

Mark Scheme (Results) Summer 2007

GCE

GCE Mathematics

Core Mathematics C1 (6663)

June 2007 6663 Core Mathematics C1 Mark Scheme

Question number	Scheme	Marks	
1.	$9-5$ or $3^2 + 3\sqrt{5} - 3\sqrt{5} - \sqrt{5} \times \sqrt{5}$ or $3^2 - \sqrt{5} \times \sqrt{5}$ or $3^2 - (\sqrt{5})^2$ = $\underline{4}$		(2) 2
	M1 for an attempt to multiply out. There must be at least 3 correct terms. Allow	w one sign slip	

M1 for an attempt to multiply out. There must be at least 3 correct terms. Allow one sign slip only, no arithmetic errors.

e.g.
$$3^2 + 3\sqrt{5} - 3\sqrt{5} + (\sqrt{5})^2$$
 is M1A0

 $3^2 + 3\sqrt{5} + 3\sqrt{5} - \left(\sqrt{5}\right)^2 \text{ is M1A0 as indeed is } 9 \pm 6\sqrt{5} - 5$ BUT $9 + \sqrt{15} - \sqrt{15} - 5 = 4$ is M0A0 since there is more than a sign error.

 $6 + 3\sqrt{5} - 3\sqrt{5} - 5$ is M0A0 since there is an arithmetic error.

If all you see is 9 ± 5 that is M1 but please check it has not come from incorrect working.

Expansion of
$$(3+\sqrt{5})(3+\sqrt{5})$$
 is M0A0

A1cso for 4 only. Please check that no incorrect working is seen.

Correct answer only scores both marks.

Question number	Scheme	Marks	
2.	(a) Attempt $\sqrt[3]{8}$ or $\sqrt[3]{(8^4)}$	M1	
	= <u>16</u>	A1	(2)
	$= \underline{16}$ (b) $5x^{\frac{1}{3}}$ 5, $x^{\frac{1}{3}}$	B1, B1	(2) 4
(a)	M1 for: 2 (on its own) or $(2^3)^{\frac{4}{3}}$ or $\sqrt[3]{8}$ or $(\sqrt[3]{8})^4$ or 2^4 or $\sqrt[3]{8^4}$ or $\sqrt[3]{4096}$ 8 ³ or 512 or $(4096)^{\frac{1}{3}}$ is M0 A1 for 16 only		
(b)	1 st B1 for 5 on its own or × something. So e.g. $\frac{5x^{\frac{4}{3}}}{x}$ is B1 But $5^{\frac{1}{3}}$ is B0 An expression showing cancelling is not sufficient (see first expression of QC0184500123945 the mark is scored for the second	nd expression))
	2^{nd} B1 for $x^{\frac{1}{3}}$ Can use ISW (incorrect subsequent working) e.g $5x^{\frac{4}{3}}$ scores B1B0 but it may lead to $\sqrt[3]{5x^4}$ which we ignore as ISW. Correct answers only score full marks in both parts.		

