WHAT IS CLAIMED IS:

1	1. A method for electrically stressing through a specified voltage at least one
2	semiconductor chip on a wafer for controlled contactless burn-in, voltage screen and
3	reliability evaluation of product wafers, said method comprising:
4	applying said voltage to said at least one chip for the probing thereof in
5	the absence of physically contacting the chip surface; and
6	
7	magnetically inducing said voltage to said at least one chip through the
8	interposition of a mask onto which the voltage is induced and thereafter
9	conducted to electrical contacts on said wafer.

- 1 2. A method as claimed in Claim 1, wherein said applied voltage produces
- 2 specified voltage bias conditions by inducing the voltage for a circuit utilizing a time
- 3 varying magnetic field which is fixed with respect to said circuit.
- 1 3. A method as claimed in Claim 2, wherein an electrical field which is
- 2 represented by said induced voltage is based on Faraday's law setting forth that said
- 3 voltage which is induced by a time rate of change of a magnetic field for said circuit
- 4 which is fixed with respect to said magnetic field.
- 1 4. A method as claimed in Claim 1, wherein said induced voltage is obtained at a
- 2 top layer of said mask which is positioned on said wafer; and connections are made to
- 3 said at least one chip by said mask for effectuating said burn-in without interference
- 4 with the normal operation of said at least one semiconductor chip.
- 1 5. A method as claimed in Claim 2, wherein said circuit comprises a loop
- defining an area on a wafer, said mask being positioned on said wafer so as to enclose
- 3 said area and having electrical contacts for an induced voltage through said time
- 4 varying magnetic field within said enclosed area.

- 1 6. A method as claimed in Claim 5, wherein said loop comprises a metallic line
- 2 on said wafer forming an open circuit having electrical contact points provided at open
- 3 ends of said circuit for producing said induced voltage.
- 7. A method as claimed in Claim 6, wherein said loop is of a rectangular
- 2 configuration to define a generally rectangular area on said wafer.
- 1 8. A method as claimed in Claim 6, wherein said metallic line is constituted of
- 2 copper.
- 1 9. A method as claimed in Claim 6, wherein said metallic line is constituted of
- 2 aluminum.
- 1 10. A method as clamed in Claim 2, wherein said circuit comprises a circular
- 2 magnetic core having an air gap for receiving said wafer with said at least one chip
- and said mask positioned thereon; and an electrical coil for energizing said magnetic
- 4 core to produce said specified voltage bias conditions.
- 1 11. A method as claimed in Claim 10, wherein said voltage is supplied to said
- 2 electrical energizing coil from a radio frequency voltage source.
- 1 12. A method as claimed in Claim 11, wherein said circular magnetic core is
- 2 constituted of a Permalloy powder having a composition 2% by weight of Mo, 81% by
- 3 weight of *Ni* with the remainder being iron and impurities.
- 1 13. A method as claimed in Claim 10, wherein said air gap receiving said wafer
- 2 and mask is adapted to provide for the burn-in of differently sized wafers.
- 1 14. A method as claimed in Claim 10, wherein said electrical energizing coil
- 2 consists of an isolated electrical wire comprised of copper wire strands.

- 1 15. A method as claimed in Claim 10, wherein said wafer and mask are retained in
- 2 said air gap by a wafer holder consisting of a dielectric material.
- 1 16. A method as claimed in Claim 10, wherein said magnetic core includes a
- 2 plurality of said circular magnetic cores interconnected by arms, and each said core
- 3 having an air gap for receiving respectively a wafer and covering mask so as to
- 4 facilitate the simultaneous controlled burn-in of a plurality of said wafers.
- 1 17. A method as claimed in Claim 2, wherein a rectangular core of non-magnetic
- 2 material has electrical wire coils wound thereabout, said wire coils being connected to
- decal masks on a plurality of wafers positioned centrally on said core, each said decal
- 4 mask being provided to conduct a generated voltage to a chip under said mask.
- 1 18. A method as claimed in Claim 17, wherein each said coil is conducted to a
- 2 time varying voltage source so as to generate a magnetic field perpendicular to the
- 3 surface of each said wafer in the center of said non-magnetic core.
- 1 19. A method as claimed in Clam 18, wherein electrical wires extend from each
- 2 said mask to a panel for the direct measurements and verification of the direct voltages
- 3 present on each of said wafer.
- 1 20. A method as claimed in Claim 17, wherein said non-magnetic core is
- 2 constituted of wood.
- 1 21. A method as claimed in Claim 17, wherein at least nine wafers are positioned
- 2 on each core for simultaneous burn-in thereof.
- 1 22. A method as claimed in Claim 1, wherein said mask comprises an interposer
- 2 forming a decal on said wafer surface so as to protect the surface of said wafer from

