Instrumental Variables for Dynamic Spatial Models with Interactive Effects

Ayden Higgins

October 2025

• Determinants of economic growth.

- Determinants of economic growth.
- Observations on a cross-section of countries over multiple time periods.
 - ullet y_t growth rate of real GDP per capita.
 - X_t other factors, e.g. life expectancy, population growth, consumption, investment and government expenditure shares.
 - ullet W binary indicators of whether countries share a border.

- Determinants of economic growth.
- Observations on a cross-section of countries over multiple time periods.
 - ullet y_t growth rate of real GDP per capita.
 - X_t other factors, e.g. life expectancy, population growth, consumption, investment and government expenditure shares.
 - ullet $oldsymbol{W}$ binary indicators of whether countries share a border.
- Model

$$\mathbf{y}_t = \rho \mathbf{W} \mathbf{y}_t + \alpha \mathbf{y}_{t-1} + \phi \mathbf{W} \mathbf{y}_{t-1} + \mathbf{X}_t \boldsymbol{\beta} + \boldsymbol{\eta}_t.$$

- Determinants of economic growth.
- Observations on a cross-section of countries over multiple time periods.
 - ullet $oldsymbol{y}_t$ growth rate of real GDP per capita.
 - X_t other factors, e.g. life expectancy, population growth, consumption, investment and government expenditure shares.
 - ullet $oldsymbol{W}$ binary indicators of whether countries share a border.
- Model

$$\mathbf{y}_t = \rho \mathbf{W} \mathbf{y}_t + \alpha \mathbf{y}_{t-1} + \phi \mathbf{W} \mathbf{y}_{t-1} + \mathbf{X}_t \boldsymbol{\beta} + \boldsymbol{\eta}_t.$$

• Parameter of interest $\boldsymbol{\theta} := (\rho, \alpha, \phi, \boldsymbol{\beta}^{\top})^{\top}$.

• Controlling for unobserved heterogeneity critically important.

- Controlling for unobserved heterogeneity critically important.
- Exposure to common shocks or a common environment can generate correlation in outcomes.

- Controlling for unobserved heterogeneity critically important.
- Exposure to common shocks or a common environment can generate correlation in outcomes.
- ullet The error term $oldsymbol{\eta}_t$ may be decomposed as

$$oldsymbol{\eta}_t = oldsymbol{\Lambda} oldsymbol{f}_t + oldsymbol{arepsilon}_t.$$

- Controlling for unobserved heterogeneity critically important.
- Exposure to common shocks or a common environment can generate correlation in outcomes.
- ullet The error term $oldsymbol{\eta}_t$ may be decomposed as

$$oldsymbol{\eta}_t = oldsymbol{\Lambda} oldsymbol{f}_t + oldsymbol{arepsilon}_t.$$

ullet Note $oldsymbol{\Lambda}, oldsymbol{f}_t$ and $oldsymbol{arepsilon}_t$ are all unobserved.

- Controlling for unobserved heterogeneity critically important.
- Exposure to common shocks or a common environment can generate correlation in outcomes.
- ullet The error term $oldsymbol{\eta}_t$ may be decomposed as

$$oldsymbol{\eta}_t = oldsymbol{\Lambda} f_t + oldsymbol{arepsilon}_t.$$

- ullet Note $oldsymbol{\Lambda}$, $oldsymbol{f}_t$ and $oldsymbol{arepsilon}_t$ are all unobserved.
- Generalisation of classic models such as individual, time or group effects:

$$oldsymbol{\Lambda} = egin{pmatrix} \lambda_1 & 1 \ dots & dots \ \lambda_n & 1 \end{pmatrix}, \; oldsymbol{f}_t = egin{pmatrix} 1 \ f_t \end{pmatrix}.$$

• ΛF^{\top} is low rank.

Related Work

- Spatial models with interactive effects:
 - (Q)MLE Shi and Lee (2017); Bai and Li (2021). (Large n, Large T)
 - Adjusted Score Li and Yang (2023). (Large n, Fixed T)
 - GMM Kuersteiner and Prucha (2020). (Large n, Fixed T)
 - IV Cui, Sarafidis and Yamagata (2022). (Large n, Large T)

 Introduce an IV estimator which provides an easier way to handle both the factor structure and also possible heteroskedasticity of the errors.

- Introduce an IV estimator which provides an easier way to handle both the factor structure and also possible heteroskedasticity of the errors.
- Study the properties of the estimator as $n \to \infty$, but also allowing for the possibility that both the number of time periods T and the number of instruments m also increase.

- Introduce an IV estimator which provides an easier way to handle both the factor structure and also possible heteroskedasticity of the errors.
- Study the properties of the estimator as $n \to \infty$, but also allowing for the possibility that both the number of time periods T and the number of instruments m also increase.
- Find that the estimator can exhibit considerable bias, depending on the weights matrix. Bias correction significantly ameliorates this issue.

- Introduce an IV estimator which provides an easier way to handle both the factor structure and also possible heteroskedasticity of the errors.
- Study the properties of the estimator as $n \to \infty$, but also allowing for the possibility that both the number of time periods T and the number of instruments m also increase.
- Find that the estimator can exhibit considerable bias, depending on the weights matrix. Bias correction significantly ameliorates this issue.
- Provide some additional results which are useful for applying the estimator in practice.

- Introduce an IV estimator which provides an easier way to handle both the factor structure and also possible heteroskedasticity of the errors.
- Study the properties of the estimator as $n \to \infty$, but also allowing for the possibility that both the number of time periods T and the number of instruments m also increase.
- Find that the estimator can exhibit considerable bias, depending on the weights matrix. Bias correction significantly ameliorates this issue.
- Provide some additional results which are useful for applying the estimator in practice.
- Apply the method the study the relationship between economic growth, civil liberties and political rights.

• Original model in matrices:

$$S(\rho)Y = \alpha \boldsymbol{Y}_{-1} + \phi \boldsymbol{W} \boldsymbol{Y}_{-1} + \boldsymbol{X} \cdot \boldsymbol{\beta} + \boldsymbol{\Lambda} \boldsymbol{F}^\top + \varepsilon,$$
 with $S(\rho) \coloneqq \boldsymbol{I}_n - \rho \boldsymbol{W}$.

