METHOD FOR CONTROLLING CONSUMABLE NOZZLE TYPE AC ARC WELDING MACHINE

Publication number: JP9108836

Publication date: 1997-04-28

Inventor:

HIRAMOTO AKIKO; TANIMOTO JUNZO; KATAYAMA

NAOHIKO

Applicant:

MATSUSHITA ELECTRIC IND CO LTD

Classification:

- international:

B23K9/173; B23K9/073; B23K9/095; B23K9/073;

B23K9/173; B23K9/06; B23K9/095; B23K9/06; (IPC1-

7): B23K9/073; B23K9/095; B23K9/173

- European:

Application number: JP19950275407 19951024 Priority number(s): JP19950275407 19951024

Report a data error here

Abstract of JP9108836

PROBLEM TO BE SOLVED: To obtain stable arc by eliminating the defective welding such as arc break at the inversion in the polarity to achieve the smooth inversion of polarity. SOLUTION: The dead time delay signal X in which the prescribed delay time is added to the period (dead time period) in which both a switching element QN for positive polarity to output the positive polarity of a secondary side inverter part 4 and a switching element QP for reverse polarity to output the reverse polarity are in the non-conductive condition (OFF condition) is prepared by a dead time delay signal output control part 20. During the period of the dear time delay signal X, the arc/short circuit detecting signal A/S to be outputted from an arc/short circuit detecting part 21 is forcibly in the arc condition so that no misjudgment of the short circuit is made though the arc/short circuit detecting part 21 is generating the arc between a welding wire 8 and a base metal 10 which is a work, and the rise of the current at the inversion of polarity is steep to control so that the current instantaneously becomes the pulse current.

Data supplied from the esp@cenet database - Worldwide

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-108836

(43)公開日 平成9年(1997)4月28日

(51) Int.Cl. ⁸		識別記号	庁内整理番号	FΙ			4	技術表示箇所
	9/073	530		B23K	9/073	5 3 0		
	9/095	5.10	8315-4E		9/095	510	Z	
		515	8315-4E			515	В	
	9/173				9/173	С		
				審査請求	未請求	請求項の数2	OL	(全 11 頁)
(21)出願番号	-	特顧平7-275407		(71)出願人		321 器産業株式会社		
(22) 出顧日		平成7年(1995)10		大阪府	門真市大字門真理	006番	t	
				(72)発明者	平本	明子		
						門真市大字門真) 式会社内	1006番	也 松下電器
				(72)発明者	育 谷本 J	頃三		
					大阪府	門真市大字門真	006番	也 松下電器
					産業株	式会社内		
				(72)発明者	5 片山 1	尚彦		
				İ	大阪府	門真市大字門真	1006番	也 松下電器
					産業株	式会社内		
				(74)代理人	、弁理士	宮井 暎夫		

(54) 【発明の名称】 消耗電極式交流アーク溶接機の制御方法

(57)【要約】

【課題】 極性反転時のアーク切れ等の溶接欠陥を解消 し、円滑な極性反転を行い、安定したアークを提供す る

【解決手段】 2次側インバータ部4の正極性出力を行う正極性用スイッチング素子QNと逆極性出力を行う逆極性用スイッチング素子QPがともに非導通状態(OFF状態)となる期間(デッドタイム期間)に所定の遅延時間を付加したデッドタイム遅延信号Xをデッドタイム遅延信号出力制御部20で作り、上記のデッドタイム遅延信号Xの期間中は、アーク・短絡検出部21が溶接ワイヤ8と被溶接物である母材10との間においてアーク発生中であるにもかかわらず短絡接触していると誤判断判定することがないように、アーク・短絡検出部21から出力されるアーク・短絡検出信号A/Sを強制的にアーク状態とし、極性反転時の電流の立ち上がりを急峻として瞬時にパルス電流となるように制御する。

【特許請求の範囲】

【請求項1】 消耗電極である溶接ワイヤと被溶接物である母材との間に、前記溶接ワイヤがプラス極性である逆極性期間と前記溶接ワイヤがマイナス極性である正極性期間とをデッドタイムを挟んで交互に繰り返す交流電圧を印加することによりアーク溶接を行い、前記溶接ワイヤが前記母材に接触短絡しているかアークを発生しているかを前記溶接ワイヤと前記母材の間に現れる電圧値から判別し、接触短絡と判別したときに短絡電流を抑制するように溶接出力電流を制御する消耗電極式交流アーク溶接機の制御方法であって、