3	direct contact with a probe during burn-in and voltage screening through electrical
4	stressing.
1	23. A method as claimed in Claim 22, wherein said method conducts the generated
	,
2	burn-in voltage to said at least one chip when mountable on P+ silicon substrates.
1	24. A method as claimed in Claim 22, wherein said method conducts the generated
2	burn-in voltage to said at least one chip when mountable on P- silicon substrates.
1	25. A method as claimed in Claim 22, wherein said interposer is formed for
2	mounting the wafer on either P+ silicon or P- silicon substrates by the steps of:
3	fixing a polyimide film to a frame to fully cover said wafer;
4	
5	depositing at least on layer of a metallic film onto the polyimide film;
6	patterning said metallic film to provide wiring lines extending to the
7	edge of said wafer to facilitate measuring the induced voltage;
8	
9	removing exposed metallic layer material at the bottom of the vias and
10	depositing a further wiring line layer forming a ring wire loop on said
11	wafer which is connected to said first wiring lines to facilitate applying
12	an electrical bias to each said ring wire loop;
13	
14	placing lead/tin bumps into each of said vias and connecting said
15	bumps to said further wiring lines; and
16	
17	adjusting bump heights whereby the pattern of the bumps interiorly of
18	the decal mask is a mirror-image of wire bond pads or C4 connects on
19	the wafer chip which is to be burned-in.

1	26. A system for electrically stressing through a specified voltage at least one
2	semiconductor chip on a wafer for controlled contactless burn-in, voltage screen and
3	reliability evaluation of product wafers, said system comprising:
4	an arrangement for applying said voltage to said at least one chip for
5	the probing thereof in the absence of physically contacting the chip
6	surface; and
7	
8	magnetically inducing said voltage to said at least one chip through the
9	interposition of a mask onto which the voltage is induced and thereafter
10	conducted to electrical contacts on said wafer.
1	27. A system as claimed in Claim 26, wherein said applied voltage produces
2	specified voltage bias conditions by inducing the voltage for a circuit utilizing a time
3	varying magnetic field which is fixed with respect to said circuit.
1	28. A system as claimed in Claim 27, wherein an electrical field which is
2	represented by said induced voltage is based on Faraday's law setting forth that said
3	voltage which is induced by a time rate of change of a magnetic field for said circuit
4	which is fixed with respect to said magnetic field.
1	29. A system as claimed in Claim 26, wherein said induced voltage is obtained at a
2	Ann 1 C 11 1 11 1 1 1 1 1 1 1 1 1 1 1

- 2 top layer of said mask which is positioned on said wafer; and connections are made to
- 3 said at least one chip by said mask for effectuating said burn-in without interference
- 4 with the normal operation of said at least one semiconductor chip.
- 1 30. A system as claimed in Claim 27, wherein said circuit comprises a loop
- 2 defining an area on a wafer, said mask being positioned on said wafer so as to enclose
- 3 said area and having electrical contacts for an induced voltage through said time
- 4 varying magnetic field within said enclosed area.

