PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-180984

(43)Date of publication of application: 26.06.2002

(51)Int.Cl. F04C 29/04 F04C 29/00

(21)Application number: 2000-375167

(71)Applicant: SANDEN CORP

(22)Date of filing: 08.12.2000 (72)Inventor: KURIHARA TADASHI

(54) ELECTRIC COMPRESSOR FOR COMPRESSING REFRIGERANT

(57) Abstract:

PROBLEM TO BE SOLVED: To provide an electric compressor for compressing a refrigerant dispensing with attaching a heat radiator to a motor driving circuit. SOLUTION: In this electric compressor for compressing the refrigerant formed by integrating a compression part with the motor, a motor driving circuit board is hermetically fitted to a surrounding wall outer surface for a refrigerant gas suction passage.

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2002-180984 (P2002-180984A)

- (43)公開日 平成14年6月26日(2002.6.26)

(51) Int.CL[†]

識別記号

FI.

テーマコード(参考)

F04C 29/04

29/00

F04C 29/04

J 3H029

29/00

審査請求 未請求 請求項の数4 OL (全 4 頁)

(21)出顯番号

特膜2000-375167(P2000-375167)

(22)出顧日

平成12年12月8日(2000,12.8)

(71)出題人 000001845

サンデン株式会社

群馬県伊勢崎市寿町20番地

(72) 発明者 栗原 正

群馬県伊勢崎市券町20番地 サンデン株式

会社内·

(74)代理人 100095245

弁理士 坂口 嘉彦

Fターム(参考) 3HO29 AAO2 AA16 ABO3 BB12 CC27

CC46

(54) 【発明の名称】 冷媒圧縮用電動式圧縮機

(57)【要約】

【課題】 モータ駆動回路に放熱装置を取り付ける必要 の無い冷媒圧縮用電動式圧縮機を提供する。

【解決手段】 圧縮部とモータとが一体化された冷媒圧 稲用の電動式圧縮機であって、モータ駆動回路基板が冷 媒ガス吸入経路の囲壁外面に密着されている。

【特許請求の範囲】

【請求項1】 圧縮部とモータとが一体化された冷媒圧 縮用の電動式圧縮機であって、モータ駆動回路基板が冷・ 媒ガス吸入経路の囲壁に密着されていることを特徴とす る冷媒圧縮用電動式圧縮機。

【請求項2】 圧縮部とモータとが一体化された冷媒圧 縮用の電動式圧縮機であって、モータ駆動回路パターン が冷媒ガス吸入経路の囲壁に形成されていることを特徴 とする冷媒圧縮用電動式圧縮機。

【請求項3】 圧縮部とモータとが一体化された冷媒圧 10 縮用の電動式圧縮機であって、モータ駆動回路基板が冷 媒ガス吸入経路の囲壁外面に密着されていることを特徴 とする冷媒圧縮用電動式圧縮機。

【請求項4】 圧縮部とモータとが一体化された冷媒圧 縮用の電動式圧縮機であって、モータ駆動回路パターン が冷媒ガス吸入経路の囲壁外面に形成されていることを 特徴とする冷媒圧縮用電動式圧縮機。

【発明の詳細な説明】

[0001].

【発明の属する技術分野】本発明は圧縮部とモータとが 20 一体化された冷媒圧縮用電動式圧縮機に関するものであ る. .

[0002]

【従来の技術】圧縮部とモータとが一体化された冷媒圧 稲用電動式圧縮機においては、従来モータ駆動回路は電 動式圧縮機とは別体とされていた。

[0003]

【発明が解決しようとする課題】 モータ駆動回路は多量 の熱を発生するので、モータ駆動回路に空冷式或いは水 冷式の放熱装置を取り付ける必要があり、製造コストの 30 上昇を招いていた。本発明は上記問題に鑑みてなされた ものであり、モータ駆動回路に放熱装置を取り付ける必 要の無い冷媒圧縮用電動式圧縮機を提供することを目的 とする。

[0004]

