FACULDADE DE ENGENHARIA DE SOROCABA

Trabalho de Conclusão de Curso - Especialização em Ciência de Dados

HATE SPEECHES

Adriano Valério Santos da Silva Allan Flores de Jesus Vinícius Targa Gonçalves

Prof. Orientador Fernando Vieira da Silva Msc.

"Eu não sei o que quero ser, mas sei muito bem o que não quero me tornar." -

Friedrich Nietzsche

Agradecimentos

Agradecemos por todos os nossos professores e colegas de equipe participantes deste trabalho, onde se colocaram à disposição de auxiliar no desenvolvimento do mesmo, bem como disponibilidade de participar de todas as possíveis discussões envolvidas. Em especial, aos nossos orientadores e mestres Fernando Vieira da Silva e Johannes Von Lochter - no qual se dedicaram imensuravelmente à proposta do projeto.

Pelos esclarecimentos relacionados ao dataset escolhido (bem como técnicas utilizadas) - Rogers Prates de Pelle, criador e mestre na Universidade Estadual do Rio Grande do Sul, que nos ajudou ao entendimento detalhado do contexto.

Introdução

As redes sociais se popularizaram por possibilitar a interligação de pessoas de todos os lugares do mundo, buscando de forma facilitada, a interação social entre elas. Por ser um espaço amplo e diversificado, a dessemelhança entre pessoas se torna mais acentuada gerando conflitos virtuais, estes que são oriundos do mundo real. Como no mundo virtual o contato físico é inexistente, seus usuários se sentem encorajados em expressar suas opiniões sem qualquer limitação ou ponderação, sendo estas opiniões tão diversas quanto seu público, devido a isso, opiniões preconceituosas, discriminatórias e intolerantes se tornaram extremamente comuns.

- Identificação de sentimentos em discursos ofensivos / não ofensivos.
- Dificuldades quando exposto à um grande volume de dados.
- Separação de palavras obsoletas.

P(S) Facens

Objetivos

- Aplicação de técnicas de aprendizado de máquina e processamento de linguagem natural.
- Uso de Redes Neurais / Classificadores que auxiliem na identificação de textos ofensivos.
- Deploy de modelos (observando as predições) para serem utilizados de modo externo.
- Comparativos entre as diferentes técnicas aplicadas.

Dataset escolhido

- O dataset utilizado chama-se OFFCOMBR-2.
- Utilizado na dissertação de mestrado em Ciência da Computação (UFRGS).
- Dados coletados do Portal Web G1 Notícias (política e esportes).
- Técnicas de web scraper para coleta.
- 10 mil registros, sendo 1.250 utilizados (escolhidos aleatoriamente).
- Classificação por juízes humanos.
- Colunas: ID, Class, Document.

Dataset escolhido

Table 1. Prevalence of each Category in the Annotations

# Judges	Xenophobia	Homophobia	Sexism	Racism	Cursing	Religious Intolerance
1	13 (1,0%)	35 (2.8%)	14 (1,1%)	19 (1.5%)	375 (30.0%)	1 (0.1%)
2	12 (1.0%)	14 (1,1%)	8 (0.6%)	18 (1.4%)	286 (22.9%)	1 (0.1%)
3	5 (0.5%)	9 (0.9%)	4 (0.4%)	1 (0.1%)	175 (16,9%)	0 (0.0%)

Pesquisas relacionadas

 PELLE, ROGERS PRATES DE; MOREIRA, VIVIANE P. Offensive
 Comments in the Brazilian Web: a dataset and baseline results. Porto Alegre: UFRGS.