Question number	Scheme	Marks	
3.	(a) $\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = 6x^1 + \frac{4}{2}x^{-\frac{1}{2}}$ or $\left(6x + 2x^{-\frac{1}{2}}\right)$	M1 A1 ((2)
	(b) $6 + -x^{-\frac{3}{2}}$ or $6 + -1 \times x^{-\frac{3}{2}}$	M1 A1ft ((2)
	(a) $\left(\frac{dy}{dx}\right) = 6x^{1} + \frac{4}{2}x^{-\frac{1}{2}}$ or $\left(6x + 2x^{-\frac{1}{2}}\right)$ (b) $\frac{6 + -x^{-\frac{3}{2}}}{}$ or $\frac{6 + -1 \times x^{-\frac{3}{2}}}{}$ (c) $x^{3} + \frac{8}{3}x^{\frac{3}{2}} + C$ A1: $\frac{3}{3}x^{3}$ or $\frac{4x^{\frac{3}{2}}}{\left(\frac{3}{2}\right)}$ A1: both, simplified and $+C$	M1 A1 A1 ((3)
		5	7
(a)	M1 for <u>some</u> attempt to differentiate: $x^n \to x^{n-1}$ Condone missing $\frac{dy}{dx}$ or $y = \dots$		
	A1 for both terms correct, as written or better. No + C here. Of course $\frac{2}{\sqrt{x}}$ is	acceptable.	
(b)	M1 for some attempt to differentiate again. Follow through their $\frac{dy}{dx}$, at least o or correct follow through.	ne term correct	
	A1f.t. as written or better, follow through must have 2 <u>distinct</u> terms and simplifie	ed e.g. $\frac{4}{4} = 1$.	
(c)	M1 for some attempt to integrate: $x^n \to x^{n+1}$. Condone misreading $\frac{dy}{dx}$ or $\frac{d^2y}{dx^2}$ (+C alone is not sufficient)	for y.	
	1 st A1 for either $\frac{3}{3}x^3$ or $\frac{4x^{\frac{3}{2}}}{\left(\frac{3}{2}\right)}$ (or better) $\frac{2}{3} \times 4x^{\frac{3}{2}}$ is OK here too but not for 2 nd A	A1.	
	2^{nd} A1 for <u>both</u> x^3 and $\frac{8}{3}x^{\frac{3}{2}}$ or $\frac{8}{3}x\sqrt{x}$ i.e. simplified terms <u>and</u> $+C$ all on one like	ine.	
	$2\frac{2}{3}$ instead of $\frac{8}{3}$ is OK		

Question number	Scheme	Marks				
4.	(a) Identify $a = 5$ and $d = 2$ (May be implied)	B1				
	$(u_{200} =) a + (200 - 1)d$ $(= 5 + (200 - 1) \times 2)$	M1				
	= <u>403(p)</u> or (£) <u>4.03</u>	A1 (3)				
	(b) $(S_{200} =) \frac{200}{2} [2a + (200 - 1)d]$ or $\frac{200}{2} (a + \text{"their } 403\text{"})$	M1				
	$= \frac{200}{2} [2 \times 5 + (200 - 1) \times 2] \text{ or } \frac{200}{2} (5 + \text{"their } 403\text{"})$	A1				
	= <u>40 800</u> or <u>£408</u>	A1 (3) 6				
(a)	B1 can be implied if the correct answer is obtained. If 403 is <u>not</u> obtained ther	the values of				
	a and d must be clearly identified as $a = 5$ and $d = 2$.					
	This mark can be awarded at any point.					
	M1 for attempt to use <i>n</i> th term formula with $n = 200$. Follow through their <i>a</i> and <i>d</i> .					
	Must have use of $n = 200$ and one of a or d correct or correct follow through.					
	Must be 199 not 200.					
	A1 for 403 or 4.03 (i.e. condone missing £ sign here). Condone £403 here.					
N.B.	$a = 3$, $d = 2$ is B0 and $a + 200d$ is M0 <u>BUT</u> $3 + 200 \times 2$ is B1M1 and A1 if it leads to 403.					
	Answer only of 403 (or 4.03) scores 3/3.					
(b)	M1 for use of correct sum formula with $n = 200$. Follow through their a and d	and their 403.				
	Must have <u>some</u> use of $n = 200$, and some of a , d or l correct or correct follows:	ow through.				
	1^{st} A1 for any correct expression (i.e. must have $a = 5$ and $d = 2$) but can f.t. their	403 still.				
	2^{nd} A1 for 40800 or £408 (i.e. the £ sign is required before we accept 408 this time	e).				
	40800p is fine for A1 but £40800 is A0.					
ALT	Listing					
(a)	They might score B1 if $a = 5$ and $d = 2$ are clearly identified. Then award M1A1 to	ogether for 403.				
(b)	$\sum_{r=1}^{200} (2r+3)$. Give M1 for $2 \times \frac{200}{2} \times (201) + 3k$ (with $k > 1$), A1 for $k = 200$ and A1 for	for 40800.				

