CSF 432: Intro to Network and System Security

Week 01 - Review

Michael Conti

Department of Computer Science and Statistics University of Rhode Island

Fall 2020

Sources: Professor Messer's CompTIA N10-007 Network+ Course Notes

Introduction to IP

Ethernet Header		Ethernet Trailer		
Ethernet Header	IP		Ethernet Trailer	
Ethernet Header	IP	ТСР	TCP Payload	Ethernet Trailer
Ethernet Header	IP	ТСР	HTTP data	Ethernet Trailer

Introduction to IP

A Series of Moving Vans

- ☑ Efficiently move large amounts of data
 - ☑ Use a shipping truck
- ☑The network topology is the road

- The truck is the Internet Protocol (IP)
 - We've designed the roads for this truck
- ☑ The boxes hold your data
 - ☑ Boxes of TCP and UDP
- ☑ Inside the boxes are more things
 - ☑ Application information

TCP and UDP

TCP - Transmission Control Protocol Communication

UDP - User Datagram Protocol Communication

Use many different applications at the same time (TCP and UDP)

Common Ports

SSH	tcp/22	Secure Shell	Encrypted console login	
DNS	udp/53	Domain Name System	Convert domain names to IP addresses	
SMTP	tcp/25	Simple Mail Transfer Protocol	Transfer email between mail servers	
SFTP	tcp/22	Secure FTP	Secure file transfer	
FTP	tcp/20, tcp/21	File Transfer Protocol	Sends and receives files between systems	
TFTP	udp/69	Trivial File Transfer Protocol	A very simple file transfer application	
Telnet	tcp/23	Telecommunication Network	Remote console login to network devices	
DHCP	udp/67, udp/68	Dynamic Host Configuration Protocol	Automated IP addressing and configuration	
HTTP	tcp/80	Hypertext Transfer Protocol	Web server communication	
HTTPS	tcp/443	Hypertext Transfer Protocol Secure	Web server communication with encryption	
SNMP	udp/161	Simple Network Management Protocol	Gather statistics and manage network devices	
RDP	tcp/3389	Remote Desktop Protocol	Graphical display of remote device	
NTP	udp/123	Network Time Protocol	Synchronize clocks	
SIP	tcp/5060-5061	Session Initiation Protocol	Voice over IP signaling protocol	
SMB	tcp/445	Server Message Block	Windows file transfers and printer sharing	
POP3	tcp/110	Post Office Protocol version 3	Receive mail into a mail client	
IMAP4	tcp/143	Internet Message Access Protocol v4	A newer mail client protocol	
LDAP	tcp/389	Lightweight Directory Access Protocol	Communicate with network directories	
LDAPS	tcp/636	Lightweight Directory Access Protocol Secure	LDAP over SSL	

Common Ports

SSH - Secure Shell

- ☑ Encrypted communication link tcp/22
- Looks and acts the same as Telnet

DNS - Domain Name System

- ☑ Converts names to IP addresses udp/53
- - Usually multiple DNS servers are in production

SMTP - Simple Mail Transfer Protocol

- ☑ Server to server email transfer tcp/25
 - Also used to send mail from a device to a mail server
- ☑ Commonly configured on mobile devices and email clients

Common Ports

SFTP - Secure FTP

- ☑Uses the SSH File Transfer Protocol tcp/
 22
- Provides file system functionality
- ☑ Resuming interrupted transfers, directory listings,
- ✓ remote file removal

Telnet

- ☑Telnet Telecommunication Network tcp/
 23 Login to devices remotely
- ☑ Console access
- ☑In-the-clear communication
- ☑ Not the best choice for production systems

FTP - File Transfer Protocol

- Authenticates with a username and password
- Full-featured functionality (list, add, delete, etc.)

TFTP - Trivial File Transfer Protocol

- ☑udp/69
- ✓ Very simple file transfer application
 - Read files and write files
- ☑No authentication Not used on production systems

Common Ports

DHCP - Dynamic Host Configuration Protocol

- Automated configuration of IP address, subnet mask and other options
 - udp/67, udp/68 Requires a DHCP server
- ☑ Dynamic / Pooled
 - IP addresses are assigned in real-time from a pool
 - ☑ Each system is given a lease
 - Must renew at set intervals

✓ Reserved

- Addresses are assigned by MAC address
- Quickly manage addresses from one location

HTTP and HTTPS

- - Communication in the browser
 - And by other applications
- ☑ In the clear or encrypted
 - Supported by nearly all web servers and clients

Common Ports

SNMP - Simple Network Management Protocol

- ☑ Gather statistics from network devices udp/161
- ✓ v2 A good step ahead
 - Data type enhancements, bulk transfers Still in-the-clear
- - Message integrity, authentication, encryption

