departamento de matemática

universidade de aveiro

1. Para cada alínea, verifique se o endomorfismo definido pela matriz A, em relação à base canónica do espaço vectorial indicado, é diagonalizável.

(a)
$$A = \begin{bmatrix} 0 & 1 \\ -4 & 4 \end{bmatrix}$$
, em \mathbb{R}^2 ;

(b)
$$A = \begin{bmatrix} -3 & -1 & -1 \\ -1 & 3 & 1 \\ 0 & 0 & 2 \end{bmatrix}$$
, em \mathbb{R}^3 ;

(c)
$$A = \begin{bmatrix} 2 & 2 & -2 \\ 0 & 5 & -3 \\ 0 & 1 & 1 \end{bmatrix}$$
, em \mathbb{R}^3 ;

(d)
$$A = \begin{bmatrix} 0 & -2 & -4 \\ 0 & 3 & 5 \\ -2 & -3 & -3 \end{bmatrix}$$
, em \mathbb{R}^3 ;

(e)
$$A = \begin{bmatrix} -3 & 0 & 0 \\ -5 & -3 & -5 \\ 5 & 0 & 2 \end{bmatrix}$$
, em \mathbb{R}^3 ;

(f)
$$A = \begin{bmatrix} 4 & 0 & -4 & -3 \\ -2 & 1 & 3 & 2 \\ 2 & 0 & -2 & -2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
, em \mathbb{R}^4 .

2. Diga para que valores do parâmetro real a, o endomorfismo de \mathbb{R}^3 definido pela matriz A, em relação a uma base de \mathbb{R}^3 , não é diagonalizável, com

$$A = \left[\begin{array}{ccc} a & 0 & 4 \\ 0 & -2 & 4 \\ 0 & 0 & 2 \end{array} \right].$$

3. Considere a matriz

$$A = \frac{1}{b^2} \begin{bmatrix} 0 & b^3 & b^4 \\ b & 0 & b^3 \\ 1 & b & 0 \end{bmatrix},$$

onde b um parâmetro real não nulo. Mostre que a matriz A:

- (a) é invertível;
- (b) define um endomorfismo diagonalizável, para todo $b \in \mathbb{R} \setminus \{0\}$.

- 4. Seja ψ um endomorfismo de \mathbb{R}^5 tal que -2 e 7 são valores próprio de ψ com $m_a(-2)=2$ e $m_g(7)=3$. Diga, justificando:
 - (a) qual o polinómio característico de ψ ;
 - (b) em que condições ψ é diagonalizável.
- 5. Seja φ um endomorfismo de \mathbb{R}^3 . Suponha que φ tem vectores próprios (1,1,1), (1,0,1) e (0,-1,1), associados aos valores próprios 2, 1 e 0, respectivamente.
 - (a) Justifique que φ é diagonalizável.
 - (b) Determine a matriz de φ em relação à base canónica de \mathbb{R}^3 .
- 6. Considere o endomorfismo ψ de \mathbb{R}^3 representado, em relação à base canónica de \mathbb{R}^3 , pela matriz

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 3 & 3 & 6 \\ 4 & 4 & 8 \end{bmatrix}.$$

- (a) Determine o núcleo e a nulidade de ψ .
- (b) Sem efectuar cálculos, justifique que 0 é valor próprio de ψ .
- (c) Mostre que ψ é diagonalizável e indique, justificando, uma matriz diagonal D semelhante à matriz A.
- 7. Considere o endomorfismo φ de \mathbb{R}^3 cuja matriz em relação à base canónica de \mathbb{R}^3 é

$$A = \left[\begin{array}{rrr} 1 & 0 & -1 \\ 0 & 2 & 0 \\ -1 & 0 & 1 \end{array} \right].$$

- (a) Determine os valores próprios de φ .
- (b) Existe alguma base \mathcal{B} de \mathbb{R}^3 tal que $M(\varphi; \mathcal{B}, \mathcal{B})$ é uma matriz diagonal? Justifique.
- 8. Seja ψ o endomorfismo de \mathbb{R}^3 definido, em relação à base canónica de \mathbb{R}^3 , pela matriz:

$$A = \left[\begin{array}{rrr} 1 & 1 & -2 \\ -1 & 2 & 1 \\ 0 & 1 & -1 \end{array} \right].$$

