

Dados espaciais QuadTree para Pontos

Estruturas de Dados II

Jairo Francisco de Souza

NW	NE
SW	SE

NW (1)	NE (2)
SW (3)	SE (4)

NW	NE	
SW	SE	

			•••

Point Quadtrees

- Finkel e Benkley [1974]
- É implementada como uma generalização multidimensional de uma árvore binária de busca.
- Em duas dimensões cada ponto de dados é representado por um nó da quadtree: Tipo de dados com 7 campos:
 - Primeiros 4 campos representam os 4 quadrantes (ou direções)
 - NW (noroeste)
 - NE (nordeste)
 - SW (sudoeste)
 - SE (sudeste)

Se P é um ponteiro para um nó e l é um quadrante, então estes campos são referenciados SON(P, I)

- Coordenada X do ponto
- Coordenada Y do ponto
- Campo nome: contém informações descritivas sobre o nó, por exemplo, nome da cidade.

Point QuadTrees - Exemplo

Point QuadTrees - Exemplo (Quadrante)

Point QuadTrees - Cidades (pontos)

Registros são inseridos de forma semelhante à árvore binária de busca. A posição desejada é buscada de acordo com as coordenadas X e Y. Em cada nó uma comparação é feita e a subárvore apropriada (NE, NW, SW ou SE) é escolhida.

Quando chega-se na base da árvore (filho nulo), foi encontrada a posição desejada para inserir o registro.

Inserção na ordem: Chicago, Mobile, Toronto, Buffalo, Denver, Omaha, Atlanta e Miami.

Point QuadTrees - Exemplo

Ponto sobre a linha de um quadrante

- Regra adotada
 - Limites inferior e esquerdo de cada bloco são fechados
 - Limites superior e direito s\u00e3o abertos

Ponto sobre a linha de um quadrante

Regra adotada

 Limites inferior e esquerdo de cada bloco são fechados

• Limites superior e direito são abertos (100, 100) (0, 100)Exemplo: Chicago Inserir Memphis, (35, 40)Coordenadas (35, 20) (0, 0)(100, 0)

Ponto sobre a linha de um quadrante

Regra adotada

 Limites inferior e esquerdo de cada bloco são fechados

• Limites superior e direito são abertos (100, 100) (0, 100)Exemplo: Chicago Inserir Memphis, (35, 40)Coordenadas (35, 20) Memphis (35, 20)(0, 0)(100, 0)

Ponto sobre a linha de um quadrante

Regra adotada

 Limites inferior e esquerdo de cada bloco são fechados

Ponto sobre a linha de um quadrante

- Regra adotada
 - Limites inferior e esquerdo de cada bloco são fechados

 Limites superior e direito s\u00e3o abertos (100, 100)(0, 100)Exemplo: Chicago Inserir Memphis, (35, 40)Coordenadas (35, 20) Memphis (35, 40)Pertence ao SE de Chicago! (0, 0)(100, 0)

Algoritmo de comparação

```
quadrant procedure PT_COMPARE(P,R);

/* Return the quadrant of the point quadtree rooted at node R in which node P belongs. */
begin

value pointer node P,R;

return(If XCOORD(P) < XCOORD(R) then

If YCOORD(P) < YCOORD(R) then 'SW'

else 'NW'

else if YCOORD(P) < YCOORD(R) then 'SE'

else 'NE');
end;
```

Algoritmo de inserção

```
procedure PT_INSERT(P,R);
/* Attempt to insert node P in the point quadtree rooted at node R. */
begin
  value pointer node P;
  reference pointer node R;
 pointer node F;
 quadrant Q;
 If null(R) then R ← P /* The tree at R is initially empty */
 else
   begin
    while not(null(R)) and not(EQUAL_COORD(P,R)) do
     begin
       F ← R; /* Remember the father */
      Q ← PT_COMPARE(P,R);
      R \leftarrow SON(R,Q):
     end;
    if null(R) then SON(F,Q) ← P; /* P is not already in the tree */
  end;
end:
```

Exercício

- Mostre a QuadTree resultante após a inserção dos pontos:
 - (A, 51,30)
 - (B, 13,70)
 - (C, 81,40)
 - (D, 81,70)
 - (E, 02,25)
 - (F, 01,01)
 - (G, 99,99)
 - (H, 63,30)
 - (I, 70,67)
 - (J, 50,50)

- Uma QuadTree pode também ser utilizada para preencher polígonos
- Subdividir o espaço
 - Se o quadrante for homogêneo ou se o nível de detalhe foi alcançado, pára a divisão
 - Caso contrário, continue dividindo

 As divisões são representadas na árvore como nós caso sejam quadrantes heterogêneos e como folhas caso sejam quadrantes homogêneos.

E = Empty

F = Full

P = Partially full

OctTree

OctTree para polígonos

A mesma ideia da QuadTree para polígonos

OctTree

