组会

林佳兴 2020-12-12

EMNLP 2020

Two are Better than One: Joint Entity and Relation Extraction with Table-Sequence Encoders

Jue Wang¹ and Wei Lu²

¹College of Computer Science and Technology, Zhejiang University
²StatNLP Research Group, Singapore University of Technology and Design
zjuwangjue@zju.edu.cn, luwei@sutd.edu.sg

Motivation

- Suffer from feature confusion as they use a single representation for the two tasks NER and RE.
- Underutilize the table structure as they usually convert it to a sequence.

Contribution

- We propose to learn two separate encoders a table encoder and a sequence encoder. They interact with each other, and can capture task-specific information for the NER and RE tasks.
- We propose to use multidimensional recurrent neural networks to better exploit the structural information of the table representation.
- We effectively leverage the word-word interaction information carried in the attention weights from BERT, which further improves the performance.

Architecture

MD-RNN

$$T_{l,i,j} = GRU(X_{l,i,j}, T_{l-1,i,j}, T_{l,i-1,j}, T_{l,i,j-1})$$
 (3)

$$T_{l,i,j}^{prev} = [T_{l-1,i,j}; T_{l,i-1,j}; T_{l,i,j-1}], \in \mathbb{R}^{3H}$$

$$r_{l,i,j} = \sigma([X_{l,i,j}; T_{l,i,j}^{prev}] W^r + b^r)), \in \mathbb{R}^{H}$$

$$T_{l,i,j}^{prev} = (18)$$

$$+ r_{l,i,j} \in \mathbb{R}^{H}$$

$$(19)$$

$$T_{l,i,j}^{prev} = \lambda_{l,i,j,0}$$

$$+ \lambda_{l,i,j,1}$$

$$+ \lambda_{l,i,j,1}$$

$$+ \lambda_{l,i,j,1}$$

$$+ \lambda_{l,i,j,2}$$

$$\tilde{\lambda}_{l,i,j,m} = [X_{l,i,j}; T_{l,i,j}^{prev}] W_m^{\lambda} + b_m^{\lambda}, \in \mathbb{R}^{H}$$

$$\lambda_{l,i,j,0}, \lambda_{l,i,j,1}, \lambda_{l,i,j,2} =$$

$$\text{softmax}(\tilde{\lambda}_{l,i,i,0}, \tilde{\lambda}_{l,i,i,1}, \tilde{\lambda}_{l,i,i,2})$$

$$(22)$$

$$\tilde{T}_{l,i,j} = \tanh(X_{l,i,j}W^{x} + r_{l,i,j} \odot (T_{l,i,j}^{prev}W^{p}) + b^{h}), \in \mathbb{R}^{H} \quad (23)$$

$$\tilde{T}_{l,i,j}^{prev} = \lambda_{l,i,j,0} \odot T_{l-1,i,j} + \lambda_{l,i,j,1} \odot T_{l,i-1,j} + \lambda_{l,i,j,2} \odot T_{l,i,j-1}, \in \mathbb{R}^{H} \quad (24)$$

$$T_{l,i,j} = z_{l,i,j} \odot \tilde{T}_{l,i,j} + (1 - z_{l,i,j}) \odot \tilde{T}_{l,i,j}^{prev}, \in \mathbb{R}^{H}$$

MD-RNN

$$T_{l,i,j}^{(a)} = GRU^{(a)}(X_{l,i,j}, T_{l-1,i,j}^{(a)}, T_{l,i-1,j}^{(a)}, T_{l,i,j-1}^{(a)}) \Big|_{x_4}^{x_3}$$

$$T_{l,i,j}^{(c)} = GRU^{(c)}(X_{l,i,j}, T_{l-1,i,j}^{(c)}, T_{l,i+1,j}^{(c)}, T_{l,i,j+1}^{(c)})$$

$$T_{l,i,j} = [T_{l,i,j}^{(a)}; T_{l,i,j}^{(c)}]$$

Setting	NER	RE
Unidirectional	89.6	66.9
Bidirectional	<u>89.5</u>	<u>67.6</u>
Quaddirectional	89.7	67.6
Layer-wise only	89.3	63.9
Bidirectional w/o column	89.5	67.2
Bidirectional w/o row	89.3	67.4
Bidirectional w/o layer	89.3	66.7

