Poznámka Topology...

1 Locally convex spaces

Definice 1.1 (Topological vector space (TVS))

A Topological vector space over \mathbb{F} is a pair (X, τ) , where X is a vector space over \mathbb{F} and τ is a topology on X with the following two properties:

- 1. The mapping $(x,y) \mapsto x + y$ is a continuous mapping of $X \times X$ into X;
- 2. The mapping $(t, x) \mapsto tx$ is a continuous mapping of $\mathbb{F} \times X$ into X;

We also denote Hausdorff topological vector space by HTVS. And the symbol $\tau(\mathbf{o})$ will denote the family of all the neighbourhoods of \mathbf{o} in (X, τ) .

Definice 1.2 (Locally convex (LCS, HLCS))

Let (X, τ) be a TVS. The space X is said to be locally convex, if there exists a base of neighbourhoods of zero consisting of convex sets.

Poznámka

Two homework (in Moodle) and one presentation.

Tvrzení 1.1 (Observation)

If (X, τ) is a LCS, then τ is translation invariant $(U \subset X, x \in X \implies (U \in \tau \Leftrightarrow x + U \in \tau))$. Hence τ is determined by $\tau(\mathbf{o})$.

Definice 1.3 (convex, symmetric, balanced, absolutely convex, and absorbing set)

X is a vector space, $A \subset X$. Then A is

- convex if $tx + (1 t)y \in A$ for $x, y \in A$, $t \in [0, 1]$;
- symmetric if A = -A;
- balanced if $\alpha A \subset A$ for $\alpha \in \mathbb{F}$, $|\alpha| \leq 1$;
- absolutely convex if it is convex and balanced;
- absorbing if $\forall x \in X \ \exists t > 0 : \{sX | s \in [0, t]\} \subset A$.

Definice 1.4

co(A) = convex hull, b(A) = balanced hull, aco(A) = absolutely convex hull.

Tvrzení 1.2

X is a metric space over \mathbb{F} , $A \subset X$. Then:

- (a) If $\mathbb{F} = \mathbb{R}$, it holds A is absolutely convex \Leftrightarrow A is convex and symmetric.
- (b) co $A = \{t_1 x_1 + \ldots + t_k x_k | x_1 \ldots x_k \in A, t_1 \ldots t_k \ge 0, t_1 + \ldots + t_k = 1, k \in \mathbb{N}\}.$
- (c) $b(A) = {\alpha x | x \in A, \alpha \in \mathbb{F}, |\alpha| \leq 1}.$
- (d) aco(A) = co(b(A)).
- (e) A is convex \Leftrightarrow (s+t)A = sA + tA for all s, t > 0.

Důkaz (a)

" \Longrightarrow ": trivial (and it also holds for $\mathbb{F} = \mathbb{C}$). " \Longleftarrow ": Assume A is convex and symmetric. We show that A is balanced:

$$x \in A, \alpha \in \mathbb{R}, |\alpha| \leq 1 \implies \alpha \in [-1, 1].$$

And $x \in A, -x \in A$, so the segment from x to -x is contained in A ($\alpha x = \frac{1-\alpha}{2}(-x) + \frac{(1+\alpha)}{2}x \in A$).

Důkaz (b)

 $,\subseteq$ ": by induction on k:

$$t_1x_1 + \ldots + t_{k+1}x_{k+1} = (t_1 + \ldots + t_k)\frac{t_1x_1 + \ldots + t_kx_k}{t_1 + \ldots + t_k} + t_{k+1}x_{k+1}.$$

,,, ⊇": the set on the RHS is convex and contain A.

Důkaz (c)

,,,=": clear. ,,,=": RHS is a balanced set.

 $D\mathring{u}kaz$ (d)

"⊇": clear. "⊆" the set on the RHS is absolutely continuous (Clearly RHS is convex. "balanced": using (b) and (c):

$$co(b(A)) = \{t_1 \alpha_1 x_1 + \dots + t_k \alpha_k x_k | x_1, \dots, x_k \in A, |\alpha_j| \le 1, t_j \ge 0, t_1 + \dots + t_k = 1\}$$

is clearly balanced.)

Důkaz (e)

$$\Rightarrow$$
 ": $=$ ": always, $=$ ": $sa_1 + ta_2 = (s+t) \cdot (\frac{s}{s+t}a_1 + \frac{t}{s+t}a_2)$.

": in particular $\forall t \in (0,1)$: $tA + (1-t)A \subset A$, it is the definition of convexity.

Tvrzení 1.3

Let (X, τ) be a LCS, $U \in \tau(\mathbf{o})$. Then

- (i) U is absorbing.
- (ii) $\exists V \in T(0) : V + V \subset U$.
- (iii) $\exists V \in \tau(\mathbf{o})$ absolutely convex, open: $V \subset U$.

Důkaz (i)

$$x \in X \implies 0 \cdot x = \mathbf{o} \in U \implies \exists V \text{ a neighbourhood of } 0 \text{ in } \mathbb{F} : V \cdot x \subset U \implies \exists t > 0 : [0, t] \subset V.$$

Důkaz (ii)

 $\mathbf{o} + \mathbf{o} = \mathbf{o} \in U \implies \exists W_1, W_2 \text{ neighbourhoods of } \mathbf{o} : W_1 + W \subset U.$

Take
$$V = W_1 \cap W_2$$
.

 $D\mathring{u}kaz$

$$\exists U_0 \in \tau(\mathbf{o}) \text{ convex}, U_0 \subset U : \mathbf{o} \cdot \mathbf{o} = \mathbf{o} \in U_0 \implies \exists c > 0 \ \exists W \in \tau(\mathbf{o}) \text{ open} :$$

 $\forall \lambda, |\lambda| < c : \lambda W \subset U_0.$

 $V_1 := \bigcup_{0<|\lambda|<1} \lambda W$. Then $V_1 \in \tau(0)$ open, balanced, $V_1 \subset U_0$. Let $V := \operatorname{co} V_1$. Then V is absolutely convex (the previous proposition (d)), $V \subset U_0 \subset U$ (as V_0 is convex). $V \in \tau(\mathbf{o})$ as $V \supset V_1$. "V is open":

$$V = \bigcup \{t_1 x_1 + \ldots + t_n x_n + t_{n+1} V_1 | t_1, \ldots, t_{n+1} \ge 0, t_1 + \ldots + t_{n+1} = 1, x_1, \ldots, x_n \in V_1\}$$

Věta 1.4

- 1. Let (X, τ) be a LCS. Then there is \mathcal{U} , a base of neighbourhoods of \mathbf{o} with properties:
 - the elements of \mathcal{U} are absorbing, open, absolutely convex;
 - $\forall U \in \mathcal{U} \ \exists V \in \mathcal{U} : 2V \subset U$.

If X is Hausdorff, then $\bigcap \mathcal{U} = \{\mathbf{o}\}.$

2. Let X be a vector space, \mathcal{U} a nonempty family of subsets of X satisfying:

- the elements of \mathcal{U} are absorbing and absolutely convex;
- $\forall U \in \mathcal{U} \ \exists V \in \mathcal{U} : 2V \subset U;$
- $\forall U, V \in \mathcal{U} \exists W \in \mathcal{U} : W \subset U \cap V$.

Then there is a unique topology τ on X such that (X,τ) is LCS and \mathcal{U} is a base of neighbourhoods of \mathbf{o} . Further, if $\bigcap \mathcal{U} = \{\mathbf{o}\}$, the τ is Hausdorff.

Důkaz (1.)

Let \mathcal{U} be the family of all open absolutely convex neighbourhoods of \mathbf{o} . The previous proposition (iii) gives us \mathcal{U} is a base of neighbourhoods of \mathbf{o} , (1) gives us elements of \mathcal{U} are absorbing, so the first item holds. (ii) gives us $U \in \mathcal{U} \implies \frac{1}{2}U \in \mathcal{U}$.

Assume X i Hausdorff: $x \in X \setminus \{\mathbf{o}\} \stackrel{\text{Hausdorff}}{\Longrightarrow} \exists U \in \tau(\mathbf{o}) : x \notin U \implies \exists V \in \mathcal{U} : V \subset U : x \notin V.$

Důkaz (2.)

Set $\tau = \{G \subset X | \forall x \in G \ \exists U \in \mathcal{U} : x + U \subset G\}$. This is a unique possibility so uniqueness is clear.

" τ is topology": \emptyset , $X \in \tau$ and τ is closed to arbitrary union (clear). τ is closed to finite intersections by third item $(G_1, g_2 \in \tau, x \in G_1 \cap G_2 \dots U_1, U_2 \in \tau, x + U_1 \subset G_1, x + U_2 \subset G_2; \exists V \in \mathcal{U} : V \subset U_1 \cap U_2$, then $x + V \subset (x + U_1) \cap (x + U_2) \subset G_1 \cap G_2 \Longrightarrow G_1 \cap G_2 \in \tau$).

"Elements of \mathcal{U} are neighbourhoods of \mathbf{o} ": $U \in \mathcal{U}$. $V := \{x \in U | \exists W \in \mathcal{U} : x + W \subset U\}$. Then $V \subset U$, $0 \in V$ (take W = U). $V \in \tau$ ($x \in V \implies \exists W \in \mathcal{U} : x + W \subset U$; let $\tilde{W} \in \mathcal{U}$ such that $2\tilde{W} \subset W$, then $x + \tilde{W} \subset V$, because $y \in \tilde{W} \implies X + y + \tilde{W} \subset x + \tilde{W} + \tilde{W} \subset x + W \subset U$).

 \mathcal{U} is a base of neighbourhood of \mathbf{o} ": now clear.

$$\implies \mu y - \lambda x = \underbrace{\left(\mu - \lambda\right)y}_{(\mu - 1) \cdot \left(\mu + \frac{1}{|\lambda| + 1}\right)V} + \underbrace{\lambda\left(y - x\right)}_{\in \frac{\lambda}{|\lambda| + 1}V \subset V}.$$

"Local convexity": by first item: $\forall U \in \mathcal{U} : U$ is convex.

Assume $\bigcap \mathcal{U} = \{\mathbf{o}\}$. Take $x, y \in X, x \neq y \implies x - y \neq \mathbf{o} \implies \exists U \in \mathcal{U} : x - y \notin U$. Take $V \in \mathcal{U} : 2V \subset U$. Then if $(x + V) \cap (y + V) = \emptyset$, $x + v_1 = y + v_2$, $x - y = v_2 - v_1 \in V + V = 2V \subset U$ 4.

Věta 1.5 (On the topology generated by a family of seminorms)

Let X be a vector space and let \mathcal{P} be a family of seminorms on X. The there is a unique topology τ on X such that (X,τ) is a LCS and

$$\mathcal{U} = \{ \{ x \in X | p_1(x) < c_1, \dots, p_k(x) < c_k \} | p_1, \dots, p_k \in \mathcal{P}, c_1, \dots, c_k > 0 \}$$

is a base of neighbourhood of **o**.

$$(X, \tau)$$
 is Hausdorff $\Leftrightarrow \forall x \in X \setminus \{\mathbf{o}\} \ \exists p \in \mathcal{P}, p(x) > 0.$

Důkaz

Use the previous theorem 2. on \mathcal{U} : The sets are absolutely convex (by properties of seminorms). "Absorbing": $U = \{x \in X | p_1(x) < c_1, \ldots, p_k(x) < c_k\}$. Take $x \in X$?, $j \in [k]$. Then $p_j(x) \in (0, \infty)$ as for t > 0: $p_j(t \cdot x) = t \cdot p_j)_x$ and $\exists c > 0$ such that $c \cdot p_j(x) < c_j$ for $j \in [k]$. Now for $t \in [0, c]$: $tx \in U$.

$$U = \{x \in X | p_1(x) < c_1, \dots, p_k(x) < c_k\}$$
. Take $V = \{x \in X | p_1(x) \subset \frac{c_1}{2}, \dots, p_k(x) < \frac{c_k}{2}\}$.

$$U, V \in \mathcal{U} \implies U \cap V \in \mathcal{U}$$
 trivially.

"Hausdorffness":

$$\bigcap U = \{x \in X | \forall p \in \mathcal{P} : p(x) = 0\}.$$

"⊇" clear. "⊆": Assume $y \in X, \ p \in \mathcal{P}: p(y) > 0$: $U = \{x \in X | p(x) < p(y)\} in\mathcal{U} \implies y \notin U$.

Například

 $(X, \|\cdot\|)$ is a normed space, then its topology is generated by $\mathcal{P} = \{\|\cdot\|\}$.

The topology on \mathbb{F}^{Γ} is generated by seminorms $p_{\gamma}(f) = |f(\gamma)|, f \in \mathbb{F}^{\Gamma} \ (\gamma \in \Gamma).$

 $C(\mathbb{R},\mathbb{F})$ + topology is generated by this sequence of seminorms: $p_N(f) = \max_{x \in [-N,N]} |f(x)|$.

Definice 1.5 (Minkowski functional)

X vector space, $A \subset X$ convex absorbing. Then Minkowski functional of set A is defined by the formula $p_A(x) := \inf \{ \lambda > 0 | x \in \lambda \cdot A \}$.

Lemma 1.6

Let X be LCS, $A \subset X$ convex set.

$$x \in \overline{A}, y \in \operatorname{int} A \implies \{tx + (1-t)y | t \in [0,1)\} \subset \operatorname{int} A.$$

WLOG y = 0. t = 0 clear, $0 \in \text{int } A$. $t \in (0, 1)$:

Fix U, an open absolutely convex neighbourhood of \mathbf{o} such that $U \subset A$. Then $x + \frac{1-t}{t}U$ is a neighbourhood of $x \implies \exists z \in \left(x + \frac{1-t}{t}U\right) \cap A$, i.e. $\exists m \in U \ z = x + \frac{1-t}{t}m \implies -m \in U \subset m + A$. Find V an absolutely convex open neighbourhood of \mathbf{o} such that $-m + V \subset U \subset A \implies tz + (1-t)(-m+V) \subset A$ (an open set containing tx). (Because tx = tz - (1-t)a.) And that's it.

Tvrzení 1.7 (on the Minkowski functional of a convex neighborhood of zero)

Let X be LCS, $A \subset X$ a convex neighbourhood of **o**. Then:

Clearly: $[p_A \subset 1] \subset A \subset [p_A \leqslant 1]$.

 $D\mathring{u}kaz$

 $[p_a < 1] = \text{int } A^{\text{": }}, \subseteq \text{": } p_A(x) < 1 \implies \exists c > 1 \text{ such that } cx \in A \implies x = \frac{1}{c}cx \in \text{int } A.$ $[x] = \text{int } A \implies \exists U \in \tau(\mathbf{o}) : x + U \subset A.$ $[x] = \exists C > 1 \text{ such that } cx \in A \implies x = \frac{1}{c}cx \in \text{int } A.$ $[x] = \text{int } A \implies \exists U \in \tau(\mathbf{o}) : x + U \subset A.$ $[x] = \exists C > 1 \text{ such that } cx \in A \implies \exists C \in A \text{ such that } cx \in A \implies \exists C \in A \text{ such that } cx \in A \implies \exists C \in A \text{ such that } cx \in A \implies \exists C \in A \text{ such that } cx \in A \implies \exists C \in A \text{ such that } cx \in A \implies \exists C \in A \text{ such that } cx \in A \implies \exists C \in A \text{ such that } cx \in A \implies \exists C \in A \text{ such that } cx \in A \implies \exists C \in A \text{ such that } cx \in A \implies \exists C \in A \text{ such that } cx \in A \implies \exists C \in A \text{ such that } cx \in A \implies \exists C \in A \text{ such that } cx \in A \implies \exists C \in A \text{ such that } cx \in A \implies \exists C \in A \text{ such that } cx \in A \implies \exists C \in A \text{ such that } cx \in A \implies \exists C \in A \text{ such that } cx \in A \implies \exists C \in A \text{ such that } cx \in A \implies$

$$, [p_A \leqslant 1] = \overline{A}": \, , \subseteq ": \, p_A(x) \leqslant 1 \implies \forall n \in \mathbb{N} : \, p_x\left(\left(1 - \frac{1}{n}\right)x\right) = \left(1 - \frac{1}{n}\right)p_A(x) \leqslant 1. \\
 \left(1 - \frac{1}{n}\right)x \in \operatorname{int} A \implies x \in \operatorname{\overline{int}} A \subset \overline{A}. \, , \supseteq ": \, x \in \overline{A} \implies \forall n \in \mathbb{N} : \left(1 - \frac{1}{n}\right)x \in \operatorname{int} A, \, \operatorname{so}, \\
 p_A\left(\left(1 - \frac{1}{n}\right)x\right) < 1 \stackrel{n \to \infty}{\Longrightarrow} p_A(x) \leqslant 1.$$

 p_A is continuous on X.

 $D\mathring{u}kaz$

 $[p_A < c] = \emptyset$ if $c \le 0$ and $c \cdot \text{int } A$ if c > 0. $[p_A > c] = X$ if c < 0, $X \setminus (c \cdot \overline{A})$ if c > 0, and $\bigcup_{t>0} X \setminus t\overline{A}$ if c = 0. All these sets are open.

 $p_A = p_{\overline{A}} = p_{\text{int }A}.$

 $D\mathring{u}kaz$

 $\inf A \subset A \subset \overline{A} \Longrightarrow p_{\overline{A}} \leqslant p_A \leqslant p_{\text{int }A}. \text{ "Conversely": Assume that } p_{\overline{A}}(x) < c \Longrightarrow \exists d < c : x \in d \cdot \overline{A} \Longrightarrow \forall n \in \mathbb{N} : \left(1 - \frac{1}{n}\right) x \in d \text{ int } A \Longrightarrow \left(1 - \frac{1}{n}\right) p_{\text{int }A}(x) \leqslant d \Longrightarrow p_{\text{int }A}(x) \leqslant d < c.$

Důsledek

Any LCS (X) is completely regular.

Důkaz

 $x \in X$, U an open neighbourhood of x. Take V a convex neighbourhood of \mathbf{o} such that $x + V \in U$. $f(y) := \min\{1, p_V(y - x)\}$. The f is continuous by the previous proposition, f(x) = 0.

$$y \in X \setminus U \implies y - x \notin V \implies p_V(y - x) \geqslant 1 \implies f(y) = 1.$$

Věta 1.8 (On generating of locally convex topologies)

Let (X, τ) be a LCS. Let \mathcal{P}_{τ} be the family of all continuous seminorms on (X, τ) . Then topology generated by \mathcal{P}_{τ} coincides with τ .

 $D\mathring{u}kaz$

Let τ_1 be topology induced by \mathcal{P}_{τ} . $\tau_1 \subset \tau$ (seminorms from \mathcal{P}_{τ} are τ -continuous, hence the sets from theorem 5? are τ -open). " $\tau \subset \tau_1$ ": Let $U \in \tau(\mathbf{o}) \Longrightarrow \exists V$ a neighbourhood of \mathbf{o} such that $V \subset U$. The $p_V \in \mathcal{P}_{\tau}$ (from the previous proposition is continuous) \Longrightarrow $[p_V < 1] = V \subset U \Longrightarrow U \in \tau_1(\mathbf{o})$.

Tvrzení 1.9

X a vector space.

- 1. p is seminorm $\implies [p < 1]$ is absolutely convex, absorbing, and $p_{[p < 1]} = p$.
- 2. p,q are seminorms, then $p \leq q \Leftrightarrow [p < 1] \supset [q < 1]$.
- 3. \mathcal{P} a set of seminorms generated by a topology τ . p a seminorm on X. Then p is τ -continuous $\Leftrightarrow \exists p_1, \ldots, p_k \in \mathcal{P} \ \exists c > 0 : p \leqslant c \cdot \max\{p_1, \ldots, p_k\}.$

 $D\mathring{u}kaz$ (1.)

Absolutely convex and absorbing is clear.

$$p_{[p<1]}(x) = \inf\{\lambda > 0 | x \in \lambda[p<1]\} = \inf\{\lambda > 0 | x \in [p<\lambda]\} = p(x).$$

Důkaz (2.)

 \implies "trivial. \implies = ": $[p < 1] \supset [q < 1] \implies p = p_{[p < 1]} \leqslant p_{[q < 1]} = q$.

 $D\mathring{u}kaz$ (3.) " \Leftarrow ": $A := [p < 1] \implies A \supset [c \cdot \max\{p_1, \dots, p_k\} < 1] = [p_1 < \frac{1}{c}, \dots, p_k < \frac{1}{c}]$, which is a τ -open set $\implies A$ is a neighbourhood of $\mathbf{o} \implies p = p_A$ is continuous (by 1. and the previous proposition).

1.1 Continuous and bounded linear mapping

Tvrzení 1.10

 $(X,\tau),(Y,\mathcal{U})$ LCS, $L:X\to Y$ linear. Then the following assertions are equivalent:

- 1. L is continuous;
- 2. L is continuous at **o**;
- 3. L is uniformly continuous.

 $D\mathring{u}kaz$

"1. \Longrightarrow 2." trivial, "2. \Longrightarrow 3." assume L continuous at \mathbf{o} . Then, given $U \in \mathcal{U}(\mathbf{o})$, there is $V \in \tau(\mathbf{o})$ such that $L(V) \subset U$. Take $x,y \in X$ such that $x-y \in V$. Then $L(x) - L(y) = L(x-y) \in U$ and that's continuous. "3. \Longrightarrow 1." trivial.

Tvrzení 1.11

 $L: X \to Y$ linear. L is continuous $\Leftrightarrow \forall q$ a continuous seminorm on $Y \exists p$ a continuous seminorm on $X: \forall x \in X: q(L(x)) \leqslant p(x)$.

 $D\mathring{u}kaz$

" \Longrightarrow ": L continuous, q a continuous seminorm on Y, the p(x)=q(L(x)) is a continuous seminorm on X. " \Longleftrightarrow ": By the previous proposition it is enough "L is continuous at \mathbf{o} ": U neighbourhood of \mathbf{o} in Y, $\exists V \subset U$ an absolutely convex neighbourhood of \mathbf{o} . $q:=p_V$ is a continuous seminorm. Let p be a continuous seminorm on X such that $q \circ L \leqslant p$. W:=[p<1] a neighbourhood of \mathbf{o} in X and $L(W) \subset V \subset U$. $x \in W \Longrightarrow p(x) < 1 \Longrightarrow q(L(x)) < 1 \Longrightarrow L(x) \in V \subset U$.

Tvrzení 1.12

Let (X, τ) be a LCS over \mathbb{F} and let $L: X \to \mathbb{F}$ be a linear mapping. Then the following assertions are equivalent:

- L is continuous;
- Ker L is a closed subspace of X;
- there exists $U \in \tau(\mathbf{o})$ such that L(U) is a bounded subset of \mathbb{F} .

If \mathcal{P} is a family of seminorms generating the topology of X, the continuity of L is also equivalent to

```
\exists p_1, \dots, p_k \in \mathcal{P} \ \exists c > 0 \ \forall x \in X : |L(x)| \leq c \cdot \max \{ p_1(x), \dots, p_k(x) \}.
```

If L is discontinuous, then $\operatorname{Ker} L$ is a dense subspace of X

Důkaz TODO!!!

Definice 1.6

Let (X, τ) be a LCS and let $A \subset X$. The set A is said to be bounded in (X, τ) , if for any $U \in \tau(\mathbf{o})$, there exists $\lambda > 0$ such that $A \subset \lambda U$.

Lemma 1.13

Let (X, τ) be a LCS and let $A \subset X$. Then the set A is bounded in X if and only if each continuous seminorm p on X is bounded on A. (It is enough to test it for a family of seminorms generating the topology of X.)

Důkaz TODO!!!

Tvrzení 1.14

Let (X, τ) and (Y, σ) be LCS over \mathbb{F} and let $L: X \to Y$ be a linear mapping. Consider the following two assertions: 1. L is continuous. 2. for any bounded subset $A \subset X$ its image L(A) is bounded in Y (i.e., L is a bounded mapping).

Then 1. \Longrightarrow 2.. In case τ is generated by a translation invariant metric on X, then 1. \Leftrightarrow 2..

Důkaz TODO!!!

Definice 1.7 (Isomorphism, isomorphic LCS)

Let (X, τ) and (Y, σ) be LCS over \mathbb{F} and let $L: X \to Y$ be a linear mapping. Then mapping L is said to be an isomorphism of X into Y, if L is continuous, one-to-one and L^{-1} is continuous on L(X); and isomorphism of X onto Y if L is continuous, one-to-one, onto and L^{-1} is continuous on Y.

1.2 Spaces of finite and infinite dimension

Tvrzení 1.15

Let X be a HLCS of finite dimension. If Y is any LCS and $L: X \to Y$ is any linear mapping, then L is continuous. The space X is isomorphic to \mathbb{F}^n , where $n = \dim X$.

