

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS P2

NOVEMBER 2011

MEMORANDUM

MARKS: 150

This memorandum consists of 22 pages.

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- If a candidate has crossed out an attempt of a question and not redone the question, mark the crossed out version.
- Consistent accuracy applies in **ALL** aspects of the marking memorandum.
- Assuming answers/values in order to solve a problem is not acceptable.

QUESTION 1

1.1	Median = 42	√answer
		(1)
1.2	Lower quartile = 32 Upper quartile = 46 Inter quartile range = 46 – 32 = 14 Answer only: FULL MARKS	✓ lower quartile ✓ upper quartile ✓ answer (3)
1.3	20 30 40 50 60 70	✓ box-and- whisker with a median ✓ skewness ✓ indicating 5 number summary 27; 32; 42; 46; 62 or correct scale (3)
1.4	There is a greater spread of scores to the right of the median (42). OR	✓ greater spread ✓ right of median (42) (2)
	There is a greater spread of scores in the top 50%.	✓ greater spread ✓ top 50% (2)
	OR	
	The spread of the scores on the left hand side of the median is closer to each other.	✓ spread closer ✓ left of median (2)
	OR	
	The greatest spread of scores lies between Q ₃ and the maximum value.	✓ greater spread ✓ between Q ₃ and max (2)
	 Note: Description about the spread based on the box-and-whisker diagram must be accepted. If it is indicated that it is skewed to the left because the mean is less than the median: full marks 	[9]

2.1	Mean $=$ $\frac{\sum_{i=1}^{n} x_i}{n} = \frac{580}{8} = 72,5$ Note : If rounded off to 73: 1 mark	Answer only: FULL MARKS	✓ 580 ✓ answer	(2)
2.2	Standard deviation (σ) = 2,78 (2,7838821) Note : If rounded off to 2,8: 1 mark	81)	√√ answer	(2)
2.3	∴ 2 golfers' scores lie outside 1 standard de The interval for 1 standard deviation of the m (72,5 – 2,78; 72,5 + 2,78) = (69,72; 75,28)		✓ interval ✓ number	(2) [6]

QUESTION 3

3.1	30	√ 30	
			(1)
3.2	Linear, the points seem to form a straight line.	✓ linear	
		✓ reason	
			(2)
3.3	The greater the number of hours spent watching TV, the lower the	✓ deduction	
	test scores		(1)
	OR		
	The less time a person spends watching TV, the higher the test		
	score.		
	OR		
	Negative correlation between the variables		
	OR		
	Indirect relationship between the variables		
3.4	60 marks. (Accept 50 -70 marks)	✓✓ deduction	
			(2)
			[6]

4.1				
	TIME	FREQUENCY	CUMULATIVE FREQUENCY	One mark for every two correct
	1 ≤ t < 3	3	3	cumulative
	3 ≤ t < 5	6	9	frequency values
	5 ≤ t < 7	7	16	
	7 ≤ t < 9	8	24	
	9 ≤ t < 11	5	29	(3)
	11 ≤ t <13	1	30	
	Note: Only cumulative	frequency column – f	full marks	
4.2	Cumulative Freque	ency Graph of time taken	to answer	
	35 30 25 20 15 10 5 0 3	6 9 Time (in minutes)	12 15	✓ upper limit ✓ cumulative frequency (at least 4 of 6 y- values correctly plotted) ✓ grounding at (1;0) ✓ shape (not joined by a ruler; smooth curve)
4.3	Estimated number of learn approximately 5 learners Approximate percentage =	(Accept 6)		✓ 5 learners ✓ 16,67% (2)
	Note: If using 9 learners and applications 15,5 learners and a			[9]

$$5.1 m_{PO} \times m_{OR} = -1$$

$$\left(\frac{a-0}{4+4}\right)\left(\frac{a-0}{4-6}\right) = -1$$

$$\left(\frac{a}{8}\right)\left(\frac{a}{-2}\right) = -1$$

$$\frac{a^2}{-16} = -1$$

$$a^2 = 16$$

$$a = \pm 4$$

a = 4; since a > 0

OR

PQ² + QR² = PR²

$$(8^2 + a^2) + (a^2 + 2^2) = 10^2$$

∴ $2a^2 = 32$

$$\therefore 2a^2 = 32$$

$$\therefore a^2 = 16$$

$$\therefore a = 4$$

OR

Let A be the midpoint of diagonal PR.

Then
$$A(\frac{-4+6}{2}; \frac{0+0}{2}) = A(1; 0)$$
.

