

Bus Systems

Automotive Bus Systems – LIN, MOST, Flexray

Prof. Dr. Reinhard Gotzhein, Dr. Thomas Kuhn

Automotive Bus Systems

Learning objectives

- Understand more automotive bus systems
 - LIN Bus
 - MOST Bus
 - Flexray Bus
- Know their operation priciples, predictablility, and application areas

- Development and standardization
 - Since end of 90's by industry consortium
 - de-facto-Standard; most recent: LIN 2.1 (2006); USA: SAE J2602 (2005)
- Application areas
 - Cheap communication bus for coupling simple automotive devices
 - Doors, seats, mirrors, windows, light...
 - Nested bus, used to connect devices to a single CAN bus master
- Properties
 - One wire bus, NRZ coding
 - 12V: logic 1 (recessive)
 - 0V: logic 0 (dominant)
 - Bytewise transmission using start and stop bits
 - Transmission rate up to 19,2 Kbps; useable data rate up to 800 Byte/s
 - Bus length up to 40m

- Only one wire between nodes
 - One reason for low transmission speeds why?
- Medium access is controlled by central master node
 - Single-Master/Multiple-Slave
 - Nodes may implement master and slave software tasks
 - Communication is controlled by master task
 - Master node realizes gateway to other networks (e.g. CAN)

LIN Bus - Scalability

- 1 Master node, up to 16 slave nodes
- Periodic polling of slave nodes by master

Addressing

- Each message is itentified by unique identifier that is assiged to one fixed node (master or slave)
- A sender may have several IDs assigned
- LIN nodes decide based on received message ID whether to receive the message or not
- LIN does not use node addressing (this is similar to CAN bus)

Regular LIN transmission

- Master node divides communication medium into time slots of fixed, predefined length (Similar to TT-CAN)
- LIN master node polls slave nodes by transmitting a request frame with defined frame ID
 - Polling frame is transmitted in predefined transmission slot
- LIN slave node that is responsible for ransmitted frame ID responds in same transmission slot
- One or multiple receivers receive the transmitted frame
 - Master and/or slave nodes
 - Is this communication reliable?
 - Is this communication predictable?
 - Does LIN bus scale?

IBS: Inter-Byte Space; IFS: Inter-Frame Space

- **Sync Break:** Sequence of at least 13 dominant Bits for signalling bus arbitration by Master node, followed by at least one recessive bit. This unique bit sequence is recognized by all slaves , all nodes are informed about frame start
- Sync Byte: Bit sequence 01010101 for synchronizing bit clock rate of slaves
- Data bytes: Message length is between 1 and 8 bytes and is statically configured for each message type
- Checksum: Calculated from data bytes (classic checksum) or identifier and data bytes (enhanced checksum)

IBS: Inter-Byte Space; IFS: Inter-Frame Space

- **Identifier:** 6 Bit ID of transmitted frame type, followed by 2 parity bits
 - 0x00 .. 0x3B: freely useable by developer
 - 0x3C, 0x3D: Diagnostic frames for maintenane purposes
 - Master-Request-Frame (MRF): Diagnostincs and configuration
 - Slave-Response-Frame (SRF): Querying of slave data
 - 0x3E, 0x3F: reserved for extensions

- Master node splits medium into fixed time slots
 - \blacksquare d_{IFS} (d_{RS}): Inter-Frame (Response) Space duration
 - Factor 1,4: Permitted synchronization tolerance
 - Assumptions

■
$$R_T = 19,2 \text{ Kbps} \rightarrow d_{bit} = 0,052 \text{ms}$$

- Polling according to statically configured scheduling plan by master node
 - Static definition of message order and message frequency
 - Exclusive medium access at defined times
 - Deterministic upper bounds for transmission delays (assuming no errors)
 - Master node may switch between scheduling tables depending on operation state (e.g. normal operation or diagnostics)

LIN Frame types

- Standard frames / unconditional frames
 - Exclusive assignment of time slots
 - Polling by master
 - Collission free transmissions
- Sporadic frames
 - Assignment of time slot to multiple identifiers
 - Definition of identifier priority order
 - Master transmites identifier with (slot local) highest priority
 - Master decides which frame type will be transmitted
 - Collission free transmissions

- Event triggered frames
 - Use of same identifier for polling multiple frame types
 - Slaves respond when an event did occur
 - Decentral slot usage decision
 - → Collissions are possible
 - → Transmission delays are no longer deterministic
 - Collission avoidance strategies
 - Use events that are mutually exclusive
 - Use bit monitoring to detect collissions
 - Use checksum to detect collissions
 - Collission handling
 - Stop transmission
 - Use unconditional frames to poll nodes individually

