Занятие 12. Тригонометрия. Неравенства, аркфункции, преобразования

Домашняя работа

Easy

1. (Савватеев, 2018) Докажите, что

$$arctg 1 = arctg \frac{1}{2} + arctg \frac{1}{3}.$$

2. (*«ПВГ»*, *2018*) Решите уравнение

$$\left(\arcsin\frac{3}{5} - \arccos\frac{4}{5}\right) \cdot x + \pi = 2\arctan 3 + \arctan \frac{3}{4}.$$

- **3.** (*«ПВГ»*, 2016) Сравните числа $\sin 1 + \cos 1$ и $\frac{49}{36}$. Ответ обоснуйте.
- **4.** (*«ПВГ»*, 2017) Решите неравенство $3\sin\left(\frac{2x}{3}\right) \geqslant 5 2\cos\left(\frac{\pi}{4} \frac{x}{3}\right)$.

Normal

5. ($\ll \Pi B \Gamma \gg$, 2015) Что больше:

$$2\sin\frac{5\pi}{16}\cdot\cos\frac{\pi}{16}$$

или сумма корней уравнения

$$|3 \cdot \arccos x| = |\arcsin x|$$
?

6. (*«Ломоносов»*, 2019) Найдите решения неравенства

$$\sin^{2018} x + \cos^{-2019} x \geqslant \cos^{2018} x + \sin^{-2019} x,$$

принадлежащие отрезку $\left[-\frac{\pi}{4}; \frac{7\pi}{4}\right]$.

7. ($*\Pi B \Gamma *, 2016$) Решите неравенство

$$\sqrt{2\sin x \cos x} > \cos^3 x - \sin^3 x + \sin x \cos x (\sin x - \cos x).$$

- 8. (*«ПВГ»*, 2017) Решите неравенство $(\sqrt{\sin x} + \sqrt{\cos x})^7 > 1$.
- 9. (*«Pocamom»*, 2017) Решите уравнение $\cos(\arcsin(\sin x)) = \sin(\arccos(\cos 2x))$.
- 10. (*«Ломоносов»*, 2015) Найдите главный (наименьший положительный) период функции

$$y = (\arcsin(\sin(\arccos(\cos 3x))))^{-5}$$
.

11. (*«Ломоносов»*, 2016) Решите уравнение $\operatorname{arcctg}^2 x = 3 \operatorname{arctg}^2 x + \frac{\pi^2}{36}$.

12. («Ломоносов», 2020) Решите неравенство $\operatorname{tg} \operatorname{arccos} x \leqslant \sin \operatorname{arctg} x$.

13. («ОММО», 2017) Сравните числа
$$\frac{\sin 2016^{\circ}}{\sin 2017^{\circ}}$$
 и $\frac{\sin 2018^{\circ}}{\sin 2019^{\circ}}$.

14. («*OMMO*», 2016) Вычислите
$$2 \arctan 2 + \arcsin \frac{4}{5}$$
.

15. («*OMMO*», 2015) Для $x = \frac{\pi}{2n}$ найдите значение суммы

$$\cos^2(x) + \cos^2(2x) + \cos^2(3x) + \dots + \cos^2(nx).$$

- **16.** (« $\Pi B \Gamma$ », 2019) Решите неравенство $\arcsin(\sin|x|) \geqslant \arccos|\cos 2x|$.
- 17. («ПВГ», 2012) Найдите суммарную длину отрезков, составляющих решение неравенства

$$|2\sin x + 3\cos x| + |\sin x - 3\cos x| \leqslant 3\sin x.$$

на отрезке $[0; 4\pi]$.

18. (*«ПВГ»*, *2012*) Решите неравенство

$$\arccos(4x^2 - 8x + 3) + 2\arcsin(x - 1) < 0.$$

Hard

19. («OMMO», 2018) Изобразите (с обоснованием) на координатной плоскости Oxy множество решений неравенства

$$\left(y^2 - \arccos^2\left(\cos x\right)\right) \cdot \left(y^2 - \arccos^2\left(\cos\left(x + \pi/3\right)\right)\right) \cdot \left(y^2 - \arccos^2\left(\cos\left(x - \pi/3\right)\right)\right) < 0.$$

20. («ОММО», 2019) Найдите все значения, которые может принимать выражение

$$3 \arcsin x - 2 \arccos y$$

при условии $x^2 + y^2 = 1$.

