

Big Fluff Pie

Everyone loves a big chunk of fluff

Important notes

If you're using any of our footswitch daughterboards, DOWNLOAD THE DAUGHTERBOARD DOCUMENT

- Download and read the appropriate build document for the daughterboard as well as this one BEFORE you start.
- DO NOT solder the supplied Current Limiting Resistor (CLR) to the main circuit board even if there is a place for it. This should be soldered to the footswitch daughterboard.

POWER SUPPLY

Unless otherwise stated in this document this circuit is designed to be powered with 9V DC.

COMPONENT SPECS

Unless otherwise stated in this document:

- Resistors should be 0.25W. You can use those with higher ratings but check the physical size of them.
- Electrolytics caps should be at least 25V for 9V circuits, 35V for 18V circuits. Again, check physical size if using higher ratings.

LAYOUT CONVENTIONS

Unless otherwise stated in this document, the following are used:

• Electrolytic capacitors:

Long leg (anode) to square pad.

• Diodes/LEDs:

Striped leg (cathode) to square pad. Short leg to square pad for LEDs.

• ICs:

Square pad indicates pin 1.

Schematic

Some of the components shown are not in standard Big Fluff builds.

SW1, **D3** and **D6** are only used if you want altertive clipping selection. If you aren't including this place a jumper in either spot shown in BLUE below.

SHIFT is only included if you're using an alternative tone stack with mid shift. If you're going for a standard 3-pot version include the jumper shown in RED.

PCB layout ©2017 Pedal Parts Ltd.

Notes

The power and signal pads on the PCB conform to the FuzzDog Direct Connection format, so can be paired with the appropriate daughterboard for quick and easy offboard wiring. Check the separate daughterboard document for details.

Be very careful when soldering the diodes and transistors. They're very sensitive to heat. You should use some kind of heat sink (crocodile clip or reverse action tweezers) on each leg as you solder them. Keep exposure to heat to a minimum (under 2 seconds).

Snap the small metal tag off the pots so they can be mounted flush in the box.

Positive (anode) legs of the electrolytic cap goes to the square pad.

C14 can be laid flat to the PCB as shown on the cover image. This will give more clearance in your enclosure.

Negative (cathode) legs of the diodes go to the square pads.

D7 is an optional polarity protection diode. If you want to include one, use a 1N4001 or any other 400X variant.

TWO SETS OF TONE PADS?

Yes. Use the centralised pads above R25 for a 3-pot build, and the ones off to the right of the PCB for a 4-pot build. There's no need for any jumpers in either situation. Both sets of pads are directly linked to each other.

THAT SCOOPED MID-RANGE - NO THANKS!

The Big Fluff Pie has a distinctive scooped mid-range. In most cases this can be flattened out if desired. For the versions listed in the first BOM page, this can be achieved by changing R18 and R19 to 39K, and C10 to 10n.

MOJO?

Many different transistors have been used across the history of the BFP, some of which are long gone. All of the 'stock' Fluffs listed on the first BOM page are supplied with 2N5088.

While these may not always be the vintage-correct parts, they have been found to be the best commonly-available all-rounder in a BFP.

There are additional notes regarding individual circuits later in the document. Please check them before starting your build.

Not sure what to make? Check out **Kit Rae's** page. Astounding work.

Notes

CLIPPING SELECTION SWITCH

There are two sets of pads to select extra clipping diodes if you want some variation in your pedal. **SW1** (vertical) is placed to sit neatly in the middle of your knobs on a 3-pot build. **SW2** (horizontal) works for a 4-pot version. The jumpers shown on the previous page will bring diodes D4-5 into the mix. If you prefer to use the larger spaces (D3-D6) for a single clipping configuration you can jumper the opposite pads.

To incorporate an alternative clipping section on the Q3 gain stage, select some suitable diodes for D3-D6. There are no rules. Google is your friend. Socket and experiment.

Add a SPDT ON-ON toggle switch in SW1 or SW2 to select between the two sets of clipping (D4-D5 / D3-D6).

If you want to get really freaky you can use a SPDT ON-OFF-ON switch which will remove the clipping from that gain stage altogether. There'll be a big volume jump with the switch in the middle position though, so use caution.

ALTERNATIVE TONE SECTION

We've incorporated parts so you can easily modify the tone stack and add a mids control. We've stuck to the simple elegance of the AMZ Presence Control.

