Мат. Анализ 2

Igor Engel

1 Вещественные числа

Определение 1.1. Веществыенные числа - множество, на котором заданы операции $+, \times : \mathbb{R} \times \mathbb{R} \mapsto \mathbb{R}$, удовлетворяющие следующим аксиомам, $a, b, c \in \mathbb{R}$

A1
$$a+b=b+a$$

A2
$$(a+b) + c = a + (b+c)$$

A3
$$\exists 0 \in \mathbb{R} \quad a+0=a$$

A4
$$\exists -a \ a + (-a) = 0$$

M1
$$a \times b = b \times a$$

M2
$$(a \times b) \times c = a \times (b \times c)$$

M3
$$\exists 1 \neq 0 \quad a \times 1 = a$$

$$M4 \ \forall a \neq 0 \quad \exists a^{-1} \quad a \times a^{-1} = 1$$

$$AM (a+b) \times c = a \times c + b \times c$$

А так-же обладают отношением порядка $\leq \subset \mathbb{R}^2$, удовлетворяющего следующим аксомам:

- 1. \leq рефлексивное антисимметричное транзитивное отношение.
- 2. $\forall a, b \in \mathbb{R} \quad (a \leq b) \lor (b \leq a)$
- $3. \ a \leq b \implies a+c \leq b+c$
- $4. \ 0 \le a, 0 \le b \implies 0 \le ab$

И удовлетворяет аксиоме полноты:

$$A \subset \mathbb{R}, A \neq \emptyset.$$

$$B\subset \mathbb{R}, B\neq \emptyset.$$

$$\forall a \in A \quad \forall b \in B \quad a \le b.$$

$$\exists c \in \mathbb{R} \quad \forall a \in A \quad \forall b \in B \quad a \le c \le b.$$

Теорема 1.1 (Принцип Архимеда).

$$\forall x \in \mathbb{R}, y \in \mathbb{R}_+ \quad \exists n \in \mathbb{N} \quad ny > x.$$

Доказательство.

$$A = \{ u \in \mathbb{R} \mid \exists n \in \mathbb{N} \quad ny > u \}.$$
$$0 \in A \implies A \neq \emptyset.$$

Докажем от противного, что $A = \mathbb{R}$. Если $A \neq \mathbb{R}$, то $B = \mathbb{R} \setminus A \neq \emptyset$.

$$\forall a \in A \quad \forall b \in B \quad b < a \implies b \in A.$$

$$\forall a \in A \quad \forall b \in B \quad a \le b.$$

По аксиоме полноты:

$$\exists c \in \mathbb{R} \quad \forall a \in A \quad \forall b \in B \quad a < c < b.$$

Ho $A \cup B = \mathbb{R}$, значит $(c \in A) \lor (c \in B)$

Если $c \in A$, то $\exists n \in \mathbb{R}$ $c < ny \implies c + y < (n+1)y \implies c + y \in A$. Но c + y > c. Если $c \in B$, то $\forall c' < c$ $c' \in A \implies c - y \in A \implies \exists n \in \mathbb{R}$ $c - y < ny \implies c < (n+1)y \implies c \in A$. Что невозможно. Значит наше предположение что $A \neq \mathbb{R}$ неверно.

Лемма 1.1.1.

$$\forall \varepsilon > 0 \quad \exists n \in \mathbb{N} \quad \frac{1}{n} < \varepsilon.$$

Доказательство. Подставим $x=1,\,y=\varepsilon$ в принцип архимеда. Тогда $\exists n\in\mathbb{N}\quad n\varepsilon>1$

Определение 1.2. А ограниченно сверху, если

$$\exists b \in \mathbb{R} \quad \forall a \in A \quad a \le b.$$

. b называется верхней гранью A.

Определение 1.3. А ограниченно снизу, если

$$\exists b \in \mathbb{R} \quad \forall a \in A \quad b \le a.$$

b называется нижней гранью

Лемма 1.1.2. № неограниченна сверху.

Доказательство. Пусть b - верхняя грань \mathbb{N} . Подставим $x=b,\,y=1$ в принцип Архимеда. Тогда

$$\exists n \in \mathbb{N} \quad b < n.$$

Значит b - не верхняя грань.

Определение 1.4 (Принцип мат. индукции). Пусть $P_n, n \in \mathbb{N}$ - набор утверждений. Если P_1 верно, и $P_n \implies P_{n+1}$, то P_n верно для всех n.

Теорема 1.2. В любом непустом конечном множестве A есть наибольший и наименьший элемент.

Доказательство. Индукция по количеству элементов.

