THE UNIVERSITY OF SYDNEY SCHOOL OF MATHEMATICS AND STATISTICS

Solutions to Problem Sheet for Week 6

MATH1901: Differential Calculus (Advanced)

Semester 1, 2017

Web Page: sydney.edu.au/science/maths/u/UG/JM/MATH1901/

Lecturer: Daniel Daners

Material covered

Limits (continued).
Squeeze Law (see also last week's tutorial)
Limits as $x \to \infty$, or $x \to -\infty$.
Continuity, left continuity, right continuity.

Outcomes

After completing this tutorial you should

work with limits;

be able to prove that certain functions are continuous, right continuous or left continuous.

Summary of essential material

Limits as $x \to \pm \infty$. We say that $\lim_{x \to \infty} f(x) = \ell$ if for every $\epsilon > 0$ there exists M > 0 such that

$$x > M \implies |f(x) - \ell| < \epsilon.$$

Improper limits. We say that $\lim_{x\to a} f(x) = \infty$ if for every $m \in \mathbb{R}$ there exists $\delta > 0$ such that

$$0 < |x - a| < \delta \implies f(x) > m$$
.

The latter is called an *improper limit* or *divergence to infinity*. There are more such concepts (limit to $-\infty$ as $x \to a$, or as $x \to \infty$ etc.) We can also look at right and left hand limits.

Continuity. A function f(x) is *continuous* at x = a if

$$\lim_{x \to a} f(x) = f(a).$$

We can also give an ε - δ definition of limit: f(x) is continuous at x = a if for every $\varepsilon > 0$ there exists $\delta > 0$ such that

$$|x - a| < \delta \implies |f(x) - f(a)| < \epsilon$$
.

Note that we don't require $0 < |x - a| < \delta$, because if x = a then f(x) = f(a) is automatic.

Left and Right Continuity We say f is *right* or *left continuous* at x = a if $\lim_{x \to a^+} f(x) = f(a)$ or $\lim_{x \to a^-} f(x) = f(a)$ respectively. A function is continuous at a if and only if it is left continuous and right continuous at a.

Continuity on Intervals. A function f(x) is continuous on an open interval (a, b) if it is continuous at each point of (a, b). It is continuous on a closed interval [a, b] if it is continuous on (a, b), right continuous at x = a, and left continuous at x = b.

How to show continuity of functions. As with limits, we use that elmentary functions are continuous such as x^{α} , $\sin x$, $\cos x$, e^{x} , $\ln x$, $\sin^{-1} x$, $\cos^{-1} x$ on their natural domains. From the limit laws, sums, products and quotients of continuous functions are continuous (denominator non-zero as always). By the composition/substitution law, compositions of continuous functions are continuous.

Questions to complete during the tutorial

1. Let $f(x) = \lfloor x \rfloor$, the largest integer less than or equal to x. Sketch the graph of f. At which points is f continuous? At which points is f right continuous, and at which points is it left continuous?

Solution: The graph is shown below:

This function is continuous at every non-integer value. It is left continuous only at non-integer values. It is right continuous everywhere.

2. Provide a careful step-by-step argument to explain why f(x) is continuous at $x = \pi$, where

$$f(x) = \sqrt{\ln(\cos x + \sin x + 2x) + e^x}.$$

Solution: We break the function down into pieces:

- The functions $\cos x$, $\sin x$, and 2x are all continuous at $x = \pi$.
- Thus by limit laws the function $f_1(x) = \cos x + \sin x + 2x$ is continuous at $x = \pi$.
- The function $f_2(x) = \ln x$ is continuous at $x = \cos \pi + \sin \pi + 2\pi = 2\pi 1$ (note that $2\pi 1 > 0$ is in the domain of ln).
- Hence by the Composition Law $f_3(x) = f_2 \circ f_1(x) = \ln(\cos x + \sin x + 2x)$ is continuous at $x = \pi$.
- The function $f_4(x) = e^x$ is continuous at $x = \pi$.
- Hence by the limit laws the function $f_5(x) = f_3(x) + f_4(x) = \ln(\cos x + \sin x + 2x) + e^x$ is continuous at $x = \pi$.
- The function $f_6(x) = \sqrt{x}$ is continuous at $x = f_5(\pi) = \ln(2\pi 1) + e^{\pi}$ (note that this number is positive).
- Hence by the Composition Law our function $f(x) = (f_6 \circ f_5)(x)$ is continuous at $x = \pi$.
- 3. Prove that if f(x) is continuous at x = a, then the function |f(x)| is continuous at x = a. (Use the reversed triangle inequality from a previous tutorial.) Is the converse true?