RDP - Remote Desktop Protocol

- Share a desktop from a remote location over tcp/3389 Remote Desktop
- Services on many Windows versions
- ☑ Can connect to an entire desktop or just an application
- ☑ Clients for Windows, MacOS, Linux, iPhone, and others

1.5

Common Ports

NTP - Network Time Protocol

- - Every device has its own clockudp/123
- - Log files, authentication information, outage details
- ☑ Automatic updates
 - ☑ No flashing 12:00 lights
- Flexible You control how clocks are updated

✓ Very accurate

- Accuracy is better than 1 millisecond
- SIP Session Initiation Protocol
- ✓ Voice over IP (VoIP) signaling
- ✓ Setup and manage VoIP sessions
 - ☑ Call, ring, hang up
- - Video conferencing, instant messaging, file transfer, etc.

Common Ports

SMB - Server Message Block

- - File sharing, printer sharing
 - Also called CIFS (Common Internet File System)
- ☑ Direct over tcp/445 (NetBIOSless)
 - Direct SMB communication over TCP without the NetBIOS transport

POP/IMAP

- ☑ Receive emails from an email server
 - Authenticate and transfer
- ☑POP3 Post office Protocol version 3 tcp/110
 - Basic mail transfer functionality
- ☑IMAP4 Internet Message Access Protocol v4 - tcp/143
 - Manage email inbox from multiple clients

14

Common Ports

LDAP/LDAPS

- ☑ LDAP (Lightweight Directory Access Protocol) - tcp/389
 - Store and retrieve information in a network directory
- ☑LDAPS (LDAP Secure) tcp/636
 - A non-standard implementation of LDAP over SSL

H.323

- ✓ Voice over IP (VoIP) signaling tcp/1720
- - ☑ Call, ring, hang up
- ☑ One of the earliest VoIP standards

Understanding the OSI Model

Layer 7 - Application	The layer we see - Google Mail, Twitter, Facebook				
Layer 6 - Presentation	Encoding and encryption (SSL/TLS)				
Layer 5 - Session	Communication between devices (Control protocols, tunneling protocols)				
Layer 4 - Transport	The "post office" layer (TCP segment, UDP datagram)				
Layer 3 - Network	The routing layer (IP address, router, packet)				
Layer 2 - Data Link	The switching layer (Frame, MAC address, EUI-48, EUI-64, Switch)				
Layer 1 - Physical	Signaling, cabling, connectors (Cable, NIC, Hub)				

OSI Model

Open Systems Interconnection Reference Model

- It's a guide (thus the term "model")
- ☑ Don't get wrapped up in the details
- This is not the OSI protocol suite

- ✓ You'll refer to this model for the rest of your career

Layer 7 - Application	The layer we see - Google Mail, Twitter, Facebook
Layer 6 - Presentation	Encoding and encryption (SSL/TLS)
Layer 5 - Session	Communication between devices (Control protocols, tunneling protocols)
Layer 4 - Transport	The "post office" layer (TCP segment, UDP datagram)
Layer 3 - Network	The routing layer (IP address, router, packet)
Layer 2 - Data Link	The switching layer (Frame, MAC address, EUI-48, EUI-64, Switch)
Layer 1 - Physical	Signaling, cabling, connectors (Cable, NIC, Hub)

OSI Model

Layer 1 - The Physical Layer

- - Signaling, cabling, connectors
- This layer isn't about protocols
- - Fix your cabling, punchdowns, etc.
 - Run loopback tests, test/ replace cables, swap adapter cards

Layer 2 - Data Link Layer

- ☑The basic network "language"
 - The foundation of communication at the data link laver
- ☑ Data Link Control (DLC) protocols
 - MAC (Media Access Control) address on Ethernet
- ☑The "switching" layer

1

OSI Model

Layer 3 - The Network Layer

- The "routing" layer
- ☑ Internet Protocol (IP)

Layer 4 - Transport Layer

- ☑ The "post office" layer
 - Parcels and letters
- TCP and UDP

Layer 5 - Session Layer

- Communication management between devices Start, stop, restart
- ☑ Half-duplex, full-duplex
- ☑ Control protocols, tunneling protocols

Hint: What is IP Fragmentation?