AQ = AR (diagonals equal and bisect each other) $AQ^2 = AR^2$

$$AQ^2 = AR^2$$

$$(1-4)^2 + (0-a)^2 = 5^2$$

$$9 + a^2 = 25$$

$$a^2 = 16$$

$$a = 4$$

Note:

If candidate uses a = 4 at the beginning, then zero marks.

$$\checkmark \frac{a-0}{4+4} \text{ or } \frac{a}{8}$$

$$\sqrt{\frac{a-0}{4-6}}$$
 or $\frac{a}{-2}$

✓ using gradient of perpendicular lines

$$\checkmark a^2 = 16 \tag{4}$$

√using Pythagoras $\sqrt{(8^2 + a^2)} + (a^2 + 2^2)$ $\sqrt{10^2}$

(4)

(4)

 \checkmark (1; 0) is centre

Copyright reserved

Please turn over

NSC - Memorandum

5.2 Equation of line SR:

 $m_{PQ} = \frac{4-0}{4-(-4)} = \frac{1}{2}$

 $m_{SR} = m_{PQ} = \frac{1}{2}$

 $y - y_1 = m(x - x_1)$

 $y - 0 = \frac{1}{2}(x - 6)$

 $y = \frac{1}{2}x - 3$

PQ | | SR

OR

 $\checkmark m_{PQ} = \frac{1}{2}$

 $\checkmark m_{SR} = \frac{1}{2}$

✓ substitution of m and (6; 0)

✓ standard form

(4)

 $m_{PQ} = \frac{1}{2}$

 $m_{PQ} = m_{SR} = \frac{1}{2}$

PQ | | SR

 $y = \frac{1}{2}x + c$

 $0 = \left(\frac{1}{2}\right)\left(\frac{6}{1}\right) + c$

-3 = c

 $y = \frac{1}{2}x - 3$

OR

S(-2; -4) (translation)

 $m_{RS} = \frac{0+4}{6+2} = \frac{1}{2}$

 $\therefore y + 4 = \frac{1}{2}(x+2)$

 $\therefore y = \frac{1}{2}x - 3$

 $\checkmark m_{PQ} = \frac{1}{2}$

 $\checkmark m_{SR} = \frac{1}{2}$

✓ substitution of m and (6; 0)

✓ standard form

 $\checkmark S(-2;-4)$

 $\checkmark m_{SR} = \frac{1}{2}$

✓ substitution of m and (-2; -4)

√ standard form (4)

5.3

Eq. of RS: $y = \frac{1}{2}x - 3$

Eq. of SP: y - 0 = -2(x + 4)

 $\therefore \frac{1}{2}x - 3 = -2(x + 4)$

 $\therefore x = -2$ y = -4 Answer only:

FULL MARKS

 $\sqrt{m} = -2$ ✓ eq. of SP

 \checkmark value of x

 \checkmark value of y

(4)

Copyright reserved Please turn over

OR

NSC - Memorandum Midpoint PR = $M\left(\frac{-4+6}{2}; \frac{0+0}{2}\right) = (1; 0)$ Let S(x; y). Then since M(1; 0) is this, the midpoint of QS is: $\frac{y_1 + y_2}{2} = 0$ $\therefore \frac{x+4}{2} = 1$ and $\frac{y+4}{2} = 0$ x + 4 = 2y + 4 = 0 \checkmark value of x \checkmark value of vx = -2y = -4**(4)** OR The translation that sends Q(4; 4) to R(6; 0) also sends P(-4; 0) to √ method $\checkmark 2 \text{ or } x + 2$ (6;0) = (4+2;4-4) $\sqrt{-4}$ or v-4 \therefore S = (-4 + 2; 0 - 4) = (-2; -4)✓ answer (4) OR The translation that sends Q(4; 4) to P(-4; 0) also sends R(6; 0) to √ method S. $\sqrt{-8}$ or x-8(-4;0) = (4-8;4-4) \checkmark – 4 or y – 4 \therefore S = (6-8; 0-4) = (-2; -4)✓ answer **(4)** OR $m_{PO} = m_{SR}$ ✓ equations using $\frac{1}{2} = \frac{y}{x - 6}$ the gradient 2v = x - 6(1) $m_{PS} = m_{SR}$ -2y = 4x + 16 (2) ✓ adding the equations (1) + (2) : 0 = 5x + 10x = -2 \checkmark value of x*Substitute* : 2y = -2 - 6 = -8 \checkmark value of vy = -4**(4)** PR = 6 - (-4) $\sqrt{6-(-4)}$ 5.4 ✓ 10 =10Answer only: (2) OR **FULL MARKS** ✓ substitution in $PR^2 = (6+4)^2 + (0-0)^2$

