Continuous-Time Signals and Systems Annotated Lecture Examples Edition 2020-05-01

Michael D. Adams University of Victoria

Formulas and Tables

Useful Formulae and Other Information

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t} \qquad \qquad \mathscr{F}\{x(t)\} = X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt \qquad \qquad X(\omega) = \sum_{k=-\infty}^{\infty} 2\pi a_k \delta(\omega - k\omega_0)$$

$$c_k = \frac{1}{T} \int_T x(t)e^{-jk\omega_0 t}dt \qquad \qquad \mathscr{F}^{-1}\{X(\omega)\} = x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega)e^{j\omega t}d\omega \qquad \qquad X(\omega) = \sum_{k=-\infty}^{\infty} \omega_0 X_T(k\omega_0)\delta(\omega - k\omega_0)$$

$$a_k = \frac{1}{T} X_T(k\omega_0)$$

$$\mathcal{L}\{x(t)\} = X(s) = \int_{-\infty}^{\infty} x(t)e^{-st}dt$$

$$\mathcal{L}^{-1}\{X(s)\} = x(t) = \frac{1}{2\pi i} \int_{\sigma - i\infty}^{\sigma + j\infty} X(s)e^{st}ds$$

$$\mathcal{L}^{-1}\{X(s)\} = X(s) = \int_{0^{-}}^{\infty} x(t)e^{-st}dt$$

$$e^{j\theta} = \cos\theta + j\sin\theta$$
$$\cos\theta = \frac{1}{2} \left[e^{j\theta} + e^{-j\theta} \right]$$
$$\sin\theta = \frac{1}{2j} \left[e^{j\theta} - e^{-j\theta} \right]$$

\boldsymbol{x}	$\cos x$	$\sin x$
0	1	0
$\frac{\pi}{4}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$
$\frac{\pi}{3}$	$ \frac{\sqrt{2}}{\frac{1}{2}} $	$\frac{\sqrt{3}}{2}$
$\frac{\pi}{2}$	0	1
$\frac{\frac{\pi}{3}}{\frac{\pi}{2}}$ $\frac{3\pi}{4}$	$-\frac{1}{\sqrt{2}}$	$\begin{array}{c} \frac{1}{\sqrt{2}} \\ 0 \end{array}$
π	-1	0
$\frac{5\pi}{4}$ $\frac{3\pi}{2}$	$-\frac{1}{\sqrt{2}} 0$	$-\frac{1}{\sqrt{2}}$ -1
$\frac{2}{7\pi}$	$\frac{1}{\sqrt{2}}$	$-\frac{1}{\sqrt{2}}$

$$A_{k} = (v - p_{k})F(v)|_{v = p_{k}}$$

$$A_{kl} = \frac{1}{(q_{k} - l)!} \left[\frac{d^{q_{k} - l}}{dv^{q_{k} - l}} [(v - p_{k})^{q_{k}} F(v)] \right]|_{v = p_{k}}$$

$$ax^{2} + bx + c = 0 \quad \Rightarrow \quad x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

Fourier Series Properties

Property	Time Domain	Fourier Domain
Linearity	Ax(t) + By(t)	$Aa_k + Bb_k$
Time-Domain Shifting	$x(t-t_0)$	$e^{-jk\omega_0t_0}a_k$
Time Reversal	x(-t)	a_{-k}

Fourier Transform Properties

	-	
Property	Time Domain	Frequency Domain
Linearity	$a_1x_1(t) + a_2x_2(t)$	$a_1X_1(\boldsymbol{\omega}) + a_2X_2(\boldsymbol{\omega})$
Time-Domain Shifting	$x(t-t_0)$	$e^{-j\omega t_0}X(\omega)$
Frequency-Domain Shifting	$e^{j\omega_0 t}x(t)$	$X(\boldsymbol{\omega}-\boldsymbol{\omega}_0)$
Time/Frequency-Domain Scaling	x(at)	$\frac{1}{ a }X\left(\frac{\omega}{a}\right)$
Conjugation	$x^*(t)$	$X^*(-\omega)$
Duality	X(t)	$2\pi x(-\omega)$
Time-Domain Convolution	$x_1(t) * x_2(t)$	$X_1(\boldsymbol{\omega})X_2(\boldsymbol{\omega})$
Frequency-Domain Convolution	$x_1(t)x_2(t)$	$\frac{1}{2\pi}X_1(\boldsymbol{\omega})*X_2(\boldsymbol{\omega})$
Time-Domain Differentiation	$\frac{d}{dt}x(t)$	$j\omega X(\omega)$
Frequency-Domain Differentiation	tx(t)	$j\frac{d}{d\omega}X(\omega)$
Time-Domain Integration	$\int_{-\infty}^{t} x(\tau) d\tau$	$\frac{1}{i\omega}X(\boldsymbol{\omega}) + \pi X(0)\delta(\boldsymbol{\omega})$
Parseval's Relation	$\int_{-\infty}^{\infty} x(t) ^2 dt = \frac{1}{2\pi}$	$\int_{-\infty}^{\infty} X(\boldsymbol{\omega}) ^2 d\boldsymbol{\omega}$
Tarsevar s Relation	$J_{-\infty} x(i) $ $\alpha i = 2\pi$	$\int_{-\infty} \Lambda(\omega) \ u\omega$

Fourier Transform Pairs

Tourier Transform runs				
Pair	x(t)	$X(\omega)$		
1	$\delta(t)$	1		
2	u(t)	$\pi\delta(\omega) + \frac{1}{i\omega}$		
3	1	$2\pi\delta(\omega)$		
4	sgn(t)	$\frac{2}{i\omega}$		
5	$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$		
6	$\cos \omega_0 t$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$		
7	$\sin \omega_0 t$	$\frac{\pi}{i}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]$		
8	rect(t/T)	$ T \operatorname{sinc}(T\omega/2)$		
9	$\frac{ B }{\pi}$ sinc Bt	$\operatorname{rect} \frac{\omega}{2B}$		
10	$e^{-at}u(t)$, $\operatorname{Re}\{a\} > 0$	$\frac{1}{a+j\omega}$		
11	$t^{n-1}e^{-at}u(t), \text{ Re}\{a\} > 0$	$\frac{(n-1)!}{(a+j\omega)^n}$		