21. (« $\Pi B \Gamma$ », 2019) При всех значениях $a \in \mathbb{R}$ решите неравенство

$$\arccos\left(\frac{1-x^2}{1+x^2}\right) + (x-a)^2 \leqslant 2 \arctan x.$$

- **22.** («ММО», 2014) Найдите все такие a и b, что $|a| + |b| \geqslant \frac{2}{\sqrt{3}}$ и при всех x выполнено неравенство $|a\sin x + b\sin 2x| \leqslant 1$.
- **23.** (*«САММАТ»*, *2016*) Решите систему

$$\begin{cases} \sqrt{2\arccos x - \arccos y} \cdot (|x| + |y| - 1) = 0, \\ \sqrt{2\arccos y - \arccos x} \cdot (|x + y| + |x - y| - 1) = 0. \end{cases}$$

Ответы

- **2.** $x \in \mathbb{R}$.
- 3. Первое больше.
- **4.** $\frac{3\pi}{4} + 6\pi k, \ k \in \mathbb{Z}.$
- **5.** Первое больше.
- **6.** $\left[-\frac{\pi}{4};0\right)\cup\left[\frac{\pi}{4};\frac{\pi}{2}\right)\cup\left(\pi;\frac{5\pi}{4}\right]\cup\left(\frac{3\pi}{2};\frac{7\pi}{4}\right].$
- 7. $\left(\frac{\pi}{12} + 2\pi k; \frac{\pi}{2} + 2\pi k\right] \cup \left[\pi + 2\pi k; \frac{17\pi}{12} + 2\pi k\right], k \in \mathbb{Z}.$
- **8.** $(2\pi k; \frac{\pi}{2} + 2\pi k)$, $k \in \mathbb{Z}$.
- **9.** $\pm \frac{\pi}{6} + \pi k$; $\frac{\pi}{2} + \pi k$, $k \in \mathbb{Z}$.
- 10. $\frac{\pi}{3}$.
- 11. $\frac{\sqrt{3}}{3}$.
- **12.** $\left[-\frac{1}{\sqrt[4]{2}}; 0 \right] \cup \left[\frac{1}{\sqrt[4]{2}}; 1 \right].$
- 13. Второе больше.
- **14.** π .
- 15. $\frac{n-1}{2}$.
- **16.** $\{\pm \pi k\} \cup \left[\frac{\pi}{3} + 2\pi k; \frac{2\pi}{3} + 2\pi k\right] \cup \left[-\frac{2\pi}{3} 2\pi k; -\frac{\pi}{3} 2\pi k\right], \ k \in \mathbb{N}_0.$
- 17. $2 \arctan \frac{9}{7}$.
- **18.** $\left[1 \frac{1}{\sqrt{2}}; 1 \frac{1}{\sqrt{3}}\right)$.
- **20.** $\left[-\frac{5\pi}{2}; \frac{\pi}{2}\right]$.
- **21.** При a < 0 решение нет, при $a \ge 0$ единственное решение x = a.
- **22.** $(a,b) = \left(\pm \frac{4}{3\sqrt{3}}; \pm \frac{2}{3\sqrt{3}}\right).$
- **23.** $\left(\pm\frac{1}{2};\pm\frac{1}{2}\right)$, (-1;0), (0;-1), (1;1), $\left(\frac{5-\sqrt{17}}{4};\frac{-1+\sqrt{17}}{4}\right)$.

