AIC/RL – Dynamic Programming (Part II)

Freek Stulp

Université Paris-Saclay

License CC BY-NC-SA 2.0

http://creative commons.org/licenses/by-nc-sa/2.0/fr/

Where are we?

Model-based vs. Model-free

- Environment as an MDP: $\{S, A, \mathcal{P}, \mathcal{R}\}\$ (and $\{T, I\}$)
 - S Possible states
 - A Possible actions
 - Transition function
 - Reward function
- Model-free
 - Agent knows S, A, but not P, R
- Model-based
 - Agent also knows \mathcal{P} , and perhaps also \mathcal{R}
 - If agent doesn't completely know S: POMDPs
 - If agent doesn't completely know A: ???

Outline

- Values
- Bellman Equation
- Opposite Programming
- 4 TF

Values (SUBA3.7)

- What is the value of a state?
 - Informally: "How good is it to be in a certain state?"
 - Formally: $V^{\pi}(s)$ is expected return when starting in s and following π

Values (SUBA3.7)

- What is the value of a state?
 - Informally: "How good is it to be in a certain state?"
 - Formally: $V^{\pi}(s)$ is expected return when starting in s and following π

$$R_{l} = \sum_{k=0}^{T} \gamma^{k} r_{l+k+1}$$
 Return (SUBA3.4) (1)

$$V^{\pi}(s) = \mathsf{E}_{\pi}\left\{R_{t}|s_{t}=s\right\}$$
 Value (SUBA3.7)

$$=\mathsf{E}_{\pi}\left\{\sum_{k=0}^{T}\gamma^{k}r_{t+k+1}|s_{t}=s\right\} \tag{3}$$

- R_t is an actual observation, $V^{\pi}(s)$ is an expectation.
- $V^{\pi}(s)$ depends on future actions, i.e. which the policy will decide.

Flipping coins example

- Choose one of two coins randomly
 - CoinA is fair, i.e. 50%/50%
 - CoinB is loaded, tails 60% of the time
- If you get tails you get 100, if heads 0
- Policy: choose CoinA 70% of the time

What is the value, i.e. the expected return, of this game?

$$V^{\pi}(s) = \mathsf{E}_{\pi} \left\{ R_t | s_t = s \right\} \tag{4}$$

$$V^{\pi}(init) = 0.7(0.5 \cdot 0 + 0.5 \cdot 100) + 0.3(0.4 \cdot 0 + 0.6 \cdot 100)$$
(5)

$$= 0.7 \cdot 50 + 0.3 \cdot 60 \tag{6}$$

$$=53\tag{7}$$

$$V^{\pi}(init) = \sum_{a} \pi(init, a) \sum_{s'} \mathcal{P}^{a}_{ss'} \mathcal{R}^{a}_{ss'}$$
(8)

$$= \pi(\textit{init, CoinA}) \cdot (\mathcal{P}^{\textit{CoinA}}_{\textit{init,}\odot} \cdot \mathcal{R}_{\textit{init,}\odot} + \mathcal{P}^{\textit{CoinA}}_{\textit{init,}\in} \cdot \mathcal{R}_{\textit{init,}\in})$$

$$(9)$$

$$+ \pi(\textit{init}, \textit{CoinB}) \cdot (\mathcal{P}^{\textit{CoinB}}_{\textit{init}, \textcircled{\tiny{0}}} \cdot \mathcal{R}_{\textit{init}, \textcircled{\tiny{0}}} + \mathcal{P}^{\textit{CoinB}}_{\textit{init}, \textcircled{\tiny{0}}} \cdot \mathcal{R}_{\textit{init}, \textcircled{\tiny{0}}})$$

$$(10)$$

Values: Gridworld example

- Reward of 100 for going to T, -1 otherwise
- Simple case: deterministic policy and MDP, discount=1

