

Outline

- 1) Strassen's Algorithm
- 2) Karatsuba for Polynomials
- 3) Legendre's Interpolation
- 2) Vandemonde Matrix

Matrix Multiplication

E

3

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} = \begin{pmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \end{pmatrix}$$

Let A and B be nxn matrices, then their product C=A*B is

$$c_{ij} = \sum_{k=1}^n a_{ik} b_{kj}$$

$$c_{ij} = \sum_{k=1}^n \alpha_{ik} b_{kj}$$

What is the complexity of this algorithm (in terms of multiplications)?

 $O(n^3)$

Divide and Conquer

The idea is to divide the size of the problem in half. This corresponds to dividing each of the matrices into quarters, each $n/2 \times n/2$ size, and multiply those quarters.

Algorithm

Let $n = 2^k$ and M(A,B) denote the matrix product

1. if A is 1×1 matrix, return $a_{11} * b_{11}$.

2. write
$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}$$
 $B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$

where A_{ij} and B_{ij} are n/2 x n/2 matrices.

3. Compute $C_{ij} = M(A_{i1}, B_{1j}) + M(A_{i2}, B_{2j})$

4. Return
$$\begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}$$

Correctness

$$\begin{pmatrix} \textbf{A}_{11} & \textbf{A}_{12} \\ \textbf{A}_{21} & \textbf{A}_{22} \end{pmatrix} \begin{pmatrix} \textbf{B}_{11} & \textbf{B}_{12} \\ \textbf{B}_{21} & \textbf{B}_{22} \end{pmatrix} = \begin{pmatrix} \boxed{\textbf{A}_{11}\textbf{B}_{11} + \textbf{A}_{12}\textbf{B}_{21}} & \textbf{A}_{11}\textbf{B}_{12} + \textbf{A}_{12}\textbf{B}_{22} \\ \textbf{A}_{21}\textbf{B}_{11} + \textbf{A}_{22}\textbf{B}_{21} & \textbf{A}_{21}\textbf{B}_{12} + \textbf{A}_{22}\textbf{B}_{22} \end{pmatrix}$$

This basically says that if the entries of A and B are themselves matrices, the usual matrix multiplication works by substituting the blocks into the formula.

Let us prove it for the left upper entry.

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

Correctness

Since
$$1 \le i, j \le n/2$$
. $A_{11} A_{12} A_{21} B_{11} B_{12} B_{21} B_{21} B_{22}$

$$c_{ij} = \sum_{k=1}^{n/2} a_{ik} b_{kj} + \sum_{k=n/2+1}^{n} a_{ik} b_{kj}$$

$$=\sum_{k=1}^{n/2} A_{11}(i,k) B_{11}(k,j) + \sum_{k=n/2+1}^{n} A_{12}(i,k) B_{12}(k,j)$$

$$= (A_{11} \cdot B_{11})(i,j) + (A_{12} \cdot B_{21})(i,j)$$

=
$$(A_{11} \cdot B_{11} + A_{12} \cdot B_{21})(i,j)$$

Similar proof for the other blocks.

Worst-case complexity

$$C_{ij} = M(A_{i1}, B_{1j}) + M(A_{i2}, B_{2j})$$

$$\begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}$$

On each step we compute 4 matrices C_{ii} , each requires two recursive calls.

Let T(n) denote the number of multiplications, then

$$T(n) = 8T(n/2) + O(n^2)$$

 $T(1) = 1$

Matrix addition

It takes 7

multiplications

The Master Theorem gives $\Theta(n^3)$.

Strassen's Algorithm (1968)

Do we need all 8 multiplications or can we find a clever way of doing it with fewer?

Strassen a German mathematician born in 1936

Strassen's Algorithm

For 2×2 matrices

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} = \begin{pmatrix} s_1 + s_2 - s_4 + s_6 & s_4 - s_5 \\ s_6 + s_7 & s_2 - s_3 + s_5 - s_7 \end{pmatrix}$$

$$s_1 = (a_{12} - a_{22}) (b_{21} + b_{22})$$

$$s_2 = (a_{11} + a_{22}) (b_{11} + b_{22})$$

 $s_3 = (a_{11} - a_{21}) (b_{11} + b_{12})$ $s_4 = (a_{11} + a_{12}) b_{22}$

 $s_5 = a_{11} (b_{12} - b_{22})$

 $s_6 = a_{22} (b_{21}-b_{11})$

 $s_7 = (a_{21} + a_{22}) b_{11}$

Correctness

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} = \begin{pmatrix} s_1 + s_2 - s_4 + s_6 & s_4 - s_5 \\ \hline s_6 + s_7 & s_2 - s_3 + s_5 - s_7 \end{pmatrix}$$

