MULTIPLE CHOICE QUESTIONS (MCQ's)

Type: Correlation and Regression:

1. Covariance between two variables x and y is given by

$$(A) \ \frac{1}{n} \sum \left(x - \overline{x} \right) \left(y - \overline{y} \right)$$

(B)
$$\frac{1}{n}\sum (x + \overline{x})(y + \overline{y})$$

(C)
$$n \sum (x - \overline{x}) (y - \overline{y})$$

(D)
$$\frac{1}{n}\sum [(x-\overline{x})+(y-\overline{y})]$$

2. Correlation coefficient r between two variables x and y is given by

$$(A) \ \frac{\text{cov} \ (x, y)}{\sigma_x^2 \, \sigma_y^2}$$

(B)
$$\frac{\sigma_y}{\sigma_x}$$

(C)
$$\frac{\sigma_x}{\sigma_y}$$

(D)
$$\frac{cov(x, y)}{\sigma_x \sigma_y}$$

3. Range of coefficient of correlation r is

$$(A) -\infty < \frac{1}{r} < \infty$$

$$(C) -1 \le r \le 1$$

(D)
$$0 \le r \le 1$$

4. Probable error of coefficient of correlation r is

$$(A) \ 0.6745 \left(\frac{1+r^2}{\sqrt{N}} \right)$$

(B)
$$0.6745 \left(\frac{1-r^2}{\sqrt{N}}\right)$$

(C)
$$0.6745 \left(\frac{1-r^2}{N} \right)$$

(D)
$$0.6547 \left(\frac{1-r^2}{N} \right)$$

5. Line of regression y on x is

(A)
$$y + \overline{y} = r \frac{\sigma_x}{\sigma_y} (x + \overline{x})$$

(B)
$$x - \overline{x} = r \frac{\sigma_x}{\sigma_y} (y - \overline{y})$$

(C)
$$y - \overline{y} = r \frac{\sigma_y}{\sigma_x} (x - \overline{x})$$

(D)
$$y - \overline{y} = r \frac{\sigma_x}{\sigma_y} (x - \overline{x})$$

6. Line of regression x on y is

(A)
$$y - \overline{y} = r \frac{\sigma_y}{\sigma_x} (x - \overline{x})$$

(B)
$$x + \overline{x} = r \frac{\sigma_x}{\sigma_y} (y + \overline{y})$$

(C)
$$x - \overline{x} = r \frac{\sigma_x}{\sigma_y} (y - \overline{y})$$

(D)
$$x - \overline{x} = r \frac{\sigma_x}{\sigma_y} (y - \overline{y})$$

Slope of regression line of y on x is

(1)

(A) r(x, y)(B) $r \frac{\sigma_y}{\sigma_x}$

(C) $r \frac{\sigma_x}{\sigma_y}$ (D) $\frac{\sigma_y}{\sigma_z}$

Slope of regression line of x on y is (1)

(A) $r \frac{\sigma_x}{\sigma_y}$ (B) r(x, y)

(D) $r \frac{\sigma_y}{\sigma_z}$ (C) $\frac{\sigma_x}{\sigma_y}$

In regression line y on x, b_{yx} is given by (1)

(A) cov(x, y)(B) r(x, y)

(C) $\frac{\text{cov}(x, y)}{\sigma^2}$ (D) $\frac{\text{cov}(x, y)}{\sigma^2}$

(1)10. In regression line x on y, b_{xy} is given by

(B) r(x, y)(A) cov(x, y)

(D) $\frac{\text{cov}(x, y)}{\sigma^2}$ (C) $\frac{\text{cov}(x, y)}{\sigma^2}$

11. If b_{xy} and b_{yx} are the regression coefficient x on y and y on x respectively then the (1)

coefficient of correlation r(x, y) is given by (A) $\sqrt{b_{xy} + b_{yx}}$

(B) $b_{xy} b_{yx}$

(C) $\sqrt{\frac{b_{xy}}{b_{yy}}}$ (D) $\sqrt{b_{xy} b_{yx}}$

12. If θ is the acute angle between the regression line of y on x and the regression line of (1)

^x on y, then tan θ is

(B) $\frac{|r|}{(1-r^2)} \frac{\sigma_x \sigma_y}{\sigma_x^2 + \sigma_y^2}$ (A) $\frac{(1-r^2)}{|r|} \frac{\sigma_x \sigma_y}{\sigma_x^2 + \sigma_y^2}$

(D) $\frac{1}{|r|} \frac{\sigma_x^2 + \sigma_y^2}{\sigma_x^2}$ (C) $|r| \frac{\sigma_x \sigma_y}{\sigma_y^2 + \sigma_y^2}$

