BEST AVAILABLE COPY

证明

本证明之附件是向本局提交的下列专利申请副本

REC'D 2 8 DEC 2004
WIPO PCT

WIPO PCT

请 日:

2003. 11. 11

申 请 号:

申

2003101050796

申请类别:

发明

发明创造名称:

具有杀虫、杀菌活性的苯并吡喃酮类化合物及制备与应

用

申 请 人:

沈阳化工研究院

发明人或设计人: 刘长令、关爱莹、李志念、李林、李正名、李淼、张明星、张弘

PRIORITY DOCUMENT

COMPLIANCE WITH RULE 17.1(a) OR (b)

中华人民共和国 国家知识产权局局长

2004年11月29日

权利要求书

1、新型苯并吡喃酮类化合物及其立体异构体,如通式(I)所示:

式中: A 选自 CH 或 N; B 选自 O、S 或 NR9; R9选自氢或(C_1 — C_{12})烷基; R1、R2 分别选自氢、 C_1 — C_{12} 烷基或卤代 C_1 — C_{12} 烷基; R3 选自氢、 C_1 — C_{12} 烷基、卤代 C_1 — C_{12} 烷基或 C_1 — C_{12} 烷基或 C_1 — C_{12} 烷基或 C_1 — C_{12} 烷基基; R4、 R5、R6、R7、R8可相同或不同,分别选自氢、卤素、氰基、硝基、 C_1 — C_{12} 烷基、 C_2 — C_{12} 烷基、 C_2 — C_{12} 烷基基、 C_1 — C_{12} 烷基基。 C_1 — C_{12} 烷基基。 C_1 — C_{12} 烷基基。 C_1 — C_{12} 烷基基基。 C_1 — C_{12} 烷基基基。 C_1 — C_{12} 烷基基基。 C_1 — C_{12} 烷基基基。 C_1 — C_{12} 烷基。 C_1 — C_{12} 烷基、 C_1 — C_1 2烷基、 C_1 — C_1 2烷基 C_1 — C_1 2烷基 C_1 2烷基 C_1 — C_1 2烷 C_1 2烷 C_1 2烷

其中: R_{10} 、 R_{11} 分别选自氢、任意取代的烷基、任意取代的芳基或任意取代的芳基 C_1 一 C_{12} 烷基; 当 R_3 、 R_4 、 R_5 、 R_6 、 R_7 、 R_8 均为氢时, B 不为 NR_9 。

2、根据权利要求 1 所述的化合物,其特征在于: 通式(I)中 A 选自 CH 或 N; B 选自 O、S 或 NR9; R9 是氢或 C1—C6 烷基; R1、R2 分别选自氢、C1—C6 烷基或卤代 C1—C6 烷基; R3 选自氢、C1—C6 烷基或卤代 C1—C6 烷基、C1—C6 烷氧基; R4、 R5、R6、R7、R8可相同或不同,分别选自氢、卤素、氰基、硝基、C1—C6 烷基、C2—C6 烯基、炔基、C1—C6 卤代烷基、C1—C6 烷氧基、C1—C6 烷氧基、C1—C6 烷氧基 C1—C6 烷氧基 C1—C6 烷氧基 C1—C6 烷氧基羰基、C1—C6 烷氧基羰基 C1—C6 烷氧基羰基 C1—C6 烷氧基 C1—C6 烷基、任意取代的芳 C1—C6 烷基氧基、任意取代的芳基、杂芳基、任意取代的芳基、杂芳基 C1—C6 烷基、杂芳基 C1—C6 烷基、杂芳基 C1—C6 烷基

其中: R_{10} 、 R_{11} 分别选自氢、任意取代的烷基、任意取代的芳基、任意取代的芳基(C_1 — C_6)烷基; 当 R_3 、 R_4 、 R_5 、 R_6 、 R_7 、 R_8 均为氢时,B 不为 NR_9 。

3、 根据权利要求 2 所述的化合物,其特征在于: 通式(I)中 A 选自 CH 或 N; B 选自 O 或 NH; R_1 、 R_2 分别选自甲基; R_3 选自氢或甲基; R_4 、 R_5 、 R_6 、 R_7 、 R_8 可相同或不同,分别选自氢、卤素、氰基、硝基、 C_1 — C_6 烷基、 C_2 — C_6)、烯基、炔基、 C_1 — C_6 卤代烷基、 C_1 — C_6 烷氧基、 C_1 — C_6 烷硫基、 C_1 — C_6 烷硫基、 C_1 — C_6 烷硫基、 C_1 — C_6 烷烷硫基、 C_1 — C_6 烷烷烷

基、 C_1 — C_6 烷氧基羰基、 C_1 — C_6 烷氧基羰基 C_1 — C_3 烷基、 C_1 — C_3 卤代烷氧基 C_1 — C_3 烷基、取代胺基 C_1 — C_3 烷基,(取代的)苯氧基,(取代的)苯基,(取代的)苯基,(取代的)苯基,(取代的)苯基,(取代的)苯基,(取代的)

其中: R_{10} 、 R_{11} 分别选自氢或取代烷基; 当 R_3 、 R_4 、 R_5 、 R_6 、 R_7 、 R_8 均为氢时,B 不为 NH。

4、根据权利要求 3 所述的化合物,其特征在于:通式(I)中 A 选自 CH 或 N; B 选自 O 或 NH; R_1 、 R_2 选自甲基; R_3 选自氢或甲基; R_4 、 R_5 、 R_6 、 R_7 、 R_8 可相同或不同,分别选自氢、氯、溴、氟、氰基、 C_1 — C_6 烷基、 C_1 — C_6 卤代烷基、 C_1 — C_6 烷基羰基、 C_1 — C_6 烷氧基、 C_1 — C_6 烷基基 C_1 — C_3 烷基、 C_1 — C_6 烷基、取代胺基 C_1 — C_3 烷基、(取代的) 苯氧基,(取代的) 苄氧基,(取代的) 苯基,(取代的) 苄基,以及如下通式表示的基团:

其中 R_{10} 、 R_{11} 为甲基; 当 R_3 、 R_4 、 R_5 、 R_6 、 R_7 、 R_8 均为氢时, B 不为 NH。

5、根据权利要求 1—4 中任意一项所述的化合物,其特征在于:通式(I)的化合物由式(II) 所示的苄卤和式(III)所示的含羟基的苯并吡喃酮类化合物在碱性条件下反应制得:

$$Z \xrightarrow{R_3} R_3$$

$$R_1 \xrightarrow{R_4} R_5 \xrightarrow{R_6} R_7$$

$$III$$

示中, Z 是离去基团; 其他各基团的定义同上。

- 6、权利要求 1 所述的化合物及其立体异构体在防治各种作物上害虫的应用。
- 7、权利要求 1 所述的化合物及其立体异构体在防治各种作物上病菌的应用。
- 8、一种杀虫、杀菌组合物, 其特征在于: 组合物中含有权利要求 1 所述的化合物及其立体异构体, 活性组分的重量百分含量为 0.1-99%。

具有杀虫、杀菌活性的新型苯并吡喃酮类化合物及其制备与应用

技术领域

本发明属农用杀虫、杀菌剂。

背景技术

天然产物苯并吡喃酮和甲氧基丙烯酸酯化合物均是已知的具有生物活性的化合物。文献 JP04-182461 曾公开了如下通式的化合物:

该专利中公开的化合物 51 的结构化学如下:

文献中没有公开该化合物的活性数据。我们通过合成并进行生测,发现该化合物活性较低。

发明内容

为了获得在很小的剂量下就可以控制各种病、虫害的有效化合物,本发明的发明者们合成了一种新型苯并吡喃酮类化合物,该类化合物具有广谱活性——可用于防治在各种作物上由卵菌纲、担子菌纲、子囊菌和半知菌类等多种病菌引起的病害,而且由于这些化合物具有很高的生物活性使得在很低的剂量下就可以获得很好的效果。该类化合物对葡萄霜霉病、水稻纹枯病、水稻稻瘟病、番茄早疫病、番茄晚疫病、小麦锈病、小麦叶斑病、小麦白粉病、黄瓜白粉病、黄瓜霜霉病、黄瓜灰霉病等病害都有很好的防效。特别令人惊异的发现是,本发明的化合物对多种害虫如粘虫、小菜蛾、蚜虫、瓢虫、害螨及淡色库蚊有效,尤其对瓢虫和淡色库蚊有特效,非常适合于对各种作物上害虫的综合防治,从而完成了本发明。

本发明提供的新型苯并吡喃酮类化合物及其立体异构体,如通式(I)所示:

式中: A 选自 CH 或 N; B 选自 O、S 或 NR₉; R₉选自氢或(C_1 — C_{12})烷基; R₁、R₂ 分别选自氢、 C_1 — C_{12} 烷基或卤代 C_1 — C_{12} 烷基; R₃ 选自氢、 C_1 — C_{12} 烷基、卤代 C_1 — C_{12} 烷基或 C_1 — C_{12} 烷氧基; R₄、 R₅、R₆、R₇、R₈可相同或不同,分别选自氢、卤素、氰基、硝基、 C_1

