

存储云服务 - 弹性文件服务

前言

• 本章主要讲述华为云服务中弹性文件服务 (SFS) 产品。

- 学完本课程后,您将能够:
 - 。描述华为云服务中SFS产品
 - 。掌握SFS的概念、功能和场景
 - 。掌握SFS的优势和计费标准
 - 。了解SFS常见问题及解答

目录

- 1. SFS简介
- 2. SFS使用管理
- 3. SFS约束与限制
- 4. SFS常见问题
- 5. SFS故障案例

SFS概述

• 弹性文件服务 (Scalable File Service, SFS) 提供按需扩展的高性能文件存储,可供云上多个弹性云服务器 (Elastic Cloud Server, ECS) 共享访问。弹性文件服务为用户提供一个完全托管的共享文件存储,能够弹性伸缩至PB规模,具备高可用性和持久性,为海量数据、高带宽型应用提供有力支持。

弹性文件服务产品架构

- 用户可以通过配置项指定待创建的文件存储归属的区域、可用区以及VPC。
- 归属于同一个VPC的各个可用 区内的云文件服务器可以跨可 用区访问已申请的文件存储。 如果用户的业务对时延有极高 要求,业务应避免跨可用区内 访问文件存储。

SFS的功能优势

- 文件共享
- 弹性扩展
- 高性能、高可靠性
- 无缝集成
- 操作简单、低成本

SFS典型场景

• 高性能计算

在仿真实验、生物制药、基因测序、图像处理、科学研究、气象预报等涉及高性能计算解决大型计算问题的行业,弹性文件系统为其计算能力、存储效率、网络带宽及时延提供重要保障。

• 媒体处理

在此类场景中,众多工作站会参与到整个节目制作流程中,它们可能使用不同的操作系统,需要基于高带宽、低时延的文件系统共享素材。

文件共享

企业内部员工众多,而且需要共享和访问相同的文档和数据,这时可以通过文件服务创建文件系统来实现这种共享访问。

• 内容管理和Web目录

文件服务可用于各种内容管理系统,为网站、主目录、在线发行、存档等各种应用提供共享文件存储。

• 大数据和分析应用程序

文件系统能够提供高于10GBps的聚合带宽,可及时处理诸如卫星影像等超大数据文件。同时文件系统具备高可靠性,避免系统失效影响业务的连续性。

SFS的计费标准

- 弹性文件服务按使用的存储容量计费,提供按需、包年包月两种计费方式。
- 弹性文件服务默认为按需计费,即按实际使用的存储容量和时长收费,不设最低消费标准。以小时为单位,整点结算。结算时,时长不足1小时的,按1小时计费。
- 资源包以GB和TB为单位,购买时长以月和年为单位。选购包年包月套餐时需要结合资源包规格、使用时长和存储量三方面合理规划。

SFS与其他服务关系

- 文件系统可以挂载到同一项目下的不同弹性云服务器(ECS)上进行文件共享。弹性文件服务需要使用统一身份认证(Identity and Access Management, IAM)进行用户身份管理和云端资源访问控制。同时由密钥管理服务(Key Management Service, KMS)为文件系统提供加密功能,由云监控(Cloud Eye)对文件系统的性能指标进行监控。
- 与弹性文件服务相关的服务包括:
 - 。弹性云服务器 (ECS)
 - 。虚拟私有云 (VPC)
 - 。统一身份认证 (IAM)
 - 。密钥管理服务 (KMS)

SFS基本概念

• NFS (Network File System) , 即网络文件系统

NFS (Network File System) ,即网络文件系统。一种使用于分散式文件系统的协议,通过网络让不同的机器、不同的操作系统能够彼此分享数据。

CIFS (Common Internet File System)

CIFS (Common Internet File System),通用Internet文件系统,是一种网络文件系统访问协议。CIFS是公共的或开放的SMB协议版本,由微软公司使用,它使程序可以访问远程Internet计算机上的文件并要求此计算机提供服务。通过CIFS协议,可实现Windows系统主机之间的网络文件共享。

• 文件系统

文件系统通过标准的NFS协议和CIFS协议为客户提供文件存储服务,用于网络文件远程访问,用户通过管理控制台创建共享路径后,即可在多个云服务器上进行挂载,并通过标准的POSIX接口对文件系统进行访问。

• AZ, 可用分区 (Availability Zone)

可用分区(Availability Zone)是同一服务区内,电力和网络互相独立的地理区域,一般是一个独立的物理机房,这样可以保证可用分区的独立性。一个地域内有多个可用分区,一个可用分区发生故障后不会影响同一地域内的其它可用分区,可用分区间通过内网访问。云服务器可在同一地域内跨多AZ共享一个文件系统。

