Functional Analysis Assignment 3

Ashish Kujur

Note

A checkmark \checkmark indicates the question has been done.

Contents

1	Question 1	2
2	Question 2	3
3	Question 3	4
4	Question 4	5
5	Question 5	7
6	Question 6	8
7	Question 7	10
8	Question 8	12

Let V and W be two NLS and $T:V\to W$ be a linear map. Show that T is continuous if and only if T maps every Cauchy sequence of V to a Cauchy sequence of W.

Proof. Let V, W be two NLS and let $T: V \to W$ be a linear map.

 (\Longrightarrow) Suppose that T is continuous. Let $\{x_n\}$ be a Cauchy sequence in X. We want to show that $\{Tx_n\}$ is Cauchy sequence in Y. To do so, let $\varepsilon > 0$ be given. By the continuity of T, there is some k > 0 such that

$$||Tx|| \le k ||x|| \text{ for every } x \in X. \tag{1.0.1}$$

Since $\{x_n\}$ is Cauchy, there is some $N \in \mathbb{N}$ such that

$$||x_n - x_m|| < \frac{\varepsilon}{k} \text{ for every } n, m \ge N$$
 (1.0.2)

Thus, for every $n, m \geq N$, we have that

$$||Tx_n - Tx_m|| \le k ||x_n - x_m||$$
 from 1.0.1
 $< \varepsilon$ from 1.0.2

This shows that $\{Tx_n\}$ is Cauchy in Y.

 (\Leftarrow) We prove it by contrapostitively. Suppose that T is not continuous. Then for every k > 0,

$$||Tx|| > k ||x||$$
 for some $x \in X$.

Thus, for each $n \in \mathbb{N}$, we can find some $x_n \in X$ such that $||Tx_n|| > n^2 ||x_n||$. Consider the sequence $\{y_n\}$ in V defined by

$$y_n = \frac{x_n}{n \|x_n\|}$$
 for each $n \in \mathbb{N}$

We now show that $\{y_n\}$ is Cauchy. Let $\varepsilon > 0$ be given. Select $N \in \mathbb{N}$ such that $\frac{2}{N} < \varepsilon$. For $k \in \mathbb{N}$ and $n \geq N$, we have that

$$||y_{n+k} - y_m|| = \left\| \frac{x_{n+k}}{(n+k) ||x_{n+k}||} - \frac{x_n}{n ||x_n||} \right\|$$

$$\leq \frac{1}{n+k} + \frac{1}{n}$$

$$= \frac{2}{n} \leq \frac{2}{N} < \varepsilon$$

This shows that $\{y_n\}$ is Cauchy but on the other hand, we have that

$$||Ty_n|| = \left| \left| T\left(\frac{x_n}{n ||x_n||}\right) \right| > n$$

This shows that $\{Ty_n\}$ is unbounded, a property which Cauchy sequences cannot have. \Box

Let X be a real NLS and $T: X \to \mathbb{R}$ be a non continuous linear functional. Then show that $T(U) = \mathbb{R}$ for any non empty open subset $U \subseteq X$.

Proof. We first show that $T(B_X(0,1)) = \mathbb{R}$ and we will show that this is all we need. First, suppose that T is not continuous. Therefore, for every k > 0,

$$|Tx| > k \text{ for some } x \in \overline{B_X(0,1)}.$$
 (2.0.1)

It is clear that $T(B_X(0,1)) \subset \mathbb{R}$. To show the reverse inclusion, let $\alpha \in \mathbb{R}$ then by 2.0.1, we have that there is some $x \in X$ with $||x|| \le 1$ and $|Tx| > |\alpha| + 1$. Now, now define the vector $y = \frac{\alpha}{Tx}x$. Observe that

$$Ty = \alpha \frac{Tx}{Tx} = \alpha$$

and

$$||y|| = \left|\frac{\alpha}{Tx}\right| ||x||$$

$$< \frac{\alpha}{|\alpha| + 1} ||x||$$

$$\leq ||x|| = 1$$

Hence, we have that $\alpha \in T(B(0,1))$. It remains to show that it suffices to work on the unit ball.

Let U be any nonempty open set in X. Then there is some point $x_0 \in U$ and some r > 0 such that $B(x_0, r) \subset U$. Observe that

$$T(B(x_0, r)) = T(x_0 + rB(0, 1))$$

= $T(x_0) + rB(0, 1)$

Since by the previous argument, we have $B(0,1) = \mathbb{R}$. Hence, we have that $\mathbb{R} \subset U$ and thus, we are done.

