3 Berechenbarkeitstheorie

- 3.1 Entwurf einer universellen Turingmaschine
- 3.2 Die Unentscheidbarkeit des Halteproblems
- 3.3 Turing- und Many-One-Reduktionen

Halteproblem

Eingabe: Programm *P* in Ihrer Lieblingsprogrammiersprache

Eingabe w für das Programm

Frage: Terminiert das Programm *P* nach endlich vielen Schritten auf Eingabe *w*?

Halteproblem

Eingabe: Programm *P* in Ihrer Lieblingsprogrammiersprache

Eingabe w für das Programm

Frage: Terminiert das Programm *P* nach endlich vielen Schritten auf Eingabe *w*?

Theorem

Das Halteproblem ist nicht entscheidbar, d. h. es gibt keinen Algorithmus, der dieses

Problem in endlicher Zeit löst.

Ein Algorithmus für das Halteproblem hätte überraschende Konsequenzen:

```
void main()
  int n = 4;
  while (true)
  boolean foundPrimes = false;
  for (int p = 2; p < n; p++)
     if (prime(p) && prime(n-p)) foundPrimes = true;
  if (!foundPrimes) return;
  n = n + 2;</pre>
```

Ein Algorithmus für das Halteproblem hätte überraschende Konsequenzen:

```
void main()
  int n = 4;
  while (true)
   boolean foundPrimes = false;
  for (int p = 2; p < n; p++)
      if (prime(p) && prime(n-p)) foundPrimes = true;
  if (!foundPrimes) return;
   n = n + 2;</pre>
```

Beobachtung 3.1

Das obige Programm terminiert genau dann, wenn es eine gerade Zahl größer als zwei gibt, die sich nicht als Summe zweier Primzahlen schreiben lässt.

Ein Algorithmus für das Halteproblem hätte überraschende Konsequenzen:

```
void main()
  int n = 4;
  while (true)
  boolean foundPrimes = false;
  for (int p = 2; p < n; p++)
    if (prime(p) && prime(n-p)) foundPrimes = true;
  if (!foundPrimes) return;
  n = n + 2;</pre>
```

Beobachtung 3.1

Das obige Programm terminiert genau dann, wenn es eine gerade Zahl größer als zwei gibt, die sich nicht als Summe zweier Primzahlen schreiben lässt.

⇒ Mithilfe eines Algorithmus für das Halteproblem könnte die Goldbachsche Vermutung bewiesen oder widerlegt werden.

- 3 Berechenbarkeitstheorie
- 3.1 Entwurf einer universellen Turingmaschine
- 3.2 Die Unentscheidbarkeit des Halteproblems
- 3.3 Turing- und Many-One-Reduktionen

Universelle Turingmaschine (Idee)

Eine universelle Turingmaschine U erhält als Eingabe die Codierung einer

Turingmaschine M und eine Eingabe w für M. Sie simuliert das Verhalten von M auf w.

Universelle Turingmaschine (Idee)

Eine universelle Turingmaschine U erhält als Eingabe die Codierung einer

Turingmaschine M und eine Eingabe w für M. Sie simuliert das Verhalten von M auf w.

Annahmen: Eingabealphabet $\Sigma = \{0, 1\}$, Bandalphabet $\Gamma = \{0, 1, \square\}$.

Für eine Turingmaschine M sei $\langle \mathit{M} \rangle \in \{0,1\}^*$ ihre Codierung.

Universelle Turingmaschine (Idee)

Eine universelle Turingmaschine U erhält als Eingabe die Codierung einer

Turingmaschine M und eine Eingabe w für M. Sie simuliert das Verhalten von M auf w.

Annahmen: Eingabealphabet $\Sigma = \{0,1\},$ Bandalphabet $\Gamma = \{0,1,\square\}.$

Für eine Turingmaschine M sei $\langle M \rangle \in \{0,1\}^*$ ihre Codierung.

Universelle Turingmaschine (formal)

Eingabe für U ist $\langle M \rangle w \in \{0,1\}^*$ für eine TM M und ein $w \in \{0,1\}^*$.

Universelle Turingmaschine (Idee)

Eine universelle Turingmaschine U erhält als Eingabe die Codierung einer

Turingmaschine M und eine Eingabe w für M. Sie simuliert das Verhalten von M auf w.

Annahmen: Eingabealphabet $\Sigma = \{0,1\},$ Bandalphabet $\Gamma = \{0,1,\square\}.$

Für eine Turingmaschine M sei $\langle M \rangle \in \{0,1\}^*$ ihre Codierung.

Universelle Turingmaschine (formal)

Eingabe für U ist $\langle M \rangle w \in \{0,1\}^*$ für eine TM M und ein $w \in \{0,1\}^*$.

U simuliert das Verhalten von *M* auf Eingabe *w*, d. h.:

Universelle Turingmaschine (Idee)

Eine universelle Turingmaschine U erhält als Eingabe die Codierung einer

Turingmaschine M und eine Eingabe w für M. Sie simuliert das Verhalten von M auf w.

Annahmen: Eingabealphabet $\Sigma = \{0,1\},$ Bandalphabet $\Gamma = \{0,1,\square\}.$

Für eine Turingmaschine M sei $\langle M \rangle \in \{0,1\}^*$ ihre Codierung.

Universelle Turingmaschine (formal)

Eingabe für U ist $\langle M \rangle w \in \{0,1\}^*$ für eine TM M und ein $w \in \{0,1\}^*$.

U simuliert das Verhalten von M auf Eingabe w, d. h.:

U terminiert auf $\langle M \rangle w \iff M$ terminiert auf w

Universelle Turingmaschine (Idee)

Eine universelle Turingmaschine U erhält als Eingabe die Codierung einer

Turingmaschine M und eine Eingabe w für M. Sie simuliert das Verhalten von M auf w.

Annahmen: Eingabealphabet $\Sigma = \{0,1\},$ Bandalphabet $\Gamma = \{0,1,\square\}.$

Für eine Turingmaschine M sei $\langle M \rangle \in \{0,1\}^*$ ihre Codierung.

Universelle Turingmaschine (formal)

Eingabe für U ist $\langle M \rangle w \in \{0,1\}^*$ für eine TM M und ein $w \in \{0,1\}^*$.