Copyright reserved Please turn over

PR = 10

correct formula

(2)

✓ 10

Mathen	matics/P2 8 NSC – Memorandum	DBE/November 2011
5.5	midpoint PR= $(\frac{6+(-4)}{2}; \frac{0+0}{2}) = (1; 0)$	✓ midpoint
	radius of circle = $\frac{1}{2}$ PR = 5 units Answer only: FULL MARKS	✓ radius
	$\therefore (x-1)^2 + (y-0)^2 = 5^2$ $(x-1)^2 + y^2 = 25$	✓ eq. of circle in correct form (3)
5.6	$(x-1)^2 + y^2 = 25$ substitute Q(4; 4): LHS = $(4-1)^2 + 4^2$	
	= 25 = RHS	✓ substitute Q(4;4) ✓ LHS = RHS
	 ∴ Q is a point on the circle Note: If substitute point into equation resulting in 25 = 25: 1 mark 	(2)
	No conclusion: 1 mark OR	
	Distance from centre (1; 0) to Q(4; 4)	✓ = 5
	∴ Q is a point on circle, r = 5 OR PR is the diameter of circle PQR therefore Q lies on circle	✓ conclusion (2) ✓ diameter
	($P\hat{Q}R = 90^{\circ}$)	$\checkmark P\hat{Q}R = 90^{\circ}) (2)$
	$(4-1)^2 + y^2 = 25$ $y^2 = 16$	✓ substitute $x = 4$
	$\therefore y = 4$	✓ conclusion (2)
	∴ Q is a point on the circle OR	
	$(x-1)^2 + 4^2 = 25$ $(x-1)^2 = 9$	✓ substitute $y = 4$

Note: No CA mark applies in 5.7 if *k* and *l* are not minimums.

Answer only:

FULL MARKS

✓ conclusion

 $\checkmark k = 4$

 $\checkmark l = 4$

 $\checkmark k + l = 8$

(3)

[22]

Copyright reserved Please turn over

P needs to shift at least 4 units to the right and S needs to shift at least

4 units up for the image of PQRS in first quadrant.

: minimum value of k is 4 and minimum value of l is 4

x-1=3x=4

5.7

:. Q is a point on the circle

: minimum value of k + l is 8

C 1		(1 0
6.1	$x_C = x_B = -1$	\checkmark value of x
	$y_C = y_B + 5 = 6$	\checkmark value of y
	\therefore C(-1; 6)	(2)
6.2	$BA \perp CA$ (tangent \perp radius)	✓ BA⊥CA or
	$\therefore CA^2 = BC^2 - AB^2 $ (Pythagoras)	$BAC = 90^{\circ}$
	$=(5)^2-(\sqrt{20})^2=5$	✓ substitution into
		Pythagoras
	$\therefore CA = \sqrt{5} \text{ or } 2,24 \text{ units}$	✓ answer
		(3)
6.3	$\sqrt{5}$ $\sqrt{5}$ 1	✓ tan ratio (in any
	$\tan \theta = \frac{\sqrt{5}}{\sqrt{20}} = \frac{\sqrt{5}}{2\sqrt{5}} = \frac{1}{2}$	form)
	V20 2V3 2	(1)
6.4	$m_{DC} \times m_{AB} = -1$	$\checkmark m_{DC} \times m_{AB} = -1$
	. 1	. 1
	$m_{DC} = \tan \theta = \frac{1}{2}$	
	1	
	$m_{DC} = \frac{1}{2}$	
	$m_{AB}=-2$	(2)

6.5 Eq. of DC: $y-6 = \frac{1}{2}(x+1)$ ✓ DC: subst *m* and (-1; 6)✓ eq. of DC Answer only: $y = \frac{1}{2}x + \frac{13}{2}$ (-3;5): 1 mark Eq. of AB: y-1=-2(x+1)✓ eq. of AB y = -2x - 1 $-2x-1=\frac{1}{2}x+\frac{13}{2}$ √ equating equations $-\frac{5}{2}x = \frac{15}{2}$ x = -3 \checkmark value of xy = -2(-3) - 1 \checkmark value of y(6)A (-3; 5)OR Eq. of DC: $y-6 = \frac{1}{2}(x+1)$ ✓ DC: subst *m* and (-1; 6) $y = \frac{1}{2}x + \frac{13}{2}$ ✓ eq. of DC Eq. of AB: y - 1 = -2(x + 1)✓ subt m and y = -2x - 1(-1;1)At A: ✓ eq. of AB x - 2(-2x - 1) + 13 = 0x + 4x + 2 + 13 = 0 \checkmark value of x5x = -15 \checkmark value of yx = -3(6)y = -2(-3) - 1 = 5and A(-3;5)OR

