INF 553

Roadmap

- Problem formulation
- Applications
 - Collaborative filtering
 - Buyer-to-item and item-item recommendation
 - Finding similar web pages
 - Shingles
- Minhash signatures
- Locality-sensitive hashing

Problem Formulation

Item represented as a set of objects

Problem becomes: find similar sets

- Challenges:
 - Large sets
 - Large number of items/sets

Similarity of Sets

- Jaccard similarity
 - Size of intersection / size of union
 - $-\operatorname{Jaccard}(S,T) = |S \cap T|/|S \cup T|$

Finding Similar Buyers

Who is most similar to B1?

B1	{A, B}
B2	{A, B, D}
В3	{A, C, D}

Who is most similar to B2?

Who is most similar to B3?

Finding Similar Buyers

Who is most similar to B1?

B1	{A, B}
B2	{A, B, D}
В3	{A, C, D}

Buyer-to-item recommendation

Jaccard(B1, B2) =
$$2/3$$

Jaccard(B1, B3) = $1/4$

B2 most similar to B1
B2 also bought D

Recommend D to B1

Who is most similar to B3?

B1	{A, B}
B2	{A, B, D}
В3	{A, C, D}

Α	{B1, B2, B3}
В	{B1, B2}
С	{B3}
D	{B2, B3}

Buyer as a set

Item as a set

Which item is most similar to A?

А	{B1, B2, B3}
В	{B1, B2}
С	{B3}
D	{B2, B3}

$$Jaccard(A, D) =$$

Which item is most similar to B?

Which item is most similar to A?

Α	{B1, B2, B3}
В	{B1, B2}
С	{B3}
D	{B2, B3}

Jaccard(A, B) = 2/3A is most similar to Jaccard(A, C) = 1/3B and D Jaccard(A, D) = 2/3

Jaccard(B, A) = Jaccard(A, B) = 2/3

Which item is most similar to B?

Jaccard(B, C) = 0

Jaccard(B, D) =
$$1/3$$

B is most similar to

A

Item-to-item recommendation

Formulated as frequent itemset prob.?

- Find similar items
 - Items bought together by many users

- Find similar users
 - Users that bought many common items

Formulated as frequent itemset prob.?

Find similar items

– Items	bought	together	by many	y users
---------	--------	----------	---------	---------

B1	{A, B}
B2	{A, B, D}
В3	{A, C, D}

- ⇒User = transaction
- ⇒Similar items = frequent item pair

Find similar users

- Users that bought many common items
- Item = transaction
- => Find frequent user pairs

Α	{B1, B2, B3}
В	{B1, B2}
С	{B3}
D	{B2, B3}

Finding Frequent Item Pairs

B1	{A, B}
B2	{A, B, D}
В3	{A, C, D}

$$Sup(A) = 3$$

$$Sup(B) = 2$$

$$Sup(C) = 1$$

$$Sup(D) = 2$$

$$Sup(D) = 2$$

$$Sup(A) = 3$$

$$Sup(A) = 3$$

$$Sup(B) = 2$$

$$Sup(B) = 2$$

$$Sup(D) = 2$$

$$Candidate 2-itemsets (A,B)$$

$$(A,D)$$

$$(B,D)$$

Apriori algorithm

So why new solution?

- How about just use Apriori to find
 - Frequent item pairs => similar items

B1	{A, B}
B2	{A, B, D}
В3	{A, C, D}

– Frequent user pairs => similar users

Α	{B1, B2, B3}
В	{B1, B2}
С	{B3}
D	{B2, B3}

Potential Problems

Are buyer B1 and B2 still similar?

What would Apriori say?

B1	{A, B}
B2	{A, B, D}
В3	{A, C, D}
B4	{E, F}
B5	{E, F, G}
B6	{X, Y, Z}
В7	{X, W}
B8	{S, T, O}
B9	{S, T}
•••	•••

Potential Problems

Are buyer B1 and B2 still similar?

