Aishwarya Ledalla

Design Optimization HW 2

9/15/2021

Problem 1

$$f = 2X_1^2 - 4X_1X_2 + 1.5X_2^2 + X_2$$

$$g = \begin{bmatrix} 4x_1 - 4x_2 \\ -4x_1 + 3x_2 + 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Longrightarrow \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\begin{cases} x_1 - 4x_2 = 0 \\ -4x_1 + 3x_2 = -1 \end{bmatrix}$$

$$\begin{cases} x_1 = X_2 \\ -4x_1 + 3x_2 = -1 \end{bmatrix}$$

$$\begin{cases} x_1 = X_2 \\ -4x_1 + 3x_1 = -1 \end{bmatrix}$$

$$\begin{cases} x_1 = X_2 \\ -4x_1 + 3x_1 = -1 \end{cases}$$

$$\begin{cases} x_1 = X_2 \\ -4x_1 + 3x_1 = -1 \end{cases}$$
The stationary point is at $f(1,1)$

$$\begin{cases} x_1 = -1 \\ x_2 = 1 = x_2 \end{cases}$$

$$\begin{cases} x_1 = X_2 \\ -4x_1 + 3x_2 = -1 \end{cases}$$

$$\begin{cases} x_1 = X_2 \\ -4x_1 + 3x_2 = -1 \end{cases}$$

$$\begin{cases} x_1 = X_2 \\ -4x_1 + 3x_2 = -1 \end{cases}$$

$$\begin{cases} x_1 = X_2 \\ -4x_1 + 3x_2 = -1 \end{cases}$$

$$\begin{cases} x_1 = X_2 \\ -4x_1 + 3x_2 = -1 \end{cases}$$

$$\begin{cases} x_1 = X_2 \\ -4x_1 + 3x_2 = -1 \end{cases}$$

$$\begin{cases} x_1 = X_2 \\ -4x_1 + 3x_2 = -1 \end{cases}$$

$$\begin{cases} x_1 = X_2 \\ -4x_1 + 3x_2 = -1 \end{cases}$$

$$\begin{cases} x_1 = X_2 \\ -4x_1 + 3x_2 = -1 \end{cases}$$

$$\begin{cases} x_1 = X_2 \\ -4x_1 + 3x_2 = -1 \end{cases}$$

$$\begin{cases} x_1 = X_2 \\ -4x_1 + 3x_2 = -1 \end{cases}$$

$$\begin{cases} x_1 = X_2 \\ -4x_1 + 3x_2 = -1 \end{cases}$$

$$\begin{cases} x_1 = X_2 \\ -4x_1 + 3x_2 = -1 \end{cases}$$

$$\begin{cases} x_1 = X_2 \\ -4x_1 + 3x_2 = -1 \end{cases}$$

$$\begin{cases} x_1 = X_2 \\ -4x_1 + 3x_2 = -1 \end{cases}$$

$$\begin{cases} x_1 = X_2 \\ -4x_1 + 3x_2 = -1 \end{cases}$$

$$\begin{cases} x_1 = X_2 \\ -4x_1 + 3x_2 = -1 \end{cases}$$

$$\begin{cases} x_1 = X_2 \\ -4x_1 + 3x_2 = -1 \end{cases}$$

$$\begin{cases} x_1 = X_2 \\ -4x_1 + 3x_2 = -1 \end{cases}$$

$$\begin{cases} x_1 = X_2 \\ -4x_1 + 3x_2 = -1 \end{cases}$$

$$\begin{cases} x_1 = X_2 \\ -4x_1 + 3x_2 = -1 \end{cases}$$

