

FE570 Zero Intelligence Model simulation

—— Using Poisson distribution

Team 8

Rui Zong, Fuyu Sui, Fangfang Xue, Nan Zhao

Content

- Chapter I: Introduction to the Santa Fe model simulation
- Chapter II: Simulation and results
- Chapter III: Shape of LOB: Slope and Depth
- Chapter IV: Price dynamics and Compared with Roll Model

Part I Santa Fe Model Review

Assumptions:

Simplest ZI model capturing the main features of the limit order markets.

- 1.The model contains two types of traders:
 - (1) Impatient traders: They place market orders which arrive randomly like a Poisson process with rate μ shares/ unit time.
 - (2) Patient traders: They place limit orders which arrive randomly like a Poisson process with rate α shares/ unit time.
- 2.All limit/market orders are of the same size σ (number of shares)
- 3.Buy and sell orders are equally probable.
- 4.Market and limit orders are independent of each other.

Part II Santa Fe Model simulation

Rules:

- 1.Limit buy orders arrive with equal probability at any price $p \le a(t)$
- 2.Limit sell orders arrive with equal probability at any price $p \ge b(t)$
- 3.Market buys arrive as Poisson process with intensity μ and are executed a(t)=best-ask
- 4.Market sells arrive as Poisson process with intensity μ and are executed b(t)=best-bid
- 5.Limit orders are cancelled as Poisson process with intensity δ

Part II Santa Fe Model simulation

α—— limit orders

u---- market orders

δ—— cancellation of limit orders

 σ — block size

μ/α—— ticks

 μ/δ — shares

 $1/\delta$ — time

Predictions

Prediction #1 Average spread

$$\hat{s} = \frac{\mu}{\alpha} f(\sigma \frac{\delta}{\mu})$$

Prediction #2 The standard deviation

$$D \sim \left(\frac{\mu^{\frac{3}{4}\delta^{\frac{1}{4}}}}{\alpha^{\frac{1}{2}}} \right)$$

- The average spread increases with market orders μ or cancellations δ
- The average spread decreases as limit orders α increases
- The standard deviation of the mid-price and spread is expected to increase with μ and δ and decrease as α increases.

Mid-price

 $\alpha = 5, \mu = 10, \delta = 1/5$

 $\alpha = 1, \mu = 10, \delta = 2/5$

Spread

 $\alpha = 5, \mu = 10, \delta = 1/5$ $\alpha = 1, \mu = 10, \delta = 2/5$

Results

Scenario	μ	α	δ	Comments	Spread	Mid-price
1	10	1	1/5	Base scenario	2.72 ± 1.58	-1.96 ± 2.38
2	20	1	1/5	High rate of market orders arrival	5.84 ± 3.13	2.64 ± 2.97
3	10	5	1/5	High rate of limit orders arrival	1.61 ± 0.68	0.58 ± 0.39
4	10	1	2/5	High rate of limit orders cancellations	2.64 ± 1.31	-2.95 ± 2.78

- The average spread increases with market orders μ
- The average spread decreases as limit orders α increases
- The standard deviation of the mid-price and spread is expected to increase with μ and decrease as α increases.

Part I: Depth and Slope

Prediction #1 Depth: the density of shares far away from the midprice.

$$Depth \sim \frac{\alpha}{\delta}$$

Prediction #2 Slope: a measure of market order liquidity, the ratio of depth to spread.

$$Slope \sim \frac{\alpha^2}{\mu\delta}$$

Simulation vs Theoretical

- Li			123		Slope	Slope	Depth	Depth
Scenario	μ	α	δ	Comments		$(\alpha^2/\mu\delta)$	(Prediction)	(α/δ)
1	10	1	1/5	Base scenario	0.495565	0.5	5.015938	5
2	20	1	1/5	High rate of market order arrival	0.3360431	0.25	4.392948	5
3	10	5	1/5	High rate of limit orders arrival	1.4501796	12.5	24.419772	25
4	10	1	2/5	High rate of limit orders cancellations	0.2078544	0.25	2.441263	2.5

• For depth:

The simulation result of depth agree with the Santa Fe model prediction.

