

DISCIPLINA: Banco de Dados 1

Prof. **GIOVANI** Volnei Meinerz

Aula 07 – Modelo Relacional (cont.)

Objetivos da Aula

- Linguagens de Consulta Relacional
- → Restrições de Integridade
- Restrições Semânticas
- Dicionário de Dados
- > Redundância de Dados
- → Regras de *Codd*

Linguagens de Consulta Relacional

Permitem manipular informações em bancos de dados relacionais

- → Exemplos
 - → SQL
 - Álgebra Relacional

Linguagens de Consulta Relacional (cont.)

Linguagem de Consulta SQL

SQL (STRUCTURED QUERY LANGUAGE)

(Linguagem de Consulta Estruturada)

Linguagem de banco de dados relacionais, composta de comandos que permitem aos usuários

- (i) a criação de bancos de dados e estruturas de tabela,
- (ii) a manipulação dos dados para extrair informações, e(iii) a administração de dados

19/32

Banco de Dados 1 - Prof. Giovani

Linguagens de Consulta Relacional (cont.)

- Álgebra Relacional
 - Permite ao usuário instruir o sistema a realizar uma sequência de operações algébricas que operam sobre as tabelas do banco de dados para obter o resultado desejado

Restrições de Integridade

- → Conjunto de regras que garantem a consistência dos dados. Implementadas por meio do SGBD
- Restrições de Integridade Básicas
 - Integridade de Domínio
 - Integridade de Vazio
 - Integridade de Chave
 - Integridade Referencial
 - Integridade de Unicidade
 - Integridade de Entidade
- O programador (desenvolvedor de aplicações) não precisa implementá-las

Integridade de Domínio

- > Define os valores que podem ser assumidos pelos campos de uma coluna
- > Faz referência ao tipo do dado. Podem ser agrupados em três grandes grupos
 - → Strings
 - Dados numéricos
 - Dados relacionados com tempo e/ou datas

STRINGS								
Tipo de Dado	Descrição							
char(n) character(n)	String de caracteres de tamanho fixo, de 1 a 255. Tamanho n especificado pelo usuário.							
<pre>varchar(n) character varying(n)</pre>	String de caracteres de tamanho variável, de 1 a 2000 caracteres. Tamanho <i>n</i> máximo especificado pelo usuário							
clob	Character Large Objects, para especificar colunas que possuem grandes valores de texto. Ex. clob(20M)							
blob	Binary Large Objects, para especificar colunas que possuem grandes valores binários (imagens, áudio). Ex. blob(30G)							

DADOS NUMÉRICOS								
Tipo de Dado	Descrição							
int integer	Apenas valores inteiros Valor mínimo / máximo: -2147483648 / 2147483647							
smallint	Inteiro pequeno (subconjunto do tipo inteiro) Valor mínimo / máximo: -32768 / 32767							
numeric(p,d) decimal(p,d)	Número de ponto fixo com precisão especificada pelo usuário. Consiste em \boldsymbol{p} dígitos, e \boldsymbol{d} dos \boldsymbol{p} dígitos estão à direita da vírgula Ex.: numeric(3,1) - permite armazenar "44,5", mas não 444,5 e nem 0,32							
real double float	Número de ponto flutuante de várias precisões							

DADOS RELACIONADOS COM TEMPO E/OU DATAS									
Tipo de Dado	Descrição								
date	Data de calendário contendo ano, mês e dia <aaaa-mm-dd></aaaa-mm-dd>								
time	Hora do dia, em horas, minutos e segundos <hh:mm:ss></hh:mm:ss>								
datetime	Combinação de date e time <aaaa-mm-dd hh:mm:ss=""></aaaa-mm-dd>								

- Define os valores que podem ser assumidos pelos campos de uma coluna
- > Faz referência ao tipo do dado. Podem ser agrupados em três grandes grupos
 - → Strings
 - Dados numéricos
 - Dados relacionados com tempo e/ou datas

Table Name: livro										Schema: biblioteca
Column Name LIV_CODIGO LIV_TITULO LIV_PRECO LIV_ANO	Datatype INT(11) VARCHAR(45) DECIMAL(8,2) YEAR	PK ☑		UQ	B	UN	ZF	AI	G	Default/Expression
EDI_CODIGO	INT(11)		\checkmark							

Integridade de Vazio

→ Especifica se os campos de uma coluna podem ou não serem vazios

Table Name: livro		Schema: biblioteca
Column Name	Datatype	PK NN UQ B UN ZF AI G Default/Expression
LIV_CODIGO	INT(11)	
LIV_TITULO	VARCHAR(45)	
LIV_PRECO	DECIMAL(8,2)	
LIV_ANO	YEAR	NULL
EDI_CODIGO	INT(11)	

Integridade de Chave

Define que o valor da chave primária deve ser único

Table Name: livro										Schema: biblioteca
Column Name	Datatype INT(11)	PK	NN	UQ	В	UN	ZF	AI	G	Default/Expression
LIV_TITULO	VARCHAR(45)		~							
LIV_PRECO	DECIMAL(8,2)		~							
LIV_ANO	YEAR									NULL
EDI_CODIGO	INT(11)		~							

Integridade Referencial

Define que os valores dos campos que aparecem numa chave estrangeira devem aparecer na chave primária da tabela referenciada

Integridade Referencial (cont.)