$$\begin{cases} x_1 = X_2 \\ -4x_1 + 3x_2 = -1 \end{cases}$$

$$\begin{cases} x_1 = X_2 \\ -4x_1 + 3x_2 = -1 \end{cases}$$

$$\begin{cases} x_1 = X_2 \\ -4x_1 + 3x_2 = -1 \end{cases}$$

$$\begin{cases} x_1 = X_2 \\ -4x_1 + 3x_2 = -1 \end{cases}$$

$$\begin{cases} x_1 = X_2 \\ -4x_1 + 3x_2 = -1 \end{cases}$$

$$\begin{cases} x_1 = X_2 \\ -4x_1 + 3x_2 = -1 \end{cases}$$

$$\begin{cases} x_1 = X_2 \\ -4x_1 + 3x_2 = -1 \end{cases}$$

$$\begin{cases} x_1 = X_2 \\ -4x_1 + 3x_2 = -1 \end{cases}$$

$$\begin{cases} x_1 = X_2 \\ -4x_1 + 3x_2 = -1 \end{cases}$$

$$\begin{cases} x_1 = X_2 \\ -4x_1 + 3x_2 = -1 \end{cases}$$

$$\begin{cases} x_1 = X_2 \\ -4x_1 + 3x_2 = -1 \end{cases}$$

$$\begin{cases} x_1 = X_2 \\ -4x_1 + 3x_2 = -1 \end{cases}$$

$$\begin{cases} x_1 = X_2 \\ -4x_1 + 3x_2 = -1 \end{cases}$$

$$\begin{cases} x_1 = X_2 \\ -4x_1 + 3x_2 = -1 \end{cases}$$

$$\begin{cases} x_1 = X_2 \\ -4x_1 + 3x_2 = -1 \end{cases}$$

$$\begin{cases} x_1 = X_2 \\ -4x_1 + 3x_2 = -1 \end{cases}$$

$$\begin{cases} x_1 = X_2 \\ -4x_1 + 3x_2 = -1 \end{cases}$$

$$\begin{cases} x_1 = X_2 \\ -4x_1 + 3x_2 = -1 \end{cases}$$

$$\begin{cases} x_1 = X_2 \\ -4x_1 + 3x_2 = -1 \end{cases}$$

$$\begin{cases} x_1 = X_2 \\ -4x_1 + 3x_2 = -1 \end{cases}$$

$$\begin{cases} x_1 = X_2 \\ -4x_1 + 3x_2 = -1 \end{cases}$$

$$\begin{cases} x_1 = X_2 \\ -4x_1 + 3x_2 = -1 \end{cases}$$

$$\begin{cases} x_1 = X_2 \\ -4x_1 + 3x_2 = -1 \end{cases}$$

$$\begin{cases} x_1 = X_2 \\ -4x_1 + 3x_2 = -1 \end{cases}$$

$$\begin{cases} x_1 = X_2 \\ -4x_1 + 3x_2 = -1 \end{cases}$$

$$\begin{cases} x_1 = X_2 \\ -$$

$$f(x_{1,2}^{*}x_{2}^{*}) = 2(i)^{2} - 4(i)(i) + 1.5(i)^{2} + 1 = 0.5$$

$$f(x) = f^{*} + g^{T}(x - x_{0}) + \frac{1}{2}(x - x_{0})^{T} + (x - x_{0})$$

$$= 0.5 + [0, 0](x - x_{0}) + \frac{1}{2}(x - x_{0})^{T} [-4, -\frac{1}{3}](x - x_{0})$$

$$= 0.5 + (0)(x - 1) + (0)(x - 1) + \frac{1}{2}(x_{1} - 1)^{2}(4) + (x - 1)(x_{1} - 1)(4) + \frac{1}{2}(x_{2} - 1)^{2}(3)$$

$$f(x) - 0.5 = 2(x_1^2 - 2x_1 + 1) - 4(x_1 x_2 - x_1 - x_2 + 1) + \frac{3}{2}(x_2^2 - 2x_2 + 1) \le 0$$