- 1 31. A system as claimed in Claim 30, wherein said loop comprises a metallic line
- 2 on said wafer forming an open circuit having electrical contact points provided at open
- 3 ends of said circuit for producing said induced voltage.
- 1 32. A system as claimed in Claim 31, wherein said loop is of a rectangular
- 2 configuration to define a generally rectangular area on said wafer.
- 1 33. A system as claimed in Claim 31, wherein said metallic line is constituted of
- 2 copper.
- 1 34. A system as claimed in Claim 31, wherein said metallic line is constituted of
- 2 aluminum.
- 1 35. A system as clamed in Claim 27, wherein said circuit comprises a circular
- 2 magnetic core having an air gap for receiving said wafer with said at least one chip
- 3 and said mask positioned thereon; and an electrical coil for energizing said magnetic
- 4 core to produce said specified voltage bias conditions.
- 1 36. A system as claimed in Claim 35, wherein said voltage is supplied to said
- 2 electrical energizing coil from a radio frequency voltage source.
- 1 37. A system as claimed in Claim 36, wherein said circular magnetic core is
- 2 constituted of a Permalloy powder having a composition 2% by weight of Mo, 81% by
- 3 weight of Ni with the remainder being iron and impurities.
- 1 38. A system as claimed in Claim 35, wherein said air gap receiving said wafer
- 2 and mask is adapted to provide for the burn-in of differently sized wafers.
- 1 39. A system as claimed in Claim 35, wherein said electrical energizing coil
- 2 consists of an isolated electrical wire comprised of copper wire strands.

- 1 40. A system as claimed in Claim 35, wherein said wafer and mask are retained in
- 2 said air gap by a wafer holder consisting of a dielectric material.
- 1 41. A system as claimed in Claim 35, wherein said magnetic core includes a
- 2 plurality of said circular magnetic cores interconnected by arms, and each said core
- 3 having an air gap for receiving respectively a wafer and covering mask so as to
- 4 facilitate the simultaneous controlled burn-in of a plurality of said wafers.
- 1 42. A system as claimed in Claim 27, wherein a rectangular core of non-magnetic
- 2 material has electrical wire coils wound thereabout, said wire coils being connected to
- 3 decal masks on a plurality of wafers positioned centrally on said core, each said decal
- 4 mask being provided to conduct a generated voltage to a chip under said mask.
- 1 43. A system as claimed in Claim 42, wherein each said coil is conducted to a time
- 2 varying voltage source so as to generate a magnetic field perpendicular to the surface
- 3 of each said wafer in the center of said non-magnetic core.
- 1 44. A system as claimed in Clam 43, wherein electrical wires extend from each
- 2 said mask to a panel for the direct measurements and verification of the direct voltages
- 3 present on each of said wafer.
- 1 45. A system as claimed in Claim 42, wherein said non-magnetic core is
- 2 constituted of wood.
- 1 46. A system as claimed in Claim 42, wherein at least nine wafers are positioned
- 2 on each core for simultaneous burn-in thereof.
- 1 47. A system as claimed in Claim 26, wherein said mask comprises an interposer
- 2 forming a decal on said wafer surface so as to protect the surface of said wafer from

3	direct contact with a probe during burn-in and voltage screening through electrical
4	stressing.
1	48. A system as claimed in Claim 47, wherein said method conducts the generated
2	burn-in voltage to said at least one chip when mountable on P+ silicon substrates.
1	49. A system as claimed in Claim 47, wherein said method conducts the generated
2	burn-in voltage to said at least one chip when mountable on P- silicon substrates.
1	50. A system as claimed in Claim 47, wherein said interposer is formed for
2	mounting the wafer on either P+ silicon or P- silicon substrates by means of:
3	fixing a polyimide film to a frame to fully cover said wafer;
4	mang a polyminae inin to a frame to fully cover said water,
5	depositing at least on layer of a metallic film onto the polyimide film;
6	patterning said metallic film to provide wiring lines extending to the
7	edge of said wafer to facilitate measuring the induced voltage;
8	
9	removing exposed metallic layer material at the bottom of the vias and
10	depositing a further wiring line layer forming a ring wire loop on said
11	wafer which is connected to said first wiring lines to facilitate applying
12	an electrical bias to each said ring wire loop;
13	
14	placing lead/tin bumps into each of said vias and connecting said
15	bumps to said further wiring lines; and
16	
17	adjusting bump heights whereby the pattern of the bumps interiorly of
18	the decal mask is a mirror-image of wire bond pads or C4 connects on
19	the wafer chip which is to be burned-in.