Sprawozdanie 3 - Normy macierzowe i współczynniki uwarunkowania

Wojciech Smolarczyk, Wiktoria Zalińska

Normy macierzowe

Norma macierzowa to uogólnienie pojęcia normy wektorowej na macierze. Jest to funkcja przypisująca każdej macierzy (kwadratowej lub prostokątnej) nieujemną liczbę rzeczywistą, która mierzy jej "rozmiar" lub "wzrost" w pewnym sensie. Normy macierzowe są używane w analizie numerycznej do badania stabilności algorytmów, błędów zaokrągleń i uwarunkowania problemów.

Główne właściwości norm macierzowych:

- Nieujemność: IIMII≥0
- Jednorodność $\|\alpha M\| = |\alpha| * \|M\|$ dla skalara α
- Nierówność trójkąta ||M+N|| ≤ ||M||+||N||
- Sub multiplikatywność IM * NII ≤ IIMII * IINII

Wskaźnik (współczynnik) uwarunkowania

Wskaźnik uwarunkowania określa, w jakim stopniu błąd reprezentacji numerycznej danych wejściowych danego problemu wpływa na błąd wyniku. Wskaźnik uwarunkowania definiuje się jako maksymalny stosunek błędu względnego rozwiązania do błędu względnego danych. Problem o niskim wskaźniku uwarunkowania nazywamy dobrze uwarunkowanym, zaś problemy o wysokim wskaźniku uwarunkowania – źle uwarunkowanymi. Zagadnienia o zbyt dużym wskaźniku uwarunkowania nie nadają się do numerycznego rozwiązywania, ponieważ już sam błąd wynikający z numerycznej reprezentacji liczb wprowadza nieproporcjonalnie duży błąd w odpowiedzi.

Wskaźnik uwarunkowania jest cechą problemu i jest niezależny od numerycznych właściwości konkretnych algorytmów. W odróżnieniu od błędu zaokrągleń wprowadzonego przez algorytm, wskaźnik uwarunkowania stanowi informację o błędzie przeniesionym z danych.

Poszczególne normy i wskaźniki (współczynniki) uwarunkowania

Norma macierzowa IIAII2

Inny sposób obliczania

$$||A||_2 = |\lambda_1|$$

gdzie $|\lambda_1|$ to największa (na moduł) wartość własna macierzy A

Współczynnik uwarunkowania macierzy IIAII2

$$cond_2 = |\lambda_1| * |\hat{\lambda_1}|$$

Norma macierzowa ∥A∥∞ (maksymalna suma wartości bezwzględnych z wierszy)

$$||A||_{\infty} = \max_{i=1,\dots,n} \sum_{j=1,\dots,n} |a_{ij}|$$

Współczynnik uwarunkowania macierzy IMII∞

$$\kappa_{\infty}(M) = \|M\|_{\infty} \cdot \|M^{-1}\|_{\infty}$$

Norma macierzowa IIAII1

$$\|\mathbf{A}\|_1 = \max_j \sum_i |a_{ij}|$$

Współczynnik uwarunkowania macierzy IIAII1

$$cond_1(A) = ||A||_1 ||A^{-1}||_1$$

• Norma macierzowa IIAIIp

$$\|\mathbf{A}\|_p = \left(\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^p
ight)^{1/p}$$

Współczynnik uwarunkowania macierzy IIAIIp

$$cond_{p}(A) = ||A||_{p} ||A^{-1}||_{p}$$

Implementacja

Odwracanie macierzy

```
def macierz odwrotna(A):
    n = A.shape[0]
    if A.shape[0] != A.shape[1]:
        raise ValueError("Macierz musi być kwadratowa")
    rozszerzona = np.hstack((A, np.identity(n)))
    for i in range(n):
        if rozszerzona[i, i] == 0:
            for j in range(i + 1, n):
                if rozszerzona[j, i] != 0:
                    rozszerzona[[i, j]] = rozszerzona[[j, i]]
                    break
            else:
                raise ValueError(
                    "Macierz jest osobliwa - nie istnieje macierz
odwrotna"
                )
        dzielnik = rozszerzona[i, i]
        rozszerzona[i] = rozszerzona[i] / dzielnik
        for j in range(n):
```

Norma macierzowa IIAII2

```
import numpy as np
from numpy.linalg import eig, inv

def wartosci_wlasne(M):
    return np.linalg.eig(M).eigenvalues

def norma_macierzowaA2(M):
    return max(np.abs(wartosci_wlasne(M)))
```

• Współczynnik uwarunkowania macierzy IIAII2

```
def wspl_warunkowyA2(M):
    if np.linalg.det(M) != 0:
        return norma_macierzowaA2(macierz_odwrotna(M)) *
norma_macierzowaA2(M)
    else:
        return "Macierz jest osobliwa (wyznacznik = 0)"
```

• Norma macierzowa ∥A∥∞ (maksymalna suma wartości bezwzględnych z wierszy)

```
def norma_macierzowaAinf(M):
    return max(np.sum(np.abs((M)), axis=1))
```

Współczynnik uwarunkowania macierzy IIMI∞

```
def wspl_warunkowyAinf(M):
    if np.linalg.det(M) != 0:
        return norma_macierzowaAinf(macierz_odwrotna(M)) *
norma_macierzowaAinf(M)
    else:
        return "Macierz jest osobliwa (wyznacznik = 0)"
```

Norma macierzowa IIAII1

```
def matrix_norm_1(A):
    sum_col = np.zeros(A.shape[1])
    for i in range(A.shape[0]):
        for j in range(A.shape[1]):
            sum_col[j] += abs(A[i, j])
    return max(sum_col)
```

Współczynnik uwarunkowania macierzy IIAII1

```
def cond_1(A):
    try:
        A_inv = macierz_odwrotna(A)
        return matrix_norm_1(A) * matrix_norm_1(A_inv)
    except np.linalg.LinAlgError:
        print("Matrix is singular, cannot compute condition
number.")
    return None
```

Norma macierzowa IIAIIp

```
def matrix_norm_p(A, p):
    result = 0
    for i in range(A.shape[0]):
        for j in range(A.shape[1]):
            result += abs(A[i, j]) ** p
    return result ** (1 / p)
```

• Współczynnik uwarunkowania macierzy IIAIIp

```
def cond_p(A, p):
    try:
        A_inv = macierz_odwrotna(A)
        return matrix_norm_p(A, p) * matrix_norm_p(A_inv, p)
    except np.linalg.LinAlgError:
        print("Matrix is singular, cannot compute condition
number.")
    return None
```

Wyniki

```
norma_macierzowaA2([[1, 2], [3, 4]])
```

np.float64(5.372281323269014)

$$||A||_2 = |\lambda_1| = 5.3722$$

```
wspl_warunkowyA2(np.array([[1000, 999], [999, 998]]))
```

np.float64(3992006.000094148)

```
cond_2 = \lambda_1 * \hat{\lambda_1} = 1997, 999 * 1998, 005 = 3992101, 90195
```

```
norma_macierzowaAinf([[1, 2], [3, 4]])
```

norma_macierzowaAinf([[1, 2], [3, 4]])

```
wspl_warunkowyAinf(np.array([[1000, 999], [999, 998]]))
```

np.float64(3996001.000094493)

```
matrix_norm_1(np.array([[1, 2], [3, 4]]))
```

6.0

```
cond_1(np.array([[1000, 999], [999, 998]]))
```

3996001.000094493

```
matrix_norm_p(np.array([[1, 2], [3, 4]]), p=2)
```

5.477225575051661

```
cond_p(np.array([[1000, 999], [999, 998]]), p=2)
```

3992006.000094398