- (a) Determine os valores próprios e os subespaços próprios associados de ψ .
- (b) Indique uma matriz quadrada P de ordem 3 e invertível tal que $P^{-1}AP$ é uma matriz diagonal.
- 9. Sejam $A = \begin{bmatrix} 6 & 2 \\ 4 & -1 \end{bmatrix}$ e $C = \begin{bmatrix} 1 & 0 \\ 4 & -14 \end{bmatrix}$.

Verifique que A e C representam endomorfismos diagonalizáveis mas a composta desses endomorfismos não é diagonalizável.

- 10. Seja τ um endomorfismo de \mathbb{R}^3 tal que 1 é um valor próprio com multiplicidade algébrica 2 e (1,0,-1) e (0,1,1) são vectores próprios associados a esse valor próprio.
 - (a) Justifique que τ é diagonalizável.
 - (b) Determine o subespaço próprio de τ associado ao valor próprio 1.
 - (c) Sabendo que (-1,1,0) é um vector próprio de τ associado ao valor próprio 2, determine a matriz de τ , em relação à base canónica de \mathbb{R}^3 .
- 11. Considere os endomorfismos φ e ψ de \mathbb{R}^3 definidos, respectivamente, em relação à base canónica de \mathbb{R}^3 , pelas matrizes:

$$A = \begin{bmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{bmatrix} \quad \text{e} \quad C = \begin{bmatrix} -3 & 1 & -1 \\ -7 & 5 & -1 \\ -6 & 6 & -2 \end{bmatrix}.$$

- (a) Verifique que φ e ψ têm o mesmo polinómio característico.
- (b) Mostre que φ é diagonalizável e ψ não é.
- (c) As matrizes $A \in C$ são semelhantes?
- 12. Verifique que as matrizes $A=\begin{bmatrix}1&0\\1&1\end{bmatrix}$ e $C=\begin{bmatrix}1&0\\0&1\end{bmatrix}$ não são semelhantes.
- 13. Considere o endomorfismo ψ de \mathbb{R}^3 cuja matriz em relação à base canónica de \mathbb{R}^3 é

$$A = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ a & 1 & 1 \\ 1 & b & 0 \end{bmatrix}.$$

onde a e b são parâmetros reais.

Sejam ainda $u_1=(0,1,0)$ e $u_2=(1,-2,c)$ vectores próprios de ψ , com c um parâmetro real.

- (a) Determine $a, b \in c$.
- (b) Calcule os valores próprios de ψ e justifique que ψ é diagonalizável.
- (c) Determine uma matriz invertível P e uma matriz diagonal D, tais que $A = PDP^{-1}$.
- 14. Mostre que os endomorfismos de \mathbb{R}^3 definidos, em relação a uma base fixa de \mathbb{R}^3 , pelas matrizes:

$$A = \begin{bmatrix} 0 & 2 & -1 \\ -8 & -10 & 7 \\ -12 & -12 & 10 \end{bmatrix}, \qquad C = \begin{bmatrix} -2 & 0 & 0 \\ -6 & -8 & 6 \\ -12 & -12 & 10 \end{bmatrix} \quad \text{e} \quad D = \begin{bmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$

têm os mesmos valores próprios. Quais destas matrizes representam o mesmo endomorfismo?

15. Mostre que k é o único valor próprio dos endomorfismos de \mathbb{R}^3 definidos, em relação a uma base fixa de \mathbb{R}^3 , pelas matrizes:

$$A = \begin{bmatrix} k & 0 & 0 \\ 1 & k & 0 \\ 0 & 1 & k \end{bmatrix}, \qquad C = \begin{bmatrix} k & 0 & 0 \\ 1 & k & 0 \\ 0 & 0 & k \end{bmatrix} \quad \text{e} \quad D = \begin{bmatrix} k & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & k \end{bmatrix}.$$

onde k é um parâmetro real, mas que nenhuma matriz é semelhante a outra.

