NORME INTERNATIONALE INTERNATIONAL STANDARD

CEI IEC 60287-1-1

Edition 1.2

2001-11

Edition 1:1994 consolidée par les amendements 1:1995 et 2:2001 Edition 1:1994 consolidated with amendments 1:1995 and 2:2001

Câbles électriques -

Calcul du courant admissible -

Partie 1-1:

Equations de l'intensité du courant admissible (facteur de charge 100 %) et calcul des pertes – Généralités

Electric cables -

Calculation of the current rating -

Part 1-1:

Current rating equations (100 % load factor) and calculation of losses – General

Numéro de référence Reference number CEI/IEC 60287-1-1:1994+A1:1995+A2:2001

Numérotation des publications

Depuis le 1er janvier 1997, les publications de la CEI sont numérotées à partir de 60000. Ainsi, la CEI 34-1 devient la CEI 60034-1.

Editions consolidées

Les versions consolidées de certaines publications de la CEI incorporant les amendements sont disponibles. Par exemple, les numéros d'édition 1.0, 1.1 et 1.2 indiquent respectivement la publication de base, la publication de base incorporant l'amendement 1, et la publication de base incorporant les amendements 1 et 2.

Informations supplémentaires sur les publications de la CEI

Le contenu technique des publications de la CEI est constamment revu par la CEI afin qu'il reflète l'état actuel de la technique. Des renseignements relatifs à cette publication, y compris sa validité, sont disponibles dans le Catalogue des publications de la CEI (voir ci-dessous) en plus des nouvelles éditions, amendements et corrigenda. Des informations sur les sujets à l'étude et l'avancement des travaux entrepris par le comité d'études qui a élaboré cette publication, ainsi que la liste des publications parues, sont également disponibles par l'intermédiaire de:

Site web de la CEI (<u>www.iec.ch</u>)

• Catalogue des publications de la CEI

Le catalogue en ligne sur le site web de la CEI (www.iec.ch/catlg-f.htm) vous permet de faire des recherches en utilisant de nombreux critères, comprenant des recherches textuelles, par comité d'études ou date de publication. Des informations en ligne sont également disponibles sur les nouvelles publications, les publications remplacées ou retirées, ainsi que sur les corrigenda.

IEC Just Published

Ce résumé des dernières publications parues (www.iec.ch/JP.htm) est aussi disponible par courrier électronique. Veuillez prendre contact avec le Service client (voir ci-dessous) pour plus d'informations.

Service clients

Si vous avez des questions au sujet de cette publication ou avez besoin de renseignements supplémentaires, prenez contact avec le Service clients:

Email: custserv@iec.ch
Tél: +41 22 919 02 11
Fax: +41 22 919 03 00

Publication numbering

As from 1 January 1997 all IEC publications are issued with a designation in the 60000 series. For example, IEC 34-1 is now referred to as IEC 60034-1.

Consolidated editions

The IEC is now publishing consolidated versions of its publications. For example, edition numbers 1.0, 1.1 and 1.2 refer, respectively, to the base publication, the base publication incorporating amendment 1 and the base publication incorporating amendments 1 and 2

Further information on IEC publications

The technical content of IEC publications is kept under constant review by the IEC, thus ensuring that the content reflects current technology. Information relating to this publication, including its validity, is available in the IEC Catalogue of publications (see below) in addition to new editions, amendments and corrigenda. Information on the subjects under consideration and work in progress undertaken by the technical committee which has prepared this publication, as well as the list of publications issued, is also available from the following:

IEC Web Site (<u>www.iec.ch</u>)

• Catalogue of IEC publications

The on-line catalogue on the IEC web site (www.iec.ch/catlg-e.htm) enables you to search by a variety of criteria including text searches, technical committees and date of publication. Online information is also available on recently issued publications, withdrawn and replaced publications, as well as corrigenda.

• IEC Just Published

This summary of recently issued publications (www.iec.ch/JP.htm) is also available by email. Please contact the Customer Service Centre (see below) for further information.

• Customer Service Centre

If you have any questions regarding this publication or need further assistance, please contact the Customer Service Centre:

Email: <u>custserv@iec.ch</u>
Tel: +41 22 919 02 11
Fax: +41 22 919 03 00

Customer: Gilles Tremouille - No. of User(s): 1 - Company: AREVA Order No.: WS-2006-010732 - IMPORTANT: This file is copyright of IEC, Geneva, Switzerland. All rights reserved. This file is subject to a licence agreement. Enquiries to Email: custserv@iec.ch - Tel.: +41 22 919 02 11

NORME INTERNATIONALE INTERNATIONAL STANDARD

CEI IEC 60287-1-1

Edition 1.2 2001-11

Edition 1:1994 consolidée par les amendements 1:1995 et 2:2001 Edition 1:1994 consolidated with amendments 1:1995 and 2:2001

Câbles électriques -

Calcul du courant admissible -

Partie 1-1:

Equations de l'intensité du courant admissible (facteur de charge 100 %) et calcul des pertes – Généralités

Electric cables -

Calculation of the current rating -

Part 1-1:

Current rating equations (100 % load factor) and calculation of losses – General

© IEC 2001 Droits de reproduction réservés — Copyright - all rights reserved

Aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l'éditeur.

No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Electrotechnical Commission 3, Telefax: +41 22 919 0300 e-mail: inmail@iec.ch

3, rue de Varembé Geneva, Switzerland ec.ch IEC web site http://www.iec.ch

Commission Electrotechnique Internationale International Electrotechnical Commission Международная Электротехническая Комиссия

CODE PRIX PRICE CODE

Pour prix, voir catalogue en vigueur For price, see current catalogue

SOMMAIRE

A۷	'ANT-I	PROPOS	5	6
IN ⁻	TROD	UCTION	l	10
1	Gén	áralités		12
•	1.1		ne d'application	
	1.1		nces normatives	
	1.3		les	
	1.4	•	ition de l'intensité admissible du courant dans les câbles	
	1	1.4.1	Câbles enterrés dans le cas où il n'y a pas d'assèchement du sol ou câbles posés à l'air libre	
		1.4.2	Câbles enterrés dans le cas où se produit un assèchement partiel du sol	
		1.4.3	Câbles enterrés dans le cas où un assèchement du sol est à éviter	
		1.4.4	Câbles directement exposés au rayonnement solaire	
2	Calc	ul des p	ertes	
	2.1	•	ance de l'âme en courant alternatif	
		2.1.1	Résistance de l'âme en courant continu	
		2.1.2	Facteur d'effet de peau y _s	
		2.1.3	Facteur d'effet de proximité y_p dans le cas de câbles bipolaires ou de deux câbles unipolaires	
		2.1.4	Facteur d'effet de proximité y_p dans le cas de câbles tripolaires ou de trois câbles unipolaires	
		2.1.5	Effets de peau et de proximité dans le cas des câbles en tuyau d'acier	30
	2.2	Pertes	diélectriques (applicable uniquement aux câbles à courant alternatif)	32
	2.3	Facteu câbles	r de pertes dans les gaines ou les écrans (applicable uniquement aux à courant alternatif à fréquence industrielle)	32
		2.3.1	Deux câbles unipolaires et trois câbles unipolaires (disposés en trèfle), avec gaines court-circuitées aux deux extrémités d'une section électrique	34
		2.3.2	Trois câbles unipolaires disposés en nappe, régulièrement transposés, avec gaines court-circuitées aux deux extrémités d'une section électrique	36
		2.3.3	Trois câbles unipolaires disposés en nappe, non transposés, avec gaines court-circuitées aux deux extrémités d'une section électrique	36
		2.3.4	Variation de l'écartement des câbles unipolaires entre les points où les gaines sont court-circuitées	38
		2.3.5	Influence des grosses âmes segmentées	40
		2.3.6	Câbles unipolaires avec gaines court-circuitées en un seul point ou permutées	40
		2.3.7	Câbles bipolaires non armés sous gaine commune	44
		2.3.8	Câbles tripolaires non armés sous gaine commune	46
		2.3.9	Câbles bipolaires et tripolaires armés de feuillards d'acier	46
		2.3.10	Câbles triplombs armés	48
		2.3.11	Pertes dans les écrans et les gaines de câbles en tuyau d'acier	48

CONTENTS

FC	REW	ORD		7
IN ⁻	TROD	UCTION		11
1	Gan	aral		13
•	1.1			
		•	tive references	
	1.2		ls	
	1.3	•	sible current rating of cables	
	1.4	1.4.1	Buried cables where drying out of the soil does not occur	∠ 1
		1.4.1	or cables in air	
		1.4.2	Buried cables where partial drying-out of the soil occurs	23
		1.4.3	Buried cables where drying-out of the soil is to be avoided	25
		1.4.4	Cables directly exposed to solar radiation	27
2	Calc	ulation c	of losses	27
		AC res	istance of conductor	27
		2.1.1	DC resistance of conductor	29
		2.1.2	Skin effect factor y _s	29
		2.1.3	Proximity effect factor y_p for two-core cables and for two	
			single-core cables	29
		2.1.4	Proximity effect factor y_p for three-core cables and for three single-core cables	31
		2.1.5	Skin and proximity effects in pipe-type cables	31
	2.2	Dielect	ric losses (applicable to a.c. cables only)	33
		33		
		2.3.1	Two single-core cables, and three single-core cables (in trefoil	
			formation), sheaths bonded at both ends of an electrical section	35
		2.3.2	Three single-core cables in flat formation, with regular transposition, sheaths bonded at both ends of an electrical section	37
		2.3.3	Three single-core cables in flat formation, without transposition,	
			sheaths bonded at both ends of an electrical section	37
		2.3.4	Variation of spacing of single-core cables between sheath bonding points	39
		2.3.5	Effect of large segmental type conductors	41
		2.3.6	Single-core cables, with sheaths bonded at a single point or cross-bonded	41
		2.3.7	Two-core unarmoured cables with common sheath	45
		2.3.8	Three-core unarmoured cables with common sheath	47
		2.3.9	Two-core and three-core cables with steel tape armour	
			Cables with each core in a separate lead sheath (SL type) and armoured	
		2.3.11	Losses in screen and sheaths of pipe-type cables	

2.4	Facteur de pertes dans les armures, les frettages et les tuyaux d'acier (applicable uniquement aux câbles à courant alternatif à fréquence industrielle)		48
	2.4.1	Armure ou frettage non magnétique	50
	2.4.2	Armure ou frettage magnétique	50
	2.4.3	Pertes dans les tuyaux d'acier	58
avec la te	empérat	istivités électriques et coefficients de variation de la résistivité cure des métaux utilisésts de peau et de proximité – Valeurs expérimentales pour	60
		s et k'p	62
pour les i	solants	eurs numériques de la permittivité relative et du facteur de pertes utilisés dans les câbles à haute tension et moyenne tension estrielle	64
		fficient d'absorption des rayons solaires pour les surfaces	66

60287-1-1 © IEC:1994+A1:1995 - 5 - +A2:2001

2.4	Loss factor for armour, reinforcement and steel pipes (applicable to power frequency a.c. cables only)4		49
	2.4.1	Non-magnetic armour or reinforcement	51
	2.4.2	Magnetic armour or reinforcement	51
	2.4.3	Losses in steel pipes	59
Table 1 –	Electric	cal resistivities and temperature coefficients of metals used	61
Table 2 –	Skin ar	nd proximity effects – Experimental values for the coefficients k_{S} and k_{p}	63
		of relative permittivity and loss factors for the insulation of medium-voltage cables at power frequency	65
Table 4 -	Absorp	tion coefficient of solar radiation for cable surfaces	67

COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE

CÂBLES ÉLECTRIQUES – CALCUL DU COURANT ADMISSIBLE –

Partie 1-1: Equations de l'intensité du courant admissible (facteur de charge 100 %) et calcul des pertes – Généralités

AVANT-PROPOS

- 1) La CEI (Commission Electrotechnique Internationale) est une organisation mondiale de normalisation composée de l'ensemble des comités électrotechniques nationaux (Comités nationaux de la CEI). La CEI a pour objet de favoriser la coopération internationale pour toutes les questions de normalisation dans les domaines de l'électricité et de l'électronique. A cet effet, la CEI, entre autres activités, publie des Normes internationales. Leur élaboration est confiée à des comités d'études, aux travaux desquels tout Comité national intéressé par le sujet traité peut participer. Les organisations internationales, gouvernementales et non gouvernementales, en liaison avec la CEI, participent également aux travaux. La CEI collabore étroitement avec l'Organisation Internationale de Normalisation (ISO), selon des conditions fixées par accord entre les deux organisations.
- 2) Les décisions ou accords officiels de la CEI concernant les questions techniques représentent, dans la mesure du possible, un accord international sur les sujets étudiés, étant donné que les Comités nationaux intéressés sont représentés dans chaque comité d'études.
- 3) Les documents produits se présentent sous la forme de recommandations internationales. Ils sont publiés comme normes, spécifications techniques, rapports techniques ou guides et agréés comme tels par les Comités nationaux.
- 4) Dans le but d'encourager l'unification internationale, les Comités nationaux de la CEI s'engagent à appliquer de façon transparente, dans toute la mesure possible, les Normes internationales de la CEI dans leurs normes nationales et régionales. Toute divergence entre la norme de la CEI et la norme nationale ou régionale correspondante doit être indiquée en termes clairs dans cette dernière.
- 5) La CEI n'a fixé aucune procédure concernant le marquage comme indication d'approbation et sa responsabilité n'est pas engagée quand un matériel est déclaré conforme à l'une de ses normes.
- 6) L'attention est attirée sur le fait que certains des éléments de la présente Norme internationale peuvent faire l'objet de droits de propriété intellectuelle ou de droits analogues. La CEI ne saurait être tenue pour responsable de ne pas avoir identifié de tels droits de propriété et de ne pas avoir signalé leur existence.

La Norme internationale CEI 60287-1-1 a été établie par le sous-comité 20A: Câbles de haute tension, du comité d'études 20 de la CEI: Câbles électriques.

Cette première édition de la CEI 60287-1-1 annule et remplace les sections un et deux de la deuxième édition de la CEI 60287 parue en 1982 et la partie appropriée de l'amendement 3, sans changement technique.

La CEI 60287-2-1 remplace la section trois et les annexes C et D de la deuxième édition de la CEI 60287; la CEI 60287-3-1 remplace les annexes A et B de la deuxième édition de la CEI 60287.

La présente version consolidée de la CEI 60287-1-1 est issue de la première édition (1994) [documents 20A(BC)75 et 20A(BC)81], de son amendement 1 (1995) [documents 20A/262/FDIS et 20A/280/RVD] et de son amendement 2 (2001) [documents 20A/477/FDIS et 20A/483/RVD].

Elle porte le numéro d'édition 1.2.

Une ligne verticale dans la marge indique où la publication de base a été modifiée par les amendements 1 et 2.

Customer: Gilles Tremouille - No. of User(s): 1 - Company: AREVA Order No.: WS-2006-010732 - IMPORTANT: This file is copyright of IEC, Geneva, Switzerland. All rights reserved. This file is subject to a licence agreement. Enquiries to Email: custserv@iec.ch - Tel.: +41 22 919 02 11

+A2:2001

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ELECTRIC CABLES -

CALCULATION OF THE CURRENT RATING -

Part 1-1: Current rating equations (100 % load factor) and calculation of losses – General

FOREWORD

- 1) The IEC (International Electrotechnical Commission) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of the IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, the IEC publishes International Standards. Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. The IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of the IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested National Committees.
- 3) The documents produced have the form of recommendations for international use and are published in the form of standards, technical specifications, technical reports or guides and they are accepted by the National Committees in that sense.
- 4) In order to promote international unification, IEC National Committees undertake to apply IEC International Standards transparently to the maximum extent possible in their national and regional standards. Any divergence between the IEC Standard and the corresponding national or regional standard shall be clearly indicated in the latter.
- 5) The IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with one of its standards.
- 6) Attention is drawn to the possibility that some of the elements of this International Standard may be the subject of patent rights. The IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 60287-1-1 has been prepared by subcommittee 20A: High-voltage cables, of IEC technical committee 20: Electric cables.

This first edition of IEC 60287-1-1 cancels and replaces sections one and two of the second edition of IEC 60287 published in 1982 and the appropriate part of amendment 3, without technical changes.

IEC 60287-2-1 replaces section three and annexes C and D of the second edition of IEC 60287; IEC 60287-3-1 replaces annexes A and B of the second edition of IEC 60287.

This consolidated version of IEC 60287-1-1 is based on the first edition (1994) [documents 20A(CO)75 and 20A(CO)81], its amendment 1 (1995) [documents 20A/262/FDIS and 20A/280/RVD] and its amendment 2 (2001) [documents 20A/477/FDIS and 20A/483/RVD].

It bears the edition number 1.2.

A vertical line in the margin shows where the base publication has been modified by amendments 1 and 2.

-8-

Le comité a décidé que le contenu de la publication de base et de ses amendements ne sera pas modifié avant 2006. A cette date, la publication sera

- reconduite;
- supprimée;
- · remplacée par une édition révisée, ou
- amendée.

Le contenu du corrigendum d'août 2006 a été pris en considération dans cet exemplaire.

60287-1-1 © IEC:1994+A1:1995 - 9 - +A2:2001

The committee has decided that the contents of the base publication and its amendments will remain unchanged until 2006. At this date, the publication will be

- · reconfirmed;
- withdrawn;
- · replaced by a revised edition, or
- amended.

The contents of the corrigendum of August 2006 have been included in this copy.

INTRODUCTION

La CEI 60287 a été divisée en trois parties et diverses sections de manière à faciliter les révisions et les adjonctions.

Chaque partie est divisée en sections qui sont publiées en tant que normes séparées.

- Partie 1: Equations de l'intensité du courant admissible (facteur de charge 100 %) et calcul des pertes
- Partie 2: Résistance thermique
- Partie 3: Sections concernant les conditions de fonctionnement

La partie 1 – Section 1: Généralités, contient des formules relatives aux quantités R, W_d , λ_1 et λ_2 .

La présente section contient des méthodes pour le calcul du courant admissible à partir des détails de l'accroissement admissible de la température de la résistance des conducteurs, des pertes et de la résistivité thermique.

Des formules pour le calcul des pertes se trouvent aussi dans cette section.

Les formules de cette norme contiennent des paramètres variant avec la spécification du câble et les matériaux utilisés. Les valeurs données dans les tableaux sont soit approuvées internationalement, comme les résistivités électriques et la constante diélectrique des matériaux, ou bien généralement acceptées dans la pratique, comme les résistivités thermiques et les permittivités des matériaux. Certaines des valeurs de la dernière catégorie ne sont pas caractéristiques de la qualité des câbles neufs mais de celle des câbles ayant déjà subi une longue période d'utilisation. Dans le but d'obtenir des résultats comparables et reproductibles, les régimes permanents doivent être calculés avec les valeurs indiquées dans la présente norme. Toutefois, lorsqu'on sait avec certitude que d'autres valeurs sont plus appropriées aux matériaux et à leur mise en œuvre, ces dernières peuvent alors être utilisées en déclarant le régime permanent correspondant, pourvu que les différentes valeurs soient indiquées.

Les données relatives aux conditions de service sont susceptibles de varier considérablement d'un pays à l'autre. Par exemple, pour ce qui est de la température ambiante et de la résistance thermique du sol, les valeurs sont régies dans les différents pays par diverses considérations. Une comparaison hâtive entre les valeurs utilisées dans les différents pays peut amener des conclusions erronées, si elle n'est pas faite sur des bases communes; par exemple, on peut compter sur des espérances de vie du câble différentes; de même, dans certains pays, la spécification est établie sur la valeur maximale de la résistance thermique du sol, tandis que dans d'autres c'est la valeur moyenne qui est utilisée. En particulier, dans le cas de la résistivité thermique du sol, il est bien connu que celle-ci est très sensible au taux d'humidité et peut varier sensiblement dans le temps suivant le type de sol, les conditions topographiques et météorologiques et la charge du câble.

Le choix des valeurs des différents paramètres sera dès lors effectué de la façon suivante.

Les valeurs numériques devront, de préférence, être basées sur des résultats de mesures valables. De tels résultats sont déjà souvent inclus dans les spécifications nationales sous forme de valeurs recommandées, de telle sorte que le calcul peut être exécuté sur la base de ces valeurs, généralement utilisées dans le pays en question; un examen de ces valeurs est fait dans la partie 3, section 1.

On trouvera un choix d'informations nécessaires pour sélectionner le type de câble approprié dans la partie 3, section 1.

+A2:2001

INTRODUCTION

IEC 60287 has been divided into three parts and sections so that revisions of, and additions to, the document can be carried out more conveniently.

Each part is divided into sections which are published as separate standards.

Part 1: Formulae for ratings (100 % load factor) and power losses

Part 2: Formulae for thermal resistance

Part 3: Sections on operating conditions

Part 1 – Section 1: General, contains formulae for the quantities R, W_d , λ_1 and λ_2 .

This section contains methods for calculating the permissible current rating of cables from details of the permissible temperature rise, conductor resistance, losses and thermal resistivities.

Formulae for the calculation of losses are also given in this section.

The formulae in this standard contain quantities which vary with cable design and materials used. The values given in the tables are either internationally agreed, for example, electrical resistivities and resistance temperature coefficients, or are those which are generally accepted in practice, for example, thermal resistivities and permittivities of materials. In this latter category, some of the values given are not characteristic of the quality of new cables but are considered to apply to cables after a long period of use. In order that uniform and comparable results may be obtained, the current ratings should be calculated with the values given in this standard. However, where it is known with certainty that other values are more appropriate to the materials and design, then these may be used, and the corresponding current rating declared in addition, provided that the different values are quoted.

Quantities related to the operating conditions of cables are liable to vary considerably from one country to another. For instance, with respect to the ambient temperature and soil thermal resistivity, the values are governed in various countries by different considerations. Superficial comparisons between the values used in the various countries may lead to erroneous conclusions if they are not based on common criteria: for example, there may be different expectations for the life of the cables, and in some countries design is based on maximum values of soil thermal resistivity, whereas in others average values are used. Particularly, in the case of soil thermal resistivity, it is well known that this quantity is very sensitive to soil moisture content and may vary significantly with time, depending on the soil type, the topographical and meteorological conditions, and the cable loading.

The following procedure for choosing the values for the various parameters should, therefore, be adopted.

Numerical values should preferably be based on results of suitable measurements. Often such results are already included in national specifications as recommended values, so that the calculation may be based on these values generally used in the country in question; a survey of such values is given in part 3, section 1.

A suggested list of the information required to select the appropriate type of cable is given in part 3, section 1.

CÂBLES ÉLECTRIQUES – CALCUL DU COURANT ADMISSIBLE –

Partie 1-1: Equations de l'intensité du courant admissible (facteur de charge 100 %) et calcul des pertes – Généralités

1 Généralités

1.1 Domaine d'application

La présente section de la CEI 60287 concerne uniquement le fonctionnement en régime permanent des câbles de toutes tensions alternatives et de tensions continues jusqu'à 5 kV, enterrés directement dans le sol, placés dans des fourreaux, caniveaux ou tubes d'acier, avec ou sans assèchement partiel du sol, ainsi que les câbles posés à l'air libre. On entend par «régime permanent» la circulation continue d'un courant constant (facteur de charge 100 %) juste suffisant pour atteindre asymptotiquement la température maximale de l'âme en supposant que les conditions du milieu ambiant restent inchangées.

