

DEX-0549

BC

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 : C12N 15/12, C07K 14/47, 16/18, G01N 33/566, C12Q 1/68, C12N 15/11, 15/62, A01K 67/027, A61K 38/00		A2	(11) International Publication Number: WO 00/58473 (43) International Publication Date: 5 October 2000 (05.10.00)
(21) International Application Number: PCT/US00/08621 (22) International Filing Date: 31 March 2000 (31.03.00)		(72) Inventors; and (75) Inventors/Applicants (for US only): SHIMKETS, Richard, A. [US/US]; 191 Leete Street, West Haven, CT 06516 (US). LEACH, Martin [GB/US]; 884 School Street, Webster, MA 01570 (US).	
(30) Priority Data: 60/127,607 31 March 1999 (31.03.99) US 60/127,636 2 April 1999 (02.04.99) US 60/127,728 5 April 1999 (05.04.99) US 09/540,763 30 March 2000 (30.03.00) US		(74) Agent: ELRIFI, Ivor, R.; Mintz, Levin, Cohn, Ferris, Glovsky and Popeo, P.C., One Financial Center, Boston, MA 02111 (US).	
(63) Related by Continuation (CON) or Continuation-in-Part (CIP) to Earlier Applications US 60/127,607 (CIP) Filed on 31 March 1999 (31.03.99) US 60/127,636 (CIP) Filed on 2 April 1999 (02.04.99) US 60/127,728 (CIP) Filed on 5 April 1999 (05.04.99) US 09/540,763 (CIP) Filed on 30 March 2000 (30.03.00)		(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).	
(71) Applicant (for all designated States except US): CURAGEN CORPORATION [US/US]; 555 Long Wharf Drive, 11th Floor, New Haven, CT 06511 (US).		Published <i>Without international search report and to be republished upon receipt of that report.</i>	
(54) Title: NUCLEIC ACIDS INCLUDING OPEN READING FRAMES ENCODING POLYPEPTIDES; "ORFX"			
(57) Abstract The present invention provides open reading frames ORFX, encoding isolated polypeptides, as well as polynucleotides encoding ORFX and antibodies that immunospecifically bind to ORFX or any derivative, variant, mutant, or fragment of the ORFX polypeptides, polynucleotides or antibodies. The invention additionally provides methods in which the ORFX polypeptide, polynucleotide and antibody are used in detection and treatment of a broad range of pathological states, as well as to other uses.			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

NOVEL POLYNUCLEOTIDES AND POLYPEPTIDES ENCODED THEREBY

5

BACKGROUND OF THE INVENTION

The invention relates generally to nucleic acids and polypeptides encoded thereby, and methods of using these nucleic acids and polypeptides.

10

SUMMARY OF THE INVENTION

The invention is based in part on the discovery of nucleic acids that include open reading frames encoding novel polypeptides, and on the polypeptides encoded thereby. The nucleic acids and polypeptides are collectively referred to herein as "ORFX".

Accordingly, in one aspect, the invention provides an isolated nucleic acid molecule
15 (SEQ ID NO:2n-1, wherein n is an integer between 1-3161), that encodes novel polypeptide, or a fragment, homolog, analog or derivative thereof. The nucleic acid can include, e.g., a nucleic acid sequence encoding a polypeptide at least 85% identical to a polypeptide comprising the amino acid sequences of SEQ ID NO:2n, wherein n is an integer between 1-3161. The nucleic acid can be, e.g., a genomic DNA fragment, or a cDNA molecule.

20 Also included in the invention is a vector containing one or more of the nucleic acids described herein, and a cell containing the vectors or nucleic acids described herein.

The invention is also directed to host cells transformed with a recombinant expression vector comprising any of the nucleic acid molecules described above.

25 In another aspect, the invention includes a pharmaceutical composition that includes an ORFX nucleic acid and a pharmaceutically acceptable carrier or diluent.

In a further aspect, the invention includes a substantially purified ORF polypeptide, *e.g.*, any of the ORFX polypeptides encoded by an ORFX nucleic acid, and fragments, homologs, analogs, and derivatives thereof. The invention also includes a pharmaceutical composition that includes a ORFX polypeptide and a pharmaceutically acceptable carrier or diluent.

- 5 In a still a further aspect, the invention provides an antibody that binds specifically to an ORFX polypeptide. The antibody can be, *e.g.*, a monoclonal or polyclonal antibody, and fragments, homologs, analogs, and derivatives thereof. The invention also includes a pharmaceutical composition including ORFX antibody and a pharmaceutically acceptable carrier or diluent. The invention is also directed to isolated antibodies that bind to an epitope on a
- 10 polypeptide encoded by any of the nucleic acid molecules described above.

The invention also includes kits comprising any of the pharmaceutical compositions described above.

The invention further provides a method for producing an ORFX polypeptide by providing a cell containing a ORFX nucleic acid, *e.g.*, a vector that includes a ORFX nucleic acid, and culturing the cell under conditions sufficient to express the ORFX polypeptide encoded by the nucleic acid. The expressed ORFX polypeptide is then recovered from the cell. Preferably, the cell produces little or no endogenous ORFX polypeptide. The cell can be, *e.g.*, a prokaryotic cell or eukaryotic cell.

