# **Assignment**

# **Network Systems Assignment**

## **OBJECTIVE:**

Design and configure a secure network in Cisco Packet Tracer consisting of two separate LANs connected through a VPN tunnel using multiple routers. Each LAN should contain five PCs connected to a switch, and routers should be configured to ensure secure communication between these two LANs and use RIP protocol for routing. Following are the network details:

#### LAN 1:

- Five PCs connected to a switch.
- Network address: 10.0.0.0
- Connected to Router0 (10.0.0.1)

## LAN 2:

- Five PCs connected to a switch.
- Network address: 20.0.0.0
- Connected to Router0 (20.0.0.1)

#### Intermediate Network:

- Routers Router0, Router1, Router2, and Router3 are interconnected using these network addresses (60.0.0.0, 70.0.0.0, 80.0.0.0)
- Router0 and Router3 are the VPN endpoints.

Establish a successful VPN tunnel between Router0 and Router3. Attach all screenshots (including IP configuration, router configuration, VPN configuration, network structure, and output) along with a description in a PDF file and submit.

## **Network Structure**



# **Components Used -**

PC's - x10

Switch - x2 - 2960

Routers - x4 - 1841

## **LAN 1**:

- Network Address: 10.0.0.0/8

- Router: Router0

- LAN Interface: 10.0.0.1

- Switch: Switch0

- PCs:

- PC0: 10.0.0.5

- PC1: 10.0.0.6

- PC2: 10.0.0.7

- PC3: 10.0.0.8

- PC4: 10.0.0.9

## **LAN 2**:

- Network Address: 20.0.0.0/8

- Router: Router3

- LAN Interface: 20.0.0.1

- Switch: Switch1

- PCs:

- PC0: 20.0.0.5

- PC1: 20.0.0.6

- PC2: 20.0.0.7

- PC3: 20.0.0.8

- PC4: 20.0.0.9

## **Router connections -**

- Router0 ↔ Router1 60.0.0.0/8 60.0.0.1 (R0) 60.0.0.2 (R1)
- Router1 ↔ Router2 70.0.0.0/8 70.0.0.1 (R1) 70.0.0.2 (R2)
- Router2 ↔ Router3 80.0.0.0/8 80.0.0.1 (R2) 80.0.0.2 (R3)

#### **VPN Tunnel:**

## Endpoints:

- 1. Router0 (R0): VPN IP 100.0.0.1
- 2. Router3 (R3): VPN IP 100.0.0.2

## **Routing Protocol:**

- RIP (Routing Information Protocol) is configured on all routers.
- Enables dynamic routing between LANs through intermediate routers

# **IP Configuration of PC0 - LAN 1**



## **IP Configuration of PC5 -LAN2**



# **Router Configuration -**

## 1. Router 0

| FastEthernet0/0  |                              |  |  |
|------------------|------------------------------|--|--|
| Port Status      | ✓ On                         |  |  |
| Bandwidth        | 100 Mbps 10 Mbps Auto        |  |  |
| Duplex           | Half Duplex Full Duplex Auto |  |  |
| MAC Address      | 0001.C96C.2A01               |  |  |
| IP Configuration |                              |  |  |
| IPv4 Address     | 10.0.0.1                     |  |  |
| Subnet Mask      | 255.0.0.0                    |  |  |

| Serial0/0/0      |                               |    |  |
|------------------|-------------------------------|----|--|
| Port Status      |                               | On |  |
| Duplex           | <ul><li>Full Duplex</li></ul> |    |  |
| Clock Rate       | 2000000                       | ~  |  |
| IP Configuration |                               |    |  |
| IPv4 Address     | 60.0.0.1                      |    |  |
| Subnet Mask      | 255.0.0.0                     |    |  |
|                  |                               |    |  |
| Tx Ring Limit    | 10                            |    |  |

## 2. Router 1



| Serial0/0/1      |                                 |      |  |
|------------------|---------------------------------|------|--|
| Port Status      |                                 | ✓ On |  |
| Duplex           | <ul> <li>Full Duplex</li> </ul> |      |  |
| Clock Rate       | 2000000                         | ~    |  |
| IP Configuration |                                 |      |  |
| IPv4 Address     | 70.0.0.1                        |      |  |
| Subnet Mask      | 255.0.0.0                       |      |  |
| Tx Ring Limit    | 10                              |      |  |
| TA TAING CHINA   |                                 |      |  |

