Contents

	•
	11

1

CONTENTS

Chapter 1

Philosopherers

```
(1.5)
                              \mathbf{y}(<, S) := \forall_{x,y \in S} (x < y \lor x = y \lor y < x)
                               \mathbf{y}(<, S) := \forall_{x, y, z \in S} ((x < y \land y < z) \implies x < z)
           (<,S) := OrderTrichotomy(<,S) \land OrderTransitivity(<,S)
(1.7)
                          \rho(E, S, <) := \underbrace{Order}(<, S) \land E \subset S \land \exists_{\beta \in S} \forall_{x \in E} (x \le \beta)
                           (E, S, \lessdot) := \underbrace{Order}(\lessdot, S) \land E \subset S \land \exists_{\beta \in S} \forall_{x \in E} (\beta \leq x)
                      (\beta, E, S, <) := Order(<, S) \land E \subset S \land \beta \in S \land \forall_{x \in E} (x \le \beta)
                       I(\beta, E, S, <) := Order(<, S) \land E \subset S \land \beta \in S \land \forall_{x \in E} (\beta \le x)
(1.8)
         \forall (\alpha, E, S, <) := UpperBound(\alpha, E, S, <) \land \forall_{\gamma} (\gamma < \alpha \implies \neg UpperBound(\gamma, E, S, <))
GLP(\alpha, E, S, <) := LowerBound(\alpha, E, S, <) \land \forall_{\beta} (\alpha < \beta \implies \neg LowerBound(\beta, E, S, <))
(1.10)
                perty(S,<) := \forall_E \Big( (\emptyset \neq E \subset S \land Bounded Above(E,S,<) \Big) \implies \exists_{\alpha \in S} \Big( LUB(\alpha,E,S,<) \Big) \Big)
GLBProperty(S,<) := \forall_E \Big( \big( \emptyset \neq E \subset S \land Bounded Below(E,S,<) \big) \implies \exists_{\alpha \in S} \big( GLB(\alpha,E,S,<) \big) \Big)
                                                                      LUBProperty(S, <) \implies GLBProperty(S, <)
   (1.1) \quad (\emptyset \neq B \subset S \land Bounded Below(B, S, <)) \implies \dots
       (1.1.1) Order(\langle S \rangle \land \exists_{\delta' \in S} (LowerBound(\delta', B, S, \langle S \rangle))
       (1.1.2) |B| = 1 \implies ...
           (1.1.2.1) \quad \exists_{u'}(u' \in B) \quad \blacksquare \ u := choice(\{u'|u' \in B\}) \quad \blacksquare \ B = \{u\}
           (1.1.2.2) \quad \mathbf{GLB}(u, B, S, <) \quad \blacksquare \quad \exists_{\epsilon_0 \in S} \left( \mathbf{GLB}(\epsilon_0, B, S, <) \right)
       (1.1.3) \quad |B| = 1 \implies \exists_{\epsilon_0 \in S} \left( \mathbf{GLB}(\epsilon_0, B, S, <) \right)
       (1.1.4) |B| \neq 1 \Longrightarrow \dots
          (1.1.4.1) \quad \forall_{E} \Big( \big( \emptyset \neq E \subset S \land Bounded Above(E, S, <) \big) \implies \exists_{\alpha \in S} \big( LUB(\alpha, E, S, <) \big) \Big)
           (1.1.4.2) L := \{s \in S | LowerBound(s, B, S, <)\}
           (1.1.4.3) \quad |B| > 1 \land OrderTrichotomy(<, S) \quad \blacksquare \quad \exists_{b_1' \in B} \exists_{b_0' \in B} (b_0' < b_1')
           (1.1.4.4) \quad b_1 := choice\Big(\{b_1' \in B | \exists_{b_0' \in B}(b_0' < b_1')\}\Big) \quad \blacksquare \neg LowerBound(b_1, B, S, <)
           (1.1.4.5) b_1 \notin L \blacksquare L \subset S
           (1.1.4.6) \quad \delta := choice(\{\delta' \in S | LowerBound(\delta', B, S, <)\}) \quad \blacksquare \quad \delta \in L \quad \blacksquare \quad \emptyset \neq L
                                                                                                                                                                                                                 from: 1.1.4.5, 1.1.4.6
           (1.1.4.7) \emptyset \neq L \subset S
```

```
from: LowerBound, 1.1.4.2
wts: 1.1.4.10
           (1.1.4.8) \quad \forall_{v \in L} \left( \mathbf{LowerBound}(y, B, S, <) \right) \quad \blacksquare \quad \forall_{v \in L} \forall_{x \in B} (y \le x)
           (1.1.4.9) \quad \forall_{x \in B} \left( x \in S \land \forall_{y \in L} (y \le x) \right) \quad \blacksquare \quad \forall_{x \in B} \left( U pperBound(x, L, S, <) \right)
           (1.1.4.10) \quad \exists_{x \in S} (UpperBound(x, L, S, <)) \quad \blacksquare \quad Bounded Above(L, S, <)
                                                                                                                                                                                                                                     from: 1.1.4.7, 1.1.4.10
           (1.1.4.11) \emptyset \neq L \subset S \land Bounded Above(L, S, <)
           (1.1.4.12) \quad \exists_{\alpha' \in S} \left( LUB(\alpha', L, S, <) \right) \quad \blacksquare \quad \alpha := choice \left( \left\{ \alpha' \in S \mid \left( LUB(\alpha', L, S, <) \right) \right\} \right)
           (1.1.4.13) \quad \forall_{x} (x \in B \implies UpperBound(x, L, S, <))
           (1.1.4.14) \quad \forall_x (\neg UpperBound(x, L, S, <) \implies x \notin B)
           (1.1.4.15) \gamma < \alpha \implies \dots
               (1.1.4.15.1) \quad \neg UpperBound(\gamma, L, S, <) \quad \boxed{\gamma \notin B}
           (1.1.4.16) \quad \gamma < \alpha \implies \gamma \notin B \quad \boxed{\hspace{-0.1cm} \rule[-0.2cm]{0.4cm}{0.4cm}} \quad \gamma \geq \alpha
                                                                                                                                                                                                                                      from: Lower Bound
           (1.1.4.17) \quad \forall_{\gamma \in B} (\alpha \leq \gamma) \quad \blacksquare \quad LowerBound(\alpha, B, S, <)
           (1.1.4.18) \alpha < \beta \implies \dots
              (1.1.4.18.1) \quad \forall_{y \in L} (y \le \alpha < \beta) \quad \blacksquare \quad \forall_{y \in L} (y \ne \beta)
                                                                                                                                                                                                                                             from: 1.1.4.2
               (1.1.4.18.2) \beta \notin L \square \neg LowerBound(\beta, B, S, <)
           (1.1.4.19) \quad \alpha < \beta \implies \neg LowerBound(\beta, B, S, <) \quad \blacksquare \quad \forall_{\beta \in S} \left( \alpha < \beta \implies \neg LowerBound(\beta, B, S, <) \right)
           (1.1.4.20) \quad LowerBound(\alpha, B, S, <) \land \forall_{\beta \in S} (\alpha < \beta \implies \neg LowerBound(\beta, B, S, <))
           (1.1.4.21) \quad GLB(\alpha, B, S, <) \quad \blacksquare \quad \exists_{\epsilon_1 \in S} \left( GLB(\epsilon_1, B, S, <) \right)
       (1.1.5) |B| \neq 1 \implies \exists_{\epsilon_1 \in S} (GLB(\epsilon_1, B, S, <))
       (1.1.6) \quad \left( |B| = 1 \implies \exists_{\epsilon_0 \in S} \left( GLB(\epsilon_0, B, S, <) \right) \right) \land \left( |B| \neq 1 \implies \exists_{\epsilon_1 \in S} \left( GLB(\epsilon_1, B, S, <) \right) \right)
       (1.1.7) \quad (|B| = 1 \lor |B| \ne 1) \implies \exists_{\epsilon \in S} (GLB(\epsilon, B, S, <)) \quad \blacksquare \quad \exists_{\epsilon \in S} (GLB(\epsilon, B, S, <))
   (1.2) \quad (\emptyset \neq B \subset S \land Bounded Below(B, S, <)) \implies \exists_{\varepsilon \in S} (GLB(\varepsilon, B, S, <))
   (1.3) \quad \forall_{B} \big( \big( \emptyset \neq B \subset S \land Bounded Below(B, S, <) \big) \implies \exists_{\epsilon \in S} \big( GLB(\epsilon, B, S, <) \big) \big)
   (1.4) GLBProperty(S, <)
(2) LUBProperty(S, <) \Longrightarrow GLBProperty(S, <)
```

