МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ

федеральное государственное автономное образовательное учреждение высшего образования «Санкт-Петербургский государственный университет аэрокосмического приборостроения»

ФАКУЛЬТЕТ СРЕДНЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

		ТЧЕТ О ПРАКТИКЕ	
	ЗАЩИЩЕН (С ОЦЕНКОЙ	
		РУКОВОДИТЕЛЬ	
преподавател	ІЬ	26.04.2024 г.	Попов И.Д
должность, уч. степень,	звание	подпись, дата	инициалы, фамилия
	ОТЧЕТ П	О УЧЕБНОЙ ПРАКТИКЕ	
	OT ILITI		
D.C	СОСТАРЕ ПРО	МЕССИОН A ПЬНОГО МОП	VΠα
		ФЕССИОНАЛЬНОГО МОД	
ПМ.01 «Выпо:	лнение работ по	о проектированию сетевой и	нфраструктуры»
	(ЭТЧЕТ ВЫПОЛНИЛ	

группы

Аттестационный лист по учебной практике

Строков Всеволод Михайлович

(фамилия, имя, отчество студента)

обучающийся на 3 курсе в группе C142 по специальности СПО 09.02.06 Сетевое и системное администрирование

код и наименование специальности

успешно прошел учебную практику по профессиональному модулю ПМ.01 ВЫПОЛНЕНИЕ РАБОТ ПО ПРОЕКТИРОВАНИЮ СЕТЕВОЙ ИНФРАСТРУКТУРЫ

код и наименование профессионального модуля

в объеме 108 часов с «06» апреля 2024 г. по «26» апреля 2024 г.

в организации

ФСПО ГУАП, лаб. сетевых технологий, Московский пр., 149-в

наименование организации, структурное подразделение, юридический адрес

Виды и качество выполнения работ

Виды и объем работ,	Качество выполнения работ в соответствии с технологией и				
выполненных обучающимся	требованиями организации, в к	низации, в которой проходила практика			
во время практики					
Виды работ	Формы и методы контроля по	Качество выполненной			
	каждому виду работ	работы (по пятибалльной			
		шкале)			
Проектирование сетевой	Экспертная оценка результата				
инфраструктуры	выполненных работ				
Организация сетевого	Экспертная оценка результата				
администрирования	выполненных работ				
Управление сетевыми	Экспертная оценка результата				
сервисами	выполненных работ				
Модернизация сетевой	Экспертная оценка результата				
инфраструктуры	выполненных работ				
Оформление отчета по	Защита отчета				
выполненной работе					

Характеристика профессиональной деятельности обучающегося во время учебной практики: получен практический опыт по проектированию архитектуры локальной сети в соответствии с поставленной задачей; установке и настройке сетевых протоколов и сетевого оборудования в соответствии с поставленной задачей; использованию специального программного обеспечения для моделирования, проектирования и тестирования компьютерных сетей; настройке механизмов фильтрации трафика на базе списков контроля доступа.

период прохождения практики:	

Характеристика на обучающегося по освоению общих и профессиональных компетенций в

Освоены общие компетенции: ОК 1-5, 9, 10 и профессиональные компетенции: ПК 1.1. Выполнять проектирование кабельной структуры компьютерной сети;

ПК 1.2. Осуществлять выбор технологии, инструментальных средств и средств вычислительной
техники при организации процесса разработки и исследования объектов профессиональной
деятельности;
ПК 1.3. Обеспечивать защиту информации в сети с использованием программно-аппаратных

ПК 1.3. Обеспечивать защиту информации в сети с использованием программно-аппаратных средств.

Дифференцированный зачет по учебной практике «_	>	»		
Лата «26» апреля 2024 г				

СОДЕРЖАНИЕ

BB	ЕДЕНИЕ5
1	Проектирование сетевой инфраструктуры
1.1	Первичный анализ и создание схем
1.2	Базовая настройка9
2	Организация сетевого администрирования
2.1	Настройка сетей провайдера11
2.2	Настройка коммутации
2.3	Настройка VRRP в главном офисе
2.4	NAT и portforwarding18
3	Управление сетевыми сервисами
3.1	Настройка DHCP и DNS серверов
3.2	Настройка туннелей и OSPF
3.3	Удаленное администрирование
4	Модернизация сетевой инфраструктуры
4.1	Внедрение новых технологий
СΠ	ИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
ПР	ИЛОЖЕНИЕ А
ПР	ИЛОЖЕНИЕ Б
ПР	ИЛОЖЕНИЕ В
ПР	ИЛОЖЕНИЕ Г
ПР	иложение д

