

Lab			
HW			
Until			

การบ้านปฏิบัติการ 4 Conditionals (20 คะแนน)

<u>ข้อกำหนด</u>

- การเรียกใช้ฟังก์ชันเพื่อการทดสอบ ต้องอยู่ภายใต้เงื่อนไข if __name__ == '__main__' : เพื่อให้สามารถ
 import ไปเรียกใช้งานจาก Script อื่น ๆ ได้อย่างมีมาตรฐาน
- ii. ไม่อนุญาตให้ใช้การทำซ้ำเช่น **for, while** (Iterations), Recursions, หรือ Data Type อื่น ๆ ที่ยังไม่สอนใน บทเรียน เช่น **range**, **list** หรือ **map** ในการแก้ปัญหา
- iii. นักศึกษาสามารถสร้างฟังก์ชันย่อยต่าง ๆ เพิ่มเติมได้ตามความเหมาะสม
- iv. ในข้อที่ระบุว่ามี [Attachments] ให้ Download ไฟล์ Template จาก Grader ลงมา implement

Hint: ควรสร้างฟังก์ชันทดสอบเพื่อทดสอบกับกรณีทดสอบหลายๆ ชุดโดยอัตโนมัติ โดยใช้ Statement assert

1) 4 คะแนน (Lab04_1_6xxxxxxxxx.py) [Attachments] ให้เขียนฟังก์ชัน

เพื่อคำนวณว่าวงกลมสองวง ที่มีจุดศูนย์กลางที่ Coordinate (x_1,y_1) และ (x_2,y_2) และมีรัศมี r_1 และ r_2 ตามลำดับ สัมผัสกัน (Touching) ตัดกัน (Intersecting) หรือ ไม่ตัดกัน (Non-intersecting) โดยหากส่วนที่ใกล้ที่สุดของเส้นรอ บวงของวงกลมทั้งสอง ห่างกันไม่เกินค่า epsilon ให้ถือว่าวงกลมทั้งสองสัมผัสกัน ทั้งนี้ระยะห่างระหว่างสองจุดใด ๆ (Distance) สามารถหาได้จากสูตร

distance =
$$\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

โดยฟังก์ชันจะมีการคืนค่าดังนี้

- 1 กรณีวงกลมสองวงตัดกัน (intersecting)
- 0 กรณีวงกลมสองวงสัมผัสกัน (touching)
- -1 กรณีวงกลมสองวงไม่ตัดและไม่สัมผัสกัน (non-intersecting)

Hint: พิจารณาศึกษาฟังก์ชัน almost_equal() หรือ math.isclose() จาก slide เรื่อง Conditionals Part I

<u>Input</u>	<u>Output</u>
2 3 5 5 7 1	1
0 0 2.5 3 4 2.5	0

2) **4 คะแนน** ให้เขียนฟังก์ชัน $my_min_mid_max(a: int, b: int, c: int) -> None เพื่อ<u>แสดงผล</u>ค่าน้อย ที่สุด (min) ค่าที่อยู่ตรงกลาง (mid) และค่ามากที่สุด (max) จากจำนวนเต็ม <math>a, b$ และ c โดยการแสดงผลจะอยู่ใน รูปแบบดังแสดงด้านล่าง ทั้งนี้<u>ไม่อนุญาต</u>ให้ใช้ฟังก์ชัน built-in max(), min() ในการแก้ปัญหา

<u>Hint</u>: สามารถใช้ 3 **if** statement ในการแก้ปัญหา และควรอ่าน slide min max and more (w04) ก่อนทำการบ้าน

- a. ให้เขียน Flowchart แสดง Algorithm ในการแก้ปัญหา (Flowgorithm, Lucidchart, etc) และส่งไฟล์ออนไลน์ ผ่านระบบ Mango ของรายวิชา
- b. (Lab04_2_6xxxxxxxx.py) เขียนฟังก์ชันในภาษา python ตาม Algorithm ที่ออกแบบไว้

<u>Input</u>	<u>Output</u>
1	min = 1
2	mid = 2
3	max = 3

3) 4 คะแนน (HW04_1_6XXXXXXXX.py) ในเกม Pokémon Go ผู้เล่นจะได้ค่าประสบการณ์ (exp) จากการพัฒนาร่าง (Evolve) จากร่าง 1 เป็นร่าง 2 ในแต่ละครั้งเท่ากับ 1000 exp และต้องเสียลูกอม (Candy) จำนวนหนึ่ง เช่น Pidgey (ร่าง 1) จะใช้ ลูกอมจำนวน 12 ลูก เพื่อพัฒนาเป็น Pidgeotto (ร่าง 2) และรางวัลจากการพัฒนาร่าง เป็นพลังเพิ่ม 1000 exp และลูกอม 1 ลูก ดังรูป

