Week 8-9 Data Cleansing and Transformation

Team Smart Banker (Data Science Specialization)

April 4, 2023

Agenda

01. Meet the Team

O2. Problem Description

03 Business Understanding

04. Data Types and Problems in the Data

O5. Approach to Eliminate Problems in the Data

Meet the Team

Group Name: Team Smart Banker

Member Name: Chukwujekwu Joseph Ezema

Email: chukwujekwujeks@gmail.com

School: Teesside University Middlesbrough,

Country: United Kingdom

Specialization: Data Science

Bank Marketing Campaign

A Data Science Project

Problem Description

Objective: Predict if a client will subscribe to a term deposit offered by a bank.

Dataset: Information related to direct marketing campaigns conducted through phone calls by a Portuguese banking institution.

Goal: Build a classification model that predicts whether the client will subscribe to the term deposit or not, based on various input variables such as age, job, marital status, education, etc

Business Understanding

Importance: Success of direct marketing campaigns depends on accuracy of targeting potential customers who are more likely to purchase the offered product..

Interest: This is to help a bank identify customers who are more likely to subscribe to a term deposit to optimize their marketing strategy and increase their chances of success while minimizing their costs..

Data Types and Problems in the Data

Data Type: The data was majorly dominated by Categorical Data types – which led to most of the them being converted to viable numeric types for ease of modelling for the Classification problem..

Problem:

- 1. White spaces in the columns were replaced by ";" thereby making the original data to contain one column instead of 21 columns
 - 2. Some columns were not in their appropriate data types e.g. duration, campaign etc
- 3. Data contained 0 missing values but 12 duplicated records
- 4. There were outliers across the numerical columns5. There is imbalance in the target class, y

```
2]: """ Step 1: Get dataset """
   # 1.2 Load dataset
   # Reading the Bank Additional File - dataset for the features
   bank df = pd.read csv('bank-additional-full.csv')
   bank_df_copy = bank_df.copy() #making a copy
   bank_df_copy
          age;"job";"marital";"education";"default";"housing";"loan";"contact";"month";"day_of_week";"duration";"campaign";"pdays";"previous";"poutcome";"emp
       0
       2
                                                                            Original Data Load
       3
       4
    41183
    41184
    41185
    41186
    41187
   41188 rows x 1 columns
```

```
In [4]: # Explore the features of dataset
        data.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 41188 entries, 0 to 41187
        Data columns (total 21 columns):
             Column
                             Non-Null Count Dtype
         #
                             41188 non-null object
             age
             job
                             41188 non-null object
             marital
                             41188 non-null object
             education
                             41188 non-null object
             default
                             41188 non-null object
             housing
                             41188 non-null object
             loan
                             41188 non-null object
             contact
                             41188 non-null object
             month
                             41188 non-null object
             day of week
                             41188 non-null object
            duration
                             41188 non-null object
             campaign
                             41188 non-null object
             pdays
                             41188 non-null object
            previous
                             41188 non-null object
         14 poutcome
                             41188 non-null object
            emp var rate
                             41188 non-null object
            cons price idx 41188 non-null object
             cons conf idx
                             41188 non-null object
         18 euribor3m
                             41188 non-null object
            nr employed
                             41188 non-null object
                             41188 non-null object
         20
        dtypes: object(21)
        memory usage: 6.6+ MB
```

Inappropriate Datatypes

```
In [5]: # Check features with missing value
        data.isnull().sum()
Out[5]: age
        job
        marital
        education
        default
        housing
        loan
        contact
        month
        day of week
        duration
        campaign
        pdays
        previous
        poutcome
        emp_var_rate
        cons_price_idx
        cons_conf_idx
        euribor3m
        nr employed
        dtype: int64
```

In [6]: # Check duplicated records: print("Number of duplicated records before dropping:

Number of duplicated records before dropping: 12

Missing & Duplicated Records

Unsubscribed Vs Subscribed Customa

Imbalanced Target Class

Approach to Eliminate Problems in the Data

- 1. Split the columns using the delimiter, semicolon (;) and removed the double the quotes ("")
- 2. Use methods from Pandas library to convert to appropriate datatypes e.g pd.to_numeric()

- 3. Dropped duplicated rows
- 4. Use StandardScalar() from sklearn package to limit the effects of the outliers
- 5. Use smote() oversampling technique from imblearn package to handle the imbalance so as not to lose possible data for the training and testing

```
""" Step 2: Clean dataset """
n [3]:
      # Split the columns into separate columns
                                                                          Cleaned Dataset
      data = bank df.iloc[:,0].str.split(";", expand=True)
      # Remove the double quotes from the values
      data = data.applymap(lambda x: x.strip('"'))
      # Rename the columns with more descriptive names
      new_cols = ["age", "job", "marital", "education", "default", "housing", "loan", "contact", "month", "day_of_week", "duration",
      data = data.rename(columns=dict(zip(data.columns, new cols)))
      data
```