$\pi(s)$					$V^{\pi}(s)$			
	Τ	<	<	<	T	100	99	98
	٨	<	<	<	100	99	98	97

$\pi(s)$					$V^{\pi}(s)$			
Τ	<	<	<		T	100	99	98
>	>	>	٨		94	95	96	97

$\pi(s)$					$V^{\pi}(s)$			
Τ	<	>	٧		T	100	$-\infty$	$-\infty$
٨	<	<	٨		100	99	98	$-\infty$

The recursive nature of values

• Flip the coin twice.

$$V^{\pi}(init) = 120 = 0.0 \cdot (0.5 \cdot (0 + 0.0 \cdot (0.5 \cdot 0 + 0.5 \cdot 100) + 1.0 \cdot (0.4 \cdot 0 + 0.6 \cdot 100)) + 0.5 \cdot (100 + 0.0 \cdot (0.5 \cdot 0 + 0.5 \cdot 100) + 1.0 \cdot (0.4 \cdot 0 + 0.6 \cdot 100))$$
(11)
$$= 0.0 \cdot (0.5 \cdot (0 + 60) + 0.5 \cdot (100 + 60)) + 1.0 \cdot (0.4 \cdot (0 + 60) + 0.6 \cdot (100 + 60))$$
(12)
$$= 0.0 \cdot (0.5 \cdot (0 + V(\otimes^{1})) + 0.5 \cdot (100 + V(\otimes^{1})) + 1.0 \cdot (0.4 \cdot (0 + V(\otimes^{1})) + 0.6 \cdot (100 + V(\otimes^{1})))$$
(13)

Bellman Equation (SUBA3.7)

$$V^{\pi}(s) = \mathsf{E}_{\pi} \{ R_{t} | s_{t} = s \}$$

$$= \mathsf{E}_{\pi} \left\{ \sum_{k=0}^{T} \gamma^{k} r_{t+k+1} | s_{t} = s \right\}$$

$$= \mathsf{E}_{\pi} \left\{ r_{t+1} + \gamma \sum_{k=0}^{T} \gamma^{k} r_{t+k+2} | s_{t} = s \right\}$$

$$= \sum_{a} \pi(s, a) \sum_{s'} \mathcal{P}_{ss'}^{a} \left[\mathcal{R}_{ss'}^{a} + \gamma \mathsf{E}_{\pi} \left\{ \sum_{k=0}^{T} \gamma^{k} r_{t+k+2} | s_{t} = s \right\} \right]$$

$$= \sum_{a} \pi(s, a) \sum_{s'} \mathcal{P}_{ss'}^{a} \left[\mathcal{R}_{ss'}^{a} + \gamma V^{\pi}(s') \right]$$

$$= \sum_{a} \pi(s, a) \sum_{s'} \mathcal{P}_{ss'}^{a} \left[\mathcal{R}_{ss'}^{a} + \gamma V^{\pi}(s') \right]$$

$$(18)$$

Values are recursively defined in terms of other values!

$$V^{\pi}(s^{3}) = \sum_{a} \pi(s^{3}, a) \sum_{s'} \mathcal{P}_{s^{3}s'}^{a} \left[\mathcal{R}_{s^{3}s'}^{a} + \gamma V^{\pi}(s') \right]$$
(19)
$$= \pi(s^{3}, LEFT) \sum_{s'} \mathcal{P}_{s^{3}s'}^{LEFT} \left[\mathcal{R}_{s^{3}s'}^{LEFT} + \gamma V^{\pi}(s') \right]$$
(20)
$$= \pi(s^{3}, LEFT) \mathcal{P}_{s^{3}s^{2}}^{LEFT} \left[\mathcal{R}_{s^{3}s^{2}}^{LEFT} + \gamma V^{\pi}(s^{2}) \right]$$
(21)
$$= \pi(s^{3}, LEFT) \mathcal{P}_{s^{3}s^{2}}^{LEFT} \left[\mathcal{R}_{s^{3}s^{2}}^{LEFT} + \gamma V^{\pi}(s^{2}) \right]$$
(21)
$$= 1.0 \cdot 1.0 \left[-1.0 + 1.0 \cdot 99.0 \right]$$
(22)
$$= -1.0 + 99.0$$
(23)
$$= 100 \quad 99 \quad 98 \quad 97$$

