Расчетная работа

Мацукевич Захар 421703

Цель:

Продемонстрировать работу программы решения теоретико-графовой задачи по построению дерева кротчайших путей заданного графа.

Ключевые понятия:

Граф – совокупность двух множеств — множества самих объектов (вершин) и множества их парных связей (ребер).

Ориентированный граф (кратко орграф) — граф, рёбрам которого присвоено направление.

Путь в графе – это последовательность рёбер, в которой конец каждого ребра (кроме последнего) совпадает с началом следующего.

Список смежности - один из способов представления графа в виде коллекции списков вершин. Каждой вершине графа соответствует список, состоящий из «соседей» этой вершины.

Матрица смежности - это вид представления графа в виде матрицы, когда пересечение столбцов и строк задаёт дуги.

Неориентированный граф — граф, в котором рёбра не имеют направления. На рисунке выше показан как раз неориентированный граф. В таком неориентированном графе можно перемещаться вдоль ребра в любом из двух направлений.

Взвешанный граф - граф, ребра которого имеют некое числовое значение.

Дерево кратчайших путей — подграф исходного графа, одна из вершин которого является вершиной, кратчайшие пути из которой хранит граф, в котором каждый путь от корня до любой другой вершины является кратчайшим в исходном графе.

Демонстрация работы программы в семантической памяти на примере невзвешенного неориентированного графа:

Для лучшего восприятия картинок ненужные на соответвтующем этапе эл-ты SCg будут скрыты. Каждому пункту соответствует рисунок с соответствующим номером.

1. Задаем сам граф, его принадлежность к множеству графов и непринадлежность к множествам ориентированных и взвешенных графов, а также для всех его вершин

и ребер указываем принадлежность к соответствующим множествам. Указываем начальную вершину, пусть это будет вершина "1". Отметим её же посещенной, указав принадлежность к соответствующему множеству.

Рис.1

2. Начать следует с первой вершины. Зададим итерацию "it1" и присвоим ей все происходящее. Отметим вершину "1" как текущую вершину. Путь в не имеет ребер, т.к. изначально мы находимся в конце пути. Значит задаем элемент "путь 1-1" и указываем, что это объединение из вершины "1" и это граф. Также связываем вершину "1" с "путь 1-1" ролевым отношением "путь сюда*".

Рис.2

3. Теперь нужно объединить выходящие из текущей вершины ребра и узлы, в которые они приходят, в структуру "it<номер итерации>" какое ребро к какому узлу ведет

и связать структуры отношением "следующая". Указываем принадлежность вершины "1" к множеству пройденных вершин. Таким образом получаем очередность выполнения операций, зная ребро, по которому попали в каждый узел.

Рис.3

4. Закончив первую итерацию идем к следующей. Помечаем вершину пути как текущую. Если она помечена как пройденная, то ничего не делаем и идем к следующей итерации. Иначе объединяем текущую вершину, ребро пути и "путь сюда*" для вершины, с которой еще связано ребро пути, в данном случае - это вершина "2", ребро "а" и "путь 1-1". Результат объединения - "путь 1-2". Связываем "путь 1-2" с вершиной "2" отношением "путь сюда*". "Путь 1-2" также граф.

Рис.4

5. Теперь определим следующие итерации. Объединяем ребра "c" и "d" с вершинами "3" и "4" соответственно в итерации "it4" и "it5", обозначая ребра и вершины пути для каждой итерации. Помечаем "2" пройденной вершиной.

Рис.5

6. На третей итерации делаем все те же действия, что на итерации "it2": строим "путь 1-3" объединяя текущую вершину "3", ребро пути "b"и "путь 1-1".

Рис.6

7. Определяем следующие итерации. Указываем узел "3" как посещенную вершину.

Рис.7

8. Итерация "it4"- ребро "с" и вершина "3". Отмечаем её как текущую. Видим, что она уже принадлежит множеству посещенных вершин, так что никаких операций производить не нужно, кратчайший путь в эту вершину уже записан как "путь 1-3". Переходим к "it5".