Proof for a lower left entry:

$$s_6 = a_{22} (b_{21}-b_{11})$$

 $s_7 = (a_{21}+a_{22}) b_{11}$

$$s_6 + s_7 = a_{21} b_{11} + a_{22} b_{21}$$

on the other hand:

$$s_6+s_7 = a_{22} (b_{21}-b_{11}) + (a_{21}+a_{22}) b_{11} = a_{22} b_{21} - a_{22} b_{11} + a_{21} b_{11} + a_{22} b_{11} = a_{21} b_{11} + a_{22} b_{21}$$

Strassen's Algorithm

This holds for a block matrix multiplication

$$\begin{pmatrix} \textbf{A}_{11} & \textbf{A}_{12} \\ \textbf{A}_{21} & \textbf{A}_{22} \end{pmatrix} \! \begin{pmatrix} \textbf{B}_{11} & \textbf{B}_{12} \\ \textbf{B}_{21} & \textbf{B}_{22} \end{pmatrix} \! = \! \begin{pmatrix} \textbf{S}_{1} + \textbf{S}_{2} - \textbf{S}_{4} + \textbf{S}_{6} & \textbf{S}_{4} - \textbf{S}_{5} \\ \textbf{S}_{6} + \textbf{S}_{7} & \textbf{S}_{2} - \textbf{S}_{3} + \textbf{S}_{5} - \textbf{S}_{7} \end{pmatrix}$$

where A_{ij} and B_{ij} are n/2 x n/2 matrices and matrices $S_1,\,....,\,S_7$ are defined on the previous slide.

Worst-case complexity

Let T(n) denote the number of multiplications, then

$$T(n) = 7 T(n/2) + O(n^2)$$

$$T(1) = 1$$
Matrix addition

The Master Theorem gives $\Theta(n^{\log 7}) = \Theta(n^{2.807})$.

If we count additions, then

$$T(n) = 7 T(n/2) + 18(n/2)^2$$

 $T(1) = 1$

Space Complexity

$$\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix} = \begin{pmatrix} S_1 + S_2 - S_4 + S_6 & S_4 - S_5 \\ S_6 + S_7 & S_2 - S_3 + S_5 - S_7 \end{pmatrix}$$

 $S_1 = (A_{12}-A_{22})(B_{21}+B_{22})$ $S_2 = (A_{11}+A_{22})(B_{11}+B_{22})$ $S_3 = (A_{11}-A_{21})(B_{11}+B_{12})$ $S_4 = (A_{11}+A_{12}) B_{22}$ $S_5 = A_{11} (B_{12}-B_{22})$ $S_6 = A_{22} (B_{21}-B_{11})$

 $S_7 = (A_{21} + A_{22}) B_{11}$

We need to compute and then store matrices $S_1, ..., S_7$

To compute them we need two scratch arrays, so 9 total.

Space Complexity

Let W(n) be the space complexity

$$W(n) = W(n/2) + 9(n/2)^2$$

W(1) = 1

Solving this gives $W(n) = 3 n^2$.

How would you extend Strassen's algorithm to matrix dimensions differ from 2^k?

Pad the matrices with zeros.

Polynomial Multiplication

How would you multiply two polynomials?

Polynomial Multiplication

$$A(x) = \sum_{k=0}^{n} a_k x$$

$$A(x) = \sum_{k=0}^{n} a_k x^k$$
 $B(x) = \sum_{k=0}^{n} b_k x^k$

$$C(x) = A(x)B(x) = \sum_{j=0}^{n} \sum_{k=0}^{n} a_j b_k x^{j+k}$$

This has $O(n^2)$ complexity. We can do much better!

Karatsuba Revisited

$$A(x) = \sum_{k=0}^{n} a_k x^k$$
 $B(x) = \sum_{k=0}^{n} b_k x^k$

$$B(x) = \sum_{k=0}^{n} b_k x^k$$

$$A(x) = A_1 x^{n/2} + A_0$$
 Same for B(x)

For example, $1 + 3x + x^2 + 7x^3 = (1 + 3x) + x^2(1+7x)$

$$A(x)B(x) = C_2 x^n + C_1 x^{n/2} + C_0$$

where

$$C_2 = A_1 B_1$$

$$C_1 = (A_0 + A_1)(B_0 + B_1) - A_0 B_0 - A_1 B_1$$

$$C_0 = A_0 B_0$$

Polynomial Multiplication

Karatsuba's polynomial multiplication can be done with at most O(n^{log3}) operations.

