

Fast Channel Selection for Scalable Multivariate Time Series Classification

Bhaskar Dhariyal, Thach Le Nguyen, Georgiana Ifrim School of Computer Science, University College Dublin, Ireland

FUNDED BY:

Outline

- 1. Introduction
- 2. Motivation
- 3. Channel Selection Techniques
- 4. Results

Introduction

Multivariate Time Series Classification: The task of classifying an ordered temporal signal (time series) where <u>multiple channels</u> can affect the class outcome.

Source

Figure: if sensors are placed on different body parts, e.g., wrists, shoulders, hips, lower back, etc, they will act as channels for MTS. The class label is attached to a multi-channel time series, eg classify movement as correct/incorrect.

Applications:

- Medical
- Sports Science
- Agriculture
- Manufacturing

Motivation

- Research in UTSC has made significant progress, but there is much less work done on MTSC.
- Most literature in UTSC considers the MTSC problem as an extended version of UTSC and tends to adapt UTSC methods for MTSC.
- Problems with such methods is computational components such as space and time complexity are ignored which are crucial elements for MTSC.
- Three Computation Challenges of MTSC
 - o Scale
 - Channels
 - <u>Length</u>

Contributions

Objective

To enable existing SOTA classifiers to scale better with an increase in the number of MTSC channels, by reducing the time and memory required for computation, while maintaining accuracy.

Contributions

Objective

To enable existing SOTA classifiers to scale better with an increase in the number of MTSC channels, by reducing the time and memory required for computation, while maintaining accuracy.

Contributions

- Proposed three greedy channel selection strategies.
- Report a 70% reduction in computation time and about 70% reduction in data storage.
- We test our methods on a real-world, 25-channel MTSC dataset, recorded for the Military Press strength and conditioning exercise.

Dataset: UEA MTSC Benchmark - 26 MTSC datasets

Human Activity Recognition

- BasicMotions
- Cricket
- Epilepsy
- ERing
- Handwriting
- Libras
- NATOPS
- UWaveGestureLibrary

Motion Classification

- ArticularyWordRecognition
- CharacterTrajectories
- EigenWorms
- PenDigits

ECG classification

- AtrialFibrillation
- StandWalkJump

EEG/MEG

- FingerMovements
- MotorImagery
- SelfRegulationSCP1
- SelfRegulationSCP2
- FaceDetection
- HandMovementDirection

Audio Spectra Classification

- DuckDuckGeese
- Heartbeat
- InsectWingbeat
- Phoneme
- SpokenArabicDigits
- JapaneseVowels

Others

- EthanolConcentration
- PEMS-SF
- LSST

Source

Channel Selection

 The study analyses if channel selection can be performed using the distance between class centroids.

Key idea: Useful channels can separate the classes;

good channel => higher distance between centroids.

Channel Selection

 The study analyses if channel selection can be performed using the distance between class centroids.

Key idea: Useful channels can separate the classes;

good channel => higher distance between centroids.

- Why centroids?
 - Centroids are typically class prototypes.
 - No need to iterate over full dataset, thus making following process fast.

Channel Selection

 The study analyses if channel selection can be performed using the distance between class centroids.

Key idea: Useful channels can separate the classes;

good channel => higher distance between centroids.

- Why centroids?
 - Centroids are typically class prototype.
 - No need to iterate over full dataset, thus making following process fast.
- How?
 - Calculate distance between class centroid-pairs for each channel and store them into a distance matrix.
 - Using this distance matrix, find the best set of channels.
 - We evaluate three strategies to find best set of channels.

Methodology to select channels

- Create a centroid frame from the time-series dataframe.
- 2. To create distance matrix, calculate distance between channels for each centroid pairs.
- Use proposed channel selection strategies (KMeans, ECP, and ECS) to select relevant channel.

