	atagttctg	ttaatttaat	aacacatcag	aaaaacatgg	tggtgagcc	1680
tttggta	accaatctc	tcagacttac	acctctgtat	tggaaacaat	tccaggaatc	1740
acgcctgtac	atggtgaaac	agtcttact	ggaataaaat	ctacaggagg	taatgggtgg	1800
ggcgtgtgt	caaaacgtct	tgccttatct	aaccttcaaa	gcatttctat	atccgggat	1860
tctgcagcag	aaaatgggt	tggagccac	acatgcccrag	atagcttccc	aacggcgat	1920
actgcagaac	agccgcgc	agsttctg	gcgacgtcta	ctcccaaattc	tgccccgg	1980
tcaactgtc	taagcacacc	ttcatctt	accgtctt	cattaac	actagcagcc	2040
tcttcacaag	cctctctgc	aacctcta	aaggaaactc	aagatctaa	tgctgataca	2100
gacttattga	tcgattatgt	agttgatacg	actatcag	aaaacactgc	taagaaaggc	2160
ggtggaaatct	atgctaaaaa	agccaaatgt	tccgcata	accaactgaa	tatctctgag	2220
aactccgcta	cagagatagg	tggaggtatc	tgtgtaaag	aatctttaga	actagatgt	2280
ctagtctcct	tatctgtaa	agagaac	gttggaaag	aaggtggagg	tttacatgt	2340
aaaactgtaa	atatttctaa	tctgaaatca	ggcttctt	tctcgaacaa	caaagcaa	2400
tcctcatcca	caggagtgc	aacaacag	tcagcac	ctgcagctc	tgcttcc	2460
caagcagccg	cagcagccgc	accatcatct	ccagcaacac	caacttattc	aggtgttag	2520
ggaggagcta	tctatggaga	aaagtttaca	ttctctca	gtagcggac	ttgtcagtt	2580
tctggaaacc	aagctatcga	taacaatccc	tcccaarcat	cgttgaac	gttacaagg	2640
gccatctatg	ccaaaacctc	tttgcatt	ggatcttcc	atgctgaa	ctcctatatt	2700
ttctcggg	acagtgtctc	cactggaaa	tctcaa	cagggcaat	agcgggagg	2760
gcgtatct	ccctactgt	tacattgat	tgtcctgc	cattctctaa	caatacagcc	2820
tctatagct	caccgaagac	ttcttgc	gatggatct	cagggaaattc	tattaaagat	2880
accattggag	gagccattgc	aggacagcc	attaccctat	ctggagtc	tcgat	2940
gggaatacgg	ctgat	ttggag	agctgcaata	gaaactctag	ctaatgc	3000
gcaactagcg	gatctaaaaa	tagcattaca	aaaaaaattt	ctttagaaaa	cggttcttt	3060
attttgaaa	gaaaccaagg	taataaacgt	ggagcgatt	actctct	cgtttccatt	3120
aaaggaaata	atattacctt	caatcaa	acatccact	atgatggaa	cgctatctac	3180
tttacaaaag	atgctacgt	ttagtctt	ggatctgtt	tttttacagg	aaataacgtt	3240
acagctacac	aagctagttc	tgcaacatct	ggacaaaata	caaatactgc	caactatgg	3300
gcagccatct	ttggagatcc	aggaacc	caatcg	aaacagatgc	catttt	3360
tttcttgctt	cttctggaaa	cattactt	agcaacaaca	gtttacagaa	taaccaagg	3420
gatactcccg	ctagcaagtt	tttgtagt	gcaggata	tcaaactctc	tctacaagcc	3480
gctaaaggga	agactattag	cttttcgat	tgtgtgcaca	cctctacaa	aaaaacaggt	3540
tcaacacaaa	acgttat	gaaat	at	aaataaaag	aagagaacag	3600
acaggaacta	ttgtgttctc	ttctgaa	at	catgaaaaca	aatcttacat	3660
gcaatcc	acaacggaa	tttagtctt	aaagagaaaa	cagaactcc	cgtgtct	3720
tttggagcaga	aagaagggtc	taaattt	at	gaaacccg	gagctgtt	3780
aacatagcta	acggagctct	agctatca	gggttac	ttgat	tttc	3840
actcc	caagggaaat	cttctct	ccagaattac	gtatcg	tc	3900
agtgcatcc	gaggaagcgg	ggtcagc	agtata	caaattctaa	aaggatttct	3960

gcagcagtgc cttcagggttc tgccgcaact actccaacta tgagcgagaa caaagtttc	4020
ctaacaggag accttacttt aatagatcct aatggaaaact tttacccaaa ccctatgtta	4080
ggaagcgatc tagatgtacc actaattaag ctccgacta acacaagtga cgtccaagtc	4140
tatgatttaa ctttatctgg ggatctttc cctcagaaag ggtacatggg aacctggaca	4200
ttagattcta atccacaaaac agggaaactt caagccagat ggacattcga tacctatcgt	4260
cgctgggtat acatacctag ggataatcat tttatgcga actctatctt aggctcccaa	4320
aactcaatga ttgttgtgaa gcaagggtt atcaacaaca tggtaataa tgcccgcctc	4380
gatgatatcg cttacaataa cttctgggtt tcaggagtag gaactttctt agctcaacaa	4440
ggaactcctc ttccgaaga attcagttac tacagccgcg gaacttcagt tgccatcgat	4500
gccaaaccta gacaagatt tattcttaga gctgcattta gtaagatagt gggaaaacc	4560
aaagccatca aaaaaatgca taattactt cataagggtt ctgagttactc ttaccaagct	4620
tctgtctatg gaggtaaatt cctgtatttc ttgctcaata agcaacatgg ttgggcactt	4680
ccttccttaa tacaaggagt cgtgtccat ggacatatta aacatgatac aacaacactt	4740
tacccttcta tccatgaaag aaataaagga gattggaaag atttaggatg gtagcggat	4800
cttcgtatct ctatggatct taaagaacct tctaaagatt cttctaaacg gatcaactgtc	4860
tatgggaac tcgagttttc cagcatcgc cagaaacagt tcacagaaat cgattacgat	4920
ccaagacact tcgatgattt tgcttacaga aatctgtcgc ttccctgtggg atgcgctgtc	4980
gaaggagcta tcatgaactg taatattctt atgtataata agcttcatt agcctacatg	5040
ccttcstatct acagaaataa tcctgtctgt aaatatcggtt attgtcttc gaatgaagct	5100
ggtcaagttt tctggggagt gccaactaga acctctgcta gagcagaata cagttactcaa	5160
ctatatcttgc tcccttctg gactctctac gggaaactata ctatcgatgt aggcatgtat	5220
acgctatcgc aaatgactag ctgcggtgct cgcatgatct tctaa	5265

<210> 175
<211> 880
<212> PRT
<213> Chlamydia

<220>
<221> VARIANT
<222> (1) ... (880)
<223> Xaa = Any Amino Acid

<400> 175
Ala Ile Met Arg Pro Asp His Met Asn Phe Cys Cys Leu Cys Ala Ala
1 5 10 15
Ile Leu Ser Ser Thr Ala Val Leu Phe Gly Gln Asp Pro Leu Gly Glu
20 25 30
Thr Ala Leu Leu Thr Lys Asn Pro Asn His Val Val Cys Thr Phe Phe
35 40 45
Glu Asp Cys Thr Met Glu Ser Leu Phe Pro Ala Leu Cys Ala His Ala
50 55 60
Ser Gln Asp Asp Pro Leu Tyr Val Leu Gly Asn Ser Tyr Cys Trp Phe
65 70 75 80
Val Ser Lys Leu His Ile Thr Asp Pro Lys Glu Ala Leu Phe Lys Glu
85 90 95
Lys Gly Asp Leu Ser Ile Gln Asn Phe Arg Phe Leu Ser Phe Thr Asp
100 105 110
Cys Ser Ser Lys Glu Ser Ser Pro Ser Ile Ile His Gln Lys Asn Gly
115 120 125
Gln Leu Ser Leu Arg Asn Asn Gly Ser Met Ser Phe Cys Arg Asn His
130 135 140
Ala Glu Gly Ser Gly Gly Ala Ile Ser Ala Asp Ala Phe Ser Leu Gln

145	150	155	160
His Asn Tyr Leu Phe Thr Ala Phe Glu	Glu Asn Ser Ser Lys	Gly Asn	
165	170	175	
Gly Gly Ala Ile Gln Ala Gln Thr	Phe Ser Leu Ser Arg	Asn Val Ser	
180	185	190	
Pro Ile Ser Phe Ala Arg Asn Arg	Ala Asp Leu Asn Gly	Gly Ala Ile	
195	200	205	
Cys Cys Ser Asn Leu Ile Cys	Ser Gly Asn Val Asn Pro	Leu Phe Phe	
210	215	220	
Thr Gly Asn Ser Ala Thr Asn Gly	Gly Ala Ile Cys Cys	Ile Ser Asp	
225	230	235	240
Leu Asn Thr Ser Glu Lys Gly Ser	Leu Ser Leu Ala Cys Asn Gln	Glu	
245	250	255	
Thr Leu Phe Ala Ser Asn Ser Ala	Lys Glu Lys Gly Gly	Ala Ile Tyr	
260	265	270	
Ala Lys His Met Val Leu Arg Tyr	Asn Gly Pro Val Ser	Phe Ile Asn	
275	280	285	
Asn Ser Ala Lys Ile Gly Gly	Ala Ile Ala Ile Gln Ser	Gly Gly Ser	
290	295	300	
Leu Ser Ile Leu Ala Gly Glu	Gly Ser Val Leu Phe Gln Asn Asn	Ser	
305	310	315	320
Gln Arg Thr Ser Asp Gln Gly	Leu Val Arg Asn Ala Ile Tyr	Leu Xaa	
325	330	335	
Lys Asp Ala Ile Leu Ser Ser	Leu Glu Ala Arg Asn Gly Asp	Ile Leu	
340	345	350	
Phe Phe Asp Pro Ile Val Gln	Glu Ser Ser Lys Glu Ser Pro	Leu	
355	360	365	
Pro Ser Ser Leu Gln Ala Ser	Val Thr Ser Pro Thr Pro	Ala Thr Ala	
370	375	380	
Ser Pro Leu Val Ile Gln Thr	Ser Ala Asn Arg Ser Val	Ile Phe Ser	
385	390	395	400
Ser Glu Arg Leu Ser Glu Glu	Glu Lys Thr Pro Asp Asn	Leu Thr Ser	
405	410	415	
Gln Leu Gln Gln Pro Ile Glu	Leu Lys Ser Gly Arg	Leu Val Leu Lys	
420	425	430	
Asp Arg Ala Val Leu Ser Ala	Pro Ser Leu Ser Gln Asp Pro	Gln Ala	
435	440	445	
Leu Leu Ile Met Glu Ala	Gly Thr Ser Leu Lys Thr Ser	Ser Asp Leu	
450	455	460	
Lys Leu Ala Thr Leu Ser Ile	Pro Leu His Ser Leu Asp	Thr Glu Lys	
465	470	475	480
Ser Val Thr Ile His Ala Pro	Asn Leu Ser Ile Gln Lys	Ile Phe Leu	
485	490	495	
Ser Asn Ser Gly Asp Glu	Asn Phe Tyr Glu Asn Val	Glu Leu Leu Ser	
500	505	510	
Lys Glu Gln Asn Asn Ile	Pro Leu Leu Thr Leu Pro	Lys Glu Gln Ser	
515	520	525	
His Leu His Leu Pro Asp	Gly Asn Leu Ser Ser His	Phe Gly Tyr Gln	
530	535	540	
Gly Asp Trp Thr Phe Ser	Trp Lys Asp Ser Asp	Glu Gly His Ser	Leu
545	550	555	560
Ile Ala Asn Trp Thr Pro	Lys Asn Tyr Val Pro His	Pro Glu Arg	Gln
565	570	575	
Ser Thr Leu Val Ala Asn Thr	Leu Trp Asn Thr Tyr	Ser Asp Met	Gln
580	585	590	

Ala Val Gln Ser Met Ile Asn Thr Thr Ala His Gly Gly Ala Tyr Leu
 595 600 605
 Phe Gly Thr Trp Gly Ser Ala Val Ser Asn Leu Phe Tyr Val His Asp
 610 615 620
 Ser Ser Gly Lys Pro Ile Asp Asn Trp His His Arg Ser Leu Gly Tyr
 625 630 635 640
 Leu Phe Gly Ile Ser Thr His Ser Leu Asp Asp His Ser Phe Cys Leu
 645 650 655
 Ala Ala Gly Gln Leu Leu Gly Lys Ser Ser Asp Ser Phe Ile Thr Ser
 660 665 670
 Thr Glu Thr Thr Ser Tyr Ile Ala Thr Val Gln Ala Gln Leu Ala Thr
 675 680 685
 Ser Leu Met Lys Ile Ser Ala Gln Ala Cys Tyr Asn Glu Ser Ile His
 690 695 700
 Glu Leu Lys Thr Lys Tyr Arg Ser Phe Ser Lys Glu Gly Phe Gly Ser
 705 710 715 720
 Trp His Ser Val Ala Val Ser Gly Glu Val Cys Ala Ser Ile Pro Ile
 725 730 735
 Val Ser Asn Gly Ser Gly Leu Phe Ser Ser Phe Ser Ile Phe Ser Lys
 740 745 750
 Leu Gln Gly Phe Ser Gly Thr Gln Asp Gly Phe Glu Glu Ser Ser Gly
 755 760 765
 Glu Ile Arg Ser Phe Ser Ala Ser Ser Phe Arg Asn Ile Ser Leu Pro
 770 775 780
 Ile Gly Ile Thr Phe Glu Lys Ser Gln Lys Thr Arg Thr Tyr Tyr
 785 790 795 800
 Tyr Phe Leu Gly Ala Tyr Ile Gln Asp Leu Lys Arg Asp Val Glu Ser
 805 810 815
 Gly Pro Val Val Leu Leu Lys Asn Ala Val Ser Trp Asp Ala Pro Met
 820 825 830
 Ala Asn Leu Asp Ser Arg Ala Tyr Met Phe Arg Leu Thr Asn Gln Arg
 835 840 845
 Ala Leu His Arg Leu Gln Thr Leu Leu Asn Val Ser Cys Val Leu Arg
 850 855 860
 Gly Gln Ser His Ser Tyr Ser Leu Asp Leu Gly Thr Thr Tyr Arg Phe
 865 870 875 880

<210> 176

<211> 982

<212> PRT

<213> Chlamydia

<220>

<221> VARIANT

<222> (1)...(982)

<223> Xaa = Any Amino Acid

<400> 176

Met Ile Pro Gln Gly Ile Tyr Asp Gly Glu Thr Leu Thr Val Ser Phe
 1 5 10 15
 Pro Tyr Thr Val Ile Gly Asp Pro Ser Gly Thr Thr Val Phe Ser Ala
 20 25 30
 Gly Glu Leu Thr Leu Lys Asn Leu Asp Asn Ser Ile Ala Ala Leu Pro
 35 40 45
 Leu Ser Cys Phe Gly Asn Leu Leu Gly Ser Phe Thr Val Leu Gly Arg

50	55	60
Gly His Ser Leu Thr Phe Glu Asn Ile Arg Thr Ser Thr Asn Gly Ala		
65	70	75
Ala Leu Ser Asn Ser Ala Ala Asp Gly Leu Phe Thr Ile Glu Gly Phe		80
85	90	95
Lys Glu Leu Ser Phe Ser Asn Cys Asn Ser Leu Leu Ala Val Leu Pro		
100	105	110
Ala Ala Thr Thr Asn Lys Gly Ser Gln Thr Pro Thr Thr Ser Thr		
115	120	125
Pro Ser Asn Gly Thr Ile Tyr Ser Lys Thr Asp Leu Leu Leu Asn		
130	135	140
Asn Glu Lys Phe Ser Phe Tyr Ser Asn Leu Val Ser Gly Asp Gly Gly		
145	150	155
160		
Ala Ile Asp Ala Lys Ser Leu Thr Val Gln Gly Ile Ser Lys Leu Cys		
165	170	175
Val Phe Gln Glu Asn Thr Ala Gln Ala Asp Gly Gly Ala Cys Gln Val		
180	185	190
Val Thr Ser Phe Ser Ala Met Ala Asn Glu Ala Pro Ile Ala Phe Val		
195	200	205
Ala Asn Val Ala Gly Val Arg Gly Gly Ile Ala Ala Val Gln Asp		
210	215	220
Gly Gln Gln Gly Val Ser Ser Ser Thr Ser Thr Glu Asp Pro Val Val		
225	230	235
240		
Ser Phe Ser Arg Asn Thr Ala Val Glu Phe Asp Gly Asn Val Ala Arg		
245	250	255
Val Gly Gly Gly Ile Tyr Ser Tyr Gly Asn Val Ala Phe Leu Asn Asn		
260	265	270
Gly Lys Thr Leu Phe Leu Asn Asn Val Ala Ser Pro Val Tyr Ile Ala		
275	280	285
Ala Lys Gln Pro Thr Ser Gly Gln Ala Ser Asn Thr Ser Asn Asn Tyr		
290	295	300
Gly Asp Gly Gly Ala Ile Phe Cys Lys Asn Gly Ala Gln Ala Gly Ser		
305	310	315
320		
Asn Asn Ser Gly Ser Val Ser Phe Asp Gly Glu Gly Val Val Phe Phe		
325	330	335
Ser Ser Asn Val Ala Ala Gly Lys Gly Gly Ala Ile Tyr Ala Lys Lys		
340	345	350
Leu Ser Val Ala Asn Cys Gly Pro Val Gln Phe Leu Arg Asn Ile Ala		
355	360	365
Asn Asp Gly Gly Ala Ile Tyr Leu Gly Glu Ser Gly Glu Leu Ser Leu		
370	375	380
Ser Ala Asp Tyr Gly Asp Ile Ile Phe Asp Gly Asn Leu Lys Arg Thr		
385	390	395
400		
Ala Lys Glu Asn Ala Ala Asp Val Asn Gly Val Thr Val Ser Ser Gln		
405	410	415
Ala Ile Ser Met Gly Ser Gly Gly Ile Thr Thr Leu Arg Ala Lys		
420	425	430
Ala Gly His Gln Ile Leu Phe Asn Asp Pro Ile Glu Met Ala Asn Gly		
435	440	445
Asn Asn Gln Pro Ala Gln Ser Ser Lys Leu Leu Lys Ile Asn Asp Gly		
450	455	460
Glu Gly Tyr Thr Gly Asp Ile Val Phe Ala Asn Gly Ser Ser Thr Leu		
465	470	475
480		
Tyr Gln Asn Val Thr Ile Glu Gln Gly Arg Ile Val Leu Arg Glu Lys		
485	490	495

Ala Lys Leu Ser Val Asn Ser Leu Ser Gln Thr Gly Gly Ser Leu Tyr
 500 505 510
 Met Glu Ala Gly Ser Thr Leu Asp Phe Val Thr Pro Gln Pro Pro Gln
 515 520 525
 Gln Pro Pro Ala Ala Asn Gln Leu Ile Thr Leu Ser Asn Leu His Leu
 530 535 540
 Ser Leu Ser Ser Leu Leu Ala Asn Asn Ala Val Thr Asn Pro Pro Thr
 545 550 555 560
 Asn Pro Pro Ala Gln Asp Ser His Pro Ala Val Ile Gly Ser Thr Thr
 565 570 575
 Ala Gly Ser Val Thr Ile Ser Gly Pro Ile Phe Phe Glu Asp Leu Asp
 580 585 590
 Asp Thr Ala Tyr Asp Arg Tyr Asp Trp Leu Gly Ser Asn Gln Lys Ile
 595 600 605
 Asn Val Leu Lys Leu Gln Leu Gly Thr Lys Pro Pro Ala Asn Ala Pro
 610 615 620
 Ser Asp Leu Thr Leu Gly Asn Glu Met Pro Lys Tyr Gly Tyr Gln Gly
 625 630 635 640
 Ser Trp Lys Leu Ala Trp Asp Pro Asn Thr Ala Asn Asn Gly Pro Tyr
 645 650 655
 Thr Leu Lys Ala Thr Trp Thr Lys Thr Gly Tyr Asn Pro Gly Pro Glu
 660 665 670
 Arg Val Ala Ser Leu Val Pro Asn Ser Leu Trp Gly Ser Ile Leu Asp
 675 680 685
 Ile Arg Ser Ala His Ser Ala Ile Gln Ala Ser Val Asp Gly Arg Ser
 690 695 700
 Tyr Cys Arg Gly Leu Trp Val Ser Gly Val Ser Asn Phe Phe Tyr His
 705 710 715 720
 Asp Arg Asp Ala Leu Gly Gln Gly Tyr Arg Tyr Ile Ser Gly Gly Tyr
 725 730 735
 Ser Leu Gly Ala Asn Ser Tyr Phe Gly Ser Ser Met Phe Gly Leu Ala
 740 745 750
 Phe Thr Glu Val Phe Gly Arg Ser Lys Asp Tyr Val Val Cys Arg Ser
 755 760 765
 Asn His His Ala Cys Ile Gly Ser Val Tyr Leu Ser Thr Gln Gln Ala
 770 775 780
 Leu Cys Gly Ser Tyr Leu Phe Gly Asp Ala Phe Ile Arg Ala Ser Tyr
 785 790 795 800
 Gly Phe Gly Asn Gln His Met Lys Thr Ser Tyr Thr Phe Ala Glu Glu
 805 810 815
 Ser Asp Val Arg Trp Asp Asn Asn Cys Leu Ala Gly Glu Ile Gly Ala
 820 825 830
 Gly Leu Pro Ile Val Ile Thr Pro Ser Lys Leu Tyr Leu Asn Glu Leu
 835 840 845
 Arg Pro Phe Val Gln Ala Glu Phe Ser Tyr Ala Asp His Glu Ser Phe
 850 855 860
 Thr Glu Glu Gly Asp Gln Ala Arg Ala Phe Lys Ser Gly His Leu Leu
 865 870 875 880
 Asn Leu Ser Val Pro Val Gly Val Lys Phe Asp Arg Cys Ser Ser Thr
 885 890 895
 His Pro Asn Lys Tyr Ser Phe Met Ala Ala Tyr Ile Cys Asp Ala Tyr
 900 905 910
 Arg Thr Ile Ser Gly Thr Glu Thr Thr Leu Leu Ser His Gln Glu Thr
 915 920 925
 Trp Thr Thr Asp Ala Phe His Leu Ala Arg His Gly Val Val Val Arg

930	935	940
Gly Ser Met Tyr Ala Ser Leu Thr Ser Asn Ile Glu Val Tyr Gly His		
945	950	955
Gly Arg Tyr Glu Tyr Arg Asp Ala Ser Arg Gly Tyr Gly Leu Ser Ala		
965	970	975
Gly Ser Lys Val Xaa Phe		
980		

<210> 177

<211> 964

<212> PRT

<213> Chlamydia

<400> 177

Met Lys Lys Ala Phe Phe Phe Leu Ile Gly Asn Ser Leu Ser Gly			
1	5	10	15
Ieu Ala Arg Glu Val Pro Ser Arg Ile Phe Leu Met Pro Asn Ser Val			
20	25	30	
Pro Asp Pro Thr Lys Glu Ser Leu Ser Asn Lys Ile Ser Leu Thr Gly			
35	40	45	
Asp Thr His Asn Leu Thr Asn Cys Tyr Leu Asp Asn Leu Arg Tyr Ile			
50	55	60	
Leu Ala Ile Leu Gln Lys Thr Pro Asn Glu Gly Ala Ala Val Thr Ile			
65	70	75	80
Thr Asp Tyr Leu Ser Phe Phe Asp Thr Gln Lys Glu Gly Ile Tyr Phe			
85	90	95	
Ala Lys Asn Leu Thr Pro Glu Ser Gly Gly Ala Ile Gly Tyr Ala Ser			
100	105	110	
Pro Asn Ser Pro Thr Val Glu Ile Arg Asp Thr Ile Gly Pro Val Ile			
115	120	125	
Phe Glu Asn Asn Thr Cys Cys Arg Leu Phe Thr Trp Arg Asn Pro Tyr			
130	135	140	
Ala Ala Asp Lys Ile Arg Glu Gly Gly Ala Ile His Ala Gln Asn Leu			
145	150	155	160
Tyr Ile Asn His Asn His Asp Val Val Gly Phe Met Lys Asn Phe Ser			
165	170	175	
Tyr Val Gln Gly Gly Ala Ile Ser Thr Ala Asn Thr Phe Val Val Ser			
180	185	190	
Glu Asn Gln Ser Cys Phe Leu Phe Met Asp Asn Ile Cys Ile Gln Thr			
195	200	205	
Asn Thr Ala Gly Lys Gly Gly Ala Ile Tyr Ala Gly Thr Ser Asn Ser			
210	215	220	
Phe Glu Ser Asn Asn Cys Asp Leu Phe Phe Ile Asn Asn Ala Cys Cys			
225	230	235	240
Ala Gly Gly Ala Ile Phe Ser Pro Ile Cys Ser Leu Thr Gly Asn Arg			
245	250	255	
Gly Asn Ile Val Phe Tyr Asn Asn Arg Cys Phe Lys Asn Val Glu Thr			
260	265	270	
Ala Ser Ser Glu Ala Ser Asp Gly Gly Ala Ile Lys Val Thr Thr Arg			
275	280	285	
Leu Asp Val Thr Gly Asn Arg Gly Arg Ile Phe Phe Ser Asp Asn Ile			
290	295	300	
Thr Lys Asn Tyr Gly Gly Ala Ile Tyr Ala Pro Val Val Thr Leu Val			
305	310	315	320
Asp Asn Gly Pro Thr Tyr Phe Ile Asn Asn Ile Ala Asn Asn Lys Gly			

	325	330	335
Gly Ala Ile Tyr Ile Asp Gly Thr Ser Asn Ser Lys Ile Ser Ala Asp			
340	345	350	
Arg His Ala Ile Ile Phe Asn Glu Asn Ile Val Thr Asn Val Thr Asn			
355	360	365	
Ala Asn Gly Thr Ser Thr Ser Ala Asn Pro Pro Arg Arg Asn Ala Ile			
370	375	380	
Thr Val Ala Ser Ser Gly Glu Ile Leu Leu Gly Ala Gly Ser Ser			
385	390	395	400
Gln Asn Leu Ile Phe Tyr Asp Pro Ile Glu Val Ser Asn Ala Gly Val			
405	410	415	
Ser Val Ser Phe Asn Lys Glu Ala Asp Gln Thr Gly Ser Val Val Phe			
420	425	430	
Ser Gly Ala Thr Val Asn Ser Ala Asp Phe His Gln Arg Asn Leu Gln			
435	440	445	
Thr Lys Thr Pro Ala Pro Leu Thr Leu Ser Asn Gly Phe Leu Cys Ile			
450	455	460	
Glu Asp His Ala Gln Leu Thr Val Asn Arg Phe Thr Gln Thr Gly Gly			
465	470	475	480
Val Val Ser Leu Gly Asn Gly Ala Val Leu Ser Cys Tyr Lys Asn Gly			
485	490	495	
Thr Gly Asp Ser Ala Ser Asn Ala Ser Ile Thr Leu Lys His Ile Gly			
500	505	510	
Leu Asn Leu Ser Ser Ile Leu Lys Ser Gly Ala Glu Ile Pro Leu Leu			
515	520	525	
Trp Val Glu Pro Thr Asn Asn Ser Asn Asn Tyr Thr Ala Asp Thr Ala			
530	535	540	
Ala Thr Phe Ser Leu Ser Asp Val Lys Leu Ser Leu Ile Asp Asp Tyr			
545	550	555	560
Gly Asn Ser Pro Tyr Glu Ser Thr Asp Leu Thr His Ala Leu Ser Ser			
565	570	575	
Gln Pro Met Leu Ser Ile Ser Glu Ala Ser Asp Asn Gln Leu Gln Ser			
580	585	590	
Glu Asn Ile Asp Phe Ser Gly Leu Asn Val Pro His Tyr Gly Trp Gln			
595	600	605	
Gly Leu Trp Thr Trp Gly Trp Ala Lys Thr Gln Asp Pro Glu Pro Ala			
610	615	620	
Ser Ser Ala Thr Ile Thr Asp Pro Gln Lys Ala Asn Arg Phe His Arg			
625	630	635	640
Thr Leu Leu Leu Thr Trp Leu Pro Ala Gly Tyr Val Pro Ser Pro Lys			
645	650	655	
His Arg Ser Pro Leu Ile Ala Asn Thr Leu Trp Gly Asn Met Leu Leu			
660	665	670	
Ala Thr Glu Ser Leu Lys Asn Ser Ala Glu Leu Thr Pro Ser Gly His			
675	680	685	
Pro Phe Trp Gly Ile Thr Gly Gly Leu Gly Met Met Val Tyr Gln			
690	695	700	
Asp Pro Arg Glu Asn His Pro Gly Phe His Met Arg Ser Ser Gly Tyr			
705	710	715	720
Ser Ala Gly Met Ile Ala Gly Gln Thr His Thr Phe Ser Leu Lys Phe			
725	730	735	
Ser Gln Thr Tyr Thr Lys Leu Asn Glu Arg Tyr Ala Lys Asn Asn Val			
740	745	750	
Ser Ser Lys Asn Tyr Ser Cys Gln Gly Glu Met Leu Phe Ser Leu Gln			
755	760	765	

Glu Gly Phe Leu Leu Thr Lys Leu Val Gly Leu Tyr Ser Tyr Gly Asp
 770 775 780
 His Asn Cys His His Phe Tyr Thr Gln Gly Glu Asn Leu Thr Ser Gln
 785 790 795 800
 Gly Thr Phe Arg Ser Gln Thr Met Gly Gly Ala Val Phe Phe Asp Leu
 805 810 815
 Pro Met Lys Pro Phe Gly Ser Thr His Ile Leu Thr Ala Pro Phe Leu
 820 825 830
 Gly Ala Leu Gly Ile Tyr Ser Ser Leu Ser His Phe Thr Glu Val Gly
 835 840 845
 Ala Tyr Pro Arg Ser Phe Ser Thr Lys Thr Pro Leu Ile Asn Val Leu
 850 855 860
 Val Pro Ile Gly Val Lys Gly Ser Phe Met Asn Ala Thr His Arg Pro
 865 870 875 880
 Gln Ala Trp Thr Val Glu Leu Ala Tyr Gln Pro Val Leu Tyr Arg Gln
 885 890 895
 Glu Pro Gly Ile Ala Thr Gln Leu Leu Ala Ser Lys Gly Ile Trp Phe
 900 905 910
 Gly Ser Gly Ser Pro Ser Ser Arg His Ala Met Ser Tyr Lys Ile Ser
 915 920 925
 Gln Gln Thr Gln Pro Leu Ser Trp Leu Thr Leu His Phe Gln Tyr His
 930 935 940
 Gly Phe Tyr Ser Ser Ser Thr Phe Cys Asn Tyr Leu Asn Gly Glu Ile
 945 950 955 960
 Ala Leu Arg Phe

