CS221: Digital Design

Counter Design Based on FSM

A. Sahu

Dept of Comp. Sc. & Engg.

Indian Institute of Technology Guwahati

Outline

- FSM for known Sequential Circuit
 - Can we represent behavior of any sequential circuit using FSM
- Design of Sequential Circuit using FSM methodology
 - Given a English like statement, come up with FSM and implement the Sequential Ckt
- FSM Based Counter Design: using diff. FFs
 - -Optimizing Circuits: given diff. FFs

Can any sequential system be represented with a state diagram?

YES

Shift Register

- Input value shown on transition arcs
- Output values shown within state node

FSM for a Counter

- Tabular form of state diagram
- Like truth-table (specify O/P for all input combinations)
- Encoding of states: easy for counters just use value

PS	NS
000	001
001	010
010	011
011	100
100	101
101	110
110	111
111	000

Example: 5-state counter

- Counter repeats 5 states in sequence
 - Sequence is 000, 010, 011, 101, 110, 000

Step 1: State diagram

0000

110

011

Step 2: State transition table
Assume D flip-flops

re	esent	t Stat	te	Next	State	•	
	С	В	Α	C+	B+	Α+	
	0	0	0	0	1	0	
	0	0	1	X	X	X	
	0	1	0	0	1	1	
	0	1	1	1	0	1	
	1	0	0	X	X	X	
	1	0	1	1	1	0	
	1	1	0	0	0	0	
	1	1	1	X	X	X	

Is our design robust?

What if the counter starts in a 111 state?

5-state counter

The proper methodology is to *design* your counter to be self-starting

Self-starting counters

- Invalid states should always transition to valid states
 - Assures startup
 - Assures bit-error tolerance
- Design your counters to be self-starting
 - Draw all states in the state diagram
 - Fill in the entire state-transition table
 - May limit your ability to exploit don't cares
 - Choose startup transitions that minimize the logic: Hamming Distance Minimization

5-state counter

HD=Hamming Distance

5-state counter

Counter design based on FSM using D, T, JK FFs

D FF Vs JK FFs Design

FSM Implantation

- Default FF is D-FF
 - Simple to design D-FF
- Can be designed using other FF too.
- Benefits: Given other FFs
 - Takes benefit of dual inputs to FF
 - Counter can be implemented using Small
 Combinational Circuit: Given other FFs
 - More Inputs from Combinational Circuit

FSM of Counter: 2 bit

	l/	P	0	O/P		
	s1	s0	n0	n1		
Α	0	0	0	1		
В	0	1	1	0		
C	1	0	1	1		
В	1	1	0	0		

FSM Controller: Binary Counter

	l/	/P	O/P		
	s1 s0		n0	n1	
A	0	0	0	1	
В	0	1	1	0	
C	1	0	1	1	
В	1	1	0	0	

Synchronous Counter: Design

- Together: Create FSM, Encode Bit
- State Table
- Design Combination Circuit

Mod 10 Counter: BCD Counter

- Count from 0000 to 1001 (0-9 the Reset)
- FSM with Encoding done

State Table Creation

P	reser	nt Stat	te		Next	State	
S3	S2	S1	SO	N3	N2	N1	NO
0	0	0	0	0	0	0	1
0	0	0	1	0	0	1	0
0	0	1	0	0	0	1	1
0	0	1	1	0	1	0	0
0	1	0	0	0	1	0	1
0	1	0	1	0	1	1	0
0	1	1	0	0	1	1	1
0	1	1	1	1	0	0	0
1	0	0	0	1	0	0	1
1	0	0	1	0	0	0	0

N0=S0' N1=S1S0' + S3'S1'S0 N3=...Solve N4=..Solve

Using other FF in Counter

- Takes benefit of dual inputs to FF
- Counter can be implemented using Small Combinational Circuit: Given other FFs
- More Inputs from Combinational Circuit
- Use of Excitation Table
 - How FF out changes from one to others
 - Required FF inputs to change FF output
 - 0 to 0, 0 to 1, 1 to 0 and 1 to 1

Design of Counter: With FFs 0,2,3,4,5,1,0...