Cette section fournit des formules pour l'intensité du courant et les pertes.

Les formules proposées sont essentiellement littérales et laissent en principe libre le choix de certains paramètres importants. Ceux-ci peuvent être divisés en trois groupes:

- les paramètres liés à la constitution du câble (par exemple résistance thermique de l'isolant) pour lesquels des valeurs représentatives ont été recueillies, à partir des travaux publiés;
- les paramètres liés aux conditions du milieu, qui peuvent varier considérablement; le choix de ceux-ci dépend du pays où les câbles sont ou doivent être utilisés;
- les paramètres résultant d'un accord entre fabricant et utilisateur et qui supposent une marge de sécurité en service (par exemple température maximale du conducteur).

1.2 Références normatives

Les documents de référence suivants sont indispensables pour l'application du présent document. Pour les références datées, seule l'édition citée s'applique. Pour les références non datées, la dernière édition du document de référence s'applique (y compris les éventuels amendements).

CEI 60027, Symboles littéraux à utiliser en électrotechnique

CEI 60028:1925, Spécification internationale d'un cuivre-type recuit

CEI 60141, Essais de câbles à huile fluide, à pression de gaz et de leurs dispositifs accessoires

CEI 60183:1984, Guide pour le choix des câbles à haute tension

CEI 60228:1978, Ames des câbles isolés

Amendement 1 (1993)

CEI 60228A:1982, Premier complément – Guide pour les limites dimensionnelles des âmes circulaires

CEI 60502:1983, Câbles de transport d'énergie isolés par diélectriques massifs extrudés pour des tensions assignées de 1 kV à 30 kV

CEI 60889:1987, Fils d'aluminium écroui dur pour conducteurs de lignes aériennes

Customer: Gilles Tremouille - No. of User(s): 1 - Company: AREVA Order No.: WS-2006-010732 - IMPORTANT: This file is copyright of IEC, Geneva, Switzerland. All rights reserved. This file is subject to a licence agreement. Enquiries to Email: custserv@iec.ch - Tel.: +41 22 919 02 11

+A2:2001

– 13 **–**

ELECTRIC CABLES -

CALCULATION OF THE CURRENT RATING -

Part 1-1: Current rating equations (100 % load factor) and calculation of losses – General

1 General

1.1 Scope

This section of IEC 60287 is applicable to the conditions of steady-state operation of cables at all alternating voltages, and direct voltages up to 5 kV, buried directly in the ground, in ducts, troughs or in steel pipes, both with and without partial drying-out of the soil, as well as cables in air. The term "steady state" is intended to mean a continuous constant current (100 % load factor) just sufficient to produce asymptotically the maximum conductor temperature, the surrounding ambient conditions being assumed constant.

This section provides formulae for current ratings and losses.

The formulae given are essentially literal and designedly leave open the selection of certain important parameters. These may be divided into three groups:

- parameters related to construction of a cable (for example, thermal resistivity of insulating material) for which representative values have been selected based on published work;
- parameters related to the surrounding conditions, which may vary widely, the selection of which depends on the country in which the cables are used or are to be used;
- parameters which result from an agreement between manufacturer and user and which involve a margin for security of service (for example, maximum conductor temperature).

1.2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60027, Letter symbols to be used in electrical technology

IEC 60028:1925, International standard of resistance for copper

IEC 60141, Tests on oil-filled and gas-pressure cables and their accessories

IEC 60183:1984, Guide to the selection of high-voltage cables

IEC 60228:1978, Conductors of insulated cables Amendment 1 (1993)

IEC 60228A:1982, First supplement – Guide to the dimensional limits of circular conductors

IEC 60502:1983, Extruded solid dielectric insulated power cables for rated voltages from 1 kV up to 30 kV

IEC 60889:1987, Hard-drawn aluminium wire for overhead line conductors

1.3 Symboles

Les symboles utilisés dans la présente norme et les grandeurs qu'ils représentent sont donnés dans la liste suivante:

A	section droite de l'armure	mm²
$B_1 \mid B_2 \mid$	coefficients (voir 2.4.2)	
C	capacité par phase	F/m
<i>D</i> * e	diamètre extérieur du câble	m
D_{i}	diamètre sur isolant	mm
D_{s}	diamètre extérieur de la gaine métallique	mm
D_{oc}	diamètre du cylindre imaginaire coaxial à la gaine ondulée et tangent	
Δ	à la surface extérieure des crêtes diamètre du cylindre imaginaire coaxial à la gaine ondulée et tangent	mm
D_{it}	à la surface intérieure des creux	mm
F	coefficient défini en 2.3.5	
Н	intensité des radiations solaires	W/m²
Н	force magnétisante (voir 2.4.2) ampère-to	urs/m
H_{S}	inductance de la gaine	H/m
H_1		
H_2 H_3	composants de l'inductance due aux fils d'acier (voir 2.4.2)	H/m
1	intensité du courant dans une âme (valeur efficace)	Α
$\begin{bmatrix} M \\ N \end{bmatrix}$	coefficients définis en 2.3.5	
P	coefficients définis en 2.3.3	Ω/m
R	résistance électrique de l'âme en courant alternatif à sa température	
	maximale de service	Ω/m
R_{A}	résistance de l'armure en courant alternatif	Ω /m
R_{e}	résistance équivalente en courant alternatif de la gaine et	_,
-	de l'armure en parallèle	Ω/m
R _s	résistance de la gaine en courant alternatif	Ω/m
R'	résistance électrique de l'âme en courant continu à la température maximale de service	Ω/m
R_{o}	résistance électrique de l'âme en courant continu à 20 °C	Ω/m
T ₁	résistance thermique par phase entre âme et gaine métallique ou écran	K.m/W
T_2	résistance thermique entre gaine métallique ou écran et armure	K.m/W
T_3	résistance thermique du revêtement	K.m/W
T_4	résistance thermique du milieu extérieur (rapport de l'échauffement	
7	de la surface du câble au-dessus de l'ambiante aux pertes totales	
	par unité de longueur)	K.m/W
T *4	résistance thermique du milieu extérieur à l'air libre tenant compte	
	du rayonnement solaire	K.m/W
U_{o}	tension entre âme et écran ou gaine	V

1.3 Symbols

The symbols used in this standard and the quantities which they represent are given in the following list:

B ₁ B ₂ C	}	coefficients (see 2.4.2)	
С			
-		capacitance per core	F/m
D*		external diameter of cable	m
D_{i}		diameter over insulation	mm
D_{s}		external diameter of metal sheath	mm
D _{oc}		the diameter of the imaginary coaxial cylinder which just touches the crests of a corrugated sheath	mm
D _{it}		the diameter of the imaginary cylinder which just touches the inside surface of the troughs of a corrugated sheath	mm
F		coefficient defined in 2.3.5	
Н		intensity of solar radiation	W/m²
Н		magnetizing force (see 2.4.2)	ampere turns/m
H _s	1	inductance of sheath	H/m
H ₁ H ₂ H ₃		components of inductance due to the steel wires (see 2.4.2)	H/m
1	,	current in one conductor (r.m.s. value)	Α
M N	$\left. \right\}$	coefficients defined in 2.3.5	
P Q	}	coefficients defined in 2.3.3	Ω/m
R		alternating current resistance of conductor at its maximum operating temperature	Ω/m
R_{A}		a.c. resistance of armour	Ω/m
R_{e}		equivalent a.c. resistance of sheath and armour in parallel	Ω/m
R_{s}		a.c. resistance of sheath	Ω/m
R′		d.c. resistance of conductor at maximum operating temperature	Ω/m
R_{o}		d.c. resistance of conductor at 20 °C	Ω/m
T_1		thermal resistance per core between conductor and sheath	K.m/W
T_2		thermal resistance between sheath and armour	K.m/W
T_3		thermal resistance of external serving	K.m/W
<i>T</i> ₄		thermal resistance of surrounding medium (ratio of cable surface temperature rise above ambient to the losses per unit length)	K.m/W
T_4^*		external thermal resistance in free air, adjusted for solar radiation	K.m/W
Uo		voltage between conductor and screen or sheath	V

W_{A}	pertes dissipées dans l'armure par unité de longueur	W/m
$W_{\rm c}$	pertes dissipées dans l'âme par unité de longueur	W/m
$W_{\rm d}$	pertes diélectriques par unité de longueur et par phase	W/m
$W_{\rm s}$	pertes dissipées dans la gaine par unité de longueur	W/m
$W_{(s+A)}$		W/m
X	réactance de la gaine quand les câbles sont bipolaires ou tripolaires (en trèfle)	Ω/m
<i>X</i> ₁	réactance de la gaine quand les câbles sont disposés en nappe	Ω/m
X_{m}	réactance mutuelle entre la gaine d'un câble et les âmes des deux autres	
	lorsque les câbles sont posés en nappe	Ω/m
а	plus petite longueur d'une section électrique à permutation d'écran ayant des longueurs différentes	
С	distance entre les axes des âmes et l'axe du câble quand les câbles sont tripolaires (= $0.55 r_1 + 0.29 t$ pour les âmes sectorales)	mm
d	diamètre moyen de la gaine ou de l'écran	mm
ď	diamètre moyen de la gaine et du frettage	mm
d_2	diamètre moyen du frettage	mm
d_{A}	diamètre moyen de l'armure	mm
d_{C}	diamètre extérieur de l'âme	mm
d′c	diamètre extérieur de l'âme massive ronde, ayant le même canal central	
	qu'une âme creuse	mm
d _d	diamètre intérieur du tuyau	mm
d _f	diamètre d'un fil d'acier	mm
d _i	diamètre intérieur d'une âme creuse	mm
d_{M}	plus grand diamètre d'écran ou de gaine d'une âme ovale	mm
d_{m}	plus petit diamètre d'écran ou de gaine d'une âme ovale	mm
d_{X}	diamètre d'une âme circulaire équivalente ayant la même section et	
C	le même degré de rétreint que l'âme sectorale	mm
f	fréquence du réseau coefficient utilisé en 2.3.6.1	Hz
g _s		
k	facteur utilisé pour le calcul des pertes par hystérésis dans les armures ou frettages (voir 2.4.2.4)	
k_{p}	facteur utilisé dans le calcul de x_p (effet de proximité)	
k _s	facteur utilisé dans le calcul de x_s (effet de peau)	
1	longueur d'une section de câble (symbole général, voir article 2.3 et 2.3.4)	m
In	logarithme naturel (logarithme en base e)	
m	$\frac{\omega}{R_{\rm S}}$ 10 ⁻⁷	
n	nombre d'âmes dans un câble	
<i>n</i> ₁	nombre de fils d'acier dans un câble (voir 2.4.2)	
p	pas d'assemblage d'un fil d'acier sur un câble (voir 2.4.2)	
p]	coefficients utilisés en 2 3 6 2	
q ∫	coefficients utilisés en 2.3.6.2	
<i>r</i> ₁	rayon du cercle circonscrit aux deux ou trois âmes sectorales dans un câble bipolaire ou tripolaire	mm

W_{A}	losses in armour per unit length	W/m
W_{c}	losses in conductor per unit length	W/m
W_{d}	dielectric losses per unit length per phase	W/m
W_{s}	losses dissipated in sheath per unit length	W/m
$W_{(s+A)}$	total losses in sheath and armour per unit length	W/m
X	reactance of sheath (two-core cables and three-core cables in trefoil)	Ω/m
<i>X</i> ₁	reactance of sheath (cables in flat formation)	Ω/m
X_{m}	mutual reactance between the sheath of one cable and the conductors of the other two when cables are in flat information	Ω /m
а	shortest minor length in a cross-bonded electrical section having unequal minor lengths	
С	distance between the axes of conductors and the axis of the cable for three-core cables (= $0.55 r_1 + 0.29 t$ for sector-shaped conductors)	mm
d	mean diameter of sheath or screen	mm
d′	mean diameter of sheath and reinforcement	mm
d_2	mean diameter of reinforcement	mm
d_{A}	mean diameter of armour	mm
d_{C}	external diameter of conductor	mm
d′c	external diameter of equivalent round solid conductor having the	
	same central duct as a hollow conductor	mm
d_{d}	internal diameter of pipe	mm
d_{f}	diameter of a steel wire	mm
d_{i}	internal diameter of hollow conductor	mm
d_{M}	major diameter of screen or sheath of an oval conductor	mm
d_{m}	minor diameter of screen or sheath of an oval conductor	mm
d_{X}	diameter of an equivalent circular conductor having the same	
	cross-sectional area and degree of compactness as the shaped one	mm
f	system frequency	Hz
<i>g</i> s	coefficient used in 2.3.6.1	
k	factor used in the calculation of hysteresis losses in armour or reinforcement (see 2.4.2.4)	
κ _p	factor used in calculating x_p (proximity effect)	
k _s	factor used in calculating x_s (skin effect)	
<i>l</i> In	length of a cable section (general symbol, see clause 2.3 and 2.3.4) natural logarithm (logarithm to base e)	m
m	$\frac{\omega}{R_s}$ 10 ⁻⁷	
n	number of conductors in a cable	
<i>n</i> ₁	number of steel wires in a cable (see 2.4.2)	
p	length of lay of a steel wire along a cable (see 2.4.2)	
$\left. egin{array}{c} p \\ q \end{array} \right\}$	coefficients used in 2.3.6.2	
r_1	circumscribing radius of two- or three-sector shaped conductors	mm

