L11: Intersezione e somma di sottospazi (18)

Argomenti lezione:

- Introduzione
- Intersezione di sottospazi vettoriali
- Somma di sottospazi vettoriali
- Esercizi su somma e intersezione

Introduzione

Dati due sottospazi vettoriali *E* e *F* di uno spazio vettoriale *V*, vedremo che:

- L'intersezione di *E* e *F* è un sottospazio vettoriale;
- L'unione di E e F <u>non</u> è sempre un sottospazio vettoriale.

Introdurremo allora la somma di due sottospazi vettoriali, ovvero "il più piccolo" sottospazio vettoriale contenente E e F.

Studieremo poi la *formula di Grassmann* per il calcolo della dimensione dell'intersezione di E e F o della somma di E e F.

<u>Teorema</u>: L'intersezione $E \cap F$ di due sottospazi E e F di uno spazio vettoriale V è un sottospazio vettoriale di V.

Osservazione 1: $E \cap F$ di due sottospazi vettoriali E e F è un sottospazio vettoriale sia di E che di F.

Osservazione 2: Se E e F sono due sottospazi di dim. finita, allora anche $E \cap F$ ha dimensione finita. Inoltre, si ha:

$$dim (E \cap F) \leq dim E$$

$$dim (E \cap F) \leq dim F$$

Esercizio: Consideriamo i seguenti sottospazi E e F di M(2, 2, R):

$$E \coloneqq \left\{ \begin{pmatrix} a & b \\ b & 0 \end{pmatrix} \mid a \in \mathbb{R}, b \in \mathbb{R} \right\}$$
 Determinare $E \cap F$
$$F \coloneqq \left\{ \begin{pmatrix} b & a \\ b & 0 \end{pmatrix} \mid a \in \mathbb{R}, b \in \mathbb{R} \right\}$$

Sia A una generica matrice dello spazio vettoriale M(2, 2, R):

$$A \coloneqq \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
 A appartiene a E solo se $a_{22} = 0$ e $a_{12} = a_{21}$
A appartiene a E solo se $a_{22} = 0$ e $a_{11} = a_{21}$

$$E \cap F = \left\{ \begin{pmatrix} a & a \\ a & 0 \end{pmatrix} \mid a \in \mathbb{R} \right\}$$

Esercizio: Determinare $E \cap F$. Consideriamo in R^5 :

E generato da
$$e_1$$
:=(1,4,0,0,0), e_2 :=(1,0,0,1,1), e_3 :=(1,1,0,-1,2);
F generato da f_1 :=(2,1,1,4,0), f_2 :=(-1,1,-1,0,-2).
 $\mathbf{v} = h_1(1,4,0,0,0) + h_2(1,0,0,1,1) + h_3(1,1,0,-1,2)$
 $\mathbf{v} = (h_1 + h_2 + h_3, 4h_1 + h_3, 0, h_2 - h_3, h_2 + 2h_3)$
 $\mathbf{v} = k_1(2,1,1,4,0) + k_2(-1,1,-1,0,-2)$
 $\mathbf{v} = (2k_1 - k_2, k_1 + k_2, k_1 - k_2, 4k_1, -2k_2)$

$$\begin{cases} h_1 + h_2 + h_3 = 2k_1 - k_2 \\ 4h_1 + h_3 = k_1 + k_2 \\ 0 = k_1 - k_2 \end{cases} \begin{cases} h_1 = l \quad \mathbf{v} \coloneqq (l, 2l, 0, 4l, -2l) \\ h_2 = 2l \quad \mathbf{E} \cap \mathbf{F} \ \mathbf{e} \ \mathbf{l'insieme} \ \mathbf{dei} \\ h_3 = -2l \quad \mathbf{multipli} \ \mathbf{del} \ \mathbf{vettore} \\ k_1 = l \quad (1, 2, 0, 4, -2). \\ k_2 = l \quad \mathbf{dim} \ (\mathbf{E} \cap \mathbf{F}) = \mathbf{1} \end{cases}$$

Esempio: Consideriamo i sottospazi $T^R(2)$ e $T_R(2)$ di M(n, n, R). L'insieme $T^R(2) \cup T_R(2)$ sono le matrici triangolari di ordine 2. Sommando due matrici triangolari ne otteniamo una triangolare?

No, ecco un contro-esempio:
$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Abbiamo due matrici triangolari la cui somma <u>non</u> è triangolare! Quindi <u>non</u> è detto che l'unione di due sottospazi sia un sottospazio.