<210> 178
 <211> 1530
 <212> PRT
 <213> Chlamydia

<400> 178
 Met Ser Ser Glu Lys Asp Ile Lys Ser Thr Cys Ser Lys Phe Ser Leu
 1 5 10 15
 Ser Val Val Ala Ala Ile Leu Ala Ser Val Ser Gly Leu Ala Ser Cys
 20 25 30
 Val Asp Leu His Ala Gly Gly Gln Ser Val Asn Glu Leu Val Tyr Val
 35 40 45
 Gly Pro Gln Ala Val Leu Leu Asp Gln Ile Arg Asp Leu Phe Val
 50 55 60
 Gly Ser Lys Asp Ser Gln Ala Glu Gly Gln Tyr Arg Leu Ile Val Gly
 65 70 75 80
 Asp Pro Ser Ser Phe Gln Glu Lys Asp Ala Asp Thr Leu Pro Gly Lys
 85 90 95
 Val Glu Gln Ser Thr Leu Phe Ser Val Thr Asn Pro Val Val Phe Gln
 100 105 110
 Gly Val Asp Gln Gln Asp Gln Val Ser Ser Gln Gly Leu Ile Cys Ser
 115 120 125
 Phe Thr Ser Ser Asn Leu Asp Ser Pro Arg Asp Gly Glu Ser Phe Leu
 130 135 140
 Gly Ile Ala Phe Val Gly Asp Ser Ser Lys Ala Gly Ile Thr Leu Thr
 145 150 155 160
 Asp Val Lys Ala Ser Leu Ser Gly Ala Ala Leu Tyr Ser Thr Glu Asp
 165 170 175

Leu Ile Phe Glu Lys Ile Lys Gly Gly Leu Glu Phe Ala Ser Cys Ser
 180 185 190
 Ser Leu Glu Gln Gly Gly Ala Cys Ala Ala Gln Ser Ile Leu Ile His
 195 200 205
 Asp Cys Gln Gly Leu Gln Val Lys His Cys Thr Thr Ala Val Asn Ala
 210 215 220
 Glu Gly Ser Ser Ala Asn Asp His Leu Gly Phe Gly Gly Ala Phe
 225 230 235 240
 Phe Val Thr Gly Ser Leu Ser Gly Glu Lys Ser Leu Tyr Met Pro Ala
 245 250 255
 Gly Asp Met Val Val Ala Asn Cys Asp Gly Ala Ile Ser Phe Glu Gly
 260 265 270
 Asn Ser Ala Asn Phe Ala Asn Gly Gly Ala Ile Ala Ala Ser Gly Lys
 275 280 285
 Val Leu Phe Val Ala Asn Asp Lys Lys Thr Ser Phe Ile Glu Asn Arg
 290 295 300
 Ala Leu Ser Gly Gly Ala Ile Ala Ala Ser Ser Asp Ile Ala Phe Gln
 305 310 315 320
 Asn Cys Ala Glu Leu Val Phe Lys Gly Asn Cys Ala Ile Gly Thr Glu
 325 330 335
 Asp Lys Gly Ser Leu Gly Gly Ala Ile Ser Ser Leu Gly Thr Val
 340 345 350
 Leu Leu Gln Gly Asn His Gly Ile Thr Cys Asp Lys Asn Glu Ser Ala
 355 360 365
 Ser Gln Gly Gly Ala Ile Phe Gly Lys Asn Cys Gln Ile Ser Asp Asn
 370 375 380
 Glu Gly Pro Val Val Phe Arg Asp Ser Thr Ala Cys Leu Gly Gly Gly
 385 390 395 400
 Ala Ile Ala Ala Gln Glu Ile Val Ser Ile Gln Asn Asn Gln Ala Gly
 405 410 415
 Ile Ser Phe Glu Gly Gly Lys Ala Ser Phe Gly Gly Ile Ala Cys
 420 425 430
 Gly Ser Phe Ser Ser Ala Gly Ala Ser Val Leu Gly Thr Ile Asp
 435 440 445
 Ile Ser Lys Asn Leu Gly Ala Ile Ser Phe Ser Arg Thr Leu Cys Thr
 450 455 460
 Thr Ser Asp Leu Gly Gln Met Glu Tyr Gln Gly Gly Ala Leu Phe
 465 470 475 480
 Gly Glu Asn Ile Ser Leu Ser Glu Asn Ala Gly Val Leu Thr Phe Lys
 485 490 495
 Asp Asn Ile Val Lys Thr Phe Ala Ser Asn Gly Lys Ile Leu Gly Gly
 500 505 510
 Gly Ala Ile Leu Ala Thr Gly Lys Val Glu Ile Thr Asn Asn Ser Gly
 515 520 525
 Gly Ile Ser Phe Thr Gly Asn Ala Arg Ala Pro Gln Ala Leu Pro Thr
 530 535 540
 Gln Glu Glu Phe Pro Leu Phe Ser Lys Lys Glu Gly Arg Pro Leu Ser
 545 550 555 560
 Ser Gly Tyr Ser Gly Gly Ala Ile Leu Gly Arg Glu Val Ala Ile
 565 570 575
 Leu His Asn Ala Ala Val Val Phe Glu Gln Asn Arg Leu Gln Cys Ser
 580 585 590
 Glu Glu Glu Ala Thr Leu Leu Gly Cys Cys Gly Gly Ala Val His
 595 600 605
 Gly Met Asp Ser Thr Ser Ile Val Gly Asn Ser Ser Val Arg Phe Gly

610	615	620
Asn Asn Tyr Ala Met Gly Gln Gly Val Ser Gly	Gly Ala Leu Leu Ser	
625	630	640
Lys Thr Val Gln Leu Ala Gly Asn Gly Ser Val	Asp Phe Ser Arg Asn	
645	650	655
Ile Ala Ser Leu Gly Gly Ala Leu Gln Ala Ser	Glu Gly Asn Cys	
660	665	670
Glu Leu Val Asp Asn Gly Tyr Val Leu Phe Arg	Asp Asn Arg Gly Arg	
675	680	685
Val Tyr Gly Gly Ala Ile Ser Cys Leu Arg Gly	Asp Val Val Ile Ser	
690	695	700
Gly Asn Lys Gly Arg Val Glu Phe Lys Asp Asn	Ile Ala Thr Arg Leu	
705	710	720
Tyr Val Glu Glu Thr Val Glu Lys Val Glu Glu	Val Glu Pro Ala Pro	
725	730	735
Glu Gln Lys Asp Asn Asn Glu Leu Ser Phe Leu	Gly Ser Val Glu Gln	
740	745	750
Ser Phe Ile Thr Ala Ala Asn Gln Ala Leu Phe	Ala Ser Glu Asp Gly	
755	760	765
Asp Leu Ser Pro Glu Ser Ser Ile Ser Ser Glu	Glu Leu Ala Lys Arg	
770	775	780
Arg Glu Cys Ala Gly Gly Ala Ile Phe Ala Lys	Arg Val Arg Ile Val	
785	790	800
Asp Asn Gln Glu Ala Val Val Phe Ser Asn Asn	Phe Ser Asp Ile Tyr	
805	810	815
Gly Gly Ala Ile Phe Thr Gly Ser Leu Arg Glu	Glu Asp Lys Leu Asp	
820	825	830
Gly Gln Ile Pro Glu Val Leu Ile Ser Gly Asn	Ala Gly Asp Val Val	
835	840	845
Phe Ser Gly Asn Ser Ser Lys Arg Asp Glu His	Leu Pro His Thr Gly	
850	855	860
Gly Gly Ala Ile Cys Thr Gln Asn Leu Thr Ile	Ser Gln Asn Thr Gly	
865	870	880
Asn Val Leu Phe Tyr Asn Asn Val Ala Cys	Ser Gly Gly Ala Val Arg	
885	890	895
Ile Glu Asp His Gly Asn Val Leu Leu Glu Ala	Phe Gly Asp Ile	
900	905	910
Val Phe Lys Gly Asn Ser Ser Phe Arg Ala Gln	Gly Ser Asp Ala Ile	
915	920	925
Tyr Phe Ala Gly Lys Glu Ser His Ile Thr Ala	Leu Asn Ala Thr Glu	
930	935	940
Gly His Ala Ile Val Phe His Asp Ala Leu Val	Phe Glu Asn Leu Lys	
945	950	960
Glu Arg Lys Ser Ala Glu Val Leu Leu Ile	Asn Ser Arg Glu Asn Pro	
965	970	975
Gly Tyr Thr Gly Ser Ile Arg Phe Leu Glu Ala	Glu Ser Lys Val Pro	
980	985	990
Gln Cys Ile His Val Gln Gln Gly Ser Leu Glu	Leu Leu Asn Gly Ala	
995	1000	1005
Thr Leu Cys Ser Tyr Gly Phe Lys Gln Asp Ala	Gly Ala Lys Leu Val	
1010	1015	1020
Leu Ala Ala Gly Ser Lys Leu Lys Ile Leu Asp	Ser Gly Thr Pro Val	
1025	1030	1035
Gln Gly His Ala Ile Ser Lys Pro Glu Ala Glu	Ile Glu Ser Ser Ser	
1045	1050	1055

Glu Pro Glu Gly Ala His Ser Leu Trp Ile Ala Lys Asn Ala Gln Thr
 1060 1065 1070
 Thr Val Pro Met Val Asp Ile His Thr Ile Ser Val Asp Leu Ala Ser
 1075 1080 1085
 Phe Ser Ser Ser Gln Gln Glu Gly Thr Val Glu Ala Pro Gln Val Ile
 1090 1095 1100
 Val Pro Gly Gly Ser Tyr Val Arg Ser Gly Glu Leu Asn Leu Glu Leu
 1105 1110 1115 1120
 Val Asn Thr Thr Gly Thr Gly Tyr Glu Asn His Ala Leu Leu Lys Asn
 1125 1130 1135
 Glu Ala Lys Val Pro Leu Met Ser Phe Val Ala Ser Ser Asp Glu Ala
 1140 1145 1150
 Ser Ala Glu Ile Ser Asn Leu Ser Val Ser Asp Leu Gln Ile His Val
 1155 1160 1165
 Ala Thr Pro Glu Ile Glu Glu Asp Thr Tyr Gly His Met Gly Asp Trp
 1170 1175 1180
 Ser Glu Ala Lys Ile Gln Asp Gly Thr Leu Val Ile Asn Trp Asn Pro
 1185 1190 1195 1200
 Thr Gly Tyr Arg Leu Asp Pro Gln Lys Ala Gly Ala Leu Val Phe Asn
 1205 1210 1215
 Ala Leu Trp Glu Glu Gly Ala Val Leu Ser Ala Leu Lys Asn Ala Arg
 1220 1225 1230
 Phe Ala His Asn Leu Thr Ala Gln Arg Met Glu Phe Asp Tyr Ser Thr
 1235 1240 1245
 Asn Val Trp Gly Phe Ala Phe Gly Gly Phe Arg Thr Leu Ser Ala Glu
 1250 1255 1260
 Asn Leu Val Ala Ile Asp Gly Tyr Lys Gly Ala Tyr Gly Gly Ala Ser
 1265 1270 1275 1280
 Ala Gly Val Asp Ile Gln Leu Met Glu Asp Phe Val Leu Gly Val Ser
 1285 1290 1295
 Gly Ala Ala Phe Leu Gly Lys Met Asp Ser Gln Lys Phe Asp Ala Glu
 1300 1305 1310
 Val Ser Arg Lys Gly Val Val Gly Ser Val Tyr Thr Gly Phe Leu Ala
 1315 1320 1325
 Gly Ser Trp Phe Phe Lys Gly Gln Tyr Ser Leu Gly Glu Thr Gln Asn
 1330 1335 1340
 Asp Met Lys Thr Arg Tyr Gly Val Leu Gly Glu Ser Ser Ala Ser Trp
 1345 1350 1355 1360
 Thr Ser Arg Gly Val Leu Ala Asp Ala Leu Val Glu Tyr Arg Ser Leu
 1365 1370 1375
 Val Gly Pro Val Arg Pro Thr Phe Tyr Ala Leu His Phe Asn Pro Tyr
 1380 1385 1390
 Val Glu Val Ser Tyr Ala Ser Met Lys Phe Pro Gly Phe Thr Glu Gln
 1395 1400 1405
 Gly Arg Glu Ala Arg Ser Phe Glu Asp Ala Ser Leu Thr Asn Ile Thr
 1410 1415 1420
 Ile Pro Leu Gly Met Lys Phe Glu Leu Ala Phe Ile Lys Gly Gln Phe
 1425 1430 1435 1440
 Ser Glu Val Asn Ser Leu Gly Ile Ser Tyr Ala Trp Glu Ala Tyr Arg
 1445 1450 1455
 Lys Val Glu Gly Gly Ala Val Gln Leu Leu Glu Ala Gly Phe Asp Trp
 1460 1465 1470
 Glu Gly Ala Pro Met Asp Leu Pro Arg Gln Glu Leu Arg Val Ala Leu
 1475 1480 1485
 Glu Asn Asn Thr Glu Trp Ser Ser Tyr Phe Ser Thr Val Leu Gly Leu

1490	1495	1500
Thr Ala Phe Cys Gly Gly Phe Thr Ser Thr Asp Ser Lys Leu Gly Tyr		
1505	1510	1515
Glu Ala Asn Thr Gly Leu Arg Leu Ile Phe		
1525	1530	
 <210> 179		
<211> 1776		
<212> PRT		
<213> Chlamydia		
 <400> 179		
Ala Ile Met Lys Phe Met Ser Ala Thr Ala Val Phe Ala Ala Val Leu		
1	5	10
Ser Ser Val Thr Glu Ala Ser Ser Ile Gln Asp Gln Ile Lys Asn Thr		
20	25	30
Asp Cys Asn Val Ser Lys Val Gly Tyr Ser Thr Ser Gln Ala Phe Thr		
35	40	45
Asp Met Met Leu Ala Asp Asn Thr Glu Tyr Arg Ala Ala Asp Ser Val		
50	55	60
Ser Phe Tyr Asp Phe Ser Thr Ser Ser Gly Leu Pro Arg Lys His Leu		
65	70	75
Ser Ser Ser Ser Glu Ala Ser Pro Thr Thr Glu Gly Val Ser Ser Ser		
85	90	95
Ser Ser Gly Glu Asn Thr Glu Asn Ser Gln Asp Ser Ala Pro Ser Ser		
100	105	110
Gly Glu Thr Asp Lys Lys Thr Glu Glu Leu Asp Asn Gly Gly Ile		
115	120	125
Ile Tyr Ala Arg Glu Lys Leu Thr Ile Ser Glu Ser Gln Asp Ser Leu		
130	135	140
Ser Asn Pro Ser Ile Glu Leu His Asp Asn Ser Phe Phe Gly Glu		
145	150	155
Gly Glu Val Ile Phe Asp His Arg Val Ala Leu Lys Asn Gly Gly Ala		
165	170	175
Ile Tyr Gly Glu Lys Glu Val Val Phe Glu Asn Ile Lys Ser Leu Leu		
180	185	190
Val Glu Val Asn Ile Ser Val Glu Lys Gly Gly Ser Val Tyr Ala Lys		
195	200	205
Glu Arg Val Ser Leu Glu Asn Val Thr Glu Ala Thr Phe Ser Ser Asn		
210	215	220
Gly Gly Glu Gln Gly Gly Ile Tyr Ser Glu Gln Asp Met Leu		
225	230	235
Ile Ser Asp Cys Asn Asn Val His Phe Gln Gly Asn Ala Ala Gly Ala		
245	250	255
Thr Ala Val Lys Gln Cys Leu Asp Glu Glu Met Ile Val Leu Leu Thr		
260	265	270
Glu Cys Val Asp Ser Leu Ser Glu Asp Thr Leu Asp Ser Thr Pro Glu		
275	280	285
Thr Glu Gln Thr Lys Ser Asn Gly Asn Gln Asp Gly Ser Ser Glu Thr		
290	295	300
Lys Asp Thr Gln Val Ser Glu Ser Pro Glu Ser Thr Pro Ser Pro Asp		
305	310	315
Asp Val Leu Gly Lys Gly Gly Ile Tyr Thr Glu Lys Ser Leu Thr		
325	330	335
Ile Thr Gly Ile Thr Gly Thr Ile Asp Phe Val Ser Asn Ile Ala Thr		

340	345	350
Asp Ser Gly Ala Gly Val Phe Thr Lys Glu Asn Leu Ser Cys Thr Asn		
355	360	365
Thr Asn Ser Leu Gln Phe Leu Lys Asn Ser Ala Gly Gln His Gly Gly		
370	375	380
Gly Ala Tyr Val Thr Gln Thr Met Ser Val Thr Asn Thr Thr Ser Glu		
385	390	395
Ser Ile Thr Thr Pro Pro Leu Val Gly Glu Val Ile Phe Ser Glu Asn		
405	410	415
Thr Ala Lys Gly His Gly Gly Ile Cys Thr Asn Lys Leu Ser Leu		
420	425	430
Ser Asn Leu Lys Thr Val Thr Leu Thr Lys Asn Ser Ala Lys Glu Ser		
435	440	445
Gly Gly Ala Ile Phe Thr Asp Leu Ala Ser Ile Pro Thr Thr Asp Thr		
450	455	460
Pro Glu Ser Ser Thr Pro Ser Ser Ser Pro Ala Ser Thr Pro Glu		
465	470	475
Val Val Ala Ser Ala Lys Ile Asn Arg Phe Phe Ala Ser Thr Ala Glu		
485	490	495
Pro Ala Ala Pro Ser Leu Thr Glu Ala Glu Ser Asp Gln Thr Asp Gln		
500	505	510
Thr Glu Thr Ser Asp Thr Asn Ser Asp Ile Asp Val Ser Ile Glu Asn		
515	520	525
Ile Leu Asn Val Ala Ile Asn Gln Asn Thr Ser Ala Lys Lys Gly Gly		
530	535	540
Ala Ile Tyr Gly Lys Lys Ala Lys Leu Ser Arg Ile Asn Asn Leu Glu		
545	550	555
Leu Ser Gly Asn Ser Ser Gln Asp Val Gly Gly Gly Leu Cys Leu Thr		
565	570	575
Glu Ser Val Glu Phe Asp Ala Ile Gly Ser Leu Leu Ser His Tyr Asn		
580	585	590
Ser Ala Ala Lys Glu Gly Gly Val Ile His Ser Lys Thr Val Thr Leu		
595	600	605
Ser Asn Leu Lys Ser Thr Phe Thr Phe Ala Asp Asn Thr Val Lys Ala		
610	615	620
Ile Val Glu Ser Thr Pro Glu Ala Pro Glu Glu Ile Pro Pro Val Glu		
625	630	635
Gly Glu Glu Ser Thr Ala Thr Glu Asn Pro Asn Ser Asn Thr Glu Gly		
645	650	655
Ser Ser Ala Asn Thr Asn Leu Glu Gly Ser Gln Gly Asp Thr Ala Asp		
660	665	670
Thr Gly Thr Gly Val Val Asn Asn Glu Ser Gln Asp Thr Ser Asp Thr		
675	680	685
Gly Asn Ala Glu Ser Gly Glu Gln Leu Gln Asp Ser Thr Gln Ser Asn		
690	695	700
Glu Glu Asn Thr Leu Pro Asn Ser Ser Ile Asp Gln Ser Asn Glu Asn		
705	710	715
Thr Asp Glu Ser Ser Asp Ser His Thr Glu Glu Ile Thr Asp Glu Ser		
725	730	735
Val Ser Ser Ser Lys Ser Gly Ser Ser Thr Pro Gln Asp Gly Gly		
740	745	750
Ala Ala Ser Ser Gly Ala Pro Ser Gly Asp Gln Ser Ile Ser Ala Asn		
755	760	765
Ala Cys Leu Ala Lys Ser Tyr Ala Ala Ser Thr Asp Ser Ser Pro Val		
770	775	780

Ser Asn Ser Ser Gly Ser Asp Val Thr Ala Ser Ser Asp Asn Pro Asp
 785 790 795 800
 Ser Ser Ser Ser Gly Asp Ser Ala Gly Asp Ser Glu Gly Pro Thr Glu
 805 810 815
 Pro Glu Ala Gly Ser Thr Thr Glu Thr Pro Thr Leu Ile Gly Gly Gly
 820 825 830
 Ala Ile Tyr Gly Glu Thr Val Lys Ile Glu Asn Phe Ser Gly Gln Gly
 835 840 845
 Ile Phe Ser Gly Asn Lys Ala Ile Asp Asn Thr Thr Glu Gly Ser Ser
 850 855 860
 Ser Lys Ser Asn Val Leu Gly Gly Ala Val Tyr Ala Lys Thr Leu Phe
 865 870 875 880
 Asn Leu Asp Ser Gly Ser Ser Arg Arg Thr Val Thr Phe Ser Gly Asn
 885 890 895
 Thr Val Ser Ser Gln Ser Thr Thr Gly Gln Val Ala Gly Gly Ala Ile
 900 905 910
 Tyr Ser Pro Thr Val Thr Ile Ala Thr Pro Val Val Phe Ser Lys Asn
 915 920 925
 Ser Ala Thr Asn Asn Ala Asn Ala Thr Asp Thr Gln Arg Lys Asp
 930 935 940
 Thr Phe Gly Gly Ala Ile Gly Ala Thr Ser Ala Val Ser Leu Ser Gly
 945 950 955 960
 Gly Ala His Phe Leu Glu Asn Val Ala Asp Leu Gly Ser Ala Ile Gly
 965 970 975
 Leu Val Pro Asp Thr Gln Asn Thr Glu Thr Val Lys Leu Glu Ser Gly
 980 985 990
 Ser Tyr Tyr Phe Glu Lys Asn Lys Ala Leu Lys Arg Ala Thr Ile Tyr
 995 1000 1005
 Ala Pro Val Val Ser Ile Lys Ala Tyr Thr Ala Thr Phe Asn Gln Asn
 1010 1015 1020
 Arg Ser Leu Glu Glu Gly Ser Ala Ile Tyr Phe Thr Lys Glu Ala Ser
 1025 1030 1035 1040
 Ile Glu Ser Leu Gly Ser Val Leu Phe Thr Gly Asn Leu Val Thr Pro
 1045 1050 1055
 Thr Leu Ser Thr Thr Glu Gly Thr Pro Ala Thr Thr Ser Gly Asp
 1060 1065 1070
 Val Thr Lys Tyr Gly Ala Ala Ile Phe Gly Gln Ile Ala Ser Ser Asn
 1075 1080 1085
 Gly Ser Gln Thr Asp Asn Leu Pro Leu Lys Leu Ile Ala Ser Gly Gly
 1090 1095 1100
 Asn Ile Cys Phe Arg Asn Asn Glu Tyr Arg Pro Thr Ser Ser Asp Thr
 1105 1110 1115 1120
 Gly Thr Ser Thr Phe Cys Ser Ile Ala Gly Asp Val Lys Leu Thr Met
 1125 1130 1135
 Gln Ala Ala Lys Gly Lys Thr Ile Ser Phe Phe Asp Ala Ile Arg Thr
 1140 1145 1150
 Ser Thr Lys Lys Thr Gly Thr Gln Ala Thr Ala Tyr Asp Thr Leu Asp
 1155 1160 1165
 Ile Asn Lys Ser Glu Asp Ser Glu Thr Val Asn Ser Ala Phe Thr Gly
 1170 1175 1180
 Thr Ile Leu Phe Ser Ser Glu Leu His Glu Asn Lys Ser Tyr Ile Pro
 1185 1190 1195 1200
 Gln Asn Val Val Leu His Ser Gly Ser Leu Val Leu Lys Pro Asn Thr
 1205 1210 1215
 Glu Leu His Val Ile Ser Phe Glu Gln Lys Glu Gly Ser Ser Leu Val

1220	1225	1230
Met Thr Pro Gly Ser Val Leu Ser Asn Gln Thr Val Ala Asp Gly Ala		
1235	1240	1245
Leu Val Ile Asn Asn Met Thr Ile Asp Leu Ser Ser Val Glu Lys Asn		
1250	1255	1260
Gly Ile Ala Glu Gly Asn Ile Phe Thr Pro Pro Glu Leu Arg Ile Ile		
1265	1270	1275
Asp Thr Thr Ser Gly Ser Gly Thr Pro Ser Thr Asp Ser Glu		
1285	1290	1295
Ser Asn Gln Asn Ser Asp Asp Thr Lys Glu Gln Asn Asn Asn Asp Ala		
1300	1305	1310
Ser Asn Gln Gly Glu Ser Ala Asn Gly Ser Ser Ser Pro Ala Val Ala		
1315	1320	1325
Ala Ala His Thr Ser Arg Thr Arg Asn Phe Ala Ala Ala Ala Thr Ala		
1330	1335	1340
Thr Pro Thr Thr Pro Thr Ala Thr Thr Thr Ser Asn Gln Val		
1345	1350	1355
Ile Leu Gly Gly Glu Ile Lys Leu Ile Asp Pro Asn Gly Thr Phe Phe		
1365	1370	1375
Gln Asn Pro Ala Leu Arg Ser Asp Gln Gln Ile Ser Leu Leu Val Leu		
1380	1385	1390
Pro Thr Asp Ser Ser Lys Met Gln Ala Gln Lys Ile Val Leu Thr Gly		
1395	1400	1405
Asp Ile Ala Pro Gln Lys Gly Tyr Thr Gly Thr Leu Thr Leu Asp Pro		
1410	1415	1420
Asp Gln Leu Gln Asn Gly Thr Ile Ser Ala Leu Trp Lys Phe Asp Ser		
1425	1430	1435
Tyr Arg Gln Trp Ala Tyr Val Pro Arg Asp Asn His Phe Tyr Ala Asn		
1445	1450	1455
Ser Ile Leu Gly Ser Gln Met Ser Met Val Thr Val Lys Gln Gly Leu		
1460	1465	1470
Leu Asn Asp Lys Met Asn Leu Ala Arg Phe Asp Glu Val Ser Tyr Asn		
1475	1480	1485
Asn Leu Trp Ile Ser Gly Leu Gly Thr Met Leu Ser Gln Val Gly Thr		
1490	1495	1500
Pro Thr Ser Glu Glu Phe Thr Tyr Tyr Ser Arg Gly Ala Ser Val Ala		
1505	1510	1515
Leu Asp Ala Lys Pro Ala His Asp Val Ile Val Gly Ala Ala Phe Ser		
1525	1530	1535
Lys Met Ile Gly Lys Thr Lys Ser Leu Lys Arg Glu Asn Asn Tyr Thr		
1540	1545	1550
His Lys Gly Ser Glu Tyr Ser Tyr Gln Ala Ser Val Tyr Gly Gly Lys		
1555	1560	1565
Pro Phe His Phe Val Ile Asn Lys Lys Thr Glu Lys Ser Leu Pro Leu		
1570	1575	1580
Leu Leu Gln Gly Val Ile Ser Tyr Gly Tyr Ile Lys His Asp Thr Val		
1585	1590	1595
Thr His Tyr Pro Thr Ile Arg Glu Arg Asn Gln Gly Glu Trp Glu Asp		
1605	1610	1615
Leu Gly Trp Leu Thr Ala Leu Arg Val Ser Ser Val Leu Arg Thr Pro		
1620	1625	1630
Ala Gln Gly Asp Thr Lys Arg Ile Thr Val Tyr Gly Glu Leu Glu Tyr		
1635	1640	1645
Ser Ser Ile Arg Gln Lys Gln Phe Thr Glu Thr Glu Tyr Asp Pro Arg		
1650	1655	1660

Tyr Phe Asp Asn Cys Thr Tyr Arg Asn Leu Ala Ile Pro Met Gly Leu
 1665 1670 1675 1680
 Ala Phe Glu Gly Glu Leu Ser Gly Asn Asp Ile Leu Met Tyr Asn Arg
 1685 1690 1695
 Phe Ser Val Ala Tyr Met Pro Ser Ile Tyr Arg Asn Ser Pro Thr Cys
 1700 1705 1710
 Lys Tyr Gln Val Leu Ser Ser Gly Glu Gly Gly Glu Ile Ile Cys Gly
 1715 1720 1725
 Val Pro Thr Arg Asn Ser Ala Arg Gly Glu Tyr Ser Thr Gln Leu Tyr
 1730 1735 1740
 Pro Gly Pro Leu Trp Thr Leu Tyr Gly Ser Tyr Thr Ile Glu Ala Asp
 1745 1750 1755 1760
 Ala His Thr Leu Ala His Met Met Asn Cys Gly Ala Arg Met Thr Phe
 1765 1770 1775

<210> 180

<211> 1752

<212> PRT

<213> Chlamydia

<400> 180

Met Lys Trp Leu Ser Ala Thr Ala Val Phe Ala Ala Val Leu Pro Ser
 1 5 10 15
 Val Ser Gly Phe Cys Phe Pro Glu Pro Lys Glu Leu Asn Phe Ser Arg
 20 25 30
 Val Glu Thr Ser Ser Ser Thr Thr Phe Thr Glu Thr Ile Gly Glu Ala
 35 40 45
 Gly Ala Glu Tyr Ile Val Ser Gly Asn Ala Ser Phe Thr Lys Phe Thr
 50 55 60
 Asn Ile Pro Thr Thr Asp Thr Thr Thr Pro Thr Asn Ser Asn Ser Ser
 65 70 75 80
 Ser Ser Ser Gly Glu Thr Ala Ser Val Ser Glu Asp Ser Asp Ser Thr
 85 90 95
 Thr Thr Thr Pro Asp Pro Lys Gly Gly Ala Phe Tyr Asn Ala His
 100 105 110
 Ser Gly Val Leu Ser Phe Met Thr Arg Ser Gly Thr Glu Gly Ser Leu
 115 120 125
 Thr Leu Ser Glu Ile Lys Met Thr Gly Glu Gly Ala Ile Phe Ser
 130 135 140
 Gln Gly Glu Leu Leu Phe Thr Asp Leu Thr Ser Leu Thr Ile Gln Asn
 145 150 155 160
 Asn Leu Ser Gln Leu Ser Gly Gly Ala Ile Phe Gly Ser Thr Ile
 165 170 175
 Ser Leu Ser Gly Ile Thr Lys Ala Thr Phe Ser Cys Asn Ser Ala Glu
 180 185 190
 Val Pro Ala Pro Val Lys Lys Pro Thr Glu Pro Lys Ala Gln Thr Ala
 195 200 205
 Ser Glu Thr Ser Gly Ser Ser Ser Ser Gly Asn Asp Ser Val Ser
 210 215 220
 Ser Pro Ser Ser Ser Arg Ala Glu Pro Ala Ala Ala Asn Leu Gln Ser
 225 230 235 240
 His Phe Ile Cys Ala Thr Ala Thr Pro Ala Ala Gln Thr Asp Thr Glu
 245 250 255
 Thr Ser Thr Pro Ser His Lys Pro Gly Ser Gly Gly Ala Ile Tyr Ala
 260 265 270

