Package 'rgeomstats'

November 4, 2022

```
Title Interface to 'Geomstats'
Version 0.0.1
Description Provides an interface to the Python package 'Geomstats' authored by Miolane et
      al. (2020) <arXiv:2004.04667>.
License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.2.1
Suggests testthat (>= 3.0.0)
Config/testthat/edition 3
URL https://github.com/LMJL-Alea/rgeomstats,
      https://lmjl-alea.github.io/rgeomstats/
BugReports https://github.com/LMJL-Alea/rgeomstats/issues
Config/reticulate list( packages = list( list(package = ``geomstats'') )
Imports cli, purrr, R6, Rdpack, reticulate, rlang
RdMacros Rdpack
NeedsCompilation no
Author Aymeric Stamm [aut, cre] (<a href="https://orcid.org/0000-0002-8725-3654">https://orcid.org/0000-0002-8725-3654</a>),
      Nicolas Guigui [ctb] (Author of the Geomstats Python package,
       <https://orcid.org/0000-0002-7901-0732>),
      Alice Le Brigant [ctb] (Author of the Geomstats Python package,
       <https://orcid.org/0000-0002-8055-4753>),
      Johan Mathe [ctb] (Author of the Geomstats Python package),
      Nina Miolane [ctb] (Author of the Geomstats Python package,
       <a href="https://orcid.org/0000-0002-1200-9024">https://orcid.org/0000-0002-1200-9024</a>),
      Xavier Pennec [ctb] (Author of the Geomstats Python package,
       <a href="https://orcid.org/0000-0002-6617-7664">https://orcid.org/0000-0002-6617-7664</a>),
      Luis Pereira [ctb] (Author of the Geomstats Python package),
      Yann Thanwerdas [ctb] (Author of the Geomstats Python package,
       <https://orcid.org/0000-0002-9351-6318>)
```

2 NFoldManifold

Maintainer Aymeric Stamm <aymeric.stamm@math.cnrs.fr>
Repository CRAN
Date/Publication 2022-11-04 10:10:02 UTC

R topics documented:

	NFoldManifold	
	SPDMatrix	
	SPDMetricAffine	5
	SPDMetricBuresWasserstein	6
	SPDMetricEuclidean	7
	SPDMetricLogEuclidean	8
	SpecialOrthogonal	9
Index		11

NFoldManifold

Class for N-Fold Product Manifolds

Description

Class for an n-fold product manifold M^n . It defines a manifold as the product manifold of n copies of a given base manifold M.

Super classes

```
rgeomstats::PythonClass -> rgeomstats::Manifold -> NFoldManifold
```

Methods

Public methods:

- NFoldManifold\$new()
- NFoldManifold\$clone()

Method new(): The NFoldManifold class constructor.

```
Usage:
NFoldManifold$new(
  base_manifold,
  n_copies,
  metric = NULL,
  default_coords_type = "intrinsic",
  py_cls = NULL
)
```

Arguments:

base_manifold An R6::R6Class specifying the base manifold to copy.

NFoldManifold 3

n_copies An integer value specifying the number of replication of the base manifold.

metric An R6::R6Class specifying the base metric to use. Defaults to NULL which uses the Riemannian metric.

default_coords_type A string specifying the coordinate type. Choices are "intrinsic" or "extrinsic". Defaults to "intrinsic".

py_cls A Python object of class NFoldManifold. Defaults to NULL in which case it is instantiated on the fly using the other input arguments.

Returns: A NFoldManifold R6::R6Class object.

Examples:

```
if (reticulate::py_module_available("geomstats")) {
  nfm <- NFoldManifold$new(
    base_manifold = SPDMatrix(n = 3),
    n_copies = 3
  )
  nfm
}</pre>
```

Method clone(): The objects of this class are cloneable with this method.

Usage:

NFoldManifold\$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Nicolas Guigui

Examples

```
## -----
## Method `NFoldManifold$new`
## -----
if (reticulate::py_module_available("geomstats")) {
    nfm <- NFoldManifold$new(
        base_manifold = SPDMatrix(n = 3),
        n_copies = 3
    )
    nfm
}</pre>
```

4 SPDMatrix

SPDMatrix

Class for the Manifold of Symmetric Positive Definite Matrices

Description

This function generates an instance of the class for the manifold of symmetric positive definite matrices SPD(n).

Usage

```
SPDMatrix(n, ...)
```

Arguments

n An integer value specifying the number of rows and columns of the matrices.

Extra arguments to be passed to parent class constructors. See OpenSet and Manifold classes.

Value

An object of class SPDMatrices.

