ODR: Cvičné příklady—separabilní rovnice

- 1. Pro rovnici $\dot{x} = \frac{x^2 x}{t}$ najděte řešení Cauchyho úloh
 - a) x(1) = 2; b) $x(4) = \frac{1}{2}$; c) $x(-1) = \frac{2}{3}$; d) $x(1) = \frac{3}{4}$;
 - e) x(-2) = 1; f) x(3) = 0; g) x(1) = -1; h) x(0) = 3.

Pro následující úlohy nejprve najděte obecné řešení a diskutujte podmínky existence (rozbor dle možných hodnot C). Pokud řešení existují na okolí nekonečna, diskutujte jejich asymptotické chování pro $x \to \infty$. Nakonec vyřešte zadanou počáteční (Cauchyho) úlohu.

- **2.** $\frac{y'}{y+1} = -4x^3$, y(0) = 0;
- 3. $3y' = \frac{1}{y^2}, \quad y(2) = 1;$
- **4.** $y' = e^{x-y}$, $y(0) = \ln(4)$;
- **5.** $\dot{x} = \frac{x^2}{t^2}, \quad x(-1) = -\frac{1}{2};$
- **6.** $y' = \frac{2xy}{x^2 4}$, y(1) = -6;
- 7. yy' = -x, y(4) = -3;
- 8. $\frac{2y'}{1-y^2} = \frac{2}{x}$, $y(1) = -\frac{5}{3}$;
- **9.** $\frac{y'}{2\sqrt{y}} = e^x$, $y(2) = e^4 4e^2 + 4$;
- **10.** $x' = \frac{(x+2)\cos(t)}{\sin(t) + 2}, \quad x(0) = 0;$
- **11.** $y' = -2x^3y^3$, $y(5) = \frac{1}{\sqrt{621}}$;
- **12.** $\frac{e^y y'}{e^y 1} = \frac{4}{x}, \quad y(1) = \ln(2);$

- **13.** $y' = \cos(x)y^2$, $y(\frac{\pi}{2}) = 1$;
- **14.** $y' y^2 = 1$, $y(\pi) = 0$;
- **15.** $\frac{y'}{y} = -\frac{1}{x}$, y(-2) = -3;
- **16.** $y' = 4t\sqrt{y}, \quad y(0) = 1;$
- 17. $2y' + 1 = y^2$, $y(1) = \frac{1+2e}{1-2e}$;
- **18.** $\frac{y'}{y-1} = \frac{3}{x}$, y(1) = 2;
- **19.** $\frac{y'}{y-1} = -\frac{y}{x}$, y(2) = -1;
- **20.** $2\sqrt{x}y' = y^2$, y(9) = -1;
- **21.** $\frac{y'}{y+1} = \frac{\cos(x)}{\sin(x)}, \quad y(\frac{\pi}{2}) = 1;$
- **22.** $\dot{x} = \frac{e^{-x}}{t}, \quad x(1) = 0;$
- **23.** $y' = \frac{1 y^2}{1 x^2}$, y(0) = 0.

Řešení

1. Podmínky z rovnice: $t \neq 0$.

Stacionární řešení: x(t) = 0 na $(-\infty, 0)$ a na $(0, \infty)$, také x(t) = 1 na $(-\infty, 0)$ a na $(0, \infty)$. Separujeme a integrujeme: $\int \frac{dx}{x^2-x} = \int \frac{dt}{t},$ parciální zlomky

$$\int \frac{dx}{x(x-1)} = \int \frac{1}{x-1} - \frac{1}{x} \, dx = \ln|x-1| - \ln|x|.$$

 $\int \frac{dx}{x(x-1)} = \int \frac{1}{x-1} - \frac{1}{x} \, dx = \ln|x-1| - \ln|x|.$ Rovnice $\ln\left|\frac{x-1}{x}\right| = \ln|t| + c$, $\frac{x-1}{x} = \pm e^c t$, obvyklý trik $C = \pm e^c \neq 0$, tedy $1 - \frac{1}{x} = Ct$, obecné řešení $x(t) = \frac{1}{1-Ct}, \ t \neq 0, \ t \neq \frac{1}{C}$, splňuje $x \neq 0$ a $x \neq 1$ díky $C \neq 0$ a $t \neq 0$.

