第4章 数值表示及转换

何宾 2018.03

本章主要内容

- 常用码制
- 正数表示方法
- 正数码制转换
- 负数表示方法
- 负数补码的计算
- 定点数表示
- 浮点数表示

常用码制--二进制码制

- 二进制是以2为基数的进位制,即:逢2进1。
- 在二进制计数系统中,只出现0和1两个数字
- 在C/C++语言中,二进制数以0b开头
 - □ 比如: 0b1011, 0b010111
- 在汇编语言中,二进制数以B/b结尾
 - □ 比如: 1011B/1011b、010111B/01011b

常用码制 --十进制码制

- 十进制是以10为基数的进位制,即:逢10进1。
- 在十进制计数系统中, 出现0~9之间的数字
- 在计算机系统中,对十进制数的表示没有特殊的要求。

常用码制---八进制码制

八进制是以8为基数的进位制,即:逢8进1。

- 在八进制计数系统中,只出现0~7之间的数字。
- 在C/C++语言中,八进制数以0开头
 - □ 比如: 0123, 0675
- 在汇编语言中,八进制数以O/o结尾
 - □ 比如: 1230/1230、6750/6750

常用码制 --十六进制码制

十六进制是以16为基数的进位制,即:逢16进1。

■ 在16进制计数规则中,只使用数字0~9以及字母A/a、B/b、C/c、D/d、E/e、F/f表示。

■ 在C/C++语言中,十六进制数以0x开头

□ 比如: 0x1234, 0xE1DD

■ 在汇编语言中,十六进制数以H结尾

□ 比如: 1234H、E1DDH

常用码制 --不同进制正整数之间的对应关系

十进制数	二进制数	八进制数	十六进制数
0	0000	0	0
1	0001	1	1
2	0010	2	2
3	0011	3	3
4	0100	4	4
5	0101	5	5
6	0110	6	6

常用码制 --不同进制数之间的对应关系

7	0111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	Α
11	1011	13	В
12	1100	14	С
13	1101	15	D

常用码制 --不同进制数之间的对应关系

14	1110	16	Е
15	1111	17	F
16	1,0000	20	10
17	1,0001	21	11
18	1,0010	22	12
19	1,0011	23	13
20	1,0100	24	14

常用码制 --BCD码

- BCD码 (Binary-Coded Decimal) 亦称二进码十进数或
- 二-十进制代码。用4位二进制数来表示1位十进制数中的 0~9这10个数码。
- BCD码可分为有权码和无权码两类:
 - □有权BCD码有8421码、2421码、5421码,其中8421码是最常用的;
 - □无权BCD码有余3码、格雷码(注:格雷码并不是BCD码)等。

$$7 \times 10^3 + 5 \times 10^2 + 3 \times 10^1 + 1 \times 10^0$$

■ 对于一个5位二进制数10101, 用2的幂次方所表示等效的十进制数为:

$$1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$$

■ 对于一个3位八进制数327, 用8的幂次方所表示等效的十进制数为:

$$3 \times 8^2 + 2 \times 8^1 + 7 \times 8^0$$

■ 对于一个4位十六进制数13AF,用16的幂次方所表示等效的十进制数为:

$$1\times16^{3} + 3\times16^{2} + A\times16^{1} + F\times16^{0}$$

推广总结:

■ 对于一个N位的无符号2进制数,最低位为第0位,最高位为第 N-1位。其等效十进制数的计算公式为:

$$Y = S_{N-1} \cdot 2^{N-1} + S_{N-2} \cdot 2^{N-2} + \ldots + S_1 \cdot 2^1 + S_0 \cdot 2^0$$

- 口 Si为第i位无符号二进制数的值,取值为0或者1。
- 口 2ⁱ为第i位无符号二进制数所对应的权值。
- 口 Y为等效的十进制数。

■ 对于一个N位的无符号8进制数,最低位为第0位,最高位为第 N-1位。其等效十进制数的计算公式为:

$$Y = S_{N-1} \cdot 8^{N-1} + S_{N-2} \cdot 8^{N-2} + \ldots + S_1 \cdot 8^1 + S_0 \cdot 8^0$$

- 口 Si为第i位无符号八进制数的值,取值范围为0~7。
- 口 8′为第i位八进制数所对应的权值。
- 口 Y为等效的十进制数。

■ 对于一个N位的无符号16进制数,最低位为第0位,最高位为第N-1位。其等效十进制数的计算公式为:

$$Y = S_{N-1} \cdot 16^{N-1} + S_{N-2} \cdot 16^{N-2} + \ldots + S_1 \cdot 16^1 + S_0 \cdot 16^0$$

- 口 Si为第i位十六进制数的值,取值范围为0~9,A~F。
- 口 16ⁱ为第i位十六进制数所对应的权值。
- 口 Y为等效的十进制数。

■ 对于一个3位十进制小数0.714, 用10的幂次方表示为:

$$7 \times 10^{-1} + 1 \times 10^{-2} + 4 \times 10^{-3}$$

■ 对于一个5位二进制小数0.10101, 用2的幂次方表示的等效十进制小数为:

$$1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} + 0 \times 2^{-4} + 1 \times 2^{-5}$$

推广总结:

■ 对于一个N位的无符号2进制小数,最高位为第0位,最低位为第N-1位。其等效的10进制正小数的计算公式为:

$$Y = S_0 \cdot 2^{-1} + S_1 \cdot 2^{-2} + \ldots + S_{N-2} \cdot 2^{-(N-1)} + S_{N-1} \cdot 2^{-N}$$

- 口 Si为第i位二进制小数的值, 取值为0或者1。
- 口 2-(i+1) 为第i位二进制小数所对应的权值。
- 口 Y为等效的十进制正小数。

十进制正整数转换成其它进制数 ---十进制正整数转换成二进制数

长除法

■ 采用长除法,除数始终为2,将十进制进行分解,直到商为0结束。然后,按顺序将最后得到的余数排在最高位,而最先得到的余数排在最低位。

比较法

- 让需要转换的正整数和不同的二进制权值进行比较。当:
 - □ 需要转换的正整数大于所对应的二进制权值时,得到1;并且转换的正整数减去所对应的二进制权值得到余数。然后,再用得到的余数与下一个二进制权值进行比较。
 - □ 需要转换的正整数小于所对应的二进制权值时,得到0。并且不做任何处理。

十进制正整数转换成其它进制数 --- 十进制正整数转换成二进制数

【例】使用长除法将十进制整数59转成所对应的二进制数

$$59 \div 2 = 29 \dots 1$$

$$29 \div 2 = 14 \dots 1$$

$$14 \div 2 = 7 \dots 0$$

$$7 \div 2 = 3 \dots 1$$

$$3 \div 2 = 1 \dots 1$$

$$1 \div 2 = 0 \dots 1$$

注: ...前面的数字表示商, ...后面表示的数字为余数。

所以,十进制正整数59所对应二进制数111011。

十进制正整数转换成其它进制数 --- 十进制正整数转换成二进制数

【例】使用比较法将十进制整数59转换所对应的二进制数

通过比较法,得到十进制正整数59所对应的无符号二进制数为0111011。

比较的数	59	59	27	11	3	3	1
二进制权值	2^{6} (64)	2^{5} (32)	2^4 (16)	2^{3} (8)	2^{2} (4)	2^{1} (2)	2^{0} (1)
对应的二进制值	0	1	1	1	0	1	1
余数	59	27	11	3	3	1	0

十进制正整数转换成其它进制数 --+ 进制正整数转换成十六进制数

长除法

采用长除法,除数始终为16,将十进制进行分解,直到商为0结束。然后, 按顺序将最后得到的余数排在最高位,而最先得到的余数排在最低位。

比较法

- 让需要转换的正整数和不同的十六进制权值进行比较, 当:
 - □ 需要转换的正整数大于所对应的十六进制权值时,得到商;并且转换的正整数减去十六进制权值与商乘积后得到余数。然后,再用得到的余数与下一个十六进制权值进行比较。
 - □ 需要转换的正整数小于所对应的十六进制权值时,得到0。并且不做任何处理。

十进制正整数转换成其它进制数 --- 十进制正整数转换成十六进制数

【例】使用长除法将十进制整数4877转换成所对应的十六进制数

4877÷16=304....13(D)

304÷16=19....0

19÷16=1....3

 $1 \div 16 = 0....1$

注: ...前面的数字表示商, ...后面表示的数字为余数。

所以,十进制正整数4877所对应十六进制数为130D。

十进制正整数转换成其它进制数 --+ 计进制正整数转换成十六进制数

【例】使用比较法将十进制整数4877转换成所对应的十六进制数

通过比较法,得到十进制正整数4877所对应的十六进制数为130D。

比较的数	4877	781	13	13
十六进制权值	16 ³ (4096)	16 ² (256)	16 ¹ (16)	16 ⁰ (1)
对应的十六进制值	1	3	0	D
余数	$4877-1\times16^{3}$	$781-3 \times 16^2$	不做处理	$13-D\times16^0$
	781	13	13	0

正数码制转换 --十进制正小数转换成二进制数

长乘法

将小数乘以2,取其整数部分的结果。然后,再用计算后的小数部分依此重复计算,算到小数部分全为0为止。在读取整数部分的结果时,最先得到的整数放在小数的最高有效位,而最后得到的整数放在小数的最低有效位。

比较法

- 让需要转换的数和不同的二进制权值进行比较, 当:
 - 需要转换的正小数大于所对应的二进制权值时,得到1;并且转换的小数减去二进制权值得到余数。然后,再用得到的余数与下一个二进制权值进行比较。
 - □ 需要转换的正小数数小于所对应的二进制权值时,得到0。并且不做任何处理。

正数码制转换 --十进制正小数转换成二进制数

【例】使用长乘法将一个十进制小数0.8125转换成所对应的二进制小数

0.8125×2=1.625 取整是1

0.625×2=1.25 取整是1

0.25×2=0.5 取整是0

0.5×2=1.0 取整是1

即:十进制小数0.8125所对应的二进制小数表示为0.1101。

正数码制转换 --十进制正小数转换成二进制数

【例】使用比较法将一个十进制正小数0.8125转换成所对应的二进制小数

通过比较法,得到十进制正小数0.8125所对应的二进制小数为0.1101。

比较的数	0.8125	0.3125	0.0625	0.0625
二进制权值	2 ⁻¹ (0.5)	2 ⁻² (0.25)	2-3 (0.125)	2-4 (0.0625)
对应的二进制值	1	1	0	1
余数	0.3125	0.0625	0.0625	0