U simuliert das Verhalten von *M* auf Eingabe *w*, d. h.:

U terminiert auf $\langle M \rangle w \iff M$ terminiert auf w

U akzeptiert (verwirft) $\langle M \rangle w \iff M$ akzeptiert (verwirft) w

Definition 3.2 (Gödelnummern)

Eine injektive Abbildung der Menge aller Turingmaschinen in die Menge $\{0,1\}^*$ heißt Gödelnummerierung.

Definition 3.2 (Gödelnummern)

Eine injektive Abbildung der Menge aller Turingmaschinen in die Menge $\{0,1\}^*$ heißt Gödelnummerierung. Für eine feste Gödelnummerierung bezeichnen wir mit $\langle M \rangle \in \{0,1\}^*$ die Gödelnummer der Turingmaschine M, also die Zeichenkette, auf die M gemäß der Gödelnummerierung abgebildet wird.

Definition 3.2 (Gödelnummern)

Eine injektive Abbildung der Menge aller Turingmaschinen in die Menge $\{0,1\}^*$ heißt Gödelnummerierung. Für eine feste Gödelnummerierung bezeichnen wir mit $\langle M \rangle \in \{0,1\}^*$ die Gödelnummer der Turingmaschine M, also die Zeichenkette, auf die M gemäß der Gödelnummerierung abgebildet wird.

Eine Gödelnummerierung heißt präfixfrei, wenn kein echtes Präfix (Anfangsstück) einer Gödelnummer $\langle M \rangle$ selbst eine gültige Gödelnummer ist.

Definition 3.2 (Gödelnummern)

Eine injektive Abbildung der Menge aller Turingmaschinen in die Menge $\{0,1\}^*$ heißt Gödelnummerierung. Für eine feste Gödelnummerierung bezeichnen wir mit $\langle M \rangle \in \{0,1\}^*$ die Gödelnummer der Turingmaschine M, also die Zeichenkette, auf die M gemäß der Gödelnummerierung abgebildet wird.

Eine Gödelnummerierung heißt präfixfrei, wenn kein echtes Präfix (Anfangsstück) einer Gödelnummer $\langle M \rangle$ selbst eine gültige Gödelnummer ist.

Warum präfixfrei? Damit eine Zeichenkette $\langle M \rangle w \in \{0,1\}^*$ eindeutig in die Komponenten $\langle M \rangle \in \{0,1\}^*$ und $w \in \{0,1\}^*$ zerlegt werden kann.

Eine konkrete präfixfreie Gödelnummerierung:

Es sei eine Turingmaschine $M = (Q, \Sigma, \Gamma, \square, q_1, q_2, \delta)$ wie folgt:

- Es sei $Q = \{q_1, q_2, \dots, q_t\}$ für ein $t \ge 2$.
- Es sei $\Sigma = \{X_1, X_2\}$ und $\Gamma = \Sigma \cup \{X_3\}$ für $X_1 = 0, X_2 = 1$ und $X_3 = \square$.
- ullet Es sei q_1 der Startzustand und q_2 der Endzustand.

Eine konkrete präfixfreie Gödelnummerierung:

Es sei eine Turingmaschine $M = (Q, \Sigma, \Gamma, \square, q_1, q_2, \delta)$ wie folgt:

- Es sei $Q = \{q_1, q_2, \dots, q_t\}$ für ein $t \geq 2$.
- Es sei $\Sigma = \{X_1, X_2\}$ und $\Gamma = \Sigma \cup \{X_3\}$ für $X_1 = 0, X_2 = 1$ und $X_3 = \square$.
- Es sei q_1 der Startzustand und q_2 der Endzustand.

Es sei $D_1 = L$, $D_2 = N$ und $D_3 = R$.

Einen Übergang $\delta(q_i, X_j) = (q_k, X_\ell, D_m)$ codieren wir als $0^i 10^j 10^k 10^\ell 10^m$.

Eine konkrete präfixfreie Gödelnummerierung:

Es sei eine Turingmaschine $M = (Q, \Sigma, \Gamma, \square, q_1, q_2, \delta)$ wie folgt:

- Es sei $Q = \{q_1, q_2, \dots, q_t\}$ für ein $t \ge 2$.
- Es sei $\Sigma = \{X_1, X_2\}$ und $\Gamma = \Sigma \cup \{X_3\}$ für $X_1 = 0, X_2 = 1$ und $X_3 = \square$.
- Es sei q₁ der Startzustand und q₂ der Endzustand.

Es sei $D_1 = L$, $D_2 = N$ und $D_3 = R$.

Einen Übergang $\delta(q_i, X_j) = (q_k, X_\ell, D_m)$ codieren wir als $0^i 10^j 10^k 10^\ell 10^m$.

Die Zustandsüberführungsfunktion beschreibt 3(t-1) viele Übergänge, deren Codierungen wir mit $code(1), \ldots, code(3(t-1))$ bezeichnen.

Eine konkrete präfixfreie Gödelnummerierung:

Es sei eine Turingmaschine $M = (Q, \Sigma, \Gamma, \square, q_1, q_2, \delta)$ wie folgt:

- Es sei $Q = \{q_1, q_2, \dots, q_t\}$ für ein $t \geq 2$.
- Es sei $\Sigma = \{X_1, X_2\}$ und $\Gamma = \Sigma \cup \{X_3\}$ für $X_1 = 0, X_2 = 1$ und $X_3 = \square$.
- Es sei q₁ der Startzustand und q₂ der Endzustand.

Es sei $D_1 = L$, $D_2 = N$ und $D_3 = R$.

Einen Übergang $\delta(q_i, X_j) = (q_k, X_\ell, D_m)$ codieren wir als $0^i 10^j 10^k 10^\ell 10^m$.

Die Zustandsüberführungsfunktion beschreibt 3(t-1) viele Übergänge, deren Codierungen wir mit $code(1), \ldots, code(3(t-1))$ bezeichnen.

Die Gödelnummer von M lautet

$$\langle M \rangle = 11 \operatorname{code}(1) 11 \operatorname{code}(2) 11 \dots 11 \operatorname{code}(3(t-1)) 111.$$

Eine konkrete präfixfreie Gödelnummerierung:

Es sei eine Turingmaschine $M = (Q, \Sigma, \Gamma, \square, q_1, q_2, \delta)$ wie folgt:

- Es sei $Q = \{q_1, q_2, \dots, q_t\}$ für ein $t \ge 2$.
- Es sei $\Sigma = \{X_1, X_2\}$ und $\Gamma = \Sigma \cup \{X_3\}$ für $X_1 = 0, X_2 = 1$ und $X_3 = \square$.
- Es sei q₁ der Startzustand und q₂ der Endzustand.