• Original model in matrices:

$$S(\rho)Y = \alpha Y_{-1} + \phi W Y_{-1} + X \cdot \beta + \Lambda F^{\top} + \varepsilon,$$

with $S(\rho) \coloneqq I_n - \rho W$.

Under some conditions we can expand

$$Y = \sum_{h=0}^{\infty} (\rho W)^h (\alpha Y_{-1} + \phi W Y_{-1} + X \cdot \beta + \Lambda F^{\top} + \varepsilon).$$

• Original model in matrices:

$$S(\rho)Y = \alpha Y_{-1} + \phi W Y_{-1} + X \cdot \beta + \Lambda F^{\top} + \varepsilon,$$

with $S(\rho) \coloneqq I_n - \rho W$.

Under some conditions we can expand

$$Y = \sum_{h=0}^{\infty} (\rho W)^h (\alpha Y_{-1} + \phi W Y_{-1} + X \cdot \beta + \Lambda F^{\top} + \varepsilon).$$

ullet Generate instruments for $oldsymbol{Y}$, i.e. $oldsymbol{X}$, $oldsymbol{W}oldsymbol{X}$, $oldsymbol{W}^2oldsymbol{X}$,

• With S weights matrices

$$\boldsymbol{y}_t = \sum_{s=1}^{S} \rho_s \boldsymbol{W}_s \boldsymbol{y}_t + \alpha \boldsymbol{y}_{t-1} + \sum_{s=1}^{S} \phi_s \boldsymbol{W}_s \boldsymbol{y}_{t-1} + \boldsymbol{X}_t \boldsymbol{\beta} + \boldsymbol{\eta}_t.$$

Produces a great many instruments

$$\begin{split} \boldsymbol{S}^{-1}(\boldsymbol{\rho}) &= \left(\boldsymbol{I}_{n} - \boldsymbol{\rho} \cdot \boldsymbol{W}\right)^{-1} \\ &= \boldsymbol{I}_{n} + \sum_{s=1}^{S} \rho_{s_{1}} \boldsymbol{W}_{s_{1}} + \sum_{s_{1}=1}^{S} \sum_{s_{2}=1}^{S} \rho_{s_{1}} \rho_{s_{2}} \boldsymbol{W}_{s_{1}} \boldsymbol{W}_{s_{2}} \\ &+ \sum_{s_{1}=1}^{S} \sum_{s_{2}=1}^{S} \sum_{s_{3}=1}^{S} \rho_{s_{1}} \rho_{s_{2}} \rho_{s_{3}} \boldsymbol{W}_{s_{1}} \boldsymbol{W}_{s_{2}} \boldsymbol{W}_{s_{3}} + \cdots. \end{split}$$

• Re-write

$$\begin{split} \boldsymbol{Y} &= \rho \boldsymbol{W} \boldsymbol{Y} + \alpha \boldsymbol{Y}_{-1} + \phi \boldsymbol{W} \boldsymbol{Y}_{-1} + \boldsymbol{X} \cdot \boldsymbol{\beta} + \boldsymbol{\Lambda} \boldsymbol{F}^\top + \boldsymbol{\varepsilon}, \\ &= \boldsymbol{Z} \cdot \boldsymbol{\theta} + \boldsymbol{\Lambda} \boldsymbol{F}^\top + \boldsymbol{\varepsilon}. \end{split}$$

• Re-write

$$Y = \rho W Y + \alpha Y_{-1} + \phi W Y_{-1} + X \cdot \beta + \Lambda F^{\top} + \varepsilon,$$

= $Z \cdot \theta + \Lambda F^{\top} + \varepsilon.$

ullet Let ${oldsymbol{\mathcal{V}}}$ be an n imes m matrix containing a set of instruments.

• Re-write

$$Y = \rho W Y + \alpha Y_{-1} + \phi W Y_{-1} + X \cdot \beta + \Lambda F^{\top} + \varepsilon,$$

= $Z \cdot \theta + \Lambda F^{\top} + \varepsilon.$

- Let ${\cal V}$ be an $n \times m$ matrix containing a set of instruments.
- Construct an $n \times m$ matrix $Q_{\mathcal{V}}$ as $\mathcal{V}(\mathcal{V}^{\top}\mathcal{V})^{-\frac{1}{2}}$.

Re-write

$$Y = \rho W Y + \alpha Y_{-1} + \phi W Y_{-1} + X \cdot \beta + \Lambda F^{\top} + \varepsilon,$$

= $Z \cdot \theta + \Lambda F^{\top} + \varepsilon.$

- Let ${\cal V}$ be an $n \times m$ matrix containing a set of instruments.
- Construct an $n \times m$ matrix $Q_{\mathcal{V}}$ as $\mathcal{V}(\mathcal{V}^{\top}\mathcal{V})^{-\frac{1}{2}}$.
- ullet Premultiply by $Q_{\mathcal{V}}^ op$ to give

$$oldsymbol{Q}_{\mathcal{oldsymbol{\mathcal{V}}}}^{ op} Y = ilde{oldsymbol{Y}} = ilde{oldsymbol{Z}} \cdot oldsymbol{ heta} + ilde{oldsymbol{\Lambda}} oldsymbol{F}^{ op} + ilde{oldsymbol{arepsilon}}.$$

• Dimension reduction: $n \times T \to m \times T$.

• Concentrated objective function:

$$\mathcal{Q}(\boldsymbol{\theta}) := \frac{1}{nT} \sum_{r=R+1}^{T} \mu_r \left(\left(\tilde{\boldsymbol{Y}} - \tilde{\boldsymbol{Z}} \cdot \boldsymbol{\theta} \right)^{\top} \left(\tilde{\boldsymbol{Y}} - \tilde{\boldsymbol{Z}} \cdot \boldsymbol{\theta} \right) \right),$$

where $\mu_r(\cdot)$ denotes the r-th largest eigenvalue of a matrix.

• Concentrated objective function:

$$\mathcal{Q}(\boldsymbol{\theta}) \coloneqq \frac{1}{nT} \sum_{r=R+1}^{T} \mu_r \left(\left(\tilde{\boldsymbol{Y}} - \tilde{\boldsymbol{Z}} \cdot \boldsymbol{\theta} \right)^{\top} \left(\tilde{\boldsymbol{Y}} - \tilde{\boldsymbol{Z}} \cdot \boldsymbol{\theta} \right) \right),$$

where $\mu_r(\cdot)$ denotes the r-th largest eigenvalue of a matrix.