Eq. of DC:
$$y-6=\frac{1}{2}(x+1)$$

 $y=\frac{1}{2}x+\frac{13}{2}$
Eq. of circle: $(x+1)^2+(y-1)^2=20$
At A:
 $(x+1)^2+(\frac{1}{2}x+\frac{13}{2}-1)^2=20$
 $(x+1)^2+(\frac{1}{2}x+\frac{11}{2})^2=20$
 $(x+1)^2+(\frac{1}{2}x+\frac{11}{2})^2=20$

OR

Draw AE \perp BC

$$\cos\theta = \frac{2\sqrt{5}}{5} = \frac{AE}{\sqrt{5}} = \frac{BE}{2\sqrt{5}}$$

$$\therefore AE = \frac{2 \times 5}{5} = 2$$

$$BE = \frac{4 \times 5}{5} = 4$$

$$x_A = -1 - AE = -1 - 2 = -3$$

$$\therefore y_A = 1 + BE = 4 + 1 = 5$$

$$\therefore A(-3;5)$$

$$\sqrt{\frac{2\sqrt{5}}{5}} = \frac{AE}{\sqrt{5}}$$

$$\checkmark$$
AE = 2

$$\checkmark \frac{2\sqrt{5}}{5} = \frac{BE}{2\sqrt{5}}$$

$$\checkmark$$
 BE = 1

B(-1;1)

$$\begin{array}{c} \checkmark -3 \\ \checkmark 5 \end{array} \tag{6}$$

OR

$$(x+1)^2 + (y-1)^2 = 20$$
 (1)

$$y = -2x - 1 \tag{2}$$

$$y = -2x - 1$$

$$(x+1)^{2} + (-2x-2)^{2} = 20$$

$$x^2 + 2x + 1 + 4x^2 + 8x + 4 - 20 = 0$$

$$5x^2 + 10x - 15 = 0$$

$$x^2 + 10x - 15 = 0$$

$$(x+3)(x-1)=0$$

$$x = -3$$
 or $x \neq 1$

subst (1) in (2)

$$\therefore y = 5$$

 \checkmark subst m and (-1;1)

✓ eq of AB ✓ eq of circle

✓ substation

 \checkmark value of x

 \checkmark value of y (6)

NSC - Memorandum

OR

Equation AC: $y = \frac{1}{2}x + 6\frac{1}{2}$

$$\tan\theta = \frac{1}{2}$$

$$\theta = 26,57^{\circ}$$

$$AP = \sqrt{5}\cos 26,57^{\circ}$$

$$AP = 2$$

$$CP = \sqrt{5}\sin 26,57^{\circ}$$

$$CP = 1$$

$$\therefore x = -1 - 2 = -3$$

$$y = 6 - 1 = 5$$

$$\therefore A(-3;5)$$

6.6

Area \triangle ABC = $\frac{1}{2}(\sqrt{5})(\sqrt{20}) = 5$

Eqn. of DC is
$$y = \frac{1}{2}x + \frac{13}{2}$$

Therefore OF = $\frac{13}{2}$ and OD = 13.

Area
$$\triangle ODF = \frac{1}{2} \left(\frac{13}{2} \right) (13) = \frac{169}{4}$$

Area \triangle ABC: Area \triangle ODF = 5: $\frac{169}{4}$ = 20:169

$$DF^2 = 13^2 + (\frac{13}{2})^2 = \frac{845}{4}$$

$$DF = \frac{13.\sqrt{5}}{2}$$

$$\frac{\Delta ABC}{\Delta ODF} = \frac{\frac{1}{2}(5)(\sqrt{20})\sin\theta}{\frac{1}{2}(13)(\frac{13.\sqrt{5}}{2})\sin\theta}$$
$$= \frac{20}{169}$$

 $\checkmark \theta = 26,57^{\circ}$

$$AP = \sqrt{5}\cos 26,57^{\circ}$$

 \checkmark AP = 2

$$\checkmark CP = 1$$

 \checkmark value of x

 \checkmark value of y

 $\checkmark \frac{1}{2}(\sqrt{5})(\sqrt{20})$

(6)

