Testing Hypotheses under Lehmann Alternatives with Polya Tree Priors Doctoral Dissertation Proposal

Lei Huang Under Supervision of Dr Malay Ghosh University of Florida

Dec. 5th, 2012

Outline of Presentation

- **1** INTRODUCTION
- 2 LITERATURE REVIEW
 - Review of Testing Lehmann Alternatives
 - Review of Estimation in Cox Proportion Hazards Model
 - Introduction to Polya Tree Processes
- CURRENT RESULTS
 - Testing Lehmann Alternatives with Polya Tree Processes Priors
 - Two-sample Case
 - One-sample Case
- 4 FUTURE WORK

Lehmann Alternatives

Definition:

Suppose
$$X_1, \dots, X_{n_1} \sim F(x)$$
 and $Y_1, \dots, Y_{n_2} \sim H(x)$.

$$H_0: F = H \text{ vs } H_1: H(x) = 1 - \{1 - F(x)\}^{\alpha} = 1 - S^{\alpha}(x)$$

where S(x) = 1 - F(x) is the survival function, $\alpha > 0$ and $\alpha \neq 1$.

Motivations:

- Mathematical simplicity.
- When α is an integer, H(x) is the distribution function of the minimum of α independent random variables each having distribution function *F*.
- H₁ introduces a very natural stochastic ordering of F and Н.
- Related to Cox proportional hazards model

Cox Proportional Hazards Model

Cox proportional hazards model introduced by Cox (1972):

$$h(t \mid x) = h_0(t) exp(x^T \beta)$$
 (1)

where $h_0(t)$ is the baseline hazard function and β is a vector of coefficients. It follows that the survival function is

$$S(t \mid x) = [S_0(t)]^{exp(x^T\beta)}$$

 β is generally estimated by maximizing partial likelihood function

$$PL(\beta) = \prod_{k=1; d_k=1}^{n} \frac{exp(x_k^T \beta)}{\sum_{j=k}^{n} exp(x_j^T \beta)}$$
(2)

where d_k is censoring indicator.

Introduction to Polya Tree Processes

Lehmann (1953)

Suppose the ranks of Y's in the combined sample are denoted by e_1, \dots, e_{n_2} . The complete set of rank is determined by the ranks of Y's alone. Lehmann (1953) derived

$$P(E_{1} = e_{1}, \cdots, E_{n_{2}} = e_{n_{2}})$$

$$= \frac{\alpha^{n_{2}}}{\binom{n_{1} + n_{2}}{n_{1}}} \prod_{j=1}^{n_{2}} \frac{\Gamma(e_{j} + j\alpha - j)}{\Gamma(e_{j})} \frac{\Gamma(e_{j+1})}{\Gamma(e_{j+1} + j\alpha - j)}$$
(3)

Using Equation (3), one can compute the power of various rank tests against the alternatives.

Savage (1956)

Savage (1956) considered a different but more general question:

$$H_L: F(x) = F_0(x)^{\alpha_1}$$
 and $H(x) = F_0(x)^{\alpha_2}$

where $\alpha_2 > \alpha_1 > 0$ and $F_0(x)$ is a continuous cumulative distribution function

Put these two samples together and denote it by $V_1, \dots, V_{n_1+n_2}$. Assume:

- WLOG, assume that V_k 's are ordered.
- There are no ties.

Then,
$$V_1 < V_2 < \cdots < V_{n_1+n_2}$$
.

Savage (1956)

Define indicator functions Z_k , $k = 1, \dots, n_1 + n_2$, as

$$Z_{k} = \begin{cases} 0, & \text{if } V_{k} \in \mathfrak{X} = \{X_{1}, \dots, X_{n_{1}}\} \\ 1, & \text{if } V_{k} \in \mathfrak{Y} = \{Y_{1}, \dots, Y_{n_{2}}\} \end{cases}$$
(4)

Under H_L , the probability of a rank order $z_1, \dots, z_{n_1+n_2}$ is given by

Prob. =
$$\frac{n_1! n_2! \alpha_1^{n_1} \alpha_2^{n_2}}{\prod_{i=1}^{n_1+n_2} \left(\sum_{j=1}^{i} \left[(1-z_j)\alpha_1 + z_j \alpha_2 \right] \right)}.$$

Introduction to Polva Tree Processes

Other Literature

- Davies (1971) showed asymptotic equivalence of the approaches of Lehmann (1953) and Savage (1956).
- Brooks (1974) assigned an F distribution prior to α and conducted a Bayesian test.
- Miura and Tsukahara (1993) discussed the estimation problem in one-sample generalized Lehmann alternative model

Summary:

The above-mentioned tests are based only on the ranks which remain invariant under one-to-one transformation. This considers only the positions, but not the magnitudes of differences of order statistics.

