

Analog IC Design

Lecture 06 Basic Amplifier Stages

Dr. Hesham A. Omran

Integrated Circuits Laboratory (ICL)
Electronics and Communications Eng. Dept.
Faculty of Engineering
Ain Shams University

Outline

- ☐ Recapping previous key results
- Why amplifiers?
- Basic amplifier operation
- Basic amplifier analysis
- ☐ Rin/out shortcuts
 - Looking from drain
 - Looking from source
- GmRout method
- Basic amplifier topologies
 - Common Source (CS)
 - Common Gate (CG)
 - Common Drain (CD) Source Follower (SF)
- ☐ Large signal behavior

Outline

- Recapping previous key results
- Why amplifiers?
- Basic amplifier operation
- Basic amplifier analysis
- Rin/out shortcuts
 - Looking from drain
 - Looking from source
- GmRout method
- Basic amplifier topologies
 - Common Source (CS)
 - Common Gate (CG)
 - Common Drain (CD) Source Follower (SF)
- ☐ Large signal behavior

MOSFET in Saturation

☐ The channel is pinched off if the difference between the gate and drain voltages is not sufficient to create an inversion layer

$$V_{GD} \leq V_{TH} \quad OR \quad V_{DS} \geq V_{ov}$$

Square-law (long channel MOS)

$$I_D = \frac{\mu_n C_{ox}}{2} \frac{W}{L} \cdot V_{ov}^2 (1 + \lambda V_{DS})$$

$$V_{SB} \uparrow \Rightarrow V_{TH} \uparrow$$

Regions of Operation Summary

Low-Frequency Small-Signal Model

Outline

- Recapping previous key results
- Why amplifiers?
- Basic amplifier operation
- Basic amplifier analysis
- ☐ Rin/out shortcuts
 - Looking from drain
 - Looking from source
- GmRout method
- Basic amplifier topologies
 - Common Source (CS)
 - Common Gate (CG)
 - Common Drain (CD) Source Follower (SF)
- Large signal behavior

Why Amplifiers?

- ☐ All the physical signals in the world around us are analog
 - Voice, light, temperature, pressure, etc.
- We (will) always need an "analog" interface circuit to connect between our physical world and our digital electronics
- The physical signals are usually very weak
 - They must be amplified before any kind of processing
- Amplifiers are also needed in many other applications

Basic MOSFET Amplifier Topologies

	Common Source (CS)	Common Gate (CG)	Common Drain (CD) Source Follower (SF)
	R_D $v_{in} \circ v_{out}$ R_S	R_D v_{out} R_S	R_D $v_{in} \circ v_{out}$ R_S
	Voltage & current amplifier	Voltage amplifier Current buffer	Voltage buffer Current amplifier
In	G	S	G
Out	D	D	S

Outline

- Recapping previous key results
- Why amplifiers?
- Basic amplifier operation
- Basic amplifier analysis
- ☐ Rin/out shortcuts
 - Looking from drain
 - Looking from source
- GmRout method
- Basic amplifier topologies
 - Common Source (CS)
 - Common Gate (CG)
 - Common Drain (CD) Source Follower (SF)
- ☐ Large signal behavior

CS Amplifier Example

06: Basic Amplifier Stages[Sedra/Smith, 2015]**11**

CS Amplifier Example

Outline

- Recapping previous key results
- Why amplifiers?
- Basic amplifier operation
- Basic amplifier analysis
- Rin/out shortcuts
 - Looking from drain
 - Looking from source
- GmRout method
- Basic amplifier topologies
 - Common Source (CS)
 - Common Gate (CG)
 - Common Drain (CD) Source Follower (SF)

Large signal behavior

Amplifier Analysis Steps

- 1. DC analysis
 - Coupling and bypass capacitors → open-circuit (o.c)
 - Calculate Q-point and check operation in saturation

$$(V_{DS} > V_{ov})$$

- 2. Calculate small signal parameters (g_m, r_o)
- 3. Draw the small signal equivalent circuit
 - DC voltage source → short-circuit (s.c.)
 - DC current source → open-circuit (o.c.)
 - Coupling and bypass capacitors → short-circuit (s.c)
- 4. Determine the amplifier parameters
 - Input resistance and output resistance
 - Voltage gain and current gain

Amplifier Parameters

$$\square R_{in} = \frac{v_{in}}{i_{in}} = \frac{v_{in}}{i_{sig}}$$

$$\square R_{out} = \frac{v_x}{i_x} @ v_{sig} = 0$$

- $\square \quad Current \ gain = A_i = \frac{i_{out}}{i_{sig}} = \frac{v_{out}/R_L}{v_{in}/R_{in}} = \frac{v_{out}}{v_{in}} \cdot \frac{R_{in}}{R_L}$