(5)

 \checkmark OF = $\frac{13}{2}$

 \checkmark OD = 13

$$\checkmark \frac{1}{2} \left(\frac{13}{2} \right) (13)$$

✓ answer

 $+\left(\frac{13}{2}\right)^2 = \frac{845}{4}$

 $\checkmark DF = \frac{13.\sqrt{5}}{2}$

 $\sqrt{\frac{1}{2}}(5)(\sqrt{20})\sin\theta$

 $\sqrt{\frac{1}{2}}(13)(\frac{13.\sqrt{5}}{2})\sin\theta$

✓ answer

OR	
\triangle ODF is an enlargement of \triangle ABC ∴ area \triangle ABC : area \triangle ODF = AB ² : OD ² = 20 : OD ²	✓ enlargement
1 12	$AB^2:OD^2 = 20:OD^2$
$x_D = -13$ OD = 13 ∴ area \triangle ABC : area \triangle ODF = AB ² : OD ² = 20 : 169	$\checkmark -13$ \checkmark answer (5)
aica AABC . aica AODF - AB . OD - 20 . 109	[19]

7.1	$(x;y) \rightarrow (x+4;y) \rightarrow (-x-4;-y)$	$\sqrt{x}+4$
	OR	$\checkmark y$
	$(x;y) \rightarrow (-x-4;-y)$	$\begin{array}{c} \checkmark y \\ \checkmark -x - 4 \\ \checkmark -y \end{array}$
		•
		(4)
7.2	New centre = $(-2; -5)$	✓ (-2;-5)
	$(x+2)^2 + (y+5)^2 = 16$	$\checkmark (-2; -5)$ $\checkmark (x+2)^2 + (y+5)^2$
	2 · 4 · · · 4 · · · 2 · · 10 · · · 25 · 16 · · 0	✓ 16
	$x^2 + 4x + 4 + y^2 + 10y + 25 - 16 = 0$	√ simplification
	$x^2 + y^2 + 4x + 10y + 13 = 0$	(4)
		[8]

QUESTION 8

8.1	Rotation of 90° anticlockwise about the origin.	✓ rotation 90° ✓ anticlockwise (2)
	OR	
	Rotation of 270° clockwise about the origin.	✓ rotation 270° ✓ clockwise (2)
	Note: if reflection of 90 anticlockwise: 0 marks	Clockwise (2)
8.2	D(5; -4) $D^{\prime}(4; 5)$	✓ 4 ✓ 5
		(2)
8.3	G (-7; -6)	√ -7 √ -6
		(2)
8.4	Area ABCD = $5 \times 2 = 10$ square units	✓ area ABCD = 10
	Area MNRP = $10 \times \left(\frac{3}{2}\right)^2 = \frac{45}{2}$	\checkmark area MNRP $= \frac{45}{2}$
	Area ABCD × Area MNRP	
	$= 10 \times \frac{9}{4} \times 10$,
	$= 225 \text{ (units)}^4$	√ 225 (3)
	OR	

Product =
$$\left(\frac{3}{2}\right)^2 \times (\text{area ABCD})^2$$

$$= \frac{9}{4} \times (5 \times 2)^2$$

$$= 225 \text{ (units)}^4$$
Note: CA will apply if $\left(\frac{3}{2}\right)^2$ used in calculation.
(3)

9.3	9.3.1	$r = 5$ $\sin R\hat{O}P = \frac{3}{5} = 0.6$		✓ 5 ✓ ratio	(2)
	9.3.2	$R\hat{O}P = 36,87^{\circ}$ $Q\hat{O}P = 180^{\circ} - 36,869^{\circ}$ $Q\hat{O}P = 143,13^{\circ}$	Answer only: Full Marks	✓ 36,869° ✓ 143,13°	(2)

NSC – Memorandum

	NSC	C – Memorandum	
9.3.3	$x_m = x\cos\theta + y\sin\theta$ $a = 4\cos115^\circ + 3\sin115^\circ$ $a = 1,03$	Note: Penalise 1 mark for rounding incorrectly Note: If incorrect angle is used in the <i>x</i> - formula: 1 mark OR	✓ formula ✓ substitution of values ✓ a = 1,03 (3)
	Rotation of 115° clockwise $x_m = x \cos \theta - y \sin \theta$ $a = 4 \cos 245^\circ - 3 \sin 245^\circ$ $a = 1,03$	= 245° anticlockwise	✓ formula ✓ substitution of values ✓ $a = 1,03$ (3)
		OR	
	$\tan P\hat{O}R = \frac{3}{4}$ $P\hat{O}R = 36,86^{\circ}$		✓ 36,86°
	<i>MÔR</i> = 78,13°		✓ cos ratio
	$\cos M\hat{O}R = \frac{a}{5}$ $a = 5 \cos 78,13^{\circ}$ $a = 1,03$		$\checkmark a = 1,03 \tag{3}$
)		[18]

