A NOVEL METHOD FOR HANDWRITTEN DIGIT RECOGNITION SYSTEM

A PROJECT REPORT

Submitted by

AJAY M 830119104002

SACHIN SIYAM P 830119104036

SURYA R 830119104048

TAMIL ARASU S 830119104049

Team id: **PNT2022TMID47342**

in partial fulfillment for the award of the degree

of

BACHELOR OF ENGINEERING

IN

COMPUTER SCIENCE AND ENGINEERING

GOVERNMENT COLLEGE OF ENGINEERING SRIRANGAM

INDEX

1. INTRODUCTION

- 1.1 Project Overview
- 1.2 Purpose

2. LITERATURE SURVEY

- 2.1 Existing problem
- 2.2 References
- 2.3 Problem Statement Definition

3. IDEATION & PROPOSED SOLUTION

- 3.1 Empathy Map Canvas
- 3.2 Ideation & Brainstorming
- 3.3 Proposed Solution
- 3.4 Problem Solution fit

4. REQUIREMENT ANALYSIS

- 4.1 Functional requirement
- 4.2 Non-Functional requirements

5. PROJECT DESIGN

- 5.1 Data Flow Diagrams
- 5.2 Solution & Technical Architecture
- 5.3 User Stories

6. PROJECT PLANNING & SCHEDULING

- 6.1 Sprint Planning & Estimation
- 6.2 Sprint Delivery Schedule
- 6.3 Reports from JIRA

7. CODING & SOLUTIONING

- 7.1 Feature 1
- 7.2 Feature 2

- 8. TESTING
 - 8.1 Test Cases
 - 8.2 User Acceptance Testing
- 9. RESULTS
 - 9.1 Performance Metrics
- 10. ADVANTAGES & DISADVANTAGES
- 11. CONCLUSION
- 12. FUTURE SCOPE

APPENDIX

1. INTRODUCTION

1.1 Project Overview

Handwritten digit recognition is the ability of a computer system to recognize the handwritten inputs like digits, characters etc. from a wide variety of sources like emails, papers, images, letters etc. This has been a topic of research for decades. Some of the research areas include signature verification, bank check processing, postal address interpretation from envelopes etc. With the humanization of machines, there has been a substantial amount of research and development work that has given a surge to deep learning and machine learning along with artificial intelligence. Handwriting recognition system is the most basic and an important step towards this huge and interesting area of Computer Vision. With time, machines are getting more and more sophisticated, from calculating the basic sums to doing retina recognition they have made our lives more secure and manageable. This project illustrates handwritten digit recognition with the help of MNIST datasets using Convolution Neural Network (CNN) models. Deep Learning has emerged as a central tool for self-perception problems like understanding images, voice from humans, robots exploring the world. The project aims to implement the concept of Convolution Neural Network which is one of the important architectures of deep learning. Understanding CNN and applying it to the handwritten recognition system, is the major target of the proposed system. The main objective of this project is to the accuracy of the models stated above along with their execution time to get the best possible model for digit recognition.

1.2 Purpose

Images of handwritten digits as 10 digits (09). Handwritten digits from the MNIST database are already famous among the community for many recent decades now, as decreasing the error rate with different classifiers and parameters. Digit recognition system is the working of a machine to train itself or recognizing the digits from different sources like emails, bank cheque, papers, images, etc. and in different real-world scenarios for online handwriting recognition on computer tablets or system, recognize number plates of vehicles, processing bank cheque amounts, numeric entries in forms filled up by hand (say tax forms) and so on. The

handwritten digits are not always of the same size, width, orientation and justified to margins as they differ from writing of person to person, so the general problem would be while classifying the digits due to the similarity between digits such as 1 and 7, 5 and 6, 3 and 8, 2 and 5, 2 and 7, etc. This problem is faced more when many people write a single digit with a variety of different handwritings. Lastly, the uniqueness and variety in the handwriting of different individuals also influence the formation and appearance of the digits. In the current age of digitization, handwriting recognition plays an important role in information processing. A lot of information is available on paper, and processing of digital files is cheaper than processing traditional paper files. Handwritten digit recognition for banking systems aims at ensuring effective and reliable approaches for recognition of handwritten digits. The aim of a handwriting recognition system is to convert handwritten characters into machine readable formats. Handwritten digit recognition has not only professional and commercial applications, but also has practical application in our daily life and can be of great help to the visually impaired. It also helps us to solve complex problems easily thus making our lives easier.

2. LITERATURE SURVEY

2.1 Existing problem

As handwriting varies from person to person, handwritten numbers do not always have the same height, weight, orientation, or marginal justification. The general problem is to distinguish the digits due to the similarity of digits such as 1 and 7, 5 and 6, 3 and 8, 2, five, two and seven. We would like to produce a model that transforms the handwritten digits into a typical type in various types so that no misunderstanding is created. Handwritten digit recognition has recently been of very interest among the researchers because of the evolution of various Machine Learning, Deep Learning and Computer Vision algorithms. The challenge concerning the shape recognition problem such as handwritten character recognition remain in finding features that maximize the interclass variability while minimizing the intra-class variability. Feature extraction methods can be categorized into two classes: Structural features, which extract geometrical and topological properties such as the number and position of dots, the presence of loops, the orientation of curves...etc. Statistical features, such as histograms of projection profile and transitions, moments, histograms of gray level distribution, Fourier descriptors and chain code...etc After applying some pre-processing technique and normalizing the image, zoning and crossing counts are combined to represent the feature set. Self-organized map is used to cluster the classes and for creation of binary decision tree. For each node the classifier among SVM, KNN and neural networks who gives the best recognition rate is considered as the main classifier of the node

2.2 References

Title:Real Time Handwritten Digits Recognition Using Convolutional Neural Network

Author: Kaveti Upender; Venkata Siva Kumar Pasupuleti.

