Chapter 2

Yuquan Chen

2019/03/19

1 Time evolution operator and Hamiltonian

Here, we talk about non-relativistic situation, and we think about time as a parameter, not an operator. The position representation $\langle x|\psi\rangle=\psi(x)$, adding the time evolution, we have

$$\langle x|\psi(t)\rangle = \psi(x,t)$$

First, we talk about 6 postulates of quantum mechanics.

Box 1.1: Postulates of Quantum Mechanics

Postulate 1. At any time t, the state of a physical system is defined by a ket $|\psi\rangle$, or *state* in a relevant Hilbert space H.

Postulate 2. The only possible result of measuring observable A is one of the eigenvalues of A

$$SG(z) = \begin{pmatrix} +1 & \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Aside:

- 1. If A is Hermitian, then the measurement gives a real number.
- 2. If A's spectrum is discrete, then we only see quantized result.

Postulate 3. Every measurable physical quantity A is described by a Hermitian operator.

Postulate 4. If $A|u_{\alpha}\rangle = a_{\alpha}|u_{\alpha}\rangle$, then for a system in $|\psi\rangle$, when we measure A, then the probability of getting a_{α} is $P(a_{\alpha}) = |\langle u_{\alpha}|\psi\rangle|^2$.

Aside: If we have degenerate a_{α} 's $\{|u_{\alpha,1}\rangle, |u_{\alpha,2}\rangle, ...\}$ share the same eigenvalue, then $P(a_{\alpha}) = \sum_{i} |\langle u_{\alpha,i} | \psi \rangle|^2$

Example: A = I, all $a_{\alpha} = 1$

Postulate 5. If a measurement projects $|\psi\rangle$ into a new state $|u_{\alpha}\rangle$, then a physical new state should be $|u'_{\alpha}\rangle = \frac{|u_{\alpha}\rangle}{\sqrt{\langle u_{\alpha}|u_{\alpha}\rangle}}$, so that $\langle u'_{\alpha}|u'_{\alpha}\rangle = 1$.

Postulate 6. Between measurement the state vector $|\psi(t)\rangle$ evolves in time with time dependent Shrödinger's equation

$$i\hbar \frac{d}{dt} |\psi(t)\rangle = \hat{H}(t) |\psi(t)\rangle$$

here \hat{H} is a Hamiltonian.

We let a displacement dt' on state $|\psi(t)\rangle$,

$$\Rightarrow U(dt')|\psi(t)\rangle = |\psi(t+dt')\rangle, \text{ where } UU^{\dagger} = 1$$
 (1)

It's similar to momentum, in that case, we have

$$\begin{cases} U(dt') = I - i\frac{\hat{H}}{\hbar}dt' \\ \hat{H} \text{ is Hermitian, called Hamiltonian} \end{cases}$$

so (1) could be evaluated as:

LHS =
$$\left(I - i\frac{\hat{H}}{\hbar}dt'\right)\psi(x,t) = \psi(x,t) - i\frac{\hat{H}}{\hbar}dt'\psi(x,t)$$
 (2)

RHS =
$$\psi(x, t + dt') = \psi(x, t) + \left(\frac{\partial}{\partial t}\psi(x, t)\right)dt'$$
 (3)

$$\Rightarrow i\hbar \frac{\partial}{\partial t} \psi(x,t) = H\psi(x,t)$$
(4)

which is Shrödinger's equation in position representation. In general, we have

$$i\hbar \frac{\partial}{\partial t} |\psi(t)\rangle = H |\psi(t)\rangle$$
(5)

H: Hamiltonian in analog to classical mechanics,

$$H = T + V, \begin{cases} T = \frac{p^2}{2m} \text{ is kinetic energy} \\ V \text{ is potential energy} \end{cases}$$
 (6)

and in quantum mechanics, we have

$$\hat{H} = \hat{T} + \hat{V} = \frac{\hat{p}^2}{2m} + \hat{V}(x) \tag{7}$$

Here are some examples of Hamiltonians in different systems.

Box 1.2: Examples of Hamiltonians in different systems

1. A free particle V = 0

$$\hat{H} = \frac{\hat{p}^2}{2m}$$

2. Hydrogen atom

$$\hat{H} = \frac{\hat{p}_e^2}{2m_e} + \frac{\hat{p}_n^2}{2m_n} - \frac{e^2}{4\pi\varepsilon_0 |\vec{r}_e - \vec{r}_n|}$$

3. A particle magnetic moment $\vec{\mu},$ in external magnetic field \vec{B}

$$\hat{H} = -\vec{\mu} \cdot \vec{B}$$