

Introduction to Data Management Aggregates and Grouping

Paul G. Allen School of Computer Science and Engineering University of Washington, Seattle

Announcements

- HW 1 due Friday @11pm on Gradescope
- HW 2 releases Friday! Due Monday 1/22 @11pm

Find all people who drive a Civic and Pinto

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

```
FROM Payroll AS P, Regist AS R
WHERE P.UserID = R.UserID AND
    R.Car = 'Civic';
```

Find all people who drive a Civic and Pinto

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

```
FROM Payroll AS P, Regist AS R
WHERE P.UserID = R.UserID AND
R.Car = 'Civic' AND
R.Car = 'Pinto';
Will this work?
```

Find all people who drive a Civic and Pinto

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

```
FROM Payroll AS P, Regist AS R
WHERE P.UserID = R.UserID AND
    R.Car = 'Civic' AND
    R.Car = 'Pinto';
```

Will this work?
Nope, empty set is returned

Find all people who drive a Civic and Pinto

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

```
FROM Payroll AS P, Regist AS R1, Regist AS R2
WHERE P.UserID = R1.UserID AND
    P.UserID = R2.UserID AND
    R1.Car = 'Civic' AND
    R2.Car = 'Pinto';
```

Find all people who drive a Civic and Pinto

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

All pairs of cars a person can drive

```
SELECT P.Name, R1.Car, R2.Car
FROM Payroll AS P, Regist AS R1, Regist AS R2
WHERE P.UserID = R1.UserID AND
P.UserID = R2.UserID AND
```

R1.Car = 'Civic' AND
R2.Car = 'Pinto';

Join to combine data from different tables

Recap - Self Joins

Join to combine data from different tables

Goals for Today

- We have started to build our SQL toolbox
 - Not just reading and filtering data anymore
 - Starting to answer complex questions
- Today we want to effectively summarize results

Aggregation functions

New class of SQL queries

Aggregates

Outline

- Aggregation functions
- GROUP BY and HAVING clauses in SQL
- The witnessing problem

 We need summaries of data because we are often trying to make decisions and succinctly convey information

- We need summaries of data because we are often trying to make decisions and succinctly convey information
 - "How popular is this tv-show?"

- We need summaries of data because we are often trying to make decisions and succinctly convey information
 - "How popular is this tv-show?" □ COUNT

- We need summaries of data because we are often trying to make decisions and succinctly convey information
 - "How popular is this tv-show?" □ COUNT
 - "Do I spend too much on coffee?"

- We need summaries of data because we are often trying to make decisions and succinctly convey information
 - "How popular is this tv-show?" □ COUNT
 - "Do I spend too much on coffee?" □ SUM

- We need summaries of data because we are often trying to make decisions and succinctly convey information
 - "How popular is this tv-show?" □ COUNT
 - "Do I spend too much on coffee?" □ SUM
 - "Am I being ripped off by this car dealership?"

- We need summaries of data because we are often trying to make decisions and succinctly convey information
 - "How popular is this tv-show?" □ COUNT
 - "Do I spend too much on coffee?" □ SUM
 - "Am I being ripped off by this car dealership?" □ AVG

- We need summaries of data because we are often trying to make decisions and succinctly convey information
 - "How popular is this tv-show?" □ COUNT
 - "Do I spend too much on coffee?" □ SUM
 - "Am I being ripped off by this car dealership?" □ AVG
 - "Who got the highest grade in the class?"

- We need summaries of data because we are often trying to make decisions and succinctly convey information
 - "How popular is this tv-show?" □ COUNT
 - "Do I spend too much on coffee?" □ SUM
 - "Am I being ripped off by this car dealership?" □ AVG
 - "Who got the highest grade in the class?" □ MAX

- We need summaries of data because we are often trying to make decisions and succinctly convey information
 - "How popular is this tv-show?" □ COUNT
 - "Do I spend too much on coffee?" □ SUM
 - "Am I being ripped off by this car dealership?" □ AVG
 - "Who got the highest grade in the class?" □ MAX
 - "What's the cheapest food on the Ave?"

- We need summaries of data because we are often trying to make decisions and succinctly convey information
 - "How popular is this tv-show?" □ COUNT
 - "Do I spend too much on coffee?" □ SUM
 - "Am I being ripped off by this car dealership?" □ AVG
 - "Who got the highest grade in the class?" □ MAX
 - "What's the cheapest food on the Ave?" □ MIN

- We need summaries of data because we are often trying to make decisions and succinctly convey information
 - COUNT
 - SUM
 - AVG
 - MAX
 - MIN

- We need summaries of data because we are often trying to make decisions and succinctly convey information
 - SELECT COUNT(*) FROM StreamingViews ...
 - SELECT **SUM**(cost) FROM CoffeeReceipts ...
 - SELECT AVG(price) FROM CarDealers ...
 - SELECT MAX(score) FROM StudentGrades ...
 - SELECT MIN(price) FROM AveLunchPrices ...