Reading handwritten information like examination answer sheets is still a difficult task for many of us, because each one of us is having a different interpretation style. As the world is moving towards digitization, converting the handwritten information to a readable digital format reduces the difficulty. This approach will be beneficial for the readers as it gives a better understanding of the information. With the help of machine learning and deep learning algorithms, the handwritten patterns can be recognized and classify them accordingly to a digital format with human level accuracy. This research paper deals with predicting the real time handwritten digits only. To classify the handwritten digits MNIST data set is used for training the model. OpenCV python library is used for detecting the patterns in the real time handwritten digits. These detected patterns are predicted to human level accuracy with the help of a Convolutional Neural Network model.

Title:Handwritten English Character and Digit Recognition(2021)

Author: Al-Mahmud; Asnuva Tanvin; Sazia Rahman

one of the most sought-after technologies is a handwritten character recognition system. It has the potential to solve a wide range of issues and bring about radical change in our lives. We used Convolutional Neural Networks (CNNs) to recognize handwritten English capital letters and digits in this research. We improved a previously developed CNN architecture by adjusting hyperparameters and minimizing the model's overfitting. The MNIST digit dataset is used to evaluate the experiments, which are then compared to different methods. On the MNIST dataset, 99.47 percent test accuracy was attained, which is superior to other approaches. The research was then expanded upon by the addition of a new dataset for recognizing English capital letters. 98.94 percent accuracy was achieved on this extended dataset.

Title: An Efficient And Improved Scheme For Handwritten Digit Recognition

Based On Convolutional Neural Network (2019)

Author: Ali, Saqib and Shaukat, Zeeshan and Azeem, Muhammad and Sakhawat, Zareen and Mahmood, Tariq and others

This study uses rectified linear units (ReLU) activation and a convolutional neural network (CNN) that incorporates the Deeplearning4j (DL4J) architecture to recognize handwritten digits. The proposed CNN framework has all the necessary parameters for a high level of MNIST digit classification accuracy. The system's training takes into account the time factor as well. The system is also tested by altering the number of CNN layers for additional accuracy verification. It is important to note that the CNN architecture consists of two convolutional layers, the first with 32 filters and a 5x5 window size and the second with 64 filters and a 7x7 window size. In comparison to earlier proposed systems, the experimental findings show that the proposed CNN architecture for the MNIST dataset demonstrates great performance in terms of time and accuracy. As a result, handwritten numbers are detected with a recognition rate of 99.89% and high precision (99.21%) in a short amount of time.

Title:Handwritten Digit Recognition Using Machine And Deep Learning Algorithms (2021)

Author: Pashine, Samay and Dixit, Ritik and Kushwah, Rishika

In this study, they developed three deep and machine learning-based models for handwritten digit recognition using MNIST datasets. To determine which model was the most accurate, they compared them based on their individual properties. Support vector machines are among the simplest classifiers, making them faster than other algorithms and providing the highest training accuracy rate in this situation. However, due to their simplicity, SVMs cannot categorize complicated and ambiguous images as accurately as MLP and CNN algorithms can. In their research, they discovered that CNN produced the most precise outcomes for handwritten digit recognition. This led them to the conclusion that CNN is the most effective solution for all types of prediction issues, including those using picture data. Next, by comparing the execution times of the algorithms, they determined that increasing the number of epochs without changing the

configuration of the algorithm is pointless due to the limitation of a certain model, and they discovered that beyond a certain number of epochs, the model begins overfitting the dataset and provides biased predictions

2.3 Problem Statement Definition

- ➤ The problem is recognizing the human handwritten digits by system. The goal is to upload the image of the handwritten digit and identify the digit with accuracy.
- ➤ Digits' are a part of our everyday life, be it License plates on our cars or bikes, the price of a product, speed limit on a road, or details associated with a bank account. The recognition of digits is important because humans can't remember all these numbers ,so there is a need for a system to recognize them.
- ➤ Handwritten digit recognition is the ability of computers to recognize human handwritten digits. It is a hard task for the machine because handwritten digits are not perfect and can be made with many different flavors.
- ➤ The main objective is to compare the accuracy of the models stated above along with their execution time to get the best possible model for digit recognition.
- The digits are used in postal mail sorting, bank check processing, form data entry, etc. For this type of work there is a need for a system which can handle the data (digits) easily as well as accurately.

3. IDEATION & PROPOSED SOLUTION

3.1Empathy Map Canvas

3.2 Ideation and Brainstorming

3.3 Proposed Solution

S.No	PARAMETER	DESCRIPTION		
1.	Problem Statement	The problem is recognizing the human handwritten digits by system. The goal is to upload the image of the handwritten digit and identify the digit with accuracy.		
2.	Idea/Solution Description	The training and testing has been conducted from publicly available MNIST handwritten databases. Web based, offline and online handwritten digitrecognition system is developed by usingConvolutional Neural Network.		
3.	Novelty/Uniqueness	OCR technology provides higher than 99% accuracy with typed characters in high-quality images. However, the diversity in human writing, spacing differences, and irregularities of handwriting causes less accurate character recognition, as you can see in the featured image.		

