

Vidyalankar Institute of Technology Department of Computer Engineering Exp. No.4

Semester	T.E. Semester VI – Computer Engineering	
Subject	Data Warehousing and Mining	
Subject Professor In-charge	Prof. Kavita Shirsat	
Assisting Teachers	Prof. Kavita Shirsat	
Laboratory	Lab 312 A	

Student Name	Deep Salunkhe
Roll Number	21102A0014
Grade and Subject	
Teacher's Signature	

Experiment	01			
Number				
Experiment Title	Naive Bayes classifier approach			
Resources /	Hardware:	Software:		
Apparatus	Computer system	Python		
Required				
Description	Naive Bayes is a popular and simple machine learning classification			
	algorithm that is based on Bayes' theorem. It's particularly useful for			
	text classification and is known for its efficiency and effectiveness in			
	various applications. Here's some key information about the Naive			
	Bayes classifier approach:			
	1. Bayes' Theorem:			
	The Naive Bayes classifier is built on Bayes' theorem, which is a			
	fundamental probability theorem used to calculate conditional			
	probabilities.			
	Bayes' theorem calculates the probability of an event based on			
	prior knowledge of conditions that might be related to the event.			
	2. Independence Assumption:			
	The "Naive" in Naive Bayes refers to the assumption that all			
	features (attributes) used to predict the class label are			
	independent of each other. In reality, this assumption is often not			
	true, but it simplifies the calculations significantly and still			
	produces good results in many cases.			
	 Despite this simplification, Naive Bayes can perform surprisingly 			
	well, especially for text classification tasks.			
	3. Classification Task:			
	goal is to categorize data into predefined classes or labels.			
	It's commonly used for text classification problems, such as spam			
	email detection, sentiment analysis, and document categorization.			
	4. Probability Calculation:			

Department of Computer Engineering Exp. No.4

- The Naive Bayes classifier calculates the probability of an instance belonging to each possible class and assigns the instance to the class with the highest probability.
- It uses prior probabilities (based on training data) and conditional probabilities of each feature given the class to make these calculations.

Department of Computer Engineering Exp. No.4

```
attrs = list(df.columns)[:-1]
                       attrs
                       ['age', 'income', 'student', 'credit_rating']
                      X = \{\}
                      print('Enter Knowns: ')
                      for attr in attrs:
                          X[attr] = input(f'{attr} : ')
                      Enter Unknown:
                       age : youth
                      income : high
                      student : yes
                      credit_rating : fair
                      C_total = df['buys_computer'].count()
                      C_total
                      14
                      # Calculate the count of instances where 'buys_computer' is 'yes'
                      C_yes = df[df['buys_computer'] == 'yes']['buys_computer'].count()
                      # Calculate the count of instances where 'buys computer' is 'no'
                      C_no = df[df['buys_computer'] == 'no']['buys_computer'].count()
Output
                       prob yes = C yes / C total
                       prob_no = C_no / C_total
                       # Loop through the unique values of 'buys_computer' (in this case, 'yes' and 'no')
                       for res in df['buys_computer'].unique():
                          # Calculate the count of instances where 'buys_computer' is equal to the curren
                          cnt_res = df['buys_computer'].value_counts()[res]
                          # Calculate the probability of the current outcome
                          ans[res] = cnt_res / C_total
                          # Loop through the input attributes
                          for key in X:
                              # Calculate the count of instances where the attribute matches the user's i
                              temp = len(df[(df[key] == X[key]) & (df['buys_computer'] == res)])
                              # Update the probability by multiplying it with the conditional probability
                              ans[res] *= (temp / cnt_res)
                       # Display the probabilities for each outcome ('yes' and 'no')
                       {'no': 0.006857142857142858, 'yes': 0.014109347442680775}
Conclusion:
                     Naive Bayes classifiers are a family of probabilistic classifiers that are
                     particularly useful for text classification tasks and other situations where
                    the independence assumption is a reasonable approximation. They are easy
                    to implement, computationally efficient, and can deliver good results with
                    proper data preprocessing and handling of feature independence.
```