

Regresia segmentată și cauzalitatea

De la observație la inferenă cauzală

Claudiu Papasteri

1

Prezentarea

Urmăriți prezentarea pe:

https://quarto.org/docs/presentations/

sau scanând codul

Download:
Prezentarea pdf
Codul din Github

Un pattern fără context (1)

► click pentru a vedea codul

Investigați codul:

- Pachete & Setări
- Datele provin dintr-un pachet
- Se generează un grafic

Un pattern fără context (2)

Ce vedeţi?

Cum am putea modela?

Un pattern fără context (3)

Ce reprezintă linia? Este pattern-ul descris bine de o relație liniară?

Un pattern fără context (4)

Este patternul mai bine descris de o relație curbilinie (polinomială)? Care dintre trenduri, pătratic (roșu) sau cubic (albastru) se potrivește mai bine datelor?

▶ click pentru a vedea codul

6

Un pattern fără context (5)

Reinventăm regresia segmentată!

- 1. Împățim datele în grupe de vârstă (segmentăm variabila x).
- 2. Potrivim regresii liniare pe fiecare set de date rezultat.
- ► click pentru a vedea codul

Un pattern fără context (6)

Reinventăm regresia segmentată!

$$egin{aligned} y &= eta_0 + eta_1 x + \epsilon \quad pentru \quad x \leq k_1 \ y &= eta_0 + eta_1 x + \epsilon \quad pentru \quad k_1 < x \leq k_2 \ & \cdots \ y &= eta_0 + eta_1 x + \epsilon \quad pentru \quad x \geq k_p \end{aligned}$$

Denumim k punctul de întrerupere (nod). Rezultă p segmente.

8

Un pattern fără context (7)

Reinventăm regresia segmentată, în cod!

Un pattern fără context (8)

Reinventăm regresia segmentată, în cod!

Ce observați despre segmentele din Regresia Segmentată?

Un pattern fără context (9)

De fapt, ceea ce este denumit în litarură Regresie Segmentată nu este Regresie Segmentată, ci Regresie cu Spline-uri Liniare.

Spline-urile permit o interpolare netedă și continuă între punctele de întrerupere (noduri). Între noduri este calculată o regresie (*polinomială*).

11

Un pattern fără context (10)

Re-reinventăm regresia segmentată!

- 1. Împățim datele în grupe de vârstă (segmentăm variabila x) => k noduri.
- 2. Folosim o funcție treaptă încât să obținem o singură ecuație de regresie care păstrează doar un intercept β_0

$$y = eta_0 + eta_1 x + eta_2 (x - k_1) + eta_3 (x - k_2) + \ldots + eta_{p-1} (x - k_p)$$
 $Unde \quad (x - k)_+ = \left\{egin{array}{ccc} 0 & dacreva & x < k \ x - k & dacreva & x \geq k \end{array}
ight.$

Denumim k punctul de întrerupere (nod).

Rezultă p segmente.

Un pattern fără context (11)

Re-reinventăm regresia segmentată, în cod!

Un pattern fără context (12)

Bonus: Mai sus scria că regresiile între noduri sunt *polinomiale*, iar polinomul, poate desigur să nu fie de ordinul I.

Optimizânt numărul k de noduri și ordinul polinomului obținem o metodă foarte robustă, deși nesofisticată, de învățare a pattern-urilor din date. Un exemplu de Regresie cu Splineuri Polinomiale de ordin II:

Contextul datelor, elucidarea misterului

Măsurăm constructe:

- TSF = grosimea pliului cutanat al tricepsului, o măsurătoare economică și convenabilă pentru a evalua obezit
 - Validitate: avantaj față de alți indici are avantajul de a reprezenta distribuția grăsimii.
 - Utilitate predictivă: la fiecare creștere cu 1 mm a grosimii TSF, riscul de deces scade cu 4%, riscul de dece

Vârsta codează timpul în unități discrete dacă am presupune că indivizii sunt interșanjabili. Totuși multe variab

Date longitudinale în Psihologie

Deoarece cea mai mare parte a psihologiei implică așa-numite procese non-ergodice, cercetarea pe eșantion mari nu poate oferi informații fiabile despre procesele la nivel individual. (Hamaker, 2012).

• O descriere simplificata a non-ergotismului: individul, în timp, nu obține rezultatul mediu al grupului.

Monitorizare în timp real al sistemelor idiografice

• Pentru o discuţie a utilizării conceptului şi complianţei cu metodologia în contex psihoterapeutic vedeţi (Schiepek et al., 2016).