Outline

- Values
- Bellman Equation
- Opening Programming
- 4 TP
 - Bellman Equation: a theoretical property of values
 - Use it to make recursive algorithms to learn values
 - Policy Evaluation
 - Value Iteration

• Determine $V^{\pi}(s)$ for all states, given a certain policy π

Bellman equation

"theory"

$$V^{\pi}(s) = \mathsf{E}_{\pi} \left\{ \sum_{k=0}^{T} \gamma^{k} r_{t+k+1} | s_{t} = s \right\}$$

$$= \mathsf{E}_{\pi} \left\{ r_{t+1} + \gamma^{\nu} \nabla^{\pi} (s_{t+1}) | s_{t} = s \right\}$$

$$= \sum_{R} \pi(s, a) \sum_{r, t} \mathcal{P}_{\mathsf{SS}'}^{a} \left[\mathcal{R}_{\mathsf{SS}'}^{a} + \gamma^{\nu} \nabla^{\pi} (s') \right]$$
(26)

Iterative Policy Evaluation

"practice" (dynamic programming)

$$V_{k+1}(s) = \sum_{a} \pi(s, a) \sum_{s'} \mathcal{P}_{ss'}^{a} \left[\mathcal{R}_{ss'}^{a} + \gamma V_{k}(s') \right]$$
 (27)

- $V_k(s)$ is k^{th} iteration
- $V_k(s)$ is an approximation of $V^{\pi}(s)$, with $V_{k-m}^{\pi}(s) = V^{\pi}(s)$

Iterative Policy Evaluation Algorithm (SUBA4.1)

Input
$$\pi$$
, the policy to be evaluated Initialize $V(s)=0$, for all $s\in\mathcal{S}^+$ Repeat
$$\Delta\leftarrow0$$
 For each $s\in\mathcal{S}$:
$$v\leftarrow V(s)$$

$$V(s)\leftarrow\sum_a\pi(s,a)\sum_{s'}\mathcal{P}^a_{ss'}\big[\mathcal{R}^a_{ss'}+\gamma V(s')\big]$$

$$\Delta\leftarrow\max(\Delta,|v-V(s)|\big)$$
 until $\Delta<\theta$ (a small positive number) Output $V\approx V^\pi$

Figure: Iterative Policy Evaluation

 Δ: max difference (over all states) between previous value V_{k-1}(s) and new value V_k(s)

Outline

- Values
- Bellman Equation
- Openation of the second of
 - Policy Evaluation
 - Policy Improvement
 - Value Iteration
 - Prioritized Sweeping
- 4 TF

• Estimate $V^{\pi}(s)$ for a given policy π

 $\pi_0 \text{ (random policy)}$

T	?	?	?
?	?	?	?

• Estimate $V^{\pi}(s)$ for a given policy π

 π_0 (random policy)

 $V^{\pi_0}(s)$

$$\pi_0 \xrightarrow{\text{eval.}} V^{\pi_0}$$

• Estimate $V^{\pi}(s)$ for a given policy π

Policy Improvement (SUBA4.2)

• Idea: find an improved policy π' , given estimated values $V^{\pi}(s)$

$$\pi'(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} \mathcal{P}_{ss'}^{a} \left[\mathcal{R}_{ss'}^{a} + \gamma V(s') \right]$$
 (28)

 $V^{\pi_0}(s)$

$$\pi_0 \xrightarrow{\text{eval.}} V^{\pi_0} \xrightarrow{\text{impr.}} \pi_1$$

• Estimate $V^{\pi}(s)$ for a given policy π

Policy Improvement (SUBA4.2)

