

Dynamic Optimal Control

Robotics and Intelligent Systems MAE 345, Princeton University, 2015

Learning Objectives

- Examples of cost functions
- Necessary conditions for optimality
- Calculation of optimal trajectories
- Design of optimal feedback control laws

Copyright 2015 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE345.html

Integrated Effect can be a Scalar "Cost"

Time

$$J = \int_{0}^{\text{final time}} (1)dt$$

Fuel

$$J = \int_{0}^{\text{final range}} (\text{fuel use per kilometer}) dR$$

Financial cost of time and fuel

$$J = \int_{0}^{\text{final time}} (\cos t \ per \ hour) dt$$

$$= \int_{0}^{\text{final time}} \left[\left(\frac{\cos t}{hour} \right) + \left(\frac{\cos t}{liter} \right) \left(\frac{liter}{kilometer} \right) \frac{dR}{dt} \right] dt$$

Cost Accumulates from Start to Finish

3

Optimal System Regulation

Cost functions that penalize state deviations over a time interval:

Quadratic scalar variation

$$J = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} (\Delta x^{2}) dt < \infty$$

Vector variation

$$J = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} (\Delta \mathbf{x}^{T} \Delta \mathbf{x}) dt < \infty$$

Weighted vector variation

$$J = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} (\Delta \mathbf{x}^{T} \mathbf{Q} \Delta \mathbf{x}) dt < \infty$$

- No penalty for control use
- Why not use infinite control?

Cement Kiln

5

Machine length: ~ 2 football fields

- Paper speed ≤ 2,200 m/min = 80 mph
- Maintain 3-D paper quality
- Avoid paper breaks at all cost!

Pulp & Paper Machines

Hazardous Waste Generated by Large Industrial Plants

- Cement dust
- Coal fly ash
- Metal emissions
- Dioxin
- "Electroscrap" and other hazardous waste
- Waste chemicals
- Ground water contamination
- Ancillary mining and logging issues
- "Greenhouse" gasses
- Need to optimize total costbenefit of production processes (including environmental cost)

Tradeoffs Between Performance and Control in Integrated Cost Function

Trade performance against control usage

Minimize a cost function that contains state and
control (*r*: relative importance of the two)

Dynamic Optimization:The Optimal Control Problem

Minimize a scalar function, *J*, of terminal and integral costs

$$\min_{\mathbf{u}(t)} J = \min_{\mathbf{u}(t)} \left\{ \phi \left[\mathbf{x}(t_f) \right] + \int_{t_o}^{t_f} L\left[\mathbf{x}(t), \mathbf{u}(t) \right] dt \right\}$$

with respect to the control, $\mathbf{u}(t)$, in (t_o, t_f) , subject to a dynamic constraint

$$\frac{d\mathbf{x}(t)}{dt} = \mathbf{f}[\mathbf{x}(t), \mathbf{u}(t)], \quad \mathbf{x}(t_o) \ given$$

 $dim(\mathbf{x}) = n \times 1$ $dim(\mathbf{f}) = n \times 1$ $dim(\mathbf{u}) = m \times 1$

Ç

Example of Dynamic Optimization

<u>Any</u> deviation from optimal thrust and angle-of-attack profiles would increase total fuel used

Components of the Cost Function

Integral cost is a function of the state and control from start to finish

$$\int_{t_o}^{t_f} L[\mathbf{x}(t), \mathbf{u}(t)] dt$$
 positive scalar function of two vectors

 $L[\mathbf{x}(t),\mathbf{u}(t)]$: **Lagrangian** of the cost function

Terminal cost is a function of the state at the final time

 $\phi[\mathbf{x}(t_f)]$ positive scalar function of a vector

11

Example: Dynamic Model of Infection and Immune Response

- x₁ = Concentration of a pathogen, which displays antigen
- x₂ = Concentration of plasma cells, which are carriers and producers of antibodies
- x₃ = Concentration of antibodies, which recognize antigen and kill pathogen
- x₄ = Relative characteristic of a damaged organ [0 = healthy, 1 = dead]

Cost Function Considers Infection, Organ Health, and Drug Usage

$$\min_{\mathbf{u}(t)} J = \min_{\mathbf{u}(t)} \left\{ \phi \left[\mathbf{x}(t_f) \right] + \int_{t_o}^{t_f} L \left[\mathbf{x}(t), \mathbf{u}(t) \right] dt \right\}$$

$$= \min_{u} \left[\frac{1}{2} \left(s_{11} x_{1_f}^2 + s_{44} x_{4_f}^2 \right) + \frac{1}{2} \int_{t_o}^{t_f} \left(q_{11} x_1^2 + q_{44} x_4^2 + ru^2 \right) dt \right]$$

- Tradeoffs between final values, integral values over a fixed time interval, state, and control
- Cost function includes weighted square values of
 - Final concentration of the pathogen
 - Final health of the damaged organ (0 is good, 1 is bad)
 - Integral of pathogen concentration
 - Integral health of the damaged organ (0 is good, 1 is bad)
 - Integral of drug usage
- Drug cost may reflect physiological or financial cost