Datele longitudinale

Datele disponibile de la Journal of Open Psychology Data: (Heino, 2022)

- Monitorizare dinamică cognitivă (test Stroop) după mindfulness
- Un singur individ peste 900 de zile, meditație zilnică de 20 minute

Repozitoriu OSF

Datele se găsesc și în Github-ul prezentării.

Lupta cu date longitudinale (1)

► click pentru a vedea codul

Investigați codul:

- Pachete & Setări
- Datele sunt citite din repozitorul OSF
- Datele sunt curățate și transformate
- Se generează un grafic

Lupta cu date longitudinale (2)

Ce observaţi?

Regresia Liniară

Putem modela mai bine?

Regresia segmentată

De această dată nu o vom mai coda "manual" (folosing doar *base R*), ci vom folosi pachetul lspline pentru a obține noduri în urma împățirii datelor în intervale egale de timp.

Interacționați cu datele

Câte noduri să folosim?

Câte noduri?

Pe ce bazăm inferența

Inferență bazată pe model V.S. Inferență bazată pe design

Cauzalitatea (după Hume)

C→E

 $C \rightarrow E$

Cauza și efectul sunt interconectate

Cauza precede (temporal) efectul

 $C \rightarrow E$

A C→E

Cauza și efectul covariază consistent

Nu există alte explicații alternative

Regresia segmentată și cauzalitatea (1)

Design-ul de Discontinuitate în Regresie (RDD)

- cvasi-experimental pre-post
- manipularea variabilei independente poate apărea natural
 în mediu => inferență cauzală din date observaționale
- NU vom discuta despre ea la acest curs, dar puteți citiți mai multe

Regresia segmentată și cauzalitatea (2)

Studiile Experimentale cu un Singur Caz (SCED)

- manipularea variabilei independente
- măsurători repetate
- calitatea dovezilor cauzale echivalentă cu cea din studii clinice randomizate (RCT)

Regresia segmentată în SCED

The Journal of Special Education

D.1177/002246698501900404 · Corpus ID: 145752030

Methodology for the Quantitative Synthesis of tra-Subject Design Research

ter, R. Skiba, A. Casey · Published 1 December 1985 · Psychology · Journal of Special Education

tigators using quantitative synthesis methodology have as yet been unable to include the results from single-experiments in their analyses, in large part because of the lack of a suitable statistical methodology. The opment of a regression model that can be used to generate effect sizes for both changes in slope and ges in level occurring as a result of the treatment intervention is outlined. Analysis of lag one autocorrelation g the residuals suggests that serial correlation is not a serious problem. The regression approach provides a actory fit of the data, and may thus provide a basis for the generation of effect sizes from single-case imental data. Collapse

(Center et al., 1985)

Istoria modelului pentru SCED

Figure 1. Parameters of the simple ANOVA model. Dashed line represents the mean for each phase; solid line, the overall slope of the data.

Figure 2. Parameters of the [overall slope model presented by Gorsuch (1983). Dashed line represents the regression slope for the entire data set; solid line, the within-phase slopes.

Figure 3a. Para line repr

3b. Note only

Model ANOVA

Model cu o pantă globala

Istoria modelului în cod (1)

Codați cu mine pașii:

- Pachete & Setări
- Date
- Calcul statistici pentru grafice
- ► click pentru a vedea codul

Istoria modelului în cod (2)

Plotarea datelor, un schelet pentru restul graficelor.

Istoria modelului în cod (3)

Mediile celor două faze.

Istoria modelului în cod (4)

Panta globală (peste datele din ambele faze).

Istoria modelului în cod (5)

Pantele individuale ale celor două faze.

Istoria modelului în cod (6)

Ce arată graficul?

Istoria modelului în cod (7)

Cum am obținut graficul?

```
1 # Plot all together
 2 plot skeleton +
     geom segment (aes (x = 1, xend = 5.5, y = mean A),
 4
                  color = "tan1") +
     geom segment (aes (x = 5.5, xend = 10, y = mean B, yend = mean B),
 6
                  color = "tan1") +
     stat smooth (data = df, aes(x = t, y = y), geom = "line",
                 formula = y ~ x, method = "lm", se = FALSE,
9
                 linetype = "longdash", size = 1, alpha = 0.6,
10
                 color = "yellow4") +
11
     stat smooth(data = df A, aes(x = t, y = y), geom = "line",
12
                 formula = y ~ x, method = "lm", se = FALSE,
13
                 alpha = 0.7, size = 1, color = "yellow3") +
14
     stat smooth (data = df B, aes(x = t, y = y), geom = "line",
15
                 formula = y \sim x, method = "lm", se = FALSE,
16
                 alpha = 0.7, size = 1, color = "yellow3")
```

