Logic

"Contrariwise," ... "if it was so, it might be; and if it were so, it would be; but as it isn't, it ain't. That's logic."

- Tweedledum and Tweedledee, Lewis Carroll

Why logic?

- Logic: the Calculus of Computation
 - the study of the principles of valid inference and demonstration.
 - A formal language for describing problems (and their complexity!)
 - Algorithm correctness verification
 - A lot of interesting algorithms!
- Syntax + Semantics + Inference(form) (meaning) (reasoning)

$$\forall x, y, x' \colon (x > y \land x' = x + 1) \rightarrow x' > y$$

Propositional Logic

(or zeroth-order logic)

What are propositions?

Propositions are sentences that can be determined as true or false

- p = "Tomorrow is raining."
- q = "U.S. has 50 states."

Propositional logic: Syntax

P: a countably infinite set of propositions $\{p_1, p_2, ...\}$

Well Formed Formulae (WFF) is the smallest set that satisfies:

- T, $\bot \in WFF$, $p \in WFF$ for any $p \in P$
- If $\alpha \in WFF$, then $(\neg \alpha) \in WFF$
- If $\alpha_1, \alpha_2 \in WFF$, then $(\alpha_1 \sim \alpha_2) \in WFF$
- \sim is a connective, e.g., \land , \lor , \rightarrow

Propositional Logic: Syntax

Precedence:

- \neg takes precedence over \land
- A takes precedence over V
- E.g., $\neg p \land q \lor r$

Alternative Syntax

- $\alpha \rightarrow \beta \equiv \neg \alpha \lor \beta$
- $\alpha \wedge \beta \equiv \neg(\neg \alpha \vee \neg \beta)$

Propositional Logic: Semantics

A model/valuation/interpretation is a function

$$v: P \to \{T, F\}$$

v can be extended to \hat{v} , mapping every formula to $\{T, F\}$:

•
$$\hat{v}(p) = v(p)$$

•
$$\hat{v}(\neg \alpha) = \begin{cases} T & \text{if } \hat{v}(\alpha) = F \\ F & \text{if } \hat{v}(\alpha) = T \end{cases}$$

•
$$\hat{v}(\alpha_1 \wedge \alpha_2) = \begin{cases} T & \text{if } \hat{v}(\alpha_1) = T \text{ and } \hat{v}(\alpha_2) = T \\ F & \text{otherwise} \end{cases}$$

•
$$\hat{v}(\alpha_1 \wedge \alpha_2) = \begin{cases} T & \text{if } \hat{v}(\alpha_1) = T \text{ and } \hat{v}(\alpha_2) = T \\ F & \text{otherwise} \end{cases}$$

• $\hat{v}(\alpha_1 \vee \alpha_2) = \begin{cases} T & \text{if } \hat{v}(\alpha_1) = T \text{ or } \hat{v}(\alpha_2) = T \\ F & \text{otherwise} \end{cases}$

Propositional Logic: Semantics

$$\hat{v}(\alpha) = T$$
 is also denoted as $v \models \alpha$

A wff α is a tautology if $v \models \alpha$ for every model v, denoted as $\models \alpha$

• E.g., $p \rightarrow p$

A wff α is satisfiable if $v \models \alpha$ for some model v

• E.g., $p \land \neg q$

Theorem: α is a tautology iff. $\neg \alpha$ is unsatisfiable.

Propositional Logic: Inference

The SAT problem: How to check if α is satisfiable (or $\neg \alpha$ is a tautology)?

- Naïve algorithm: enumerate all possible models (exponentially many)
- The first known NP-complete problem (Cook 1971)
- At least as hard as all NP problems

Algorithms for the SAT problem

- Hilbert System
- Tableaux
- Resolution
- DPLL
- Natural Deduction
- Sequent Calculus