 $-C_{12}$ 烷基、 C_2 $-C_{12}$ 烧基、 C_2 $-C_{12}$ 炔基、 C_1 $-C_{12}$ 卤代烷基、 C_1 $-C_{12}$ 烷氧基、 C_1 $-C_{12}$ 烷硫基、 C_1 $-C_{12}$ 烷基羰基、 C_1 $-C_{12}$ 烷基基羰基、 C_1 $-C_{12}$ 烷基基羰基、 C_1 $-C_{12}$ 烷基基羰基、 C_1 $-C_{12}$ 烷基基羰基、 C_1 $-C_{12}$ 烷基、任意取代胺基 C_1 $-C_{12}$ 烷基、任意取代的芳基、杂芳基、任意取代的芳基、杂芳基、任意取代的芳基、杂芳基、任意取代的芳基、杂芳基、 C_1 $-C_{12}$ 烷基、杂芳基 C_1 $-C_{12}$ 烷基、以及如下通式表示的基团:

 K_{1} NOR₁₀ , 其中: R_{10} 、 R_{11} 分别选自氢、任意取代的烷基、任意取代的芳基或任意取代的芳基 C_{1} C_{12} 烷基; 当 R_{3} 、 R_{4} 、 R_{5} 、 R_{6} 、 R_{7} 、 R_{8} 均为氢时,B 不为 NR_{9} 。

 C_1 — C_6 烷基; 当 R_3 、 R_4 、 R_5 、 R_6 、 R_7 、 R_8 均为氢时,B 不为 NR_9 。

进一步优选的化合物为:通式(I)中 A 选自 CH 或 N; B 选自 O 或 NH; R_1 、 R_2 选自甲基; R_3 选自氢或甲基; R_4 、 R_5 、 R_6 、 R_7 、 R_8 可相同或不同,分别选自氢、卤素、氰基、硝基、 C_1 — C_6 烷基、 C_2 — C_6 烷基、 C_2 — C_6 烷基、 C_1 — C_6 烷基、 C_1 — C_6 烷基基。 C_1 — C_6 烷基基。 C_1 — C_6 烷基基基。 C_1 — C_6 烷基基基基。 C_1 — C_6 烷氧基羰基。 C_1 — C_6 烷氧基羰基。 C_1 — C_6 烷氧基羰基。 C_1 — C_6 烷氧基羰基。 C_1 — C_6 烷基基。 C_1 — C_2 烷基。 C_1 — C_2 烷 C_1 — C_2 烷基。 C_1 — C_2 烷 C_1 — C_2 烷 C_1 — C_2 烷 C_1 — C_2 C_1 C_1 C_1 C_1 C_1 C_1 C_1 C_1 $C_$

NOR₁₀, 其中: R₁₀、R₁₁分别选自氢或取代烷基; 当 R₃ 、R₄、 R₅、R₆、R₇、R₈均为氢时, B 不为 NH。

更进一步优选的化合物为:通式(I)中 A 选自 CH 或 N; B 选自 O 或 NH; R_1 、 R_2 选自甲基: R_3 选自氢或甲基: R_4 、 R_5 、 R_6 、 R_7 、 R_8 可相同或不同,分别选自氢、氯、溴、氟、氰基、 C_1 — C_6 烷基、 C_1 — C_6 卤代烷基、 C_1 — C_6 烷基羰基、 C_1 — C_6 烷氧基 C_1 — C_6 烷氧基 C_1 — C_6 点基、取代胺基 C_1 — C_3 烷基、(取代的) 苯基、(取代的) 苄基、以及如下通式表示的基团:

R₁₁ NOR₁₀, 其中 R₁₀、 R₁₁ 为甲基; 当 R₃、 R₄、 R₅、 R₆、 R₇、 R₈

均为氢时,B不为NH。

上面给出的化合物(I)的定义中,汇集所用术语一般代表如下取代基:

(取代的) 苯氧基,(取代的) 苄氧基,(取代的) 苯基,(取代的) 苄基中取代基为氢,烷基,烷氧基,卤代烷基,卤代烷氧基,卤素,硝基,CN等等,取代基的数目可为 0~5。

卤: 指氟、氯、溴和碘。

烷基: 直链或支链烷基,例如甲基、乙基、丙基、异丙基和叔丁基。

卤代烷基:直链或支链烷基,在这些烷基上的氢原子可部分或全部被卤原子所取代,例如,卤代烷基诸如氯甲基、二氯甲基、三氯甲基、氟甲基、二氟甲基、三氟甲基。

烷氧基: 直链或支链烷基, 经氧原子键连接到结构上。

卤代烷氧基:直链或支链烷氧基,在这些烷氧基上的氢原子可部分或全部被卤原子所取代。 例如,卤代烷氧基诸如氯甲氧基、二氯甲氧基、三氯甲氧基、氟甲氧基、二氟甲氧基、三氟甲 氧基、氯氟甲氧基。

链烯基:直链或支链并可在任何位置上存在有双键,例如乙烯基、烯丙基。取代链烯基包括任意取代的芳基链烯基。

炔基: 直链或支链并可在任何位置上存在有三键,例如乙炔基、炔丙基。取代炔基包括任 意取代的芳炔基。

芳基以及芳烷基、芳基链烯基、芳炔基、芳氧基和芳氧基烷基中的芳基部分包括苯基和奈 基。

本发明中所指杂芳基是含 1 个或多个 N、O、S 杂原子的 5 元环或 6 元环。例如吡啶、呋喃、嘧啶、吡嗪、哒嗪、三嗪、喹啉、苯并呋喃。

在本发明的化合物中,由于碳-碳双键和碳-氮双键连接不同的取代基而可以形成几何异构体(分别以 Z 和 E 来表示不同的构型)。本发明包括 Z 型异构体和 E 型异构体及其任何比例的混合物。

可以用下面表I中列出的化合物来说明本发明,但并不限定本发明。

表 1

其中 R₁、R₂=CH₃; E 为 C(CH₃)=NOCH₃; M 为 C₆H₃-3,4-(OCH₃)₂

编号	A	В	R ₃	R ₄	R ₅	R ₆	R ₇	R ₈	物性*
1	CH	0	Н	Н	Н	H	H	H	油状
2	СН	0	Н	Н	CH ₃	Н	Н	Н	140~143
3	CH	0	Н	H	CH ₃	Н	Н	CH ₃	188-190
4	СН	0	Н	Н	C ₆ H ₅	Н	Н	CH ₃	146-148
5	СН	0	Н	CH₃	CH ₃	Н	H	Н	120~122
6	CH	0	H	CH ₃	CH ₃	Н	Н	CH ₃	174~176

					OF T	H	н	Н	164~166
7	CH	0	H	H	CF ₃	H	H	E	油状
8	CH	0	H	H	CH ₃	H	E	Н	183~185
9	CH	0	H	H	CH₃	H	COCH ₃	Н	169~172
10	CH	0	H	H	CH ₃	H	H	COCH ₃	165~167
11	CH	0	H	Н	CH ₃		H	Н	162-164
12	CH	0	H	Cl	CH ₃	H	Н Н	н	
13	CH	Ö	H	Н	CH ₂ Cl	H	<u>н</u>	н	
14	CH	0	H	Cl	CH ₂ Cl	H	<u>н</u>	Н	
15	CH	0	H	Cl	CH₂OCH₃	H		Н	
16	CH	0	H	Cl	CH₂CH₃	H	H	CH ₃	154-156
17	CH	0	Н	H	CH ₂ CH ₃	H	H	H H	151 150
18	CH	0	Н	C ₂ H ₅	CH₃	H	H	Н	
19	CH	0	Н	H	CH ₂ OCH ₃	H	. H	H	
20	CH	0	Н	H	CH ₂ OC ₂ H ₅	H	H		
21	CH	0	Н	Cl	CH ₂ OC ₂ H ₅	H	Н	H	
22	CH	0	Н	OCH ₃	CH ₂ OCH ₃	H	Н	H	
23	CH	0	Н	N(CH ₃) ₂	CH ₃	H	Н	H	166.169
24	CH	0	Н	CN	Н	H	H	H	166-168
25	CH	+	Н	Cl	CH ₃	Н	H	CH₃	202-204
26	CH		H	Н	CH(CH ₃) ₂	Н	Н	Н	128-130
27	CH		H	C ₃ H ₇	CH ₃	Н	H	H	142-144
28	CH		Н	Н	t C ₄ H ₉	Н	Н	Н	
29			H	H	4-Cl-C ₆ H ₄	Н	Н	H	
30			H	Cl	4-Cl-C ₆ H ₄	Н	H	Н	
31			H	Н	4-Cl-C ₆ H ₄	Н	Н	CH ₃	
-			H	Cl	C ₆ H ₅	Н	Н	Н	142-144
32			H	Н	CH ₂ CH ₃	Н	Н	Н	134-136
33			H	H H	CH ₂ C ₂ H ₅	Н	Н	Н	118-120
34				Н	CH ₂ C ₂ H ₅	H	Н	CH₃	146-148
35				CI	CH ₂ C ₂ H ₅	Н	Н	Н	118-120
36		_			CH ₂ C ₂ H ₅	Н	Н	Н	
37	_				4-F-C ₆ H ₄	H	Н	Н	
38					4-F-C ₆ H ₄	H	Н	Н	
39					4-F-C ₆ H ₄	Н	Н	CH ₃	
41					4-CF ₃ -C ₆ H ₄	H		Н	
4					4-CF ₃ -C ₆ H ₄	H		Н	
4					CH ₂ N(CH ₃) ₂			Н	
—	3 CI					H		Н	
	4 C					F		Н	
<u> </u>	5 C							Н	
4	6 C							Н	
4	7 C) F		CH₂OCH₂CF		H	Н	
4	8 C	H () F		CH ₂ OCH ₂ CF			Н	
1	9 C	H () <u> </u>	F . F	CF ₃		H H		

