Max Xu ('25 Fall)

Notes

§1 Day 1: (Sept 9, 2025)

Life is very random and uncertain, with interesting problems to solve (e.g. whats the probability that I win the lottery). This course uses certain mathematics to study the uncertainty of probabilities. You will be able to solve problems like this:

Problem 1.1. Which is more likely: getting at least one six when rolling a fair 6 sided die 4 times, or getting one pair of sixes when rolling two six sided dice 24 times?

5% of your grade is poll-based, more info here.

Definition 1.2 (Sample Space). A non-empty set containing all possible outcomes, written S.

e.g. coin-flipping: $S = \{\text{Heads, Tails}\}\$, two die: $S = \{1, 2, 3, 4, 5, 6\} \times \{1, 2, 3, 4, 5, 6\}$

Definition 1.3 (Event). Any subset $A \subseteq S$ is an event.

Prof says in some continuous sample spaces, there may exist some non-measurable subsets to which the probability measure defined later won't work on, but don't worry about it in this course. (yay!!)

Definition 1.4 (Probability). For any event A, define probability P(A) that satisfies:

- For all $A \in \mathcal{P}(S)$, $0 \le P(A) \le 1$
- A = S, P(A) = P(S) = 1
- $A = \emptyset$, corresponding to no outcome, then $P(A) = P(\emptyset) = 0$
- Additivity: if $A \cap B = \emptyset$, then $P(A \cup B) = P(A) + P(B)$

If A_1, \ldots, A_n are disjoint veents, we have

• Finite Additivity: For some $n \in \mathbb{N}$,

$$P\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} P(A_i)$$

• Countable Additivity:

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$$

2

When looking at the probability of getting heads from a coinflip, P(H) with $S = \{T, H\}$ is really shorthand for $P(\{H\})$, since H may not be a subset of S. For uniformly picking any number between 0 and 1, denoted Uniform[0, 1], we can define a probability P([a, b]) = b - a whenever $0 \le a \le b \le 1$. (don't know what uniform means yet)

Note that by definition of probability, $P(A_i)$ is positive, so the right hand side is an absolutely convergent series (prof didn't mention this).

¹prof said this but i think he meant pairwise disjoint?

²we could've actually done this with just 3, see probability axioms