Measure Theory: A Primer for Dummies

Mark

1 σ -algebras

A σ -algebra is a collection of subsets of Ω with nice properties:

- $\emptyset \in \sigma$
- if $A \in \sigma$ then $A^c \in \sigma$
- closed under countable unions

(an algebra requires the above but only under finitely many operations)

2 Measurable Space

A **measurable space** is a collection of **events**, β , and a sample space Ω (outcomes).

A sample space makes it possible to talk about complements of an event. still a bit unclear

3 Measure

A **measure** μ on a set $A \subseteq \Omega$ is a map from $A \to \mathbb{R}^+$.

*idea of a measure is to generalize the notion of volume or length

A **measure space** is a measure space is a measureable space + a measure, written (Ω, β, μ) . A **support** of a measure is all sets with nonzero measure.

a **measure with compact support** means the sets of nonzero measure form a compact set. (in \mathbb{R} this is closed and bounded, by Heine-Borel)

4 Lebesgue

The **Lebesgue Measure** $\mu_L(A)$ = volume or length of a set A. e.g., $\mu_L([0,1]) = 1$.

A huge result from measure theory is **Lebesgue's Dominated Convergence Theorem** For $f_n \to f$,

$$\int f \, dx = \lim \int f_n \, dx$$

which doesn't hold for the Riemann integral.

5 Inequalities

For $a_i, b_i \in \mathbb{C}$,

Cauchy-Schwarz

$$(\sum a_i b_i)^2 \le \sum a_i^2 \sum b_i^2$$

Holder's Inequality Generalized of Cauchy-Schwarz and used to prove Minkowski's inequality.

$$(\sum |a_i + b_i|^p)^{1/p} \le (\sum |a_i|^p)^{1/p} (\sum |b_i|^q)^{1/q} \qquad (\text{for } 1/q + 1/p = 1 \text{ and } 1 \le p.)$$

Minkowski's Inequality

$$(\sum |a_i + b_i|^p)^{1/p} \le (\sum |a_i|^p)^{1/p} (\sum |b_i|^q)^{1/q}$$

Resources

Frank Jones, "Lebesgue Integration on Euclidean space"

Analysis Facts

Cauchy in $\mathbb{R} \iff$ convergent. (in general convergent \implies cauchy, but not the other way!) **Complete** means every Cauchy sequence converges.

continue http://webbuild.knu.ac.kr/ trj/Analysis/Chandalia.pdf