Observe, the algorithm in fact multiplies only linear polynomials (2 terms) with three scalar multiplications.

In the next slides we outline a slightly different approach that is based on interpolation.

Interpolation

Say you're given a bunch of "data points"

Can you find a (low-degree) polynomial which "fits the data"2

Interpolation

There is a unique linear polynomial going through 2 points

Correspondence between a set of 2 points and a line (a polynomial of the first order)

Uniqueness

Correspondence between a set of distinct points

 $(x_1,y_1), (x_2,y_2), ..., (x_{n+1},y_{n+1})$ and a polynomial over a field F.

Theorem:

There is exactly one polynomial P(x) of degree at most n such that $P(x_k) = y_k$ for all k = 1, ..., n+1.

This theorem was proved in 15-251, so review that lecture.

Lagrange's Interpolation Formula

The method for constructing the polynomial is called Lagrange Interpolation.

$$y(x) = \sum_{j=0}^{n} y_{j} \prod_{\substack{k=0 \\ k \neq j}}^{n} \frac{x - x_{k}}{x_{j} - x_{k}}$$

Discovered in 1795 by J.-L. Lagrange.

How does this apply to multiplication?

Given two polynomials

$$A(x) = 1 + x + x^2$$

$$B(x) = 1 + 2 x + 3 x^2$$

Compute their values at x = -2, -1, 0, 1, 2

$${A(-2), A(-1), A(0), A(1), A(2)} = {3, 1, 1, 3, 7}$$

$$\{B(-2), B(-1), B(0), B(1), B(2)\} = \{9, 2, 1, 6, 17\}$$

Pointwise multiplication:

 $\{C(-2), C(-1), C(0), C(1), C(2)\} = \{27, 2, 1, 18, 119\}$

How does this apply to multiplication?

Points to fit

This yields (with n=5)

$$y(x) = \sum_{j=0}^{n} y_{j} \prod_{\substack{k=0 \\ k \neq j}}^{n} \frac{x - x_{k}}{x_{j} - x_{k}}$$

$$y(x) = 1 + 3x + 6x^2 + 5x^3 + 3x^4$$

Karatsuba again...

Recall that in Karatsuba we split a polynomial in half

Thus, after some proper renaming, on each iteration we multiply linear polynomials

Let us apply the idea of multiplication by interpolation to Karatsuba's divide and conquer

Multiplication by Interpolation

Let us multiply polynomials of degree one

$$A(x) = a_0 + a_1 x$$
, $B(x) = b_0 + b_1 x$

Suggested points for evaluation: $0, 1, \infty$

$$A(0) = a_0, A(1) = a_0 + a_1, A(\infty) = a_1$$

∞ means, take the leading coefficient

$$B(0) = b_0, B(1) = b_0 + b_1, B(\infty) = b_1$$

Compute the pointwise product:

$$c_0 = a_0 b_0$$
, $c_1 = (a_0 + a_1)(b_0 + b_1)$, $c_2 = a_1 b_1$

We restore the polynomial with no use of Langange's formula

Multiplication by Interpolation

 $Find \ a \ polynomial \ passing \ through \ these \ points$

$$(0, a_0 b_0), (1, (a_0 + a_1)(b_0 + b_1)), (\infty, a_1 b_1)$$

Clearly it must be a quadratic polynomial

$$c_0 + c_1 x + c_2 x^2$$

Setting x = 0, gives that $c_0 = a_0 b_0$

Setting $x = \infty$, gives that $c_2 = a_1 b_1$

Setting x = 1, gives that $c_0 + c_1 + c_2 = (a_0 + a_1)(b_0 + b_1)$

It follows, $c_1 = (a_0 + a_1)(b_0 + b_1) - a_0 b_0 - a_1 b_1$

Wow, exactly like in Karatsuba's algorithm

Toward the Fast Fourier Transform

To compute the polynomial product A(x) B(x),

- 1) evaluate A(x) and B(x) at some points x_k ,
- 2) multiply $A(x_k) B(x_k)$ pointwise,
- 3) find the polynomial which passes through these points.

