Kernel Methods

Lecture 12

- 1 Kernel functions (making features space transforms easy)
- Perceptron → kernel perceptron (linearly separable data, the kernel trick)
- Maximum margin classifier (explicit feature space, linearly separable data)
- Support vector classifier (explicit feature space, non-linearly separable data)
- 5 Support vector machine (kernel-transformed implicit feature space, not linearly separable)

What are kernel functions and why are they useful?

Limitations of linear decision boundaries

 X_0

Classify the features in this *X*-space

$$\hat{f}_{x}(x) = \operatorname{sign}(w^{\mathsf{T}}x)$$

Transformations of features

(data representations)

Recall the digits example...

$$\mathbf{x} = [x_1, x_2, x_3, ..., x_{64}]$$

We could **design features** based on the original features. For example:

$$\mathbf{z} = [x_5 x_{11}, x_{14}^2, \frac{x_{64}}{x_{14}}]$$

Which can be written simply as variables in a new feature space:

$$\mathbf{z} = [z_1, z_2, z_3]$$

The new feature space could be smaller OR larger than the original

We can transform the feature space

Transform the feature space

Perceptron Classifier

$$z = \Phi(x)$$

$$\hat{y} = \hat{f}(\mathbf{x}) = sign(\mathbf{w}^{\mathsf{T}}\mathbf{z})$$

can be expensive or impossible!

For example, a polynomial feature space

$$\boldsymbol{x} = [x_1 \quad x_2]^{\mathsf{T}}$$

$$\mathbf{z} = \Phi(\mathbf{x}) = \begin{bmatrix} 1 & x_1 & x_2 & x_1^2 & x_2^2 & x_1 x_2 \end{bmatrix}^\mathsf{T}$$
 Transform into a 2nd-order polynomial feature space

This second order polynomial space with 2 features is simple enough

What about a 100th order polynomial space with 25 features?

That would be more than 10²⁶ terms!

Transformations into alternative feature spaces may make improve predictive performance (better data representations)

Can be **computationally challenging** to compute the transformation into those feature spaces explicitly...

Solution: kernel functions / the kernel trick

Perform learning in the feature space without **explicitly** transforming features into it

Kernel function

Definition for kernel methods

Similarity measure between two points x and x'

A kernel function, K(x, x'), represents an inner product in some feature space

$$\langle \mathbf{z}, \mathbf{z}' \rangle = \mathbf{z} \cdot \mathbf{z}' = \mathbf{z}^{\mathsf{T}} \mathbf{z}'$$
 $\mathbf{z} = \Phi(\mathbf{x})$ for Euclidean spaces

For a valid kernel, there is some feature transformation, $z = \Phi(x)$, where:

$$K(\mathbf{x}, \mathbf{x}') = \mathbf{z}^{\mathsf{T}} \mathbf{z}$$

Simplest example: the linear kernel $K(x, x') = x^{T}x'$

Kernel function example

$$\mathbf{x} = [x_1 \quad x_2]^\mathsf{T}$$

$$\mathbf{z} = \Phi(\mathbf{x}) = [1 \quad x_1 \quad x_2 \quad x_1^2 \quad x_2^2 \quad x_1 x_2]^{\mathsf{T}}$$

Transform into a 2nd-order polynomial feature space

The kernel function is:

$$K(\mathbf{x}, \mathbf{x}') = \mathbf{z}^{\mathsf{T}} \mathbf{z}' = 1 + x_1 x_1' + x_2 x_2' + x_1^2 x_1'^2 + x_2^2 x_2'^2 + x_1 x_1' x_2 x_2'$$

We haven't gained anything yet...

We want to compute K(x, x') without the explicit $z = \Phi(x)$ feature space transformation:

Kernel Trick

Kernel trick

$$\mathbf{x} = [x_1 \quad x_2]^\mathsf{T}$$

Compute K(x, x') without the $z = \Phi(x)$ feature space transformation

Example:

$$K(x, x') = (1 + x^{T}x')^{2}$$
 This is **not** an inner product in *X*-space

$$= (1 + x_{1}x'_{1} + x_{2}x'_{2})^{2}$$

$$= 1 + x_{1}x'_{1} + x_{2}x'_{2} + 2x_{1}^{2}x'_{1}^{2} + 2x_{2}^{2}x'_{2}^{2} + 2x_{1}x'_{1}x_{2}x'_{2}$$

Similar to the inner product for: $\mathbf{z} = \Phi(\mathbf{x}) = \begin{bmatrix} 1 & x_1 & x_2 & x_1^2 & x_2^2 & x_1x_2 \end{bmatrix}^\mathsf{T}$