База: Для n=1 - единственный элемент является наибольшим и наименьшим.

Переход: Возьмём n+1-элементное множество A'. Возьмём из него подмножество мощньностью n, без элемента x_{n+1} . В этом подмножестве есть наименьшей элемент x_k . Если $x_{n+1} < x_k$ - x_k наименьший элемент A', если $x_{n+1} > x_k$ - x_{n+1} - наименьший элемент A'. Для наибольшего симметрично.

Лемма 1.2.1. Если $A\subset \mathbb{Z},\, A\neq \emptyset$ и A ограниченно сверху, то в A есть наибольший элемент

Если $A \subset \mathbb{Z}$, $A \neq \emptyset$ и A ограниченно снизу, то в A есть наименьший элемент.

Доказательство. Докажем первое утверждение.

$$\exists b \in \mathbb{R} \quad \forall a \in A \quad a < b.$$

Возьмём $c \in A$. Пусть $B = \{x \in A \mid x \ge c\}$.

Докажем что B - конечное множество. Пусть n=b-c. Тогда, $|B| \le n$, так-как в B нет элементов больше b, и нет элементов меньших c.

Пусть d - наибольший элемент B. Тогда $c \leq d \implies \forall x \in A \setminus B \quad x \leq d$.

$$\begin{cases} \forall x \in B & x \leq d \\ \forall x \in A \setminus B & x \leq d \end{cases} \implies \forall x \in A \quad x \leq d$$

Значит d - наибольший элемент A

Определение 1.5. Целая часть числа $x \in \mathbb{R} (\lfloor x \rfloor)$ - наибольшее $x' \in \{x' \in \mathbb{Z} \mid x' \leq x\}$. Такое число существует, как следствие из предыдущей леммы.

Лемма 1.5.1.

$$|x| \le x < |x| + 1.$$

Лемма 1.5.2.

$$x - 1 < |x| \le x.$$

Теорема 1.3. Если $x,y \in \mathbb{R}, \ x < y,$ то $\exists c \in \mathbb{Q} \quad x < c < y,$ и $\exists c \not \in \mathbb{Q} \quad x < c < y$

Доказательство. Пусть $\varepsilon = y - x > 0$.

$$\exists n \in \mathbb{N} \quad \frac{1}{n} < \varepsilon.$$

$$m = \lfloor nx \rfloor \implies r = \frac{m+1}{n}.$$

r - подходящие число, так-как $x < \frac{m+1}{n} < y \iff nx < \lfloor nx \rfloor + 1 < n(x+\varepsilon).$

$$\frac{1}{n} < \varepsilon \implies n\varepsilon > 1.$$

Докажем второе утверждение: $x < y \implies x - \sqrt{2} < y - \sqrt{2}$, тогда $\exists r \in \mathbb{Q} \quad x - \sqrt{2} < r < y - \sqrt{2}$. Тогда $x < r + \sqrt{2} < y$. r - рациональное, значит $r + \sqrt{2}$ - иррациональное.

2 Супремум и инфинум

Определение 2.1. $d = \sup A$ - мнимальная верхняя грань:

$$\forall a \in A \quad a \leq d.$$

$$\forall \varepsilon > 0 \quad \exists a \in A \quad a > (d - \varepsilon).$$

Определение 2.2. $d = \inf A$ - максимальная нижняя грань:

$$\forall a \in A \quad a \ge d.$$

$$\forall \varepsilon > 0 \quad \exists a \in A \quad a < (d + \varepsilon).$$

Теорема 2.1. $A \neq \emptyset$ ограниченно сверху, то существует $\sup A$.

Доказательство. B - множество всех верхних граней A. $B \neq \emptyset$.

$$\forall b \in B \quad \forall a \in A \quad a \leq b.$$

По аксиоме полноты:

$$\exists c \in \mathbb{R} \quad \forall a \in A \quad \forall b \in B \quad a \le c \le b.$$

c - верхняя грань, значит $c \in B$. И c - наименьший элемент B.

Лемма 2.1.1. Пусть $B \neq \emptyset$, $B \subset A$, A ограниченно сверху. Тогда $\sup A \geq \sup B$.

Доказательство. $\sup A$ - верхняя грань A и B. Тогда, наименьшая верхняя грань B не больше $\sup A$.

Эти теорема и лемма симметричны для инфинума.

Определение 2.3. Если A неограниченно сверху, то $\sup A = \infty$. Если A неограниченно снизу, то $\inf A = -\infty$.

$$\forall r \in \mathbb{R} \quad -\infty < r < \infty.$$

Тогда со всех предыдущих теорем можно снять условия на ограниченность множеств.

