数据管理基础(智软 2025)参考答案

一、单项选择题。

1.	在数据库系统中,位于用户应用程序与数据库之间的一层数据管理软件被称为([A] 操作系统 [B] 计算机网络 [C] 数据库管理系统 [D] 数据库应用开发工具)
2.	在数据库系统的三级模式中,用于描述数据库用户(包括应用程序员和最终用户)使用的启数据的逻辑结构和特征的是([A] 外模式 [B] 内模式 [C] 物理模式 [D] 逻辑模式	高部)
3.	在数据库系统中,数据模型的组成要素包括数据结构、数据操作 和([A]数据库用户 [B]数据约束 [C]数据子语言 [D]数据库管理员)
4.	在下列关系代数操作符中,不是基本关系操作的是([A] 并运算 [B] 交运算 [C] 差运算 [D] 笛卡尔积)
	若关系R中的某一属性组的值能唯一地标识一个元组,而其所有的真子集都不能,则该属性被称为是关系R的	上组)
6.	在下述数据完整性约束中,不是在基表(base table)创建命令中定义的是([A] 主码 [B] 外码 [C] 触发器 [D] 非空约束)
	在下述选项中,不是外码约束的违约处理规则的是([A] CASCADE [B] CHECK [C] RESTRICT [D] SET NULL)
8.	[A] CASCADE [B] CHECK [C] RESTRICT [D] SET NULL 设有关系模式 $R(S,F)$, S 为关系 R 的属性集,F 为关系 R 上的函数依赖集, $R_1(S_1,F_1)$ 和)
8.	[A] CASCADE [B] CHECK [C] RESTRICT [D] SET NULL 设有关系模式 $R(S,F)$,S 为关系 R 的属性集,F 为关系 R 上的函数依赖集, $R_1(S_1,F_1)$ 和 $R_2(S_2,F_2)$ 构成关系 R 的一个分解,该分解具有'无损连接性'的定义是()
8. 9.	[A] CASCADE [B] CHECK [C] RESTRICT [D] SET NULL 设有关系模式 $R(S,F)$, S 为关系 R 的属性集,F 为关系 R 上的函数依赖集, $R_1(S_1,F_1)$ 和 $R_2(S_2,F_2)$ 构成关系 R 的一个分解,该分解具有'无损连接性'的定义是)
8.9.10.	[A] CASCADE [B] CHECK [C] RESTRICT [D] SET NULL 设有关系模式 $R(S,F)$, S 为关系 R 的属性集,F 为关系 R 上的函数依赖集, $R_1(S_1,F_1)$ 和 $R_2(S_2,F_2)$ 构成关系 R 的一个分解,该分解具有'无损连接性'的定义是)

二、(关系代数)

设有一个产品销售数据库,其关系模式如下(cid,aid,pid,ordno 分别是各个关系的码):

关系	关系	关系模式
顾客	顾客编号, 姓名, 城市, 折扣	C (cid, cname, city, dis)
供应商	供应商编号, 供应商名称, 城市, 提成比例	A (aid, aname, city, per)
商品	商品编号,商品名称,库存数量,单价	P (pid, pname, qua, price)
¥	订单编号,订单日期,顾客编号,供应商编号,商品编号,订	O (ordno, orddate, cid, aid, pid, qty, dols)
订单	购数量,销售金额	

请用关系代数表示下列查询:

① 满足下述条件的顾客的编号和姓名:位于'苏州'市且通过'南京'市的供应商购买过商品;

② 满足下述条件的订单编号、顾客所在城市和供应商所在城市:订单上的顾客和供应商不在 同一个城市中;

$$\pi_{0.ordno, C.city, A.city}(\sigma_{C.city \neq A.city}(C \times A) \bowtie O)$$

③ 满足下述条件的顾客的姓名:位于'南京'市且没有购买过商品;

$$\pi_{cname}\left(\left(\pi_{cid}(\sigma_{citv='\dot{\mathbf{n}}\dot{\mathbf{r}}'}(\mathbf{C})\right)-\pi_{cid}(\mathbf{0})\right)\bowtie \mathbf{C}\right)$$

