Chapitre 3

Limites et continuité

I. Limite à l'infini

Limite finie

Si f(x) est « aussi proche de L que l'on veut » dès que x est « assez grand », on dit que la fonction f admet pour limite L en $+\infty$.

Définition:

Si tout intervalle ouvert contenant L contient tous les f(x) dès que x est « assez grand », on dit que la fonction f admet pour limite L en $+\infty$.

On note:

$$\lim_{x\to +\infty} f(x) = L$$

Propriétés:

$$\lim_{x \to +\infty} \frac{1}{x} = 0$$

$$\lim_{x \to +\infty} \frac{1}{x^2} = 0$$

$$\lim_{x \to +\infty} \frac{1}{x^2} = 0 \qquad \lim_{x \to +\infty} \frac{1}{x^n} = 0 \text{ pour } n \in \mathbb{N}^* \qquad \lim_{x \to +\infty} \frac{1}{\sqrt{x}} = 0$$

$$\lim_{x \to +\infty} \frac{1}{\sqrt{x}} = 0$$

$$\lim_{x\to +\infty} e^{-x} = 0$$

Remarque:

$$\lim_{x\to +\infty} f(x) = L \text{ se traduit par : } \forall \epsilon > 0 \text{ , } \exists x_0 \in \mathbb{R}, \ x > x_0 \Rightarrow |f(x) - L| < \epsilon \text{ .}$$

Interprétation graphique:

La courbe représentant la fonction f dans un repère devient « aussi proche que l'on veut » de la droite d'équation y=L lorsque x est « assez grand ».

Définition:

Lorsque $\lim_{x\to +\infty} f(x)=L$, on dit que, dans un repère, la droite d'équation y=L est asymptote **horizontale** en $+\infty$ à la courbe représentative de f.

Remarque:

Pour étudier la position relative de la courbe \mathcal{C}_f par rapport à la droite d d'équation y=L, on étudie le signe de la différence f(x)-L.

Exemple:

 $\lim_{x \to +\infty} \frac{1}{\sqrt{x}} = 0$ donc l'axe des abscisses est asymptote horizontale en $+\infty$ à la courbe représentative de $\frac{1}{\sqrt{x}}$. De plus, pour tout x>0, $\frac{1}{\sqrt{x}}>0$ donc la courbe est située au-dessus de l'asymptote.

De la même façon, on a :

Définition:

 $\lim_{x \to -\infty} f(x) = L \text{ se traduit par :}$

$$\forall \epsilon > 0, \exists x_0 \in \mathbb{R}, x < x_0 \Rightarrow |f(x) - L| < \epsilon.$$

Propriétés:

$$\lim_{x \to -\infty} \frac{1}{x} = 0$$

$$\lim_{x \to -\infty} \frac{1}{x^2} = 0$$

$$\lim_{x \to -\infty} \frac{1}{x^2} = 0 \qquad \lim_{x \to -\infty} \frac{1}{x^n} = 0 \text{ pour } n \in \mathbb{N}^*$$

$$\lim_{x\to -\infty} e^x = 0$$

2

2) **Limite infinie**

Dire qu'une fonction f admet pour limite $+\infty$ en $+\infty$ signifie que f(x) peut être « aussi grand que l'on veut » dès que x est « assez grand ».

Définition:

Si tout intervalle de la forme A; + ∞ où A est un réel, contient tous les f(x) lorsque x est « suffisamment grand », alors f admet pour limite $+\infty$ en $+\infty$.

On note:

$$\lim_{x \to +\infty} f(x) = +\infty$$

Propriétés:

$$\lim_{x\to +\infty} x = +\infty$$

$$\lim_{x \to +\infty} x^2 = +\infty$$

$$\lim_{x \to +\infty} x^n = +\infty \text{ pour } n \in \mathbb{N}^*$$

$$\lim_{x\to +\infty} \sqrt{x} = +\infty$$

$$\lim_{x\to +\infty} e^x = +\infty$$

Remarque:

$$\lim_{x\to +\infty} f(x) = +\infty \text{ se traduit par}: \ \forall M \in \mathbb{R}, \ \exists x_0 \in \mathbb{R}, \ x > x_0 \Rightarrow f(x) > M.$$

Interprétation graphique :

La courbe représentative de la fonction f dans un repère est au-dessus de toute droite parallèle à l'axe des abscisses pour x « suffisamment grand ».

