

概述

采集的原始数据里存在着各种不利于分析与建模工作的因素,比如数据不完整,格式不正确,数据之间存在矛盾,异常值等。这些因素不仅会影响建模的执行过程,更有甚者在不知不觉间给出错误的建模结果,这就使得数据的预处理显得尤为重要。

通过爬虫爬下来的二手房数据

```
{"name": ["宝盛北里 ", "清河"], "desp": ["2室2万 | 86.42平米 | 南 北 | 精装 | 中楼层(共6层) | 2004年建 | 板楼"], "price": ["568"]} {"name": ["知春东里 ", "双榆树"], "desp": ["3室1万 | 72.8平米 | 南 北 | 精装 | 高楼层(共6层) | 1987年建 | 板楼"], "price": ["755"]} {"name": ["宝盛里 ", "清河"], "desp": ["2室1万 | 69.52平米 | 南 北 | 精装 | 高楼层(共6层) | 2000年建 | 板楼"], "price": ["460"]} {"name": ["魏公村8号院 ", "魏公村"], "desp": ["2室1万 | 75.6平米 | 西南 | 简装 | 高楼层(共14层) | 1997年建 | 板塔结合"], "price": ["750"]} {"name": ["大钟寺甲8号院 ", "皂君庙"], "desp": ["3室1万 | 101.9平米 | 南 北 | 简装 | 低楼层(共6层) | 1994年建 | 板楼"], "price": ["860"]} {"name": ["據树湾 ", "清河"], "desp": ["2室1万 | 67.71平米 | 南 北 | 简装 | 中楼层(共7层) | 2000年建 | 板楼"], "price": ["630"]} {"name": ["整树湾 ", "清河"], "desp": ["4室2万 | 187.16平米 | 南 北 | 精装 | 项层(共16层) | 2016年建 | 板楼"], "price": ["1750"]} {"name": ["花园路18号院 ", "北太平庄"], "desp": ["2室1万 | 66.3平米 | 南 北 西 | 简装 | 高楼层(共6层) | 2000年建 | 板楼"], "price": ["358"]} {"name": ["西单宿舍 ", "牡丹园"], "desp": ["2室1万 | 66.3平米 | 南 北 西 | 简装 | 高楼层(共6层) | 1998年建 | 板塔"], "price": ["580"]} {"name": ["静淑苑 ", "学院路"], "desp": ["2室1万 | 68.3平米 | 南 北 | 葡装 | 中楼层(共7层) | 1996年建 | 板楼"], "price": ["510"]} {"name": ["静淑苑 ", "学院路"], "desp": ["2室1万 | 54.6平米 | 南 北 | 葡装 | 中楼层(共7层) | 1996年建 | 板楼"], "price": ["478"]} {"name": ["锦秋知春 ", "知春路"], "desp": ["1室1万 | 86.29平米 | 东 | 精装 | 中楼层(共9层) | 2003年建 | 板楼"], "price": ["478"]}
```

JSON文件->CSV文件

- 名字:有空格
- 价格:字符串,不方便进行后续的计算
- 描述部分: 内容太杂

- 将其转换为数字
- 分成多列,分别是房型,面积,朝向、装修情况等。
- 增加一列单价,并将数据按照单价倒排序

作业1: 把通过爬虫爬下来的新房数据, 进行预处理。

- 最终的csv文件,应包括以下字段:名称,地理位置(3个字段分别存储),房型(只保留最小房型),面积(按照最小值),总价(万元, 整数),均价(万元,保留小数点后4位);
- 对于所有字符串字段,要求去掉所有的前后空格;
- 如果有缺失数据,不用填充。

顺义 / 后沙峪 / 中央別墅区火沙路和裕庆路交汇口北500米 3室 / 4室 建面 90-144㎡

免费专车 明星户型 限竞房 多轨交汇 三甲医院

V7九间堂 别墅 在售

通州 / 潞苑 / 通燕高速耿庄桥北出口中化石油对面

4室 / 5室 / 6室 / 8室

建面 220-420㎡

1700 万/套(总价) 总价1700万/套起

55711 元/平(均价)