<u>Definizione</u>: Dati due sottospazi E e F di uno spazio vettoriale V la somma E + F è il sottoinsieme di V formato da tutte le somme del tipo u + v con $u \in E$ e $v \in F$.

<u>Definizione</u>: Dati due sottospazi E e F di uno spazio vettoriale V la somma E + F è il sottoinsieme di V formato da tutte le somme del tipo u + v con $u \in E$ e $v \in F$.

Osservazione: La somma di due sottospazi E + F contiene E e F.

<u>Dimostrazione</u>: Ogni vettore u di E è anche un vettore di E + F: la somma di u (che appartiene ad E) con 0 (che appartiene a F).

<u>Teorema</u>: La somma E + F di due sottospazi vettoriali E e F di uno spazio vettoriale V è un sottospazio vettoriale di V. Se U è un sottospazio vettoriale di V contenente sia E sia F, allora U contiene E + F.

Esercizio: Siano E e F sottospazi vettoriali di uno spazio V. Supponiamo che e_1 , e_2 , e_3 formano una base di E (dim E = 3) e che i vettori f_1 , f_2 formano una base di F (dim F = 2).

Osserviamo che un vettore w di V appartiene a E + F se si può esprimere come somma di un vettore u di E e di un vettore v di F.

$$u = h_1 e_1 + h_2 e_2 + h_3 e_3$$
 per opportuni h_1 , h_2 , h_3 in R
 $v = k_1 f_1 + k_2 f_2$ per opportuni k_1 , k_2 in R

$$\mathbf{w} = \mathbf{u} + \mathbf{v} = h_1 e_1 + h_2 e_2 + h_3 e_3 + k_1 f_1 + k_2 f_2$$

Dunque i vettori e_1 , e_2 , e_3 , f_1 , f_2 generano E + F.

Possiamo allora affermare che $dim(E + F) \le 5$.

<u>Teorema</u>: Siano E e F due sottospazi vettoriali di dimensione finita di un qualsiasi spazio vettoriale V. Segue E+F ha <u>dimensione finita</u>.

In particolare, se e_1 , e_2 , ..., e_p formano una base di E e f_1 , f_2 , ..., f_q formano una base di F, allora i vettori e_1 , e_2 , ..., e_p , f_1 , f_2 , ..., f_q generano E + F (ma non formano necessariamente una base di E + F).

<u>Teorema</u>: Sia V uno spazio vettoriale di dimensione finita avente una base formata dai vettori $v_1, v_2, ..., v_n$. Siano E e F due sottospazi vettoriali di uno spazio vettoriale V di dimensione finita.

Siano e_1, e_2, \dots, e_p una base di E e f_1, f_2, \dots, f_q una base di F.

Allora dim(E + F) = rk A dove A è la matrice avente come <u>colonne</u> le componenti di $e_1, e_2, ..., e_p, f_1, f_2, ..., f_q$ rispetto alla base $v_1, v_2, ..., v_n$.

Esercizio: Determinare dim(E + F). Consideriamo in R^5 :

E generato da
$$e_1$$
:=(1,4,0,0,0), e_2 :=(1,0,0,1,1), e_3 :=(1,1,0,-1,2);

F generato da $f_1 := (2,1,1,4,0), f_2 := (-1,1,-1,0,-2).$

$$\begin{pmatrix} 1 & 1 & 1 & 2 & -1 \\ 4 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & 1 & -1 & 4 & 0 \\ 0 & 1 & 2 & 0 & -2 \end{pmatrix}$$

$$e_1 \quad e_2 \quad e_3 \quad f_1 \quad f_2$$

rispetto alla base canonica

Questa matrice ha rango 4.

Pertanto dim(E + F) = 4.

<u>Teorema</u> (**Formula di Grassmann**): Siano E e F due sottospazi vettoriali di dimensione finita di un qualsiasi spazio vettoriale V. Si dimostra che: $dim(E + F) + dim(E \cap F) = dim E + dim F$

Esempio: Consideriamo in R^5 :

E generato da e_1 :=(1,4,0,0,0), e_2 :=(1,0,0,1,1), e_3 :=(1,1,0,-1,2); F generato da f_1 :=(2,1,1,4,0), f_2 :=(-1,1,-1,0,-2).

