Norms and distances

A quick cheat sheet on norms, inner products and distances

Defining properties

Name	$\begin{array}{l} \text{Inner product} \\ <\mathbf{u},\mathbf{v}>:V\times V\to F \end{array}$	Norm $ \mathbf{u} :V o\mathbb{R}$	$egin{aligned} extstyle extstyle$
Positive definiteness, non-negativity, point separating	$<\mathbf{u},\mathbf{u}>\geq0$, with equality if and only if $\mathbf{u}=0$	$ \mathbf{u} \geq 0$, with equality if and only if $\mathbf{u} = 0$	$d(\mathbf{u},\mathbf{v})=0$ if and only if $\mathbf{u}=\mathbf{v}$
(Conjugate) symmetry	$<\mathbf{u},\mathbf{v}>=\overline{<\mathbf{v},\mathbf{u}>}$, which means $<\mathbf{u},\mathbf{u}>$ is real.		$d(\mathbf{u},\mathbf{v}) = d(\mathbf{v},\mathbf{u})$
Linearity or homogeneity	$< a\mathbf{u} + b\mathbf{v}, \mathbf{z} > = a < \mathbf{u}, \mathbf{z} > + b < \mathbf{v}, \mathbf{z} >$	$ x\mathbf{u} = x imes \mathbf{u} $	
Triangle inequality, subadditivity		$ \mathbf{u} + \mathbf{v} \leq \mathbf{u} + \mathbf{v} $	$d(\mathbf{u},\mathbf{w}) \leq d(\mathbf{u},\mathbf{v}) + d(\mathbf{v},\mathbf{w})$

- $\bullet \quad V \text{ is a vector space} \\$
- F is $\mathbb R$ or $\mathbb C$.
- Linearity in first arg could be linearity in second (and conj linearity in the other arg) for inner products.

From inner product to norm to distance to similarity

We can sometimes start from an inner product and derive the others, e. g.,

 $$ <\{\mathbf u\}, {\mathbf v}> \;\;\ \| {\mathbf u}\| = <\{\mathbf u\}, {\mathbf v}>^{1/2} \;\ \ \| \{\mathbf u\}\| = <\{\mathbf u\}, {\mathbf v}>^{1/2} \;\ \ \| \{\mathbf u\}\| = <\{\mathbf u\}, {\mathbf v}>^{1/2} \;\ \ \| \{\mathbf u\}\| = <\{\mathbf u\}, {\mathbf u}, {\mathbf u}\} = \| \{\mathbf u\}\| = <\{\mathbf u\}, {\mathbf u}\} = \| \{\mathbf u\}\| = <\{\mathbf u\}, {\mathbf u}\} = \| \{\mathbf u\}\| = <\{\mathbf u\}\| = <\{\mathbf$

The chain doesn't work in the other directions without extra conditions (and isn't necessarily unique).

