Aufgaben

Inhaltsverzeichnis

1	Ana	ılysis
	1.1	Konvergenz
2	Kon	nbinatorik
	2.1	Endliche Summen
	2.2	Rekursionsgleichungen
	2.3	Kombinatorische Probleme

1 Analysis

1.1 Konvergenz

Aufgabe 1.1. Berechne

$$g = \lim_{x \to 0} \frac{\sum_{k=1}^{n} a_k x^k}{\sin(bx)}. \quad (\forall k \colon a_k \neq 0)$$

Lösung. Wegen $x \neq 0$ kann der Bruch mit $\frac{bx}{bx}$ erweitert werden. Damit ergibt sich

$$\frac{\sum_{k=1}^{n} a_k x^k}{\sin(bx)} = \underbrace{\left(\frac{bx}{\sin(bx)}\right)}_{\to 1} \underbrace{\left(\frac{a_1}{b} + \sum_{k=2}^{n} \frac{a_k}{b} x^{k-1}\right)}_{\to a_1/b}.$$

Nach den Grenzwertsätzen ist der gesamte Ausdruck konvergent, wenn die beiden Faktoren konvergent sind und g ist das Produkt der Grenzwerte der Faktoren. Somit ist $g = a_1/b$. \square Verwende alternativ die Regel von L'Hôpital.

Aufgabe 1.2. Berechne

$$g = \lim_{x \to \frac{\pi}{2a}} \frac{1 - \sin(ax)}{(\pi - 2ax)^2}. \qquad (a \neq 0)$$

Lösung. Verwende die Substitution $x = \frac{\pi}{2a} - \frac{u}{a}$. Nun ist

$$\frac{1-\sin(ax)}{(\pi-2ax)^2} = \frac{1-\sin(\frac{\pi}{2}-u)}{4u^2} = \frac{1-\cos u}{4u^2} \qquad = \frac{\frac{u^2}{2!} + \frac{u^4}{4!} + \dots}{4u^2} = \frac{1}{4} \left(\frac{1}{2!} + \frac{u^2}{4!} + \dots\right).$$

Wenn $x \to \pi/4$ geht, muss $u \to 0$ gehen.

Somit ist g = 1/8. \square

Verwende alternativ die Regel von L'Hôpital zweimal hintereinander.

Aufgabe 1.3. Bestimme

$$g = \lim_{x \downarrow 0} x^x$$
.

Lösung. Es ist $x^x = \exp(x \ln x)$. Wegen der Stetigkeit von exp gilt nun

$$\lim_{x \to 0} \exp(f(x)) = \exp(\lim_{x \to 0} f(x)).$$

Nun ist $x \ln x = (\ln x)/(1/x)$. Mit der Regel von L'Hôpital ergibt sich

$$\lim_{x \downarrow 0} \frac{\ln x}{\frac{1}{x}} = \lim_{x \downarrow 0} \frac{\frac{1}{x}}{-\frac{1}{x^2}} = \lim_{x \downarrow 0} \frac{x^2}{x} = \lim_{x \downarrow 0} x = 0.$$

Somit ist g = 1. \square

Aufgabe 1.4. Bestimme

$$g = \lim_{x \downarrow 0} x^{1/x}.$$

Lösung. Es ist $x^{1/x} = \exp(\frac{\ln x}{x})$. Nun gilt

$$\lim_{x \downarrow 0} \frac{\ln x}{x} \stackrel{\text{L'H}}{=} \lim_{x \downarrow 0} \frac{1}{x} = -\infty = \lim_{x \downarrow -\infty} x.$$

Somit ist

$$g = \exp(\lim_{x \downarrow -\infty} x) = \lim_{x \downarrow -\infty} \exp(x) = 0. \ \Box$$

2 Kombinatorik

2.1 Endliche Summen

Aufgabe 2.1. Vereinfache $\sum_{k=1}^{n} (2k+4)$.

Lösung.

$$\sum_{k=1}^{n} (2k+4) = 2\sum_{k=1}^{n} k + \sum_{k=1}^{n} 4 = 2 \cdot \frac{n}{2}(n+1) + 4n = n^2 + n + 4n = n^2 + 5n.$$
 (2.1)

2.2 Rekursionsgleichungen

Aufgabe 2.2. Gegeben ist die Rekursionsgleichung $a_{n+1} = qa_n$ mit der Anfangsbedingung $a_0 = A$. Gesucht ist die explizite Form von a_n .

Aufgabe 2.3. Gegeben ist die Rekursionsgleichung $a_{n+1} = qa_n + r$ mit der Anfangsbedingung $a_0 = A$. Gesucht ist die explizite Form von a_n .