4.	Social Impact/Customer	Handwritten Digit Recognition has various				
	Satisfaction	usessuch as less time consumption. It is used in the				
		detection of vehicle numbers, banks for reading				
		cheques, post offices for arranging letters, and other				
		tasks.				
5.	Business Model	The main objective of this work is to ensure				
		effective and reliable approaches for recognition of				
		handwritten digits and make banking operations				

3.4 Problem Solution Fit

4. REQUIREMENT ANALYSIS

4.1 Functional Requirements

FR No:	FUNCTIONAL REQUIREMENTS & DESCRIPTION
FR-1	Image Data: Handwritten digit recognition is the ability of a computer to
	recognize the human handwritten digits from different sources like images,
	papers, touch screens, etc, and classify them into 10 predefined classes (0-9).
	This has been a topic of boundless-research in the field of deep learning.
FR-2	Website: Web hosting makes the files that comprise a website (code, images,
	etc.) available for viewing online. Every website you've ever visited is hosted
	on a server. The amount of space allocated on a server to a website depends on
	the type of hosting. The main types of hosting are shared, dedicated, VPS and
	reseller.
FR-3	Digit_Classifier_Model: Use the MNIST database of handwritten digits to train
	a convolutional network to predict the digit given an image. First obtain the
	training and validation data.
FR-4	MNIST dataset: The MNIST dataset is an acronym that stands for the Modified
	National Institute of Standards and Technology dataset.
FR-5	Databases, software, virtual storage, and networking, among others. In layman's
	terms, Cloud Computing is defined as a virtual platform that allows you to store
	and access your data over the internet without any limitations.

4.2 Non-Functional Requirements

NFR No:	NON FUNCTIONAL REQUIREMENTS &
	DESCRIPTION
NFR-1	Usability: Handwritten character recognition is one of the practically
	important issues in pattern recognition applications. The applications of digit
	recognition include postal mail sorting, bank check processing, form data
	entry, etc.
NFR-2	Reliability:
	1) The system not only produces a classification of the digit but also a rich
	description of the instantiation parameters which can yield information such
	as the writing style.
	2)The generative models can perform recognition driven segmentation.
	3) The method involves a relative.
NFR-3	Performance: The neural network uses the examples to automatically infer
	rules for recognizing handwritten digits. Furthermore, by increasing the
	number of training examples, the network can learn more about handwriting,
	and so improve its accuracy. There are a number of ways and algorithms to
	recognize handwritten digits, including Deep Learning/CNN, SVM, Gaussian
	Naive Bayes, KNN, Decision Trees, Random Forests, etc.
NFR-4	Accuracy: Optical Character Recognition (OCR) technology provides higher
	than 99% accuracy with typed characters in high quality images. However,
	the diversity in human writing types, spacing differences, and irregularities of
	handwriting causes less accurate character recognition.

5. PROJECT DESIGN

5.1 Data Flow Diagrams

5.2 Solution & Technical Architecture

Components & Technologies:

Component	Description	Technology
User Interface	How the user interacts with	HTML, CSS, JavaScript
	applications e.g. Web UI, Mobile	
	App, Chatbot etc.	
Application Logic-1	Logic for a process in the	Python
	application	
Application Logic-2	Logic for a process in the	IBM Watson STT
	application	service
Application Logic-3	Logic for a process in the	IBM Watson Assistant
	application	
Database	Data Type, Configurations etc.	MySQL, NoSQL, etc.
Cloud Database	Database Service on Cloud	IBM DB2, IBM
		Cloudant
File Storage	File storage requirements	IBM Block Storage
External API-1	Purpose of External API used in	IBM Weather API
	the application	
External API-2	Purpose of External API used in	Aadhar API
	the application	
Machine Learning	Purpose of Machine Learning	Object Recognition
Model	Model	Model
Infrastructure (Server	Application Deployment on	Local, Cloud Foundry
/ Cloud)	Local System / Cloud Local	
	Server Configuration Cloud	
	Server Configuration	
	User Interface Application Logic-1 Application Logic-2 Application Logic-3 Database Cloud Database File Storage External API-1 External API-2 Machine Learning Model Infrastructure (Server	User Interface How the user interacts with applications e.g. Web UI, Mobile App, Chatbot etc. Application Logic-1 Logic for a process in the application Application Logic-2 Logic for a process in the application Application Logic-3 Logic for a process in the application Database Data Type, Configurations etc. Cloud Database Data Type, Configurations etc. Cloud Database File Storage File storage requirements External API-1 Purpose of External API used in the application External API-2 Purpose of External API used in the application Machine Learning Model Infrastructure (Server / Cloud) Application Deployment on Local System / Cloud Local Server Configuration Cloud

Application Characteristics:

S.No	Characteristics	Description	Technology
1.	Open-Source	List the open-source frameworks	Technology of Open
	Frameworks	used	Source framework
2.	Security	List all the security / access	SHA-256, Encryptions,
	Implementations	controls implemented, use of	IAM Controls, OWASP
		firewalls etc.	
3.	Scalable Architecture	Justify the scalability of	3 – tier, Micro-services
		architecture	
4.	Availability	Abstract and Figures. The	Distributed servers,
		features for handwritten digit	IBM cloud
		recognition have been	
		introduced. These features are	
		based on shape analysis of the	
		digit image and extract slant or	
		slope information. They are	
		effective in obtaining good	
		recognition accuracies	
5.	Performance	The standard implementations of	Number of requests per
		neural networks achieve an	sec, use of Cache, use
		accuracy of ~ (98–99) percent in	of CDN's
		correctly classifying the	
		handwritten digits	

