Probeklausur zur Vorlesung "Elementargeometrie"

Aufgabe 1:	(X Punkte)	
Taigase I.	(11 1 4111100)	

Sind die folgenden Aussagen wahr? Antworten Sie jeweils im Kästchen rechts davon mit 'Ja' oder 'Nein' und geben Sie darunter eine kurze Begründung in ein bis zwei Sätzen.

In einer euklidischen Ebene ist jede Spiegelung mit $\tau \neq \mathrm{id}, \tau^2 = \mathrm{id}$ eine Verschiebung.		
In einer Inzidenzgeometrie schneiden sich je zwei Geraden in genau einem Punkt.		
Zwei verschiedene Ebenen im dreidimensionalen projektiven Raum haben genau eine Schnittgerade.		
Die Gruppe der hyperbolischen Bewegungen wird von den Möbiustransformationen in $\mathrm{PGl}_2(\mathbb{C})^+$ und $z\mapsto \overline{z}^{-1}$ erzeugt.		
Von drei verschiedenen kollinearen Punkten in einer Inzidenzgeometrie mit Dreieck und Zwischenrelation liegt immer einer zwischen den anderen beiden.		
Eine Inzidenzgeometrie mit Zwischenrelation, in der das Supremumsaxiom gilt, heißt fast-euklidisch.		
Stehen in einer Inzidenzgeometrie mit Zwischenrelation und Kongruenzen zwei Geraden h und h' in verschiedenen Punkten senkrecht auf einer Geraden g , so gilt $h \perp h'$.		
Ein Parallelogramm Π' ist eine Scherung eines Parallelogramms Π , wenn die beiden eine Seite gemeinsam haben und die in den beiden Parallelogrammen dieser Seite gegenüberliegenden Seiten parallel sind.		

Aufgabe 2: (X Punkte)

- (a) Formulieren Sie das Parallelenaxiom.
- (b) Geben Sie die Definition von $Kongruenz\ von\ Strecken$ in der euklidischen Ebene.

Aufgabe 3: (X Punkte)

Wir betrachten $A=\mathbb{R}^3$, aufgefasst als affiner Raum über sich selbst. Seien $l,l'\subseteq A$ zwei nicht parallele Geraden mit $l\cap l'=\emptyset$. Sei nun $B\subseteq A$ ein affiner Teilraum, der l und l' enthält. Zeigen sie, dass bereits B=A gilt.

(X Punkte) Aufgabe 4:

Wir betrachten die hyperbolische Ebene \mathbb{H}^2 und darin die hyperbolische Geraden g_1 - gegeben durch den Halbkreis mit Mittelpunkt m=2 und Radius 1 -, sowie g_2 - gegeben durch den Halbkreis mit Mittelpunkt $m' = \frac{11}{3}$ und Radius $\frac{4}{3}$. Zeigen Sie, dass die Geraden g_1 und g_2 senkrecht stehen.

Aufgabe 5: (X Punkte)

Sei (X, G, Z, K) eine euklidische Ebene. Sei $k \subset X$ ein Kreis mit Mittelpunkt $m \in X$. Seien $a, b, c \in k$, sodass c auf der gleichen Seite der Geraden durch a und b liegt wie m.

Fertigen Sie eine Skizze an. Zeigen Sie mit den Mitteln der Vorlesung:

Der Innenwinkel des Dreiecks a,b,c bei c ergänzt sich mit sich selbst zum Innenwinkel des Dreiecks a,b,m bei m. (Interpretation: der Winkel bei m ist doppelt so groß wie der Winkel bei c.) Sie können z.B. - unter anderem - die Kongruenz von Stufenwinkeln und Gegenwinkeln verwenden.

Beh.:
$$\delta = \lambda y$$
.

Bew.: $\alpha + \beta + \gamma = 180^{\circ}$.

 $\ell([a_1m]) = \ell([b_1m]) = \ell([c_1m])$.

 $\Rightarrow \beta_1 = \gamma_1, \alpha_2 = \gamma_2, \alpha_1 = \beta_1$

$$\Rightarrow 2\chi = 180^{\circ} - \alpha_1 - \beta_1 = 5$$

Aufgabe 6: (X Punkte)

Sei (X,G,Z,K) eine euklidische Ebene. Sei A,B,C ein rechtwinkliges Dreieck in X mit Hypothenuse [A,B] und $P\in [A,B]$ der Höhenfußpunkt. Es gelte also, dass $[P,C]\bot [A,B]$.

Fertigen Sie eine Skizze an. Zeigen Sie mit den Mitteln der Vorlesung, dass gilt:

$$l([A, P]) \cdot l([A, B]) = l([A, C])^{2}.$$