

1. Determine, sem recorrer à calculadora, o conjunto dos números reais que são solução da equação

$$\frac{1}{2}\log_2(9x+1) = \log_2(6x)$$

Exame – 2022, Ép. especial

2. Na figura ao lado, está representado um cabo suspenso pelas suas extremidades em dois postes iguais, distanciados 10 metros entre si. Os postes estão instalados perpendicularmente ao solo, num terreno plano e horizontal. O ponto do cabo mais próximo do solo é equidistante dos dois postes.

Seja ha função, de domínio [0,10], definida por $h(x)=6,3\big(e^{\frac{x-5}{12,6}}+e^{\frac{5-x}{12,6}}\big)-7,6$.

Admita que h(x) é a altura, relativamente ao solo, em metros, de um ponto do cabo situado a x metros do poste da esquerda.

Qual é a distância, arredondada às décimas de metro, da base do poste da esquerda ao ponto do cabo que está mais próximo do solo?

- **(A)** 7,1 m
- **(B)** 7,3 m
- (C) 7,6 m
- **(D)** 7,8 m

Exame – 2022, 1.^a Fase

3. Resolva este item sem recorrer à calculadora.

Determine os números reais que são solução da equação

$$(e^x - 1)\ln(5 - 2x) + e^x\ln(3 - x) = \ln(3 - x)$$

Exame – 2022, 1.^a Fase

4. Determine, sem recorrer à calculadora, o conjunto dos números reais que verificam a condição

$$e^{-x}(4+e^{2x}) \ge 5 \land -2 \le x \le 2$$

Apresente a sua resposta na forma de intervalo ou de reunião de intervalos de números reais.

Exame – 2021, Ép. especial

5. Num laboratório cuja temperatura ambiente é constante, aqueceu-se uma substância até atingir uma certa temperatura, superior à temperatura ambiente, e, a seguir, deixou-se arrefecer essa substância durante uma hora.

Admita que a temperatura dessa substância, em graus Celsius, t minutos após o início do arrefecimento, é dada por

$$T(t) = 20 + 100e^{-kt}, \ 0 \le t \le 60$$

em que k é uma constante real positiva.

Durante o arrefecimento, houve um instante t_1 em que a temperatura da substância foi 30°C.

Qual é o valor de k?

$$(\mathbf{A})\,\ln\frac{10}{t_1}$$

(B)
$$t_1 - \ln 10$$

(C)
$$\frac{\ln 10}{t_1}$$

(A)
$$\ln \frac{10}{t_1}$$
 (B) $t_1 - \ln 10$ (C) $\frac{\ln 10}{t_1}$ (D) $t_1 + \ln 10$

Exame – 2021, 2.ª Fase

6. Determine, sem recorrer à calculadora, os números reais que são solução da equação

$$x\ln(1-x) - \ln(1-x) = (1-x)\ln(3-2x)$$

Exame - 2021, 2.ª Fase

7. Determine, sem recorrer à calculadora, os números reais que são solução da equação

$$\ln\left((1-x)e^{x-1}\right) = x$$

Exame - 2021, 1.a Fase

8. Dados dois números reais positivos, sabe-se que a soma dos seus logaritmos na base 8 é igual a $\frac{1}{2}$

A que é igual o produto desses dois números?

- **(A)** 2
- **(B)** 3
- (C) 8
- **(D)** 9

Exame – 2020, $2.^a$ Fase

9. Seja f a função definida em $]-\infty,2]$ por $f(x)=x+\ln(e^x+1)$

Resolva o item seguinte sem recorrer à calculadora.

9.1. A equação f(x) = 2x + 1 tem uma única solução.

Determine essa solução e apresente-a na forma $-\ln k$, com k>0

9.2. Seja h a função definida em $]-\infty,2]$ por h(x)=f(x)-x Qual das expressões seguintes pode ser a expressão analítica da função h^{-1} , função inversa de h?

(B)
$$1 - e^x$$

(C)
$$\ln(e^x - 1)$$

(A)
$$e^x - 1$$
 (B) $1 - e^x$ (C) $\ln(e^x - 1)$ (D) $\ln(1 - e^x)$

Exame - 2020, 1.a Fase

10. Considere a função h, de domínio $\mathbb{R} \setminus \{1\}$, definida por $h(x) = \frac{e^x}{x-1}$

Resolva, em $\mathbb{R} \setminus \{1\}$, a equação $(x-1) \times h(x) + 2e^{-x} = 3$

Exame - 2019, 2.ª Fase

11. Sejam $a \in b$ dois números reais positivos tais que a > b

Sabe-se que a + b = 2(a - b)

Qual é o valor, arredondado às décimas, de $\ln(a^2-b^2)-2\ln(a+b)$?

$$(C) -0.7$$

(C)
$$-0.7$$
 (D) -1.4

Exame - 2019, 1.a Fase

12. Determine o conjunto dos números reais que são soluções da inequação

$$\log_2(x+1) \le 3 - \log_2(8-x)$$

Apresente a resposta usando a notação de intervalos de números reais.

Exame - 2018, 2.ª Fase

13. Seja f a função, de domínio f a função, de domínio \mathbb{R} , definida por

$$f(x) = \begin{cases} 3 + \frac{e^x}{1 - x} & \text{se } x < 1\\ \frac{\ln(x^2) + 2}{x} & \text{se } x \ge 1 \end{cases}$$

Seja h a função, de domínio \mathbb{R} , definida por h(x) = x + 1

Qual é o valor de $(f \circ h^{-1})$ (2)?

(o símbolo o designa a composição de funções)

- (A) 0
- **(B)** 1
- (C) 2
- **(D)** 3

Exame - 2018, 2.ª Fase

14. Sejam a e b números reais superiores a 1 tais que $\ln b = 4 \ln a$

Determine o conjunto dos números reais que são soluções da inequação $a^x \geq b^{\frac{1}{x}}$

Apresente a resposta usando a notação de intervalos de números reais.

Exame - 2018, 1.a Fase

15. Seja a um número real superior a 1

Qual é o valor de $4 + \log_a (5^{\ln a})$?

- **(A)** $\ln(10e)$
- **(B)** $\ln (5e^4)$ **(C)** $\ln (5e^2)$
- **(D)** $\ln(20e)$

Exame – 2017, Ép. especial

16. Pretende-se eliminar um poluente diluído na água de um tanque de um viveiro. Para tal, é escoada água por um orifício na base do tanque e, em simultâneo, é vertida no tanque água não poluída, de tal modo que a quantidade total de água no tanque se mantém.

Admita que a massa, p, de poluente, medida em gramas, t horas após o início do processo, é, para um certo número real positivo k, dada por

$$p(t) = 120 e^{-kt}, \ (t \ge 0)$$

Resolva os dois itens seguintes recorrendo exclusivamente a métodos analíticos.

Na resolução do segundo item, pode utilizar a calculadora para efetuar eventuais cálculos numéricos.

- 16.1. Determine o valor de k, sabendo que, duas horas após o início do processo, a massa de poluente é metade da existente ao fim de uma hora. Apresente o resultado na forma $\ln a$, com a > 1
- 16.2. Admita agora que k = 0.7

Determine a taxa média de variação da função p no intervalo [0,3] e interprete o resultado obtido no contexto da situação descrita.

Apresente o valor da taxa média de variação arredondado às unidades.

Se, em cálculos intermédios, proceder a arredondamentos, conserve, no mínimo, duas casas decimais.

Exame – 2017, Ép. especial

17. Considere a função f, de domínio \mathbb{R}^+ , definida por $f(x) = \frac{\ln x}{x}$

Resolva a inequação $f(x) > 2 \ln x$, recorrendo a métodos analíticos, sem utilizar a calculadora.

Apresente o conjunto solução usando a notação de intervalos de números reais.

Exame - 2017, 2.ª Fase

18. Na figura ao lado, está representada uma secção de uma ponte pedonal que liga as duas margens de um rio. A ponte, representada pelo arco PQ, está suportada por duas paredes, representadas pelos segmentos de reta [OP] e [RQ]. A distância entre as duas paredes é 7 metros.

O segmento de reta [OR] representa a superfície da água do rio.

Considere a reta OR como um eixo orientado da esquerda para a direita, com origem no ponto O e em que uma unidade corresponde a 1 metro.

Para cada ponto situado entre O e R, de abcissa x, a distância na vertical, medida em metros, desse ponto ao arco PQ é dada por

$$f(x) = 9 - 2.5 (e^{1-0.2x} + e^{0.2x-1}), \text{com } x \in [0.7]$$

Resolva o item seguinte recorrendo a métodos analíticos; utilize a calculadora apenas para efetuar eventuais cálculos numéricos.

Seja S o ponto pertencente ao segmento de reta [OR] cuja abcissa x verifica a equação

$$\sqrt{f(0)^2 + x^2} = 2$$

Resolva esta equação, apresentando a solução arredondada às décimas, e interprete essa solução no contexto da situação descrita.

Se, em cálculos intermédios, proceder a arredondamentos, conserve, no mínimo, duas casas decimais.

Exame - 2017, 1.a fase

19. Sejam $a \in b$ dois números reais superiores a 1, tais que $a = b^3$

Qual dos valores seguintes é igual $\log_a b + \log_b a$?

