```
import numpy as np
import matplotlib.pyplot as plt
import scipy.stats as stats
from scipy.optimize import minimize
```

Problem 1

```
In [2]:
S0 = 50
r = 0.02
T = 0.5
sigma = 0.25
K = 55
M = 100
U1 = np.random.uniform(0, 1, 10)*0.4
U2 = np.random.uniform(0, 1, 30)*0.2 + 0.4
U3 = np.random.uniform(0, 1, 30)*0.2 + 0.6
U4 = np.random.uniform(0, 1, 30)*0.2 + 0.8
S = np.zeros(M)
payoff = np.zeros(M)
for i in range((int)((3*M)/10)):
          S[(int)((i/3)*(1-i%3))] = S0*np.exp((r-sigma**2/2)*T + sigma*np.sqrt(T)*stats.norm.ppf(U1[(int))*T + sigma*np.sqrt(T)*stats.norm.ppf(U1[(int))*stats.norm.ppf(U1[(int))*stats.norm.ppf(U1[(int))*stats.norm.ppf(U1[(int))*stats.norm.ppf(U1[(int))*stats.norm.ppf(U1[(int))*stats.norm.ppf(U1[(int))*stats.norm.ppf(U1[(int))*stats.norm.ppf(U1[(int))*stats.norm.ppf(U1[(int))*stats.norm.ppf(U1[(int))*stats.norm.ppf(U1[(int))*stats.norm.ppf(U1[(int))*stats.norm.ppf(U1[(int))*stats.norm.ppf(U1[(int))*stats.norm.ppf(U1[(int))*stats.norm.ppf(U1[(int))*stats.norm.ppf(U1[(int))*stats.norm.ppf(U1[(int))*stats.norm.ppf(U1[(int))*stats.norm.ppf(U1[(int))*stats.norm.ppf(U1[(int))*stats.norm.ppf(U1[(int))*stats.norm.ppf(U1[(int))*stats.norm.ppf(U1[(int))*stats.norm.ppf(U1[(int))*stats.norm.ppf(U1[(int))*stats.norm.ppf(U1[(int))*stats.norm.ppf(U1[(int))*stats
 ((i/3)*(1-i%3))]))
           payoff[(int)((i/3)*(1-i%3))] = np.exp(-r*T)*max(S[(int)((i/3)*(1-i%3))]-K, 0)
           S[i+10] = S0*np.exp((r-sigma**2/2)*T + sigma*np.sqrt(T)*stats.norm.ppf(U2[i]))
           payoff[i+10] = np.exp(-r*T)*max(S[i+10]-K, 0)
           S[i+40] = S0*np.exp((r-sigma**2/2)*T + sigma*np.sqrt(T)*stats.norm.ppf(U3[i]))
           payoff[i+40] = np.exp(-r*T)*max(S[i+40]-K, 0)
           S[i+70] = S0*np.exp((r-sigma**2/2)*T + sigma*np.sgrt(T)*stats.norm.ppf(U4[i]))
           payoff[i+70] = np.exp(-r*T)*max(S[i+70]-K, 0)
mu1 = np.average(payoff[0:9])
mu2 = np.average(payoff[10:39])
mu3 = np.average(payoff[40:69])
mu4 = np.average(payoff[70:99])
sig1 = np.std(payoff[0:9])
sig2 = np.std(payoff[10:39])
sig3 = np.std(payoff[40:69])
sig4 = np.std(payoff[70:99])
```

The estimated value of the price of the option is: 1.827972901022458
The estimated standard error of the price of the option is: 0.30889960486223494

print("The estimated standard error of the price of the option is: " + str(std err))

print("The estimated value of the price of the option is: " + str(price))

std err = np.sqrt((0.4*sig1**2+0.2*(sig2**2+sig3**2+sig4**2))/M)