• Idea: find an improved policy π' , given estimated values $V^{\pi}(s)$

$$\pi'(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} \mathcal{P}_{ss'}^{a} \left[\mathcal{R}_{ss'}^{a} + \gamma V(s') \right]$$
 (28)

eval. $V^{\pi_0} \xrightarrow{\text{impr.}} \pi_1 \xrightarrow{\text{eval.}} V^{\pi_1}$

• Estimate $V^{\pi}(s)$ for a given policy π

Policy Improvement (SUBA4.2)

• Idea: find an improved policy π' , given estimated values $V^{\pi}(s)$

$$\pi'(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} \mathcal{P}_{ss'}^{a} \left[\mathcal{R}_{ss'}^{a} + \gamma V(s') \right]$$
 (28)

 $V^{\pi_0}(s)$ $V^{\pi_1}(s)$

$$\pi_0 \xrightarrow{\text{eval.}} V^{\pi_0} \xrightarrow{\text{impr.}} \pi_1 \xrightarrow{\text{eval.}} V^{\pi_1} \xrightarrow{\text{impr.}} \dots \pi_*$$

• Estimate $V^{\pi}(s)$ for a given policy π

Policy Improvement (SUBA4.2)

• Idea: find an improved policy π' , given estimated values $V^{\pi}(s)$

$$\pi'(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} \mathcal{P}_{ss'}^{a} \left[\mathcal{R}_{ss'}^{a} + \gamma V(s') \right]$$
 (28)

Values Bellman Equation Dynamic Programming TP Policy Evaluation Policy Improvement Value Iteration Prioritized Sweeping

Policy evaluation (SUBA4.1)

• Estimate $V^{\pi}(s)$ for a given policy π

Policy Improvement (SUBA4.2)

• Idea: find an improved policy π' , given estimated values $V^{\pi}(s)$

$$\pi'(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} \mathcal{P}_{ss'}^{a} \left[\mathcal{R}_{ss'}^{a} + \gamma V(s') \right]$$
 (28)

Policy Iteration (SUBA4.3)

Switch between evaluation and improvement

$$\pi_0 \xrightarrow{\text{eval.}} V^{\pi_0} \xrightarrow{\text{impr.}} \pi_1 \xrightarrow{\text{eval.}} V^{\pi_1} \xrightarrow{\text{impr.}} \dots \pi_* \xrightarrow{\text{eval.}} V^*$$
(29)

• Converges to optimal values V^* and optimal policy π_* !

Value Iteration (next slide)

Do policy improvement and policy iteration simultaneously

Value Iteration

Policy evaluation (SUBA4.1)

- Estimate $V^{\pi}(s)$ for a given policy π
- Update rule:

$$V_{k+1}(s) = \sum_{a} \pi(s, a) \sum_{s'} \mathcal{P}_{ss'}^{a} \left[\mathcal{R}_{ss'}^{a} + \gamma V_{k}(s') \right]$$
(30)

Value iteration (SUBA4.4)

- Informal idea: instead of summing over all actions, choose the action that leads to the state with the largest value
- Update rule:

$$V_{k+1}(s) = \max_{a} \sum_{s'} \mathcal{P}_{ss'}^{a} \left[\mathcal{R}_{ss'}^{a} + \gamma V_{k}(s') \right]$$
(31)

Value Iteration Algorithm

Initialize
$$V$$
 arbitrarily, e.g., $V(s) = 0$, for all $s \in \mathcal{S}^+$
Repeat $\Delta \leftarrow 0$
For each $s \in \mathcal{S}$: $v \leftarrow V(s)$
 $V(s) \leftarrow \max_a \sum_{s'} \mathcal{P}^a_{ss'} \left[\mathcal{R}^a_{ss'} + \gamma V(s') \right]$
 $\Delta \leftarrow \max(\Delta, |v - V(s)|)$
until $\Delta < \theta$ (a small positive number)
Output a deterministic policy, π , such that $\pi(s) = \arg\max_a \sum_{s'} \mathcal{P}^a_{ss'} \left[\mathcal{R}^a_{ss'} + \gamma V(s') \right]$