Error detection and error handling

- Bit errors
 - Detection: Monitor transmitted bit value with bit value on bus by sampling voltage level
 - Handling: Stop transmissions (at end of byte)
- Checksum error
 - Detection: Receiver validates transmitted checksum with calculated checksum
 - Handling: Discarding of received frame, no error signaling
- Wrong identifier
 - Detection: Parity check of identifier byte by receiver(s)
 - Handling: Ignore frame, no error signaling
- Slave-Not-Responding
 - Detection: No frame data is transmitted after master did transmit header
 - Handling: Not part of LIN bus specification

Energy management

- State graph of transceiver
 - power off: Switched off
 - *active:* Normal operation
 - *sleep:* Energy saving mode
- State transitions
 - Goto sleep
 - Explicit signaling by master
 - Autonomously due to bus inactivity
 (after 4 sec at earliest, after 10 sec at latest)
 - Wake up
 - Signaling by master or slave
 - Dominant bus level for 250 500 μsec

Development and standardization

- Since end of 90s by industry consortium: MOST Cooperation (amongst others: Audi, BMW, Daimler, Harman/Becker, SMSC)
- MOST Specification Rev. 3.0 (2008)
- Predecessor: Domestic Data Bus (D2B), Philips

Application areas

- Telematics- and multimedia applications (Infotainment-Bus)
- Car radio, CD changer, Cellphone, TV, Navigation system

Properties

- Fibre-Wire or twisted pair wires
- Transmission rates: 25 Mbps (MOST25), 50 Mbps (MOST50), 150 Mpbs (MOST150) [since 2012: A3, Mercedes S-Class]
- Ring topology, up to 64 nodes

- Physical ring topology
 - Unidirectional PtP connections
 - Collission free

- MAC with distributed medium access
 - Reservations for transmission of streaming data
 - Token Passing for sporadic (Packet) data
 - Priority based fair contention for management data (control data)

- Time divided medium
 - Time slots of fixed duration, called MOST blocks
 - Each MOST block is subdivided into 16 MOST frame slots
- Duration of frames (and blocks) depends on frame rate
 - 44,1 kHz (Sampling rate of Audio-CD)
 Frame duration = 22,67 μsec, Block duration = 363 μsec
 - 48 kHz (Sampling rate of Audio-DVDs):
 Frame duration = 20,83 μsec, Block duration = 333 μsec
- All nodes in a MOST ring must use same frame rate

MOST25 Frame format (Frame size = 64 bytes)

- Header
 - Preamble (4b): Synchronization (SoF, SoB)
 - Boundary Descriptor (4b): Subdivision into synchronous and asynchronous area
 - (Value x 4)
 - Data Field
 - Synchronous (24-60 Byte): Contention free transmission based on reservations
 - Asynchronous (0-36 Byte): Contention based transmission
 - Control Data: Management data
 - Trailer: Status information, checksum

Synchronous data (24 - 60 Bytes per Frame)

- Split into 24 60 time slots, 8 Bits (1 Byte) per time slot
 - One time slot is one virtual (physical) channel
 - Channels are reserved individually by applications
- Synchronous part of MOST frame is usually not completely assigned to one application
 - Transmission rate of one virtual (physical) channel:
 - 44.100 Bytes/s if 44.100 MOST frames are transmitted per second
 - 48.000 Bytes/s if 48.000 MOST frames are transmitted per second

Transmission of streaming data

- Logic channels (Streaming Channels) created by grouping virtual physical channels
- Administration of streaming channels via explicit control messages
 - Reservation
 - Definition of sender and receiver
- Example
 - Transmission of Audio CD (Stereo, 16 Bit per sample) requires 4 physical channels
 - Maximum of 15 concurrent uncompressed Audio CD streams (MOST25)

Transmission of streaming data

- Supports streams up to 2,646 MB/s
- Ring topology delay for message forwarding:
 - 2 frame transmission times per node
 - 2 · 22,67 μsec, 45 μsec if 44,1 kHz frame rate is used (MOST25)
 - MOST50 guarantees < 1 μsec

Transmission of sporadic data

- Using asynchronous data area ($0 \le n \le 36$ Bytes per Frame)
 - Asynchronous part of MOST frame is completely assigned to one sender
 - Transmission rate of one physical channel:
 - $0 \le n \le 36$ Bytes per MOST-Frame
 - n · 44.100 Byte/sec (Assuming system frequency of 44.1 kHz)
- Longer frames may be split to multiple MOST frames (fragmentation)
 - Example: Map data for navigation systems require short data bursts
 - Token passing mechanism is used for medium arbitration

