МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Московский физико-технологический институт (государственный университет) Кафедра твердотельной электроники

Фотоэлектрический способ преобразования энергии солнечного излучения

Лабораторная работа по курсу твердотельная электроника

Выполнили:

Александр Нехаев

Хавронин Михаил

Тихонов Сергей

Оглавление

Введение	3
Цели работы	3
Теоретическое введение	
Электронно-дырочный переход	
Статическая вольтамперная характеристика тонкого $p-n$ -перехода	
Экспериментальная часть	4
Подготовка к работе	4
Ход работы	6
Измерение темновых в/а характеристик	6
Измерение световых характеристик	9
Измерение световых характеристик с фильтрами	

Введение

Цели работы

- 1. Исследование темновой и световой вольтамперных характеристик фотоэлемента.
- 2. Изучение влияния мощности падающего излучения на характеристики образца с помощью фильтров

Теоретическое введение

Электронно-дырочный переход

Прямое преобразование лучистой энергии Солнца в электрическую осуществляется с помощью фотоэффекта на потенциальном барьере или так называемого вентильного фотоэффекта, суть которого — возникновение фото-ЭДС при освещении контактов металл-полупроводник и p-n переходов. Однако, вследствие сложной микроструктуры контактов полупроводника с металлом, мы ограничимся в дальнейшем наиболее ясным случаем p-n переходов.

Рассмотрим более подробно, что представляет собой p-n переход. Пусть два полупроводника, один из которых имеет проводимость p-типа, а другой n-типа приводятся в хороший контакт по плоскости aa', как показано на изображении a (Рисунок 1). Тогда под

Рисунок 1: *p-n* переход

действием градиента концентрации дырки из приконтактного слоя p-области будут диффундировать в n-область, а электроны из приконтактного слоя n-области в p-область.

В результате такой диффузии в приконтактном слое р-области создается отрицательный объемный заряд нескомпенсированных ионов акцепторной примеси, а в приконтактном слое п-области – положительный объемный заряд нескомпенсированных ионов донорной примеси. Порожденное объемными зарядами электрическое поле (направление которого показано на изображении а (Рисунок 1)), будет препятствовать дальнейшей диффузии основных носителей зарядов (основными называются носители, знак которых соотвествует типу проводимости полупроводника). При этом напряженность электрического поля $\vec{\varepsilon}$ и толщины слоев объемных зарядов в n и p-областях будут возрастать до тех пор, пока не достигнут своих равновесных значений $\overrightarrow{\varepsilon_0}$, d_p и d_n , при которых диффузионные потоки основных носителей зарядов полностью скомпенсированы дрейфовыми потоками, вызванными электрическим полем объемных зарядов. Переходная область толщины d = $d_p + d_n$, объединённая свободными носителями зарядов, и в которой локализовано электрическое поле с напряженностью $\overrightarrow{\varepsilon_0}$ получила название электронно-дырочного или p-n — перехода. Толщина p-n-перехода d для различных полупроводниковых систем может изменяться от единицы и до сотых долей микрометров, а величина $\overrightarrow{\varepsilon_0}$ достигать значений $\sim 10^7$ В ⋅ см⁻¹.

Состояние p-n-перехода в термодинамическом равновесии легко понять, обращаясь к его энергетической диаграмме, приведенной на схеме δ (Рисунок 1). Здесь E_c — дно зоны проводимости, E_v — потолок валентной зоны, F — уровень Ферми. В самом деле, электроны из n-области не могут проникнуть в p-область, так как для этого им необходимо преодолеть потенциальный барьер, высота u_k которого равна контактной разности потенциалов, а энергия электронов меньше высоты этого барьера. По аналогичной причине дырки из p-области не могут попасть в n-область.

На практике p-n-переходы реализуются не механическим соединением двух полупроводников, а внутри единого кристалла, в котором создают подходящее распределение донорной N_d и акцепторной N_a примесей, например, показанной на схеме ϵ (Рисунок 1).

Статическая вольтамперная характеристика тонкого p-n-перехода

Экспериментальная часть

Подготовка к работе

Вольтамперная характеристики фотопреобразователя могут быть измерены с помощью схемы, представленной на схеме (Рисунок 2). Когда преобразователь работает как генератор электроэнергии, то в качестве источника излучения используется лампа марки 3H7 или 3H8 с встроенным зеркальным отражателем и мощностью 500 Вт. Спектр ее излучения с помощью водяного фильтра приближен к спектру солнечного излучения и к спектральной чувствительности кремниевого преобразователя.

Перед началом и после измерений тумблеры на пульте управления и переключатели других приборов должны быть установлены в следующих положениях.

- Тумблер 1 подачи напряжения от батареи аккумуляторов в положении «выкл».
- Тумблер 2 переключение полярности микроамперметра М 95 в положении «обр».
- Тумблер 3 переключение с микроамперметра на миллиамперметр в положении «мА».

• Тумблер 4 — изменение полярности напряжения подаваемого на фотопреобразователь — в положении «обр.».

Потенциометры «грубо» и «точно» должны быть выведены против часовой стрелки до упора.

Переключатель шкалы микроамперметра М 95 должен стоять в положении «арретир», а наружный шунт к М 95 в положении «∞».

Рисунок 2: Электрическая схема установки для экспериментальных исследрваний световой и темновой в/а характеристик фотоэлементов

Переключатель шкалы милливольтметра М 193 должен быть на 7,5 B, а стопор прибора в положении «арретир».

Переключатель шкалы миллиамперметра М 1104 следует поставить на значение (0,015) А».

Декады магазина сопротивлений P33, выполняющего роль внешней нагрузки, должны находиться в положении «0», и тумблер «сеть» – в положении «выкл.».

