Aprendizaje no supervisado

Aprendizaje no supervisado

- No hay etiquetas (no hay variables de salida), sólo variables de entrada.
- Agrupamiento de datos

Clustering - enunciado del problema

- Dado un conjunto de puntos (datos de entrenamiento) agruparlo en clusters de tal forma que:
 - Puntos en un cluster son similares unos a otros.
 - Puntos en diferentes clusters son disimilares.
- Los puntos están generalmente en un espacio de alta dimensionalidad, por lo que se definen métricas de distancia para medir la similaridad.
 - Distancia euclidiana
 - Distancia de coseno
 - Edit distance

Ejemplo:

Métodos de clustering

- 1. Jerárquicos o de aglomeración
 - Cada punto inicialmente es un cluster
 - A cada paso se van juntando dos cluster en uno basados en alguna medida de similaridad
- 2. Por clusters definidos (asignación de puntos)
 - Se tiene un número fijo de clusters
 - Puntos se van asignando al cluster que se encuentra más cercano a ellos.

Clustering Jerárquico

- Preguntas a responder:
 - Cómo representar un cluster de más de un punto ?
 - Cuál medida de similaridad utilizar?
 - Cuando parar de combinar clusters?

Representación de clusters

- En el espacio Euclidiano -> centroides
 - Cada cluster se puede representar por su centroide.
 - Distancia entre clusters = distancia entre sus centroides.

Representación de clusters

- En el espacio no Euclidiano -> clustroid
 - Como no hay média de puntos, un punto tiene que ser el "centroide"
 - Se toma el punto que se encuentra "más cercano" a los otros puntos de su cluster

Medidas de similaridad

- Estas distancias se calculan entre clusters
 - Distancia euclidiana
 - Distancia de coseno
 - Edit distance
 - Etc, etc, etc

Cohesión

- Se busca la mayor cohesión entre puntos de un mismo cluster
- Fusionar clusters cuya unión tengan la mayor cohesión.

Criterio de parada

- 1. Parar cuando se alcanza un mínimo número de clusters
- 2. Parar cuando la mejor cohesión de dos clusters que se van a combinar sea menor a un umbral determinado.
- 3. Parar cuando la cohesión sufre un cambio muy notorio de una iteración a otra.

Implementación de clustering jerárquico.

- 1. Cada punto es un cluster.
- 2. Computar las distancias entre cada par de clusters
- 3. Juntar aquel o aquellos que presenten la mejor cohesión.
- 4. Ejecutar 2. y 3. hasta que un critério de parada sea encontrado.

- Implementación fuerza bruta (n^3)
- Utilizando colas de prioridad (n^2 log (n))
- Son lentos en general.

Por asignación de puntos (k-means)

- K-means es el algoritmo más conocido en clustering.
- Asume que se está trabajando en un espacio euclidiano.
- Recibe como entrada el número K de clusters.
- Los pasos en las siguientes diapositivas.

1) Escoger los K-centroides iniciales

- Enfoques:
 - Escoger aleatoriamente K puntos de la data de entrada.
 - Escoger un punto aleatóriamente de la data de entrada y luego K-1 puntos que se encuentren los más alejado posible de los puntos previos escogidos.

1) Escoger los K-centroides iniciales

2) Asignar cada punto al centroide más cercano

 Utilizando distancia euclidiana o alguna otra medida, cada punto será asignado al centroide más cercano

2) Asignar cada punto al centroide más cercano

3) Actualizar los K centroides

- Calcular la media aritmética de todos los puntos de un cluster.
- El nuevo centroide del cluster será esa media.

3) Actualizar los K centroides

4) Iterar entre los pasos 2 y 3 hasta convergencia

Función Costo (J) - (Distorsión)

$$c^{(i)}$$
 : Índice del cluster al que pertenece $\,x^{(i)}\,$

$$\mu_k$$
: Centroide del cluster k (k = 1 K)

$$\mu_{c^{(i)}}$$
: Centroide del cluster para el cual $x^{(i)}$ ha sido asignado $\mathcal{M}_{c^{(i)}} = \mathcal{M}_{s}$

$$J(c^{(1)}, \dots, c^{(m)}, \mu_1, \dots, \mu_K) = \frac{1}{m} \sum_{i=1}^{m} ||x^{(i)} - \mu_{c^{(i)}}||^2$$

Función Costo (J)

$$\min_{\substack{c^{(1)},\ldots,c^{(m)},\\\mu_1,\ldots,\mu_K}} J(c^{(1)},\ldots,c^{(m)},\mu_1,\ldots,\mu_K)$$

- J es minimizado con respecto a $c^{(1)}, \ldots, c^{(m)}$ en el paso 2 del algoritmo
- ullet J es minimizado con respecto a μ_1,\ldots,μ_K en el paso 3 del algoritmo

Función Costo J

• Situación imposible: Error en la implementación.

Encontrando K

- Escoger manualmente es la mejor opción.
- Es un problema ambiguo.

Encontrando K

- Escoger manualmente es la mejor opción.
- Es un problema ambiguo.

Encontrando K

- Escoger manualmente es la mejor opción.
- Es un problema ambiguo.

Elbow method (método del codo)

Elbow method - Ambiguedad!

Mejor forma de encontrar K

Analizando K en base a la información del problema que se está resolviendo.

Mas algoritmos - Sklearn

