

MTH101 (Symmetry)

End Semester Examination / April 10, 2022

50 marks / 180 minutes

Instructions

- 1. Write your name and roll number on the top of every page.
- 2. Write all arguments precisely and do not leave anything to the evaluator's imagination.
- 3. **Mysterious or unsupported answers will not receive credit**. A correct answer, unsupported by calculations or explanation will receive no credit; an incorrect answer supported by substantially correct calculations and explanations *might* still receive partial credit.
- 4. Stop writing at 12:00 noon, and submit your answers by 12:15 PM. Submission must be in the form of a **single PDF file**.
- 1. A point $P = \begin{pmatrix} a \\ b \end{pmatrix} \in \mathbb{R}^2$ undergoes the following operations.
 - (a) First, P is rotated about origin (0,0) by an angle θ . The point thus obtained is P_1 .
 - (b) Then P_1 is reflected about x-axis, to obtain the point P_2 .
 - (c) Finally, the point P_2 is rotated by an angle φ , to obtain the point P_3 .

Express the entire process through matrices. What are the coordinates of P_3 ? [3+2]

2. Consider the group $G := \{1, 2, 3, 4, 5, 6, 7, 8, 9, 0\}$, where the group law + is defined by "unit digit after addition". Thus, 6 + 7 = 3, 4 + 5 = 9, 6 + 4 = 0 and 9 + 8 = 7, etc. (This is very much like group of clock hour addition, except that in this case 12 has been replaced by 0).

- (a) What is the identity element of G? [1]
- (b) Find all $a \in G$ such that a + a + a + a is equal to the identity of G.
- (c) Draw a shape whose group of rotational symmetries is given by G. [2]
- 3. Consider the matrix $A := S_{1,2}S_{2,3}S_{3,1}$, where $S_{p,q}$ are 3×3 swapper matrices. Now, let

 $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation given by $T \begin{pmatrix} a \\ b \\ c \end{pmatrix} = A \begin{pmatrix} a \\ b \\ c \end{pmatrix}$. Is T a rigid linear transformation?

4. Let $(V, +) = (\mathbb{Z}, +)$ be the abelian group of integers under addition. Define

$$\cdot: \mathbb{R} \times \mathbb{Z} \to \mathbb{Z}$$
$$(\alpha, n) \mapsto \alpha.n,$$

where $\alpha.n$:= largest integer that is smaller than the product αn . Is $(\mathbb{Z}, +, \cdot)$ a vector space over \mathbb{R} ?

5. Let
$$u = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \in \mathbb{R}^3$$
. Find two vectors $v, w \in \mathbb{R}^3$ such that the set $S = \{u, v, w\}$ is a basis of the vector space $(\mathbb{R}^3, +, \cdot)$.

6. Consider a paralleleogram P whose nonparallel sides are not equal.

Determine the group of symmetries of P.

7. Find all angles θ for which the rotation matrix $R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ has an eigenvector in \mathbb{R}^2 .

[5]

[5]

8. On the collection $G := \{\Box, \bigcirc, \bullet, \circ\}$ of four symbols, an operation is defined by the following composition table:

Is *G* a group under this operation?

- 9. Determine, if the following statement is true about group actions. "Consider a group action $G \times S \to S$. If there is $s \in S$ such that g.s = h.s for all $g, h \in G$, then g.t = h.t for all $t \in S$ and all $g, h \in G$."
- 10. For the vector space $(M_2(\mathbb{R}), +, \cdot)$, find $S \subseteq M_2(\mathbb{R})$ such that span $(S) = M_2(\mathbb{R})$ and none of the entries of any element of S is equal to 0. [5]