【課題を解決するための手段】上記課題を解決するため に、本発明においては、圧縮部とモータとが一体化され た冷媒圧縮用の電動式圧縮機であって、モータ駆動回路 基板が冷媒ガス吸入経路の囲壁に密着されていることを 特徴とする冷媒圧縮用電動式圧縮機を提供する。本発明 40 ハウジング1と一体形成された仕切壁1bから圧縮部7 においては、圧縮部とモータとが一体化された冷媒圧縮 用の電動式圧縮機であって、モータ駆動回路パターンが 冷媒ガス吸入経路の囲壁に形成されていることを特徴と する冷媒圧縮用電動式圧縮機を提供する。本発明におい ては、圧縮部とモータとが一体化された冷媒圧縮用の電 動式圧縮機であって、モータ駆動回路基板が冷媒ガス吸 入経路の囲壁外面に密着されていることを特徴とする冷 媒圧縮用電動式圧縮機を提供する。本発明においては、 圧縮部とモータとが一体化された冷媒圧縮用の電動式圧

経路の囲壁外面に形成されていることを特徴とする冷媒 圧縮用電動式圧縮機を提供する。本発明に係る冷媒圧縮 用電動式圧縮機においては、モータ駆動回路基板が冷媒 ガス吸入経路の囲壁、囲壁外面に密着されており、或い はモータ駆動回路パターンが冷媒ガス吸入経路の囲壁、 囲壁外面に形成されているので、モータ駆動回路が発生 した熟は、冷媒ガス吸入経路の囲壁を介して低温の冷媒 ガスへ放出される。従って、本発明に係る冷媒圧縮用電 動式圧縮機においては、モータ駆動回路に放熱装置を取 り付ける必要はない。

[0005]

【発明の実施の形態】本発明の実施例に係る冷媒圧縮用 電動式圧縮機を説明する。図1に示すように、冷媒圧縮 用電動式圧縮機10は、アルミニウム合金から成る吐出 ハウジング51と、中間ハウジング52と、吸入ハウジ ング1とを備えている。吐出ハウジング51、中間ハウ ジング52、吸入ハウジング1は、ボルト53a、53 bによって連結されている。吐出ハウシング51は、端 面に吐出ポート67を備えている。吐出ハウジング51 内には、互いに対向して配設された固定スクロール部材 60と可動スクロール部材70とが配設されている。固 定スクロール部材60は、底板61と、底板61の一方 の面に形成された渦巻体62と、底板61の他方の面に 形成された固定部63とを備えている。固定部63は、 ネジ64によって吐出ハウジング51の端壁に固定され ている。底板61の中心に、吐出穴65が形成されてい る。可動スクロール部材70は、底板71と、底板71 の一方の面に形成された渦巻体72と、底板71の他方 の面に形成された円筒状のボス部73とを備えている。 可動スクロール部材の底板71と中間ハウジング52の 一端の間に、可動スクロール部材70の自転を阻止しつ つ旋回運動を許容するボールカップリング68が配設さ れている。 過巻体72の外方に吸入部69が形成されて いる。固定スクロール部材60と、可動スクロール部材 70とによって、冷媒を圧縮する圧縮部75が構成され

【0006】中間ハウジング52と吸入ハウジング1と に亘って延在する回転軸55が配設されている。回転軸 55の一端55cは、吸入ハウジング1を横断して吸入 5へ向けて突出する円筒状の突出部1a内に挿入され、 軸受56を介して突出部1aにより支持されている。回 転軸55の他端には大径部55eが形成されている。大 径部55 e は、軸受57を介して中間ハウジング52に より支持されている。大径部の端面から偏心ピン55 c が突出している。偏心ピン55cは、ボス部73にベア リング59を介して支持された偏心ブッシュ58に挿通 されている。

【0007】中間ハウジング52と吸入ハウジング1と 縮機であって、モータ駆動回路バターンが冷媒ガス吸入 50 に亘って延在するモータ80が配設されている。モータ

80は、中間ハウジング52と吸入ハウジング1の内壁 に固定されたステータ81と、ステータ81の周囲に設 けられたコイル82と、回転軸55に固定されたロータ 83とを備えている。

