AVAILABLE COPY

ide of CTL responses are shown as follows: + up to 2 LU (Lytic Units) or 10 SV (Secretory Units); ++ up to 200 LU or 100 SU; +++ up to 200 LU Immunogenicity of HIV-and HCV-derived minigenes in HLA transgenic animals.

0 Su; ++++more than 2009 LU or 1000 SU. Magnitude represents number of independent cultures yielding positive responses.

	Tel. No.: 202-371	-2600	·	
	For: Optimized N	Aulti-Epitope Constru	ucts and Uses Th	ereof
		/ /≷//		L
ASC (7)		///// /		-1:
		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		L
1 //₹//		4444	, 16	
72.57	~	景 4.5	⊤ ′0′	
F. E.	++ 5/8	8/1/	1/6 0/6	
	-,	\$\8\2	+ >	
11/2/1		(A)	9	-
77,27			+ 2/6	
386 386	0/19	43 E		<u> </u>
3 8	0	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
		<u>//≒//</u> @		
		77777		
		15/12 24		K
7///4	~		و.	
271 271	++ 4/13	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	+ 1/6	4
3 7	. 4	1/1/1/	+ 4/6	3
		常学级	+ *	
4554	· _	2//		F
Nef 221	++ 9/1,	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
Z 7	T 67	77.277		Ţ
		\$ 3 5 E	++ 5/6	
1/17/		1999	. 47	K
11111		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
11:21		<i>HHH</i>		1
		<i>\\7\\\</i> ≥		LNCAT
V/ - -//	•	77777		-
		2 2		
1/2/			~ !	-
- 60	+6	S1/E A2	0/12	
PS 498	+++ 18/19	SS 7	0	F.
	-			
//6//		2 2		4
KKKKA		≥ 54 54		F.
11:11				
		2 Z		1
//6//		ر السام	++ 6/12	
		NS4 CORE 1769 35 A2 A2	+/>	
Vpr 62	++ 10/14	A2 769	2 0/12 0/12 2/12	1
5	÷>	8 5 4	- /~	
>	-	NS4 NS5 1851 2611 A2 A2	- 12	
		8 8 A	6	ķ
V/ */ /		42 85 42 A2 85 42	-	
		S ∞ 4	· >	Ľ.
1/5/		NS4 1590 A2	+	
		S ₹ A	++ 5/12	<u> </u>
Pol 774	_ &	132 A2	± 2	
	0	S = <	+++ 2/12	
Pol 448	++ 1/13 0/8	NS4 CORE 1812 132 A2 A2	†‡ 1/12	70
Q 4	+/	A2 181 2A	+>	L
	ncy		p کر احک	

	· or opiniazog ma	7-27-7-7)
		//\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
37			=
			A3 A3 A3
5/1		/////	
~1	. ~	流污	2
386 (1%) 134	++ 5/8	18/1/	•
-	ري	12/3	_
77		(A)	A
5⁄/		4////	
77	•	A 52	~
ၛၟ႞	0/19	S 2	Y
ا تج	6	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	A3 A3 A24 B7 A3
77		11711	2
		11:11	ш
		(1111)	4
		11:211	A2
44	~	\longrightarrow	_
\sqsubset \Box	++ 4/13	3,8	2
7	4		1
		(4)/2	~
2//		(S. 2)	ď
4	· -	K~~~	
17	++ 9/11	1/20//	33
221 531 271	0	77.277	A1 A3 B7
\overline{m}		45.52	~3
$2/\lambda$		12 88 ∞	A
~		11111	-
V_{i}		11:21	A
11		4444	
		11:211	A
://	•	77777	
44		22	A 2
5/1			•
\angle	_	2	
ام	+++ 18/19	VS1/E2 728	A2
498	+ &	S	
\ddot{H}	· 		
		7	42
//		1.5	~
77		9	×
:71			
U		2	R
		ļ	
		줆쬬	7
-4		ອ "	~
4	++ 10/14	¥ 89	7
ا ۽	÷>	S [2]	A
-	-		~.
77		S 58	X
		<u> </u>	
		\$ 52	2
448 1/4 1/4		NS4 CORE NS4 NS4 NS5 NS4 CORE 1812 132 1590 1851 2611 1769 35	A2 A2 A2 A2 A2 A2 A2 A2 A2
<i>{/</i> }		4 0	2
//		₹ 50 E	¥
\mathcal{L}	∞		
ž I	1%	解め	42
	~	8 -	•
૱ [±Ξ	4 2	2
4	++ - 2/13 0/8	≅ ≅	A
	0) >	<u> </u>	ı
	agnitude equency		
	e E		
	ල් දු		

Sheet 1, of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be

ngnitude equency

assigned Inventors: SETTE et al. Tel. No.: 202-371-2600

25
22
NS1/E CORE CORE NS5 NS4
16
.NS4 1863/14 NS1/E 16 N 18.64 2 632
NS4 1590
CORE 7 1769 9 1851 1590
5
NS3 ENV1
CORE PADRE 2

9/0

Ø

Sheet 2 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003
Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned

.44

Synthetic polypeptides encoding HIV-derived HTL epitopes

Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses Thereof

2/90

HIV pol 303 SPGPG HIV pol 335 303 **GPGPG** HIV pol 711 HIV gag 171 HIV pol 335 HIV pol HIV gag 171 SPGPG HIV pol 711 unctional peptides* pacer optimized M. polyepitope olyepitope

ction peptides comprise either 10 amino acids from the N—terminal epitope and 5 amino acids from the erminal epitope.

FIG.2E

Sheet 4 of 90
Appl. No. 10/677,754; Filed: Oct 3, 2003
Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned
Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses Thereof

N-FI	A*0201	A*0201 A*0201 A*1101	A*1101	A*1101	A*0201	A*1101 A*0201 A*1101		A*1101	B*0701 A*1101 A*0201 A*1101	A*1101
ignal	Pol 448	Pol 774 Pol 347	Pol 347	Pol 98	Vpr 62	Pol 930		Pol 893 Env 61	Pol 498 Pol 929	Pol 929 —
	09	62	10	28	19	20	458	27	192	œ
	A*1101	A*1101 B*0701	A*1101	A*0201	A*1101	A*0201 A*1101 A*0201	A*1101		A*0201 B*0701	A*0201
	-Pol 931	Pol 931 Env 250	1	Nef 221	Nef 100	Nef 221 Nef 100 Gag 271	Env 46	Gag 386	Env 46 Gag 386 Env 259 Env 134	Env 134
	3	100	28	36	6	167	3	29	423	102
					FIG	FIG.3A				

-44

Sheet 5 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned Inventors: SETTE et al. Tel. No.: 202-371-2600

