Lecture 11: Nelder-Mead method

Ciaran Evans

Recap: optimization

Definition: *Optimization* is the problem of finding values that minimize or maximize some function.

Example:

$$RSS(\beta_0, \beta_1) = \sum_{i=1}^{n} (Weight_i - \beta_0 - \beta_1 WingLength_i)^2$$

- ▶ $RSS(\beta_0, \beta_1)$ is a function of β_0 and β_1
- ▶ We want to find the values of β_0 and β_1 that *minimize* this function

Last time: Compass search overview (in 2 dimensions)

To minimize some function $f(\beta_0, \beta_1)$:

- 1. Choose an initial guess $(\beta_0^{(0)}, \beta_1^{(0)})$ and initial step size Δ_0
- 2. Evaluate f at the points
 - $\triangleright (\beta_0^{(0)}, \beta_1^{(0)})$
 - $\triangleright (\beta_0^{(0)}, \beta_1^{(0)} \pm \Delta_0)$
 - $(\beta_0^{(0)} \pm \Delta_0, \beta_1^{(0)})$
- 3. If f is smaller at one of the new points: move to the smallest value, update to $(\beta_0^{(1)}, \beta_1^{(1)})$
- 4. Otherwise: $\Delta_{k+1} = 0.5\Delta_k$ (shrink step size and try again)
- 5. Repeat

Downsides of compass search

Downsides of the compass search algorithm given on the previous slide:

- Can require many steps
- Only considers specific search directions
- Step size only shrinks; if we find a promising direction, can't take bigger steps
- Choosing a direction requires many evaluations of f
 - ▶ In 2 dimensions (e.g. β_0 and β_1), requires 4 evaluations of f
 - ▶ In *d* dimensions $(\beta_0, \beta_1, ..., \beta_{d-1})$, requires 2*d* evaluations of *f*

Question: How could you modify the algorithm to address some of the issues here?

A modified compass search algorithm

Alternative: Nelder-Mead method

In R, standard function for performing optimization is optim:

?optim

- ▶ Nelder-Mead: another derivative-free optimization method
- Very widely used
 - ▶ Original 1965 paper has 40,000+ citations
 - Can find many examples of use in biology, medicine, physics, engingeering, etc.

Nelder-Mead method (in 2 dimensions)

Start with 3 initial points, evaluate function f at each point:

Question: Where should I search next?

Nelder-Mead method (in 2 dimensions)

First, calculate centroid of the vertices (except the worst one)

Reflection

Now reflect the worst vertex over the centroid:

Question: Is the reflected point an improvement?

Reflection

If the reflected point is better than the second-worst point but worse than the best point, update the triangle:

Another scenario

Sometimes the reflected point is better than *all* of the current vertices:

Question: Where do you think we should move here?

Expansion

When the reflected point is better than all the current vertices, try **expanding** in that direction:

Expansion

If the expanded point is *better than the reflected point*, update the triangle:

Another scenario

Sometimes, the reflected point is *worse* than two of the existing vertices, but *better* than the worse vertex:

Question: What should we do here?

Contract outside

Move in the direction of the reflected point, but not as far.

Contract outside

Move in the direction of the reflected point, but not as far.

Another scenario

And sometimes, the reflected point is worse than *any* of the current vertices:

Question: What do you think we should do here?

Contract inside

Move away from the worst point, but stay inside the triangle:

Contract inside

Move away from the worst point, but stay inside the triangle:

Shrinking

Sometimes, none of the other transformations improve the triangle. In that case, we *shrink* towards the best current vertex

 $\widehat{\text{Weight}}_i = 1.3655 + 0.4674 \text{WingLength}_i$

Initial points:

Nelder-Mead approach: search for a minimum through transformations of the triangle

$$\widehat{\mathsf{Weight}}_i = 1.3655 + 0.4674 \mathsf{WingLength}_i$$

$$\widehat{\mathsf{Weight}}_i = 1.3655 + 0.4674 \mathsf{WingLength}_i$$

$$\widehat{\mathsf{Weight}}_i = 1.3655 + 0.4674 \mathsf{WingLength}_i$$

[1] "contract outside"


```
\widehat{\mathsf{Weight}}_i = 1.3655 + 0.4674 \mathsf{WingLength}_i
```



```
\widehat{\mathsf{Weight}}_i = 1.3655 + 0.4674 \mathsf{WingLength}_i
```