前記デッドタイムとその後に続く所定の遅延時間の間、 接触短絡かアーク発生かの判別結果をアーク発生に強制 的に固定することを特徴とする消耗電極式交流アーク溶 接機の制御方法。

【請求項2】 消耗電極である溶接ワイヤと被溶接物である母材との間に、前記溶接ワイヤがプラス極性である逆極性期間と前記溶接ワイヤがマイナス極性である正極性期間とをデッドタイムを挟んで交互に繰り返す交流電圧を印加することによりアーク溶接を行い、前記溶接ワイヤが前記母材に接触短絡しているかアークを発生しているかを前記溶接ワイヤと前記母材の間に現れる電圧値から判別し、接触短絡と判別したときに短絡電流を抑制するように溶接出力電流を制御する消耗電極式交流アーク溶接機の制御方法であって、

前記デッドタイムとその後に続く所定の遅延時間の間、 前記デッドタイムの直前における接触短絡かアーク発生 かの判別結果を保持することを特徴とする消耗電極式交 流アーク溶接機の制御方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、消耗電極である 溶接ワイヤと被溶接物である母材との間に交流電圧を印加してアーク溶接を行う消耗電極式交流アーク溶接機の 制御方法に関するものである。溶接ワイヤと母材の間に 印加する交流電圧は、溶接ワイヤがプラス極性である逆 極性期間と溶接ワイヤがマイナス極性である正極性期間 とがデッドタイムを挟んで交互に繰り返す波形であり、 正極性期間と逆極性期間の長さの比率は例えば母材の材 質等に合わせて任意に設定できるようになっている。

[0002]

【従来の技術】図7に従来の消耗電極式交流アーク溶接機の回路ブロック図を示す。図7において、1は3相交流電源からの交流アーク溶接機の電源入力端子、2は1次インバータ部、3は溶接用トランス、4は2次インバータ部、5は電流制限用のリアクトル、6は交流アーク溶接機の出力端子、7は通電用コンタクトチップ、8は通電用コンタクトチップ7から繰り出される消耗電極である溶接ワイヤ、9は溶接アーク、10は被溶接物である母材であり、以上が消耗電極式交流アーク溶接機の主

回路部分である。

【0003】11は出力端子6に現れる溶接出力電圧V 。の大きさから、溶接ワイヤ8が母材10に接触短絡し ているかアークを発生しているかを判別し、アーク・短 格判別信号A/Sを後述の演算制御部15へ出力するア ーク・短絡検出部である。12はフィードバック制御の ために溶接出力電流I。を検出する溶接出力電流検出部 である。13は2次側インバータ部4の逆極性用スイッ チング素子QP、正極性用スイッチング案子QNのオン オフを制御する2次インバータ制御部である。14は極 性反転を円滑に行うための再点弧重畳電圧Vgp. Vgnを 印加する重畳回路部である。15は各制御を円滑かつ適 切に実施させるための演算制御部である。16は溶接電 流設定器、17は溶接電圧設定器、18は正極性比率 (消耗電極である溶接ワイヤ8がマイナス極性である期 間の比率)を設定する正極性比率設定器である。19は 1次側インバータ部2を制御する1次インバータ制御部 である。23は溶接電流検出器である。以上が消耗電極 式交流アーク溶接機の制御回路部分である。

【0004】ここで、動作について説明する。溶接開始の溶接起動信号(トーチスイッチに同期してオンオフするトーチスイッチ信号)TSが演算制御部15に入力されると、溶接電流検出部12から出力電流が無であることを確認して、2次インバータ制御部13にEN比率設定器18の設定とは無関係にEN比率0%であることを指令するとともに、1次インバータ制御部19に無負荷電圧を出力するように指令する。同時に溶接電流設定器16の設定とは無関係に円滑なアークスタートのためのスローダウンワイヤ送給速度によりワイヤ8が母材10に向かって送給され接触して溶接電流が流れて溶接アーク9を発生する。