5.3 User Stories

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
Customer (Mobile user)	Home	USN-1	As a user, I can view the guide and awareness to use this application.	I can view the awareness to use this application and its limitations.	Low	Sprint-1
		USN-2	As a user, I'm allowed to view the guided video to use the interface of this application.	I can gain knowledge to use this application by a practical method.	Low	Sprint-1
		USN-3	As a user, I can read the instructions to use this application.	I can read instructions also to use it in a user-friendly method.	Low	Sprint-2

	Recognize	USN-4	As a user, In	I can choose	High	Sprint-2
			this	the		
			prediction	image from		
			page I get to	our local		
			choose the	system and		
			image.	predict		
				the output.		
	Predict	USN-6	As a user, I'm	I can upload	Medium	Sprint-3
			Allowed to	and		
			upload and	choose the		
			choose the	image from		
			image to be	the system		
			uploaded	storage and		
				also in any		
				virtual		
				storage.		
		USN-7	As a user, I	I can able to	High	Sprint-4
			will train and	train and		
			test the input	test the		
			to get the	application		
			maximum	until it gets		
			accuracy of	maximum		
			output.	accuracy of		
				the result.		
		USN-8	As a user, I	I can access	Medium	Sprint-3
			can access the	the MNIST d		
			MNIST data	result.		
			set			
Customer	Home	USN-9	As a user, I	I can access	Low	Sprint-1
(Web user)			can view the	the MNIST d		
			guide to use	result.		
			the web app.			

Recognize	USN-10	As a user, I	I can use the	High	Sprint-1
		can use the	application		
		web	portably		
		application	anywhere.		
		virtually			
		anywhere.			
	USN-11	As it is an	I can use it	Medium	Sprint-2
		open source,	without		•
		you can use it	any payment		
		freely.	to be		
			paid for it to		
			access.		
	USN-12	As it is a web	I can use it	Medium	Sprint-4
		application,	without the		_
		it is	installation of		
		installation	the		
		free	application or		
			any		
			software.		
Predict	USN-13	As a user, I'm	I can upload	Medium	Sprint-3
		Allowed	and		
		to upload and	choose the		
		choose the	image from		
		image to be	the system		
		uploaded	storage and		
			also in any		
			virtual		
			storage.		

Components & Technologies:

S. No	Component	Description	Technology
1.	User Interface	How the user interacts with application e.g. Web UI, Mobile App, Chatbot etc.	HTML, CSS, JavaScript
2.	Application Logic-1	Logic for a process in the application	Python
3.	Application Logic-2	Logic for a process in the application	IBM Watson STT service
4.	Application Logic-3	Logic for a process in the application	IBM Watson Assistant
5.	Database	Data Type, Configurations etc.	MySQL, NoSQL, etc.
6.	Cloud Database	Database Service on Cloud	IBM DB2, IBM Cloudant
7.	File Storage	File storage requirements	IBM Block Storage
8.	External API-1	Purpose of External API used in the application	IBM Weather API
9.	External API-2	Purpose of External API used in the application	Aadhar API
10.	Machine Learning Model	Purpose of Machine Learning Model	Object Recognition Model
11.	Infrastructure (Server / Cloud)	Application Deployment on Local System / Cloud Local Server Configuration Cloud Server Configuration	Local, Cloud Foundry

Application Characteristics:

S.No	Characteristics	Description	Technology
1.	Open-Source	List the open-source frameworks	Technology of Open
	Frameworks	used	Source framework
2.	Security	List all the security / access	SHA-256, Encryptions,
	Implementations	controls implemented, use of	IAM Controls, OWASP
		firewalls etc.	
3.	Scalable Architecture	Justify the scalability of	3 – tier, Micro-services
		architecture	
4.	Availability	Abstract and Figures. The	Distributed servers,
		features for handwritten digit	IBM cloud
		recognition have been	
		introduced. These features are	
		based on shape analysis of the	
		digit image and extract slant or	
		slope information. They are	
		effective in obtaining good	
		recognition accuracies	
5.	Performance	The standard implementations of	Number of requests per
		neural networks achieve an	sec, use of Cache, use
		accuracy of ~ (98–99) percent in	of CDN's
		correctly classifying the	
		handwritten digits	

6. PROJECT PLANNING & SCHEDULING

6.1 Sprint Planning & Estimation

Sprint	Functional	User	User Story /	Story	Priority	Team
	Requirement	Story	Task	Points		Members
	(Epic)	Number				
Sprint-1	Data Collection	USN-1	Import the	2	High	Tamil
			required			Arasu S,
			libraries and			Sachin
			Collect Dataset			Siyam P
Sprint-1		USN-2	Reshape the	1	Medium	Surya R,
			data and apply			Ajay M
			one hot			
			encoding			
Sprint-2	Model Building	USN-3	Add the	2	High	Tamil
			necessary			Arasu S,
			layers and			Ajay M
			compile the			
			model			
Sprint-2		USN-4	Training the	1	Medium	Surya R,
			image			Sachin
			classification			Siyam P
			model using			
			CNN			
Sprint-3	Training and	USN-5	Building	2	High	Tamil
	Testing		Python code			Arasu S,
			and run the			Surya R,
			application			Sachin
						Siyam P,
						Ajay M