(A)
$$\frac{4}{3}$$

(B) 1 **(C)**
$$\frac{10}{3}$$
 (D) 3

Exame - 2016, Ép. especial

20. Seja f a função, de domínio [-3,3], cujo gráfico está representado na figura ao lado.

Tal como a figura sugere, todos os objetos inteiros têm imagens

Seja g a função, de domínio \mathbb{R}^+ , definida por $g(x) = \ln x$

Quais são as soluções da equação $(f \circ g)(x) = 0$?

(o símbolo o designa a composição de funções)

(A)
$$\frac{1}{e}$$
; e^2 (B) e ; e^2 (C) 1; e (D) $\frac{1}{e}$; e

(B)
$$e; e^2$$

(D)
$$\frac{1}{e}$$
; e

Exame – 2016, Ép. especial

21. O movimento de uma nave espacial é um movimento de propulsão provocado pela libertação de gases resultantes da queima e explosão de combustível.

Um certo tipo de nave tem por função o transporte de carga destinada ao abastecimento de uma estação

Designemos por x a massa, em milhares de toneladas, da carga transportada por uma nave desse tipo e por V a velocidade, em quilómetro por segundo, que essa mesma nave atinge no instante em que termina a queima do combustível.

Considere que
$$V$$
 é dada, em função de x , por $V(x)=3\ln\left(\frac{x+300}{x+60}\right) \quad (x\geq 0)$

Nos dois itens seguintes, a calculadora só pode ser utilizada em cálculos numéricos; sempre que proceder a arredondamentos, use duas casas decimais.

21.1. Admita que uma nave do tipo referido transporta uma carga de 25 mil toneladas.

Determine quanto tempo demora essa nave a percorrer 200 quilómetros a partir do instante em que termina a queima do combustível, sabendo que a velocidade da nave se mantém constante a partir desse instante.

Apresente o resultado em segundos, arredondado às unidades.

21.2. Determine qual deve ser a massa da carga transportada por uma dessas naves, de modo que atinja, após a queima da totalidade do combustível, uma velocidade de 3 quilómetros por segundo. Apresente o resultado em milhares de toneladas, arredondado às unidades.

Exame - 2016, Ép. especial

22. Seja k um número real positivo.

Considere a função g, de domínio $]-k,+\infty[$, definida por $g(x)=\ln(x+k)$ Mostre que: se $g(k)\times g(0)<0$, então $k \in \left[\frac{1}{2}, 1\right]$ Na resolução deste item, não utilize a calculadora.

Exame - 2016, Ép. especial

23. Para certos valores de a e de b (a>1 e b>1), tem-se $\log_a(ab^3)=5$

Qual é, para esses valores de a e de b, o valor de $\log_b a$?

(A)
$$\frac{5}{3}$$

(B)
$$\frac{3}{4}$$

(C)
$$\frac{3}{5}$$

(A)
$$\frac{5}{3}$$
 (B) $\frac{3}{4}$ (C) $\frac{3}{5}$ (D) $\frac{1}{3}$

Exame - 2016, 2.ª Fase

24. O José e o António são estudantes de Economia. O José pediu emprestados 600 euros ao António para comprar um computador, tendo-se comprometido a pagar o empréstimo em prestações mensais sujeitas a um certo juro.

Para encontrarem as condições de pagamento do empréstimo, os dois colegas adaptaram uma fórmula que tinham estudado e estabeleceram um contrato.

Nesse contrato, a prestação mensal p, em euros, que o José tem de pagar ao António é dada por

$$p = \frac{600x}{1 - e^{-nx}}$$

em que n é o número de meses em que o empréstimo será pago e x é a taxa de juro mensal.

Resolva recorrendo a métodos analíticos.

Na resolução, pode utilizar a calculadora para efetuar eventuais cálculos numéricos.

O José e o António acordaram que a taxa de juro mensal seria 0.3% (x=0.003)

Em quantos meses será pago o empréstimo, sabendo-se que o José irá pagar uma prestação mensal de 24 euros?

Apresente o resultado arredondado às unidades.

Se, em cálculos intermédios, proceder a arredondamentos, conserve, no mínimo, cinco casas decimais.

Exame – 2016, 2.ª Fase

25. Considere a função f, de domínio $]-\infty,-1[\cup]1,+\infty[$ definida por $f(x)=\ln\left(\frac{x-1}{x+1}\right)$

Resolva o item seguinte recorrendo a métodos analíticos, sem utilizar a calculadora.

Seja a um número real maior do que 1

Mostre que a reta secante ao gráfico de f nos pontos de abcissas $a \in -a$ passa na origem do referencial.

Exame – 2016, 1.ª Fase

26. Seja a um número real.

Seja a função f, de domínio \mathbb{R}^+ , definida por $f(x) = e^{a \ln x}$

Considere, num referencial o.n. xOy, o ponto P(2,8)Sabe-se que o ponto P pertence ao gráfico de f

Qual \acute{e} o valor de a?

- **(A)** 1
- **(B)** 2
- **(C)** 3
- **(D)** 4

Exame - 2015, Ép. especial

27. Admita que, ao longo dos séculos XIX, XX e XXI, o número de habitantes, N, em milhões, de uma certa região do globo é dado aproximadamente por

$$N = \frac{200}{1 + 50e^{-0.25t}} \ (t \ge 0)$$

em que t é o tempo medido em décadas e em que o instante t=0 corresponde ao final do ano 1800.

- 27.1. Determine a taxa média de variação da função N no intervalo [10, 20]Apresente o resultado arredondado às unidades. Interprete o resultado, no contexto da situação descrita.
- 27.2. Mostre que $t = \ln \left(\frac{50N}{200 N} \right)^4$

Exame – 2015, Ép. especial

28. Para certos valores de a e de b (a > 1 e b > 1), tem-se $\log_b a = \frac{1}{2}$

Qual é, para esses valores de a e de b, o valor de $\log_a(a^2b)$?

- (A) $\frac{2}{3}$ (B) $\frac{5}{3}$ (C) 2 (D) 5

Exame - 2015, 2.ª Fase

29. Seja f a função, de domínio \mathbb{R} , definida por

$$f(x) = \begin{cases} 1 + xe^x & \text{se } x \le 3\\ \ln(x-3) - \ln x & \text{se } x > 3 \end{cases}$$

Resolva, em $]-\infty,3]$, a condição f(x)-2x>1, recorrendo a métodos analíticos, sem utilizar a calculadora.

Apresente o conjunto solução, usando a notação de intervalos de números reais.

Exame - 2015, 2.a Fase

- 30. Qual das seguintes expressões é, para qualquer número real k, igual a $\log_3\left(\frac{3^k}{9}\right)$? (A) $\frac{k}{2}$ (B) k-2 (C) $\frac{k}{9}$ (D) k-9

Exame - 2015, 1.a Fase

31. Na figura ao lado, está representado um recipiente cheio de um líquido viscoso. Tal como a figura ilustra, dentro do recipiente, presa à sua base, encontra-se uma esfera. Essa esfera está ligada a um ponto P por uma mola esticada. Num certo instante, a esfera é desprendida da base do recipiente e inicia um movimento vertical. Admita que, t segundos após esse instante, a distância, em centímetros, do centro da esfera ao ponto P é dada por

$$d(t) = 10 + (5 - t)e^{-0.05t}, (t \ge 0)$$

Sabe-se que a distância do ponto P à base do recipiente é 16 cm Determine o volume da esfera.

Apresente o resultado em cm³, arredondado às centésimas.

Exame - 2015, 1.a Fase

mat.absolutamente.net

32. Seja b um número real.

Sabe-se que $\log b = 2014$ (log designa logaritmo de base 10)

Qual é o valor de log(100b)?

- **(A)** 2016
- **(B)** 2024
- **(C)** 2114
- **(D)** 4028

Teste Intermédio 12.º ano - 30.04.2014

33. Seja a um número real positivo.

Considere o conjunto $S = \{x \in \mathbb{R} : \ln(e^{-x} - a) \le 0\}.$ Qual dos conjuntos seguintes \acute{e} o conjunto S?

- (A) $]-\ln(1+a), -\ln a[$ (B) $[-\ln(1+a), -\ln a[$
- (C) $]-\infty, -\ln(1+a)]$ (D) $[-\ln(1+a), +\infty[$

Exame - 2013, Ép. especial

34. Sejam ae bdois números reais tais que 1 < a < be $\log_a b = 3$ Qual é, para esses valores de a e de b, o valor de $\log_a \left(a^5 \times \sqrt[3]{b} \right) + a^{\log_a b}$?

- **(A)** 6 + b

- **(B)** 8+b **(C)** $6+a^b$ **(D)** $8+a^b$

Exame - 2013, 2.ª Fase

35. Para certos valores de a e de b (a>1 e b>1), tem-se $log_ab=2$ Qual é, para esses valores de a e de b, o valor de $\log_b a + \log_a \sqrt{b}$?

- (A) $\frac{1}{2} + \sqrt{2}$ (B) $-2 + \sqrt{2}$ (C) $\frac{1}{2}$

Teste Intermédio 12.º ano – 23.02.2013

36. Considere que dois balões esféricos, que designamos por balão A e por balão B, se deslocam na atmosfera, por cima de um solo plano e horizontal.

Num determinado instante, é iniciada a contagem do tempo. Admita que, durante o primeiro minuto imediatamente a seguir a esse instante, as distâncias, medidas em metros, do centro do balão A ao solo e do centro do balão B ao solo são dadas, respetivamente, por

$$a(t) = e^{-0.03t} - 0.02t + 3$$
 e $b(t) = 6e^{-0.06t} - 0.02t + 2$

A variável t designa o tempo, medido em segundos, que decorre desde o instante em que foi iniciada a contagem do tempo $(t \in [0,60])$.