Eng	ineering wathernaties		350	Ŋ
13	If $\sum xy = 2638$, $\bar{x} = 14$, $\bar{y} = 17$, $n = 10$ then	cov	(\mathbf{x}, \mathbf{y}) is	1
13.	(A) 24.2	(B)	25.8)
		(D)	20.5	
	(C) 23.9 If $\sum xy = 1242$, $\bar{x} = -5.1$, $\bar{y} = -10$, $n = 10$, the	en cov (x, y) is	
14.		(B)	83.9	.)
	(A) 67.4		73.2	
	(C) 30.3	` /		
15.	If $\sum x^2 = 2291$, $\sum y^2 = 3056$, $\sum (x + y)^2$	=	10623, $n = 10$, $x = 14.7$, $\bar{y} = 17$ the	n
	cov(x, y) is	(D)	12.0	.)
	(11)	, ,	13.9	
		,	- 13.9	
16.	If the two regression coefficient are 0.16 ar	nd 4	then the correlation coefficient is (2	.)
	(A) 0.08	(B)	- 0.8	
		` ′	0.64	
17.	If the two regression coefficient are $-\frac{8}{15}$	= an	$d = \frac{5}{2}$ then the correlation coefficient	
	is	5	6 then the correlation coefficien	ıt
	(1) 0.667		(2)
	(C) 1.5		0.5	
10			0.537	
	IC	d th	e variance of x and y are 16 and 9	n
18.	If covariance between x and y is 10 an	u III	or in unit y uno 10 miles	9
18.	(A) 0.822	r(x,	y) is (2	
18.	(A) 0.833	r(x, (B)	y) is (2 0.633	
	(A) 0.833 (C) 0.527	r(x, (B) (D)	y) is (2 0.633 0.745	!)
	respectively then coefficient of correlation (A) 0.833 (C) 0.527 If $cov(x, y) = 25.8 \sigma_x = 6$, $\sigma_y = 5$ then corr	r(x, (B) (D) relati	y) is (2 0.633 0.745 ion coefficient r(x, y) is equal to (2	2)
	respectively then coefficient of correlation (A) 0.833 (C) 0.527 If $cov(x, y) = 25.8 \sigma_x = 6$, $\sigma_y = 5$ then corr (A) 0.5 (C) 0.91	r(x, (B) (D) relati (B)	y) is (2 0.633 0.745 ion coefficient r(x, y) is equal to (2 0.75	2)
19.	respectively then coefficient of correlation (A) 0.833 (C) 0.527 If $cov(x, y) = 25.8 \sigma_x = 6$, $\sigma_y = 5$ then corr (A) 0.5 (C) 0.91	r(x, (B) (D) relati (B) (D)	y) is (2 0.633 0.745 ion coefficient r(x, y) is equal to (2 0.75 0.86	<u>()</u>
19.	respectively then coefficient of correlation (A) 0.833 (C) 0.527 If $cov(x, y) = 25.8 \sigma_x = 6$, $\sigma_y = 5$ then correlation (A) 0.5 (C) 0.91 If $\sum xy = 90$, $\overline{x} = 4$, $\overline{y} = 4$, $n = 10$, $\sigma_x = 10$	r(x, (B) (D) relati (B) (D)	y) is (2 0.633 0.745 ion coefficient $r(x, y)$ is equal to (2 0.75 0.86 32, $\sigma_y = 2$ then correlation coefficient	() () ()
19.	respectively then coefficient of correlation (A) 0.833 (C) 0.527 If $cov(x, y) = 25.8 \sigma_x = 6$, $\sigma_y = 5$ then corr (A) 0.5 (C) 0.91	r(x, (B) (D) relati (B) (D)	y) is (2 0.633 0.745 ion coefficient $r(x, y)$ is equal to (2 0.75 0.86 32, $\sigma_y = 2$ then correlation coefficien (2)	() () ()
19.	respectively then coefficient of correlation (A) 0.833 (C) 0.527 If $cov(x, y) = 25.8 \sigma_x = 6$, $\sigma_y = 5$ then corr (A) 0.5 (C) 0.91 If $\sum xy = 90$, $\bar{x} = 4$, $\bar{y} = 4$, $n = 10$, $\sigma_x = r(x, y)$ is equal to (A) 0.8342 (C) 0.7548	r(x, (B) (D) relati (B) (D) 1.73	y) is (2 0.633 0.745 ion coefficient $r(x, y)$ is equal to (2 0.75 0.86 32, $\sigma_y = 2$ then correlation coefficien (2 0.91287	() () ()
19. 20.	respectively then coefficient of correlation (A) 0.833 (C) 0.527 If $cov(x, y) = 25.8 \sigma_x = 6$, $\sigma_y = 5$ then correlation (A) 0.5 (C) 0.91 If $\sum xy = 90$, $\overline{x} = 4$, $\overline{y} = 4$, $n = 10$, $\sigma_x = r(x, y)$ is equal to (A) 0.8342 (C) 0.7548	r(x, (B) (D) relati (B) (D) 1.73 (B) (D)	y) is (2 0.633 0.745 ion coefficient $r(x, y)$ is equal to (2 0.75 0.86 32, $\sigma_y = 2$ then correlation coefficient (2 0.91287 0.5324	t)
19. 20.	respectively then coefficient of correlation (A) 0.833 (C) 0.527 If $cov(x, y) = 25.8 \sigma_x = 6$, $\sigma_y = 5$ then corr (A) 0.5 (C) 0.91 If $\sum xy = 90$, $\bar{x} = 4$, $\bar{y} = 4$, $n = 10$, $\sigma_x = r(x, y)$ is equal to (A) 0.8342 (C) 0.7548	r(x, (B) (D) relati (B) (D) 1.73 (B) (D) varia	y) is (2 0.633 0.745 ion coefficient $r(x, y)$ is equal to (2 0.75 0.86 32, $\sigma_y = 2$ then correlation coefficient (2 0.91287 0.5324	tt))
19. 20.	respectively then coefficient of correlation (A) 0.833 (C) 0.527 If $cov(x, y) = 25.8 \sigma_x = 6$, $\sigma_y = 5$ then corredated (A) 0.5 (C) 0.91 If $\sum xy = 90$, $\overline{x} = 4$, $\overline{y} = 4$, $n = 10$, $\sigma_x = r(x, y)$ is equal to (A) 0.8342 (C) 0.7548 If $\sum xy = 2800$, $\overline{x} = 16$, $\overline{y} = 16$, $n = 10$, when correlation coefficient $r(x, y)$ is equal (A) 0.95	r(x, (B) (D) relati (B) (D) 1.73 (B) (D) varia	y) is (2 0.633 0.745 ion coefficient $r(x, y)$ is equal to (2 0.75 0.86 32, $\sigma_y = 2$ then correlation coefficien (2 0.91287 0.5324 ance of x is 36 and variance of y is 25	tt))
19. 20.	respectively then coefficient of correlation (A) 0.833 (C) 0.527 If $cov(x, y) = 25.8 \sigma_x = 6$, $\sigma_y = 5$ then corredation (A) 0.5 (C) 0.91 If $\sum xy = 90$, $\overline{x} = 4$, $\overline{y} = 4$, $n = 10$, $\sigma_x = r(x, y)$ is equal to (A) 0.8342 (C) 0.7548 If $\sum xy = 2800$, $\overline{x} = 16$, $\overline{y} = 16$, $n = 10$, when correlation coefficient $r(x, y)$ is equal	r(x, (B) (D) relati (B) (D) 1.73 (B) (D) variato	y) is (2 0.633 0.745 ion coefficient $r(x, y)$ is equal to (2 0.75 0.86 32, $\sigma_y = 2$ then correlation coefficien (2) 0.91287 0.5324 ance of x is 36 and variance of y is 25 (2)	tt))