Modelul ANOVA

$$y = \beta_0 + \beta_1 D + \epsilon$$

Modelul ANOVA

• diferență în medii (nivel) = β_1

Modelul cu o Pantă Globală

$$y = \beta_0 + \beta_1 D + \beta_2 t + \epsilon$$

Modelul cu o Pantă Globală

- (Gorsuch, 1983)
- diferență în medii (nivel) = β_1 , dar doar dacă nu există trend (adică β_2 = 0)
- ia în calcul trendul, dar presupune trend identic între faze

Modelul de Regresie Segmentată

$$y = eta_0 + eta_1 D + eta_2 t + eta_3 D(t-k) + \epsilon$$

Modelul de Regresie Segmentată

- (Center et al., 1985)
- diferență în medii (nivel) = $\beta_1 D$
- trend baseline = $\beta_2 t$
- termen de interacțiune ce cuantifică diferența în pantă între cele două faze = $beta_3D(t-k)$
- unde k = nr observaţii în faza A (baseline)

Interpretare

Efecte nestandardizate

$$y = \beta_0 + \beta_1 D$$

 eta_0 este interceptul (scorul evaluat la t=0 și D=0), deci indică valoarea de început a liniei de regresie în eta_1 poate fi interpretat ca schimbarea nivelului dintre faza A și faza B necounfounduit cu posibilele efecte c eta_2 captează trendul din faza A.

 eta_3 , care este de obicei parametrul cel mai de interes, reprezintă modificarea în trend de la faza A la faza B.

Datele SCED

Datele provin din celebrul studiu realizat de (Singh et al., 2007), digitalizate de Rumen Manolov.

Variabile:

tier	Id numeric participant		
id	Nume participant		
time	Index al momentului măsurătorii $(t_0 = 1)$.		
phase	Variabilă dummy: 0 tratamentul nu a început (baseline), 1 tratamentul a început.		
score_physical	Scorul participantului la agresivitate fizică.		
score_verbal	Scorul participantului la agresivitate verbală.		

Download

Repozitoriu OSF

Datele participantului "Michael" utilizate în această prezentare se găsesc și în Github-ul prezentării.

Preambul în cod

► click pentru a vedea codul

Investigați codul:

- Pachete & Setări
- Datele provin dintr-un pachet
- Se generează un grafic

Vizualizarea datelor

Ce observaţi?

Analize cu pachetul scda

Grafic cu pachetul scda

Rezultate cu pachetul scda

```
Piecewise Regression Analysis (N = 18)
Model statistics:
 Model deviance:
                                       6.41
 R squared for null model:
                                      0.63
 R squared for test model:
                                     0.7
                                     0.19
 R squared based effect size:
 Effect size (delta t):
                                      3.36
 Standardized effect size (delta ts): 5.47
                                      0.74
 Effect size (delta):
 Standardized effect size (delta s):
                                      1.2
 Effect size evaluated at point:
                                       18
Dammariam araffiziamta.
```

Mărime a efectului cu pachetul scda

 $delta_t$ a lui (Swaminathan et al., 2014) compară scorurile prezise la un anumit punct de măsurare (t) din faza B cu predicția din faza A extrapolată la t.

► click pentru a vedea codul

(Intercept) 3.361538

Regresie segmentată generalizată cu pachetul scda

Extindere a modelului utilizată în designuri mai complexe (ex. ABA cu retragere, ABAB cu inversiune).

Analize cu pachetul scan

Grafic cu pachetul scan

Rezultate cu pachetul scan

```
Piecewise Regression Analysis
Dummy model: H-M
Fitted a gaussian distribution.
F(3, 14) = 11.07; p = 0.001; R^2 = 0.703; Adjusted R^2 = 0.640
                B 2.5% 97.5% SE t
                                              p delta R²
           3.00 1.376 4.624 0.829 3.620 0.003
Intercept
Trend mt -0.30 -0.893 0.293 0.303 -0.991 0.338
                                                  0.0208
Level phase B -0.50 -2.258 1.258 0.897 -0.557 0.586
                                                  0.0066
Slope phase B 0.19 -0.409 0.790 0.306 0.621 0.544 0.0082
Autocorrelations of the residuals
laq
 1 0 20
```

Autocorelație și covariate cu pachetul scan

```
Multivariate piecewise linear model

Dummy model: H-M

Coefficients:

values covariate
(Intercept) 3.00 6.500

Trend -0.30 -1.000

Level Phase B -0.50 0.271

Slope Phase B 0.19 0.870

Formula: y ~ 1 + mt + phaseB + interB

Type III MANOVA Tests: Pillai test statistic

Df test stat approx F num Df den Df Pr(>F)
```

Reproducem fără pachete

Totul în base R.