 $D\mathring{u}kaz$

If dim X = 0, i.e., $X = \{\mathbf{o}\}$, it is trivial. Assume $n := \dim X \in \mathbb{N}$. Fix a basis x_1, \ldots, x_n of X. Define $T : (F^n, \|\cdot\|_2) \to X$ by $T(\lambda_1, \ldots, \lambda_n) = \lambda_1 x_1 + \ldots + \lambda_n x_n$.

T is clearly a linear bijection of \mathbb{F}^n onto X (since x_1, \ldots, x_n is a basis). "T is continuous":

1. The mapping $(\lambda_1, \ldots, \lambda_n) \mapsto \lambda_j$ is continuous $\mathbb{F}^n \to \mathbb{F}$ for each j. 2. $\forall x \in X$ the mapping $x \mapsto \lambda \cdot x$ is continuous $\mathbb{F} \to X$. 3. By composition $(\lambda_1, \ldots, \lambda_n) \mapsto \lambda_j \cdot x_j$ is continuous $\mathbb{F}^n \to X$.

Hence T is the sum of n continuous mappings $\mathbb{F}^n \to X$. It is enough to show that the sum of two continuous mapping is continuous and use mathematical induction: " Ω topological space, X LCS, $f_1, f_2 : \Omega \to X$ continuous $\Longrightarrow f_1 + f_2$ is continuous": $t \in \Omega$ arbitrary, let $G \subset X$ be open such that $f_1(t) + f_2(t) \in G \Longrightarrow \exists U$ neighbourhood of \mathbf{o} : $V + V \subset U$. f_i continuous at $t \Longrightarrow \exists W_i$ open in Ω , $t \in W_i$: $f_i(W_i) \subset f_i(t) + V$. $W := W_1 \cap W_2$ open in Ω , $t \in W$. $s \in W \Longrightarrow f_1(s) + f_2(s) \in f_1(t) + V + f_2(t) + V \subset f_1(t) + f_2(t) + U \subset G$.

So T is continuous. T^{-1} is continuous as well": S_{F^n} the sphere of \mathbb{F}^n is compact in $\mathbb{F}^n \Longrightarrow T(S_{F^n})$ is compact in X. X Hausdorff $\Longrightarrow T(S_{F^n})$ is closed. Clearly $\mathbf{o} \notin T(S_{\mathbb{F}^n})$ (T is a linear bijection and $\mathbf{o} \notin S_{F^n}$) $\Longrightarrow \exists U$ an absolutely convex neighbourhood of \mathbf{o} in X such that $U \cap T(S_{\mathbb{F}^n}) = \emptyset$. We clam that $U \subset T(U_{\mathbb{F}^n})$ (open unit ball). Assume $x \in U \setminus T(U_{\mathbb{F}^n}) \Longrightarrow z := T^{-1}(X)$ satisfies $\|z\|_2 \geqslant 1$. Then $\frac{z}{\|z\|_2} \in S_{\mathbb{F}^n}$, $T\left(\frac{z}{\|z\|_2}\right) = \frac{1}{\|z\|_2} \cdot T(z) = \frac{1}{\|z\|_2} \cdot x \in U$ (U is balanced) $\Longrightarrow \frac{1}{\|z\|_2} \cdot x \in U \cap T(S_{\mathbb{F}^n})$ a contradiction. So T^{-1} is continuous at \mathbf{o} ($(T^{-1})^{-1}(U_{\mathbb{F}})$ is a neighbourhood of \mathbf{o} and the same for all multiplies).

 $\implies T^{-1}$ is continuous. So, T is an isomorphism and second part is proven.

By the second part WLOG $X = \mathbb{F}^n$. Let $L : \mathbb{F}^n \to Y$ be linear, Y LCS. Let e_1, \ldots, e_n be the canonical basis of \mathbb{F}^n . Then $L(\lambda_1, \ldots, \lambda_n) = \lambda_1 L(e_1) + \ldots + \lambda_n L(e_n)$. This is continuous (by the same argument as in the second part for T).

Důsledek

Let X be a HLCS. Then any its finite-dimensional subspace is closed.

Definice 1.8

Let (X, τ) be a LCS and let $A \subset X$. Then set A is said to be totally bounded (or precompact), if for any $U \in \tau(\mathbf{o})$ there exists a finite set $F \subset X$ such that $A \subset F + U$.

Poznámka

Any compact set in any LCS is totally bounded. Any totally bounded set is bounded.

Lemma 1.16

Let (X,τ) be a LCS and let $A \subset X$. Then following assertions are equivalent:

- 1. A is totally bounded in X.
- 2. A is totally bounded in (X, p), for any continuous seminorm p on X.
- 3. For any continuous seminorm p on X and any sequence (x_n) in A there is a subsequence x_{n_k} which is Cauchy with respect to p, i.e. $\forall \varepsilon > 0 \ \exists k_0 \ \forall k, l \geqslant k_0 : p(x_{n_k} x_{n_l}) < \varepsilon$.

Důkaz TODO!!!

Věta 1.17

Let X be a HLCS. Then following assertions are equivalent:

- 1. $\dim X < \infty$.
- 2. There exists a compact neighbourhood of zero in X.
- 3. There exists a totally bounded neighbourhood of zero in X.

Důkaz

"1. \Longrightarrow 2." by the proposition above. "2. \Longrightarrow 3." trivial. "3. \Longrightarrow 1.": Let U be an absolutely convex totally bounded open neighbourhood of \mathbf{o} . Then $\frac{1}{2}U$ is also a neighbourhood of \mathbf{o} , so, there is $F \subset X$ finite with $U \subset F + \frac{1}{2}U$. Set $Y := \operatorname{LO} F$. We claim that Y = X.

" $\forall n \in \mathbb{N} : U \subset Y + 2^{-n} \cdot U$ ": By induction: n = 1 follows by the previous. $n \mapsto n + 1$: suppose $U \subset Y + 2^{-n} \cdot U$. Then

$$U \subset Y + 2^{-n} \cdot U = Y + 2^{-n+1} \cdot \left(\frac{1}{2}U\right) \subset Y + 2^{-n+1} \left(\frac{1}{2}\left(Y + \frac{1}{2}U\right)\right) = 0$$

$$= Y + 2^{-n+1} \left(Y + \frac{1}{4} \cdot U \right) = Y + 2^{-n+1} \cdot Y + 2^{-n-1} \cdot U = Y + 2^{-n-1} \cdot U.$$

(Y is linear subspace.)

If $Y \neq X$, then $\exists x \in X \backslash Y$. Since U is absorbing $\exists t > 0$ such that $tx \in U$. So $U \backslash Y \neq \emptyset$. Fix $x \in U \backslash Y$. X Hausdorff, dim $Y < \infty \implies Y$ is closed. Hence there is V, an absolutely convex neighbourhood of \mathbf{o} such that $x + V \subset U \backslash Y$.

Since U is totally bounded, it is also bounded, so $\exists n \in \mathbb{N} : U \subset 2^n \cdot V$, i.e. $\frac{1}{2^n} \cdot U \subset V$. It follows that $x + \frac{1}{2^n} \cdot U \cap Y = \emptyset \implies x \notin Y + \frac{1}{2^n} \cdot U$. So, $x \in U \setminus (Y + \frac{1}{2^n} \cdot U)$, a contradiction.

1.3 Metrizability of locally convex spaces

Tvrzení 1.18

1. Let (X,τ) be a metrizable LCS. Then the topology τ is generated by a sequence of seminorms (p_n) satisfying $p_1 \leq p_2 \leq p_3 \leq \ldots$

2. Let X be a vector space and let (p_n) be a sequence of seminorms on X satisfying conditions: $p_1 \leq p_2 \leq p_3 \leq \ldots$ and $\forall x \in X \setminus \{\mathbf{o}\} \exists n : p_n(x) > 0$. Then

$$\varrho(x,y) := \sum_{n=1}^{\infty} \frac{1}{2^n} \min\{1, p_n(x-y)\}, \quad x, y \in X$$

is a translation invariant metric on X which generates the locally convex topology on X generated by the sequence of seminorms (p_n) . Moreover, given a sequence (x_k) in X we have $\varrho(x_k, x) \to 0 \Leftrightarrow \forall n \in \mathbb{N} : p_n(x_n - x) \to 0$; and the sequence (x_k) is Cauchy in ϱ if and only if it is Cauchy in each of the seminorms p_n .

 $D\mathring{u}kaz$

TODO!!!

Věta 1.19 (On metrizability of LCS)

Let (X, τ) be a HLCS. Then the following assertions are equivalent:

- 1. X is metrizable (i.e., the topology τ is generated by a metric on X).
- 2. There exists a translation invariant metric on X generating the topology τ .
- 3. There exists a countable base of neighbourhoods of \mathbf{o} in (X, τ) .
- 4. The topology τ is generated by a countable family of seminorms.

$D\mathring{u}kaz$

"2. \Longrightarrow 1." trivial. "1. \Longrightarrow 3." if ϱ a metric generating τ , then $U_n = \{x \in X | \varrho(x,0) < \frac{1}{n}\}$ \Longrightarrow $(U_n)_n$ is a base of neighbourhoods of \mathbf{o} . "3. \Longrightarrow 4.": (see the proof of the previous proposition, 1.) (U_n) base of neighbourhood of \mathbf{o} , take $V_n \subset U_n$ absolutely convex neighbourhood of \mathbf{o} , $p_n = p_{V_n} \Longrightarrow (p_n)$ generate τ . "4. \Longrightarrow 2.": the previous proposition 2.

Věta 1.20 (A characterization of normable LCS)

 (X,τ) is HLCS. X is normable $\Leftrightarrow \exists U$, a bounded neighbourhood of \mathbf{o} .

$D\mathring{u}kaz$

" \Longrightarrow ": τ generated by $\|\cdot\|$, $U:=\{x\in X|\|x\|<1\}$ is a bounded neighbourhood of ${\bf o}.$

" \Leftarrow ": U bounded neighbourhood of \mathbf{o} . WLOG U is absolutely convex. Then $\frac{1}{n}U$, $n \in \mathbb{N}$ is a base of neighbourhoods of \mathbf{o} (V neighbourhood of \mathbf{o} , $W \subset V$ an absolutely convex neighbourhood of $\mathbf{o} \implies \exists \lambda > 0 : U \subset \lambda W$ Take $n \in \mathbb{N}$ such that $n > \lambda$. Then $U \subset n \cdot W$ so $\frac{1}{n}U \subset W \subset V$). Finally, p_U is a norm generating the topology (U absolutely convex neighbourhood of $\mathbf{o} \implies p_U$ is a continuous seminorm. $\frac{1}{n}U = [p_U < \frac{1}{n}], n \in \mathbb{N}$ is a base of neighbourhood of $\mathbf{o} \implies p_U$ generated topology of X. From X Hausdorff, p_U is a norm.)

1.4 Fréchet spaces

Definice 1.9 (Fréchet space)

A LCS whose topology is generated by a complete translation invariant metric is called Fréchet space.

Tvrzení 1.21

 (X,τ) is a Fréchet space, ϱ any translation invariant metric on X generating $\tau \implies \varrho$ is complete.

 ϱ,d two translation invariant metrics generating by τ . Idea: convergent sequences with respect to ϱ and d coincide, Cauchy sequences with respect to ϱ and d coincide. (x_n) ϱ -Cauchy: $\varepsilon > 0 \implies \{x | d(x, \mathbf{o}) < \varepsilon\}$ is a neighbourhood of $\mathbf{o} \implies \exists \delta > 0 : \{x | \varrho(x, \mathbf{o}) < \delta\} \subset \{x | d(x, \mathbf{o}) < \varepsilon\}$. $\exists n_0 \ \forall m, n > n_0$:

$$\varrho(x_m - x_n, \mathbf{o}) = \varrho(x_m, x_n) < \delta \implies d(x_m - x_n, 0) = d(x_m, x_n) < \varepsilon \implies (x_n) \text{ is } d\text{-Cauchy.}$$

Tvrzení 1.22

X Fréchet, $A \subset X$. A is compact \Leftrightarrow A is closed and totally bounded.

 $D\mathring{u}kaz$

Let ϱ be a complete translation invariant metric generating the topology. A is compact \Leftrightarrow A is closed and ϱ -totally bounded. But ϱ -totally boundedness = total boundedness in X. A is totally bounded in $X \Leftrightarrow \forall U$ neighbourhood of $\mathbf{o} \ \exists F \subset X$ finite $A \subset F + U$. A is totally bounded in $\varrho \Leftrightarrow \forall \varepsilon > 0 \ \exists F \subset X$ finite such that $A \subset \bigcup_{x \in F} U_{\varrho}(x, \varepsilon) = F + U_{\varrho}(0, \varepsilon)$.

Tvrzení 1.23

 $X \ LCS, A \subset X \ totally \ bounded \implies \text{aco} \ A \ is \ totally \ bounded.$

 $D\mathring{u}kaz$

Let U be a neighbourhood of **o**. Let V be an absolutely convex neighbourhood of **o** such that $2V \subset U \Longrightarrow \exists F \subset X$ finite such that $A \subset F + V$. Then clearly $\text{aco } A \subset (\text{aco } F) + V$. aco F is compact, $F = \{x_1, \ldots, x_k\} \Longrightarrow \text{aco}(F) = \text{co}(\text{b}(F)) =$

$$= \operatorname{co} \left\{ \lambda x_j | j \in [k], |\lambda| \leqslant 1 \right\} = \left\{ t_1 \lambda_1 x_1 + \dots t_n \lambda_n x_n \middle| |\lambda_j| \leqslant 1, t_j \geqslant 0, \sum_{i=1}^n t_i = 1 \right\}.$$

$$B = \left\{ (\lambda_1, \dots, \lambda_n, t_1, \dots, t_n) \middle| |\lambda_j| \leqslant 1, t_j \geqslant 0, \sum_{i=1}^n t_i = 1 \right\}$$

a compact set in $\mathbb{F}^n \times \mathbb{R}^n$. $(\lambda_1, \dots, \lambda_n, t_1, \dots, t_n) \mapsto t_1 \lambda_1 x_1 + \dots + t_n \lambda_n x_n$ is a continuous map and maps B onto aco F.

 $\operatorname{aco} F \text{ compact} \implies \operatorname{totally bounded} \implies \exists H \subset X \text{ finite, } \operatorname{aco} F \subset H + V \text{ So } \operatorname{aco} A \subset \operatorname{aco} F + V \subset H + V + V = H + 2V < H + U.$

Důsledek

XFréchet space, $A \subset X$ compact $\implies \overline{\mathrm{aco}\,A}$ is compact.

 $A \text{ compact} \implies A \text{ is totally bounded} \implies \text{aco } A \text{ is totally bounded} \implies \text{(because } M \subset X \text{ any set} \implies \overline{M} \subset M + U) \overline{\text{aco } A} \text{ is totally bounded} \implies \overline{\text{aco } A} \text{ is compact.}$

(M totally bounded, for any $U \in \tau(\mathbf{o})$: U is neighbourhood of \mathbf{o} , $x \in \overline{M}$, U absolutely convex convex neighbourhood of \mathbf{o} , then $V \subseteq U$ absolutely convex such that $2V \subset U$ $\Longrightarrow (x+U) \cap M \neq 0 \Longrightarrow x \in M+U$.)

Find F finite such that $M \subset F + V \implies \overline{M} \subset M + V \subset F + V + V \subset F + U$.

Věta 1.24 (Banach–Steinhaus)

Let X be a Fréchet space and let Y be LCS. Let (T_n) be a sequence of continuous linear mappings $T_n: X \to Y$ such that $\forall x \in X: \lim_{n \to \infty} T_n x$ exists in Y. Then $Tx := \lim_{n \to \infty} T_n x$ define a continuous linear map $X \to Y$.

Důkaz

Clear: T is a linear map $X \to Y$. "Continuous": Fix q any continuous sequence on Y.

$$A_m = \{x \in X | \forall n \in \mathbb{N} : q(T_n x) \le m\}.$$

Then A_m is closed, absolutely convex and $\bigcup_{m=1}^{\infty} A_m = X$.

TODO?

Baire category theorem $\implies \exists m \in \mathbb{N} : \operatorname{int} A_m \neq \emptyset \implies \exists x \in A_m \; \exists U \text{ an absolutely convex neighbourhood of } \mathbf{o} \text{ such that } x + U \subset A_m \implies -(x + U) \subset A_m \implies (A_m \text{ convex})$ $U \subset A_m \; (y \in U \implies y = \frac{1}{2}(x + y + (-x + y))) \; , \implies q(Ty) \leqslant mp_U(y)$ ":

$$p_U(y) < c \implies \frac{y}{c} \in U \subset A_m \implies \forall n \in \mathbb{N} : q\left(T_n \frac{y}{c}\right) \leqslant m \implies q\left(T \frac{y}{c}\right) \leqslant m \implies q\left(T y\right) \leqslant c \cdot m.$$

Věta 1.25 (Open mapping theorem)

X,Y Fréchet, $T:X\to Y$ linear continuous surjective mapping. Then T is an open mapping

1. It is enough to show that $\forall U$ neighbourhood of \mathbf{o} in X: T(U) is a neighbourhood of \mathbf{o} in Y.

2. $\forall U$ a neighbourhood of \mathbf{o} in X, \overline{TU} is neighbourhood of \mathbf{o} in Y": U an neighbourhood of \mathbf{o} in X. $\exists V \subset U$ an absolutely convex neighbourhood of \mathbf{o} . V absorbing \Longrightarrow

$$\implies X = \bigcup_{n=1}^{\infty} nV \implies Y = T(X) = T\left(\bigcup_{n=1}^{\infty} n \cdot V\right) = \bigcup_{n=1}^{\infty} n \cdot T(V).$$

Y Fréchet \implies by Baire category theorem

$$\exists n \in \mathbb{N} : \varnothing \neq \operatorname{int} \overline{n \cdot T(V)} = \operatorname{int} n \cdot \overline{T(V)} = n \cdot \operatorname{int} \overline{T(V)} \implies \operatorname{int} \overline{T(V)} \neq \varnothing \implies$$

 $\Longrightarrow \exists y \in Y \ \exists W \ \text{an absolutely convex neighbourhood of } \mathbf{o} \ \text{in } Y \ \text{such that } y+W \subset \overline{T(V)}.$ $\overline{T(V)} \ \text{is absolutely convex} \ \Longrightarrow \ -(y+w) \subset \overline{T(V)} \ \Longrightarrow \ W \subset \overline{T(V)} \subset \overline{T(U)}.$

3. " $\forall U$ neighbourhood of \mathbf{o} in X, TU is a neighbourhood of \mathbf{o} in Y": ϱ a translation invariant metric on X, complete, generating topology. $U_n = \left\{x \in X | \varrho(0,x) < \frac{1}{2^n}\right\}$. The U_n is a base of neighbourhoods of \mathbf{o} . It is enough to prove that $T(U_n)$ is a neighbourhood of \mathbf{o} for each $n \in \mathbb{N}$. We know from 2. that $\forall n : \overline{TU_n}$ is a neighbourhood of \mathbf{o} in Y. We will be done if we show that $TU_{n-1} \supset \overline{TU_n}$ for each $n \in \mathbb{N}$.

We will prove it for n=1: So we will ? $TU_1 \subset TU_0$. Fix $y \in \overline{TU_1}$. Since $\overline{TU_2}$ is a neighbourhood of \mathbf{o} $(y-\overline{TU_2}) \cap TU_1 \neq \emptyset$. So there is $x_1 \in U_1$ such that $y-Tx_1 \in \overline{TU_2}$. $\overline{TU_3}$ is a neighbourhood of \mathbf{o} in $Y \implies y-Tx_1-\overline{TU_3} \subset apTU_2 = \emptyset$ so, there is $x_2 \in U_2$ such that $y-Tx_1-Tx_2 \in \overline{TU_3}$.

By induction we find $x_n \in U_n$ such that $y - Tx_1 - Tx_2 - \ldots - Tx_n \in \overline{TU_{n+1}}$ $(n \in \mathbb{N})$

$$x := \sum_{n=1}^{\infty} x_n = \lim_{N \to \infty} \sum_{n=1}^{N} x_n :$$

$$M > N \implies \varrho\left(\sum_{n=1}^{M} x_n, \sum_{n=1}^{N} x_n\right) = \varrho\left(\sum_{n=N+1}^{M} x_n, \mathbf{o}\right) \leqslant$$

$$\leqslant \varrho\left(\sum_{n=N+1}^{M} x_n, \sum_{n=N+2}^{M}\right) + \varrho\left(\sum_{n=N+2}^{M} x_n, \sum_{n=N+3}^{M}\right) + \dots + \varrho(x_M, \mathbf{o}).$$

$$Tx = y : y - Tx = \lim_{n \to \infty} (y - Tx_1 - \dots - Tx_n)$$
$$y - Tx_1 - \dots - Tx_n \in \overline{TU_{N+1}} \subset \overline{TU_k} \quad \text{for } n+1 > k$$

so, $y-Tx\in \overline{TU_k}$ for each $k\in\mathbb{N}$, so $y-Tx\in\bigcap_{k=1}^\infty\overline{TU_k}=\{\mathbf{o}\}$. "Last equality": $y\in Y\setminus\{\mathbf{o}\}$ \Longrightarrow $\exists V$ neighbourhood of \mathbf{o} in Y such that $y\notin\overline{B}$. T continuous \Longrightarrow $\exists k\in\mathbb{N}$ such that $T(U_k)\subset V$ \Longrightarrow $\overline{T(U_1)}\subset\overline{V}$ \Longrightarrow $y\notin\overline{T(U_k)}$.

1.5 Extension and separation theorems

Definice 1.10 (Dual space (the dual))

X LCS, X^* is the vector space of continuous linear functions on X.

Věta 1.26 (Hahn–Banach extension theorem)

 $X \ LCS, Y \subseteq X, f \in Y^*. Then \exists g \in X^* \ such \ that \ g|_Y = f.$

Poznámka

If topology of X is generated by \mathcal{P} a topology of seminorms TODO?

 $D\mathring{u}kaz$

1. Topology of $Y: U \subset Y$ is open $\Leftrightarrow \exists \tilde{U} \subset X$ open such that $U = \tilde{U} \cap Y$. U is a neighbourhood of \mathbf{o} in $Y \Leftrightarrow \exists \tilde{U}$ a neighbourhood of \mathbf{o} in X such that $U = \tilde{U} \cap Y$. Lz.pat. Y is also a LSC.

2. $f \in Y^* \implies \exists p$ a continuous seminorm on Y such that $|f(y)| \subseteq p(y), y \in Y$. U = [p < 1] a neighbourhood of \mathbf{o} in $Y \implies \exists \tilde{U}$ a neighbourhood of \mathbf{o} in X such that $\tilde{U} \cap Y = U \implies \exists \tilde{V} \subset \tilde{U}$ an absolutely convex neighbourhood of \mathbf{o} in X. The $p_{\tilde{V}}$ is a continuous seminorm on X. Moreover, $p_{\tilde{V}}|_Y \geqslant p$. $([p_{\tilde{V}}|_Y < 1] \subset \tilde{V} \cap Y \subset U = [p < 1])$. So, for $y \in Y : |f(y)| \leqslant p(y) \leqslant p_{\tilde{V}}(y) \implies$ (algebraic H–B for seminorms) $\exists g : X \to \mathbb{F}$ linear, $g|_Y = f$, $|g(x)| \leqslant p_{\tilde{V}}(x)$ for $x \in X \implies g$ is continuous by the proposition above.

Důsledek (Separation from a subspace)

 $X \text{ LCS}, Y \subseteq X \text{ closed}, x \in X \backslash Y. \text{ Then } \exists f \in X^* : f|_Y = 0, f(x) = 1.$

 $D\mathring{u}kaz$

Set $\tilde{Y} = LO(Y \cup \{x\})$. Define $g(y + \lambda x) = \lambda$, $y \in Y$, $\lambda \in \mathbb{F} \implies g$ is linear functional on \tilde{Y} , $g|_Y = 0$, g(x) = 1. Ker g = Y is closed $\implies g$ is continuous $\implies g$ can be extended to $f \in X^*$.

