

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE

Sensory w Aplikacjach Wbudowanych

Wstępne informacje

dr hab. inż. Cezary Worek, prof. AGH

(na bazie materiałów dra inż. Wojciech Maziarz)

Wydział IET, Instytut Elektroniki

Kontakt: worek@agh.edu.pl

Literatura, źródła

Czujniki:

- S.M. Sze, **Semiconductor Sensors**, John Wiley & Sons, Inc., 1994
- J.W. Gardner, V.K. Varadan, O.O. Awadelkarim, **Microsensors, MEMS and Smart Devices**, John Wiley & Sons, LTD, 2001
- W. Göpel, J. Hesse, J.N. Zemel, **Sensors A Comprehensive Survey**, VCH Verlagsgesellschaft mbH, 1989
- Nadim Maluf, Kirt Williams, An Introduction to Microelectromechanical Systems Engineering, Second Edition, Artech House 2004
 Jacob Fraden, AIP Handbook of modern sensors: physics, design and applications, AIP New York, 1993.
- T. Pisarkiewicz, **Mikrosensory gazów**, Wydawnictwa AGH, Kraków 2007
- Wybrane sensory gazów. Przewodnik multimedialny: https://zasoby1.open.agh.edu.pl/dydaktyka/automatyka/c_sensory_gazu/pdf/rX.pdf [gdzie X przyjmuje wartości od 0 do 6]
- Materialy na stronie www: http://home.agh.edu.pl/~maziarz/

Literatura, źródła

Systemy wbudowane:

- Ed. By Richard Zurawski, **Networked Embedded Systems**, CRC Press, 2nd edition, New York, London, Boca Raton, 2009
- Ed. By Richard Zurawski, **Embedded Systems Design and Verification**, CRC Press, 2nd edition, New York, London, Boca Raton, 2009

Wireless sensor networks:

Waltenegus Dargie, Christian Poellabauer, **Fundamentals of wireless sensor networks : theory and practice**, Wiley 2010

Czasopismo w internecie:

https://www.embedded.com/category/technical-article/

Przykład:

https://www.embedded.com/optimizing-high-precision-tilt-angle-sensing-establishing-baseline-performance/

WIET - Sensory w Aplikacjach Wbudowanych

WIET - Sensory w Aplikacjach Wbudowanych Platforma TEAMS

https://teams.microsoft.com/l/team/19%3AcQC7KMdgGkjMkSUbu5j2sXbHZcNctDc4webf99ic2u01%40thread.tacv2/conversations?groupId=be20a791-2290-47a7-9654-9dfb7140e6e2&tenantId=80b1033f-21e0-4a82-bbc0-f05fdccd3bc8

Wykłady, Pliki:

https://teams.microsoft.com/l/team/19%3AcQC7KMdgGkjMkSUbu5j2sXbHZcNctDc4webf99ic2u01%40thread.tacv2/conversations?groupId=be20a791-2290-47a7-9654-9dfb7140e6e2&tenantId=80b1033f-21e0-4a82-bbc0-f05fdccd3bc8

Kod dostępu: n17h6p5

Zastosowania czujników

TOP 10 SENSOR MARKETS, 2021 = USD 72.73 BILLION

Dziedziny, gdzie można znaleźć czujniki:

- rolnictwo
- budownictwo, inżynieria środowiska
- procesy przemysłowe
- zapewnienie jakości w produkcji (miernictwo)
- <u>motoryzacja</u>, transport
- lotnictwo i przestrzeń kosmiczna
- medycyna i ochrona zdrowia
- ochrona środowiska, meteorologia
- <u>elektronika noszona i smart</u>
- telekomunikacja, informatyka
- urządzenia domowe,
- przetwarzanie energii i jej odzysk
- gospodarka morska
- przestrzeń kosmiczna,
- badania naukowe

MEMS MARKET FORECAST: 2014 - 2020 VALUE (IN B\$)

(Source: Status of the MEMS Industry, Yole Développement, May 2015)

Elektronika noszona i "smart"

Współczesne sensory

- wymagania

Wymagania odnośnie współczesnych sensorów:

- niska cena
- odporność na uszkodzenia
- odporność na zakłócenia (EMC)
- małe rozmiary
- niezawodność
- możliwość produkcji wielkoseryjnej

Wymagania te spełniają technologie: mikromechanika + mikroelektronika

Wytwarza się tzw. struktury

MEMS (Micro-Electro-Mechanical Systems)

Współczesna elektronika

- MEMS

Global SEMI and MEMS (Component) Markets

Blue: SEMI, Green: MEMS, Red: MEMS/SEMI (right axis)

"The market for MEMS chips (green) is growing slightly faster than the semiconductor market (blue) and will reach the trillion unit mark circa 2023."

Source: Janusz Bryzek, Fairchild Semiconductor

mln dol.