$$0 \ge 2x_1^2 + \frac{3}{2}x_2^2 + x_2 - 4x_1x_2 + 3$$

This inequality defines both downslopes

Problem 2

$$\begin{array}{c}
\mathbf{x_{2} = y} \\
\mathbf{x_{3} = y} \\
\mathbf{x_{3} = y} \\
\mathbf{x_{4} = y} \\
\mathbf{x_{5} = (x_{1} + 1)^{2} + (x_{2} - 0)^{2} + (x_{3} - 1)^{2}} \\
\mathbf{x_{6} = (x_{1} + 1)^{2} + (x_{2} - 0)^{2} + (x_{3} - 1)^{2}} \\
\mathbf{x_{7} = (x_{1} + 1)^{2} + (x_{2} - 0)^{2} + (x_{3} - 1)^{2}} \\
\mathbf{x_{7} = (x_{1} + 1)^{2} + (x_{2} - 0)^{2} + (x_{3} - 1)^{2}} \\
\mathbf{x_{7} = (x_{1} + 1)^{2} + (x_{2} - 0)^{2} + (x_{3} - 1)^{2}} \\
\mathbf{x_{7} = (x_{1} + 1)^{2} + (x_{2} - 0)^{2} + (x_{3} - 1)^{2}} \\
\mathbf{x_{7} = (x_{1} + 1)^{2} + (x_{2} - 0)^{2} + (x_{3} - 1)^{2}} \\
\mathbf{x_{7} = (x_{1} + 1)^{2} + (x_{2} - 0)^{2} + (x_{3} - 1)^{2}} \\
\mathbf{x_{7} = (x_{1} + 1)^{2} + (x_{2} - 0)^{2} + (x_{3} - 1)^{2}} \\
\mathbf{x_{7} = (x_{1} + 1)^{2} + (x_{2} - 0)^{2} + (x_{3} - 1)^{2}} \\
\mathbf{x_{7} = (x_{1} + 1)^{2} + (x_{2} - 0)^{2} + (x_{3} - 1)^{2}} \\
\mathbf{x_{7} = (x_{1} + 1)^{2} + (x_{2} - 0)^{2} + (x_{3} - 1)^{2}} \\
\mathbf{x_{7} = (x_{1} + 1)^{2} + (x_{2} - 0)^{2} + (x_{3} - 1)^{2}} \\
\mathbf{x_{7} = (x_{1} + 1)^{2} + (x_{2} - 0)^{2} + (x_{3} - 1)^{2}} \\
\mathbf{x_{7} = (x_{1} + 1)^{2} + (x_{2} - 0)^{2} + (x_{3} - 1)^{2}} \\
\mathbf{x_{7} = (x_{1} + 1)^{2} + (x_{2} - 0)^{2} + (x_{3} - 1)^{2}} \\
\mathbf{x_{7} = (x_{1} + 1)^{2} + (x_{2} - 0)^{2} + (x_{3} - 1)^{2}} \\
\mathbf{x_{7} = (x_{1} + 1)^{2} + (x_{2} - 0)^{2} + (x_{3} - 1)^{2}} \\
\mathbf{x_{7} = (x_{1} + 1)^{2} + (x_{2} - 0)^{2} + (x_{3} - 1)^{2}} \\
\mathbf{x_{7} = (x_{1} + 1)^{2} + (x_{2} - 0)^{2} + (x_{3} - 1)^{2}} \\
\mathbf{x_{7} = (x_{1} + 1)^{2} + (x_{2} - 0)^{2} + (x_{3} - 1)^{2}} \\
\mathbf{x_{7} = (x_{1} + 1)^{2} + (x_{2} - 0)^{2} + (x_{3} - 1)^{2}} \\
\mathbf{x_{7} = (x_{1} + 1)^{2} + (x_{2} - 1)^{2}} \\
\mathbf{x_{7} = (x_{1} + 1)^{2} + (x_{2} - 1)^{2}} \\
\mathbf{x_{7} = (x_{1} + 1)^{2} + (x_{2} - 1)^{2}} \\
\mathbf{x_{7} = (x_{1} + 1)^{2} + (x_{2} - 1)^{2}} \\
\mathbf{x_{7} = (x_{1} + 1)^{2} + (x_{2} - 1)^{2}} \\
\mathbf{x_{7} = (x_{1} + 1)^{2} + (x_{2} - 1)^{2}} \\
\mathbf{x_{7} = (x_{1} + 1)^{2} + (x_{2} - 1)^{2}} \\
\mathbf{x_{7} = (x_{1} + 1)^{2} + (x_{2} - 1)^{2}} \\
\mathbf{x_{7} = (x_{1} + 1)^{2} + (x_{2} - 1)^{2}} \\
\mathbf{x_{7} = (x_{1} + 1)^{2} + (x_{2} - 1)^{2}} \\
\mathbf{x_{7} = (x_{1} + 1)^{2} + (x_{2} - 1)^{2}} \\
\mathbf{x_{7} = (x_{1} + 1)^{2} + (x_$$