Question number	Scheme	Marks		
5.	Translation parallel to x-axis Top branch intersects +ve y-axis	M1		
	Lower branch has no intersections No obvious overlap	A1		
	$\left(0,\frac{3}{2}\right)$ or $\frac{3}{2}$ marked on y- axis	B1	(3)	
	(b) $x = -2$, $y = 0$	B1, B1	(2)	
S.C.	[Allow ft on first B1 for $x = 2$ when translated "the wrong way" but must be compatible with their sketch.]			
			5	
(a)	M1 for a horizontal translation – two branches with one branch cutting y – axis	•		
	If one of the branches cuts both axes (translation up and across) this is M0			
	A1 for a horizontal translation to left. Ignore any figures on axes for this mark	ζ.		
	B1 for correct intersection on positive y-axis. More than 1 intersection is B0. $y = 0$ and $y = 1.5$ in a table along is insufficient values intersection of their elected is		.:.	
	x=0 and $y=1.5$ in a table alone is insufficient unless intersection of their sketch is A point marked on the graph overrides a point given elsewhere.	wim +ve y-ax	AIS.	
(b)	$1^{st} B1 \text{ for } x = -2. \text{ NB } x \neq -2 \text{ is } B0.$			
	Can accept $x = +2$ if this is compatible with their sketch.			
	Usually they will have M1A0 in part (a) (and usually B0 too)			
	$2^{\text{nd}} B1 \text{ for } y = 0.$			
S.C.	If $x = -2$ and $y = 0$ and some other asymptotes are also given award B1B0			
	The asymptote equations should be clearly stated in part (b). Simply marking $x = -2$ or $y = 0$			
	on the sketch is insufficient <u>unless</u> they are clearly marked "asymptote $x = -2$ " etc.			

Question number	Scheme	Marks
6.	(a) $2x^2 - x(x-4) = 8$	M1
	$x^2 + 4x - 8 = 0 \tag{*}$	A1cso (2)
	(b) $x = \frac{-4 \pm \sqrt{4^2 - (4 \times 1 \times -8)}}{2}$ or $(x+2)^2 \pm 4 - 8 = 0$	M1
	$x = -2 \pm \text{(any correct expression)}$	A1
	$\sqrt{48} = \sqrt{16}\sqrt{3} = 4\sqrt{3}$ or $\sqrt{12} = \sqrt{4}\sqrt{3} = 2\sqrt{3}$	B1
	$y = (-2 \pm 2\sqrt{3}) - 4$ M: Attempt at least one y value	M1
	$x = -2 + 2\sqrt{3}, y = -6 + 2\sqrt{3}$ $x = -2 - 2\sqrt{3}, y = -6 - 2\sqrt{3}$	A1 (5)
		7
(a)	M1 for correct attempt to form an equation in x only. Condone sign errors/slip	s but attempt at
	this line must be seen. E.g. $2x^2 - x^2 \pm 4x = 8$ is OK for M1.	
	A1cso for correctly simplifying to printed form. No incorrect working seen. The	= 0 <u>is</u> required.
	These two marks can be scored in part (b). For multiple attempts picl	k best.
(b)	1 st M1 for use of correct formula. If formula is not quoted then a fully correct sub	ostitution is
	required. Condone missing $x = \text{or just} + \text{or} - \text{instead of } \pm \text{ for M1}.$	
	For completing the square must have as printed or better.	
	If they have $x^2 - 4x - 8 = 0$ then M1 can be given for $(x-2)^2 \pm 4 - 8 = 0$.	
	1 st A1 for $-2 \pm any$ correct expression. (The $\pm a$ is required but $x = a$ is not)	
	B1 for simplifying the surd e.g. $\sqrt{48} = 4\sqrt{3}$. Must reduce to $b\sqrt{3}$ so $\sqrt{16}\sqrt{3}$	or $\sqrt{4}\sqrt{3}$ are OK.
	2^{nd} M1 for attempting to find at least one y value. Substitution into one of the give	
	and an attempt to solve for y.	•
	2^{nd} A1 for correct y answers. Pairings need <u>not</u> be explicit but they must say which	ch is x and which y.
	Mis-labelling x and y loses final A1 only.	

