4. Exercise sheet "Model Order Reduction"

Exercise 1

Prove Theorem 5.4 for $s_0 = \infty$.

Theorem 5.4 Let [A, B, C, D] be a controlable LTI-SISO-system of order n with moments $\{M_k(s_0)\}_k$ for some given $s_0 \in (\mathbb{C} \cup \{\infty\}) \setminus \operatorname{eig}(A)$. Let $\ell \in \{1, \ldots, n\}$ and $\tilde{T} \in \mathbb{C}^{\ell,\ell}$ be invertible. Let $T_1 := S_{\ell}(s_0)\tilde{T} \in \mathbb{C}^{n,\ell}$ and $W_1 \in \mathbb{C}^{\ell,n}$ such that $W_1T_1 = I_{\ell}$. Let $[\tilde{A}, \tilde{B}, \tilde{C}, \tilde{D}] := [W_1AT_1, W_1B, CT_1, D]$ with moments $\{\tilde{M}_k(s_0)\}_k$. Then $M_k(s_0) = \tilde{M}_k(s_0)$ for $k = 1, \ldots, \ell - 1$.

Exercise 2

- a) Does the proof of Theorem 5.4 still hold for SIMO (single input, multiple output) systems? If not, can it be fixed?
- b) Does the proof of Theorem 5.4 still hold for MISO (multiple input, single output) systems? If not, can it be fixed?
- c) Does the proof of Theorem 5.4 still hold for MIMO (multiple input, multiple output) systems? If not, can it be fixed?
- d) For $m \neq p$ would you prefer the moment matching method from Theorem 5.4 or the one from Theorem 5.5?

Exercise 3

Let [A, B, C, D] be an LTI-SISO-system of order n. Let $s_0, s_1 \in \mathbb{C} \setminus \text{eig}(A), s_0 \neq s_1$. Let $\ell_0, \ell_1 \in \mathbb{N}$ such that $\ell := \ell_0 + \ell_1 \leq n$.

a) Assume $T_1 := [S_{\ell_0}(s_0), S_{\ell_1}(s_1)]$ has full rank, let W_1 be any left inverse of T_1 and set $[\tilde{A}, \tilde{B}, \tilde{C}, \tilde{D}] := [W_1AT_1, W_1B, CT_1, D]$. Prove that then

$$M_k(s_0) = \tilde{M}_k(s_0)$$
 for $k = 1, \dots, \ell_0 - 1$ and $M_k(s_1) = \tilde{M}_k(s_1)$ for $k = 1, \dots, \ell_1 - 1$.

b) Assume that A is diagonalizable. Prove

$$\operatorname{span}[(s_0I - A)^{-1}B, (s_1I - A)^{-1}B] = \operatorname{span}[(s_0I - A)^{-1}B, (s_1I - A)^{-1}(s_0I - A)^{-1}B]$$

and

$$span[(s_0I - A)^{-1}B, (s_0I - A)^{-2}B, (s_1I - A)^{-1}B, (s_1I - A)^{-2}B]$$

$$= span[(s_0I - A)^{-1}B, (s_1I - A)^{-1}B, (s_1I - A)^{-1}(s_0I - A)^{-1}B, (s_0I - A)^{-1}(s_1I - A)^{-1}(s_0I - A)^{-1}B, (s_1I - A)^{-1}(s_0I - A)^{-1}(s_0I - A)^{-1}B].$$

$$(s_1I - A)^{-1}(s_0I - A)^{-1}(s_1I - A)^{-1}(s_0I - A)^{-1}B].$$

Notation

$$S_{\ell}(s_0) = [(s_0I - A)^{-1}B, \dots, (s_0I - A)^{-\ell}B], \quad S_{\ell}(\infty) = [B, AB, \dots, A^{\ell-1}B]$$