Abbiamo già calcolato che $dim(E \cap F) = 1$ e che dim(E + F) = 4

Alternativamente possiamo osservare che dim E = 3 e dim F = 2Poi, ad esempio, possiamo prendere $dim(E \cap F) = 1$ e ricavare $dim(E + F) = dim E + dim F - dim(E \cap F) = 3 + 2 - 1 = 4$

Esercizio: Sia V uno spazio vettoriale avente come base e_1 , e_2 , e_3 , e_4

Siano dati i vettori: $m{v}_1\coloneqq 2m{e}_2+m{e}_4,$ $m{v}_2\coloneqq 3m{e}_2+m{e}_3+2m{e}_4,$ $m{v}_3\coloneqq m{e}_1+2m{e}_2+m{e}_4,$ $m{v}_4\coloneqq 3m{e}_1+m{e}_2+m{e}_3+m{e}_4$

Sia E il sottospazio avente come base v_1 e v_2 (che sono linear. indip.)

Sia F il sottospazio avente come base v_3 e v_4 (che sono linear. indip.)

Obiettivo:

Vogliamo determinare una base per E+F e una base per $E\cap F$

Esercizio: Sia V uno spazio vettoriale avente come base e_1, e_2, e_3, e_4

Siano dati i vettori:
$$v_1 := 2e_2 + e_4$$
,

$$\boldsymbol{v}_2 \coloneqq 3\boldsymbol{e}_2 + \boldsymbol{e}_3 + 2\boldsymbol{e}_4,$$

Cerchiamo

$$\boldsymbol{v}_3 \coloneqq \boldsymbol{e}_1 + 2\boldsymbol{e}_2 + \boldsymbol{e}_4,$$

una base di E + F

$$\boldsymbol{v}_4 \coloneqq 3\boldsymbol{e}_1 + \boldsymbol{e}_2 + \boldsymbol{e}_3 + \boldsymbol{e}_4$$

Abbiamo che i vettori v_1 , v_2 , v_3 , v_4 sono generatori di E+F

$$A = \begin{pmatrix} 0 & 0 & 1 \\ 2 & 3 & 2 \\ 0 & 1 & 0 \\ 1 & 2 & 1 & 1 \end{pmatrix} \begin{pmatrix} e_1 \\ e_2 \\ e_3 \\ e_4 \end{pmatrix}$$
• Il minore di A in rosso ha $det \neq 0$
• $E + F$ ha una base formata dai vettori v_1, v_2, v_3

•
$$det A = 0$$

- vettori v_1, v_2, v_3
- dim(E + F) = 3

Esercizio: Sia V uno spazio vettoriale avente come base e_1, e_2, e_3, e_4

Siano dati i vettori:
$$m{v}_1\coloneqq 2m{e}_2+m{e}_4,$$
 Cerchiamo $m{v}_2\coloneqq 3m{e}_2+m{e}_3+2m{e}_4,$ una base di $E\cap F$ $m{v}_3\coloneqq m{e}_1+2m{e}_2+m{e}_4,$ $m{v}_4\coloneqq 3m{e}_1+m{e}_2+m{e}_3+m{e}_4$ $m{dim}(E\cap F)=1$

$$\dim(E \cap F) = \dim E + \dim F - \dim(E + F) = 2 + 2 - 3 = 1$$

Un vettore $v \in E$ se e solo se $v = h_1 v_1 + h_2 v_2$ per h_1 e $h_2 \in R$

Un vettore $v \in F$ se e solo se $v = k_1 v_3 + k_2 v_4$ per k_1 e $k_2 \in R$

Da cui v appartiene a $E \cap F$ se e solo se $h_1 v_1 + h_2 v_2 = k_1 v_3 + k_2 v_4$

$$h_1 v_1 + h_2 v_2 - k_1 v_3 - k_2 v_4 = 0$$

Ponendo $h_3 = -k_1$ e $h_4 = -k_2$, si ha:

$$h_1 v_1 + h_2 v_2 + h_3 v_3 + h_4 v_4 = 0$$

Esercizio: Sia V uno spazio vettoriale avente come base e_1 , e_2 , e_3 , e_4

Siano dati i vettori:
$$m{v}_1\coloneqq 2m{e}_2+m{e}_4,$$
 Cerchiamo $m{v}_2\coloneqq 3m{e}_2+m{e}_3+2m{e}_4,$ una base di $E\cap F$ $m{v}_3\coloneqq m{e}_1+2m{e}_2+m{e}_4,$ $m{v}_4\coloneqq 3m{e}_1+m{e}_2+m{e}_3+m{e}_4$ $m{dim}(E\cap F)=1$

$$\dim(E \cap F) = \dim E + \dim F - \dim(E + F) = 2 + 2 - 3 = 1$$

Un vettore $v \in E$ se e solo se $v = h_1 v_1 + h_2 v_2$ per h_1 e $h_2 \in R$

Un vettore $v \in F$ se e solo se $v = k_1 v_3 + k_2 v_4$ per k_1 e $k_2 \in R$

Da cui v appartiene a $E \cap F$ se e solo se $h_1 v_1 + h_2 v_2 = k_1 v_3 + k_2 v_4$