Es sei $D_1 = L$, $D_2 = N$ und $D_3 = R$.

Einen Übergang $\delta(q_i, X_j) = (q_k, X_\ell, D_m)$ codieren wir als $0^i 10^j 10^k 10^\ell 10^m$.

Die Zustandsüberführungsfunktion beschreibt 3(t-1) viele Übergänge, deren Codierungen wir mit $code(1), \ldots, code(3(t-1))$ bezeichnen.

Die Gödelnummer von M lautet

$$\langle M \rangle = 11 \operatorname{code}(1) 11 \operatorname{code}(2) 11 \dots 11 \operatorname{code}(3(t-1)) 111.$$

111 am Ende stellt die Präfixfreiheit sicher.

Theorem 3.3

Es existiert eine universelle Turingmaschine U, die auf jeder Eingabe der

Form $\langle M \rangle w \in \{0,1\}^*$ das Verhalten der Turingmaschine M auf der Eingabe $w \in \{0,1\}^*$ simuliert.

Theorem 3.3

Es existiert eine universelle Turingmaschine U, die auf jeder Eingabe der

Form $\langle M \rangle w \in \{0,1\}^*$ das Verhalten der Turingmaschine M auf der Eingabe $w \in \{0,1\}^*$ simuliert.

Die Rechenzeit von U auf der Eingabe $\langle M \rangle w$ ist nur um einen konstanten Faktor (der nur von M, nicht aber von w abhängt) größer als die Rechenzeit von M auf der Eingabe w.

Beweis: Konstruktion von *U* als 3-Band-Turingmaschine.

Beweis: Konstruktion von *U* als 3-Band-Turingmaschine.

Initialisierung:

- Zu Beginn: $\langle M \rangle w$ auf Band 1.
- U schreibt $\langle M \rangle$ auf Band 2 und löscht es von Band 1.
- U schreibt auf Band 3 eine Codierung des Startzustandes.
 Wir codieren dabei den Zustand q_i als 0ⁱ.

Beweis: Konstruktion von *U* als 3-Band-Turingmaschine.

Initialisierung:

- Zu Beginn: \(\lambda M \rangle w \) auf Band 1.
- U schreibt $\langle M \rangle$ auf Band 2 und löscht es von Band 1.
- U schreibt auf Band 3 eine Codierung des Startzustandes.
 Wir codieren dabei den Zustand q_i als 0ⁱ.

Invariante:

- Band 1 enthält den Bandinhalt von M nach den bereits simulierten Schritten.
 Die Kopfposition auf Band 1 stimmt ebenfalls mit der von M überein.
- Band 2 enthält die Gödelnummer $\langle M \rangle$.
- Band 3 codiert den Zustand von M nach den bereits simulieren Schritten. Ist dies q_i , so enthält Band 3 die Zeichenkette 0^i .

Simulation von M auf w Schritt für Schritt:

U sucht auf Band 2 nach einem passenden Übergang:
 U sucht nach der Zeichenkette 110ⁱ10^j1, wobei q_i der aktuell auf Band 3 codierte
 Zustand sei und X_i das Zeichen, das sich auf Band 1 an der Kopfposition befindet.

Simulation von M auf w Schritt für Schritt:

- U sucht auf Band 2 nach einem passenden Übergang:
 U sucht nach der Zeichenkette 110ⁱ10^j1, wobei q_i der aktuell auf Band 3 codierte
 Zustand sei und X_i das Zeichen, das sich auf Band 1 an der Kopfposition befindet.
- Findet U eine entsprechende Zeichenkette, so kann sie entsprechend der oben beschriebenen Codierung den Übergang $\delta(q_i, X_j) = (q_k, X_\ell, D_m)$ rekonstruieren.

Simulation von M auf w Schritt für Schritt:

- U sucht auf Band 2 nach einem passenden Übergang:
 U sucht nach der Zeichenkette 110ⁱ10^j1, wobei q_i der aktuell auf Band 3 codierte
 Zustand sei und X_i das Zeichen, das sich auf Band 1 an der Kopfposition befindet.
- Findet U eine entsprechende Zeichenkette, so kann sie entsprechend der oben beschriebenen Codierung den Übergang $\delta(q_i, X_j) = (q_k, X_\ell, D_m)$ rekonstruieren.
- U ersetzt dann das Zeichen an der Kopfposition auf Band 1 durch X_{ℓ} , bewegt den Kopf von Band 1 gemäß D_m und ersetzt den Inhalt von Band 3 durch 0^k .

• Für Simulation eines Schrittes von *M* benötigt *U* konstant viele Schritte.

- Für Simulation eines Schrittes von *M* benötigt *U* konstant viele Schritte.
- Bei der Simulation der 3-Band-Turingmaschine durch eine 1-Band-Turingmaschine gemäß Theorem 2.5 handeln wir uns einen quadratischen Zeitverlust ein.

- Für Simulation eines Schrittes von *M* benötigt *U* konstant viele Schritte.
- Bei der Simulation der 3-Band-Turingmaschine durch eine 1-Band-Turingmaschine gemäß Theorem 2.5 handeln wir uns einen quadratischen Zeitverlust ein.
- Dieser kann vermieden werden, indem die universelle Turingmaschine von vornherein als 3-Spur-Turingmaschine konstruiert wird.
 (Die Details hierzu besprechen wir nicht.)

3 Berechenbarkeitstheorie

- 3.1 Entwurf einer universellen Turingmaschine
- 3.2 Die Unentscheidbarkeit des Halteproblems
- 3.3 Turing- und Many-One-Reduktionen

Definition: Lexikographische Ordnung

Für zwei Wörter $x = x_1 \dots x_\ell \in \{0, 1\}^\ell$ und $y = y_1 \dots y_\ell \in \{0, 1\}^\ell$ derselben Länge ℓ heißt x lexikographisch kleiner als y, wenn ein Index i existiert, für den $x_1 \dots x_{i-1} = y_1 \dots y_{i-1}$ sowie $x_i = 0$ und $y_i = 1$ gilt.

