Chapter 1 - Sets

Joseph Le

March 29, 2025

1 Introduction to Sets

A set is a collection of elements, elements can be anything (numbers, points, functions, etc.). An **infinite** has an infinite number of elements, otherwise it is a **finite** set. Two sets are **equal** if they contain the same elements.

An element a is represented as being in a set A by $a \in A$ and an element b is **not** in A is shown as $b \notin A$

The set of **natural numbers**, the set of **integers**, and the **rational numbers** have reserved symbols

$$\mathbb{N}=\{1,2,3,4,5,\ldots\}$$

$$\mathbb{Z}=\{0,\pm 1,\pm 2,\pm 3,\ldots\}$$

$$\mathbb{Q}=\{x:x=\frac{m}{n},\text{ where }m,n\in\mathbb{Z}\text{ and }n\neq 0\}$$

as well as the set of **real numbers**, \mathbb{R} .

For finite sets, the **cardinality** or **size** is the number of elements and is denoted as |A|, not to be confused with the absolute value of a number, this notation is used only for sets.

The **empty set** is unique and is a set with no elements usually denoted as \emptyset , \emptyset , or $\{\}$ and $|\emptyset| = 0$. A set containing the empty set is not empty as $M = \emptyset$ contains the empty set, and thus has a cardinality of 1. An analogy often used is thinking of sets as boxes containing things, these things can be other boxes, whether empty or not.

Set-builder notation is a special type of notation used to describe sets by giving its elements rules. Consider the even integers, it can be written as $E = \{0, \pm 2, \pm 4, \pm 6, ...\} = \{2n : n \in \mathbb{Z}\} = \{n : n \text{ is an even integer}\} = \{n : n = 2k, k \in \mathbb{Z}\}$. The general format is $X = \{\text{expression} : \text{rule}\}$

Example 1. Examples of set-builder notation

- 1. $\{n : n \text{ is a prime number}\}$
- 2. $\{n^2 : n \in \mathbb{Z}\} = \{0, 1, 4, 9, 16, \dots\}$
- 3. $\{x \ in\mathbb{R} : x^2 2 = 0\} = \{\pm\sqrt{2}\}\$

Example 2. Describe the set $A = \{7a + 3b : a, b \in \mathbb{Z}\}$

Solution: A contains all numbers of the form 7a + 3b where a and b are integers, for example $(a,b) = (0,0) \to 0$, etc. It can be determined that A only contains integers, but which ones? Suppose $n \in \mathbb{Z}$, and n = 7n + 3(-2n). Here a = n and b = -2n, therefore $n \in A$, thus every integer is in A and $A = \mathbb{Z}$.

Intervals on the number line are sets as well, for the real number line, these sets are infinite in size. These sets are given as any two numbers $a, b \in \mathbb{R}$ with a < b.

Example. These are examples of intervals

- Closed interval: $[a, b] = \{x \in \mathbb{R} : a \le x \le b\}$
- Open interval: $(a, b) = \{x \in \mathbb{R} : a < x < b\}$
- Half-open interval:

$$- (a, b] = \{ x \in \mathbb{R} : a < x \le b \}$$

$$- [a, b) = \{x \in \mathbb{R} : a < x < b\}$$

• Infinite interval:

$$- (a, \infty) = \{ x \in \mathbb{R} : a < x \}$$

$$- [a, \infty) = \{x \in \mathbb{R} : a \le x\}$$

$$-(-\infty, b) = \{x \in \mathbb{R} : x < b\}$$

$$-(-\infty, b] = \{x \in \mathbb{R} : x \le b\}$$

Exercises

A. Write each of the following sets by listing their elements between braces

1.
$$\{5x-1: x \in \mathbb{Z}\} = \{-16, -11, -6, -1, 4, 9, 15\}$$

3.
$$\{x \in \mathbb{Z} : -2 \le x < 7\} = \{-2, -1, 0, 1, 2, 3, 4, 5, 6\}$$

5.
$$\{x \in \mathbb{R} : x^2 = 3\} = \{\pm\sqrt{3}\}\$$

7.
$$\{x \in \mathbb{R} : x^2 + 5x = -6\} = \{2, 3\}$$

9.
$$\{x \in \mathbb{R} : \sin \pi x = 0\} = \{0, \pm 2, \pm 3, \pm 4, \dots\} = \mathbb{Z}$$