- What would Apriori say?
 - Form item->buyers basket
 - A large number of items
 - B1 and B2 only appear together in
 - ? baskets
 - Hence very low support
 - But they are still similar

B1	{A, B}
B2	{A, B, D}
В3	{A, C, D}
B4	{E, F}
B5	{E, F, G}
В6	{X, Y, Z}
B7	{X, W}
B8	{S, T, O}
В9	{S, T}
•••	•••

Roadmap

- Problem formulation
- Applications
 - Collaborative filtering
 - Buy-to-item and item-item recommendation
 - Finding similar web pages
 - Shingles
- Minhash signatures
- Locality-sensitive hashing

Application: Find Similar Web Pages

- Similar = near-duplicate
 - Plagiarism
 - Mirror pages
 - News from same AP
- Can we use Apriori?
 - Web page = ?
 - Basket = ?
 - Item = ?

Application: Find Similar Web Pages

- Similar = near-duplicate
 - Plagiarism
 - Mirror pages
 - News from same AP
- Can we use Apriori?
 - Web page = a set of words/sentences
 - Basket = word/sentence
 - Item = web page
- Problems?

Problems

- Can we use Apriori?
 - Web page = a set of words/sentences
 - Basket = word/sentence
 - Item = web page

- Problems?
 - Low support but still similar
 - Word as basket: too fine; sentence? too coarse

Application: Find Similar Web Pages

- Similar = near-duplicate
 - Plagiarism
 - Mirror pages
 - News from same AP

Web page = a set of shingles

Shingles

- Web page as a string of characters
- Shingle = subsequence of k-characters
- Web page = abcdabd, k = 2
- 2-shingles
 - ab, bc, cd, da, bd
- Max # of k-shingles for a page of n characters?

White Spaces

- Better not omit them
- Could turn multiple into one
- D1: "scored a touch down" => "scored a touch down"
- D2: "touchdown at last"

D1 and D2 have a common 9-shingle if space omitted

Shingle Size

- Too small
 - Many documents will falsely become similar

- Too big
 - Might miss truly similar documents

Example

- Doc = email, k = 5, character = letter + space
 - # of possible 5-shingles = $27^5 \sim 14M$

- Suppose email is N character long
 - Probability of a shingle appearing in the email?
- ~ N * 1/14M << 1

Rule of Thumb

- k should be picked large enough that
 - the probability of any given shingle appearing in any given document is low

- Caveat to previous example
 - Some letters/space are more common than others
 - ⇒Some shingles occur more often than others
 - ⇒May ignore less frequent ones (say # possible chars = 20 instead of 27)

Challenges

- A large number of shingles
 - Computationally expensive to compute Jaccard
 - Huge storage overhead

- Storage overhead
 - Millions of documents, 4K/document

=> Reduce large sets into small signatures

Roadmap

- Problem formulation
- Applications
 - Collaborative filtering
 - Buy-to-item and item-item recommendation
 - Finding similar web pages
 - Shingles
- Minhash signatures

Locality-sensitive hashing

Similarity-Preserving Signatures

Document D => S(D) = signature of D

Goal: If D1 ~ D2, then S(D1) ~ S(D2)

Matrix Representations of Sets

Characteristic matrix of sets

Element	S_1	S_2	S_3	S_4
a	1	0	0	1
b	0	0	1	0
c	0	1	0	1
d	1	0	1	1
e	0	0	1	0

Universal set: {a, b, c, d, e}

Minhashing a Set

- Pick a permutation of rows
- Minhash(S_i) = no. of 1st row i where S[i, j] = 1

Element	S_1	S_2	S_3	S_4
b	0	0	1	0
e	0	0	1	0
a	1	0	0	1
d	1	0	1	1
c	0	1	0	1

- Simply denote minhash() as h()
- $h(S_1) = a, h(S_2) = c, h(S_3) = b, h(S_4) = a$

Minhash and Jaccard Similarity

- On a random permutation of rows
 - Prob(h(S_i) = h(S_j)) = Jaccard(S_i, S_j)
 - Explained next
- Minhash is a locality-sensitive "hash" function
 - Normally, hash function will place similar items in every buckets
 - But here, similar items are placed in the same bucket with high probability

Intuition

Consider Prob(h(S_i) = h(S_j))

Rows of S_i and S_i:

