Wine Quality Machine Learning

• • •

UT Data Analytics Bootcamp 2020 Group 5

Why did we choose wine ???

Questions ???

- 1. How does weather impact wine quality?
- 2. How does score vary by region in USA, by type (red, white)?
- 3. How does soil quality affect wine quality?

Data Exploration

LC	LOCATION DETAILS								
Name	Napa, CA 94558								
ID	ZIP:94558								
Туре	Zip Code								
Included Stations	10	(See station list below)							
PERIOD OF RECORD									

PERIOD OF RECORD					
Start ¹	1906-04-01				
End¹	2020-11-05				
Coverage ²	100%				

ADD TO CART

Location Station List & Summarized Data Inventory

Available Data Types					
Air Temperature	>				
Evaporation					
Precipitation					
Sunshine					
Weather Type					
Wind					

DATA TYPE	DESCRIPTION	START	END	COVERAGE ²
TAVG	Average Temperature.	1998-05-22	2005-07-31	100%
TMAX	Maximum temperature	1906-04-01	2020-11-05	100%
TMIN	Minimum temperature	1906-04-01	2020-11-05	100%
TOBS	Temperature at the time of observation	1958-05-01	2020-11-04	98%

```
In [ ]: willamettedf = pd.DataFrame()
        states = {
               'Napa': {
                   'zip': '94559'.
                   'years': ['1992','1993','1994','1995','1996','1997','1998','1999','2000','2001','2002','2003','2004','2005','2006','200
               'Walla': {
                   'zip': '99362',
                   'years': ['1992','1993','1994','1995','1996','1997','1998','1999','2000','2001','2002','2003','2004','2005','2006','200
               'Columbia': {
                   'zip': '98813',
                   'years':['1992','1993','1994','1995','1996','1997','1998','1999','2000','2001','2002','2003','2004','2005','2006','2007
               'Sonoma': {
                   'zip': '95476',
                   'years': ['1992','1993','1994','1995','1996','1997','1998','1999','2000','2001','2002','2003','2004','2005','2006','200
               'Santa': {
                   'zip': '95062',
                   'years': ['1992','1993','1994','1995','1996','1997','1998','1999','2000','2001','2002','2003','2004','2005','2006','200
               'Yakima': {
                   'zip': '98903',
                   'years':['1992','1993','1994','1995','1996','1997','1998','1999','2000','2001','2002','2003','2004','2005','2006','2007
               'Dundee': {
                   'zip': '97148',
                   'years': ['1992','1993','1994','1995','1996','1997','1998','1999','2000','2001','2002','2003','2004','2005','2006','2006'
             'Willamette': {
                'zip': '97302',
                 'years': ['1992','1993','1994','1995','1996','1997','1998','1999','2000','2001','2002','2003','2004','2005','2006','2007
```


	lear all					
Show	25 ∨ ∈	entries	Search:	Type at	opellation	, wine, sc
	#	Wine I1	Vintage ↓↑	GWS ↓↑	CI	NBJ ↓↑
1	1.	Kapcsandy Family Winery, State Lane Vineyard Grand- Vin Cabernet Sauvignon, Napa Valley	2015	100	В	4
2	2.	Abreu Vineyard, Thorevilos Cabernet Sauvignon, Napa Valley	2013	100	Α	3
3	3.	Continuum, Proprietary Red, Oakville	2015	99.85	С	3
4	4.	Ridge Vineyards, Monte Bello, Santa Cruz Mountains	2015	99.71	C+	4
5	5.	Abreu Vineyard, Madrona Ranch Cabernet Sauvignon, Napa Valley	2002	99.7	A+	3
6	6.	Abreu Vineyard, Thorevilos Cabernet Sauvignon, Napa Valley	2007	99.52	A+	3
7	7.	Lokoya Winery, Mount Veeder Cabernet Sauvignon, Napa Valley	2015	99.5	C+	4
8	8.	Abreu Vineyard, Thorevilos Cabernet Sauvignon, Napa Valley	2015	99.43	A+	5
9	9.	Screaming Eagle, Cabernet Sauvignon, Napa Valley	2016	99.43	В	3
10	10.	Verite, La Joie, Sonoma County	2015	99.37	C+	4
11	11.	Screaming Eagle, Cabernet Sauvignon, Napa Valley	2010	99.31	Α	6
12	12.	Dana Estates, Lotus Vineyard Cabernet Sauvignon, Napa Valley	2010	99.08	В	3
13	13.	Verite, La Muse, Sonoma County	2007	99.04	В	3