Counter design using JK FF

Excitation Table for T Flip Flop

- It is different than Characteristic Equation
- Tabling requires Input to change from Q to Q⁺

Excitation Table for D Flip Flop

- It is different than Characteristic Equation
- Tabling requires Input to change from Q to Q⁺

Characteristic Table

Excitation Table for JK Flip Flop

- It is different than Characteristic Equation
- Tabling requires Input to change from Q to Q⁺

Characteristic Table

Excitation Table for SR Flip Flop

- It is different than Characteristic Equation
- Tabling requires Input to change from Q to Q⁺

Characteristic Table

Excitation Table: Sync Counter Using D FF

Pre	Present State Next State				Flip I	Flop Ir	puts	
Q1	Q2	Q3	Q1 ⁺	Q2 ⁺	Q3 ⁺	D1	D1 D2	
0	0	0	0	1	0	0	1	0
0	1	0	0	1	1	0	1	1
0	1	1	1	1	0	1	1	0
1	1	0	1	0	1	1	0	1
1	0	1	0	0	1	0	0	1
0	0	1	0	0	0	0	0	0

Excitation Table: Sync Counter Using D FF

Q	Q ⁺	D
0	0	0
0	1	1
1	0	0
1	1	1

Pre	sent S	tate	Flip	Flop Ir	puts
Q1	Q2	Q3	D1	D2	D3
0	0	0	0	1	0
0	1	0	0	1	1
0	1	1	1	1	0
1	1	0	1	0	1
1	0	1	0	0	1
0	0	1	0	0	0

$$D_1 = Q_1Q_2 + Q_2Q_3$$

$$D_2 = Q_1'Q_2 + Q_2'Q_3'$$

$$D_3 = Q_1 + Q_2 Q_3$$

Counter Implementation using D FF

Excitation Table: Sync Counter Using T FF

Pre	Present State			Next State			Flip Flop Inputs			
Q1	Q2	Q3	Q1 ⁺	Q2 ⁺	Q3 ⁺	T1	T1 T2			
0	0	0	0	1	0	0	1	0		
0	1	0	0	1	1	0	0	1		
0	1	1	1	1	0	1	0	1		
1	1	0	1	0	1	0	1	1		
1	0	1	0	0	1	1	0	0		
0	0	1	0	0	0	0	0	1		

Excitation Table: Sync Counter Using D FF

Q	Q ⁺	T
0	0	0
0	1	1
1	0	0
1	1	1

Pre	sent S	tate	Flip	Flop Ir	puts
Q1	Q2	Q3	T1	T2	T3
0	0	0	0	1	0
0	1	0	0	0	1
0	1	1	1	0	1
1	1	0	0	1	1
1	0	1	1	0	0
0	0	1	0	0	1

$$T_1 = Q_1 Q_2' + Q_2 Q_3$$

$$T_2 = Q_1 Q_2 + Q_2' Q_3'$$

$$T_3 = Q_1 + Q_1'Q_3$$

Counter Implementation using T FF

Excitation Table: Sync Counter Using RS FF

Present State			Ne	Next State			Flip Flop Inputs				
Q1	Q2	Q3	Q1 ⁺	Q2 ⁺	Q3 ⁺	S1	R1	S2	R2	S3	R3
0	0	0	0	1	0	0	X	1	0	0	X
0	1	0	0	1	1	0	X	X	0	1	0
0	1	1	1	1	0	1	0	X	0	0	1
1	1	0	1	0	1	X	0	0	1	1	0
1	0	1	0	0	1	0	1	0	X	X	0
0	0	1	0	0	0	0	X	0	X	0	1

