Probabilistic Modelling of Electronic Health Records

Francisco J. R. Ruiz

Marie Skłodowska-Curie Fellow University of Cambridge & Columbia University

Brussels, 18 June 2019

Complex & Unstructured Datasets

Machine learning problems

- Large unstructured datasets
- ► Goal: Make predictions, identify hidden patterns

Probabilistic Machine Learning

- ► Connect domain knowledge to data
- Uncertainty quantification
- ► Scalable computational tools

Probabilistic Machine Learning

- ▶ Posit generative process with hidden and observed variables
- ▶ Given the data, reverse the process to infer hidden variables
- ▶ Use hidden structure to make predictions, explore the dataset, etc.

Probabilistic Machine Learning

- ▶ Incorporate domain knowledge with interpretable components
- ► Separate assumptions from computation
- ► Facilitate collaboration with domain experts

EHR Data is Challenging to Analyze

EHR Data is Challenging to Analyze

- ► Heterogeneous nature
- Noisy, missing observations
- Longitudinal
- Unobserved variables
- Large-scale datasets
- Observational
- **.**..

Probabilistic Models

Embedding Representations

- ▶ Find latent embedding representations of different data types
 - Medical conditions
 - Neural activity
 - Discrete or continuous data types
- ▶ Use the embeddings in a probabilistic model of heterogeneous data

Word Embeddings

Word embeddings find distributed representations of individual words

(Image from Wang et al., 2018)

Word Embeddings

- Word embeddings are a powerful tool for analyzing language
 - Words are placed in a low-dimensional latent space
 - Distances capture semantic similarity

"she has had progressive difficulties with her breathing since she was admitted to hospital for respiratory failure"

p(breathing | context)

Exponential Family Embeddings

- ► Can we find distributed features of other types of data?
 - Medical conditions
 - Neural activity
 - Discrete or continuous data types

Goals:

- Capture data-to-data interactions
- Improve the predictions of matrix factorization
- Obtain features that are useful for downstream analyses

Exponential Family Embeddings

- ► Main idea: Distill the components of word embeddings
- ▶ Applications: Condition embeddings, neuron embeddings, ...
- ► Tools: Exponential families & Generalised linear models

```
Pneumonia due to Pseudomonas (4821)
Pneumonia due to Klebsiella pneumoniae (4820)
Pneumonia due to other gram-negative bacteria (48283)

Attention to tracheostomy (V550)

Chronic respiratory failure (51883)

Dependence on respirator, status (V4611)

Tracheostomy status (V440)
```

Exponential Family Embeddings

ightharpoonup Observations x_i :

DOMAIN	INDEX	VALUE
Language Medical conditions Neuroscience	position in text i condition and patient (c, p) neuron and time (n, t)	word indicator condition present activity level

Exponential Family Embeddings: Model Description

- ► Two latent vectors per data index (embedding, context)
- ▶ Model each data point conditioned on its context
- ▶ The latent variables interact in the conditional

Exponential Family Embeddings: Model Description

► Three ingredients: context, conditional exponential family, embedding structure

Exponential Family Embeddings: Context

- ▶ Each data point *i* has a *context* C_i , a set of indices
- ▶ The conditional of x_i depends on its context C_i

Exponential Family Embeddings: Context

DOMAIN	DATA POINT	CONTEXT
Language	word	surrounding words
Medical conditions	condition presence	other conditions of patient
Neuroscience	neuron activity	surrounding neurons

Exponential Family Embeddings: Exponential Family

▶ Use exponential families for the conditional of each data point,

$$p(x_i | \mathbf{x}_{C_i}) = \text{ExpFam}(\eta_i(\mathbf{x}_{C_i}), t(x_i))$$

▶ The natural parameter combines the embedding and context vectors,

$$\eta_i(\mathbf{x}_{C_i}) = f_i \left(\rho[i]^\top \sum_{j \in C_i} \alpha[j] x_j \right)$$

- $f_i(\cdot)$: Link function (identity, log, ...)

Exponential Family Embeddings: Embedding Structure

- ▶ The embedding structure determines how parameters are shared
- $ho[i] = \rho[j]$ fror i = (pneumonia, p) and j = (pneumonia, p')

Exponential Family Embeddings: Objective Function

- ▶ Model each datapoint conditioned on its context
- Combine these terms in a pseudolikelihood

$$\mathcal{L}(\rho,\alpha) = \sum_{i} \left(\eta_{i}^{\top} t(x_{i}) - a(\eta_{i}) \right) + \mathcal{L}^{(\text{reg})}$$

▶ Fit the embedding by maximising $\mathcal{L}(\rho, \alpha)$

Exponential Family Embeddings: Results

Exponential Family Embeddings: Results

Results on MIMIC-III dataset (zoom)

- Pneumonia due to Pseudomonas (4821)
- Pneumonia due to Klebsiella pneumoniae (4820)
- Pneumonia due to other gram-negative bacteria (48283)

Attention to tracheostomy (V550)

Chronic respiratory failure (51883) •

Dependence on respirator, status (V4611) •

Tracheostomy status (V440)

Exponential Family Embeddings: Results and Extensions

- ► The fitted embeddings are interpretable
- ▶ The fitted embeddings have good predictive performance
- Extensions of EFEs:
 - Combine with more complex probabilistic models
 - Structured embeddings
 - Blend with causality ideas

- ▶ Data: Events in time (drugs, labs, conditions)
- ▶ 250K patients from New York Presbyterian Hospital

► Effect of drugs on lab tests

[Ruiz+, in progress] 26

Learn from measurement values but also from their presence

► A first model: Linear dynamical system

- Continuous extension
- Extract information from time stamps and event types
- ▶ Model: temporal point processes with per-patient latent rate

- ▶ Use embedding representations to form the likelihood
- ► Embeddings are latent variables in the model

Scalable Inference

Scalable Inference

- Approximate the posterior of the latent variables given data
- ► Variational inference
- Scalable to:
 - Complex, non-conjugate models
 - Large numbers of observations
 - High-dimensional latent variables

Contributions on Variational Inference

- ➤ Scale-up inference for categorical observations with many outcomes [Ruiz+, ICML 2018]
- ► Reduce variance of gradient estimators [Ruiz+, NeurIPS 2016] [Naesseth+, AISTATS 2017]
- ► More expressive variational families [Titsias+, AISTATS 2019] [Ruiz+, ICML 2019]

Model Testing

Model Testing

- Context: Probabilistic modelling for causal inference
- Problems:
 - Causal inference requires many assumptions
 - Standard Bayesian testing tools are not applicable
- ► Contribution: A method to check the validity of the assumptions

Conclusions

- Probabilistic modelling is a powerful tool for analyzing EHR data
- Contributions on
 - Modelling: Exponential family embeddings, point process latent health model, . . .
 - Variational inference: Scale up categoricals, reduce gradient variance, more expressive variational families
 - Testing: Bayesian causal model testing

EU H2020 (MSCA Actions, Grant Agreement 706760)