DSP-Based GFSK Demodulator for AAU Ground Station Group 627

June 18, 2014

Jacob Velling Dueholm Jacob Møller Hjerrild Hansen Miklas Strøm Kristoffersen Søren Bøgeskov Nørgaard 14gr627@es.aau.dk

Department of Electronic Systems
Aalborg University
Denmark

Agenda

Modulation Scheme

Spacelink Format

Blackfin Architecture

Program Flow

System Block Division

Sampler

Channel Filter

Packet Detection

Mid-Frequency Estimation

Time Synchronization

Symbol Decision

Acceptance Test

Conclusion

Demonstration

GFSK Demodulator Group 627

Modulation Scheme

lodulation Scheme

....

Blackfin Architecture

Program F

System Block Division

Channel Filter

iarmei riiter

Packet Detection

Mid-Frequency Estimation

me Synchronization

Symbol Decision

. .

onclusion

Motivation

- ► Make something needed
- ► Satlab Improve receiver for ground station

- ► Better reception
- ▶ More Flexible
- Soft-bit decision

GFSK Demodulator Group 627

Modulation Scheme

Spacelink For

Blackfin Architecture

Program Flow

System Block Division

Sampler

Channel Filter

Packet Detection

Mid-Frequency Estimation

Time Synchronizatio

Symbol Decision

ceptance Test

conclusion

Modulation Scheme - FSK

► FSK - Frequency Shift Keying

$$s(t) = \sqrt{\frac{2E_b}{T_b}} \cos\left[2\pi f_c t + \phi(t)\right] \tag{1}$$

$$\phi(t) = \phi(0) \pm h\pi t/T_b \tag{2}$$

$$\Delta f = |f_1 - f_0| = \frac{h}{T_b} = \frac{1}{\frac{1}{9600}} = 9600 \text{ Hz}$$
 (3)

GFSK Demodulator Group 627

3 Modulation Scheme

Spacelink Format

Blackfin Architecture

Program F

System Block Division

Channel Filter

Packet Detection
Mid-Frequency Estimation

ime Synchronization

centance Test

Demonstration

Dept. of Electronic Systems Aalborg University Denmark

35

Modulation Scheme – GFSK

$$lacktriangledown$$
 $\phi(t)=\phi(0)+rac{h\pi}{T_b}\int_0^{T_b}m_{
m NRZ}(t)dt$

► Basis for demodulating by phase

GFSK Demodulator Group 627

4 Modulation Scheme

Орассинк г синс

Blackfin Architecture
Program Flow

System Block Division

Sampler Channel Filter

acket Detection

Mid-Frequency Estimation Time Synchronization

ymbol Decision

ceptance Test

onclusion

Spacelink Format

Training	Sync Word	FSM	Length	CSP Header	Data	HMAC
240 B	6 B	1 B	2B	4 B	23/84 B	2B
	Preamble				— FEC Data —	

► Recording from AAUSAT III

- ► Signal generator
- ► Short package = $8 \cdot (24B + 6B + 1B + 128B) = 1272$ Symbols

GFSK Demodulator Group 627

Modulation Scheme

5 Spacelink Format

Blackfin Architecture

Program Flow

System Block Division

Channel Filter

Mid-Frequency Estimation

Time Synchronization

Symbol Decision

Conclusion

Demonstration

Dept. of Electronic Systems Aalborg University

Blackfin Architecture

-DATA-ARITHMETIC-UN

GFSK Demodulator Group 627

Modulation Scheme

6 Blackfin Architecture

Program Flow

System Block Division

Channel Filter

Packet Detection
Mid-Frequency Estimation

Time Synchronization

Symbol Decision

looopianoo 100

Demonstration

Dept. of Electronic Systems Aalborg University Denmark

35

Division Into Sub Modules - Program Flow

GFSK Demodulator Group 627

Modulation Scheme

Spacelink Format

Blackfin Architecture

7 Program Flow

System Block Division Sampler

Channel Filter
Packet Detection

Mid-Frequency Estimation

Symbol Decision

Acceptance Test

onclusion

Demonstration

Dept. of Electronic Systems Aalborg University Denmark

System Block Division

The modules which defines the defines the demodulator.

