Лабораторная работа №2.

АНАЛИЗ ПОГРЕШНОСТЕЙ ПРИ ВЫЧИСЛЕНИИ ЗНАЧЕНИЙ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ

Цель работы: приобретение и закрепление практических навыков при оценке погрешности вычисления значений функции одной и нескольких переменных.

Задание 1. По данным из таблицы 2.1 вычислить значение функции z в заданной точке (x, y), абсолютную и относительную погрешности результата, используя формулу оценки погрешности функции нескольких переменных. Принять абсолютную погрешность для переменной x равной $\Delta x = 0.05$, а для переменной y равной $\Delta y = 0.01$.

Задание 2. Найти значение аргумента x_0 , при котором точность результата не зависит от погрешности величины x. Построить зависимость коэффициента передачи ошибки по аргументу x и относительной погрешности вычисления функции z при изменении переменной x в окрестности точки x_0 и заданном значении y.

Таблица 2.1 **Варианты заданий к лабораторной работе №2**

№ вар.	$z = f\left(x, y\right)$	х	у
1	$z = \ln\left(x^2 + 2\right)e^{3y^2}$	1,2	0,12
2	$z = e^{2x} \left(x^2 - 2 \right) \sin 5y$	0,2	2,13
3	$z = \left(x^2 - x + 2\right) \ln\left(1 + y\right)$	0,3	1,15
4	$z = \frac{e^{2x} (3x - 1)}{y^2 + 4}$	-1,1	2,31
5	$z = \frac{5\sin\left(x - \frac{\pi}{12}\right)}{\ln\left(1 + 3y + y^2\right)}$	$\frac{\pi}{4}$	1,31

№ вар.	$z = f\left(x, y\right)$	x	у
6	$z = \frac{(x+5)e^{3x}}{\cos(y^3 - 3)}$	-1,1	0,92
7	$z = \sqrt{x^2 + 3} \ e^{5y^2 + y}$	0,9	0,13
8	$z = \frac{e^{3x} \left(5x + 3\right)}{\sqrt{y^2 + 1}}$	-0,1	1,31
9	$z = \frac{2\left(x^2 - x\right)}{\ln\sin 3y}$	1,3	$\frac{\pi}{12}$
10	$z = \frac{x^2 - 5x}{\ln\left(y^2 + 2\right)}$	0,8	0,91
11	$z = \frac{3x^2 - 5x}{y^3 - 3y + 1}$	0,1	2,31
12	$z = \frac{\ln(5y^2 + 1)}{x^2 + 3x + 2}$	0,1	1,24
13	$z = \frac{e^x \left(x^2 - 3\right)}{\sqrt{y^2 + 3}}$	-1,1	0,92
14	$z = \left(x^3 - 4x\right)\sin\left(y^2 + 1\right)$	-1,2	0,15
15	$z = \frac{x^2 - 3x + 1}{\ln(y^2 + 5y + 6)}$	0,1	-1,13
16	$z = 5\cos\left(3x - \frac{\pi}{3}\right)e^{y}$	$\frac{2\pi}{9}$	0,87
17	$z = \frac{x^2 + 7x}{\ln\left(y^3 + 6\right)}$	0,9	0,16
18	$z = \frac{x^2 + 6x}{3y^2 + 7}$	1,0	0,29
19	$z = \frac{\ln\left(y^3 + 1\right)}{x^3 - 12x}$	1,1	1,21

№ вар.	z = f(x, y)	х	у
20	$z = \frac{5e^x\left(x^2 + 1\right)}{e^{3y} + 2}$	0,1	0,23
21	$z = \frac{\left(3x^3 - 1\right)e^y}{y + 2}$	0,2	0,17
22	$z = \frac{\left(x^2 + 6\right)\sin 3y}{y^2 + 5}$	0,3	$\frac{\pi}{12}$
23	$z = \frac{x^2 - x + 2}{arctg\left(y^2 + 1\right)}$	0,1	0,32
24	$z = \frac{y(x^2 + 3x)}{\ln(y^2 + 5)}$	1,2	0,98
25	$z = \frac{x^2 - 3x + 4}{\ln\left(y^2 + 7y\right)}$	0,1	-1,13

Отчет по лабораторной работе должен содержать:

- тему лабораторной работы, полный текст задания и исходные данные в соответствии с номером варианта;
- результаты аналитических вычислений частных производных от функции z в заданной точке;
- результат вычисления предельных абсолютной и относительной погрешностей;
 - решение x_0 уравнения $\frac{\partial z}{\partial x} = 0$ относительно переменной x;
- формулу для вычисления предельной относительной погрешности δ_z функции двух переменных z;
- таблицу значений коэффициента $\left| \frac{\partial z}{\partial x} \right|$ передачи ошибки по аргументу x и значений предельной относительной погрешности δ_z

функции z, вычисленных при различных значениях переменной x в окрестности точки x_0 ;

- графики кривых зависимости коэффициента передачи ошибки по аргументу x и предельной относительной погрешности δ_z функции z от изменения переменной x;
 - выводы по работе.

