1 Woche 01 - Kombinatorik

Zählregel

• Disjunkte Vereinigung: $|A \cup B| = |A| + |B|$

• Vereinigung: $|A \cup B| = |A| + |B| - |A \cap B|$

• Paare = Produkt: $|A \times B| = |A| \cdot |B|$

$$P_{n} = \underbrace{\#\{\text{Plätze für 1. Objekt}\}}_{n} \cdot \underbrace{\#\{\text{Plätze für 2. Objekte}\}}_{n-1} \cdot \dots \cdot \underbrace{\#\{\text{Plätze für n. Objekte}\}}_{1}$$

$$= n \cdot (n-1) \cdot \dots \cdot 1 = n!$$

$$= \underbrace{\#\text{Plätze für 1. Objekt}}_{n} \cdot \underbrace{\#\text{Anordnung von n-1 Objekten}}_{P_{n-1}}$$

$$= n \cdot P_{n-1} = n \cdot (n-1)! = n!$$

Anzahl / **Auswahl Problem** Auf wie viele Arten kann man k Plätze aus n Plätzen auswählen? 16 Studenten (k) platzieren sich auf 32 Plätzen (n).

#Auswahlprozesse =
$$n \cdot (n-1) \cdot \dots \cdot (n-k+1)$$

= $\frac{n!}{(n-k)!}$
#Permutation = $k \cdot (k-1) \cdot \dots \cdot 1 = k!$

$$C_k^n = \frac{n \cdot (n-1) \cdot \ldots \cdot (n-k+1)}{k \cdot (k-1) \cdot \ldots \cdot 1}$$
$$= \frac{n!}{k!(n-k)!} = \binom{n}{k}$$

Binominal Koeffizient (funktioniert meist nicht gut, Taschenrechner können grosse n! nicht rechnen) Besser so:

$$\frac{n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot (n-k+1)}{1 \cdot 2 \cdot 3 \cdot \ldots \cdot k}$$

Variation Auch als Perlenkette bekannt

#Möglichkeiten =
$$k[Farben]^{n[L"angen]}$$

2 Woche 02 - Ereignisse und Wahrscheinlichkeit

Begriffe

Begriff	Model
Versuchausgang, Elementarereignis	ω
alle Versuchsausgänge	Ω
Ereignis	$A\subset\Omega$
Ereignis ist eingetreten	$\omega \in A$
sicheres Ereignis, tritt immer ein	Ω
unmögliches Ereignis, kann nicht eintreten	Ø
A und B tretten ein	$A \cap B$
A oder B tretten ein	$A \cup B$
A hat B zur Folge, wenn A dann auch B	$A \subset B$
nicht A	$\overline{A} = \Omega \setminus A$

Bedingte Wahrscheinlichkeit Wahrscheinlichkeit, dass ein Toter ein rotes Shirt trägt (Wir untersuchen nur die Toten und schauen ob er ein Rotes Shirt trägt)

$$P(R|T) = \frac{P(R \cap T)}{P(T)}$$

Wahrscheinlichkeit, dass ein Redshirt umkommt (Wir untersuchen nur die Redshirts, und schauen ob er Tot ist):

$$P(T|R) = \frac{P(R \cap T)}{P(R)}$$

Daraus ergibt sich:

$$P(R|T) = \frac{P(R \cap T)}{P(T)} \Rightarrow$$

$$P(R|T) \cdot P(T) = P(R \cap T)$$
(1)

$$P(T|R) = \frac{P(R \cap T)}{P(R)} \Rightarrow$$

$$P(T|R) \cdot P(R) = P(R \cap T)$$
(2)

Aus 1 und 2 folgt der Satz von Bayes:

$$P(R|T) \cdot P(T) = P(R \cap T) = P(T|R) \cdot P(R)$$

Satz der totalen Wahrscheinlichkeit

$$P(T \cap G) = P(T|G) \cdot P(G)$$

$$+P(T \cap B) = P(T|B) \cdot P(B)$$

$$+P(T \cap R) = P(T|R) \cdot P(R)$$

3 Woche 03 - bedingte Wahrscheinlichkeit

4 Woche 04 - Zufallsvariabeln

Erwartungswert

$$E(X) = \sum_{i=1}^{n} g_i P(A_i) \tag{3}$$

 $E("Gewinn") = "Gewinn bei Kopf" \cdot P("Kopf") + "Gewinn bei Zahl" \cdot P("Zahl")$

Varianz

$$var(X) = E(X^2) - E(X)^2$$

Table

Ereignis	X	P(X = g)	P(X = g) * g	$P(X = g) * g^2$
0	2	1/16	0.125	0.25
1	3	4/16	0.75	2.25
2	5	6/16	1.875	9.375
3	7	4/16	1.75	12.25
4	11	1/16	0.6875	7.5625
			E(X)	$E(X^2)$
			5.1875	31.6875
				var(X)
				4.7773438

