第3章

渐进记法

山东大学计算机科学与技术学院 数据

数据结构与算法 第3章 渐进符号

渐进符号的引入

- 确定程序的操作计数和步数有两个重要的原因:
 - 比较两个完成同一功能的程序的时间复杂性;
 - 预测随着实例特征的变化,程序运行时间的变化 量。
- 操作计数和步数都不能够非常精确地描述时间复杂性。
 - 操作计数:把注意力集中在某些"关键"的操作上,而忽略了所有其他操作。
 - 执行步数: 概念本身就不精确。

山东大学计算机科学与技术学院 数据结构与算法 第3章 渐进符号

渐进符号的引入

- 引入渐进符号的目的:
 - 描述大型实例特征下,时间复杂性和空间 复杂性的具体表现。
 - 渐进符号O使用最普遍

山东大学计算机科学与技术学院 数据结构与算法 第3章 渐进符号

渐进符号的引入

- 如果有两个程序的时间复杂性分别为:
 - $c_1 n^2 + c_2 n$ 和 $c_3 n$,
- 对于足够大的n,复杂性为 c_3n 的程序将比复杂性为 $c_1n^2+c_2n$ 的程序运行得快。
- 对于比较小的n值,两者都有可能成为较快的程序(取决于 c_1 , c_2 和 c_3)。
- 如果: c₁=1, c₂=2, c₃=100, 则有
 - c₁n² + c₂n≤c₃n

n<98

 $c_1 n^2 + c_2 n > c_3 n$

n>98

山东大学计算机科学与技术学院 数据结构与算法 第3章 渐进符号

时间函数比较示例

- $t_A(n)=n^2+3n$; $t_B(n)=43n$;
- $t_A(n)=2n^2+3n$; $t_B(n)=83n$;

• $t_A(n)=c_1n^2+c_2n+c_3$; $t_B(n)=c_4n$;

山东大学计算机科学与技术学院 数据结构与算法 第3章 渐进符号

渐进符号O, Ω, Θ, o

- 设*f(n)* 表示程序的时间复杂性或空间复杂性 (*n*为实例特征)。
- O(Big Oh)符号给出了函数f的一个上限。
- Ω(Omega)符号给出了函数f的一个下限。
 Θ(Theta)符号,函数f的上限与下限相同。
- o(Little oh)符号。

渐进的大于、小于、等于

■ 定义3-1 , 令p(n)和q(n)是两个非负函数

p(n) 渐进地大于 q(n)

当且仅当

 $\lim_{n\to\infty}\frac{q(n)}{p(n)}=0$

q(n) 渐进地小于 p(n)

当且仅当

p(n)渐进的大于q(n)

p(n) 渐进地等于 q(n)

当且仅当 任何一个都不是渐进的大于另一个

山东大学计算机科学与技术学院 数据结构与算法 第3章 渐进符号

例3-1

- $\lim_{n \to \infty} \frac{10n+7}{3n^2+2n+6} = 0$
- ◆ 3n² + 2n + 6 新进地大于 10n + 7
- ◆ 10n+7 渐进地小于 3n²+2n+6
- 8n⁴ + 9n² 新进地大于 100n³ 3
- 2n² + 3n 渐进地大于 83n
- 12*n* +6 渐进地等于 6*n* + 2

