Architecture des Ordinateurs Série des TD N° 2

Exercice 1:

A-Demi-Soustracteur:

Réaliser un demi-soustracteur :

- 1) Ecrire la table de vérité.
- 2) Donner les équations de sortie.
- 3) Etablir le schéma logique.

B-Soustracteur complet:

On veut réaliser un circuit qui effectue la soustraction A_i - B_i en tenant compte d'une éventuelle retenue $R_{i\text{-}1}$. Ce circuit doit donc générer la différence D_i et l'éventuelle retenue R_i à transmettre à la colonne de gauche.

- 1) Remplir la table de vérité de D_i et R_i.
- 2) Remplir les tableaux de Karnaugh et en déduire les équations simplifiées de D_i et R_i.
- 3) Dessiner le schéma de ces deux fonctions réunies en un seul bloc fonctionnel : le soustracteur complet.

- 4) Réaliser un soustracteur binaire complet (ou étage de soustracteur) selon deux modes :
- a. Avec deux demi-soustracteurs;
- b. Avec un demi-additionneur et un demisoustracteur.
- 5) Dessiner le schéma d'un soustracteur de 2 nombres de 4 bits en utilisant 4 blocs fonctionnels identiques.

C-Additionneur Soustracteur:

- 1) Réaliser un circuit qui inverse ou non l'état d'une entrée E selon qu'un bit de commande C est à 1 ou à 0: si C= 0 on veut S= E, si C= 1 on veut
- 2) En utilisant cette foncti $S = \overline{E}$ additionneur sur 4 bits, réaliser un circuit qui effectue l'addition de deux nombres de 4 bits (A + B) si un bit de commande C est à 0 et la soustraction (A B) si C = 1.

Exercice2:

Développez un circuit logique (transcodeur) muni de 3 variables d'entrée (B2,B1,B0) représentant le nombre N dans le code binaire naturel (ou pur), et qui donne en sortie (G2, G1, G0) représentant le même nombre dans le code Gray (ou binaire réfléchi).

- 1) Dresser une table de vérité traduisant le fonctionnement,
- 2) A l'aide du tableau de Karnaugh, trouver les équations des sorties : G2, G1 et G0,
- 3) Dessiner le logigramme avec uniquement des portes "XOR" à deux entrées,
- 4) En déduire le logigramme si le code d'entrée est sur 4 bits.
- 5) Vérifier que ce transcodeur peut réaliser le transcodage inverse.

Exercice 3:

On désire réaliser un compteur/décompteur asynchrone modulo 10 avec une possibilité de chargement parallèle du nombre N= dcba $(0 \le N \le 9)$. Ce compteur/décompteur comportera deux entrées de commande X et Y. :

X = 0: Chargement parallèle (Chg //) de N (quel que soit Y).

X = 1: Compteur (Cpt) si Y = 0 et décompteur (Décpt) si Y = 1.

Quatre bascules JK et toutes les portes logiques nécessaires sont mises à disposition. Les bascules sont synchronisées sur front descendant et possèdent des entrées de forçage (set(S)) et reset(R)) actives à l'état bas.

- 1. Dessiner le schéma de connexion des bascules, de façon à obtenir un compteur si Y=0 et un décompteur si Y=1 (sans tenir compte du modulo pour l'instant).
- 2. Quelles valeurs sur la sortie (du compteur et du décompteur) doit-on détecter pour réaliser le modulo 10.

Pour la suite, on posera : $M = \overline{Q_b \cdot Q_d}$

3. Compléter la table de vérité ci-dessous pour les entrées set et reset des quatre bascules en fonction de

X et de Y.											
		X	Y	$\overline{\mathbf{R}}_{\mathbf{a}}$	\overline{S}_a	$\overline{\mathbf{R}}_{\mathbf{b}}$	\overline{S}_b	$\overline{\mathbf{R}}_{\mathbf{c}}$	\overline{S}_c	$\overline{\mathbf{R}}_{\mathbf{d}}$	\overline{S}_d
	Chg //	0	X								
	Cpt	1	0								
	Décpt	1	1								

4. En déduire les équations de chacune des entrées set et reset.

Exercice 4:

Soit le montage ci-dessous :

Remplir les chronogrammes suivants si l'entrée E vaut zéro :

Que réalise ce montage ?