ALJABAR BOOLE

TK13023 COMPUTATION II

KELAS A,B,C DAN D

DOSEN KOORD: LELY HIRYANTO

PENDAHULUAN

- Aljabar Boole terdiri dari:
 - Himpunan yang anggotanya terdiri dari 1 dan 0
 - 1: Benar 0: Salah
 - Komplemen : \bar{A}

$$\overline{1} = 0$$
 $\overline{0} = 1$

- Himpunan operator

Penjumlahan (OR): +

Perkalian (AND):.

ATURAN PENJUMLAHAN/PERKALIAN

Penjumlahan

$$1 + 1 = 1$$

$$1 + 0 = 1$$

$$0 + 1 = 1$$

$$0 + 0 = 0$$

Perkalian

$$1.1 = 1$$

$$1.0 = 0$$

$$0.1 = 0$$

$$0.0 = 0$$

OPERATOR LOJIK (LOGICAL OPERATORS)

0 : Salah

1: Benar

¬: Komplemen

V : Penjumlahan

Λ: Perkalian

F: Salah

T: Benar

¬: Komplemen

V: **O**R

 $\Lambda : AND$

Contoh

Persamaan Boole

$$1 \cdot 0 + \overline{(0+1)} = 0 + \overline{1} = 0 + 0 = 0$$

Operator Lojik

$$(T \land F) \lor \neg (T \lor F) \equiv F$$

Fungsi Boole

Ekspresi Boole

 $0, 1, X1, X2, \dots, Xn$

Fungsi Boole

$$F(x, y, z) = xy + \overline{z}$$

TABEL KEBENARAN DARI FUNGSI BOOLE

$$F(x, y, z) = xy + \overline{z}$$

X	У	Z	ху	$\overline{m{z}}$	$F(x, y, z) = xy + \overline{z}$
1	1	1	1	0	1
1	1	0	1	1	1
1	0	1	0	0	0
1	0	0	0	1	1
0	1	1	0	0	0
0	1	0	0	1	1
0	0	1	0	0	0
0	0	0	0	1	1

TABLE 5 Boolean Identities.

 $x \cdot 0 = 0$

xy = yx

x + y = y + x

Identity	Name				
$\overline{\overline{x}} = x$	Law of the double complement				
$x + x = x$ $x \cdot x = x$	Idempotent laws				
$x + 0 = x$ $x \cdot 1 = x$	Identity laws	,			
x + 1 = 1	Domination laws				

Commutative laws

Boolean Identities

x + (y + z) = (x + y) + z $x(yz) = (xy)z$	Associative laws
x + yz = (x + y)(x + z) $x(y + z) = xy + xz$	Distributive laws
$\overline{(xy)} = \overline{x} + \overline{y}$ $\overline{(x+y)} = \overline{x} \overline{y}$	De Morgan's laws
x + xy = x $x(x + y) = x$	Absorption laws
$x + \overline{x} = 1$	Unit property
$x\overline{x} = 0$	Zero property

PEMBUKTIAN RUMUS (1)

• Pembuktian Boolean Identities

Pembuktian Hukum Distributif

$$x+yz = (x+y)(x+z)$$

Dengan menggunakan tabel kebenaran

X	У	Z	yz	х+у	X+Z	x+yz	(x+y)(x+z)
1	1	1	1	1	1	1	1
1	1	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	0	0	0	1	1	1	1
0	1	1	1	1	1	1	1
0	1	0	0	1	0	0	0
0	0	1	0	0	1	0	0
0	0	0	0	0	0	0	0

PEMBUKTIAN RUMUS (2)

Pembuktian Identities

Boolean

Absorption law

$$x(x+y)=x$$

Dengan menggunakan Boolean Identities yang lain

$$x(x + y) = (x + 0)(x + y)$$

$$= x + 0 \cdot y$$

$$= x + y \cdot 0$$

$$= x + 0$$

$$= x$$

PEMBUKTIAN RUMUS (3)