Goal: Establish a testing method such that not only the ranks, but also the spacings of order statistics are taken into account

Cox proportional hazards model

Bayesian nonparametric methods:

- Kalbfleisch (1978) Gamma process
- Hjort (1990) Beta process
- Muliere and Walker (1997) Polya tree process (without covariates)
- Hanson (2006) Mixture of finite Polya tree model
- Hanson and Jara (2012) Mixture of Polya tree process

What is Polya tree process?

Notations:

- Let $E = \{0, 1\}$, $E^0 = \emptyset$. Let $E^m = E \times E \times E \cdots \times E$ be the m-fold product and $E^* = \bigcup_{0}^{\infty} E^m$.
- let Ω be a separable measurable space. Define a separating binary tree of partition of Ω , $\Pi = \{\pi_m, m = 0, 1, 2, ...\}$, such that :
 - $\pi_0 = \Omega$.
 - $\pi_0, \pi_1, ...$ form a sequence of partitions such that $\bigcup_{0}^{\infty} \pi_m$ generates the measurable sets.
 - Every $B \in \pi_{m+1}$ is obtained by splitting some $B' \in \pi_m$ into two sets. Degenerate splits are permitted, i.e. some $B \in \pi_m$ can be split into $B \cup \emptyset$.

What is Polya tree process?

Definition: For each m, $\pi_m = \{B_{\vec{\epsilon_m}} : \vec{\epsilon_m} = \epsilon_1, ..., \epsilon_m \in E^m\}$ is a partition of Ω such that for all $\vec{\epsilon_m} \in E^*$, $B_{\vec{\epsilon_m},0}$, $B_{\vec{\epsilon_m},1}$ is a partition of $B_{\vec{\epsilon_m}}$. Let $A = \{a_{\vec{\epsilon_m}} : \vec{\epsilon_m} \in E^*\}$ be a set of nonnegative real numbers and $\mathfrak{y} = \{W_{\vec{\epsilon_m}} : \vec{\epsilon_m} \in E^*\}$ be a collection of random variables. Then we say a random probability measure P on Ω have a Polya tree distribution with parameter (Π, A) , written $P \sim PT(\Pi, A)$, if the following hold:

What is Polya tree process?

- **1** all the random variables in $\mathfrak y$ with subscripts ending with 0 are independent, i.e. $W_{\vec{\epsilon_m},0}$, for all $\vec{\epsilon_m} \in E^*$, are independent; $W_{\vec{\epsilon_m},1} = 1 W_{\vec{\epsilon_m},0}$
- ② for every $\epsilon_m \in E^*$, $W_{\epsilon_m,0} \sim Beta(a_{\epsilon_m,0}, a_{\epsilon_m,1})$;
- **3** for every m=1,2,... and every ϵ_m ∈ E^* ,

$$P(B_{\epsilon_1,\dots,\epsilon_m}) = \left(\prod_{j=1;\epsilon_j=0}^m W_{\epsilon_1,\dots,\epsilon_j}\right) \prod_{j=1;\epsilon_j=1}^m \left(1 - W_{\epsilon_1,\dots,\epsilon_{j-1},0}\right)$$
$$= \prod_{i=1}^m W_{\epsilon_1,\dots,\epsilon_j}$$
(5)

Properties of Polya tree processes

Some established properties of Polya tree process that we need to use by Lavein (1992 & 1994), Mauldin et al. (1992) and Ghosh and Ramamoorthi (2003):

- Conjugacy: update when observe X = x
- Continuity: Polya trees can assign probability 1 to the set of continuous distributions. A sufficient condition is, for example, $a_{\vec{\epsilon_m}} = m^2$.