Ponendo $h_3 = -k_1$ e $h_4 = -k_2$, si ha: $h_1 v_1 + h_2 v_2 + h_3 v_3 + h_4 v_4 = 0$

Sostituendo v_1 , v_2 , v_3 , v_4 e riordinando per e_1 , e_2 , e_3 , e_4 si ottiene:

$$(h_3+3h_4)\mathbf{e}_1 + (2h_1+3h_2+2h_3+h_4)\mathbf{e}_2 + (h_2+h_4)\mathbf{e}_3 + (h_1+2h_2+h_3+h_4)\mathbf{e}_4 = \mathbf{0}$$

Esercizio: Sia V uno spazio vettoriale avente come base e_1, e_2, e_3, e_4

Siano dati i vettori:
$$m{v}_1\coloneqq 2m{e}_2+m{e}_4,$$
 Cerchiamo $m{v}_2\coloneqq 3m{e}_2+m{e}_3+2m{e}_4,$ una base di $E\cap F$ $m{v}_3\coloneqq m{e}_1+2m{e}_2+m{e}_4,$ $m{v}_4\coloneqq 3m{e}_1+m{e}_2+m{e}_3+m{e}_4$ $m{dim}(E\cap F)=1$

$$(h_3+3h_4)\mathbf{e}_1+(2h_1+3h_2+2h_3+h_4)\mathbf{e}_2+(h_2+h_4)\mathbf{e}_3+(h_1+2h_2+h_3+h_4)\mathbf{e}_4=\mathbf{0}$$

La combinazione lineare di e_1 , e_2 , e_3 , e_4 (che sono linear. indipend.) è nulla se e solo se i coefficienti sono tutti nulli, ovvero il sistema:

$$\begin{cases} h_3 + 3h_4 = 0 \\ 2h_1 + 3h_2 + 2h_3 + h_4 = 0 \\ h_2 + h_4 = 0 \\ h_1 + 2h_2 + h_3 + h_4 = 0 \end{cases} A = \begin{pmatrix} 0 & 0 & 1 & 3 \\ 2 & 3 & 2 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 2 & 1 & 1 \end{pmatrix}$$
le soluzioni del sistema dipendono da **un** parametro
$$rk A = 3$$

Esercizio: Sia V uno spazio vettoriale avente come base e_1, e_2, e_3, e_4

Siano dati i vettori:
$$m{v}_1\coloneqq 2m{e}_2+m{e}_4,$$
 Cerchiamo $m{v}_2\coloneqq 3m{e}_2+m{e}_3+2m{e}_4,$ una base di $E\cap F$ $m{v}_3\coloneqq m{e}_1+2m{e}_2+m{e}_4,$ $m{v}_4\coloneqq 3m{e}_1+m{e}_2+m{e}_3+m{e}_4$ $m{dim}(E\cap F)=1$

$$(h_3+3h_4)\mathbf{e}_1+(2h_1+3h_2+2h_3+h_4)\mathbf{e}_2+(h_2+h_4)\mathbf{e}_3+(h_1+2h_2+h_3+h_4)\mathbf{e}_4=\mathbf{0}$$

La combinazione lineare di e_1 , e_2 , e_3 , e_4 (che sono linear. indipend.) è nulla se e solo se i coefficienti sono tutti nulli, ovvero il sistema:

$$\begin{cases} h_3 + 3h_4 = 0 & (h_1, h_2, h_3, h_4) = (4t, -t, -3t, t) \\ 2h_1 + 3h_2 + 2h_3 + h_4 = 0 & \mathbf{v} = 4t\mathbf{v}_1 - t\mathbf{v}_2 = \\ h_2 & + h_4 = 0 & = 4t(2\mathbf{e}_2 + \mathbf{e}_4) - t(3\mathbf{e}_2 + \mathbf{e}_3 + 2\mathbf{e}_4) \\ h_1 + 2h_2 + h_3 + h_4 = 0 & \mathbf{v} = 5t\mathbf{e}_2 - t\mathbf{e}_3 + 2t\mathbf{e}_4 \text{ base di } \mathbf{E} \cap \mathbf{F} \end{cases}$$