A*1101 A*0201 A*0201 A*0201 A*0201 A*0201 A*0201 A*1101 A*1101 A*1101 A*1101 A*0201 pol 149 PADRE® core 18 pol 552 pol 551 pol 455 env 183 core 141 pol 665 env 335 A*1101 A*0201 A*0201 A*0201 A*0201 A*0201 A*1101 A*1101 Pol 149 PADRE® core 18 pol 629 pol 562 pol 551 pol 455 env 183 core 141 pol 665 14 2 A*353 8 5 76 10 4 11 A*1101 A*0201 A*0201 A*0201 A*0201 A*0201 A*1101	pol 149 PADRE® core 18 C1 pol 562 pol 551 pol 455 env 183 core 141 pol 665
A*0201 A*0201 A*1101 pol 551 pol 455 env 183 core 141 5 76 10 4 A*0201 A*0201 A*0201 A*0201 pol 562 pol 551 pol 455 env 183 8 5 76 10 A*0201 A*0201 A*0201 A*0201	C1 pol 562 pol 551
A*0201 A*0201 A*1101 pol 551 pol 455 env 183 core 141 5 76 10 4 A*0201 A*0201 A*0201 A*0201 pol 562 pol 551 pol 455 env 183 8 5 76 10 A*0201 A*0201 A*0201 A*0201	pol 562 pol 551
A*0201 A*1101 pol 455 env 183 core 141 76 10 4 A*0201 A*0201 pol 551 pol 455 env 183 5 76 10 A*0201 A*0201	pol 551
A*0201 A*0201 A*1101 pol 455 env 183 core 141 76 10 4 A*0201 A*0201 A*0201 pol 551 pol 455 env 183 5 76 10 A*0201 A*0201 A*0201	
	env 183
	-
A*1101 pol 665 11 A*1101 A*1101 A*1101	core 141
A*1101 A*0201 pol 665 env 335 11 5 A*1101 A*1101 A*0201 core 141 pol 665 env 335 4 11 5 A*1101 A*1101 A*0201	599 od
A*0201 env 335 5 A*0201	env 335
For: Optimized Multi-Epitope Constructs and Uses Thereof 5/90	

-specific multiepitope constructs

C₁ = either W, Y, L, K, R, C, N or G

.. 41}

Tel. No.: 202-371-2600 For: Optimized Multi-Epitope Constructs and Uses

-41

100 Mean CTL Response (∆LU) 10 0% 0% 78% 31% 63% 54% 83% 94% Nef 221 Gag 271 Gag 386 Pol 774 Pol 498 Pol 448 Vpr 62 Env 134 HLA-A2 Epitopes

Sheet 7 of 90

-41

Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be

assigned

Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses Thereof

Sheet 8 of 90
Appl. No. 10/677,754; Filed: Oct 3, 2003
Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned
Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses Thereof

-41

Sheet 9 of 90
Appl. No. 10/677,754; Filed: Oct 3, 2003
Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned
Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses
Thereof

FIG.7

Sheet 11 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned
Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses Thereof

- 40}

11/90

	1				
201	386			Z	
A*0201	gag		B*0702		
	GAAA		B*	A gag	
A*0201	134			NAM	
A*0	env		A*1101	929	
	GAA		*	M po	
B*0702	ef :94		_	7 KW	
å	\$		A*1101	inv 4.	
	ADRE			Pol 893 K gag 237 N env 47 KAAA pol 929 NAAA gag 545 N	
	ㅈ 모		B*0702	g 23.	
B*0702	259		æ	<u>8</u>	
B*0	env		702	893	
20	50 X		B*0702	Pol	
B*0702	env 2			<u> </u>	
	gnal pol 448 GAA pol 498 NAA env 250 K env 259 K PADRE KA nef 94 GAA env 134 GAAA gag 386		A*1101	pol 722 GAAA pol 347 K env 61 K	
201	498			7 X	
A*0201	<u>8</u>	A*1101	1101	34	
	85		¥	<u>\</u> ₩	
A*0201	448			2 GA	
A*020	le le		A*1101	J 72	
•	gue		¥	<u>p</u>	J

B*0702

A*1101

A*1101

A*0201

75

<u>ĕ</u>

86

盈

<u>₹</u>

971

<u>@</u>

₹

γ

Z

nef

Sheet 12 of 90
Appl. No. 10/677,754; Filed: Oct 3, 2003
Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned
Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses
Thereof

12/90

·act

								•
					₩			
		GA		5	47		,	
	A*1101	env 134 GA pol 929 GA		A*1101	env			
	A*1	pol			ㅈ	ļ		
		GA		702	250			
	5	134		B*0702	env		201	271
	A*0201	env			NAAA		A*0201	gag
		_		201	62		7	<u>z</u>
	01	47	:	A*0201	vpr		B*0702	ef 9
	A*1101	3			Z		8	<u> </u>
	A)d }		201	386			₹
	0.5	12		A*0201	gag		5	48
	B*0702	rev			¥		A*0201	00 4
		¥		1	21			Z
		env 259 KAA pol 971 KAA pol 98 K PADRE K rev 75 K pol 347		A*0201	GAAA nef 221 NA gag 386 N vpr 62 NAAA env 250 K env 47 KAA		A*1101	gag 237 NAAA gag 545 NAAA env 61 N pol 448 NAAA nef 94 N gag 271
		K			₹		*	<u> </u>
	101	86						≸
	A*110	pod		A*0201	498		2	45
		₩,		A*C	lod		B*0702	g 5
	11	111			*		ä	<u>8</u>
•	A*1101	ol 97		702	893			₩
	A)d V		B*0702	10		~	- 2
		₩		ш	Mp		B*0702	1 23
	B*0702	259		01	pol 722 NA pol 893 KA pol 498		*	
_	B*C	env		A*1101	7 10			
5		nal				3		

Sheet 13 of 90

Appl. No. 10/677,754; Filed: Oct 3, 2003

Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned

Inventors: SETTE et al.

Tel. No.: 202-371-2600

For: Optimized Multi-Epitope Constructs and Uses Th

			For: Optimi	zed Multi-Ep	itope Construc	cts and Uses T	hereof				
				. !	3/90			٠ -	"]	
. At		_		7		7	*		(A)		
			Z		φ Σ		3				()
	[\$]	72	11	702	18	5	368		PADRE		6
	KAAA	A*2402	8	B*0702	<u> </u>	A*0101	<u></u>		ᅩ		(0
	17	*	듑				¥	201	879		FIG.9C
A*0101	Gag 317		GAAA Vpr 46 KAA Nef 100 GAAA Pol 295 NAAA Env 671	_	Pol 498 NAAA Pol 186	22	Pol 163 GAAA Pol 684 KAAA Env 259 KA Pol 368 KAAA	A*0201	Pol		ш
	X	15	95	A*0201	49	B*0702	≥		Víf 7 NAA		رئ ا
5	32	A*0101	2	A*(집	å	ᇤ	10	7	B*0702	Gag 545
A*0201	N Pol 132	<	A				≸	A*1101	₹	B#C	ğ
₹	8				3		*	•	ㅗ		₹
	<u></u>		9	201	Env 651 GAA	A*0101	89	22	1881		≹
201	22	A*1101	9	A*0201	2	A*C	<u> </u>	A*2402	Env 681	=	72
A*0201	Nef 221	A*	Nef		KA		*	¥		A*0201	Pol 772 NAAA
	Z			2	893		20		GAAA		7
02	237	72	9	B*0702	<u>∞</u>	A*0201	16.	7	94	10	
B*0702	Gag	A*2402	7	*	8	A*0	<u></u>	B*0702		A*0201	ā
Ф.		*	<u>×</u>		≸		Z	*	Nef	 	<u>></u>
	O X		₹	7	75	<u> </u>			₹		≸
702	250	=		B*0702	NA Pol 244 KAAA Rev 75 KAA Pol	A*0201	Pol 533 KAAA Gag 386	10	971	01	47 KAAA Vpr 59
B*0		A*020	Pol 448	*	8	*	용	A*11	Po	A*11(Env ,
	NAA Env	**	집		🔰		≸∣			¥	
	Z		Æ	~	4		3		K Vpr 14 KA		N
101	727	-	32	A*2402	24	402	53.	A*2402	7	201	16.
A*1101	Pol 722	A*1101	-	*X	Pol	A*2402	ᅙ	A*2	\ <u>\$</u>	A*0201	_≥
	-	*	N Gag 162 GA	1	¥		조				조
2	347		Z	_		101		402	530	5	74
A*1101	5	101	19	A*0201	2	A*1101	ا م	A*2402	Pol 530	A*0201	7
¥	Pol	A*1101	E	*	Gag 271		<u>\$</u>]	A	¥	A A
	7 K		N Env 61				≹		¥		₹
A*2402	29.	10		10	183	05	55	10	929	1	134
A*2	Pol 597	A*0201	Vpr 62	A*0201	Pol 183 N	A*2402	Env 55 KAAA Pol 98	A*1101	3,	A*0201	>
<u>ව</u>		•	4			4	<u>u</u>	*	<u> </u>	¥	Env 134 NAA Pol 774 K Env 163