(1.12)
$$\begin{cases} x + y \in F & \land & x * y \in F & \land \\ x + y = y + x & \land & x * y = y * x & \land \\ (x + y) + z = x + (y + z) & \land & (x * y) * z = x * (y * z) & \land \\ 1 \neq 0 & \land & x * (y + z) = (x * y) + (x * z) & \land \\ 0 + x = x & \land & 1 * x = x & \land \\ \exists_{-x \in F} (x + (-x) = 0) \land (x \neq 0 \implies \exists_{1/x \in F} (x * (1/x) = 1)) \end{cases}$$

(1.14)

 $(x + y = x + z) \implies y = z$

(1)
$$y = 0 + y = (x + (-x)) + y = ((-x) + x) + y = (-x) + (x + y) = \dots$$

 $(x + y = x) \implies y = 0$

(1)
$$x + y = x = 0 + x = x + 0$$

$$(2) \quad y = 0$$
 from: AdditiveCancellation

Additive Inverse Uniqueness $(x + y = 0) \implies y = -x$

(1) x + y = 0 = x + (-x)

from: AdditiveCancellation

(2) y = -x

Double Negative x = -(-x)

(1) $0 = x + (-x) = (-x) + x \quad \blacksquare \quad 0 = (-x) + x$

from: AdditiveInverseUniqueness

 $(2) \quad x = -(-x)$

(1.15)

tiplicative Cancellation $(x \neq 0 \land x * y = x * z) \implies y = z$

MultiplicativeIdentityUniquenes

 $(x \neq 0 \land x * y = x) \implies y = 1 \qquad -$

Multiplicative Inverse Uniqueness

 $(x \neq 0 \land x * y = 1) \implies y = 1/x \qquad -$

Double Reciprocal

 $(x \neq 0) \implies x = 1/(1/x)$

(1.16)

Domination 0 * x = 0

(1) 0 * x = (0 + 0) * x = 0 * x + 0 * x 0 * x = 0 * x + 0 * x

nom. Tretu

(2) 0 * x = 0

Non Domination $(x \neq 0 \land y \neq 0) \implies x * y \neq 0$

 $(1) (x \neq 0 \land y \neq 0) \implies \dots$

 $(1.1) \quad (x * y = 0) \implies \dots$

 $(1.1.1) \quad 1 = 1 * 1 = (x * (1/x)) * (y * (1/y)) = (x * y) * ((1/x) * (1/y)) = 0 * ((1/x) * (1/y)) = 0$

from: Field, Domination, 1, 1.1

 $(1.1.2) \quad 1 = 0 \land 1 \neq 0 \quad \blacksquare \perp$

 $(1.2) \quad (x * y = 0) \implies \bot \quad \blacksquare \quad x * y \neq 0$

 $(2) \quad (x \neq 0 \land y \neq 0) \implies x * y \neq 0$

NegationCommutativity |

(-x) * y = -(x * y) = x * (-y)

(1) x * y + (-x) * y = (x + -x) * y = 0 * y = 0 x * y + (-x) * y = 0

wts: 2

 $(2) \quad (-x) * y = -(x * y)$

(3) x * y + x * (-y) = x * (y + -y) = x * 0 = 0 x * y + x * (-y) = 0

Wts: 4

 $(4) \quad x * (-y) = -(x * y)$

from: AdditiveInverseUniquenes

(5) (-x) * y = -(x * y) = x * (-y)

from:

Negative Multiplication (-x)*(-y) = x*y

(1) (-x)*(-y) = -(x*(-y)) = -(-(x*y)) = x*y

from: NegationCommutativity, DoubleNegative

(1.17)

(1.18)

