

Identificación Semi-automática de Estenosis en Imágenes de Angiografía por Rayos-X

Yuri Alcántara Olivero

Tutor:

M.Sc. Henry Blanco Lores.

Universidad de Oriente

Julio 2017

Imágenes de Angiografía por Rayos X

Estenosis.

Angiografía por Rayos X (XA).

Estenosis Vascular

Es un estrechamiento anormal en un vaso sanguíneo y regularmente esta asociado con sonidos inusuales resultantes del flujo turbulento en estos

Motivaciones

Cardiocentro en Santiago de Cuba.

Angiógrafo del grupo Siemens.

Objetivo General

Desarrollar una herramienta de software para la identificación semi-automática y cuantificación de lesiones estenóticas en imágenes de XA.

- Cargar una imagen de XA y calibrar las mediciones en esta.
- Identificar de forma semi-automática el diámetro normal y de la estenosis en un vaso o arteria de una imagen de XA.
- Implementar una herramienta con interfaz gráfica de usuario para visualizar imágenes de XA y detectar lesiones estenóticas
- Validar la herramienta desarrollada.

- Cargar una imagen de XA y calibrar las mediciones en esta.
- Identificar de forma semi-automática el diámetro normal y de la estenosis en un vaso o arteria de una imagen de XA.
- Implementar una herramienta con interfaz gráfica de usuario para visualizar imágenes de XA y detectar lesiones estenóticas
- Validar la herramienta desarrollada.

- Cargar una imagen de XA y calibrar las mediciones en esta.
- Identificar de forma semi-automática el diámetro normal y de la estenosis en un vaso o arteria de una imagen de XA.
- Implementar una herramienta con interfaz gráfica de usuario para visualizar imágenes de XA y detectar lesiones estenóticas
- Validar la herramienta desarrollada.

- Cargar una imagen de XA y calibrar las mediciones en esta.
- Identificar de forma semi-automática el diámetro normal y de la estenosis en un vaso o arteria de una imagen de XA.
- Implementar una herramienta con interfaz gráfica de usuario para visualizar imágenes de XA y detectar lesiones estenóticas
- Validar la herramienta desarrollada.

Filtro Gaussiano

Ejemplo de suavizado gausiano horizontal

-			
1/16	1	2	1
	2	4	2
	1	2	1

Mascara 3x3 del filtro de Gauss.

El suavizado gaussiano constituye una media ponderada donde los pesos toman la forma de una campana de Gauss.

Segmentación

La segmentación en el procesamiento de imágenes es el proceso que subdivide una imagen en sus objetos o partes constituyentes.

Detección de bordes

$$G(I(x,y)) = \begin{pmatrix} G_x \\ G_y \end{pmatrix} = \begin{pmatrix} dI/dx \\ dI/dy \end{pmatrix}$$
 (1)

$$G(I(x,y)) = \sqrt{[G_x(x,y)]^2 + [G_y(x,y)]^2}$$
 (2)

$$G(I(x,y)) = |G_x(x,y)| + |G_y(x,y)|$$
 (3)

Vector Gradiente.

-1	0	1	
-2	0	2	
-1	0	1	

Máscara del operador de Sobel.

Filtrado Gaussiano Segmentación Calibración Cuantificación de la estenosis

Crecimiento de Regiones

a) Las regiones obtenidas en la partición, $R_1, R_2, ..., R_k$, deben ser disjuntas

$$R_i \cap R_j = \phi, i \neq j$$
.

- b) Su unión debe ser la imagen completa, $\bigcup_{i=1}^{n} R_i = I$.
- c) Cada región R_i tiene que ser conexa, es decir, todos sus píxeles conectados
- d) Se debe verificar que:

$$P(R_i) = VERDADERO \ v \ P(R_i \cup R_i) = FALSO$$

para regiones adyacentes cualesquiera, R_i y R_j , siendo P el predicado que nos proporciona el **test de homogeneidad** de la región.

Calibración

Sea AB igual al diámetro real del catéter

$$AC = AB * cos(< BAC)$$
 y $BC = AB * sen(< BAC)$

Cuantificación de la estenosis

Filtrado Gausiano

Segmentación sin suavizado.

Segmentación con suavizado.

La segmentación tiene mejor desempeño en imágenes con un preprocesamiento previo (Filtrado de Gauss).

Calibración del Software

Detección de Borde.

Crecimiento de regiones.

Durante el proceso de calibración del software se obtuvieron buenos resultados con ambos métodos de segmentación. Pero debido a los bordes bien definidos del catéter la detección de bordes arrojó mejores resultados. El crecimiento de regiones con frecuencia muestra bordes irregulares.

Identificación de Estenosis

Crecimiento de regiones.