Sheet 14 of 90
Appl. No. 10/677,754; Filed: Oct 3, 2003
Dkt No. 2060,0200003/HCC/PAC; Group Unit: To be assigned
Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses Thereof 14/90 .44 104 102 FIG.10 Network

Sheet 15 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned

Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses

Thereof

	Thereof			15/00
Şequence	Length	Code	. 200	15/90
VLAEAMSQV	9	A		
ILKEPVHGV	9	В		
TLNFPISPI	9	Č		
SLLNATDIAV	10	D		
QMAVF I HNFK	10	Ē		
VTVYYGVPVWK	11	F	202	
FPVRPQVPL	9 .	G		
YPLASLRSLF	10	H	· ·	
VIYQYMDDLY	10	Ï		
IYQEPFKNL	9	j		
IWGCSGKL I	9	K		
MOOSONET	J		J	
AA	C+1 ranking	N-1 ranking		
K	2.20	0.64)	
С	2.00	1.00		
N	2.00	0.00		
G	1.80	1.33		
T	1.50	0.00		
Α	1.33	1.21		
F	1.33	1.00	,	
S	1.33	0.00	204	
W	1.20	0.00	204	
Q	1.20	0.00		
R	1.17	1.57		
М	1.00	0.00		
Υ	1.00	0.75		
Ī	0.86	0.50		
L .	0.75	2.20		
V	0.00	1.19		
D	0.00	0.00		
Н	0.00	0.00		
E	0.00	0.00		
Р	0.00	0.00	J	•

Sheet 16 of 90
Appl. No. 10/677,754; Filed: Oct 3, 2003
Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned
Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses Thereof

16/90

MaxInsertions={enter value here} 208

OutputToScreen=yes/no 210

OutputToFile=yes/no 212

. 44

MinimumAccepted={enter value here} 214

MaxDuplicateFunctionValues={enter value here} 216

MaxSearchTime (min.)={enter value here} 218

Exhaustive=yes/no 220

NumStochasticProbes={enter value here} 222

MaxHitsPerProbe={enter value here} 224

RandomProbeStart=yes/no 226

FIG.11B

Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned
Inventors: SETTE et al. Tel. No.: 202-371-2600 For: Optimized Multi-Epitope Constructs and Uses Thereof 17/90 Start 301 -41 Receive Input Data and Parameters 303 Generate List of All Epitope Pairs 305 For Each Epitope Pair, Determine Set of Insertions That Provides A Maximum Function Value -307 Generate List of Optimal Insertions For Each Epitope Pair 309 Exhaustive **Stochastic Exhaustive** or Stochastic? 321 311 **Evaluate** Initiate New Every Permutation Search Probe 313 t ≥ MaxSearchTime -317 315 **Continue Evaluating** N Permutation(s) In # Hits ≥ MaxHits? **Current Probe** 323 319 Output Best Set N #Probes ≥ of Optimum MaxNumProbes? **Permutations**

Sheet 17 of 90

Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned

Inventors: SETTE et al. Tel. No.: 202-371-2600

For: Optimized Multi-Epitope Constructs and Uses

Thereof

Junctional Analyzer run on Saturday, February 26, 2000 09:06:23 pm. The following non-zero AA weights will be used.

AA	N-1 ranking	C+1 ran	king
A	1.21	1.33	<u> </u>
C F	1.00	2.00	
F	1.00	1.33	
G	1.33	1.80	
Ī	0.50	0.86	
K	0.64	2.20	
L	2.20	0.75	
M	0.00	1.00	204
N	0.00	2.00	
Q	0.00	1.20	
R .	1.57	1.17	
S	0.00	1.33	ŀ
Ţ	0.00	1.50	
٧	1.19	0.00	
W	0.00	1.20	
Υ	0.75	1.00	ノ

The following 10 motif specifications will be used to search for junctionals.

Count Motif Specification

Code	Peptide	Length	
Α	VLAEAMSQV	9 -	`
В	ILKEPVHGV	9	
С	TLNFPISPI	9	
D	SLLNATDIAV	10	
Ε	QMAVF I HNFK	10	
F	VTVYYGVPVWK	11	202
G	FPVRPQVPL	9	
Н	YPLASLRSLF	10	
I	VIYQYMDDLY	10	
J	IYQEPFKNL	9	
K	IWGCSGKL I	9	

Sheet 19 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned
Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses Thereof

19/90

OutputToScreen = No

OutputToFile = Yes

MinimumValueAccepted = 0

MaxDuplicateFunctionValues = 50

SearchTime = 5

NumStochosticProbes = 10

MaxHitsPerProbe = 25

RandomProbeStart = Yes

Col. 1 Code 1	Col. 2	Col. 3	Col. 4	Col. 5	Col. 6 Code 2	Col. 7	Col. 8 N	Col. 9 C+N	Col. 10 J	Col. 11 MaxFunc.
AAAAAAAABBBBBBBBBBBBCCCCCCCCCC	000000000000000000000000000000000000000	A A A A A A A A A A A A A A A A A A A	A A A A A	LLLLRRR GRGRRRGRRGGGRRLRRRRRRR	BCDEFGH-JKACDEFGH-JKABDEFGH-JK	2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	2.20 2.20 2.20 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57	4.40 4.40 4.40 4.41 3.14 3.14 3.14 3.14 3.14 3.14 3.14	00002101000000110101001111110100	8.80 8.80 8.80 1.57 3.14 6.23 6.28 6.28 6.28 6.28 6.28 6.28 6.28 6.28

FIG.13B

.41

Sheet 20 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be

assigned
Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses Thereof

20/90

Code 1 II	l2	13	14	Code 2	С	N	C+N	J	MaxFunc
1 CCCCCGCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	13 · A AAAA A AAAAA AAAAA AAAAAAAAAAAAAA	4 LILL RGLGRIJILRRRLRRLGGGGGGGGRRRRRLRLGRRRGGGGGGGGGG	CO ABCEFGH-JKABCDEGH-JKABCDEFH-JKABCDEFG-JK	2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	N 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.2	C+N 4.40 4.40 4.40 4.40 4.40 4.40 4.40 4.4	J 000000010000000000001100011110121124021001000111	MaxFund 8.80 8.80 8.80 8.80 8.80 8.80 8.80 8.8

Sheet 21 of 90

Appl. No. 10/677,754; Filed: Oct 3, 2003
Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned
Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses
Thereof

21/90

21/90

44	,
	i

Code 1	11	12	13	14	Code 2	С	N	C+N	J	MaxFunc
	KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK	A A A A A A A A A A A A A A A A A A A	A A A A A A A A A A A A A A A A A A A	GGGGGGRGGGRRRRRRRRRRLLLLR RLR	ABCDEFGHJKABCDEFGH-KABCDEFGH-J	2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20	1.33 1.33 1.33 1.33 1.33 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57	2.93 2.93 2.93 2.93 2.93 2.93 2.93 2.93	010001101001001210100000010010	5255552352563663136369999334646 525552352563663136369999934646

Junctional Analyzer took 142.77 seconds.

