GNG 1105E – Engineering Mechanics

CHAPTER S5 - DISTRIBUTED FORCES

Assigned readings

5/1 Introduction

5/2 Center of mass

5/3 Centroids of lines and areas (NOT volumes)

5/1 Introduction

In previous chapters, we have considered forces to be concentrated along a line of action

In reality, forces are distributed over a larger contact area

5/2 Center of mass

5/2 Center of mass

$$\overline{x} = \frac{\int x \, dW}{W} \qquad \overline{y} = \frac{\int y \, dW}{W} \qquad \overline{z} = \frac{\int z \, dW}{W}$$

5/2 Center of mass

Substitute W = mg and dW = g dm:

$$\overline{x} = \frac{\int x \, dm}{m}$$
 $\overline{y} = \frac{\int y \, dm}{m}$ $\overline{z} = \frac{\int z \, dm}{m}$

Substitute $m = \rho V$ and $dm = \rho dV$:

$$\overline{x} = \frac{\int x \rho \, dV}{\int \rho \, dV} \quad \overline{y} = \frac{\int y \rho \, dV}{\int \rho \, dV} \quad \overline{z} = \frac{\int z \rho \, dV}{\int \rho \, dV}$$

5/3 Centroids

When the density of an object is uniform, its center of mass coincides with its geometric centroid

We will look at centroids of lines (uniform cross-sectional area) and twodimensional areas (uniform thickness) only

NOT volumes

5/3 Centroids

$$\overline{x} = \frac{\int x \, dL}{L} \quad \overline{y} = \frac{\int y \, dL}{L} \quad \overline{z} = \frac{\int z \, dL}{L}$$

5/3 Centroids

$$\overline{x} = \frac{\int x \, dA}{A} \quad \overline{y} = \frac{\int y \, dA}{A} \quad \overline{z} = \frac{\int z \, dA}{A}$$

$$\overline{X} = \frac{\sum m\overline{x}}{\sum m}$$
 $\overline{Y} = \frac{\sum m\overline{y}}{\sum m}$ $\overline{Z} = \frac{\sum m\overline{z}}{\sum m}$

Figure	Centroid
Arc Segment $\alpha \overline{r} C$	$\overline{r} = \frac{r \sin \alpha}{\alpha}$
Quarter and Semicircular Arcs $C \bullet \qquad $	$\overline{y} = \frac{2r}{\pi}$
Circular Area	$\bar{x} = \bar{y} = 0$
Semicircular Area r $\frac{y}{ y }$ $-x$	$\overline{y} = \frac{4r}{3\pi}$

Figure	Centroid
Quarter-Circular Area r $\overline{\overline{x}}$ \overline{C} \overline{y} $-x$	$\overline{x} = \overline{y} = \frac{4r}{3\pi}$
Area of Circular Sector $x = x$ $x = $	$\overline{x} = \frac{2}{3} \frac{r \sin \alpha}{\alpha}$

Figure	Centroid
Rectangular Area $ \begin{array}{c c} & y_0 \\ & C \\ & -x_0 \\ & -x \end{array} $	$\bar{x} = \bar{y} = 0$
Triangular Area $ \begin{array}{c c} & & & & \\ \hline y & & & \\ \hline x & & C \\ \hline & & \\ \hline $	$\overline{x} = \frac{a+b}{3}$ $\overline{y} = \frac{h}{3}$
Area of Elliptical Quadrant $b \overline{x} C \overline{y} - x$	$\overline{x} = \frac{4a}{3\pi}$ $\overline{y} = \frac{4b}{3\pi}$

Figure	Centroid
Subparabolic Area $y = kx^2 = \frac{b}{a^2}x^2$ Area $A = \frac{ab}{3}$ \overline{x} C b \overline{x} $-x$	$\overline{x} = \frac{3a}{4}$ $\overline{y} = \frac{3b}{10}$
Parabolic Area $y = kx^2 = \frac{b}{a^2}x^2$ Area $A = \frac{2ab}{3}$ b \overline{x} C \overline{y}	$\overline{x} = \frac{3a}{8}$ $\overline{y} = \frac{3b}{5}$

Sample problem 5/6

Locate the centroid of the shaded area.

Sample problem 5/6

Sample problem 5/6

