```
In [196...
          import pandas as pd
          import numpy as np
          import matplotlib.pyplot as plt
          from sympy import *
          from scipy.optimize import fsolve
          from scipy.stats import *
          from sklearn.preprocessing import StandardScaler,MinMaxScaler
          import seaborn as sns
          from statsmodels.api import *
          import matplotlib.pyplot as plt
          from matplotlib.ticker import MaxNLocator,MultipleLocator
          def checker(date):
              if date.month in [1, 12]:
                  return True
              return False
          def get_year(date):
              return date.year
          def to_float(x):
              x = float(x.replace('.','').replace(',', '.'))
              return x
          def to value(x):
              x = float(x[:-1].replace('.','').replace(',', '.'))*1000
              return x
          def to_perc(x):
              return float(x[:-1].replace('.','').replace(',', '.'))/100
In [197...
          databook = pd.read_excel('Ozon_Databook_Q3_24.xlsx', 'Public Databook', header =
          databook = databook.drop(list(range(0,4))+list(range(8,12))+list(range(15,18))+[
          databook= databook.set index('Unnamed: 0')
          for i in range(4):
              databook.insert(i,f'Q{i+1}_18',databook['FY_2018']*(i+1)/10)
          for i in range(4):
              databook.insert(i+4,f'Q{i+1}_19',databook['FY_2019']*(i+1)/10)
          databook = databook.drop([i for i in databook.columns if 'F' in i]+['Unnamed: 23
          databook = databook.T
          databook.columns.name = 'Quarter'
          data cols = databook.columns
          databook
```

Out[197...

C	Quarter	GMV incl. services	Share of Marketplace, as % of GMV incl. services	Number of orders, millions	Number of active buyers, millions	Total revenue	(Loss)/profit for the period	
	Q1_18	4188.818931	0.000871	1.528649	0.480000	3722.0	-566.1	
	Q2_18	8377.637862	0.001742	3.057297	0.960000	7444.0	-1132.2	-
	Q3_18	12566.456792	0.002614	4.585946	1.440000	11166.0	-1698.3	-
	Q4_18	16755.275723	0.003485	6.114594	1.920000	14888.0	-2264.4	_
	Q1_19	8081.486742	0.017378	3.181056	0.790000	6010.4	-1936.3	-
	Q2_19	16162.973484	0.034755	6.362112	1.580000	12020.8	-3872.6	-
	Q3_19	24244.460225	0.052133	9.543168	2.370000	18031.2	-5808.9	-
	Q4_19	32325.946967	0.069511	12.724224	3.160000	24041.6	-7745.2	-
	Q4_20	75847.502151	0.522714	29.610823	13.760362	37751.0	-9407.0	-
	Q1_21	74208.000000	0.583574	34.100000	16.000000	33407.0	-6734.0	-
	Q2_21	88957.000000	0.621089	40.874333	18.400000	37018.0	-15233.0	-
	Q3_21	108290.000000	0.666644	56.166153	21.293626	41492.0	-14018.0	-1
	Q4_21	176805.000000	0.676565	92.100000	25.600000	66298.0	-20794.0	-1
	Q1_22	177449.000000	0.704078	92.987774	28.700000	63579.0	-19055.0	-
	Q2_22	170647.000000	0.760652	90.218180	30.655521	58514.0	-7202.0	
	Q3_22	188125.175674	0.781730	107.540000	32.700000	61396.0	-20718.0	
	Q4_22	296019.161141	0.783617	174.628703	35.169559	93626.0	-11212.0	
	Q1_23	303047.672944	0.795098	179.312166	37.035248	93250.0	10656.0	
	Q2_23	372627.819212	0.826189	208.668170	39.463483	94164.0	-13087.0	
	Q3_23	450819.466075	0.834000	251.118775	42.443123	108963.0	-22055.0	-
	Q4_23	625781.712083	0.848940	326.567897	46.089422	127914.0	-18179.0	
	Q1_24	570177.000000	0.852000	305.300000	48.952615	122931.0	-13166.0	
	Q2_24	633163.000000	0.861000	334.800000	51.100000	122530.0	-27971.0	
	Q3_24	718303.000000	0.859000	371.500000	53.500000	153693.0	-740.0	1