FF Input Functions

Pres	sent S	tate	Flip Flop Inputs							
Q1	Q2	Q3	S1	R1	S2	R2	S3	R3		
0	0	0	0	X	1	0	0	X		
0	1	0	0	X	X	0	1	0		
0	1	1	1	0	X	0	0	1		
1	1	0	X	0	0	1	1	0		
1	0	1	0	1	0	X	X	0		
0	0	1	0	X	0	X	0	1		

$$S1 = F(Q1,Q2,Q3)$$

$$S2 = F(Q1,Q2,Q3)$$

$$S3 = F(Q1, Q2,Q3)$$

$$R1 = F(Q1,Q2,Q3)$$

$$R2 = F(Q1, Q2,Q3)$$

$$R3 = F(Q1, Q2,Q3)$$

Solve Each Function Using KMAP

Pres	sent S	tate	Flip Flop Inputs							
Q_1	Q_2	Q_3	R ₁	S ₁	S ₂	R ₂	S ₃	R_3		
0	0	0	0	X	1	X	0	X		
0	1	0	0	X	X	0	1	X		
0	1	1	1	X	X	0	X	1		
1	1	0	X	0	X	1	1	X		
1	0	1	X	1	0	X	X	0		
0	0	1	0	X	0	X	X	1		

Q2'Q3'								
√Q1'	0	0	1	0				
Q1	X	X	X	X				

$$S_1 = Q_2Q_3$$

$$S_2 = Q_1'Q_3'$$

$$S_3 = Q_2 Q_3'$$

$$R_1 = Q_2'$$

$$R_2 = Q_1$$

$$R_3 = Q_1'Q_3$$

Counter Implementation using SR FF

Excitation Table: Sync Counter Using JK FF

Pres	sent S	tate	Ne	xt State Flip Flop Inputs							
Q1	Q2	Q3	Q1 ⁺	Q2 ⁺	Q3 ⁺	J1	K1	J2	K2	J3	K3
0	0	0	0	1	0	0	X	1	X	0	X
0	1	0	0	1	1	0	X	X	0	1	X
0	1	1	1	1	0	1	X	X	0	X	1
1	1	0	1	0	1	X	0	X	1	1	X
1	0	1	0	0	1	X	1	0	X	X	0
0	0	1	0	0	0	0	X	0	X	X	1

FF Input Functions

Pres	sent S	tate	Flip Flop Inputs							
Q1	Q2	Q3	J1	K1	J2	K2	J3	K3		
0	0	0	0	X	1	X	0	X		
0	1	0	0	X	X	0	1	X		
0	1	1	1	X	X	0	X	1		
1	1	0	X	0	X	1	1	X		
1	0	1	X	1	0	X	X	0		
0	0	1	0	X	0	X	X	1		

$$J1 = F(Q1,Q2,Q3)$$

$$J2 = F(Q1,Q2,Q3)$$

$$J3 = F(Q1, Q2,Q3)$$

$$K1 = F(Q1,Q2,Q3)$$

$$K2 = F(Q1, Q2,Q3)$$

$$K3 = F(Q1, Q2,Q3)$$

Solve Each Function Using KMAP

Pres	Present State			Flip Flop Inputs						
Q1	Q2	Q3	J1	K1	J2	K2	J3	K3		
0	0	0	0	X	1	X	0	X	Q2'Q3	
0	1	0	0	X	X	0	1	X	Q1'0 C	
0	1	1	1	X	X	0	X	1	Q1 X	
1	1	0	X	0	X	1	1	X		
1	0	1	X	1	0	X	X	0		
0	0	1	0	X	0	X	X	1		

Q2'Q3'							
√Q1'	0	0	1	0			
Q1	X	X	X	X			

J1= Q2Q3

J2= Q3'

J3=Q2

K1= Q2'

K2 = Q1

K3= Q1'

Counter Logic Diagram

J1= Q2Q3

K1= Q2'

J2= Q3'

K2 = Q1

J3= Q2

K3= Q1'

Counter Implementation using D FF

Counter Implementation using T FF

Counter Implementation using RS FF

JK based CCC <= D CCC: Why this happening?

JK FF based Combinational Circuit Complexity
 (CCC) <= D FF Based CCC

Possibly: Many Don't case get combined very nicely to get optimized circuit

Ref Material

- Section 6.9 of Book
 - Donald D. Givone, Digital Principles and Design,
 McGraw-Hill, 2003