Ch 1	Ch 2	h 2 Ch 3	
	PAV.	NAV	Α
			С
いた			Α
	10.10	111	С
	MA		В
			В
T. A.	MA	1000	Α
1,		MA	В

STEP 1: Compute and store centroid for each class

STEP 1: Compute and store centroid for each class

Centroid Frame

Centroid Frame

STEP 2: Calculate distance matrix

	class(AB)	class(BC)	class(AC)
Ch 1	23	43	57
Ch 2	36	63	85
Ch 3	43	86	52

Centroid Frame

STEP 2: Calculate distance matrix

		class(AB)	class(BC)	class(AC)
	Ch 1	23	43	57
NH.	Ch 2	36	63	85
	Ch 3	43	86	52

Centroid Frame

STEP 2: Calculate distance matrix

		class(AB)	class(AB) class(BC)	
	Ch 1	23	43	57
200	Ch 2	36	63	85
	Ch 3	43	86	52

	class(AB)	class(AB) class(BC)	
Ch 1	23	43	57
Ch 2	36	63	85
Ch 3	43	86	52

STEP 3: Select useful channels

	class(AB)	class(BC)	class(AC)				
Ch 1	23	43	57	ſ			
Ch 2	36	63	85	>	Channel Selection Strategies	~	Useful Channels
Ch 3	43	86	52				

Distance Matrix

- Distance Matrix stores distance for every pair of centroids for each channel.
- The mentioned distance matrix is for a Military Press dataset collected at Insight Centre for Data Analytics at UCD with following features.

Channels: 25

Classes: 4

Centroid pairs: 6

Each channel represents a body part.

CHANNELS	Centroid_a_arch	Centroid_a_n	Centroid_a_r	Centroid_arch_n	Centroid_arch_r	Centroid_n_r
Nose	15.93	11.13	14.89	14.20	14.61	16.94
Neck	43.67	31.00	13.27	32.05	43.11	39.04
RShoulder	44.57	32.36	15.52	31.13	44.47	41.72
RElbow	34.62	48.95	157.14	33.04	153.80	166.99
RWrist	45.09	50.54	157.34	55.39	161.09	172.09
LShoulder	43.90	30.24	14.02	32.93	43.52	39.26
LElbow	29.78	51.38	149.37	37.56	147.62	165.01
LWrist	38.55	42.95	148.48	47.40	155.56	157.55
MidHip	25.91	6.32	2.97	24.26	23.82	7.15

Distance Matrix

- Distance Matrix stores distance for every pair of centroids for each channel.
- The mentioned distance matrix is for a Military Press dataset collected at Insight Centre for Data Analytics at UCD with following features.

Channels: 25

Classes: 4

Centroid pairs: 6

Each channel represents a body part.

CHANNELS	Centroid_a_arch	Centroid_a_n	Centroid_a_r	Centroid_arch_n	Centroid_arch_r	Centroid_n_r
Nose	15.93	11.13	14.89	14.20	14.61	16.94
Neck	43.67	31.00	13.27	32.05	43.11	39.04
RShoulder	44.57	32.36	15.52	31.13	44.47	41.72
RElbow	34.62	48.95	157.14	33.04	153.80	166.99
RWrist	45.09	50.54	157.34	55.39	161.09	172.09
LShoulder	43.90	30.24	14.02	32.93	43.52	39.26
LElbow	29.78	51.38	149.37	37.56	147.62	165.01
LWrist	38.55	42.95	148.48	47.40	155.56	157.55
MidHip	25.91	6.32	2.97	24.26	23.82	7.15

- KMeans
- Elbow cut sum (ECS)
- Elbow class pair (ECP)

KMeans

CHANNELS	Centroid_a_arch	Centroid_a_n	Centroid_a_r	Centroid_arch_n	Centroid_arch_r	Centroid_n_r
Nose	15.93	11.13	14.89	14.20	14.61	16.94
Neck	43.67	31.00	13.27	32.05	43.11	39.04
RShoulder	44.57	32.36	15.52	31.13	44.47	41.72
RElbow	34.62	48.95	157.14	33.04	153.80	166.99
RWrist	45.09	50.54	157.34	55.39	161.09	172.09
LShoulder	43.90	30.24	14.02	32.93	43.52	39.26
LElbow	29.78	51.38	149.37	37.56	147.62	165.01
LWrist	38.55	42.95	148.48	47.40	155.56	157.55
MidHip	25.91	6.32	2.97	24.26	23.82	7.15

KMeans

- Create two clusters using KMeans.
- The value for K=2.
- Clusters with mean distance higher than the other consist of useful channels.