Poznámka: Volba C=0 dá stacionární řešení x(t)=1, ale to x(t)=0 takto získat nejde.

Počáteční podmínky:

- a) $C = \frac{1}{2}$, tedy $x_a(t) = \frac{1}{1-t/2}$, $t \in (0,2)$;
- b) $C = -\frac{1}{4}$, tedy $x_b(t) = \frac{1}{1+t/4}$, $t \in (0, \infty)$;
- c) $C = \frac{1}{2}$, tedy $x_c(t) = \frac{1}{1-t/2}$, $t \in (-\infty, 0)$;
- d) $C = -\frac{1}{3}$, tedy $x_d(t) = \frac{1}{1+t/3}$, $t \in (0, \infty)$;
- e) C=0, tedy stacionární řešení $x_e(t)=1, t\in (-\infty,0)$;
- f) C nejde, stacionární řešení $x_f(t) = 0, t \in (0, \infty);$
- g) C = 2, tedy $x_g(t) = \frac{1}{1-2t}$, $t \in (\frac{1}{2}, \infty)$;
- h) $x_h(t)$ neexistuje.

2. Podmínky z rovnice: $y \neq -1$.

Separace: $\int \frac{dy}{y+1} = -\int 4x^3 dx$. Stac. řeš.: kandidát y(x) = -1 vyloučen podmínkou.

Integrace: $\ln |y+1| = -x^4 + c$, obvyklý trik s $C = \pm e^c \neq 0$, obecné řešení: $y(x) = C e^{-x^4} - 1$.

Existence: Díky $C \neq 0$ je zajištěno $y \neq -1$, tedy $x \in \mathbb{R}$.

Pro $x \sim \infty$ je $y(x) \rightarrow -1$.

Poč. podm.: C=1, řešení $y(x)=e^{-x^4}-1$, $x\in\mathbb{R}$.

3. Podmínky z rovnice: $y \neq 0$

Separace: $\int 3y^2 dy = \int 1 dx$. Stac. řeš.: není.

Integrace: $y^3 = x + C$, obecné řešení: $y(x) = (x + C)^{1/3}$.

Existence: $y \neq 0 \implies x \neq -C$, dva intervaly.

Pro $x \sim \infty$ je $y(x) \sim x^{1/3}$.

Poč. podm.: C = -1, řešení $y(x) = (x - 1)^{1/3}$, $x \in (1, \infty)$.

4. Podmínky z rovnice: nejsou.

Separace: $\int e^y dy = \int e^x dx$. Stac. řeš.: není.

Integrace: $e^y = e^x + C$, obecné řešení: $y(x) = \ln(e^x + C)$.

Existence: $x \in \mathbb{R}$.

Pro $x \sim \infty$ je $y(x) \sim \ln(e^x) = x$.

Poč. podm.: C=3, řešení $y(x)=\ln(e^x+3)$, $x\in\mathbb{R}$.

5. Podmínky z rovnice: $t \neq 0$.

Separace: $\int \frac{dx}{x^2} = \int \frac{dt}{t^2}$. Stac. řeš.: x(t) = 0, $t \neq 0$. Integrace: $-\frac{1}{x} = -\frac{1}{t} - C$, obecné řešení: x(t) = 0 nebo $x(t) = \frac{-1}{-1/t - C} = \frac{t}{Ct + 1}$, které splňuje $x \neq 0$ díky $t \neq 0$.

Existence: $t \neq 0$, $Ct + 1 \neq 0$, to znamená $t \neq -\frac{1}{C}$ pro $C \neq 0$.

Pro $t \sim \infty$ je $x(t) \sim \frac{1}{C}$ pro $C \neq 0$, pro C = 0 je x(t) = t, pro stac. řeš. je x(t) = 0. Poč. podm.: C = -1, řešení $x(t) = \frac{t}{1-t}$, $t \in (-\infty, 0)$.

6. Podmínky z rovnice: $x \neq \pm 2$.

Separace: $\int \frac{dy}{y} = \int \frac{2x \, dx}{x^2 - 4}$. Stac. řeš.: $y(x) = 0, x \neq \pm 2$.

