MP du lycée Berthollet, 2015/2016

http://mpberthollet.wordpress.com

Résumé 17: polynomes d'endomorphismes

Dans tout ce cours E sera un \mathbb{K} - espace vectoriel de dimension $n \in \mathbb{N}^*$.

I LE POLYNÔME CARACTÉRISTIQUE

 \boldsymbol{u} est ici un endomorphisme de E. J'ai pensé que ces rappels ne seraient pas inutiles.

Définition I.1 (Polynôme caractéristique d'un endomorphisme)

Le polynôme caractéristique de u est défini par :

$$\chi_u(X) = \det(XId_E - u) = (-1)^n \det(u - XId_E).$$

Les racines de χ_u sont les valeurs propres de u. Pour toute valeur propre λ de u, on note $\operatorname{Mult}(\lambda)$ la multiplicité de λ en tant que racine de χ_u .

Proposition I.2 (Propriétés du polynôme caractéristique)

- 1. χ_u est un polynôme unitaire de degré n.
- 2. $\chi_u(X) = X^n + (-1)^{n-1} \operatorname{Trace}(u) X^{n-1} + \ldots + (-1)^n \det u$
- 3. Pour toute valeur propre λ de u, on a $1 \leq \dim(E_{\lambda}) \leq Mult_{\gamma}(\lambda)$.

- 1. Si dim E = 2, alors $\chi_u(X) = X^2 \text{Trace } (u)X + \det u$.
- 2. Si u est un projecteur de rang r, alors $\chi_u(X) = (X-1)^r X^{n-r}$.
- 3. Il faudrait savoir calculer le polynôme caractéristique d'un matrice compagnon.

Théorème I.3 (Critère assurant qu'un endomorphisme est diagonalisable)

u est diagonalisable si et seulement si les deux propriétés suivantes sont vérifiées :

- 1. le polynôme caractéristique de u est scindé
- 2. $\forall \lambda \in Sp(u), Mult_{\gamma}(\lambda) = \dim E_{\lambda}(u).$

Proposition I.4 (Cas particuliers)

- 1. Si λ est une racine simple du polynôme caractéristique alors $\dim E_{\lambda} = \operatorname{Mult}(\lambda) = 1$. Les racines simples ne nécessitent aucune vérification lorsque l'on souhaite s'assurer qu'un endomorphisme est diagonalisable.
- 2. **Si** le polynôme caractéristique est scindé et à racines simples **alors** u est diagonalisable et les espaces propres sont des droites.

II POLYNÔMES D'ENDOMORPHISMES ET DE MATRICES

§ 1. Autour de la sous-algèbre $\mathbb{K}[u]$.— ou $\mathbb{K}[M]$ si M est une matrice carrée;

Définition II.1

Soit
$$P(X) = a_0 + a_1 X + \ldots + a_m X^m \in \mathbb{K}[X]$$
, et $u \in \mathcal{L}(E)$.

- 1. Soit $k \in \mathbb{N}^*$. On note $u^k = \underbrace{uo \dots ou}_{C}$ et $u^0 = Id_E$.
- 2. On définit $P(u) = a_0 Id_E + a_1 u + \ldots + a_m u^m = \sum_{k=0}^m a_k u^k$.

P(u) est un endomorphisme de E, comme u.

3. Soit $A \in \mathcal{M}_n(\mathbb{K})$. On définit la matrice

$$P(A) = a_0 I + a_1 A + \ldots + a_n A^n \in \mathscr{M}_n(\mathbb{K}).$$

ATTENTION : Soit x un vecteur de E. P(u)(x) est un vecteur, mais

$$P(u(x))$$
 N'A PAS DE SENS.

De même, si X est un vecteur colonne de taille n, P(A)X est un vecteur colonne de taille n mais P(AX) n'a pas de sens.

MP du lycée Berthollet, 2015/2016 http://mpberthollet.wordpress.com

Propriétés II.2

L'application
$$\Phi_u \mid \mathbb{K}[X] \longrightarrow \mathscr{L}(E)$$
 est un morphisme d'algèbres. $P(X) \longmapsto P(u)$

En particulier, cela signifie que $\underbrace{(PQ)}_{\text{loi} \times}(u) = \underbrace{P(u) \circ Q(u)}_{\text{loi} \circ}.$

Proposition II.3

Soient $u \in \mathcal{L}(E)$, A et $B \in \mathcal{M}_n(\mathbb{K})$, P et $Q \in \mathbb{K}[X]$.

