Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Звіт

з лабораторної роботи № 3 з дисципліни Теорія алгоритмів «Алгоритми та структури даних 2. Структури даних»

«Прикладні задачі теорії графів »

Виконав(ла)		
,	(шифр, прізвище, ім'я, по батькові)	
Перевірив	_	
• •	(прізвище, ім'я, по батькові)	

3MICT

1 МЕТА ЛАБОРАТОРНОЇ РОБОТИ	3
2 ЗАВДАННЯ	4
3 ВИКОНАННЯ	9
3.1 ПСЕВДОКОД АЛГОРИТМУ	9
3.2 ПРОГРАМНА РЕАЛІЗАЦІЯ АЛГОРИТМУ	9
3.2.1 Вихідний код	9
висновок	11
КРИТЕРІЇ ОШНЮВАННЯ FRRORURO	OKMARK NOT DEFINED

1 МЕТА ЛАБОРАТОРНОЇ РОБОТИ

Мета роботи – вивчити основні прикладні алгоритми на графах та способи їх імплементації.

2 ЗАВДАННЯ

Згідно варіанту (таблиця 2.1), розробити та записати алгоритм задачі на графах за допомогою псевдокоду (чи іншого способу за вибором).

Виконати програмну реалізацію алгоритму на будь-якій мові програмування для довільного графа, передбачити введення розмірності графа та введення даних графа вручну чи випадковим чином.

Для самостійно обраного графа (розмірності не менше 9 вершин) розв'язати задану за варіантом задачу вручну.

Зробити узагальнений висновок з лабораторної роботи, у якому порівняти програмне та ручне розв'язання задачі.

Таблиця 2.1 – Варіанти алгоритмів

№	Задача	Алгоритм	Тип графу	Спосіб задання
				графу
1	Обхід графу	DFS	Неорієнтований	Матриця
				суміжності
2	Обхід графу	BFS	Неорієнтований	Матриця
				суміжності
3	Пошук маршруту у	Террі	Неорієнтований	Матриця
	графі			суміжності
4	Пошук відстані між	Хвильовий	Неорієнтований	Матриця
	вершинами графа			суміжності
5	Пошук	Дейкстри	Орієнтований	Матриця вагів
	найкоротшого			
	шляху між парою			
	вершин			
6	Пошук	Беллмана-	Орієнтований	Матриця вагів
	найкоротшого	Форда		
	шляху між парою			
	вершин			

7	Побудова	Прима	Неорієнтований	Матриця вагів
	мінімальних			
	покриваючих дерев			
8	Побудова	Крускала	Неорієнтований	Матриця вагів
	мінімальних			
	покриваючих дерев			
9	Побудова	Борувки	Неорієнтований	Матриця вагів
	мінімальних			
	покриваючих дерев			
10	Побудова	3a	Неорієнтований	Матриця
	Ейлерового циклу	означенням		суміжності
11	Побудова	Флері	Неорієнтований	Матриця
	Ейлерового циклу			суміжності
12	Побудова	Пошук із	Неорієнтований	Матриця
	Гамільтонового	поверненнями		суміжності
	циклу			
13	Обхід графу	DFS	Неорієнтований	Матриця
				інцидентності
14	Обхід графу	BFS	Неорієнтований	Матриця
				інцидентності
15	Пошук маршруту у	Террі	Неорієнтований	Матриця
	графі			інцидентності
16	Пошук відстані між	Хвильовий	Неорієнтований	Матриця
	вершинами графа			інцидентності
17	Пошук	Дейкстри	Орієнтований	Матриця вагів
	найкоротшого			
	шляху між парою			
	вершин			
18	Пошук	Беллмана-	Орієнтований	Матриця вагів

	найкоротшого	Форда		
	шляху між парою			
	вершин			
19	Побудова	Прима	Неорієнтований	Матриця вагів
	мінімальних			
	покриваючих дерев			
20	Побудова	Крускала	Неорієнтований	Матриця вагів
	мінімальних			
	покриваючих дерев			
21	Побудова	Борувки	Неорієнтований	Матриця вагів
	мінімальних			
	покриваючих дерев			
22	Побудова	3a	Неорієнтований	Матриця
	Ейлерового циклу	означенням		інцидентності
23	Побудова	Флері	Неорієнтований	Матриця
	Ейлерового циклу			інцидентності
24	Побудова	Пошук із	Неорієнтований	Матриця
	Гамільтонового	поверненнями		інцидентності
	циклу			
25	Обхід графу	DFS	Неорієнтований	Матриця
				суміжності
26	Обхід графу	BFS	Неорієнтований	Матриця
				суміжності
27	Пошук маршруту у	Террі	Неорієнтований	Матриця
	графі			суміжності
28	Пошук відстані між	Хвильовий	Неорієнтований	Матриця
	вершинами графа			суміжності
29	Пошук	Дейкстри	Орієнтований	Матриця вагів
	найкоротшого			

	шляху між парою			
	вершин			
30	Пошук усіх	Флойда-	Ортграф,	
	найкоротших	Уоршелла	матриця вагів	
	шляхів	(зовнішній		
		спосіб		
		визначення		
		шляхів)		
31	Пошук усіх	Флойда-	Ортграф,	
	найкоротших	Уоршелла	матриця вагів	
	шляхів	(вбудований		
		спосіб		
		визначення		
		шляхів)		
32	Пошук	Беллмана-	Орієнтований	Матриця вагів
	найкоротшого	Форда		
	шляху між парою			
	вершин			
33	Побудова	Прима	Неорієнтований	Матриця вагів
	мінімальних			
	покриваючих дерев			
34	Побудова	Крускала	Неорієнтований	Матриця вагів
	мінімальних			
	покриваючих дерев			
35	Побудова	Борувки	Неорієнтований	Матриця вагів
	мінімальних			
	покриваючих дерев			
36	Побудова	3a	Неорієнтований	Матриця
	Ейлерового циклу	означенням		суміжності

37	Побудова	Флері	Неорієнтований	Матриця
	Ейлерового циклу			суміжності
38	Побудова	Пошук із	Неорієнтований	Матриця
	Гамільтонового	поверненнями		суміжності
	циклу			

3 ВИКОНАННЯ

3.1 Псевдокод алгоритму

```
for j = 2 to A.length do
    key = A[j]
    i = j-1
while (i > 0 and A[i] > key) do
        A[i + 1] = A[i]
        i = i - 1
end while
    A[i+1] = key
end for
```

3.2 Програмна реалізація алгоритму

3.2.1 Вихідний код

```
#include "stdafx.h"
#include <ctime>
#include <ctime>
#include <iomanip>
usingnamespacestd;

voidinsertionSort(int*, int); // прототип функции сортировки вставками
intmain(intargc, char* argv[])
{
...

system("pause");
return0;
}

voidinsertionSort(int*arrayPtr, intlength) // сортировка вставками
{
...
}
```

3.2.2 Приклад роботи

На рисунках 3.1 і 3.2 показані приклади роботи програми для графів на 7 і 15 вершин відповідно.

```
Рисунок 3.1 – <mark>Задача ...</mark>
```

Рисунок 3.2 – <mark>Задача ...</mark>

3.3 Розв'язання задачі вручну

На рисунку 3.3 наведено розв'язання задачі ... вручну.

Рисунок 3.1 – Розв'язання задачі ... вручну

висновок

При виконанні даної лабораторної роботи...