					УП.09.02	0	6	1	9П	
Изм.	Лист	№ докум.	Подп.	Дата	311.07.02.00.17Д					
Разраб	ó .	Строков В. М,				Ли	IT.		Лист	Листов
Пров.		Попов И. Д.							4	
					Отчет по учебной					
Н. кон	тр.				практике	ФСПО ГУАП		ГУАП		
Утв.					практике					

ВВЕДЕНИЕ

Я, Строков Всеволод Михайлович, студент 3-го курса, проходил учебную практику по дисциплине УП.01 в ФСПО ГУАП, по адресу Санкт-Петербург, Московский проспект, 149ВА. Поставленная задача — проектирование компьютерной сети из курсовой работы для учебной лаборатории программирования, состоящей из двух филиалов и одного главного офиса.

Для успешного выполнения этой задачи необходимо создать сетевую инфраструктуру, способную обеспечить эффективную работу студентов и преподавателей, а также настроить доступ к необходимым ресурсам и сервисам. В контексте учебной лаборатории программирования сетевая инфраструктура играет важную роль в обеспечении доступа к различным программным средствам, обмену данными, надёжности, а также ведению совместной работы над проектами.

Для реализации этой задачи использовались современные технологии сетевого проектирования, включая маршрутизацию, коммутацию, туннелирование, выделенные сервера, а также механизмы отказоустойчивости сетей.

Изм.	Лист	№ докум.	Подп.	Дата

1 Проектирование сетевой инфраструктуры

1.1 Первичный анализ и создание схем

Постановка задачи:

Необходимо спроектировать компьютерную сеть учебной лаборатории программирования, которая состоит из 2 филиалов и 1 главного офиса. Филиалы и главный офис подключены к 3-м разным провайдерам, находящихся в разных автономных системах. Создать IP-план. Построить схемы L1, L2, L3. Выбрать оборудование, технологии и протоколы. Разделить исходную сеть 10.19.0.0/16 на требуемое количество подсетей, назначить адреса устройствам для обеспечения IPv4 связности в локальных сетях филиалов и главного офиса. Разделить исходную сеть 200.19.0.0/16 на нужное количество внешних подсетей маршрутизаторов филиалов и главного офиса. Назначить адреса сетевым устройствам.

Таблица 1 – ІР-план

Подразделение	Устройство	Интерфейс	ІР-адрес
Главный офис	R15	ether2	200.19.128.2
		ether1 (vlan 10)	10.19.176.1
		ether1 (vlan 100)	10.19.224.1
		gre tun 1	10.19.240.1
	R16	gre tun 2	10.19.252.1
		gre tun 3	10.19.254.194
		ether1	200.19.192.2
		ether2 (vlan 10)	10.19.176.2
		ether2 (vlan 100)	10.19.224.2
		gre tun 1	10.19.248.1
		gre tun 2	10.19.254.1
		gre tun 3	10.19.254.130
	S1	vlan 10	10.19.176.4

			·	
Изм.	Лист	№ докум.	Подп.	Дата

Продолжение таблицы 1 — IP-план

Подразделение	Устройство	Интерфейс	ІР-адрес
	S2	vlan 10	10.19.176.5
	S3	vlan 10	10.19.176.6
	S4	vlan 10	10.19.176.7
	client 1	e0	10.19.224.30
	dns0	ens4	10.19.176.10
	moadm	e0	10.19.176.15
	redosadmin	ens33	10.19.176.70
	proxmox	ens33	10.19.176.100
Филиал 1	R19	ether2	200.19.64.2
		ether1 (vlan 10)	10.19.160.1
		ether1 (vlan 100)	10.19.208.1
		gre tun 1	10.19.240.2
		gre tun 2	10.19.248.2
	S5	vlan 10	10.19.160.2
	S6	vlan 10	10.19.160.3
	pc2admin	e0	10.19.160.50
	client2	e0	10.19.208.250
	client3	e0	10.19.208.249
	dns1	ens33	10.19.160.10
	redos	ens33	10.19.208.248
Филиал 2	R22	ether2	200.19.0.1
		ether1 (vlan 10)	10.19.144.1
		ether1 (vlan 100)	10.19.192.1
		gre tun 1	10.19.252.2
		gre tun 2	10.19.254.2
	pc3adm	e0	10.19.144.40
	dns2	Ens3	10.19.144.10

