El D en EDP

Estrategías para derivación en espacios de medidas - Capítulo 4

Averil Prost (LMI INSA Rouen)

Notamos $\Omega=\mathbb{R}^d$, $\mathscr{P}_2(\Omega)$ las medidas de probabilidades con segundo momento finito y $d_{\mathcal{W}}(\cdot,\cdot)$ la distancia de Kantorovitch-Rubinstein para p=2, llamada distancia de Wasserstein en la literatura.

Las semanas pasadas, vimos maneras de definir gradientes de funciones de medidas.

Notamos $\Omega=\mathbb{R}^d$, $\mathscr{P}_2(\Omega)$ las medidas de probabilidades con segundo momento finito y $d_{\mathcal{W}}(\cdot,\cdot)$ la distancia de Kantorovitch-Rubinstein para p=2, llamada distancia de Wasserstein en la literatura.

Las semanas pasadas, vimos maneras de definir gradientes de funciones de medidas.

• Juegan el papel de linealización para obtener una representación local.

Notamos $\Omega=\mathbb{R}^d$, $\mathscr{P}_2(\Omega)$ las medidas de probabilidades con segundo momento finito y $d_{\mathcal{W}}(\cdot,\cdot)$ la distancia de Kantorovitch-Rubinstein para p=2, llamada distancia de Wasserstein en la literatura.

Las semanas pasadas, vimos maneras de definir gradientes de funciones de medidas.

- Juegan el papel de linealización para obtener una representación local.
- Usan la geometría del espacio subyacente (espacio vectorial, geodesico...)

Notamos $\Omega=\mathbb{R}^d$, $\mathscr{P}_2(\Omega)$ las medidas de probabilidades con segundo momento finito y $d_{\mathcal{W}}(\cdot,\cdot)$ la distancia de Kantorovitch-Rubinstein para p=2, llamada distancia de Wasserstein en la literatura.

Las semanas pasadas, vimos maneras de definir gradientes de funciones de medidas.

- Juegan el papel de linealización para obtener una representación local.
- Usan la geometría del espacio subyacente (espacio vectorial, geodesico...)

Hoy vamos a ver que para cierto tipo de ecuación, no es necesario conocer tanta información.

Table of Contents

Definiciones

Compatibilidad de la definición métrica con las previas

Conclusión

Consideramos una ecuación de Hamilton-Jacobi (HJ) de "tipo eikonal", es decir

$$-\partial_t u(t,x) + H\left(x, |\nabla u(t,x)|\right) = 0, \qquad u(T,x) = \mathfrak{J}(x).$$

Consideramos una ecuación de Hamilton-Jacobi (HJ) de "tipo eikonal", es decir

$$-\partial_t u(t,x) + H(x, |\nabla u(t,x)|) = 0, \qquad u(T,x) = \mathfrak{J}(x).$$

Ejemplos clásicos del Hamiltonian H son

$$H(x,r) = r,$$
 $H(x,r) = \frac{r^2}{2} - V(x)$

donde V es un potencial en una interpretación física.

Consideramos una ecuación de Hamilton-Jacobi (HJ) de "tipo eikonal", es decir

$$-\partial_t u(t,x) + H\left(x, |\nabla u(t,x)|\right) = 0, \qquad u(T,x) = \mathfrak{J}(x).$$

Ejemplos clásicos del Hamiltonian H son

$$H(x,r) = r,$$
 $H(x,r) = \frac{r^2}{2} - V(x)$

donde V es un potencial en una interpretación física.

• Ecuaciónes de moción de frontera o de minimisación de camino.

Consideramos una ecuación de Hamilton-Jacobi (HJ) de "tipo eikonal", es decir

$$-\partial_t u(t,x) + H(x, |\nabla u(t,x)|) = 0, \qquad u(T,x) = \mathfrak{J}(x).$$

Ejemplos clásicos del Hamiltonian H son

$$H(x,r) = r,$$
 $H(x,r) = \frac{r^2}{2} - V(x)$

donde V es un potencial en una interpretación física.

- Ecuaciónes de moción de frontera o de minimisación de camino.
- No es necesario conocer la dirección del gradiente, sólo su norma.

Averil Prost El D en EDP (6/6) 4 / 17

Definición

Sea (X, d) un espacio metrico.

Def 1 La pendiente métrica de una función $u:X\to\mathbb{R}$ en un punto $x\in X$ se define como

$$|Du(x)| \coloneqq \overline{\lim}_{y \to x} \frac{|u(y) - u(x)|}{d(y, x)}.$$

Definición

Sea (X, d) un espacio metrico.

Def 1 La **pendiente métrica** de una función $u:X\to\mathbb{R}$ en un punto $x\in X$ se define como

$$|Du(x)| := \overline{\lim}_{y \to x} \frac{|u(y) - u(x)|}{d(y, x)}.$$

También se pueden introducir

$$|D^{\pm}u(x)| := \overline{\lim}_{y \to x} \frac{(u(y) - u(x))_{\pm}}{d(y, x)}, \qquad a_{\pm} = \max(0, \pm a).$$

Definición

Sea (X, d) un espacio metrico.

Def 1 La pendiente métrica de una función $u:X\to\mathbb{R}$ en un punto $x\in X$ se define como

$$|Du(x)| := \overline{\lim}_{y \to x} \frac{|u(y) - u(x)|}{d(y, x)}.$$

También se pueden introducir

$$|D^{\pm}u(x)| := \overline{\lim}_{y \to x} \frac{(u(y) - u(x))_{\pm}}{d(y, x)}, \qquad a_{\pm} = \max(0, \pm a).$$

Varios trabajos consideran soluciones de viscosidad en espacios métricos, por ejemplo [GNT08, HK15, GŚ15a, GŚ15b, GHN15].

