Differential Equations

1- مرتبه الگوريتم نقطه مياني

Subject: Year: Month: Date:
José (b-a) $f(a+b) = 1$
fl=b-er = forda = lfem) [m=a+b] The second of the second
$f(n) = f(m) + f(m)(N-m) + \frac{f(m)}{2!} (N-m)^{2}$
1 = (m) (n-m)3 +
$f(m) d(n-m)^2 dn + f'(m) f(n-m)^3 dn + i $
The state of the s
$(D = f_{(m)}h), m = \frac{1}{2} = \alpha + \frac{h}{2}$ $(D = f_{(m)}) \left[\frac{(1 - m)^2}{2} \right]^{\alpha + h} = f_{(m)} \left(\frac{(h/2)^2 - (-h_2)^2}{2} \right)^{\alpha + h}$
$D = f'(m) \left[\frac{(n-m)^3}{3} \right]_{\alpha}^{\alpha+h} f''(m) \left(\frac{h}{2} \right)^3 - \left(-\frac{h}{2} \right)^3$

2- تخلیه بار خازن در مدار RC.py :RC

معادله دیفر انسیل مدار RC به صورت زیر است.

$$\frac{dQ}{dt} = -\frac{1}{RC}Q(t) \quad , \quad \tau = RC$$

برای حل این معادله دیفرانسیل به روش اویلر باید معادله بازگشتی زیر را در یک لوپ اجرا کنیم.

$$Q_{n+1} = Q_n - h \cdot \frac{1}{RC} \cdot V_n$$

رفتار نمایی که از حل تحلیلی انتظار می رود، کاملا مشهود است.