Taller: Modelos de distribución

Kevin Garcia - Cesar Saavedra

12 de marzo de 2018

Distribución Poisson

Esta distribución es una de las más importantes distribuciones de variable discreta. Sus principales aplicaciones hacen referencia a la modelización de situaciones en las que nos interesa determinar el número de hechos de cierto tipo que se pueden producir en un intervalo de tiempo o de espacio, bajo presupuestos de aleatoriedad.

Su función de densidad esta dada por:

$$f(x,\lambda) = \frac{e^{-\lambda} \cdot \lambda^{x}}{x!}; x \in \{0,1,2,3,...\}$$

donde:

• x es el número de ocurrencias del evento o fenómeno (la función nos da la probabilidad de que el evento suceda precisamente x veces).

Distribución Poisson

- ullet λ es un parámetro positivo que representa el número de veces que se espera que ocurra el fenómeno durante un intervalo dado.
- $F(x) = \sum_{i=1}^{x} \frac{\lambda_i \cdot e^{-\lambda}}{i!} = \frac{\Gamma([k+1], \lambda)}{[k]!}$ para k > 0 y $\Gamma(x, y)$ es la función gamma incompleta.
- $f.g.m = m_x(t) = E[e^{tx}] = \sum_x e^{tx} p(x) = e^{[\lambda(e^t 1)]}$
- $Media = E[x] = \lambda$
- $Varianza = \lambda$
- Coeficiente de asimetría= $\frac{1}{\sqrt{\lambda}}$
- curtosis= $3 + \frac{1}{\lambda}$

Aplicaciones de la distribución Poisson

La distribución de Poisson se emplea para describir procesos como los siguientes:

- El número de autos que pasan a través de un cierto punto en una ruta (suficientemente distantes de los semáforos) durante un periodo definido de tiempo.
- El número de errores de ortografía que uno comete al escribir una única página.
- El número de llamadas telefónicas en una central telefónica por minuto.
- El número de servidores web accedidos por minuto.
- El número de defectos en una longitud específica de una cinta magnética.
- El número de defectos por metro cuadrado de tela.
- El número de estrellas en un determinado volumen de espacio.

Distribución Logística

La función de distribución de la logística es una distribución de probabilidad continua que se usa como modelo de crecimiento. Por ejemplo, con un nuevo producto, a menudo encontramos que el crecimiento es inicialmente lento, luego gana impulso, y finalmente se ralentiza cuando el mercado está saturado o hay alguna forma de equilibrio alcanzado

Su función de densidad está dada por:

$$f(x; a, b) = \frac{e^{-(x-a)/b}}{b(1 + e^{-(x-a)/b})^2} = \frac{1}{4b} sech^2 \left(\frac{x-a}{2b}\right)$$

Distribución Logística

Su función de distribución está dada por:

$$F(x; a, b) = \frac{1}{1 + e^{-(x-a)/b}} = \frac{1}{2} + \frac{1}{2} tanh\left(\frac{x-a}{2b}\right)$$

- $f.g.m = e^{at}\Gamma(1-bt)\Gamma(1+bt) = \pi bt \frac{e^{at}}{\sin(\pi bt)}$
- Media = E[x] = a
- Mediana = a
- Moda = a
- Varianza = $\frac{\pi^2 b^2}{3}$
- Coeficiente de asimetría= 0
- *Curtosis* = 4,2

Aplicaciones de la distribución Logística

La distribución logística ha sido muy utilizada en áreas como:

- Biología: para describir cómo se comportan las especies en entornos competitivos.
- Epidemiología: para describir la propagación de epidemias.
- Psicología: para describir el proceso de aprendizaje.
- Tecnología: para describir cómo las tecnologías se popularizan y compiten entre sí.
- Marketing: para estudiar la difusión de nuevos productos.
- Energía: para estudiar la difusión y sustitución de unas fuentes de energía primarias por otras.

Comportamiento distribución Poisson

Figura: Comportamiento de la distribución Poisson variando λ

Comportamiento distribución Logística

Figura: Comportamiento fijando localización y variando escala

Comportamiento distribución Logística

Figura: Comportamiento fijando escala y variando localización

Referencias

- Statistical Distributions, 4th Edition, Catherine Forbes, Merran Evans, Nicholas Hastings, Brian Peacock.
- https://www.sciencedirect.com.bd.univalle.edu.co
- Logistic distribution to model water demand. datahttps://www.sciencedirect.com.bd.univalle.edu.co/science/article/pi
- Planetary surface dating from crater size-frequency distribution measurements: Poisson timing analysis. https://www.sciencedirect.com.bd.univalle.edu.co/science/article/pii/S0

Anexos

Método de Cuadrados Medios, Generación de valores pseudoaleatorios

```
x<-55895649 #Número al azar de minimo 4 cifras, con cifras par
cifrasinicial <-trunc(log10(x))+1 #Detectar cifras del númer
n<-cifrasinicial/2 #encontramos el n de la formula 2n
N<-1000 #Cantidad de números aleatorios a generar
11<-c()
for (i in 1:N) {
  x < -x^2
  cif < -trunc(log10(x)) + 1
  while((cif)!=4*n) {
    x < -x * (10)
    cif<-trunc(log10(x))+1
    }
  xnueva<-toString(x)</pre>
  numeroscentrales<-substring(xnueva,n+1,(2*n+n))
```

Anexos

Método de Cuadrados Medios, Generación de valores pseudoaleatorios

```
num<-(as.numeric(numeroscentrales))/10^cifrasinicial
u[i]<-c(num)
x<-as.numeric(numeroscentrales)
}
x11()
plot(u)</pre>
```