GFSK Demodulator Group 627

Modulation Scheme

Spacelink Format

Blackfin Architecture

Program Flow

8 System Block Division

Sampler Channel Filter

acket Detection

Mid-Frequency Estimation

nime Synchronizatio

Symbol Decision

Demonstration

35

Sampler Sorting Data Input

Sorting the input data.


```
uint32_t *buf32 = (uint32_t *)buffer;
fract16 *buf16I;
fract16 *buf16Q;

while (n < SAMBLOCK/2) {
   buf16I[i] = (fract16)((buf32[n] << 4)&0xFFFF); n++;
   buf16Q[i] = (fract16)((buf32[n] << 4)&0xFFFF); n++;
   i++;
}</pre>
```

► Implementation appropriate inside the channel filter.

GFSK Demodulator Group 627

Modulation Scheme

Blackfin Architecture

Program Flow

System Block Division

Sampler

Channel Filter
Packet Detection
Mid-Frequency Estimation

Time Synchronization

Symbol Decision

Conclusion

- ▶ Bandwidth is defined from Doppler range.
- ► Frequency characteristic is chosen from existing filter
- Group Delay of Butterworth is constant.

GFSK Demodulator Group 627

Modulation Scheme

Blackfin Architecture

Custom Plank Division

System Block Division Sampler

Channel Filter

Packet Detection

Mid-Frequency Estimation

Time Synchronization

Symbol Decision

onclusion

▶ 4th order LP \rightarrow 8th order BP.

$$H(s) = \frac{1}{s^4 + 2.61s^3 + 3.41s^2 + 2.61s + 1} \bigg|_{s = \frac{s^2 + \Omega_0^2}{8s}}$$

$$H(z) = \frac{B^4 S^4}{aS^8 + bS^7 + cS^6 + dS^5 + eS^4 + fS^3 + gS^2 + hS + i} \bigg|_{S = \frac{2}{T_S} \cdot \frac{z - 1}{z + 1}}$$

$$\begin{array}{l} {\rm a} \, = 1 \\ {\rm b} \, = 2.61B \\ {\rm c} \, = 3.41B^2 + 4\Omega_0^2 \\ {\rm d} \, = 2.61B(B^2 + 3\Omega_0^2) \\ {\rm e} \, = B^4 + 6.82B^2\Omega_0^2 + 6\Omega_0^4 \\ {\rm f} \, = 2.61B(B^2 + 3\Omega_0^2)\Omega_0^2 \\ {\rm g} \, = 3.41B^2\Omega_0^4 + 4\Omega_0^6 \\ {\rm h} \, = 2.61B\Omega_0^6 \\ {\rm i} \, = \Omega_0^8 \end{array}$$

GFSK Demodulator

Modulation Scheme

System Block Division

Channel Filter

Packet Detection
Mid-Frequency Estimation

Time Synchronization
Symbol Decision

cceptance Test

onclusion

Demonstration

Dept. of Electronic Systems
Aalborg University

Implementation

$$H(z) = 67.263E-6 \cdot \frac{1-4z^{-2}+6z^{-4}-4z^{-6}+z^{-8}}{1+0.65z^{-1}+3.65z^{-2}+1.73z^{-3}+4.89z^{-4}+1.52z^{-5}+2.84z^{-6}+0.44z^{-7}+0.60z^{-8}}$$

 2nd order cascades by pairing poles closest to unit circle with the closest zero.

$$H(z) = k \cdot \frac{(z - z_1)(z - z_2)}{(z - p_n)(z - p_n^*)} = k \cdot \frac{b_0 + b_1 z^{-1} + b_2 z^{-2}}{a_0 + a_1 z^{-1} + a_2 z^{-2}}$$

▶ Discrete Time Domain

$$y(n) = b_0 x(n) + b_1 x(n-1) + b_2 x(n-2) - a_1 y(n-1) - a_2 y(n-2)$$

GFSK Demodulator Group 627

Modulation Scheme

Spacelink Format

Blackfin Architecture

Program Flo

System Block Division

2) Channel Filter

Packet Detection
Mid-Frequency Estimation

Symbol Decision

Acceptance Tes

conclusion

Cascade Form

Direct Form II

$$w(n) = x(n) - a_1 w(n-1) - a_2 w(n-2)$$

$$y(n) = b_0 w(n) + b_1 w(n-1) + b_2 w(n-2)$$

GFSK Demodulator Group 627

Modulation Scheme

opacomini r ormat

Blackfin Architecture
Program Flow

System Block Division

Channel Filter

Packet Detection

Mid-Frequency Estimation

Time Synchronization

Symbol Decision

. . .

