Homework 03 Part I: Formal methods

Problem 1 (selected from ACST, Exercise 2.3.1. Total: 30 point)

Given a Kripke structure (W, I, J), The function J can be extended to work over arbitrary principal expressions via the following definition:

$$J(P \& Q) = J(P) \cup J(Q),$$

$$J(P \mid Q) = J(P) \circ J(Q).$$

Follow this definition to complete

- a) (10 point) part a. of Exercise 2.3.1.
- b) (10 point) *part d*. of Exercise 2.3.1.
- c) (10 point) part f. of Exercise 2.3.1.

The description for Exercise 2.3.1 is given below for your reference.

The description for exercise 2.3.1 is given below for your reference.

Exercise 2.3.1 Recall the Kripke structure $\langle W_0, I_0, J_0 \rangle$ from Example 2.7, and further suppose that

$$J_0(Ida) = \{(sw, sc), (sc, sw), (ns, sc), (ns, ns)\}.$$

Calculate the following relations:

- a. $J_0(Hal \& Gil)$
- b. $J_0(Gil \mid Hal)$
- c. J₀(Flo & Ida)
- $d. J_0(Hal \mid Ida)$
- e. J₀(Ida | Hal)
- $f. J_0(Hal \& (Ida \mid Hal))$
- g. $J_0(Hal \mid (Ida \& Hal))$

Problem 2 (selected from ACST, Exercise 2.3.3. Total: 40 point)

This question refers to the Kripke model given in ACST, Exercise 2.3.3.

- a) (10 point) Give a graphical representation of the given Kripke model **M**. That is:
 - i. Draw the directed graph which represents the relation *J.*
 - ii. Label each node with the corresponding name in W.
 - iii. For each proposition *p* in the set *PropVar*, put its name at each node where *p* is true in the world represented by the node.

Continue to complete the following parts of Exercise 2.3.3

- b) (10 point) part b of Exercise 2.3.3.
- c) (10 point) part d of Exercise 2.3.3.
- d) (10 point) part e of Exercise 2.3.3.

The description for Exercise 2.3.3 is given below for your reference.

Exercise 2.3.3 Let \mathcal{M} be the Kripke structure $\langle W, I, J \rangle$, where W, I, and J are defined as follows:

- $\bullet \ W = \{t, u, v, x, y, z\}$
- I: PropVar → 2^W given by:

$$I(p) = \{x, y, z\}$$

 $I(q) = \{x, y, t\}$
 $I(r) = \{y, t, u, z\}$

J: PName → 2^{W×W} given by:

$$J(A) = \{(w, w) \mid w \in W\} \cup \{(x, y), (x, z), (z, t), (y, v), (v, y), (v, x)\}$$

$$J(B) = \{(x, w) \mid w \in W\} \cup \{(y, t), (z, t), (t, v)\}.$$

Calculate each of the following sets.

a.
$$\mathcal{E}_{\mathcal{M}}[[(p\supset q)\supset r]]$$

b.
$$\mathcal{E}_{\mathcal{M}}[\![A \text{ says } (p \supset r)]\!]$$

c.
$$\mathcal{E}_{\mathcal{M}}[A \text{ says } (B \text{ says } q)]$$

$$d. \ \mathcal{E}_{\mathcal{M}}[\![B \operatorname{says}(B \operatorname{says}q)]\!]$$

$$e. \ \, \mathcal{E}_{\mathcal{M}}[\![A \; \mathit{controls} \; (B \; \mathit{says} \; q)]\!]$$

$$f. \ \mathcal{E}_{\mathcal{M}}[\![A \ controls \ (B \ controls \ q)]\!]$$

Problem 3 (Selected from ACST, Section 3.2. Total: 50 point)

- a. (15 point) *Give a formal proof* as required in Exercise 3.2.2. (10 point) *Draw a proof tree* with respect to the proof you gave.
- b. (15 point) *Give a formal proof* as required in Exercise 3.2.4. (10 point) *Draw a proof tree* with respect to the proof you gave.