EXERCICES — CHAPITRE 10

Exercice 1 (\star) – On considère une variable aléatoire X prenant les valeurs 0, 1, 2 et 3.

On donne $P(X = 0) = \frac{1}{10}$, $P(X = 1) = \frac{1}{8}$ et $P(X = 2) = \frac{1}{5}$.

- 1. Déterminer P(X = 3).
- 2. Calculer l'espérance de *X*.

Exercice 2 (\star) – On considère une variable aléatoire *X* prenant les valeurs 0, 1, 2, 3 et 4.

On donne $P(X = 0) = \frac{1}{10}$, $P(X = 1) = \frac{1}{4}$ et $P(X = 2) = \frac{1}{2}$.

- 1. Sachant que les événements [X = 3] et [X = 4] sont équiprobables, déterminer P(X = 3).
- 2. Calculer l'espérance de *X*.

Exercice 3 (\star) – On considère un jeu pour lequel la mise de départ est de $0.5 \in$. On lance ensuite deux dés non truqués. Si on obtient deux nombres 1, on reçoit $2 \in$. Si on obtient deux nombres identiques mais différents de 1, on reçoit $1 \in$. Sinon on ne reçoit rien. On note X le gain algébrique.

- 1. Déterminer la loi de *X*.
- 2. Calculer l'espérance E(X).

Exercice 4 (\star) – Soit *X* une variable aléatoire dont la loi est donnée par $X(\Omega) = \{-1,0,2\}$ et

$$P(X = -1) = \frac{1}{6}$$
, $P(X = 0) = \frac{1}{3}$ et $P(X = 2) = \frac{1}{2}$.

Déterminer la fonction de répartition F_X de X et la tracer.

Exercice 5 $(\star\star)$ – Le nombre de pannes journalières d'une machine est une variable aléatoire X dont la loi de probabilité est donnée par

х	0	1	2	3	4	5	6
P(X = x)	0.30	0.20	0.15	0.15	0.10	0.05	0.05

- 1. Quelle est la fonction de répartition de *X*? En donner une représentation graphique.
- 2. Quelle est la probabilité que la machine ait strictement plus de trois pannes?
- 3. Trouver x_0 tel que $P(X \le x_0) = 0.8$ et x_1 tel que $P(X \ge x_1) = 0.5$.
- 4. Calculer l'espérance E(X).

Exercice 6 (\star) – On considère une variable aléatoire X dont la loi est donnée par

$$P(X = -2) = \frac{1}{4}$$
, $P(X = -1) = \frac{1}{8}$, $P(X = 1) = \frac{1}{2}$ et $P(X = 2) = \frac{1}{8}$.

Calculer l'espérance et la variance de X.

Exercice 7 (\star) – On considère une variable aléatoire X dont la loi est donnée par

$$P(X = -1) = \frac{1}{4}$$
, $P(X = 0) = \frac{1}{2}$ et $P(X = 1) = \frac{1}{4}$.

Calculer l'espérance et la variance de X.

Exercice 8 ($\star\star\star$) – Une urne contient quatre boules rouges et cinq boules noires. Les boules sont indiscernables au toucher. On prend au hasard et simultanément trois boules de l'urne. On appelle X la variable aléatoire égale au nombre de boules rouges obtenues lors du tirage.

- 1. Déterminer le support de *X*.
- 2. Donner la loi de probabilité de *X*.
- 3. Calculer l'espérance et l'écart-type de *X*.

Exercice 9 $(\star\star\star)$ – On dispose de deux urnes \mathcal{U} et \mathcal{V} . L'urne \mathcal{U} contient deux boules rouges et trois boules noires et l'urne \mathcal{V} contient une boule rouge et quatre boules noires.

- 1. On choisit une urne **au hasard** et on en extrait successivement trois boules, avec remise à chaque fois de la boule tirée. On note
 - U l'événement : "le tirage s'effectue dans l'urne \mathcal{U} ",
 - V l'événement : "le tirage s'effectue dans l'urne \mathcal{V} ".

On note X la variable aléatoire égale au nombre de boules noires tirées.

- a) Déterminer $P_{II}(X=0)$ et $P_V(X=0)$.
- b) En déduire la probabilité P(X = 0).
- 2. On choisit encore une urne au hasard et on en extrait successivement trois boules, cette fois **sans remise** de la boule tirée.

On note Y la variable aléatoire égale au nombre de boules noires tirées.

- a) Déterminer $P_{II}(Y=3)$ et $P_V(Y=3)$.
- b) En déduire la probabilité P(Y = 3).

Exercice 10 (\star) – Dans chacun des cas ci-dessous, donner la loi de la variable aléatoire X.

- 1. On tire une boule au hasard dans une urne qui contient deux boules rouges et trois boules noires. On note *X* la variable aléatoire qui vaut 1 si l'on obtient une boule rouge et 0 si l'on obtient une boule noire.
- 2. On procède à dix lancers d'un dé dont les six faces sont numérotées de 1 à 6. On note *X* la variable aléatoire égale au nombre de fois où l'on obtient un numéro pair.

Exercice 11 ($\star\star$) – On considère une pièce dont la probabilité d'obtenir PILE est égale à 0.3. On lance la pièce dix fois. Quelle est la probabilité d'obtenir trois PILE? *Indication numérique*: $0.3^3 \approx 0.03$ *et* $0.7^7 \approx 0.08$.

