Lecture 22: Hydraulic motors, transmission lines

- Hydraulic motors
- Hydraulic transmission lines
- (Electrical transmission lines)

Book: 4.1-4.6, (1.6)

- Info: Ocean Talk «The Polar Regions»
 - 28.03.2019 18:00-20:00, EL1
 - https://www.facebook.com/events/263677944559897/

Systems using hydraulics to produce motion

Excavators

- Robots, cranes, etc.
- To control motion of these systems, we need models of the hydraulic actuators

For information about seals etc.: Skf.com

Hydraulic cylinder

Hydraulic system

©2000 How Stuff Works

Anna Konda – The fire fighting snake robot

Moody chart

Circular pipe

 Darcy-Weisbach factor with Reynolds number and relative roughness

Figure 7.13 Moody diagram. (From L. F. Moody, Trans. ASME, Vol. 66, 1944.)

Bulk modulus

Motor models

Mass bulance:

$$w_{in} = \rho q_{in}$$

$$w_{out} = \rho q_{out}$$

$$V, p$$

$$| \mathring{p} = \frac{p}{\beta} \dot{p}$$

Hydraulic cylinder

Figure 4.9: Symmetric hydraulic cylinder

Figure 4.10: Single-rod hydraulic piston

Rotational hydraulic motor I

Figure 4.7: Rotational hydraulic motor of the single vane type with limited travel.

Rotational hydraulic motor II

Figure 4.7: Rotational hydraulic motor of the single vane type with limited travel

$$\frac{\sqrt{1}}{\sqrt{5}} \stackrel{?}{\rho_1} + \sqrt{1} = q_1 - (\varrho_m \rho_1 - Cim(\rho_1 - \rho_2))$$

$$\frac{\sqrt{2}}{\sqrt{5}} \stackrel{?}{\rho_2} + \sqrt{2} = -q_2 - (\varrho_m \rho_2 - Cim(\rho_2 - \rho_1))$$

$$\frac{\sqrt{1}}{\sqrt{5}} \stackrel{?}{\rho_2} + \sqrt{2} = -q_2 - (\varrho_m \rho_2 - Cim(\rho_2 - \rho_1))$$

$$\frac{\sqrt{1}}{\sqrt{5}} \stackrel{?}{\rho_2} + \sqrt{2} = -q_2 - (\varrho_m \rho_2 - Cim(\rho_2 - \rho_1))$$

$$\frac{\sqrt{1}}{\sqrt{5}} \stackrel{?}{\rho_2} + \sqrt{2} = -q_2 - (\varrho_m \rho_2 - Cim(\rho_2 - \rho_1))$$

$$\frac{\sqrt{1}}{\sqrt{5}} \stackrel{?}{\rho_2} + \sqrt{2} = -q_2 - (\varrho_m \rho_2 - Cim(\rho_2 - \rho_1))$$

$$\frac{\sqrt{1}}{\sqrt{5}} \stackrel{?}{\rho_2} + \sqrt{2} = -q_2 - (\varrho_m \rho_2 - Cim(\rho_2 - \rho_1))$$

$$\frac{\sqrt{1}}{\sqrt{5}} \stackrel{?}{\rho_2} + \sqrt{2} = -q_2 - (\varrho_m \rho_2 - Cim(\rho_2 - \rho_1))$$

$$\frac{\sqrt{1}}{\sqrt{5}} \stackrel{?}{\rho_2} + \sqrt{2} = -q_2 - (\varrho_m \rho_2 - Cim(\rho_2 - \rho_1))$$

$$\frac{\sqrt{1}}{\sqrt{5}} \stackrel{?}{\rho_2} + \sqrt{2} = -q_2 - (\varrho_m \rho_2 - Cim(\rho_2 - \rho_1))$$

$$\frac{\sqrt{1}}{\sqrt{5}} \stackrel{?}{\rho_2} + \sqrt{2} = -q_2 - (\varrho_m \rho_2 - Cim(\rho_2 - \rho_1))$$