【0005】溶接アーク9が発生すると、溶接電流検出器23を経由して溶接電流検出部12から溶接電流

「有」の情報が演算制御部15に入力される。 これによ り、演算制御部15は計数を開始して順次EN比率をE N比率設定器18の設定値となるように2次インバータ 制御部13および重畳回路部14に指令を出力する。同 時に演算制御部15は、アーク短絡検出部11から出力 されるアーク短絡判別信号A/Sを入力し、アークが発 生している場合は、溶接電流設定器16により設定され た予め演算制御部15に記憶されているEP/EN信号 を溶接電圧設定器17および正極性比率設定器18の設 定により補正したEP/EN信号を重畳回路部14およ び2次インバータ制御部13に出力する。もし、アーク 短絡判別信号A/Sがアーク短絡している場合は、正極 性比率設定器18の設定に無関係にEN比率は0%であ ること、つまりEP/EN信号をEPのみとして重畳回 路部14および2次インバータ制御部13に指令すると ともに、溶接電流検出器23を経由して溶接出力電流検 出部12から検出される溶接出力電流 I。とアーク短絡 時における出力電流を抑制する電流指令値を比較し、抑制するための電流指令値を超えることの無いEP信号を 2次インバータ制御部13に出力する。

【0006】以下、図8を用いて、従来の消耗電極式交 流アーク溶接機における制御方法を説明する。 図8は消 耗電極式交流アーク溶接機における制御タイミング図で ある。図8において、(a)は2次インバータ部4から 正極性電圧を出力させて溶接ワイヤ8をマイナス極性に し母材10をプラス極性にするための正極性期間出力信 号ENで、期間T」においてハイレベルとなり、その他 の期間はローレベルとなり、2次インバータ制御部13 から正極性用スイッチング素子QNのゲートへ与えられ る。(b)は2次インバータ部4から逆極性電圧を出力 させて溶接ワイヤ8をプラス極性にし母材10をマイナ ス極性にするための逆極性期間出力信号EPで、期間T 2 においてハイレベルとなり、その他の期間はローレベ ルとなり、2次インバータ制御部13から逆極性用スイ ッチング素子QPのゲートへ与えられる。正極性期間出 力信号ENおよび逆極性期間出力信号EPの両方が同時 にローレベルとなっている期間t』、つまり正極性期間 出力信号ENが立ち下がった後逆極性期間出力信号EP が立ち上がるまでの期間および逆極性期間出力信号EP が立ち下がった後正極性期間信号ENが立ち上がるまで の期間はデッドタイムとなっている。

【0007】ここで、演算制御部15から2次インバータ制御部13および重畳回路部14を介して2次インバータ部4へ供給されている信号波形について図9および図10を参照して説明する。図9は、図7における重畳回路部14の回路構成を具体的に示す一方、演算制御部15と2次インバータ制御部13と1次インバータ制御部19とをひとまとめにして制御回路部30として示し、溶接電流設定器16,溶接電圧設定器17および正極性比率設定器18とアーク・短絡検出部21の図示を省略したものであり、実質的に図7の回路と同じである。31はトーチスイッチを示している。

【0008】重畳回路部14は、逆極性重畳回路部14Aと正極性重畳回路部14Bとからなる。逆極性重畳回路部14Aは、逆極性用直流電源E₁と逆極性用スイッチング素子Q_{EP2}と抵抗R_{P1}とダイオードD_{P1}と平滑用コンデンサC_{P1}とからなる。また、正極性重畳回路部14Bは、逆極性用直流電源E₂と逆極性用スイッチング素子Q_{EN2}と抵抗R_{N1}とダイオードD_{N1}と平滑用コンデンサC_{N1}とからなる。

【0009】制御回路部30は、2次インバータ部4の正極性用スイッチング素子QENI に対して電圧VQNI を印加し、逆極性用スイッチング素子QEPI に対して電圧 VQPI を印加し、正極性重畳回路部14Bに対して電圧 VQN2 を印加し、逆極性重畳回路部14Aに対して電圧 VQP2 を印加するようになっている。上記以外の点は図7の回路と同様である。

【0010】図10は図9の各部の信号波形を示すタイムチャートであり、(a)は溶接出力電圧V。を示し、(b)は溶接出力電流 I。を示している。(c),

(d), (e), (f)は逆極性用スイッチング素子Q $_{\rm EP1}$, 正極性用スイッチング素子 $_{\rm CEN1}$, 逆極性用スイッチング素子 $_{\rm CEN2}$ および正極性用スイッチング素子Q $_{\rm EN2}$ のオンオフ状態を示している。(g)は逆極性用スイッチング素子Q $_{\rm EN2}$ に流れる電流 $_{\rm IP2}$ を示し、(h)は正極性用スイッチング素子Q $_{\rm EN2}$ に流れる電流 $_{\rm IP2}$ を示している。(i)は平滑コンデンサ $_{\rm CEP}$ の両端に生じる電圧 $_{\rm VCP}$ を示し、(j)は平滑コンデンサ $_{\rm EP}$ の両端に生じる電圧 $_{\rm CN}$ を示している。 $_{\rm EP}$ は逆極性期間であり、 $_{\rm EN}$ は正極性期間であり、 $_{\rm EN}$ は両期間 $_{\rm EP}$ および $_{\rm EN}$ の和である。

