ENHANCED ANOMALY DETECTION IN KEYSTROKE DYNAMICS AUTHENTICATION

Presented to Amith Kamath Belman

TEAM: Rashmi Sonth Sakshi Tripathy

WHAT WE WILL TALK ABOUT

- Core concept
- Existing approach
- Algorithm implementation and results
- Conclusion
- Q&A

CORE CONCEPT

Keystroke dynamics authentication systems face significant challenges in detecting sophisticated spoofing attacks and subtle variations in typing behavior. These systems often struggle with high false positive and false negative rates, coupled with limited robustness against advanced spoofing and pattern replication techniques.

- Objective: Develop advanced machine learning models for keystroke dynamics authentication to enhance resistance against spoofing attacks.
- Focus: Evaluate model robustness against sophisticated spoofing techniques, including GAN-based attacks, adversarial perturbations, and synthetic data augmentation.
- Goal: Optimize detection accuracy and improve resilience of keystroke-based user verification systems for secure and adaptive authentication.

Existing Approach

K. S. Killourhy and R. A. Maxion, IEEE/IFIP International Conference on Dependable Systems & Networks, Lisbon, Portugal

- Keystroke Dynamics Analysis: Extracts temporal features such as key press durations (DU), digraph latencies (DD), and transitions (UD, UU) for precise behavioral profiling.
- Feature Engineering: Employs statistical normalization and transformation techniques to enhance feature discriminability.

	Detector	equal-e	rror rate		Detector zero-miss	false-al	arm rate
1	Manhattan (scaled)	0.096	(0.069)	1	Nearest Neighbor (Mahalanobis)	0.468	(0.272)
2	Nearest Neighbor (Mahalanobis)	0.100	(0.064)	2	Mahalanobis	0.482	(0.273)
3	Outlier Count $(z$ -score)	0.102	(0.077)	3	Mahalanobis (normed)	0.482	(0.273)
4	SVM (one-class)	0.102	(0.065)	4	SVM (one-class)	0.504	(0.316)
5	Mahalanobis	0.110	(0.065)	5	Manhattan (scaled)	0.601	(0.337)
6	Mahalanobis (normed)	0.110	(0.065)	6	Manhattan (filter)	0.757	(0.282)
7	Manhattan (filter)	0.136	(0.083)	7	Outlier Count $(z$ -score)	0.782	(0.306)
8	Manhattan	0.153	(0.092)	8	Manhattan	0.843	(0.242)
9	Neural Network (auto-assoc)	0.161	(0.080)	9	Neural Network (auto-assoc)	0.859	(0.220)
10	Euclidean	0.171	(0.095)	10	Euclidean	0.875	(0.200)
11	Euclidean (normed)	0.215	(0.119)	11	Euclidean (normed)	0.911	(0.148)
12	Fuzzy Logic	0.221	(0.105)	12	Fuzzy Logic	0.935	(0.108)
13	k Means	0.372	(0.139)	13	k Means	0.989	(0.040)
14	Neural Network (standard)	0.828	(0.148)	14	Neural Network (standard)	1.000	(0.000)

Limitations

Dataset constraints

Small, controlled datasets may not capture real-world keystroke diversity.

Lack of Adaptive Model Design

Static models lack mechanisms like online or continual learning for long-term effectiveness.

Scalability Challenges

Computational overhead limits real-time performance in large-scale systems.

OUR APPROACH

Dataset Description

- free-txt.csv:
 - o Contains keystroke timing metrics like dwell time (DU), transitions (DD, UD, UU), and session-based typing data.
- demographics.txt:
 - Provides participant information such as age, gender, handedness, and nationality.

Sample of Cleaned Merged Keystroke Data

	participant	session	key1	key2	DU.key1.key1	DD.key1.key2	DU.key1.key2	UD.key1.key2	UU.key1.key2	handedness	age	gender	nationality
0	p001	1	W	Shift	0.150	-0.796	0.166	-0.946	0.016	Right-Handed	51	Male	Portugal
1	p001	1	Shift	е	0.962	1.148	1.255	0.186	0.293	Right-Handed	51	Male	Portugal
2	p001	1	е	Space	0.107	0.172	0.252	0.065	0.145	Right-Handed	51	Male	Portugal
3	p001	1	Space	b	0.080	0.200	0.280	0.120	0.200	Right-Handed	51	Male	Portugal
4	p001	1	b	е	0.080	0.320	0.480	0.240	0.400	Right-Handed	51	Male	Portugal
4	p001	1	b	е	0.080	0.320	0.480	0.240	0.400	Right-Handed	51	Male	

Key features

	DU.key1.key1	DD.key1.key2	DU.key1.key2	UD.key1.key2	UU.key1.key2
participant					
p001	0.106501	0.313135	0.419588	0.206635	0.313088
p002	0.087517	0.176844	0.264273	0.089326	0.176756
p003	0.184584	0.142621	0.327193	-0.041964	0.142609
p004	0.578485	0.177597	0.795602	-0.400888	0.217117
p005	0.105231	0.318274	0.423303	0.213101	0.318089

Top 5 users

DISTANCE BASED APPROACHES

Euclidean distance

It is a measure of the straight-line distance between two points in an n-dimensional Euclidean space, mathematically defined as: $d(x, y) = \sqrt{\sum_{i=1}^{n} (y_i - x_i)^2}$

Synthetic Data Generation Using Gaussian Distribution

This technique generates synthetic data by sampling from a multivariate Gaussian distribution parameterized by the feature-wise mean vector and standard deviation of the input dataset.