Definition: Lexikographische Ordnung

Für zwei Wörter $x = x_1 \dots x_\ell \in \{0, 1\}^\ell$ und $y = y_1 \dots y_\ell \in \{0, 1\}^\ell$ derselben Länge ℓ heißt x lexikographisch kleiner als y, wenn ein Index i existiert, für den $x_1 \dots x_{i-1} = y_1 \dots y_{i-1}$ sowie $x_i = 0$ und $y_i = 1$ gilt.

Nun können wir die **kanonische Ordnung** auf der Menge $\{0,1\}^*$ definieren. In dieser Ordnung kommt ein Wort $x \in \{0,1\}^*$ vor einem Wort $y \in \{0,1\}^*$, wenn |x| < |y| gilt oder wenn |x| = |y| gilt und x lexikographisch kleiner als y ist.

Definition: Lexikographische Ordnung

Für zwei Wörter $x=x_1\dots x_\ell\in\{0,1\}^\ell$ und $y=y_1\dots y_\ell\in\{0,1\}^\ell$ derselben Länge ℓ heißt x lexikographisch kleiner als y, wenn ein Index i existiert, für den $x_1\dots x_{i-1}=y_1\dots y_{i-1}$ sowie $x_i=0$ und $y_i=1$ gilt.

Nun können wir die **kanonische Ordnung** auf der Menge $\{0,1\}^*$ definieren. In dieser Ordnung kommt ein Wort $x \in \{0,1\}^*$ vor einem Wort $y \in \{0,1\}^*$, wenn |x| < |y| gilt oder wenn |x| = |y| gilt und x lexikographisch kleiner als y ist.

Die ersten Wörter in der kanonischen Ordnung von $\{0,1\}^*$ sehen demnach wie folgt aus:

$$\varepsilon$$
, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, 0000, . . .

Definition: Lexikographische Ordnung

Für zwei Wörter $x = x_1 \dots x_\ell \in \{0,1\}^\ell$ und $y = y_1 \dots y_\ell \in \{0,1\}^\ell$ derselben Länge ℓ heißt x lexikographisch kleiner als y, wenn ein Index i existiert, für den $x_1 \dots x_{i-1} = y_1 \dots y_{i-1}$ sowie $x_i = 0$ und $y_i = 1$ gilt.

Nun können wir die **kanonische Ordnung** auf der Menge $\{0,1\}^*$ definieren. In dieser Ordnung kommt ein Wort $x \in \{0,1\}^*$ vor einem Wort $y \in \{0,1\}^*$, wenn |x| < |y| gilt oder wenn |x| = |y| gilt und x lexikographisch kleiner als y ist.

Die ersten Wörter in der kanonischen Ordnung von $\{0,1\}^*$ sehen demnach wie folgt aus:

$$\varepsilon$$
, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, 0000, . . .

Für $i \in \mathbb{N}$ bezeichnen wir mit $\mathbf{w_i}$ das Wort aus $\{0,1\}^*$, das in der kanonischen Ordnung an der i-ten Stelle steht. Es gilt also beispielsweise $w_1 = \varepsilon$ und $w_5 = 01$.

Sei $\mathcal{G} \subseteq \{0,1\}^*$ die Menge aller Gödelnummern.

Sei M_i für $i \in \mathbb{N}$ die Turingmaschine, deren Gödelnummer $\langle M_i \rangle$ in der kanonischen Ordnung der Menge \mathcal{G} an der i-ten Stelle steht.

Sei $\mathcal{G} \subseteq \{0,1\}^*$ die Menge aller Gödelnummern.

Sei M_i für $i \in \mathbb{N}$ die Turingmaschine, deren Gödelnummer $\langle M_i \rangle$ in der kanonischen Ordnung der Menge \mathcal{G} an der i-ten Stelle steht.

Beobachtung

Für ein gegebenes $i \in \mathbb{N}$ können w_i und M_i berechnet werden.

Sei $\mathcal{G} \subseteq \{0,1\}^*$ die Menge aller Gödelnummern.

Sei M_i für $i \in \mathbb{N}$ die Turingmaschine, deren Gödelnummer $\langle M_i \rangle$ in der kanonischen Ordnung der Menge \mathcal{G} an der i-ten Stelle steht.

Beobachtung

Für ein gegebenes $i \in \mathbb{N}$ können w_i und M_i berechnet werden. Außerdem ist es möglich, für ein gegebenes Wort $w \in \{0,1\}^*$ den Index i mit $w_i = w$ zu berechnen und für eine gegebene Gödelnummer $\langle M \rangle \in \mathcal{G}$ den Index $i \in \mathbb{N}$ mit $M_i = M$.

Definition 3.4

Die Diagonalsprache ist definiert als

$$D = \{w_i \in \{0,1\}^* \mid M_i \text{ akzeptiert } w_i \text{ nicht } \}.$$

Definition 3.4

Die **Diagonalsprache** ist definiert als

$$D = \{w_i \in \{0,1\}^* \mid M_i \text{ akzeptiert } w_i \text{ nicht } \}.$$

In Zelle (M_j, w_i) steht eine Eins, wenn M_j das Wort w_i akzeptiert, und sonst eine Null.

	w_1	W_2	W_3	W_4	w_5	
M_1	0	1	1	0	1	
M_2	1	1	0	0	0	
M_3	1	0	0	1	1	
M_4	1	0	0	1	0	
M_5	0	1	1	1	1	
÷	:	:	:	:	:	٠.

Definition 3.4

Die Diagonalsprache ist definiert als

$$D = \{w_i \in \{0,1\}^* \mid M_i \text{ akzeptiert } w_i \text{ nicht } \}.$$

In Zelle (M_i, w_i) steht eine Eins, wenn M_i das Wort w_i akzeptiert, und sonst eine Null.

	w_1	W_2	W_3	W_4	w_5	
M_1	0	1	1	0	1	
M_2	1	1	0	0	0	
M_3	1	0	0	1	1	
M_4	1	0	0	1	0	
M_5	0	1	1	1	1	
:	:	:	:	:	:	٠.,

Im Beispiel gilt $w_1, w_3 \in D$, aber $w_2, w_4, w_5 \notin D$.

Theorem 3.5

Die Diagonalsprache *D* ist nicht entscheidbar.

Beweis: Wir führen einen Widerspruchsbeweis.

Sei M eine Turingmaschine, die D entscheidet.