	CIV	\overline{a}	н	F	CH ₃	н	Н	н	
50	CH	0		H	CH ₂ N(CH ₃) ₂	Н	н	Н	
51	CH	0	H		CH ₂ N(CH ₃) ₂ C ₆ H ₅	н	Н	H	130-133
52	CH	0	H	H	Cl	н	H	H	- · · · · · · · · · · · · · · · · · · ·
53	CH	0	H	Cl F	Cl	H	H	Н	
54	СН	0	H			H	E	- н	
55	СН	0	H	H	CH ₂ OCH ₂ C ₆ H ₅	Н	H	Н Н	
56	СН	0	H	OCH ₃	4-Cl-C ₆ H ₅	H	H	H ·	
57	CH	0	H	F	4-Cl-C ₆ H ₅	Н	H	Н	
58	CH	0	H	H	M		<u>н</u>	H	
59	СН	0	H	Cl	М	H	H	CH ₃	
60	СН	0	H	Cl	M	H	H	H	
61	СН	0	H	CH ₃ S	CH₃	H		H	
62	CH	0	H	CH ₃ SO ₂	.CH ₃	H	H	H	
63	CH	0	H	F	F	H	H		
64	СН	0	Н	CH ₃ SO ₂	Cl	H	H	H	
65	CH	0	H	Н	4-NO ₂ -C ₆ H ₅	H	H	H	
66	CH	0	H	Cl	4-NO ₂ -C ₆ H ₅	Н	H	H	
67	СН	0	H	H	4-NO ₂ -C ₆ H ₅	H	H	CH₃	
68	CH	0	H	PhCH ₂	CH ₃	H	H	H	
69	CH	0	Н	PhCH ₂	CH ₃	H	H	CH ₃	
70	СН	0	H	CF ₃ CH ₂ O	C ₃ H ₇	H	H	H	
71	CH	NH	Н	CH₃	CH ₃	H	Н	Н	
72	CH	NH	Н	CH₃	CH ₃	H	H	CH ₃	
73	СН	NH	Н	OCH₃	CF ₃	CH ₃	Н	H	
74	СН	NH	Н	OCH₃	CH ₃	F	Н	E	
75	СН	NH	Н	Н	CF ₃	H	Н	CH₃	
76	СН	NH	Н	CH ₃	CH₂CI	H	Н	H	
77	CH	NH	H	CH ₃	CH₂Cl	H	Н	CH ₃	
78	СН	NH	Н	Cl	CH ₂ Cl	H	H	Н	<u> </u>
79	СН	NH	Н	H	M	Cl	Н	Е	
80	CH	NH	Н	Н	M	Н	E	H	<u> </u>
81	CH	NH	Н	Н	М	Н	COCH ₃	H	<u> </u>
82	CH	NH	Н	Н	М	Н	H	COCH₃	
83	СН	NH	Н	Cl	CH ₂ OCH ₃	Н	Н	Н	
84	CH		Н	Н	4-C ₆ H ₅ Cl	Н	Н	Н	
85			Н	Н	4-C ₆ H ₅ Cl	Н	H	CH ₃	<u> </u>
86			Н	Н	CH ₂ OCH ₃	Н	Н	CH ₃	
87			Н	CH ₃	CH ₂ OCH ₃	Н	Н	Н	
88		→	Н	CH ₃	CH ₂ OCH ₃	Н	Н	CH ₃	
89		1	Н	Н	CH₂OCH₃	Н	Н	Н	
90	СН	NH	Н	Н	CH₂OCH₃	Н	Н	Е	

						T			
91	CH	NH	H	H	CH ₂ OCH ₂ CF ₃	H	E	H	
92	CH	NH	Н	H	CH ₂ N(CH ₃) ₂	Н	H	H	
93	CH	NH	H	H	CH ₂ OCH ₂ CF ₃	H	H	COCH ₃	
94	CH	NH	H	Cl	CH ₂ OC ₂ H ₅	H	H	H	
95	CH	NH	H	H	CH ₂ OC ₂ H ₅	H	H	Н	
96	CH	NH	Н	Н	CH ₂ OC ₂ H ₅	H	H	CH ₃	
97	CH	NH	Н	H	CF ₃	H	Н	CH ₃	
98	CH	NH	Н	CH ₃	CF ₃	H	H	H	
99	CH	NH	Н	CH ₃	Cl	Н	Н	CH ₃	
100	N	0	Н	Cl	CH ₃	н	H	H	172-174
101	N	0	Н	Н	CH ₃	H	H	Н	150~152
102	N	0	Н	Н	CH ₃	H	H	CH ₃	178-180
103	N	0	Н	CH ₃	CH ₃	H	H	H	112~118
104	N	0	H	F	CH ₃	H	H	H ·	
105	N	0	Н	Н	CF ₃	Н	H	Cl	
106	N	0	H	CH ₃	CH ₃	Н	H	CH ₃	184~186
107	N	0	Н	Н	CH ₃	Н	Е	CO ₂ CH ₃	
108	N	0	н	Н	CH ₃	Н	COCH ₃	CO ₂ CH ₃	
109	N	0	Н	CI	CH ₃	Н	Н	CH ₃	198-200
110	N	0	Н	H	CH ₂ Cl	Н	Н	CO ₂ CH ₃	
111	N	0	н	Н	Н	Н	Н	Н	106~110
112	N	0	Н	Н	CH ₂ CI	Н	Н	CF ₃	
113	N	0	Н	Н	3-CF ₃ -C ₆ H ₄	Н	Н	CF ₃	
114	N	0	Н	CH ₃	3-CH ₃ -C ₆ H ₄	Н	Н	CF ₃	
115	N	0	H	CH ₃	4-CH ₃ -C ₆ H ₄	Н	Н	CF ₃	
116		0	Н	H	CH ₂ Cl	Н	Н	Н	
117	+	0	Н	Cl	CH₂Cl	Н	Н	Н	•
118	+	0	Н	Cl	CH ₂ F	Н	Н	Н	
119	- 	0	Н	Н	CH₂F	Н	Н	Н	
120	+	0	Н	Н	CH ₂ Br	Н	Н	Н	
121	+	0	Н	Н	CH ₂ OCH ₃	Н	Н	CH ₂ N(CH ₃) ₂	
122		0	Н	Cl	CH ₂ OCH ₃	Н	Н	CH ₂ N(CH ₃) ₂	
123		0	Н	CH ₃	CH ₂ OCH ₃	Н	Н	CH ₂ N(CH ₃) ₂	
124		0	H	Н	CH ₂ OCH ₃	Н	. Н	F	
125	+	0	Н	CH ₃	CH ₂ OCH ₃	Н	Н	F	
126		0	H	CH ₃	CH ₂ OCH ₃	Н	CO ₂ CH ₃	CH ₂ N(CH ₃) ₂	
127		0	Н	H	CH ₂ OCH ₃	Н	Н	Н	
128			H	H	CH ₂ OCH ₃	Н	Н	Е	
129		0	H	H	3-CF ₃ -C ₆ H ₄	H	E	Н	
130		0	H	Н	3-CH ₃ -C ₆ H ₄	H	COCH ₃	Н	
131	+-		H	H	4-CH ₃ -C ₆ H ₄	H	Н	COCH ₃	
132	+	0	H	CI	CH ₂ OC ₂ H ₅	·H	н	Н	
			H	Н	CH ₂ OC ₂ H ₅	H	Н	Н	
133	N	10	1 "	1		1. **	1		