山东大学计算机科学与技术学院 数据结构与算法 第3章 渐进符号

f(n) 中的项

■ *f(n)*:表示程序的时间复杂性或空间复杂性 (*n*为实例特征)。

因为程序的时间或空间复杂度是一个非负数,假设f对所有n都是非负值

- f(n) 一般为若干项之和
- 例: $f(n) = 3n^2 + 2n + 6$,
 - 项: 3n², 2n, 6

山东大学计算机科学与技术学院 数据结构与算法 第3章 新进符号

f(n)中通常出现的项

<u>项</u> **名称** 1 常数 logn 对数

n 线性 nlogn n个logn

 n²
 平方

 n³
 立方

 2n
 指数

■ $1 \le logn \le n \le nlogn \le n^2 \le n^3 \le 2^n \le n!$

阶乘

■ <: 渐进地小于

山东大学计算机科学与技术学院 数据结构与算法 第3章 渐进符号

大O记法

■ f(n)=O(g(n)) (读作 "f(n) 是g(n)的大O'), 表

在渐近的意义上,

g(n)是f(n)的上限

- 示 f(n) 渐进地小于或等于 g(n)
- 3n² + 2n + 6 渐进地大于 10n + 7
 - $10n + 7 = O(3n^2 + 2n + 6)$;
 - $3n^2 + 2n + 6 \neq O(10n + 7)$
- $100n^3 3 = 0(8n^4 + 9n^2)$
- $8n^4 + 9n^2 \neq 0(100n^3 3)$
- $83n=0(2n^2+3n)$
- 12n + 6 = 0(6n + 2)

山东大学计算机科学与技术学院 数据结构与算法 第3章 渐进符号

渐进复杂性分析

- f(n)=O(g(n))
- f(n)=0, g(n)=0
- 除*f(n)=0*以外, *g(n)*通常是
 - 令*f(n)=O(g(n))*为真的最小单位项(系数为1)
 - $f(n) = 10n + 7 = O(3n^2 + 2n + 6)$
 - f(n) = 10n + 7 = O(n)
- $f(n) = 8n^4 + 9n^2 = O(n^4)$
 - $f(n) = 100n^3 3 = O(n^3)$
 - $f(n) = 3n^2 + 2n + 6 = O(n^2)$
 - f(n) = 12n + 6 = O(n)

渐进复杂性分析

- 渐进复杂性分析,用**步数中渐进最大的项**来描述复 杂度。
 - f(n): 步数函数
 - 步数函数中最小单位项: 系数为1的各项
 - q(n): 最大项(渐进最大的项)
- 例: f(n)=3n²+6n1ogn+7n+5
- 最小单位项: n²、nlogn、n、1
- 最大项: n²
- $f(n)=3n^2+6n\log n+7n+5$ $=O(n^2)$

山东大学计算机科学与技术学院 数据结构与算法 第3章 渐进符号

渐进记法Ω

- f(n)=Ω(g(n)) (读作 "f(n) 是g(n)的Ω" f(n) 渐进地大于或等于 g(n)
- $f(n) = 10n + 7 = \Omega(n)$

在渐近的意义上,

- $f(n) = 100n^3 3 = \Omega(n^3)$ g(n) $\mathbb{E}f(n)$ 的下界
- $f(n) = 3n^2 + 2n + 6 = \Omega(n)$
- $f(n) = 8n^4 + 9n^2 = \Omega(n^3)$

山东大学计算机科学与技术学院 数据结构与算法 第3章 渐进符号

渐进记法 Θ

- f(n)=Θ(g(n))(读作 "f(n) 是g(n)的Θ" f(n) 渐进地等于 g(n) 表示
- $f(n) = 10n + 7 = \Theta(n)$
- $f(n) = 100n^3 3 = \Theta(n^3)$
- $f(n) = 3n^2 + 2n + 6 \neq \Theta(n)$
- $f(n) = 8n^4 + 9n^2 \neq \Theta(n^3)$

山东大学计算机科学与技术学院 数据结构与算法 第3章 渐进符号

大O记法

- 定义3-3[大O记法]:
- **f(n)=O(g(n))**(读作 "f(n)是g(n)的大O'), 当且仅当存在正的常数c和 n_{ov} 使得对于所 有的n, $n \ge n_0$, 有 $f(n) \le cg(n)$ 。
- q 是f的一个上限(不考虑常数因子c)
 - *O*表示量级(Order)。(最坏情况)
 - O(g(n))表示当n增大时,f(n)至多将以正比于 g(n)的速度增长。
 - n足够大时, f(n)不大于g(n)的一个常数倍。

山东大学计算机科学与技术学院 数据结构与算法 第3章 渐进符号

大O记法

- 定义3-3「大O记法]:
- *f(n)=O(g(n))* 当且仅当存在正的常数*c* 和 n_0 , 使得对于所有的n, $n \ge n_0$, 有 $f(n) \le cg(n)$ 。

图 3-4 g(n) 是 f(n) 的一个上

限(最多带一个常量因子c) 第3章 新进符号 山东大学计算机科学与技术学院 数据结构与算法

线性函数

■ 例 3-7

f(n)=3n+2

当*n*≥n₀=2时, f(n)=3*n*+2 ≤3*n*+*n* =4*n* $f(n)=\mathbf{O}(n)$

f(n) = 100n + 6.