A Table of common norms/inner products/distances

Show the common cases and their relationships

Name	Space	inner product	Norm	Distance	Similarity
L_p for $p\geq 1$	\mathbb{R}^n (vectors)		$(\sum_i x_i ^p)^{1/p}$	$(\sum_i x_i-y_i ^p)^{1/p}$	
L_2	\mathbb{R}^n (vectors)	$\sum_i x_i y_i$	$\left(\sum_i x_i ^2\right)^{1/2}$	$\left(\sum_i x_i-y_i ^2 ight)^{1/2}$	
L_0	\mathbb{R}^n (vectors)		$\sum_i I(x_i >0)$	$\sum_i I(x_i-y_i >0)$	
$L_{\infty} = \lim_{p o \infty} L_p$	\mathbb{R}^n (vectors)		$\max_i x_i $	$\max_i x_i - y_i $	
Cosine	\mathbb{R}^n (vectors)			$1-C(\mathbf{u},\mathbf{v})$	$egin{aligned} C(\mathbf{u},\mathbf{v}) &= rac{\mathbf{u}\cdot\mathbf{v}}{\ \mathbf{u}\ _2 imes \ \mathbf{v}\ _2} \ &= \ \mathbf{u}\ _2 \ \mathbf{v}\ _2 \cos{(heta)} \end{aligned}$
Frobenius	$\mathbb{R}^{n imes m}$ (matrices)	$\mathrm{trace}(A^TB) = \sum_{i,j} a_{ij} b_{ij}$	$\sqrt{\sum_{ij} a_{ij} ^2}=\sqrt{\sum_k\sigma_k^2}$	$\sqrt{\sum_{ij} a_{ij}-b_{ij} ^2}$	
L_p	$\mathbb{R}^{n imes m}$ (matrices)		L_p	A-B	
L_2	$\mathbb{R}^{n imes m}$ (matrices)		largest singular value, σ_1	A-B	
L_1	$\mathbb{R}^{n imes m}$ (matrices)		max abs. col. sum	A-B	
L_{∞}	$\mathbb{R}^{n imes m}$ (matrices)		max abs. row sum	A-B	
Entry-wise $ A _{p,q}$	$\mathbb{R}^{n imes m}$ (matrices)		$\left[\sum_{j}\left(\sum_{i} a_{ij} ^{p} ight)^{q/p} ight]^{1/q}$	A-B	
$ A _{max}$	$\mathbb{R}^{n imes m}$ (matrices)		$\max_{ij} a_{ij} $	A-B	
Kolmogorov- Smirnov	Probability distribution function			$\sup_x F(x) - G(x) $	
Jaccard	Sets			1-J(A,B)	$J(A,B)=rac{A\cap B}{A\cup B}$
Hamming	Strings length n			# of different symbols	
Levenshtein	Strings			# of edits	

Empty elements of the table indicate something that is either not possible to define, or at least not commonly used.

Many of these norms and distances have other synonymous names, e.g.,

- Manhattan or taxicab or ... = L_1
- Euclidean = L_2
- ullet The L_p norms (distances, ...) have equivalents for function spaces, involving integrals instead of sums
- Chebyshev or maximum = L_{∞}
- ullet Minkowski $=L_p$
- Levenshtein = Edit (although that is not unique)
- Total variation distance is related to ${\cal L}_1$
- Spectral norm (for matrices) $= L_2$
- ullet Entry-wise (when p=q) gives a vectorized version of L_p norm

Others

There are so, so many norms and distances. Here are a few more examples:

- Mahalanobis
- Schatten p-norms for matrices are different but may use same notation (but is L_p norm of singular values)
- Wasserstein distance or Kantorovich-Rubinstein metric
- · Hellinger distance
- · Cut norms (for matrices), Grothendieck norm
- Dual norm
- · Logarithmic norm
- Structural similarity (SSIM) for images, https://ece.uwaterloo.ca/~z70wang/research/ssim/

Non-metrics

It is common, particularly for "distances" that one or more properties of a formal metric are not valid. We can still use such things, but with a little more care (please).

- Jaro-Winkler (Strings)
- Kullback-Leibler

· Shannon-Jensen

They commonly are given names like pseudo-metrics or divergences. Some of these are derived from a starting point of a similarity metric, but that doesn't have the same mathematical niceties as a distance.

Pictures of contours of common vector norms

There are so many norms, particularly for matrices, but none (of the above) are very good at capturing perceptual differences.

From "Does spatial invariance result from insensitivity to change?", Kingdom, Field and Olmos, Journal of Vision (2007) 7(14):11, 1–13, http://redwood.psych.cornell.edu/papers/kingdom_field_olmos_2007.pdf

Some useful theorems

- · Cauchy-Schwarz inequality
- Hölder's inequality.

To do

Plot level curves (contours) of the L_p norms in 2D.

Links

- https://towardsdatascience.com/9-distance-measures-in-data-science-918109d069fa
- https://towardsdatascience.com/importance-of-distance-metrics-in-machine-learning-modelling-e51395ffe60d
- https://dsp.stackexchange.com/questions/188/what-distance-metric-can-i-use-for-comparing-images
- "Does spatial invariance result from insensitivity to change?", Kingdom, Field and Olmos, Journal of Vision (2007) 7(14):11, 1–13, http://redwood.psych.cornell.edu/papers/kingdom_field_olmos_2007.pdf