1B	2B 1B 2B		2B	048B (01014B)	4B	
Arbitration Field			Source Address	Data	CRC Checksum	

MOST25 Data frame format

- Arbitration field: Detect busy medium
 - Target/Source Address
 - Physical address is calcutaed based on node position in MOST ring, Master address is 0x0400
 - Logic address: assigned by master
 - Data Length: Length in quadlets (4 Byte-Units)
 - Data: Payload, up to 48 Bytes (or 1014 Bytes) length
 - CRC Checksum: Checksum

Transmission of control data (management data)

- Using of control channel in MOST frame
 - 2 Bytes per Frame
 - Transmission rate: 2 · 44.100 Byte/sec (assuming frame rate of 44.1 kHz)
- Management data frames are split accross **16** MOST-Frames of MOST-Blocks
- Priority based, fair contention for communication channel
 - 0 (low) .. 15 (high)
 - Node checks arbitration field and overwrites if necessary
 - Initial sender removes control data from ring when it passes again

4B	2B	2B	1B	17B	2B	4B
Arbitration Field	ı	Source Address	Message Type	Data	CRC Checksum	Trailer

- Format of MOST25 Management frames (Frame length = 32 Byte)
 - Arbitration Field: Priority of control message
 - Target/Source Address: see above
 - Message Type:
 - Ressource Allocation / Deallocation: Request/release logic channels
 - Remote Read / Write: read/write configuration of other nodes
 - Data, CRC Checksum: see above
 - Trailer: e.g. Acknowledgement from receiver

Error detection and handling

- Streaming Data
 - No error detection and handling on MAC level
 - Repetition of falsely received data usually not necessary
- Sporadic data
 - Checksum error
 - <u>Detection:</u> CRC-Checksum
 - Handling: Dropping of frame, no error signaling

Error Detection and handling

- Management data (Control Data)
 - Checksum error
 - Detection: CRC-Checksum
 - Handling: Drop frame, do not send positive acknowledgement
 - No receiver
 - <u>Detection</u>: No positive acknowledgement was received by sender
 - Handling: Automatic re-transmission (Low Level Retry)

- Development and standardization
 - 2000-2009 by industry consortium (BMW, Daimler, VW, General Motors, Freescale, Philips, Bosch, ...)
 - De-facto-Standard; most recent: FlexRay Specification V2.1 Rev. A (2005);
 Move towards ISO-Standard (IS IS 10681) in preparation

Application

- Similar to CAN Bus
- Exchange of real-time control data
- x-by-Wire-Systems

Properties

- Transmission rates up to bis 10 Mbps per physical channel (Twisted pair cable)
 - Bus topology (Line, Star)
 - Up to 64 nodes per segment
 - Max. 24m distance between nodes
- Robust due to 2 physiclly separated communication channels
 - Time and event triggered communciation protocol
 - Supports both contention based and contention free access
 - Supports hard real-time guarantees
- Flexray depends on time synchronization between nodes

Topologies

- Passive bus topologies
 - Point-to-point connections
 - Linear passive bus
 - Passive star
- Active bus topologies
 - Active star

Point-to-point connection

- Most simplistic bus topologie
- Maximum bus length I_{flex} = 24 m
- Both ends terminated with resistor

- Extension of point to point topology
 - Supports 4 to maximum of 22 nodes
 - Maximum permitted length $I_{flex} = I_{stub_n} + I_{spliceDist_n,m} + I_{stub_m} = 24 \text{ m}$
- Lines to main bus $(I_{stub_2} \text{ and } I_{stub_3})$
 - Typical length: few cm
 - Must not contain any forks

Passive star

- No "main" line
- 3 to up to 22 nodes
- Maximum permitted bus length is $I_{flex} = I_{stub_n} + I_{stub_m} = 24 \text{ m}$

Active star

- No main line
 - Supports 3 to 22 nodes
 - Significantly increases maximum bus length ($I_{activeS_n} = 24$ m)

- Mesh networks
 - What are maximum permitted bus lengths?

