

GRANIX

Granulatore Ambisonico

Manuale Utente e Guida Tecnica

Interfaccia principale di **GRANIX**

Francesco Dicorato

25giugno2025

GRANIX - Granulatore Ambisonico

Manuale Utente e Guida Tecnica

Copyright © 2025 Francesco Dicorato

Questo documento è distribuito sotto licenza Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

Sviluppato con Csound e Cabbage Per informazioni e aggiornamenti: https://github.com/username/granix

Indice

P	refaz	ione	9							
1	Intr	roduzione alla Sintesi Granulare	10							
	1.1	Fondamenti Teorici	10							
		1.1.1 Storia e Sviluppo	10							
		1.1.2 Principi Operativi	11							
	1.2	Applicazioni Creative	13							
		1.2.1 Time-stretching e Pitch-shifting	13							
		1.2.2 Creazione di Texture	13							
2	Am	abisonics e Spazializzazione Audio	15							
	2.1	Introduzione agli Ambisonics	15							
		2.1.1 Principi di Codifica Sferica	15							
	2.2	Format AmbiX di Primo Ordine	16							
		2.2.1 Coordinate Sferiche	16							
		2.2.2 Equazioni di Encoding	16							
	2.3	Limitazioni e Artefatti del FOA	17							
		2.3.1 Effetto "Ciambella"	17							
3	Architettura di GRANIX 18									
	3.1	Panoramica del Sistema	18							
	3.2	Struttura degli Strumenti Csound	18							
		3.2.1 Instrument 100 - Controller Principale	18							
		3.2.2 Instrument 99 - Caricatore File	18							
		3.2.3 Instrument 1 - Engine di Playback	18							
		3.2.4 Instrument 2 - Generatore Grani	19							
	3.3	Opcode Personalizzato AmbixFra	19							
	3.4	Algoritmi di Spazializzazione Dinamica	19							
		3.4.1 Azimuth Dinamico	19							
			19							
4	Inte	erfaccia Utente	21							
•	4.1		21							
	1.1		22							
	4.2	Layout e Organizzazione	22							
	7.2	4.2.1 Sezione Transport	22							
		4.2.2 Display Waveform	22							
		4.2.3 Controlli Ambisonici	23							
		4.2.4 Controlli Granulari	23 23							
	4.3	Stati dell'Interfaccia	23 24							
	4.0	4.3.1 Stato Iniziale	24 24							
			24 24							
		1.0.2 1 110 OMITOMO	47							

		4.3.3	Granulatore Attivo	25
		4.3.4	Playback in Corso	26
5	Con	trolli (e Parametri 2	28
	5.1	Contro	olli di Transport	28
		5.1.1	Open File	28
		5.1.2	ON/OFF	28
		5.1.3	Play/Stop	28
	5.2	Contro	olli Granulari	28
		5.2.1	FREQ - Frequenza di Lettura	28
		5.2.2	DENS - Densità Granulare	29
		5.2.3	DENSRAND - Randomizzazione Densità	29
		5.2.4	DUR - Durata Grani	29
		5.2.5	DURRAND - Randomizzazione Durata	30
		5.2.6	ENVFORM - Forma Inviluppo	30
	5.3	Contro	olli di Riproduzione	30
		5.3.1	RATE PLAY - Velocità Riproduzione	30
		5.3.2	SCRAB - Posizione Random	30
	5.4	Contro		31
		5.4.1	AZIMUTH - Posizionamento Orizzontale	31
		5.4.2	% ELEVATION - Controllo Elevazione	31
		5.4.3	AMP IN - Amplificazione Ingresso	31
•				
6	Tec			32
		6.0.1		32
		6.0.2		32
		6.0.3	1 9	33
		6.0.4		33
		6.0.5	Reverse Wash	34
7	Woı	rkflow	di Produzione	35
	7.1			35
		7.1.1		35
		7.1.2		35
	7.2		1 0 0	35
		7.2.1		35
		7.2.2		36
	7.3			36
	1.0	7.3.1		36
		7.3.2		37
		1.0.2	Mastering Timotoonics	91
8				38
	8.1	Diagn		38
		8.1.1	Problemi di Output	38
		8.1.2	*	38
	8.2	Ottim	izzazione Performance	39
		8.2.1	Configurazione Sistema	39
		8.2.2	Limits di Performance	40
	8.3	Troub	leshooting Avanzato	40
		8.3.1	Problemi di Compatibilità	40
		832		4∩

INDICE

9	Riferimenti e Risorse 42				
	9.1	Bibliog	grafia Tecnica	42	
		9.1.1	Granular Synthesis	42	
		9.1.2	Ambisonics e Audio Spaziale	42	
		9.1.3	Tecnologie Audio Digitali	42	
	9.2	Riferin	nenti Filosofici e Estetici	43	
		9.2.1	Fenomenologia della Percezione	43	
		9.2.2	Teoria dell'Oggetto Sonoro	43	
	9.3	Risors	e Online	43	
		9.3.1	Software e Plugin	43	
		9.3.2	Comunità e Forum	43	
		9.3.3	Risorse Educative	43	
	9.4	Conta	tti e Supporto	44	
		9.4.1	Supporto Tecnico	44	
		9.4.2	Aggiornamenti e News	44	
		9.4.3	Contributi e Sviluppo	44	
Ap	pen	dici		45	
	App	endice .	A: Specifiche Tecniche Complete	45	
	App	endice l	B: Scorciatoie da Tastiera	45	
	App	endice (C: Preset Factory	46	
			D: Formule Matematiche		
Inc	dice	Analit	ico	47	

Elenco delle figure

1.1	Schema concettuale della sintesi granulare	10
1.2	Struttura di un singolo grano con vari inviluppi, ripresi da "Microsound" di C.Road .	12
1.3	Analisi spettrale di una texture granulare complessa	14
2.1	Rappresentazione sferica del campo sonoro Ambisonics	15
2.2	Sistema di coordinate sferiche per il posizionamento audio	16
2.3	Visualizzazione dell'effetto ciambella in FOA	17
4.1	Interfaccia completa di GRANIX con file audio caricato	21
4.2	Sezione transport con controlli di base	22
4.3	Display waveform con cursore di posizione	23
4.4	Interfaccia allo stato iniziale	24
4.5	Interfaccia con file audio caricato	25
4.6	Granulatore in stato attivo	26
4.7	Interfaccia durante il playback	27