- 16. Considere o endomorfismo φ de \mathbb{R}^3 cuja matriz em relação à base canónica de \mathbb{R}^3 , é a matriz $A = \begin{bmatrix} 1 & 1 & -2 \\ a & 2 & -2 \\ b & 1 & -1 \end{bmatrix}$, com a e b parâmetros reais. Seja ainda v = (1, 0, 0).
 - (a) Determine a e b, sabendo que v é vector próprio de φ .
 - (b) Determine os valores próprios, os subespaços próprios de φ associados e justifica que φ é diagonalizável.
 - (c) Seja w um vector próprio associado ao valor próprio 0. Baseando-te nas alíneas anteriores, prove que u=v+kw, com $k\in\mathbb{R}$, é solução do sistema de equações lineares definido por $A^{88}X=v$.
- 17. Considere o endomorfismo φ de \mathbb{R}^3 definido pela matriz

$$A = \left[\begin{array}{rrr} 1 & 1 & -1 \\ 2 & 2 & -2 \\ -1 & -1 & 1 \end{array} \right],$$

em relação à base canónica de \mathbb{R}^3 .

- (a) Indique uma base de Nuc φ e uma base de Im φ .
- (b) Determine os valores próprios de φ e os subespaços próprios associados.
- (c) Mostre que φ é diagonalizável e indique uma base \mathcal{B} de \mathbb{R}^3 tal que $M(\varphi; \mathcal{B}, \mathcal{B})$ é uma matriz diagonal.
- (d) Determine:
 - i. $M(\mathcal{B}_{\mathbb{R}^3}, \mathcal{B})$, onde \mathcal{B} é a base determinada na alínea (c) e $\mathcal{B}_{\mathbb{R}^3}$ é a base canónica de \mathbb{R}^3 .
 - ii. $M(\varphi; \mathcal{B}, \mathcal{B})$, por dois processos diferentes.
- 18. Considere um endomorfismo φ de \mathbb{R}^3 que admite os vectores próprios $u_1=(1,1,1)$, $u_2=(1,1,0)$ e $u_3=(0,1,1)$ associados, respectivamente, aos valores próprios 2, 3 e 4. Escreva a matriz de φ em relação à base canónica de \mathbb{R}^3 .
- 19. Considere a matriz

$$A = \left[\begin{array}{rrr} 1 & a^2 & a \\ -1 & -a & 0 \\ a & a & 1 \end{array} \right],$$

com a um parâmetro real.

6.2. endomorfismos diagonalizáveis

página 5/7

- (a) Determine, em função de a, a característica da matriz A.
- (b) Considere o sistema de equações lineares definido por AX = B, onde

$$B = \begin{bmatrix} 1 \\ b \\ 0 \end{bmatrix} \quad \text{e} \quad X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}.$$

Tendo em atenção a alínea anterior, discuta o sistema em função dos parâmetros $a \in b$.

- (c) Considere o endomorfismo φ de \mathbb{R}^3 cuja matriz em relação à base canónica de \mathbb{R}^3 , é a matriz A para a=1.
 - i. Determine $\operatorname{Nuc} \varphi$;
 - ii. Diga, justificando, se φ é monomorfismo e/ou epimorfismo;
 - iii. Determine os valores próprios de φ ;
 - iv. Determine o subespaço próprio de φ associado ao valor próprio 0.
- (d) Justifique a afirmação:

"A matriz A, com
$$a = 1$$
, é semelhante à matriz $\begin{bmatrix} \frac{1+\sqrt{5}}{2} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \frac{1-\sqrt{5}}{2} \end{bmatrix}$."