当 $n \ge n_0 = 6$, $f(n) = 100n + 6 \le 100n + n = 101n$ f(n) = 100n+6=0(n).

平方函数

• 例 3-8

 $f(n)=10n^2 + 4n + 2$ $n \ge 2$, $f(n) \le 10n^2 + 5n$

n≥5 , 5*n*≤*n*²

 $n \ge n_0 = 5$,

 $f(n) \le 10n^2 + n^2$

 $=11n^2 ,$

 $f(n)=O(n^2)$

 $10n^2 + 4n + 2 = O(n^2)$

山东大学计算机科学与技术学院 数据结构与算法 第3章 渐进符号

指数函数

■ 例 3-9

 $f(n)=6*2^n+n^2$

 $n \ge 4$, $n^2 \le 2^n$,

 $n \ge 4$, $f(n) \le 6*2^n + 2^n = 7*2^n$

 $6*2^n+n^2=O(2^n)$

山东大学计算机科学与技术学院 数据结构与算法 第3章 渐进符号

常数函数

■ 例 3-10

f(n)=c

f(n)=O(1)

山东大学计算机科学与技术学院 数据结构与算法 第3章 渐进符号

最小上限

• 例 3-11

f(n)=3n+3

 $n \ge 3$, $f(n) = 3n + 3 \le 3n + n = 4n = O(n)$

 $n \ge 2$, $f(n) = 3n + 3 \le 3n^2 = O(n^2)$ (不是最小上限)

因此常用f(n)=3n+3=O(n)

 语句f(n)=O (g(n)) 仅表明对于所有的n≥n₀, cg(n)是f(n)的一个上限。它并未指出该上限是否 为最小上限。

■ 为了使语句f(n)=O(g(n))有实际意义, 其中的g(n) 应尽量地小。

山东大学计算机科学与技术学院 数据结构与算法 第3章 渐进符号

Ω符号

- 定义3-4[Ω符号]:
- f(n)= $\Omega(g(n))$ 当且仅当 存在正的常数c和 n_0 , 使得对于所有的n, $n \ge n_0$, 有 $f(n) \ge cg(n)$ 。
- g 是f的一个下限(不考虑常数因子c)。

 $f(n)=3n+2 \ge 3n = \Omega(n)$

 $f(n)=10n^2 + 4n + 2 \ge 10n^2 = \Omega(n^2)$

 $f(n)=6*2^n + n^2 \ge 6*2^n = \Omega(2^n)$

山东大学计算机科学与技术学院 数据结构与算法 第3章 渐进符号

Ω符号

- 定义3-4[Ω符号]:
- $f(n)=\Omega(g(n))$ 当且仅当 存在正的常数c和 n_0 ,使得对于所有的n, $n \ge n_0$,有 $f(n) \ge cg(n)$ 。

m n→
图 3-5 g(n) 是 f(n) 的—个下限
(最多加—个常数因子)

最大下限

- $f(n)=3n+2\geq 3n=\Omega(n)$
- $f(n)=3n+2=\Omega(1)$
- 为了使语句f(n)= $\mathbf{\Omega}(g(n))$ 更有实际意义,其中的g(n) 应**足够地大**。
- 使用3n+2=Ω(n)
- $6*2^n+n^2=\Omega(2^n)$
- $6*2^n+n^2=\Omega(1)$
- 使用6*2n+n2= Ω(2n)

山东大学计算机科学与技术学院 数据结构与算法 第3章 渐进符号

Θ符号

- 对于所有足够大的n(如 $n \ge n_0$),g既是f 的上限也是f 的下限(不考虑常数因子c)。
- 定义3-5[��符号]: f(n)=�(g(n)) (读作 "f(n) 是 g(n)的�",当且仅当存在正常数 c_1 , c_2 和 n_0 ,使得 对于所有的n, $n ≥ n_0$, 有 $c_1 g(n) ≤ f(n) ≤ c_2 g(n)$ 。
- 函数f介于函数g的 c_1 倍和 c_2 倍之间,除非n小于 n_0 。

