CheatSheet di Ricerca Operativa e Pianificazione delle Risorse

Fabio Ferrario

@fefabo

2022/2023

Indice

1	Ottimizzazione Non Lineare Vincolata	3
	1.1 Condizioni di KKT	3

Capitolo 1

Ottimizzazione Non Lineare Vincolata

1.1 Condizioni di KKT

In un problema di ottimizzazione vincolata definito come:

opt
$$f(x_1, ..., x_n)$$
,
 $g_m(x_1, ..., x_n) = 0$ Vincoli di Uguaglianza,
 $h_l(x_1, ..., x_n) \leq 0$ Vincoli di Disguaglianza,

Generiamo la Lagrangiana cosí definita:

$$L(V) = f(X) \pm \sum_{i=0}^{m} \lambda_i \cdot g_i(X) \pm \sum_{j=0}^{l} \mu_j \cdot h_j(X)$$
 Per i problemi di MIN

in cui \pm diventa + per i problemi di MIN e – per i problemi di MAX, Abbiamo che λ sono i moltiplicatori lagrangiani associati ai vincoli di Uguaglianza, e μ quelli associati ai vincoli di Disuguaglianza.

con $V = \{x_1, ..., x_n, \lambda_1, ..., \lambda_m, \mu_1, ..., \mu_l\}$, ovvero tutte le variabili e $X = \{x_1, ..., x_n\}$, ovvero tutte le variabili originiali.

La tabella e il sistema Avendo questo, bisogna quindi generare un sistema che avrá n+m+l incognite utilizzando le KKT, riportate qui in modo semplificato:

4 CAPITOLO 1. OTTIMIZZAZIONE NON LINEARE VINCOLATA

Stazionarietá Problemi di MIN (-)			
$\nabla f = -\sum \lambda_i \cdot \nabla g_i - \sum \mu_j \cdot \nabla h_j$			
Stazionarietá Problemi di MAX (+)			
$\nabla f = +\sum \lambda_i \cdot \nabla g_i + \sum \mu_j \cdot \nabla h_j$			
Ammissibilitá Vincoli Uguaglianza	$\forall \qquad g_i = 0$		
Ammissibilitá Vincoli Disuguaglianza	\forall $h_j \leq 0$		
Condizione di Complementarietá	$\forall \qquad \qquad \mu_j \cdot h_j = 0$		
Non Negativitá di μ	\forall $\mu_j \geq 0$		

Dove con \forall si intende chiaramente tutti quelli presenti.