

RF TEST REPORT for Intentional Radiator No. 150700931SHA-001

Applicant : Bullitt Group

No. 4, The Aquarium, King Street, Reading, RG1 2AN,

United Kingdom

Manufacturer : Bullitt Group

No. 4, The Aquarium, King Street, Reading, RG1 2AN,

Daniel . Those

United Kingdom

Product Name : Bluetooth Speaker

Brand Name : Ministry of Sound

Type/Model: AUDIO M

TEST RESULT: PASS

SUMMARY

The equipment complies with the requirements according to the following standard(s):

47CFR Part 15 (2014): Radio Frequency Devices

ANSI C63.10 (2013): American National Standard for Testing Unlicensed Wireless Devices

RSS-247 Issue 1 (May 2015): Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices

RSS-Gen Issue 4 (December 2014): General Requirements for Compliance of Radio Apparatus

Date of issue: Aug 19, 2015

Wade zhang

Prepared by: Reviewed by:

Wade Zhang (*Project Engineer*) Daniel Zhao (*Reviewer*)

Description of Test Facility

Name: Intertek Testing Services Limited Shanghai

Address: Building No.86, 1198 Qinzhou Road(North), Shanghai 200233, P.R. China

FCC Registration Number: 236597

IC Assigned Code: 2042B-1

Name of contact: Jonny Jing Tel: +86 21 64956565 ext. 271 Fax: +86 21 54262335 ext. 271

Content

St	UMMARY	1
D	ESCRIPTION OF TEST FACILITY	2
1.	GENERAL INFORMATION	5
	1.1 Applicant Information.	5
	1.2 Identification of the EUT	5
	1.3 Technical specification	6
	1.4 Mode of operation during the test / Test peripherals used	7
2.	TEST SPECIFICATION	8
	2.1 Instrument list	8
	2.2 Test Standard	
	2.3 Test Summary	
	2.4 Frequency Hopping System Requirement	
3.	20 DB BANDWIDTH	
	3.1 Limit.	12
	3.2 Test Configuration	
	3.3 Test Procedure and test setup	
	3.4 Test Protocol	
4.	CARRIER FREQUENCY SEPARATION	
	4.1 Limit	
	4.2 Test Configuration	
	4.3 Test Procedure and test setup	
	4.4 Test Protocol	
5.	MAXIMUM PEAK OUTPUT POWER	
	5.1 Test limit	
	5.2 Test Configuration	
	5.3 Test procedure and test setup	
	5.4 Test protocol	
6.	RADIATED SPURIOUS EMISSIONS	
•	6.1 Test limit	
	6.2 Test Configuration	
	6.3 Test procedure and test setup	
	6.4 Test protocol	
7.	•	
. •	7.1 Limit	
	7.2 Test Configuration	
	7.3 Test procedure and test setup	
	7.4 Test protocol	
8.	•	
٠.	8.1 Limit.	
	8.2 Test configuration	
	8.3 Test procedure and test set up.	
	8.4 Test protocol	
9.	-	
٠.	9.1 Limit	
	9.2 Test Configuration	
	9.3 Test procedure and test setup	
	7.3 Test procedure and test setup	

9.4 Test protocol	50
10. DWELL TIME	53
10.1 Limit	53
10.2 Test Configuration	
10.3 Test procedure and test setup	
10.4 Test protocol	54
11. OCCUPIED BANDWIDTH	
11.1 Test limit	58
11.2 Test Configuration	
11.3 Test procedure and test setup	58
11.4 Test protocol	
12. Spurious emission for receiver	
12.1 Test limit	65
12.2 Test Configuration	
12.3 Test procedure and test setup	
12.4 Test protocol	

1. General Information

1.1 Applicant Information

Applicant : Bullitt Group

No. 4, The Aquarium, King Street, Reading, RG1 2AN,

United Kingdom

Name of contact : Richard Wharton

Tel: +44 (0) 7818 413 871

Fax : /

E-mail: rwharton@bullitt-group.com

Factory: Hansong(Nanjing) Technology Ltd

8th Kangping Road, Jiangning Economy&Technology

Development Zone, Nanjing, 211106, China

1.2 Identification of the EUT

Equipment : Bluetooth Speaker

Type/model : AUDIO M

FCC ID : ZL5-MMBT

IC : /

1.3 Technical specification

Operation Frequency Band: 2402 - 2480 MHz

Protocol: BT 3.0 + EDR

Modulation: GFSK, π/4 DQPSK, 8DPSK

Technology:

GFSK is different from $\pi/4$ DQPSK and 8DPSK.