 $D\mathring{u}sledek$ (A proof of density using Hahn–Banach theorem) X LCS, $Z \subseteq Y \subseteq X$.

$$\overline{Z} \supset Y \Leftrightarrow \forall f \in X^* : f|_Z = 0 \implies f|_Y = 0.$$

Důkaz

 $"", \Longrightarrow ": \text{clear. } "; \text{clear. } "; y \in Y \setminus \overline{Z} \implies \exists f \in X^* : f(y) = 1, f|_Z = 0.$

```
D\mathring{u}sledek (The dual separates the points) X \text{ HLCS, } x \in X \setminus \{\mathbf{o}\} \implies \exists f \in X^* : f(x) \neq 0. D\mathring{u}kaz Y = \{\mathbf{o}\} \text{ is closed linear subspace and use the first corollary.}
```

Věta 1.27 (Hahn–Banach separation theorem)

X LCS, $A, B \subset X$ nonempty convex, $A \cap B = \emptyset$.

- int $A \neq \emptyset \implies \exists f \in X^* \setminus \{0\} \ \exists c \in \mathbb{R} \ \forall a \in A \ \forall b \in B : \Re f(a) \leqslant c < \Re f(s)$.
- A compact, B closed $\implies \exists f \in X^* \ \exists c, d \in \mathbb{R} \ \forall a \in A \ \forall b \in B : \Re f(a) \leqslant c < d \leqslant \Re f(b).$

Analogous to the theorem above. Assume X is a real space $(\mathbb{F} = \mathbb{R})$. "First item": int $A \neq \emptyset \implies \operatorname{int}(B-A) \neq \emptyset$ and $- \notin B-A$. Fix $z \in \operatorname{int}(B-A)$, set U := z - (B-A). The U is a convex neighbourhood of \mathbf{o} , $z \notin U \implies p_U(z) \geqslant 1$. Define $g_0 : \operatorname{LO}\{z\} \to \mathbb{R}$ by $g_0(t \cdot z) = t \cdot p_U(z) \implies g_0$ is a linear functional, $g_0 \leqslant p_U$ on $\operatorname{LO}\{z\}$ $(t \geqslant 0 \implies g_0(t \cdot z) = t \cdot p_U(z) = p_U(t \cdot z)$, $t < 0 \implies g_0(t \cdot z) = t \cdot p_U(z) < 0 \leqslant p_U(t \cdot z)$.

From algebraic Hahn–Banach $\exists g: X \to \mathbb{R}$ linear, $g|_{LO\{z\}} = g_0$, $g \leqslant p_U$ on X. g is continuous $(g \leqslant 1 \text{ on } U \Longrightarrow g \geqslant -1 \text{ on } -U$, so $|g| \leqslant 1 \text{ on } U \cap (-U)$, a neighbourhood of \mathbf{o}). $a \in A, b \in B \Longrightarrow$

$$\implies g(z) - g(b) + g(a) = g(z - (b - a)) \leqslant p_U(z - (b - a)) \leqslant 1, \quad g(a) \leqslant g(b) + \underbrace{1 - \underbrace{g(z)}_{\leqslant 0}}_{\leqslant 0}.$$

So, $\forall a \in A \ \forall b \in B : g(a) \leq g(b), \ c := \sup g(A)$.

"Second item": A compact, B closed. For $x \in A \exists U_x$ an absolutely convex open neighbourhood of \mathbf{o} such that $(x + U_x) \cap B = \emptyset$. The $(x + \frac{1}{2}U_x)_{x \in A}$, is an open cover of A. A is compact $\Longrightarrow \exists x_1, \ldots, x_n \in A : A \subset \left(x_1 + \frac{1}{2}U_{x_1}\right) \cup \ldots \cup \left(x_n + \frac{1}{2}U_{x_n}\right)$. Set $V := \frac{1}{2}U_{x_1} \cap \ldots \cap \frac{1}{2}U_{x_n}$ an absolutely convex open neighbourhood of \mathbf{o} . Then $(A + V) \cap B = \emptyset$

$$\left(a \in A \implies \exists j : a \in x_j + \frac{1}{2}U_{x_j} \implies a + V \subset x_j + \frac{1}{2}U_{x_j} + V \subset x_j + U_{x_j}\right).$$

Apply first item to A + V (open convex), B (convex) $\Longrightarrow \exists f \in X^* \setminus \{0\}$ such that

$$\sup f(A) + \sup f(V) = \sup (f(A) + f(V)) = \sup f(A + V) \leqslant \inf f(B),$$

observe that sup f(V) > 0 ($f \neq 0$, V is neighbourhood of \mathbf{o} , hence absorbing).

$$c := \sup f(A), \qquad d := \sup f(A) + \sup f(V).$$

"X complex": look at X as a real space, $f:X\to\mathbb{R}$ real-linear such that. Define $f_c(x)=f(x)-if(ix), x\in X$.

Důsledek

 $X \text{ LCS}, \varnothing \neq A \subset X, x \in X.$

- $x \in X \setminus \overline{\operatorname{co}}A \Leftrightarrow \exists f \in X^* : \Re f(x) > \sup \{\Re f(a) | a \in A\}.$ (" \(\sim \text{": is clear because } \{y \in X, \Re f(y) \leqslant \sup \{\Re f(x) | a \in A\}\} \text{ is closed convex set containing } A. " \(\sim \text{": Apply the previous theorem to } \{x\} \text{ and } \overline{\operatorname{co}}A, \text{ get } f \text{ and take } -f.)
- $x \in X \setminus \overline{\text{aco}}A \Leftrightarrow \exists f \in X^* : |f(x)| > \sup\{|f(a)||a \in A\} \ (,, \Leftarrow \text{": Clear. }, \Rightarrow \text{": Apply the previous theorem to } \{x\} \text{ and } \overline{\text{aco}}A \ (\text{and multiply by } -1), \ f \in X^* : |f(x)| \geqslant \Re f(x) > \sup\{\Re f(y)|y \in \overline{\text{aco}}A\} = \sup\{|f(y)||y \in \overline{\text{aco}}A\}. \ ,,\leq \text{" clear. }, \gg \text{": } y \in \overline{\text{aco}}A \Rightarrow \exists \alpha \in \mathbb{F}, |\alpha| = 1 : |f(y)| = \alpha f(y), \text{ then } |f(y)| = \lambda f(y) = \Re \alpha f(y) = \Re f(\alpha y), \ \alpha y \in \overline{\text{aco}}A).$

2 Weak topologies

2.1 General weak topologies and duality

Definice 2.1 (Algebraic dual, general weak topology)

X vector space. $X^{\#}$ is the algebraic dual of X (it means set of all linear functionals on X). $\emptyset \neq M \subset X^{\#}$, then $\sigma(X, M)$ is the topology on X generated by seminorms $X \mapsto |f(x)|$, $f \in M$.

Tvrzení 2.1

Properties:

- 1. $(X, \sigma(X, M))$ is LCS (by the theorem above).
- 2. $(X, \sigma(X, M))$ is Hausdorff $\Leftrightarrow \forall x \in X \setminus \{0\} \ \exists f \in M : f(x) \neq 0$ (i.e. M separates points) (by the theorem above).
- 3. $f \in M \implies f$ is continuous on $(X, \sigma(X, M))$ (fix $f \in M$, p(x) = |f(x)|, $x \in X$ is a continuous seminorm and $|f(x)| = p(x) \le p(x)$).
- 4. $\sigma(X, M)$ is the weakest topology on X making all $f \in M$ continuous.
- 5. $\sigma(X, M) = \sigma(X, LO(M))$.
- 6. T a topological space, $F: T \to X$ mapping. Then F is continuous $T \to \sigma(X, M) \Leftrightarrow \forall f \in M: f \circ F$ is continuous $(T \to \mathbb{F})$.

Důkaz (4.)

Assume τ is any topology on X such that all $f \in M$ are τ -continuous \Longrightarrow

$$\forall x \in X \ \forall f_1, \dots, f_n \in M \ \forall c_1, \dots, c_n > 0 : \{y \in X | |f_j(y) - f_j(x)| < c_j \ \forall j \in [n]\}$$
 is τ -open

but these sets form a base of $\sigma(X, M) \implies \sigma(X, M) \subset \tau$.

Důkaz (5.)

" \subseteq ": Clear. " \supseteq ": $f \in LOM \implies f$ is $\sigma(X, M)$ -continuous (the linear combination of continuous linear functionals is continuous) $f = \alpha_1 f_1 + \ldots + \alpha_n f_n, f_1, \ldots, f_n \in M, x_1, \ldots, x_n \in \mathbb{F}$.

$$|f(x)| \le |\alpha_1| \cdot |f_1(x)| + \ldots + |\alpha_n| \cdot |f_n(x)| \le (|\alpha_1| + \ldots + |\alpha_n|) \cdot \max\{|f_1(x)|, \ldots, |f_n(x)|\}.$$

So by the previous point we get $\sigma(X, LO M) \subset \sigma(X, M)$.

Důkaz (6.)

" \Longrightarrow ": $f \in M \Longrightarrow f$ is $\sigma(X, M)$ -continuous, so $f \circ F$ is continuous. " \Longleftarrow ": $t \in T, U$ neighbourhood of F(t) in $\sigma(X, M) \Longrightarrow \exists f_1, \ldots, f_n \in M \exists c_1, \ldots, c_n > 0$ such that

$$F(t) \in \{ y \in X | \forall j \in [n] | f_j(y) - f_j(F(t)) < c_j \} \subset U.$$

Let $G = \{u \in T | \forall j \in [n] : |(f_j \circ F)(u) - (f_j \circ F)(t)| < c_j\}$. Then G is an open neighbourhood of t (by continuity of $f_j \circ F$ and $F(G) \subset U$).

Příklad

X LCS. Then $X^* \subseteq X^\#$. So, we may consider $\sigma(X, X^*)$, the weak topology of X ". $\sigma(X, X^*)$ is Hausdorff when X is HLCS.

TODO?

Lemma 2.2

Let X be a vector space and $f, f_1, \ldots, f_k \in X^{\#}$. The following assertions are equivalent:

- 1. $f \in LO\{f_1, \ldots, f_k\};$
- 2. $\exists C > 0 \ \forall x \in X : |f(x)| \cdot C \cdot \max\{|f_1(x)|, \dots, |f_k(x)|\};$
- 3. $\bigcap_{j=1}^k \operatorname{Ker} f_j \subset \operatorname{Ker} f$.

 $D\mathring{u}kaz$

TODO!!!

Věta 2.3

Let X be a vector space and let $M \subset X^{\#}$ be a nonempty set. Then $(X, \sigma(X, M))^* = LO M$.

 $D\mathring{u}kaz$

TODO!!!

Důsledek

- 1. Let X be a LCS and let $f \in X^{\#}$. Then f is continuous on X (i.e., $f \in X^{*}$), if and only if it is weakly continuous (i.e., $\sigma(X, X^{*})$ -continuous) on X.
- 2. Let X be a LCS. Then $(X^*, \sigma(X^*, X))^* = \varkappa(X)$.
- 3. Let X be a normed linear space and let $f \in X^{**}$. Then $f \in \varkappa(X)$, if and only if f is weak* continuous (i.e., $\sigma(X^*, X)$ continuous) on X^* .

```
D\mathring{u}kaz
TODO!!!
```

2.2 Weak topologies on locally convex spaces

Věta 2.4 (Mazur theorem) Let X be a LCS and let $A \subset X$ be a convex set. Then a) $\overline{A}^w = \overline{A}$ b) A is closed if and only if it is weakly closed. Důkaz TODO!!!

Důsledek

Let X be a metrizable LCS and let (x_n) be a sequence in X weakly converging to a point $x \in X$. Then there is a sequence (y_n) in X such that $y_n \in \operatorname{co}\{x_k, k \ge n\}$ for each $n \in \mathbb{N}$ and $y_n \to x$ in (the original topology of) X.

Věta 2.5 (Boundedness and weak boundedness)

Let X be a LCS and let $A \subset X$. Then A is bounded in X if and only if it is bounded in $\sigma(X, X^*)$.

Tvrzení 2.6 (Weak topology on a subspace)

Let X be a LCS and let $Y \subseteq X$. Then the weak topology $\sigma(Y,Y^*)$ coincides with the restriction of the weak topology $\sigma(X,X^*)$ to Y.

```
D\mathring{u}kaz
TODO!!!
```

2.3 Polars and their applications

Definice 2.2 (Polars, absolute polars and anihilators)

Let X be a LCS. Let $A \subset X$ and $B \subset X^*$ be nonempty sets. We define

$$A^{\triangleright} := \{ f \in X^* | \forall x \in A : \Re f(x) \leq 1 \} , \qquad B_{\triangleright} := \{ x \in X | \forall f \in B : \Re f(x) \leq 1 \} ,$$

$$A^{\circ} := \{ f \in X^* | \forall x \in A : |f(x)| \leq 1 \} , \qquad B_{\circ} = \{ x \in X | \forall f \in B : |f(x)| \leq 1 \} ,$$

$$A^{\perp} := \{ f \in X^* | \forall x \in A : f(x) = 0 \} , \qquad B_{\perp} = \{ x \in X | \forall f \in B : f(x) = 0 \} .$$

Příklad

Let X be a normed linear space. Then $(B_X)^{\triangleright} = (B_X)^{\circ} = B_{X^*}, (B_{X^*})_{\triangleright} = (B_{X^*})_{\circ} = B_X.$

Tvrzení 2.7 (Polar calculus)

Let X be a LCS and let $A \subset X$ be a nonempty set.

- 1. The set A^{\triangleright} is convex and contains the zero functional, A° is absolutely convex and A^{\perp} is a subspace of X^* . All the three sets are moreover weak* closed.
- 2. $A^{\perp} \subset A^{\circ} \subset A^{\triangleright}$
- 3. If A is balanced, then $A^{\triangleright} = A^{\circ}$. If $A \subseteq X$, then $A^{\triangleright} = A^{\circ} = A^{\perp}$.
- 4. $\{\mathbf{o}\}^{\triangleright} = \{\mathbf{o}\}^{\circ} = \{\mathbf{o}\}^{\perp} = X^*, X^{\triangleright} = X^{\circ} = X^{\perp} = \{\mathbf{o}\}.$
- 5. $(c \cdot A)^{\triangleright} = \frac{1}{c} \cdot A^{\triangleright}$ and $(c \cdot A)^{\circ} = \frac{1}{c} \cdot A^{\circ}$ whenever c > 0.
- 6. Let $(A_i)_{i\in I}$ be a nonempty family of nonempty subsets of X. Then $(\bigcup_{i\in I} A_i)^\circ = \bigcap_{i\in I} A_i^\circ$. The analogous formulas hold for polars and anihilators too.

Poznámka

Analogous statements hold for $B \subset X^*$. There are just two differences: The sets B_{\triangleright} , B_{\circ} and B_{\perp} are weakly closed and for the validity of the second statement in 4. one needs to assume that X is Hausdorff.

 $D\mathring{u}kaz$

TODO!!!

Věta 2.8 (Bipolar theorem)

Let X be a LCS and let $A \subset X$ and $B \subset X^*$ be nonempty sets. Then

$$(A^{\triangleright})_{\triangleright} = \overline{\operatorname{co}}(A \cup \{\mathbf{o}\}) \left(= \overline{\operatorname{co}}^{w}(A \cup \{\mathbf{o}\})\right), \quad , (B_{\triangleright})^{\triangleright} = \overline{\operatorname{co}}^{w}(B \cup \{\mathbf{o}\}), (A^{\circ})_{\circ} = \overline{\operatorname{aco}}A \left(= \overline{\operatorname{aco}}^{w}A\right), \qquad , (B_{\circ})^{\circ} = \overline{\operatorname{aco}}^{w}B, (A^{\perp})_{\perp} = \overline{\operatorname{LO}}A \left(= \overline{\operatorname{LO}}^{w}A\right), \qquad , (B_{\perp})^{\perp} = \overline{\operatorname{LO}}^{w}B.$$

$D\mathring{u}kaz$ TODO!!!

```
Důsledek Let X and Y be normed linear spaces and let T \in L(X,Y). Then (\operatorname{Ker} T)^{\perp} = \overline{T^*(Y^*)}^{w^*}.

Důkaz
TODO!!!
```

Věta 2.9 (Goldstine)

Let X be a normed linear space and let $\varkappa: X \to X^{**}$ be the canonical embedding. Then $B_{X^{**}} = \overline{\varkappa(B_X)}^{\sigma(X^{**},X^*)}$.

Důkaz TODO!!

TODO!!!

Věta 2.10 (Banach–Alaoglu)

Let X be a LCS and let $U \subset X$ be a neighbourhood of **o**. Then

- 1. U° is a weak* compact subset of X^* .
- 2. If X is moreover separable, U° is metrizable in the topology $\sigma(X^*, X)$.

 $D\mathring{u}kaz$ TODO!!! (notes)

Düsledek (Banach–Alaoglu for normed spaces)

Let X be a normed linear space. Then (B_{X^*}, w^*) is compact. If X is separable (B_{X^*}, w^*) is moreover metrizable.

Düsledek (Reflexivity and weak compactness)

Let X be a Banach space. Then X is reflexive if and only if B_X is weakly compact. If X is reflexive and separable, (B_X, w) is moreover metrizable.

Důsledek

Let X be a reflexive Banach space and let $f: X \to \mathbb{R}$ be a function with the following properties:

• f is weakly sequentially lower semi-continuous, i.e.

$$\forall x \in X \ \forall (x_n) \subset X : x_n \xrightarrow{w} x \implies f(x) \leqslant \liminf f(x_n);$$

• $\lim_{\|x\|\to\infty} f(x) = +\infty$. Then f attains its minimum at some point of X. $D\mathring{u}kaz$ TODO?

3 Elements of the theory of distributions

3.1 Space of test functions and weak derivatives

Definice 3.1 (Support, test functions, the space of test functions, locally integrable, approximate unit (smoothing kernel))

Let $d \in \mathbb{N}$ and let $\Omega \subset \mathbb{R}^d$ be an open set.

• If $f:\Omega \to \mathbb{F}$ is continuous, its support is the set

$$\operatorname{supp} f = \overline{\{x \in \Omega | f(x) \neq 0\}},$$

where the closure is taken in Ω .

- Let $\mathcal{D}(\Omega, \mathbb{F}) := \{ f \in C^{\infty}(\Omega, \mathbb{F}) | \text{ supp } f \text{ is compact subset of } \Omega \}$. Elements of $\mathcal{D}(\Omega, \mathbb{F})$ are called test functions, the space $\mathcal{D}(\Omega, \mathbb{F})$ is called the space of test functions.
- A measurable function $f: \Omega \to \mathbb{F}$ is called locally integrable in Ω , if for any $x \in \Omega$ there exists r > 0 such that f is Lebesgue integrable on $U(\mathbf{x}, r)$ (i.e. $\int_{U(\mathbf{x}, r)} |f| < \infty$). The space of all locally integrable functions in Ω is denoted by $L^1_{loc}(\Omega, \mathbb{F})$. (More precisely, the space of equivalence classes.)
- Choose a non-negative $h \in \mathcal{D}(\mathbb{R}^d)$ such that supp $h \subset U(0,1)$ and $\int_{\mathbb{R}^d} h = 1$. For $j \in \mathbb{N}$ we define a function h_j by $h_j(\mathbf{x}) := j^d \cdot h(j \cdot \mathbf{x})$ for $\mathbf{x} \in \mathbb{R}^d$. The sequence (h_j) obtained in this way is called an approximate unit in $\mathcal{D}(\mathbb{R}^d)$ or a smoothing kernel.

Lemma 3.1 Let $\Omega \subseteq \mathbb{R}^d$ be open. Then $\mathcal{D}(\Omega)$ is a dense subspace of $L^p(\Omega)$ for any $p \in [1, \infty)$. Důkaz TODO? (notes)

Lemma 3.2

Let $\Omega \subset \mathbb{R}^d$ be an open set.

- 1. Let μ be a (finite) signed or complex regular Borel measure on Ω . If $\int_{\Omega} \varphi d\mu = 0$ for any $\varphi \in \mathcal{D}(\Omega)$, then $\mu = 0$.
- 2. Let $f \in L^1_{loc}(\Omega)$ and $\int_{\Omega} f\varphi = 0$ for any $\varphi \in \mathcal{D}(\Omega)$. Then f = 0 almost everywhere on Ω .

Definice 3.2 (Weak derivative)

Let $(a,b) \subset \mathbb{R}$ be an open interval an let $f \in L^1_{loc}((a,b))$.

- A function $g \in L^1_{loc}((a,b))$ is called a weak derivative of a function f, if for any $\varphi \in \mathcal{D}((a,b))$ we have $\int_a^b f \varphi' = \int_a^b g \varphi$.
- Let μ be a finite regular Borel measure on (a,b) (signed or complex). The measure μ is said to be a weak derivative of a function f if for any $\varphi \in \mathcal{D}((a,b))$ we have $\int_a^b f \varphi' = -\int_{(a,b)} \varphi d\mu$.

Tvrzení 3.3

Let $(a,b) \subset \mathbb{R}$ be an open interval and let $f \in L^1_{loc}((a,b))$. If $\int_a^b f\varphi' = 0$ for any $\varphi \in \mathcal{D}((a,b))$, the function f is constant.

```
D\mathring{u}kaz TODO? (notes)
```

Věta 3.4

Let $f \in L^1_{loc}((a,b))$.

- 1. The weak derivative of f is uniquely determined.
- 2. If f is absolutely continuous on [a,b], it has a finite derivative almost everywhere, f' ∈ L¹((a,b)) and f' is the weak derivative of f. Conversely, if a function f has a weak derivative g ∈ L¹((a,b)), there exists a function f₀ absolutely continuous on [a,b], equal to f almost everywhere on (a,b). In this case g = f'₀ almost everywhere.
 More generally, a function f has a weak derivative in L¹_{loc}((a,b)) if and only if there exists function f₀ locally absolutely continuous on (a,b) such that f₀ = f almost everywhere.
- 3. There exists a finite measure μ , which is a weak derivative of function f if and only if there exists a function f_0 of bounded variation on [a,b] such that $f_0=f$ almost everywhere on (a,b). In this case for each subinterval $(c,d) \subset (a,b)$ we have $\mu((c,d)) = \lim_{x \to d_-} f_0(x) \lim_{x \to c_+} f_0(x)$.

Moreover, μ is real-valued if and only if f_0 may be real-valued and μ is non-negative if and only if f_0 may be non-increasing.

3.2 Distributions – basic properties and operations

Definice 3.3 (Convergence in \mathcal{D})

Let $\Omega \subset \mathbb{R}^d$ be an open set, (φ_n) a sequence in $\mathcal{D}(\Omega)$ and $\varphi \in \mathcal{D}(\Omega)$. We say that the sequence (φ_n) converges to φ in $\mathcal{D}(\Omega)$, if the following two conditions are fulfilled:

- There exists $K \subset \Omega$ compact such that supp $\varphi_n \subset K$ for each $n \in \mathbb{N}$.
- $D^{\alpha}\varphi_n \rightrightarrows D^{\alpha}\varphi$ on K for each multiindex $\alpha \in \mathbb{N}_0^d$.

This is expressed by writing $\varphi_n \to \varphi$ in $\mathcal{D}(\Omega)$.

Lemma 3.5

Let $\Omega \subset \mathbb{R}^d$ be an open set.

- a) $\|\cdot\|_N$ is a norm on $\mathcal{D}(\Omega)$;
- b) $\mathcal{D}_K(\Omega)$ is a Fréchet space when equipped with $(\|\cdot\|_N)_{N\in\mathbb{N}_0}$.

$$D\mathring{u}kaz$$
 (a))
 $TODO!!!$

Důkaz (b))

 $\|\cdot\|_0 \leqslant \|\cdot\|_1 \leqslant \|\cdot\|_2 \leqslant \ldots \implies \mathcal{D}_K(\Omega)$ is a metrizable LCS (by translation invarinat metric ϱ from the proposition above).

