HW 2

Joshua Ortiga

Xin Li

Jonathan Le

October 15, 2022

Problem 2.1. Define the following sets $S_n \subset \mathbb{R}$

$$S_n = \{x | x \in \mathbb{R}, 0 < x < \frac{1}{n}\}.$$

Define the following set:

$$S = \bigcap_{n=1}^{\infty} S_n = S_1 \cap S_2 \cap S_3 \cap \dots$$

Prove that $S = \emptyset$.

Proof by contradiction: Assume that there is a set with no intersecting values $S_n = \{x | x \in \mathbb{R}, 0 < x < \tfrac{1}{n}\} \text{ where } \tfrac{1}{n} \text{ is the upper bound.}$

Since n goes on $\forall \mathbb{R}$ from 0 to ∞ , $\frac{1}{n}$ will approach 0 but never = 0.

Consider a value j where j = n + 1 and $S_j = \{x | x \in \mathbb{R}, 0 < x < \frac{1}{j}\}.$

Since $\frac{1}{n} > \frac{1}{j}$, any value in S_j would be within S_n which would be replicated $\forall n \text{ since } \frac{1}{n} \text{ approaches } \infty$. $\therefore S \neq \emptyset$.

Problem 2.2. Let F_n be the n^{th} Fibonacci number. Prove that $\forall n \in \mathbb{N}$, $gcd(F_n, F_n + 1) = 1$.

In the Fibonacci sequence: $F_n + 1 = F_n + F_n - 1$.

$$\therefore gcd(F_n + F_n - 1, F_n) = gcd(F_n + 1, F_n).$$

Base case: $gcd(F_1, F_2) = 1$, $(F_1 = 1, F_2 = 1)$

Assume that: $(F_n - 1, F_n) = 1$, where $n \ge 2$.

Since:
$$F_n + 1 = F_n + F_n - 1$$
, and $gcd(F_n + F_n - 1, F_n) = gcd(F_n, F_n + 1)$
 $\therefore gcd(F_n, F_n + 1) = 1$

Problem 2.3. $\forall n \in \mathbb{N}$, prove that

$$\sum_{k=1}^{n} k^3 = \left(\sum_{k=1}^{n} k\right)^2.$$

Assume that: $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}.$

Then:
$$\left(\sum_{k=1}^{n} k\right)^{2} = \left(\frac{n(n+1)}{2}\right)^{2} = \frac{n^{2}(n+1)^{2}}{4}$$
.

Now then, assume that: $\sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4}.$

Inductive step: Assume $\left(\frac{n(n+1)}{2}\right)^2$ to be true $\forall n$ up until (n+1). Use $P(n) \Rightarrow P(n+1)$.

$$\begin{split} P(n+1) &= \left(\frac{n(n+1)}{2} + (n+1)\right)^2 \\ \downarrow \\ \left(\frac{n^2+n}{2} + (n+1)\right)^2 &= \left(\frac{n^2+3n+2}{2}\right)^2 \\ &= \frac{(n^2+3n+2)(n^2+3n+2)}{4} = \frac{n^4+3n^3+2n^2+3n^3+9n^2+6n+2n^2+6n+4}{4} \\ &= \frac{n^4+6n^3+13n^2+12n+4}{4} = \frac{(n+1)(n+1)(n+2)(n+2)}{4} = \frac{(n+1)^2(n+2)^2}{4} \end{split}$$

$$P(n+1) \text{ for } \sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4} + (n+1)^3$$

$$= \frac{n^2(n^2+2n+1)}{4} + \frac{4(n+1)^3}{4} = \frac{n^4+2n^3+n^2}{4} + \frac{4(n^3+3n^2+3n+1)}{4}$$

$$= \frac{n^4+2n^3+n^2+4n^3+12n^2+12n+4}{4} = \frac{n^4+6n^3+13n^2+12n+4}{4}$$

$$= \frac{(n+1)(n+1)(n+2)(n+2)}{4} = \frac{(n+1)^2(n+2)^2}{4}$$

$$\therefore \text{ Since } \left(\frac{n(n+1)}{2} + (n+1)\right)^2 = \frac{n^2(n+1)^2}{4} + (n+1)^3$$

$$\sum_{k=1}^{n} k^3 = \left(\sum_{k=1}^{n} k\right)^2 \blacksquare$$

Problem 2.4. Prove that for a list of any size, the function below will return the largest item from the list.

```
if len(lst) == 0:
    return None
elif len(lst) == 1:
    return lst[0]
# lst[~0] represents the last item in the array
# equivilent to lst[-1]
maximum = maxItem(lst[:~0])
if lst[~0] < maximum:
    return maximum
else:
    return lst[~0]</pre>
```

Let the list foo = [4, 3, 2, 5, 1, 6, 2].

Following the code given: *foo* is broken up into pairs comparing each value with the next element, starting from index 0, and returning the largest value in each pair through every recursive iteration.

Function calls

 1. maximum = maxItem([4, 3, 2, 5, 1, 6])

 2. maximum = maxItem([4, 3, 2, 5, 1])

 3. maximum = maxItem([4, 3, 2, 5])

 4. maximum = maxItem([4, 3, 2])

 5. maximum = maxItem([4, 3])

 6. $maximum = maxItem([4]) \leftarrow Base case reached, len(foo) = 1$

Returning

- 1. maximum = 4
- 2. $maximum = 4 (3 < 4) \leftarrow pair$
- 3. $maximum = 4 (2 < 4) \leftarrow pair$
- 4. $maximum = 5 \ (5 \not< 4) \leftarrow pair$
- 5. $maximum = 5 (1 < 5) \leftarrow pair$
- 6. $maximum = 6 \ (6 \nleq 5) \leftarrow pair$

6 is the largest item in foo.

 \therefore Since $foo[\ 0] < maximum$ will always check for the larger value in each pair, and return it if $foo[\ 0]$ is not more than the current largest value in the list (or else, $foo[\ 0]$ would be returned as the new current maximum value), the function will always return the largest item from the list of any size.