【〇〇11】上記のデッドタイムは、正極性出力を行う正極性用スイッチング素子QENI と逆極性出力を行う逆極性用スイッチング素子QEPI がともに非導通状態(〇FF状態)となる期間であり、スイッチング動作の遅れによって2次側インバータ部4の正極性出力を行う正極性用スイッチング素子QENI と逆極性出力を行う逆極性用スイッチング素子QEPI がともに導通状態(〇N状態)となり、スイッチング素子QENI 、QEPI を破壊することを防止するために設けられている。

【0012】図8において、(c)は、同図(a),

(b) のような正極性期間出力信号ENおよび逆極性期 間出力信号EPを正極性用スイッチング素子QENIおよ び逆極性用スイッチング索子Q FPI のゲートへ与えたと きの溶接出力電流 I 。を示し、(d)はアーク・短絡検 出部11から出力されるアーク・短絡判別信号A/Sを 示している。Aはアーク信号で、Sは短絡信号である。 【0013】図8から、正極性用スイッチング素子Q RNI と逆極性用スイッチング素子QRPI がともに非導通 状態(OFF状態)となる期間(デッドタイム)t₁に おいて、アーク・短絡検出部11が消耗電極式交流アー ク溶接機の状態を誤判別してアーク・短絡判別信号A/ Sを短絡信号Sの状態とし、これによって極性反転の際 に、つまり正極性期間から逆極性期間への切り替え、あ るいは逆極性期間から正極正期間への切り替えの際に、 短絡解除のための短絡電流抑制制御(ディップ制御)が 動作して、溶接出力電流Ⅰ。の立ち上がりを抑制して短 絡解除後にパルス電流とする制御が行われる。このよう な誤判別が生じるのは、デッドタイムの期間t」におい て、出力端子6に現れる溶接出力電圧V。が短絡時と同 様に零になるからである。

【0014】なお、短絡解除のための短絡電流抑制制御 (ディップ制御)は、上記した極性反転の時だけでな く、当然出力端子6が短絡状態となったときに動作し、 短絡を解除する動作を行うものであり、溶接ワイヤ8と 被溶接物である母材10が接触短絡して短絡時の電流立 ち上がりによるスパッタ発生を抑制し、短絡から円滑に アーク再生を可能とするものである。

【0015】上記したように、従来の消耗電極式交流アーク溶接では、溶接アークが極性反転する毎に消弧し、再アーク発生をする形態をとるため、極性反転の際、アーク発生中であっても、アーク・短絡検出部11にて、溶接ワイヤ8と被溶接物である母材10が接触短絡していると誤判別して短絡信号Sを出力することにより、短絡電流抑制制御(ディップ制御)が駆動し、極性反転時の電流立ち上がりが抑制されて円滑な極性反転が困難となり、アーク切れが発生して不安定なアークとなることが多い。

[0016]

【発明が解決しようとする課題】上記した従来の消耗電極式交流アーク溶接機の制御方法では、溶接アークが極性反転の際、つまりアークが消弧する際に、アーク・短絡検出部11が溶接ワイヤ8と被溶接物である母材10との間においてアーク発生中であるにもかかわらず接触短絡であると誤判別し短絡信号Sを出力するため、極性反転の際に、短絡解除のための短絡電流抑制制御(ディップ制御)が動作し電流立ち上がりを抑制して、円滑な極性反転が困難となりアーク切れが多発して不安定なアークとなるという問題を有していた。

【0017】この発明の目的は、極性反転時におけるアーク切れによるアーク不安定等の溶接欠陥を解消し、円滑な極性反転をすることができる消耗電極式交流アーク溶接機の制御方法を提供することである。

[0018]

【課題を解決するための手段】請求項1記載の消耗電極式交流アーク溶接機の制御方法は、消耗電極である溶接ワイヤと被溶接物である母材との間に、溶接ワイヤがプラス極性である逆極性期間と溶接ワイヤがマイナス極性である正極性期間とをデッドタイムを挟んで交互に繰り返す交流電圧を印加することによりアーク溶接を行い、溶接ワイヤが母材に接触短絡しているかアークを発生しているかを溶接ワイヤと母材の間に現れる電圧値から判別し、接触短絡と判別したときに短絡電流を抑制するように溶接出力電流を制御する際に、デッドタイムとその後に続く所定の遅延時間の間、接触短絡かアーク発生かの判別結果をアーク発生に強制的に固定することを特徴とする。