• 地域 (Region) 是一个地理区域的概念

地域是一个地理区域的概念。根据地理位置的不同划分为多个不同的地域。选择地域时通常根据就近原则进行选择,这样可以减少访问服务的网络时延,提高访问速度。

目录

- 1. SFS简介
- 2. SFS使用管理
- 3. SFS约束与限制
- 4. SFS常见问题
- 5. SFS故障案例

SFS创建流程

- 创建文件系统
- 挂载文件系统到云服务器
- 管理VPC
- 创建加密文件系统
- 删除文件系统

• 创建文件系统

①单击创建文件系统

③确认资源信息

②配置文件系统参数

• 挂载文件系统到云服务器

①远程登录弹性云服务器

	名称/ID	可用区	状态	规格/镜像	IP地址	计费模式	企业项目	操作
	CC-0002 794743ff-eb1e-4a99-b5b6-cfc	可用区1	→ 运行中	1vCPUs 4GB s1.medium HEC-Public-ubuntu-12.04LTS	192.168.0.26 (私有)	按需计费		远程登录 更多▼

②使用root帐号密码登录该云服务器

③执行挂载命令,挂载成功后,可查看已挂载的文件系统

```
rootWecs-be39 / IN mount -1
 ysfs on /sys type sysfs (rw.noswid.nodev.noexec.relatime)
 roc on /proc type proc (rw,noswid,nodev,noexec,relatime)
  evtmpfs on /dev type devtmpfs (rw.nosuid.size=490808k.nr_inodes=124528.mode=755)
ecurityfs on /sys/kernel/security type securityfs (rw.nosuid.nodev.noexec.relatime)
mpfs on /dev/shm type tmpfs (rw.nosuid.nodev)
evpts on /dev/pts type devpts (rw.noswid.noexec.relatime.gid=5,mode=620,ptmomode=688)
mpfs on /run type tmpfs (rw.noswid.nodev.mode=755)
 mpfs on /sys/fs/cgroup type tmpfs (ro,nosuid,nodev,noexec,mode=755)
 group on /sys/fs/cgroup/systemd type cgroup (rw.noswid.nodev.noexec.relatime.xattr.release_egent=/usr/lib/systemd/systemd-cgroup
  -agent, name = systemd)
  tore on /sys/fs/pstore type pstore (rw.noswid.nodev.noexec.relatime)
group on /sys/fs/cgroup/freezer type cgroup (rw.nosuid.nodev.noexec.relatime.freezer)
group on /sys/fs/cgroup/devices type cgroup (rw.nosuid.nodev.noexec.relatime.devices)
group on /sys/fs/cgroup/net_cls.net_prio type cgroup (rw.nosuid.nodev.noexec.relatime.net_prio.net_cls)
 group on /sys/fs/cgroup/perf_event type cgroup (rw.nosuid.nodev.noexec.relatime.perf_event)
 group on /sys/fs/cgroup/memory type cgroup (rw,nosmid,nodev,noexec.relatime,memory)
group on /sys/fs/cyroup/blkio type cyroup (rw.nosuld.nodev.nossec.relatime.blkio)
group on /sys/fs/cyroup/cpu.cynacct type cyroup (rw.nosuld.nodev.nossec.relatime.cynacct.cyn)
group on /sys/fs/cyroup/plds type cyroup (rw.nosuld.nodev.nossec.relatime.plds)
group on /sys/fs/cgroup/puset type cyroup (rw.nosmid.nodev.noexec.relatime.puset)
group on /sys/fs/cgroup/bugetlb type cyroup (rw.nosmid.nodev.noexec.relatime.bugetlb)
configfs on /sys/kernel/config type configfs (rw.relatime)
  dev/vda1 on / type ext3 (rw,relatime,data@ordered)
 ustemd-1 on /proc/sys/fs/binfmt_misc type autofs (rw.relatime.fd=28.pgrp=1.timeout=8.minproto=5.maxproto=5.direct.pipe_ino=9665
lebugfs on /sys/kernel/debug type debugfs (rw.relatime)
mqueue on /dev/mqueue type mqueue (rw.relatime)
mugetlbfs on /dev/mydepages type hwgetlbfs (rw.relatime)
suncpc on /var/lib/mfs/rpc_pipefs type rpc_pipefs (rw.relatime)
sfsd on /proc/fs/mfsd type mfsd (rw.relatime)
tmpfs on /run/wser/8 type tmpfs (rw.moswid.modev.relatime.size=181588k.mode=789)
  fs-mas1.cm-morth-1.mg/mawelcloud.com:/share-7588c5d8 on /local_path type mfs (rw,relatime,vers=3,rsize=1848576,wsize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msize=1848576,msi
mlen-255, hard, molock, proto-tcp, timen-688, retrans-2, sec=sys, mountaddr=188.125.16.91, mountvers-3, mountport-2858, mountproto-mdp, lo
nl lock-all, addr=188.125.16.91)
```


• 管理VPC

①选择目标文件系统

③添加所需VPC,可多选

②选择权限列表页签下的添加VPC

- 创建加密文件系统
- ①单击创建文件系统

③确认资源信息

②勾选加密,选择加密密钥

• 删除文件系统

①单击目标文件系统操作列下的删除

②确认删除信息

自录

- 1. SFS简介
- 2. SFS使用管理
- 3. SFS约束与限制
- 4. SFS常见问题
- 5. SFS故障案例

SFS约束与限制

- 弹性文件服务包含如下的约束和限制:
 - 。 SFS容量型支持NFSv3协议和CIFS协议。 SFS Turbo目前只支持NFSv3协议。
 - 弹性文件服务暂时不支持复制功能。
 - 下面列出了几种操作系统可支持文件系统挂载的版本范围。