Let $T: \mathscr{C}^1[0,1] \to \mathscr{C}[0,1]$ be the linear map defined by $T(f) = f', f \in \mathscr{C}^1[0,1]$, where $\mathscr{C}[0,1]$ equipped with the usual sup norm $\|\cdot\|_{\infty}$. Show that T is not continuous if $\mathscr{C}^1[0,1]$ is equipped with the usual sup norm $\|\cdot\|_{\infty}$. But T is a continuous linear transformation and $\|T\| = 1$, if $\mathscr{C}^1[0,1]$ endowed with the following norm

$$||f|| = \max\{||f||_{\infty}, ||f'||_{\infty}\}.$$
(3.0.1)

Solution. Let $T: \mathscr{C}^1[0,1] \to \mathscr{C}[0,1]$ be given by Tf = f'. Let $\mathscr{C}^1[0,1]$ be given the sup norm first and $\mathscr{C}[0,1]$ be given the same sup norm. Consider the sequence of functions $f_n: [0,1] \to \mathbb{R}$ given by

$$f_n\left(x\right) = \sin\left(nx\right)$$

for every $x \in [0,1]$. Then we have that

$$f_n'(x) = n\cos(nx)$$

for each $x \in [0,1]$. Hence, we have that $||f_n||_{\infty} = 1$ and

$$||Tf|| = ||f'_n||_{\infty} = ||n\cos(nx)||_{\infty}$$

= n

for each $n \in \mathbb{N}$. Hence, we have that T is not a bounded linear operator. On the other hand, let's suppose that $\mathscr{C}^1[0,1]$ is given the norm specified in Equation 3.0.1. We now that that T is continuous with the specified norm. Let $f \in \mathscr{C}^1[0,1]$ with $||f|| \leq 1$ then we have that

$$||Tf||_{\infty} = ||f'||_{\infty} \le ||f|| \le 1.$$

Hence, this shows that T is continuous.

Let X and Y be two NLS and T be a continuous linear map from X into Y. Show that following holds:

$$\underbrace{\sup\{\|Tx\|_Y: \|x\|_X \leqslant 1\}}_{:=\alpha} = \underbrace{\sup\{\|Tx\|_Y: \|x\|_X < 1\}}_{:=\beta} \tag{4.0.1}$$

$$= \underbrace{\sup\{\|Tx\|_Y : \|x\|_X = 1\}}_{:=\chi} \tag{4.0.2}$$

$$= \sup\{\frac{\|Tx\|_Y}{\|x\|_X} : x \in X, x \neq 0\}. \tag{4.0.3}$$

Solution. We first prove that $\alpha = \beta$. Observe that

$$\{ \|Tx\|_Y : \|x\|_X < 1 \} \subset \{ \|Tx\|_Y : \|x\|_X \le 1 \}$$

$$\sim \sup \{ \|Tx\|_Y : \|x\|_X < 1 \} \le \sup \{ \|Tx\|_Y : \|x\|_X \le 1 \}$$

$$\sim \beta < \alpha$$

Now, let $\varepsilon > 0$ be given. Then there exists $x_0 \in X$ satisfying $||x_0||_X \leq 1$ such that

$$\alpha - \varepsilon < ||Tx_0||_Y$$
.

For each $n \in \mathbb{N}$, we have that

$$\left(1 - \frac{1}{n}\right)(\alpha - \varepsilon) < \left\| T\left(\left(1 - \frac{1}{n}\right)x_0\right) \right\| \le \beta.$$
(4.0.4)

Note that last inequality is true because

$$\left\| \left(1 - \frac{1}{n} \right) x_0 \right\| = \left(1 - \frac{1}{n} \right) \|x_0\| < 1.$$

Let $n \to \infty$ in 4.0.4, we have that

$$(\alpha - \varepsilon) \le \beta.$$

Since $\varepsilon > 0$ is arbitrary, we have that $\alpha \leq \beta$ and this completes the proof of the first equality. We now proceed to show the equality $\alpha = \chi$. By subset argument, it is easy to see that $\chi \leq \alpha$. To show the reverse inequality, let $\varepsilon > 0$ be given. Then there exists $x \in X$ with $\|x\|_X \leq 1$ such that

$$\alpha - \varepsilon < \|Tx_0\|_Y$$

If $||x_0|| = 0$ then we would have that $\alpha - \varepsilon < 0 \le \beta$ and since $\varepsilon > 0$ is arbitrary, we would be done. So, assume that $||x_0|| > 0$. Then we would have that

$$\frac{\alpha - \varepsilon}{\|x_0\|} < \left\| T\left(\frac{x_0}{\|x_0\|}\right) \right\| \le \chi \leadsto \alpha - \varepsilon \le \|x_0\| \chi \leadsto \alpha - \varepsilon \le \chi.$$

Since $\varepsilon > 0$ is arbitrary, we would be done.

