PRIMER PARCIAL DE MATEMÁTICA DISCRETA 2

Nombre	
--------	--

Duración: 3:30 horas. Sin material y sin calculadora.

Es necesario mostrar la resolución de los ejercicios, presentar únicamente la respuesta final carece de valor.

SOLUCIONES.

Ejercicio 1.

- (a) Si a, n son enteros tales que mcd(a, n) = 1, entonces $a^{\varphi(n)} \equiv 1 \pmod{n}$.
- (b) Tenemos que $\varphi(35) = \varphi(5 \times 7) = \varphi(5)\varphi(7) = 4 \times 6 = 24$. Como mcd(102, 35) = 1, por el Teorema de Euler tenemos que $102^{24} \equiv 1 \pmod{35}$; además $102 \equiv 32 \pmod{35} \equiv -3 \pmod{35}$. Por lo tanto $102^{201} \equiv 102^{24 \times 8 + 9} \pmod{35} \equiv 102^9 \pmod{35} \equiv (-3)^9 \pmod{35}$. Ahora calculamos directamente (se puede usar el Teo Chino de resto también): $(-3)^9 \equiv (-27)^3 \pmod{35} \equiv 8^3 \pmod{35} \equiv 64 \times 8 \pmod{35} \equiv (-6) \times 8 \pmod{35} \equiv -48 \pmod{35} \equiv 22 \pmod{35}$. Por lo tanto x = 22.
- (c) Como 4001 es primo, tenemos que $\varphi(4001) = 4000$. Como mcd(30,4001) = 1, por Euler tenemos que $30^{4000} \equiv 1 \pmod{4001}$ y por lo tanto $30^{3998}30^2 \equiv 1 \pmod{4001}$, es decir, $30^{3998}900 \equiv 1 \pmod{4001}$. Entonces 30^{3998} es el inverso de 900 módulo 4001; esto es, buscamos $x \in \{0, \dots, 4000\}$ tal que $900x \equiv 1 \pmod{4001}$. Para hallar x basta con resolver 900x + 4001y = 1 y esto lo hacemos con el algoritmo de Euclides extendido: tenemos que 4001 = 900(4) + 401, 900 = 401(2) + 98, 401 = 98(4) + 9, 98 = 9(10) + 8 y 9 = 8(1) + 1, y utilizando estos datos obtenemos 1 = (4001)(101) + 900(-449), así que $x \equiv -449 \pmod{4001}$ y por lo tanto x = 4001 449 = 3552.

Ejercicio 2.

- (a) y (b) Ver Teórico.
 - (c) Veamos tres formas posibles, una es con la fórmula:

$$\varphi(dn) = dn \prod_{\substack{p \text{ primo} \\ p|dn}} (1 - 1/p) = dn \prod_{\substack{p \text{ primo} \\ p|n}} (1 - 1/p) = d\varphi(n)$$

donde en la segunda igualdad se usa que d|n.

Otra forma es contando: si $x \in \mathbb{Z}$ es tal que $1 \le x < nd$ y mcd(x, dn) = 1 entonces x = nq + r con $0 \le r < n$. Como d|n, $mcd(x, dn) = 1 \Rightarrow mcd(x, n) = 1$ de donde mcd(r, n) = 1 puesto que r = x - nq. Por otra parte q puede ser cualquier entero que cumpla $0 \le q < d$ (pues x < nd). De esa forma tenemos d posibilidades para q y $\varphi(n)$ posibilidades para r, por lo tanto tenemos $d\varphi(n)$ posibilidades para x y se cumple

$$d\varphi(n) = \varphi(dn).$$

La tercer forma es usando la descomposición factorial de d y m; sea $m=p_1^{\alpha_1}p_2^{\alpha_2}\dots p_k^{\alpha_k}$ la descomposición factorial de m (donde los p_i son primos y los α_i enteros positivos). Como d|m entonces $d=p_1^{\beta_1}p_2^{\beta_2}\dots p_k^{\beta_k}$ con $0\leq \beta_i\leq \alpha_i$ para $i=1,2,\ldots,k$. Se tiene que:

$$\begin{split} \varphi(md) &= \varphi(p_1^{\alpha_1+\beta_1}p_2^{\alpha_2+\beta_2}\dots p_k^{\alpha_k+\beta_k}) = (p_1-1)(p_2-1)\dots(p_k-1)p_1^{\alpha_1+\beta_1-1}p_2^{\alpha_2+\beta_2-1}\dots p_k^{\alpha_k+\beta_k-1} \\ &= (p_1-1)(p_2-1)\dots(p_k-1)p_1^{\alpha_1-1}p_2^{\alpha_2-1}\dots p_k^{\alpha_k-1}\cdot p_1^{\beta_1}p_2^{\beta_2}\dots p_k^{\beta_k} = \varphi(m)\cdot d \\ &\text{como queríamos probar.} \end{split}$$

- (d) Sea n un entero compuesto. Si n = md con $1 < m < d \le n-1$ entonces m y d aparecen como factores en (n-1)! y por lo tanto n|(n-1)!. Si es imposible descomponer a n en la forma anterior entonces $n = p^2$ con p primo (y p > 2 pues n > 4), pero en este caso p y 2p aparecen como factores en (n-1)! (pues $n-1=p^2-1>2p$ pues p>2) asi que también se verifica que n|(n-1)!.
- (e) Si n es primo entonces mcd(n, (n-1)!) = 1 asi que usando la propiedad multiplicativa tenemos que $\varphi(n!) = \varphi(n \cdot (n-1)!) = \varphi(n)\varphi((n-1)!) = (n-1)\varphi((n-1)!)$. Si n=4 entonces $\varphi(4!)/\varphi(3!) = \varphi(24)/\varphi(6) = 8/2 = 4$. En último caso, si n es compuesto y n > 4 entonces n|(n-1)! asi que usando la parte iii) tenemos que $\varphi(n!) = n\varphi((n-1)!)$.