Question number	Scheme		Marks	
7.	(a) Attempt to use discriminant $b^2 - 4ac$		M1	
	$k^2 - 4(k+3) > 0 \implies k^2 - 4k - 12 > 0$	(*)	A1cso	(2)
	(b) $k^2 - 4k - 12 = 0 \implies$			
	$(k \pm a)(k \pm b)$, with $ab = 12$ or $(k =)\frac{4 \pm \sqrt{4^2 - 4 \times 12}}{2}$ or $(k-2)^2 \pm \frac{4 \pm \sqrt{4^2 - 4 \times 12}}{2}$	$2^2 - 12$	M1	
	k = -2 and 6	(both)	A1	
	$\underline{k < -2, k > 6}$ or $\underline{(-\infty, -2); (6, \infty)}$ M: choosing	ig "outside'	M1 A1ft	(4)
				6
(a)	M1 for use of $b^2 - 4ac$, one of b or c must be correct. Or full attempt using completing the square that leads to a 3TQ e.g. $\left[\left[x + \frac{k}{2}\right]^2 = \right] \frac{k^2}{4} - (k+3)$ A1cso Correct argument to printed result. Need to state (or imply) that incorrect working seen. Must have >0. If > 0 just appears with If >0 appears on last line only with no explanation give A0. $b^2 - 4ac$ followed by $k^2 - 4k - 12 > 0$ only is insufficient so Me.g. $k^2 - 4 \times 1 \times k + 3$ (missing brackets) can get M1A0 but $k^2 + 4(k+3)$ Using $\sqrt{b^2 - 4ac} > 0$ is M0.	$t b^2 - 4ac > k^2 - 4(k + 4ac)$ $M0A0$	3) > 0 that is	
(b)	1 st M1 for attempting to find critical regions. Factors, formula 1 st A1 for $k = 6$ and -2 only 2 nd M1 for choosing the outside regions 2 nd A1f.t. as printed or f.t. their (non identical) critical values $6 < k < -2$ is M1A0 but ignore if it follows a correct version $-2 < k < 6$ is M0A0 whatever their diagram looks like Condone use of x instead of k for critical values and final answer. Treat this question as 3 two mark parts. If part (a) is seen in (b) or vice	ers in (b).		

Question number		Scheme			Marks		
8.	(a) $(a_2 =)3k +$	<u> 5 [mus</u>	et be seen in part (a) or labelle	$d a_2 =]$		B1	(1)
	(b) $(a_3 =)3(3k)$					M1	
	= 9k +	- 20			(*)	Alcso	(2)
	(c)(i) $a_4 = 3(9)$	9k + 20) + 5	(=27k+65)			M1	
	$\sum_{r=0}^{4} a_r = k$	+(3k+5)+(9k + 20 + (27k + 65)			M1	
	$ \begin{pmatrix} r=1 \\ (ii) \end{pmatrix} = 4 $	40k + 90				A1	
	= 1	0(4k+9)	(or explain why divisible b	y 10)		A1ft	(4) 7
			rinted result with no incorrect	-			
(c)	1 st M1		ng to find a_4 . Can allow a slip				
	2 nd M1	_	ng sum of 4 relevant terms, fo	llow through their	(a) and	l (b).	
			terms starting with k .				
	1 st A1		metic series formulae at this p ing to $40k + 90$ or better	oint is Muauau			
	2 nd A1ft		at a factor of 10 or dividing by	710 or an explana	tion in v	words true $\forall k$	<u>'</u>
	_ 1111		ugh their sum of 4 terms provi			,, , , , , , , , , , , , , , , , , , , ,	
			heir sum <u>is</u> divisible by 10.				
		A comment	is <u>not</u> required.				
		e.g. $\frac{40k+9}{10}$	$\frac{0}{4} = 4k + 9$ is OK for this final	A1.			
S.C.	$\sum_{r=2}^{5} a_r =$: 120k + 290 =	= 10(12k + 29) can have M1M	0A0A1ft.			