104	 T	<u> </u>	н	н	CH ₂ OC ₂ H ₅	н	н	CH ₃	
134	N	0	H	H	3-OCH ₃ -C ₆ H ₄	H	Н	CH ₃	
135	N	0			4-OCH ₃ -C ₆ H ₄	H	H	Н	
136	N	0	H	CH ₃	2-OCH ₃ -C ₆ H ₄	H	Н Н	CH ₃	
137	N	0	Н	H H	CH ₂ OC ₂ H ₅	Н	Н	Cl	
138	N	0	H	H	CH ₂ OC ₂ H ₅	H	Н	E	
139	N	-0	Н	Н	M	H	Е	Н	
140	N	0	Н	Н	3-CF ₃ -C ₆ H ₄	Н	COCH ₃	Н	
141	N N	0	H	H	3-CH ₃ -C ₆ H ₄	Н	Н	COCH ₃	
142		0	H	H	4-CH ₃ -C ₆ H ₄	Н	H	H	
143	N	0	H	H	2-Cl-C ₆ H ₄	H	Н	Н	
144		0	H	H	3-Cl-C ₆ H ₄	H	Н	CH ₃	
145	N	0	H	H	CH ₂ OCH ₂ CF ₃	Н	H	CH ₃	
146		0	H	CH₃	CH ₂ OCH ₂ CF ₃	Н	Н	Н	
147	N	0	H	CH ₃	-CH ₂ OC ₆ H ₅	Н	Н	CH ₃	
148		0	H	H	-CH ₂ OC ₆ H ₅	H	Н	Н	
149	N	0	H	Н	CH ₂ OCH ₂ C ₆ H ₅	Н	Н	E	
150	<u> </u>	0	H	H	CH ₂ OCH ₂ C ₆ H ₅	Н	E	Н	
151	N	0	H	Н	4-Cl- C ₆ H ₄	H	COCH ₃	Н	
152		NH	Н	H	CH ₃	Н	Н	Н	210-214
153	N	NH	H	CH ₃	CH ₃	Н	Н	CH ₃	178~180
154	N	NH	H	H	2-Cl-C ₆ H ₄	H	Н	CH ₃	
155		 	H	CH ₃	3-Cl-C ₆ H ₄	Н	Н	Н	
156	N	NH	H	CH ₃	4-Cl-C ₆ H ₄	Н	Н	CH ₃	
157	N	NH	Н	Cl	CH ₂ Cl	Н	Н	Н	
158 159	N	NH	Н	Cl	CH ₃	H	Н	Н	
	N	NH	H	Н	3-CF ₃ -C ₆ H ₄	Н	Е	Н	
160	N	NH	H	H	3-CH ₃ -C ₆ H ₄	Н	COCH ₃	Н	
161	N	NH	H	Н	4-CH ₃ -C ₆ H ₄	H	Н	COCH ₃	
162 163	N	NH	Н	H	CH ₂ OCH ₃	Н	Н	Н	
164	+	NH	Н	H	4-F-C ₆ H ₄	Н	Н	Н	
165		NH	H	H	2-F-C ₆ H ₄	Н	Н	CH ₃	
166		NH	H	H	C ₆ H ₃ -3,5(Cl) ₂	H	Н	CH ₃	
167		NH	Н	CH ₃	2-OCH ₃ -C ₆ H ₄	Н	Н	Н	
<u> </u>		NH	Н	CH ₃	2-OCH ₃ -C ₆ H ₄	H	Н	CH ₃	
168		NH	Н	Cl	CH ₂ OCH ₃	H	Н	Н	
		NH	Н	Н	CH ₂ OCH ₃	H	Н	E	
170	+	NH	Н	H	3,5(Cl) ₂ -C ₆ H ₃	 	E	Н	
171	+	+		H	2,4(Cl) ₂ -C ₆ H ₃	H	Н	Н	
172	+	NH	H		3,4(Cl) ₂ -C ₆ H ₃	H	H	Н	1
173		NH	H	H	3,4(C1)2-C6H3 CH2OC2H5	H	Н	Н	1
174		NH	H	Cl	CH ₂ OC ₂ H ₅	Н	Н	H	
175	+	NH	+	H		H	· H	CH ₃	
176	N	NH	H	Н	CH ₂ OC ₂ H ₅	1 u	<u> п</u>	1 0.13	

			 T	-,, (CE	н	н	CH ₃	
177	N	NH	H	H	CF ₃			H	
178	N	NH	H	CH ₃	CF ₃	H	H		
179	N	NH	H	CH ₃	Cl	H	H	CH ₃	
180	N	NH	H	H	Cl	H	H	H	
181	N	NH	H	H	CH ₃	H	H	Cl	
182	N	NH	H	H	C ₆ H ₅	H	H	Cl	
183	N	·NH	. H_	CH ₃	CH ₃	H	H	F	
184	N	NH	Н	CH₃	CH ₃	H	H	H	
185	N	NH	H	Н	CF ₃	H	H	Cl	
186	N	NH	H	CH ₃	4-F-C ₆ H ₄	H	H	CH ₃	
187	N	NH	Н	H	2-F-C ₆ H ₄	H	Е	CO ₂ CH ₃	
188	N	NH	Н	H	2-Cl-C ₆ H ₄	H	COCH ₃	CO ₂ CH ₃	
189	Ν	NH	H	Н	3-CI-C ₆ H ₄	H	Н	CO ₂ CH ₃	
190	N	NH	Н	Н	4-Cl-C ₆ H ₄	Н	H	CO ₂ CH ₃	
191	N	NH	Н	Н	CH₂Cl	Н	CH ₃	Н	
192	N	NH	H	Н	CH ₂ Cl	H	CO ₂ C ₂ H ₅	CF ₃	
193	N	NH	Н	Н	CH ₂ Cl	H	H	CF ₃	
194	N	NH	Н	CH₃	М	Н	CO ₂ C ₂ H ₅	CF ₃	
195	N	NH	Н	CH₃	CH ₂ Cl	Н	H	CF ₃	
196	N	NH	Н	Н	CH₂Cl	H	Н	Н	
197	N	NH	Н	Н	CH₂Cl	Н	Н	Е	
198	N	NH	Н	Н	CH ₂ Cl	Н	E	Н	
199	N	NH	Н	Н	CH₂Cl	Н	COCH ₃	Н	
200	N	NH	Н	CH ₃	3,5-diCl-C ₆ H ₃	Н	CO ₂ CH ₃	Н	
201	СН	0	CH ₃	Н	Н	Н	Н	Н	
202	СН	0	CH ₃	Н	CH ₃	Н	Н	Н	
203	СН	0	CH ₃	Н	CH ₃	Н	Н	CH₃	
204	CH	0	CH ₃	Н	C ₆ H ₅	Н	Н	CH₃	
205	СН	0	CH ₃	CH ₃	CH ₃	Н	Н	Н	
206	СН	0	CH ₃	CH ₃	CH ₃	Н	Н	CH₃	
207	СН	0	CH ₃	Н	CF ₃	Н	Н	н.	
208	СН	0	CH ₃	Н	CH ₃	Н	Н	Е	
209	СН	0	CH ₃	Н	CH ₃	Н	Е	Н	
210	CH	0	CH ₃	H	CH ₃	H	COCH ₃	Н	
211	CH	0	CH ₃	H	CH ₃	H	Н	COCH ₃	
211	CH	0	CH ₃	Н	CH ₂ Cl	H	H	Н	† · · · · · · · · · · · · · · · · · · ·
213	CH	0	CH ₃	Cl	CH ₂ Cl	H	H	Н	
	CH	0	CH ₃	Н	CH ₂ Cl	H	Н	CF ₃	
214		0		H	CH ₂ Cl	H	H	CH ₃	· · · · · · · · · · · · · · · · · · ·
215	CH	 	CH ₃			+	H	H	
216	CH	0	CH ₃	CH ₃	CH₂OCH₃	H		CH ₃	
217	СН	0	CH₃	CH ₃	CH ₂ OCH ₃	H	H	H H	
218	СН	0	CH ₃	OCH ₃	CH ₂ Cl	H	H	ļ	
219	CH	0	CH ₃	H	CH ₂ Cl	H	Н	E	<u>.L</u>