Caso suave $ightharpoonup^{d}$ Si $f: \mathbb{R}^{d} \to \mathbb{R}$ es \mathcal{C}^{1} , tenemos

$$\overline{\lim}_{y \to x} \frac{|f(y) - f(x)|}{d(y, x)} \tag{1}$$

Caso suave $ightharpoonup^{d}$ Si $f: \mathbb{R}^{d} \to \mathbb{R}$ es \mathcal{C}^{1} , tenemos

$$\overline{\lim}_{y \to x} \frac{|f(y) - f(x)|}{d(y, x)} = \overline{\lim}_{s \to 0} \frac{|\langle \nabla f(x), s \nabla f(x) \rangle|}{|s \nabla f(x)|} + 0 \tag{1}$$

Caso suave $ightharpoonup^{d}$ Si $f: \mathbb{R}^{d} \to \mathbb{R}$ es \mathcal{C}^{1} , tenemos

$$\overline{\lim}_{y \to x} \frac{|f(y) - f(x)|}{d(y, x)} = \overline{\lim}_{s \to 0} \frac{|\langle \nabla f(x), s \nabla f(x) \rangle|}{|s \nabla f(x)|} + 0 = |\nabla f(x)|. \quad (1)$$

Caso suave $ightharpoonup^{d}$ Si $f: \mathbb{R}^{d} \to \mathbb{R}$ es \mathcal{C}^{1} , tenemos

$$\overline{\lim}_{y \to x} \frac{|f(y) - f(x)|}{d(y, x)} = \overline{\lim}_{s \to 0} \frac{|\langle \nabla f(x), s \nabla f(x) \rangle|}{|s \nabla f(x)|} + 0 = |\nabla f(x)|. \quad (1)$$

Sea $X=\mathbb{R}^+$ con d(x,y)=|x-y|, y la función

$$f: \mathbb{R}^+ \to \mathbb{R}^+, \qquad f(x) = \min \left\{ d(x, 2^{-i}) \mid i \in \mathbb{N} \right\}.$$

6 / 17

Ejemplos en espacios Euclidianos

Caso suave $ightharpoonup^{d}$ Si $f: \mathbb{R}^{d} \to \mathbb{R}$ es \mathcal{C}^{1} , tenemos

$$\overline{\lim}_{y \to x} \frac{|f(y) - f(x)|}{d(y, x)} = \overline{\lim}_{s \to 0} \frac{|\langle \nabla f(x), s \nabla f(x) \rangle|}{|s \nabla f(x)|} + 0 = |\nabla f(x)|. \quad \text{(1)}$$

Sea $X = \mathbb{R}^+$ con d(x,y) = |x-y|, y la función

$$f: \mathbb{R}^+ \to \mathbb{R}^+, \qquad f(x) = \min \left\{ d(x, 2^{-i}) \mid i \in \mathbb{N} \right\}.$$

Entonces f es 1-Lipschitz, pero $\lim_{h\searrow 0} \frac{|f(x)-f(0)|}{|x|}$ no existe. Sin embargo, tenemos

$$|Df(0)| = |D^+f(0)| = \frac{1}{3}, \qquad |D^-f(0)| = 0.$$

Averil Prost El D en EDP (6/6)

Para $X=\mathscr{P}_2(\Omega)$, sea $u:\mu\mapsto \langle \ell,\mu\rangle$ con $\ell\in\mathcal{C}_c^\infty(\Omega;\mathbb{R}).$

Para $X=\mathscr{P}_2(\Omega)$, sea $u:\mu\mapsto \langle \ell,\mu\rangle$ con $\ell\in\mathcal{C}_c^\infty(\Omega;\mathbb{R})$. Notamos que

$$|\ell(y) - \ell(x)| \le |\nabla \ell(x)| |y - x| + \frac{\|\nabla^2 \ell\|_{\infty}}{2} |y - x|^2.$$

Para $X=\mathscr{P}_2(\Omega)$, sea $u:\mu\mapsto \langle \ell,\mu\rangle$ con $\ell\in\mathcal{C}_c^\infty(\Omega;\mathbb{R})$. Notamos que

$$|\ell(y) - \ell(x)| \le |\nabla \ell(x)| |y - x| + \frac{\|\nabla^2 \ell\|_{\infty}}{2} |y - x|^2.$$

Usando Cauchy-Schwarz, para $\mu, \nu \in \mathscr{P}_2(\Omega)$,

$$|\langle \ell, \nu \rangle - \langle \ell, \mu \rangle| \leqslant \sqrt{\int_{x \in \Omega} |\nabla \ell(x)|^2 d\mu(x) d_{\mathcal{W}}(\mu, \nu) + \frac{\|\nabla^2 \ell\|_{\infty}}{2} d_{\mathcal{W}}^2(\mu, \nu)}.$$

Para $X=\mathscr{P}_2(\Omega)$, sea $u:\mu\mapsto \langle \ell,\mu\rangle$ con $\ell\in\mathcal{C}_c^\infty(\Omega;\mathbb{R})$. Notamos que

$$|\ell(y) - \ell(x)| \le |\nabla \ell(x)| |y - x| + \frac{||\nabla^2 \ell||_{\infty}}{2} |y - x|^2.$$

Usando Cauchy-Schwarz, para $\mu, \nu \in \mathscr{P}_2(\Omega)$,

$$|\langle \ell, \nu \rangle - \langle \ell, \mu \rangle| \leqslant \sqrt{\int_{x \in \Omega} |\nabla \ell(x)|^2 d\mu(x) d_{\mathcal{W}}(\mu, \nu) + \frac{\|\nabla^2 \ell\|_{\infty}}{2} d_{\mathcal{W}}^2(\mu, \nu)}.$$

Sigue que
$$|Du(\mu)| \leqslant \sqrt{\int_{x \in \Omega} |\nabla \ell(x)|^2 d\mu(x)} = ||\nabla \ell||_{L^2_\mu}$$
.

