

Pós-Graduação em Ciência da Computação

#### Author's name

#### **Title**



Federal University of Pernambuco posgraduacao@cin.ufpe.br www.cin.ufpe.br/~posgraduacao

Recife 2019

Author's name

**Title** 

A Ph.D. Thesis presented to the Center of Informatics of Federal University of Pernambuco in partial fulfillment of the requirements for the degree of Philosophy Doctor in Computer Science.

Concentration Area: Computational Intelligence

Advisor: Professor's name

Recife

2019

# FICHA

# BANCA



### **ACKNOWLEDGEMENTS**

#### **ABSTRACT**

Abstract

**Keywords:** X. Y. Z.

#### **RESUMO**

Resumo.

Palavras-chave: X. Y. Z.

# LIST OF FIGURES

| Figure 1 – DenseNet architecture |
|----------------------------------|
|----------------------------------|

# LIST OF TABLES

| Table 1 | _ | Specifications | of the l | Deep | Learning | Benchmark | image. | Datasets | <br> | • | 14 |
|---------|---|----------------|----------|------|----------|-----------|--------|----------|------|---|----|
|         |   |                |          |      |          |           |        |          |      |   |    |

#### LIST OF ACRONYMS

CIFAR10 Canadian Institute For Advanced Research

**SOM** Self-Organizing Map

**SVHN** Street View House Numbers

### LIST OF SYMBOLS

Δ Gradient

### LIST OF ALGORITHMS

| Algorithm 1 – Algorithm |  | . 14 |
|-------------------------|--|------|
|-------------------------|--|------|

### **CONTENTS**

| 1 | NTRODUCTION | 14 |
|---|-------------|----|
|   | REFERENCES  | 14 |

# 1

#### **INTRODUCTION**

Self-Organizing Map (SOM) (Kohonen, 1990).



Figure 1: DenseNet architecture

$$CE(C,C') = \frac{|U| - D_{max}}{|U|}, \tag{1.1}$$

Table 1: Specifications of the Deep Learning Benchmark Image Datasets

| Datasets                                           | Resolution | Channels | Classes |
|----------------------------------------------------|------------|----------|---------|
| Canadian Institute For Advanced Research (CIFAR10) | 32 x 32    | 3        | 10      |
| Street View House Numbers (SVHN)                   | 32 x 32    | 3        | 10      |
| MNIST                                              | 28 x 28    | 1        | 10      |
| FashionMNIST                                       | 28 x 28    | 1        | 10      |

#### **Algorithm 1:** Algorithm

- 1 Initialize parameters;
- 2 for  $epoch \leftarrow 0$  to  $epoch_{max}$  do
- 3 Choose a random input pattern x;
- 4 **if** condition then
- 5 Run X;
- 6 else
- 7 | Run Y.;

#### **REFERENCES**

Kohonen, T. (1990). The self-organizing map. *Proceedings of the IEEE*, 78(9):1464–1480.