Learn efficient representation through semantically close samples being pulled together and non-similar samples being pushed apart.

Data Augmentation: Construct positive sample of an anchor, (x_i, x_i^+)

Unsupervised (a.k.a, self-supervised) Approach

Visual: Image Transformation

Language: Dropout Masks

Data Augmentation: Construct positive pairs by supervised data

Visual: ImageNet

Language: Sentiment Analysis

Large Batch Size:

Most contrastive learning models rely on in-batch negatives. A large batch contains diverse negative samples and help the model distinguish different

samples.

Training epochs

Linear evaluation (top-1) of ResNet-50 trained with different batch sizes and longer epochs

Image Source: Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." International conference on machine learning. PMLR, 2020.

• Hard Negative Mining: Identify task-specific hard negatives, (x_i, x_i^+, x_i^-)

Hard negative samples refers to the samples that close to the anchor in the embedding space but have different labels from the anchor.

Language: Natural Language Inference

Image source:Robinson, Joshua David, et al. "Contrastive Learning with Hard Negative Samples." *International Conference on Learning Representations*. 2020.

Image Source: Gao, Tianyu, Xingcheng Yao, and Danqi Chen. "SimCSE: Simple Contrastive Learning of Sentence Embeddings." arXiv preprint arXiv:2104.08821 (2021).

Two key properties to measure the quality of representation:

Alignment: Given a distribution of positive pairs ppos, alignment calculates expected distance between embeddings of the paired instances. **Positive** instances should stay **close**.

$$\ell_{\text{align}} \triangleq \mathbb{E}_{(x,x^+) \sim p_{\text{pos}}} ||f(x) - f(x^+)||^2.$$

Uniformity: Uniformity measures how well the embeddings are uniformly distributed. **Random** instances should **scatter** on the hypersphere.

$$\ell_{\text{uniform}} \triangleq \log \quad \underset{x,y}{\mathbb{E}} e^{-2\|f(x)-f(y)\|^2},$$

Mirror-BERT

Fast, Effective, and Self-Supervised: Transforming Masked Language Models into Universal Lexical and Sentence Encoders

Fangyu Liu, Ivan Vulić, Anna Korhonen, Nigel Collier Language Technology Lab, TAL, University of Cambridge {f1399, iv250, alk23, nhc30}cam.ac.uk

Assumptions

Assumption 1: randomly masking a tiny part of a text should not change much of its semantics (since human brains can usually reconstruct it based on context).

Econ[MASK]

Econ[MASK] Paul Krugman mainly works on trade models.

Assumptions

Assumption 2: In vectorised distributed text representations, erasing/changing a small set of elements of a vector should not change much of its semantics.

Method

Technique 1: random span masking (data augmentation on the input space)

 X_1 : Economist Paul Krugman mainly works on trade models.

 \bar{x}_1 : Econ [MASK] Paul Krugman mainly works on trade models.

Method

Technique 2: dropout (data augmentation on the feature space)

Method

Learning objective: InfoNCE

$$\mathcal{L}_b = -\sum_{i=1}^{|\mathcal{D}_b|} \log \frac{\exp(\cos(f(x_i), f(\overline{x}_i))/\tau)}{\sum\limits_{x_j \in \mathcal{N}_i} \exp(\cos(f(x_i), f(x_j))/\tau)}$$

sum of similarity of negative pairs

Main Results

Average performance on STS benchmarks

{Multi-text-granularity} x {Multi-domain} x {Multilingual}

Word:

Word similarity
Bilingual lexicon induction

Phrase:

Biomedical entity linking

Sentence:

Semantic textual similarity Question-answer entailment Generic

QA

Biomedical

Social media

Spanish Turkish

Arabic Russian

English French

Hebrew Italian

French Estonian

Chinese Polish

Other Types of Augmentations?

Randomly dropping Transformer heads (Zhou et al., 2020), instead or neurons

Future work:

- Other heuristic-based augmentations
- Virtual Adversarial Training (Miyato et al., 2018)

Ablation Studies

The synergistic effect between random masking and dropout

Ablation Studies

Learning from negatives alone is still beneficial

Interpretation

The anisotropy of BERT

"In all layers of BERT, ELMo, and GPT-2, the representations of all words are anisotropic: they occupy a narrow cone in the embedding space instead of being distributed throughout."