④ 在每一个供应商自己的所有订单中,查询销售金额 dols 最高的订单,结果返回供应商编号、该供应商的销售金额最高订单的订单编号和销售金额;

$$\pi_{aid,ordno,dols}(\mathbf{0}) - \pi_{M.aid,M.ordno,M.dols}(\sigma_{M.aid=N.aid \land M.dols < N.dols}(\mathbf{M} \times \mathbf{N}))$$

(5) 满足下述条件的供应商的编号: 在所有有顾客的城市中都销售过商品:

$$\pi_{0.aid. C.citv}(\mathbf{0} \bowtie \mathbf{C}) \div \pi_{citv}(\mathbf{C})$$

満足下述条件的供应商的编号:向供应商自己所在城市中的所有顾客都销售过商品。

$$\pi_{aid}(\mathbf{0}) - \pi_{aid}(\pi_{cid,aid}(\mathbf{C} \bowtie \mathbf{A}) - \pi_{cid,aid}(\mathbf{0}))$$

三、(SQL 语言应用)

设有一个教务管理数据库,其关系模式如下(其中: (1) 学号、工号、课程号分别是学生、 教师、课程的码; (2) 同一门课同一个学生只能有一条选课记录; (3) 成绩全部采用百分制;

(4) 课程类型分'平台'和'核心'两种。)

关系	属性	关系模式
学生	学号,姓名,就读院系	Student(sno, sname, dept)
教师	工号,姓名,工作院系	Teacher(tno, tname, dept)
课程	课程号,课程名,开课院系,课程类型,学分数	Course(cno, cname, dept, opt, credit)
选课	学号, 课程班号, 成绩	Study(sno, clsno, grade)
课程班	课程班号,课程号,授课教师工号,授课年份	Section(clsno, cno, tno, tyear)

请用 SQL 语言表示下述查询请求。

1. 满足下述条件的课程的课程名及开课院系:课程名中含有'数据库'的课程; select cname, dept from course where cname like '数据库%';

2. 满足下述条件的学生的学号和姓名:修读了'智软学院'开设的'数据管理基础'课;

select s.sno, s.sname

from student s, course c, study x, section y

where s.sno=x.sno and x.clsno=y.clsno and y.cno=c.cno and c.dept='智软学院' and c.cname='数据管理基础';

3. 满足下述条件的教师的工号和姓名:只讲授过自己工作所在院系开设的课程:

select t.tno, t.tname

from teacher t

where t.tno in (select tno from section) and

not exists(select *

from section s, course c

where s.tno=t.tno and s.cno=c.cno and t.dept!=c.dept);

4. 在每一个'数据管理基础'课程班上查询成绩最高的学生,结果返回课程班号、授课年份、在该课程班上成绩最高的学生的学号和成绩,结果按照成绩从高到低的降序输出;

select s.clsno, s.tyear, g.sno, g.grade

from study g, section s, course c

where g.clsno=s.clsno and s.cno=c.cno and c.cname='数据管理基础' and

g.grade >= all (select m.grade from study m where m.clsno=s.clsno);

5. 满足下述条件的学生的学号和姓名:修读了自己就读院系开设的所有'核心'课;

select s.sno, s.sname

from student s

where not exists(

select * from course c

where c.dept=s.dept and c.opt='核心' and not exists(

select * from study x, section y

where x.sno=s.sno and x.clsno=y.clsno and y.cno=c.cno));

6. 针对所有课程都及格的学生,统计每一位同学的课程学习情况,结果返回学生的学号、姓名、课程平均成绩、总学分数,并按照平均成绩的降序输出查询结果。

select s.sno, s.sname, avg(x.grade), sum(c.credit)

from student s, study x, section y, course c

where s.sno=x.sno and x.clsno=y.clsno and y.cno=c.cno

group by s.sno, s.sname

having min(x.grade)>=60

order by avg(x.grade) DESC;

四、(关系规范化理论)

1. 已知关系模式 S(A, B, C, D, E, F) 及其函数依赖集 $\{A \rightarrow E, B \rightarrow ADE, DF \rightarrow AC, ADF \rightarrow B\}$,计算关系 S 上的极小函数依赖集。请简要给出算法每一步的计算任务及计算结果,不需要写计算过程。

答: $\{A \rightarrow E, B \rightarrow AD, DF \rightarrow BC\}$

- 2. 已知关系模式 T(A, B, C, D, E, F) 及其极小函数依赖集: $\{A \rightarrow F, B \rightarrow DE, CD \rightarrow AB\}$
 - (1) 请直接写出关系模式 T的所有候选码。

