Lecture 22: Chi-Square Tests for Goodness-of-Fit

Chapter 6.3

Question for Today

Say we have a population where the racial breakdown of the juror pool (registered voters) is:

		Black	Hispanic	Other	Total
Registered Voters	72%	7%	12%	9%	100%

Question for Today

Say we had n=100 people picked as jurors, we expect the breakdown to be:

Race	White	Black	Hispanic	Other	Total
Registered Voters	72%	7%	12%	9%	100%
Representation	72	7	12	9	n = 100

Question for Today

Say we observe the following breakdown. Fairly obvious bias in juror selection!

Race	White	Black	Hispanic	Other	Total
Registered Voters	72%	7%	12%	9%	100%
Representation	0	0	100	0	n = 100

Question for Today

But what about the following? We expected 72 whites, but observe 75. Is there a bias? i.e. a non-random mechanism?

Race	White	Black	Hispanic	Other	Total
Registered Voters	72%	7%	12%	9%	100%
Representation	75	6	11	8	n = 100

Chi-Square Tests

Chi-square χ^2 tests allow us to compare

- ► Expected frequencies
- ► Observed frequencies

i.e. What is the "goodness" of the fit of the observed counts to the expected counts?

The Data

Let's use n = 275 people. Assuming the same proportions as earlier to compute the expected counts, say we then observe:

			Hispanic		
Expected Counts		19.25	33	24.75	275
Observed Counts	205	26	25	19	275

Hypothesis Test

H₀: the jurors are a random sample

i.e. there is no racial bias in who serves on a jury and the observed counts reflect natural sampling fluctuation

vs H_A : the jurors are not randomly sampled

i.e. there is racial bias in juror selection

Hypothesis Test:

We compute a test statistic and use a null distribution (the distribution of the test statistic if H_0 is true) to compute p-values:

- 1. means/proportions:
 - ▶ test statistic: z-score of \(\overline{x} / \hat{p} \)
 - ▶ null distribution: normal distribution (z-table)
- 2. t-test:
 - test statistic: t-statistic
 - ▶ null distribution: t-distribution with df = n 1 (t-table)
- 3. AVOVA:
 - test statistic: F-statistic
 - ▶ null distribution: F-distribution with $df_1 = k 1$ and $df_2 = n k$ (F-table)
- 4. Now: Goodness-of-fit:
 - test statistic: χ²-statistic
 - null distribution: χ^2 distribution with df = k 1

. .

Test Statistic

For previous tests, we constructed a test statistic of the following form:

point estimate — null value

SE of point estimate

In our case, it's similar. For each of the k groups (in this case racial group) compute

 $Z = \frac{\text{observed count} - \text{expected count}}{\sqrt{\text{expected count}}}$

Test Statistic

$$Z = \frac{\text{observed count} - \text{expected count}}{\sqrt{\text{expected count}}}$$

So when

- ▶ observed = expected \Rightarrow Z = 0
- ▶ observed > expected ⇒ Z > 0
- ▶ observed < expected \Rightarrow Z < 0

.

Test Statistic

Now treat +'ve and -'ve differences as the same:

$$Z^2 = \left(\frac{\text{observed count} - \text{expected count}}{\sqrt{\text{expected count}}}\right)^2$$

$$= \frac{(\text{observed count} - \text{expected count})^2}{\text{expected count}}$$

Why square it and not absolute value it? It's easier to do calculus on x^2 than |x|.

Test Statistic

In the case of our trial data, we have 4 groups: white, black, hispanic, and other:

$$\begin{array}{rcl} \chi^2 &=& Z_w^2 + Z_b^2 + Z_b^2 + Z_o^2 \\ &=& \frac{(205 - 198)^2}{198} + \frac{(26 - 19.25)^2}{19.25} + \frac{(25 - 33)^2}{33} + \frac{(19 - 24.75)^2}{24.75} \\ &=& 5.89 \end{array}$$

This is our test statistic.

20.75

p-values

To compute the p-value, we compare the test statistic to a χ^2 distribution with df=k-1 degrees of freedom. Note: not df=n-1 like with t-test.

14/1

p-value

Use table on page 412:

Figure B.2: Areas in the chi-square table always refer to the right tail.

Upper								0.005	
df	2	2.41	3.22	4.61	5.99	7.82	9.21	10.60	13.82
	3	3.66	4.64	6.25	7.81	9.84	11.34	12.84	16.27
	4	4.88	5.99	7.78	9.49	11.67	13.28	14.86	18.47
	5	6.06	7.29	9.24	11.07	13.39	15.09	16.75	20.52

In our case, df=k-1=3, and $\chi^2=5.89$, which is in between (4.64,6.25), so p-value is in between (0.1,0.2). Not overwhelming evidence against H_0 .

Hypothetical Scenarios

Race	White	Black	Hispanic	Other	Total
Expected Counts	198	19.25	33	24.75	275
Observed Counts					275

Say:

▶ For all 4 groups, we observed = expected. Then

$$Z_i^2 = \frac{(\text{observed count}_i - \text{expected count}_i)^2}{\text{expected count}_i} = 0$$

for
$$i=1,\ldots,4$$
, and $\chi^2=0$. p-value $=1$

 \blacktriangleright Say we observed 0 whites, blacks, hispanics and 275 others, then $\chi^2=15648.25.$ p-value=0

16/1

Chi-Square Test for One-Way Tables

This is also called a chi-square test for one-way tables.

$$\chi^2 = \sum_{i=1}^k Z_i^2 = \sum_{i=1}^k \frac{(\text{observed count}_i - \text{expected count}_i)^2}{\text{expected count}_i}$$

Assumptions for Chi-Square Test

- 1. Independence: Each case is independent of the other
- 2. Sample size/distribution: Similarly like with proportions, we need at least 5 cases in each scenario (each cell in the table)
- 3. Degrees of freedom: We need at least df=2, i.e. $k\geq 3$

Next Time	
We look at chi-square tests for two-way tables to test for independence. i.e. are two variables independent from each other?	
	19/1