Sprint-4	Implementation	USN-6	Training the	2	High	Tamil
	of the application		model on IBM			Arasu S,
	and deployment		cloud.			Surya R,
	on cloud					Sachin
						Siyam P,
						Ajay M

6.2 Sprint Delivery Schedule

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End	Sprint Release Date (Actual)
					Date)	
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct
						2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov
						2022
Sprint-3	20	6 Days	07 Nov2022	12 Nov 2022	20	12 Nov
						2022
Sprint-4	20	6 Days	14 Nov	19 Nov 2022	20	19 Nov
			2022			2022

6.3 Reports from JIRA

7. CODING AND SOLUTIONING

7.1 Feature 1

- ➤ Multi User Authentication
- ➤ Access through Internet
- ➤ Reduced Time and Computational complexity
- ➤ Implement in real time environments

7.2 Feature 2

- ➤ Create more stable model
- ➤ More accuracy than average Humans

8. TESTING

8.1 Test Cases

Test case	Feature Type	Compon	Test Scenario	Expected Result	Actual Result	Stat us
ID						
HP_TC_	UI	Home	Verify UI	The Home page	The	PAS
001		Page	elements in		Home	S
			the Home	must be	page must	
			Page	displayed	be	
				properly	displayed	
					properly	
					in all	
					sizes	
HP_TC_	UI	Home	Check if the	The Home page	The UI	FAI
002		Page	UI elements	must be	is not	L
			are displayed	displayed properly in all	display	L
			properly in	sizes	ed	
			different		properl	
			screen		y in	
			sizes		screen	
					size	
					2560 x	
					1801	

					and	
					768 x	
					630	
HP_TC_	Functio	Home	Check	The input	Working	PAS
003	nal	Page	if user	image should		S
			can upload	be uploaded to	as	
			their file	the	expected	
				application		
				successfully		
HP_TC_	Functio	Home	Check	The	Working	PAS
004	nal	Page	if user	application	as	S
			cannot	should not	expected	
			upload	allow user to		
			unsupported	select a non		
			files	image file		
HP_TC_	Functio	Home	Check	The page	Working	PAS
005	nal	Page	if	should	as	S
				redirect to the	expected	
			the pages	results page		
			redirects			
			to the			
			result page			
			once the			

			input is			
			given			
			8-1-0-1			
BE_TC_	Functio	Backend	Check if all	Check if all the	Working	PAS
001	nal		the routes	routes are	as	S
			are working	working	expected	
			properly	properly		
M_TC_0	Functio	Model	Check if the	Check if the	Working	PAS
01	nal				as	S
			model can	model can	expected	
			handle	handle various		
			various	image sizes		
			image sizes			
M_TC_0	Functio	Model	Check if the	Check if the	Working	PAS
02	nal		model	model predicts	as	S
			predicts the	the digit	expected	
			digit			
M_TC_0	Functio	Model	Check if the	Check if the	The	FAI
03	nal		model can	model can	model	L
			handle	handle complex	fails to	
			complex	input image		
			input image		identify	
					the digit	
					since	
					the	

					model	
					is not	
					built to	
					handle	
					such	
					data	
RP_TC_	UI	Result	Verify UI	The Result	Working	PAS
001			elements in	page must be	as	S
		Page	the Result	displayed	expected	
			Page	properly		
RP_TC_	UI	Result	Check if the	The result	Working	PAS
002			result is	should be	as	S
		Page	displayed	displayed	expected	
			properly	properly		

8.2 User Acceptance Testing

8.2.1 Defect Analysis

This report shows the number of resolved or closed bugs at each severity level, and how they were resolved.

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Total
By Design	1	0	1	0	2
Duplicate	0	0	0	0	0
External	0	0	2	0	2
Fixed	4	1	0	1	6

Not	0	0	0	1	1
Reproduced					
Skipped	0	0	0	1	1
Won't Fix	1	0	1	0	2
Total	6	1	4	3	14

8.2.2 Test Case Analysis

This report shows the number of test cases that have passed, failed, and untested.

Section	Total Cases	Not Tested	Fail	Pass
Client	11	0	2	9
Application				
Security	2	0	1	1
Performance	3	0	0	3
Exception	2	0	0	2
Reporting				

9. RESULTS

9.1 Performance Metrics

S.No	Parameter	Values	Screenshots
1.	Model Summary	Model: "sequential"	model.summary()
2.	Accuracy	Training Accuracy - 0.99 Validation Accuracy -0.98	<pre>metrics = model.evaluate(x_train, y_train, verbose = 0) print("Metrics(Train loss & Train Accuracy):") print(metrics) Metrics(Train loss & Train Accuracy): [0.02841065637767315, 0.9915833473205566] metrics = model.evaluate(x_test, y_test, verbose = 0) print("Metrics(Test loss & Test Accuracy):") print(metrics) Metrics(Test loss & Test Accuracy): [0.722084105014801, 0.9898999929428101]</pre>

