Lista 6 - Álgebra Linear

Transformações Lineares (parte II)

3° quadrimestre de 2014 - Professores Maurício Richartz e Vladislav Kupriyanov

Leitura recomendada: seções 5.3 - 5.4 do Boldrini e seções 2.10, 2.14, 2.18 do Apostol.

- a) Seja $T \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{P}_2(\mathbb{R}))$ dada por $T(\mathfrak{p}) = \mathfrak{p}'$. Encontre a matriz de T com relação às bases canônicas de $\mathcal{P}_3(\mathbb{R})$ e $\mathcal{P}_2(\mathbb{R})$.
- b) Seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ a transformação linear dada por

$$T(x, y, z) = (x + z, y + z, x + y + 2z).$$

Encontre as matrizes de T com relação à base canônica, C, e com relação à base B formada pelos vetores

$$u = (1, 1, 2), v = (-1, 1, 0), w = (-1, -1, 1).$$

Isto é, encontre $[T]_C^C$ e $[T]_B^B$.

- c) Seja $T \in \mathcal{L}(\mathcal{P}_2(\mathbb{R}), \mathbb{R})$ dada por $T(p) = \int_0^1 p(x) dx$ Encontre a matriz de T com relação às bases canônicas de $\mathcal{P}_2(\mathbb{R})$ e \mathbb{R} .
- $\mathbf{2}$ Seja $\mathsf{T}:\mathbb{R}^3\to\mathbb{R}^3$ um operador linear tal que

$$T(1,0,0) = (2,3,1), T(1,1,0) = (5,2,7) e T(1,1,1) = (-2,0,7).$$

- a) Encontre $\mathsf{T}(x,y,z)$ para $(x,y,z) \in \mathbb{R}^3.$
- b) T é sobrejetora? Justifique sua resposta.
- c) Té injetora? Justifique sua resposta.
- d) T é bijetora? Justifique sua resposta.
- e) Determine a matriz da transformação T em relação à base canônica.
- ${\bf 3}$ Seja $T:\mathbb{R}^3\to\mathbb{R}^3$ dada por T(x,y,z)=(2x-y+z,x-y,3x-2y+z). Usando a base canônica $\xi=\{(1,0,0),(0,1,0),(0,0,1)\}$, escreva $[T]_{\xi}^{\xi}$. Qual é o posto de $[T]_{\xi}^{\xi}$? Esse número é igual a dim $(\mathrm{Im}(T))$? Determine $\mathrm{Im}(T)$. Quanto vale a nulidade de $[T]_{\xi}^{\xi}$ (nº de colunas menos o posto)? Esse número é igual a dim $(\ker(T))$? Determine $\ker(T)$.

5 — Seja $T: \mathcal{P}_{2}(\mathbb{R}) \to \mathcal{P}_{2}(\mathbb{R})$ um operador linear tal que

$$(T(p_0))(t) = 1 + t, (T(p_1))(t) = t + t^2 e (T(p_2))(t) = 1 + t - t^2,$$

onde $p_i(t) = t^i, i = 0, 1, 2.$

- a) Encontre T(p) para $p \in \mathcal{P}_2(\mathbb{R})$.
- b) T é sobrejetora? Justifique sua resposta.
- c) Té injetora? Justifique sua resposta.
- d) T é bijetora? Justifique sua resposta.
- e) Determine a matriz da transformação T em relação à base canônica.
- 6 Seja o espaço vetorial dos polinômios de grau ≤ 3 , P_3 , e a transformação linear $D: P_3 \to P_3$, onde $D(\mathfrak{p}) = \mathfrak{p}'$ é a derivada do polinômio.
 - a) Mostre que P₃ é um espaço vetorial de dimensão 4.
 - b) Mostre que D é uma transformação linear.
 - c) Escreva D na forma matricial usando coordenadas relativas à base canônica $\{1,t,t^2,t^3\}$ no domínio e contra-domínio.
 - d) Determine kerD, ImD e encontre uma base para cada um destes subespaços. Verifique o teorema do núcleo e da imagem.
 - e) Mostre que $D \circ D \circ D \circ D = \mathbf{0}$, a transformação que leva qualquer polinômio para o polinômio nulo. Faça isso de dois jeitos: (i) usando a definição da derivada e (ii) usando a representação matricial do item (b).
- 7 Sejam T : $\mathbb{R}^2 \to \mathbb{R}^3$ e S : $\mathbb{R}^3 \to \mathbb{R}^2$, transformações lineares tais que T(1,1) = (3,2,1), T(0,-2) = (0,1,0), S(3,2,1) = (1,1), S(0,1,0) = (0,-2) e S(0,0,1) = (0,0). Encontre (a) T(x,y), (b) S(x,y,z), (c) T(1,0) e T(0,1), (d) P : $\mathbb{R}^2 \to \mathbb{R}^2$ tal que P = S o T, (e) Q : $\mathbb{R}^3 \to \mathbb{R}^3$ tal que Q = T o S. (f) T é a inversa de S? (g) Mostre que T é injetora mas não sobrejetora e S é sobrejetora mas não injetora.
- 8 Sejam T, S, P e Q da questão 7. Encontre as matrizes de transformação $[T]_{\xi'}^{\xi}$, $[S]_{\xi}^{\xi'}$, $[P]_{\xi}^{\xi}$ e $[Q]_{\xi'}^{\xi'}$, relativas às bases canônicas ξ e ξ' de \mathbb{R}^2 e \mathbb{R}^3 , respectivamente. Verifique que $[S]_{\xi}^{\xi'}[T]_{\xi'}^{\xi} = [P]_{\xi}^{\xi} = I_2$ e $[T]_{\xi'}^{\xi}[S]_{\xi'}^{\xi'} = [Q]_{\xi'}^{\xi'}$.