$\begin{array}{c} \mathbf{s}_1 \\ distance entre axes de deux câbles adjacents dans une nappe horizontale de trois câbles non jointifs $	s	distance entre axes et âmes		mm	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	s_1	·			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	So	·	·)		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		· · · · · · · · · · · · · · · · · · ·			
$ \begin{array}{c} t_s \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$		•			
rapport des résistivités thermiques des zones de sol sec et humide ($v = \rho_d/\rho_w$) argument de la fonction de Bessel, utilisé dans le calcul de l'effet de proximité argument de la fonction de Bessel, utilisé dans le calcul de l'effet de peau facteur d'effet de proximité χ_S argument de la fonction de Bessel, utilisé dans le calcul de l'effet de peau facteur d'effet de peau coefficient de variation de la résistance électrique avec la température à 20 °C, par kelvin l/K angle formé par l'axe d'un fil d'armure et l'axe du câble (voir 2.4.2) coefficient utilisé en 2.3.6.1 l/K déphasage (voir 2.4.2) l/K coefficients utilisés en 2.3.6.1 l/K épaisseur équivalente de l'armure ou du frettage l/K mm facteur de pertes de l'isolant l/K température maximale de service de l'âme l/K empérature ambiante l/K température ambiante l/K température ambiante l/K température roitique du sol et température de la frontière entre zone sèche ou zone humide l/K échauffement admissible à l'âme par rapport à la température ambiante l/K l/K coefficient utilisé des pertes totales dans les gaines métalliques et armures respectivement aux pertes totales dans les gaines métalliques et armures respectivement aux pertes totales dans les gaines métalliques et armures respectivement aux pertes dans une âme l/K rapport des pertes dans une gaine produites par les courants de Circulation dans la gaine aux pertes dans une âme l/K rapport des pertes dans une gaine produites par les courants de Foucault aux pertes dans une âme l/K facteur de perte du câble médian l/K facteur de perte du câble extérieur ayant les pertes les plus importantes l/K facteur de perte du câble extérieur ayant les pertes de	,	•			
$ \begin{array}{c} x_p \\ x_s $		•	zones de sol sec et humide ($v = a_1/a_2$		
$ \begin{array}{c} x_s \\ y_p \\ facteur d'effet de proximité \\ y_s \\ facteur d'effet de peau \\ 200 \\ coefficient de variation de la résistance électrique avec la température à 20 °C, par kelvin \\ \beta \\ angle formé par l'axe d'un fil d'armure et l'axe du câble (voir 2.4.2) \\ coefficient utilisé en 2.3.6.1 \\ \gamma \\ déphasage (voir 2.4.2) \\ \hline $		• •		•	
$ \begin{array}{c} y_p \\ \text{facteur d'effet de proximité} \\ y_s \\ \text{facteur d'effet de peau} \\ \alpha_{20} \\ \text{coefficient de variation de la résistance électrique avec la température} \\ \text{à 20 °C, par kelvin} \\ \text{β} \\ \text{angle formé par l'axe d'un fil d'armure et l'axe du câble (voir 2.4.2)} \\ \text{coefficient utilisé en 2.3.6.1} \\ \text{γ} \\ \text{déphasage (voir 2.4.2)} \\ \text{coefficients utilisés en 2.3.6.1} \\ \text{δ} \\ \text{épaisseur équivalente de l'armure ou du frettage} \\ \text{mm} \\ \text{tan δ} \\ \text{facteur de pertes de l'isolant} \\ \text{ε} \\ \text{permittivité relative de l'isolant} \\ \text{θ} \\ \text{température maximale de service de l'àme} \\ \text{°C} \\ \text{θ}_a \\ \text{température ambiante} \\ \text{θ}_c \\ \text{température critique du sol et température de la frontière entre zone} \\ \text{sèche ou zone humide} \\ \text{chauffement admissible à l'âme par rapport à la température ambiante} \\ \text{δ}_{0} \\ \text{coefficient utilisé en 2.3.6.1} \\ \text{λ}_{0} \\ \text{coefficient utilisé en 2.3.6.1} \\ \text{λ}_{1} \\ \text{λ}_{2} \\ \text{rapport utilisé des pertes totales dans les gaines métalliques et armures} \\ \text{respectivement aux pertes dans une âme} \\ \text{λ}_{1} \\ \text{rapport des pertes dans une gaine produites par les courants de circulation} \\ \text{dans la gaine aux pertes dans une âme} \\ \text{λ}_{1} \\ \text{facteur de perte du câble médian} \\ \text{λ}_{1} \\ \text{facteur de perte du câble extérieur} \\ \text{ayant les pertes les plus importantes} \\ \text{λ}_{12} \\ \text{facteur de perte du câble extérieur} \\ \text{avant les pertes les plus importantes} \\ \text{λ}_{12} \\ \text{facteur de perte du câble extérieur} \\ \text{avant les pertes da câble extérieur} \\ \text{avant les pertes du câble extérieur} \\ avant les pert$		•	·		
$ \begin{array}{c} y_S \\ \text{facteur d'effet de peau} \\ \alpha_{20} \\ \text{coefficient de variation de la résistance électrique avec la température à 20 °C, par kelvin } \\ \beta \\ \text{angle formé par l'axe d'un fil d'armure et l'axe du câble (voir 2.4.2)} \\ \beta_1 \\ \text{coefficient utilisé en 2.3.6.1} \\ \text{déphasage (voir 2.4.2)} \\ \text{coefficients utilisés en 2.3.6.1} \\ \delta \\ \text{épaisseur équivalente de l'armure ou du frettage} \\ \text{tan } \delta \\ \text{facteur de pertes de l'isolant} \\ \epsilon \\ \text{permittivité relative de l'isolant} \\ \theta \\ \text{température maximale de service de l'âme} \\ \theta_2 \\ \text{température ambiante} \\ \theta_3 \\ \text{de température ambiante} \\ \text{de dehauffement admissible à l'âme par rapport à la température ambiante} \\ \lambda \theta_4 \\ \text{de chauffement oritique du sol et échauffement de la frontière entre zone sèche ou zone humide} \\ \lambda \theta_4 \\ \text{de chauffement critique du sol et échauffement de la frontière entre les zones sèche et humide au-dessus de la température ambiante du sol k dehauffement utilisé en 2.3.6.1 \\ \lambda_0 \\ \text{coefficient utilisé en 2.3.6.1} \\ \lambda_1 \\ \lambda_1 \\ \lambda_2 \\ \text{rapport utilisé des pertes totales dans les gaines métalliques et armures respectivement aux pertes totales des âmes (ou pertes dans une gaine ou armure aux pertes dans une âme) \\ \lambda_1' \\ \text{rapport des pertes dans une gaine produites par les courants de Foucault aux pertes dans une âme} \\ \lambda_1'' \\ \text{rapport des pertes dans une gaine produites par les courants de Foucault aux pertes dans une âme} \\ \lambda_1'' \\ \text{facteur de perte du câble médian} \\ \lambda_{11}' \\ \text{facteur de perte du câble extérieur ayant les pertes les plus importantes} \\ \lambda_{12}' \\ \text{facteur de perte du câble extérieur ayant les pertes les plus importantes} \\ \lambda_{12}' \\ \text{facteur de perte du câble extérieur ayant les pertes les plus importantes} \\ \lambda_{12}' \\ \text{facteur de perte du câble extérieur} \\ \text{avant les pertes les plus importantes} \\ \lambda_{12}' \\ \text{facteur de perte du câble extérieur} \\ \text{avant les pertes les plus importantes} \\ \lambda_{12}' \\ \text{facteur de perte du câble extérieur} \\ \text{facteur de perte du câble extérieur} \\ facteur de pe$		factour d'offat de provimité	·		
$\begin{array}{c} \alpha_{20} & \text{coefficient de variation de la résistance électrique avec la température} \\ \text{à 20 °C, par kelvin} & \text{angle formé par l'axe d'un fil d'armure et l'axe du câble (voir 2.4.2)} \\ \text{β_1} & \text{coefficient utilisé en 2.3.6.1} \\ \text{γ} & \text{déphasage (voir 2.4.2)} \\ \\ \frac{\Delta_1}{\Delta_2} & \text{coefficients utilisés en 2.3.6.1} \\ \text{δ} & \text{épaisseur équivalente de l'armure ou du frettage} & \text{mm} \\ \text{tan δ} & \text{facteur de pertes de l'isolant} \\ \text{ϵ} & \text{permittivité relative de l'isolant} \\ \text{θ} & \text{température maximale de service de l'àme} & ^{\circ}\text{C} \\ \text{θ_a} & \text{température critique du sol et température de la frontière entre zone} \\ \text{sèche ou zone humide} & ^{\circ}\text{C} \\ \text{θ_a} & \text{température critique du sol et échauffement de la frontière entre les} \\ \text{z} & \text{cones sèche et humide au-dessus de la température ambiante} & \text{K} \\ \text{λ_0} & \text{coefficient utilisé en 2.3.6.1} \\ \text{λ_1}, \text{λ_2} & \text{rapport utilisé des pertes totales dans les gaines métalliques et armures} \\ \text{respectivement aux pertes dans une âme} \\ \text{λ_1^{\prime}} & \text{rapport des pertes dans une gaine produites par les courants de circulation} \\ \text{dans la gaine aux pertes dans une âme} \\ \text{λ_{11}^{\prime}} & \text{facteur de perte du câble médian} \\ \text{λ_{11}^{\prime}} & \text{facteur de perte du câble médian} \\ \text{λ_{11}^{\prime}} & \text{facteur de perte du câble extérieur} \\ \text{ayant les pertes les plus importantes} \\ \text{λ_{12}^{\prime}} & \text{facteur de perte du câble extérieur} \\ \text{ayant les pertes du câble extérieur} \\ \text{ayant les pertes du câble extérieur} \\ \text{avant les pertes du câble extérieur} \\ avant le$	•	·	1)		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	-	coefficient de variation de la résistance électrique avec la température			
$\begin{array}{c} \gamma & \text{déphasage (voir 2.4.2)} \\ \Delta_1 \\ \Delta_2 \\ \end{array} \\ \begin{array}{c} \text{coefficients utilisés en 2.3.6.1} \\ \delta & \text{épaisseur équivalente de l'armure ou du frettage} \\ \delta & \text{facteur de pertes de l'isolant} \\ \epsilon & \text{permittivité relative de l'isolant} \\ \theta & \text{température maximale de service de l'âme} \\ 0 & \text{cempérature ambiante} \\ 0 & \text{cempérature critique du sol et température de la frontière entre zone} \\ 0 & \text{sèche ou zone humide} \\ 0 & \text{cempérature ambiante} \\ 0 & \text{cempérature critique du sol et échauffement de la frontière entre les} \\ 0 & \text{confficient utilisé en 2.3.6.1} \\ 0 & \text{coefficient utilisé en 2.3.6.1} \\ 0 & \text{coefficient utilisé des pertes totales dans les gaines métalliques et armures} \\ 0 & \text{rapport des pertes dans une gaine} \\ 0 & \text{courants de circulation} \\ 0 & \text{dans la gaine aux pertes dans une gaine produites par les courants de Foucault} \\ 0 & \text{aux pertes dans une âme} \\ 0 & \text{facteur de perte du câble extérieur} \\ 0 & \text{ayant les pertes les plus importantes} \\ 0 & \text{facteur de perte du câble extérieur} \\ 0 & facteur de $	β	angle formé par l'axe d'un fil d'armure e	et l'axe du câble (voir 2.4.2)		
$\begin{array}{c} \Delta_1 \\ \Delta_2 \\ \end{array} \\ \begin{array}{c} \text{coefficients utilisés en 2.3.6.1} \\ \\ \delta \\ \end{array} \\ \begin{array}{c} \text{épaisseur équivalente de l'armure ou du frettage} \\ \end{array} \\ \text{mm} \\ \text{tan } \delta \\ \end{array} \\ \begin{array}{c} \text{facteur de pertes de l'isolant} \\ \theta \\ \end{array} \\ \begin{array}{c} \text{permittivité relative de l'isolant} \\ \theta \\ \end{array} \\ \begin{array}{c} \text{température maximale de service de l'âme} \\ \end{array} \\ \begin{array}{c} \text{°C} \\ \theta_a \\ \end{array} \\ \begin{array}{c} \text{température ambiante} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{°C} \\ \end{array} \\ \begin{array}{c} \theta_a \\ \end{array} \\ \begin{array}{c} \text{température critique du sol et température de la frontière entre zone} \\ \text{sèche ou zone humide} \\ \end{array} \\ \begin{array}{c} \text{°C} \\ \end{array} \\ \begin{array}{c} \Delta \theta \\ \end{array} \\ \begin{array}{c} \text{échauffement admissible à l'âme par rapport à la température ambiante} \\ \text{K} \\ \end{array} \\ \begin{array}{c} \Delta \theta \\ \text{échauffement critique du sol et échauffement de la frontière entre les} \\ \text{zones sèche et humide au-dessus de la température ambiante du sol} \\ \text{K} \\ \end{array} \\ \begin{array}{c} \lambda_0 \\ \text{coefficient utilisé en 2.3.6.1} \\ \lambda_1, \lambda_2 \\ \text{rapport utilisé des pertes totales dans les gaines métalliques et armures} \\ \text{respectivement aux pertes totales dans les gaines métalliques et armures} \\ \text{respectivement aux pertes totales des âmes (ou pertes dans une gaine} \\ \text{ou armure aux pertes dans une âme} \\ \lambda_1' \\ \text{rapport des pertes dans une gaine produites par les courants de circulation} \\ \text{dans la gaine aux pertes dans une âme} \\ \lambda_1' \\ \text{rapport des pertes dans une gaine produites par les courants de Foucault} \\ \text{aux pertes dans une âme} \\ \lambda_{1m}' \\ \text{facteur de perte du câble médian} \\ \text{facteur de perte du câble extérieur} \\ \text{ayant les pertes les plus importantes} \\ \lambda_{12}' \\ \text{facteur de perte du câble extérieur} \\ \text{ayant les pertes les plus importantes} \\ \lambda_{12}' \\ \text{facteur de perte du câble extérieur} \\ \text{avant les pertes du câble extérieur} \\ avant les$	β_1	coefficient utilisé en 2.3.6.1			
$\begin{array}{c} \Delta_2 \\ \delta \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	γ	déphasage (voir 2.4.2)			
tan δ facteur de pertes de l'isolant ϵ permittivité relative de l'isolant θ température maximale de service de l'âme °C θ_a température ambiante °C θ_a température critique du sol et température de la frontière entre zone sèche ou zone humide °C $\Delta\theta$ échauffement admissible à l'âme par rapport à la température ambiante K échauffement critique du sol et échauffement de la frontière entre les zones sèche et humide au-dessus de la température ambiante du sol coefficient utilisé en 2.3.6.1 λ_1 , λ_2 rapport utilisé des pertes totales dans les gaines métalliques et armures respectivement aux pertes totales des âmes (ou pertes dans une gaine ou armure aux pertes dans une âme) λ_1' rapport des pertes dans une gaine produites par les courants de circulation dans la gaine aux pertes dans une âme λ_1'' rapport des pertes dans une gaine produites par les courants de Foucault aux pertes dans une âme λ_1'' facteur de perte du câble médian facteur de perte du câble extérieur ayant les pertes les plus importantes λ_{12}'' facteur de perte du câble extérieur ayant les pertes les plus importantes λ_{12}'' facteur de perte du câble extérieur ayant les pertes les plus importantes	. }	coefficients utilisés en 2.3.6.1			
$\begin{array}{lll} \epsilon & \text{permittivit\'e relative de l'isolant} \\ \theta & \text{temp\'erature maximale de service de l'âme} & ^{\circ}C \\ \theta_a & \text{temp\'erature ambiante} & ^{\circ}C \\ \theta_{\chi} & \text{temp\'erature critique du sol et temp\'erature de la frontière entre zone} \\ & \text{s\'eche ou zone humide} & ^{\circ}C \\ \Delta\theta & \text{\'echauffement admissible à l'âme par rapport à la temp\'erature ambiante} & K \\ \Delta\theta_{\chi} & \text{\'echauffement critique du sol et \'echauffement de la frontière entre les} \\ & \text{zones s\'eche et humide au-dessus de la temp\'erature ambiante du sol} & K \\ \lambda_0 & \text{coefficient utilis\'e en 2.3.6.1} \\ \lambda_1, \lambda_2 & \text{rapport utilis\'e des pertes totales dans les gaines métalliques et armures} \\ & \text{respectivement aux pertes totales des âmes (ou pertes dans une gaine ou armure aux pertes dans une âme)} \\ \lambda'_1 & \text{rapport des pertes dans une gaine produites par les courants de circulation} \\ & \text{dans la gaine aux pertes dans une âme} \\ \lambda'_1 & \text{rapport des pertes dans une gaine produites par les courants de Foucault} \\ & \text{aux pertes dans une âme} \\ \lambda'_{1m} & \text{facteur de perte du câble m\'edian} \\ \lambda'_{1m} & \text{facteur de perte du câble ext\'erieur} \\ & \text{ayant les pertes les plus importantes} \\ \lambda'_{12} & \text{facteur de perte du câble ext\'erieur} \\ \end{array}$	δ	épaisseur équivalente de l'armure ou du frettage mr			
$\begin{array}{lll} \theta & \text{température maximale de service de l'âme} & \text{°C} \\ \theta_a & \text{température ambiante} & \text{°C} \\ \theta_x & \text{température critique du sol et température de la frontière entre zone} \\ & \text{sèche ou zone humide} & \text{°C} \\ \Delta\theta & \text{échauffement admissible à l'âme par rapport à la température ambiante} & K \\ \Delta\theta_x & \text{échauffement critique du sol et échauffement de la frontière entre les} \\ & \text{zones sèche et humide au-dessus de la température ambiante du sol} & K \\ \lambda_0 & \text{coefficient utilisé en 2.3.6.1} \\ \lambda_1, \lambda_2 & \text{rapport utilisé des pertes totales dans les gaines métalliques et armures} \\ & \text{respectivement aux pertes totales dans les gaines métalliques et armures} \\ & \text{respectivement aux pertes dans une âme} \\ \lambda_1' & \text{rapport des pertes dans une gaine produites par les courants de circulation} \\ & \text{dans la gaine aux pertes dans une âme} \\ \lambda_1'' & \text{rapport des pertes dans une gaine produites par les courants de Foucault} \\ & \text{aux pertes dans une âme} \\ \lambda_{1m}' & \text{facteur de perte du câble médian} \\ \lambda_{11}' & \text{facteur de perte du câble extérieur} \\ & \text{ayant les pertes les plus importantes} \\ \lambda_{12}' & \text{facteur de perte du câble extérieur} \\ & \text{ayant les pertes les plus importantes} \\ \end{array}$	tan δ	· · · · · · · · · · · · · · · · · · ·			
$\begin{array}{lll} \theta_a & \text{temp\'erature ambiante} & ^{\circ}\text{C} \\ \theta_x & \text{temp\'erature critique du sol et temp\'erature de la frontière entre zone} \\ & \text{s\`eche ou zone humide} & ^{\circ}\text{C} \\ \Delta\theta & \text{\'echauffement admissible à l'âme par rapport à la temp\'erature ambiante} & K \\ \Delta\theta_x & \text{\'echauffement critique du sol et \'echauffement de la frontière entre les} \\ & \text{zones s\`eche et humide au-dessus de la temp\'erature ambiante du sol} & K \\ \lambda_0 & \text{coefficient utilis\'e en 2.3.6.1} \\ \lambda_1, \lambda_2 & \text{rapport utilis\'e des pertes totales dans les gaines métalliques et armures} \\ & \text{respectivement aux pertes totales des âmes (ou pertes dans une gaine} \\ & \text{ou armure aux pertes dans une âme} \\ \lambda'_1 & \text{rapport des pertes dans une gaine produites par les courants de circulation} \\ & \text{dans la gaine aux pertes dans une âme} \\ \lambda''_1 & \text{rapport des pertes dans une gaine produites par les courants de Foucault} \\ & \text{aux pertes dans une âme} \\ \lambda'_{11} & \text{facteur de perte du câble m\'edian} \\ \lambda'_{11} & \text{facteur de perte du câble ext\'erieur} \\ & \text{ayant les pertes les plus importantes} \\ \lambda'_{12} & \text{facteur de perte du câble ext\'erieur} \\ & \text{facteur de perte du câble ext\'erieur}$	ε	·			
$\begin{array}{lll} \theta_X & \text{temp\'erature critique du sol et temp\'erature de la frontière entre zone} \\ & \text{s\`eche ou zone humide} & \text{°C} \\ \Delta\theta & \text{\'echauffement admissible à l'âme par rapport à la temp\'erature ambiante} & K \\ \Delta\theta_X & \text{\'echauffement critique du sol et \'echauffement de la frontière entre les} \\ & \text{zones s\`eche et humide au-dessus de la temp\'erature ambiante du sol} & K \\ \lambda_0 & \text{coefficient utilis\'e en 2.3.6.1} \\ \lambda_1, \lambda_2 & \text{rapport utilis\'e des pertes totales dans les gaines métalliques et armures} \\ & \text{respectivement aux pertes totales des \^ames (ou pertes dans une gaine} \\ \text{ou armure aux pertes dans une \^ame} \\ \lambda_1' & \text{rapport des pertes dans une gaine produites par les courants de circulation} \\ \text{dans la gaine aux pertes dans une \^ame} \\ \lambda_1'' & \text{facteur de perte du câble m\'edian} \\ \lambda_{11}' & \text{facteur de perte du câble extérieur} \\ \text{ayant les pertes les plus importantes} \\ \lambda_{12}' & \text{facteur de perte du câble extérieur} \\ facteur de perte du câ$	θ	température maximale de service de l'âme		°C	
sèche ou zone humide °C $\Delta\theta$ échauffement admissible à l'âme par rapport à la température ambiante K $\Delta\theta_{x}$ échauffement critique du sol et échauffement de la frontière entre les zones sèche et humide au-dessus de la température ambiante du sol K λ_{0} coefficient utilisé en 2.3.6.1 λ_{1}, λ_{2} rapport utilisé des pertes totales dans les gaines métalliques et armures respectivement aux pertes totales des âmes (ou pertes dans une gaine ou armure aux pertes dans une âme) λ'_{1} rapport des pertes dans une gaine produites par les courants de circulation dans la gaine aux pertes dans une âme λ'_{1} rapport des pertes dans une gaine produites par les courants de Foucault aux pertes dans une âme λ'_{1} facteur de perte du câble médian λ'_{11} facteur de perte du câble extérieur ayant les pertes les plus importantes facteur de perte du câble extérieur ayant les pertes du câble extérieur	θ_{a}	température ambiante		°C	
$\begin{array}{lll} \Delta\theta_{X} & \text{\'echauffement critique du sol et \'echauffement de la frontière entre les} \\ & \text{zones s\`eche et humide au-dessus de la temp\'erature ambiante du sol} & K \\ \lambda_{0} & \text{coefficient utilis\'e en 2.3.6.1} \\ \lambda_{1}, \lambda_{2} & \text{rapport utilis\'e des pertes totales dans les gaines métalliques et armures} \\ & \text{respectivement aux pertes totales des \^ames (ou pertes dans une gaine ou armure aux pertes dans une \^ame)} \\ \lambda_{1}' & \text{rapport des pertes dans une gaine produites par les courants de circulation} \\ & \text{dans la gaine aux pertes dans une \^ame} \\ \lambda_{1}'' & \text{rapport des pertes dans une \^ame} \\ \lambda_{1m}' & \text{facteur de perte du c\^able m\'edian} \\ \lambda_{1m}' & \text{facteur de perte du c\^able ext\'erieur} \\ & \text{ayant les pertes les plus importantes} \\ \lambda_{12}' & \text{facteur de perte du c\^able ext\'erieur} \\ \end{array}$	$\theta_{\textbf{X}}$	· · · · · · · · · · · · · · · · · · ·			
zones sèche et humide au-dessus de la température ambiante du sol K λ_0 coefficient utilisé en 2.3.6.1 λ_1, λ_2 rapport utilisé des pertes totales dans les gaines métalliques et armures respectivement aux pertes totales des âmes (ou pertes dans une gaine ou armure aux pertes dans une âme) λ'_1 rapport des pertes dans une gaine produites par les courants de circulation dans la gaine aux pertes dans une âme λ'_1 rapport des pertes dans une gaine produites par les courants de Foucault aux pertes dans une âme λ'_{1m} facteur de perte du câble médian λ'_{1m} facteur de perte du câble extérieur ayant les pertes les plus importantes λ'_{12} facteur de perte du câble extérieur	$\Delta \theta$	échauffement admissible à l'âme par rapport à la température ambiante K			
$\lambda_{1},\lambda_{2} \text{rapport utilis\'e des pertes totales dans les gaines métalliques et armures respectivement aux pertes totales des âmes (ou pertes dans une gaine ou armure aux pertes dans une âme)}$ $\lambda_{1}' \text{rapport des pertes dans une gaine produites par les courants de circulation dans la gaine aux pertes dans une âme}$ $\lambda_{1}'' \text{rapport des pertes dans une gaine produites par les courants de Foucault aux pertes dans une âme}$ $\lambda_{1m}' \text{facteur de perte du câble médian}$ $\lambda_{11}'' \text{facteur de perte du câble extérieur ayant les pertes les plus importantes}$ $\lambda_{12}'' \text{facteur de perte du câble extérieur}$	$\Delta\theta_{X}$	·			
respectivement aux pertes totales des âmes (ou pertes dans une gaine ou armure aux pertes dans une âme) λ'_1 rapport des pertes dans une gaine produites par les courants de circulation dans la gaine aux pertes dans une âme λ''_1 rapport des pertes dans une gaine produites par les courants de Foucault aux pertes dans une âme λ'_{1m} facteur de perte du câble médian λ'_{11} facteur de perte du câble extérieur ayant les pertes les plus importantes λ'_{12} facteur de perte du câble extérieur facteur de perte du câble extérieur	λ_0				
dans la gaine aux pertes dans une âme $\lambda_{1}'' \qquad \text{rapport des pertes dans une gaine produites par les courants de Foucault} \\ \text{aux pertes dans une âme} \\ \lambda_{1m}' \qquad \text{facteur de perte du câble médian} \\ \lambda_{11}' \qquad \text{facteur de perte du câble extérieur} \\ \text{ayant les pertes les plus importantes} \\ \lambda_{12}' \qquad \text{facteur de perte du câble extérieur} \\ \end{cases}$	λ ₁ , λ ₂	respectivement aux pertes totales des âmes (ou pertes dans une gaine			
$\lambda_{1}'' \qquad \text{rapport des pertes dans une gaine produites par les courants de Foucault} \\ \text{aux pertes dans une âme} \\ \lambda_{1m}' \qquad \text{facteur de perte du câble médian} \\ \lambda_{11}' \qquad \text{facteur de perte du câble extérieur} \\ \text{ayant les pertes les plus importantes} \\ \lambda_{12}' \qquad \text{facteur de perte du câble extérieur} \\ \end{cases} \qquad \begin{array}{c} \text{Trois câbles posés en nappe} \\ \text{non transposés avec gaines} \\ \text{court-circuitées aux deux} \\ \text{extrémités} \\ \end{cases}$	λ'_1	rapport des pertes dans une gaine prod	luites par les courants de circulation		
$\lambda'_{1m} \qquad \text{facteur de perte du câble médian} \\ \lambda'_{11} \qquad \text{facteur de perte du câble extérieur} \\ \qquad \qquad \text{ayant les pertes les plus importantes} \\ \lambda'_{12} \qquad \text{facteur de perte du câble extérieur} \\ \end{aligned}$		dans la gaine aux pertes dans une âme			
$\lambda'_{11} \qquad \text{facteur de perte du câble extérieur} \\ \qquad \text{ayant les pertes les plus importantes} \\ \lambda'_{12} \qquad \text{facteur de perte du câble extérieur} \\ \end{cases} \qquad \begin{array}{l} \text{Irois cables poses en nappe} \\ \text{non transposés avec gaines} \\ \text{court-circuitées aux deux} \\ \text{extrémités} \\ \end{array}$	λ″1				
$\lambda'_{11} \qquad \text{facteur de perte du câble extérieur} \\ \qquad \qquad \text{ayant les pertes les plus importantes} \\ \lambda'_{12} \qquad \text{facteur de perte du câble extérieur} \\ \end{cases} \qquad \text{non transposés avec gaines} \\ \qquad \text{court-circuitées} \qquad \text{aux deux} \\ \qquad \text{extrémités} \\ \end{cases}$	λ_{1m}^{\prime}	facteur de perte du câble médian	Trois câbles posés en nappe		
λ'_{12} facteur de perte du câble extérieur extrémités	λ ₁₁	facteur de perte du câble extérieur	non transposés avec gaines		
λ'_{12} facteur de perte du câble extérieur		ayant les pertes les plus importantes			
ayant les pertes les plus faibles	λ ₁₂	facteur de perte du câble extérieur			
		ayant les pertes les plus faibles			

axial separation of conductors s mm axial separation of two adjacent cables in a horizontal group of three, **S**1 not touching mm axial separation of cables (see 2.4.2) s_2 mm insulation thickness between conductors t mm *t*₃ thickness of the serving mm t_{s} thickness of the sheath mm ratio of the thermal resistivities of dry and moist soils ($v = \rho_d/\rho_w$) v argument of a Bessel function used to calculate proximity effect x_{p} argument of a Bessel function used to calculate skin effect x_s proximity effect factor **у**р (see 2.1) skin effect factor *V*s temperature coefficient of electrical resistivity at 20 °C, per kelvin I/K α_{20} β angle between axis of armour wires and axis of cable (see 2.4.2) coefficient used in 2.3.6.1 βı angular time delay (see 2.4.2) γ Δ 1 coefficients used in 2.3.6.1 Δ_2 δ equivalent thickness of armour or reinforcement mm loss factor of insulation tan δ relative permittivity of insulation ε θ °C maximum operating temperature of conductor θ_{a} °C ambient temperature θ_{X} critical temperature of soil; this is the temperature of the boundary between dry and moist zones °C $\Delta\theta$ permissible temperature rise of conductor above ambient temperature Κ critical temperature rise of soil; this is the temperature rise of the boundary $\Delta\theta_{x}$ Κ between dry and moist zones above the ambient temperature of the soil λ_0 coefficient used in 2.3.6.1 λ_1 , λ_2 ratio of the total losses in metallic sheaths and armour respectively to the total conductor losses (or losses in one sheath or armour to the losses in one conductor) λ'_1 ratio of the losses in one sheath caused by circulating currents in the sheath to the losses in one conductor ratio of the losses in one sheath caused by eddy currents to the losses in one conductor λ'_{1m} loss factor for the middle cable Three cables in flat forma- λ'_{11} loss factor for the outer cable with tion without transposition, the greater losses with sheaths bonded at both ends loss factor for the outer cable with λ'_{12}

the least losses

perméabilité magnétique relative du matériau constituant l'armure μ perméabilité relative longitudinale μ_e perméabilité relative transversale μ_t résistivité de l'âme à 20 °C $\Omega \cdot m$ ρ résistivité thermique du sol sec K.m/W ρ_d résistivité thermique du sol humide K.m/W ρ_{W} résistivité de la gaine à 20 °C $\Omega \cdot m$ ρ_s coefficient d'absorption des rayons solaires par la surface du câble σ

1.4 Evaluation de l'intensité admissible du courant dans les câbles

Lorsque l'intensité du courant admissible est calculée pour des conditions d'assèchement partiel du sol, il est également nécessaire de calculer une capacité de transport pour des conditions où l'assèchement du sol ne se produit pas. La plus faible des deux valeurs doit être utilisée.

1.4.1 Câbles enterrés dans le cas où il n'y a pas d'assèchement du sol ou câbles posés à l'air libre

1.4.1.1 Câbles à courant alternatif

pulsation (fréquence angulaire $2\pi f$)

L'intensité du courant admissible dans un câble à courant alternatif peut être déduite de l'expression donnant l'échauffement de l'âme au-dessus de la température ambiante:

$$\Delta\theta = (I^2R + \frac{1}{2}W_d)T_1 + [I^2R(1 + \lambda_1) + W_d]nT_2 + [I^2R(1 + \lambda_1 + \lambda_2) + W_d]n(T_3 + T_4)$$

οù

ω

- l est l'intensité du courant circulant dans une âme (A);
- $\Delta\theta$ est l'échauffement de l'âme au-dessus de la température ambiante (K);

NOTE La température ambiante est la température du milieu environnant en régime normal à l'endroit où les câbles sont posés ou doivent être posés. Elle comprend les effets de n'importe quelle source de chaleur mais non pas l'élévation de température dans le voisinage immédiat des câbles provenant de la chaleur s'en dégageant.

