Notions d'Astronomie

Détermination de position de planètes à l'aide des paramètres orbitaux

Travail à réaliser : représentation graphique des positions des planètes à l'aide de la librairie g2

point vernal : position du Soleil sur la sphère céleste au moment de l'équinoxe du printemps.

Orbital Elements :								
Semi-major axis	а	Defines the size of the orbit.						
Eccentricity	е	Defines the shape of the orbit. $\sqrt{1-\frac{b^2}{a^2}}$						
Inclination	İ	Defines the orientation of the orbit with respect to the Earth's equator.						
Argument of Perigee	ω	Defines where the low point, perigee, of the orbit is with respect to the Earth's surface.						
Right Ascension of the Ascending Node	Ω	Defines the location of the ascending and descending orbit locations with respect to the Earth's equatorial plane.						
True/Mean Anomaly	ν	Defines where the satellite is within the orbit with respect to perigee.						
te								

http://spaceflight.nasa.gov/realdata/elements

Eléments Orbitaux d'une planète P autour du Soleil

http://www.answers.com/main/ntquery?method=4&dsid=2222&dekey=Orbital+elements&gwp=8&curtab=2222_1

Calcul des positions des planètes à partir de leurs éléments orbitaux

http://home.att.net/~srschmitt/planetorbits.html

Référence à lire!

http://scienceworld.wolfram.com/physics/OrbitalElements.html

Planetary Mean Orbits (J2000)

(epoch = J2000 = 2000 January 1.5) (see the table of rates below)

ω angle du périhélie M Anomalie Moyenne

Planet (mean)	a AU	е	i deg	Ω longite point as en degre	cendant	ī	$\overline{o} = \Omega + \omega$ deg) Î	$L = \overline{\omega} + M$ deg
Mercury	0.38709893	0.20563069	7.00487	48.33167			77.45645		252.25084
Venus	0.72333199	0.00677323	3.39471	76.68069			131.53298		181.97973
Earth	1.00000011	0.01671022	0.00005	-11.26064			102.94719		100.46435
Mars	1.52366231	0.09341233	1.85061	49.57854			336.04084		355.45332
Jupiter	5.20336301	0.04839266	1.30530	100.55615			14.75385		34.40438
Saturn	9.53707032	0.05415060	2.48446	113.71504			92.43194		49.94432
Uranus	19.19126393	0.04716771	0.76986	74.22988			170.96424		313.23218
Neptune	30.06896348	0.00858587	1.76917	131.72169			44.97135		304.88003
Pluto	39.48168677	0.24880766	17.14175	110.30347			224.06676		238.92881

 $\overline{\omega} = \Omega + \omega$ est un angle « cassé »

Avant-Projet : représentation graphique des positions des planètes avec la librairie g2 + une librairie maison

```
astro.h
typedef
struct OrbitalElement { // orbital parameters (J2000 epoch)
                         // semi-major axis [AU]
double a;
double e:
                         // eccentricity of orbit
                         // inclination of orbit [deg]
double i:
double o:
                         // longitude of the ascending node [deg]
                         // longitude of perihelion [deg]
double w;
double L:
                         // mean longitude [deg]
} OrbitalElement;
typedef
struct HelioCoord {
       double x, y, z:
       } HelioCoord:
typedef
struct Astre
char name[256];
double mass:
OrbitalElement orbitJ2000; // orbital parameters (J2000 epoch)
OrbitalElement rateJ2000;
                                  // deviation rates
OrbitalElement orbit:
HelioCoord pos:
} Astre:
```

```
#include <cstdlib>
                        Constantes prédéfinies et prototypes des fonctions de
#include <iostream>
                                        la librairie maison
#include <cmath>
#include <cassert>
#include <iomanip>
                        double DayNumber( int y, int m, int d, int h, int m);
#include "astro.h"
                        void InitAstreDB(Astre *astre);
                        void GetHelioCoord(double d. Astre *astre);
using namespace std;
                        void GetOrbitalElements(double d, Astre *astre);
                        double TrueAnomaly( double M, double e);
main()
// declaration d'un tableau d'astres
Astre astre[10];
                                                      1/05/2005
// remplissage de la base de donnees
InitAstreDB(astre);
                                                       à 0h00
int year=2005, month=5, day=1, hour=0, mins=0;
// calcul du nombre de jours depuis J2000
double d = DayNumber( year, month, day, hour, mins );
// calcul de la position de chacune des planetes
for (int p = 0; p<10; p++) {
    Astre *obj=&astre[p];
                                     Expliquer l'intérêt de passer
    GetHelioCoord(d, obj);
                                     le pointeur obj en paramètre
```


Question : déterminer la période récente pendant laquelle Pluton est plus proche du Soleil que Neptune ?