• For slope:

The simulation result for scenario 3 doesn't match with the theoretical outcome. Because we use the relative price for regression.

Part II: Shape of LOB

Part III : Price impact

For $\epsilon \sim 0.01$, the Price impact:

$$\Delta p(w) \sim \sqrt{\frac{2w}{slope}}$$

In our simulation, the $\epsilon = \frac{\sigma \delta}{\mu}$ is small.

There is small accumulation of orders at best bid and ask, and near the midpoint price the depth profile increases nearly linear with price. As a result, as a crude approximation, the price impact increases roughly the square root of order size.

Chapter IV

Part I: Price dynamics

- Data: fake TAQ data (1000 events)
- Collect all market orders (number: 74)
 - —— 37 market sells and 37 market buys

```
> tqdata_ms
    SYMBOL
            EX BID BIDSIZ OFR OFRSIZ MODE PRICE DIR
       YYY None
                                                 MS
46
      YYY None
                                             -1 MS
68
      YYY None
                                             -1 MS
82
       YYY None
                                      20
                                             -1 MS
92
                                             -2 MS
      YYY None -2
                                       20
```

> tqdata_mb

	SYMBOL	EX	BID	BIDSIZ	OFR	OFRSIZ	MODE	PRICE	DIR
18	YYY	None	-1	5	2	5	20	1	MB
21	YYY	None	-1	5	2	5	20	2	MB
45	YYY	None	-1	5	2	5	20	2	MB
103	YYY	None	-2	5	2	5	20	0	MB
111	YYY	None	-2	5	3	5	20	2	MB

1870

Part I: Price dynamics

Plot the first 20 and 50 events which described the changes in Best Bid and Best Ask price after each execution

Red line: Best Ask

Blue line: Best Bid

Part I: Price dynamics

❖ Then, let we see the covariance and autocorrelation

Part II: Autocorrelation of trade signs and compared with Roll Model

***** trade signs are d_t , where $d_t = \begin{cases} 1, buy \\ -1, sell \end{cases}$

```
trade.dir <- coredata(tqdata$DIR[,1])[,1]
trade.sign.recorded <- ifelse(trade.dir=="MB",1,-1)
plot(trade.sign.recorded, type="l")
acf(trade.sign.recorded, main="acf(trade signs)")</pre>
```

acf(trade signs)

Part II: Autocorrelation of trade signs and compared with Roll Model

❖ Roll Model Result

Scenario	μ	α	δ	Comments	С	σ_u	spread
1	10	1	1/5	Base scenario	1.39	0.77	2.78
2	20	1	1/5	High rate of market order arrival	2.07	3.06	4.14
3	10	5	1/5	High rate of limit orders arrival	0.67	0.17	1.35
4	10	1	2/5	High rate of limit orders cancellations	1.61	1.16	3.22

Compared with ZI model

Scenario	μ	α	δ	Comments	Spread	Mid-price
1	10	10 1	1/5	Base scenario	2.72 ± 1.58	-1.96 ± 2.38
2	20	20 1	1/5	High rate of market orders arrival	5.84 ± 3.13	2.64 ± 2.97
3	10	10 5	1/5	High rate of limit orders arrival	1.61 ± 0.68	0.58 ± 0.39
4	10	10 1	2/5	High rate of limit orders cancellations	2.64 ± 1.31	-2.95 ± 2.78

Chapter V

Improvements with relevant topic

If there is extra time one could explore further along different situations.

- 1. Change the assumptions with uniformed distributed arrival rate or Erlang distribution.
- 2. Add more simulation times.
- 3. Discuss the slope of LOB using absolute price.
- 4. Maybe use the real-world data to estimate the validity of Zero Intelligence Model.
- 5. Discuss the price impact of different size of arrival order

stevens.edu