Problem 2

price = 0.4*mu1+0.2*(mu2+mu3+mu4)

```
In [3]:
```

```
def sim_claims(M):
    cost = np.zeros(M)
    loss = np.zeros(M)
    zero_count = 0
    count1000 = 0
```

```
for i in range (M):
       N = np.random.binomial(12, 0.4)
        prob = np.random.random(N)
        claims = [np.random.gamma(5, 100)*(prob[i]<0.25)+np.random.gamma(4, 50)*(prob[i]>=0.25) for
i in range(N)]
        loss[i] = np.sum(claims)
        if(loss[i]<1000):
           cost[i] = 0
        elif(1000<=loss[i]<2500):
           cost[i] = 0.5*(loss[i]-1000)
            cost[i] = loss[i]-1750
        if(cost[i] == 0):
            zero_count += 1
        elif(cost[i] >= 1000):
            count1000 += 1
   prob0 = zero count/M
   prob1000 = count1000/M
    expectation = np.sum(cost)/M
    return [prob0, expectation, prob1000]
M = 10000
results = sim_claims(M)
print("For " + str(M) + " simulations, the probability that the insurance company pays nothing is:
" + str(results[0])
        + ", the expected cost to the insurance company is: " + str(results[1]) + ", and the
probability that the "
     "insurer will have to pay more than $1000 is: " + str(results[2]))
```

For 10000 simulations, the probability that the insurance company pays nothing is: 0.3305, the expected cost to the insurance company is: 222.6892978105333, and the probability that the insurer will have to pay more than \$1000 is: 0.0226

Problem 3

```
In [52]:
```

```
mu = [0.1, 0.2]
C = np.array([[0.16, 0.1], [0.1, 0.25]])
w1 = np.linspace(-1, 2, 300)
w2 = 1-w1
w = np.transpose(np.array([w1, w2]))
muV = []
volatilities = []
short indices = []
long_indices = []
for i in range(np.size(w, axis=0)):
    muV.append(np.linalg.multi_dot([w[i], np.transpose(mu)]))
    volatilities.append(np.sqrt(np.linalg.multi dot([w[i], C, np.transpose(w[i])])))
    if(w[i, 0]<0 or w[i, 1]<0):
       short indices.append(i)
    else:
       long_indices.append(i)
muV short = np.array([muV[i] for i in short indices])
vol_short = np.array([volatilities[i] for i in short_indices])
muV long = np.array([muV[i] for i in long_indices])
vol long = np.array([volatilities[i] for i in long indices])
w min = np.linalg.multi dot([np.transpose(np.ones(np.size(C, axis=0))), np.linalg.inv(C)])
w min = w min/np.linalg.multi dot([np.transpose(np.ones(np.size(C, axis=0))), np.linalg.inv(C), np.
ones(np.size(C, axis=0))])
mu_min_port = np.linalg.multi_dot([w_min, np.transpose(mu)])
```

```
plt.plot(vol_short[muV_short>mu_min_port], muV_short[muV_short>mu_min_port], 'bo')
plt.plot(vol_long[muV_long>mu_min_port], muV_long[muV_long>mu_min_port], 'ro')
plt.xlabel("Risk")
plt.ylabel("Expected Return")
plt.legend(["Portfolio with Shorting", "Portfolio without Shorting"])
plt.show()
```


In [59]:

```
# Part 2
portfolio_to_maximize = np.array(muV)-0.3*np.array(volatilities)
index_approx_max_p = np.argmax(portfolio_to_maximize)
approx_max_alloc = w[index_approx_max_p]
def expression(w, m, cov):
    return np.linalg.multi dot([w, np.transpose(m)])-0.3*np.linalg.multi dot([w, cov, np.transpose(
def find max w(func, w0, num iter, change, m, cov):
    current w = w0
    current_exp = func(current_w, m, cov)
    for i in range(num_iter):
        w1_change = np.random.uniform(-change, change)
        next w1 = current w[0]+w1 change
        next w2 = 1-next w1
       if(next w1<-1 or next w1>2):
           break
       next w = np.array([next w1, next w2])
        next exp = func(next w, m, cov)
        if(next exp>current_exp):
            current exp = next exp
            current_w = next_w
    return [current_w, current_exp]
max_alloc = find_max_w(expression, approx_max_alloc, 1000, 0.0001, mu, C)[0]
print("The portfolio with the maximum value for the expression is: w = " + str(max alloc))
```