Resolva os dois itens seguintes sem utilizar a calculadora, a não ser para efetuar eventuais cálculos

Sempre que, nos cálculos intermédios, proceder a arredondamentos, conserve, no mínimo, três casas decimais.

36.1. Determine a distância entre o centro do balão A e o centro do balão B, cinco segundos após o início da contagem do tempo, sabendo que, nesse instante, a distância entre as projeções ortogonais dos centros dos balões no solo era 7 metros.

Apresente o resultado em metros, arredondado às décimas.

36.2. Sabe-se que, alguns segundos após o início da contagem do tempo, os centros dos dois balões estavam à mesma distância do solo.

Determine quanto tempo decorreu entre o instante inicial e o instante em que os centros dos dois balões estavam à mesma distância do solo.

Apresente o resultado em segundos, arredondado às unidades.

Teste Intermédio $12.^{\circ}$ ano -28.02.2013

37. Sejam a,b e c três números tais que $a\in]-1,+\infty[,\,b\in\mathbb{R}^+$ e $c\in\mathbb{R}^+$ Sabe-se que $\log_a b = c$ e que $\log_a \sqrt{c} = 3$ Qual das expressões seguintes é equivalente a $\log_a \sqrt{b \times c}$?

(A)
$$c + 3$$

(B)
$$c-3$$
 (C) $\frac{c}{2}+3$

(D)
$$\frac{c}{2} - 3$$

Exame - 2012, Ép. especial

38. Considere a função f, de domínio \mathbb{R} , definida por:

$$f(x) = e^{x-2} - \frac{4e^{-x} + 4}{e^2}$$

Mostre que $\ln (2 + 2\sqrt{2})$ é o único zero da função f, recorrendo a métodos exclusivamente analíticos.

Exame - 2012, 1^a Fase

- 39. Seja a um número real maior do que 1 e seja $b=a^\pi$ Qual é o valor, arredondado às unidades, de $\log_a \left(a^{12} \times b^{100}\right)$?
 - (A) 138
- **(B)** 326
- **(C)** 1238
- **(D)** 3770

Teste Intermédio 12.º ano - 24.05.2012

- 40. Seja f a função, de domínio \mathbb{R}^+ , definida por $f(x) = 2 + \log_3 x$ Resolva os dois itens seguintes **sem recorrer à calculadora**.
 - 40.1. Determine o conjunto dos números reais para os quais se tem

$$f(x) \ge 4 + \log_3(x - 8)$$

Apresente a sua resposta na forma de intervalo de números reais.

40.2. Determine o valor de $f(36^{1000}) - f(4^{1000})$

Teste Intermédio 12.º ano - 13.03.2012

41. Um vírus atacou os frangos de um aviário. Admita que x dias após o instante em que o vírus foi detetado, o número de frangos infetados é dado

a
proximadamente por
$$f(x) = \frac{200}{1 + 3 \times 2^{3 - 0, 1x}}$$

(considere que x = 0 corresponde ao instante em que o vírus foi detetado).

Resolva o item seguinte sem recorrer à calculadora, a não ser para efetuar cálculos numéricos.

No instante em que o vírus foi detetado, já existiam frangos infetados.

Passados alguns dias, o número de frangos infetados era dez vezes maior.

Quantos dias tinham passado?

Teste Intermédio 12.º ano – 13.03.2012

42. O momento sísmico, M_0 , é uma medida da quantidade total de energia que se transforma durante um sismo. Só uma pequena fração do momento sísmico é convertida em energia sísmica irradiada, E, que é a que os sismógrafos registam.

A energia sísmica irradiada é estimada, em Joules, por $E=M_0\times 1.6\times 10^{-5}$

A magnitude, M, de um sismo é estimada por $M = \frac{2}{3} \log_{10}(E) - 2.9$

Resolva os dois itens seguintes recorrendo a métodos exclusivamente analíticos.

42.1. Admita que um sismo que ocorreu no Haiti, em 2010, teve magnitude 7,1 Determine o momento sísmico, M_0 , para esse sismo.

Escreva o resultado na forma $a \times 10^n$, com n inteiro relativo e com a entre 1 e 10

42.2. Sejam M_1 e M_2 as magnitudes de dois sismos.

Mostre que, se a diferença entre a magnitude M_1 e a magnitude M_2 é igual a $\frac{2}{3}$, então a energia sísmica irradiada por um dos sismos é dez vezes superior à energia sísmica irradiada pelo outro sismo.

Exame – 2011, Prova especial

43. Para um certo valor real de k, admita que a quantidade de combustível, em litros, existente no depósito de uma certa máquina agrícola, t minutos após ter começado a funcionar, é dada aproximadamente por

$$Q(t) = 12 + \log_3(81 - kt^2)$$
, com $t \in [0,20]$

Considere que essa máquina agrícola funcionou durante 20 minutos e que, nesse período de tempo, consumiu 2 litros de combustível.

Determine o valor de k recorrendo a métodos exclusivamente analíticos.

Exame - 2011, Ép. especial

44. Na estufa de um certo jardim botânico, existem dois lagos aquecidos, o lago A e o lago B. As zero horas do dia 1 de Março de 2010, cada lago recebeu uma espécie diferente de nenúfares, a saber Victoria amazonica e Victoria cruziana.

 $N_A(t)$ é o número de nenúfares existentes no lago A, t dias após as zero horas do dia 1 de Março de 2010. Esses nenúfares são da espécie Victoria amazonica e desenvolvem-se segundo o modelo

$$N_A(t) = \frac{120}{1 + 7 \times e^{-0.2t}} \text{ com } t \ge 0$$

 $N_B(t)$ é o número de nenúfares existentes no lago B, t dias após as zero horas do dia 1 de Março de 2010. Esses nenúfares são da espécie Victoria cruziana e desenvolvem-se segundo o modelo

$$N_B(t) = \frac{150}{1 + 50 \times e^{-0.4t}} \text{ com } t \ge 0$$

Resolva os dois itens seguintes recorrendo a métodos exclusivamente analíticos.

44.1. Como referido, às zero horas do dia 1 de Março de 2010, o lago A recebeu um certo número de nenúfares da espécie Victoria amazonica. Decorridos 7 dias, esse número aumentou.

Determine de quanto foi esse aumento.

Apresente o resultado com arredondamento às unidades.

44.2. Determine quantos dias foram necessários, após as zero horas do dia 1 de Março de 2010, para que o número de nenúfares existentes no lago A fosse igual ao número de nenúfares existentes no lago B. Apresente o resultado com arredondamento às unidades.

Exame - 2011, 2.a Fase

45. Seja f a função, de domínio \mathbb{R}^+ , definida por

$$f(x) = \begin{cases} 2 + \frac{\sec(x-1)}{ex - e} & \sec 0 < x < 1\\ xe^{-x} + 2x & \sec x \ge 1 \end{cases}$$

Resolva, sem recorrer à calculadora, no intervalo $[1, +\infty[$, a equação $\frac{f(x)}{x} = e^x - \frac{2}{3}$

Teste Intermédio 12.º ano – 26.05.2011

46. Na figura ao lado, está parte da representação gráfica da função f, de domínio $\mathbb{R}^+,$ definida por $f(x) = \log_9(x)$

P é o ponto do gráfico de f que tem ordenada $\frac{1}{2}$ Qual é a abcissa do ponto P?

(B) 2 (C) 3 (D) $\frac{9}{2}$

Teste Intermédio 12.º ano - 19.01.2011

47. Determine, sem recorrer à calculadora, o conjunto dos números reais que são soluções da inequação

$$\log_3(7x + 6) \ge 2 + \log_3(x)$$

Apresente a sua resposta usando a notação de intervalos de números reais.

Teste Intermédio 12.º ano - 19.01.2011

48. Na década de sessenta do século passado, uma doença infecciosa atacou a população de algumas regiões do planeta.

Admita que, ao longo dessa década, e em qualquer uma das regiões afetadas, o número, em milhares, de pessoas que estavam infetadas com a doença, t anos após o início de 1960, é dado, aproximadamente, por

$$I(t) = \frac{3e^{kt}}{1 + pe^{kt}}$$

em que k e p são parâmetros reais.

Resolva os dois itens seguintes sem recorrer à calculadora, a não ser para efetuar cálculos numéricos.

48.1. Admita que, para uma certa região, $k = \frac{1}{2}$ e p = 1

Determine o ano em que o número de pessoas que estavam infetadas, nessa região, atingiu 2500.

Nota – Sempre que, nos cálculos intermédios, proceder a arredondamentos, conserve, no mínimo, três casas decimais.

48.2. Numa outra região, constatou-se que havia um milhar de pessoas que estavam infetadas no início de 1961.

Qual é, para este caso, a relação entre $k \in p$?

Apresente a sua resposta na forma $k = -\ln(A + pB)$, em que A e B são números reais.