山东大学计算机科学与技术学院 数据结构与算法 第3章 渐进符号

Θ符号

图 3-6 g(n) 既是 f(n) 的上限也是 f(n) 的下限 (最多加一个常数因子)

山东大学计算机科学与技术学院 数据结构与算法 第3章 渐进符号

Θ符号

 $f(n)=3n+2=\Theta(n)$

 $f(n)=10n^2+4n+2=\Theta(n^2)$

 $f(n)=6*2^n+n^2=\Theta(2^n)$

对 $n \ge 16$, $\log_2 n < 10*\log_2 n + 4 \le 11*\log_2 n$, $10*\log_2 n + 4 = \Theta(\log_2 n)$

山东大学计算机科学与技术学院 数据结构与算法 第3章 渐进符号

O符号有用的结论

- 定理3-1
 - 如果 $f(n) = a_m n^{m+} \cdots + a_1 n + a_0 \ \underline{L} a_m > 0$,则 $f(n) = 0 (n^m)$ 。
- 加法规则:

$$T(n) = T_1(n) + T_2(n)$$

= $0(g_1(n)) + 0(g_2(n))$
= $0(max(g_1(n), g_2(n)))$

■ 乘法规则:

$$T(n) = T_1(n) * T_2(n)$$

$$= 0 (g_1(n)) * 0 (g_2(n))$$

$$= 0 (g_1(n) * g_2(n))$$

山东大学计算机科学与技术学院 数据结构与算法 第3章 渐进符号

Ω、 Θ 符号有用的结论

- 定理3-3
 - 如果 $f(n) = a_m n^m + \cdots + a_1 n + a_0 \perp a_m > 0$,则 $f(n) = \Omega(n^m)$ 。
- 定理3-5
 - 如果 $f(n) = a_m n^m + \cdots + a_1 n + a_0 \coprod a_m > 0$,则 $f(n) = \Theta(n^m)$ 。

小o记法

- 定义[小o符号]:
- **f(n)=o(g(n))** (读作 "f(n) 是g(n)的小O'), 当且 仅当 f(n)=O(g(n)) 且 $f(n) \neq \Omega(g(n))$.

山东大学计算机科学与技术学院 数据结构与算法 第3章 渐进符号

111 / 11 H 1 WI YET 13	号标记(P74)	
f(n)	新进符号	_
E1 c	Ф(1)	
E2 $\sum_{i=0}^{k} c_i n^i$	$\oplus (n^k)$	
E3 $\sum_{i=1}^{n} i$	$\oplus (n^2)$	
$E4 \qquad \sum_{i=1}^{n} i^2$	$\oplus (n^3)$	
E5 $\sum_{i=1}^{n} i^{k}, k > 0$	$\oplus (n^{k+1})$	
E6 $\sum_{i=0}^{i=1} r^i, r > 1$	$\oplus (r^n)$	
E7 n!	$\oplus ((n/e)^n)$	
E8 $\sum_{i=1}^{n} 1/i$	$\oplus (\log n)$	
 中可以是O、Ω、 < 学计算机科学与技术学院 数据结构与算法 		32

关于渐进符号的推理规则(P74)

```
\{f(n) = \bigoplus (g(n))\} \rightarrow \sum_{n=0}^{b} f(n) = \bigoplus \left(\sum_{n=0}^{b} g(n)\right)
11
                         \left\{f_i(n) = \bigoplus (g_i(n)), 1 \le i \le k\right\} \to \sum_{i=1}^{n} f_i(n) = \bigoplus (\max_{1 \le i \le k} \left\{g_i(n)\right\})
12
                         \left\{f_i(n) = \oplus \left(g_i(n)\right), 1 \leq i \leq k\right\} \to \prod_{i=1}^k f_i(n) = \oplus \left(\prod_{i=1}^k g_i(n)\right)
13
                         \{f_1(n) = O(g_1(n)), f_2(n) = \Theta(g_2(n))\} \rightarrow f_1(n) + f_2(n) = O(g_1(n) + g_2(n))
                         \{f_1(n) = \Theta(g_1(n)), f_2(n) = \Omega(g_2(n))\} \rightarrow f_1(n) + f_2(n) = \Omega(g_1(n) + g_2(n))
15
                         \{f_1(n) = O(g(n)), f_2(n) = \Theta(g(n))\} \rightarrow f_1(n) + f_2(n) = \Theta(g(n))
                    关于\oplus的推理规则(\oplus \in {O, \Omega, \Theta})
```

