Généralités

- 1) g est bornée car continue 1-périodique et $b^{-\alpha} \in]0,1[$ donc la série définissant W est normalement convergente sur \mathbf{R} . On a $|W(x)| \leq \|g\|_{\infty} \sum_{n \geq 0} b^{-\alpha n} = \frac{\|g\|_{\infty}}{1 b^{-\alpha}}$, donc W est bornée sur \mathbf{R} .
- 2) Chaque terme de la série l'est.
- 3a) Calcul immédiat.
- **3b)** L'équation étant linéaire en f, il suffit de prouver que si f est continue, bornée, solution de f = Tf alors f = 0. De fait, on a $||f||_{\infty} = ||Tf||_{\infty} = ||f||_{\infty}/b^{\alpha}$, ce qui implique $||f||_{\infty} = 0$ d'où f = 0.
- 4a) Regrouper W(x) W(y) dans une seule série, puis découper en somme pour $0 \le n < N$ et somme pour $n \ge N$. La majoration demandée vient de suite.
- 4b) Soient $x, y \in \mathbf{R}$.

Si |x-y|<1, on note N l'unique entier naturel tel que $b^{-N}\leqslant |x-y|< b^{1-N}$. Alors, d'après la question précédente, $|W(x)-W(y)|\leqslant \frac{\|g\|_{\mathrm{Lip}}}{b^{1-\alpha}-1}(b/|x-y|)^{1-\alpha}|x-y|+\frac{2\|g\|_{\infty}}{1-b^{-\alpha}}|x-y|^{\alpha}=C|x-y|^{\alpha}$.

Si
$$|x-y| \geqslant 1$$
 on a $|W(x) - W(y)| \leqslant 2||W||_{\infty} \leqslant 2||W||_{\infty}|x-y|^{\alpha}$.

D'où $|W(x) - W(y)| \leq \max(C, 2||W||_{\infty})|x - y|^{\alpha}$ dans tous les cas

5a) Formule de Taylor avec reste intégral :

$$g(x+h) = g(x) + hg'(x) + \int_{t=0}^{h} (h-t)g''(x+t) dt = g(x) + hg'(x) + h^2 \int_{u=0}^{1} (1-u)g''(x+hu) du.$$

En remplaçant h par -h et en additionnant il vient :

$$|g(x+h)+g(x-h)-2g(x)|=h^2\Big|\int_{u=0}^1 (1-u)(g''(x+hu)+g''(x-hu))\,du\Big|\leqslant h^2\|g''\|_{\infty}.$$

Rmq: la condition $|h| \leq 1$ est inutile.

5b) D'après l'inégalité précédente, pour $x, h \in \mathbf{R}$ et pour $N \in \mathbf{N}$ on a :

$$|W(x+h) + W(x-h) - 2W(x)| \leqslant \sum_{n=0}^{N-1} Cb^n |h|^2 + \sum_{n=N}^{\infty} 4\|g\|_{\infty} b^{-n} \leqslant |h|^2 \frac{b^N}{b-1} + 4\|g\|_{\infty} \frac{b^{-N}}{1-b^{-1}}.$$

Si $|h| \leqslant 1$, on choisit N tel que $b^{-N} \leqslant h < b^{1-N}$ et on obtient l'inégalité demandée.

Inversion de Fourier

- 1a) La fonction $x \longmapsto x^2 f(x)$ est continue et a des limites finies en $\pm \infty$ donc elle est bornée par un réel C. On en déduit $|f(nh)| \leqslant \frac{C}{n^2h^2}$ pour h > 0 et $n \geqslant 1$, ce qui prouve la convergence absolue.
- 1b) L'intégrale $\int_{x=0}^{+\infty} f(x) dx$ est convergente puisqu'elle n'est généralisée qu'en $+\infty$ et $f(x) \leqslant C/x^2$ comme on l'a vu précédemment. De plus, on a :

$$\int_{t=0}^{+\infty} f(x) dx = \sum_{n=0}^{\infty} \int_{x=nh}^{(n+1)h} f(x) dx = \sum_{n=0}^{\infty} h \int_{t=0}^{1} f((n+t)h) dt.$$