Lys Gly Asp Leu Thr Ile Ala Asp Ser Gln Glu Val Leu Phe Ser Ile
 275 280 285
 Asn Lys Ala Thr Lys Asp Gly Gly Ala Ile Phe Ala Glu Lys Asp Val
 290 295 300
 Ser Phe Glu Asn Ile Thr Ser Leu Lys Val Gln Thr Asn Gly Ala Glu
 305 310 315 320
 Glu Lys Gly Gly Ala Ile Tyr Ala Lys Gly Asp Leu Ser Ile Gln Ser
 325 330 335
 Ser Lys Gln Ser Leu Phe Asn Ser Asn Tyr Ser Lys Gln Gly Gly Gly
 340 345 350
 Ala Leu Tyr Val Glu Gly Gly Ile Asn Phe Gln Asp Leu Glu Glu Ile
 355 360 365
 Arg Ile Lys Tyr Asn Lys Ala Gly Thr Phe Glu Thr Lys Lys Ile Thr
 370 375 380
 Leu Pro Ser Leu Lys Ala Gln Ala Ser Ala Gly Asn Ala Asp Ala Trp
 385 390 395 400
 Ala Ser Ser Ser Pro Gln Ser Gly Ser Gly Ala Thr Thr Val Ser Asp
 405 410 415
 Ser Gly Asp Ser Ser Ser Gly Ser Asp Ser Asp Thr Ser Glu Thr Val
 420 425 430
 Pro Val Thr Ala Lys Gly Gly Leu Tyr Thr Asp Lys Asn Leu Ser
 435 440 445
 Ile Thr Asn Ile Thr Gly Ile Ile Glu Ile Ala Asn Asn Lys Ala Thr
 450 455 460
 Asp Val Gly Gly Gly Ala Tyr Val Lys Gly Thr Leu Thr Cys Glu Asn
 465 470 475 480
 Ser His Arg Leu Gln Phe Leu Lys Asn Ser Ser Asp Lys Gln Gly Gly
 485 490 495
 Gly Ile Tyr Gly Glu Asp Asn Ile Thr Leu Ser Asn Leu Thr Gly Lys
 500 505 510
 Thr Leu Phe Gln Glu Asn Thr Ala Lys Glu Glu Gly Gly Leu Phe
 515 520 525
 Ile Lys Gly Thr Asp Lys Ala Leu Thr Met Thr Gly Leu Asp Ser Phe
 530 535 540
 Cys Leu Ile Asn Asn Thr Ser Glu Lys His Gly Gly Ala Phe Val
 545 550 555 560
 Thr Lys Glu Ile Ser Gln Thr Tyr Thr Ser Asp Val Glu Thr Ile Pro
 565 570 575
 Gly Ile Thr Pro Val His Gly Glu Thr Val Ile Thr Gly Asn Lys Ser
 580 585 590
 Thr Gly Gly Asn Gly Gly Val Cys Thr Lys Arg Leu Ala Leu Ser
 595 600 605
 Asn Leu Gln Ser Ile Ser Ile Ser Gly Asn Ser Ala Ala Glu Asn Gly
 610 615 620
 Gly Gly Ala His Thr Cys Pro Asp Ser Phe Pro Thr Ala Asp Thr Ala
 625 630 635 640
 Glu Gln Pro Ala Ala Ala Ser Ala Ala Thr Ser Thr Pro Lys Ser Ala
 645 650 655
 Pro Val Ser Thr Ala Leu Ser Thr Pro Ser Ser Ser Thr Val Ser Ser
 660 665 670
 Leu Thr Leu Leu Ala Ala Ser Ser Gln Ala Ser Pro Ala Thr Ser Asn
 675 680 685
 Lys Glu Thr Gln Asp Pro Asn Ala Asp Thr Asp Leu Leu Ile Asp Tyr
 690 695 700
 Val Val Asp Thr Thr Ile Ser Lys Asn Thr Ala Lys Lys Gly Gly Gly

705	710	715	720
Ile	Tyr	Ala	Lys
Lys	Ala	Lys	Met
725	730	735	
Ser	Glu	Asn	Ser
Ala	Thr	Glu	Ile
Gly	Gly	Gly	Ile
740	745	750	Cys
Ser	Leu	Glu	Leu
Leu	Asp	Ala	Leu
Val	Ser	Leu	Ser
755	760	765	Val
Thr	Glu	Gly	Gly
Gly	Gly	Leu	His
770	775	780	Ala
Asn	Leu	Lys	Ser
Gly	Phe	Ser	Phe
785	790	795	Asn
Ser	Asn	Lys	Ala
Asn	Leu	Asn	Ser
795	800		Ser
Ser	Thr	Gly	Val
Ala	Thr	Thr	Ala
Ser	Ala	Pro	Ala
805	810	815	Ala
Ser	Leu	Gln	Ala
Ala	Ala	Ala	Ala
Ala	Ala	Pro	Ser
820	825	830	Ser
Pro	Ser	Pro	Ala
Thr	Tyr	Ser	Gly
Val	Val	Gly	Gly
835	840	845	Ala
Ile	Tyr	Gly	Glu
Gly	Gly	Asn	Lys
850	855	860	Gln
Phe	Ser	Gln	Ala
Cys	Ser	Gly	Ile
865	870	875	Asn
Tyr	Ala	Lys	Asn
Thr	Ser	Leu	Pro
Ser	Ile	Gly	Ser
885	890	895	Asp
Tyr	Ile	Phe	Ala
900	905	910	Thr
Gly	Gln	Ser	Gly
Ile	Ala	Gly	Asn
915	920	925	Ile
Tyr	Ser	Pro	Thr
930	935	940	Val
Thr	Ser	Ser	Thr
Glu	Asp	Gly	Ile
945	950	955	Lys
Gly	Gly	Ser	Asp
Ala	Ile	Asn	Thr
965	970	975	Leu
Phe	Ser	Gly	Asn
980	985	990	Ala
Asn	Ala	Asn	Thr
995	1000	1005	Pro
Glu	Ile	Thr	Ser
1010	1015	1020	Gly
Ala	Asn	Lys	Ser
Arg	Gly	Ala	Ile
1025	1030	1035	Tyr
Asn	Asn	Ile	Ser
1040			Pro
Asn	Asn	Thr	Ser
Phe	Asn	Gln	Val
1045	1050	1055	Asn
Ile	Tyr	Phe	Thr
1060	1065	1070	Lys
Phe	Thr	Gly	Asn
1075	1080	1085	Asn
Gly	Gln	Asn	Val
Asn	Thr	Asn	Thr
1090	1095	1100	Ala
Pro	Gly	Asn	Asn
1110	1115	1120	Thr
Ala	Ser	Ser	Gly
1125	1130	1135	Asn
Gln	Gly	Asp	Asn
1140	1145	1150	Thr
			Pro
			Ala
			Ser
			Lys
			Phe
			Cys
			Ser
			Ile
			Ala
			Gly
			Tyr
			Val

Lys Leu Ser Leu Gln Ala Ala Lys Gly Lys Thr Ile Ser Phe Phe Asp
 1155 1160 1165
 Cys Val His Thr Ser Thr Lys Lys Thr Gly Ser Thr Gln Asn Val Tyr
 1170 1175 1180
 Glu Thr Leu Asp Ile Asn Lys Glu Glu Asn Ser Asn Pro Tyr Thr Gly
 1185 1190 1195 1200
 Thr Ile Val Phe Ser Ser Glu Leu His Glu Asn Lys Ser Tyr Ile Pro
 1205 1210 1215
 Gln Asn Ala Ile Leu His Asn Gly Thr Leu Val Leu Lys Glu Lys Thr
 1220 1225 1230
 Glu Leu His Val Val Ser Phe Glu Gln Lys Glu Gly Ser Lys Leu Ile
 1235 1240 1245
 Met Glu Pro Gly Ala Val Leu Ser Asn Gln Asn Ile Ala Asn Gly Ala
 1250 1255 1260
 Leu Ala Ile Asn Gly Leu Thr Ile Asp Leu Ser Ser Met Gly Thr Pro
 1265 1270 1275 1280
 Gln Ala Gly Glu Ile Phe Ser Pro Pro Glu Leu Arg Ile Val Ala Thr
 1285 1290 1295
 Thr Ser Ser Ala Ser Gly Gly Ser Gly Val Ser Ser Ser Ile Pro Thr
 1300 1305 1310
 Asn Pro Lys Arg Ile Ser Ala Ala Val Pro Ser Gly Ser Ala Ala Thr
 1315 1320 1325
 Thr Pro Thr Met Ser Glu Asn Lys Val Phe Leu Thr Gly Asp Leu Thr
 1330 1335 1340
 Leu Ile Asp Pro Asn Gly Asn Phe Tyr Gln Asn Pro Met Leu Gly Ser
 1345 1350 1355 1360
 Asp Leu Asp Val Pro Leu Ile Lys Leu Pro Thr Asn Thr Ser Asp Val
 1365 1370 1375
 Gln Val Tyr Asp Leu Thr Leu Ser Gly Asp Leu Phe Pro Gln Lys Gly
 1380 1385 1390
 Tyr Met Gly Thr Trp Thr Leu Asp Ser Asn Pro Gln Thr Gly Lys Leu
 1395 1400 1405
 Gln Ala Arg Trp Thr Phe Asp Thr Tyr Arg Arg Trp Val Tyr Ile Pro
 1410 1415 1420
 Arg Asp Asn His Phe Tyr Ala Asn Ser Ile Leu Gly Ser Gln Asn Ser
 1425 1430 1435 1440
 Met Ile Val Val Lys Gln Gly Leu Ile Asn Asn Met Leu Asn Asn Ala
 1445 1450 1455
 Arg Phe Asp Asp Ile Ala Tyr Asn Asn Phe Trp Val Ser Gly Val Gly
 1460 1465 1470
 Thr Phe Leu Ala Gln Gln Gly Thr Pro Leu Ser Glu Glu Phe Ser Tyr
 1475 1480 1485
 Tyr Ser Arg Gly Thr Ser Val Ala Ile Asp Ala Lys Pro Arg Gln Asp
 1490 1495 1500
 Phe Ile Leu Gly Ala Ala Phe Ser Lys Ile Val Gly Lys Thr Lys Ala
 1505 1510 1515 1520
 Ile Lys Lys Met His Asn Tyr Phe His Lys Gly Ser Glu Tyr Ser Tyr
 1525 1530 1535
 Gln Ala Ser Val Tyr Gly Gly Lys Phe Leu Tyr Phe Leu Leu Asn Lys
 1540 1545 1550
 Gln His Gly Trp Ala Leu Pro Phe Leu Ile Gln Gly Val Val Ser Tyr
 1555 1560 1565
 Gly His Ile Lys His Asp Thr Thr Leu Tyr Pro Ser Ile His Glu
 1570 1575 1580
 Arg Asn Lys Gly Asp Trp Glu Asp Leu Gly Trp Leu Ala Asp Leu Arg

1585	1590	1595	1600
Ile Ser Met Asp Leu Lys Glu Pro Ser Lys Asp Ser Ser Lys Arg Ile			
1605	1610	1615	
Thr Val Tyr Gly Glu Leu Glu Tyr Ser Ser Ile Arg Gln Lys Gln Phe			
1620	1625	1630	
Thr Glu Ile Asp Tyr Asp Pro Arg His Phe Asp Asp Cys Ala Tyr Arg			
1635	1640	1645	
Asn Leu Ser Leu Pro Val Gly Cys Ala Val Glu Gly Ala Ile Met Asn			
1650	1655	1660	
Cys Asn Ile Leu Met Tyr Asn Lys Leu Ala Leu Ala Tyr Met Pro Ser			
1665	1670	1675	1680
Ile Tyr Arg Asn Asn Pro Val Cys Lys Tyr Arg Val Leu Ser Ser Asn			
1685	1690	1695	
Glu Ala Gly Gln Val Ile Cys Gly Val Pro Thr Arg Thr Ser Ala Arg			
1700	1705	1710	
Ala Glu Tyr Ser Thr Gln Leu Tyr Leu Gly Pro Phe Trp Thr Leu Tyr			
1715	1720	1725	
Gly Asn Tyr Thr Ile Asp Val Gly Met Tyr Thr Leu Ser Gln Met Thr			
1730	1735	1740	
Ser Cys Gly Ala Arg Met Ile Phe			
1745	1750		

<210> 181

<211> 2601

<212> DNA

<213> Chlamydia

<400> 181

atggctagcc atcaccatca ccatcacctc tttggccagg atcccttagg tgaaaccgcc	60
ctcctcacta aaaatcctaa tcatacgctc tgtacatttt ttgaggactg taccatggag	120
agcctcttgc ctgcgttttg tgctcatgca tcacaagacg atcccttgta tgtacttgga	180
aattcctact gttggttcgt atctaaactc catatcacgg accccaaaga ggctcttttt	240
aaagaaaaaaag gagatcttc cattcaaaaac ttgcgttcc ttcccttcac agattgtct	300
tccaaggaaa gcttccttc tattattcat caaaaagaatg gtcagttatc cttgcgcaat	360
aatggtagca tgagttctg tcgaaaatcat gctgaaggct ctggaggagc catctctgcg	420
gatgcctttt ctctacagca caactatctt ttcacagctt ttgaagagaaa ttcttctaaa	480
ggaaatggcg gagcattca ggctcaaaacc ttctctttat ctagaaatgt gtgccttatt	540
tcttcgcccc gtaatcgtgc ggatttaaat ggccgccta tttgctgttag taatcttatt	600
tgttcaggga atgtaaaccc tctcttttc actggaaact ccgccacraa tggaggcsct	660
attttgttta tcagcgatct aaacacctca gaaaaaggct ctctctctct tgcttgtaac	720
caaraaaacgc tatttgcag caattctgtc aaagaaaaaaag gcggggctat ttatgccaag	780
cacatggtat tgcgtttaaa cggtcctgtt tccttcatta acaacagcgc taaaataggt	840
ggagctatcg ccatccagtc cggaggaggat ctctctatcc ttgcaggtga aggatctgtt	900
ctgttccaga ataactccca acgcacccctc gaccaaggc tagtaagaaa cgccatctac	960
ttagagaaaat atgcgattct ttcttcctta gaagctcgca acggagatat tctttcttt	1020
gatccttattg tacaagaaaat tagcagcaaa gaatcgctc ttcccttcctc tttgcaagcc	1080
agcgtgactt ctcccacccc agccaccgca tctccttttag ttattcagac aagtgc当地	1140
cgttcagtga ttttctcgag cgaacgtctt tctgaagaag aaaaaactcc tgataaacctc	1200
acttcccaac tacagcagcc tatcgaactg aaatccggac gcttagttt aaaaagatcg	1260
gctgtcctt ccgsgccttc tctctctcgat gatcctcaag ctctcctcat tatggaagcg	1320
ggaacttctt taaaaacttc ctytgattt aagtagsta cgstaagttat tcccttcata	1380
tccttagata ctgaaaaaaatcgtaactatc cacgcccccta atctttctat caaaaagatc	1440
ttcctctcta actctggaga tgagaatttt tatgaaaaatg tagagctct cagtaaagag	1500
caaaaacaata ttccctcct tactctccct aaagagcaat ctcatttaca tcttcctgat	1560
gggaacctctt ctctcaactt tggatataaa ggagattgga cttttcttg gaaagattct	1620

gatgaagggc attctctgat	tgctaattgg acgcctaaaa	actatgtgcc tcataccagaa	1680
cgtcaatcta cactcggtgc	gaacactctt tgAACACCTT	attccgatAT gcaAGCTGTG	1740
cagtcgatga ttaatacAAC	agCGCACGGA ggAGCCTATC	tATTTGGAAC gtGGGGATCT	1800
gctgtttcta atttattcta	tgTTcacGAC agCTCTGGGA	aACCTATCGA taATTGGCAT	1860
catagaagcc ttggctacCT	attcGGTATC agTACTCACA	gtTTAGATGA ccATTCTTC	1920
tgcttggctg caggacaATT	actcGGGAA tcGTCCGATT	cCTTATTAC gtCTACAGAA	1980
acgacccTCT atataGCTAC	tGTACAAGCG caACTCGCTA	cCTCTCTAAT gAAAATCTCT	2040
gcacaggcat gctacaatGA	aAGTATCCAT gagCTAAAAAA	caAAATATCG ctCCCTCTCT	2100
aaagaaggat tcggatCCTG	gcATAGCGTT gcAGTATCCG	gagaAGTGTG cgCATCGATT	2160
cctattgtat ccaatGGTTC	cgGACTGTTC agCTCTTCT	ctATTTCTC tAAACTGCAA	2220
ggattttcag gaacacAGGA	cggTTTGAG gagAGTCGG	gagAGATCG gtCCCTTTCT	2280
gccagctCTT tcagaaATAT	ttcactTCCT atAGGAATAA	cATTGAAAAA AAAATCCCaa	2340
aaaacacGAA CCTACTATTa	cTTCTAGGA gcCTACATCC	aAGACCTGAA acGTGATGTG	2400
gaatcGGGAC ctGTAGTGT	actcAAAAAT gCCGTCTCT	ggGATGCTCC tatGGCGAAC	2460
ttggatttcac gagcctACAT	gtTCCGGCTT acGAATCAAA	gagCTCTACA cAGACTTCAG	2520
acgctgttaa atgtgtCTTG	tGTGCTGCgt gggcaaAGCC	atAGTTACTC cCTGGATCTG	2580
gggaccACTT acaggttcta	g		2601

<210> 182

<211> 3021

<212> DNA

<213> Chlamydia

<400> 182

atggcttagca tgactggTGG	acagcaaATG ggTCGGGATT	caAGCTTGGT accGcatCAC	60
cataccATC acatGATTCC	tcaAGGAATT tacGATGGGG	agACGTTAAC tGTATCATT	120
ccCTATACTG ttatAGGAGA	tCCGAGTGGG actACTGTtT	tttCTGCAGG agAGTTAACa	180
ttaAAAATC ttGACAATTc	tATTGAGCT ttGCTTTAA	gttGTTTGG gaACTTATTa	240
gggAGTTTta ctGTTTAgG	gAGAGGACAC tcGTTGACTT	tcGAGAACAT acGGACTTCT	300
acaAAATGGGG cAGCTCTAAG	taATAGCGCT gCTGATGGAC	tGTTTACTAT tgAGGGTTT	360
aaAGAAATTAT cCTTTCCAa	ttGCAATCA ttACTTGCCG	tACTGCCtGC tgCAACGACT	420
aATAAGGGTA gCCAGACTCC	gACGACAAcA tCTACACCtG	ctaATGGTAC tATTATTCT	480
aaaACAGATE tTTTGTtACT	caATAATGAG aAGTtCTCAT	tCTATAGTAA tTTAGTCTCT	540
ggAGATGGGG gagCTATAGA	tgCTAAGAGC ttaACGGTTC	aAGGAATTAG caAGCTTGT	600
gtCTTCCAAG aaaAAACTGC	tCAAGCTGAT gGGGGAGCTT	gtCAAGTAGT cACCAGTT	660
tCTGCTATGG ctaACGAGGC	tcCTATTGCC ttTGTAGCGA	atGTTGCAGG agTAAGAGGG	720
ggAGGGATG ctGCTGTTCA	ggATGGGcAG cAGGGAGTGT	catCATCTAC ttCAACAGAA	780
gATCCAGTAG taAGTTTTC	cAGAAATACT gCGTAGAGT	ttGATGGAA cGTAGCCCgA	840
gtAGGAGGAG ggATTtACTC	ctACGGGAAC gttGCTTCC	tGAATAATGG AAAAACCTTG	900
tttCTCAACA atGTTGCTTC	tcCTGTTAC attGCTGCTA	AGCAACCAAC aAGTGGACAG	960
gCTTCTAATA CGAGTAATAA	ttACGGAGAT ggAGGAGCTA	tCTTCTGTAAC GATGGTGCg	1020
caAGCAGGAT CCAATAACTC	tGGAATCAGTT tcCTTGTATG	gAGAGGGAGT AGTTTCTTT	1080
AGTAGCAATG TAGCTGCTGG	gAAAGGGGGA gCTATTATG	ccAAAAAGCT CTCGGTTGCT	1140
aACTGTGGCC CTGTACAATT	tTTAAGGAAT ATCGCTAATG	atGGTGGAGC GATTATTtTA	1200
ggAGAACTG gagAGCTAG	tttATCTGCT gATTATGGAG	AtATTATTtT CGATGGGAAT	1260
cttAAAAGAA cAGCCAAAGA	GAATGCTGCC gATGTTAATG	gCGTAACTGT GTCCTCACAA	1320
gCCATTTCGA tGGGATCGGG	AGGGAAAATA ACGACATTAA	gAGCTAAAGC AGGGCATCAG	1380
attCTCTTA atGATCCCtAT	CGAGATGGCA AACGGAAATA	ACCAGCCAGC GCAgTCTTCC	1440
aaACTTCTAA aaATTAACGA	TGGTGAAGGA TACACAGGGG	AtATTGTTT TGCTAATGG	1500
AGCAGTACTT TGTACCAAA	TGTTACGATA gAGCAAGGAA	GGATTGTTCT TCgtGAAAAG	1560
gCAAAATTAT CAGTGAATTc	TCTAAGTCAG ACAGGTGGGA	GTCTGTATAT GGAAGCTGGG	1620
AGTACATTG AtTTGTAAC	TCCACACCA CCACAAcAGC	CTCCTGCCGC TAATCAGTTG	1680
ATCACGCTT CCAATCTGCA	TTTGTCTTT tCTTCTTGT	TagCAAACAA TGCAgTTACG	1740
AATCCTCCTA CCAATCCTCC	AGCGCAAGAT TCTCATCCTG	CAGTCATTGG TAGCACAAct	1800
GCTGGTTCTG ttACAATTAG	TGGGCTATC tTTTTGAGG	AtTTGGATGA TACAGCTTAT	1860

gataggtagt	attggctagg	ttctaatcaa	aaaatcaatg	tcctgaaatt	acagtttaggg	1920
actaagcccc	cagctaattgc	cccatcagat	ttgactctag	ggaatgagat	gcctaagtat	1980
ggcttatcaag	gaagctggaa	gcttgcgtgg	gatccataa	cagcaaataa	tggccttat	2040
actctgaaag	ctacatggac	taaaactggg	tataatcctg	ggcctgagcg	agtagcttct	2100
ttggttccaa	atagttatg	gggatccatt	ttagatatac	gatctgcgc	ttcagcaatt	2160
caagcaagt	tggatggcg	ctcttattgt	cgaggattat	gggttctgg	agtttgcata	2220
ttcttctatc	atgaccgcga	tgctttaggt	cagggatatac	ggtatattag	tgggggttat	2280
tccttaggag	caaactccta	cttggatca	tcgatgttg	gtctagcatt	taccgaagta	2340
tttggtagat	ctaaagatta	tgtatgtgt	cgttccaatc	atcatgcgtt	cataggatcc	2400
gtttatctat	ctacccaaca	agctttatgt	ggatcctatt	tgttcggaga	tgcgttattc	2460
cgtgctagct	acggggttgg	gaatcagcat	atgaaaacct	catatacatt	tgcagaggag	2520
agcgatgtc	gttgggataa	caactgtctg	gctggagaga	ttggagcggg	attaccgatt	2580
gtgattactc	catctaagct	ctatttgaat	gagttgcgtc	ctttcgtgca	agctgagttt	2640
tcttatcccg	atcatgaatc	ttttacagag	gaaggcgatc	aagctcgggc	attcaagagc	2700
ggacatctcc	taaatctatc	agttcctgtt	ggagtgaagt	ttgatcgat	ttctagtaca	2760
catcctaata	aatatagctt	tatggcgct	tatatctgt	atgcttacatc	caccatctct	2820
ggtactgaga	caacgcctc	atcccataa	gagacatgga	caacagatgc	cttcattta	2880
gcaagacatg	gagttgtggt	tagaggatct	atgtatgcct	ctctaacaag	taatatagaa	2940
gtatatggcc	atgaaagata	tgagtatcga	gatgattctc	gaggctatgg	tttgagtgc	3000
ggaagtaaaag	tccggttcta	a				3021

<210> 183

<211> 2934

<212> DNA

<213> Chlamydia

<400> 183

atggctagca	tgactggtgg	acagcaaattg	ggtcgggatt	caagcttgg	accgagctcg	60
gatccacatc	accatcacca	tcacggacta	gctagagagg	ttccttctag	aatctttctt	120
atgcccaact	cagttccaga	tcctacgaaa	gagtcgtat	caaataaaat	tagtttgcaca	180
ggagacactc	acaatctcac	taactgctat	ctcgataacc	tacgctacat	actggctatt	240
ctacaaaaaa	ctcccaatga	aggagctgt	gtcacaataa	cagattacat	aagctttttt	300
gatacacaaa	aagaaggat	ttattttgc	aaaaatctca	ccccgtaaaag	tggtgtgtgc	360
attggttatg	cgagtcccaa	ttctcctacc	gtggagattc	gtgatacaat	aggctctgt	420
atctttgaaa	ataataacttg	ttgcagacta	tttacatgga	gaaatccta	tgctgctgtat	480
aaaataagag	aaggcgagc	cattcatgt	aaaaatctt	acataaatca	taatcatgtat	540
gtggtcggat	ttatgaagaa	ctttcttat	gtccaaggag	gagccattag	taccgctaat	600
acctttgtt	tgagcgagaa	tcagtctgt	tttctcttta	tggacaacat	ctgtattcaa	660
actaatacag	cagaaaaagg	tggcgctatc	tatgtggaa	cgagcaatic	ttttgagagt	720
aataactgcg	atctttctt	catcaataac	gcctgttgc	caggaggagc	gatcttctcc	780
cctatctgtt	ctctaacagg	aaatcgtgtt	aacatcgat	tctataacaa	tcgctgtttt	840
aaaaatgtat	aaacagctc	ttcagaagct	tctgtatggag	gagcaattaa	agtaactact	900
cgcctagatg	ttacaggcaa	tcgtggtagg	atctttttt	gtgacaatat	cacaaaaaat	960
tatggcggag	ctatttacgc	tcctgtatgtt	accctagtgg	ataatggccc	tacctacttt	1020
ataaaacaata	tcgccaataa	taagggggc	gctatctata	tagacggAAC	cagtaactcc	1080
aaaatttctg	ccgaccgc	tgcttatttt	tttaatgaaa	atattgtgac	taatgtact	1140
aatgcaaata	gtaccgtac	gtcagctat	cctcttagaa	gaaatgcaat	aacagtagca	1200
agctcctctg	gtgaaaattct	attaggagca	gggatgtcc	aaaatttaat	tttttatgtat	1260
cctattgaag	ttagcaatgc	aggggtctct	gtgtccttca	ataaggaagc	tgtccaaaca	1320
ggctctgtat	tatttcagg	agctactgtt	aattctgcag	attttcatca	acgcaattta	1380
caaacaaaaa	cacctgcacc	ccttactctc	agtaatggtt	ttctatgtat	cgaagatcat	1440
gctcagctt	cagtaatgc	attcacacaa	actgggggtg	ttgtttctct	tggaaatgga	1500
gcagttctga	gttgcataa	aaatggtaca	ggagattctg	ctagcaatgc	ctctataaca	1560
ctgaagcata	ttggattgaa	tctttcttcc	attctgaaaa	gtgggtgtga	gattccttta	1620
ttgtgggtat	agcctacaaa	taacagcaat	aactatacag	cagataactgc	agctaccttt	1680

tcattaatgt	atgtaaaact	ctcaactcatt	gatgactacg	ggaactctcc	ttatgaatcc	1740
acagatctga	cccatgctct	gtcatcacag	cctatgctat	ctatttctga	agctagcgat	1800
aaccagctac	aatcagaaaa	tatagatttt	tcgggactaa	atgtccctca	ttatggatgg	1860
caaggacttt	ggacttgggg	ctgggcaaaa	actcaagatc	cagaaccage	atcttcagca	1920
acaatcaatg	atccacaaaa	agccaataga	tttcatagaa	ccttactact	aacatggctt	1980
cctgccgggt	atgttcctag	ccccaaacac	agaagtcccc	tcatactaa	caccttatgg	2040
ggaaatatgc	tgcttgcaac	agaaaagctt	aaaaatagtg	cagagctgac	acctagtgg	2100
catcctttct	ggggaattac	aggaggagga	ctaggcatga	tggtttacca	agatcctcga	2160
gaaaatcatc	ctggattcca	tatgcgtct	tccggatact	ctgcggggat	gatagcaggg	2220
cagacacaca	ccttctcatt	gaaattcagt	cagacctaca	ccaaactcaa	tgagcgttac	2280
gcaaaaaaca	acgtatcttc	taaaaattac	tcatgccaag	gagaaatgct	cttctcattg	2340
caagaaggtt	tcttgctgac	taaatttagtt	gggcttaca	gctatggaga	ccataactgt	2400
caccatttct	atactcaagg	agaaaatcta	acatctcaag	ggacgttccg	cagtcaaacg	2460
atgggaggtg	ctgtctttt	tgatctccct	atgaaaaccct	ttggatcaac	gcataactg	2520
acagctccct	tttaggtgc	tcttggtatt	tattctagcc	tgtctcaett	tactgaggtg	2580
ggagcctatc	cgcgaagctt	ttctacaaag	actccttga	tcaatgtcct	agtccctatt	2640
ggagttaaag	gtagctttat	gaatgctacc	cacagacctc	aagcctggac	tgtagaattg	2700
gcataccaaac	ccgttctgta	tagacaagaa	ccagggatcg	cgaccctagct	cctagccagt	2760
aaaggtattt	ggtttggtag	tggaagcccc	tcatcgctc	atgccatgtc	ctataaaatc	2820
ccacagcaaa	cacaaccttt	gagttggta	actctccatt	tccagttatca	tggattctac	2880
tcctcttcaa	ccttctgtaa	ttatctcaat	ggggaaattg	ctctgctgatt	ctag	2934

