PROBLÈME DE L'EXPLOSION COMBINATOIRE DU GRAPHE D'ÉTAT

Dr. D. Boughareb boughareb@labged.net

Introduction

- Inconvénient des méthodes de vérification basée sur les modèles (model-checking)
 - Complexité réaliste de système vérifié =>la taille du modèle correspondant devient rapidement abusive.
 - =>L'explosion de l'espace d'états.
 - Besoin d'un espace mémoire important;
 - Temps CPU pour explorer chaque état

Solutions proposées (1)

Approches possibles pour limiter l'explosion combinatoire de l'espace des états

Solutions proposées (2)

Générer un modèle réduit, mais équivalent au modèle original du point de vue vérification des propriétés à valider.

- L'exploration partielle du modèle pour améliorer les performances, en temps ou en mémoire, en effectuant
 - Une exploration partielle
 - Ou une mémorisation partielle du modèle.

Vérification à la volée(1)

 Vérifier le système durant la génération du graphe d'état.

 La vérification s'arrête après la première erreur détectée (avant la génération du graphe complet)

- Parcours en profondeur:
 - Algorithmes DFS (depth first search) et BFS (breadth first search).

Algorithme DFS (1)

```
Program DFS
For each s such that Init(s)

dfs(s)
end DFS
```

```
Procedure dfs(s)

for each s' such that
    R(s,s') do
    If new(s') then dfs(s')
end dfs.
```

Algorithme DFS (2)

Algorithme DFS (3)

Algorithme DFS (4)

Algorithme DFS (5)

Algorithme DFS (6)

Algorithme DFS (7)

Algorithme DFS (8)

Vérification par réduction (1)

- Construire et prouver qu'un sous ensemble de l'espace des états est suffisant pour vérifier les propriétés
 - Réduction par bissimulation : de grandes parties du graphe d'états sont remplacés par de plus petits qui sont équivalentes selon un critères d'abstraction.

Réduction basée sur les ordres partiels :

Vérification par réduction (2)

- II. Réduction basée sur les ordres partiels :
- Les exécutions qui ne se diffèrent que par l'ordre d'actions indépendantes peuvent être considérées comme équivalentes pour la propriété à vérifier.
- Il est seulement-nécessaire de vérifier un graphe réduit d'états qui contient au moins une exécution représentative de chaque classe d'équivalence. Parmi les techniques qui reposent sur cette idée
 - Ensembles persistants
 - Ensemble dormants
 - Ensemble amples

Techniques symboliques

Symbolic Model-Checking.

Représentation symbolique d'un ensemble d'états par un ensemble de formules en logique propositionnelle.

Fonctions booléennes

Représentations possibles

- Binary decision trees
- Binary decision diagrams
- Ordered binary decision diagrams
- Reduced ordered binary decision diagrams

Fonctions booléennes

- Une fonction booléenne établie le chemin des entrées booléennes (Os et1s) jusqu'aux résultats booléens (O ou 1).
- □ Fonctions Basique:
 - $\overline{0} = 1, \overline{1} = 0$ (complémentation).
 - $x+y=0 \leftrightarrow x=y=0$ (disjonction, similaire à l'addition).
 - $x \cdot y = 1 \leftrightarrow x = y = 1$ (conjonction, , similaire à la multiplication).
 - $\blacksquare x \oplus y = 1 \leftrightarrow x \neq y$ (or exclusif).

Binary decision trees

- Representation par une table de vérité
- Representation par un arbre de decision binaire

\boldsymbol{x}	y	\boldsymbol{z}	$(x+y)\cdot z$	
1	1	1	1	
1	1	0	0	
1	0	1	1	
1	0	0	0	
0	1	1	1	
0	1	0	0	
0	0	1	0	
0	0	0	0	

Le nombre de variables bouleenes augmente => difficile à verifier

BDD (Binary Decision Diagrams)

- Permet de représenter efficacement de larges fonctions
- Un diagramme binaire utilisé pour représenter des fonctions booléennes.
- □ Composé de :
 - Nœuds non-Terminaux : nœuds étiquetés par des variables booléennes;
 - Nœuds terminaux: nœuds étiquetés soit par un 0 ou 1;
 - Deux types de lignes (arc) solide et pointillé;
 - Chemins conduisant à un 1 représente les modèles, tandis que les chemins conduisant à un 0 représentent les contremodèles.

Utilisation récursive du théorème de Shannon étendu

$$F = aFa + a'Fa'$$

$$F = a'b + abc' + a'b'c$$

$$F = a(bc') + a'(b+b'c)$$

$$Fa=(bc')$$

$$F = a'b + abc' + a'b'c$$

 $F = bFb + b'Fb'$
 $F = b(a'+ac') + b'(a'c)$

$$F = a'b + abc' + a'b'c$$

 $F = cFc + c'Fc'$
 $F = c(a'b + a'b') + c'(a'b + ab)$

Construire le BDD de

$$F = abc + ab'c + a'bc' + a'b'c'$$

- \square Utiliser l'ordre des variables a \le b \le c
- □ Fa = bc + b'c
- □ Fa'= bc' + b'c'

$$F = abc + ab'c + a'bc' + a'b'c'$$

$$Fa = bc + b'c$$

 $(Fa)b=Fab=c$
 $(Fa)b'=Fab'=c$

 \Box F = abc + ab'c + a'bc' + a'b'c'

Fab = c

Fabc=1

Fabc'=0

Fab'=c

Fab'c=1

Fab'c'=0

Fa'b = c'

Fa'bc=0

Fa'bc'=1

Fa'b'=c'

Fa'b'c=0

Fa'b'c'=1

f = abc + ab'c + a'bc' + a'b'c'

а	b	С	f
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

□ Éliminer les information redondantes depuis le BDD.

 Si le nœud dispose du même fils dans les deux arcs, le nœud est redondant

Dr. Djalila BOUGHAREB

Reduction de BDD

□ Si 2 nœuds représentent la même variable et ils possèdent les mêmes descendants, l'un des deus nœuds est redondant.

Ordonnancement des Variables

□ Réduction dépend de l'ordre des variables

Dr. Djalila BOUGHAREB

Ordered BDDs (OBDDs)

- □ Problèmes avec les BDDs:
 - Structure dépend de l'ordre de représentation des variables
- Solution: fixer l'ordre de variables pour tout les chemins.

Ordonné : [y,z,x]: Non ordonné :

