Aufgabe 1 (Frühjahr 1999). Seien U und V Untergruppen einer endlichen Gruppe G mit $U \cap V = \{e\}$. Es bezeichne $\langle U \cup V \rangle$ die von $U \cup V$ erzeugte Untergruppe von G. Man zeige:

- (a) $|U| \cdot |V| \leq |\langle U \cup V \rangle|$. (Wurde bereits letzte Woche besprochen.)
- (b) In (a) gilt Gleichheit, wenn U Normalteiler in G ist.
- (c) Man gebe eine Gruppe G mit zwei Untergruppen U und V mit $U \cap V = \{e\}$ an, so daß in (a) nicht Gleichheit besteht. (Wurde bereits letzte Woche besprochen.)

Aufgabe 2. Sei p prim, G Gruppe der Ordnung p^2 . Man zeige, daß entweder $G \cong \mathbb{Z} / \mathbb{Z} p^2$, oder $\mathbb{Z} \cong \mathbb{Z} / \mathbb{Z} p \times \mathbb{Z} / \mathbb{Z} p$.

Aufgabe 3 (Frühjahr 1991). Sei $\alpha: G \to H$ ein Gruppenhomomorphismus, wobei H abelsch sei. Man zeige: α ist genau dann surjektiv, wenn für je zwei Gruppenhomomorphismen $\beta, \gamma: H \to K$ mit $\beta \circ \alpha = \gamma \circ \alpha$ gilt $\beta = \gamma$.

Aufgabe 4 (Herbst 1977). G sei eine endliche Gruppe und φ ein Automorphismus von G, für den $\varphi(x) = x$ nur für x = e gilt. Man zeige:

- (a) Die Abbildung $y \mapsto y^{-1}\varphi(y)$ von G in sich ist injektiv.
- (b) Zu jedem $x \in G$ gibt es ein $y \in G$ mit $x = y^{-1}\varphi(y)$.
- (c) Wenn zusätzlich $\varphi^2 = id$ gilt, dann folgt
 - (a) $\varphi(x) = x^{-1}$ für alle $x \in G$,
 - (b) G ist abelsch.

Aufgabe 5 (Herbst 1993). Es bezeichne $M(2 \times 2, S)$ den RIng aller 2-reihigen atrizen mit Koeffizienten in eine RIng S. Sei

$$O(2) := \{ A \in M(2 \times 2, \mathbb{R}) : A^t A = 1 \}$$

die Gruppe der reellen orthogonalen 2-reihigen Matrizen.

(a) Man zeige:

$$G := 0(2) \cap M(2 \times 2, \mathbb{Z})$$

is eine Gruppe der Ordnung 8.

- (b) G besitzt genau eine zyklische UNtergruppe G_0 der Ordnung 4.
- (c) Für alle $d \in G_0$ und $s \in G \setminus G_0$ gilt

$$sd = d^{-1}s$$
.