<210> 184

<211> 2547

<212> DNA

<213> Chlamydia

<400> 184

atggctagcc atcaccatca ccatacagggt gctatttctt gcttaacgtgg agatgttagtc	60
atttctggaa acaagggttag agttgaattt aaagacaaca tagcaacacg tcttttatgtg	120
gaagaaaactg tagaaaaggt tgaagaggtt gagccagctc ctgagcaaaa agacaataat	180
gagctttctt tcttagggag tgtagaacag agttttatta ctgcagctaa tcaagcttt	240
ttcgcatctg aagatgggaa tttatcacct gagtcatcca tttcttctga agaacttgcg	300
aaaagaagag agtgtgctgg aggagctatt ttgc当地aaac gggttgc当地 ttagataaac	360
caaggaggccg ttgtattctc gaataacttc tctgatattt atggccgc当地 catttttaca	420
ggttcttcc gagaagagga taagtttagat gggcaaattt ctgaagtctt gatctcaggc	480
aatgcagggg atgttgggg ttccggaaat tcctcgaagc gtgatgagca tcttc当地cat	540
acaggtgggg gagccattt gactcaaaat ttgacgattt ctcagaataac agggaaatgtt	600
ctgttttata acaacgtggc ctgttccgggaa ggagctgttc gtataagagga tcatggtaat	660
gttcttttag aagctttgg aggagatatt gtttttaaag gaaattctt tttcagagca	720
caaggatccg atgctatcta ttttgc当地ttaaagc atattacagc cctgaatgct	780
acggaaggac atgctattgt ttccacgac gcattagttt ttgaaaatct aaaagaaaagg	840
aaatctgctg aagtattgtt aatcaatagt cgagaaaatc caggttacac tggatctatt	900
cgattttttag aagcagaaaag taaagttcct caatgttattc atgtacaaca aggaaggcctt	960
gagttgtctaa atggagctac attatgttagt tatggttta aacaagatgc tggagcttaag	1020
ttggtagttgg ctgctggatc taaactgaag attttagatt caggaactcc tgc当地aagg	1080
catgctatca gtaaacctga agcagaaaatc gagtcatctt ctgaaccaga ggggtgc当地	1140
tctctttggg ttgc当地aagaa tgctcaaaca acagttcctt tggtagatc cctactatt	1200
tctgttagatt tagcctc当地tctt ctctttagt caacaggagg ggacagtaga agctc当地ctc当地	1260
gttattgttc ctggaggaag ttatgttc当地 tctggagagc ttaatttggg gttagttaa	1320
acaacaggtt ctgtttagtga aaatcatgttctt ttgttgaaga atgaggctaa agttccatgt	1380
atgtcttc当地tctg ttgttcttag tgatgaagctt tcaagccgaaa tcaactt gtc当地gggttct	1440
gatttacaga ttcatgttagc aactccagag attgaagaag acacatacgg ccatatgggaa	1500
gattggcttg aggctaaaat tcaagatggaa actcttgc当地 ttaatttggaa tccctactggaa	1560
tatcgatttag atcctcaaaa agcaggggctt tagtattttt atgcattatg ggaagaagg	1620

gctgtcttgt	ctgctctgaa	aatgcacgc	tttgctata	atctcactgc	tcagcgatg	1680
gaattcgatt	attctacaaa	tgtgtggga	ttccgcctt	gtggtttccg	aactctatct	1740
gcagagaatc	tgggtctat	tcatggatac	aaaggagctt	atgggtggc	ttctgctgga	1800
gtcgatattc	aattgtatgg	agatttgtt	ctaggagtt	gtggagctgc	tttccttaggt	1860
aaaatggata	gtcagaagtt	tcatgcggag	gtttctcgga	agggagttgt	tggttctgt	1920
tatacaggat	ttttagctgg	atccctggtc	ttcaaaggac	aatatagcct	tggagaaaca	1980
cagaacgata	tgaaaacgcg	ttatggagta	ctaggagagt	cgagtgc	ttggacatct	2040
cgaggagttac	tggcagatgc	tttagttgaa	taccaaggat	tagttggtcc	tgtgagacct	2100
actttttatg	ctttgcattt	caatccttat	gtcgaagttat	cttatgc	tatgaaattc	2160
cctggcttta	cagaacaagg	aagagaagcg	cgttctttt	aagacgc	ccttaccaat	2220
atcaccatc	ctttagggat	gaagtttggaa	ttggcggtca	taaaaggaca	gttttcagag	2280
gtgaactctt	tgggataaag	ttatgcatttgc	gaagcttatac	aaaaagtaga	aggaggcg	2340
gtgcagctt	tagaagctgg	gtttgatttgg	gaggagctc	caatggatct	tcctagacag	2400
gagctgcgtg	tcgcctctgg	aaataatacg	gaatggagtt	cttacttc	cacagtctta	2460
ggattaacag	cttttgcgtt	aggatttact	tctacagata	gtaaaactagg	atatgaggcg	2520
aataactggat	tgcgatttgc	cttttaaa				2547

<210> 185

<211> 2337

<212> DNA

<213> Chlamydia

<400> 185

atgcatcacc	atcaccatca	cgggttagct	agttgcgtag	atcttcatgc	tggaggacag	60
tctgtaaatg	agctggata	tgtaggccct	caagcggtt	tattgttaga	ccaaattcga	120
gatctattcg	ttgggtctaa	agatagtcag	gctgaaggac	agtataggtt	aattgttagga	180
gatccaagtt	ctttccaaga	gaaagatgca	gatactttc	ccgggaaggt	agagcaaagt	240
actttgttct	cagtaaccaa	tcccgtgtt	ttccaagggt	tggaccaaca	ggatcaagt	300
tcttcccaag	ggttaatttgc	tagtttacg	agcagcaacc	ttgattctcc	ccgtgacgga	360
gaatctttt	taggtattgc	ttttgttggg	gatagtagta	aggctggaaat	cacattaact	420
gacgtgaaag	cttctttgtc	tggagcgct	ttatattcta	cagaagatct	tatctttgaa	480
aagattaagg	gtggatttgg	atttgcattca	tgttcttctc	tagaacacagg	gggagcttgc	540
gcagctcaaa	gtattttgtat	tcatgattgt	caaggattgc	aggtaaaaca	ctgtactaca	600
gccgtgaatg	ctgaggggtc	tagtgcgaat	gatcatcttgc	gatttggagg	aggcgctt	660
tttggttacgg	gttcttttc	tggagagaaa	agtctctata	tgccctgcagg	agatatggta	720
gttgcgaatt	gtgatggggc	tatatcttt	gaaggaaaca	gcgcgaactt	tgctaatttgc	780
ggagcgatttgc	ctgcctctgg	gaaaagtgtt	tttgcgtt	atgataaaaa	gacttctttt	840
atagagaacc	gagctttgtc	tggaggagcg	attgcagctt	cttctgtat	tgcccttcaa	900
aactgcgcag	aactagtttt	caaaggcaat	tgtcaatttgc	gaacagagga	taaaggttct	960
ttaggtggag	ggggatatac	ttctcttaggc	accgttcttgc	tgcaaggaa	tcacggata	1020
acttgcata	agaatgagtc	tgcttcgca	ggaggcgcca	tttttggcaa	aaattgtcag	1080
atttctgaca	acgagggggcc	agtggtttgc	agagatagta	cagcttgc	aggaggaggc	1140
gctattgcag	ctcaagaaat	tgttcttatt	cagaacaatc	aggctggat	ttcccttcgag	1200
ggaggttaagg	ctagttcgg	aggaggtatt	gcgtgtggat	cttttcttc	cgcaggcggt	1260
gcttctgtt	tagggactat	tgtatatttgc	aagaatttgc	gcgcgatttgc	gttctctcg	1320
actttatgtt	cgacccatcaga	tttaggacaa	atggagttacc	agggaggagg	agctctatttgc	1380
ggtggaaaata	tttcttttc	tgagaatgt	gggtgtgtca	cctttaaaga	caacattgt	1440
aagacttttgc	cttgcatttgc	gaaaatttgc	ggaggaggag	cgattttagc	tactggtaag	1500
gtggaaatttgc	ccaataatttgc	cggaggaatttgc	tcttttacag	gaaatgcgag	agctccacaa	1560
gctttccaa	ctcaagagga	gtttccatttgc	ttcagcaaaa	aagaaggcg	accactctct	1620
tcaggatatttgc	ctggggggagg	agcgattttgc	ggaagagaag	tagtatttgc	ccacacaacgc	1680
gcagtagtat	tttgcatttgc	tcgtttgc	tgcaaggaa	aagaagcgac	attatttaggt	1740
tgttgcgtt	gaggcgctgt	tcatggat	gatagcatttgc	cgattttgg	caactcttca	1800
gtaagatttgc	gtataatttgc	cgcaatggaa	caaggagtt	caggaggagc	tcttttatct	1860
aaaacagttgc	agttagtgc	aaatggaa	gtcgatttttgc	ctcgaaat	tgcttagtttgc	1920

ggaggaggag	ctcttcaagc	ttctgaagga	aattgtgagc	tagttgataa	cgcttatgtg	1980
ctattcagag	ataatcgagg	gagggttat	gggggtgcta	tttcttgctt	acgtggagat	2040
gtagtcattt	ctggaaacaa	ggtagagtt	gaatttaaag	acaacatagc	aacacgtctt	2100
tatgtggaaag	aaactgtaga	aaaggttcaa	gaggtagagc	cagctcctga	gaaaaaagac	2160
aataatgagc	tttctttctt	agggagtgta	gaacagagtt	ttattactgc	agtaatcaa	2220
gctctttcg	catctgaaga	tggggattta	tcacctgagt	catccatttc	ttctgaagaa	2280
cttgcgaaaa	gaagagagtg	tgctggagga	gctgactcga	gcagatccgg	ctgctaa	2337

<210> 186

<211> 2847

<212> DNA

<213> Chlamydia

<400> 186

atggctagca	tgcacatcacca	tcaccatcac	gttaagattg	agaacttctc	tggccaagga	60
atattttctg	gaaacaaaagc	tatcgataac	accacagaag	gctcctcttc	caaatactaac	120
gtcctcggag	gtgcgggtcta	tgctaaaaca	ttgtttaatc	tcgatagcgg	gagctctaga	180
cgaactgtca	ccttctccgg	gaatactgtc	tcttctcaat	ctacaacagg	tcaggttgct	240
ggaggagctt	tctactctcc	tactgttaacc	attgtctactc	ctgttagtatt	ttctaaaaac	300
tctgcaacaa	acaatgctaa	taacgctaca	gatactcaga	gaaaagacac	ctctggagga	360
gctatcggag	ctacttctgc	tgtttctcta	tcaggagggg	ctcatttcit	agaaaacgtt	420
gctgacctsg	gatctgctat	tgggttggtg	ccagacacac	aaaatacaga	aacagtgaaa	480
tttagagtctg	gctcctacta	ctttgaaaaa	aataaaagctt	taaaaacgac	tactatttac	540
gcacctgtcg	tttccattaa	agcctatact	gcgacattta	acccaaaacag	atctctagaa	600
gaaggaagcg	cgatttactt	tacaaaagaa	gcacatttgc	agtctttagg	ctctgttctc	660
ttcacaggaa	acttagtaac	ccccaaacgta	agcacaacta	cagaaggcac	accagccaca	720
acctcaggag	atgtaaacaaa	atatgggtct	gctatctttg	gacaaatagc	aagctcaaac	780
ggatctcaga	cggtataacct	tcccctgaaa	ctcattgttt	caggaggaaa	tatttgtttc	840
cgaaacaatg	aataccgtcc	tacttctct	gataccggaa	cctctacttt	ctgttagtatt	900
gcgggagatg	ttaaattaaac	catgcaagct	gaaaaaggga	aaacgatcag	tttctttgtat	960
gcaatccgga	cctctactaa	gaaaacaggt	acacaggcaa	ctgcctacga	tactctcgat	1020
attaataaat	ctgaggattc	agaaaactgta	aactctgcgt	ttacaggaac	gattctgttc	1080
tcctctgaat	tacatgaaaa	taaatcctat	attccacaaa	acgttagttct	acacagtggaa	1140
tctcttgat	tgaagccaaa	taccgagctt	catgtcattt	ctttttagca	gaaagaaggc	1200
tcttctctcg	ttatgacacc	tggatctgtt	cttcgaacc	agactgttgc	tgatggagct	1260
ttggtcataa	ataacatgac	cattgattta	tccagcgtag	agaaaaatgg	tattgctgaa	1320
ggaaatatct	ttactcctcc	agaattgaga	atcatagaca	ctactacaag	tggaaagcggt	1380
ggaaccccat	ctacagatag	tgaaagtaac	cagaatagtg	atgataccaa	ggagcaaaat	1440
aataatgacg	cctcgaatca	aggagaaagc	gcgaatggat	cgtcttctcc	tgcaatgtact	1500
gctgcacaca	catctcgatc	aagaaaactt	gccgctgcag	ctacagccac	acccatcgaca	1560
acaccaacgg	ctacaaactac	aacaagcaac	caagtaatcc	taggaggaga	aatccaaactc	1620
atcgatccta	atgggacctt	cttccagaac	cctgcattaa	gatccgacca	acccatctcc	1680
ttgttagtgc	tccctacaga	ctcatcaaaa	atgcaagctc	agaaaaatagt	actgacgggt	1740
gatattgctc	ctcagaaaagg	atatacagga	acactcaet	tggatcctga	tcaactacaa	1800
aatggAACGA	tctcagcgct	ctggaaattt	gactcttata	gacaatgggc	ttatgtacct	1860
agagacaatc	atttctatgc	gaactcgtt	ctggatctc	aaatgtcaat	ggtcacagtc	1920
aaacaaggct	tgctcaacga	taaaaatgaat	ctagctcgct	ttgtatgaatg	tagtataac	1980
aacctgtgga	tatcaggact	aggaacgtat	ctatcgcaag	taggaacacc	tacttctgaa	2040
gaattcaattt	attacagcgag	aggagcttct	gttgccttag	atgctaaacc	agcccatgat	2100
gtgattgttg	gagctgcatt	tagtaagatg	atcgggaaaa	caaaatccctt	gaaaagagag	2160
aataactaca	ctcacaaaagg	atccgaatat	tcttaccaag	catcggtata	cgaggcggaaa	2220
ccattccact	ttgtatcaa	taaaaaaaccg	gaaaaatcgc	taccgctatt	gttacaagga	2280
gtcatctt	acggatataat	caaacatgat	acagtgtactc	actatccaa	gatccgtgaa	2340
cgaaaccaag	gagaatggga	agacttagga	tggctgacag	ctctccgtgt	ctcctctgtc	2400
ttaagaactc	ctgcacaagg	ggataactaaa	cgtatcactg	tttacggaga	atttggaaatac	2460

tccagtatcc	gtcagaaaaca	attcacagaa	acagaatacg	atcctcgta	cttcgacaac	2520
tgcacctata	gaaaccttagc	aattcctatg	gggttagcat	tcgaaggaga	gctctctgg	2580
aacgatattt	tgatgtacaa	cagattctct	gtacataca	tgccatcaat	ctatcgaaat	2640
tctccaacat	gcaaatacca	agtgcctct	tcaggagaag	gcggagaaat	tatttgtgga	2700
gtaccgacaa	gaaactcagc	tcgcggagaa	tacagcacgc	agctgtaccc	gggacctttg	2760
tggactctgt	atggatccta	cacgatagaa	gcagacgcac	atacactagc	tcatatgatg	2820
aactgcgttg	ctcgatgac	attctaa				2847

<210> 187

<211> 2466

<212> DNA

<213> Chlamydia

<400> 187

atgcatcacc	atcaccatca	cgaggcgagc	tcgatccaag	atcaaataaa	gaataccgac	60
tgcaatgtta	gcaaagttagg	atattcaact	tctcaagcat	ttactgatat	gatgtctagca	120
gacaacacag	agtatcgagc	tgctgatagt	gttctattct	atgactttc	gacatcttcc	180
ggattaccta	gaaaacatct	tagtagtagt	agtgaagctt	ctccaacgac	agaaggagtg	240
tcttcatctt	catctggaga	aaatactgag	aattcacaag	attcagctcc	ctcttctgga	300
gaaactgata	agaaaacaga	agaagaacta	gacaatggcg	gaatcattta	tgctagagag	360
aaactaacta	tctcagaatc	tcaggactct	ctctctaattc	caagcataga	actccatgac	420
aatagtttt	tcttcggaga	aggtgaagtt	atcttgatc	.acagagttgc	cctcaaaaac	480
ggaggagcta	tttatggaga	gaaagaggtt	gtcttgaaa	acataaaaatc	tctactagta	540
gaagtaaaaa	tctcggtcga	gaaaggggtt	agcgtctatg	caaaaagaacg	agtatctta	600
gaaaatgtta	ccgaagcaac	cttctccccc	aatggggggg	aacaagggtgg	tggtggaatc	660
tattcagaac	aagatatgtt	aatcagtgat	tgcaacaatg	tacatttcc	aggaaatgct	720
gcaggagcaa	cagcagtaaa	acaatgtctg	gatgaagaaa	tgatcgatt	gctcacagaa	780
tgcgttata	gtttatccga	agatacactg	gatagcactc	cagaaacgga	acagactaaag	840
tcaaataatggaa	atcaagatgg	ttcgtctgaa	acaaaagata	cacaagtatc	agaatcacca	900
gaatcaactc	ctagccccga	cgatgttta	ggtaaagggt	gtggtatcta	tacagaaaaaa	960
tctttgacca	tcactggaa	tacagggact	atagatttt	tctactat	agctaccat	1020
tctggagcag	gtgtattcac	taaagaaaaac	ttgtcttgca	ccaacacgaa	tagcttacag	1080
tttttgaaaa	actcggcagg	tcaacatgg	ggaggagct	acgttactca	aaccatgtct	1140
gttactaata	caactagtga	aagtataact	actccccctc	tcgttaggaga	agtgtatccc	1200
tctgaaaata	cagctaaagg	gcacgggtgt	ggtatctgca	ctaacaact	ttctttatct	1260
aattttaaaa	cggtgactct	cactaaaaac	tctgcaaagg	agtctggagg	agctatttt	1320
acagatctag	cgtctataacc	aacaacagat	accccagagt	tttctacc	cttccctcc	1380
tcgcctgcaa	gcactcccga	agtagttgt	tctgctaaaa	taaatcgatt	cttgcctct	1440
acggcagaac	cggcagcccc	ttctctaaca	gaggctgagt	ctgatcaaac	ggatcaaaca	1500
gaaacttctg	atactaatacg	cgatatacgac	gtgtcgattg	agaacatttt	gaatgtcgct	1560
atcaatcaaa	acacttctgc	gaaaaaaaa	gggcttattt	acgggaaaaaa	agctaaactt	1620
tcccgtat	acaatcttga	actttcaggg	aattcatccc	aggatgttagg	aggaggtctc	1680
tgtttactg	aaagcgtaga	atttgcata	attggatcgc	tcttatacc	ctataactct	1740
gctgctaaag	aaggtgggg	tattcattct	aaaacggta	ctctatctaa	cctcaagtct	1800
accttcactt	ttgcagataa	cactgttaaa	gcaatagtag	aaagcactcc	tgaagctcca	1860
gaagagattc	ctccagtaga	aggagaagag	tctacagca	cagaaaatcc	gaattctaat	1920
acagaaggaa	gttccgctaa	cactaacctt	gaaggatctc	aaggggatac	tgctgataca	1980
gggactgggt	ttgttaacaa	tgagtctaa	gacacatcg	atactggaaa	cgctgaatct	2040
ggagaacaac	tacaagattc	tacacaatct	aatgaagaaa	atacccttcc	caatagtagt	2100
attgtcaat	ctaacgaaaa	cacagacgaa	tcatctgata	gccacactga	gaaataact	2160
gacgagatgt	tctcatcg	ctctaaaat	ggatcatcta	ctcctcaaga	tggaggagca	2220
gcttcttca	gggctccctc	aggagatca	tctatctctg	caaacgctt	tttagctaaa	2280
agctatgtcg	cgagacttgc	tagctccct	gtatctaatt	tttcaggttc	agacgttact	2340
gcacatctcg	ataatccaga	cttccctca	tctggagata	gctgggaga	ctctgaagga	2400
ccgactgagc	cagaagctgg	ttctacaaca	gaaactccta	ctttaatagg	aggaggtgct	2460

atctga	2466
<210> 188	
<211> 1578	
<212> DNA	
<213> Chlamydia	
<400> 188	
atgcattacc atcaccatca cacggcccg tccgataact tccagctgtc ccagggtggg	60
cagggattcg ccattccgat cgggcaggcg atggcgtatcg cgggccagat caagttccc	120
accgttcata tcgggcctac cgcccttcgt ggcttgggt ttgtcgacaa caacggcaac	180
ggcgcacgag tccaacgcgt ggtcgggagc gctccggcgg caagtctcg catctccacc	240
ggcgacgtga tcaccgcgt cgacggcgct ccgatcaact cggccaccgc gatggcggac	300
gctttaacg ggcattcatcc cggtgacgtc atctcggtga cctggcaaac caagtccggc	360
ggcacgcgta cagggAACgt gacattggcc gagggacccc cggccgaatt cccgtagta	420
cctagaggtt caccgctgcc tggggaaat ccagctgaac caagtttatt aatcgatggc	480
actatgtggg aagggtgttc aggagatct tgcgtatcgt ggcgtacttg gtgtgacgac	540
attagcatcc ggcaggata ctacggagat tatgtttcg atcgtgtatt aaaagttgat	600
gtgataaaaa cttagcggtt catggctgca actcctacgc aggctataagg taacgcaagt	660
aatactaatac agccagaagc aaatggcaga cggaaacatcg cttacggaaag gcatatgca	720
gatgcagagt ggtttcaaa tgcagccctc ctagcattaa acatttggga tcgcttcgac	780
atttctgca ccttaggggc atccaatgga tacttcaaag caagttccgc tgcatattcaac	840
ttgggttgggt taatagggtt ttcagctgca agctcaatct ctaccgatct tccaaatgca	900
cttcctaaca taggcattac ccaagggttt gtgaatttt atacagacac atcattttct	960
tggagcgttag gtgcacgtgg agctttatgg gaatgtgggtt gtgcaacttt aggagctgag	1020
ttccaataacg ctcaatctaa tcctaaaggatt gagatgctca acgtcacttc aagcccgac	1080
caatttgtga ttcacaaacc aagaggctat aaaggagcta gctgaattt tcctttacct	1140
ataacggctg gaacaacaga agctacagac accaaatcag ctacaattaa ataccatgaa	1200
tggcaagttag gcctcgccct gtcttacaga ttgaatatgc ttgttccata tattggcgta	1260
aactggtaa gagcaactt tgatgctgat actatccgca ttgctcaacc taaaattaaaa	1320
tcggagattc ttaacattac tacatggaac ccaaggctta taggatcaac cactgctttg	1380
cccaataata gtggtaagga tggcttatct gatgtcttgc aaattgtttc gattcagatc	1440
aacaaaatga agtcttagaaa agcttgggtt gtagctgttg gtgcaacgtt aatcgacgct	1500
gacaaatggt caatcactgg tgaagcacgc ttaatcaatg aaagagctgc tcacatgaat	1560
gcacaattcc gcttctaa	1578
<210> 189	
<211> 866	
<212> PRT	
<213> Chlamydia	
<220>	
<221> VARIANT	
<222> (1)...(866)	
<223> Xaa = Any Amino Acid	
<400> 189	
Met Ala Ser His His His His His Leu Phe Gly Gln Asp Pro Leu	
1 5 10 15	
Gly Glu Thr Ala Leu Leu Thr Lys Asn Pro Asn His Val Val Cys Thr	
20 25 30	
Phe Phe Glu Asp Cys Thr Met Glu Ser Leu Phe Pro Ala Leu Cys Ala	
35 40 45	
His Ala Ser Gln Asp Asp Pro Leu Tyr Val Leu Gly Asn Ser Tyr Cys	
50 55 60	

Trp Phe Val Ser Lys Leu His Ile Thr Asp Pro Lys Glu Ala Leu Phe
 65 70 75 80
 Lys Glu Lys Gly Asp Leu Ser Ile Gln Asn Phe Arg Phe Leu Ser Phe
 85 90 95
 Thr Asp Cys Ser Ser Lys Glu Ser Ser Pro Ser Ile Ile His Gln Lys
 100 105 110
 Asn Gly Gln Leu Ser Leu Arg Asn Asn Gly Ser Met Ser Phe Cys Arg
 115 120 125
 Asn His Ala Glu Gly Ser Gly Ala Ile Ser Ala Asp Ala Phe Ser
 130 135 140
 Leu Gln His Asn Tyr Leu Phe Thr Ala Phe Glu Glu Asn Ser Ser Lys
 145 150 155 160
 Gly Asn Gly Gly Ala Ile Gln Ala Gln Thr Phe Ser Leu Ser Arg Asn
 165 170 175
 Val Ser Pro Ile Ser Phe Ala Arg Asn Arg Ala Asp Leu Asn Gly Gly
 180 185 190
 Ala Ile Cys Cys Ser Asn Leu Ile Cys Ser Gly Asn Val Asn Pro Leu
 195 200 205
 Phe Phe Thr Gly Asn Ser Ala Thr Asn Gly Gly Xaa Ile Cys Cys Ile
 210 215 220
 Ser Asp Leu Asn Thr Ser Glu Lys Gly Ser Leu Ser Leu Ala Cys Asn
 225 230 235 240
 Gln Xaa Thr Leu Phe Ala Ser Asn Ser Ala Lys Glu Lys Gly Gly Ala
 245 250 255
 Ile Tyr Ala Lys His Met Val Leu Arg Tyr Asn Gly Pro Val Ser Phe
 260 265 270
 Ile Asn Asn Ser Ala Lys Ile Gly Gly Ala Ile Ala Ile Gln Ser Gly
 275 280 285
 Gly Ser Leu Ser Ile Leu Ala Gly Glu Gly Ser Val Leu Phe Gln Asn
 290 295 300
 Asn Ser Gln Arg Thr Ser Asp Gln Gly Leu Val Arg Asn Ala Ile Tyr
 305 310 315 320
 Leu Glu Lys Asp Ala Ile Leu Ser Ser Leu Glu Ala Arg Asn Gly Asp
 325 330 335
 Ile Leu Phe Phe Asp Pro Ile Val Gln Glu Ser Ser Ser Lys Glu Ser
 340 345 350
 Pro Leu Pro Ser Ser Leu Gln Ala Ser Val Thr Ser Pro Thr Pro Ala
 355 360 365
 Thr Ala Ser Pro Leu Val Ile Gln Thr Ser Ala Asn Arg Ser Val Ile
 370 375 380
 Phe Ser Ser Glu Arg Leu Ser Glu Glu Glu Lys Thr Pro Asp Asn Leu
 385 390 395 400
 Thr Ser Gln Leu Gln Gln Pro Ile Glu Leu Lys Ser Gly Arg Leu Val
 405 410 415
 Leu Lys Asp Arg Ala Val Leu Ser Xaa Pro Ser Leu Ser Gln Asp Pro
 420 425 430
 Gln Ala Leu Leu Ile Met Glu Ala Gly Thr Ser Leu Lys Thr Ser Xaa
 435 440 445
 Asp Leu Lys Leu Xaa Thr Xaa Ser Ile Pro Leu His Ser Leu Asp Thr
 450 455 460
 Glu Lys Ser Val Thr Ile His Ala Pro Asn Leu Ser Ile Gln Lys Ile
 465 470 475 480
 Phe Leu Ser Asn Ser Gly Asp Glu Asn Phe Tyr Glu Asn Val Glu Leu
 485 490 495
 Leu Ser Lys Glu Gln Asn Asn Ile Pro Leu Leu Thr Leu Pro Lys Glu

	500	505	510												
Gln	Ser	His	Leu	His	Leu	Pro	Asp	Gly	Asn	Leu	Ser	Ser	His	Phe	Gly
			515					520						525	
Tyr	Gln	Gly	Asp	Trp	Thr	Phe	Ser	Trp	Lys	Asp	Ser	Asp	Glu	Gly	His
			530			535			540						
Ser	Leu	Ile	Ala	Asn	Trp	Thr	Pro	Lys	Asn	Tyr	Val	Pro	His	Pro	Glu
	545			550				555						560	
Arg	Gln	Ser	Thr	Leu	Val	Ala	Asn	Thr	Leu	Trp	Asn	Thr	Tyr	Ser	Asp
			565			570			575						
Met	Gln	Ala	Val	Gln	Ser	Met	Ile	Asn	Thr	Thr	Ala	His	Gly	Gly	Ala
			580			585			590						
Tyr	Leu	Phe	Gly	Thr	Trp	Gly	Ser	Ala	Val	Ser	Asn	Leu	Phe	Tyr	Val
	595				600				605						
His	Asp	Ser	Ser	Gly	Lys	Pro	Ile	Asp	Asn	Trp	His	His	Arg	Ser	Leu
	610				615			620							
Gly	Tyr	Leu	Phe	Gly	Ile	Ser	Thr	His	Ser	Leu	Asp	Asp	His	Ser	Phe
	625				630			635					640		
Cys	Leu	Ala	Ala	Gly	Gln	Leu	Leu	Gly	Lys	Ser	Ser	Asp	Ser	Phe	Ile
				645			650			655					
Thr	Ser	Thr	Glu	Thr	Thr	Ser	Tyr	Ile	Ala	Thr	Val	Gln	Ala	Gln	Leu
			660			665			670						
Ala	Thr	Ser	Leu	Met	Lys	Ile	Ser	Ala	Gln	Ala	Cys	Tyr	Asn	Glu	Ser
			675			680			685						
Ile	His	Glu	Leu	Lys	Thr	Lys	Tyr	Arg	Ser	Phe	Ser	Lys	Glu	Gly	Phe
	690				695			700							
Gly	Ser	Trp	His	Ser	Val	Ala	Val	Ser	Gly	Glu	Val	Cys	Ala	Ser	Ile
	705				710			715					720		
Pro	Ile	Val	Ser	Asn	Gly	Ser	Gly	Leu	Phe	Ser	Ser	Phe	Ser	Ile	Phe
			725			730			735						
Ser	Lys	Leu	Gln	Gly	Phe	Ser	Gly	Thr	Gln	Asp	Gly	Phe	Glu	Glu	Ser
			740			745			750						
Ser	Gly	Glu	Ile	Arg	Ser	Phe	Ser	Ala	Ser	Ser	Phe	Arg	Asn	Ile	Ser
			755			760			765						
Leu	Pro	Ile	Gly	Ile	Thr	Phe	Glu	Lys	Lys	Ser	Gln	Lys	Thr	Arg	Thr
	770				775			780							
Tyr	Tyr	Tyr	Phe	Leu	Gly	Ala	Tyr	Ile	Gln	Asp	Leu	Lys	Arg	Asp	Val
	785				790			795					800		
Glu	Ser	Gly	Pro	Val	Val	Leu	Leu	Lys	Asn	Ala	Val	Ser	Trp	Asp	Ala
					805			810				815			
Pro	Met	Ala	Asn	Leu	Asp	Ser	Arg	Ala	Tyr	Met	Phe	Arg	Leu	Thr	Asn
					820			825			830				
Gln	Arg	Ala	Leu	His	Arg	Leu	Gln	Thr	Leu	Leu	Asn	Val	Ser	Cys	Val
					835			840			845				
Leu	Arg	Gly	Gln	Ser	His	Ser	Tyr	Ser	Leu	Asp	Leu	Gly	Thr	Thr	Tyr
	850					855			860						
Arg	Phe														
	865														
<210> 190															
<211> 1006															
<212> PRT															
<213> Chlamydia															
<400> 190															
Met Ala Ser Met Thr Gly Gly Gln Gln Met Gly Arg Asp Ser Ser Leu															