3	Metrics	Confusion	0	951	0	0	0	0	0	2	0	0	0
		Matrix	4	0	1119	0	0	3	0	2	1	0	0
			2 -	5	2	1020	0	6	0	21	9	0	0
			m -	2	6	11	1009	0	3	1	5	6	2
			ues 4	0	0	0	0	936	0	0	0	0	1
			True Values 5 4	12	1	1	1	1	888	13	0	1	3
			9 -	1	1	0	0	2	1	916	0	0	0
			7	2	5	0	0	4	0	0	1012	1	2
			80 -	7	1	0	0	0	0	3	0	966	0
			თ -	0	0	0	0	30	0	0	1	0	1001
				Ó	i	2	3	4 Predicte	5 d Values	6	7	8	9
4.	Metrics	Classification				prec	ision	re	call	f1-s	core	supp	ort
		Model			0		1.00		0.97		0.98		980
					1 2		0.99 0.96		0.99 0.99		0.99 0.97		135 1032
					3		0.97		1.00		0.98		1010
					4		1.00		0.95		0.98		982
					5 6		0.96 0.99		1.00 0.96		0.98 0.97		892 958
					7		0.99		0.98		0.97 0.99		1028
					8		0.99		0.99		0.99		974
					9		0.97		0.99	(0.98	1	1009
				acc	uracy						0.98	16	9999
					o avg		0.98		0.98		0.98		9000
			wei	ighte	d avg		0.98		0.98		0.98	16	9000

10. ADVANTAGES & DISADVANTAGES

Advantages

- ➤ Reduces manual work
- ➤ More accurate than average human
- ➤ Capable of handling a lot of data
- ➤ Can be used anywhere from any device

Disadvantages

- ➤ Cannot handle complex data
- ➤ All the data must be in digital format
- ➤ Requires a high performance server for faster predictions
- ➤ Prone to occasional errors

11. CONCLUSION

A recognition system for handwritten digit has attracted some interests in the research community by introduction of large dataset. In this work, convolutional neural networks were applied for handwritten digit recognition. The goal was the recognition of patterns taken from the MNIST database. CNNs were modified by the use of contour features, which are known as good feature extractors. The results demonstrated that CNNs perform pattern recognition effectively, incorporating in its structure some feature extraction and feature mapping characteristics, which are extremely adapted to invariances usually found in pattern recognition problems. Likewise, it was shown that Contour features can be appropriately incorporated in a CNN architecture, because such methods own similar principles. The effectiveness of the soft max method in classification improvement is also confirmed.

12. FUTURE SCOPE

This project is far from complete and there is a lot of room for improvement. Some of the improvements that can be made to this project are as follows:

- ➤ Add support to detect digits from manual writing in canvas.
- ➤ Add support to detect multiple digits.
- ➤ Improve model to detect digits from complex images.
- ➤ Add support to different languages to help users from all over the world.

This project has endless potential and can always be enhanced to become better. Implementing this concept in the real world will benefit several industries and reduce the workload on many workers, enhancing overall work efficiency.

APPENDIX

CODING

MODEL

```
import numpy as np
import tensorflow
from tensorflow.keras.datasets import mnist
from tensorflow.keras.models import Sequential
from tensorflow.keras import layers
from tensorflow.keras.layers import Dense, Flatten, MaxPooling2D, Dropout
from tensorflow.keras.layers import Conv2D
from keras.optimizers import Adam
from keras.utils import np utils
import matplotlib.pyplot as plt
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x train = x train.reshape(60000, 28, 28, 1).astype('float32')
x \text{ test} = x \text{ test.reshape}(10000, 28, 28, 1).astype('float32')
model= Sequential()
model.add(Conv2D(64, (3,3),input shape=(28, 28, 1), activation="relu"))
model.add(MaxPooling2D(pool size=(2,2)))
model.add(Conv2D(64, (3,3), activation="relu"))
model.add(MaxPooling2D(pool size=(2,2)))
model.add(Conv2D(64, (3,3), activation="relu"))
model.add(MaxPooling2D(pool size=(2,2)))
```

```
model.add (Flatten())
model.add (Dense(64, activation="relu"))
model.add (Dense(32, activation="relu"))
model.add(Dense(10, activation="softmax"))
model.summary()
model.compile(loss = 'sparse_categorical_crossentropy', optimizer = "Adam", metrics = ['accuracy'])
test_loss, test_acc = model.evaluate(x_test, y_test)
predictions = model.predict([x_test])
print(np.argmax(predictions[0]))
model.save('models/mnistCNN.h5')
```

APP.PY

import numpy as np
import os
from PIL import Image
from flask import Flask, request, render_template, url_for
from werkzeug.utils import secure_filename, redirect
from gevent.pywsgi import WSGIServer
from keras.models import load_model
from keras.preprocessing import image

```
from flask import send from directory
UPLOAD FOLDER = 'C:/Users/ELCOT/Desktop/IBM/Final
Deliverables/uploads'
app = Flask( name )
app.config['UPLOAD FOLDER'] = UPLOAD FOLDER
model = load model("mnistCNN.h5")
@app.route('/')
def index():
  return render template('index.html')
@app.route('/predict', methods=['GET', 'POST'])
def upload():
  if request.method == "POST":
    f = request.files["image"]
    filepath = secure filename(f.filename)
    f.save(os.path.join(app.config['UPLOAD FOLDER'], filepath))
    upload img = os.path.join(UPLOAD FOLDER, filepath)
    img = Image.open(upload img).convert("L") # convert image to
monochrome
    img = img.resize((28, 28)) # resizing of input image
    im2arr = np.array(img) # converting to image
    im2arr = im2arr.reshape(1, 28, 28, 1) # reshaping according to our
requirement
    pred = model.predict(im2arr)
```

```
num = np.argmax(pred, axis=1) # printing our Labels
    return render template('predict.html', num=str(num[0]))
if name == ' main ':
  app.run(debug=True, threaded=False)
INDEX.HTML
<!DOCTYPE html>
<html>
  <head>
    <title>Handwritten Digits Recognition System</title>
    <link rel="stylesheet" href="{{url for('static',filename='css/index.css')}}}">
    <script type="text/javascript" src</pre>
="{{url for('static',filename='js/web.js')}}"></script>
    <!-- < link rel="stylesheet" href="C:\Users\ELCOT\Desktop\IBM\Final
Deliverables\static\css\index.css">
    <script type="text/javascript" src = "C:\Users\ELCOT\Desktop\IBM\Final</pre>
Deliverables\static\js\web.js"></script> -->
  </head>
  <body>
    <div id="menu" class="menu"><!--This is menu bar-->
       <a href="#d5">Recognize</a>
       <a href="/">Home</a>
    </div>
    <div id="ddd"></div>
    <div id="d1">
       <h1 id="hand">Handwritten Digit Recognition System</h1>
```

