dg 増強

よの

2023年8月24日

概要

目次

1 ねじれ複体 1

1 ねじれ複体

加法圏から複体の圏を構成したように、dg 圏からねじれ複体の圏を構成する. Aを dg 圏とする.

定義 1.1 (ねじれ複体). $\{E_i\}_{i\in\mathbb{Z}}$ を \mathcal{A} の対象, $q_{i,j}:E_i\to E_j$ を次数 i-j+1 の \mathcal{A} の射とする. $\{E_i\}_{i\in\mathbb{Z}}$ が有限個を除いて 0 であり,

$$dq_{i,j} + \sum_{k} q_{k,j} q_{i,k} = 0$$

を満たすとき、組 $\{(E_i)_{i\in\mathbb{Z}},q_{i,j}:E_i\to E_j\}$ を A 上のねじれ複体 (twisted complex) という.

例 1.2. A が加法圏 B 上の複体の圏のとき、ねじれ複体は通常の複体に一致する.

Proof. 加法圏は自明な微分を持つので, dq=0 である. よって, ねじれ複体の条件は $q^2=0$ となり, 通常の複体の定義に一致する.

dg 圏上のねじれ複体の圏は dg 圏の構造を持つ.

補題 1.3. ねじれ複体 $C=\{E_i,q_{i,j}\},C'=\{E_i',q_{i,j}'\}$ に対して

$$\operatorname{Hom}^k(C,C') := \bigoplus_{l+j-i=k} \operatorname{Hom}_{\mathcal{A}}^l(E_i,E'j)$$

として、任意の $f \in \operatorname{Hom}_{\mathcal{A}}^{l}(E_{i},E'j)$ に対して

$$df := d_{\mathcal{A}}f + \sum_{m} \left(q_{j,m}f + (-1)^{l(i-m+1)} f q_{m,i} \right)$$

と定義すると、ねじれ複体の圏は dg 圏の構造を持つ.

定義 1.4. ねじれ複体の次数 0 の閉じた射をねじれ射 (twisted morphism) という.

 \mathcal{A}^{\oplus} を \mathcal{A} に対象の有限直和を付け加えた圏とする. \mathcal{A}^{\oplus} 上のねじれ複体の \deg 圏を $\operatorname{Pre-Tr}(\mathcal{A})$, その 0 次コホモロジー圏を $\operatorname{Tr}(\mathcal{A})$ と表す.

補題 1.5. dg 関手 $F: A \rightarrow A'$ は dg 関手

$$\operatorname{Pre-Tr}(F): \operatorname{Pre-Tr}(A) \to \operatorname{Pre-Tr}(A')$$

と関手

$$\operatorname{Tr}(F):\operatorname{Tr}(\mathcal{A})\to\operatorname{Tr}(\mathcal{A})$$

を定める.

定義 1.6 (シフト).

定義 1.7 (錐). $C=\{E_i,q_{i,j}\},C'=\{E_i',q_{i,j}'\}$ をねじれ複体, $f=\{f_{i,j}:E_i\to E_j'\}$ をねじれ射とする. このとき, ねじれ複体 $\mathrm{Cone}(f)=\{E_i'',q_{i,j}''\}$ を次のように定義して, f の錐 (cone) という.

$$E_i'' := E_i \oplus E_{i-1}', \quad q_{i,j}'' := \begin{pmatrix} q_{i,j} & f_{i,j} \\ 0 & q_{i,j} \end{pmatrix}$$

定義 1.8. dg 関手

$$\alpha: \operatorname{Pre-Tr}(\mathcal{A})^{\operatorname{op}} \to \operatorname{dg-Fun}^0(\mathcal{A}, C(\mathbf{Ab}))$$

を次のように定義する. $K=\{E_i,q_{i,j}\}$ を Pre-Tr $\mathcal A$ の任意の対象とする. 任意の $E\in\mathcal A$ に対して, dg 関手 $\alpha(K):\mathcal A\to C(\mathbf A\mathbf b)$ を

$$\alpha(K)(E) := \bigoplus_i (E, E_i)[i]$$

として、微分を d+Q とする.

$$(\operatorname{Pre-Tr})^2(\mathcal{A}) := \operatorname{Pre-Tr}(\operatorname{Pre-Tr}(\mathcal{A}))$$
 とする.

定義 1.9. dg 関手

$$\operatorname{Tot}_{\mathcal{A}}: (\operatorname{Pre-Tr})^2(\mathcal{A}) \to \operatorname{Pre-Tr}(\mathcal{A})$$

を次のように定義する. $C=\{(C_{i,j})_{i,j\in\mathbb{Z}},q_{i,j,k,l}:C_{i,j}\to C_{k,l}\}$ を $(\operatorname{Pre-Tr})^2(\mathcal{A})$ の任意の対象とする. このとき,

$$\operatorname{Tot}_{\mathcal{A}}(C) := \{ (D_k)_{k \in \mathbb{Z}}, r_{k,l} : D_k \to D_l \}$$

を

$$D_k := \bigoplus_{i+j=k} C_{i,j}, r_{k,l} := |q_{i,j,m,n}|, i+j = k, m+n = l$$

とする. このとき, ${\rm Tot}_{\mathcal A}(C)$ を ${\rm Pre-Tr}(\mathcal A)$ 上のねじれ複体の convolution という.

定義 1.10 (前三角的). A 上の任意のねじれ複体 K に対する \deg 関手 $\alpha(K)$ が表現可能であるとき、A は前三角的 (pre-triangulated) であるという.