QUESTION 10

10.1	$f(225^{\circ}) = 2$ $\therefore a \tan 225^{\circ} = 2$ $\therefore a = 2$ g(0) = 4 $\therefore b \cos 0^{\circ} = 4$ $\therefore b = 4$ Answer only: Full marks	✓ substitution ✓ $a = 2$ ✓ substitution ✓ $b = 4$	
			(4)
10.2	Minimum value of $g(x) + 2 = -4 + 2 = -2$ Answer only: Full marks	√-4 √-2	(2)
10.3	Period = $\frac{180^{\circ}}{\frac{1}{2}}$ = 360° Answer only: Full marks	$\frac{180^{\circ}}{\frac{1}{2}}$ $\checkmark 360^{\circ}$	(2)

NSC - Memorandum

10.4	At P $f(\theta) = g(\theta)$	
	$2\tan\theta = 4\cos\theta$	$\sqrt{2}\tan\theta = 4\cos\theta$
	for $180^{\circ} - \theta$: $2\tan(180^{\circ} - \theta) = -2\tan\theta$	\checkmark 2tan (180° – θ)
	and $4\cos(180^{\circ} - \theta) = -4\cos\theta$	$=$ $-2\tan\theta$
	$2 \tan \theta = 4 \cos \theta \text{ at P}$	$\checkmark 4\cos(180^{\circ} - \theta)$
	\therefore -2 tan $\theta = -4 \cos \theta$	$=-4\cos\theta$
	∴ $2\tan (180^{\circ} - \theta) = 4\cos (180^{\circ} - \theta)$ at Q	\checkmark 2tan (180° – θ)
		$= 4\cos(180^{\circ} - \theta)$
		(4)
	OR	
	$2\tan\theta = 4\cos\theta$	
	$\frac{\sin\theta}{\cos\theta} = 2\cos\theta$	1 aquation
	$\frac{1}{\cos \theta} = 2\cos \theta$	✓ equation
	$\sin\theta = 2\cos^2\theta$	
	$=2(1-\sin^2\theta)$	
	$2\sin^2\theta + \sin\theta - 2 = 0$	
	$\sin \theta = \frac{-1 \pm \sqrt{1 - 4(2)(-2)}}{4}$	
	$\sin\theta = 0.78077$	$\checkmark \sin \theta = 0.78077$
	$\theta = 51,33^{\circ} \text{ or } 128,67^{\circ}$	√51,33°
	:. the x - coordinate of Q is 180° - x_p	✓ 128,67° (4)
	·	[12]

QUESTION 11

11.2	$AC^2 = 5^2 + 5^2 - 2(5)(5)\cos 50^\circ$	✓ use of cosine
	$AC^2 = 17,86061952$	rule
	AC = 4,23 units	✓ substitution ✓ answer
	OR	(3)
	$\hat{A} = \hat{C} = 65^{\circ}$ (angles opposite equal sides)	✓ use of sine
	$\frac{\sin 65^{\circ}}{5} = \frac{\sin 50^{\circ}}{AC}$	rule
		✓substitution
	$AC = \frac{5\sin 50^{\circ}}{\sin 65^{\circ}}$	√ answer
	= 4.23 units	(3)
	OR	
		Z 1
	$\sin 25^\circ = \frac{\frac{1}{2}(AC)}{5}$	√sketch/diagram
	$\sin 25^\circ = \frac{2}{5}$	1 40
	$AC = 2(5)\sin 25^{\circ}$ $25^{\circ}25^{\circ}$	$\checkmark \sin 25^\circ = \frac{\frac{1}{2}AC}{5}$
	= 4,23 units 5	5
		✓answer (3)
	65° G	
	A 203 11 03 C	
	OR	
	1 (10)	
	$\cos 65^\circ = \frac{2^{(AC)}}{2}$	
	5	√sketch/diagram
	$AC = 2(5)\cos 65^{\circ}$	$\checkmark \cos 65^\circ = \frac{\frac{1}{2}(AC)}{5}$
	AC = 4,23 units	$\checkmark \cos 65^\circ = \frac{2}{5}$
		✓answer (3)
11.3	$\tan 25^\circ = \frac{CF}{AC}$	(ratio
		✓ ratio ✓ CF as subject
	$\therefore CF = 4.23 \times \tan 25^{\circ}$	✓ answer
	$\therefore CF = 1,97 \text{ units}$	(3)
	OR	
	$\frac{FC}{\sin 25^\circ} = \frac{4,23}{\sin 65^\circ}$	✓ sine rule
		✓ FC as subject
	$FC = \frac{4,23\sin 25^{\circ}}{\sin 65^{\circ}}$	✓ answer
	$\sin 65^\circ$ = 1,97 units	(3)
	— 1,7 / ини	[8]

