어서와! 양자 컴퓨팅은 제음이지?

■ 음수가 아닌 정수의 덧셈 연산

- 고전 컴퓨터에서 덧셈 연산기 만들기
 - 전가산기: 두 개의 비트와 carry를 더해서 sum과 carry를 구함
 - Ripple-Carry-Adder: 전가산기를 여러 개 연결해서 덧셈 연산을 수행

■ 진리표가 너희에게 진리를 주리니...

Α	В	Cin
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

S	Cout
0	0
1	0
1	0
0	1
1	0
0	1
0	1
1	1

■ CNOT 게이트의 진리표

a	b
0	0
0	1
1	0
1	1

a	b
0	0
0	1
1	1
1	0

• $CX(a,b) = a \oplus b$

■ CCNOT 게이트의 진리표

a	b	С
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

a	b	С
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	1
1	1	0

• $CCX(a,b,c) = c \oplus ab$

■ 덧셈 연산을 XOR로 치환하기

Α	В	Cin
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

S	Cout
0	0
1	0
1	0
0	1
1	0
0	1
0	1
1	1

- $S = A \oplus B \oplus C_{in}$
- $C_{out} = AB \oplus ((A \oplus B)C_{in})$

■ 양자 게이트로 만드는 덧셈 회로

```
from qiskit import QuantumCircuit, execute, Aer
from qiskit.visualization import plot_histogram
circuit = QuantumCircuit(5, 5)
for i in range(3):
    circuit.h(i)
circuit.barrier()
circuit.cx(0, 3)
circuit.cx(1, 3)
circuit.cx(2, 3)
circuit.ccx(0, 1, 4)
circuit.ccx(0, 2, 4)
circuit.ccx(1, 2, 4)
circuit.barrier()
circuit.measure([0, 1, 2, 3, 4], [4, 3, 2, 1, 0])
circuit.draw()
```


■ 양자 게이트로 만든 전가산기

■ 양자 회로로 Ripple-Carry-Adder 만들기

Any Questions?

주니온TV@Youtube

자세히 보면 유익한 코딩 채널