We finally show that $\chi = \delta$. Observe that the sets

$$\sup\{\|Tx\|_Y: \|x\|_X = 1\} = \sup\left\{\frac{\|Tx\|_Y}{\|x\|_X}: x \in X, x \neq 0\right\}.$$

and hence we are done.

Let T be a finite rank (say of rank k) continuous linear operator from a Hilbert space H into itself. Show that there exist a linearly independent set $\{x_1, \ldots, x_k\}$ and $\{y_1, \ldots, y_k\}$ in H such that

$$T = (x_1 \otimes y_1) + \dots + (x_k \otimes y_k).$$

Solution. Let $k \in \text{ran}T$. Then k = Tf for some f, i.e. $k = \lambda g$, where $\lambda = \langle f, h \rangle$. So every element in ran T is a scalar multiple of g. Thus, ran T has a basis consisting of $\{g\}$, i.e. it has dimension 1.

Now assume that T is finite rank. Let g'_1, \ldots, g'_n be an orthonormal basis of ran T. Then, for every $f \in H$, $Tf = \sum_j \lambda_j(f) g'_j$, with the coefficients $\lambda_1(f), \ldots, \lambda_n(f)$ uniquely determined for for each f. So, for each j, the map $f \mapsto \lambda_j(f)$ is a linear functional on H. Note that

$$|\lambda_j(g)| \le \left(\sum_{k=1}^n |\lambda_k(f)|^2\right)^{1/2} = ||Tf|| \le ||T|| \, ||f||,$$

so every λ_j is a bounded functional. By the Riesz Representation Theorem, there exist vectors e'_1, \ldots, e'_n such that $\lambda_j(f) = \langle f, e'_j \rangle$. So

$$Tf = \sum_{j=1}^{n} \langle f, e'_j \rangle g'_j, \quad f \in H.$$

Now, using Gram-Schmidt, there exist e_1, \ldots, e_n , orthonormal, such that

$$e_k' = \sum_{j=1}^k \lambda_{kj} e_j$$

for coefficients $\{\lambda_{kj}\}_{k=1,\dots,n;j=1,\dots,k}$ (note that these are not the equalities from Gram-Schmidt, but rather the *inverse* form, where we express the old vectors in terms of the new orthonormal ones). Then

$$Tf = \sum_{k=1}^{n} \langle f, e_k' \rangle g_k' = \sum_{k=1}^{n} \langle f, \sum_{j=1}^{k} \lambda_{kj} e_j \rangle g_k' = \sum_{k=1}^{n} \sum_{j=1}^{k} \lambda_{kj} \langle f, e_j \rangle g_k' = \sum_{j=1}^{n} \langle f, e_j \rangle \left(\sum_{k=j}^{n} \lambda_{kj} g_k' \right).$$

Letting $g_j = \sum_{k=j}^n \lambda_{kj} g'_k$, j = 1, ..., n, we get the desired expression.

This solution was borrowed from here!

For each $y = (y_j)_{j \in \mathbb{N}}$ in $\ell^{\infty}(\mathbb{N})$, consider the map $T_y : \ell^1(\mathbb{N}) \to \mathbb{C}$ defined by

$$T_y(x) = \sum_{j=1}^{\infty} x_j y_j, \quad x = (x_j)_{j \in \mathbb{N}} \in \ell^1(\mathbb{N}).$$

Show that the map $y \to T_y$ is an isometry from $\ell^{\infty}(\mathbb{N})$ onto $(\ell^1(\mathbb{N}))^*$. Thus $(\ell^1(\mathbb{N}))^*$ is isometrically isomorphic to $\ell^{\infty}(\mathbb{N})$.