Elenco delle tabelle

2.1	Canali AmbiX di primo ordine	16
4.1	Palette cromatica dell'interfaccia	22
5.1	Valori FREQ e risultati sonori	29
5.2	Categorie di densità granulare	29
5.3	Valori ENVFORM e caratteristiche	30
5.4	Effetti della percentuale di elevation	31
7.1	Caratteristiche del materiale sorgente e risultati	35
7.2	Decoder Ambisonics consigliati	36
8.1	Diagnosi distorsione audio	38
8.2	Configurazioni audio consigliate	
8.3	Limiti consigliati per utilizzo CPU	40
8.4	Compatibilità DAW e note specifiche	40
9.1	Risorse software complementari	43
9.2	Corsi e tutorial online	43
9.3	Specifiche tecniche complete	
9.4	Scorciatoie da tastiera	
9.5	Libreria preset di fabbrica	46

Prefazione

GRANIX è un plug-in VST3(Virtual Studio Technology) programmato in linguaggio Csound e sviluppato all'interno del framework Cabbage. L'idea creativa che lo distingue, rendendolo unico rispetto ad altri granulatori risiede nella gestione ragionata e controllata dell'output spaziale dei grani, attraverso il formato ambisonics di primo ordine standard AmbiX. Questo strumento trascende il concetto tradizionale di granulazione come semplice effetto audio, trasformandosi in un vero e proprio ambiente compositivo dove lo spazio diventa elemento costitutivo dell'esperienza sonora.

Il presente manuale si propone di guidare l'utente attraverso tutti gli aspetti del software, dalla comprensione teorica dei principi di base fino alle tecniche avanzate di performance e composizione. Ogni sezione è corredata da esempi pratici, screenshot dettagliati e riferimenti tecnici per fornire una comprensione completa dello strumento.

Francesco Dicorato Bari, 2025

Introduzione alla Sintesi Granulare

1.1 Fondamenti Teorici

La sintesi granulare costituisce una delle tecniche più innovative e versatili nell'ambito dell'elaborazione audio digitale. Il termine deriva dal latino granulum, diminutivo di granum (chicco, grano), evidenziando la natura particellare e frammentaria di questa metodologia di sintesi.

 ${\bf Figura~1.1:}~Schema~concettuale~della~sintesi~granulare$

La tecnica si basa sulla scomposizione del materiale sonoro in piccoli frammenti temporali chiamati **grani** (grains), tipicamente compresi tra 1 e 100 millisecondi. Ogni grano viene processato individualmente secondo parametri specifici e successivamente ricombinato con altri grani per generare nuove texture sonore.

1.1.1 Storia e Sviluppo

La sintesi granulare ha le sue radici teoriche nei lavori di Dennis Gabor negli anni '40, che propose la decomposizione del suono in "quanti acustici". Il concetto fu successivamente sviluppato da Iannis Xenakis negli anni '70 e implementato digitalmente da Curtis Roads e Barry Truax negli anni '80.

1.1.2 Principi Operativi

Anatomia del Grano
Ogni grano sonoro è caratterizzato da quattro parametri fondamentali:
1. Durata : L'estensione temporale del grano, solitamente tra 1-100ms
2. Inviluppo: La forma dell'ampiezza nel tempo (attacco, sustain, rilascio)
3. Posizione: Il punto di origine nel materiale sorgente

4. **Trasposizione**: La velocità di riproduzione (controllo del pitch)

Figura 1.2: Struttura di un singolo grano con vari inviluppi, ripresi da "Microsound" di C.Road

Densità Granulare

La **densità** rappresenta il numero di grani generati per unità di tempo, tipicamente espressa in grani per secondo (grains/sec). Questo parametro determina la natura percettiva del risultato:

- Bassa densità (1-10 grani/sec): Effetti ritmici discreti
- Media densità (20-50 grani/sec): Texture granulari riconoscibili
- Alta densità (100+ grani/sec): Flussi sonori continui

1.2 Applicazioni Creative

1.2.1 Time-stretching e Pitch-shifting

La granulazione permette di manipolare indipendentemente durata e altezza del materiale sonoro:

Parametri:

- Densità: 100 grani/sec
- Durata grano: 50ms
- Velocità lettura: 0.5x (metà velocità)
- Trasposizione: 1.0 (pitch invariato)

Risultato: Audio esteso al doppio della durata originale senza alterazione del pitch.

1.2.2 Creazione di Texture

La randomizzazione dei parametri granulari genera complesse texture sonore impossibili da ottenere con tecniche tradizionali.

Figura 1.3: Analisi spettrale di una texture granulare complessa

Ambisonics e Spazializzazione Audio

2.1 Introduzione agli Ambisonics

Il termine Ambisonics deriva dalla combinazione del prefisso greco ambi- (intorno, circostante) e del latino sonus (suono), indicando letteralmente "suono che circonda". Questo sistema di codifica audio tridimensionale, sviluppato da Michael Gerzon negli anni '70, rappresenta una delle metodologie più avanzate per la cattura, elaborazione e riproduzione di campi sonori spaziali.

Figura 2.1: Rappresentazione sferica del campo sonoro Ambisonics

2.1.1 Principi di Codifica Sferica

Gli Ambisonics si basano sull'uso di **armoniche sferiche** per descrivere matematicamente la distribuzione direzionale dell'energia sonora su una superficie sferica. Questa rappresentazione permette una riproduzione accurata indipendentemente dalla configurazione degli altoparlanti utilizzati.

