Ayudantía I

Nicholas Mc-Donnell

2do semestre 2017

3. Determine si los siguientes son espacios vectoriales para esto de una demostración o un contraejemplo.

3. a) Si
$$b \in \mathbb{F}$$
, el conjunto $S = \{(x_1, x_2, x_3, x_4) \in \mathbb{F}^4 : x_3 = 5x_4 + b\}$

Dem:

Digamos que $b \neq 0$, luego sea $\mathbf{x} \in S$.

Notar que $\mathbf{0} \neq \mathbf{x}$, ya que $x_3 \neq x_4$, pero en el caso de $\mathbf{0}, x_3 = x_4 = 0$.

Por lo que para $b \neq 0$, S no es espacio vectorial.

Luego, si b=0, por lo anterior $x_3=x_4=0$ lo que implica que $\mathbf{0}\in S$

Sea
$$\mathbf{u}, \mathbf{v} \in S$$
, luego $\mathbf{u} + \mathbf{v} = (u_1 + v_1, u_2 + v_2, 5u_4 + 5v_4, u_4 + v_4) = (u_1 + v_1, u_2 + v_2, 5(u_4 + v_4), u_4 + v_4) = (u_1 + v_1, u_2 + v_2, 5u_4 + 5v_4, u_4 + v_4) = (u_1 + v_1, u_2 + v_2, 5(u_4 + v_4), u_4 + v_4) = (u_1 + v_2, u_4 + v_4) = (u_1 + v_4, u_4 + v_4) = (u_1$

 $\mathbf{v} + \mathbf{u}$, lo que implica que la suma esta bien definida como operación y es conmutativa.

Sea $\mathbf{v} \in S$:

$$\mathbf{v} = (v_1, v_2, 5v_4, v_4)$$

Tomemos
$$(-v_1, -v_2, -5v_4, -v_4) = \mathbf{u} : \mathbf{v} + \mathbf{u} = \mathbf{0}$$

Por lo que existe el inverso

Lo que implica que (S, +) es grupo abeliano

Luego, sea $\mathbf{v} \in S$

$$1\mathbf{v} = (1v_1, 1v_2, 1(5v_4), 1v_4) = (v_1, v_2, 5v_4, v_4) = \mathbf{v}$$

Y por último, sean $a, d \in \mathbb{F}, b, c \in S$:

$$a(b+c) = a(b_1+c_1, b_2+c_2, 5(b_4+c_4), b_4+c_4) = (a(b_1+c_1), a(b_2+c_2), a(5(b_4+c_4)), a(b_4+c_4)) = (ab_1+ac_1, ab_2+ac_2, 5(ab_4+ac_4), ab_4+ac_4) = ab+ac$$

Similarmente: (a+d)b = ab + db

Esto implica que S es un espacio vectorial

3.b) Sea $A \in \mathbb{R}^{m \times n}$, el conjunto S de las soluciones de $A\mathbf{x} = \mathbf{0}$

Dem:

Primero notar que $A\mathbf{0} = \mathbf{0}$ por definición de operatoria con $\mathbf{0}$, lo que implica que $\mathbf{0} \in S$.

Luego los vectores son un grupo abeliano con la suma, por lo que se hereda esta propiedad.

Por propiedad de vector $1\mathbf{x} = \mathbf{x}$ De nuevo los vectores cumplen la propiedad distrubitiva, por lo que esta se hereda.

Por ende S es espacio vectorial.

3.c) El conjunto S de funciones $f:\mathbb{R} \to \mathbb{R}$ que son diferenciables

Dem:

Primero notar que la función f(x) = 0 es diferenciable, y que para toda función g, g + f = g, además recordar que el conjunto de funciones $f : \mathbb{R} \to \mathbb{R}$ ($\mathbb{R}^{\mathbb{R}}$) es un espacio vectorial, por lo que todas las propiedades se heredan.

Luego sea $\lambda \in \mathbb{R}, f, g \in S$

$$(\lambda f + g)' = (\lambda f)' + (g)' = \lambda (f)' + (g)'$$

f y g son diferenciables, lo que implica que $\lambda f + g$ es diferenciable, por lo que S es un subespacio vectorial y por lo mismo un espacio vectorial.

3.d) \mathbb{C} sobre \mathbb{R}

Dem:

Notar que $\mathbb C$ se puede ver como $\mathbb R^2$, donde $z=x+iy,\,\Im(z)=y,\Re(z)=x,$ y $\mathbf u=(x,y)$

Como \mathbb{R}^2 es un espacio vectorial sobre \mathbb{R} , \mathbb{C} es un espacio vectorial sobre \mathbb{R}

3.e) Sea $A \in \mathbb{R}^{m \times n}$, el conjunto S de las soluciones de $A\mathbf{x} = \mathbf{b}$, donde $\mathbf{b} \neq \mathbf{0}$

Dem:

Notar que $\mathbf{0} \notin S$, ya que $A\mathbf{0} = \mathbf{0} \neq \mathbf{b}$

Por lo que S no es espacio vectorial.

3.f) \mathbb{R} sobre \mathbb{Q}

Dem:

Notar que $0 \in \mathbb{R}$

Luego se sabe que $(\mathbb{R}, +)$ es un grupo abeliano.

 $1 \cdot x = x$ Por propiedad de la identidad multiplicativa en los reales.

Sean $a, b \in \mathbb{Q}, c, d \in \mathbb{R}$ además $a, b \in \mathbb{R}$, por lo que por propiedad de los reales: a(b+c) = ab + ac y (a+b)c = ac + bc.

Lo que implica que \mathbb{R} es un espacio vectorial sobre \mathbb{Q} .

4. Sea V un espacio vectorial sobre \mathbb{F} . Sean U y W dos subespacios vectoriales de V. Demuestre que $U \cup W$ es un espacio vectorial de V si y solo si $U \subset W$ o $W \subset U$

Dem:

 \Leftarrow

Sea $U \subset W$, esto implica que $U \cup W = W$, el cual es subespacio vectorial de V, por lo que $U \cup W$ es subespacio vectorial de V. Análogamente, si $W \subset U$, $U \cup W$ es subespacio vectorial de V.

 \Longrightarrow

Sea $\mathbf{u} \in U, \mathbf{v} \in W$, entonces por clausura de la suma $\mathbf{u} + \mathbf{v} \in U \cup W$, lo que a su vez implica que $\mathbf{u} + \mathbf{v} \in U \vee \mathbf{u} + \mathbf{v} \in W$, tomando el primer caso:

 $\mathbf{u} + \mathbf{v} \in U$, se sabe que $-\mathbf{u} \in U$ por lo que $(\mathbf{u} + \mathbf{v}) + (-\mathbf{u}) \in U$, expresión que es equivalente a $\mathbf{v} \in U$ por asociatividad y conmutatividad, lo que implica que $W \subset U$.

El otro caso es analogo, por lo que en resumen: $U \cup W$ espacio vectorial $\iff U \subset W$ o $W \subset U$.