

Ajeet K. Jain, M. Narsimlu

(ML TEAM)- SONET, KMIT, Hyderabad

Session – 31

This session deals with

Introduction to Case Study

Case Study -01

Problem statement

- Subsidy Inc. delivers subsidies to individuals based on their income
- Accurate income data is one of the hardest piece of data to obtain across the world
- Subsidy Inc. has obtained a large data set of authenticated data on individual income, demographic parameters, and a few financial parameters
- Subsidy Inc. wishes us to:

Develop an income classifier system for individuals

The Objective is to:

Simplify the data system by reducing the number of variables to be studied, without sacrificing too much of accuracy. Such a system would help Subsidy Inc. in planning subsidy outlay, monitoring and preventing misuse.

Required modules


```
#To visualize the data
import seaborn as sns
#To work with dataframes
import pandas as pd
#To perform numerical operations
import numpy as np
#To partition the data
from sklearn.model selection import train test split
#importing the library for logistic regression
from sklearn.linear model import LogisticRegression
#importing performance metrics
from sklearn.metrics import accuracy score,confusion matrix
```


Data Description


```
#importing data
data income=pd.read csv("income.csv")
#create a copy of original data
df income=data income.copy()
print(df income.describe())
```


Numerical Data Description

	age	capitalgain	capitalloss	hoursperweek
count	31978.000000	31978.000000	31978.000000	31978.000000
mean	38.579023	1064.360623	86.739352	40.417850
std	13.662085	7298.596271	401.594301	12.345285
min	17.000000	0.000000	0.000000	1.000000
25%	28.000000	0.000000	0.000000	40.000000
50%	37.000000	0.000000	0.000000	40.000000
75%	48.000000	0.000000	0.000000	45.000000
max	90.000000	99999.000000	4356.000000	99.000000

Information about Data Set


```
#importing data
data_income=pd.read_csv("income.csv")
#create a copy of original data
df_income=data_income.copy()
print(df_income.info())
```



```
RangeIndex: 31978 entries, 0 to 31977
Data columns (total 13 columns):
                 31978 non-null int64
age
                 31978 non-null object
JobType
EdType
                 31978 non-null object
                 31978 non-null object
maritalstatus
                 31978 non-null object
occupation
relationship
                 31978 non-null object
                 31978 non-null object
race
                 31978 non-null object
gender
                 31978 non-null int64
capitalgain
capitalloss
                 31978 non-null int64
hoursperweek
                 31978 non-null int64
nativecountry
                 31978 non-null object
                 31978 non-null object
SalStat
```


Data Analytics Frame work

Data analytics framework

Problem conceptualization

Framework

- Problem conceptualization
 - Develop an income classifier for individuals with reduced no. of variables
- Problem characterization- Classification

Apriori Known:

- ✓ Dependent variable categorical (binary)
- ✓ Independent variables numerical + categorical

Framework

Framework

• Flow chart:

Solution conceptualization

Framework

- Solution conceptualization
 - Identify if data is clean
 - Look for missing values
 - Identify variables influencing salary status and look for possible relationships between variables
 - Correlation, chi-square test, box plots, scatter plots etc.
 - Identify if categories can be combined
 - Build a model with reduced number of variables to classify the individual's salary status to plan subsidy outlay, monitor and premisuse

Method Identification

Framework

- Method identification
 - Logistic Regression
 - Random Forest
 - K Nearest Neighbors
- Realization of solution
 - Evaluate performance metrics
 - If assumptions are satisfied and solutions are acceptable then model is

Data Exploratory Analysis


```
EDA
1.getting to know the data
2.Data Preprocessin
3.Cross tables and data visualization
#1.Getting to know the data
#To check variables data type
print(df income.info())
#To find the missing values in each feature
print(df income.isnull().sum())
#No missing values
#Summary of numerical variables
print(df_income.describe())
#Summary of categorical variables
print(df income.describe(include="0"))
#Frequency of each categories
print(df_income["JobType"].value_counts())
```

SONET Data Exploratory #importing data


```
df income=pd.read_csv("income.csv")
#checking for unique classes
print(np.unique((df_income["JobType"])))
print(np.unique(df income["occupation"]))
#checking other special characters in the dataset
data=pd.read csv("income.csv",na values=[" ?"])
#Check missing values in each feature
print(data.isnull().sum())
missing=data[data.isnull().any(axis=1)]
```

#To consider one missing column print(missing)

Data Exploratory Analysis

Private		22286
Self-emp-not-:	inc	2499
Local-gov		2067
;		1809
State-gov		1279
Self-emp-inc		1074
Federal-gov		943
Without-pay		14
Never-worked		7
Name: JobType,	dtype:	int64