1	5	10	15
Val Pro His His His His His Met Ile Pro Gln Gly Ile Tyr Asp			
20	25	30	
Gly Glu Thr Leu Thr Val Ser Phe Pro Tyr Thr Val Ile Gly Asp Pro			
35	40	45	
Ser Gly Thr Thr Val Phe Ser Ala Gly Glu Leu Thr Leu Lys Asn Leu			
50	55	60	
Asp Asn Ser Ile Ala Ala Leu Pro Leu Ser Cys Phe Gly Asn Leu Leu			
65	70	75	80
Gly Ser Phe Thr Val Leu Gly Arg Gly His Ser Leu Thr Phe Glu Asn			
85	90	95	
Ile Arg Thr Ser Thr Asn Gly Ala Ala Leu Ser Asn Ser Ala Ala Asp			
100	105	110	
Gly Leu Phe Thr Ile Glu Gly Phe Lys Glu Leu Ser Phe Ser Asn Cys			
115	120	125	
Asn Ser Leu Leu Ala Val Leu Pro Ala Ala Thr Thr Asn Lys Gly Ser			
130	135	140	
Gln Thr Pro Thr Thr Ser Thr Pro Ser Asn Gly Thr Ile Tyr Ser			
145	150	155	160
Lys Thr Asp Leu Leu Leu Asn Asn Glu Lys Phe Ser Phe Tyr Ser			
165	170	175	
Asn Leu Val Ser Gly Asp Gly Gly Ala Ile Asp Ala Lys Ser Leu Thr			
180	185	190	
Val Gln Gly Ile Ser Lys Leu Cys Val Phe Gln Glu Asn Thr Ala Gln			
195	200	205	
Ala Asp Gly Gly Ala Cys Gln Val Val Thr Ser Phe Ser Ala Met Ala			
210	215	220	
Asn Glu Ala Pro Ile Ala Phe Val Ala Asn Val Ala Gly Val Arg Gly			
225	230	235	240
Gly Gly Ile Ala Ala Val Gln Asp Gly Gln Gln Gly Val Ser Ser Ser			
245	250	255	
Thr Ser Thr Glu Asp Pro Val Val Ser Phe Ser Arg Asn Thr Ala Val			
260	265	270	
Glu Phe Asp Gly Asn Val Ala Arg Val Gly Gly Ile Tyr Ser Tyr			
275	280	285	
Gly Asn Val Ala Phe Leu Asn Asn Gly Lys Thr Leu Phe Leu Asn Asn			
290	295	300	
Val Ala Ser Pro Val Tyr Ile Ala Ala Lys Gln Pro Thr Ser Gly Gln			
305	310	315	320
Ala Ser Asn Thr Ser Asn Asn Tyr Gly Asp Gly Gly Ala Ile Phe Cys			
325	330	335	
Lys Asn Gly Ala Gln Ala Gly Ser Asn Asn Ser Gly Ser Val Ser Phe			
340	345	350	
Asp Gly Glu Gly Val Val Phe Phe Ser Ser Asn Val Ala Ala Gly Lys			
355	360	365	
Gly Gly Ala Ile Tyr Ala Lys Lys Leu Ser Val Ala Asn Cys Gly Pro			
370	375	380	
Val Gln Phe Leu Arg Asn Ile Ala Asn Asp Gly Gly Ala Ile Tyr Leu			
385	390	395	400
Gly Glu Ser Gly Glu Leu Ser Leu Ser Ala Asp Tyr Gly Asp Ile Ile			
405	410	415	
Phe Asp Gly Asn Leu Lys Arg Thr Ala Lys Glu Asn Ala Ala Asp Val			
420	425	430	
Asn Gly Val Thr Val Ser Ser Gln Ala Ile Ser Met Gly Ser Gly Gly			
435	440	445	

Lys Ile Thr Thr Leu Arg Ala Lys Ala Gly His Gln Ile Leu Phe Asn
 450 455 460
 Asp Pro Ile Glu Met Ala Asn Gly Asn Asn Gln Pro Ala Gln Ser Ser
 465 470 475 480
 Lys Leu Leu Lys Ile Asn Asp Gly Glu Gly Tyr Thr Gly Asp Ile Val
 485 490 495
 Phe Ala Asn Gly Ser Ser Thr Leu Tyr Gln Asn Val Thr Ile Glu Gln
 500 505 510
 Gly Arg Ile Val Leu Arg Glu Lys Ala Lys Leu Ser Val Asn Ser Leu
 515 520 525
 Ser Gln Thr Gly Gly Ser Leu Tyr Met Glu Ala Gly Ser Thr Leu Asp
 530 535 540
 Phe Val Thr Pro Gln Pro Pro Gln Gln Pro Pro Ala Ala Asn Gln Leu
 545 550 555 560
 Ile Thr Leu Ser Asn Leu His Leu Ser Leu Ser Ser Leu Leu Ala Asn
 565 570 575
 Asn Ala Val Thr Asn Pro Pro Thr Asn Pro Pro Ala Gln Asp Ser His
 580 585 590
 Pro Ala Val Ile Gly Ser Thr Thr Ala Gly Ser Val Thr Ile Ser Gly
 595 600 605
 Pro Ile Phe Phe Glu Asp Leu Asp Asp Thr Ala Tyr Asp Arg Tyr Asp
 610 615 620
 Trp Leu Gly Ser Asn Gln Lys Ile Asn Val Leu Lys Leu Gln Leu Gly
 625 630 635 640
 Thr Lys Pro Pro Ala Asn Ala Pro Ser Asp Leu Thr Leu Gly Asn Glu
 645 650 655
 Met Pro Lys Tyr Gly Tyr Gln Gly Ser Trp Lys Leu Ala Trp Asp Pro
 660 665 670
 Asn Thr Ala Asn Asn Gly Pro Tyr Thr Leu Lys Ala Thr Trp Thr Lys
 675 680 685
 Thr Gly Tyr Asn Pro Gly Pro Glu Arg Val Ala Ser Leu Val Pro Asn
 690 695 700
 Ser Leu Trp Gly Ser Ile Leu Asp Ile Arg Ser Ala His Ser Ala Ile
 705 710 715 720
 Gln Ala Ser Val Asp Gly Arg Ser Tyr Cys Arg Gly Leu Trp Val Ser
 725 730 735
 Gly Val Ser Asn Phe Phe Tyr His Asp Arg Asp Ala Leu Gly Gln Gly
 740 745 750
 Tyr Arg Tyr Ile Ser Gly Gly Tyr Ser Leu Gly Ala Asn Ser Tyr Phe
 755 760 765
 Gly Ser Ser Met Phe Gly Leu Ala Phe Thr Glu Val Phe Gly Arg Ser
 770 775 780
 Lys Asp Tyr Val Val Cys Arg Ser Asn His His Ala Cys Ile Gly Ser
 785 790 795 800
 Val Tyr Leu Ser Thr Gln Gln Ala Leu Cys Gly Ser Tyr Leu Phe Gly
 805 810 815
 Asp Ala Phe Ile Arg Ala Ser Tyr Gly Phe Gly Asn Gln His Met Lys
 820 825 830
 Thr Ser Tyr Thr Phe Ala Glu Glu Ser Asp Val Arg Trp Asp Asn Asn
 835 840 845
 Cys Leu Ala Gly Glu Ile Gly Ala Gly Leu Pro Ile Val Ile Thr Pro
 850 855 860
 Ser Lys Leu Tyr Leu Asn Glu Leu Arg Pro Phe Val Gln Ala Glu Phe
 865 870 875 880
 Ser Tyr Ala Asp His Glu Ser Phe Thr Glu Glu Gly Asp Gln Ala Arg

885	890	895
Ala Phe Lys Ser Gly His Leu Leu Asn Leu Ser Val Pro Val Gly Val		
900	905	910
Lys Phe Asp Arg Cys Ser Ser Thr His Pro Asn Lys Tyr Ser Phe Met		
915	920	925
Ala Ala Tyr Ile Cys Asp Ala Tyr Arg Thr Ile Ser Gly Thr Glu Thr		
930	935	940
Thr Leu Leu Ser His Gln Glu Thr Trp Thr Thr Asp Ala Phe His Leu		
945	950	955
Ala Arg His Gly Val Val Val Arg Gly Ser Met Tyr Ala Ser Leu Thr		
965	970	975
Ser Asn Ile Glu Val Tyr Gly His Gly Arg Tyr Glu Tyr Arg Asp Ala		
980	985	990
Ser Arg Gly Tyr Gly Leu Ser Ala Gly Ser Lys Val Arg Phe		
995	1000	1005

<210> 191

<211> 977

<212> PRT

<213> Chlamydia

<400> 191

Met Ala Ser Met Thr Gly Gly Gln Gln Met Gly Arg Asp Ser Ser Leu		
1	5	10
Val Pro Ser Ser Asp Pro His His His His His Gly Leu Ala Arg		
20	25	30
Glu Val Pro Ser Arg Ile Phe Leu Met Pro Asn Ser Val Pro Asp Pro		
35	40	45
Thr Lys Glu Ser Leu Ser Asn Lys Ile Ser Leu Thr Gly Asp Thr His		
50	55	60
Asn Leu Thr Asn Cys Tyr Leu Asp Asn Leu Arg Tyr Ile Leu Ala Ile		
65	70	75
Leu Gln Lys Thr Pro Asn Glu Gly Ala Ala Val Thr Ile Thr Asp Tyr		
85	90	95
Leu Ser Phe Phe Asp Thr Gln Lys Glu Gly Ile Tyr Phe Ala Lys Asn		
100	105	110
Leu Thr Pro Glu Ser Gly Gly Ala Ile Gly Tyr Ala Ser Pro Asn Ser		
115	120	125
Pro Thr Val Glu Ile Arg Asp Thr Ile Gly Pro Val Ile Phe Glu Asn		
130	135	140
Asn Thr Cys Cys Arg Leu Phe Thr Trp Arg Asn Pro Tyr Ala Ala Asp		
145	150	155
Lys Ile Arg Glu Gly Gly Ala Ile His Ala Gln Asn Leu Tyr Ile Asn		
165	170	175
His Asn His Asp Val Val Gly Phe Met Lys Asn Phe Ser Tyr Val Gln		
180	185	190
Gly Gly Ala Ile Ser Thr Ala Asn Thr Phe Val Val Ser Glu Asn Gln		
195	200	205
Ser Cys Phe Leu Phe Met Asp Asn Ile Cys Ile Gln Thr Asn Thr Ala		
210	215	220
Gly Lys Gly Gly Ala Ile Tyr Ala Gly Thr Ser Asn Ser Phe Glu Ser		
225	230	235
Asn Asn Cys Asp Leu Phe Phe Ile Asn Asn Ala Cys Cys Ala Gly Gly		
245	250	255
Ala Ile Phe Ser Pro Ile Cys Ser Leu Thr Gly Asn Arg Gly Asn Ile		

260	265	270
Val Phe Tyr Asn Asn Arg Cys Phe Lys Asn Val Glu Thr Ala Ser Ser		
275	280	285
Glu Ala Ser Asp Gly Gly Ala Ile Lys Val Thr Thr Arg Leu Asp Val		
290	295	300
Thr Gly Asn Arg Gly Arg Ile Phe Phe Ser Asp Asn Ile Thr Lys Asn		
305	310	315
Tyr Gly Gly Ala Ile Tyr Ala Pro Val Val Thr Leu Val Asp Asn Gly		
325	330	335
Pro Thr Tyr Phe Ile Asn Asn Ile Ala Asn Asn Lys Gly Gly Ala Ile		
340	345	350
Tyr Ile Asp Gly Thr Ser Asn Ser Lys Ile Ser Ala Asp Arg His Ala		
355	360	365
Ile Ile Phe Asn Glu Asn Ile Val Thr Asn Val Thr Asn Ala Asn Gly		
370	375	380
Thr Ser Thr Ser Ala Asn Pro Pro Arg Arg Asn Ala Ile Thr Val Ala		
385	390	395
Ser Ser Ser Gly Glu Ile Leu Leu Gly Ala Gly Ser Ser Gln Asn Leu		
405	410	415
Ile Phe Tyr Asp Pro Ile Glu Val Ser Asn Ala Gly Val Ser Val Ser		
420	425	430
Phe Asn Lys Glu Ala Asp Gln Thr Gly Ser Val Val Phe Ser Gly Ala		
435	440	445
Thr Val Asn Ser Ala Asp Phe His Gln Arg Asn Leu Gln Thr Lys Thr		
450	455	460
Pro Ala Pro Leu Thr Leu Ser Asn Gly Phe Leu Cys Ile Glu Asp His		
465	470	475
Ala Gln Leu Thr Val Asn Arg Phe Thr Gln Thr Gly Gly Val Val Ser		
485	490	495
Leu Gly Asn Gly Ala Val Leu Ser Cys Tyr Lys Asn Gly Thr Gly Asp		
500	505	510
Ser Ala Ser Asn Ala Ser Ile Thr Leu Lys His Ile Gly Leu Asn Leu		
515	520	525
Ser Ser Ile Leu Lys Ser Gly Ala Glu Ile Pro Leu Leu Trp Val Glu.		
530	535	540
Pro Thr Asn Asn Ser Asn Asn Tyr Thr Ala Asp Thr Ala Ala Thr Phe		
545	550	555
Ser Leu Ser Asp Val Lys Leu Ser Leu Ile Asp Asp Tyr Gly Asn Ser		
565	570	575
Pro Tyr Glu Ser Thr Asp Leu Thr His Ala Leu Ser Ser Gln Pro Met		
580	585	590
Leu Ser Ile Ser Glu Ala Ser Asp Asn Gln Leu Gln Ser Glu Asn Ile		
595	600	605
Asp Phe Ser Gly Leu Asn Val Pro His Tyr Gly Trp Gln Gly Leu Trp		
610	615	620
Thr Trp Gly Trp Ala Lys Thr Gln Asp Pro Glu Pro Ala Ser Ser Ala		
625	630	635
Thr Ile Thr Asp Pro Gln Lys Ala Asn Arg Phe His Arg Thr Leu Leu		
645	650	655
Leu Thr Trp Leu Pro Ala Gly Tyr Val Pro Ser Pro Lys His Arg Ser		
660	665	670
Pro Leu Ile Ala Asn Thr Leu Trp Gly Asn Met Leu Leu Ala Thr Glu		
675	680	685
Ser Leu Lys Asn Ser Ala Glu Leu Thr Pro Ser Gly His Pro Phe Trp		
690	695	700

Gly Ile Thr Gly Gly Leu Gly Met Met Val Tyr Gln Asp Pro Arg
 705 710 715 720
 Glu Asn His Pro Gly Phe His Met Arg Ser Ser Gly Tyr Ser Ala Gly
 725 730 735
 Met Ile Ala Gly Gln Thr His Thr Phe Ser Leu Lys Phe Ser Gln Thr
 740 745 750
 Tyr Thr Lys Leu Asn Glu Arg Tyr Ala Lys Asn Asn Val Ser Ser Lys
 755 760 765
 Asn Tyr Ser Cys Gln Gly Glu Met Leu Phe Ser Leu Gln Glu Gly Phe
 770 775 780
 Leu Leu Thr Lys Leu Val Gly Leu Tyr Ser Tyr Gly Asp His Asn Cys
 785 790 795 800
 His His Phe Tyr Thr Gln Gly Glu Asn Leu Thr Ser Gln Gly Thr Phe
 805 810 815
 Arg Ser Gln Thr Met Gly Gly Ala Val Phe Phe Asp Leu Pro Met Lys
 820 825 830
 Pro Phe Gly Ser Thr His Ile Leu Thr Ala Pro Phe Leu Gly Ala Leu
 835 840 845
 Gly Ile Tyr Ser Ser Leu Ser His Phe Thr Glu Val Gly Ala Tyr Pro
 850 855 860
 Arg Ser Phe Ser Thr Lys Thr Pro Leu Ile Asn Val Leu Val Pro Ile
 865 870 875 880
 Gly Val Lys Gly Ser Phe Met Asn Ala Thr His Arg Pro Gln Ala Trp
 885 890 895
 Thr Val Glu Leu Ala Tyr Gln Pro Val Leu Tyr Arg Gln Glu Pro Gly
 900 905 910
 Ile Ala Thr Gln Leu Leu Ala Ser Lys Gly Ile Trp Phe Gly Ser Gly
 915 920 925
 Ser Pro Ser Ser Arg His Ala Met Ser Tyr Lys Ile Ser Gln Gln Thr
 930 935 940
 Gln Pro Leu Ser Trp Leu Thr Leu His Phe Gln Tyr His Gly Phe Tyr
 945 950 955 960
 Ser Ser Ser Thr Phe Cys Asn Tyr Leu Asn Gly Glu Ile Ala Leu Arg
 965 970 975
 Phe

<210> 192
 <211> 848
 <212> PRT
 <213> Chlamydia

<400> 192
 Met Ala Ser His His His His His Gly Ala Ile Ser Cys Leu Arg
 1 5 10 15
 Gly Asp Val Val Ile Ser Gly Asn Lys Gly Arg Val Glu Phe Lys Asp
 20 25 30
 Asn Ile Ala Thr Arg Leu Tyr Val Glu Glu Thr Val Glu Lys Val Glu
 35 40 45
 Glu Val Glu Pro Ala Pro Glu Gln Lys Asp Asn Asn Glu Leu Ser Phe
 50 55 60
 Leu Gly Ser Val Glu Gln Ser Phe Ile Thr Ala Ala Asn Gln Ala Leu
 65 70 75 80
 Phe Ala Ser Glu Asp Gly Asp Leu Ser Pro Glu Ser Ser Ile Ser Ser
 85 90 95

Glu Glu Leu Ala Lys Arg Arg Glu Cys Ala Gly Gly Ala Ile Phe Ala
 100 105 110
 Lys Arg Val Arg Ile Val Asp Asn Gln Glu Ala Val Val Phe Ser Asn
 115 120 125
 Asn Phe Ser Asp Ile Tyr Gly Gly Ala Ile Phe Thr Gly Ser Leu Arg
 130 135 140
 Glu Glu Asp Lys Leu Asp Gly Gln Ile Pro Glu Val Leu Ile Ser Gly
 145 150 155 160
 Asn Ala Gly Asp Val Val Phe Ser Gly Asn Ser Ser Lys Arg Asp Glu
 165 170 175
 His Leu Pro His Thr Gly Gly Ala Ile Cys Thr Gln Asn Leu Thr
 180 185 190
 Ile Ser Gln Asn Thr Gly Asn Val Leu Phe Tyr Asn Asn Val Ala Cys
 195 200 205
 Ser Gly Gly Ala Val Arg Ile Glu Asp His Gly Asn Val Leu Leu Glu
 210 215 220
 Ala Phe Gly Gly Asp Ile Val Phe Lys Gly Asn Ser Ser Phe Arg Ala
 225 230 235 240
 Gln Gly Ser Asp Ala Ile Tyr Phe Ala Gly Lys Glu Ser His Ile Thr
 245 250 255
 Ala Leu Asn Ala Thr Glu Gly His Ala Ile Val Phe His Asp Ala Leu
 260 265 270
 Val Phe Glu Asn Leu Lys Glu Arg Lys Ser Ala Glu Val Leu Leu Ile
 275 280 285
 Asn Ser Arg Glu Asn Pro Gly Tyr Thr Gly Ser Ile Arg Phe Leu Glu
 290 295 300
 Ala Glu Ser Lys Val Pro Gln Cys Ile His Val Gln Gln Gly Ser Leu
 305 310 315 320
 Glu Leu Leu Asn Gly Ala Thr Leu Cys Ser Tyr Gly Phe Lys Gln Asp
 325 330 335
 Ala Gly Ala Lys Leu Val Leu Ala Ala Gly Ser Lys Leu Lys Ile Leu
 340 345 350
 Asp Ser Gly Thr Pro Val Gln Gly His Ala Ile Ser Lys Pro Glu Ala
 355 360 365
 Glu Ile Glu Ser Ser Ser Glu Pro Glu Gly Ala His Ser Leu Trp Ile
 370 375 380
 Ala Lys Asn Ala Gln Thr Thr Val Pro Met Val Asp Ile His Thr Ile
 385 390 395 400
 Ser Val Asp Leu Ala Ser Phe Ser Ser Ser Gln Gln Glu Gly Thr Val
 405 410 415
 Glu Ala Pro Gln Val Ile Val Pro Gly Gly Ser Tyr Val Arg Ser Gly
 420 425 430
 Glu Leu Asn Leu Glu Leu Val Asn Thr Thr Gly Thr Gly Tyr Glu Asn
 435 440 445
 His Ala Leu Leu Lys Asn Glu Ala Lys Val Pro Leu Met Ser Phe Val
 450 455 460
 Ala Ser Ser Asp Glu Ala Ser Ala Glu Ile Ser Asn Leu Ser Val Ser
 465 470 475 480
 Asp Leu Gln Ile His Val Ala Thr Pro Glu Ile Glu Glu Asp Thr Tyr
 485 490 495
 Gly His Met Gly Asp Trp Ser Glu Ala Lys Ile Gln Asp Gly Thr Leu
 500 505 510
 Val Ile Asn Trp Asn Pro Thr Gly Tyr Arg Leu Asp Pro Gln Lys Ala
 515 520 525
 Gly Ala Leu Val Phe Asn Ala Leu Trp Glu Glu Gly Ala Val Leu Ser

530	535	540
Ala Leu Lys Asn Ala Arg Phe Ala His Asn Leu Thr Ala Gln Arg Met		
545	550	555
Glu Phe Asp Tyr Ser Thr Asn Val Trp Gly Phe Ala Phe Gly Gly Phe		
565	570	575
Arg Thr Leu Ser Ala Glu Asn Leu Val Ala Ile Asp Gly Tyr Lys Gly		
580	585	590
Ala Tyr Gly Gly Ala Ser Ala Gly Val Asp Ile Gln Leu Met Glu Asp		
595	600	605
Phe Val Leu Gly Val Ser Gly Ala Ala Phe Leu Gly Lys Met Asp Ser		
610	615	620
Gln Lys Phe Asp Ala Glu Val Ser Arg Lys Gly Val Val Gly Ser Val		
625	630	635
Tyr Thr Gly Phe Leu Ala Gly Ser Trp Phe Phe Lys Gly Gln Tyr Ser		
645	650	655
Leu Gly Glu Thr Gln Asn Asp Met Lys Thr Arg Tyr Gly Val Leu Gly		
660	665	670
Glu Ser Ser Ala Ser Trp Thr Ser Arg Gly Val Leu Ala Asp Ala Leu		
675	680	685
Val Glu Tyr Arg Ser Leu Val Gly Pro Val Arg Pro Thr Phe Tyr Ala		
690	695	700
Leu His Phe Asn Pro Tyr Val Glu Val Ser Tyr Ala Ser Met Lys Phe		
705	710	715
Pro Gly Phe Thr Glu Gln Gly Arg Glu Ala Arg Ser Phe Glu Asp Ala		
725	730	735
Ser Leu Thr Asn Ile Thr Ile Pro Leu Gly Met Lys Phe Glu Leu Ala		
740	745	750
Phe Ile Lys Gly Gln Phe Ser Glu Val Asn Ser Leu Gly Ile Ser Tyr		
755	760	765
Ala Trp Glu Ala Tyr Arg Lys Val Glu Gly Gly Ala Val Gln Leu Leu		
770	775	780
Glu Ala Gly Phe Asp Trp Glu Gly Ala Pro Met Asp Leu Pro Arg Gln		
785	790	795
Glu Leu Arg Val Ala Leu Glu Asn Asn Thr Glu Trp Ser Ser Tyr Phe		
805	810	815
Ser Thr Val Leu Gly Leu Thr Ala Phe Cys Gly Gly Phe Thr Ser Thr		
820	825	830
Asp Ser Lys Leu Gly Tyr Glu Ala Asn Thr Gly Leu Arg Leu Ile Phe		
835	840	845

<210> 193

<211> 778

<212> PRT

<213> Chlamydia

<400> 193

Met His His His His His Gly Leu Ala Ser Cys Val Asp Leu His		
1	5	10
		15
Ala Gly Gly Gln Ser Val Asn Glu Leu Val Tyr Val Gly Pro Gln Ala		
20	25	30
Val Leu Leu Leu Asp Gln Ile Arg Asp Leu Phe Val Gly Ser Lys Asp		
35	40	45
Ser Gln Ala Glu Gly Gln Tyr Arg Leu Ile Val Gly Asp Pro Ser Ser		
50	55	60
Phe Gln Glu Lys Asp Ala Asp Thr Leu Pro Gly Lys Val Glu Gln Ser		

65	70	75	80
Thr Leu Phe Ser Val Thr Asn Pro Val Val Phe Gln Gly Val Asp Gln			
85		90	95
Gln Asp Gln Val Ser Ser Gln Gly Leu Ile Cys Ser Phe Thr Ser Ser			
100	105	110	
Asn Leu Asp Ser Pro Arg Asp Gly Glu Ser Phe Leu Gly Ile Ala Phe			
115	120	125	
Val Gly Asp Ser Ser Lys Ala Gly Ile Thr Leu Thr Asp Val Lys Ala			
130	135	140	
Ser Leu Ser Gly Ala Ala Leu Tyr Ser Thr Glu Asp Leu Ile Phe Glu			
145	150	155	160
Lys Ile Lys Gly Gly Leu Glu Phe Ala Ser Cys Ser Ser Leu Glu Gln			
165	170	175	
Gly Gly Ala Cys Ala Ala Gln Ser Ile Leu Ile His Asp Cys Gln Gly			
180	185	190	
Leu Gln Val Lys His Cys Thr Thr Ala Val Asn Ala Glu Gly Ser Ser			
195	200	205	
Ala Asn Asp His Leu Gly Phe Gly Gly Ala Phe Phe Val Thr Gly			
210	215	220	
Ser Leu Ser Gly Glu Lys Ser Leu Tyr Met Pro Ala Gly Asp Met Val			
225	230	235	240
Val Ala Asn Cys Asp Gly Ala Ile Ser Phe Glu Gly Asn Ser Ala Asn			
245	250	255	
Phe Ala Asn Gly Gly Ala Ile Ala Ala Ser Gly Lys Val Leu Phe Val			
260	265	270	
Ala Asn Asp Lys Lys Thr Ser Phe Ile Glu Asn Arg Ala Leu Ser Gly			
275	280	285	
Gly Ala Ile Ala Ala Ser Ser Asp Ile Ala Phe Gln Asn Cys Ala Glu			
290	295	300	
Leu Val Phe Lys Gly Asn Cys Ala Ile Gly Thr Glu Asp Lys Gly Ser			
305	310	315	320
Leu Gly Gly Ala Ile Ser Ser Leu Gly Thr Val Leu Leu Gln Gly			
325	330	335	
Asn His Gly Ile Thr Cys Asp Lys Asn Glu Ser Ala Ser Gln Gly Gly			
340	345	350	
Ala Ile Phe Gly Lys Asn Cys Gln Ile Ser Asp Asn Glu Gly Pro Val			
355	360	365	
Val Phe Arg Asp Ser Thr Ala Cys Leu Gly Gly Ala Ile Ala Ala			
370	375	380	
Gln Glu Ile Val Ser Ile Gln Asn Asn Gln Ala Gly Ile Ser Phe Glu			
385	390	395	400
Gly Gly Lys Ala Ser Phe Gly Gly Ile Ala Cys Gly Ser Phe Ser			
405	410	415	
Ser Ala Gly Gly Ala Ser Val Leu Gly Thr Ile Asp Ile Ser Lys Asn			
420	425	430	
Leu Gly Ala Ile Ser Phe Ser Arg Thr Leu Cys Thr Thr Ser Asp Leu			
435	440	445	
Gly Gln Met Glu Tyr Gln Gly Gly Ala Leu Phe Gly Glu Asn Ile			
450	455	460	
Ser Leu Ser Glu Asn Ala Gly Val Leu Thr Phe Lys Asp Asn Ile Val			
465	470	475	480
Lys Thr Phe Ala Ser Asn Gly Lys Ile Leu Gly Gly Ala Ile Leu			
485	490	495	
Ala Thr Gly Lys Val Glu Ile Thr Asn Asn Ser Gly Gly Ile Ser Phe			
500	505	510	

Thr Gly Asn Ala Arg Ala Pro Gln Ala Leu Pro Thr Gln Glu Glu Phe
 515 520 525
 Pro Leu Phe Ser Lys Lys Glu Gly Arg Pro Leu Ser Ser Gly Tyr Ser
 530 535 540
 Gly Gly Gly Ala Ile Leu Gly Arg Glu Val Ala Ile Leu His Asn Ala
 545 550 555 560
 Ala Val Val Phe Glu Gln Asn Arg Leu Gln Cys Ser Glu Glu Ala
 565 570 575
 Thr Leu Leu Gly Cys Cys Gly Gly Ala Val His Gly Met Asp Ser
 580 585 590
 Thr Ser Ile Val Gly Asn Ser Ser Val Arg Phe Gly Asn Asn Tyr Ala
 595 600 605
 Met Gly Gln Gly Val Ser Gly Gly Ala Leu Leu Ser Lys Thr Val Gln
 610 615 620
 Leu Ala Gly Asn Gly Ser Val Asp Phe Ser Arg Asn Ile Ala Ser Leu
 625 630 635 640
 Gly Gly Gly Ala Leu Gln Ala Ser Glu Gly Asn Cys Glu Leu Val Asp
 645 650 655
 Asn Gly Tyr Val Leu Phe Arg Asp Asn Arg Gly Arg Val Tyr Gly Gly
 660 665 670
 Ala Ile Ser Cys Leu Arg Gly Asp Val Val Ile Ser Gly Asn Lys Gly
 675 680 685
 Arg Val Glu Phe Lys Asp Asn Ile Ala Thr Arg Leu Tyr Val Glu Glu
 690 695 700
 Thr Val Glu Lys Val Glu Val Glu Pro Ala Pro Glu Gln Lys Asp
 705 710 715 720
 Asn Asn Glu Leu Ser Phe Leu Gly Ser Val Glu Gln Ser Phe Ile Thr
 725 730 735
 Ala Ala Asn Gln Ala Leu Phe Ala Ser Glu Asp Gly Asp Leu Ser Pro
 740 745 750
 Glu Ser Ser Ile Ser Ser Glu Glu Leu Ala Lys Arg Arg Glu Cys Ala
 755 760 765
 Gly Gly Ala Asp Ser Ser Arg Ser Gly Cys
 770 775

