Introduction to Phylogenetics Week 6

Maximum Likelihood

III. ML Methods

- Go into CIPRES gateway
- Use aligned data
- Run your data using the following tasks:
 - FastTree
 - GARLI
 - PAUP*Rat (set nchar values)
 - RAxML (set outgroup)

Rooting your tree...

- Can be used to infer ancestral states
- Can determine direction of change
- Determine common ancestors
- Your outgroup becomes the root of your tree
- Important in likelihood calculations

FIGURE 27.24. Rooting a tree with an outgroup. (A) Unrooted tree. (B) Suppose species 3 is determined to be the outgroup. Then the tree can be rooted between 3 and the other taxa (root shown as *red dot*). Branches are labeled with letters for easier comparison of B and C. (C) Rooted tree.

	Charater- based method	Non-character based
Explicit evolutionary model	Maximum likelihood	Pairwise distance
No explicit evolutionary model	Maximum parsimony	

- Likelihood refers to an explanation of the observed data D.
- Determining the probability of data plausibility of evolutionary process
- If hypotheses vary, some hypotheses fit the data better – have a higher likelihood of being correct
- Flip a coin: n = 100, h = 21, t = 79, D = (21,79)

Probability of heads: $q \hat{l} (0,1)$

- Assume that events are independent, thus θ does not change
- Probability of observing H number of h (heads)

$$\Pr[H=h] = \mathop{\mathbb{C}}_{\stackrel{\circ}{h}} \frac{n \ddot{0}}{n \dot{0}} q^h (1-q)^{n-h}$$

• If you know likelihood (θ), then h in n coin tosses can be calculated – likelihood function

$$L(q) = \Pr[H = h] = \mathop{\mathrm{e}}_{\overset{\circ}{h}} \frac{n \ddot{0}}{h \dot{0}} q^{h} (1 - q)^{n-h}$$

- Different choices of θ generate better models of observed data than others
- Can calculate log (rather than product) of different θ

$$L(Q) = \Pr[H = h] = \mathop{\mathbb{Q}}_{\stackrel{\circ}{h}} \frac{n \ddot{0}}{\mathring{0}} q^{h} (1 - Q)^{n-h}$$

$$\log[L(q)] = \log_{\dot{q}}^{\frac{\partial}{\partial n}} \frac{\ddot{0}}{\dot{p}} + h \log q + (n - h) \log(1 - q)$$

• Calculate the differential with respect to θ

$$\log[L(q)] = \log_{\dot{q}}^{\frac{\alpha}{n}} \frac{\ddot{0}}{\dot{p}} + h \log q + (n - h) \log(1 - q)$$

Becomes

$$L(q) = \frac{\P \log[L(q)]}{\P q} = \frac{h}{q} - \frac{n-h}{1-q}$$

 $L'(\theta)>0$ for $0<\theta<\theta_0$ and $L'(\theta)<0$ for $\theta_0<\theta<0$

Therefore $log[L(\theta)]$ maximum when $q_0 = \frac{h}{n}$

Therefore the maximum likelihood estimate:

$$\hat{q} = \frac{h}{n}$$

- When the value of θ maximizes $\log[L(\theta)]$ this is the maximum likelihood.
- L(21,100) if use θ = 0.5 then likelihood 1.61 x 10^{-9}
- L(21,100) if use \hat{q} = 0.21 then likelihood 0.0975

$$CT_1 = HTTTTHTHTH$$

 $Pr(D|H_1) = Pr(HTTTTHTHTH|H_1)$

If
$$\theta = 0.5$$

 $L_{CT1} = (0.5)^{10} = 0.0009765$

What if we want to maximize likelihood

$$\theta$$
 = (T/T+H) = 0.6
 L_{CT1} = (0.6)¹⁰ = 0.0060466

Would use MLE of 0.6

- Mutations are chance events
- Maximum likelihood approach determines how well you observe sequences based on:
 - Tree topology
 - Branch length
 - Evolutionary model used
- Maximum likelihood is the likelihood that data fits hypothesis
 - Your hypothesis is the tree (τ) and evolutionary model (θ) for the data

$$L(\tau, \theta) = Pr(Data | \tau, \theta)$$

or
 $L(\tau, \theta) = Pr(aligned sequences | tree, model)$

Thus the MLE are the values for:

$$\hat{t}, \hat{q} = \arg\max L(t, q)$$

Using JC69 model for 2 sequences

$$L(d) = \tilde{O}_{s_1^j} P_{s_1^j} P_{s_2^j} (-\frac{4d}{3})$$

d = substitutions per site $P_{xy}(t)$ = probability of seeing nucleotide y if nucleotide x was originally found $P_{s_1^j}$ = is the probability of character s_1^j Number of identical pairs (I_0) and different pairs (I_1) = 1

• Data summarized (for 2 sequences using the JC69 model) as $D=(I_0,I_1)$

$$d = -\frac{3}{4} \log_{\dot{e}}^{\dot{e}} 1 - \frac{4}{3} \cdot \frac{l_1}{l_1 + l_0} \dot{u}$$

- When n>2, rather that calculating based on observed sequences – calculate probability of finding specific nucleotide in a position
- Depends on model of sequence evolution M
- Each sequence on each alignment must be calculated – math intensive!