- Case X: both 1

– Case Y: one 1, one 0

– Case Z: both 0

Element	S_1	S_2	S_3	S_4
b	0	0	1	0
e	0	0	1	0
a	1	0	0	1
d	1	0	1	1
c	0	1	0	1

Intuition

- Proceed from top
 - Type Z row, ignore
 - Type X row, stop
 - Type Y row,stop

Element	S_1	S_2	S_3	S_4
b	0	0	1	0
e	0	0	1	0
a	1	0	0	1
d	1	0	1	1
c	0	1	0	1

Prob. of seeing a type X row (h(S_i) = h(S_j))
 before Y row (h(S_i)!= h(S_j)) = x/(x+y)

Minhash Signature

- "Hash" (actually just permute rows of) sets multiple times
- Record first bucket number (0~4 in this case)
 of sets where 1 appears

Row	S_1	S_2	S_3	S_4					
0	1	0	0	1			ı	ı	
1	0	0	1	0			S_2		
2	0	1	0	1	h_1	1	3	0	1
0 1 2 3 4	1	0	1	1	h_2	1 0	2	0	0
4	0	0	1	0	'		•	•	•

Computing Minhash Signature

Costly to explicitly permute millions of rows

Use randomly chosen hash function h() on the

row ID

 $- n rows, h(x) = 0 \sim n - 1$

Row	S_1	S_2	S_3	S_4	$x+1 \mod 5$	$3x + 1 \mod 5$
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

Permutation via Hashing

 h(r) permutes row r to h(r)-th row in permuted order

$$h1(x) = (x + 1) \mod 5$$

Row	S1	S2	S3	S4
0	1	0	0	1
1	0	0	1	0
2	0	1	0	1
3	1	0	1	1
4	0	0	1	0

New Row #	Old row #	S1	S2	S3	S4
0	4	0	0	1	0
1	0	1	0	0	1
2	1	0	0	1	0
3	2	0	1	0	1
4	3	1	0	1	1

Minhash Values using h1()

Use new numbers

$$-h1(S1) = 1$$
, $h1(S2) = 3$, $h1(S3) = 0$, $h1(S4) = 1$

New Row #	Old row #	S1	S2	S3	S4
0	4	0	0	1	0
1	0	1	0	0	1
2	1	0	0	1	0
3	2	0	1	0	1
4	3	1	0	1	1

Row	S_1	S_2	S_3	S_4	$x+1 \mod 5$	$3x + 1 \mod 5$
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

	S_1						S_1	S_2	S_3	S_4		S_1	S_2	S_3	S_4
h_1	∞	∞	∞	∞		h_1	1	∞	∞	1	h_1	1	∞	2	1
h_2	∞	∞	∞	∞	7	h_2	1	∞	∞	1	h_2	1	∞	4	1

Estimate Similarity Using Signatures

Row	S_1	S_2	S_3	S_4
0	1	0	0	1
1	0	0	1	0
2	0	1	0	1
3	1	0	1	1
4	0	0	1	0

	S_1	S_2	S_3	S_4
h_1	1	3	0	1
h_2	0	2	0	0

There may be ____ many pairs

Pair	Actual Sim.	Estimated Sim.
(S1, S2)	0	0
(S1, S3)	1/4	1/2
(S1, S4)	2/3	1
(S2, S3)	3	?
(S2, S4)	3	3.
(S3, S4)	3	?

Estimate Similarity Using Signatures

Row	S_1	S_2	S_3	S_4
0	1	0	0	1
1	0	0	1	0
2	0	1	0	1
3	1	0	1	1
4	0	0	1	0

	S_1	S_2	S_3	S_4
h_1	1	3	0	1
h_2	0	2	0	0

There may be many pairs

Pair	Actual Sim.	Estimated Sim.
(S1, S2)	0	0
(S1, S3)	1/4	1/2
(S1, S4)	2/3	1
(S2, S3)	0	0
(S2, S4)	1/3	0
(S3, S4)	1/5	1/2

Challenge: Large # of Comparisons

- So we have reduced large sets into small signatures
- But we still have a large number of pairs to compare
 - 1 million documents
 - => Half a trillion pairs
 - 2 microseconds /pair
 - => Need 6 days to compute similarities