Toplogies

- FlexRay supports flexible topologies (compare to CAN)
- Bus speed may be traded for bus length
 - 10Mbit/s \rightarrow $I_{flex} = 24m$
 - 5Mbit/s \rightarrow I_{flex} = 48m
 - etc.
- Two independent physical communication channels
 - Doubles data rate or provides redundancy

Flexray MAC

- MAC with concurrent access
 - Time slotted medium
 - Requires time synchronization of all bus participants
 - Divided between contention based, contention free access, management periods
- Contention free access
- Time slots (TDMA)
- Periodic data, preconfigured schedule
- Contention based access
- Priority based access
- Flexible TDMA (FTDMA)

Time slotting

- Communication cycles: Dividing time into fixed size cycles (max. 16ms)
- Grouping of 64 communication cycles
- Dividing of communication cycles into fixed length segments

- static segment: contention free access
- dynamic segment (optional): contention based access
- Symbol Window (optional): network management
- Network Idle Time (NIT): time synchronization

Static segment

- Static segment is subdivided into 2..1023 static slots of equal length
 - Both physical channels are divided in same way
- Static and exclusive assignment of slots to at most one node
 - Different assignments per physical channel are permitted
 - If slots of both channels are assigned to same node, redundant transmissions are possible

Static segment

- Identification of static slots by continuous number and channel
- Identification of frame by frame ID, channel ID, cycle counter
 - Frame ID: identifies slot of static segment that should be used for transmission
 - Channel ID: identifies FlexRay channel (A, B) for frame transmission
 - Cycle Counter: optionally identifies communication cycle
 - Frame ID must be globally unique to avoid collissions

Dynamic segment

- Splitting dynamic segment into **Minislots** of equal size (0 up to 7986 Minislots)
 - Each data transmission requires multiple data transmissions
 - Length of data transmissions are variable, tranmsissions must not exceed dynamic segment length
- Frame is identified by frame ID, channel ID and cycle counter
 - Continues numbering of static frames (maximum slot-ID = 2047).
 - Frame ID defines frame priority (lowest slot is equals highest priority).
 - Frame ID must be unique

Dynamic segment

- Medium arbitration (per channel) : Flexible TDMA (FTDMA)
 - All nodes initialize slot counter with n+1 (n is ID of last static slot)
 - Slot counter is incremented when no transmission occurs in minislot
 - If value of slot counter equals a waiting frame ID, this slot starts a transmission
 - Sender must guarantee that his transmission ends within dynamic segment

Slot timing

- Frame transmission must start within time slot and also end within that time slot if a static slot is used
- All network nodes (sender, receiver) must perceive this in that way
 - → Avoiding of collissions
 - → Correct assigment of FrameID to SlotID

Problems

- Exact time synchronization is not possible, clock offset between nodes remains
- Clock skew changes (increments) this offset between clocks of network nodes over time

Time synchronization

- lacktriangle Time synchronization with maximum permitted clock offset $d_{maxOffset}$
 - Definition of maximum permitted upper bound for clock skew (minimum HW quality)
 - Consideration of clock offset and clock skew when using time slots
 - Reduces useable bandwidth

Time synchronization – static segment

- progagationDelay [μs]: Propagation of bit in physical medium
- idleDetectionDelay [µs]: Duration required for detecting end of transmission

Time synchronization – static segment

gdActionPointOffset [MacroTicks]:
Difference between start of slot and seems to be a seem of slot and slot an

Difference between start of slot and start of transmission in macro ticks

Restriction

$$gdActionPointOffset \geq \left\lceil \frac{aWorstCasePrecision - gdMinPropDelay}{gdMacroTick \cdot (1 - clockDeviationMax)} \right\rceil$$

aWorstCasePrecision: maximum clock offset (6,675-18,4 μs)

• gdMinPropDelay: minimum propagation delay between two nodes

gdMacroTick: Macro tick duration (1-6 μs)

• *cClockDeviationMax*: maximum permitted clock skew (e.g. 1500 ppm, 1ppm = 0,0001%)

Time synchronization – dynamic segment

Rationale

- Start of transmission (Action Point) needs to be assigned similar by all nodes
- End of transmission must have same value on all nodes as well (relative to Action point)
- Use of parameter *gdMinislotActionPointOffset*
 - Either identical or smaller than *gdActionPointOffset*
 - Smaller value yields less robustness but better bandwidth use
 - Dynamic Trailing Sequence is attached to frame to make frame end at mini slot boundary

Time synchronization – dynamic segment

■ Important

- Distance between two frames in static segment is $2 \cdot gdActionPointOffset$
- If gdMinislotActionPoint < gdActionPointOffset, this does not hold for last static segment
- Add leading *Dynamic Segment Offset* to start of dynamic segment to compensate

Frame format

5b	11b	7b	11b	6b	0254B	24b
Control Field	Frame ID	Payload Length	Header CRC	Cycle Count	Payload	Trailer

Header (first 40 Bit)

