Exercise 9.1.1. Let L be the splitting field of the polynomial $t^{13} - 1$. Find all subgroups of $Gal_{\mathbb{Q}}(L)$.

Solution. Let $f = t^{13} - 1$. Since 13 is prime, we have that f = (t - 1)g where $g = t^{12} + \dots + t + 1 = \Phi_{13}$ is the 13th cyclotomic polynomial. We have that L is the splitting field of f, so it is also the splitting field for Φ_{13} . We know $\operatorname{Gal}_K(f) = \operatorname{Gal}_K(L)$ and by theorem $\operatorname{Gal}_{\mathbb{Q}}(\Phi_{13}) = \mathbb{Z}_{13}^* = \mathbb{Z}_{12}$, so $\operatorname{Gal}_{\mathbb{Q}}(L) \cong \mathbb{Z}_{12}$. From group theory, the only subgroups of a cyclic group \mathbb{Z}_n are the unique subgroups $\langle d \rangle$ generated by the divisors d of n, which have order n/d. Thus the subgroups of $\operatorname{Gal}_{\mathbb{Q}}(L)$ are $\operatorname{Gal}_{\mathbb{Q}}(L) = \mathbb{Z}_{12}, \ \mathbb{Z}_6, \ \mathbb{Z}_4, \ \mathbb{Z}_3, \ \mathbb{Z}_2$, and the trivial group $\{\operatorname{Id}.\}$.

Exercise 9.1.2. How many intermediate subfields are there in the extension $L:\mathbb{Q}$?

Solution. By the Fundamental Theorem of Galois Theory, there is a bijection between the set of intermediate fields of a field extension L:K and the set of subgroups of the Galois group of that same extension. By Exercise 9.1.1 we have that $\operatorname{Gal}_{\mathbb{Q}}(L)$ has 6 subgroups, so by the Fundamental Theorem of Galois Theory have that there are 6 intermediate fields in the extension $L:\mathbb{Q}$, including L and \mathbb{Q} .

Exercise 9.2. Draw the lattice of subfields and corresponding lattice of subgroups of $Gal_{\mathbb{F}_3}(\mathbb{F}_{3^8})$. Find orders of all subgroups of $Gal_{\mathbb{F}_3}(\mathbb{F}_{3^8})$.

Solution. Since p=3 is prime and $q=3^8$ is of the form p^n for some $n \in \mathbb{N}$, we know that $\operatorname{Gal}(\mathbb{F}_3 : \mathbb{F}_{3^8}) \cong \mathbb{Z}/8\mathbb{Z} \cong \mathbb{Z}_8$. Then by the same reasoning as in Exercise 9.1.1, we have that the subgroups of $\operatorname{Gal}(\mathbb{F}_3 : \mathbb{F}_{3^8})$ (up to isomorphism) are \mathbb{Z}_8 , \mathbb{Z}_4 , \mathbb{Z}_2 , and {Id.}. The orders of these subgroups are obviously 8, 4, 2, and 1 respectively.

$$F_{3^8}$$
 F_{3^8}
 F_{3^8}
 F_{3^4}
 F_{3^4}
 F_{3^2}
 F_{3^2}
 F_{3^2}
 F_{3^2}
 F_{3^2}
 F_{3^3}
 F_{3^2}
 F_{3^2}
 F_{3^2}
 F_{3^3}
 F_{3^2}
 F_{3^3}
 F_{3^2}
 F_{3^3}
 F_{3^2}
 F_{3^3}
 F_{3

Exercise 9.3. Prove Artin's theorem: let $[L:K] < \infty$, $G := \operatorname{Gal}_K(L)$. Then $[L:L^G]$ is a Galois extension.

Solution. We are given that L: K is a finite extension. By theorem, we have that $|\mathrm{Gal}(L:K)| \leq [L:K]$, so G is a finite group. So we know $\mathrm{Gal}_K(L) \leqslant \mathrm{Aut}(L)$ and $|G| < \infty$, and by theorem we have that $L: L^G$ is a finite Galois extension.