Reproducem fără pachete

Observăm o diferență în estimare interceptului între scda și scan datorată centrării timpului. Puteți citi mai multe despre recomandări de codificare a timpului în SCED în (Huitema & Mckean, 2000) (mai ales schem standard H-M ce poartă numele autorilor).

În base R putem reproduce ambele rezultate.

La fel ca scda

```
Estimate Std. Error t value
(Intercept)
2.7000000 0.5661223 4.7692871
phase
-0.5000000 0.8969429 -0.5574491
time
-0.3000000 0.3026051 -0.9913910
I(phase * (time - k_time) * (time >= k_time))
0.1901099 0.3059124 0.6214521

Pr(>|t|)
(Intercept)
0.0002993711
phase
0.5860238465
time
0.3383210448
I(phase * (time - k_time) * (time >= k_time))
0.5442892970
```

La fel ca scan

```
Estimate Std. Error t value
(Intercept)
3.0000000 0.8287183 3.6200482
phase
-0.5000000 0.8969429 -0.5574491
time
-0.3000000 0.3026051 -0.9913910
I(phase * (time - k_time) * (time >= k_time))
0.1901099 0.3059124 0.6214521

Pr(>|t|)
(Intercept)
0.002785467
phase
0.586023846
time
0.338321045
I(phase * (time - k_time) * (time >= k_time))
0.544289297
```

Analize în GUI

https://manolov.shinyapps.io/Regression/

Regression analysis options

Bibliografie

- Center, B. A., Skiba, R. J., & Casey, A. (1985). A Methodology for the Quantitative Synthesis of Intra-Subject Design Research. *The Journal of Special Education*, *19*(4), 387–400. https://doi.org/10.1177/002246698501900404
- Gorsuch, R. L. (1983). Three methods for analyzing limited time-series (n of 1) data. *Behavioral Assessment*, *5*, 141–154.
- Hamaker, E. L. (2012). Why researchers should think "within-person": A paradigmatic rationale. In *Handbook of research methods for studying daily life.* (pp. 43–61). The Guilford Press.
- Heino, M. T. J. (2022). Cognitive Dynamics of a Single Subject: 1428 Stroop Tests and Other Measures in a Mindfulness Meditation Context Over 2.5 Years. *Journal of Open Psychology Data*, 10. https://doi.org/10.5334/jopd.51
- Huitema, B. E., & Mckean, J. W. (2000). Design Specification Issues in Time-Series Intervention Models. *Educational and Psychological Measurement*, 60(1), 38–58. https://doi.org/10.1177/00131640021970358
- Li, W., Yin, H., Chen, Y., Liu, Q., Wang, Y., Qiu, D., Ma, H., & Geng, Q. (2022). Associations between adult triceps skinfold thickness and all-cause, cardiovascular and cerebrovascular mortality in NHANES 19992010: A retrospective national study. *Frontiers in Cardiovascular Medicine*, 9. https://doi.org/10.3389/fcvm.2022.858994
- Schiepek, G., Aichhorn, W., Gruber, M., Strunk, G., Bachler, E., & Aas, B. (2016). Real-time monitoring of psychotherapeutic processes: Concept and compliance. *Frontiers in Psychology*, 7. https://doi.org/10.3389/fpsyg.2016.00604
- Singh, N. N., Lancioni, G. E., Winton, A. S. W., Adkins, A. D., Wahler, R. G., Sabaawi, M., & Singh, J. (2007). Individuals with Mental Illness Can Control their Aggressive Behavior Through Mindfulness Training. *Behavior Modification*, *31*(3), 313–328. https://doi.org/10.1177/0145445506293585
- Swaminathan, H., Rogers, H. J., & Horner, R. H. (2014). An effect size measure and Bayesian analysis of single-case designs. *Journal of School Psychology*, *52*(2), 213–230.

https://doi.org/10.1016/j.jsp.2013.12.002