- 1. Let Ω = {1,2,...,6}. Provide 3 distinct σ-fields on Ω.
- 2. Let F, and F2 be two offields on D. Then, prove or disprove:
 - a. F, UFz is a offield on I.
 - b. F, n F2 is a o-field on R.
- 3. Let B denote the σ -field (on B) generated by a collection $\{(-\infty, \kappa] : \kappa \in \mathcal{R}_{\delta}\}$. Show that following type of sets belong to B:

 (a) $(-\infty, \kappa)$ (b) $(\kappa, +\infty)$ (c) $[\kappa, +\infty)$ (d) $[\kappa, \kappa_2]$ (e) (κ, κ_2) (f) $[\kappa, \kappa_2]$ (e) (κ, κ_2) .
- 4. Let {ensozo be a sequence of real numbers.

 Define, yn = inf xx & 3n = sup xx.

 xzn
 - a. Prove that lymbaz, and longar converge or diverge, but never oscillate. Hence, limy and lim on is well define.
 - b. Show that $3 \times n_{n_2}$, converges to ∞ if and only if $x = \lim_{n \to \infty} y_n = \lim_{n \to \infty} y_n$.

lim zn is called lim inf zn and nhao in sup zn.

lim inf
$$A_n = \{ \omega : \lim_{n \to \infty} f(\omega) = 1 \}$$
.

Show the following:

2. lim inf
$$A_n = \bigcup_{n \in I} \bigcap_{K = n} A_K (denok by A)$$

5. show that
$$P(A) \leq \liminf_{n \to \infty} P(A_n)$$
.

7. Show that if
$$A = A$$
, then define $\lim_{n \to \infty} A_n = A = A$ and show that $P(A) = \lim_{n \to \infty} P(A_n)$.