```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import itertools
```

```
In [3]: models = ['Model 1','Model 2', 'Model 3', 'Model 4']

# Labeled Classes
labels=[0,1,2]

# Class Names
# Setosa = 0, Versicolor = 1, Virginica = 2
classes = ['Setosa','Versicolor','Virginica']

df = pd.read_csv(r'C:\Users\309962\Desktop\IrisSample.csv')
```

In [4]: df.head(15)

Out[4]:

	sepal_length	sepal_width	petal_length	petal_width	class	NumericClass	Model1_Prediction
0	5.8	4.0	1.2	0.2	Iris- setosa	0	(
1	5.7	4.4	1.3	0.4	Iris- setosa	0	
2	5.1	3.4	1.5	0.2	Iris- setosa	0	(
3	5.4	3.9	1.7	0.4	Iris- setosa	0	(
4	4.3	3.0	1.1	0.1	Iris- setosa	0	•
5	4.9	2.4	3.3	1.0	Iris- versicolor	1	
6	5.9	3.0	4.2	1.5	Iris- versicolor	1	
7	6.6	3.0	4.4	1.4	Iris- versicolor	1	1
8	5.0	2.3	3.3	1.0	Iris- versicolor	1	
9	6.2	2.9	4.3	1.3	Iris- versicolor	1	
10	5.8	2.7	5.1	1.9	Iris- virginica	2	
11	7.2	3.6	6.1	2.5	Iris- virginica	2	
12	6.4	3.2	5.3	2.3	Iris- virginica	2	1
13	7.4	2.8	6.1	1.9	Iris- virginica	2	1
14	6.1	2.6	5.6	1.4	Iris- virginica	2	1

```
In [5]: plt.figure()
   plt.scatter(df.index,df['NumericClass'],label='Actual')
   plt.legend(loc=4)
   plt.yticks([0,1,2])
   plt.xlabel('Sample')
   plt.ylabel('Class')
   plt.show()
```



```
In [6]:
    # Compare performance of Actual and Model 1 Prediction
    plt.figure()
    plt.scatter(df.index,df['NumericClass'],label='Actual')
    plt.scatter(df.index,df['Model1_Prediction'],label='Model 1',marker='^')
    plt.legend(loc=4)
    plt.yticks([0,1,2])
    plt.xlabel('Sample')
    plt.ylabel('Class')
    plt.show()
```



```
In [7]: plt.figure(figsize=(10,10))
         for idx, model in enumerate(models):
              plt.subplot(2,2,idx+1)
              plt.scatter(df.index,df['NumericClass'],label='Actual')
              plt.scatter(df.index,df[model.replace(' ','') + '_Prediction'],
                            label=model,marker='^')
              plt.yticks([0,1,2])
              plt.legend(loc=4)
              plt.xlabel('Sample')
              plt.ylabel('Class')
                                                          2
             2
          Olass
                                                        Class
                                             Actual
                                                                                          Actual
                                             Model 1
             0
                                                                                           Model 2
                                                          0
                               6
                                   8
                                        10
                                            12
                                                 14
                                                                            6
                                                                                 8
                                                                                     10
                                                                                          12
                                                                                               14
                                                                            Sample
                               Sample
             2
                                                          2
          Olass
                                                        Class
                                             Actual
                                                                                           Actual
                                             Model 3
                                                                                           Model 4
             0
                                                          0
                               6
                                   8
                                        10
                                            12
                                                 14
                                                                            6
                                                                                 8
                                                                                     10
                                                                                          12
                                                                                               14
```

Sample

Sample

In [8]: from sklearn.metrics import classification_report,confusion_matrix

```
In [9]: | # Reference:
         # https://scikit-learn.org/stable/auto examples/model selection/plot confusion ma
         def plot_confusion_matrix(cm, classes,
                                    normalize=False,
                                    title='Confusion matrix',
                                    cmap=plt.cm.Blues):
              .....
             This function prints and plots the confusion matrix.
             Normalization can be applied by setting `normalize=True`.
             if normalize:
                  cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
                  #print("Normalized confusion matrix")
             #else:
                  print('Confusion matrix, without normalization')
             #print(cm)
             plt.imshow(cm, interpolation='nearest', cmap=cmap)
             plt.title(title)
             plt.colorbar()
             tick_marks = np.arange(len(classes))
             plt.xticks(tick marks, classes, rotation=45)
             plt.yticks(tick_marks, classes)
             fmt = '.2f' if normalize else 'd'
             thresh = cm.max() / 2.
             for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
                  plt.text(j, i, format(cm[i, j], fmt),
                           horizontalalignment="center",
                           color="white" if cm[i, j] > thresh else "black")
             plt.ylabel('True label')
             plt.xlabel('Predicted label')
             plt.tight_layout()
In [10]: # Compute confusion matrix
         cnf matrix = confusion matrix(df['NumericClass'],
                                        df['Model1_Prediction'],labels=labels)
In [11]:
         cnf matrix
Out[11]: array([[3, 2, 0],
                 [0, 4, 1],
                [0, 2, 3]], dtype=int64)
```


In [14]:

In [15]:

Model 1				
	precision	recall	f1-score	support
Setosa	1.00	0.60	0.75	5
Versicolor	0.50	0.80	0.62	5
Virginica	0.75	0.60	0.67	5
avg / total	0.75	0.67	0.68	15
Model 2				
	precision	recall	f1-score	support
Setosa	0.00	0.00	0.00	5
Versicolor	0.33	1.00	0.50	5
Virginica	0.00	0.00	0.00	5
avg / total	0.11	0.33	0.17	15
Model 3				
	precision	recall	f1-score	support
Setosa				
	1.00	1.00	1.00	5
Versicolor	1.00 0.60	1.00 0.60	1.00 0.60	5 5
Versicolor Virginica				
	0.60	0.60	0.60	5
Virginica	0.60 0.60	0.60 0.60	0.60 0.60	5 5
Virginica avg / total	0.60 0.60	0.60 0.60	0.60 0.60	5 5
Virginica avg / total	0.600.600.73	0.60 0.60 0.73	0.60 0.60 0.73	5 5 15
Virginica avg / total Model 4	0.60 0.60 0.73 precision	0.60 0.60 0.73 recall	0.60 0.60 0.73 f1-score	5 5 15 support
Virginica avg / total Model 4 Setosa	0.60 0.60 0.73 precision 0.20	0.60 0.60 0.73 recall 0.20	0.60 0.60 0.73 f1-score 0.20	5 5 15 support 5

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\metrics\classification.py:11
35: UndefinedMetricWarning: Precision and F-score are ill-defined and being set
to 0.0 in labels with no predicted samples.

'precision', 'predicted', average, warn_for)

Macro average = Treat all classes equally. Average of individual class scores Weighted average = Take frequency of the classes into consideration.

Weighted Average is recommended if there is uneven class distribution

In this example, Weighted Average of Model 1 and Model 3 are highest.

Reference:

https://datascience.stackexchange.com/questions/15989/micro-average-vs-macroaverage-performance-in-a-multiclass-classification-settin

https://docs.aws.amazon.com/machine-learning/latest/dg/multiclassclassification.html