Mathematics/P2 19 DBE/November 2011

QUESTION 12

12.1	$\sin(360^{\circ} + 90^{\circ} + r - \alpha)$	
12.1	$LHS = \frac{\sin(360^\circ + 90^\circ + x - \alpha)}{\cos(\alpha - x)}$	✓ subtracting 360°
		$\sqrt{\cos(x-\alpha)}$
	$=\frac{\sin(90^\circ + x - \alpha)}{\cos(\alpha - x)}$	
	$=\frac{\cos(x-\alpha)}{\cos(\alpha-x)}$	$\sqrt{\cos(\alpha-x)}$
		C 05(a 3)
	$=\frac{\cos(\alpha-x)}{\cos(\alpha-x)}$	(3)
	=1	
	OR	
	$\sin[90^{\circ} - (\alpha - x)]$	
	$LHS = \frac{\sin[90^{\circ} - (\alpha - x)]}{\cos(\alpha - x)}$	✓ subtracting 360°
	$\cos(\alpha - x)$	✓ writing as
	$=\frac{\cos(\alpha-x)}{\cos(\alpha-x)}$	$90^{\circ} - (\alpha - x)$ $\checkmark \cos(\alpha - x)$
	= 1	$V \cos(\alpha - x)$
	= RHS	(3)
12.2	$\cos 2x = 1 - 3\cos x$	✓
	$2\cos^2 x - 1 = 1 - 3\cos x$	$\cos 2x = 2\cos^2 x - 1$
	$2\cos^2 x + 3\cos x - 2 = 0$	✓ factorisation
	$(2\cos x - 1)(\cos x + 2) = 0$	$\sqrt{\cos x} = \frac{1}{2}$
	$\cos x = \frac{1}{2} \qquad \text{or } \cos x = -2$	√ 60°
	$\frac{2}{n/a}$	✓ 300°
	u = 600 + 1, $2600 + 1$, $a = 7$ or $u = 2000 + 1$, $2600 + 1$, $a = 7$	✓ + k.360°
	$x = 60^{\circ} + \text{k.}360^{\circ}$; $k \in Z$ or $x = 300^{\circ} + \text{k.}360^{\circ}$; $k \in Z$	$\checkmark k \in Z$ (7)
	OR	
	$x = \pm 60^{\circ} + \text{k.360}^{\circ}$; $k \in \mathbb{Z}$	
12.3.1	LHS:	
	$\frac{\sin A \cos B - \cos A \sin B}{}$	/i4i. · 1
	$\sin B \cos B$	✓ writing as single fraction
	$=\frac{\sin(A-B)}{\sin B\cos B}$	✓ comp. angle
	$\sin B \cos B$ $2\sin(A-B)$	expansion
	$RHS = \frac{2\sin(A - B)}{2\sin B \cos B}$	✓ comp. angle
	$=\frac{\sin(A-B)}{\sin(A-B)}$	expansion ✓ simplification
	$=\frac{\sin(x-y)}{\sin B \cos B}$	· simplification
	= LHS	(4)

NSC – Memorandum OR LHS: $\sin A \cos B - \cos A \sin B$ ✓ writing as single $\sin B \cos B$ $=\frac{\sin(A-B)}{}$ fraction ✓ comp. angle $\sin B \cos B$ expansion $2\sin(A-B)$ $= \frac{2\sin \alpha}{2\sin B\cos B}$ ✓ mult. by 2 ✓ comp. angle $=\frac{2\sin(A-B)}{1-B}$ expansion $\sin 2B$ (4) = RHSOR $RHS = \frac{2\sin(A-B)}{\sin(A-B)}$ $= \frac{2(\sin A \cos B - \cos A \sin B)}{2}$ ✓ expansion $2\sin B\cos B$ ✓ expansion $= \frac{\sin A \cos B - \cos A \sin B}{-}$ ✓ divide by 2 ✓ write as separate $\sin B \cos B$ fractions $= \frac{\sin A \cos B}{\cos A} - \frac{\cos A \sin B}{\cos A}$ $\sin B \cos B \quad \sin B \cos B$ (4) $=\frac{\sin A}{\cos A}$