Loop through API call for appellations and add to DataFram

```
In [5]: # Copy appellation geo df to store new coordinates if original coordinates do not return API results
        appellations geo df REVISED = appellations geo df.copv()
        # Loop through coordinates of appellations to create API call and add to soils df
        for appellation in range(len(appellations geo df)):
            appLon = appellations geo df.iloc[appellation,3]
            appLat = appellations geo df.iloc[appellation, 2]
            url = f'https://rest.soilgrids.org/soilgrids/v2.0/properties/query?lon={appLon}&lat={appLat}&property=bdod&property
            appellation soil api response = requests.get(url).json()
            # If API return is null, change coordinates until a nearby point returns non-null results
            while not appellation soil api response['properties']['layers'][i]['depths'][i]['values']['00.5']:
                random multiplier = 1
                appLon = appLon + random.uniform(-.005, 0.005)*random multiplier
                appLat = appLat + random.uniform(-.005, 0.005)*random multiplier
                # Update coordinates in revised dataframe
                appellations geo df REVISED.iloc(appellation, 31 = appLon
                appellations geo df REVISED.iloc(appellation, 2) = appLat
                url = f'https://rest.soilgrids.org/soilgrids/v2.0/properties/guery?lon={appLon}&lat={appLat}&property=bdod&prop
                # Increment random multiplier to help assure that random changes move iterations farther from original point
                random multiplier += 0.1
                appellation soil api response = requests.get(url).json()
            # Initiate list to hold data and append appellation name based on index number
            soils row = []
            soils row.append(appellations geo df.iloc[appellation,0])
            # Loop through API return and add selected data to soils row
            for i in range(len(appellation soil api response['properties']['layers'])):
                for j in range(len(appellation soil api response['properties']['layers'][i]['depths'])):
                    soils row.append(appellation soil api response['properties']['layers'][i]['depths'][i]['values']['00.5'])
            # Add soils row as row to end of soils df
            soils df.loc[len(soils df)] = soils row
        #soils df
```

```
# Create list of soil variables for use in selected calculations
         soils variables = []
         for i in range(len(appellation sample['properties']['layers'])):
             soils variables.append(appellation sample['properties']['layers'][i]['name'])
         soils variables
Out[8]: ['bdod',
          'cec',
          'cfvo',
          'clay',
          'nitrogen',
          'ocd',
          'ocs',
          'phh2o',
          'sand',
          'silt',
          'soc']
In [9]: # Edit list of soil variables
         # Remove 'ocs' column as there is only one range for ocs
         soils variables.remove('ocs')
         # Remove 'phh2o' column as average of pH is calculated
         soils variables.remove('phh2o')
         soils variables
Out[9]: ['bdod', 'cec', 'cfvo', 'clay', 'nitrogen', 'ocd', 'sand', 'silt', 'soc']
In [10]: # Create list of depths for measurments up to 100cm for use with calculations
         soils range 0 100cm = []
         for j in range(len(appellation sample['properties']['layers'][i]['depths'])-1):
             soils range 0 100cm.append(appellation sample['properties']['layers'][i]['depths'][i]['label'])
         soils range 0 100cm
Out[10]: ['0-5cm', '5-15cm', '15-30cm', '30-60cm', '60-100cm']
In [11]: # Create list of weights for measurements for use with calculations
         soils range weight = [0.05, 0.1, 0.15, 0.3, 0.4]
In [12]: # Calculate average values for depths down to 100cm and populate new column
         for i in range(len(soils variables)):
             variable = soils variables[i]
             variable summator = 0.0
             for j in range(len(soils range 0 100cm)):
                 depth = soils range 0 100cm[j]
                 variable summator = variable_summator + soils_df[f'{variable} {depth}']*soils_range_weight[j]
                 soils df[f'{variable} 0-100cm'] = variable summator
         #soils df
```