Esercizio: Si considerino i seguenti sottospazi E e F di M(2, 2, R):

$$E \coloneqq \left\{ \begin{pmatrix} a & b \\ b & 0 \end{pmatrix} \mid a \in \mathbb{R}, b \in \mathbb{R} \right\},$$

$$F \coloneqq \left\{ \begin{pmatrix} a & a \\ a & b \end{pmatrix} \mid a \in \mathbb{R}, b \in \mathbb{R} \right\}.$$

$$A \coloneqq \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$

La matrice A appartiene a E + F?

A appartiene a E + F se e solo se esistono una matrice M in E e una matrice N in F tali che A = M + N.

$$M := \begin{pmatrix} a & b \\ b & 0 \end{pmatrix} \qquad M + N = \begin{pmatrix} a + a' & b + a' \\ b + a' & b' \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$

$$N := \begin{pmatrix} a' & a' \\ a' & b' \end{pmatrix} \qquad a + a' = 1, \quad b + a' = 1, \quad b + a' = 0 \text{ e } b' = 0$$

$$\text{sono in contraddizione}$$

Esercizio: Si considerino i seguenti sottospazi E e F di M(2, 2, R):

$$E := \left\{ \begin{pmatrix} a & b \\ b & 0 \end{pmatrix} \mid a \in \mathbb{R}, b \in \mathbb{R} \right\},$$

$$F := \left\{ \begin{pmatrix} a & a \\ a & b \end{pmatrix} \mid a \in \mathbb{R}, b \in \mathbb{R} \right\}.$$

$$A := \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$

La matrice A appartiene a E + F?

A appartiene a E + F se e solo se esistono una matrice M in E e una matrice N in F tali che A = M + N.

$$\begin{aligned} M &\coloneqq \begin{pmatrix} a & b \\ b & 0 \end{pmatrix} & M + N = \begin{pmatrix} a + a' & b + a' \\ b + a' & b' \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \\ N &\coloneqq \begin{pmatrix} a' & a' \\ a' & b' \end{pmatrix} & a + a' = 1, \ b + a' = 1, \ b + a' = 0 \ e \ b' = 0 \\ &\text{Segue che la matrice } A \ \underline{\text{non}} \ \text{appartiene a} \ E + F \end{aligned}$$

Esercizio: Si considerino i seguenti sottospazi E e F di M(2, 2, R):

$$E := \left\{ \begin{pmatrix} a & b \\ b & 0 \end{pmatrix} \mid a \in \mathbb{R}, b \in \mathbb{R} \right\},$$

$$F := \left\{ \begin{pmatrix} a & a \\ a & b \end{pmatrix} \mid a \in \mathbb{R}, b \in \mathbb{R} \right\}.$$

$$B := \begin{pmatrix} 3 & 2 \\ 2 & 1 \end{pmatrix}$$

La matrice B appartiene a E + F?

B appartiene a E + F se e solo se esistono una matrice M in E e una matrice N in F tali che B = M + N.

$$\begin{aligned} M &\coloneqq \begin{pmatrix} a & b \\ b & 0 \end{pmatrix} & M + N = \begin{pmatrix} a + a' & b + a' \\ b + a' & b' \end{pmatrix} = \begin{pmatrix} 3 & 2 \\ 2 & 1 \end{pmatrix} \\ N &\coloneqq \begin{pmatrix} a' & a' \\ a' & b' \end{pmatrix} & a + a' = 3, \ b + a' = 2, \ b + a' = 2 \ e \ b' = 1 \\ \text{Il sistema (di 4 equazioni) risultante è risolubile} \end{aligned}$$

Esercizio: Si considerino i seguenti sottospazi E e F di M(2, 2, R):

$$E := \left\{ \begin{pmatrix} a & b \\ b & 0 \end{pmatrix} \mid a \in \mathbb{R}, b \in \mathbb{R} \right\},$$

$$F := \left\{ \begin{pmatrix} a & a \\ a & b \end{pmatrix} \mid a \in \mathbb{R}, b \in \mathbb{R} \right\}.$$

$$B := \begin{pmatrix} 3 & 2 \\ 2 & 1 \end{pmatrix}$$

La matrice B appartiene a E + F?

