

Pre-course: Constitutive Modelling of Soft Tissues

Overview

- Summary of balance equations
- Constitutive Equations Strain Energy Function
- Objectivity
- Isotropy
- Stress and Strain Tensors
- Linear Elasticity
- Nonlinear Elasticity

Summary of Balance Equations

Mass balance:
$$\int_{R_t} \rho dv = \int_{R_r} \rho_r dV$$

Linear Momentum balance: $\int\limits_{R_t} \left[\rho \frac{\partial \mathbf{v}}{\partial t} - \operatorname{div} \boldsymbol{\sigma} - \rho \mathbf{b} \right] dv = 0$

Angular Momentum balance: $\sigma = \sigma^T$

 ρ , v (3 components), σ (6 components)

 σ -> Cauchy Stress

v -> Velocity

b -> Body force

Unknowns: ρ , **v** (3 components), σ (9 components)

$$\sigma = \sigma^T$$

10 Unknowns

1+3 = 4 Equations

13 Unknowns

Constitutive Equations

Stress-strain relationship

$$\sigma = f(\mathbf{x}, \mathbf{v}, \mathbf{F}, \mathbf{L}, \dots)$$

 $F = k \Delta x$

Homogeneous Elastic material:

$$\sigma = g(F)$$

No pre-stress:

$$g(I) = 0$$

Hyperelastic or Green elastic materials: Stress-strain relationship from strain energy function

Energy Balance Equation

Total rate of working = Rate of work due to body force + Rate of work due to surface force

$$P(t) = \int_{R_t} \rho \mathbf{b} . \mathbf{v} dv + \int_{S_t} (\mathbf{\sigma} \mathbf{n}) . \mathbf{v} da$$

Energy balance:
$$P(R_t) = \frac{d}{dt} \int_{R_t}^{1} \frac{1}{2} \rho \mathbf{v} \cdot \mathbf{v} dv + \int_{R_t}^{1} \operatorname{tr}(\mathbf{\sigma} \mathbf{L}) dv$$

Rate of Kinetic energy Rate of energy

The rate of change of the total stored elastic energy...

For hyperelastic material, we have

Rate of Stored elastic energy per unit reference volume

Rate of stored Elastic energy
$$\int_{R_t} \operatorname{tr}(\boldsymbol{\sigma} \mathbf{L}) dv = \int_{R_t} \operatorname{tr}(\boldsymbol{\sigma} \mathbf{L}) dv = \int_{R_r} \operatorname{tr}(\boldsymbol{\sigma} \mathbf{L}) J dV = \int_{R_r} \operatorname{tr}(\boldsymbol{\sigma} \mathbf{L}) J dV = \int_{R_r} \operatorname{tr}(\boldsymbol{\sigma} \mathbf{L}) J dV$$

W: Stored elastic energy (strain energy) per unit reference volume

$$\operatorname{tr}(J\boldsymbol{\sigma}\mathbf{L}) = \frac{\partial}{\partial t}W(\mathbf{F})$$

$$\int_{R_r} \operatorname{tr}(J\boldsymbol{\sigma}\mathbf{L})dV = \int_{R_r} \frac{\partial}{\partial t} W(\mathbf{F})dV$$

Constitutive equations

Expression for *W*

The rate of change of the total stored elastic energy...

Since $W(\mathbf{F})$ is only a function of \mathbf{F} , we have

 $\frac{\partial W}{\partial t} = \frac{\partial W}{\partial F_{ij}} \frac{\partial F_{ij}}{\partial t}$

Index notation

$$\frac{\partial W}{\partial F_{ij}} \frac{\partial F_{ij}}{\partial t} = \sum_{i=1}^{3} \sum_{j=1}^{3} \frac{\partial W}{\partial F_{ij}} \frac{\partial F_{ij}}{\partial t}$$