Problem 3

Given f(x) and g(x) are two convex functions defined on the convex set X

1) Prove that af(x) + bg(x) is a convex set for a > 0 and b > 0

Let
$$a = 1, b = 1, \text{ and } H(x) = f(x) + g(x)$$

$$\forall x_1, x_1 \in X, \lambda \in [0,1]$$

$$H(\lambda x_1 + (1-\lambda)x_2) \leq \lambda H(x_1) + (1-\lambda)H(x_2)$$

Since f(x) and g(x) are convex sets,

$$H(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2) + \lambda g(x_1) + (1 - \lambda)g(x_2)$$

For every point in f, there is a corresponding point in g, when they are added together, there is an overall function that is convex as well. For example:

The convex inequality will hold true because the function of the sum of f(x) and g(x) follows the same pattern as both functions

2) In what conditions will f(g(x)) be convex

If f(x) * g(x) is convex, then f(g(x)) is convex. And the nature of f(x) * g(x) is similar to f(x) + g(x).

$$f(x_1) + g(x_1) = 24,$$

$$f(x_2) + g(x_2) = 8$$

It follows the pattern of both f and g but f * g gives a function with larger values compared to f and g.

Problem 4

Show $f(x_1) \ge f(x_0) + g_{x_0}{}^T(x_1 - x_0)$ for a convex function $f(x): X \to \mathbb{R}$ and for $x_0, x_1 \in X$

Problem 5

Problem 5

Problem 5

Parget reflection intensity:
$$a_{k}$$
 p

Author reflection intensity: a_{k} p

Author refle

1) Formulate this problem as an optimization problem.

$$\min_{\substack{P_{j_{j=1}}^{m} \\ j_{j=1}}} \sum_{k=1}^{n} (I_{t} - a_{kj}^{T} P_{j})^{2}$$
s.t. $0 \le P_{j} \le P_{max} \ \forall \ j = 1: m$

2) Is your problem convex?

Taking the gradient of the general objective function:

$$g(P) = \sum_{k=1}^{n} 2(I_t - a_k^T P) \cdot a_k$$

$$g(P) = \sum_{k=1}^{n} 2a_k^{\mathrm{T}} P \cdot a_k - 2I_t a_k$$

Taking the Hessian of the general objective function:

$$H(P) = \sum_{k=1}^{n} 2a_k^{\mathrm{T}} \cdot a_k$$

According to Lemma: if $d^T H d \ge 0 \ \forall \ d \ne 0$, then H is p.s.d.

$$d^T H d = \sum_{k=1}^{n} 2d^T (a_k a_k^T) d$$

The H is p.s.d when d is orthogonal to a_k because then $d^T a_k$ would be zero.

The problem is not convex because H is either p.s.d or indefinite.

3) If we require the overall power output of any of the n lamps to be less than p^* , will the problem have a unique solution?

If the function is convex, then the solution will inherently be unique. If the overall power out of the lamps in less than p^* , which is a constant across all planes making it a constant in p_j 's space. Since it is a constant everywhere, p^* is a convex function. And p_j is a convex function too as it spans m number of dimensions. An intersection of 2 convex spaces is a convex function itself.

4) If we require no more than half of the lamps to be switched on, will the problem have a unique solution?

If there are only n/2 lamps that are switches on, there can be multiple combinations of lamps which can give an equivalent optimal power output. For example, given there are n=2 number of lamps that are switched on, the situation where 1 one of them being switched on would give the same solution as the other being switched on. This is because of the symmetry of the set-up and equivalent reflection intensity of the lamps. So, there are no unique solutions, but multiple optimal solutions.