- Control Field: Control bits
 - Bit 1: Reserved
 - Bit 2: Payload Preamble Indicator to tag management data
 - Bit 3: Null Frame Indicator to tag empty frame
 - Bit 4: Sync Frame Indicator for synchronization
 - Bit 5: Startup Frame Indicator for synchronization
- Frame ID: Number of slots for frame transmission (1..2047)
 - Value 0 is reserved for invalid frame
- Payload Length: Number of payload words, 2 Byte per word

Frame format

- Header (first 40 Bit) (cont'd)
 - Header CRC: Checks bits 4 & 5 of Control Field, Frame ID, Payload length
 - Cycle Count: Number of communication cycle in which frame is transmitted
- Payload
 - Payload (unit is words, i.e. 2 Bytes)
 - Transmits up to 127 words → 254 Byte
- Trailer
 - Frame CRC: Checksum of whole frame, different generator polynoms for physical channels A and B

Frame format

- PHY-Preamble (Bit synchronization)
 - Transmission Start Sequence (TSS) activates bus drivers 3-15 Data 0-Bits
 - Frame Start Sequence (FSS): Safety buffer to prevent quantisation errors when sampling (Data_1-Bits)
- lacktriangle Bit resynchronisation: Byte-Start-Sequence (BSS): 1-0-Bit sequence before each Byte ightarrow 20% Overhead
- PHY-Trailer
 - Frame End Sequence (FES): 0-1-Bit sequence

Frame format

- Frame in dynamic segment
 - Dynamic Trailing Sequence (DTS):
 - Low-Phase of variable length to fill up to next action point
 - Ensures exact mini slot ID assignment
 - End of dynamic frame: last bit of DTS is high bit

Startup phase

- Goal: Initial time synchronization of all bus participants (TDMA)
 - Create common time base (Makroticks) before message exchange
 - Synchronization to beginning of communication cycle 0
 - Distributed synchronization increases reliability

Startup phase

Startup phase

- Definition of at least two (redundancy) cold-start nodes for initial synchronization
- Each cold start node monitors medium for at least two cycles
 - If inactive, node becomes leading coldstarter
 - If active, node becomes following coldstarter
- Leading coldstarter sends unique Collision Avoidance Symbol (CAS) on both channels
- Signals communication cycle 0
- After CAS, leading cold starter sets local clock to 0

- Leading cold starter sends Startup Frame (SF) in assigned static slot of following communication cycle
 - Frame has Startup Frame Indicator Bit and Sync Frame Indicator Bit set to high value
 - Frame ID and Cycle Count define offset to start of communication cycle 0

- Following Coldstarter waits for reception of 2 SF, then it starts ist local clock
 - Initial clock value is set based on offset to start of cycle 0
 - Clock correction value is calculated by measuring difference between measured and expected distance between received SF
- Waits for reception of two more SF, then starts active synchronization by sending additional SF in his slots

- Repeats startup-sequence if no following cold starter was detected after 6 cycles
 - From cycle 8: normal FlexRay communication

- Scenario: 2 Coldstarter send (almost) concurrently a CAS
 - Both nodes become leading coldstarters and start their local clocks
 - One of both nodes transmits his startup frame first (fixed static slot)
 - Other node detects that, terminates ongoing startup phase and restarts
 - Becomes following coldstarter after restarting startup sequence

Startup phase

- Integration of additional (non-coldstart) nodes
 - Start and initialization of local clocks when receiving first startup frames
 - Calculation of clock correction value based on difference between distance of measured and expected start of Startup-Frames
 - Active communication after consecutive reception of four startup-frames of at least two coldstart nodes
- Measures for periodic re-synchronization
 - 2..15 synchronization nodes (incl. coldstart nodes)
 - Periodic transmission of sync frames (regular Frames with sync. Indicator bit set)
 - Transmitted synchronously on both channels in reserved static slots
 - Frames correct clock values in NIT-Segment (Network Idle Time)

Failure detection and handling

■ Bit failure

- <u>Detection:</u> Header CRC, Frame CRC
- Handling: Dropping frame
 - No automatic repetition to ensure deterministic operation

Synchronization failure

- <u>Detection:</u> Checking of time based behavior
 - Local cycle counter ≠ Cycle Count in received frame
 - Local slot counter ≠ Frame ID in received frame
 - Clock control values exceed permitted limits
- Handling: Resynchronization
 - Changing clock state to "normal passive"
 - No active participation on bus (only receiving data)

■ "Babbling Idiot" Problem

- <u>Detection</u>: Checking of bus transmissions / bus use
 - Station tries to transmit at wrong times
 - Bus Guardian enables medium access for transmission only in specific slots
- Handling: Prevented by Bus Guardian
 - Bus Guardian prevents bus access if node behavior is incorrect (redundancy)
 - Node moves itself to "halt" state