- R est la résistance de l'âme en courant alternatif, par unité de longueur, à sa température maximale de service (Ω/m) ;
- W_d sont les pertes diélectriques, par unité de longueur, de l'isolant entourant l'âme (W/m);
- T_1 est la résistance thermique, par unité de longueur, entre l'âme et la gaine (K.m/W);
- T_2 est la résistance thermique, par unité de longueur, entre la gaine et l'armure (K.m/W);
- T_3 est la résistance thermique, par unité de longueur, du revêtement extérieur du câble (K.m/W);
- est la résistance thermique, par unité de longueur, entre la surface du câble et le milieu environnant, telle que déduite de 2.2 de la partie 2 (K.m/W);
- n est le nombre d'âmes chargées dans le câble (âmes de même section et transportant la même charge);
- λ_1 est le rapport des pertes dans la gaine métallique aux pertes totales dans toutes les âmes de ce câble;
- λ_2 est le rapport des pertes dans l'armure aux pertes totales dans toutes les âmes de ce câble.

60287-1-1 © IEC:1994+A1:1995 - 21 - +A2:2001

- μ relative magnetic permeability of armour material
- μ_e longitudinal relative permeability
- μ_t transverse relative permeability
- ho conductor resistivity at 20 °C Ω ·m
- ho_d thermal resistivity of dry soil K.m/W
- ρ_{W} thermal resistivity of moist soil K.m/W
- ρ_{S} sheath resistivity at 20 °C Ω ·m
- σ absorption coefficient of solar radiation for the cable surface
- ω angular frequency of system (2 πf)

1.4 Permissible current rating of cables

When the permissible current rating is being calculated under conditions of partial drying out of the soil, it is also necessary to calculate a rating for conditions where drying out of the soil does not occur. The lower of the two ratings shall be used.

1.4.1 Buried cables where drying out of the soil does not occur or cables in air

1.4.1.1 AC cables

The permissible current rating of an a.c. cable can be derived from the expression for the temperature rise above ambient temperature:

$$\Delta\theta = (I^2R + \frac{1}{2}W_d)T_1 + [I^2R(1 + \lambda_1) + W_d]nT_2 + [I^2R(1 + \lambda_1 + \lambda_2) + W_d]n(T_3 + T_4)$$

where

- *I* is the current flowing in one conductor (A);
- $\Delta\theta$ is the conductor temperature rise above the ambient temperature (K);
 - NOTE The ambient temperature is the temperature of the surrounding medium under normal conditions, at a situation in which cables are installed, or are to be installed, including the effect of any local source of heat, but not the increase of temperature in the immediate neighbourhood of the cables due to heat arising therefrom
- R is the alternating current resistance per unit length of the conductor at maximum operating temperature (Ω/m) ;
- $W_{\rm d}$ is the dielectric loss per unit length for the insulation surrounding the conductor (W/m);
- T_1 is the thermal resistance per unit length between one conductor and the sheath (K.m/W):
- T_2 is the thermal resistance per unit length of the bedding between sheath and armour (K.m/W);
- T_3 is the thermal resistance per unit length of the external serving of the cable (K.m/W);
- T₄ is the thermal resistance per unit length between the cable surface and the surrounding medium, as derived from 2.2 of part 2 (K.m/W);
- *n* is the number of load-carrying conductors in the cable (conductors of equal size and carrying the same load);
- λ_1 is the ratio of losses in the metal sheath to total losses in all conductors in that cable;
- λ_2 is the ratio of losses in the armouring to total losses in all conductors in that cable.

- 22 -

L'intensité du courant admissible est obtenue de la formule ci-dessus par la formule suivante:

$$I = \left[\frac{\Delta\theta - W_{d} \left[0.5 \ T_{1} + n \ (T_{2} + T_{3} + T_{4}) \right]}{RT_{1} + nR \ (1 + \lambda_{1}) \ T_{2} + nR \ (1 + \lambda_{1} + \lambda_{2}) \ (T_{3} + T_{4})} \right]^{0.5}$$

Lorsque le câble est exposé au rayonnement solaire direct, les formules données en 2.2.1.2 de la partie 2 doivent être utilisées.

L'intensité du courant pour un câble à quatre conducteurs basse tension peut être considérée comme étant égale à l'intensité d'un câble tripolaire pour les mêmes tension et dimension et construction des âmes, à condition que ce câble soit utilisé dans un système triphasé où le quatrième conducteur est soit un conducteur neutre, soit un conducteur de protection. Lorsqu'il s'agit d'un conducteur neutre, l'intensité du courant s'applique à une charge équilibrée.

1.4.1.2 Câbles à courant continu jusqu'à 5 kV

L'intensité du courant admissible dans un câble à courant continu s'obtient par la simplification suivante de la formule en courant alternatif:

$$I = \left[\frac{\Delta \theta}{R' T_1 + nR' T_2 + nR' (T_3 + T_4)} \right]^{0.5}$$

οù

R' est la résistance de l'âme en courant continu, par unité de longueur, à sa température maximale de service (Ω/m) .

Lorsque le câble est directement exposé au rayonnement solaire, les formules données en 2.2.1.2 de la partie 2 doivent être utilisées.

1.4.2 Câbles enterrés dans le cas où se produit un assèchement partiel du sol

1.4.2.1 Câbles à courant alternatif

La méthode suivante doit être appliquée uniquement à un seul câble ou à un seul circuit, posé à une profondeur normale. La méthode se fonde sur un modèle physique approximatif simple de sol à deux zones dans lequel la zone adjacente au câble est asséchée alors que l'autre zone présente la résistivité thermique du site, la limite entre ces deux zones étant isothermique ¹⁾. Cette méthode est estimée appropriée dans les applications où l'on simplifie l'influence du sol.

NOTE Les cas d'installations comportant plus d'un circuit et l'espacement nécessaire entre circuits sont à l'étude.

Les modifications de la résistance thermique externe, dues à la formation d'une zone sèche autour d'un seul câble ou d'un seul circuit, sont obtenues à partir de la formule suivante (à comparer à la formule de 1.4.1.1):

$$I = \left[\frac{\Delta \theta - W_{d} \left[0.5 \ T_{1} + n \left(T_{2} + T_{3} + v T_{4} \right) \right] + (v - 1) \ \Delta \theta_{X}}{R \left[T_{1} + n \left(1 + \lambda_{1} \right) \ T_{2} + n \left(1 + \lambda_{1} + \lambda_{2} \right) \left(T_{3} + v T_{4} \right) \right]} \right]^{0.5}$$

οù

v est le rapport des résistivités thermiques des zones de sol sec et humide ($v = \rho_d/\rho_w$);

R est la résistance de l'âme en courant alternatif à sa température maximale de service (Ω/m) ;

^{1) «}Tenue en courant des câbles enterrés dans un sol partiellement asséché, Première partie»: Electra n° 104, p. 11, Janvier 1966 (voir en particulier la section 3 et l'annexe 1).

60287-1-1 © IEC:1994+A1:1995 - 23 - +A2:2001

The permissible current rating is obtained from the above formula as follows:

$$I = \left[\frac{\Delta\theta - W_{d} \left[0.5 \ T_{1} + n \ (T_{2} + T_{3} + T_{4}) \right]}{RT_{1} + nR \ (1 + \lambda_{1}) \ T_{2} + nR \ (1 + \lambda_{1} + \lambda_{2}) \ (T_{3} + T_{4})} \right]^{0.5}$$

Where the cable is exposed to direct solar radiation the formula given in 2.2.1.2 of part 2 shall be used.

The current rating for a four-core low-voltage cable may be taken to be equal to the current rating of a three-core cable for the same voltage and conductor size having the same construction, provided that the cable is to be used in a three-phase system where the fourth conductor is either a neutral conductor or a protective conductor. When it is a neutral conductor, the current rating applies to a balanced load.

1.4.1.2 DC cables up to 5 kV

The permissible current rating of a d.c. cable is obtained from the following simplification of the a.c. formula:

$$I = \left[\frac{\Delta \theta}{R' T_1 + nR' T_2 + nR' (T_3 + T_4)} \right]^{0.5}$$

where

R' is the direct current resistance per unit length of the conductor at maximum operating temperature (Ω/m).

Where the cable is exposed to direct solar radiation the formulae given in 2.2.1.2 of part 2 shall be used.

1.4.2 Buried cables where partial drying-out of the soil occurs

1.4.2.1 AC cables

The following method shall be applied to a single isolated cable or circuit only, laid at conventional depths. The method is based on a simple two-zone approximate physical model of the soil where the zone adjacent to the cable is dried out whilst the other zone retains the site's thermal resistivity, the zone boundary being on isotherm ¹⁾. This method is considered to be appropriate for those applications in which soil behaviour is considered in simple terms only.

NOTE Installations of more than one circuit as well as the necessary spacing between circuits are under consideration.

Changes in external thermal resistance, consequent to the formation of a dry zone around a single isolated cable or circuit, shall be obtained from the following formula (compared with the formula of 1.4.1.1):

$$I = \left[\frac{\Delta \theta - W_{d} \left[0.5 \ T_{1} + n \ (T_{2} + T_{3} + vT_{4}) \right] + (v - 1) \ \Delta \theta_{X}}{R \left[T_{1} + n \ (1 + \lambda_{1}) \ T_{2} + n \ (1 + \lambda_{1} + \lambda_{2}) \ (T_{3} + vT_{4}) \right]} \right]^{0.5}$$

where

v is the ratio of the thermal resistivities of the dry and moist soil zones $(v = \rho_d/\rho_w)$;

R is the a.c. resistance of the conductor at its maximum operating temperature (Ω/m) ;

^{1) &}quot;Current ratings of cables buried in partially dried-out soil, Part 1": *Electra* No. 104, p. 11, January 1966 (in particular section 3 and Appendix 1).

- ρ_d est la résistivité thermique du sol sec (K.m/W);
- ρ_w est la résistivité thermique du sol humide (K.m/W);
- θ_X est la température critique du sol et la température de la frontière entre zone sèche et zone humide (°C);

– 24 –

- θ_a est la température ambiante (°C);
- $\Delta\theta_{x}$ est l'échauffement critique du sol. C'est l'échauffement de la frontière entre les zones sèche et humide au-dessus de la température ambiante du sol $(\theta_{x} \theta_{a})$ (K);

NOTE T_4 est calculé en utilisant 2.2.3.2 de la partie 2 et la résistivité thermique du sol humide (p_w) . La méthode utilisée en 2.2.3.1 de la partie 2 pour le calcul de l'échauffement mutuel des câbles par modification de l'élévation de la température ne peut pas être utilisée.

 θ_x et ρ_d doivent être déterminés à partir d'une connaissance des conditions du sol.

NOTE Le choix de paramètres du sol appropriés est en cours d'étude. En attendant, des valeurs peuvent être retenues par accord entre fabricant et client.

1.4.2.2 Câbles à courant continu jusqu'à 5 kV

L'intensité du courant admissible dans un câble à courant continu s'obtient par la simplification suivante de la formule en courant alternatif:

$$I = \left[\frac{\Delta \theta + (v - 1) \Delta \theta_{X}}{R' \left[T_{1} + nT_{2} + n \left(T_{3} + vT_{4} \right) \right]} \right]^{0.5}$$

οù

R' est la résistance de l'âme en courant continu, par unité de longueur, à sa température maximale de service (Ω/m) .

1.4.3 Câbles enterrés dans le cas où un assèchement du sol est à éviter

1.4.3.1 Câbles à courant alternatif

Lorsqu'on souhaite éviter toute migration d'humidité en limitant l'échauffement de la surface externe du câble à une valeur inférieure ou égale à $\Delta\theta_x$, l'intensité de courant correspondante est obtenue à partir de:

$$I = \left[\frac{\Delta\theta_{X} + n \ W_{d} \ T_{4}}{nRT_{4} \ (1 + \lambda_{1} + \lambda_{2})}\right]^{0.5}$$

Cependant, pour certaines valeurs de $\Delta\theta_x$, la température de l'âme peut dépasser la température maximale admissible. Aussi, l'intensité de courant retenue doit être la plus faible des deux valeurs obtenues, soit par l'équation ci-dessus, soit par celle de 1.4.1.1.

La résistance de l'âme R doit être calculée à la température appropriée, qui peut être plus faible que la valeur maximale admissible. Une estimation de la température de service doit être effectuée et, si nécessaire, celle-ci peut être modifiée ultérieurement.

NOTE Pour ce qui concerne les câbles basse tension à quatre conducteurs, voir le dernier alinéa de 1.4.1.1.

60287-1-1 © IEC:1994+A1:1995 - 25 - +A2:2001

 ρ_d is the thermal resistivity of the dry soil (K.m/W);

 ρ_{w} is the thermal resistivity of the moist soil (K.m/W);

 θ_X is the critical temperature of the soil and temperature of the boundary between dry and moist zones (°C);

 θ_a is the ambient temperature (°C);

 $\Delta\theta_X$ is the critical temperature rise of the soil. This is the temperature rise of the boundary between the dry and moist zones above the ambient temperature of the soil $(\theta_X - \theta_a)$ (K);

NOTE T_4 is calculated using the thermal resistivity of the moist soil (ρ_w) using 2.2.3.2 of part 2. Mutual heating by modification of the temperature rise as in 2.2.3.1 of part 2 cannot be applied.

 θ_x and ρ_d shall be determined from a knowledge of the soil conditions.

NOTE The choice of suitable soil parameters is under consideration. In the meantime values may be agreed between manufacturer and purchaser.

1.4.2.2 DC cables up to 5 kV

The permissible current rating of a d.c. cable is obtained from the following simplification of the a.c. formula:

$$I = \left[\frac{\Delta \theta + (v - 1) \Delta \theta_{X}}{R' \left[T_{1} + nT_{2} + n \left(T_{3} + vT_{4} \right) \right]} \right]^{0.5}$$

where

R' is the direct current resistance per unit length of the conductor at maximum operating temperature (Ω/m) .

1.4.3 Buried cables where drying-out of the soil is to be avoided

1.4.3.1 AC cables

Where it is desired that moisture migration be avoided by limiting the temperature rise of the cable surface to not more than $\Delta\theta_x$, the corresponding rating shall be obtained from:

$$I = \left[\frac{\Delta \theta_{X} + n W_{d} T_{4}}{nRT_{4} (1 + \lambda_{1} + \lambda_{2})} \right]^{0.5}$$

However, depending on the value of $\Delta\theta_X$ this may result in a conductor temperature which exceeds the maximum permissible value. The current rating used shall be the lower of the two values obtained, either from the above equation or from 1.4.1.1.

The conductor resistance *R* shall be calculated for the appropriate conductor temperature, which may be less than the maximum permitted value. An estimate of the operating temperature shall be made and, if necessary, subsequently amended.

NOTE For four-core low-voltage cables see the final in 1.4.1.1.

1.4.3.2 Câbles à courant continu jusqu'à 5 kV

L'intensité du courant admissible dans un câble à courant continu s'obtient par la simplification suivante de la formule en courant alternatif:

– 26 –

$$I = \left[\frac{\Delta \theta_{X}}{nR' T_{4}}\right]^{0.5}$$

La résistance de l'âme R' doit être modifiée comme en 1.4.2.2.

1.4.4 Câbles directement exposés au rayonnement solaire

Intensité admissible des courants

En tenant compte de l'effet que le rayonnement solaire produit sur un câble, le courant admissible est donné par les formules:

1.4.4.1 Câbles à courant alternatif

$$I = \left[\frac{\Delta \theta - W_{d} \left[0.5 \ T_{1} + n \ (T_{2} + T_{3} + T_{4}^{*}) \right] - \sigma \ D_{e}^{*} \ H \ T_{4}^{*}}{RT_{1} + nR \ (1 + \lambda_{1}) \ T_{2} + nR \ (1 + \lambda_{1} + \lambda_{2}) \ (T_{3} + T_{4}^{*})} \right]^{0.5}$$

1.4.4.2 Câbles à courant continu jusqu'à 5 kV

$$I = \left[\frac{\Delta \theta - \sigma \ D_{e}^{*} \ H \ T_{4}^{*}}{R' \ T_{1} + nR' \ T_{2} + nR' \ (T_{3} + T_{4}^{*})} \right]^{0,5}$$

οù

- σ est le coefficient d'absorption des rayons solaires par la surface du câble (voir tableau 4);
- H est l'intensité des radiations solaires que l'on prendra comme 10³ W/m² dans la majorité des latitudes; autant que possible il est recommandé de se procurer les valeurs locales;
- T_4^* est la résistance thermique extérieure du câble à l'air libre, adaptée pour tenir compte de la radiation solaire (voir partie 2) (K.m/W);
- $D_{\rm e}^*$ est le diamètre extérieur du câble (m) (pour les gaines ondulées) $D_{\rm e}^* = (d_{\rm oc} + 2t_3) \cdot 10^{-3}$ (m);
- t₃ est l'épaisseur du revêtement (mm).

2 Calcul des pertes

2.1 Résistance de l'âme en courant alternatif

La résistance linéique de l'âme en courant alternatif et à la température maximale de service est donnée par la formule suivante, sauf dans le cas des câbles en tuyau d'acier (voir 2.1.5):

$$R = R'(1 + y_s + y_p)$$

οù

- R est la résistance de l'âme en courant alternatif à la température maximale de service (Ω/m);
- R' est la résistance de l'âme en courant continu à la température maximale de service (Ω/m);
- y_s est le facteur d'effet de peau;
- y_n est le facteur d'effet de proximité.

1.4.3.2 DC cables up to 5 kV

The permissible current rating of a d.c. cable shall be obtained from the following simplification of the a.c. formula:

$$I = \left[\frac{\Delta \theta_{X}}{nR' T_{4}}\right]^{0.5}$$

The conductor resistance R' shall be modified as in 1.4.2.2.

1.4.4 Cables directly exposed to solar radiation

Permissible current ratings

Taking into account the effect of solar radiation on a cable, the permissible current rating is given by the formulae:

1.4.4.1 AC cables

$$I = \left[\frac{\Delta \theta - W_{d} \left[0.5 \ T_{1} + n \ (T_{2} + T_{3} + T_{4}^{*}) \right] - \sigma \ D_{e}^{*} \ H \ T_{4}^{*}}{RT_{1} + nR \ (1 + \lambda_{1}) \ T_{2} + nR \ (1 + \lambda_{1} + \lambda_{2}) \ (T_{3} + T_{4}^{*})} \right]^{0.5}$$

1.4.4.2 DC cables up to 5 kV

$$I = \left[\frac{\Delta \theta - \sigma \ D_{e}^{*} \ H \ T_{4}^{*}}{R' \ T_{1} + nR' \ T_{2} + nR' \ (T_{3} + T_{4}^{*})} \right]^{0,5}$$

where

- σ is the absorption coefficient of solar radiation for the cable surface (see table 4);
- H is the intensity of solar radiation which should be taken as 10^3 W/m² for most latitudes; it is recommended that the local value should be obtained where possible;
- T_4^* is the external thermal resistance of the cable in free air, adjusted to take account of solar radiation (see part 2) (K.m/W);
- D_e^* is the external diameter of cable (m) for corrugated sheaths $D_e^* = (d_{oc} + 2t_3) \cdot 10^{-3}$ (m);
- t_3 is the thickness of the serving (mm).

2 Calculation of losses

2.1 AC resistance of conductor

The a.c. resistance per unit length of the conductor at its maximum operating temperature is given by the following formula, except in the case of pipe-type cables (see 2.1.5):

$$R = R'(1 + y_s + y_p)$$

where

- R is the current resistance of conductor at maximum operating temperature (Ω/m) ;
- R' is the d.c. resistance of conductor at maximum operating temperature (Ω/m) ;
- y_s is the skin effect factor;
- $y_{\rm p}$ is the proximity effect factor.

2.1.1 Résistance de l'âme en courant continu

La résistance linéique de l'âme, en courant continu et à la température maximale de service θ , est donnée par:

– 28 –

$$R' = R_0 [1 + \alpha_{20} (\theta - 20)]$$

οù

 R_0 est la résistance de l'âme en courant continu à 20 °C (Ω/m);

La valeur de $R_{\rm o}$ doit être tirée directement de la CEI 60228. Lorsque la dimension de l'âme n'est pas comprise dans la liste donnée dans la CEI 60228, la valeur de $R_{\rm o}$ doit être choisie par accord entre le constructeur et l'acheteur. Il convient de calculer la résistance de l'âme en utilisant les valeurs des résistivités données au tableau 1.

 α_{20} est le coefficient de variation à 20 °C de la résistivité en fonction de la température, par kelvin (voir le tableau 1 pour les valeurs de référence);

est la température maximale de service en degrés Celsius (celle-ci est déterminée d'après le type d'isolant utilisé), voir la spécification de la CEI appropriée ou les normes nationales.

2.1.2 Facteur d'effet de peau y_s

Le facteur d'effet de peau y_s est donné par:

$$y_{\rm S} = \frac{x_{\rm S}^4}{192 + 0.8 \ x_{\rm S}^4}$$

οù

$$x_s^2 = \frac{8\pi f}{R'} 10^{-7} k_s$$

f est la fréquence du courant d'alimentation en hertz.

Les valeurs k_s sont données dans le tableau 2.

La formule ci-dessus est valable tant que x_s n'excède pas 2,8, ce qui est vrai dans la majorité des cas.

En l'absence d'autres formules, il est recommandé d'utiliser les formules ci-dessus pour des âmes sectorales ou ovales.

2.1.3 Facteur d'effet de proximité y_p dans le cas de câbles bipolaires ou de deux câbles unipolaires

Le facteur d'effet de proximité est donné par:

$$y_{\rm p} = \frac{x_{\rm p}^4}{192 + 0.8 \ x_{\rm p}^4} \left(\frac{d_{\rm c}}{\rm s}\right)^2 \times 2.9$$

οù

$$x_p^2 = \frac{8\pi f}{R'} 10^{-7} k_p$$

d_C est le diamètre de l'âme (mm);

s est la distance entre axes des âmes (mm).

Les valeurs de k_p sont données dans le tableau 2.

2.1.1 DC resistance of conductor

The d.c. resistance per unit length of the conductor at its maximum operating temperature θ is given by:

$$R' = R_0 [1 + \alpha_{20} (\theta - 20)]$$

where

 R_0 is the d.c. resistance of the conductor at 20 °C (Ω/m);

The value of R_0 shall be derived directly from IEC 60228. Where the conductor size is outside the range covered by IEC 60228, the value of R_0 may be chosen by agreement between manufacturer and purchaser. The conductor resistance should then be calculated using the values of resistivity given in table 1.