Pour $M = M_1$: pour tout $x > x_1$, on a f(x) > M.

Pour $M = M_2$: pour tout $x > x_2$, on a f(x) > M.

Pour $M = M_3$: pour tout $x > x_3$, on a f(x) > M.

De la même façon, on définit les autres limites infinies :

Définition:

$$\lim_{x \to +\infty} f(x) = -\infty$$
 se traduit par :

$$\forall M \in \mathbb{R}, \exists x_0 \in \mathbb{R}, x > x_0 \Rightarrow f(x) < M$$
.

Exemple:

$$\lim_{x \to +\infty} -x = -\infty$$

Définition:

$$\lim_{x \to -\infty} f(x) = +\infty$$
 se traduit par :

$$\forall M \in \mathbb{R}, \exists x_0 \in \mathbb{R}, x < x_0 \Rightarrow f(x) > M$$
.

II. Limite en un réel

1) <u>Limite infinie</u>

Définition:

Soit f une fonction et a un nombre réel, borne de l'ensemble de définition de f n'appartenant pas à cet ensemble.

Si f(x) est « aussi grand que l'on veut » dès que x est « assez proche » de a, on dit que la limite en a de la fonction f est $+\infty$.

On note:

$$\lim_{x \to a} f(x) = +\infty$$

Remarque:

En pratique, on est parfois amené à étudier séparément les limites de f pour x>a et pour x<a.

On parle alors de « limite de f à droite en a », notée $\lim_{x \to a^+} f(x)$ ou $\lim_{x \to a \atop x > a} f(x)$ et de « limite de f à gauche en a », notée $\lim_{x \to a^-} f(x)$ ou $\lim_{x \to a \atop x < a} f(x)$.

Propriétés:

$$\lim_{x \to 0^+} \frac{1}{x} = +\infty \qquad \qquad \left| \lim_{x \to 0^+} \frac{1}{x^n} = +\infty \text{ pour } n \in \mathbb{N}^* \right| \qquad \left| \lim_{x \to 0^+} \frac{1}{\sqrt{x}} = +\infty \right|$$

4

Remarque:

$$\lim_{x \to a} f(x) = +\infty \text{ se traduit par}: \ \forall M \in \mathbb{R}, \ \exists \alpha > 0 \ , \ |x - a| < \alpha \ \Rightarrow \ f(x) > M \ .$$

De la même façon, on a :

Définition:

$$\lim_{x \to a} f(x) = -\infty \text{ se traduit par}: \ \forall M \in \mathbb{R}, \ \exists \alpha > 0, \ |x - a| < \alpha \Rightarrow f(x) < M.$$

Exemple:

$$\lim_{x \to 0^{-}} \frac{1}{x} = -\infty$$

Interprétation graphique:

La courbe représentant f peut être « aussi proche que l'on veut » de la droite d'équation x=a.

Définition:

Lorsqu'une fonction f admet une limite infinie en un réel a (ou à droite en a ou à gauche en a), on dit que la droite d'équation x=a est **asymptote verticale** à la courbe représentative de la fonction f.

Exemple:

 $\lim_{x\to 0^+} \frac{1}{x} = -\infty$ ou $\lim_{x\to 0^+} \frac{1}{\sqrt{x}} = +\infty$ donc l'axe des ordonnées est asymptote verticale à la courbe représentative de ces fonctions.

2) Limite finie

Définition:

Soit f une fonction et a un nombre réel, appartenant à l'ensemble de définition de f (éventuellement a est une borne). Soit $\ell \in \mathbb{R}$.

Dire que f a pour limite ℓ quand x tend vers a signifie que :

$$\forall \ \epsilon > 0, \ \exists \ \delta > 0, \quad |x-a| < \delta \ \Rightarrow \ |f(x) - \ell| < \epsilon$$

Propriétés:

Soit a un réel.

- Si $a \ge 0$, $\lim_{x \to a} \sqrt{x} = \sqrt{a}$.
- Si P est un polynôme, alors $\lim_{x \to a} P(x) = P(a)$.
- Si F est une fonction rationnelle (quotient de deux polynômes) définie en a, alors $\lim_{x \to a} F(x) = F(a)$.
- $\lim_{x \to a} \cos(x) = \cos(a)$ et $\lim_{x \to a} \sin(x) = \sin(a)$.
- $\lim_{x \to a} e^x = e^a$

III. Opérations sur les limites

1) Limite d'une somme

a désigne un réel ou $+\infty$ ou $-\infty$. ℓ et ℓ ' désignent des réels.

