BUCK CONVERTER

목차

BUCK CONVERTER

- 1) BUCK CONVERTER를 쓰는 이유
- 2) 기본 DC/DC 컨버터 SWITCHING 원리
- 3) BUCK CONVERTER 개념
- 4) BUCK CONVERTER 설계 시 주의사항
- 5) TL494 작동원리 이해
- 6) IR2110 작동원리 이해
- 7) BUCK SIMULATION
- * 설계 진행 방향 추가

1) BUCK CONVERTER를 쓰는 이유

78XX basic features

IC No	Voltage
7805	5V
7806	6V
7808	8V
7809	9V
7810	10V
7812	12V
7815	15V
7818	18V
7824	24V

- Features
- 3 terminal positive voltage regulator with nine voltage options
- High Output Current typically 1.5A
- Short circuit current limit -750mA at 5v
- Max input voltage = 35v
- Minimum Input Voltage = V_{out} +
 2.5

▲ 그림 1. 시리즈 레귤레이터의 회로 예와 발열

증상 1) 통상적인 회로 동작 시, 시리즈 레귤레이터의 발열이 크다 원인 1-1) 전원 회로의 입출력 전압 차가 커서, 출력전류가 크다

2) 기본 DC/DC 컨버터 SWITCHING 원리 1

그림 1: 기본적인 DC/DC 컨버터 회로

$$D = \frac{T_{on}}{T}$$

$$T_{on} = DT$$

$$T_{off} = (T - T_{on}) = (1 - D)T$$

그림 2 : 출력 전압 파형

$$V_{O} = \frac{1}{T}(V_{in} \cdot T_{on} + 0 \cdot T_{off}) = V_{in} \cdot \frac{T_{on}}{T} + 0 \cdot \frac{T_{off}}{T}$$
$$= V_{in} \cdot D + 0 \cdot (1 - D)$$
$$= V_{in} \cdot D$$

$$P_O = \frac{1}{T} \left(\frac{V_{in}^2}{R} \cdot T_{on} + 0 \cdot T_{off} \right) = \frac{V_{in}^2}{R} \cdot D$$

2) 기본 DC/DC 컨버터 SWITCHING 원리 2

그림 3: 출력 전압 파형의 직/교류 성분

그림 4:LC 필터를 추가한 기본적인 DC/DC 컨버터 회로

$$G_{V} = \frac{V_{o}}{V_{i}} = \frac{D \cdot V_{i}}{V_{i}} = D$$

- Assumptions
- V_o: constant
- $-I_o$: constant (= V_o/R_o)

- Mode 1 (during DT_s) powering
- Mode 2(during (1-D)T_s) freewheeling

- Voltage-second balance
 - At steady state,
 - Rising amplitude=Falling amplitude: $\frac{V_{in} V_{o}}{L_{o}} T_{on} = \frac{V_{o}}{L_{o}} (T_{s} T_{on})$
 - Area of A=Area of B: $(V_{in} V_o)T_{on} = V_o(T_s T_{on})$ Voltage-second balance
 - Voltage conversion ratio: V_o = DV_{in} ≤ V_{in}
 - Average voltage across the inductor = 0

a) SW/ON 상태의 전류 Path

b) SW/OFF 상태의 전류 Path 그림 6 : Swith 상태에 따른 전류의 흐름

$$\begin{split} i_{\text{max}} &= I_L + \frac{1}{2} \cdot \Delta i_L = I_L + \frac{V_i - V_o}{2L} \cdot DT \\ &= I_L + \frac{V_i - V_i D}{2L} \cdot DT = I_L + \frac{V_i}{2L} \cdot (1 - D) \cdot DT \\ i_{\text{max}} &= I_L - \frac{1}{2} \cdot \Delta i_L = I_L - \frac{V_i - V_o}{2L} \cdot DT \\ &= I_L - \frac{V_i - V_i D}{2L} \cdot DT = I_L - \frac{V_i}{2L} \cdot (1 - D) \cdot DT \end{split}$$

- Output Voltage Ripple (ignoring the effect of capacitor ESR)
 - Area of Q_A(charging Charge)=Area of Q_B(discharging charge)
 - Charge=current x time

$$\begin{aligned} Q_{A} &= Q_{B} = \square Q = C_{o} \square V_{o} \\ V_{o_ripple} &= \square V_{o} = \frac{\square Q}{C_{o}} = \frac{1}{C_{o}} \left(\frac{1}{2} \frac{T_{s}}{2} \frac{i_{Lo_ripple}}{2} \right) = \frac{1}{C_{o}} \left(\frac{1}{2} \frac{T_{s}}{2} \frac{1}{2} \frac{V_{o}}{L_{o}} (1 - D) T_{s} \right) \\ &= \frac{T_{s}^{2}}{8L.C_{o}} V_{o} (1 - D) \end{aligned}$$

Voltage Ripple Ratio (ROV) =
$$\frac{V_{o_ripple}}{V_{o}}$$
 100[%]

-Practically, output voltage ripple is determined mainly by ESR

$$\Delta V_o = \frac{T_s^2}{8L_o C_o} V_o (1-D) + R_{esr} i_{Lo_ripple}$$

ESR: Equivalent Series Resistance

4) BUCK CONVERTER 설계 시 주의사항 1 (전류 리플 설계 시)

i(ripple)을 줄이기 위한 방법

1) L값 증가 2) 주파수 증가

전류량을 증가시키면 어느 순간 과포화하여 L값 급격하게 저하.

