Cost function

Logistic Regression Classifier

Director of TEAMLAB Sungchul Choi

Logistic Regression에서 Weight 학습하기

가설 함수

$$h_{\theta}(x) = g(z) = \frac{1}{1 + e^{-z}}$$

where:

$$z = w_0 x_0 + w_1 x_1 + \dots + w_n x_n$$
$$= \theta^T \mathbf{x}$$

$$0 \le h_{\theta}(x) \le 1$$

가설 함수

Training θ

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T \mathbf{x}}}$$

ID	RPM	V IBRATION	STATUS	
1	568	585	good	
2	586	565	good	
3	609	536	good	
4	616	492	good	
5	632	465	good	
6	652	528	good	
7	655	496	good	
8	660	471	good	
9	688	408	good	
10	696	399	good	

$$\theta^T \mathbf{x} = w_0 x_0 + w_1 x_1 + \dots + w_n x_n$$
$$y = 0 \text{ or } 1$$

Cost Function

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

Cost Function

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost} \left(h_{\theta}(x^{(i)}), y^{(i)} \right)$$

$$= -\frac{1}{m} \sum_{i=1}^{m} [y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)}))]$$

find
$$\theta$$
, where $\min_{\theta} J(\theta)$
$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T \mathbf{x}}}$$

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[-y^{i} (\log(1 + e^{-\theta x^{i}})) + (1 - y^{i})(-\theta x^{i} - \log(1 + e^{-\theta x^{i}})) \right]$$

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[y_i \theta x^i - \theta x^i - \log(1 + e^{-\theta x^i}) \right] \qquad h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T \mathbf{x}}}$$

$$= -\frac{1}{m} \sum_{i=1}^{m} \left[y_i \theta x^i - \log(1 + e^{\theta x^i}) \right]$$

$$-\theta x^{i} - \log(1 + e^{-\theta x^{i}}) = -\left[\log e^{\theta x^{i}} + \log(1 + e^{-\theta x^{i}})\right]$$
$$= -\log(1 + e^{\theta x^{i}}).$$

$$-\frac{1}{m}\sum_{i=1}^{m} \left[y_i \theta x^i - \log(1 + e^{\theta x^i}) \right]$$

$$z = w_0 x_0 + w_1 x_1 + \dots + w_n x_n$$
 θ 에 관하여 미분하면

$$\frac{\partial}{\partial \theta_j} y_i \theta x^i = y_i x_j^i \quad \frac{d}{dx} \ln(2x) = \frac{2}{2x} = \frac{1}{x} \quad \frac{d}{dx} e^{2x} = 2e^x$$

$$\frac{\partial}{\partial \theta_j} \log(1 + e^{\theta x^i}) = \frac{x_j^i e^{\theta x^i}}{1 + e^{\theta x^i}} = x_j^i h_{\theta}(x^i),$$

$$\frac{\partial}{\partial \theta_{j}} \log(1 + e^{\theta x^{i}}) = \frac{x_{j}^{i} e^{\theta x^{i}}}{1 + e^{\theta x^{i}}} = x_{j}^{i} h_{\theta}(x^{i}),$$

$$\frac{x_{j}^{i} e^{\theta x^{i}}}{1 + e^{\theta x^{i}}} = \frac{x_{j}^{i}}{e^{-\theta x^{i}} * (1 + e^{\theta x^{i}})}$$

$$= \frac{x_{j}^{i}}{e^{-\theta x^{i}} + e^{-\theta x^{i}} + \theta x^{i}} = \frac{x_{j}^{i}}{e^{-\theta x^{i}} + e^{0}}$$

$$h_{\theta}(x^{i}) = \frac{1}{1 + e^{\theta x^{i}}} = \frac{x_{j}^{i}}{1 + e^{-\theta x^{i}}}$$

$$= x_{j}^{i} * h_{\theta}(x^{i})$$

$$-\frac{1}{m}\sum_{i=1}^{m} \left[y_i \theta x^i - \log(1 + e^{\theta x^i}) \right]$$

$$\frac{\partial}{\partial \theta_j} y_i \theta x^i = y_i x_j^i \quad \frac{\partial}{\partial \theta_j} \log(1 + e^{\theta x^i}) = \frac{x_j^i e^{\theta x^i}}{1 + e^{\theta x^i}} = x_j^i h_{\theta}(x^i),$$

$$\frac{\partial}{\partial \theta_j} J(\theta) = \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^i) - y^i) x_j^i$$

Weight update

$$\frac{\partial}{\partial \theta_j} J(\theta) = \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^i) - y^i) x_j^i$$

$$heta_j := heta_j - lpha rac{\partial}{\partial heta_j} J(heta)$$
 모든 $heta_j$ 동시에 업데이트

$$:= \theta_j - \alpha \sum_{i=1}^{\infty} (h_{\theta}(x^i) - y^i) x_j^i$$

Human knowledge belongs to the world.