Unit 11 Lower Bound and NP-Completeness

T.H. Cormen et al., "Introduction to Algorithms", 3rd ed., Chapter 34

Anany Levitin, "Introduction to The Design & Analysis of Algorithms", Chapter 10, 2003.

中大資工 何錦文

Lower Bound & NP-Completeness

1

Computational Complexity

- ► In previous units, we mainly analyze the complexities (especially, time complexity) of algorithms.
- Here, we will study the *complexities of problems*.
- We call f(n) a (or *asymptotically*) *lower bound* for a problem if *for any* algorithms that solving the problem, its worst case execution time is f(n) (or $\Omega(f(n))$).
- ► On the other hand, every algorithm provides an *upper*bound for the problem it solves.

Computational Complexity (績)

- **Goal**: For a given problem, determine a lower bound of $\Omega(f(n))$ and develop a $\Theta(f(n))$ algorithm for the problem.
- Once we have done this, then except for improving the constant, we *can not improve* on the algorithm *any further*.
- Such an algorithm is called an (asymptotically) optimal algorithm for the problem.

中大資工 何錦文

Lower Bound & NP-Completeness

3

Problems with Trivial Lower Bounds

Problems	Lower bound	Tightness
Generating all permutations	$\Omega(n!)$	yes
Evaluating a polynomial	$\Omega(n)$	yes (Horner's rule p.41)
Multiplication of $2 n \times n$ matrices	$\Omega(n^2)$	unknown
Multiplication of 2 <i>n</i> -digit integers	$\Omega(n)$	unknown
Finding max among <i>n</i> unsorted numbers	<i>n</i> –1	yes
TSP	$\Omega(n)$	unlikely

		A PARTY OF THE PAR		The selection of the se	THE RESERVE OF THE PARTY OF THE
Droh	ome	with	Tight	OWOR	Bounds
TIUDI		WILLI	light	LUWCI	Doulius

Problems	Lower bound	
Sorting	$\Omega(n \lg n)$	Based on the
Searching in a sorted array	$\Omega(\lg n)$	assumption tha the only basic
Element uniqueness	$\Omega(n \lg n)$	operation used
Merging two sorted arrays of size <i>n</i>	2 <i>n</i> -1 (p.208 Problem 8-6)	is comparison.
Finding max & min among <i>n</i> unsorted numbers	[3n/2]-2 (p.215 Ex. 9.1-2 or p.7 Unit 4)	

Using Problem Reduction to Establish Lower Bound

- **Examples**

$$x \cdot y = [(x+y)^2 - (x-y)^2]/4$$

*Euclidean MST problem & sorting.

Big-Oh form	Name
$\Theta(1)$	Constant
$\Theta(\lg n)$	Logarithmic
$\Theta(n)$	Linear
$\Theta(n \lg n)$	$n \log n$
$\Theta(n^2)$	Quadratic, Squa
$\Theta(n^3)$	Cubic
$\Theta(n^k), k$: constant	Polynomial >
$\Theta(c^n), c : constant > 1$	Exponential
$\Theta(n!)$	Factorial

Tractable and Intractable Problems

- ► A problem is called <u>tractable</u> (easy) if it can be solved by a polynomial-time algorithm.
- A problem is called <u>intractable</u> (difficult) if it is impossible to solve it with a polynomial-time algorithm or a lower bound of the problem is super-polynomial.

Intractability and NP-Completeness

- **▶** There are three general categories of problems :
 - ① Tractable problems (denoted as **P**).
 - 2 Intractable problems.
 - 3 Problems that *have not been proven* to be intractable or tractable.
- Most problems in computer science seem to fall into either the first or third category.
- An interesting class of problems, called the *NP-complete* problems, is in the third category.

中大資工 何錦文

Lower Bound & NP-Completeness

9

A Cartoon about NP-Completeness (part 1)

"I can't find an efficient algorithm, I guess I'm just too dumb."

From: Michael R. Garey and David S. Johnson "Computer and Intractability: A Guide to the theory of NP-Completeness. 1979

A Cartoon about NP-Completeness (part 2)

"I can't find an efficient algorithm, because no such algorithm is possible!"

中大資工 何錦文

Lower Bound & NP-Completeness

11

A Cartoon about NP-Completeness (part 3)

"I can't find an efficient algorithm, but neither can all these famous people."

中大資工 何錦文

Lower Bound & NP-Completeness

A Description of NP-Completeness

- No one has ever found algorithms for any of NP-complete problems whose worst-case time complexities are better than exponential, but no one has ever proved that such algorithms are not possible.
- However, if we can solve any single NP-complete problem in polynomial time, then it implies that *every* NP-complete problem can be solved in polynomial time.