FIG.13D

Sheet 22 of 90
Appl. No. 10/677,754; Filed: Oct 3, 2003
Dkt No. 2060,0200003/HCC/PAC; Group Unit: To be assigned
Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses Ti

.41

Sheet 23 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned

Inventors: SETTE et al. Tel. No.: 202-371-2600

For: Optimized Multi-Epitope Constructs and Uses Thereof

FIG.14B-1

Sheet 24 of 90
Appl. No. 10/677,754; Filed: Oct 3, 2003
Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned
Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses
Thereof

Thereof

·AT

FIG. 14B-3

Sheet 25 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned
Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses Thereof

-41

25/90

60mer polypeptide (- GPGPG spacers)
75mer polypeptide (+ GPGPG spacer)

FIG.15

Sheet 26 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned
Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses Thereof

. 44

Sheet 27 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned
Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses
Thereof

27/90

Pol 303
೧೯೧೯೧
Pol 989
೧೯೧೯೧
Pol 619
೧೯೧೯೧
Pol 758
೧೯೧೯೧
Pol 674
೧೯೧೯೧
Pol 335
രെയാ
Pol 915
೧೯೧೯೧
Pol 874
೧೯೧೯೧
Env 566
೧೯೧೯೧
Gag 171
೧೯೧೯೧
G Gog C 294/ P 298 C 298
രമരമര
Env 729
೧೯೧೯೧
Vpu 31
೧೯೧೯೧
Pol 596
೧೯೧೯೧
Pol 956
೧೯೧೯೧

DAND	2
	ാമധ
집	
ပေရ	၀ င
Pe	686
വെ	ഉപഗ
Po	
೨೩೦	೨೩೮
Pol	
200	ാമംഗ
P. P.	
000	ാമധ
I .	335
200	ാമധ
Pa Ba	915
೧೯೧	ാമധ
P. P.	874
೦೩೦	ഉപഠ
Env	566
೦೩೦	ാമധ
	171
೧೯	აჟა
	234/ 298
ညြင	၁၀ပ
EN G	
Ę	
Ę	6 729 6 6
Vpu G	31 G 729
Pol P Vpu P Env	596 G 31 G 729 G 6
Pol P Vpu P Env	596 G 31 G 729 G 6
Pol	596 6 31 6 729 6 6
Pol	596 6 31 6 729 6 6 6 6 6 6 6 6 6

-41

38 ೧೯೧೯೧

<u>೧೯೧೯೧</u>

303 303 ರಾಗಾಗ

Sheet 28 of 90
Appl. No. 10/677,754; Filed: Oct 3, 2003
Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned

Inventors: SETTE et al. Tel. No.: 202-371-2600

For: Optimized Multi-Epitope Constructs and Uses Thereof

28/90

·ar

EP-HIV-1090

MGMQVQIQSLFLLLLWVPGSRGKLVGKLNWAGAAILKEPVHGVNAACPKVSFEPIKIPIHYCAPAKAKFVAAW TLKAAAKAFPVRPQVPLGAAKLTPLCVTLGAAAVLAEAMSQVKVYLAWVPAHKGAAAAIFQSSMTKKTTLFCA SDAKNIPYNPQSQGVVKHPVHAGPIANVTVYYGVPVWKKAAAQMAVFIHNFKNAAAYPLASLRSLFNLTFGWC FKLNRILQQLLFINAKIQNFRVYYRKAAVTIKIGGQLKKVPLQLPPLKAMTNNPPIPV

ATGGGAATGCAGGTGCAGATCCAGAGCCTGTTTCTGCTCCTCTGTGGGTGCCCGGATCCAGAGGAAAGCTGG
TGGGCAAACTCAACTGGGCCGGAGCTGCAATCCTGAAGGAGCCCGTCCACGGGGTGAATGCCGCTTGCCCTAA
AGTCAGCTTCGAACCAATTAAGATCCCCATTCATTACTGTGCACCTGCCAAAGCTAAGTTTGTGGCCGCTTGG
ACCCTCAAGGCCGCTGCAAAAGCCTTCCCAGTGAGGCCCCAGGTGCCTCTGGGCGCCCGCTAAACTCACACCAC
TGTGCGTCACTCTGGGAGCCGCTGCAGTGCTGGCAGAGGCCATGTCCCAAGTGAAGGTGTATCTGGCTTGGGT
GCCCGCCCACAAGGGGGCCGCTGCAGCCATCTTTCAGTCTAGCATGACCAAGAAAAACAACTCTGTTCTGTGCC
TCCGACGCTAAGAACATCCCTTATAATCCACAGTCTCAGGGCGTGGTCAAGCATCCCGTGCACGCCGGACCTA
TTGCTAACGTGACCGTGTACTATGGGGTCCCAGTGTGGAAGAAAAGCCGCTGCACAGATGGCCGTGTTTATTCA
CAATTTCAAAAACGCCGCTGCATACCCCCTCGCCAGCCTGAGATCCCTCTTCAACCTGACATTCCGCTGGTGC
TTTAAGCTGAACCGGATCCTGCAGCAACTGCTCTTTATCAATGCTAAAATCCAGAACTTCCGCGTCTACTATA
GGAAGGCTGCAGTGACTATCAAAATTGGCGGACAACTGAAGAAAGTGCCTCTCCCAGCTGCCCCCTCTCCAAGGC
AATGACCAACAATCCCCCTATCCCAGTCTGA

HIV-CPT

MGMQVQIQSLFLLLLWVPGSRGIPIHYCAPAKAAKIQNFRVYYRKAAVTIKIGGQLKKAKFVAAWTLKAAAKV PLQLPPLKAIFQSSMTKKLTPLCVTLGAQMAVFIHNFKGAKVYLAWVPAHKNAIPYNPQSQGVVKAILKEPVH GVGAAALTFGWCFKLNAVLAEAMSQVNRILQQLLFINAAACPKVSFEPIKVTVYYGVPVWKKAAHPVHAGPIA NAAAYPLASLRSLFNAAATTLFCASDAKNKLVGKLNWANAAAFPVRPQVPLNMTNNPPIPV

Sheet 29 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned

Inventors: SETTE et al. Tel. No.: 202-371-2600

For: Optimized Multi-Epitope Constructs and Uses Thereof

29/90

HIV-FT

MQVQIQSLFLLLLWVPGSRGKLVGKLNWAMASDFNLPPVAIFQSSMTKVTIKIGGQLKRILQQLLFIMAVFIH NFKIPYNPQSQGVVTTLFCASDAKILKEPVHGVQMAVFIHNFKGAAVFIHNFKRCPKVSFEPIKIQNFRVYYR LTFGWCFKLQVPLRPMTYKMTNNPPIPVTVYYGVPVWKVLAEAMSQVIPIHYCAPAKLTPLCVTL

ATGCAGGTGCAGATCCAGAGCCTGTTTCTGCTCCTCCTGTGGGTGCCCGGATCCAGAGGAAAGCTGGTGGGGA
AGCTGAACTGGGCCATGGCCAGCGATTTCAACCTGCCCCCCGTGGCCATCTTCCAGAGCAGCATGACCAAGGT
GACCATCAAGATCGGGGGGCAGCTGAAGAGGGATCCTGCAGCAGCTGCTGTTCATCATCGCCCGTGTTCATCCAC
AACTTCAAGATCCCCTACAACCCCCAGAGCCAGGGGGTGGTGACCACCCCTGTTCTGCGCCAGCGATGCCAAGA
TCCTGAAGGAGCCCGTGCACGGGGTGCAGATGGCCGTGTTCATCCACAACTTCAAGGGCGCCGCCGTGTTCAT
CCACAACTTCAAGAGGTGCCCCAAGGTGAGCTTCGAGCCCATCAAGATCCAGAACTTCAGGGTGTACTACAGG
CTGACCTTCGGGTTGCTTCAAGCTGCAGGTGCCCCTGAGGCCCATGACCTACAAGATGACCAACAACCCCC
CCATCCCCGTGACCGTGTACTACGGGGTGCCCCGTGTGGAAGGTGCTGGCCGAGGCCATGAGCCAGGTGATCCC
CATCCACTACTGCGCCCCCGCCAAGCTGACCCCCCTGTGCGTGACCCTG

FIG.18B

Sheet 30 of 90

Appl. No. 10/677,754; Filed: Oct 3, 2003

Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned

Inventors: SETTE et al.