Teste Intermédio 12.º ano - 19.01.2011

49. Considere a função f, de domínio \mathbb{R}^- , definida por $f(x) = \ln(-3x)$ Qual é a solução da equação f(x) = 2?

(A)
$$\frac{1}{2}e^3$$

(A)
$$\frac{1}{2}e^3$$
 (B) $-\frac{1}{2}e^3$ (C) $-\frac{1}{3}e^2$ (D) $\frac{1}{3}e^2$

(C)
$$-\frac{1}{3}e^2$$

(D)
$$\frac{1}{3}e^2$$

Exame – 2010, Ép. especial

50. Considere a função h, de domínio \mathbb{R} , definida por $h(x) = \begin{cases} \frac{e^{2x} - e^x}{x} & \text{se } x > 0 \\ \ln(x^2 + 1) & \text{se } x \leq 0 \end{cases}$

Recorrendo a métodos exclusivamente analíticos, resolva, no intervalo $]-\infty,0]$, a inequação, h(x)>h(-4)

Exame - 2010, Ép. especial

- 51. Seja g a função, de domínio $]-2,+\infty[$, definida por $g(x)=\ln(x+2)$ Considere, num referencial o.n. xOy, um triângulo [OAB] tal que:
 - O é a origem do referencial;
 - A é um ponto de ordenada 5;
 - ullet B é o ponto de intersecção do gráfico da função g com o eixo das abcissas.

Qual é a área do triângulo [OAB]?

(A)
$$\frac{5}{2}$$

(B)
$$-\frac{1}{2}$$

(C)
$$\frac{5 \ln 2}{2}$$

(A)
$$\frac{5}{2}$$
 (B) $-\frac{1}{2}$ (C) $\frac{5 \ln 2}{2}$ (D) $-\frac{\ln 2}{2}$

Exame - 2010, 1.a Fase

52. Na Internet, no dia 14 de Outubro de 2009, pelas 14 horas, colocaram-se à venda todos os bilhetes de um espetáculo. O último bilhete foi vendido cinco horas após o início da venda.

Admita que, t horas após o início da venda, o número de bilhetes vendidos, em centenas, é dado, aproximadamente, por

$$N(t) = 8\log_4(3t+1)^3 - 8\log_4(3t+1)$$
, com $t \in [0,5]$

Resolva os dois itens seguintes, recorrendo a métodos exclusivamente analíticos.

- 52.1. Mostre que $N(t) = 16 \log_4(3t+1)$, para qualquer $t \in [0,5]$
- 52.2. Determine quanto tempo foi necessário para vender 2400 bilhetes.

Apresente o resultado em horas e minutos.

Se utilizar a calculadora em eventuais cálculos numéricos, sempre que proceder a arredondamentos, use três casas decimais, apresentando os minutos arredondados às unidades.

Exame - 2010, 1.a Fase

53. Considere a função f, de domínio \mathbb{R} , definida por $f(x) = 3 + 4x^2e^{-x}$ Seja g a função, de domínio $\mathbb{R} \setminus \{0\}$, definida por

$$g(x) = x + \ln[f(x) - 3]$$
 (l
n designa logaritmo de base e)

Determine, usando exclusivamente métodos analíticos, os zeros da função q

Teste Intermédio 12.º ano - 19.05.2010

- 54. Qual é o valor de $\log_5\left(\frac{5^{1000}}{25}\right)$?
 - **(A)** 40
- **(B)** 500 **(C)** 975
- (D) 998

Teste Intermédio $12.^{\circ}$ ano -15.03.2010

55. Numa certa região, uma doença está a afetar gravemente os coelhos que lá vivem. Em consequência dessa doença, o número de coelhos existentes nessa região está a diminuir.

Admita que o número, em milhares, de coelhos que existem nessa região, t semanas após a doença ter sido detetada, é dado aproximadamente por

$$f(t) = \frac{k}{3 - 2e^{-0.13t}}$$
 (k designa um número real positivo)

Resolva, usando exclusivamente métodos analíticos, os dois itens seguintes.

Nota: a calculadora pode ser utilizada em cálculos numéricos; sempre que, em cálculos intermédios, proceder a arredondamentos, conserve, no mínimo, quatro casas decimais.

- 55.1. Suponha que k = 10
 - Ao fim de quantos dias, após a doença ter sido detetada, é que o número de coelhos existentes na referida região é igual a 9000?
- 55.2. Admita agora que o valor de k é desconhecido.
 - Sabe-se que, durante a primeira semana após a deteção da doença, morreram dois mil coelhos e não nasceu nenhum.

Determine o valor k de arredondado às décimas.

Teste Intermédio 12.º ano - 15.03.2010

56. Sejam a e b dois números reais superiores a 1 e tais que $b=a^2$.

Qual dos valores seguintes é igual a $1 + \log_b a$?

- (A) $\frac{2}{3}$ (B) $\frac{3}{4}$ (C) $\frac{4}{3}$ (D) $\frac{3}{2}$

Exame - 2009, Ép. especial

mat.absolutamente.net

57. Na figura seguinte, está representada parte do gráfico da função f, de domínio \mathbb{R} , definida por $f(x) = e^x$.

Considere um ponto, P, a deslocar-se sobre o semieixo positivo das abcissas.

Seja A o ponto pertencente ao gráfico da função que tem a mesma abcissa que o ponto P.

Para cada posição do ponto P, define-se um triângulo [OAP]. Qual das expressões seguintes representa, em função de x (abcissa do ponto P), a área do triângulo [OAP]?

- (A) $x.e^x$ (B) $\frac{x.e^x}{2}$ (C) $\frac{x+e^x}{2}$

Exame - 2009, Ép. especial

58. Admita que a magnitude, M, de um sismo é dada, na escala de Richter, por

$$M = 0.67 \log E - 3.25$$

sendo E a energia, em joules, libertada por esse sismo. (log designa logaritmo de base 10.)

Resolva, recorrendo exclusivamente a métodos analíticos, os dois itens seguintes.

Nota: A calculadora pode ser utilizada em eventuais cálculos numéricos; sempre que proceder a arredondamentos, use duas casas decimais.

58.1. Sejam E_1 e E_2 as energias libertadas por dois sismos de magnitudes M_1 e M_2 , respetivamente.

Determine $\frac{E_1}{E_2}$, com aproximação às unidades, sabendo que $M_1-M_2=1$

Interprete o valor obtido no contexto da situação apresentada.

58.2. O sismo que ocorreu nos Açores, no dia 1 de Abril de 2009, teve magnitude 4,7, na escala de Richter.

Qual foi a energia libertada nesse sismo?

Escreva o resultado em notação científica, isto é, na forma $a \times 10^b$, sendo b um número inteiro, e a um número entre 1 e 10.

Apresente o valor de a arredondado às unidades.

Exame – 2009, Ép. especial

- 59. Seja f a função, de domínio \mathbb{R} , definida por $f(x) = e^{x+1}$ Qual dos pontos seguintes pertence ao gráfico de f? (ln designa logaritmo de base e.)
 - **(A)** (-1,0)
- **(B)** $(\ln 2, 2e)$
- (C) $(\ln 5, 6)$
- **(D)** (-2, e)

Exame - 2009, 2.ª Fase

60. Numa certa zona de cultivo, foi detetada uma doença que atinge as culturas. A área afetada pela doença começou por alastrar durante algum tempo, tendo depois começado a diminuir.

Admita que a área, em hectares, afetada pela doença, é dada, em função de t, por

$$A(t) = 2 - t + 5\ln(t+1)$$

sendo t ($0 \le t < 16$) o tempo, em semanas, decorrido após ter sido detetada essa doença.

Quando a doença foi detetada, já uma parte da área de cultivo estava afetada. Passada uma semana, a área de cultivo afetada pela doença aumentou.

De quanto foi esse aumento?

Resolva, recorrendo a métodos exclusivamente analíticos e apresente o resultado em hectares, arredondado às centésimas.

Exame - 2009, 2.a Fase

61. Seja x um número real positivo.

Qual das expressões seguintes é igual a $e^{4 \ln x} - 10^{2 \log x}$?

(ln designa logaritmo de base e; log designa logaritmo de base 10.)

(A)
$$\ln x^4 - \log x^2$$

(B)
$$x^4 + x^2$$

(C)
$$x^4 - x^2$$

(A)
$$\ln x^4 - \log x^2$$
 (B) $x^4 + x^2$ (C) $x^4 - x^2$ (D) $\frac{\ln x^4}{\log x^2}$

Exame - 2009, 1.ª Fase

62. Sejam as funções $f \in h$, de domínios $]1, +\infty[e] - \infty, 2[$, respetivamente, definidas por $f(x) = \log_2(x-1)$ e por $h(x) = \log_2(2-x)$

Determine, recorrendo a métodos exclusivamente analíticos, o conjunto solução da condição $f(x) \ge 1 + h(x)$

Apresente o resultado sob a forma de intervalo real.

Exame - 2009, 1.ª Fase

63. Sejam $a, x \in y$ três números reais tais que $\log_a x = 1 + 5 \log_a y$ Qual das igualdades seguintes é necessariamente verdadeira?

(A)
$$x = ay^5$$

(B)
$$x = 5ay$$

(C)
$$x = 5y$$

(B)
$$x = 5ay$$
 (C) $x = 5y$ **(D)** $x = y^5$

Teste Intermédio $12.^{\circ}$ ano -27.05.2009

64. Determine, sem recorrer à calculadora, o conjunto dos números reais que são soluções da inequação

$$\log_2(x-1) + \log_2(13-x) \le 5$$

Apresente a sua resposta na forma de união de intervalos de números reais.

Teste Intermédio 12.º ano - 11.03.2009

65. Quando uma substância radioativa se desintegra, a sua massa, medida em gramas, varia de acordo com uma função do tipo

$$m(t) = ae^{bt}, \ t \ge 0,$$

em que a variável t designa o tempo, medido em milénios decorrido desde um certo instante inicial. A constante real b depende da substância e a constante real a é a massa da substância no referido instante

Resolva as alíneas seguintes sem recorrer à calculadora, a não ser para efetuar cálculos numéricos.