Database

- We utilized Amazon AWS and PgAdmin for SQL database
- Created 4 tables in the database
- Joined red wine and white wine dataframes with the soil dataframe

Database - continued

Red_Wine_Clean	ed
wine	varchar
wine_id	int
appellation 👓	varchar
color	varchar
regions	varchar
country	varchar
vintage	varchar
is_primeurs	varchar
score	int
confidence_index	varchar
journalist_count	varchar
avgPrcpFebruary	int
avgTempFebruary	int
avgPrcpMarch	int
avgTempMarch	int
avgPrcpApril	int
avgTempApril	int
avgPrcpMay	int
avgTempMay	int
avgPrcpJune	int
avgTempJune	int
avgPrcpJuly	int
avgTempJuly	int
avgPrcpAugust	int
avgTempAugust	int
avgTempSeptember	int
avgPrcpSeptember	int
avgPrcpOctober	int

avgTempOctober

int

appellation 🗪 var	char
bdod_0-100cm	int
bdod_100-200cm	int
cec_0-100cm	int
cec_100-200cm	int
cfvo_0-100cm	int
cfvo_100-200cm	int
clay_0-100cm	int
clay_100-200cm	int
nitrogen_0-100cm	int
nitrogen_100-200cm	int
ocd_0-100cm	int
ocd_100-200cm	int
ocs_0-30cm	int
phh2o_0-100cm	int
phh2o_100-200cm	int
sand_0-100cm	int
sand_100-200cm	int
silt_0-100cm	int
silt_100-200cm	int
soc_0-100cm	int
soc 100-200cm	int

White_Wine_Clea	ined	
wine	varchar	ī
wine_id	int	
appellation 👓	varchar	
color	varchar	
wine_type	varchar	
regions	varchar	
country	varchar	
vintage	varchar	
is_primeurs	varchar	
score	int	
confidence_index	varchar	
journalist_count	varchar	
avgPrcpFebruary	int	
avgTempFebruary	int	
avgPrcpMarch	int	
avgTempMarch	int	
avgPrcpApril	int	
avgTempApril	int	
avgPrcpMay	int	
avgTempMay	int	
avgPrcpJune	int	
avgTempJune	int	
avgPrcpJuly	int	
avgTempJuly	int	
avgPrcpAugust	int	
avgTempAugust	int	
avgTempSeptember	int	
avgPrcpSeptember	int	
avgPrcpOctober	int	

avgTempOctober

5011	
appellation 🗪 var	char
bdod_0-100cm	int
bdod_100-200cm	int
cec_0-100cm	int
cec_100-200cm	int
cfvo_0-100cm	int
cfvo_100-200cm	int
clay_0-100cm	int
clay_100-200cm	int
nitrogen_0-100cm	int
nitrogen_100-200cm	int
ocd_0-100cm	int
ocd_100-200cm	int
ocs_0-30cm	int
phh2o_0-100cm	int
phh2o_100-200cm	int
sand_0-100cm	int
sand_100-200cm	int
silt_0-100cm	int
silt_100-200cm	int
soc_0-100cm	int
soc_100-200cm	int

Database - continued

Database - continued

Machine Learning - Data Preprocessing

- Checked for null values
- Checked the data types
- Converted the score column from float to integer and split score into good(1) which is any wine with a score >= 91 and bad(0) and making it its own column "quality" to use as our target.
- Checked for number of unique values in each column to find out which columns required binning and binned appellation.
- Created the OneHotEncoder instance, Fitted the encoder and produce encoded
 DataFrame and renamed encoded columns.
- Merged one-hot encoded features and drop the originals

Machine Learning - Prelim Feature Engineering and Selection

Utilized the wine score to determine the quality of wine and for feature we decided to look at wine data by itself and dropping all weather and soil data columns and unnecessary columns from the wine data, wine data with weather data, wine data with soil data and wine data with weather and soil data.

Machine Learning - Training and Test Data

Used sklearn train_test_split to split the dataset into random train and test subsets.