B appartiene a E + F se e solo se esistono una matrice M in E e una matrice N in F tali che B = M + N.

$$M \coloneqq \begin{pmatrix} a & b \\ b & 0 \end{pmatrix} \qquad M + N = \begin{pmatrix} a + a' & b + a' \\ b + a' & b' \end{pmatrix} = \begin{pmatrix} 3 & 2 \\ 2 & 1 \end{pmatrix}$$

$$N \coloneqq \begin{pmatrix} a' & a' \\ a' & b' \end{pmatrix} \qquad \begin{array}{l} a + a' = 3, \ b + a' = 2, \ b + a' = 2 \ e \ b' = 1 \\ \text{Segue che la matrice } B \text{ appartiene a } E + F \end{array}$$

Esercizio: Si considerino i seguenti sottospazi E e F di \mathbb{R}^4 :

$$E := \{(x_1, x_2, x_3, x_4) \mid x_1 + x_3 = x_2 + x_4 = 0\},\$$

$$F := \{(x_1, x_2, x_3, x_4) \mid x_1 + x_2 = x_3 + x_4 = 0\}.$$

Stabilire se i vettori (1, 3, 1, 0) e (1, 0, 1, -2) appartengono a E + F.

Dato un generico vettore (x_1, x_2, x_3, x_4) di E, si ha $x_1 + x_2 + x_3 + x_4 = 0$

Segue possiamo riscrivere questo vettore: $(x_1, x_2, -x_1, -x_2)$.

Analogamente, si ha il generico vettore di $F:(y_1, -y_1, y_3, -y_3)$.

$$(1,3,1,0) = (x_1, x_2, -x_1, -x_2) + (y_1, -y_1, y_3, -y_3)$$

$$\begin{cases} x_1 + y_1 = 1 \\ x_2 - y_1 = 3 \\ -x_1 + y_3 = 1 \\ -x_2 - y_3 = 0 \end{cases}$$

Svolgendo i calcoli si ottiene che il sistema <u>non</u> è risolubile.

Segue (1,3,1,0) non appartiene a E + F.

Esercizio: Si considerino i seguenti sottospazi E e F di \mathbb{R}^4 :

$$E \coloneqq \{(x_1, x_2, x_3, x_4) \mid x_1 + x_3 = x_2 + x_4 = 0\},\$$

$$F := \{(x_1, x_2, x_3, x_4) \mid x_1 + x_2 = x_3 + x_4 = 0\}.$$

Stabilire se i vettori (1, 3, 1, 0) e (1, 0, 1, -2) appartengono a E + F.

Dato un generico vettore (x_1, x_2, x_3, x_4) di E, si ha $x_1 + x_2 + x_3 + x_4 = 0$

Segue possiamo riscrivere questo vettore: $(x_1, x_2, -x_1, -x_2)$.

Analogamente, si ha il generico vettore di $F:(y_1, -y_1, y_3, -y_3)$.

$$(1,0,1,-2) = (x_1, x_2, -x_1, -x_2) + (y_1, -y_1, y_3, -y_3)$$

$$\begin{cases} x_1 + y_1 = 1 \\ x_2 - y_1 = 0 \\ -x_1 + y_3 = 1 \\ -x_2 - y_3 = -2 \end{cases}$$

23/11/20

Svolgendo i calcoli si ottiene che stavolta il sistema è risolubile.

Segue (1,0,1,-2) appartiene a E+F.

Esercizio: Sia U il sottospazio vettoriale di \mathbb{R}^4 generato dai vettori $u_1 := (2, 1, 3, 1), u_2 := (1, 0, 2, 0), u_3 := (4, 2, 6, 2)$

Sia V il sottospazio generato da $v_1 := (1, 0, 2, 1), v_2 := (1, 1, 1, -1), <math>v_3 := (2, 1, 3, 0), v_4 := (1, -1, 0, 0).$

Determinare **una base per** U e la sua dimensione, una base per V e la sua dimensione. Determinare poi una base per $U \cap V$ e U + V.

$$A := \begin{pmatrix} 2 & 1 & 4 \\ 1 & 0 & 2 \\ 3 & 2 & 6 \\ 1 & 0 & 2 \end{pmatrix} \xrightarrow{\text{Gauss}} \begin{pmatrix} 2 & 1 & 4 \\ \hline 0 & -\frac{1}{2} & 0 \\ \hline 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$u_1 \quad u_2 \quad u_3$$

rispetto alla base canonica di *R*⁴

- dim U = 2
- una base di U è data dai vettori u_1 e u_2

Esercizio: Sia U il sottospazio vettoriale di \mathbb{R}^4 generato dai vettori $u_1 := (2, 1, 3, 1), u_2 := (1, 0, 2, 0), u_3 := (4, 2, 6, 2)$