Necessary Conditions for Optimal Control

15

Augment the Cost Function

- Must express sensitivity of the cost to the dynamic response
- Adjoin dynamic constraint to integrand using Lagrange multiplier, λ(t)
 - Same dimension as the dynamic constraint, [n x 1]
 - Constraint = 0 if the dynamic equation is satisfied

Define Hamiltonian, H[.]

$$H(\mathbf{x},\mathbf{u},\boldsymbol{\lambda}) \triangleq L(\mathbf{x},\mathbf{u}) + \boldsymbol{\lambda}^T \mathbf{f}(\mathbf{x},\mathbf{u})$$

Substitute the Hamiltonian in the Cost Function

Substitute the Hamiltonian in the cost function

$$J = \phi \left[\mathbf{x}(t_f) \right] + \int_{t_o}^{t_f} \left\{ \mathbf{H} \left[\mathbf{x}(t), \mathbf{u}(t), \boldsymbol{\lambda}(t) \right] - \boldsymbol{\lambda}^T(t) \frac{d\mathbf{x}(t)}{dt} \right\} dt$$

The optimal cost, **J***, is produced by the optimal histories of state, control, and Lagrange multiplier

$$\min_{\mathbf{u}(t)} J = J^* = \phi \left[\mathbf{x}^*(t_f) \right] + \int_{t_o}^{t_f} \left\{ H \left[\mathbf{x}^*(t), \mathbf{u}^*(t), \boldsymbol{\lambda}^*(t) \right] - \boldsymbol{\lambda}^{*T}(t) \frac{d\mathbf{x}^*(t)}{dt} \right\} dt$$

17

Integration by Parts

Scalar indefinite integral

$$\int u \, dv = uv - \int v \, du$$

Vector definite integral

$$u = \lambda^{T}(t)$$
$$dv = \dot{\mathbf{x}}(t)dt = d\mathbf{x}$$

$$\int_{t_0}^{t_f} \boldsymbol{\lambda}^T(t) \frac{d\mathbf{x}(t)}{dt} dt = \boldsymbol{\lambda}^T(t) \mathbf{x}(t) \Big|_{t_0}^{t_f} - \int_{t_0}^{t_f} \frac{d\boldsymbol{\lambda}^T(t)}{dt} \mathbf{x}(t) dt$$

The Optimal Control Solution

- Along the optimal trajectory, the cost, J*, should be insensitive to small variations in control policy
 - · To first order,

$$\Delta J^* = \left\{ \left[\frac{\partial \phi}{\partial x} - \lambda^T \right] \right\} \Delta \mathbf{x} (\Delta \mathbf{u}) \Big|_{t=t_f} + \left[\lambda^T \Delta \mathbf{x} (\Delta \mathbf{u}) \right]_{t=t_o} + \int_{t_o}^{t_f} \left\{ \frac{\partial H}{\partial \mathbf{u}} \Delta \mathbf{u} + \left[\frac{\partial H}{\partial \mathbf{x}} + \frac{d\lambda^T}{dt} \right] \Delta \mathbf{x} (\Delta \mathbf{u}) \right\} dt = 0$$

Setting $\Delta J^* = 0$ leads to three necessary conditions for optimality

19

Three Conditions for Optimality

Individual terms should remain zero for arbitrary variations in $\Delta x(t)$ and $\Delta u(t)$

Solution for Lagrange Multiplier

1)
$$\left[\frac{\partial \phi}{\partial \mathbf{x}} - \boldsymbol{\lambda}^T\right]_{t=t_f} = \mathbf{0}$$

2)
$$\left[\frac{\partial H}{\partial \mathbf{x}} + \frac{d\mathbf{\lambda}^T}{dt} \right] = \mathbf{0} \quad in\left(t_0, t_f\right)$$

$$\Rightarrow \lambda^*(t) \text{ in } (t_o, t_f)$$

Insensitivity to Control Variation

3)
$$\frac{\partial H}{\partial \mathbf{u}} = \mathbf{0}$$
 $in(t_0, t_f)$ $\Rightarrow \mathbf{u}^*(t)$ $in(t_o, t_f)$

Iterative Numerical Optimization Using Steepest-Descent

- Forward solution to find the state, x(t)
- Backward solution to find the Lagrange multiplier, $\lambda(t)$
- Steepest-descent adjustment of control history, u(t)
- Iterate to find the optimal solution

$$\begin{aligned} \dot{\mathbf{x}}_k(t) &= \mathbf{f}[\mathbf{x}_k(t), \mathbf{u}_{k-1}(t)], \\ \text{with} \\ \mathbf{x}(t_o) \text{ given} \\ \mathbf{u}_{k-1}(t) \text{ prescribed in } \left(t_o, t_f\right) \\ k &= \text{ Iteration index} \end{aligned}$$