20 The invention is also directed to methods of identifying an ORFX polypeptide or nucleic acids in a sample by contacting the sample with a compound that specifically binds to the polypeptide or nucleic acid, and detecting complex formation, if present.

The invention further provides methods of identifying a compound that modulates the activity of a ORFX polypeptide by contacting ORFX polypeptide with a compound and determining whether the ORFX polypeptide activity is modified.

25 The invention is also directed to compounds that modulate ORFX polypeptide activity identified by contacting a ORFX polypeptide with the compound and determining whether the compound modifies activity of the ORFX polypeptide, binds to the ORFX polypeptide, or binds to a nucleic acid molecule encoding a ORFX polypeptide.

30 In a another aspect, the invention provides a method of determining the presence of or predisposition of an ORFX-associated disorder in a subject. The method includes providing a sample from the subject and measuring the amount of ORFX polypeptide in the subject sample.

The amount of ORFX polypeptide in the subject sample is then compared to the amount of ORFX polypeptide in a control sample. An alteration in the amount of ORFX polypeptide in the subject protein sample relative to the amount of ORFX polypeptide in the control protein sample indicates the subject has a tissue proliferation-associated condition. A control sample is
5 preferably taken from a matched individual, *i.e.*, an individual of similar age, sex, or other general condition but who is not suspected of having a tissue proliferation-associated condition. Alternatively, the control sample may be taken from the subject at a time when the subject is not suspected of having a tissue proliferation-associated disorder. In some embodiments, the ORFX is detected using a ORFX antibody.

10 In a further aspect, the invention provides a method of determining the presence of or predisposition of an ORFX-associated disorder in a subject. The method includes providing a nucleic acid sample, *e.g.*, RNA or DNA, or both, from the subject and measuring the amount of the ORFX nucleic acid in the subject nucleic acid sample. The amount of ORFX nucleic acid in a sample in the subject nucleic acid is then compared to the amount of an ORFX nucleic acid in a
15 control sample. An alteration in the amount of ORFX nucleic acid in the sample relative to the amount of ORFX in the control sample indicates the subject has a tissue proliferation-associated disorder.

20 In a still further aspect, the invention provides method of treating or preventing or delaying a ORFX-associated disorder. The method includes administering to a subject in which such treatment or prevention or delay is desired a ORFX nucleic acid, a ORFX polypeptide, or an ORFX antibody in an amount sufficient to treat, prevent, or delay a tissue proliferation-associated disorder in the subject.

25 Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In the case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and
30 examples are illustrative only and not intended to be limiting.

Other features and advantages of the invention will be apparent from the following detailed description and claims.

DETAILED DESCRIPTION OF THE INVENTION

The invention provides novel polypeptides and nucleotides encoded thereby. The 5 polynucleotides and their encoded polypeptides can be grouped according to the functions played by their gene products. Such functions include, structural proteins, proteins from which associated with metabolic pathways fatty acid metabolism, glycolysis, intermediary metabolism, calcium metabolism, proteases, and amino acid metabolism, etc.

Included in the invention are 3161 novel nucleic acid sequences and their encoded 10 polypeptides. The sequences are collectively referred to as "ORFX nucleic acids" or ORFX polynucleotides" and the corresponding encoded polypeptide is referred to as a "ORFX polypeptide" or ORFX protein". For example, an ORFX nucleic acid according to the invention is a nucleic acid including an ORF1 nucleic acid, and an ORF polypeptide according to the invention is a polypeptide that includes the amino acid sequence of an ORF1 polypeptide. 15 Unless indicated otherwise, "ORFX" is meant to refer to any of the ORF1-3161 sequences disclosed herein.

Table 1 provides a summary of the ORFX nucleic acids and their encoded polypeptides are summarized in Table 1. Nucleic acid sequences and polypeptide sequences for ORFX nucleic acids according to the invention is provided in the section of the specification entitled 20 "Disclosed Sequences of ORFX Nucleic Acid and Polypeptide Sequences."

Column 1 of Table 1, entitled "ORF #", denotes an ORF number assigned to a nucleic acid containing an open reading frame according to the invention.

Column 2 of Table 1, entitled "Internal Identification number (Nucleic Acid Sequence Identification Number, Polypeptide Sequence Identification Number), provides an internal 25 identification number for the indicated ORF, along with sequence identification numbers (SEQ ID NOs.) corresponding to the indicated ORF. In general, for an ORFn according to the invention (wherein n is any integer from 1 to 3161), a nucleic acid corresponding to the ORF is SEQ ID NO:2n-1, and an amino acid sequence encoded by the ORF is SEQ ID NO:2n. For example, a nucleic acid sequence corresponding to an ORF1 nucleic acid is SEQ ID NO:1, and a 30 polypeptide sequence corresponding to an ORF1 polypeptide is SEQ ID NO:2. Similarly, a

nucleic acid sequence corresponding to an ORF4 nucleic acid is SEQ ID NO:7, and a polypeptide sequence corresponding to an ORF4 polypeptide is SEQ ID NO:8; a nucleic acid sequence corresponding to an ORF198 nucleic acid sequence is SEQ ID NO:395, and a polypeptide sequence corresponding to an ORF198 polypeptide is SEQ ID NO:396. Nucleic acid sequences and polypeptide sequences for ORFX nucleic acids according to the invention are provided in the section of the specification entitled "Disclosed Sequences of ORFX Nucleic Acid and Polypeptide Sequences."

