Global Cost Functions in Weighted Constraint Satisfaction

[IJCAI'09, AAAI'10, ICTAI'11, JAIR'12, AAAI'12, ICTAI'12, CJ'14, AIJ'16]

Global Cost Functions in Weighted Constraint Satisfaction

[IJCAI'09, AAAI'10, ICTAI'11, JAIR'12, AAAI'12, ICTAI'12, CJ'14, AIJ'16]

Global Cost Functions in Weighted Constraint Satisfaction

[IJCAI'09, AAAI'10, ICTAI'11, JAIR'12, AAAI'12, ICTAI'12, CJ'14, AIJ'16]

Global Cost Functions in Weighted Constraint Satisfaction

[IJCAI'09, AAAI'10, ICTAI'11, JAIR'12, AAAI'12, ICTAI'12, CJ'14, AIJ'16]

Outline

- 1. Introduction
 - Motivation
 - Weighted constraint satisfaction
 - □ (Soft) global constraints
- 2. Global Cost Functions

- 3. Towards a Library of Global Cost Functions
- 4. Concluding Remarks

- Radio link frequency assignment
 - Given a telecomunication network
 - similar frequency for 2 nearby stations
 - → interference!
 - Goal: assign the best frequency to each station to minimize interference

- Satellite scheduling
 - Spot 5 is an earth observation satellite with 3 on-board cameras
 - Request to take a set of pictures of different importance:
 - Resources, data-bus bandwidth, set-up times, orbiting,
 - Goal: select a subset of compatible pictures with maximum importance

- DNA sequence alignment
 - Given k similar DNA (or protein) sequences, possibly with some noises
 - □ AAGAGGACAAGACCAGGGGACTC
 - □ GAGGACAAGAAACCAAGGGTCAA
 - Goal: find the best alignment
 - □ AAGAGGACAAGA CCA GGGGACTC
 - □ __GAGGACAAGA<mark>A</mark>CCA<mark>A</mark>GGG____TC<mark>AA</mark>

More Applications

- Combinatorial auctions
 - Given a set of goods and a set of bids. Find the best subset of bids to maximize the profits
- Crop allocation
 - Determine the crop growing sequence in a piece of farmland to satisfy crop rotation requirements, farmers' preferences and so on
- And many more ...

- Many real-life combinatorial problems involves costs
 - Restriction Violation → COST!
 - Preference → COST!
- We usually want a solution with the least cost
 - Least Violated
 - Most Preferred
- Soft Constraints or Cost Functions!
 - Assignments → COST

- Handle soft constraints
 - → Soft constraint frameworks
 - Fuzzy CSPs
 - Probabilistic CSPs
 - Weighted CSPs (WCSPs)
 - Semiring CSPs
 - **...**

Soft Constraints vs Cost Functions

□ Given hard constraint $c(x_1,...,x_n)$ and a violation measure.

- Soft constraint $c_{soft}(x_1,...,x_n,z)$, where z represents the cost of tuple $(x_1,...,x_n)$ [Petit, van Hoeve, Walsh, ...]
- Cost function $c_{cost}(x_1,...,x_n)$ is directly the cost of tuple $(x_1,...,x_n)$ [Schiex et al]

Weighted Constraint Satisfaction

Variables:

$$X = \{x_1, x_2, x_3\}$$

Domains:

$$D(x_1) = D(x_2) = D(x_3) = \{a, b\}$$

Cost Functions:

- Tuple → cost
- $C_{\emptyset} = 0$

□ Upper bound : *k*

$$k = 4$$

X ₁	C_1
а	0
b	0

<i>X</i> ₂	C_2
а	0
b	4

<i>X</i> ₃	<i>C</i> ₃
а	2
b	1

X ₁	<i>X</i> ₂	<i>X</i> ₃	C ₁₂₃
а	а	а	1
а	а	b	1
а	b	а	0
а	b	b	0
Ь	а	а	1
Ь	а	b	2
b	b	а	2
Ь	b	b	3

Cost Function Networks (CFNs)

Variables:

$$X = \{x_1, x_2, x_3\}$$

Domains:

$$D(x_1) = D(x_2) = D(x_3) = \{a, b\}$$

Cost Functions:

- Tuple → cost
- $C_{\emptyset} = 0$

□ Upper bound : *k*

$$k = 4$$

X ₁	C_1
а	0
b	0

<i>X</i> ₂	C_2
а	0
b	4

<i>X</i> ₃	C_3
а	2
b	1

X ₁	<i>X</i> ₂	<i>X</i> ₃	C ₁₂₃
а	а	а	1
а	а	b	1
а	b	а	0
а	b	b	0
b	а	а	1
b	а	b	2
Ь	b	а	2
b	b	b	3

Cost Function Networks = min(a+b, k)

$$a \oplus b$$
= $min(a+b, k)$

Cost of tuple $(a,a,a) = C_{\emptyset} \oplus C_1(a) \oplus C_2(a) \oplus C_3(a) \oplus C_{123}(a,a,a)$

Solution: cost < k and minimum

\mathbf{C}	-0	1	_	
Uø	- 0	K	_	4

<i>X</i> ₁	C ₁		X ₁	<i>X</i> ₂	<i>x</i> ₃	C ₁₂₃	
а	0		а	а	а	1	
b	0		а	а	b	1	
X ₂	C ₂		а	b	-a	0	
а	0		а	b	b	0	
b	4		b	а	а	1	
		-]	b	<u>a</u>	b	2	
X ₃	C ₃		b	b	а	2	
а	2						
b	1		b	b	b	3	

X ₁	<i>X</i> ₂	<i>X</i> ₃	Cost
			of the
			tuple
а	a	3	3
а	a	b	2
a	b	а	4
а	b	b	4
b	а	а	3
b	а	b	3
b	b	а	4
b	b	b	4 15

Search for Solutions

- Solved by branch-andbound searching
 - DFS with keeping the current best in k and searching for next best
- But search tree is too large

Consistency Algorithms

 Classical consistencies are notions of wellformedness (or cleaniness)

- Enforcement algorithms
 - Equivalence-preserving transformation
 - Extract implicit information and make them explicit, e.g. identifying values that cannot be part of any solution
- Prune search space and speed up search

Consistencies for CFNs

- Aim at redistributing costs among cost functions
 - Increase C_Ø
 - Remove infeasible values
- Better bounds and smaller search space

Node Consistency (NC*) [Larrosa et al., 02]

- $C_{\varnothing} \oplus C_i(v) < k$
- $\exists v \in D(x_i), C_i(v) = 0$

- □ AC*, FDAC*, EDAC* [Larrosa *et al.*, 02,03,04,05]
 - Deals with unary and binary constraints
 - Stronger than NC*
 - Detect more infeasible values
 - \Box Give higher C_\varnothing
- By running consistency enforcement algorithms on each search node, the search space can be greatly reduced

- AC*, FDAC* and EDAC* can be generalized for non-binary cost functions, but ...
 - Solvers store constraints as tables
 - Efficient on binary and ternary constraints only
 - □ Time ↑ exponentially as # of variables ↑
- Can we bring the concept of global cost functions into CFNs?

Global Constraints

- What are global constraints?
 - Constraints with special semantics capturing common sub-substructures in many problems

$$allDifferent([x_1,...,x_n]) \leftrightarrow \bigwedge_{i\neq j} (x_i \neq x_j)$$

- Varying number of arguments and usually of high arity
- Usually with specialized polynomial time algorithms to enforce consistency in CSPs

Another Global Constraint Example

- Global Cardinality (GCC)
 - ullet gcc([$x_1,...,x_n$], [$v_1,...,v_n$], [$c_1,...,c_n$])
 - $c_i = \sum_{j=1..n} (x_j = v_i)$
- E.g. gcc(x, [1,2], [2,1]) x = [1,1,2,3] ✓ x = [1,2,3,4] ×
- Global constraints are important for modeling real life problems. Some even argue that global constraints are the key to the success of CP!!

Global Cost Functions

Global Cost Functions

- Return violation cost
- E.g.: soft_allDifferent^{dec} [Petit et al., 01]
 - □ Return # of disequalities violated in $\{x_i \neq x_i \mid i > j\}$

allDifferent(a,c,c,c)

 $a \neq c \land a \neq c \land a \neq c \land c \neq c \land c \neq c \land c \neq c$

soft_allDifferent^{dec}(a,c,c,c) returns 3

Global Cost Functions

- Soft as Hard: Soft (global) constraints are used in constraint optimization [Petit et al. 00, Beldiceanu and Petit 04]
 - Extra weight variables
 - Aggregation of weight variables in objective
 - B&B with standard constraint propagation
- CFNs vs Soft as Hard

How about incorporating global cost functions into CFNs?