Рис.8

9. На пятой итерации рассматривается вершина "4" и ребро "d". Вершина "4" не была посещена, так что помечаем ее как текущую, объединяем вершину и ребро пути пятой итерации с путем "путь 1-2" в "путь 1-4" и указываем, что это "путь сюда*" для узла "4".

Рис.9

10. Объединяем ребро "f" и вершину "5" в следующую итерацию "it8". Помечаем "4" как посещенную вершину и идем дальше в очереди.

Рис.10

11. Итерация "it6" имеет вершину пути "2" и ребро пути "с", отмечаем вершину как текущую. Замечаем ее принадлежность множеству посещенных вершин и наличие связи "путь сюда*", значит игнорируем эту итерацию и идем дальше.

Рис.11

12. На седьмой итерации помечаем "5" как текущую вершину. Объединяем ребро пути "е", текущую вершину и "путь 1-3" в "путь 1-5". Объединяем ребро "f" и вершину "4" в "it9". Помечаем вершину "5" как посещенную и движемся дальше.

Рис.12

13. Переходим к "it8". Ребро пути - "f", вершина пути - "5". Эта вершина принадлежит множеству посещенных и путь сюда уже построен, значит итерация игнорируется. Идем дальше.

Рис.13

14. У девятой итерации вершина пути также отмечена посещенной, так что и она тоже игнорируется.

Рис.14

15. Итак, у нас появилось некоторое количество новых графов "путь 1-n", где n - номер крайней вершины графа, то есть каждый такой граф - путь из первой вершины в n-ую. Объединение всех этих путей - есть дерево кратчайших путей исходного графа.

Рис.15

На рисунках 16-19 представлен вывод работы программы для неориентированного графа, ориентированного графа, взвешенного неориентированного графа, взвешенного ориентированного графа в соответствующем порядке.

вывод:

0 1 1 0 1 0 1 1	0 1 1 0 0 0 0 1
1 1 0 0	0 0 0 0
0 1 0 0	0 0 0 0
0,000	\mathbf{O}_{3} \mathbf{O}_{2} \mathbf{O}_{4}
	Рис.16

ввод:

307	ι :			В	ыво	д:		
1	1	0	0	0	1	1	0	0
0	0	1	0	0	0	0	1	0
1	0	0	1	0	0	0	0	1
0	0	0	1	0	0	0	0	0
0	0	0	0	0	0	0	0	0
	1 0 1 0	0 0 1 0 0 0	1 1 0 0 0 1 1 0 0 0 0 0	3 од: 1 1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 0 0	1 1 0 0 0 0 1 0 1 0 0 1 0 0 0 1	1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0	1 1 0 0 0 1 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 0 0 1 1 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Рис.17

ввод:					
0	3	2	0	0	
3	0	1	4	0	
2	1	0	0	5	
0	4	0	0	2	
0	0	5	2	0	

вывод:					
0	3	2	0	0	
0	0	0	4	0	
0	0	0	0	5	
0	0	0	0	0	
0	0	0	0	0	

Рис.18

В	вод	ι :		
0	6	3	0	
0	0	0	1	
0	2	0	0	
0	0	0	0	

ВЬ	вывод:					
0	0	3	0			
0	0	0	1			
0	2	0	0			
0	0	0	0			

Рис.19

Выводы:

В результате выполнения данной расчётной работы был формализован алгоритм нахождения дерева кротчайших путей невзвешенных неориентированных и ориентированных графах, были изучены:

- Основы теории графов
- Способы представления графов
- Базовые алгоритмы для работы с графами
- Основы SC-кода и SC-алфавита

Источники:

- Оре О. Теория графов. 2-е изд.. М.: Наука, 1980. – С. 336.
- Кормен Т. Х. и др. Часть VI. Алгоритмы для работы с графами // Алгоритмы: построение и анализ = Introduction to Algorithms. 2-е изд.. М.: Вильямс, 2006. С. 1296.
- Харари, Ф. Теория графов / Ф. Харари / Пер. с англ. и предисл. В.П. Козырева. Под ред. Г.П. Гаврилова. Изд. 2-е. М.: Едиториал УРСС, 2003. 269 с.