Para $X=\mathscr{P}_2(\Omega)$, sea $u:\mu\mapsto \langle \ell,\mu\rangle$ con $\ell\in\mathcal{C}_c^\infty(\Omega;\mathbb{R})$. Notamos que

$$|\ell(y) - \ell(x)| \le |\nabla \ell(x)| |y - x| + \frac{\|\nabla^2 \ell\|_{\infty}}{2} |y - x|^2.$$

Usando Cauchy-Schwarz, para $\mu, \nu \in \mathscr{P}_2(\Omega)$,

$$|\langle \ell, \nu \rangle - \langle \ell, \mu \rangle| \leqslant \sqrt{\int_{x \in \Omega} |\nabla \ell(x)|^2 d\mu(x) d_{\mathcal{W}}(\mu, \nu) + \frac{\|\nabla^2 \ell\|_{\infty}}{2} d_{\mathcal{W}}^2(\mu, \nu)}.$$

Sigue que $|Du(\mu)| \leqslant \sqrt{\int_{x \in \Omega} |\nabla \ell(x)|^2 \, d\mu(x)} = \|\nabla \ell\|_{L^2_\mu}$. Por otro lado, a lo largo de $\mu_t \coloneqq (id + t\nabla \ell) \# \mu$,

$$\langle \ell, \mu_t \rangle - \langle \ell, \mu \rangle = \|\nabla \ell\|_{L^2_{\mu}} d_{\mathcal{W}}(\mu, \mu_t) - \frac{\|\nabla^2 \ell\|_{\infty}}{2} d_{\mathcal{W}}^2(\mu, \mu_t).$$

Para $X=\mathscr{P}_2(\Omega)$, sea $u:\mu\mapsto \langle \ell,\mu\rangle$ con $\ell\in\mathcal{C}_c^\infty(\Omega;\mathbb{R})$. Notamos que

$$|\ell(y) - \ell(x)| \le |\nabla \ell(x)| |y - x| + \frac{\|\nabla^2 \ell\|_{\infty}}{2} |y - x|^2.$$

Usando Cauchy-Schwarz, para $\mu, \nu \in \mathscr{P}_2(\Omega)$,

$$|\langle \ell, \nu \rangle - \langle \ell, \mu \rangle| \leqslant \sqrt{\int_{x \in \Omega} |\nabla \ell(x)|^2 d\mu(x)} d_{\mathcal{W}}(\mu, \nu) + \frac{\|\nabla^2 \ell\|_{\infty}}{2} d_{\mathcal{W}}^2(\mu, \nu).$$

Sigue que $|Du(\mu)| \leqslant \sqrt{\int_{x \in \Omega} |\nabla \ell(x)|^2} \, d\mu(x) = \|\nabla \ell\|_{L^2_\mu}$. Por otro lado, a lo largo de $\mu_t \coloneqq (id + t\nabla \ell) \# \mu$,

$$\langle \ell, \mu_t \rangle - \langle \ell, \mu \rangle = \|\nabla \ell\|_{L^2_{\mu}} d_{\mathcal{W}}(\mu, \mu_t) - \frac{\|\nabla^2 \ell\|_{\infty}}{2} d_{\mathcal{W}}^2(\mu, \mu_t).$$

Concluimos que $|Du(\mu)| = \|\nabla \ell\|_{L^2_u}$.

Consideramos $\sigma \in \mathscr{P}_2(\Omega)$ y $u : \mu \mapsto d_{\mathcal{W}}(\mu, \sigma)$.

Consideramos $\sigma \in \mathscr{P}_2(\Omega)$ y $u: \mu \mapsto d_{\mathcal{W}}(\mu, \sigma)$. Entonces

$$|u(\nu) - u(\mu)| = |d_{\mathcal{W}}(\nu, \sigma) - d_{\mathcal{W}}(\mu, \sigma)| \leqslant d_{\mathcal{W}}(\nu, \mu).$$

Consideramos $\sigma \in \mathscr{P}_2(\Omega)$ y $u : \mu \mapsto d_{\mathcal{W}}(\mu, \sigma)$. Entonces

$$|u(\nu) - u(\mu)| = |d_{\mathcal{W}}(\nu, \sigma) - d_{\mathcal{W}}(\mu, \sigma)| \leq d_{\mathcal{W}}(\nu, \mu).$$

Tomando $\eta \in \Gamma_o(\mu,\sigma)$ y la curva $\nu_t \coloneqq \left((1-t)\pi_x + t\pi_y\right)\#\eta$,

$$u(\mu) - u(\nu_t) = d_{\mathcal{W}}(\mu, \sigma) - (1 - t)d_{\mathcal{W}}(\mu, \sigma)$$

