

BEST NASA

Jonas Jakobsen AAU Satlab

Who/What - Are AAU Satlab?

Who/What - Are AAU Satlab?

- Designed and built at AAU!
- Tasks suiting every interest.
 - Antennas
 - BMS/Power supply
 - Radio
 - Control systems
 - Mission Control / Ground station
 - Payload(s) and more!

Who/What - Are AAU Satlab?

- Long-Term project!
 - Target launch 2026
- Being a part of the whole process!
 Design → Launch → Contact
- Gain relevant experience to work in the space sector!

AAUSAT1

- 2001 2003
 Launch 30/6 2003
- Goals:
 - Education
 - Earth observation through camera.

AAUSAT2

- 2003 2009
 Launch 28/4 2008
- Goals:
 - Education
 - Gamma ray detector
 - Improved Radio and ADCS

AAUSAT3-5

2007 – 2014
 Launch 25/2 – 2013

- AAUSAT5: 5/10 - 2015 - AAUSAT4: 25/4 - 2016

Goals:

- Education
- AIS Detection
- Improved Radio and ADCS

AAUSAT3 -5

Data illustration

- AAUSAT3
 - 800k messages in first 100 days

AAUSAT6

• 2022 -

Launch: Target Q1-Q2 2026

- Goals:
 - Education
 - Experimental platform
 - SDR
 - Earth Observation w. Optical camera.
 - Enable video streaming, with feature tracking.
 - Improved ADCS
 - Improved High and low speed radio.

Questions?

Satellite Communication

The problem

Orbits

Doppler Effect

- Change in frequency, in relation to the observer.
- For a stationary observer:

$$f = \frac{c}{c \pm v_s} f_0$$

f – observed frequency

c – Speed of light

v_s - Velocity of source

f_o – Frequency at source

Doppler Effect - Impact

- Impact, for a satellite in 550km orbit
- Larger impact for higher frequencies.

How to handle doppler?

Figure 2.5: Plot of Doppler shift for different frequencies at a velocity of 7.59 km/s.

Modulation - FM

- Analog message
- Frequency of carrier changes with amplitude of message

How do we transmit digital data?

OOK – On off keying

- Constant amplitude
- Turning on and off PA

FSK – Frequency Shift Keying

- Encodes data by changing frequent
- 0 Space
- 1 Mark

Reception

- Large losses in signal strength
- Noisy channel

Picture - approx:0.01 to 0.2 [pW]

AAUSAT GND – UHF receive power

Noise

Noise

- Introduces bit erros as it is harder to distinguish, between 0 or 1.
- Redundancy in messages most be introduced.

Time and frequency domain

- Joseph Fourier
- Any function can be expanded into a series of sines.

Baseband and RF

- Modulated message is generated in baseband
- Baseband is then moved to the carrier frequency

©allaboutcircuits

AM

SDR – Zero-IF

- SDR Software Defined Radio
 IF Intermediate frequency
- Recover baseband from carrier
- Split baseband into I/Q

- Other architectures are Heterodyne and Superheterodyne
 - One or more intermediate frequencies

SDR - I/Q

- I In-phase component
- Q Quadrature component

Can describe the complex plane

Note: Amplitude/Magnitude for workshop

Demodulation

- Demodulation is harder than modulation
 - Why?
- Time!
- Transmitter and Receiver must be synchronized.

Demodulation

- We need:
 - Carrier sync
 - (Phase sync)
 - Symbol sync
 - Frame/Bit sync

Carrier Recovery

- FII Frequency locked loop
- PLL Phase locked loop

Symbol Sync

- Recover timing
- Potential error sources are:
 - Discrepancies in clock
 - Quantization errors in baseband

Frame/bit Sync

- Need to match computer memory architecture
- Use of frame sync markers (FSM)
- Sequence can be shifted across bytes: ("OZ")
 - 01010100 | 11110101 | 10101110

Radio bands

- Typically used in amateur satellites:
 - VHF (144-146 MHz)
 - UHF (435-438 MHz)
 - S-band (2400-2450 MHz)
 - X-band (10.45 10.5 Ghz)
- Band limitations

Why use SDR's?

- High flexibility
 - "Just" change the program for another radio
- Connect your systems, with amateurs around the world.
 - Satnogs

- Cons
 - Slower than hardware defined radio
 - Design from scratch

Workshop

- Task 1:
 - Familiarize with GnuRadio, play around with the spectrum and create a FM receiver. (98.1MHz has a channel) Can you find more? Where?
 - Play music through a `Audio Sink` (Hint: sample rate must match)
- Task 2:
 - Decode the OOK message morsed at 437.225 MHz
 - Play it through a `Audio Sink`, is it a clean sine wave?
 If not, how can you clean it up?
- Task 3:
 - Decode the FSK modulated signal at 437.1 MHz with a symbol rate of 960 symbols/s
 - Message structure is: | 100B 0x55 | Message | 100B 0x00 |
 The message is ASCII encoded starting with `C`