You can experiment with your own values, but these two set-ups offer some great tonal variation. For more info take a look at this very informative page:

http://www.muzique.com/lab/tone3.htm

AMZ Control #1

R18 3K3 **R19** 39K

C10 12n (10n will be fine)

C11 10nSHIFT 25KBTONE 100KB

AMZ Control #2

R18 3K3 R19 470K C10 15n C11 1n5 SHIFT 25KB TONE 250KA

BOM	3rd (70s)	Green Russian	Black Russian	Civil War Russian	Triangle	73#18 Ram Head	Violet Ram Head	NYC Reissue
R1	39K	39K	39K	39K	33K	33K	33K	39K
R2	100K	100K	100K	100K	100K	100K	100K	100K
R3	470K	470K	470K	470K	470K	470K	470K	510K
R4	100R	390R	390R	390R	150R	100R	100R	100R
R5	15K	12K	12K	12K	15K	12K	12K	10K
R7	1K	1K	1K	1K	1K	820R	560R	1K8
R8	8K2	10K	10K	10K	8K2	7K5	8K2	10K
R9	100K	100K	100K	100K	100K	100K	100K	100K
R10	470K	470K	470K	470K	470K	470K	470K	470K
R11	15K	12K	12K	12K	12K	12K	12K	10K
R12	100R	390R	390R	390R	150R	100R	100R	390R
R13	8K2	10K	10K	10K	8K2	7K5	8K2	10K
R14	100R	390R	390R	390R	150R	100R	100R	390R
R15	470K	470K	470K	470K	470K	470K	470K	470K
R16	100K	100K	100K	100K	100K	100K	100K	100K
R17	15K	12K	12K	12K	12K	12K	12K	10K
R18	22K	22K	22K	22K	33K	33K	33K	22K
R19	39K	20K	22K	20K	33K	33K	33K	22K
R21	100K	100K	100K	100K	100K	100K	100K	100K
R22	390K	470K	470K	470K	470K	470K	470K	470K
R23	2K2	2K	2K7	2K7	2K7	3K3	2K7	2K
R24	10K	10K	10K	10K	12K	12K	12K	10K
R25	1M	1 M	1M	1M	1M	1M	1 M	1M
C1	100n	100n	100n	100n	100n	100n	100n	1u
C2	470p	470p	470p	560p	500p	470p	470p	470p
C3	1u	100n	100n	100n	100n	100n	100n	1u
C4	1u	100n	100n	100n	100n	150n	100n	1u
C5	470p	470p	470p	560p	500p	470p	470p	470p
C6	100n	47n	47n	47n	47n	47n	100n	1u
C7	1u	100n	100n	100n	100n	100n	100n	1u
C8	470p	470p	470p	560p	500p	470p	470p	470p
C9	100n	47n	47n	47n	47n	100n	100n	1u
C10	3n9	3n9	3n9	3n9	3n9	3n9	3n9	3n9
C11	10n	10n	10n	10n	10n	10n	10n	10n
C12	100n	100n	100n	100n	100n	100n	100n	1u
C13	100n	100n	100n	100n	100n	100n	100n	1u
C14	100u	100u	100u	100u	100u	100u	100u	100u
Q1	2N5088	2N5088	2N5088	2N5088	2N5088	2N5088	2N5088	2N5088
Q2	2N5088	2N5088	2N5088	2N5088	2N5088	2N5088	2N5088	2N5088
Q3	2N5088	2N5088	2N5088	2N5088	2N5088	2N5088	2N5088	2N5088
Q4	2N5088	2N5088	2N5088	2N5088	2N5088	2N5088	2N5088	2N5088
D1	1N4148	1N4148	1N4148	1N4148	1N4148	1N4148	1N4148	1N4148
D2	1N4148	1N4148	1N4148	1N4148	1N4148	1N4148	1N4148	1N4148
D3	empty	empty	empty	empty	empty	empty	empty	empty
D4	1N4148	1N4148	1N4148	1N4148	1N4148	1N4148	1N4148	1N4148
D5	1N4148	1N4148	1N4148	1N4148	1N4148	1N4148	1N4148	1N4148
D6	empty	empty	empty	empty	empty	empty	empty	empty
SUSTAIN	100KA	100KA	100KA	100KA	100KA	100KA	100KA	100KA
TONE	100KB	100KB	100KB	100KB	100KB	100KB	100KB	100KB
VOLUME SHIFT	100KA	100KA	100KA	100KA	100KA	100KA	100KA	100KA

SHIFT -----Place jumper as shown on page 2-----

V3	79#2	! - J Mascis	5	R1	39k
Based o	n what is su	R2 R3	100K 470K		
		e tone bypass, but why wo		R4	470R 100R
				R5	15K
				R7	1K
		Q1	MPSA18	R8	8K2
		Q2	MPSA18	R9	100K
		Q3	MPSA18	R10	470K
C1	1u	Q4	MPSA18	R11	15K
C2	470p			R12	100R
C3	1u	D1	1N4148	R13	8K2
C4	1u	D2	1N4148	R14	100R
C5	470p	D3	jumper	R15	470K
C6	1u	D4	1N4148	R16	100K
C7	100n	D5	1N4148	R17	15K
C8	470p	D6	empty	R18	22K
C9	1u			R19	39K
C10	3n9	611674111	4001.4	R21	100K
C11	10n	SUSTAIN		R22	390K
C12	100n	TONE	100kB	R23	2K2
C13	1u	VOLUME	100kA	R24	10K
C14	100u	MIDS	Jumper	R25	1M