			·	
Изм.	Лист	№ докум.	Подп.	Дата

Продолжение таблицы 1 – ІР-план

	S7	vlan 10	10.19.144.2
	S8	vlan 10	10.19.144.3
	redos2	ens33	10.19.192.248
	client4	e0	10.19.192.254
	client5	e0	10.19.192.253
Филиал 3	R23(Huawei)	GE 0/0/0	200.200.19.100
		GE 0/0/1 (vlan 10)	10.19.112.1
		GE 0/0/1 (vlan 100)	10.19.128.1
		gre tun 1	10.19.254.193
		gre tun 2	10.19.254.129
	PC1	Eth 0/0/1	10.19.128.100
	PC2	Eth 0/0/1	10.19.128.200

В качестве маршрутизаторов в филиалах и главном офисе используется СНК MikroTik 14.4.2, в провайдерской сети — Cisco L3. Также, в сетях провайдера и филиалах используются Cisco L2 коммутаторы. Устройства соединены витой парой при помощи технологии Ethernet. В качестве главного сервера предприятия используется Proxmox.

В результате выполнения данного задания была составлена таблица с подсетями, полученными в результате деления на подсети исходных сетей, представленная в приложении Д. Определён выбор используемого оборудования. Созданы следующие схемы:

L1 - Приложение A.

L2 - Приложение Б.

L3 - Приложение В.

Диаграмма маршрутизации – Приложение Г.

А также ІР-План, представленный в таблице 1.

Изм.	Лист	№ докум.	Подп.	Дата

1.2 Базовая настройка

Постановка задачи:

Провести базовую настройку сетевых устройств.

Базовая настройка включает в себя назначение IP-адреса и имени хоста в соответствии с номером устройства, фамилией и номером по журналу, а также подключение устройств друг с другом в интерфейсы.

```
S1#conf t
Enter configuration commands, one per line. End with CNTL/Z.
S1(config)#host
S1(config)#hostname S1_Strokov19
S1_Strokov19(config)#do wr
```

Рисунок 1 – Настройка имени хоста на S1

На остальных коммутаторах выполнены настройки по аналогии

Рисунок 2 – Смена имени хоста на MikroTik (R15)

На остальных маршрутизаторах MikroTik выполнены настройки по аналогии.

Изм.	Лист	№ докум.	Подп.	Дата

Рисунок 3 – Настройка адресов на маршрутизаторе R15

На других маршрутизаторах и РС выполнена аналогичная настройка.

На остальных коммутаторах выполнены настройки по аналогии. В процессе работы были настроены имена хостов сетевого оборудования: коммутаторы S1 – S9, маршрутизаторы R15, R16, R19, R22, R23. Также, на все устройства назначены IP-адреса. На рисунке 1 представлена настройка имени хоста на коммутаторе S1. На рисунке 2 показана смена хостового имени на маршрутизаторе R15. На рисунке 3 видно, что внешний адрес маршрутизатор получает по DHCP, по заданию.

Изм.	Лист	№ докум.	Подп.	Дата

Лист

10

2 Организация сетевого администрирования

2.1 Настройка сетей провайдера

Постановка задачи:

Для возможности взаимодействия филиалов и главного офиса, нужно настроить сети провайдера. Необходимо настроить протокол внутренний маршрутизации в сети каждого из провайдеров, а также протокол ВGР для взаимодействия автономных систем.

```
R1 Strokov19#sh running-config | section bgp
router bgp 119
bgp log-neighbor-changes
neighbor 2.2.2.2 remote-as 119
neighbor 2.2.2.2 update-source Loopback0
          2.2.2.2 next-hop-self
neighbor
neighbor 5.5.5.5 remote-as 319
neighbor 5.5.5.5 ebgp-multihop 2
neighbor\ 5.5.5.5\ update\text{-}source\ Loopback0
neighbor 10.10.10.10 remote-as 119
neighbor 10.10.10.10 update-source Loopback0
neighbor 10.10.10.10 next-hop-self
neighbor 11.11.11.11 remote-as 119
neighbor 11.11.11.11 update-source Loopback0
neighbor 11.11.11.11 next-hop-self
R1_Strokov19#
```