 $\sin B \cos B$

= LHS

10.2.2()	4 CD	
12.3.2(a)	A = 5B	✓ recognising
	$\frac{\sin 5B}{\cos 5B} - \frac{\cos 5B}{\cos 5B} = \frac{2\sin(5B - B)}{\cos 5B}$	A = 5B
	$\sin B \cos B \sin 2B$	✓ substituting A = 5B
	$=\frac{2\sin 4B}{\sin 4B}$	$\sqrt{\sin 4B}$
	$-\frac{1}{\sin 2B}$	$= 2\sin 2B \cos 2B$
	$4\sin 2B\cos 2B$	- 28111 2D COS 2D
	$={\sin 2B}$	
	$=4\cos 2B$	
	- 4003 <i>2D</i>	(3)
	OR	(-)
	$\sin 5B \cos 5B$	
	$\frac{\sin B}{\sin B} - \frac{\cos B}{\cos B}$	
	$\sin 5B \cos B - \cos 5B \sin B$	
	= 	
	$\sin B \cos B$	
	$=\frac{\sin(5B-B)}{\sin(2B-B)}$	✓ writing as single
	$\sin B \cos B$	fraction
	$=\frac{\sin 4B}{\sin 4B}$	/ · 4D
	$= \frac{1}{2}(2)\sin B\cos B$	✓ sin 4B
	$=$ 2 $(2)\sin B \cos B$	$= 2\sin 2B \cos 2B$
	$2\sin 2B\cos 2B$	
	$-\frac{1}{1}$	✓compound angle
	$\frac{1}{2}\sin 2B$	in denominator
	$=4\cos 2B$	in denominator
		(3)
12.3.2(b)	B = 18°	✓ recognising
	$\sin 90^{\circ} \cos 90^{\circ}$	B = 18°
	$\frac{\sin 30}{\sin 18^{\circ}} - \frac{\cos 30}{\cos 18^{\circ}} = 4\cos 2(18)^{\circ}$	✓ substituting
		B = 18°
	$\therefore \frac{1}{\sin 18^{\circ}} - 0 = 4\cos 36^{\circ}$	✓ simplify
	$\therefore \frac{1}{\sin 18^{\circ}} = 4\cos 36^{\circ}$	
	5111 1 0	(3)
12.2.2()	I -4 -: 100 —	
12.3.2(c)		$\sqrt{\sin 18^\circ} = a$
	$\frac{1}{\sin 18^{\circ}} = 4\cos 36^{\circ}$	$\sqrt{\sin 18^\circ} = a$ $\sqrt{\cos 36^\circ}$
		$= 1 - 2 \sin^2 18^\circ$
	$\frac{1}{\sin 18^{\circ}} = 4(1 - 2\sin^2 18^{\circ})$	\checkmark substitution of a
		✓ simplification
	$\therefore \frac{1}{a} = 4(1 - 2a^2)$	
	a	
	$\therefore 1 = 4a - 8a^3$	
	$\therefore 8a^3 - 4a + 1 = 0$	(4)
	Hence $\sin 18^\circ$ is a solution of $\therefore 8x^3 - 4x + 1 = 0$	
	OR	

<u> </u>	NSC – Wemorandum	
s s 8 H	$\frac{1}{\sin 18^{\circ}} = 4\cos 36^{\circ}$ $\frac{1}{\sin 18^{\circ}} = 4(1 - 2\sin^{2} 18^{\circ})$ $\frac{1}{\sin 18^{\circ}} = 4 - 8\sin^{2} 18^{\circ}$ $8(\sin 18^{\circ})^{3} - 4(\sin 18) + 1 = 0$ Hence $\sin 18^{\circ}$ is a solution of $\therefore 8x^{3} - 4x + 1 = 0$ Note: substituting $x = \sin 18^{\circ}$ into $8x^{3} - 4x + 1$ using a calculator howing equal to 0: 0 marks	$ √ \cos 36^{\circ} $ = 1 - 2 sin ² 18° $ √ \text{ simplification} $ $ √ \text{ equation i.t.o} $ sin 18° $ √ \text{ replacing} $ sin 18° = x (4) [24]
31	nowing equal to 0. 0 marks	

TOTAL: 150