Derivative of scalar w.r.t tensor

$$\frac{\partial W}{\partial F_{ij}} = \left(\frac{\partial W}{\partial \mathbf{F}}\right)_{ji}$$

$$\frac{\partial \mathbf{F}}{\partial t} = \dot{\mathbf{F}} = \mathbf{LF}$$

$$\frac{\partial F_{ij}}{\partial t} = (\mathbf{LF})_{ij}$$

$$\frac{\partial W}{\partial t} = \frac{\partial W}{\partial F_{ij}} \frac{\partial F_{ij}}{\partial t} \qquad \longrightarrow \qquad \frac{\partial W}{\partial t} = \left(\frac{\partial W}{\partial \mathbf{F}}\right)_{ji} (\mathbf{L}\mathbf{F})_{ij} \qquad \longrightarrow \frac{\partial W}{\partial t} = \operatorname{tr}\left(\frac{\partial W}{\partial \mathbf{F}}\mathbf{L}\mathbf{F}\right) \qquad \longrightarrow \qquad \frac{\partial W}{\partial t} = \operatorname{tr}\left(\mathbf{F}\frac{\partial W}{\partial \mathbf{F}}\mathbf{L}\right)$$

Trace

$$tr(\mathbf{AB}) = A_{ji}B_i$$

tr(ABC) = tr(CAB)

The rate of change of the total stored elastic energy

$$\operatorname{tr}(J\boldsymbol{\sigma}\mathbf{L}) = \frac{\partial}{\partial t}W(\mathbf{F})$$

$$\frac{\partial W}{\partial t} = \operatorname{tr}\left(\mathbf{F}\frac{\partial W}{\partial \mathbf{F}}\mathbf{L}\right)$$

$$J\boldsymbol{\sigma} = \mathbf{F} \frac{\partial W}{\partial \mathbf{F}} \qquad \qquad \boldsymbol{\sigma} = J^{-1} \mathbf{F} \frac{\partial W}{\partial \mathbf{F}}$$

Stress tensor

Cauchy stress tensor as a function of F

$$\mathbf{\sigma} = \mathbf{g}(\mathbf{F}) = J^{-1}\mathbf{F}\frac{\partial W}{\partial \mathbf{F}}$$

Nominal/Engineering stress

$$\mathbf{S} = \frac{\partial W}{\partial \mathbf{F}}$$

$$S_{ij} = \frac{\partial W}{\partial F_{ji}}$$

First Piola Kirchhoff's stress
$$\mathbf{P} = \mathbf{S}^T$$

Stress in the reference configuration Force per unit reference area

S is not symmetric, but **FS** is symmetric

$$\mathbf{S} = J\mathbf{F}^{-1}\mathbf{\sigma} = \mathbf{h}(\mathbf{F})$$

$$\mathbf{\sigma} = J^{-1}\mathbf{F}\mathbf{S}$$
(FS)^T = FS

Conjugate stress and strain tensors

Rate of total elastic stored energy per unit reference volume

$$\mathrm{tr}(J\sigma\mathbf{L})$$
 $\mathbf{tr}(J\sigma\mathbf{L}) = \mathrm{tr}(\mathbf{F}\mathbf{S}\mathbf{L}) = \mathrm{tr}(\mathbf{S}\mathbf{L})$ $\mathbf{L} = \dot{\mathbf{F}}\mathbf{F}^{-1}$ \mathbf{S} and \mathbf{F} are conjugate pairs

We define

Objectivity

Principle of material frame-indifference.

$$\mathbf{F}' = \frac{\partial \chi'(X,t)}{\partial X} = \frac{\partial \chi'(X,t)}{\partial \chi(X,t)} \frac{\partial \chi(X,t)}{\partial X} = \mathbf{QF}$$

Isotropy...

Isotropy -> Material Properties same in all directions
Anisotropy -> Material Properties not necessarily same in all directions

Example:

Isotropy

Types of deformation

Linear Elastic -> Small deformation

$$F = k \Delta x$$

Nonlinear Elastic -> Large deformation

Linear Elasticity

Displacement: $\mathbf{u} = \mathbf{x} - \mathbf{X}$

$$\mathbf{u} = \mathbf{x} - \mathbf{X}$$

$$\mathbf{F} = \operatorname{Grad} \mathbf{x} = \mathbf{I} + \mathbf{H}$$

 $\mathbf{H} = \operatorname{Grad} \mathbf{u}$

Linear Elasticity -> Small deformation

$$\varepsilon \equiv \sqrt{\mathbf{H} \cdot \mathbf{H}} = \sqrt{\mathbf{H}_{ij}^2} \ll 1$$