Large and Small Signal Analysis

	Large Signal Analysis	Small Signal Analysis
Model	Large signal model	Small signal model
Linearity	Non-linear	Linear
Simulation	DC and transient analysis	AC analysis
Purpose	Calculate bias point, signal swing, distortion, etc.	Calculate A_v , R_{in} , R_{out} , BW , etc .
VDC	✓	S.C.
IDC	✓	O.C.
Capacitor	o.c. (in DC)	1/ωC
Inductor	s.c. (in DC)	ωL

Amplifier Analysis Example

$$v_{out} = -(g_m v_{in})r_o$$

$$|A_v| = \left| \frac{v_{out}}{v_{in}} \right| = g_m r_o$$

oxdots $g_m r_o$ is the max gain that can be obtained from a single transistor: a.k.a. intrinsic gain

Direct Analysis on Schematics

- No need to draw the small signal model every time
- \square Just remember we have two VCCSs and r_o between D and S
- lacksquare If G is ac gnd, then $v_{bs}=v_{gs} extstylengtharpoons g_m$ and g_{mb} add
 - $g_m \rightarrow g_m + g_{mb}$

Direct Analysis on Schematics

- No need to draw the small signal model every time
- lacktriangle Just remember we have two VCCSs and r_o between D and S
- lacksquare If G is ac gnd, then $v_{bs}=v_{gs} extstylengtharpoons g_m$ and g_{mb} add
 - $\blacksquare g_m \rightarrow g_m + g_{mb}$

Intrinsic Gain

$$v_{out} = -(g_m v_{in})r_o$$

$$|A_v| = \left| \frac{v_{out}}{v_{in}} \right| = g_m r_o$$

- \Box $g_m r_o$ is the max gain that can be obtained from a single transistor
- Common approximations that we usually use

$$g_m r_o \gg 1$$
 $r_o \gg \frac{1}{g_m}$
 $g_m + \frac{1}{r_o} \approx g_m$
 $r_o / / \frac{1}{g_m} \approx \frac{1}{g_m}$

Outline

- Recapping previous key results
- Why amplifiers?
- Basic amplifier operation
- Basic amplifier analysis
- ☐ Rin/out shortcuts
 - Looking from drain
 - Looking from source
- GmRout method
- Basic amplifier topologies
 - Common Source (CS)
 - Common Gate (CG)
 - Common Drain (CD) Source Follower (SF)
- ☐ Large signal behavior

Rin/out Shortcuts

☐ Find equivalent impedance looking from Gate, Source, and Drain

Looking From Drain

- lacksquare If G is ac gnd, then $v_{bs}=v_{gs} extstyle extstyle extstyle g_m$ and g_{mb} add
- \Box Apply KCL at D

$$i_{x} = (g_{m} + g_{mb})(-i_{x}R_{S}) + \frac{v_{x} - i_{x}R_{S}}{r_{o}}$$

$$R_{LFD} = \frac{v_{x}}{i_{x}} = r_{o} + [(g_{m} + g_{mb})r_{o} + 1]R_{S} \approx r_{o}[1 + (g_{m} + g_{mb})R_{S}]$$

Looking From Drain

$$R_{LFD} \approx r_o [1 + (g_m + g_{mb})R_S]$$

☐ Special case: $R_S = 0$ (G and S ac s.c.) → active load

$$R_{LFD} = r_o$$

Drain is a high-impedance node (H.I.N.)

Active Load (Source OFF)

Quiz

- lacktriangle Assume M1 and M2 have the same g_m and r_o , $g_m r_o \gg 1$, and neglect body effect
- $lue{}$ Find R_X

Looking From Source

- \square $v_{gs} = -v_x$, g_m and g_{mb} add, and $g_m r_o \gg 1$
- \blacksquare Apply KCL at S

$$i_{x} = (g_{m} + g_{mb})v_{x} + \frac{v_{x} - i_{x}R_{D}}{r_{o}}$$

$$R_{LFS} = \frac{v_{x}}{i_{x}} = \frac{1}{g_{m} + g_{mb} + \frac{1}{r_{o}}} \left(1 + \frac{R_{D}}{r_{o}}\right) \approx \frac{1}{g_{m} + g_{mb}} \left(1 + \frac{R_{D}}{r_{o}}\right)$$

Looking From Source

$$R_{LFS} pprox rac{1}{g_m + g_{mb}} \left(1 + rac{R_D}{r_o} \right)$$

 \square Special case: $R_D = 0 \rightarrow \text{diode connected}$

$$R_{LFS} \approx \frac{1}{g_m + g_{mb}}$$

Source is a low impedance node (L.I.N.)