AGG(attr) □ computes **AGG** over non-NULL values **AGG**(DISTINCT attr) is also possible

- We need summaries of data because we are often trying to make decisions and succinctly convey information
 - SELECT COUNT(*) FROM StreamingViews ...
 - SELECT SUL (cost) FROM CoffeeReceipts ...
 - SELECT AV price) FROM CarDealers ...
 - SELECT M/ score) FROM StudentGrades
 - SELECT Mice) FROM AveLunchPrices ...

COUNT(*) □ # of rows regardless of NULL

What is the average salary of people in our dataset?

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Regist

UserID	Car
123	Charger
567	Civic
567	Pinto

27

What is the average salary of people in our dataset?

AVG(P.Salary)

75000

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Regist

UserID	Car
123	Charger
567	Civic
567	Pinto

28

How many professors are in the dataset?

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Regist

UserID	Car
123	Charger
567	Civic
567	Pinto

29

How many professors are in the dataset?

Aggregate happens after WHERE statement

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Regist

UserID	Car
123	Charger
567	Civic
567	Pinto

30

How many TAs are there and what is their average salary?

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Regist

UserID	Car
123	Charger
567	Civic
567	Pinto

31

How many TAs are there and what is their average salary?

```
SELECT COUNT(*), AVG(P.Salary)
FROM Payroll AS P
WHERE P.Job = 'TA';
```

COUNT(*)	AVG(P.Salary)
2	55000

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Regist

UserID	Car
123	Charger
567	Civic
567	Pinto

32

How many TAs are there and what is their average salary?

Num_TAs	Avg_Salary
2	55000

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Regist

UserID	Car
123	Charger
567	Civic
567	Pinto

33

Aggregation Semantics

What am I aggregating over in a SELECT-FROM-WHERE query with joins?

Intuitively: "Everything after the FROM/WHERE"

What does "after FROM/WHERE" mean here?

Aggregation Semantics

What am I aggregating over in a SELECT-FROM-WHERE query with joins?

Intuitively: "Everything after the FROM/WHERE"

What does "after FROM/WHERE" mean here?

In SQL, the joins and where statements produce one **intermediate relation**, after which the aggregate is calculated.

Aggregation Semantics

Will this query get me the correct calculation for average salary of all people who own cars?

```
SELECT AVG(P.Salary)
FROM Payroll AS P, Regist AS R
WHERE P.UserID = R.UserID;
```

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Regist

UserID	Car
123	Charger
567	Civic
567	Pinto

Will this query get me the correct calculation for average salary of all people who own cars?

```
SELECT AVG(P.Salary)
FROM Payroll AS P, Regist AS R
WHERE P.UserID = R.UserID;
```

Should be 70,000, let's find out if that's what we get

Payroll

UserID Job Name Salary 123 Jack TA 50000 345 Allison TA 60000 567 Magda Prof 90000 789 Dan **Prof** 100000

Regist

UserID	Car
123	Charger
567	Civic
567	Pinto

SELECT AVG(P.Salary)

FROM Payroll AS P, Regist AS R

WHERE P.UserID = R.UserID;

$Join_{P.UserID=R.UserID}$

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

SELECT AVG(P.Salary)

FROM Payroll AS P, Regist AS R

WHERE P.UserID = R.UserID;

P.UserID	P.Name	P.Job	P.Salary	R.UserID	R.Car
123	Jack	TA	50000	123	Charger
567	Magda	Prof	90000	567	Civic
567	Magda	Prof	90000	567	Pinto

$Join_{P.UserID=R.UserID}$

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

SELECT AVG(P.Salary)

FROM Payroll AS P, Regist AS R

WHERE P.UserID = R.UserID;

$Aggregate_{AVG(P.Salary)}$

P.UserID	P.Name	P.Job	P.Salary	R.UserID	R.Car
123	Jack	TA	50000	123	Charger
567	Magda	Prof	90000	567	Civic
567	Magda	Prof	90000	567	Pinto

$$Join_{P.UserID=R.UserID}$$

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

SELECT AVG(P.Salary)