<210> 194

<211> 948

<212> PRT

<213> Chlamydia

<400> 194

Met Ala Ser Met His His His His His Val Lys Ile Glu Asn Phe
 1 5 10 15
 Ser Gly Gln Gly Ile Phe Ser Gly Asn Lys Ala Ile Asp Asn Thr Thr
 20 25 30
 Glu Gly Ser Ser Ser Lys Ser Asn Val Leu Gly Gly Ala Val Tyr Ala
 35 40 45
 Lys Thr Leu Phe Asn Leu Asp Ser Gly Ser Ser Arg Arg Thr Val Thr
 50 55 60
 Phe Ser Gly Asn Thr Val Ser Ser Gln Ser Thr Thr Gly Gln Val Ala
 65 70 75 80
 Gly Gly Ala Ile Tyr Ser Pro Thr Val Thr Ile Ala Thr Pro Val Val
 85 90 95
 Phe Ser Lys Asn Ser Ala Thr Asn Asn Ala Asn Asn Ala Thr Asp Thr
 100 105 110

Gln Arg Lys Asp Thr Phe Gly Gly Ala Ile Gly Ala Thr Ser Ala Val
 115 120 125
 Ser Leu Ser Gly Gly Ala His Phe Leu Glu Asn Val Ala Asp Leu Gly
 130 135 140
 Ser Ala Ile Gly Leu Val Pro Asp Thr Gln Asn Thr Glu Thr Val Lys
 145 150 155 160
 Leu Glu Ser Gly Ser Tyr Tyr Phe Glu Lys Asn Lys Ala Leu Lys Arg
 165 170 175
 Ala Thr Ile Tyr Ala Pro Val Val Ser Ile Lys Ala Tyr Thr Ala Thr
 180 185 190
 Phe Asn Gln Asn Arg Ser Leu Glu Glu Gly Ser Ala Ile Tyr Phe Thr
 195 200 205
 Lys Glu Ala Ser Ile Glu Ser Leu Gly Ser Val Leu Phe Thr Gly Asn
 210 215 220
 Leu Val Thr Pro Thr Leu Ser Thr Thr Glu Gly Thr Pro Ala Thr
 225 230 235 240
 Thr Ser Gly Asp Val Thr Lys Tyr Gly Ala Ala Ile Phe Gly Gln Ile
 245 250 255
 Ala Ser Ser Asn Gly Ser Gln Thr Asp Asn Leu Pro Leu Lys Leu Ile
 260 265 270
 Ala Ser Gly Gly Asn Ile Cys Phe Arg Asn Asn Glu Tyr Arg Pro Thr
 275 280 285
 Ser Ser Asp Thr Gly Thr Ser Thr Phe Cys Ser Ile Ala Gly Asp Val
 290 295 300
 Lys Leu Thr Met Gln Ala Ala Lys Gly Lys Thr Ile Ser Phe Phe Asp
 305 310 315 320
 Ala Ile Arg Thr Ser Thr Lys Lys Thr Gly Thr Gln Ala Thr Ala Tyr
 325 330 335
 Asp Thr Leu Asp Ile Asn Lys Ser Glu Asp Ser Glu Thr Val Asn Ser
 340 345 350
 Ala Phe Thr Gly Thr Ile Leu Phe Ser Ser Glu Leu His Glu Asn Lys
 355 360 365
 Ser Tyr Ile Pro Gln Asn Val Val Leu His Ser Gly Ser Leu Val Leu
 370 375 380
 Lys Pro Asn Thr Glu Leu His Val Ile Ser Phe Glu Gln Lys Glu Gly
 385 390 395 400
 Ser Ser Leu Val Met Thr Pro Gly Ser Val Leu Ser Asn Gln Thr Val
 405 410 415
 Ala Asp Gly Ala Leu Val Ile Asn Asn Met Thr Ile Asp Leu Ser Ser
 420 425 430
 Val Glu Lys Asn Gly Ile Ala Glu Gly Asn Ile Phe Thr Pro Pro Glu
 435 440 445
 Leu Arg Ile Ile Asp Thr Thr Ser Gly Ser Gly Gly Thr Pro Ser
 450 455 460
 Thr Asp Ser Glu Ser Asn Gln Asn Ser Asp Asp Thr Lys Glu Gln Asn
 465 470 475 480
 Asn Asn Asp Ala Ser Asn Gln Gly Glu Ser Ala Asn Gly Ser Ser Ser
 485 490 495
 Pro Ala Val Ala Ala Ala His Thr Ser Arg Thr Arg Asn Phe Ala Ala
 500 505 510
 Ala Ala Thr Ala Thr Pro Thr Thr Pro Thr Ala Thr Thr Thr Thr
 515 520 525
 Ser Asn Gln Val Ile Leu Gly Gly Glu Ile Lys Leu Ile Asp Pro Asn
 530 535 540
 Gly Thr Phe Phe Gln Asn Pro Ala Leu Arg Ser Asp Gln Gln Ile Ser

545	550	555	560												
Leu	Leu	Val	Leu	Pro	Thr	Asp	Ser	Ser	Lys	Met	Gln	Ala	Gln	Lys	Ile
				565					570					575	
Val	Leu	Thr	Gly	Asp	Ile	Ala	Pro	Gln	Lys	Gly	Tyr	Thr	Gly	Thr	Leu
				580					585					590	
Thr	Leu	Asp	Pro	Asp	Gln	Leu	Gln	Asn	Gly	Thr	Ile	Ser	Ala	Leu	Trp
				595					600					605	
Lys	Phe	Asp	Ser	Tyr	Arg	Gln	Trp	Ala	Tyr	Val	Pro	Arg	Asp	Asn	His
				610					615					620	
Phe	Tyr	Ala	Asn	Ser	Ile	Leu	Gly	Ser	Gln	Met	Ser	Met	Val	Thr	Val
				625					630					640	
Lys	Gln	Gly	Leu	Leu	Asn	Asp	Lys	Met	Asn	Leu	Ala	Arg	Phe	Asp	Glu
				645					650					655	
Val	Ser	Tyr	Asn	Asn	Leu	Trp	Ile	Ser	Gly	Leu	Gly	Thr	Met	Leu	Ser
				660					665					670	
Gln	Val	Gly	Thr	Pro	Thr	Ser	Glu	Glu	Phe	Thr	Tyr	Tyr	Ser	Arg	Gly
				675					680					685	
Ala	Ser	Val	Ala	Leu	Asp	Ala	Lys	Pro	Ala	His	Asp	Val	Ile	Val	Gly
				690					695					700	
Ala	Ala	Phe	Ser	Lys	Met	Ile	Gly	Lys	Thr	Lys	Ser	Leu	Lys	Arg	Glu
				705					710					720	
Asn	Asn	Tyr	Thr	His	Lys	Gly	Ser	Glu	Tyr	Ser	Tyr	Gln	Ala	Ser	Val
				725					730					735	
Tyr	Gly	Gly	Pro	Phe	His	Phe	Val	Ile	Asn	Lys	Lys	Thr	Glu	Lys	
				740					745					750	
Ser	Leu	Pro	Leu	Leu	Leu	Gln	Gly	Val	Ile	Ser	Tyr	Gly	Tyr	Ile	Lys
				755					760					765	
His	Asp	Thr	Val	Thr	His	Tyr	Pro	Thr	Ile	Arg	Glu	Arg	Asn	Gln	Gly
				770					775					780	
Glu	Trp	Glu	Asp	Leu	Gly	Trp	Leu	Thr	Ala	Leu	Arg	Val	Ser	Ser	Val
				785					790					800	
Leu	Arg	Thr	Pro	Ala	Gln	Gly	Asp	Thr	Lys	Arg	Ile	Thr	Val	Tyr	Gly
				805					810					815	
Glu	Leu	Glu	Tyr	Ser	Ser	Ile	Arg	Gln	Lys	Gln	Phe	Thr	Glu	Thr	Glu
				820					825					830	
Tyr	Asp	Pro	Arg	Tyr	Phe	Asp	Asn	Cys	Thr	Tyr	Arg	Asn	Leu	Ala	Ile
				835					840					845	
Pro	Met	Gly	Leu	Ala	Phe	Glu	Gly	Glu	Leu	Ser	Gly	Asn	Asp	Ile	Leu
				850					855					860	
Met	Tyr	Asn	Arg	Phe	Ser	Val	Ala	Tyr	Met	Pro	Ser	Ile	Tyr	Arg	Asn
				865					870					880	
Ser	Pro	Thr	Cys	Lys	Tyr	Gln	Val	Leu	Ser	Ser	Gly	Glu	Gly	Glu	
				885					890					895	
Ile	Ile	Cys	Gly	Val	Pro	Thr	Arg	Asn	Ser	Ala	Arg	Gly	Glu	Tyr	Ser
				900					905					910	
Thr	Gln	Leu	Tyr	Pro	Gly	Pro	Leu	Trp	Thr	Leu	Tyr	Gly	Ser	Tyr	Thr
				915					920					925	
Ile	Glu	Ala	Asp	Ala	His	Thr	Leu	Ala	His	Met	Met	Asn	Cys	Gly	Ala
				930					935					940	
Arg	Met	Thr	Phe												
	945														

<210> 195

<211> 821

<212> PRT

<213> Chlamydia

<400> 195

Met	His	His	His	His	His	Glu	Ala	Ser	Ser	Ile	Gln	Asp	Gln	Ile	
1														15	
Lys	Asn	Thr	Asp	Cys	Asn	Val	Ser	Lys	Val	Gly	Tyr	Ser	Thr	Ser	Gln
				20				25						30	
Ala	Phe	Thr	Asp	Met	Met	Leu	Ala	Asp	Asn	Thr	Glu	Tyr	Arg	Ala	Ala
				35				40						45	
Asp	Ser	Val	Ser	Phe	Tyr	Asp	Phe	Ser	Thr	Ser	Ser	Gly	Leu	Pro	Arg
				50				55						60	
Lys	His	Leu	Ser	Ser	Ser	Ser	Glu	Ala	Ser	Pro	Thr	Thr	Glu	Gly	Val
	65					70				75					80
Ser	Ser	Ser	Ser	Gly	Glu	Asn	Thr	Glu	Asn	Ser	Gln	Asp	Ser	Ala	
				85				90						95	
Pro	Ser	Ser	Gly	Glu	Thr	Asp	Lys	Lys	Thr	Glu	Glu	Glu	Leu	Asp	Asn
				100				105						110	
Gly	Gly	Ile	Ile	Tyr	Ala	Arg	Glu	Lys	Leu	Thr	Ile	Ser	Glu	Ser	Gln
		115					120							125	
Asp	Ser	Leu	Ser	Asn	Pro	Ser	Ile	Glu	Leu	His	Asp	Asn	Ser	Phe	Phe
		130					135							140	
Phe	Gly	Glu	Gly	Glu	Val	Ile	Phe	Asp	His	Arg	Val	Ala	Leu	Lys	Asn
	145					150				155					160
Gly	Gly	Ala	Ile	Tyr	Gly	Glu	Lys	Glu	Val	Val	Phe	Glu	Asn	Ile	Lys
		165					170							175	
Ser	Leu	Leu	Val	Glu	Val	Asn	Ile	Ser	Val	Glu	Lys	Gly	Gly	Ser	Val
			180				185							190	
Tyr	Ala	Lys	Glu	Arg	Val	Ser	Leu	Glu	Asn	Val	Thr	Glu	Ala	Thr	Phe
		195					200							205	
Ser	Ser	Asn	Gly	Gly	Glu	Gln	Gly	Gly	Gly	Ile	Tyr	Ser	Glu	Gln	
		210				215								220	
Asp	Met	Leu	Ile	Ser	Asp	Cys	Asn	Asn	Val	His	Phe	Gln	Gly	Asn	Ala
	225					230				235					240
Ala	Gly	Ala	Thr	Ala	Val	Lys	Gln	Cys	Leu	Asp	Glu	Glu	Met	Ile	Val
			245				250							255	
Leu	Leu	Thr	Glu	Cys	Val	Asp	Ser	Leu	Ser	Glu	Asp	Thr	Leu	Asp	Ser
		260				265								270	
Thr	Pro	Glu	Thr	Glu	Gln	Thr	Lys	Ser	Asn	Gly	Asn	Gln	Asp	Gly	Ser
		275				280								285	
Ser	Glu	Thr	Lys	Asp	Thr	Gln	Val	Ser	Glu	Ser	Pro	Glu	Ser	Thr	Pro
		290				295								300	
Ser	Pro	Asp	Asp	Val	Leu	Gly	Lys	Gly	Gly	Ile	Tyr	Thr	Glu	Lys	
	305				310				315					320	
Ser	Leu	Thr	Ile	Thr	Gly	Ile	Thr	Gly	Thr	Ile	Asp	Phe	Val	Ser	Asn
			325				330							335	
Ile	Ala	Thr	Asp	Ser	Gly	Ala	Gly	Val	Phe	Thr	Lys	Glu	Asn	Leu	Ser
		340				345								350	
Cys	Thr	Asn	Thr	Asn	Ser	Leu	Gln	Phe	Leu	Lys	Asn	Ser	Ala	Gly	Gln
		355				360								365	
His	Gly	Gly	Gly	Ala	Tyr	Val	Thr	Gln	Thr	Met	Ser	Val	Thr	Asn	Thr
		370				375								380	
Thr	Ser	Glu	Ser	Ile	Thr	Thr	Pro	Pro	Leu	Val	Gly	Glu	Val	Ile	Phe
	385				390				395						400
Ser	Glu	Asn	Thr	Ala	Lys	Gly	His	Gly	Gly	Ile	Cys	Thr	Asn	Lys	
			405				410							415	

Leu Ser Leu Ser Asn Leu Lys Thr Val Thr Leu Thr Lys Asn Ser Ala
 420 425 430
 Lys Glu Ser Gly Gly Ala Ile Phe Thr Asp Leu Ala Ser Ile Pro Thr
 435 440 445
 Thr Asp Thr Pro Glu Ser Ser Thr Pro Ser Ser Ser Pro Ala Ser
 450 455 460
 Thr Pro Glu Val Val Ala Ser Ala Lys Ile Asn Arg Phe Phe Ala Ser
 465 470 475 480
 Thr Ala Glu Pro Ala Ala Pro Ser Leu Thr Glu Ala Glu Ser Asp Gln
 485 490 495
 Thr Asp Gln Thr Glu Thr Ser Asp Thr Asn Ser Asp Ile Asp Val Ser
 500 505 510
 Ile Glu Asn Ile Leu Asn Val Ala Ile Asn Gln Asn Thr Ser Ala Lys
 515 520 525
 Lys Gly Gly Ala Ile Tyr Gly Lys Lys Ala Lys Leu Ser Arg Ile Asn
 530 535 540
 Asn Leu Glu Leu Ser Gly Asn Ser Ser Gln Asp Val Gly Gly Leu
 545 550 555 560
 Cys Leu Thr Glu Ser Val Glu Phe Asp Ala Ile Gly Ser Leu Leu Ser
 565 570 575
 His Tyr Asn Ser Ala Ala Lys Glu Gly Gly Val Ile His Ser Lys Thr
 580 585 590
 Val Thr Leu Ser Asn Leu Lys Ser Thr Phe Thr Phe Ala Asp Asn Thr
 595 600 605
 Val Lys Ala Ile Val Glu Ser Thr Pro Glu Ala Pro Glu Glu Ile Pro
 610 615 620
 Pro Val Glu Gly Glu Glu Ser Thr Ala Thr Glu Asn Pro Asn Ser Asn
 625 630 635 640
 Thr Glu Gly Ser Ser Ala Asn Thr Asn Leu Glu Gly Ser Gln Gly Asp
 645 650 655
 Thr Ala Asp Thr Gly Thr Gly Val Val Asn Asn Glu Ser Gln Asp Thr
 660 665 670
 Ser Asp Thr Gly Asn Ala Glu Ser Gly Glu Gln Leu Gln Asp Ser Thr
 675 680 685
 Gln Ser Asn Glu Glu Asn Thr Leu Pro Asn Ser Ser Ile Asp Gln Ser
 690 695 700
 Asn Glu Asn Thr Asp Glu Ser Ser Asp Ser His Thr Glu Glu Ile Thr
 705 710 715 720
 Asp Glu Ser Val Ser Ser Ser Lys Ser Gly Ser Ser Thr Pro Gln
 725 730 735
 Asp Gly Gly Ala Ala Ser Ser Gly Ala Pro Ser Gly Asp Gln Ser Ile
 740 745 750
 Ser Ala Asn Ala Cys Leu Ala Lys Ser Tyr Ala Ala Ser Thr Asp Ser
 755 760 765
 Ser Pro Val Ser Asn Ser Ser Gly Ser Asp Val Thr Ala Ser Ser Asp
 770 775 780
 Asn Pro Asp Ser Ser Ser Ser Gly Asp Ser Ala Gly Asp Ser Glu Gly
 785 790 795 800
 Pro Thr Glu Pro Glu Ala Gly Ser Thr Thr Glu Thr Pro Thr Leu Ile
 805 810 815
 Gly Gly Gly Ala Ile
 820

<210> 196

<211> 525

<212> PRT

<213> Chlamydia

<400> 196

Met His His His His His Thr Ala Ala Ser Asp Asn Phe Gln Leu
 1 5 10 15
 Ser Gln Gly Gly Gln Gly Phe Ala Ile Pro Ile Gly Gln Ala Met Ala
 20 25 30
 Ile Ala Gly Gln Ile Lys Leu Pro Thr Val His Ile Gly Pro Thr Ala
 35 40 45
 Phe Leu Gly Leu Gly Val Val Asp Asn Asn Gly Asn Gly Ala Arg Val
 50 55 60
 Gln Arg Val Val Gly Ser Ala Pro Ala Ala Ser Leu Gly Ile Ser Thr
 65 70 75 80
 Gly Asp Val Ile Thr Ala Val Asp Gly Ala Pro Ile Asn Ser Ala Thr
 85 90 95
 Ala Met Ala Asp Ala Leu Asn Gly His His Pro Gly Asp Val Ile Ser
 100 105 110
 Val Thr Trp Gln Thr Lys Ser Gly Gly Thr Arg Thr Gly Asn Val Thr
 115 120 125
 Leu Ala Glu Gly Pro Pro Ala Glu Phe Pro Leu Val Pro Arg Gly Ser
 130 135 140
 Pro Leu Pro Val Gly Asn Pro Ala Glu Pro Ser Leu Leu Ile Asp Gly
 145 150 155 160
 Thr Met Trp Glu Gly Ala Ser Gly Asp Pro Cys Asp Pro Cys Ala Thr
 165 170 175
 Trp Cys Asp Ala Ile Ser Ile Arg Ala Gly Tyr Tyr Gly Asp Tyr Val
 180 185 190
 Phe Asp Arg Val Leu Lys Val Asp Val Asn Lys Thr Phe Ser Gly Met
 195 200 205
 Ala Ala Thr Pro Thr Gln Ala Ile Gly Asn Ala Ser Asn Thr Asn Gln
 210 215 220
 Pro Glu Ala Asn Gly Arg Pro Asn Ile Ala Tyr Gly Arg His Met Gln
 225 230 235 240
 Asp Ala Glu Trp Phe Ser Asn Ala Ala Phe Leu Ala Leu Asn Ile Trp
 245 250 255
 Asp Arg Phe Asp Ile Phe Cys Thr Leu Gly Ala Ser Asn Gly Tyr Phe
 260 265 270
 Lys Ala Ser Ser Ala Ala Phe Asn Leu Val Gly Leu Ile Gly Phe Ser
 275 280 285
 Ala Ala Ser Ser Ile Ser Thr Asp Leu Pro Met Gln Leu Pro Asn Val
 290 295 300
 Gly Ile Thr Gln Gly Val Val Glu Phe Tyr Thr Asp Thr Ser Phe Ser
 305 310 315 320
 Trp Ser Val Gly Ala Arg Gly Ala Leu Trp Glu Cys Gly Cys Ala Thr
 325 330 335
 Leu Gly Ala Glu Phe Gln Tyr Ala Gln Ser Asn Pro Lys Ile Glu Met
 340 345 350
 Leu Asn Val Thr Ser Ser Pro Ala Gln Phe Val Ile His Lys Pro Arg
 355 360 365
 Gly Tyr Lys Gly Ala Ser Ser Asn Phe Pro Leu Pro Ile Thr Ala Gly
 370 375 380
 Thr Thr Glu Ala Thr Asp Thr Lys Ser Ala Thr Ile Lys Tyr His Glu
 385 390 395 400
 Trp Gln Val Gly Leu Ala Leu Ser Tyr Arg Leu Asn Met Leu Val Pro

405	410	415
Tyr Ile Gly Val Asn Trp Ser Arg Ala Thr Phe Asp Ala Asp Thr Ile		
420	425	430
Arg Ile Ala Gln Pro Lys Leu Lys Ser Glu Ile Leu Asn Ile Thr Thr		
435	440	445
Trp Asn Pro Ser Leu Ile Gly Ser Thr Thr Ala Leu Pro Asn Asn Ser		
450	455	460
Gly Lys Asp Val Leu Ser Asp Val Leu Gln Ile Ala Ser Ile Gln Ile		
465	470	475
Asn Lys Met Lys Ser Arg Lys Ala Cys Gly Val Ala Val Gly Ala Thr		
485	490	495
Leu Ile Asp Ala Asp Lys Trp Ser Ile Thr Gly Glu Ala Arg Leu Ile		
500	505	510
Asn Glu Arg Ala Ala His Met Asn Ala Gln Phe Arg Phe		
515	520	525

<210> 197

<211> 43

<212> DNA

<213> Chlamydia

<400> 197

gataggcgcg ccgcaatcat gaaatttatg tcagctactg ctg

43

<210> 198

<211> 34

<212> DNA

<213> Chlamydia

<400> 198

cagaacgcgt ttagaatgtc atacgaggcac cgca

34

<210> 199

<211> 6

<212> DNA

<213> Chlamydia

<400> 199

gcaatc

6

<210> 200

<211> 34

<212> DNA

<213> Chlamydia

<400> 200

tgcaatcatg agttcgcaga aagatataaa aagc

34

<210> 201

<211> 38

<212> DNA

<213> Chlamydia

<400> 201

cagagctagc ttaaaaagatc aatcgcaatc cagtattc

38

<210> 202		
<211> 5		
<212> DNA		
<213> Chlamydia		
<400> 202		
caatc		5
<210> 203		
<211> 31		
<212> DNA		
<213> Chlamydia		
<400> 203		
tgcaatcatg aaaaaagcgt ttttctttt c		31
<210> 204		
<211> 31		
<212> DNA		
<213> Chlamydia		
<400> 204		
cagaacgcgt ctagaatcgc agagcaattt c		31
<210> 205		
<211> 30		
<212> DNA		
<213> Chlamydia		
<400> 205		
gtgcaatcat gattcctcaa ggaatttacg		30
<210> 206		
<211> 31		
<212> DNA		
<213> Chlamydia		
<400> 206		
cagaacgcgt tttagaaccgg actttacttc c		31
<210> 207		
<211> 50		
<212> DNA		
<213> Chlamydia		
<400> 207		
cagacatatg catcaccatc accatcacga ggcgagctcg atccaagatc		50
<210> 208		
<211> 40		
<212> DNA		
<213> Chlamydia		
<400> 208		

cagaggtacc tcagatagca ctctctccta ttaaaggtagg	40
<210> 209	
<211> 55	
<212> DNA	
<213> Chlamydia	
<400> 209	
cagagctagc atgcattcacc atcaccatca cgttaagatt gagaacttct ctggc	55
<210> 210	
<211> 35	
<212> DNA	
<213> Chlamydia	
<400> 210	
cagaggtacc tttagaatgtc atacgagcac cgca	35
<210> 211	
<211> 36	
<212> DNA	
<213> Chlamydia	
<400> 211	
cagacatatg catcaccatc accatcacgg gttac	36
<210> 212	
<211> 35	
<212> DNA	
<213> Chlamydia	
<400> 212	
cagaggtacc tcagctcctc cagcacactc tcttc	35
<210> 213	
<211> 51	
<212> DNA	
<213> Chlamydia	
<400> 213	
cagagctagc catcaccatc accatcacgg tgctattct tgcttacgtg g	51
<210> 214	
<211> 38	
<212> DNA	
<213> Chlamydia	
<400> 214	
cagaggtact taaaagatca atcgcaatcc agtattcg	38
<210> 215	
<211> 48	
<212> DNA	
<213> Chlamydia	

<400> 215
cagaggatcc acatcaccat caccatcacg gactagctag agaggttc 48

<210> 216
<211> 31
<212> DNA
<213> Chlamydia

<400> 216
cagagaattc ctagaatcgc agagcaattt c 31

<210> 217
<211> 7
<212> DNA
<213> Chlamydia

<400> 217
tgcaatc 7

<210> 218
<211> 22
<212> PRT
<213> Chlamydia

<400> 218
Met Ala Ser Met Thr Gly Gly Gln Met Gly Arg Asp Ser Ser Leu
1 5 10 15
Val Pro Ser Ser Asp Pro
20

<210> 219
<211> 51
<212> DNA
<213> Chlamydia

<400> 219
cagaggtacc gcattcaccat caccatcaca tgattcctca aggaatttac g 51

<210> 220
<211> 33
<212> DNA
<213> Chlamydia

<400> 220
cagagcgccc gcttagaacc ggactttact tcc 33

<210> 221
<211> 24
<212> PRT
<213> Chlamydia

<400> 221
Met Ala Ser Met Thr Gly Gly Gln Gln Asn Gly Arg Asp Ser Ser Leu
1 5 10 15
Val Pro His His His His His

20

<210> 222
<211> 46
<212> DNA
<213> Chlamydia

<400> 222
cagagctagc catcaccatc accatcacct ctttggccag gatccc

46

<210> 223
<211> 30
<212> DNA
<213> Chlamydia

<400> 223
cagaactagt ctagaacctg taagtgggcc

30

<210> 224
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> Made in a lab

<400> 224
Met Ser Gln Lys Asn Lys Asn Ser Ala Phe Met His Pro Val Asn Ile
1 5 10 15
Ser Thr Asp Leu
20

<210> 225
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> Made in a lab

<400> 225
Lys Asn Ser Ala Phe Met His Pro Val Asn Ile Ser Thr Asp Leu Ala
1 5 10 15
Val Ile Val Gly
20

<210> 226
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> Made in a lab

<400> 226

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.10.485065; this version posted May 11, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

His Pro Val Asn Ile Ser Thr Asp Leu Ala Val Ile Val Gly Lys Gly
1 5 10 15

Pro Met Pro Arg
20

<210> 227
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> Made in a lab

<400> 227
Ser Thr Asp Leu Ala Val Ile Val Gly Lys Gly Pro Met Pro Arg Thr
1 5 10 15
Glu Ile Val Lys
20

<210> 228
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> Made in a lab

<400> 228
Val Ile Val Gly Lys Gly Pro Met Pro Arg Thr Glu Ile Val Lys Lys
1 5 10 15
Val Trp Glu Tyr
20

<210> 229
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> Made in a lab

<400> 229
Gly Pro Met Pro Arg Thr Glu Ile Val Lys Lys Val Trp Glu Tyr Ile
1 5 10 15
Lys Lys His Asn
20

<210> 230
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> Made in a lab

<400> 230
Ile Lys Lys His Asn Cys Gln Asp Gln Lys Asn Lys Arg Asn Ile Leu
1 5 10 15
Pro Asp Ala Asn
20

<210> 231
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> Made in a lab

<400> 231
Asn Cys Gln Asp Gln Lys Asn Lys Arg Asn Ile Leu Pro Asp Ala Asn
1 5 10 15
Leu Ala Lys Val
20

<210> 232
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> Made in a lab

<400> 232
Lys Asn Lys Arg Asn Ile Leu Pro Asp Ala Asn Leu Ala Lys Val Phe
1 5 10 15
Gly Ser Ser Asp
20

<210> 233
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> Made in a lab

<400> 233
Ile Leu Pro Asp Ala Asn Leu Ala Lys Val Phe Gly Ser Ser Asp Pro
1 5 10 15
Ile Asp Met Phe
20

<210> 234
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> Made in a lab

<400> 234
Asn Leu Ala Lys Val Phe Gly Ser Ser Asp Pro Ile Asp Met Phe Gln
1 5 10 15
Met Thr Lys Ala
20

<210> 235
<211> 22
<212> PRT
<213> Artificial Sequence

<220>
<223> Made in a lab

<400> 235
Phe Gly Ser Ser Asp Pro Ile Asp Met Phe Gln Met Thr Lys Ala Leu
1 5 10 15
Ser Lys His Ile Val Lys
20

<210> 236
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> Made in a lab

<400> 236
Val Glu Ile Thr Gln Ala Val Pro Lys Tyr Ala Thr Val Gly Ser Pro
1 5 10 15
Tyr Pro Val Glu
20

<210> 237
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> Made in a lab

<400> 237
Ala Val Pro Lys Tyr Ala Thr Val Gly Ser Pro Tyr Pro Val Glu Ile
1 5 10 15
Thr Ala Thr Gly
20

<210> 238
<211> 20
<212> PRT
<213> Artificial Sequence

<220>

<223> Made in a lab

<400> 238

Ala	Thr	Val	Gly	Ser	Pro	Tyr	Pro	Val	Glu	Ile	Thr	Ala	Thr	Gly	Lys
1		5						10						15	
Arg	Asp	Cys	Val												
			20												

<210> 239

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

<223> Made in a lab

<400> 239

Pro	Tyr	Pro	Val	Glu	Ile	Thr	Ala	Thr	Gly	Lys	Arg	Asp	Cys	Val	Asp
1		5						10						15	
Val	Ile	Ile	Thr												
		20													

<210> 240

<211> 21

<212> PRT

<213> Artificial Sequence

<220>

<223> Made in a lab

<400> 240

Ile	Thr	Ala	Thr	Gly	Lys	Arg	Asp	Cys	Val	Asp	Val	Ile	Ile	Thr	Gln
1		5						10					15		
Gln	Leu	Pro	Cys	Glu											
		20													

<210> 241

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

<223> Made in a lab

<400> 241

Lys	Arg	Asp	Cys	Val	Asp	Val	Ile	Ile	Thr	Gln	Gln	Leu	Pro	Cys	Glu
1		5						10					15		
Ala	Glu	Phe	Val												
		20													

<210> 242

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

<223> Made in a lab

<400> 242

Asp	Val	Ile	Ile	Thr	Gln	Gln	Leu	Pro	Cys	Glu	Ala	Glu	Phe	Val	Arg
1					5				10					15	
Ser	Asp	Pro	Ala												
				20											

<210> 243

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

<223> Made in a lab

<400> 243

Thr	Gln	Gln	Leu	Pro	Cys	Glu	Ala	Glu	Phe	Val	Arg	Ser	Asp	Pro	Ala
1				5				10					15		
Thr	Thr	Pro	Thr												
				20											

<210> 244

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

<223> Made in a lab

<400> 244

Cys	Glu	Ala	Glu	Phe	Val	Arg	Ser	Asp	Pro	Ala	Thr	Thr	Pro	Thr	Ala
1				5				10					15		
Asp	Gly	Lys	Leu												
				20											

<210> 245

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

<223> Made in a lab

<400> 245

Val	Arg	Ser	Asp	Pro	Ala	Thr	Thr	Pro	Thr	Ala	Asp	Gly	Lys	Leu	Val
1				5				10					15		
Trp	Lys	Ile	Asp												
				20											