Train

$$P_{\theta}(\mathbf{Y}^{\text{NER}}) = \operatorname{softmax}(\operatorname{Linear}(\mathbf{S}_L))$$

 $P_{\theta}(\mathbf{Y}^{\text{RE}}) = \operatorname{softmax}(\operatorname{Linear}(\mathbf{T}_L))$

$$\mathcal{L}^{ ext{NER}} = \sum_{i \in [1,N]} -\log P_{ heta}(Y_i^{ ext{NER}} = y_i^{ ext{NER}})$$
 $\mathcal{L}^{ ext{RE}} = \sum_{i,j \in [1,N]; i
eq j} -\log P_{ heta}(Y_{i,j}^{ ext{RE}} = y_{i,j}^{ ext{RE}})$

Data	Model	NER	RE	RE+
	Li and Ji (2014) ⊽	79.7	48.3	45.3
	Katiyar and Cardie (2017)	79.6	49.3	45.7
	Bekoulis et al. (2018b)	81.2	-	47.1
CE04	Bekoulis et al. (2018a) ⊽	81.6	-	47.5
Ç	Miwa and Bansal (2016)	81.8	-	48.4
4	Li et al. (2019)	83.6	-	49.4
	Luan et al. (2019)	87.4	59.7	-
	Ours	88.6	63.3	59.6
	Li and Ji (2014) ⊽	80.8	52.1	49.5
	Miwa and Bansal (2016)	83.4	-	55.6
	Katiyar and Cardie (2017)	82.6	55.9	53.6
	Zhang et al. (2017)	83.6	-	57.5
ACE05	Sun et al. (2018)	83.6	-	59.6
Ç	Li et al. (2019) ⊽	84.8	-	60.2
4	Dixit and Al (2019) <i>∀</i>	86.0	62.8	-
	Luan et al. (2019)	88.4	63.2	-
	Wadden et al. (2019)	88.6	63.4	-
	Ours	89.5	67.6	64.3

ADE	Bekoulis et al. (2018a) ▲ Tran and Kavuluru (2019) ▲ Eberts and Ulges (2019) ▲	86.7 87.1 89.3		75.5 77.3 79.2
ADE	Bekoulis et al. (2018a) ▲	86.7		75.5
DE	` ,			
>		00.		
	Bekoulis et al. (2018b) ▲	86.4	_	74.6
	Li et al. (2017) ▲	84.6	_	71.4
	Li et al. (2016) ▲	79.5	-	63.4
	Ours▲	86.9	75.8	75.4
	Ours⊽	90.1	73.8	73.6
	Eberts and Ulges (2019)▲	86.3	-	72.9
•	Eberts and Ulges (2019)	88.9	-	71.5
Col	Li et al. (2019)⊽	87.8	-	68.9
CoNLL04	Zhang et al. (2017)⊽	85.6	-	67.8
50	Nguyen and Verspoor (2019)▲	86.2	-	64.4
	Tran and Kavuluru (2019)▲	84.2	-	62.3
	Bekoulis et al. (2018b)▲	83.9	-	62.0
	Bekoulis et al. (2018a)▲	83.6	-	62.0
	Miwa and Sasaki (2014)⊽	80.7	-	61.0

LM	+:	$oldsymbol{x}^\ell$	$+oldsymbol{x}^\ell + oldsymbol{T}^\ell$		
	NER	RE	NER	RE	
ELMo	86.4	64.3	-	-	
BERT	87.8	64.8	88.2	67.4	
RoBERTa	88.9	66.2	89.3	67.6	
ALBERT	89.4	66.0	89.5	67.6	

Table 2: Using different pre-trained language models on ACE05. $+x^{\ell}$ uses the contextualized word embeddings; $+T^{\ell}$ uses the attention weights.