$\operatorname{Si} \lim_{x \to a} f(x) =$	l	l	l	+∞	-∞	+∞
et $\lim_{x \to a} g(x) =$	l'	+∞	-∞	+∞	-∞	-∞
alors $\lim_{x \to a} (f + g)(x) =$	$\ell + \ell$ '	+∞	-∞	+∞	-∞	On ne peut pas conclure directement

Exemple:

On cherche la limite en $+\infty$ de $h(x)=x^2+x$.

On pose
$$h(x)=f(x)+g(x)$$
 où $f(x)=x^2$ et $g(x)=x$.

$$\lim_{x \to +\infty} f(x) = +\infty \text{ et } \lim_{x \to +\infty} g(x) = +\infty \text{ , donc } \lim_{x \to +\infty} h(x) = \lim_{x \to +\infty} f(x) + \lim_{x \to +\infty} g(x) = +\infty \text{ .}$$

Remarque:

Dans le cas où l'on ne peut pas conclure, on dit que l'on a une forme indéterminée.

2) Limite d'un produit

$\operatorname{Si} \lim_{x \to a} f(x) =$	e	$\ell > 0$ ou $+\infty$	$\ell < 0$ ou $-\infty$	$\ell > 0$ ou $+\infty$	ℓ < 0 ou -∞	0
et $\lim_{x \to a} g(x) =$	6.	$+\infty$	+∞	-∞	-∞	+∞ ou -∞
alors $\lim_{x \to a} (fg)(x) =$	ℓ×ℓ′	+∞	-∞	-∞	+∞	On ne peut pas conclure directement

Exemple:

On cherche la limite en $+\infty$ de $h(x)=x^2-x$.

On pose h(x)=f(x)+g(x) où $f(x)=x^2$ et g(x)=-x.

 $\lim_{x\to +\infty} f(x) = +\infty \text{ et } \lim_{x\to +\infty} g(x) = -\infty \text{ , on about it à une forme indéterminée pour la limite de } h(x) \text{ .}$

Pour lever l'indétermination, on factorise la fonction h(x)=x(x-1).

On pose
$$h(x)=f(x)\times g(x)$$
 avec $f(x)=x$ et $g(x)=x-1$. $\lim_{x\to +\infty}f(x)=+\infty$ et $\lim_{x\to +\infty}g(x)=+\infty$, donc $\lim_{x\to +\infty}h(x)=\lim_{x\to +\infty}f(x)\times \lim_{x\to +\infty}g(x)=+\infty$.

3) Limite d'un quotient

• Cas où $\lim_{x \to a} g(x) \neq 0$

$\operatorname{Si} \lim_{x \to a} f(x) =$	l	l	+∞	+∞	-∞	-∞	∞
$\operatorname{et} \lim_{x \to a} g(x) =$	ℓ '≠0	+∞ ou -∞	l '>0	l ' < 0	l '>0	l ' < 0	∞
alors $\lim_{x \to a} \left(\frac{f}{g} \right) (x) =$	<u>e</u> e •	0	+∞	-∞	-∞	+∞	On ne peut pas conclure directement

• Cas où
$$\lim_{x \to a} g(x) = 0$$

$\operatorname{Si} \lim_{x \to a} f(x) =$	$\ell > 0$ ou $+\infty$	ℓ<0 ou -∞	$\ell > 0$ ou $+\infty$	ℓ<0 ou -∞	0
$ \operatorname{et} \lim_{x \to a} g(x) = $	0+	0+	0-	0_	0
alors $\lim_{x \to a} \left(\frac{f}{g} \right) (x) =$	+∞	-∞	-∞	+∞	On ne peut pas conclure directement

Remarque:

 $\lim_{x\to a} g(x) = 0^+$ signifie que la limite de g en a est nulle et pour x « aussi proche de a que l'on veut », g(x) est positif.

Exemple:

On cherche la limite en $+\infty$ de $h(x) = \frac{(x+1)^2}{x}$.

On pose
$$h(x) = \frac{f(x)}{g(x)}$$
 avec $f(x) = (x+1)^2$ et $g(x) = x$.