Use educated guess for u(t) on first iteration

21

Numerical Optimization Using Steepest-Descent

- Forward solution to find the state, x(t)
- Backward solution to find the Lagrange multiplier, $\lambda(t)$
- Steepest-descent adjustment of control history, u(t)
- Iterate to optimal solution

$$\boldsymbol{\lambda}_{k}(t_{f}) = \left\{ \frac{\partial \boldsymbol{\phi}[\mathbf{x}_{k}(t_{f})]}{\partial \mathbf{x}} \right\}^{T} \qquad \begin{bmatrix} \text{Boundary condition at final time} \\ \text{Calculated from terminal value of the state} \end{bmatrix}$$

$$\frac{d\boldsymbol{\lambda}_{k}(t)}{dt} = -\left[\frac{\partial H\left(\mathbf{x}_{k}, \mathbf{u}_{k}, \boldsymbol{\lambda}_{k}\right)}{\partial \mathbf{x}} \right]_{k}^{T} = -\left[\frac{\partial L\left(\mathbf{x}, \mathbf{u}\right)}{\partial \mathbf{x}} \bigg|_{\substack{\mathbf{x}(t) = \mathbf{x}_{k}(t) \\ \mathbf{u}(t) = \mathbf{u}_{k-1}(t)}} + \boldsymbol{\lambda}_{k}^{T}(t) \frac{\partial \mathbf{f}(\mathbf{x}, \mathbf{u})}{\partial \mathbf{x}} \bigg|_{\substack{\mathbf{x}(t) = \mathbf{x}_{k}(t) \\ \mathbf{u}(t) = \mathbf{u}_{k-1}(t)}} \right]_{k}^{T}$$

Numerical Optimization Using Steepest-Descent

- Forward solution to find the state, x(t)
- Backward solution to find the Lagrange multiplier, $\lambda(t)$
- Steepest-descent adjustment of control history, u(t)
- · Iterate to optimal solution

$$\mathbf{u}_{k}(t) = \mathbf{u}_{k-1}(t) - \varepsilon \left[\frac{\partial H}{\partial \mathbf{u}} \right]_{k}^{T}$$

$$= \mathbf{u}_{k-1}(t) - \varepsilon \left[\frac{\partial L}{\partial \mathbf{u}} \Big|_{\substack{\mathbf{x}(t) = \mathbf{x}_{k}(t) \\ \mathbf{u}(t) = \mathbf{u}_{k-1}(t)}} + \lambda_{k}^{T}(t) \frac{\partial \mathbf{f}}{\partial \mathbf{u}} \Big|_{\substack{\mathbf{x}(t) = \mathbf{x}_{k}(t) \\ \mathbf{u}(t) = \mathbf{u}_{k-1}(t)}} \right]^{T}$$

ε: Steepest-descent gain

23

Optimal Treatment of an Infection

Dynamic Model for the Infection Treatment Problem

25

Optimal Treatment with Four Drugs (separately)

26

Increased Cost of Drug Use

Accounting for Uncertainty in Initial Condition

Account for Uncertainty in Initial Condition and Unknown Disturbances

Nominal, Open-Loop Optimal Control

Neighboring-Optimal (Feedback) Control

29

Neighboring-Optimal Control

Linearize dynamic equation

$$\dot{\mathbf{x}}(t) = \dot{\mathbf{x}}^*(t) + \Delta \dot{\mathbf{x}}(t)$$

$$= \mathbf{f} \{ [\mathbf{x}^*(t) + \Delta \mathbf{x}(t)], [\mathbf{u}^*(t) + \Delta \mathbf{u}(t)] \}$$

$$\approx \mathbf{f} [\mathbf{x}^*(t), \mathbf{u}^*(t)] + \mathbf{F}(t) \Delta \mathbf{x}(t) + \mathbf{G}(t) \Delta \mathbf{u}(t)$$

- Nominal optimal control history
- Optimal perturbation control
- Sum the two for neighboringoptimal control

$$\mathbf{u} * (t) = \mathbf{u}_{opt}(t)$$

$$\Delta \mathbf{u}(t) = -\mathbf{C}(t) \left[\mathbf{x}(t) - \mathbf{x}_{opt}(t) \right]$$

$$\mathbf{u}(t) = \mathbf{u}_{opt}(t) + \Delta \mathbf{u}(t)$$

Optimal Feedback Gain, C(t)

- Solution of Euler-Lagrange equations for
 - Linear dynamic system
 - Quadratic cost function
- leads to linear, time-varying (LTV) optimal feedback controller

$$\Delta \mathbf{u} * (t) = -\mathbf{C} * (t) \Delta \mathbf{x}(t)$$

31

50% Increased Initial Infection and Scalar Neighboring-Optimal Control (u_1)

Optimal, Constant Gain Feedback Control for Linear, Time-Invariant Systems

33

Linear-Quadratic (LQ) Optimal Control Law with Command Input

$$\Delta \dot{\mathbf{x}}(t) = \mathbf{F}(t) \Delta \mathbf{x}(t) + \mathbf{G}(\mathbf{t}) \Delta \mathbf{u}(t)$$

$$\Delta \dot{\mathbf{x}}(t) = \mathbf{F}(t) \Delta \mathbf{x}(t) + \mathbf{G}(\mathbf{t}) \left[\Delta \mathbf{u}_{C}(t) - \mathbf{C}^{*}(t) \Delta \mathbf{x}(t) \right]$$

Optimal Control for Linear, Time-Invariant Dynamic Process

Original system is linear and time-invariant (LTI)

$$\Delta \dot{\mathbf{x}}(t) = \mathbf{F} \Delta \mathbf{x}(t) + \mathbf{G} \Delta \mathbf{u}(t), \quad \Delta \mathbf{x}(0)$$
 given

