Question 3

Suppose the problem set of music festivals is as follows: $P = \{(1,5), (4,7), (6,10)\}$. Where A = (1,5), B = (4,7), and C = (6,10).

The lengths of the concerts can be determined by subtracting their start time from their end time. So we get:

The length of A is 5-1=4. The length of B is 7-4=3. The length of C is 10-6=4.

The provided greedy algorithm's greedy choice property states that there exists an optimal solution $S \subset P$ so that the shortest concert is in S. In this case, the greedy choice states that $B \in S$, since B is the shortest concert.

With $B \in S$, it follows that neither A nor C can be in the solution S, since both A and C overlap with B. Thus, in this case, |S| = 1. However, S is not an optimal solution to P, since the set $T = \{A, C\}$ has no overlaps and |T| > |S|, showing that |S| is not maximal.

In general, choosing the shortest concert may conflict with multiple other concerts, rendering the the concerts invalid from further choosing.