Basic Factory Dynamics (2)

<Experiment result & analysis>

Experiment 1. Record TH, WIP, and CT for the entire production system, and verify the Little's Law for the best case and case with changes.

- Changes for M/C 5 and M/C 6 are considered simultaneously

(Case 1: Type A \rightarrow 6 min/job, Type B \rightarrow 4 min/job)

(Case 2: Type A \rightarrow 9 min/job, Type B \rightarrow 3 min/job)

		TH	WIP	СТ	Little's Law verified?
Case	Best case	0.383	31.901+14.5=46.401	104.27	X
1	Fluctuated	0.381	31.8282+14.8336=46.6618	105.08	X
Case	Best case	0.445	10+19.333=29.333	65.982	О
2	Fluctuated	0.446	9.9929+19.7867=29.7796	67.0799	О

아래와 같이 Production System을 구현한 후, 문제에서 제시한 조건을 반영하여 결과를 기록했다.

TH는 Arena의 결과 report에 기록된 Number Out을 1000분(warm up period를 제외한 run time)으로 나누어 계산했다.

WIP값은 결과 report에 기록된 값을 바로 기록했고, CT값 역시 Record 모듈의 Total Time으로 기록된 값을 바로 기록했다.

변경 사항의 경우, "Variability(exponential distribution) for M/C 5 and M/C 6 are considered simultaneously" 라는 표현에 의해, M/C 5와 6의 processing time을 exponential 함수를 동시에 따르는 것으로 설정했다.

Case 1 – Best case

Number Out					
Number out	Value				
A Type	133.00				
В Туре	250.00				
WIP	Average	Half Width	Minimum Value	Maximum Value	
A Type	31.9010	(Insufficient)	15.0000	49.0000	
В Туре	14.5000	0.00000000	14.0000	15.0000	
Interval	Average	Half Width	Minimum Value	Maximum Value	
Total Time	104.27	(Correlated)	58.0000	291.00	
Case 1 - Fluctuated					
Number Out	Value				
A Type	134.00				
В Туре	247.00				
WIP	Average	Half Width	Minimum Value	Maximum Value	
А Туре	31.8282	(Insufficient)	15.0000	49.0000	
В Туре	14.8336	(Correlated)	11.0000	19.0000	

Interval	Average	Half Width	Minimum Value	Maximum Value	
Total Time	105.08	(Correlated)	44.6434	322.38	
Case 2 – Best case					
Case 2 – Best case					
Number Out	Value				
A Type	111.00				
В Туре	334.00				
WIP	Average	Half Width	Minimum Value	Maximum Value	
A Type	10.0000	(Insufficient)	9.0000	11.0000	
В Туре	19.3330	(Correlated)	19.0000	20.0000	
71		,			
Interval			Minimum	Maximum	
	Average	Half Width	Value	Value	
Total Time	65.9820	0.00000000	58.0000	90.0000	
Case 2 - Fluctuated					
Ni-makes Out					
Number Out	Value				
A Type	112.00				
В Туре	334.00				
WIP			Minimum	Maximum	
VVIF	Average	Half Width	Value	Value	
А Туре	9.9929	(Insufficient)	7.0000	12.0000	
В Туре	19.7867	0.276089270	17.0000	24.0000	
Interval			Minimum	Maximum	
merva	Average	Half Width	Value	Value	
Total Time	67.0799	1.27939	44.6297	159.30	

Little's Law가 verified 되는지 확인하기 위해, 위에서 얻은 결과로 각 상황에 대해 $WIP = CT \times TH$ 가 만족되는지 확인했다.

이 때, warm-up period의 설정, number of replication 등에 의해 오차가 발생했을 수 있으므로, 5%의 오차 범위를 적용하여 관계를 확인했다.

Case 1 - Best : WIP=46.401, $CT \times TH = 39.935$

 $\frac{CT \times TH}{WIP}$ =0.8607으로, Little's Law가 성립하지 않는다.

Case 1 - Fluctuated : WIP=46.6618, $CT \times TH = 40.035$

 $\frac{CT \times TH}{WIP}$ =0.858으로, Little's Law가 성립하지 않는다.

Case 2 - Best : WIP= 29.333, $CT \times TH = 29.362$

 $\frac{CT \times TH}{WIP}$ =1로, Little's Law가 성립한다.