• IV-IFE estimator:

$$\hat{\boldsymbol{\theta}}\coloneqq\arg\min_{\boldsymbol{\theta}\in\Theta}\mathcal{Q}(\boldsymbol{\theta}).$$

Assumption MD

Assumption MD (Model)

- (i) The parameter vector $m{ heta}_0$ is in the interior of Θ , where Θ is a compact subset of \mathbb{R}^P .
- (ii) The weights matrix $oldsymbol{W}$ has a zero diagonal, is nonstochastic and UB.
- (iii) For all $\rho \in \Theta_{\rho}$, $\alpha \in \Theta_{\alpha}$ and $\phi \in \Theta_{\phi}$, $|\det(S(\rho))| \geq c > 0$, $|\det(\bar{B}(\rho,\alpha,\phi))| \geq c > 0$, and $\|A(\rho,\alpha,\phi)\|_2 < 1-c$ holds for all (n,T), and $S^{-1}(\rho)$, $\bar{B}^{-1}(\rho,\alpha,\phi)$ and $\sum_{h=1}^{\infty} |A^h(\rho,\alpha,\phi)|$ are UB.
- (iv) $x_{kit}, \lambda_{0,ir}$ and $f_{0,tr}$ have uniformly bounded fourth moments.
- (v) The errors ε_{it} are independent of the factors, the loadings, and the covariates, and are also independent over i and t with $\mathbb{E}[\varepsilon_{it}]=0$, $\mathbb{E}[\varepsilon_{it}^2]=:\sigma_{it}^2>0$ and uniformly bounded fourth moments.

Assumption CS

Assumption CS (Consistency)

- (i) $R \geq R_0 \coloneqq \operatorname{rank}(\tilde{\boldsymbol{\Lambda}}_0 \boldsymbol{F}_0^\top)$.
- $\begin{array}{ll} \text{(ii)} & \min_{\pmb{\delta} \in \mathbb{R}^P: \|\pmb{\delta}\|_2 = 1} \sum_{r=R+R_0+1}^T \mu_r(\frac{1}{nT} (\pmb{\delta} \cdot \tilde{\pmb{Z}})^\top (\pmb{\delta} \cdot \tilde{\pmb{Z}})) \geq c > 0, \\ & \text{w.p.a.1 as } n \to \infty. \end{array}$

Consistency

Proposition 1 (Consistency)

Under Assumptions MD and CS, as $n \to \infty$,

$$\|\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0\|_2 = \mathcal{O}_p\left(\sqrt{\frac{m}{n}}\right).$$

Assumption AD

Assumption AD (Asymptotic Distribution)

- (i) $R = R_0$.
- (ii) $\frac{1}{n}\tilde{\boldsymbol{\Lambda}}_0^{\top}\tilde{\boldsymbol{\Lambda}}_0 \overset{p}{\to} \boldsymbol{\Sigma}_{\tilde{\boldsymbol{\Lambda}}_0}$ as $n \to \infty$, with $\mu_{R_0}(\boldsymbol{\Sigma}_{\tilde{\boldsymbol{\Lambda}}_0}) > 0$ and $\mu_1(\boldsymbol{\Sigma}_{\tilde{\boldsymbol{\Lambda}}_0}) < \infty$.
- (iii) $\mu_{R_0}(\frac{1}{T}\boldsymbol{F}_0^{\top}\boldsymbol{F}_0) > 0$ and $\mu_1(\frac{1}{T}\boldsymbol{F}_0^{\top}\boldsymbol{F}_0) < \infty$.
- (iv) The elements of the matrices $\bar{M}\tilde{\mathcal{H}}$ and $\bar{M}\tilde{\mathcal{R}}$ have uniformly bounded fourth moments for all (n,T).

The matrices ${\cal H}$ and ${\cal R}$ are $nm \times P$ and $\bar{M} \coloneqq (M_{{\cal F}_0} \otimes {\cal Q}_{{\cal V}} M_{\tilde{\Lambda}_0} {\cal Q}_{{\cal V}}^{ op})$.

Theorem 1 (Asymptotic Distribution)

Under Assumptions MD, CS and AD, with $\gamma_{nm}^2 \coloneqq m^2T/n \to c \ge 0$ as $n,m\to\infty$,

$$\sqrt{nT}(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0) \xrightarrow{d} \mathcal{N}\left(\boldsymbol{\Delta}^{-1}\boldsymbol{\psi}, \boldsymbol{\Delta}^{-1}\boldsymbol{\Omega}\boldsymbol{\Delta}^{-1}\right),$$

where,

$$\psi_n \coloneqq \frac{1}{\sqrt{nT}} \begin{pmatrix} \operatorname{tr} \left(\boldsymbol{\Sigma} \bar{\boldsymbol{M}} \bar{\boldsymbol{W}} \bar{\boldsymbol{B}}^{-1} \right) \\ \mathbf{0}_{(K+2)} \end{pmatrix},$$

$$\begin{split} & \psi \coloneqq \operatorname{plim}_{n \to \infty} \psi_n, \ \Delta_n \coloneqq (nT)^{-1} (\mathcal{H} + \mathcal{R})^\top \bar{M} (\mathcal{H} + \mathcal{R}), \\ & \Delta = \operatorname{plim}_{n \to \infty} \Delta_n, \ \Omega_n \coloneqq (nT)^{-1} (\mathcal{H} + \mathcal{R})^\top \bar{M} \Sigma \bar{M} (\mathcal{H} + \mathcal{R}), \\ & \Omega \coloneqq \operatorname{plim}_{n \to \infty} \Omega_n, \ \text{and} \ \Sigma \ \text{is an} \ nT \times nT \ \text{matrix with diagonal elements} \\ & \sigma_{11}^2, \dots, \sigma_{nT}^2 \ \text{and remaining elements equal to zero.} \end{split}$$