Roadmap

- Problem formulation
- Applications
 - Collaborative filtering
 - Buy-to-item and item-item recommendation
 - Finding similar web pages
 - Shingles
- Minhash signatures
- Locality-sensitive hashing

Idea of LSH

- Hash again!
 - This time, hash the signatures instead
 - If two signatures are similar, they should be in the same bucket with high probability
 - H(sig1) = H(sig2) if sig1 ~= sig2
 - Only estimate similarity for sets in the same bucket
- Recall "frequent bucket" idea in PCY algorithm
 - If an item pair is not hashed into a "frequent bucket"
 - We know it will be not frequent

Define Similar Signatures

- Two sets are similar
 - If their Jaccard similarity is greater than a threshold, say .8

- If two sets are similar, their signatures should be similar too
 - What do we mean by "similar" signatures?

Define Similar Signatures

Which two signatures are similar?

S1'	S2 ′	S3'	S4 ′
0	2	0	0
1	0	1	0
2	1	2	0
1	0	1	1
0	0	0	0
2	0	0	1

Define Similar Signatures

- Two signatures are similar if they have the same value (can be 0, 1, ..., n 1, where n = # of elements in the universal set) at many rows
 - E.g., if similarity of two sets is .8, then 80% of rows in their signatures should have the same value

S1'	S2'	S3'	S4 ′
0	2	0	0
1	0	1	0
2	1	2	0
1	0	1	1
0	0	0	0
2	0	0	1

Signatures

Recall Similarity of Sets

 Two sets are similar if they have the same value (only 1's, ignore 0's) at many rows of characteristic matrix

Row #	S1	S2	S3	S4
0	0	1	0	1
1	1	0	1	1
2	0	0	0	1
3	0	1	0	0
4	1	1	1	1
5	0	1	1	0

Characteristic matrix

S1'	S2'	S3`	S4 ′
0	2	0	0
1	0	1	0
2	1	2	0
1	0	1	1
0	0	0	0
2	0	0	1

Signatures

Problem

- Signatures are not really sets (or even multisets)
 - Rather they are strings of symbols
 - Signatures of sets are strings of the same length
 - i-th symbols of signatures correspond to each other

Row #	S1	S2	S3	S4
0	0	1	0	1
1	1	0	1	1
2	0	0	0	1
3	0	1	0	0
4	1	1	1	1
5	0	1	1	0

Characteristic matrix

S1'	S2'	S3'	S4'
0	2	0	0
1	0	1	0
2	1	2	0
1	0	1	1
0	0	0	0
2	0	0	1

Signatures

String-Based Hash Function

Minhash is really a set-based hash

- We need to hash signatures, i.e., strings of same length, instead
 - So that if two strings have the same symbol at many corresponding positions
 - They will be very likely placed in the same bucket
- Can you find such a hash function?

Idea

- Need to determine bucket for a signature
 - by comparing its symbols with the corresponding symbols for the signatures in a bucket
 - Amount to computing all pairwise similarities
 - This beats the purpose of hashing
- Can we take <u>sample of rows</u> in signature instead?
 - Hashing samples should be less costly
- Similar to sampling in "limited pass" algorithm in frequent item discovery

Sampling & Banding

 If two signatures are similar, their samples should be too

- Divide signature into "bands"
 - Hash each band individually (band ~ sample)
 - Will consider pairs if they are hashed into the same bucket in at least one band
 - (recall the multi-hash idea)
 - Such pairs are called "candidate pairs"
 - (for computing similarities later)

Band-Based Hashing

- 4 bands, 3 rows/each
- Vector = part of signature in a band

band 1	•••	1 0 0 0 2 3 2 1 2 2 0 1 3 1 1	•••	
band 2				
band 3				
band 4				

Band-Based Hashing

- Two vectors hashed to same bucket if and only they are identical
 - Require symbol-by-symbol comparisons
 - E.g., Cols 0, 2, 1 and 0, 2, 1

 Two signatures are candidate pairs as long as they agree on all rows in at least one band

Prob. of Becoming a Candidate Pair

- Two sets X and Y, Jaccard(X, Y) = s
- Prob. of minhash signatures of X & Y agree on any row of signature matrix = s

Signature divided into b bands, r rows/band

 What is the prob. of two signatures agree on all rows in at least one band?

