Lecture 31.

A wave.

Transverse and Longitudinal waves.

A Wave

Demo: A Mechanical Wave

If we continuously drive the leftmost oscillator...

...we get a traveling wave! (continuously adding energy to the system)

Transverse wave: oscillations perpendicular to direction wave travels

Simulation of waves on a string

https://phet.colorado.edu/sims/html/wave-on-a-string/latest/wave-on-a-string en.html

A mechanical wave: Summary

- Many particles with a restoring force bringing each particle back to equilibrium if deflected (requires medium that will support this wave)
- The particles are coupled, so that the disturbance is transferred from one particle to another
- Disturbance needs a source

Note that the particles of the medium do not actually propagate (they oscillate about their equilibrium positions). What travels through the medium is a "disturbance" – some sort of signal

Mechanical waves can be transverse and longitudinal

Transverse wave:

http://www.youtube.com/watch?v=UHcse1jJAto

 oscillations are perpendicular to the direction wave travels Longitudinal wave:

http://www.youtube.com/watch?v=aguCWnbRETU

 oscillations are parallel to the direction wave travels

Visualizing Transverse and Longitudinal Waves

Transverse Wave

Longitudinal Wave

Density wave (alternating compressions and rarefactions)

Many physical systems act as coupled oscillators!

In a solid, each atom is in an equilibrium position...

...and is coupled to its neighbors by restoring electric forces => they are coupled oscillators!

Warm solid

Each atom (oscillator) has small random oscillations about its equilibrium position

But: we can also have coordinated (driven) oscillations due to macroscopic external forces

equilibrium: longitudinal vertical wave:

= sound wave in solid

Solids support both longitudinal (compression) waves and transverse (shear) waves

Example: S waves in earthquakes

Longitudinal faster "primary"

Transverse slower "secondary"

Simulation of 1D and 2D coupled oscillators

https://phet.colorado.edu/sims/html/normal-modes/latest/normal-modes_all.html

"Snapshot" graph

-8

> Picture of the wave at an instant in time

?

Simple Harmonic Oscillator:

$$x(t) = A \cdot \cos(\omega t + \phi)$$

angular frequency:
$$\omega = \frac{2\pi}{T}$$

"Snapshot" graph

> Picture of the wave at an instant in time

Snapshot of a wave:

$$D(x) = A \cdot \cos(kx + \phi)$$

wave number:
$$k = \frac{2\pi}{\lambda}$$

Simple Harmonic Oscillator:

$$x(t) = A \cdot \cos(\omega t + \phi)$$

angular frequency:
$$\omega = \frac{2\pi}{T}$$

Q: The picture shows a wave on a string at some time t=0. Which of the following represents the displacement of the string as a function of position at t=0?

$$D(x) = A \cos(kx+\phi) \quad k = \frac{2\pi}{\lambda}$$

A. 4 mm cos
$$\left(\frac{x}{1 m}\right)$$

B.
$$4 \text{ mm cos}(1 m \cdot x)$$

C. 4 mm
$$\cos\left(\frac{2\pi}{1 \, m} \cdot x\right)$$

D. 4 mm cos
$$\left(\frac{1 m}{2\pi} \cdot x\right)$$

E.
$$4 \text{ mm } \cos(x - 1 m)$$

Q: The picture shows a wave on a string at some time t=0. Which of the following represents the displacement of the string as a function of position at t=0?

Displacement (mm)

A. 4 mm cos
$$\left(\frac{x}{1 m}\right)$$

B.
$$4 \text{ mm cos}(1 m \cdot x)$$

C.
$$4 \text{ mm } \cos\left(\frac{2\pi}{1 m} \cdot x\right)$$

D. 4 mm
$$\cos\left(\frac{1 m}{2\pi} \cdot x\right)$$

E.
$$4 \text{ mm } \cos(x - 1 m)$$

Just like for D vs t in an oscillator, but here t is replaced by x and T is replaced by λ

So
$$D(x) = A \cdot \cos\left(\frac{2\pi}{\lambda} \cdot x\right)$$

$$D(x) = A \cos(kx + \phi)$$

A.
$$D(x) = 4 \text{ mm} \cdot \cos\left(\frac{2\pi}{1 m} \cdot x - 3 s\right)$$

B.
$$D(x) = 4 \text{ mm} \cdot \cos\left(\frac{2\pi}{1 m} \cdot x + 3 s\right)$$

C.
$$D(x) = 4 \text{ mm} \cdot \cos\left(\frac{2\pi}{1 m} \cdot x - \frac{\pi}{2}\right) \sqrt{1 m}$$

D.
$$D(x) = 4 \text{ mm} \cdot \cos\left(\frac{2\pi}{1 m} \cdot x + \frac{\pi}{2}\right)$$

E.
$$D(x) = 4 \text{ mm} \cdot \cos\left(\frac{2\pi}{1 m} \cdot x + \frac{2\pi}{3 s}\right)$$

Q: How will it change as the time goes?

Q: At t=0, the displacement as a function of position for the wave shown is $D(x)=4~\mathrm{mm}\cos\left(\frac{2\pi}{1~m}\cdot x\right)$. At $t=3~\mathrm{s}$, the wave has moved to the right, as shown in the second graph. The displacement as a function of position is now:

• Shifted
$$\frac{1}{4}$$
 period to the right, so phase is $-\frac{2\pi}{4} = -\frac{\pi}{2}$

A.
$$D(x) = 4 \text{ mm} \cdot \cos\left(\frac{2\pi}{1 m} \cdot x - 3 s\right)$$

B.
$$D(x) = 4 \text{ mm} \cdot \cos\left(\frac{2\pi}{1 m} \cdot x + 3 s\right)$$

C.
$$D(x) = 4 \text{ mm} \cdot \cos\left(\frac{2\pi}{1 m} \cdot x - \frac{\pi}{2}\right)$$

D.
$$D(x) = 4 \text{ mm} \cdot \cos\left(\frac{2\pi}{1 m} \cdot x + \frac{\pi}{2}\right)$$

E.
$$D(x) = 4 \text{ mm} \cdot \cos\left(\frac{2\pi}{1 m} \cdot x + \frac{2\pi}{3 s}\right)$$

Q: How will it change as the time goes?

• As the time goes, the phase will increase

