Khôlles de Mathématiques

Kylian Boyet, George Ober, Hugo Vangilluwen (relecture)

19 novembre 2023

1 Montrer que si f est impaire et bijective, alors f^{-1} est aussi impaire. Donnez un/des exemples.

Démonstration. Soit $f: I \to F$, avec I, F deux parties non-vides de \mathbb{R} , une telle fonction et notons f^{-1} sa bijection réciproque. Si f est impaire sur I, alors pour tout $x \in I$, $-x \in I$, ainsi I est centré en 0 et on a :

$$\forall x \in I, \ f(-x) = -f(x).$$

Ainsi, prenons $y \in F$, alors $-y \in F$ par imparité et bijectivité de f. On a donc :

$$f^{-1}(-y) = f^{-1}(-f(f^{-1}(y)))$$

= $f^{-1}(f(-f^{-1}(y)))$
= $-f^{-1}(y)$.

D'où l'imparité de f^{-1} .

Pour ce qui est de l'exemple, prenons notre fonction bijective impaire préférée, la fonction $\sin \left| \frac{[-1,1]}{[-\frac{\pi}{2},\frac{\pi}{2}]} \right|$ que l'on notera $\widetilde{\sin}$. Sa bijection réciproque est bien entendu arcsin : $[-1,1] \to \left[-\frac{\pi}{2},\frac{\pi}{2} \right]$.

De la même manière que dans la démonstration du cas général, prenons $y \in [-1, 1]$, comme [-1, 1] est centré en $0, -y \in [-1, 1]$, on a dès lors :

$$\arcsin(-y) = \arcsin(-\widetilde{\sin}(\arcsin(y)))$$

= $\arcsin(\widetilde{\sin}(-\arcsin(y)))$
= $-\arcsin(y)$.

2 Limite (et preuve) lorsque x tend vers $+\infty$ de $\frac{(\ln x)^{\alpha}}{x^{\beta}}$ pour $\alpha, \beta \in (\mathbb{R}_{+}^{*})^{2}$.

 $D\'{e}monstration.$ Premièrement, posons :

$$\forall (x, \alpha, \beta) \in [1, +\infty[\times (\mathbb{R}_+^*)^2, \quad f_{\alpha, \beta}(x) = \frac{(\ln x)^{\alpha}}{x^{\beta}}.$$

Deuxièmement, montrons que :

$$\frac{\ln(x)}{r^2} \xrightarrow[n \to +\infty]{} 0.$$

Soit $x \in [1, +\infty[$ = \mathcal{A} . Nous savons que la fonction ln est concave sur \mathbb{R}_+^* , donc en particulier sur \mathcal{A} . Ainsi, ln est en dessous de toutes ses tangentes, d'où :

$$\forall x \in \mathcal{A}, \quad 0 < \ln(x) < x - 1.$$

П

Illustration de l'inégalité :

Figure 1. ln en rouge et la première bissectrice en bleu.

On peut alors diviser par x^2 (car $x \neq 0$):

$$\forall x \in \mathcal{A}, \quad 0 \leq \underbrace{\frac{\ln(x)}{x^2}}_{f_{1,2}(x)} \leq \underbrace{\frac{1}{x}}_{x \to +\infty} - \underbrace{\frac{1}{x^2}}_{x \to +\infty}.$$

Donc par théorème d'encadrement $f_{1,2}(x) \xrightarrow[x \to +\infty]{} 0$.

Dernièrement, le cas général. Soit $x \in \mathcal{A}$ et soient $(\alpha, \beta) \in (\mathbb{R}_+^*)^2$. On fait une preuve directe.

$$\frac{(\ln(x))^{\alpha}}{x^{\beta}} = \left(\frac{\ln(x)}{x^{\frac{\beta}{\alpha}}}\right)^{\alpha}$$

$$= \underbrace{\left(\frac{2\alpha}{\beta}\right)^{\alpha}}_{c^{\underline{t}e} \text{ (définie !)}} \cdot \underbrace{\frac{\ln\left(x^{\frac{\beta}{2\alpha}}\right)}{\left(x^{\frac{\beta}{2\alpha}}\right)^{2}}}_{\text{x} \to +\infty} \cdot \underbrace{\left(\frac{\ln(x)}{x^{\frac{\beta}{\alpha}}}\right)^{2}}_{\text{par composition des limites}} \cdot \underbrace{\frac{\ln\left(x^{\frac{\beta}{2\alpha}}\right)^{2}}{x^{\frac{\beta}{\alpha}}}\right)^{2}}_{\text{par produit}}$$

3 Limite en 0 de $\frac{1-\cos(x)}{x^2}$ et limite en $+\infty$ suivant n de $\frac{(q^n)^{\alpha}}{(n!)^{\beta}}$ pour $q \in \mathbb{R}$ et $(\alpha, \beta) \in (\mathbb{R}_+^*)^2$.