Question number	Scheme	Marks	
9.	(a) $f(x) = \frac{6x^3}{3} - \frac{10x^2}{2} - 12x \ (+C)$	M1 A1	
	x = 5: $250 - 125 - 60 + C = 65$ $C = 0$	M1 A1	(4)
	(b) $x(2x^2-5x-12)$ or $(2x^2+3x)(x-4)$ or $(2x+3)(x^2-4x)$	M1	
	= x(2x+3)(x-4) (*)	Alcso	(2)
	Shape Through origin	B1	
	Through origin $\left(-\frac{3}{2},0\right)$ and $(4,0)$	B1 B1	(3)
			9
(a)	1 st M1 for attempting to integrate, $x^n \to x^{n+1}$		
	1^{st} A1 for all x terms correct, need not be simplified. Ignore + C here.		
	2^{nd} M1 for some use of $x = 5$ and $f(5)=65$ to form an equation in C based on their	integration.	
	There must be some visible attempt to use $x = 5$ and $f(5)=65$. No +C is M	0.	
	2^{nd} A1 for $C = 0$. This mark cannot be scored unless a suitable equation is seen.		
(b)	M1 for attempting to take out a correct factor or to verify. Allow usual errors. They must get to the equivalent of one of the given partially factorised expressions, $x(2x^2 + 3x - 8x - 12)$ i.e. with no errors in signs.	· ·	
	A1cso for proceeding to printed answer with no incorrect working seen. Commer	nt <u>not</u> required.	
	This mark is <u>dependent upon a fully correct solution to part (a)</u> so M1A1M0A0M Will be common or M1A1M1A0M1A0. To score 2 in (b) they must score 4 in (a)		(b).
(c)	1^{st} B1 for positive x^3 shaped curve (with a max and a min) positioned anywhere.		
	2 nd B1 for any curve that passes through the origin (B0 if it only touches at the or	igin)	
	3 rd B1 for the two points <u>clearly</u> given as coords or values marked in appropriate	places on x axi	is.
	Ignore any extra crossing points (they should have lost first B1).		
	Condone $(1.5, 0)$ if clearly marked on –ve x-axis. Condone $(0, 4)$ etc if ma	rked on $+$ ve x	axis.
	Curve can $\underline{\text{stop}}$ (i.e. not pass through) at (-1.5, 0) and (4, 0).		
	A point on the graph overrides coordinates given elsewhere.		