Simulation de la trajectoire d'une sonde dans le système solaire

Introduction de la librairie gsl et application à la dynamique d'un ressort

Rappel sur des notions sur la gravitation universelle

Travail à réaliser : dynamique d'une sonde soumise aux interactions gravitationnelles des planètes

Dynamique d'une masse attachée à un ressort

$$\frac{d^2\mathbf{OM}}{dt^2} = -\omega_0^2 \; \mathbf{OM}$$

Pour transformer cette E.D.O. du 2nd ordre en un système du 1^{er} ordre. On introduit la variable vitesse **v**

$$\begin{cases}
\frac{d\mathbf{OM}}{dt} = \mathbf{v} \\
\frac{d\mathbf{v}}{dt} = -\omega_0^2 \mathbf{OM}
\end{cases} \Rightarrow \frac{d}{dt} \begin{bmatrix} x \\ y \\ v_x \\ v_y \end{bmatrix} = \begin{bmatrix} v_x \\ v_y \\ -\omega_0^2 x \\ -\omega_0^2 y \end{bmatrix} \qquad \text{de la forme} \\
\frac{d}{dt} \mathbf{y}_{vec} = \mathbf{f}(\mathbf{y}_{vec}, \mathbf{h})$$

Intégrable si conditions Initiales connues

$$\mathbf{y}_{vec}^{0} = \mathbf{y}_{vec}(t=0) = (x_{0} \quad y_{0} \quad v_{x}^{0} \quad v_{y}^{0})^{t}$$

Méthode la plus simple pour intégrer une E.D.O. : méthode d'Euler

• On discrétise le temps à pas constants tels que $t = n.\Delta t$

• Pour intégrer
$$\frac{d}{dt}\mathbf{y}_{vec} = \mathbf{f}(\mathbf{y}_{vec})$$
on approxime la dérivation temporelle par
$$\frac{d}{dt}\mathbf{y}_{vec} \approx \frac{\mathbf{y}_{n+1}^{vec} - \mathbf{y}_{n}^{vec}}{\Delta t}$$

Le membre de droite est estimé à l'instant $t = n.\Delta t$.

On obtient finalement la suite récurrente : $\mathbf{y}_{n+1}^{vec} = \mathbf{y}_n^{vec} + \mathbf{f}(\mathbf{y}_n^{vec}) \Delta t$

Avantage:

• facile à implanter.

Inconvénients:

- pas de contrôle d'erreurs lors de l'intégration.
- Précision faible.

En pratique, utilisation de techniques d'intégration à pas liés avec estimation de l'erreur.

Sous \$HOME/projet2005/ressort/src, éditer ressort.cc

```
#include <stdio.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_odeiv.h>
#include <gsl/gsl_ieee_utils.h>
```

Fichiers header (include) contenant les prototypes des fonctions de GSL et des constantes prédéfinies

```
/* DIM dimension du systeme d'equations */
const int DIM=4 ;
\mathbf{y}_{vec}(t) = (x \quad y \quad v_x \quad v_y)^t
```

/* limite supérieure du pas d'intégration */
const double hmax=0.01 :

On fixe ici une limite supérieure au pas d'intégration Δt

```
/* ecriture du systeme
         d'equations differentielles du 1er ordre */
/* eq du ressort en 2D sous la forme dyvec/dt = fvec */
int fonction (double t, const double *yvec, double *fvec,
                  void *params)
  double x =yvec[0];
  double y =yvec[1];
  double vx=yvec[2];
                                  \frac{d}{dt} \begin{pmatrix} x \\ y \\ v_x \\ v \end{pmatrix} = \begin{pmatrix} v_x \\ v_y \\ -\omega_0^2 x \\ -\omega_0^2 v \end{pmatrix} En prenant \omega_0 = 1
  double vy=yvec[3];
  fvec[0] = vx;
  fvec[1] = vy;
  fvec[2] = -x;
  fvec[3] = -y;
  return GSL_SUCCESS;
                                            =1
```

