Algoritmekonstruksjon: Øving 1

Simen Keiland Fondevik Approksimasjonsalgoritmer

18. januar 2018

1 Oppgave 1

Vis at det for en konstant c ikke finnes noen $c \log |T|$ -approksimasjonsalgoritme for det rettede Steinertre-problemet, gitt at $P \neq NP$.

Bevis. Teorem 1.14 i Williamson og Shmoys sier at det finnes en konstant c slik at dersom det finnes en $c \log n$ -approksimasjonsalgoritme for det uvektede mengdedekkeproblemet, må P = NP. Vi trenger altså bare redusere fra det uvektede mengdedekkeproblemet til det rettede Steinertre-problemet. Gitt en instans (S, E) av mengdedekkeproblemet kan dette gjøres ved å konstruere en stjernegraf med rotnoden r i senter. Ut fra rotnoden legges til nodene s_i , $i = 1, 2, \cdots |S|$ med kantvekt 1. Disse svarer til mengden $S_i \in S$. Alle n = |E| elementer $e_j \in E$ kan videre legges til som barn av noden s_i med kantvekt null dersom $e_j \in s_i$. Dette er terminalene som skal dekkes. Vi har nå gjort om instansen av nodedekkeproblemet til et tilfelle av Steinertre-problemet med en polynomtid reduksjon. Altså er Steinertre-problemet minst like vanskelig som mengdedekkeproblemet, hvilket betyr at gitt en f(|T|)-approksimasjonsalgoritme for Steinertreproblemet må det det finnes en approksimasjonsalgoritme for mengdedekkeproblemet med ytelsesgaranti f(n). Siden f(n) i henhold til teorem 1.14 ikke kan bli bedre enn $c \log n$, finnes det altså ingen approksimasjonalgoritme for Steinertre-problemet bedre enn $c \log |T|$ for en konstant c > 0.

2 Oppgave 2

Vis at det for en konstant c ikke finnes noen c $\log |D|$ -approksimasjonsalgoritme for det kapasitetsubegrensede fasilitetslokasjon-problemet, gitt at $P \neq NP$.

Bevis. Liknende situasjon som i oppgave 1. Gitt en instans (S, E) av mengdedekkeproblemet, lag en graf med hver mengde S_i som en node s_i ut fra rotnoden med kantvekt 1. Legg så til de |E| elementene som skal dekkes som noder $e_1, e_2, \dots e_{|E|}$. Kanten (s_i, e_j) tilordens en vekt lik 1 hvis $e_j \in S_i$, ellers er den uendelig stor. Vi har nå fått en instans av det kapasitetsubegrensede fasilitetslokasjon-problemet gjennom en polynomtid reduksjon der $F = \{s_i : i = 1, 2, \dots |S|\}$ og $D = \{e_j : j = 1, 2, \dots |E|\}$. Helt konkret; gitt en løsning på dette problemet, finnes en minst like god løsning på mengdedekkeproplemet. Med samme argumentasjon som i oppgave 1 finnes det dermed ingen approksimasjonsalgoritme for det

kapasitetsubegrensede fasilitetslokasjon-problemet med bedre ytelsesgaranti enn en konstant $c > 0$.	$1 c \log D $ for
Finn en $O(\log D)$ -approksimasjonsalgoritme for det kapasitetsi fasilitetslokasjon-problemet.	ubegrensede
Løsning. Tjaa	

3 Oppgave 3