Solution. Fix $y = (y_j)_{j \in \mathbb{N}} \in \ell^{\infty}(\mathbb{N})$. Consider the map

$$T_y(x) = \sum_{j=1}^{\infty} x_j y_j$$

for each $x = (x_j)_{j \in \mathbb{N}} \in \ell^1(\mathbb{N})$.

It is easy to see that this map is well defined, continuous linear functional by the Holder's inequality. Hence, we have that $T_y \in (\ell^1(\mathbb{N}))^*$.

Now, we show that the map $F: \ell^{\infty}(\mathbb{N}) \to (\ell^{1}(\mathbb{N}))^{*}$ given by

$$y \stackrel{F}{\longmapsto} T_y$$

It is easy to see that the map is linear and all we need to show is that this map is an isometry and an isomorphism as well. First, fix a $y \in \ell^{\infty}(\mathbb{N})$ and observe that for any $x \in \ell^{1}(\mathbb{N})$ with $||x||_{1} = 1$, we have that

$$|T_y(x)| = \left| \sum_{j=1}^{\infty} x_j y_j \right|$$

$$\leq ||x||_1 ||y||_{\infty}$$

$$= ||y||_{\infty}$$

Holder's inequality

Thus, taking supremum, we have from Question 4 that

$$||T_y||_{(\ell^1(\mathbb{N}))^*} \le ||y||_{\infty}$$

To show the reverse inequality, observe that for each $i \in \mathbb{N}$, we have that $||e_1||_1 = 1$ and hence, we have that

$$|T_y(e_i)| = |y_i| \le ||T_y||_{(\ell^1(\mathbb{N}))^{\infty}}$$

for each $i \in \mathbb{N}$. Taking supremums over $i \in \mathbb{N}$, we have that

$$||y||_{\infty} \le ||T_y||_{(\ell^1(\mathbb{N}))^{\infty}}$$

This shows that $y \mapsto T_y$ is an isometry. It remains to show that F is an isomorphism. It suffices to show that F is onto.

Let $T \in (\ell^1(\mathbb{N}))^*$. We need to find a $y \in \ell^{\infty}(\mathbb{N})$ such that $T = T_y$. For each $i \in \mathbb{N}$, we define

$$y_i = T(e_i).$$

We now claim that $T = T_y$. It is easy to see that

$$T\left(e_{i}\right) = T_{y}\left(e_{i}\right)$$

Note that span $\{e_i : i \in \mathbb{N}\} = c_{00}$ and since $\overline{c_{00}} = \ell^1(\mathbb{N})$, we have that $T = T_y$ as they agree on a dense subset.

This completes the proof of the claim.

For each $y = (y_j)_{j \in \mathbb{N}}$ in $\ell^1(\mathbb{N})$, consider the map $T_y : \ell^{\infty}(\mathbb{N}) \to \mathbb{C}$ defined by

$$T_y(x) = \sum_{j=1}^{\infty} x_j y_j, \quad x \in \ell^{\infty}(\mathbb{N}).$$

Show that the map $y \to T_y$ is an isometry from $\ell^1(\mathbb{N})$ into $(\ell^{\infty}(\mathbb{N}))^*$, but not surjective.

Solution. Fix $y = (y_j)_{j \in \mathbb{N}} \in \ell^1(\mathbb{N})$. Consider the map $T_y : \ell^{\infty}(\mathbb{N}) \to \mathbb{C}$ given by

$$T_y x = \sum_{j=1}^{\infty} x_j y_j$$

for all $x = (x_j)_{j \in \mathbb{N}} \in \ell^1$. It is easy to show that this map is welldefined and that $||T_y||_{(\ell^{\infty})^*} \le ||y||_{\ell^1}$ by Holder's inequality.

Also, we need to show that $\|y\|_{\ell^1} \leq \|T_y\|_{(\ell^{\infty})^*}$. To show the reverse inequality, let us denote $y = (y_n)_{n \in \mathbb{N}}$. Now, define for each $n \in \mathbb{N}$,

$$\psi_n := \sum_{k=1}^n e^{-i\arg y_k} e_k.$$

It is easy to see that $\psi_n \in c_0$ for each $n \in \mathbb{N}$ and $\|\psi_n\|_{c_0} = 1$. Now observe that for each $n \in \mathbb{N}$, we have that

$$f_y(\psi_n) = f_y\left(\sum_{k=1}^n e^{-i\arg y_k} e_k\right)$$

$$= \sum_{k=1}^n e^{-i\arg y_k} f_y(e_k)$$

$$= \sum_{k=1}^n e^{-i\arg y_k} y_k$$

$$= \sum_{k=1}^n |y_k|.$$

Thus, we have that $||f_y||_{(\ell\infty)^*} \ge \sum_{k=1}^n |y_k|$. Letting $n \to \infty$, we have that $||f_y||_{(\ell^\infty)^*} \ge \sum_{k=1}^\infty |y_k| = ||y||_{\ell^1}$.