ECS: Elbow Class Sum

CHANNELS	Centroid_a_arch	Centroid_a_n	Centroid_a_r	Centroid_arch_n	Centroid_arch_r	Centroid_n_r
Nose	15.93	11.13	14.89	14.20	14.61	16.94
Neck	43.67	31.00	13.27	32.05	43.11	39.04
RShoulder	44.57	32.36	15.52	31.13	44.47	41.72
RElbow	34.62	48.95	157.14	33.04	153.80	166.99
RWrist	45.09	50.54	157.34	55.39	161.09	172.09
LShoulder	43.90	30.24	14.02	32.93	43.52	39.26
LElbow	29.78	51.38	149.37	37.56	147.62	165.01
LWrist	38.55	42.95	148.48	47.40	155.56	157.55
MidHip	25.91	6.32	2.97	24.26	23.82	7.15

ECS: Elbow Class Sum

CHANNELS	Centroid_a_arch	Centroid_a_n	Centroid_a_r	Centroid_arch_n	Centroid_arch_r	Centroid_n_r
Nose	15.93	11.13	14.89	14.20	14.61	16.94
Neck	43.67	31.00	13.27	32.05	43.11	39.04
RShoulder	44.57	32.36	15.52	31.13	44.47	41.72
RElbow	34.62	48.95	157.14	33.04	153.80	166.99
RWrist	45.09	50.54	157.34	55.39	161.09	172.09
LShoulder	43.90	30.24	14.02	32.93	43.52	39.26
LElbow	29.78	51.38	149.37	37.56	147.62	165.01
LWrist	38.55	42.95	148.48	47.40	155.56	157.55
MidHip	25.91	6.32	2.97	24.26	23.82	7.15

CHANNELS	Centroid_a_arch	Centroid_a_n	Centroid_a_r	Centroid_arch_n	Centroid_arch_r	Centroid_n_r	SUM
Nose	15.93	11.13	14.89	14.20	14.61	16.94	87.70
Neck	43.67	31.00	13.27	32.05	43.11	39.04	202.14
RShoulder	44.57	32.36	15.52	31.13	44.47	41.72	209.77
RElbow	34.62	48.95	157.14	33.04	153.80	166.99	594.54
RWrist	45.09	50.54	157.34	55.39	161.09	172.09	641.53
LShoulder	43.90	30.24	14.02	32.93	43.52	39.26	203.86
LElbow	29.78	51.38	149.37	37.56	147.62	165.01	580.71
LWrist	38.55	42.95	148.48	47.40	155.56	157.55	590.50
MidHip	25.91	6.32	2.97	24.26	23.82	7.15	90.43

ECS: Elbow Class Sum

CHANNELS	Centroid_a_arch	Centroid_a_n	Centroid_a_r	Centroid_arch_n	Centroid_arch_r	Centroid_n_r	SUM
Nose	15.93	11.13	14.89	14.20	14.61	16.94	87.70
Neck	43.67	31.00	13.27	32.05	43.11	39.04	202.14
RShoulder	44.57	32.36	15.52	31.13	44.47	41.72	209.77
RElbow	34.62	48.95	157.14	33.04	153.80	166.99	594.54
RWrist	45.09	50.54	157.34	55.39	161.09	172.09	641.53
LShoulder	43.90	30.24	14.02	32.93	43.52	39.26	203.86
LElbow	29.78	51.38	149.37	37.56	147.62	165.01	580.71
LWrist	38.55	42.95	148.48	47.40	155.56	157.55	590.50
MidHip	25.91	6.32	2.97	24.26	23.82	7.15	90.43

Elbow Cut Sum (ECS)

Elbow cut Heuristic

ECP: Elbow Class Pairwise

CHANNELS	Centroid_a_arch	Centroid_a_n	Centroid_a_r	Centroid_arch_n	Centroid_arch_r	Centroid_n_r
Nose	15.93	11.13	14.89	14.20	14.61	16.94
Neck	43.67	31.00	13.27	32.05	43.11	39.04
RShoulder	44.57	32.36	15.52	31.13	44.47	41.72
RElbow	34.62	48.95	157.14	33.04	153.80	166.99
RWrist	45.09	50.54	157.34	55.39	161.09	172.09
LShoulder	43.90	30.24	14.02	32.93	43.52	39.26
LElbow	29.78	51.38	149.37	37.56	147.62	165.01
LWrist	38.55	42.95	148.48	47.40	155.56	157.55
MidHip	25.91	6.32	2.97	24.26	23.82	7.15