Порядок экспериментальных исследований можно разбить на два этапа.

Ход работы

Измерение темновых в/а характеристик

Измерили обратную и прямую ветви темновых в/а характеристик. Результаты представлены соответственно в двух таблицах (и).

Таблица 1: Обратная ветвь темновой в/а характеристики

V, B	I, mkA
0.01	0.6
0.02	1.6
0.03	2
0.04	2.7
0.05	3.5
0.06	4
0.07	4.6
0.08	5.1
0.09	5.6
0.1	6.1

Таблица 2: Прямая ветвь темновой в/а характеристики

V, B	I, mkA
0.02	1.5
0.04	3.9
0.06	7
0.08	11
0.1	17
0.12	24
0.14	33
0.16	47
0.18	68
0.2	94
0.22	116.1290323
0.24	164.516129
0.26	232.2580645
0.28	300
0.3	406.4516129
0.35	783.8709677
0.4	1364.516129
0.45	2245.16129
0.5	3629.032258
0.55	5419.354839
0.6	7838.709677
0.65	10161.29032
0.7	12580.64516

На основании полученных данных построили графики I = f(u) для каждой ветви (Рисунок 3 и Рисунок 4).

Рисунок 3: Зависимость тока от напряжения для обратной ветви

Таблица 3: Параметры аппроксимации зависимости тока от напряжения для обратной ветви

	Estimate	Standard Error	t-Statistic	P-Value
1	0.273333	0.112218	2.43573	0.040836
X	60.12121	1.80856	33.24258	7.32E-10

Рисунок 4: Зависимость тока от напряжения для прямой ветви

Таблица 4: Параметры аппроксимации для зависимости тока от напряжения для прямой

	Estimate	Standard Error	t-Statistic	P-Value
1	-16187.4	1412.913	-11.4568	0.001427
X	40083.87	2547.962	15.73174	0.000558

Из темновых в/а характеристик определим характеристики $R_{\rm III}=\frac{dU_{\rm ofp}}{dI_{\rm ofp}}=\frac{1}{k}$, где k- коэффициент наклона прямой. Таким образом $R_{\rm III}=(1,66~\pm0,05)\cdot10^4~{\rm OM}$. Информация о параметрах аппроксимации кривой на графике приведена в Таблица 3.

 R_{Π} находится из прямой ветви (Рисунок 4) по формуле $R_{\Pi} = \frac{dU_{\Pi p}}{dI_{\Pi p}} = \frac{1}{k}$, где k — так же коэффициент наклона прямой. $R_{\Pi} = (24.9 \pm 1.6)$ Ом. Параметры аппроксимации приведены в Таблица 4.

Построили зависимость $\log I_{\partial} = f(U)$. Зависимость приведена на графике ниже.

Рисунок 5: Зависимость логарифма тока от напряжения для прямой ветви

Таблица 5: Параметры аппроксимации для зависимости логарифма тока от напряжения для прямой ветви

	Estimate	Standard Error	t-Statistic	P-Value
1	1.623244	0.210365	7.716328	1.46E-07
X	12.71819	0.602273	21.11698	1.26E-15

Из полученных зависимостей установили значения A и I_s .

$$A = \frac{1}{0,025 \text{ B} \cdot k} = (3,15 \pm 0,15) \frac{1}{\text{MKA}}$$
 $I_S = e^b = (5,1 \pm 1,1) \text{ MKA}$

Измерение световых характеристик

Провели измерения световых характеристик фотоэлемента. По результатам измерений построили график $I = f(U_n)$ при W = const (Рисунок 6).

Рисунок 6: Зависимость I = f(U) для световой характеристики

Из графика находим значения $I_{\text{к.з.}}=14{,}1057\,\text{мкA}$ и $U_{x.x.}=488{,}365\,\text{мВ}$. Далее определим значения $I_{\text{н}}$ и $U_{\text{н}}$ для определения значения $R_{\text{опт}}.$ $I_{\text{н}}=11{,}3773\,\text{мA},$ $U_{\text{н}}=380{,}446\,\text{мВ}$. Тогда $R_{\text{опт}}=\frac{U_{\text{н}}}{I_{\text{н}}}=33.4389\,\frac{\text{мВ}}{\text{мA}}$. Из этих значений находим $\xi=\frac{I_{\text{н}}.U_{\text{н}}}{I_{\text{к.з.}}.U_{x.x.}}$, тогда $P=\xi U_{x.x.}I_{\text{к.з.}}=4{,}329\,\text{мВт}$.

Измерение световых характеристик с фильтрами

По измерениям, проведенным с помощью фильтров, построили график зависимости $\log I_{\text{к.з.}} = f(U_{x.x.})$ (Рисунок 7).

Рисунок 7: Зависимость $\log(I) = f(U)$ при переменном W

Таблица 6: Параметры аппроксимации зависимости $\log(I)=f(U)$ при переменном W

	Estimate	Standard Error	t-Statistic	P-Value
1	-3.78672	0.630171	-6.00903	0.026595
X	18.04387	1.475725	12.22712	0.006622

Аппроксимируя точки на графике, установили значения I_s и A:

$$I_s = (0.023 \pm 0.014)$$
 мкА

$$A = (3.15 \pm 0.15) \frac{1}{\text{MKA}}$$

Вывод

Изучили основные характеристики фотоэлемента, сняв ВАХ без и при освещении образца, а так же изучив поведение тока короткого замыкания и ЭДС холостого хода при изменении освещенности. Рассчитали параметры образца по полученным данным I_s , A, $R_{\rm m}$, $R_{\rm n}$.