FROM Payroll AS P, Regist AS R

WHERE P.UserID = R.UserID;

$Aggregate_{AVG(P.Salary)}$

P.UserID	P.Name	P.Job	P.Salary	R.UserID	R.Car
123	Jack	TA	50000	123	Charger
567	Magda	Prof	90000	567	Civic
567	Magda	Prof	90000	567	Pinto

 $Join_{P.UserID=R.UserID}$

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

SELECT AVG(P.Salary)

FROM Payroll AS P, Regist AS R

WHERE P.UserID = R.UserID;

AVG(P.Salary)

76666

 $Aggregate_{AVG(P.Salary)}$

P.UserID	P.Name	P.Job	P.Salary	R.UserID	R.Car
123	Jack	TA	50000	123	Charger
567	Magda	Prof	90000	567	Civic
567	Magda	Prof	90000	567	Pinto

$$Join_{P.UserID=R.UserID}$$

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

SELECT AVG(P.Salary)

FROM Payroll AS P, Regist AS R

WHERE P.UserID = R.UserID;

AVG(P.Salary)

76666

 $Aggregate_{AVG(P.Salary)}$

P.UserID	P.Name	P.Job	P.Salary	R.UserID	R.Car
123	Jack	TA	50000	123	Charger
567	Magda	Prof	90000	567	Civic
567	Magda	Prof	90000	567	Pinto

$$Join_{P.UserID=R.UserID}$$

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

Not 70,000!

SELECT AVG(P.Salary)

FROM Payroll AS P, Regist AS R

WHERE P.UserID = R.UserID;

AVG(P.Salary)

76666

90000 was counted twice...

 $Aggregate_{AVG(P.Sa)}$

P.UserID	P.Name	P.Job	P.Salary	/ JserID	R.Car
123	Jack	TA	50000	123	Charger
567	Magda	Prof	90000	567	Civic
567	Magda	Prof	90000	567	Pinto

$$Join_{P.UserID=R.UserID}$$

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

UserID	Car
123	Charger
567	Civic
567	Pinto

Compute the average salary of all people who own cars? (Did not work, need subqueries for this)

Compute the **minimum** salary of all people who own cars? (This will work, check for yourself!)

SELECT MIN(P.Salary)

FROM Payroll AS P, Regist AS R
WHERE P.UserID = R.UserID;

Payroll

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Regist

UserID	Car
123	Charger
567	Civic
567	Pinto

```
SELECT AVG(P.Salary)
  FROM Payroll AS P, Regist AS R
WHERE P.UserID = R.UserID;
```


Grouping

- SQL allows you to specify what groups your query operates over
 - Sometimes a "whole-table" aggregation is too coarse-grained
 - We can partition our data based on matching attribute values

Grouping

- SQL allows you to specify what groups your query operates over
 - Sometimes a "whole-table" aggregation is too coarse-grained
 - We can partition our data based on matching attribute values

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

• • •

GROUP BY Job

• •

January 10, 2024 Aggregates Aggregates 49

Grouping

- SQL allows you to specify what groups your query operates over
 - Sometimes a "whole-table" aggregation is too coarse-grained
 - We can partition our data based on matching attribute values

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

...

GROUP BY Job

• •

Grouping Example

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Grouping Example

```
SELECT Job, MAX(Salary)
FROM Payroll
GROUP BY Job
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Job	MAX(Salary)
TA	60000
Prof	100000

Grouping on Multiple Attributes

```
SELECT Name, MAX(Salary)
FROM Payroll
GROUP BY Job, Name
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Name	Salary
Jack	50000
Allison	60000
Magda	90000
Dan	100000

Filtering Groups with HAVING

```
SELECT Job, MAX(Salary)
  FROM Payroll
  GROUP BY Job
HAVING MIN(Salary) > 80000
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Filtering Groups with HAVING

```
SELECT Job, MAX(Salary)
  FROM Payroll
  GROUP BY Job
HAVING MIN(Salary) > 80000
```

UserID	Name	Job	Salary
123	Jack	TA	50000
345	Allison	TA	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Job	MAX(Salary)
Prof	100000

How is aggregation processed internally?

```
SELECT Job, MAX(Salary)
  FROM Payroll
  GROUP BY Job
HAVING MIN(Salary) > 80000
```

How is aggregation processed internally?

