ECE 341

Lecture # 6

Instructor: Zeshan Chishti zeshan@pdx.edu

October 15, 2014

Portland State University

Lecture Topics

- Design of Fast Adders
 - Carry Looakahead Adders (CLA)
 - Blocked Carry-Lookahead Adders
- Multiplication of Unsigned Numbers
 - Array Multiplier
 - Sequential Circuit Multiplier

• Reference:

Chapter 9: Sections 9.2 and 9.3

CLA Delay Calculation

Consider the expression:

$$c_{i+1} = G_i + P_i G_{i-1} + P_i P_{i-1} G_{i-2} + \dots + P_i P_{i-1} \dots P_1 G_0 + P_i P_{i-1} \dots P_0 C_0$$

- All the G_i and P_i functions can be obtained in parallel in one gate delay
- AND terms in each c_{i+1} calculation require one additional gate delay
- ORing the AND terms in each c_{i+1} calculation requires one additional gate delay

Therefore,

Total delay in calculating carry outputs = 1 + 1 + 1 = 3 gate delays

Sum outputs require one additional XOR delay after carries are computed

Total delay in calculating sum outputs = 3 + 1 = 4 gate delays

n-bit CLA requires 4 gate delays independent of *n*

CLA Fan-in Limitation

- Performing *n*-bit CLA in 4 gate delays, independent of *n*, good only in theory
- In practice, CLA is limited by fan-in constraints

$$c_{i+1} = G_i + P_i G_{i-1} + P_i P_{i-1} G_{i-2} + \dots + P_i P_{i-1} \dots P_1 G_0 + P_i P_{i-1} \dots P_0 C_0$$

- OR gate & last AND gate in the expression for c_{i+1} require i+2 inputs, each
- For a 4-bit CLA, the MSB carry-out (c₄) requires a fan-in of 5
- 5 is the practical fan-in limit for most gates
- In order to add operands larger than 4-bits, we can cascade multiple CLAs
- Cascade of CLAs is called Blocked Carry-Lookahead adder

Blocked Carry-Looakhead Adder

After input operands (X, Y and c_0) are applied to the 32-bit adder:

- All the P_i and G_i terms in each CLA calculated in parallel in **1** gate delay
- c_{Δ} available after **3** gate delays
- c_8 available 2 gate delays after c_4 = 3 + (1*2) = **5** gate delays
- c_{12} available (2*2) gate delays after c_4 = 3 + (2*2) = **7** gate delays
- c_{16} available after (3*2) gate delays after c_4 = 3 + (3*2) = **9** gate delays
- c_{32} available after (7*2) gate delays after c_4 = 3 + (7*2) = **17** gate delays
- s_{28} , s_{29} , s_{30} , s_{31} available after 17+1 = **18** gate delays

Carry-outs ripple from one CLA block to the next. Can we avoid this rippling?

Faster Blocked Carry-Lookahead adder

<u>Key Idea:</u> Generate the carry outputs c_4 , c_8 , c_{12} , ... of CLA blocks **in parallel**, similar to how c_1 , c_2 , c_3 , c_4 are generated in parallel *within* a CLA block

• Carry-out from a 4-bit block can be given as:

$$c_4 = G_3 + P_3G_2 + P_3P_2G_1 + P_3P_2P_1G_0 + P_3P_2P_1P_0c_0$$

This can be re-written as:

$$c_4 = G_0^1 + P_0^1 c_0$$

where

$$G_0^1 = G_3 + P_3G_2 + P_3P_2G_1 + P_3P_2P_1G_0$$
 and $P_0^1 = P_3P_2P_1P_0$

We can similarly compute G_1^1 , G_2^1 , G_3^1

 $G_i^1 \& P_i^1$ are first-level generate & propagate functions, where i denotes the CLA block

- $G_k^1 = 1$ implies that the kth CLA block generates a carry
- $P_k^1 = 1$ implies that the kth CLA block propagates a carry

