1

Matrix theory Assignment 15

Shivangi Parashar

Abstract—This document contains the concept of linear functionals.

Download all python codes from

https://github.com/shivangi-975/EE5609-Matrix_Theory/tree/master/Assignment15/ Codes

Download latex-tikz codes from

https://github.com/shivangi-975/EE5609-Matrix_Theory/blob/master/Assignment15/ Assignment 15.tex

1 Problem

In R^3 , let $\alpha_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix}$ and $\alpha_3 = \begin{pmatrix} -1 \\ -1 \\ 0 \end{pmatrix}$. Describe a linear functional f on R^3 such that $f(\alpha_1) = f(\alpha_2) = 0$ but $f(\alpha_3) \neq 0$. If $\alpha = \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix}$ such that $f(\alpha) \neq 0$

2 Solution

Given,
$$\alpha = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
. Let,

$$\mathbf{A} = \begin{pmatrix} \alpha_1 & \alpha_2 & \alpha_3 \end{pmatrix} \qquad (2.0.1)$$

$$\mathbf{AX} = \alpha \qquad (2.0.2)$$

$$\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 1 & -2 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \end{pmatrix} \qquad (2.0.3)$$

 $\mathbf{X} = A^{-1}\alpha$ will give solution of the equation.

$$\begin{pmatrix} 1 & 0 & -1 & 1 & 0 & 0 \\ 0 & 1 & -1 & 0 & 1 & 0 \\ 1 & -2 & 0 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_3 \leftarrow R_3 - R_1} (2.0.4)$$

$$\begin{pmatrix} 1 & 0 & -1 & 1 & 0 & 0 \\ 0 & 1 & -1 & 0 & 1 & 0 \\ 0 & -2 & 1 & -1 & 0 & 1 \end{pmatrix} \xrightarrow{R_3 \leftarrow R_3 + 2R_2} (2.0.5)$$

$$\begin{pmatrix}
1 & 0 & -1 & 1 & 0 & 0 \\
0 & 1 & -1 & 0 & 1 & 0 \\
0 & 0 & -1 & -1 & 2 & 1
\end{pmatrix}
\xrightarrow{R_3 \leftarrow R_3/(-1)}$$
(2.0.6)

$$\begin{pmatrix} 1 & 0 & -1 & 1 & 0 & 0 \\ 0 & 1 & -1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & -2 & -1 \end{pmatrix} \xrightarrow{R_1 \leftarrow R_1 + R_3} (2.0.7)$$

$$\begin{pmatrix}
1 & 0 & 0 & 2 & -2 & -1 \\
0 & 1 & -1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & -2 & -1
\end{pmatrix}
\xrightarrow{R_2 \leftarrow R_2 + R_3} (2.0.8)$$

$$\begin{pmatrix}
1 & 0 & 0 & 2 & -2 & -1 \\
0 & 1 & 0 & 1 & -1 & -1 \\
0 & 0 & 1 & 1 & -2 & -1
\end{pmatrix}$$
(2.0.9)

Thus.

$$A^{-1} = \begin{pmatrix} 2 & -2 & -1 \\ 1 & -1 & -1 \\ 1 & -2 & -1 \end{pmatrix}$$
 (2.0.10)

$$\mathbf{X} = A^{-1}\alpha = \begin{pmatrix} 2 & -2 & -1 \\ 1 & -1 & -1 \\ 1 & -2 & -1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
 (2.0.11)

Given, f is a linear functional on R^3 ,

$$\alpha = \alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 \tag{2.0.12}$$

$$\implies f(\alpha) = \mathbf{X}^T \begin{pmatrix} f(\alpha_1) \\ f(\alpha_2) \\ f(\alpha_3) \end{pmatrix}$$
 (2.0.13)

Given, $f(\alpha_1) = 0$, $f(\alpha_2) = 0$ and $f(\alpha_3) \neq 0$.

$$f(\alpha) = \mathbf{X}^T \begin{pmatrix} 0 \\ 0 \\ f(\alpha_3) \end{pmatrix}$$
 (2.0.14)

$$\implies f(\alpha) = \begin{pmatrix} a \\ b \\ c \end{pmatrix}^{T} \begin{pmatrix} 2 & 1 & 1 \\ -2 & -1 & -2 \\ -1 & -1 & -1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ f(\alpha_{3}) \end{pmatrix} (2.0.15)$$

$$f(\alpha) = \begin{pmatrix} a \\ b \\ c \end{pmatrix}^{T} \begin{pmatrix} f(\alpha_3) \\ -2f(\alpha_3) \\ -f(\alpha_3) \end{pmatrix}$$
 (2.0.16)

Hence,

$$f(\alpha) = f(\alpha_3)(a - 2b - c)$$
 (2.0.17)

Given $\alpha = \begin{pmatrix} 2 & 3 & -1 \end{pmatrix}$ Substituting value of α in equation (2.0.17) we have,

$$f(\alpha) = -3f(\alpha_3) \neq 0$$
 (2.0.18)

Hence proved, $f(\alpha) \neq 0$