Figure: Value Iteration


```
Input \pi, the policy to be evaluated Initialize V(s)=0, for all s\in\mathcal{S}^+ Repeat \Delta\leftarrow0 For each s\in\mathcal{S}: v\leftarrow V(s) V(s)\leftarrow\sum_a\pi(s,a)\sum_{s'}\mathcal{P}^a_{ss'}\left[R^a_{ss'}+\gamma V(s')\right] \Delta\leftarrow\max(\Delta,|v-V(s)|) until \Delta<\theta (a small positive number) Output V\approx V^\pi
```

```
Initialize V arbitrarily, e.g., V(s) = 0, for all s \in S^+

Repeat
\Delta \leftarrow 0
For each s \in S:
v \leftarrow V(s)
V(s) \leftarrow \max_{\Delta} \sum_{s'} \mathcal{P}^{s}_{ss'} \left[ \mathcal{R}^a_{ss'} + \gamma V(s') \right]
\Delta \leftarrow \max(\Delta, |v - V(s)|)
until \Delta < \theta (a small positive number)

Output a deterministic policy, \pi, such that
\pi(s) = \arg \max_{\alpha} \sum_{s'} \mathcal{P}^a_{ss'} \left[ \mathcal{R}^a_{ss'} + \gamma V(s') \right]
```



```
Input \pi, the policy to be evaluated Initialize V(s) = 0, for all s \in S^+ Repeat \Delta \leftarrow 0 For each s \in S:
v \leftarrow V(s)
V(s) \leftarrow \sum_a \pi(s, a) \sum_{s'} \mathcal{P}^a_{ss'} [\mathcal{R}^a_{ss'} + \gamma V(s')]
\Delta \leftarrow \max(\Delta, |v - V(s)|)
until \Delta < \theta (a small positive number)
Output V \approx V^{\pi}
```

```
Initialize V arbitrarily, e.g., V(s) = 0, for all s \in S^+

Repeat \Delta \leftarrow 0

For each s \in S:

v \leftarrow V(s)

V(s) \leftarrow \max_{\alpha} \sum_{s'} \mathcal{P}_{ss'}^{a} \left[ \mathcal{R}_{ss'}^{a} + \gamma V(s') \right]

\Delta \leftarrow \max(\Delta, |v - V(s)|)

until \Delta < \theta (a small positive number)

Output a deterministic policy, \pi, such that

\pi(s) = \arg \max_{\alpha} \sum_{s'} \mathcal{P}_{ss'}^{a} \left[ \mathcal{R}_{ss'}^{a} + \gamma V(s') \right]
```



```
Input \pi, the policy to be evaluated Initialize V(s)=0, for all s\in\mathcal{S}^+ Repeat \Delta\leftarrow0 For each s\in\mathcal{S}: v\leftarrow V(s) V(s)\leftarrow\bigcup_{a}\pi(s,a)\sum_{s'}\mathcal{P}^a_{ss'}\left[\mathcal{R}^a_{ss'}+\gamma V(s')\right] \Delta\leftarrow\max(\Delta,|v-V(s)|) until \Delta<\theta (a small positive number) Output V\approx V^\pi
```

```
Initialize V arbitrarily, e.g., V(s) = 0, for all s \in S^+

Repeat
\Delta \leftarrow 0
For each s \in S:
v \leftarrow V(s) \leftarrow \max_{a} \sum_{s'} \mathcal{P}_{ss'}^a \left[ \mathcal{R}_{ss'}^a + \gamma V(s') \right]
\Delta \leftarrow \max_{a} \left[ \mathcal{R}_{ss'}^a + \gamma V(s') \right]
until \Delta < \theta (a small positive number)

Output a deterministic policy, \pi, such that
\pi(s) = \arg \max_{a} \sum_{s'} \mathcal{P}_{ss'}^a \left[ \mathcal{R}_{ss'}^a + \gamma V(s') \right]
```



```
Initialize V arbitrarily, e.g., V(s) = 0, for all s \in S^+
Input \pi, the policy to be evaluated
Initialize V(s) = 0, for all s \in S^+
                                                                                          Repeat
Repeat
     \Delta \leftarrow 0
                                                                                              For each s \in S:
     For each s \in S:
           v \leftarrow V(s)
                                                                                                   V(s) \leftarrow \max_{a} \sum_{s'} \mathcal{P}_{ss'}^{a} \left[ \mathcal{R}_{ss'}^{a} + \gamma V(s') \right]

\Delta \leftarrow \max(\Delta, |v - V(s)|)
           V(s) \leftarrow \sum_{a} \pi(s, a) \sum_{s'} \mathcal{P}_{ss'}^{a} \left[ \mathcal{R}_{ss'}^{a} + \gamma V(s') \right]
           \Delta \leftarrow \max(\Delta, |v - V(s)|)
                                                                                         until \Delta < \theta (a small positive number)
until \Delta < \theta (a small positive number)
Output V \approx V^{\pi}
                                                                                         Output a deterministic policy, \pi, such that
```


