

What causes global recessions? A quantile regression approach

Graduating student: Clarissa Vallotto – 2057442

Supervisor: Professor Giovanni Caggiano

Master's Degree in Economics and Finance MEF
Thesis Defence - Third Period A
A. Y. 2022/2023

- > Introduction
- Data and Methodology
 - > Preselection of variables
 - > Quantile regression approach

- > Empirical results
- > Conclusion

GDP growth (annual %) | Data (worldbank.org)

Which variables are *informative indicators* of **GLOBAL RECESSIONS**?

Framework

Monthly observations

First sample: June 1976 – December 2019

Second sample: June 1976 – December 2022

Forecast horizons: one quarter and one year ahead

Measure of **GLOBAL ECONOMIC ACTIVITY**:

WORLD INDUSTRIAL PRODUCTION GROWTH

PREDICTORS suggested by the financial literature and economic theory:

VXO spliced

Excess Bond Premium

Effective Federal Funds Rate and Shadow Federal Funds Rate

U.S. Term Spread

- **❖** Oil Supply Shocks
- ***** Oil Consumption Demand Shocks
- ***** Oil Inventory Demand Shocks

Real Commodity Price Factor

Preselection of variables

OLS FORECASTING REGRESSION: $y_{t+i} = \beta_0 + \beta_1 x_t + e_{t+i}$

where i = 3, 12

First sample: June 1976 – December 2019

Second sample: June 1976 – December 2022

	(1)	(2)
Variables	OECD + 6NME IP GR_{t+3}	$OECD + 6NMEIPGR_{t+12}$
VXO spliced _t	-0.15003***	-0.026976
	(0.017205)	(0.018305)
$EFFR + SFFR_t$	0.008997	-0.082807***
	(0.031092)	(0.030737)
WTI_t	-0.012855**	-0.038638***
	(0.0051162)	(0.0048338)
OSS_t	-0.18407*	0.017827
	(0.097494)	(0.098173)
$OCDS_t$	0.031858	0.049543
	(0.039415)	(0.039532)
OIDS _t	0.13975	-0.089917
	(0.12741)	(0.12731)
$RCPF_t$	2.1495***	1.7023***
	(0.3073)	(0.31121)
EBP_t	-3.5594***	-1.3938***
	(0.19421)	(0.23992)
$T10Y2YM_t$	-0.18498	0.50305***
	(0.15237)	(0.15082)

	(1)	(2)
Variables	OECD + 6NME IP GR_{t+3}	OECD + 6NME IP GR_{t+12}
VXO spliced _t	-0.1499***	0.0099192
	(0.018025)	(0.019037)
$EFFR + SFFR_t$	0.0047134	-0.082456**
	(0.032726)	(0.032557)
WTI _t	-0.0097242*	-0.042088***
	(0.0053197)	(0.0052111)
OSS_t	-0.20492**	-0.040032
	(0.098132)	(0.098499)
$OCDS_t$	0.087519**	0.020405
	(0.039601)	(0.04)
OIDS_t	0.04934	0.011116
	(0.1344)	(0.13511)
$RCPF_t$	2.1942***	1.6972***
	(0.31774)	(0.33185)
EBP_t	-3.6295***	-1.235***
	(0.21546)	(0.25925)
T10Y2YM _t	-0.024387	0.58581***
	(0.16448)	(0.16304)

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.10

QUANTILE REGRESSION approach

1)
$$\widehat{\beta_{\tau}} = \arg\min_{\beta_{\tau} \in \mathbb{R}^{k}} \sum_{t=1}^{T-h} (\tau \cdot \mathbf{1}_{(y_{t+h} \ge x_{t}\beta)} |y_{t+h} - x_{t}\beta_{\tau}| + (1-\tau) \cdot \mathbf{1}_{(y_{t+h} < x_{t}\beta)} |y_{t+h} - x_{t}\beta_{\tau}|) \quad \text{where } h = 3, 12$$