 $\lim_{x \to +\infty} f(x) = +\infty$ et $\lim_{x \to +\infty} g(x) = +\infty$, on aboutit à une forme indéterminée pour la limite de h(x).

Pour lever l'indétermination, on développe la fonction $h(x) = \frac{(x^2 + 2x + 1)}{x} = x + 2 + \frac{1}{x}$.

On pose
$$h(x)=f(x)+g(x)$$
 avec $f(x)=x+2$ et $g(x)=\frac{1}{x}$.

$$\lim_{x \to +\infty} f(x) = +\infty \text{ et } \lim_{x \to +\infty} g(x) = 0 \text{ , donc } \lim_{x \to +\infty} h(x) = \lim_{x \to +\infty} f(x) + \lim_{x \to +\infty} g(x) = +\infty \text{ .}$$

Propriétés:

- Une fonction polynôme a même limite en $-\infty$ et en $+\infty$ que son terme de plus haut degré.
- Une fonction rationnelle a même limite en $-\infty$ et en $+\infty$ que le quotient des termes de plus haut degré de son numérateur et son dénominateur.

Exemple:

$$\lim_{x \to -\infty} \frac{2x^2 + x - 3}{3x + 4} = \lim_{x \to -\infty} \frac{2x^2}{3x} = \lim_{x \to -\infty} \frac{2}{3}x = -\infty$$

IV. <u>Limites et comparaison</u>

1) Théorèmes de comparaison

Théorème de minoration :

Soient deux fonctions f et g définies sur un intervalle de la forme $[a;+\infty[$ telles que pour tout réel x>a, $f(x) \le g(x)$.

Si
$$\lim_{x \to +\infty} f(x) = +\infty$$
 alors $\lim_{x \to +\infty} g(x) = +\infty$.

Théorème de majoration :

Soient deux fonctions f et g définies sur un intervalle de la forme $[a;+\infty[$ telles que pour tout réel x>a, $f(x) \le g(x)$.

Si
$$\lim_{x \to +\infty} g(x) = -\infty$$
 alors $\lim_{x \to +\infty} f(x) = -\infty$.

Exemple:

f est la fonction définie sur \mathbb{R} par $f(x) = -2x + \sin x$.

Pour tout nombre réel x, $\sin x \le 1$, donc $f(x) \le -2x+1$.

Or
$$\lim_{x \to +\infty} (-2x+1) = -\infty$$
 donc $\lim_{x \to +\infty} f(x) = -\infty$.

Remarque:

Ces deux propriétés s'étendent aux cas des limites en $-\infty$ et en un point en changeant l'ensemble de validité et l'inégalité.

2) Théorème des gendarmes

Propriété:

On considère trois fonctions f, g et h définies sur un intervalle de la forme $[a; +\infty[$ telles que : pour tout réel x>a, $g(x) \le f(x) \le h(x)$.

On suppose que:

$$\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} h(x) = L \text{ (où } L \text{ est un nombre réel.)}$$

Alors f admet pour limite L en $+\infty$: $\lim_{x \to +\infty} f(x) = L$

Exemple:

f est la fonction définie sur $]0:+\infty[$ par $f(x)=\frac{\sin x}{x}$.

Pour tout nombre réel x, $-1 \le \sin x \le 1$. Donc, pour tout nombre réel x > 0, $\frac{-1}{x} \le f(x) \le \frac{1}{x}$.

Or
$$\lim_{x \to +\infty} \left(-\frac{1}{x} \right) = 0$$
 et $\lim_{x \to +\infty} \left(\frac{1}{x} \right) = 0$, donc $\lim_{x \to +\infty} f(x) = 0$.

Remarque:

Ce théorème s'étend au cas de limites en $-\infty$ et en un point en changeant l'ensemble de validité de la condition.

9

V. Fonction continue

1) Continuité

Définition:

Soit une fonction f définie sur un intervalle I.

On dit que la fonction f est **continue en** un réel a de I si :

$$\lim_{x \to a} f(x) = f(a)$$

On dit que la fonction f est **continue sur I** si f est continue en tout réel a de I.

Exemples:

• La fonction f définie sur \mathbb{R} par $f(x) = x^3 - 3x + 2$

f est continue sur \mathbb{R} .

• La fonction g définie sur \mathbb{R} par $g(x) = \begin{cases} 3 - x^2 si \ x \le 1 \\ x^2 - 2x + 2 si \ x > 1 \end{cases}$

g n'est pas continue en 1, donc elle n'est pas continue sur \mathbb{R} .