5 Column 2 of Table 1, entitled "Protein Similarity", lists previously described proteins that are related to polypeptides encoded by the ORFs. Genbank identifiers for the previously 10 described proteins are provided. These can be retrieved from <http://www.ncbi.nlm.nih.gov/>.

To determine similarity to previously described proteins, polypeptides encoded by ORFX DNA sequences were tested using the FrameSearch Algorithm against a nonredundant version of the GenPept Database from NCBI/Genbank. DNA sequences that had a score of '90' or above (FrameSearch algorithm score, Edelman et. al. GCG Genetics) to a known protein were selected. 15 Open reading frames were extended beyond the region of the protein matched using standard DNA translation and codon tables. Novel proteins that lacked a protein match were translated against the standard genetic codons and proteins with an ORF at least 80 amino acids and containing a Methionine start are included in the Table.

Column 3 of Table 3, entitled "Protein Domains", lists previously described protein 20 domains, designated by pfam entries, that are present in polypeptides encoded by the ORFs. Also included in column 3 are proteins in which these domains are present. The pfam entries can be retrieved from <http://pfam.wustl.edu/>. DNA sequences were translated in all six frames and tested using the Hmmer Algorithm against the Pfam Database (References to the algorithm and Pfam database can be found at <http://pfam.wustl.edu>). Translated DNA sequences that 25 matched a protein domain entry in the Pfam database AND had a score of 7.5' were selected.

Column 4 of Table 3, entitled "Protein Classification", lists the type of classification assigned for the protein, based on its homology. Examples of proteins in the classification include the following proteins:

phycoerythrin; an example of a luminescent material includes luminol; examples of bioluminescent materials include luciferase, luciferin, and aequorin, and examples of suitable radioactive material include ^{125}I , ^{131}I , ^{35}S or ^3H .

ORFX Recombinant Vectors and Host Cells

5 Another aspect of the invention pertains to vectors, preferably expression vectors, containing a nucleic acid encoding ORFX protein, or derivatives, fragments, analogs or homologs thereof. As used herein, the term "vector" refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a "plasmid", which refers to a circular double stranded DNA loop into which additional DNA segments can
10 be ligated. Another type of vector is a viral vector, wherein additional DNA segments can be ligated into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are
15 replicated along with the host genome. Moreover, certain vectors are capable of directing the expression of genes to which they are operatively linked. Such vectors are referred to herein as "expression vectors". In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids. In the present specification, "plasmid" and "vector" can be used interchangeably as the plasmid is the most commonly used form of vector. However, the
20 invention is intended to include such other forms of expression vectors, such as viral vectors (e.g., replication defective retroviruses, adenoviruses and adeno-associated viruses), which serve equivalent functions.

The recombinant expression vectors of the invention comprise a nucleic acid of the invention in a form suitable for expression of the nucleic acid in a host cell, which means that the
25 recombinant expression vectors include one or more regulatory sequences, selected on the basis of the host cells to be used for expression, that is operatively linked to the nucleic acid sequence to be expressed. Within a recombinant expression vector, "operably linked" is intended to mean that the nucleotide sequence of interest is linked to the regulatory sequence(s) in a manner that allows for expression of the nucleotide sequence (e.g., in an *in vitro* transcription/translation
30 system or in a host cell when the vector is introduced into the host cell). The term "regulatory sequence" is intended to include promoters, enhancers and other expression control elements

(e.g., polyadenylation signals). Such regulatory sequences are described, for example, in Goeddel; GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990). Regulatory sequences include those that direct constitutive expression of a nucleotide sequence in many types of host cell and those that direct expression of the 5 nucleotide sequence only in certain host cells (e.g., tissue-specific regulatory sequences). It will be appreciated by those skilled in the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, etc. The expression vectors of the invention can be introduced into host cells to thereby produce proteins or peptides, including fusion proteins or peptides, encoded by nucleic acids as 10 described herein (e.g., ORFX proteins, mutant forms of ORFX, fusion proteins, etc.).

The recombinant expression vectors of the invention can be designed for expression of ORFX in prokaryotic or eukaryotic cells. For example, ORFX can be expressed in bacterial cells such as *E. coli*, insect cells (using baculovirus expression vectors) yeast cells or mammalian cells. Suitable host cells are discussed further in Goeddel, GENE EXPRESSION TECHNOLOGY: 15 METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990). Alternatively, the recombinant expression vector can be transcribed and translated *in vitro*, for example using T7 promoter regulatory sequences and T7 polymerase.