Setting	NER	RE	RE (gold)
Default	89.5	67.6	70.4
w/o Relation Loss	89.4	-	-
w/o Table Encoder	88.4	-	-
w/o Entity Loss	-	-	69.8
w/o Sequence Encoder	-	-	69.2
w/o Bi-Interaction	88.2	66.3	69.2
NER on diagonal	89.4	67.1	70.2
w/o Sequence Encoder	88.6	67.0	70.2

Table 3: Ablation of the two encoders on ACE05. Gold entity spans are given in RE (gold).

Figure 6: Comparison between ground truth and selected heads of ALBERT and table-guided attention. The sentence is randomly selected from the development set of ACE05.

Figure 7: Probing intermediate states

COLING 2020

Span-based Joint Entity and Relation Extraction with Attention-based Span-specific and Contextual Semantic Representations

Bin Ji[†], Jie Yu[†], Shasha Li^{*}, Jun Ma, Qingbo Wu, Yusong Tan, Huijun Liu^{*} College of Computer,

National University of Defense Technology, Changsha, China {jibin, yj, shashali, majun}@nudt.edu.cn {qingbowu, yusongtan, liuhuijun}@nudt.edu.cn

Problems

Sentence 1: The army said troops fired, and hit a boy, after [a Palestinian youth] PER threw a stone,...

Sentence 2: The weak score is primarily the result of [Starbucks] or current strategy of increasing equity ownership of [several foreign subsidiaries] or current strategy of increasing equity ownership of [several foreign subsidiaries] or current strategy of increasing equity ownership of [several foreign subsidiaries] or current strategy of increasing equity ownership of [several foreign subsidiaries] or current strategy of increasing equity ownership of [several foreign subsidiaries] or current strategy of increasing equity ownership of [several foreign subsidiaries] or current strategy of increasing equity ownership of [several foreign subsidiaries] or current strategy of increasing equity ownership of [several foreign subsidiaries] or current strategy of increasing equity ownership of [several foreign subsidiaries] or current strategy of increasing equity ownership of [several foreign subsidiaries] or current strategy or curre

Relation: <several foreign subsidiaries, Starbucks, **PART-WHOLE**>

Sentence 3: [Palestinians] GPE claim [all of the West Bank and Gaza] LOC for a state, ...

Relation: <all of the West Bank and Gaza, Palestinians, PART-WHOLE>

Encoder

$$\mathcal{B}_{\mathcal{S}} = [X_0, X_1, X_2, X_3, ..., X_n]$$

$$\mathcal{B}_{\mathbf{s}} = [X_i, X_{i+1}, X_{i+2}, ..., X_{i+j}]$$

NER

 $\mathcal{H}_{\mathbf{s}} = [X_i; X_{i+j}]$

$$egin{aligned} \mathcal{V}_{\mathbf{k}} &= \mathbf{MLP}_k(X_{\mathbf{k}}) & s.t. & \mathbf{k} \in [i, i+j] \ & lpha_{\mathbf{k}} &= rac{\mathbf{exp}(\mathcal{V}_{\mathbf{k}})}{\sum\limits_{m=i}^{i+j} \mathbf{exp}(\mathcal{V}_{\mathbf{m}})} \ & \mathcal{F}_{\mathbf{s}} &= \sum\limits_{m=i}^{i+j} lpha_{\mathbf{m}} X_{\mathbf{m}} & \mathcal{T}_{\mathbf{s}} &= \mathbf{Attention}(\mathcal{F}_{\mathbf{s}}, \mathcal{B}_{\mathcal{S}}, \mathcal{B}_{\mathcal{S}}) \end{aligned}$$

$$\mathcal{R}_{\mathbf{s}} = [\mathcal{T}_{\mathbf{s}}; \ \mathcal{F}_{\mathbf{s}}; \ \mathcal{H}_{\mathbf{s}}; \ \mathcal{W}_{i+1}]$$

$$y_{\mathbf{s}} = \mathbf{Softmax}(\mathbf{FFNN}(\mathcal{R}_{\mathbf{s}}))$$

RE

$$\mathcal{H}_{\mathbf{r}} = [\mathbf{FFNN}(\mathcal{R}_{s_1}); \mathbf{FFNN}(\mathcal{R}_{s_2})]$$