Diode Connected (Source Absorption)

- \square Always in saturation ($V_{DS} = V_{GS} > V_{ov}$)
- \square Body effect: $g_m \rightarrow g_m + g_{mb}$ (if G is ac gnd)

Quiz

- lacktriangle Assume M1 and M2 have the same r_o , $g_m r_o \gg 1$, and neglect body effect
- $lue{}$ Find R_X

Quiz

- $oxedsymbol{\square}$ Assume M1, M2, and M3 have the same g_m and r_o , $g_m r_o \gg 1$, and neglect body effect
- $lue{}$ Find R_X

Rin/out Shortcuts Summary

Outline

- Recapping previous key results
- Why amplifiers?
- Basic amplifier operation
- Basic amplifier analysis
- Rin/out shortcuts
 - Looking from drain
 - Looking from source
- ☐ GmRout method
- Basic amplifier topologies
 - Common Source (CS)
 - Common Gate (CG)
 - Common Drain (CD) Source Follower (SF)
- ☐ Large signal behavior

Amplifier Model

☐ Rin/out

$$R_{in} = \frac{v_{in}}{i_{in}}$$

$$R_{out} = \frac{v_x}{i_x} @ v_{in} = 0$$

O.C. voltage gain (Thevenin model)

$$v_{out,oc} = v_{Thevenin} = A_v v_{in}$$

$$A_{v} = \frac{v_{out,oc}}{v_{in}}$$

Amplifier Model

☐ Transconductance (Norton model)

$$i_{out,sc} = i_{Norton} = G_m v_{in}$$

$$G_m = \frac{i_{out,sc}}{v_{in}}$$

☐ Thevenin ⇔ Norton

$$v_{out,oc} = A_v v_{in} = (G_m v_{in}) R_{out}$$

$$A_{v} = \frac{v_{out,oc}}{v_{in}} = G_{m}R_{out}$$

S.C. Current Gain

$$A_i = \frac{i_{out,sc}}{i_{in}} = \frac{i_{out,sc}}{v_{in}/R_{in}} = G_m R_{in}$$

Why GmRout?

$$R_{in} = v_{in}/i_{in}$$

$$R_{out} = v_x/i_x @ v_{in} = 0$$

$$G_m = i_{out,sc}/v_{in}$$

$$A_v = G_m R_{out}$$

$$A_i = G_m R_{in}$$

- Divide and conquer
 - Rout simplified: $v_{in} = 0$
 - Gm simplified: $v_{out} = 0$
 - We already need Rin/out and Gm
 - We can quickly and easily get Rin/out from the shortcuts

Outline

- Recapping previous key results
- Why amplifiers?
- Basic amplifier operation
- Basic amplifier analysis
- Rin/out shortcuts
 - Looking from drain
 - Looking from source
- GmRout method
- Basic amplifier topologies
 - Common Source (CS)
 - Common Gate (CG)
 - Common Drain (CD) Source Follower (SF)

☐ Large signal behavior

Basic Amplifier Topologies

	Common Source (CS)	Common Gate (CG)	Common Drain (CD) Source Follower (SF)
	R_D $v_{in} \circ v_{out}$ R_S	R_D v_{out} R_S	R_D $v_{in} \circ v_{out}$ R_S
	Voltage & current amplifier	Voltage amplifier Current buffer	Voltage buffer Current amplifier
In	G	S	G
Out	D	D	S

Common Source (CS)

$$G_m = \frac{i_{out,sc}}{v_{in}} \approx \frac{-g_m}{1 + (g_m + g_{mb})R_S}$$

$$R_{out} \approx R_D || r_o [1 + (g_m + g_{mb}) R_S]$$
$$A_v = G_m R_{out}$$

- \Box If R_D is ac o.c.: $A_v = -g_m r_o$
- $\Box \text{ If } R_S = 0: \qquad A_v = -g_m(R_D//r_o)$

Common Source (CS)

$$G_m = \frac{i_{out,sc}}{v_{in}} \approx \frac{-g_m}{1 + (g_m + g_{mb})R_S}$$

$$R_{out} \approx R_D || r_o [1 + (g_m + g_{mb})R_S]$$

$$A_v = G_m R_{out}$$

 \blacksquare If S and B are ac connected (for PMOS):

$$A_{v} \approx \frac{-R_{D}||R_{LFD}|}{\frac{1}{g_{m}} + R_{S}} = -\frac{Drain Res.}{\frac{1}{g_{m}} + Source Res.}$$