									
220	СН	0	CH ₃	H	CH ₂ Cl	H	Е	H	
221	CH	0	CH ₃	H	CH ₂ Cl	H	COCH₃	Н	
222	CH	0	CH ₃	Н	CH ₂ Cl	H	H	СОСНЗ	
223	CH	0	CH ₃	H	CH ₂ OCH ₂ CF ₃	H	H	H	
224	СН	0	CH ₃	Cl ·	CH ₂ OC ₂ H ₅	H	Н	H	
225	СН	0	CH₃	Cl	CH ₂ OCH ₃	Н	Н	CH₃	
226	CH	0 ·	CH ₃	Н	CH ₂ OCH ₃	H	Н	CH₃	
227	СН	0	CH ₃	СН₃	3-CF ₃ -C ₆ H ₄	H	H	H	
228	CH	0	CH ₃	CH ₃	3-CH ₃ -C ₆ H ₄	H	H	CH ₃	
229	СН	0	CH ₃	H	4-CH ₃ -C ₆ H ₄	Н	Н	Н	
230	СН	0	CH ₃	Ή	2-Cl-C ₆ H ₄	H	H	Е	
231	СН	0	CH ₃	Н	3-Cl-C ₆ H ₄	H	E	H	
232	СН	0	CH ₃	Н	CF ₃	Н	COCH₃	Н	
233	СН	0	CH₃	Cl	CH₂OCH₃	H	Н	COCH₃	
234	СН	0	CH ₃	OCH₃	CH ₂ OC ₂ H ₅	H	H	Н	
235	СН	0	CH ₃	C ₂ H ₅	CH ₂ OC ₂ H ₅	Н	CH ₃	H	
236	СН	0	CH ₃	Н	CH ₂ OC ₂ H ₅	Н	H	CH ₃	
237	СН	0	CH₃	Cl	CH ₂ OC ₂ H ₅	Н	CO ₂ C ₂ H ₅	CH ₃	
238	СН	0	CH₃	CH ₃	2-F-C ₆ H ₄	Н	H	H	
239	СН	0	CH ₃	`CH ₃	3-F-C ₆ H ₄	Н	H	CH ₃	
240	CH	0	CH ₃	Н	4-F-C ₆ H ₄	Н	Н	H	
241	СН	0	CH ₃	Н	CH ₂ OC ₂ H ₅	Н	Н	E	
242	СН	0	CH ₃	Н	CH ₂ OC ₂ H ₅	Н	Е	Н	
243	СН	0	CH ₃	Н	CH ₂ OC ₂ H ₅	Н	COCH ₃	Н	
244	CH	0	CH ₃	Н	CH ₂ OC ₂ H ₅	Н	Н	COCH ₃	
245	CH	0	CH ₃	Н	CH ₂ OCH ₂ CF ₃	Н	Н	Н	
246	СН	0	CH ₃	CI	CH ₂ OCH ₂ CF ₃	Н	Н	Н	
247	СН	0	CH ₃	Н	CF ₃	Н	Н	CH ₃	
248	СН	0	CH ₃	Н	CH ₂ OCH ₂ CF ₃	H	Н	СН₃	
249	СН	0	CH ₃	CH ₃	CH ₂ OCH ₂ CF ₃	Н	Н	Н	
250	СН	0	CH ₃	CH ₃	-CH₂OPh	Н	H	CH₃	
251	CH	0	CH ₃	Н	-CH₂OPh	Н	Н	Н	
252	СН	0	CH ₃	Н	CH ₂ OCH ₂ Ph	Н	Н	Е	
253	СН	0	CH ₃	Н	CH ₂ OCH ₂ Ph	Н	. E	Н	
254	СН	0	CH ₃	Н	4- Cl- C ₆ H ₅	Н	COCH₃	Н	
255	СН	0	CH ₃	Н	4- Cl- C ₆ H ₅	Н	Н	COCH₃	
256	СН	0	CH ₃	Н	M	Н	CO ₂ C ₂ H ₅	Н	
257	CH	0	CH ₃	H	М	Н	Н	Н	
258	CH	0	CH ₃	Cl	М	Н	Н	CH ₃	
259	СН	0	CH ₃	H	M	Н	Н	CH ₃	
260	CH	0	CH ₃	CH ₃	M	Н	H	Н	
261	СН	NH	CH ₃	Cl	H	H	H	H	
				1		+	+	Н	
262	CH	NH	CH ₃	CI	CH ₃	H	H	H	<u> </u>

	· 1	1		T	CH ₃	н	Н	CH ₃	
263		NH	CH ₃	H		H	Н	CH ₃	
264	CH	NH	CH ₃	H	C ₆ H ₅	Н	H	Н	
265	CH	NH	CH ₃	CH ₃	CH ₃	H	H	CH ₃	
266	CH	NH	CH ₃	CH ₃	CH₃	H	H	H	
267	CH	NH	CH ₃	OCH ₃	CF ₃		H	E	
268	CH	NH	CH ₃	OCH ₃	CH ₃	H	E	Н	
269	CH	NH	CH ₃	H	CH₃	H		H	
270	CH	NH	CH₃	н	CH₃	H	COCH ₃	COCH ₃	
271	CH	NH	CH ₃	H	CH ₃	H	H	Н	
272	CH	NH	CH ₃	Н	CH ₂ Cl	H	H	H	
273	CH	NH	CH ₃	H	M	H	H		
274	CH	NH	CH ₃	Н	CH₂Cl	Н	H	CH ₃	
275	CH	NH	CH ₃	H	CF ₃	H	Н	CH ₃	
276	CH	NH	CH ₃	CH ₃	CH ₂ Cl	H	Н	Н	
277	СН	NH	CH₃	CH ₃	CH ₂ Cl	H	H	CH₃	
278	СН	NH	CH ₃	Cl	CH ₂ Cl	H	Н	H	
279	СН	NH	CH ₃	Н	M	H	Н	Е	
280	CH	NH	CH ₃	Н	M	H	Е	Н	
281	СН	NH	CH ₃	H	M	Н	COCH ₃	Н	
282	СН	NH	CH₃	Н	M	Н	Н	COCH ₃	
283	СН	NH	CH ₃	Cl	CH ₂ OCH ₃	Н	H	Н	
284	СН	NH	CH ₃	H	4-C ₆ H ₅ Cl	Н	H	Н	
285	CH	NH	CH ₃	Н	4-C ₆ H ₅ Cl	H	H	CH ₃	
286	CH	NH	CH ₃	Н	CH₂OCH₃	Н	Н	CH ₃	
287	CH		CH ₃	CH ₃	CH ₂ OCH ₃	Н	Н	Н	
288			CH ₃	CH ₃	CH ₂ OCH ₃	Н	Н	CH ₃	
289			CH ₃	Н	CH₂OCH₃	Н	Н	Н	
290			CH ₃	Н	CH ₂ OCH ₃	Н	H.	E	
291	CH		CH ₃	Н	CH ₂ OCH ₂ CF ₃	Н	Е	Н	
292				H	CH ₂ OCH ₂ CF ₃	Н	COCH ₃	Н	
292			CH ₃	Н	CH ₂ OCH ₂ CF ₃	н	Н	COCH ₃	
293		+	CH ₃	Cl	CH ₂ OC ₂ H ₅	Н	Н	Н	
				Н	CH ₂ OC ₂ H ₅	Н	Н	Н	
295				H	CH ₂ OC ₂ H ₅	Н	Н	CH ₃	
296			+	H	CF ₃	H	Н	CH ₃	
297				CH ₃	CF ₃	H	Н	Н	
298	+	+			Cl	H	H	CH ₃	
299				CH ₃	CI	H		Н	
300				H	CH ₃	H	H	H	
301			CH ₃	H		- -		Cl	
302			CH ₃	H	C ₆ H ₅	H		H	
303			CH ₃	CH ₃	CH ₃	H		H	
304	l N	0	CH ₃	CH ₃	CH₃	H		Cl	
305	5 N	0	CH ₃	H	CF ₃	H	H		

	1		- T	CVI	CH ₃	Н	н	CH ₃	
306	N	0	CH ₃	CH ₃	CH ₃	H	E	CO ₂ CH ₃	
307	N	0	CH ₃	H	CH ₃	Н	COCH ₃	CO ₂ CH ₃	
308	N	0	CH ₃	H	CH ₃	H	H	CO ₂ CH ₃	
309	N	0	CH ₃	H	CH ₂ Cl	H	H	CO ₂ CH ₃	
310	N	0	CH ₃	H	H	н	н	Н	
311	N	0	CH ₃	H	CH ₂ Cl	H	Н	CF ₃	
312	N	· O	CH ₃	H		H	H	CF ₃	
313	N	0	CH ₃	H	3-CF ₃ -C ₆ H ₄ 3-CH ₃ -C ₆ H ₄	Н	H	CF ₃	
314	N	0	CH ₃	CH ₃	4-CH ₃ -C ₆ H ₄	H	H	CF ₃	
315	N	0	CH ₃	CH ₃	CH ₂ Cl	Н	H	H	
316	N	0	CH ₃	H		H	Н	E	
317	N	0	CH ₃	H	CH₂CI	H	E	H	
318	N	0	CH ₃	H	CH₂Cl CH₂Cl	H	COCH ₃	Н	
319	N	0	CH ₃	H	CH ₂ Cl	H	Н	СОСНЗ	
320	N	0	CH ₃	H	CH ₂ OCH ₃	H	H	CH ₂ N(CH ₃) ₂	
321	N	0	CH ₃	H	CH ₂ OCH ₃	H	H	CH ₂ N(CH ₃) ₂	
322	N	0	CH ₃	Cl		H	H	CH ₂ N(CH ₃) ₂	
323	N	0	CH ₃	CH ₃	CH ₂ OCH ₃ CH ₂ OCH ₃	Н	H	F	
324	N	0	CH ₃	H		H	H	F	`
325	N	0	CH ₃	CH₃	CH₂OCH₃	Н	CO ₂ CH ₃	CH ₂ N(CH ₃) ₂	
326	N	0	CH ₃	CH ₃	CH ₂ OCH ₃	Н	H	H	
327	N	0	CH ₃	H	CH ₂ OCH ₃	H	H	E	
328	N	0	CH ₃	H	CH ₂ OCH ₃	Н	E	Н	
329	N	0	CH ₃	H	3-CF ₃ -C ₆ H ₄	H	COCH ₃	H	
330	N	0	CH ₃	H	3-CH ₃ -C ₆ H ₄	H	H	COCH ₃	
331	N	0	CH ₃	H	4-CH ₃ -C ₆ H ₄	H	Н	Н	
332	N	0	CH ₃	Cl	CH ₂ OC ₂ H ₅	H	H	H	
333	N	0	CH ₃	H	CH ₂ OC ₂ H ₅	H	H	CH ₃	
334	N	0	CH ₃	H	CH ₂ OC ₂ H ₅	H	Н	CH ₃	
335		0	CH ₃	H	3-OCH ₃ -C ₆ H ₄	H	H	H	
336	N	0	CH ₃	CH ₃	4-OCH ₃ -C ₆ H ₄	H	H	CH ₃	
337	N	0	CH ₃	CH₃	2-OCH ₃ -C ₆ H ₄	+	H	Cl	
338	N	0	CH ₃	Н	CH ₂ OC ₂ H ₅	H	H	E	<u> </u>
339	N	0	CH ₃	H	CH ₂ OC ₂ H ₅	H	E	Н	
340	N	0	CH ₃	H	M	H	.	Н	
341	N	0	CH ₃	H	3-CF ₃ -C ₆ H ₄	H	COCH ₃	COCH ₃	
342	N	0	CH ₃	H	3-CH ₃ -C ₆ H ₄	H	Н	H	
343	N	0	CH ₃	H	4-CH ₃ -C ₆ H ₄	H	H	H	
344	N	0	CH ₃	H	2-Cl-C ₆ H ₄	H	H		1
345	N	0	CH ₃	Н	3-Cl-C ₆ H ₄	H	H	CH ₃	
346	N	0	CH ₃	H	CH ₂ OCH ₂ CF ₃	H	H	CH ₃	
347	N	0	CH ₃	CH ₃	CH ₂ OCH ₂ CF ₃	H	H	Н	
348	N	0	CH ₃	CH ₃	-CH₂OPh	H	H	CH ₃	L

