

Descriptive Statistics

What a Data Set Tells Us

14.3 Measures of Dispersion

- Compute the range of a data set.
- Understand how the standard deviation measures the spread of a distribution.
- Use the coefficient of variation to compare the standard deviations of different distributions.

The Range of a Data Set

DEFINITION The **range** of a data set is the difference between the largest and smallest data values in the set.

The range is a crude measure of the spread of a data set.

The Range of a Data Set

 Example: Find the range of the heights of the people listed in the accompanying table.

Person	Height	Height in Inches
Leonid Stadynk (World's Tallest Person)	8 feet, 6 inches	102 inches
LaDainian Tomlinson	5 feet, 10 inches	70 inches
Madge Bester (World's Shortest Person)	2 feet, 2 inches	26 inches
LeBron James	6 feet, 8 inches	80 inches

Solution:

range = largest data value - smallest data value = 102 - 26 = 76 inches = 6 feet, 4 inches

DEFINITION If x is a data value in a set whose mean is \bar{x} , then $x - \bar{x}$ is called x's deviation from the mean.

Data Value, <i>x</i>	Deviation from Mean, $x - \bar{x}$
16	-1
14	-3
12	-5
21	4
22	5
Total	0

DEFINITION We denote the **standard deviation** of a *sample* of *n* data values by *s*, which is defined as follows:

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

Data Value, <i>x</i>	Deviation from Mean, $x - \bar{x}$	Deviation Squared, $(x - \bar{x})^2$
16	-1	1
14	-3	9
12	-5	25
21	4	16
22	5	25

$$\frac{1+9+25+16+25}{5-1} = \frac{76}{4} = 19 \longrightarrow \sqrt{19} \approx 4.36$$

COMPUTING THE STANDARD DEVIATION To compute the standard deviation for a sample consisting of *n* data values, do the following:

- 1. Compute the mean of the data set; call it \bar{x} .
- 2. Find $(x \bar{x})^2$ for each score x in the data set.
- 3. Add the squares found in step 2 and divide this sum by n-1; that is, find

$$\frac{\sum (x-\bar{x})^2}{n-1},$$

which is called the variance.

4. Compute the square root of the number found in step 3.

 Example: A company has hired six interns. After 4 months, their work records show the following number of work days missed for each worker:

Find the standard deviation of this data set.

Solution:

Mean:
$$\frac{0+2+1+4+2+3}{6} = \frac{12}{6} = 2$$

(continued on next slide)

We calculate the squares of the deviations of the data values from the mean.

Number of Days Missed	Deviation from Mean	Square of Deviation from the Mean
0	-2	4
2	0	0
1	-1	1
4	2	4
2	0	0
3	1	1
		$\Sigma(x-2)^2 = 10$

Standard Deviation:
$$s = \sqrt{\frac{\sum (x-2)^2}{6-1}} = \sqrt{\frac{10}{5}} \approx 1.41$$

FORMULA FOR COMPUTING THE SAMPLE STANDARD DEVIATION

FOR A FREQUENCY DISTRIBUTION We calculate the standard deviation, s, of a sample that is given as a frequency distribution as follows:

$$s = \sqrt{\frac{\sum (x - \bar{x})^2 \cdot f}{n - 1}}$$

where \bar{x} is the mean of the distribution, f is the frequency of data value x, and $n = \sum f$, the number of data values in the distribution.

Example: The following are the closing prices for a stock for the past 20 trading sessions:

37, 39, 39, 40, 40, 38, 38, 39, 40, 41,

41, 39, 41, 42, 42, 44, 39, 40, 40, 41
What is the standard deviation for this data set?

Solution:

Mean: $\frac{800}{20} = 40$ (sum of the closing prices is 800)

(continued on next slide)

We create a table with values that will facilitate computing the standard deviation.

Closing Price, x	Frequency,	Product, x · f	Deviation, $(x-40)$	Deviation Squared, $(x - 40)^2$	Product, $(x-40)^2 \cdot f$
37	1	37	-3	9	9
38	2	76	-2	4	8
39	5	195	-1	1	5
40	5	200	0	0	0
41	4	164	1	1	4
42	2	84	2	4	8
44	1	44	4	16	16
	$\Sigma f = 20$	$\Sigma(x \cdot f) = 800$			$\sum (x - 40)^2 \cdot f = 50$

Standard Deviation:
$$s = \sqrt{\frac{\sum (x-40)^2 \cdot f}{n-1}} = \sqrt{\frac{50}{19}} \approx 1.62$$

Comparing Standard Deviations

All three distributions have a mean and median of 5; however, as the spread of the distribution increases, so does the standard deviation.