Рисунок 4 – Настройка BGP на Cisco

На остальных маршрутизаторах выполнены аналогичные настройки.

```
[admin@R12_Strokov19] > ip route/print
Flags: D - DYNAMIC; A - ACTIVE; c - CONNECT, b - BGP, i - IS-IS
Columns: DST-ADDRESS, GATEWAY, DISTANCE
    DST-ADDRESS
                              GATEWAY
                                                        DISTANCE
                                                               200
115
                              19.8.8.8
30.19.2.1%ether1
DAi 5
DAi 6.6.6.6/32
                              30.19.2.1%ether1
                              30.19.2.2%ether1
                              30.19.2.2%ether1
DAi 9.9.9.9/32
               12.12/32
DAc
                             30.19.2.2%ether1
30.19.2.1%ether1
DAi
                8/32
              1.0/24
2.0/24
2.0/24
3.0/24
DAi
                              30.19.2.1%ether1
                              ether1
DAi
                                          2%ether1
                                          2%ether1
```

Рисунок 5 – Просмотр маршрутов на R12, полученных по IS-IS

						Лист
					УП.09.02.06.19Д	11
Изм.	Лист	№ докум.	Подп.	Дата	311.07.02.00.17Д	11

Рисунок 6 – Настройка внешнего соседства BGP на R8

На остальных маршрутизаторах провайдеров выполнены аналогичные настройки.

Рисунок 7 – Настройка объявления о маршруте по умолчанию

Изм.	Лист	№ докум.	Подп.	Дата

На остальных маршрутизаторах провайдеров выполнены аналогичные настройки.

Рисунок 8 – Настройка объявления сетей внешним соседям BGP на R6

На остальных маршрутизаторах провайдеров выполнены аналогичные настройки.

Рисунок 9 – Настройка маршрута по умолчанию

На остальных маршрутизаторах филиалов выполнены аналогичные настройки. На рисунке 4 представлен пример настройки BGP на Cisco R5.

Во всех сетях провайдеров настроен IS-IS. На рисунке 5 видно, что по этому протоколу получены маршруты. На рисунке 6 продемонстрирована конфигурация внешнего соседства BGP на R8. На рисунке 7 можно заметить, что настроено объявление о маршруте по умолчанию, благодаря которому, у устройств будет доступ в интернет.

На рисунке 8 продемонстрировано объявление о внешней сети филиала.

						Лист
					УП.09.02.06.19Д	12
Изм.	Лист	№ докум.	Подп.	Дата	311.07.02.00.17Д	13

На рисунке 9 продемонстрирован маршрут по умолчанию, отправляющий трафик маршрутизатору провайдера. На рисунке 10 отображена проверка доступности публичного dns сервера.

```
[admin@R15_Strokov19] > ping 8.8.8.8

SEQ HOST

0 8.8.8.8

1 8.8.8.8

2 8.8.8.8

56 122 20ms83us

1 8.8.8.8

56 122 13ms540us

2 8.8.8.8

56 122 14ms297us

3 8.8.8.8

56 122 15ms278us

sent=4 received=4 packet-loss=0% min-rtt=13ms540us avg-rtt=15ms799us max-rtt=20ms83us
```

Рисунок 10 – Проверка доступности хоста, находящегося в интернете

Благодаря выполненным настройкам, маршрутизаторы филиалов и главного офиса получили доступ в интернет, и могут передавать трафик друг другу.

2.2 Настройка коммутации

Постановка задачи:

Создание и настройка vlan для разграничения локальной сети, настройка агрегирования каналов с помощью технологии EtherChannel по протоколу LACP для увеличения надежности сети и увеличения пропускной способности.

Рисунок 11 – Результат настройки EtherChannel по протоколу LACP на S4

						Лист
					УП.09.02.06.19Д	1.4
Изм.	Лист	№ докум.	Подп.	Дата	311.07.02.00.17Д	14

На остальных коммутаторах, участвующих в агрегировании, выполнены аналогичные настройки.

На каждом коммутаторе, создано 2 vlan, 1 для административной сети, и 1 для пользовательской. На рисунке 13 изображён просмотр созданных vlan.

```
S6 Strokov19#sh vl br
VLAN Name
                                      Status
                                                Ports
                                      active Et0/2, Et0/3, Et1/0, Et2/1 Et1/2, Et1/3, Et2/0, Et2/1
    default
                                                Et2/2, Et2/3, Et3/0
10 admin
                                      active
100 users
                                      active Et3/1, Et3/2, Et3/3
1002 fddi-default
                                      act/unsup
1003 token-ring-default
                                      act/unsup
1004 fddinet-default
                                      act/unsup
1005 trnet-default
                                      act/unsup
S6_Strokov19#
```

Рисунок 12 – Просмотр созданных vlan на S4

На остальных коммутаторах созданы vlan по аналогии.

