

Dr. Jan-Willem Liebezeit Raphael Wagner SoSe 2021

20 Punkte

Übungen zu: Analysis 1 für Informatik

Blatt 12

Hinweise zur Abgabe

Abgabetermin: 19.07.21, 14:00 Uhr

Abgabeformat: Im PDF-Format via Moodle. Einzelabgaben (nicht in Gruppen). Ver-

spätete Abgaben sind ausdrücklich nicht möglich!

Sonstiges: Bitte geben Sie eine Erst- und Zweitpräferenz von jeweils einer Aufgabe zur

Korrektur an.

Aufgaben

1. Berechnen Sie die folgenden bestimmten Integrale

(10)

i)
$$\int_0^{\frac{\pi}{4}} \frac{\sin(x)\cos(x)}{1-\sin^2(x)} dx$$

iii)
$$\int_0^1 x^3 \sqrt{1+x^2} \, dx$$

ii)
$$\int_1^e \frac{\ln(x)}{x\sqrt{1+\ln(x)^2}} \, dx$$

iv)
$$\int_{1}^{2} \frac{1}{x^{3} + x} dx$$

v)
$$\int_{1}^{e} x^{2} \ln(x) dx$$

2. (Verallgemeinerter Mittelwertsatz der Integralrechnung)

Sei $f:[a,b]\to\mathbb{R}$ stetig und $g:[a,b]\to\mathbb{R}$ beschränkt und Riemann-integrierbar (10) mit $g(x)\geq 0$ für alle $x\in [a,b]$. Zeigen Sie, dass es dann ein $\xi\in [a,b]$ mit

$$\int_{a}^{b} f(x)g(x) dx = f(\xi) \int_{a}^{b} g(x) dx$$

gibt.

3. Sei $f:[0,1]\to\mathbb{R}$ gegeben durch

$$f(x) = \begin{cases} \frac{1}{x} - \lfloor \frac{1}{x} \rfloor & : x \neq 0 \\ 0 & : x = 0 \end{cases}$$

für alle $x \in [0,1]$. Zeigen Sie, dass f Riemann-integrierbar ist.

Hinweis: Sie dürfen (müssen aber nicht!) Satz 5.4.3 verwenden. Beachten Sie, dass f aber zunächst unendlich viele Unstetigkeitsstellen hat.

4. i) Sei $f:[a,b]\to\mathbb{R}$ beschränkt und Riemann-integrierbar mit $f([a,b])\subset (8)$ [-M,M] für ein M>0. Sei weiter $g:[-M,M]\to\mathbb{R}$ Lipschitzstetig (siehe Blatt 09, Aufgabe 2). Zeigen Sie, dass dann $g\circ f:[a,b]\to\mathbb{R}$ ebenfalls Riemann integrierbar ist.