On doit donc prouver que $\sum_{n=0}^{\infty} h \int_{t=0}^{1} (f((n+t)h) - f(nh)) dt \xrightarrow[h \to 0^+]{} 0$. Soit h > 0 et $N \in \mathbf{N}^*$ à fixer en fonction de h. Pour $n \geqslant N$ on a :

$$\left| h \int_{t=0}^1 (f((n+t)h) - f(nh)) \, dt \right| \leqslant h \int_{t=0}^1 \left(\frac{C}{(n+t)^2 h^2} + \frac{C}{n^2 h^2} \right) = \frac{1}{h} \left(\frac{C}{n(n+1)} + \frac{C}{n^2} \right) \leqslant \frac{1}{h} \times \frac{3C}{n(n+1)} + \frac{1}{n^2} = \frac{1}{n^2} \left(\frac{C}{n(n+1)} + \frac{C}{n^2} \right)$$

 $(\operatorname{car} n^2 \geqslant \frac{1}{2}n(n+1))$. On en déduit :

$$\Big|\sum_{n=N}^\infty h \int_{t=0}^1 (f((n+t)h) - f(nh))\,dt\Big| \leqslant \frac{1}{h}\sum_{n=N}^\infty \frac{3C}{n(n+1)} = \frac{3C}{Nh}.$$

Soit alors $\epsilon > 0$: f est uniformément continue sur \mathbf{R} (car continue ayant des limites finies en $\pm \infty$) donc il existe $\delta > 0$ tel que $\forall \ x,y \in \mathbf{R}, \ |x-y| \leqslant \delta \Longrightarrow |f(x)-f(y)| \leqslant \epsilon$. Pour $0 < h \leqslant \delta$, et $N \in \mathbf{N}^*$ on a donc :

$$\left|\sum_{n=0}^{\infty}h\int_{t=0}^{1}(f((n+t)h)-f(nh))\,dt\right|\leqslant \sum_{n=0}^{N-1}h\int_{t=0}^{1}\epsilon\,dt+\frac{3C}{Nh}=(N+1)h\epsilon+\frac{3C}{Nh}.$$

Choisissons $N \in \mathbf{N}^*$ de sorte que $(N+1)h \le 2/\sqrt{\epsilon}$ et $Nh \ge 1/\sqrt{\epsilon}$: c'est possible si $h \le 1/\sqrt{\epsilon}$, ce qu'on suppose désormais. On obtient finalement :

$$\Big|\sum_{n=0}^{\infty}h\int_{t=0}^{1}(f((n+t)h)-f(nh))\,dt\Big|\leqslant (2+3C)\sqrt{\epsilon}$$

pour tout h suffisamment proche de zéro, ce qui suffit à conclure.

- 1c) On pose $\sum_{n\in \mathbf{Z}} hf(nh) = \sum_{n=0}^{\infty} hf(nh) + \sum_{n=0}^{\infty} hf(-nh) hf(0)$, sous réserve de convergence des deux séries. La première converge, et sa somme tend, lorsque h tend vers 0^+ , vers $\int_{x=0}^{+\infty} f(x) \, dx$, on l'a vu. La deuxième converge et sa somme tend, lorsque h tend vers 0^+ , vers $\int_{x=0}^{+\infty} f(-x) \, dx = \int_{x=-\infty}^{0} f(x) \, dx$ par remplacement de f(x) en f(-x), et le dernier terme tend vers zéro lorsque h tend vers 0^+ .
- 2) Soit [a,b] un intervalle compact et $N \in \mathbb{N}$ tel que a+NT>0 et b-NT<0. Pour $x \in [a,b]$ et $k\geqslant N$ on a $|f(x+kT)|\leqslant \frac{C}{(x+kT)^2}\leqslant \frac{C}{(a+kT)^2}$ et de même $|f(x-kT)|\leqslant \frac{C}{(b-kT)^2}$. Ceci prouve que les séries $\sum\limits_{k=N}^{\infty}f(x+kT)$ et $\sum\limits_{k=-N}^{\infty}f(x-kT)$ sont normalement convergentes sur [a,b]; il en est donc de même de la série $\sum\limits_{n\in \mathbf{Z}}f(x+kT)$. La continuité et la T-périodicité de f_T sont alors évidentes.
- 3) $f_T(x) \exp(-2i\pi nx/T) = \sum_{k \in \mathbf{Z}} f(x+kT) \exp(-2i\pi nx/T)$, série normalement convergente sur [0,T] donc on peut intégrer terme à terme :

