ΘΕΜΑ 4

Ένας κύβος μάζας $4\ kg$ ολισθαίνει πάνω σε λείο οριζόντιο δάπεδο με σταθερή ταχύτητα, μέτρου $v_0=2\ m/s$, κατά μήκος μιας ευθείας που ταυτίζεται με τον οριζόντιο άξονα x'x. Τη χρονική στιγμή $t_0=0$ όπου ο κύβος διέρχεται από τη θέση $O(x_0=0)$ του άξονα κινούμενος προς τη θετική φορά αρχίζει να ασκείται σε αυτόν δύ-

ναμη \vec{F} μέτρου 10N και κατεύθυνσης που σχηματίζει γωνία φ με την οριζόντια διεύθυνση, όπως στο σχήμα. Τη χρονική στιγμή που ο κύβος διέρχεται από τη θέση Α $(x_A=3\ m)$ η δύναμη \vec{F} παύει να ασκείται. Αμέσως μετά την κατάργηση της \vec{F} ο κύβος εισέρχεται και κινείται σε τραχύ οριζόντιο δάπεδο μέχρι να ακινητοποιηθεί. Η χρονική διάρκεια της κίνησης στο τραχύ δάπεδο είναι 4s. Να υπολογίσετε:

- **4.1)** το μέτρο της επιτάχυνσης του κύβου στη θέση B $(x_B = 1 m)$,
- 4.2) το μέτρο της ταχύτητας του κύβου στη θέση Α,
- 4.3) τη θέση στην οποία ο κύβος θα ακινητοποιηθεί,
- 4.4) τον συντελεστή τριβής ολίσθησης μεταξύ κύβου-δαπέδου στο τραχύ δάπεδο.

Δίνονται, $\eta\mu\varphi=0.6$, $\sigma vv\varphi=0.8$ και η επιτάχυνση της βαρύτητας, $g=10m/s^2$.

Μονάδες 5

Μονάδες 7

Μονάδες 6

Μονάδες 7