Woche 05 - Anwendungen der Varianz

Table Lineare Regression

$$var(X) = E(X^2) - E(X)^2$$

$$var(Y) = E(Y^2) - E(Y)^2$$

$$cov(X, Y) = E(XY) - E(X)E(Y)$$

$$a = \frac{cov(X, Y)}{var(X)}$$

$$b = E(Y) - aE(X)$$

$$r = \frac{cov(X, Y)}{\sqrt{var(X)var(Y)}}$$

Woche 06 - Verteilungsfunktion und Wahrscheinlichkeitsdichte

Die Verteilungsfunktion beschreibt die Wahrscheinlichkeiten der Werte einer Zufallsvariable:

$$F(X) = P(X \le x)$$

 $\phi(x)$ ist die Ableitung von F(x) und entspricht der Verteilungsdichte Funktion.

$$\phi(x) = \frac{d}{dx}F(x) = F'(x)$$

- Wahrscheinlichkeit: $P(X=x) \to \phi(x) dx$ Summe: $\sum_{x} \to \int_{\infty}^{\infty}$ $E(X) = \sum_{x} x \cdot P(X=x) \to E(X) = \int_{\infty}^{\infty} x \cdot \phi(x) dx$

Wichtig: Erkennen, was ist der Wert, was ist der Erwartungswert

$$E(X^2) = \int_{\infty}^{\infty} X^2 \phi(x) dx = \int_{0}^{1} x^2 1 dx = \left[\frac{x^3}{3} \right]_{0}^{1} = \frac{1}{3}$$
 (4)

$$var(x) = \frac{1}{3} - (\frac{1}{2})^2 = \frac{4-3}{12} = \frac{1}{12}$$
 (5)

$$\sqrt{var(X)} = \sqrt{\frac{1}{12}} = 0.288\tag{6}$$

7 Woche 07 - Exponential- / Erlang- / Poisson-Verteilung

Exponentialverteilung

Dichtefunktion $ae^{-ax}, a > 0$ Verteilungsfunktion $1 - e^{-ax}$ Erwartungswert $\frac{1}{a}$ Varianz $\frac{1}{a^2}$ Median $\frac{1}{a} \log 2$

Possonverteilung

Wahrscheinlichkeit $P_{\lambda}(k) = \frac{\lambda^k}{k!} e^{-\lambda}$ Erwartungswert λ

Varianz λ

8 Woche 08 - Normalverteilung

Normalverteilung

Dichtefunktion $\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ Verteilungsfunktion keine elementare Funktion (Tabelle nutzen) Erwartungswert μ Varianz σ

Median μ

9 Woche 09 - Binominalverteilung

Binominalverteilung

Wahrscheinlichkeit $P(k) = \binom{n}{k} p^k (1-p)^{n-k}$ Verteilungsfunktion $F(k) = \sum_{i=0}^k \binom{n}{i} p^i (1-p)^{n-i}$ Erwartungswert np

Varianz np(1-p)

10 Woche 10 - Schätzen

Schätzen Mittelwert ist häufig ein guter Schätzer

t-Verteilung t-Verteilung sollte dann verwendet werden, wenn man wenig Daten hat, aber es normall Verteilt ist (kleine n).

11 Woche 11 - Hypothesentest

Vorgehen Hypothesentest

- 1. Nullhypothese H_0 und Alternativhypothese H_1
- 2. Testgrösse und Verteilung unter der Annahme der Nullhypothese
- 3. Wahl des Signifikanzniveaus α
- 4. Kritischer Wert für Testgrösse, die nur mit Wahrscheinlichkeit α erreicht wird
- 5. Kritischer Wert erreicht \Rightarrow Nullhypothese H_0 verwerfen

t-Test Ist der neue Dünger besser? Die Stichproben X_1, \ldots, X_n und Y_1, \ldots, Y_m mit gleicher Varianz haben den gleichen Erwartungswert.

$$\overline{X} = \frac{X_1 + \dots + X_n}{n}$$

$$S_X^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$$

$$t = \frac{\overline{X} - \overline{Y}}{\sqrt{(n-1)S_X^2 + (m-1)S_Y^2}} \sqrt{\frac{nm(n+m-2)}{n+m}}$$

 t_{krit} kann aus der t-Verteilung abgelesen werden. k erhält man durch n+m-2. Wenn t_{krit} überschritten wird, muss H_0 verworfen werden.

12 Woche 12 - Test einer Verteilung

 X^2 -Test

Table

$$D = \sum_{i=1}^{d} \frac{(n_i - np_i)^2}{np_i}$$

 ${\bf Kolmogorov\text{-}Smirnov\text{-}Test}$

13 Woche 13 - Das Filter-Problem