

Actividad | #3 |

Servidor DHCP

Introducción a las Redes de Computadoras

Ingeniería en Desarrollo de Software

TUTOR: Marco Alonso Rodríguez Tapia

ALUMNO: Oscar Esteban Sánchez Leyva

FECHA: 17/Mayo/2025

ÍNDICE

ÍNDICE	2
INTRODUCCIÓN	3
DESCRIPCIÓN	4
JUSTIFICACIÓN	5
DESARROLLO	6
CREACIÓN DEL ESCENARIO (ETAPA 1)	6
PRUEBA DE LA RED (ETAPA 1)	7
CREACIÓN DEL ESCENARIO (ETAPA 2)	8
PRUEBA DE LA RED (ETAPA 2)	9
TABLA DE DIRECCIONES IP (ETAPA 2)	10
CONFIGURACIÓN DEL SERVIDOR DHCP	12
PRUEBA DE LA RED	14
TABLA DE DIRECCIONES IP	16
CONCLUSIÓN	19
REFERENCIAS	20

INTRODUCCIÓN

En el presente documento se hablará acerca de un servidor DHCP (Dynamic Host Configuration Protocol); es un servidor de red que automatiza la asignación de direcciones IP y otros parámetros de configuración de red a los dispositivos que se conectan a ella. En lugar de que cada dispositivo configure manualmente sus parámetros de red, el servidor DHCP se encarga de esta tarea, simplificando la administración de la red.

En detalle:

- Asignación dinámica de direcciones IP: El servidor DHCP tiene un conjunto de direcciones IP disponibles que puede asignar a los dispositivos que lo solicitan.
- Facilita la gestión de redes: Al automatizar la configuración de red, el servidor
 DHCP reduce el riesgo de conflictos de IP y facilita la gestión de grandes redes.
- Arrendamiento de direcciones: El servidor DHCP asigna una dirección IP a un dispositivo durante un período de tiempo determinado, llamado arrendamiento.
- Renovación del arrendamiento: Antes de que el arrendamiento expire, el dispositivo puede solicitar una renovación al servidor DHCP.

DESCRIPCIÓN

El servidor DHCP almacena la información de configuración en una base de datos que incluye lo siguiente: Parámetros de configuración de TCP/IP válidos para todos los clientes de la red. Direcciones IP válidas, mantenidas en un grupo para la asignación a clientes, así como direcciones excluidas.

Esto permite una gestión más eficiente de las direcciones IP, ya que el servidor se encarga de asignar una dirección IP única a cada dispositivo que se conecta, liberando la dirección cuando el dispositivo se desconecta.

Características:

- Asignación automática de direcciones IP: El servidor DHCP asigna direcciones
 IP de manera automática a los dispositivos, evitando la necesidad de configuración manual en cada dispositivo.
- Asignación dinámica: Las direcciones IP asignadas pueden ser temporales o dinámicas, lo que significa que el servidor puede reutilizarlas para otros dispositivos cuando el dispositivo original se desconecta.
- Gestión de otros parámetros de red: Además de la dirección IP, el servidor
 DHCP puede asignar otros parámetros de configuración de red, como la máscara de subred, la puerta de enlace predeterminada y los servidores DNS.
- Centralización de la configuración: El servidor DHCP centraliza la configuración de red, lo que facilita la gestión y administración de la red.
- Reducción de errores: La asignación automática de direcciones IP minimiza los errores de configuración manual y evita conflictos de direcciones IP.

JUSTIFICACIÓN

Algunos conceptos para la justificación del uso de un servidor DHCP son:

Facilidad de administración: La asignación dinámica de direcciones IP a través de DHCP reduce drásticamente la carga de trabajo del administrador de red. No es necesario configurar manualmente cada dispositivo que se conecta a la red, lo que ahorra tiempo y recursos.

Evita conflictos de direcciones IP: DHCP asigna direcciones IP de forma dinámica y gestionada, minimizando la posibilidad de que dos dispositivos tengan la misma dirección IP al mismo tiempo, lo que puede provocar errores de comunicación.

Facilita la movilidad de dispositivos: En entornos donde los dispositivos se mueven con frecuencia entre diferentes redes, DHCP permite que los dispositivos obtengan automáticamente las direcciones IP y configuraciones necesarias para conectarse a la nueva red.

Ahorro de tiempo: La automatización de la configuración de red permite a los administradores enfocarse en otras tareas más importantes, como la seguridad y el mantenimiento de la infraestructura de red.

Escalabilidad: En redes grandes, el uso de DHCP es esencial para gestionar de manera eficiente la asignación de direcciones IP y otros parámetros de configuración.

Mayor flexibilidad: DHCP permite definir configuraciones de red para diferentes grupos de usuarios o dispositivos, lo que facilita la adaptación a las necesidades de la organización.