Theorem 3.5

Die Diagonalsprache *D* ist nicht entscheidbar.

Beweis: Wir führen einen Widerspruchsbeweis.

Sei M eine Turingmaschine, die D entscheidet.

Es gibt einen Index $i \in \mathbb{N}$ mit $M = M_i$.

Theorem 3.5

Die Diagonalsprache *D* ist nicht entscheidbar.

Beweis: Wir führen einen Widerspruchsbeweis.

Sei M eine Turingmaschine, die D entscheidet.

Es gibt einen Index $i \in \mathbb{N}$ mit $M = M_i$.

Wie verhält sich $M = M_i$ auf dem Wort w_i ?

Theorem 3.5

Die Diagonalsprache *D* ist nicht entscheidbar.

Beweis: Wir führen einen Widerspruchsbeweis.

Sei *M* eine Turingmaschine, die *D* entscheidet.

Es gibt einen Index $i \in \mathbb{N}$ mit $M = M_i$.

Wie verhält sich $M = M_i$ auf dem Wort w_i ?

• Gilt $w_i \in D$, so akzeptiert M_i die Eingabe w_i , da M_i die Sprache D entscheidet.

Theorem 3.5

Die Diagonalsprache *D* ist nicht entscheidbar.

Beweis: Wir führen einen Widerspruchsbeweis.

Sei *M* eine Turingmaschine, die *D* entscheidet.

Es gibt einen Index $i \in \mathbb{N}$ mit $M = M_i$.

Wie verhält sich $M = M_i$ auf dem Wort w_i ?

• Gilt $w_i \in D$, so akzeptiert M_i die Eingabe w_i , da M_i die Sprache D entscheidet. Aus der Definition von D folgt dann aber, dass $w_i \notin D$ gilt.

Theorem 3.5

Die Diagonalsprache *D* ist nicht entscheidbar.

Beweis: Wir führen einen Widerspruchsbeweis.

Sei *M* eine Turingmaschine, die *D* entscheidet.

Es gibt einen Index $i \in \mathbb{N}$ mit $M = M_i$.

Wie verhält sich $M = M_i$ auf dem Wort w_i ?

- Gilt $w_i \in D$, so akzeptiert M_i die Eingabe w_i , da M_i die Sprache D entscheidet. Aus der Definition von D folgt dann aber, dass $w_i \notin D$ gilt.
- Gilt $w_i \notin D$, so verwirft M_i die Eingabe w_i , da M_i die Sprache D entscheidet.

Theorem 3.5

Die Diagonalsprache *D* ist nicht entscheidbar.

Beweis: Wir führen einen Widerspruchsbeweis.

Sei *M* eine Turingmaschine, die *D* entscheidet.

Es gibt einen Index $i \in \mathbb{N}$ mit $M = M_i$.

Wie verhält sich $M = M_i$ auf dem Wort w_i ?

- Gilt w_i ∈ D, so akzeptiert M_i die Eingabe w_i, da M_i die Sprache D entscheidet.
 Aus der Definition von D folgt dann aber, dass w_i ∉ D gilt.
- Gilt $w_i \notin D$, so verwirft M_i die Eingabe w_i , da M_i die Sprache D entscheidet. Aus der Definition von D folgt dann aber, dass $w_i \in D$ gilt.

Widerspruch!

Definition 3.6

Das Halteproblem ist definiert als

$$H = \{ \langle M \rangle w \mid M \text{ hält auf } w \} \subseteq \{0, 1\}^*.$$

Definition 3.6

Das Halteproblem ist definiert als

$$H = \{ \langle M \rangle w \mid M \text{ hält auf } w \} \subseteq \{0, 1\}^*.$$

Theorem 3.7

Das Halteproblem *H* ist nicht entscheidbar.

Beweis durch Reduktion: Eine TM M_H , die das Halteproblem entscheidet, kann genutzt werden, um eine TM M_D zu konstruieren, die die Diagonalsprache D entscheidet.

Beweis durch Reduktion: Eine TM M_H , die das Halteproblem entscheidet, kann genutzt werden, um eine TM M_D zu konstruieren, die die Diagonalsprache D entscheidet.

```
M_D(w)

1 Berechne i \in \mathbb{N} mit w_i = w. Berechne die Gödelnummer \langle M_i \rangle.

2 Simuliere das Verhalten von M_H auf der Eingabe \langle M_i \rangle w_i.

3 if (M_H akzeptiert \langle M_i \rangle w_i nicht)

4 akzeptiere w;

5 else

6 Simuliere das Verhalten von M_i auf der Eingabe w_i.

7 if (M_i akzeptiert w_i) verwirf w;

8 else akzeptiere w;
```

$$D = \{w_i \in \{0, 1\}^* \mid M_i \text{ akzeptiert } w_i \text{ nicht } \}$$

$$H = \{\langle M \rangle w \mid M \text{ hält auf } w \} \subseteq \{0, 1\}^*$$

$$D = \{ w_i \in \{0, 1\}^* \mid M_i \text{ akzeptiert } w_i \text{ nicht } \}$$
$$H = \{ \langle M \rangle w \mid M \text{ hält auf } w \} \subseteq \{0, 1\}^*$$

 M_D akzeptiert $w = w_i$ genau dann, wenn M_i die Eingabe w_i nicht akzeptiert.

3 Berechenbarkeitstheorie

3 Berechenbarkeitstheorie

- 3.1 Entwurf einer universellen Turingmaschine
- 3.2 Die Unentscheidbarkeit des Halteproblems
- 3.3 Turing- und Many-One-Reduktionen

Definition (Turing-Reduktion)

Eine Turing-Reduktion einer Sprache *A* auf eine Sprache *B* ist eine Turingmaschine, die die Sprache *A* mithilfe eines (hypothetischen) Unterprogramms für die Sprache *B* löst. Turing-Reduktionen werden auch als Unterprogrammtechnik bezeichnet.

Definition (Turing-Reduktion)

Eine Turing-Reduktion einer Sprache A auf eine Sprache B ist eine Turingmaschine, die die Sprache A mithilfe eines (hypothetischen) Unterprogramms für die Sprache B löst. Turing-Reduktionen werden auch als Unterprogrammtechnik bezeichnet.