Теорема 2.2 (Теорема о вложенных отрезках).

$$[a_1; b_1] \supset [a_2, b_2] \supset \dots$$

$$\bigcup_{i=0}^{\infty} [a_i; b_i] \neq \emptyset.$$

Доказательство.

$$a_1 < b_1.$$

$$a_1 \le a_2 \le \dots$$

$$b_1 \ge b_2 \ge \dots$$

$$A = \{a_k \mid k \in N\}.$$

$$B = \{b_k \mid k \in N\}.$$

$$\forall i, j \in \mathbb{N} \quad a_i \le b_j.$$

Тогда, по аксиоме полноты:

$$\exists c \in \mathbb{R} \quad \forall i, j \in \mathbb{N} \quad a_i \le c \le b_i.$$

$$\forall k \in \mathbb{N} \quad a_k \le c \le b_k.$$

Тогда $c \in \bigcup_{i=1}^{\infty} [a_i; b_i]$, а значит оно непустое.

Дополнительно:

В Q теорема не верна.

Для полуинтервалов и лучей теорема не верна.

3 Последовательности вещественных чисел

Последовательность вещественных чисел: $f: \mathbb{N} \to \mathbb{R}$ Например, $x_n = f(n) = \sqrt{n^2 + 1}$.

3.1 Предел последовательности

Определение 3.1. x_n - ограниченна сверху, если

$$\exists b \in \mathbb{R} \quad \forall n \in \mathbb{N} \quad x_n \leq b.$$

Определение 3.2 (Предел последовательности). $\ell = \lim x_n$, если для любого интервала (a,b) содержащего ℓ , вне его лежит лишь конечное число членов последовательности.

Лемма 3.0.1. Можно рассматривать симметричный отностиельно точки ℓ интервал.

Доказательство. Возьмём интервал $(\ell - x'; \ell + x)$, где x' > x. Если вне интервала $(\ell - x; \ell + x)$ лежит конечное число членов последовательности, то для изначального интервала это тоже верно.

Определение 3.3 (Эквивалентное определение предела последовательности).

$$\ell = \lim x_n \iff \forall \varepsilon > 0 \quad \exists n_0 \in \mathbb{N} \quad \forall n > n_0 \in \mathbb{N} \quad |x_n - \ell| < \varepsilon.$$

Примеры:

- 1. $x_n = c \implies \lim x_n = c$
- 2. $\frac{x^2}{x^2+1} \implies \lim x_n = 1 \iff |x_n 1| = \left| \frac{n^2}{n^2+1} 1 \right| = \left| \frac{1}{n^2+1} \right| < \varepsilon \iff \frac{1}{\varepsilon} < n^2 + 1$
- 3. $x_n = (-1)^n$ предела нет.

Лемма 3.3.1. Если n_0 подходит для некоторого ε_0 , то оно подходит для всех $\varepsilon > \varepsilon_0$

Лемма 3.3.2. Если из последовательности выкинуть или добавить конечное число элементов, то её предел не измениться.

Определение 3.4. $A \subset \mathbb{R}$, $\ell \in \mathbb{R}$. ℓ - пределььная точка A, если в любом интервале содержащем ℓ , бесконечно много точек A.

3.2 Свойства последовательностей

Теорема 3.1 (Единственность предела). Если предел существует, то он единственнен.

Доказательство. Пусть $\lim x_n = a$, и $\lim x_n = b$, a < b. Рассмотрим интервалы $(c_1; \frac{a+b}{2})$ и $(\frac{a+b}{2}; c_2)$. Вне каждого из них лежит конечно число элементов. Но так-как интервалы не пересекаются, вся последовательноть лежит вне этих интервалов. Тогда в последовательности было-бы конечное число членов.

Лемма 3.1.1. Пусть $\lim x_n=a, \lim y_n=b,$ и $\varepsilon>0$. Тогда

$$\exists n_0 \in \mathbb{N} \quad \forall n > n_0 \quad \begin{cases} |x_n - a| < \varepsilon \\ |y_n - b| < \varepsilon \end{cases}.$$

Доказательство.

$$\exists n_1 \in \mathbb{N} \quad \forall n > n_1 \quad |x_n - a| < \varepsilon.$$

$$\exists n_2 \in \mathbb{N} \quad \forall n > n_2 \quad |y_n - b| < \varepsilon.$$

$$n_0 = \max(n_1, n_2).$$

Теорема 3.2 (Предельный переход в неравенстве). Пусть $\forall n \in \mathbb{N}$ $x_n \leq y_n$, $\lim x_n = a$, $\lim y_n = b$, тогда $a \leq b$.