Tel. No.: 202-371-2600

For: Optimized Multi-Epitope Constructs and Uses

Thereof

30/90

HIV-TC

MGMQVQIQSLFLLLLWVPGSRGYWQATWIPEWKAIFQSSMTKKVYLAWVPAHKNAACPKVSFEPIKHPVHAGP IANLTFGWCFKLNKMIGGIGGFIKFRDYVDRFYKAAARILQQLLFINTTLFCASDAKNQMVHQAISPRGAKLV GKLNWAGAAAIYETYGDTWKAAQVPLRPMTYKGAAAVTVLDVGDAYNAAARYLKDQQLLNTLNFPISPINMTN NPPIPVNAPYNTPVFAIKAAAVPLQLPPLKAAIPYNPQSQGVVKALLQLTVWGIGAAILKEPVHGVNAAAFPI SPIETVKVWKEATTTLFKAAAVTIKIGGQLKKIYQEPFKNLKAAAVLAEAMSQVNLVGPTPVNIGAAAEVNIV TDSQYKAAAIPIHYCAPAKAVIYQYMDDLYKAAAQMAVFIHNFKNAATYQIYQEPFKPYNEWTLELKAKIQNF RVYYRKAFPVRPQVPLGAAAIWGCSGKLIKVMIVWQVDRNAAKAACWWAGIKAKFVAAWTLKAAAKLTPLCVT LNAAMASDFNLPPVKSLLNATDIAVNVTVYYGVPVWKKAAAAIIRILQQLKRAMASDFNLNAAAYPLASLRSL F

ATGGGGATGCAGGTGCAGATCCAGAGCCTGTTTCTGCTCCTCCTGTGGGTGCCCGGATCTAGAGGATACTGGC AAGCTACTTGGATTCCAGAATGGAAAGCTATCTTTCAATCCTCAATGACGAAGAAGGTATACCTGGCATGGGT CCCAGCACACAAGAACGCCGCTTGCCCAAAGGTGTCCTTTGAACCCCATTAAACACCCAGTGCACGCAGGGCCA ATAGCGAATTTGACATTCGGGTGGTGCTTCAAACTAAACAAAATGATCGGCGGCATTGGAGGCTTTATCAAGT TTAGAGATTACGTGGACCGATTCTATAAAGCCGCTGCCCGTATACTCCAGCAGCTACTATTCATCAACACCAC TCTCTTCTGCGCTTCAGACGCTAAGAACCAAATGGTACACCAAGCCATAAGCCCTAGAGGAGCCAAGCTCGTA GGGAAATTAAATTGGGCGGGTGCAGCAGCAATCTACGAGACTTACGGCGATACCTGGAAAGCAGCCCAGGTTC CGTTACGCCCAATGACCTATAAAGGCGCAGCAGCAGTAACAGTTCTAGATGTAGGAGACGCTTACAACGCTGC CGCAAGATACCTAAAAGATCAGCAGTTACTCAACACACTAAATTTCCCAATTAGCCCGATAAACATGACAAAT AACCCACCAATTCCCGTCAATGCTCCCTACAACACTCCAGTATTCGCAATCAAAGCCGCTGCTGTCCCCCTGC AGCTCCCTCTGAAAGCTGCGATACCTTACAACCCACAGAGCCAAGGTGTTGTCAAAGCACTGCTTCAGCT AACAGTTTGGGGAATTGGTGCTGCAATTCTAAAAGAGCCAGTTCATGGGGTTAACGCCGCCGCCTTCCCAATC AGTCCTATTGAGACTGTGAAAGTATGGAAAGAAGCCACACCACACTTTTTAAGGCAGCCGCAGTTACAATTA AAATAGGGGGCCAACTTAAGAAAATATACCAGGAACCTTTCAAGAATCTCAAAGCCGCTGCAGTGCTCGCCGA GGCTATGTCACAGGTGAATTTGGTCGGACCAACACCCGTAAACATCGGAGCCGCAGCCGAAGTGAACATAGTC ACCGACTCACAGTACAAAGCCGCTGCAATACCCATACATTATTGTGCTCCCGCAAAGGCCGTGATCTATCAAT ATATGGACGACCTGTATAAGGCCGCCGCGCAGATGGCAGTCTTTATCCACAACTTTAAAAAACGCAGCTACTTA TCAGATCTACCAGGAACCATTCAAACCGTACAATGAGTGGACCTTGGAACTAAAGGCCAAAATTCAGAACTTC AGGGTATATTATAGAAAAGCATTTCCAGTGAGGCCCCAGGTGCCTCTGGGTGCCGCAGCAATATGGGGATGTT CTGGAAAACTGATCAAGGTGATGATTGTATGGCAAGTGGACAGAAATGCAGCTAAGGCAGCCTGTTGGTGGGC CTTAATGCAGCCATGGCCTCTGATTTCAACCTTCCCCCTGTAAAATCCCTGCTTAATGCGACAGATATCGCAG TCAACGTAACAGTATATTATGGCGTGCCAGTCTGGAAAAAAGCCGCCGCGGCCATAATTCGGATACTGCAGCA GCTGAAAAGAGCTATGGCGAGTGACTTCAACCTGAATGCGGCCGCCTACCCCTTGGCATCGTTAAGGTCACTA TTTTGA

Sheet 31 of 90
Appl. No. 10/677,754; Filed: Oct 3, 2003
Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned
Inventors: SETTE et al.

Inventors: SETTE et al. Tel. No.: 202-371-2600

For: Optimized Multi-Epitope Constructs and Uses Thereof

31/90

HCV.1

MGMQVQIQSLFLLLLWVPGSRGLLFNILGGWVDLMGYIPLVYLVAYQATVILAGYGAGVRLIVFPDLGVHMWNFISGI YLLPRRGPRLYLVTRHADVVLVGGVLAALLFLLLADAFLLLADARVWMNRLIAFACTCGSSDLYLSAFSLHSYGVAGA LVAFKLPGCSFSIFKTSERSQPRLIFCHSKKKFWAKHMWNFIPFYGKAIRMYVGGVEHRQLFTFSPRRRLGVRATRKV GIYLLPNRAKFVAAWTLKAAA*

HCV.2

MGMQVQIQSLFLLLLWVPGSRGDLMGYIPLVAKFVAAWTLKAAALLFLLLADALIFCHSKKKQLFTFSPRRYLVTRHA DVYLLPRRGPRLCTCGSSDLYHMWNFISGIFWAKHMWNFAKFVAAWTLKAAAILAGYGAGVYLVAYQATVGVAGALVA FKIPFYGKAIRMYVGGVEHRVLVGGVLAAFLLLADARVLPGCSFSIFAKFVAAWTLKAAAKTSERSQPRRLGVRATRK RLIVFPDLGVWMNRLIAFALSAFSLHSYLLFNILGGWVVGIYLLPNR*