Integrace: substituce $w = x^2 - 4$, $\ln |y| = \ln |x^2 - 4| + c$, obvyklý trik s $C = \pm e^c \neq 0$, obecné řešení: y(x) = 0 nebo $y(x) = C(x^2 - 4)$, které splňuje $y \neq 0$ díky $C \neq 0$ a $x \neq \pm 2$. Volba C = 0 zahrne stacionární.

Existence: $x \neq \pm 2$.

Pro $x \sim \infty$ je $y(x) \sim Cx^2$.

Poč. podm.: C = 2, řešení $y(x) = 2(x^2 - 4)$, $x \in (-2, 2)$.

7. Podmínky z rovnice: nejsou.

Separace: $\int y dy = -\int x \, dx$. Stac. řeš.: není.

Integrace: $\frac{1}{2}y^2 = -\frac{1}{2}x^2 + c$, zvolíme C = 2c, obecné řešení: $y(x) = \pm \sqrt{C - x^2}$.

Existence: $C - x^2 \ge 0$, pro C < 0 to je $|x| \le C$, jinak nemá smysl.

Poč. podm.: C = 25, řešení $y(x) = -\sqrt{25 - x^2}$, $x \in \langle -5, 5 \rangle$.

8. Podmínky z rovnice: $x \neq 0, y \neq \pm 1$.

Separace: $\int \frac{2 dy}{1-y^2} = \int \frac{2}{x} dx$. Stac. řeš.: Kandidáti $y(x) = \pm 1$ vyloučeni podmínkou.

Integrace: parciální zlomky, $\ln\left|\frac{y+1}{y-1}\right|=2\ln|x|+c=\ln|x^2|+c=\ln(x^2)+c$, obvyklý trik s $C=\pm e^c\neq 0$,

obecné řešení: $y(x) = \frac{Cx^2+1}{Cx^2-1}$, díky $C \neq 0$ je zajištěno $y \neq \pm 1$.

Existence: $x \neq 0$, $Cx^2 - 1 \neq 0$, což dává omezení jen pro C > 0, pak $x \neq \pm \frac{1}{\sqrt{C}}$.

Pro $x \sim \infty$ je $y(x) \to 1$.

Poč. podm.: $C = \frac{1}{4}$, řešení $y(x) = \frac{x^2 + 4}{x^2 - 4}$, $x \in (0, 2)$.

9. Podmínky z rovnice: y > 0.

Separace: $\int \frac{dy}{2\sqrt{y}} = \int e^x dx$. Stac. řeš.: kandidát y(x) = 0 vyloučen podmínkou.

Integrace: $\sqrt{y} = e^x + C$, pozor odtud podmínka $e^x + C \ge 0$, obecné řešení: $y(x) = (e^x + C)^2$.

Existence: $e^x + C > 0$, pro C < 0 to je $x > \ln(-C)$, pro $C \ge 0$ je $x \in \mathbb{R}$.

Pro $x \sim \infty$ je $y(x) \sim e^{2x}$.

Poč. podm.: $y(2) = e^4 - 4e^2 + 4$, řešení C = -2, $y(x) = (e^x - 2)^2$, $x \in (\ln(2), \infty)$.

10. Podmínky z rovnice: nejsou.

Separace: $\int \frac{dx}{x+2} = \int \frac{\cos(t)}{\sin(t)+2} dt$. Stac. řeš.: x(t) = -2.

Integrace: substituce $w = \sin(t) + 2$, $\ln|x+2| = \ln|\sin(t) + 2| + c$, obvyklý trik s $C = \pm e^c \neq 0$, obecné řešení: x(t) = -2 nebo $x(t) = C(\sin(t) + 2) - 2$, kde $x \neq -2$ díky $\sin(t) + 2 \neq 0$ a $C \neq 0$. Volba C = 0zahrne i stacionární.

Existence: $t \in \mathbb{R}$.

Pro $x\sim\infty$ se řešení nedá zjednodušit. Je omezené.

Poč. podm.: C=1, řešení $x(t)=\sin(t)$, $t\in\mathbb{R}$.

