Flexible Nonvolatile Memory

•••

Snehil Verma 14700

Overview

- 1. Motivation
- 2. Materials used for designing NVM
- 3. Approaches for Making Flexible Devices
- 4. NVM Operational Principles and Architectures
- 5. Performance numbers
- 6. References

Motivation

With the advent of healthcare technology, IoT, and big data applications, the need for memory with the following characteristics increased:

- Ultra-dense
- Ultra-low-power
- Robustness to environmental variations (reliability)

IoT -> Fully flexible electronic system

- Processing units CPU
- The main memory RAM
- Storage NVM

Reference: Google Images

Requirements

In order to replace traditional mechanical hard disks with solid-state storage devices, a fully flexible electronic system will need two basic devices:

- Transistors: Used for logic operations and gating memory arrays
- Nonvolatile memory: Required for storing information in the main memory and cache storage.

Overview: Mainstream Design Approaches

All-organic systems

Both devices and substrates are made up of organic materials.

Hybrid systems

Inorganic electronic devices are transferred onto an organic substrate

SOI substrate

Use silicon-on-insulator (SOI) substrates, and controlled spalling technology to peel-off thin semiconductor layers.

Overview: Emerging NVM

- Resistive RAM (ReRAM)
- Flash memory (floating gate and charge trapping)
- Phase change RAM (PCRAM)
- Ferroelectric RAM (FeRAM)

Benefits of fast switching, low-operation voltage, and ultra-large-scale-integration (ULSI) densities.

Reference: [5]

Materials used for designing NVM

0-dimensional

- Gold nanoparticles (NPs)
- Black phosphorus quantum dots (QDs)
- Silicon QDs

1-dimensional

- ZnO nanowires
- Si nanowires
- Carbon nanotubes (CNTs)

2-dimensional

- Graphene
- Graphene oxide
- \bullet MoS₂
- ZnO
- Hydrated tungsten
 trioxide (WO₃.H₂O)
 nano-sheet

Reference: [5]

Semiconductor Industry: Artificial Skin, Display

Reference: Google Images

Approaches for Making Flexible Devices

All-Organic Approach

- Polymeric semiconductors as channel materials.
- Polymeric ferroelectrics for nonvolatile storage.
- Thick, durable insulating polymers to support the flexible substrate.

All-organic deposited NVM

Reference: [1]

All-Organic Approach

Inkjet-printed organic inverter on a plastic substrate

Reference: [2]

All-Organic Approach

Challenges

Performance:

- The highest reported mobility more than 20 times lower than silicon (exception of 43 cm²/V.s peak hole saturation mobility reported by Yongbo Yuan et al. [3]).
- Reliability
- Thermal stability [4]

Advantages

- Low cost
- Flexibility AMOLED display

Use both organic and inorganic materials.

More versatile.

Generic transfer technique, where devices are fabricated on a specific rigid substrate and then transferred to one that is flexible

Reference: [6]

Three modes of transfer printing

Additive Transfer

Prepare stamp

2. Deposit ink on stamp

 Contact stamp; deliver ink structures to receiver substrates

Subtractive Transfer

 Deposit continuous ink layer on donor substrate

Contact stamp; selectively retrieve ink structures from

Deterministic Assembly

 Prepare ink structures on a donor substrate

Contact stamp; selectively retrieve ink structures from

3. Contact stamp; deliver ink structures to receiver substrate

Reference: [7]

Fabricating flexible crossbar-structured memory on a plastic substrate via the laser lift-off transfer method

Challenges

- Extra non-conventional transfer steps.
- Low yield

Advantages

• High performance

Spalling Technology

Use stressor layers to initiate fracture-modes in SOI and semiconductor substrates.

• Deposit a Ni stressor layer that is abruptly discontinued near one edge of the wafer where a crack in the mono-crystalline silicon (Si) is to be initiated by applying a force [9, 10].

Before the force is applied, polyimide tape is added to support the flexible peeled

layer bearing ultra-thin body devices.

Reference: [11]

Spalling Technology

Challenges

- Extra deposition and complex tuning of a stressor material with a specific thickness followed by etching are required
- Once the crack has been initiated, the peeling-off process requires high dexterity that is not suitable for mass production

Complementary Transfer-free Inorganic Approach

Inverse proportionality between the material's thickness and flexibility.

- High performance
- Reliability
- ULSI density
- Low cost

Flexibility ∝ t - 3

Complementary Transfer-free Inorganic Approach

Silicon-flexing technique (Device first approach)

Reference: [12]

Complementary Transfer-free Inorganic Approach

Soft-etch back approach

Reference: [13]

Fracture Strength

Most common method: three-point bending test.

- Based on the application's required bending radius, the thickness of the flexible silicon substrate must be adjusted such that the applied stress is lower than the fracture stress.
- Eg. : the minimum bending radius that would cause fracture stress for a 50- μ m thick flexible silicon substrate is ~ 3 mm

NVM Operational Principles and Architectures

NVM Operational Principles

- Capable of storing information over long periods of time (~10 years is the industry standard)
- Retain information even when no power is supplied.

Resistive RAM: ReRAM (Memristor)

- A resistive oxide is sandwiched between two metallic layers.
- The resistance of the oxide changes with applied "set" and "reset" voltage pulses.

Reference: [14, 15]

Ferroelectric RAM: FeRAM

- A ferroelectric material has two possible polarization states inherent from its crystalline structure.
- Applying write/erase voltage pulse switches for positive to negative polarization states.