 α_{20} is the constant mass temperature coefficient at 20 °C per kelvin (see table 1 for standard values);

 θ is the maximum operating temperature in degrees Celsius (this will be determined by the type of insulation to be used); see appropriate IEC specification or national standard.

2.1.2 Skin effect factor y_s

The skin effect factor y_s is given by:

$$y_{\rm S} = \frac{x_{\rm S}^4}{192 + 0.8 \ x_{\rm S}^4}$$

where

$$x_s^2 = \frac{8\pi f}{R'} 10^{-7} k_s$$

f is the supply frequency in hertz.

Values for k_s are given in table 2.

The above formula is accurate providing x_s does not exceed 2,8, and therefore applies to the majority of practical cases.

In the absence of alternative formulae it is recommended that the above formula should be used for sector and oval-shaped conductors.

2.1.3 Proximity effect factor y_p for two-core cables and for two single-core cables

The proximity effect factor is given by:

$$y_{\rm p} = \frac{x_{\rm p}^4}{192 + 0.8 \ x_{\rm p}^4} \left(\frac{d_{\rm c}}{\rm s}\right)^2 \times 2.9$$

where

$$x_p^2 = \frac{8\pi f}{R'} 10^{-7} k_p$$

 d_{c} is the diameter of conductor (mm);

s is the distance between conductor axes (mm).

Values for k_p are given in table 2.

La formule ci-dessus est valable tant que x_p n'excède pas 2,8, ce qui est vrai dans la majorité des cas.

- 30 -

2.1.4 Facteur d'effet de proximité y_p dans le cas de câbles tripolaires ou de trois câbles unipolaires

2.1.4.1 Câbles à âme circulaire

Le facteur d'effet de proximité est donné par:

$$y_{p} = \frac{x_{p}^{4}}{192 + 0.8 x_{p}^{4}} \left(\frac{d_{c}}{s}\right)^{2} \left[0.312 \left(\frac{d_{c}}{s}\right)^{2} + \frac{1.18}{\frac{x_{p}^{4}}{192 + 0.8 x_{p}^{4}} + 0.27}\right]$$

οù

$$x_p^2 = \frac{8\pi f}{R'} 10^{-7} k_p$$

d_c est le diamètre de l'âme (mm);

s est la distance entre axes des âmes (mm).

NOTE Pour des câbles disposés en nappe, s est l'intervalle entre des phases adjacentes. Lorsque l'intervalle entre des phases adjacentes n'est pas égal, la distance utilisée sera $s = \sqrt{s_1 \times s_2}$.

Les valeurs de k_p sont données dans le tableau 2.

La formule ci-dessus est valable tant que x_p n'excède pas 2,8, ce qui est vrai dans la majorité des cas.

2.1.4.2 Câbles à âmes sectorales

Dans le cas de câbles à plusieurs conducteurs à âmes sectorales, la valeur de y_p doit être les deux tiers de la valeur calculée en 2.1.4.1,

avec:

 $d_{c} = d_{x}$ = diamètre d'une âme circulaire équivalente de même section, et degré de rétreint (mm)

$$s = (d_x + t) \text{ (mm)}$$

οù

t est l'épaisseur de l'isolant entre âmes (mm).

Les valeurs de k_p sont données dans le tableau 2.

La formule ci-dessus est valable tant que x_p n'excède pas 2,8, ce qui est vrai dans la majorité des cas.

2.1.5 Effets de peau et de proximité dans le cas des câbles en tuyau d'acier

Pour les câbles en tuyau, les effets de peau et de proximité calculés en 2.1.2, 2.1.3 et 2.1.4 doivent être multipliés par un facteur égal à 1,5. Pour ces câbles,

$$R = R' \left[1 + 1.5 \left(y_s + y_p \right) \right] \quad (\Omega/m)$$

The above formula is accurate providing x_p does not exceed 2,8, and therefore applies to the majority of practical cases.

2.1.4 Proximity effect factor y_p for three-core cables and for three single-core cables

2.1.4.1 Circular conductor cables

The proximity effect factor is given by:

$$y_{p} = \frac{x_{p}^{4}}{192 + 0.8 x_{p}^{4}} \left(\frac{d_{c}}{s}\right)^{2} \left[0.312 \left(\frac{d_{c}}{s}\right)^{2} + \frac{1.18}{\frac{x_{p}^{4}}{192 + 0.8 x_{p}^{4}} + 0.27}\right]$$

where

$$x_{\rm p}^2 = \frac{8\pi f}{R'} \ 10^{-7} \ k_{\rm p}$$

 d_{c} is the diameter of conductor (mm);

s is the distance between conductor axes (mm).

NOTE For cables in flat formation, s is the spacing between adjacent phases. Where the spacing between adjacent phases is not equal, the distance will be taken as $s = \sqrt{s_1 \times s_2}$.

Values for k_p are given in table 2.

The above formula is accurate provided x_p does not exceed 2,8, and therefore applies to the majority of practical cases.

2.1.4.2 Shaped conductor cables

In the case of multicore cables with shaped conductors, the value of y_p shall be two-thirds of the value calculated according to 2.1.4.1,

with:

 $d_{c} = d_{x}$ = diameter of an equivalent circular conductor of the same cross-sectional area, and degree of compaction (mm)

$$s = (d_x + t) \text{ (mm)}$$

where

t is the thickness of insulation between conductors (mm).

Values for k_p are given in table 2.

The above formula is accurate provided x_p does not exceed 2,8, and therefore applies to the majority of practical cases.

2.1.5 Skin and proximity effects in pipe-type cables

For pipe-type cables, the skin and proximity effects calculated according to 2.1.2, 2.1.3 and 2.1.4 shall be increased by a factor of 1,5. For these cables,

$$R = R'[1+1.5(y_s + y_p)]$$
 (Ω/m)

2.2 Pertes diélectriques (applicable uniquement aux câbles à courant alternatif)

Les pertes diélectriques dépendent de la tension et ne deviennent donc importantes qu'à des niveaux de tension correspondant au matériel isolant utilisé. Le tableau 3 donne, pour les matériaux isolants communément utilisés, la valeur U_0 à partir de laquelle il convient que les pertes diélectriques soient prises en considération, que les câbles soient tripolaires métallisés ou unipolaires. Il n'est pas nécessaire de calculer les pertes diélectriques pour les câbles à plusieurs conducteurs sans écran ou les câbles à courant continu.

- 32 -

Les pertes diélectriques par unité de longueur de chaque phase sont données par:

$$W_d = \omega C U_0^2 \tan \delta$$
 (W/m)

οù

 $\omega = 2\pi f$;

C est la capacité par unité de longueur (F/m);

 U_0 est la tension par rapport à la terre (V).

Les valeurs de tan δ , facteur de perte de l'isolant à la fréquence et à la température de service, sont données dans le tableau 3.

La capacité pour des âmes circulaires est donnée par:

$$C = \frac{\varepsilon}{18 \ln \left(\frac{D_i}{d_c}\right)} 10^{-9} \quad (F/m)$$

οù

 ε est la permittivité relative de l'isolant;

D_i est le diamètre extérieur de l'isolant, à l'exclusion de l'écran (mm);

d_c est le diamètre de l'âme y compris l'écran, s'il existe (mm).

La même formule peut être utilisée pour des âmes ovales en remplaçant D_i et d_c par la moyenne géométrique des grand et petit diamètres sur isolant et sur âme.

Les valeurs numériques de ϵ sont données dans le tableau 3.

2.3 Facteur de pertes dans les gaines ou les écrans (applicable uniquement aux câbles à courant alternatif à fréquence industrielle)

Les pertes dans les gaines ou les écrans (λ_1) sont dues au passage de courants de circulation (λ_1') et aux courants de Foucault (λ_1'') ,

soit:

$$\lambda_1 = \lambda_1' + \lambda_1''$$

Les formules indiquées donnent l'expression de ces pertes rapportées aux pertes totales dans l'âme, de plus, on indique pour chaque cas particulier le type de pertes à considérer. Les formules pour les câbles unipolaires s'appliquent à un seul circuit et les effets de retour par la terre sont négligés. Des méthodes pour gaines lisses et ondulées sont données.

2.2 Dielectric losses (applicable to a.c. cables only)

The dielectric loss is voltage dependent and thus only becomes important at voltage levels related to the insulation material being used. Table 3 gives, for the insulation materials in common use, the value of U_0 at which the dielectric loss should be taken into account where three-core screened or single-core cables are used. It is not necessary to calculate the dielectric loss for unscreened multicore or d.c. cables.

The dielectric loss per unit length in each phase is given by:

$$W_d = \omega C U_0^2 \tan \delta$$
 (W/m)

where

 ω is the $2\pi f$;

C is the capacitance per unit length (F/m);

 U_{o} is the voltage to earth (V).

Values of $\tan \delta$, the loss factor of the insulation at power frequency and operating temperature, are given in table 3.

The capacitance for circular conductors is given by:

$$C = \frac{\varepsilon}{18 \ln \left(\frac{D_{i}}{d_{c}}\right)} 10^{-9} \quad (F/m)$$

where

 ε is the relative permittivity of the insulation;

 D_i is the external diameter of the insulation (excluding screen) (mm);

 d_c is the diameter of conductor, including screen, if any (mm).

The same formula can be used for oval conductors if the geometric mean of the appropriate major and minor diameters is substituted for D_i and d_c .

Values of ε are given in table 3.

2.3 Loss factor for sheath and screen (applicable to power frequency a.c. cables only)

The power loss in the sheath or screen (λ_1) consists of losses caused by circulating currents (λ'_1) and eddy currents (λ''_1) ,

thus:

$$\lambda_1 = \lambda'_1 + \lambda''_1$$

The formulae given in this section express the loss in terms of the total power loss in the conductor(s) and for each particular case it is indicated which type of loss has to be considered. The formulae for single-core cables apply to single circuits only and the effects of earth return paths are neglected. Methods are given for both smooth-sided and corrugated sheaths.

Pour les câbles unipolaires avec gaines court-circuitées aux deux extrémités d'une section électrique, seules les pertes dues aux courants de circulation sont à prendre en considération (voir 2.3.1, 2.3.2 et 2.3.3). Une section électrique est définie comme la partie située entre les points où les gaines de tous les câbles sont court-circuitées et mises à la terre.

Il y a également lieu de prendre une certaine marge de sécurité pour tenir compte d'une augmentation d'écartement en certains points de parcours (voir 2.3.4).

Pour les câbles à grosses âmes segmentées, il convient de majorer le facteur de pertes pour tenir compte également des pertes dues aux courants de Foucault dans les gaines (voir 2.3.4).

Pour une installation à permutation des écrans, il n'est pas réaliste d'admettre que les longueurs élémentaires sont électriquement identiques et que les pertes dues aux courants de circulation dans les gaines sont négligeables. Des recommandations sont faites en 2.3.6 pour tenir compte de ce déséquilibre électrique.

Le tableau 1 donne les résistivités et coefficients de température du plomb et de l'aluminium, pour le calcul de la résistance de la gaine R_s .

2.3.1 Deux câbles unipolaires et trois câbles unipolaires (disposés en trèfle), avec gaines court-circuitées aux deux extrémités d'une section électrique

Pour deux câbles unipolaires et trois câbles unipolaires (disposés en trèfle), avec gaines court-circuitées aux deux extrémités, le facteur de pertes est donné par:

$$\lambda_1' = \frac{R_s}{R} \frac{1}{1 + \left(\frac{R_s}{X}\right)^2}$$

οù

- R_s est la résistance de la gaine ou de l'écran par unité de longueur de câble à sa température de service maximale (Ω/m) ;
- X est la réactance de la gaine ou de l'écran par unité de longueur de câble (Ω/m)

= 2
$$\omega$$
 10⁻⁷ In $\left(\frac{2s}{d}\right)(\Omega/m)$;

- ω = 2 $\pi \times$ fréquence (1/s);
- s est la distance entre axes des âmes de la section électrique considérée (mm);
- d est le diamètre moyen de la gaine (mm);
 - pour des conducteurs ovales, d est donné par $\sqrt{d_{\mathsf{M}} \cdot d_{\mathsf{m}}}$;
 - où d_{M} et d_{m} représentent respectivement les grand et petit diamètres de la gaine
 - pour les gaines ondulées, d est donné par $\frac{1}{2}(D_{oc} + D_{it})$;
- $\lambda_1''=0$, c'est-à-dire que les pertes par courants de Foucault sont négligeables, sauf dans les câbles ayant de grosses âmes segmentées pour lesquels λ_1'' est calculé par la méthode donnée en 2.3.5.

For single-core cables with sheaths bonded at both ends of an electrical section, only the loss due to circulating currents in the sheaths need be considered (see 2.3.1, 2.3.2 and 2.3.3). An electrical section is defined as a portion of the route between points at which the sheaths or screens of all cables are solidly bonded.

An allowance has usually also to be made for increased spacing at certain points on the route (see 2.3.4).

For cables with large segmental conductors, the loss factor should be increased to take account of the loss due to eddy currents in the sheaths (see 2.3.4).

For a cross-bonded installation, it is considered unrealistic to assume that minor sections are electrically identical and that the loss due to circulating currents in the sheaths is negligible. Recommendations are made in 2.3.6 for augmenting the losses in the sheaths to take account of this electrical unbalance.

The electrical resistivities and temperature coefficients of lead and aluminium, for use in calculating the resistance of the sheath $R_{\rm S}$ are given in table 1.

2.3.1 Two single-core cables, and three single-core cables (in trefoil formation), sheaths bonded at both ends of an electrical section

For two single-core cables, and three single-core cables (in trefoil formation) with sheaths bonded at both ends, the loss factor is given by:

$$\lambda_1' = \frac{R_s}{R} \frac{1}{1 + \left(\frac{R_s}{X}\right)^2}$$

where

 R_s is the resistance of sheath or screen per unit length of cable at its maximum operating temperature (Ω/m) ;

X is the reactance per unit length of sheath or screen per unit length of cable (Ω/m)

= 2
$$\omega$$
 10⁻⁷ In $\left(\frac{2s}{d}\right)(\Omega/m)$;

 $\omega = 2 \pi \times \text{frequency (1/s)};$

s is the distance between conductor axes in the electrical section being considered (mm);

d is the mean diameter of the sheath (mm);

– for oval-shaped cores, d is given by $\sqrt{d_{\mathsf{M}} \cdot d_{\mathsf{m}}}$;

where $d_{\rm M}$ and $d_{\rm m}$ are the major and minor mean diameters respectively of the sheath

- for corrugated sheaths d is given by $\frac{1}{2}(D_{oc} + D_{it})$;

 $\lambda_1'' = 0$, i.e. eddy-current loss is ignored, except for cables having large conductors of segmental construction when λ_1'' is calculated by the method given in 2.3.5.

2.3.2 Trois câbles unipolaires disposés en nappe, régulièrement transposés, avec gaines court-circuitées aux deux extrémités d'une section électrique

Pour les câbles unipolaires disposés en nappe et régulièrement transposés, le câble médian étant équidistant des deux autres et les gaines étant transposées et court-circuitées aux extrémités de chaque section de transposition ternaire, le facteur de pertes est donné par:

- 36 -

$$\lambda_1' = \frac{R_s}{R} \cdot \frac{1}{1 + \left(\frac{R_s}{X_1}\right)^2}$$

οù

 X_1 est la réactance linéique de la gaine (Ω/m)

= 2
$$\omega$$
 10⁻⁷ In $\left\{2.\sqrt[3]{2.} \left(\frac{s}{d}\right)\right\}$;

 $\lambda_1'' = 0$, c'est-à-dire que les pertes par courants de Foucault sont négligeables, sauf dans les câbles ayant de grosses âmes segmentées pour lesquels λ_1'' est calculé par la méthode donnée en 2.3.5.

2.3.3 Trois câbles unipolaires disposés en nappe, non transposés, avec gaines court-circuitées aux deux extrémités d'une section électrique

Pour trois câbles unipolaires disposés en nappe et non transposés dont le câble médian est équidistant des deux autres et les gaines court-circuitées aux deux extrémités d'une section électrique, le facteur de pertes pour le câble qui a les plus fortes pertes (c'est-à-dire le câble extérieur dont le courant est déphasé en arrière) est donné par:

$$\lambda'_{11} = \frac{R_{\rm S}}{R} \left[\frac{0.75 \, P^2}{R_{\rm S}^2 + P^2} + \frac{0.25 \, Q^2}{R_{\rm S}^2 + Q^2} + \frac{2 \, R_{\rm S} \, P \, Q \, X_{\rm m}}{\sqrt{3 \, (R_{\rm S}^2 + P^2) \, (R_{\rm S}^2 + Q^2)}} \right]$$

Pour l'autre câble extérieur, le facteur de pertes est donné par:

$$\lambda'_{12} = \frac{R_s}{R} \left[\frac{0.75P^2}{R_s^2 + P^2} + \frac{0.25Q^2}{R_s^2 + Q^2} - \frac{2R_s PQ X_m}{\sqrt{3(R_s^2 + P^2)(R_s^2 + Q^2)}} \right]$$

Pour le câble médian, le facteur de pertes est donné par:

$$\lambda'_{1m} = \frac{R_s}{R} \frac{Q^2}{R_s^2 + Q^2}$$

Dans ces formules:

$$P = X + X_{m}$$

$$Q = X - \frac{X_{\rm m}}{3}$$

οù

X est la réactance de la gaine ou de l'écran par unité de longueur de câble pour deux câbles unipolaires adjacents (Ω/m)

= 2
$$\omega$$
 10⁻⁷ In $\left(\frac{2s}{d}\right)(\Omega/m)$;

2.3.2 Three single-core cables in flat formation, with regular transposition, sheaths bonded at both ends of an electrical section

For three single-core cables in flat formation, with the middle cable equidistant from the outer cables, regular transposition of the cables and the sheaths bonded at every third transposition, the loss factor is given by:

$$\lambda_1' = \frac{R_s}{R} \frac{1}{1 + \left(\frac{R_s}{X_1}\right)^2}$$

where

 X_1 is the reactance per unit length of sheath (Ω/m)

= 2
$$\omega$$
 10⁻⁷ In $\left\{2.\sqrt[3]{2.} \left(\frac{s}{d}\right)\right\}$;

 $\lambda_1'' = 0$, i.e. eddy-current loss is ignored, except for cables having large conductors of segmental construction when λ_1'' is calculated by the method given in 2.3.5.

2.3.3 Three single-core cables in flat formation, without transposition, sheaths bonded at both ends of an electrical section

For three single-core cables in flat formation, with the middle cable equidistant from the outer cables, without transposition and with the sheaths bonded at both ends of an electrical section, the loss factor for the cable which has the greatest loss (i.e. the outer cable carrying the lagging phase) is given by:

$$\lambda'_{11} = \frac{R_{s}}{R} \left[\frac{0.75 P^{2}}{R_{s}^{2} + P^{2}} + \frac{0.25 Q^{2}}{R_{s}^{2} + Q^{2}} + \frac{2 R_{s} P Q X_{m}}{\sqrt{3 (R_{s}^{2} + P^{2}) (R_{s}^{2} + Q^{2})}} \right]$$

For the other outer cable, the loss factor is given by:

$$\lambda'_{12} = \frac{R_s}{R} \left[\frac{0.75P^2}{R_s^2 + P^2} + \frac{0.25Q^2}{R_s^2 + Q^2} - \frac{2R_sPQX_m}{\sqrt{3(R_s^2 + P^2)(R_s^2 + Q^2)}} \right]$$

For the middle cable, the loss factor is given by:

$$\lambda'_{1m} = \frac{R_s}{R} \frac{Q^2}{R_s^2 + Q^2}$$

In these formulae:

$$P = X + X_{m}$$

$$Q = X - \frac{X_{\rm m}}{3}$$

where

X is the reactance of sheath or screen per unit length of cable for two adjacent single-core cables (Ω/m)

= 2
$$\omega$$
 10⁻⁷ In $\left(\frac{2s}{d}\right)(\Omega/m)$;

 $X_{\rm m}$ est la réactance mutuelle par unité de longueur de câble entre la gaine d'un des câbles extérieurs et l'âme des deux autres, quand les câbles sont disposés en nappe (Ω/m)

- = $2\omega \ 10^{-7} \ln (2) (\Omega/m)$;
- $\lambda_1''=0$, c'est-à-dire que les pertes par courants de Foucault sont négligeables, sauf dans les câbles ayant de grosses âmes segmentées pour lesquels λ_1'' est calculé par la méthode donnée en 2.3.5.

Les intensités du courant pour les câbles dans l'air doivent être basées sur la première formule donnée ci-dessus, c'est-à-dire, les pertes pour le câble extérieur dont le courant est déphasé en arrière.

2.3.4 Variation de l'écartement des câbles unipolaires entre les points où les gaines sont court-circuitées

Pour les circuits de câbles unipolaires à gaines court-circuitées à chaque extrémité et éventuellement en des points intermédiaires, les courants de circulation, et par conséquent les pertes, augmentent avec l'écartement, d'où l'intérêt de réduire celui-ci. En fait, il existe un écartement optimal obtenu par la double considération des pertes et de l'échauffement mutuel entre câbles.

Il n'est pas toujours possible d'installer les câbles avec le même écartement tout le long d'un parcours. Les recommandations suivantes concernent le calcul des pertes dues au courant de circulation des gaines lorsqu'il est impossible d'installer les câbles avec le même écartement sur toute la longueur d'une section électrique. Une section est définie comme la partie située entre les points où les gaines de tous les câbles sont court-circuitées et mises à la terre. Les recommandations ci-dessous donnent des valeurs pour des facteurs de perte qui sont valables pour une section entière mais il convient de remarquer que les valeurs appropriées de la résistance de l'âme et de la résistance thermique externe doivent être calculées sur la base du plus petit espacement entre câbles sur tout le long de la section.

a) Lorsque l'écartement le long de la section n'est pas constant mais que les diverses valeurs sont connues, la valeur de X en 2.3.1, 2.3.2 ou 2.3.3 sera déduite de:

$$X = \frac{I_a X_a + I_b X_b + ... + I_n X_n}{I_a + I_b + ... + I_n}$$

οù

 I_a , I_b ... I_n sont les longueurs correspondant à des écartements différents le long d'une section électrique;

 X_a , X_b ... X_n sont les réactances par unité de longueur du câble, les formules correspondantes étant données en 2.3.1, 2.3.2 ou 2.3.3 où les valeurs appropriées des écartements s_a , s_b ... s_n sont utilisées.

- b) Lorsque dans une section l'écartement entre les câbles et sa variation le long du parcours ne sont pas connus et ne peuvent être prévus, les pertes de cette section calculées à partir de l'écartement type doivent être arbitrairement augmentées de 25 %, cette valeur étant estimée convenir aux câbles haute tension sous gaine de plomb. Si l'on pense qu'un accroissement de 25 % ne convient pas, on peut se mettre d'accord sur un autre pourcentage.
- c) Lorsque les phases de la section s'épanouissent à une extrémité, la marge de b) peut ne pas être suffisante et il est recommandé de faire une estimation de l'écartement prévu et de calculer les pertes en utilisant la procédure donnée en a).