Пример 2. Вычислить значение функции
$$z = \frac{2\sqrt{x^2 - 5x + 8}}{\ln(3y^2 + 1)}$$
 и

оценить погрешность результата при $x = 2,30 \pm 0,05$ и $y = 1,31 \pm 0,01$.

Область определения заданной функции: $x \in (-\infty, \infty)$, $y \neq 0$. По условию задачи значения приближенных величин x и y заданы с предельными абсолютными погрешностями: $\Delta x = 0,05$ и $\Delta y = 0,01$, соответственно.

Для вычисления предельной абсолютной погрешности значения функции используем формулу [3,4,5]:

$$\Delta z = \left| \frac{\partial z}{\partial x} \right| \Delta x + \left| \frac{\partial z}{\partial y} \right| \Delta y , \qquad (2.1)$$

в которой частные производные вычисляются в заданной точке x = 2,3; y = 1,31.

Находим частные производные:

$$\frac{\partial z}{\partial x} = \frac{2x - 5}{\ln(3y^2 + 1)\sqrt{x^2 - 5x + 8}}, \quad \frac{\partial z}{\partial y} = -\frac{12y\sqrt{x^2 - 5x + 8}}{(3y^2 + 1)\ln^2(3y^2 + 1)}$$

и их значения в заданной точке: $\frac{\partial z}{\partial x}\Big|_{\substack{x=2,3\\y=1,31}} = -0,165$ и

$$\left. \frac{\partial z}{\partial y} \right|_{\substack{x=2,3\\y=1,31}} = -1,037$$
. Таким образом, имеем: $\Delta z = 0,165 \cdot \Delta x + 1,037 \cdot \Delta y$.

Отсюда получаем предельную абсолютную погрешность значения функции: $\Delta z = 0.165 \cdot 0.05 + 1.037 \cdot 0.01 = 0.0186$.

Приближенное значение функции z равно:

$$z = \frac{2\sqrt{2,3^2 - 5 \cdot 2,3 + 8}}{\ln(3 \cdot 1,31^2 + 1)} = 1,473.$$

Тогда предельная относительная погрешность значения функции составит: $\delta_z = \frac{\Delta\,z}{|z|} = \frac{0.0186}{1,473} = 0.0126\,$ (1,3%).

Отметим, что в формуле (2.1) величины $\left| \frac{\partial z}{\partial x} \right|$ и $\left| \frac{\partial z}{\partial y} \right|$ характеризуют коэффициенты передачи ошибки по аргументам x и y, соответственно. Найдем значение x_0 , при котором коэффициент передачи ошибки по аргументу x равен 0. Решаем уравнение относительно x: $\frac{\partial z}{\partial x} = \frac{2x-5}{\sqrt{x^2-5x+8} \, \ln \left(3y^2+1\right)} = 0$. Отсюда получаем: $x_0 = 2,5$.

Исследуем зависимость коэффициента $\left|\frac{\partial z}{\partial x}\right|$ передачи ошибки по аргументу x и зависимость предельной относительной погрешности δ_z функции z от изменения переменной x в окрестности точки $x_0=2,5$ в интервале от 0 до 5,0 при y=1,31, $\Delta x=0,05$ и $\Delta y=0,01$.

В основе расчетов лежат формулы:

$$\left| \frac{\partial z}{\partial x} \right| = \left| \frac{2x - 5}{\ln(3y^2 + 1)\sqrt{x^2 - 5x + 8}} \right|,$$

$$\delta_z = \left| \frac{2x - 5}{2(x^2 - 5x + 8)} \right| \Delta x + \left| \frac{6y}{(3y^2 + 1)\ln(3y^2 + 1)} \right| \Delta y, \ \Delta x = 0.05, \ \Delta y = 0.01.$$

Результаты вычислений представлены в таблице 2.2.

Таблица 2.2 **Результаты вычислений для примера 2**

X	0,0	0,5	1,0	1,5	2,0	2,5	3,0	3,5	4,0	4,5	5,0
$\left \frac{\partial z}{\partial x} \right $	0,973	0,918	0,826	0,664	0,389	0,000	0,389	0,664	0,826	0,918	0,973
δ_z ,%	2,3	2,4	2,6	2,5	2,0	0,7	2,0	2,5	2,6	2,4	2,3

На рисунке 2.1 представлены кривые зависимости коэффициента передачи ошибки по переменной x (рис. 2.1 а) и относительной погрешности δ_z ,% (рис. 2.1 б) от изменения переменной x. Очевидно, что в окрестности точки $x_0 = 2,5$ ошибка Δx практически не влияет на точность результата.

Рис. 2.1. Кривые зависимости коэффициента передачи ошибки по аргументу x(a) и предельной относительной погрешности функции (δ) от изменения переменной x

Контрольные вопросы

- 1. Сформулировать и доказать теорему о погрешности функции одной переменной.
- 2. Как изменяется погрешность приближенного числа при возведении его в степень?
- 3. Как изменяется погрешность приближенного числа при извлечении из него корня n-ой степени?
- 4. Сформулировать и доказать теорему о погрешности функции нескольких переменных.
- 5. Что характеризует коэффициент передачи ошибки и как он вычисляется?