<210> 246

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

<223> Made in a lab

<400> 246

Ala	Thr	Thr	Pro	Thr	Ala	Asp	Gly	Lys	Leu	Val	Trp	Lys	Ile	Asp	Arg
1					5				10				15		

Leu	Gly	Gln	Gly
		20	

<210> 247

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

<223> Made in a lab

<400> 247

Ala	Asp	Gly	Lys	Leu	Val	Trp	Lys	Ile	Asp	Arg	Leu	Gly	Gln	Gly	Glu
1				5				10				15			

Lys	Ser	Lys	Ile
		20	

<210> 248

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

<223> Made in a lab

<400> 248

Val	Trp	Lys	Ile	Asp	Arg	Leu	Gly	Gln	Gly	Glu	Lys	Ser	Lys	Ile	Thr
1				5				10				15			

Val	Trp	Val	Lys
		20	

<210> 249

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

<223> Made in a lab

<400> 249

Arg	Leu	Gly	Gln	Gly	Glu	Lys	Ser	Lys	Ile	Thr	Val	Trp	Val	Lys	Pro
1				5				10				15			

Leu	Lys	Glu	Gly
		20	

<210> 250

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

<223> Made in a lab

<400> 250

Gly Glu Lys Ser Lys Ile Thr Val Trp Val Lys Pro Leu Lys Glu Gly
1 5 10 15
Cys Cys Phe Thr
20

<210> 251

<211> 16

<212> PRT

<213> Artificial Sequence

<220>

<223> Made in a lab

<400> 251

Gly Glu Lys Ser Lys Ile Thr Val Trp Val Lys Pro Leu Lys Glu Gly
1 5 10 15

<210> 252

<211> 12

<212> PRT

<213> Artificial Sequence

<220>

<223> Made in a lab

<400> 252

Lys Ile Thr Val Trp Val Lys Pro Leu Lys Glu Gly
1 5 10

<210> 253

<211> 16

<212> PRT

<213> Artificial Sequence

<220>

<223> Made in a lab

<400> 253

Gly Asp Lys Cys Lys Ile Thr Val Trp Val Lys Pro Leu Lys Glu Gly
1 5 10 15

<210> 254

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

<223> Made in a lab

<400> 254
 Thr Glu Tyr Pro Leu Leu Ala Asp Pro Ser Phe Lys Ile Ser Glu Ala
 1 5 10 15
 Phe Gly Val Leu
 20

<210> 255
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> Made in a lab

<400> 255
 Leu Ala Asp Pro Ser Phe Lys Ile Ser Glu Ala Phe Gly Val Leu Asn
 1 5 10 15
 Pro Glu Gly Ser
 20

<210> 256
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> Made in a lab

<400> 256
 Phe Lys Ile Ser Glu Ala Phe Gly Val Leu Asn Pro Glu Gly Ser Leu
 1 5 10 15
 Ala Leu Arg Ala
 20

<210> 257
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> Made in a lab

<400> 257
 Ala Phe Gly Val Leu Asn Pro Glu Gly Ser Leu Ala Leu Arg Ala Thr
 1 5 10 15
 Phe Leu Ile Asp
 20

<210> 258
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> Made in a lab

<400> 258
Asn Pro Glu Gly Ser Leu Ala Leu Arg Ala Thr Phe Leu Ile Asp Lys
1 5 10 15
His Gly Val Ile
20

<210> 259
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> Made in a lab

<400> 259
Leu Ala Leu Arg Ala Thr Phe Leu Ile Asp Lys His Gly Val Ile Arg
1 5 10 15
His Ala Val Ile
20

<210> 260
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> Made in a lab

<400> 260
Thr Phe Leu Ile Asp Lys His Gly Val Ile Arg His Ala Val Ile Asn
1 5 10 15
Asp Leu Pro Leu
20

<210> 261
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> Made in a lab

<400> 261
Lys His Gly Val Ile Arg His Ala Val Ile Asn Asp Leu Pro Leu Gly
1 5 10 15
Arg Ser Ile Asp
20

<210> 262
<211> 20
<212> PRT
<213> Artificial Sequence

<220>

<223> Made in a lab

<400> 262

Arg	His	Ala	Val	Ile	Asn	Asp	Leu	Pro	Leu	Gly	Arg	Ser	Ile	Asp	Glu
1				5				10						15	
Glu	Leu	Arg	Ile												20

<210> 263

<211> 897

<212> DNA

<213> Chlamydia

<220>

<221> misc_feature

<222> (1)...(897)

<223> n = A,T,C or G

<400> 263

atggcttcta	tatgcggacg	tttagggct	gttacaggga	atgtcttaaa	agctttttt	60
acacagccca	acaataaaaat	ggcaagggtt	gtaaataaga	cgaaggggagt	ggataagact	120
attaagggtt	ccaagtctgc	tgccgaattt	accgcaaata	ttttggaaaca	agctggaggc	180
gcgggctt	ccgcacacat	tacagcttcc	caagtgtcca	aaggattagg	ggatgcgaga	240
actgttgtcg	ctttagggaa	tgcctttaac	ggagcggtgc	caggaacagt	tcaaagtgcg	300
caaagcttct	tctctcacat	gaaagctgct	agtcatggaaa	cgcaagaagg	ggatgagggg	360
ctcacagcag	atctttgtgt	gtctcataag	cgcagagcgg	ctgcggctgt	ctgttagcatc	420
atcggagggaa	ttacctaccc	cgcgacattc	ggagcttatcc	gtccgattct	gtttgtcaac	480
aaaatgctgg	caaaccgtt	tcttcttcc	caaactaaag	caaatatggg	atottctgtt	540
agctatattt	tggccgctaa	ccatgcagcg	tctgtggtgg	gtgctggact	cgctatcagt	600
gcnnaaagag	cagattgcga	agcccgcgc	gctcgtattt	cgagagaaga	gtcgttactc	660
gaagtgcgg	gagaggaaaa	tgcgtcgag	aagaaaagtcg	ctggagagaa	agccaaagacg	720
ttcacgcgca	tcaagtatgc	actcctcaact	atgctcgaga	agtttttgg	atgcgttgcc	780
gacgttttca	aatttggtgc	gctgcctatt	acaatggta	ttcgtgcgt	tgtggctgt	840
ggatgtacgt	tcacttctgc	aattatttgg	tttgtgcactt	tctgcgccag	agcataaa	897

<210> 264

<211> 298

<212> PRT

<213> Chlamydia

<220>

<221> VARIANT

<222> (1)...(298)

<223> Xaa = Any Amino Acid

<400> 264

Met	Ala	Ser	Ile	Cys	Gly	Arg	Leu	Gly	Ser	Gly	Thr	Gly	Asn	Ala	Leu
1				5				10						15	
Lys	Ala	Phe	Phe	Thr	Gln	Pro	Asn	Asn	Lys	Met	Ala	Arg	Val	Val	Asn.
								20		25			30		
Lys	Thr	Lys	Gly	Val	Asp	Lys	Thr	Ile	Lys	Val	Ala	Lys	Ser	Ala	Ala
								35		40			45		
Glu	Leu	Thr	Ala	Asn	Ile	Leu	Glu	Gln	Ala	Gly	Gly	Ala	Gly	Ser	Ser
								50		55			60		
Ala	His	Ile	Thr	Ala	Ser	Gln	Val	Ser	Lys	Gly	Leu	Gly	Asp	Ala	Arg

65	70	75	80
Thr Val Val Ala Leu Gly Asn Ala Phe Asn Gly Ala Leu Pro Gly Thr			
85	90	95	
Val Gln Ser Ala Gln Ser Phe Phe Ser His Met Lys Ala Ala Ser Gln			
100	105	110	
Lys Thr Gln Glu Gly Asp Glu Gly Leu Thr Ala Asp Leu Cys Val Ser			
115	120	125	
His Lys Arg Arg Ala Ala Ala Val Cys Ser Ile Ile Gly Gly Ile			
130	135	140	
Thr Tyr Leu Ala Thr Phe Gly Ala Ile Arg Pro Ile Leu Phe Val Asn			
145	150	155	160
Lys Met Leu Ala Lys Pro Phe Leu Ser Ser Gln Thr Lys Ala Asn Met			
165	170	175	
Gly Ser Ser Val Ser Tyr Ile Met Ala Ala Asn His Ala Ala Ser Val			
180	185	190	
Val Gly Ala Gly Leu Ala Ile Ser Ala Xaa Arg Ala Asp Cys Glu Ala			
195	200	205	
Arg Cys Ala Arg Ile Ala Arg Glu Glu Ser Leu Leu Glu Val Pro Gly			
210	215	220	
Glu Glu Asn Ala Cys Glu Lys Lys Val Ala Gly Glu Lys Ala Lys Thr			
225	230	235	240
Phe Thr Arg Ile Lys Tyr Ala Leu Leu Thr Met Leu Glu Lys Phe Leu			
245	250	255	
Glu Cys Val Ala Asp Val Phe Lys Leu Val Pro Leu Pro Ile Thr Met			
260	265	270	
Gly Ile Arg Ala Ile Val Ala Ala Gly Cys Thr Phe Thr Ser Ala Ile			
275	280	285	
Ile Gly Leu Cys Thr Phe Cys Ala Arg Ala			
290	295		

<210> 265

<211> 897

<212> DNA

<213> Chlamydia

<220>

<221> misc_feature

<222> (1)...(897)

<223> n = A,T,C or G

<400> 265

atggcttcta tatgcggacg tttagggtct ggtacaggga atgctctaaa agctttttt	60
acacagccca acaaataaaat ggcaagggtta gtaaataaga cgaaggaaat ggataagact	120
attaagggtt ccaagtctgc tgccgaattt accgcaaata ttttggaaaca agctggaggc	180
gcgggctctt ccgcacacat tacagcttcc caagtgtcca aaggatttagg ggatgcgaga	240
actgttgcg cttagggaa tgcccttaac ggagcggtgc caggaacagt tcaaagtgcg	300
caaagcttct tcttcacat gaaagctgtc agtcagaaaaa cgcaagaagg ggatgagggg	360
ctcacagcag atctttgtgt gtctcataag cgcagagcgg ctgcggctgt ctgtacatc	420
atccggagaa ttacacctt cgcgacattt ggagctatcc gtccgattct gtttgtcaac	480
aaaatgctgg caaaaaccgtt tctttcttcc caaactaaag caaatatggg atcttctgtt	540
agctatatta tggccggctaa ccatgcagcg tctgtgtgg gtgctggact cgctatcagt	600
gcgnaaagag cagattgcga agcccgcgtc gctcgattt cgagagaaga gtcgttactc	660
gaagtgccgg gagagaaaaa tgcttgcag aagaaagtgc ctggagagaa agccaaagacg	720
ttcacgcgca tcaagtatgc actcctact atgctcgaga agtttttggaa atgcgttgcc	780
gacgtttca aattggtgcc gctgcctatt acaatggta ttcgtgcgat tgtggctgct	840

ggatgtacgt tcacttctgc aattattgga ttgtgcactt tctgcgccag agcataa 897

<210> 266

<211> 298

<212> PRT

<213> Chlamydia

<220>

<221> VARIANT

<222> (1) ... (298)

<223> Xaa = Any Amino Acid

<400> 266

Met Ala Ser Ile Cys Gly Arg Leu Gly Ser Gly Thr Gly Asn Ala Leu
 1 5 10 15
 Lys Ala Phe Phe Thr Gln Pro Asn Asn Lys Met Ala Arg Val Val Asn
 20 25 30
 Lys Thr Lys Gly Met Asp Lys Thr Ile Lys Val Ala Lys Ser Ala Ala
 35 40 45
 Glu Leu Thr Ala Asn Ile Leu Glu Gln Ala Gly Gly Ala Gly Ser Ser
 50 55 60
 Ala His Ile Thr Ala Ser Gln Val Ser Lys Gly Leu Gly Asp Ala Arg
 65 70 75 80
 Thr Val Val Ala Leu Gly Asn Ala Phe Asn Gly Ala Leu Pro Gly Thr
 85 90 95
 Val Gln Ser Ala Gln Ser Phe Phe Ser His Met Lys Ala Ala Ser Gln
 100 105 110
 Lys Thr Gln Glu Gly Asp Glu Gly Leu Thr Ala Asp Leu Cys Val Ser
 115 120 125
 His Lys Arg Arg Ala Ala Ala Ala Val Cys Ser Ile Ile Gly Gly Ile
 130 135 140
 Thr Tyr Leu Ala Thr Phe Gly Ala Ile Arg Pro Ile Leu Phe Val Asn
 145 150 155 160
 Lys Met Leu Ala Lys Pro Phe Leu Ser Ser Gln Thr Lys Ala Asn Met
 165 170 175
 Gly Ser Ser Val Ser Tyr Ile Met Ala Ala Asn His Ala Ala Ser Val
 180 185 190
 Val Gly Ala Gly Leu Ala Ile Ser Ala Xaa Arg Ala Asp Cys Glu Ala
 195 200 205
 Arg Cys Ala Arg Ile Ala Arg Glu Glu Ser Leu Leu Glu Val Pro Gly
 210 215 220
 Glu Glu Asn Ala Cys Glu Lys Val Ala Gly Glu Lys Ala Lys Thr
 225 230 235 240
 Phe Thr Arg Ile Lys Tyr Ala Leu Leu Thr Met Leu Glu Lys Phe Leu
 245 250 255
 Glu Cys Val Ala Asp Val Phe Lys Leu Val Pro Leu Pro Ile Thr Met
 260 265 270
 Gly Ile Arg Ala Ile Val Ala Ala Gly Cys Thr Phe Thr Ser Ala Ile
 275 280 285
 Ile Gly Leu Cys Thr Phe Cys Ala Arg Ala
 290 295

<210> 267

<211> 680

<212> DNA

<213> Chlamydia

<400> 267

tctatatatcca tattgatagg	aaaaaacgtc	gcagaaaagat	tttagctatg	acgtttatcc	60
gagctttagg atattcaaca	gatgcagata	ttattgaaga	gttctttct	gtagaggagc	120
gttccttacg ttcagagaag	gattttgtcg	cgtagttgg	taaagttta	gctgataacg	180
tagttgatgc ggattttca	ttagttacg	ggaaagctgg	agagaagcta	agtactgcta	240
tgctaaaacg catcttagat	acgggagtc	aatcttggaa	gattgctgtt	ggcgcatgt	300
aaaatcaccc aattattaag	atgctcgaa	aagatcctac	ggattcttac	gaagctgctc	360
ttaaagattt ttatcgaga	ttacgaccag	gagagcctgc	aactttagct	aatgctcgat	420
ccacaattat gcgttattc	ttcgatgta	aacgttataa	tttaggcgc	gttggacgtt	480
ataaaattaaa taaaaaatta	ggcttccat	tagacgacga	aacattatct	caagtgcatt	540
tgagaaaaaga agatgttatac	ggcgcgttga	aatatttgc	tcgtttgcga	atgggcgtat	600
agaagacatc tatcgatgtat	attgaccatt	tggcaaaccg	acgagttcgc	tctgttggag	660
aactaattca gaatcactgt					680

<210> 268

<211> 359

<212> DNA

<213> Chlamydia

<400> 268

cttatgttct ggagaatgtt	gcaacaacat	attaatcgaa	ccagctcctc	ctagtaacat	60
agaaaaccaag cccttttag	aaaaaacctg	tacttcgc	ccttagcca	tttgttgaat	120
agctcctaac aaagagctaa	tttttcctc	ttccttgttt	ttctgaggcg	ctgtggactc	180
taaatatagc aagtgtctt	ggaacacctc	atcaacaatc	gcttgcctc	gattaggtat	240
agagactgtc tctccatcaa	ttaaatggag	tttcaaagta	atatcccctt	ccgtccctcc	300
atcacaagac tctatgaaag	ctatctgatt	ccatcgagca	gaaatgtatg	ggaaaatac	359

<210> 269

<211> 124

<212> DNA

<213> Chlamydia

<400> 269

gatcgaatca attgagggag	ctcattaaca	agaatagctg	cagtttcttt	gcgttcttct	60
ggaataacaa gaaataggtt	atcggtacca	ttgatagaac	gaacacgaca	aatcgacgaa	120
gttt					124

<210> 270

<211> 219

<212> DNA

<213> Chlamydia

<400> 270

gatcctgttg ggcctagtaa	taatacgttg	gattcccat	aactcacttg	tttacctgc	60
ataagagcac ggataacgctt	atagtggta	tagacggcaa	ccgaaatcgt	tttttcgcg	120
cgctcttgc	caatgacata	agagtcgtat	tggcggttga	tttctttagg	180
ctcagacttg	ttggagagct	tgtgaaagat	gttgcgtatc		219

<210> 271

<211> 511

<212> DNA

<213> Chlamydia

<220>
<221> misc_feature
<222> (1)...(511)
<223> n = A,T,C or G

<400> 271
ggatccgaat tcggcacgag gagaaaaat aggagggttcc akcatcgaa gatctaata 60
acaaaagaggt tttgcatac atggctcctc cttgtacgtt caacgatgtat tgggagggt 120
tggttatcgat agcttgggtc ccagagaact gacaagtccc gctacattga gagaatgtaa 180
cctgttctcc atagatagct cctcctacta cacctgaata agttgggtt gctggagatg 240
atgggtgcgc tgctgcggct gcttgttaggg aagcagcagc tgcagcagggt gctgaagctg 300
ttgttgcgac tcctgtggat gaggagttt ctgttggat cgagaaagag aagcctgatt 360
tcagattaga aatatttaca gtttttagcat gtagcctcc accttcttc ccaacaaggt 420
tctctgttac agataaggag actagangca tctagttta aagattttt acagcagata 480
cctccaccta tctctgttagc ggagttctca g 511

<210> 272
<211> 598
<212> DNA
<213> Chlamydia

<400> 272
ctcttcctct cctcaatcta gttctggagc aactacagtc tccgactcag gagactctag 60
ctctggctca aactcggata cctcaaaaac agtccagtc acagctaaag gcgggtggct 120
ttatactgtat aagaatctt cgattactaa catcacagga attatcgaaa ttgcaaataa 180
caaagcgcaca gatgttggag gtgggtgccta cgtaaaagga acccttactt gtaaaaactc 240
tcaccgtctc caattttga aaaactcttc cgataaacaa ggtggaggaa tctacggaga 300
agacaacatc accctatcta atttgcacagg gaagactcta ttccaagaga atactgccaa 360
aaaagagggc ggtggactct tcataaaaagg tacagataaa gcttttacaa tgacaggact 420
ggatagtttc tggttaatta ataacacatc agaaaaacat ggtgggtggaa gcctttgtta 480
ccaaagaaaat ctctcagact tacacctt gatgtggaaa caattccagg aatcacgcct 540
gtacatggtg aaacagtcata tactggcaat aaatctacag gaggtaatgg tggaggc 598

<210> 273
<211> 126
<212> DNA
<213> Chlamydia

<400> 273
ggatccgaat tcggcacgag atgaggctta tagtttaaca aaagcttctc acattccttc 60
gatagcttt tattagccgt ttttagcatc ctaatgagat ctccctcggtc gtaacaaata 120
cgagag 126

<210> 274
<211> 264
<212> DNA
<213> Chlamydia

<400> 274
ggatccgaat tcggcacgag ctctttaaa tcttaattac aaaaagacaa attaattcaa 60
ttttcaaaa aagaatttaa acattaattt tgtaaaaaaa acaatatttta ttctaaaata 120
ataaccatag ttacggggaa atctcttca tggtttattt tagagctcat caacctaggc 180
atacgcctaa aacatttcct ttgaaagttc accattcggtt ctccgataag catcctcaaa 240
ttgctaaagc tatgtggatt acgg 264

<210> 275
<211> 359
<212> DNA
<213> Chlamydia

```

<400> 275
ggatccgaat tcggcacgag ataaaacctg aaccacaaca aagatctaaa acttcttgat      60
tttcagctgc aaattctttt agataaaatat caaccatttc ttcatgttca tatcttgaa     120
ttaaaacttg ttctcttaaa ttaattcttag tatttaagta ttcaacatag cccattatta     180
attgaattgg ataattttgc cttaaataatt cacattctt ttcatgttca tttaggttcta    240
aaccgttaccg ctttttttct aaaattaatg ttcttcatt attcattttt taagccactt    300
tcctttatTT tttqatTTT ttcttcgtt agtaatqctt caataatagt taataattt    359

```

<210> 276
<211> 357
<212> DNA
<213> Chlamydia

```

<400> 276
aaaacaattg atataatTTT ttttttcata acttccagac tcctttctag aaaagtcttt 60
atgggttagta gtgactctaa cgttttttat tattaagacg atccccggag atccttttaa 120
tgatgaaaac gggaaacatcc ttccggcaga aacttttagca ctattaaaga atcggtacgg 180
gttagataag cctttattca cccagtatct tatctatTTG aaatgtctgc taacactaga 240
tttcggggaa tctcttatct acaaagatcg aaatctcagc attattgctg ccgcctttcc 300
atcttccgct aatcttggac ttgaaagctt gtgtttactc gtgccgaatt cgatcc . 357

```

<210> 277
<211> 505
<212> DNA
<213> Chlamydia

<400> 277
ggatccgaat tcggcacgag ctcgtgccga ttgcttgctt cagtcacccc atcggtata
agcactaaaa gagactcctc ttcaagaacg agagtgtaa gagggtgagg aggaacttca
ggtaaaaatc ctaaggccat accaggatgc gacaggaaag agatatctcc attaggagct
cgagacacg ctgggttgtg gccacaagaa tagtattcta gttctcgtgt tgctaatga
taacaataaa tgcatagtgt tacaaacatc ccagatttag ctgtctgtt atagaagaga
gcagctgttt gtgaacggc ttcttgaata gaggagagct cactaaaaa ggtatgtaac
atgttttca ggaataagga gtaggcgac gcattgactc ctccccgya agcatcagca
acgattagaa agagtttagc ttggggacct tcgcctataa caaagatatc aaagaaaatct
cctcttaccq taactqcagg aatat

<210> 278
<211> 407
<212> DNA
<213> Chlamydia

<400> 278
ggatccgaat tcggcacgag aactactgag caaattgggt atccaaacctc ctctttacga 60
aagaaaaaca gaaggcattc tccataccaa gatttggtc atcgacaata aaactccaat 120
ctttggctct gctaactgga gcgggtctgg tatgattaaa aactttgaag acctattcat 180
ccttcgccccca attacagaga cacagcttca ggcctttagt gacgtctggt ctcttctaga 240
aacaaatagc tccttatctgt ccccagagag cgtgcttaag gccccctactc cttcaagtag 300
acctactcaa caagatacacg attctgatga cgaacaaccc agtaccagcc agcaagctat 360
ccgtatqaga aaataggatt agggaaacaa aacgcacagca aaccacca 407

<210> 279
<211> 351
<212> DNA
<213> Chlamydia

<400> 279
ctcgtgccgc ttacaggagg cttgtatcct ttaaaataga gttttctta tgaccccatg 60
tggcgatagg ccgggtctag cgccgatagt agaaaatatcg gttggtttt gtccttgagg 120
ggatcgata cttttcaaa gtatggtccc cgtatcgatt atctggaggc tcttatgtct 180
ttttttcata cttagaaaata taagcttatac ctcagaggac tcttgtgttt agcaggctgt 240
ttcttaatga acagctgttc ctctagtcga ggaaatcaac ccgctgatga gagcatctat 300
gtcttgcata tgaatcgcat gatttgtat tctcgtgccg aattcggatc c 351

<210> 280
<211> 522
<212> DNA
<213> Chlamydia

<400> 280
ggatccgaat tcggcacgag cagagggaaa aggcgatact cctcttgaag atcgttcac 60
agaagatctt tccgaagtct ctggagaaga ttttcgagga ttgaaaaatt cgtcgatga 120
tgattcttct tctgacgaaa ttctcgatgc gctcacaagt aaattttctg atccccacaat 180
aaaggatcta gctcttgatt atctaattca aatagctccc tctgatggga aacttaagtc 240
cgctctcatt caggcaaagc atcaactgat gagccagaat cctcaggcga ttgttgagg 300
acgcaatgtt ctgttagctt cagaaacctt tgcttccaga gcaaatacat ctcttcate 360
gcttcgctcc ttatatttcc aagtaacctc atccccctct aattgcgcta attacatca 420
aatgcttgct tcttactcgc catcagagaa aaccgctgtt atggagtttc tagtgaatgg 480
catggtagca gattaaaaat cggagggccc ttccattcct cc 522

<210> 281
<211> 577
<212> DNA
<213> Chlamydia

<400> 281
ggatccgaat tcggcacgag atgcttctat tacaattggc ttggatgcgg aaaaagctta 60
ccagcttatt cttagaaaagt tgggagatca aattcttggg ggaattgctg atactattgt 120
tgatagtaca gtccaagata ttttagacaa aatcacaaca gacccttctc taggtttgtt 180
gaaagctttt aacaactttc caatcactaa taaaattcaa tgcaacgggt tattcactcc 240
caggaacatt gaaactttat taggaggaac tgaatagga aaattcacag tcacacccaa 300
aagctctggg agcatgttct tagtctcagc agatatttt gcatcaagaa tggaggcgg 360
cggttgcata gcttggtagc gagaagggtga ttctaaagccc tacgcgatata gttatggata 420
ctcatcaggc gttcctaatt tatgtatgtt aagaaccaga attattaata caggattgac 480
tccgacaacg tattcattac gtgtaggcgg tttagaaagc ggtgtggat gggtaatgc 540
ccttctaat ggcaatgata ttttagaat aacaaat 577

<210> 282
<211> 607
<212> DNA
<213> Chlamydia

<400> 282
actmatcttc cccgggctcg agtgcggccg caagcttgc gacggagctc gataaaaaaa 60
tgtgtgcgtg tgaaccgctt cttcaaaagc ttgtcttaaa agatattgtc tcgcttccgg 120

attagttaca tggtaaaaaa ttgctagaac aatattattc ccaaccaagc tctctgcgg	180
gctgaaaaaaaaa cctaaattca aaagaatgac tcggcgctca tcttcagaaa gacgatccga	240
cttccataat tcgatgtctt tccccatggg gatctctgta gggagccagt tatttgcgca	300
gccattcaaa taatgtccc aagcccattt gtacttaata ggaacaagtt gtttgacatc	360
gacctgggtg cagttacta gacgcttgc atttagatta acgcgttct gtttccatc	420
taaaaatatct gcttcataa gaaccgttaa ttttattgtt aatttatatg attaattact	480
gacatgcttc acacccttct tccaaagaac agacagggtgc ttcttcgct ctttcaacaa	540
taattcctgc cgaaggcagac ttattctca tccaacgagg ctgaattcct ctottattaa	600
tatctac	607

<210> 283

<211> 1077

<212> DNA

<213> Chlamydia

<400> 283

ggatccgaat tcggcacgag aagttaacga tgacgatttg ttcccttggt agagaaggag	60
caatcgaaac taaatgtcg agagcatgtg aagactccaa tgcaggaata atcccctcat	120
ttcttagtaag cagggaaaaaa gctcgtaacg cctcttcatc ggtggcta atgtatccat	180
ctcgccctga ctcatgcatt tcggcatgat ctggcccaac tgaaggataa tctaattccag	240
cggaaatgga gtgagttgt aataacttgc catcgatc ttgaagaaga tacgaataaaa	300
atccgtggaa tactccaggt cgccctgtt caaaacgtgc tgcatgttt cctgaagaaa	360
tgcccagtcc tcccccttcc actccaaatta attggacttt tggattcggg ataaaaatgat	420
ggaaaaaatcc aatacgcttg gagccaccc cgatacatgc aatcagaata tcaggatctc	480
ttcctgcaac tgcattggatt tgctcttca cttagcgct tataacagac tgaaaaatc	540
gaacgatatac gggataaggt aaaggtctta agggcgatcc taagcaatag tgagtaatg	600
agtgtgttgt tgcccaatct tgcattttttt gattaactgc atctttgagt ccacaagatc	660
ctttgttac agaaacgact tcagcaccta aaaagcgatcc ttctctaca tttggttct	720
gtcggtccac atcttttgc cccatgtata ctacacaatc taatcctaga taagcacacg	780
ctgttgctgt tgctactcca tggtgtcccg cacctgtttc agctacaaca cgtgtttcc	840
caagatattt agcaagcaaa cactgaccaa gagcattatt cagtttatgt gctccgtat	900
gcaaaagatc ttgcgttta agaaataactc tagggccatc aatagctcga gcaaaattct	960
taacttcagt cagaggagtt tgctcccg catagttttt caaaatacaa tctagttcag	1020
ataaaaaact ttgctgagtt ttgagaatct cccattccgc ttttagattc tgtatag	1077

<210> 284

<211> 407

<212> DNA

<213> Chlamydia

<400> 284

ggatccgaat tcggcacgag aactactgag caaattgggt atccaaacttc ctctttacga	60
aagaaaaaca gaaggcattc tccataccaa gatttggc atcgacaata aaactccaaat	120
ctttggctct gctaactgga gcgggtgtgg tatgattaaa aactttgaag acctattcat	180
ccttcgcccc attacagaga cacagctca ggctttatg gacgtctggc ctcttctaga	240
aacaaatagc tcctatctgt ccccagagag cgtgcttacg gcccctactc cttaagtag	300
acctactcaa caagatacag attctgtatga cgaacaaccc agtaccagcc agcaagctat	360
ccgtatgaga aaataggatt agggaaacaa aacgacagca aaccacaa	407

<210> 285

<211> 802

<212> DNA

<213> Chlamydia

<400> 285

ggatccaat tcggcacgag ttagcttaat gtctttgtca tctctaccta cattgcagg	60
taattctaca ggcacaattg gaatcgtaa ttacgtcgc tgccctagaag agtctgctct	120
tggaaaaaaa gaatctgctg aattcgaaaa gatgaaaaac caattctcta acagcatgg	180
gaagatggag gaagaactgt cttctatcta ttccaagctc caagacgacg attacatgga	240
aggtctatcc gagaccgcag ctgccgaatt aaaaaaaaaa ttcaagatc tatctgcaga	300
atacaacaca gctcaaggc agtattacca aatattaaac caaagtaatc tcaagcgcac	360
gcaaaagatt atggaagaag tgaaaaaaaaa ttctgaaact gtgcgtattc aagaaggctt	420
gtcagtccctt cttaacgaag atattgtctt atctatcgat agttcggcag ataaaaccga	480
tgctgttatt aaagttcttg atgattctt tcaaaataat taacatgcga agctagccga	540
ggagtgccgt atgtctcaat ccacttattc tcttgaacaa ttagctgatt tttgaaagt	600
cgagtttcaa ggaaatggag ctactcttct ttccggagtt gaagagatcg aggaagcaaa	660
aacggcacac atcacattct tagataatga aaaatatgct aaacattaa aatcatcgga	720
agctggcgtc atcatcatat ctgcacacaca gtttcaaaaa tatcgagact tgaataaaaaa	780
ctttcttatac acttctgagt ct	802