Consideramos $\sigma \in \mathscr{P}_2(\Omega)$ y $u : \mu \mapsto d_{\mathcal{W}}(\mu, \sigma)$. Entonces

$$|u(\nu) - u(\mu)| = |d_{\mathcal{W}}(\nu, \sigma) - d_{\mathcal{W}}(\mu, \sigma)| \le d_{\mathcal{W}}(\nu, \mu).$$

Tomando $\eta \in \Gamma_o(\mu,\sigma)$ y la curva $\nu_t \coloneqq \left((1-t)\pi_x + t\pi_y\right)\#\eta$,

$$u(\mu) - u(\nu_t) = d_{\mathcal{W}}(\mu, \sigma) - (1 - t)d_{\mathcal{W}}(\mu, \sigma) = td_{\mathcal{W}}(\mu, \sigma)$$

Consideramos $\sigma \in \mathscr{P}_2(\Omega)$ y $u : \mu \mapsto d_{\mathcal{W}}(\mu, \sigma)$. Entonces

$$|u(\nu) - u(\mu)| = |d_{\mathcal{W}}(\nu, \sigma) - d_{\mathcal{W}}(\mu, \sigma)| \leq d_{\mathcal{W}}(\nu, \mu).$$

Tomando $\eta \in \Gamma_o(\mu,\sigma)$ y la curva $\nu_t \coloneqq \left((1-t)\pi_x + t\pi_y\right)\#\eta$,

$$u(\mu) - u(\nu_t) = d_{\mathcal{W}}(\mu, \sigma) - (1 - t)d_{\mathcal{W}}(\mu, \sigma) = td_{\mathcal{W}}(\mu, \sigma) = d_{\mathcal{W}}(\mu, \nu_t).$$

Consideramos $\sigma \in \mathscr{P}_2(\Omega)$ y $u : \mu \mapsto d_{\mathcal{W}}(\mu, \sigma)$. Entonces

$$|u(\nu) - u(\mu)| = |d_{\mathcal{W}}(\nu, \sigma) - d_{\mathcal{W}}(\mu, \sigma)| \leq d_{\mathcal{W}}(\nu, \mu).$$

Tomando $\eta \in \Gamma_o(\mu,\sigma)$ y la curva $\nu_t \coloneqq \left((1-t)\pi_x + t\pi_y\right)\#\eta$,

$$u(\mu) - u(\nu_t) = d_{\mathcal{W}}(\mu, \sigma) - (1 - t)d_{\mathcal{W}}(\mu, \sigma) = td_{\mathcal{W}}(\mu, \sigma) = d_{\mathcal{W}}(\mu, \nu_t).$$

Entonces $|Du(\mu)| \equiv 1$.

Consideramos $\sigma \in \mathscr{P}_2(\Omega)$ y $u : \mu \mapsto d_{\mathcal{W}}(\mu, \sigma)$. Entonces

$$|u(\nu) - u(\mu)| = |d_{\mathcal{W}}(\nu, \sigma) - d_{\mathcal{W}}(\mu, \sigma)| \leqslant d_{\mathcal{W}}(\nu, \mu).$$

Tomando $\eta \in \Gamma_o(\mu,\sigma)$ y la curva $\nu_t \coloneqq \left((1-t)\pi_x + t\pi_y\right)\#\eta$,

$$u(\mu) - u(\nu_t) = d_{\mathcal{W}}(\mu, \sigma) - (1 - t)d_{\mathcal{W}}(\mu, \sigma) = td_{\mathcal{W}}(\mu, \sigma) = d_{\mathcal{W}}(\mu, \nu_t).$$

Entonces $|Du(\mu)| \equiv 1$. Para cualquier $\varphi \in \mathcal{C}^1(\mathbb{R}^+; \mathbb{R}^+)$, tenemos

$$\overline{\lim_{\nu \to \mu}} \frac{|\varphi(u(\nu)) - \varphi(u(\mu))|}{d_{\mathcal{W}}(\nu, \mu)} = |\varphi'(u(\mu))| |Du(\mu)| + 0 = |\varphi'(u(\mu))|.$$

Consideramos $\sigma \in \mathscr{P}_2(\Omega)$ y $u : \mu \mapsto d_{\mathcal{W}}(\mu, \sigma)$. Entonces

$$|u(\nu) - u(\mu)| = |d_{\mathcal{W}}(\nu, \sigma) - d_{\mathcal{W}}(\mu, \sigma)| \leqslant d_{\mathcal{W}}(\nu, \mu).$$

Tomando $\eta \in \Gamma_o(\mu,\sigma)$ y la curva $\nu_t \coloneqq \left((1-t)\pi_x + t\pi_y\right)\#\eta$,

$$u(\mu) - u(\nu_t) = d_{\mathcal{W}}(\mu, \sigma) - (1 - t)d_{\mathcal{W}}(\mu, \sigma) = td_{\mathcal{W}}(\mu, \sigma) = d_{\mathcal{W}}(\mu, \nu_t).$$

Entonces $|Du(\mu)| \equiv 1$. Para cualquier $\varphi \in \mathcal{C}^1(\mathbb{R}^+; \mathbb{R}^+)$, tenemos

$$\varlimsup_{\nu \to \mu} \frac{\left| \varphi(u(\nu)) - \varphi(u(\mu)) \right|}{d_{\mathcal{W}}(\nu, \mu)} = \left| \varphi'(u(\mu)) \right| \left| Du(\mu) \right| + 0 = \left| \varphi'(u(\mu)) \right|.$$

Remark Las funciones radiales son *sencillas* para la pendiente métrica, al contrario de la L-diferenciabilidad o el gradiente de Wasserstein.