Pour contrôler la précision de calcul, la méthode utilisée ici nécessite la définition de la matrice Jacobienne

à partir de
$$\frac{d}{dt} \begin{pmatrix} x \\ y \\ v_x \\ v_y \end{pmatrix} = \begin{pmatrix} v_x \\ v_y \\ -\omega_0^2 x \\ -\omega_0^2 y \end{pmatrix} = \begin{pmatrix} f_0 \\ f_1 \\ f_2 \\ f_3 \end{pmatrix} \qquad [J] = \begin{pmatrix} \frac{\partial f_0}{\partial x} & \frac{\partial f_0}{\partial y} & \frac{\partial f_0}{\partial v_x} & \frac{\partial f_0}{\partial v_y} \\ \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} & \frac{\partial f_1}{\partial v_x} & \frac{\partial f_1}{\partial v_y} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} & \frac{\partial f_2}{\partial v_x} & \frac{\partial f_2}{\partial v_y} \\ \frac{\partial f_3}{\partial x} & \frac{\partial f_3}{\partial y} & \frac{\partial f_3}{\partial v_x} & \frac{\partial f_3}{\partial v_y} \end{pmatrix}$$

Dans le cas du modèle de ressort traité ici, elle s'écrit :

$$[J] = \begin{pmatrix} J_{00} & J_{01} & J_{02} & J_{03} \\ J_{10} & J_{11} & J_{12} & J_{13} \\ J_{20} & J_{21} & J_{22} & J_{23} \\ J_{30} & J_{31} & J_{32} & J_{33} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -\omega_0^2 & 0 & 0 & 0 \\ 0 & -\omega_0^2 & 0 & 0 \end{pmatrix}$$

```
/* définition de la matrice Jacobienne */
int jacobien (double t, const double *yvec, double *dfdy,
                     double *dfdt, void *params)
{
                         Astuce préconisée par les concepteurs de la librairie gsl
  gsl_matrix_view dfdy_mat =
                     gsl_matrix_view_array (dfdy, DIM, DIM);
   gsl_matrix *J = &dfdy_mat.matrix;
   gsl_matrix_set_zero(J);
   gsl_{matrix_set}(J, 0, 2, +1.0);
   gsl_matrix_set (J, 1, 3, +1.0);
                                                             avec \omega_0 = 1
   gsl_{matrix_set} (J, 2, 0, -1.0);
   gsl_matrix_set (J, 3, 1, -1.0);
  return GSL_SUCCESS;  \begin{bmatrix} J_{00} & J_{01} & J_{02} & J_{03} \\ J_{10} & J_{11} & J_{12} & J_{13} \\ J_{20} & J_{21} & J_{22} & J_{23} \\ J_{30} & J_{31} & J_{32} & J_{33} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -\omega_0^2 & 0 & 0 & 0 \\ 0 & -\omega_0^2 & 0 & 0 \end{bmatrix}
```

```
main()
/* choix de la méthode d'intégration ici Runge-Kutta ordre 8 */
  const gsl_odeiv_step_type *T = gsl_odeiv_step_rk8pd;
/* INTERNE à gsl */
  gsl_odeiv_step *s = gsl_odeiv_step_alloc (T, DIM);
/* Controle de l'erreur relative à chaque pas ici 10^-6 */
  gsl_odeiv_control *c = gsl_odeiv_control_y_new (0., 1.e-6);
/* INTERNE à gsl */
  gsl_odeiv_evolve *e = gsl_odeiv_evolve_alloc (DIM);
/* Remplissage de la variable structure sys avec
les fonctions servant au calcul de f et de [J] */
  gsl_odeiv_system sys = {fonction, jacobien, DIM, NULL};
/* INTERNE à gsl */
  gsl_ieee_env_setup();
```

```
/* temps initial et temps final */
  double t = 0.0, tfin = 10.0;
/* pas initial d'integration des equations diff */
  double h = hmax;
/* conditions initiales {x0 y0 x0' y0'} */
  double y[DIM] = \{ 1.0, 1.0, 0., 0. \};
for (;;) {
    int status = gsl_odeiv_evolve_apply (e, c, s, &sys,
                                                             Intégration
                                          &t, tfin,
                                                             temporelle
                                          &h, y);
    if (status != GSL_SUCCESS) break;
/* limite sup du pas d'integration fixee par l'utilisateur */
    if (h>hmax) h=hmax;
    printf("%lf \t %lf \t %lf \t %lf\n", t, h, y[0], y[1]);
    if (t>=tfin) break;
  gsl_odeiv_evolve_free(e);
                                  Libération de la mémoire
  qsl_odeiv_control_free(c);
  gsl_odeiv_step_free(s);
```