Prof-specialty	4038
Craft-repair	4030
Exec-managerial	3992
Adm-clerical	3721
Sales	3584
Other-service	3212
Machine-op-inspct	1966
;	1816
Transport-moving	1572
Handlers-cleaners	1350
Farming-fishing	989
Tech-support	912
Protective-serv	644
Priv-house-serv	143
Armed-Forces	9

Finding missing Values and Correlation


```
#importing data
data=pd.read_csv("income.csv",na_values=[" ?"])
1.missing values in jobtype -
                                  1809
2.missing values in occupation - 1816
3. There are 1809 rows where tow soecific columns
i.e oocupation and jobtype have missing values
4.(1816-1809)=7 => still we have occupation unfilled for these rows.
because, jobtype is "never worked"
data2=data.dropna(axis=0)
#correlation between independent varaibles
corr rel=data2.corr()
print(corr_rel)
```


Week4')				
	age	capitalgain	capitalloss	hoursperweek
age	1.000000	0.080154	0.060165	0.101599
capitalgain	0.080154	1.000000	-0.032229	0.080432
capitalloss	0.060165	-0.032229	1.000000	0.052417
hoursperweek	0.101599	0.080432	0.052417	1.000000

Age Vs Salary status -EDA


```
#importing data
data=pd.read_csv("income.csv",na_values=[" ?"])
data2=data.dropna(axis=0)
#cross tables and data visualization
#extract the columns
print(data2.columns)
gender_tab=pd.crosstab(index=data2["gender"],columns="counts",
                       normalize=True)
print(gender_tab)
#Relation between Gender vs salary
gender_salstat=pd.crosstab(index=data2["gender"],
                           columns=data2["SalStat"],
                           margins=True,normalize="index")
print(gender_salstat)
```



```
Index(['age', 'JobType', 'EdType', 'maritalstatus', 'occupation',
       'relationship', 'race', 'gender', 'capitalgain', 'capitalloss',
       'hoursperweek', 'nativecountry', 'SalStat'],
     dtype='object')
col 0
          counts
gender
Female 0.324315
Male 0.675685
SalStat greater than 50,000 less than or equal to 50,000
gender
Female
                    0.113678
                                                    0.886322
Male
                     0.313837
                                                    0.686163
All
                                                    0.751078
                     0.248922
```


Bar plot b/w Salary status


```
#importing data
data=pd.read_csv("income.csv",na_values=[" ?"])
data2=data.dropna(axis=0)
#cross tables and data visualization
#frequency distribution of salary status
SalStat=sns.countplot(data2["SalStat"])
75% of people's salary status is <=50,000
25% of people's salary status is >50,000
11 11 11
```


Data Exploratory

Finding Age Frequency


```
#importing data
data=pd.read csv("income.csv",na_values=[" ?"])
data2=data.dropna(axis=0)
#histogram of Age
sns.distplot(data2["age"],bins=10,kde=False)
#people with age 20-45 age are high in frequency
```


Finding the Outliers


```
#importing data
data=pd.read csv("income.csv",na values=[" ?"])
data2=data.dropna(axis=0)
#boxplot Age vs salary status
sns.boxplot("SalStat", "age", data=data2)
11 11 11
people with 35-50 age are more likely to earn >50000
people with 25-35 age are more likely to earn <=50000
11 11 11
```


SONET Exploration of JobType vs Salary status DATA SCIENCE

EDA-

- 1. Jobtype VS salary status
- 2.create a cross table Jobtype Vs salary status

SalStat	greater than 50,000	less than or equal to 50,000
JobType	50 E	17 000
Federal-gov	0.387063	0.612937
Local-gov	0.294630	0.705370
Private	0.218792	0.781208
Self-emp-inc	0.558659	0.441341
Self-emp-not-inc	0.285714	0.714286
State-gov	0.268960	0.731040
Without-pay	0.000000	1.000000
All	0.248922	0.751078

Exercise-1

Load the income data set and perform following operations 1.create a bar plot of Education VS salary status 2.create a cross table Education Vs salary status

```
#importing data
data=pd.read csv("income.csv", na values=[" ?"])
data2=data.dropna(axis=0)
sns.countplot(y="EdType",data=data2,hue="SalStat")
ed_tab=pd.crosstab(index=data2["EdType"],
                        columns=data2["SalStat"],
                        margins=True, normalize="index")
print(ed tab)
```


The above table we can see that people who have done Doctorate, Masters , prof-schools are more likely to earn above 50000 USD per year when compared to others Hence an influencing variable in avoiding the misuse os subsidies