 $(\varphi_n) \subset \mathcal{D}_k(\Omega)$ ϱ -cauchy, then $\forall N \in \mathbb{N}_0$: (φ_n) is $\|\cdot\|_N$ -cauchy $\Longrightarrow \forall \alpha$: $(D^{\alpha}\varphi_n)$ is $\|\cdot\|_{\infty}$ -cauchy $\Longrightarrow \forall \alpha \exists \psi_n$ such that $D^{\alpha}\varphi_n \rightrightarrows \psi_{\alpha}$ on Ω . The ψ_{α} is continuous, $\varphi_{\alpha} = 0$ on $\Omega \setminus K$. Fix $\alpha \in \mathbb{N}_0^d$ and $j \in [d]$. Then

$$D^{\alpha}\varphi_n \rightrightarrows \psi_{\alpha} \wedge \frac{\partial}{\partial x_j} D^{\alpha}\varphi_n = D^{\alpha + e_j}\varphi_n \rightrightarrows \psi_{\alpha + e_j} \implies \psi_{\alpha + e_j} = \frac{\partial}{\partial x_j}\psi_{\alpha}.$$

$$\implies \psi_{\alpha} = D^{\alpha}\psi_0.$$

$$\implies \psi_0 \in \mathcal{D}_K(\Omega), \ \forall \alpha : D^{\alpha} \varphi_n \rightrightarrows D^{\alpha} \psi_0, \ \text{i.e.} \ \forall N : \varphi_n \to \psi_0 \ \text{in} \ \| \cdot \|_N. \ \Longrightarrow \ \varphi_n \to \psi_0 \ \text{in}$$

Tvrzení 3.6

 $\Lambda: \mathcal{D}(\Omega) \to \mathbb{F}$ linear then following assertions are equivalent:

1.
$$\varphi_n \to \varphi \text{ in } \mathcal{D}(\Omega) \implies \Lambda(\varphi_n) \to \Lambda(\varphi);$$

2.
$$\varphi_n \to 0$$
 in $\mathcal{D}(\Omega) \implies \Lambda(\varphi_n) \to 0$;

3. $\forall K \subset \Omega \text{ compact and } \Lambda|_{\mathcal{D}_K(\Omega)} \text{ is continuous;}$

4. $\forall K \subset \Omega \ compact \ \exists N \in \mathbb{N}_0 \ \exists C > 0 \ such \ that$

$$|\Lambda(\varphi)| \leq C \cdot ||\varphi||_N, \qquad \varphi \in \mathcal{D}_K(\Omega).$$

Důkaz

"1. \Longrightarrow 2." is trivial. "2. \Longrightarrow 3.": Fix $K \subset \Omega$ compact. $\varphi_n \to 0$ on $\mathcal{D}_K(\Omega) \Longrightarrow \varphi_n \to 0$ in $\mathcal{D}(\Omega) \stackrel{2.}{\Longrightarrow} \Lambda(\varphi_n) \to 0$. Thus $\Lambda|_{\mathcal{D}_K(\Omega)}$ is continuous at \mathbf{o} , so it is continuous.

 $3. \implies 1.$ " $\varphi_n \to \varphi$ in $\mathcal{D}(\Omega) \implies \exists K \subset \Omega$ compact such that $\sup \varphi_n \subset K$ for each n. Then $(\varphi_n) \subset \mathcal{D}_K(\Omega) \implies \varphi_n \to \varphi$ in $\mathcal{D}_K(\Omega) \stackrel{3}{\implies} \Lambda(\varphi_n) \to \varphi(\varphi)$.

 $3. \Leftrightarrow 4.$ ". By the proposition above.

Definice 3.4 (Distribution, finite order)

A distribution on Ω is a linear functional $\Lambda: \mathcal{D}(\Omega) \to \mathbb{F}$ satisfying assertions from the previous proposition. We will denote distributions on Ω by $\mathcal{D}'(\Omega)$.

 $\Lambda \in \mathcal{D}'(\Omega)$ is of finite order, if $N \in \mathbb{N}_0$ in 4. of the previous proposition can be chosen independently on K.

Například

 $f \in L^1_{loc}(\Omega)$. $\Lambda_f(\varphi) = \int_{\Omega} f \cdot \varphi \ (\varphi \in \mathcal{D}(\Omega)) \implies \Lambda_f$ is a distribution of order 0. Because $K \subset \Omega$ compact $\implies \int_K |f| < \infty, \ \varphi \in D_K(\Omega)$:

$$|\Lambda_f(\varphi)| = |\int_{\Omega} f \cdot \varphi| = |\int_K f \cdot \varphi| \le \int_K |f\varphi| \le \|\varphi\|_{\infty} \cdot \int_K |f| = \|\varphi\|_0 \cdot \int_K |f|.$$

 $\mu \geq 0$ regular Borel measure, finite on compacts. $\Lambda_{\mu}(\varphi) = \int_{\Omega} \varphi d\mu$ is a distribution on Ω of order 0. Because if $K \subset \Omega$, $\varphi \in \mathcal{D}_K(\Omega)$, then

$$|\Lambda_{\mu}(\varphi)| = |\int_{\Omega} \varphi d\mu| = |\int_{K} \varphi d\mu| \leqslant ||\varphi||_{\infty} \mu(K).$$

 μ is a signed (or complex) finite measure $\Lambda_{\mu}(\varphi) = \int_{\Omega} \varphi d\mu$ is a distribution of order 0:

$$\left| \int_{K} \varphi d\mu \right| \leq \int_{K} |\varphi| d|\mu| \leq |\mu|(K) \cdot \|\varphi\|_{\infty} \leq \|\mu\| \cdot \|\varphi\|_{\infty}.$$

 $\Lambda(\varphi) = \varphi'(0), \ \varphi \in \mathcal{D}(\mathbb{R}) \text{ is a distribution of order 1. (Clearly } |\Lambda(\varphi)| \leqslant \|\varphi'\|_{\infty} \leqslant \|\varphi\|_{1}.)$ $\Lambda \text{ not of order 0: Find } \varphi \in \mathcal{D}(\mathbb{R}) \text{ such that } \varphi'(0) = 1, \ \text{supp } \varphi \subset [-c,c] \text{ for some } c > 0.$ $\varphi_n(x) = \varphi(nx), \ x \in \mathbb{R}, \ n \in \mathbb{N}, \implies \varphi_n \in \mathcal{D}(\mathbb{R}). \ \text{supp } \varphi_n \subset [-c/n,c/n] \subset [-c,c].$ $\|\varphi_n\|_0 = \|\varphi\|_0. \ \Lambda(\varphi_n) = \varphi'_n(0) = \varphi'(0) \cdot n = n.$

 $\Lambda(\varphi) = \sum_{n=0}^{\infty} \varphi^{(n)}(n), \ \varphi \in \mathcal{D}(\mathbb{R}) \implies \Lambda \text{ is a distribution on } \mathbb{R}, \text{ not of finite order } (\sup \varphi \subset [-k,k], k \in \mathbb{N}, \implies |\Lambda(\varphi)| \leq (k+1) \|\varphi\|_{K}.)$

Poznámka

If $f, g \in L^1_{loc}(\Omega)$, $\Lambda_f = \Lambda_g$, then f = g almost everywhere. If μ, ν measures, $\Lambda_{\mu} = \Lambda_{\nu}$, then $\mu = \nu$.

If $f \in L^1(\Omega)$, μ finite measure, $\Lambda_f = \Lambda_{\mu}$, then $\mu(A) = \int_A f$, for each $A \subset \Omega$ Borel.

Definice 3.5

 $\Lambda \in \mathcal{D}'(\Omega)$.

- For $\alpha \in \mathbb{N}_0^d$ define $D^{\alpha}\Lambda(\varphi) = (-1)^{|\alpha|}\Lambda(D^{\alpha}\varphi)$. (For any $\varphi \in \mathcal{D}(\Omega)$.)
- For $f \in C^{\infty}(\Omega)$ define $(f\Lambda)(\varphi) = \Lambda(f\varphi)$. (For any $\varphi \in \mathcal{D}(\Omega)$.)

Tvrzení 3.7

 $a) \ \Lambda \in \mathcal{D}'(\Omega), \ \alpha \in \mathbb{N}_0^d \implies D^{\alpha} \Lambda \in \mathcal{D}'(\Omega).$

 $D\mathring{u}kaz$

Clear: $D^{\alpha}\Lambda: \mathcal{D}(\Omega) \to \mathbb{F}$ linear, $K \subset \Omega$ compact $\Longrightarrow \exists N \in \mathbb{N}_0, C > 0: |\Lambda(\varphi)| \leq C \cdot \|\varphi\|_N, \varphi \in \mathcal{D}_K(\Omega)$. Then $\forall \varphi \in \mathcal{D}_k(\Omega)$:

$$|D^{\alpha}\Lambda(\varphi)| = |\Lambda(D^{\alpha}\varphi)| \leqslant C \cdot ||D^{\alpha}\varphi||_{N} \leqslant C \cdot ||\varphi||_{|\alpha|+N}$$

 $b) \ f \in C^{\infty}(\Omega) \implies D^{\alpha} \Lambda_f = \Lambda_{D^{\alpha} f}$

 $D\mathring{u}kaz$ (For $\partial/\partial x_1$)

$$\frac{\partial}{\partial x_1} \Lambda_f(\varphi) = -\Lambda_f \left(\frac{\partial \varphi}{\partial x_1} \right) = ? = -\int_{\Omega} f \cdot \frac{\partial \varphi}{\partial x_1}$$

TODO!!!

$$= \int_{\bigcup_{j}(a_{j},b_{j})} f \frac{\partial \varphi}{\partial x_{1}} dx_{1} =$$

$$f_{b_{j}}^{b_{j}} \partial f \qquad \qquad f_{j} \partial f$$

П

$$=\sum_{j=1}^n \left([f\cdot\varphi]_{a_j}^{b_j}-\int_{a_j}^{b_j}\frac{\partial f}{\partial x_1}\varphi dx_1\right)=\int_{\Omega}\frac{\partial f}{\partial x_1}\varphi=\Lambda_{\frac{\partial f}{\partial x_1}}(\varphi).$$

c) d = 1, $\Omega = (a, b)$, $f \in L^1_{loc}(\Omega)$. Then $(\Lambda_f)' = \Lambda_g \Leftrightarrow g$ is the weak derivative of f. And $(\Lambda_f)' = \Lambda \mu \Leftrightarrow \mu$ is the weak derivative of f.

 $D\mathring{u}kaz$

By definitions.

 $d) \ \Lambda \in \mathcal{D}'(\Omega), \ f \in C^{\infty}(\Omega) \implies f \Lambda \in \mathcal{D}'(\Omega).$

 $D\mathring{u}kaz$

clear: $f\Lambda : \mathcal{D}(\Omega) \implies$ IF linear

Tvrzení 3.8

 $a) \ \Lambda \in \mathcal{D}'((a,b)), \Lambda' = 0 \implies \exists c \in \mathbb{F} : \Lambda = \Lambda_c.$

 $D\mathring{u}kaz$

We will prove $\operatorname{Ker} \Lambda_1 \subset \operatorname{Ker} \Lambda$. Then $\exists c : \Lambda = c \cdot \Lambda_1 = \Lambda c$.

$$\varphi \in \operatorname{Ker} \Lambda_1 \implies \Lambda_1(\varphi) = 0, i.e. \int_a^b \varphi = 0.$$

Define $\varphi(t) = \int_a^t \varphi$, $t \in (a,b)$. Then $\psi \in \mathcal{D}((a,b))$, $\psi' = \varphi$ ($\psi' = \varphi$... differentiation of indefinite integral $\implies \psi \in C^{\infty}((a,b))$, $\psi = 0$ on $(a,\min \operatorname{supp} \varphi)$ and $(\max \operatorname{supp} \varphi,b) \implies \psi \in \mathcal{D}((a,b))$. Hence $\Lambda(\varphi) = \Lambda(\psi') = -\Lambda'(\psi) = 0$, so $\varphi \in \operatorname{Ker} \Lambda$.

b) $\Omega \subset \mathbb{R}^d$ open connected, $\Lambda \in \mathcal{D}'(\Omega)$, $D^{\alpha}\Lambda = 0$ for $|\alpha| = 1 \implies \exists c \in \mathbb{F} : \Lambda = \Lambda_c$.

"Step 1: $\Omega = \prod_{j=1}^d (a_j, b_j)$ ": Induction on d. For d=1 use a). Assume it holds for d-1, denote $\Omega' = \prod_{j=1}^{d-1} (a_j, b_j)$, $x \in \Omega \implies x = (x', x_d)$ $(x' \in \mathbb{R}^{d-1}, x_d \in \mathbb{R})$, $\alpha \in N_0^d \implies \alpha = (\alpha', \alpha_d)$.

$$\Lambda \in \mathcal{D}'(\Omega), \ D^{\alpha}\Lambda = 0 \text{ for } |\alpha| = 1. \text{ It means: } \forall \varphi \in \mathcal{D}(\Omega) \ \forall j \in [d] : \Lambda\left(\frac{\partial \varphi}{\partial x_j}\right) = 0.$$

Claim: $\psi \in \mathcal{D}(\Omega)$. Then $\exists \varphi \in \mathcal{D}(\Omega) : \frac{\partial \varphi}{\partial x_d} = \psi \Leftrightarrow \forall x' \in \Omega' : \int_{a_d}^{b_d} \psi(x', x_d) dx_d = 0$. $(,, \Longrightarrow \text{``clear}, ,, \Longleftrightarrow \text{``:define } \varphi(x', x_d) = \int_{a_d}^{x_d} \psi(x', t) dt)$. Define

$$T: \mathcal{D}(\Omega) \to \mathcal{D}(\Omega'), \qquad T\varphi(x') = \int_{a_d}^{b_d} \varphi(x', x_d) dx_d, \quad \varphi \in \mathcal{D}(\Omega).$$

T is linear, Ker $T \subset \text{Ker } \Lambda$ $(T\varphi = 0 \implies \exists \psi \in \mathcal{D}(\Omega) : \varphi = \frac{\partial \psi}{\partial x_d}$, thus $\Lambda(\varphi) = 0$). Fix $\eta \in \mathcal{D}((a_d, b_d))$, $\int_{a_d}^{b_d} \eta = 1$. For $\varphi \in \mathcal{D}(\Omega')$ define $(\varphi \eta)(x) = \varphi(x')\eta(x_d)$. Then $\varphi \eta \in \mathcal{D}(\Omega)$. $\tilde{\Lambda}(\varphi) = \Lambda(\varphi \eta)$, $\varphi \in \mathcal{D}(\Omega')$. Then $\tilde{\Lambda} \in \mathcal{D}'(\Omega')$.

Moreover, $\forall \alpha'$ with $|\alpha'| = 1 : D^{\alpha'} \tilde{\Lambda} = 0$.

$$\left(\forall j \in [d-1]: \frac{\partial}{\partial x_j} \tilde{\Lambda}(\varphi) = -\tilde{\Lambda}\left(\frac{\partial \varphi}{\partial x_j}\right) = -\Lambda\left(\frac{\partial \varphi}{\partial x_j}\eta\right) = -\Lambda\left(\frac{\partial}{\partial x_j}(\varphi\eta)\right) = 0.\right)$$

 $\implies \exists c \in \mathbb{F} : \tilde{\Lambda} = \Lambda_c \text{ in } \mathcal{D}'(\Omega'). \text{ Then } \Lambda = \Lambda_c \text{ (in } \mathcal{D}(\Omega)) \text{ cause}$

$$\varphi \in \mathcal{D}(\Omega) \implies \varphi - (T\varphi)\eta \in \mathcal{D}(\Omega), \varphi - (T\varphi)\eta \in \operatorname{Ker} T \subset \operatorname{Ker} \Lambda, \text{ so, } \Lambda(\varphi) = \Lambda((T\varphi)\eta) = 0$$

$$= \tilde{\Lambda}(T\varphi) = \Lambda_c(T\varphi) = \int_{\Omega'} c \cdot T\varphi = \int_{\Omega'} c \cdot \int_{a_d}^{b_d} \varphi(x', x_d) dx_d dx' \stackrel{\text{FUBINI}}{=} \int_{\Omega} c \cdot \varphi = \Lambda_c(\varphi).$$

"Step 2: Ω is open connected, $\Lambda \in \mathcal{D}'(\Omega)$, $D^{\alpha}\Lambda = 0$, $|\alpha| = 1$.": Step 1 $\Longrightarrow \forall Q \subset \Omega$ cuboid $\exists c : \Lambda|_{\mathcal{D}(Q)} = \Lambda_c$. Fix one cuboid $Q_0 \subset \Omega$ and the respective c.

$$A := \left\{ x \in \Omega | \exists Q \subset \Omega \text{ cuboid}, x \in Q, \Lambda|_{\mathcal{D}(Q)} = \Lambda_c \right\}.$$

Fix $A \neq \emptyset$ $(Q_0 \subset A)$, A is open, A is closed in Ω $(x \in \overline{A} \cap \Omega, Q \cap A \neq \emptyset, \Lambda|_{\mathcal{D}(Q)} = \Lambda_d, y \in Q \cap A \Longrightarrow \Lambda|_{\mathcal{D}(Q_y)} = \Lambda_c \Longrightarrow \text{ on } \mathcal{D}(Q \cap Q_y) : \Lambda = \Lambda_c = \Lambda_d \Longrightarrow c = d \Longrightarrow x \in A.).$ So $A = \Omega$ as Ω is connected. The $\Lambda = \Lambda_c$ in $\mathcal{D}'(\Omega)$. (Proof of this was skipped, it remains that for every $\varphi \in \mathcal{D}(\Omega)$, not only for every $\varphi \in \mathcal{D}(Q)$, it holds $\Lambda(\varphi) = \Lambda_c(\varphi)$.)

3.3 A bit more on distributions

Definice 3.6 (Convergence in distributions (in \mathcal{D}'))

$$\Lambda_n \to \Lambda \text{ in } \mathcal{D}(\Omega) \equiv \forall \varphi \in \mathcal{D}(\Omega) : \Lambda_n(\varphi) = \Lambda(\varphi).$$

Tvrzení 3.9 (On the convergence of distributions)

- a) $\Lambda_n \to \Lambda$ in $\mathcal{D}(\Omega)$, then:
 - $\forall \alpha : D^{\alpha} \Lambda_n \to D^{\alpha} \Lambda;$

 $D\mathring{u}kaz$

$$D^{\alpha}\Lambda_n(\varphi) = (-1)^{|\alpha|}\Lambda_n(D^{\alpha}\varphi) \to (-1)^{|\alpha|}\Lambda(D^{\alpha}\varphi) = D^{\alpha}\Lambda(\varphi).$$

• $f \in C^{\infty}(\Omega) : f\Lambda_n \to f\Lambda$.

 $D\mathring{u}kaz$

$$f\Lambda_n(\varphi) = \Lambda_n(f\varphi) \to \Lambda(f\varphi) = f\Lambda(\varphi).$$

b) $f_n \to f$ in $L^1_{loc}(\Omega)$ ($\forall K \subset \Omega$ compact: $\int_K |f_n - f| \to 0$). Then $\Lambda_{f_n} \to \Lambda_f$ in $\mathcal{D}'(\Omega)$.

 \Box $D\mathring{u}kaz$

$$\varphi \in \mathcal{D}(\Omega) : |\Lambda_{f_n}(\varphi) - \Lambda_f(\varphi)| = \left| \int_{\Omega} f_n \varphi - \int_{\Omega} f \varphi \right| \leq \int_{\Omega} |f_n - f| \cdot |\varphi| =$$

$$= \int_{\text{supp } \varphi} |f_n - f| \cdot |\varphi| \leq \|\varphi\|_{\infty} \int_{\text{supp } \varphi} |f_n - f| \to 0.$$

c) $f_n \to f$ in $L^p(\Omega)$ for some $p \in [1, \infty]$. Then $\Lambda_{f_n} \to \Lambda_f$.

 $D\mathring{u}kaz$

Let $K \subset \Omega$ be compact, q the dual exponent. Then use b) with

$$\int_{K} |f_n - f| \le ||f_n - f||_{L^p(K)} \cdot ||1||_{L^q(K)} \to 0.$$

d) $\varphi_n \to \varphi$ in $\mathcal{D}(\Omega)$. Then $\Lambda_{\varphi_n} \to \Lambda_{\varphi}$ in $\mathcal{D}'(\Omega)$.

Důkaz

 \Box

 $\varphi_n \to \varphi \text{ in } \mathcal{D}(\Omega) \implies \varphi_n \to \varphi \text{ in } C^{\infty}(\Omega), \text{ and use c}).$

Věta 3.10

 $(\Lambda_n) \subset \mathcal{D}'(\Omega)$ and $\forall \varphi \in \mathcal{D}(\Omega) : (\Lambda_n(\varphi))$ converges in \mathbb{F} . Then $\Lambda(\varphi) = \lim_{n \to \infty} \Lambda_n(\varphi)$ is a distribution on Ω .

Důkaz

Clearly Λ is a linear functional on $\mathcal{D}(\Omega)$. Further: $K \subset \Omega$ compact $\Longrightarrow \forall n : \Lambda_n|_{\mathcal{D}_K(\Omega)}$ is continuous. $\mathcal{D}_K(\Omega)$ is a Fréchet space $\Longrightarrow \Lambda|_{\mathcal{D}_K(\Omega)}$ continuous $\Longrightarrow \Lambda \in \mathcal{D}'(\Omega)$.

Definice 3.7 (Vanishing of distributions, support of distribution, distribution with compact support)

 $\Lambda \in \mathcal{D}'(\Omega)$.

- $G \subset \Omega$ open. Λ vanishes on G if $\Lambda(\varphi) = 0$ whenever $\varphi \in \mathcal{D}(\Omega)$, supp $\varphi \subset G$.
- supp $\Lambda = \Omega \setminus \{G \subset \Omega \text{ open } | \Lambda \text{ vanishes on } G\} =$ $= \{x \in \Omega | \forall \varepsilon > 0 \exists \varphi \in \mathcal{D}(\Omega) : \text{supp } \varphi \subset U(x, \varepsilon) \land \Lambda(\varphi) \neq \emptyset \}.$
- Λ has compact support if supp Λ is a compact subset of Ω .

Tvrzení 3.11 (On the support of a distribution)

a) $\Lambda = \Lambda_f$ for some $f \in L^1_{loc}(\Omega)$. Then

$$\operatorname{supp} \Lambda_f = \operatorname{supp} f = \left\{ x \in \Omega | \forall \varepsilon > 0 : \lambda^d \left(\left\{ y \in U(x, \varepsilon) \cap \Omega | f(y) \neq 0 \right\} \right) > 0 \right\}$$

Důkaz

"⊆": $X \notin \text{supp } f \implies \exists \varepsilon > 0 : f = 0$ almost everywhere on $U(x, \varepsilon) \cap \Omega \implies \Lambda_f$ vanishes on $U(x, \varepsilon) \cap \Omega \implies x \notin \text{supp } \Lambda_f$.

 $,\supseteq$ ": $x \in \text{supp. Let } \varepsilon > 0$. Then f is not 0 almost everywhere on $U(x,\varepsilon) \cap \Omega \implies \exists \varphi \in \mathcal{D}(U(x,\varepsilon) \cap \Omega)$

b) $\Lambda = \Lambda_{\mu}$. Then supp $\Lambda = \text{supp } \mu = \Omega \setminus \bigcup \{G \subset \Omega \text{ open } | \forall B \subset G \text{ Borel } \mu(B) = 0\}$.

 $D\mathring{u}kaz$

 $G \subset \Omega$ open the $\forall B \subset G$ Borel $\mu(B) = 0 \Leftrightarrow \forall \varphi \in \mathcal{D}(G) : \int \varphi d\mu = 0 \Leftrightarrow \Lambda_{\mu}$ vanishes on G.

Poznámka

f is continuous \implies supp $f = \overline{\{x | f(x) \neq 0\}} \cap \Omega$.

 $c) \varphi \in \mathcal{D}(\Omega)$, supp $\varphi \cap \text{supp } \Lambda = \emptyset \implies \Lambda(\varphi) = 0$.

Máme supp $\varphi \cap \text{supp } \Lambda = \emptyset \implies \text{supp } \varphi \subset \bigcup \{G \subset \Omega \text{ open } | \Lambda \text{ vanishes on } G\} \implies \exists G_1, G_2, \ldots, G_n \subset \Omega \text{ open such that } \Lambda \text{ vanishes on each } G_j \text{ and supp } \varphi \subset G_1 \cup \ldots \cup G_n.$ We will be done if we show that $\Lambda \text{ vanishes on } G_1 \cup \ldots \cup G_n.$

 $D\mathring{u}kaz$ (Λ vanishes on $G_1, G_2 \implies$ vanishes on $G_1 \cup G_2$)

 $\psi \in \mathcal{D}(\Omega)$, supp $\psi \subset G_1 \cup G_2$. If supp $\psi \subset G_1$ or supp $\psi \subset G_2$, then $\Lambda(\psi) = 0$. Assume supp $\psi \notin G_1$ and supp $\psi \notin G_2$. Then $L := \text{supp } \varphi \backslash G_2 \implies L$ is compact, nonempty, $L \subset G_1$. Fix $\delta > 0$ such that $3\delta < \text{dist}(L, \mathbb{R}^d \backslash G_1)$, h_k smooth kernel.

