Задача А. Города и дороги

 Имя входного файла:
 cities.in

 Имя выходного файла:
 cities.out

 Ограничение по времени:
 1 секунда

 Ограничение по памяти:
 64 мегабайта

Формат входного файла

Во входном файле записано число N ($0 \le N \le 100$). В следующих N строках записано по N чисел, каждое из которых является единичкой или ноликом. Причем, если в позиции (i,j) квадратной матрицы стоит единичка, то i-й и j-й города соединены дорогами, а если нолик, то не соединены.

Формат выходного файла

В выходной файл выведите одно число — количество дорог в этой стране.

Пример

cities.in	cities.out
5	3
0 1 0 0 0	
1 0 1 1 0	
0 1 0 0 0	
0 1 0 0 0	
0 0 0 0 0	

Задача В. Светофоры

 Имя входного файла:
 lights.in

 Имя выходного файла:
 lights.out

 Ограничение по времени:
 1 секунда

 Ограничение по памяти:
 64 мегабайт

В подземелье M тоннелей и N перекрестков, каждый тоннель соединяет какие-то два перекрестка. Мышиный король решил поставить по светофору в каждом тоннеле перед каждым перекрестком. Напишите программу, которая посчитает, сколько светофоров должно быть установлено на каждом из перекрестков. Перекрестки пронумерованы числами от 1 до N.

Формат входного файла

Во входном файлее записано два числа N и M (0 < $N \le 100$), $0 \le M \le \frac{N(N-1)}{2}$). В следующих M строках записаны по два числа i и j (1 $\le i, j \le N$), которые означают, что перекрестки i и j соединены тоннелем.

Формат выходного файла

В выходной файл вывести N чисел: k-е число означает количество светофоров на k-м перекрестке.

Пример

lights.in	lights.out
7 10	3 3 2 2 5 2 3
5 1	
3 2	
7 1	
5 2	
7 4	
6 5	
6 4	
7 5	
2 1	
5 3	

Задача С. Цветной дождь

Имя входного файла: rain.in
Имя выходного файла: rain.out
Ограничение по времени: 1 секунда
Ограничение по памяти: 64 мегабайта

В Банановой республике очень много холмов, соединенных мостами. На химическом заводе произошла авария, в результате чего испарилось экспериментальное удобрение «зован». На следующий день выпал цветной дождь, причем он прошел только над холмами, в некоторых местах падали красные капли, в некоторых — синие, а в остальных — зеленые, в результате чего холмы стали соответствующего цвета. Президенту Банановой республики это понравилось, но ему захотелось покрасить мосты между вершинами холмов так, чтобы мосты были покрашены в цвет холмов, которые они соединяют. К сожалению, если холмы разного цвета, то покрасить мост таким образом не удастся. Посчитать количество таких «плохих» мостов.

Формат входного файла

Вы входном файле вводится N ($1 \leq N \leq 100$) — число холмов. Далее идет матрица размером $N \times N$, описывающая наличие мостов между холмами: число 1 в позиции (i,j) обозначает, что мост между холмами i и j есть, 0 — что моста нет. Матрица симметрична относительно главной диагонали, на главной диагонали стоят нули. В последней строке записано N чисел, обозначающих цвет холмов: 1 — красный; 2 — синий; 3 — зеленый.

Формат выходного файла

В выходной файл выведите количество «плохих» мостов.

Пример

rain.in	rain.out
7	4
0 1 0 0 0 1 1	
1 0 1 0 0 0 0	
0 1 0 0 1 1 0	
0 0 0 0 0 0	
0 0 1 0 0 1 0	
1 0 1 0 1 0 0	
1 0 0 0 0 0	
1 1 1 1 1 3 3	

Задача D. От матрицы смежности к списку ребер

 Имя входного файла:
 m2e.in

 Имя выходного файла:
 m2e.out

 Ограничение по времени:
 1 секунда

 Ограничение по памяти:
 64 мегабайта

Простой неориентированный граф задан матрицей смежности, выведите его представление в виде списка ребер.

Формат входного файла

Входной файл содержит число N ($1 \le N \le 100$) — число вершин в графе, и затем N строк по N чисел, каждое из которых равно 0 или 1 — его матрицу смежности.

Формат выходного файла

Выведите в выходной файл список ребер заданного графа. Ребра можно выводить в произвольном порядке.

Пример

m2e.in	m2e.out
3	1 2
0 1 1	2 3
1 0 1	1 3
1 1 0	

Задача Е. От списка ребер к матрице смежности

 Имя входного файла:
 e2m.in

 Имя выходного файла:
 e2m.out

 Ограничение по времени:
 1 секунда

 Ограничение по памяти:
 64 мегабайта

Простой неориентированный граф задан списком ребер, выведите его представление в виде матрицы смежности.

Формат входного файла

Входной файл содержит числа N $(1 \le N \le 100)$ — число вершин в графе и M $(1 \le M \le \frac{n(n-1)}{2})$ — число ребер. Затем следует M пар чисел — ребра графа.

Формат выходного файла

Выведите в выходной файл матрицу смежности заданного графа.

Пример

- 1	- P	
	e2m.in	e2m.out
	3 3	0 1 1
	1 2	1 0 1
	2 3	1 1 0
	1 3	

Задача F. Компоненты связности

 Имя входного файла:
 matrix.in

 Имя выходного файла:
 matrix.out

 Ограничение по времени:
 1 секунда

 Ограничение по памяти:
 64 мегабайта

Дан неориентированный невзвешенный граф. Необходимо посчитать количество его компонент связности.

Формат входного файла

В первой строке входного файла содержится одно натуральное число N ($N \leq 100$) — количество вершин в графе. Далее в N строках по N чисел — матрица смежности графа: в i-ой строке на j-ом месте стоит 1, если вершины i и j соединены ребром, и 0, если ребра между ними нет. На главной диагонали матрицы стоят нули. Матрица симметрична относительно главной диагонали.

Формат выходного файла

Вывести одно целое число — искомое количество компонент связности графа.

Пример

matrix.out

Задача G. Лесопосадки

 Имя входного файла:
 tree.in

 Имя выходного файла:
 tree.out

 Ограничение по времени:
 1 секунда

 Ограничение по памяти:
 64 мегабайта

Дан неориентированный невзвешенный граф. Необходимо определить, является ли он деревом.

Формат входного файла

В первой строке входного файла содержится одно натуральное число N ($N \leq 100$) — количество вершин в графе. Далее в N строках по N чисел — матрица смежности графа: в i-ой строке на j-ом месте стоит 1, если вершины i и j соединены ребром, и 0, если ребра между ними нет. На главной диагонали матрицы стоят нули. Матрица симметрична относительно главной диагонали.

Формат выходного файла

Вывести YES, если граф является деревом, NO иначе.

Пример

tree.in	tree.out
6	NO
0 1 1 0 0 0	
1 0 1 0 0 0	
1 1 0 0 0 0	
0 0 0 0 1 0	
0 0 0 1 0 0	
0 0 0 0 0	
3	YES
0 1 0	
1 0 1	
0 1 0	