Question number	Scheme	Marks		
10.	(a) $x = 1$: $y = -5 + 4 = -1$, $x = 2$: $y = -16 + 2 = -14$ (can be given	1 st B1 for – 1		
	in (b) or (c))	2 nd B1 for - 14		
	$PQ = \sqrt{(2-1)^2 + (-14 - (-1))^2} = \sqrt{170}$ (*)	M1 A1cso (4)		
	(b) $y = x^3 - 6x^2 + 4x^{-1}$	M1		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 12x - 4x^{-2}$	M1 A1		
	$x = 1$: $\frac{dy}{dx} = 3 - 12 - 4 = -13$ M: Evaluate at one of the points	M1		
	$x = 2$: $\frac{dy}{dx} = 12 - 24 - 1 = -13$: Parallel A: Both correct + conclusion	A1 (5)		
	(c) Finding gradient of normal $\left(m = \frac{1}{13}\right)$	M1		
	$y1 = \frac{1}{13}(x - 1)$	M1 A1ft		
	x - 13y - 14 = 0 o.e.	A1cso (4)		
		13		
(a)	M1 for attempting PQ or PQ^2 using their P and their Q . Usual rules about quot We must see attempt at $1^2 + (y_P - y_Q)^2$ for M1. $PQ^2 = $ etc could be MA1cso for proceeding to the correct answer with no incorrect working seen.	-		
(b)	1^{st} M1 for multiplying by x^2 , the x^3 or $-6x^2$ must be correct. 2^{nd} M1 for some correct differentiation, at least one term must be correct as printed 1^{st} A1 for a fully correct derivative.	1.		
	These 3 marks can be awarded anywhere when first seen. 3^{rd} M1 for attempting to substitute $x = 1$ or $x = 2$ in their derivative. Substituting in y is M0. 2^{nd} A1 for -13 from both substitutions and a brief comment. The – 13 must come from their derivative.			
(c)	1 st M1 for use of the perpendicular gradient rule. Follow through their – 1 2 nd M1 for full method to find the equation of the normal or tangent at <i>P</i> . I quoted allow slips in substitution, otherwise a correct substitution is 1 st A1ft for a correct expression. Follow through their – 1 and their changes	f formula is s required.		
	for a correct expression. Follow through their – 1 and their changed 2 nd A1cso for a correct equation with = 0 and integer coefficients. This mark is dependent upon the – 13 coming from their derivative Tangent can get M0M1A0A0, changed gradient can get M0M1A1A	in (b) hence cso.		
	Condone confusion over terminology of tangent and normal, mark gradient and eq			
MR	Allow for $-\frac{4}{x}$ or $(x+6)$ but not omitting $4x^{-1}$ or treating it as $4x$.			

Question number	Scheme	Marks	
11.	(a) $y = -\frac{3}{2}x(+4)$ Gradient = $-\frac{3}{2}$	M1 A1	(2)
	(b) $3x + 2 = -\frac{3}{2}x + 4$ $x =, \frac{4}{9}$	M1, A1	
	$y = 3\left(\frac{4}{9}\right) + 2 = \frac{10}{3} \left(= 3\frac{1}{3}\right)$	A1	(3)
	(c) Where $y = 1$, $l_1: x_A = -\frac{1}{3}$ $l_2: x_B = 2$ M: Attempt one of these	M1 A1	
	Area = $\frac{1}{2}(x_B - x_A)(y_P - 1)$	M1	
	$= \frac{1}{2} \times \frac{7}{3} \times \frac{7}{3} = \frac{49}{18} = 2\frac{13}{18}$ o.e.	A1	(4)
			9
(a)	M1 for an attempt to write $3x + 2y - 8 = 0$ in the form $y = mx + c$ or a full method that leads to $m = 0$, e.g find 2 points, and attempt gradient use.g. finding $y = -1.5x + 4$ alone can score M1 (even if they go on to say $m = 0$) for $m = -\frac{3}{2}$ (can ignore the $+c$) or $\frac{dy}{dx} = -\frac{3}{2}$	$x_2 - x_1$	
(b)	M1 for forming a suitable equation in one variable and attempting to solve lead 1 st A1 for any exact correct value for <i>x</i> 2 nd A1 for any exact correct value for <i>y</i> (These 3 marks can be scored anywhere, they may treat (a) and (b) as a single		<i>y</i> =
(c)	1 st M1 for attempting the <i>x</i> coordinate of <i>A</i> or <i>B</i> . One correct value seen scores M 1 st A1 for $x_A = -\frac{1}{3}$ and $x_B = 2$	1.	
	2^{nd} M1 for a full method for the area of the triangle – follow through their x_A, x_B, y	y_P .	
	e.g. determinant approach $\frac{1}{2}\begin{vmatrix} 2 & -\frac{1}{3} & \frac{4}{9} & 2\\ 1 & 1 & \frac{10}{3} & 1 \end{vmatrix} = \frac{1}{2} 2 - \dots - (-\frac{1}{3}\dots) $		
	2^{nd} A1 for $\frac{49}{18}$ or an exact equivalent.		
	All accuracy marks require answers as single fractions or mixed numbers not nece terms.	ssarily in lowe	est