The correlation coefficient for the following data				
24.	$y = 10, \sum x = 140, \sum y = 150, \sum y = 150$	$\sum x^2 = 1980, \sum y^2 = 2465, \sum xy = 2160 \text{ is}$ (2)		
	(A) 0.753	(B) 0.4325		
	(C) 0.556	(D) 0.9013		
23.	You are given the following i	nformation related to a distribution comprising 10		
	observation $x = 3.3$, $y = 4$, $\sum x^2$ coefficient $r(x, y)$ is	= 385, $\sum y^2 = 192$, $\sum (x + y)^2 = 947$. The correlation (2)		
	(A) - 0.924	(B) -0.681		
	(C) - 0.542	(D) -0.813		
24.	Given the following data			
	$r = 0.022$, $\sum xy = 33799$, $\sigma_x =$ (number of observation) is	4.5, $\sigma_y = 64.605$, $\bar{x} = 68$, $\bar{y} = 62.125$. The value of n (2)		
	(A) 5	(B) 7		
	(C) 8	(D) 10		
25.	Given the following data $r = 0$. of n (number of observation) is	5, $\sum xy = 350$, $\sigma_x = 1$, $\sigma_y = 4$, $\bar{x} = 3$, $\bar{y} = 4$. The value (2)		
B	(A) 25	(B) 5		
	(C) 20	(D) 15		
26	Coefficient of correlation betw 20, the variance of x is 16. Star	een the variables x and y is 0.8 and their covariance is adard deviation of y is (2)		
	(A) 6.75	(B) 6.25		
	(C) 7.5	(D) 8.25		
27	Line of regression y on x is 8x	-10y + 66 = 0. Lie of regression x on y is		
ß.	40x - 18y - 214 = 0. Mean values of x and y are		2)	
B	(A) $\overline{x} = 12$, $\overline{y} = 15$	(B) $\overline{x} = 10$, $\overline{y} = 11$		
	(C) $\overline{x} = 13$, $\overline{y} = 17$	(D) $\overline{x} = 9, \overline{y} = 8$		
2	If the two lines of regression of $9x + y - \lambda = 0$ and $4x + y = \mu$ and the mean of x and y are 2 and -3 respectively then the values of λ and μ are			
	(A) $\lambda = 15$ and $\mu = 5$	(B) $\lambda = -15$ and $\mu = -5$		
	(C) $\lambda = 5$ and $\mu = 15$	(D) $\lambda = 15$ and $\mu = -5$		