 $\begin{array}{c} D\acute{e}monstration. \\ \text{Montrons que } \xrightarrow[x^2]{1-\cos(x)} \xrightarrow[x\to 0]{} \frac{1}{2}. \end{array}$

On fait toujours une preuve directe.

$$\lim_{x \to 0} \frac{1 - \cos(x)}{x^2} = \lim_{x \to 0} \frac{1 - \cos\left(\frac{2x}{2}\right)}{x^2}$$

$$= \lim_{x \to 0} \frac{1 - \left(1 - 2\sin^2\left(\frac{x}{2}\right)\right)}{x^2}$$

$$= \lim_{x \to 0} \frac{2\sin^2\left(\frac{x}{2}\right)}{4\left(\frac{x}{2}\right)^2}$$

$$= \lim_{x \to 0} \frac{\frac{1}{2} \cdot \left(\frac{\sin\left(\frac{x}{2}\right)}{\frac{x}{2}}\right)}{\frac{x}{2}}$$

$$= \lim_{x \to 0} \frac{\frac{1}{2} \cdot \left(\frac{\sin\left(\frac{x}{2}\right)}{\frac{x}{2}}\right)}{\frac{x}{2}}$$

$$= \lim_{x \to 0} \frac{1}{\exp\left(\frac{x}{2}\right)}$$

$$= \frac{1}{2}$$

Trouvons la limite, sous réserve d'existence, de $\frac{(q^n)^{\alpha}}{(n!)^{\beta}}$ pour $q \in \mathbb{R}$ et $(\alpha, \beta) \in (\mathbb{R}_+^*)^2$ suivant $n \in \mathbb{R}$ et (α, β) en $(-\infty, \beta)$ suivant (α, β) et $(-\infty, \beta)$ suivant $(-\infty, \beta)$

Remarquons que si $q \leq 0$, il est **nécessaire** d'avoir $\alpha \in \mathbb{Z}^*$ sinon l'expression n'a tout simplement **aucun sens**. De fait, on supposera q > 0 tout le long, les cas q < 0 se font naturellement (convergence pour $q \in \mathbb{R}_-$).

Soit donc 0 < q < 1, ce cas est immédiat, $((q^n)^{\alpha})_{n \in \mathbb{N}} = ((q^{\alpha})^n)_{n \in \mathbb{N}}$, donc il s'agit de la suite géométrique de raison $q^{\alpha} \in]0,1[$ et de premier terme $q^{\min_I(n)\alpha}$ ($\min_I(n)$, avec I une partie non vide de \mathbb{N} , car la suite ne démarre pas forcément à 0), donc elle converge vers 0.

Si $q \ge 1$, on montre le cas trivial $\alpha = \beta = 1$:

$$\forall n \in \llbracket \lfloor q \rfloor + 1, +\infty \llbracket, \quad 0 \leq \frac{q^n}{n!} = \underbrace{\frac{q}{1} \times \frac{q}{2} \times \cdots \times \frac{q}{\lfloor q \rfloor}}_{= \ \lambda \ (\text{une constante})} \times \underbrace{\frac{q}{\lfloor q \rfloor + 1}}_{\leq 1} \times \cdots \times \underbrace{\frac{q}{n-1}}_{\leq 1} \times \underbrace{\frac{q}{n}}_{n \rightarrow +\infty} \times \underbrace{\frac{q}{n$$

Par théorème d'existence de limite par encadrement, $\left(\frac{q^n}{n!}\right)_{n\in\mathbb{N}}$ converge et sa limite est 0.

Soient $(\alpha, \beta) \in \mathbb{R}_+^*$, montrons le cas général pour $q \geq 1$.

$$\forall n \in \mathbb{N}, \quad \frac{(q^n)^{\alpha}}{(n!)\beta} = \left(\frac{\left(q^{\frac{\alpha}{\beta}}\right)^n}{n!}\right)^{\beta} = \underbrace{\left(\frac{q^{\frac{\alpha}{\beta}}\right)^n}{n!}}_{\substack{n \to +\infty \\ \text{o'est le cas trivial}}\right)^{\beta}}_{\substack{n \to +\infty \\ \text{par composition des limites } (\beta > 0)}$$

Présentation exhaustive de la fonction arcsin.