HCV.3s1

MGMQVQIQSLFLLLLWVPGSRGYLVAYQATVAKFVAAWTLKAAALLFLLLADALIFCHSKKKYLVTRHADVLGFGAYM SKCTCGSSDLYHMWNFISGIFWAKHMWNF*

GAATTCGCCGCCACCATGGGAATGCAGGTGCAGATCCAAAGCCTGTTTCTGCTCCTCCTGTGGGTGCCCGGATCCAGA
GGATACCTCGTCGCCTACCAGGCCACTGTGGCTAAATTCGTGGCAGCCTGGACACTGAAAGCTGCAGCTCTGCTCTTC
CTGCTCCTGGCCGATGCACCTCATCTTCTGCCATTCCAAGAAAAAGTATCTGGTCACCAGACATGCTGACGTGCTGGGG
TTTGGCGCCTACATGAGCAAGTGCACCTGTGGCAGCTCCGACCTGTATCACATGTGGAACTTTATTTCTGGAATCTTT
TGGGCCAAGCACATGTGGAATTTCTGAAAGCTT

Sheet 32 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned

Inventors: SETTE et al. Tel. No.: 202-371-2600

For: Optimized Multi-Epitope Constructs and Uses Thereof

32/90

. 44

HCV.3s2

MGMQVQIQSLFLLLWVPGSRGVLVGGVLAAAKFVAAWTLKAAAFLLLADARVLSAFSLHSYILAGYGAGVWM NRLIAFAIPFYGKAIVAGALVAFKVGIYLLPNR*

HCV.3s2(-3)

MGMQVQIQSLFLLLLWVPGSRGVLVGGVLAAAKFVAAWTLKAAAFLLLADARVLSAFSLHSYILAGYGAGVWM NRLIAFA*

GAATTCGCCGCCACCATGGGAATGCAGGTGCAGATCCAAAGCCTGTTTCTGCTCCTCTGTGGGTGCCCGGAT CCAGAGGAGTCCTGGTGGGCGGCGTCCTGGCCGCTGCTAAGTTTGTCGCTGCTTGGACACTGAAGGCAGCCGC TTTCCTGCTCCTGGCAGACGCCAGGGTGCTGTCTGCCTTCAGCCTCCACTCCTACATCCTCGCAGGGTATGGC GCAGGCGTGTGGATGAATCGGCTGATCGCCTTTGCCTGAGGATCC

HCV.3s3

MGMQVQIQSLFLLLLWVPGSRGDLMGYIPLVAKFVAAWTLKAAARLGVRATRKLLFNILGGWVRMYVGGVEHR RLIVFPDLGVGVAGALVAFKLPGCSFSIFKTSERSOPRQLFTFSPRRYLLPRRGPRL

HCV.PC3

MGMQVQIQSLFLLLLWVPGSRGLLFNILGGWVKAKFVAAWTLKAAALADGGCSGGAYRLIVFPDLGVKFWAKH MWNFIGVAGALVAFKKOLFTFSPRR*

GAATTCGCCGCCACCATGGGAATGCAGGTGCAGATCCAAAGCCTGTTTCTGCTCCTCTTGTGGGTGCCCGGAT CCAGAGGACTGCTCTTCAACATCCTGGGCGGATGGGTGAAGGCCAAGTTCGTGGCTGCCTGGACCCTGAAGGC TGCCGCTCTGGCCGACGGGGGATGCAGCGGGGGGGGCTTACAGGCTCATTGTCTTTCCCGATCTCGGAGTCAAA TTTTGGGCAAAGCACATGTGGAATTTCATCGGGGTGGCCGGAGCCCTGGTCGCTTTTAAAAAGCAGCTCTTCA CCTTCTCCCCAAGACGGTGAGGTACC Sheet 33 of 90

Appl. No. 10/677,754; Filed: Oct 3, 2003

Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned

Inventors: SETTE et al.

Tel. No.: 202-371-2600

For: Optimized Multi-Epitope Constructs and Uses

Thereof

33/90

.41

HCV.PC4

MGMQVQIQSLFLLLWVPGSRGRLGVRATRKKAKFVAAWTLKAAAKTSERSQPRNLPGCSFSIFNDLMGYIPL VKYLLPRRGPRLNTLCGFADLMGYRMYVGGVEHR*

HCV.2431(1P)

MGMQVQIQSLFLLLLWVPGSRGVLVGGVLAAAFLLLADARVLSAFSLHSYILAGYGAGVWMNRLIAFAGAAAR LGVRATRKKAAAKTSERSQPRNLPGCSFSIFNDLMGYIPLVKYLLPRRGPRLNTLCGFADLMGYRMYVGGVEH RKLLFNILGGWVKAAALADGGCSGGAYRLIVFPDLGVKFWAKHMWNFIGVAGALVAFKKQLFTFSPRRNGYLV AYQATVAAALLFLLLADALIFCHSKKKYLVTRHADVLGFGAYMSKCTCGSSDLYHMWNFISGIFWAKHMWNFK AAAAKFVAAWTLKAAA

Sheet 34 of 90
Appl. No. 10/677,754; Filed: Oct 3, 2003
Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned

Inventors: SETTE et al. Tel. No.: 202-371-2600

For: Optimized Multi-Epitope Constructs and Uses Thereof

34/90

HCV.4312(1P)

MGMQVQIQSLFLLLLWVPGSRGRLGVRATRKKAAAKTSERSQPRNLPGCSFSIFNDLMGYIPLVKYLLPRRGPRLNTLC GFADLMGYRMYVGGVEHRKLLFNILGGWVKAAALADGGCSGGAYRLIVFPDLGVKFWAKHMWNFIGVAGALVAFKKQLF TFSPRRNGYLVAYQATVAAALLFLLLADALIFCHSKKKYLVTRHADVLGFGAYMSKCTCGSSDLYHMWNFISGIFWAKH MWNFKKAAAVLVGGVLAAAFLLLADARVLSAFSLHSYILAGYGAGVWMNRLIAFANAAAKFVAAWTLKAAA*

AOSI.K

MGMQVQIQSLFLLLLWVPGSRGHTLWKAGILYKAKFVAAWTLKAAAFLPSDFFPSVKFLLSLGIHLYMDDVVLGVGLSR YVARLFLLTRILTISTLPETTVVRRQAFTFSPTYKWLSLLVPFV

HBV.1

MGMQVQIQSLFLLLLWVPGSRGHTLWKAGILYKAKFVAAWTLKAAAFLPSDFFPSVFLLSLGIHLYMDDVVLGVGLSRY VARLFLLTRILTISTLPETTVVRRQAFTFSPTYKWLSLLVPFVIPIPSSWAFTPARVTGGVFKVGNFTGLYLPSDFFPS VTLWKAGILYKNVSIPWTHKLVVDFSQFSRSAICSVVRRALMPLYACI

Sheet 35 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned

Inventors: SETTE et al. Tel. No.: 202-371-2600

For: Optimized Multi-Epitope Constructs and Uses Thereof

35/90

HBV.2

MGMQVQIQSLFLLLLWVPGSRGHTLWKAGILYKAKFVAAWTLKAAAFLPSDFFPSVNFLLSLGIHLYMDDVVLGVGLSR YVARLFLLTRILTISTLPETTVVRRQAFTFSPTYKGAAAWLSLLVPFVNIPIPSSWAFKTPARVTGGVFKVGNFTGLYN LPSDFFPSVKTLWKAGILYKNVSIPWTHKGAALVVDFSQFSRNSAICSVVRRALMPLYACI