NegationOnOrder $| x > 0 \iff -x < 0$


```
(1.19)
                                          OrderedField(\mathbb{Q}, +, *, <)
                    K(K, F, +, *) := Field(F, +, *) \land K \subset F \land Field(K, +, *)
                                        (K, F, +, *, <) := Ordered Field(F, +, *, <) \land K \subset F \land Ordered Field(K, +, *, <)
          (\alpha) := \emptyset \neq \alpha \subset \mathbb{Q}
             \begin{array}{l} \textbf{II}(\alpha) := \forall_{p \in \alpha} \forall_{q \in \mathbb{Q}} (q 
      := \{ \alpha \in \mathbb{Q} | CutI(\alpha) \wedge CutII(\alpha) \wedge CutIII(\alpha) \}
                           ryI \mid (\alpha \in \mathbb{R} \land p \in \alpha \land q \in \mathbb{Q} \land q \notin \alpha) \implies p < q
(1) \quad (\alpha \in \mathbb{R} \land p \in \alpha \land q \in \mathbb{Q} \land q \notin \alpha) \implies \dots
    (1.1) \quad \forall_{p' \in \alpha} \forall_{q' \in \mathbb{Q}} (q' < p' \implies q' \in \alpha)
    (1.2) \quad q 
    (1.3) \quad (q \notin \alpha) \implies \dots
        (1.3.1) q \ge p
        (1.3.2) \quad (q = p) \implies (p \in \alpha \land p \notin \alpha) \implies \bot \quad \blacksquare \quad q \neq p
        (1.3.3) \quad q \ge p \land q \ne p \quad \blacksquare \quad p < q
    (1.4) \quad q \notin \alpha \implies p < q \quad \blacksquare \quad p < q
(2) \quad (\alpha \in \mathbb{R} \land p \in \alpha \land q \in \mathbb{Q} \land q \notin \alpha) \implies p < q
                                          (\alpha \in \mathbb{R} \land r, s \in \mathbb{Q} \land r < s \land r \notin \alpha) \implies s \notin \alpha
(1) (\alpha \in \mathbb{R} \land r, s \in \mathbb{Q} \land r < s \land r \notin \alpha) \implies \dots
   (1.1) \quad \forall_{s' \in \alpha} \forall_{r' \in \mathbb{Q}} (r' < s' \implies r' \in \alpha)
    (1.2) \quad s \in \alpha \implies (r \in \mathbb{Q} \implies (r < s \implies r \in \alpha)) \quad \blacksquare \quad s \in \alpha \implies r \in \alpha
    (1.3) \quad r \notin \alpha \implies s \notin \alpha \quad \blacksquare \quad s \notin \alpha
(2) \quad (\alpha \in \mathbb{R} \land r, s \in \mathbb{Q} \land r < s \land r \notin \alpha) \implies s \notin \alpha
<_{\mathbb{R}}(\alpha,\beta) := \alpha,\beta \in \mathbb{R} \land \alpha \subset \beta
            \overline{\operatorname{er}Trichotomy} R \overline{\operatorname{Order}Trichotomy}(\mathbb{R},<_{\mathbb{R}})
(1) (\alpha, \beta \in \mathbb{R}) \implies \dots
    (1.1) \quad \neg(\alpha <_{\mathbb{R}} \beta \lor \alpha = \beta) \implies \dots
        (1.1.1) \alpha \not\subset \beta \land \alpha \neq \beta
        (1.1.2) \quad \exists_{p'}(p' \in \alpha \land p' \notin \beta) \quad \blacksquare \quad p := choice(\{p' | p' \in \alpha \land p' \notin \beta\})
        (1.1.3) q \in \beta \implies \dots
         (1.1.3.1) \quad p, q \in \mathbb{Q}
                                                                                                                                                                                                                                                                         from: CutCorollaryI
            (1.1.3.2) q < p
             (1.1.3.3) q \in \alpha
        (1.1.4) \quad q \in \beta \implies q \in \alpha
        (1.1.5) \quad \forall_{q \in \beta} (q \in \alpha) \quad \blacksquare \quad \beta \subseteq \alpha
        (1.1.6) \quad \beta \subset \alpha \quad \blacksquare \quad \beta <_{\mathbb{R}} \quad \alpha