Table of Contents

Definiciones

Compatibilidad de la definición métrica con las previas

Conclusión

Previamente

• La diferenciabilidad en el sentido de distribuciones usa variaciones al lado de soluciones $(\mu_s^{\mu^0,p})_{s\in[0,t]}$ de

$$\partial_s \mu_s + \operatorname{div} (\mu_s \nabla p) = 0, \qquad \mu_0 = \mu^0, \qquad p \in \mathcal{C}_c^{\infty}(\Omega; \mathbb{R}).$$

Previamente

• La diferenciabilidad en el sentido de distribuciones usa variaciones al lado de soluciones $(\mu_s^{\mu^0,p})_{s\in[0,t]}$ de

$$\partial_s \mu_s + \operatorname{div} (\mu_s \nabla p) = 0, \qquad \mu_0 = \mu^0, \qquad p \in \mathcal{C}_c^{\infty}(\Omega; \mathbb{R}).$$

La L-diferenciabilidad es equivalente a la Wasserstein-diferenciabilidad.

Previamente

• La diferenciabilidad en el sentido de distribuciones usa variaciones al lado de soluciones $(\mu_s^{\mu^0,p})_{s\in[0,t]}$ de

$$\partial_s \mu_s + \operatorname{div} (\mu_s \nabla p) = 0, \qquad \mu_0 = \mu^0, \qquad p \in \mathcal{C}_c^{\infty}(\Omega; \mathbb{R}).$$

- La L-diferenciabilidad es equivalente a la Wasserstein-diferenciabilidad.
- El gradiente de Wasserstein pertenece a $\mathrm{Tan}_{\mu}\mathscr{P}_2(\Omega)\subset L^2_{\mu}(\Omega;T\Omega)$, y representa localmente las variaciones de una función $u:\mathscr{P}_2(\Omega)\to\mathbb{R}$ con la siguiente linealización, donde $\eta\in\Gamma_o(\mu,\nu)$:

$$u(\nu) - u(\mu) = \int_{x \in \Omega} \langle \nabla_{\!\scriptscriptstyle W} u(x), y - x \rangle \, d\eta(x, y) + o\left(d_{\mathcal{W}}(\mu, \nu)\right).$$

Previamente

• La diferenciabilidad en el sentido de distribuciones usa variaciones al lado de soluciones $(\mu_s^{\mu^0,p})_{s\in[0,t]}$ de

$$\partial_s \mu_s + \operatorname{div} (\mu_s \nabla p) = 0, \qquad \mu_0 = \mu^0, \qquad p \in \mathcal{C}_c^{\infty}(\Omega; \mathbb{R}).$$

- La L-diferenciabilidad es equivalente a la Wasserstein-diferenciabilidad.
- El gradiente de Wasserstein pertenece a $\mathrm{Tan}_{\mu}\mathscr{P}_2(\Omega)\subset L^2_{\mu}(\Omega;T\Omega)$, y representa localmente las variaciones de una función $u:\mathscr{P}_2(\Omega)\to\mathbb{R}$ con la siguiente linealización, donde $\eta\in\Gamma_o(\mu,\nu)$:

$$u(\nu) - u(\mu) = \int_{x \in \Omega} \langle \nabla_{\!\scriptscriptstyle W} u(x), y - x \rangle \, d\eta(x, y) + o\left(d_{\mathcal{W}}(\mu, \nu)\right).$$

¿Existe una generalización de (1) con estas definiciones?

Averil Prost El D en EDP (6/6) 10 / 17

Dos primeros casos

Por el gradiente de Wasserstein, el mismo cálculo que en el caso Euclidiano implica

$$\varlimsup_{\nu \to \mu} \frac{|u(\nu) - u(\mu)|}{d_{\mathcal{W}}(\mu, \nu)} = |\nabla_{\!\scriptscriptstyle W} u(\mu)|_{L^2_\mu} \,.$$

Dos primeros casos

Por el gradiente de Wasserstein, el mismo cálculo que en el caso Euclidiano implica

$$\overline{\lim_{
u o\mu}}\,rac{|u(
u)-u(\mu)|}{d_{\mathcal{W}}(\mu,
u)}=|
abla_{\!\scriptscriptstyle W}\!u(\mu)|_{L^2_\mu}\,.$$

Notamos que cada curva $(\mu_s^{\mu^0,p})_{s\in[0,t]}$ solución de una ecuación de continuidad con $p\in\mathcal{C}_c^\infty$ se aproxima al orden 1 por la curva

$$\hat{\mu}_s := (id + s\nabla p) \# \mu_0 = \exp_{\mu_0} (s \cdot \nabla p \# \mu_0).$$

Dos primeros casos

Por el gradiente de Wasserstein, el mismo cálculo que en el caso Euclidiano implica

$$\overline{\lim_{
u o\mu}}\,rac{|u(
u)-u(\mu)|}{d_{\mathcal{W}}(\mu,
u)}=|
abla_{\!\scriptscriptstyle W}\!u(\mu)|_{L^2_\mu}\,.$$

Notamos que cada curva $(\mu_s^{\mu^0,p})_{s\in[0,t]}$ solución de una ecuación de continuidad con $p\in\mathcal{C}_c^\infty$ se aproxima al orden 1 por la curva

$$\hat{\mu}_s := (id + s\nabla p) \# \mu_0 = \exp_{\mu_0} (s \cdot \nabla p \# \mu_0).$$

Además, sabemos que $\nabla p \# \mu_0 \in \mathsf{Tan}_{\mu} \mathscr{P}_2(\Omega)$.