 Pembuktian **Identities**

Boolean

Absorption law

$$x + xy = x$$

Dengan menggunakan Duality principle

Dengan menggunakan Boolean Identity pasangannya yg telah dibuktikan pada Pembuktian rumus 2

$$\mathbf{x}(\mathbf{x} + \mathbf{y}) = \mathbf{x}$$

Maka persamaan x + xy = xTerbukti benar

Minterms

• *Minterm* merupakan kombinasi dari variabel biner dalam bentuk perkalian

$$x = 1$$

$$\bar{x} = 0$$

Contoh Minterm

X	y	Z	MinTerms
0	0	0	$\bar{x} \ \bar{y} \ \bar{z}$
0	0	1	$\bar{x} \; \bar{y} \; \mathbf{z}$
0	1	0	$\bar{x} \; \bar{y} \; \mathbf{z}$
0	1	1	$\bar{x} y z$
1	0	0	$\mathbf{x} \overline{y} \overline{z}$
1	0	1	$\mathbf{x} \overline{y} z$
1	1	0	$x y \bar{z}$
1	1	1	хуz

Sum of Product

- Membuat persamaan Boole dalam bentuk Sum of Product (dalam bentuk Minterm) yang lengkap
- Variabel yang tidak ada dalam pers.
 Boole dilengkapi
- Contoh Jadikan persamaan Boole berikut dalam bentuk Sum of Product $F(x,y,z) = (x + y) \bar{z}$

$$F(x,y,z) = (x + y) \, \overline{z}$$

$$= x \, \overline{z} + y \, \overline{z}$$

$$= x \, 1 \, \overline{z} + 1 \, y \, \overline{z}$$

$$= x \, (y + \overline{y}) \, \overline{z} + (x + \overline{x}) \, y \, \overline{z}$$

$$= xy\overline{z} + x\overline{y}\overline{z} + xy\overline{z} + \overline{x}y\overline{z}$$

$$= xy\overline{z} + x\overline{y}\overline{z} + x\overline{y}\overline{z} .$$

1. (30 poin) Buatlah tabel kebenaran dari fungsi Boole berikut

$$F(x,y,z) = \bar{x} y + \bar{y} z$$

2. (30 poin) Tunjukkan bahwa

$$x \, \overline{y} + y \, \overline{z} + \overline{x} \, z = \overline{x} \, y + \overline{y} \, z + x \, \overline{z}$$

3. (40 poin) Tentukan bentuk Sum of Product dari fungsi Boole berikut:

a.
$$F(x,y,z) = \overline{x} y + \overline{y} z$$

b.
$$F(x,y,z) = x \overline{y} + y \overline{z} + \overline{x} z$$

Gerbang Digital

- Gerbang Logika (*Logical Gates*) atau gerbang digital merupakan komponen dasar elektronika digital
- Komponen digital hanya mempunyai 2 keadaan yaitu:
 - Tegangan tinggi: +5 Volt
 - Tegangan rendah : 0 Volt
- Dalam bentuk **bilangan biner** keadaan pada:
 - Tegangan tinggi: bit 1
 - Tegangan rendah : bit 0

NAMA	SIMBOL	TABEL KEBENARAN
Inverter	A — Y	A Y 0 1 1 0
AND	A — Y	A B Y 0 0 0 0 1 0 1 0 0 1 1 1
OR	A — Y	A B Y 0 0 0 0 1 1 1 0 1 1 1 1

CHARTERED ACCOUNTANTS

Simbol Gerbang Digital

LOGIC GATE SYMBOLS

Rangkaian Kombinatorial

- Rangkaian kombinatorial terdiri dari beberapa gerbang logika yang outputnya tergantung pada kombinasi inputnya pada saat itu (present state).
- Contoh : Rangkaian komb. dari Pers. Boole

$$F(x, y) = (x + y)'(x'+y')$$

1. (20 poin) Carilah Output dari rangkaian berikut

2. (80 poin)Desain Rangkaian Kombinatorial dari fungsi Boole berikut:

a)
$$\bar{x} + y$$

b)
$$\overline{(x+y)}$$
 x

c)
$$x y z + \bar{x} \bar{y} \bar{z}$$

d)
$$\overline{(\bar{x}+z)(y+\bar{z})}$$