- Need to simply math:
 - D_i = nucleotide pattern at specific site
 - Each site (s) evolves according to M
 - Assume all sites evolve at rate μ
 - To weigh evolution use rate specific factor ρ_i >0
 - Probability at each site simplified to:

Tree for 4 sequences – assume ρ_j =1 for each jAssume evolution began at S_0 Need to compute all 4 possible trees

At specific site $D_j = (s_1^j, s_2^j, s_3^j, s_1^j)$ and ancestral sites s_0^j, s_5^j

Probability of data given ancestral states s_0^j, s_5^j

$$\Pr(\hat{S}D_j, t, M, 1 \mid S_0^j, S_5^j) = P_{S_0^j, S_1^j}(d_1) \cdot P_{S_0^j, S_2^j}(d_2) \cdot P_{S_0^j, S_5^j}(d_5) \cdot P_{S_5^j, S_3^j}(d_3) \cdot P_{S_5^j, S_4^j}(d_4)$$

[Don't really know ancestral state, so use substitution model to estimate from data (assuming $\pi_G = \pi_A = \pi_T = \pi_C$)]

Alignments need to be calculated for inner nodes of tree

- Don't know branch lengths need to calculate branch lengths for tree (τ) that maximizes LnL
- Math complex for multiple sequence alignments
- Math massively complex to analyze all possible trees to actually find LnL
- Very difficult to identify correct tree in tree space (huge number tree possibilities)

 Potential number of trees that can be analyzed is huge

$$t_n = \frac{(2n-5)!}{2^{n-3}(n-3)!} = \bigodot_{i=1}^{n} (2i-5)$$

- Use a heuristic approach to identifying trees
- Begin randomly changing things up
- Fast way of estimating ML
- Can easily become trapped in local optima

- Tree re-arrangements can limit 'trapping'
- Change structure for tree with n nodes
 - Nearest neighbor interchange (NNI)
 - Subtree pruning and regrafting (SPR)
 - Tree-bisection/reconnection (TBR)

Nearest neighbor interchange (NNI)

Subtree pruning and regrafting (SPR)

Treebisection/reconnection (TBR)

- Tree re-arrangements can limit 'trapping'
- Change structure for tree with n nodes
 - Nearest neighbor interchange (NNI)
 - Subtree pruning and regrafting (SPR)
 - Tree-bisection/reconnection (TBR)
- Increases size of neighborhood
- Recalculates ML values
- Repeat!
- Whether you find local optima depends on your data!

II. Calculating Tree using RAxML

- Randomized Axcelerated Maximum Likelihood
- Builds a tree using maximum parsimony
- Uses SPR variant lazy subtree rearrangement (LSR)
 - Assigns maximum distance between pruning and insertion (<25 branches)
 - Optimizes branch that originates at pruning site
- Best 20 trees optimized
- Process repeats until ML no longer changes

Subtree pruning and regrafting (SPR)

II. Calculating Trees: Tree Puzzle

- Tree Puzzle 2002 (http://www.tree-puzzle.de/)
- Quartet puzzling method
 - Uses trees with four sequences
 - Generate NJ tree of each quartet
 - Optimize to obtain best ML score
 - Highest ML topology stored
 - Insert branches based on best quartet structure
 - Generate intermediate trees score for consensus

II. Calculating Trees: PAUP*Rat

- PAUP*Rat
 - Plug-in for PAUP* (runs on CIPRES)
 - Works well for large datasets
 - Artificially weight data
 - Allow tree rearrangements
 - Set to original values determine if best tree found
 - More accurate/efficient than NNI, SPR and TBR methods

II. Calculating Tree: Genetic Algorthims

- Introduced in the 1990s
- Difficult to implement GARLI (Genetic Algorithm for Rapid Likelihood Inference)

Incredibly powerful

II. ML Robustness

- Generate best ML tree no information on support of structure
- Carry out bootstrapping and compare with final ML tree
 - Standard bootstrapping approach
 - Non-parametric bootstrap
 - Shimodaira-Hasegawa-like (SH-like)
 method create subtrees and score
 probability. Accumulate best probabilities

III. ML Methods

Align sequences

1

Calculate maximum likelihood trees

Test robustness of inferred topology

III. ML Methods

- Go into CIPRES gateway
- Use aligned data
- Run your data using the following tasks:
 - FastTree
 - GARLI
 - PAUP*Rat (set nchar values)
 - RAxML (set outgroup)
- Look at your trees
- In FigTree labeled 'nodes/branches' should be 'bootstrap'