

Laboratoire

Classe: INF1	Labo no : 09	Matrices
--------------	---------------------	----------

But

• Utilisation de tableaux « vector »

• Utilisation intense de la librairie « algorithm »

A faire

Développer un programme mettant à disposition les éléments nécessaires à la manipulation de vecteurs et de matrices d'entiers.

Vocabulaire Vecteur tableau (vector) à 1 dimension

Matrice tableau à 2 dimensions (vector de vector)

Celui-ci doit contenir les sous-programmes suivants :

Operateur <<	Affiche un Vecteur au format [v ₁ , v ₂ ,, v _n]	
Operateur <<	Affiche une Matrice au format [[], [], []]	
estCarree	retourne un booléen indiquant si la matrice est carrée	
maxCol	Retourne la longueur max des vecteurs d'une matrice	
	/!\ sans boucle => utiliser <algorithm></algorithm>	
sommeLigne	Retourne un vecteur contenant la somme des valeurs	
	de chacune des lignes	
	/!\ une seule boucle => utiliser <algorithm></algorithm>	
vectSommeMin	Retour le vecteur d'une matrice dont la somme est	
	valeur est la plus faible.	
	/!\ sans boucle => utiliser <algorithm></algorithm>	
shuffleMatrice	Mélanger les vecteurs d'une matrice sans altérer les	
	vecteurs.	
	/!\ La <i>seed</i> du générateur est basée sur l'heure.	
sortMatrice	Trier dans l'ordre croissant une matrice fonction de	
	l'élément max d'un vecteur	
	[1, 7], [9, 2], [4, 2] = [[4, 2], [1, 7], [9, 2]]	
	/!\ sans boucle => utiliser <algorithm></algorithm>	
sommeDiagDG	rend par un paramètre la somme des valeurs de la	
	diagonale «/».	
	Retourne « True » si la matrice est carrée.	
sommeDiagGD	rend dans un paramètre la somme des valeurs de la	
	diagonale «\»	
	retourne « True » si la matrice est carrée.	

Laboratoire

La surcharge des opérateurs de flux n'est pas encore vue. Vous pouvez faire une fonction « afficher » et/ou lire <u>Stream extraction</u>

Stream extraction and insertion

The overloads of operator>> and operator<< that take a <u>std::istream</u>& or <u>std::ostream</u>& as the left hand argument are known as insertion and extraction operators. Since they take the user-defined type as the right argument (b in a@b), they must be implemented as non-members.

```
std::ostream& operator<<(std::ostream& os, const T& obj)
{
    // write obj to stream
    return os;
}</pre>
```

```
std::istream& operator>>(std::istream& is, T& obj)
{
    // read obj from stream
    if( /* T could not be constructed */)
        is.setstate(std::ios::failbit);
    return is;
}
```