    (1.2) \quad \neg(\alpha <_{\mathbb{R}} \beta \lor \alpha = \beta) \implies \beta <_{\mathbb{R}} \alpha
    (1.3) \quad \neg(\alpha <_{\mathbb{R}} \beta \lor \alpha = \beta) \lor (\alpha <_{\mathbb{R}} \beta \lor \alpha = \beta) \quad \blacksquare (\beta <_{\mathbb{R}} \alpha) \lor (\alpha <_{\mathbb{R}} \beta \lor \alpha = \beta)
    (1.4) \quad \alpha = \beta \implies \neg (\alpha <_{\mathbb{R}} \beta \lor \beta <_{\mathbb{R}} \alpha)
    (1.5) \quad \alpha <_{\mathbb{R}} \beta \implies \neg (\alpha = \beta \lor \beta <_{\mathbb{R}} \alpha)
    (1.6) \quad \beta \mathrel{<_{\mathbb{R}}} \alpha \implies \neg(\alpha = \beta \lor \alpha \mathrel{<_{\mathbb{R}}} \beta)
    (1.7) \quad \alpha <_{\mathbb{R}} \beta \underline{\vee} \alpha = \beta \underline{\vee} \alpha <_{\mathbb{R}} \beta
(2) \quad (\alpha, \beta \in \mathbb{R}) \implies (\alpha <_{\mathbb{R}} \beta \veebar \alpha = \beta \veebar \alpha <_{\mathbb{R}} \beta)
```

```
(3) \quad \forall_{\alpha,\beta \in \mathbb{R}} (\alpha <_{\mathbb{R}} \beta \vee \alpha = \beta \vee \alpha <_{\mathbb{R}} \beta)
(4) OrderTrichotomy(\mathbb{R}, <_{\mathbb{R}})
(1) (\alpha, \beta, \gamma \in \mathbb{R}) \implies \dots
    (1.1) \quad (\alpha <_{\mathbb{R}} \beta \wedge \beta <_{\mathbb{R}} \gamma) \implies \dots
        (1.1.1) \quad \alpha \subset \beta \land \beta \subset \gamma
         (1.1.2) \quad \forall_{a \in \alpha} (a \in \beta) \land \forall_{b \in \beta} (b \in \gamma)
         (1.1.3) \quad \forall_{\alpha \in \alpha} (\alpha \in \gamma) \quad \blacksquare \quad \alpha \subset \gamma \quad \blacksquare \quad \alpha <_{\mathbb{R}} \quad \gamma
    (1.2) \quad (\alpha <_{\mathbb{R}} \beta \land \beta <_{\mathbb{R}} \gamma) \implies \alpha <_{\mathbb{R}} \gamma
(2) \quad (\alpha, \beta, \gamma \in \mathbb{R}) \implies ((\alpha <_{\mathbb{R}} \beta \land \beta <_{\mathbb{R}} \gamma) \implies \alpha <_{\mathbb{R}} \gamma)
(3) \quad \forall_{\alpha,\beta,\gamma\in\mathbb{R}} \left( (\alpha <_{\mathbb{R}} \beta \land \beta <_{\mathbb{R}} \gamma) \implies \alpha <_{\mathbb{R}} \gamma \right)
(4) OrderTransitivity(\mathbb{R}, <_{\mathbb{R}})
                              Order(<_{\mathbb{R}},\mathbb{R})
(1) \quad (\emptyset \neq A \subset \mathbb{R} \land Bounded Above(A, \mathbb{R}, <_{\mathbb{R}})) \implies \dots
    (1.1) \quad \gamma := \{ p \in \mathbb{Q} | \exists_{\alpha \in A} (p \in \alpha) \}
     (1.2) \quad A \neq \emptyset \quad \blacksquare \quad \exists_{\alpha} (\alpha \in A) \quad \blacksquare \quad \alpha_0 := choice(\{\alpha \mid \alpha \in A\})
     (1.3) \quad \alpha_0 \neq \emptyset \quad \blacksquare \ \exists_a (a \in \alpha_0) \quad \blacksquare \ a_0 := choice(\{a | a \in \alpha_0\}) \quad \blacksquare \ a_0 \in \gamma \quad \blacksquare \ \gamma \neq \emptyset
     (1.4) Bounded Above (A, \mathbb{R}, <_{\mathbb{R}})  \blacksquare \exists_{\beta} (Upper Bound(\beta, A, \mathbb{R}, <_{\mathbb{R}}))
     (1.5) \quad \beta_0 := choice(\{\beta | UpperBound(\beta, A, \mathbb{R}, <_{\mathbb{R}})\})
     (1.6) \quad \textit{UpperBound}(\beta_0, A, \mathbb{R}, <_{\mathbb{R}}) \quad \blacksquare \quad \forall_{\alpha \in A} (\alpha \leq_{\mathbb{R}} \beta_0) \quad \blacksquare \quad \forall_{\alpha \in A} (\alpha \subseteq \beta_0) \quad \blacksquare \quad \forall_{\alpha \in A} \forall_{\alpha \in A} (\alpha \in \beta_0)
     (1.7) \quad (\alpha \in A \land a \in \alpha) \iff a \in \gamma \quad \blacksquare \quad \forall_{a \in \gamma} (a \in \beta_0) \quad \blacksquare \quad \gamma \subseteq \beta_0
