Lojik Tasarım

Ders 11

Kaynak:

M.M. Mano, M.D. Ciletti, "Digital Design with An Introduction to Verilog HDL"

Flip-Flop Uyarma Tabloları

Karakteristik tablolar flip-flopların çalışmasına ilişkin analiz ve tanımlar için kullanışlıdır. Girişler ve şimdiki durum bilindiğinde bir sonraki durumu bu tablo belirler. Tasarım süreci boyunca biz genellikle şimdiki durumdan sonraki duruma geçişi biliriz ve gerekli geçişi sağlayacak flip-flop giriş koşullarını bulmak isteriz. Bu nedenle, verilen bir durum değişimi için gerekli girişleri listeleyen bir tabloya ihtiyaç vardır. Bu listeye *uyarma tablosu* denir.

		<i>JK</i> Fli	p-Flobu			RS Flip-	-Flobu
J	K	Q(t + 1))	S	R	Q(t + 1)	1)
0	0	Q(t)	Değişim yok	0	0	Q(t)	Değişim yok
0	1	0	Yeniden başlatma	0	1	0	Yeniden başlatma
1	0	1	Kurma	1	0	1	Kurma
1	1	Q'(t)	Tümleyen	1	1	?	Tanımsız
D Flip-Flobu D $Q(t+1)$						T Flip-l $Q(t+1)$	*
_	Σ.	(1)				+~· ·	
0	1 0		Yeniden başlatma	0		Q(t)	Değişim yok

Flip-Flop Uyarma Tabloları

TABLO 6-10 Flip-Flop Uyarma Tabloları

Q(t)	Q(t+1)	S	R	 Q(t)	Q(t+1)	J	K
0	0	0	X	0	0	0	X
0	1	1	0	0	1	1	\boldsymbol{X}
1	0	0	1	1	0	X	1
1	1	X	0	 1	1	X	0
	() DG				/1 \ TT7	-	

(a) *RS* (b) *JK*

Q(t)	Q(t+1)	D
0	0	0
0	1	1
1	0	0
1	1	1

(c) D

Q(t)	Q(t+1)	T
0	0	0
0	1	1
1	0	1
1	1	0

(b) *T*

Karakteristik Tablolar ve Uyarma Tabloları

TABLO 6-3 Flip-Flop Karakteristik Tabloları

		JK Flip-	·Flobu	_	RS Flip-Flobu				
J	K	Q(t+1)			S	R	Q(t +1)		
0	0	Q(t)	Değişim yok	_	0	0	Q(t)	Değişim yok	
0	1	0	Yeniden başlatma		0	1	0	Yeniden başlatma	
1	0	1	Kurma		1	0	1	Kurma	
1	1	Q'(t)	Tümleyen		1	1	?	Tanımsız	
				-				-	
	i	D Flip-Flob	1	_			T Flip-Fl	obu	
D	Q	(t+1)			T		Q(t+1)		
0	0		Yeniden başlatma	_	0		Q(t)	Değişim yok	
1	1		Kurma		1		Q'(t)	Tümleyen	

TABLO 6-10 Flip-Flop Uyarma Tabloları										
Q(t)	Q(t+1)	S	R		Q(t)	Q(t + 1)	J		K	
0	0	0	X		0	0	0		X	
0	1	1	0		0	1	1		\boldsymbol{X}	
1	0	0	1		1	0	X		1	
1	1	X	0		1	1	X		0	
	(a) RS					(b) <i>JK</i>				
Q(t)	Q(t+1)	D			Q(t) $Q(t +$	1)	T		
0	0	0				0		0	'	
0	1	1			0	1		1		
1	0	0			1	0		1		
1	1	1			1	1		0		
	(c) <i>D</i>					(b) <i>T</i>				

Tasarım Yöntemi

- 1. Devre davranışı sözel olarak belirlenir. Buna bir durum diyagramı, bir zamanlama diyagramı veya diğer gerekli bilgiler eklenebilir.
- 2. Devre hakkında verilen bilgilerden durum tablosu elde edilir.
- 3. Ardışıl devre durumların sayısından bağımsız bir giriş-çıkış iliş-kisiyle tanımlanıyorsa, durum sayısı durum azaltma yöntemleriyle düşürülebilir.
- **4.** 2. veya 3. adımdan elde edilen durum tablosu harf sembollerini içeriyorsa her duruma bir ikili değer atanır.
- 5. Gereken flip-flop sayısı bulunur ve her birine bir harf sembolü atanır.
- 6. Kullanılacak flip-flop tipleri belirlenir.
- 7. Durum tablosundan devre uyarma ve çıkış tabloları belirlenir.
- 8. Diyagram veya diğer basitleştirme yöntemleri kullanılarak devre çıkış fonksiyonları veya flip-flop giriş fonksiyonları türetilir.
- 9. Lojik devre çizilir.

Şekilde verilen durum diyagramına ait lojik devreyi JK tipi flip-floplar kullanarak tasarlayınız.