Expression of proteins in prokaryotes is most often carried out in *E. coli* with vectors containing constitutive or inducible promoters directing the expression of either fusion or 20 non-fusion proteins. Fusion vectors add a number of amino acids to a protein encoded therein, usually to the amino terminus of the recombinant protein. Such fusion vectors typically serve three purposes: (1) to increase expression of recombinant protein; (2) to increase the solubility of the recombinant protein; and (3) to aid in the purification of the recombinant protein by acting as 25 a ligand in affinity purification. Often, in fusion expression vectors, a proteolytic cleavage site is introduced at the junction of the fusion moiety and the recombinant protein to enable separation of the recombinant protein from the fusion moiety subsequent to purification of the fusion protein. Such enzymes, and their cognate recognition sequences, include Factor Xa, thrombin and enterokinase. Typical fusion expression vectors include pGEX (Pharmacia Biotech Inc; Smith and Johnson (1988) *Gene* 67:31-40), pMAL (New England Biolabs, Beverly, Mass.) and 30 pRITS (Pharmacia, Piscataway, N.J.) that fuse glutathione S-transferase (GST), maltose E binding protein, or protein A, respectively, to the target recombinant protein.

Examples of suitable inducible non-fusion *E. coli* expression vectors include pTrc (Amrann *et al.*, (1988) *Gene* 69:301-315) and pET 11d (Studier *et al.*, GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990) 60-89).

5 One strategy to maximize recombinant protein expression in *E. coli* is to express the protein in a host bacteria with an impaired capacity to proteolytically cleave the recombinant protein. See, Gottesman, GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990) 119-128. Another strategy is to alter the nucleic acid sequence of the nucleic acid to be inserted into an expression vector so that the individual codons 10 for each amino acid are those preferentially utilized in *E. coli* (Wada *et al.*, (1992) *Nucleic Acids Res.* 20:2111-2118). Such alteration of nucleic acid sequences of the invention can be carried out by standard DNA synthesis techniques.

In another embodiment, the ORFX expression vector is a yeast expression vector. Examples of vectors for expression in yeast *S. cerevisiae* include pYEpSec1 (Baldari, *et al.*, 15 (1987) *EMBO J* 6:229-234), pMFa (Kurjan and Herskowitz, (1982) *Cell* 30:933-943), pJRY88 (Schultz *et al.*, (1987) *Gene* 54:113-123), pYES2 (Invitrogen Corporation, San Diego, Calif.), and picZ (InVitrogen Corp, San Diego, Calif.).

20 Alternatively, ORFX can be expressed in insect cells using baculovirus expression vectors. Baculovirus vectors available for expression of proteins in cultured insect cells (*e.g.*, SF9 cells) include the pAc series (Smith *et al.* (1983) *Mol Cell Biol* 3:2156-2165) and the pVL series (Lucklow and Summers (1989) *Virology* 170:31-39).

25 In yet another embodiment, a nucleic acid of the invention is expressed in mammalian cells using a mammalian expression vector. Examples of mammalian expression vectors include pCDM8 (Seed (1987) *Nature* 329:840) and pMT2PC (Kaufman *et al.* (1987) *EMBO J* 6: 187-195). When used in mammalian cells, the expression vector's control functions are often provided by viral regulatory elements. For example, commonly used promoters are derived from polyoma, Adenovirus 2, cytomegalovirus and Simian Virus 40. For other suitable expression systems for both prokaryotic and eukaryotic cells. See, *e.g.*, Chapters 16 and 17 of Sambrook *et al.*, MOLECULAR CLONING: A LABORATORY MANUAL. 2nd ed., Cold Spring Harbor Laboratory, 30 Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989.

In another embodiment, the recombinant mammalian expression vector is capable of directing expression of the nucleic acid preferentially in a particular cell type (e.g., tissue-specific regulatory elements are used to express the nucleic acid). Tissue-specific regulatory elements are known in the art. Non-limiting examples of suitable tissue-specific promoters include the albumin promoter (liver-specific; Pinkert *et al.* (1987) *Genes Dev* 1:268-277), lymphoid-specific promoters (Calame and Eaton (1988) *Adv Immunol* 43:235-275), in particular promoters of T cell receptors (Winoto and Baltimore (1989) *EMBO J* 8:729-733) and immunoglobulins (Banerji *et al.* (1983) *Cell* 33:729-740; Queen and Baltimore (1983) *Cell* 33:741-748), neuron-specific promoters (e.g., the neurofilament promoter; Byrne and Ruddle (1989) *PNAS* 86:5473-5477), pancreas-specific promoters (Edlund *et al.* (1985) *Science* 230:912-916), and mammary gland-specific promoters (e.g., milk whey promoter; U.S. Pat. No. 4,873,316 and European Application Publication No. 264,166). Developmentally-regulated promoters are also encompassed, e.g., the murine hox promoters (Kessel and Gruss (1990) *Science* 249:374-379) and the α -fetoprotein promoter (Campes and Tilghman (1989) *Genes Dev* 3:537-546).