ให้เขียนฟังก์ชัน $calculate_exp(p: int, c: int) -> int เพื่อคำนวณและคืนค่า exp ที่มากที่สุดที่เป็นไป ได้ เฉพาะจากการพัฒนา Pidgey เป็น Pidgeotto เมื่อมี Pidgey จำนวน <math>p$ ตัว และ ลูกอมจำนวน c ลูก โดย กำหนดให้นกทุกตัว (Pidgey และ Pidgeotto) สามารถแลกเปลี่ยนเป็นลูกอมได้ 1 ลูก และจำนวนลูกอมที่ใช้ในการ พัฒนาร่างเท่ากับ 12 (ค่าคงที่)

<u>Input</u>	<u>Output</u>	คำอธิบาย
1 12	1000	# มี candy เพียงพอในการ evolve 1 ครั้ง
2 12	1000	# มี candy เพียงพอในการ evolve 1 ครั้ง
2 22	2000	# evolve รอบแรกและนำ Pidgeotto ไปแลกเป็นแคนดี้ เพื่อให้เพียงพอในการ evolve ตัวที่สอง

4) 4 คะแนน (Hw04_2_6XXXXXXXX.py) [Attachments] ให้เขียนฟังก์ชัน

minute_diff(h1: int, m1: int, p1: str, h2: int, m2: int, p2: str) -> int: $\underline{\text{เพื่อคืนค่า}}$ ระยะห่างเป็นนาทีของเวลาที่ระบุด้วยจำนวนเต็ม h1, m1 และ h2, m2 ($1 \le hx \le 12$ และ $0 \le mx \le 59$) โดย hx และ mx จะแทนเวลาเป็นชั่วโมงตามเข็มนาพิกา และนาทีตามลำดับ และตัวแปร px เป็น string ระบุ ช่วงเวลาก่อนหรือหลังเที่ยงในรูป 'AM' และ 'PM' ทั้งนี้ให้ถือว่าเวลาที่ระบุเป็นเวลาที่อยู่ในวันเดียวกันเสมอ และไม่ อนุญาตให้ใช้ module datetime ในการแก้ปัญหา

<u>Hint</u>: นักศึกษาสามารถศึกษาการระบุช่วงเวลาด้วย AM และ PM ได้จาก <u>https://en.wikipedia.org/wiki/12-</u>hour clock

Function Call						<u>Output</u>	
<pre>minute_diff(8,</pre>	23,	'AM',	8,	24,	'AM')	1	
			_				

minute_diff(8, 23, 'AM', 8, 24, 'AM')	1
minute_diff(8, 23, 'AM', 1, 24, 'PM')	301
minute_diff(1, 24, 'PM', 8, 23, 'AM')	301

5) 4 คะแนน (HW04_3_6XXXXXXX.py) ให้เขียนฟังก์ชัน Boolean (ฟังก์ชันที่คืนค่า True หรือ False เท่านั้น)

is_overlapped(l1: float, t1: float, w1: float, h1: float,
l2: float, t2: float, w2: float, h2: float) -> bool
เพื่อตรวจสอบว่าสี่เหลี่ยมมุมฉากสองรูปมีส่วนทับ (Overlap) กันหรือไม่ โดยที่เราสามารถนิยามสี่เหลี่ยมมุมฉากดังนี้

โดย t คือ top, l คือ left, w คือ width และ h คือ height ของรูปสี่เหลี่ยม

ดังนั้น is_overlapped(10, 10, 100, 150, 50, 100, 150, 200) จะคืนค่าเป็น True ดังรูป

Hint: พิจารณาเงื่อนไขกรณีสี่เหลี่ยมที่<u>ไม่</u>ทับกันจะแก้ปัญหาได้ง่ายกว่า

การ<u>ส่งงาน</u>

- 1. ลักษณะ/ลำดับข้อความของการรับค่า/แสดงผล จะ**ต้องเป็นไปตามที่ระ**บุในตัวอย่างการ run
- 2. ไฟล์งานที่ส่ง จะต้องมีการแทรก comment ที่ต้นไฟล์ตามข้อกำหนดใน canvas รายวิชา
- 3. ไฟล์งานโปรแกรมที่ส่ง จะต้องมีการแทรก pseudocode เป็น comment ในแต่ละขั้นตอน
- 4. Upload ไฟล์ source code ตามที่ระบุในแต่ละข้อ ไปยังระบบตรวจให้คะแนนอัตโนมัติ <u>https://cmu.to/gdr111</u>

Chiang Mai University