## 3. Router 2





## 4. Router 3



# **RIP Configuration in Routers -**



## **Pinging Before Implementation of VPN -**

```
Pinging 20.0.0.5 with 32 bytes of data:

Reply from 20.0.0.5: bytes=32 time=38ms TTL=124
Reply from 20.0.0.5: bytes=32 time=96ms TTL=124
Reply from 20.0.0.5: bytes=32 time=69ms TTL=124
Reply from 20.0.0.5: bytes=32 time=82ms TTL=124

Ping statistics for 20.0.0.5:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = 38ms, Maximum = 96ms, Average = 71ms
```

## Traceroute to track path -

```
C:\>tracert 20.0.0.5
Tracing route to 20.0.0.5 over a maximum of 30 hops:
                                 10.0.0.1
     0 ms
              0 ms
                        0 ms
 1
 2
     11 ms
                                 60.0.0.2
              8 ms
                       4 ms
     l ms
              1 ms
                        1 ms
                                 70.0.0.2
 4
     11 ms
              20 ms
                        1 ms
                                 80.0.0.2
 5
                                 20.0.0.5
     10 ms
              5 ms
                        12 ms
Trace complete.
```

The output shows that the data travels through five hops:

- 1. 10.0.0.1 Router0 (LAN 1 Gateway)
- 2. 60.0.0.2 Router1
- 3. 70.0.0.2 Router2
- 4. 80.0.0.2 Router3
- 5. 20.0.0.5 Destination PC in LAN 2

## Now, implementing the VPN tunnel from Router 0 to Router 3:

A VPN tunnel is logically established from Router0 to Router3, encapsulating traffic between LAN1 and LAN2 securely over the internet-like intermediate network.

#### Router 0 -

```
Router#en
Router#conf t
Enter configuration commands, one per line. End with CNTL/Z.
Router(config) #interface tunnel 0
Router(config-if) #tunnel source SerialO/O/O
Router(config-if) #exit
Router(config) #interface tunnel 0
Router(config-if) #ip address 100.0.0.1 255.255.255.0
Router(config-if) #tunnel source SerialO/O/O
Router(config-if) #tunnel destination 80.0.0.2
Router(config-if) #
%LINEPROTO-5-UPDOWN: Line protocol on Interface TunnelO, changed state to up
Router(config-if) #exit
Router(config) #
```

#### Commands -

- interface tunnel 0
  ip address 100.0.0.1 255.255.255.0
  tunnel source Serial0/0/0
  tunnel destination 80.0.0.2
  Exit
- Router 3 -

```
Enter configuration commands, one per line. End with CNTL/Z.
Router(config) #interface tunnel 0
Router(config-if)#
%LINK-5-CHANGED: Interface TunnelO, changed state to up
Router(config-if) #ip address 100.0.0.2 255.255.255.0
Router(config-if) #tunnel source Serial0/0/0
Router(config-if) #tunnel destination 60.0.0.1
Router(config-if)#
%LINEPROTO-5-UPDOWN: Line protocol on Interface Tunnel0, changed state to up
Router (config-if) #exit
Router (config) #exit
Router#
%SYS-5-CONFIG I: Configured from console by console
Router#write memory
Building configuration...
[OK]
Router#
```

## Commands -

```
interface tunnel 0
ip address 100.0.0.2 255.255.255.0
tunnel source Serial0/0/0
tunnel destination 60.0.0.1
exit
```

## **Checking traceroute after VPN Implementation**

## From PC0 to tunnel endpoint (100.0.0.2)

```
Cisco Packet Tracer PC Command Line 1.0
C:\>tracert 100.0.0.2

Tracing route to 100.0.0.2 over a maximum of 30 hops:

1 0 ms 0 ms 0 ms 10.0.0.1
2 20 ms 13 ms 17 ms 100.0.0.2

Trace complete.
C:\>
```

- It skipped Router 1 and Router 2 and directly jumped to end point (100.0.0.2) of VPN tunnel.

## From PC5 to tunnel end point (100.0.0.1)

```
Cisco Packet Tracer PC Command Line 1.0
C:\>tracert 100.0.0.1

Tracing route to 100.0.0.1 over a maximum of 30 hops:

1 0 ms 0 ms 0 ms 20.0.0.1
2 20 ms 20 ms 3 ms 100.0.0.1

Trace complete.
C:\>
```

- It skipped Router 1 and Router 2 and directly jumped to end point (100.0.0.1) of VPN tunnel.

Submitted By **Neeraj Jayesh SOCSE 241037**