

Problem R-10E ($C_8H_{16}O_3$). IR Spectrum Neat

Problem R- provided.	10E $(C_8H_{16}O_3)$.	Determine the st	tructure of R-10E	from the 'H I	NIVIR, C INIV	ik and ik specif	а
(a) DBE	_ (b) What info	rmation can you	obtain from the I	R spectrum (ç	give frequenc	ey and peak assig	gnment).
(c) Interpret /alues. δ	the ¹³ C NMR s	pectrum, showing	g any part structu	res that can b	pe identified, a	and the correspo	nding δ
o 14.13	•						
17.68							
19.76							
22.40							
46.98 60.65							
72.47							
12.41							
	al at δ 2.7 in the		ım disappears wh tell you about the		e is shaken v	vith D ₂ O, and the	e signal
(d) The sign 3.9 becomes a (e) Analyze structure in the	al at δ 2.7 in the 1:3:3:1 quartet. the 1 H NMR sp	What does this ectrum. For each		structure?	ed on the spe	ectrum, report th	e multipl
(d) The sign 3.9 becomes a (e) Analyze	al at δ 2.7 in the 1:3:3:1 quartet. the 1 H NMR sp	What does this ectrum. For each	tell you about the	structure?	ed on the spe	ectrum, report th	e multipl
(d) The sign 3.9 becomes a (e) Analyze structure in the he signal(s).	al at δ 2.7 in the 1:3:3:1 quartet. the ¹ H NMR sp standard forma	What does this ectrum. For each	tell you about the holds of the groups of $J = 0.0, 0.0, 0.0$	structure?	ed on the spe	ectrum, report th	e multipl
(d) The sign 3.9 becomes a (e) Analyze structure in the he signal(s).	al at δ 2.7 in the 1:3:3:1 quartet. the ¹ H NMR sp standard forma	What does this ectrum. For each	tell you about the holds of the groups of $J = 0.0, 0.0, 0.0$	signals mark Hz, 2H) and	ed on the spe	ectrum, report th	e multipl
(d) The sign 3.9 becomes a structure in the he signal(s). A B C	al at δ 2.7 in the 1:3:3:1 quartet. the ¹ H NMR sp standard forma	What does this ectrum. For each	tell you about the	signals mark Hz, 2H) and	ed on the spe	ectrum, report th	e multip
(d) The sign 3.9 becomes a structure in the he signal(s). A B C D	al at δ 2.7 in the 1:3:3:1 quartet. the ¹ H NMR sp standard forma	ectrum. For each	tell you about the	signals mark Hz, 2H) and	ed on the spe	ectrum, report th	e multipl

5

4

Problem R-10E (C₈H₁₆O₃). Determine the structure of **R-10E** from the ¹H NMR, ¹³C NMR and IR spectra provided.

- 2 (a) DBE 1 (b) What information can you obtain from the IR spectrum (give frequency and peak assignment).
- 3500-3600 cm⁻¹ OH stretch 1730 cm⁻¹ Carbonyl stretch probably an ester
 - (c) Interpret the 13 C NMR spectrum, showing any part structures that can be identified, and the corresponding δ values.

(d) The signal at δ 2.7 in the ¹H NMR spectrum disappears when the sample is shaken with D₂O, and the signal δ 3.9 becomes a 1:3:3:1 quartet. What does this tell you about the structure?

O H 2.7
$$D_2O$$
 O CH D_2O Also possible: D_2O Also possible: D_2O D Quartet

(e) Analyze the ^{1}H NMR spectrum. For each of the groups of signals marked on the spectrum, report the multiplet structure in the standard format (e.g., 0.0 δ , dtd, J = 0.0, 0.0, 0.0 Hz, 2H) and any **part structure** you could obtain from the signal(s).

$$\delta$$
 1.15, 1H, d, J = 7Hz CH₃-C

- Δ 1.17, 1.18 possible two methyl singlets, or isopropyl (J = 5 Hz a little small)
- 6 B δ 1.27, 3H, t, J = 7Hz $C\underline{H}_3$ - CH_2 -
 - C $\frac{\delta 2.70, 1H, t, J = 7 Hz O H}{}$
 - D δ 3.86, 1H, pentet, J = 7 Hz CH_3 -C-OH
 - $E = \frac{\delta 4.17, 2H, q, J = 7 Hz O CH_2 CH_3}{\delta 4.17, 2H, q}$
 - (f) Give your answer below. If more than one structure fits the data, draw them, but indicate your best choice by circling the structure

10

Problem R-10E $(C_8H_{16}O_3)$. IR Spectrum Neat

Source: Nicolet FT-IR