Rynek MEMS dla motoryzacji (WTC report, 2007)

Obroty na rynku akcelerometrów MEMS do poduszek powietrznych w mln dol. i mln sztuk (Frost & Sullivan)

Producenci układów MEMS

2014TOP 30 MEMS PLAYERS - IN US\$M

(Source: Status of the MEMS Industry report, Yole Développement - To be released in April 2015)

Fabryki układów MEMS

WIRELESS SENSOR NETWORK MARKET, BY REGION (USD BILLION)

Wireless Sensor Network Market, BY End-user Industry, (USD Million)

Wireless Sensor Networks Market, by Offering:

BFSI - Banking, financial services

Wireless Sensor Networks Market, by Sensor Type:

- Ambient Light Sensors
- Motion & Position Sensors
- Temperature Sensors
- Heart Rate Sensors
- Pressure Sensors
- IMUs (6-Axis, 9-Axis)
- Accelerometers (3-Axis)
- Blood Glucose Sensors
- Image Sensors
- Humidity Sensors
- Carbon Monoxide Sensors
- Blood Oxygen Sensors
- Flow Sensors
- Level Sensors

- Chemical Sensors
- ECG Sensors
- Others (MRR, Ultrasonic Sensors, Vehicle Detection Sensors, Pedestrian Presence Sensors, Speed Sensors, Soil Moisture Sensors)

Wireless Sensor Networks Market, by Sensor Type:

- Ambient Light Sensors
- Motion & Position Sensors
- Temperature Sensors
- Heart Rate Sensors
- Pressure Sensors
- IMUs (6-Axis, 9-Axis)
- Accelerometers (3-Axis)
- Blood Glucose Sensors
- Image Sensors
- Humidity Sensors
- Carbon Monoxide Sensors
- Blood Oxygen Sensors
- Flow Sensors
- Level Sensors

- Chemical Sensors
- ECG Sensors
- Others (MRR, Ultrasonic Sensors, Vehicle Detection Sensors, Pedestrian Presence Sensors, Speed Sensors, Soil Moisture Sensors)

Wireless Sensor Networks Market, by Connectivity Type:

- Wi-Fi
- Bluetooth
- Bluetooth/WLAN
- Cellular Network
- GPS/GNSS Module
- Bluetooth Smart/BLE
- ZigBee
- NFC
- WHART
- ISA100
- ANT+
- 6TiSCH
- Thread
- Other

Transducer - definicje...

- **Transducer** (łac. *transducere*) urządzenie, które przekazuje energię z jednego układu do drugiego w tej samej lub innej formie.
- Również: urządzenie, które przekształca wielkość fizyczną w wielkość elektryczną.
- Urządzenie, którego zasadą pomiaru jest przekształcenie wielkość fizycznej w elektryczną, a relacje między jego we/wy oraz wy/we są przewidywalne z określoną dokładnością w określonych warunkach środowiskowych.

Przykłady: termopara, tr. piezoelektryczny, magnetostrykcyjny, pojemnościowy, indukcyjny, LDR (Light Dependent Resistor), LVDT (Linear Variable Differential Transformer)

Czujnik - definicja...

Sensor (czujnik) - urządzenie, które odpowiada na fizyczny lub chemiczny czynnik pobudzający (np. ciepło, światło, dźwięk, ciśnienie, pole magnetyczne, wilgotność, związki chemiczne, itp.) i przekazuje wynikający z tego oddziaływania sygnał. Sygnał ten może być zmierzony lub użyty do sterowania.

Sensor odbiera sygnał wejściowy i zamienia go na sygnał wyjściowy, przetwarza jeden rodzaj energii w drugi.

Przykłady:

czujnik rezystancyjny, optyczny, fizyczny, chemiczny, bioczujnik itd.

Czujnik przyśpieszenia

Aktuator

Urządzenie wykonawcze, element wykonawczy (ang. actuator) – w technice, określenie urządzenia mechanicznego, występującego w układach regulacji, które na podstawie sygnału sterującego wypracowuje sygnał wejściowy do obiektu regulacji.

W automatyce budynków:

aktuator lub wyrobnik (zgodnie ze standardem KNX) lub siłownik elektryczny (np. liniowy) lub silnik (np. krokowy, z przekładnią).

w mechanice – siłowniki pneumatyczne, hydrauliczne, silniki, dźwignie hydrauliczne, wzmacniacze elektrohydrauliczne, serwomechanizmy, (również ręce, dłonie, nogi, palce człowieka).20

Sensor czy Transducer?

Oba określenie używane często synonimicznie, ale...

Każdy czujnik jest transducerem (przetwornikiem)

ale

Nie każdy transducer jest czujnikiem.

System wbudowany (SW)

System wbudowany (ang. *embedded system*) – dedykowany system komputerowy (specjalnego przeznaczenia), który staje się integralną częścią obsługiwanego przez niego sprzętu komputerowego (*hardware*).

