E-04 (ANSYS)

Формулировка задачи:

Дано: *l*, *M*, *a*, *G*;

Стержень переменного поперечного сечения нагружен двумя внешними крутящими моментами. Величина момента X подобрана таким образом, что выполняется условие: $\varphi_C = -2 \cdot \varphi_H$

Hайти: X, A, U, эпюры $M_{\kappa p}$ и φ .

Аналитический расчёт (см. Е-04) даёт следующие решения:

Задача данного примера: при помощи ANSYS Multyphisics получить эти же решения методом конечных элементов.

Предварительные настройки:

Для решения задачи используется ANSYS Multiphysics 14.0:

С меню M_M и U_M работают мышью, выбирая нужные опции.

B окно C_P вручную вводят текстовые команды, после чего следует нажать на клавиатуре Enter.

Меняем чёрный цвет фона на белый:

U M > PlotCtrls > Style > Colors > Reverse Video

Скрываем пункты меню, не относящиеся к прочностным расчётам:

 ${\tt M_M}$ > Preferences > Отметить "Structural" > OK

При построениях полезно видеть номера узлов и номера конечных элементов (один участок – один конечный элемент):

```
U_M > PlotCtrls > Numbering >
OTMETUTЬ NODE;

Установить Elem на "Element numbers";
Установить [/NUM] на "Colors&numbers"
> OK
```

Для большей наглядности увеличим размер шрифта:

```
U_M > PlotCtrls > Font Controls > Legend Font > Установить «Размер» на «22» > ОК
U_M > PlotCtrls > Font Controls > Entity Font > Установить «Размер» на «22» > ОК
```

Предварительные настройки выполнены, можно приступать к решению задачи.

<u>Решение задачи:</u> Приравняв G, a, M и l, к единице, результаты получим в виде чисел, обозначенных на рис. l. синим цветом.

http://www.tychina.pro

No	Действие	Результат
7	Скрываем оси системы координат: U_M> PlotCtrls> Window Controls> Window Options> [/Triad] установить "Not Shown" > ОК	1 2 .3 .4
8	Конечные элементы – участки стержия:Первый элемент - участок сечением S1:M_M > Preprocessor > Modeling > Create > Elements > Elem Attributes > [TYPE]установить "1 BEAM188"[SECNUM]установить "1 S1"OKM_M > Preprocessor > Modeling > Create > Elements > Auto Numbered > Thru NodesЛевой кнопкой мыши последовательно кликаем на узлы 1 и 2> ОКВторой и третий элементы - участки сечением S2:M_M > Preprocessor > Modeling > Create > Elements > Elements > Elements > SECNUM] установить "2 S2"> ОКM_M > Preprocessor > Modeling > Create > Elements > Auto Numbered > Thru NodesЛевой кнопкой мыши последовательно кликаем на узлы 2 и 3 > Apply > 3 и 4> ОКПрорисовываем всё, что есть: U_M > Plot > Multi-Plots	1 1 2 2 3 3 .4

http://www.tychina.pro

No॒	Действие	Результат
10	Заделка:M_M > Preprocessor > Loads > Define Loads > Apply > Structural> Displacement > On Nodes >Левой кнопкой мыши нажать на узел 1> OK >Lab2 установить "All DOF"> OKПрорисовываем всё, что есть: U_M > Plot > Multi-Plots	1 1 2 2 3 3 .4
11	<pre> W3Becmные внешние моменты: M_M > Preprocessor > Loads > Define Loads > Apply > Structural > Force/Moment > On nodes > Левой кнопкой мыши нажимаем на узел 4 > OK > Lab установить "МХ" VALUE пишем -2*M > OK Прорисовываем всё, что есть: U_M > Plot > Multi-Plots </pre>	1 1 2 2 .3 34