11. Podmínky z rovnice: nejsou.

Separace: $\int \frac{dy}{y^3} = -\int 2x^3 dx$. Stac. řeš.: y(x) = 0. Integrace: $\frac{-1}{2y^2} = -\frac{1}{2}x^4 + c$, trik C = 2c, obecné řešení: y(x) = 0 nebo $y(x) = \pm \frac{1}{\sqrt{x^4 - C}}$, které splňuje $y \neq 0$.

Existence: $x^4 - C > 0$, pro $C \ge 0$ pak $x \in \mathbb{R}$, pro C < 0 je $|x| > C^{1/4}$.

Pro $x \sim \infty$ je $y(x) \sim \pm \frac{1}{x^2}$.

Poč. podm.: C=4, řešení $y(x)=\frac{1}{\sqrt{x^4-4}}, x\in(\sqrt{2},\infty)$.

12. Podmínky z rovnice: $x \neq 0, y \neq 0$.

Separace: $\int \frac{e^y dy}{e^y - 1} = \int \frac{4}{x} dx$. Stac. řeš.: kandidát y(x) = 0 vyloučen podmínkou.

Integrace: substituce $w = e^y - 1$, $\ln |e^y - 1| = 4 \ln |x| + c = \ln(x^4) + c$, obvyklý trik s $C = \pm e^c \neq 0$, obecné řešení: $y(x) = \ln(Cx^4 + 1)$.

Existence: $Cx^4 + 1 > 0$, pro C < 0 to znamená $|x| < |C|^{1/4}$, pro C > 0 pak $x \in \mathbb{R}$; máme také $x \neq 0$; případ y = 0 nenastane díky $C \neq 0$ a $x \neq 0$.

Pro C > 0 má smysl $x \sim \infty$, pak je $y(x) \sim 4 \ln(x)$.

Poč. podm.: C=1, řešení $y(x)=\ln(x^4+1)$, $x\in(0,\infty)$.

13. Podmínky z rovnice: nejsou.

Separace: $\int \frac{dy}{y^2} = \int \cos(x) dx$. Stac. řeš.: y(x) = 0.

Integrace: $-\frac{3}{y} = \sin(x) + C$, obecné řešení: $y(x) = \frac{-1}{\sin(x) + C}$.

Existence: $\sin(x) + C \neq 0$, význam závisí na C.

Není zjevné, zda lze vůbec jít $x \to \infty$. I kdyby to šlo, y(x) nelze zjednodušit.

Poč. podm.: C = -2, řešení $y(x) = \frac{1}{2-\sin(x)}$, $x \in \mathbb{R}$.

14. Podmínky z rovnice: nejsou.

Separace: $y' = 1 + y^2 \implies \int \frac{dy}{y^2 + 1} = \int 1 dx$. Stac. řeš.: Neex.

Integrace: arctan(y) = x + C, obecné řešení: y(x) = tan(x + C).

Existence: $x \neq \frac{\pi}{2} - C + k\pi$.

Funkce neexistuje na okolí nekonečna, nemá smysl se ptát na $x\sim\infty$.

Poč. podm.: C=0, řešení $y(x)=\tan(x), x\in\left(\frac{\pi}{2},\frac{3\pi}{2}\right)$.

15. Podmínky z rovnice: $x, y \neq 0$.

Separace: $\int \frac{dy}{y} = -\int \frac{1}{x} dx$. Stac. řeš.: kandidát y(x) = 0 vyloučen podmínkou.

Integrace: ln $|y| = -\ln|x| + c = \ln\left|\frac{1}{x}\right| + c$, obvyklý trik s $C = \pm e^c \neq 0$, obecné řešení: $y(x) = \frac{C}{x}$.

Existence: $x \neq 0$, díky $C \neq 0$ nenastane y = 0.

Pro $x \sim \infty$ je $y(x) \to 0$.

Poč. podm.: C = 6, řešení $y(x) = \frac{6}{x}$, $x \in (-\infty, 0)$.

16. Podmínky z rovnice: $y \ge 0$.

Separace: $\int \frac{dy}{\sqrt{y}} = \int 4t \, dt$. Stac. řeš.: y(x) = 0.