数据结构与算法 第3章 渐进符号

复杂性分析举例: template<class T> T sum(T a[], int n) {//計算a[0:n - 1]中元素之和 T theSum=0; stepCount++; //对应于theSum=0 for (int i=0; i<n; i++) { stepCount++; //对应于for语句 theSum +=a[i]; stepCount++; //对应于赋值语句 } stepCount++; //对应于最后一个for语句 stepCount++; //对应于return语句 return theSum; 步数: 2n+3 $t_{sum}(n) = 2n + 3 = \Theta(n)$ 山东大学计算机科学与技术学院 数据结构与算法 第3章 渐进符号

函数sum(程序1-30)的渐进复杂性

语句	s/e	频率	总步数
T sum(T a[], int n)	0	0	Θ(0)
{	0	0	Θ(0)
T theSum=0;	1	1	Θ(1)
for(int i=0;i <n;i++)< td=""><td>1</td><td>n+1</td><td>Θ(n)</td></n;i++)<>	1	n+1	Θ(n)
theSum +=a[i];	1	n	Θ(n)
return theSum;	1	1	Θ(1)
}	0	0	Θ(0)

 $t_{sum}(n) = \Theta(max(g_i(n))) = \Theta(n)$

山东大学计算机科学与技术学院

 $\left\{f_i(n) = \bigoplus (g_i(n)), 1 \le i \le k\right\} \to \sum f_i(n) = \bigoplus (\max_{1 \le i \le k} \left\{g_i(n)\right\})$ 山东大学计算机科学与技术学院 数据结构与算法 第3章 渐进符号

顺序搜索的渐进复杂性

语 句	s/e	频度	步数
int SequentialSearch(T a[], T& x, int n)	0	0	Θ (0)
{	0	0	Θ (0)
int i;	1	1	Θ (1)
for(i=0;i <n&&a[i]!=x;i++)< td=""><td>1</td><td>$\Omega(1), 0(n)$</td><td>Ω (1), 0 (n)</td></n&&a[i]!=x;i++)<>	1	$\Omega(1), 0(n)$	Ω (1), 0 (n)
if(i==n) return -1;	1	1	Θ (1)
return i;	1	Ω (0), 0(1)	Ω (0), 0(1)
}	0	0	Θ (0)
$t_{\text{SequentialSearch}}(n) =$:Ω(1)	

 $t_{SequentialSearch}(n) = O(n)$

函数sequentialSearch的渐进复杂性

山东大学计算机科学与技术学院

数据结构与算法 第3章 渐进符号

求排列(程序1-32)的渐进复杂性

求排列(程序1-32)的渐进复杂性

- 假定m=n-1。
- k=m:所需要的时间为cn(c是一个常数)。
- t_{permutations} (k, m) = t_{permutations} (m, m) = cn
- k<m:执行else语句,
 - for循环将被执行**m-k+1**次
 - 每次循环所花费的时间: dt_{permutations}(k+1, m), d是一个常数.
 - t_{permutations} (k, m) = d (m-k+1) t_{permutations} (k+1, m)。使用置换的方法,可以得到:
- $t_{permutations}(0,m) = \Theta((m+1)*(m+1)!) = \Theta(n*n!),$ 其中 $n \ge 1$ 。

山东大学计算机科学与技术学院 数据结构与算法 第3章 渐进符号

例 3-24 折半搜索 (Binary Search)