The portfolio with the maximum value for the expression is: $w = [-0.13189053 \ 1.13189053]$

Problem 4

In [6]:

```
The minimum total variance portfolio is: [0.59354839 0.12903226 0.27741935]

In [7]:

# Part 2
def eff_port(target_mu, m, cov):
    ones = np.ones(np.size(cov, axis=0))
```

```
aa = np.ones((2, 2))
    bb = np.ones((2, 2))
    cc = np.ones((2, 2))
   aa[0,1] = np.linalg.multi dot([ones, np.linalg.inv(cov), np.transpose(m)])
    aa[1,0] = target_mu
    aa[1,1] = np.linalq.multi dot([m, np.linalq.inv(cov), np.transpose(m)])
    bb[0,0] = np.linalg.multi_dot([ones, np.linalg.inv(cov), np.transpose(ones)])
    bb[1,0] = np.linalg.multi dot([m, np.linalg.inv(cov), np.transpose(ones)])
   bb[1,1] = target mu
    cc[0,0] = bb[0,0]
    cc[0,1] = aa[0,1]
    cc[1,0] = bb[1,0]
    cc[1,1] = aa[1,1]
    myW = (np.linalg.multi dot([np.linalg.det(aa)*ones, np.linalg.inv(cov)])+np.linalg.multi dot([n
p.linalg.det(bb) *m,
                                                                                      np.linalg.inv(c
]))/np.linalg.det(cc)
   return myW
target mu = 0.15
min w = eff port(target mu, mu, C)
sigma min w = np.sqrt(np.linalg.multi dot([min w, C, np.transpose(min w)]))
print("With target return " + str(target mu) + ", the minimum variance portfolio is: " + str(min w
))
print("The associated portfolio standard deviation is: " + str(sigma min w))
4
```

With target return 0.15, the minimum variance portfolio is: [0.15152616 0.0912064 0.79914608] The associated portfolio standard deviation is: 0.33378119138281354

In [8]:

The market portfolio is: $[0.45016077\ 0.11575563\ 0.4340836\]$ which has expected return: 0.12836012861736334 and standard deviation: 0.2335600661158311

Problem 5

```
In [48]:
```

```
# Part a)
mu = [0.06, 0.08, 0.12]
C = np.array([[0.04, 0.01, -0.01], [0.01, 0.09, 0], [-0.01, 0, 0.25]])

def find_w(target_sigma, w0, num_iter, tolerance, change, cov):
    current w = w0
```

```
current sigma = np.sqrt(np.linalg.multi dot([current w, cov, np.transpose(current w)]))
    for i in range(num iter):
        w changes = []
        next_w = []
        for i in range(np.size(cov, axis=0)-1):
            w changes.append(np.random.uniform(-change, change))
            next w.append(current w[i]+w changes[i])
        next w.append(1-np.sum(next w))
        next sigma = np.sqrt(np.linalg.multi dot([np.array(next w), cov, np.transpose(np.array(next
_w))]))
        if (abs(current_sigma-target_sigma)>abs(next_sigma-target_sigma)):
            current_sigma = next sigma
            current w = next w
        if(target sigma-tolerance <= current sigma <= target sigma+tolerance):</pre>
    return [current w, current sigma]
w0 = [1/3, 1/3, 1/3]
num\_iter = 100000
tolerance = 0.0001
change = 0.0001
target sigma 0 = 0
w_0 = find_w(target_sigma_0, w0, num_iter, tolerance, change, C)[0]
target sigma 0.6 = 0.6
w 06 = find w(target sigma 0 6, w0, num iter, tolerance, change, C)[0]
print("The portfolio with variance closest to zero is: "+ str(w 0))
print("The portfolio with variance closest to 0.6 is: "+ str(w 06))
```