Tomamos $\Omega = \mathbb{R}$ con

$$\mu^{0} = \delta_{0}, \qquad \sigma = \frac{1}{2}\delta_{1} + \frac{1}{2}\delta_{-1}, \qquad u = d_{\mathcal{W}}^{2}(\cdot, \sigma).$$

Tomamos $\Omega = \mathbb{R}$ con

$$\mu^{0} = \delta_{0}, \qquad \sigma = \frac{1}{2}\delta_{1} + \frac{1}{2}\delta_{-1}, \qquad u = d_{\mathcal{W}}^{2}(\cdot, \sigma).$$

Vimos con las reglas de cálculo que $|Du(\mu)| = 2d_{\mathcal{W}}(\mu, \sigma)$.

Tomamos $\Omega = \mathbb{R}$ con

$$\mu^{0} = \delta_{0}, \qquad \sigma = \frac{1}{2}\delta_{1} + \frac{1}{2}\delta_{-1}, \qquad u = d_{\mathcal{W}}^{2}(\cdot, \sigma).$$

Vimos con las reglas de cálculo que $|Du(\mu)|=2d_{\mathcal{W}}(\mu,\sigma)$. Sea $s\mapsto \mu_s\coloneqq \exp_{\mu}(s\cdot \xi)=\delta_{s\xi(0)}$ para $\xi\in \mathsf{Tan}_{\mu}$.

Tomamos $\Omega = \mathbb{R}$ con

$$\mu^{0} = \delta_{0}, \qquad \sigma = \frac{1}{2}\delta_{1} + \frac{1}{2}\delta_{-1}, \qquad u = d_{\mathcal{W}}^{2}(\cdot, \sigma).$$

Vimos con las reglas de cálculo que $|Du(\mu)|=2d_{\mathcal{W}}(\mu,\sigma)$. Sea $s\mapsto \mu_s:=\exp_{\mu}(s\cdot\xi)=\delta_{s\xi(0)}$ para $\xi\in\mathsf{Tan}_{\mu}$. Para s pequeño,

$$d_{\mathcal{W}}^{2}(\exp_{\mu}(s \cdot \xi), \sigma) = \frac{|s\xi(0) - 1|^{2} + |s\xi(0) + 1|^{2}}{2}$$

Tomamos $\Omega = \mathbb{R}$ con

$$\mu^{0} = \delta_{0}, \qquad \sigma = \frac{1}{2}\delta_{1} + \frac{1}{2}\delta_{-1}, \qquad u = d_{\mathcal{W}}^{2}(\cdot, \sigma).$$

Vimos con las reglas de cálculo que $|Du(\mu)|=2d_{\mathcal{W}}(\mu,\sigma)$. Sea $s\mapsto \mu_s\coloneqq \exp_{\mu}(s\cdot\xi)=\delta_{s\xi(0)}$ para $\xi\in \mathsf{Tan}_{\mu}$. Para s pequeño,

$$d_{\mathcal{W}}^{2}(\exp_{\mu}(s \cdot \xi), \sigma) = \frac{|s\xi(0) - 1|^{2} + |s\xi(0) + 1|^{2}}{2} = |s\xi(0)|^{2} + 1$$

Tomamos $\Omega = \mathbb{R}$ con

$$\mu^{0} = \delta_{0}, \qquad \sigma = \frac{1}{2}\delta_{1} + \frac{1}{2}\delta_{-1}, \qquad u = d_{\mathcal{W}}^{2}(\cdot, \sigma).$$

Vimos con las reglas de cálculo que $|Du(\mu)|=2d_{\mathcal{W}}(\mu,\sigma)$. Sea $s\mapsto \mu_s:=\exp_{\mu}(s\cdot\xi)=\delta_{s\xi(0)}$ para $\xi\in \mathsf{Tan}_{\mu}$. Para s pequeño,

$$d_{\mathcal{W}}^{2}(\exp_{\mu}(s \cdot \xi), \sigma) = \frac{|s\xi(0) - 1|^{2} + |s\xi(0) + 1|^{2}}{2} = |s\xi(0)|^{2} + 1$$

$$\implies d_{\mathcal{W}}^{2}(\mu_{s}, \sigma) = d_{\mathcal{W}}^{2}(\mu_{s}, \mu_{0}) + d_{\mathcal{W}}^{2}(\mu_{0}, \sigma).$$

Tomamos $\Omega = \mathbb{R}$ con

$$\mu^{0} = \delta_{0}, \qquad \sigma = \frac{1}{2}\delta_{1} + \frac{1}{2}\delta_{-1}, \qquad u = d_{\mathcal{W}}^{2}(\cdot, \sigma).$$

Vimos con las reglas de cálculo que $|Du(\mu)|=2d_{\mathcal{W}}(\mu,\sigma)$. Sea $s\mapsto \mu_s\coloneqq \exp_{\mu}(s\cdot \xi)=\delta_{s\xi(0)}$ para $\xi\in \mathsf{Tan}_{\mu}$. Para s pequeño,

$$d_{\mathcal{W}}^{2}(\exp_{\mu}(s \cdot \xi), \sigma) = \frac{|s\xi(0) - 1|^{2} + |s\xi(0) + 1|^{2}}{2} = |s\xi(0)|^{2} + 1$$

$$\implies d_{\mathcal{W}}^{2}(\mu_{s}, \sigma) = d_{\mathcal{W}}^{2}(\mu_{s}, \mu_{0}) + d_{\mathcal{W}}^{2}(\mu_{0}, \sigma).$$