Machine Learning - Model types

- Deep Learning Neural Network The limitation of the model is that it requires a large amount of data and it's not easy to comprehend. The benefits of this model can solve complex problems.
- Random Forest Classifier The limitation is that features need to have some predictive power to work. The benefit is handling of huge amount of data, No problem of overfitting
- Logistic Regression The limitation of the model is that it can be easily outperformed by sturdier model like Neural Networks, also its high reliance on a proper presentation of your data. The benefits of this model are that it's easier to implement, very efficient to train and it outputs well-calibrated predicted probabilities.

Machine Learning - Deep Learning Neural Network

Red_Wine_DLNN_metrics

	Loss	False Negatives	False Positives	True Negatives	True Positives	Precision	Recall	Accuracy
Red wine	0.537	86	148	201	590	0.799	0.873	0.771
Red wine with weather	0.708	125	142	207	551	0.795	0.815	0.740
Red wine with soil	0.531	101	144	205	575	0.800	0.851	0.761
Red wine with weather & soil	0.568	125	132	217	551	0.807	0.815	0.749

White_Wine_DLNN_Metrics

	Loss	False Negatives	False Positives	True Negatives	True Positives	Precision	Recall	Accuracy
White wine	0.670	27	18	57	81	0.818	0.75	0.754
White wine with weather	0.768	27	17	58	81	0.827	0.75	0.76
White wine with soil	0.585	28	14	61	80	0.851	0.741	0.770
White wine with weather & soil	0.685	24	15	60	84	0.848	0.778	0.787

Machine Learning - Random Forest Classifier

Red_Wine_RF_Metrics

	Loss	False Negatives	False Positives	True Negatives	True Positives	Precision	Recall	Accuracy
Red wine	N/A	103	137	212	573	0.807	0.848	0.766
Red wine with weather	N/A	105	160	189	571	0.781	0.845	0.741
Red wine with soil	N/A	103	138	211	573	0.806	0.848	0.765
Red wine with weather & soil	N/A	106	164	185	570	0.777	0.843	0.737

White_Wine_RF_Metrics

	Loss	False Negatives	False Positives	True Negatives	True Positives	Precision	Recall	Accuracy
White wine	N/A	28	17	58	80	0.825	0.741	0.754
White wine with weather	N/A	29	18	57	79	0.814	0.731	0.743
White wine with soil	N/A	28	17	58	80	0.825	0.741	0.754
White wine with weather & soil	N/A	32	19	56	76	0.8	0.704	0.721

Machine Learning - Logistic Regression

Red_Wine_LR_Metrics

	Loss	False Negatives	False Positives	True Negatives	True Positives	Precision	Recall	Accuracy
Red wine	N/A	92	154	195	584	0.791	0.864	0.760
Red wine with weather	N/A	82	151	198	594	0.797	0.879	0.773
Red wine with soil	N/A	92	154	195	584	0.791	0.864	0.760
Red wine with weather & soil	N/A	82	147	202	594	0.802	0.879	0.777

White_Wine_LR_Metrics

	Loss	False Negatives	False Positives	True Negatives	True Positives	Precision	Recall	Accuracy
White wine	N/A	21	17	58	87	0.837	0.806	0.792
White wine with weather	N/A	20	19	56	88	0.822	0.815	0.787
White wine with soil	N/A	21	17	58	87	0.837	0.806	0.792
White wine with weather & soil	N/A	20	19	56	88	0.822	0.815	0.787

Analysis

Logistic Regression model as the best fit model for this analysis after trying multiple models and considering the structure of our data to help answer our questions. With red soil and weather data it predicted 655 good wines and that was also actual and 323 Bad wines and that was actual. 26 times it predicted it to be a good wine but it was a bad wine and 21 times we predicted it to be a bad wine when it was a good wine. This logistic regression had the highest accuracy / Tableau

Description of the source of data

Wine API - https://www.globalwinescore.com/api/

Weather API - https://www.ncei.noaa.gov/access/search/data-search/global-summary-of-the-year

Weather Analysis - https://www.evineyardapp.com/blog/2019/01/17/climate-weather-and-vineyard-management/

All data source will be adding to this slide