     (1.8) \quad \beta_0 \subset \mathbb{Q} \quad \blacksquare \ \gamma \subseteq \beta_0 \subset \mathbb{Q} \quad \blacksquare \ \gamma \subseteq \mathbb{Q}
     (1.9) \quad \emptyset \neq \gamma \subset \mathbb{Q} \quad \blacksquare \quad CutI(\gamma)
     (1.10) \quad (p \in \gamma \land q \in \mathbb{Q} \land q < p) \implies \dots
         (1.10.1) \quad p \in \gamma \quad \blacksquare \ \exists_{\alpha \in A} (p \in \alpha) \quad \blacksquare \ \alpha_1 := choice(\{\alpha \in A | p \in \alpha\})
          (1.10.2) \quad p \in \alpha_1 \land q \in \mathbb{Q} \land q 
     (1.11) \quad (p \in \gamma \land q \in \mathbb{Q} \land q < p) \implies q \in \gamma \quad \blacksquare \quad \forall_{p \in \gamma} \forall_{q \in \mathbb{Q}} (q < p \implies q \in \gamma) \quad \blacksquare \quad CutII(\gamma)
     (1.12) \quad p \in \gamma \implies \dots
          (1.12.1) \quad \exists_{\alpha \in A} (p \in \alpha) \quad \blacksquare \quad \alpha_2 := choice(\{\alpha \in A | p \in \alpha\})
          (1.12.2) \quad \exists_{r \in \alpha_2} (p < r) \quad \blacksquare \quad r_0 := choice(\{r \in \alpha_2 | p < r\})
          (1.12.3) \quad r_0 \in \alpha_2 \quad \blacksquare \quad r_0 \in \gamma
          (1.12.4) \quad p < r_0 \quad \blacksquare \quad p < r_0 \land r_0 \in \gamma \quad \blacksquare \quad \exists_{r \in \gamma} (p < r)
      (1.13) \quad p \in \gamma \implies \exists_{r \in \gamma} (p < r) \quad \blacksquare \quad \forall_{p \in \gamma} \exists_{r \in \gamma} (p < r) \quad \blacksquare \quad CutIII(\gamma)
     (1.14) \quad CutI(\gamma) \wedge CutII(\gamma) \wedge CutIII(\gamma) \quad \blacksquare \quad \gamma \in \mathbb{R}
     (1.15) \quad \forall_{\alpha \in A} (\alpha \subseteq \gamma) \quad \blacksquare \quad \forall_{\alpha \in A} (\alpha \leq_{\mathbb{R}} \gamma)
     (1.16) \quad \forall_{\alpha \in A} (\alpha \leq_{\mathbb{R}} \gamma) \land \gamma \in \mathbb{R} \quad \blacksquare \quad UpperBound(\gamma, A, \mathbb{R}, <_{\mathbb{R}})
     (1.17) \quad \delta <_{\mathbb{R}} \gamma \implies \dots
          (1.17.1) \quad \delta \subset \gamma \quad \blacksquare \ \exists_s (s \in \gamma \land s \notin \delta) \quad \blacksquare \ s_0 := choice(\{s \in \mathbb{Q} | s \in \gamma \land s \notin \delta\})
          (1.17.2) \quad s_0 \in \gamma \quad \blacksquare \quad \exists_{\alpha \in A} (s_0 \in \alpha) \quad \blacksquare \quad \alpha_3 := choice(\{\alpha \in A | s_0 \in \alpha\})
          (1.17.3) \quad s_0 \in \alpha_3 \land s_0 \notin \delta \quad \blacksquare \quad \exists_{s \in \mathbb{Q}} (s \in \alpha_3 \land s \notin \delta)
          (1.17.4) \delta \geq_{\mathbb{R}} \alpha_3 \implies \dots
               (1.17.4.1) \quad \alpha_3 \subseteq \delta \quad \blacksquare \quad \forall_{s \in \mathbb{Q}} (s \in \alpha_3 \implies s \in \delta) \quad \blacksquare \quad \neg \exists_{s \in \mathbb{Q}} (s \in \alpha_3 \land s \notin \delta)
                (1.17.4.2) \quad \neg \exists_{s \in \mathbb{Q}} (s \in \alpha_3 \land s \notin \delta) \land \exists_{s \in \mathbb{Q}} (s \in \alpha_3 \land s \notin \delta) \quad \blacksquare \ \bot
          (1.17.5) \quad \delta \geq_{\mathbb{R}} \alpha_3 \implies \bot \quad \blacksquare \quad \delta <_{\mathbb{R}} \alpha_3 \quad \blacksquare \quad \exists_{\alpha \in A} (\overline{\delta} <_{\mathbb{R}} \alpha) \quad \blacksquare \quad \exists_{\alpha \in A} (\neg (\alpha \leq_{\mathbb{R}} \delta))