The worst-case complexity

To compute the polynomial product A(x) B(x),

- 1) evaluate A(x) and B(x) at some points x_k ,
 - what's the complexity of $A(x_k)$ -?
 - what's the complexity of A(x) at n points?
- 2) multiply $A(x_k) B(x_k)$ pointwise,
- 3) find the polynomial which passes through these points.
 - what is it complexity?

Vandermonde Matrix

We will rewrite Lagrange's formula in a matrix form

What is the runtime complexity of Lagrange's interpolation?

O(n3), if we expand

Matrix Form

$$y(x) = \sum_{j=0}^{n} y_j \prod_{k=0}^{n} \frac{x - x_k}{x_j - x_k}$$

Consider a case of two points

$$y = y_0 \frac{x - x_1}{x_0 - x_1} + y_1 \frac{x - x_0}{x_1 - x_0} = \frac{x_0 y_1 - x_1 y_0}{x_0 - x_1} + x \frac{y_0 - y_1}{x_0 - x_1}$$
$$y = a_0 + a_1 x \qquad a_0 \qquad a_1$$

where new coefficients a_0 and a_1 can be found by solving the following system

This could be generalized...

 $\begin{pmatrix} 1 & \mathbf{x}_0 \\ 1 & \mathbf{x}_1 \end{pmatrix} \begin{pmatrix} \mathbf{a}_0 \\ \mathbf{a}_1 \end{pmatrix} = \begin{pmatrix} \mathbf{y}_0 \\ \mathbf{y}_1 \end{pmatrix}$

The Vandermonde Matrix

The Lagrange formula defines a polynomial

$$A(x) = \sum_{k=0}^{n} a_k x^k$$

where coefficients a_k can be found from

$$\begin{pmatrix} 1 & x_0 & x_0^2 & ... & x_0^n \\ 1 & x_1 & x_1^2 & ... & x_1^n \\ ... & ... & ... & ... & ... \\ 1 & x_n & x_n^2 & ... & x_n^n \end{pmatrix} \!\! \begin{pmatrix} a_0 \\ a_1 \\ ... \\ a_n \end{pmatrix} \! = \! \begin{pmatrix} y_0 \\ y_1 \\ ... \\ y_n \end{pmatrix}$$

or in short $V \cdot a = y$ Thus, $a = V^{-1} \cdot y$

The Vandermonde Matrix

$$V = \begin{pmatrix} 1 & x_0 & x_0^2 & ... & x_0^n \\ 1 & x_1 & x_1^2 & ... & x_1^n \\ ... & ... & ... & ... & ... \\ 1 & x_n & x_n^2 & ... & x_n^n \end{pmatrix}$$

In order to inverse the matrix V, we have to prove that it's nonsingular.

Determinant of the Vandermonde Matrix

$$\det \begin{pmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ \dots & \dots & \dots & \dots & \dots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{pmatrix} = \prod_{k=0}^n \prod_{j=0}^{k-1} (x_k - x_j)$$

Since the n + 1 points are distinct, the determinant can't be zero, so the matrix V is not singular and its inverse does exist.

Proof
$$\det \begin{pmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ \dots & \dots & \dots & \dots \\ 1 & \dots & \dots & \dots \end{pmatrix} = \prod_{k=0}^n \prod_{j=0}^{k-1} (x_k - x_j)$$

First we subtract the first row from all other rows

$$V_n = \begin{vmatrix} 1 & x_0 & x_0^2 & ... & x_0^n \\ 1 & x_1 & x_1^2 & ... & x_1^n \\ ... & ... & ... & ... & ... \\ 1 & x_n & x_n^2 & ... & x_n^n \end{vmatrix} = \begin{vmatrix} 1 & x_0 & x_0^2 & ... & x_0^n \\ 0 & x_1 - x_0 & x_1^2 - x_0^2 & ... & x_1^n - x_0^n \\ ... & ... & ... & ... & ... \\ 0 & x_n - x_0 & x_n^2 - x_0^2 & ... & x_n^n - x_0^n \end{vmatrix}$$

Proof
$$\begin{vmatrix}
1 & x_0 & ... & x_0^{n-1} & x_0^n \\
0 & x_1 - x_0 & ... & x_1^{n-1} - x_0^{n-1} & x_1^n - x_0^n \\
... & ... & ... & ... & ...
\end{vmatrix}$$

Next step, multiply (n-1)-column by x_0 and subtract from n-column.