- 1. Les polynômes en u commutent : $P(u)oQ(u) = (P \times Q)(u) = Q(u)oP(u)$.
- 2. Les polynômes en A commutent : $P(A) \times Q(A) = (P \times Q)(A) = Q(A) \times P(A)$.
- 3. Soit *H* une matrice carrée inversible.
 - (a) Si $k \in \mathbb{N}$, alors $H^{-1}A^kH = (H^{-1}AH)^k$.
 - (b) $H^{-1}P(A)H = P(H^{-1}AH)$.
 - (c) Si A et B sont semblables alors P(A) et P(B) aussi.
 - (d) Si A est diagonalisable alors P(A) est diagonalisable.
 - (e) $P({}^{t}A) = {}^{t}(P(A))$ et $\overline{P(A)} = \overline{P(A)}$.

Proposition II.4 (Lien entre le spectre de u et le spectre de P(u))

Soient $u \in \mathcal{L}(E)$ et $P \in \mathbb{K}[X]$.

- 1. Soient $\lambda \in \mathbb{K}$ et $x \in E$. Si $u(x) = \lambda x$ alors $P(u)(x) = P(\lambda) x$.
- 2. Si $\lambda \in Sp(u)$ alors $P(\lambda) \in Sp(P(u))$.

§ 2. Le polynôme minimal μ_u . — En utilisant le fait que tous les anneaux de $\mathbb{K}[X]$ sont principaux, nous montrons :

Définition II.5

Soit $u \in \mathcal{L}(E)$, où E est de dimension finie. Il existe un unique polynôme μ_u unitaire de $\mathbb{K}[X]$ tel que $\ker \Phi_u = \pi_u \mathbb{K}[X]$. Ce polynôme est appelé **polynôme** minimal de u.

En clair, cela signifie:

Propriétés II.6 (de μ_u)

Soit $u \in \mathcal{L}(E)$ non nul.

- 1. Le polynôme minimal de u est **LE** polynôme unitaire de degré minimal parmi tous les polynômes annulateurs de u.
- 2. Pour tout $P \in \mathbb{K}[X]$, P annule $u \iff \mu_u$ divise P.
- 3. μ_u est degré $\geqslant 1$, et ce degré est 1 si et seulement si u est une homothétie.

- 1. Si u est une projection autre que $\mathscr{O}_{\mathscr{L}(E)}$ et Id_E , alors $\mu_u(X) = X^2 X$.
- 2. Si $d \in \mathcal{L}(E)$ est nilpotent d'indice k, alors $\mu_d(X) = X^k$.

Jetons un oeil à l'image de Φ_u :

Propriétés II.7 (de Im Φ_u)

 $\mathbb{K}[u] = \{P(u) \text{ où } P \in \mathbb{K}[X]\} = \text{Vect } (u^k, k \in \mathbb{N}).$ Notons $d \in \mathbb{N}^*$ le degré de μ_u . $\mathbb{K}[u]$ est une algèbre de dimension d, dont $(\text{Id}_E, u, \ldots, u^{d-1})$ est une base.

Enfin, notons l'existence d'un polynôme annulateur remarquable.

Théorème II.8 (Cayley-Hamilton)

Soit u un endomorphisme de E. Le polynôme caractéristique de u est un polynôme annulateur de u. Ainsi,

- $\blacktriangleright \mu_u$ divise χ_u .
- ▶ $\deg \mu_u \leqslant n$.

MP du lycée Berthollet, 2015/2016 http://mpberthollet.wordpress.com

III L'APPORT DE $\mathbb{K}[u]$ AUX QUESTIONS SPECTRALES

Proposition III.1 (Polynôme annulateur et spectre de u)

Soit P un polynôme annulateur de $u: P(u) = \mathcal{O}_{\mathscr{L}(E)}$.

- 1. **Si** λ est une valeur propre de u **alors** $P(\lambda) = 0$.
- 2. Si *P* est un polynôme annulateur de u alors les valeurs propres de u sont à rechercher **parmi** les racines de *P*.
- 3. Les valeurs propres de u sont **exactement** les racines de μ_u .

Lemme 1 (théorème de décomposition des noyaux)

Soient $P_1, \ldots, P_r \in \mathbb{K}[X]$ des polynômes premiers entre eux deux à deux. Alors

$$\ker \left(P_1 P_2 \dots P_r\right)(u) = \bigoplus_{k=1}^r \ker P_k(u).$$

En particulier, si de plus $P(X) = P_1(X)P_2(X) \dots P_r(X)$ annule u, alors

$$\bigoplus_{k=1}^{r} \ker P_k(u) = E.$$

Théorème III.2 (Critère pour qu'un endomorphisme soit diagonalisable)

Soit u un endomorphisme de E. On a l'équivalence entre les prédicats suivants :

- 1. u est diagonalisable,
- 2. Il existe un polynôme P scindé et à racines simples qui annule u.
- 3. μ_u est scindé à racines simples.