2.2 Format AmbiX di Primo Ordine

GRANIX utilizza il formato AMBIX di primo ordine (FOA), che impiega quattro canali per codificare il campo sonoro tridimensionale:

rdine
. (

Canale	Nome	Funzione
0	W*sqrt(2)	Componente omnidirezionale (pressione sonora)
1	Y	Gradiente sinistra-destra (figura a otto orizzontale)
2	Z	Gradiente alto-basso (figura a otto verticale)
3	X	Gradiente avanti-dietro (figura a otto sagittale)

2.2.1 Coordinate Sferiche

Il posizionamento spaziale utilizza un sistema di coordinate sferiche standard:

- Azimuth (θ): Angolo orizzontale, $-180 \le \theta \le +180$
- Elevation (ϕ): Angolo verticale, $-90 \le \phi \le +90$

Figura 2.2: Sistema di coordinate sferiche per il posizionamento audio

2.2.2 Equazioni di Encoding

La conversione da segnale mono-posizionato ai quattro canali AMBIX segue le equazioni:

$$W * sqrt(2) = S \tag{2.1}$$

$$Y = S \cdot \sin(\theta) \cdot \cos(\phi) \tag{2.2}$$

$$Z = S \cdot \sin(\phi) \tag{2.3}$$

$$X = S \cdot \cos(\theta) \cdot \cos(\phi) \tag{2.4}$$

dove S rappresenta il segnale sorgente.

2.3 Limitazioni e Artefatti del FOA

2.3.1 Effetto "Ciambella"

Il formato di primo ordine presenta intrinsecamente una limitazione nota come effetto ciambella o risoluzione direzionale limitata. Questo fenomeno si manifesta come zone di energia debole distribuite lungo archi curvi nello spazio sferico.

Figura 2.3: Visualizzazione dell'effetto ciambella in FOA

Cause Tecniche

L'origine di questo artefatto risiede nella natura matematica della codifica FOA:

- Utilizzo di sole quattro componenti per rappresentare l'intero campo sferico
- Impossibilità di concentrare energia uniformemente in tutte le direzioni
- Interferenze costruttive e distruttive tra le componenti X, Y, Z

Strategie di Mitigazione

In **GRANIX**, l'effetto ciambella può essere attenuato attraverso:

- 1. Aumento della densità granulare: Maggiore sovrapposizione temporale
- 2. Incremento della durata dei grani: Maggiore copertura temporale
- 3. Controllo attivo dell'elevation: Sfruttamento ottimale della componente Z
- 4. Randomizzazione spaziale: Distribuzione statistica dell'energia

Architettura di GRANIX

3.1 Panoramica del Sistema

GRANIX è sviluppato utilizzando Csound come motore di sintesi audio e Cabbage per l'interfaccia grafica. Questa architettura garantisce potenza computazionale elevata, flessibilità nella programmazione e compatibilità cross-platform.

3.2 Struttura degli Strumenti Csound

Il codice è organizzato secondo una separazione funzionale in quattro strumenti principali:

3.2.1 Instrument 100 - Controller Principale

Lo strumento 100 funge da master controller, gestendo:

- Interfacciamento con i controlli GUI
- Coordinamento degli altri strumenti
- Gestione dello stato globale del sistema
- Attivazione/disattivazione del granulatore

3.2.2 Instrument 99 - Caricatore File

Responsabile della gestione del materiale audio sorgente:

- Caricamento file audio in memoria
- Calcolo parametri del file (durata, frequenza di campionamento)
- Configurazione del display waveform
- Supporto formati mono e multicanale

3.2.3 Instrument 1 - Engine di Playback

Gestisce il motore di riproduzione e scheduling dei grani:

- Controllo transport (play/stop/velocità)
- Generazione trigger temporali per i grani
- Gestione del playhead tramite oscillatori phasor
- Implementazione scrubbing e randomizzazione posizionale

3.2.4 Instrument 2 - Generatore Grani

Il core della sintesi granulare:

- Creazione dei singoli grani audio
- Applicazione degli inviluppi dinamici
- Spazializzazione Ambisonics in tempo reale
- Output in formato AmbiX

3.3 Opcode Personalizzato AmbixFra

Il cuore della spazializzazione è l'opcode personalizzato AmbixFra, che implementa l'encoding Ambisonics:

Listing 3.1: Implementazione opcode AmbixFra

```
opcode AmbixFra, aaaa, akk
       ; Input: segnale audio, azimuth, elevation
       aSig, kazi, kelev xin
3
4
       ; Conversione gradi in radianti
       kElevRad = (kelev / 180) * $M_PI
       kAziRad = (kazi / 180) * $M_PI
       ; Encoding secondo formato AmbiX
9
       a0 = aSig
                                                  ; W*sqrt(2) (omnidirezionale)
       a1 = aSig * sin(kAziRad) * cos(kElevRad) ; Y (sinistra-destra)
11
       a2 = aSig * sin(kElevRad)
                                                  ; Z (alto-basso)
       a3 = aSig * cos(kAziRad) * cos(kElevRad) ; X (avanti-dietro)
14
       ; Output dei quattro canali AmbiX
       xout a0, a1, a2, a3
16
   endop
```

3.4 Algoritmi di Spazializzazione Dinamica

3.4.1 Azimuth Dinamico

L'azimuth in **GRANIX** non è statico ma varia dinamicamente secondo la posizione nel buffer audio:

$$\theta_{output} = \theta_{user} + (\phi_{buffer} \times 360) \tag{3.1}$$

dove ϕ_{buffer} rappresenta la fase normalizzata (0-1) della posizione nel file.

3.4.2 Elevation Correlata

L'elevation combina randomizzazione, densità granulare e ampiezza del segnale:

$$\phi_{output} = (rnd(180) - 90) \times \rho_{density} \times \alpha_{control} \times A_{signal}$$
(3.2)

dove:

• rnd(180): Valore random tra 0° e 180°

CAPITOLO 3. ARCHITETTURA DI \mathbf{GRANIX}

- $\rho_{density}$: Fattore di densità normalizzato
- $\alpha_{control}$: Controllo percentuale utente (0-1)
- $\bullet \ A_{signal} :$ Ampiezza istantanea del segnale

Interfaccia Utente

4.1 Design e Filosofia Visiva

L'interfaccia di **GRANIX** è progettata seguendo principi di ergonomia cognitiva e estetica minimalista. La palette cromatica riflette l'identità del software e garantisce leggibilità ottimale anche in condizioni di luce variabile.