Infinitesimal strain tensor

$$\mathbf{e} = \frac{1}{2} (\mathbf{H} + \mathbf{H}^T)$$

Polar decomposition, Objectivity & Isotropy

$$\mathbf{\sigma} = \frac{\partial \mathbf{g}}{\partial \mathbf{U}} \mathbf{e} + \mathcal{O}(\varepsilon^2) \quad \mathbf{\sigma} = \mathbf{ce} \quad \mathbf{c}$$

$$\sigma = ce$$

$$\sigma_{ij} = c_{ijkh} e_{kh}$$

$$c_{ijkh} = \frac{\partial g_{ij}}{\partial U_{kh}} (\mathbf{I})$$

 $\varepsilon \ll 1$

F = RU

See derivation in slide no. 24-26

$$\mathbf{c} = \frac{\partial \mathbf{g}}{\partial \mathbf{U}}(\mathbf{I}) = \frac{\partial^2 W}{\partial \mathbf{U} \partial \mathbf{U}}(\mathbf{I})$$

Elasticity tensor (4th Order)

$$\mathbf{\sigma} = \lambda(\operatorname{tr} \mathbf{e})\mathbf{I} + 2\mu\mathbf{e}$$

Hook's law

$$\lambda$$
, μ -> Lame' moduli

Nonlinear Elasticity

For isotropic materials

$$W(\mathbf{F}) = W(\mathbf{FQ})$$
 $W(\mathbf{F}) = W(\mathbf{V})$
Objectivity $\mathbf{F} = \mathbf{VR}$

$$\mathbf{V} = \sum_{i=1}^{3} \lambda_i \mathbf{v}^{(i)} \otimes \mathbf{v}^{(i)} \quad \lambda_1, \lambda_2, \lambda_3 \text{ -> Eigen values (principal stretches) of } \mathbf{V}$$

$$\mathbf{v}^{(1)}, \mathbf{v}^{(2)}, \mathbf{v}^{(3)} \text{-> Eigen vectors of } \mathbf{V}$$

$$W(\mathbf{V}) = W'(\lambda_1, \lambda_2, \lambda_3)$$

$$i_1, i_2, i_3$$
 -> principal invariants of **V**

$$W'(\lambda_1, \lambda_2, \lambda_3) = W''(i_1, i_2, i_3)$$

$$i_1 = \lambda_1 + \lambda_2 + \lambda_3$$
 $i_2 = \lambda_2 \lambda_3 + \lambda_3 \lambda_1 + \lambda_1 \lambda_2$ $i_3 = \lambda_1 \lambda_2 \lambda_3$

$$W'(\lambda_1,\lambda_2,\lambda_3)=W'''(I_1,I_2,I_3)$$

$$I_1 = \lambda_1^2 + \lambda_2^2 + \lambda_3^2$$
 $I_2 = \lambda_2^2 \lambda_3^2 + \lambda_3^2 \lambda_1^2 + \lambda_1^2 \lambda_2^2$ $I_3 = \lambda_1^2 \lambda_2^2 \lambda_3^2$

$$I_1, I_2, I_3$$
 -> principal invariants of $\mathbf{C} = \mathbf{F}^T \mathbf{F}$

W as a function of the principal stretches

Simple elongation of a circular cylinder

$$\lambda_1 = \lambda = \frac{l}{L} = \frac{dx_1}{dX_1}$$
 $\lambda_2 = \frac{dx_2}{dX_2}$
 $\lambda_3 = \frac{dx_3}{dX_3}$