Bemerkung. Es gilt:

$$\sum_{k=0}^{n} q^{n-k} = \sum_{0 \le k \le n} q^{n-k} \quad \stackrel{k:=(n-k)}{=} \quad \sum_{0 \le (n-k) \le n} q^{n-(n-k)} = \sum_{0 \le (n-k) \le n} q^{k}.$$

Nun besteht aber $0 \le n - k \le n$ aus den beiden Ungleichungen

$$0 \le n - k$$
 und $n - k \le n$.

Multipliziert man beide Seiten einer Ungleichung mit -1, so dreht sich das Relationszeichen um:

$$0 \ge -(n-k)$$
 und $-(n-k) \ge -n$.

Somit ergibt sich:

$$0 \ge k - n$$
 und $k - n \ge -n$.

Addiere jetzt n auf beiden Seiten der jeweiligen Ungleichung:

$$n > k$$
 und $k > 0$.

Somit ergibt sich $0 \le k \le n$ und daher

$$\sum_{k=0}^{n} q^{n-k} = \sum_{k=0}^{n} q^{k}.$$

Einfach ausgedrückt heißt das, dass die Reihenfolge egal ist:

$$\sum_{k=0}^{3} q^{3-k} = q^3 + q^2 + q^1 + q^0 = q^0 + q^1 + q^2 + q^3 = \sum_{k=0}^{3} q^k.$$

Voraussetzung ist, dass das Kommutativgesetz gilt. Bei unendlichen Reihen darf man nur endliche Partialsummen umordnen, es sei denn die Reihe ist absolut konvergent.

Ansatz. Sei

$$s_b := \sum_{k=a}^{b-1} q^k.$$

Nun gilt:

$$qs_b = q \sum_{k=a}^{b-1} q^k = \sum_{k=a}^{b-1} q^{k+1} \stackrel{k:=k-1}{=} \sum_{k=a+1}^{b} q^k.$$

Es ergibt sich:

$$qs_b - s_b = (q^{a+1} + q^{a+2} + \dots + q^b) - (q^a + q^{a+1} + \dots + q^{b-1}) = q^b - q^a.$$

D. h. alle Summanden q^{a+1} bis q^{b-1} kommen sowohl im Minuend als auch im Subtrahend vor und entfallen somit.

Mit $qs_b - s_b = (q-1)s_b$ ergibt sich nun

$$\sum_{k=a}^{b-1} q^k = \frac{q^b - q^a}{q - 1}.$$

Bemerkung. Hinter diesem *Trick* verbirgt sich ein mathematischer Formalismus. Was eben beschrieben wurde, nennt sich *Teleskopsumme*. *Teleskopieren* nennt man die Rechenregel:

$$\sum_{k=a}^{b-1} f_{k+1} - \sum_{k=a}^{b-1} f_k = \sum_{k=a}^{b-1} (f_{k+1} - f_k) = f_b - f_a,$$

welche für eine beliebige Folge f_k gilt. In diesem Fall ist $f_k = q^k$. Man muss bestimmte Eigenschaften einer Partialsummen-Folge ausnutzen, um sie in Teleskopform bringen zu können. Das ist aber nicht immer möglich.

Hinter Teleskopsummen verbigt sich nun ein kleiner mathematischer Formalimus. Zunächst definiere die *Vorwärts-Differenz*:

$$\Delta f_k \equiv (\Delta f)_k := f_{k+1} - f_k.$$

Nun gilt:

$$\sum_{k=a}^{b-1} (\Delta f)_k = f_b - f_a.$$

In dieser Form ist die Teleskopsummen-Regel völlig analog zu

$$\int_a^b \frac{\mathrm{d}f(x)}{\mathrm{d}x} \, \mathrm{d}x = \int_a^b \mathrm{d}f(x) = f(b) - f(a).$$

Es gibt weitere Rechenregeln. Man spricht von *Differenzenrechnung* (engl. *finite calculus*). Dieser Kalkül ist unter anderem im Buch »Concrete Mathematics« beschrieben.

Homogene Koordinaten. Ein alternatives Verfahren zur Lösung der Aufgabe zeigen. Was im Gegensatz zu Aufgabe 2.2 jetzt stört, ist der Summand r. Es gibt nun ein Verfahren, um Additionen in Multiplikationen umzuwandeln, das allgemein für die Addition von Vektoren funktioniert.

Zunächst führt man auf folgede Weise homogene Koordinaten ein:

$$x = \begin{bmatrix} x \\ 1 \end{bmatrix}$$
.

Es ergibt sich nun

$$qx \triangleq \begin{bmatrix} qx \\ 1 \end{bmatrix} = \begin{bmatrix} q & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix}$$
 und $x + r \triangleq \begin{bmatrix} x + r \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & r \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix}$.