Tall	Font Gree	n Ru	JS	sian	R1 R2	39k 100K
-	yers' favourite. The feedb	-		_	R3	470K
are two	Inf in series, but that's the	e same as	ոսու	OT.	R4	390R
0.4	400				R5	12K
C1	100n				R7	1K
C2 C3	500p 100n				R8 R9	10K 100K
C4	100n				R10	470K
C5	500p				R11	12K
C6	47n				R12	390R
C7	100n				R13	10K
C8	500p	D1	1N	14148	R14	390R
C9	47n	D2		14148	R15	470K
C10	3n9	D3		npty	R16	100K
C11	10n	D4		14148	R17	12K
C12 C13	100n 100n	D5 D6		14148	R18 R19	22K 20K
C14	100n 100u	DO	еп	npty	R17	100K
Q1	2N5089	SUSTAIN	N	100kA	R22	470K
Q2	2N5089	TONE		100kB	R23	2K7
Q3	2N5089	VOLUME	E	100kA	R24	10K
Q4	2N5089	MIDS		Jumper	R25	1M

Cs	nd Supa	Toneb	ender	R1	33k
change Transis betwee	interpretation. The es the sound to a m stor pinout is rever en the third gain st e same without it. I	R2 R3 R4 R5 R7 R8	100K 470K 100R 15K 820R 8K2		
		Q1 Q2	BC184 BC184	R9 R10	100K 470K
C1	100n	Q3	BC184	R11	10K
C2 C3	470p 100n	Q4	BC184	R12 R13	100R 8K2
C4 C5	100n 470p	D1 D2	empty empty	R14 R15	100R 470K
C6 C7	empty 100n	D3 D4	empty 1N4148	R16 R17	100K 15K
C8 C9	470p 47n	D5 D6	1N4148	R18 R19	33K 33K
C10	4n7		empty	R21	100K
C11 C12	10n 100n	SUSTAI TONE	N 100kA 100kA	R22 R23	390K 2K7
C13 C14	100n 100u	VOLUM MIDS	E 100kA Jumper	R24 R25	10K 1M

Csnd Jumbo Tonebender

Based on the Supa, but the final gain recovery stage was removed giving this much less gain and output level than its older brother. It has heavy hints of BFP but has its own character. Great on bass. BOM as above but changes as shown below.

C10 C11 C12 C13	4n7 10n 100n jumper	RB R21 R23 R23
TONE	100kB	C3 C4 OOO G4 G3
R7 R18 R19 R21-24	1K 39K 39K empty	SH2
Q4	No transistor - jumper the base and collector pads as shown	R17

Hooowwf 39K R1 R2 100K Nice example of slight modifications to a BFP making a BIG difference to the R3 470K tone. The germanium cans and LED clipping make this a crunchier, grittier **R4** 100R experience - worth checking out even if you already have a BFP. Experiment **R5** 15K with NPN Ge cans in Q3-4. Original used 2N1308 - try AC176, AC127. **R7** 2K2 **R8** 8K2 Q1 2N3904 R9 100K **Q2** NPN Ge **R10** 470K **C1** 100n Q3 NPN Ge **R11** 15K C2 470p **Q4** 2N3904 **R12** 100R **C3 R13** 100n 8K2 **C4** 100n **D1** 5mm red led **R14** 100R **C5** 470p **D2** 5mm red led **R15** 470K **C6 D3** 100n empty **R16** 100K **C7** 100n **D4** 5mm red led **R17** 15K **C8 D5** 5mm red led **R18** 2K2 470p C9 100n **D6** empty **R19** 39K C10 6n8 **R21** 100K C11 **SUSTAIN** 50KA **R22** 390K 6n8

100KB

1MA

20KB

R23

R24

R25

2K2

10K

1 M

TONE

MIDS

VOLUME

C12

C13

C14

100n

100n

100u

Creamy Dreamer

	zamy v	R1	39k		
				R2	100K
				R3	470K
				R4	Jumper
				R5	15K
				R7	1K
				R8	8K2
		Q1	2N5089	R9	100K
		Q2	2N5089	R10	470K
C1	1u	Q3	2N5089	R11	15K
C2	470p	Q4	2N5089	R12	Jumper
C3	47n			R13	8K2
C4	1u	D1	1N4148	R14	Jumper
C5	470p	D2	1N4148	R15	470K
C6	1u	D3	empty	R16	100K
C7	1u	D4	1N4148	R17	15K
C8	470p	D5	1N4148	R18	47K
C9	1u	D6	empty	R19	47K
C10	4n7			R21	100K
C11	10n	SUSTAIN	100kB	R22	390K
C12	100n	TONE	100kA	R23	2K2
C13	100n	VOLUME	100kA	R24	10K
C14	100u	MIDS	Jumper		

