Problema 1. Considere a cadeia de Markov em $I = \{1, 2, 3, 4, 5\}$ com

$$P = \begin{bmatrix} 1/3 & 0 & 2/3 & 0 & 0 \\ 1/4 & 1/2 & 1/4 & 0 & 0 \\ 1/2 & 0 & 1/2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 2/3 & 1/3 \end{bmatrix}$$

Classifique seus estados e ache as distribuições estacionárias dessa cadeia. Simule essa cadeia considerando $X_0 = 1, 2, 3, 4, 5$ e aproxime o limite:

$$\lim_{n \to +\infty} \mathbb{P}(X_n = j \mid X_0 = i)$$

para todos $i, j \in I$. Verifique que os resultados encontrados estão convergindo para os valores corretos.

Solução:

Observando o diagrama da cadeia podemos ver que o estado 2 é transiente e os outros estados são recorrentes e se dividem em duas Classes irredutíveis $R_1 = \{1,3\}, R_2 = \{4,5\} \in I$. Portanto, $T = \{2\}$ (estado transiente) e $R = R_1 \cup R_2$ (estados recorrentes).

Agora vamos calcular as distribuições estacionárias dessa cadeia. Seja $\pi = [\pi_1 \ \pi_2 \ \pi_3 \ \pi_4 \ \pi_5]$ tal distribuição. Devemos ter $\pi P = \pi$ e $\sum_{i=1}^5 \pi_i = 1$.

Resolvendo o sistema, obtemos: $\pi_2 = 0$, $\pi_3 = \frac{4}{3}\pi_1$ e $\pi_5 = \frac{3}{2}\pi_4$. Além disso, pela segunda equação temos $\pi_4 = \frac{6-14\pi_1}{15}$. Seja $\pi_1 = \alpha$. A distribuição estacionária dessa cadeia é dada por:

$$\pi(\alpha) = \left[\alpha \ 0 \ \frac{4}{3} \alpha \ \frac{6 - 14\alpha}{15} \ \frac{3 - 7\alpha}{5} \right].$$

Problema 2. Considere a cadeia de Markov em $I = \{1, 2, 3, 4\}$ com

$$P = \begin{bmatrix} 1/3 & 0 & 2/3 & 0 \\ 1/4 & 1/2 & 1/4 & 0 \\ 1/2 & 0 & 1/2 & 0 \\ 0 & 1/3 & 0 & 2/3 \end{bmatrix}$$

Simule essa cadeia considerando $X_0=1$ e aproxime o limite

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{i=1}^{n} X_i^2$$

Verifique que o resultado encontrado está convergindo para o valor correto.

Solução:

Observando o diagrama da cadeia podemos ver que os estados 2 e 4 são transientes e os outros estados são recorrentes.

Considerando $X_0 = 1$, temos que $X_n \in \{1,3\}$ para todo $n \ge 0$. Então basta considerar a cadeia a seguir

Resolvendo a equação

$$\begin{bmatrix} \pi_1 \ \pi_3 \end{bmatrix} \begin{bmatrix} 1/3 & 2/3 \\ 1/2 & 1/2 \end{bmatrix} = \begin{bmatrix} \pi_1 \ \pi_3 \end{bmatrix}$$

em conjunto com $\pi_1 + \pi_3 = 1$, encontramos $\pi_1 = \frac{3}{7}$ e $\pi_3 = \frac{4}{7}$. Logo, a distribuição estacionária dessa cadeia é

 $\pi = \begin{bmatrix} 3 & 4 \\ 7 & 7 \end{bmatrix}$

Como essa cadeia é recorrente positiva e irredutível, podemos usar o teorema ergódico para calcular nosso limite. Seja $f:\{1,3\} \to \mathbb{R}$ dada por $f(x)=x^2$ e $I'=\{1,3\}$ temos

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{i=1}^{n} X_i^2 = \lim_{n \to +\infty} \frac{1}{n} \sum_{i=1}^{n} f(X_i)$$

$$= \sum_{i \in I'} f(i) \pi_i$$

$$= 1 \cdot \frac{3}{7} + 9 \cdot \frac{4}{7}$$

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{i=1}^{n} X_i^2 = \frac{39}{7}.$$

Problema 3. Simule vários caminhos do martingal $M_n = \prod_{k=1}^n X_k$ com $(X_k)_{k \in \mathbb{N}}$ iid e $\mathbb{P}(X_n = 1/2) = \mathbb{P}(X_n = 3/2) = 1/2$ e mostre graficamente que $M_n \to 0$ q.c

Solução:

A seguir segue o gráfico com 20 simulações do martingal M_n . Foram utilizadas 200 iterações para cada simulação.

Figura 1: Simulação de diversos caminhos do martingal M_n .

Problema 4. Simule J caminhos do processo de Poisson com $\lambda=1$ até o tempo T=5 de duas maneiras:

- usando os tempos entre-chegadas $(X_n)_{n\in\mathbb{N}}$
- usando o Teorema 4.4.8 das notas de aula

Calcule a esperança

$$\mathbb{E}\left[\int_0^T N_t dt\right] \approx \frac{1}{J} \sum_{i=1}^J \int_0^T N_t^{(j)} dt$$

usando os caminhos simulados acima e compare com o valor exato.

Solução:

Foram simulados J=10 caminhos distintos do processo de Poisson. Os resultados podem ser observados na figura abaixo. O valor exato da esperança $E=\mathbb{E}\left[\int_0^T N_t dt\right]$ é dado por:

$$E = \int_0^T \mathbb{E} [N_t] dt$$
$$= \int_0^T \lambda t dt$$
$$E = \lambda \cdot \frac{T^2}{2}$$

Pondo $\lambda = 1$ e T = 5, temos:

$$\mathbb{E}\left[\int_0^T N_t dt\right] = 1 \cdot \frac{5^2}{2} = 12.5$$

Os valores aproximados para a esperança E foram:

Simulação	E
(a)	11.3874
(b)	12.5784

Problema 6. Simule os caminhos do movimento Browniano entre 0 e 1 e calcule $M_1 = \max_{t \in [0,1]} B_t$. Plote o histograma de M_1 e compare com a densidade exata de M_1 :

$$f_{M_1}(m) = \sqrt{\frac{2}{\pi}}e^{-m^2/2}.$$

Solução:

Dizemos que $(B_t)_{t\geq 0}$ é um movimento browniano, quando:

- 1. $B_0 = 0$ q.c.
- 2. $B_t B_s$ é independente de $(B_u)_{u \in [0,s]}$, para todo $t \geq s$. (Incrementos independentes)

- 3. $B_t B_s \sim N(0, t s)$, para todo $t \geq s$.
- 4. $t \mapsto B_t$ é contínuo q.c.

Para realizar a simulação geramos n caminhos com m intervalos $X_i = B_{t_{i+1}} - B_{t_i}$, com $X_i \sim N(0, \Delta t)$ onde $\Delta t = 1/m$. Para obter B_{t_k} somamos, cumulativamente, os intervalos de cada caminho:

$$B_{t_k} = \sum_{j=0}^{k-1} X_j$$
 , $\forall k \in \{1, ..., m-1\}$

Na figura abaixo podemos ver o resultado obtido para n = 5 e m = 1000:

Figura 2: Simulação do movimento browniano no intervalo [0, 1].

Para plotar o histograma de M_1 utilizamos n=500 caminhos distintos.

Figura 3: Variável aleatória: $M_1 = \max_{t \in [0,1]} B_t$.