- We have the basic algorithms to evaluate and improve policies
 - Policy evaluation: determine values, given a policy
 - · Value iteration: determine values, improve policy along the way
- Now let's make them a bit more efficient!


```
 \begin{split} & \text{Initialize } V \text{ arbitrarily, e.g.,} V(s) = 0, \text{ for all } s \in \mathcal{S}^+ \\ & \text{Repeat} \\ & \Delta \leftarrow 0 \\ & \text{For each } s \in \mathcal{S}: \\ & v \leftarrow V(s) \\ & V(s) \leftarrow \max_a \sum_{s'} \mathcal{P}_{ss'}^a \left[ \mathcal{R}_{ss'}^a + \gamma V(s') \right] \\ & \Delta \leftarrow \max(\Delta, |v - V(s)|) \\ & \text{until } \Delta < \theta \text{ (a small positive number)} \\ & \text{Output a deterministic policy, } \pi, \text{ such that} \\ & \pi(s) = \arg \max_a \sum_{s'} \mathcal{P}_{ss'}^a \left[ \mathcal{R}_{ss'}^a + \gamma V(s') \right] \\ \end{aligned}
```

Figure: Value Iteration

Figure: Value Iteration

· Updating all states at each iteration inefficient


```
\begin{split} & \text{Initialize } V \text{ arbitrarily, e.g.,} V(s) = 0, \text{ for all } s \in \mathcal{S}^+ \\ & \text{Repeat} \\ & \Delta \leftarrow 0 \\ & \text{For each } s \in \mathcal{S}; \\ & v \leftarrow V(s) \\ & V(s) \leftarrow \max_{\alpha} \sum_{s'} \mathcal{P}^*_{ss'} \left[ \mathcal{R}^*_{ss'} + \gamma V(s') \right] \\ & \Delta \leftarrow \max(\Delta, |v - V(s)|) \\ & \text{until } \Delta < \theta \text{ (a small positive number)} \\ & \text{Output a deterministic policy, } \pi, \text{ such that} \\ & \pi(s) = \arg\max_{\alpha} \sum_{s'} \mathcal{P}^*_{ss'} \left[ \mathcal{R}^*_{ss'} + \gamma V(s') \right] \end{split}
```

Figure: Value Iteration

- · Updating all states at each iteration inefficient
- Better: priority to update V(s) if we think it will change
 - how do we know when it will change?
 - informally: "if a value changes, values of neighbouring states are likely to change also"