Minimize quadratic cost function for $t_f \rightarrow \infty$ Terminal cost is of no concern

Dynamic constraint is the linear, time-invariant (LTI) plant

35

Linear-Quadratic (LQ) Optimal Control for LTI System, and $t_f \rightarrow \infty$

Optimal control

$$\Delta \mathbf{u}(t) = -\mathbf{C} * \Delta \mathbf{x}(t)$$

Optimal control gain matrix

$$\mathbf{C}^* = \mathbf{R}^{-1}\mathbf{G}^T\mathbf{S}^*$$
$$(m \times n) = (m \times m)(m \times n)(n \times n)$$

Steady-state solution of the matrix Riccati equation = Algebraic Riccati Equation

$$-\mathbf{F}^{T}\mathbf{S} * -\mathbf{S} * \mathbf{F} + \mathbf{S} * \mathbf{G} * \mathbf{R}^{-1}\mathbf{G}^{T}\mathbf{S} * -\mathbf{Q} = \mathbf{0}$$

$$\mathbf{\dot{S}} * (0) \underset{t_f \to \infty}{\longrightarrow} \mathbf{0}$$

 $\dot{\mathbf{S}}^*(0) \underset{t_t \to \infty}{\longrightarrow} \mathbf{0}$ MATLAB function: \mathbf{Iqr}

Example: Stable and Unstable Second-Order System Response to Initial Condition

Example: LQ Regulator Stabilizes Unstable System, r = 1 and 100

$$\min_{\Delta u} J = \min_{\Delta u} \left[\frac{1}{2} \int_{0}^{\infty} \left(\Delta x_1^2 + \Delta x_2^2 + r \Delta u^2 \right) dt \right]$$

$$\Delta u(t) = -\begin{bmatrix} c_1 & c_2 \end{bmatrix} \begin{bmatrix} \Delta x_1(t) \\ \Delta x_2(t) \end{bmatrix} = -c_1 \Delta x_1(t) - c_2 \Delta x_2(t)$$

<u>r = 1</u> Control Gain (C*) = 0.2620 1.0857

Riccati Matrix (S*) = 2.2001 0.0291 0.0291 0.1206

Closed-Loop Eigenvalues = -6.4061 -2.8656 r = 100 Control Gain (C*) = 0.0028 0.1726

Riccati Matrix (S*) = 30.7261 0.0312 0.0312 1.9183

Closed-Loop Eigenvalues = -0.5269 + 3.9683j -0.5269 - 3.9683j

Example: LQ Regulator Stabilizes Unstable System, r = 1 and 100

30

Next Time: Formal Logic, Algorithms, and Incompleteness

Supplemental Material

41

Pulp & Paper Wet End Machine Control

Refrigerator Recycling "Robot"

- Dismantles one refrigerator every 60 sec
- · Captures refrigerant ("greenhouse gas") trapped in insulation

43

Linearized Model of Infection Dynamics

Locally linearized (time-varying) dynamic equation

$$\begin{bmatrix} \Delta \dot{x}_1 \\ \Delta \dot{x}_2 \\ \Delta \dot{x}_3 \\ \Delta \dot{x}_4 \end{bmatrix} = \begin{bmatrix} (a_{11} - a_{12}x_3^*) & 0 & -a_{12}x_1^* & 0 \\ a_{21}(x_4^*)a_{22}x_3^* & a_{23} & a_{21}(x_4^*)a_{22}x_1^* & \frac{\partial a_{21}}{\partial x_4}a_{22}x_1^* x_3^* \\ -a_{33}x_3^* & a_{31} & a_{31}x_1^* & 0 \\ a_{41} & 0 & 0 & -a_{42} \end{bmatrix} \begin{bmatrix} \Delta x_1 \\ \Delta x_2 \\ \Delta x_3 \\ \Delta x_4 \end{bmatrix}$$

$$+ \begin{bmatrix} b_1 & 0 & 0 & 0 \\ 0 & b_2 & 0 & 0 \\ 0 & 0 & b_3 & 0 \\ 0 & 0 & 0 & b_4 \end{bmatrix} \begin{bmatrix} \Delta u_1 \\ \Delta u_2 \\ \Delta u_3 \\ \Delta u_4 \end{bmatrix} + \begin{bmatrix} \Delta w_1 \\ \Delta w_2 \\ \Delta w_3 \\ \Delta w_4 \end{bmatrix}$$

44

Expand Optimal Control Function

Expand optimized cost function to second degree

$$J\left\{\left[\mathbf{x}^*(t_o) + \Delta\mathbf{x}(t_o)\right], \left[\mathbf{x}^*(t_f) + \Delta\mathbf{x}(t_f)\right]\right\} \simeq J^*\left[\mathbf{x}^*(t_o), \mathbf{x}^*(t_f)\right] + \Delta J\left[\Delta\mathbf{x}(t_o), \Delta\mathbf{x}(t_f)\right] + \Delta^2 J\left[\Delta\mathbf{x}(t_o), \Delta\mathbf{x}(t_f)\right]$$