$$\mathbf{F} = \begin{bmatrix} \frac{\partial x_1}{\partial X_1} & \frac{\partial x_1}{\partial X_2} & \frac{\partial x_1}{\partial X_3} \\ \frac{\partial x_2}{\partial X_1} & \frac{\partial x_2}{\partial X_2} & \frac{\partial x_2}{\partial X_3} \\ \frac{\partial x_3}{\partial X_1} & \frac{\partial x_3}{\partial X_2} & \frac{\partial x_3}{\partial X_3} \end{bmatrix} \longrightarrow \mathbf{F} = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix} \qquad \begin{aligned} W &= \frac{\mu}{2} \left(\lambda_1^2 + \lambda_2^2 + \lambda_3^2 - 3 - 2 \log J \right) \\ &+ \frac{1}{2} \kappa (J - 1)^2 \\ \mu, \kappa &\to \text{Material properties, always} > 0 \end{aligned}$$

$$J = \det \mathbf{F} = \lambda_1 \lambda_2 \lambda_3$$

$$\lambda_1 = \lambda$$

$$\sigma_1 = \sigma$$

$$J\sigma = \mu(\lambda^2 - 1) + \kappa J(J - 1)$$

$$\lambda_2 = \lambda_3$$

$$\sigma_2 = \sigma_3 = 0$$

$$0 = \mu(\lambda_2^2 - 1) + \kappa J(J - 1)$$

$$W = \frac{\mu}{2} (\lambda_1^2 + \lambda_2^2 + \lambda_3^2 - 3 - 2\log J) + \frac{1}{2} \kappa (J - 1)^2$$

$$J\sigma_i = \lambda_i \frac{\partial W}{\partial \lambda_i} = \mu(\lambda_i^2 - 1) + \kappa J(J - 1)$$

See derivation in slide no. 27-28

W as a function of the principal invariants I_1 , I_2 , and I_3 ...

$$I_1 = \operatorname{tr}(\mathbf{C})$$

$$\overline{W}(I_1, I_2, I_3)$$

$$I_2 = \frac{1}{2} [I_1^2 - \operatorname{tr}(\mathbf{C}^2)]$$

$$C = \mathbf{F}^T \mathbf{F}$$

$$I_3 = \det \mathbf{C}$$

Nominal stress

$$\mathbf{S} = \frac{\partial \overline{W}}{\partial I_1} \frac{\partial I_1}{\partial \mathbf{F}} + \frac{\partial \overline{W}}{\partial I_2} \frac{\partial I_2}{\partial \mathbf{F}} + \frac{\partial \overline{W}}{\partial I_3} \frac{\partial I_3}{\partial \mathbf{F}}$$

$$\frac{\partial I_1}{\partial \mathbf{F}} = 2\mathbf{F}^T \qquad \qquad \frac{\partial I_2}{\partial \mathbf{F}} = \frac{\partial \left[\frac{1}{2} \left(I_1^2 - \text{tr}(\mathbf{C}^2)\right)\right]}{\partial \mathbf{F}} = 2I_1\mathbf{F}^T - \frac{1}{2}\frac{\partial}{\partial \mathbf{F}}\text{tr}(\mathbf{C}^2) \qquad \qquad \frac{\partial I_3}{\partial \mathbf{F}} = \frac{\partial}{\partial \mathbf{F}}(\det \mathbf{F})^2 = 2I_3\mathbf{F}^{-1}$$

See derivation in slide no. 29

W as a function of the principal invariants I₁, I₂, and I₃

$$\overline{W}(I_1, I_2, I_3)$$

$$I_2 = \frac{1}{2} \left[I_1^2 - \text{tr}(\mathbf{C}^2) \right]$$

$$C = \mathbf{F}^T \mathbf{F}$$

$$I_1(\mathbf{F}), I_2(\mathbf{F}), I_3(\mathbf{F})$$

$$I_3 = \det \mathbf{C} = (\det \mathbf{F})^2$$

Nominal stress
$$\mathbf{S} = \frac{\partial \overline{W}}{\partial I_1} \frac{\partial I_1}{\partial \mathbf{F}} + \frac{\partial \overline{W}}{\partial I_2} \frac{\partial I_2}{\partial \mathbf{F}} + \frac{\partial \overline{W}}{\partial I_3} \frac{\partial I_3}{\partial \mathbf{F}}$$
 $\mathbf{S} = 2 \frac{\partial \overline{W}}{\partial I_1} \mathbf{F}^T + 2 \frac{\partial \overline{W}}{\partial I_2} \left(2I_1 \mathbf{F}^T - 2\mathbf{F}^T \mathbf{F} \mathbf{F}^T \right) + 2I_3 \frac{\partial \overline{W}}{\partial I_3} \mathbf{F}^{-1}$