答: 码: BC 和 CD

(2) 请将关系模式 T 直接分解到满足 3NF, 并满足无损联接性和依赖保持性。

答: 到 3NF 的分解结果: R1(A,F) R2(B,D,E) R3(A,B,C,D)

(3) 上述分解结果是否满足 BCNF? 如果不满足,请将其分解到满足 BCNF 并说明理由。 答:

关系 R1(A,F), 函数依赖是 $A \rightarrow F$, 码是 A, $R1 \in BCNF$

关系 R2(B,D,E), 函数依赖是 $B \rightarrow DE$, 码是 B, $R2 \in BCNF$

关系 R3(A,B,C,D),函数依赖是 $\{CD \to AB,B \to D\}$,码是 BC 和 CD, $B \to D$ 不满足 BCNF的要求,所以 R3 \notin BCNF。

将 R3 分解到满足 BCNF, 结果如下:

R31(B,D), 函数依赖是 $B \rightarrow D$, 码是 B, $R31 \in BCNF$

R32(A, B, C), 函数依赖是 $BC \rightarrow A$, 码是 BC, $R32 \in BCNF$

因为 $head(R31) \subseteq head(R2)$,不再需要保留子关系 R31。用 R32 代替原关系 R3,最终到 BCNF 的分解结果如下: R1(A,F) = R2(B,D,E) = R3(A,B,C)

- 3. 有一个期末考试监考安排关系 T(课程号 cno,考试时间 sdate,考试教室 room,监考老师工号 tno),如果规定:
 - (1) 课程号和工号分别是课程与教师的码;考试时间的数据类型是时间戳(包含日期和时间);
- ② 每一门课的期末考试只安排一场,可分在多个教室中同时进行,并在每一间考试教室中安排一位或多位监考老师:
- ③ 一位老师可以担任多门课程的监考任务,但在同一时间内,一位监考老师只能在指定的一间教室中监考一门课;
 - 4 同一时间,在一间教室里只能安排一门课程的考试。
- (1) 根据上述描述,请写出关系 R 上的极小函数依赖集。(不需要写计算过程) 答: $\{ cno \rightarrow sdate, (sdate, room) \rightarrow cno, (sdate, tno) \rightarrow room \}$
 - (2) 关系 R 最高能够满足哪个范式的定义?请简单说明理由。
- 答:该关系最高能满足到 3NF,理由如下:

该关系的码是 (tno, cno) 和 (tno, sdate)

该关系的主属性是 tno, cno, sdate, 非主属性是 room

不存在不满足 2NF 和 3NF 定义的函数依赖,但 cno → sdate 不满足 BCNF 的定义。

五、(数据库设计)

设有一个高铁列车乘务组安排管理系统,需要管理的信息有:每班高铁的车次号、始发站、始发时间、终点站、终点到达时间;一个高铁乘务组由列车长、乘警和乘务员组成,系统需要记录乘务组中每一个人的身份证号码、姓名和联系电话;列车长和乘警是有编制的固定铁路员工,系统需要记录他们每一个人的入职日期;乘务员是从外部聘用的劳务派遣人员,系统需要记录每个乘务员的派遣公司名称和聘用日期。其中:

- (1) 每个乘务组由一名列车长、若干名乘警和若干名乘务员组成;
- (2) 系统需要记录每一天发行的每一趟高铁的发车日期和乘务组安排;每一趟高铁每天安排的乘务组不固定,在列车运行过程中,乘务组的组成人员不变。
- 1. 请画出该数据库系统的 EER 模型图。

2. 请将上述 EER 图转换成对应的关系模式,并写出每个关系上的所有候选码。

关系	码
高铁 (车次号,始发站,始发时间,终点站,终点到达时间)	车次号
职工(身份证,姓名,联系电话,入职日期,公司名称,聘用日期)	身份证号
乘务组列车长 (车次号, 行驶日期, 列车长身份证号)	(车次号, 行驶日期)
乘务组乘警 (车次号, 行驶日期, 乘警身份证号)	(车次号, 行驶日期, 乘警身份证号)
乘务组乘务员 (车次号, 行驶日期, 乘务员身份证号)	(车次号, 行驶日期, 乘务员身份证号)