Author(s)

Yann Thanwerdas

See Also

Other symmetric positive definite matrix classes: SPDMatrices

Examples

```
if (reticulate::py_module_available("geomstats")) {
   spd3 <- SPDMatrix(n = 3)
   spd3
}</pre>
```

SPDMetricAffine 5

SPDMetricAffine Class for the Affine Metric on the Manifold of Symmetric Positive inite Matrices	e Def-
--	--------

Description

An R6::R6Class object implementing the SPDMetricAffine class. This is the class for the affine-invariant metric on the SPD manifold (Thanwerdas and Pennec 2019).

Super classes

```
rgeomstats::PythonClass -> rgeomstats::Connection -> rgeomstats::RiemannianMetric
-> SPDMetricAffine
```

Public fields

n An integer value specifying the shape of the matrices: $n \times n$. power_affine An integer value specifying the power transformation of the classical SPD metric.

Methods

Public methods:

- SPDMetricAffine\$new()
- SPDMetricAffine\$clone()

Method new(): The SPDMetricAffine class constructor.

```
Usage:
```

```
SPDMetricAffine$new(n, power_affine = 1, py_cls = NULL)
```

Arguments:

n An integer value specifying the shape of the matrices: $n \times n$.

power_affine An integer value specifying the power transformation of the classical SPD metric. Defaults to 1L.

py_cls A Python object of class SPDMetricAffine. Defaults to NULL in which case it is instantiated on the fly using the other input arguments.

Returns: An object of class SPDMetricAffine.

Method clone(): The objects of this class are cloneable with this method.

```
Usage:
```

```
SPDMetricAffine$clone(deep = FALSE)
```

Arguments:

deep Whether to make a deep clone.

Author(s)

Yann Thanwerdas

References

Thanwerdas Y, Pennec X (2019). "Is affine-invariance well defined on SPD matrices? A principled continuum of metrics." In *International Conference on Geometric Science of Information*, 502–510. Springer.

SPDMetricBuresWasserstein

Class for the Bures-Wasserstein Metric on the Manifold of Symmetric Positive Definite Matrices

Description

An R6::R6Class object implementing the SPDMetricBuresWasserstein class. This is the class for the Bures-Wasserstein metric on the SPD manifold (Bhatia et al. 2019; Malagò et al. 2018).

Super classes

```
rgeomstats::PythonClass -> rgeomstats::Connection -> rgeomstats::RiemannianMetric
-> SPDMetricBuresWasserstein
```

Public fields

n An integer value specifying the shape of the matrices: $n \times n$.

Methods

Public methods:

- SPDMetricBuresWasserstein\$new()
- SPDMetricBuresWasserstein\$clone()

Method new(): The SPDMetricBuresWasserstein class constructor.

Usage:

SPDMetricBuresWasserstein\$new(n, py_cls = NULL)

Arguments:

n An integer value specifying the shape of the matrices: $n \times n$.

py_cls A Python object of class SPDMetricBuresWasserstein. Defaults to NULL in which case it is instantiated on the fly using the other input arguments.

Returns: An object of class SPDMetricBuresWasserstein.

Method clone(): The objects of this class are cloneable with this method.

Usage:

SPDMetricBuresWasserstein\$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

SPDMetricEuclidean 7

Author(s)

Yann Thanwerdas

References

Bhatia R, Jain T, Lim Y (2019). "On the Bures–Wasserstein distance between positive definite matrices." *Expositiones Mathematicae*, **37**(2), 165–191.

Malagò L, Montrucchio L, Pistone G (2018). "Wasserstein Riemannian geometry of Gaussian densities." *Information Geometry*, **1**(2), 137–179.

SPDMetricEuclidean

Class for the Euclidean Metric on the Manifold of Symmetric Positive Definite Matrices

Description

An R6::R6Class object implementing the SPDMetricEuclidean class. This is the class for the Euclidean metric on the SPD manifold.

Super classes

```
rgeomstats::PythonClass -> rgeomstats::Connection -> rgeomstats::RiemannianMetric
-> SPDMetricEuclidean
```

Public fields

n An integer value specifying the shape of the matrices: $n \times n$.

power_euclidean An integer value specifying the power transformation of the classical SPD metric.

Methods

Public methods:

- SPDMetricEuclidean\$new()
- SPDMetricEuclidean\$clone()

Method new(): The SPDMetricEuclidean class constructor.

Usage:

SPDMetricEuclidean\$new(n, power_euclidean = 1, py_cls = NULL)

Arguments:

n An integer value specifying the shape of the matrices: $n \times n$.

power_euclidean An integer value specifying the power transformation of the classical SPD metric. Defaults to 1L.

py_cls A Python object of class SPDMetricEuclidean. Defaults to NULL in which case it is instantiated on the fly using the other input arguments.

Returns: An object of class SPDMetricEuclidean.

