

Features

- Output Voltage: -5 & -12V
- Output current up to 1A
- No external components required
- Internal thermal overload protection
- Internal short-circuit current limiting
- Output transistor safe-area compensation
- Output voltage offered in 4% tolerance

Standard Application Circuit

A common ground is required between the input and the output voltages. The input voltage must remain typically 2.0V above the output voltage even during the low point on the Input ripple voltage.

XX = these two digits of the type number indicate voltage.

- * = Cin is required if regulator is located an appreciable distance from power supply filter.
- ** = Co is not needed for stability; however, it does improve transient response.

Absolute Maximum Rating (Ta = 25°C unless otherwise noted)

Parameter	Symbol	Limit	Unit		
Input Voltage	V _{IN}	-35	V		
Power Dissipation	P _D	Internal Limited	W		
Junction Temperature	TJ	+150	°C		
Storage Temperature Range	T _{STG}	-65~+150	°C		
Thermal Resistance - Junction to Case	TO-220	DO	3	°C/W	
	ITO-220	Rθ _{JC}	5		
Thermal Resistance - Junction to Ambient	TO-220	DO.	50	°C/W	
	ITO-220	RΘ _{JA}	60		

Note: * Follow the derating curve

LM7905 Electrical Characteristics

(Vin= -10V, lout=500mA, 0°C≤Tj≤125°C, Cin=0.33uF, Cout=0.1uF; unless otherwise specified.)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
		Tj=25°C		-4.80	-5	-5.20	V
Output voltage	Vout	-7.5V≤Vin≤-20V, 10mA≤lout≤1A, PD≤15W		-4.75	-5	-5.25	
Line Regulation	REGline	Tj=25°C	-7.5V≤Vin≤-25V		3	100	mV
			-8V≤Vin≤-12V		1	50	
Load Regulation	REGload	Tj=25°C	10mA≤lout≤1A		15	100	
			250mA≤lout≤750mA		5	50	
Quiescent Current	Iq	lout=0, Tj=25°C			4	8	
Quiescent Current	-7.5V≤Vin≤-		≤-25V			1.3	mA
Change	Δlq	10mA≤lou	10mA≤lout≤1A			0.5	
Output Noise Voltage	Vn	10Hz≤f≤100KHz, Tj=25°C			40		μV
Ripple Rejection Ratio	RR	f=120Hz, -8V≤Vin≤-18V		62	74		dB
Voltage Drop	Vdrop	lout=1A, Tj=25°C			2		V
Output Short Circuit	los	Tj=25°C			750		m A
Current					750		mA
Peak Output Current	lo peak	Tj=25°C			2.1		Α
Temperature Coefficient of Output Voltage	ΔVout/ ΔTj	lout=10mA, 0°C≤Tj≤125°C			-0.1		mV/ °C

LM7912 Electrical Characteristics

 $(Vin=\text{-}19V,\ lout=500mA,\ 0^{\circ}C \leq Tj \leq 125^{\circ}C,\ Cin=0.33uF,\ Cout=0.1uF;\ unless\ otherwise\ specified.)$

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
		Tj=25°C		-11.53	-12	-12.48	V
Output Voltage	Vout	-14.5V≤Vin≤-27V, 10mA≤lout≤1A, PD ≤15W		-11.42	-12	-12.60	
Line Regulation	REGline	Tj=25°C	-14.5V≤Vin≤-30V		10	240	mV
			-15V≤Vin≤-19V		3	120	
Load Regulation	REGload	Tj=25°C	10mA≤lout≤1A		12	240	
			250mA≤lout≤750mA		4	120	
Quiescent Current	Iq	Tj=25°C, lout=0			4.3	8	
Quiescent Current	Δlα	-14.5V≤Vi	n≤-30V			1	mA
Change	Δlq	10mA≤lou	A≤lout≤1A			0.5	
Output Noise Voltage	Vn	10Hz≤f≤100KHz, Tj=25°C			75		uV
Ripple Rejection Ratio	RR	f=120Hz, -15V≤Vin≤-25V		55	70		dB
Voltage Drop	Vdrop	lout=1A, Tj=25°C			2		V
Output Short Circuit Current	los	Tj=25°C		ı 	350		mA
Peak Output Current	lo peak	Tj=25°C			2.1		Α
Temperature Coefficient of Output Voltage	ΔVout/ ΔTj	lout=10mA, 0°C≤Tj≤125°C			-1		mV/ °C

- Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible, and thermal effects must be taken into account separately.
- This specification applies only for DC power dissipation permitted by absolute maximum ratings.

Vseei Semiconductor Co., Ltd

Electrical Characteristics Curve

Figure 1. Worse Case Power Dissipation as a Function of Ambient Temperature

Figure 3. Ripple Rejection as a Function of Frequency

Figure 5. Output Voltage as a Function of Junction Temperature

Figure 2. Peak Output Current as a Function of Input-Output Differential Voltage

Figure 4. Ripple Rejection as a Function of Output Voltage

Figure 5. Output Voltage as a Function of Junction Temperature