- 1. não são diagonalizáveis os endomorfismos das alíneas (a) e(d).
- $2. \ a=2.$
- 4. (a) $p_{\psi}(\lambda) = (\lambda + 2)^2(\lambda 7)^3$; (b) ψ é diagonalizável sse $m_g(-2) = 2$.
- 5. (b) $\begin{bmatrix} 0 & 1 & 1 \\ -2 & 2 & 2 \\ 0 & 1 & 1 \end{bmatrix}.$
- 6. (a) Nuc $\varphi = \{(x, y, z) \in \mathbb{R}^3 : x + y + 2z = 0\}$ e $n_{\varphi} = 2$; (c) $D = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 12 \end{bmatrix}$.
- 7. (a) $\sigma(\varphi) = \{0, 2\}$; (b) Sim. Por exemplo, $\mathcal{B} = ((1, 0, 1), (1, 0, -1), (0, 1, 0))$.
- 8. (a) $\sigma(\psi) = \{-1, 1, 2\}, \ U_{-1} = \{(x, 0, x) : x \in \mathbb{R}\}, \ U_{1} = \{(3z, 2z, z) : z \in \mathbb{R}\} \text{ e}$ $U_{2} = \{(x, 3x, x) : x \in \mathbb{R}\}; \quad \text{(b) Por exemplo, } P = \begin{bmatrix} 1 & 3 & 1 \\ 0 & 2 & 3 \\ 1 & 1 & 1 \end{bmatrix}.$
- 10. (b) $U_1 = \{(x, y, z) \in \mathbb{R}^3 : z + x y = 0\};$ (c) $\frac{1}{2} \begin{vmatrix} 3 & -1 & 0 \\ -1 & 3 & -1 \\ 0 & 0 & 2 \end{vmatrix}.$
- 11. (c) não.
- 13. (a) a = -1, b = 0 e c = 2; (b) $\sigma(\psi) = \{0, \frac{1}{2}, 1\}$; (c) Por exemplo, $P = \begin{bmatrix} 0 & 0 & 1 \\ -1 & 1 & -2 \\ 1 & 0 & 2 \end{bmatrix}$ e $D = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \frac{1}{2} \end{bmatrix}$.
- 14. $C \in D$.
- 16. (a) a = b = 0;
 - (b) $\sigma(\varphi) = \{0, 1\}, U_0 = \{(x, x, x) : x \in \mathbb{R}\}, U_1 = \{(x, 2z, z) : x, z \in \mathbb{R}\}.$
- 17. (a) $\mathcal{B}_{\operatorname{Nuc}\varphi} = ((1,0,1),(0,1,1)) \in \mathcal{B}_{\operatorname{Im}\varphi} = ((1,2,-1));$
 - (b) $\sigma(\varphi) = \{0, 4\}, U_0 = \text{Nuc } \varphi \in U_4 = \{(x, 2x, -x) : x \in \mathbb{R}\};$
 - (c) Por exemplo, $\mathcal{B} = ((1,0,1),(0,1,1),(1,2,-1));$
 - (d) i. $\frac{1}{4}\begin{bmatrix} 3 & -1 & 1 \\ -2 & 2 & 2 \\ 1 & 1 & -1 \end{bmatrix}$; ii. $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 4 \end{bmatrix}$.
- $\begin{bmatrix}
 2 & 1 & -1 \\
 -2 & 5 & -1 \\
 -2 & 2 & 2
 \end{bmatrix}.$

6.2. endomorfismos diagonalizáveis

página 7/7

- 19. (a) car A=2 se $a\in\{-1,0,1\}$, car A=3 se $a\in\mathbb{R}\setminus\{-1,0,1\}$; (b) sistema possível e determinado: $a\in\mathbb{R}\setminus\{-1,0,1\}$;

 - sistema possível e indeterminado: a = 0 e b = -1;
 - sistema impossível: $a \in \{-1, 1\}$ e $b \in \mathbb{R}$ ou a = 0 e $b \neq -1$;
 - (c) i. Nuc $\varphi = \{(x, y, z) \in \mathbb{R}^3 : z = 0 \land x + y = 0\};$ ii. φ não é monomorfismo nem epimorfismo. iii. $\sigma(\varphi) = \left\{0, \frac{1+\sqrt{5}}{2}, \frac{1-\sqrt{5}}{2}\right\};$ iv. $U_0 = \operatorname{Nuc} \varphi$.