Dans ce cas, si $\lambda_1,\dots,\lambda_p\in\mathbb{K}$ sont les valeurs propres deux à deux distinctes de u, on a

$$\mu_u(X) = \prod_{i=1}^p (X - \lambda_i).$$

Corollaire III.3 (Endomorphisme diagonalisable et sous-espace vectoriel stable)

Soit u un endomorphisme de E et F un sous-espace vectoriel **stable** par u. Notons $u_F \mid F \longrightarrow F$ l'endomorphisme induit par u sur F. Alors $x \longmapsto u(x)$

- (i) Le polynome minimal de u_F divise celui de u.
- (ii) Si u est diagonalisable alors u_F aussi.

Corollaire III.4 (Diagonalisation simultanée)

Si u et v sont deux endomorphismes de E qui commutent, alors ils diagonalisent dans une même base, i.e il existe une base (e_1, \ldots, e_n) de E telle que pour tout $i \in [1, n], e_i$ est un vecteur propre de u et de v.

IV ENDOMORPHISME TRIGONALISABLE

Définition IV.1 (Endomorphismes trigonalisable)

Soit *u* un endomorphisme de E.

u est trigonalisable lorsqu'il existe une base $\mathcal B$ de E dans laquelle la matrice de u est triangulaire.

Théorème IV.2 (Critère assurant qu'un endomorphisme est trigonalisable)

On a équivalence entre les trois assertions suivantes :

- 1. u est trigonalisable
- 2. Son polynôme caractéristique est scindé.
- 3. u annule un polynome scindé.
- 4. μ_u est scindé.

MP du lycée Berthollet, 2015/2016 http://mpberthollet.wordpress.com

Corollaire IV.3

Si $u \in \mathcal{L}(E)$ est trigonalisable, il existe une famille C_1, \dots, C_r de sous-espaces vectoriels de E tels que

- (i) $C_1 \oplus \cdots \oplus C_r = E$.
- (ii) Chaque C_i est stable par u.
- (iii) L'endomorphisme induit par u sur C_i est la somme d'un nilpotent et d'une homothétie

Ainsi, u est la somme d'un endomorphisme nilpotent n et d'un endomorphisme diagonalisable d tel que $d \circ n = n \circ d$.

V LES FIGURES IMPOSÉES

EXERCICES:

CPP 94 : Soit E un espace vectoriel réel de dimension finie n>0 et $u\in\mathcal{L}(E)$ tel que $u^3+u^2+u=0$.

On notera Id l'application identité sur E.

- 1. Montrer que $\operatorname{Im} u \oplus \ker u = E$.
- 2. (a) Énoncer le lemme des noyaux pour deux polynomes.
 - (b) En déduire que $\text{Im} u = \ker(u^2 + u + \text{Id})$.
- 3. On suppose que *u* est non bijectif. Déterminer les valeurs propres de *u*. Justifier la réponse.

EXERCICES:

CCP 91 : On considère la matrice $A = \begin{pmatrix} 0 & 2 & -1 \\ -1 & 3 & -1 \\ -1 & 2 & 0 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}).$

- 1. Montrer que A n'admet qu'une seule valeur propre que l'on déterminera.
- 2. La matrice A est-elle inversible? Est-elle diagonalisable?
- 3. Déterminer, en justifiant, le polynôme minimal de A.
- 4. Soit $n\in\mathbb{N}.$ Déterminer le reste de la division euclidienne de X^n par $(X-1)^2$ et en déduire la valeur de $A^n.$

EXERCICES:

CPP 65 : Soit u un endomorphisme d'un espace vectoriel E sur le corps \mathbb{K} (= \mathbb{R} ou \mathbb{C}). On note $\mathbb{K}[X]$ l'ensemble des polynômes à coefficients dans \mathbb{K} .

1. Démontrer que :

$$\forall (P,Q) \in \mathbb{K}[X] \times \mathbb{K}[X], \ (PQ)(u) = P(u) \circ Q(u) \ .$$

- 2. (a) Démontrer que : $\forall (P,Q) \in \mathbb{K}[X] \times \mathbb{K}[X], \ P(u) \circ Q(u) = Q(u) \circ P(u)$.
 - (b) Démontrer que pour tout $(P,Q) \in \mathbb{K}[X] \times \mathbb{K}[X]$:

$$(P \text{ annule } u) \Rightarrow (PQ \text{ annule } u)$$

3. Soit $A = \begin{pmatrix} -1 & -2 \\ 1 & 2 \end{pmatrix}$. Ecrire le polynôme caractéristique de A, puis en déduire que le polynôme $R = X^4 + 2X^3 + X^2 - 4X$ est un polynôme annulateur de A.

EXERCICES:

CCP 70:

Soit
$$A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \in \mathcal{M}_3(\mathbb{C})$$
.

- 1. Déterminer les valeurs propres et les vecteurs propres de $A.\ A$ est-elle diagonalisable?
- 2. Soit $(a,b,c) \in \mathbb{C}^3$ et $B=aI_3+bA+cA^2$, où I_3 désigne la matrice identité d'ordre 3. Déduire de la question 1. les éléments propres de B.