类型	版本范围				
CentOS	CentOS 5,6,7 for x86				
Debian	Debian GNU/Linux 6,7,8,9 for x86				
Oracle	Oracle Enterprise Linux 5,6,7 for x86				
Red Hat	Red Hat Enterprise Linux 5,6,7 for x86				
SUSE	SUSE Linux Enterprise Server 10,11,12 for x86				
Ubuntu	Ubuntu 10,11,12,13,14,15 LTS for x86				
Euler	Euler OS 2				
Fedora	Fedora 24,25				
OpenSUSE	OpenSUSE 42				
Windows	Windows Server 2008,2008 r2,2012,2012 r2,2016 for x64; Windows 7,8,10				

目录

- 1. SFS简介
- 2. SFS使用管理
- 3. SFS约束与限制
- 4. SFS常见问题
- 5. SFS故障案例

常见问题 (1/3)

- 文件系统支持Windows系统云服务器挂载吗?
 - 。文件系统已支持在Windows操作系统的云服务器上实现挂载。
- 弹性文件服务支持哪些访问协议?
 - 。SFS容量型支持标准的NFSv3协议和CIFS协议。SFS容量型和SFS Turbo均支持标准的NFSv3协议。
- 在文件系统中存放的单个文件最大支持多少?
 - 。SFS容量型文件系统支持存放最大为240TB的单个文件。SFS Turbo文件系统支持存放最大为16TB的单个文件。
- 每个帐户最多可以创建多少个文件系统?
 - 。目前每个帐户可创建最多10个共享文件系统,且支持同时创建。

常见问题 (2/3)

- 文件系统访问权限怎么控制?
 - 。SFS容量型文件系统可被多个VPC下的云服务器共享使用。当云服务器挂载该文件系统,即可实现文件共享。通过对VPC中授权的IP地址或地址段的设置,从而控制其他VPC下的云服务器访问该文件系统。
 - 。SFS Turbo文件系统仅可被同一VPC下云服务器共享使用。当云服务器挂载该文件系统,即可实现文件共享,并阻止其他VPC下的云服务器访问。
- 如何确认Linux服务器上的文件系统处于可用状态?
 - 。以root用户登录云服务器云主机,执行如下命令,将会回显指定域名下所有可用的文件系统。
 - showmount -e 文件系统域名

常见问题 (3/3)

- 如何从云服务器访问文件系统?
 - 。要访问您的文件系统,如果是Linux云服务器,您需要在Linux云服务器上安装NFS客户端后使用挂载命令挂载文件系统;如果是Windows云服务器,您需要在Windows云服务器上安装NFS客户端,修改NFS传输协议后使用挂载命令挂载文件系统。挂载完成后,可共享您的文件系统中的文件和目录。
- 能否跨VPC访问文件系统?
 - 。SFS容量型文件系统可以跨VPC访问文件系统,具体请参见管理VPC。
 - 。SFS Turbo文件系统只能在同一个VPC下的相同或不同可用分区间访问。

目录

- 1. SFS简介
- 2. SFS使用管理
- 3. SFS约束与限制
- 4. SFS常见问题
- 5. SFS故障案例

故障案例 (1/2)

- 使用mount命令挂载文件系统到云服务器, 云服务器系统提示 "timed out"
 - 公有云网络状态不稳定或首次访问该服务,导致路由超时,可以将超时时间延长或者重试挂载命令。
 - 。云服务器DNS配置错误,导致解析不到文件系统的域名,挂载失败。
- 使用mount命令挂载文件系统到云服务器, 云服务器提示 "access denied", 挂载失败
 - 。文件系统已被删除。
 - □ 执行挂载命令的云服务器和被挂载的文件系统必须在同一VPC下,请查看当前是否为同一个VPC。
 - _ 挂载命令中的共享路径输入错误。
 - 。使用虚拟IP访问弹性文件服务。

故障案例 (2/2)

• 云服务器无法访问共享目录,提示被拒绝,导致该客户端的所有业务异常

。原因1:文件系统状态异常。

。原因2:云服务器客户端归属VPC和文件系统归属的VPC不一样。

。原因3:客户端在强制umount之后,无法挂载。

思考题

- 1. (多选) SFS的主要使用场景有哪些?
 - A. 媒体处理
 - B. 日志管理
 - C. 内容管理和Web目录
 - D. 高性能计算

本章总结

- 描述了华为云服务中对象存储服务产品
- 讲解了SFS的概念、创建流程、场景
- 讲解了SFS的优势和计费标准
- 讲解了SFS的常见问题和故障

学习推荐

- 华为Learning网站
 - http://support.huawei.com/learning/Index!toTrainIndex
- 华为Support案例库
 - http://support.huawei.com/enterprise/servicecenter?lang=zh

