CHAPTER 2

SETS, FUNCTIONS, SEQUENCES, SUMS

Why study this chapter?

Many important discrete structures are built using sets

Functions

fix used to represent complexity of algorithms needed for cryptography, machine learning

Sequences Summations Σa_n

Manipulate set operations
Represent sets by bit strings

Determine whether a rule is a function

Determine whether a function is 1-1, onto, bijective

Find composite functions

Find next terms, general term of a sequence

Express a sum as sigma notation

{ } sets

A collection of objects, called elements/members

{a, b, {c}} is a set with 3 members a, b, and {c}

N denotes the set of natural numbers 0, 1, 2, 3, ...

 \mathbb{Z} is the of integers ..., -2, -1, 0, 1, 2, ...

Georg Cantor (1845–1918)

R is the set of real numbers

Venn diagrams

Venn diagram for the set of vowels $V = \{a, e, i, o, u\}$

E membership relation

```
a ∈ {a, b, {c}}
c ∉ {a, b, {c}}
```

```
    a ∈ A means
    a is an element/member of
    the set A
    a is in A
    a belongs to the set A
```

equality

Two sets are called equally if and only if they have the same elements

$$\{1, 2, 3\} = \{2, 1, 3\} = \{1, 2, 3, 3\}$$

 $\{1, 2, 3\} \neq \{2, 3, 4\}$
 $\{a, b\} \neq \{a, \{b\}\}$

Sempty set

The set with no elements

$$\{x \mid x > 3 \text{ and } x < 2\} = \{\} = \emptyset$$

$$\emptyset = \{\emptyset\}$$

$$\emptyset \in \{3\}$$

$$\{\alpha, \emptyset\} = \{\alpha\}$$

Subset

C proper subset

 $A \subseteq B$

$$\Leftrightarrow \forall x (x \in A \Rightarrow x \in B)$$

A is called a subset of B, e.g., $\{a, b\} \subseteq \{a, b, c\}$

Write $A \subset B$ if

$$A \subseteq B$$
, and $A \neq B$

A is called a proper subset of B, e.g., $\{a, b\} \subset \{a, b, c\}$

$$\{a, b, c\} \subseteq \{a, c, b\}$$

 $\{a, b, c\} \subset \{a, c, b\}$

properties

Proof.

$$\forall x (x \in \emptyset \Rightarrow x \in S)$$

$$F \Rightarrow F$$

$$F \Rightarrow T$$

$$\emptyset \subseteq \emptyset$$
 $\emptyset \subseteq \{a\}$
 $\emptyset \in \{a\}$
 $\emptyset \in \{a, \emptyset\}$

 $S \subseteq S$

Proof.

$$\forall x(x \in S \Rightarrow x \in S)$$

$$F \Rightarrow F$$

$$T \Rightarrow T$$

Set equality

$$A = B \Leftrightarrow \begin{cases} A \subseteq B \\ B \subseteq A \end{cases}$$

power set

set S	subsets	power set P(S)	P(S)	
Ø	\varnothing	$\{\varnothing\}$	1	
{1}	\varnothing , {1}	{∅, {1}}	2	
{1, 2}	Ø, {1}, {2}, {1, 2}	{Ø, {1}, {2}, {1, 2}}	4	
{1, 2, 3}		{Ø, {1}, {2}, {3}, {1, 2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}	8 2n	(?))

X Cartesian product

X Cartesian product

Given two sets $A = \{a, b, c\}$, and $B = \{1, 2, 3, 4\}$

How many elements does
$$A \times B$$
 have?
 $(3, a) \in A \times B$
 $\{b, 2\} \in A \times B$
 $\{(a, 1), (c, 3)\} \subseteq A \times B$
 $A \times B = B \times A$

Set operations

union

Universal set and complement

Universal set
$$U = \{1, 2, 3, 4, 5, 6, 7, 8\}$$

$$A = \{ 2, 5, 6, 8 \}$$

complement
$$\overline{A} = \{1, 3, 4, 7\}$$

17

Computer representation of sets

U = {	1,	2,	3,	4,	5,	6,	7,	8 }
υ[n]	1	1	1	1	1	1	1	1
A = {		2,	3,		5,		7	}
a[n]	0	1	1	0	1	0	1	0
B = {	1,	2,		4,	5,			8 }
b[n]	1	1	0	1	1	0	0	1