中大資工 何錦文

Lower Bound & NP-Completeness

13

Abstract & Decision Problems

- An *abstract problem* is defined as a binary relation (a subset of $I \times O$).
- For simplicity, the theory of NP restricts attention to *decision problems*, those having only a yes/no solution.
- ► Many problems have their *related decision problems* including optimization problems, e.g. TSP, SOS, 0/1 knapsack, HAM-CYCLE etc.
- ► If a problem is easy, its related decision problem is easy as well; in general, the converse is also true.

Encoding and Concrete Problems

- Encoding: $e: I \to \Sigma^*$ (|Σ|≥2; here we use Σ = {0,1}) where I is the set of instances of a problem, $\Sigma^* = \{0,1\}^* = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, ...\}$
- A problem whose instance set is the set of binary strings is called a *concrete problem*.
- A concrete problem is **in the class P** if it can be solved by an algorithm in $O(n^k)$ time for any instance i of length n = |i|.
- Instances are assumed to be encoded in a reasonable, concise fashion,

中大資工 何錦文

Lower Bound & NP-Completeness

14

A Formal-Language Framework

- **►** We call any $L \subseteq \Sigma^*$ is a *language* over Σ.
- Any decision problem $Q \leftrightarrow$ a language L over Σ . L = the set of yes-instances of Q.
- For example:

HAM-CYCLE = { $\langle G \rangle$: G is a graph that contains a hamiltonian cycle (a simple cycle that contains each vertex in G)}

Here, $\langle G \rangle$ denotes an encoded binary string of G.

Operations on Languages

- Ordinary set operations: *union*, *intersection*.
- **►** We define the *complement* of **L** by $L^c = \Sigma^* L$
- The *concatenation* of two languages L_1 and L_2 is $L = L_1L_2 = \{x_1x_2 \mid x_1 \in L_1, x_2 \in L_2\}.$
- The *closure* or *Kleene star* of *L* is $L^* = \{\varepsilon\} \cup L \cup L^2 \cup L^3 \cup ...;$ where $L^2 = LL, L^3 = LLL, ...$

Exercise: The class P is closed under union, intersection, complement, concatenation and Kleene star.

中大資工 何錦文

Lower Bound & NP-Completeness

11

The Class NP

- ► The name "NP" stands for "the class of problems which can be *accepted* by a *nondeterministic*Turing machine in polynomial time."
- There are several (at least 3) different but equivalent definitions in the literature.
- **▶** We use the version of *polynomial-time verification*.

NP & Polynomial-Time Verification

- A problem is said to be in the class **NP** if there exist a *polynomial-time verification algorithm A* and constant c such that for any *yes-instance x*, we can find a *certificate y* with $|y| = O(|x|^c)$ and A(x, y) = 1.
- Examples: TSP, SOS, 0/1 knapsack, HAM-CYCLE, ...
- ightharpoonup Properties : $P \subseteq NP$ (How about P = NP?)

中大資工何錦女

Lower Bound & NP-Completeness

10

Standard NP Problems

- Many decision problems has the form: Given x, is there a y such that p(y) = 1?
- Many optimization problems have related decision problems of the form:

Given $\langle x, k \rangle$, $\exists y \text{ s.t. } p(y) = 1 \text{ and } c(y) \leq (\text{or } \geq) k$?

If we can show that $|y|=O(|x|^c)$, and p(y) & c(y) are polynomial time computable, then the problem is an NP problem.

P = NP?

- ► It is also called the P versus NP problem.
- ► In a detective TV series it is said: "It asks whether every problem whose solution can be quickly verified by a computer can also be quickly solved by a computer."
- whoever could solve this problem would receive \$1 million in prize money (founded by Clay Mathematics Institute.)
- ightharpoonup Many researchers believe that P \neq NP.