Figura 4.1: Interfaccia completa di GRANIX con file audio caricato

4.1.1 Palette Cromatica

Tabella 4.1:	Palette	cromatica	dell'inter	faccia
--------------	---------	-----------	------------	--------

Elemento	Colore (RGB)	Utilizzo
Sfondo principale	(0, 10, 160)	Background generale, riduce affaticamento
Controlli attivi	(0, 255, 255)	Slider, indicatori, cursore waveform
Testo e etichette	(255, 255, 255)	Leggibilità massima su sfondo scuro
Pulsanti attivi	Verde acido	$ \begin{array}{cccc} {\rm Feedback} & {\rm stato} & {\rm ON/OFF}, \\ {\rm Play/Stop} & & \end{array} $

4.2 Layout e Organizzazione

4.2.1 Sezione Transport

La barra superiore contiene i controlli essenziali per l'operatività di base:

 ${\bf Figura~4.2:}~Sezione~transport~con~controlli~di~base$

- Open File: Apertura file audio (formati supportati: WAV, AIFF, FLAC)
- ON/OFF: Attivazione granulatore (verde acido quando attivo)
- Play/Stop: Controllo playback (verde acido durante riproduzione)

4.2.2 Display Waveform

Il display centrale mostra la rappresentazione visiva del file audio caricato:

Figura 4.3: Display waveform con cursore di posizione

Caratteristiche del display:

- Waveform in turchese su sfondo nero
- Cursore bianco verticale indica posizione corrente
- Scala temporale automatica in base alla durata del file
- Supporto file stereo (canali separati)

4.2.3 Controlli Ambisonici

La sezione superiore dei controlli gestisce i parametri spaziali:

- AMP IN: Controllo amplificazione generale
- AZIMUTH: Posizionamento orizzontale (-180° a +180°)
- % ELEVATION: Intensità movimento verticale (0-100%)
- ENVFORM: Forma inviluppo grani (0.001-0.999)

4.2.4 Controlli Granulari

La sezione inferiore raggruppa i parametri principali della granulazione:

4.3 Stati dell'Interfaccia

4.3.1 Stato Iniziale

All'avvio, **GRANIX** presenta uno stato neutro:

Figura 4.4: Interfaccia allo stato iniziale

- Buffer vuoto con messaggio "(No audio file loaded)"
- Tutti i controlli in posizione di default
- Pulsanti transport in stato inattivo

4.3.2 File Caricato

Dopo il caricamento di un file audio:

Figura 4.5: Interfaccia con file audio caricato

- Waveform visibile nel buffer
- Cursore di posizione disponibile
- Controlli attivati e responsivi

4.3.3 Granulatore Attivo

Con il granulatore attivato:

Figura 4.6: Granulatore in stato attivo

- $\bullet\,$ Pulsante ON/OFF in verde acido
- Granulazione attiva anche con playback fermo
- Feedback visuale sui controlli attivi

4.3.4 Playback in Corso

Durante la riproduzione:

Figura 4.7: Interfaccia durante il playback

- $\bullet\,$ Pulsante Play/Stop in verde acido
- Cursore bianco in movimento nel buffer
- Azimuth ed elevation dinamici attivi

Controlli e Parametri

5.1 Controlli di Transport

5.1.1 Open File

Il controllo **Open File** permette la selezione del materiale audio sorgente per la granulazione.

Specifiche Open File

Formati supportati: WAV, AIFF, FLAC, AU

Risoluzione: 16/24/32 bit

Frequenze di campionamento: 22.05, 44.1, 48, 88.2, 96 kHz

Canali: Mono, Stereo (downmix automatico)

Durata massima: Limitata dalla memoria RAM disponibile

5.1.2 ON/OFF

Controllo principale per l'attivazione del granulatore.

Comportamento ON/OFF

Stato OFF: Granulatore disattivato, nessun output audio Stato ON: Granulatore attivo, elaborazione in tempo reale

Indicazione visiva: Verde acido quando attivo

Nota: La granulazione funziona anche con playback fermo

5.1.3 Play/Stop

Controllo del playback del file audio sorgente.

Modalità Playback

Stop: Posizione congelata nel buffer Play: Avanzamento secondo Rate Play

Indicazione: Verde acido durante riproduzione

Interazione: Combinato con Rate Play per controllo direzionale

5.2 Controlli Granulari

5.2.1 FREQ - Frequenza di Lettura

Controlla la velocità di riproduzione dei grani, influenzando il pitch risultante.

Tabella 5.1: Valori FREQ e risultati sonori

Valore	Trasposizione	Effetto
2.0	+1 ottava	Pitch molto acuto, velocità doppia
1.5	$+ { m quinta}$	Pitch aumentato, carattere brillante
1.0	Originale	Nessuna trasposizione
0.5	-1 ottava	Pitch grave, velocità dimezzata
0.25	-2 ottave	Pitch molto grave, effetto drammatico

Impostazione: FREQ = 1.7, DENS = 100, DUR = 30ms

Risultato: Trasposizione di circa +9 semitoni con texture granulare densa Applicazione: Creazione di harmonizer naturali su materiale percussivo

5.2.2 DENS - Densità Granulare

Determina il numero di grani generati per secondo, influenzando la continuità percettiva.

Tabella 5.2: Categorie di densità granulare

Range	Categoria	Caratteristiche Percettive
1-5 grani/sec 10-30 grani/sec	Ritmica Texture	Eventi discreti, pattern percettibili Granularità evidente, superficie ru-
$50\text{-}100~\mathrm{grani/sec} \\ 200+~\mathrm{grani/sec}$	Flusso Sintesi	gosa Continuità con carattere granulare Flusso continuo, colorazione timbri- ca

5.2.3 DENSRAND - Randomizzazione Densità

Introduce variabilità temporale nella generazione dei grani.

Effetti DENSRAND	
Valore 0.0: Generazione perfettamente regolare	
Valore 0.3: Leggera irregolarità, effetto "umano"	
Valore 0.7: Forte irregolarità, carattere caotico	
Valore 1.0: Massima randomizzazione, eventi sparsi	

5.2.4 DUR - Durata Grani

Controlla l'estensione temporale di ogni singolo grano.

- Grani corti (1-20ms): Effetti percussivi, attacchi definiti
- Grani medi (30-80ms): Bilanciamento tra articolazione e fluidità
- Grani lunghi (100-500ms): Texture scorrevoli, sovrapposizioni evidenti

5.2.5 DURRAND - Randomizzazione Durata

Varia casualmente la durata dei grani per aumentare la complessità timbrica.