Подсказки и решения

- 1. Рассмотрите тангенсы левой и правой частей. Будет ли такой переход равносильным? Решение.
- 2. Нарисуйте египетский треугольник: выразите синус угла, который лежит напротив катета длины
- 3. Затем выразите его косинус и тангенс. Решение (стр. 15, задача 1).
- **3.** Что можно сказать о монотонности функции $f(x) = \sin x + \cos x$ на отрезке $\left[\frac{\pi}{4}; \frac{\pi}{2}\right]$? Решение (стр. 1, задача 1).

- **4.** Оцените возможные значения левой и правой частей неравенства по отдельности, и задача станет устной. А здесь решение с помощью замены (стр. 6, задача 1).
- **5.** Произведение синуса на косинус можно преобразовать в сумму синусов. А для поиска корней уравнения припомните тождество $\arcsin x + \arccos x = \frac{\pi}{2}$.
- **6.** Исследуйте функцию $f(t) = t^{2018} + t^{-2019}$ на монотонность. Решение (стр. 4, задача 6.1).
- **7.** Сгруппируйте слагаемые в правой части да сверните синус двойного угла в левой. Решение (стр. 3, задача 4).
- 8. Изобразите графики функций $f(t) = \sqrt{t}$ и $g(t) = t^2$ да не забудьте про основное тригонометрическое тождество. Решение (стр. 7, задача 2).
- **9.** Используйте формулу приведения: $\sin \alpha = \cos \left(\frac{\pi}{2} \alpha \right)$. Решение (стр. 15, задача 2).
- **10.** Найдите D(y) область определения функции y, она позволит получить оценку на значение периода. Решение (стр. 1, задача 2).
- **11.** $\arctan x + \arctan x = \frac{\pi}{2}$. Решение (стр. 1, задача 2).
- **12.** Похожую задачку мы обсудили на занятии. Идея проста: $\operatorname{tg} \alpha = \frac{\sin \alpha}{\cos \alpha}$. Решение (стр. 2, задача 3).
- **13.** Либо поработайте с производной, либо приведите дроби к общему знаменателю и преобразуйте произведение синусов в разность косинусов. Решение.
- 14. Попробуйте изобразить прямоугольный треугольник с катетами 2 и 1, отразите его симметрично относительно гипотенузы, длина которой $\sqrt{5}$, опишите окружность около полученного дельтоида, и ответ станет очевидным. Естественно, есть и более стандартное решение и даже еще одно.
- **15.** Первое с последним, второе с предпоследним и так далее. Решение (стр. 3, задача 6).
- **16.** Да хоть графически! Ведь достаточно рассмотреть любой отрезок длины 2π . Решение (стр. 8, задача 3).
- **17.** $|a| + |b| = a + b \iff (a \geqslant 0 \text{ и } b \geqslant 0)$. Решение (стр. 4, задача 3).
- **18.** Для начала удобно сделать замену t = x 1. Решение (стр. 2, задача 2).
- 19. Эта задачка на закрепление: вместе сделали с арксинусами! Решение (стр. 9, задача 6).
- **20.** Начало очевидное: $x = \cos \alpha$, $y = \sin \alpha$. Далее нужно аккуратно рассмотреть все значения α на отрезке $[0; 2\pi]$. Решение (стр. 3, задача 6).
- **21.** Докажите формулу $\arccos\left(\frac{1-x^2}{1+x^2}\right)=2\arctan x$, взяв косинусы левой и правой частей. Решение (стр. 10, задача 3).
- **22.** Попробуйте использовать то, что в точке $x = \frac{\pi}{3}$ верно равенство $\sin x = \sin 2x$. Решение.
- **23.** Решите систему графически. Для того, чтобы изобразить множество точек, заданных уравнением |x+y|+|x-y|=1, раскройте модули, используйте метод областей. А в случае с $2\arccos x=\arccos y$ удобно взять косинусы левой и правой частей (будет ли это равносильным преобразованием?). Решение (стр. 2, задача 5).

Дополнительные материалы

- [1] И. В. Яковлев. Введение в аркфункции.
- [2] И. В. Яковлев. Обратные тригонометрические функции.
- [3] В. В. Ткачук. Математика абитуриенту (урок 7).
- [4] И. М. Гельфанд и др. Тригонометрия.