8DPSK is similar with $\pi/4$ DQPSK but more complex, and with a bigger data rate. So all the tests except output power, occupied bandwidth, dwell time and number of hopping frequencies were performed with GFSK modulation and 8DPSK modulation for representative.

Antenna Designation: Integral antenna

Gain of Antenna: 2.0dBi

Rating: 12V, 1.25A(with adaptor)

1: GPE125-120125-Z

Input: 100-240V~ 50/60Hz 0.4A Output: 12.0V DC 1.25A 15W LPS

2: DYS152-120125W-K

Input:100-240V~ 50/60Hz 0.45A Max

Output: 12.0V DC 1.25A

Description of EUT: The EUT is a Bluetooth Speaker, and it has only one

model.we tested it and listed the BT result in this report.

Channel Description: There are 79 channels in all. The designed channel

spacing is 1MHz.

spacing is tivitiz.				
Channel	Frequency			
Identifier	(MHz)			
low	2402			
middle	2441			
high	2480			

Antenna Requirement: The manufacturer used a permanently attached antenna, So fulfill this requirements.

1.4 Mode of operation during the test / Test peripherals used

While testing the transmitter mode of the EUT, the internal modulation is applied. All the functions of the host device except the BT module were set on stand-by mode.

The test setting software is offered by the manufactory. The pre-scan for the conducted power with all rates in each modulation and bands was used, and the worst case was found and used in all test cases.

Radiated test mode:

Mode 1: EUT transmitted signal with BT antenna (Adaptor 1);

Conducted test mode:

Mode 2: EUT transmitted signal from BT RF port connected to SPA directly;

The worst case modulation configuration:

Worst Modulation Used for Conformance Testing					
Bluetooth Mode	Data Rate	Packet Type	Worst Mode		
GFSK	BR-1Mbps	DH1,DH3,DH5	BR-1Mbps DH5		
π /4 DQPSK	EDR-2Mbps	2DH1,2DH3,2DH5	EDR-2Mbps 2DH5		
8DPSK	EDR-3Mbps	3DH1,3DH3,3DH5	EDR-3Mbps 3DH5		

Note: The EDR-3Mbps 3DH5 mode was chosen for Power testing, radiation emission bellow 1GHz and Conducted emission testing as representative in this report.

The power setting parameter:

The worst case power setting parameter				
Test software Version	CSR BlueSuite 2.4.8			
Modulation Mode	2402MHz 2402MHz 2402MHz			
BR-1Mbps	255,63	255,63	255,63	
EDR-2Mbps	255,63	255,63	255,63	
EDR-3Mbps	255,63	255,63	255,63	

Test Peripherals:

T TIP II							
Equipment	Brand Name	Model	Note				
Notebook	HP	6470b					
RS232 Cable	/	1.8m					

Note: The accessories are used for configuration only and not used during test.

2. Test Specification

2.1 Instrument list

Selected	Instrument	EC no.	Model	Valid until date
	Semi anechoic chamber	EC 3048	-	2016-5-10
	EMI test receiver	EC 3045	ESIB26	2015-10-19
	Broadband antenna	EC 4206	CBL 6112D	2016-4-26
	Horn antenna	EC 3049	HF906	2016-4-26
\boxtimes	Pre-amplifier	EC 5262	pre-amp 18	2015-5-25
	Pre-amplifier	EC 4792-2	TPA0118-40	2016-4-9
	High Pass Filter	EC 4797-1	WHKX 1.0/15G	G-10SS 2016-1-7
	High Pass Filter	EC 4797-2	WHKX 2.8/18G	G-12SS 2016-1-7
\boxtimes	High Pass Filter	EC 4797-3	WHKX 7.0/1.80	G-8SS 2016-1-7
	Band Reject Filter	EC 4797-4	WRCGV2400/2	483/10SS 2016-1-7
	Fully anechoic chamber	EC 3047	-	2016-5-10
\boxtimes	PXA Signal Analyzer	EC5338	N9030A	2015-11-17
\boxtimes	Test Receiver	EC 4501	ESCI 7	2016-1-13
	Power sensor/Power met	ter EC4318	N1911A/N1921	A 2015-4-20
	Power sensor	EC5338-1	U2021XA	2015-10-1
	MXG Analog Signal Ge	nerator EC533	38-2 N5181A	2015-11-6
\boxtimes	MXG Vector Signal Ger	nerator EC53	38-1 N51812B	2015-12-29