11.
$$\{x \in \mathbb{Z} : |x| < 5\} = \{0, \pm 1, \pm 2, \pm 3, \pm 4\}$$

13.
$$\{x \in \mathbb{Z} : |6x| < 5\} = \{0\}$$

15.
$$\{5a + 2b : a, b \in \mathbb{Z}\} = \mathbb{Z}$$

Proof. If a and b are integers, then 5a + 2b is also an integer since it is simple multiplication and addition. Then if n = 5a + 2b = 5n + 2(-2n) = 5n - 4n = n where a = n and b = -2n, then 5a + 2b can create any integer, thus the set is equal to the set of all integers, \mathbb{Z} . (not sure if this is even a valid proof, just copied the proof from example 1.2)

B. Write each of the following sets in set-builder notation

Figure 1: Exercises 1.1D

- 17. $\{2, 4, 8, 16, 13, 64, \dots\} = \{2^x : x \in \mathbb{N}\}\$
- 19. $\{\ldots, -6, -3, 0, 3, 6, 9, 12, \ldots\} = \{3x : x \in \mathbb{Z}\}$
- 21. $\{0, 1, 4, 9, 16, 25, 36, \dots\} = \{x^2 : x \in \mathbb{Z}\}\$
- 23. ${3,4,5,6,7,8} = {x \in N : 2 < x < 9}$
- 25. $\{\ldots, \frac{1}{8}, \frac{1}{4}, \frac{1}{2}, 1, 2, 4, 8, \ldots\} = \{2^a : a \in \mathbb{Z}\}$
- 27. $\{\ldots, -\pi, -\frac{\pi}{2}, 0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi, \ldots\} = \{\frac{a\pi}{2} : a \in \mathbb{Z}\}$
- C. Find the following cardinalities
 - 29. $|\{\{1\}, \{2, \{3, 4\}\}, \emptyset\}| = 3$
 - 31. $|\{\{\{1\}, \{2, \{3, 4\}\}\}\emptyset\}\}| = 1$
 - 33. $|\{x \in \mathbb{Z} : |x| < 10\}| = 19$
 - 35. $|\{x \in \mathbb{Z} : x^2 < 10\}| = 7$
 - 37. $|\{x \in \mathbb{N} : x^2 < 0\}| = 0$
- D. Sketch the following sets of points in the x-y plane
 - 39. $\{(x,y): x \in [1,2], y \in [1,2]\}$
 - 41. $\{(x,y): x \in [-1,1], y=1\}$
 - 43. $\{(x,y): |x|=2, y\in[0,1]\}$
 - 45. $\{(x,y): x,y \in \mathbb{R}, x^2 + y^2 = 1\}$
 - 47. $\{(x,y): x,y \in \mathbb{R}, y \ge x^2 1\}$
 - 49. $\{(x, x+k) : x \in \mathbb{R}, k \in \mathbb{Z}\}$, this generates a set of parallel lines with slope m = 1, because $(x, y) = (x, x+k) \to y = x+k$.
 - 51. $\{(x,y) \in \mathbb{R}^2 : (y-x)(y+x) = 0\}$, here, either (y-x) = 0 or (y+x) = 0 or both. The first case gives y = x a line through the origin with slope m = 0, the second case gives y = -x a line through the origin with slope m = -1, and when both are zero, this gives the intersection which is the origin.

2 The Cartesian Product

Given two sets A and B, "multiplying" them results a new set denoted as $A \times B$ and is called the **Cartesian product** of A and B.

Definition 1. An **ordered pair** is a list (x, y) of two elements x and y, enclosed in parentheses and separated by a comma.

For example, $(2,4) \neq (4,2)$ because the order is different even though they contain the same elements. Like sets, the elements don't have to be just numbers.

Definition 2. The **Cartesian product** of two sets A and B is another set, denoted as $A \times B$ defined as $A \times B = \{(a, b) : a \in A, b \in B\}$.

The elements of a Cartesian product are ordered pairs of elements from both sets. For example, if $A = \{k, l, m\}$ and $B = \{q, r\}$, then $A \times B = \{(k, q), (k, r), (l, q), (l, r), (m, q), (m, r)\}$.

Fact 1. If A and B are finite sets, then $|A \times B| = |A| \cdot |B|$.

Example 3.