Fix $k \in \mathbb{N}$ such that $\frac{1}{k} < \delta$, $\xi := h_k * \chi_{L+B(0,2\delta)} \implies \xi \in C^{\infty}(\mathbb{R}^d)$. supp $\xi \subset L + B(0,2\delta) + U(0,1/k) \subset L + U(0,3\delta) \subset G_1$, $\xi = 1$ on $L + B(0,\delta)$. Set $\psi_1 = \xi \cdot \psi$, $\psi_2 = (1-\xi)\psi \implies \psi_1, \psi_2 \in \mathcal{D}(\Omega)$, supp $\psi_1 \subset \xi \subset G_1$, supp $\psi_2 \subset \text{supp } \psi \setminus (L+B(0,\delta)) \subset \text{supp } \psi \setminus (L+U(0,\delta)) \subset \text{supp } \psi \setminus L \subset G_2 \implies \Lambda(\psi_1) = \Lambda(\psi_2) = 0$. $\psi = \psi_1 + \psi_2 \implies \Lambda(\psi) = \Lambda(\psi_1) + \Lambda(\psi_2) = 0$.

d) Λ has compact support $\implies \exists N \in \mathbb{N}_0 \ \exists c > 0 : |\Lambda(\varphi)| \leqslant C \cdot ||\varphi||_N \ for \ \varphi \in \mathcal{D}(\Omega)$. In particular, Λ has finite order.

 \Box Důkaz

 $\operatorname{supp} \Lambda \text{ is a compact subset of } \Omega \implies \exists \delta > 0 : K := \operatorname{supp} \Lambda + B(0, 3\delta) \subset \Omega \implies K \subset \Omega$ is compact \implies

$$\exists N \in \mathbb{N}_0 \ \exists c > 0 : |\Lambda(\varphi)| \leqslant C \cdot ||\varphi||_N, \varphi \in \mathcal{D}_K(\Omega).$$

 $\xi := h_k * \chi_{\operatorname{supp} \Lambda + B(0, 2\delta)}. (1/k < \delta.) \xi \in C^{\infty}(\mathbb{R}^d), \operatorname{supp} \xi \subset \operatorname{supp} \Lambda + B(0, 2\delta) + U(0, 1/k) \subset K.$ $\xi = 1 \text{ on supp } \Lambda + B(0, \delta).$

 $\forall \varphi \in \mathcal{D}(\Omega) : \Lambda(\varphi) = \Lambda(\varphi\xi). \ (1 - \xi)\varphi \in \mathcal{D}(\Omega) = 0 \text{ on supp } \Lambda + B(0, \delta) \implies \text{supp}(1 - \xi)\varphi \cap \text{supp } \Lambda = \emptyset. \implies \Lambda((1 - \xi)\varphi) = 0 \implies \Lambda(\varphi) = \Lambda(\xi\varphi).$

Then

$$|\Lambda(\varphi)| = |\Lambda(\varphi\xi)| \leqslant C \cdot \|\xi \cdot \varphi\|_N \leqslant C \cdot 2^N \cdot \|\xi\|_N \cdot \|\varphi\|_N.$$

e) supp $\Lambda = \{p\} \Leftrightarrow \exists N \in \mathbb{N}_0, C_\alpha \in \mathbb{F}, |\alpha| \leqslant N, \Lambda = \sum_{|\alpha| \leqslant N} C_\alpha D^\alpha \Lambda_{\delta_p}.$

 $D\mathring{u}kaz$

L

 $, \Leftarrow$ ": trivial. $, \Rightarrow$ ": $\{p\}$ is compact $\Rightarrow \exists N, C : |\Lambda(\varphi)| \leqslant C \cdot ||\varphi||_M, \varphi \in D(\Omega)$. The Λ is a linear combination of $D^{\alpha}\Lambda_{\delta_n}, |\alpha| \leqslant N$. To prove this, we use lemma above and show

$$\bigcap_{|\alpha| \leq N} \operatorname{Ker} D^{\alpha} \Lambda_{\delta_p} \subset \operatorname{Ker} \Lambda,$$

i.e. $\forall \varphi \in \mathcal{D}(\Omega) : D^{\alpha}\varphi(p) = 0$ for each $|\alpha| \leqslant N \implies \Lambda(\varphi) = 0$.

3.4 Convolution of distribution

Definice 3.8 (Notation: translate, reflexion and derivative in direction)

 $M \subset \mathbb{R}^d, f: M \to \mathbb{F}$

- $y \in \mathbb{R}^d$, $\tau_y f(x) = f(x y)$, $x \in y + M$;
- $\hat{f}(x) = f(-x), x \in -M;$
- $a, e \in \mathbb{R}^d$: $\partial_e f(a) = \lim_{r \to 0} : \frac{f(a+re) f(a)}{r}$.

Lemma 3.12

 $\varphi \in \mathcal{D}(\mathbb{R}^d)$.

a)
$$x_n \to x$$
 in $\mathbb{R}^d \implies \tau_{x_n} \varphi \to \tau_x \varphi$ in $\mathcal{D}(\mathbb{R}^d)$.

 $D\mathring{u}kaz$

L

 $\frac{\sup \varphi \subset U(0,r_1) \text{ for some } r_1 > 0, \ \{x_n,n\in\mathbb{N}\} \subset U(0,r_2) \text{ for some } r_2 > 0. \ K := \overline{U(0,r_1+r_2)} \Longrightarrow K \text{ is compact and } \sup \tau_{x_n}\varphi \subset K \text{ for each } n. \ \alpha\in\mathbb{N}_0^d:$

$$||D^{\alpha}\tau_{x_n}\varphi - D^{\alpha}\tau_x\varphi||_{\infty} = \sup_{y \in \mathbb{R}^d} |D^{\alpha}\varphi(y - x_n) - D^{\alpha}\varphi(y - x)| = \sup_{y \in K} |D^{\alpha}\varphi(y - x_n) - D^{\alpha}\varphi(y - x)|.$$

Thus $D^{\alpha}\varphi$ is continuous, so it is uniformly continuous on $\overline{U(2r_2+r_1)}$.

$$\varepsilon > 0 \implies \exists \delta > 0 \ \forall y_1, y_2 \in \overline{U(2r_2 + r_1)} : (\|y_1 - y_2\| < \delta \implies |D^{\alpha}\varphi(y_1) - D^{\alpha}\varphi(y_2)| < \varepsilon).$$

$$x_n \to x \implies \exists n_0 \ \forall n \geqslant n_0 : ||x_n - x|| < \delta.$$

$$n \ge n_0, y \in K \implies y - x_n, y - x \in \overline{U(2r_2 + r_1)}, \|(y - x_n) - (y - x)\| = \|x_n - x\| < \delta \implies |D^{\alpha}\varphi(y - x_n) - D^{\alpha}\varphi(y - x)| < \varepsilon \implies D^{\alpha}\tau_{x_n}\varphi \rightrightarrows D^{\alpha}\tau_{x_n}\varphi.$$

b) $e \in \mathbb{R}^d \implies \partial_e \varphi \in \mathcal{D}(\mathbb{R}^d)$. Moreover, set

$$\varphi_r(x) := \frac{1}{r}(\varphi(x+re) - \varphi(x)), \qquad x \in \mathbb{R}^d,$$

then $\varphi_r \xrightarrow{r \to 0} \partial_e \varphi$ in $\mathcal{D}(\mathbb{R}^d)$.

 $D\mathring{u}kaz \ (e \in \mathbb{R}^d \implies \partial_e \varphi \in \mathcal{D}(\mathbb{R}^d))$ $x \in \mathbb{R}^d. \ g_x(t) := \varphi(x + te), \ t \in \mathbb{R}. \ \text{Then } g_x \in C^{\infty}(\mathbb{R}).$

$$\partial_e \varphi(x) = g'_x(0) = \sum_{j=1}^d \frac{\partial \varphi}{\partial x_j}(x + te) \cdot e_j|_{t=0} =$$

$$= \sum_{j=1}^{d} \frac{\partial \varphi}{\partial x_j}(x) e_j \implies \partial_e \varphi = \sum_{j=1}^{d} e_j \frac{\partial \varphi}{\partial x_j} \in \mathcal{D}(\mathbb{R}^d).$$

Důkaz (Moreover part)

Fix c > 0, such that supp $\varphi \subset U(0,c)$, and 0 < |r| < 1. Then supp $\varphi_r \subset \overline{U(0,c+\|e\|)}$.

$$\begin{aligned} |\varphi_{r}(x) - \partial_{e}\varphi(x)| &= \left| \frac{1}{r} (g_{x}(r) - g_{x}(0)) - g'_{x}(0) \right| = \left| \frac{1}{r} \int_{0}^{r} g'_{x} - g'_{x}(0) \right| = \\ &= \left| \frac{1}{r} \int_{0}^{r} (g'_{x}(t) - g'_{x}(0)) dt \right| = \left| \frac{1}{r} \int_{0}^{r} \sum_{j=1}^{d} e_{j} \left(\frac{\partial \varphi}{\partial x_{j}}(x + te) - \frac{\partial \varphi}{\partial x_{j}}(x) \right) dt \right| \leq \\ &\leq \left| \frac{1}{r} \int_{0}^{r} \|e\| \left(\sum_{j=1}^{d} \left\| \frac{\partial \varphi}{\partial x_{j}}(x + te) - \frac{\partial \varphi}{\partial x_{j}}(x) \right\|^{2} \right)^{1/2} dt \right| \leq \\ &\leq \left| \frac{1}{r} \int_{0}^{r} \|e\| \left(\sum_{j=1}^{d} \left\| \tau_{-te} \frac{\partial \varphi}{\partial x_{j}} - \frac{\partial \varphi}{\partial x} \right\|_{\infty}^{2} \right)^{1/2} dt \right|. \end{aligned}$$

$$\varepsilon > 0 \implies \exists \delta \ \forall y, \|y\| < \delta : \left\| \tau_{-te} \frac{\partial \varphi}{\partial x_j} - \frac{\partial \varphi}{\partial x} \right\|_{\infty} < \varepsilon.$$

If $0 < |t| \cdot ||e|| \cdot c$, then

$$\|e\| \left(\sum_{j=1}^{d} \left\| \tau_{-te} \frac{\partial \varphi}{\partial x_j} - \frac{\partial \varphi}{\partial x} \right\|_{\infty}^{2} \right)^{1/2} \leq \|e\| \cdot \sqrt{d} \cdot \varepsilon.$$

So $\varphi_r \rightrightarrows \partial_e \varphi$, $D^{\alpha} \varphi_r = (D^{\alpha} \varphi)_r \rightrightarrows \partial_e (D^{\alpha} \varphi) = D^{\alpha} (\partial_e \varphi)$.

Tvrzení 3.13

 $\varphi \in \mathcal{D}(\mathbb{R}^{d_1} \times \mathbb{R}^{d_2}).$

a) $\Lambda \in \mathcal{D}'(\mathbb{R}^{d_1})$. Define $\psi(y) = \Lambda(x \mapsto \varphi(x,y))$ $(y \in \mathbb{R}^{d_2})$. Then $\psi \in \mathcal{D}(\mathbb{R}^{d_2})$.

Fix c > 0 such that supp $\varphi \subset \overline{U(\mathbf{o}, c)}$. 1. ψ is well defined": given $y \in \mathbb{R}^{d_2}$, $x \mapsto \varphi(x, y)$ belongs to $\mathcal{D}(\mathbb{R}^{d_1})$, i.e. it is C^{∞} and supp $\subset \overline{U(0, c)}$. 2. supp $\psi \subset \overline{U(\mathbf{o}, c)}$, so it is compact.

3. $y \in \mathbb{R}^{d_2}$, $\varphi_y(x) = \varphi(x, y)$ $(x \in \mathbb{R}^{d_1})$. Then $y_n \to y$ in $\mathbb{R}^{d_2} \Longrightarrow \varphi_{y_n} \to \varphi_y$ in $\mathcal{D}(\mathbb{R}^{d_2})$:
Assume $y_n \to y$ in \mathbb{R}^{d_2} . WLOG $||y_n|| \le c$ for each n. $\forall n : \text{supp } \varphi_{y_n} \subset \overline{U(\mathbf{o}, c)}$. Fix $\alpha \in \mathbb{N}_0^{d_1}$. Then $\mathcal{D}^{\alpha}\varphi_{y_n} \rightrightarrows \mathcal{D}^{\alpha}\varphi_y$ ":

 $\frac{D^{\alpha}\varphi_{y_n}(x)}{U(\mathbf{o},c)}. \text{ So, give } \varepsilon. > 0 \ \exists \delta > 0 \ \forall (u_1,u_2), (v_1,v_2) \in \overline{U(\mathbf{o},c)}:$

$$\|(u_1, v_1) - (u_2, v_2)\| < \delta \implies |D^{(\alpha,0)}\varphi(u_1, v_1) - D^{(\alpha,0)}\varphi(u_2, v_2)| < \varepsilon.$$

Fix $n_0 \in \mathbb{N}$ such that $\forall n \geq n_0 : ||y - y_n|| < d$. If $n \geq n_0$ and $x \in \overline{U_{\mathbb{R}^{d_1}}(\mathbf{o}, c)}$, then

$$|D^{(\alpha,0)}\varphi(x,y_n) - D^{(\alpha,0)}\varphi(x,y)| < \varepsilon \qquad \iff ||(x,y_n) - (x,y)|| < \delta.$$

Hence $||D^{\alpha}\varphi_{y_n} - D^{\alpha}\varphi_y|| \le \varepsilon$ for $n \ge n_0$.

4. ψ is continuous:

$$y_n \to y \stackrel{3.}{\Longrightarrow} \varphi_{y_n} \to \varphi_y \text{ in } \mathcal{D}(\mathbb{R}^{d_1}) \implies \psi(y_n) = \Lambda(\varphi_{y_n}) \to \Lambda(\varphi_y) = \psi(y).$$

5.
$$\frac{\partial \psi}{\partial y_i}(y) = \Lambda(x \mapsto \frac{\partial \varphi}{\partial y_i}(x,y))$$
":

$$\begin{split} \frac{\partial \psi}{\partial y_j}(y) &= \lim_{t \to 0} \frac{\psi(y + te_j) - \psi(y)}{\tau} \stackrel{\Lambda \text{ linear}}{=} \lim_{t \to 0} \Lambda \left(x \mapsto \frac{\varphi(x, y + te_j) - \varphi(x, y)}{t} \right) = \\ &= \lim_{t \to 0} \Lambda(x \mapsto \varphi_t(x, y)). \end{split}$$

We know $\varphi_t \to \partial_{(0,y_j)} \varphi$ in $\mathcal{D}(\mathbb{R}^{d_1} \times \mathbb{R}^{d_2})$. So we have $\varphi_t \to \frac{\partial \varphi}{\partial y_j}$ in $\mathcal{D}(\mathbb{R}^{d_1} \times \mathbb{R}^{d_2})$. Hence, for each $y \in \mathbb{R}^{d_2}$: $(\varphi_t)_y \to \left(\frac{\partial \varphi}{\partial y_j}\right)_y$ in $\mathcal{D}(\mathbb{R}^{d_1}) \implies \Lambda((\varphi_t)_y) \to \Lambda\left(\left(\frac{\partial \varphi}{\partial y_j}\right)_y\right)$.

$$(*) = \Lambda\left(\left(\frac{\partial \varphi}{\partial y_j}\right)_y\right) = \Lambda(x \mapsto \frac{\partial \varphi}{\partial y_j}(x, y)).$$

6. $,\psi \in C^{\infty}(\mathbb{R}^{d_2})$ and $\forall \alpha: D^{\alpha}\psi(y) = \Lambda(x \mapsto D^{(0,\alpha)}\varphi((x,y)))$ ": 5. \Longrightarrow for $|\alpha| = 1$. 4. applied to $\frac{\partial \varphi}{\partial y_j}$ implies $\psi \in C^1(\mathbb{R}^{d_2})$. Induction: Assume it holds for $|\alpha| \leqslant k$, take $|\alpha| = k+1$. Then $\alpha = \beta + e_j$, $|\beta| = k$, $j \in [d]$.

$$D^{\alpha}\psi(y) = \frac{\partial}{y_j}(D^{\beta}\psi)(y) = \frac{\partial}{\partial y_j}\left(y \mapsto \Lambda\left(x \mapsto D^{(0,\beta)}\varphi(x,y)\right)\right) \stackrel{5.}{=}$$
$$= \Lambda(x \mapsto \frac{\partial}{\partial y_j}D^{(0,\beta)}\varphi(x,y)) = \Lambda(x \mapsto D^{(0,\alpha)}\varphi(x,y)).$$

Lemma 3.14

 $\Omega \subset \mathbb{R}^d$ open, $\Lambda \in \mathcal{D}(\Omega)$, $K \subset \Omega$ compact. Then $\exists N \in \mathbb{N}_0$, $\exists \mu_{\alpha}$, $|\alpha| \leq N$, finite (signed or complex) Borel measure on K such that

$$\Lambda(\varphi) = \sum_{|\alpha| \leq N} \int_K D^{\alpha} \varphi d\mu_{\alpha}, \qquad \varphi \in \mathcal{D}_K(\Omega).$$

Důkaz (of lemma, sketch)

From the proposition above $\exists N, C$ such that

$$|\Lambda(\varphi)| \leq C \cdot ||\varphi||_N, \varphi \in \mathcal{D}_K(\Omega).$$

 $X := (C(K))^{\{\alpha \mid \mid \alpha \mid \leq N\}}$. $T : \mathcal{D}_K(\Omega) \to X$ by $T\varphi = (D^{\alpha}\varphi)_{\mid \alpha \mid \leq N} \implies \Lambda \circ T^{-1}$ is continuous on $T(\mathcal{D}_K(\Omega)) \implies$ extend to $X \implies$ (by Riesz) find $\mu_{\alpha}, |\alpha| \leq N$.

b)
$$\Lambda_1 \in \mathcal{D}'(\mathbb{R}^{d_1}), \ \Lambda_2 \in \mathcal{D}'(\mathbb{R}^{d_2}). \ Then$$

$$\Lambda_2(y \mapsto \Lambda_1(x \mapsto \varphi(x,y))) = \Lambda_1(x \mapsto \Lambda_2(y \mapsto \varphi(x,y))).$$

Důkaz

By a) both sides are well defined. supp $\varphi \subset \overline{U(\mathbf{o},c)}$. From the previous lemma: Λ_1 (resp. Λ_2) on $\overline{U(\mathbf{o},c)}$ is equal to μ_{α} (resp. ν_{α}) for some $|\alpha| \leq N_1$ (resp. $|\alpha| \leq N_2$).

$$\Lambda_{2}(y \mapsto \Lambda_{1}(x \mapsto \varphi(x,y))) = \sum_{|\beta| \leqslant N_{2}} \int D^{\beta} \lambda_{1}(x \mapsto \varphi(x,y)) d\nu_{\beta}(y) =$$

$$= \sum_{|\beta| \leqslant N_{2}} \int \Lambda_{1}(x \mapsto D^{(0,\beta)} \varphi(x,y)) d\nu_{\beta}(y) =$$

$$= \sum_{|\beta| \leqslant N_{2}} \sum_{|\alpha| \leqslant N_{1}} \int \int D^{(\alpha,\beta)} \varphi(x,y) d\mu_{\alpha}(x) d\nu_{\beta}(y) \stackrel{\text{FUBINI}}{=}$$

$$= \sum_{|\beta| \leqslant N_{2}} \sum_{|\alpha| \leqslant N_{1}} \int \int D^{(\alpha,\beta)} \varphi(x,y) d\nu_{\beta}(y) d\mu_{\alpha}(x) \dots$$

Definice 3.9 (Convolution in distributions)

 $U \in \mathcal{D}'(\mathbb{R}^d), \ \varphi \in \mathcal{D}(\mathbb{R}^d), \ U * \varphi(x) = U(\tau_x \check{\varphi}) = U(y \mapsto \varphi(x - y)) \ (x \in \mathbb{R}^d).$

Věta 3.15 (On the convolution of a distribution and a test function)

$$\overline{a) \ f \in L^1_{loc} \implies \Lambda_f * \varphi = f * \varphi.}$$

$$\Lambda_f * \varphi(x) = \Lambda_f(y \mapsto \varphi(x - y)) = \int_{\mathbb{R}^d} f(y)\varphi(x - y)dy = f * \varphi(x).$$

b) $U * \varphi \in C^{\infty}(\mathbb{R}^d)$, $D^{\alpha}(U * \varphi) = D^{\alpha}U * \varphi = U * D^{\alpha}\varphi$.

Důkaz

" $U * \varphi$ is continuous":

$$x_n \to x \text{ in } \mathbb{R}^d \implies \tau_{x_n} \check{\varphi} \to \tau_x \check{\varphi} \text{ in } \mathcal{D}(\mathbb{R}^d) \implies U * \varphi(x_n) = U(\tau_{x_n} \check{\varphi}) \to U(\tau_x \check{\varphi}) = U * \varphi(x).$$

$$\frac{\partial}{\partial x_{j}}(U * \varphi)(x) = \lim_{t \to 0} \frac{U * \varphi(x + te_{j}) - U * \varphi(x)}{t} =$$

$$= \lim_{t \to 0} U\left(\frac{\tau_{x + te_{j}}\check{\varphi} - \tau_{x}\check{\varphi}}{t}\right) \stackrel{\psi := \tau_{x}\check{\varphi}}{=} \lim_{t \to 0} U\left(\frac{\tau_{te_{j}}\psi - \psi}{t}\right) = U(\partial_{-e_{j}}\psi) =$$

$$= U\left(\tau_{x}\left(\frac{\partial \varphi}{\partial x_{j}}\right)\right) = U * \frac{\partial \varphi}{\partial x_{j}}(x).$$

$$\partial_{-e_{j}}\psi = -\partial_{e_{j}}\psi = -\frac{\partial \psi}{\partial y_{j}} = -\frac{\partial}{\partial y_{j}}(\tau_{x}\check{\varphi}) = \tau_{x}\left(\frac{\partial \varphi}{\partial y_{j}}\right)^{v}.$$

$$\frac{\partial}{\partial x_{j}}(U * \varphi) = U * \frac{\partial \varphi}{\partial x_{j}}.$$

$$\frac{\partial U}{\partial x_{j}} * \varphi(x) = \frac{\partial U}{\partial x_{j}}\tau_{x}\check{\varphi} = -U\left(\frac{\partial \tau_{x}\check{\varphi}}{\partial x}\right) = U * \frac{\partial \varphi}{\partial x_{j}}(x).$$

So, we have it for $|\alpha| = 1$. The general case by induction.

c) $supp(U * \varphi) \subset supp U + supp \varphi$.

 □ Důkaz

$$U * \varphi(x) \neq 0 \implies U(\tau_x \check{\varphi}) \neq 0 \implies \operatorname{supp}(\tau_x \check{\varphi}) \cap \operatorname{supp} U \neq \emptyset \implies x \in \operatorname{supp} \varphi + \operatorname{supp} U.$$

Důsledek

So U has compact support $\implies U * \varphi$ has compact support.

d) h_j smoothing kernel. Then $\Lambda_{U*h_j} \to U$ in $\mathcal{D}'(\mathbb{R}^d)$.

$$\Lambda_{U*h_j}(\varphi) = \int (U*h_j)(x)\varphi(x)dx = \int U(y\mapsto h_j(x-y))\varphi(x)dx =$$

$$= \int U(y\mapsto \varphi(x)h_j(x-y))dx = \Lambda_1(y\mapsto \varphi(x)h_j(x-y)) =$$

$$= U(y\mapsto \Lambda_1(x\mapsto \varphi(x)h_j(x-y))) = U(y\mapsto \int \varphi(x)h_j(x-y)dx) = U(\varphi*\check{h}_j) \to \Lambda(\varphi).$$

Because $\varphi * \check{h}_i \to \varphi$ in $\mathcal{D}(\mathbb{R}^d)$ and

$$\operatorname{supp}(\varphi * \check{h}_j) \subset \operatorname{supp} \varphi + U(0, 1/j) \subset \varphi + \overline{U(0, 1)},$$
$$D^{\alpha}(\varphi * \check{h}_j) = (D^{\alpha}\varphi) * h_j \rightrightarrows D^{\alpha}\varphi.$$

 $e) \tau_x(U * \varphi) = \tau_x U * \varphi = U * \tau_x \varphi$

Důkaz

L

$$\tau_x(U * \varphi)(z) = (U * \varphi)(z - x) = U(\tau_{z-x}\check{\varphi}) = U(\tau_{-x}\tau_z\check{\varphi}) = \tau_x U(\tau_z\check{\varphi}) = \tau_x U * \varphi(z).$$

$$\tau_x(U * \varphi)(z) = (U * \varphi)(z - x) = U(\tau_{z-x}\check{\varphi}) = U(\tau_z(\tau_{-x}\check{\varphi})) = U(\tau_z(\widecheck{\tau_x\varphi})) = U * \tau_x \varphi(z).$$

$$(\tau_{-x}\check{\varphi}(y) = \check{\varphi}(y + x) = \varphi(-y - x) = \tau_x \varphi(-y) = (\widecheck{\tau_x\varphi})(y).$$

 $f)\ U*(\varphi*\psi)=(U*\varphi)*\psi\ (U\in\mathcal{D}'(\mathbb{R}^d),\varphi,\psi\in\mathcal{D}(\mathbb{R}^d)).$

Důkaz

 \Box

$$U * (\varphi * \psi)(x) = U(y \mapsto (\varphi * \psi)(x - y)) = U(y \mapsto \int_{\mathbb{R}^d} \varphi(x - y - z)\psi(z)dz) =$$

$$= U(y \mapsto \Lambda_1(z \mapsto \varphi(x - y - z)\psi(z))) = \Lambda_1(z \mapsto U(y \mapsto \varphi(x - y - z)\psi(z))) =$$

$$= \Lambda_1(z \mapsto \psi(z) \cdot U(y \mapsto \varphi(x - y - z))) = \Lambda_1(z \mapsto \psi(z) \cdot (U * \varphi)(x - z)) =$$

$$= \int \psi(z) \cdot (U * \varphi(x - z))dz = (U * f) * \psi(x).$$

Poznámka

$$\check{U}(\varphi) = U(\check{\varphi}), \varphi \in \mathcal{D}(\mathbb{R}^d).$$

 $\tau_x U$ and \check{U} are distributions, $\tau_x \Lambda_f = \Lambda_{\tau_x f}$, $\check{\Lambda}_f = \Lambda_{\check{f}}$, $f \in L^1_{loc}(\mathbb{R}^d)$ (standard one page of computations or less).