Handwriting recognition is one of the compelling research works going on because every individual in this world has their own style of writing. It is the capability of the computer to identify and understand handwritten digits or characters automatically. Because of the progress in the field of science and technology, everything is being digitalized to reduce human effort. Hence, there comes a need for handwritten digit recognition in many real-time applications.
MNIST data set is widely used for this recognition process and it has 70000 handwritten digits. We use Artificial neural networks to train these images and build a deep learning model. Web application is created where the user can upload an image of a handwritten digit. this image is analyzed by the model and the detected result is returned on to UI

</div>
</div id="d3">
<h1>HANDWRITTEN DIGIT RECOGNITION</h1>
<div id="d31"></div>
<div id="d32" > Handwritten digit recognition can be performed

using the Convolutional neural network from Machine Learning. Using the MNIST (Modified National Institute of Standards and Technologies) database and compiling with the CNN gives the basic structure of my project development. So, basically to perform the model we need some libraries such as NumPy, 'Pandas', TensorFlow, Keras. These are the main structure on which my main project stands. MNIST data contains about 70,000 images of handwritten digits from 0-9. So, it is a class 10 classification model. This dataset is divided into 2 parts i.e. Training and

Test dataset. Image representation as 28*28 matrix where each cell contains grayscale pixel value.</div>

```
</div>
<div id="d4">
<h1>CNN</h1>
```

CNN is a deep learning technique to classify the input automatically (well, after you provide the right data). Over the years, CNN has found a good grip over classifying images for computer visions and now it is being used in healthcare domains too. This indicates that CNN is a reliable deep learning algorithm for an automated end-to-end prediction. CNN essentially extracts 'useful' features from the given input automatically making it super easy for us!

```
</div>
<div id="d5">
<h1>MNIST</h1>
```