【0019】上記構成により、溶接ワイヤと母材の間に加えられる交流電圧の極性が反転する際に、デッドタイムとその後に続く所定の遅延時間の間、接触短絡かアーク発生かの判別結果をアーク発生に強制的に固定するので、溶接ワイヤと母材との間において、アーク発生中であるにもかかわらず接触短絡であると誤判断し、その結果短絡電流抑制制御(ディップ制御)が動作して極性反転時の電流の立ち上がりを抑制するということはなくなり、極性反転時の電流立ち上がりを急峻にしてパルス電流に移行し、円滑な極性反転が可能となり安定したアー

クを発生させることができる.

【0020】請求項2記載の消耗電極式交流アーク溶接機の制御方法は、消耗電極である溶接ワイヤと被溶接物である母材との間に、溶接ワイヤがプラス極性である逆極性期間と溶接ワイヤがマイナス極性である正極性期間とをデッドタイムを挟んで交互に繰り返す交流電圧を中加することによりアーク溶接を行い、溶接ワイヤが母材に接触短絡しているかアークを発生しているかを溶接ワイヤと母材の間に現れる電圧値から判別し、接触短絡と判別したときに短絡電流を抑制するように溶接出力電流を制御する際に、デッドタイムとその後に続く所定の遅延時間の間、デッドタイムの直前における接触短絡かアーク発生かの判別結果を保持することを特徴とする。

【0021】上記構成により、溶接ワイヤと母材の間に加えられる交流電圧の極性が反転する際に、デッドタイムとその後に続く所定の遅延時間の間、デッドタイムの直前における接触短絡かアーク発生かの判別結果を保持するので、溶接ワイヤと母材との間において、アーク発生中であるにもかかわらず接触短絡であると誤判断し、その結果短絡電流抑制制御(ディップ制御)が動作して極性反転時の電流の立ち上がりを抑制するということはなくなり、極性反転時の電流立ち上がりを急峻にしてパルス電流に移行し、円滑な極性反転が可能となり安定したアークを発生させることができる。しかも、極性反転の直前において接触短絡が生じていた場合において、デッドタイムに入った途端に短絡電流抑制制御(ディップ制御)が停止するという不都合もなくなる。

[0022]

【発明の実施の形態】

[第1の実施の形態]以下、この発明の第1の実施の形態について図面を参照しながら説明する。図1にこの発明の第1の実施の形態における消耗電極式交流アーク溶接機の主回路および制御回路の回路ブロック図を示す。図1において、1は3相交流電源からの交流アーク溶接機の電源入力端子、2は1次インバータ部、3は溶接用トランス、4は2次インバータ部、5は電流制限用のリアクトル、6は交流アーク溶接機の出力端子、7は通電用コンタクトチップ、8は通電用コンタクトチップでから繰り出される消耗電極である溶接ワイヤ、9は溶接アーク、10は被溶接物である母材であり、以上が本実施の形態における消耗電極式交流アーク溶接機の主回路部分である。

【0023】 12はフィードバック制御のために溶接出力電流 I_0 を検出する溶接出力電流検出部である。 13は2次側インバータ部4の逆極性用スイッチング素子QEPI、正極性用スイッチング素子QEPI、のオンオフを制御する 2次インバータ制御部である。 14は極性反転を円滑に行うための再点弧重畳電圧 V_{EP} 、 V_{EN} を印加する重畳回路部である。 15は各制御を円滑かつ適切に実施させるための演算制御部である。 16は溶接電流設定

器、17は溶接電圧設定器、18は正極性比率(消耗電 極である溶接ワイヤ8がマイナス極性である期間の比 率)を設定する正極性比率設定器である。19は1次側 インバータ部2を制御する1次インバータ制御部であ る。20はデッドタイムとその後に続く所定の遅延時間 の間デッドタイム遅延信号Xをハイレベルとするデッド タイム遅延信号出力制御部であり、21は出力端子6に 現れる溶接出力電圧V。の大きさから、溶接ワイヤ8が 母材10に接触短絡しているかアークを発生しているか を判別し、アーク・短絡判別信号A/Sを出力するとと もに、デッドタイム遅延信号出力制御部20のデッドタ イム遅延信号Xがハイレベルの期間、アーク・短絡判別 信号A/Sをアーク信号Aの状態に強制的に固定するア ーク・短絡検出部である。以上が本実施の形態における 消耗電極式交流アーク溶接機の制御回路部分であり、ア ーク・短絡検出部21が従来のアーク・短絡検出部11 から変更されている点と、デッドタイム遅延信号出力制 御部20を追加した点が従来例と異なる。このデッドタ イム遅延信号出力制御部20は、演算制御部15が計数 を開始して順次EN比率をEN比率設定器18の設定値 となるように2次インバータ制御部13および重畳回路 部14に指令を出力するときに、同時に演算制御部15 から指令が与えられる。

