Master 1 MAS & CHPS – Probabilités, Modèles et Applications

Responsable: Adrien Hardy, email: adrien.hardy@univ-lille.fr

Feuille d'exercices 9 Chaines de Markov

Exercice 8. Montrer que si $x \sim y$ alors x récurrent positif $\Leftrightarrow y$ récurrent positif.

Exercice 9. Montrer la marche aléatoire simple sur \mathbb{Z} n'est pas récurrente positive.

Exercice 10. Étant donné $0 , on considère la chaine de Markov <math>(X_n)_{n \in \mathbb{N}}$ sur $E = \{1, 2, 3, 4\}$ de matrice de transition

$$P = \begin{bmatrix} p & 0 & p & 0 \\ 1-p & 0 & 1-p & 0 \\ 0 & p & 0 & p \\ 0 & 1-p & 0 & 1-p \end{bmatrix}.$$

- (a) Montrer que la chaine est irréductible récurrente positive.
- (b) Calculer son unique probabilité invariante.
- (c) Calculer P^2 et en déduire la loi de X_n pour tout $n \geq 2$.
- (d) Calculer $\mathbb{E}_4[\tau_4]$.

Exercice 11 (PageRank; application numérique). A partir de quel n la matrice G^n donne une approximation à 10^{-5} du classement théorique des pages web?

Exercice 12 (Algorithme de Metropolis-Hastings). Soit π une mesure de probabilité sur un ensemble E fini. On cherche a construire un algorithme qui renvoie une approximation numérique de $\int f d\pi$ pour une fonction $f: E \to \mathbb{R}$ donnée.

- Soit $(X_n)_{n\in\mathbb{N}}$ une chaine de Markov irréductible sur E de matrice de transition Q telle que $Q_{xy} > 0 \Leftrightarrow Q_{yx} > 0$.
- Pour tout $x, y \in E$ tels que $Q_{xy} > 0$, on définit

$$R_{xy} := \min\left(\frac{\pi_x Q_{yx}}{\pi_y Q_{xy}}, 1\right).$$

- On construit finalement la chaine de Markov $(\tilde{X}_n)_{n\in\mathbb{N}}$:
 - on tire la variable initiale \tilde{X}_0 de façon arbitraire.

– pour tout $n \geq 1$, on construit \tilde{X}_n à partir de \tilde{X}_{n-1} et d'une variable aléatoire U_n uniforme sur [0,1] indépendante de (X_n, \tilde{X}_{n-1}) comme :

$$\tilde{X}_n := X_n \, \mathbf{1}_{U_n \le R_{X_n \tilde{X}_{n-1}}} + \tilde{X}_{n-1} \, \mathbf{1}_{U_n > R_{X_n \tilde{X}_{n-1}}}$$

- (a) Expliquez la construction de \tilde{X}_n comme si vous vouliez l'implémenter dans un script, puis donner la matrice de transition P de $(\tilde{X}_n)_{n\in\mathbb{N}}$.
- (b) Montrer que, pour tout $f: E \to \mathbb{R}$, on a :

$$\frac{1}{n} \sum_{k=1}^{n} f(\tilde{X}_k) \xrightarrow[n \to \infty]{p.s} \int f \, d\pi.$$

(c) Est-il important que π soit une mesure de probabilité ?

Exercice 13 (Marche aléatoire simple sur \mathbb{Z}^d). On considère $(X_n)_{n\in\mathbb{N}}$ la marche aléatoire simple sur \mathbb{Z}^d définie par $X_0 := 0$ et $X_n = X_{n-1} + \xi_n$ pour $n \ge 1$, où $(\xi_n)_{n \ge 1}$ sont i.i.d sur \mathbb{Z}^d telles que $\mathbb{P}(\xi_n = \pm e_j) = 1/2d$ avec e_1, \ldots, e_d la base canonique.

(a) Montrer que si X est une variable aléatoire à valeur dans \mathbb{Z}^d alors

$$\mathbb{P}(X=0) := \frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} \varphi_X(t) \, dt.$$

(b) Montrer que la fonction caractéristique de ξ_n est donnée par

$$\varphi(t) = \frac{1}{d} \sum_{j=1}^{d} \cos(t_j)$$

et en déduire une expression pour $(P^n)_{00}$ pour tout $n \ge 1$.

(c) Montrer que pour tout 0 < z < 1, on a :

$$\sum_{n=0}^{\infty} z^n (P^n)_{00} = \frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} \frac{1}{1 - z\varphi(t)} \, \mathrm{d}t =: I(z).$$

- (d) Montrer que $(X_n)_{n\in\mathbb{N}}$ est récurrente $\Leftrightarrow \lim_{z\to 1} I(z) = \infty$.
- (e) On pose $F(z,t) := \frac{1}{1-z\varphi(t)}$. Montrer que :
 - pour tout c > 0, $(z,t) \mapsto F(z,t)$ est bornée sur $]0,1] \times \{t \in \mathbb{Z}^d : ||t|| \ge c\}$.
 - donner le comportement asymptotique de F(1,t) quand $t \to 0$.
 - si $\|t\|$ est assez petit, l'application $z\mapsto F(z,t)$ est croissante.
- (f) Montrer que $(X_n)_{n\in\mathbb{N}}$ est récurrente si d=1 ou 2 mais transitoire pour $d\geq 3$.