Mahalanobis distance

It is a multivariate metric that measures the distance between a point and a distribution, accounting for correlations in the dataset, defined as -

$$M = \sqrt{\frac{(x_1 - \bar{x}_1)^2}{\sigma^2}}$$

Synthetic Data Generation Using Gaussian Distribution

Average EER Results Across All Users:
Approach EER Threshold
0 Euclidean 0.134334 0.863764
1 Mahalanobis 0.001549 15.580582

TRADITONAL ANAMOLY DETECTION

One-class SVM

Configured One-Class SVM with an RBF kernel, gamma=0.1 (controls kernel influence), and nu=0.1 (upper bound on anomalies)

Spoofing with Adversarial Perturbation: Introduces deliberate, small changes to data to mimic adversarial attacks.

Spoofing with Data Perturbation: Adds subtle random noise to genuine data to simulate naturally occurring variations.

Isolation Forest

Model with a contamination level of 10% to identify outliers in the training data.

GAN-Based Spoofing: Generates spoofed data using a GAN generator to mimic the distribution of genuine data.

Statistical Sampling: Sampling from a normal distribution parameterized by the genuine data's mean and standard deviation.

Local Outlier Factor (LOF)

Fit a LOF model with 20 neighbors and novelty detection enabled to identify outliers in the training data.

Pattern Mimicking: Rearranges genuine data to mimic realistic yet spoofed patterns.

Cluster Shifting: Introduces small shifts in data clusters to simulate subtle anomalies.

Average EER	Results Across All Users:
Approach	EER Threshold
0 IF	0.4 3
1 SVM	0.0 2
2 LOF	0.1 3

MACHINE LEARNING CLASSIFIERS

Random Forest

Configured with 100 decision trees, a random state of 42

Spoofing with Statistical Sampling & Resampling: Introduces deliberate, small changes to data to mimic adversarial attacks.

GAN-Based Spoofing: Creates synthetic spoofed data using a GAN generator to mimic genuine data patterns.

SVM

SVM (RBF) is configured with C=1.0, gamma='scale'

Adversarial Perturbation Spoofing: Adds deliberate small perturbations to genuine data to simulate adversarial attacks.

Spoofing with Data Perturbation: Adds subtle random noise to genuine data to simulate naturally occurring variations.

Gradient Boosting

Configured with 100 estimators, a learning rate of 0.1

Feature Obfuscation Spoofing: Obscures a fraction of features to simulate pattern-mimicking spoofing.

Pattern Mimicking: Rearranges genuine data to mimic realistic yet spoofed patterns.

Average EER Across All Spoofing Techniques for All Methods

DEEP LEARNING MODELS

Long Short-Term Memory (LSTM)

2 LSTM layers (64 and 32 units), trained using Adam optimizer

Pattern Mimicking: Generates synthetic data by mimicking genuine patterns using a Gaussian distribution.

Adversarial Sequence Generation: Simulates adversarial attacks by generating plausible sequence-based spoofed data.

Convolutional Neural Networks (CNN)

2 Conv1D layers (32 and 64 filters), followed by pooling layers, trained using Adam optimizer

Feature Obfuscation: Hides a fraction of input features to simulate pattern-mimicking spoofing.

Statistical Noise Perturbation: Introduces noise into data to create plausible but spoofed variations.

EER for LSTM and CNN Models Across Spoofing Techniques

Generative Adversarial Network (GAN)

Discriminator: A neural network that evaluates and distinguishes between real data and synthetic data produced by the generator.

2 Layers (64 + 128) with LeakyReLU activation and 1 Layers with tanh activation

Generator: A neural network that learns to produce realistic synthetic data by mapping random noise to the data distribution.

2 Layers (128 + 64) with LeakyReLU activation and 1 Layer with sigmoid activation

Generative Adversarial Network (GAN)

1000 Epochs with Adam Optimizer with Learning rate 0.0002 and 0.0001 for Generator and Discriminator respectively

Discriminator: 2 Layers (64 + 128) with LeakyReLU activation and 1 Layers with tanh activation

Generator: 2 Layers (128 + 64) with LeakyReLU activation and 1 Layer with sigmoid activation

Generative Adversarial Network (GAN)

Discriminator: 3 Layers (256+512+256) with LeakyReLU activation and 1 Layer with sigmoid activation

Generator: 3 Layers (256+512+256) with LeakyReLU activation and 1 Layer with tanh activation

CONCLUSION

Model/Metric	Genuine Accuracy	Spoofing Accuracy	Recommendations		
Gradient Boosting	95-99%	Low (~5%)	Best Performer		
LSTM	~28%	Low (~21%)	Weak Resilience		
CNN	~27%	Moderate (~26%)	Needs Improvement		
GAN (Discriminator)	98-99%	Moderate (~28%)	Strong Against Spoofing		
Euclidean Distance	98-99%	High (60-90%)	Moderate Performance		
Isolation Forest	~90%	High (50-70%)	Poor Against Spoofing		

RECOMMENDATIONS

- Gradient Boosting: Best performer with high genuine accuracy and robust spoofing detection; ideal for real-world applications.
- LSTM: Moderate spoofing resilience; requires optimization for improved genuine accuracy and robustness.
- CNN: Needs architectural enhancements for better spoofing resistance; suitable for targeted improvements.
- GAN Discriminator: Effective in adversarial scenarios; complements Gradient Boosting for spoofing detection.
- Euclidean Distance & Isolation Forest: Poor spoofing resistance; unsuitable for critical systems, viable for low-security use cases.

THANK YOU!

Any questions?