Cauchy stress

$$\boldsymbol{\sigma} = J^{-1}\mathbf{FS}$$

$$\boldsymbol{\sigma} = 2I_3^{-1/2} \left(\frac{\partial \overline{W}}{\partial I_1} + I_1 \frac{\partial \overline{W}}{\partial I_2} \right) \mathbf{B} - 2I_3^{-1/2} \frac{\partial \overline{W}}{\partial I_2} \mathbf{B}^2 + 2I_3^{1/2} \frac{\partial \overline{W}}{\partial I_3} \mathbf{I}$$

$$\mathbf{B} = \mathbf{F}\mathbf{F}^T$$

W as a function of the principal invariants I_1 , I_2 , and I_3

Dong, X., & Duan, Z. (2022). Comparative study on the sealing performance of packer rubber based on elastic and hyperelastic analyses using various constitutive models. *Materials Research Express*, *9*(7), 075301.

Energy Balance Equation

$$P(t) = \int_{R_t} \rho \mathbf{b} \cdot \mathbf{v} dv + \int_{S_t} (\mathbf{\sigma} \mathbf{n}) \cdot \mathbf{v} da = \int_{R_t} \rho \mathbf{b} \cdot \mathbf{v} dv + \int_{S_t} (\mathbf{\sigma} \mathbf{v}) \cdot \mathbf{n} da = \int_{R_t} [\rho \mathbf{b} \cdot \mathbf{v} + \operatorname{div}(\mathbf{\sigma} \mathbf{v})] dv$$

$$(\mathbf{\sigma} \text{ is symmetric}) \qquad \text{(Divergence theorem)}$$

$$= \int\limits_{R_t} [\rho \mathbf{b} \cdot \mathbf{v} + \operatorname{div}(\mathbf{\sigma}) \cdot \mathbf{v} + \operatorname{tr}(\mathbf{\sigma} \mathbf{L})] dv = \int\limits_{R_t} [(\rho \mathbf{b} + \operatorname{div}(\mathbf{\sigma})) \cdot \mathbf{v} + \operatorname{tr}(\mathbf{\sigma} \mathbf{D})] dv = \int\limits_{R_t} [\rho \dot{\mathbf{v}} \cdot \mathbf{v} + \operatorname{tr}(\mathbf{\sigma} \mathbf{D})] dv$$

$$((\sigma_{ij}v_j)_{,i} = \sigma_{ij,i}v_j + \sigma_{ij}v_{j,i} = \sigma_{ij,i}v_j + \sigma_{ij}L_{ji}) \quad (\sigma_{ij}L_{ji} = \sigma_{ij}(D_{ji} + W_{ji}) = \sigma_{ij}D_{ji}) \quad \text{Using momentum balance}$$

$$P(R_t) = \frac{d}{dt} \int_{R_t} \frac{1}{2} \rho \mathbf{v} \cdot \mathbf{v} dv + \int_{R_t} \text{tr}(\mathbf{\sigma} \mathbf{L}) dv$$

Conjugate stress and strain tensors

Stored energy rate
$$\frac{\partial W}{\partial t} = \operatorname{tr}(\mathbf{T}^{(2)}\dot{\mathbf{E}}^{(2)}) = \operatorname{tr}\left[\frac{1}{2}\left(\mathbf{T}^{(2)}\mathbf{U} + \mathbf{U}\mathbf{T}^{(2)}\right)\dot{\mathbf{E}}^{(1)}\right]$$

$$\mathbf{T}^{(1)} = \frac{1}{2} \left(\mathbf{T}^{(2)} \mathbf{U} + \mathbf{U} \mathbf{T}^{(2)} \right) \qquad \qquad \mathbf{tr} \left(\mathbf{T}^{(2)} \dot{\mathbf{E}}^{(2)} \right) = \mathbf{tr} \left[\mathbf{T}^{(1)} \dot{\mathbf{E}}^{(1)} \right] \stackrel{\square}{\longleftarrow} \qquad \mathbf{Another conjugate pair} \qquad \mathbf{T}^{(1)} \text{ and } \mathbf{E}^{(1)}$$