· · · · · · · · · · · · · · · · · · ·

392	N	NH	CH ₃	н	CH ₂ Cl	Н	CO ₂ C ₂ H ₅	CF ₃	
392	N	NH	CH ₃	H	CH ₂ Cl	Н	Н	CF ₃	
394	N	NH	CH ₃	CH ₃	M	Н	CO ₂ C ₂ H ₅	CF ₃	
395	N	NH	CH ₃	CH ₃	CH ₂ Cl	Н	Н	CF ₃	·
396	N	NH	CH ₃	Н	CH ₂ Cl	Н	Н	H	
397	N	NH	CH ₃	Н	CH ₂ Cl	Н	н	E	
398	N	NH·	CH ₃	Н	CH₂Cl	H	E	H	
399	N	NH	CH ₃	Н	CH₂Cl	Н	COCH ₃	H	
400	N	NH	CH ₃	СН₃	3,5-diCl-C ₆ H ₃	Н	CO ₂ CH ₃	H	

* 数字表示熔点,单位℃。

部分化合物的核磁数据(IHNMR, 300MHz, 内标 TMS, 溶剂 CDCl3)如下:

 δ ppm 3.69(3H,s), 3.88(3H,s), 5.04(2H,s), 6.19-6.23(1H,d), 6.77(1H,s), 化合物 1 :

7.18-7.20(1H,m), 7.26-7.34(4H,m), 7.48-7.64(2H,m). 6.83-6.87(1H,d),

 δ ppm 2.38(3H,s), 3.74(3H,s), 3.89(3H,s), 5.04(2H,s), 6.11 (1H,s), 化合物 2: 7.17-7.20(1H,m), 7.32-7.35(2H,m), 7.49-7.52(2H,m), 6.85-6.89(1H,d), 6.77(1H,s),

7.64(1H,s). δ ppm 2.36(3H,s), 2.37(3H,s), 3.72(3H,s), 3.84(3H,s), 5.09(2H,s), 6.13 化合物 3: (1H,s), 6.75-6.78(1H,d), 7.18-7.21(1H,m), 7.34-7.36(3H,m), 7.50-7.52(1H,m)7.61(1H,s). δ ppm 2.41(3H,s), 3.69(3H,s), 3.81(3H,s), 5.08(2H,s), 6.20(1H,s), 化合物 4:

7.18-7.21(4H,m), 7.32-7.50(5H,m), 7.59(1H,s), 7.92(1H,m). 6.68-6.71(1H,d),

 δ ppm 2.17(3H,s), 2.35(3H,s), 3.73(3H,s), 3.88(3H,s), 5.02(2H,s), 化合物 5:

6.78(1H,s), 6.83-6.85(1H,d), 7.31-7.34(3H,m), 7.45-7.47(2H,d), 7.62(1H,s).

 δ ppm 2.32(3H,s), 2.31-2.36(6H,d), 3.69(3H,s), 3.84(3H,s), 5.07(2H,s), 化合物 6:

6.74-6.77(1H,d), 7.17-7.20(1H,m), 7.31-7.36(3H,m), 7.51-7.54(1H,m), 7.61 (1H,s).

 δ ppm 2.53(3H,s), 3.74(3H,s), 3.89(3H,s), 6.78(1H,s), 5.04(2H,s), 化合物 12:

7.18-7.21(1H,m), 7.32-7.35(2H,m), 7.47-7.50(2H,d), 7.64(1H,s). 6.83-6.85(1H,d),

 δ ppm 1.25-1.32(3H,m), 2.36(3H,s), 2.74-2.76(2H,m), 3.71(3H,s), 化合物 17:

3.84(3H,s), 5.08(2H,s), 6.15(1H,s), 6.75-6.78(1H,d), 7.18-7.21(1H,m), 7.33-7.38(3H,m), 7.61 (1H,s). 7.50-7.54(1H,m),

 δ ppm 3.72(3H,s), 3.92(3H,s), 5.10(2H,s), 6.78(1H,s), 6.94-7.21(1H,d), 化合物 24: 7.22(1H,m), 7.33-7.35(2H,m), 7.36-7.45(2H,m), 7.66 (1H,s), 8.13 (1H,s).

 δ ppm 2.36(3H,d), 2.62(3H,d), 3.71(3H,s), 3.84(3H,s), 5.09(2H,s), 化合物 25:

7.19-7.21(1H,m), 7.33-7.35(3H,m), 7.36-7.37(1H,m), 7.61 (1H,s). 6.82(1H,d),

δ ppm 1.25-1.30(6H,m), 3.20-3.23(1H,m), 3.74(3H,s), 3.91(3H,s), 化合物 26: 7.18-7.23(1H,m), 6.790-6.799(1H,d), 6.80-6.90(1H_m), 5.04(2H,s), 6.15(1H,s), 7.32-7.37(2H,m), 7.48-7.57 (2H,m), 7.64 (1H,s).

 δ ppm 0.95-1.00(3H,t), 1.58(2H,m), 2.36(3H,s), 2.58(2H,t), 3.73(3H,s), 化合物 27: 3.89(3H,s), 5.02(2H,s), 6.75(1H,d), 6.84-6.88(1H,dd), 7.18(1H,m), 7.31-7.34(1H,m), 7.47-7.51(2H,m), 7.63 (1H,s).

3.90(3H,s), 5.05(2H,s), 6.75-6.78 (1H,dd), 3.73(3H,s), δpm 化合物 32: 6.84-6.85(1H,d), 6.94-6.98(1H,d), 7.19-7.21(1H,m), 7.30-7.35 (4H,m), 7.53-7.55 (4H,m), 7.65 (1H,s).

3.89(3H,s), δ ppm 1.27-1.32(3H,m), 2.74-2.77(2H,m), 3.74(3H,s), 化合物 33:

5.04(2H,s), 6.13(1H,s), 6.78-6.79(1H,d), 6.85-6.89(1H,m), 7.18-7.21(1H,m), 7.32-7.35(2H,m), 7.48-7.52 (2H,m), 7.64 (1H,s).

 $\delta_{\text{ppm}} = 0.90-1.03(3\text{H,m}), \quad 1.67-1.72(2\text{H,m}), \, 2.65-2.70(2\text{H,m}), \, 3.73(3\text{H,s}),$ 化合物 34: 3.89(3H,s), 5.04(2H,s), 6.10(1H,s), 6.78-6.79(1H,d), 6.85-6.89(1H,m), 7.19-7.21(1H,m), 7.33-7.35(2H,m), 7.47-7.51(2H,m), 7.64 (1H,s).

δ ppm 1.00-1.25(3H,m), 1.69-1.72(2H,m), 2.36(3H,s), 2.65-2.70(2H,m), 化合物 35: 6.75-6.78(1H,d), 7.21-7.26(1H,m), 5.08(2H,s), 6.12(1H,s), 3.71(3H,s), 3.84(3H,s), 7.33-7.38(3H,m), 7.50-7.53(1H,m), 7.61 (1H,s).

 δ ppm 0.97(3H,t), 1.66(2H,m), 2.67(3H,s), 3.74(3H,s), 3.89(3H,s), 化合物 36: 5.04(2H,s), 6.78(1H,d), 6.85-6.88(1H,dd), 7.22(1H,m), 7.33-7.35(2H,m), 7.46-7.49(2H,m), 7.64(1H,s).