【0024】図2はアーク・短絡検出部21の具体的な 構成およびデッドタイム遅延信号出力制御部20を示す ブロック図である。図2において、消耗電極式交流アー ク溶接機の2次インバータ部4の正極性出力を行う正極 性用スイッチング索子QRNIの駆動信号である正極性出 力信号ENと逆極性出力を行う逆極性用スイッチング素 子Q_{RP1}の駆動信号である逆極性出力信号EPがデッド タイム遅延信号出力制御部20に入力され、デッドタイ ム遅延信号出力制御部20よりデッドタイム遅延信号X が出力される。そして、出力されたデッドタイム遅延信 号Xと消耗電極式交流溶接機の溶接出力電圧V₀の論理 素子21aによるOR論理でアーク · 短絡検出信号A/ Sを出力する。つまり、溶接出力電圧V。が論理素子2 1 aの入力しきい値より高いとき、またはデッドタイム 遅延信号Xがハイレベルのときにアーク信号A(ハイレ ベル)を出力し、溶接出力電圧V。が論理素子21aの 入力しきい値より低くかつデッドタイム遅延信号Xがロ ーレベルのときに短絡信号S(ローレベル)を出力す る。言い換えると、溶接出力電圧V。がしきい値より低 いときは短絡信号Sを出力し、しきい値より高いときは アーク信号Aを出力し、デッドタイム遅延信号Xがハイ レベル(デッドタイムとその後に続く所定の遅延時間の 間)になると、アーク・短絡判別信号A/Sをアーク信 号Aの状態に強制的に固定する。

【0025】図3は、デッドタイム遅延信号出力制御部 20の具体的な構成を示すブロック図である。図3において、201は正極性出力信号ENと逆極性出力信号E Pの否定論理和をとる論理索子(NOR論理)、202 は所定の遅延時間が設定されて論理索子201の出力信 号の後縁を遅延させる遅延回路である。この論理索子 (NOR論理)201により、正極性出力信号ENおよ び逆極性出力信号EPから論理結果信号X'が作成され る。この論理結果信号X'が遅延回路202に通される ことにより、先に述べたデッドタイム遅延信号Xが出力 される。

【0026】 【表1】

EN	EP	X'	
L	L	Н	
L.	Н	L	
Н	L	L	
Н	Н	L	

【0027】以上のように構成された消耗電極式交流アーク溶接機について、図4を用いてその動作を説明する。図4において、(a)は図8(a)と同じ正極性期間出力信号ENであり、(b)は図8(b)と同じ逆極性期間出力信号EPである。(c)はデッドタイム遅延信号Xであり、正極性期間出力信号ENおよび逆極性期間出力信号EPがともにローレベルの期間 t_1 とその他の期間はローレベルとなっている。(d)は溶接出力電流 I_0 で、図8(c)の溶接出力電流 I_0 に比べると、デッドタイムにおける立ち上がり、立ち下がりが急峻になっている。(e)はアーク・短絡判別信号A/Sであり、図8(d)の場合とは異なり、推続的にアーク信号A(ハイレベル)の状態となっている。ただし、この波形は接触短絡が起きていないことを条件とする。

【0028】まず、正極性出力を行う正極性用スイッチング素子 Q_{EN1} と逆極性出力を行う逆極性用スイッチング素子 Q_{EP1} がともに非導通状態(OFF状態)となる期間(デッドタイム)、つまり正極性出力信号ENおよび逆極性出力信号EPがともにローレベルとなる期間(デッドタイム) t_1 に、遅延時間 t_π を付加したデッドタイム遅延信号Xをデッドタイム遅延信号出力制御部20により作り、これをデッドタイム遅延期間 T_π とする。以下にデッドタイム遅延期間の式を示す。

【0029】(デッドタイム遅延期間)=(デッドタイム)+(遅延時間) つまり、

 $T_x = t_1 + t_x$ (極性反転時)