中大資工 何錦文

Lower Bound & NP-Completeness

2

Reducibility

A problem L_1 is *polynomial-time reducible* to a problem L_2 , written $L_1 \leq_P L_2$, if there exists a *polynomial-time computable function f* such that for any instance x:

x is a yes-instance of L_1 if and only if f(x) is a yes-instance of L_2

中大資工 何錦文

Lower Bound & NP-Completeness

Reducibility and Hardness of Problems

If
$$L_1 \leq_{\mathbf{P}} L_2$$
, then $L_2 \in \mathbf{P} \Rightarrow L_1 \in \mathbf{P}$

Proof :Assume that A_2 is a polynomial time algorithm for L_2 , we can find a polynomial time algorithm A_1 for L_1 as :

$$A_1(x)$$
{
$$y = f(x);$$
return $A_2(y);$
}

中大資工 何錦文

Lower Bound & NP-Completeness

23

NP-Completeness

- ► A problem *L* is *NP-complete* if
 - $1. L \in \mathbb{NP}$, and
 - 2. $L' \leq_{\mathbf{P}} L$ for every $L' \in \mathbb{NP}(NP-hard)$
- For any NP-complete problem L, if we can show that $L \in P$, then P = NP (but most computer scientists believe that $P \neq NP$).
- $ightharpoonup L_1 \leq_{\mathbf{P}} L_2$ and $L_2 \leq_{\mathbf{P}} L_3 \Longrightarrow L_1 \leq_{\mathbf{P}} L_3$
- **►** If $L_2 \in \mathbb{NP}$, L_1 is **NP-complete** and $L_1 \leq_P L_2$, then L_2 is also **NP-complete**.

Formula Satisfiability

- The *Formula satisfiability* (SAT) problem asks whether there exists a variable assignment that causes the given *boolean formula* to evaluate to 1.
- For example consider the formula:

$$\phi = ((x_1 \rightarrow x_2) \lor \neg ((\neg x_1 \leftrightarrow x_3) \lor x_4)) \land \neg x_2$$

and the assignment : $x_1 = 0$, $x_2 = 0$, $x_3 = 1$, $x_4 = 1$

$$\phi = ((0 \to 0) \lor \neg ((\neg 0 \leftrightarrow 1) \lor 1)) \land \neg 0
= (1 \lor \neg (1 \lor 1)) \land 1 = (1 \lor 0) \land 1 = 1$$

∴ **\(\phi \)** is a yes-instance of **SAT**

中大資工 何錦立

Lower Bound & NP-Completeness

25

Cook's Theorem

- ► In 1971, Cook showed that the problem **SAT** is **NP-complete**.
- ► With SAT we can show thousands of NP-complete problems including TSP, SOS, 0/1 knapsack, and HAM-CYCLE (all in their decision versions).

CNF-SAT

► A *literal* in a boolean formula is an occurrence of a variable or its negation. A boolean formula is in *conjunctive normal form* (CNF) if it is expressed as an AND of *clauses*, each of which is the OR of one or more literals, e.g.

$$(x_1 \vee \neg x_1 \vee \neg x_2) \wedge (x_2 \vee x_3) \wedge (x_2 \vee \neg x_3 \vee \neg x_4)$$

The *CNF satisfiability* problem (*CNF-SAT*) is:
Given a boolean formula in *CNF*, whether there exists a variable assignment that causes the formula to evaluate to 1.

中大資工 何錦文

Lower Bound & NP-Completeness

25

Circuit Satisfiability

★ The *Circuit satisfiability* problem (CIRCIT-SAT) is: Given a boolean combinational circuit composed of AND, OR, and NOT gates, is it satisfiable?

中大資工 何錦文

Lower Bound & NP-Completeness

The Vertex-Cover Problem

- A vertex cover of a graph G=(V, E), is a subset C of V such that if $uv \in E$, then $u \in C$ or $v \in C$ (or both). The size of C is the number of vertices in it.
- **► V-COVER**={ $\langle G, k \rangle$: G has a vertex cover of size k}

中大資工 何錦文

Lower Bound & NP-Completeness

SOS ≤_p 0/1 Knapsack

$$x = \langle s_1, s_2, \dots, s_n, K \rangle \xrightarrow{f} f(x) = \langle w_1, w_2, \dots, w_n, W, p_1, p_2, \dots, p_n, k \rangle$$

Let
$$w_i = p_i = s_i$$
 for $1 \le i \le n$
and $W = k = K$

x is a yes-instance iff. f(x) is a yes-instance

中大資工 何錦文

Lower Bound & NP-Completeness

25

How to Handle Intractable Problems

- **►** Branch-and-bound (**E**)
- (~)**E**: (non-)Exact algorithms
- ► Heuristic algorithms (~E)
- Randomized algorithms: simulated annealing (~E), genetic algorithms (~E), probabilistic algorithms (E or ~E)
- ► Approximation algorithms (~E)
- ► Fixed-parameter algorithms (**E**)
- ► Other models of computation : quantum, DNA, parallel, neural nets...

F ...

中大資工 何錦文

Lower Bound & NP-Completeness