Discrete mathematics I. exam paper (13. January 2021.)

Name:
Neptun code:
Scoring: Each question in Part 1 is worth 1 mark and each proof question in Part 2 is worth 3 marks.
Grade boundaries In order to pass the exam (i.e. to achieve a grade of at least 2) you need to receive at least 6 marks from Part 1 and at least 4 marks from Part 2 (proof questions). For higher grades, in addition to this, you also need to achieve the following total scores: grade 3: total score of at least 12; grade 4: total score of at least 15; grade 5: total score of at least 18.
Part 1: Short questions
1. Write down three properties of the operation of set intersection. (1 mark)
2. Define what a function is. (1 mark) $ 3. \text{ Define what it means for a binary relation } R \subseteq A \times A \text{ to be symmetric.} \text{ (1 mark)} $
4. What does it mean for a function $f: X \to Y$ to be surjective? (1 mark)

5. Write down De Moivre's formula for the multiplication of complex numbers in polar form. (1 mark)
6. Write down the theorem about the number of combinations with repetition. (1 mark)
7. Write down the theorem about the inverse of the composition of relations (second statement of the theorem 'Properties of composition of relations'). (3 marks) (1 mark)
8. Define what is called an equivalence relation. (1 mark)
9. Define the absolute value of a complex number. (1 mark)
10. Write down the Binomial theorem. (1 mark)

Define what is called a graph. (1 mark)
Write down the theorem about the sum of all degrees in a graph. (1 mark)
t 2: Proofs
Prove that the composition of relations is associative (first statement from the theorem 'Properties of composition of relations'). (3 marks)
Write down and prove four properties of the conjugation and/or absolute value of complex numbers. (3 marks)
Write down and prove the theorem about the number of combinations with repetition of a finite set. (3 marks)