Рисунок 13 – Созданные vlan на R15

Ha R16 созданы идентичные vlan.

```
S6_Strokov19#conf t
Enter configuration commands, one per line. End with CNTL/Z.
S6_Strokov19(config)#int vlan 10
S6_Strokov19(config-if)#ip address 10.19.160.3 255.255.240.0
S6_Strokov19(config-if)#do wr
```

Рисунок 14 — Настройка IP-адреса на коммутаторе

На других коммутаторах также заданы адреса.

						Лист
					УП.09.02.06.19Д	15
Изм.	Лист	№ докум.	Подп.	Дата	311.07.02.00.17Д	13

Рисунок 15 – Настройка vlan на интерфейсах S4

На остальных коммутаторах также настроены роли интерфейсов.

При настройке был использован протокол LACP, результат настройки отображён на рисунке 11. На рисунке 12 отображена информация о

						Лист
					VП 09 02 06 19Л	16
Изм.	Лист	№ докум.	Подп.	Дата	У11.09.02.06.19Д	16

существующих vlan на коммутаторе. На рисунке 13 изображен метод маршрутизации vlan RoAS на MikroTik. Так как в будущем необходимо будет настроить возможность удалённого подключения, в том числе и коммутаторам, им необходимо задать IP-адрес. Эта процедура изображена на рисунке 14.

На основании схемы L2 была выполнена настройка коммутации для сетевых устройств. Etherchannel был настроен на коммутаторах между S1-S4, S2-S4, S5-S6, S7-S8.

2.3 Настройка VRRP в главном офисе

Постановка задачи:

Настроить в главном офисе один из протоколов группы FHRP для обеспечения отказоустойчивости и надёжности.

Рисунок 16 – Настройка VRRP на R15

Изм.	Лист	№ докум.	Подп.	Дата

На рисунке 16 изображена процедура настройки VRRP группы на MikroTik На R16 выполнена идентичная настройка, с приоритетами, установленными в значении "60".

2.4 NAT u portforwarding

Поставленная задача:

Обеспечить доступ в интернет устройствам из локальных сетей филиалов и главного офиса. Обеспечить доступ к серверу виртуализации Ргохтох из внешних сетей.

Рисунок 17 – Настройка натирования в сторону внешнего адреса

На маршрутизаторах других филиалов выполнены аналогичные настройки.

```
19_client1> ping 8.8.8.8

84 bytes from 8.8.8.8 icmp_seq=1 ttl=121 time=17.130 ms
84 bytes from 8.8.8.8 icmp_seq=2 ttl=121 time=16.086 ms
84 bytes from 8.8.8.8 icmp_seq=3 ttl=121 time=16.997 ms
84 bytes from 8.8.8.8 icmp_seq=4 ttl=121 time=18.615 ms
84 bytes from 8.8.8.8 icmp_seq=5 ttl=121 time=14.997 ms
```

Рисунок 18 – Проверка доступности адреса из интернета

Изм.	Лист	№ докум.	Подп.	Дата

Рисунок 19 – Создание правила проброса порта

Рисунок 20 – Настройка проброс к серверу Ргохтох

Изм.	Лист	№ докум.	Подп.	Дата

Рисунок 21 – Проверка проброса порта

На рисунке 18 видно, что пакеты успешно доходят то получателя, благодаря чего можно сделать вывод, что натирование работает. На рисунке 19 и 20 показан процесс настройки проброса к серверу. Это необходимо, чтобы к серверу был доступ не только из локальных сетей филиалов, но и из интернета.

Изм.	Лист	№ докум.	Подп.	Дата

3 Управление сетевыми сервисами

3.1 Настройка DHCP и DNS серверов

Поставленная задача:

Настроить DHCP сервер на маршрутизаторах, убедится, что сервер выдаёт адреса. Установить DNS сервер, проверить, что устройства из локальных сетей могут посылать эхо запросы по доменным именам. В качестве доменного имени организации использовать strokov19.up

Рисунок 22 — Настройка роли DHCP сервера на маршрутизаторе R15

На остальных маршрутизаторах выполнены настройки по аналогии.

