NLP Snet 2

. Missing from Sheet 1

ପ୍ର

5. Mention two words that have

		ed,5,ing	, tion, or, o
	lemma	Ster	
Same lemmas Played and Sone Slems	Play Play	Play	
Some lemmos lie and different lied Stems	lie lie	lie Ii	
different action lemnas and aced Same Stems	action ace	ac	
different Stems	K Walk	Walk	

1. Write the equation for trigram Probability estington $P(\omega_i|\omega_{i:i-1}) = P(\omega_i|\omega_{i-2}\omega_{i-1}) = \frac{C(\omega_{i-2}\omega_{i-1}\omega_i)}{C(\omega_{i-2}\omega_{i-1})}$ $N-96m \rightarrow N-1 \text{ words} \qquad C(\omega_{i-2}\omega_{i-1})$ then write all nontero Probabilities for (5)(5) I am Sam (15) (5)(5) Sam I am (15) (5.7(5) I do not like green eggs and ham (15) $P(I|\langle 5\rangle\langle 5\rangle) = \underbrace{2}_{3} \leftarrow c(\langle 5\rangle\langle 5\rangle)$ $P(aml(5)I) = \frac{1}{2}$ $P(Sam|Iam) = \frac{1}{2}$ $P(\langle 15\rangle | am San) = 1$ $P(\langle S \rangle | Son(\langle S \rangle) = \frac{1}{1}$ $P(\langle 5 \rangle | \langle 15 \rangle \langle 5 \rangle) = \frac{2}{2}$ $P(San(5)(5)) = \frac{1}{3}$ P(I/(S>San) = 1 P(am I Sam I) = + P((15) | Iam) = 1 P((5) am (15)) = -* 8 more Probabilities, all equal to 1 @P((5) (/5)(5)) = 2

2. Given is a bigiam Probability matrix

- · normal bigram and add-1 smoothed Version.

a) Using normal Bigram Probabilities:

$$P(w_{in}) = P(I(S))P(wont|I)P(chineselwont)$$

 $P(Road | Chinere) P(\langle 1S \rangle | Road)$

$$= 0.25 \times 0.33 \times 0.0065 \times 0.52 \times 0.68$$

= 0.00189

b) using add-1 smoothed Probabilities:

=
$$0.19 \times 0.21 \times 0.0029 \times 0.052 \times 0.4$$

= 0.0000024

C) unsmoothed 95 higher because smoothing moves Probability mass from events with nontern Probability to events of two Popability. This is evident by how it adds I in the numerator and IVI in the denominator; this decreases any fraction with a nontero denominator as IVI).

Juocab. length

3. Train a bigram model on the Pollowing corpus without adding an end of sentence token

* Recall that training means to compute all the needed biggam Probabilities.

$$w_{i.1} \begin{cases} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{2}{2} \end{cases}$$

- · first write the count in black (will will)
- · Sum Por the Court Wi-1 (red)
- . divide to get Probs

> Find the Sum of the Arababilities of all Possible two-word Sequences
> They are aa, ab, ba, bb

$$P(s)aa) = P(aks)P(ala) = 2 \times 1 = 1$$

 $P(s)ab) = P(aks)P(bla) = 2 \times 1 = 1$
 $P(s)ab) = P(bks)P(alb) = 2 \times 1 = 1$
 $P(s)ba) = P(bks)P(alb) = 2 \times 1 = 1$
 $P(s)bb) = P(bks)P(blb) = 2 \times 1 = 1$

Their Sum 95 Clearly 1

> The Sun of Probabilities of all Possible 3-word Sequences

reach is a froduct of 3 frobabilities, each being = to half.

* Conclusion: the Bigram model makes all sequences of a given length have Probabilities that Sum to 1

That 95, it doesn't assign a single Probability distribution across all sentences.

- , i.e., when we compute the Probability of a Sentence, we don't get 9th true Probability across all Possible Sentences.
- => we want the distribution across all sentences to be I for this

* This 95 the role of the (15) token - once we add 97 the matrix becomes

	101	b	45)	
(5)	214	2/4	0	
a	1/4	1/4	2/4	
b	1/4	1/4	214	

		Show now the	Pat Sum of Pobal	bilities of
		two words	three words	
		0.25	0.125	
) 0=1	$\frac{1}{2^{n}} = 1$
Ц.	We are of	iven the Roba	fing Corfus	
	(5) Sam (5) I	m San (15) n I am (15) am San (1 do not like,	·>	iom (15)
			Know $C(W_{1-(N-1):i-1})$ and estimate.	
	* Use I	inear ShlerPola Nigram mode	ution between a l 1 to Compute PCS	bigian van Iam)
	P (Sam	$\gamma(am) = 7$, P(Samlam) +7	72P(Sam
	.given	$\beta_1 = \beta_2 = \frac{1}{2}$	2	
	,		3 + c(an)	4

= 0.413

• What is unigram PerPlexity for the test Set 0000030000

=> From the training Set, 9ts true that

$$P(0) = 91 / P(3) = 1 / 100$$

$$P(w_{i,n}) = TP(w_i) = (91)^9 \cdot \frac{1}{100}$$

$$= 919$$

$$= 919$$

$$PP(W) = N \sqrt{\frac{1}{P(W_{i:\omega})}} = \sqrt{\frac{91^9}{100^{10}}}$$

6. Write the feed forward equations of an

$$h_t = P(Wx_t + Uh_{t-1})$$

. In this example, W=V=U=1 (here x_t and h_t are scalars), P(x)=x and g(x)=x (linear units)

wars.

ヹ゚゠」

The equations, here, reduce to

$$\rightarrow$$
 given $X = [2, -0.5, 1]$ find all nemark χ_0 χ_1 χ_2 Values. (h., χ_1 for $t \in \{0.1, 2\}$

· assume h. = 0

$$\chi_{\circ}=2 \rightarrow h_{\circ}=2+0 \rightarrow J_{\circ}=2$$

$$\chi_{1} = -0.5 \rightarrow h_{1} = -0.5 + 2 = 1.5 \rightarrow y_{0} = 1.5$$

$$\chi_2 = 1 \rightarrow h_2 = 1 + 1.5 = 2.5 \rightarrow y_0 = 2.5$$

?+-0.5->1.5+1->2.5 ?+5 learning addition (in Pact, the equations by definition describe a running sum)

unrolled Nework

-> given 95 on RNN Char. level language model. (token 95 a char.) $VoCab = \{h, e, L, o\}$ -> each token is represented by a one-not · Use Softmax to Compute final output (eal), $P(X) = e^{X} = e^{X}$ · Check lec. for -> Use it to compute the Probability dist. Vector by applying it on each of the 4 out Put Uears e.g. $P\begin{pmatrix} 1.0 \\ 2.2 \\ -3.0 \\ 4.1 \end{pmatrix} = \begin{pmatrix} e^{2.2} \\ e^{-3.0} \\ e^{4.1} \end{pmatrix} \cdot \frac{1}{e^{1} + e^{2.2} + e^{3} + e^{4.1}}$. the given in Rut is he 11 (nalo) المنطق و الم what the 00 recall that the OutPut is a dist. model gave x x Over the Ucab. (Prediction is largest index in outful vector) ()

-> before or after softmax, it's the some