Properties of Polya tree processes

• Density: a Polya tree with partitions $\{B_{\vec{\epsilon m}} : \vec{\epsilon_m} \in E^*\}$ and parameters A has predictive density at $x \in B_{\vec{\epsilon m}}$ is

$$f(x) = \lim_{m \to +\infty} \frac{Pr(B_{\vec{\epsilon_m}})}{\lambda(B_{\vec{\epsilon_m}})}$$

$$= \lim_{m \to +\infty} \frac{\prod_{i=1}^{m} \frac{a_{\epsilon_1, \dots, \epsilon_j}}{a_{\epsilon_1, \dots, \epsilon_{j-1}, 0} + a_{\epsilon_1, \dots, \epsilon_{j-1}, 1}}}{\lambda(B_{\vec{\epsilon_m}})}$$
(6)

where $\lambda(\cdot)$ is the Lebesgue measure.

Properties of Polya tree processes

- Centering: A Polya tree can be constructed centering at an arbitrary distribution. Suppose $\Omega = \mathbb{R}$, and any pre-specified distribution function G. Two ways to do this:
 - M1 let the partition be such that the elements of π_m are taken as the intervals $[G^{-1}(k/2^m), G^{-1}((k+1)/2^m))$ for $k=0,1,...,2^m-1$, with the obvious interpretation for $G^{-1}(0)$ and $G^{-1}(1)$, and $a_{\vec{\epsilon_m}}=m^2$.
 - M2 let the partition be data-dependent, i.e. $B_1 = [x_1, +\infty)$, $B_{11} = [x_2, +\infty)$,..., $B_{\underbrace{1, ..., 1}_{n}} = [x_n, +\infty)$. Parameters $a_{\vec{\epsilon_m}}$

need to satisfy

$$\frac{a_{\epsilon_1,\ldots,\epsilon_{j-1},0}}{a_{\epsilon_1,\ldots,\epsilon_{j-1},1}} = \frac{G(B_{\epsilon_1,\ldots,\epsilon_{j-1},0})}{G(B_{\epsilon_1,\ldots,\epsilon_{j-1},1})}$$

and $a_{\epsilon m}$ should grow quickly enough to ensure the continuity property.

Bayes Factor

Setup:

- $X_1, \dots, X_{n_1} \sim F(x)$ and $Y_1, \dots, Y_{n_2} \sim H(x)$.
- Suppose $V_1 < V_2 < \cdots < V_{n_1+n_2}$ is the order statistic of combined sample when no ties occur. Indicator functions Z_k , $k = 1, \cdots, n_1 + n_2$ are defined as usual.
- Let $d_1, \dots, d_{n_1+n_2}$ be the censoring indicators corresponding to $V_1, \dots, V_{n_1+n_2}$.

By definition, the Bayes factor is

$$BF_{01} = \frac{posterior \quad odds}{prior \quad odds} = \frac{\frac{P(H_0|V_1,...,V_{n_1+n_2})}{P(H_1|V_1,...,V_{n_1+n_2})}}{\frac{\pi(H_0)}{\pi(H_1)}}$$

Let $\pi(H_0) = p_0 = 1 - \pi(H_1)$, where $0 < p_0 < 1$. Suppose the joint pdf of $V_1, ..., V_{n_1+n_2}$ is f_0 under H_0 and f_1 under H_1 .

Bayes Factor— Two-sample case

Then by simple calculation,

$$BF_{01} = \frac{\int f_0(v_1, ..., v_{n_1 + n_2} \mid P) dPT(P)}{\int f_1(v_1, ..., v_{n_1 + n_2} \mid P) dPT(P)}$$
(7)

Thus the Bayes factor is given by the ratio of the marginal distributions of $V_1, ..., V_{n_1+n_2}$ under H_0 to that under H_1 .

Theorem 1:

Suppose that a Polya tree prior as described is applied to F(x) with partitions $B_1 = [v_1, +\infty)$,

$$B_{11} = [v_2, +\infty), ..., B_{\underbrace{1, ..., 1}_{m+n}} = [v_{n_1+n_2}, +\infty), \text{ and } G \text{ is a strictly}$$

increasing baseline measure (with respect to Polya tree). Then the Bayes factor of the test is as follows

Properties of Bayes Factor— Two-sample case

• For fixed t_i , BF_{01} is a decreasing function of r_i ($\alpha > 1$).

small
$$BF_{01} \leftarrow large \ r_i \rightarrow data \ clustered \rightarrow H_1$$

- Monotonicity on t_i:
 - BF_{01} increase when $\alpha > 1$, then F(x) < H(x). More likely to observe large t_i 's under H_0 .
 - BF_{01} decrease when $\alpha < 1$, then F(x) > H(x). More likely to observe large t_i 's under H_1 .