$$\begin{split} c_n(f_T) &= \frac{1}{T} \sum_{k \in \mathbf{Z}} \int_{x=0}^T f(x+kT) \exp(-2i\pi nx/T) \, dx \\ &= \frac{1}{T} \sum_{k \in \mathbf{Z}} \int_{x=0}^T f(x+kT) \exp(-2i\pi n(x+kT)/T) \, dx \\ &= \frac{1}{T} \sum_{k \in \mathbf{Z}} \int_{x=kT}^{(k+1)T} f(x) \exp(-2i\pi nx/T) \, dx \\ &= \frac{1}{T} \int_{x=-\infty}^{+\infty} f(x) \exp(-2i\pi nx/T) \, dx \\ &= \frac{\sqrt{2\pi}}{T} \mathcal{F} f(2\pi n/T). \end{split}$$

Le regroupement $\sum\limits_{k\in\mathbf{Z}}\int_{x=kT}^{(k+1)T}=\int_{x=-\infty}^{+\infty}$ est justifié par la convergence de cette dernière intégrale.

- $\textbf{4a)} \text{ Cela résulte de l'inégalité } |c_{\mathfrak{n}}(f_{\mathsf{T}})| \leqslant \frac{\sqrt{2\pi}}{\mathsf{T}} \times \frac{C'\mathsf{T}^2}{4\pi^2\mathfrak{n}^2} \text{ avec } C' = \sup\{y^2|\mathcal{F}f(y)|, \ y \in \mathbf{R}\}.$
- 4b) C'est, en substance, le théorème de Parseval.
- 4c) Soit $S_T(x) = \sum_{n=-\infty}^{+\infty} c_n(f_T) \exp(2i\pi nx/T)$: la série convergeant uniformément sur \mathbf{R} , S_T est une fonction continue T-périodique et pour $n \in \mathbf{Z}$, $c_n(S_T) = c_n(f_T)$ par intégration terme à terme. Ainsi f_T et S_T sont deux fonctions continues T-périodiques ayant mêmes coefficients de Fourier ; elles sont égales.
- 5) Soit $x \in \mathbf{R}$ fixé. On suppose T suffisamment grand pour que x + T > 0 et x T < 0. Alors:

$$\begin{split} |f_T(x) - f(x)| &= \left| \sum_{k=1}^{\infty} f(x+kT) + \sum_{k=1}^{\infty} f(x-kT) \right| \\ &\leqslant \sum_{k=1}^{\infty} \frac{C}{(x+kT)^2} + \sum_{k=1}^{\infty} \frac{C}{(x-kT)^2} \\ &\leqslant \frac{C}{(x+T)^2} + \int_{u=1}^{+\infty} \frac{C \, du}{(x+uT)^2} + \frac{C}{(x-T)^2} + \int_{u=1}^{+\infty} \frac{C \, du}{(x-uT)^2} \\ &= \frac{C}{(x+T)^2} + \frac{C}{T(x+T)} + \frac{C}{(x-T)^2} + \frac{C}{T(T-x)} \\ &\xrightarrow{T \to \infty} 0. \end{split}$$