总价475万/套起

私属庭院 入户花园 环线房 近主干道

名称,地理位置(3个字段分别存储),房型(只保留最小房型),面积(按照最小值,整数),均价(元,整数),总价(万元,保留小数点后4位)。公园十七区,顺义,后沙峪,中央别墅区火沙路和裕庆路交汇口北500米,3室,90,55711,501.3990。注:最后一项501.3990由面积乘以单价计算得出。V7九间堂,通州,潞苑,通燕高速耿庄桥北出口中化石油对面,4室,220,45455,1700.0000。注:45455由1700万除以面积220得出,只保留整数。

雾霾指数数据分析

Α		В	С	D	Е		F	(3	Н	I	J	K	L	М	N	0	Р	Q
No	yea	٢	month	day	hour		season	PM_T	Taiyua Pl	M_US Po	PM_Xiaoh	DEWP	HUMI	PRES	TEMP	cbwd	lws	precipit	atic Iprec
	1	2010	1		1	0	4	NA	N	Α	NA	-26	69.79	1024	-22	NE	1.0289	NA	NA
	2	2010	1		1	1	4	NA	N	Α	NA	-26	76.26	1024	-23	NE	2.5722	NA	NA
	3	2010	1		1	2	4	NA	Ν	Α	NA	-27	69.56	1023	-23	NE	5.1444	NA	NA
	4	2010	1		1	3	4	NA	Ν	Α	NA	-27	69.56	1023	-23	NE	7.7166	NA	NA
	5	2010	1		1	4	4	NA	Ν	Α	NA	-27	69.56	1022	-23	NE	9.7744	NA	NA
	6	2010	1		1	5	4	NA	Ν	Α	NA	-26	76.26	1022	-23	NE	11.8322	NA	NA
	7	2010	1		1	6	4	NA	Ν	Α	NA	-25	76.46	1021	-22	NE	14.4044	NA	NA
	8	2010	1		1	7	4	NA	Ν	Α	NA	-24	70.26	1021	-20	NE	16.9766	NA	NA
	9	2010	1		1	8	4	NA	Ν	Α	NA	-23	70.49	1021	-19	NE	19.0344	NA	NA
	10	2010	1		1	9	4	NA	Ν	Α	NA	-22	70.71	1021	-18	NE	21.6066	NA	NA
	11	2010	1		1	10	4	NA	Ν	Α	NA	-20	77.39	1022	-17	NE	24.1788	NA	NA
	12	2010	1		1	11	4	NA	Ν	Α	NA	-18	77.75	1021	-15	NE	27.2655	NA	NA
	13	2010	1		1	12	4	NA	Ν	Α	NA	-17	77.92	1020	-14	NE	29.8377	NA	NA
	14	2010	1		1	13	4	NA	Ν	Α	NA	-16	78.1	1019	-13	NE	32.9244	NA	NA
	1 [2010	1		1	1 /	1	NΙΛ	NI	٨	NΙΛ	1 5	0/107	1010	10	NIE	3E 1066	NΙΛ	NΙΛ

• No: 行号

▶ PM: PM2.5浓度 (ug/m^3)

• year: 年份

• DEWP: 露点 (摄氏温度) 指在固定气压之下,空气

• month: 月份

中所含的气态水达到饱和而凝结成液态水所需要

• day: 日期

降至的温度。

• hour: 小时

TEMP: Temperature (摄氏温度)

• season: 季节

• HUMI: 湿度 (%)

• PRES: 气压 (hPa)c

r cbwd: 组合风向

• lws: 累计风速 (m/s)

precipitation: 降水量/时 (mm)

• Iprec: 累计降水量 (mm) mm)

作业2: 计算北京空气质量数据

1.汇总计算PM指数年平均值的变化情况

2.汇总计算每年中1-12月的PM指数数据变化情况

• No: 行号

• PM: PM2.5浓度 (ug/m^3)

• year: 年份

• DEWP: 露点 (摄氏温度) 指在固定气压

• month: 月份

之下, 空气中所含的气态水达到饱和

• day: 日期

而凝结成液态水所需要降至的温度。

• hour: 小时

• TEMP: Temperature (摄氏温度)

• season: 季节

• HUMI: 湿度 (%)

• PRES: 气压 (hPa)c

• cbwd: 组合风向

• lws: 累计风速 (m/s)

• precipitation: 降水量/时 (mm)

• Iprec: 累计降水量 (mm) mm)