$$\frac{\sqrt{1}}{\sqrt{5}} \stackrel{?}{\rho_2} + \sqrt{2} = -q_2 - (\varrho_m \rho_2 - Cim(\rho_2 - \rho_1))$$

$$\frac{\sqrt{1}}{\sqrt{5}} \stackrel{?}{\rho_2} + \sqrt{2} = -q_2 - (\varrho_m \rho_2 - Cim(\rho_2 - \rho_1))$$

$$\frac{\sqrt{1}}{\sqrt{5}} \stackrel{?}{\rho_2} + \sqrt{2} = -q_2 - (\varrho_m \rho_2 - Cim(\rho_2 - \rho_1))$$

$$\frac{\sqrt{1}}{\sqrt{5}} \stackrel{?}{\rho_2} + \sqrt{2} = -q_2 - (\varrho_m \rho_2 - Cim(\rho_2 - \rho_1))$$

$$\frac{\sqrt{1}}{\sqrt{5}} \stackrel{?}{\rho_2} + \sqrt{2} = -q_2 - (\varrho_m \rho_2 - Cim(\rho_2 - \rho_1))$$

$$\frac{\sqrt{1}}{\sqrt{5}} \stackrel{?}{\rho_2} + \sqrt{2} = -q_2 - (\varrho_m \rho_2 - Cim(\rho_2 - \rho_1))$$

$$\frac{\sqrt{1}}{\sqrt{5}} \stackrel{?}{\rho_2} + \sqrt{2} = -q_2 - (\varrho_m \rho_2 - Cim(\rho_2 - \rho_1))$$

$$\frac{\sqrt{1}}{\sqrt{5}} \stackrel{?}{\rho_2} + \sqrt{2} = -q_2 - (\varrho_m \rho_2 - Cim(\rho_2 - \rho_1)$$

$$\frac{\sqrt{1}}{\sqrt{5}} \stackrel{?}{\rho_2} + \sqrt{2} = -q_2 - (\varrho_m \rho_2 - Cim(\rho_2 - \rho_1)$$

$$\frac{\sqrt{1}}{\sqrt{5}} \stackrel{?}{\rho_2} + \sqrt{2} = -q_2 - (\varrho_m \rho_2 - Cim(\rho_2 - \rho_1)$$

$$\frac{\sqrt{1}}{\sqrt{5}} \stackrel{?}{\rho_2} + \sqrt{2} = -q_2 - (\varrho_m \rho_2 - Cim(\rho_2 - \rho_1)$$

$$\frac{\sqrt{1}}{\sqrt{5}} \stackrel{?}{\rho_2} + \sqrt{2} = -q_2 - (\varrho_m \rho_2 - Cim(\rho_2 - \rho_1)$$

$$\frac{\sqrt{1}}{\sqrt{5}} \stackrel{?}{\rho_2} + \sqrt{2} = -q_2 - (\varrho_m \rho_2 - Cim(\rho_2 - \rho_1)$$

$$\frac{\sqrt{1}}{\sqrt{5}} \stackrel{?}{\rho_2} + \sqrt{2} = -q_2 - (\varrho_m \rho_2 - Cim(\rho_2 - \rho_1)$$

$$\frac{\sqrt{1}}{\sqrt{5}} \stackrel{?}{\rho_2} + \sqrt{2} = -q_2 - (\varrho_m \rho_2 - Cim(\rho_2 - \rho_1)$$

$$\frac{\sqrt{1}}{\sqrt{5}} \stackrel{?}{\rho_2} + \sqrt{2} = -q_2 - (\varrho_m \rho_2 - Cim(\rho_2 - \rho_2)$$

$$\frac{\sqrt{1}}{\sqrt{5}} \stackrel{?}{\rho_2} + \sqrt{2} = -q_2 - (\varrho_m \rho_2 - Q_1 - Q_2 - Q_2$$

$$\frac{\sqrt{1}}{\sqrt{5}} \stackrel{?}{\rho_2} + \sqrt{2} = -q_2 - Q_2$$

$$\frac{\sqrt{1}}{\sqrt{5}} \stackrel{\rho$$

Rotational hydraulic motor III

Valves

- Device that regulates flow
- Many different types of valves exist
 - Globe valve, ball valve, butterfly valve, ...