 $\textbf{6)} \text{ Soit } x \in \mathbf{R}. \text{ En posant } h = \frac{2\pi}{T} \text{ et } g(u) = \frac{1}{\sqrt{2\pi}} \mathcal{F} f(u) \exp(iux), \text{ on a } f_T(x) = \sum_{n \in \mathbf{Z}} hg(nh), \text{ et } g \text{ est continue}, \\ \text{n\'egligeable devant } 1/u^2 \text{ à l'infini, donc on peut appliquer } \mathbf{1c}: f_T(x) \xrightarrow[T \to \infty]{} \int_{u=-\infty}^{+\infty} g(u) \, du = \overline{\mathcal{F}} \mathcal{F} f(x).$

Construction d'une ondelette

- 1a) $(x,y) \longmapsto f(x) \exp(-iyx)$ satisfait aux hypothèses du théorème de Leibniz : la fonction et sa dérivée partielle par rapport à y sont continues par rapport à chaque variable et dominées par une fonction intégrable sur $\mathbf R$ par rapport à x. On a donc $(\mathcal F f)'(y) = \frac{1}{\sqrt{2\pi}} \int_{x=-\infty}^{+\infty} (-ix) f(x) \exp(-iyx) \, dx = \mathcal F g(y)$ avec g(x) = -ixf(x). Ceci démontre la formule demandée pour n=1. Le cas général se traite par récurrence sur n.
- 1b) On a en intégrant par parties : $\mathcal{F}(f')(y) = iy\mathcal{F}f(y)$ et plus généralement : $\mathcal{F}(f^{(n)})(y) = (iy)^n\mathcal{F}f(y)$ pour $n \in \mathbf{N}$ et $y \in \mathbf{R}$. Comme $f^{(n)}$ est intégrable sur \mathbf{R} , il en résulte que $y \longmapsto (iy)^n\mathcal{F}f(y)$ est bornée sur \mathbf{R} , ce qui implique $y^{n-1}\mathcal{F}f(y) \xrightarrow[|y| \to \infty]{} 0$.
- 2abc) Questions élémentaires.
 - **2d)** Prendre $f(x) = \psi_0(x a)\psi_0(b x)$.
 - 3) On suppose b>1 pour que l'intervalle]1/b, b[soit bien défini. On pose $f(x)=\psi_0(-x-1/b)\psi_0(b+x)$ et $\psi_b=\mathcal{F}f$. Donc $\psi_b\in\mathcal{S}$, ce qui implique que ψ_b et $y\longmapsto y\psi_b(y)$ sont intégrables sur R. De plus, $x^2f(x)$ et $y^2\psi_b(y)$ ont des limites nulles à l'infini donc $\mathcal{F}\psi_b(x)=f(-x)$, d'après la formule d'inversion de Fourier. Cette dernière quantité est bien strictement positive entre 1/b et b, et nulle ailleurs. Enfin, $\int_{y=-\infty}^{+\infty}\psi_b(y)\,dy=\sqrt{2\pi}\,\mathcal{F}f(0)=0$ et $\int_{y=-\infty}^{+\infty}y\psi_b(y)\,dy=i\sqrt{2\pi}\,(\mathcal{F}f)'(0)=0$.

Non dérivabilité de W dans le cas $g(x) = cos(2\pi x)$

- 1) Prendre $\varepsilon_x(h) = \frac{f(x+h) f(x)}{h} f'(x)$ pour $h \neq 0$ et $\varepsilon_x(0) = 0$. Par construction ε_x est continue en tout point $h \neq 0$; elle est aussi continue en h = 0 par définition de f'(x). Enfin ε_x est bornée sur \mathbf{R} car continue, de limite -f'(x) pour $|h| \to \infty$ puisque f est bornée.
- 2a) f est bornée et ψ_b est intégrable donc l'intégrale définissant $c(\alpha, x)$ est convergente.