• Consider more closely

$$oldsymbol{\psi}_n\coloneqq rac{1}{\sqrt{nT}} egin{pmatrix} \operatorname{tr}(oldsymbol{\Sigma}ar{oldsymbol{W}}ar{oldsymbol{B}}^{-1}ar{oldsymbol{M}}) \ \mathbf{0}_{(K+2) imes 1} \end{pmatrix}.$$

• Consider more closely

$$\psi_n \coloneqq \frac{1}{\sqrt{nT}} \begin{pmatrix} \operatorname{tr}(\boldsymbol{\Sigma} \bar{\boldsymbol{W}} \bar{\boldsymbol{B}}^{-1} \bar{\boldsymbol{M}}) \\ \mathbf{0}_{(K+2) \times 1} \end{pmatrix}.$$

• In general

$$\psi_{n,1} = \mathcal{O}\left(\sqrt{\frac{m^2T}{n}}\right).$$

Consider more closely

$$\psi_n \coloneqq \frac{1}{\sqrt{nT}} \begin{pmatrix} \operatorname{tr}(\boldsymbol{\Sigma} \bar{\boldsymbol{W}} \bar{\boldsymbol{B}}^{-1} \bar{\boldsymbol{M}}) \\ \mathbf{0}_{(K+2) \times 1} \end{pmatrix}.$$

• In general

$$\psi_{n,1} = \mathcal{O}\left(\sqrt{\frac{m^2T}{n}}\right).$$

ullet The potential magnitude of this bias lies behind the restrictions on the growth of $n,\ m$ and T.

Consider more closely

$$\psi_n \coloneqq \frac{1}{\sqrt{nT}} \begin{pmatrix} \operatorname{tr}(\boldsymbol{\Sigma} \bar{\boldsymbol{W}} \bar{\boldsymbol{B}}^{-1} \bar{\boldsymbol{M}}) \\ \mathbf{0}_{(K+2) \times 1} \end{pmatrix}.$$

• In general

$$\psi_{n,1} = \mathcal{O}\left(\sqrt{\frac{m^2T}{n}}\right).$$

- The potential magnitude of this bias lies behind the restrictions on the growth of $n,\ m$ and T.
- The exact magnitude of this bias will depend in part on the structure of cross-sectional dependence, represented by the weights matrix.

• Suppose that:

$$\boldsymbol{W} = \begin{pmatrix} \boldsymbol{W}_1 & 0 & \dots & 0 \\ 0 & \boldsymbol{W}_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \boldsymbol{W}_G \end{pmatrix},$$

with

$$\mathbf{W}_{g} = \begin{pmatrix} 0 & n_{g}^{-1} & \dots & n_{g}^{-1} \\ n_{g}^{-1} & 0 & \dots & n_{g}^{-1} \\ \vdots & \vdots & \ddots & \vdots \\ n_{g}^{-1} & n_{g}^{-1} & \dots & 0 \end{pmatrix},$$

for $g=1,\ldots,G$

• One can show (with $n \to \infty$, m/n and $T/n \to 0$)

$$\begin{split} \psi_{n,1} &= \frac{1}{\sqrt{nT}} \mathrm{tr}(\boldsymbol{\Sigma} \bar{\boldsymbol{W}} (\boldsymbol{I}_{nT} - \rho_0 \bar{\boldsymbol{W}})^{-1} \bar{\boldsymbol{P}}) + \mathcal{O}(1) \\ &=: \xi + \mathcal{O}(1), \end{split}$$

and establish bounds

$$-\sigma_{\min}^2 \sqrt{\frac{T}{n}} \times \frac{m}{n_{\min} + (\rho - 1)} \leq \xi \leq \sigma_{\max}^2 \sqrt{\frac{T}{n}} \left(\frac{m \wedge G}{1 - \rho} - \frac{0 \vee (m - G)}{n_{\max} + (\rho - 1)} \right),$$

where $n_{\rm max}$ and $n_{\rm min}$ denote maximum and minimum group sizes, respectively.

• If $n, m, G \rightarrow \infty$ and n_{\max}, n_{\min} remain fixed

$$\psi_{n,1} = \mathcal{O}\left(\sqrt{\frac{m^2T}{n}}\right).$$

• If $n, m, G \to \infty$ and n_{\max}, n_{\min} remain fixed

$$\psi_{n,1} = \mathcal{O}\left(\sqrt{\frac{m^2T}{n}}\right).$$

• If $n,m \to \infty$, G remains fixed and $m/n_{\min} \to 0$

$$\psi_{n,1} = \mathcal{O}\left(\sqrt{\frac{T}{n}}\right).$$

ullet If $n,m,G o\infty$ and $n_{
m max},n_{
m min}$ remain fixed

$$\psi_{n,1} = \mathcal{O}\left(\sqrt{\frac{m^2T}{n}}\right).$$

• If $n,m \to \infty$, G remains fixed and $m/n_{\min} \to 0$

$$\psi_{n,1} = \mathcal{O}\left(\sqrt{\frac{T}{n}}\right).$$

• A spectrum of cases lie in between.

• If $n, m, G \to \infty$ and n_{\max}, n_{\min} remain fixed

$$\psi_{n,1} = \mathcal{O}\left(\sqrt{\frac{m^2T}{n}}\right).$$

• If $n, m \to \infty$, G remains fixed and $m/n_{\min} \to 0$

$$\psi_{n,1} = \mathcal{O}\left(\sqrt{\frac{T}{n}}\right).$$

- A spectrum of cases lie in between.
- Direct relationship between the properties of the estimator and the structure of the weights matrix.