Method clone(): The objects of this class are cloneable with this method.

Usage:

SPDMetricEuclidean\$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Yann Thanwerdas

SPDMetricLogEuclidean Class for the log-Euclidean Metric on the Manifold of Symmetric Positive Definite Matrices

Description

An R6::R6Class object implementing the SPDMetricLogEuclidean class. This is the class for the log-Euclidean metric on the SPD manifold.

Super classes

```
rgeomstats::PythonClass -> rgeomstats::Connection -> rgeomstats::RiemannianMetric
-> SPDMetricLogEuclidean
```

Public fields

n An integer value specifying the shape of the matrices: $n \times n$.

Methods

Public methods:

- SPDMetricLogEuclidean\$new()
- SPDMetricLogEuclidean\$clone()

Method new(): The SPDMetricLogEuclidean class constructor.

Usage:

SPDMetricLogEuclidean\$new(n, py_cls = NULL)

Arguments:

n An integer value specifying the shape of the matrices: $n \times n$.

py_cls A Python object of class SPDMetricLogEuclidean. Defaults to NULL in which case it is instantiated on the fly using the other input arguments.

SpecialOrthogonal 9

```
Returns: An object of class SPDMetricLogEuclidean.
Examples:
if (reticulate::py_module_available("geomstats")) {
   mt <- SPDMetricLogEuclidean$new(n = 3)
   mt
}

Method clone(): The objects of this class are cloneable with this method.
Usage:
SPDMetricLogEuclidean$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.</pre>
```

Author(s)

Yann Thanwerdas

Examples

```
## -----
## Method `SPDMetricLogEuclidean$new`
## -----
if (reticulate::py_module_available("geomstats")) {
  mt <- SPDMetricLogEuclidean$new(n = 3)
  mt
}</pre>
```

 ${\tt SpecialOrthogonal}$

Class for the Special Orthogonal Group

Description

This function generates an instance of the class for the special orthogonal group SO(n).

Usage

```
SpecialOrthogonal(n, point_type = "matrix", epsilon = 0, ..., py_cls = NULL)
```

Arguments

n	An integer value representing the shape of the n x n matrices.
point_type	A character string specifying how elements of the group should be represented. Choices are either "vector" or "matrix". Defaults to "matrix".
epsilon	A numeric value specifying the precision to use for calculations involving potential division by 0 in rotations. Defaults to 0.0 .

10 SpecialOrthogonal

	Extra arguments to be passed to parent class constructors. See LieGroup, MatrixLieAlgebra, LevelSet and Manifold classes.
py_cls	A Python object of class SpecialOrthogonal. Defaults to NULL in which case it is instantiated on the fly using the other input arguments.

Value

An object of class SpecialOrthogonal which is an instance of one of three different R6::R6Class depending on the values of the input arguments. Specifically:

- if n == 2 and point_type == "vector", then the user wants to instantiate the space of 2D rotations in vector representations and thus the output is an instance of the SpecialOrthogonal2Vectors class:
- if n == 3 and point_type == "vector", then the user wants to instantiate the space of 3D rotations in vector representations and thus the output is an instance of the SpecialOrthogonal3Vectors class:
- in all other cases, either the user is dealing with rotations in matrix representation or with rotations in dimension greater than 3 and thus the output is an instance of the SpecialOrthogonalMatrices class.

Author(s)

Nicolas Guigui and Nina Miolane

See Also

Other special orthogonal classes: SpecialOrthogonal2Vectors, SpecialOrthogonal3Vectors, SpecialOrthogonalMatrices

Examples

```
if (reticulate::py_module_available("geomstats")) {
  so3 <- SpecialOrthogonal(n = 3)
  so3
}</pre>
```

Index

```
* product manifold
    NFoldManifold, 2
\ast special orthogonal classes
    SpecialOrthogonal, 9
* symmetric positive definite matrix classes
    SPDMatrix, 4
LevelSet, 10
LieGroup, 10
Manifold, 4, 10
MatrixLieAlgebra, 10
NFoldManifold, 2, 2, 3
OpenSet, 4
R6::R6Class, 2, 3, 5-8, 10
rgeomstats::Connection, 5-8
rgeomstats::Manifold, 2
rgeomstats::RiemannianMetric, 5-8
SPDMatrices, 4
SPDMatrix, 4
SPDMetricAffine, 5, 5
SPDMetricBuresWasserstein, 6, 6
SPDMetricEuclidean, 7, 7, 8
SPDMetricLogEuclidean, 8, 8, 9
SpecialOrthogonal, 9, 10
SpecialOrthogonal2Vectors, 10
SpecialOrthogonal3Vectors, 10
SpecialOrthogonalMatrices, 10
```