$$\widehat{\mathsf{Weight}}_i = 1.3655 + 0.4674 \mathsf{WingLength}_i$$

$$\widehat{\mathsf{Weight}}_i = 1.3655 + 0.4674 \mathsf{WingLength}_i$$

[1] "reflection"


```
\widehat{\mathsf{Weight}}_i = 1.3655 + 0.4674 \mathsf{WingLength}_i
```


$$\widehat{\mathsf{Weight}}_i = 1.3655 + 0.4674 \mathsf{WingLength}_i$$

[1] "contract outside"

$$\widehat{\mathsf{Weight}}_i = 1.3655 + 0.4674 \mathsf{WingLength}_i$$


```
\widehat{\mathsf{Weight}}_i = 1.3655 + 0.4674 \mathsf{WingLength}_i
```


$$\widehat{\mathsf{Weight}}_i = 1.3655 + 0.4674 \mathsf{WingLength}_i$$

[1] "reflection"


```
\widehat{\mathsf{Weight}}_i = 1.3655 + 0.4674 \mathsf{WingLength}_i
```


$$\widehat{\mathsf{Weight}}_i = 1.3655 + 0.4674 \mathsf{WingLength}_i$$

[1] "contract outside"

$$\widehat{\mathsf{Weight}}_i = 1.3655 + 0.4674 \mathsf{WingLength}_i$$


```
\widehat{\mathsf{Weight}}_i = 1.3655 + 0.4674 \mathsf{WingLength}_i
```


$$\widehat{\mathsf{Weight}}_i = 1.3655 + 0.4674 \mathsf{WingLength}_i$$

[1] "expansion"

$$\widehat{\mathsf{Weight}}_i = 1.3655 + 0.4674 \mathsf{WingLength}_i$$


```
\widehat{\mathsf{Weight}}_i = 1.3655 + 0.4674 \mathsf{WingLength}_i
```


$$\widehat{\mathsf{Weight}}_i = 1.3655 + 0.4674 \mathsf{WingLength}_i$$

$$\widehat{\mathsf{Weight}}_i = 1.3655 + 0.4674 \mathsf{WingLength}_i$$

$$\widehat{\mathsf{Weight}}_i = 1.3655 + 0.4674 \mathsf{WingLength}_i$$


```
\widehat{\mathsf{Weight}}_i = 1.3655 + 0.4674 \mathsf{WingLength}_i
```


$$\widehat{\mathsf{Weight}}_i = 1.3655 + 0.4674 \mathsf{WingLength}_i$$


```
\widehat{\mathsf{Weight}}_i = 1.3655 + 0.4674 \mathsf{WingLength}_i
```


$$\widehat{\mathsf{Weight}}_i = 1.3655 + 0.4674 \mathsf{WingLength}_i$$

[1] "expansion"

$$\widehat{\mathsf{Weight}}_i = 1.3655 + 0.4674 \mathsf{WingLength}_i$$

[1] "expansion"


```
\widehat{\mathsf{Weight}}_i = 1.3655 + 0.4674 \mathsf{WingLength}_i
```


$$\widehat{\mathsf{Weight}}_i = 1.3655 + 0.4674 \mathsf{WingLength}_i$$

[1] "expansion"

$$\widehat{\mathsf{Weight}}_i = 1.3655 + 0.4674 \mathsf{WingLength}_i$$


```
\widehat{\mathsf{Weight}}_i = 1.3655 + 0.4674 \mathsf{WingLength}_i
```



```
\widehat{\mathsf{Weight}}_i = 1.3655 + 0.4674 \mathsf{WingLength}_i
```

[1] "contract outside"

$$\widehat{\mathsf{Weight}}_i = 1.3655 + 0.4674 \mathsf{WingLength}_i$$

[1] "contract outside"


```
\widehat{\mathsf{Weight}}_i = 1.3655 + 0.4674 \mathsf{WingLength}_i
```


$$\widehat{\mathsf{Weight}}_i = 1.3655 + 0.4674 \mathsf{WingLength}_i$$


```
\widehat{\mathsf{Weight}}_i = 1.3655 + 0.4674 \mathsf{WingLength}_i
```


Nelder-Mead summary

- Explores away from the current worst point
 - Reflection tries a point in the new direction
- Expansion allows us to increase the "step size" if the new direction is particularly promising
- Contraction and shrinking allows us to decrease the "step size" if we are moving too far