Démonstration. Premièrement, ladite fonction est la bijection réciproque de la fonction sin (voir 1.). D'où:

$$\arcsin = \begin{cases} [-1,1] & \to & [-\frac{\pi}{2}, \frac{\pi}{2}] \\ x & \mapsto & (\widetilde{\sin})^{-1}(x) \end{cases}$$

Ainsi, pour $x \in [-1,1]$, $\arcsin(x)$ est l'unique solution de l'équation d'inconnue $\theta \in \left[-\frac{\pi}{2},\frac{\pi}{2}\right]$, $\sin(\theta) = x$.

Il découle alors naturellement des propriétés héréditairement acquises de sin :

- 1. arcsin est impaire.
- 2. arcsin est strictement croissante sur [-1, 1].
- 3. $\arcsin \in \mathcal{C}^0([-1,1],[-\frac{\pi}{2},\frac{\pi}{2}]).$
- 4. $\arcsin \in \mathcal{D}^1(]-1,1[,]-\frac{\pi}{2},\frac{\pi}{2}[).$ 5. $\arcsin'(x) = \frac{1}{\sqrt{1-x^2}} \text{ pour tout } x \in]-1,1[.$
- 6. arcsin admet deux demi-tangentes verticales en -1 et 1.

Graphe de arcsin:

Figure 2. arcsin en bleu, sin en vert et la première bissectrice en rouge.

On a aussi, grâce au taux d'accroissement en 0 d'arcsin :

$$\lim_{x \to 0} \frac{\arcsin(x)}{x} = 1.$$

Puis finalement (visible sur le graphe):

$$\forall x \in [0, 1], \quad \arcsin(x) \ge x.$$

5 Présentation exhaustive de la fonction arccos.

Démonstration. Premièrement, ladite fonction est la bijection réciproque de la fonction $\cos {\begin{bmatrix} -1,1 \end{bmatrix}} :=$ cos. D'où:

$$\arccos = \begin{cases} \begin{bmatrix} [-1,1] & \to & [0,\pi] \\ x & \mapsto & (\widetilde{\cos})^{-1}(x) \end{cases}$$

Ainsi, pour $x \in [-1,1]$, $\arccos(x)$ est l'unique solution de l'équation d'inconnue $\theta \in [0,\pi]$, $\cos(\theta) = x.$

Il découle alors naturellement des propriétés héréditairement acquises de $\widetilde{\cos}$:

- 1. \arccos est strictement décroissante sur [-1, 1].
- 2. $\operatorname{arccos} \in \mathcal{C}^0([-1,1],[0,\pi]).$
- 3. $\arccos \in \mathcal{D}^1(]-1,1[,]0,\pi[)$.
- 4. $\arccos'(x) = -\frac{1}{\sqrt{1-x^2}}$ pour tout $x \in]-1,1[$.
- 5. arccos admet deux demi-tangentes verticales en -1 et 1.

Graphe de arccos :

Figure 3. arccos en vert, $\widetilde{\cos}$ en violet, la première bissectrice en rouge et $y = \frac{\pi}{2} - x$ en rose.

6 Présentation exhaustive de la fonction arctan.

 $D\'{e}monstration.$

Premièrement, la dite fonction est la bijection réciproque de la fonction $\tan \left|_{]-\frac{\pi}{2},\frac{\pi}{2}[}\right| := \widetilde{\tan}$. D'où :

$$\arctan = \begin{cases} \mathbb{R} & \to & \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\\ x & \mapsto & \left(\widetilde{\tan}\right)^{-1} (x) \end{cases}$$

Ainsi, pour $x \in \mathbb{R}$, $\arctan(x)$ est l'unique solution de l'équation d'inconnue $\theta \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[, \tan(\theta) = x.$

Il découle alors naturellement des propriétés héréditairement acquises de tan :

- 1. arctan est impaire.
- 2. $\arctan \in C^0(\mathbb{R},]-\frac{\pi}{2},\frac{\pi}{2}]$.
- 3. $\arctan \in \mathcal{D}^1(\mathbb{R},]-\frac{\pi}{2},\frac{\pi}{2}[).$
- 4. $\arctan'(x) = \frac{1}{1+x^2}$ pour tout $x \in \mathbb{R}$.