 Define que os valores dos campos que aparecem numa chave estrangeira devem aparecer na chave primária da tabela referenciada

→ Integridade de Unicidade

Define que o valor do campo ou campos são únicos

Table Name:	livro										Schema:	biblioteca
Column Nam		Datatype INT(11)	PK	NN	UQ	В	UN	ZF	AI	G	Default,	Expression
LIV_TITU		VARCHAR(45)		$\overline{\mathbf{Z}}$	$\overline{\Box}$							
LIV_PREC	0	DECIMAL(8,2)		~								
LIV_ANO		YEAR									NULL	
EDI_COD	IGO	INT(11)		~								

→ Integridade de Entidade

Define que nenhum valor da chave primária pode ser nulo

Table Name: livro										Schema: b i	iblioteca
Column Name LIV CODIGO	Datatype INT(11)	PK	NN	UQ	В	UN	ZF	AI	G	Default/Ex	pression
LIV_TITULO	VARCHAR(45)		~	~							
LIV_PRECO	DECIMAL(8,2)		~								
LIV_ANO	YEAR									NULL	
EDI_CODIGO	INT(11)		~								

Restrições Semânticas

→ Além das Restrições de Integridade, há as Restrições Semânticas, cuja implementação pode ser necessária para também garantir a consistência dos dados

Precisam ser desenvolvidas pelos programadores

- Exemplos
 - → Um empregado do Setor de Finanças não pode ser Médico
 - > Um empregado não pode ter salário maior do que seus chefes

Dicionário de Dados

→ O que é?

Dados sobre dados

Um componente do SGBD que armazena metadados sobre a estrutura do banco de dados

Metadados comumente armazenados

→ Finalidade

- Auxiliar o DBA na sua função de monitoramento
 - → Ferramentas de monitoramento ajudam a garantir adequada segurança, desempenho e, principalmente, confiabilidade do BD

Garantir que todos os membros das equipes de projeto e de implementação utilizem os mesmos nomes e características de tabelas e atributos

- Características gerais
 - → Ao se criar um BD, o SGBD produz automaticamente uma estrutura para abrigar um dicionário de dados
 - As vezes descrito como "o banco de dados do projetista de banco de dados"

- SGBD relacional executa grande parte do trabalho "nos bastidores"
 - → A cada nova ação, o SGBD atualiza o dicionário de dados

- → Nome do BD
- Quantidade de tabelas
- Espaço ocupado em disco

- → Tabelas
 - Número de tuplas e colunas
 - Data de criação
 - Espaço ocupado em disco

- Atributos
 - Nomes
 - Tipos de dados
 - Restrições de integridade

- → Relacionamentos
 - Chaves estrangeiras

- Informações sobre índices
 - Tabela indexada
 - Atributo definido como índice

Usuários autorizados e privilégios de acesso

tp-bd - Schema	tp-bd ×	tp-bd.aluno						
Info Tables	Columns Indexes	Triggers Views	Stored Proced	ures Fun	ctions Gr	ants Eve	nts	
Host	User	Scope	Select	Insert	Update	Delete	Create	Drop
localhost	root	<global></global>	Υ	Υ	Y	Υ	Υ	Υ
127.0.0.1	root	<global></global>	Υ	Υ	Υ	Υ	Υ	Υ
::1	root	<global></global>	Y	Υ	Y	Υ	Υ	Υ
%	giovani	<global></global>	Y	Υ	Υ	Υ	Υ	Υ

Redundância de Dados

→ Ocorre quando os mesmos dados são armazenados de forma desnecessária em locais diferentes

→ É improvável que os dados armazenados em locais diferentes sejam sempre atualizados de modo consistente

Inconsistência de dados – quando versões diferentes e conflitantes dos mesmos dados aparecem em locais diferentes

Ex.: Coordenação de recursos humanos

SISTEMAS ISOLADOS Ex.: Diretoria de registros acadêmicos

- → Anomalias de dados quando nem todas as alterações/atualizações necessárias nos dados redundantes são realizadas com sucesso
 - Anomalias de atualização
 - Anomalias de inserção
 - Anomalias de exclusão