2.2 Test Standard

47CFR Part 15 (2014) ANSI C63.10 (2013) DA 00-705 RSS-247 Issue 1 (May 2015) RSS-Gen Issue 4 (December 2014)

2.3 Test Summary

This report applies to tested sample only. This report shall not be reproduced in part without written approval of Intertek Testing Service Shanghai Limited.

TEST ITEM	FCC REFERANCE	IC REFERANCE	RESULT
20 dB Bandwidth	15.247(a)(1)	RSS-247 Issue 1 Clause 5	Tested
Carrier Frequency Separation	15.247(a)(1)	RSS-247 Issue 1 Clause 5	Pass
Output power	15.247(b)(1)	RSS-247 Issue 1 Clause 5	Pass
Radiated Spurious Emissions	15.205 & 15.209	RSS-247 Issue 1 Clause 5	Pass
Conducted Spurious Emissions & Band Edge	15.247(d)	RSS-247 Issue 1 Clause 5	Pass
Power line conducted emission	15.207	RSS-Gen Issue 4 Clause 8.8	Pass
Number of Hopping Frequencies	15.247(a)(1)(iii)	RSS-247 Issue 1 Clause 5	Pass
Dwell time	15.247(a)(1)(iii)	RSS-247 Issue 1 Clause 5	Pass
Occupied bandwidth	-	RSS-Gen Issue 4 Clause 6.6	Tested
Spurious emission for receiver	15B	RSS-310 Issue 3 Clause 3.1	NA

Note: "NA" means "not applied".

2.4 Frequency Hopping System Requirement

Test Requirement: Section 15.247 (a)(1), (g), (h) requirement:

The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.

The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hop sets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

Compliance for section 15.247(a)(1)

According to Bluetooth Core Specification, the pseudorandom sequence may be generated in a nine stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs;

i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: $2^9 1 = 511$ bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

According to Bluetooth Core Specification, Bluetooth receivers are designed to have input and IF bandwidths that match the hopping channel bandwidths of any Bluetooth transmitters and shift frequencies in synchronization with the transmitted signals.

Compliance for section 15.247(g)

According to Bluetooth Core Specification, the Bluetooth system transmits the packet with the pseudorandom hopping frequency with a continuous data and the short burst transmission from the Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom hopping frequency system.

Compliance for section 15.247(h)

According to Bluetooth Core specification, the Bluetooth system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently to avoid hopping on the occupied channels.

According to the Bluetooth Core specification, the Bluetooth system is designed not have the ability to coordinate with other FHSS System in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitter.

3. 20 dB Bandwidth

Test result: Tested

3.1 Limit

☐ Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. ☐ Frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125mW.

3.2 Test Configuration

3.3 Test Procedure and test setup

The 20 bandwidth per FCC § 15.247(a)(1) is measured using the Spectrum Analyzer with Span = 2 to 3 times the 20 dB bandwidth, RBW \geq 1% of the 20 dB bandwidth, VBW \geq RBW, Sweep = auto, Detector = peak, Trace = max hold.

The test was performed at 3 channels (lowest, middle and highest channel).

The EUT was tested according to DA 00-705 (Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems)

3.4 Test Protocol

Temperature : 25°C Relative Humidity : 55 %

Modulation	СН	Bandwidth (kHz)	Two-thirds of Bandwidth (kHz)
	L	864.00	576.00
GFSK	M	856.00	570.67
	Н	856.00	570.67

Modulation	СН	Bandwidth	Two-thirds of Bandwidth
		(kHz)	(kHz)
	L	1224.00	816.00
π /4 DQPSK	M	1224.00	816.00
	Н	1224.00	816.00

Modulation	СН	Bandwidth	Two-thirds of Bandwidth
		(kHz)	(kHz)
	L	1260.00	840.00
8DPSK	M	1266.00	844.00
	Н	1266.00	844.00

4. Carrier Frequency Separation

Test result: Pass

4.1 Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125mW.