19_client1> dhcp DORA IP 10.19.224.253/20 GW 10.19.224.1

Рисунок 23 – Получение адреса по DHCP

						Лист
					УП.09.02.06.19Д	21
Изм.	Лист	№ докум.	Подп.	Дата	311.07.02.00.17Д	21

В качестве DNS сервера использовался dnsmasq на Debian 11.

```
debian@debian:~$ cat /etc/dnsmasq.conf
domain=strokov19.up
expand-hosts
conf-dir=/etc/dnsmasq.d/,*.conf
interface=ens4
bind-interfaces
server=/ph2.strokov19.up/10.19.144.10
server=/ph1.strokov19.up/10.19.160.10
server=8.8.8.8
debian@debian:~$
```

Рисунок 24 – Настройка сервера пересылки и вторичных зон (филиалы)

```
debian@debian:~$ cat /etc/dnsmasq.d/config.con
address=/dns0.strokov19.up/10.19.176.10
address=/client1.strokov19.up/10.19.224.30
address=/proxmox.strokov19.up/10.19.176.100
address=/s1.strokov19.up/10.19.176.4
address=/s2.strokov19.up/10.19.176.5
address=/s3.strokov19.up/10.19.176.6
address=/s4.strokov19.up/10.19.176.7
address=/moadm.strokov19.up/10.19.176.15
address=/client1.strokov19.up/10.19.224.30
address=/r15.strokov19.up/10.19.176.1
address=/redosadmin.strokov19.up/10.19.176.70
debian@debian:~$
```

Рисунок 25 – Созданные A записи на сервере DNS в главном офисе

На других выполнены настройки по аналогии, в качестве адреса пересылки указан DNS сервер главного офиса

```
admStrokov19> ping r15.strokov19.up r15.strokov19.up resolved to 10.19.176.1

84 bytes from 10.19.176.1 icmp_seq=1 ttl=64 time=2.041 ms 84 bytes from 10.19.176.1 icmp_seq=2 ttl=64 time=1.342 ms 84 bytes from 10.19.176.1 icmp_seq=3 ttl=64 time=2.282 ms 84 bytes from 10.19.176.1 icmp_seq=4 ttl=64 time=1.468 ms 84 bytes from 10.19.176.1 icmp_seq=5 ttl=64 time=1.520 ms
```

Рисунок 26 – Проверка, что работает преобразование доменного имени

						Лист
					УП.09.02.06.19Д	22
Изм.	Лист	№ докум.	Подп.	Дата	311.07.02.00.17Д	22

На рисунке 22 представлены настройки DHCP сервера на R15. На рисунке 23 видно, что хост успешно получил адрес по DHCP. На рисунке 24 показаны записи о используемых DNS серверах для получения нужных записей. Записи типа A, о хостах в главном офисе отображены на рисунке 25. Исходя из информации, показанной на рисунке 26, можно сделать вывод, что DNS сервер работает исправно.

3.2 Настройка туннелей и OSPF

Постановка задачи:

Для того, чтобы маршрутизаторы филиалов и главного офиса «узнали» про локальные сети друг друга, необходимо настроить туннелирование. Чтобы рассказать о сетях, нужно запустить OSPF, объявив о локальных сетях, и туннеле. Необходимо осуществить контроль трафика филиалов через главный офис, путем объявления маршрута по умолчанию в туннель к главному офису на маршрутизаторах филиалов.

Рисунок 27 – Настройка GRE туннеля к R22

Изм.	Лист	№ докум.	Подп.	Дата

На R22 также настроен туннель к главному офису.

Рисунок 28 – Настройка маршрутов по умолчанию в сторону главного офиса

```
pc2adm19> trace 8.8.8.8 -m 64
trace to 8.8.8.8, 64 hops max, press Ctrl+C to stop
     10.19.160.1 0.967 ms 1.058 ms
 2
                   5.335 ms
                             3.091 ms
     10.19.240.1
                                        3.405 ms
 3
     200.19.128.1
                    4.031 ms
                              3.334 ms
                                         3.443 ms
 4
     10.19.3.1
                 3.937 ms
                           4.055 ms
                                      3.821 ms
 5
                 4.288 ms
                            5.042 ms
                                       4.268 ms
                 6.042 ms
                                      5.484 ms
                           5.838 ms
 7
                 6.409 ms
                           9.132 ms
                                      6.538 ms
8
                 9.009 ms
                           7.794 ms
                                      6.419 ms
9
                               7.509 ms
                    9.101 ms
                                          7.165 ms
```

Рисунок 29 – Проверка, что трафик из филиала в интернет, проходит через главный офис предприятия

Благодаря настройкам, изображённым на рисунках 27 и 28, трафик из филиала 1 в интернет будет проходить через главный офис. На рисунке 29 можно убедиться, что это действительно так.