Poznámka

U, V distributions, $U * V(\varphi) = U(\check{V} * \varphi), \ \varphi \in \mathcal{D}(\mathbb{R}^d)$:

• It is natural formula:

$$V = \Lambda_{\psi}, \psi \in \mathcal{D}(\mathbb{R}^d) \implies \Lambda_{U*\psi}(\varphi) = U(\check{\psi} * \varphi).$$

Důkaz

$$\Lambda_{U*\psi}(\varphi) = \int_{\mathbb{R}^d} U * \psi(x)\varphi(x)dx = \int_{\mathbb{R}^d} U(y \mapsto \psi(x-y))\varphi(x)dx =$$

$$= \int_{\mathbb{R}^d} U(y \mapsto \psi(x-y)\varphi(x))dx = U(y \mapsto \int_{\mathbb{R}^d} \psi(x-y)\varphi(x)dx) = U(y \mapsto \check{\psi} * \varphi(y)).$$

• This formula does not work in general because $\check{V} * \varphi$ is a C^{∞} -function but it need not have compact support.

Poznámka (1.)

supp V is compact, then $V * \varphi \in \mathcal{D}(\mathbb{R}^n)$ for each $\varphi \in \mathcal{D}(\mathbb{R}^d)$ (supp $\check{V} * \varphi \subset \text{supp } \check{V} + \text{supp } \varphi$, so it is compact). Then U * V is linear functional on $\mathcal{D}(\mathbb{R}^d)$. Moreover, "it is a distribution":

Fix $K \subset \mathbb{R}^d$ compact. Set $L := \operatorname{supp} \check{V} + K \implies$

$$\implies \exists C > 0, N \in \mathbb{N}_0 : |V(\psi)| \leqslant C \cdot ||\psi||, \qquad \forall \psi \in \mathcal{D}_L(\mathbb{R}^d).$$

 $\varphi \in \mathcal{D}_K(\mathbb{R}^d) \Longrightarrow \check{V} * \varphi \in \mathcal{D}_L(\mathbb{R}^d) \Longrightarrow |(U * V)(\varphi)| = |U(\check{V} * \varphi)| \leqslant C \cdot ||\check{V} * \varphi||_N \leqslant C \cdot D \cdot ||\varphi||_{N+M}.$ $(\check{V} * \varphi(x) = V(y \mapsto \varphi(x+y)), \ V \text{ has compact support } \Longrightarrow \exists D, M : |V(\eta)| \leqslant D \cdot ||\eta||_M,$ $\forall \eta \in \mathcal{D}(\mathbb{R}^d).)$

Poznámka (2.)

supp U is compact $\Longrightarrow \exists \psi \in \mathcal{D}(\mathbb{R}^d)$ such that $U(\varphi) = U(\psi \cdot \varphi), \varphi \in \mathcal{D}(\mathbb{R}^d)$. (Proof of the theorem above item d.) So, define $(U * V)(\varphi) = U(\psi \cdot (\check{V} * \varphi))$. Again $U * V \in \mathcal{D}'(\mathbb{R}^d)$. (Proof skipped.)

Poznámka (3.)

 $\forall r > 0 : (\overline{U(\mathbf{o}, r)} - \operatorname{supp} V) \cap \operatorname{supp} U$ is compact. For r > 0 let $\psi_r \in \mathcal{D}(\mathbb{R}^d)$, $\psi_r = 1$ on a neighbourhood of this set. Then U may be extended to

$$Y = \left\{ f \in C^{\infty}(\mathbb{R}^d) \middle| \operatorname{supp} f \subset \overline{U(\mathbf{0}, r)} - \operatorname{supp} V \text{ for some } r > 0 \right\}.$$

$$\tilde{U}(f) = U(\psi_r \cdot f) \text{ if supp } f \subset \overline{U(\mathbf{o}, r)} - \text{supp } V.$$

Then define $U * V(\varphi) = \tilde{U}(\check{V} * \varphi)$ (supp $\check{V} * \varphi \subset \text{supp } \varphi - \text{supp } V$).

Poznámka (4.)

Assume $\exists m, n \in \mathbb{N}_0, c, d > 0$:

$$|U(\varphi)| \leq c \cdot ||\varphi||_n \wedge |V(\varphi)| \leq d \cdot ||\varphi||_m, \quad \forall \varphi \in \mathcal{D}(\mathbb{R}^d).$$

 $\implies \mu_{\alpha}, |\alpha| \leq n \text{ measures (finite ...)}$:

$$U(\varphi) = \sum_{|\alpha| \leq n} \int_{\mathbb{R}^d} D^{\alpha} \varphi d\mu_{\alpha}, \varphi \in \mathcal{D}(\mathbb{R}^d) \implies$$

$$\Longrightarrow (U * V)(\varphi) = \sum_{|\alpha| \leqslant n} \int_{\mathbb{R}^d} D^{\alpha} (\check{V} * \varphi) d\mu_{\alpha}.$$

$$|(U * V)(\varphi)| \le c \cdot d \cdot ||\varphi||_{n+m}.$$

3.5 Tempered distributions

Definice 3.10 (Schwartz space)

$$\mathcal{S}(\mathbb{R}^d) = \left\{ f \in C^{\infty}(\mathbb{R}^d) \middle| \forall \alpha \in \mathbb{N}_0^d \ \forall N \in \mathbb{N} : x \mapsto (1 + \|x\|^2)^N D^{\alpha} f(x) \text{ is bounded on } \mathbb{R}^d \right\}.$$

$$f \in \mathcal{S}(\mathbb{R}^d), \quad N \in \mathbb{N}_0, \quad p_N(f) := \max_{|\alpha| \le N} \|x \mapsto (1 + \|x\|^2)^N D^{\alpha} f(x)\|_{\infty}.$$

Then $(p_N)_{N=0}^{\infty}$ is sequence of norms on $\mathcal{S}(\mathbb{R}^d)$, $p_0 \leqslant p_1 \leqslant p_2 \leqslant \ldots (p_0(f) = ||f||_{\infty})$

Tvrzení 3.16

a) $\mathcal{S}(\mathbb{R}^d)$ is a Fréchet space when equipped with $(p_N)_{N=0}^{\infty}$.

 $D\mathring{u}kaz$

 $\mathcal{S}(\mathbb{R}^d)$ is a metrizable LCS. Let ϱ be the respective translation invariant metric. "Completeness": Assume (f_n) is ϱ -Cauchy $\Longrightarrow \forall N \colon (f_n)$ is p_N -Cauchy $\Longrightarrow \forall N \ \forall \alpha, |\alpha| \leqslant N \colon (x \mapsto (1 + \|x\|^2) D^{\alpha} f_k(x))_{k=1}^{\infty}$ is $\|\cdot\|_{\infty}$ -Cauchy $\Longrightarrow \forall N, \alpha, |\alpha| \leqslant N \ \exists g_{N,\alpha}$ such that $(1 + \|x\|^2)^N D^{\alpha} f_n(x) \rightrightarrows g_{N,\alpha}(x)$ on \mathbb{R}^d . $D^{\alpha} f_k(x) \rightrightarrows \frac{g_{N,\alpha}(x)}{(1+\|x\|^2)^N}$. $\Longrightarrow \forall \alpha \ \exists h_{\alpha}$ continuous such that $g_{N,\alpha}(x) = (1 + \|x\|^2)^N h_{\alpha}(x)$ if $N \geqslant |\alpha|$. $D^{\alpha} f_k \rightrightarrows h_{\alpha} \Longrightarrow h_{\alpha} = D^{\alpha} h_{\alpha} \Longrightarrow h_{\alpha} \in C^{\infty}(\mathbb{R}^d)$.

$$h_0 \in \mathcal{S}(\mathbb{R}^d)$$
":
$$(1 + \|x\|^2)^N D^{\alpha} h_0(x) = g_{N,\alpha}(x),$$

which is bounded (uniform limit of bounded functions). Moreover $f_k \to h_0$ in p_N , hence by the theorem above $f_n \to h_0$ in $\mathcal{S}(\mathbb{R}^d)$ (in ϱ).

b) $\mathcal{D}(\mathbb{R}^d)$ is a dense subset of $\mathcal{S}(\mathbb{R}^d)$. Důkaz Clearly $\mathcal{D}(\mathbb{R}^d) \subset\subset \mathcal{S}(\mathbb{R}^d)$. "Density": Fix $\varphi \in \mathcal{D}(\mathbb{R}^d)$ such that $0 \leqslant \varphi \leqslant 1$, $\varphi = 1$ na $U(\mathbf{o},1)$. Let $f \in \mathcal{S}(\mathbb{R}^d)$. Let $f_n(x) = f(x) \cdot \varphi(x/n), x \in \mathbb{R}^d$. Then $f_n \in \mathcal{D}(\mathbb{R}^d)$. Moreover, $f_n \to f$ in $\mathcal{S}(\mathbb{R}^d)$ ": Let $N \in \mathbb{N}_0$, $d \in \mathbb{N}_0^d$, $|\alpha| \leqslant N$: $\left| (1 + \|x\|^2)^N (D^{\alpha} f(x) - D^{\alpha} f_n(x)) \right| = (1 + \|x\|^2)^N \left| D^{\alpha} ((1 - \varphi(x/n))) f(x) \right| =$ $= (1 + \|x\|^2)^N \left| (1 - \varphi(x/n))D^{\alpha}f(x) + \sum_{0 \neq \beta \leq \alpha} {\alpha_1 \choose \beta_1} \cdot \ldots \cdot {\alpha_d \choose \beta_d} (-1) \frac{1}{n^{|\beta|}} D^{\beta}\varphi(x/n)D^{\alpha-\beta}f(x) \right|$ $\begin{cases} = 0, & ||x|| \le n \\ \le \sup_{\|x\| \ge n, |\gamma| \le N} \frac{(1 + ||x||^2)^{N+1} |D^{\gamma} f(x)|}{1 + ||x||^2}, & ||x|| > n \end{cases}$ $\left(\sup_{\|x\| \geqslant n} \left(1 + \sum_{0 \neq \beta \leqslant \alpha} {\alpha_1 \choose \beta_1} \cdot \ldots \cdot {\alpha_d \choose \beta_d} \cdot \underbrace{\frac{1}{n^{|\beta|}}}_{\leqslant \|\varphi\|_N} \underbrace{|D^{\beta}\varphi(x/n)|}_{\leqslant \|\varphi\|_N}\right) \right) \leqslant 1 + 2^N \|\varphi\|_N.$ $\leq (1 + 2^N \cdot \|\varphi\|_n) \cdot \frac{p_{N+1}(f)}{1 + n^2} \to 0.$ c) $\varphi_n \to \varphi$ in $\mathcal{D}(\mathbb{R}^d) \implies \varphi_n \to \varphi$ in $\mathcal{S}(\mathbb{R}^d)$. Assume $\varphi_n \to \varphi$ in $\mathcal{D}(\mathbb{R}^d) \implies \exists R > 0$ such that supp $\varphi_n \subset \overline{U(\mathbf{o}, R)}$. Then $p_n(\varphi_n - \varphi) = \max_{|\alpha| \le N} \|x \mapsto (1 + \|x\|^2)^N (D^\alpha \varphi_n(x) - D^\alpha \varphi(x))\|_{\infty} \le (1 + R^2)^N \cdot \|\varphi_n - \varphi\|_N \to 0.$

Definice 3.11 (A tempered distribution on \mathbb{R}^d)

A tempered distribution on \mathbb{R}^d is a continuous linear functional on $\mathcal{S}(\mathbb{R}^d)$. Notation: $\mathcal{S}'(\mathbb{R}^d)$.

Poznámka

L

 $\Lambda \in \mathcal{S}'(\mathbb{R}^d) \implies \Lambda|_{\mathcal{D}(\mathbb{R}^d)} \in \mathcal{D}'(\mathbb{R}^d)$. (By the previous theorem item c.)

 $\mathcal{D}'(\mathbb{R}^d) \subset\subset \mathcal{D}'(\mathbb{R}^d)$. (By item a. and b.)

We say that distribution is tempered, if it can be extended to $\mathcal{S}(\mathbb{R}^d)$.

Tvrzení 3.17 (A characterization of tempered distributions)

 $a) \Lambda : \mathcal{S}(\mathbb{R}^d) \to \mathbb{F} \ linear. \ Then$

$$\Lambda \in \mathcal{S}'(\mathbb{R}^d) \Leftrightarrow \exists N \in \mathbb{N}_0 \ \exists C > 0 : |\Lambda(\varphi)| \leqslant C \cdot p_N(\varphi), \qquad \varphi \in \mathcal{S}(\mathbb{R}^d).$$

 $D\mathring{u}kaz$

By the proposition above.

b) Assume $\Lambda \in \mathcal{D}'(\mathbb{R}^d)$. Then Λ is tempered iff

$$\exists N \in \mathbb{N}_0 \ \exists c > 0 : |\Lambda(\varphi)| \leqslant C \cdot p_N(\varphi), \qquad \varphi \in \mathcal{D}(\mathbb{R}^d).$$

Důkaz

" \Longrightarrow ": a). " \Longleftarrow ": For example by Hahn–Banach and a).

Definice 3.12 (Convergence in S')

$$\overline{\Lambda_n \to \Lambda \text{ in } \mathcal{S}'(\mathbb{R}^d)} \equiv \forall \varphi \in \mathcal{S}(\mathbb{R}^d) : \Lambda_n(\varphi) \to \Lambda(\varphi), \text{ i.e. } \Lambda_n \stackrel{w^*}{\to} \Lambda.$$

Věta 3.18 (BVanach–Steinhaus theorem for tempered distribution)

 $(\Lambda_n) \subset \mathcal{S}'(\mathbb{R}^d), \ \forall \varphi \in \mathcal{S}(\mathbb{R}^d): (\Lambda_n(\varphi)) \ converges \ in \ \mathbb{F}. \ Then \ \Lambda(\varphi) = \lim_{n \to \infty} \Lambda_n(\varphi), \ \varphi \in \mathcal{S}(\mathbb{R}^d) \ is \ tempered \ distribution.$

 $D\mathring{u}kaz$

Use the previous proposition item a) and the theorem above.

Tvrzení 3.19 (Examples of tempered distributions)

a) $\Lambda \in \mathcal{D}'(\mathbb{R}^d)$, supp Λ is compact $\Longrightarrow \Lambda$ is tempered.

 $D\mathring{u}kaz$

 $\Lambda \text{ has compact support } \Longrightarrow \exists C > 0 \ \exists N \in \mathbb{N}_0 : |\Lambda(\varphi)| \leqslant C \cdot ||\varphi||_N \leqslant C \cdot p_N(\varphi),$ $\varphi \in \mathcal{D}(\mathbb{R}^d).$

b) $f \in L^p(\mathbb{R}^d)$ for some $p \in [1, \infty]$. Then $\Lambda_f \in \mathcal{S}(\mathbb{R}^d)$ and, moreover, $L_f(\varphi) = \int_{\mathbb{R}^d} f\varphi, \varphi \in \mathcal{S}(\mathbb{R}^d)$.

Theorem IV.11(a) $\Longrightarrow \mathcal{S}(\mathbb{R}^d) \subset \bigcap_{p \in [1,\infty]} L^p(\mathbb{R}^d)$. (It was stated and almost proven at chapter IV, but full proof is not easy.) So, fix $p \in [1,\infty]$ and $f \in L^p(\mathbb{R}^d)$. Let p' be the dual exponent. Then $\forall \varphi \in \mathcal{S}(\mathbb{R}^d) : \varphi \in L^{p'}(\mathbb{R}^d)$, hence $f \varphi \in L^1(\mathbb{R}^d)$.

So $\tilde{\Lambda}(\varphi) = \int_{\mathbb{R}^d} f\varphi$, $\varphi \in \mathcal{S}(\mathbb{R}^d)$ is a well-defined linear functional on $\mathcal{S}(\mathbb{R}^d)$: "continuity":

$$p=1: |\tilde{\Lambda}(\varphi)|=|\int_{\mathbb{R}^d} f\varphi| \leqslant \|f\|_1 \cdot \|\varphi\|_{\infty} = \|f\|_1 \cdot p_0(\varphi);$$

 $p > 1 : \forall n \in \mathbb{N} : f \cdot \chi_{U(\mathbf{o},n)} \in L^1(\mathbb{R}^d) \implies \Lambda_{f \cdot \chi_{U(\mathbf{o},n)}} \in \mathcal{S}(\mathbb{R}^d)$ by the first case

$$\implies \tilde{\Lambda}(\varphi) = \int_{\mathbb{R}^d} f\varphi = \lim_{n \to \infty} \int_{\mathbb{R}^d} f \cdot \chi_{U(\mathbf{o}, n)} \varphi = \lim_{n \to \infty} \Lambda_{f \cdot \chi_{U(\mathbf{o}, n)}}(\varphi) = \Lambda(\varphi).$$

c) f measurable on \mathbb{R}^d , $|f| \leq |p|$ for some polynomial p on \mathbb{R}^d . Then $\Lambda_f \in \mathcal{S}'(\mathbb{R}^d)$ and $\Lambda_f(\varphi) = \int_{\mathbb{R}^d} f \varphi$, $f \in \mathcal{S}(\mathbb{R}^d)$.

 \Box $D\mathring{u}kaz$

L

 $p \text{ polynomial } \Longrightarrow p(x) = \sum_{|\alpha| \leq N} c_{\alpha} x^{\alpha} \ (c_{\alpha} \in \mathbb{F}, x^{\alpha} = x_1^{\alpha_1} \cdot \ldots \cdot x_d^{\alpha_d}).$

$$\implies |p(x)| \leqslant c \cdot (\sqrt{2})^{dN} (1 + ||x||^2)^{N \cdot \frac{d}{2}}, \qquad c = \max_{\alpha} |c_{\alpha}|.$$

So, if $|f| \leq |p|$, then $\frac{|f(x)|}{(1+\|x\|^2)^m} \leq c \cdot (\sqrt{2})^{d \cdot N} \cdot (1+\|x\|^2)^{N \cdot \frac{d}{2}-m}$. If m is large enough (such that $N \cdot \frac{d}{2} - m < -\frac{d}{2}$), then $f(x)/(1+\|x\|^2)^m$ is integrable in \mathbb{R}^d . $(1/(1+\|x\|^2)^k$ is integrable for $k > \frac{d}{2}$ see the comment before theorem IV.11). Then:

$$\left| \int_{\mathbb{R}^d} f \cdot \varphi \right| = \left| \int_{\mathbb{R}^d} \frac{f(x) \cdot (1 + \|x\|^2)^m}{(1 + \|x\|^2)^m} \right| \le \left(\int_{\mathbb{R}^d} \frac{|f(x)|}{(1 + \|x\|^2)^m} \right) \cdot p_m(f).$$

d) μ is a finite measure $\implies \Lambda_{\mu} \in \mathcal{S}'(\mathbb{R}^d), \ \Lambda_m(\varphi) = \int_{\mathbb{R}^d} \varphi d\mu, \ \varphi \in \mathcal{S}(\mathbb{R}^d).$

Důkaz

L

 $\varphi \in \mathcal{S}(\mathbb{R}^d) \implies \varphi$ is continuous and bounded.

$$\left| \int_{\mathbb{R}^d} \varphi d\mu \right| \leqslant \int_{\mathbb{R}^d} |\varphi| d|\mu| \leqslant \|f\|_{\infty} \cdot \|\mu\| = p_0(\varphi) \cdot \|\mu\|.$$

45

Lemma 3.20 (Continuity of operations on the Schwartz space)

 $f \mapsto D^{\alpha} f$ is continuous $\mathcal{S}(\mathbb{R}^d) \to \mathcal{S}(\mathbb{R}^d)$.