Construct a bias correct estimator

$$ilde{m{ heta}}\coloneqq \hat{m{ heta}} - rac{1}{\sqrt{nT}}\hat{m{\Delta}}^{-1}\hat{m{\psi}}.$$

 \bullet Under assumptions MD, CS and AD, as $n,m\to\infty$ with $m^2T/n\to c\ge 0$

$$\sqrt{nT}(\tilde{\boldsymbol{\theta}} - \boldsymbol{\theta}_0) \xrightarrow{d} \mathcal{N}(\mathbf{0}_{P \times 1}, \boldsymbol{\Delta}^{-1} \boldsymbol{\Omega} \boldsymbol{\Delta}^{-1}).$$

Illustration I

Design:

$$Y = \rho WY + \alpha Y_{-1} + \beta_1 X_1 + \beta_2 X_2 + \Lambda F^{\top} + \varepsilon,$$

with

- $R_0 = 2$, R = 2, $f_{tr}, \lambda_{ir} \sim \mathcal{N}(0, 1)$,
- ullet $oldsymbol{X}_1 = oldsymbol{\Lambda} oldsymbol{F}^ op + oldsymbol{e}$, where $e_{it} \sim \mathcal{N}(0,1)$,
- $X_{2,it} \sim \mathcal{N}(0,1)$,
- $\operatorname{vec}(\varepsilon) := \mathbf{\Sigma}^{\frac{1}{2}} \operatorname{vec}(\boldsymbol{u})$, $u_{it} \sim \mathcal{N}(0,1)$, $\mathbf{\Sigma}$ diagonal with elements $\sigma_{it}^2 \in (0,2)$,
- $\mathcal{V} \coloneqq (X_1, X_2, WX_1, WX_2)$.
- Notice that $m = \mathcal{O}(T)$.

Illustration II

- Partition the cross-section into G disjoint groups.
- Within each group all units are connected only to a single central unit who reciprocates the link.
- Produces a block diagonal weights matrix representing multiple stars.
- E.g. with G=1

$$\boldsymbol{W} = \begin{pmatrix} 0 & \boldsymbol{\iota}_{n-1}^{\top} \\ \boldsymbol{\iota}_{n-1} & \mathbf{0}_{n-1 \times n-1} \end{pmatrix},$$

before being row-normalised.

ullet Easy to verify that $\mathrm{rank}(oldsymbol{W})=2G$ whereby

$$\psi_{n,1} = \mathcal{O}\left((m \wedge G) \times \sqrt{\frac{T}{n}}\right) = \mathcal{O}\left((T \wedge G) \times \sqrt{\frac{T}{n}}\right).$$

Illustration III

Table 1a: Coverage 95% Confidence Intervals - G=5

		$\hat{ ho}$			$ ilde{ ho}$	
$n \setminus T$	6	9	12	6	9	12
100	0.902	0.843	0.853	0.932	0.951	0.964
300	0.928	0.921	0.916	0.953	0.944	0.960
500	0.939	0.939	0.929	0.954	0.949	0.947

Table 1b: Coverage 95% Confidence Intervals - G=25

		$\hat{ ho}$			$ ilde{ ho}$	
$n \setminus T$	6	9	12	6	9	12
100	0.815	0.798	0.353	0.956	0.951	0.962
300	0.918	0.892	0.698	0.956	0.961	0.961
500	0.935	0.913	0.861	0.948	0.965	0.960

• IV-IFE estimator is based the moment condition

$$\mathbb{E}\left[(\boldsymbol{M}_{\boldsymbol{F}_0}\otimes\boldsymbol{Q}_{\boldsymbol{\mathcal{V}}}\boldsymbol{M}_{\tilde{\boldsymbol{\Lambda}}_0}\boldsymbol{Q}_{\boldsymbol{\mathcal{V}}}^\top)\text{vec}(\boldsymbol{\eta})\right]=\boldsymbol{0}_{nT}.$$

- A total of $(T R_0)(m R_0)$ linearly independent restrictions.
- Motivates the following statistic:

$$\mathcal{J} \coloneqq \mathrm{vec}(\hat{\boldsymbol{\eta}})^\top (\boldsymbol{M}_{\hat{\boldsymbol{F}}} \otimes \boldsymbol{Q}_{\boldsymbol{\mathcal{V}}} \boldsymbol{M}_{\hat{\hat{\boldsymbol{\Lambda}}}} \boldsymbol{Q}_{\boldsymbol{\mathcal{V}}}^\top) \mathrm{vec}(\hat{\boldsymbol{\eta}}),$$

with
$$\hat{oldsymbol{\eta}}\coloneqq y-Z\cdot\hat{oldsymbol{ heta}}$$
 .

Define

$$\begin{split} \boldsymbol{M}_{\mathcal{J}} &\coloneqq \bar{\boldsymbol{M}} - \boldsymbol{P}_{\mathcal{J}}, \\ \boldsymbol{P}_{\mathcal{J}} &\coloneqq \bar{\boldsymbol{M}} (\boldsymbol{\mathcal{H}} + \boldsymbol{\mathcal{R}}) ((\boldsymbol{\mathcal{H}} + \boldsymbol{\mathcal{R}})^{\top} \bar{\boldsymbol{M}} (\boldsymbol{\mathcal{H}} + \boldsymbol{\mathcal{R}}))^{-1} (\boldsymbol{\mathcal{H}} + \boldsymbol{\mathcal{R}})^{\top} \bar{\boldsymbol{M}}, \\ \boldsymbol{\ell} &\coloneqq (T - R_0) (m - R_0) - P, \\ \boldsymbol{\sigma}_{\mathcal{J}}^2 &\coloneqq \operatorname{tr} ((\boldsymbol{\mathcal{M}}^{(4)} - 3\boldsymbol{\Sigma}^2) (\boldsymbol{M}_{\mathcal{J}} \odot \boldsymbol{M}_{\mathcal{J}})) \\ &\quad + 2 \boldsymbol{\iota}_{nT}^{\top} (\boldsymbol{\Sigma} (\boldsymbol{M}_{\mathcal{J}} \odot \boldsymbol{M}_{\mathcal{J}}) \boldsymbol{\Sigma}) \boldsymbol{\iota}_{nT}, \end{split}$$

where $\mathcal{M}^{(4)}$ is an $nT \times nT$ matrix with diagonal elements $\mathbb{E}[\varepsilon_{11}^4], \dots, \mathbb{E}[\varepsilon_{nT}^4]$ and all remaining elements equal to zero.

Assumption JS (*J*-Test)

- (i) The errors ε_{it} have uniformly bound eighth moments.
- (ii) $\ell^{-1}\sigma_{\mathcal{J}}^2 \ge c > 0$ w.p.a.1.