It **IS an inner product** in a **different** *Z*-space:

$$\mathbf{z} = \Phi(\mathbf{x}) = \begin{bmatrix} 1 & x_1 & x_2 & \sqrt{2}x_1^2 & \sqrt{2}x_2^2 & \sqrt{2}x_1x_2 \end{bmatrix}^\mathsf{T}$$
$$K(\mathbf{x}, \mathbf{x}') = \mathbf{z}^\mathsf{T} \mathbf{z}'$$

Source: Abu-Mostafa, Learning from Data, Caltech

Computing

$$K(x, x') = (1 + x^{T}x')^{2}$$

Is much easier than the full *Z*-space transform.
Imagine if this was $(1 + x^{T}x')^{100}!$

Common kernel functions

Linear kernel:

$$K(\mathbf{x}, \mathbf{x}') = \mathbf{x}^{\mathsf{T}} \mathbf{x}'$$

Polynomial kernels:

(all polynomials up to degree d)

$$K(\boldsymbol{x}, \boldsymbol{x}') = (1 + \boldsymbol{x}^{\mathsf{T}} \boldsymbol{x}')^d$$

(infinite dimensional)

For an excellent explanation of how this is infinite dimensional, see Yaser Abu-Mostafa's explanation

Radial basis function kernel:
$$K(x, x') = \exp\left(-\frac{\|x - x'\|^2}{2\sigma^2}\right)$$

Kernel function properties

Symmetric:

$$K(\mathbf{x}, \mathbf{x}') = K(\mathbf{x}', \mathbf{x})$$

All kernels are symmetric

Stationary kernels:

$$K(\mathbf{x}, \mathbf{x}') = K(\mathbf{x} - \mathbf{x}')$$

Invariant to translation in the input space Only a function of the difference between arguments

Homogeneous kernels: K(x, x') = K(||x - x'||)

$$K(\mathbf{x}, \mathbf{x}') = K(\|\mathbf{x} - \mathbf{x}'\|)$$

Depend only on the magnitude of the distance between arguments

Recall linear models and the perceptron

Linear Classification

(perceptron)

$$\hat{f}(\mathbf{x}) = sign\left(\sum_{i=0}^{p} w_i x_i\right) = sign(\mathbf{w}^{\mathsf{T}} \mathbf{x})$$

$$\mathbf{w} = \begin{bmatrix} w_0 \\ w_1 \\ w_2 \\ \vdots \\ w_p \end{bmatrix}$$
 (intercept)

Perceptron classifier

Linear Classification

(perceptron)

$$\hat{f}(\mathbf{x}) = sign\left(\sum_{i=0}^{p} w_i x_i\right)$$
$$= sign(\mathbf{w}^{\mathsf{T}} \mathbf{x})$$

Idea: draw a line (hyperplane) that separates the classes

Perceptron classifier

Linear Classification

(perceptron)

$$\hat{f}(\mathbf{x}) = sign\left(\sum_{i=0}^{p} w_i x_i\right)$$
$$= sign(\mathbf{w}^{\mathsf{T}} \mathbf{x})$$

Training data:
$$(x_n, y_n)$$
, $n = 1, ..., N$ with binary $y_n = \{-1,1\}$

Decision rule based on $sign(\mathbf{w}^T\mathbf{x})$: if $\mathbf{w}^{\mathsf{T}}\mathbf{x}_n > 0$, then $\hat{y}_n = +1$ if $\mathbf{w}^{\mathsf{T}}\mathbf{x}_n < 0$, then $\hat{y}_n = -1$

For correctly classified points: $y_n w^T x_n > 0$ (and no error is assigned if correctly classified)

The separating hyperplane

w defines and is orthogonal to the separating hyperplane

$$\hat{f}(\mathbf{x}) = sign(\mathbf{w}^{\mathsf{T}}\mathbf{x})$$

Decision rule based on $sign(\mathbf{w}^T\mathbf{x})$:

if $\mathbf{w}^{\mathsf{T}} \mathbf{x}_n > 0$, then $\hat{y}_n = +1$ if $\mathbf{w}^{\mathsf{T}} \mathbf{x}_n < 0$, then $\hat{y}_n = -1$

For correctly classified points: $y_n \mathbf{w}^{\mathsf{T}} \mathbf{x}_n > 0$ (and no error is assigned if correctly classified)

Interpretation: if a point is on one side of the hyperplane, assign one class, if it's on the other, assign the other class