           (1.17.6) \quad \neg \forall_{\alpha \in A} (\alpha \leq_{\mathbb{R}} \delta) \quad \blacksquare \quad \neg UpperBound(\delta, A, \mathbb{R}, <_{\mathbb{R}})
```

```
(1.18) \quad \overline{\delta} <_{\mathbb{R}} \gamma \implies \neg \overline{U} \operatorname{pperBound}(\delta, \overline{A}, \overline{\mathbb{R}}, <_{\mathbb{R}})) \quad \blacksquare \quad \forall_{\delta} \left( \overline{\delta} <_{\mathbb{R}} \gamma \implies \neg \overline{U} \operatorname{pperBound}(\delta, \overline{A}, \overline{\mathbb{R}}, <_{\mathbb{R}}) \right)
     (1.19) \quad UpperBound(\gamma, A, \mathbb{R}, <_{\mathbb{R}}) \land \forall_{\delta} \left(\delta <_{\mathbb{R}} \gamma \implies \neg UpperBound(\delta, A, \mathbb{R}, <_{\mathbb{R}})\right)
     (1.20) \quad LUB(\gamma, A, \mathbb{R}, <_{\mathbb{R}}) \quad \blacksquare \quad \exists_{\gamma \in S} \left( LUB(\gamma, A, \mathbb{R}, <_{\mathbb{R}}) \right)
(2) \quad (\emptyset \neq A \subset \mathbb{R} \land Bounded Above(A, \mathbb{R}, <_{\mathbb{R}})) \implies \exists_{\gamma \in S} (LUB(\gamma, A, \mathbb{R}, <_{\mathbb{R}}))
(3) \quad \forall_{A} \left( \left( \emptyset \neq A \subset \mathbb{R} \land Bounded Above(A, \mathbb{R}, <_{\mathbb{R}}) \right) \implies \exists_{\gamma \in S} \left( LUB(\gamma, A, \mathbb{R}, <_{\mathbb{R}}) \right) \right) \quad \blacksquare \quad LUBProperty(\mathbb{R}, <_{\mathbb{R}})
      \mathbb{R}(\alpha,\beta) := \alpha,\beta \in \mathbb{R} \land (\alpha +_{\mathbb{R}} \beta) = \{r + s | r \in \alpha \land s \in \beta\}
      \mathbf{x} := \{x \in \mathbb{Q} | x < 0\}
   0R \mid 0_{\mathbb{R}} \in \mathbb{R}
(1) \quad -1 \in 0_{\mathbb{R}} \land 1 \notin 0_{\mathbb{R}} \quad \blacksquare \emptyset \neq 0_{\mathbb{R}} \subseteq \mathbb{Q} \quad \blacksquare \quad CutI(0_{\mathbb{R}})
(2) \quad (x \in 0_{\mathbb{R}} \land y \in \mathbb{Q} \land y < x) \implies y < x < 0 \implies y < 0 \implies y < 0 \implies y \in 0_{\mathbb{R}} \quad \blacksquare \quad \forall_{x \in 0_{\mathbb{R}}} \forall_{y \in \mathbb{Q}} (y < x \implies y \in 0_{\mathbb{R}}) \quad \blacksquare \quad CutII(0_{\mathbb{R}})
(3) \quad y := x/2 \quad \blacksquare \quad (x \in 0_{\mathbb{R}}) \implies (x < y < 0) \implies \exists_{y \in 0_{\mathbb{R}}} (x < y) \quad \blacksquare \quad \forall_{x \in 0_{\mathbb{R}}} \exists_{y \in 0_{\mathbb{R}}} (x < y) \quad \blacksquare \quad CutIII(0_{\mathbb{R}})
(4) CutI(0_{\mathbb{R}}) \wedge CutII(0_{\mathbb{R}}) \wedge CutIII(0_{\mathbb{R}}) \quad \blacksquare \quad 0_{\mathbb{R}} \in \mathbb{R}
   Field + R | Field + (R)
(1) \quad (\alpha, \beta \in \mathbb{R}) \implies \dots
     (1.1) \quad (\alpha +_{\mathbb{R}} \beta) = \{r + s | r \in \alpha \land s \in \beta\}
     (1.2) \quad \emptyset \neq \alpha \subset \mathbb{Q} \land \emptyset \neq \beta \subset \mathbb{Q}
     (1.3) \quad \exists_a(a \in \alpha) \; ; \exists_b(b \in \beta) \quad \blacksquare \; a_0 \; := choice(\{a|a \in \alpha\}) \; ; \; b_0 \; := choice(\{b|b \in \beta\}) \quad \blacksquare \; a_0 + b_0 \in \alpha +_{\mathbb{R}} \beta
     (1.4) \quad \exists_{x}(x \notin \alpha) \; ; \; \exists_{y}(y \notin \beta) \quad \blacksquare \; x_{0} \mathrel{\mathop:}= choice(\{x \mid x \notin \alpha\}) \; ; \; y_{0} \mathrel{\mathop:}= choice(\{y \mid y \notin \beta\})
     (1.5) \quad \forall_{r \in \alpha}(r < x_0) \; ; \; \forall_{s \in \beta}(s < y_0) \quad \blacksquare \quad \forall_{r \in \alpha}\forall_{s \in \beta}(r + s < x_0 + y_0) \quad \blacksquare \quad x_0 + y_0 \notin \alpha +_{\mathbb{R}} \beta
