₹Tool Timeline for SpaceForgeOS-xAI Simulation Pipeline (Updated)

This document outlines the timeline, responsibilities, and integration plan for each key tool and software framework used in the SpaceForgeOS-xAI project. The goal is to create a scalable, modular, and state-of-the-art hybrid simulation + ML system that supports both physics-based and data-driven anomaly prediction and scheduling in orbital semiconductor manufacturing.

Phase 1: Simulation Core (Weeks 1-2)

Tool	Purpose	Who	Where	
C++17	Core simulation language	GPT-4-mini-high	sim/src/, sim/include/	
Project Chrono	Rigid body + multi-physics engine	GPT-4-mini-high (setup)	CMakeLists.txt, main.cpp	
CMake	Build and dependency management	GPT-4-mini-high	Root + sim/	
Key Deliverables: - SimulationEngine.cpp, Subsystem.hpp - Functional Battery, SolarArray, PowerBus with tick loop - CMake build with Chrono support				

Phase 2: Thermal & Power Physics (Weeks 3–4)

Tool	Purpose	Who	Where
Project Chrono	Continue for heat + torque simulation	GPT-4-mini-high	HeaterBank.cpp, etc.
Custom Equations	Outgassing rate, thermal flux (J(T))	ChatGPT (planning)	WakeChamber.cpp, models
JSON Logging	Telemetry export (graph/ state)	GPT-4-mini-high	TelemetryLogger.cpp

Key Deliverables: - WakeChamber with thermal + pressure model - Heater to chamber coupling - Log subsystem states per tick

Phase 3: Vacuum Physics with SPARTA & Molflow+ (Weeks 4–5)

Tool	Purpose	Who	Where
SPARTA	DSMC gas simulation for wake outgassing	User + ChatGPT (scripts)	data/vacuum/sparta/
Molflow+	Monte Carlo particle flux / deposition	User	data/vacuum/molflow/
Python	Postprocessing + integration	User	<pre>scripts/ gen_pressure.py</pre>
WakeVacLib (custom)	C++-side thermal outgassing & pressure models	GPT-4-mini-high	sim/src/ WakeChamber.cpp

Key Deliverables: - Wake pressure profiles under different shield configs - Monte Carlo studies for XAI scheduling targets - Embedded pressure decay curve generator in sim

Phase 4: Graph Output & ML Dataset (Week 5–6)

Tool	Purpose	Who	Where
RapidJSON / nlohmann	Export simulation state to . json	GPT-4-mini- high	GraphExporter.cpp
Python (Pandas/ NetworkX)	Preprocess logs into graph dataset	User + ChatGPT	ml/preprocess/

Key Deliverables: - Per-tick Graph JSON logs - Graph dataset builder for ML

Phase 5: ST-GNN + XAI Model Training (Weeks 6–8)

Tool	Purpose	Who	Where
PyTorch Geometric	Train ST-GNN on simulation graphs	User	ml/gnn/train_stgnn.py
Captum (XAI)	Integrated Gradients for saliency	User	ml/xai/
TorchScript	Export GNN to .pt	User	models/torchscript/
ONNX (Optional)	Cross-framework export format	Optional	models/onnx/

Key Deliverables: - model.pt for inference - XAI attribution graphs

Phase 6: ML Inference in C++ (Weeks 9–10)

Tool	Purpose	Who	Where
LibTorch	C++ inference of TorchScript model	GPT-4-mini- high	<pre>ml_interface.cpp/.hpp</pre>
ONNX Runtime	(Optional) lighter inference engine	Optional	ml_interface.cpp

Key Deliverables: - Load model.pt, call forward(), use result in simulation loop - ML-enhanced pressure estimation or scheduling

Phase 7: Optimization, Scheduling & Feedback Loop (Weeks 11–13)

Tool	Purpose	Who	Where
GNN + XAI	Predict risk/cost of a scheduling action	User + ChatGPT	ml/scheduler/
TorchScript Inference	Embed scheduler into tick loop	GPT-4-mini- high	sim/src/ Heuristics/
Optuna (Optional)	Hyperparameter tuning / scheduler selection	User	scripts/ optimize.py

Key Deliverables: - Schedule graphs + visualizations - Feedback loop from GNN-XAI back to tick loop

Phase 8: Evaluation, Visualization, and Write-Up (Weeks 14+)

Tool	Purpose	Who	Where
Python	Plotting, error metrics, IG visualization	User	scripts/, assets/
Overleaf	Paper write-up and diagrams	User + ChatGPT	docs/proposal/
GitHub/ Git	Version control and collaborative history	All	All project files

Final Deliverables: - Annotated GNN behavior on novel simulations - Full paper draft + artifact submission package

t This updated timeline reflects the correct ordering where vacuum physics is implemented early, enabling both pressure-aware simulation and scheduling-driven learning downstream.