Carry-out of kth block = $G_k^1 + P_k^1 G_{k-1}^1 + P_k^1 P_{k-1}^1 G_{k-2}^1 + \dots + P_k^1 P_{k-1}^1 \dots P_1^1 G_0^1 + P_k^1 P_{k-1}^1 \dots P_0^1 C_0^1$

For example:

$$c_{16} = G_3^{\ 1} + P_3^{\ 1}G_2^{\ 1} + P_3^{\ 1}P_2^{\ 1}G_1^{\ 1} + P_3^{\ 1}P_2^{\ 1}P_1^{\ 1}G_0^{\ 1} + P_3^{\ 1}P_2^{\ 1}P_1^{\ 1}P_0^{\ 1}c_0$$

Blocked CLA with First-level Propagates and Generates

After input operands (X, Y and c_0) are applied to the above 16-bit adder:

- P_i and G_i terms within each CLA calculated in parallel in **1** gate delay
- First-level generates (G_k^1) available after 1 + 2 = 3 gate delays
- Carry-outs of CLA blocks (c_4 , c_8 , c_{12} , c_{16}) available after 3 + 2 = **5** gate delays
- Carries within CLA blocks (such as c_{15}) available after 5 + 2 = **7** gate delays
- Sum outputs (such as s_{15}) available after 7 + 1 = 8 gate delays
- Compare this with the blocked CLA formed by cascading, where c_{15} and s_{15} required 9 and 10 gate delays respectively

Multiplication

Multiplication of Unsigned Numbers

Product of two *n*-bit numbers is at most a 2*n*-bit number

Unsigned multiplication can be viewed as addition of shifted versions of the multiplicand.

Multiplication of Unsigned Numbers (contd.)

- In hand multiplication, we add the shifted versions of multiplicand at the end (column-by-column)
 - Alternative would be to accumulate partial products at each stage (row-by-row)
- Multiplication logic for two n-bit numbers can be implement as follows:
 - Initialize the partial product PPO to a value of 0
 - Start from the LSB of multiplier and proceed towards MSB, one bit at a time. For each bit position of the multiplier, perform the following step:
 - If the *i*th bit of the multiplier is 1, shift the multiplicand by *i* bit positions and add it to *PPi* in order to obtain *PP(i+1)*
 - After *n* steps, the partial product *PPn* represents the final product

Multiplication of Unsigned Numbers

Bit of outgoing partial product (PP(i+1))

Typical multiplication cell

Combanitorial Array Multiplier

Multiplicand is shifted by displacing it through an array of adders

Combinatorial Array Multiplier (cont.)

- Array multipliers are highly inefficient:
 - Need n n-bit adders => number of gate counts is proportional to n^2
 - Impractical for large numbers such as 32-bit or 64-bit numbers typically used in computers
 - Perform only one function, namely, unsigned integer product
- Solution: Improve gate efficiency by using a mixture of combinatorial array techniques and sequential techniques
 - Instead of *n n*-bit adders, use one *n*-bit adder
 - Use a register to hold the accumulated partial product
 - This is called a sequential multiplier

Sequential Multiplication

- Recall the rule for generating partial products:
 - If the ith bit of the multiplier is 1, add the appropriately shifted multiplicand to the current partial product.
 - Multiplicand is shifted left when being added to the partial product

Key Observation:

 Adding a left-shifted multiplicand to an unshifted partial product is equivalent to adding an unshifted multiplicand to a right-shifted partial product

Sequential Circuit Multiplier

Register A (initially 0) Shift right \bar{a}_0 С **Multiplier Q** Add/Noadd control n-bit Adder Control MUX sequencer m ₀ n - 1**Multiplicand M**

Sequential Multiplication Algorithm

- Initialization:
 - Load multiplicand in "M" register, multiplier in "Q" register
 - Initialize "C" and "A" registers to all zeroes
- Repeat the following steps "n" times, where "n" is the number of bits in the multiplier
 - If (LSB of Q register == 1)A = A + M (carry-out goes to "C" register)
 - Treat the C, A and Q registers as one contiguous register and shift that register's contents right by one bit position
- After the completion of "n" steps
 - Register "A" contains high-order half of product
 - Register "Q" contains low-order half of product

