Linear Regression: Because Straight Lines Explain Everything

So you've got data. Lots of it.

And you're staring at it like, "please tell me something meaningful." That's where **linear regression** strolls in, pretending to be all fancy when it's basically drawing the best straight line through your mess.

The "Math" (a.k.a. The Part Everyone Pretends to Understand)

We're trying to find a line that best fits your data points:

$$y = \beta_0 + \beta_1 x + \epsilon$$

Where:

- y: the dependent variable (the thing you're trying to predict, usually sadness or sales)
- x: the independent variable (the thing you *think* causes y)
- β_0 : intercept (where the line crosses the y-axis, aka "baseline disappointment")
- β_1 : slope (how much y changes when x changes, aka "hope per unit change")
- ϵ : error term (life's way of saying "nothing's perfect")

The Goal (Supposedly)

We pick β_0 and β_1 that make the **errors** as small as possible. Because apparently, "minimizing error" makes you a data scientist.

Mathematically, we minimize this:

$$RSS = \sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_i))^2$$

That's called **Residual Sum of Squares**, which sounds intimidating until you realize it's literally just "how wrong we are, squared."

Finding the Best Line

You can solve for the slope and intercept like this:

$$\beta_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$$

and

$$\beta_0 = \bar{y} - \beta_1 \bar{x}$$

Congrats, you just did *math* that Excel does automatically. Don't worry, you're still smart.

Prediction (a.k.a. False Confidence)

Once you've got your perfect line, you can predict stuff:

$$\hat{y} = \beta_0 + \beta_1 x$$

This gives you an illusion of control over the universe. Spoiler: reality will still throw in that pesky ϵ .

TL;DR

Linear regression = "fit line, minimize regret."

If your data doesn't fit a line, tough luck — there's polynomial regression, logistic regression, or just good old-fashioned denial.

Example (in R, because why not)

```r x <- c(1, 2, 3, 4, 5) y <- c(2, 4, 5, 4, 5) model <-  $lm(y \sim x)$  summary(model)