【0008】仕切壁1bの上部に、密封端子84が設け られている。仕切壁1 bと密封端子8 4とにより、吸入 ハウシング1を左右に仕切る隔壁が形成されている。仕 切壁 1 b よりも左側の吸入ハウジング 1 側壁に、吸入ポ ート8が形成されている。仕切壁1bよりも右側の区画 は、アルミ合金等の金属材料から成る菱部材4によって 閉鎖されている。 蓋部材4は図示しないボルトにより吸 入ハウジング1に固定されている。

【0009】仕切壁1bよりも右側の閉鎖区画内に、モ ータ80の駆動回路を構成するインバータ2と制御回路 3とが配設されている。インパータ出力端子5が、密封 端子84に接続されている。密封端子84はリード線1 7を介してモータ80に接続されている。インバータ2 の回路基板は、絶縁性の接着剤により仕切壁 1 b に密着 されている。インバータ2と制御回路3とは一つのケー おいては、当該ケースからインバータ2を取り出し、イ ンパータ2の回路基板を、直接仕切壁1bに密着させて いる。蓋部材4にコネクタ7が取り付けられている。コ ネクタ7はリード線を介して制御回路3に接続されると 共に、図示しないコンデンサを介して図示しない外部直 流電源に接続されている。制御回路3は図示しないリー ド線を介してインバータ2に接続されている。

【0010】冷媒圧縮用電動式圧縮機10においては、 インバータ2から供給される三相交流によりモータ80 が駆動され、可動スクロール70が旋回運動する。外部 30 空調回路から吸入ポート8を介して電動圧縮機内へ流入 した冷媒ガスが、吸入ハウジング1の内部空間と中間ハ ウジング52の内部空間とを通り、吸入部69に到達す る。冷媒ガスは可動スクロール部材70の渦巻体72と 固定スクロール部材60の渦巻体62との間に形成され る圧縮室へ吸引され、圧縮室の移動に伴って圧縮され、 吐出穴65と吐出ポート67とを介して外部空調回路へ

【0011】冷媒圧縮用電動式圧縮機10においては、 モータ駆動回路を構成するインバータ2の回路基板が冷 40 媒ガス吸入経路の囲壁外面、すなわち仕切壁lbの右側 面に密着されているので、インバータ2が発生した熱 は、仕切壁1 bを介して低温の冷媒ガスへ放出される。 従って、冷媒圧縮用電動式圧縮機10亿おいては、モー 夕駆動回路に放熱装置を取り付ける必要はない。

[0012]以上本発明の実施例を説明したが、本発明

は上記実施例に限定されない。 仕切壁 1 b の右側面に絶 報層を形成し、当該絶縁層にインバータ2の回路基板を 接着しても良い。仕切壁1 bの右側面に絶縁層を形成 10 し、当該絶縁層にインバータ2の回路バターンを直接形 成しても良い。仕切壁16の左側面に、インバータ2の 回路基板を、絶縁性の接着剤により密着固定しても良 い。仕切壁1bの左側面に絶縁層を形成し、当該絶縁層 にインバータ2の回路基板を接着しても良い。仕切壁1 bの左側面に絶縁層を形成し、当該絶縁層にインバータ 2の回路パターンを直接形成しても良い。

[0013]

【発明の効果】以上説明したどとく、本発明に係る冷媒 圧縮用電動式圧縮機においては、モータ駆動回路基板が ス内に収納されているのが一般的であるが、本実施例に 20 冷媒ガス吸入経路の囲壁外面に密着されており、或いは モータ駆動回路パターンが冷媒ガス吸入経路の囲壁外面 に形成されているので、モータ駆動回路のインバータが 発生した熱は、冷媒ガス吸入経路の囲壁を介して低温の 冷媒ガスへ放出される。従って、本発明に係る冷媒圧縮 用電動式圧縮機においては、モータ駆動回路に放熱装置 を取り付ける必要はない。

【図面の簡単な説明】

【図1】本発明の実施例に係る冷媒圧縮用電動式圧縮機 の断面図である。

- 【符号の説明】
- 吸入ハウジング
- 1b 仕切壁
- 2 インパータ
- 制御回路
- 蓋部材
- インパータ出力端子
- 10 冷媒圧縮用電動式圧縮機
- 7.5 圧縮部
- 80 モータ

[図i]