End view of the disc within the butterfly valve at different stages of rotation

End view of the ball within the ball valve at different stages of rotation

Valve models

(book 4.2)

Flow through a restriction is generally turbulent

Solution: Regularize by assuming laminar flow for small Δp

$$q = C_l \Delta p$$

Book: Make transition smooth

Pump Spool Valve Pull Hydraulic Cylinder and Piston ©2000 How Stuff Works

$q_1 \qquad q_2$ $q_a \qquad q_b$ $q_c \qquad q_d$

Four-way valve

Figure 4.1: Four-way valve

Figure 4.2: A matched and symmetric four-way valve.

 q_s

Modeling of four-way valve

Define load pressure

$$p_L = p_1 - p_2$$

Define load flow

$$q_L = \frac{q_1 + q_2}{2}$$

Figure 4.1: Four-way valve

Symmetric load assumption (motor)

$$q_1 = q_2$$

Symmetric valve and symmetric load

$$q_L = C_d b x_v \sqrt{\frac{1}{\rho} \left(p_s - \operatorname{sign}(x_v) p_L \right)}$$

Characteristic of four-way valve

$$q_L = C_d b x_v \sqrt{\frac{1}{\rho} \left(p_s - \text{sign}(x_v) p_L \right)}$$

Figure 4.3: Valve characteristic

Linearized model:

$$|p_L| \le \frac{2}{3}p_s: \quad q_L = K_q x_v - K_c p_L$$

Gain uncertainty:

$$0.58K_{q0} \le K_q \le 1.29K_{q0}$$

Transfer function valve+motor

$$\theta_m(s) = \frac{\frac{K_q}{D_m} x_v(s) - \frac{K_{ce}}{D_m^2} \left(1 + \frac{s}{\omega_t}\right) T_L(s)}{s \left(1 + 2\zeta_h \frac{s}{\omega_h} + \frac{s^2}{\omega_h^2}\right)}$$

Transfer function spool to shaft

Electrical transmission lines

Telegrapher's equation (Wave equation)

Lossless:

Lossy:

• Model (Ch. 1.6):

$$\frac{\partial u(x,t)}{\partial x} = -Ri(x,t) - L\frac{\partial i(x,t)}{\partial t}$$
$$\frac{\partial i(x,t)}{\partial x} = -Gu(x,t) - C\frac{\partial u(x,t)}{\partial t}$$

• Laplace:

$$\frac{\partial u(x,s)}{\partial x} = -X(s)i(x,s)$$
$$\frac{\partial i(x,s)}{\partial x} = -Y(s)u(x,s)$$

Series impedance:

$$X(s) = R + Ls$$

Parallel admittance:

$$Y(s) = G + Cs$$

Characteristic impedance:

$$Z_c(s) = \sqrt{\frac{X(s)}{Y(s)}}$$

Example: Transmission line I

Example: Transmission line II

Same equations for electrical and fluid/hydraulical transmission lines

Electrical transmission lines:

$$\frac{\partial u(x,t)}{\partial x} = -Ri(x,t) - L\frac{\partial i(x,t)}{\partial t}$$

$$\frac{\partial i(x,t)}{\partial x} = -Gu(x,t) - C\frac{\partial u(x,t)}{\partial t}$$

Fluid transmission lines:

$$\frac{\partial p(x,t)}{\partial t} = -\frac{\beta}{A} \frac{\partial q(x,t)}{\partial x}$$
$$\frac{\partial q(x,t)}{\partial t} = -\frac{A}{\rho} \frac{\partial p(x,t)}{\partial x} - \frac{F[q(x,t)]}{\rho}$$

- Current and flow "same" variables, as is voltage and pressure
- In both cases, we can define line impedance, characteristic impedance, propagation operator, etc.
- Solution to equations have same structure/form: waves propagating back and forth

When do we need these equations?

