• For our example:

Participant	Study Time (X)	Exam Score (Y)	Mean X	Mean Y	X - Mean X	Y - Mean Y	(X - Mean X) * (Y - Mean Y)
1	14	5	14.6	6.4	-0.6	-1.4	0.84
2	15	7	14.6	6.4	0.4	0.6	0.24
3	16	7	14.6	6.4	1.4	0.6	0.84
4	13	5	14.6	6.4	-1.6	-0.4	0.64
5	15	7	14.6	6.4	0.4	0.6	0.24

 $\Sigma = 2.8$

Cov
$$(x,y) = 2.8/N-1 = 2.8/4 = 0.7$$

 Now, one problem with covariance as we've calculated it is that the score we end up with depends on the measurement scales associated with our variables.

In other words, the covariance value isn't standardised.

 We can divide any value by the standard deviation and that will give us the distance from the mean in standard deviation units....