Fragments are always in multiples of 8 because of the number of fragmentation offset bits in the IP header

OSI Model

Layer 6 - Presentation Layer

- ☑ Character encoding

Layer 7 - Application Layer

☑ The layer we see: HTTP, FTP, DNS, POP3

OSI Mnemonics

- Please Do Not Trust Sales
 Person's Answers
- ✓ All People Seem To Need Data Processing

Physical - DataLink - Network - Transport - Session - Presentation - Application

19

Introduction to Ethernet

Field	Bytes	Description		
Preamble	7	56 alternating ones and zeros used for synchronization (101010)		
SFD	1	Start Frame Delimiter - designates the end of the preamble (10101011)		
Destination MAC Address	6	Ethernet MAC address of the destination device		
Source MAC Address	6	Ethernet MAC address of the source device		
EtherType	2	Describes the data contained the payload		
Payload	46 - 1500	Layer 3 and higher data		
FCS	4	Frame Check Sequence - CRC checksum of the frame		

Introduction to Ethernet

Field	Bytes	Description		
Preamble	7	56 alternating ones and zeros used for synchronization (101010)		
SFD	1	Start Frame Delimiter - designates the end of the preamble (10101011)		
Destination MAC Address	6	Ethernet MAC address of the destination device		
Source MAC Address	6	Ethernet MAC address of the source device		
EtherType	2	Describes the data contained the payload		
Payload	46 - 1500	Layer 3 and higher data		
FCS	4	Frame Check Sequence - CRC checksum of the frame		

Preamble	SFD	Destination MAC	Source MAC	Туре	Payload	FCS	

Introduction to Ethernet

The MAC address

- address
 - network adapter
 - ☑ Unique to a device
- - ☑ Displayed in hexadecimal

Half-duplex

- MA device cannot send and receive simultaneously
- ☑ All LAN hubs are half-duplex devices
- Switch interfaces can be configured as half-duplex, but usually only when connecting to another half-duplex device

8c:2d:aa:4b:98:a7

Organizationally Unique Identifier (OUI)

(the manufacturer)

Network Interface Controller-Specific (the serial number)

Introduction to Ethernet

Full-duplex

- ☑ Data can be sent and received at the same time
- ☑ A properly configured switch interface will be set to full-duplex

CSMA/CD

- - communicating?
- MA Multiple Access
 - network

- ☑ CD Collision Detect
 - ☑ Collision Two stations talking at once
 - ☑ Identify when data gets garbled
- ☑ Half-duplex Ethernet not used any longer

8c:2d:aa:4b:98:a7

Identifier (OUI) (the manufacturer)

Controller-Specific (the serial number)

Organizationally Unique

Introduction to Ethernet

CSMA/CD operation

- ☑Listen for an opening
 - Don't transmit if the network is already busy
- Send a frame of data
 - You send data whenever you can
 - There's no queue or prioritization
- ☑ If a collision occurs
 - Transmit a jam signal to let everyone know a collision has occurred

Wait a random amount of time, then retry

CSMA/CA

- ☑ CA Collision Avoidance
- ☑ Collision detection isn't possible
- ☑ Common to see RTS/CTS
- ✓ Solves the "hidden node" problem

8c:2d:aa:4b:98:a7

Organizationally Unique Identifier (OUI) (the manufacturer) Network Interface Controller-Specific (the serial number)

25

Network Switching

2

Network Switching

The Switch

- Forward or drop frames
 - Based on the destination MAC address
- ☑ Gather a constantly updating list of MAC addresses
 - Builds the list based on the source MAC address of incoming traffic
- Maintain a loop-free environment
 - ☑ Using Spanning Tree Protocol (STP)

Learning the MACs

- ☑ Switches examine incoming traffic
 - Makes a note of the source MAC address

- ☑ Adds unknown MAC addresses to the MAC address table
 - Sets the output interface to the received interface

Flooding for unknown Macs

- ☑ The switch doesn't always have a MAC address in the table

Address Resolution Protocol

- ☑ Determine a MAC address based on an IP address
 - You need the hardware address to communicate

View local ARP table with command: arp -a

Collision Domains

Switch

Collision domains

Collision domains

- MA historical footnote
 - It's difficult to find a collision these days
- - Everyone heard everyone else's signals
 - ☑ One big conference call

- ✓ Only one station can "talk" at a time
 - ☑ Is the line clear? Ok, I can talk.
 - Carrier Sense Multiple Access (CSMA)
- - Collision Detection (CD) Send the jam signal

Broadcast Domains

Broadcast Domains

Broadcast Domains

- - ARP probes, operating system notifications

- - ☑ Passed by a switch/bridge
- ☑ This can be important
 - More devices, more broadcasts

CSF 432: Intro to Network and System Security

Week 01 - Review

Michael Conti

Department of Computer Science and Statistics University of Rhode Island

Fall 2020

Sources: Professor Messer's CompTIA N10-007 Network+ Course Notes