Theorem 2 (J-Test)

Under Assumptions MD, CS, AD and JS, with $\gamma_{nm}^2 \to c \geq 0$ as $n,\ell \to \infty$,

$$\frac{\mathcal{J} - \varphi_{\mathcal{J}}}{\sigma_{\mathcal{J}}} \xrightarrow{d} \mathcal{N}(0, 1),$$

where

$$\varphi_{\mathcal{J}} \coloneqq \operatorname{tr}(\boldsymbol{\Sigma}\boldsymbol{M}_{\mathcal{J}}) - \boldsymbol{\psi}_n^{\top} \boldsymbol{\Delta}_n^{-1} (\boldsymbol{\mathcal{H}} + \boldsymbol{\mathcal{R}})^{\top} \bar{\boldsymbol{M}} (\boldsymbol{\mathcal{H}} + \boldsymbol{\mathcal{R}}) \boldsymbol{\Delta}_n^{-1} \boldsymbol{\psi}_n.$$

• E.g. if $\varepsilon_{it} \sim \mathcal{N}(0,1)$, $\operatorname{tr}(\boldsymbol{\Sigma}\boldsymbol{M}_{\mathcal{J}}) = \ell$ and $\sigma_{\mathcal{J}}^2 = 2\ell$.

• This result can also be used to test for correct number of factors.

- This result can also be used to test for correct number of factors.
- For simplicity assume that $\varepsilon_{it}\sim\mathcal{N}(0,1)$ and $\rho_0=0$ such that $\varphi_{\mathcal{J}}=\ell$ and $\sigma_{\mathcal{J}}^2=2\ell$.

- This result can also be used to test for correct number of factors.
- For simplicity assume that $\varepsilon_{it} \sim \mathcal{N}(0,1)$ and $\rho_0 = 0$ such that $\varphi_{\mathcal{J}} = \ell$ and $\sigma_{\mathcal{J}}^2 = 2\ell$.
- Then if $R < R_0$ it can be shown that under the assumptions of Proposition 2 (except AD(i))

$$\xi_R := \frac{\mathcal{J}_R - \ell_R}{\sqrt{2\ell_R}} \to \infty.$$

- This result can also be used to test for correct number of factors.
- For simplicity assume that $\varepsilon_{it} \sim \mathcal{N}(0,1)$ and $\rho_0 = 0$ such that $\varphi_{\mathcal{J}} = \ell$ and $\sigma_{\mathcal{J}}^2 = 2\ell$.
- Then if $R < R_0$ it can be shown that under the assumptions of Proposition 2 (except AD(i))

$$\xi_R := \frac{\mathcal{J}_R - \ell_R}{\sqrt{2\ell_R}} \to \infty.$$

• Then,

$$\hat{R} := \min_{R=1,...,R_{\text{max}}} \{ R : \xi_r \ge c_{1-\delta_n} \ r = 1,..., R-1, \xi_r < c_{1-\delta_n} \},$$

is a consistent estimator of R_0 , with $c_{1-\delta_n}$ being the $100(1-\delta_n)$ percentile of $\Phi(x)$ and $\delta_n \to 0$, $\ln(\delta) = \mathcal{O}(m/nT)$ as $n,m\to\infty$ and $m^2T/n\to c\ge 0$.

Spatially/Serially Correlated Errors I

- Can extend the model of cross-sectional and serial dependence to the error term.
- Suppose the errors are generated according to

$$\boldsymbol{\varepsilon}_t = \rho_{\varepsilon} \boldsymbol{W} \boldsymbol{\varepsilon}_t + \alpha_{\varepsilon} \boldsymbol{\varepsilon}_{t-1} + \phi_{\varepsilon} \boldsymbol{W} \boldsymbol{\varepsilon}_{t-1} + \boldsymbol{u}_t.$$

Spatially/Serially Correlated Errors II

Assumption ER (Error)

- 1. The vector $\boldsymbol{\theta}_{\varepsilon,0}\coloneqq(\rho_{\varepsilon},\alpha_{\varepsilon},\phi_{\varepsilon})^{\top}$ lies in the interior of Θ_{ε} , where Θ_{ε} is a compact subset of \mathbb{R}^3 in which $\inf_{\boldsymbol{\theta}_{\varepsilon}\in\Theta_{\varepsilon}}\det(\boldsymbol{S}_{\varepsilon}(\rho_{\varepsilon}))\neq0$ and $\inf_{\boldsymbol{\theta}_{\varepsilon}\in\Theta_{\varepsilon}}\det(\boldsymbol{B}_{\varepsilon}(\boldsymbol{\theta}_{\varepsilon}))\neq0$, $\boldsymbol{S}_{\varepsilon}^{-1}(\rho_{\varepsilon})$, and $\bar{\boldsymbol{B}}_{\varepsilon}^{-1}(\boldsymbol{\theta}_{\varepsilon})$ are UB, and $\|\boldsymbol{A}_{\varepsilon}^{h}(\boldsymbol{\theta}_{\varepsilon})\|_{2}<1-c$ for some c>0.
- 2. The errors u_{it} are independent of the factors, the loadings, and the covariates, and are also independent over i and t with $\mathbb{E}[u_{it}] = 0$, $\mathbb{E}[u_{it}^2] \eqqcolon \sigma_{u,it}^2 > 0$ and uniformly bounded fourth moments.

Spatially/Serially Correlated Errors III

Assumption IC (Initial Condition)

Assume the initial conditions are generated as

$$egin{aligned} oldsymbol{y}_0 &= oldsymbol{\Sigma}_{y_0}^{rac{1}{2}} oldsymbol{
u}_1 \ oldsymbol{arepsilon}_0 &= oldsymbol{\Sigma}_{arepsilon_0}^{rac{1}{2}} oldsymbol{
u}_2 \end{aligned}$$

where $\{\nu_{1,j},\nu_{2,j}\}$ are independent of the independent of the factors, the loadings, the covariates, and the errors \pmb{u} , are also independent over j with $\mathbb{E}[\nu_{i,1}] = \mathbb{E}[\nu_{i,2}] = 0$, $\mathbb{E}[\nu_{i,1}^2] = \mathbb{E}[\nu_{i,2}^2] = 1$ and uniformly bounded fourth moments. Moreover,

$$\mathbb{E}\left[egin{pmatrix} oldsymbol{y}_0 \ oldsymbol{arepsilon}_0 \end{pmatrix} egin{pmatrix} oldsymbol{y}_0 \ oldsymbol{arepsilon}_{arepsilon_0} \end{pmatrix} \coloneqq egin{pmatrix} oldsymbol{\Sigma}_{arepsilon_0} & oldsymbol{\Sigma}_{y_0}, \ oldsymbol{\Sigma}_{y_0}, \end{pmatrix} \eqqcolon oldsymbol{\Sigma}_0,$$

where Σ_0 is UB with $\mu_{\min}(\Sigma_0) \geq c > 0$.