The invention further provides a recombinant expression vector comprising a DNA molecule of the invention cloned into the expression vector in an antisense orientation. That is, the DNA molecule is operatively linked to a regulatory sequence in a manner that allows for expression (by transcription of the DNA molecule) of an RNA molecule that is antisense to ORFX mRNA. Regulatory sequences operatively linked to a nucleic acid cloned in the antisense orientation can be chosen that direct the continuous expression of the antisense RNA molecule in a variety of cell types, for instance viral promoters and/or enhancers, or regulatory sequences can be chosen that direct constitutive, tissue specific or cell type specific expression of antisense RNA. The antisense expression vector can be in the form of a recombinant plasmid, phagemid or attenuated virus in which antisense nucleic acids are produced under the control of a high efficiency regulatory region, the activity of which can be determined by the cell type into which the vector is introduced. For a discussion of the regulation of gene expression using antisense genes see Weintraub *et al.*, "Antisense RNA as a molecular tool for genetic analysis," *Reviews--Trends in Genetics*, Vol. 1(1) 1986.

Another aspect of the invention pertains to host cells into which a recombinant expression vector of the invention has been introduced. The terms "host cell" and "recombinant

host cell" are used interchangeably herein. It is understood that such terms refer not only to the particular subject cell but to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included
5 within the scope of the term as used herein.

A host cell can be any prokaryotic or eukaryotic cell. For example, ORFX protein can be expressed in bacterial cells such as *E. coli*, insect cells, yeast or mammalian cells (such as Chinese hamster ovary cells (CHO) or COS cells). Other suitable host cells are known to those skilled in the art.

10 Vector DNA can be introduced into prokaryotic or eukaryotic cells via conventional transformation or transfection techniques. As used herein, the terms "transformation" and "transfection" are intended to refer to a variety of art-recognized techniques for introducing foreign nucleic acid (e.g., DNA) into a host cell, including calcium phosphate or calcium chloride co-precipitation, DEAE-dextran-mediated transfection, lipofection, or electroporation.
15 Suitable methods for transforming or transfecting host cells can be found in Sambrook, *et al.* (MOLECULAR CLONING: A LABORATORY MANUAL. 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989), and other laboratory manuals.

20 For stable transfection of mammalian cells, it is known that, depending upon the expression vector and transfection technique used, only a small fraction of cells may integrate the foreign DNA into their genome. In order to identify and select these integrants, a gene that encodes a selectable marker (e.g., resistance to antibiotics) is generally introduced into the host cells along with the gene of interest. Various selectable markers include those that confer resistance to drugs, such as G418, hygromycin and methotrexate. Nucleic acid encoding a
25 selectable marker can be introduced into a host cell on the same vector as that encoding ORFX or can be introduced on a separate vector. Cells stably transfected with the introduced nucleic acid can be identified by drug selection (e.g., cells that have incorporated the selectable marker gene will survive, while the other cells die).

30 A host cell of the invention, such as a prokaryotic or eukaryotic host cell in culture, can be used to produce (*i.e.*, express) ORFX protein. Accordingly, the invention further provides methods for producing ORFX protein using the host cells of the invention. In one embodiment,

acid expression or activity. For example, mutations in a ORFX gene can be assayed in a biological sample. Such assays can be used for prognostic or predictive purpose to thereby prophylactically treat an individual prior to the onset of a disorder characterized by or associated with ORFX protein, nucleic acid expression or activity.

5 Another aspect of the invention provides methods for determining ORFX protein, nucleic acid expression or ORFX activity in an individual to thereby select appropriate therapeutic or prophylactic agents for that individual (referred to herein as "pharmacogenomics"). Pharmacogenomics allows for the selection of agents (e.g., drugs) for therapeutic or prophylactic treatment of an individual based on the genotype of the individual (e.g., the genotype of the 10 individual examined to determine the ability of the individual to respond to a particular agent.)

Yet another aspect of the invention pertains to monitoring the influence of agents (e.g., drugs, compounds) on the expression or activity of ORFX in clinical trials.

These and other agents are described in further detail in the following sections.

Diagnostic Assays

15 Other conditions in which proliferation of cells plays a role include tumors, restenosis, psoriasis, Dupuytren's contracture, diabetic complications, Kaposi's sarcoma and rheumatoid arthritis.

An ORFX polypeptide may be used to identify an interacting polypeptide a sample or tissue. The method comprises contacting the sample or tissue with ORFX, allowing formation of 20 a complex between the ORFX polypeptide and the interacting polypeptide, and detecting the complex, if present.

The proteins of the invention may be used to stimulate production of antibodies specifically binding the proteins. Such antibodies may be used in immunodiagnostic procedures to detect the occurrence of the protein in a sample. The proteins of the invention may be used to 25 stimulate cell growth and cell proliferation in conditions in which such growth would be favorable. An example would be to counteract toxic side effects of chemotherapeutic agents on, for example, hematopoiesis and platelet formation, linings of the gastrointestinal tract, and hair follicles. They may also be used to stimulate new cell growth in neurological disorders including, for example, Alzheimer's disease. Alternatively, antagonistic treatments may be 30 administered in which an antibody specifically binding the ORFX -like proteins of the invention

would abrogate the specific growth-inducing effects of the proteins. Such antibodies may be useful, for example, in the treatment of proliferative disorders including various tumors and benign hyperplasias.