本章的主要内容

第1节数据缺失值的处理

第2节 异常值的处理

第3节数据归一化

第4节数据连续属性离散化

缺失值的处理

- 1.忽略,不参与计算
- 2.删除
- 3.插值

沈阳空气质量数据,计算PM指数年平均值的变化情况

				_								_					
No	year	month	day	hour	season	PM_Taiyua	PM_US Pos	PM_Xiaoheyan	DEWP		HUMI	PRES	TEMP	cbwd	lws	precipitation	Iprec
1	2010	1		1 (4	NA	NA	NA		-26	69.79	1024	-2:	2 NE	1.0289	NA	NA
2	2010	1		1 1	4	NA	NA	NA		-26	76.26	1024	-23	3 NE	2.5722	NA	NA
3	2010	1		1 2	2 4	NA	NA	NA		-27	69.56	1023	-23	3 NE	5.1444	NA	NA
4	2010	1		1 3	3 4	NA	NA	NA		-27	69.56	1023	-23	3 NE	7.7166	NA	NA
5	2010	1		1 4	4	NA	NA	NA		-27	69.56	1022	-23	3 NE	9.7744	NA	NA
6	2010	1		1 5	5 4	NA	NA	NA		-26	76.26	1022	-23	3 NE	11.8322	NA	NA
7	2010	1		1 6	5 4	NA	NA	NA		-25	76.46	1021	-2	2 NE	14.4044	NA	NA
8	2010	1		1 7	4	NA	NA	NA		-24	70.26	1021	-20	NE	16.9766	NA	NA
9	2010	1		1 8	3 4	NA	NA	NA		-23	70.49	1021	-19	9 NE	19.0344	NA	NA
10	2010	1		1 9	9 4	NA	NA	NA		-22	70.71	1021	-18	8 NE	21.6066	NA	NA
11	2010	1		1 10) 4	NA	NA	NA		-20	77.39	1022	-1	7 NE	24.1788	NA	NA
12	2010	1		1 11	4	NA	NA	NA		-18	77.75	1021	-1	5 NE	27.2655	NA	NA
13	2010	1		1 12	2 4	NA	NA	NA		-17	77.92	1020	-14	4 NE	29.8377	NA	NA
14	2010	1		1 13	3 4	NA	NA	NA		-16	78.1	1019	-13	3 NE	32.9244	NA	NA
15	2010	1		1 14	4	NA	NA	NA		-15	84.87	1019	-13	3 NE	35.4966	NA	NA
16	2010	1		1 15	5 4	NA	NA	NA		-15	78.27	1019	-13	2 NE	38.5833	NA	NA
17	2010	1		1 16	5 4	NA	NA	NA		-15	78.27	1019	-13	2 NE	41.1555	NA	NA
18	2010	1		1 17	7 4	NA	NA	NA		-15	78.27	1020	-13	2 NE	43.2133	NA	NA
19	2010	1		1 18	3 4	NA	NA	NA		-16	78.1	1020	-13	3 NE	45.7855	NA	NA
20	2010	1		1 19	9 4	NA	NA	NA		-17	77.92	1021	-14	4 NE	48.3577	NA	NA
21	2010	1		1 20) 4	NA	NA	NA		-17	84.62	1021	-1	5 NE	50.4155	NA	NA
22	2010	1		1 21	4	NA	NA	NA		-19	77.57	1022	-1	6 NE	51.9588	NA	NA
23	2010	1		1 22	2 4	NA	NA	NA		20	77.39	1022	-1	7 NE	53.5021	MA	NΛ
24	2010	1		1 23	3 4	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA
25	2010	1		2 0	4	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA
26	2010	1		2 1	4	NA	NA	NA		-23	70.49	1023	-19	9 NE	1.5433	NA	NA
27	2010	1		2 2	2 4	NA	NA	NA		-24	70.26	1023	-20) NE	2.5722	NA	NA
20	2010	1		2 2	1	NIA	NIA	MA		24	76.65	1022	2	1 NE	2 6011	NIA	NIA

1.数据缺失值的处理

针对单元格数据的插值方法:

• interpolate: 线性插值

• ffill: 前向填充

• bfill: 后向填充

本章的主要内容

第1节数据缺失值的处理

第2节 异常值的处理

第3节数据归一化

第4节数据连续属性离散化

2.数据异常值的处理

- 异常值是指一组测定值中与平均值的偏差超过两倍标准差的测定值;
- 与平均值的偏差超过三倍标准差的测定值, 称为高度异常的异常值。

深蓝区域是距平均值小于一个标准差之内的数值范围。在 口正态分布中,此范围所占比率为全部数值之 68%。 根据正态分布,两个标准差之内(深蓝,蓝)的比率合起来为 95%。根据正态分布,三个标准差之内(深蓝,蓝,浅蓝)的比率合起来为 99%。

2.数据异常值的处理

- 发现异常值
 - 观察df的统计信息,使用describe和info函数,查看平均值、最小值和最大值,是否有明显的错误
 - 计算两倍标准差和三倍标准差
 - 使用图形化方式对数据进行展示和分析
- 异常值的处理
 - 直接替换为合理的数据
 - 先置为空,再使用插值的方法进行填充

2.数据异常值的处理

作业3: 处理北京空气质量数据

- 1. 对HUMI、PRES、TEMP三列,进行线性插值处理。并对其中超过3倍标准差的高度异常数据,修改为3倍标准差的数值。
- 2. 假设PM指数最高为500,对PM_Dongsi、PM_Dongsihuan、PM_Nongzhanguan三列中超过500的数据,修改为500PM指数进行异常值的处理。
- 3. 修改cbwd列中值为"cv"的单元格,其值用后项数据填充。

本章的主要内容

第1节数据缺失值的处理

第2节 异常值的处理

第3节数据归一化

第4节数据连续属性离散化

长度1000cm

直径1cm

- 一个钢筋的样品,直径是0.95cm,长度是1010cm
- 直径和标准的差距是-0.05, 取平方后是0.0025
- 长度和标准的差距是10,取平方后是100
- 直径的残差被忽略,而长度的残差会带来极大的影响
- 需要统一量纲

量纲单位不同

1 2	直径 0.95 0.98	长度 1010 998
3	1.02	1005
N	1.03	996

量纲不同

序号	身高	体重
1	1.78	81
2	1.85	102
3	1.79	75
N	1.68	69
1		

优点:

- (1) 归一化后加快了梯度下降求最优解的速度。
- (2) 归一化有可能提高精度(归一化是让不同维度之间的特征在数值上有一定的比较性)。

Rescaling (Min-Max归一化,最大最小标准化,离差标准化):

这是一种最简单的归一化,将特征线性映射到[0,1]的范围。

$$x' = rac{x - \min(x)}{\max(x) - \min(x)}$$

Standardization (Z-score归一化,标准化):

在这种归一化中,对特征进行缩放,使其均值为零,方差为1。

$$x' = rac{x - \operatorname{average}(x)}{\sigma}$$

Rescaling (Min-Max归一化):

$$x' = rac{x - \min(x)}{\max(x) - \min(x)}$$

梯度下降收敛效果好

Standardization (Z-score归一化, 标准化)

$$x' = rac{x - \operatorname{average}(x)}{\sigma}$$

保留了样本原来的分布

VS

```
from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler()
#x是df中的某一列,即series对象。
x_reshape = x.values.reshape(-1, 1) #变成n行1列的二维矩阵形式
x2 = scaler.fit_transform(x_reshape) #调用MinMaxScaler的fit_transform转换方法,进行归一化处理
```

```
from sklearn.preprocessing import StandardScaler
scaler_std = StandardScaler()
x_reshape = x.values.reshape(-1, 1) #变成n行1列的二维矩阵形式
x3 = scaler_std.fit_transform(x_reshape) #调用StandardScaler的fit_transform转换
方法,进行归一化处理
```