- \square If $R_S \gg \frac{1}{g_m} \& R_D \ll R_{LFD}$: $A_v \approx \frac{-R_D}{R_S} \rightarrow$ Linear gain!
- \square R_S reduces $G_m \rightarrow$ Source degeneration
 - But improves linearity

Common Gate (CG)

lacksquare Apply KCL at D noting that $v_{gs}=v_{bs}=0-v_{in}$

$$i_{out,sc} + (g_m + g_{mb})(-v_{in}) - \frac{v_{in}}{r_o} = 0$$

$$G_m = \frac{i_{out,sc}}{v_{in}} \approx g_m + g_{mb}$$

$$R_{out} \approx R_D || r_o (why?)$$

 $A_v = G_m R_{out}$

- \Box If R_D is ac o.c.: $A_v = (g_m + g_{mb})r_o$
- $\Box \text{ If } R_D \ll r_o: \qquad A_v \approx (g_m + g_{mb}) R_D$
- \square If S and B are ac connected: $(g_m + g_{mb}) \rightarrow g_m$
 - \blacksquare Note that $A_i = G_m R_{in} < \approx 1$ (Current Buffer)

Common Drain (CD) – Source Follower

lacktriangle Apply KCL at D

$$i_{out,sc} - g_m v_{in} + \frac{i_{out,sc} R_D}{r_o} = 0$$

$$G_m = \frac{i_{out,sc}}{v_{in}} \approx \frac{g_m}{1 + R_D/r_o}$$

$$R_{out} \approx R_S || \frac{1}{g_m + g_{mb}} \left(1 + \frac{R_D}{r_o} \right)$$
$$A_v = G_m R_{out}$$

- \blacksquare If S and B are ac connected (for PMOS):

 $A_{v} \approx 1$ (Voltage buffer)

Summary of Basic Topologies

	CS	CG	CD (SF)
	R_D $v_{in} \circ v_{out}$ R_S	R_D v_{out} R_S	R_D $v_{in} \circ V_{out}$ R_S
	Voltage & current amplifier	Voltage amplifier Current buffer	Voltage buffer Current amplifier
Rin	∞	$R_S \frac{1}{g_m + g_{mb}} \left(1 + \frac{R_D}{r_o}\right)$	∞
Rout	$R_D r_o[1+(g_m+g_{mb})R_S]$	$R_D r_o$	$R_S \frac{1}{g_m + g_{mb}} \left(1 + \frac{R_D}{r_o}\right)$
Gm	$\frac{-g_m}{1+(g_m+g_{mb})R_S}$	$g_m + g_{mb}$	$\frac{g_m}{1+R_D/r_o}$

Quiz

- ☐ The circuit below shows a CS amplifier With diode-connected load
- ☐ Find the gain using GmRout (ignore body effect and CLM).
 - Express the gain in terms of $(W/L)_1$ and $(W/L)_2$.
- ☐ This is a "linear" CS amplifier.

Quiz

- ☐ The circuit below shows a complementary CS amplifier (inverter amp).
- ☐ Find the gain using GmRout.

Outline

- Recapping previous key results
- Why amplifiers?
- Basic amplifier operation
- Basic amplifier analysis
- ☐ Rin/out shortcuts
 - Looking from drain
 - Looking from source
- GmRout method
- Basic amplifier topologies
 - Common Source (CS)
 - Common Gate (CG)
 - Common Drain (CD) Source Follower (SF)
- ☐ Large signal behavior

CS Amplifier Example

CS Large Signal Behavior

Time

CS Large Signal Behavior

- ☐ Gain is non-linear:
 - $\bullet \ A_{v} = f(V_{in})$
 - $g_m = f(V_{in})$
- lacksquare For linear gain, A_v should NOT be $f(V_{in})$
- \blacksquare A_v and g_m are max at edge of triode
 - But they are highly non-linear
 - And the available signal swing vanishes

06: Basic Amplifier Stages [Razavi, 2017]

Output Signal Swing

$$V_{out,max} = V_{DD} - V_{ov2}$$

$$V_{out,min} = V_{ov1} = V_{in,max} - V_{TH}$$

 \Box Output swing $\approx V_{DD} - 2V_{OV}$

CD Large Signal Behavior

- ☐ Why Source Follower?
 - Buffer
 - Level-shifter

06: Basic Amplifier Stages [Razavi, 2017] **51**

Thank you!

References

- ☐ A. Sedra and K. Smith, "Microelectronic Circuits," Oxford University Press, 7th ed., 2015
- ☐ B. Razavi, "Fundamentals of Microelectronics," Wiley, 2nd ed., 2014
- ☐ B. Razavi, "Design of Analog CMOS Integrated Circuits," McGraw-Hill, 2nd ed., 2017