选作题解(Nov15)

杨利军 Jan. 11, 2018

问题: 考虑 Hill 方程

$$\frac{d^2y}{dx^2} + p(x)y = 0, (1)$$

其中 p(x) 为 2π 连续的周期函数, 且满足

$$n^2 < p(x) < (n+1)^2, \quad \forall x \in \mathbb{R},$$

这里 $n \ge 0$ 为非负整数. 证明方程没有非平凡的 2π 周期解.

证明: 先考虑情形 n=0. 此时 p(x) 满足 0 < p(x) < 1, $\forall x \in \mathbb{R}$. 由于 p(x) 是周期连续的, 故 p(x) 在整个实轴上可取得正的最小值 $p_0 > 0$. 于是 $p(x) \geq p_0 > 0$, $\forall x \in \mathbb{R}$. 以下证方程(1)不存在非平凡的 2π 周期解. 反证. 假设方程有一个非平凡的 2π 周期解 $\phi(x)$. 考虑比较方程 $y'' + p_0 y = 0$. 显然这个方程的每个解都有零点,故由Sturm 比较定理知 $\phi(x)$ 必有零点. 设 x_0 是 $\phi(x)$ 的一个零点,即 $\phi(x_0) = 0$. 则由 $\phi(x)$ 的周期性知 $\phi(x_0 + 2\pi) = 0$. 若 $\phi(x)$ 在开区间 $(x_0, x_0 + 2\pi)$ 上无零点,则容易看出 $\phi'(x_0)$ 和 $\phi'(x_0 + 2\pi)$ 反号. 此与 $\phi'(x)$ 是 2π 周期函数相矛盾. 因此 $\phi(x)$ 至少有一个零点 $x_1 \in (x_0, x_0 + 2\pi)$. 现在考虑另一个比较方程 y'' + y = 0 以及它的一个解 $\psi(x) = \sin(x - x_0)$. 根据 Sturm 比较定理知, $\psi(x)$ 在 (x_0, x_1) 和 $(x_1, x_0 + 2\pi)$ 各至少有一个零点. 于是 $\psi(x)$ 在 $[x_0, x_0 + 2\pi]$ 至少有四个零点. 但是显然 $\psi(x)$ 在 $[x_0, x_0 + 2\pi]$ 上有且仅有三个零点 $x_0, x_0 + \pi$ 和 $x_0 + 2\pi$. 这是一个矛盾. 情形 n = 0 的结论得证.

再考虑情形 n > 0. 我们只证情形 n = 1. 其余情形的证明思想类似, 只是表述复杂一些. 对于 情形 n = 1, p(x) 满足 1 < p(x) < 4, $\forall x \in \mathbb{R}$. 我们还是用反证法来证明. 假设方程 y'' + p(x)y = 0 有一个非零的 2π 周期解 $\phi(x)$, 则 $\phi(x)$ 必有零点, 因为方程 y'' + y = 0 的每个解均有零点. 设 x_0 是 $\phi(x)$ 的一个零点, 即 $\phi(x_0) = 0$. 考虑以下三个方程

$$y'' + y = 0 (2)$$

$$y'' + 4y = 0 \tag{3}$$

$$y'' + p(x)y = 0 (4)$$

显然方程 (2) 有非零解 $\phi_1(x) = \sin(x - x_0)$,方程 (3) 有非零解 $\phi_2(x) = \sin 2(x - x_0)$. 在闭区间 $[x_0, x_0 + 2\pi]$ 上, $\phi_1(x)$ 有 3 个零点, $\phi_2(x)$ 有 5 个零点.比较方程 (2) 和 (4)可知, $\phi(x)$ 在闭区间 $[x_0, x_0 + 2\pi]$ 上至少有 4 个零点.比较方程 (3) 和 (4)可知, $\phi(x)$ 在闭区间 $[x_0, x_0 + 2\pi]$ 上至多有 4 个零点.因此 $\phi(x)$ 在闭区间 $[x_0, x_0 + 2\pi]$ 上恰好有 4 个零点.将这 4 个零点按大小顺序排列记为 $x_0 < x_1 < x_2 < x_3 = x_0 + 2\pi$.由于相邻两个零点之间解 $\phi(x)$ 不变号,因此我们有 $\phi'(x_0)\phi'(x_1) < 0$, $\phi'(x_1)\phi'(x_2) < 0$, $\phi'(x_2)\phi'(x_3) < 0$.由此易知 $\phi'(x_0)\phi'(x_3) < 0$.另一方面,根据 $\phi'(x)$ 的周期性可知, $\phi'(x_0) = \phi'(x_3)$.因此 $\phi'(x_0)\phi'(x_3) > 0$.这就得到一个矛盾。情形 n=1 的结论得证.■