If it happened that $y \to T_y$ was an isometric isomorphism then $(\ell^{\infty}(\mathbb{N}))^*$ would be separable since $\ell^1(\mathbb{N})$ is separable. Then $(\ell^{\infty})(\mathbb{N})$ being separable would imply $\ell^{\infty}(\mathbb{N})$ would be separable. But $\ell^{\infty}(\mathbb{N})$ is not separable.

 $^{^1}X^*$ separable $\leadsto X$ separable.

Here's how one can show that ℓ^{∞} is not separable. It is easy to see that the set of binary sequences in ℓ^{∞} is uncountable. If ℓ^{∞} was separable then there would be a sequence $\{x_n : n \in \mathbb{N}\}$ such that $\overline{\{x_n : n \in \mathbb{N}\}} = \ell^{\infty}$. Now, if y is a binary sequence, then there would be some $k(y) \in \mathbb{N}$ such that $\|y - x_{k(y)}\|_{\infty} < \frac{1}{2}$. We claim that this map $y \mapsto k(y)$ is injective. Suppose not. Then for y_1, y_2 with $y_1 \neq y_2$

we have $x_{y_1} = x_{y_2}$. Then we have that

$$1 = \|y_1 - y_2\|_{\infty} = \|y_1 - x_{y_1} + x_{y_2} - y_2\|$$
 adding zero
$$\leq \|y_1 - x_{y_1}\|_{\infty} + \|y_2 - x_{y_2}\|$$
 triangle inequality
$$< \frac{1}{2} + \frac{1}{2}$$
 Boom! $1 < 1$!

Do I need to say more?

Let c denotes the set of all convergent sequence and c_0 denotes the set of all convergent sequences whose limit is 0.

- (a) Show that c and c_0 is a closed subspace of $\ell^{\infty}(\mathbb{N})$.
- (b) Show that c_0 admits a Schauder basis, namely, $\{e_j : j \in \mathbb{N}\}$.
- (c) Let e be the sequence (1, 1, 1, ...). Show that $\{e, e_1, e_2, e_3, ...\}$ forms a Schauder basis for c.
- (d) Show that c_0^* is isometrically isomorphic to $\ell^1(\mathbb{N})$.
- (e) Show that c^* is isometrically isomorphic to $\ell^1(\mathbb{N})$ as well.
- (f)* Show that the space c_0 and c are not isometrically isomorphic. (Hint: A point p of a closed convex set S in a normed linear space X is called an extreme point of S if p can not be written as convex combination of two distinct points in S. An isometry must take an extreme point to an extreme point. Note that closed unit ball of c_0 has no extreme point but closed unit ball of c has extreme points.)

Proof. Well, well:

(a) Let $(x_n)_{n\in\mathbb{N}}$ be a sequence in c_0 which converges to some $y\in\ell^\infty(\mathbb{N})$. We need to show that $y\in c_0$.

For each $n \in \mathbb{N}$, let us denote

$$x_n = (x_{nk})_{k \in \mathbb{N}} .$$

Since $(x_n)_{n\in\mathbb{N}}$ is a sequence in c_0 , we have that for each $n\in\mathbb{N}$, the sequence $(x_{nk})_{k\in\mathbb{N}}$ converges to 0.

Now, we proceed to show that the sequence $(y_k)_{k\in\mathbb{N}}$ converges to $0\in\mathbb{C}$. First, let $\varepsilon>0$ be given. Select an $N\in\mathbb{N}$ such that

$$\|y-x_N\|_{\infty}<\frac{\varepsilon}{2}.$$

This can be done because $(x_n)_{n\in\mathbb{N}}$ converges to y in the $\ell^{\infty}(\mathbb{N})$ norm. Since $(x_{Nk})_{k\in\mathbb{N}}$ converges to $0\in\mathbb{C}$, we can find a $M\in\mathbb{N}$ such that

$$|x_{Nk}| < \frac{\varepsilon}{2}$$
 for every $k \ge N$.