24 rows × 21 columns

```
In [198... databook.columns = [i if i[len(i)-1]!=' ' else i[:-1] for i in databook.columns]
    databook.columns = [i if i[len(i)-1]!=' ' else i[:-1] for i in databook.columns]
    databook.columns
```

```
Out[198... Index(['GMV incl. services',
                  'Share of Marketplace, as % of GMV incl. services',
                  'Number of orders, millions', 'Number of active buyers, millions',
                  'Total revenue', '(Loss)/profit for the period', 'Adjusted EBITDA',
                  'Total non-current assets', 'Total current assets',
                  'Cash and cash equivalents', 'Total assets', 'Total equity',
                  'Total non-current liabilities', 'Total current liabilities',
                  'Total liabilities', 'Total equity and liabilities',
                  'Movements in working capital1',
                  'Net cash (used in) / generated from operating activities1',
                  'Capital expenditures',
                  'Net cash (used in)/ generated from investing activities',
                  'Net cash(used in)/ generated from financing activities2'],
                 dtype='object')
In [199...
          exog_cols = [ i for i in databook.columns if i != 'Number of orders, millions']
          # Определяем независимые переменные (Х) и зависимую переменную (Ү)
          exog = databook[exog_cols]
          scale = MinMaxScaler()
          exog = scale.fit_transform(exog)
          # Определяем независимые переменные (Х) и зависимую переменную (Y)
          Y = databook['Number of orders, millions']
          #exog = add_constant(exog)
          # Строим модель с помощью метода наименьших квадратов (OLS)
          model = OLS(Y,exog[:,[i for i in range(20) if i not in [1,3,4,5,6,11,12,13,17,19
          # Выводим результаты модели
          sns.heatmap(np.corrcoef(exog[:,[i for i in range(20) if i not in [1,3,4,5,6,11,1
          model.summary()
```

Out[199...

OLS Regression Results

	Dep. Variable	: Num	Number of orders, millions				R-squared (uncentered):		
	Mode	:	OLS			S Adj. R-s	Adj. R-squared (uncentered):		
	Method	:	Least Squares			es	F-statistic:		
	Date	:	Вс, 08 дек 2024			24	Prob (F-statistic):		
	Time	:	23:19:09			9	Log-Likelihood:		
No. 0	Observations	:	24			24	AIC:		
	Df Residuals	:	14			4	BIC:		
	Df Mode	:			1	0			
Cov	ariance Type	:		n	onrobu	st			
	coef	std	err	t	P> t	[0.025	0.975]		
x1	268.4647	21.9	973	12.218	0.000	221.338			
x2	107.9043	12.	790	8.436	0.000	80.472	135.337		
х3	416.9945	55.	745	7.480	0.000	297.434	536.555		
x 4	-181.0222	26.2	295	-6.884	0.000	-237.418	-124.626		
х5	1.067e+07	4.58e-	+06	2.328	0.035	8.4e+05	2.05e+07		
х6	-42.9448	8.4	465	-5.073	0.000	-61.101	-24.789		
х7	-1.067e+07	4.58e-	+06	-2.328	0.035	-2.05e+07	-8.41e+05		
х8	-50.4180	9.9	938	-5.073	0.000	-71.733	-29.103		
х9	72.6458	14.	108	5.149	0.000	42.388	102.904		
x10	17.7192	4.4	438	3.993	0.001	8.201	27.238		
	Omnibus:	0.209	0.209 Durbin-Watson:						
Prob	(Omnibus):					2.228 0.400			
	Skew:		•			0.819			
Kurtosis:						1.91e+07			
Nui (0313.									

Notes:

- [1] R² is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [3] The smallest eigenvalue is 1.21e-13. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

```
- 1.00
         0.93 0.91 0.81 0.96 -0.8 0.96 0.77 0.78 -0.65
                                                               - 0.75
         1
             0.91 0.83 0.96 -0.62 0.96 0.62 0.6 -0.65
- 0.93
~ - 0.91 0.91
              1
                   0.98 0.98 -0.53 0.98 0.71 0.68 -0.69
                                                               - 0.50
                         0.92 -0.35 0.92 0.64 0.59 -0.62
m - 0.81 0.83 0.98
                     1
                                                               - 0.25
                                          0.72 0.72 -0.68
+ - 0.96 0.96 0.98 0.92
                               -0.66
                           1
   -0.8 -0.62 -0.53 -0.35 -0.66
                                1
                                    -0.66 -0.64 -0.7
                                                    0.44
                                                               - 0.00
φ - 0.96 0.96 0.98 0.92
                               -0.66
                                          0.72 0.72 -0.68
                                                                - -0.25
► - 0.77 0.62 0.71 0.64 0.72 -0.64 0.72
                                           1
                                               0.97 -0.71
                                                                - -0.50
ω - 0.78 0.6 0.68 0.59 0.72
                               -0.7
                                    0.72 0.97
                                                     -0.65
  --0.65 -0.65 -0.69 -0.62 -0.68 0.44 -0.68 -0.71 -0.65
                                                      1
                2
          1
                           4
                                5
                                           7
                                                      9
```

```
-0.75
In [200...
          exog_cols = np.array(exog_cols)[[i for i in range(20) if i not in [1,3,4,5,6,11,
          exog_cols
In [201...
           array(['GMV incl. services', 'Number of active buyers, millions',
Out[201...
                  'Total current assets', 'Cash and cash equivalents',
                  'Total assets', 'Total equity', 'Total equity and liabilities',
                  'Movements in working capital1',
                  'Net cash (used in) / generated from operating activities1',
                  'Net cash (used in)/ generated from investing activities'],
                 dtype='<U57')
          print(*exog_cols,sep='\n')
In [202...
         GMV incl. services
         Number of active buyers, millions
         Total current assets
         Cash and cash equivalents
         Total assets
         Total equity
         Total equity and liabilities
         Movements in working capital1
         Net cash (used in) / generated from operating activities1
         Net cash (used in)/ generated from investing activities
In [203...
          stat, p value = shapiro(model.resid)
          print("Статистика Shapiro-Wilk:", stat)
          print("p-значение:", p_value)
          if p value > 0.05:
              print("Распределение данных похоже на нормальное")
          else:
              print('Pacпределение данных отличается от нормального')
```

Статистика Shapiro-Wilk: 0.9829087422813559 р-значение: 0.9428080635525465 Распределение данных похоже на нормальное

Статистика Дарбина-Уотсона: 2.227518413145096

Отрицательная автокорреляция. Это редко встречается в эконометрических данных, но может наблюдаться в некоторых временных рядах, где данные колеблются вокруг средн его значения.

```
In [205...
         r = 1 - dw_stat/2
          X = model.model.exog
          Y = model.model.endog
          model1 = OLS(Y, X).fit()
          residuals = model1.resid
          # Шаг 2: Оценка коэффициента автокорреляции
          rho = np.corrcoef(residuals[1:], residuals[:-1])[0, 1]
          # Итерационный процесс
          for _ in range(10): # Максимум 10 итераций, можно остановиться раньше, если раз
              Y_transformed = Y[1:] - rho * Y[:-1]
              X_{transformed} = X[1:] - rho * X[:-1]
              # Переоценка модели на преобразованных данных
              model1 = OLS(Y_transformed, X_transformed).fit()
              residuals = model1.resid
              # Обновляем rho и проверяем условие остановки
              new rho = np.corrcoef(residuals[1:], residuals[:-1])[0, 1]
              if abs(new_rho - rho) < 1e-5: # Условие остановки
                  break
              rho = new_rho
          print("Коэффициент автокорреляции rho:", rho)
          print("Модель со схемой AR(1):", model1.summary())
```

Коэффициент автокорреляции rho: -0.10323233299995692 Модель со схемой AR(1): OLS Regression Results ______ Dep. Variable: y R-squared (uncentered): 1.000 Model: OLS Adj. R-squared (uncentered): 1.000 Method: Least Squares F-statistic: 1.4 87e+04 Вс, 08 дек 2024 Date: Prob (F-statistic): 1. 11e-24 Time: 23:19:10 Log-Likelihood: 45.276 23 AIC: No. Observations: 110.6 Df Residuals: BIC: 13 121.9 Df Model: 10 Covariance Type: nonrobust ______ P>|t| coef std err t [0.025 ______ 22.929 0.000 268.2722 11.700 218.737 317.808 x1 108.6922 81.598 x2 12.542 8.667 0.000 135.787 7.386 -6.699 2.241 -4.946 56.984 0.000 297.785 x3 420.8912 543.998 0.000 -239.891 -122.896 x4 -181.3935 27.078 0.043 3.78e+05 2.07e+07 0.000 -62.159 -24.367 1.055e+07 4.71e+06 x5 -43.2630 8.747 х6 x7 -1.055e+07 4.71e+06 -2.241 0.043 -2.07e+07 -3.78e+05 -5.148 -51.8164 10.066 0.000 -73.563 -30.070 x8 14.021 44.420 x9 74.7095 5.329 0.000 104.999

x10	17.5085	4.793	3.653	0.003	7.154	27.863		
========			======	========	=======	=======		
Omnibus:		0.375	Durbi	n-Watson:		2.184		
Prob(Omnibus	5):	0.829	Jarque-Bera (JB):			0.523		
Skew:		0.126	Prob(JB):			0.770		
Kurtosis:		2.305	Cond. No.			2.10e+07		

Notes

- [1] R^2 is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [3] The smallest eigenvalue is 1.2e-13. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

In [206...