$$\frac{\partial W}{\partial t} = J \operatorname{tr}(\sigma \mathbf{D}) = \operatorname{tr}(\mathbf{S}\dot{\mathbf{F}}) = \operatorname{tr}(\mathbf{T}^{(2)}\dot{\mathbf{E}}^{(2)}) = \operatorname{tr}(\mathbf{T}^{(1)}\dot{\mathbf{E}}^{(1)})$$

In general

$$\frac{\partial W}{\partial t} = \operatorname{tr}(\mathbf{T}^{(m)}\dot{\mathbf{E}}^{(m)}) \qquad \qquad \mathbf{E}^{(m)} = \frac{\mathbf{U}^m - \mathbf{I}}{m}$$

 $W^{(m)}$ as a function of the general strain tensor $\mathbf{E}^{(m)}$

$$W^{(m)}(\mathbf{E}^{(m)}) = W^{(1)}(\mathbf{E}^{(1)}) = W^{(2)}(\mathbf{E}^{(2)})$$

$$\mathbf{T}^{(m)} = \frac{\partial W}{\partial \mathbf{E}^{(m)}}$$

Objectivity

Principle of material frame-indifference.

W is indifferent to observer transformations (translations and rotations)

Traction vector on R_t : $\mathbf{t} = \boldsymbol{\sigma} \mathbf{n}$

Traction vector on $R_{t'}$: $t' = \sigma' \mathbf{n}' = \sigma' \mathbf{Q} \mathbf{n}$

$$\mathbf{t}' = \mathbf{Q}\mathbf{t}$$

$$\sigma' \mathbf{Q}\mathbf{n} = \mathbf{Q}\boldsymbol{\sigma}\mathbf{n}$$

$$\sigma' \mathbf{Q} = \mathbf{Q}\boldsymbol{\sigma}$$

$$\sigma' \mathbf{Q} = \mathbf{Q}\boldsymbol{\sigma}$$

Polar decomposition

Polar decomposition theorem

$$F = RU = VR$$

U, V -> Positive definite symmetric tensorR -> Proper orthogonal tensor

$$\mathbf{U}^2 = \mathbf{F}^T \mathbf{F}$$
$$\mathbf{V}^2 = \mathbf{F} \mathbf{F}^T$$

$$\mathbf{R} = \mathbf{F}\mathbf{U}^{-1}$$

Isotropy:
$$g(QF) = Qg(F)Q^T$$
 $g(RF) = Rg(F)R^T$ $g(RU) = Rg(U)R^T$ $g(F) = Rg(U)R^T$ $Q = R$

Linear Elasticity

$$\mathbf{E} = \frac{1}{2} (\mathbf{F}^T \mathbf{F} - \mathbf{I}) = \frac{1}{2} [(\mathbf{I} + \mathbf{H})^T (\mathbf{I} + \mathbf{H}) - \mathbf{I}] = \frac{1}{2} [\mathbf{H} + \mathbf{H}^T + \mathcal{O}(\varepsilon^2)]$$

$$\mathbf{E} = \mathbf{e} + \mathcal{O}(\varepsilon^2)$$

$$\mathbf{Infinitesimal}$$

$$\mathbf{Strain tensor}$$

$$\mathbf{E} = \mathbf{e} + \mathcal{O}(\varepsilon^2)$$

$$\mathbf{E} = \mathbf{$$

No pre-stress: g(I) = 0

W as a function of the principal stretches...

$$W(\lambda_1,\lambda_2,\lambda_3)$$

$$W(\lambda_1, \lambda_2, \lambda_3) \qquad \frac{\partial W}{\partial t} = \sum_{i=1}^{3} \frac{\partial W}{\partial \lambda_i} \frac{\partial \lambda_i}{\partial t}$$