Nominal optimized cost, plus nonlinear dynamic constraint

$$J^*[\mathbf{x}^*(t_o), \mathbf{x}^*(t_f)] = \phi[\mathbf{x}^*(t_f)] + \int_{t_o}^{t_f} L[\mathbf{x}^*(t), \mathbf{u}^*(t)] dt$$
subject to nonlinear dynamic equation
$$\dot{\mathbf{x}}^*(t) = \mathbf{f}[\mathbf{x}^*(t), \mathbf{u}^*(t)], \mathbf{x}(t_o) = \mathbf{x}_o$$

45

Second Variation of the Cost Function

Objective: Minimize second-variational cost subject to linear dynamic constraint

$$\min_{\Delta \mathbf{u}} \Delta^{2} J = \frac{1}{2} \Delta \mathbf{x}^{T}(t_{f}) \phi_{\mathbf{x}\mathbf{x}}(t_{f}) \Delta \mathbf{x}(t_{f}) + \frac{1}{2} \left\{ \int_{t_{o}}^{t_{f}} \left[\Delta \mathbf{x}^{T}(t) \ \Delta \mathbf{u}^{T}(t) \right] \left[L_{\mathbf{x}\mathbf{x}}(t) \ L_{\mathbf{x}\mathbf{u}}(t) \ L_{\mathbf{u}\mathbf{u}}(t) \right] \left[\Delta \mathbf{x}(t) \ \Delta \mathbf{u}(t) \right] \right\} \\
\text{subject to perturbation dynamics}$$

$$\Delta \dot{\mathbf{x}}(t) = \mathbf{F}(t)\Delta \mathbf{x}(t) + \mathbf{G}(t)\Delta \mathbf{u}(t), \Delta \mathbf{x}(t_o) = \Delta \mathbf{x}_o$$

Cost weighting matrices expressed as

$$\mathbf{S}(t_f) \triangleq \phi_{\mathbf{xx}}(t_f) = \frac{\partial^2 \phi}{\partial \mathbf{x}^2}(t_f)$$

$$\begin{bmatrix} \mathbf{Q}(t) & \mathbf{M}(t) \\ \mathbf{M}^T(t) & \mathbf{R}(t) \end{bmatrix} \triangleq \begin{bmatrix} L_{\mathbf{xx}}(t) & L_{\mathbf{xu}}(t) \\ L_{\mathbf{ux}}(t) & L_{\mathbf{uu}}(t) \end{bmatrix}$$

$$\dim[\mathbf{S}(t_f)] = \dim[\mathbf{Q}(t)] = n \times n$$

$$\dim[\mathbf{R}(t)] = n \times m$$

$$\dim[\mathbf{M}(t)] = n \times m$$

$$\dim \left[\mathbf{S}(t_f) \right] = \dim \left[\mathbf{Q}(t) \right] = n \times n$$

$$\dim \left[\mathbf{R}(t) \right] = m \times m$$

$$\dim \left[\mathbf{M}(t) \right] = n \times m$$

Second Variational Hamiltonian

Variational cost function

$$\Delta^{2} J = \frac{1}{2} \Delta \mathbf{x}^{T}(t_{f}) \mathbf{S}(t_{f}) \Delta \mathbf{x}(t_{f}) + \frac{1}{2} \left\{ \int_{t_{o}}^{t_{f}} \left[\Delta \mathbf{x}^{T}(t) \ \Delta \mathbf{u}^{T}(t) \right] \left[\begin{array}{cc} \mathbf{Q}(t) & \mathbf{M}(t) \\ \mathbf{M}^{T}(t) & \mathbf{R}(t) \end{array} \right] \left[\begin{array}{cc} \Delta \mathbf{x}(t) \\ \Delta \mathbf{u}(t) \end{array} \right] dt \right\}$$

$$= \frac{1}{2} \Delta \mathbf{x}^{T}(t_{f}) \mathbf{S}(t_{f}) \Delta \mathbf{x}(t_{f}) + \frac{1}{2} \left\{ \int_{t_{o}}^{t_{f}} \left[\Delta \mathbf{x}^{T}(t) \mathbf{Q}(t) \Delta \mathbf{x}(t) + 2 \Delta \mathbf{x}^{T}(t) \mathbf{M}(t) \Delta \mathbf{u}(t) + \Delta \mathbf{u}^{T}(t) \mathbf{R}(t) \Delta \mathbf{u}(t) \right] dt \right\}$$

Variational Lagrangian plus adjoined dynamic constraint

$$H\left[\Delta \mathbf{x}(t), \Delta \mathbf{u}(t), \Delta \lambda(t)\right] = L\left[\Delta \mathbf{x}(t), \Delta \mathbf{u}(t)\right] + \Delta \lambda^{T}(t)\mathbf{f}\left[\Delta \mathbf{x}(t), \Delta \mathbf{u}(t)\right]$$
$$= \frac{1}{2}\left[\Delta \mathbf{x}^{T}(t)\mathbf{Q}(t)\Delta \mathbf{x}(t) + 2\Delta \mathbf{x}^{T}(t)\mathbf{M}(t)\Delta \mathbf{u}(t) + \Delta \mathbf{u}^{T}(t)\mathbf{R}(t)\Delta \mathbf{u}(t)\right]$$
$$+\Delta \lambda^{T}(t)\left[\mathbf{F}(t)\Delta \mathbf{x}(t) + \mathbf{G}(t)\Delta \mathbf{u}(t)\right]$$