Calculating Probability

- What is the prob. that two signatures agree on all rows in at least one band?
 - Candidate pairs
 - Need to consider many cases:
 - E.g., signatures agree in 1, 2, ..., b bands
- Compute complemental prob. first
 - p' = Prob. that they disagree on at least one row in all bands
 - Final prob. p = 1 p'

Derivations

- p' = Prob. that they disagree on at least one row in all bands
 - q = Prob. that they disagree in at least one row in a band
 - $-p'=q^b$
 - Prob. of all rows in a band agree is s^r (why?)
 - r is the number of rows in a band
- $q = 1 s^r$

$$=> p = 1 - (1 - s^r)^b$$

Put Together

- Prob. of agreeing on all rows of a band = s^r
 - E.g., 0, 2, 1 and 0, 2, 1
- Prob. of disagreeing on at least one row of a band = 1 s^r
 - E.g., 0, 2, 1 and 2, 2, 1
- Prob. of disagreeing on at least one row in all bands $-(1-s^r)^b$
- Prob. of agreeing on all rows in at least one band
 1 (1 s^r)^b

$$p = 1- (1 - s^r)^b$$
, $b = 20$, $r = 5$

Questions

- Relationship btw. curve shapes and errors
 - Spot false positives and negatives
- How does the curve change its shape? when
 - r = b = 1
 - r varies, b = 1
 - r = 1, b varies
 - both b and r > 1
- How to determine good similarity threshold? When
 - -b*r = (fixed) n
 - n = length of signature

How to find a good b & r

- For b=20 and r=5, at S=0.8
 - $-1-(0.8)^5 = 0.672...(1-33\%)$
 - $-0.672^20 = 0.00035...(1/3000)$
- For two documents with 80% Jaccard similarity:
 - 33% chance in agreeing in all 5 rows
 - 1 in 3000 pairs will fail to become a candidate pair

\boldsymbol{s}	$1-(1-s^r)^b$
.2	.006
.3	.047
.4	.186
.5	.470
.6	.802
.7	.975
.8	.9996

Confusion Matrix

	P (predicted)	N (predicted)
P (Actual)	TP	FN
N (Actual)	FP	TN

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

Confusion Matrix

	P (predicted)	N (predicted)
P (Actual)	TP	FN
N (Actual)	FP	TN

$$Precision = \frac{TP}{TP + FP} \qquad Recall = \frac{TP}{TP + FN}$$

When FP goes down, precision will go up or down? What about FN?

False Positives and Negatives

False positives: dissimilar but hashed to same bucket

 False negatives: similar but not hashed to different bucket

Predicted Positives and Negatives

Actual Positives and Negatives

Errors

False negatives = area above the curve & to the right of line

False positives = area below the curve & to the left of line

Error Zone

False negatives = area above the curve & to the right of line

False positives = area below the curve & to the left of line

Ideal s-p Curve

Similarity $t = sim(C_1, C_2)$ of two sets \longrightarrow

Reasons for Errors

- If two sets are identical
 - They will have the same signatures
 - Surely will be hashed to the same bucket
 - No errors

Reason for Errors

- If two sets are not identical, but similar
 - Still possible that signatures never totally agree in any band
 - End up in different buckets
 - => False negatives
- Dissimilar signatures may happen to agree in some band
 - End up in same bucket
 - => False positives

Example: False Negative (1)

- Similarity threshold t = .8
 - So if Jaccard(S_i , S_i) >= t, they are similar
- b = 20, r = 5
- Suppose Jaccard(S_1 , S_2) = s = .8, so they are similar
- What is the probability that S₁ and S₂ are not identified as a candidate pair?
 - i.e., false negative

Example: False Negative (2)