When we see the expression:

$$\mathbf{w}^{\mathsf{T}}\mathbf{x} > 0$$

...we're typically using a separating hyperplane as a decision rule

Perceptron classifier

Linear Classification

(perceptron)

$$\hat{f}(\mathbf{x}) = sign\left(\sum_{i=0}^{p} w_i x_i\right)$$
$$= sign(\mathbf{w}^{\mathsf{T}} \mathbf{x})$$

Training data: (x_n, y_n) , n = 1, ..., N with binary $y_n = \{-1, 1\}$

Decision rule based on $sign(\mathbf{w}^{\mathsf{T}}\mathbf{x})$: if $\mathbf{w}^{\mathsf{T}}\mathbf{x}_n > 0$, then $\hat{y}_n = +1$ if $\mathbf{w}^{\mathsf{T}}\mathbf{x}_n < 0$, then $\hat{y}_n = -1$

For correctly classified points: $y_n w^T x_n > 0$ (and no error is assigned if correctly classified)

Our cost (error) function to minimize:

$$C = -\sum_{\substack{n \in \{\text{mistakes}\}\\ \hat{y}_n \neq y_n}} y_n \mathbf{w}^{\mathsf{T}} \mathbf{x}_n$$

Perceptron classifier

Linear Classification

(perceptron)

$$\hat{f}(\mathbf{x}) = sign\left(\sum_{i=0}^{p} w_i x_i\right)$$

$$= sign(\mathbf{w}^{\mathsf{T}}\mathbf{x})$$

Our cost (error) function to minimize:

$$C = -\sum_{n \in \{\text{mistakes}\}} y_n \mathbf{w}^{\mathsf{T}} \mathbf{x}_n$$

The gradient with respect to \boldsymbol{w} :

$$\frac{\partial C}{\partial \mathbf{w}} = -\sum_{n \in \{\text{mistakes}\}} y_n \mathbf{x}_n$$

Applying stochastic gradient:

$$\boldsymbol{w} \leftarrow \boldsymbol{w} - \eta \, \frac{\partial C}{\partial \boldsymbol{w}}$$

$$\boldsymbol{w} \leftarrow \boldsymbol{w} + y_n \boldsymbol{x}_n$$

process one mistake at a time and assume a learning rate of 1

Perceptron Learning Algorithm

Note: this algorithm assumes the classes are linearly separable

Pick a misclassified point and use it to update the weights:

$$\boldsymbol{w} \leftarrow \boldsymbol{w} + y_n \boldsymbol{x}_n$$

- Reclassify all the data: $\hat{y}_n = sign(\mathbf{w}^{\mathsf{T}} \mathbf{x}_n)$
- 3 Repeat until no mistakes

Bishop, Pattern Recognition and Machine Learning, 2006

Perceptron Learning Algorithm (towards kernels)

Note: this algorithm assumes the classes are linearly separable

Pick a misclassified point and use it to update the weights:

$$w \leftarrow w + y_n x_n$$
 $a_n \leftarrow a_n + 1$
(mistake counter)

- Reclassify all the data: $\hat{y}_n = sign(\mathbf{w}^{\mathsf{T}} \mathbf{x}_n)$
- 3 Repeat until no mistakes

Bishop, Pattern Recognition and Machine Learning, 2006

Perceptron Learning Algorithm (towards kernels)

Note: this algorithm assumes the classes are linearly separable

Update weights

$$w \leftarrow w + y_n x_n \\ a_n \leftarrow a_n + 1$$

(mistake counter)

We can rewrite an expression for our weights:

$$\mathbf{w} = \sum_{n} a_n y_n \mathbf{x}_n$$

If we store our mistake counter, we can update our weights as a sum over all observations, but only the mistakes that were considered will have a nonzero value for a_n

Bishop, Pattern Recognition and Machine Learning, 2006

 χ_2

Perceptron Learning Algorithm (towards kernels)

Update weights
$$\mathbf{w} \leftarrow \mathbf{w} + y_n \mathbf{x}_n$$
 $a_n \leftarrow a_n + 1$ (mistake counter)

We can rewrite an expression for our weights:

$$\mathbf{w} = \sum_{n} a_n y_n \mathbf{x}_n$$

If we store our mistake counter, we can update our weights as a sum over all observations, but only the mistakes that were considered will have a nonzero value for a_n