Exercise 9.4. Let L: K be a finite Galois extension, $G:= \operatorname{Gal}_K(L)$. For any $\alpha \in L$ define

$$\operatorname{Tr}(\alpha) = \sum_{g \in G} g(\alpha) \quad \text{and} \quad \operatorname{Norm}(\alpha) = \prod_{g \in G} g(\alpha).$$

Prove that for an arbitrary $\alpha \in L$ one has $\text{Tr}(\alpha)$, $\text{Norm}(\alpha) \in K$.

Solution. Since L:K is a Galois extension, we have that $L^G=K$. Then $k\in K$ iff h(k)=k for all $h\in G$. Notice that

$$h(\operatorname{Tr}(\alpha)) = h\left(\sum_{g \in G} g(\alpha)\right) = \sum_{g \in G} h(g(\alpha)) = \sum_{i \in G} i(\alpha) = \operatorname{Tr}(\alpha),$$

and

$$h(\operatorname{Norm}(\alpha)) = h\left(\prod_{g \in G} g(\alpha)\right) = \prod_{g \in G} h(g(\alpha)) = \prod_{i \in G} i(\alpha) = \operatorname{Norm}(\alpha).$$

Thus $Tr(\alpha)$, $Norm(\alpha) \in K$ for all $\alpha \in L$.

Exercise 9.5.1. Find all of the subfields of $\mathbb{Q}(2^{1/3}, e^{2\pi i/3})$.

Solution. We can write $\mathbb{Q}(2^{1/3}, e^{2\pi i/3}) = \mathbb{Q}(2^{1/3}, \varepsilon_3)$ where $\varepsilon_3 = \exp(2\pi i/3)$. Then, subfields of $\mathbb{Q}(2^{1/3}, \varepsilon_3)$ are $\mathbb{Q}(2^{1/3}, \varepsilon_3)$, $\mathbb{Q}(\varepsilon_3)$, $\mathbb{Q}(\varepsilon_3)$, $\mathbb{Q}(2^{1/3}, \varepsilon_3)$, $\mathbb{Q}(2^{1/3}, \varepsilon_3)$, and \mathbb{Q} .

Exercise 9.5.2. Draw the lattice of subfields and corresponding lattice of subgroups of $\operatorname{Gal}_{\mathbb{Q}}(\mathbb{Q}(2^{1/3},e^{2\pi i/3}))$.

Solution. The field $\mathbb{Q}(2^{1/3}, \varepsilon_3)$ is a splitting field for t^3-2 over \mathbb{Q} , so it is separable since any irreducible polynomial over a field of characteristic 0 is separable. Also, we note that the roots of t^3-2 are $\sqrt[3]{2}$, $\varepsilon_3\sqrt[3]{2}$, and $\varepsilon_3^2\sqrt[3]{2}$. Consider the permutation $\sigma: \sqrt[3]{2} \mapsto \varepsilon_3\sqrt[3]{2}$ such that σ fixes ε_3 , and let τ be complex conjugation. Notice that $\sigma^3 = \tau^2 = \mathrm{Id}$. and $\tau \sigma \tau (\sqrt[3]{2}) = \tau \sigma (\sqrt[3]{2}) = \tau (\varepsilon_3\sqrt[3]{2}) = \varepsilon_3^2\sqrt[3]{2} = \sigma^{-1}(\sqrt[3]{2})$. These are the defining characterisitics of the group D_3 , so $\mathrm{Gal}_{\mathbb{Q}}(\mathbb{Q}(2^{1/3}, e^{2\pi i/3})) \cong D_3 = \langle r, f : r^3 = f^2 = \mathrm{Id}$., $frf = r^{-1}\rangle$. The only subgroups of D_3 are $D_3, \langle r \rangle, \langle f \rangle, \langle r^2 f \rangle$, and $\{\mathrm{Id}.\}$.