Difficulties

- In current CFN solvers, cost functions are only represented as tables
- Consistency enforcement will have to check and modify an exponential number of tuples in case of high arity constraints
- Does there exist a better representation rather than tables for global cost functions in CFNs?

Outline

- 1. Introduction
- 2. Global Cost Functions in CFNs
 - ☐ GAC*
 - FDGAC*
 - Weak EDGAC*
 - Tractable Projection-safety
- 3. Towards a Library of Global Cost Functions
- 4. Concluding Remarks

Outline

- 1. Introduction
- 2. Global Cost Functions in CFNs
 - ☐ GAC*
 - FDGAC*
 - Weak EDGAC*
 - Tractable Projection-safety
- 3. Towards a Library of Global Cost Functions
- 4. Concluding Remarks

GAC* [Copper and Schiex, 04]

- NC*
- $\forall v \in D(x_i)$ and a cost function C_S , \exists tuple t with $t[x_i] = v$, $C_S(t) = 0$

$$k = 4$$
 $C_{\emptyset} = 0$

X ₁	C_1	
а	0	
b	0	1
		•

X ₁	<i>X</i> ₂	<i>X</i> ₃	C ₁₂₃
а	а	а	1
а	а	b	0
а	b	а	0
а	b	b	1
b	а	а	-1 0
b	а	b	2 1
b	b	а	-2 1
b	b	b	3 2

If $t[x_2] = b$, $C_{123}(t) \ge 1$

- Two steps:
 - 1) Compute $min\{C_S(t)|t[x_i]=v\}$
 - 2) Project from C_S to C_i
- We want:
 - Step 1:
 - efficient <</p>
 - Step 2:
 - efficient
 - maintain efficiency of step 1

- □ Step 1: flow-based [W.-J. van Hoeve et al., 2006]
 - - □ Minimum cost of the maximum flow = $min\{C_S(t)\}$
 - □ Polynomial time to compute $min\{C_S(t)\}$

- Two steps:
 - Compute $min\{C_S(t)|t[x_i] = v\}$
 - → Efficient for flow-based constraints
 - Project from C_S to C_i
 - **→** ????
- Two problems for step 2

1. Modify exponentially many tuples

k = 4 $C_{\emptyset} = 0$

X ₁	C ₁	
а	0	
b	0	1
		•

X ₁	X ₂	X ₃	C ₁₂₃
а	а	а	1
а	а	b	0
а	b	a	0
а	b	b	1
b	а	а	-1 0
b	а	b	2 1
b	b	а	2 1
b	b	b	3 2

If $t[x_2] = b$, $min\{C_{123}(t)\} = 1$

2. The constraint is modified

X ₁	X ₂	X ₃	C ₁₂₃
а	а	а	1
а	а	b	0
а	b	а	0
а	b	b	1
b	а	а	1
b	а	b	2
b	b	а	2
b	b	b	3

projection

<i>X</i> ₁	X ₂	X ₃	C ₁₂₃
а	а	а	1
а	а	b	0
а	b	а	0
а	b	b	1
b	а	а	0
b	а	b	1
b	b	а	1
b	b	b	2

Flow-based

projection

Flow-based?????

Tractable Projection Safety [IJCAI'09, JAIR'12]

- To deal with complexity problem
 - → Tractable projection-safety!
- A constraint C_S is tractable projection-safe:
 - C_S and C'_S are tractable, where C'_S is the new constraints formed by a series of valid projections (or extensions) from C_S
- Tractability is the basis for designing efficient and incremental consistency enforcing algorithm

Tractable Projection Safety by Flow

- A soft constraint is flow-based projectionsafe if
 - C_s is flow-based;
 - Each tuple in C_s maps to a unique flow
 - Each variable assignment maps to a unique set of edges in the flow network
- A consequence is that projection can be done in constant time!