ıtı	۲a:	1:
	_	
	_	

:		age	job	marital	education	default	housing	loan	contact	month	day_of_week	duration	campaign	pdays	previous	poutcome
	0	56	housemaid	married	basic.4y	no	no	no	telephone	may	mon	261	1	999	0	nonexisten
	1	57	services	married	high.school	unknown	no	no	telephone	may	mon	149	1	999	0	nonexisten
	2	37	services	married	high.school	no	yes	no	telephone	may	mon	226	1	999	0	nonexisten
	3	40	admin.	married	basic.6y	no	no	no	telephone	may	mon	151	1	999	0	nonexisten
	4	56	services	married	high.school	no	no	yes	telephone	may	mon	307	1	999	0	nonexisten
	41183	73	retired	married	professional.course	no	yes	no	cellular	nov	fri	334	1	999	0	nonexisten
	41184	46	blue-collar	married	professional.course	no	no	no	cellular	nov	fri	383	1	999	0	nonexisten
	41185	56	retired	married	university.degree	no	yes	no	cellular	nov	fri	189	2	999	0	nonexisten
	41186	44	technician	married	professional.course	no	no	no	cellular	nov	fri	442	1	999	0	nonexisten
	41187	74	retired	married	professional.course	no	yes	no	cellular	nov	fri	239	3	999	1	failure

```
# Confirming non duplicated
        print("Number of duplicated records after dropping: {}".format(df1.duplicated().sum()))
        Number of duplicated records after dropping: 0
        """ Step 3: Transform data """
In [8]:
        # Convert categorical data to numeric values
                                                                      Dropped Duplicates and
        def to integers(self):
           # Converting to binary values for best results
                                                                      converted to numeric
            self.replace({'y' : {'yes' : 1, 'no' : 0}}, inplace=True)
           # Converting to numeric values
           self['age'] = pd.to_numeric(self['age'], errors='coerce')
            self['duration'] = pd.to numeric(self['duration'], errors='coerce')
           self['campaign'] = pd.to_numeric(self['campaign'], errors='coerce')
            self['pdays'] = pd.to numeric(self['pdays'], errors='coerce')
            self['previous'] = pd.to numeric(self['previous'], errors='coerce')
            self['emp var rate'] = pd.to numeric(self['emp var rate'], errors='coerce')
            self['cons price idx'] = pd.to numeric(self['cons price idx'], errors='coerce')
            self['cons conf idx'] = pd.to numeric(self['cons conf idx'], errors='coerce')
           self['euribor3m'] = pd.to numeric(self['euribor3m'], errors='coerce')
           self['nr employed'] = pd.to numeric(self['nr employed'], errors='coerce')
           return self
        to integers(df1)
Out[8]:
                                        education
                                                 default housing loan
                                                                     contact month day_of_week duration campaign pdays previous poutcome
              age
                       job marital
```

0 56 housemaid married basic.4y no telephone 261 999 0 nonexistent no may mon 57 149 999 services married high.school unknown no telephone mon 0 nonexistent may 2 37 services married high.school no telephone 226 999 0 nonexistent mon yes may a desire especie d no tolonhono A nonevietent

After Transformation

- Cleaned the jam-packed columns into distinct columns
- Removed duplicates
- Converted wrong object datatypes to appropriate numerical types
- Created a function to label encode and further applied one-hot encoding using pd.get_dummies to put the categories into 1's and 0's in order to avoid biases
- Note: The increased number of columns will be tackled with dimensionality reduction strategy like **PCA**

In [11]: # confirm the nature of the data after feature engineering df2.info() <class 'pandas.core.frame.DataFrame'> Int64Index: 41176 entries, 0 to 41187 Data columns (total 44 columns): Non-Null Count Dtype Column Age 41176 non-null int64 Duration 41176 non-null int64 Campaign 41176 non-null int64 Pdays 41176 non-null int64 Previous 41176 non-null int64 Emp_var_rate 41176 non-null float64 Cons price idx 41176 non-null float64 Cons conf idx 41176 non-null float64 Euribor3m 41176 non-null float64 No employed 41176 non-null float64 Subscribed 41176 non-null int64 Job Employed 41176 non-null uint8 Job_Self_employed 41176 non-null uint8 Job Unemployed 41176 non-null uint8 Job Unknown 41176 non-null uint8 Marital Married 41176 non-null uint8 Marital Not married 41176 non-null uint8 Marital Unknown 41176 non-null uint8 Education Basic 41176 non-null uint8 Education Secondary 41176 non-null uint8 Education_Tertiary 41176 non-null uint8 Education Uneducated 41176 non-null uint8 Education Unknown 41176 non-null uint8 Default no 41176 non-null uint8 Default unknown 41176 non-null uint8 Default yes 41176 non-null uint8 Housing no 41176 non-null uint8 Housing unknown 41176 non-null uint8 Housing yes 41176 non-null uint8 Loan no 41176 non-null uint8 Loan unknown 41176 non-null uint8

Project Timeline

Wk1. 19 Mar - 26 Mar 2023

Data Collection: Download the dataset from the given source and load it into a Jupyter notebook.

Data Exploration: Perform preliminary data exploration to understand the dataset's structure, quality, and potential challenges.

Wk2. 26 Mar – 2 Apr 2023

Data Preparation: Prepare the dataset for modeling by performing data cleaning, feature selection, feature engineering, and data transformation as necessary.

Modeling: Train different classification models on the prepared dataset and evaluate their performance using appropriate metrics.

Wk3. 2 Apr – 9 Apr 2023

Model Tuning: Tune the hyperparameters of the bestperforming model to improve its performance further.

Model Interpretation: Interpret the trained model and identify the most significant factors that contribute to the prediction.

Wk4. 9 Apr – 16 Apr 2023

Finalize the project report: Create a comprehensive report documenting the entire project, including problem definition, methodology, results, and interpretation.

Submission: Submit the final report within 2 weeks by April 28, 2023, as per the given deadline..

Thank you

Thanks for going through this interesting journey with us. We hope we have added value to this work.

GitHub Link

https://github.com/Jeks042/Data-Science-Projects