Definition 3.8 (Many-One-Reduktion)

Eine Many-One-Reduktion einer Sprache $A\subseteq \Sigma_1^*$ auf eine Sprache $B\subseteq \Sigma_2^*$ ist eine berechenbare Funktion $f\colon \Sigma_1^*\to \Sigma_2^*$ mit der Eigenschaft, dass

$$x \in A \iff f(x) \in B$$

für alle $x \in \Sigma_1^*$ gilt. Existiert eine solche Reduktion, so heißt A auf B reduzierbar und wir schreiben $A \leq B$.

Theorem 3.9

Es seien $A\subseteq \Sigma_1^*$ und $B\subseteq \Sigma_2^*$ zwei Sprachen, für die $A\le B$ gilt. Ist B entscheidbar, so ist auch A entscheidbar. Ist A nicht entscheidbar, so ist auch B nicht entscheidbar.

Theorem 3.9

Es seien $A\subseteq \Sigma_1^*$ und $B\subseteq \Sigma_2^*$ zwei Sprachen, für die $A\le B$ gilt. Ist B entscheidbar, so ist auch A entscheidbar. Ist A nicht entscheidbar, so ist auch B nicht entscheidbar.

Theorem 3.9

Es seien $A \subseteq \Sigma_1^*$ und $B \subseteq \Sigma_2^*$ zwei Sprachen, für die $A \le B$ gilt. Ist B entscheidbar, so ist auch A entscheidbar. Ist A nicht entscheidbar, so ist auch B nicht entscheidbar.

Beweis: Sei $A \leq B$ und sei B entscheidbar. Dann gibt es TM M_B , die B entscheidet, und TM M_f , die die Reduktion f berechnet.

Theorem 3.9

Es seien $A \subseteq \Sigma_1^*$ und $B \subseteq \Sigma_2^*$ zwei Sprachen, für die $A \le B$ gilt. Ist B entscheidbar, so ist auch A entscheidbar. Ist A nicht entscheidbar, so ist auch B nicht entscheidbar.

Beweis: Sei $A \leq B$ und sei B entscheidbar. Dann gibt es TM M_B , die B entscheidet, und TM M_f , die die Reduktion f berechnet.

Konstruiere TM M_A für A wie folgt:

- (1) Berechne bei Eingabe x mit M_f die Zeichenkette f(x).
- (2) Entscheide mit M_B , ob $f(x) \in B$ gilt.

Definition 3.10

Das spezielle Halteproblem H_{ε} sei definiert durch

$$H_{\varepsilon} = \{ \langle M \rangle \mid M \text{ hält auf } \varepsilon \} \subseteq \{0, 1\}^*.$$

Definition 3.10

Das spezielle Halteproblem H_{ε} sei definiert durch

$$H_{\varepsilon} = \{\langle \mathit{M} \rangle \mid \mathit{M} \text{ h\"alt auf } \varepsilon\} \subseteq \{0,1\}^*.$$

Das vollständige Halteproblem Hall sei definiert durch

$$H_{\text{all}} = \{ \langle M \rangle \mid M \text{ hält auf jeder Eingabe aus } \{0,1\}^* \} \subseteq \{0,1\}^*.$$

Definition 3.10

Das spezielle Halteproblem H_c sei definiert durch

$$H_{\varepsilon} = \{\langle \mathit{M} \rangle \mid \mathit{M} \text{ h\"alt auf } \varepsilon\} \subseteq \{0,1\}^*.$$

Das vollständige Halteproblem Hall sei definiert durch

$$H_{\text{all}} = \{ \langle \textit{M} \rangle \mid \textit{M} \text{ hält auf jeder Eingabe aus } \{0,1\}^* \} \subseteq \{0,1\}^*.$$

Die universelle Sprache U sei definiert durch

$$U = \{ \langle M \rangle w \mid M \text{ akzeptiert } w \} \subseteq \{0, 1\}^*.$$

Theorem 3.11

Die universelle Sprache $U = \{\langle M \rangle w \mid M \text{ akzeptiert } w \} \subseteq \{0,1\}^* \text{ ist nicht entscheidbar.}$

Theorem 3.11

Die universelle Sprache $U = \{\langle M \rangle w \mid M \text{ akzeptiert } w \} \subseteq \{0,1\}^* \text{ ist nicht entscheidbar.}$

Beweis: Wir zeigen $H \leq U$. Dazu konstruieren wir eine Funktion $f: \{0,1\}^* \to \{0,1\}^*$, die Eingaben für das Halteproblem H auf Eingaben für die universelle Sprache U abbildet.

Theorem 3.11

Die universelle Sprache $U = \{\langle M \rangle w \mid M \text{ akzeptiert } w \} \subseteq \{0,1\}^* \text{ ist nicht entscheidbar.}$

Beweis: Wir zeigen $H \le U$. Dazu konstruieren wir eine Funktion $f: \{0,1\}^* \to \{0,1\}^*$, die Eingaben für das Halteproblem H auf Eingaben für die universelle Sprache U abbildet.

$$f(x) = \begin{cases} x & \text{falls } x \text{ nicht mit G\"odelnummer beginnt} \\ \langle M_M^* \rangle_W & \text{falls } x = \langle M \rangle_W \text{ f\"ur eine TM } M \end{cases}$$

Theorem 3.11

Die universelle Sprache $U = \{\langle M \rangle w \mid M \text{ akzeptiert } w \} \subseteq \{0,1\}^* \text{ ist nicht entscheidbar.}$

Beweis: Wir zeigen $H \leq U$. Dazu konstruieren wir eine Funktion $f: \{0,1\}^* \to \{0,1\}^*$, die Eingaben für das Halteproblem H auf Eingaben für die universelle Sprache U abbildet.

$$f(x) = \begin{cases} x & \text{falls } x \text{ nicht mit G\"odelnummer beginnt} \\ \langle M_M^{\star} \rangle w & \text{falls } x = \langle M \rangle w \text{ f\"ur eine TM } M \end{cases}$$

Die TM M_M^{\star} simuliert das Verhalten von M auf der gegebenen Eingabe Schritt für Schritt, solange bis M terminiert. Anschließend akzeptiert M_M^{\star} die Eingabe unabhängig von der Ausgabe von M.