Texture Complessa Impostazione: DUR = 60ms, DURRAND = 0.8

Risultato: Grani di durata variabile tra 12ms e 108ms

Effetto: Superficie granulare irregolare, ricchezza timbrica elevata

5.2.6 ENVFORM - Forma Inviluppo

Modifica il rapporto tra attacco e rilascio nell'inviluppo triangolare dei grani.

Tabella 5.3: Valori ENVFORM e caratteristiche

Valore	Caratteristica	Applicazione
0.1		Effetti percussivi morbidi
0.5	lungo Forma simmetrica	Utilizzo generale, bilanciato
0.9	Attacco lungo, rilascio veloce	Effetti di fade-in naturali

5.3 Controlli di Riproduzione

5.3.1 RATE PLAY - Velocità Riproduzione

Determina velocità e direzione del playback nel buffer audio.

Range RATE PLAY

Valori positivi: Riproduzione in avanti

Valore 0: Posizione congelata

Valori negativi: Riproduzione all'indietro (reverse)

Range: -2.0 a + 2.0

Valore 1.0: Velocità normale del file originale

Impostazione: RATE PLAY = -0.5, FREQ = 0.8, DENS = 80

Risultato: Reverse lento con pitch leggermente abbassato Carattere: Effetto "rewind" granulare, molto espressivo

5.3.2 SCRAB - Posizione Random

Introduce oscillazioni casuali nel puntatore di lettura del buffer.

- Valore 0.0: Lettura lineare senza deviazioni
- Valore 0.3: Leggere oscillazioni, effetto "tape flutter"
- Valore 0.8: Forti salti posizionali, frammentazione del materiale
- Valore 1.0: Lettura completamente randomizzata

5.4 Controlli Ambisonici

5.4.1 AZIMUTH - Posizionamento Orizzontale

Controlla la posizione base nell'asse orizzontale, con rotazione automatica correlata alla posizione nel buffer.

Funzionamento AZIMUTH

Formula: $\theta_{finale} = \theta_{controllo} + (\phi_{buffer} \times 360)$ Effetto: Rotazione continua durante il playback Controllo utente: Offset della posizione di partenza

Range: $-180^{\circ} \text{ a } +180^{\circ}$

5.4.2 % ELEVATION - Controllo Elevazione

Modula l'intensità del movimento verticale automatico.

Tabella 5.4: Effetti della percentuale di elevation

Percentuale	Comportamento	Risultato Percettivo
0%	Elevation disattivata	Movimento solo orizzontale
25%	Elevation moderata	Leggero movimento 3D
50%	Elevation bilanciata	Movimento spaziale evidente
75%	Elevation pronunciata	Forte dinamismo verticale
100%	Elevation massima	Movimento spaziale estremo

5.4.3 AMP IN - Amplificazione Ingresso

Controllo del volume generale dell'output granulare.

Gestione AMP IN

Range: 0.0 a 1.0 Curva: Lineare

Posizione ottimale: 0.7-0.8 per la maggior parte del materiale Attenzione: Valori elevati possono causare clipping con alta densità

Tecniche Creative e Preset

6.0.1 Ambient Ethereal

Creazione di atmosfere sospese e immersive.

Preset Ambient Ethereal Parametri:

• FREQ: 0.5 (una ottava sotto)

• DENS: 45 grani/sec

• DENSRAND: 0.4

• DUR: 120ms

• DURRAND: 0.6

• RATE PLAY: 0.1 (molto lento)

• SCRAB: 0.2

• AZIMUTH: 0° (fronte)

• % ELEVATION: 85%

• ENVFORM: 0.3

Risultato: Nuvola granulare grave con movimento spaziale pronunciato, ideale per introduzioni o transizioni atmosferiche.

6.0.2 Rhythmic Pulse

Generazione di pattern ritmici spazializzati.

Preset Rhythmic Pulse Parametri:

• FREQ: 1.2 (leggermente acuto)

• DENS: 6 grani/sec

• DENSRAND: 0.15

• DUR: 40ms

• DURRAND: 0.25

• RATE PLAY: 0 (fermo)

• SCRAB: 0.7

• AZIMUTH: variazione manuale

• % ELEVATION: 30%

• ENVFORM: 0.8

Risultato: Pattern ritmico con salti casuali nel materiale e controllo espressivo dell'azimuth.

6.0.3 Spectral Morphing

Trasformazioni timbriche continue attraverso pitch shifting dinamico.

Preset Spectral Morphing Parametri:

• FREQ: 1.7 (settima maggiore sopra)

• DENS: 180 grani/sec

• DENSRAND: 0.1

• DUR: 25ms

• DURRAND: 0.3

• RATE PLAY: 0.4

• SCRAB: 0.1

• AZIMUTH: 45°

• % ELEVATION: 60%

• ENVFORM: 0.5

Risultato: Pitch shifting continuo con texture granulare fine e movimento spaziale controllato.

6.0.4 Chaos Cloud

Texture caotica con massima randomizzazione.

Preset Chaos Cloud Parametri:

• FREQ: automazione random (0.3-2.1)

• DENS: 250 grani/sec

• DENSRAND: 0.9

• DUR: 35ms

• DURRAND: 0.95

• RATE PLAY: 0.6

• SCRAB: 0.85

• AZIMUTH: automazione circolare

• % ELEVATION: 100%

• ENVFORM: 0.4

Risultato: Nuvola granulare caotica con massima imprevedibilità spaziale e timbrica.

6.0.5 Reverse Wash

Effetto di lavaggio sonoro all'indietro.

Parametri:

• FREQ: 0.75

 $\bullet\,$ DENS: 120 grani/sec

• DENSRAND: 0.5

• DUR: 85ms

• DURRAND: 0.7

• RATE PLAY: -0.3 (reverse lento)

• SCRAB: 0.4

• AZIMUTH: -90° (destra)

 $\bullet~\%$ ELEVATION: 75%

• ENVFORM: 0.2

Risultato: Effetto wash con movimento all'indietro, texture avvolgente con forte carattere spaziale.