B&M Champion Fuzz Unit

Another vintage British interpretation, pretty much identical to the Jumbo Tonebender. BC184C may be hard to come by, so try others. Looking for around 600hFE in Q1 and Q2, 150hFE in Q3.

					R2	100K
		Q1	ВС	184C	R3	470K
		Q2	ВС	184C	R4	100R
		Q3	ВС	184C	R5	10K
C1	100n	Q4	No	transistor -	R7	1K
C2	470p		jun	nper Base & Coll.	R8	10K
C3	100n				R9	100K
C4	100n	D1	em	pty	R10	470K
C5	470p	D2	em	pty	R11	10K
C6	empty	D3	em	pty	R12	100R
C7	100n	D4	1N	4148	R13	10K
C8	470p	D5	1N	4148	R14	100R
C9	100n	D6	em	pty	R15	470K
C10	3n3				R16	100K
C11	10n	SUSTAIN	1	100kB	R17	15K
C12	100n	TONE		100kA	R18	39K
C13	jumper	VOLUME		100kA	R19	39K
C14	100u	MIDS		Jumper	R21-24	empty

R1

39k

Sto	R1	33K			
Stoner I	R2 R3 R4	100K 470K 470R			
*005/0	R5	10K			
*BU349	C pinout is the opposite to	tnat snown	on the PCB, so tup them.	R7	1K
	400			R8	10K
C1	100n			R9	100K
C2	560p			R10	470K
C3	100n			R11	10K
C4	100n			R12	150R
C5	560p			R13	10K
C6	1u	Q1-4	BC549C*	R14	150R
C7	100n			R15	470K
C8	560p	D1-2	1N4148	R16	100K
C9	1u	D3	empty	R17	10K
C10	4n7	D4-5	1N4148	R18	33K
C11	10n	D6	empty	R19	33K
C12	100n			R21	100K
C13	100n	SUSTAIN	N 100KA	R22	470K
C14	100u	TONE	100KB	R23	2K7
C15	empty	VOLUME	100KA	R24	10K
C16	jumper	MIDS	Jumper	R25	1M

Test the board!

UNDER NO CIRCUMSTANCES will troubleshooting help be offered if you have skipped this stage. No exceptions.

Once you've finished the circuit it makes sense to test is before starting on the switch and LED wiring. It'll cut down troubleshooting time in the long run. If the circuit works at this stage, but it doesn't once you wire up the switch - guess what? You've probably made a mistake with the switch.

Solder some nice, long lengths of wire to the board connections for 9V, GND, IN and OUT. Connect IN and OUT to the jacks as shown. Connect all the GNDs together (twist them up and add a small amount of solder to tack it). Connect the battery + lead to the 9V wire, same method. Plug in. Go!

If it works, crack on and do your switch wiring. If not... aw man. At least you know the problem is with the circuit. Find out why, get it working, THEN worry about the switch etc.

Wiring shown above will disconnect the battery when you remove the jack plug from the input, and also when a DC plug is inserted.

The Board GND connections don't all have to directly attach to the board. You can run a couple of wires from the DC connector, one to the board, another to the IN jack, then daisy chain that over to the OUT jack.

It doesn't matter how they all connect, as long as they do.

This circuit is standard, Negative GND. Your power supply should be Tip Negative / Sleeve Positive. That's the same as your standard pedals (Boss etc), and you can safely daisy-chain your supply to this pedal.

Drilling template

Hammond 1590B

60 x 111 x 31mm

Recommended drill sizes:

Pots 7mm
Jacks 10mm
Footswitch 12mm
DC Socket 12mm

This template is a rough guide only. You should ensure correct marking of your enclosure before drilling. You use this template at your own risk.

Pedal Parts Ltd can accept no responsibility for incorrect drilling of enclosures.

Drilling template

Hammond 1590B

60 x 111 x 31mm

Recommended drill sizes:

Pots 7mm
Jacks 10mm
Footswitch 12mm
DC Socket 12mm

This template is a rough guide only. You should ensure correct marking of your enclosure before drilling. You use this template at your own risk.

Pedal Parts Ltd can accept no responsibility for incorrect drilling of enclosures.

FuzzDog.co.uk