Solution: Note that for any real numbers r, s it is true that $||r| - |s|| \le |r - s|$ (reversed triangle inequality, see last week's tutorial). This shows that

$$\left| |f(x)| - |f(a)| \right| \le |f(x) - f(a)|.$$

2

As f is continuous at a we have that $|f(x) - f(a)| \to 0$ as $s \to a$. Thus by the squeeze law also $|f(x)| - |f(a)| \to 0$ as $x \to a$.

The converse assertion – that if |f| is continuous at a, then so is f – is false. For instance, let f be the function defined by

$$f(x) = \begin{cases} 1, & \text{if } x \ge 0, \\ -1, & \text{if } x < 0. \end{cases}$$

Then |f| is the constant function with value 1, so it is continuous at 0, but f is not continuous at 0.

4. Determine whether the functions given by the following formulas are continuous the given x values.

(a)
$$h(x) = x^2 + \sqrt{7 - x}$$
, at $x = 4$.

Solution: The function $x \mapsto x^2$ is continuous everywhere, and the square root function $x \mapsto \sqrt{x}$ is continuous everywhere in its domain $[0, \infty)$, so h(x) is continuous everywhere in its domain $(-\infty, 7]$. In particular, it is continuous at 4.

(b)
$$k(x) = \frac{x^2 - 1}{x + 1}$$
, at $x = -1$.

Solution: The domain of k does not include -1. Thus the function k(x) is not continuous at x = -1.

(c)
$$F(x) = \begin{cases} \frac{\sin x}{x} & \text{if } x > 0\\ 1 - x & \text{if } x \le 0 \end{cases}$$
, at $x = 0$.

Solution: As $\lim_{x\to 0^+} F(x) = \lim_{x\to 0^+} \frac{\sin x}{x} = 1$, $\lim_{x\to 0^-} F(x) = \lim_{x\to 0^-} 1 - x = 1$, and F(0) = 1, we see that F is continuous at 0.

(d)
$$K(x) = \begin{cases} \frac{x^2 - 1}{x + 1} & \text{if } x \neq -1 \\ 6 & \text{if } x = -1 \end{cases}$$
, at $x = -1$.

Solution: Since $K(x) = \frac{x^2 - 1}{x + 1} = x - 1$ for $x \neq -1$, we have

$$\lim_{x \to -1} K(x) = \lim_{x \to -1} x - 1 = -2.$$

However, K(-1) = 6, so $\lim_{x \to -1} K(x) \neq K(-1)$. Therefore K is discontinuous at -1.

5. Find a constant c so that g is continuous everywhere, where g is defined by:

(a)
$$g(x) = \begin{cases} x^2 - c^2 & \text{if } x < 4 \\ cx + 20 & \text{if } x \ge 4. \end{cases}$$

Solution: The functions $x^2 - c^2$ and cx + 20, considered on the intervals $(-\infty, 4)$ and $[4, \infty)$ respectively, are continuous for any value of c. Thus the only possible discontinuity is at x = 4. For g to be continuous at 4, we require $\lim_{x\to 4^+} g(x) = \lim_{x\to 4^+} g(x) = g(4)$, that is,

$$\lim_{x \to 4^{-}} (x^{2} - c^{2}) = \lim_{x \to 4^{+}} (cx + 20) = g(4).$$

Hence $16 - c^2 = 4c + 20$, giving c = -2.