本章的主要内容

第1节数据缺失值的处理

第2节 异常值的处理

第3节数据归一化

第4节数据连续属性离散化

数据的属性分为连续和离散两大类。

离散属性比连续属性更接近于知识级的表达。通过对数据连续属性的离散化,数据可以被减少并被简化。对用户而言,离散的数据更易理解、使用和解释。

	А	В	C	D	Е	F	G		Н		J	K	L	М	N O	Р	Q	R	S	T	U	V	W	χ	A
1		No	year	month	day	hou	ur seaso	n Pl	/_Taiyuanjie	PM_US Post	PM_Xiaoheyan	DEWP	HUMI	PRES	TEMP cbwd	lws	precipitation	Iprec	sum	count	ave	DEWP_new	HUMI_new	PRES_new	Ш
2	26304	26305	2013	1	1		0	4	145		148	-17	66.23	1016	-12 SE	24	0	0	293	2	146.5	-17	66.23	1016	
3	26305	26306	2013	1	1		1	4	150		133	-16	72.02	1016	-12 SE	26	0	0	283	2	141.5	-16	72.02	1016	
4	26307	26308	2013	1	1		3	4	142		121	-14	78.44	1016	-11 cv	1	0.1	0.1	263	2	131.5	-14	78.44	1016	
5	26308	26309	2013	1	1		4	4	105		110	-16	78.1	1016	-13 NW	2	0	0	215	2	107.5	-16	78.1	1016	
6	26309	26310	2013	1	1		5	4	154		107	-16	84.74	1016	-14 NE	1	0	0	261	2	130.5	-16	84.74	1016	
7	26310	26311	2013	1	1		6	4	176		123	-16	84.74	1016	-14 SW	3	0	0	299	2	149.5	-16	84.74	1016	
8	26311	26312	2013	1	1		7	4	140		111	-18	71.6	1018	-14 NW	5	0	0	251	2	125.5	-18	71.6	1018	
9	26312	26313	2013	1	1		8	4	93		76	-18	71.6	1019	-14 NW	9	0	0	169	2	84.5	-18	71.6	1019	
10	26313	26314	2013	1	1		9	4	53		56	-18	71.6	1020	-14 NW	12	0	0	109	2	54.5	-18	71.6	1020	
11	26314	26315	2013	1	1	1	10	4	23		29	-22	54.98	1021	-15 NW	19	0	0	52	2	26	-22	54.98	1021	
12	26315	26316	2013	1	1	1	11	4	29		20	-24	46.01	1021	-15 NW	24	0	0	49	2	24.5	-24	46.01	1021	
13	26317	26318	2013	1	1	1	13	4	13		7	-24	46.01	1022	-15 NW	33	0	0	20	2	10	-24	46.01	1022	
14	26318	26319	2013	1	1	1	14	4	8		6	-25	42.03	1022	-15 NW	37	0	0	14	2	. 7	-25	42.03	1022	
15	26319	26320	2013	1	1	1	15	4	9		8	-26	38.37	1023	-15 NW	41	0	0	17	2	8.5	-26	38.37	1023	
16	26320	26321	2013	1	1	1	16	4	14		9	-27	38.03	1024	-16 NW	44	0	0	23	2	11.5	-27	38.03	1024	
17	26321	26322	2013	1	1	1	17	4	24		14	-27	41.36	1024	-17 NW	47	0	0	38	2	19	-27	41.36	1024	
18	26322	26323	2013	1	1	1	18	4	34		24	-27	45.02	1025	-18 NW	49	0	0	58	2	29	-27	45.02	1025	
19	26323	26324	2013	1	1	1	19	4	37		20	-27	45.02	1026	-18 NW	52	0	0	57	2	28.5	-27	45.02	1026	
20	26324	26325	2013	1	1	2	20	4	25		17	-28	44.68	1026	_截图(Alt	+ A)J3	0	0	42	2	21	-28	44.68	1026	
21	26325	26326	2013	1	1	2	21	4	18		25	-28	53.13	1026	-21 SE	2	0	0	43	2	21.5	-28	53.13	1026	
22	26326	26327	2013	1	1	2	22	4	21		77	-29	57.71	1026	-23 SE	4	0	0	98	2	49	-29	57.71	1026	
23	26327	26328	2013	1	1	2	23	4	30		59	-30	62.84	1027	-25 cv	1	0	0	89	2	44.5	-30	62.84	1027	0
24	26328	26329	2013	1	2		0	4	43		26	-30	62.84	1027	-25 SW	2	0	0	69	2	34.5	-30	62.84	1027	
25	26330	26331	2013	1	2		2	4	25		23	-30	62.84	1028	-25 SW	5	0	0	48	2	24	-30	62.84	1028	
26	26331	26332	2013	1	2		3	4	19		13	-31	68.59	1028	-27 SW	7	0	0	32	2	16	-31	68.59	1028	l
27	26332	26333	2013	1	2		4	4	36		12	-31	62.56	1029	-26 SW	8	0	0	48	2	24	-31	62.56	1029	
28	26333	26334	2013	1	2		5	4	22		9	-31	68.59	1029	-27 SW	10	0	0	31	2	15.5	-31	68.59	1029	
29	26334	26335	2013	1	2		6	4	16		8	-31	68.59	1030	-27 SW	12	0	0	24	2	12	-31	68.59	1030	
30	26335	26336	2013	1	2		7	4	19		10	-31	68.59	1031	-27 SE	1	0	0	29	2	14.5	-31	68.59	1031	
31	26336	26337	2013	1	2		8	4	24		13	-30	68.83	1032	-26 SW	2	0	0	37	2	18.5	-30	68.83	1032	
32		26338	2013	1	2		9	4	30		14	-28	63.39	1033	-23 SW	4	0	0	44	2	22	-28	63.39	1033	۳
-(}	sy3	+													1)	

