

محدرسة دلهي الخاصة ذ.م.م. PRIVATE SCHOOL L.L.C.

(Approved & Recognized By Ministry of Education - United Arab Emirates)

SHARJAH PB-T2/EEE-CHAK/1221/A

07-MAR-2022

PREBOARD EXAMINATION- TERM 2 (2021-22)

ANSWER KEY

C1	ANDVER KEI	/l		
`	Subject: CHEMISTRY Max. Marks:3 Grade: XII Time:2H			
Name: Section: Roll No:		111110,2111		
1 (411	SECTION A			
1	SECTIONA	1		
1	.i) Butanone < Propanone < Propanal < Ethanal ii) Acetophenone < Benzaldehyde < p-Nitrobenzaldehyde	1		
2	$E_{cell} = E_{cell}^{o} - (RT/2F) \times ln\{[Mg^{2+}]/[Ag^{+}]^{2}$	1/2		
	= 3.17 V - 0.059/2 x log 0.130/(0.0001) ²	1		
	= 2.96 V	1/2		
3	i. Propanal being an aliphatic aldehyde reduces Fehling's solution to form a red-	1x2=		
	brown precipitate of cuprous oxide whereas benzaldehyde do not respond. $CH_3CH_2CHO + 2Cu^{2+} + 5OH^- \rightarrow CH_3CH_2COO^- + Cu_2O \downarrow + 3H_2O$	2		
	ii. Acetophenone is a methyl ketone, whereas benzophenone is a phenyl ketone. Therefore, acetophenone gives a positive iodoform test by giving a yellow precipitate of iodoform with an alkaline solution of iodine. Whereas, benzophenone gives a negative test.			
	C ₆ H ₅ COCH ₃ + 3NaOI → C ₆ H ₅ COONa + CHI ₃ + 2NaOH Acetophenone Sodium Sodium Iodoform hypoiodite benzoate (yellow ppt)			
	C ₆ H ₅ COC ₆ H ₅ + NaOI → No yellow ppt of CHI ₃ Benzophenone			
	SECTION B			
4	In strongly acidic medium, aniline is protonated to form the anilium ion which is meta directing.	3		
	Aryl halides do not undergo nucleophilc substitution with the anion formed by phthalimide.			
	(iii) Isocyanide test which can be given by only primary amines. Ethyl amine can give isocyanide test. N-methyl ethanamine is a secondary amine.			

9	 i) There is strong Van der Waal's forces in easily liquefiable gases hence, easing gases such as NH₃, HCl etc. are adsorbed to a great extent in comparison to gas H₂, O₂ etc. ii) The residual forces on the surface of the adsorbent are decreased due to adsorbent; the surface energy of the adsorbent is also reduced. Therefore, adsorption exothermic. The movement of a gas is restricted when it is adsorbed on a solid leads to a decrease in the entropy of the gas i.e., ΔS is negative. Now for a prospontaneous, ΔG should be negative. ΔG=ΔH-TΔS Since, ΔS is negative, ΔH has to be negative to make ΔG negative. Hence, adsalways exothermic. (a)When N-ethylethanamine reacts with benzenesulphonyl chloride, N,N-diethylbenzenesulphonamide is formed. b)When benzylchloride is treated with ammonia, Benzylamine is formed whereation with Chloromethane yields a secondary amine, N-methylbenzylamine. c)When aniline reacts with chloroform in the presence of alcoholic potassium hydroxide, phenyl isocyanides or phenyl isonitrile is formed. 	sorption. As a son is always surface. This seess to be sorption is	3
	OR (i)		
	N-Ethyl-N-methylbenzenamine or N-Ethyl-N-ethylaniline		
	(ii) $\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	Br Br HBF4		
10	$\Lambda^{o}(CH_{3}COOH) = \lambda^{o}_{H^{+}} + \lambda^{o}_{CH_{3}COO^{-}}$	1/2	3
	$= 349.6 + 40.9 = 390.5 \text{ S cm}^2 \text{ mol}^{-1}$	1/2	
	$\Lambda_m = \frac{\kappa \times 1000}{c}$	1/2	
	$\Lambda_m = \frac{8.0 \times 10^{-5} S cm^{-1} \times 1000 cm^3 L^{-1}}{0.0024 mol L^{-1}} = 33.33 S cm^2 mol^{-1}$	1/2	
	$lpha = rac{\Lambda_m}{\Lambda_m^o}$	1/2	
	$\alpha = \frac{33.33 \ S \ cm^2 \ mol^{-1}}{390.5 \ S \ cm^2 \ mol^{-1}} = 0.085$	1/2	