We have

$$\frac{\partial W}{\partial t} = J \operatorname{tr}(\boldsymbol{\sigma} \mathbf{D})$$
$$\boldsymbol{\sigma} = \sum_{i=1}^{3} \sigma_{i} \mathbf{v}^{(i)} \otimes \mathbf{v}^{(i)}$$

$$\frac{\partial W}{\partial t} = J \text{tr}(\boldsymbol{\sigma} \mathbf{D})$$

$$\boldsymbol{\sigma} = \sum_{i=1}^{3} \sigma_{i} \mathbf{v}^{(i)} \otimes \mathbf{v}^{(i)}$$

$$\boldsymbol{\sigma} = \sum_{i=1}^{3} \sigma_{i} \mathbf{v}^{(i)} \otimes \mathbf{v}^{(i)}$$

$$D_{ii} = \mathbf{v}^{(i)} \cdot (\mathbf{D} \mathbf{v}^{(i)})$$

$$D_{ii}$$
 -> Normal component of \mathbf{D} referred to the axes $\mathbf{v}^{(i)}$ $D_{ii} = \mathbf{v}^{(i)}.(\mathbf{D}\mathbf{v}^{(i)})$

$$\sigma_i$$
 -> Principal stresses

$$\mathbf{D} = \frac{1}{2} \mathbf{R} (\dot{\mathbf{U}} \mathbf{U}^{-1} + \mathbf{U}^{-1} \dot{\mathbf{U}}) \mathbf{R}^{T} \qquad \mathbf{D} = \mathbf{R} (\dot{\mathbf{U}} \mathbf{U}^{-1}) \mathbf{R}^{T}$$

$$\mathbf{U} = \sum_{i=1}^{3} \lambda_i \mathbf{u}^{(i)} \otimes \mathbf{u}^{(i)}$$

$$\mathbf{U} = \sum_{i=1}^{3} \lambda_{i} \mathbf{u}^{(i)} \otimes \mathbf{u}^{(i)} \qquad \mathbf{D} = \mathbf{R} \sum_{i=1}^{3} (\dot{\lambda}_{i} \lambda_{i}^{-1} \mathbf{u}^{(i)} \otimes \mathbf{u}^{(i)}) \mathbf{R}^{T} \qquad \mathbf{D} = \sum_{i=1}^{3} (\dot{\lambda}_{i} \lambda_{i}^{-1} \mathbf{R} \mathbf{u}^{(i)} \otimes \mathbf{R} \mathbf{u}^{(i)})$$

$$D = \sum_{i=1}^{3} (\lambda_i \lambda_i^{-1} \mathbf{R} \mathbf{u}^{(i)} \otimes \mathbf{R} \mathbf{u}^{(i)})$$

$$\mathbf{V} = \sum_{i=1}^{3} \lambda_i \mathbf{v}^{(i)} \otimes \mathbf{v}^{(i)}$$

$$\mathbf{v}^{(i)} = \mathbf{R}\mathbf{u}^{(i)}$$

$$\mathbf{V} = \sum_{i=1}^{3} \lambda_i \mathbf{v}^{(i)} \otimes \mathbf{v}^{(i)} \qquad \mathbf{v}^{(i)} = \mathbf{R} \mathbf{u}^{(i)} \qquad \mathbf{D} = \sum_{i=1}^{3} (\lambda_i \lambda_i^{-1} \mathbf{v}^{(i)} \otimes \mathbf{v}^{(i)}) \qquad \mathbf{D}_{ii} = \lambda_i \lambda_i^{-1}$$

$$D_{ii} = \dot{\lambda_i} \lambda_i^{-1}$$

W as a function of the principal stretches

$$D_{ii} = \dot{\lambda}_i \lambda_i^{-1} \qquad \qquad \frac{\partial W}{\partial t} = \sum_{i=1}^3 \frac{\partial W}{\partial \lambda_i} \dot{\lambda}_i = \sum_{i=1}^3 J \sigma_i \dot{\lambda}_i \lambda_i^{-1} \qquad \qquad \frac{\partial W}{\partial \lambda_i} = J \sigma_i \lambda_i^{-1} \qquad \qquad J = \lambda_1 \lambda_2 \lambda_3$$