Offensive Comments in the Brazilian Web: a dataset and baseline results

Rogers Prates de Pelle, Viviane P. Moreira

¹Instituto de Informática – Universidade Federal do Rio Grande do Sul (UFRGS) Caixa Postal 15.064 – 91.501-970 – Porto Alegre – RS – Brazil

{rppelle, viviane}@inf.ufrgs.br

Abstract. Brazilian Web users are among the most active in social networks and very keen on interacting with others. Offensive comments, known as hate

Pesquisas relacionadas

FACELI, KATTI; LORENA, ANA CAROLINA; GAMA, JOÃO; CARVALHO,
 ANDRÉ C. P. L. F. DE. Inteligência Artificial. Rio de Janeiro: LTC, 2019.

Pesquisas relacionadas

https://www.kaggle.com/kazanova/sentiment140/kernels

- Pandas
 - Biblioteca para análise e manipulação de dados
- Numpy
 - Biblioteca para manipulação de arrays
- Joblib
 - Biblioteca para persistência de objetos em disco, cache e paralelismo
- Matplotlib
 - Biblioteca para geração de gráficos

- Imbalanced-learn
 - Biblioteca para manipulação de conjuntos de dados desbalanceados
 - SMOTE (Synthetic Minority Oversampling Technique)
 - Cria novos dados sintéticos a partir de dados que são considerados próximos

- NLTK
 - Biblioteca para manipulação de conjuntos de dados voltados a Processamento de linguagem natural (NLP)
 - WordCloud
 - FreqDist
 - Stopwords
 - Lista de palavras comuns que são consideradas irrelevantes para o contexto

- NLTK
 - White Space Tokenizer
 - Divide o texto em tokens a partir de espaços e novas linhas
 - RSLP Stemmer
 - Remove sufixos de palavras

- Scikit learn
 - Biblioteca para treinamento de modelos supervisionados e não supervisionados, inclui também ferramentas para pré processamento de dados
 - TF-IDF Vectorizer
 - Converte textos em matrizes de valores TF-IDF (term frequency-inverse document frequency)
 - Pipeline
 - Executa uma sequência de tarefas

- Scikit learn
 - SVD
 - Aplica redução de dimensionalidade
 - Select Percentile
 - Seleciona as melhores características de acordo com percentil das melhores pontuações

- Scikit learn (seleção de hiperparâmetros)
 - Grid Search CV
 - Procura exaustivamente pelos melhores parâmetros para o classificador
 - Randomized Search CV
 - Procura pelos melhores parâmetros de forma randômica a um máximo de parâmetros especificados

- Scikit learn
 - Logistic Regression
 - Gaussian NB
 - Multinomial NB
 - Random Forest Classifier

- Contagem de sentenças por classificação
- Redefinição da nomenclatura das colunas
- Redefinição da coluna de classificação (0 e 1)
- Frequência das palavras

document	@@class	id	
Votaram no PEZAO Agora tomem no CZAO	yes	1	0
cuidado com a poupanca pessoal Lembram o que a	no	2	1
Sabe o que eu acho engracado os nossos governa	no	3	2
os cariocas tem o que merecem um pessoal que s	yes	4	3
Podiam retirar dos lucros dos bancos	no	5	4

	Word	Frequence
32	е	640
64	de	426
13	que	419
12	0	407
8	а	316
27	nao	278
17	do	202
145	da	150
84	um	136
7	com	135

Técnicas de pré-processamento

Visualizações

Configuração (para o processamento)

Regression Logistic: Select Percentile

F Medida: 0.64

Melhor configuração: LogisticRegression(C=100, fit_intercept=False, solver='liblinear')

Melhor Score (F1): 0.9204498134756675

Classification Reports: precision recall f1-score support 0.80 0.92 0.85 249 0.77 0.54 0.64 126 0.79 375 accuracy 0.73 0.74 macro avg 0.79 375 weighted avg 0.79 0.79 0.78 375