(neighbourhood relationship defined by $\mathcal{P}_{ss'}^{a}$)


```
\begin{split} & \text{Initialize } V \text{ arbitrarily, e.g.,} V(s) = 0, \text{ for all } s \in \mathcal{S}^+ \\ & \text{Repeat} \\ & \Delta \leftarrow 0 \\ & \text{For each } s \in \mathcal{S}; \\ & v \leftarrow V(s) \\ & V(s) \leftarrow \max_a \sum_{s'} \mathcal{P}^s_{ss'} \left[ \mathcal{R}^s_{ss'} + \gamma V(s') \right] \\ & \Delta \leftarrow \max(\Delta, |v - V(s)|) \\ & \text{until } \Delta < \theta \text{ (a small positive number)} \\ & \text{Output a deterministic policy, } \pi, \text{ such that} \\ & \pi(s) = \arg \max_a \sum_{s'} \mathcal{P}^s_{ss'} \left[ \mathcal{R}^a_{ss'} + \gamma V(s') \right] \end{split}
```

Figure: Value Iteration

- · Updating all states at each iteration inefficient
- Better: priority to update V(s) if we think it will change
 - how do we know when it will change?
 - informally: "if a value changes, values of neighbouring states are likely to change also"

(neighbourhood relationship defined by $\mathcal{P}_{\mathit{ss'}}^{\mathit{a}}$)


```
\begin{split} & \text{Initialize } V \text{ arbitrarily, e.g.,} V(s) = 0, \text{ for all } s \in \mathcal{S}^+ \\ & \text{Repeat} \\ & \Delta \leftarrow 0 \\ & \text{For each } s \in \mathcal{S}; \\ & v \leftarrow V(s) \\ & V(s) \leftarrow \max_{\alpha} \sum_{s'} \mathcal{P}^a_{s'} \left[\mathcal{R}^a_{ss'} + \gamma V(s')\right] \\ & \Delta \leftarrow \max(\Delta, |v - V(s)|) \\ & \text{until } \Delta < \theta \text{ (a small positive number)} \\ & \text{Output a deterministic policy, } \pi, \text{ such that} \\ & \pi(s) = \arg\max_{\alpha} \sum_{s'} \mathcal{P}^a_{ss'} \left[\mathcal{R}^a_{ss'} + \gamma V(s')\right] \end{split}
```

Figure: Value Iteration

- Updating all states at each iteration inefficient
- Better: priority to update V(s) if we think it will change
 - how do we know when it will change?
 - informally: "if a value changes, values of neighbouring states are likely to change also"

(neighbourhood relationship defined by $\mathcal{P}^a_{ss'}$)

- Prioritized sweeping
 - prioritize updating states whose neighbours' values have been updated

$$s^0$$
 s^1 s^2 s^3 s^4 s^5 s^6 s^7

$$V_k$$

$$s^0$$
 s^1 s^2 s^3 s^4 s^5 s^6 s^7

$$V_{k+1}(s) = \max_a \sum_{s'} \mathcal{P}^a_{ss'} \left[\mathcal{R}^a_{ss'} + \gamma V_k(s') \right]$$
 (value update)

$$s^0 s^1 s^2 s^3$$

 $s^4 s^5 s^6 s^7$

$$\Delta(s) = |V_{k+1}(s) - V_k(s)|$$
 (value change)

$$s^0$$
 s^1 s^2 s^3 s^4 s^5 s^6 s^7

$$\forall s^- \ C(s^-) = \sum_a \mathcal{P}^a_{s^-s} \Delta(s)$$

priority queue – process state with highest value of C(s) first.

http://eia.udg.es/~busquets/thesis/thesis_html/node52.html

Python

- · This is not a Python course!
 - To make things easy, we provide a lot of "skeleton code"
 - Then you can focus on algorithmic aspects
 - Of course we will help with Python issues
- Coding perhaps a bit 'scholarly'
 - If you are at ease with Python and RL, code whatever you like!
 - Next time: present list of projects
- Python version
 - our code is compatible with both Python2 and Python3
 - later we use PyBrain: only compatible with Python2
 - better to stick to Python2

Aims of Exercise 1

- Think about MDPs
- Understand the code in MarkovDecisionProcess.py
- Implement policy evaluation (before next week)
- Implement value iteration