Sia V il sottospazio generato da $v_1 := (1, 0, 2, 1), v_2 := (1, 1, 1, -1), <math>v_3 := (2, 1, 3, 0), v_4 := (1, -1, 0, 0).$

Determinare una base per U e la sua dimensione, **una base per** V e la sua dimensione. Determinare poi una base per $U \cap V$ e U + V.

$$B := \begin{pmatrix} 1 & 1 & 2 & 1 \\ 0 & 1 & 1 & -1 \\ 2 & 1 & 3 & 0 \\ 1 & -1 & 0 & 0 \end{pmatrix} \xrightarrow{\text{Gauss}} \begin{pmatrix} 1 & 1 & 2 & 1 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 0 & -3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$v_1 \quad v_2 \quad v_3 \quad v_4$$

rispetto alla base canonica di *R*⁴

- dim V = 3
- una base di V è data dai vettori v_1 , v_2 e v_4

Esercizio: Sia U il sottospazio vettoriale di \mathbb{R}^4 generato dai vettori $u_1 := (2, 1, 3, 1), u_2 := (1, 0, 2, 0), u_3 := (4, 2, 6, 2)$

Sia V il sottospazio generato da $v_1 := (1, 0, 2, 1), v_2 := (1, 1, 1, -1),$ $v_3 := (2, 1, 3, 0), v_4 := (1, -1, 0, 0).$

Determinare una base per U e la sua dimensione, una base per V e la sua dimensione. Determinare poi una base per $U \cap V$ e U + V.

$$v = h_1 u_1 + h_2 u_2 = k_1 v_1 + k_2 v_2 + k_3 v_4$$

$$h_1(2, 1, 3, 1) + h_2(1, 0, 2, 0) = k_1(1, 0, 2, 1) + k_2(1, 1, 1, -1) + k_3(1, -1, 0, 0)$$

$$(2h_1 + h_2, h_1, 3h_1 + 2h_2, h_1) = (k_1 + k_2 + k_3, k_2 - k_3, 2k_1 + k_2, k_1 - k_2)$$

$$\begin{cases} 2h_1 + h_2 - k_1 - k_2 - k_3 = 0 \\ h_1 - k_2 + k_3 = 0 \end{cases} \xrightarrow{h_1 = t, h_2 = t, k_1 = 2t, k_2 = t, k_3 = 0}$$