Let's plug this new expression into our classifier:

$$\hat{y} = \hat{f}(\mathbf{x}) = sign(\mathbf{w}^{\mathsf{T}}\mathbf{x})$$

$$= sign\left(\left(\sum_{n} a_{n} y_{n} \mathbf{x}_{n}\right)^{\mathsf{T}} \mathbf{x}\right)$$

$$= sign\left(\sum_{n} a_{n} y_{n} \mathbf{x}_{n}^{\mathsf{T}} \mathbf{x}\right)$$

new model parameters inner product

Our classifier **stores training data**, but it only depends on **inner products**

Kernel perceptron classifier

Linear Classification

(perceptron)

$$\hat{f}(\mathbf{x}) = sign\left(\sum_{n} a_{n} y_{n} \mathbf{x}_{n}^{\mathsf{T}} \mathbf{x}\right)$$

Our classifier **stores training data**, but it only depends on an **inner product**

$$\hat{f}(\mathbf{x}) = sign\left(\sum_{n} a_{n} y_{n} \mathbf{x}_{n}^{\mathsf{T}} \mathbf{x}\right)$$

We can write this inner product as a **kernel** function, $K(x, x') = x^{T}x'$

$$\hat{f}(\mathbf{x}) = sign\left(\sum_{n} a_{n} y_{n} K(\mathbf{x}_{n}, \mathbf{x})\right)$$

We can replace this with any valid kernel

Kernel perceptron classifier

No need to explicitly transform the feature space

$$z = \Phi(x)$$

We only need the kernel function

Now we need to store our training data

We have to use lots of training data in each prediction

How can we improve on the perceptron

 x_2

Assume our data are linearly separable

How do we pick the "best" separating line (hyperplane)?

Maximize the margin

Margin = the smallest distance between the **decision boundary** and **any** of the samples

Bishop, Pattern Recognition and Machine Learning, 2006

28

Maximum margin classifier

The decision boundary is determined by the weight, \boldsymbol{w} , as with the perceptron

Pick w to maximize the margin

Assumes linear separability

Hard margin classifier

Kyle Bradbury

Support vector classifier

determined by the weight, \boldsymbol{w} ,

Pick w to maximize the margin

Does not assume linear separability

The decision boundary is

as with the perceptron

Soft margin classifier

Minimize:
$$L(x) = \sum_{n=1}^{N} \xi_n + \lambda ||\mathbf{w}||^2$$

 $\lambda = \text{regularization penalty}$

$$\xi_n \ge 0$$

 $\xi_n = |y_n - \boldsymbol{w}^{\mathsf{T}} \boldsymbol{x}|$ where $y = \mathbf{w}^{\mathsf{T}} \mathbf{x}$ χ_2 and $y_n \in \{-1,1\}$ margin χ_1 Support vector Bishop, Pattern Recognition and Machine Learning, 2006

Penalty term for violating the margin:

Support vector machine

Penalty term for violating the margin: $\xi_n = |y_n - \mathbf{w}^{\mathsf{T}} \mathbf{x}|$

 x_2

where $y = \mathbf{w}^{\mathsf{T}} \mathbf{x}$ and $y_n \in \{-1,1\}$

The decision boundary is determined by the weight, \boldsymbol{w} , as with the perceptron

 $\xi_n = 0$

Pick w to maximize the margin

 $\xi_n < 1$ $\xi_n =$

Does not assume linear separability

C

Soft margin classifier

3 margin

Use the **kernel trick** to classify in other feature spaces

Support vector

Bishop, Pattern Recognition and Machine Learning, 2006

 χ_1

Support vector machine

Penalty term for violating the margin:

 $\xi_n = |y_n - \boldsymbol{w}^\mathsf{T} \boldsymbol{x}|$

Use the **kernel trick** to classify in other feature spaces

Sparse kernel machine

Prediction: kernel comparisons with weighted support vectors (very similar to the perceptron)

SVM Margin Violation Penalty

SVMs can also be extended for use with regression

SVM's are natively applied to binary classification

SVMs large datasets require significant training time

Need to select a "good" kernel for the method to work

Produces "sparse" models

Kernel Machine

Stores a subset of its training examples (instance-based learning)

Can learn **implicitly alternative feature spaces** without explicitly transforming the data into that space

Relies on a similarity measure, the **kernel function**, to compare test points to the training data

Supervised Learning Techniques

- Linear Regression
- K-Nearest Neighbors
 - Perceptron
 - Logistic Regression
 - Linear Discriminant Analysis
 - Quadratic Discriminant Analysis
 - Naïve Bayes
- Decision Trees and Random Forests
- Ensemble methods (bagging, boosting, stacking)
- Support Vector Machines

Appropriate for:

Classification

Regression

Can be used with many machine learning techniques