ŞEKİL 6-23 Tasarım örneği için durum diyagramı

TABLO 6-11 Durum Tablosu

			Sonraki durum					
Şimdiki durum		<i>X</i> =	= 0		x = 1			
A	В		A	$\boldsymbol{\mathit{B}}$		A	В	
0	0		0	0		0	1	
0	1		1	0		0	1	
1	0		1	0		1	1	
1	1		1	1		0	0	

TABLO 6-12 Uyarma Tablosu

Kombinezonal Devre Girişleri						Kombinezonal Devre Çıkışları				
Şimdik	i durum	Giriş	Sonral	Sonraki durum			Flip-flop girişleri			
\overline{A}	B	X	A	В		JA	KA	JB	KB	
0	0	0	0	0		0	X	0	X	
0	0	1	0	1		0	\boldsymbol{X}	1	X	
0	1	0	1	0		1	\boldsymbol{X}	\boldsymbol{X}	1	
0	1	1	0	1		0	X	\boldsymbol{X}	0	
1	0	0	1	0		X	0	0	X	
1	0	1	1	1		X	0	1	X	
1	1	0	1	1		X	0	\boldsymbol{X}	0	
1	1	1	0	0		\boldsymbol{X}	1	X	1	

TABLO 6-12 Uyarma Tablosu

Kombinezonal Devre Girişleri							Kombinezonal Devre Çıkışları			
Şimdiki	i durum	Giriş		Sonrak	i durum Flip-flop girişi			girişle	ri	
\overline{A}	\overline{B}	X	-	\overline{A} B			JA	KA	JB	KB
0	0	0		0	0		0	X	0	X
0	0	1		0	1		0	X	1	X
0	1	0		1	0		1	X	X	1
0	1	1		0	1		0	X	X	0
1	0	0		1	0		X	0	0	X
1	0	1		1	1		X	0	1	X
1	1	0		1	1		X	0	X	0
1	1	1		0	0		X	1	X	1

 $KB = (A \oplus x)'$

ŞEKİL 6-25 Kombinezonal devre diyagramları

JB = x

Aşağıda verilen ardışıl devreyi tasarlayınız

$$DA(A, B, x) = \sum (2, 4, 5, 6)$$

$$DB(A, B, x) = \sum (1, 3, 5, 6)$$

$$y(A, B, x) = \sum (1, 5)$$

$$DA(A, B, x) = \sum (2, 4, 5, 6)$$

$$DB(A, B, x) = \sum (1, 3, 5, 6)$$

$$y(A, B, x) = \sum (1, 5)$$

TABLO 6-13 D Flip-floplarıyla Tasarım İçin Durum Tabloları

Şimdik	i durum	Giriş	Sonraki	i durum	Çıkış
A	В	x	\overline{A}	В	y
0	0	0	0	0	0
0	0	1	0	1	1
0	1	0	1	0	0
0	1	1	0	1	0
1	0	0	1	0	0
1	0	1	1	1	1
1	1	0	1	1	0
1	1	1	0	0	0

TABLO 6-13 *D* Flip-floplarıyla Tasarım İçin Durum Tabloları

Şimdik	i durum	Giriş	Sonrak	i durum	Çıkış
\overline{A}	В	X	\overline{A}	В	y
0	0	0	0	0	0
0	0	1	0	1	1
0	1	0	1	0	0
0	1	1	0	1	0
1	0	0	1	0	0
1	0	1	1	1	1
1	1	0	1	1	0
1	1	1	0	0	0

$$DB = A'x + B'x + ABx'$$

y = B'x

ŞEKİL 6-27

Giriş fonksiyonları ve y çıkışına ilişkin diyagramlar

ŞEKİL 6-28D flip-floplu ardışıl bir devreye ilişkin lojik diyagram

Sayıcılar (Counters)

- Asenkron (Eşzamansız) Sayıcılar
 - Saat (clock) işareti tüm flip-floplara aynı anda uygulanmaz
- Senkron (Eşzamanlı) Sayıcılar
 - Saat (clock) işareti tüm flip-floplara aynı anda uygulanır

Asenkron Sayıcılar

- Bu bölüme kadar senkron sistemlerin tasarımıyla ilgili örnekler çözülmüştür.
- Asenkron ve senkron sistemlerin tasarlanmasında farklı yöntemler kullanılmaktadır.
- Asenkron sistemlerin tasarlanması konusu ilerleyen derslerde ele alınacaktır.
- Bu bölümde tasarımı yapılmış asenkron bir sistem (asenkron sayıcı) örneğinin çalışması üzerinde durulacaktır.

T Tipi flip-floplar kullanılarak oluşturulmuş asenkron sayıcı

T Tipi flip-floplar kullanılarak oluşturulmuş asenkron sayıcı

- T Tipi flip-floplar kullanılarak oluşturulmuş asenkron sayıcı
- (Zaman diyagramını siz tamamlayınız)

T Tipi flip-floplar kullanılarak oluşturulmuş 0-5 asenkron sayıcı