11	(i) Due to almost similar / comparable atomic radii. (ii) Weak metallic bonding / no unpaired electrons / weak interatomic interaction. (iii) The ability of oxygen to form multiple bonds with metals while F cannot.		1 1 1	3	
	OR				
	a) At + 3, Stable d ^o is obtained	1			
	b) Absence of unpaired electron / no d-d transition occurs	1			
	c) MnO has Mn in +2 Oxidation State				
	Mn_2O_7hasMn in +7 Oxidation State . Higher the Oxidation State , Higher is the acidic character.	1			
	SECTION C				
12	(a) PSEUDO FIRST ORDER REACTION: - Those reactions which are not truly of first order rea	action	1	1	
	but under some condition (when one of the reactant presents in excess) they behave like a	first		_	
	order reaction			1	
	b)(i)The rate law according to given information may be given as, $\frac{dx}{dt} = K[A]^{1}[B]^{2}[C]^{0}$				
	ii) When concentration of A, B and C are doubled then rate will be				
	$\frac{dx}{dt} = K[2A][2B]^2[C]^0 = 8K[A][B]^2[C]^0$ i.e., rate becomes 8-fold, the original rate	te.		4.4.	
	(c)			1+1+	
	$SO_2Cl_{2(g)} \rightarrow SO_{2(g)} + Cl_{2(g)}$			1	
	Initial P ₀ 0 0				
	Initial P_0 0 0 Pressure $P_0 - x$ x x				
	After time t $P_0 - x$ x x				
	Total pressure after time 't				
	$P_t = (P_0 - x) + x + x$				
	$P_t = P_0 + X$				
	$x = P_t - P_0$				
	Initial pressure = P ₀				
	Final pressure = P ₀ – x				
	$= P_0 - (P_t - P_0)$				
	$=2P_0-P_t$				
	$k = \frac{2.303}{t} \log \frac{P_0}{2P_0 - P_t}$				
	or $k = \frac{2.303}{100} \log \frac{0.5}{2 \times 0.5 - 0.6}$				
	or $k = \frac{2.303}{100} \log \frac{0.5}{1.0 - 0.6}$				
	or $k = \frac{2.303}{100} \log \frac{5}{4}$				
	$k = \frac{2.303}{100} \log(1.25)$				
	$k = \frac{2.303}{100} \log 0.0969$				
	100				

```
k = 2.2316 \times 10^{-3} s^{-1}
P_{t} = 0.65 \text{ atm}
i.e., (P_{0} + P) = 0.65 \text{ atm}
P = 0.65 - P_{0} = 0.65 - 0.50
P = 0.15 \text{ atm}
Pressure of SO_{2}Cl_{2} \text{ at time t}
P_{SO_{2}Cl_{2}} = P_{0} - P
= 0.50 - 0.15
= 0.35 \text{ atm}
At time 't
Rate = k \times P_{SO_{2}Cl_{2}}
= 2.2316 \times 10^{-3} \times 0.35
= 7.8 \times 10^{-4} \text{ atm s}^{-1}
Hence when total pressure is 0.65 \text{ atm then the rate will be } 7.8 \times 10^{-4} \text{ atm s}^{-1}
K_{1} = 2.23 \times 10^{-3} s^{-1}, K_{2} = 7.8 \times 10^{-5} \text{atm sec}^{-1}
```