gsl: GNU scientific library: librairie mathématique

• But : l'utiliser pour intégrer un système d'équations différentielles

```
cd $HOME/projet2005/ressort/src
make clean; make all
```

```
# Makefile
                                        Librairies de GSL
CC = qcc - q
OBJ = main.o
LIBS = (-1gsl - 1gslcblas) - 1m
                                     $(BIN) = valeur de la
INCS =
                                         variable BIN
BIN = ressort
all: $(BIN)
                                 make all \Rightarrow lance la création du
clean:
                                 fichier exécutable ressort
        rm -f $(OBJ) $(BIN)
$(BIN): $(OBJ)
        $(CC) $(INCS) $(OBJ) -o $(BIN) $(LIBS)
.c.o:
        $(CC) $(INCS) -c $<
```

Notions sur la Gravitation Universelle

Equation de la dynamique :

$$m\frac{d\mathbf{v}}{dt} = -m\frac{GM}{r^2}\mathbf{u_r} \quad o\dot{\mathbf{u}} \quad \mathbf{v} = \frac{d\mathbf{r}}{dt}$$

$$\frac{d\mathbf{v}}{dt} = -\frac{GM}{r^2}\mathbf{u_r}$$

Rem : la cinématique du point m ne dépend pas de sa masse

$$G = 6.67 \ 10^{-11} \ N.m^2/kg^2$$
 $M(soleil) = 1.989 \ 10^{30} \ kg$

1 Unité astronomique = 1 distance Terre-Soleil = 149.6 10⁹ m

$$\mathbf{v} = \frac{d\mathbf{r}}{dt} = \frac{d}{dt}(r\mathbf{u_r}) \quad o\dot{\mathbf{u}} \quad \mathbf{r}(t) = r(\cos\theta(t)\mathbf{u_x} + \sin\theta(t)\mathbf{u_y})$$

$$\mathbf{v} = \frac{d\mathbf{r}}{dt} = \dot{r} \,\mathbf{u}_{\mathbf{r}} + r \,\frac{d\mathbf{u}_{\mathbf{r}}}{d\theta} \,\dot{\theta} = \dot{r} \,\mathbf{u}_{\mathbf{r}} + r \,\dot{\theta} \,\mathbf{u}_{\theta}$$

$$\mathbf{\gamma} = \frac{d\mathbf{v}}{dt} = (\ddot{r} - r \, \dot{\theta}^2) \mathbf{u}_{\mathbf{r}} + (2 \, \dot{r} \, \dot{\theta} - r \, \ddot{\theta}) \mathbf{u}_{\theta}$$

Après projection

1)
$$\vec{r} - r \, \dot{\theta}^2 = -\frac{GM}{r^2}$$
 2) $\Rightarrow \frac{d}{dt} (r^2 \, \dot{\theta}) = 0 \Rightarrow$ 2)
$$2\dot{r} \, \dot{\theta} - r \, \ddot{\theta} = 0$$
 Loi des aires $r^2 \, \dot{\theta} = C^{te} = 0$

Loi des aires
$$r^2 \dot{\theta} = C^{te} = C_0$$

La loi des aires exprime en fait la conservation du moment cinétique

$$\mathbf{\sigma} = m \; \mathbf{r} \times \mathbf{v} = \mathbf{C}^{\mathsf{te}}$$

