MATH 285: Stochastic Processes

math-old.ucsd.edu/~ynemish/teaching/285

Today: Ergodic theorem

Homework 3 is due on Friday, February 4, 11:59 PM

Probability generating function

We call the function $\varphi_{y}(s) := \mathbb{E}[s^{y}] = \sum_{k=0}^{\infty} s^{k} \mathbb{P}[y=k]$

Properties:

(1)
$$4y(s)$$
 is analytic on (-1,1); $4y(s) = n! P[y=k]$

(2)
$$\Psi_{Y}(1) = 1 : \Psi_{Y}(0) = \mathbb{P}[Y=0]$$

Ergodic Theorem

Thm 11.3 Let (Xn) be an irreducible recurrent Markov chain with state space S. Let je S. Define

State space 5. Let je 5. Define
$$\pi(j) = \underbrace{\pi(j)}_{i} = 0 \text{ if } E_{j}[T_{j}] = \infty$$

Let $V_n(j) := \sum_{m=1}^{n} 1_{\{X_n = j\}}$ be the number of visits to state j up to time n. Then for any state i.e.

$$\mathbb{P}\left\{\lim_{n\to\infty}\frac{\forall_n(j)}{n}=\pi(j)\right\}=1$$

$$\lim_{n\to\infty} \frac{1}{n} \sum_{m=1}^{\infty} p_m(i,j) = \pi(j)$$

Proof. (i) $P_i[V_n(j) \to \infty \text{ as } n \to \infty] = 1$ Otherwise $P_j[(X_n) \text{ visits } j \text{ finitely many times}] > 0$

Ergodic Theorem Denote by Tit the time of the k-th visit to state j. (ii) $T_i^{V_n(j)} \leq n \leq T_i^{V_n(j)+1}$ $V_n(j) = k \Rightarrow T_j^k \leq n \text{ and } T_j^{k+1} \geq n$ (iii) $P([\frac{T_j V_n(j)}{V_n(i)}) \rightarrow E_j[T_j] \text{ as } n \rightarrow \infty] = 1$ Repeating the proof from Thm 10.2 we have that $\mathbb{P}_{i}\left[\begin{array}{c} T_{j} \\ \end{array}\right] \rightarrow \mathbb{E}_{j}\left[T_{j}\right] \text{ as } \mathbb{K} \rightarrow \infty = 1$ By (i) $\lim_{n\to\infty} \frac{T_j V_n(j)}{V_n(j)} = \lim_{k\to\infty} \frac{T_k}{k}$ (iv) By the Squeeze lemma $P_i \left[\lim_{n \to \infty} \frac{n}{V_n(j)} = E_j \left[T_j \right] \right] = 1$, therefore $P: \begin{cases} \lim_{n \to \infty} \frac{V_n(j)}{n} = \overline{E_i(T_i)} \end{cases}$ By definition $\overline{\pi}(j) = \overline{E_i(T_i)}$.

 $\frac{1}{n} \sum_{k=1}^{n} p_{m}(i,j) = \frac{1}{n} \mathbb{E}_{i} \left[\sum_{k=1}^{n} 1_{\{X_{m}=j\}} \right] = \frac{1}{n} \mathbb{E}_{i} \left[V_{n}(j) \right]$

$$(\forall i) \quad || \text{lim} \quad + \text{E}[\forall n(i)] = \text{E}[\text{lim} \quad + \forall n(i)] = \pi(i)$$

finite-state, irreducible, aperiodic Markov chain. Then there exists a unique stationary distribution TI, TI = TIP, and for any initial probability distribution) $\lim_{n\to\infty} \mathcal{P}^n = \overline{\Pi}$

Theorem 7.4 Let P be a transition matrix for a

Theorem 12.1 Let (Xn) be an irreducible aperiodic Markov chain possessing a stationary distribution II. Then for any states i,j $\lim_{n\to\infty} P_n(i,j) = \pi(j) \left(= \frac{1}{E_j(T_j)} \right)$ Remark (1) Thm 12.1 implies that the stationary distribution of an irreducible aperiodic MC is unique.

(2) In fact any irreducible MC has at most one stationary distribution.

Convergence theorem Proof of Thm 12.1 Idea: couple two independent MCs, one starting from i, another with initial distribution II, wait until they collide. (Xn): starting from i (Yn): initial distr. II Yn P[Yn=j]= 11(j) (Zn): starts as (Xn), after T continues as (Yn)

Convergence theorem Let Xo=i. Let (Yn) be a MC with initial distribution TI, transition probabilities p(iij) (same as (Xn)), and independent of (Xn). Take be 5 and define T:= {nz1: Xn= Yn=b} (i) $\mathbb{P}[T < \infty] = 1$ Consider the process Wn := (Xn, Yn) on 5×5 (Wn) is a MC with P[Wo=(k,e)] = Sxi TT(e) and transition probabilities $\tilde{p}((k,e),(s,t)) = p(k,s)p(e,t)$ (Xn) is aperiodic ⇒ ∃n s.t. pn(k,s)>0, pn(l,t)>0 ∀k,s,l,t => \((k, e), (s, t) \in 5 x S \(\tilde{p}_n \) ((k, l), (s, t)) = \(p_n \) (k, s) \(p_n \) (e, t) > 0 => (Wn) is irreducible

probabilities p(i,j)

T = min $\{n \ge 1 : Wn = (b,b)\} \Rightarrow P[T < \infty] = 1$

Define $Z_n = \begin{cases} X_n & \text{if } n \leq T \\ Y_n & \text{if } n > T \end{cases}$ $Z_n = \begin{cases} Y_n & \text{if } n \leq T \\ X_n & \text{if } n > T \end{cases}$

(ii) (Zn) is a MC starting from i with transition

T is the stopping time for (Wn)

• π(k,e):= π(k)π(e) is the stationary distribution for (Wn)

• Corollary 11.1 ⇒ (Wn) is positive recurrent

 $\sum_{s,t \in S} \widetilde{\pi}(s,t) p((s,t),(k,\ell)) = \sum_{s,t \in S} \overline{\pi}(s) \overline{\pi}(t) p(s,k) p(t,\ell) = \overline{\pi}(k) \overline{\pi}(\ell)$

By SMP (XT+n, YT+n) is MC starting from (bib) with transition probabilities $\widehat{p}(iij)$ independent of (Xo, Yo) ---, (XT, YT)

By symmetry (YT+n, XT+n) is also a MC starting from (b,b) with transition probabilities p(iij) independent of (Xo, Yo), --, (X1, YT)

· Therefore, (Zn, Zn) has the same initial distribution and transition probabilities as (Xn, Yn). In particular,

Zn is a MC starting from i with trans. prob p(i,j)

(iii)
$$|P[X_n = j] - \pi(j)| \leq |P[T \geq n]$$

$$\mathbb{P}[Z_{n}=j] = \mathbb{P}(X_{n}=j, n \leq T) + \mathbb{P}[Y_{n}=j, n > T]$$

By (ii)
$$\mathbb{P}(2n=j) = \mathbb{P}(xn=j)$$

$$\mathbb{P}[Y_n = j] = \pi(j)$$

$$|P[X_n=j]-\pi(j)|=|P[Z_n=j]-P[Y_n=j]|$$

$$= |\mathbb{P}[X_n = j, n \leq T] - \mathbb{P}[Y_n = j, n \leq T]| \leq \mathbb{P}[n \leq T]$$

(iv) By (i)
$$\lim_{n\to\infty} \mathbb{P}[T \ge n] = 0$$