Elbow Class Pairwise (ECP)

Elbow Cut 1 -- Useful Channels set 1

ECP: Elbow Class Pairwise

CHANNELS	Centroid_a_arch	Centroid_a_n	Centroid_a_r	Centroid_arch_n	Centroid_arch_r	Centroid_n_r
Nose	15.93	11.13	14.89	14.20	14.61	16.94
Neck	43.67	31.00	13.27	32.05	43.11	39.04
RShoulder	44.57	32.36	15.52	31.13	44.47	41.72
RElbow	34.62	48.95	157.14	33.04	153.80	166.99
RWrist	45.09	50.54	157.34	55.39	161.09	172.09
LShoulder	43.90	30.24	14.02	32.93	43.52	39.26
LElbow	29.78	51.38	149.37	37.56	147.62	165.01
LWrist	38.55	42.95	148.48	47.40	155.56	157.55
MidHip	25.91	6.32	2.97	24.26	23.82	7.15

Elbow Class Pairwise (ECP)

Elbow Cut 1 -- Useful Channels set 1 Elbow Cut 2 -- Useful Channel Set 2

ECP: Elbow Class Pairwise

CHANNELS	Centroid_a_arch	Centroid_a_n	Centroid_a_r	Centroid_arch_n	Centroid_arch_r	Centroid_n_r
Nose	15.93	11.13	14.89	14.20	14.61	16.94
Neck	43.67	31.00	13.27	32.05	43.11	39.04
RShoulder	44.57	32.36	15.52	31.13	44.47	41.72
RElbow	34.62	48.95	157.14	33.04	153.80	166.99
RWrist	45.09	50.54	157.34	55.39	161.09	172.09
LShoulder	43.90	30.24	14.02	32.93	43.52	39.26
LElbow	29.78	51.38	149.37	37.56	147.62	165.01
LWrist	38.55	42.95	148.48	47.40	155.56	157.55
MidHip	25.91	6.32	2.97	24.26	23.82	7.15

Elbow Class Pairwise (ECP)

Elbow Cut 1 -- Useful Channels set 1 Elbow Cut 2 -- Useful Channel Set 2 Elbow Cut 3 -- Useful Channels Set 3

ECP: Elbow Class Pairwise

				I	
Centroid_a_arch	Centroid_a_n	Centroid_a_r	Centroid_arch_n	Centroid_arch_r	Centroid_n_r
15.93	11.13	14.89	14.20	14.61	16.94
43.67	31.00	13.27	32.05	43.11	39.04
44.57	32.36	15.52	31.13	44.47	41.72
34.62	48.95	157.14	33.04	153.80	166.99
45.09	50.54	157.34	55.39	161.09	172.09
43.90	30.24	14.02	32.93	43.52	39.26
29.78	51.38	149.37	37.56	147.62	165.01
38.55	42.95	148.48	47.40	155.56	157.55
25.91	6.32	2.97	24.26	23.82	7.15
	15.93 43.67 44.57 34.62 45.09 43.90 29.78 38.55	43.67 31.00 44.57 32.36 34.62 48.95 45.09 50.54 43.90 30.24 29.78 51.38 38.55 42.95	15.93 11.13 14.89 43.67 31.00 13.27 44.57 32.36 15.52 34.62 48.95 157.14 45.09 50.54 157.34 43.90 30.24 14.02 29.78 51.38 149.37 38.55 42.95 148.48	15.93 11.13 14.89 14.20 43.67 31.00 13.27 32.05 44.57 32.36 15.52 31.13 34.62 48.95 157.14 33.04 45.09 50.54 157.34 55.39 43.90 30.24 14.02 32.93 29.78 51.38 149.37 37.56 38.55 42.95 148.48 47.40	15.93 11.13 14.89 14.20 14.61 43.67 31.00 13.27 32.05 43.11 44.57 32.36 15.52 31.13 44.47 34.62 48.95 157.14 33.04 153.80 45.09 50.54 157.34 55.39 161.09 43.90 30.24 14.02 32.93 43.52 29.78 51.38 149.37 37.56 147.62 38.55 42.95 148.48 47.40 155.56

```
Elbow Cut 1 -- Useful Channels set 1
Elbow Cut 2 -- Useful Channel Set 2
Elbow Cut 3 -- Useful Channels Set 3
Elbow Cut 4 -- Useful Channel Set 4
```