(2)
$$\widehat{Q_{y_{t+h}|x_t}}(\tau|x_t) = x_t \widehat{\beta_{\tau}}$$

Date selection

Monthly year-over-year WORLD INDUSTRIAL PRODUCTION GROWTH RATE time series

Selected **«trough» dates**:

VXO spliced

First sample: <u>one quarter</u> ahead

Estimated quantile regression coefficients

An increase in **financial stress** lowers the <u>mean</u>, expands the <u>variance</u> of the future world industrial production growth distribution, and even <u>skews it</u> to the left

Great Recession, t + 3 =January 2009

Second sample: <u>one quarter</u> ahead

Estimated quantile regression coefficients

- > First moment effect
- > Strong *second moment* effect
- > No asymmetries

Great Recession, t + 3 =January 2009

First sample: one year ahead

Estimated quantile regression coefficients

Great Recession, t + 12 =January 2009

Second sample: one year ahead

Estimated quantile regression coefficients

First moment effect

Great Recession, t + 12 =January 2009

Real Commodity Price Factor

Excess Bond Premium

First sample: <u>one year</u> ahead

Slightly lower mean

and higher variance

Third moment effect

Estimated quantile regression coefficients

1982 global recession, t + 12 = March 1981

1982 global recession, t + 12 =October 1982

Great Recession, t + 12 =January 2009

RELATIVE DOWNSIDE ENTROPY

First sample: <u>one quarter</u> ahead

Second sample: <u>one quarter</u> ahead

$$L_{t}^{D}(\widehat{f_{y_{t+3}|x_{t}}}; \widehat{g_{y_{t+3}}}) = -\int_{-\infty}^{\widehat{F_{y_{t+3}|x_{t}}^{-1}}} (0.05|x_{t}) (\log \widehat{g_{y_{t+3}}}(y) - \log \widehat{f_{y_{t+3}|x_{t}}}(y|x_{t})) \widehat{f_{y_{t+3}|x_{t}}}(y|x_{t}) dy$$

RELATIVE DOWNSIDE ENTROPY

First sample: <u>one year</u> ahead

Second sample: <u>one year</u> ahead

$$L_t^D(\widehat{f_{y_{t+12}|x_t}}; \widehat{g_{y_{t+12}}}) = -\int_{-\infty}^{\widehat{F_{y_{t+12}|x_t}}} (0.05|x_t) (\log \widehat{g_{y_{t+12}}}(y) - \log \widehat{f_{y_{t+12}|x_t}}(y|x_t)) \widehat{f_{y_{t+12}|x_t}}(y|x_t) dy$$

Financial uncertainty

Credit market frictions

<u>Policy implications</u>

- Monitoring of global financial market developments
- Appropriate regulations to
 mitigate the recessionary effects
 of uncertainty shocks

Oil and Commodity prices

Future research...

- **❖** Alternative forecasting approaches
- ***** Extend the set of predictors
 - → global Total Factor Productivity
 - → supply chain

What causes global recessions? A quantile regression approach

Thank you for your attention

Graduating student: Clarissa Vallotto – 2057442

Supervisor: Professor Giovanni Caggiano

Master's Degree in Economics and Finance MEF
Thesis Defence - Third Period A
A. Y. 2022/2023

5% EXPECTED SHORTFALL

First sample: <u>one quarter</u> ahead

Second sample: <u>one quarter</u> ahead

$$SF_{t+3} = \frac{1}{0.05} \int_0^{0.05} \widehat{F_{y_{t+3}|x_t}^{-1}} (\tau | x_t) d\tau$$

5% EXPECTED SHORTFALL

First sample: <u>one year</u> ahead

Second sample: one year ahead

$$SF_{t+12} = \frac{1}{0.05} \int_0^{0.05} F_{y_{t+12}|x_t}^{-1}(\tau | x_t) d\tau$$