上記においては、デッドタイムだけでなく、その直後の 遅延時間txも、強制的にアーク信号Aの状態にしてい ますが、その理由について説明する。デッドタイム時の みアーク信号とした場合、制御の誤差において、デッド タイムの切り換わり時にアーク短絡信号を出力する可能 性、つまり誤判定の可能性があるため、遅延時間を設 け、その間もアーク判定とするのである。

【0030】このデッドタイム遅延期間Tx 中は、アーク・短絡検出部21が溶接ワイヤ8と被溶接物である母材10との間において、アーク発生中であるにもかかわらず短絡接触していると誤判別して短絡信号Sを出力し、短絡電流抑制制御(ディップ制御)が動作して極性反転時の電流の立ち上がりを抑制することがないように、アーク・短絡検出部21から出力されるアーク・短絡検出信号A/Sを強制的にアーク信号Aを出力する状態とし、極性反転時の電流の立ち上がりを急峻として瞬時にバルス電流とすることができる。

【0031】この実施の形態によれば、溶接ワイヤ8と母材10の間に加えられる交流電圧の極性が反転する際に、デッドタイムとその後に続く所定の遅延時間の間、接触短絡かアーク発生かの判別結果をアーク発生に強制的に固定するので、溶接ワイヤ8と母材10との間において、アーク発生中であるにもかかわらず接触短絡であると誤判断し、その結果短絡電流抑制制御(ディップ制御)が動作して極性反転時の電流の立ち上がりを抑制するということはなくなり、極性反転時の電流立ち上がりを急峻にしてパルス電流に移行し、円滑な極性反転が可能となり安定したアークを発生させることができる。

【0032】(第2の実施の形態)以下、この発明の第 2の実施の形態について図面を参照しながら説明する。 図5にアーク・短絡検出部22の具体的な構成を示す。 図5において、Vo は溶接電圧で、Xはデッドタイム遅 延信号で、A/Sはアーク・短絡検出信号で、以上は図 2の構成と同様なものである。図2の構成と異なるのは アーク・短絡検出信号A/Sを出力するアーク・短絡検 出部22を、Dフリップフロップ22aと論理素子(A ND論理) 22bと論理素子(OR論理) 22cとを用 いて、デッドタイムおよびその直後の所定の遅延時間の 間は、極性反転直前のアーク・短絡状態に準ずるように した点である。 つまり、アーク・短絡検出部22は、極 性反転直前のアーク・短絡判別信号A/Sの状態をデッ ドタイムおよびその直後の所定の遅延時間の間、保持す るようにしたもので、その他の構成は図1の実施の形態 と同様である。

【0033】上記のように構成されたアーク・短絡検出部11について、図6を参照しながら、以下その動作を説明する。図6において、(a)はデッドタイム遅延信号Xを示し、(b)は溶接出力電圧V。を示し、(c)はDフリップフロップ22aの出力信号Qを示し、

- (d)は論理素子22bの反転出力信号Q'を示し、
- (e)はアーク・短絡判別信号A/Sを示している。

【0034】動作について説明すると、まず、溶接出力 電圧V。とデッドタイム遅延信号Xを各々Dフリップフロップ22aのデータ入力端子Dとクロック入力端子C Kとそれぞれに入力し、このDフリップフロップ22aの出力信号Qとデッドタイム遅延信号XとのAND論理を論理素子22bによってとり、このAND論理の結果Q'と溶接出力電圧V。の論理素子22cによるOR論理により、図6のアーク・短絡検出部21の制御タイミング図に示すように、溶接出力電圧V。が極性反転直前でアーク発生中と判別した場合は、その後のデッドタイムおよびその直後の遅延時間の期間はアーク・短絡検出信号A/Sを下ーク状態(アーク信号Sの状態)とし、極性反転直前より出力溶接電圧V。が短絡であると判別した場合は、同様の期間アーク・短絡検出信号A/Sを短絡状態(短絡信号Sの状態)とする。なお、Mはデッドタイムで、溶接出力電圧V。が零になっている期間である。

【0035】以上のように、アーク・短絡判別信号A/Sを、Dフリップフロップ22aと論理素子22b、22cとを用いることにより極性反転直前のアーク・短絡状態に準ずること、つまり極性反転直前におけるアーク・短絡判別信号A/Sの状態を保持することができる。言い換えると、極性反転直前でアーク発生しているときは、アーク発生の状態を保持し、極性反転直前にアークが生じると、短絡の状態を保持する。