$$V_n = \begin{vmatrix} 1 & x_0 & ... & x_0^{n-1} & 0 \\ 0 & x_1 - x_0 & ... & x_1^{n-1} - x_0^{n-1} & x_1^{n-1}(x_1 - x_0) \\ ... & ... & ... & ... & ... \\ 0 & x_n - x_0 & ... & x_n^{n-1} - x_0^{n-1} & x_1^{n-1}(x_n - x_0) \end{vmatrix}$$

$$\begin{vmatrix} 1 & x_0 & \dots & x_0^{n-1} & 0 \\ 0 & x_1 - x_0 & \dots & x_1^{n-1} - x_0^{n-1} & x_1^{n-1}(x_1 - x_0) \\ \dots & \dots & \dots & \dots & \dots \\ 0 & x_n - x_0 & \dots & x_n^{n-1} - x_0^{n-1} & x_n^{n-1}(x_n - x_n) \end{vmatrix}$$

Next step, multiply (n-2)-column by x_0 and subtract from (n-1)-column.

$$V_n = \begin{vmatrix} 1 & x_0 & ... & 0 & 0 \\ 0 & x_1 - x_0 & ... & x_1^{n-2}(x_1 - x_0) & x_1^{n-1}(x_1 - x_0) \\ ... & ... & ... & ... & ... \\ 0 & x_n - x_0 & ... & x_n^{n-2}(x_n - x_0) & x_n^{n-1}(x_n - x_0) \end{vmatrix}$$

Finally, multiply 1^{st} -column by x_0 and subtract from 2^{nd}

Proof

$$V_n = \begin{vmatrix} 1 & 0 & ... & 0 & 0 \\ 0 & x_1 - x_0 & ... & x_1^{n-2}(x_1 - x_0) & x_1^{n-1}(x_1 - x_0) \\ ... & ... & ... & ... & ... \\ 0 & x_n - x_0 & ... & x_n^{n-2}(x_n - x_0) & x_n^{n-1}(x_n - x_0) \end{vmatrix}$$

Remove a constant factor (x_k-x_0) , k = 1, ..., n from each row

$$V_n = \prod_{k=1}^{n} (x_k - x_0) \begin{vmatrix} 1 & 0 & 0 & \dots & 0 & 0 \\ 0 & 1 & x_1 & \dots & x_1^{n-2} & x_1^{n-1} \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 1 & x_n & \dots & x_n^{n-2} & x_n^{n-1} \end{vmatrix}$$

Proof

$$V_{n} = \prod_{k=1}^{n} (x_{k} - x_{0}) \begin{vmatrix} 1 & 0 & 0 & \dots & 0 & 0 \\ 0 & 1 & x_{1} & \dots & x_{1}^{n-2} & x_{1}^{n-1} \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 1 & x_{n} & \dots & x_{n}^{n-2} & x_{n}^{n-1} \end{vmatrix}$$

This leads to

$$V_{n} = \prod_{k=1}^{n} (x_{k} - x_{0}) V_{n-1}$$

Repeating the above steps for V_{n-1} , we get

$$V_{n-1} = \prod_{k=2}^{n} (x_k - x_1) V_{n-2}$$

And finally

$$V_1 = \begin{vmatrix} 1 & x_{n-1} \\ 1 & x_n \end{vmatrix} = x_n - x_{n-1}$$

QED.

Complexity of Interpolation

$$\begin{pmatrix} \textbf{q}_0 \\ \textbf{q}_1 \\ \dots \\ \textbf{q}_n \end{pmatrix} = \begin{pmatrix} \textbf{1} & \textbf{x}_0 & \textbf{x}_0^2 & \dots & \textbf{x}_0^n \\ \textbf{1} & \textbf{x}_1 & \textbf{x}_1^2 & \dots & \textbf{x}_1^n \\ \dots & \dots & \dots & \dots & \dots \\ \textbf{1} & \textbf{x}_n & \textbf{x}_n^2 & \dots & \textbf{x}_n^n \end{pmatrix}^{-1} \begin{pmatrix} \textbf{y}_0 \\ \textbf{y}_1 \\ \dots \\ \textbf{y}_n \end{pmatrix}$$

It follows that the complexity of interpolation depends on how fast can we inverse the Vandermonde matrix.

The success depends on the values of x_k , k=0, ...,n

Toward the Fast Fourier Transform

To compute the polynomial product A(x) B(x),

- 1) evaluate A(x) and B(x) at some points x_k ,
- 2) multiply $A(x_k)$ $B(x_k)$ pointwise,
- 3) find the polynomial which passes through these points

, by using Vandermonde's matrix