The portfolio with variance closest to zero is: [0.643076719436744, 0.2246158135018204, 0.1323074670614356]
The portfolio with variance closest to 0.6 is: [-0.14287469367242225, -0.04933417706538431, 1.1922 088707378067]

In [49]:

```
mu vals = []
sig vals = []
w1_vals = np.linspace(w_0[0], w_06[0], 100)
w2 \text{ vals} = np.linspace(w 0[1], w 06[1], 100)
w3 vals = 1-w1 vals-w2_vals
w vals =np.transpose(np.array([w1 vals, w2 vals, w3 vals]))
ones = np.ones(np.size(C, 0))
w min = np.linalg.multi dot([np.transpose(ones),
np.linalg.inv(C)])/np.linalg.multi_dot([np.transpose(ones),
                                                                                           np.linalq.
(C), ones])
min_var = np.sqrt(np.linalg.multi_dot([w_min, C, np.transpose(w_min)]))
mu cutoff = np.linalg.multi dot([w min, np.transpose(mu)])
print("The minimum portfolio variance possible is: " + str(min var))
for i in range(np.size(w vals, axis=0)):
    mu vals.append(np.linalg.multi dot([w vals[i], np.transpose(mu)]))
    sig vals.append(np.sqrt(np.linalg.multi dot([w vals[i], C, np.transpose(w vals[i])])))
plt.plot(sig vals efficient, mu vals efficient, 'bo')
plt.plot(sig_vals_inefficient, mu_vals_inefficient, 'ro')
plt.xlabel("Risk")
plt.ylabel("Expected Return")
plt.show()
```

The minimum portfolio variance possible is: 0.16323649667324353

In [50]:

```
# Part b)
mu_12 = np.array([0.06, 0.08])
mu = 13 = np.array([0.06, 0.12])
mu_23 = np.array([0.08, 0.12])
C \overline{12} = \text{np.array}([[0.04, 0.01], [0.01, 0.09]])
C_13 = np.array([[0.04, -0.01], [-0.01, 0.25]])
C_23 = np.array([[0.09, 0], [0, 0.25]])
w0 = [1/2, 1/2]
num iter = 100000
tolerance = 0.0001
change = 0.0001
w 0 12 = find w(target sigma 0, w0, num iter, tolerance, change, C 12)[0]
w 06 12 = find w(target sigma 0 6, w0, num iter, tolerance, change, C 12)[0]
w1 vals 12 = np.linspace(w 0 12[0], w 06 12[0], 50)
w2 \text{ vals } 12 = 1-w1 \text{ vals } 12
w_vals_12 = np.transpose(np.array([w1_vals_12, w2_vals_12]))
\overline{\text{muV}} vals_12 = []
risk vals 12 = []
w 0 13 = find w(target sigma 0, w0, num iter, tolerance, change, C 13)[0]
w_06_13 = find_w(target_sigma_0_6, w0, num_iter, tolerance, change, C_13)[0]
w1_vals_13 = np.linspace(w_0_13[0], w_06_13[0], 50)
w2 \text{ vals } 13 = 1-w1 \text{ vals } 13
w_vals_13 = np.transpose(np.array([w1_vals_13, w2_vals_13]))
muV vals 13 = []
risk vals 13 = []
w 0 23 = find w(target sigma 0, w0, num iter, tolerance, change, C 23)[0]
w 06 23 = find w(target sigma 0 6, w0, num iter, tolerance, change, C 23)[0]
w1 vals_23 = np.linspace(w_0_23[0], w_06_23[0], 50)
w2 \text{ vals } 23 = 1-w1 \text{ vals } 23
w_vals_23 = np.transpose(np.array([w1_vals_23, w2_vals_23]))
muV_vals_23 = []
risk vals 23 = []
for i in range (50):
    muV vals 12.append(np.linalg.multi dot([w vals 12[i], np.transpose(mu 12)]))
    risk_vals_12.append(np.sqrt(np.linalg.multi_dot([w_vals_12[i], C_12,
np.transpose(w vals 12[i]))))
    muV vals 13.append(np.linalg.multi dot([w vals 13[i], np.transpose(mu 13)]))
    risk vals 13.append(np.sqrt(np.linalq.multi dot([w vals 13[i], C 13,
np.transpose(w vals 13[i]))))
    muV vals 23.append(np.linalg.multi dot([w vals 23[i], np.transpose(mu 23)]))
    risk_vals_23.append(np.sqrt(np.linalg.multi_dot([w_vals_23[i], C_23,
np.transpose(w_vals_23[i])])))
plt.plot(risk_vals_12, muV_vals_12, 'bo')
plt.plot(risk_vals_13, muV_vals_13, 'ro')
plt.plot(risk_vals_23, muV_vals_23, 'go')
plt.xlabel("Risk")
plt.ylabel("Expected Returns")
plt.legend(['Asset 1 and 2', 'Asset 1 and 3', 'Asset 2 and 3'])
plt.show()
```


