Local Projection and Support Vector Based Feature Selection in Speech Recognition

Author: Antonio Miguel

Alfonso Ortega

Professor: 陳嘉平

Reporter: 許峰閣

Outline

- Introduction
- Feature Extraction
- Local Projection
- Support Vector
- Experiments

Introduction

 This is a method that provide robustness to mismatch conditions by using local time-frequency projection and feature selection.

 The support vector provides the most representative example which have influence in the error rate in mismatch condition.

Feature Extraction

 Inorder to obtain robust feature vectors, dynamic features are usually used.

First:
$$c_t = (W_F)^T o_t$$

- O_t the log-filterbank output vector size B x 1
- C_t the C component cepstrum vectors
- t is time index

Feature Extraction

 The dynamic features can be obtain in matrix form:

$$X_{t} = (W_{F})^{T} O_{t} W_{T}$$

$$O_{t} = (o_{t-\frac{L}{2}}, \dots, o_{t+\frac{L}{2}})$$

- L is the sliding widow length
- W_T is the time projection matrix L x S
- S is the dynamic stream

 The notation used to describe the feature extraction is discussed both temporal and frequency projection in a compact way.

It can be expressed in a 2D mask:

$$(X)_{s,c} = \sum_{b=1}^{B} (W_F)_{b,c} \sum_{l=1}^{L} (O)_{b,l} (W_T)_{l,s}$$
$$= \sum_{b,l} (W_F)_{b,c} (W_T)_{l,s} (O)_{b,l} = \sum_{b,l} (W_{2D}^{s,c})_{b,l} (O)_{b,l}$$

c is the ceptrum index S is the dynamic stream index

Feature Extraction

 This approach is called DCT2, has two benefits in terms of pattern recognition:

1. The classifier can be more simple.

2. Helps to reduce the variability due to small scale acoustic events.

Local Projections

 Some alternatives to the DCT transform can reduce the impact of narrow-band noise, like the frequency projection.

 The local projection can be define by concatenation in a feature vector of a number of partial subband DCT compression.

Feature Selection

 When the number of features keeps growing, there is a point where the accuracy starts to decrease.

 Compute the mutual information with respect to an informative variable like the component in the mixture in the trainning set.

Feature Selection

 The last would be to decide a vector size and select the informative feature based on the mutual information metric.

 This method is based for support vectors which reduced the WER.

Support Vectors

 The support vectors will be used to compute the mutual information metric.

$$\widehat{W} = \arg \max P(X \mid W)P(W) = \arg \max F(X \mid W)$$
 W

- $F(X \mid W)$ is called discriminant function
- $x_r \in X$ set of feature vectors in development set
- $w_i \in W$ set of transcription

Support Vectors

$$d(X_i) = F(X_i \mid w_i) - \max_{\hat{w}_j \neq w_i} F(X_i \mid \hat{w}_j)$$

$$= \min_{\hat{w}_i \neq w_i} [F(X_i \mid w_i) - F(X_i \mid \hat{w}_j)]$$

$$\hat{w}_i \neq w_i$$

 \hat{w}_j can be all the units, but we use the n-best output If $d(X_i)$ <0 , the subsequence is not correctly recognition

Support Vectors

Define the support vector set as

$$S = \{X_i \mid X_i \in X \text{ and } \sigma_1 \ge d(X_i) \ge \sigma_2\}$$

We can use these data to calculate the information

$$\hat{I}(X,Z\mid S)$$

Z: Phoneme lable variable

X: Feature being analyzed

Experiments

Performed on Aurora 2

Compare with LDTCs and DCT2

• The 39 dimension MFCC for C=12, S=3

