Решения на задачите от второто малко контролно по ДАА на група 5, проведено на 05.06.2024 г.

Задача 1. (60 т.) Хубаво число ще наричаме всяко естествено число от вида $2^a 3^b$ за някои $a, b \in \mathbb{N}$. Да се състави **итеративен** алгоритъм, който при подадено $n \in \mathbb{N}$ връща (n+1)-вото по големина хубаво число. Алгоритъмът **трябва** да е съставен по схемата динамично програмиране и да има сложност по време $\Theta(n)$. Няма нужда да се прави доказателство за коректност, достатъчно е да се напише правилен инвариант.

Решение. Следният алгоритъм решава задачата:

```
Beautiful(Nat n):
1
          Array(Nat) B[0..n]
          B[0] \leftarrow 1
          Nat two_idx \leftarrow 0
          Nat three_idx \leftarrow 0
          for i \leftarrow 1 to n:
              two\_candidate \leftarrow 2 * B[two\_idx]
              three_candidate ← 3 * B[three_idx]
              B[i] ← min(two_candidate, three_candidate)
10
               if B[i] = two_candidate:
12
                   two_idx \leftarrow two_idx + 1
               if B[i] = three_candidate:
                   three_idx \leftarrow three_idx + 1
16
          return B[n]
17
```

Инвариант. При всяко достигане на условието за край на цикъла на ред 7:

- В[j] е (j+1)-вото хубаво число за всяко ј между 0 и i-1 включително;
- B[two_idx] е най-малкото хубаво число k, за което 2k е извън масива B[0..i-1];
- B[three_idx] е най-малкото хубаво число k, за което 3k е извън масива B[0..i-1].

Критерии за оценяване:

- за правилен алгоритъм 30 точки;
- за правилно формулиран инвариант 30 точки.

Задача 2. (60 т.) Нека разгледаме задачата TABLE-SUM:

Вход: Таблица от естествени числа $T[1 \dots n, 1 \dots m]$ и $t \in \mathbb{N}$.

Въпрос: Има ли $1 \le i_1, ..., i_n \le m$, за които $\sum_{k=1}^n T[k, i_k] = t$?

Докажете формално, че TABLE-SUM е **NP**-пълна задача.

Решение. При подадена таблица $T[1 \dots n, 1 \dots m]$ и сертификат $C[1 \dots n]$, представящ индекси $1 \leq i_1, \dots, i_n \leq m$, можем за време $\Theta(n)$ да проверим дали е изпълнено, че:

$$\sum_{k=1}^{n} T[k, i_k] = t.$$

Така задачата TABLE-SUM е в класа NP.

Също така много лесно можем за полиномиално време да сведем задачата SUBSET-SUM към задачата TABLE-SUM. При подаден вход масив $A[1\dots n]$ и число $t\in\mathbb{N}$ за време $\Theta(n)$ можем да построим таблица $T[1\dots n,1\dots 2]$, където T[i,1]=A[i] и T[i,2]=0. Тогава са изпълнени следните твърдения:

- 1. Ако има подредица на $A[1\dots n]$ със сума на елементите t, то тогава за всяко $1\leq j\leq n$ ще дефинираме i_j да бъде 1 т.с.т.к. A[i] участва в съответната подредица. Индексите $1\leq i_1,\dots,i_n\leq 2$ имат желаното свойство.
- 2. Ако $1 \leq i_1, \ldots, i_n \leq 2$ са индекси с желаното свойство, то взимайки тези $1 \leq j \leq n$, за които $i_j = 1$, ще получим подредица на $A[1 \ldots n]$, елементите на която се сумират до t.

 ${\bf C}$ това получихме, че задачата TABLE-SUM е ${\bf NP}$ -трудна, и понеже принадлежи на класа ${\bf NP}$, тя е ${\bf NP}$ -пълна.

Критерии за оценяване:

- за обосновка, че TABLE-SUM е в класа **NP** 30 точки;
- \bullet за обосновка, че TABLE-SUM е **NP**-трудна задача 30 точки.