ECP: Elbow Class Pairwise

						1
CHANNELS	Centroid_a_arch	Centroid_a_n	Centroid_a_r	Centroid_arch_n	Centroid_arch_r	Centroid_n_r
Nose	15.93	11.13	14.89	14.20	14.61	16.94
Neck	43.67	31.00	13.27	32.05	43.11	39.04
RShoulder	44.57	32.36	15.52	31.13	44.47	41.72
RElbow	34.62	48.95	157.14	33.04	153.80	166.99
RWrist	45.09	50.54	157.34	55.39	161.09	172.09
LShoulder	43.90	30.24	14.02	32.93	43.52	39.26
LElbow	29.78	51.38	149.37	37.56	147.62	165.01
LWrist	38.55	42.95	148.48	47.40	155.56	157.55
MidHip	25.91	6.32	2.97	24.26	23.82	7.15

```
Elbow Cut 1 -- Useful Channels set 1
Elbow Cut 2 -- Useful Channel Set 2
Elbow Cut 3 -- Useful Channels Set 3
Elbow Cut 4 -- Useful Channel Set 4
Elbow Cut 5 -- Useful Channel Set 5
```

ECP: Elbow Class Pairwise

CHANNELS	Centroid_a_arch	Centroid_a_n	Centroid_a_r	Centroid_arch_n	Centroid_arch_r	Centroid_n_r
Nose	15.93	11.13	14.89	14.20	14.61	16.94
Neck	43.67	31.00	13.27	32.05	43.11	39.04
RShoulder	44.57	32.36	15.52	31.13	44.47	41.72
RElbow	34.62	48.95	157.14	33.04	153.80	166.99
RWrist	45.09	50.54	157.34	55.39	161.09	172.09
LShoulder	43.90	30.24	14.02	32.93	43.52	39.26
LElbow	29.78	51.38	149.37	37.56	147.62	165.01
LWrist	38.55	42.95	148.48	47.40	155.56	157.55
MidHip	25.91	6.32	2.97	24.26	23.82	7.15

```
Elbow Cut 1 -- Useful Channels set 1
Elbow Cut 2 -- Useful Channel Set 2
Elbow Cut 3 -- Useful Channels Set 3
Elbow Cut 4 -- Useful Channel Set 4
Elbow Cut 5 -- Useful Channel Set 5
Elbow Cut 6 -- Useful Channel Set 6
```

ECP: Elbow Class Pairwise

CHANNELS	Centroid_a_arch	Centroid_a_n	Centroid_a_r	Centroid_arch_n	Centroid_arch_r	Centroid_n_r
Nose	15.93	11.13	14.89	14.20	14.61	16.94
Neck	43.67	31.00	13.27	32.05	43.11	39.04
RShoulder	44.57	32.36	15.52	31.13	44.47	41.72
RElbow	34.62	48.95	157.14	33.04	153.80	166.99
RWrist	45.09	50.54	157.34	55.39	161.09	172.09
LShoulder	43.90	30.24	14.02	32.93	43.52	39.26
LElbow	29.78	51.38	149.37	37.56	147.62	165.01
LWrist	38.55	42.95	148.48	47.40	155.56	157.55
MidHip	25.91	6.32	2.97	24.26	23.82	7.15

Dataset

- <u>UEA/UCR MTSC data archive</u>
- In this work we work with 26 equal length datasets.
- Number of channel ranges from 2 to 1345.
- Number of sample varies from 12 to 30000.
- Length of time series varies from 8 to 17894.

Implementation

sktime

Evaluation

- Run the SOTA algorithms with all channels.
- ROCKET and WEASEL-MUSE have almost similar mean accuracy, but ROCKET is much faster.
- ROCKET uses a multi-threaded implementation, while all the other algorithms are single-thread implementations, hence the significant difference in runtime.
- The baseline 1NN-DTW is the least accurate and the slowest method among the four.
- WEASEL-MUSE and MrSEQL are impacted by the runtime taken by the symbolic transform.