Consider the following for $k \geq N$:

$$|y_k| \le |y_k - x_{Nk}| + |x_{Nk}|$$

$$\le ||y - x_N||_{\infty} + |x_{Nk}|$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

This shows that $y \in c_0$. Hence, c_0 is closed.

Now, we proceed to show that c is closed. Let $(x_n)_{n\in\mathbb{N}}$ be a sequence in c converging to some $y\in\ell^\infty(\mathbb{N})$. We want to show that $y\in c$. Since for each $n\in\mathbb{N}$, $x_n\in c$, we can let $\xi_n=\lim_{k\to\infty}x_{nk}$.

We now show that $(\xi_n)_{n\in\mathbb{N}}$ is Cauchy in \mathbb{C} (hence convergent). Let $\varepsilon > 0$ be given. Select $N \in \mathbb{N}$ such that

$$||x_n - x_m||_{\infty} < \frac{\varepsilon}{3}$$
 for each $n, m \ge N$.

This can be done because $(x_n)_{n\in\mathbb{N}}$ is convergent, hence, Cauchy in $\ell^{\infty}(\mathbb{N})$.

Now, let $n, m \geq N$. Select $K \in \mathbb{N}$ large enough so that

$$|\xi_n - x_{nK}| < \frac{\varepsilon}{3} \text{ and } |\xi_m - x_{mK}| < \frac{\varepsilon}{3}.$$

This can be done because $\xi_n = \lim_{k \to \infty} x_{nk}$ for each $n \in \mathbb{N}$.

Therefore, we have

$$|\xi_n - \xi_m| \le |\xi_n - x_{nK}| + |\xi_{mK} - x_{mK}| + |x_{mK} - x_{nK}|$$

$$\le |\xi_n - x_{nK}| + |\xi_{mK} - x_{mK}| + ||x_n - x_m||_{\infty}$$

$$< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$$

This shows that $(\xi_n)_{n\in\mathbb{N}}$ is Cauchy. Hence, $(\xi_n)_{n\in\mathbb{N}}$ converges to some $\xi\in\mathbb{C}$.

We now show that $(y_k)_{k\in\mathbb{N}}$ converges to ξ . Let $\varepsilon > 0$ be given. Select $N \in \mathbb{N}$ large enough so that

$$\|y - x_N\|_{\infty} < \frac{\varepsilon}{3} \text{ and } |\xi_N - \xi| < \frac{\varepsilon}{3}.$$

Now, select $K \in \mathbb{N}$ such that

$$|x_{Nk} - \xi_N| < \frac{\varepsilon}{3}$$
 for every $k \ge K$.

For $k \geq K$, we have

$$|y_{k} - \xi| = |y_{k} - x_{Nk} + x_{Nk} - \xi_{N} + \xi_{N} - \xi|$$

$$\leq |y_{k} - x_{Nk}| + |x_{Nk} - \xi_{N}| + |\xi_{N} - \xi|$$

$$< ||y - x_{n}||_{\infty} + |x_{Nk} - \xi_{N}| + |\xi_{N} - \xi|$$

$$< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$$

This shows that c is closed.

(b) Let $x \in c_0$. We show that there exists unique scalars $(\alpha_n)_{n \in \mathbb{N}} \subset \mathbb{F}$ such that

$$x = \sum_{i=1}^{\infty} \alpha_i e_i.$$

Let $x = (x_n)_{n \in \mathbb{N}}$. We claim that

$$x = \lim_{n \to \infty} \sum_{i=1}^{n} x_i e_i$$

where the convergence is the ℓ^{∞} -convergence.

Let $\varepsilon > 0$ be given. Select $N \in \mathbb{N}$ such that

$$|x_i| < \frac{\varepsilon}{2} \text{ for all } i \ge N \leadsto \sup_{i > N} |x_i| \le \frac{\varepsilon}{2} < \varepsilon.$$

Thus for $n \geq N$, we have

$$||x - x_1 e_1 - x_2 e_2 - \dots - x_n e_n||_{\infty} \le \sup_{i \ge n+1} |x_i|$$

$$\le \sup_{i > N} |x_i| < \varepsilon.$$

This proves our claim.