DATA SCIENCE	E
--------------	---

SalStat	greater than 50,000	less than or equal	to 50,000
EdType			
10th	0.071951		0.928049
11th	0.056298		0.943702
12th	0.076923		0.923077
1st-4th	0.039735		0.960265
5th-6th	0.041667		0.958333
7th-8th	0.062837		0.937163
9th	0.054945		0.945055
Assoc-acdm	0.253968		0.746032
Assoc-voc	0.263198		0.736802
Bachelors	0.421491		0.578509
Doctorate	0.746667		0.253333
HS-grad	0.164329		0.835671
Masters	0.564229		0.435771
Preschool	0.00000		1.000000
Prof-school	0.749077		0.250923
Some-college	0.200060		0.799940
All	0.248922		0.751078

Exercise-2

Load the income data set and perform following operations 1.create a bar plot of Occupation VS salary status 2.create a cross table occupation Vs salary status

```
#importing data
data=pd.read csv("income.csv", na_values=[" ?"])
data2=data.dropna(axis=0)
sns.countplot(y="occupation",data=data2,hue="SalStat")
ocup tab=pd.crosstab(index=data2["occupation"],
                        columns=data2["SalStat"],
                        margins=True, normalize="index")
print(ocup tab)
```


SalStat	greater than 50,000	less than or equal	to 50,000
occupation			
Adm-clerical	0.133835		0.866165
Armed-Forces	0.11111		0.888889
Craft-repair	0.225310		0.774690
Exec-managerial	0.485220		0.514780
Farming-fishing	0.116279		0.883721
Handlers-cleaners	0.061481		0.938519
Machine-op-inspct	0.124619		0.875381
Other-service	0.041096		0.958904
Priv-house-serv	0.006993		0.993007
Prof-specialty	0.448489		0.551511
Protective-serv	0.326087		0.673913
Sales	0.270647		0.729353
Tech-support	0.304825		0.695175
Transport-moving	0.202926		0.797074
411	0.248922		0.751078

Explanation

Those who are making more than 50000 USD per year likely to work

as manager and professional, hence important variable in avoiding misuse of subsides

Exercise-3

1.create a boxplot hourperweek Vs salary status

```
#importing data
data=pd.read csv("income.csv",na values=[" ?"])
data2=data.dropna(axis=0)
sns.boxplot(x=data2["SalStat"],
            y=data2["hoursperweek"],
            data=data2,hue="SalStat")
hrsweek tab=pd.crosstab(index=data2["hoursperweek"],
                        columns=data2["SalStat"],
                        margins=True, normalize="index")
print(hrsweek tab.head(10))
```


SalStat hoursperweek	greater than 50,000	less than or equal to 50,000
1	0.142857	0.857143
2	0.133333	0.866667
3	0.041667	0.958333
4	0.074074	0.925926
5	0.157895	0.842105
6	0.100000	0.900000
7	0.105263	0.894737
8	0.058824	0.941176
9	0.058824	0.941176
10	0.058559	0.941441

DATA SCIENCE

Data Encoding


```
#Logistict Regression
Data encoding
the salary status categories are encoded as 0,1
#importing data
data=pd.read_csv("income.csv",na_values=[" ?"])
data2=data.dropna(axis=0)
#create a cross table on salstatus
print(data2["SalStat"].value_counts())
cat_salStat={" less than or equal to 50,000":0," greater than 50,000":1}
data2["SalStat"].replace(cat salStat,inplace=True)
print(data2["SalStat"].head(6))
new_data=pd.get_dummies(data2,drop_first=True)
#storing the column names
column_list=list(new_data.columns)
print(column list)
```


Identifying input features


```
#seperating input features from the data
features=list(set(column list)-set(["SalStat"]))
print(features)
#Storing output variable values in y
y=new data["SalStat"].values
print(y)
#storing input feature values in x
x=new data[features].values
print(x)
```



```
#splitting the data into train and test
train x,test x,train_y,test_y=train_test_split(x,y,test_size=0.3,
                                                random state=0)
#creating a instance of logistict regression
logistic=LogisticRegression()
#fitting the values for x and y
logistic.fit(train x,train y)
#To display the fitting function attributes such as coef, intercept etc..
print(logistic.coef )
print(logistic.intercept )
```


SONET Evaluating the model


```
#prediction from the test data
prediction=logistic.predict(test_x)
print(prediction)
#model evolution using classification metrics
#confusion metrics - To display correctly classified data
#and wrongly classified data
confus_matrix=confusion_matrix(test_y,prediction)
print(confus matrix)
#Calculate the accuracy
accu score=accuracy score(test y,prediction)
print(accu score)
#To display missclassified values from the prediction
print("Missclassified")
print((test y!=prediction).sum())
```



```
[0 0 0 ... 0 0 0]
[[6338 485]
 [ 941 1285]]
0.8424135263565035
Missclassified
1426
```


You are aware of

Data Encoding

Project Life Cycle

We will proceed with

Case Study

