Laporan Praktikum Pembelajaran Mesin SVM

Disusun oleh: Kelompok 3

1.	Gede Rangga Wira Aditya	(082011633048)
2.	Muhammad Rahmadhani Ferdiansyah	(082011633068)
3.	Arya Danu Triatmodjo	(082011633069)
4.	Mukhamad Ikhsanudin	(082011633086)

Kelas I3

PROGRAM STUDI S1 SISTEM INFORMASI FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS AIRLANGGA SURABAYA

2021/2022

COBA SEMUA SOURCE CODE SVM

MATLAB

PYTHON

A. Import Library, Load dataset iris and change dataset

B. Separate Variables (X) and class instance (Y)

C. Split data, 70% training and 30% testing

Training data

Testing Data

D. SVM Modelling

E. Calculate accuracy matrix

COBA CODE DENGAN DATA SENDIRI

MATLAB

		Α	В	С	
		RATING	EFFECTIV	SIDEEFFE	
		Number *	Number ▼	Number *	
1	1	RATING	EFFECTIV	SIDE EFFE	٨
2	2	1	5	2	
3	3	10	5	5	
4	4	3	2	4	
5	5	2	2	2	
6	6	1	1	2	7

	Α	В	С	
	RATING	EFFECTIV	SIDEEFFE	
	Number *	Number ▼	Number *	
996	1	1	2	*
997	9	5	4	
998	10	4	5	
999	10	5	5	
1000	1	1	1	
1001	7	4	3	¥

```
tugasLandPrice.m × SVMcoba.m × SVMdata.m ×
1
       clc;clear
       data = xlsread('Narcotics.xlsx')
2
       datatraining = data(1:floor(0.7*length(data)),1:2);
 3
       kelastraining = data(1:floor(0.7*length(data)),3);
       datatesting = data(floor(0.7*length(data))+1:end,1:2);
       kelastesting = data(floor(0.7*length(data))+1:end,3);
6
       a = templateSVM('Standardize',1,'KernelFunction','polynomial');
8
       traini = fitcecoc(datatraining, kelastraining, 'Learners', a);
       hasil = predict(traini,datatesting);
9
       cek = [hasil kelastesting]
10
11
```

Com	nmand W	/indow	
	/	4	3
cek	=		
		2	
	5	5	
	4	4	
	2	2	
	2	2	
	4	4	
	5	5	
	5	5	
	2	1	
	3	3	

	5	5
	2	1
	3	3
	2	2
	5	5
	4	4
	2	2
	2	2
	4	4
	5	5
	5	5
	2	1
	3	3
>>		

The dataset used this time is Narcotics.xlsx. This dataset consists of 1001 instances and the variables are divided into 2 data variables and 1 class variable. The comparison between training data and testing data is 7:3. After the SVM classifier has been carried out, a comparison/checking is carried out using 20 instances between the predicted data and the actual data. From these results found 2 differences in data. So the accuracy of the 20 data is 90%.

PYTHON

A. Import Library and Load dataset

```
import pandas as pd
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC

data=pd.read_csv('Social_Network_Ads.csv')
df=pd.DataFrame(data)
print(df)
```

There are 2 types of libraries used, namely pandas and sklearn. The dataset used is Social Network Ads which is the result of a survey from several people, whether these people will buy items that are sold based on several attributes.

```
User ID Gender
                              EstimatedSalary
                                                Purchased
                         Age
0
     15624510
                     0
                        19.0
                                         19000
                                                         0
1
     15810944
                     0
                        35.0
                                         20000
                                                         0
                     1
                                                         0
2
     15668575
                        26.0
                                         43000
3
     15603246
                     1
                        27.0
                                         57000
                                                         0
4
     15804002
                                                         0
                     0 19.0
                                         76000
395
     15691863
                    1
                        46.0
                                         41000
                                                         1
396
     15706071
                     0
                       51.0
                                         23000
                                                         1
                     1
                        50.0
                                                         1
397
     15654296
                                         20000
   15755018
                                                         0
398
                     0 36.0
                                         33000
     15594041
                     1
                        49.0
                                         36000
                                                         1
[400 rows x 5 columns]
```

B. Separate Variables (X) and class instance (Y)

```
11 x=df.iloc[:,1:3]
12 y=df.iloc[:,4]
```

Attribute variables used are gender, age, and salary. While the target variable is a categorical attribute between true and false.

C. Split data, 70% training and 30% testing

```
14 x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=100)
```

The dataset is divided where the training data gets a share of 70% and the testing data gets a share of 30%.

D. SVM Modelling

```
model=SVC()
model.fit(x_train, y_train)
y_pred=model.predict(x_test)
print("HASIL PREDIKSI SVM")
print(y_pred)
```

Furthermore, predictions are made using SVM modeling and the results formed are in the form of a 2-dimensional array.

E. Calculate confusion matrix and accuracy score

```
print("HASIL CONFUSION MATRIX")
print(confusion_matrix(y_test, y_pred))
print("HASIL AKURASI PEMODELAN SVM:", accuracy_score(y_test, y_pred))
```

```
HASIL CONFUSION MATRIX
[[72 3]
[14 31]]
HASIL AKURASI PEMODELAN SVM: 0.8583333333333333
```

The final results obtained are in the form of a confusion matrix and an accuracy score of: (72+31)/(72+31+14+3) = 0.8583.