<210> 286

<211> 588

<212> DNA

<213> Chlamydia

<400> 286

ggatccaat tcggcacgag gcaatattta ctcccaacat tacggttcca aataagcgat	60
aaggcttctt aataaggaag ttaatgtaa aggctttttt attgcttttc gtaaggtagt	120
attgcaacccg cacgcgattt aatgatacgc aagccatttc catcatggaa aagaaccctt	180
ggacaaaaat acaaaggagg ttcaactccta accagaaaaa gggagagttt gttccatgg	240
gttttcctta tatacacccg tttcacacaa ttaggagccg cgtctagat ttgaataca	300
aattgtcccc aagcgaattt tgttcctgtt tcagggattt ctccataattt ttctgtcagc	360
catccgccta tggtaacgca attagctgtt gtaggaagat caactccaaa caggtcatag	420
aaatcagaaa gctcataggt gcctgcagca ataacaacat tcttgtctga gtgagcgaat	480
tgtttaaaag atggcgtt atgagctacc tcatcagaga ctatttaaa tagatcattt	540
tggtaatca atccttctat agaccatata tcatcaatga taatctcg	588

<210> 287

<211> 489

<212> DNA

<213> Chlamydia

<220>

<221> misc_feature

<222> (1)...(489)

<223> n = A,T,C or G

<400> 287

agtgcctatt gtttgcagg ct当地tgcgttca tgatagcgat accgtacgtg agattgctgt	60
acaagtagct gttatgtatg gttctagttt cttactgcgc gccgtggcg atttagcgaa	120
aaatgattct tctattcaag tacgcatac tgcttacgtt gctgcagccg tggatggat	180
acaagatctt gtgccttatt tacgagggtt agtccaaaat acacaattt atgaaacgg	240
aagaagagaa gcttggagat ct当地tgcgttca tgatagcgat accgtacgtg agattgctgt	300
tggcatagat caagctttaa tgacctgttca tgatagcgat accgtacgtg agattgctgt	360
ggaagaacag attcgatcat tattggctgc agatcatcca gaagtgccagg tagtacttt	420
acagatcatt ctgagaggag gtagatgttcc ccgtcatct tctataatgg aatcggttct	480
cgtgccnt	489

<210> 288

<211> 191

<212> DNA

<213> Chlamydia

<400> 288

ggatccgaat tcaggatatg ctgttgggtt atcaataaaa agggtttgc catttttaa	60
gacgacttg tagataacgc taggagctgt agcaataata tcgagatcaa attctctaga	120
gattctctca aagatgattt ctaagtgcag cagtcctaaa aatccacagc ggaacccaaa	180
tccgagagag t	191

<210> 289

<211> 515

<212> DNA

<213> Chlamydia

<400> 289

ggatccgaat tcggcacgag gagcgacgtg aaatagtggaa atcttcccgt attcttatta	60
cttctgcgtt gccttacgca aatggtcctt tgcattttgg acatattacc ggtgcattt	120
tgcctgcaga tggttatgcg cggttcaga gactacaagg caaagagggtt ttgtatattt	180
gtggttctga tgaatacggaa atcgcaattha cccttaatgc agagttggca ggcattgggt	240
atcaagaata tgtcgacatg ttcataaaga tacttcaag aaattggaa	300
tttctgtaga ttctttcc agaactacga acgcttatca tcctgctatt gtgcagatt	360
tctatcgaaa cttgcaggaa cgccgactgg tagagaatca ggtgaccgaa cagctgtatt	420
ctgaggaaga agggaaagttt tttagcggacc gttatgtgt aggtacttgtt cccaaagtgtg	480
ggtttgcgtt agctcgagga gatgagtgtc agcag	515

<210> 290

<211> 522

<212> DNA

<213> Chlamydia

<400> 290

ggatccgaat tcggcacgag ggaggaatgg aaggccctc cgattktama tctgctacca	60
tgccattcac tagaaactcc ataacagcgg ttttctctga tggcgagtaa gaagcaagca	120
tttgcgtttaa attagcgaa tttaggggg atgaggttac ttggaaatat aaggagcgaa	180
gcgtatgttgcg agatgtattt gctctggaa caaaggtttca tgaagctaac agaacattgc	240
gtcctccaac aatcgcttgc ggattctggc tcatcagttt atgcttgcc tgaatgagag	300
cggacttaag ttcccattca gagggagctt ttgaatttataatcaaga gctagatcct	360
ttattgtgg atcagaaaat ttacttgcgatc ggcgcattca aatttcgtca gaagaagaat	420
catcatcgaa cgaatttttc aatcctcgaa aatcttctcc agagacttcg gaaagatctt	480
ctgtgaaacg atcttcaaga ggagtatcgc cttttccyc tg	522

<210> 291

<211> 1002

<212> DNA

<213> Chlamydia

<400> 291

atggcgacta acgcaattttag atcggcagga agtgcagcaa gtaagatgt gctgccagtt	60
gccaaagaac cagccgtgt cagctccctt gctcagaaag ggatttatttgc tattcaacaa	120
ttttttacaa accctggaa taagtttgcgaa aagtttgcgtt gggcaacaaa aagtttagat	180
aatgcgttta agctaaatgg ggcgttttgc gactgtgtcg taggatcgct ggaagaggcg	240
ggatgcacag gggacgcatt gaccccgccg agaaacgccc agggatgtttt aaaaacaact	300
cgagaagtttgc ttgccttagc taatgtgtc aatggagctt gttccatctat cgttaactcg	360
actcagagtttgc ttaccataaata cacacgttcaaa gccttcgagt taggaagcaa gacaaaagaa	420
agaaaaaacgc ctggggagta tagaaaaatgc ctatcaactc gaggtgatta cctattggca	480

gcttccaggg aagcttgtac ggcagtcgt gcaacgactt actcagcgac attcggtgtt	540
ttacgtccgt taatgttaat caataaaactc acagcaaaac cattcttaga caaagcgact	600
gtaggcaatt ttggcacggc tggcgatggc attatgatcca ttaatcatat ggcaggagtt	660
gctgggtgtc ttggcgaaat cgcatggaa caaaaagctgt tcaaaccgtgc gaaggaatcc	720
ctataacaatg agagatgtgc ctttagaaaaac caacaatctc agttgagtgg ggacgtgatt	780
ctaaggcggc aaagggcatt acgtaaagaa cacgttgcta ctctaaaaag aaatgtttt	840
actcttctt aaaaagctt agagttgtta gtggatggag tcaaactcat tccttaccg	900
attacagtgg cttgtccgc tgcaattctt ggagccttga cggcagcattc cgcaggaatt	960
ggcttatata gcatatggca gaaaacaaag tctggcaaataa aa	1002

<210> 292

<211> 333

<212> PRT

<213> Chlamydia

<400> 292

Met Ala Thr Asn Ala Ile Arg Ser Ala Gly Ser Ala Ala Ser Lys Met	
1 5 10 . 15	
Leu Leu Pro Val Ala Lys Glu Pro Ala Ala Val Ser Ser Phe Ala Gln	
20 25 . 30	
Lys Gly Ile Tyr Cys Ile Gln Gln Phe Phe Thr Asn Pro Gly Asn Lys	
35 40 . 45	
Leu Ala Lys Phe Val Gly Ala Thr Lys Ser Leu Asp Lys Cys Phe Lys	
50 55 . 60	
Leu Ser Lys Ala Val Ser Asp Cys Val Val Gly Ser Leu Glu Glu Ala	
65 70 . 75 80	
Gly Cys Thr Gly Asp Ala Leu Thr Ser Ala Arg Asn Ala Gln Gly Met	
85 90 . 95	
Leu Lys Thr Thr Arg Glu Val Val Ala Leu Ala Asn Val Leu Asn Gly	
100 105 . 110	
Ala Val Pro Ser Ile Val Asn Ser Thr Gln Arg Cys Tyr Gln Tyr Thr	
115 120 . 125	
Arg Gln Ala Phe Glu Leu Gly Ser Lys Thr Lys Glu Arg Lys Thr Pro	
130 135 . 140	
Gly Glu Tyr Ser Lys Met Leu Leu Thr Arg Gly Asp Tyr Leu Leu Ala	
145 150 . 155 160	
Ala Ser Arg Glu Ala Cys Thr Ala Val Gly Ala Thr Thr Tyr Ser Ala	
165 170 . 175	
Thr Phe Gly Val Leu Arg Pro Leu Met Leu Ile Asn Lys Leu Thr Ala	
180 185 . 190	
Lys Pro Phe Leu Asp Lys Ala Thr Val Gly Asn Phe Gly Thr Ala Val	
195 200 . 205	
Ala Gly Ile Met Thr Ile Asn His Met Ala Gly Val Ala Gly Ala Val	
210 215 . 220	
Gly Gly Ile Ala Leu Glu Gln Lys Leu Phe Lys Arg Ala Lys Glu Ser	
225 230 . 235 240	
Leu Tyr Asn Glu Arg Cys Ala Leu Glu Asn Gln Gln Ser Gln Leu Ser	
245 250 . 255	
Gly Asp Val Ile Leu Ser Ala Glu Arg Ala Leu Arg Lys Glu His Val	
260 265 . 270	
Ala Thr Leu Lys Arg Asn Val Leu Thr Leu Leu Glu Lys Ala Leu Glu	
275 280 . 285	
Leu Val Val Asp Gly Val Lys Leu Ile Pro Leu Pro Ile Thr Val Ala	
290 295 . 300	
Cys Ser Ala Ala Ile Ser Gly Ala Leu Thr Ala Ala Ser Ala Gly Ile	

305	310	315	320
Gly Leu Tyr Ser Ile Trp Gln Lys Thr Lys Ser Gly Lys			
325	330		
 <210> 293			
<211> 7			
<212> DNA			
<213> Chlamydia			
 <400> 293			
tgcaatc			
 <210> 294			
<211> 196			
<212> PRT			
<213> Chlamydia			
 <400> 294			
Thr Met Gly Ser Leu Val Gly Arg Gln Ala Pro Asp Phe Ser Gly Lys			
5	10	15	
 Ala Val Val Cys Gly Glu Glu Lys Glu Ile Ser Leu Ala Asp Phe Arg			
20	25	30	
 Gly Lys Tyr Val Val Leu Phe Phe Tyr Pro Lys Asp Phe Thr Tyr Val			
35	40	45	
 Cys Pro Thr Glu Leu His Ala Phe Gln Asp Arg Leu Val Asp Phe Glu			
50	55	60	
 Glu His Gly Ala Val Val Leu Gly Cys Ser Val Asp Asp Ile Glu Thr			
65	70	75	80
 His Ser Arg Trp Leu Thr Val Ala Arg Asp Ala Gly Gly Ile Glu Gly			
85	90	95	
 Thr Glu Tyr Pro Leu Leu Ala Asp Pro Ser Phe Lys Ile Ser Glu Ala			
100	105	110	
 Phe Gly Val Leu Asn Pro Glu Gly Ser Leu Ala Leu Arg Ala Thr Phe			
115	120	125	
 Leu Ile Asp Lys His Gly Val Ile Arg His Ala Val Ile Asn Asp Leu			
130	135	140	
 Pro Leu Gly Arg Ser Ile Asp Glu Glu Leu Arg Ile Leu Asp Ser Leu			
145	150	155	160
 Ile Phe Phe Glu Asn His Gly Met Val Cys Pro Ala Asn Trp Arg Ser			
165	170	175	
 Gly Glu Arg Gly Met Val Pro Ser Glu Glu Gly Leu Lys Glu Tyr Phe			
180	185	190	
 Gln Thr Met Asp			

195

<210> 295
<211> 181
<212> PRT
<213> Chlamydia

<400> 295

Lys	Gly	Gly	Lys	Met	Ser	Thr	Thr	Ile	Ser	Gly	Asp	Ala	Ser	Ser	Leu
				5					10						15

Pro	Leu	Pro	Thr	Ala	Ser	Cys	Val	Glu	Thr	Lys	Ser	Thr	Ser	Ser	Ser
				20					25						30

Thr	Lys	Gly	Asn	Thr	Cys	Ser	Lys	Ile	Leu	Asp	Ile	Ala	Leu	Ala	Ile
	35					40									45

Val	Gly	Ala	Leu	Val	Val	Val	Ala	Gly	Val	Leu	Ala	Leu	Val	Leu	Cys
	50					55									60

Ala	Ser	Asn	Val	Ile	Phe	Thr	Val	Ile	Gly	Ile	Pro	Ala	Leu	Ile	Ile
	65				70					75					80

Gly	Ser	Ala	Cys	Val	Gly	Ala	Gly	Ile	Ser	Arg	Leu	Met	Tyr	Arg	Ser
	85								90						95

Ser	Tyr	Ala	Ser	Leu	Glu	Ala	Lys	Asn	Val	Leu	Ala	Glu	Gln	Arg	Leu
				100					105						110

Arg	Asn	Leu	Ser	Glu	Glu	Lys	Asp	Ala	Leu	Ala	Ser	Val	Ser	Phe	Ile
	115					120									125

Asn	Lys	Met	Phe	Leu	Arg	Gly	Leu	Thr	Asp	Asp	Leu	Gln	Ala	Leu	Glu
	130					135									140

Ala	Lys	Val	Met	Glu	Phe	Glu	Ile	Asp	Cys	Leu	Asp	Arg	Leu	Glu	Lys
	145					150				155					160

Asn	Glu	Gln	Ala	Leu	Leu	Ser	Asp	Val	Arg	Leu	Val	Leu	Ser	Ser	Tyr
	165							170							175

Thr	Arg	Trp	Leu	Asp											
			180												

<210> 296
<211> 124
<212> PRT
<213> Chlamydia

<400> 296

Ile	Tyr	Glu	Val	Met	Asn	Met	Asp	Leu	Glu	Thr	Arg	Arg	Ser	Phe	Ala
				5					10						15

Val Gln Gln Gly His Tyr Gln Asp Pro Arg Ala Ser Asp Tyr Asp Leu
 20 25 30

Pro Arg Ala Ser Asp Tyr Asp Leu Pro Arg Ser Pro Tyr Pro Thr Pro
 35 40 45

Pro Leu Pro Ser Arg Tyr Gln Leu Gln Asn Met Asp Val Glu Ala Gly
 50 55 60

Phe Arg Glu Ala Val Tyr Ala Ser Phe Val Ala Gly Met Tyr Asn Tyr
 65 70 75 80

Val Val Thr Gln Pro Gln Glu Arg Ile Pro Asn Ser Gln Gln Val Glu
 85 90 95

Gly Ile Leu Arg Asp Met Leu Thr Asn Gly Ser Gln Thr Phe Ser Asn
 100 105 110

Leu Met Gln Arg Trp Asp Arg Glu Val Asp Arg Glu
 115 120

<210> 297
 <211> 488
 <212> PRT
 <213> Chlamydia

<400> 297
 Lys Gly Ser Leu Pro Ile Leu Gly Pro Phe Leu Asn Gly Lys Met Gly
 5 10 15

Phe Trp Arg Thr Ser Ile Met Lys Met Asn Arg Ile Trp Leu Leu Leu
 20 25 30

Leu Thr Phe Ser Ser Ala Ile His Ser Pro Val Arg Gly Glu Ser Leu
 35 40 45

Val Cys Lys Asn Ala Leu Gln Asp Leu Ser Phe Leu Glu His Leu Leu
 50 55 60

Gln Val Lys Tyr Ala Pro Lys Thr Trp Lys Glu Gln Tyr Leu Gly Trp
 65 70 75 80

Asp Leu Val Gln Ser Ser Val Ser Ala Gln Gln Lys Leu Arg Thr Gln
 85 90 95

Glu Asn Pro Ser Thr Ser Phe Cys Gln Gln Val Leu Ala Asp Phe Ile
 100 105 110

Gly Gly Leu Asn Asp Phe His Ala Gly Val Thr Phe Phe Ala Ile Glu
 115 120 125

Ser Ala Tyr Leu Pro Tyr Thr Val Gln Lys Ser Ser Asp Gly Arg Phe
 130 135 140

Tyr Phe Val Asp Ile Met Thr Phe Ser Ser Glu Ile Arg Val Gly Asp
 145 150 155 160
 Glu Leu Leu Glu Val Asp Gly Ala Pro Val Gln Asp Val Leu Ala Thr
 165 170 175
 Leu Tyr Gly Ser Asn His Lys Gly Thr Ala Ala Glu Glu Ser Ala Ala
 180 185 190
 Leu Arg Thr Leu Phe Ser Arg Met Ala Ser Leu Gly His Lys Val Pro
 195 200 205
 Ser Gly Arg Thr Thr Leu Lys Ile Arg Arg Pro Phe Gly Thr Thr Arg
 210 215 220
 Glu Val Arg Val Lys Trp Arg Tyr Val Pro Glu Gly Val Gly Asp Leu
 225 230 235 240
 Ala Thr Ile Ala Pro Ser Ile Arg Ala Pro Gln Leu Gln Lys Ser Met
 245 250 255
 Arg Ser Phe Phe Pro Lys Lys Asp Asp Ala Phe His Arg Ser Ser Ser
 260 265 270
 Leu Phe Tyr Ser Pro Met Val Pro His Phe Trp Ala Glu Leu Arg Asn
 275 280 285
 His Tyr Ala Thr Ser Gly Leu Lys Ser Gly Tyr Asn Ile Gly Ser Thr
 290 295 300
 Asp Gly Phe Leu Pro Val Ile Gly Pro Val Ile Trp Glu Ser Glu Gly
 305 310 315 320
 Leu Phe Arg Ala Tyr Ile Ser Ser Val Thr Asp Gly Asp Gly Lys Ser
 325 330 335
 His Lys Val Gly Phe Leu Arg Ile Pro Thr Tyr Ser Trp Gln Asp Met
 340 345 350
 Glu Asp Phe Asp Pro Ser Gly Pro Pro Pro Trp Glu Glu Phe Ala Lys
 355 360 365
 Ile Ile Gln Val Phe Ser Ser Asn Thr Glu Ala Leu Ile Ile Asp Gln
 370 375 380
 Thr Asn Asn Pro Gly Gly Ser Val Leu Tyr Leu Tyr Ala Leu Leu Ser
 385 390 395 400
 Met Leu Thr Asp Arg Pro Leu Glu Leu Pro Lys His Arg Met Ile Leu
 405 410 415
 Thr Gln Asp Glu Val Val Asp Ala Leu Asp Trp Leu Thr Leu Leu Glu
 420 425 430
 Asn Val Asp Thr Asn Val Glu Ser Arg Leu Ala Leu Gly Asp Asn Met

435

440

445

Glu Gly Tyr Thr Val Asp Leu Gln Val Ala Glu Tyr Leu Lys Ser Phe
 450 455 460

Gly Arg Gln Val Leu Asn Cys Trp Ser Lys Gly Asp Ile Glu Leu Ser
 465 470 475 480

Thr Pro Ile Pro Leu Phe Gly Phe
 485

<210> 298

<211> 140

<212> PRT

<213> Chlamydia

<400> 298

Arg Ile Asp Ile Ser Ser Val Thr Phe Phe Ile Gly Ile Leu Leu Ala
 5 10 15

Val Asn Ala Leu Thr Tyr Ser His Val Leu Arg Asp Leu Ser Val Ser
 20 25 30

Met Asp Ala Leu Phe Ser Arg Asn Thr Leu Ala Val Leu Leu Gly Leu
 35 40 45

Val Ser Ser Val Leu Asp Asn Val Pro Leu Val Ala Ala Thr Ile Gly
 50 55 60

Met Tyr Asp Leu Pro Met Asn Asp Pro Leu Trp Lys Leu Ile Ala Tyr
 65 70 75 80

Thr Ala Gly Thr Gly Ser Ile Leu Ile Ile Gly Ser Ala Ala Gly
 85 90 95

Val Ala Tyr Met Gly Met Glu Lys Val Ser Phe Gly Trp Tyr Val Lys
 100 105 110

His Ala Ser Trp Ile Ala Leu Ala Ser Tyr Phe Gly Gly Leu Ala Val
 115 120 125

Tyr Phe Leu Met Glu Asn Cys Val Asn Leu Phe Val
 130 135 140

<210> 299

<211> 361

<212> PRT

<213> Chlamydia

<400> 299

His Gln Glu Ile Ala Asp Ser Pro Leu Val Lys Lys Ala Glu Glu Gln
 5 10 15

Ile Asn Gln Ala Gln Gln Asp Ile Gln Thr Ile Thr Pro Ser Gly Leu
 20 25 30

Asp Ile Pro Ile Val Gly Pro Ser Gly Ser Ala Ala Ser Ala Gly Ser
 35 40 45

Ala Ala Gly Ala Leu Lys Ser Ser Asn Asn Ser Gly Arg Ile Ser Leu
 50 55 60

Leu Leu Asp Asp Val Asp Asn Glu Met Ala Ala Ile Ala Met Gln Gly
 65 70 75 80

Phe Arg Ser Met Ile Glu Gln Phe Asn Val Asn Asn Pro Ala Thr Ala
 85 90 95

Lys Glu Leu Gln Ala Met Glu Ala Gln Leu Thr Ala Met Ser Asp Gln
 100 105 110

Leu Val Gly Ala Asp Gly Glu Leu Pro Ala Glu Ile Gln Ala Ile Lys
 115 120 125

Asp Ala Leu Ala Gln Ala Leu Lys Gln Pro Ser Ala Asp Gly Leu Ala
 130 135 140

Thr Ala Met Gly Gln Val Ala Phe Ala Ala Lys Val Gly Gly Gly
 145 150 155 160

Ser Ala Gly Thr Ala Gly Thr Val Gln Met Asn Val Lys Gln Leu Tyr
 165 170 175

Lys Thr Ala Phe Ser Ser Thr Ser Ser Ser Tyr Ala Ala Ala Leu
 180 185 190

Ser Asp Gly Tyr Ser Ala Tyr Lys Thr Leu Asn Ser Leu Tyr Ser Glu
 195 200 205

Ser Arg Ser Gly Val Gln Ser Ala Ile Ser Gln Thr Ala Asn Pro Ala
 210 215 220

Leu Ser Arg Ser Val Ser Arg Ser Gly Ile Glu Ser Gln Gly Arg Ser
 225 230 235 240

Ala Asp Ala Ser Gln Arg Ala Ala Glu Thr Ile Val Arg Asp Ser Gln
 245 250 255

Thr Leu Gly Asp Val Tyr Ser Arg Leu Gln Val Leu Asp Ser Leu Met
 260 265 270

Ser Thr Ile Val Ser Asn Pro Gln Ala Asn Gln Glu Glu Ile Met Gln
 275 280 285

Lys Leu Thr Ala Ser Ile Ser Lys Ala Pro Gln Phe Gly Tyr Pro Ala
 290 295 300

Val Gln Asn Ser Val Asp Ser Leu Gln Lys Phe Ala Ala Gln Leu Glu

305	310	315	320
Arg Glu Phe Val Asp Gly Glu Arg Ser Leu Ala Glu Ser Gln Glu Asn			
325	330	335	
Ala Phe Arg Lys Gln Pro Ala Phe Ile Gln Gln Val Leu Val Asn Ile			
340	345	350	
Ala Ser Leu Phe Ser Gly Tyr Leu Ser			
355	360		
<210> 300			
<211> 207			
<212> PRT			
<213> Chlamydia			
<400> 300			
Ser Ser Lys Ile Val Ser Leu Cys Glu Gly Ala Val Ala Asp Ala Arg			
5	10	15	
Met Cys Lys Ala Glu Leu Ile Lys Lys Glu Ala Asp Ala Tyr Leu Phe			
20	25	30	
Cys Glu Lys Ser Gly Ile Tyr Leu Thr Lys Lys Glu Gly Ile Leu Ile			
35	40	45	
Pro Ser Ala Gly Ile Asp Glu Ser Asn Thr Asp Gln Pro Phe Val Leu			
50	55	60	
Tyr Pro Lys Asp Ile Leu Gly Ser Cys Asn Arg Ile Gly Glu Trp Leu			
65	70	75	80
Arg Asn Tyr Phe Arg Val Lys Glu Leu Gly Val Ile Ile Thr Asp Ser			
85	90	95	
His Thr Thr Pro Met Arg Arg Gly Val Leu Gly Ile Gly Leu Cys Trp			
100	105	110	
Tyr Gly Phe Ser Pro Leu His Asn Tyr Ile Gly Ser Leu Asp Cys Phe			
115	120	125	
Gly Arg Pro Leu Gln Met Thr Gln Ser Asn Leu Val Asp Ala Leu Ala			
130	135	140	
Val Ala Ala Val Val Cys Met Gly Glu Gly Asn Glu Gln Thr Pro Leu			
145	150	155	160
Ala Val Ile Glu Gln Ala Pro Asn Met Val Tyr His Ser Tyr Pro Thr			
165	170	175	
Ser Arg Glu Glu Tyr Cys Ser Leu Arg Ile Asp Glu Thr Glu Asp Leu			
180	185	190	
Tyr Gly Pro Phe Leu Gln Ala Val Thr Trp Ser Gln Glu Lys Lys			

195

200

205

<210> 301
<211> 183
<212> PRT
<213> Chlamydia

<400> 301

Ile Pro Pro Ala Pro Arg Gly His Pro Gln Ile Glu Val Thr Phe Asp			
5	10	15	

Ile Asp Ala Asn Gly Ile Leu His Val Ser Ala Lys Asp Ala Ala Ser			
20	25	30	

Gly Arg Glu Gin Lys Ile Arg Ile Glu Ala Ser Ser Gly Leu Lys Glu			
35	40	45	

Asp Glu Ile Gln Gln Met Ile Arg Asp Ala Glu Leu His Lys Glu Glu			
50	55	60	

Asp Lys Gln Arg Lys Glu Ala Ser Asp Val Lys Asn Glu Ala Asp Gly			
65	70	75	80

Met Ile Phe Arg Ala Glu Lys Ala Val Lys Asp Tyr His Asp Lys Ile			
85	90	95	

Pro Ala Glu Leu Val Lys Glu Ile Glu Glu His Ile Glu Lys Val Arg			
100	105	110	

Gln Ala Ile Lys Glu Asp Ala Ser Thr Thr Ala Ile Lys Ala Ala Ser			
115	120	125	

Asp Glu Leu Ser Thr Arg Met Gln Lys Ile Gly Glu Ala Met Gln Ala			
130	135	140	

Gln Ser Ala Ser Ala Ala Ser Ser Ala Ala Asn Ala Gln Gly Gly			
145	150	155	160

Pro Asn Ile Asn Ser Glu Asp Leu Lys Lys His Ser Phe Ser Thr Arg			
165	170	175	

Pro Pro Ala Gly Gly Ser Ala			
180			

<210> 302
<211> 232
<212> PRT
<213> Chlamydia

<400> 302

Met Thr Lys His Gly Lys Arg Ile Arg Gly Ile Gln Glu Thr Tyr Asp			
5	10	15	

Leu Ala Lys Ser Tyr Ser Leu Gly Glu Ala Ile Asp Ile Leu Lys Gln
 20 25 30

Cys Pro Thr Val Arg Phe Asp Gln Thr Val Asp Val Ser Val Lys Leu
 35 40 45

Gly Ile Asp Pro Arg Lys Ser Asp Gln Gln Ile Arg Gly Ser Val Ser
 50 55 60

Leu Pro His Gly Thr Gly Lys Val Leu Arg Ile Leu Val Phe Ala Ala
 65 70 75 80

Gly Asp Lys Ala Ala Glu Ala Ile Glu Ala Gly Ala Asp Phe Val Gly
 85 90 95

Ser Asp Asp Leu Val Glu Lys Ile Lys Gly Gly Trp Val Asp Phe Asp
 100 105 110

Val Ala Val Ala Thr Pro Asp Met Met Arg Glu Val Gly Lys Leu Gly
 115 120 125

Lys Val Leu Gly Pro Arg Asn Leu Met Pro Thr Pro Lys Ala Gly Thr
 130 135 140

Val Thr Thr Asp Val Val Lys Thr Ile Ala Glu Leu Arg Lys Gly Lys
 145 150 155 160

Ile Glu Phe Lys Ala Asp Arg Ala Gly Val Cys Asn Val Gly Val Ala
 165 170 175

Lys Leu Ser Phe Asp Ser Ala Gln Ile Lys Glu Asn Val Glu Ala Leu
 180 185 190

Cys Ala Ala Leu Val Lys Ala Lys Pro Ala Thr Ala Lys Gly Gln Tyr
 195 200 205

Leu Val Asn Phe Thr Ile Ser Ser Thr Met Gly Pro Gly Val Thr Val
 210 215 220

Asp Thr Arg Glu Leu Ile Ala Leu
 225 230

<210> 303
 <211> 238
 <212> PRT
 <213> chlamydia

<400> 303
 Ile Asn Ser Lys Leu Glu Thr Lys Asn Leu Ile Tyr Leu Lys Leu Lys
 5 10 15

Ile Lys Lys Ser Phe Lys Met Gly Asn Ser Gly Phe Tyr Leu Tyr Asn
 20 25 30

Thr Gln Asn Cys Val Phe Ala Asp Asn Ile Lys Val Gly Gln Met Thr
 35 40 45

Glu Pro Leu Lys Asp Gln Gln Ile Ile Leu Gly Thr Thr Ser Thr Pro
 50 55 60

Val Ala Ala Lys Met Thr Ala Ser Asp Gly Ile Ser Leu Thr Val Ser
 65 70 75 80

Asn Asn Pro Ser Thr Asn Ala Ser Ile Thr Ile Gly Leu Asp Ala Glu
 85 90 95

Lys Ala Tyr Gln Leu Ile Leu Glu Lys Leu Gly Asp Gln Ile Leu Gly
 100 105 110

Gly Ile Ala Asp Thr Ile Val Asp Ser Thr Val Gln Asp Ile Leu Asp
 115 120 125

Lys Ile Thr Thr Asp Pro Ser Leu Gly Leu Leu Lys Ala Phe Asn Asn
 130 135 140

Phe Pro Ile Thr Asn Lys Ile Gln Cys Asn Gly Leu Phe Thr Pro Arg
 145 150 155 160

Asn Ile Glu Thr Leu Leu Gly Gly Thr Glu Ile Gly Lys Phe Thr Val
 165 170 175

Thr Pro Lys Ser Ser Gly Ser Met Phe Leu Val Ser Ala Asp Ile Ile
 180 185 190

Ala Ser Arg Met Glu Gly Gly Val Val Leu Ala Leu Val Arg Glu Gly
 195 200 205

Asp Ser Lys Pro Tyr Ala Ile Ser Tyr Gly Tyr Ser Ser Gly Val Pro
 210 215 220

Asn Leu Cys Ser Leu Arg Thr Arg Ile Ile Asn Thr Gly Leu
 225 230 235