Hinweise zu den Übungsaufgaben in Algebra I

Übungsblatt 1

Aufgabe 4. Hier gibt es viele verschiedene Lösungswege. Eine Möglichkeit besteht darin, den Winkel α bei den unteren Ecken der Skizze als Innenwinkel von drei verschiedenen Teildreiecken zu erkennen und den Tangens von α dann jeweils über Gegen- und Ankathete auszudrücken. Zusammen mit dem Satz von Pythagoras erhält man dann drei Gleichungen für drei Unbekannte.

Übungsblatt 2

Aufgabe 5. Die Teilaufgaben a), c) und d) können unabhängig von b) bearbeitet werden.

Übungsblatt 3

Aufgabe 1. Für Teilaufgabe a) ist es nützlich zu wissen, dass der Realteil einer algebraischen Zahl wieder algebraisch ist (wieso stimmt das?). Für die Teilaufgaben b) und c) ist es nicht nötig, eine explizite Darstellung der Lösung α zu berechnen.

Aufgabe 2. Für Teilaufgabe a) ist es ebenfalls nicht nötig, explizite Darstellungen der Lösungen x bzw. y zu berechnen. Auch ohne deren Kenntnis kann man nämlich das Verfahren aus Proposition 1.3 bzw. Hilfssatz 1.4 des Skripts einsetzen. Zur Kontrolle hier eine der insgesamt sechs Teilrechnungen, bevor man zur Bestimmung der Determinante schreiten kann:

$$xy \cdot c_{20} = -c_{01} + c_{11}.$$

Aufgabe 5. Je nachdem, wie man Teilaufgabe b) angeht, ist folgende für ganze Zahlen a und n gültige Äquivalenz hilfreich:

 $[\exists m \in \mathbb{Z}: a \, m \equiv 1 \mod n] \iff a \text{ und } n \text{ sind zueinander teilerfremd.}$

Ausgeschrieben besagt die linke Aussage, dass es eine weitere ganze Zahl m gibt, sodass die Zahl $a\,m$ bei Division durch n den Rest 1 lässt.