П

 $D\mathring{u}kaz$

 $f \in \mathcal{S}(\mathbb{R}_6 d), \ \alpha \in \mathbb{N}_0^d \implies D^{\alpha} f \in L^{\infty}(\mathbb{R}^d). \text{ Fix } N \in \mathbb{N}_0 \text{ and } \beta, \ |\beta| \leqslant N$:

$$|(1 + ||x||^2)^N D^{\beta}(D^{\alpha}f)(x)| = (1 + ||x||^2)^N |D^{\beta + \alpha}f(x)| \le p_{N + |\alpha|}(f) \implies$$

$$\Rightarrow p_N(D^{\alpha}f) \leqslant p_{N+|\alpha|}(f).$$

 $p \text{ is polynomial } \Longrightarrow f \mapsto p \cdot f \text{ is continuous } \mathcal{S}(\mathbb{R}^d) \to \mathcal{S}(\mathbb{R}^d).$

Důkaz

Clearly $p \cdot f \in C^{\infty}(\mathbb{R}^d)$. Fix $N \in \mathbb{N}_0$. Then $\exists c > 0, m \in \mathbb{N}$ such that

$$\forall \alpha, |\alpha| \leq N, \ \forall x \in \mathbb{R}^d L |D^{\alpha} p(x)| \leq c \cdot (1 + ||x||^2)^m.$$

Fix α , $|\alpha| \leq N$, $x \in \mathbb{R}^d$:

$$|(1 + ||x||^2)^N D^{\alpha}(p \cdot f)(x)| = (1 + ||x||^2)^N |\sum_{\beta \leqslant \alpha} {\alpha \choose \beta} D^{\beta} p(x) D^{\alpha - \beta} f(x)| \leqslant$$

$$\leq c \cdot (1 + \|x\|^2)^{N+M} \sum_{\beta \leq \alpha} {\alpha \choose \beta} |D^{\alpha-\beta} f(x)| \leq c \cdot \sum_{\beta \leq \alpha} {\alpha \choose \beta} p_{N+M}(f) \leq c \cdot 2^N p_{N+M}(f) \implies p_N(p \cdot f) \leq c \cdot 2^N p_{N+M}(f).$$

 $g \in \mathcal{S}(\mathbb{R}^d) \implies f \mapsto f \cdot g \text{ is continuous } \mathcal{S}(\mathbb{R}^d) \to \mathcal{S}(\mathbb{R}^d).$

 $D\mathring{u}kaz$

L

 $g \in \mathcal{S}(\mathbb{R}^d) \implies \forall \alpha : D^{\alpha}g$ is bounded on \mathbb{R}^d . Fix $N \in \mathbb{N}_0$. Set $C := \max_{|\alpha| \leq N} \|D^{\alpha}g\|_{\infty}$. Fix $\alpha, |\alpha| \leq N, x \in \mathbb{R}^d$.

$$\left|(1+\|x\|^2)^ND^{\alpha}(f\cdot g)(x)\right|=(1+\|x\|^2)^N\left|\sum_{\beta\leqslant\alpha}\binom{\alpha}{\beta}D^{\beta}g(x)D^{\alpha-\beta}f(x)\right|\leqslant$$

$$C \cdot \sum_{\beta \leq \alpha} p_N(f) \leqslant C \cdot 2^N \cdot p_N(f) \implies p_N(g \cdot f) \leqslant C \cdot 2^N p_N(f).$$

Poznámka

Similarly one may probe that: $g \in C^{\infty}(\mathbb{R}^d)$, $\forall \alpha \exists P_{\alpha} \text{ polynomial: } |D^{\alpha}g| \leq |P_{\alpha}| \text{ on } \mathbb{R}^d \implies f \mapsto f \cdot g \text{ is a continuous mapping } \mathcal{S}(\mathbb{R}^d) \to \mathcal{S}(\mathbb{R}^d).$

Tvrzení 3.21 (Operations with tempered distributions)

Let $\Lambda \in \mathcal{S}'(\mathbb{R}^d)$.

```
a) \forall \alpha : D^{\alpha} \Lambda \in \mathcal{S}'(\mathbb{R}^d) and D^{\alpha} \Lambda(\varphi) = (-1)^{|\alpha|} \Lambda(D^{\alpha} \varphi), \ \varphi \in \mathcal{S}(\mathbb{R}^d).
\BoxD\mathring{u}kaz
    \varphi \in \mathcal{S}(\mathbb{R}^d) \implies D^{\alpha}\varphi \in \mathcal{S}(\mathbb{R}^d). So, \tilde{\Lambda}(\varphi) = (-1)^{|\alpha|}\Lambda(D^{\alpha}\varphi), \ \varphi \in \mathcal{S}(\mathbb{R}^d), is well-
    -defined linear functional on \mathcal{S}(\mathbb{R}^d) whose restriction to \mathcal{D}(\mathbb{R}^d) is D^{\alpha}\Lambda. "Continuity:"
   \varphi_n \to \varphi in \mathcal{S}(\mathbb{R}^d) \implies (by the previous lemma) D^{\alpha}\varphi_n \to D^{\alpha}\varphi in \mathcal{S}(\mathbb{R}^d), so \Lambda(\varphi_n) =
 (-1)^{|\alpha|} \Lambda(D^{\alpha} \varphi_n) \to (-1)^{|\alpha|} \Lambda(D^{\alpha} \varphi) = \tilde{\Lambda}(\varphi).
          b) f \in \mathcal{S}(\mathbb{R}^d) and f is a polynomial \implies f \cdot \Lambda \in \mathcal{S}'(\mathbb{R}^d) and f\Lambda(\varphi) = \Lambda(f\varphi), \varphi \in \mathcal{S}(\mathbb{R}^d).
    Důkaz (Skipped on lecture)
 Completely analogous to a).
                                                                                                                                                                                                        c) y \in \mathbb{R}^d \implies \tau_y \Lambda \in \mathcal{S}'(\mathbb{R}^d), \tau_y \Lambda(\varphi) = \Lambda(\tau_{-y}\varphi), \varphi \in \mathcal{S}'(\mathbb{R}^d).
D\mathring{u}kaz
    \varphi \in \mathcal{S}(\mathbb{R}^d) \implies \tau_{-y}\varphi \in \mathcal{S}(\mathbb{R}^d), \ \tau_{-y}\varphi(x) = \varphi(x-y)": Clearly \tau_{-y}\varphi \in C^{\infty}(\mathbb{R}^d).
                                  |\alpha| \le N : (1 + ||x||^2)^N D^{\alpha} \tau_{-\nu} \varphi(x) = (1 + ||\alpha||^2)^N D^{\alpha} \varphi(x + y) =
        = \left(\frac{1 + \|x\|^2}{1 + \|x + y\|^2}\right)^N \cdot (1 + \|x + y\|^2)^N D^{\alpha} \varphi(x + y) \leqslant \left(\frac{1 + \|x\|^2}{1 + \|x + y\|^2}\right)^N \cdot p_N(\varphi) \leqslant M^N,
    where M = \sup_{t \in [0,\infty)} \frac{1+t^2}{1+(t-\|y\|)^2} < \infty. \Longrightarrow \tau_{-y}\varphi \in \mathcal{S}(\mathbb{R}^d) and p_N(\tau_{-y}\varphi) \leqslant M^N p_N(\varphi).
So \varphi \mapsto \tau_{-y}\varphi is continuous and then continue as in a).
          d) \check{\Lambda} \in \mathcal{S}'(\mathbb{R}^d), \check{\Lambda}(\varphi) = \Lambda(\check{\varphi}), \varphi \in \mathcal{S}(\mathbb{R}^d).
    D\mathring{u}kaz
   Observe that \varphi \in \mathcal{S}(\mathbb{R}^d) \implies \check{\varphi} \in \mathcal{S}(\mathbb{R}^d) \ (\check{\varphi}(x) = \varphi(-x)) \text{ and } p_N(\check{\varphi}) = p_N(\varphi).
```

Tvrzení 3.22

$$D^{\alpha}\Lambda_n(\varphi) = (-1)^{|\alpha|}\Lambda_n(D^{\alpha}\varphi) \to (-1)^{|\alpha|}\Lambda(D^{\alpha}\varphi) = D^{\alpha}\Lambda(\varphi).$$

"b)" similarly.

3.6 Convolution and the Fourier transform of tempered distributions

Poznámka (Recall)

$$f \in L^1(\mathbb{R}^d) \implies \hat{f}(t) = \int_{\mathbb{R}^d} f(x) e^{-i\langle t, x \rangle} dm_d(x).$$

Fourier transform maps $L^1(\mathbb{R}^d)$ into $C_0(\mathbb{R}^d)$ and $\mathcal{S}(\mathbb{R}^d)$ onto $\mathcal{S}(\mathbb{R}^d)$.

$$\hat{\hat{f}} = \check{f}, \qquad f \in \mathcal{S}(\mathbb{R}^d), \qquad \left(\hat{\hat{\hat{f}}} = f\right).$$

Lemma 3.23

Fourier transform is an isomorphism of $\mathcal{S}(\mathbb{R}^d)$ onto $\mathcal{S}(\mathbb{R}^d)$.

 $D\mathring{u}kaz$

1. The theorem above \implies Fourier transform is a linear bijection $\mathcal{S}(\mathbb{R}^d)$ and $\mathcal{S}(\mathbb{R}^d)$.

2.
$$m := \lfloor \frac{d}{2} \rfloor + 1$$
. Then $C := \int_{\mathbb{R}^d} \frac{1}{(1+\|x\|^2)^m} dm_d(x) \leq \infty$. $f \in \mathcal{S}(\mathbb{R}^d) \implies$

$$\implies \|\hat{f}\|_{\infty} \leqslant \|f\|_{L^{1}} = \int_{\mathbb{R}^{d}} |f(x)| dm_{d}(x) \leqslant \int_{\mathbb{R}^{d}} \frac{(1 + \|x\|^{2})^{m} |f(x)|}{(1 + \|x\|^{2})^{m}} dm_{d}(x) \leqslant C \cdot p_{m}(f).$$

TODO!!!

3. Fix $N \in \mathbb{N}_0$, α , $|\alpha| \leq N$.

$$f \in \mathcal{S}(\mathbb{R}^d) : (1 + \|x\|^2)^N D^{\alpha} \hat{f}(x) = (1 + \|x\|^2)^N (y \mapsto \widehat{(-1)^{|\alpha|}} y^{\alpha} f(y))(x) =$$

$$= (-1)^{|\alpha|} (y \mapsto \widehat{(D)}(y^{\alpha}(f(y)))(x) = (-1)^{|\alpha|} (y \mapsto \sum_{|\beta| \le 2N} \widehat{a_{\beta}} D^{\beta}(y^{\alpha} f(y)))(x),$$

where $\check{p}(x) = p(ix)$, $p(D)f = \sum_{c_{\alpha}} D^{\alpha}f$ if $p(x) = \sum_{\alpha} c_{\alpha}x^{\alpha}$. $\check{p}(x) = (1 - \sum_{j=1}^{d} x_{j}^{2})^{N}$ a polynom of degree 2N.

So, $\|x \mapsto (1+\|x\|^2)^N D^{\alpha} \hat{f}(x)\|_{\infty} \leq c \cdot p_m(y \mapsto \sum_{|\beta| \leq 2N} a_{\beta} D^{\beta}(y^{\alpha} f(y)))$. From the previous lemma $f \mapsto \sum_{|\beta| \leq @N} a_{\beta} D^{\beta}(y^{\alpha} f(y))$ is continuous.

So,
$$\exists M = M_{N,\alpha} > 0$$
, $\exists m = m_{N,\alpha} \in \mathbb{N}_0$:

$$p_m(y \mapsto \sum_{|\beta| \leqslant 2N} a_{\beta} D^{\beta}(y^{\alpha} f(y))) \leqslant M \cdot p_n(f) \implies$$

$$\implies ||x|| \mapsto (1 + ||x||^2)^N D^{\alpha} \hat{f}(x)||_{\infty} \leqslant C \cdot M \cdot p_m(f).$$

4. So,
$$p_N(\hat{f}) \leq C \cdot \tilde{M} \cdot p_{\tilde{m}}(t)$$
, where $\tilde{M} = \max_{|\alpha| \leq N} M_{N,\alpha}$, $\tilde{m} = \max_{|\alpha| \leq N} m_{N,\alpha}$.

Definice 3.13 (Fourier transform of tempered distribution)

$$\Lambda \in \mathcal{S}'(\mathbb{R}^d)$$
: $\hat{\Lambda}(\varphi) = \Lambda(\hat{\varphi}), \ \varphi \in \mathcal{S}(\mathbb{R}^d)$.

Věta 3.24

a) Fourier transform is a linear bijection of $\mathcal{S}'(\mathbb{R}^d)$ onto $\mathcal{S}'(\mathbb{R}^d)$.

 $D\mathring{u}kaz$

$$\hat{\hat{\Lambda}} = \check{\Lambda}, \ \hat{\hat{\hat{\Lambda}}} = \Lambda \text{ for } \Lambda \in \mathcal{S}'(\mathbb{R}^d), \ \check{(\Lambda)}(\varphi) = \Lambda(\check{\varphi}), \ \hat{\Lambda}_1 = \hat{\Lambda}_2 \implies \hat{\hat{\Lambda}_1} = \hat{\hat{\Lambda}_2} \implies \Lambda_1 = \Lambda_2.$$

b)
$$\Lambda_n \to \Lambda$$
 in $\mathcal{S}'(\mathbb{R}^d) \implies \hat{\Lambda_n} \to \hat{\Lambda}$ in $\mathcal{S}'(\mathbb{R}^d)$.

$$\hat{\Lambda}_n(\varphi) = \Lambda_n(\hat{\varphi}) \to \Lambda(\hat{\varphi}) = \hat{\Lambda}(\varphi).$$

 $c) \ f \in C^1(\mathbb{R}^d) \implies \hat{\Lambda_f} = \Lambda_{\hat{f}}.$

 Γ Důkaz

$$\hat{\Lambda}_f(\varphi) = \Lambda_f(\hat{\varphi}) = \int f\hat{\varphi}dm_d = \int \hat{f}\varphi dm_d = \Lambda_{\hat{f}}(\varphi).$$

d) $f \in L^2(\mathbb{R}^d) \implies \hat{\Lambda}_f = \Lambda_{\mathcal{P}(f)}$, where \mathcal{P} is the Plancherel transform.

Důkaz

L

 $f_n := f \cdot \chi_{U(\mathbf{o},n)}$. Then $f_n \in L^1(\mathbb{R}^d) \cap L^2(\mathbb{R}^d)$, $f_n \to f$ in $L^2(\mathbb{R}^d)$, and, moreover, $\hat{f}_n \to \mathcal{P}(f)$ in $L^2(\mathbb{R}^d)$. So, $\hat{\Lambda_f}(\varphi) = \Lambda_f(\hat{\varphi}) =$

$$= \int_{\mathbb{R}^d} f \hat{\varphi} dm_d = \lim_{n \to \infty} \int_{\mathbb{R}^d} f_n \hat{\varphi} dm_d = \lim_{n \to \infty} \int_{\mathbb{R}^d} \hat{f}_n \varphi = \int_{\mathbb{R}^d} \mathcal{P}(f) \varphi dm_d = L_{\mathcal{P}(f)}(\varphi).$$

e) p polynomial $\implies \widehat{p(D)\Lambda} = \check{p}\hat{\Lambda}, \ \widehat{p \cdot \Lambda} = \check{p}(D)\hat{\Lambda}.$

$$\left(\breve{p}(t) = p(it), \quad \breve{p}(t) = p(-t), \quad p(t) = \sum c_{\alpha} t^{\alpha} \implies p(D) f = \sum c_{\alpha} D^{\alpha} f. \right)$$

$$D$$
ů kaz

$$\widehat{p(D)}\widehat{\Lambda}(\varphi) = p(D)\widehat{\Lambda}(\widehat{\varphi}) = \widehat{\Lambda}(\widecheck{(D)}\widehat{\varphi}) = \widehat{\Lambda}\left(\widehat{\widecheck{p}}\varphi\right) = \widehat{\Lambda}(\widecheck{p}\varphi) = \widecheck{p}\widehat{\Lambda}(\varphi).$$

$$\widehat{p \cdot \Lambda}(\varphi) = p \cdot \widehat{\Lambda}(\widehat{\varphi}) = \widehat{\Lambda}(p\widehat{\varphi}) = \widehat{\Lambda}\left(\widehat{\widecheck{p}}(D)\widehat{p}\right) = \widehat{\Lambda}(\widecheck{p}(D)\varphi) = \widecheck{p}(D)\widehat{\Lambda}(\varphi).$$

Poznámka

In particular

$$\widehat{D^{\alpha}\Lambda} = (x \mapsto c^{|\alpha|}x^{\alpha})\hat{\Lambda}, \qquad \widehat{(x \mapsto x^{\alpha})}L = c^{|\alpha|}D^{\alpha}\hat{\Lambda}.$$

Poznámka

Next two lemmata are analogues of Lemmata above.

Lemma 3.25

$$\overline{a) \ \varphi \in \mathcal{S}(\mathbb{R}^d), \ x_n \to x \ in \ \mathbb{R}^d \implies \tau_{x_n} \varphi \to \tau_x \varphi \ in \ \mathcal{S}(\mathbb{R}^d).}$$

Důkaz

L

Fix $N \in \mathbb{N}_0$, $\alpha \in \mathbb{N}_0^d$, $|\alpha| \leq N$. $x, z \in \mathbb{R}^d$:

$$\left| (1 + \|x\|^{2})^{N} D^{\alpha} \tau_{z} \varphi(y) - (1 + \|y\|^{2})^{N} D^{\alpha} \tau_{x} \varphi(y) \right| =$$

$$= (1 + \|y\|^{2})^{N} \left| \int_{0}^{1} \frac{d}{dt} D^{\alpha} \varphi(y - x - t(z - x)) dt \right| \leq$$

$$\leq (1 + \|y\|^{2})^{N} \int_{0}^{1} \left| \sum_{j=1}^{d} D^{\alpha + e_{j}} \varphi(y - x - t(z - x)) (x_{j} - z_{j}) \right| dt \leq$$

$$\leq (1 + \|y\|^{2})^{N} \int_{0}^{1} \left| \sum_{j=1}^{d} D^{\alpha + e_{j}} \varphi(y - x - t(z - x))^{2} \right|^{1/2} \|x - z\| dt \leq$$

$$\leq \|x - z\| p_{N+1}(\varphi) (1 + \|y\|^{2})^{N} \int_{0}^{1} \frac{\sqrt{d} dt}{(1 + \|y - x - t(z - x)\|^{2})^{N+1}} \leq$$

$$\leq \|x - z\| p_{N+1}(\varphi) \cdot \sqrt{d} \frac{(1 + \|y\|^{2})^{N}}{(1 + \|y - x\|^{2} - \|y - x\|)^{N+1}}.$$

$$\left(1 + \|y - x\| - t\|z - x\|^{2} \geqslant 1 + \|y - x\|^{2} - \|y - x\|, \text{ if } \|z - x\| \leqslant \frac{1}{2}.\right)$$

b) skipped and proof skipped too.

Lemma 3.26 (RT)

$$\Lambda \in \mathcal{S}'(\mathbb{R}^d) \Leftrightarrow \exists N \in \mathbb{N}_0, \mu_\alpha, |\alpha| \leqslant N_0 : \Lambda(\varphi) = \sum_{|\Lambda| \leqslant N} \int_{\mathbb{R}^d} (1 + ||x||^2)^N D^\alpha \varphi(x) d\mu_\alpha(x), \varphi \in \mathcal{S}(\mathbb{R}^d).$$

(Finite signed/complex measure on \mathbb{R}^d .)

Definice 3.14 (Convolution of function and tempered distribution)

$$U \in \mathcal{S}'(\mathbb{R}^d), \varphi \in \mathcal{S}(\mathbb{R}^d) \implies U * \varphi(x) = U(\tau_x \check{\varphi}) = U(y \mapsto \varphi(x-y)).$$

Věta 3.27 (Analogues to the theorem above)

a) skipped.

b) $\Lambda_{U*\varphi}$ is a tempered distribution.

 $D\mathring{u}kaz$

The proposition above $\implies \exists N, C \text{ such that } |U(\psi)| \leq c \cdot p_N(\psi)$

$$\implies |(U * \varphi)(x)| = |U(\tau_x \check{\varphi})| \leqslant C \cdot p_N(\tau_x \check{\varphi}).$$

$$|\alpha| \le N : |(1+||y||^2)^N D^{\alpha} \varphi(x-y)| \le p_N(\varphi) \cdot \left(\frac{1+||y||^2}{1+||x-y||^2}\right)^N \le p_N(\varphi)(1+||y||+||x||^2)^N \Longrightarrow$$

 $\Longrightarrow \Lambda'_{U*\varphi}$ is tempered.

$$\frac{1 + \|y\|^2}{1 + \|x - y\|^2} = \frac{1 + \|y - x\|^2 + 2\langle y - x, x \rangle + \|x\|^2}{1 + \|x - y\|^2} =$$

$$= 1 + \frac{2 \cdot \|y - x\| \cdot \|x\|}{1 + \|x - y\|^2} + \frac{\|x\|^2}{1 + \|x - y\|^2} \le 1 + \|x\| + \|x\|^2.$$

c) skipped.
$$d) \ \widehat{\Lambda_{U*\varphi}} = \hat{\varphi} \cdot \hat{U}, \ \widehat{\varphi \cdot U} = \Lambda_{\hat{\varphi}*\hat{U}}.$$

$$\widehat{\Lambda_{U*\varphi}}(\psi) = \Lambda_{U*\varphi}(\widehat{\psi}) = \int_{\mathbb{R}^d} (U*\varphi)(x)\widehat{\psi}(x)fm_d(x) = \int_{\mathbb{R}^d} U(y \mapsto \varphi(x-y))\widehat{\psi}(x)dm_d(x) =$$

$$= U(y \mapsto \int_{\mathbb{R}^d} \varphi(x-y)\widehat{\psi}(x)dm_d(x)) = U(\check{\varphi}*\widehat{\psi}) = U(\widehat{\widehat{\varphi}}+\widehat{\psi}) = U(\widehat{\widehat{\varphi}}+\widehat{\psi}) = \widehat{U}(\widehat{\varphi}\cdot\psi) = \widehat{\varphi}\cdot\widehat{U}(\psi).$$

$$\widehat{\Lambda_{U*\varphi}}(\widehat{\varphi}) = \widehat{\Lambda_{U*\varphi}}(\widehat{\widehat{\varphi}}) = \widehat{\Lambda_{U*\varphi}}(\widehat{\widehat{\varphi}}) = \widehat{\Lambda_{U*\varphi}}(\widehat{\widehat{\varphi}}) = \widehat{U}(\widehat{\varphi}\cdot\widehat{\psi}) = \widehat{U}(\widehat{\psi}\cdot\widehat{\psi}) = \widehat{U}(\widehat{\varphi}\cdot\widehat{\psi}) = \widehat{U}(\widehat{\psi}) = \widehat{U}(\widehat{\psi}) = \widehat{U}(\widehat{\psi}) = \widehat{U}(\widehat{\psi}) = \widehat{U}(\widehat{\psi}) = \widehat{U}(\widehat{\psi}) = \widehat{U}(\widehat{$$

 $\Lambda_{\hat{\varphi}*\hat{U}} = \widehat{\widehat{\Lambda_{\hat{\varphi}}}} = \widehat{\widehat{\widehat{\varphi}}} \widehat{\widehat{\widehat{\psi}}} \widehat{\widehat{\widehat{\psi}}} \widehat{\widehat{\psi}} \widehat{\widehat{\psi}} \widehat{\widehat{V}} = \widehat{\varphi}\widehat{\widehat{V}}.$

Elements of vector integration 4

Poznámka

 (M, \mathcal{A}) is measure space, (Ω, Σ, μ) is a complete measure space $(\mu \ge 0)$, X is a Banach space.

Measurability 4.1

Definice 4.1

 $f: M \to X$.

- f is simple, if f(M) is finite, i.e. $f = \sum_{j=1}^k x_j \chi_{A_j}$, where $x_j \in X$, $A_j \subset M$ pairwise disjoint;
- f is simple measurable, if f is a simple and, moreover, $A_j \in \mathcal{A}$;
- f is (strongly) \mathcal{A} -measurable if $\exists (u_n)$ simple measurable: $u_n \to f$ point-wise, i.e. $\forall x \in M : u_n(x) \to f(x) \text{ in } (X, \|\cdot\|);$
- f is Borel A-measurable, if $\forall U \subset X$ open: $f^{-1}(U) \in A$;
- f is weakly A-measurable if $\forall \varphi \in X^* : \varphi \circ f$ is A-measurable.

Tvrzení 4.1

a) Simple functions, simple measurable functions, strongly A-measurable functions, and weakly A-measurable functions form vector spaces.

 $D\mathring{u}kaz$

 $f, g: M \to X, \ \alpha, \beta \in \mathbb{F}.$

- $,f,g \text{ simple} \implies \alpha f + \beta g \text{ is simple}^{"}: (\alpha f + \beta g)(M) \subset \alpha f(M) + \beta g(M).$
- "f, g simple measurable $\alpha f + \beta g$ is simple measurable":

$$f = \sum_{j=1}^{k} x_j \chi_{A_j}, \quad g = \sum_{l=1}^{m} y_l \chi_{B_l}, \qquad \alpha f + \beta g = \sum_{j=1}^{k} \sum_{l=1}^{m} (\alpha x_j + \beta y_l) \cdot \chi_{A_j \cap B_l},$$

 $A_i, B_l \in \mathcal{A} \implies A_i \cap B_l \in \mathcal{A}.$

- "f, g strongly \mathcal{A} -measurable $\Longrightarrow \alpha f + \beta g$ is strongly \mathcal{A} -measurable": $f = \lim u_n$, $g = \lim v_n$, u_n , v_n simple measurable, $\alpha f + \beta g = \lim (\alpha u_n + \beta v_n)$.
- "f, g weakly \mathcal{A} -measurable $\implies \alpha f + \beta g$ weakly \mathcal{A} -measurable": $\forall \varphi \in X^* : \varphi \circ (\alpha f + \beta g) = \alpha \varphi \circ f + \beta \varphi \circ g$ (measurable by the scakercah?).

b) $f_n \to f$ point-wise, f_n Borel A-measure (resp. weakly A-measurable) $\Longrightarrow f$ is Borel A-measurable (resp. weakly A-measurable).

Důkaz

L

Assume that $\forall n: f_n$ is Borel \mathcal{A} -measurable. $U \subset X$ open:

$$f^{-1}(U) = \bigcup_{n \in \mathbb{N}} \bigcup_{m \in \mathbb{N}} \bigcap_{k=m}^{\infty} f_k^{-1}(\left\{x \in X | \operatorname{dist}(x, X \setminus U) > \frac{1}{n}\right\}),$$

$$f(x) \in U \Leftrightarrow \exists n \in \mathbb{N} \ \exists m \in \mathbb{N} \ \forall k \geqslant m : \operatorname{dist}(f_k(x), X \setminus U) > \frac{1}{n}.$$

 f_n are wakly \mathcal{A} -measurable, $\varphi \in X^* \implies \forall n : \varphi \circ f_n$ is Borel \mathcal{A} -measurable and $\varphi \circ f_n \to \varphi \circ f$, so, $\varphi \circ f$ is Borel \mathcal{A} -measurable.

c) f is strongly A-measurable \implies f is Borel A-measurable \implies f is weakly A-measurable.

f is simple \implies (f is simple measurable $\Leftrightarrow f$ is Borel \mathcal{A} -measurable).

"f strongly \mathcal{A} -measurable \Longrightarrow f Boreal \mathcal{A} measurable": $f = \lim u_n$, u_n simple measurable, then u_n are Borel \mathcal{A} -measurable, so by b), f is Borel \mathcal{A} -measurable.