- Les fonctions carrée, cube, cosinus sont continues sur \mathbb{R} .
- La fonction partie entière E est définie sur \mathbb{R} par E(x)=n, où n est l'entier relatif tel que $n \le x < n+1$.

Ainsi si $0 \le x < 1$ alors E(x) = 0 et si $1 \le x < 2$ alors E(x) = 1.

Donc
$$\lim_{x\to 1^-} E(x) = 0$$
 alors que $E(1)=1$.

On dit que E est **discontinue** en 1, et de façon générale, en tout entier relatif.

La courbe C_E est « en escaliers » et présente des sauts en ses points d'abscisses entières.

2) Propriétés

Propriétés (admise):

- Les fonctions affines, les fonctions polynômes, la fonction racine carrée et la fonction exponentielle sont continues sur leur ensemble de définition.
- Les sommes, produits, quotients et composées de fonctions continues sont des fonctions continues sur chacun des intervalles formant leur ensemble de définition.

Exemple:

La fonction f, définie sur $]-\infty$; $1[\cup]1$; $+\infty[$ par $f(x) = \frac{x^2 - 3x + 5}{x - 1}$, est continue sur chacun des intervalles $]-\infty$; 1[et]1; $+\infty[$ en tant que quotient de fonctions polynômes.

VI. Théorème des valeurs intermédiaires

1) Cas général

Propriété (admise):

f est une fonction **continue** sur un intervalle [a;b].

Pour tout réel k compris entre f(a) et f(b) il existe **au moins** un réel c compris entre a et b, tel que f(c)=k.

Exemples:

• f est continue sur [a;b], toutes les valeurs comprises entre f(a) et f(b) sont prises au moins une fois.

• g n'étant pas continue sur [a;b], certaines valeurs comprises entre g(a) et g(b) ne sont pas atteintes par g.

Remarque:

La continuité permet de dire que des solutions existent.

2) Cas des fonctions monotones

Propriété:

Soit f une fonction **continue** et **strictement monotone** sur un intervalle [a;b] et k un nombre compris entre f(a) et f(b), alors l'équation f(x)=k admet une **unique solution** c située dans l'intervalle [a;b].

Exemples:

Remarques:

- Dans le cas particulier où 0 est compris entre f(a) et f(b), sous les hypothèses du théorème précédent, f prend une fois et une seule la valeur 0.
 - Ceci signifie que l'équation f(x)=0 admet une solution unique sur a;b.
- Ce théorème s'étend au cas d'intervalles ouverts ou semi-ouverts, bornés ou non bornés en remplaçant si besoin f(a) et f(b) par les limites de f en a et en b.
- Dans un tableau de variation les flèches obliques traduisent la continuité et la stricte monotonie d'une fonction sur un intervalle.

Exemple:

Soit la fonction f définie sur \mathbb{R} par :

$$f(x) = -x^3 + 3x^2 + 1$$

$$f'(x)=-3x^2+6x=3x(-x+2)$$

 $f'(x)=0$ pour $x=0$ et $x=2$

Sur [2;4], la fonction f est continue (c'est une fonction polynôme) et strictement décroissante. f(2)=5 et f(4)=-15.

Ainsi l'équation f(x)=0 possède une unique solution α dans l'intervalle [2,4].

3) Extension à d'autres intervalles

On généralise le théorème des valeurs intermédiaires sur un intervalle ouvert.

Propriété:

Soit f une fonction **continue** sur un intervalle]a;b[où a désigne un réel ou $-\infty$ et b désigne un réel ou $+\infty$.

On suppose que f admet des limites en a et b, finies ou infinies.

- Pour tout k comprisentre $\lim_{x\to a} f(x)$ et $\lim_{x\to b} f(x)$, l'équation f(x)=k admet au moins une solution dans l'intervalle a; b[.
- Si, de plus, f est strictement monotone sur a; b, alors cette solution est unique.

Exemple:

La fonction f définie sur \mathbb{R} par $f(x)=x^3+3x+1$ est continue et strictement croissante sur \mathbb{R} et $\lim_{x \to -\infty} f(x) = -\infty$ et $\lim_{x \to +\infty} f(x) = +\infty$.

0 appartient à $]-\infty;+\infty[$ donc l'équation f(x)=0 a une unique solution x_0 sur \mathbb{R} .