En resumen tenemos que:

$$\frac{\varphi(n!)}{\varphi(n-1)!} = \begin{cases} n-1 & \text{si } n \text{ es primo.} \\ n & \text{si } n \text{ es compuesto} \end{cases}$$

Ejercicio 3.

- (a) Si $x \cdot g_0 = g_0 \Rightarrow (x \cdot g_0) \cdot g_0^{-1} = g_0 \cdot g_0^{-1} \Rightarrow x \cdot (g_0 \cdot g_0^{-1}) = g_0 \cdot g_0^{-1} \Rightarrow x \cdot e = e \Rightarrow x = e$; por lo tanto $x \cdot g = e \cdot g = g$ para todo $g \in G$.
- (b) Si en la fila correspondiente a g, un elemeto h aparece dos veces, es porque existen $g_1 \neq g_2 \in G$, tales que $h = g \cdot g_1$ y $h = g \cdot g_2$. Pero entonces $g \cdot g_1 = g \cdot g_2$ y por lo tanto $g^{-1} \cdot (g \cdot g_1) = g^{-1} \cdot (g \cdot g_2)$. Entonces, por asociativa y propiedad del invero y del neutro tendríamos que $g_1 = g_2$, lo cual es absurdo. Para columnas el argumento es análogo con $g_1 \cdot g = g_2 \cdot g$ y multiplicando a la derecha poor g^{-1} .
- (c) (i) Por (b) el último elemento de la 2da columna es g_2 . Por lo tanto $g_6 \cdot g_2 = g_2$ y por (a) tenemos que g_6 es el neutro.
 - (ii) Tenemos que $g_2 \neq g_6$, $g_2^2 = g_1 \neq g_6$ y $g_2^3 = g_2^2 \cdot g_2 = g_1 \cdot g_2 = g_6$ y g_6 es el neutro, así que $o(g_2) = 3$.
 - (iii) Usamos primero que g_6 es el neutro y obtenemos

•	g_1	g_2	g_3	g_4	g_5	g_6
g_1		g_6		g_5		g_1
g_2		g_1				g_2
g_3	g_5	g_4	g_6			g_3
g_4		g_5		g_6		g_4
g_5		g_3			g_6	g_5
g_6	g_1	g_2	g_3	g_4	g_5	g_6

Luego, utilizando por ejemplo que como $g_1g_2=g_6$, (entonces $g_1^{-1}=g_2$) por lo tanto $g_2g_1=g_6$

•	g_1	g_2	g_3	g_4	g_5	g_6
g_1		g_6		g_5		g_1
g_2	g_6	g_1				g_2
g_3	g_5	g_4	g_6			g_3
g_4		g_5		g_6		g_4
g_5		g_3			g_6	g_5
g_6	g_1	g_2	g_3	g_4	g_5	g_6

Ahora usemos varias veces la propiedad asociativa:

- $g_3(g_2g_4) = (g_3g_2)g_4 = g_4g_4 = g_6 = g_3g_3$ asi que por cancelativa: $g_2g_4 = g_3$.
- $g_2g_5 = g_2(g_4g_2) = (g_2g_4)g_2 = g_3g_2 = g_4$
- $g_1^2 = g_1(g_2g_2) = (g_1g_2)g_2 = g_6g_2 = g_2$
- $(g_3g_5)g_2 = g_3(g_5g_2) = g_3g_3 = g_6 = g_1g_2$ asi que por cancelativa: $g_3g_5 = g_1$.
- $(g_4g_3)g_2=g_4(g_3g_2)=g_4g_4=g_6=g_1g_2$ as
i que por cancelativa $g_4g_3=g_1$

Nos va quedando:

•	g_1	g_2	g_3	g_4	g_5	g_6
g_1	g_2	g_6				g_1
g_2	g_6	g_1		g_3	g_4	g_2
g_3	g_5	g_4	g_6		g_1	g_3
g_4		g_5	g_1	g_6		g_4
g_5		g_3			g_6	g_5
g_6	g_1	g_2	g_3	g_4	g_5	g_6

Finalmente utilizamos reiteradamente la parte b (propiedad Sudoku) para completar los lugares que falta:

•
$$g_5 = g_2 g_3$$
 • $g_2 = g_3 g_4$ • $g_4 = g_5 g_1$ • $g_3 = g_4 g_1$ • $g_2 = g_4 g_5$

•
$$g_1 = g_5 g_4$$
 • $g_2 = g_5 g_3$ • $g_3 = g_1 g_5$ • $g_5 = g_1 g_4$ • $g_4 = g_1 g_3$

Quedándonos la siguiente tabla:

•	g_1	g_2	g_3	g_4	g_5	g_6
g_1	g_2	g_6	g_4	g_5	g_3	g_1
g_2	g_6	g_1	g_5	g_3	g_4	g_2
g_3	g_5	g_4	g_6	g_2	g_1	g_3
g_4	g_3	g_5	g_1	g_6	g_2	g_4
g_5	g_4	g_3	g_2	g_1	g_6	g_5
g_6	g_1	g_2	g_3	g_4	g_5	g_6