Spatially/Serially Correlated Errors IV

Theorem 3 (Asymptotic Distribution - CE)

Under Assumptions MD, CS, AD and ER, with $m^2T/n \rightarrow c \geq 0$ as $n,m \rightarrow \infty$,

$$\sqrt{nT}(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0) \xrightarrow{d} \mathcal{N}\left(\boldsymbol{\Delta}_*^{-1}(\boldsymbol{\psi}_{*,1} + \boldsymbol{\psi}_{*,2} + \boldsymbol{\psi}_{*,3}), \boldsymbol{\Delta}_*^{-1}\boldsymbol{\Omega}_*\boldsymbol{\Delta}_*^{-1}\right).$$

ullet $\psi_{*,1}$ generalises ψ :

$$\boldsymbol{\psi}_{*,1} \coloneqq \frac{1}{\sqrt{nT}} \begin{pmatrix} \operatorname{tr} \left(\boldsymbol{\Sigma}_{u} \bar{\boldsymbol{B}}_{\varepsilon}^{-\top} \bar{\boldsymbol{M}} \boldsymbol{W} \bar{\boldsymbol{B}}^{-1} \bar{\boldsymbol{B}}_{\varepsilon}^{-1} \right) \\ \operatorname{tr} \left(\boldsymbol{\Sigma}_{u} \bar{\boldsymbol{B}}_{\varepsilon}^{-\top} \bar{\boldsymbol{M}} \bar{\boldsymbol{\Pi}} \bar{\boldsymbol{B}}^{-1} \bar{\boldsymbol{B}}_{\varepsilon}^{-1} \right) \\ \operatorname{tr} \left(\boldsymbol{\Sigma}_{u} \bar{\boldsymbol{B}}_{\varepsilon}^{-\top} \bar{\boldsymbol{M}} \bar{\boldsymbol{W}} \bar{\boldsymbol{\Pi}} \bar{\boldsymbol{B}}^{-1} \bar{\boldsymbol{B}}_{\varepsilon}^{-1} \right) \\ \boldsymbol{0}_{K \times 1} \end{pmatrix}.$$

• $\psi_{*,2}$ and $\psi_{*,3}$ arise due to correlation with the initial condition $arepsilon_0$ and are $\mathcal{O}(T^{-\frac{1}{2}})$.

Spatially/Serially Correlated Errors V

 $\bullet \ \, \mathrm{Let} \, \, \hat{\pmb{\xi}}(\pmb{\theta}_\varepsilon) \coloneqq \mathrm{vec}(\hat{\pmb{\varepsilon}}) - \rho_\varepsilon \bar{\pmb{W}} \mathrm{vec}(\hat{\pmb{\varepsilon}}) - \alpha_\varepsilon \mathrm{vec}(\hat{\pmb{\varepsilon}}_{-1}) - \phi_\varepsilon \bar{\pmb{W}} \mathrm{vec}(\hat{\pmb{\varepsilon}}_{-1}) \\ \quad \, \mathrm{where} \, \, \hat{\pmb{\varepsilon}} \coloneqq (\pmb{Y} - \pmb{Z} \cdot \hat{\pmb{\theta}}) \pmb{M}_{\hat{\pmb{F}}} \text{, and}$

$$\varphi(\boldsymbol{\theta}_{\varepsilon}) \coloneqq \frac{1}{nT} \begin{pmatrix} \hat{\boldsymbol{\xi}}(\boldsymbol{\theta}_{\varepsilon})^{\top} \boldsymbol{\Psi}_{1} \hat{\boldsymbol{\xi}}(\boldsymbol{\vartheta}_{\varepsilon}) \\ \vdots \\ \hat{\boldsymbol{\xi}}(\boldsymbol{\theta}_{\varepsilon})^{\top} \boldsymbol{\Psi}_{L} \hat{\boldsymbol{\xi}}(\boldsymbol{\theta}_{\varepsilon}) \end{pmatrix},$$

where Ψ_1,\ldots,Ψ_L are a series of n imes n matrices with zero diagonals.

ullet Estimate of $oldsymbol{ heta}_{0,arepsilon}$ can be obtained as

$$\hat{\boldsymbol{\theta}}_{arepsilon}\coloneqq \arg\min_{\hat{\boldsymbol{\theta}}_{arepsilon}\in\Theta_{arepsilon}}\|oldsymbol{arphi}(oldsymbol{ heta})\|_2^2.$$

• Can be used to construct a test for $\rho_{\varepsilon}=\alpha_{\varepsilon}=\phi_{\varepsilon}=0$.

• The bias described in Theorem 1 is caused by the implicit transformation of the model to purge the factors.

- The bias described in Theorem 1 is caused by the implicit transformation of the model to purge the factors.
- Similar bias do still arise from $m{Y}_{-1}$ and $m{W}m{Y}_{-1}$, though of a lower order.

- The bias described in Theorem 1 is caused by the implicit transformation of the model to purge the factors.
- Similar bias do still arise from $m{Y}_{-1}$ and $m{W}m{Y}_{-1}$, though of a lower order.
- These biases do not occur through not knowing the factors and the loadings.

- The bias described in Theorem 1 is caused by the implicit transformation of the model to purge the factors.
- Similar bias do still arise from $m{Y}_{-1}$ and $m{W}m{Y}_{-1}$, though of a lower order.
- These biases do not occur through not knowing the factors and the loadings.
- The 'usual' LS-IFE biases are also present, though of a lower stochastic order.

- The bias described in Theorem 1 is caused by the implicit transformation of the model to purge the factors.
- ullet Similar bias do still arise from $oldsymbol{Y}_{-1}$ and $oldsymbol{W}oldsymbol{Y}_{-1}$, though of a lower order.
- These biases do not occur through not knowing the factors and the loadings.
- The 'usual' LS-IFE biases are also present, though of a lower stochastic order.
- It is also possible to correct for these.

