

Projektarbeit

D-shaped bluff body experiment

cand. mach. Vorname Familienname Matrikelnummer 1234567

Ausgegeben: Jun.-Prof. Dr.-Ing. D. Kožulović

Institut für Strömungsmechanik

Institutsleiter: Prof. Dr.-Ing. R. Radespiel Technische Universität Braunschweig

Betreuer: Dipl.-Ing. X Y, (externe Firma)

Dipl.-Ing. X Y, (TU Braunschweig)

(Erstellt bei:) (Externe Firma, Stadt)

Veröffentlichung: Monat Jahr

Übersicht

Inhaltsverzeichnis

No	omenklatur	v					
1	Einleitung						
2	Grundlagen2.1Stumpfkörperaerodynamik2.2Coandâ-Effekt2.3Aktive und passive Strömungsbeeinflussung						
3	rotierende Walzen 3.1 Geometrie	3 3 3					
4	Widerstandsbestimmung 4.1 mathematisches Modell	4 4					
5	Windkanalversuche 5.1 Windkanal	5 5 5 5 5					
6	Versuchsauswertung6.1 Messdaten6.2 Vergleich mit Erwartungen6.3 Vergleich zum Modell ohne Walzen6.4 Effiziensbetrachtung	6 6 6 6					
7	Fazit	7					
Li	teraturverzeichnis	8					
Αl	bbildungsverzeichnis	9					
Ta	abellenverzeichnis	10					
A	A Technsiche Zeichnungen						
B	Mosgraiha	19					

Nomenklatur

Lateinische Bezeichnungen

Griechische Bezeichnungen

Indizes

 ${\bf Abk\"{u}rzungen}$

Einleitung

Grundlagen

- 2.1 Stumpfkörperaerodynamik
- 2.2 Coandâ-Effekt
- 2.3 Aktive und passive Strömungsbeeinflussung

rotierende Walzen

- 3.1 Geometrie
- 3.2 Konstruktion
- 3.3 Motor

Widerstandsbestimmung

- 4.1 mathematisches Modell
- 4.2 Implementierung

Windkanalversuche

- 5.1 Windkanal
- 5.2 Versuchsaufbau
- 5.3 Messeinrichtung
- 5.4 Versuchsdurchführung

Versuchsauswertung

- 6.1 Messdaten
- 6.2 Vergleich mit Erwartungen
- 6.3 Vergleich zum Modell ohne Walzen
- 6.4 Effiziensbetrachtung

Fazit

Literaturverzeichnis

- [1] J. D. Anderson. *Modern Compressible Flow with Historical Perspective*. McGraw Hill, New York, 2 edition, 1990.
- [2] J. C. Emery, L. J. Herrig, J. R. Erwin, and A. R. Felix. Systematic two-dimensional cascade tests of naca 65-series compressor blades at low speeds. Technical Report NACA-Rep. 1368, NACA, 1958.
- [3] R. Radespiel. Vorlesungsmanuskript: Strömungsmechanik II. Technical report, Institut für Strömungsmechanik, TU Braunschweig, 2008.
- [4] H. Schlichting and K. Gersten. Grenzschicht-Theorie. Springer, Berlin, 9 edition, 1997.
- [5] O. Sellschopp. Experimentelle und theoretische Untersuchung der Sekundärströmungen in zwei Rotor-Nabenschnitt-Gittern für axiale Kreiselpumpen. Master's thesis, Institut für Strömungsmechanik, TU Braunschweig, 1995. Diplomarbeit Nr. 242.

Abbildungsverzeichnis

Tabellenverzeichnis

Anhang A

Technsiche Zeichnungen

Anhang B

Messreihe