MATH 601 HOMEWORK (DUE 8/30)

HIDENORI SHINOHARA

Exercise 0.1. Show that a bijective ring homomorphism is an isomorphism in the category of rings.

Proof. Let f be a bijective ring homomorphism from a ring A to a ring B.

Let **C** denote the category of rings. Then A, B are objects of the category **C**. Since $\operatorname{Hom}_{\mathbf{C}}(A, B)$ is defined to be the set of all ring homomorphisms from A to $B, f \in \operatorname{Hom}_{\mathbf{C}}(A, B)$.

We will show that there exists an element $g \in \operatorname{Hom}_{\mathbf{C}}(B, A)$ such that $g \circ f = \operatorname{Id}_A$ and $f \circ g = \operatorname{Id}_B$.

Let a function $g: B \to A$ be defined such that $\forall b \in B, g(b) = a$ where a is an element such that f(a) = b. g is well-defined because:

- f is surjective, so there exists an $a \in A$ such that f(a) = b.
- f is injective, so such an a must be unique.

We claim that this g satisfies the desired properties:

- Claim 1: $g \in \text{Hom}_{\mathbf{C}}(B, A)$. This is equivalent to showing that g is a ring homomorphism. Let $b_1, b_2 \in B$ be given. Let $a_1 = g(b_1), a_2 = g(b_2)$. Then $f(a_1) = b_1$ and $f(a_2) = b_2$.
 - Since f is a ring homomorphism, $f(a_1 + a_2) = f(a_1) + f(a_2) = b_1 + b_2$. Therefore, $g(b_1 + b_2) = a_1 + a_2 = g(b_1) + g(b_2)$.
 - Since f is a ring homomorphism, $f(a_1 \cdot a_2) = f(a_1) \cdot f(a_2) = b_1 \cdot b_2$. Therefore, $g(b_1 \cdot b_2) = a_1 \cdot a_2 = g(b_1) \cdot g(b_2)$.
 - Since f is a ring homomorphism, f(1) = 1. Thus g(1) = 1. Therefore, $g \in \text{Hom}_{\mathbf{C}}(B, A)$.
- Claim 2: $g \circ f = \operatorname{Id}_A$. Let $a \in A$. Let b = f(a). Then g(b) = a, so g(f(a)) = a. This implies that $\forall a \in A, g(f(a)) = a$. Thus $g \circ f = \operatorname{Id}_A$.
- Claim 3: $f \circ g = \operatorname{Id}_B$. Let $b \in B$. Let a = g(b). Then f(a) = b, so f(g(b)) = b. Therefore, $\forall b \in B, f(g(b)) = b$. Thus $f \circ g = \operatorname{Id}_B$.

Therefore, f is indeed an isomorphism in the category of rings. \square

Exercise 0.2. Show that when products exist, they are essentially unique.

FIGURE 1. Diagram of maps for the second problem

Proof. First, we will consider the case when $C = P, f = p_A, g = p_B$. Then there exists a unique map $h' \in \operatorname{Hom}_{\mathbf{C}}(C, P') = \operatorname{Hom}_{\mathbf{C}}(P, P')$ such that $f = p'_A \circ h'$. In other words, $p_A = p'_A \circ h'$.

such that $f = p'_A \circ h'$. In other words, $p_A = p'_A \circ h'$. Similarly, we will consider the case when C = P', $f = p'_A$, $g = p'_B$. Then there exists a unique map $h \in \operatorname{Hom}_{\mathbf{C}}(C, P) = \operatorname{Hom}_{\mathbf{C}}(P', P)$ such that $f = p_A \circ h$. In other words, $p'_A = p_A \circ h$.

$$p_A = p'_A \circ h'$$

$$= (p_A \circ h) \circ h'$$

$$= p_A \circ (h \circ h')$$

and

$$p'_{A} = p_{A} \circ h$$
$$= (p'_{A} \circ h') \circ h$$
$$= p'_{A} \circ (h' \circ h).$$

Again, we will consider the case when $C = P, f = p_A, g = p_B$. Then there must exist a unique map $h'' \in \operatorname{Hom}_{\mathbf{C}}(P, P)$ such that $p_A = p_A \circ h''$.

- $p_A = p_A \circ (h \circ h')$.
- $p_A = p_A \circ \mathrm{Id}_P$.

Therefore, $h \circ h' = \operatorname{Id}_P$ because of the uniqueness of h''.

Similarly, we will again consider the case when C = P', $f = p'_A$, g = p'_B . Then there must exist a unique map $h''' \in \operatorname{Hom}_{\mathbf{C}}(P', P')$ such that $p_A' = p_A' \circ h'''.$

Therefore, $h' \circ h = \operatorname{Id}_{P'}$ because of the uniqueness of h'''.

We showed that $h \in \operatorname{Hom}_{\mathbf{C}}(P', P)$ and $h' \in \operatorname{Hom}_{\mathbf{C}}(P, P')$ satisfy $h \circ h' = \mathrm{Id}_P$ and $h' \circ h = \mathrm{Id}_{P'}$. In addition, we showed that $p_A = p'_A \circ h'$ and $p_B = p_B' \circ h'$. Therefore, h' is the desired isomorphism.