No	Действие	Результат
13	Вычисление значения внешнего момента X : Условие: $\varphi_C = -2 \cdot \varphi_H$	Items
14	Прикладываем к модели вычисленное значение момента X: M_M > Preprocessor > Loads > Define Loads > Apply > > Structural > Force/Moment > On nodes > Левой кнопкой мыши нажимаем на узел 3 > OK > Lab установить "МХ" VALUE пишем X > OK Прорисовываем всё, что есть: U_M > Plot > Multi-Plots	1 1 2 2 3 3 4
	Расчёт	
15	M_M > Solution > Solve > Current LS > OK > Close	

http://www.tychina.pro

No	Действие	Результат
	Просмотр результатов	
16	Цветовая шкала будет состоять из десяти цветов: U_M > PlotCtrls > Style > Contours > Uniform Contours > NCONT пишем 10 > OK	
17	Составление эпюры эпюры внутреннего крутящего момента $M_{\kappa p}$: M_M > General Postproc > Element Table > Define Table > Add > "By sequence num", "SMISC,", "4" > Apply > "By sequence num", "SMISC,", "17" > OK > > Close	Currently Defined Data and Status: Label Item Comp Time Stamp Status SMIS4 SMIS 4 Time= 1.0000 (Current) SMIS17 SMIS 17 Time= 1.0000 (Current) Add Update Delete
18	Прорисовка эпюры внутреннего крутящего момента Мкр: M_M > General Postproc > Plot Results > Contour Plot > > Line Elem Res> LabI установить "SMIS4" LabJ установить "SMIS17" > ОК Пропечатка эпюры внутреннего крутящего момента Мкр: M_M > General Postproc > List Results > Elem Table Data > Отметить мышью строчку SMIS4 > ОК Получаем тот же результат, что и на рис. 1в. (числа, выделенные синим цветом).	LINE STRESS STEP=1 SUB =1 TIME=1 SMIS4 SMIS17 MIN =-2 ELFM=3 MAX = .977896 ELFM=1 3 4 1 A PRETAB Command SS File File File Title Bellet Treat Libra File Elbert

№	Действие	Результат
19	Игловые перемещения точек стерженя (таблица): М_M > General Postproc > List Results > Nodal Solution > OK М_M > General Postproc > List Results > Nodal Solution > OK Получаем окно "PRNSOL Command" с табличкой, где NODE — номер узла конечноэлементной модели, а ROTX — его вращение относительно оси X: $\varphi_1 = \varphi_O = 0$; $\varphi_2 = \varphi_A = 6.941 \cdot \frac{M \cdot l}{G \cdot d^4}$; $\varphi_3 = \varphi_B = 16.90 \cdot \frac{M \cdot l}{G \cdot d^4}$. Расхождение с результатами аналитического расчёта (рис.1г.) — сотые и тысячные доли процента.	FILE PRINT ROT NODAL SOLUTION PER NODE ****** POST1 NODAL DEGREE OF FREEDOM LISTING ****** LOAD STEP= 1 SUBSTEP= 1 TIHE= 1.0000 LOAD CASE= 0 THE FOLLOHING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDINATE SYSTEM NODE ROTX 1 0.0000 2 6.9407 3 16.9407 3 16.9407 4 -3.4704 HAKINUM ABSOLUTE VALUES NODE 3 VALUE 16.902

Nº	Действие	Результат
Потенциальная энергия упругой довнешней силы): M_M > General Postproc > Energy > Strain energy > Item to be list in Element South in Element in	формации в конструкции (она же — работа List Results > Element Solution > OK tion chanical Strain train train train Strain strain strain strain strain in cit state variable ic workvolume nerency mother	PRESOL Command File PRINT SENE ELEMENT SOLUTION PER ELEMENT ***** POST1 ELEMENT STIFFNESS ENERGY LISTING ***** LOAD STEP= 1 SUBSTEP= 1 TIME= 1.0000 LOAD CASE= 0 ELEM SENE 1 3.3937 2 4.8703 3 20.372 MINIMUM VALUES ELEM 1 VALUE 3.3937 HAXIMUM VALUES ELEM 3 VALUE 20.372

Сохраняем проделанную работу:

U M > File > Save as Jobname.db

Закройте ANSYS:

U M > File > Exit > Quit - No Save! > OK

После выполнения указанных действий в рабочем каталоге остаются файлы с расширениями ".BCS", ".db", ".emat", ".err", ".esav", ".full", ".log", ".mntr", ".rst" и ".stat".

Интерес представляют ".db" (файл модели) и ".rst" (файл результатов расчёта), остальные файлы промежуточные, их можно удалить.