Workflow di Produzione

7.1 Preparazione del Materiale

7.1.1 Selezione del Materiale Sorgente

La scelta del materiale audio influenza drasticamente i risultati ottenibili:

Tabella 7.1: Caratteristiche del materiale sorgente e risultati

Tipo Materiale	Caratteristiche	Risultati Granulari
Materiale percussivo	Attacchi definiti, spettro ricco	Texture ritmiche, effetti glitch
Materiale sustain	Evoluzione lenta, timbro stabile	Pad atmosferici, morphing continuo
Materiale vocale	Formanti, dinamica espressiva	Texture organiche, effetti parlati
Materiale sinteti- co	Spettro controllato	Risultati prevedibili, purezza timbrica
Field recordings	Complessità spettrale	Texture realistiche, ambienti sonori

7.1.2 Pre-processing Consigliato

Prima del caricamento in **GRANIX**, alcuni processamenti possono migliorare i risultati:

- 1. Normalizzazione: Ottimizzazione del range dinamico
- 2. EQ correttivo: Rimozione di frequenze problematiche
- 3. Compressione leggera: Controllo dei picchi eccessivi
- 4. De-clicking: Rimozione di artefatti digitali

7.2 Metodologie di Registrazione

7.2.1 Setup di Monitoraggio Ambisonics

Per un monitoraggio accurato dell'output AmbiX:

Configurazioni Altoparlanti

- Quadrifonico: 4 altoparlanti agli angoli (minimo per FOA)
- Ottafonico: 8 altoparlanti su circonferenza (ottimale per FOA)
- Setup 3D: Include altoparlanti elevation per full-sphere

Decoder Ambisonics

Selezione del decoder appropriato:

Tabella 7.2: Decoder Ambisonics consigliati

Software	Caratteristiche	Applicazione
IEM AllRADecoder	Configurazione flessibile	Setup irregolari, ricerca
Ambisonic Toolkit	Integrazione DAW	Produzione musicale
SPARTA	Analisi real-time	Monitoraggio, debugging
Blue Ripple O3A	Qualità professionale	Mastering, post-produzione

7.2.2 Tecniche di Registrazione

Registrazione Diretta

Cattura dell'output AmbiX in tempo reale:

- 1. Configurazione DAW a 4 canali
- 2. Routing diretto da **GRANIX** a tracce audio
- 3. Registrazione simultanea di automazioni MIDI
- 4. Backup dei preset utilizzati

Registrazione Layered

Approccio per costruzioni complesse:

- 1. Registrazione separata di ogni layer granulare
- 2. Mixing in ambiente Ambisonics dedicato
- 3. Post-processing su singoli layer
- 4. Compositing finale con controllo spaziale

7.3 Post-Produzione Ambisonics

7.3.1 Editing e Montaggio

Strumenti Specifici

Software specializzati per editing Ambisonics:

- Reaper con plugin IEM: Soluzione economica e flessibile
- Pro Tools con Dolby Atmos: Standard industria

- Pyramix con Merging Technologies: Qualità professionale
- Nuendo con VST3 Ambisonics: Integrazione completa

Tecniche di Editing

- Crossfade spaziale: Transizioni fluide tra posizioni
- Automazione rotation: Movimento dinamico post-registrazione
- Distance control: Simulazione profondità attraverso filtri
- Diffusion control: Controllo della larghezza della sorgente

7.3.2 Mastering Ambisonics

Considerazioni Specifiche

Il mastering in ambiente Ambisonics richiede attenzioni particolari:

- 1. Bilanciamento canali: Verifica equilibrio W, X, Y, Z
- 2. Controllo correlazione: Evitare cancellazioni di fase
- 3. Dynamic range: Preservare dimensionalità spaziale
- 4. Translation check: Verifica su diversi sistemi di riproduzione

Chain di Mastering

Catena di processing consigliata:

- 1. Analisi spettrale 4-canali: Identificazione problemi
- 2. EQ correttivo per canale: Bilanciamento frequenziale
- 3. Compressore 4-canali linkato: Controllo dinamica
- 4. Limiter trasparente: Protezione da overload
- 5. Analisi finale: Verifica conformità standard

Capitolo 8

Risoluzione Problemi e Ottimizzazione

8.1 Diagnostica Audio

8.1.1 Problemi di Output

Assenza di Segnale

Procedura di diagnosi sistematica:

1. Verifica stato ON/OFF: Controllo indicatore verde

2. Controllo AMP IN: Valore maggiore di 0.1

3. Verifica file caricato: Presenza waveform nel buffer

4. Test routing audio: Controllo configurazione DAW

5. Verifica driver audio: Controllo latenza e buffer size

Distorsione Audio

Cause comuni e soluzioni:

Tabella 8.1: Diagnosi distorsione audio

Sintomo	Causa Probabile	Soluzione
Clipping digitale	AMP IN troppo alto	Ridurre AMP IN sotto 0.8
Artefatti granula-	Densità eccessiva	Limitare DENS sotto 300
ri		
Aliasing	File sorgente di bassa qualità	Utilizzare file $44.1 \text{kHz} +$
Glitch sporadici	Buffer audio troppo piccolo	Aumentare buffer a 256-512
Saturazione	Sovraccarico CPU	Ridurre densità e durata grani

8.1.2 Problemi di Spazializzazione

Spazializzazione Non Percepita

Controlli da effettuare:

1. Routing 4-canali: Verifica output AmbiX corretto

2. Decoder configurato: Controllo decoder Ambisonics attivo

- 3. % ELEVATION attiva: Valore maggiore di 20%
- 4. Movimento AZIMUTH: Controllo rotazione durante playback
- 5. Sistema di ascolto: Verifica configurazione altoparlanti

Effetto Ciambella Eccessivo

Mitigazione dell'artefatto FOA:

Riduzione Effetto Ciambella Strategia 1 - Densificazione:

- Aumentare DENS a 150+ grani/sec
- Incrementare DUR a 80+ ms
- Usare DURRAND = 0.6+

Strategia 2 - Elevation ottimale:

- Impostare % ELEVATION = 70-90%
- Evitare elevation = 0%
- Utilizzare DENSRAND = 0.4+

8.2 Ottimizzazione Performance

8.2.1 Configurazione Sistema

Impostazioni Audio Driver

Parametri ottimali per diverse applicazioni:

Tabella 8.2: Configurazioni audio consigliate

Applicazione	Buffer Size	Sample Rate	Latenza Target
Performance Live	128-256 samples	44.1/48 kHz	<10ms
Registrazione	512-1024 samples	$48/96~\mathrm{kHz}$	$< 20 \mathrm{ms}$
Studio			
Composizione	1024-2048 sam-	$44.1/48~\mathrm{kHz}$	<40ms
	ples		
Rendering Offline	2048+ samples	$96/192~\mathrm{kHz}$	Non critica

Gestione Memoria

Ottimizzazione utilizzo RAM:

• File lunghi: Considerare segmentazione

• Qualità file: Bilanciare qualità/memoria

• Istanze multiple: Monitorare utilizzo complessivo

• Cleanup periodico: Riavvio regolare per reset memoria

8.2.2 Limits di Performance

CPU Usage Guidelines

Linee guida per utilizzo CPU sostenibile:

Tabella 8.3: Limiti consigliati per utilizzo CPU

CPU Type	Max DENS	Note
Intel i5 (old gen)	200 grani/sec	Limitare istanze simultanee
Intel i7/i9 (new)	$500+ \mathrm{grani/sec}$	Performance eccellenti
AMD Ryzen $5/7$	$400+ \mathrm{grani/sec}$	Ottima efficienza multi-core
${\rm Apple~M1/M2}$	$600+~\rm grani/sec$	Architettura molto efficiente

8.3 Troubleshooting Avanzato

8.3.1 Problemi di Compatibilità

Host DAW

Compatibilità con diverse DAW:

Tabella 8.4: Compatibilità DAW e note specifiche

DAW	Supporto	Note Specifiche
Reaper	Eccellente	Supporto nativo 4+ canali
Logic Pro X	Buono	Configurare I/O per 4 canali
Pro Tools	Buono	Utilizzare configurazione surround
Ableton Live	Limitato	Max 2 canali (stereo downmix)
Cubase/Nuendo	Eccellente	Supporto VST3 completo
Studio One	Buono	Configurazione manuale routing

Sistemi Operativi

Problematiche specifiche per OS:

- Windows: Driver ASIO obbligatorio per performance ottimali
- macOS: CoreAudio generalmente stabile, controllare permissions
- Linux: Configurazione JACK necessaria per pro audio

8.3.2 Debugging Avanzato

Analisi Segnale

Tools per analisi approfondita:

- 1. Oscilloscopio 4-canali: Verifica forma d'onda per canale
- 2. Analizzatore spettro: Controllo distribuzione frequenziale
- 3. Phase meter: Verifica correlazione tra canali
- 4. Loudness meter: Controllo dinamica e bilanciamento

Log Files e Diagnostics

Interpretazione log di sistema:

Listing 8.1: Esempio log Csound per debugging

INIT ERROR in instr 2: Invalid table number
WARNING: Buffer underrun detected
PERF ERROR: Grain density exceeds safe limits
INFO: File loaded successfully - Duration: 45.6s

Capitolo 9

Riferimenti e Risorse

9.1 Bibliografia Tecnica

9.1.1 Granular Synthesis

- Roads, Curtis. *Microsound*. Cambridge: MIT Press, 2001.
- Truax, Barry. "Real-time Granular Synthesis with a Digital Signal Processor." Computer Music Journal 12, no. 2 (1988): 14-26.
- Wishart, Trevor. On Sonic Art. Amsterdam: Harwood Academic Publishers, 1996.
- Xenakis, Iannis. Formalized Music: Thought and Mathematics in Music. Stuyvesant: Pendragon Press, 1992.

9.1.2 Ambisonics e Audio Spaziale

- Gerzon, Michael A. "Periphony: With-Height Sound Reproduction." *Journal of the Audio Engineering Society* 21, no. 1 (1973): 2-10.
- Malham, David G., and Anthony Myatt. "3-D Sound Spatialization using Ambisonic Techniques." *Computer Music Journal* 19, no. 4 (1995): 58-70.
- Daniel, Jérôme. "Représentation de champs acoustiques, application à la transmission et à la reproduction de scènes sonores complexes dans un contexte multimédia." PhD diss., Université Paris 6, 2000.
- Zotter, Franz, and Matthias Frank. Ambisonics: A Practical 3D Audio Theory for Recording, Studio Production, Sound Reinforcement, and Virtual Reality. Cham: Springer, 2019.

9.1.3 Tecnologie Audio Digitali

- Boulanger, Richard, ed. The Csound Book: Perspectives in Software Synthesis, Sound Design, Signal Processing, and Programming. Cambridge: MIT Press, 2000.
- Dodge, Charles, and Thomas A. Jerse. Computer Music: Synthesis, Composition, and Performance. 2nd ed. New York: Schirmer Books, 1997.
- Miranda, Eduardo Reck. Computer Sound Design: Synthesis Techniques and Programming. 2nd ed. Oxford: Focal Press, 2002.

9.2 Riferimenti Filosofici e Estetici

9.2.1 Fenomenologia della Percezione

- Merleau-Ponty, Maurice. Phénoménologie de la perception. Paris: Gallimard, 1945.
- Ihde, Don. Listening and Voice: Phenomenologies of Sound. 2nd ed. Albany: SUNY Press, 2007.

9.2.2 Teoria dell'Oggetto Sonoro

- Schaeffer, Pierre. Traité des objets musicaux. Paris: Éditions du Seuil, 1966.
- Chion, Michel. Guide des objets sonores. Paris: Buchet/Chastel, 1983.

