# Fuzzy Entropy based Nonnegative Matrix Factorization for Muscle Synergy Extraction

**CityU** 香港城市大學 City University of Hong Kong



Beth Jelfs $^{1,2}$ , Ling Li $^3$ , Chung Tin $^{2,4}$ , and Rosa H.M. Chan $^{1,2}$ 

1. Dept. of Electronic Engineering, City University of Hong Kong 2. Centre for Biosystems, Neuroscience, & Nanotechnology, City University of Hong Kong 3. Dept. Computing, University of Kent, UK 4. Dept. Mechanical & Biomedical Engineering, City University of Hong Kong

#### Motivation

We propose a new nonnegative matrix factorization algorithm which employs a cross fuzzy entropy similarity measure to extracting muscle synergies which preserve the complexity of the recorded muscular data

- Muscle synergies are common patterns of muscle activations which serve as building blocks to produce detailed movements, reducing the number of degrees of freedom to be controlled [1]
- Requires an accurate method for extracting the synergies which can reconstruct data capable of producing movement which could complete the required task
- Entropy is commonly used in classification and assessment of changes in muscle activity recorded via surface electromyography (EMG) [2]

## Nonnegative Matrix Factorization

The standard approach to muscle synergy extraction is to use a nonnegative matrix factorization (NMF)

That is, given

ullet data matrix  $Y \in \mathbb{R}^{X imes N}$ 

• positive integer  $K < \min\{X, N\}$ 

find nonnegative matrices

 $\bullet W \in \mathbb{R}^{X \times K}$ 

 $\bullet H \in \mathbb{R}^{K \times N}$ 

achieved via

 $\min_{W,H} D(Y||WH) \text{ subject to } W \ge 0, \quad H \ge 0$ 

where D(Y||WH) is a measure of goodness of fit









#### **EMG** Data

The EMG data has previously been described in [4], in brief:

- 5 healthy right-handed subjects
- Each subject grasped a cylindrical object the movement was repeated 3 times

Muscles recorded and location over muscle for muscles with multiple recordings
Upper indicating closer to the body (origin) and lower indicating closer to the hand (insertion).

| Ch. | Muscle                | Location | Ch. | Muscle                         | Location |
|-----|-----------------------|----------|-----|--------------------------------|----------|
| 1   | Extensor digitorum    | upper    | 9   | Extensor carpi ulnaris         |          |
| 2   | Anconeus              |          | 10  | Extensor digitorum             | lower    |
| 3   | Flexor carpi ulnaris  |          | 11  | Extensor carpi radialis brevis |          |
| 4   | Pronator teres        | lower    | 12  | Extensor carpi radialis longus |          |
| 5   | Flexor carpi radialis | upper    | 13  | Abductor pollicis brevis       |          |
| 6   | Flexor carpi radialis | lower    | 14  | Abductor digiti minimi         |          |
| 7   | Palmaris longus       |          | 15  | Biceps brachii                 | upper    |
| 8   | Pronator teres        | upper    | 16  | Biceps brachii                 | lower    |

## **Fuzzy Entropy**

C-FuzzyEn employs an exponential function to give a continuous degree of similarity between vectors based on their closeness [3].

The degree of similarity between any pair of vectors is defined in terms of a fuzzy function of the distance d between them.

$$D_{i,j}^{m}(p,r) = \exp\left(-\left(d_{i,j}^{m}\right)^{p}/r\right)$$



Effects of p (for r = 0.2) & r (for p = 2) on the fuzzy boundary

The overall similarity function for vectors of length m,  $\phi^m$ , then becomes

$$\phi^{m}(p,r) = \frac{1}{N-m} \sum_{i=1}^{N-m} \left( \frac{1}{N-m} \sum_{j=1}^{N-m} D_{ij}^{m} \right)$$

The C-FuzzyEn of the two time series can be expressed in terms of the ratio of the negative log of the conditional probability  $\phi^{m+1}/\phi^m$ 

For a finite time series this is equivalent to

C-FuzzyEn
$$(m,p,r,N)= ext{ln}\phi^m(p,r)- ext{ln}\phi^{m+1}(p,r)$$

## Proposed NMF Update

We define the measure of goodness of fit  $D\left(Y\|WH\right)$  in the NMF algorithm in terms of the C-FuzzyEn of the elements of Y and  $W\cdot H$ .

Then using a gradient descent rule, we have the updates

$$[W]_{x,k} \leftarrow W_{x,k} - \eta^W \nabla_{[W]_{x,k}} \left( D(Y || WH) \right)$$
$$[H]_{k,n} \leftarrow H_{k,n} - \eta^H \nabla_{[H]_{k,n}} \left( D(Y || WH) \right)$$

where  $\eta^W$  and  $\eta^H$  are the respective learning rates.

For simplicity, the gradient of the cost function is taken in terms of the constituent parts of the cost function,  $\ln \phi^m$  and  $\ln \phi^{m+1}$ 

For the update of  ${\cal W}$  the gradient is taken row-wise with respect to the individual elements of  ${\cal W}$ 

$$\nabla_{[W]_{x,k}} = \nabla_{W_{x,k}} \ln \phi_x^m - \nabla_{W_{x,k}} \ln \phi_x^{m+1}$$

In contrast the gradient of the cost function is taken column-wise with respect to the elements of  ${\cal H}$ ,

$$\nabla_{[H]_{k,n}} = \nabla_{H_{k,n}} \ln \phi_n^m - \nabla_{W_{x,k}} \ln \phi_n^{m+1}$$

Substituting into the updates of W and H respectively gives us the NMF update with a C-FuzzyEn based cost function distance measure.

# Algorithm Performance

Comparison of the average AIC for the proposed FuzzyEn NMF and the ALS NMF across a range of number of synergies.

| Algorithm     | orithm Number of Synergies |        |        |        |        |        |        |        |        |        |        |        |        |
|---------------|----------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| $\times 10^3$ | 3                          | 4      | 5      | 6      | 7      | 8      | 9      | 10     | 11     | 12     | 13     | 14     | 15     |
| ALS           | 9.397                      | 12.528 | 15.659 | 18.790 | 21.992 | 25.053 | 28.184 | 31.316 | 34.448 | 37.579 | 40.711 | 43.848 | 46.977 |
| FuzzyEn       | 9.390                      | 12.521 | 15.652 | 18.783 | 21.915 | 25.045 | 28.177 | 31.308 | 34.439 | 37.570 | 40.702 | 43.831 | 46.963 |



#### References

- [1] M.C. Tresch, V.C.K. Cheung, and A. d'Avella, "Matrix factorization algorithms for the identification of muscle synergies: evaluation on simulated and experimental data sets," J. Neurophysiol. 95(4), pp. 2199–2212 (2005).
- [2] M. Kaufman, U. Zurcher, and P.S. Sung, "Entropy of electromyography time series," Physica A, 386(2), pp. 698–707 (2007).
- [3] H.-B. Xie, Y.-P. Zheng, J.-Y. Guo, X. and Chen, "Cross-fuzzy entropy: A new method to test pattern synchrony of bivariate time series" Inform. Sciences, 180(9), pp. 1715–1724 (2010).
- [4] L. Li, D. Looney, C. Park, N.U. Rehman, and D.P. Mandic, "Power independent EMG based gesture recognition for robotics," in Proc. Annu. Int. Conf. IEEE Engineering in Medicine and Biology Society, pp. 793–796 (Aug 2011).