Regression Logistic: Select Percentile

Regression Logistic: Truncated SVD + Pipeline

```
F Medida: 0.64
Melhor configuração: Pipeline(steps=[('smt', SMOTE(sampling_strategy='minority')),
                ('svd', < main .SVDDimSelect object at 0x00000226B3823E88>),
                ('clf',
                 LogisticRegression(C=10, fit intercept=False,
                                    intercept scaling=4, max iter=500,
                                    solver='liblinear'))])
Melhor Score (F1): 0.6240395634687447
Classification Reports:
                          recall f1-score
              precision
                                              support
                   0.81
                             0.85
                                       0.83
                                                  249
           1
                   0.67
                             0.60
                                       0.64
                                                  126
                                       0.77
                                                  375
    accuracy
                                       0.73
                   0.74
                             0.73
                                                  375
   macro avg
weighted avg
                   0.76
                             0.77
                                       0.76
                                                  375
```


Regression Logistic: Truncated SVD + Pipeline

Gaussian Naive Bayes: Select Percentile

F Medida: 0.56

Classificatio	on Reports: precision	recall	f1-score	support
0	0.77	0.85	0.81	249
1	0.63	0.51	0.56	126
accuracy			0.73	375
macro avg	0.70	0.68	0.68	375
weighted avg	0.72	0.73	0.73	375

Gaussian Naive Bayes: Truncated SVD + Pipeline

F Medida: 0.45

Classific	catio	n Reports: precision	recall	f1-score	support
	0	0.73	0.92	0.82	249
	1	0.69	0.33	0.45	126
accur	racy			0.73	375
macro	avg	0.71	0.63	0.63	375
weighted	avg	0.72	0.73	0.69	375

Multinomial Naive Bayes: Select Percentile

F Medida: 0.66

Melhor configuração: MultinomialNB(alpha=0, fit_prior=False)

Melhor Score (F1): 0.9256734215693319

Classificatio	n Reports:			
	precision	recall	f1-score	support
0	0.83	0.82	0.83	249
1	0.65	0.67	0.66	126
accuracy			0.77	375
macro avg	0.74	0.75	0.74	375
weighted avg	0.77	0.77	0.77	375

Multinomial Naive Bayes: Select Percentile

Random Forest Classifier: Select Percentile

F Medida: 0.58

Melhor configuração: RandomForestClassifier(max_depth=40)

Melhor Score (F1): 0.8288952390183001

Classification	n Reports:			
	precision	recall	f1-score	support
0	0.82	0.58	0.68	249
1	0.47	0.75	0.58	126
accuracy			0.64	375
macro avg	0.65	0.67	0.63	375
weighted avg	0.71	0.64	0.65	375

Random Forest Classifier: Select Percentile

Random Forest Classifier: Truncated SVD + Pipeline

```
F Medida: 0.55
Melhor configuração: Pipeline(steps=[('smt', SMOTE(sampling strategy='minority')),
                ('svd', < main .SVDDimSelect object at 0x00000226B244D0C8>),
                 RandomForestClassifier(max_depth=40, n_estimators=500))])
Melhor Score (F1): 0.6141733188088948
Classification Reports:
              precision
                           recall f1-score
                                              support
                             0.84
                   0.77
                                       0.80
                                                  249
                   0.61
                             0.51
                                       0.55
                                                  126
                                       0.73
                                                  375
    accuracy
                   0.69
                             0.67
                                       0.68
                                                  375
   macro avg
weighted avg
                   0.72
                             0.73
                                       0.72
                                                  375
```


Random Forest Classifier: Truncated SVD + Pipeline

Conclusão e considerações finais

- Utilizados classificadores e técnicas acessíveis ao conjunto de dados utilizado.
- Recursos heurísticos apresentaram melhores resultados.
- A estratégia de aplicação dos recursos fez-se eficiente na apresentação de resultados justos, considerando a F Medida - assim como experimentos passados demonstraram o contrário.
- A quantidade de dados presentes no dataset (bem como seu histórico de criação)
 contribuíram para as justificativas finais.
- Maiores quantidades de dados e assuntos diversos poderiam contribuir mais com o uso de outros classificadores / redes neurais.

Deploy do Modelo

https://github.com/adrianovss/hate-speeches-facens