NOTE Cette augmentation n'est pas applicable aux installations dont les gaines ne sont réunies qu'en un seul point ou transposées (voir 2.3.6).

60287-1-1 © IEC:1994+A1:1995 - 39 - +A2:2001

 $X_{\rm m}$ is the mutual reactance per unit length of cable between the sheath of an outer cable and the conductors of the other two, when the cables are in flat formation (Ω/m)

=
$$2 \omega 10^{-7} \ln (2) (\Omega/m)$$
;

 $\lambda_1'' = 0$, i.e. eddy-current loss is ignored, except for cables having large conductors of segmental construction when λ_1'' is calculated by the method given in 2.3.5.

Ratings for cables in air should be based on the first formula given above, i.e. the loss for the outer cable carrying the lagging phase.

2.3.4 Variation of spacing of single-core cables between sheath bonding points

For single-core cable circuits with sheaths solidly bonded at both ends and possibly at intermediate points, the circulating currents and the consequent loss increase as the spacing increases, and it is advisable to use as close a spacing as possible. The optimum spacing is achieved by considering both losses and mutual heating between cables.

It is not always possible to install cables with one value of spacing all along a route. The following recommendations relate to the calculation of sheath circulating current losses when it is not possible to install cables with a constant value of spacing over the length of one electrical section. A section is defined as a portion of the route between points at which sheaths of all cables are solidly bonded. The recommendations below give values for loss factors which apply to the whole of a section, but it should be noted that the appropriate values of conductor resistance and external thermal resistance must be calculated on the basis of the closest cable spacing at any place along the section.

a) Where spacing along a section is not constant but the various values are known, the value for *X* in 2.3.1, 2.3.2 and 2.3.3 shall be derived from:

$$X = \frac{I_a X_a + I_b X_b + ... + I_n X_n}{I_a + I_b + ... + I_n}$$

where

 I_a , I_b ... I_n are lengths with different spacings along an electrical section;

 X_a , X_b ... X_n are the reactances per unit length of cable, the relevant formulae being given in 2.3.1, 2.3.2 or 2.3.3 where appropriate values of spacings s_a , s_b ... s_n are

- b) Where in any section the spacing between cables and its variation along the route are not known and cannot be anticipated, the losses in that section, calculated from the design spacing, shall be arbitrarily increased by 25 %, this value having been found to be appropriate for lead-sheathed H.V. cables. A different increase may be used by agreement if it is considered that 25 % is not appropriate to a particular installation.
- c) Where the section includes a spread-out end, the allowance in b) may not be sufficient and it is recommended that an estimate of the probable spacing be made and the loss calculated by the procedure given in a) above.

NOTE This increase does not apply to installations with single-point bonding or cross-bonding (see 2.3.6).

2.3.5 Influence des grosses âmes segmentées

Lorsque des dispositions ont été prises pour réduire l'effet de proximité, par exemple par l'utilisation de grosses âmes à segments isolés, le facteur de perte λ_1'' de 2.3.1, 2.3.2 et 2.3.3 ne peut plus être négligé; ce facteur sera obtenu en multipliant la valeur λ_1'' de 2.3.6 par le facteur F donné par la formule:

- 40 -

$$F = \frac{4 M^2 N^2 + (M+N)^2}{4 (M^2+1) (N^2+1)}$$

 $M = N = \frac{R_s}{V}$ pour les câbles posés en trèfle

$$M = \frac{R_{\rm S}}{X + X_{\rm m}}$$

$$N = \frac{R_{\rm S}}{X - \frac{X_{\rm m}}{2}}$$

 $M = \frac{R_{s}}{X + X_{m}}$ $N = \frac{R_{s}}{X - \frac{X_{m}}{2}}$ Pour les câbles posés en nappe, le câble central étant équidistant des câbles latéraux.

Lorsque l'espacement le long d'une section électrique n'est pas constant, la valeur de X doit être calculée comme en 2.3.4 a).

2.3.6 Câbles unipolaires avec gaines court-circuitées en un seul point ou permutées

2.3.6.1 Pertes par courants de Foucault

Pour des câbles unipolaires, à gaines court-circuitées en un seul point ou permutées, le facteur de pertes par courants de Foucault est donné par:

$$\lambda_1'' = \frac{R_s}{R} \left[g_s \lambda_0 (1 + \Delta_1 + \Delta_2) + \frac{\beta_1 t_s)^4}{12 \times 10^{12}} \right]$$

οù

$$g_s = 1 + \left(\frac{t_s}{D_s}\right)^{1.74} (\beta_1 \ D_s \ 10^{-3} - 1.6)$$

$$\beta_1 = \sqrt{\frac{4\,\pi\,\omega}{10^7\,\rho_s}}$$

ps est la résistivité électrique du matériau constituant la gaine à la température de service (voir tableau 1) (Ω .m);

D_s est le diamètre extérieur de la gaine du câble (mm);

NOTE Pour les gaines ondulées, le diamètre extérieur moyen $\frac{D_{\text{oc}} + D_{\text{it}}}{2} + t_{\text{s}}$ doit être utilisé.

 $t_{\rm S}$ est l'épaisseur de la gaine (mm);

 $\omega = 2\pi f$;

NOTE Pour les câbles à gaine de plomb, g_s peut être pris égal à 1 et $\frac{(\beta_1 \ t_s)^4}{12 \times 10^{12}}$ doit être négligé.

Pour les câbles à gaine d'aluminium, il peut être nécessaire d'évaluer les deux termes lorsque le diamètre de la gaine est supérieur à 70 mm ou lorsque la gaine est plus épaisse que d'ordinaire.

2.3.5 Effect of large segmental type conductors

Where the conductors are subject to a reduced proximity effect, as with large conductors of insulated segmental construction, the sheath loss factor λ_1'' of 2.3.1, 2.3.2 and 2.3.3 cannot be ignored, but shall be obtained by multiplying the value of λ_1'' , obtained from 2.3.6 for the same cable configuration, by the factor F given by the formula:

$$F = \frac{4 M^2 N^2 + (M+N)^2}{4 (M^2+1) (N^2+1)}$$

where

 $M = N = \frac{R_s}{X}$ for cables in trefoil formation

and

$$M = \frac{R_{\rm S}}{X + X_{\rm m}}$$

$$N = \frac{R_{\rm S}}{X - \frac{X_{\rm m}}{3}}$$
For cables in flat formation with equidistant spacing.

Where the spacing along a section is not constant the value of X shall be calculated as in 2.3.4 a).

2.3.6 Single-core cables, with sheaths bonded at a single point or cross-bonded

2.3.6.1 Eddy-current losses

For single-core cables with sheaths bonded at a single point or cross-bonded the eddy-current loss factor is given by:

$$\lambda_1'' = \frac{R_s}{R} \left[g_s \lambda_0 (1 + \Delta_1 + \Delta_2) + \frac{\beta_1 t_s)^4}{12 \times 10^{12}} \right]$$

where

$$g_{\rm S} = 1 + \left(\frac{t_{\rm S}}{D_{\rm S}}\right)^{1.74} (\beta_1 \ D_{\rm S} \ 10^{-3} - 1.6)$$

$$\beta_1 = \sqrt{\frac{4 \pi \omega}{10^7 \rho_{\rm S}}}$$

 ρ_s is the electrical resistivity of sheath material at operating temperature (see table 1) (Ω .m);

D_s is the external diameter of cable sheath (mm);

NOTE For corrugated sheaths, the mean outside diameter $\frac{D_{\rm oc} + D_{\rm it}}{2} + t_{\rm s}$ shall be used.

 t_s is the thickness of sheath (mm);

 $\omega = 2\pi f$

NOTE For lead-sheathed cables, g_s can be taken as unity and $\frac{(\beta_1 \ t_s)^4}{12 \times 10^{12}}$ can be neglected.

For aluminium-sheathed cables both terms may need to be evaluated when sheath diameter is greater than about 70 mm or the sheath is thicker than usual.

Les formules pour λ_0 , Δ_1 et Δ_2 sont données ci-dessous:

(dans lesquelles: $m = \frac{\omega}{R_s} 10^{-7}$, pour $m \le 0,1$, Δ_1 et Δ_2 peuvent être négligés)

1) Trois câbles unipolaires en trèfle:

$$\lambda_0 = 3 \left(\frac{m^2}{1 + m^2} \right) \left(\frac{d}{2 s} \right)^2$$

$$\Delta_1 = (1,14 \ m^{2,45} + 0,33) \left(\frac{d}{2 s} \right)^{(0,92+1,66)}$$

$$\Delta_2 = 0$$

- 42 -

- 2) Trois câbles unipolaires en nappe:
 - a) câble central:

$$\lambda_0 = 6 \left(\frac{m^2}{1 + m^2} \right) \left(\frac{d}{2s} \right)^2$$

$$\Delta_1 = 0.86 \ m^{3.08} \left(\frac{d}{2s} \right)^{(1.4 \ m + 0.7)}$$

$$\Delta_2 = 0$$

b) câble extérieur, déphasé avant:

$$\lambda_0 = 1.5 \left(\frac{m^2}{1 + m^2} \right) \left(\frac{d}{2 \, s} \right)^2$$

$$\Delta_1 = 4.7 \, m^{0.7} \left(\frac{d}{2 \, s} \right)^{(0.16 \, m + 2)}$$

$$\Delta_2 = 21 \, m^{3.3} \left(\frac{d}{2 \, s} \right)^{(1.47 \, m + 5.06)}$$

c) câble extérieur, déphasé arrière:

$$\lambda_0 = 1.5 \left(\frac{m^2}{1 + m^2} \right) \left(\frac{d}{2 \, s} \right)^2$$

$$\Delta_1 = -\frac{0.74 \, (m+2) \, m^{0.5}}{2 + (m-0.3)^2} \left(\frac{d}{2 \, s} \right)^{(m+1)}$$

$$\Delta_2 = 0.92 \, m^{3.7} \left(\frac{d}{2 \, s} \right)^{(m+2)}$$

2.3.6.2 Pertes par courants de circulation

Les pertes par courants de circulation sont nulles pour les installations dont les gaines sont court-circuitées en un seul point et pour celles dont les gaines sont permutées et où chaque section ternaire est divisée en trois sections élémentaires électriquement identiques.

Formulae for λ_0 , Δ_1 and Δ_2 are given below:

(in which: $m = \frac{\omega}{R_s} 10^{-7}$, for $m \le 0,1$, Δ_1 and Δ_2 can be neglected)

1) Three single-core cables in trefoil formation:

$$\lambda_0 = 3 \left(\frac{m^2}{1 + m^2} \right) \left(\frac{d}{2 s} \right)^2$$

$$\Delta_1 = (1,14 \ m^{2,45} + 0,33) \left(\frac{d}{2 s} \right)^{(0,92+1,66)}$$

$$\Delta_2 = 0$$

- 2) Three single-core cables, flat formation:
 - a) centre cable:

$$\lambda_0 = 6 \left(\frac{m^2}{1 + m^2} \right) \left(\frac{d}{2s} \right)^2$$

$$\Delta_1 = 0.86 \ m^{3.08} \left(\frac{d}{2s} \right)^{(1.4 \ m + 0.7)}$$

$$\Delta_2 = 0$$

b) outer cable leading phase:

$$\lambda_0 = 1.5 \left(\frac{m^2}{1+m^2}\right) \left(\frac{d}{2s}\right)^2$$

$$\Delta_1 = 4.7 \ m^{0.7} \left(\frac{d}{2s}\right)^{(0.16 \ m + 2)}$$

$$\Delta_2 = 21 \ m^{3.3} \left(\frac{d}{2s}\right)^{(1.47 \ m + 5.06)}$$

c) outer cable lagging phase:

$$\lambda_0 = 1.5 \left(\frac{m^2}{1 + m^2} \right) \left(\frac{d}{2 \, s} \right)^2$$

$$\Delta_1 = -\frac{0.74 \, (m+2) \, m^{0.5}}{2 + (m-0.3)^2} \left(\frac{d}{2 \, s} \right)^{(m+1)}$$

$$\Delta_2 = 0.92 \, m^{3.7} \left(\frac{d}{2 \, s} \right)^{(m+2)}$$

2.3.6.2 Circulating current losses

The circulating current loss is zero for installations where the sheaths are single-point bonded, and for installations where the sheaths are cross-bonded and each major section is divided into three electrically identical minor sections.

Lorsqu'une installation permutée comprend des sections dont le déséquilibre n'est pas négligeable, il apparaît dans ces sections une tension résiduelle, donc une circulation de courant et des pertes dont il importe de tenir compte.

- 44 -

Dans les installations où les longueurs effectives des sections simples sont connues, le facteur de pertes λ_1' peut être obtenu à partir du facteur de pertes dû au courant de circulation dans un système de même configuration, non permuté et dont les gaines seront court-circuitées aux deux extrémités, en multipliant ce dernier facteur par:

$$\left[\frac{p+q-2}{p+q+1}\right]^2$$

Dans cette expression, p et q désignent pour la section ternaire considérée le rapport de longueurs des deux plus grandes sections à la plus petite (longueur de la plus petite: a, longueurs des deux autres: pa et qa).

Cette formule n'intervient que lorsque les sections simples ont des longueurs différentes.

Les variations d'écartement doivent également être prises en considération.

Lorsqu'on ne connaît pas les longueurs des sections simples, on prendra, en se basant sur l'expérience des circuits installés:

 λ'_1 = 0,03 pour les câbles directement enterrés, et

 λ'_1 = 0,05 pour les câbles posés en fourreaux.

2.3.7 Câbles bipolaires non armés sous gaine commune

Pour les câbles bipolaires non armés dont les conducteurs sont sous une gaine métallique commune, λ'_1 est négligeable et le facteur de pertes est donné par une des formules suivantes:

- pour les âmes rondes ou ovales:

$$\lambda_1'' = \frac{16 \omega^2 \ 10^{-14}}{R R_s} \left(\frac{c}{d}\right)^2 \left[1 + \left(\frac{c}{d}\right)^2\right]$$

pour les âmes sectorales:

$$\lambda_{1}'' = \frac{10.8 \,\omega^{2} \, 10^{-16}}{R \, R_{s}} \left(\frac{1.48 \, r_{1} + t}{d} \right)^{2} \left[12.2 + \left(\frac{1.48 \, r_{1} + t}{d} \right)^{2} \right]$$

οù

 $\omega = 2\pi f$;

f est la fréquence (Hz);

c est la distance entre l'axe d'une âme et l'axe du câble (mm);

 r_1 est le rayon du cercle circonscrit aux deux âmes en secteur (mm);

d est le diamètre moyen de la gaine (mm);

– pour les conducteurs ovales d est donné par $\sqrt{d_{\rm M} \cdot d_{\rm m}}$ où $d_{\rm M}$ et $d_{\rm m}$ sont respectivement les grand et petit diamètres;

- pour des gaines ondulées d est donné par $\frac{1}{2}$ ($D_{oc} + D_{it}$).

Where a cross-bonded installation contains sections whose unbalance is not negligible, a residual voltage is produced which results in a circulating current loss in that section which must be taken into account.

For installations where the actual lengths of the minor sections are known, the loss factor λ_1' can be calculated by multiplying the circulating current loss factor for the cable configuration concerned, calculated as if it were bonded and earthed at both ends of each major section without cross-bonding by:

$$\left[\frac{p+q-2}{p+q+1}\right]^2$$

Where in any major section, the two longer minor sections are p and q times the length of the shortest minor section (i.e. the minor section lengths are a, pa and qa, where the shortest section is a).

This formula deals only with differences in the length of minor sections.

Any variations in spacing must also be taken into account.

Where lengths of the minor sections are not known, it is recommended that the value for λ'_1 based on experience with carefully installed circuits, be:

 $\lambda_1' = 0.03$ for cables laid direct, and

 λ'_1 = 0,05 for cables installed in ducts.

2.3.7 Two-core unarmoured cables with common sheath

For a two-core unarmoured cable where the cores are contained in a common metallic sheath, λ'_1 is negligible and the loss factor is given by one of the following formulae:

– for round or oval conductors:

$$\lambda_1'' = \frac{16 \omega^2 \ 10^{-14}}{R R_s} \left(\frac{c}{d}\right)^2 \left[1 + \left(\frac{c}{d}\right)^2\right]$$

– for sector-shaped conductors:

$$\lambda_{1}'' = \frac{10.8 \,\omega^{2} \, 10^{-16}}{R \, R_{s}} \left(\frac{1.48 \, r_{1} + t}{d} \right)^{2} \left[12.2 + \left(\frac{1.48 \, r_{1} + t}{d} \right)^{2} \right]$$

where

 $\omega = 2\pi f$;

f is the frequency (Hz);

c is the distance between the axis of one conductor and the axis of the cable (mm);

 r_1 is the radius of the circle circumscribing the two sector-shaped conductors (mm);

d is the mean diameter of the sheath (mm);

– for oval-shaped cores d is given by $\sqrt{d_{\rm M} \cdot d_{\rm m}}$ where $d_{\rm M}$ and $d_{\rm m}$ are the major and minor mean diameters respectively;

- for corrugated sheaths d is given by $\frac{1}{2}(D_{oc} + D_{it})$.

2.3.8 Câbles tripolaires non armés sous gaine commune

Pour un câble tripolaire non armé dont les conducteurs sont sous une gaine métallique commune, λ_1' est négligeable et le facteur de pertes est donné par une des formules suivantes:

- 46 -

– pour les câbles à âmes circulaires ou ovales dont la résistance de gaine R_s est inférieure ou égale à 100 $\mu\Omega/m$:

$$\lambda_{1}'' = \frac{3 R_{s}}{R} \left[\left(\frac{2 c}{d} \right)^{2} \frac{1}{1 + \left(\frac{R_{s}}{\omega} 10^{7} \right)^{2}} + \left(\frac{2 c}{d} \right)^{4} \frac{1}{1 + 4 \left(\frac{R_{s}}{\omega} 10^{7} \right)^{2}} \right]$$

- pour les mêmes câbles dont la résistance R_s est supérieure à 100 $\mu\Omega/m$:

$$\lambda_1'' = \frac{3.2 \text{ } \omega^2}{R R_s} \left(\frac{2c}{d}\right)^2 10^{-14}$$

- pour les câbles à âmes sectorales, quelle que soit la valeur de Rs:

$$\lambda_1'' = 0.94 \frac{R_s}{R} \left(\frac{2r_1 + t}{d} \right)^2 \frac{1}{1 + \left(\frac{R_s}{\omega} 10^7 \right)^2}$$

οù

 r_1 est le rayon du cercle circonscrit aux trois âmes sectorales (mm);

t est l'épaisseur de l'isolant entre âmes (mm);

d est le diamètre moyen de la gaine (mm);

- pour les conducteurs ovales d est donné par $\sqrt{d_{\rm M} \cdot d_{\rm m}}$ où $d_{\rm M}$ et $d_{\rm m}$ sont respectivement les grand et petit diamètres de la gaine ou de l'écran;
- pour des gaines ondulées d est donné par $\frac{1}{2}$ ($D_{oc} + D_{it}$).

2.3.9 Câbles bipolaires et tripolaires armés de feuillards d'acier

L'adjonction d'une armure de feuillards d'acier augmente les pertes par courants de Foucault dans la gaine. Dans ce cas, il convient de multiplier les valeurs correspondantes λ_1'' de 2.3.7 et 2.3.8 par le facteur suivant:

$$\left[1 + \left(\frac{d}{d_{\mathsf{A}}}\right)^2 \frac{1}{1 + \frac{d_{\mathsf{A}}}{\mu \delta}}\right]^2$$

οù

 d_A est le diamètre moyen de l'armure (mm);

 μ est la perméabilité relative du ruban d'acier (prise habituellement égale à 300);

δ est l'épaisseur équivalente de l'armure = $\frac{A}{\pi d_{\Delta}}$ (mm);

où A est la section transversale de l'armure (mm²).

Cette correction n'est applicable qu'aux rubans d'épaisseur comprise entre 0,3 mm à 1,0 mm.

2.3.8 Three-core unarmoured cables with common sheath

For a three-core unarmoured cable where the cores are contained in a common metallic sheath, λ_1' is negligible and the loss factor is, therefore, given by one of the following formulae:

– for round or oval conductors, and where the sheath resistance R_s is less than or equal to 100 μΩ/m:

$$\lambda_{1}'' = \frac{3 R_{s}}{R} \left[\left(\frac{2 c}{d} \right)^{2} \frac{1}{1 + \left(\frac{R_{s}}{\omega} 10^{7} \right)^{2}} + \left(\frac{2 c}{d} \right)^{4} \frac{1}{1 + 4 \left(\frac{R_{s}}{\omega} 10^{7} \right)^{2}} \right]$$

– for round or oval conductors, and where the sheath resistance R_s is greater than 100 $\mu\Omega/m$:

$$\lambda_1'' = \frac{3.2 \text{ } \omega^2}{R R_s} \left(\frac{2c}{d}\right)^2 10^{-14}$$

– for sector-shaped conductors, and R_s any value:

$$\lambda_1'' = 0.94 \frac{R_S}{R} \left(\frac{2r_1 + t}{d} \right)^2 \frac{1}{1 + \left(\frac{R_S}{\omega} 10^7 \right)^2}$$

where

 r_1 is the radius of the circle circumscribing the three shaped conductors (mm);

t is the thickness of insulation between conductors (mm);

d is the mean diameter of the sheath (mm);

- for oval-shaped cores d is given by $\sqrt{d_{\rm M} \cdot d_{\rm m}}$ where $d_{\rm M}$ and $d_{\rm m}$ are the major and minor mean diameters respectively of the sheath or screen;
- for corrugated sheaths d is given by $\frac{1}{2}(D_{oc} + D_{it})$.

2.3.9 Two-core and three-core cables with steel tape armour

The addition of steel tape armour increases the eddy-current loss in the sheath. The values for λ_1'' given in 2.3.7 and 2.3.8 should be multiplied by the following factor if the cable has steel-tape armour:

$$\left[1 + \left(\frac{d}{d_{\mathsf{A}}}\right)^2 \frac{1}{1 + \frac{d_{\mathsf{A}}}{\mu \delta}}\right]^2$$

where

 d_A is the mean diameter of armour (mm);

 μ is the relative permeability of the steel tape (usually taken as 300);

δ is the equivalent thickness of armour = $\frac{A}{\pi d_{\Delta}}$ (mm);

where A is the cross-sectional area of the armour (mm²).

This correction is only known to be applicable to tapes 0,3 mm to 1,0 mm thick.

2.3.10 Câbles triplombs armés

Pour un câble tripolaire dont chaque phase possède sa propre gaine de plomb, λ_1'' est nul et le facteur de pertes pour les gaines est donné par:

- 48 -

$$\lambda_1' = \frac{R_s}{R} \frac{1.5}{1 + \left(\frac{R_s}{X}\right)^2}$$

οù

$$X = 2 \omega 10^{-7} \ln \left(\frac{2 s}{d}\right) (\Omega/\text{m});$$

s est la distance entre axes d'âmes (mm).

