Seminar 5 Decizie cu mai multe eșantioane

- 1. Fie detecția unui semnal $s_1(t) = 3\sin(2\pi f_1 t)$ care poate fi prezent (ipoteza H_1) sau absent ($s_0(t) = 0$, ipoteza H_0). Semnalul este afectat de zgomot gaussian $\mathcal{N}(0, \sigma^2 = 1)$. Valoarea lui $f_1 = 1$. La recepție se iau două eșantioane la momentele de timp t_1 și t_2 .
 - a. Care sunt cele mai bune moment de eșantionare t_1 și t_2 pentru a maximiza performanțele detecției(depending on f_1)? Dar cele mai nepotrivite momente de timp?
 - b. La recepție se iau citesc două eșantioane cu valorile $\{1.1, 4.4\}$, la momentele de timp $t_1 = 0.125$ și $t_2 = 0.625$. Ce decizie se ia cu criteriul Maximum Likelihood?
 - c. În aceleași condiții, cer decizie se ia cu criteriul Minimum Probability of Error, dacă $P(H_0) = 2/3$ and $P(H_1) = 1/3$?
 - d. În aceleași condiții, cer decizie se ia cu criteriul Minimum Risk, dacă $P(H_0) = 2/3$ and $P(H_1) = 1/3$, și $C_{00} = 0$, $C_{10} = 10$, $C_{01} = 20$, $C_{11} = 5$?
 - e. Dacă la recepție se ia un al treilea eșantion la momentul $t_3=0.5$, vor crește performanțele detecției?
- 2. Un semnal poate avea două valori, 0 (ipoteza H_0) sau 6 (ipoteza H_1). Semnalul este afectat de zgomot gaussian $\mathcal{N}(0, \sigma^2 = 1)$. La recepție se iau 5 eșantioane, cu valorile $\{1.1, 4.4, 3.7, 4.1, 3.8\}$.
 - a. Ce decizie se ia cu criteriul Maximum Likelihood?
 - b. Ce decizie se ia cu criteriul Minium Probability of Error, dacă $P(H_0) = 2/3$ and $P(H_1) = 1/3$?
 - c. Ce decizie se ia cu criteriul Minimum Risk, dacă $P(H_0) = 2/3$ and $P(H_1) = 1/3$, and $C_{00} = 0$, $C_{10} = 10$, $C_{01} = 20$, $C_{11} = 5$?
 - d. Care e intervalul de valori posibile ale lui $P(H_0)$ pentru ca decizia cu criteriul MPE este D_0 ?

- 3. Un semnal transmis poate avea forma $s_0(t)$ sau $s_1(t)$, conform figurilor. La recepție se primește semnalul r(t) reprezentat în figură. Semnalul este afectat de zgomot gaussian $\mathcal{N}(0, \sigma^2 = 2)$. Se consideră $P(H_0) = \frac{1}{4}$ și $P(H_0) = \frac{3}{4}$. Găsiți decizia conform criteriului MPE, în două cazuri distincte:
 - a. folosind trei eșantioane luate la momentele de timp $t_1=0.5,\ t_2=1.5$ și $t_2=3.5$
 - b. folosind metoda observației continue (fără eșantionare)

- 4. Fie următorul set de 10 vectori, compus din 5 vectori din clasa A și 5 vectori din clasa B:
 - Clasa A:

$$\vec{v}_1 = \begin{bmatrix} 2 \\ -4 \end{bmatrix} \ \vec{v}_2 = \begin{bmatrix} 1 \\ -5 \end{bmatrix} \ \vec{v}_3 = \begin{bmatrix} -2 \\ 6 \end{bmatrix} \ \vec{v}_4 = \begin{bmatrix} -3 \\ 4 \end{bmatrix} \ \vec{v}_5 = \begin{bmatrix} 2 \\ -5 \end{bmatrix}$$

• Clasa B:

$$\vec{v}_6 = \begin{bmatrix} 3\\1 \end{bmatrix} \ \vec{v}_7 = \begin{bmatrix} -1\\1 \end{bmatrix} \ \vec{v}_8 = \begin{bmatrix} -4\\-3 \end{bmatrix} \ \vec{v}_9 = \begin{bmatrix} -3\\0 \end{bmatrix} \ \vec{v}_{10} = \begin{bmatrix} -2\\3 \end{bmatrix}$$

Calculați clasa vectorului $\vec{x} = \begin{bmatrix} -2 \\ 5 \end{bmatrix}$ folosind algoritmul k-NN, pentru diverse valori ale lui k: $k=1, \ k=3, \ k=5, \ k=7$ and k=9