Summary:

Both the rank order statistics and the spacings of order statistics are considered in the test.

Effects of α

- When $\alpha \to \infty$ ($\alpha > 1$), $BF_{01} \to \infty$ if there exists at least one uncencored observations in sample \mathfrak{X} and such that t_{i+1} is nonzero.
- Similar results when $\alpha \to 0^+$ and $\alpha < 1$.

An extreme case: when all uncensored observations in sample $\mathfrak Y$ are clustered closely and they are uniformly smaller than any observations in sample $\mathfrak X$.

$$\begin{cases}
 t_1 = n_2, \ t_2 = n_2 - 1, \dots, t_{n_2} = 1 \\
 t_i = 0, \ \text{for } i = n_2 + 1, \dots, n_1 + n_2
\end{cases}$$
(8)

 $BF_{01} \rightarrow 0$

As $\alpha \to \infty$, H degenerates at the infimum of the support of F.

INTRODUCTION

Effects of spacings

Suppose $V_{k_0-1} \approx V_{k_0}$ for some $k_0 \in \{2, \dots, n_1 + n_2\}$ and they come from different samples. Switching the positions of V_{k_0-1} and V_{k_0} results in

$$BF_{01}^{new} = \frac{\sigma_{k_0} + n_1 + n_2 + 1 - k_0 + (\alpha - 1)t_{k_0}^{new}}{\sigma_{k_0} + n_1 + n_2 + 1 - k_0 + (\alpha - 1)t_{k_0}^{old}}BF_{01}^{old}$$

$$= (1 \pm \frac{\alpha - 1}{\sigma_{k_0} + n_1 + n_2 + 1 - k_0 + (\alpha - 1)t_{k_0}^{old}})BF_{01}^{old}$$

 $\left| \frac{\alpha-1}{\sigma_{k_0}+n_1+n_2+1-k_0+(\alpha-1)t_{\nu}^{old}} \right|$ is called the *expansion rate*.

Effects of spacings

One can choose suitable parameters to meet his needs:

- When $\sigma_1 = \cdots = \sigma_{n_1+n_2}$, the expansion rate goes up as k_0 increases
 - \Rightarrow the order statistics play a more important role in the tail than in the beginning.
- When σ_{k0} grow fast with k₀, the expansion rate could be a decreasing function of k₀
 - \Rightarrow a test more sensitive in the beginning.
- The expansion rate grows when α increases if $\alpha > 1$ or $\alpha \to 0^+$ if $\alpha < 1$
 - ⇒ the effect of order is enlarged when the distance of the alternative from the null is increased.

Simulations

(b) $\alpha = 0.7$

(c) $\alpha = 1.5$

(d)
$$\alpha = 0.7$$

Real data application

Acute myelogenous leukemia (AML)

Table : Acute Myelogenous Leukemia

Treatment	Survival Time
Maintained	9, 13, 13+, 18, 23, 28+, 31, 34, 45+, 48, 161+
Nonmaintained	5, 8, 12, 16+, 23, 27, 30, 33, 43, 45

Table: Cox proportional hazards model

	coef	exp(coef)	se(coef)	P-value	lower .95	upper .95	
Nonmaintained	-0.9155	0.4003	0.5119	0.0737	0.1468	1.092	

Figure : Leukemia: log(BF) for different α

Strong evidence interval based on Kass and Raftery (1995) criteria: (0.10, 0.75).

Simulations- One-sample Case

(a) Baseline Measure: True(b) Baseline Measure: Esti-Weibull Distribution mated Weibull Distribution

Figure: Log(BF) grows drastically as sample size increases under the null hypothesis

Simulations

Figure: Log(BF) decreases drastically as sample size increases under the alternative hypothesis

Future Work

- Modification for ties
- Comparison to other Bayesian nonparametric estimators
- Fully Bayesian analysis for Cox model
- Reliability analysis and life testing

INTRODUCTION LITERATURE REVIEW CURRENT RESULTS FUTURE WORK

THANK YOU!