Beide Operationen zusammen:

$$\begin{bmatrix} qx+r\\1 \end{bmatrix} = \begin{bmatrix} 1 & r\\0 & 1 \end{bmatrix} \begin{bmatrix} q & 0\\0 & 1 \end{bmatrix} \begin{bmatrix} x\\1 \end{bmatrix} = \begin{bmatrix} q & r\\0 & 1 \end{bmatrix} \begin{bmatrix} x\\1 \end{bmatrix}.$$

Die Aufgabe lässt sich nun in der Form $\underline{a}_{n+1} = Q\underline{a}_n$ mit

$$Q := \begin{bmatrix} q & r \\ 0 & 1 \end{bmatrix}, \quad \underline{a}_n := \begin{bmatrix} a_n \\ 1 \end{bmatrix}$$

formulieren, was aber Aufgabe 2.2 entspricht. Die Lösung ist demnach $\underline{a}_n = Q^n \underline{a}_0$. Jetzt muss man einen Weg finden, die Matrixpotenz Q^n zu berechnen. Dazu wird eine Diagonalzerlegung $Q = TDT^{-1}$ vorgenommen. Bei

$$Q^n = QQQ \dots Q = TDT^{-1}TDT^{-1}TDT^{-1} \dots TDT^{-1}$$

können die Faktoren $T^{-1}T$ nämlich gekürzt werden. Man erhält somit

$$Q^n = TD^nT^{-1}.$$

Zunächst bestimmt man die Eigenwerte von Q. Die Eigenwerte sind die Lösungen der Gleichung

$$P(\lambda) = \det(Q - \lambda E) = 0.$$

Man nennt $P(\lambda)$ das charakteristische Polynom.

In diesem Fall ist

$$P(\lambda) = \det \left(\begin{bmatrix} q & r \\ 0 & 1 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right) = \det \left(\begin{bmatrix} q - \lambda & r \\ 0 & 1 - \lambda \end{bmatrix} \right)$$
$$= (q - \lambda)(1 - \lambda) = \lambda^2 - (q + 1)\lambda + q.$$

Die Lösungen dieser quadratischen Gleichung sind

$$\lambda = \frac{1}{2}(q+1 \pm \sqrt{(q+1)^2 - 4q}) = \frac{1}{2}(q+1 \pm \sqrt{(q-1)^2}),$$

also $\lambda_1 = q$ und $\lambda_2 = 1$.

Nun ergeben sich aus dem Eigenwertproblem $Qv = \lambda v$ zwei linear unabhängige Eigenvektoren, die den Eigenraum aufspannen. Diese beiden Eigenvektoren sind die Spaltenvektoren der Transformationsmatrix T.

Aus dem Eigenwertproblem ergibt sich das Gleichungssystem

$$\begin{vmatrix} qx + ry & = & \lambda x \\ y & = & \lambda y \end{vmatrix}.$$

Die untere Gleichung lässt sich umformulieren:

$$y = \lambda y \iff y = 0 \lor \lambda = 1.$$

Gehen wir nun von y=0 aus, so haben wir den Fall $\lambda_1=q$. Für x können wir uns etwas aussuchen und nehmen sinnvollerweise x=1. Natürlich wäre x=0 noch schöner, aber das darf nicht sein, weil beim Eigenwertproblem der Nullvektor verboten ist. Für den zweiten Eigenvektor soll betrachten wir nun den Fall $\lambda_2=1$. Hier ergibt sich die Gleichung qx+ry=x. Wählt man nun y=1, so ergibt sich x=r/(1-q). Somit ist

$$Q = TDT^{-1} = T \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} T^{-1} = \begin{bmatrix} 1 & \frac{r}{1-q} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} q & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & \frac{r}{1-q} \\ 0 & 1 \end{bmatrix}^{-1}.$$

Zur Matrix-Inversion einer 2×2-Matrix verwendet man nun noch die Formel

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}^{-1} = \frac{1}{a_{11}a_{22} - a_{12}a_{21}} \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix}.$$

Es ergibt sich nun

$$Q^{n} = TD^{n}T^{-1} = \begin{bmatrix} 1 & \frac{r}{1-q} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} q^{n} & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & \frac{r}{q-1} \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} q^{n} & \frac{rq^{n}-r}{q-1} \\ 0 & 1 \end{bmatrix}.$$

Es ergibt sich

$$\underline{a}_n = Q^n \underline{a}_0 = \begin{bmatrix} q^n & \frac{rq^n - r}{q - 1} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} A \\ 1 \end{bmatrix} = \begin{bmatrix} Aq^n + \frac{rq^n - r}{q - 1} \\ 1 \end{bmatrix}.$$

Die Lösung ist somit

$$a_n = Aq^n + \frac{rq^n - r}{q - 1}.$$

Jetzt muss man noch die pathologischen Fälle untersuchen und entsprechende Fallunterscheidungen dazu vornehmen. In diesem Fall ist nur q=1 problematisch. \square

Das wesentliche Vorgehen besteht hier also aus zwei Schritten:

- 1. Formulierung des Problems bezüglich homogenen Koordinaten.
- 2. Berechnung von Matrixpotenzen via Eigenzerlegung.