【0036】上記構成により、溶接ワイヤ8と母材10の間に加えられる交流電圧の極性が反転する際に、デッドタイムとその後に続く所定の遅延時間の間、デッドタイムの直前における接触短絡かアーク発生かの判別結果を保持するので、溶接ワイヤ8と母材10との間において、アーク発生中であるにもかかわらず接触短絡であると誤判断し、その結果短絡電流抑制制御(ディップ制御)が動作して極性反転時の電流の立ち上がりを抑制するということはなくなり、極性反転時の電流立ち上がりを急峻にしてパルス電流に移行し、円滑な極性反転が可能となり安定したアークを発生させることができる。しかも、極性反転の直前において接触短絡が生じていた場合において、デッドタイムに入った途端に短絡電流抑制制御(ディップ制御)が停止するという不都合もなくなる。

[0037]

【発明の効果】請求項1記載の消耗電極式交流アーク溶接機の制御方法によれば、極性反転時においてアーク短絡検出部がアーク発生中であるにもかかわらず溶接ワイヤと被溶接物である母材が接触短絡であると誤判断し、短絡信号を出力して短絡電流抑制制御(ディップ制御)により電流の立ち上がりが抑制されてアーク切れが発生し極性反転が困難となりアークが不安定となることはなく、電流の立ち上がりが急峻となり瞬時にパルス電流となるためアーク切れもなく円滑な極性反転が可能となり、指向性の良い安定したアークを実現できるものである。

【0038】請求項2記載の消耗電極式交流アーク溶接

機の制御方法によれば、極性反転時においてアーク・短絡検出部がアーク発生中であるにもかかわらず溶接ワイヤと被溶接物である母材が接触短絡であると誤判断し、短絡信号を出力して短絡電流抑制制御(ディップ制御)により電流の立ち上がりが抑制されてアーク切れが発生し極性反転が困難となりアークが不安定となることはなく、電流の立ち上がりが急峻となり瞬時にパルス電流となるためアーク切れもなく円滑な極性反転が可能となり、指向性の良い安定したアークを実現できるものである。しかも、極性反転の直前において接触短絡が生じていた場合において、デッドタイムに入った途端に短絡電流抑制制御(ディップ制御)が停止するという不都合もなくなる。

【図面の簡単な説明】

【図1】この発明の第1の実施の形態における消耗電極 式交流アーク溶接機の構成を示す回路ブロック図であ る。

【図2】この発明の第1の実施の形態におけるアーク・ 短絡検出部の具体構成を示すブロック図である。

【図3】この発明の第1の実施の形態におけるデッドタイム遅延信号出力制御部の具体構成を示すブロック図である。

【図4】この発明の第1の実施の形態における消耗電極式交流アーク溶接機による制御タイミング図である。

【図5】この発明の第2の実施の形態におけるアーク・ 短絡検出部の具体構成を示すブロック図である。

【図6】この発明の第2の実施の形態における消耗電極 式交流アーク溶接機によるアーク・短絡検出信号の制御 タイミング図である。

【図7】従来の消耗電極式交流アーク溶接機の構成を示す回路ブロック図である。

【図8】従来の消耗電極式交流アーク溶接機による制御 タイミング図である。

【図9】従来の消耗電極式交流アーク溶接機の構成を示

す回路図である。

【図10】図10の消耗電極式交流アーク溶接機の各部 の信号のタイムチャートである。

【符号の説明】

- 1 アーク溶接機の電源入力端子
- 2 1次インバータ部
- 3 溶接用トランス
- 4 2次インバータ部
- 5 リアクトル
- 6 溶接電源の出力端子
- 7 通電用コンタクトチップ
- 8 消耗電極である溶接用ワイヤ
- 9 溶接アーク
- 10 被溶接物である母材
- 11 アーク・短絡検出部
- 12 溶接電流検出部
- 13 2次インバータ制御部
- 14 重畳回路部
- 15 演算制御部
- 16 溶接電流設定器
- 17 溶接電圧設定器
- 18 正極性比率設定器
- 19 1次インバータ制御部
- 20 デッドタイム遅延信号出力制御部
- 21 アーク・短絡検出部
- 21a 論理素子
- 22 アーク・短絡検出部
- 22a Dフリップフロップ
- 22b 論理素子
- 22c 論理素子
- 23 溶接電流検出器
- 201 論理素子(NOR論理)
- 202 遅延回路

【図2】

【図3】

【図1】

【図9】

[図7]

. .

【図10】

