北京师范大学 2024~2025 学年第一学期期末考试试卷 (A卷)

课程名称:	数当	丝分析 (3)	任课教!					
卷面总分:	100 分	考试时长:	120 分钟	考试类别:	闭卷			
院(系):		专业	年级:					
姓 名:		学						
HZ II			in the same					

	题号	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	总分
	成绩	,															*
_																	

一、计算题(共50分,每题5分)

1. 求极限
$$\lim_{\substack{x \to +\infty \\ y \to +\infty}} \left(\frac{xy}{x^2 + y^2}\right)^{x^2}$$
.

- 2. 求函数 $f(x,y,z)=(xy,x^2+yz,yz^2)\in\mathbb{R}^3$ 在 $(x,y,z)\in\mathbb{R}^3$ 处的 Frechet 导数.
- 3. 设 $x=u\cos\frac{v}{u},\ y=u\sin\frac{v}{u}$ 存在反函数 $u=u(x,y),\ v=v(x,y),$ 求 $\frac{\partial u}{\partial x},\frac{\partial u}{\partial y},\frac{\partial v}{\partial x},\frac{\partial v}{\partial y}.$
- 4. 求由方程 $(x^2 + y^2)^2 = a^2(x^2 y^2)$ (a > 0) 所确定的隐函数的极值.
- 5. 求三重积分 $\iiint_V z \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z$, 其中 V 是由 $x^2 + y^2 + z^2 = 2$ 与 $x^2 + y^2 = z$ 所围闭区域.
- 6. 求第一型曲线积分 $J = \int_{\Gamma} \left(x^{\frac{4}{3}} + y^{\frac{4}{3}} \right) \mathrm{d}s$, 其中 Γ 为内摆线 $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$.
- 7. 求曲面 $x^2 + y^2 + z^2 = 4az$, $x^2 + y^2 = 3z^2$ (此立体含 z 轴) 所围立体的体积.
- 8. 求第二型曲面积分 $\iint_S (y-z) \, \mathrm{d}y \, \mathrm{d}z + (z-x) \, \mathrm{d}z \, \mathrm{d}x + (x-y) \, \mathrm{d}x \, \mathrm{d}y$, 其

中 S 是上半球面 $x^2 + y^2 + z^2 = 2Rx$ 被柱面 $x^2 + y^2 = 2rx$ (0 < r < R) 所截之部分的上侧.

- 9. 计算曲线积分 $\int_{\Gamma} y \, dx + z \, dy + x \, dz$, 其中 Γ 为 $x^2 + y^2 + z^2 = a^2$ 与 x + y + z = 0 的交线, 方向是: 从 Ox 轴正向看去, Γ 依逆时针方向进行.
- 10. 求 $I = \oint_L \frac{e^y}{x^2 + y^2} [(x \sin x + y \cos x) dx + (y \sin x x \cos x) dy]$. 其中 L 为不经过原点的简单封闭光滑曲线, 取逆时针方向.
- 二、证明题(共50分,每题10分)
- 11. 设 $f: \mathbb{R}^n \to \mathbb{R}^m$ 在 \mathbb{R}^n 一致连续, 如果 $\{x_k\}$ 是 \mathbb{R}^n 中的 Cauchy 列, 求证: $\{f(x_k)\}$ 是 \mathbb{R}^m 中的 Cauchy 列.
- 12. 设二元数值函数 f(x,y) 的偏导函数 $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ 在点 $\boldsymbol{x}_0=(x_0,y_0)$ 的邻域 $U(\boldsymbol{x}_0)$ 内处处存在,且在 \boldsymbol{x}_0 可微,求证:

$$\frac{\partial^2 f}{\partial x \partial y} \left(\boldsymbol{x}_0 \right) = \frac{\partial^2 f}{\partial y \partial x} \left(\boldsymbol{x}_0 \right).$$

13. 设二元数值函数 f(x,y) 在 $[0,1] \times [0,1]$ 连续, 且 f(x,y) = f(y,x), 求证:

$$\int_0^1 dx \int_0^x f(x,y) dy = \int_0^1 dx \int_0^x f(1-x,1-y) dy$$

14. 设 y=y(x) 是方程 $x=ky+\varphi(y)$ 所确定的隐函数, 其中常数 $k\neq 0$, $\varphi(y)$ 为以 ω 为周期的周期函数, 且 $|\varphi'(y)|<|k|$. 求证:

$$y = \frac{x}{k} + \psi(x),$$

其中 $\psi(x)$ 为以 $|k|\omega$ 为周期的周期函数.

15. 设 P(x,y) 和 Q(x,y) 在平面上有连续偏导数, 而且对以 $\forall (x_0,y_0) \in \mathbb{R}^2$ 为中心,以 $\forall r>0$ 为半径的上半圆 $C: x=x_0+r\cos\theta, y=y_0+r\sin\theta(0\leqslant\theta\leqslant\pi)$ 恒有

$$\int_C P(x, y) dx + Q(x, y) dy = 0.$$

求证: $P(x,y) \equiv 0, \frac{\partial Q}{\partial x}(x,y) \equiv 0.$