Reference: [16]

Phase change RAM: PCRAM

 Current or laser pulses are applied to change the phase of a material from crystalline (low resistance) to amorphous (high resistance) and vice versa at a localized space, which changes the material's electrical and optical properties.

Reference: [17,18]

Flash memory (floating gate (FG))

- Similar structure as a field effect transistor (FET), except that its gate dielectric is split into three layers.
 - Tunneling oxide
 - Embedded conductor layer floating gate
 - Blocking oxide
- When a programming voltage is applied, carriers tunnel from the channel to the floating gate.

Reference: [19]

Flash memory (charge trapping (CT))

 The charge trap flash replaces the floating gate (a conductor layer) with an insulating layer.

Reference: [20]

NVM Architectures: Memory Cell design

NVM Architectures: Major arrangements

Idea of Numbers: Flexible NVM Technologies

Figures of Merit

- Form Factor (F²)
- Density
- Cost (\$/bit)
- Endurance
- Retention
- Operation voltage
- Speed
- Memory window

Flexible ReRAM

- Report for 10 nm × 10 nm ReRAMs [14].
- S. Jo et al. experimentally demonstrated that CMOS neurons and memristor synapses in a crossbar configuration can support synaptic functions [15].
- Interesting work using inorganic flexible substrate (Al foil) with organic cellulose nanofiber paper enabled achieving the lowest reported bending radius for ReRAM (0.35 mm) and lowest operating voltage (±0.5 V) [21].

Flexible FeRAM

- In general, FeRAMs have superior endurance and low variability, which represent critical challenges for state-of-the-art redox memristive memories [22].
- Rigid ferroelectric random access memories (FeRAM) have already made a great leap by their introduction to the market; hence, it is a relatively mature technology compared to other emerging NVM technologies.
- Commonly used ferroelectric material in FeRAM is lead zirconium titanate (Pb_{1.1}Zr_{0.48}Ti_{0.52}O₃—PZT).
 - high switching speed ~ ps for material switching and 70ns for actual arrays (parasitic capacitances)
 - o low cost per bit
 - o low operation voltage 1.5V
 - Read/Write Cycles > 10¹⁵
 - Retention > 10 years at 85 °C

Flexible PCRAM

- In general, PCRAMs have high switching transition speed. Eg.: Flexible PCRAM on polyimide required a 30 ns pulse to switch.
- Highly localized regions of phase change that enables ultra-high integration densities. Hong et al. reported phase-change nano-pillar devices with the potential of reaching up to tera bit/squared inch densities on flexible substrates.
- Yoon et al. demonstrated a 176 Gbit/square inch PCRAM, the highest reported density on a flexible substrate.
- The highest reported bending cycles endurance (1000 bending cycles) and yield (66%) for flexible PCRAM was reported by Mun et al., in 2015.

Flexible Flash

- Most mature NVM technology in today's market.
- Current flexible flash memories have reported operation voltages ranging from ±5 to ±90 V with minimum channel length dimensions of 2-μm [19].
- Nonetheless, good bendability has been achieved up to 5 mm for 2000 bending cycles, an endurance of 100,000 cycles, and a retention ability of 10⁶ s.

Comparison of the Doct

10 × 20 channel

10⁶

 5×10^{6}

-0.5

50

4

Form Factor (F²)

Cell Dimensions (µm)

Endurance (cycles)

Operation voltage (V)

Memory window (V)

Retention (s)

Speed (ns)

Guiliharianii	oi tiie dest			
	Flexible ReRAM	Flexible FeRAM	Flexible PCRAM	Flexible Flash

0.035 diameter

100

10⁴

1.8

30

2 channel length

Reference: [5]

10⁵

 10^{6}

100

15

-5 to +5

20 × 20

10⁹

10⁵

-3

500

35

Future Prospects?

Thank You

Questions?

References

- 1. https://www.nature.com/articles/ncomms4583
- 2. https://onlinelibrary.wiley.com/doi/epdf/10.1002/adma.201301040
- 3. https://www.nature.com/articles/ncomms4005
- 4. https://www.sciencedirect.com/science/article/pii/S0003267004010189
- 5. http://www.mdpi.com/2079-9292/4/3/424/htm
- 6. https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201300675
- 7. https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201201386
- 8. https://onlinelibrary.wiley.com/doi/full/10.1002/adma.201402472
- 9. https://aip.scitation.org/doi/pdf/10.1063/1.2952044
- 10. https://aip.scitation.org/doi/abs/10.1063/1.326575
- 11. https://pubs.acs.org/doi/abs/10.1021/nl304310x

References

- 12. https://ieeexplore.ieee.org/document/6587134/
- 13. https://pubs.acs.org/doi/abs/10.1021/nn5041608
- 14. <u>https://ieeexplore.ieee.org/document/6131652/</u>
- 15. https://pubs.acs.org/doi/abs/10.1021/nl904092h
- 16. https://aip.scitation.org/doi/10.1063/1.1392970
- 17. https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201004255
- 18. http://iopscience.iop.org/article/10.1088/0957-4484/23/25/255301
- 19. https://ieeexplore.ieee.org/abstract/document/6294439/
- 20. https://onlinelibrary.wiley.com/doi/pdf/10.1002/adma.200800340
- 21. https://www.nature.com/articles/srep05532
- 22. https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.200900375