4.2 Test Configuration

4.3 Test Procedure and test setup

The Carrier Frequency Separation per FCC § 15.247(a)(1) is measured using the Spectrum Analyzer with Span can capture two adjacent channels, RBW≥1% of the span, VBW≥RBW, Sweep = auto, Detector = peak, Trace = max hold.

The test was performed at 3 channels (lowest, middle and highest channel).

The EUT was tested according to DA 00-705 (Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems)

4.4 Test Protocol

Temperature : 25°C Relative Humidity : 55 %

Mode	СН	Frequency Separation (kHz)	Limit (kHz)
	L	1002.00	≥ 576.00
GFSK	M	1002.00	≥ 570.67
	Н	1002.00	≥ 570.67

Mode	СН	Frequency Separation (kHz)	Limit (kHz)
- /4	L	1002.00	≥ 816.00
π /4 DQPSK	М	1002.00	≥ 816.00
	Н	1002.00	≥ 816.00

Mode	СН	Frequency Separation (kHz)	Limit (kHz)
	L	1002.00	≥ 840.00
8DPSK	М	1002.00	≥ 844.00
	Н	1002.00	≥ 844.00

5. Maximum peak output power

Test result: Pass

5.1 Test limit

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt

For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts If the transmitting antenna of directional gain greater than 6dBi is used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi. For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt.

5.2 Test Configuration

5.3 Test procedure and test setup

The power output per FCC § 15.247(b) is measured using the Spectrum Analyzer with Span = 5 times the 20 dB bandwidth, RBW≥ the 20 dB bandwidth, VBW≥RBW, Sweep = auto, Detector = peak, Trace = max hold.

The test was performed at 3 channels (lowest, middle and highest channel). The EUT was tested according to DA 00-705 (Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems)

5.4 Test protocol

Temperature : 25 °C Relative Humidity : 55 %

Mode	СН	Cable loss (dB)	Corrected reading (dBm)	Limit (dBm)
GFSK	L	1.50	7.11	
	M	1.50	7.38	≤21.00
	Н	1.50	7.63	

Mode	СН	Cable loss (dB)	Corrected reading (dBm)	Limit (dBm)
	L	1.50	5.37	
π /4 DQPSK	M	1.50	6.19	≤21.00
	Н	1.50	6.85	

Mode	СН	Cable loss (dB)	Corrected reading (dBm)	Limit (dBm)
8DPSK	L	1.50	5.35	
	M	1.50	6.33	≤21.00
	Н	1.50	7.00	

6. Radiated Spurious Emissions

Test result: Pass

6.1 Test limit

The radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) showed as below:

Frequency (MHz)	Field Strength (dBuV/m)	Measurement Distance (m)
30 - 88	40.0	3
88 - 216	43.5	3
216 - 960	46.0	3
Above 960	54.0	3

6.2 Test Configuration

6.3 Test procedure and test setup

The measurement was applied in a semi-anechoic chamber. While testing for spurious emission higher than 1GHz, if applied, the pre-amplifier would be equipped just at the output terminal of the antenna.

The EUT and simulators were placed on a 0.8m high wooden turntable above the horizontal metal ground plane. The turn table rotated 360 degrees to determine the position of the maximum emission level. The EUT was set 3 meters away from the receiving antenna which was mounted on an antenna mast. The antenna moved up and down between from 1meter to 4 meters to find out the maximum emission level.

The EUT was tested according to DA 00-705 (Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems)

The radiated emission was measured using the Spectrum Analyzer with the resolutions bandwidth set as:

```
RBW = 100 kHz, VBW = 300 kHz (30MHz~1GHz)
RBW = 1MHz, VBW = 3MHz (>1GHz for PK);
RBW = 1MHz, VBW = 10Hz (>1GHz for AV);
```

If the dwell time per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor".