36. Your are given below the following information about advertisement expenditure

	Adv. Expenditure (X) ₹ (Crore)	Sales (Y) ₹ (Crore)
Mean	10	90
Standard Deviation	3	12

Correlation coefficient = 0.8

The two lines of regression are

(2)

(A)
$$x = 58 + 3.2y$$
 and $y = -8 + 0.2x$

(B)
$$x = -8 + 2.2y$$
 and $y = 8 + 1.2x$

(C)
$$x = -8 + 3.2y$$
 and $y = 58 + 0.2x$

(D)
$$x = -8 + 0.2y$$
 and $y = 58 + 3.2x$

37. You are given below the following information about rainfall and production of rice

	Rainfall (X) in inches	Production of Rice (Y) in Kg
Mean	30	500
Standard Deviation	5	100

Correlation coefficient = 0.8

The two lines of regression are

(2)

(A)
$$x + 30 = 0.04$$
 (y + 500) and y + 500 = 6 (x + 30)

(B)
$$x - 30 = 0.4 (y - 500)$$
 and $y - 500 = 1.6 (x - 30)$

(C)
$$x - 30 = 0.04 (y - 500)$$
 and $y - 500 = 16 (x - 30)$

(D)
$$x - 30 = 16 (y - 500)$$
 and $y - 500 = 0.04 (x - 30)$

38. Given $b_{xy} = 0.85$, $b_{yx} = 0.89$ and the standard deviation of x is 6 then the value of correlation coefficient r(x, y) and standard deviation of y is (2)

(A)
$$r = 0.87$$
, $\sigma_y = 6.14$

(B)
$$r = -0.87$$
, $\sigma_y = 0.614$

(C)
$$r = 0.75$$
, $\sigma_y = 6.14$

(D)
$$r = 0.89$$
, $\sigma_y = 4.64$

39. Given $b_{xy} = 0.8411$, $b_{yx} = 0.4821$ and the standard deviation of y is 1.7916 then the value of correlation coefficient r(x, y) and standard deviation of x is (2)

(A)
$$r = -0.6368$$
 and $\sigma_x = -2.366$

(B)
$$r = 0.63678$$
 and $\sigma_x = 2.366$

(C)
$$r = 0.40549$$
 and $\sigma_x = 2.366$

(D)
$$r = 0.63678$$
 and $\sigma_x = 5.6$

40 .	For a given set of Bivariate data $\bar{x} = 53.2$,	$\bar{y} = 27.9$ Regression coefficient of y on			
	x = -1.5. By using line of regression y on x the most probable value of y when x is				
	60 is	(2)			
	(A) 157.7 (B) 137.7			
	(C) 197.7 (D) 217.7			
41.	Given the following data $\bar{x} = 36$, $\bar{y} = 85$, σ_x regression x on y, the most probable value of	= 11, $\sigma_y = 8$, $r = 0.66$. By using line of x when y = 75 is (2)			
	(A) 29.143 (E	3) 24.325			
	(C) 31.453 (D) 26.925			
42.	For a given set of Bivariate data $\bar{x} = 2$, $y = -0.11$. By using line of regression x on 10 is	$\overline{y} = -3$ Regression coefficient of x on y the most probable value of x when y is (2)			
	(A) 0.77	3) 0.57			
	(0) 1.77	0) 0.87			