Cauchy stress

$$\mathbf{\sigma} = \sum_{i=1}^{3} J^{-1} \lambda_i \frac{\partial W}{\partial \lambda_i} \mathbf{v}^{(i)} \otimes \mathbf{v}^{(i)}$$

Nominal stress

$$\mathbf{S} = J\mathbf{F}^{-1}\boldsymbol{\sigma}$$

$$\mathbf{F}^{-1} = \mathbf{U}^{-1}\mathbf{R}^{T}$$

$$\mathbf{R}^{T}\mathbf{v}^{(i)} = \mathbf{u}^{(i)}$$

$$\mathbf{S} = J\mathbf{U}^{-1}\sum_{i=1}^{3} \sigma_{i}\mathbf{u}^{(i)} \otimes \mathbf{v}^{(i)}$$

$$\mathbf{S} = \sum_{i=1}^{3} J\sigma_{i}\lambda_{i}^{-1}\mathbf{u}^{(i)} \otimes \mathbf{v}^{(i)}$$

$$\mathbf{U}^{-1}\mathbf{u}^{(i)} = \lambda_{i}^{-1}\mathbf{v}^{(i)}$$

W as a function of the principal invariants I_1 , I_2 , and I_3

$$\frac{\partial I_1}{\partial \mathbf{F}} = \frac{\partial \text{tr}(\mathbf{F}^T \mathbf{F})}{\partial \mathbf{F}} \qquad \text{tr}(\mathbf{F}^T \mathbf{F}) = (\mathbf{F}^T)_{i\beta}(\mathbf{F})_{\beta i} \qquad \text{tr}(\mathbf{F}^T \mathbf{F}) = F_{\beta i} F_{\beta i} = F_{\beta i}^2$$

$$\frac{\partial I_1}{\partial \mathbf{F}} = \frac{\partial \text{tr}(\mathbf{F}^T \mathbf{F})}{\partial \mathbf{F}} \qquad \qquad \frac{\partial I_1}{\partial \mathbf{F}} = 2F_{\beta i} \frac{\partial F_{\beta i}}{\partial F_{\alpha k}} = 2F_{\beta i} \frac{\partial F_{\beta i}}{\partial F_{\alpha k}} \qquad \qquad \frac{\partial I_1}{\partial \mathbf{F}} = 2\mathbf{F}^T$$

$$\frac{\partial I_2}{\partial \mathbf{F}} = \frac{\partial \left[\frac{1}{2} \left(I_1^2 - \text{tr}(\mathbf{C}^2) \right) \right]}{\partial \mathbf{F}}$$

$$\left[\frac{\partial}{\partial \mathbf{F}} \operatorname{tr}(\mathbf{C}^{2})\right]_{k\alpha} = \frac{\partial\left(C_{\beta i}^{2}\right)}{\partial F_{\alpha k}} = 2C_{\beta i} \frac{\partial\left(C_{\beta i}\right)}{\partial F_{\alpha k}} = 2C_{\beta i} \frac{\partial\left(F_{\beta p}^{T}F_{p i}\right)}{\partial F_{\alpha k}} = 2C_{\beta i} \left[F_{p\beta} \frac{\partial\left(F_{p i}\right)}{\partial F_{\alpha k}}F_{p i} \frac{\partial\left(F_{p\beta}\right)}{\partial F_{\alpha k}}\right] \\
= 2C_{\beta k} \left[F_{\alpha\beta}\right] + 2C_{k i} \left[F_{\alpha i}\right] = 4\mathbf{F}^{T}\mathbf{F}\mathbf{F}^{T}$$

$$\frac{\partial I_2}{\partial \mathbf{F}} = \frac{\partial \left[\frac{1}{2} \left(I_1^2 - \text{tr}(\mathbf{C}^2) \right) \right]}{\partial \mathbf{F}} = 2I_1 \mathbf{F}^T - \frac{1}{2} \frac{\partial}{\partial \mathbf{F}} \text{tr}(\mathbf{C}^2) \qquad \qquad \frac{\partial I_3}{\partial \mathbf{F}} = \frac{\partial}{\partial \mathbf{F}} (\det \mathbf{F})^2 = 2I_3 \mathbf{F}^{-1}$$