■ 在有序数组a中查找元素x

山东大学计算机科学与技术学院

数据结构与算法 第3章 渐进符号

搜索过程示例

```
13 19 21
               37 56 64 75 80 88
                                     921
05
left
                  middle
                                      right
   13 19 21
               37 56 64 75 80 88 92
05
left
      middle
               right
05 13 19 [21
               37 56 64 75 80 88 92
           left
               right
          middle
         查找x=21的过程(查找成功)
```

山东大学计算机科学与技术学院 数据结构与算法 第3章 渐进符号

搜索过程示例

```
05 13 19 21
             37
                56
                   64 75 80
05 13 19 21
            37
               56 [64 75
                         80
                            88
                               921
                56 64 75 80 [88
05 13 19 21
            37
                                92
05 13 19 21 37 56 64 75 80 [88 92
       查找x=85的过程(查找失败)
```

山东大学计算机科学与技术学院 数据结构与算法 第3章 渐进符号

程序3-1 折半搜索 (Binary Search)

```
template<class T>
int binarySearch(T a[], const T& x, int n)
{//在有序数组a中查找元素x
 //如果存在,就返回元素x的位置,否则返回-1
int left=0; //left指向数据段的左端
int right=n-1;//right指向数据段的右端
while (left≤right) {
  int middle=(left+right)/2;//数据段的中间
   if (x = a[middle]) return middle;
   if (x > a[middle]) left=middle + 1;
                                     最坏情况下,
   else right=middle-1;
                                     时间复杂性:
                                     O(logn)
return -1; //没有找到x
山东大学计算机科学与技术学院
                 数据结构与算法 第3章 渐进符号
```

3.5 实际复杂性					
logn	n	nlogn	n²	n ³	2 ⁿ
0	1	0	1	1	2
1	2	2	4	8	4
2	4	8	16	64	16
3	8	24	64	512	256
4	16	64	256	4096	65536
5	32	160	1024	32768	4294967296
山东大学计	計算机科学与 抗	技术学院 数排	居结构与算法	第3章 渐进符	号 43

	f(n)							
n	n	$n\log_2 n$	n ²	n³	n ⁴	n ¹⁰	2"	
10	.01µs	.03µs	.1μs	lμs	10µs	10s	lμs	
20	.02µs	.09µs	.4µs	8µs	160μs	2.84h	lms	
30	.03µs	.15µs	.9µs	27μs	810µs	6.83d	ls	
40	.04µs	.21µs	1.6µs	64μs	2.56ms	121d	18m	
50	.05µs	.28µs	2.5μs	125µs	6.25ms	3.1y	13d	
100	.10µs	.66µs	10µs	Ims	100ms	3171y	4*10 ¹³ y	
103	1µs	9.96μs	lms	1s	16.67m	3.17*10 ⁽³⁾ y	32*10 ²⁸³ y	
104	10µs	130µs	100ms	16.67m	115.7d	3.17*10 ²³ y		
105	100µs	1.66ms	10s	11.57d	3171y	3.17*10 ³³ y		
106	1ms	19.92ms	16.67m	31.71y	3.17*10 ⁷ y	3.17*10 ⁴³ y		
		1 微秒	F(μs)=10)** 秒 1 编	E秒 (ms)=10	·3 秒		
		s= #\$	m= 分钟	h= /\Bf	d= 天	v= 4E		

性能测量

- 性能测量(performance measurement)主要关注 于得到一个程序实际需要的空间和时间。
- 空间密切相关:
 - 特定的编译器
 - 编译器选项
 - 执行程序的计算机
- 不能精确地测量一个程序运行时所需要的空间
- 程序的运行时间: 使用C++函数clock()

山东大学计算机科学与技术学院 数据结构与算法 第4章 性能测量 47

时间测量

- 测量程序(以排序为例),需要
 - 确定实例特征n的一组值
 - 对于实例特征n的每一个值,设计测试数据
 - 可以人工设计或借助计算机设计相应的测试数据
 - 编写程序,测量运行时间
 - 为了提高测量的精确度,对于实例特征的每一个值,可以重复求解若干次。
 - 实际测量时间包括: 排序的时间、额外时间(每次对a 初始化等)

山东大学计算机科学与技术学院 数据结构与算法 第4章 性能测量 48