(b)
$$g(x) = \begin{cases} -c + \sqrt{x-4} & \text{if } x \ge 4\\ |x^2 - c^2| & \text{if } x < 4. \end{cases}$$

Solution: As in part (a), for g to be continuous at 4, we require $\lim_{x\to 4^-} g(x) = \lim_{x\to 4^+} g(x) = g(4)$, that is,

$$\lim_{x \to 4^{-}} |x^{2} - c^{2}| = \lim_{x \to 4^{+}} (-c + \sqrt{x - 4}) = g(4).$$

Hence we require $|16-c^2|=-c$. From this we see that $c\leq 0$. If $c\leq -4$ then we require $c^2-16=-c$, that is, $c=\frac{-1-\sqrt{65}}{2}$. If $-4< c\leq 0$ then we require $16-c^2=-c$, that is, $c=\frac{1-\sqrt{65}}{2}$. Hence the given function is continuous at 4 for two values of c, namely $c=\frac{-\sqrt{65}\pm 1}{2}$.

6. Calculate the following limits using limit laws, the squeeze law, and/or the substitution law:

(a)
$$\lim_{x \to 0} x^2 \cos \frac{2}{x}$$

Solution: We use the Squeeze Law. Since $-x^2 \le x^2 \cos \frac{2}{x} \le x^2$ and $\lim_{x\to 0} \pm x^2 = 0$, we have $\lim_{x\to 0} x^2 \cos \frac{2}{x} = 0$.

(b)
$$\lim_{x \to 0} \frac{\sqrt{3 + 2x} - \sqrt{3}}{x}$$

Solution: We can't use the limit laws with the expression in its present form, so we manipulate it first.

$$\frac{\sqrt{3+2x} - \sqrt{3}}{x} = \frac{(\sqrt{3+2x} - \sqrt{3})(\sqrt{3+2x} + \sqrt{3})}{x(\sqrt{3+2x} + \sqrt{3})}$$
$$= \frac{3+2x-3}{x(\sqrt{3+2x} + \sqrt{3})}$$
$$= \frac{2}{\sqrt{3+2x} + \sqrt{3}}.$$

Hence

$$\lim_{x \to 0} \frac{\sqrt{3 + 2x} - \sqrt{3}}{x} = \lim_{x \to 0} \frac{2}{\sqrt{3 + 2x} + \sqrt{3}} = \frac{1}{\sqrt{3}}.$$

Note that the last step used the substitution law to evaluate the limit of the denominator.

(c)
$$\lim_{x \to \infty} \frac{x + \sin^3 x}{2x - 1}$$

Solution:
$$\lim_{x \to \infty} \frac{x + \sin^3 x}{2x - 1} = \lim_{x \to \infty} \frac{1 + \frac{\sin^3 x}{x}}{2 - \frac{1}{x}} = \frac{1}{2}.$$

Note: we have used the fact that $\lim_{x \to \infty} \frac{\sin^3 x}{x} = 0$, which follows from an application of the Squeeze Law. Since $-1 \le \sin^3 x \le 1$, we have (for x > 0)

$$-\frac{1}{x} \le \frac{\sin^3 x}{x} \le \frac{1}{x}$$
 and $\lim_{x \to \infty} \pm \frac{1}{x} = 0$.

(d)
$$\lim_{x \to \infty} \sqrt{\frac{3-x}{4-x}}$$

Solution: Divide top and bottom inside the square root sign by -x. We obtain

4

$$\sqrt{\frac{3-x}{4-x}} = \sqrt{\frac{-\frac{3}{x}+1}{-\frac{4}{x}+1}}.$$

Now as $x \to \infty$, $-\frac{3}{x} + 1 \to 1$ and $-\frac{4}{x} + 1 \to 1$. By the substitution law, as the square root function is continuous, we see that $\lim_{x\to 0} \sqrt{\frac{3-x}{4-x}} = \sqrt{\frac{1}{1}} = 1$.

(e)
$$\lim_{x \to \infty} \sqrt{\frac{3-x}{4-x^2}}$$

Solution: This time we divide top and bottom by $-x^2$. We obtain

$$\sqrt{\frac{3-x}{4-x^2}} = \sqrt{\frac{-\frac{3}{x^2} + \frac{1}{x}}{-\frac{4}{x^2} + 1}}.$$

Now as $x \to \infty$, $-\frac{3}{x^2} + \frac{1}{x} \to 0$ and $-\frac{4}{x^2} + 1 \to 1$. By the substitution law, as the square root function is continuous, we see that $\lim_{x\to\infty} \sqrt{\frac{3-x}{4-x^2}} = \sqrt{\frac{0}{1}} = 0$.

