UNIVERSITY OF CANTERBURY

Test

Prescription Number: EMTH211-18S2	
Time allowed: 60 minutes.	
Write your answers in the spaces provided.	
There is a <i>total</i> of 34 points.	MARKS
Use black or blue ink. Do not use pencil.	Office Use Only
Only UC approved calculators are allowed.	0.1
There is no formula sheet for this test.	Q1
Show all working. Write neatly. Marks can be lost for poorly presented answers.	Q2
	Q3
Family name:	Q4
Given names:	Total

Student ID:

Question 1 [9 points]

Let A be the matrix

$$A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & 3 \\ 3 & 0 & 6 \\ 4 & 5 & 3 \end{bmatrix}.$$

The reduced row echelon form for A is given by

$$RREF = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

(a) Give a basis for the row space of A.

(b) Give a basis for the column space of A.

TURN OVER

(c)	What is the rank of A ?
(d)	Give a basis for the null space of A .
(e)	What is the nullity of A ?
(f)	Give a formula that, for a general $m \times n$ -matrix, relates its rank and its nullity.
(a)	What is the rank of A^T ? You should not calculate A^T in order to solve this question!
(h)	What is the nullity of A^T ? You should not calculate A^T in order to solve this question!

Question 2 [7 points]

(a) The matrix

$$B = \begin{bmatrix} 1 & 0 & 1 \\ 3 & 2 & 6 \\ -1 & 2 & 3 \end{bmatrix}$$

can be reduced to the echelon form

$$EF = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$

by executing the row operations

$$R_2 \rightarrow R_2 - 3R_1$$

$$R_3 \rightarrow R_3 + R_1$$

$$R_3 \to R_3 - R_2$$
.

Write down the LU-decomposition for B. (Hint: use the multiplier method)

- (b) Let C be a 3×3 matrix with eigenvalues $\lambda_1 = 1, \lambda_2 = 2, \lambda_3 = 3$. Let $\mathbf{x}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ be an eigenvector of C with associated eigenvalue 1, let $\mathbf{x}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ be an eigenvector of C with associated eigenvalue 2 and let $\mathbf{x}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ be an eigenvector of C with associated eigenvalue 3.
 - (i) Diagonalise C (i.e. write down matrices P and D such that $C = PDP^{-1}$ and D is diagonal).

(ii) Use (i) to calculate C^{2018} . (You can of course leave large powers of real numbers in your answer.)

Question 3 [11 points]

(a)	Remember that a subspace W of a vector space V is a set that is closed under taking \lim	ear
	combinations (that is, if $\mathbf{v}_1, \mathbf{v}_2 \in W$ and $k_1, k_2 \in \mathbb{R}$ then $k_1\mathbf{v}_1 + k_2\mathbf{v}_2 \in W$).	

Let $M_{3,3}$ be the vector space of 3×3 matrices (with entries in \mathbb{R}).

- (i) What is the dimension of $M_{3,3}$? (no proof required) _____
- (ii) Recall a matrix A is called symmetric if it is equal to its transpose, i.e. if $A^T = A$. Let W be the set of all symmetric 3×3 -matrices. W is a subspace of $M_{3,3}$. What is the dimension of W? (no proof required)____
- (iii) Let T be the vector space consisting of all $n \times n$ symmetric matrices. What is the dimension of T? (no proof required) ______
- (iv) Let U be the set of all 3×3 symmetric matrices whose diagonal elements are all zero. Show that U is a subspace of $M_{3,3}$.

(v) Give a basis for U. (no proof required)

- (b) Let $E = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$. The inverse of E is given by $E^{-1} = \begin{bmatrix} -2 & 1 \\ 3/2 & -1/2 \end{bmatrix}$.
 - (i) Calculate $||E||_1$, $||E||_{\infty}$ and the condition number k(E) using the ∞ -norm.

(ii) Describe **briefly** how the condition number of a matrix E may affect the accuracy of a solution to $E\mathbf{x} = \mathbf{b}$. A formula relating the condition number to the error of a solution might be relevant.

Question 4 [7 points]

(a) Let A be a matrix such that there is a vector \mathbf{v} with

$$A\mathbf{v} = 2\mathbf{v}$$
.

Why is $(2 - \lambda)$ a divisor of the characteristic polynomial of A?

- (b) Let B be a $4\times 4\text{-matrix}$ with eigenvalues 1, 2, -1, -2.
 - (i) What is the determinant of B?
 - (ii) Is B invertible? Explain your answer.

(iii) Use the theorem of Cayley-Hamilton to deduce that $B^4 = 5B^2 - 4I$.

(c) Let C be a 6×6 -matrix and suppose that C has eigenvalues 1, 2, 3, 4. Suppose that one of the eigenvalues has geometric multiplicity 3. Is C diagonalisable? Explain why or why not.

Page for rough working

Page for rough working