47

Second Variational Euler-Lagrange Equations

$$H = \frac{1}{2} \left[\Delta \mathbf{x}^{T}(t) \mathbf{Q}(t) \Delta \mathbf{x}(t) + 2\Delta \mathbf{x}^{T}(t) \mathbf{M}(t) \Delta \mathbf{u}(t) + \Delta \mathbf{u}^{T}(t) \mathbf{R}(t) \Delta \mathbf{u}(t) \right]$$
$$+ \Delta \boldsymbol{\lambda}^{T}(t) \left[\mathbf{F}(t) \Delta \mathbf{x}(t) + \mathbf{G}(t) \Delta \mathbf{u}(t) \right]$$

Terminal condition, solution for adjoint vector, and optimality condition

$$\Delta \lambda (t_f) = \phi_{\mathbf{x}\mathbf{x}}(t_f) \Delta \mathbf{x}(t_f) = \mathbf{S}(t_f) \Delta \mathbf{x}(t_f)$$

$$\Delta \dot{\boldsymbol{\lambda}}(t) = -\left\{\frac{\partial H\left[\Delta \mathbf{x}(t), \Delta \mathbf{u}(t), \Delta \boldsymbol{\lambda}(t)\right]}{\partial \mathbf{x}}\right\}^{T} = -\mathbf{Q}(t)\Delta \mathbf{x}(t) - \mathbf{M}(t)\Delta \mathbf{u}(t) - \mathbf{F}^{T}(t)\Delta \boldsymbol{\lambda}(t)$$

$$\Delta \dot{\boldsymbol{\lambda}}(t) = -\left\{\frac{\partial H\left[\Delta \mathbf{x}(t), \Delta \mathbf{u}(t), \Delta \boldsymbol{\lambda}(t)\right]}{\partial \mathbf{x}}\right\}^{T} = -\mathbf{Q}(t)\Delta \mathbf{x}(t) - \mathbf{M}(t)\Delta \mathbf{u}(t) - \mathbf{F}^{T}(t)\Delta \boldsymbol{\lambda}(t)\right\}$$
$$\left\{\frac{\partial H\left[\Delta \mathbf{x}(t), \Delta \mathbf{u}(t), \Delta \boldsymbol{\lambda}(t)\right]}{\partial \mathbf{u}}\right\}^{T} = \mathbf{M}^{T}(t)\Delta \mathbf{x}(t) + \mathbf{R}(t)\Delta \mathbf{u}(t) - \mathbf{G}^{T}(t)\Delta \boldsymbol{\lambda}(t) = \mathbf{0}$$

Use Control Law to Solve the Two- Point Boundary-Value Problem

From
$$\mathbf{H}_{\mathbf{u}} = \mathbf{0}$$
 $\Delta \mathbf{u}(t) = -\mathbf{R}^{-1}(t) \left[\mathbf{M}^{T}(t) \Delta \mathbf{x}(t) + \mathbf{G}^{T}(t) \Delta \lambda(t) \right]$

Substitute for control in system and adjoint equations
Two-point boundary-value problem

$$\begin{bmatrix} \Delta \dot{\mathbf{x}}(t) \\ \Delta \dot{\boldsymbol{\lambda}}(t) \end{bmatrix} = \begin{bmatrix} \mathbf{F}(t) - \mathbf{G}(t)\mathbf{R}^{-1}(t)\mathbf{M}^{T}(t) \end{bmatrix} - \mathbf{G}(t)\mathbf{R}^{-1}(t)\mathbf{G}^{T}(t) \\ \mathbf{C}(t) + \mathbf{M}(t)\mathbf{R}^{-1}(t)\mathbf{M}^{T}(t) \end{bmatrix} - \mathbf{F}(t) - \mathbf{G}(t)\mathbf{R}^{-1}(t)\mathbf{M}^{T}(t) \end{bmatrix}^{T} \begin{bmatrix} \Delta \mathbf{x}(t) \\ \Delta \boldsymbol{\lambda}(t) \end{bmatrix}$$

Boundary conditions at initial and final times

$$\begin{bmatrix} \Delta \mathbf{x}(t_o) \\ \Delta \boldsymbol{\lambda}(t_f) \end{bmatrix} = \begin{bmatrix} \Delta \mathbf{x}_o \\ \mathbf{S}_f \Delta \mathbf{x}_f \end{bmatrix}$$
Perturbation state vector Perturbation adjoint vector