Case 2 - Fluctuated: WIP= 29.7796, $CT \times TH = 29.9176$

 $\frac{CT \times TH}{WIP}$ =1.004으로, Little's Law가 성립한다.

Experiment 2. For Case 1 of experiment 1, Record TH, WIP, and CT for each product, and verify the Little's Law for the best case and case with changes.

- Changes for M/C 5 and M/C 6 are considered **simultaneously**

		ТН	WIP	CT	Little's Law verified?
Best case	A Type	0.133	31.901	191.26	X
Best case	В Туре	0.250	14.5	58	О
El	A Type	0.134	31.8282	189.94	X
Fluctuated	В Туре	0.247	14.8336	59.0346	О

Case 1에서, 마찬가지로 변동 사항의 경우 M/C 5와 6의 processing time을 exponential 함수를 동시에 따르는 것으로 설정했다.

Best case

Number Out					
	Value				
A Type	133.00				 -
В Туре	250.00				
WIP	Average	Half Width	Minimum Value	Maximum Value	
A Type	31.9010	(Insufficient)	15.0000	49.0000	
В Туре	14.5000	0.000000000	14.0000	15.0000	
Total Time	Average	Half Width	Minimum Value	Maximum Value	
A Type	191.26	(Insufficient)	93.0000	291.00	
В Туре	58.0000	(Insufficient)	58.0000	58.0000	
Fluctuated Number Out	Value				
A Type	134.00				
В Туре	247.00				
WIP	Average	Half Width	Minimum Value	Maximum Value	
A Type	31.8282	(Insufficient)	15.0000	49.0000	
В Туре	14.8336	(Correlated)	11.0000	19.0000	
Total Time	Average	Half Width	Minimum Value	Maximum Value	
А Туре	189.94	(Insufficient)	89.9427	322.38	
В Туре	59.0346	(Insufficient)	44.6434	111.80	

이번에도 역시 Little's Law가 verified 되는지 확인하기 위해, 위에서 얻은 결과로 각 상황에 대해 $WIP = CT \times TH$ 가 만족되는지 확인했다.

전과 동일한 이유로, 5%의 오차범위를 적용하여 관계를 확인했다.

Best Case – A Type : WIP=31.901, $CT \times TH = 25.437$

 $\frac{CT \times TH}{WIP}$ =0.7974으로, Little's Law가 성립하지 않는다.

Best Case – B Type: WIP=14.5, $CT \times TH = 14.5$

 $\frac{CT \times TH}{WIP}$ =1으로, Little's Law가 성립한다.

Fluctuated - A Type: WIP= 31.8282, $CT \times TH = 25.452$

 $\frac{CT \times TH}{WIP}$ =0.799로, Little's Law가 성립하지 않는다.

Fluctuated - B Type: WIP= 14.8336, $CT \times TH = 14.581$

 $\frac{CT \times TH}{WIP}$ =0.983으로, Little's Law가 성립한다.

Experiment 3. For Case 1 of experiment 1, Record TH, WIP, and CT for each station, and verify the Little's Law for the best case and case with changes.

- Changes for M/C 5 and M/C 6 are considered respectively

		TH	WIP	CT	Little's Law verified?
Station	Best case	0.384	0+5=5	13.0469	О
5	Fluctuated	0.384	0+5.2533=5.2533	13.8090	О
Station	Best case	0.384	0+1.567=1.567	4.0938	О
6	Fluctuated	0.384	0+1.6145=1.6145	4.2442	О

Case 1에서, 이번에는 Fluctuated의경우 M/C 5와 6의 processing time을 exponential 함수를 각각 따르는 것으로 설정했다.

WIP의 경우, Number Busy + Number Waiting으로 계산했다. 그런데, Best Case와 각 변동 사항 적용 시 Number Waiting의 수 0이기에 Number Busy만이 WIP에 포함되었다.

추가로, station 5와 6의 processing time을 구하기 위해, 아래와 같이 assign과 record 모듈을 추가하였다.