The dataset that is being used here is the MNIST digits classification dataset. Keras is a deep learning API written in Python and MNIST is a dataset provided by this API. This dataset consists of 60,000 training images and 10,000 testing images. It is a decent dataset for individuals who need to have a go at pattern recognition as we will perform in just a minute! When the Keras API is called, there are four values returned namely- x_train, y_train, x_test, and

```
y_test.
</div>
</section>
<section id="s2">
<div id="s2">
<div id="d6">
<h1>RECOGNITION</h1>
<P>Upload the image and click PREDICT button to Recognize</P>
<form action="/predict" method="POST"

enctype="multipart/form-data">
```

```
<label>Select a image:</label>
       <input id="image" type="file" name="image" accept="image/png,</pre>
image/jpeg" onchange="preview()"><br><br>
       <div id="d62"><img id="frame" src="" width="200px"</pre>
height="200px"/></div>
       <div id="d61">
        <button type="submit" id="predict">Predict</button>
        <button type="reset" id="clear" onclick="clear()">Clear/button>
       </div>
      </form>
    </div>
   </section>
   <section id="s3">
    <h1>TEAM MEMBERS</h1>
    <div id="d7">
      <h2> Tamil Arasu S&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
       -    
     830119104049</h2>
      <h2> Surya
R        
        
 -           
830119104048</h2>
     <h2> Sachin Siyam P &nbsp;&nbsp;&nbsp;&nbsp
              
       830119104036</h2>
      <h2> Ajay M &nbsp;&nbsp&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
```

```
  -       
830119104002</h2>
     </div>
    </section>
  </body>
</html>
PREDICT.HTML
<!DOCTYPE html>
<html>
<head>
  <meta charset="UTF-8">
  <title>Prediction</title>
</head>
<style>
  body{
   background-color: rgb(250, 242, 232);
  }
  #rectangle {
   width:600px;
   height:250px;
   background-color:rgb(90, 35, 35);
   border-radius: 55px;
   position:absolute;
   top:55%;
   left:50%;
   transform:translate(-50%,-50%);
```

```
box-shadow: 17px 17px 15px rgb(97, 47, 47);
}
#ans{
  text-align: center;
  font-size: 50px;
  margin: 0 auto;
  padding: 3% 5%;
  padding-top: 15%;
  color: white;
}
#d1{
  margin-left: auto;
  margin-right:auto;
  width: 900px;
  text-align: center;
  margin-top: 60px;
}
#d1 h1 {
  color: rgb(247, 202, 57);
  font-size: 50px;
  text-shadow: 2px 2px rgb(90, 35, 35);
}
#d1 h2{
  color: rgb(90, 35, 35);
  margin-top: -10px;
}
```

```
</style>
<body>
  <div id="d1">
    <h1 id="hand">Handwritten Digit Recognition System</h1>
    <h2>TEAM ID: PNT2022TMID47342</h2>
  </div>
  <div id="rectangle">
    <h1 id="ans">Predicted Number : {{num}}}</h1>
  </div>
</body>
</html>
INDEX.CSS
li a {
  display: block;
  color: rgb(255, 255, 255);
  text-align: center;
  padding: 14px 20px;
  text-decoration: none;
  font-size: 20px;
 li a:hover {
  background-color: rgb(247, 202, 57);
  color: rgb(90, 35, 35);
 #menu {
  list-style-type: none;
```

```
margin: 0;
  padding: 0;
  overflow: hidden;
  background-color: rgb(90, 35, 35);
  border-radius: 15px;
  position:fixed;
  width: 1330px;
  margin-top: -50px;
 }
 li {
  float: right;
 /*body{
  background-image: url(home bg.jpg);
  background-repeat: no-repeat;
  background-size: cover;
  background-attachment: fixed;
 }*/
body{
 background-color: rgb(250, 242, 232);
 #d1{
  margin-left: auto;
  margin-right:auto;
  width: 900px;
  text-align: center;
  margin-top: 60px;
```

```
#d1 h1 {
 color: rgb(247, 202, 57);
 font-size: 50px;
 text-shadow: 2px 2px rgb(90, 35, 35);
}
#d1 h2{
 color: rgb(90, 35, 35);
 margin-top: -10px;
}
#d2{
 margin-left: auto;
 margin-right:auto;
 width: 1200px;
 text-align: justify;
 font-size: 20px;
}
#d3 {
 margin-left: auto;
 margin-right:auto;
 width: 1200px;
 text-align: justify;
 font-size: 20px;
}
#d31{
 margin-left: 900px;
 color: rgb(247, 202, 57);
 text-decoration: overline underline;
```

```
text-decoration-color: rgb(90, 35, 35);
}
#d32{
 width: 850px;
 margin-top: -200px;
#d3 h1 {
 text-align: center;
 color: rgb(90, 35, 35);
 text-decoration-line: underline;
 text-decoration-style: double;
 text-decoration-color: rgb(247, 202, 57);
}
#d4{
 margin-left: auto;
 margin-right:auto;
 width: 1200px;
 text-align: justify;
 font-size: 20px;
#d4 h1 {
 text-align: center;
 color: rgb(90, 35, 35);
 text-decoration-line: underline;
 text-decoration-style: double;
 text-decoration-color: rgb(247, 202, 57);
#d5{
 margin-left: auto;
```

```
margin-right:auto;
 width: 1200px;
 text-align: justify;
 font-size: 20px;
#d5 h1 {
 text-align: center;
 color: rgb(90, 35, 35);
 text-decoration-line: underline;
 text-decoration-style: double;
 text-decoration-color: rgb(247, 202, 57);
}
#d6{
 margin-left: auto;
 margin-right: auto;
 width: 1200px;
 font-size: 20px;
 text-align: center;
#d6 h1 {
 text-align: center;
 color: rgb(90, 35, 35);
 text-decoration-line: underline;
 text-decoration-style: double;
 text-decoration-color: rgb(247, 202, 57);
#predict{
 height: 35px;
```

```
width: 150px;
 background-color: rgb(90, 35, 35);
 color: white;
 border: none;
 border-radius: 15px;
 box-shadow: 7px 7px 5px rgb(97, 47, 47);
 font-size: 20px;
 /* margin-left: 100px; */
#clear{
 height: 35px;
 width: 150px;
 background-color: rgb(90, 35, 35);
 color: white;
 border: none;
 border-radius: 15px;
 box-shadow: 7px 7px 5px rgb(97, 47, 47);
 font-size: 20px;
 margin-left: 100px;
#predict:hover {
 background-color: rgb(247, 202, 57);
 color: rgb(90, 35, 35);
#clear:hover {
 background-color: rgb(247, 202, 57);
```

```
color: rgb(90, 35, 35);
#frame{
 display: none;
 margin-left: auto;
 margin-right: auto;
#d61 {
 margin-top: 50px;
}
#d62 {
 display: block;
#s3 {
 background-color: rgb(90, 35, 35);
 color: white;
 padding: 20px;
 margin-top: 20px;
#s3 h1 {
 width: 300px;
 margin-left: auto;
 margin-right:auto;
 text-align: center;
 color: rgb(247, 202, 57);
 font-size: 30px;
```

```
}
#d7{
 width: 500px;
 margin-left: auto;
 margin-right: auto;
 padding: 20px;
WEB.JS
function preview() {
  frame.src=URL.createObjectURL(event.target.files[0]);
  document.getElementById("frame").style.display = "block";
}
$(document).ready(function() {
  $('#clear').on('click', function() {
     $('#image').val(");
    $('#frame').attr('src',"");
     });
});
function clear(){
  document.getElementById("d62").style.display="none";
}
```

SCREENSHOTS

GITHUB LINK:

➤ https://github.com/IBM-EPBL/IBM-Project-37818-1660326535

DEMO VIDEO LINK:

➤ https://drive.google.com/folderview?id=10Bw7f9FETyZ2h0XaZYjhZYkNF0OUGoEB