

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

нальный исследовательский университет (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Информатика и системы управления

КАФЕДРА Программное обеспечение ЭВМ и информационные технологии

Лабораторная работа №3 по курсу "Моделирование" по теме "Марковские цепи"

Студент: Уласик Е.А.

Группа: ИУ7-71

Вариант по списку 18

Преподаватель: Рудаков И.В.

Оглавление

1.	Формализация
2.	Результат работы программы4
3.	Вывод

1. Формализация

Задача данной лабораторной работы для сложной системы S, имеющей не более 10 состояний, определить время нахождения системы в предельных состояниях, то есть при установившемся режиме работы.

Марковский процесс — случайный процесс, обладающий следующим свойством: для каждого момента времени t_0 вероятность любого состояния системы в будущем при $t>t_0$ зависит только от состояния системы в настоящем $t=t_0$ и не зависит от того, как процесс развивался в прошлом.

Для марковского процесса используются уравнения Колмогорова:

$$F = (P'(t), P(t), \lambda) = 0,$$

где P(t) – вероятность, λ – набор коэффициентов

Вероятностью i-ого состояния называется вероятностью $p_i(t)$ того, что в момент времени t система будет находиться в состоянии S_i . Для любого момента t сумма вероятностей всех состояний равна единице.

Для нахождения предельных вероятностей системы S_n следующего вида:

используется система уравнений:

$$\begin{cases} p_0' = -p_0\lambda + p_1\mu \\ p_1' = -p_1\lambda - p_1\mu + p_0\lambda + p_22\mu \\ \dots \\ p_k' = -p_k\lambda - p_kk\mu + p_{k-1}\lambda - p_{k+1}(k+1)\mu' \\ \dots \\ p_n' = p_{n-1}\lambda - p_nn\mu \end{cases}$$

где каждое уравнение составляется по следующему принципу: в левой части каждого уравнения стоит производная вероятности состояния, а правая содержит столько членов, сколько стрелок связано с данным состоянием. Если стрелка направлена "из" состояния, соответствующий член имеет знак "–", если "в" состояние, то знак "+". Каждый член равен произведению плотности вероятности перехода (интенсивности), соответствующий данной стрелке, и вероятности того состояния, из которого выходит стрелка.

2. Результат работы программы

Пусть система S состоит из 3 состояний. На рисунках 1-3 изображены результаты работы программы:

Matrix

	S0	S1	S2
S0	0	7	1
S1	3	0	9
S2	2	4	0

Рисунок 1. Коэффициенты интенсивности системы

Рисунок 2. Время нахождения системы в предельных состояниях

Probabilities

Рисунок 3. Предельные вероятности

Пусть система S состоит из 5 состояний. На рисунках 4-6 изображены результаты работы программы:

Matrix

	S0	S1	S2	S3	S 4
S0	0	5	7	5	9
S1	8	0	4	1	9
S2	1	4	0	3	6
S3	1	2	1	0	7
S4	3	7	10	1	0

Рисунок 4. Коэффициенты интенсивности системы

Times

```
0. 0.19
1. 0.156
2. 0.307
3. 0.808
4. 0.154
```

Рисунок 5. Время нахождения системы в предельных состояниях

Probabilities

```
0. 0.101553
1. 0.174818
2. 0.297717
3. 0.166804
4. 0.259108
```

Рисунок 6. Предельные вероятности

Пусть система S состоит из 10 состояний. На рисунках 7-9 изображены результаты работы программы:

Matrix

	S0	S1	S2	S3	S 4	S5	S6	S7	S8	S9
SO	0	7	1	9	8	5	7	4	10	1
S1	5	0	1	7	1	10	1	9	6	6
S2	3	6	0	2	3	10	1	7	4	8
S3	7	3	4	0	5	3	7	8	8	10
S4	4	7	7	6	0	5	4	4	10	7
S5	1	4	4	6	3	0	6	5	1	9
S6	9	6	5	8	10	9	0	7	4	7
S7	5	8	1	10	8	6	9	0	6	9
S8	9	4	8	9	1	7	7	4	0	9
S9	2	5	2	9	10	5	8	5	2	0

Рисунок 7. Коэффициенты интенсивности системы

Times

```
0. 0.25

1. 0.081

2. 0.222

3. 0.163

4. 0.154

5. 0.205

6. 0.136

7. 0.147

8. 0.228

9. 0.209
```

Рисунок 8. Время нахождения системы в предельных состояниях

Probabilities

```
0.0.082107

1.0.103957

2.0.07502

3.0.118329

4.0.0916

5.0.141732

6.0.080821

7.0.086939

8.0.083886

9.0.13561
```

Рисунок 9. Предельные вероятности

3. Вывод

В ходе данной лабораторной работы был смоделирован марковский процесс, определено время нахождения системы в предельных состояниях и вероятности в предельных состояниях.