Erzeugende Funktionen. Jetzt kommt noch ein Verfahren. Für eine Folge a_n definiert man die erzeugende Funktion

$$G\{a_n\}(x) := \sum_{k=0}^{\infty} a_k x^k.$$

Man definiert außerdem den Translationsoperator

$$T^h\{a_n\} := a_{n+h}.$$

Der Operator G ist linear:

$$G\{a_n + b_n\} = G\{a_n\} + G\{b_n\},$$

$$G\{ra_n\} = rG\{a_n\}.$$

Es gilt außerdem

$$G\{T^h\{a_n\}\}(x) = G\{a_{n+h}\}(x) = \sum_{k=0}^{\infty} a_{k+h} x^k.$$

Somit gilt

$$x^{h}G\{a_{n+h}\}(x) = \sum_{k=0}^{\infty} a_{k+h}x^{k+h} = G\{a_{n}\}(x) - \sum_{k=0}^{h-1} a_{k}x^{k}.$$

Speziell gilt

$$xG\{a_{n+1}\}(x) = G\{a_n\}(x) - a_0.$$

Durch Polynomdivision findet man zunächst die grundlegende erzeugende Funktion

$$G\{q^n\}(x) = \frac{1}{1-qx} = \sum_{k=0}^{\infty} q^k x^k$$

mit Spezialfall

$$G\{1\}(x) = \frac{1}{1-x} = \sum_{k=0}^{\infty} x^k.$$

Jetzt betrachten wir die Rekursionsgleichung

$$a_{n+1} = qa_n + r.$$

Auf beiden Seiten der Gleichung wendet man den Operator G an:

$$G\{a_{n+1}\}(x) = qG\{a_n\}(x) + rG\{1\}(x).$$

Auf beiden Seiten multipliziert man nun noch mit x und erhält

$$xG\{a_{n+1}\}(x) = qxG\{a_n\}(x) + rxG\{1\}(x).$$

Mit $y = G\{a_n\}(x)$ gilt nun

$$y - a_0 = qxy + \frac{rx}{1 - x}.$$

Umformen nach y bringt

$$y = \frac{a_0}{1 - qx} + \frac{rx}{(1 - x)(1 - qx)}.$$

Jetzt appliziert man den Umkehroperator G^{-1} auf beiden Seiten der Gleichung. Es ergibt sich

$$a_n = a_0 G^{-1} \left\{ \frac{1}{1 - qx} \right\}_n + r G^{-1} \left\{ \frac{x}{(1 - x)(1 - qx)} \right\}_n$$

Beachte nun die Regel

$$G^{-1}{xf(x)}_n = T^{-1}G^{-1}{f(x)}_n = G^{-1}{f(x)}_{n-1}.$$

Für den übrigen Ausdruck muss eine Partialbruchzerlegung vorgenommen werden. Der Ansatz ist

$$\frac{1}{(1-x)(1-qx)} = \frac{A}{1-x} + \frac{B}{1-qx}.$$

Damit ist

$$1 = A(1 - qx) + B(1 - x) = A + B - Aqx - Bx = A + B - (Aq + B)x.$$

Koeffizientenvergleich von linker und rechter Seite bringt A+B=1 und Aq+B=0. Beachte dabei $1=0x^0+1x^1$.

Die Lösungen dieses linearen Gleichungssystems sind A=1/(1-q) und B=q/(q-1). Nun ergibt sich

$$a_n = a_0 q^n + r T^{-1} \underbrace{G^{-1} \left\{ \frac{A}{1-x} + \frac{B}{1-qx} \right\}}_{A+Bq^n}.$$

Hierbei ist

$$A + Bq^{n} = \frac{1}{1 - q} + \frac{q}{q - 1}q^{n} = \frac{q^{n+1} - 1}{q - 1}.$$

Insgesamt ergibt sich

$$a_n = a_0 q^n + r \frac{q^n - 1}{q - 1}. \square$$

2.3 Kombinatorische Probleme

Aufgabe 2.4. In einem euklidischen Raum gibt es zwischen zwei Punkten genau einen kürzesten Weg. Wie viele kürzeste Wege von Knoten (0,0) zu Knoten (m,n) gibt es auf einem diskreten Gitter mit Manhatten-Metrik?

Dieses Heft steht unter der Creative-Commons-Lizenz CC0.