```
SELECT Job, MAX(Salary)
  FROM Payroll
  GROUP BY Job
HAVING MIN(Salary) > 80000
```

Our first preview of Relational Algebra:

"Having" applies **after** grouping the big intermediate table

FWGHOS

TM

```
FROM ...
WHERE ...
GROUP BY ...
HAVING ...
ORDER BY ...
```



```
SELECT Job, MAX(Salary)
  FROM Payroll
  GROUP BY Job
HAVING MIN(Salary) > 80000
```

UserID	Name	Job	Salary

```
SELECT Job, MAX(Salary)
  FROM Payroll
  GROUP BY Job
HAVING MIN(Salary) > 80000
```

 $Aggregate_{Job,\;MAX(P.Salary) \rightarrow maxSal,\;MIN(P.Salary) \rightarrow minSal}$

UserID	Name	Job	Salary

```
SELECT Job, MAX(Salary)
  FROM Payroll
  GROUP BY Job
HAVING MIN(Salary) > 80000
```

Job	maxSal	minSal
TA	60000	50000
Prof	100000	90000

 $Aggregate_{Job,\;MAX(P.Salary) \rightarrow maxSal,\;MIN(P.Salary) \rightarrow minSal}$

UserID	Name	Job	Salary

```
SELECT Job, MAX(Salary)
  FROM Payroll
  GROUP BY Job
HAVING MIN(Salary) > 80000
```

Job	maxSal	minSal
Prof	100000	90000

$Having_{minSal>80000}$

Job	maxSal	minSal
TA	60000	50000
Prof	100000	90000

 $Aggregate_{Job,\;MAX(P.Salary) \rightarrow maxSal,\;MIN(P.Salary) \rightarrow minSal}$

UserID	Name	Job	Salary

```
SELECT Job, MAX(Salary)
  FROM Payroll
  GROUP BY Job
HAVING MIN(Salary) > 80000
```

$Select_{Job, \, maxSal}$

Job	maxSal	minSal
Prof	100000	90000

$Having_{minSal>80000}$

Job	maxSal	minSal
TA	60000	50000
Prof	100000	90000

 $Aggregate_{Job, MAX(P.Salary) \rightarrow maxSal, MIN(P.Salary) \rightarrow minSal}$

UserID	Name	Job	Salary

SELECT Job, MAX(Salary)

FROM Payroll
GROUP BY Job

HAVING MIN(Salary) > 80000

Job	maxSal
Prof	100000

 $Select_{Job, maxSal}$

Job	maxSal	minSal
Prof	100000	90000

 $Having_{minSal>80000}$

Job	maxSal	minSal
TA	60000	50000
Prof	100000	90000

 $Aggregate_{Job, MAX(P.Salary) \rightarrow maxSal, MIN(P.Salary) \rightarrow minSal}$

UserID	Name	Job	Salary
	•••		•••

January 10, 2024 Aggregates Aggregates 64

```
SELECT Job, MAX(Salary)
  FROM Payroll
  GROUP BY Job
HAVING MIN(Salary) > 80000
```

```
\Pi_{Job,\,maxSal}
\sigma_{minSal} > 80000
```

 $\gamma_{Job, MAX(P.Salary) \rightarrow maxSal, MIN(P.Salary) \rightarrow minSal}$ Payroll P

```
SELECT Job, MAX(Salary)
  FROM Payroll
  GROUP BY Job
HAVING MIN(Salary) > 80000
```

```
\Pi_{Job, maxSal}
   Selection
HAVING uses the
same symbol and
                             \sigma_{minSal>80000}
operation used by
 WHERE clause
    \gamma_{Job, MAX(P.Salary) \rightarrow maxSal, MIN(P.Salary) \rightarrow minSal}
                               Payroll P
```

Preview: Relational Algebra

SELECT τ FROM σ WHERE GROUP BY HAVING ORDER BY ... **Tables**

```
SELECT ...
FROM ...
WHERE ...
GROUP BY ...
HAVING ...
ORDER BY ...
```



```
SELECT ...
FROM ...
WHERE ...
GROUP BY ...
HAVING ...
ORDER BY ...
```

```
\tau
   \sigma
                  Aggregation
Tables
```

SELECT ...
FROM ...
WHERE ...
GROUP BY ...
HAVING ...
ORDER BY ...

```
\tau
                  Selection
Tables
```

```
SELECT ...
FROM ...
WHERE ...
GROUP BY ...
HAVING ...
ORDER BY ...
```


SELECT ...
FROM ...
WHERE ...
GROUP BY ...
HAVING ...
ORDER BY ...

FWGHOS

SELECT ...

FROM ...

WHERE ...

GROUP BY ...

HAVING ...

ORDER BY ...

δ

П

 τ

 σ

γ