Изм.	Лист	№ докум.	Подп.	Дата

3.3 Удаленное администрирование

Постановка задачи:

На каждом сервере, коммутаторе и маршрутизаторе настроить возможность удаленного подключения по протоколу SSH или telnet только из главного офиса.

```
8 S1 startup-config.cfg
interface Serial5/2
 no ip address
 shutdown
 serial restart-delay 0
interface Serial5/3
 no ip address
 shutdown
 serial restart-delay 0
interface Vlan1
 no ip address
 shutdown
interface Vlan 10
 ip address 10.19.176.4 255.255.240.0
ip forward-protocol nd
no ip http server
no ip http secure-server
ip route 0.0.0.0 0.0.0.0 10.19.176.1
control-plane
line con 0
 exec-timeout 0 0
 privilege level 15
 logging synchronous
line aux 0
 exec-timeout 0 0
 privilege level 15
 logging synchronous
line vty 0 4
 password 1234
 login local
 transport input telnet
```

Рисунок 30 – Настройка S1 для удаленного подключения по telnet

Идентичные настройки выполнены на остальных коммутаторах.

Изм.	Лист	№ докум.	Подп.	Дата

Рисунок 31 — Настройка правил Firewall на маршрутизаторе филиала 2

Идентично сконфигурированы правила файрволла на R19.

```
debian@debian:~$ telnet s5.ph1.strokov19.up
Trying 10.19.160.2...
Connected to s5.ph1.strokov19.up.
Escape character is '^]'.

User Access Verification

Password:
S5_Strokov19>en
Password:
S5_Strokov19#
```

Рисунок 32 – Проверка подключения по telnet c dns0 к S5

```
debian@debian:~$ telnet s5.ph1.strokov19.up
Trying 10.19.160.2...
telnet: Unable to connect to remote host: No route to host
debian@debian:~$
```

Рисунок 33 - Проверка подключения по telnet c dns1 к S5

По рисункам 32 и 33 можно понять, что правила успешно блокируют нежелательный трафик.

						Лист
					УП.09.02.06.19Д	26
Изм.	Лист	№ докум.	Подп.	Дата	311.07.02.00.17Д	26

4 Модернизация сетевой инфраструктуры

4.1 Внедрение новых технологий

Постановка задачи:

Внедрить третий филиал, использовав в качестве маршрутизатора Ниаwei, создав при этом простую локальную сеть.

Рисунок 34 – Структура сети с двумя филиалами и главным офисом

			·	
Изм.	Лист	№ докум.	Подп.	Дата

Рисунок 35 – Топология сети филиала с Huawei

```
R23>display ip interface brief
down: administratively down
'down: standby
(1): loopback
(s): spoofing
The number of interface that is UP in Physical is 7
The number of interface that is DOWN in Physical is 1
The number of interface that is UP in Protocol is 6
The number of interface that is DOWN in Protocol is 2
                                                                    Protocol
Interface
                                   IP Address/Mask
                                                         Physical
                                   200.200.19.100/24
GigabitEthernet0/0/0
                                                         up
                                                                    up
GigabitEthernet0/0/1
                                                                    down
                                   unassigned
GigabitEthernet0/0/1.10
                                   10.19.112.1/20
GigabitEthernet0/0/1.100
                                   10.19.128.1/20
                                                         up
GigabitEthernet0/0/2
                                                         down
                                   unassigned
                                                                    down
NULLO
                                                                    up(s)
                                   unassigned
                                                         up
Tunne10/0/1
                                   10.19.254.193/30
Tunne10/0/2
                                   10.19.254.129/30
                                                                    up
                                                         up
(R23>
```

