Teoria do Risco Aula1

Danilo Machado Pires danilo.pires@unifal-mg.edu.br

Desde as antigas civilizações o ser humano sempre se preocupou com as incertezas do futuro ...

> D homem teve a necessidade de criar formas de proteção contra os perigos para a sua família e para o seu patrimônio.

➤ Os comerciantes mesopotâmicos e fenícios:

> Os hebreus:

- Por volta de 1347, na cidade de Gênova as atividades de seguros começam a se popularizar...
 - início aos primeiros estudos de matemática atuarial e análise de riscos.
- > 1693 :primeira tábua de mortalidade (Sir Edmond Halley).
 - Matemática atuarial ramo vida (cálculo atuarial).
 - > Risco individual.

- Modelo de Crámer -Lundberg.
- > Ramo vida e ramo não vida (Matemática atuarial de seguro de danos).

- A matemática atuarial é o ramo da Matemática intimamente ligada ao segmento de seguros...
 - > Avaliar **riscos**
 - > Avaliar sistemas de investimentos.
 - > Estabelecer politicas de investimentos.
 - > Estabelecer valor de **prêmios**
 - ➤ Seguro ligados a vida (Cálculo atuarial)
 - ➤ Seguro ligado a danos (**Teoria do risco**)

Teoria do risco

> ...reside em estabelecer um modelo de tarifação eficiente frente aos sinistros que chegam ao segurador.

>...tem como objetivo principal estabelecer para o "bem" sob análise um prêmio justo para um dado futuro mensurável,...

Modelos de Risco

- 1) Qual é a melhor estimativa do valor total das indenizações a serem pagas?
- 2) Qual o prêmio que a seguradora deve emitir para cobrir os sinistros com uma da margem de segurança?

Dois paradigmas!!!

Conceitos Estatísticos

A teoria do risco é inerente à teoria estatística, portanto a compreensão de determinados termos e conceitos estatísticos assim como algumas propriedades, se faz necessária ou até mesmo fundamental.

Conceitos Estatísticos

- Conceitos Estatísticos
 - Variável Aleatória e função de distribuição
 - > Variável aleatória Discreta
 - > Importantes modelos discretos
 - > Variável aleatória contínua
 - > Importantes modelos de contínuos
 - Variável aleatória multidimensional
 - Esperança e Variância de variáveis aleatórias.
 - Esperança sujeito a valor limite.
 - Covariância e Correlação entre variáveis aleatórias.
 - > Regressão linear simples, modelo normal bivariado
 - > Desigualdade de Jensen
 - > Momentos ordinários e função Geradora de Momentos

- > TEORIA DA UTILIDADE
 - > Função de utilidade
 - > Seguro e utilidade

> CÁLCULO DE PRÊMIOS

- > Princípios de cálculos de prêmios
- Propriedades desejáveis ao prêmio

> MODELOS DE RISCO

- > Modelo de risco individual anual
 - > ...
- > Medida de Risco
- > Modelo de risco coletivo anual
- Processo Estocástico para frequência de sinistros e sinistralidade.
 - > ...
- Processo de ruína
 - ▶ ...

Variável Aleatória

 \triangleright A variável aleatória pode ser entendida como uma função X(.) que associa a cada evento do espaço de probabilidade um número real.

Exemplo 1

Suponha o lançamento de 4 moedas, com probabilidade de sair coroa igual a q (sucesso) e 1-q (fracasso). Caracterize a variável aleatória número de coroas.

Resp. R = $\{0,1,2,3,4\}$, $R \subset \mathbb{R}$.

R é a imagem de X(.).

Moeda 1	Moeda 2	Moeda 3	Moeda 4	Nº de coroas	Probabilidades	
Cara	Cara	Cara	Cara	0	$q^0(1-q)^4$	$\binom{4}{0}q^0(1-q)^4$
Coroa	Cara	Cara	Cara		$q^1(1-q)^3$	
Cara	Coroa	Cara	Cara	1	$q^1(1-q)^3$	$\binom{4}{1}q^{1}(1-q)^{3}$
Cara	Cara	Coroa	Cara		$q^1(1-q)^3$	
Cara	Cara	Cara	Coroa		$q^1(1-q)^3$	
Coroa	Coroa	Cara	Cara		$q^2(1-q)^2$	
Coroa	Cara	Coroa	Cara		$q^2(1-q)^2$	
Coroa	Cara	Cara	Coroa	2	$q^2(1-q)^2$	$\binom{4}{2}q^2(1-q)^2$
Cara	Coroa	Cara	Coroa		$q^2(1-q)^2$	(2) 4 (1)
Cara	Cara	Coroa	Coroa	100	$q^2(1-q)^2$	
Cara	Coroa	Coroa	Cara		$q^2(1-q)^2$	100000
Cara	Coroa	Coroa	Coroa		$q^3(1-q)^1$	
Coroa	Cara	Coroa	Coroa	3	$q^3(1-q)^1$	$\binom{4}{3}q^3(1-q)^1$
Coroa	Coroa	Cara	Coroa		$q^3(1-q)^1$	(3) 4 (1)
Coroa	Coroa	Coroa	Cara		$q^{3}(1-q)^{1}$ $q^{4}(1-q)^{0}$	
Coroa	Coroa	Coroa	Coroa	4	$q^4(1-q)^0$	$\binom{4}{4}q^4(1-q)^0$

Exemplo 1

Suponha o lançamento de 4 moedas, com probabilidade de sair coroa igual a q (sucesso) e 1-q (fracasso). Caracterize a variável aleatória número de coroas.

