14.750x: Political Economy and Economic Development

Module 3 Problem Set

Use the AJRData.RData dataset to answer the questions below. You should restrict the sample to match the sample the authors use in the paper [baseco should equal 1].

Part 1

1. Regress the log GDP per capita in 1995 [logpgp95] on the average protection against expropriation risk [avexpr].

Hint: Remember to restrict your sample as described in the introduction!

R Tip: For plotting, consider the package ggplot2.

(a) Interpret $\widehat{\beta}_{ols}$.

Hint: Use the exact method for interpreting log variables, not the approximation.

A one point increase in average protection against expropriation risk is related to an increase in GDP of _____%. Please round this number to the second decimal.

- (b) Is your interpretation causal? Why or why not?
 - i. Yes. Since we are using an OLS regression, the estimate $\hat{\beta}_{ols}$ represents a causal effect.
 - ii. Yes. Since we are using instrumental variables, the estimate $\hat{\beta}_{ols}$ represents a causal effect
 - iii. No. There may be reverse causality or omitted variable bias.
 - iv. No. The relationship is not statistically significant.
- (c) Plot log GDP per capita in 1995 against avexpr. What is the slope of the graph?
 - i. Positive
 - ii. Negative
 - iii. Zero

Part 2

2. Regress the average protection against expropriation risk [avexpr] on settler mortality [logem4]. Call this $\hat{\pi}$.

Hint: Remember to restrict your sample as described in the introduction!

(a) Plot avexpr against settler mortality.

Fill in the blank: Lower settler mortality is associated with _____ average protection against expropriation risk.

- i. higher
- ii. lower
- iii. no change in
- (b) What is the estimate and standard error of logem 4? Use four places after the decimal.

Part 3

3. Regress the log GDP per capita in 1995 on settler mortality. Call this $\hat{\gamma}$.

Hint: Remember to restrict your sample as described in the introduction!

- (a) Plot the relationship. What is the slope of the graph?
 - i. Positive
 - ii. Negative
 - iii. Zero
- (b) Match the following symbols with their respective terms:
 - i. $\hat{\pi}$
 - A. first stage
 - B. reduced form
 - ii. $\hat{\gamma}$
 - A. first stage
 - B. reduced form
- (c) What is the Wald Estimator equal to? Enter the terms for a and b, given $\frac{\hat{a}}{\hat{b}}$.

Enter each response using the terms "gamma" and/or "pi".

(d) Compute the Wald Estimator in this example. Use three places after the decimal.

Part 4

4. Compute a 2SLS (two stage least squares) regression of log GDP per capita in 1995 on avexpr, using settler mortality as the instrumental variable.

Hint: Remember to restrict your sample as described in the introduction!

R Tip: For IV, try the ivreg command in the AER package.

- (a) Interpret $\widehat{\beta}_{2sls}$. Hint: Use the exact method for interpreting log variables, not the approximation. A one point increase in average protection against expropriation risk leads to a $_$ % increase in GDP. Round answers to the nearest tenth of a percent.
- (b) Compare $\widehat{\beta}_{2sls}$ to $\widehat{\beta}_{ols}$. Are they similar or different? Why do you think this is the case?
 - i. They are similar, as neither $\widehat{\beta}_{2sls}$ nor $\widehat{\beta}_{ols}$ is biased.
 - ii. They are similar, because both $\widehat{\beta}_{2sls}$ and $\widehat{\beta}_{ols}$ are biased.

- iii. They are different, as $\widehat{\beta}_{2sls}$ is likely biased iv. They are different, as $\widehat{\beta}_{ols}$ is likely biased
- (c) Fill in the terms for a and b in the formula below to create the correct mathematical relationship between $\hat{\beta}_{2sls}, \, \hat{\pi}, \, \text{and} \, \hat{\gamma}$?

$$\widehat{\beta}_{2sls} = \frac{\widehat{a}}{\widehat{b}}$$

Enter each response using the terms "gamma" and/or "pi".