ATGGGAATGCAGGTGCAGATCCAGAGCCTGTTTCTGCTCCTCTGTGGGTGCCCGGGTCCAGAGGACACACCCTGTGGA
AGGCCGGAATCCTGTATAAGGCCAAGTTCGTGGCTGCCTGGACCCTGAAGGCTGCCGCTTTCCTGCCTAGCGATTTCTT
TCCTAGCGTGAACTTCCTGCTGTCCCTGGGAATCCACCTGTATATGGATGACGTGGTGCTGGGAGTGGGACTGTCCAGG
TACGTGGCTAGGCTGTTCCTGCTGACCAGAATCCTGACCATCTCCACCCTGCCAGAGACCACCGTGGTGAGGAGGCAGG
CCTTCACCTTTAGCCCTACCTATAAGGGAGCCGCTGCCTGGCTGAGCCTGCTGGTGCCCTTTGTGAATATCCCTATCCC
TAGCTCCTGGGCTTTCAAGACCCCAGCCAGGGTGACCGGAGGAGGAGTGTTTAAGGTGGGAAACTTCACCGGCCTGTATAAC
CTGCCCAGCGATTTCTTTCCTAGCGTGAAGACCCTGTGGAAGGCCGGAATCCTGTACAAGAATGTGTCCATCCCTTGGA
CCCACAAGGGAGCCGCTCTGGTGGTGGACTTTTCCCAGTTCAGCAGAAATTCCGCTATCTGCTCCGTGGTGAGGAGAGC
TCTGATGCCACTGTATGCCTGTATCTGA

PfCTL.1

MQVQIQSLFLLLLWVPGSRGILSVSSFLFVNAAAQTNFKSLLRNLPSENERGYKAAALLACAGLAYKKAAAAKFVAAWT LKAAAKAFMKAVCVEVNAAASFLFVEALFNATPYAGEPAPFKAAAKYKLATSVLKAGVSENIFLKNAAAYFILVNLLIK AGLLGVVSTV

PfCTL.2

MQVQIQSLFLLLLWVPGSRGFVEALFQEYNAAAKYLVIVFLINALACAGLAYKKFYFILVNLLKAALFFIIFNKNAAAK FVAAWTLKAAAKFILVNLLIFHNFQDEENIGIYKLPYGRTNLKAAAVLLGGVGLVLNFLIFFDLFLVKAVLAGLLGVV

Sheet 36 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned Inventors: SETTE et al. Tel. No.: 202-371-2600

For: Optimized Multi-Epitope Constructs and Uses
Thereof 36/91

.44

PfCTL.3

MQVQIQSLFLLLLWVPGSRGVFLIFFDLFLNAAAPSDGKCNLYKAAAVTCGNGIQVRKLFHIFDGDNEIKAHVLSHNSY EKNYYGKQENWYSLKKILSVFFLANAAAKFIKSLFHIFKAAALYISFYFIKAKFVAAWTLKAAAKAAAYYIPHQSSLKA AAGLIMVLSFL

PfCTL/HTL(N)

MQVQIQSLFLLLLWVPGSRGSSVFNVVNSSIGLIMVLSFLGPGPGLYISFYFILVNLLIFHINGKIIKNSEGPGPGPDS IQDSLKESRKLSGPGPGVLAGLLGVVSTVLLGGVGLVLGPGPGLPSENERGYYIPHQSSLGPGPGQTNFKSLLRNLGVS ENIFLKGPGPGFQDEENIGIYGPGPGKYLVIVFLIFFDLFLVGPGPGKFIKSLFHIFDGDNEIGPGPGKSKYKLATSVL AGLLGPGPGLPYGKTNLGPGPGRHNWVNHAVPLAMKLIGPGPGMRKLAILSVSSFLFVEALFQEYGPGPGVTCGNGIQV RGPGPGMNYYGKQENWYSLKKGPGPGPSDGKCNLYADSAWENVKNVIGPFMKAVCVEVGPGPGKILSVFFLALFFIIFN KGPGPGHVLSHNSYEKGPGPGKYKIAGGIAGGLALLACAGLAYKFVVPGAATPYAGEPAPF

ATGGGAATGCAGGTGCAGAGCCTGTTTCTGCTCCTCCTGTGGGTGCCCGGATCCAGAGGAAGTAGTGTTCACATGTTGTGAACTCATCAATTGGTCTGATCATGGTGCTGAGCTTTCTCG

GGCCAGGGCCAGGATTATATTTCTTTCTACTTCATCCTTGTCAACCTGTTAATATTCCACATTAACGGCAAAATAAT AAAGAACAGTGAAGGCCCTGGGCCTGGGCCTGACTCGATCCAGGATTCTCTAAAAGAATCGAGGAAGCTCTCCGGACCA GGCCCTGGTGTACTCGCCGGGTTGCTGGGAGTAGTTAGCACAGTGCTGTTAGGAGGCGTCGGCCTCGTCTTAGGACCTG GACCAGGTCTGCCGTCCGAAAACGAAAGAGGATACTACATACCTCACCAGAGCAGCCTCGGCCCAGGCCCCGGACAAAC CAATTTCAAATCCCTCTTGCGAAATCTAGGAGTGAGCGAGAACATATTTCTTAAAGGACCCGGTCCCGGCTTTCAGGAC TGGTGGGCCCAGGTCCCGGAAAGTTCATTAAATCACTCTTCCACATTTTTGACGGAGATAACGAGATAGGACCCGGTCC ACAAATCTTGGCCCCGGTCCAGGACGGCACAACTGGGTGAATCATGCGGTTCCATTGGCCATGAAACTAATCGGGCCCG GTCCAGGCATGCGCAAACTTGCAATTCTAAGCGTAAGTTCATTTCTGTTCGTAGAGGCACTGTTTCAAGAATATGGCCC AGGACCTGGCGTCACATGTGGGAATGGGATCCAGGTGAGAGGACCGGGACCTGGTATGAACTATTACGGTAAACAGGAA AATTGGTACTCCCTGAAAAAGGGTCCAGGCCCCGGCCCCTCAGATGGTAAGTGCAACCTGTATGCTGACTCAGCATGGG AGAACGTAAAAAATGTAATAGGCCCATTCATGAAGGCAGTTTGTGTCGAAGTCGGACCAGGCCCAGGAAAAATACTTTC TGTCTTCTTCCTAGCTCTTCTTCATCATCTTCAACAAGGGACCAGGGCCAGGTCACGTGTTATCCCATAACTCTTAT GAAAAAGGGCCAGGACCTGGGAAATACAAAATCGCAGGAGGGATCGCCGGCGGGCTAGCGCTCCTTGCCTGCGCAGGCT TGGCTTACAAATTCGTTGTACCAGGAGCTGCAACACCCTATGCAGGAGAACCTGCCCCATTTTGAAGATCTGC

Sheet 37 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned

Inventors: SETTE et al. Tel. No.: 202-371-2600

For: Optimized Multi-Epitope Constructs and Uses Thereof

37/90

Pf33

MGMQVQIQSLFLLLLWVPGSRGFMKAVCVEVNVTCGNGIQVRKGLIMVLSFLNAALFHIFDGDNEIKAALLACAGLAYK KSFLFVEALFNAAPSDGKCNLYKAAQTNFKSLLRNLPSENERGYKAAGVSENIFLKNAAAYFILVNLLIKAAAILSVSS FLFVNTPYAGEPAPFKAAAKYKLATSVLKAAVFLIFFDLFLNYYIPHQSSLKAAGLLGNVSTVGAVLLGGVGLVLNLAC AGLAYKKAKFIKSLFHIFKAAFYFILVNLLKAFLIFFDLFLVKALFFIIFNKNYYGKQENWYSLKFVEALFQEYNAAAK FVAAWTLKAAAKILSVFFLANAVLAGLLGNVNFQDEENIGIYKAAALYISFYFIKAFILVNLLIFHNAALPYGRTNLKA AHVLSHNSYEKNAAAKYLVIVFLI