Theorem 3.11

Die universelle Sprache $U = \{\langle M \rangle w \mid M \text{ akzeptiert } w \} \subseteq \{0, 1\}^* \text{ ist nicht entscheidbar.}$

Beweis: Wir zeigen $H \le U$. Dazu konstruieren wir eine Funktion $f: \{0,1\}^* \to \{0,1\}^*$, die Eingaben für das Halteproblem H auf Eingaben für die universelle Sprache U abbildet.

$$f(x) = \begin{cases} x & \text{falls } x \text{ nicht mit G\"odelnummer beginnt} \\ \langle M_M^{\star} \rangle w & \text{falls } x = \langle M \rangle w \text{ f\"ur eine TM } M \end{cases}$$

Die TM M_M^{\star} simuliert das Verhalten von M auf der gegebenen Eingabe Schritt für Schritt, solange bis M terminiert. Anschließend akzeptiert M_M^{\star} die Eingabe unabhängig von der Ausgabe von M.

Die Funktion f ist berechenbar, da $\langle M_M^{\star} \rangle$ für gegebenes $\langle M \rangle$ konstruiert werden kann.

Zu zeigen: $x \in H \iff f(x) \in U$.

Zu zeigen: $x \in H \iff f(x) \in U$.

"⇒"∶

• $x \in H \Rightarrow x = \langle M \rangle w$ für eine TM M und ein $w \in \{0, 1\}^*$, sodass M auf w hält.

Zu zeigen: $x \in H \iff f(x) \in U$.

"⇒"∶

- $x \in H \Rightarrow x = \langle M \rangle w$ für eine TM M und ein $w \in \{0, 1\}^*$, sodass M auf w hält.
- M_M^{\star} simuliert das Verhalten von M. $\Rightarrow M_M^{\star}$ hält auf w. $\Rightarrow M_M^{\star}$ akzeptiert w.

Zu zeigen: $x \in H \iff f(x) \in U$.

```
"⇒"∶
```

- $x \in H \Rightarrow x = \langle M \rangle w$ für eine TM M und ein $w \in \{0, 1\}^*$, sodass M auf w hält.
- M_M^{\star} simuliert das Verhalten von M. $\Rightarrow M_M^{\star}$ hält auf w. $\Rightarrow M_M^{\star}$ akzeptiert w.
- Dies bedeutet, dass $f(x) = \langle M_M^* \rangle w \in U$ gilt.

Zu zeigen: $x \in H \iff f(x) \in U$.

```
"⇒"∶
```

- $x \in H \Rightarrow x = \langle M \rangle w$ für eine TM M und ein $w \in \{0, 1\}^*$, sodass M auf w hält.
- M_M^{\star} simuliert das Verhalten von M. $\Rightarrow M_M^{\star}$ hält auf w. $\Rightarrow M_M^{\star}$ akzeptiert w.
- Dies bedeutet, dass $f(x) = \langle M_M^* \rangle w \in U$ gilt.

• $x \notin H \Rightarrow$ entweder x beginnt nicht mit Gödelnummer oder $x = \langle M \rangle w$ für eine TM M und ein $w \in \{0, 1\}^*$, sodass M auf w nicht hält.

Zu zeigen: $x \in H \iff f(x) \in U$.

```
"⇒"∶
```

- $x \in H \Rightarrow x = \langle M \rangle w$ für eine TM M und ein $w \in \{0, 1\}^*$, sodass M auf w hält.
- M_M^{\star} simuliert das Verhalten von M. $\Rightarrow M_M^{\star}$ hält auf w. $\Rightarrow M_M^{\star}$ akzeptiert w.
- Dies bedeutet, dass $f(x) = \langle M_M^* \rangle w \in U$ gilt.

```
"⇐"∶
```

- $x \notin H \Rightarrow$ entweder x beginnt nicht mit Gödelnummer oder $x = \langle M \rangle w$ für eine TM M und ein $w \in \{0, 1\}^*$, sodass M auf w nicht hält.
- Beginnt x nicht mit Gödelnummer, so gilt $f(x) = x \notin U$.

Zu zeigen: $x \in H \iff f(x) \in U$.

"⇒"∶

- $x \in H \Rightarrow x = \langle M \rangle w$ für eine TM M und ein $w \in \{0, 1\}^*$, sodass M auf w hält.
- M_M^{\star} simuliert das Verhalten von M. $\Rightarrow M_M^{\star}$ hält auf w. $\Rightarrow M_M^{\star}$ akzeptiert w.
- Dies bedeutet, dass $f(x) = \langle M_M^* \rangle w \in U$ gilt.

"⇐"∶

- $x \notin H \Rightarrow$ entweder x beginnt nicht mit Gödelnummer oder $x = \langle M \rangle w$ für eine TM M und ein $w \in \{0, 1\}^*$, sodass M auf w nicht hält.
- Beginnt x nicht mit Gödelnummer, so gilt $f(x) = x \notin U$.
- Sonst: M_M^{\star} simuliert das Verhalten von M. $\Rightarrow M_M^{\star}$ hält nicht auf w. $\Rightarrow M_M^{\star}$ akzeptiert w nicht. Dies bedeutet, dass $f(x) = \langle M_M^{\star} \rangle w \notin U$ gilt.

Theorem 3.11

Das spezielle Halteproblem $H_{\varepsilon}=\{\langle \mathit{M}\rangle\mid \mathit{M} \text{ h\"{a}lt auf }\varepsilon\}\subseteq\{0,1\}^*$ ist nicht entscheidbar.

Theorem 3.11

Das spezielle Halteproblem $H_{\varepsilon} = \{\langle M \rangle \mid M \text{ hält auf } \varepsilon\} \subseteq \{0,1\}^*$ ist nicht entscheidbar.

Beweis: Wir zeigen $H \le H_{\varepsilon}$. Dazu konstruieren wir eine Funktion $f: \{0,1\}^* \to \{0,1\}^*$, die Eingaben für das Halteproblem H auf Eingaben für das spezielle Halteproblem H_{ε} abbildet.

Theorem 3.11

Das spezielle Halteproblem $H_{\varepsilon} = \{\langle M \rangle \mid M \text{ hält auf } \varepsilon\} \subseteq \{0,1\}^*$ ist nicht entscheidbar.