(f)
$$\lim_{x \to \infty} (\sqrt{x} - \sqrt{x+1})$$

$$\textit{Solution:} \quad \lim_{x \to \infty} (\sqrt{x} - \sqrt{x+1}) = \lim_{x \to \infty} \frac{(\sqrt{x} - \sqrt{x+1})(\sqrt{x} + \sqrt{x+1})}{\sqrt{x} + \sqrt{x+1}} = \lim_{x \to \infty} \frac{-1}{\sqrt{x} + \sqrt{x+1}} = 0.$$

7. (a) Suppose that f is a function such that $\lim_{x \to a} |f(x)| = \infty$. Use the definition of a limit to show that $\lim_{x \to a} \frac{1}{|f(x)|} = 0$, where a is either finite or $a = \infty$.

Solution: Let a be finite and fix $\varepsilon > 0$. Then clearly

$$\frac{1}{|f(x)|} < \varepsilon \quad \Longleftrightarrow \quad |f(x)| > \frac{1}{\varepsilon}$$

As $\lim_{x \to a} |f(x)| = \infty$ there exists $\delta > 0$ such that

$$0 < |x - a| < \delta \implies |f(x)| > \frac{1}{\epsilon}$$

Putting the two conditions together we see that

$$0 < |x - a| < \delta \implies \left| \frac{1}{|f(x)|} - 0 \right| = \frac{1}{|f(x)|} < \varepsilon.$$

As the above argument works for any choice of $\varepsilon > 0$ we conclude that $\lim_{x \to a} \frac{1}{|f(x)|} = 0$.

We proceed similarly if $a = \infty$. Given $m \in \mathbb{R}$ we have

$$\frac{1}{|f(x)|} < \varepsilon \iff |f(x)| > \frac{1}{\varepsilon}$$

As $\lim_{x \to \infty} |f(x)| = \infty$ there exists $m \in \mathbb{R}$ such that

$$x > m \implies |f(x)| > \frac{1}{\varepsilon}$$

Putting the two conditions together we see that

$$x > m \implies \left| \frac{1}{|f(x)|} - 0 \right| = \frac{1}{|f(x)|} < \varepsilon.$$

As the above argument works for any choice of ε we conclude that $\lim_{x\to\infty}\frac{1}{|f(x)|}=0$.

(b) Hence show that $\lim_{x \to \infty} e^{-x} = 0$ as $x \to \infty$.

Solution: We know that $e^x \to \infty$ as $x \to \infty$. Hence from part (a) we conclude that

$$e^{-x} = \frac{1}{e^x} \to 0$$

as $x \to \infty$.

Extra questions for further practice

8. (a) By comparing the areas of a suitable sector and triangle, show that $|\sin \theta| \le |\theta|$, where $\theta \in \mathbb{R}$ is measured in radians.

Solution: Consider the diagram, where the circle is the unit circle:

To begin with, suppose that $0 < \theta < \pi/2$. The area of $\triangle OAB$ is less than the area of the sector OAB, which gives

$$0 \le \frac{1}{2} \times 1 \times \sin \theta \le \frac{\theta}{2\pi} \times \pi,$$

and so

$$0 \le \sin x \le x$$
 for all $0 < \theta < \pi/2$.

Multiplying by -1 this gives $0 \ge -\sin \theta \ge -\theta$ for all $\theta \in (0, \pi/2)$, and thus since $-\sin \theta = \sin(-\theta)$ we have $0 \ge \sin \theta \ge \theta$ for all $\theta \in (-\pi/2, 0)$. It follows that

$$|\sin x| \le |x|$$
 for all $0 < |x| < \pi/2$,

and this is clearly true also for $\theta = 0$, and also for $|\theta| \ge \pi/2$, because in this case $|\sin \theta| \le 1 < \pi/2 \le |x|$. Therefore $|\sin \theta| \le |\theta|$ for all $\theta \in \mathbb{R}$.