MSA 2023 – Experiment Material

Best case					
Total Number Seized	Value				
MC5 MC6	384.00 384.00				
Number Busy	Average	Half Width	Minimum Value	Maximum Value	
MC5 MC6	5.0000 1.5670	(Insufficient) 0.008545210	3.0000 0.00	6.0000 3.0000	
Number Waiting	Average	Half Width	Minimum Value	Maximum Value	
Station 5.Queue Station 6.Queue	0.00 0.00	(Insufficient) (Insufficient)	0.00 0.00	0.00 0.00	
Interval	Average	Half Width	Minimum Value	Maximum Value	
station 5 CT station 6 CT	13.0469 4.0938	(Correlated) (Correlated)	12.0000 2.0000	15.0000 8.0000	
Fluctuated – Station 5					
Fluctuated — Station 5 Total Number Seized	Value				
	Value 384.00				
Total Number Seized		Half Width	Minimum Value	Maximum Value	
Total Number Seized MC5	384.00	Half Width 0.418897931			
Total Number Seized MC5 Number Busy	384.00 Average		Value	Value	
Total Number Seized MC5 Number Busy MC5	384.00 Average 5.2533	0.418897931	1.0000 Minimum	Value 10.0000 Maximum	
Total Number Seized MC5 Number Busy MC5 Number Waiting	384.00 Average 5.2533 Average	0.418897931 Half Width	1.0000 Minimum Value	Value 10.0000 Maximum Value	
Total Number Seized MC5 Number Busy MC5 Number Waiting Station 5. Queue	384.00 Average 5.2533 Average 0.00	0.418897931 Half Width (Insufficient)	1.0000 Minimum Value 0.00 Minimum	Value 10.0000 Maximum Value 0.00 Maximum	
Total Number Seized MC5 Number Busy MC5 Number Waiting Station 5. Queue Interval station 5 CT	384.00 Average 5.2533 Average 0.00 Average	0.418897931 Half Width (Insufficient) Half Width	1.0000 Minimum Value 0.00 Minimum Value	Value 10.0000 Maximum Value 0.00 Maximum Value	
MC5 Number Busy MC5 Number Waiting Station 5.Queue Interval station 5 CT	384.00 Average 5.2533 Average 0.00 Average	0.418897931 Half Width (Insufficient) Half Width	1.0000 Minimum Value 0.00 Minimum Value	Value 10.0000 Maximum Value 0.00 Maximum Value	
Total Number Seized MC5 Number Busy MC5 Number Waiting Station 5. Queue Interval station 5 CT	384.00 Average 5.2533 Average 0.00 Average	0.418897931 Half Width (Insufficient) Half Width	1.0000 Minimum Value 0.00 Minimum Value	Value 10.0000 Maximum Value 0.00 Maximum Value	

Number Busy	Average	Half Width	Minimum Value	Maximum Value	
MC6	1.6145	0.175948533	0.00	5.0000	
Number Waiting	Average	Half Width	Minimum Value	Maximum Value	
Station 6.Queue	0.00	(Insufficient)	0.00	0.00	
Interval	Average	Half Width	Minimum Value	Maximum Value	

이번에도 역시 Little's Law가 verified 되는지 확인하기 위해, 위에서 얻은 결과로 각 상황에 대해 $WIP = CT \times TH$ 가 만족되는지 확인했다.

전과 동일한 이유로, 5%의 오차범위를 적용하여 관계를 확인했다.

Station 5 - Best Case: WIP=5, $CT \times TH = 5.01$

 $\frac{CT \times TH}{WIP}$ =1으로, Little's Law가 성립한다.

Station 5 - Fluctuated: WIP=5.2533, $CT \times TH = 5.303$

 $\frac{CT \times TH}{WIP}$ =1.01으로, Little's Law가 성립한다.

Station 6 - Best Case: WIP= 1.567, $CT \times TH = 1.572$

 $\frac{CT \times TH}{WIP}$ =1으로, Little's Law가 성립한다.

Station 6 - Fluctuated: WIP= 1.6145, $CT \times TH = 1.629$

 $\frac{CT \times TH}{WIP}$ =1.01으로, Little's Law가 성립한다.

<Discussion & conclusion>

(1) Explain why sum of cycle time for each type cannot replace the cycle time for the entire production system.

cycle time for the entire production system은 단순한 sum of cycle time for each type이 아닌, "cycle time for each type의 가중평균"을 적용해야 하기 때문이다. 이를 수식으로 표현하면 아래와 같다.

 $cycle\ time\ for\ the\ entire\ production\ system$

$$= \sum_{entity \ type} \frac{entity \ type's \ number \ out}{Tot. \ number \ out} \times cycle \ time \ for \ each \ type$$

실제로 위 Experiment 1의 case 1 – Best Case를 예시로 들면, A Type의 Cycle Time은 191.26이고 B Type의 Cycle Type은 58이다.

