

Fully Exploit Hierarchical Structure for Self-Supervised Taxonomy Expansion

By Suyuchen Wang, Ruihui Zhao, Xi Chen, Yefeng Zheng, and Bang Liu To Appear in The Web Conference 2021 (WWW'21)

2021.02.27

By 王苏羽晨

Introduction to Taxonomy Expansion

Amazon Product Taxonomy

Medical Subject Headings(MeSH)

Definition

 Taxonomy: A hierarchical structure modeling "is-A" or hypernymy relations

Problem

- Taxonomy curated by domain experts is time-consuming
- Some taxonomies needs to be updated continuously
- Low coverage & inconsistency of taxonomy will hurt the performance of downstream applications

Solution

- Accords to the rules while reducing human effort: Expand a pre-defined seed taxonomy rather than construct from scratch
- Updating taxonomy in a system: Concept mining → taxonomy expansion → item tagging in a row

encent Jarvis 2/22

TaxoExpan: Self-supervised Taxonomy Expansion with Position-Enhanced Graph Neural Network (WWW '20)

Modeling

- A mere node attaching algorithm for general purpose taxonomy
- Taxonomy modeled as a Bayesian network, do not have to be a tree
- Features of anchor node captured by Positional GAT on "egonet" containing its direct parents and children
- Score by a matching module, whose input is concatenation of query representation (embedding) & anchor representation (GAT results)

• Dataset constructed with self-supervision

encent Jarvis 3/22

STEAM: Self-supervised Taxonomy Expansion with Mini-paths (SIGKDD '20)

Modeling

- A mere node attaching algorithm for general purpose taxonomy
- Taxonomy modeled as a tree (not a Bayesian network)
- Extract distributed feature by Positional GAT with BERT embedding as input
- Extract contextual feature by weighted-summing the LSTM outputs of the dependency trees of queryanchor co-occurrence in corpus
- Extract lexical-syntactic feature by measuring a series of lexical relationship features
- Loss is the sum of aggregated loss containing 1) classifier loss, 2) single classifier loss and 3) cross-classifier consistency loss

Dataset constructed with self-supervision

encent Jarvis 4/22

Overall Problems in Previous Solutions

Tea Ground Coffee Bartlett Pears Comice Pears Figs

- Coarsely designed lexical and syntactical features: only extract superficial features in node names
- Deficient usage of other text data source: no definition texts are properly used in previous methods
- Insufficient mining of tree structure: learn hypernym detection of a single node, not construction of a hierarchy
- Ignorance of cross-level relationships: the nodes on the right path in taxonomy should share similarity
- High time complexity: need to compare all possible nodes to achieve the result ranking

encent Jarvis 5/22

Seed Taxonomy

New Query Term

encent Jarvis 6/22

Motivation of Our Model

Term's surface name is insufficient for hypernymy detection Contextual pattern in large corpora includes noice

Motivation of Our Model

Hypernymy relations from parent-child relations
 + similarity relations from sibling relations = tree coherence

fencent Jarvis 11/22

Motivation of Our Model

From "is-A" relation to "The most accurate is-A" relation needs comparison with parent/children

Encent Jarvis 12/22

Deconstruction of the Taxonomy Expansion Task

Motivation and Novelties

Major: New approaches and new goal

Others: New Implementations

Node pair relation detection

Structure modeling

encent Jarvis 14/22

Model Design — Description Generation

"Adaptation to Climate Change"

algorithm based on DP and WordNet

"adaptation to climate change is the process of adapting to something (such as environmental conditions) to a change in the world's climate"

Model Design — Hypernymy Detection Module

"oolong is Chinese tea leaves that have been partially femented…"

DistilBERT for hypernymy detection

"tea is a tropical evergreen shrub or small tree extensively cultivated…"

Model Design — Coherence Modeling Module

Tencent Jarvis 17/22

Model Design - Pathfinder & Stopper

Tree structure enables dual evaluation:

Pathfinder (Path evaluation)

 S_p for path evaluation (hypernymy relation?)

Stopper (Level evaluation + comparison)

 S_f for suggestion as parent (child may be better) S_c for level evaluation (suitable level?) S_b for suggestion as children (parent may be better)

Model Design - Pathfinder & Stopper

Fitting score integrating Path + Level, Parent + Children Selection

Path Selection

Level Selection

Parent's Selection

Child's Selection

Tencent Jarvis

Results of Main Experiments and Ablation Studies

	SemEval-16 Task 13 - Environment		SemEval-16 Task 13 - Science			SemEval-16 Task 13 – Food			
Methods	Асс	MRR	Mean Wu-Palmer	Асс	MRR	Mean Wu-Palmer	Acc	MRR	Mean Wu-Palmer
BERT+MLP	11.1	21.5	47.9	11.5	15.7	43.6	10.5	14.9	47.0
TAXI (ACL '16)	16.7	-	44.7	13.0	-	32.9	18.2	-	39.2
HypeNet (ACL '16)	16.7	23.7	55.8	15.4	22.6	50.7	20.5	27.3	63.2
TaxoExpan (WWW '20)	11.1	32.3	54.8	27.8	44.8	57.6	27.6	40.5	54.2
STEAM (SIGKDD '20)	36.1	46.9	69.6	36.5	48.3	68.2	34.2	43.4	67.0
HEF	55.3	65.3	71.4	53.6	62.7	75.6	47.9	55.5	73.5