Integrace: $2\sqrt{y} = 2t^2 + c$, trik $C = \frac{1}{2}c$, tedy $\sqrt{y} = t^2 + C$, proto $t^2 + C \ge 0$, obecné řešení: y(x) = 0nebo $y(t) = (t^2 + C)^2$.

Existence: $t^2 + C \ge 0$, pro $C \ge 0$ to je $t \in \mathbb{R}$, pro C < 0 je $|t| \ge \sqrt{|C|}$.

Pak může nastat $(t^2 + C)^2 = 0$, tedy může dojít k napojování obecných řešení se stacionárním.

Pro $x \sim \infty$ je $y(t) \sim t^4$.

Poč. podm.: C=1, řešení $y(t)=(t^2+1)^2,\,t\in I\!\!R$. Nedojde ky(t)=0, proto jednoznačnost.

Poznámka: Například počáteční podmínka y(2) = 1 dává $y(t) = (t^2 - 1)^2$, pak pro t = 1 je y(t) = 0 a je třeba zkoumat možnost napojení na stacionární řešení. Funkce daná

$$f(t) = \begin{cases} 0, & t \le 1; \\ (t^2 - 1)^2, & t \ge 1 \end{cases}$$

je spojitá a splňuje rovnici na $(-\infty,1)$ a $(1,\infty)$. V bodě t=1 mají oba vzorce derivaci nulovou, tedy funkce f je diferencovatelná na \mathbb{R} a splňuje tam rovnici. Obdobně ukážeme, že se lze na y(t) = 0napojit v libovolném bodě $t=-\sqrt{D}$ pomocí funkce $(t^2-D)^2$, takže existuje nekonečně mnoho maximálních řešení splňujících podmínku y(2) = 1, pro libovolné $D \ge 0$ to je

$$f(t) = \begin{cases} (t^2 - D)^2, & t \le -\sqrt{D}; \\ 0, & -\sqrt{D} \le t \le 1; \\ (t^2 - 1)^2, & t \ge 1. \end{cases}$$

17. Podmínky z rovnice: nejsou. Separace: $2dy=y^2-1 \implies \int \frac{2dy}{y^2-1} = \int 1\,dx$. Stac. řeš.: $y(x)=\pm 1$. Integrace: $\ln\left|\frac{y-1}{y+1}\right|=x+c$, obvyklý trik s $C=\pm e^c\neq 0$, obecné řešení: y(x)=-1 nebo y(x)=1 nebo $y(x) = \frac{1+C e^x}{1-C e^x}$, což díky $C \neq 0$ splňuje $y \neq \pm 1$. Volba C = 0 zahrne y(x) = 1. Existence: $1 - C e^x \neq 0$, pro C < 0 dává $x \in \mathbb{R}$, pro C > 0 dává $x \neq \ln(1/C)$ neboli $x \neq -\ln(C)$.

Pro $x \sim \infty$ je $y(x) \rightarrow -1$.

Poč. podm.: C=2, řešení $y(x)=\frac{1+2e^x}{1-2e^x}, x\in (-\ln(2),\infty)$.

18. Podmínky z rovnice: $y\neq 1,\ x\neq 0$. Separace: $\int \frac{dy}{y-1}=\int \frac{3}{x}\,dx$. Stac. řeš.: kandidát y(x)=1 vyloučen podmínkou.

Integrace: $\ln |y-1| = 3 \ln |x| + c = \ln |x^3| + c$, obvyklý trik s $C = \pm e^c \neq 0$, obecné řešení: $y(x) = 1 + Cx^3$, nenastane y=1 díky $C\neq 0$ a $x\neq 0$.

Pro $x \sim \infty$ je $y(x) \sim Cx^3$.

Poč. podm.: C=1, řešení $y(x)=1+x^3, x\in(0,\infty)$.

19. Podmínky z rovnice: $x \neq 0$, $y \neq 1$.

Separace: $\int \frac{dy}{y^2 - y} = -\int \frac{1}{x} dx$. Stac. řeš.: y(x) = 0, kandidát y(x) = 1 vyloučen podmínkou.