Flow-based Projection-Safety

Theorem

Assume C_S is flow-based projection-safe. After projecting from C_S to C_{ir} C_S is still flow-based projection-safe.

- → Those constraints are tractable projection-safe w.r.t. the given three conditions.
- Flow-based projection-safety gives
 - sufficient conditions for tractable projection-safety
 - constant time projection

GAC*: Flow-based Projection-Safety

Theorem

If C_S is flow-based projection-safe, enforcing GAC* can be done in polynomial time in the size of the network

FDGAC* [IJCAI'09, JAIR'12]

□ FDAC*[Larrosa et al., 03] is stronger than AC*

- □ Generalization of FDAC* → FDGAC*
- □ Theorem

 FDGAC* is strictly stronger than GAC*

FDGAC*

- Enforcing FDGAC* requires extension
 - Reverse operation of projection
 - □ Projection: C_S → Unary constraints
 - Extension: Unary constraints $\rightarrow C_S$
 - Results for projection can be applied to extension!

FDGAC*

Theorem

If C_S is flow-based projection-safe, enforcing FDGAC* can be done in polynomial time in the size of the network

- But more expensive than that of GAC*...
- Can we have a consistency even stronger than FDGAC*?

Generalizing EDAC*

- EDAC* [de Givry et al., 05] is stronger than FDAC*, but ...
- Inherent limitation of EDAC*, especially prominent when adapted for non-binary constraints
 - → may cause infinite looping!

Weak EDGAC* [AAAI'10, JAIR'12]

To solve this problem, we generalize EDAC* to weak EDGAC* through costproviding partitions

Theorem

Weak EDGAC* is strictly stronger than FDGAC*, GAC* for any cost-providing partitions

Weak EDGAC* [AAAI'10, JAIR'12]

□ Theorem 4

If C_S is flow-based projection-safe, enforcing weak EDGAC* can be done in polynomial time in the size of the network

But it is more expensive to enforce than FDGAC*

Summary

Different consistencies we have discussed:

Outline

1. Introduction

2. Global Cost Functions in CFNs

- 3. Towards a Library of Global Cost Functions
 - C.f. Global Constraint Catalog [Beldiceanu and Carlsson, 03] with over 400 global constraints
- 4. Concluding Remarks

Towards a Library of Global Cost Functions

Toulbar2 = Toulouse + Barcelona

Theorem

The following global cost functions are flow-based projection-safe:

- soft_allDifferent^{var} and soft_allDifferent^{dec}
- soft_gccvar and soft_gccval
- soft_samevar
- soft_regular^{var} and soft_regular^{edit}

Beyond Flow-Based Projection-Safe

Achieving tractable projection-safety other than using flow [AAAI'12, AIJ'16]

■ How about min cost computation using LP? [ICTAI'11, ICTAI'12, CJ'14]

Polynomially DAG-Filterable [AAAI'12, AIJ'16]

- Theoretical characterizations of projections
- Polynomially DAG-Filterable Cost Functions are tractable projection-safe
- Efficient min cost computation using dynamic programming
- Soft variants of Among, Regular,
 Grammar, Max and Min

LP-based Consistencies [ICTAI'{11,12}, CJ'14]

- "NP-hard" global cost functions?
 - Difficult in nature: Soft variants of SlidingSum,
 eGCC, Disjunctive and Cumulative
 - Conjunctions of global cost functions: flowbased projection-safe cost functions
- Approximated forms of consistencies
- Polytime (Integral) Linear Projection-Safety: efficient approximated min cost computation using linear relaxation

Outline

1. Introduction

2. Global Cost Functions in CFNs

- 3. Towards a Library of Global Cost Functions
- 4. Concluding Remarks

Contributions

- A new algorithmic framework (tractable projection-safety) for designing and implementing global cost functions
- Four different consistencies
 - 1. Strong ØIC (new!)
 - 2. GAC* (we make it practical!)
 - 3. FDGAC* (new!)
 - 4. Weak EDGAC* (new!)
- Extensive experimentations to verify and demonstrate efficiency and practicality

An Invitation

- Fill up the Global Cost Functions Catalog
- New data structures and algorithms
 - Flow graph and min cost flow
 - Polynomially sized DAG and dynamic programming
 - Matroids and greedy algorithms??
- New notions of tractable projection-safety

End

Q & A