$$3h_1 + 2h_2 - 2k_1 - k_2 = 0$$

$$h_1 - k_1 + k_2 = 0$$

$$t(2, 1, 3, 1) + t(1, 0, 2, 0) = t(3, 1, 5, 1)$$

$$(2k_1 + h_2 - k_1 - k_2 - k_3 = 0) = 0$$

$$(2k_1 + h_2 - k_1 - k_2 - k_3 = 0) = 0$$

$$(2k_1 + h_2 - k_1 - k_2 - k_3 = 0) = 0$$

$$(2k_1 + h_2 - k_1 - k_2 - k_3 = 0) = 0$$

$$(2k_1 + h_2 - k_1 - k_2 - k_3 = 0) = 0$$

$$(2k_1 + h_2 - k_1 - k_2 - k_3 = 0) = 0$$

$$(2k_1 + h_2 - k_1 - k_2 - k_3 = 0) = 0$$

$$(2k_1 + h_2 - k_1 - k_2 - k_3 = 0) = 0$$

$$(2k_1 + h_2 - k_1 - k_2 - k_3 = 0) = 0$$

$$(2k_1 + h_2 - k_1 - k_2 - k_3 = 0) = 0$$

$$(2k_1 + h_2 - k_1 - k_2 - k_3 = 0) = 0$$

$$(2k_1 + h_2 - k_1 - k_2 - k_3 = 0) = 0$$

$$(2k_1 + h_2 - k_1 - k_2 - k_3 = 0) = 0$$

$$(2k_1 + h_2 - k_1 - k_2 - k_3 = 0) = 0$$

$$(2k_1 + h_2 - k_1 - k_2 - k_3 = 0) = 0$$

$$(2k_1 + h_2 - k_1 - k_2 - k_3 = 0) = 0$$

$$(2k_1 + h_2 - k_1 - k_2 - k_3 = 0) = 0$$

$$(2k_1 + h_2 - k_1 - k_2 - k_3 = 0) = 0$$

$$(2k_1 + h_2 - k_1 - k_2 - k_3 = 0) = 0$$

$$(2k_1 + h_2 - k_1 - k_2 - k_3 = 0) = 0$$

$$(2k_1 + h_2 - k_1 - k_2 - k_3 = 0) = 0$$

$$(2k_1 + h_2 - k_1 - k_2 - k_3 = 0) = 0$$

$$(2k_1 + h_2 - k_1 - k_2 - k_3 = 0) = 0$$

$$(2k_1 + h_2 - k_1 - k_2 - k_3 = 0) = 0$$

$$(2k_1 + h_2 - k_1 - k_2 - k_3 = 0) = 0$$

$$(2k_1 + h_2 - k_1 - k_2 - k_3 = 0) = 0$$

$$(2k_1 + h_2 - k_1 - k_2 - k_3 = 0) = 0$$

$$(2k_1 + h_2 - k_1 - k_2 - k_3 = 0) = 0$$

$$(2k_1 + h_2 - k_1 - k_2 - k_3 = 0) = 0$$

$$(2k_1 + h_2 - k_1 - k_2 - k_3 = 0) = 0$$

$$(2k_1 + h_2 - k_1 - k_2 - k_3 = 0) = 0$$

$$(2k_1 + h_2 - k_1 - k_2 - k_3 = 0) = 0$$

$$(2k_1 + h_2 - k_1 - k_2 - k_3 = 0) = 0$$

$$(2k_1 + h_2 - k_1 - k_2 - k_3 = 0) = 0$$

$$(2k_1 + h_2 - k_1 - k_2 - k_3 = 0)$$

$$(2k_1 + h_2 - k_1 - k_2 - k_3 = 0)$$

$$(2k_1 + h_2 - k_1 - k_2 - k_3 = 0)$$

$$(2k_1 + h_2 - k_1 - k_2 - k_3 = 0)$$

$$(2k_1 + h_2 - k_3 - k_3 - k_4 - k_4 - k_4 - k_4 - k_4$$

Esercizio: Sia U il sottospazio vettoriale di \mathbb{R}^4 generato dai vettori $u_1 := (2, 1, 3, 1), u_2 := (1, 0, 2, 0), u_3 := (4, 2, 6, 2)$

Sia V il sottospazio generato da $v_1 := (1, 0, 2, 1), v_2 := (1, 1, 1, -1), <math>v_3 := (2, 1, 3, 0), v_4 := (1, -1, 0, 0).$

Determinare una base per U e la sua dimensione, una base per V e la sua dimensione. Determinare poi **una base per** $U \cap V$ e U + V.

$$\mathbf{v} = h_1 \mathbf{u}_1 + h_2 \mathbf{u}_2 = k_1 \mathbf{v}_1 + k_2 \mathbf{v}_2 + k_3 \mathbf{v}_4$$

$$t(2,1,3,1) + t(1,0,2,0) = t(3,1,5,1)$$
 $dim(U \cap V) = 1$

(3, 1, 5, 1) costituisce una base di $U \cap V$

Esercizio: Sia U il sottospazio vettoriale di \mathbb{R}^4 generato dai vettori $u_1 := (2, 1, 3, 1), u_2 := (1, 0, 2, 0), u_3 := (4, 2, 6, 2)$

Sia V il sottospazio generato da $v_1 := (1, 0, 2, 1), v_2 := (1, 1, 1, -1), <math>v_3 := (2, 1, 3, 0), v_4 := (1, -1, 0, 0).$

Determinare una base per U e la sua dimensione, una base per V e la sua dimensione. Determinare poi **una base per** $U \cap V$ e U + V.

$$\mathbf{v} = h_1 \mathbf{u}_1 + h_2 \mathbf{u}_2 = k_1 \mathbf{v}_1 + k_2 \mathbf{v}_2 + k_3 \mathbf{v}_4$$

$$t(2,1,3,1) + t(1,0,2,0) = t(3,1,5,1)$$
 $dim(U \cap V) = 1$

$$dim(U+V) = dim\ U + dim\ V - dim\ (U \cap V) = 2 + 3 - 1 = 4$$

Segue che $U + V = R^4$

Allora una base per U + Vè, ad esempio, la base canonica di R^4 .