En la segmentación de la lesión estenótica el método que arrojó mejores resultados fue el crecimiento de regiones. Esto se debe a que las redes vasculares con frecuencia no muestran bordes bien definidos y pueden haber cambios ligeros de intensidad en los pixeles.

Identificacion de Estenosis

Crecimiento de regiones.

Se pudo comprobar la conveniencia del método basado en regiones para incluso detectar lesiones con estenosis del 100%. Este tipo de lesión se puede identificar cuando las semillas de los extremos no terminan en la misma región.

Cargar Imágenes

Calibración

Cuantificación de Estenosis

ZOOM IN

ZOOM OUT

Resultado Experimental

Imagen	ErrorD.Ref	ErrorDLM
lmagen1	0,03	0,15
Imagen2	0,07	0,11
Imagen3	0,11	0,15
Imagen4	0,09	0,1
Imagen5	0,1	0,14
lmagen6	0,13	0,05
Imagen7	0,11	0
Imagen8	0,08	0,16
Imagen9	0,10	0,17
lmagen10	0,07	0,13
Promedio± <i>DesviaciónEstándar</i>	$0,089 \pm 0,028$	$0,116 \pm 0,053$

Tabla 3.1: Resultado Experimental

D.Ref: Diámetro de referencia DLM: Diámetro Luminar Mínimo

- Se logró cargar imágenes de Angiografía por rayos x y calibrar las mediciones en la misma
- Se diseñaron e implementaron métodos para la estimación de manera semi-automática del diámetro normal de un vaso sanguíneo y el grado de estenosis de una lesión.
- Se desarrollo una interfaz gráfica que dio soporte a los métodos implementados
- Los resultados fueron validados con una serie de imágenes de referencia obteniéndose resultados satisfactorios.

- Se logró cargar imágenes de Angiografía por rayos x y calibrar las mediciones en la misma
- Se diseñaron e implementaron métodos para la estimación de manera semi-automática del diámetro normal de un vaso sanguíneo y el grado de estenosis de una lesión.
- Se desarrollo una interfaz gráfica que dio soporte a los métodos implementados
- Los resultados fueron validados con una serie de imágenes de referencia obteniéndose resultados satisfactorios.

- Se logró cargar imágenes de Angiografía por rayos x y calibrar las mediciones en la misma
- Se diseñaron e implementaron métodos para la estimación de manera semi-automática del diámetro normal de un vaso sanguíneo y el grado de estenosis de una lesión.
- Se desarrollo una interfaz gráfica que dio soporte a los métodos implementados
- Los resultados fueron validados con una serie de imágenes de referencia obteniéndose resultados satisfactorios.

- Se logró cargar imágenes de Angiografía por rayos x y calibrar las mediciones en la misma
- Se diseñaron e implementaron métodos para la estimación de manera semi-automática del diámetro normal de un vaso sanguíneo y el grado de estenosis de una lesión.
- Se desarrollo una interfaz gráfica que dio soporte a los métodos implementados
- Los resultados fueron validados con una serie de imágenes de referencia obteniéndose resultados satisfactorios.

Trabajo Futuro

- Someter los resultados del software implementado a la valoración de los especialistas con imágenes de pacientes reales y cuantificar dichas valoraciones.
- Diseñar artefactos que simulen redes vasculares de los cuales se conozcan sus dimensiones, para poder comprobar los resultados arrojados por el sistema y compararlos con los del software del equipo médico.
- Considerar la utilización de otros métodos de segmentación avanzados con el fin de mejorar esta fase y por tanto los resultados finales.

Trabajo Futuro

- Someter los resultados del software implementado a la valoración de los especialistas con imágenes de pacientes reales y cuantificar dichas valoraciones.
- Diseñar artefactos que simulen redes vasculares de los cuales se conozcan sus dimensiones, para poder comprobar los resultados arrojados por el sistema y compararlos con los del software del equipo médico.
- Considerar la utilización de otros métodos de segmentación avanzados con el fin de mejorar esta fase y por tanto los resultados finales.

Trabajo Futuro

- Someter los resultados del software implementado a la valoración de los especialistas con imágenes de pacientes reales y cuantificar dichas valoraciones.
- Diseñar artefactos que simulen redes vasculares de los cuales se conozcan sus dimensiones, para poder comprobar los resultados arrojados por el sistema y compararlos con los del software del equipo médico.
- Considerar la utilización de otros métodos de segmentación avanzados con el fin de mejorar esta fase y por tanto los resultados finales.

Identificación Semi-automática de Estenosis en Imágenes de Angiografía por Rayos-X

Yuri Alcántara Olivero

Tutor:

M.Sc. Henry Blanco Lores.

Universidad de Oriente

Julio 2017