2b)

$$\begin{split} c(\alpha,x) &= \frac{1}{\alpha} \int_{t=-\infty}^{+\infty} f(x+\alpha t) \psi_b(t) \, dt \\ &= \frac{1}{\alpha} \int_{t=-\infty}^{+\infty} f(x) \psi_b(t) \, dt + \int_{t=-\infty}^{+\infty} f'(x) t \psi_b(t) \, dt + \int_{t=-\infty}^{+\infty} \epsilon_x(\alpha t) t \psi_b(t) \, dt \\ &= \int_{t=-\infty}^{+\infty} \epsilon_x(\alpha t) t \psi_b(t) \, dt. \end{split}$$

Le théorème de convergence dominée s'applique à cette dernière intégrale car ε_x est bornée, $t \longmapsto t\psi_b(t)$ est intégrable sur \mathbf{R} et $\varepsilon_x(\alpha t) \xrightarrow[\alpha \to 0^+]{} 0$ à t fixé.

3a) Avec f = W on a:

$$\begin{split} c(\alpha,0) &= \frac{1}{\alpha} \int_{t=-\infty}^{+\infty} \sum_{n=0}^{\infty} b^{-\alpha n} \cos(2\pi b^n \alpha t) \psi_b(t) \, dt \\ &= \frac{1}{\alpha} \sum_{n=0}^{\infty} b^{-\alpha n} \int_{t=-\infty}^{+\infty} \cos(2\pi b^n \alpha t) \psi_b(t) \, dt \\ &= \frac{1}{\alpha} \sum_{n=0}^{\infty} b^{-\alpha n} \sqrt{2\pi} \frac{\mathcal{F} \psi_b(2\pi b^n \alpha) + \mathcal{F} \psi_b(-2\pi b^n \alpha)}{2}. \end{split}$$

 $\label{eq:linear_line$

Prenons $\alpha=\frac{1}{2\pi b^k}$ avec $k\in \mathbf{N}$. Alors $c(\alpha,0)=\frac{b^{-\alpha k}\sqrt{2\pi}\,\mathcal{F}\psi_b(1)}{2\alpha}=\frac{1}{2}(2\pi)^{\alpha+1/2}\mathcal{F}\psi_b(1)\alpha^{\alpha-1}$ car seul le terme pour n=k est non nul. Ainsi, $c(\alpha,0)$ ne tend pas vers zéro quand k tend vers l'infini. On contredit $2\mathbf{b}$, donc W n'est pas dérivable en 0.

3b) Soit $x \in \mathbf{R}$. Par des calculs similaires on aboutit à $c(\alpha,x) = \frac{1}{2\alpha} \sum_{n=0}^{\infty} b^{-\alpha n} \sqrt{2\pi} \exp(2i\pi b^n x) \mathcal{F} \psi_b(2\pi b^n \alpha)$. En particulier pour $\alpha = 1/(2\pi b^k)$, $|c(\alpha,x)| = |c(\alpha,0)| \xrightarrow[k \to \infty]{} +\infty$, donc W n'est pas dérivable en x.

Une alternative pour W

- 1) Immédiat.
- 2a) Par hypothèse il existe $x_0 \in \mathbf{R}$, h > 0, u > 0 tel que $|W(x_0 + h) W(x_0)|/h \geqslant \|g\|_{\mathrm{Lip}}(1 + u)/(b^{1-\alpha} 1)$. Si h < 1, c'est bon. Si h = 1 alors par continuité on a $|W(x_0 + k) W(x_0)|/k \geqslant \|g\|_{\mathrm{Lip}}(1 + u/2)/(b^{1-\alpha} 1)$ pour tout k suffisamment proche de 1, donc c'est encore bon. Enfin, si h > 1, on peut remplacer h par h 1, le premier membre augmentant alors. De proche en proche, c'est bon pour tout h > 0.
- 2b) On peut remplacer x_0 par $x_0 + n$ pour tout entier relatif n. Ainsi, $\ell = 1 + h$ convient car si I est un intervalle de longueur strictement supérieure à 1 + h alors $I \cap (I h)$ contient un segment de longueur 1, donc contient un $x_I = x_0 + n$ et par construction, $x_I + h \in I$.