Total Time	Average	Half Width	Minimum Value	Maximum Value
A Type	191.26	(Insufficient)	93.0000	291.00
В Туре	58.0000	(Insufficient)	58.0000	58.0000

그런데, 전체 시스템의 CT는 두 값을 더한 191.28+58이 아닌, 104.27분이다.

Total Time 104.27 (Correlated) 58.0000 291.00

이는 각 CT의 Entity type별 number out의 비율을 가중치로 한 가중평균 값임을 확인할 수 있다.

Number Out

rumber out	Value
A Type	133.00
В Туре	250.00

cycle time for the entire production system 104.27

$$= \sum_{entity type} \frac{entity type's number out}{Tot.number out} \times cycle time for each type$$

$$= \frac{133}{383} \times 191.26 + \frac{250}{383} \times 58$$

추가로, type 별 entity는 동시에 도착하여 처리되는 경우가 있기에, type 별 단순한 합으로 전제 시스템의 cycle time을 계산하는 것은 바람직하지 않다.

(2) Discuss the conditions under which the TH of the current production system to become TH of the Practical Worst Case (PWC).

위 Experiments에서 확인한 바와 같이, 현재의 system은 A Type Entity에 대하여 station 3에서 병목현상이 발생해 number waiting이 계속 쌓이고, 이로부터 WIP과 Cycle Time이 계속 증가한다. 이로 인하여시간이 유한한 상황에서, Little's Law가 적용되지 않는 경우가 발생한다. 현재 시스템의 TH가 PWC의 TH이 되기 위해, WIP과 CT 외에 TH를 바꿀 다른 조건이 존재한다.

Practical Worst Case는 Maximizing Randomness 상태가 되어야 하며, 이것을 위한 아래 3 가지 조건이 있다.

- ▶ Balanced Line
- ▶ Single machine station
- ▶ Exponential processing times

이 때, 이미 시스템에 여러 대의 machine이 존재하므로, 두 번째 조건은 고려 대상에서 제외한다.

첫 번째 조건은, 현재 시스템의 TH가 PWC의 TH이 되기 위해 "Balanced Line"이 이루어져야 한다. 이를 위해서 현재 시스템의 bottleneck station과 일부 non-bottleneck station의 작업 능력을 향상시킴으로써 Balanced line이 만족될 수 있다.

두 번째 조건은, 현재는 각 machine의 processing time은 deterministic하며, machine 5와 6의 경우에만 exponential processing time이 적용된다. 따라서 다른 machine에도 exponential processing times이 되도록

variability가 고려된다면 PWC가 될 수 있다.

추가로, 아래 공식(PWC에서의 TH)을 활용하여 current production system을 Case 1의 Best case로 가정한 채 PWC인 상황의 TH를 구해보았다.

$$TH = \frac{w}{w + W_0 - 1} r_b$$

TH - Type A = $\frac{32}{32+W_0-1}$ ×0.134, $W_0=r_b\times T_0=0.134\times (15+12+15+15+8+5+20)=12$ 따라서 PWC가 되는 TH=0.0997이다.

TH - Type B =
$$\frac{15}{15+W_0-1}$$
×0.25, $W_0=r_b\times T_0=0.25\times (15+2+12+2+5+2+20)=14.5$ 따라서 PWC가 되는 TH=0.129이다.

앞서 서술한 방식으로 TH를 방금 구한 PWC의 TH로 맞출 수 있다.

(3) Discuss the circumstances in which the actual production system performs worse than the TH of the PWC.

Actual production system이 TH of the PWC보다 낮은 상황은, TH가 아래 그림의 색칠한 "Bad" 영역에 속함을 의미한다.

이를 위해서는, effective process time의 Variability 수준이 아래 그림의 High variability 영역에 속해야 한다. 즉, c_e 의 값이 1.33보다 큰 값이어야 한다.

다시 말해, effective process time의 Variability가 높은 상황에서 TH가 PWC보다 낮아진다.

더불어, batching을 이용한 공정의 경우 worst case가 되어 TH가 $\frac{1}{T_0}$ 으로, PWC보다 낮아진다.

추가로, setups, machine failures, materials shortages, yield loss, rework, operator unavailability, workpace variation, differential skill levels, engineering change orders, customer orders, product differentiation, material handling 등으로 인하여 variability가 높아지고, TH 가 PWC보다 낮아질 수도 있다.