Principles of Micro- and Nanofabrication for Electronic and Photonic Devices

Etching 刻蚀 Part I: Overview

Xing Sheng 盛 兴

Department of Electronic Engineering Tsinghua University

xingsheng@tsinghua.edu.cn

Pattern Formation

Subtractive Process

Additive Process

Pattern transfer by etching

Pattern transfer by lift off

Etching vs. Corrosion

Etching (刻蚀)

wanted

Corrosion (腐蚀)

unwanted

Wet vs. Dry

liquid source

gas source

Physical vs. Chemical

Physical etching (sputtering)

Chemical Etching

Etching

Process Parameters

- Time
- Temperature
- Etchant type
- Etchant concentration
- Mask type
- **-** ...

Control Parameters

- Etch rate
- Selectivity
- Anisotropy
- Uniformity
- **---**

diffusion - reaction - diffusion

- chemical reactions occur
- products should be disposable

Selectivity

Selectivity - Example

SiO₂

- SiO₂ / Si wet etch by HF solution
 - □ very large selectivity S_{SiO2/Si} ~ infinity
- SiO₂ / Si dry etch by CF₄ plasma
 - □ selectivity S_{SiO2/Si} ~ 10

Anisotropy (各向异性)

degree of anisotropy

$$A = 1 - \frac{R_{lateral}}{R_{vertical}}$$

isotropic A = 0

fully anisotropic A = 1

anisotropic 0 < A < 1

Isotropic vs. Anisotropic

Figure 10–3 Etch profiles for different degrees of anisotropic, or directional, etching: (a) purely isotropic etching; (b) anisotropic etching; (c) completely anisotropic etching.

chemical

physical

Uniformity

Trends of Etching

Etching Methods

■ Wet Etching 湿法刻蚀

■ Dry Etching 干法刻蚀

CMP and other methods