Пример кода для форматирования чисел в выводе formatted_params = model.params.apply(lambda x: f"{x:.2f}") # Округление до дву print(f'\nКоэффициенты в при каждом члене равны соответственно:\n{formatted_para

```
Коэффициенты b при каждом члене равны соответственно:
                      268.46
         x2
                      107.90
         х3
                      416.99
         x4
                     -181.02
         x5
                 10673243.42
         х6
                      -42.94
                -10673510.31
         x7
                      -50.42
         x8
         x9
                       72.65
                       17.72
         x10
         dtype: object .
In [207...
          # Пример кода для форматирования чисел в выводе
          formatted_params = model.pvalues.apply(lambda x: f"{x:.2f}") # Округление до дв
          print(f'\nP-значения коэффициентов b при каждом члене равны соответственно:\n{fo
         Р-значения коэффициентов b при каждом члене равны соответственно:
                0.00
                0.00
         x2
         х3
                0.00
                0.00
         x4
                0.04
         x5
                0.00
         х6
         x7
                0.04
         x8
                0.00
                0.00
         x9
         x10
                0.00
         dtype: object .
          print(f'{model.f_pvalue:.2f}')
In [208...
         0.00
In [209...
          from scipy.stats import spearmanr
          corr, p value = spearmanr(model.resid, model.model.exog[:, 1])
          print(f"Spearman correlation: {corr}")
          print(f"p-value: {p_value}")
          if p_value < 0.05:</pre>
              print("Признаки гетероскедастичности обнаружены.")
          else:
              print("Гетероскедастичность не обнаружена.")
         Spearman correlation: -0.05826086956521739
         p-value: 0.7868436161547347
         Гетероскедастичность не обнаружена.
In [211...
          coefficients = model.params
          intercept = 0 # Свободный член, для примера считаем 0
          x = pd.DataFrame(exog[:,[i for i in range(20) if i not in [1,3,4,5,6,11,12,13,17]]
          X_{mean} = x.mean().to_numpy()
          n = x.shape[0]
          X_new = X_mean*1.1
          residuals_std = np.sqrt(model.scale)
          k = len(coefficients) # Число независимых переменных
```

IHW_t 08.12.2024, 23:33

```
alpha = 0.05 # Уровень значимости
# Вычисление прогноза
y_pred = intercept + np.dot(X_new, coefficients)
# Вычисление стандартной ошибки прогноза
X_diff = X_new - X_mean
se = residuals_std * np.sqrt(1 + (1 / n) + np.sum(X_diff**2) / np.sum((X_mean - np.sum)) / np.sum((X_mean - np.sqrt(1 + (1 / n) + np.sum)) / np.sum((X_mean - np.sqrt(1 + (1 / n) + np.sum))) / np.sum((X_mean - np.sqrt(1 + (1 / n) + np.sum))) / np.sum((X_mean - np.sqrt(1 + (1 / n) + np.sum))) / np.sum((X_mean - np.sqrt(1 + (1 / n) + np.sum))) / np.sum((X_mean - np.sqrt(1 + (1 / n) + np.sum))) / np.sum((X_mean - np.sqrt(1 + (1 / n) + np.sum))) / np.sum((X_mean - np.sqrt(1 + (1 / n) + np.sum)))) / np.sum((X_mean - np.sqrt(1 + (1 / n) + np.sum))) / np.sum((X_mean - np.sqrt(1 + (1 / n) + np.sum)))) / np.sum((X_mean - np.sqrt(1 + (1 / n) + np.sum)))) / np.sum((X_mean - np.sqrt(1 + (1 / n) + np.sqrt(1
# Квантиль распределения Стьюдента
t_critical = t.ppf(1 - alpha / 2, df=n - k - 1)
# Доверительный интервал
ci_lower = y_pred - t_critical * se
ci_upper = y_pred + t_critical * se
ci_lower, ci_upper
```

Out[211... (120.38674611961844, 130.94808042896537)

In [212... y_pred

Out[212... 125.6674132742919