Graphe de arctan :

Figure 4. arctan en vert, tan en bleu, la première bissectrice en rouge, et les fonctions $y=\pm\frac{\pi}{2}$ et $x=\pm\frac{\pi}{2}$ en noir.

On a aussi (visible sur le graphe):

$$\forall x \in \mathbb{R}_+, \quad \arctan(x) \le x.$$

 ${\it Et\ enfin}:$

$$\forall x \in \mathbb{R}^*, \quad \arctan(x) + \arctan\left(\frac{1}{x}\right) = \begin{cases} \frac{\pi}{2} & \text{si } x > 0\\ -\frac{\pi}{2} & \text{si } x < 0. \end{cases}$$

7 2 preuves de $\arcsin(x) + \arccos(x) = \frac{\pi}{2} \text{ sur } [-1,1]$, dont une basée sur une interprétation géométrique du cercle trigonométrique.

Démonstration. L'interprétation géométrique sur [0,1], celle sur [-1,0] est laissée au lecteur car il s'agit du même principe modulo des détails :

Figure 5.

Preuve formelle:

Soit
$$x \in [-1,1]$$
. Posons $\varphi = \arcsin(x) \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. Ainsi :
$$\arcsin(x) + \arccos(x) = \varphi + \arccos(\sin(\varphi)) = \varphi + \arccos\left(\cos\left(\frac{\pi}{2} - \varphi\right)\right),$$

or $\varphi \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ donc $\frac{\pi}{2} - \varphi \in [0, \pi]$ d'où arccos $\left(\cos\left(\frac{\pi}{2} - \varphi\right)\right) = \frac{\pi}{2} - \varphi$ si bien que :

$$\arcsin(x) + \arccos(x) = \varphi + \frac{\pi}{2} - \varphi = \frac{\pi}{2}.$$

Présentation analytique rapide des fonctions cosh et sinh. 8

Démonstration.

• Domaine de définition et symétries. \sinh et \cosh sont définies \sup \mathbb{R} .

De plus,

(i) $\forall x \in \mathbb{R}, -x \in \mathbb{R}$

$$(i) \ \forall x \in \mathbb{R}, -x \in \mathbb{R},$$

$$\begin{cases} \sinh(-x) &= \frac{e^{-x} - e^x}{2} &= -\frac{e^x - e^{-x}}{2} &= -\sinh(x) \\ \text{et} \\ \cosh(-x) &= \frac{e^{-x} + e^{-(-x)}}{2} &= \frac{e^x + e^{-x}}{2} &= \cosh(x). \end{cases}$$
Donc sinh et cosh sont respectivement impaire et paire.

Nous les étudierons sur \mathbb{R}_+ et pour les obtenir les graphes (\mathcal{C}_{sinh} et \mathcal{C}_{cosh}) de ces fonctions sur \mathbb{R} à partir de ceux $(\mathcal{C}_{\sinh}^+$ et $\mathcal{C}_{\cosh}^+)$ obtenus sur \mathbb{R}_+ , nous le complèterons en traçant les images de ces graphes par la symétrie centrale s de centre O et par la réflexion r d'axe (O, \overrightarrow{j}) :

$$C_{\sinh} = C_{\sinh}^{+} \cup s\left(C_{\sinh}^{+}\right)$$
 et $C_{\cosh} = C_{\cosh}^{+} \cup r\left(C_{\cosh}^{+}\right)$

- Variations : triviales.
- Branches infinies en $+\infty$ et position relative de \mathcal{C}_{sinh} et \mathcal{C}_{cosh} .

$$\frac{\cosh(x)}{x} = \underbrace{\frac{e^x}{x}}_{x \to +\infty} + \underbrace{\frac{e^{-x}}{x}}_{x \to +\infty} \xrightarrow{x \to +\infty} + \infty$$

Donc le graphe de cosh admet une branche parabolique de direction asymptotique (O, \overrightarrow{I}) . On a:

$$\forall x \in \mathbb{R}, \quad \cosh(x) - \sinh(x) = e^{-x} \xrightarrow[x \to +\infty]{} 0^+$$

Donc les graphes des deux fonctions se rapprochent l'un de l'autre arbitrairement près lorsque $x \to +\infty$, et le graphe de cosh est au-dessus de celui de sinh.

• Tangente au graphe de sinh à l'origine et position relative.

Il s'agira d'étudier $g: x \in \mathbb{R}_+ \mapsto \sinh(x) - x$, de remarquer sa dérivabilité d'en étudier les variations puis de conclure, en précisant que cette étude révèle l'inflexion du graphe de sinh en 0.