- 65.1. O carbono-14 é uma substância radioativa utilizada na datação de fósseis em que esteja presente. Relativamente a um certo fóssil, sabe-se que:
 - a massa de *carbono-14* nele presente, mil anos depois de um certo instante inicial, era de 2,91 g
 - a massa de carbono-14 nele presente, dois mil anos depois do mesmo instante inicial, era de 2,58 g

Tendo em conta estes dados, determine:

- o valor da constante b para o carbono-14;
- a massa de carbono-14 que existia no fóssil, no referido instante inicial.

Apresente os dois valores arredondados às centésimas.

Nota: se, em cálculos intermédios, proceder a arredondamentos, conserve, no mínimo, três casas decimais.

65.2. O rádio-226 é outra substância radioativa.

Em relação ao rádio-226, sabe-se que b = -0.43

Verifique que, quaisquer que sejam os valores de a e de t, $\frac{m(t+1,6)}{m(t)}$ é constante.

Determine o valor dessa constante, arredondado às décimas, e interprete esse valor, no contexto da situação descrita.

Teste Intermédio $12.^{\circ}$ ano -11.03.2009

- 66. Para todo o $x \in \mathbb{R}$, qual das seguintes expressões é equivalente a x. $\ln(e^e)$?
 - (**A**) *ex*

- (C) e^{ex} (D) $x + e^{-x}$

Exame – 2008, Ép. especial

67. Aqueceu-se água num recipiente, durante um determinado tempo, num local onde a temperatura ambiente é constante e igual a 25° Celsius. Interrompeu-se o processo de aquecimento, e nesse instante, a água começou a arrefecer.

O arrefecimento da água segue a Lei do arrefecimento de Newton, de acordo com o modelo matemático: $T(t) = 25 + 48e^{-0.05t}$, em que T(t) representa a temperatura da água em graus Celsius, t minutos após o início do arrefecimento.

Recorrendo exclusivamente a métodos analíticos, determine ao fim de quanto tempo, após o início do arrefecimento, a temperatura da água atinge os 36° Celsius.

Apresente o resultado em minutos e segundos, com estes arredondados às unidades.

Nota: A calculadora pode ser utilizada em eventuais cálculos numéricos; sempre que proceder a arredondamentos, use quatro casas decimais.

Exame – 2008, Ép. especial

- 68. Sabe-se que o ponto P(1,3) pertence ao gráfico da função $f(x) = 2^{ax} 1$, $a \in \mathbb{R}$. Qual \acute{e} o valor de a?
 - **(A)** 2
- **(B)** 1
- **(C)** 0
 - **(D)** -2

Exame - 2008, 2.ª Fase

mat.absolutamente.net

69. A massa de uma substância radioativa diminui com a passagem do tempo. Supõe-se que, para uma amostra de uma determinada substância, a massa, em gramas, ao fim de t horas de observação, é dada pelo modelo matemático $M(t) = 15 \times e^{-0.02t}$, t > 0.

Resolva, usando métodos analíticos, o itens que se segue.

Ao fim de quanto tempo se reduz a metade a massa inicial da amostra da substância radioactiva? Apresente o resultado em horas e minutos, estes arredondados às unidades.

Nota: A calculadora pode ser utilizada em eventuais cálculos intermédios; sempre que proceder a arredondamentos, use três casas decimais.

Exame - 2008, 2.ª Fase

70. Seja a um número real maior do que 1.

Qual dos seguintes valores é igual a $2\log_a\left(a^{\frac{1}{3}}\right)$?

- (A) $-\frac{2}{3}$ (B) $-\frac{1}{3}$ (C) $\frac{1}{3}$

Exame - 2008, 1.a Fase

71. Num determinado dia, um grupo de amigos decidiu formar uma associação desportiva. Admita que, t dias após a constituição da associação, o número de sócios é dado, aproximadamente, por:

$$N(t) = \frac{2000}{1 + 199e^{-0.01t}}, \ t \ge 0$$

Resolva, usando métodos analíticos, o item seguinte.

Ao fim de quantos dias se comemorou a inscrição do sócio número 1000?

Nota: A calculadora pode ser utilizada em eventuais cálculos intermédios; sempre que proceder a arredondamentos, use aproximações às milésimas.

Exame - 2008, 1.ª Fase

72. Seja a um número real maior do que 1.

Indique qual das expressões seguintes é igual a $\log_a 3 + 2 \log_a 5$?

- **(A)** $\log_a 30$

- **(B)** $\log_a 40$ **(C)** $\log_a 75$ **(D)** $\log_a 100$

Teste Intermédio 12.º ano – 29.04.2008

73. Num lago onde não havia peixes, introduziram-se, num determinado momento, alguns peixes. Admita que, t anos depois, o número de peixes existentes no lago é dado aproximadamente por

$$f(t) = \frac{2000}{1 + ke^{-0.13t}}$$

onde k designa um número real.

- 73.1. Determine o valor de k, supondo que foram introduzidos 100 peixes no lago.
- 73.2. Admita agora que k = 24.

Sem recorrer à calculadora, a não ser para efetuar cálculos numéricos, resolva o seguinte problema: Ao fim de quantos anos o número de peixes no lago atinge o meio milhar? Apresente o resultado arredondado às unidades.

Nota: se, em cálculos intermédios, proceder a arredondamentos, conserve, no mínimo, três casas decimais.

Teste Intermédio 12.º ano - 29.04.2008

- 74. De um número real x sabe-se que $\log_5(x) = \pi 1$ Indique o valor de 5x

- (A) $25^{\pi-1}$ (B) $5^{\pi-1}$ (C) 5^{π} (D) $5(\pi-1)^5$

Teste Intermédio 12.º ano - 17.01.2008

mat.absolutamente.net

75. Admita que uma certa população de seres vivos evolui de acordo com a seguinte **lei**: o número de indivíduos da população, t dias após um certo instante inicial, é dado aproximadamente por

$$P(t) = ae^{kt} \quad \left(t \in \mathbb{R}^0_+\right)$$

em que

- a é o número de indivíduos da população no instante inicial (a > 0)
- ullet k é uma constante real
- 75.1. Seja r um número real positivo.

Considere que, ao fim de n dias, contados a partir do instante inicial, o número de indivíduos da população é igual a r vezes o número de indivíduos que existiam no referido instante inicial.

Mostre que se tem $k = \frac{\ln(r)}{n}$ (ln designa logaritmo de base e)

- 75.2. Admita que, às zero horas do dia 1 do corrente mês, se iniciou, em laboratório, uma cultura de bactérias, em pequena escala, na qual se juntaram
 - $\bullet~500$ indivíduos de uma estirpe A
 - $\bullet~500$ indivíduos de uma estirpe B

Nunca foram introduzidos mais indivíduos destas duas estirpes nesta cultura.

As condições da cultura são desfavoráveis para a estirpe A, mas são favoráveis para a estirpe B. De facto,

- ullet decorrido exatamente um dia, a estirpe A estava reduzida a 250 indivíduos
- \bullet decorridos exatamente seis dias, a estirpe Btinha alcançado 1000 indivíduos

Quer a estirpe A, quer a estirpe B, evoluíram de acordo com a acima lei referida. No entanto, o valor da constante k para a estirpe A é diferente do valor dessa constante para a estirpe B. Utilizando a igualdade da alínea anterior, verifique que:

- no caso da estirpe A, o valor da constante k_A , com quatro casas decimais, é $k_A = -0.6931$
- no caso da estirpe B, o valor da constante k_B , com quatro casas decimais, é $k_B = 0.1155$

Teste Intermédio 12.º ano – 17.01.2008

76. Considere a função f, de domínio $\mathbb{R} \setminus \{0\}$, definida por $f(x) = 1 - \ln(x^2)$

Recorrendo a métodos exclusivamente analíticos, determine os pontos de interseção do gráfico de f com o eixo Ox

Exame – 2007, 2.^a Fase

77. Sabendo que:

 $\ln(x) - \ln\left(e^{\frac{1}{3}}\right) > 0$ (l
n designa logaritmo na base e), um valor possível par
axé:

- **(A)** 0
- **(B)** -1
- **(C)** 1
- **(D)** 2

Exame - 2007, 1.a fase

78. Admita que a intensidade da luz solar, x metros abaixo da superfície da água, é dada, numa certa unidade de medida, por

$$I(x) = ae^{-bx} \quad (x \ge 0)$$

a e b são constantes positivas que dependem do instante e do local onde é efetuada a medição.

Sempre que se atribui um valor a a e um valor a b obtemos uma função de domínio \mathbb{R}_0^+

Medições efetuadas, num certo instante e em determinado local do oceano Atlântico, mostraram que, a 20 metros de profundidade, a intensidade da luz solar era metade da sua intensidade à superfície da água. Determine o valor de b para esse instante e local. Apresente o resultado arredondado às centésimas.

Exame – 2007, 1.ª Fase

- 79. Indique o conjunto dos números reais que são soluções da inequação $e^{-x} > \frac{1}{e}$
 - (A) $]-\infty, -1[$ (B) $]-\infty,1[$ (C) $]-1, +\infty[$

Teste Intermédio $12.^{\circ}$ ano -15.03.2007

- 80. Seja a um número real maior do que 1. Indique o valor de $\log_a (a \times \sqrt[3]{a})$
 - (A) $\frac{5}{4}$ (B) $\frac{4}{3}$ (C) $\frac{5}{3}$ (D) $\frac{3}{2}$

Teste Intermédio 12.º ano - 15.03.2007

81. A acidez de uma solução é medida pelo valor do seu pH, que é dado por

$$pH = -\log(x)$$

onde x designa a concentração de iões H_3O^+ , medida em mol/dm^3 .

