

HAMBURG UNIVERSITY OF TECHNOLOGY

PROBLEM-BASED LEARNING

Advanced System-on-Chip Design

author @tuhh.de

Documentation

Wintersemester 2016/2017 Dipl.-Ing. Wolfgang BRANDT

Contents

1	Cache Simulation - Results	2			
2	Design a Finite State Machine for the Cache				
	2.1 Finite State Machine - Write Allocate Policy	3			
	2.2 Finite State Machine - Example	7			
3	Appendix	9			

Table 1: Cache Simulation of Column Major

Placement (Policy)	Cache Block Size (Words)	Cache Hit Count	Cache Miss Count	Cache Hit Rate
Direct Mapping	2	0	256	0
Direct Mapping	4	0	256	0
Direct Mapping	8	0	256	0
Direct Mapping	16	0	256	0
2-Way Set Associative	2	0	256	0
2-Way Set Associative	4	0	256	0
2-Way Set Associative	8	0	512	0
2-Way Set Associative	16	0	256	0
4-Way Set Associative	2	0	256	0
4-Way Set Associative	4	0	256	0
4-Way Set Associative	8	0	256	0
4-Way Set Associative	16	0	256	0

Table 2: Cache Simulation of Row Major

Placement (Policy)	Cache Block Size (Words)	Cache Hit Count	Cache Miss Count	Cache Hit Rate
Direct Mapping	2	128	128	50
Direct Mapping	4	192	64	75
Direct Mapping	8	224	32	88
Direct Mapping	16	240	16	94
2-Way Set Associative	2	128	128	50
2-Way Set Associative	4	192	64	75
2-Way Set Associative	8	224	32	88
2-Way Set Associative	16	240	16	94
4-Way Set Associative	2	128	128	50
4-Way Set Associative	4	192	64	75
4-Way Set Associative	8	224	16	88
4-Way Set Associative	16	240	16	94

1 Cache Simulation - Results

The two assembler programs *row-major.asm* and *column-major.asm* has been used for the cache simulation. 1 contains the results regarding the file *column-major.asm* and 2 illustrates the results of *row-major.asm*.

TODO Interpretation

- 2 Design a Finite State Machine for the Cache
- 2.1 Finite State Machine Write Allocate Policy

Table 3: Overview - FSM States

Abbreviation	Name	CPU Request Mode	Description
IDLE	-	-	-
CW	COMPARE WRITE	Write Request	-
CMW	CACHE MISS WRITE	Write Request	-
WBW	WRITE BACK WRITE	Write Request	-
WCW	WRITE CACHE WRITE	Write Request	-
CR	COMPARE READ	Read Request	-
CMR	CACHE MISS READ	Read Request	-
WBR	WRITE BACK READ	Read Request	-
WCR	WRITE CACHE READ	Read Request	-

Table 4: Overview - FSM Inputs

Abbreviation	Name	Description
rdCPU	CPU Read Request	-
wrCPU	CPU Write Request	-
cacheMiss	Cache Miss	-
cacheHit	Cache Hit	-
readyMEM	Write-Back is resolved	-
isDirty	Cache Block is dirty	_

In figure 1 the state diagram of the cache controller is illustrated. The state diagram represents a Mealy automaton. The state space of the state machine is given in table 3. Besides the state machine inputs are listed in table 4 and the state machine outputs are shown in table 5. A sketch of the state diagram is printed in figure 2.

Table 5: Overview - FSM Outputs

Table 5. Overview 1 5141 Outputs			
Abbreviation	Name	Description	
stallCPU	Stall Processor	-	
setDirty	Set Dirty Bit (Modified) Bit	-	
wrMEM	Write To Memory	Write Replaced Block To Memory	
dataCPU	Read Data Into CPU	-	
rdMEM	Read Cache Block Into Cache From Memory	-	
dataCPU2Cache	Write Data Into Cache	-	

Figure 1: State diagram of the cache controller.

Figure 2: Sketch of Mealy $\Delta \hspace{-0.2cm}\rule{1.5cm}{0.5cm}\hspace{0.2cm}$ utomata - Cache Controller

2.2 Finite State Machine - Example

Figure 3: Column Major, Direct Mapping, Cache Block Size 2

3 Appendix

Figure 4: Column Major, Direct Mapping, Cache Block Size 4

Figure 5: Column Major, Direct Mapping, Cache Block Size 8

Figure 6: Column Major, Direct Mapping, Cache Block Size 16

Figure 7: Column Major, 2-Way Associative, Cache Block Size 2

Figure 8: Column Major, 2-Way Associative, Cache Block Size 4

Figure 9: Column Major, 2-Way Associative, Cache Block Size 8

Figure 10: Column Major, 2-Way Associative, Cache Block Size 16

Figure 11: Column Major, 4-Way Associative, Cache Block Size 2

Figure 12: Column Major, 4-Way Associative, Cache Block Size 4

Figure 13: Column Major, 4-Way Associative, Cache Block Size 8

Figure 14: Column Major, 4-Way Associative, Cache Block Size 16

Figure 15: Row Major, Direct Mapping, Cache Block Size 2

Figure 16: Row Major, Direct Mapping, Cache Block Size 4

Figure 17: Row Major, Direct Mapping, Cache Block Size 8

Figure 18: Row Major, Direct Mapping, Cache Block Size 16

Figure 19: Row Major, 2-Way Associative, Cache Block Size 2

Figure 20: Row Major, 2-Way Associative, Cache Block Size 4

Figure 21: Row Major, 2-Way Associative, Cache Block Size 8

Figure 22: Row Major, 2-Way Associative, Cache Block Size 16

Figure 23: Row Major, 4-Way Associative, Cache Block Size 2

Figure 24: Row Major, 4-Way Associative, Cache Block Size 4

Figure 25: Row Major, 4-Way Associative, Cache Block Size 8

Figure 26: Row Major, 4-Way Associative, Cache Block Size 16