Classifier	Accuracy	Time(in hrs)
ROCKET	71.59	0.1
WEASEL-MUSE	70.28	73.22
MrSEQL-SAX	66.99	141.40
1NN-DTW	65.38	152.07

Results

Dataset followed by number of channels

Fraction of channels selected by each of three channel selection strategies.

Results

Channel Selection Strategy	KMeans	ECS	ECP
Total Time (minutes)	0.34	0.33	0.35

Total time taken by three channel selection strategies on 26 UEA datasets.

Results

Channel Selection Strategy	KMeans	ECS	ECP
Total Time (minutes)	0.34	0.33	0.35

			- V
Channel Selection \rightarrow	KMeans	ECS	ECP
Classifiers↓	$\Delta Acc \mid \% Time$	$\Delta Acc \%Time$	$\Delta Acc \mid \% Time$
ROCKET	-4.01 33.62	-4.40 29.23	+0.13 21.43
WEASEL-MUSE	-4.63 70.46	-3.80 79.90	-1.53 73.21
MrSEQL- SAX	-3.33 72.68	-3.80 84.00	$+0.45 \mid 77.06$
1NN-DTW	-4.28 68.30	-6.08 68.82	$+0.67 \mid 44.80$
Mean ΔAcc Mean %Time	-4.06 61.26	-4.52 65.48	-0.07 54.12
Mean Storage Saved	73.95%	82.59%	74.38%

Loss/Gain in mean accuracy (\triangle Acc) vs percentage time saved (%Time) with respect to All channels for our three channel selection techniques on 26 UCR datasets.

Results

Channel Selection Strategy	KMeans	ECS	ECP
Total Time (minutes)	0.34	0.33	0.35

Channel Selection \rightarrow	KMeans	ECS	ECP
Classifiers↓	$\Delta Acc \mid \% Time$	$\Delta \text{Acc} \%\text{Time}$	$\Delta Acc \mid \% Time$
ROCKET	-4.01 33.62	-4.40 29.23	$+0.13 \mid 21.43$
WEASEL-MUSE	-4.63 70.46	-3.80 79.90	$-1.53 \mid 73.21$
MrSEQL- SAX	-3.33 72.68	-3.80 84.00	$+0.45 \mid 77.06$
1NN-DTW	-4.28 68.30	-6.08 68.82	$+0.67 \mid 44.80$
Mean ΔAcc Mean %Time	-4.06 61.26	-4.52 65.48	-0.07 54.12
Mean Storage Saved	73.95%	82.59%	74.38%

Loss/Gain in mean accuracy (\triangle Acc) vs percentage time saved (%Time) with respect to All channels (Table 3) for our three channel selection techniques on 26 UCR datasets.

Channel Selection: Case Study

Channel Selection	Body Parts
KMeans	Elbows, Wrists, BigToes, SmallToes
ECS	Wrists, Elbows, BigToes, SmallToes
ECP	Elbows, Wrists, BigToes, SmallToes

Channel Selection: Case Study

Channel Selection	Body Parts
KMeans	Elbows, Wrists, BigToes, SmallToes
ECS	Wrists, Elbows, BigToes, SmallToes
ECP	Elbows, Wrists, BigToes, SmallToes

	Accuracy	Time (minutes)
Classifiers	ECP All	ECP All
ROCKET	76.26 77.53	2.14 2.25
WEASEL-MUSE	57.57 57.57	30.29 107.02
MrSEQL-SAX	58.23 61.56	139.53 516.79
1NN-DTW	48.58 47.25	10.39 24.36
Data Size (MB) Reduced Original	15.77 49.29	

Conclusion

- Not all the channels for MTSC are helpful.
- Uninformative channels can prevent the classifier from achieving its maximum potential
- Channel selection can remove some of the noise and drastically reduce the required computation time for existing MTSC methods
- Distance between the class centroids of various channels plays a crucial role in identifying the noisy channels.
- Three techniques significantly reduced the runtime and memory required to run SOTA classifiers.

Thank you! Questions?

Code in Github:

https://github.com/mlgig/Channel-Selection-MTSC

Further Information

Bhaskar Dhariyal
University College Dublin
Email: bhaskar.dhariyal@insight-centre.org