Laplace transformation

$$\frac{\partial p(x,t)}{\partial t} = -\frac{\beta}{A} \frac{\partial q(x,t)}{\partial x}$$

$$\frac{\partial q(x,t)}{\partial t} = -\frac{A}{\rho} \frac{\partial p(x,t)}{\partial x} - \frac{F[q(x,t)]}{\rho}$$

$$\frac{\partial q(x,t)}{\partial x} = -\frac{S}{C} \frac{\partial p(x,t)}{\partial x}$$

$$\frac{\partial q(x,t)}{\partial x} = -\frac{S}{C} \frac{\partial p(x,t)}{\partial x}$$

$$\frac{\partial p(x,t)}{\partial x} = -\frac{S}{C} \frac{\partial p(x,t)}{\partial x}$$

Friction - Examples

no friction (special case)
$$F=0$$

$$\frac{Z_b I^2(J)}{LT_s} = \frac{Z_0 s}{C}$$

$$\sim PU = T \cdot s$$

Wave variables

$$\frac{\partial}{\partial x} \left(\begin{array}{c} q(x, i) \\ p(x, i) \end{array} \right) = \left(\begin{array}{c} 0 & -\frac{75}{Lz} \\ -\frac{25}{Lz} \end{array} \right) \left(\begin{array}{c} q(x, i) \\ p(x, i) \end{array} \right)$$
where variables: $a(x, i) = p(x, i) + 2c q(x, i)$

$$b(x, i) = p(x, i) - 2c q(x, i)$$

$$\frac{\partial a(x, i)}{\partial x} = -\frac{P(i)}{L} a(x, i)$$

$$\frac{\partial b(x, i)}{\partial x} = \frac{P(i)}{L} b(x, i)$$

Solution: Wave variables

$$a(x,s) = \exp\left(-\frac{\pi}{L}\right) a(\theta_{0})$$

$$b(x,s) = a_{1}(s)$$

$$b(0,s) = b_{1}(s)$$

$$a(x,s)$$

$$a(x,s)$$

$$a(x,s)$$

$$a(x,s) = a_{2}(s)$$

$$b(x,s)$$

$$b(x,s)$$

$$b(x,s)$$

$$a(x,s) = a_{2}(s)$$

$$b(x,s) = b_{2}(s)$$

$$a(x,s) = a_{2}(s)$$

$$b(x,s) = a_{3}(s)$$

$$c(x,s) = a_{3}(s$$

Solution: Waves

• Solution:

$$u_{out}(s) = e^{-\Gamma(s)} u_{in}(s)$$

- Propagation operator $\Gamma(s) = L\sqrt{X(s)Y(s)}$
 - Attenuation factor $\alpha=Re[\Gamma(j\omega)]$: How much is wave reduced
 - Phase factor: $\beta = Im[\Gamma(j\omega)]$: How long does it take
- Lossless (R = G = 0): $\Gamma(s) = Ts$
 - Attenuation factor: 0
 - Phase factor: Pure time-delay

When should we care?

Solution lossless case: Time delay

$$e^{-Ts}$$

 Rule-of-thumb from control theory: We can ignore time-delay for frequencies much less than 1/T

$$\omega \le \frac{1}{T} \implies 2\pi \frac{c}{\lambda} \le \frac{c}{L} \implies L \le \frac{\lambda}{2\pi}$$

- Rule-of-thumb for transmission lines: When L is larger than one tenth of wavelength, treat as transmission line
- Power lines, f = 50Hz: $\lambda = 6000$ km
- Personal computers, f = 10 GHz: $\lambda = 1.5 \text{cm}$

Impedance matching

 Suppose we have an imaginary joint at P in a very long transmission line.

The wave goes through the joint without reflection because there is actually no joint (just imagined).

• Now, let us terminate a resistance of value Z_c at the same position of this imaginary joint. The wave will go through without reflection too.

This is called a **matched load**.

http://cktse.eie.polyu.edu.hk/eie403/Transmissionline.pdf

Homework

Read 4.5 (Hydraulic transmission lines)