最小割

岳镝

2025 年 4 月 18 日

问题

给定带权无向图 $G = (V, E, w_{>0})$, 求 G 的最小割

等价描述: 求顶点集 V 的一个划分 $V = S \cup T$,最小化

$$\sum_{u \in S, v \in T, (u,v) \in E} w(u,v).$$

回忆:最大流-最小割定理

定理(最大流-最小割定理)

最大流 = 最小割。

直接运行最大流算法,时间复杂度 Max-Flow(n,m)?

回忆:最大流-最小割定理

定理(最大流-最小割定理)

最大流 最小割。

 $s \to t$ 最大流 = $s \to t$ 最小割。

算法: 枚举源点 s 和汇点 t, 运行 $s \to t$ 最大流算法,复杂度 $n^2 \cdot \mathsf{Max-Flow}(n,m)$

回忆:最大流-最小割定理

定理(最大流-最小割定理)

最大流 最小割。

 $s \to t$ 最大流 $= s \to t$ 最小割。

算法: 枚举源点 s 和汇点 t, 运行 $s \to t$ 最大流算法,复杂度 $n^2 \cdot \mathsf{Max-Flow}(n,m)$

改进: 固定源点 s, 枚举汇点 t, 运行 $s \to t$ 最大流算法,复杂度 $n \cdot \mathsf{Max-Flow}(n,m)$

Max-Flow

- ▶ 任意增广路径 (Ford-Fulkerson): $O(mf^*)$
- ▶ 最短增广路径 (Edmonds-Karp): $O(nm^2)$
- ▶ 分层辅助网络 + 前向增广路径 (Dinic): $O(n^3)$
- SOTA: $\tilde{O}(m^{1+o(1)})$

另一个问题

n 个顶点的图 G, 有多少个最小割?

A. 常数: O(1)

B. 多项式: $n^{O(1)}$

C. 亚指数: $n^{\log^{O(1)} n}$

D. 指数: 2^{O(n)}

收缩边

回忆: 最小生成树 Kruskal 算法

按顺序选取一条边,连接两个连通分支

等价描述:按顺序选取一条边,收缩

收缩边

按顺序选取一条边, 收缩

算法框架

- 1. 输入图 G = (V, E, w), 初始化 $V_n \leftarrow V, E_n \leftarrow E$
- 2. For i = n, n 1, ..., 3 do
 - a. 按顺序选取一条边 $e \in E_i$, 收缩
 - b. 相应更新 V_{i-1}, E_{i-1} 及边权 $\{w(e)\}$
- 3. $V_2 = \{s, t\}$ 对应所求划分, $E_2 = \{e\}$ 对应割边

问题:按什么顺序收缩边?

思路 1: 贪心

- 1. 输入图 G = (V, E, w), 初始化 $V_n \leftarrow V, E_n \leftarrow E$
- 2. For i = n, n 1, ..., 3 do
 - a. 选取权值最大的边 $e \in E_i$,收缩
 - b. 相应更新 V_{i-1}, E_{i-1} 及边权 $\{w(e)\}$
- 3. $V_2 = \{s, t\}$ 对应所求划分, $E_2 = \{e\}$ 对应割边

能得到正确答案吗?

思路 2: 随机 sample

- 1. 输入图 G = (V, E, w), 初始化 $V_n \leftarrow V, E_n \leftarrow E$
- 2. For i = n, n 1, ..., 3 do
 - a. 以概率分布 $\frac{w(e)}{\sum_{e \in E_i} w(e)}$ 随机取边 $e \sim E_i$,收缩
 - b. 相应更新 V_{i-1}, E_{i-1} 及边权 $\{w(e)\}$
- 3. $V_2 = \{s, t\}$ 对应所求划分, $E_2 = \{e\}$ 对应割边

分析

- 1. 输入图 G = (V, E, w), 初始化 $V_n \leftarrow V, E_n \leftarrow E$
- 2. For $i = n, n 1, \dots, 3$ do
 - a. 以概率分布 $\frac{w(e)}{\sum_{e \in E_i} w(e)}$ 随机取边 $e \sim E_i$,收缩
 - b. 相应更新 V_{i-1}, E_{i-1} 及边权 $\{w(e)\}$
- 3. $V_2 = \{s, t\}$ 对应所求划分, $E_2 = \{e\}$ 对应割边

固定一个最小割 S。算法返回 S 当且仅当 S 中的边从未被收缩,称为 S 存活

第 n 轮 (i = n) 收缩边,S 存活的概率是?

假设第 $n, n-1, \ldots, i+1$ 轮收缩边 S 均存活。那么第 i 轮收缩边,S 存活的概率是?

分析

引理

假设 S 是 G=(V,E) 的最小割,则 $w(S)\leq \frac{2}{n}w(E)$

分析

定理

对 G 的任意一个最小割 S,算法返回 S 的概率至少是 $\frac{2}{n(n-1)}$

推论

若 |V|=n,则 G 至多有 $\binom{n}{2}$ 个最小割

成功概率

定理

对 G 的任意一个最小割 S,算法返回 S 的概率至少是 $\frac{2}{n(n-1)}$

- $ightharpoonup O(n^2 \log n)$ 次独立重复试验,以高概率至少成功一次
- ▶ 时间复杂度 $O(mn^2 \log n)$
- ▶ 能否改进?