5 Polynucleotides or oligonucleotides corresponding to any one portion of the ORFX nucleic acids of SEQ ID NO:2n-1 (wherein $n = 1$ to 3161) may be used to detect DNA containing a corresponding ORF gene, or detect the expression of a corresponding ORFX gene, or ORFX-like gene. For example, an ORFX nucleic acid expressed in a particular cell or tissue, as noted in Table 2, can be used to identify the presence of that particular cell type.

10 An exemplary method for detecting the presence or absence of ORFX in a biological sample involves obtaining a biological sample from a test subject and contacting the biological sample with a compound or an agent capable of detecting ORFX protein or nucleic acid (e.g., mRNA, genomic DNA) that encodes ORFX protein such that the presence of ORFX is detected in the biological sample. An agent for detecting ORFX mRNA or genomic DNA is a labeled nucleic acid probe capable of hybridizing to ORFX mRNA or genomic DNA. The nucleic acid probe can be, for example, a full-length ORFX nucleic acid, such as the nucleic acid of SEQ ID 15 NO:2n-1 (wherein $n = 1$ to 3161), or a portion thereof, such as an oligonucleotide of at least 15, 30, 50, 100, 250 or 500 nucleotides in length and sufficient to specifically hybridize under stringent conditions to ORFX mRNA or genomic DNA, as described above. Other suitable probes for use in the diagnostic assays of the invention are described herein.

20 An agent for detecting ORFX protein is an antibody capable of binding to ORFX protein, preferably an antibody with a detectable label. Antibodies can be polyclonal, or more preferably, monoclonal. An intact antibody, or a fragment thereof (e.g., Fab or F(ab')₂) can be used. The term "labeled", with regard to the probe or antibody, is intended to encompass direct labeling of the probe or antibody by coupling (i.e., physically linking) a detectable substance to the probe or 25 antibody, as well as indirect labeling of the probe or antibody by reactivity with another reagent that is directly labeled. Examples of indirect labeling include detection of a primary antibody using a fluorescently labeled secondary antibody and end-labeling of a DNA probe with biotin such that it can be detected with fluorescently labeled streptavidin. The term "biological sample" is intended to include tissues, cells and biological fluids isolated from a subject, as well as tissues, cells and fluids present within a subject. That is, the detection method of the invention 30 can be used to detect ORFX mRNA, protein, or genomic DNA in a biological sample *in vitro* as

well as *in vivo*. For example, *in vitro* techniques for detection of ORFX mRNA include Northern hybridizations and *in situ* hybridizations. *In vitro* techniques for detection of ORFX protein include enzyme linked immunosorbent assays (ELISAs), Western blots, immunoprecipitations and immunofluorescence. *In vitro* techniques for detection of ORFX genomic DNA include 5 Southern hybridizations. Furthermore, *in vivo* techniques for detection of ORFX protein include introducing into a subject a labeled anti-ORFX antibody. For example, the antibody can be labeled with a radioactive marker whose presence and location in a subject can be detected by standard imaging techniques.

10 In one embodiment, the biological sample contains protein molecules from the test subject. Alternatively, the biological sample can contain mRNA molecules from the test subject or genomic DNA molecules from the test subject. A preferred biological sample is a peripheral blood leukocyte sample isolated by conventional means from a subject.

15 In another embodiment, the methods further involve obtaining a control biological sample from a control subject, contacting the control sample with a compound or agent capable of detecting ORFX protein, mRNA, or genomic DNA, such that the presence of ORFX protein, mRNA or genomic DNA is detected in the biological sample, and comparing the presence of ORFX protein, mRNA or genomic DNA in the control sample with the presence of ORFX protein, mRNA or genomic DNA in the test sample.

20 The invention also encompasses kits for detecting the presence of ORFX in a biological sample. For example, the kit can comprise: a labeled compound or agent capable of detecting ORFX protein or mRNA in a biological sample; means for determining the amount of ORFX in the sample; and means for comparing the amount of ORFX in the sample with a standard. The compound or agent can be packaged in a suitable container. The kit can further comprise instructions for using the kit to detect ORFX protein or nucleic acid.

25 **Prognostic Assays**

The diagnostic methods described herein can furthermore be utilized to identify subjects having or at risk of developing a disease or disorder associated with aberrant ORFX expression or activity. For example, the assays described herein, such as the preceding diagnostic assays or 30 the following assays, can be utilized to identify a subject having or at risk of developing a disorder associated with ORFX protein, nucleic acid expression or activity in, e.g., proliferative or differentiative disorders such as hyperplasias, tumors, restenosis, psoriasis, Dupuytren's

contracture, diabetic complications, or rheumatoid arthritis, etc.; and glia-associated disorders such as cerebral lesions, diabetic neuropathies, cerebral edema, senile dementia, Alzheimer's disease, etc. Alternatively, the prognostic assays can be utilized to identify a subject having or at risk for developing a disease or disorder. Thus, the present invention provides a method for
5 identifying a disease or disorder associated with aberrant ORFX expression or activity in which a test sample is obtained from a subject and ORFX protein or nucleic acid (e.g., mRNA, genomic DNA) is detected, wherein the presence of ORFX protein or nucleic acid is diagnostic for a subject having or at risk of developing a disease or disorder associated with aberrant ORFX expression or activity. As used herein, a "test sample" refers to a biological sample obtained
10 from a subject of interest. For example, a test sample can be a biological fluid (e.g., serum), cell sample, or tissue.