9.3 Risorse Online

9.3.1 Software e Plugin

Tabella 9.1: Risorse software complementari

Software	Sviluppatore	URL
IEM Plugin Suite	IEM Graz	https://plugins.iem.at
Ambisonic Toolkit	DXARTS, University of Washington	http://ambisonictoolkit. net
SPARTA	Aalto University	https://leomccormack. github.io/sparta
Blue Ripple Sound	Blue Ripple Sound	https://www. blueripplesound.com

9.3.2 Comunità e Forum

- Csound Community: https://csound.com/community.html
- Cabbage Audio Forum: https://forum.cabbageaudio.com
- Ambisonic.info: https://www.ambisonic.info
- Sound on Sound Forum: https://www.prosoundnetwork.com/forums

9.3.3 Risorse Educative

Tabella 9.2: Corsi e tutorial online

Risorsa	Tipo	Focus
Csound FLOSS Manual	Documentazione	Programmazione Csound completa
Kadenze Courses	Video Course	Audio programming e sintesi
YouTube - Ambisonic	Tutorial Video	Tecniche spazializzazione
Academic Papers	Ricerca	Teoria avanzata e algoritmi

9.4 Contatti e Supporto

9.4.1 Supporto Tecnico

Per assistenza tecnica e segnalazione bug:

- Email: support@granix-audio.com
- GitHub Issues: https://github.com/username/granix/issues
- Forum Community: https://community.granix-audio.com

9.4.2 Aggiornamenti e News

- Website: https://www.granix-audio.com
- Twitter: @granix_audio
- Newsletter: Iscrizione sul sito ufficiale

9.4.3 Contributi e Sviluppo

GRANIX è un progetto aperto a contributi:

- Source Code: https://github.com/username/granix
- Documentation: Contributi benvenuti via Pull Request
- Preset Library: Condivisione preset attraverso community
- Bug Reports: Issue tracker GitHub

Appendici

Appendice A: Specifiche Tecniche Complete

Requisiti Minimi di Sistema

Tabella 9.3: Specifiche tecniche complete

Componente	Minimo	Raccomandato
Sistema Operativo	$\begin{array}{cc} {\rm Windows} & 7+ & / \\ {\rm macOS} & 10.12+ & \end{array}$	Windows 10+ / macOS 12+
Processore	Intel i5 2.5GHz	Intel i 7 $3.0\mathrm{GHz}+$ / AMD Ryzen 7
RAM	4GB	8GB+
Storage	100MB	1GB (con libreria preset)
Audio Interface	Integrata	ASIO/CoreAudio professionale

Formati File Supportati

• Audio: WAV (16/24/32-bit), AIFF, FLAC, AU

• Frequenze: 22.05, 44.1, 48, 88.2, 96, 192 kHz

• Canali: Mono, Stereo (downmix automatico)

• Durata: Limitata dalla RAM disponibile

Appendice B: Scorciatoie da Tastiera

Tabella 9.4: Scorciatoie da tastiera

Scorciatoia	Azione
$\overline{ ext{Ctrl/Cmd} + ext{O}}$	Apri file audio
Spacebar	Play/Stop toggle
$\mathrm{Ctrl}/\mathrm{Cmd} + \mathrm{R}$	Reset tutti i parametri
$\mathrm{Ctrl}/\mathrm{Cmd} + \mathrm{S}$	Salva preset corrente
$\mathrm{Ctrl}/\mathrm{Cmd} + \mathrm{L}$	Carica preset
Shift + Click	Fine adjustment controlli
Alt + Click	Reset singolo parametro
$\frac{\mathrm{Ctrl}/\mathrm{Cmd} + \mathrm{Z}}{}$	Undo ultima modifica

Appendice C: Preset Factory

Preset Inclusi

Tabella 9.5: Libreria preset di fabbrica

Nome Preset	Categoria	Descrizione
Ambient Ethereal	Atmospheric	Texture sospesa con movimento spaziale
Rhythmic Pulse	Rhythmic	Pattern ritmico con controllo espressivo
Spectral Morph	Harmonic	Pitch shifting con texture fine
Chaos Cloud	Experimental	Massima randomizzazione spaziale
Reverse Wash	Temporal	Effetto lavaggio all'indietro
Crystalline	Percussive	Grani cristallini ad alta definizione
Deep Rumble	Low-end	Texture grave atmosferica
Vocal Texture	Organic	Ottimizzato per materiale vocale
Glitch Storm	Digital	Effetti glitch controllati
Smooth Pad	Harmonic	Pad continuo per accordi

Appendice D: Formule Matematiche

Encoding Ambisonics

Conversione da coordinate sferiche a formato AmbiX:

$$W=S$$
 (Componente omnidirezionale)
 $Y=S\cdot\sin(\theta)\cdot\cos(\phi)$ (Sinistra-destra)
 $Z=S\cdot\sin(\phi)$ (Alto-basso)
 $X=S\cdot\cos(\theta)\cdot\cos(\phi)$ (Avanti-dietro)

dove:

- S = segnale sorgente
- θ = azimuth in radianti
- ϕ = elevation in radianti

Calcoli di Spazializzazione Dinamica

Azimuth Dinamico

$$\theta_{output} = \theta_{user} + (\phi_{buffer} \times 2\pi) \tag{9.1}$$

Elevation Correlata

$$\phi_{output} = \left(\frac{\text{random}(0,1) - 0.5}{0.5}\right) \times \frac{\pi}{2} \times \rho_{density} \times \alpha_{control}$$
(9.2)

Posizione Buffer con Scrubbing

$$pos_{final} = pos_{base} + random(-scrab, +scrab) \times file_length$$
 (9.3)

Indice Analitico

2 A Ambient preset, 89 Ambisonics, 15-25 - encoding, 18 - first order, 16 - limitazioni, 21 Azimuth, 17, 52 - dinamico, 74

\mathbf{B}

Buffer, 29
- scrubbing, 55
- waveform display, 31

\mathbf{C}

Chaos cloud, 91 Csound, 26 - architettura, 26 - opcodes, 27

\mathbf{D}

Densità granulare, 12, 45 - randomizzazione, 47 Durata grani, 48

\mathbf{E}

Effetto ciambella, 21, 67 Elevation, 17, 54 - correlata, 75 Encoding *Ambisonics*, 18 ENVFORM, 49

\mathbf{F}

FOA (First Order Ambisonics), 16 FREQ (frequenza), 44

\mathbf{G}

Grani (grains), 11
- anatomia, 12
- durata, 12

Granular synthesis, 11-14

Ι

Interfaccia utente, 28-37

- design, 28
- layout, 29
- stati, 33

\mathbf{L}

Layering, 85

\mathbf{M}

MIDI mapping, 83 Morphing, 84

P

Performance, 82-85 Preset, 89-91 - factory, 115

\mathbf{R}

Rate play, 51 Reverse granular, 91

\mathbf{S}

Scrubbing, 55 Spazializzazione, 15-25 - dinamica, 74

\mathbf{T}

Troubleshooting, 64-71

W

Workflow, 92-99