- → BD relacional permite controle das redundâncias
 - Utilizando atributos comuns compartilhados por tabelas, chamados chaves estrangeiras

- Projetistas de BD devem conciliar 3 exigências (geralmente contraditórias)
 - Elegância de projeto (bem projetado)
 - Yelocidade de processamento (melhor desempenho)
 - Exigências de informações (melhor disponibilidade)

→ Tipos de redundâncias de dados

Redundâncias controladas

Redundâncias não-controladas

→ Redundâncias controladas

- Costumam ser projetadas como parte do sistema para garantir
 - Velocidade de processamento (melhor desempenho)
 - Exigências de informações (melhor disponibilidade)

→ O software (SGBD) tem conhecimento da múltipla representação e garante a atualização dos dados duplicados automaticamente quando necessário

Redundâncias controladas (cont.)

> Redundâncias não controladas

- Podem ter sido projetadas
 - como parte do sistema para garantir melhor desempenho e disponibilidade; ou
 - → como consequência de etapas de modelagem de BD mal sucedidas
- É o usuário (caso a múltipla representação seja de seu conhecimento) que garante a atualização dos dados duplicados, por meio de:
 - Triggers
 - Stored procedures
 - Procedimentos em linguagem de programação

Redundâncias não controladas (cont.)

Redundâncias não controladas (cont.)

Redundâncias não controladas (cont.)

Regras de Codd

→ Em 1985, E. F. Codd publicou uma lista de 12 regras que definem um SGBDR

→ Motivo: evitar que muitos fornecedores comercializassem seus produtos como relacionais, embora não atendessem aos padrões mínimos

→ Obs.: Mesmo os fornecedores dominantes de SGBDR não dão suporte completo a todas as 12 regras

Regras de Codd (cont.)

REGRA	NOME	DESCRIÇÃO
1	Representação da Informação	Todas as informações de um banco de dados relacional devem ser representadas logicamente como valores de coluna em linhas dentro das tabelas.
2	Garantia de Acesso	Deve-se garantir que todos os valores de uma tabela possam ser logicamente acessados por meio de uma combinação de nome de tabela, valor de chave primária e nome de coluna.
3	Tratamento Sistemático de Valores Nulos	Requer que o SGBD suporte a representação de valores nulos (ou vazios) de modo sistemático, independente do tipo de dados.
4	Catálogo on- line dinâmico com base no modelo relacional	Os metadados devem ser armazenados e gerenciados como dados comuns, ou seja, em tabelas no interior do banco de dados. Esses dados devem estar disponíveis aos usuários autorizados, utilizando a linguagem relacional padrão do banco.
5	Sublinguagem ampla de dados	O banco de dados relacional pode suportar várias linguagens. No entanto, deve suportar uma linguagem declarativa bem definida com suporte para definição de dados, definição de visualização, manipulação de dados (interativa e por programa), restrições de integridade, autorização e gerenciamento de transações (iniciar, comprometer e desfazer).
6	Atualização de Visualização	Qualquer visualização que possa ser atualizada deve ser por meio do sistema.

Regras de Codd (cont.)

REGRA	NOME	DESCRIÇÃO
7	Inserção, atualização e exclusão de alto nível	O banco de dados deve dar suporte à configuração do nível de inserções, atualizações e exclusões para qualquer conjunto de dados recuperável.
8	Independência física de dados	Aplicativos e recursos ad hoc não são afetados logicamente quando os métodos de acesso ou as estruturas de armazenamento físico são alterados.
9	Independência lógica de dados	Aplicativos e recursos ad hoc não são afetados logicamente quando de alterações de estruturas de tabela que preservem os valores originais da tabela (alteração da ordem ou inserção de colunas).
10	Independência de Integridade	Deve ser possível que todas as restrições de integridade relacional sejam definidas na linguagem relacional e armazenadas no catálogo de sistema, e não no nível da aplicação.
11	Independência de Distribuição	Os usuários finais e aplicativos não conhecem nem são afetados pela localização dos dados (distribuída versus bancos de dados locais).
12	Não transposição das regras	Se o sistema dá suporte a acesso de baixo nível aos dados, não deve haver um modo de negligenciar as regras de integridade do banco de dados.
	Regra zero	Um SGBD Relacional deve gerenciar os dados armazenados usando somente (exclusivamente) os seus recursos relacionais. Este é o princípio fundamental no qual todas as regras precedentes estão baseadas.

Resumo da Aula

DISCIPLINA: Banco de Dados 1

Prof. **GIOVANI** Volnei Meinerz

Aula 07 – Modelo Relacional (cont.)