Implementation


```
void biquad_df2(fract16 *input, fract16 *output, fract16 *coeff, uint32 N) {
      fract16 xn=0:
      fract16 v1=0; fract16 v2=0; fract16 v3=0; fract16 v4=0;
      fract16 w1n=0; fract16 w1n1=0; fract16 w1n2 = 0;
      fract16 w2n=0: fract16 w2n1=0: fract16 w2n2 = 0:
      fract16 w3n=0; fract16 w3n1=0; fract16 w3n2 = 0;
      fract16 w4n=0; fract16 w4n1=0; fract16 w4n2 = 0;
       int i:
10
       for (i = 0; i < N; i++) {
11
           xn = input[i];
           w1n = ((xn << 15) - coeff[3]*w1n1 - coeff[4]*w1n2)
14
                                                                      >> 15:
           v1 = (coeff[0]*w1n + coeff[1]*w1n1 + coeff[2]*w1n2)
                                                                      >> 15;
16
           w2n = ((v1 << 15) - coeff[9]*w2n1 - coeff[5]*w2n2)
                                                                      >> 15;
           v2 = (coeff[6]*w2n + coeff[7]*w2n1 + coeff[8]*w2n2)
18
                                                                      >> 15;
19
20
           w3n = ((v2 << 15) - coeff[13]*w3n1 - coeff[14]*w3n2)
                                                                      >> 15:
21
           v3 = (coeff[10]*w3n + coeff[11]*w3n1 + coeff[12]*w3n2) >> 15:
22
23
           w4n = ((v3 << 15) - coeff[19]*w4n1 - coeff[15]*w4n2)
                                                                      >> 15:
24
           v4 = (coeff[16]*w4n + coeff[17]*w4n1 + coeff[18]*w4n2) >> 15:
25
26
           output[i] = y4;
27
28
           w4n2 = w4n1:
29
           w4n1 = w4n:
           w3n2 = w3n1:
30
31
           w3n1 = w3n:
32
           w2n2 = w2n1;
33
           w2n1 = w2n;
34
           w1n2 = w1n1;
35
           w1n1 = w1n;
```

GFSK Demodulator

Group 627

odulation Schem

opacellik i ormat

Blackfin Architecture

Program Flow

System Block Division

Channel Filter

acket Detection

Mid-Frequency Estimation

mbol Decision

...,

Demonstration

Dept. of Electronic Systems Aalborg University Denmark

► C-Code

Implementation

```
w1n = ((xn<<15) - coeff[3]*w1n1 - coeff[4]*w1n2) >> 15;
y1 = (coeff[0]*w1n + coeff[1]*w1n1 + coeff[2]*w1n2) >> 15;
```

Assembly

```
A1 = R0.L * R1.L, A0 = R0.L * R1.H || R3 = [P0+4];

R0.H = (A1 -= R2.L * R7.L), A0 -= R2.H * R7.L || R4 = [P0+8];

A1 = R0.L * R3.L, R2.L = (A0 -= R0.H * R3.H);

R2.H = (A1 -= R0.H * R4.L) || R1 = [P0+12];

M0 = R2;
```

GFSK Demodulator Group 627

Modulation Scheme

Connolink Form

Rlackfin Architecture

Program Flow

System Block Division

Channel Filter

Packet Detection

Mid-Frequency Estimation

Combat Davidson

A ------ T---

Conclusion

Test on Blackfin DSP

DSP test with Q15 frequency sweep and C-filter

- Frequency Characteristic as specified.
- ► Theoretical cycle usage of 1.8% (Optimal)

GFSK Demodulator Group 627

Modulation Scheme

Snacelink Forma

Blackfin Architecture

Program Flow

System Block Division

Channel Filter

Mid-Frequency Estimation

Symbol Decision

. . .