▲ 그림 5. 인덕터의 직류 중첩 특성 예

증상 3) 인덕터의 발열이 크다

원인 3) 인덕터가 과포화를 일으켜 에너지를 모을 수 없게 되었다

$$Z = R + jX = R + j\omega L + \frac{1}{j\omega C}$$

이중에서 허수임피던스가 0이 되어 없어지는 주파수가 공진주파수입니다.

$$X = \omega L - \frac{1}{\omega C} = 2\pi f L - \frac{1}{2\pi f C} = 0$$

이 식을 뒤집어서 f를 구하면 아래와 같이 공진주파수가 정해집니다.

resonance frequency =
$$\frac{1}{2\pi\sqrt{LC}}$$

L=1mH, C=1mF f_c =159Hz

4) BUCK CONVERTER 설계 시 주의사항 2 (IC 선정 또는 PWM 설계 시)

Soft start에 필요성

DCDC Converters (Switching Regulators)

4) BUCK CONVERTER 설계 시 주의사항 3 (IR2110 사용 또는 PWM 설계 시)

PWM Dead-Band

5) TL494 동작원리 이해 1

4 Simplified Block Diagram

Pin Functions

PIN		TVDE	DESCRIPTION
NAME	NO.	TYPE	DESCRIPTION
1IN+	1	I	Noninverting input to error amplifier 1
1IN-	2	T.	Inverting input to error amplifier 1
2IN+	16	1	Noninverting input to error amplifier 2
2IN-	15	1	Inverting input to error amplifier 2
C1	8	0	Collector terminal of BJT output 1
C2	11	0	Collector terminal of BJT output 2
CT	5	_	Capacitor terminal used to set oscillator frequency
DTC	4	I	Dead-time control comparator input
E1	9	0	Emitter terminal of BJT output 1
E2	10	0	Emitter terminal of BJT output 2
FEEDBACK	3	1	Input pin for feedback
GND	7	_	Ground
OUTPUT CTRL	13	1	Selects single-ended/parallel output or push-pull operation
REF	14	0	5-V reference regulator output
RT	6	_	Resistor terminal used to set oscillator frequency
V _{cc}	12	_	Positive Supply

9.2 Functional Block Diagram

5) TL494 동작원리 이해 2

Figure 9. Switching and Control Sections

6) IR2110 작동원리 이해

- Specifications
 - V_{in}:24V
 - V_o=5V (output voltage ripple (ROV) V_{o_ripple}/V_o=+-2%)
 - I_o=10A (Ripple ratio (ROA) =20%)
 - Switching frequency fsw=50kHz(=20usec)
- 1. Determining Max Duty Ratio
 - From V_o=DV_{in}, D=5/24=0.2083
- 2. Determining Lo:
 - $I_{Lo ripple} = I_o \cdot ROA \rightarrow I_{o ripple} = I_o \cdot 0.2 = 2(A)$
 - $(1-D)T_sV_o/L_o = I_o _{ripple} \rightarrow L_o = (1-0.2083)x20x10^{-6}x5/2=39.58(uH)$
- 3. Determining C_o:
 - From spec., $V_{o_ripple} = V_o x 4\% \rightarrow V_{o_ripple} = 5x0.04 = 0.2(V)$
 - From $V_{o_ripple} = \frac{T_s^2}{8L_oC_o}V_o(1-D)$, $C_o = \frac{T_s^2}{8L_oV_{o_ripple}}V_o(1-D)$
 - $C_0 = (20 \times 10^{-6})^2 \times (24 \times 0.2083)^2 2 \times 5 \times 0.2083 + 5) / (8 \times 39.58 \times 10^{-6} \times 0.2) = 25 (uF)$

Practically, V_{o_ripple} is determined mainly by $i_{Lo_ripple} \cdot R_{esr}$ To reduce the V_{o_ripple} , C_{o} must be parallel connected with several number of capacitors

- 4. Calculating voltage and current stresses of Semiconductors
 - MOSFET switch:
 - 1. Voltage stress: 24(V)
 - 2. Current stress: $I_0+0.5I_0$ ripple=10+1=11(A)
 - Diode:
 - 1. Voltage stress: 24(V)
 - 2. Current stress: $l_0+0.5l_0$ ripple=10+1=11(A)
- 5. Selecting MOSFET and Diode
 - Voltage ratings of MOSFET and Diode: 50~100% Margin
 - 1. Voltage rating: (max voltage stress)x2 \rightarrow over 48(V)
 - Current ratings of MOSFET and Diode: 100% Margin
 - 1. Current rating: (max current stress)x2 → over 22 (A)

→ MOSFET: STD30NF06 (60V, 28A, Coss=290pF, Rds=0.020hm)
→ Diode: MBR3050PT (50V, 30A, VF=0.75V)

- Related Web site:
 - 1. www.irf.com
 - 2. www.fairchildsemi.com
 - 3. www.st.com
 - 4. www.alldatasheet.com

 \bullet Gate signal, v_{ds} , v_{D} , i_{ds} , i_{D}

• v_{Lo}, i_{Lo}, i_{co}, v_o

• 10% load

7) BUCK SIMULATION 6 (제어 공학을 개념을 추가하면 PID 제어까지 가능)

* 설계 진행 방향

1. DC - DC 컨버터 SPEC 작성, L, C 값, SWITCH 선정

2. TL494(H/W) 또는 MCU(S/W) 제어기 설계

3. 실제 구동 회로 설계 (소자 FIX)