

AMENDMENTS TO THE CLAIMS

1. (Original) A process for the production of a fuel composition having a NACE corrosion rating of between 0% and 25%, comprising the steps of:

(i) contacting a fuel with a corrosion inhibitor of formula (I) to provide an initial fuel composition

wherein m and n are each independently an integer from 0 to 10;

wherein R₁ is an optionally substituted hydrocarbyl group;

wherein

either R₂ is OR₄ and R₃ is OR₅, wherein R₄ and R₅ are selected from hydrogen and hydrocarbyl-OH and wherein at least one of R₄ and R₅ is hydrogen;

or R₂ and R₃ together represent —O—;

and

(ii) contacting the initial fuel composition with a caustic material to provide the fuel composition without subsequent addition of a corrosion inhibitor.

2. (Original) A process according to claim 1 wherein m and n are each independently an integer from 0 to 5.

3. (Currently Amended) A process according to claim 1-~~or 2~~ wherein one of m and n is 0 and the other of m and n is 1.

4. (Currently Amended) A process according to claim 1,~~—2 or 3~~ wherein R₁ is an optionally substituted hydrocarbon group.

5. (Currently Amended) A process according to ~~any one of the preceding claims~~ claim 1 wherein R₁ is an optionally substituted alkyl or alkenyl group.

6. (Currently Amended) A process according to ~~any one of the preceding claims~~ claim 1 wherein R₁ is an optionally substituted branched alkyl or alkenyl group.

7. (Currently Amended) A process according to ~~any one of the preceding claims~~ claim 1 wherein R₁ is a polyisobut enyl group.
8. (Currently Amended) A process according to ~~any one of the preceding claims~~ claim 1 wherein R₁ has between 10 and 200 carbon atoms.
9. (Currently Amended) A process according to ~~any one of the preceding claims~~ claim 1 wherein R₁ has between 12 and 32 carbon atoms.
10. (Currently Amended) A process according to ~~any one of the preceding claims~~ claim 1 wherein R₁ has a molecular weight of from 250 to 400.
11. (Currently Amended) A process according to ~~any one of the preceding claims~~ claim 1 wherein R₁ has a molecular weight of approximately 260 or approximately 360.
12. (Currently Amended) A process according to ~~any one of the preceding claims~~ claim 1 wherein R₂ is OR₄ and R₃ is OR₅.
13. (Currently Amended) A process according to ~~any one of the preceding claims~~ claim 1 wherein R₄ and R₅ are selected from hydrogen and (C_xH_{2x})-OH wherein x is an integer of at least 1.
14. (Currently Amended) A process according to ~~any one of the preceding claims~~ claim 1 wherein R₄ and R₅ are selected from hydrogen and (CH₂)_y-OH wherein y is an integer of at least 1.
15. (Currently Amended) A process according to ~~any one of the preceding claims~~ claim 1 wherein R₄ and R₅ are both hydrogen.
16. (Currently Amended) A process according to ~~any one of the preceding claims~~ claim 1 wherein one of m and n is 0 and the other of m and n is 1, R₁ is a polyisobut enyl group with a molecular weight of approximately 260 or 360, R₂ is OR₄, R₃ is OR₅ and R₄ and R₅ are both hydrogen.
17. (Currently Amended) A process according to ~~any one of the preceding claims~~ claim 1 wherein, in step (i), the fuel is treated with 1 to 20 ptb of a corrosion inhibitor of formula (I).

18. (Currently Amended) A process according to ~~any one of the preceding claims~~
claim 1 wherein, in step (i), the fuel is treated with 1 to 10 ptb of a corrosion inhibitor of formula (I).

19. (Currently Amended) A process according to ~~any one of the preceding claims~~
claim 1 wherein, in step (ii), the caustic material is an alkaline solution.

20. (Currently Amended) A process according to ~~any one of the preceding claims~~
claim 1 wherein, in step (ii), the caustic material is a 0.001% - 30% w/w alkaline solution.

21. (Currently Amended) A process according to ~~any one of the preceding claims~~
claim 1 wherein, in step (ii), the caustic material is a 1% - 10% w/w alkaline solution.

22. (Currently Amended) A process according to ~~any one of the preceding claims~~
claim 1 wherein, in step (ii), the caustic material is NaOH(aq) or KOH(aq).

23. (Currently Amended) A process according to ~~any one of the preceding claims~~
claim 1 wherein, in step (ii), the caustic material is NaOH(aq).

24. (Currently Amended) A fuel composition obtained or obtainable by ~~a~~ the process
according to ~~any one of the preceding claims~~ of claim 1.

25. (Original) A method of inhibiting corrosion on a metal surface exposed to a fuel comprising the steps of:

(i) contacting the fuel with a corrosion inhibitor of formula (I) to provide an initial fuel composition

wherein m and n are each independently an integer from 0 to 10;

wherein R₁ is an optionally substituted hydrocarbyl group;

wherein

either R₂ is OR₄ and R₃ is OR₅, wherein R₄ and R₅ are selected from hydrogen and hydrocarbyl-OH and wherein at least one of R₄ and R₅ is hydrogen;

or R₂ and R₃ together represent —O—;

- (ii) contacting the initial fuel composition with a caustic material to provide a fuel composition; and
- (iii) exposing the metal surface to the fuel composition.

Claims 26-31 (canceled).