(b) Prove that $\sin x - \sin y = 2 \sin \frac{x - y}{2} \cos \frac{x + y}{2}$ for all $x, y \in \mathbb{R}$.

Solution: You could either use various double angle formulae, or argue as follows. Recall from class that $\sin x$ and $\cos x$ can be written in terms of the complex exponential function as

$$\cos x = \frac{1}{2} \left(e^{ix} + e^{-ix} \right)$$
 and $\sin x = \frac{1}{2i} \left(e^{ix} - e^{-ix} \right)$ for all $x \in \mathbb{R}$.

We have

$$2\sin\frac{x-y}{2}\cos\frac{x+y}{2} = \frac{1}{2i} \left(e^{i(x-y)/2} - e^{-i(x-y)/2} \right) \left(e^{i(x+y)/2} + e^{-i(x+y)/2} \right)$$
$$= \frac{1}{2i} \left(e^{ix} + e^{-iy} - e^{iy} - e^{-ix} \right)$$
$$= \frac{1}{2i} \left(e^{ix} - e^{-ix} \right) - \frac{1}{2i} \left(e^{iy} - e^{-iy} \right)$$
$$= \sin x - \sin y.$$

(c) Hence, show that $|\sin x - \sin y| \le |x - y|$ for all $x, y \in \mathbb{R}$. Deduce that $\sin : \mathbb{R} \to \mathbb{R}$ is continuous.

Solution: Using the previous parts, and also the facts that $|\sin t| \le 1$ and $|\cos t| \le 1$ for all real numbers t, we have

$$|\sin x - \sin y| = 2 \left| \sin \frac{x - y}{2} \right| \left| \cos \frac{x + y}{2} \right| \le 2 \left| \frac{x - y}{2} \right| \times 1 = |x - y|.$$

(d) Using that the sine function is continuous, show that all other trigonometric functions are continuous. Use for instance that $\cos(x) = \sin(\pi/2 - x)$.

6

Solution: As $\cos(x) = \sin(\pi/2 - x)$ for all $x \in \mathbb{R}$ the substitution law implies continuity of the cosine. Alternatively we can see this using the inequality from the previous part:

$$|\cos x - \cos y| = \left|\sin\left(\frac{\pi}{2} - x\right) - \sin\left(\frac{\pi}{2} - y\right)\right| \le \left|\left(\frac{\pi}{2} - x\right) - \left(\frac{\pi}{2} - y\right)\right| = |y - x| = |x - y|$$

for all $x, y \in \mathbb{R}$

Next, $\tan x = \frac{\sin x}{\cos x}$, $\cot x = \frac{\cos x}{\sin x}$, $\sec x = \frac{1}{\cos x}$ and $\csc x = \frac{1}{\sin x}$ are continuous by the quotient law.

- 9. Compute the following limits using the limit laws and the substitution law.
 - (a) $\lim_{t\to 0} \frac{\tan t}{t}$.

Solution: We have $\frac{\tan t}{t} = \frac{\sin t}{t} \frac{1}{\cos t} \to 1 \frac{1}{1} = 1$ as $t \to 0$ by using the elementary limit $\frac{\sin t}{t} \to 1$ and $\cos t \to 1$ as well as the product law.

(b) $\lim_{t\to 0} \frac{\sin(t^2)}{t}.$

Solution: We have $\frac{\sin(t^2)}{t} = t \frac{\sin(t^2)}{t^2} \to 0 \times 1 = 0$ as $t \to 0$ by using the elementary limit $\frac{\sin x}{x} \to 1$ (since $x = t^2 \to 0$) as well as the product law.

(c) $\lim_{x \to \infty} \sqrt{x^2 + 1} \sin \frac{1}{x}.$

Solution: As $\sin \theta \le \theta$ for all $\theta \ge 0$ we have that

$$\sqrt{2x^2 + 1} \sin \frac{1}{x} = x \sin \frac{1}{x} \sqrt{2 + \frac{1}{x^2}} = \frac{\sin \frac{1}{x}}{\frac{1}{x}} \sqrt{1 + \frac{1}{x^2}} \to \sqrt{2} \times 1 = \sqrt{2}$$

as $x \to \infty$, using that $1/x \to 0$ and the elementary limit $\frac{\sin \theta}{\theta} \to 1$ substituting $\theta = 1/x$.