Double Sliding Window Design

$$E_w(n) = \frac{1}{N} \sum_{i=n-N+1}^{n} x_i^2$$

$$Ratio(n) = \frac{E_w(n)}{E_w(n-N)}$$

$$Ratio(n) = \frac{E_w(n)}{E_w(n-N)}$$

GFSK Demodulator Group 627

Modulation Scheme

System Block Division

Channel Filter

Packet Detection

Mid-Frequency Estimation

Dept. of Electronic Systems Aalborg University Denmark

Test of Window Size at 5 dB SNR

GFSK Demodulator Group 627

Modulation Scheme

Spacelink Format

Blackfin Architecture

Program Flow

System Block Division Sampler

Channel Filter
Packet Detection

Mid-Frequency Estimation
Time Synchronization

Acceptance Test

Conclusion

Demonstration

Dept. of Electronic Systems Aalborg University

Test of SNR Influence with Window Size of 2 Symbols

GFSK Demodulator Group 627

Modulation Scheme

Blackfin Architecture

Program Flow

System Block Division

Channel Filter

Packet Detection

Mid-Frequency Estimation
Time Synchronization

mbol Decision

Demonstration

35

Implementation

$$E_w(n) = E_w(n) - \frac{x_{n-N}^2}{N} + \frac{x_n^2}{N}$$

- Window size power of two.
- Store old windows as a constant vector
- ▶ 2 mult, 1 sub, 1 add, 1 division

GFSK Demodulator Group 627

Modulation Scheme

Woddiation ochemic

System Block Division

Channel Filter
Packet Detection

Packet Detection

Mid-Frequency Estimation

Symbol Decision

Acceptance Tes

Conclusion

Demonstration

Dept. of Electronic Systems Aalborg University

Mid-Frequency Estimation

Purpose

- ► Specify contribution from carrier

GFSK Demodulator Group 627

Modulation Scheme

Spacelink Format

Blackfin Architecture

Program Flow

System Block Division Sampler

Channel Filter

Mid-Frequency Estimation

ime Synchronization

ymbol Decision

Conclusion

Mid-Frequency Estimation

Properties

- Performing an 8192-point FFT on the DSP
- 8192 samples are approximately 13 bytes of training sequence
 - $f_s = 758\,272\,\text{Hz}, R = 9600, \text{SPS} \approx 79$

N [samples]	f _{res} [Hz]	FFT cycles [kcycles]	max cycles [kcycles]	FFT usage [%]
8192	92.6	213	142.433	0.150

GFSK Demodulator Group 627

Modulation Scheme

System Block Division

Channel Filter

Mid-Frequency Estimation

Dept. of Electronic Systems Aalborg University

35 Denmark

Mid-Frequency Estimation

Test Results

Tested with signal generator.

- Actual mid-frequency
 - ▶ 199 567 Hz
- Estimated mid-frequency
 - ▶ 199 564 Hz

GFSK Demodulator Group 627

Modulation Scheme

Dischille Assistantia

Program F

System Block Division

Channel Filter
Packet Detection

Mid-Frequency Estimation

Time Synchronization

,..... T--4

Conclusion

Time Synchronization Purpose

► Timing is needed to decide the value of each symbol

GFSK Demodulator Group 627

Modulation Scheme

Spacelink Format

Blackfin Architecture

Program Flow

System Block Division

Channel Filter

Packet Detection

Mid-Frequency Estimation

Time Synchronization

Symbol Decision

1000ptarioe 16

Frequency translation

- ▶ The downconverted phase-signal is used for time synchronization
- ► The phase-signal is computed
- ► The slope added by the carrier and Doppler shift is subtracted

GFSK Demodulator Group 627

Modulation Scheme

pacelink Form

Blackfin Architecture

rogram Flow

System Block Division

Channel Filter

Mid-Frequency Estimation

Time Synchronization

Acceptance Test

Conclusion

Wrapping

- lacktriangle Wrapping: $arg_fr16(phi) \in [-\pi,\pi)$, $fract16 \in [-2^{15},2^{15})$.
- Scale $\pi \equiv 2^{15}$ wraps around unit circle.