Le facteur de pertes pour les câbles non armés dont chaque phase possède sa propre gaine métallique est donné en 2.3.1.

2.3.11 Pertes dans les écrans et les gaines de câbles en tuyau d'acier

Lorsque, dans un câble en tuyau, chaque âme n'a qu'un écran sur l'isolant, par exemple une gaine de plomb ou un ruban de cuivre, le rapport des pertes dans les écrans aux pertes dans les âmes peut être calculé par la formule donnée en 2.3.1 pour la gaine d'un câble unipolaire, mais en corrigeant celle-ci pour tenir compte des pertes supplémentaires dues à la présence du tuyau d'acier.

La formule modifiée s'écrit:

$$\lambda_1' = \frac{R_S}{R} \frac{1.5}{1 + \left(\frac{R_S}{X}\right)^2}$$

Si chaque phase comporte un écran métallique et un frettage non magnétique, la même formule peut être utilisée, mais la résistance R_s est remplacée par la résistance équivalente à la mise en parallèle de l'écran et du frettage. Le diamètre d est remplacé par la valeur d':

$$d' = \sqrt{\frac{d^2 + d_2^2}{2}}$$

οù

d' est le diamètre moyen de gaine et frettage (mm);

d est le diamètre moyen de l'écran ou gaine (mm);

d₂ est le diamètre moyen du frettage (mm).

Dans le cas des conducteurs de forme ovales, d et d_2 sont donnés par $\sqrt{d_M \cdot d_m}$ où d_M et d_m sont respectivement les grand et petit diamètres de la gaine ou de l'écran;

NOTE Voir aussi 2.4.2.

2.4 Facteur de pertes dans les armures, les frettages et les tuyaux d'acier (applicable uniquement aux câbles à courant alternatif à fréquence industrielle)

Les formules données dans ce paragraphe expriment la puissance dissipée dans l'armure métallique ou le frettage ou le tuyau d'acier des câbles sous la forme d'une fraction λ_2 de la puissance perdue dans toutes les âmes.

Les valeurs à utiliser pour la résistivité et les coefficients de variation de la résistivité avec la température sont données dans le tableau 1.

2.3.10 Cables with each core in a separate lead sheath (SL type) and armoured

For a three-core cable of which each core has a separate lead sheath λ_1'' is zero and the loss factor for the sheaths is given by:

$$\lambda_1' = \frac{R_s}{R} \frac{1.5}{1 + \left(\frac{R_s}{X}\right)^2}$$

where

$$X = 2 \omega 10^{-7} \ln \left(\frac{2 s}{d}\right) (\Omega/m);$$

s is the distance between conductor axes (mm).

The loss factor for unarmoured cables with each core in a separate lead sheath is obtained from 2.3.1.

2.3.11 Losses in screen and sheaths of pipe-type cables

If each conductor of a pipe-type cable has a screen only over the insulation, for example a lead sheath or copper tape, the ratio of the screen loss to the conductor loss may be calculated by the formula given in 2.3.1 for the sheath of a single-core cable, provided that the formula is corrected for the additional loss caused by the presence of the steel pipe.

This modifies the formula to:

$$\lambda_1' = \frac{R_s}{R} \frac{1.5}{1 + \left(\frac{R_s}{X}\right)^2}$$

If each core has a diaphragm sheath and non-magnetic reinforcement, the same formula is used, but the resistance R_s is replaced by the parallel combination of the resistance of the sheath and reinforcement. The diameter d is replaced by the value d':

$$d' = \sqrt{\frac{d^2 + d_2^2}{2}}$$

where

d' is the mean diameter of sheath and reinforcement (mm);

d is the mean diameter of screen or sheath (mm);

 d_2 is the mean diameter of reinforcement (mm).

In the case of oval-shaped cores d and d_2 is given by $\sqrt{d_M \cdot d_m}$ where d_M and d_m are the major and minor mean diameters respectively of the sheath or screen; NOTE See also 2.4.2.

2.4 Loss factor for armour, reinforcement and steel pipes (applicable to power frequency a.c. cables only)

The formulae given in this subclause express the power loss occurring in metallic armour, reinforcement or steel pipes of a cable in terms of an increment λ_2 of the power loss in all conductors.

Appropriate values of electrical resistivity and resistance temperature coefficients for the materials used for armour and reinforcement are given in table 1.

2.4.1 Armure ou frettage non magnétique

Le procédé général est de combiner le calcul des pertes dans le frettage avec celui des pertes dans la gaine. Les formules sont données en 2.3 et la combinaison en parallèle des résistances de la gaine et du frettage est utilisée à la place de la résistance $R_{\rm S}$ de la gaine. La moyenne quadratique des diamètres de la gaine et du frettage remplace le diamètre moyen d de la gaine (voir 2.3.11). Cette méthode est applicable aux câbles unipolaires, bipolaires et multipolaires.

La valeur de la résistance du frettage dépend du pas des rubans:

- a) Si le ruban a un très long pas (rubans longitudinaux), la résistance est calculée comme celle d'un cylindre ayant la même masse de matériau par unité de longueur de câble et le même diamètre intérieur que les rubans.
- b) Si les rubans font avec l'axe du câble un angle d'environ 54°, la résistance est le double de celle calculée ci-dessus en a).
- c) Si les rubans ont un pas très court (rubans circonférentiels), la résistance est considérée comme infinie, c'est-à-dire que les pertes peuvent être négligées.
- d) Dans le cas où il y a deux couches ou plus de rubans à pas court au contact l'une de l'autre, la résistance est le double de celle considérée à l'alinéa a).

Ces considérations s'appliquent aussi aux câbles en tuyaux, comme indiqué en 2.3.11.

2.4.2 Armure ou frettage magnétique

2.4.2.1 Câbles unipolaires sous gaine de plomb et armure de fils d'acier, court-circuitée à la gaine à chaque extrémité

La méthode est appliquée à des installations où l'écartement entre les câbles est grand (c'est-à-dire 10 m ou plus). Elle donne la valeur totale des pertes de la gaine et de l'armure qui sont habituellement plus grandes que les pertes réelles, ainsi, l'erreur sur le calcul des courants est du côté de la sécurité. Ce sujet est à l'étude avec la perspective de fournir une méthode plus précise et d'application plus générale.

La méthode suivante ne tient pas compte de l'influence des milieux environnants, qui peut être appréciable dans le cas des câbles sous-marins en particulier.

Le calcul des pertes dans les gaines de plomb et les armures des câbles unipolaires sous armure de fils d'acier dont la gaine et l'armure sont court-circuitées aux deux extrémités est le suivant:

a) La résistance équivalente aux résistances de la gaine et l'armure en parallèle est donnée par:

$$R_{\rm e} = \frac{R_{\rm S} \cdot R_{\rm A}}{R_{\rm S} + R_{\rm A}} (\Omega/{\rm m})$$

οù

 R_s est la résistance de la gaine par unité de longueur à sa température de service maximale (Ω/m) ;

 R_A est la résistance de l'armure en courant alternatif par unité de longueur à sa température de service maximale (Ω/m) .

La résistance en courant alternatif des fils d'armure varie d'environ 1,2 fois la résistance en courant continu pour les fils de 2 mm de diamètre jusqu'à 1,4 fois la résistance en courant continu pour les fils de 5 mm. La valeur de la résistance n'a pas un effet très sensible sur le résultat final.

+A2:2001

2.4.1 Non-magnetic armour or reinforcement

The general procedure is to combine the calculation of the loss in the reinforcement with that of the sheath. The formulae are given in 2.3 and the parallel combination of sheath and reinforcement resistance is used in place of the single sheath resistance $R_{\rm s}$. The root mean square value of the sheath and reinforcement diameter replaces the mean sheath diameter d (see 2.3.11). This procedure applies to both single, twin and multicore cables.

The value of the reinforcement resistance is dependent on the lay of the tapes as follows:

- a) If the tapes have a very long lay (longitudinal tapes), the resistance is based on a cylinder having the same mass of material per unit length of cable and also the same internal diameter as the tapes.
- b) If the tapes are wound at approximately 54° to the cable axis, the resistance is twice the value calculated according to item a) above.
- c) If the tapes are wound with a very short lay (circumferential tapes), the resistance is regarded as infinite, i.e. the loss can be neglected.
- d) If there are two or more layers of tapes in contact with each other, having a very short lay, the resistance is twice the value calculated according to item a) above.

These considerations apply also to the cores of pipe-type cables dealt with in 2.3.11.

2.4.2 Magnetic armour or reinforcement

2.4.2.1 Single-core lead-sheathed cables – steel wire armour, bonded to sheath at both ends

The method is intended for installations where spacing between cables is large (i.e. 10 m or more). It gives values for the combined sheath and armour losses which are usually higher than the actual ones, so that ratings are on the safe side. This subject is under consideration with a view to providing a more precise and generally applicable method.

The following method does not take into account the possible influence of the surrounding media, which may be appreciable in particular for cables laid under water.

Calculation of the power loss in the lead sheath and armour of single-core cables with steel-wire armour with the sheath and armour bonded together at both ends is as follows:

a) The equivalent resistance of sheath and armour in parallel is given by:

$$R_{\rm e} = \frac{R_{\rm S} \cdot R_{\rm A}}{R_{\rm S} + R_{\rm A}} (\Omega/{\rm m})$$

where

 R_s is the resistance of sheath per unit length of cable at its maximum operating temperature (Ω/m) ;

 R_A is the resistance a.c. resistance of armour per unit length at its maximum operating temperature (Ω/m) .

The a.c. resistance of armour wire varies from about 1,2 times the d.c. resistance of 2 mm diameter wires up to 1,4 times the d.c. resistance for 5 mm wires. The resistance does not critically affect the final result.

b) L'inductance des éléments du circuit est calculée par phase, de la façon suivante:

$$H_{\rm s} = 2 \times 10^{-7} \ln \left(\frac{2 \, \rm s_2}{d} \right) \quad (\Omega/\rm m)$$

où H_s est l'inductance due à la gaine (H/m)

$$H_1 = \pi \ \mu_e \left(\frac{n_1 \ d_f^2}{\rho \ d_A} \right) 10^{-7} \sin \beta \cos \gamma$$

$$H_2 = \pi \,\mu_{\rm e} \left(\frac{n_1 \,d_{\rm f}^2}{\rho \,d_{\rm A}} \right) 10^{-7} \sin \beta \,\sin \gamma$$

$$H_3 = 0.4 \; (\mu_{\rm t} - 1) \left(\frac{d_{\rm f}}{d_{\rm A}} \right) 10^{-6} \; {\rm cos}^2 \; \beta$$

ΟÙ

 H_1 , H_2 et H_3 sont les composantes de l'inductance due aux fils d'acier (H/m);

 s_2 est la distance entre axes des câbles adjacents disposés en trèfle; pour les câbles disposés en nappe, s_2 est la moyenne géométrique des trois distances (mm);

d_A est le diamètre moyen de l'armure (mm);

df est le diamètre du fil d'acier (mm);

p est le pas d'assemblage du fil d'acier (mm);

 n_1 est le nombre de fils d'acier;

β est l'angle formé par l'axe d'un fil d'armure et l'axe du câble;

 γ est le déphasage du flux magnétique longitudinal dans les fils d'acier sur la force magnétisante;

 $\mu_{\text{e}}~$ est la perméabilité relative longitudinale des fils d'acier;

μ_t est la perméabilité relative transversale des fils d'acier;

Pour les valeurs de γ , μ_e et μ_t , voir le point d).

Prendre
$$B_1 = \omega (H_s + H_1 + H_3) (\Omega/m)$$

$$B_2 = \omega H_2 (\Omega/m)$$
.

c) Les pertes totales dans la gaine et l'armure $W_{(s + A)}$ sont données par:

$$W_{(s + A)} = I^2 R_e \left(\frac{B_2^2 + B_1^2 + R_e B_2}{(R_e + B_2)^2 + B_1^2} \right) (W/m)$$

Les pertes dans la gaine et l'armure sont supposées être approximativement égales, donc:

$$\lambda_1' = \lambda_2 = \frac{W_{(s+A)}}{2 W_c}$$

Oι)

 $W_c = I^2 R$ pertes dans l'âme (W/m).

b) The inductance of the elements of the circuit is calculated per phase, as follows:

$$H_{\rm S} = 2 \times 10^{-7} \ln \left(\frac{2 \, \rm s_2}{d} \right) \quad (\Omega/\rm m)$$

where H_s is the inductance due to the sheath (H/m)

$$H_1 = \pi \,\mu_e \left(\frac{n_1 \,d_f^2}{p \,d_A}\right) 10^{-7} \sin\beta \cos\gamma$$

$$H_2 = \pi \,\mu_{\text{e}} \left(\frac{n_1 \,d_{\text{f}}^2}{\rho \,d_{\text{A}}} \right) 10^{-7} \sin \beta \,\sin \gamma$$

$$H_3 = 0.4 \ (\mu_t - 1) \left(\frac{d_f}{d_A}\right) 10^{-6} \cos^2 \beta$$

where

 H_1 , H_2 and H_3 are the components of the inductance due to the steel wires (H/m);

 s_2 is the axial spacing between adjacent cables in trefoil formation; for cables in flat formation s_2 is the geometric mean of the three spacings (mm);

 d_A is the mean diameter of armour (mm);

 $d_{\rm f}$ is the diameter of a steel wire (mm);

p is the length of lay of a steel wire along the cable (mm);

 n_1 is the number of steel wires;

β is the angle between axis of armour wire and axis of cable;

 γ is the angular time delay of the longitudinal magnetic flux in the steel wires behind the magnetizing force;

 μ_e is the longitudinal relative permeability of steel wires;

 μ_t is the transverse relative permeability of steel wires;

For values of γ , μ_e and μ_t , see item d).

Let
$$B_1 = \omega (H_S + H_1 + H_3) (\Omega/m)$$

$$B_2 = \omega H_2 (\Omega/m)$$
.

c) The total loss in sheath and armour $W_{(s + A)}$ is given by:

$$W_{(s + A)} = I^2 R_e \left(\frac{B_2^2 + B_1^2 + R_e B_2}{(R_e + B_2)^2 + B_1^2} \right) (W/m)$$

The loss in sheath and armour may be assumed to be approximately equal, so that:

$$\lambda_1' = \lambda_2 = \frac{W_{(s+A)}}{2 W_2}$$

where

 $W_{\rm c} = I^2 R$ loss in conductor (W/m).

d) Choix des caractéristiques magnétiques γ , μ_e et μ_t .

Ces valeurs varient suivant les échantillons particuliers d'acier et, à moins de pouvoir se référer à des mesures faites sur les fils d'acier utilisés, des valeurs moyennes doivent être adoptées.

L'erreur résultante n'est pas sensible si, pour des fils de 4 mm à 6 mm de diamètre et de charges à la rupture voisines de 400 N/mm², les valeurs suivantes sont adoptées:

 $\mu_{e} = 400$

 μ_t = 10, lorsque les fils sont en contact

 μ_t = 1, lorsque les fils sont séparés

 $\gamma = 45^{\circ}$

Si un calcul plus précis est exigé et si les caractéristiques des fils sont connues, il est alors nécessaire de connaître d'abord la valeur approchée de la force magnétisante H afin de trouver les caractéristiques magnétiques qui conviennent.

$$H = \frac{1\ 000\ \left|\ \bar{I} + \bar{I}_{S}\ \right|}{\pi\ d_{A}} \quad \text{(ampères-tours/m)}$$

où \bar{l} et $\bar{l}_{\rm S}$ sont les valeurs vectorielles du courant dans l'âme et du courant dans la gaine. Pour le choix initial des caractéristiques magnétiques, il suffit généralement de supposer que $|\bar{l}+\bar{l}_{\rm S}|=0.6~l$, et de reprendre les calculs s'il s'avère ensuite que la valeur calculée accuse une différence importante.

2.4.2.2 Câbles bipolaires sous armure de fil d'acier

$$\lambda_2 = \frac{0.62 \ \omega^2 \ 10^{-14}}{R \cdot R_A} + \frac{3.82 \ A\omega \ 10^{-5}}{R} \left[\frac{1.48 \ r_1 + t}{d_A^2 + 95.7 \ A} \right]^2$$

οù

 R_A est la résistance (courant alternatif) de l'armure à sa température maximale (Ω/m);

 d_A est le diamètre moyen de l'armure (mm);

A est la section de l'armure (mm²);

 r_1 est le rayon circonscrit aux âmes (mm);

t est l'épaisseur de l'isolant entre les âmes (mm).

Aucune correction tenant compte de la non-uniformité de la distribution du courant dans les âmes n'est proposée, car elle reste négligeable jusqu'à des sections de 400 mm².

2.4.2.3 Câbles tripolaires - Armure en fils d'acier

2.4.2.3.1 Câbles à âmes circulaires

$$\lambda_2 = 1,23 \frac{R_A}{R} \left(\frac{2c}{d_A}\right)^2 \frac{1}{\left(\frac{2,77 R_A 10^6}{\omega}\right)^2 + 1}$$

οù

 R_A est la résistance (courant alternatif) de l'armure à sa température maximale (Ω/m);

 d_A est le diamètre moyen de l'armure (mm);

c est la distance entre l'axe d'une âme et le centre du câble (mm).

60287-1-1 © IEC:1994+A1:1995 - 55 - +A2:2001

d) Choice of magnetic properties γ , μ_e and μ_t .

These quantities vary with the particular sample of steel and unless reference can be made to measurements on the steel wire to be used, some average values must be assumed.

No appreciable error is involved if, for wires of diameters from 4 mm to 6 mm and tensile breaking strengths around 400 N/mm², the following values are assumed:

 $\mu_{e} = 400$

 μ_t = 10, when wires are in contact

 μ_t = 1, where wires are separated

 $\gamma = 45^{\circ}$

If a more precise calculation is required and the wire properties are known, then it is initially necessary to know an approximate value for the magnetizing force H in order to find the appropriate magnetic properties.

$$H = \frac{1\ 000\ \left|\ \bar{I} + \bar{I}_{S}\ \right|}{\pi\ d_{A}} \ (ampere\ turns/m)$$

where \bar{l} and \bar{l}_s are the vectorial values of conductor current and sheath current. For the initial choice of magnetic properties it is usually satisfactory to assume that $|\bar{l} + \bar{l}_s| = 0.6 \ l$, and to repeat the calculations if it is subsequently established that the calculated value is significantly different.

2.4.2.2 Two-core cables - steel wire armour

$$\lambda_2 = \frac{0.62 \ \omega^2 \ 10^{-14}}{R \cdot R_A} + \frac{3.82 \ A\omega \ 10^{-5}}{R} \left[\frac{1.48 \ r_1 + t}{d_A^2 + 95.7 \ A} \right]^2$$

where

 R_A is the a.c. resistance of armour at maximum armour temperature (Ω/m);

 d_A is the mean diameter of armour (mm);

A is the cross-sectional area of armour (mm²);

 r_1 is the circumscribing radius over conductors (mm);

t is the insulation thickness between conductors (mm).

No correction has been made for non-uniform current distribution in the conductors because it is considered negligible for conductor sizes up to 400 mm².

2.4.2.3 Three-core cables – steel wire armour

2.4.2.3.1 Round conductor cable

$$\lambda_2 = 1,23 \frac{R_A}{R} \left(\frac{2c}{d_A}\right)^2 \frac{1}{\left(\frac{2,77 R_A 10^6}{\omega}\right)^2 + 1}$$

where

 R_A is the a.c. resistance of armour at maximum armour temperature (Ω/m);

 d_A is the mean diameter of armour (mm);

c is the distance between the axis of a conductor and the cable centre (mm).

Aucune correction tenant compte de la non-uniformité de la distribution du courant dans les âmes n'est proposée, car elle reste négligeable jusqu'à des sections de 400 mm².

- 56 **-**

2.4.2.3.2 Câbles à âmes sectorales

$$\lambda_2 = 0.358 \frac{R_A}{R} \left(\frac{2r_1}{d_A}\right)^2 \frac{1}{\left(\frac{2.77 R_A 10^6}{\omega}\right)^2 + 1}$$

οù

 r_1 est le rayon du cercle circonscrit aux trois âmes sectorales (mm);

 $\omega = 2\pi f$;

f est la fréquence d'alimentation (Hz).

2.4.2.4 Câbles tripolaires sous feuillards d'acier

Les formules suivantes s'appliquent aux feuillards dont l'épaisseur est comprise entre 0,3 mm et 1 mm.

Les pertes par hystérésis sont, pour une fréquence de 50 Hz, données par:

$$\lambda_2' = \frac{s^2 k^2 10^{-7}}{R d_A \delta}$$

οù

s est la distance entre axes des âmes (mm);

δ est l'épaisseur équivalente de l'armure (mm)

soit
$$\frac{A}{\pi d_A}$$

et

A est la section de l'armure (mm²);

 d_A est le diamètre moyen de l'armure (mm).

Le facteur k est donné par:

$$k = \frac{1}{1 + \frac{d_A}{\mu \delta}}$$

οù

μ est la perméabilité relative du ruban d'acier, habituellement prise égale à 300.

Pour des fréquences f différentes de 50 Hz, la valeur de k doit être multipliée par $\frac{f}{50}$.

Le facteur de pertes par courants de Foucault, à 50 Hz, est:

$$\lambda_2'' = \frac{2,25 \ s^2 \ k^2 \ \delta \ 10^{-8}}{R \ d_A}$$

et pour toute autre fréquence f, la valeur calculée par la formule ci-dessus doit être multipliée par $\left(\frac{f}{50}\right)^2$.

No correction has been made for non-uniform current distribution in the conductors because it is considered negligible for conductor sizes up to 400 mm².

2.4.2.3.2 Sector conductor cables

$$\lambda_2 = 0.358 \frac{R_A}{R} \left(\frac{2r_1}{d_A}\right)^2 \frac{1}{\left(\frac{2.77 R_A 10^6}{\omega}\right)^2 + 1}$$

where

 r_1 is the radius of the circle circumscribing the three shaped conductors (mm);

 $\omega = 2\pi f$;

f is the frequency of supply (Hz).

2.4.2.4 Three-core cables - steel tape armour or reinforcement

The following formulae apply to tapes 0,3 mm to 1 mm thick.

The hysteresis loss is given for a frequency of 50 Hz by:

$$\lambda_2' = \frac{s^2 k^2 10^{-7}}{R d_{\Delta} \delta}$$

where

s is the distance between conductor axes (mm);

 δ is the equivalent thickness of armour (mm)

i.e.
$$\frac{A}{\pi d_A}$$

and

A is the armour cross-sectional area (mm²);

 d_A is the mean diameter of armour (mm).

The factor k is given by:

$$k = \frac{1}{1 + \frac{d_A}{\mu \delta}}$$

where

 μ is the relative permeability of the steel tape, usually taken as 300.

For frequencies f other than 50 Hz, multiply the value of k given by the above formula by the factor $\frac{f}{50}$.

The eddy-current loss is given for a frequency of 50 Hz by:

$$\lambda_2'' = \frac{2,25 \ s^2 \ k^2 \ \delta \ 10^{-8}}{R \ d_A}$$

and for any other frequency the value calculated from this formula must be multiplied by the factor $\left(\frac{f}{50}\right)^2$.