In [51]:

```
ones = np.ones(np.size(C 12, 0))
w min 12 = np.linalg.multi dot([np.transpose(ones), np.linalg.inv(C 12)])/np.linalg.multi dot([np.
transpose (ones),
                                                                                          np.linalg
(C 12), ones])
min var 12 = np.sqrt(np.linalg.multi dot([w min 12, C 12, np.transpose(w min 12)]))
muV min var 12 = np.linalg.multi dot([w min 12, np.transpose(mu 12)])
w min 13 = np.linalg.multi dot([np.transpose(ones), np.linalg.inv(C 13)])/np.linalg.multi dot([np.
transpose (ones),
                                                                                          np.linalq
(C 13), ones])
min var 13 = np.sqrt(np.linalg.multi dot([w min 13, C 13, np.transpose(w min 13)]))
muV_min_var_13 = np.linalg.multi_dot([w_min_13, np.transpose(mu_13)])
w min 23 = np.linalg.multi dot([np.transpose(ones), np.linalg.inv(C 23)])/np.linalg.multi dot([np.
transpose (ones),
                                                                                          np.linalg
(C 23), ones])
min var 23 = np.sqrt(np.linalg.multi dot([w min 23, C 23, np.transpose(w min 23)]))
muV min var 23 = np.linalg.multi_dot([w_min_23, np.transpose(mu_23)])
print("The minimum variance portfolio for the asset 1 and 2 combination has weights: " + str(w min
_12) + " with sigma and"
     " mu values of: " + str((min_var_12, muV_min_var_12)))
print("The minimum variance portfolio for the asset 1 and 3 combination has weights: " + str(w min
13) + " with sigma and"
     " mu values of: " + str((min_var_13, muV_min_var_13)))
print ("The minimum variance portfolio for the asset 2 and 3 combination has weights: " + str(w min
23) + " with sigma and"
     " mu values of: " + str((min var 23, muV min var 23)))
4
The minimum variance portfolio for the asset 1 and 2 combination has weights: [0.72727273 0.272727
27] with sigma and mu values of: (0.17837651700316892, 0.06545454545454546)
The minimum variance portfolio for the asset 1 and 3 combination has weights: [0.83870968 0.161290
32] with sigma and mu values of: (0.17870501915438117, 0.0696774193548387)
The minimum variance portfolio for the asset 2 and 3 combination has weights: [0.73529412 0.264705
88] with sigma and mu values of: (0.25724787771376323, 0.09058823529411764)
```

Part c)

All the 4 curves start and end at the same risk value, but the expected returns are different. This is because, the different combinations of assets yields different portfolio weights at each (σ, μ) coordinate. This results in the curves having different slopes.