GFSK Demodulator Group 627

Modulation Scheme

Spacelink Format

Blackfin Architecture

Program Flow

System Block Division
Sampler

Channel Filter

Mid-Frequency Estimation

Time Synchronization Symbol Decision

cceptance Tes

onclusion

Demonstration

Dept. of Electronic Systems Aalborg University Denmark

35

Cross-Correlation

Cross-correlation of downconverted phase-signal, y₂, and pre-computed triangle wave, y₁

$$\psi_{y_1y_2}[\tau] = \frac{1}{N} \sum_{n=0}^{N-2T_b-1} y_1[n] y_2[n+\tau], \quad \tau \in [0, \ 2T_b]$$

GFSK Demodulator Group 627

Modulation Scheme

Spacelink Format

Blackfin Architecture

1 Togram 1 Tow

System Block Division

Channel Filter

Mid-Frequency Estimation
Time Synchronization

Symbol Decision

Acceptance les

Test Results

GFSK Demodulator Group 627

Modulation Scheme

Spacelink Format

Blackfin Architecture

Program Flow

System Block Division

Channel Filter

Mid-Frequency Estimation

Time Synchronization

Symbol Decision

cceptance les

onclusion

 $\mathsf{Phase} \to \mathsf{Symbols}$

- ► Positive/negative phase change ⇔ 1/0 symbol.
- $T_b = f_s/R = 758272/9600 = 78.987 \text{ samples/s}.$
- From measurement: $T_b = 78.63 \text{ samples/s}$.
- Fractional number of samples:

 $T_b = [78788078788078788078788078788078788078] \sim 78.63$

GFSK Demodulator Group 627

Modulation Scheme

Spacelink Form

Blackfin Architecture

Program

System Block Division

Channel Filter

Packet Detection

Mid-Frequency Estimation

Symbol Decision

29 Symbol Decisio

0000111100 100

Demonstration

Dept. of Electronic Systems Aalborg University Denmark

Wrapping Phase → Symbols

Wrapped phase at the beginning of a symbol.

GFSK Demodulator Group 627

Modulation Scheme

Spacelink Format

Blackfin Architecture

Program Flow

System Block Division

Channel Filter

Mid-Frequency Estimation

Symbol Decision

Wrapping Phase o Symbols

Next symbol (for h = 1): $\phi(0) + \pi = \phi(0) - \pi$.

► The same for 0- and 1-symbol.

GFSK Demodulator Group 627

Modulation Scheme

Spacelink Format

Blackfin Architecture

Program

System Block Division

Channel Filter

Packet Detection

Mid-Frequency Estimation

30 Symbol Decision

Acceptance Tes

Conclusion

Wrapping Phase o Symbols

Half way to next symbol: Here is a difference!

$$\hat{m}_n = \begin{cases} 1 & \text{if} \quad \hat{\phi}_{n+0.5} - \hat{\phi}_n > 0 \\ 0 & \text{if} \quad \hat{\phi}_{n+0.5} - \hat{\phi}_n < 0 \\ \text{undefined} & \text{otherwise} \end{cases}$$

Sync word: Symbol-wise comparison.

GFSK Demodulator Group 627

Modulation Scheme

Spacelink Format

Blackfin Architecture

Program

System Block Division

Channel Filter

Packet Detection

Mid-Frequency Estimation

30 Symbol Decision

Acceptance Tes

conclusion

Test Results

Tested with signal generator.

Drifting

- ▶ Little drifting with $T_b \equiv 79 \text{ samples/s}$.
- Correct demodulation of small packet.

With Slope

- $f_{c,err} \approx 4000 \, \text{Hz}$.
- Correct demodulation of small packet.

Finding Sync Word and FSM

▶ Sync word = 0Z4CUB, FSM = 0xA6 (small packet).

GFSK Demodulator Group 627

Modulation Scheme

System Block Division

Channel Filter

Mid-Frequency Estimation

Symbol Decision

Real-Time Summary

Cycle Count

Total number of clock cycles available: 142 433 491.