 Probability of S₁ and S₂ identified as a candidate pair in a single band

$$-s^r = .8^5 = .328$$

 So prob. that S₁ and S₂ are not candidate pair in any band

$$-(1-s^r)^b = (1 - .328)^{20} = .00035$$

=> .035% of chances where two sets with similarity .8 are false negatives

Example: False Positive (1)

- Similarity threshold t = .8
 - So if Jaccard(S_i , S_i) >= t, they are similar
- b = 20, r = 5
- Suppose Jaccard(S_1 , S_2) = s = .3, so they are not similar
- What is the probability that S₁ and S₂ are identified as a candidate pair?
 - i.e., false positive

Example: False Positive (2)

 Probability of S₁ and S₂ identified as a candidate pair in a band

$$-s^r = .3^5 = .00243$$

 So prob. of S₁ and S₂ being candidate pair in at least one band

$$-1 - (1-s^r)^b = 1 - (1 - .00243)^{20} = .0474$$

So

- => 4.74% of chances where two sets with similarity .3 end up in the same bucket
- => false positives

Example of Error Rates

S	р
0	0
0.1	0.0002
0.2	0.006381
0.3	0.047494
0.4	0.18605
0.5	0.470051
0.6	0.801902
0.7	0.974781
0.8	0.999644
0.9	1
1	1

 $.047 = \text{prob. of being false positive}_{77}$

Differences btw PCY and LSH

PCY

- No false negatives (If an item pair is not in a frequent bucket, we know that it will not be frequent)
- May have false positives, but the second pass will rule them out

LSH

Can have both false positives and false negatives

Questions

- Relationship btw curve shapes and errors
 - Spot false positives and negatives
- How does the curve change its shape? when
 - r = b = 1
 - r varies, b = 1
 - r = 1, b varies
 - both b and r > 1
- How to determine right similarity threshold? When
 - -b*r = (fixed) n
 - n = length of signature

$$r = b = 1$$

- Prob. of becoming candidate: $p = 1 (1 s^r)^b$
 - Candidate = hashed to the same bucket

- if r = 1 & b = 1, then p = s
 - This is what minhash theorem told us
 - Prob. of two signature values (i.e., minhash values) hashed to the same bucket is the Jaccard similarity of their corresponding sets

$$r = b = 1$$

- Prob. of becoming candidate: $p = 1 (1 s^r)^b$
 - if r = 1 & b = 1, then p = s

$$r = 5, b = 1$$

- Prob. of becoming candidate: $p = 1 (1 s^r)^b$
 - Candidate = hashed to the same bucket
- When r = 5, b = 1, i.e., only one band
 - $-p=s^r$
 - Note that p is now much lower than s
 - E.g., s = .8, p = .3
 - => Need very high similarity to be hashed to the same bucket e.g., p > .5 only when s > .8
 - => Reduce false positives

S	р
0.1	0.00001
0.2	0.00032
0.3	0.00243
0.4	0.01024
0.5	0.03125
0.6	0.07776
0.7	0.16807
0.8	0.32768
0.9	0.59049

Amplification Effect

• When r = 5, b = 1, i.e., only one band

$$- p = s^r = s^5$$

- p is much smaller than s
 - Especially true on small s values
 - E.g., p is 5 orders of magnitude smaller than s, when s = .1

р
0.00001
0.00032
0.00243
0.01024
0.03125
0.07776
0.16807
0.32768
0.59049

i.e., r makes dissimilar pairs even more dissimilar

r = 5, b = 1

S	р	
0	0	
0.1	0.00001	
0.2	0.00032	
0.3	0.00243	
0.4	0.01024	
0.5	0.03125	
0.6	0.07776	
0.7	0.16807	
0.8	0.32768	
0.9	0.59049	
1	1	

r = 20, b = 1

S	р	
0	0	
0.1	1E-20	
0.2	1.05E-14	
0.3	3.49E-11	
0.4	1.1E-08	
0.5	9.54E-07	
0.6	3.66E-05	
0.7	0.000798	
0.8	0.011529	
0.9	0.121577	
1	1	