Рисунок 36 – Произведенные настройки Huawei

						Лист
					VП 09 02 06 19Л	20
Изм.	Лист	№ докум.	Подп.	Дата	У11.09.02.06.19Д	20

```
<R23>ping 8.8.8.8
PING 8.8.8.8: 56 data bytes, press CTRL_C to break
Reply from 8.8.8.8: bytes=56 Sequence=1 ttl=121 time=30 ms
Reply from 8.8.8.8: bytes=56 Sequence=2 ttl=121 time=20 ms
Reply from 8.8.8.8: bytes=56 Sequence=3 ttl=121 time=30 ms
Reply from 8.8.8.8: bytes=56 Sequence=4 ttl=121 time=20 ms
Reply from 8.8.8.8: bytes=56 Sequence=5 ttl=121 time=30 ms
Reply from 8.8.8.8: bytes=56 Sequence=5 ttl=121 time=30 ms
--- 8.8.8.8 ping statistics ---
5 packet(s) transmitted
5 packet(s) received
0.00% packet loss
round-trip min/avg/max = 20/26/30 ms
```

Рисунок 37 – Проверка доступности интернета

Исходя из рисунков 35-37 можно сделать вывод, об успешной модернизации инфраструктуры.

Изм.	Лист	№ докум.	Подп.	Дата

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Уймин, А. Г. Сетевое и системное администрирование. Демонстрационный экзамен КОД 1.1 : учебное пособие / А. Г. Уймин. – Санкт-Петербург : Лань, 2020. – 480 с.
- 2. Таненбаум, Э., Уэзеролл, Д. Компьютерные сети / Э. Таненбаум, Д. Уэзеролл. 5-е изд. Санкт-Петербург : Питер, 2013. 960 с.
- 3. Дуглас Комер. Межсетевое взаимодействие / Дуглас Комер. 2-е изд. Москва : Вильямс, 2005.-650 с.
- 4. Дибров, М. В. Компьютерные сети и телекоммуникации. Маршрутизация в IP-сетях в 2 ч. Часть 2 : учебник и практикум для среднего профессионального образования / М. В. Дибров. Москва : Издательство Юрайт, 2020. 351 с. (Профессиональное образование). Текст : электронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/453065
- 5. Ковган, Н.М. Компьютерные сети : учебное пособие / Н.М. Ковган. Минск : РИПО, 2019. 179 с. ISBN 978-985-503-947-2. Текст : электронный. URL: https://znanium.com/catalog/product/1056320

Изм.	Лист	№ докум.	Подп.	Дата

ПРИЛОЖЕНИЕ А

Схема L1

приложение Б

Схема L2

приложение в

Схема L3

приложение г

Диаграмма маршрутизации

приложение д

Полученные подсети для использования

Внешние сети:	Исходная сеть	200.19.0.0/16					
1-я		200.19.0.0/18					
2-я		200.19.64.0/18					
3-я		200.19.128.0/18					
4-я		200.19.192.0/18					
сеть Huawei		200.200.19.0/24					
Локальные:	Исходная сеть	10.19.0.0/16					
1-я		10.19.0.0/20	0000				
2-я		10.19.16.0/20	0001				
3-я		10.19.32.0/20	0010				
4-я		10.19.48.0/20	0011				
5-я		10.19.64.0/20	0100				
6-я		10.19.80.0/20	0101				
7-я		10.19.96.0/20	0110				
8-я		10.19.112.0/20	0111	Третий филиал административная сеть	vlan 10		
9-я		10.19.128.0/20	1000	Третий филиал локальная сеть	vlan 10		
10-я		10.19.144.0/20	1001	Второй филиал административная сеть	vlan 10		
11-я		10.19.160.0/20	1010	Первый филиал административная сеть	vlan 10		
12-я		10.19.176.0/20	1011	административная сеть в главном офисе	vlan 10		
13-я		10.19.192.0/20	1100	Второй филиал локальная сеть	vlan 100		
14-я		10.19.208.0/20	1101	Первый филиал локальная сеть	vlan 100		
15-я		10.19.224.0/20	1110	Главный филиал локальная сеть	vlan 100		
16-я		10.19.240.0/20	1111	10.19.240.0/30		E от R15 от	•••
				10.19.248.0/30	Для GRE от R16 от до R19		
				10.19.252.0/30	Для GRE от R15 от до R22		
				10.19.254.0/30	Для GRE от R16 от до R22		
				10.19.254.192/30	Для GRE от R23 до R15		
				10.19.254.128/30	Для G	RE OT R23,	до R16