(d) $\lim_{x \to \infty} \left[\cosh(x) \left(\cosh(x) - \sinh(x) \right) \right]$.

Solution: By definition of the hyperbolic functions

$$\cosh x - \sinh x = \frac{1}{2} \left((e^x + e^{-x}) - (e^x - e^{-x}) \right) = \frac{1}{2} \left((e^x + e^{-x}) - (e^x - e^{-x}) \right) = e^{-x}.$$

Hence,

$$\cosh(x)\left(\cosh(x) - \sinh(x)\right) = e^{-x} \frac{e^x + e^{-x}}{2} = \frac{2 + e^{-2x}}{2} \to \frac{1 + 0}{2} = \frac{1}{2}$$

as $x \to \infty$, using the limit laws.

(e) $\lim_{x \to 0} \frac{|3x+1| - |3x-1|}{x}$.

Solution: We have

$$\frac{|3x+1|-|3x-1|}{x} = \frac{\left(|3x+1|-|3x-1|\right)\left(|3x+1|+|3x-1|\right)}{x\left(|3x+1|+|3x-1|\right)}$$

$$= \frac{(3x+1)^2 - (3x-1)^2}{x\left(|3x+1|+|3x-1|\right)} = \frac{(9x^2+6x+1) - (9x^2-6x+1)}{|x|\left(|3x+1|+|3x-1|\right)}$$

$$= \frac{12x}{x\left(|3x+1|+|3x-1|\right)} = \frac{12}{|3x+1|+|3x-1|}$$

The limit of the denominator in the last expression as $x \to 0$ is 2, so $\frac{|3x+1|-|3x-1|}{x} \to \frac{12}{2} = 6$ as $x \to 0$.

(f)
$$\lim_{x \to 0} \frac{\sin(2x)}{\sin(5x)}.$$

Solution: We can rewrite the expression in the form

$$\frac{\sin(2x)}{\sin(5x)} = \frac{2}{5} \frac{\sin(2x)}{2x} \left(\frac{\sin(5x)}{5x}\right)^{-1} \to \frac{2}{5} \times 1 \times \frac{1}{1} = \frac{2}{5}$$

as
$$x \to 0$$
.

10. Show that if f(x) is continuous at x = a, and if f(a) > 0, then there is a number $\delta > 0$ such that f(x) > 0 whenever $|x - a| < \delta$.

Solution: By continuity of f(x) at x = a, for each $\epsilon > 0$ there exists $\delta > 0$ such that

$$|x - a| < \delta \implies |f(x) - f(a)| < \epsilon$$
.

In particular, taking $\epsilon = f(a) > 0$ there is $\delta > 0$ such that

$$|x - a| < \delta \Rightarrow |f(x) - f(a)| < f(a)$$

 $\Rightarrow f(a) - f(x) < f(a)$
 $\Rightarrow f(x) > 0.$

Challenge questions (optional)

11. Consider the function f defined by

$$f(x) = \begin{cases} 0 & \text{if } x \text{ is irrational} \\ 1 & \text{if } x = 0 \\ \frac{1}{q} & \text{if } x = \frac{p}{q} \text{ with } q > 0 \text{ and with } p \text{ and } q \text{ integers having no factors in common.} \end{cases}$$

For example f(6/8) = 1/4 since 6/8 = 3/4. Prove that f is discontinuous at every rational number.

Solution:

Let a be any rational number, and suppose (for a contradiction) that f is continuous at x = a. We have f(a) > 0, so by the previous question there is $\delta > 0$ such that f(x) > 0 for all x satisfying $|x - a| < \delta$. However there is an irrational number y with $0 < y < \delta$ (see Tutorial 1). Then x = a + y is also irrational, and $|x - a| < \delta$. But f(x) = 0, contradicting f(x) > 0. This is the desired contradiction, proving that f is discontinuous at every rational number (in particular, it has infinitely many discontinuities).

Remark: Rather remarkably, it turns out that $\lim_{x\to a} f(x) = 0$ for all $a \in \mathbb{R}$. Thus f(x) is actually continuous at every irrational number!

8