 \mathcal{A} оказательство. Если a>b: возьмём $\varepsilon=\frac{a-b}{2}$, тогда

$$\begin{cases} |x_{n_0} - a| < \varepsilon \implies x_{n_0} \ge a - \varepsilon \\ |y_{n_0} - b| < \varepsilon \implies y_{n_0} \le b + \varepsilon \end{cases}.$$

$$a - \varepsilon \le x_{n_0} \le y_{n_0} \le b + \varepsilon \implies a - \frac{a - b}{2} \le b + \frac{a - b}{2} \implies \frac{a}{2} + \frac{b}{2} \le \frac{a}{2} + \frac{b}{2}.$$

Что невозможно.

Примечание: Строгие неравенства могут не сохраняться.

Теорема 3.3. Если последовательность имеет предел, то она ограниченна.

Доказательство. Пусть $\ell = \lim x_n$, рассмотрим интервал $(\ell - 1; \ell + 1)$. Больше $\ell + 1$ только конечное число элементов, значит среди них есть наибольший. Симметрично для наименьшего.

Теорема 3.4 (Стабилизация знака). Если $\ell = \lim x_n \neq 0$, то начиная с некоторого номера, все члены последовательности имеют тот-же знак что и ℓ .

Доказательство. Докажем для $\ell > 0$. Тогда, начиная с некоторого номера все элементы лежат в $(0; 2\ell)$. Для $\ell < 0$ симметрично.

Теорема 3.5 (Теорема о сжатой последовательности (о двух милиционерах)). Пусть $\forall n \in \mathbb{N} \quad x_n \leq y_n \leq z_n$. $\ell = \lim x_n = \lim z_n \implies \lim y_n = \ell$.

Доказательство. Возьмём $\varepsilon > 0$ и n из леммы ??. Тогда

$$\begin{cases} |x_n - \ell| < \varepsilon \implies x_n > \ell - \varepsilon \\ |z_n - \ell| < \varepsilon \implies z_n < \ell + \varepsilon \end{cases} \implies \ell - \varepsilon < x_n \le y_n \le z_n < \ell + \varepsilon \implies \lim y_n = \ell. \square$$

Лемма 3.5.1. Если $\lim z_n = 0, \forall n \in \mathbb{N} \quad |y_n| < z_n, \text{ то } \lim y_n = 0.$

Доказательство. $-z_n \le y_n \le z_n \implies \lim y_n = 0$

Определение 3.5. Бесконечна малая последоавтельность - последовательно, предел которой равен нулю.

Лемма 3.5.1. Если x_n - бесконечна малая, а y_n - ограниченна, то x_ny_n - бесконечно малая.

Доказательство.

$$|y_n| < M.$$

$$\exists \varepsilon > 0 \quad \exists n_0 \quad \forall n > n_0 \quad |x_n| < \frac{\varepsilon}{M} \implies |x_n y_n| < \varepsilon.$$

Теорема 3.6 (Теорема об арифметических действиях с пределами). Пусть $\lim x_n = a$ и $\lim y_n = b$. Тогда:

$$\lim (x_n + y_n) = a + b.$$

$$\lim (x_n y_n) = ab.$$

$$\lim (x_n - y_n) = a - b.$$

$$y_n \neq 0 \land b \neq 0 \implies \lim \left(\frac{x_n}{y_n}\right) = \frac{a}{b}.$$

 $\ensuremath{\mathcal{A}\xspace}$ оказательство. Берём $\varepsilon>0,$ и по $\frac{\varepsilon}{2}$ берём нормер из леммы ??.

$$\begin{cases} |x_n - a| < \frac{\varepsilon}{2} \\ |y_n - b| < \frac{\varepsilon}{2} \end{cases} \implies |x_n + y_n - a - b| \le |x - a| + |y - b| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Рассмотрим разность $x_ny_n-ab=x_ny_n-x_nb+x_nb-ab \Longrightarrow |x_ny_n-ab| \le |x_n||y_n-b|+|b||x_n-a|.$ $\lim x_n=a \Longrightarrow \exists M \quad \forall n \in \mathbb{N} \quad x_n \le M.$

$$\hat{\varepsilon} = \frac{\varepsilon}{2\max\left(M, |b|\right)} \implies \exists n_0 \in \mathbb{N} \quad \forall n > n_0 \quad \begin{cases} |x_n - a| < \hat{\varepsilon} \\ |y_n - b| < \hat{\varepsilon} \end{cases}.$$