SemEval-16 Task 13 Environment	Асс	MRR	Mean Wu-Palmer
HEF	55.3	65.3	71.4
- WordNet Descr.	41.5	55.3	62.6
- Ego-tree + Egonet	45.3	60.6	69.9
- Relative Level Emb.	49.1	59.2	60.9
- Absolute Level Emb.	49.1	60.6	68.4
Stopper Only	52.8	62.5	68.7
Pathfinder + Current Only	50.9	62.1	66.8
Current Only	41.5	54.7	58.6

	Environment	Science	Food
Nodes	261	429	1486
Edges	260	428	1485
Depth	6	8	8

Acc = Hit@1 =
$$\frac{1}{n}\sum_{i=1}^{n}\mathbb{I}(y_i = \hat{y_i})$$

$$MRR$$
 (Mean Reciprocal Rank) = $\frac{1}{n}\sum_{i=1}^{n}\frac{1}{\{rank(y_i)\}}$

Mean Wu-Palmer Similarity =
$$\frac{1}{n} \sum_{i=1}^{n} \frac{2 \times depth(LCA(y_i, \widehat{y_i}))}{depth(y_i) + depth(\widehat{y_i})}$$

Case Studies and Future Works

Query (q)	Ground Truth (\hat{p})	Scores	Prediction (p)	Scores
q: paddy is rice in the husk either gathered or still in the field	\hat{p} : rice is grains used as food either unpolished or more often polished	$S_p = 0.9997$ $S_c = 0.4599$	p: rice is grains used as food either unpolished or more often polished	$S_p = 0.9997$ $S_c = 0.4599$
	parent(\hat{p}): starches is a commercial preparation of starch that is used to stiffen textile fabrics in laundering	$S_f = 0.9755$	parent(p): starches is a commercial preparation of starch that is used to stiffen textile fabrics in laundering	$S_f = 0.9755$
$F(\hat{p}, q) = 0.4483$ \hat{p} 's Ranking: 1	$c_{\hat{p}}^*$: white rice is having husk or outer brown layers removed	$S_b = 0.9995$	c_p^* : white rice is having husk or outer brown layers removed	$S_b = 0.9995$
q: fish meal is ground dried fish	\hat{p} : feed is food for domestic livestock	$S_p = 0.9993$ $S_c = 0.3169$	p: feed is food for domestic livestock	$S_p = 0.9993$ $S_c = 0.3169$
used as fertilizer and as feed for domestic livestock	parent(\hat{p}): food is any substance that can be metabolized by an animal to give energy and build tissue	$S_f = 0.9984$	parent(p): food is any substance that can be metabolized by an animal to give energy and build tissue	$S_f = 0.9984$
$F(\hat{p}, q) = 0.3158$ \hat{p} 's Ranking: 1	$c_{\hat{p}}^*$: mash is mixture of ground animal feeds	$S_b = 0.9988$	c_p^* : mash is mixture of ground animal feeds	$S_b = 0.9988$
q: bourguignon is reduced red	\hat{p} : sauce is flavorful relish or dressing or topping served as an accompaniment. \cdots	$S_p = 0.0002$ $S_c = 0.0001$	p: wine is a red as dark as red wine	$S_p = 0.9997$ $S_c = 0.1399$
wine with onions and parsley and thyme and butter	parent(\hat{p}): condiment is a preparation (a sauce or relish or spice) to enhance flavor or enjoyment	$S_f = 0.0004$	parent(p): alcohol is any of a series of volatile hydroxyl compounds that are made from hydrocarbons by distillation	$S_f = 0.9812$
$F(\hat{p}, q) = 1e - 11$ \hat{p} 's Ranking: 328	$c_{\hat{p}}^*$: bercy is butter creamed with white wine and shallots and parsley	$S_b = 0.9997$	c_p^* : red wine is wine having a red color derived from skins of dark-colored grapes	$S_b = 0.8784$
q: hot fudge sauce is hot thick	\hat{p} : chocolate sauce is sauce made with unsweetened chocolate or cocoa···	$S_p = 0.9471$ $S_c = 9e - 5$	<i>p</i> : sauce is flavorful relish or dressing or topping served as an accompaniment	$S_p = 0.9995$ $S_c = 0.0172$
chocolate sauce served hot	parent(\hat{p}): sauce is flavorful relish or dressing or topping served as an accompaniment \cdots	$S_f = 0.9617$	parent(p): condiment is a preparation (a sauce or relish or spice) to enhance flavor or enjoyment	$S_f = 0.9888$
$F(\hat{p}, q) = 6e - 6$ \hat{p} 's Ranking: 20	c* _p : None	$S_b = 0.0700$	c_p^* : lyonnaise sauce is brown sauce with sauteed chopped onions and parsley	$S_b = 0.9995$

^{3&}lt;sup>rd</sup>: Bourguignon is also a kind of sauce for cooking meat. The description is incorrect.

What's Next?

No WordNet descriptions for Chinese?: Discover approaches for generating useful descriptions suggesting hypernymy relations for Chinese concepts

New ways for integrating larger corpus: Find ways to use larger corpus or query logs to boost the performance of hypernymy detection / coherence modeling

...and to fix the bad cases:

Better description generation algorithm: Develop a DP+ML algorithm to generate domain-related descriptions for terms

Backward scores for leaf node's inexistent child: New approaches for obtaining the backward scores

Some useful links

Our paper: https://arxiv.org/abs/2101.11268

An awesome list for taxonomy-related research:

https://github.com/mickeystroller/awesome-taxonomy

⁴th: Leaf nodes' backward scores are assigned to be a constant. The backward score assignment is incorrect.

Thanks