Financial Econometrics Prof Olivier Scaillet TA Gaetan Bakalli

TP 11

Testing Stationarity

Computing Critical Values

Since the distribution of the test statistic for the Dickey-Fuller test is degenerate, critical values are obtained by Monte-Carlo simulations.

- 1. Perform N=10'000 times the following experiment:
 - (a) Simulate a series of T = 100 innovations $\varepsilon_t \sim \text{i.i.d } \mathcal{N}(0,1), \ t = 1, \dots, T.$
 - (b) Compute the processus defined as $Y_t = Y_{t-1} + \varepsilon_t, \ t = 1, \dots, T.$ (Assume $Y_0 = 0.$)
 - (c) Estimate the regression of the Dickey-Fuller test, i.e. $\Delta Y_t = \alpha + \beta Y_{t-1} + u_t$. Compute the t-statistic for β .
- 2. Display the histogram of the N t-statistics. You may have expected a distribution symmetric around 0, as the data have been simulated under the null hypotesis $\beta=0$.
- 3. Compute the critical values for the Dickey-Fuller test at the 1%, 5% and 10% level. They correspond to the quantiles of the t-statistics distribution.
 - Remember that under the null of non-stationarity, $\beta=0$, and that $\beta<0$ under the alternative. Hence, this is a unilateral test.
 - Compare your critical values with the quantiles of the Student distribution, and with the values provided by Fuller (1976): -3.51 at 1%, -2.89 at 5% and -2.58 at 10%.

Testing Non-stationarity

Test the stationarity of the series of monthly prices provided in the file $data_monthly.xls$. You need to simulate new critical values as there are more than T=100 observations.