## Lecture 7: Deep RL

CS234: RL Emma Brunskill Spring 2017

Much of the content for this lecture is borrowed from Ruslan Salakhutdinov's class, Rich Sutton's class and David Silver's class on RL.

## Goal: Build RL Agent to Play Atari



### Generalization in RL

- Need some way to scale to large state spaces
- Important for planning
- Important for learning
- One approach: Model free RL
  - Use value function approximation
  - Discussed using linear weighted combination of features
  - Does this work for Atari?

## Recap: Q-learning + Deep Learning

- Deep Q learning
  - Use deep learning to represent Q function
  - Learns directly from pixels to control

## **DQN** Architecture



1 network, outputs Q value for each action

## Recap: Q-learning + Deep Learning

- Challenge of using function approximation
  - Local updates (s,a,r,s') highly correlated
  - "Target" (approximation to true value of s') can change quickly and lead to instabilities
- Deep Q-learning
  - Experience replay of mix of prior (s<sub>i</sub>,a<sub>i</sub>,r<sub>i</sub>,s<sub>i+1</sub>)
     tuples to update Q
  - Fix target for number of steps

## Recap: DQN

- Experience replay of mix of prior (s<sub>i</sub>,a<sub>i</sub>,r<sub>i</sub>,s<sub>i+1</sub>) tuples to update Q(w)
- Fix target Q (w-) for number of steps, then update
- Optimize MSE between current Q and Q target

$$\mathbb{E}_{s,a,r,s'\sim\mathcal{D}_i}\left[\left(r+\gamma \max_{a'} Q(s',a';w_i^-)-Q(s,a;w_i)\right)^2\right]$$
Q-learning target Q-network

Use stochastic gradient descent

## Recap: Double Q-Learning

- Use 2 Q deep nets
- Switch between which network is used as target or for policy selection
- Significant improvement

## Deep RL

- Hugely expanding area
- Will discuss more later in course
- Today: 2 other influential model-free deep RL ideas

# Which Aspects of DQN Were Important for Success?

| Game              | Linear | Deep<br>netowrk | DQN with fixed Q | DQN with replay | DQN with<br>replay and<br>fixed Q |
|-------------------|--------|-----------------|------------------|-----------------|-----------------------------------|
| Breakout          | 3      | 3               | 10               | 241             | 317                               |
| Enduro            | 62     | 29              | 141              | 831             | 1006                              |
| River Raid        | 2345   | 1453            | 2868             | 4102            | 7447                              |
| Sequest           | 656    | 275             | 1003             | 823             | 2894                              |
| Space<br>Invaders | 301    | 302             | 373              | 826             | 1089                              |

Replay is hugely important

## Order of Replay?

| S1                       | S2 | S3 | S4 | S5 | S6 | S7                             |
|--------------------------|----|----|----|----|----|--------------------------------|
| Okay Field<br>Site<br>+1 |    |    |    |    |    | Fantastic<br>Field Site<br>+10 |

- In tabular TD-learning, discussed replay could help speed learning
- Repeating some updates seem to better propagate info than others
- Systematic ways to prioritize updates?

# How Much Might Ordering Updates Help?





- Oracle: picks (s,a,r,s') tuple that will minimize global loss
- Exponential improvement in convergence!
- Number of updates needed to converge
- Not practical but illustrates potential impact of order

## Prioritized Experience Replay

- Sample (s,a,r,s') tuple for update using priority
- Priority of a tuple is proportional to DQN error

$$r + \gamma \max_{a'} Q(s', a', \mathbf{w}^-) - Q(s, a, \mathbf{w})$$

Stochastic Prioritization

$$P(i) = \frac{p_i^{\alpha}}{\sum_k p_k^{\alpha}}$$

p<sub>i</sub> is proportional to DQN error

- $\alpha$ =0, uniform
- Update p<sub>i</sub> every update
- p<sub>i</sub> for new tuples set to 0

## Impact of Order

#### Lookup Table Rep



#### Linear VFA



- Note: prioritized replay changes distribution of data sampled, which introduces bias
- Can correct for this, see paper

## Substantially Improved Performance



## Value & Advantage Function

- Intuition: Features need to pay attention to determine value may be different than those need to determine action benefit
- E.g.
  - Game score may be relevant to predicting V(s)
  - But not necessarily in indicating relative action values
- Advantage function (Baird 1993)

$$A^{\pi}(s,a) = Q^{\pi}(s,a) - V^{\pi}(s)$$



## Identifiability

$$A^{\pi}(s,a) = Q^{\pi}(s,a) - V^{\pi}(s)$$

- Unidentifiable
- Option 1: Force A(s,a) = 0 if a is action taken

$$Q(s,a; heta,lpha,eta) = V(s; heta,eta) + \ \left(A(s,a; heta,lpha) - \max_{a'\in |\mathcal{A}|} A(s,a'; heta,lpha)
ight)$$