Transformons l'équation ① en introduisant la variable u=1/r et en Remarquant que r est une fonction de $\theta(t)$

D'après la loi des aires $\dot{\theta} = C_0 / r^2 = C_0 u^2$

$$\dot{\theta} = C_0 / r^2 = C_0 u^2$$

$$\dot{r} = \frac{dr}{dt} = \frac{dr}{d\theta} \dot{\theta} = \frac{dr}{d\theta} \frac{C_0}{r^2} = -C_0 \frac{du}{d\theta}$$

De même
$$\ddot{r} = \frac{d\dot{r}}{dt} = \frac{d\dot{r}}{d\theta} \dot{\theta} = \frac{d}{d\theta} \left(-C_0 \frac{du}{d\theta} \right) C_0 u^2 = -C_0^2 u^2 \frac{d^2 u}{d\theta^2}$$

$$-C_0^2 u^2 \frac{d^2 u}{d\theta^2} - C_0^2 u^3 = -GM u^2$$

$$\frac{d^2u}{d\theta^2} + u = \frac{GM}{C_0}$$
 Formule de Binet

$$\frac{d^2u}{d\theta^2} + u = \frac{GM}{C_0}$$

Solution générale sans 2^{nd} membre : $u = A\cos(\theta - \theta_0)$

Solution particulière :
$$u_0 = \frac{GM}{C_0}$$

Solution complète :

$$u = A\cos(\theta - \theta_0) + u_0 = \frac{1}{p}(1 + e\cos(\theta - \theta_0))$$

C'est une ellipse dont un des foyers est occupé par M

Pour $\theta = \theta_0$, m se trouve au périhélie

$$u(\theta_0) = \frac{1+e}{p}$$

Pour $\theta = \pi + \theta_0$, m se trouve à l'aphélie

$$u(\pi + \theta_0) = \frac{1-e}{p}$$

Conservation de l'énergie totale

$$E = T + V = \frac{1}{2}mv^2 - \frac{GMm}{r} = C^{te}$$

Seulement à périhélie et à l'aphélie, on a $\mathbf{v} = \dot{\mathbf{r}} \mathbf{u}_{\mathbf{r}} + r \dot{\theta} \mathbf{u}_{\theta}$

De plus, d'après la loi des aires $r \dot{\theta} = C_0 u$, on obtient :

$$\frac{1}{2}C_0^2 u^2(\theta_0) - GM u(\theta_0) = \frac{1}{2}C_0^2 u^2(\pi + \theta_0) - GM u(\pi + \theta_0)$$

Après factorisation
$$u(\pi + \theta_0) + u(\theta_0) = \frac{2GM}{C_0^2} = \frac{2}{p}$$

étant donnés
$$u(\pi + \theta_0) = \frac{1-e}{p}$$
 et $u(\theta_0) = \frac{1+e}{p}$

$$\Rightarrow \qquad p = \frac{C_0^2}{GM}$$

$$\begin{array}{ccc}
2b & \theta_0 & u = \frac{1}{r} = \frac{1}{p} \left(1 + e \cos(\theta - \theta_0) \right)
\end{array}$$

$$a = \frac{p}{1 - e^2} \quad et \quad b = \frac{p}{\sqrt{1 - e^2}} \quad \boxed{}$$

L'aire balayée par seconde est donnée par

$$\frac{dS}{dt} = \frac{1}{2}r^2 \dot{\theta} = \frac{C_0}{2}$$

Intégrée sur 1 période de révolution

$$S = \frac{C_0}{2} T = \pi \ a \ b = \pi \ a^2 \sqrt{1 - e^2} \qquad \Rightarrow \qquad T = \frac{2\pi}{C_0} \ a^2 \sqrt{1 - e^2}$$

Elevons l'expression de T au carré et remplaçons $C_0^2 = GMp$

$$T^{2} = \frac{4\pi^{2}}{C_{0}^{2}} a^{4} (1 - e^{2}) = \frac{4\pi^{2}}{GM} a^{3} \implies T^{2} = \frac{4\pi^{2}}{GM} a^{3}$$