Module	Cycles Used	DSP Usage
Sampler	109 263 467	77%
Channel Filter	295 467 922	207%
Packet Detector	26 435 831	19%
Mid-Frequency Estimator	14 322 454	10%
Time Synchronization	26 638 224	19%
Symbol Decision	4 587 500	3%
Total	476 715 398	335%

- ▶ C filter \rightarrow Assembly: 86 913 124 clock cycles \sim 61 %.
- Downsample complex signal.
- Move data when it is processed.

GFSK Demodulator Group 627

Modulation Scheme

Spacelink Forma

Blackfin Architecture

Program Flow

System Block Division

Channel Filter

cket Detection

Mid-Frequency Estimation Time Synchronization

Symbol Decision

Acceptance Test

Conclusion

Signals

Strong, medium, weak.

Criteria

- Correct sync word and FSM.
- Cannot check symbol-by-symbol.

Results

Strong Found sync word and FSM.

Medium Found sync word and FSM.

Weak Wrong sync word – found later in buffer.

GFSK Demodulator Group 627

Modulation Scheme

noddialion odnomo

Program F

System Block Division

Channel Filter

armer r mer

Mid-Frequency Estimation

ime Synchronization

Symbol Decision

Conclusion

GFSK Demodulator Group 627

Modulation Scheme

opacomine i ormat

Blackfin Architecture

Program Flow

System Block Division

Channel Filter
Packet Detection

Mid-Frequency Estimation Time Synchronization

Symbol Decision

33 Acceptance Test

Conclusion

Demonstration

Medium signal.

- ▶ Sampled *I* and Q + estimated f_c → Phase.
- ▶ Time synchronized + variable T_b → Predicted location of symbols.
- ▶ No drifting correct sync word and FSM.

35

- Weak signal.
- ▶ Sampled *I* and Q + estimated f_c → Phase.
- ▶ Time synchronized + variable T_b → Predicted location of symbols.
- ► No drifting wrong sync word.

GFSK Demodulator Group 627

Modulation Scheme

Spacelink Format

Blackfin Architecture

Program

System Block Division

Channel Filter
Packet Detection

Mid-Frequency Estimation
Time Synchronization

Symbol Decision

33 Acceptance Test

Conclusion

Demonstration

Dept. of Electronic Systems Aalborg University

Conclusion

- Detect packet from signal generator.
- Correctly demodulate recording from AAUSAT3.
- Prepared for real-time optimization.

GFSK Demodulator Group 627

Modulation Scheme

орасеник г опп

Blackfin Architecture

Program Flow

System Block Division

Channel Filter

anner riner

Packet Detection

Mid-Frequency Estimation

ime Synchronization

Symbol Decision

Acceptance res

.....

Dept. of Electronic Systems Aalborg University

Demonstration

What is Shown?

- ► Medium signal strength.
- Demodulation on DSP.
- ► Amplitude, spectrogram, FFT (training).
- ► Interactive phase + decisions.

GFSK Demodulator Group 627

Modulation Scheme

Spacelink Forma

Blackfin Architecture

Program F

System Block Division

Channel Filter

annel Hiller

cket Detection

Mid-Frequency Estimation

Symbol Decision

-,...

onclusion

Demonstration

What is Shown?

- ► Medium signal strength.
- ▶ Demodulation on DSP.
- ► Amplitude, spectrogram, FFT (training).
- ► Interactive phase + decisions.

GFSK Demodulator Group 627

Modulation Scheme

Spacelink For

Blackfin Architecture

Program

System Block Division

Channel Filter

annor i mor

Mid-Frequency Estimation

Time Synchronization

Symbol Decision

Conclusion

Demonstration

What is Shown?

- ► Medium signal strength.
- Demodulation on DSP.
- ► Amplitude, spectrogram, FFT (training).
- ► Interactive phase + decisions.

GFSK Demodulator Group 627

Modulation Scheme

орасеник г отти

Blackfin Architecture

Program

System Block Division

Sampler

Channel Filter

Packet Detection

Mid-Frequency Estimation

Time Synchronizano

Symbol Decision