Option 2: Use mean as baseline (more stable)

$$Q(s, a; \theta, \alpha, \beta) = V(s; \theta, \beta) +$$
 
$$\left(A(s, a; \theta, \alpha) - \frac{1}{|\mathcal{A}|} \sum_{a'} A(s, a'; \theta, \alpha)\right)$$



# Model Free Deep RL: Quick Summary

- Stabilize target (proxy for true reward)
- Reuse prior experience in prioritized way
- Separate value and advantage

## Practical Tips for DQN on Atari

(from J Schulman)

- DQN is more reliable on some Atari tasks than others.
   Pong is a reliable task: if it doesn't achieve good scores, something is wrong
- Large replay buffers improve robustness of DQN, and memory efficiency is key.
  - Use uint8 images, don't duplicate data
- Be patient. DQN converges slowly—for ATARI it's often necessary to wait for 10-40M frames (couple of hours to a day of training on GPU) to see results significantly better than random policy
- In our Stanford class: Debug implementation on small test environment

## **Practical Tips II**

(from J Schulman)

Try Huber loss on Bellman error

$$L(x) = \begin{cases} x^2/2 & \text{if } |x| \le \delta \\ \delta |x| - \delta^2/2 & \text{otherwise} \end{cases}$$



- Consider trying Double DQN—significant improvement from 3-line change in Tensorflow.
- To test out your data preprocessing, try your own skills at navigating the environment based on processed frames
- Always run at least two different seeds when experimenting
- Learning rate scheduling is beneficial. Try high learning rates in initial exploration period.
- Try non-standard exploration schedules

# Return to Model Free RL... Challenges of Target

$$\mathbb{E}_{s,a,r,s'\sim\mathcal{D}_i}\left[\left(r+\gamma \max_{a'} Q(s',a';w_i^-)-Q(s,a;w_i)\right)^2\right]$$
Q-learning target Q-network

- Running stochastic gradient descent
- Ideally what should Q-learning target be?

# Return to Model Free RL... Challenges of Target

$$\mathbb{E}_{s,a,r,s'\sim\mathcal{D}_i}\left[\left(r+\gamma \max_{a'} Q(s',a';w_i^-)-Q(s,a;w_i)\right)^2\right]$$
Q-learning target Q-network

- Running stochastic gradient descent
- Ideally what should Q-learning target be?
  - Q(s,a)
  - But we don't know that
  - Could be use Monte Carlo estimate (sum of rewards to the end of the episode)

### TD vs Monte Carlo

$$V(S_t) \leftarrow V(S_t) + \alpha \left( R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right)$$

$$V(S_t) \leftarrow V(S_t) + \alpha (G_t - V(S_t))$$





## Monte Carlo vs TD Learning

- Computational complexity
- Memory requirements
- Convergence & Q representation
  - Convergence guaranteed?
  - Performance of convergence point?
  - Rate of convergence?
- In on policy case?
  - When evaluating the value of a fixed policy
- In off policy case?
  - ullet When using data to evaluate value of a different  $oldsymbol{\pi}$

# Monte Carlo vs TD Learning: Convergence in On Policy Case

Evaluating value of a single policy

$$MSVE(w) = \sum_{s \in S} d(s) \left( V^{\pi}(s) - \tilde{V}^{\pi}(s, w) \right)^2$$

- where
  - d(s) is generally the on-policy  $\pi$  stationary distrib
  - ~V(s,w) is the value function approximation

# Monte Carlo Convergence: Linear VFA

(\*Note: correction from prior slides)

Evaluating value of a single policy

$$MSVE(w) = \sum_{s \in S} d(s) \left( V^{\pi}(s) - \tilde{V}^{\pi}(s, w) \right)^2$$

- where
  - d(s) is generally the on-policy  $\pi$  stationary distrib
  - ~V(s,w) is the value function approximation
- Linear VFA:  $V(s) = \sum w_i f_i(s)$
- Monte Carlo converges to min MSE possible!

$$MSVE(w_{MC}) = \min_{w} \sum_{s \in S} d(s) \left( V^{\pi}(s) - \tilde{V}^{\pi}(s, w) \right)^{2}$$

## TD Learning Convergence: Linear VFA

(\*Note: correction from prior slides)

Evaluating value of a single policy

$$MSVE(w) = \sum_{s \in S} d(s) \left( V^{\pi}(s) - \tilde{V}^{\pi}(s, w) \right)^2$$

- where
  - d(s) is generally the on-policy  $\pi$  stationary distrib
  - ~V(s,w) is the value function approximation
- Linear VFA:  $V(s) = \sum w_i f_i(s)$
- TD converges to constant factor of best MSE

$$MSVE(w_{TD}) = \frac{1}{1-\gamma} \min_{w} \sum_{s \in S} d(s) \left( V^{\pi}(s) - \tilde{V}^{\pi}(s, w) \right)^{2}$$
  