Summary: b = 1, r increases

- Reduces false positives
- Increases false negatives

Questions

- Relationship btw curve shapes and errors
 - Spot false positives and negatives
- How does the curve change its shape? when
 - r = b = 1
 - r varies, b = 1
 - r = 1, b varies
 - both b and r > 1
- How to determine right similarity threshold? When
 - -b*r = (fixed) n
 - n = length of signature

$$r = 1, b = 5$$

- Prob. of becoming candidate: $p = 1 (1 s^r)^b$
 - i.e., each band has only one row

$$\Rightarrow$$
p = 1 - (1 - s)^b

- b increases the probability of similar pairs placed in the same bucket
- => Reduce false negatives

$$r = 1, b = 5$$

$$p = 1 - (1 - s)^5$$

r = 1, b = 20

$$p = 1 - (1 - s)^{20}$$

S	р	
0	0	
0.1	0.878423	
0.2	0.988471	
0.3	0.999202	
0.4	0.999963	
0.5	0.999999	
0.6	1	
0.7	1	
0.8	1	
0.9	1	
1	1	

Summary: r = 1, b increases

- Reduces false negatives
- Increases false positives

Questions

- Relationship btw curve shapes and errors
 - Spot false positives and negatives
- How does the curve change its shape? when
 - r = b = 1
 - r varies, b = 1
 - r = 1, b varies
 - both b and r > 1

- How to determine right similarity threshold? When
 - -b*r = (fixed) n
 - n = length of signature

$$r = 5, b = 20$$

- Dissimilar pairs become even more dissimilar
 - E.g., s = .2 => p = .006
 - We know this is largely due to r
- Similar pairs become even more similar
 - -e.g., $s = .6 \Rightarrow p = .8$
 - We know this is largely due to b

$$P = 1 - (1 - s^r)^b = 5, b = 20$$

Decomposition Graph

r brings down the curve, b raises it up

Increasing b

False negatives decrease

Increasing r

False negatives increase

False positives decrease

Questions

- Relationship btw curve shapes and errors
 - Spot false positives and negatives
- How does the curve change its shape? when
 - r = b = 1
 - r varies, b = 1
 - r = 1, b varies
 - both b and r > 1
- How to determine right similarity threshold? When <
 - -b*r = (fixed) n
 - n = length of signature

Determine Threshold

- Manually set, e.g., t = .8
- This is the threshold that defines how similar two documents have to be in order for them to be regarded as a desired "similar pair".
- Or set it to the value where p = .5
 - I.e., when curve rises half way
 - This is a predicted threshold

Determine Predicted Threshold

$$p=1-(1-s^r)^b => s = (1-(1-p)^{1/b})^{1/r}$$

r = 5, b = 20, p = .5 => s = .51

$$b=20, r=5$$

S	р	
0	0	
0.1	0.0002	
0.2	0.006381	
0.3	0.047494	
0.4	0.18605	
0.5	0.470051	
0.6	0.801902	
0.7	0.974781	
0.8	0.999644	
0.9	1	
1	1	

Adjust b and r

$$r = 20, b = 5$$

- n = 100, n = b*r
 - -r = 5, b = 20
 - r = 10, b = 10
 - -r = 20, b = 5

- Typically for predicted:
 - Larger r => larger threshold
 - Larger b => lower threshold

$$r = 10, b = 10$$

Effect on Error Rate

Actual threshold

- Increase predicted threshold
 - Reduce false positives
 - Less checking time later

- Decrease predicted threshold^o
 - Reduce false negatives
 - But longer checking later

$$r = 10, b = 10$$

Finding Similar Documents

- 1. Construct k-shingles, turn them into integers
- 2. Build minhash signatures of length n
- 3. Choose b and r, s.t., br = n, to adjust (predicted) threshold
 - Larger threshold => reduce false positives (precision up)
 - Smaller threshold => reduce false negatives (recall up)
- 4. Construct candidate pairs
- 5. Examine signatures of candidates to see if the fraction of common rows > t (actual threshold)
- May check documents if their signatures are similar

Example

		MinHash Algorithm One	MinHash Algorithm Two	MinHash Algorithm Three	MinHash Algorithm Four
	Document One	1	3	6	0
and ne	Document Two	2	3	1	0
	Document Three	1	3	6	0
	Document Four	2	1	3	1