where $a = (a_1, ..., a_d)$.

Thus, we are looking for a unit vector a solving $(X - \mu)a = 0$ in the least squares sense, that is, some a such that $a^{\top}a = 1$ minimizing

$$a^{\top}(X-\mu)^{\top}(X-\mu)a$$
.

Compute some SVD VDU^{\top} of $X - \mu$, where the main diagonal of D consists of the singular values $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_d$ of $X - \mu$ arranged in descending order. Then

$$a^{\top}(X - \mu)^{\top}(X - \mu)a = a^{\top}UD^2U^{\top}a,$$

where $D^2 = \operatorname{diag}(\sigma_1^2, \dots, \sigma_d^2)$ is a diagonal matrix, so pick a to be the last column in U (corresponding to the smallest eigenvalue σ_d^2 of $(X - \mu)^{\top}(X - \mu)$). This is a solution to our best fit problem.

Therefore, if U_{d-1} is the linear hyperplane defined by a, that is,

$$U_{d-1} = \{ u \in \mathbb{R}^d \mid \langle u, a \rangle = 0 \},$$

where a is the last column in U for some SVD VDU^{\top} of $X - \mu$, we have shown that the affine hyperplane $A_1 = \mu + U_{d-1}$ is a best approximation of the data set X_1, \ldots, X_n in the least squares sense.

It is easy to show that this hyperplane $A_1 = \mu + U_{d-1}$ minimizes the sum of the square distances of each X_i to its orthogonal projection onto A_1 . Also, since U_{d-1} is the orthogonal complement of a, the last column of U, we see that U_{d-1} is spanned by the first d-1 columns of U, that is, the first d-1 principal directions of $X - \mu$.

All this can be generalized to a best (d-k)-dimensional affine subspace A_k approximating X_1, \ldots, X_n in the least squares sense $(1 \le k \le d-1)$. Such an affine subspace A_k is cut out by k independent hyperplanes H_i (with $1 \le i \le k$), each given by some equation

$$a_{i\,1}x_1 + \dots + a_{i\,d}x_d + c_i = 0.$$

If we write $a_i = (a_{i1}, \dots, a_{id})$, to say that the H_i are independent means that a_1, \dots, a_k are linearly independent. In fact, we may assume that a_1, \dots, a_k form an *orthonormal system*.

Then finding a best (d - k)-dimensional affine subspace A_k amounts to solving the homogeneous linear system

$$\begin{pmatrix} X & \mathbf{1} & 0 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & X & \mathbf{1} \end{pmatrix} \begin{pmatrix} a_1 \\ c_1 \\ \vdots \\ a_k \\ c_k \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix},$$