- 2c) Légère erreur d'énoncé : on a $\ell(I) \geqslant \ell$ alors qu'il faudrait l'inégalité stricte. On choisit donc plutôt $N \in \mathbf{N}$ tel que $\ell(b^{-N} < \ell(J) \leqslant \ell b^{1-N}$ (c'est possible puisque $\ell(J) < 1 < \ell b$), ce qui assure l'existence de x_I défini en 2b. On a alors $\frac{|W(b^{-p}(x_I+h)) W(b^{-p}x_I)|}{b^{-p}h} \geqslant \frac{\|g\|_{Lip}}{b^{1-\alpha}-1}(1+b^{p(1-\alpha)}u) \geqslant \frac{u\|g\|_{Lip}b^{p(1-\alpha)}}{b^{1-\alpha}-1} \text{ par récurrence sur } p, \text{ et pour } p = N: b^{-N}x_I, b^{-N}(x_I+h) \in J.$
- $\mathbf{2d}) \text{ Car } |W(x_J) W(y_J)| \geqslant \frac{hu\|g\|_{\operatorname{Lip}}}{b^{1-\alpha}-1} b^{-N\alpha} \geqslant \frac{hu\|g\|_{\operatorname{Lip}}}{(b^{1-\alpha}-1)(\ell b)^{\alpha}} \times \ell(J)^{\alpha}.$
 - 3) Remarque préliminaire :si W est lipschitzienne, alors on a nécessairement $\|W\|_{\text{Lip}} \leqslant \frac{\|g\|_{\text{Lip}}}{b^{1-\alpha}-1}$. En effet, soit $\varepsilon > 0$ et $x, y \in \mathbf{R}$ distincts tels que $|W(x) W(y)| \geqslant (\|W\|_{\text{Lip}} \varepsilon)|x y|$. On a alors :

$$\begin{split} |g(x/b) - g(y/b)| &= |b^{-\alpha}(W(x) - W(y)) - (W(x/b) - W(y/b))| \\ &\geqslant b^{-\alpha}|W(x) - W(y)| - |W(x/b) - W(y/b)| \\ &\geqslant (\|W\|_{\mathrm{Lip}}(b^{1-\alpha} - 1) - b^{1-\alpha}\epsilon)|x/b - y/b|, \end{split}$$

ce qui prouve que $\|g\|_{\text{Lip}} \geqslant \|W\|_{\text{Lip}}(b^{1-\alpha}-1)-b^{1-\alpha}\varepsilon$, et ce pour tout $\varepsilon > 0$. Ainsi, la propriété (i) est équivalente au caractère lipschitzien de W. Il s'agit donc de prouver que W est lipschitzienne si et seulement si elle est dérivable en au moins un point.

Si W n'est pas lipschitzienne alors x, u, h définis en 1 existent et donc le résultat de 2d est valide. Considérons alors un éventuel $x \in \mathbf{R}$ tel que W soit dérivable en x: on a $W(y) = W(x) + (y-x)W'(x) + (y-x)\varepsilon_x(y-x)$ (cf. IV-1). Soit J un intervalle ouvert quelconque contenant x: pour tout $y \in J$ on a $|W(y) - W(x)| \le \ell(J)(|W'(x)| + \|\varepsilon_x\|_{\infty})$ et donc $\sup(W(J)) - \inf(W(J)) = \bigcup_{\ell(J) \to 0} (\ell(J))$ contrairement à 2d. Ceci prouve que W est nulle part dérivable.

Si W est lipschitzienne alors elle est dérivable presque partout au sens de la mesure de Lebesgue. Ceci est une conséquence du théorème de Lebesgue suivant : toute fonction numérique à variation bornée sur un intervalle est presque partout dérivable sur cet intervalle. Il s'agit d'un théorème très au delà du programme des classes MP*, et on ne peut pas attendre des candidats qu'ils le connaissent. Il existe peut-être une démonstration élémentaire de la dérivabilité en au moins un point, mais je ne l'ai pas trouvée...

4) Soit W une fonction 1-périodique lipschitzienne non constante quelconque et g = W - TW. Donc g est 1-périodique, lipschitzienne et puisque W = g + TW, d'après I-3b, W est la fonction associée à g par (1). De plus, g n'est pas constante sinon W le serait.