Sem recorrer à calculadora, a não ser para efetuar eventuais cálculos numéricos, resolva as duas alíneas seguintes:

- 81.1. Admita que o pH do sangue arterial humano é 7,4. Qual é a concentração (em mol/dm^3) de iões H_3O^+ , no sangue arterial humano? Escreva o resultado em notação científica, isto é, na forma $a \times 10^b$, com b inteiro e a entre 1 e 10. Apresente o valor de a arredondado às unidades.
- 81.2. A concentração de iões H_3O^+ no café é tripla da concentração de iões H_3O^+ no leite. Qual é a diferença entre o pH do leite e o pH do café? Apresente o resultado arredondado às décimas. Sugestão: comece por designar por l a concentração de iões H_3O^+ no leite e por exprimir, em função de l, a concentração de iões H_3O^+ no café.

Teste Intermédio $12.^{\circ}$ ano -15.03.2007

82. Seja c um número real maior do que 1.

Na figura ao lado está representada uma parte do gráfico da função f, de domínio \mathbb{R} , definida por $f(x) = e^x - c$.

Tal como a figura sugere

- A é o ponto de interseção do gráfico de f com o eixo Ox
- B é o ponto de interseção do gráfico de f com o eixo Oy

Mostre que:

Se o declive da reta $AB \in c-1$, então c=e

Teste Intermédio 12.º ano – 15.03.2007

83. Sejam $a \in b$ dois números reais positivos.

Na figura ao lado está parte do gráfico de uma função f, de domínio \mathbb{R} , definida por $f(x) = a^x + b$.

Tal como a figura sugere, os pontos (0,2) e (1,3) pertencem ao gráfico de f.

Quais são os valores de a e de b?

(B)
$$a = 2 e b = 3$$

(C)
$$a = 3 e b = 2$$
 (D) $a = 3 e b = 1$

(D)
$$a = 3 e b = 1$$

Exame – 2006, 2.ª Fase

84. Seja h a função, de domínio \mathbb{R} , definida por

$$h(x) = \frac{\ln\left(\sqrt{e^x}\right)}{2}$$

 $h(x)=\frac{\ln\left(\sqrt{e^x}\right)}{2} \qquad \text{(ln designa logaritmo de base } e\text{)}$ Qual das seguintes expressões pode também definir } h?

(A)
$$\sqrt{x}$$

(B)
$$\frac{x}{2}$$

(C)
$$\frac{x}{4}$$

(A)
$$\sqrt{x}$$
 (B) $\frac{x}{2}$ **(C)** $\frac{x}{4}$ **(D)** $\frac{\sqrt{x}}{2}$

Exame -2006, 1.^a fase

- 85. Na figura seguinte estão representados:
 - parte do gráfico da função f, de domínio \mathbb{R} , definida por $f(x) = e^{-x}$
 - um triângulo **isósceles** [OPQ], $(\overline{PO} = \overline{PQ})$ em que:
 - O é a origem do referencial;
 - P é um ponto do gráfico de f;
 - Q pertence ao eixo das abcissas.

Considere que o ponto P se desloca no primeiro quadrante (eixos não incluídos), ao longo do gráfico de f.

O ponto Q acompanha o movimento do ponto P, deslocandose ao longo do eixo das abcissas, de tal modo que \overline{PO} permanece sempre igual a PQ.

Seja A a função, de domínio \mathbb{R}^+ , que faz corresponder, à abcissa x do ponto P, a área do triângulo [OPQ].

Mostre que, para cada $x \in \mathbb{R}^+$, se tem $A(x) = xe^{-x}$

Exame -2006, 1.^a fase

- 86. Indique o número real que é solução da equação $e^{x-2} = \frac{1}{\sqrt{e}}$

- (A) $\frac{1}{2}$ (B) $\frac{3}{2}$ (C) $\frac{5}{2}$ (D) $\frac{7}{2}$

Teste Intermédio 12.º ano - 17.03.2006

- 87. Indique o conjunto dos números reais que são soluções da inequação $\log_3(1-x) \le 1$
- (A) [-2,1[(B) [-1,2[(C) $]-\infty,-2[$ (D) $[2,+\infty[$

Teste Intermédio 12.º ano - 17.03.2006

- 88. Na figura abaixo estão representadas, em referencial o. n. xOy:
 - parte do gráfico da função f, de domínio \mathbb{R} , definida por $f(x) = e^x$
 - parte do gráfico da função g, de domínio \mathbb{R} , definida por $g(x) = \ln x$ (In designa logaritmo de base e)

O ponto A é o ponto de interseção do gráfico de f com o eixo Oy e o ponto B é o ponto de interseção do gráfico de g com o eixo Ox.

Na figura está também representado um triângulo [CDE].

O ponto C pertence ao eixo Oy, o ponto D pertence ao gráfico de f e o ponto E pertence ao gráfico de g.

Sabe-se ainda que:

- a reta [BD] é paralela ao eixo Oy e a reta [CE] é paralela ao eixo Ox
- $\overline{AC} = \overline{OA}$

Qual é a área do triângulo [CDE]?

(A)
$$\frac{(e-1)\ln 2}{2}$$
 (B) $\frac{(e^2-1)\ln 2}{2}$ (C) $\frac{e(e-2)}{2}$ (D) $\frac{e^2(e-2)}{2}$

(B)
$$\frac{(e^2-1)\ln}{2}$$

(C)
$$\frac{e(e-2)}{2}$$

(D)
$$\frac{e^2(e-2)}{2}$$

Teste Intermédio 12.º ano - 17.03.2006

89. Um estudo de mercado, encomendado por uma empresa de venda de produtos alimentares, concluiu que a quantidade de azeite Azeitona do Campo, vendida num mês por essa empresa, depende do preço de venda ao público, de acordo com a função

$$V(x) = e^{14-x}$$

sendo x o preço de venda ao público, em euros, de 1 litro desse azeite e V(x) a quantidade vendida num mês (medida em litros).

A empresa tem um conjunto de despesas (compra ao produtor, empacotamento, publicidade, transportes, etc.) com a compra e a venda do azeite.

Sabendo que cada litro de azeite vendido acarreta à empresa uma despesa total de 3 euros, justifique que o lucro mensal da empresa (em euros), resultante da venda do azeite, é dado por

$$L(x) = (x - 3)e^{14-x}$$

Teste Intermédio 12.º ano - 17.03.2006

90. Considere a função f, de domínio $]0, +\infty[$, definida por $f(x) = \frac{1 - \ln x}{x}$ (ln designa logaritmo de base e). Sem recorrer à calculadora, mostre que $f\left(\frac{1}{2}\right) = \ln\left(4e^2\right)$

Teste Intermédio 12.º ano - 17.03.2006

91. O tempo t, medido em anos, que um planeta demora a realizar uma translação completa, em torno do Sol, está relacionado com a distância média, d, desse planeta ao Sol, medida em milhões de quilómetros, por meio da fórmula

$$2\ln(t) = k + 3\ln(d)$$

(k 'e uma constante real e ln designa o logaritmo de base e)

Sem utilizar a calculadora, a não ser para efetuar eventuais cálculos numéricos, resolva as duas alíneas seguintes:

91.1. Sabe-se que:

- a distância média de Urano ao Sol é (aproximadamente) o dobro da distância média de Saturno ao Sol;
- o planeta Urano demora (aproximadamente) 84 anos a realizar uma translação completa em torno do Sol.

Determine quanto tempo demora o planeta Saturno a realizar uma translação completa em torno do Sol. Apresente o resultado em anos, arredondado às décimas.

Nota: Sempre que, nos cálculos intermédios, proceder a arredondamentos, conserve, no mínimo, três casas decimais.

91.2. Sabendo que a distância média da Terra ao Sol é, aproximadamente, de 149,6 milhões de quilómetros, determine o valor de k (apresente o resultado arredondado às unidades).

Exame - 2005, Ép. especial (cód. 435)

92. Na figura ao lado está representada a trajetória de uma bola de futebol, depois de ter sido pontapeada por um jogador de da seleção portuguesa, durante um treino de preparação para o EURO-2004.

Designou-se por *a* a distância, em metros, entre o ponto onde a bola foi pontapeada e o ponto onde ela caiu.

Considere a função h definida em [0,a] por

$$h(x) = 2x + 10\ln(1 - 0.1x)$$
 (ln designa

 $(\ln \text{ designa logaritmo de base } e)$

Admita que h(x) é a distância, em metros, da bola ao solo, no momento em que a sua projeção no solo se encontra a x metros do local onde foi pontapeada.

Sem utilizar a calculadora, mostre que a taxa de variação média da função h, no intervalo [1,3] é

$$\ln\left[e^2\left(\frac{7}{9}\right)^5\right]$$

Exame - 2005, 2.ª Fase (cód. 435)

mat.absolutamente.net

93. Na figura ao lado, está representada, em referencial o.n. xOy, parte do gráfico da função f, definida, em $]-1,+\infty[$, por

$$f(x) = \log_2(x+1)$$

Na mesma figura, está também representado um triângulo retângulo [ABO].

O ponto A tem abcissa 3 e pertence ao gráfico de f.