49

Use Control Law to Solve the Two- Point Boundary-Value Problem

Suppose that the terminal adjoint relationship applies over the entire interval

$$\Delta \lambda(t) = \mathbf{S}(t) \Delta \mathbf{x}(t)$$

Feedback control law becomes

$$\Delta \mathbf{u}(t) = -\mathbf{R}^{-1}(t) \left[\mathbf{M}^{T}(t) \Delta \mathbf{x}(t) + \mathbf{G}^{T}(t) \mathbf{S}(t) \Delta \mathbf{x}(t) \right]$$

$$= -\mathbf{R}^{-1}(t) \left[\mathbf{M}^{T}(t) + \mathbf{G}^{T}(t) \mathbf{S}(t) \right] \Delta \mathbf{x}(t)$$

$$\triangleq -\mathbf{C}(t) \Delta \mathbf{x}(t) \qquad \text{dim}(\mathbf{C}) = m \times n$$

Linear-Quadratic (LQ) Optimal Control Gain Matrix

$$\Delta \mathbf{u}(t) = -\mathbf{C}(t)\Delta \mathbf{x}(t)$$

Optimal feedback gain matrix

$$\mathbf{C}(t) = \mathbf{R}^{-1}(t) \left[\mathbf{G}^{T}(t) \mathbf{S}(t) + \mathbf{M}^{T}(t) \right]$$

- Properties of feedback gain matrix
 - Full state feedback (m x n)
 - Time-varying matrix
 - R, G, and M given
 - · Control weighting matrix, R
 - · State-control weighting matrix, M
 - · Control effect matrix, G
 - S(t) remains to be determined

51

Solution for the Adjoining Matrix, S(t)

Time-derivative of adjoint vector

$$\Delta \dot{\lambda}(t) = \dot{\mathbf{S}}(t) \Delta \mathbf{x}(t) + \mathbf{S}(t) \Delta \dot{\mathbf{x}}(t)$$

Rearrange

$$\dot{\mathbf{S}}(t)\Delta\mathbf{x}(t) = \Delta\dot{\boldsymbol{\lambda}}(t) - \mathbf{S}(t)\Delta\dot{\mathbf{x}}(t)$$

Recall

$$\begin{bmatrix} \Delta \dot{\mathbf{x}}(t) \\ \Delta \dot{\boldsymbol{\lambda}}(t) \end{bmatrix} = \begin{cases} \begin{bmatrix} \mathbf{F}(t) - \mathbf{G}(t)\mathbf{R}^{-1}(t)\mathbf{M}^{T}(t) \end{bmatrix} & -\mathbf{G}(t)\mathbf{R}^{-1}(t)\mathbf{G}^{T}(t) \\ \begin{bmatrix} -\mathbf{Q}(t) + \mathbf{M}(t)\mathbf{R}^{-1}(t)\mathbf{M}^{T}(t) \end{bmatrix} & -\begin{bmatrix} \mathbf{F}(t) - \mathbf{G}(t)\mathbf{R}^{-1}(t)\mathbf{M}^{T}(t) \end{bmatrix}^{T} \end{cases} \begin{cases} \Delta \mathbf{x}(t) \\ \Delta \boldsymbol{\lambda}(t) \end{bmatrix}$$

Solution for the Adjoining Matrix, S(t)

Substitute

$$\dot{\mathbf{S}}(t)\Delta\mathbf{x}(t) = \left[-\mathbf{Q}(t) + \mathbf{M}(t)\mathbf{R}^{-1}(t)\mathbf{M}^{T}(t)\right]\Delta\mathbf{x}(t) - \left[\mathbf{F}(t) - \mathbf{G}(t)\mathbf{R}^{-1}(t)\mathbf{M}^{T}(t)\right]^{T}\Delta\lambda(t)$$
$$-\mathbf{S}(t)\left\{\left[\mathbf{F}(t) - \mathbf{G}(t)\mathbf{R}^{-1}(t)\mathbf{M}^{T}(t)\right]\Delta\mathbf{x}(t) - \mathbf{G}(t)\mathbf{R}^{-1}(t)\mathbf{G}^{T}(t)\Delta\lambda(t)\right\}$$

Substitute

$$\Delta \lambda(t) = \mathbf{S}(t) \Delta \mathbf{x}(t)$$

$$\dot{\mathbf{S}}(t)\underline{\Delta\mathbf{x}(t)} = \left[-\mathbf{Q}(t) + \mathbf{M}(t)\mathbf{R}^{-1}(t)\mathbf{M}^{T}(t)\right]\underline{\Delta\mathbf{x}(t)} - \left[\mathbf{F}(t) - \mathbf{G}(t)\mathbf{R}^{-1}(t)\mathbf{M}^{T}(t)\right]^{T}\mathbf{S}(t)\underline{\Delta\mathbf{x}(t)}$$
$$-\mathbf{S}(t)\left\{\left[\mathbf{F}(t) - \mathbf{G}(t)\mathbf{R}^{-1}(t)\mathbf{M}^{T}(t)\right]\underline{\Delta\mathbf{x}(t)} - \mathbf{G}(t)\mathbf{R}^{-1}(t)\mathbf{G}^{T}(t)\mathbf{S}(t)\underline{\Delta\mathbf{x}(t)}\right\}$$

$\Delta x(t)$ can be eliminated

53

Matrix Riccati Equation for S(t)