5.06(2H,s), 6.20(1H,s) 3.90(3H,s), 3.74(3H,s), δ ppm 化合物 52: 6.80-6.86(1H,m), 7.18-7.22(1H,m), 7.32-7.37(4H,m), 7.41-7.44 (2H,m), 7.50-7.52 (4H,m), 7.65 (1H,s).

 δ ppm 2.54(3H,s), 3.87(3H,s), 4.04(3H,s), 5.02(2H,s), 6.81-6.85(1H,s), 化合物 100: 7.43-7.52(5H,m)。 7.26(1H,d),

δ ppm 2.39(3H,s), 3.87(3H,s), 4.05(3H,s), 5.02(2H,s), 6.13(1H,s), 化合物 101: 7.23-7.26(1H,m), 7.43-7.49(4H,m) . 6.80-6.86(2H,m),

 δ ppm 2.32(3H,s), 2.37(3H,s), 3.84(3H,s), 4.03(3H,s), 5.05(2H,s), 化合物 102:

6.13(1H,s), 6.76-6.79(1H,d), 7.26(1H,d), 7.34-7.43(3H,m), 7.45-7.46(1H,d). 3.98(3H,s), 5.35(2H,s), δ ppm 2.18(3H,s), 2.37(3H,s), 3.91(3H,s), 化合物 103:

6.85(1H,s), 6.86-6.88(1H,d), 7.26-7.40(3H,m), 7.49-7.52(1H,d), 7.62-7.65(1H,d).

4.04(3H,s), 5.00(2H,s), δ ppm 2.17(3H,s), 2.35(3H,s), 3.86(3H,s), 化合物 104: 7.20-7.25(1H,d), 7.40-7.61 (4H,m). 6.78-6.85(2H,m),

 δ ppm 2.91-2.93(3H,d), 3.97(3H,s), 5.02(2H,s), 6.23-6.26(1H,d), 化合物 109: 7.20-7.23(1H,m), 7.34-7.37(1H,d), 7.39-7.45(2H,m), 7.50-7.53(1H,m), 6.82-6.86(3H,m),

7.61-7.64 (1H,d). 5.02(2H,s), 6.23-6.26(1H,d), 4.05(3H,s), 3.87(3H,s), δppm 化合物 111: 7.47-7.53(1H,m), 7.34-7.37(1H,d), 7.41-7.45(2H,m), 7.21(1H,d), 6.79-6.85(2H,m),

7.61-7.64(1H,d).

 δ ppm 2.38(3H,s), 2.91-2.93(3H,d), 3.97(3H,s), 5.02(2H,s), 6.13(1H,s), 化合物 153: 7.23(1H,d), 7.39-7.50(4H,m). 6.82-6.87(3H,m),

本发明还包括通式(I)化合物的制备方法:可以通过反应式 1 所示的步骤来制备。 R_1 、 R_2 、 R_3 、 R_4 、 R_5 、 R_6 、 R_7 、 R_8 、A、B 的定义如上,Z 是离去基团,如卤素(氯、溴或碘)。

反应式 1:

通式(I)化合物可以这样来制备:在适当的溶剂中,用适当的碱处理通式(III)所示的羟基 苯并吡喃酮类化合物形成盐,然后加入式(II)的化合物,在适当的温度下反应一定时间后,处 理即得目的产物。

适当的溶剂可选自如四氢呋喃、乙腈、甲苯、二甲苯、苯、N,N 二甲基甲酰胺、二甲亚砜、 丙酮或丁酮等。

适当的碱可选自如氢氧化钾、氢氧化钠、碳酸钠、碳酸钾、碳酸氢钠、三乙胺、吡啶或氢 化钠等。

适当的温度指室温至溶剂沸点温度,通常为 20~100℃。

反应时间为 30 分钟至 20 小时,通常 1~10 小时。

通式(II) 所示的化合物可以由已知方法制得,见 USP4723034、USP5554578。通式(III)所 示的羟基苯并吡喃酮类化合物可以由 R5COCHR4CO2CH3(C2H5)与取代的间苯二酚在适当的缩 合剂(如浓硫酸,三氟乙酸)中反应来制得。

通式(V)和(VII)的化合物可以分别由通式(IV)和(VI)与甲胺水溶液反应而很容易地获得:

$$R_{4}$$
 R_{5} R_{6} R_{7} R_{1} R_{3} R_{4} R_{5} R_{6} R_{7} R_{1} R_{3} R_{4} R_{5} R_{6} R_{7} R_{1} R_{1} R_{2} R_{3} R_{4} R_{5} R_{6} R_{7} R_{1} R_{1} R_{2} R_{3} R_{4} R_{5} R_{6} R_{7} R_{1} R_{1} R_{2} R_{3} R_{4} R_{5} R_{6} R_{7} R_{1} R_{2} R_{3} R_{4} R_{5} R_{5} R_{6

A=CH, B=O (VI);

A=CH, B=NH (VII).

本发明的化合物具有很好的杀虫活性,可用于防治各种作物上害虫。例如可用于防治粘虫、 小菜蛾、桃蚜、朱砂叶螨、二斑叶螨、瓢虫、害螨以及淡色库蚊。尤其对瓢虫和淡色库蚊有 特效,特别适合于对害虫的综合防治。

本发明的化合物同时具有优异的杀菌活性,它们具有内吸活性并可用作叶面和土壤杀菌 剂,可应用在防治各种作物上的病害,特别适合于防治下列植物病害: 葡萄霜霉病、水稻纹枯 病、水稻稻瘟病、番茄早疫病、番茄晚疫病、小麦锈病、小麦叶斑病、小麦白粉病、黄瓜白 粉病、黄瓜霜霉病、黄瓜灰霉病等。

本发明还提供了一种杀虫、杀菌组合物,该组合物中含有通式(I)的化合物及其立体异构体, 活性组分的重量百分含量为 0.1-99%。

本发明还提供了如上所定义的组合物的制备方法: 将通式(I)的化合物与载体混合。这种组 合物可以含本发明的单一化合物或几种化合物的混合物。

本发明组合物中的载体系满足下述条件的物质:它与活性成分配制后便于施用于待处理的 位点,例如可以是植物、种子或土壤; 或者有利于贮存、运输或操作。载体可以是固体或液 体,包括通常为气体但已压缩成液体的物质,通常在配制杀虫、杀菌组合物中所用的载体均可 使用。

合适的固体载体包括天然和合成的粘土和硅酸盐,例如硅藻土、滑石、硅镁土、硅酸铝(高 岭土)、蒙脱石和云母;碳酸钙;硫酸钙;硫酸铵;合成的氧化硅和合成硅酸钙或硅酸铝;元 素如碳和硫; 天然的和合成的树脂如苯并呋喃树脂, 聚氯乙烯和苯乙烯聚合物和共聚物; 固体 多氯苯酚;沥青:蜡如蜂蜡,石蜡。

合适的液体载体包括水;醇如异丙醇和乙醇;酮如丙酮、甲基乙基酮、甲基异丙基酮、

环已基酮;醚;芳烃如苯、甲苯、二甲苯;石油馏分如煤油和矿物油;氯代烃如四氯化碳、全氯乙烯和三氯乙烯。通常,这些液体的混合物也是合适的。

杀虫、杀菌组合物通常加工成浓缩物的形式并以此用于运输,在施用之前由使用者将其稀释。少量的表面活性剂载体的存在有助于稀释过程。这样,按照本发明的组合物中至少有一种载体优选是表面活性剂。例如组合物可含有至少两种载体,其中至少一种是表面活性剂。

表面活性剂可以是乳化剂、分散剂或润湿剂;它可以是非离子的或离子的表面活性剂。合适的表面活性剂的例子包括聚丙烯酸和木质素磺酸的钠盐或钙盐;分子中含至少12个碳原子的脂肪酸或脂肪胺或酰胺与环氧乙烷和/或环氧丙烷的缩合物。甘醇、山梨醇、蔗糖或季戊四醇脂肪酸酯及这些酯与环氧乙烷和/或环氧丙烷的缩合物;脂肪醇或烷基苯酚如对辛基苯酚或对辛基甲苯酚与环氧乙烷和/或环氧丙烷的缩合物;这些缩合产物的硫酸盐和磺酸盐;在分子中至少含有10个碳原子的硫酸或磺酸酯的碱金属或碱土金属盐,优选钠盐,例如硫酸月桂酸酯钠,硫酸仲烷基酯钠,磺化蓖麻油钠盐,磺酸烷基芳基酯钠,如十二烷基苯磺酸钠盐。