Interpretation

Learning new knowledge or exposing existing knowledge in BERT:

Interpretation

An experiment of 'zero-semantics' random string tuning

model	ρ
fastText	.434
BERT	.267
+ Mirror	.556
+ Mirror (random string, lr 5	-5).481

Not All Negatives are Equal: Label-Aware Contrastive Loss for Fine-grained Text Classification

Varsha Suresh

Dept. of Computer Science

National University of Singapore

varshasuresh@u.nus.edu

Desmond C. Ong
Dept. of Information Systems and Analytics

National University of Singapore, & Institute of High Performance Computing, A*STAR

dco@comp.nus.edu.sg

Fine Grained Text Classification

Examples of Fine-grained Classes

Pre-trained language models

- Pre-trained language models are the current de-facto for text classification.
- Fine-grained text classification using pre-trained language models
 - Multi-task training (Balikas et al.,2017)
 - Adding external knowledge such as emotion lexicons (Khanpour et al., 2018; Suresh et al., 2021)
 - Sentiment specific pre-training objectives (Yin et al., 2020; Tian et al., 2020)

Contrastive fine-tuning

Contrastive fine-tuning of pre-trained language models (Gunel et al., 2021)

Supervised Contrastive Loss
$$L_{SCL} = \sum_{i=1}^{2K} \frac{-1}{|\mathscr{P}|} \sum_{p \in \mathscr{P}} \log \frac{\exp(h_i \cdot h_p/\tau)}{\sum_{k \in \mathscr{S}/i} \exp(h_i \cdot h_k/\tau)}$$

 $L_{SCL} = \sum_{i=1}^{2K} \frac{-1}{|\mathcal{P}|} \sum_{p \in \mathcal{P}} \log \frac{\exp(h_i \cdot h_p/\tau)}{\sum_{k \in \mathcal{I}/i} \exp(h_i \cdot h_k/\tau)}$ Supervised Contrastive Loss

Label-aware Contrastive Loss (Ours)
$$\mathcal{L}_i = \sum_{p \in \mathcal{P}} \log \frac{w_{i,y_i} \cdot \exp(h_i \cdot h_p/\tau)}{\sum_{k \in \mathcal{I} \setminus i} w_{i,y_k} \cdot \exp(h_i \cdot h_k/\tau)}$$

Results

Fine-tuning	Fine-grained	Coarse-grained		
Strategy	SST - 5 [1]	SST - 2[1]		
	# of labels			
	5	2		
Cross Entropy	57.1	94.4		
Supervised Contrastive	57.4	94.3		
Label-aware Contrastive	58.5	94.5		

Task — Sentiment Classification

Contextual Encoder, Weighting Network: ELECTRA (Clark et al., 2019)

Results

Fine-tuning Strategy	Fine-grained		Coarse-grained	
	Empathetic Dialogues ^[1]	GoEmotions ^[2]	ISEAR ^[3]	EmoInt ^[4]
	# of labels			
	32	27	7	4
Cross Entropy	58.3	64.8	71.4	85.5
Supervised Contrastive	58.5	64.3	70.5	85.7
Label-aware Contrastive	60.1	65.5	72.4	86.6

Task -> Emotion Classification

Effect of number of classes

Fine-tuning Strategy		Number of	classes*	
	32	16	8	4
Cross Entropy	58.1	68.8	78.0	89.2
Supervised Contrastive	58.6	67.9	77.0	88.8
Label-aware Contrastive	60.1	69.6	78.7	88.8
,				77

4-easy subset : Anger, Fear, Sad, Happy

Hard label sets

Fine-tuning Strategy	Anticipating, Excited, Hopeful, Guilty	Angry, Ashamed, Furious, Guilty	Devastated, Nostalgic, Sad, Sentimental	Anxious, Apprehensive, Afraid, Terrified
Cross Entropy	67.4	54.3	63.2	56.1
Supervised Contrastive	68.1	53.3	63.7	55.4
Label-aware Contrastive	69.5	55.6	64.2	57.5

Model confidence comparison

Model confidence for the fine-grained classification.

$$\mathsf{Entropy}_k = -\sum_k s_k \cdot \log_2(s_k)$$

