

# Анализ решений задачи кластеризации изображений лиц в сфере киберкриминалистики

Автор: Чернявский Олег Николаевич, группа 17.Б11-мм

Научный руководитель: доцент кафедры СП СПбГУ, к. т. н.

Ю.В. Литвинов

Консультант: рук. отд. раз. ПО, ООО "Белкасофт" Н.М.

Тимофеев

Санкт-Петербургский государственный университет Кафедра системного программирования

## Введение

- Записи с камер и фотографии с мобильных устройств используются для установления личности подозреваемых
- Необходимо автоматизировать процесс распознавания человеческих лиц
- Кластеризация лиц разбиение неразмеченного набора изображений лиц в кластеры, соответствующие отдельным личностям
- Практически нет работ, сравнивающих современные решения

## Постановка задачи

**Целью** работы является анализ и сравнение существующих решений задачи кластеризации лиц людей на фотографиях на основе двух ключевых факторов:

- качество сделанных предсказаний
- быстродействие при работе на CPU

#### Задачи:

- рассмотреть существующие архитектуры систем кластеризации лиц и выбрать наиболее удовлетворяющую приведенным выше критериям
- изучить применимые для работы с изображениями лиц алгоритмы кластеризации
- создать систему кластеризации лиц на основе выбранных алгоритмов и решений;
- провести детальное сравнение найденных решений на наборе данных Labeled Faces in the Wild

# Конвейер распознавания визуальных образов



Рис. 1: Диаграмма компонентов UML системы

# Используемые библиотеки

- Обнаружение лиц: OpenCV, TensorFlow
- Нормализация изображений: dlib, OpenCV
- Создание векторных представлений: TensorFlow, Keras
- Кластеризация: scikit-learn, dlib, numpy, pyflann

# Эксперимент

- Исследовательский вопрос: какая комбинация реализаций компонентов конвейера покажет себя лучше всего с точки зрения качества предсказаний и времени работы?
- Критерии отбора алгоритмов: относительная новизна алгоритмов или популярность в индустрии
- Набор данных для тестирования: Labeled Faces in the Wild (LFW)
- Измеряемые метрики: Pairwise Precision, Recall, F1-score, среднее время работы

## Алгоритмы

#### Методы создания векторных представлений лиц:

- FaceNet
- OpenFace
- VGGFace-16, VGGFace-ResNet50, VGGFace-SeNet50

#### Алгоритмы кластеризации:

- K-means
- Threshold Clustering
- DBSCAN
- Chinese Whispers
- Mean Shift
- Rank-Order Clustering
- Approximate Rank-Order Clustering

#### Labeled Faces in the Wild

- Является стандартом в сфере экспериментов по распознаванию лиц
- Содержит 13223 фотографии 5749 людей
- Имеет неравномерное распределение количества фотографий по личностям
- Люди на фотографиях запечатлены под разными углами, в различных позах, головных уборах и т.д.











Рис. 2: Примеры изображений из LFW

## Pairwise Precision, Recall, F1-score



Рис. 3: Иллюстрация понятий True Positive, False Positive, False Negative, True Negative

## Pairwise Precision, Recall, F1-score

$$Precision = \frac{TP}{TP + FP} \tag{1}$$

$$Recall = \frac{TP}{TP + FN} \tag{2}$$

$$F1\text{-score} = 2 * \frac{Precision * Recall}{Precision + Recall}$$
 (3)

# Аппаратное обеспечение

• Процессор: Intel Core i5-6200U @ 2.30GHz

• ОЗУ: 8 Гб

OC: Windows 10 Pro

# Время создания векторных представлений



Рис. 4: Гистограмма замеров среднего времени работы

# Результаты кластеризации изображений из LFW

| Модель   | Алгоритм    | Precision | Recall | F1-score | Время работы |
|----------|-------------|-----------|--------|----------|--------------|
| FaceNet  | Chinese Wh. | 0.96      | 0.93   | 0.94     | 00:00:40     |
| FaceNet  | DBSCAN      | 0.94      | 0.88   | 0.91     | 00:01:22     |
| ResNet50 | Chinese Wh. | 0.99      | 0.96   | 0.98     | 00:25:11     |
| ResNet50 | DBSCAN      | 0.99      | 0.93   | 0.96     | 00:35:25     |
| SeNet50  | Chinese Wh. | 0.98      | 0.97   | 0.97     | 00:25:53     |
| SeNet50  | Mean Shift  | 0.99      | 0.94   | 0.97     | 01:37:25     |
| VGG-16   | Chinese Wh. | 0.97      | 0.88   | 0.92     | 00:07:40     |
| OpenFace | Chinese Wh. | 0.72      | 0.53   | 0.61     | 00:00:38     |

Таблица 1: Лучшие полученные результаты кластеризации

## Результаты

- Был выполнен обзор алгоритмов для создания векторных представлений лиц на основе моделей FaceNet, OpenFace, VGGFace-16, VGGFace-ResNet50, VGGFace-SeNet50
- Был выполнен обзор алгоритмов Chinese Whispers, Mean Shift, K-means, DBSCAN, Threshold Clustering, Rank-Order Clustering и Approximate Rank-Order Clustering для кластеризации векторных представлений
- Реализован конвейер кластеризации лиц
- Проведены замеры среднего времени работы алгоритмов создания векторных представлений
- Проведено сравнение результатов работы выбранных алгоритмов кластеризации на наборе данных LFW

## Ссылка на репозиторий:

https://github.com/OlegChern/Face-Clustering-Test-System