=  $\frac{1}{1-\gamma} MSVE(w_{MC})$ 

Tsitsiklis and Van Roy. An Analysis of Temporal-Difference Learning with Function Approximation. 1997

# TD Learning vs Monte Carlo: Linear VFA Convergence Point

- Linear VFA:  $V(s) = \sum w_i f_i(s)$
- Monte Carlo estimate:

$$MSVE(w_{MC}) = \min_{w} \sum_{s \in S} d(s) \left(V^{\pi}(s) - ilde{V}^{\pi}(s,w)
ight)^{2}$$

• TD converges to constant factor of best MSE

$$MSVE(w_{TD}) = \frac{1}{1-\gamma} MSVE(w_{MC})$$

 In look up table case what does this say about MSVE of MC and TD?

# TD Learning vs Monte Carlo: Convergence Rate

- Which converges faster?
- Not (to my knowledge) definitively understood
- Practically TD learning often converges faster to its fixed point

- MC Estimates
- vs TD learning with (infinite) experience replay

- MC Estimates
- vs TD learning with (infinite) experience replay
- 8 episodes, all of 1 or 2 steps duration
  - 1st episode: A, 0, B, 0
  - 6 episodes where observe: B, 1
  - 8th episode: B, 0
- Assume discount factor = 1
- What is a good estimate for V(B)?

- MC Estimates
- vs TD learning with (infinite) experience replay
- 8 episodes, all of 1 or 2 steps duration
  - 1st episode: A, 0, B, 0
  - 6 episodes where observe: B, 1
  - 8th episode: B, 0
- Assume discount factor = 1
- What is a good estimate for V(B)?
  - Observed total reward of 1 6 times
  - Observed total reward of 0 2 times
  - Reasonable estimate V(B) = 6/8 = 3/4

- MC Estimates
- vs TD learning with (infinite) experience replay
- 8 episodes, all of 1 or 2 steps duration
  - 1st episode: A, 0, B, 0
  - 6 episodes where observe: B, 1
  - 8th episode: B, 0
- Assume discount factor = 1
- What is a good estimate for V(B)? ¾
- What is a good estimate of V(A)?
  - What would TD learning w/infinite replay give?
  - What would MC estimate give?

- 8 episodes, all of 1 or 2 steps duration
  - 1st episode: A, 0, B, 0
  - 6 episodes where observe: B, 1
  - 8th episode: B, 0
- Assume discount factor = 1
- What is a good estimate for V(B)? ¾
- What is a good estimate of V(A)?
  - Monte Carlo estimate: 0

- 8 episodes, all of 1 or 2 steps duration
  - 1st episode: A, 0, B, 0
  - 6 episodes where observe: B, 1
  - 8th episode: B, 0
- Assume discount factor = 1
- What is a good estimate for V(B)? ¾
- What is a good estimate of V(A)?
  - Monte Carlo estimate: 0
  - TD learning w/infinite replay: ¾
    - Computes certainty equivalent MDP
    - MC has 0 error on training set
    - But expect TD to do better-- leverages Markov structure



- In Q-learning follow one policy while learning about value of optimal policy
- How do we do this with Monte Carlo estimation?
  - Recall that in MC estimation, just average sum of future rewards from a state
  - Assumes always following same policy

- In Q-learning follow one policy while learning about value of optimal policy
- How do we do this with Monte Carlo estimation?
  - Recall that in MC estimation, just average sum of future rewards from a state
  - Assumes always following same policy
- Solution for off policy MC: Importance Sampling!

- With lookup table representation
  - Both Q-learning and Monte Carlo estimation (with importance sampling) will converge to value of optimal policy
  - Requires mild conditions over behavior policy (e.g. infinitely visiting each state--action pair is one sufficient condition)
- What about with function approximation?

- With lookup table representation
  - Both Q-learning and Monte Carlo estimation (with importance sampling) will converge to value of optimal policy
  - Requires mild conditions over behavior policy (e.g. infinitely visiting each state--action pair is one sufficient condition)
- What about with function approximation?
  - Target update is wrong
  - Distribution of samples is wrong

- With lookup table representation
  - Both Q-learning and Monte Carlo estimation (with importance sampling) will converge to value of optimal policy
  - Requires mild conditions over behavior policy (e.g. infinitely visiting each state--action pair is one sufficient condition)
- What about with function approximation?
  - Q-learning with function approximation can diverge
    - See examples in Chapter 11 (Sutton and Barto)
  - But in practice often does very well

## Summary: What You Should Know

- Deep learning for model-free RL
  - Understand how to implement DQN
  - 2 challenges solving and how it solves them
  - What benefits double DQN and dueling offer
  - Convergence guarantees
- MC vs TD
  - Benefits of TD over MC
  - Benefits of MC over TD