"f Borel \mathcal{A} -measurable $\Longrightarrow f$ is weakly \mathcal{A} -measurable": $\varphi \in X^*, U \subset \mathbb{F}$ open $\Longrightarrow (\varphi \circ f)^{-1}(U) = f^{-1}(\underbrace{\varphi^{-1}(U)}_{\text{open}}) \in \mathcal{A}$.

"f simple, weakly \mathcal{A} -measurable $\Longrightarrow f$ is simple measurable": $f(M) = \{x_1, \ldots, x_k\}$, distinct points. " $f^{-1}(x_1) \in \mathcal{A}$ ": for $j \in \{2, \ldots, k\}$ find $\varphi_j \in X^*$, $\varphi_j(x_1) \neq \varphi_j(x_j)$. Then

$$f^{-1}(x_1) = \bigcap_{j=2}^k \{t \in M | \varphi_j(f(t) - x_j) \neq 0\} = \bigcap_{j=2}^k \underbrace{(\varphi_j \circ f)^{-1}(\underbrace{\mathbb{F} \setminus \{\varphi_j(x_j)\}})}_{\text{open}}.$$

_

d) $f: M \to X$ strongly A-measurable $\implies f(M)$ is separable.

 $D\mathring{u}kaz$

 $f = \lim u_n, u_n \text{ simple measurable. } f(M) \subset \overline{\bigcup_n u_n(M)}.$

e) f Borel A-measurable $\implies t \mapsto ||f(t)||$ measurable.

 $D\mathring{u}kaz$

 $h(x) = ||x||, x \in X$, is continuous, hence $h \circ f$ is measurable:

$$U$$
 open : $(h \circ f)^{-1}(U) = f^{-1}(\underbrace{h^{-1}}_{\text{open}}) \in \mathcal{A}.$

Lemma 4.2

 (f_n) strongly A-measurable, $f_n \to f$ point-wise $\implies f$ is strongly A-measurable.

 $D\mathring{u}kaz$

 $u_{m,n}$ simple measurable, $u_{m,n} \stackrel{m}{\to} f_n$. $C = \bigcup_{m,n} u(m,n)(M)$ is countable, so, $C = \{x_k, k \in \mathbb{N}\}$.

For $k \in \mathbb{N}$ define $g_k : M \to X$ by $g_k(x) =$ the point from $\{x_1, \ldots, x_k\}$ nearest to f(x) (the first such point). Then g_k is simple, $g_k \to f$ point-wise $(t \in M, \varepsilon > 0 \implies \exists n_0 \ \forall n \ge n_0 : \|f_n(t) - f(t)\| < \varepsilon/2$. Fix one $n \ge n_0 \implies \exists m_0 \ \forall m \ge m_0 : \|u_{m,n}(t) - f_n(t)\| < \varepsilon/2$. Fix one $m \ge m_0 \implies \|u_{m,n}(t) - f(t)\| < \varepsilon$, and there is k_0 such that $u_{m,n}(t) = x_{k_0}$. Then for $k \ge k_0$: $\|f(t) - g_k(t)\| \le \|f(x) - x_{k_0}\| < \varepsilon$.

 g_k are also simple measurable": f is Borel A-measurable $\Longrightarrow \forall x \in X$: f-x is Borel A-measurable $\Longrightarrow \forall x \in X$: $t \mapsto \|f(t) - x\|$ is measurable, $g_k(t) = x_j$

$$\Leftrightarrow \forall i \in [k] : ||x_j - f(x)|| \leqslant ||x_i - f(x)|| \land \forall i < j : ||x_j - f(x)|| < ||x_i - f(x)|| \Leftrightarrow \forall i \in [k] \ \forall g \in \mathbb{Q} :$$

$$||x_j - f(x)|| \le q \lor ||x_i - f(x)|| \ge q \land \forall i < j \ \exists q \in \mathbb{Q} : ||x_j - f(x)|| < q \land ||x_i - f(x)|| > q.$$

Věta 4.3 (Pettis)

 $f: M \to X$. Then following assertions are equivalent:

- 1. f is strongly A-measurable;
- 2. f is Borel A-measurable and f(M) is separable;
- 3. f is weakly A-measurable and f(M) is separable.

 $D\mathring{u}kaz$

",1. \implies 2. \implies 3." from the previous proposition. ",3. \implies 1.": Firstly WLOG X is separable (replace X by $\overline{\text{LO }f(M)}$). Secondly let (x_n) be a dense sequence in X.

$$\forall n : \text{ fix } \varphi_n \in X^*, \|\varphi_n\| = 1, \varphi_n(x_n) = \|x_n\|.$$

Thirdly $\forall x \in X : \|x\| = \sup_n |\varphi_n(x)|$ (" \geqslant ": clear as $\|\varphi_n\| = 1$, " \leqslant ": it holds for $x = x_n$, so on dense set, LHS is continuous, RHS is continuous (supremum of 1-Lipschitz functions), so it holds on X). Fourthly $\forall x \in X : t \mapsto \|f(t) - x\|$ is measurable ($\|f(t) - x\| = \sup_n |(\varphi_n \circ f)(t) - \varphi_n(x)|$, so supremum from A-measurable functions).

Fifthly $k, n \in \mathbb{N}$: $A_n^k := f^{-1}(U(x_n, 1/k)) = \{t \in M | ||f(t) - x_n|| < 1/k\} \in \mathcal{A}$ by fourthly.

$$\bigcup_{n} A_{n}^{k} = M, \qquad B_{n}^{k} = A_{n}^{k} \setminus \bigcup_{j < n} A_{j}^{k} \in \mathcal{A}, \qquad \bigcup_{n} B_{n}^{k} = M,$$

and $\{B_n^k, n \in \mathbb{N}\}$ is pair-wise disjoint.

Define $g_k(t) = x_n$, $t \in B_n^k$. Then $||g_k(t) - f(t)|| < \frac{1}{k}$. So $g_k \rightrightarrows f$ on M. g_n is strongly measurable. $g_k = \lim_{n \to \infty} \sum_{j=1}^n x_j \chi_{B_j^k}$, so, by the previous lemma f is strongly A-measurable.

Definice 4.2 (Strongly μ -measurable)

 (Ω, Σ, μ) complete measure space, $f: \Omega \to X$ is strongly μ -measurable if $\exists (u_n)$ simple measurable such that $u_n \to f$ point-wise μ -almost everywhere.

Poznámka

f is strongly μ-measurable $\Leftrightarrow \exists g \text{ strongly } \Sigma\text{-measurable: } f = g \text{ almost everywhere.}$

Důkaz

```
" \Leftarrow " obvious. " \Longrightarrow ": u_n simple measurable, u_n \to f almost everywhere. \exists N, \mu(N) = 0 : u_n \to f on \Omega \backslash N. Modify u_n, f: v_n = 0 on N and u_n on \Omega \backslash N, g = 0 on N and f on \Omega \backslash N. v_n simple measurable, v_n \to g.
```

Definice 4.3 (Essentially separably valued)

(If $f: \Omega \to X$ is (strongly) μ -measurable, then)

 $\exists Y \leqslant X \text{ separable } \exists N \in \Sigma : \mu(N) = 0 \land f(\Omega \backslash N) \subset Y.$

Lemma 4.4

Let (f_n) be a sequence of strongly μ -measurable functions $f_n: M \to X$ almost everywhere converging to a function $f: M \to X$. Then f is strongly μ -measurable as well.

```
D\mathring{u}kaz TODO!!! (notes)
```

Věta 4.5 (Pettis)

Let $f:\Omega\to X$ be a function. Then following assertions are equivalent

- 1. f is strongly μ -measurable.
- 2. f is Borel μ -measurable and essentially separably valued.
- 3. f is weakly μ -measurable and essentially separably valued.

```
Důkaz
TODO!!! (Notes)
```

4.2 Integrability of vector-valued functions

Definice 4.4 (Integrable over set, integral over set, integrable, Bochner integrable, Bochner integral, weakly integrable)

Let $f: \Omega \to X$ be a simple measurable function of the form $f = \sum_{j=1}^k x_j \chi_{E_j}$. Let $E \in \Sigma$. We say that f is integrable over E, if for each $j \in [k]$ one has either $\mu(E \cap E_j) < \infty$ or $x_j = \mathbf{o}$. By the integral of f over E we mean the element of X defined by the formula

$$\int_{E} f d\mu = \sum_{j=1}^{k} \mu(E \cap E_{j}) x_{j}, \qquad (\infty \cdot \mathbf{o} = \mathbf{o}).$$

If f is integrable over Ω , it is called integrable.

Let $f: \Omega \to X$ be strongly μ -measurable. Then function f is said to be Bochner integrable if there exists a sequence (f_n) of simple integrable functions such that

$$\lim_{n\to\infty} \int_{\Omega} \|f_n(\omega) - f(\omega)\| d\mu(\omega) = 0.$$

By Bochner integral of f we then mean the element of X defined by

$$(B)\int_{\Omega} f d\mu = \lim_{n \to \infty} \int_{\Omega} f_n d\mu.$$

A function $f: \Omega \to X$ is said to be weakly integrable if $\varphi \circ f$ is integrable (i.e., $\varphi \circ f \in L^1(\mu)$) for each $\varphi \in X^*$.

Tvrzení 4.6 (Basic properties of the Bochner integral)

- a) Integrable functions form a vector space, and the mapping assigning to a simple integrable function f its integral $\int_{\Omega} f d\mu$ is linear.
- b) Let f be a simple measurable function. Then f is integrable if and only if the function $\omega \mapsto \|f(\omega)\|$ is integrable. In this case $\|\int_{\Omega} f d\mu\| \leq \int_{\Omega} \|f(\omega)\| d\mu(\omega)$.
- c) The limit defining the Bochner integral does exist and does not depend on the choice of the sequence (f_n) .
- d) Bochner integrable functions form a vector space and the mapping assigning to a Bochner integrable function its Bochner integral is linear.
- e) If $f: \Omega \to X$ is Bochner integrable, then the function $\omega \mapsto ||f(\omega)||$ is integrable and $||(B) \int_{\Omega} f d\mu|| \leq \int_{\Omega} ||f(\omega)|| d\mu(\omega)$.
- f) If $f: \Omega \to X$ Bochner integrable, then $\chi_E \cdot f$ is Bochner integrable for each $E \in \Sigma$. (The value $(B) \int_{\Omega} \chi_E \cdot f d\mu =: (B) \int_E f d\mu$ is called the Bochner integral of f over E.)

Důkaz TODO!!!

Věta 4.7 (A characterization of Bochner integrability)

Let $f: \Omega \to X$ be a strongly μ -measurable function. Then f is Bochner integrable if and only if $\int_{\Omega} ||f(\omega)|| d\mu(\omega) < \infty$.

Důkaz TODO!!! (notes)

Věta 4.8 (Lebesgue dominated convergence theorem for Bochner integral)

Let (f_n) be a sequence of Bochner integrable functions $f_n: \Omega \to X$ almost everywhere converging to a function $f: \Omega \to X$. Let $g: \Omega \to \mathbb{R}$ be an integrable function such that for each $n \in \mathbb{N}$ one has $||f_n(\Omega)|| \leq g(\omega)$ for almost all $\omega \in \Omega$. Then f is Bochner integrable and $(B) \int_{\Omega} f d\mu = \lim_{n \to \infty} (B) \int_{\Omega} f_n d\mu$.

Důkaz TODO!!! (notes)

Tvrzení 4.9 (Absolute continuity of Bochner integral)

Let $f: \Omega \to X$ be Bochner integrable. Then

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall E \in \Sigma : \mu(E) < \delta \implies \left\| \int_E f d\mu \right\| < \varepsilon.$$

Důkaz TODO!!!

П

Poznámka

 (Ω, Σ, μ) complete measure space, X Banach space, $f: \Omega \to X$ is weakly integrable $\equiv \forall \varphi \in X^* : \varphi \circ f$ is integrable.

Tvrzení 4.10 (Weak integral)

f weakly integrable $\implies F(\varphi) = \int_{\Omega} \varphi \circ f d\mu, \ \varphi \in X^*$ belongs to X^{**} .

Then

- $(D) \int_{\Omega} f d\mu := F;$
- $E \in \Sigma$, then $(D) \int_E f d\mu := (D) \int_{\Omega} \chi_E \cdot f d\mu$;
- f is Pettits-integrable if $\forall E \in \Sigma : (D) \int_{E} f d\mu \in \varkappa(X)$.

Tvrzení 4.11

Let $f: \Omega \to X$ be Bochner integrable. Let $L: X \to Y$ be bounded linear operator. Then $L \circ f$ is Bochner integrable and $(B) \int_{\Omega} L \circ f d\mu = L((B) \int_{\Omega} f d\mu)$.

 $D\mathring{u}kaz$

"1. $L \circ f$ is strongly μ -measurable.": f strongly μ -measurable $\Longrightarrow \exists s_n$ simple measurable $s_n \to f$ almost everywhere. The $L \circ s_n$ are simple measurable and $L \circ s_n \to L \circ f$ almost everywhere.

2. f Bochner integrable $\Longrightarrow \exists (s_n)$ simple integrable such that $\int_{\Omega} ||s_n - f|| d\mu \to 0$. The $L \circ s_n$ are simple integrable

$$\int \|(L \circ s_n)(\omega) - (L \circ f)(\omega)\| d\mu(\omega) = \int \|L(s_n(\omega) - f(\omega))\| d\mu(\omega) \le$$

$$\le \int \|L\| \cdot \|s_n(\omega) - f(\omega)\| d\mu(\omega) \to 0 \implies$$

 $\implies L \circ f$ is Bochner integrable.

$$3.(B) \int_{\Omega} L \circ f d\mu = \lim_{n \to \infty} \underbrace{\int_{\Omega} L(x_j)\mu(E_j)}_{\sum L \circ s_n d\mu} = \lim_{n \to \infty} L \underbrace{\underbrace{\left(\int_{\Omega} s_n d\mu\right)}_{\sum (B) \int_{\Omega} f d\mu}}_{\sum (B) \int_{\Omega} f d\mu} = L \left((B) \int_{\Omega} f d\mu\right),$$

where $s_n = \sum_{j=1}^k x_j \chi_{E_j}, \ L \circ s_n = \sum_{j=1}^n L(x_j), \chi_{E_j}.$

Důsledek

f Bochner integrable $\implies f$ is Pettis integrable.

Příklad

 $\Omega = \mathbb{N}, \ \Sigma = \mathcal{P}(\mathbb{N}), \ \mu \text{ the contg measure. } f: \Omega \to X$

a) f is Bochner integrable $\sum f(n)$ is absolutely convergent.

 $D\ddot{u}kaz$

 $\sum f(n)$ absolutely convergent $\Leftrightarrow \int_{\Omega} \|f(n)\| d\mu(n) = \sum \|f(n)\| < \infty \Leftrightarrow f$ Bochner integrable.

b) If $\sum f(n)$ is unconditionally convergent then f is Pettis integrable

 $D\mathring{u}kaz$

 $\sum_{n\in\mathbb{N}} f(n)$ is unconditionally convergent $\implies \forall A\subset\mathbb{N}:\sum_{n\in A} f(n)$ unconditionally convergent \implies

$$\implies \forall A \subset \mathbb{N} \ \forall \varphi \in X^* \colon \sum_{n \in A} \varphi(f(n)) \text{ unconditionally convergent } \implies \sum_{n \in A} |\varphi(f(n))| < \infty.$$

 $\implies f$ is weakly integrable. Moreover $\sum_{n \in A} \varphi(f(n)) = \varphi(\sum_{n \in A} f(n)) \implies f$ is Pettis integrable.

Příklad

 $f: \mathbb{N} \to l_2$, $f(n) = \frac{e_n}{n}$. Then f is Pettis integrable, not Bochner integrable (f strongly measurable).

 $g: \mathbb{N} \to C_0$, $g(n) = e_n$. Then g is weakly integrable not Pettis integrable. The weak integral is $(1)_{n=1}^{\infty} \in l^{\infty}$.

4.3 Lebesgue–Bochner spaces

Definice 4.5

 $f: \Omega \to X$ strongly μ -measurable.

$$p \in [1, \infty)$$
: $f \in L^p(\mu; X)$ if $\int_{\Omega} ||f(\omega)||^p d\mu(\omega) < \infty$, $||f||_p = \left(\int_{\Omega} ||f(\omega)||^p d\mu(\omega)\right)^{1/p}$.

 $p = \infty$: $f \in L^{\infty}(\mu; X)$ if $\omega \mapsto ||f(\omega)||^p$ is essentially bounded, $||f||_{\infty} = \text{esssup}_{\omega \in \Omega} ||f(\omega)||^p$.

Poznámka

1. Simple integrable functions belong to $L^p(\mu; X)$, $p \in [1, \infty)$.

$$\left\| \sum_{j=1}^{n} x_i \chi_{e_i} \right\|_p = \left(\sum_{j=1}^{n} \|x_j\|^p \mu(E_j) \right)^{1/p}.$$

2. Simple measurable functions belong to $L^{\infty}(\mu; X)$.

$$\|\sum_{j=1}^{n} x_j \chi_{E_j}\|_{\infty} = \max\{\|x_j\|, \mu(E_j) > 0\}.$$

3. $p \in [1, \infty], h \in C^p(\mu), x \in X$. Then $f(\omega) = h(\omega) \cdot x, \omega \in \Omega \ (f = h \cdot x), f \in L^p(\mu; X), \|f\|_p = \|h\|_p \cdot \|x\|$.

Věta 4.12

a) $(L^p(\mu; X), \|\cdot\|_p)$ is a Banach space.

Důkaz

It is a NLS by the Minkowski inequality. Completeness: $p = \infty$ easy, $p \in [1, \infty)$: Assume $(f_n) \subset L^p(\mu; X)$, $\sum_{n=1}^{\infty} \|f_n\|_p < \infty$. Define $g_n(\omega) = \|f_n(\omega)\|$, $\omega \in \Omega$. Then $g_n \in L^p(\mu)$, $\|g_n\|_p = \|f_n\|_p$. So, $\sum_{n=1}^{\infty} \|g_n\|_p < \infty$, $L^p(\mu)$ complete $\implies g := \sum_{n=1}^{\infty} g_n \in L^p(\mu) \implies \exists$ a subsequence of the sequence of partial sums which converges almost everywhere. But $g_n \geq 0$, so $g(\omega) = \sum_{n=1}^{\infty} g_n(\omega)$ almost everywhere. So, for almost all $\omega \in \Omega$. We have $\sum g_n(\omega) < \infty$, hence $\sum \|f_n(\omega)\| < \infty$, so $f(n) = \sum_{n=1}^{\infty} f_n(\omega)$ is defined almost everywhere.

Then f is strongly μ -measurable. $||f(\omega)|| \leq \sum_{n=1}^{\infty} ||f_n(\omega)|| = g(\omega)$. Since $g \in L^p(\omega)$, we deduce $f \in L^p(\mu; X)$.

$$||f(\omega) - \sum_{k=1}^{n} f_k(\omega)|| = ||\sum_{k>n} f_k(\omega)|| \leqslant \sum_{k>n} ||f_k(\omega)|| \text{ almost everywhere } \Longrightarrow$$

$$\implies ||f - \sum_{k=1}^{n} f_n||_p \leqslant ||\omega \mapsto \sum_{k>n} ||f_k(\omega)|||_p \leqslant$$

$$\leqslant \sum_{k>n} ||\omega \mapsto ||f_n(\omega)|||_p = \sum_{k>n} ||f_n||_p \xrightarrow{n \to \infty} 0.$$

So
$$f = \sum_{k=1}^{\infty} f_k$$
 is $L^p(\mu; X)$.

- b) $L^1(\mu;X) = Bochner-integrable functions.$ (se the definition and a theorem above.)
- c) If X is a Hilbert space. Then $L^2(\mu; X)$ is also a Hilbert space.

$$\langle f, g \rangle := \int_{\Omega} \langle f(\omega), g(\omega) \rangle d\mu(\omega).$$

 $D\mathring{u}kaz$

 $\omega \mapsto \langle f(\omega), g(\omega) \rangle$ is (strongly) measurable. $\omega \mapsto \langle f(\omega), g(\omega) \rangle$ is integrable

$$\int |\langle f(\omega), g(\omega) \rangle| \leqslant \int \|f(\omega)\| \cdot \|g(\omega)\| \leqslant \left(\int \|f(\omega)\|^2\right)^{\frac{1}{2}} \cdot \left(\int \|g(\omega)\|^2\right)^{\frac{1}{2}} = \|f\|_2 \cdot \|g\|_2 < \infty.$$

Věta 4.13

 $p \in [1, \infty)$.

a) Simple integrable function are dense in $L^p(\mu; X)$.

 $f \in L^p(\mu; X) \implies f$ is strongly measurable. Find (s_n) simple measurable, $s_n \to f$ almost everywhere. Define $f_n : \Omega \to X$:

$$f_n(\omega) := \begin{cases} s_n(\omega) & \text{if } ||f(\omega) - s_n(\omega)|| < 2 \cdot ||f(\omega)||, \\ 0 & \text{otherwise.} \end{cases}$$

Then f_n are simple measurable, $f_n \to f$ almost everywhere (a proof above). $||f_n(\omega) - f(\omega)|| \le 2 \cdot ||f(\omega)||$. So,

$$f_n - f \in L^p(\mu; X) \implies f_n \in L^p(\mu; X) \implies f_n \text{ simple integrable.}$$

 $||f_n(\omega) - f(\omega)||^p \to 0$ almost everywhere, $2 \cdot ||f(\omega)||^p$ is a majorant \Longrightarrow

$$\int \|f_n(\omega) - f(\omega)\|^p d\mu(\omega) \to 0 \qquad f_n \to f \text{ in } L^p(p;X).$$

b) $L^p(\mu)$, X separable $\implies L^p(m;X)$ is separable.

 $D\mathring{u}kaz$

 $\{z_n, n \in \mathbb{N}\}\$ dense in $X, \{k_n, n \in \mathbb{N}\}\$ dense in $L^p(\mu)$.

$$A = \left\{ \sum_{j=1}^{k} z_{n_k} \cdot k_{m_j}, n_1, \dots, n_k \in \mathbb{N}, m_1, \dots, m_k \in \mathbb{N}, k \in p \right\}$$

is a countable dense set of $L^p(\mu; X)$

- 1. A is countable subset of $L^p(\mu; X)$.
- 2. $f \in L^p(\mu; X)$, $\varepsilon > 0$ by a): $\exists g_1$ simple integrable $||f g_1||_p < \frac{\varepsilon}{3}$. Then $g_1 = \sum_{j=1}^k x_j \chi_{E_j}$ $(E_j \in \Sigma, \text{ disjoint}, x_j \in X, \mu(E_j) < \infty)$.
 - 3. Find $n_1, \ldots, n_k \in \mathbb{N}$ such that $||x_j z_{n_j}||$ is so small, such that

$$\sum_{j=1}^{k} \|x_j - z_{n_j}\|^p \mu(E_j) < \left(\frac{\varepsilon}{3}\right)^p.$$

Set $g_2 := \sum_{j=1}^k z_{n_j} \chi_{E_j}$. Then $||g_2 - g_1||_p < \frac{\varepsilon}{3}$.

4. Find $m_1, \ldots, m_k \in \mathbb{N}$ such that $\|\chi_{E_j} - k \cdot m_j\|_p$ is so small that

$$\sum_{j=1}^{k} \|z_{n_j}\| \cdot \|\chi_{E_j} - k_{m_j}\|_p \leqslant \frac{\varepsilon}{3}.$$

Then $g_3 := \sum_{j=1}^k z_{n_j} \cdot k_{m_j} \in A$, $||g_3 - g_2||_p < \frac{\varepsilon}{3}$.

To summarize: $||g_3 - f|| < \varepsilon$.

Příklad

- 1. $G \subset \mathbb{R}^n$ Lebesgue measurable. $\mu := \lambda^n|_G$ for some $\mu(G) > 0$. $L^p(G;X) := L^p(\mu;X)$. $p \in [1,\infty)$, X separable $\Longrightarrow L^p(G;X)$ is separable.
- 2. μ = the counting measure on $\mathbb{N} \implies L^p(\mu, X) = l^p(X)$. X separable, $p \in [1, \infty)$ $\implies l^p(X)$ separable.

Poznámka (Representation of duals)

 p, p^* dual exponents, $p \in [1, \infty)$ $(p^* \in (1, \infty])$.

$$(l^p(X))^* \approx l^{p^*}(X^*).$$

X reflexive, μ σ -finite:

$$(L^p(\mu; X))^* = L^{p^*}(\mu; X^*).$$

5 Compact convex sets

TODO!!!