- Study the relationship economic growth, civil liberties and political rights in the 21st century.
- Similar in spirit to Acemoglu et al. (2019). (ANRR for short)
- Data covers a panel of 180 countries observed between 2001 and 2020.
- Outcome y_{it} log of GDP per capita taken from the World Bank.
- ullet Binary regressor d_{it} derived from Freedom House index

$$d_{it} = \begin{cases} 0 & \text{if classified as not free,} \\ 1 & \text{if classified as partially free or free.} \end{cases}$$

Application II

- The World Bank provides high resolution latitude and longitude coordinates of international boundaries.
- These are rounded to generate a lower resolution projection which describes the shape of countries using a fewer data points.
- Great-circle distance is calculated between every pair of coordinates.
- For each country pair ij, let δ_{ij} denote the shortest distance between two countries, and let e denote half the distance of the equator.
- The $n \times n$ weights matrix ${m W}$ is generated by setting element w_{ij} equal to

$$w_{ij} = \begin{cases} 1 - \delta_{ij}/e & \text{if } \delta_{ij}/e < \tau, \\ 0 & \text{otherwise,} \end{cases}$$

where au is a cut-off point set to 0.1.

Application III

• Outcome equation: $oldsymbol{y}_t = lpha oldsymbol{y}_{t-1} + eta oldsymbol{d}_t + oldsymbol{\eta}_t.$

ullet Instruments: $oldsymbol{\mathcal{V}}=(oldsymbol{d}_1,\ldots,oldsymbol{d}_T).$

• Long term effect: $\gamma := (1 - \alpha)^{-1}\beta$.

_	FE	IV-IFE	ANRR
β	0.0161	0.0141	0.0078 - 0.0097
t-stat	3.9000	2.5343	
α	0.9228	0.8435	0.938 - 0.973
t-stat	146.3841	24.7520	
γ	0.2086	0.0901	0.1264 - 0.3558
t-stat	3.7379	2.7803	
$J ext{-stat}$	-	0.2096	-

Application III

• Outcome equation: $oldsymbol{y}_t = lpha oldsymbol{y}_{t-1} + eta oldsymbol{d}_t + oldsymbol{\eta}_t.$

ullet Instruments: $oldsymbol{\mathcal{V}}=(oldsymbol{d}_1,\ldots,oldsymbol{d}_T,oldsymbol{W}oldsymbol{d}_1,\ldots,oldsymbol{W}oldsymbol{d}_T)$.

• Long term effect: $\gamma := (1 - \alpha)^{-1}\beta$.

-	FE	IV-IFE	ANRR
β	0.0161	0.0124	0.0078 - 0.0097
t-stat	3.9000	76.8928	
α	0.9228	0.9335	0.938 - 0.973
t-stat	146.3841	24.7520	
γ	0.2086	0.1865	0.1264 - 0.3558
t-stat	3.7379	2.4492	
J-stat	-	0.4632	-

• Outcome equation:

$$\mathbf{y}_t = \rho \mathbf{W} \mathbf{y}_t + \alpha \mathbf{y}_{t-1} + \phi \mathbf{W} \mathbf{y}_{t-1} + \beta \mathbf{d}_t + \mathbf{\eta}_t.$$

- ullet Instruments: $oldsymbol{\mathcal{V}}=(oldsymbol{d}_1,\ldots,oldsymbol{d}_T,oldsymbol{W}oldsymbol{d}_1,\ldots,oldsymbol{W}oldsymbol{d}_T)$.
- Long term effects:
 - Direct effect: $\gamma_D := \operatorname{tr}(((1-\alpha)\boldsymbol{I}_n (\rho+\phi)\boldsymbol{W})^{-1}\beta)/n$.
 - Indirect effect: $\gamma_I \coloneqq \boldsymbol{\iota}_n^\top ((1-\alpha)\boldsymbol{I}_n (\rho+\phi)\boldsymbol{W})^{-1}\beta\boldsymbol{\iota}_n/n \gamma_D.$

	FE	IV-IFE	IV-IFE-BC
β	0.0158	0.0111	0.0112
t-stat	3.8585	2.0618	2.0781
α	0.9224	0.9347	0.9374
t-stat	145.5072	78.0726	78.2993
ρ	0.0125	0.0164	0.0082
t-stat	6.9085	8.0257	4.0043
φ	-0.0118	-0.0156	-0.0084
t-stat	-7.3287	-8.0175	-4.3520
γ_D	0.2042	0.1716	0.1793
t-stat	3.7029	2.1954	2.2006
γ_I	0.0645	0.1142	-0.0184
t-stat	0.9342	0.8839	-0.5809
J-stat	-	0.1592	0.0938

• Preliminary findings suggest results in ANRR are robust.

- Preliminary findings suggest results in ANRR are robust.
- Spatial dependence a feature, but oscillates. Why?
 - Misspecification.
 - Unit roots.
 - Genuine feature of the data.

- Preliminary findings suggest results in ANRR are robust.
- Spatial dependence a feature, but oscillates. Why?
 - Misspecification.
 - Unit roots.
 - Genuine feature of the data.
- Explore more complex specification and utilise the additional results.

- Preliminary findings suggest results in ANRR are robust.
- Spatial dependence a feature, but oscillates. Why?
 - Misspecification.
 - Unit roots.
 - Genuine feature of the data.
- Explore more complex specification and utilise the additional results.
- Any comments/suggestions most welcome.

$$\beta = 0.0111$$

$$\alpha = 0.9347$$

$$\rho = 0.0164$$

$$\phi = -0.0156$$

$$\beta = 0.0111$$

$$\alpha = 0.9347$$

$$\rho = 0.0164$$

$$\phi = -0.0100$$

Closing Remarks

- Introduce a simple IV estimator which is consistent and asymptotically normally distributed as long as the number of cross-sectional units n grows sufficiently fast relative to the number of instruments m and the number of time periods T.
- Circumstances exist where, depending on the weights matrix, the estimator can exhibit considerable bias.
- Constructing a bias corrected estimator significantly ameliorates this issue.
- Application applies the method to study the relationship between economic growth, political rights and civil liberties.
- Multiple extensions.