实时空气质量指数分级相关信息。

指数值₽	10001	炎等级↓ 征颜色↓	对健康影响情况₽	建议采取的措施。
0~50₽	优₽	绿色。	空气质量令人满意,基 本无空气污染。	各类人群可正常活动。
51∼100₽	良中	黄色₽	空气质量可接受,但某 些污染物可能对极少 数异常敏感人群健康 有较弱影响4	极少数异常敏感人群 应减少户外活动≠
101∼ 150¢	軽度↓ 污染↓	橙色	易感人群症状有轻度 加剧,健康人群出现刺 激症状↓	儿童、老年人及心脏病、呼吸系统疾病患者 应减少长时间、高强度 的户外锻炼4
151∼ 200₽	中度↓ 污染↓	红色。	进一步加剧易感人群 症状,可能对健康人群 心脏、呼吸系统有影响。	
201∼ 300↔	重度↓ 污染↓	紫色』	心脏病和肺病患者症 状显著加剧,运动耐受 力降低,健康人群普遍 出现症状#	儿童、老年人和心脏 病、肺病患者应停留在 室内,停止户外运动, 一般人群减少户外运 动↓
>3000	严重↓ 污染↓	褐红色。	健康人运动耐受力降 低,有明显强烈症状, 提前出现某些疾病。	儿童、老年人和病人应 当停留在室内,避免体 力消耗,一般人群应避 免户外活动。

cut方法:按值切割,根据数据值的大小范围分成n组,落入 这个范围的分别进入到该组。

- 设定区间的个数,每个区间的间距相等
- 也可自定义每个区间的长度

pandas.cut(x, bins, right=True, labels=None, retbins=False, precision=3, include_lowest=False, duplicates='raise')

x:数据集,这里一般是pandas的Series

bins: 为一个整数或数组,代表切割成几组或者具体的切割方式

labels: 代表切割后的分组名称

Right:表示区间右端点的数据是否包含在内,默认为包含

qcut方法:按个数切割,使得每个区间里的元素个数基本相同

pandas.qcut(x, q, labels=None, retbins=False,
precision=3, duplicates='raise')

x:数据集,这里一般是pandas的Series

q:为一个整数或分位数数组

labels: 代表切割后的分组名称

cut方法: 按值切割

- 设定区间的个数,每个区间的间距相等
- 自定义每个区间的长度

3	1	2	9	5	10	6	4	0	8	7
										i e

5等份: 0-2-4-6-8-10 : (0,1,2),(3,4),(5,6),(7,8),(9,10)

4等份: 0-2.5-5.0-7.5-10:(0,1,2),(3,4,5),(6,7),(8,9,10)

指定区间: 0,2,7,10 : (1,2),(3,4,5,6,7),(8,9,10)


```
sections = [0,50,100,150,200,300,1200] #划分为不同长度的区间
section_names=["green","yellow","orange","red","purple",
"Brownish red"] #设置每个区间的标签
result = pd.cut(df.ave,sections,labels=section_names)
print(pd.value_counts(result))
```

```
green 11587
yellow 8006
orange 3190
red 1518
purple 1121
Brownish red 463
Name: ave, dtype: int64
```

作业

作业4: 处理北京空气质量数据

- 1. 对DEWP和TEMP两列,进行0-1归一化及Z-Score归一化处理。 结果使用散点图的形式表示(参考PPT第24页图形上半部分的 表现形式)。
- 将北京的空气质量数据进行离散化,按照空气质量指数分级标准,计算出每个级别(或颜色值)对应的天数各有多少。