     (1.6) \quad \emptyset \neq \alpha +_{\mathbb{R}} \beta \subset \mathbb{Q} \quad \blacksquare \quad CutI(\alpha +_{\mathbb{R}} \beta)
     (1.7) \quad (p \in \overline{\alpha +_{\mathbb{R}} \beta \wedge q} \in \mathbb{Q} \wedge q < \overline{p}) \implies \dots
         (1.7.1) \quad \exists_{r \in \alpha} \exists_{s \in \beta} (p = r + s) \quad \blacksquare (r_0, s_0) := choice((r, s) \in \alpha \times \beta | p = r + s)
          (1.7.2) \quad q 
          (1.7.3) \quad s_0 \in \beta \quad \blacksquare \quad q = (q - s_0) + s_0 \in \alpha +_{\mathbb{R}} \beta \quad \blacksquare \quad q \in \alpha +_{\mathbb{R}} \beta
     (1.8) \quad (p \in \alpha +_{\mathbb{R}} \beta \land q \in \mathbb{Q} \land q < p) \implies q \in \alpha +_{\mathbb{R}} \beta \quad \blacksquare \quad \forall_{p \in \alpha +_{\mathbb{R}} \beta} \forall_{q \in \mathbb{Q}} (q < p \implies q \in \alpha +_{\mathbb{R}} \beta) \quad \blacksquare \quad CutII(\alpha +_{\mathbb{R}} \beta)
     (1.9) p \in \alpha \implies ...
         (1.9.1) \quad \exists_{r \in \alpha} \exists_{s \in \beta} (p = r + s) \quad \blacksquare (r_1, s_1) := choice(\{(r, s) \in \alpha \times \beta | p = r + s\})
         (1.9.2) \quad r_1 \in \alpha \quad \blacksquare \quad \exists_{t \in \alpha} (r_1 < t) \quad \blacksquare \quad t_0 := choice(\{t \in \alpha | r_1 < t\})
          (1.9.3) \quad s_1 \in \beta \quad \blacksquare \quad t + s_1 \in \alpha +_{\mathbb{R}} \beta \land p = r_1 + s_1 < t + s_1 \quad \blacksquare \quad \exists_{r \in \alpha +_{\mathbb{R}} \beta} (p < r)
     (1.10) \quad p \in \alpha \implies \exists_{r \in \alpha +_{\mathbb{R}} \beta} (p < r) \quad \blacksquare \quad \forall_{p \in \alpha +_{\mathbb{R}} \beta} \exists_{r \in \alpha +_{\mathbb{R}} \beta} (p < r) \quad \blacksquare \quad CutIII(\alpha +_{\mathbb{R}} \beta)
     (1.11) \quad CutI(\alpha +_{\mathbb{R}} \beta) \wedge CutII(\alpha +_{\mathbb{R}} \beta) \wedge CutIII(\alpha +_{\mathbb{R}} \beta) \quad \blacksquare \quad \alpha +_{\mathbb{R}} \beta \in \mathbb{R}
(2) \quad (\alpha, \beta \in \mathbb{R}) \implies ((\alpha +_{\mathbb{R}} \beta) \in \mathbb{R})
(3) \alpha +_{\mathbb{R}} \beta = \{r + s | r \in \alpha \land s \in \beta\} = \{s + r | s \in \beta \land r \in \alpha\} = \beta +_{\mathbb{R}} \alpha
(4) (\alpha, \beta, \gamma \in \mathbb{R}) \implies \dots
    (4.1) \quad (\alpha +_{\mathbb{R}} \beta) +_{\mathbb{R}} \gamma = \{(a+b) + c | a \in \alpha \land b \in \beta \land c \in \gamma\} = \dots
    (4.2) \quad \{a + (b+c) | a \in \alpha \land b \in \beta \land c \in \gamma\} = \alpha +_{\mathbb{R}} (\beta +_{\mathbb{R}} \gamma)
(5) \quad (\alpha, \beta, \gamma \in \mathbb{R}) \implies (\alpha +_{\mathbb{R}} \beta) +_{\mathbb{R}} \gamma = \alpha +_{\mathbb{R}} (\beta +_{\mathbb{R}} \gamma)
(6) \alpha \in \mathbb{R} \implies \dots
    (6.1) (r \in \alpha \land s \in 0_{\mathbb{R}}) \Longrightarrow \dots
          (6.1.1) s < 0 \mid r + s < r + 0 = r \mid r + s < r \mid r + s \in \alpha
     (6.2) \quad (r \in \alpha \land s \in 0_{\mathbb{R}}) \implies r + s \in \alpha \quad \blacksquare \quad \forall_{r \in \alpha} \forall_{s \in 0_{\mathbb{R}}} (r + s \in \alpha)
     (6.3) \quad (r \in \alpha \land s \in 0_{\mathbb{R}}) \iff (r + s \in \alpha +_{\mathbb{R}} 0_{\mathbb{R}}) \quad \blacksquare \quad \forall_{p \in \alpha +_{\mathbb{D}} 0_{\mathbb{D}}} (p \in \alpha) \quad \blacksquare \quad \alpha +_{\mathbb{R}} 0_{\mathbb{R}} \subseteq \alpha
```