Centralización: Un servidor DHCP centraliza la gestión de direcciones IP y parámetros de red, lo que facilita la monitorización y resolución de problemas.

DESARROLLO

CREACIÓN DEL ESCENARIO (ETAPA 1)

PRUEBA DE LA RED (ETAPA 1)

CREACIÓN DEL ESCENARIO (ETAPA 2)

PRUEBA DE LA RED (ETAPA 2)

TABLA DE DIRECCIONES IP (ETAPA 2)

CONFIGURACIÓN DEL SERVIDOR DHCP

Agregamos un switch; posteriormente, los dispositivos se conectarán al switch; luego lo conectamos a un servidor.

Una vez que entramos al servidor, nos dirigimos a la tercera columna, que es servicio, donde realizaremos la configuración correspondiente del DHCP con los datos que nos indica.

PRUEBA DE LA RED

Una vez configurados los equipos de cómputo, se realizan las siguientes pruebas: de Contaduría 8 a Contaduría 1, de Contaduría 4 a Contaduría 3, de Contaduría 7 a Contaduría 2, de Contaduría 5 a Contaduría 6.

TABLA DE DIRECCIONES IP

Solo falta anexar la IP al puerto; nos dirigimos a la segunda columna de configuración, nos dirigimos a FastEthernet0 y pondremos una IP estática.

Password

```
🧗 Contaduría 8
                                                                                                Х
 Physical
                  Desktop
                            Programming
                                        Attributes
          Config
 Command Prompt
  Cisco Packet Tracer PC Command Line 1.0
  C:\>ping 192.168.0.14
  Pinging 192.168.0.14 with 32 bytes of data:
  Reply from 192.168.0.14: bytes=32 time=3ms TTL=128
  Reply from 192.168.0.14: bytes=32 time=3ms TTL=128
  Reply from 192.168.0.14: bytes=32 time<1ms TTL=128
  Reply from 192.168.0.14: bytes=32 time=7ms TTL=128
  Ping statistics for 192.168.0.14:
      Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
  Approximate round trip times in milli-seconds:
      Minimum = 0ms, Maximum = 7ms, Average = 3ms
  C:\>ping 192.168.0.7
  Pinging 192.168.0.7 with 32 bytes of data:
  Reply from 192.168.0.7: bytes=32 time<1ms TTL=128
  Ping statistics for 192.168.0.7:
      Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
  Approximate round trip times in milli-seconds:
      Minimum = Oms, Maximum = Oms, Average = Oms
  C:\>
```

CONCLUSIÓN

En conclusión, un servidor DHCP es esencial para la administración eficiente de redes modernas, ya que automatiza la asignación de direcciones IP y otros parámetros de configuración, simplificando la gestión de la red y reduciendo la posibilidad de errores manuales.

Además, el DHCP facilita la adición y eliminación de dispositivos en la red sin necesidad de configuración manual, lo que lo convierte en una herramienta valiosa para redes de cualquier tamaño.

Otras conclusiones podrían ser:

- Administración centralizada: El DHCP permite centralizar la administración de las direcciones IP, lo que facilita la gestión de redes grandes y complejas.
- Flexibilidad: El DHCP permite mover dispositivos entre subredes sin necesidad de reconfiguraciones manuales, ya que las direcciones IP se asignan dinámicamente.
- Optimización de recursos: El DHCP permite reutilizar direcciones IP que ya no están en uso, optimizando el uso del espacio de direcciones.
- Facilita la adición de dispositivos: La automatización del DHCP permite agregar fácilmente nuevos dispositivos a la red sin necesidad de intervención manual.
- Funciona en redes pequeñas y grandes: El DHCP es una herramienta versátil
 que se adapta a las necesidades de redes de cualquier tamaño, desde pequeñas
 redes domésticas hasta grandes infraestructuras empresariales.

REFERENCIAS

ManageEngine, communications@manageengine.com. (s. f.). Servidor DHCP |
Supervisión de alcance DHCP - ManageEngine OpUtils. ManageEngine.

https://www.manageengine.com/latam/oputils/servidor-dhcp.html

¿ Qué es DHCP? ¿ Cómo funciona DHCP? ¿ Por qué es importante? / Fortinet. (s. f.). Fortinet. https://www.fortinet.com/lat/resources/cyberglossary/dynamic-host-configuration-protocol-dhcp

De Luz, S. (2024, 9 octubre). Qué es el DHCP, funcionamiento y ejemplos de configuración. *RedesZone*. https://www.redeszone.net/tutoriales/internet/que-es-protocolo-dhcp/

Juan. (2025, 18 febrero). *Protocolo de Configuración Dinámica de Host (DHCP): qué es, cómo funciona y por qué es esencial*. Cibersafety. https://cibersafety.com/protocolo-dhcp-que-es-ventajas/