Now, we prove uniqueness. Suppose that $x \in c_0$ has two different representations:

$$x = \sum_{i=1}^{\infty} \alpha_i e_i$$
 and $x = \sum_{i=1}^{\infty} \beta_i e_i$

We show that $\alpha_i = \beta_i$ for each $i \in \mathbb{N}$. Let $i \in \mathbb{N}$ be arbitrary. Then for any $n \geq i$, we have that

$$|\alpha_i - \beta_i| \le \left\| \sum_{k=1}^n (\alpha_k - \beta_k) e_k \right\|_{\infty}$$
 by definition of the ∞ norm
$$\le \left\| \sum_{k=1}^\infty (\alpha_k - \beta_k) e_k \right\|_{\infty}$$
 let $n \to \infty$
$$= \|0\|_{\infty} = 0.$$

Since $i \in \mathbb{N}$ was arbitrary, we are done.

(c) Let e = (1, 1, 1, ...). We wish to show that $\{e, e_1, e_2, ...\}$ is a Schauder basis for c. To do so, let $x \in c$. Suppose that $x = (x_n)_{n \in \mathbb{N}}$ converges to ξ . Define a new sequence $x_0 = x - \xi e$. It is easy to see that $x_0 \in c_0$. Thus, we have from part (b) that for some unique $(\alpha_i)_{i \in \mathbb{N}} \subset \mathbb{F}$,

$$x_0 = \sum_{i=1}^{\infty} \alpha_i e_i \rightsquigarrow x = \xi e + \sum_{i=1}^{\infty} \alpha_i e_i.$$

It remains to prove uniqueness. Let $x = (x_n)_{n \in \mathbb{N}} \in c$. Suppose that

$$x = \alpha e + \sum_{i=1}^{\infty} \alpha_i e_i$$
 and $x = \beta e + \sum_{i=1}^{\infty} \beta_i e_i$.

It is easy to see that

$$\lambda e = \sum_{i=1}^{\infty} \lambda e_i \text{ for any } \lambda \in \mathbb{F}.$$

Therefore, we have that

$$x = \alpha e + \sum_{i=1}^{\infty} \alpha_i e_i = \sum_{i=1}^{\infty} \alpha e_i + \sum_{i=1}^{\infty} \alpha_i e_i = \sum_{i=1}^{\infty} (\alpha + \alpha_i) e_i$$

Likewise, we have that

$$x = \sum_{i=1}^{\infty} (\beta + \beta_i) e_i.$$

The same argument at the end of item (b) shows that $\alpha + \alpha_i = \beta + \beta_i$ for each $i \in \mathbb{N}$. Taking limit $i \to \infty$, we have that $\alpha = \beta$. Hence, we are done.

(d) We need to show that there is an isometric isomorphism between c_0^* and $\ell^1(\mathbb{N})$. For $y \in \ell^1(\mathbb{N})$, consider the linear map $f_y : c_0 \to \mathbb{F}$ given by $f_y(x) = \sum_{i=1}^{\infty} x_i y_i$ for each $y \in c_0$.

We will show that the linear map $T: \ell^1(\mathbb{N}) \to c_0^*$ given by

$$y \stackrel{T}{\longmapsto} f_y$$

is an isometric isomorphism.

First, let $y \in \ell^1(\mathbb{N})$. For $x \in c_0$ with $||x||_{c_0} \leq 1$, we have by Holder's inequality that (one does not even need Holder:))

$$|f_y(x)| \le ||x||_{c_0} ||y||_{\ell^1} \le ||y||_{\ell^1}$$

To show the reverse inequality, let us denote $y = (y_n)_{n \in \mathbb{N}}$. Now, define for each $n \in \mathbb{N}$,

$$\psi_n := \sum_{k=1}^n e^{-i \arg y_k} e_k.$$

It is easy to see that $\psi_n \in c_0$ for each $n \in \mathbb{N}$ and $\|\psi_n\|_{c_0} = 1$. Now observe that for each $n \in \mathbb{N}$, we have that

$$f_y(\psi_n) = f_y\left(\sum_{k=1}^n e^{-i\arg y_k} e_k\right)$$

$$= \sum_{k=1}^n e^{-i\arg y_k} f_y(e_k)$$

$$= \sum_{k=1}^n e^{-i\arg y_k} y_k$$

$$= \sum_{k=1}^n |y_k|.$$

²It can be shown that if $\sum_{i=1}^{\infty} v_n$ converges then $\lim ||v_n|| = 0$.

Thus, we have that $||f_y||_{c_0^*} \ge \sum_{k=1}^n |y_k|$. Letting $n \to \infty$, we have that $||f_y||_{c_0^*} \ge \sum_{k=1}^\infty |y_k| = ||y||_{\ell^1}$. This shows that T is an isometry.