$$\mathcal{B}_{\mathbf{c}} = (X_m, X_{m+1}, X_{m+2}, \dots, X_{m+n})$$
 $\mathcal{F}_{\mathbf{r}} = \mathbf{Attention}(\mathcal{H}_{\mathbf{r}}, \mathcal{B}_{\mathbf{c}}, \mathcal{B}_{\mathbf{c}})$

$$\mathcal{T}_{\mathbf{r}} = \mathbf{Attention}(\mathcal{H}_{\mathbf{r}}, \mathcal{B}_{\mathcal{S}}, \mathcal{B}_{\mathcal{S}})$$

$$\mathcal{R}_{\mathbf{r}} = [\mathcal{H}_{\mathbf{r}}; \mathbf{FFNN}_{\mathcal{F}}(\mathcal{F}_{\mathbf{r}}); \mathbf{FFNN}_{\mathcal{T}}(\mathcal{T}_{\mathbf{r}})] \qquad \qquad y_{\mathbf{r}} = \mathbf{Softmax}(\mathbf{FFNN}(\mathcal{R}_{\mathbf{r}}))$$

$$\mathcal{L} = 0.4 \mathcal{L}^{\mathbf{s}} + 0.6 \mathcal{L}^{\mathbf{r}}$$

Dataset	Method	Entity			Relation		
Dataset	Methou	P	R	F1	P	R	F1
	Multi-turn QA †	84.7	84.9	84.8	64.8	56.2	60.2
ACE05	DyGIE ‡	-	-	88.4	-	-	63.2
	$\mathbf{SPAN}_{Multi-Head}$	89.32	89.86	89.59	71.22	60.19	65.24
	Multi-turn QA †	89.0	86.6	87.8	69.2	68.2	68.9
CoNLL04	SpERT ‡	88.25	89.64	88.94	73.04	70.00	71.47
	$\mathbf{SPAN}_{Multi-Head}$	90.11	90.36	90.23	76.96	71.88	74.33
	Relation-Metric †	86.16	88.08	87.11	77.36	77.25	77.29
ADE	SpERT ‡	88.99	89.59	89.28	77.77	79.96	78.84
	$\mathbf{SPAN}_{Multi-Head}$	89.88	91.32	90.59	79.56	81.93	80.73

$$Multi-Head\ attention:\ \mathbf{score} = rac{\mathcal{Q} \odot \mathcal{K}}{\sqrt{d_{\mathcal{K}}}}$$

 $Additive \ attention: \mathbf{score} = \mathcal{W}_1 \cdot \mathcal{Q} + \mathcal{W}_2 \cdot \mathcal{K}$

 $Dot-Product\ attention:\ \mathbf{score} = \mathcal{W} \cdot (\mathcal{Q} \odot \mathcal{K})$

General attention: $score = Q \cdot W \cdot K$

Method	A(ACE05		CoNLL04		ADE	
Memou	Entity	Relation	Entity	Relation	Entity	Relation	
	(F1)	(F1)	(F1)	(F1)	(F1)	(F1)	
$\overline{\mathbf{SPAN}_{Multi-Head}}$	89.59	65.24	90.23	74.33	90.59	80.73	
$\mathbf{SPAN}_{Dot-Product}$	87.94	62.88	88.23	70.89	88.15	77.31	
$\mathbf{SPAN}_{General}$	88.66	63.56	88.96	73.48	89.93	80.14	
$\mathbf{SPAN}_{Additive}$	89.07	64.53	89.17	71.36	89.68	79.75	

Method	Entity	Relation	Method	Entity	Relation
Method	(F1)	(F1)	Method	(F1)	(F1)
$\overline{\textbf{SPAN}_{Multi-Head}}$	88.10	62.13	$\overline{{\bf SPAN}_{Multi-Head}}$	88.10	62.13
-SpanSpecific	86.78	60.21	-local	87.96	60.56
-SentenceLevel	87.57	61.12	-SentenceLevel	88.21	61.77
base	85.80	59.00	base	87.91	59.66

Thank you