6.4 Test protocol

Temperature : 25 °C Relative Humidity : 55 %

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

GFSK (DH5) Modulation:

Н	Antenna	Frequency (MHz)	Correct Factor (dB/m)	Corrected Reading (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	Н	2402.00	30.70	98.60	Fundamental	/	PK
	Н	2389.90	30.20	51.50	74.00	22.50	PK
	Н	2389.90	30.20	43.40	54.00	10.60	AV
	V	33.89	19.40	37.20	40.00	2.80	PK
T	V	57.21	9.30	35.60	40.00	4.40	PK
L	V	101.92	14.80	40.00	43.50	3.50	PK
	V	152.46	14.30	38.60	43.50	4.90	PK
	V	156.35	14.10	40.40	43.50	3.10	PK
	Н	896.97	25.00	32.20	46.00	13.80	PK
	Н	4804.00	-1.50	52.60	74.00	21.40	PK
	Н	2441.00	30.70	99.30	Fundamental	/	PK
	V	33.89	19.40	37.20	40.00	2.80	PK
	V	57.21	9.30	35.60	40.00	4.40	PK
M	V	101.92	14.80	40.00	43.50	3.50	PK
IVI	V	152.46	14.30	38.60	43.50	4.90	PK
	V	156.35	14.10	40.40	43.50	3.10	PK
	Н	896.97	25.00	32.20	46.00	13.80	PK
	Н	4882.00	-1.10	52.30	74.00	21.70	PK
	Н	2480.00	30.70	99.70	Fundamental	/	PK
	Н	2483.50	31.52	50.40	74.00	23.60	PK
	Н	2483.50	31.52	41.50	54.00	12.50	AV
	V	33.89	19.40	37.20	40.00	2.80	PK
11	V	57.21	9.30	35.60	40.00	4.40	PK
Н	V	101.92	14.80	40.00	43.50	3.50	PK
	V	152.46	14.30	38.60	43.50	4.90	PK
	V	156.35	14.10	40.40	43.50	3.10	PK
	Н	896.97	25.00	32.20	46.00	13.80	PK
	Н	4960.00	-0.80	51.60	74.00	22.40	AV

π /4DQPSK (2DH5) Modulation:

СН	Antenna	Frequenc y (MHz)	Correct Factor (dB/m)	Corrected Reading (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	Н	2402.00	30.70	98.50	Fundamental	/	PK
	Н	2389.98	30.20	51.60	74.00	22.40	PK
	Н	2389.98	30.20	43.90	54.00	10.10	AV
	V	33.89	19.40	37.20	40.00	2.80	PK
τ.	V	57.21	9.30	35.60	40.00	4.40	PK
L	V	101.92	14.80	40.00	43.50	3.50	PK
	V	152.46	14.30	38.60	43.50	4.90	PK
	V	156.35	14.10	40.40	43.50	3.10	PK
	Н	896.97	25.00	32.20	46.00	13.80	PK
	Н	4804.00	-1.50	51.80	74.00	22.20	PK
	Н	2441.00	30.70	98.90	Fundamental	/	PK
	V	33.89	19.40	37.20	40.00	2.80	PK
	V	57.21	9.30	35.60	40.00	4.40	PK
	V	101.92	14.80	40.00	43.50	3.50	PK
M	V	152.46	14.30	38.60	43.50	4.90	PK
	V	156.35	14.10	40.40	43.50	3.10	PK
	Н	896.97	25.00	32.20	46.00	13.80	PK
	Н	4882.77	-1.10	52.40	74.00	21.60	PK
	Н	2480.00	30.70	98.60	Fundamental	/	PK
	Н	2483.50	31.52	51.50	74.00	22.50	PK
	Н	2483.50	31.52	41.80	54.00	12.20	AV
	V	33.89	19.40	37.20	40.00	2.80	PK
11	V	57.21	9.30	35.60	40.00	4.40	PK
Н	V	101.92	14.80	40.00	43.50	3.50	PK
	V	152.46	14.30	38.60	43.50	4.90	PK
	V	156.35	14.10	40.40	43.50	3.10	PK
	Н	896.97	25.00	32.20	46.00	13.80	PK
	Н	4960.00	-0.80	48.60	74.00	25.40	AV

8DPSK (3DH5) Modulation:

СН	Antenna	Frequency (MHz)	Correct Factor (dB/m)	Corrected Reading (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	Н	2402.00	30.70	98.40	Fundamental	/	PK
	Н	2389.93	30.20	52.90	74.00	21.10	PK
	Н	2389.93	30.20	43.30	54.00	10.70	AV
	V	33.89	19.40	37.20	40.00	2.80	PK
_	V	57.21	9.30	35.60	40.00	4.40	PK
L	V	101.92	14.80	40.00	43.50	3.50	PK
	V	152.46	14.30	38.60	43.50	4.90	PK
	V	156.35	14.10	40.40	43.50	3.10	PK
	Н	896.97	25.00	32.20	46.00	13.80	PK
	Н	4804.00	-1.50	53.60	74.00	20.40	PK
	Н	2441.00	30.70	98.60	Fundamental	/	PK
	V	33.89	19.40	37.20	40.00	2.80	PK
	V	57.21	9.30	35.60	40.00	4.40	PK
M	V	101.92	14.80	40.00	43.50	3.50	PK
M	V	152.46	14.30	38.60	43.50	4.90	PK
	V	156.35	14.10	40.40	43.50	3.10	PK
	Н	896.97	25.00	32.20	46.00	13.80	PK
	Н	4882.00	-1.10	52.60	74.00	21.40	PK
	Н	2480.00	30.70	97.70	Fundamental	/	PK
	Н	2483.50	31.52	51.40	74.00	22.60	PK
	Н	2483.50	31.52	41.80	54.00	12.20	AV
	V	33.89	19.40	37.20	40.00	2.80	PK
11	V	57.21	9.30	35.60	40.00	4.40	PK
Н	V	101.92	14.80	40.00	43.50	3.50	PK
	V	152.46	14.30	38.60	43.50	4.90	PK
	V	156.35	14.10	40.40	43.50	3.10	PK
	Н	896.97	25.00	32.20	46.00	13.80	PK
	Н	4960.00	-0.80	48.30	74.00	25.70	AV

Remark: 1. For fundamental emission, no amplifier is employed.

- 2. Correct Factor = Antenna Factor + Cable Loss (-Amplifier, is employed)
- 3. Corrected Reading = Original Receiver Reading + Correct Factor
- 4. Margin = limit Corrected Reading
- 5. If the PK reading is lower than AV limit, the AV test can be elided. 6. The emission was conducted from 30MHz to 25GHz.

FCC ID: ZL5-MMBT

Example: Assuming Antenna Factor = 30.20dB/m, Cable Loss = 2.00dB,

Gain of Preamplifier = 32.00dB, Original Receiver Reading = 10dBuV.

Then Correct Factor = 30.20 + 2.00 - 32.00 = 0.20dB/m; Corrected Reading =

10dBuV + 0.20dB/m = 10.20dBuV/m

Assuming limit = 54dBuV/m, Corrected Reading = 10.20dBuV/m, then Margin =

54 - 10.20 = 43.80 dBuV/m

7. Conducted Spurious Emissions & Band Edge

Test result: Pass

7.1 Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.

7.2 Test Configuration

Antenna connector

7.3 Test procedure and test setup

The Conducted Spurious Emissions per FCC § 15.247(d) is measured using the Spectrum Analyzer with Span wide enough capturing all spurious from the lowest emission frequency of the EUT up to 10th harmonics, RBW = 100kHz, VBW≥RBW, Sweep = auto, Detector = peak, Trace = max hold.

The test was performed at 3 channels (lowest, middle and highest channel). The EUT was tested according to DA 00-705 (Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems)

Temperature : 25 °C Relative Humidity : 55 %

Model	СН	Max reading among band (dBm)	The most restrict Attenuation outside band (dB)	Limit (dB)
GFSK	L	3.53	46.51	>20
Grak	Н	7.60	54.31	≥20

Model	СН	Max reading among band (dBm)	The most restrict Attenuation outside band (dB)	Limit (dB)
π /4	L	3.52	35.30	>20
DQPSK	Н	5.90	52.84	_20

Model	CH Max reading among band (dBm)		The most restrict Attenuation outside band (dB)	Limit (dB)
ODDCK	L	3.49	35.19	>20
8DPSK	Н	6.02	53.16	

Model	СН	Max reading among band (dBm)	The most restrict Attenuation outside band (dB)	Limit (dB)
Hopping	/	6.51	49.37	≥20

Note: The test was performed from 9 kHz to 26GHz and emission more than 20dB margin, so the worst data is listed here.