Exercice 12 $(\star\star)$ – Un cavalier effectue une série de balades à cheval.

À chaque balade qu'il effectue, la probabilité que le cavalier soit désarçonné est égale à $\frac{1}{4}$.

- 1. Quelle est la probabilité qu'il ait fait deux chutes au terme de dix balades? *Indication numérique*: $0.25^2 \approx 0.06$ et $0.75^8 \approx 0.10$.
- 2. Sachant que trois chutes entraînent obligatoirement une blessure grave, quelle est la probabilité qu'il ne soit pas blessé après ces dix balades? *Indication numérique*: $0.75^9 \approx 0.08$ *et* $0.75^{10} \approx 0.06$.

Exercice 13 $(\star \star \star)$ – [BSB 2014 / Ex3]

Un immeuble est constitué de 3 étages. Dans le hall de l'immeuble on peut accéder à un ascenseur qui distribue chaque étage. 5 personnes montent ensemble dans l'ascenseur. On suppose que chacune d'elles souhaite monter à l'un des trois étages de manière équiprobable et indépendamment des 4 autres. On suppose également que l'ascenseur dessert les étages demandés dans l'ordre et qu'il ne revient pas en arrière.

On note X_1 la variable aléatoire égale au nombre de personnes s'arrêtant à l'étage numéro 1, X_2 la variable aléatoire égale au nombre de personnes s'arrêtant à l'étage numéro 2 et X_3 celle égale au nombre de personnes s'arrêtant à l'étage numéro 3.

- 1. a) Reconnaître la loi de X_1 . Décrire l'ensemble $X_1(\Omega)$ des valeurs prises par X_1 . Donner $P(X_1 = k)$ pour chaque k appartenant à $X_1(\Omega)$.
 - b) Donner $E(X_1)$ et $V(X_1)$.
 - c) Expliquer pourquoi X_2 et X_3 suivent la même loi que X_1 .
- 2. a) Justifier que $X_1 + X_2 + X_3 = 5$.
 - b) En déduire la probabilité $P((X_1 = 0) \cap (X_2 = 0))$.
 - c) Montrer que la probabilité que l'ascenseur ne s'arrête qu'une fois est $\frac{1}{81}$
- 3. On considère la variable aléatoire Z égale au nombre d'arrêts de l'ascenseur. D'après **2.c**), on a $P(Z=1)=\frac{1}{81}$. Déterminer l'ensemble $Z(\Omega)$ des valeurs prises par Z.

- 4. Soit Y_1 la variable aléatoire de Bernoulli égale à 1 si l'ascenseur s'arrête au premier étage et à 0 sinon. On définit de même les variables aléatoires Y_2 et Y_3 pour les étages 2 et 3.
 - a) Justifier que $P(Y_1 = 0) = P(X_1 = 0)$.
 - b) En déduire $P(Y_1 = 0)$ puis $E(Y_1)$. On admet que Y_2 et Y_3 suivent la même loi que Y_1 et qu'elles ont donc la même espérance.
 - c) Exprimer *Z* en fonction de Y_1 , Y_2 et Y_3 . Calculer E(Z) et vérifier que $E(Z) = \frac{211}{81}$.

Exercice 14 $(\star \star \star)$ – [Extrait d'ECRICOME 2013 / Ex3]

Une entreprise fabrique des appareils électriques en grande quantité.

Partie I - Probabilités conditionnelles

On admet que 5% des appareils présentent un défaut.

On contrôle les appareils d'un lot. Ce contrôle refuse 90% des appareils avec défaut et accepte 80% des appareils sans défaut. On prélève au hasard dans le lot. On considère les événements suivants :

- D: "l'appareil a un défaut",
- A: "l'appareil est accepté à l'issue du contrôle".
- 1. Donner la valeur des probabilités et probabilités conditionnelles suivantes :

$$P(D), \qquad P(\overline{D}), \qquad P_D(\overline{A}), \qquad P_D(A) \quad \text{et} \quad P_{\overline{D}}(A).$$

- 2. Calculer à 0.001 près les probabilités suivantes : $P(A \cap D)$ et $P(A \cap \overline{D})$.
- 3. Déduire de ce qui précède la probabilité P(A) à 0.001 près.
- 4. Calculer à 0.001 près la probabilité qu'un appareil soit défectueux sachant qu'il a été accepté par le contrôle.

Partie II - Loi binomiale

On prélève au hasard 10 appareils électriques d'une livraison pour vérification. La livraison étant suffisamment importante pour que l'on puisse assimiler ce prélèvement à un tirage avec remise des appareils. On rappelle que 5% des appareils présentent un défaut. On considère la variable aléatoire X qui, à tout prélèvement de 10 appareils, associe le nombre d'appareils *sans défaut* de ce prélèvement.

- 1. Justifier que X suit une loi binomiale dont on déterminera les paramètres. Préciser $X(\Omega)$ et pour tout $k \in X(\Omega)$, donner la valeur de P(X = k).
- 2. Donner la probabilité que dans un tel prélèvement, tous les appareils soient sans défaut.
- 3. Donner la probabilité que dans un tel prélèvement, au moins un appareil ait un défaut.