O ponto B pertence ao eixo Oy.

Qual é a área do triângulo [ABO]?

Exame – 2005, 1.^a fase (cód. 435)

94. Admita que o número de elementos de uma população de aves, t anos após o início de 1970, é dado aproximadamente por

$$P(t) = 5.2 \times 10^7 \times e^{(N-M)t}, \quad t \ge 0,$$

em que N e M são duas constantes, denominadas, respetivamente, por taxa de natalidade e taxa de mortalidade da população.

No início de 2000, a população era metade da que existia no início de 1970. Sabendo que a taxa de natalidade é 7,56, determine a taxa de mortalidade, sem recorrer à calculadora, a não ser para efetuar eventuais cálculos numéricos.

Apresente o resultado arredondado às centésimas.

 $\overline{\mathbf{Nota}}$: sempre que, nos cálculos intermédios, proceder a arredondamentos, conserve, no mínimo, três casas decimais.

Exame – 2005, $1.^{\rm a}$ Fase (cód. 435)

95. Na figura seguinte está parte da representação gráfica da função f, de domínio \mathbb{R}^+ , definida por $f(x) = \log_3 x$.

Na figura está também representado um triângulo [PQR].

Os pontos $P \in Q$ pertencem ao gráfico de f e as suas abcissas são a e 9a, respetivamente (a designa um número real positivo).

O ponto R pertence ao eixo Oy e tem ordenada igual à de Q.

Qual das expressões seguintes dá a área do triângulo [PQR]?

- (A) $9a^2$
- **(B)** 9a
- (C) $\frac{9a^2}{2}$
- (D) $\frac{9a+1}{2}$

Exame - 2004, Ép. especial (cód. 435)

- 96. Indique o valor de p para o qual se verifica a igualdade $\log_n 16 = 4$
 - **(A)** -4
- **(B)** 4
- **(C)** 2
- **(D)** $\sqrt{2}$

Exame – 2004, 2.ª Fase (cód. 435)

97. Sabe-se que $\log_2 a = \frac{1}{5}$

Qual é o valor de $\log_2\left(\frac{a^5}{8}\right)$?

(A) -1

(B) -2

(D) -4

Exame - 2004, 1.ª Fase (cód. 435)

98. Para um certo valor de a e para um certo valor de b, o gráfico da função, de domínio \mathbb{R} , definida por $f(x) = a + be^x$, está parcialmente representado na figura ao lado.

Tal como a figura sugere,

- ullet a reta de equação y=-1 é assintota do gráfico de
- ullet o gráfico de f interseta o eixo Oy no ponto de ordenada 1

Quais são os valores de a e de b?

(A) a = -1 e b = 2 **(B)** a = -1 e b = 1

(C) a = 1 e b = -1 (D) a = 1 e b = -2

Exame - 2003, Prova para militares (cód. 435)

99. Seja g uma função de domínio A, definida por $g(x) = \ln(1-x^2)$ Qual dos seguintes poderá ser o conjunto A?

(A)]-e+1,e-1[(B)]-1,1[(C) $]0,+\infty[$ (D) $]-\infty,1[$

Exame - 2003, 2.ª fase (cód. 435)

100. Admita que, ao longo dos séculos XIX e XX e dos primeiros anos do século XXI, a população de Portugal Continental, em milhões de habitantes, é dada, aproximadamente, por

$$p(t) = 3.5 + \frac{6.8}{1 + 12.8e^{-0.036t}}$$

(considere que t é medido em anos e que o instante t=0 corresponde ao **início** do ano 1864).

100.1. De acordo com este modelo, qual foi a população de Portugal Continental no final do ano de 2003? Apresente o resultado em milhões de habitantes, arredondado às décimas.

Nota: Sempre que, nos cálculos intermédios, proceder a arredondamentos, conserve, no mínimo, três casas decimais.

100.2. Sem recorrer à calculadora (a não ser para efetuar eventuais cálculos numéricos), resolva o seguinte problema:

De acordo com este modelo, em que ano a população de Portugal Continental foi de 3,7 milhões de habitantes?

Nota: Sempre que, nos cálculos intermédios, proceder a arredondamentos, conserve, no mínimo, três casas decimais.

Exame - 2003, 2.ª Fase (cód. 435)

mat.absolutamente.net

101. Uma rampa de desportos radicais foi construída entre duas paredes, A e B, distanciadas de 10 metros, como se mostra na figura ao lado.

Considere a função h definida por

$$h(x) = 15 - 4\ln(-x^2 + 10x + 11)$$

 $(\ln \text{ designa logaritmo de base } e)$

Admita que h(x) é a altura, em metros, do ponto da rampa situado a x metros à direita da parede A.

- 101.1. Determine a altura da parede A. Apresente o resultado em metros, arredondado às décimas. Nota: se, nos cálculos intermédios, proceder a arredondamentos, conserve, no mínimo, três casas decimais.
- 101.2. Mostre, analiticamente, que h(5-x) = h(5+x)Interprete esta igualdade no contexto da situação descrita.

Exame - 2003, 1. a fase - 2. a chamada (cód. 435)

102. Num laboratório, foi colocado um purificador de ar.

Num determinado dia, o purificador foi ligado às zero horas e desligado algum tempo depois.

Ao longo desse dia, o nível de poluição do ar diminuiu, enquanto o purificador esteve ligado.

Uma vez o purificador desligado, o nível de poluição do ar começou de imediato a aumentar.

Admita que o nível de poluição do ar no laboratório, medido em mg/l de ar, às t horas desse dia, pode ser dado por

$$P(t) = 1 - \frac{\ln(t+1)}{t+1}$$
, $t \in [0,24]$ (ln designa logaritmo de base e)

Qual é o nível de poluição à uma hora e trinta minutos da tarde?

Apresente o resultado na unidade considerada, arredondado às décimas e sempre que, nos cálculos intermédios, proceder a arredondamentos, conserve, no mínimo, três casas decimais.

Exame - 2003, 1.^a fase - 1.^a chamada (cód. 435)

103. Sejam $a \in b$ dois números reais positivos.

Qual das seguintes igualdades é equivalente a $\ln a = -\ln b$?

(A)
$$a + b = 1$$
 (B) $\frac{a}{b} = 1$ **(C)** $a \times b = 1$ **(D)** $a - b = 1$

$$(B) \frac{a}{b} = 1$$

(C)
$$a \times b =$$

(D)
$$a-b=1$$

Exame - 2002, Prova para militares (cód. 435)

104. Considere as funções f e g de domínio \mathbb{R} , definidas por

$$f(x) = \frac{1}{3} + 2e^{1-x}$$
 $g(x) = 2 \sin x - \cos x$

Utilizando métodos exclusivamente analíticos, resolva a equação $f(x) = g(\pi)$, apresentando a solução na forma ln(ke), onde k representa um número real positivo. (ln designa logaritmo de base e)

Exame - 2002, 2.ª Fase (cód. 435)

105. O nível intensidade N de um som, medido em decibéis, é função da sua **intensidade** I, medida em watt por metro quadrado, de acordo com a igualdade

$$N = 10 \log_{10}(10^{12}I)$$
, para $I > 0$

Utilizando métodos exclusivamente analíticos, resolva as duas alíneas seguintes.

- 105.1. Verifique que $N = 120 + 10 \log_{10} I$
- 105.2. Admita que o nível de ruído de um avião a jato, ouvido por uma pessoa que se encontra na varanda de um aeroporto, é de 140 decibéis.

Determine a intensidade desse som, em watt por metro quadrado.

106. Doses terapêuticas iguais de um certo antibiótico são administradas, pela primeira vez, a duas pessoas: a Ana e o Carlos.

Admita que, durante as doze primeiras horas após a tomada simultânea do medicamento pela Ana e pelo Carlos, as concentrações de antibiótico, medidas em miligramas por litro de sangue, são dadas, respetivamente, por

$$A(t) = 4t^3 e^{-t}$$
 e $C(t) = 2t^3 e^{-0.7t}$

A variável t designa o tempo, medido em **horas**, que decorre desde o instante em que o medicamento é tomado $(t \in [0,12])$.

Recorrendo a métodos analíticos e utilizando a calculadora para efetuar cálculos numéricos, resolva as duas alíneas seguintes.

- 106.1. Determine o valor da concentração deste antibiótico no sangue da Ana, quinze **minutos** depois de ela o ter tomado. Apresente o resultado, em miligramas por litro de sangue, arredondado às centésimas. **Nota**: sempre que, nos cálculos intermédios, proceder a arredondamentos, conserve, no mínimo, três casas decimais.
- 106.2. No instante em que as duas pessoas tomam o medicamento, as concentrações são iguais (por serem nulas). Determine quanto tempo depois as concentrações voltam a ser iguais. Apresente o resultado em horas e minutos (minutos arredondados às unidades).

Nota: sempre que, nos cálculos intermédios, proceder a arredondamentos, conserve, no mínimo, três casas decimais.

107. A Sofia preparou um pudim, para servir como sobremesa ao jantar. Depois de o ter confecionado, a Sofia colocou o pudim a arrefecer, na bancada da cozinha. Uma hora depois, colocou-o no frigorífico, para ficar bem frio.

Admita que a temperatura do pudim, em graus centígrados, t minutos depois de ter sido colocado na bancada, é dada, por

$$f(t) = \begin{cases} 20 + 80 \times 2^{-0.05t}, & 0 \le t < 60\\ 6 + 24 \times 2^{-0.05(t - 60)}, & t \ge 60 \end{cases}$$

Quanto tempo deverá o pudim estar **no frigorífico**, para que a sua temperatura fique igual a doze graus? Apresente o resultado em minutos e utilize métodos exclusivamente analíticos.