Let $f \in c_0^*$. We wish to show that there is some $y \in \ell^1$ such that $f_y = f$. Let $y = (y_n)_{n \in \mathbb{N}}$ be the sequence defined by

$$y_n = f(e_n)$$
 for all $n \in \mathbb{N}$.

Note the same argument as before shows that $y \in \ell^1$. Do you want me to be more explicit? There you go: Now, define for each $n \in \mathbb{N}$,

$$\psi_n := \sum_{k=1}^n e^{-i\arg y_k} e_k.$$

It is easy to see that $\psi_n \in c_0$ for each $n \in \mathbb{N}$ and $\|\psi_n\|_{c_0} = 1$. Now observe that for each $n \in \mathbb{N}$, we have that

$$f(\psi_n) = f\left(\sum_{k=1}^n e^{-i\arg y_k} e_k\right)$$
$$= \sum_{k=1}^n e^{-i\arg y_k} f(e_k)$$
$$= \sum_{k=1}^n e^{-i\arg y_k} y_k$$
$$= \sum_{k=1}^n |y_k|.$$

Thus, we have that $||f||_{c_0^*} \ge \sum_{k=1}^n |y_k|$. Letting $n \to \infty$, we have that $||f||_{c_0^*} \ge \sum_{k=1}^\infty |y_k| = ||y||_{\ell^1}$. Didn't I tell you the same argument works?

Now, observe that $f(e_i) = f_y(e_i)$ for each $i \in \mathbb{N}$ and since they agree on a dense subset, namely c_{00} , we have that $f = f_y$ on c_0 .

- (e) The same proof as above works mutatis mutandis.
- (f) We first show that closed unit ball of c_0 contains no extreme point. Equivalently, we need to show that every point of c_0 can be written as a convex combination of two distinct points in the closed unit ball of c_0 .

Let (x_n) be a sequence in the closed unit ball of c_0 . Then select $N \in \mathbb{N}$ such that $|x_N| < \frac{1}{2}$. Now, we define two sequences $(y_n)_{n \in \mathbb{N}}$ and $(z_n)_{n \in \mathbb{N}}$:

$$y_n = \begin{cases} x_n & n \neq N \\ x_N + \frac{1}{2} & n = N \end{cases}$$

and

$$y_n = \begin{cases} x_n & n \neq N \\ x_N - \frac{1}{2} & n = N \end{cases}$$

It is easy to see that both (y_n) and (z_n) are in c_0 and both are distinct. Also note that $(x_n) = \frac{1}{2}(y_n) + \frac{1}{2}(z_n)$. So, no point of the closed unit ball of c_0 is an extreme point.

On the other hand, we show that the closed unit ball of c contains a extreme point. Consider the point x = (1, 1, 1, ...). Clearly, x is in the closed unit ball of c. We now show that that x is an extreme point.

Assume the contrary that x is not an extreme point. Then there exists two distinct sequences $y = (y_n)_{n \in \mathbb{N}}$ and $z = (z_n)_{n \in \mathbb{N}}$ such that

$$x = \lambda y + (1 - \lambda) z$$

for some $\lambda \in [0, 1]$.

Since y and z are distinct, select a $n_0 \in N$ such $y_{n_0} \neq z_{n_0}$. We may assume that $y_{n_0} < z_{n_0}$ without loss of generality.

We now claim that $z_{n_0} = 1$. If not, let $z_{n_0} < 1$. Then we have that

$$1 = x_{n_0} = \lambda y_{n_0} + (1 - \lambda) z_{n_0}$$

$$< \lambda z_{n_0} + (1 - \lambda) z_{n_0}$$

$$= z_{n_0}.$$

This contradicts the fact that $z_{n_0} < 1$. Hence $z_{n_0} = 1$.

From here, we can conclude that

$$1 = \lambda y_{n_0} + (1 - \lambda) z_{n_0} = \lambda y_{n_0} + (1 - \lambda) 1 \leadsto \lambda = \lambda y_{n_0}.$$

If $\lambda = 0$ then y = z which is a contradiction. Otherwise if $\lambda \neq 0$ then $y_{n_0} = 1$ which contradict the fact that $y_{n_0} \neq z_{n_0}$. This completes the proof.

³Note that z_{n_0} cannot be bigger than 1 because z lies in the closed unit ball of c.