What is the bit string for $A?A \cup B?A \cap B?A - B?A \oplus B?$

f(x) functions

Domain and range

 $f = \{(1, 6), (2, 4), (3, 2), (4, 2)\}$

```
f: A → B
    Read: function f
    from A to B
A: domain of f
f(A): range of f
function = mapping
= transformation
```

(2) function or not

$$f: \mathbb{R} \to \mathbb{R},$$

$$f \quad x = \frac{1}{x^2 - 2}$$

$$f \quad \sqrt{2} = \frac{1}{0} !$$

$$f: \mathbb{Z} \to \mathbb{R},$$

$$f \quad x = \frac{1}{x^2 - 2}$$

$$f: \mathbb{Z} \to \mathbb{Z},$$

$$f \quad x = \frac{1}{x^2 - 2}$$

$$f \quad 2 = \frac{1}{2} \notin \mathbb{Z}$$

one-to-one

f is called one-to-one \Leftrightarrow

 $x \neq y \Rightarrow f(x) \neq f(y)$ for all x, y

one-to-one

$$\Rightarrow$$
 36

$$@ \rightarrow 64$$

$$\mathsf{A} \; o \; \mathsf{65}$$

$$B \rightarrow 66$$

$$C \rightarrow 67$$

Not one-to-one

onto

Bijection and inverse

bijection = 1-1 + onto

ASCII

bijection

$$\$ \rightarrow 36$$

$$@\rightarrow 64$$

$$A \rightarrow 65$$

$$B \rightarrow 66$$

$$C \rightarrow 67$$

inverse

$$A \leftarrow 65$$

composite function

$$x \stackrel{f}{\Rightarrow} x + 3 \stackrel{g}{\Rightarrow} (x + 3)^2$$

(aot)(x) =
$$\hat{s}$$

 $g(x) = \hat{s}$
 $t(x) = \hat{s}$

composite function

```
Given f = \{(a, 2), (b, 1), (c, 2)\}
g = \{(1, a), (2, b), (3, c)\}
Find gof and fog
        a \Rightarrow 2 \Rightarrow b b \Rightarrow 1 \Rightarrow a
                                                                 c \Rightarrow 2 \Rightarrow b
g \circ f = \{(a, b), (b, a), (c, b)\}
         1 \Rightarrow a \Rightarrow 2 2 \Rightarrow b \Rightarrow 1
                                                                  3 \Rightarrow c \Rightarrow 2
f \circ g = \{(1, 2), (2, 1), (3, 2)\}
```

sequences

$$a_1, a_2, a_3, a_4, ...$$
 sequence $\{a_n\}$ $a[1], a[2], a[3], a[4], ...$ array $a[n]$

Lucas numbers

n	1	2	3	4	5	• • •
a _n	1	3	4	7	11	• • •

What are the next two terms?

: Arithmetic progression

Given the sequence 3, 7, 11, 15, 19, 23, 27, 31, ...

Find the next two terms of the sequence

35, 39

What is the general term a_n, the nth term?

$$a_n = 4n - 1$$

28

Formulae of sequences

```
1/ 5, 11, 17, 23, 29, 35, 41, ... a_n = 6n - 1
2/ 1, 3, 4, 7, 11, 18, 29, 47, ... L_n = L_{n-1} + L_{n-2} \text{ with } L_1 = 1, L_2 = 3 \qquad // \text{ Lucas sequence}
3/ 1, 7, 25, 79, 241, 727, 2185, ... a_n = 3^n - 2
```


Recursive sequence

Given $a_1 = 3$, $a_2 = 2$, and $a_n = 3a_{n-1} - a_{n-2}$ when n > 2

Find a_3 , a_4 , a_5 .

n	1		\\3	4	5
a _n	3	2 *	3	7	18

Summations

Summations

Write each of these sums as sigma notation

$$1/1+3+5+7+9+11$$
 $\sum_{i=1}^{6} (2i-1)$

$$2/3+3+3+3+3$$
 $\sum_{1}^{5}3$

3/ 1+4+7+10+13+16+19
$$\sum_{i=1}^{7} (3i-2)$$

summary

Sets

THANKS