Integrace: parciální zlomky, $\ln\left|\frac{y-1}{y}\right|=-\ln|x|+c=\ln\left|\frac{1}{x}\right|+c$, obvyklý trik s $C=\pm e^c\neq 0$, obecné řešení: y(x)=0 nebo $y(x)=\frac{1}{1-C/x}=\frac{x}{x-C}$, nenastane y=0 díky $x\neq 0$. Existence: $x\neq 0,\ x-C\neq 0$; díky $C\neq 0$ nenastane y=1.

Pro $x \sim \infty$ je $y(x) \to 1$.

Poč. podm.: C = -4, řešení $y(x) = \frac{x}{x-4}$, $x \in (0,4)$.

20. Podmínky z rovnice: $x \ge 0$.

Separace: $\int \frac{dy}{y^2} = \int \frac{dx}{2\sqrt{x}}$. Stac. řeš.: y(x) = 0.

Integrace: $-\frac{1}{y} = \sqrt{x} + C$, obecné řešení: y(x) = 0 nebo $y(x) = \frac{-1}{\sqrt{x} + C}$, kde $y \neq 0$. Stacionární nelze zahrnout volbou C.

Existence: $x \ge 0$, $\sqrt{x} + C > 0$ což pro C > 0 dá $x \ge 0$, pro $C \le 0$ dá $x \ne C^2$.

Pro $x \sim \infty$ je $y(x) \sim \frac{-1}{\sqrt{x}}$ a $y(x) \to 0$.

Poč. podm.: C = -2, řešení $y(x) = \frac{1}{2-\sqrt{x}}, x \in (4, \infty)$.

21. Podmínky z rovnice: $y \neq -1$, $x \neq k\pi$. Separace: $\int \frac{dy}{y+1} = \int \frac{\cos(x)}{\sin(x)} dx$. Stac. řeš.: kandidát y(x) = -1 vyloučen podmínkou.

Integrace: substituce $w = \sin(x)$, $\ln |y+1| = \ln |\sin(x)| + c$, obvyklý trik s $C = \pm e^c \neq 0$, obecné řešení: $y(x) = C\sin(x) - 1$, splňuje $y \neq -1$ díky $C \neq 0$ a $k \neq k\pi$.

Existence: $x \neq k\pi$.

Řešení neexistuje na okolí nekonečna, nemá smysl se ptát na $x \sim \infty$.

Poč. podm.: C=2, řešení $y(x)=2\sin(x)-1, x\in(0,\pi)$.

22. Podmínky z rovnice: $t \neq 0$.

Separace: $\int e^x dx = \int \frac{dt}{t}$. Stac. řeš.: Není.

Integrace: $e^x = \ln(t) + C$, obecné řešení: $x(t) = \ln(\ln(t) + C)$.

Existence: t > 0, $\ln(t) + C > 0$ neboli $t > e^{-C}$.

Pro $t \sim \infty$ je $x(t) \sim \ln(\ln(t))$.

Poč. podm.: C=1, řešení $x(t)=\ln(\ln(t)+1), x\in(\frac{1}{e},\infty)$.

23. Podmínky z rovnice: $x \neq \pm 1$. Separace: $\int \frac{dy}{1-y^2} = \int \frac{dx}{1-x^2}$. Stac. řeš.: $y(x) = \pm 1$.

Integrace: parciální zlomky, $\ln\left|\frac{y-1}{y+1}\right| = \ln\left|\frac{x-1}{x+1}\right| + c$, obvyklý trik s $C = \pm e^c \neq 0$, obecné řešení: y(x) = -1 nebo y(x) = 1 nebo $y(x) = \frac{C(x+1)+(x-1)}{C(x+1)-(x-1)}$, kde $y \neq \pm 1$ díky $C \neq 0$ a $x \neq \pm 1$. Volba C = 0zahrne y(x) = -1, druhé stacionární řešení zahrnout nelze.

Existence: $x \neq \pm 1$, dále $C(x+1) - (x-1) \neq 0$ neboli $x \neq \frac{C+1}{C-1}$ pro $C \neq 1$ jinak nic nevynucuje.

Pro $x \sim \infty$ je $y(x) \sim \frac{C+1}{C-1}$ pokud $C \neq 1$ jinak y(x) = x.

Poč. podm.: C=1, řešení $y(x)=x, x\in (-1,1)$.