Imię i nazwisko	Sylwester Macura
Kierunek	Informatyka Stosowana
Rok	3
Grupa	2
Temat	Wyznaczanie wartości i wektorów własnych macierzy symetrycznej.

1. Wstęp teoretyczny

Problem własny można zdefiniować następującą

$$Ax_k = \lambda_k x_k$$

$$A = [a_{ii}]$$

A jest macierzą kwadratową o nxn xk jest wektorem własnym macierzy odpowiadającym wartości własnej λ_k a_{ij} , λ_k , $x_m^{(k)} \in C$.

Liczbę λ nazywamy wartością własną macierzy jeśli istnieje taki niezerowy wektor x dla którego zachodzi $Ax = \lambda x$

Wektor x nazywamy prawostronnym wektorem własnym przynależnym wartości własnej λ Ciąg wszystkich wartości własnych macierzy nazywamy widmem macierzy a i oznaczamy Sp(a) Aby wyznaczyć wartości własne macierzy A najpierw wyznaczamy macierz $A_{\lambda} = (A - \lambda I)$ Licząc wyznacznik tej macierzy otrzymamy równanie charakterystyczne macierzy. Licząc jego pierwiastki otrzymamy wartości własne macierzy.

Aby obliczyć wektory własne macierzy wstawiając do równania $A_{\lambda}X=0$ kolejne wartości własne. Rozwiązaniem będzie zbiór wektorów . Każdy z nich jest wektorem własnym macierzy A dla wartości λ .

Istnieje wiele zastosowań wartości własnych są one stosowanie w budownictwie, mechanice kwantowej , rankingu stron Google.

2. Zadania do wykonania

- znaleźć Wektory i wartości własne własne macierzy A $A_{ij} = \sqrt{(i+j)}$ dla i,j=1,2,3,4,5
- znaleźć macierz przekształcenia P
- porównać wartości własne ze wzorem $\beta_k = \frac{(x_k \cdot Ak_x)}{(x_k \cdot x_k)}$

3. Wykonanie zadania

Macierz P

0.127995	0.473318	0.748056	-0.447214	0.000000
-0.559029	-0.639797	0.211690	-0.483046	0.000000
0.753370	-0.341655	-0.221449	-0.516398	0.000000
-0.321774	0.499901	-0.588694	-0.547723	0.000000
0.000000	0.000000	0.000000	0.000000	1.000000

Tabela 1: Macierz Przekształcenia

• Macierz Y (macierz wektorów własnych)

-0.860161	-0.509986	-0.006045	0.000001	-0.000000
0.371571	-0.618499	-0.692329	0.008616	0.000008
-0.216227	0.369873	-0.436638	0.790691	-0.024372
-0.137207	0.234827	-0.287573	-0.332559	-0.856000
-0.237650	0.406723	-0.497285	-0.513943	0.516400

Tabela 2: Macierz wektorów własnych

Wartości własne

-0.000000 -0.000073 -0.005117 -0.381893 12.241493

Tabela 3: Wartości własne

• Wartości własne β_k

-0.000001
-0 000074
-0.005117
-0.301093
12.241493

4.Wnioski

Aby wyznaczyć wartości własne macierzy A najpierw musieliśmy wyznaczyć wartości własne macierzy trójdiagonalnej następnie używając macierzy P mogliśmy wyznaczyć wartości i wektory własne macierzy A jest tak ponieważ macierze działają jak operatory. Uzyskaliśmy wartości prawie poprawne, pewne niejasności wynikają z błędów numerycznych i zaokrągleń.