Exame - 2001, Prova para militares (cód. 435)

- 108. Considere a equação $3y = \log_2 x \quad (x > 0)$ Qual das seguintes condições é equivalente a esta equação?
 - **(A)** $x = 8^y$ **(B)** $x = 3y^2$ **(C)** $y = 9^x$ **(D)** $y = \left(\frac{x}{3}\right)^2$

Exame – 2001, Ép. especial (cód. 435)

109. Um petroleiro que navegava no Oceano Atlântico, encalhou numa rocha e sofreu um rombo no casco. Em consequência disso, começou a derramar crude. Admita que, às t horas do dia a seguir ao do acidente, a área, em Km^2 , de crude espalhado pelo oceano é dada por

$$A(t) = 16e^{0.1t}, (t \in [0.24])$$

109.1. Verifique que, para qualquer valor de $t, \frac{A(t+1)}{A(t)}$ é constante.

Determine um valor aproximado dessa constante (arredondado às décimas) e interprete esse valor, no contexto da situação descrita.

109.2. Admita que a mancha de crude é circular, com centro no local onde o petroleiro encalhou. Sabendo que esse local se encontra a sete quilómetros da costa, determine a que horas, do dia seguinte ao do acidente, a mancha de crude atingirá a costa.

Apresente o resultado em horas e minutos (minutos arredondados às unidades).

Nota: sempre que, nos cálculos intermédios, proceder a arredondamentos, conserve, no mínimo, três casas decimais.

Exame – 2001, 2.^a Fase (cód. 435)

110. Considere as funções f e g, de domínio \mathbb{R} , definidas por

$$f(x) = 2^x \qquad e \qquad \qquad g(x) = 3^x$$

Qual é o conjunto solução da inequação f(x) > g(x)?

- (A) Conjunto vazio
- (B) \mathbb{R}^- (C) \mathbb{R}^+ (D) \mathbb{R}

Exame - 2001, 1.ª fase - 2.ª chamada (cód. 435)

111. Considere que a altura A (em metros) de uma criança do sexo masculino pode ser expressa, aproximadamente, em função do seu peso p (em quilogramas) por

$$A(p) = -0.52 + 0.55 \ln p$$
 (In designa o logaritmo de base e)

Recorrendo a métodos analíticos e usando a calculadora para fazer cálculos numéricos, resolva os dois itens seguintes.

111.1. O Ricardo tem 1,4 m de altura. Admitindo que a altura e o peso do Ricardo estão de acordo com a igualdade referida, qual será o seu peso?

Apresente o resultado em quilogramas, arredondado às unidades.

Nota: sempre que, nos cálculos intermédios, proceder a arredondamentos, conserve, no mínimo, duas casas decimais.

111.2. Verifique que, para qualquer valor de p, a diferença A(2p) - A(p) é constante. Determine um valor aproximado dessa constante (com duas casas decimais) e interprete esse valor, no contexto da situação descrita.

Exame - 2001, 1.ª fase - 2.ª chamada (cód. 435)

- 112. Qual das expressões seguintes é, para qualquer número real positivo a, igual a $e^{2 \ln a}$? (ln designa o logaritmo de base e)

 - **(A)** 2a **(B)** 2+a **(C)** 2a **(D)** a^2

Exame - 2001, 1.ª fase - 1..ª chamada (cód. 435)

113. A pressão atmosférica de cada local da Terra depende da altitude a que este se encontra. Admita que a pressão atmosférica P (medida em quilopascal) é dada, em função de h em quilómetros, por

$$P(h) = 101e^{-0.12h}$$

113.1. A montanha mais alta de Portugal é o Pico, na ilha do Pico - Açores.

A altitude do cume do Pico é 2350 metros.

Qual é o valor da pressão atmosférica nesse local?

Apresente o resultado em quilopascal, arredondado às unidades.

113.2. Determine x tal que, para qualquer h, $P(h+x) = \frac{1}{2}P(h)$.

Apresente o resultado arredondado às décimas.

Interprete o valor obtido, no contexto do problema.

Exame - 2000, 2.ª fase (cód. 435)

114. Considere a função f, de domínio $\mathbb{R} \setminus \{1\}$, definida por $f(x) = \frac{e^x}{x-1}$

Resolva a equação $\ln[f(x)] = x$, recorrendo exclusivamente a processos analíticos (ln designa logaritmo de base e).

Exame - 2000, 1.ª fase - 2.ª chamada (cód. 435)

115. Na figura ao lado está parte da representação gráfica da função f, de domínio \mathbb{R}^+ , definida por $f(x) = \log_8 x$

P é um ponto do gráfico de f que tem ordenada $\frac{1}{3}$

Qual \acute{e} a abcissa do ponto P?

- (A) $\frac{8}{3}$ (B) 1 (C) $\ln\left(\frac{8}{3}\right)$ (D) 2

Exame - 2000, 1^a fase - 1.^a chamada (cód. 435)

- 116. Sejam $a, b \in c$ três números reais tais que $\log_a b = c$ Qual é o valor de $\log_a(ab)$?
 - **(A)** 1+c **(B)** a+c
- (C) ac
- (D) a + bc

Exame - 2000, Prova modelo (cód. 435)

- 117. Considere uma função f, de domínio \mathbb{R} , definida por $f(x) = e^{x+a}$, onde a designa um certo número real. O gráfico de f interseta o eixo Oy no ponto de ordenada 2Indique o valor de a.
 - (A) ln 2
- **(B)** 2
- (C) e^2
- **(D)** $e + \ln 2$

Exame – 2000, Prova para militares (cód. 135)

- 118. Seja ga função, de domínio $\mathbb{R}^+,$ definida por $g(x) = \log_2(2.\sqrt[3]{x})$ Qual das expressões seguintes também pode definir a função g?

- (A) $2 + \log_2(\sqrt[3]{x})$ (B) $2 \cdot \log_2(\sqrt[3]{x})$ (C) $\frac{3 + \log_2 x}{3}$ (D) $\frac{1 + \log_2 x}{2}$

Exame - 1999, Prova modelo (cód. 135)

119. Um pára-quedista salta de um helicóptero. Ao fim de algum tempo, o pára-quedas abre. Admita que a distância (em metros) a que o pára-quedista se encontra do solo, t segundos **após a abertura do pára-quedas**, é dada por

$$d(t) = 840 - 6t + 25e^{-1.7t}$$

Sabendo que, no momento em que o pára-quedista salta do helicóptero, este se encontra a 1500 metros do solo, determine a distância percorrida em queda livre pelo pára-quedista (desde que salta do helicóptero até ao momento da abertura do pára-quedas).

120. A magnitude M de um sismo e a energia total E libertada por esse sismo estão relacionadas pela equação

$$\log_{10} E = 5.24 + 1.44M$$
 (a energia E é medida em Joule).

- 120.1. Um físico português estimou que o terramoto de Lisboa de 1755 teve magnitude 8,6. Mostre que a energia total libertada nesse sismo foi aproximadamente 4.2×10^{17} Joule.
- 120.2. A ponte *Vasco da Gama* foi concebida para resistir a um sismo cuja energia total libertada seja cinco vezes a do terremoto de Lisboa de 1755. Qual é a magnitude de um sismo com essa característica? Apresente o resultado na forma de dízima, arredondado às décimas.

- 121. Seja f a função definida em \mathbb{R}^+ por $f(x) = \log_2(8x^2) \log_2 x$
 - 121.1. Mostre que $f(x) = 3 + \log_2 x$, para qualquer $x \in \mathbb{R}^+$
 - 121.2. Determine a abcissa do ponto de interseção do gráfico de f com a reta de equação y=8

- 122. Considere a função f, de domínio \mathbb{R}^+ , definida por $f(x) = \ln(3x)$ (ln designa logaritmo de base e). Qual dos seguintes pontos pertence ao gráfico da função f?
 - **(A)** $(e, \ln 3)$
- **(B)** $(e,1 + \ln 3)$
- (C) $(e,e + \ln 3)$
- **(D)** $(e, e \ln 3)$

123. Um fio encontra-se suspenso entre dois postes. A distância entre ambos é de 30 metros.

Considere a função f, definida por

$$f(x) = 5 (e^{1-0.1x} + e^{0.1x-1})$$
 $x \in [0.30]$

Admita que f(x) é a distância ao solo, em metros, do ponto do fio situado x metros à direita do primeiro poste.

Determine a diferença de altura dos dois postes. Apresente o resultado na forma de dízima, com aproximação às décimas.

Nota: sempre que, nos cálculos intermédios, proceder a arredondamentos, conserve, no mínimo, três casas decimais.

Exame – 1998, Prova modelo (cód. 135)

124. A atividade R, de qualquer substância radioativa, é dada, numa certa unidade de medida, pela expressão

$$R(t) = A \times e^{-Bt} ,$$

em que A e B são constantes reais positivas e t é o tempo, em horas, com $t \ge 0$.

- 124.1. Mostre que o tempo necessário para que a atividade R passe do seu valor inicial para metade é $\frac{\ln 2}{B}$
- 124.2. Sabendo que o valor inicial da atividade de uma certa substância radioativa é 28 unidades e que R(1) = 26, determine os valores de A e de B para essa substância.

Exame – 1997, 2.ª fase (cód. 135)