(6.4) $p \in \alpha \implies \dots$

 $(6.4.1) \quad \exists_{r \in \alpha} (p < r) \quad \blacksquare \quad r_2 := choice(\{r \in \alpha | p < r\})$

```
(6.4.2) \quad p < r_2 \quad \parallel p - r_2 < r_2 - r_2 = 0 \quad \parallel (p - r_2) < 0 \quad \parallel (p - r_2) \in 0_{\mathbb{R}}
(6.4.3) \quad r_2 \in \alpha \quad \parallel p = r_2 + (p - r_2) \in \alpha +_{\mathbb{R}} 0_{\mathbb{R}} \quad \parallel p \in \alpha +_{\mathbb{R}} 0_{\mathbb{R}}
(6.5) \quad p \in \alpha \implies p \in \alpha +_{\mathbb{R}} 0_{\mathbb{R}} \quad \parallel \forall_{p \in \alpha} (p \in \alpha +_{\mathbb{R}} 0_{\mathbb{R}}) \quad \parallel \alpha \subseteq \alpha +_{\mathbb{R}} 0_{\mathbb{R}}
(6.6) \quad \alpha +_{\mathbb{R}} 0_{\mathbb{R}} \subseteq \alpha \land \alpha \subseteq \alpha +_{\mathbb{R}} 0_{\mathbb{R}} \quad \parallel 0_{\mathbb{R}} +_{\mathbb{R}} \alpha = \alpha
(6.7) \quad \text{EXISTS ADDITIVE INVERSE}
Existence Of \quad \mathbb{R} \quad \exists_{\mathbb{R}} \left( LUBProperty(\mathbb{R}, <) \land Ordered Subfield(\mathbb{Q}, \mathbb{R}, +, *, <) \right)
(1) \quad 123123
```

TODO: - MORE EXPLICIT MODUS PONENS ON OrderTrichotomyR ??? - name all properties - hyperlink all definitions ???

Chapter 2

First Chapter

(1) First

(1.1) Second

(1.2) Third

(2) Fourth

This will be an empty chapter and I will put some text here

$$\sum_{i=0}^{\infty} a_i x^i \tag{2.1}$$

The equation 2.1 shows a sum that is divergent. This formula will later be used in the page ??.

For further references see Something Linky or go to the next url: http://www.sharelatex.com or open the next file File.txt It's also possible to link directly any word or any sentence in your document. supwithitSup With It Theorem If you read this text, you will get no information. Really? Is there no information?

For instance this sentence. supwithit