Calculus II

Power series expansion of sine and cosine

Todor Miley

2019

Example

Find the Maclaurin series of $f(x) = \sin x$ and its radius of convergence.

$$f(x) = \sin x \qquad f(0) = 0$$

$$f'(x) = \cos x \qquad f'(0) = 1$$

$$f''(x) = -\sin x \qquad f''(0) = 0$$

$$f'''(x) = -\cos x \qquad f'''(0) = -1$$

$$f^{(4)}(x) = \sin x \qquad f^{(4)}(0) = 0$$

The Maclaurin series is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

Use the Ratio Test to find R.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-1)^{n+1} x^{2n+3}}{(2n+3)!} \cdot \frac{(2n+1)!}{(-1)^n x^{2n+1}} \right|$$

$$= \lim_{n \to \infty} \frac{x^2}{(2n+2)(2n+3)} = 0$$

Therefore $R = \infty$. It can be shown that this series sums to $\sin x$.

Example

Find the Maclaurin series for
$$\cos x$$
.

$$\cos x = \frac{d}{dx} \left(\sin x \right)$$

$$= \frac{d}{dx} \left(\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} \right)$$

$$= \sum_{n=0}^{\infty} \frac{d}{dx} \left((-1)^n \frac{x^{2n+1}}{(2n+1)!} \right)$$

$$= \sum_{n=0}^{\infty} (-1)^n \frac{(2n+1)x^{2n}}{(2n+1)!}$$

$$= \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$

$$= 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$$

The series for sin x converges everywhere, so the series for cos x does too.