X (n° de coroas)	P(X)
0	q^4
1	$4q^1(1-q)^3$
2	$6q^2(1-q)^2$
3	$4q^3(1-q)^1$
4	q^4

Variáveis aleatórias Discretas

Assume somente uma quantidade enumerável de valores (finito ou infinito).

$$> P(X = x)$$

Função de probabilidade (fp)

$$> P(X = x_i) \ge 0$$

para todo i.

Variáveis aleatórias Contínuas

Corresponderem aos dados de medida, pertencentes a \mathbb{R} , assim como para variáveis contínuas em geral...

- > f(x) Função de densidade (f.d.p)
- $rightarrow f(x) \ge 0$ para qualquer valor de x
- $\triangleright P(a \le X \le b) = \int_a^b f(x) dx$

Função de distribuição acumulada

Função de distribuição de probabilidade, simplesmente função de distribuição.

Em geral ela é representada por F(x), ou $\Phi(x)$.

$$F_X(x) = P(X \le x) = \int_{-\infty}^x f_X(z) dz$$

$$F_X(x_k) = P(X \le x_k) = \sum_{i=0}^k P(X = x_i)$$

Função de distribuição acumulada

➤ O conhecimento de tal função permite obter diversas informações sobre a variável.

A composição das funções de probabilidade faz parte da modelagem teórica das realizações das variáveis aleatórias...

Função Sobrevivência

Ao complementar da função acumulada se da o nome de função de sobrevivência, ou seja, a função de probabilidades acumulada acima de determinado valor:

$$\bar{F}_X(x) = P(X > x) = 1 - F_X(x)$$

$$\bar{F}_X(x) = S_X(x)$$

Sempre que duas ou mais variáveis aleatórias são observadas no mesmo experimento ou fenômeno, pode-se definir

A distribuição conjunta, que descreve o comportamento de todas elas simultaneamente.

A distribuição marginal, descreve o comportamento de uma delas isoladamente, desconsiderando as demais.

A distribuição condicional, que descreve o comportamento de uma variável aleatória isoladamente dado que as outras assumem determinado valor.

Probabilidade condicional

ightharpoonup Sejam X_1 e X_2 duas variáveis aleatórias discretas definidas no mesmo espaço de probabilidades. Definimos a probabilidade condicional de X_1 dado X_2 , por:

$$P_{X_1|X_2}(x_1|x_2) = \frac{P_{X_1,X_2}(x_1,x_2)}{P_{X_2}(x_2)},$$

onde $P_{X_1,X_2}(x_1,x_2)$ é a função de probabilidade conjunta de X_1 e X_2 .

Probabilidade condicional

 \succ Caso X_1 e X_2 sejam contínuas:

$$f_{X_1|X_2}(x_1|x_2) = \frac{f_{X_1,X_2}(x_1,x_2)}{f_{X_2}(x_2)}.$$

 \blacktriangleright Em que $f_{X_1,X_2}(x_1,x_2)$ é a função densidade conjunta de X_1 e X_2 e $f_{X_2}(x_2)$ é função densidade marginal de X_2 .

Independência de variáveis aleatórias

A independência é um requisito importante que permite resolver, com rigor matemático e sem aproximações, muitos problemas de interesse prático.

Definição: Independência entre variáveis aleatórias.

Duas variáveis aleatórias, X e Y definidas no mesmo espaço de probabilidade, são independentes se a informação sobre uma delas não altera a probabilidade de ocorrência da outra.

Independência de variáveis aleatórias

Para as discretas, pode-se escrever uma definição equivalente com o uso de funções de probabilidade:

$$X,Y$$
 independentes $\Rightarrow p_{X,Y}(x,y) = p_X(x)p_Y(y), \forall (x,y) \in \mathbb{R}^2$.

Para as continuas, a condição de independência usa as seguintes densidades:

$$X,Y$$
 independentes $\Rightarrow f_{X,Y}(x,y) = f_X(x)f_Y(y), \forall (x,y) \in \mathbb{R}^2$,

Exemplo 2

Determine se as variáveis dadas nos dois modelos conjuntos, são independentes ou não.

a)
$$f_{X,Y}(x,y) = 0.0008e^{(-0.02x-0.04y)}I_{(0,\infty)}(x)I_{(0,\infty)}(y)$$

b)	$X \setminus Y$	0	1	2	P(X = x)
	0	1/8	0	0	1/8
	1	0	3/8	0	3/8
	2	0	0	3/8	3/8 3/8
	3	1/8	0	0	1/8
	P(Y = y)	2/8	3/8	3/8	

Determine se as variáveis dadas nos dois modelos conjuntos, são independentes ou não.

a)
$$f_{X,Y}(x,y) = 0.0008e^{(-0.02x-0.04y)}I_{(0,\infty)}(x)I_{(0,\infty)}(y)$$

$$f_Y(y) = 0.04e^{-0.04y}$$
 $f_X(x) = 0.02e^{-0.02x}$

$$f_{X,Y}(x,y) = f_Y(y)f_X(x)$$

Ь)						
-,	$\overline{X \setminus Y}$	0	1	2	P(X=x)	
	0	1/8	0	0	1/8	
	1	0	3/8	0	3/8	$P_{X,Y}(2,2) \neq P_X(2)P_Y(2)$
	2	0	0	3/8	3/8	$-\lambda_{i} (-) - \lambda_{i} (-) - \lambda_{i} (-) - \lambda_{i} (-)$
	3	1/8	0	0	1/8	
	P(Y = v)	2/8	3/8	3/8		