

UNIVERSITY OF PETROLEUM & ENERGY STUDIES. DEHRADUN

Program	B.Tech (All SoCSBranches)	Semester	III
Course	Discrete Mathematical Structures	Course Code	CSEG2006

- 1. In a survey concerning the energy drinking habits of people, it was found that 55 % take energy drink A, 50 % take energy drink B, 42 % take energy drink C, 28 % take energy drink A and B, 20 % take energy drink A and C, 12 % take energy drink B and C and 10 % take all the three energy drinks.
 - What percentage of people do not take energy drink? (i)
 - What percentage of people take exactly two brands of energy drinks? (ii)
 - What percentageof people take the energy drink in A but not in B or C? (iii)
- **2.** Show that the set of all integers \mathbb{Z} is countably infinite set.
- 3. Consider following the relations set $A = \{1, 2, 3, 4, 5, 6\}$ (i) $R = \{(i, j) : |i - j| = 2\}$, and (ii) $R = \{(i, j) : |i - j| < 2\}$. Check whether R is (i) reflexive, (ii) symmetric, (iii) antisymmetric, and (iii) transitive.
- **4.** If $A = \{0, 1, 2, 3\}$, $R = \{(x, y) : x + y = 3\}$, $S = \{(x, y) : \frac{3}{x + y} = k, k \in \mathbb{N}\}$, $T = \{(x, y) : \max(x, y) = 3\}$.
 - Compute (i) RoT, (ii) ToR, and (iii) SoS.
- 5. The function $f: \mathbb{R} \to \mathbb{R}$ is defined as $f(x) = x^3 + 1$, where \mathbb{R} is the set of real numbers, then specify that f is one-one and onto.
- **6.** Specify the types (one-one or onto or both or neither) of the following function:
 - If I is set of non-negative integers and $f: I \times I \to I$ such that f(x, y) = xy. (i)
 - If R is set of real numbers and $f: R \times R \to R \times R$ and f(x, y) = (x + y, x y). (ii)
 - If N is set of natural numbers including zero and $f: N \to N$ such that $f(j) = j^2 + 2$ (iii)
 - If N is set of natural numbers including zero and $f: N \times N \rightarrow N$ so that $f(x, y) = (2x+1) 2^y -1$. (iv)
- 7. Show that the mapping $f: \mathbb{R} \to \mathbb{R}$, which is defined as, f(x) = ax + b, where $a, b, x \in \mathbb{R}$, $a \ne 0$ is invertible. Determine its inverse also.
- **8.** If $A = \{1, 2, 3, 4\}$, $B = \{a, b, c, d\}$ and $C = \{x, y, z\}$. Consider the functions $f: A \rightarrow B$ and $g: B \rightarrow C$ defined $f = \{(1, a), (2, c), (3, b), (4, a)\}$ by and $g = \{(a, x), (b, x), (c, y), (d, y)\}$. Determine the composition of function $(g \circ f)$.
- **9.** Show that $1+2+2^2+...+2^n=2^{n+1}-1$ by mathematical induction for all positive integers n.
- 10. Solve following recurrence relations by the method of generating function
 - $a_n 5a_{n-1} + 6a_{n-2} = 1$ (iii) $a_n 4a_{n-1} + 4a_{n-2} = (n+1)^2$, given $a_0 = 1$, $a_1 = 1$. **(i)**
 - $a_n + a_{n-1} = 3n \ 2^n \ (iv) \ a_{n+2} 3a_{n+1} + 2a_n = 4n \ 3^n$, with $a_0 = 1$, $a_1 = 1$.
- 11. Suppose that the population of a village is 100 at time n = 0 and 110 at time n = 1. The population increases from time n-1 to time n is twice the increase from time n-2 to time n-1. Find a recurrence relation and initial conditions for the population at time n and then find the explicit formula for it.

12. If D_n is the value of the following determinant of order n

$$\begin{vmatrix} b & b & 0 & 0 & \dots & \dots & 0 & 0 & 0 \\ b & b & b & 0 & \dots & \dots & 0 & 0 & 0 \\ 0 & b & b & b & \dots & \dots & 0 & 0 & 0 \\ \dots & 0 & 0 \\ 0 & 0 & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots \\ 0 & 0 & \dots & \dots \\ 0 & 0 & \dots & \dots \\ 0 & 0 & \dots \\ 0 & 0 & \dots & \dots \\ 0 & 0 & \dots \\ 0 & 0 & \dots \\ 0 & 0 & \dots \\ 0 & \dots & \dots \\ 0 & 0 & \dots \\ 0 & \dots & \dots \\ 0 & \dots \\ 0$$

Find a recurrence relation for D_n . (Assume b > 0.)

13. If
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
, then prove by principle of mathematical induction that for every integer $n \ge 3$,

$$A^n = A^{n-2} + A^2 - I$$
. Hence find A^{50} , where I is an identity matrix of order 3×3 .

14. Let U be a universal set and $S_1, S_2, S_3 \dots \dots S_n$ be its any n subsets. Use the principle of mathematical induction to show that $\overline{[\bigcup_{i=1}^n S_i]} = \overline{S_1} \cap \overline{S_2} \cap \overline{S_3} \cap \dots \cap \overline{S_n}$.