Le facteur de pertes total dans l'armure est donné par la somme des facteurs correspondant aux pertes par hystérésis et courants de Foucault, soit:

$$\lambda_2 = \lambda_2' + \lambda_2''$$

NOTE La présence de frettages ou d'armures magnétiques augmente les pertes par courants de Foucault dans les gaines; il convient d'en tenir compte comme indiqué en 2.3.9.

2.4.2.5 Câbles triplombs

Quand il s'agit de câbles triplombs armés, l'effet d'écran résultant des courants dans les gaines réduit les pertes dans l'armure. La valeur de λ_2 calculée en 2.4.2.3.1 ou 2.4.2.3.2 doit être multipliée par le facteur

$$\left(1-\frac{R}{R_s}\lambda_1'\right)$$

où λ_1' a la valeur déterminée en 2.3.1.

2.4.3 Pertes dans les tuyaux d'acier

Les pertes dans les tuyaux d'acier sont données par deux formules empiriques, une pour les câbles où les phases sont posées en trèfle jointif, et une autre pour les câbles où les phases sont posées au fond du tuyau dans une configuration plus ouverte (dite en berceau). Les câbles en service ont probablement une configuration intermédiaire. Aussi, il convient que les pertes soient calculées pour les deux configurations et on prendra leur valeur moyenne:

NOTE Ces formules ont été obtenues empiriquement aux Etats-Unis d'Amérique et ne s'appliquent actuellement qu'aux dimensions des tuyaux et aux types d'acier utilisés dans ce pays.

$$\lambda_2 = \left(\frac{0.0115 \text{ s} - 0.001485 \text{ d}_{\text{d}}}{R}\right) 10^{-5} \text{ pour la configuration en trèfle jointif}$$

$$\lambda_2 = \left(\frac{0,00438 \text{ s} + 0,00226 \text{ d}_{\text{d}}}{R}\right) 10^{-5} \text{ pour la configuration en berceau}$$

οù

s est l'espacement entre axes des âmes (mm);

 $d_{\rm d}$ est le diamètre intérieur du tuyau (mm);

R est la résistance linéique de l'âme en courant alternatif à la température maximale de service (Ω/m) .

Les formules indiquées s'appliquent à une fréquence de 60 Hz. Pour 50 Hz, il convient de multiplier chaque formule par 0,76.

Pour les câbles en tuyaux, dont l'armure en fils plats est appliquée sur les trois phases après qu'elles ont été mises en place, les pertes sont indépendantes de la présence du tuyau. Pour ces câbles, les pertes dans l'armure doivent être calculées comme pour les câbles triplombs (voir 2.4.2.3.2 et les pertes dans le tuyau doivent être négligées).

60287-1-1 © IEC:1994+A1:1995 - 59 - +A2:2001

The total armour loss factor is given by the sum of both hysteresis and eddy-current losses, thus:

$$\lambda_2 = \lambda_2' + \lambda_2''$$

NOTE Magnetic armour or reinforcement, if any, increase eddy-current losses in the sheaths. Reference should be made to 2.3.9.

2.4.2.5 SL type cables

Where the armour is over a SL type cable, the screening effect of the sheath currents reduces the armour loss. The formula for λ_2 given in 2.4.2.3.1 or 2.4.2.3.2 shall be multiplied by the factor

$$\left(1-\frac{R}{R_s}\lambda_1'\right)$$

where λ'_1 is obtained from 2.3.1.

2.4.3 Losses in steel pipes

The loss in steel pipes is given by two empirical formulae, one for cables where the cores are bound in close trefoil formation and the other for cables where the cores are placed in a more open configuration (cradled) on the bottom of the pipe. Actual cores in service probably approximate to a configuration somewhere between the two. It is considered that the losses should be calculated for each configuration and a mean value used:

NOTE These formulae have been empirically obtained in the United States of America and at present apply only to pipe sizes and steel types used in that country.

$$\lambda_2 = \left(\frac{0.0115 \text{ s} - 0.001485 \text{ d}_{\text{d}}}{R}\right) 10^{-5} \text{ for closely bound triangular configuration}$$

$$\lambda_2 = \left(\frac{0,00438 \text{ s} + 0,00226 \text{ d}_d}{R}\right) 10^{-5} \text{ for the open or cradled formation}$$

where

s is the axial spacing of adjacent conductors (mm);

 d_{d} is the internal diameter of pipe (mm);

R is the a.c. resistance per unit length of the conductor at maximum operating temperature (Ω/m) .

The formulae given apply to a frequency of 60 Hz. For 50 Hz, each formula should be multiplied by 0,76.

For pipe-type cables, where flat-wire armour is applied over all three cores after they are laid up, the losses are independent of the presence of the pipe. For such cables, the losses in the armour are to be calculated as for SL type cables (see 2.4.2.3.2 and the losses in the pipe are to be ignored).

Tableau 1 – Résistivités électriques et coefficients de variation de la résistivité avec la température des métaux utilisés

	Matériaux	Résistivi ohm · m à		Tempé coefficie par K à	nt (α ₂₀)
a)	Ames				
	Cuivre	1,7241	10^{-8}	3,93	10 ⁻³
	Aluminium	2,8264	10 ⁻⁸	4,03	10^{-3}
b)	Matériaux de gaines et d'armure				
	Plomb et alliage de plomb	21,4	10 ⁻⁸	4,0	10^{-3}
	Acier	13,8	10^{-8}	4,5	10^{-3}
	Bronze	3,5	10 ⁻⁸	3,0	10^{-3}
	Acier inoxydable	70	10^{-8}	Négli	geable
	Aluminium	2,84	10^{-8}	4,03	10^{-3}

NOTE Les valeurs se rapportant au cuivre constituant les âmes sont prises dans la CEI 60028. Les valeurs se rapportant à l'aluminium constituant les âmes sont prises dans la CEI 60889.

+A2:2001

Table 1 – Electrical resistivities and temperature coefficients of metals used

Material		Material Resistivity (ρ) ohm · m at 20 °C		Temperature coefficient (α ₂₀) per K at 20 °C		
a)	Conductors					
	Copper	1,7241	10 ⁻⁸	3,93	10^{-3}	
	Aluminium	2,8264	10 ⁻⁸	4,03	10^{-3}	
b)	Sheaths and armour					
	Lead or lead alloy	21,4	10 ⁻⁸	4,0	10^{-3}	
	Steel	13,8	10^{-8}	4,5	10^{-3}	
	Bronze	3,5	10 ⁻⁸	3,0	10^{-3}	
	Stainless steel	70	10^{-8}	Neg	ligible	
	Aluminium	2,84	10 ⁻⁸	4,03	10^{-3}	

NOTE Values for copper conductors are taken from IEC 60028. Value for aluminium conductors are taken from IEC 60889.

Tableau 2 – Effets de peau et de proximité – Valeurs expérimentales pour les coefficients k_s et k_p

- 62 -

Type d'âme	Séché et imprégné ou non	k _s	<i>k</i> p
Cuivre			
Circulaire, câblé	Oui	1	0,8
Circulaire, câblé	Non	1	1
Circulaire, segmenté ^a		0,435	0,37
Creux, câblé hélicoïdal	Oui	b	0,8
Sectoral	Oui	1	0,8
Sectoral	Non	1	1
Aluminium			d
Circulaire, câblé	Dans les deux cas	1	
Circulaire, 4 segments	Dans les deux cas	0,28	
Circulaire, 5 segments	Dans les deux cas	0,19	
Circulaire, 6 segments	Dans les deux cas	0,12	
Segmenté avec fils périphériques	Dans les deux cas	С	

a Les valeurs données s'appliquent aux âmes ayant quatre segments (avec ou sans canal central) et aux sections inférieures à 1 600 mm². Ces valeurs s'appliquent aux âmes dans lesquelles toutes les couches de fils ont le même sens. Les valeurs sont provisoires et cette question est à l'étude.

b Il convient que la formule suivante soit utilisée pour le calcul de k_s :

$$k_{\rm S} = \left(\frac{d_{\rm C}' - d_{\rm i}}{d_{\rm C}' + d_{\rm i}}\right) \left(\frac{d_{\rm C}' + 2d_{\rm i}}{d_{\rm C}' + d_{\rm i}}\right)^2$$

οù

 d_i est le diamètre intérieur de l'âme (canal central) (mm);

d_c est le diamètre extérieur de l'âme massive équivalente ayant le même canal central (mm).

 $^{\rm c}$ Il convient d'utiliser la formule suivante pour calculer $k_{\rm S}$ pour les câbles dont l'âme est constituée de segments entourés par une ou plusieurs couches périphériques de fils.

$$k_{s} = \left\{ 12c \left[(\alpha c - 0.5)^{2} + (\alpha c - 0.5)(\psi - \alpha)c + 0.33(\psi - \alpha)^{2}c^{2} \right] + b(3 - 6b + 4b^{2}) \right\}^{0.5}$$

οù

b est le rapport de la section totale des fils périphériques à la section totale de l'âme complète;

c est le rapport de la section totale des segments de l'âme à la section totale de l'âme complète, c = (1-b).

$$\alpha = \frac{1}{\left(1 + \sin \pi / n\right)^2}$$

$$\psi = \frac{2\pi/n + 2/3}{2(1+\pi/n)}$$

οù

n est le nombre de segments.

Cette formule est applicable aux âmes en aluminium jusqu'à 1 600 mm².

Si la section totale des fils périphériques dépasse 30 % de la section totale de l'âme, alors on peut considérer que $k_{\rm S}$ est égal à l'unité.

d Bien qu'aucun résultat expérimental s'appliquant spécifiquement au coefficient k_p pour les âmes câblées en aluminium n'ait été approuvé, il est recommandé d'utiliser pour les âmes câblées en aluminium les valeurs données pour des âmes en cuivre analogues.

Table 2 – Skin and proximity effects –	
Experimental values for the coefficients k_s and k	р

-63 -

Type of conductor	Whether dried and impregnated or not	k s	K p
Copper			
Round, stranded	Yes	1	0,8
Round, stranded	No	1	1
Round, segmental ^a		0,435	0,37
Hollow, helical stranded	Yes	b	0,8
Sector-shaped	Yes	1	0,8
Sector-shaped	No	1	1
Aluminium			d
Round, stranded	Either	1	
Round, 4 segment	Either	0,28	
Round, 5 segment	Either	0,19	
Round, 6 segment	Either	0,12	
Segmental with peripheral strands	Either	С	

- The values given apply to conductors having four segments (with or without central duct) and sectional areas less than 1 600 mm2. These values apply to conductors in which all the layers of wire have the same direction of lay. The values are provisional and the subject is under consideration.
- b The following formula should be used for k_s :

$$k_{\rm S} = \left(\frac{d_{\rm C}' - d_{\rm i}}{d_{\rm C}' + d_{\rm i}}\right) \left(\frac{d_{\rm C}' + 2d_{\rm i}}{d_{\rm C}' + d_{\rm i}}\right)^2$$

where

di is the inside diameter of the conductor (central duct) (mm);

 d_c is the outside diameter of the equivalent solid conductor having the same central duct (mm).

The following formula should be used to calculate k_s for cables having a conductor which consists of a central segmental portion surrounded by one or more layers of strands.

$$k_{s} = \left\{ 12c \left[(\alpha c - 0.5)^{2} + (\alpha c - 0.5)(\psi - \alpha)c + 0.33(\psi - \alpha)^{2}c^{2} \right] + b(3 - 6b + 4b^{2}) \right\} 0.5$$

where

- is the ratio of the total cross-sectional area of the peripheral strands to the total cross-sectional area of the complete conductor;
- is the ratio of the total cross-sectional area of the segmental conductor to the total cross-sectional area of the complete conductor, c = (1-b).

$$\alpha = \frac{1}{(1 + \sin \pi / n)^2}$$

$$\psi = \frac{2\pi/n + 2/3}{2(1+\pi/n)}$$

where

is the number of segments.

This formula is applicable to aluminium conductors up to 1 600 mm².

If the total cross-sectional area of the peripheral strands exceeds 30 % of the total cross-sectional area of the conductor, then k_s may be regarded as unity.

Although there are no accepted experimental results dealing specifically with the coefficient k_0 for aluminium conductors, it is recommended that, for stranded aluminium conductors, the values given for similar copper conductors are used.

Tableau 3 – Valeurs numériques de la permittivité relative et du facteur de pertes pour les isolants utilisés dans les câbles à haute tension et moyenne tension à fréquence industrielle

1		3
Type de câble	ε	tan δ*
Câbles isolés au papier imprégné		
Type «solid», à imprégnation totale, préimprégné ou imprégné de matière non migrante	4	0,01
A huile fluide, sous gaine métallique ¹⁾ jusqu'à $U_0 = 36 \text{ kV}$ jusqu'à $U_0 = 87 \text{ kV}$ jusqu'à $U_0 = 160 \text{ kV}$ jusqu'à $U_0 = 220 \text{ kV}$	3,6 3,6 3,5 3,5	0,0035 0,0033 0,0030 0,0028
A pression d'huile, du type en tuyau ²⁾	3,7	0,0045
A pression d'huile, du type en tuyau ³⁾ A pression d'huile, du type en tuyau ⁴⁾	3,6 3,4	0,0040 0,0045
Câbles isolés avec d'autres matériaux ⁵⁾ Caoutchouc butyle	4	0,050
EPR câbles de tensions inférieures ou égales à 18/30 (36) kV câbles de tensions supérieures à 18/30 (36) kV	3	0,020 0,005
PVC	8	0,1
PE (HD et BD)	2,3	0,001
XLPE		
câbles de tensions inférieures ou égales à 18/30 (36) kV (non chargé) câbles de tensions supérieures à 18/30 (36) kV (non chargé) câbles de tensions supérieures à 18/30 (36) kV (chargé)	2,5 2,5 3,0	0,004 0,001 0,005
PPL		
câble de tensions supérieures ou égales à 63/110 kV	2,8	0,0014

^{*} Valeurs prudentes relatives au maximum de température admissible et applicables à la plus haute tension normalement spécifiée pour chaque type de câble.

NOTE Il convient de tenir compte des pertes diélectriques pour les valeurs de $U_{\rm o}$ supérieures ou égales aux valeurs suivantes:

Type de câble	U ₀ kV
Câbles isolés au papier imprégné	
Type «solid»	38
A huile fluide et pression de gaz	63,5
Câbles isolés avec d'autres matériaux	
Caoutchouc butyle	18
EPR	63,5
PVC	6
PE (HD et BD)	127
XLPE (non chargé)	127
XLPE (chargé)	63,5

¹⁾ Voir la CEI 60141-1.

²⁾ Voir la CEI 60141-4.

³⁾ Voir la CEI 60141-3.

⁴⁾ Voir la CEI 60141-2.

⁵⁾ Voir la CEI 60502.

+A2:2001

Table 3 – Values of relative permittivity and loss factors for the insulation of high-voltage and medium-voltage cables at power frequency

	1	2	3
	Type of cable	ε	tan δ*
Cables insulated with impregn	ated paper		
Solid type, fully-impregnated,	pre-impregnated or mass-impregnated non-draining	4	0,01
Oil-filled, self-contained ¹⁾	up to $U_0 = 36 \text{ kV}$	3,6	0,0035
	up to $U_0 = 87 \text{ kV}$	3,6	0,0033
	up to U_0 = 160 kV	3,5	0,0030
	up to $U_0 = 220 \text{ kV}$	3,5	0,0028
Oil-pressure, pipe-type ²⁾		3,7	0,0045
External gas-pressure ³⁾		3,6	0,0040
Internal gas-pressure ⁴⁾		3,4	0,0045
Cable with other kinds of insul	lation ⁵⁾		
Butyl rubber		4	0,050
EPR			
up to and including 18/30 (3	6) kV cables	3	0,020
greater than 18/30 (36) kV c	ables	3	0,005
PVC		8	0,1
PE (HD and LD)		2,3	0,001
XLPE			
up to and including 18/30 (3	6) kV cables (unfilled)	2,5	0,004
greater than 18/30 (36) kV c	ables (unfilled)	2,5	0,001
greater than 18/30 (36) kV c	ables (filled)	3,0	0,005
PPL			
equal to, or greater than 63/	110 kV cables	2,8	0,0014

^{*} Safe values at maximum permissible temperature, applicable to the highest voltages normally specified for each type of cable.

NOTE The dielectric loss should be taken into account for values of U_0 equal to or greater than the following:

Type of cable	U o kV
Cables insulated with impregnated paper	
Solid-type	38
Oil-filled and gas-pressure	63,5
Cables with other types of insulation	
Butyl rubber	18
EPR	63,5
PVC	6
PE (HD and LD)	127
XLPE (unfilled)	127
XLPE (filled)	63,5

¹⁾ See la IEC 60141-1.

²⁾ See la IEC 60141-4.

³⁾ See la IEC 60141-3.

⁴⁾ See la IEC 60141-2.

⁵⁾ See la IEC 60502.

Tableau 4 – Coefficient d'absorption des rayons solaires pour les surfaces de câbles suivantes

Matériaux	σ
Bitume/jute	0,8
Polychloroprène	0,8
PVC	0,6
PE	0,4
Plomb	0,6

+A2:2001

Table 4 – Absorption coefficient of solar radiation for cable surfaces

Material	σ
Bitumen/jute serving	0,8
Polychloroprene	0,8
PVC	0,6
PE	0,4
Lead	0,6

The IEC would like to offer you the best quality standards possible. To make sure that we continue to meet your needs, your feedback is essential. Would you please take a minute to answer the questions overleaf and fax them to us at +41 22 919 03 00 or mail them to the address below. Thank you!

Customer Service Centre (CSC)

International Electrotechnical Commission

3, rue de Varembé 1211 Genève 20 Switzerland

or

Fax to: IEC/CSC at +41 22 919 03 00

Thank you for your contribution to the standards-making process.

A Prioritaire

Nicht frankieren Ne pas affranchir

Non affrancare No stamp required

RÉPONSE PAYÉE SUISSE

Customer Service Centre (CSC)
International Electrotechnical Commission
3, rue de Varembé
1211 GENEVA 20
Switzerland

Q1	ONE STANDARD ONLY. Enter the number of the standard: (e.g. 6060	exact	Q6	the reason is: (tick all that apply)	ion 5	
		•		standard is out of date	0	
				standard is incomplete		
Q2	Diagon tell up in what connectivities			standard is too academic		
Q2	Please tell us in what capacity(ies) you bought the standard (tick all that apply). I am the/a:			standard is too superficial		
				title is misleading		
				I made the wrong choice		
	purchasing agent			other		
	librarian					
	researcher					
	design engineer		Q7	Please assess the standard in the		
	safety engineer		٦.	following categories, using		
	testing engineer			the numbers:		
	marketing specialist			(1) unacceptable,		
	other			(2) below average,(3) average,		
				(4) above average,		
Q3	I work for/in/as a:			(5) exceptional,		
Q J	(tick all that apply)			(6) not applicable		
	manufacturing			timeliness		
	consultant	_		quality of writing		
	government	_		technical contents		
	test/certification facility			logic of arrangement of contents		
	public utility	_		tables, charts, graphs, figures		
	education	_		other		
	military	_				
	other	_				
			Q8	I read/use the: (tick one)		
Q4	This standard will be used for:			French text only		
	(tick all that apply)			English text only		
	general reference			both English and French texts		
	product research	_				
	product design/development	_				
	specifications		Q9	Please share any comment on any		
	tenders		Q.J	aspect of the IEC that you would like		
	quality assessment			us to know:		
	certification					
	technical documentation					
	thesis					
	manufacturing					
	otilei					
Q5	This standard meets my needs:					
	(tick one)					
	not at all					
	nearly					
	fairly well	_				
	exactly					
	-					

La CEI ambitionne de vous offrir les meilleures normes possibles. Pour nous assurer que nous continuons à répondre à votre attente, nous avons besoin de quelques renseignements de votre part. Nous vous demandons simplement de consacrer un instant pour répondre au questionnaire ci-après et de nous le retourner par fax au +41 22 919 03 00 ou par courrier à l'adresse ci-dessous. Merci !

Centre du Service Clientèle (CSC)

Commission Electrotechnique Internationale

3, rue de Varembé 1211 Genève 20 Suisse

ou

Télécopie: CEI/CSC +41 22 919 03 00

Nous vous remercions de la contribution que vous voudrez bien apporter ainsi à la Normalisation Internationale.

A Prioritaire

Nicht frankieren Ne pas affranchir

Non affrancare No stamp required

RÉPONSE PAYÉE SUISSE

Centre du Service Clientèle (CSC)

Commission Electrotechnique Internationale
3, rue de Varembé
1211 GENÈVE 20
Suisse

QΙ	NORME et indiquer son numéro exact: (ex. 60601-1-1)		QJ	(une seule réponse)	
	`			pas du tout	
				à peu près	
				assez bien	
				parfaitement	
Q2	En tant qu'acheteur de cette norme, quelle est votre fonction? (cochez tout ce qui convient) Je suis le/un:		Q6	Si vous avez répondu PAS DU TOU- Q5, c'est pour la/les raison(s) suivar (cochez tout ce qui convient)	
	agent d'un service d'achat			la norme a besoin d'être révisée	
	bibliothécaire			la norme est incomplète	
	chercheur			la norme est trop théorique	
	ingénieur concepteur			la norme est trop theorique	
	ingénieur sécurité			le titre est équivoque	_
	ingénieur d'essais			je n'ai pas fait le bon choix	
	spécialiste en marketing autre(s)	<u> </u>		autre(s)	_
			Q7	Veuillez évaluer chacun des critères	ci-
				dessous en utilisant les chiffres (1) inacceptable,	
Q3	Je travaille:			(2) au-dessous de la moyenne,	
	(cochez tout ce qui convient)			(3) moyen,	
	dans l'industrie			(4) au-dessus de la moyenne,	
	comme consultant			(5) exceptionnel,(6) sans objet	
	pour un gouvernement			(0) cano objet	
	pour un organisme d'essais/			publication en temps opportun	
	certification			qualité de la rédaction	
	dans un service public			contenu technique	
	dans l'enseignement			disposition logique du contenu	
	comme militaire			tableaux, diagrammes, graphiques,	
	autre(s)	••••		figuresautre(s)	
Q4	Cotto pormo poro utiligáo pour/comm		Q8	Je lis/utilise: <i>(une seule réponse)</i>	
	Cette norme sera utilisée pour/comm (cochez tout ce qui convient)	E		uniquement le texte français	
	(**************************************			uniquement le texte anglais	
	ouvrage de référence			les textes anglais et français	
	une recherche de produit			iso tomos anglais et mangais	_
	une étude/développement de produit				
	des spécifications		Q9	Veuillez nous faire part de vos	
	des soumissions			observations éventuelles sur la CEI:	
	une évaluation de la qualité				
	une certification				
	une documentation technique				
	une thèse				
	la fabrication				
	autre(s)				

ISBN 2-8318-5992-1

ICS 29.060.20