En consecuencia,

$$\sup_{\xi \in \operatorname{Tan}_{\mu} \mathscr{P}_2(\Omega)} \varlimsup_{s \searrow 0} \frac{\left| d^2_{\mathcal{W}}(\mu_s,\sigma) - d^2_{\mathcal{W}}(\mu_0,\sigma) \right|}{d_{\mathcal{W}}(\mu_s,\mu_0)} = 0.$$

Averil Prost

Recordemos de la última vez que

$$\xi \coloneqq \frac{\delta_{1-0} + \delta_{(-1)-0}}{2} = \exp_{\mu}^{-1}(\sigma) \subset \partial \dot{u}(\mu).$$

Recordemos de la última vez que

$$\xi \coloneqq \frac{\delta_{1-0} + \delta_{(-1)-0}}{2} = \exp_{\mu}^{-1}(\sigma) \subset \partial \dot{u}(\mu).$$

Usando [Gig08, Prop 4.10], para cualquier $\zeta \in \mathbf{Tan}_{\mu}\mathscr{P}_{2}(\Omega)$ tenemos

$$u(\exp_{\mu}(s \cdot \zeta)) - u(\mu) = -2s \sup_{\eta \in \Gamma_{\mu}(\xi,\zeta)} \int_{(x,v,w)} \langle v, w \rangle \, d\eta + o\left(s\right)$$

Recordemos de la última vez que

$$\xi \coloneqq \frac{\delta_{1-0} + \delta_{(-1)-0}}{2} = \exp_{\mu}^{-1}(\sigma) \subset \partial \dot{u}(\mu).$$

Usando [Gig08, Prop 4.10], para cualquier $\zeta \in \mathbf{Tan}_{\mu}\mathscr{P}_{2}(\Omega)$ tenemos

$$\begin{split} u(\exp_{\mu}(s\cdot\zeta)) - u(\mu) &= -2s \sup_{\eta \in \Gamma_{\mu}(\xi,\zeta)} \int_{(x,v,w)} \left\langle v,w \right\rangle d\eta + o\left(s\right) \\ &\geqslant -2s \|\xi\|_{\mu} \|\zeta\|_{\mu} + o\left(s\right), \qquad \text{con ig. si } \zeta = \xi. \end{split}$$

Averil Prost

Recordemos de la última vez que

$$\xi \coloneqq \frac{\delta_{1-0} + \delta_{(-1)-0}}{2} = \exp_{\mu}^{-1}(\sigma) \subset \partial \dot{u}(\mu).$$

Usando [Gig08, Prop 4.10], para cualquier $\zeta \in \mathbf{Tan}_{\mu}\mathscr{P}_{2}(\Omega)$ tenemos

$$\begin{split} u(\exp_{\mu}(s\cdot\zeta)) - u(\mu) &= -2s \sup_{\eta \in \Gamma_{\mu}(\xi,\zeta)} \int_{(x,v,w)} \left\langle v,w \right\rangle d\eta + o\left(s\right) \\ &\geqslant -2s \|\xi\|_{\mu} \|\zeta\|_{\mu} + o\left(s\right), \qquad \text{con ig. si } \zeta = \xi. \end{split}$$

Notamos que $\|\xi\|_{\mu} = d_{\mathcal{W}}(\mu, \sigma)$.

Recordemos de la última vez que

$$\xi \coloneqq \frac{\delta_{1-0} + \delta_{(-1)-0}}{2} = \exp_{\mu}^{-1}(\sigma) \subset \partial \dot{u}(\mu).$$

Usando [Gig08, Prop 4.10], para cualquier $\zeta \in \mathbf{Tan}_{\mu}\mathscr{P}_{2}(\Omega)$ tenemos

$$\begin{split} u(\exp_{\mu}(s\cdot\zeta)) - u(\mu) &= -2s \sup_{\eta \in \Gamma_{\mu}(\xi,\zeta)} \int_{(x,v,w)} \left\langle v,w \right\rangle d\eta + o\left(s\right) \\ &\geqslant -2s \|\xi\|_{\mu} \|\zeta\|_{\mu} + o\left(s\right), \qquad \text{con ig. si } \zeta = \xi. \end{split}$$

Notamos que $\|\xi\|_{\mu} = d_{\mathcal{W}}(\mu, \sigma)$. A lo largo de $s \mapsto \exp_{\mu}(s \cdot \xi)$,

$$\lim_{s \searrow 0} \frac{\left| u(\exp_{\mu}(s \cdot \xi)) - u(\mu) \right|}{d_{\mathcal{W}}(\mu, \exp_{\mu}(s \cdot \xi))} = 2\|\xi\|_{\mu} = 2d_{\mathcal{W}}(\mu, \sigma).$$

Averil Prost

Table of Contents

Definicione

Compatibilidad de la definición métrica con las previas

Conclusión

Esta línea de argumentación viene de [AF14], donde se estudia sistemas de Euler compresible.

Esta línea de argumentación viene de [AF14], donde se estudia sistemas de Euler compresible. La falta de exactitud de la representación impide la transposición de la prueba de unicidad de la solución del caso métrico a la teoría del gradiente de Wasserstein, o la "teoría de Riemann" tomando de F. Otto.

