SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF MATHEMATICS

MA215 Probability Theory

Homework 7

Hand in: No later than 4pm of Wednesday 11th November 2020.

1. Suppose that the continuous random variable X has p.d.f

$$f_X(x) = \begin{cases} kx(1-x) & 0 < x < 1, \\ 0 & \text{otherwise.} \end{cases}$$

Evaluate the constant k.

Find the non-zero range of Y and the p.d.f $f_Y(y)$ of Y when

- (a) Y = -3X + 3;
- (b) $Y = \frac{1}{X}$.

2. Suppose that the random variable X has (cumulative) distribution function

$$F_X(x) = \begin{cases} 0 & x < 0, \\ \frac{1 - \cos(x)}{2} & 0 \le x \le \pi, \\ 1 & x > \pi. \end{cases}$$

and that $Y = \sqrt{X}$.

What is the non-zero range of Y? Find the (cumulative) distribution function $F_Y(y)$ of Y, and hence find the p.d.f of Y.

- 3. Suppose that the two random variables X and Y have joint probability (cumulative) distribution function F(x, y). Show that F(x, y) possesses the following properties:
 - (i) For any fixed x, F(x,y) in a non-decreasing function of y and, similarly, for any fixed y, F(x,y) in a non-decreasing function of x.
 - (ii) $F(x,y) \to 1$ when both $x \to +\infty$ and $y \to +\infty$.
 - (iii) $F(x,y) \to 0$ when either $x \to -\infty$ or $y \to -\infty$.
 - (iv) If $x_1 < x_2$ and $y_1 < y_2$, then

$$Pr(x_1 < X \le x_2, y_1 < Y \le y_2) = F(x_2, y_2) - F(x_2, y_1) - F(x_1, y_2) + F(x_1, y_1).$$

4. Suppose that the two discrete random variables X and Y have joint probability mass function given by

X	Y = 1	Y = 2	Y = 3	Y=4
X = 1	2/32	3/32	4/32	5/32
X=2	3/32	4/32	5/32	6/32

Obtain the marginal probability mass function (p.m.f.) of X.