8. Power line conducted emission

Test result: Pass

8.1 Limit

Frequency of Emission (MHz)	Conducted Limit (dBuV)				
	QP	AV			
0.15-0.5	66 to 56*	56 to 46 *			
0.5-5	56	46			
5-30	60	50			
* Decreases with the logarithm of the frequency.					

8.2 Test configuration

☐ For table top equipment, wooden support is 0.8m height table

⊠ For floor standing equipment, wooden support is 0.12m height rack.

8.3 Test procedure and test set up

The EUT are connected to the main power through a line impedance stabilization network (LISN). This provides a $50\Omega/50uH$ coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a $50\Omega/50uH$ coupling impedance with 50Ω termination.

Both sides (Line and Neutral) of AC line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4 on conducted measurement. The bandwidth of the test receiver is set at 9 kHz.

The EUT was tested according to DA 00-705 (Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems)

Temperature 25 °C Relative Humidity 55 %

Tested with adaptor 1:

L line

Test Data:

1 cst Data.						
Frequency (MHz)	Quasi-peak			Average		
	level dB(µV)	Limit dB(µV)	Margin (dB)	level dB(µV)	limit dB(µV)	Margin (dB)
0.15	42.54	66.00	23.46	24.86	56.00	31.14
0.18	41.62	64.38	22.76	22.87	54.38	31.51
0.49	36.71	56.12	19.41	24.13	46.12	21.99
0.61	36.95	56.00	19.05	22.93	46.00	23.07
1.03	33.87	56.00	22.13	20.37	46.00	25.63
1.44	32.70	56.00	23.30	20.52	46.00	25.48

Test Data:

Frequency (MHz)	Quasi-peak			Average		
	level dB(µV)	Limit dB(µV)	Margin (dB)	level dB(µV)	limit dB(µV)	Margin (dB)
0.18	39.07	64.48	25.41	28.52	54.48	25.96
0.21	39.56	63.15	23.59	27.81	53.15	25.34
0.30	39.78	60.13	20.35	27.02	50.13	23.11
0.46	43.38	56.68	13.30	33.31	46.68	13.37
0.49	44.36	56.12	11.76	33.99	46.12	12.13
1.13	38.78	56.00	17.22	28.13	46.00	17.87
1.51	37.40	56.00	18.60	26.54	46.00	19.46

Tested with adaptor 2:

Test Data:

Frequency (MHz)	Quasi-peak			Average		
	level dB(µV)	Limit dB(µV)	Margin (dB)	level dB(µV)	limit dB(µV)	Margin (dB)
0.18	47.53	64.71	17.18	28.09	54.71	26.62
0.21	44.17	63.38	19.21	23.23	53.38	30.15
0.34	38.22	59.24	21.02	24.53	49.24	24.71
0.44	36.78	56.98	20.20	23.56	46.98	23.42
0.51	35.08	56.00	20.92	21.91	46.00	24.09
0.82	32.59	56.00	23.41	22.61	46.00	23.39
1.53	32.40	56.00	23.60	24.16	46.00	21.84
2.89	30.76	56.00	25.24	23.54	46.00	22.46

Test Data:

Frequency (MHz)	Quasi-peak			Average			
	level dB(µV)	Limit dB(µV)	Margin (dB)	level dB(µV)	limit dB(µV)	Margin (dB)	
0.15	45.53	65.87	20.34	32.93	55.87	22.94	
0.19	41.50	64.24	22.74	30.72	54.24	23.52	
0.23	39.53	62.62	23.09	30.65	52.62	21.97	
0.54	38.19	56.00	17.81	31.75	46.00	14.25	
1.54	35.17	56.00	20.83	30.18	46.00	15.82	
2.94	34.70	56.00	21.30	29.27	46.00	16.73	
3.63	33.71	56.00	22.29	27.70	46.00	18.30	

Note: The worst test results of channel L (2402MHz, EDR-3Mbps 3DH5) was chosen to list in the report as representative.

9. Number of Hopping Frequencies

Test result: Pass

9.1 Limit

Number of Hopping Frequencies in the 2400-2483.5 MHz band shall use at least 15 channels.