Beweis: Wir zeigen $H \leq H_{\varepsilon}$. Dazu konstruieren wir eine Funktion $f: \{0,1\}^* \to \{0,1\}^*$, die Eingaben für das Halteproblem H auf Eingaben für das spezielle Halteproblem H_{ε} abbildet.

$$f(x) = \begin{cases} x & \text{falls } x \text{ nicht mit G\"{o}delnummer beginnt} \\ \langle M_{M,w}^{\star} \rangle & \text{falls } x = \langle M \rangle w \text{ f\"{u}r eine TM } M \end{cases}$$

Theorem 3.11

Das spezielle Halteproblem $H_{\varepsilon} = \{ \langle M \rangle \mid M \text{ hält auf } \varepsilon \} \subseteq \{0,1\}^*$ ist nicht entscheidbar.

Beweis: Wir zeigen $H \leq H_{\varepsilon}$. Dazu konstruieren wir eine Funktion $f: \{0,1\}^* \to \{0,1\}^*$, die Eingaben für das Halteproblem H auf Eingaben für das spezielle Halteproblem H_{ε} abbildet.

$$f(x) = \begin{cases} x & \text{falls } x \text{ nicht mit G\"{o}delnummer beginnt} \\ \langle M_{M,w}^{\star} \rangle & \text{falls } x = \langle M \rangle w \text{ f\"{u}r eine TM } M \end{cases}$$

Die TM $M_{M,w}^{\star}$ löscht die Eingabe und simuliert das Verhalten von M auf w Schritt für Schritt.

Theorem 3.11

Das spezielle Halteproblem $H_{\varepsilon} = \{\langle M \rangle \mid M \text{ hält auf } \varepsilon\} \subseteq \{0,1\}^*$ ist nicht entscheidbar.

Beweis: Wir zeigen $H \leq H_{\varepsilon}$. Dazu konstruieren wir eine Funktion $f: \{0,1\}^* \to \{0,1\}^*$, die Eingaben für das Halteproblem H auf Eingaben für das spezielle Halteproblem H_{ε} abbildet.

$$f(x) = \begin{cases} x & \text{falls } x \text{ nicht mit G\"{o}delnummer beginnt} \\ \langle M_{M,w}^{\star} \rangle & \text{falls } x = \langle M \rangle w \text{ f\"{u}r eine TM } M \end{cases}$$

Die TM $M_{M,w}^{\star}$ löscht die Eingabe und simuliert das Verhalten von M auf w Schritt für Schritt.

Die Funktion f ist berechenbar, da $\langle M_{M,w}^{\star} \rangle$ für gegebenes $\langle M \rangle$ konstruiert werden kann.

Zu zeigen: $x \in H \iff f(x) \in H_{\varepsilon}$.

Zu zeigen: $x \in H \iff f(x) \in H_{\varepsilon}$.

"⇒"∶

• $x \in H \Rightarrow x = \langle M \rangle w$ für eine TM M und ein $w \in \{0, 1\}^*$, sodass M auf w hält.

Zu zeigen: $x \in H \iff f(x) \in H_{\varepsilon}$.

```
"⇒"∶
```

- $x \in H \Rightarrow x = \langle M \rangle w$ für eine TM M und ein $w \in \{0, 1\}^*$, sodass M auf w hält.
- $M_{M,w}^{\star}$ simuliert für jede Eingabe das Verhalten von M auf w. $\Rightarrow M_{M,w}^{\star}$ hält auf ε .
- Dies bedeutet, dass $f(x) = \langle M_{M,w}^{\star} \rangle \in H_{\varepsilon}$ gilt.

Zu zeigen: $x \in H \iff f(x) \in H_{\varepsilon}$.

```
"⇒"∶
```

- $x \in H \Rightarrow x = \langle M \rangle w$ für eine TM M und ein $w \in \{0, 1\}^*$, sodass M auf w hält.
- $M_{M,w}^{\star}$ simuliert für jede Eingabe das Verhalten von M auf $w. \Rightarrow M_{M,w}^{\star}$ hält auf ε .
- Dies bedeutet, dass $f(x) = \langle M_{M,w}^{\star} \rangle \in H_{\varepsilon}$ gilt.

• $x \notin H \Rightarrow$ entweder x beginnt nicht mit Gödelnummer oder $x = \langle M \rangle w$ für eine TM M und ein $w \in \{0, 1\}^*$, sodass M auf w nicht hält.

Zu zeigen: $x \in H \iff f(x) \in H_{\varepsilon}$.

```
"⇒"∶
```

- $x \in H \Rightarrow x = \langle M \rangle w$ für eine TM M und ein $w \in \{0, 1\}^*$, sodass M auf w hält.
- $M_{M,w}^{\star}$ simuliert für jede Eingabe das Verhalten von M auf $w. \Rightarrow M_{M,w}^{\star}$ hält auf ε .
- Dies bedeutet, dass $f(x) = \langle M_{M,w}^{\star} \rangle \in H_{\varepsilon}$ gilt.

```
"⇐":
```

- $x \notin H \Rightarrow$ entweder x beginnt nicht mit Gödelnummer oder $x = \langle M \rangle w$ für eine TM M und ein $w \in \{0, 1\}^*$, sodass M auf w nicht hält.
- Beginnt x nicht mit Gödelnummer, so gilt $f(x) = x \notin H_{\varepsilon}$.

Zu zeigen: $x \in H \iff f(x) \in H_{\varepsilon}$.

"⇒"∶

- $x \in H \Rightarrow x = \langle M \rangle w$ für eine TM M und ein $w \in \{0, 1\}^*$, sodass M auf w hält.
- $M_{M,w}^{\star}$ simuliert für jede Eingabe das Verhalten von M auf $w. \Rightarrow M_{M,w}^{\star}$ hält auf ε .
- Dies bedeutet, dass $f(x) = \langle M_{M,w}^{\star} \rangle \in H_{\varepsilon}$ gilt.

"⇐":

- $x \notin H \Rightarrow$ entweder x beginnt nicht mit Gödelnummer oder $x = \langle M \rangle w$ für eine TM M und ein $w \in \{0, 1\}^*$, sodass M auf w nicht hält.
- Beginnt x nicht mit Gödelnummer, so gilt $f(x) = x \notin H_{\varepsilon}$.
- Sonst: $M_{M,w}^{\star}$ simuliert bei jeder Eingabe das Verhalten von M auf $w. \Rightarrow M_{M,w}^{\star}$ hält nicht auf ε . Dies bedeutet, dass $f(x) = \langle M_{M,w}^{\star} \rangle \notin H_{\varepsilon}$ gilt.