Furthermore, the prognostic assays described herein can be used to determine whether a subject can be administered an agent (e.g., an agonist, antagonist, peptidomimetic, protein, peptide, nucleic acid, small molecule, or other drug candidate) to treat a disease or disorder
15 associated with aberrant ORFX expression or activity. For example, such methods can be used to determine whether a subject can be effectively treated with an agent for a disorder, such as a proliferative disorder, differentiative disorder, glia-associated disorders, etc. Thus, the present invention provides methods for determining whether a subject can be effectively treated with an agent for a disorder associated with aberrant ORFX expression or activity in which a test sample
20 is obtained and ORFX protein or nucleic acid is detected (e.g., wherein the presence of ORFX protein or nucleic acid is diagnostic for a subject that can be administered the agent to treat a disorder associated with aberrant ORFX expression or activity.)

The methods of the invention can also be used to detect genetic lesions in a ORFX gene, thereby determining if a subject with the lesioned gene is at risk for, or suffers from, a
25 proliferative disorder, differentiative disorder, glia-associated disorder, etc. In various embodiments, the methods include detecting, in a sample of cells from the subject, the presence or absence of a genetic lesion characterized by at least one of an alteration affecting the integrity of a gene encoding a ORFX-protein, or the mis-expression of the ORFX gene. For example, such genetic lesions can be detected by ascertaining the existence of at least one of (1) a deletion
30 of one or more nucleotides from a ORFX gene; (2) an addition of one or more nucleotides to a ORFX gene; (3) a substitution of one or more nucleotides of a ORFX gene, (4) a chromosomal

5 rearrangement of a ORFX gene; (5) an alteration in the level of a messenger RNA transcript of a ORFX gene, (6) aberrant modification of a ORFX gene, such as of the methylation pattern of the genomic DNA, (7) the presence of a non-wild type splicing pattern of a messenger RNA transcript of a ORFX gene, (8) a non-wild type level of a ORFX-protein, (9) allelic loss of a ORFX gene, and (10) inappropriate post-translational modification of a ORFX-protein. As described herein, there are a large number of assay techniques known in the art which can be used for detecting lesions in a ORFX gene. A preferred biological sample is a peripheral blood leukocyte sample isolated by conventional means from a subject. However, any biological sample containing nucleated cells may be used, including, for example, buccal mucosal cells.

10 In certain embodiments, detection of the lesion involves the use of a probe/primer in a polymerase chain reaction (PCR) (see, e.g., U.S. Pat. Nos. 4,683,195 and 4,683,202), such as anchor PCR or RACE PCR, or, alternatively, in a ligation chain reaction (LCR) (see, e.g., Landegran *et al.* (1988) *Science* 241:1077-1080; and Nakazawa *et al.* (1994) *PNAS* 91:360-364), the latter of which can be particularly useful for detecting point mutations in the ORFX-gene

15 (see Abravaya *et al.* (1995) *Nucl Acids Res* 23:675-682). This method can include the steps of collecting a sample of cells from a patient, isolating nucleic acid (e.g., genomic, mRNA or both) from the cells of the sample, contacting the nucleic acid sample with one or more primers that specifically hybridize to a ORFX gene under conditions such that hybridization and amplification of the ORFX gene (if present) occurs, and detecting the presence or absence of an amplification product, or detecting the size of the amplification product and comparing the length to a control sample. It is anticipated that PCR and/or LCR may be desirable to use as a preliminary amplification step in conjunction with any of the techniques used for detecting mutations described herein.

20 Alternative amplification methods include: self sustained sequence replication (Guatelli *et al.*, 1990, *Proc Natl Acad Sci USA* 87:1874-1878), transcriptional amplification system (Kwoh, *et al.*, 1989, *Proc Natl Acad Sci USA* 86:1173-1177), Q-Beta Replicase (Lizardi *et al.*, 1988, *BioTechnology* 6:1197), or any other nucleic acid amplification method, followed by the detection of the amplified molecules using techniques well known to those of skill in the art. These detection schemes are especially useful for the detection of nucleic acid molecules if such molecules are present in very low numbers.

ccatcataag ccctctgaac tcctgctgaa atcgccctt tgaacatcct ctaaccctg
 1440
 ggaaggcacc cgAACCCACC ttTACCTCAC cAGCAGCATA tgacaataac attaaatggc
 1500
 tctacagcag aggaagatga aagtAAAAGT agcaaataca accaatggcc ttcccatagc
 1560
 tcacagaact cctgagcaga agctgagcag ggaagAAATG gtgtgttagtt tcagggtgtc
 1620
 tggaggtgcc accatttctc cccatttgat gtcagagagg ctTTACAAAAA aaataaggca
 1680
 acagcttta aggagattct gtatattga aattagacgc aatgacaggt ttcgctccc
 1740
 aantatagtt ttAgAAatata gtctgatATG acaaAGTAGG gATTTTaaa gcctaACATT
 1800
 ttatttcctt gctggggatc agttAGTaaa gaaggaggaa ttc
 1843