9.2 Test Configuration

Antenna connector

9.3 Test procedure and test setup

The channel number per FCC §15.247(a)(1)(iii) is measured using the Spectrum Analyzer with RBW=100kHz, VBW≥RBW, Sweep = auto, Detector = peak, Trace = max hold. The EUT was tested according to DA 00-705 (Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems).

9.4 Test protocol

Temperature : 25 °C Relative Humidity : 55 %

Channel Number	Limit		
79	≥15		

10. Dwell Time

Test result: Pass

10.1 Limit

The dwell time on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

10.2 Test Configuration

10.3 Test procedure and test setup

Dwell time per FCC § 15.247(a)(1)(iii) is measured using the Spectrum Analyzer with Span = 0, RBW=1MHz, VBW≥RBW, Sweep can capture the entire dwell time, Detector = peak, Trace = max hold.

The EUT was tested according to DA 00-705 (Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems).

Temperature : 25 °C Relative Humidity : 55 %

Packet	Occupancy time for single hop	СН	Real observed period	Hops among Observed	Dwell time (ms)	Limit
Tucket	(ms) O	CII	(s) P	period I	T	(s)
		L	3.16	32	136.32	
DH1	0.426	M	3.16	32	136.32	
		Н	3.16	32	136.32	
		L	3.16	16	269.76	
DH3	1.686	M	3.16	16	269.76	≤0.4
		Н	3.16	16	269.76	
	2.936	L	3.16	11	322.96	
DH5		M	3.16	11	322.96	
		Н	3.16	11	322.96	

Remark: 1. There are 79 channels in all. So the complete observed period P = 0.4 * 79 = 31.6 s.

^{2.} Average time of occupancy T = O *I * 31.6 / P

11. Occupied Bandwidth

Test result: Tested

11.1 Test limit

None

11.2 Test Configuration

11.3 Test procedure and test setup

The occupied bandwidth per RSS-Gen Issue 3 Clause 4.6.1 was measured using the Spectrum Analyzer with the RBW close to 1% of the selected span, VBW = 3 * RBW Detector = Sample, Sweep = Auto.

Temperature : 25 °C Relative Humidity : 55 %

Modulation	Channel	99% Occupied Bandwidth (kHz)
GFSK	L	846.00
	М	840.00
	Н	840.00

Modulation	Channel	99% Occupied Bandwidth (kHz)
π /4 DQPSK	L	1164.00
	М	1164.00
	Н	1170.00

Modulation	Channel	99% Occupied Bandwidth (kHz)
8DPSK	L	1164.00
	М	1164.00
	Н	1164.00

12. Spurious emission for receiver

Test result: NA

12.1 Test limit

The spurious emission shall test through 3 times tuneable or local oscillator frequency whichever is the higher, without exceeding 40 GHz.

If a conducted measurement is made, no spurious output signals appearing at the antenna
terminals shall exceed 2nW per any 4 kHz spurious frequency in the band 30-1000 MHz, or
5nW above 1 GHz.

If a radiated measurement is made, all spurious emissions shall comply with the limits of Table below:

Frequency (MHz)	Field Strength (dBuV/m)	Measurement Distance (m)
30 - 88	40.0	3
88 - 216	43.5	3
216 - 960	46.0	3
Above 960	54.0	3

12.2 Test Configuration

Please refer to clause 6.2

12.3 Test procedure and test setup

Please refer to clause 6.3.

Polarization	Frequency (MHz)	Correct Factor (dB/m)	Corrected Reading (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-

Remark: 1. Correct Factor = Antenna Factor + Cable Loss (-Amplifier, is employed)

- 2. Corrected Reading = Original Receiver Reading + Correct Factor
- 3. Margin = limit Corrected Reading

Example: Assuming Antenna Factor = 30.20dB/m, Cable Loss = 2.00dB,

Original Receiver Reading = 10dBuV.

Then Correct Factor = 30.20 + 2.00 = 32.20dB/m; Corrected Reading = 10dBuV + 32.20dB/m = 42.20dBuV/m

Assuming limit = 54dBuV/m, Corrected Reading = 42.20dBuV/m, then Margin = 54 -42.20 = 11.80dBuV/m