Esta línea de argumentación viene de [AF14], donde se estudia sistemas de Euler compresible. La falta de exactitud de la representación impide la transposición de la prueba de unicidad de la solución del caso métrico a la teoría del gradiente de Wasserstein, o la "teoría de Riemann" tomando de F. Otto.

Sin embargo, el téorema de Brenier asegura que ese tipo de problema no occure con medidas absolutamente continuas con respecto a la medida de Lebesgue. Así, por ejemplo en [FN12], la táctica es de quedarse sobre este conjunto.

El ejemplo lineal

Consideramos $u: \mathscr{P}_2(\mathbb{R}^d) \to \mathbb{R}$ dado por $u(\mu) = \langle \ell, \mu \rangle$.

Distrib.	L- derivada	Derivada Iineal	Derivada natural	Subdif. regular	Subdif. general
$\operatorname{grad}_{\mu}u(\mu)$	$\partial_{\mu}u(\mu)$	$\frac{\delta u}{\delta \mu}(\mu,\cdot)$	$D_{\mu}u(\mu,\cdot)$	$\partial_{\cdot}u(\mu)$, $ abla_{\!\scriptscriptstyle W}u$	$\partial .u(\mu)$
$-\operatorname{div}\left(\mu\nabla\ell\right)$	$\nabla \ell$	ℓ	$\nabla \ell$	$ abla \ell$ sel $^\circ$ de $\partial \ell$	$ abla \ell \# \mu, \\ \mathscr{P}(Gr(\partial \ell)) $
$\begin{array}{c} distrib^{\circ}, \\ dualidad \\ con \\ \mathcal{C}^1_c(\Omega;\mathbb{R}) \end{array}$	pertenece a $L^2_{\mu}(\Omega;T\Omega)$	pertenece a $L^2_\mu(\Omega;\mathbb{R})$	pertenece a $L^2_{\mu}(\Omega;T\Omega)$	pertenece a $T_{\mu}\mathscr{P}_{2}(\Omega)$	pertenece a $T_{\mu}\mathscr{P}_{2}(\Omega)$

Averil Prost El D en EDP (6/6) 16 / 17

Esta parte

• apertura sobre la teoría en espacios metricos

Esta parte

- apertura sobre la teoría en espacios metricos
- Diferencia entre Tan_{μ} y Tan_{μ} .

Esta parte

- apertura sobre la teoría en espacios metricos
- Diferencia entre Tan_{μ} y Tan_{μ} .

La elección de la definición toma en consideración la facilidad de manipulación de la representación asociada.

Esta parte

- apertura sobre la teoría en espacios metricos
- Diferencia entre Tan_{μ} y Tan_{μ} .

La elección de la definición toma en consideración la facilidad de manipulación de la representación asociada.

Preguntas abiertas

• ¿Comportamiento de los sub/supdiferenciales usando ${\bf Tan}_{\mu}\mathscr{P}_2(\Omega)$?

Esta parte

- apertura sobre la teoría en espacios metricos
- Diferencia entre Tan_{μ} y Tan_{μ} .

La elección de la definición toma en consideración la facilidad de manipulación de la representación asociada.

Preguntas abiertas

- ¿Comportamiento de los sub/supdiferenciales usando $\operatorname{Tan}_{\mu}\mathscr{P}_{2}(\Omega)$?
- El estudio de ecuaciones de continuidad impulsadas por campos de medidas recien empezó ([PR13, Pic19]).

¡Gracias!

- [AF14] Luigi Ambrosio and Jin Feng. On a class of first order Hamilton–Jacobi equations in metric spaces. Journal of Differential Equations, 256(7):2194–2245, April 2014.
- [FN12] Jin Feng and Truyen Nguyen. Hamilton–Jacobi equations in space of measures associated with a system of conservation laws. Journal de Mathématiques Pures et Appliquées, 97(4):318–390, April 2012.
- [GHN15] Yoshikazu Giga, Nao Hamamuki, and Atsushi Nakayasu.

 Eikonal equations in metric spaces.

 Transactions of the American Mathematical Society, 367(1):49–66, January 2015.
- [Gig08] Nicola Gigli.
 On the Geometry of the Space of Probability Measures Endowed with the Quadratic Optimal Transport Distance.
 PhD thesis, Scuola Normale Superiore di Pisa, Pisa, 2008.
- [GNT08] Wilfrid Gangbo, Truyen Nguyen, and Adrian Tudorascu. Hamilton-Jacobi Equations in the Wasserstein Space. Methods and Applications of Analysis, 15(2):155–184, 2008.

- [GŚ15a] Wilfrid Gangbo and Andrzej Święch. Existence of a solution to an equation arising from the theory of Mean Field Games. Journal of Differential Equations, 259(11):6573–6643, December 2015.
- [GŚ15b] Wilfrid Gangbo and Andrzej Święch. Metric viscosity solutions of Hamilton–Jacobi equations depending on local slopes. Calculus of Variations and Partial Differential Equations, 54(1):1183–1218, September 2015
- [HK15] Ryan Hynd and Hwa Kil Kim.
 Value functions in the Wasserstein spaces: Finite time horizons.
 Journal of Functional Analysis, 269(4):968–997, August 2015.
- [Pic19] Benedetto Piccoli. Measure Differential Equations. Archive for Rational Mechanics and Analysis, 233(3):1289–1317, September 2019.
- [PR13] Benedetto Piccoli and Francesco Rossi. Transport Equation with Nonlocal Velocity in Wasserstein Spaces: Convergence of Numerical Schemes.
 - Acta Applicandae Mathematicae, 124(1):73-105, April 2013.