<210> 5610
 <211> 153
 <212> PRT
 <213> Homo sapiens

<400> 5610
 Met Arg Arg Asp Phe Lys Phe Lys Leu Ser Ser Thr Pro Leu Gly Val
 1 5 10 15
 Phe Thr Ala Cys Ser Ser Arg Val Gln Met Ala Cys Ile Cys Ala Val
 20 25 30
 Phe Thr Gly Gly Arg Gln Asp His Thr Ser Leu Pro His Trp Ala Cys
 35 40 45
 Leu Leu Val Asp Ser Cys Met Gln Glu Ala Val Met Gly Ser Leu Arg
 50 55 60
 Ile Pro Gln Cys Gly Asn Gly Pro Leu Arg Leu Val Leu Arg Val Pro
 65 70 75 80
 Gly Ala Gln Ser Trp Val Gly Gly Cys Trp Trp Glu Val Arg Asn Lys
 85 90 95
 Phe Trp Leu Pro Ser Gly Gln Leu Pro Thr Ala Leu Thr Trp Glu Val
 100 105 110
 Asp Ala His Arg Gln Asp Ala Leu Gly Tyr Cys Cys Thr Val Leu His
 115 120 125
 Glu Ile Phe Ile Gln Pro Thr Arg Phe Asn Arg Ser Leu Gly Ser Ser
 130 135 140
 Ser Arg Leu Leu Cys Leu Phe Lys His
 145 150

<210> 5611
 <211> 1152
 <212> DNA
 <213> Homo sapiens

<400> 5611
 nggcccgctc cctccccggac tccccggctc ccggcctccc tggtccccgcc tgggaaggga
 60
 tgcaaggaag ccctccggcg ctgcgtccg aggccggaga cagcgtcccc ctccgcccc
 120

cgggtcctgg cgccctcagag cccggcccag gccgcggaac ggtgatgctc gggccggacg
 180
 ggcgcagcgatccctgcg tccccgtgaa aatgtgtgtc tgacatgcaa gctcagtggg
 240
 gcagagaccc gtggattgct gtgcctgccc ctccggacct ggatcatgaa ggtgttggga
 300
 agaagcttct tctgggtgct gtttcccgct cttccctggg cgggtgcaggc tggagcac
 360
 gaggaggtgg cgcagcgtgt gatcaaactg caccgcgggc gaggggtggc tgccatgcag
 420
 agccggcagt gggtccggga cagctgcagg aagctctcag ggcttctccg ccagaagaat
 480
 gcagttctga acaaactgaa aactgcaatt ggagcagtgg agaaagacgt gggctgtcg
 540
 gatgaagaga aactgtttca ggtgcacacg tttgaaattt tccagaaaaga gctgaatgaa
 600
 agtggaaaatt ccgttttcca agctgtctac ggactgcaga gagccctgca gggggattac
 660
 aaagatgtcg tgaacatgaa ggagagcagc cggcagcgcc tggaggccct gagagaggct
 720
 gcaataaagg aagaaacaga atatatggaa cttctggcag cagaaaaaca tcaagttgaa
 780
 gccctaaaa atatgcaaca tcaaaaccaa agtttatcca tgcttgacga gattttgaa
 840
 gatgttaagaa aggtagcggc tcgtctggag gaagagatag aggaacatgc ttttgacgac
 900
 aataaatcag tcaagggggc caattttgag gcagttctga ggggtggagga agaagaggcc
 960
 aattctaagc aaaatataac aaaacgagaa gtggaggatg acttggttct tagcatgctg
 1020
 attgactccc agaacaacca gtatattttg accaagccc gagattcaac catccacgt
 1080
 gcagatcacc actttataaa ggacattgtt accataggaa tgctgtctt gccttgtggc
 1140
 tggcgatgtca
 1152

<210> 5612
 <211> 289
 <212> PRT
 <213> Homo sapiens

<400> 5612
 Met Lys Val Leu Gly Arg Ser Phe Phe Trp Val Leu Phe Pro Val Leu
 1 5 10 15
 Pro Trp Ala Val Gln Ala Val Glu His Glu Glu Val Ala Gln Arg Val
 20 25 30
 Ile Lys Leu His Arg Gly Arg Gly Val Ala Ala Met Gln Ser Arg Gln
 35 40 45
 Trp Val Arg Asp Ser Cys Arg Lys Leu Ser Gly Leu Leu Arg Gln Lys
 50 55 60
 Asn Ala Val Leu Asn Lys Leu Lys Thr Ala Ile Gly Ala Val Glu Lys
 65 70 75 80
 Asp Val Gly Leu Ser Asp Glu Glu Lys Leu Phe Gln Val His Thr Phe