- Spełnia określone wymagania, zdefiniowane do zadań, które ma wykonywać.
- Zawsze oparty na mikroprocesorze (lub mikrokontrolerze), ew. układzie specjalizowanym (ASIC).
- Zaprogramowany do wykonywania skończonej ilości zadań lub nawet tylko do jednego.

Komputer PC NIE JEST systemem wbudowanym (jest uniwersalny). Co nim jest?

Przykłady SW:

Klimatyzatory i termostaty

Sterowniki PLC

Bankomaty

Przykłady SW: centrala alarmowa

Źródło: http://sklepcctv.pl

Przykłady SW: centrala alarmowa – elementy składowe

Przykłady SW:

komputery, moduły pokładowe w samochodach (BSI, BSM, ECU/ECM itd.), np. wtrysku, poduszek powietrznych, klimatyzacji, cofania, świateł itd.

Przykłady SW: Sprzęt sterujący rakietami, samolotami, pociskami

Sterowanie rakiet księżycowych Space Shuttle, Saturn V

Przykłady SW:

smartwatche

Telefony komórkowe

Przykłady SW:

Sprzęt + dedykowane aplikacje: np. gry

Więcej:

http://developer.android.com/ guide/topics/sensors/sensors_ overview.html

Przykłady SW:

Czujniki gazu

Czujniki IR

Moduł kompasu

http://www.parallax.com

Przykłady SW:

- Systemy alarmowe, elementy "inteligentnych budynków"
- Sprzęt komputerowy i sieciowy (HDD, firewalle, systemy czasu, routery/modemy)
- Sprzęt AGD: kuchenki mikrofalowe, zmywarki, pralki (*fuzzy logic*), lodówki itp.
- sprzęt medyczny (ciśnieniomierze, monitory czynności pacjenta, aparaty Holltera, pulsoksymetry itp.)

SW może zawierać oprogramowanie dedykowane wyłącznie temu urządzeniu (firmware) lub system operacyjny wraz ze specjalizowanym oprogramowaniem.

Im mniej złożone i specjalizowane oprogramowanie, tym bardziej niezawodny system. Może on też szybciej reagować na zdarzenia.

Zwiększenie niezawodności:

- rozdzielenie zadań na mniejsze podsystemy,
- redundancja (użycie dwóch identycznych urządzeń do jednego zadania; w razie awarii przejmują swoje zadania).

Elementy składowe SW

- CPU/uC (różnego typu)
- Pamięci zewnętrzne (np. karta SD, pamięci na I2C)
- Czujniki (wszelkiego typu sygnał wyjściowy elektryczny)
- Klawisze/przyciski, klawiatura, ekran dotykowy
- Wyświetlacz LCD, graficzny, ekran dotykowy
- Kontrolki LED
- Aktuatory (elementy wykonawcze: np. głośnik, głośnik piezo, silnik krokowy, wentylator, przekaźnik, silnik wibracyjny w telefonie itp.,)

Internet Rzeczy

Twine

Twine firmy Supermechanical - system wbudowany dla każdego

"Programowanie przez www": WHEN moisture sensor gets wet THEN text "The basement is flooding!"

Internet Rzeczy

NinjaBlocks

- Minikomputery w chmurze
- Możliwość odbierania sygnałów (sensory) i sterowania sygnałami (gniazdka sieciowe, światła, aktuatory itp.)
- Kody, schematy, itd. dostępne dla zainteresowanych (Open Hardware)
- Forum dyskusyjne http://beagleboard.org/project/NinjaBlocks/

Więcej o projekcie: http://www.youtube.com/watch?v=geW1rz xBp5M&feature=player_detailpage

39

Internet Rzeczy

Husarion

- system wbudowany dla każdego

2x left & 2x right DC motors

with quadrature encoder

Więcej o projekcie: https://husarion.com/ https://husarnet.com/

https://www.youtube.com/watch?v=QHJFNMX4Us8

Internet Rzeczy

Wovyn

Sensor list:

- •Temperature (w/ and w/o probe), Humidity (low and high accuracy), Water, Infrared Motion, Digital ID
- •Dry Contact, Light (on/off), Light (lux), Magnetic Door/Window, Magnetic Presence, Activity
- •Accelerometer, 0-20mA Current, 0-1.25v Analog Voltage, 120VAC Analog Voltage Detection
- •500 VAC/VDC Analog Voltage Measurement, Wireless Button, Flex, Liquid Level, Pressure

Do poczytania...

- http://pandodaily.com/2013/05/24/enter-the-ninja-a-startup-attempts-world-domination-on-internet-of-things-from-australia/
- Kickstarter Bring creativity to life: http://www.kickstarter.com/
- Pebble: E-Paper Watch for iPhone and Android: http://getpebble.com/
- Nest ,,learning thermostat": http://nest.com/
- Philips Hue personal wireless lightning : http://www.meethue.com/en-US
- Internet of Things: http://en.wikipedia.org/wiki/Internet_of_Things
- Industrial Internet of Things https://en.wikipedia.org/wiki/Industrial_internet_of_things