ECE 131A, Fall 2022

Homework #5

Department of Electrical and Computer Engineering University of California, Los Angeles Prof. V. Roychowdhury TA: T. Monsoor

Due Friday, 18 November 2022, uploaded to Gradescope. Covers material up to Lecture 12. 100 points total.

1. (10 points) Normal random variable

- (a) (5 points) Consider a standard Normal random variable Z. Find a constant c with the property that P(-c < Z < c) = 0.8324.
- (b) (5 points) Now consider a Normal random variable Y with E(Y) = 4.2 and Var(Y) = 2.3. Find a constant c with the property that P(4.2 c < Y < 4.2 + c) = 0.8324.

2. (10 points) **Heavy books**

Suppose that the books published by a certain book publisher have weights that (roughly) have a Normal distribution with mean 14.2 ounces and standard deviation 1.7 ounces.

- (a) (3 points) What is the probability that such a book weighs less than 1 pound?
- (b) (3 points) What is the probability that such a book weighs in the range 13 to 15 ounces?
- (c) (4 points) Suppose that we select ten books from this publisher, and that their weights are independent. A book is considered "heavy" if it weighs 16 ounces or more. What is the probability that exactly three of the ten selected books are considered "heavy"?

3. (10 points) Constant joint probability density function

Consider a pair of random variables X, Y with constant joint density on the quadrilateral with vertices located at the points (0,0),(3,0),(5,2),(0,2).

- (a) (3 points) Find $P(X \ge 3)$.
- (b) (3 points) Find $P(Y \ge 1)$.
- (c) (4 points) Find $P(\max(X, Y) \le 1)$.

4. (10 points) Group Me messaging

Suppose that the time (in seconds) until the next message arrives in Group Me is a continuous random variable X, and the time until the reply is denoted by Y. For this reason, we always have Y > X. Suppose that the joint probability density function of X and Y is

$$f_{X,Y}(x,y) = \frac{1}{750}e^{-(\frac{x}{150} + \frac{y}{30})}$$

for y > x > 0, and $f_{X,Y}(x,y) = 0$ otherwise. Find E[X].

5. (10 points) Functions of random variables

Consider a pair of random variables X, Y with constant joint density on the triangle with vertices at (0,0), (3,0), and (0,3).

- (a) (5 points) Find the expected value of the sum of X and Y.
- (b) (5 points) Find the variance of X.

6. (10 points) Tray of drinks

Consider a tray with 8 lemonades and 3 raspberry juices. Alice and Bob each take 1 drink from the tray, without replacement. Assume that all of their choices are equally likely. Let X be the number of lemonades that Alice and Bob get. Find the variance of X.

7. (10 points) Happy bear pairs

Consider a collection of 6 bears. There is a pair of red bears consisting of one father bear and one mother bear. There is a similar green bear pair, and a similar blue bear pair. These 6 bears are all placed in a straight line, and all arrangements in such a line are equally likely. A bear pair is happy if it is sitting together. Let X denote the number of happy bear pairs. Let $X_i = 1$ if the i^{th} bear pair is sitting together, and $X_i = 0$ otherwise.

- (a) (4 points) Find $Cov(X_i, X_i) = E(X_i X_i) E(X_i) E(X_i)$, for $1 \le i \le 3$.
- (b) (4 points) Find $Cov(X_i, X_j) = E(X_i X_j) E(X_i) E(X_j)$, for $1 \le i, j \le 3$ and $i \ne j$.
- (c) (2 points) Find Var(X).

8. (10 points) Rare bird flying over UCLA

Suppose that the number of rare birds that fly over UCLA in 1 hour has a Poisson distribution with mean 2. Also suppose that the number of birds flying is independent from hour to hour (e.g., the number of birds between noon and 1 PM does not affect the number of birds between 1 PM and 2 PM, etc.). During 40 hours of observation, what is the approximate probability that 75 or more birds are seen?

9. (10 points) Sum of geometric random variables

Suppose that X_1, \dots, X_{500} are independent Geometric random variables, each of which have $E(X_i) = \frac{8}{5}$.

- (a) (2 points) Find the expected value and the variance of the sum of the 500 random variables
- (b) (4 points) Find a good approximation for $P(780 < X_1 + \cdots + X_{500} < 820)$.
- (c) (4 points) Suppose that Y is a Negative Binomial random variable, independent from the X_j 's, with parameters r=250 and $p=\frac{1}{3}$. Calculate a good estimate for $P(Y < X_1 + \cdots + X_{500})$.

10. (10 points) Moment generating function

- (a) (4 points) Suppose that X is an Exponential random variable with $E(X) = \frac{1}{3}$. Find the moment generating function $g(t) = M_X(t) = E(e^{tX})$ of X. (It is OK to assume t < 3.)
- (b) (4 points) Compute the derivative of the moment generating function with respect to t.
- (c) (2 points) Compute $M_X'(0)$.