本发明的组合物的实例是可湿性粉剂、粉剂、颗粒剂和溶液,可乳化的浓缩剂、乳剂、悬浮浓缩剂、气雾剂和烟雾剂。可湿性粉剂通常含 25,50 或 75%重量活性成分,且通常除固体惰性载体之外,还含有 3-10%重量的分散剂,且若需要可加入 0-10%重量的稳定剂和/或其它添加剂如渗透剂或粘着剂。粉剂通常可成型为具有与可湿性粉剂相似的组成但没有分散剂的粉剂浓缩剂,再进一步用固体载体稀释,得到通常含 0.5-10%重量活性组分的组合物。粒剂通常制备成具有 10 至 100 目(1.676-0.152mm)大小,且可用成团或注入技术制备。通常粒剂含 0.5-75%重量的活性成分和 0-10%重量添加剂如稳定剂、表面活性剂、缓释改良剂。所谓的"可流动干粉"由具有相对高浓度活性成分的相对小的颗粒组成。可乳化浓缩剂除溶剂外,当需要时通常含有共溶剂,1-50%W/V 活性成分,2-20%W/V 乳化剂和 0-20%W/V 其他添加剂如稳定剂、渗透剂和腐蚀抑制剂。悬浮浓缩剂通常含有 10-75%重量的活性成分、0.5-15%重量的分散剂、0.1-10%重量的其它添加剂如消泡剂、腐蚀抑制剂、稳定剂、渗透剂和粘着剂。

水分散剂和乳剂,例如通过用水稀释按照本发明的可湿性粉剂或浓缩物得到的组合物,也列入本发明范围。所说的乳剂可具有油包水或水包油两个类型。

通过在组合物中加入其他的一种或多种杀菌剂,使其能比单独的通式(I)化合物具有更广谱的活性。此外,其他杀菌剂可对通式(I)化合物的杀菌活性具有增效作用。 也可将通式(I)化合物与其他杀虫剂混用,或同时与另一种杀菌剂以及其他杀虫剂混用。

具体实施方式

以下以具体的实例来进一步说明本发明。

合成实施例

实例 1: 化合物 1 的制备方法

在室温下,将 0.84 克 60%的氢化钠加入反应瓶中,用石油醚洗涤后,向其中加入 30 毫升干燥的 N,N 二甲基甲酰胺,搅拌反应半小时,向其中加入 1.7 克 7-羟基香豆素,继续搅拌至无气体放出,加入 3 克 (£)-2-[2-(溴甲基)苯基]-3-甲氧基丙烯酸甲酯,继续搅拌 3 小时。将反应混合物倒入冰水中,乙酸乙酯萃取 3 次,合并萃取液,用饱和食盐水洗 3 次,干燥,过滤,减压浓缩,得油状液体 5 克。柱层析得到标题化合物 2.8 克,为浅红黄色油状物,收率 76.5%。

实例 2: 化合物 2 的制备

在室温下,将 0.45 克 60%的氢化钠加入反应瓶中,用石油醚洗涤后,向其中加入 20 毫升干燥的 N,N 二甲基甲酰胺,搅拌反应半小时,向其中加入 1.0 克 7-羟基-4-甲基香豆素,继续搅拌至无气体放出,加入 1.66 克(E)-2-[2-(溴甲基)苯基]-3-甲氧基丙烯酸甲酯,继续搅拌 3

小时。将反应混合物倒入冰水中,乙酸乙酯萃取 3 次,合并萃取液,用饱和食盐水洗 3 次,干燥,过滤,减压浓缩,得黄色固体为粗产品。用乙酸乙酯和石油醚的混合液(1:2)柱层析得到标题化合物 1.73 克,熔点 140-143℃。收率 80%。

实例 3: 化合物 101 的制备

在室温下,将含有 1.2 克无水碳酸钾、1.0 克 7-羟基-4-甲基香豆素、1.70 克 2-溴甲基-α-(甲氧亚胺基)苯乙酸甲酯于 20 毫升丁酮的混合液加热回流搅拌反应 5 小时,将反应混合物倒入冰水中,乙酸乙酯萃取 3 次,合并萃取液,饱和食盐水洗 3 次,干燥,过滤,减压浓缩,得黄色固体为粗产品。用乙酸乙酯和石油醚的混合液(1:2)柱层析得到标题化合物 1.77 克,熔点 150-152℃。收率 83%。

实例 4: 化合物 153 的制备

将 0.27 克化合物 101 与两倍摩尔比的甲胺在 30 毫升甲醇中室温搅拌过夜,浓缩后用乙酸乙酯萃取 2 次,合并的提取物用水洗涤 3 次,再用饱和食盐水洗 2 次,干燥,过滤,浓缩,得标题化合物 0.24 克,熔点 210-214℃。收率 89%。

其他化合物参照上述方法合成。

制剂实施例

实例 5 60%可湿性粉剂

化合物 660% (重量)十二烷基萘磺酸钠2% (重量)木质素磺酸钠9% (重量)高岭土31% (重量)

各组分(均为固体)混合在一起,在粉碎机中粉碎,直到颗粒达到标准。

实例 6 35% 乳油

化合物 135% (重量)亚磷酸10% (重量)乙氧基化甘油三酸酯15% (重量)环已酮40% (重量)

亚磷酸溶解在环已酮中,然后加入化合物1和乙氧基化甘油三酸酯,得到透明的溶液。

实例 7 30%含水悬浮液

化合物 2530% (重量)十二烷基萘磺酸钠4% (重量)半纤维素2% (重量)环氧丙烷8% (重量)水56% (重量)

将化合物 25 与 80%的水和十二烷基萘磺酸钠在球磨机中(1mm 珠)中一起粉碎。其它组分溶解在其余的水中,然后搅拌加入其它组分。

实例 8 25%悬浮一乳剂浓缩物

化合物 12

25% (重量)

十二烷基醇聚乙二醇磷酸酯 (乳化剂 1) 4% (重量)

乙氧基甘油三酸酯 (乳化剂2) 2% (重量)

十二烷基苯磺酸钙(乳化剂 3) 1.5%(重量)

环氧甲乙烷环氧丙烷共聚物(分散剂) 2.5%(重量)

环己酮 (溶剂 1) 30% (重量) 烷基芳基馏分 (沸点>200℃) (溶剂 2) 35% (重量)

化合物 12 溶解在 80%的溶剂中,然后加入乳化剂和分散剂,将混合物彻底搅拌。混合物在球磨机(1mm 珠)中粉碎,然后加入其余的溶剂。

生物活性测定

实例9 杀菌活性测定

用本发明化合物对植物的各种菌病害进行了试验。试验的程序如下:

将植物试材进行盆栽。待测化合物原药用少量 N,N-二甲基甲酰胺溶解,用水稀释至所需的浓度。喷雾施药到植物试材上,24 小时后进行病害接种。接种后,将植物放在恒温恒湿培养箱中,使感染继续,待对照充分发病后(通常为一周时间)进行评估调查。部分化合物与文献 JP04-182461 报道化合物 JP51 防治黄瓜霜霉病活性比较结果见表 2。

部分测试结果如下:

200ppm 时,对黄瓜霜霉病防效为 100%的有化合物 1, 2, 4, 5, 6, 12, 25, 26, 33, 34, 35, 52, 109 等; 防效大于 95%的有化合物 3, 24, 36, 153 等。

200ppm 时,对黄瓜灰霉病防效为 100%的有化合物 2, 6, 100 等;防效大于 75%的有化合物 6, 101, 102, 103, 106 等。

200ppm 时,对葡萄霜霉病防效为 100%的有化合物 6,7,10 等;防效大于 85%的有化合物 8,106,154 等。

200ppm 时,对水稻纹枯病防效大于 85%的有化合物 3, 101 等。

200ppm 时,对水稻稻瘟病防效大于 85%的有化合物 6, 8, 10 等。

200ppm 时,对小麦白粉病防效大于 70%的有化合物 9, 101, 111 等。

200ppm 时,对小麦锈病病防效为 100%的有化合物 6 等;防效大于 95%的有化合物 7,10 等;防效大于 75%的有化合物 8,154 等。

200ppm 时,对小麦叶斑病防效大于 90%的有化合物 6 等;防效大于 80%的有化合物 7,8,9,10,11,154 等。

200ppm 时,对番茄早疫病防效为 100%的有化合物 6,7等;防效大于 90%的有化合物 8,10等;防效大于 75%的有化合物 11等。

200ppm 时,对番茄晚疫病防效大于 95%的有化合物 6 等;防效大于 75%的有化合物 10 等。

200ppm 时,对玉米小斑病防效大于 95%的有化合物 5,6等。

表 2 防治黄瓜霜霉病活性比较试验(50ppm)

		ズム	ツ伯贝凡和	一种 701 (日) 江		·	ì		
化合物	T 1	2	5	6	12	26	52	JP51	l
防效(%)	100	100	100	100	100	100	100	20	
1 199 350 709	100	100						,	-

生物活性测定

实例 10 杀虫杀螨活性测定

取一定数量的三龄幼虫放入饲养盆中,以经过药物处理的玉米叶饲养。施药方法为波特喷

雾。喷药量为 1mL,喷雾压力为 13.5 磅/平方英寸。

调查及结果统计:

药液浓度为 10ppm 时, 化合物 2、5、6 等对供试靶标淡色库蚊死亡率达 100%。

药液浓度为 600ppm 时, 化合物 5、6 还对粘虫、小菜蛾、桃蚜的也显示相当的活性, 大于 50%。

药液浓度为 300ppm 时, 化合物 7、9、10 对供试靶标墨西哥瓢虫死亡率达 100%; 化合物 7 还对二斑叶螨显示相当的活性, 大于 50%。

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

efects in the images include but are not limited to the items checked:
D BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.