x = Sinu 1 = Cosudu $\# Gas^2 \chi_+ Sin^2 \chi = 1$ $Gas^2 \chi_- I_- Sin^2 \chi$ Cos x = NI Sin2x 1+tan'u

* tand = Sect 1 tand = Sect 1 2 = Secutanu ... Secutanu * CSC2 = 1+6t22 CSC U - CSC U Cot u du

22>>

$$\begin{array}{c|cccc}
 & d & \ln \alpha & = & 1 \\
 & d & b & = & \alpha \\
 & d & b^2 & = & b^2 \ln b
\end{array}$$

$$\frac{de^2}{d\alpha} = \frac{d}{e^2}$$

$$\frac{d}{d\alpha} = \frac{d}{e^2}$$

Examples

$$y' = \frac{1}{(x_{+1}^{2}) \ln 10} \cdot 2x = \frac{2x}{(x_{+1}^{2}) \ln 10}$$

2)
$$y = e^{x_{+}^{2}}$$

 $y = e^{x_{+}^{2}}$. $2x$

$$3)$$
 $y=\frac{10^{2}+2\alpha+1}{10^{10}}$. $\ln 10.32^{2}+2$

$$\frac{1}{2} = \frac{3}{3} \cdot \ln 3 \cos 2$$

$$\frac{5}{y^{1}} = \frac{\ln x^{2} + 1}{2x^{2} + 1} = \frac{2x}{x^{2} + 1}$$

6)
$$y' = \ln(1-\alpha)$$

 $y' = 1+\alpha - (1+\alpha) - (1-\alpha)$
 $y' = 1-\alpha - (1-\alpha)^2$

Another Solution:
$$y = \ln(1-\alpha) - \ln(1+\alpha)$$

$$y' = -1$$

$$1-\alpha$$

$$1+\alpha$$

*
$$\frac{1}{2}$$
 * $\frac{1}{2}$ * $\frac{$

* Cosh
$$\alpha = \frac{e^2 + e^2}{2}$$

* Cosh $\alpha = \frac{c}{8} + e^2$

* Cosh $\alpha = \frac{1}{8} = \frac{2}{e^2 - e^2}$

* Cosh $\alpha = \frac{1}{8} = \frac{2}{e^2 - e^2}$

1)
$$y = 8inh\alpha$$
.

 $y = \frac{\alpha - e^{\alpha}}{2}$, $\frac{dy}{d\alpha} = \frac{1}{2}(e^{\alpha} + e^{\alpha}) = 68h\alpha$

2) $y = 68h\alpha = \frac{\alpha + e^{\alpha}}{2}$
 $\Rightarrow \frac{dy}{d\alpha} = \frac{1}{2}(e^{\alpha} - e^{\alpha})$

2 $\Rightarrow \frac{1}{2}(e^{\alpha} - e^{\alpha})$

3) $y = \frac{1}{2}(e^{\alpha} - e^{\alpha})$
 $\Rightarrow y = \frac{1}{2}(e^{\alpha} - e^{\alpha})$

Similarly.

 $\frac{d \tanh x}{dx} = \operatorname{Sech}^{2} x$ $\frac{d \operatorname{Sech} x}{dx} = -\operatorname{Sech} x \tanh x$ $\frac{d \operatorname{Gth} x}{dx} = -\operatorname{Csch}^{2} x$ $\frac{d \operatorname{Csch} x}{dx} = -\operatorname{csch} x \operatorname{Gth} x$

4 4>>

25>>