The result is a nonlinear, ordinary differential equation for S(t), with terminal boundary conditions

$$\dot{\mathbf{S}}(t) = \left[-\mathbf{Q}(t) + \mathbf{M}(t)\mathbf{R}^{-1}(t)\mathbf{M}^{T}(t) \right] - \left[\mathbf{F}(t) - \mathbf{G}(t)\mathbf{R}^{-1}(t)\mathbf{M}^{T}(t) \right]^{T} \mathbf{S}(t)$$

$$-\mathbf{S}(t) \left[\mathbf{F}(t) - \mathbf{G}(t)\mathbf{R}^{-1}(t)\mathbf{M}^{T}(t) \right] + \mathbf{S}(t)\mathbf{G}(t)\mathbf{R}^{-1}(t)\mathbf{G}^{T}(t)\mathbf{S}(t)$$

$$\mathbf{S}(t_{f}) = \phi_{xx}(t_{f})$$

- Characteristics of the Riccati matrix, S(t)
 - $S(t_i)$ is symmetric, $n \times n$, and typically positive semi-definite
 - Matrix Riccati equation is symmetric
 - Therefore, S(t) is symmetric and positive semi-definite throughout
- Once S(t) has been determined, optimal feedback control gain matrix,
 C(t) can be calculated

Neighboring-Optimal (LQ) Feedback Control Law

Full state is fed back to all available controls

$$\Delta \mathbf{u}(t) = -\mathbf{R}^{-1}(t) \left[\mathbf{M}^{T}(t) + \mathbf{G}^{T}(t) \mathbf{S}(t) \right] \Delta \mathbf{x}(t) = -\mathbf{C}(t) \Delta \mathbf{x}(t)$$

Optimal control history plus feedback correction

$$\mathbf{u}(t) = \mathbf{u} * (t) - \mathbf{C}(t) \Delta \mathbf{x}(t) = \mathbf{u} * (t) - \mathbf{C}(t) [\mathbf{x}(t) - \mathbf{x} * (t)]$$

55

Nonlinear System with Neighboring-Optimal Feedback Control

Nonlinear dynamic system

$$\dot{\mathbf{x}}(t) = \mathbf{f}[\mathbf{x}(t), \mathbf{u}(t)]$$

Neighboring-optimal control law

$$\mathbf{u}(t) = \mathbf{u}^*(t) - \mathbf{C}(t)\Delta\mathbf{x}(t) = \mathbf{u}^*(t) - \mathbf{C}(t)[\mathbf{x}(t) - \mathbf{x}^*(t)]$$

Nonlinear dynamic system with neighboring-optimal feedback control

$$\dot{\mathbf{x}}(t) = \mathbf{f} \left\{ \mathbf{x}(t), \left[\mathbf{u} * (t) - \mathbf{C}(t) \left[\mathbf{x}(t) - \mathbf{x} * (t) \right] \right] \right\}$$

Linear-Quadratic (LQ) Optimal Control Law with Command Input

$$\Delta \dot{\mathbf{x}}(t) = \mathbf{F}(t) \Delta \mathbf{x}(t) + G(\mathbf{t}) \Delta \mathbf{u}(t)$$
$$= \mathbf{F}(t) \Delta \mathbf{x}(t) + G(\mathbf{t}) \left[\mathbf{u}^*(t) - \mathbf{C}(t) \left[\mathbf{x}(t) - \mathbf{x}^*(t) \right] \right]$$

How can C_F be chosen so that

$$\mathbf{y}_{out}(t) \underset{t \to \infty}{\longrightarrow} \mathbf{y}_{SS}$$

 $|\mathbf{y}_{out}(t) \underset{t \to \infty}{\longrightarrow} \mathbf{y}_{SS}|$? See Supplemental Material

57

Command Input Gain Matrix

In steady state

$$\begin{bmatrix} \mathbf{F} - \mathbf{G} \mathbf{C}_B \end{bmatrix} \mathbf{x}_{ss} + \mathbf{G} \mathbf{u}_{SS} = 0$$
$$\mathbf{x}_{ss} = - \begin{bmatrix} \mathbf{F} - \mathbf{G} \mathbf{C}_B \end{bmatrix}^{-1} \mathbf{G} \mathbf{u}_{SS}$$

... and the steady-state command is

$$\mathbf{y}_{SS} = \mathbf{H}_{\mathbf{x}} \mathbf{x}_{ss} = -\mathbf{H}_{\mathbf{x}} \left[\mathbf{F} - \mathbf{G} \mathbf{C}_{B} \right]^{-1} \mathbf{G} \mathbf{u}_{SS}$$

The steady-state control is

$$\mathbf{u}_{SS} = \left\{ -\mathbf{H}_{\mathbf{x}} \left[\mathbf{F} - \mathbf{G} \mathbf{C}_{B} \right]^{-1} \mathbf{G} \right\}^{-1} \mathbf{y}_{SS}$$

$$\triangleq \mathbf{C}_{F} \mathbf{y}_{SS}$$

$$\dim(y) = r \times 1$$

$$\dim(u) = m \times 1$$

{.} must be invertible, which requires that dim(y) = dim(u), and closed-loop system has a steady state

58

Example: Response of <u>Stable</u> Second-Order System to Random Disturbance

Example: Disturbance Response of <u>Unstable</u> System with LQ Regulators, r = 1 and 100