GCCGCCACCATGGGAATGCAGGTGCAGATCCAGAGCCTGTTTCTGCTCCTCCTGTGGGTGCCCGGATCCAGAGGATTTA TGAAAGCTGTCTGTGTAGAGGTGAATGTAACATGCGGTAACGGAATTCAGGTGAGAAAAGGGACTCATCATGGTACTCAG CTTTCTGAACGCAGCCCTGTTCCACATCTTTGACGGAGACAATGAAATCAAAGCCGCATTGCTCGCCTGTGCCGGACTA GCCTATAAAAAGAGTTTCCTTTTCGTTGAAGCACTATTTAACGCAGCACCCAGTGACGGTAAATGCAACCTATATAAAG CAGCTCAGACTAATTTCAAAAGCCTGTTAAGAAATCTGCCCTCAGAGAATGAAAGGGGGTTACAAAGCCGCCGGCGTGTC CGAGAATATTTTCCTGAAGAACGCCGCTGCTTATTTTATACTCGTGAATCTACTCATAAAGGCAGCCGCAATCCTTTCA GTGTCCAGCTTTCTGTTTGTTAACACACCATATGCGGGCGAGCCGGCTCCTTTCAAGGCTGCAGCAAAATACAAGCTTG CCACATCAGTATTGAAAGCAGCTGTGTTTTTGATATTCTTTGATCTTTTTTTAAACTACTACATACCTCATCAGTCTAG TCTTAAAGCAGCCGGGCTACTGGGGAACGTCTCTACTGTGGGGGCCGTCTTACTTGGAGGAGTTGGCCTCGTGTTGAAC CTCGCGTGCGCAGGTCTGGCCTACAAAAAAGCGAAATTCATCAAGTCTCTGTTCCACATTTTTAAAGCCGCATTCTATT TCATACTAGTGAACCTTCTCAAAGCTTTCCTGATCTTCTTCGATCTATTCCTCGTAAAAGCGCTATTCTTCATTATCTT TAGCAGGACTTCTAGGCAACGTGAACTTTCAAGACGAAGAGAATATAGGCATCTACAAAGCCGCAGCACTGTACATTTC ATTCTACTTCATCAAGGCCTTCATACTGGTCAACCTTCTGATATTTCATAATGCAGCACTGCCATATGGGAGAACCAAC TTGAAAGCGGCCCACGTGTTGAGCCACACTCCTACGAGAAGAACGCCGCCGCGAAATATCTCGTCATTGTCTTCCTGA TTTGA

TB. 1 MQVQIQSLFLLLLWVPGSRGRMSRVTTFTVKALVLLMLPVVNLMIGTAAAVVKALVLLMLPVGAGLMTAVYLVGAAAMA LLRLPVKRMFAANLGVNSLYFGGICVGRLPLVLPAVNAAAAKFVAAWTLKAAAKAAARLMIGTAAAGFVVALIPLVNAM TYAAPLFVGAAAAMALLRLPLV

Sheet 38 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned

Inventors: SETTE et al. Tel. No.: 202-371-2600

For: Optimized Multi-Epitope Constructs and Uses Thereof

38/90

BCL A2 #90

.41

MQVQIQSLFLLLLWVPGSRGIMIGHLVGVNRLLQETELVNAKVAEIVHFLNAKVFGSLAFVNAYLSGANLNVG AAYLQLVFGIEVNAAAKFVAAWTLKAAAKAAAVVLGVVFGINSMPPPGTRVNAAAATVGIMIGVNAKLCPVQL WV

ATGCAGGTGCAGATCCAGAGCCTGTTTCTGCTCCTCCTGTGGGTGCCCGGGTCCAGAGGAATTATGATCGGCC
ATCTGGTGGGCGTCAACAGACTGCTGCAGGAAACCGAGCTGGTGAATGCCAAGGTGGCCGAAATTGTGCACTT
TCTCAACGCAAAGGTGTTTGGTTCCCTGGCTTTTGTCAATGCCTATCTGAGCGGCGCCTAACCTCAACGTCGGA
GCCGCCTACCTCCAGCTGGTCTTCGGCATCGAGGTCAACGCTGCTGCAAAATTCGTGGCAGCTTGGACCCTCA
AGGCTGCAGCAAAGGCTGCCGCCGTCGTGCTCGGAGTGTTCGGGATCAACTCTATGCCACCTCCCGGGAC
TAGGGTCAATGCTGCCGCCGCAACAGTGGGAATCATGATTGGGGTGAATGCCAAACTGTGCCCAGTGCAACTG
TGGGTGTGA

BCL A2 #88

MQVQIQSLFLLLLWVPGSRGVVLGVVFGINAAAAKFVAAWTLKAAAKVAEIVHFLNAYLSGANLNVGAAYLQL VFGIEVNIMIGHLVGVNRLLQETELVNAKVFGSLAFVNAKLCPVQLWVNAAAATVGIMIGVNSMPPPGTRV

ATGCAGGTGCAGATCCAGAGCCTGTTTCTGCTCCTCCTGTGGGTGCCCGGGTCCAGAGGAGTCGTGCTGGGAG
TCGTCTTCGGCATTAATGCCGCCGCTGCAAAGTTCGTGGCTGCCTGGACCCTGAAGGCCGCAGCTAAAGTGGC
AGAGATCGTGCACTTTCTGAACGCCTACCTGAGCGGAGCAAATCTGAACGTCGGCGCTGCCTATCTGCAGCTC
GTGTTTGGAATTGAAGTGAACATCATGATTGGACATCTGGTGGGCGTGAACAGGCTGCTCCAGGAAACTGAGC
TGGTCAACGCTAAAGTGTTCGGGTCTCTCGCCTTTGTGAACGCTAAGCTCTGCCCCGTCCAACTCTGGGTCAA
TGCCGCAGCCGCTACAGTGGGGATCATGATCGGCGTGAACTCCATGCCTCCACCAGGGACCAGAGTGTGA

BCL A2 #63

MQVQIQSLFLLLLWVPGSRGKLCPVQLWVNAAAATVGIMIGVNIMIGHLVGVNRLLQETELVNAKVAEIVHFL NAKVFGSLAFVNAYLSGANLNVGAAYLQLVFGIEVNAAAKFVAAWTLKAAAKAAAVVLGVVFGINSMPPPGTR V

ATGCAGGTGCAGATCCAGAGCCTGTTTCTGCTCCTCCTGTGGGTGCCCGGGTCCAGAGGAAAGCTCTGCCCCG
TGCAACTGTGGGTCAACGCCGCCGCCGCAACCGTCGGCATTATGATCGGGGTGAACATCATGATCGGACACCT
GGTCGGCGTGAACAGGCTGCTGCAGGAGACAGAACTGGTCAATGCCAAGGTGGCTGAAATTGTCCATTTCCTG
AATGCCAAAGTGTTCGGCTCTCTCGCTTTCGTGAACGCTTATCTGAGCGGAGCTAACCTCAACGTGGGGGCCG
CATACCTCCAGCTCGTCTTTGGGATTGAGGTGAATGCCGCAGCTAAATTTGTCGCTGCCTGGACCCTGAAGGC
AGCAGCCAAGGCTGCCGCAGTGGTGCTGGGAGTGGTGTTTTGGAATCAATTCCATGCCTCCACCAGGCACTAGA
GTGTGAGGATCC

Sheet 39 of 90

Appl. No. 10/677,754; Filed: Oct 3, 2003

Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned
Inventors: SETTE et al.

Tel. No.: 202-371-2600

For: Optimized Multi-Epitope Constructs and Uses

Thereof

39/90

. 44

Prostate 1

LTFFWLDRSVKAAAVLVHPQWVLTVKAAALLQERGVAYIKAALLLSIALSVNPLVCNGVLQGVKAAIMYSAHD TTVKAAAFLTPKKLQCVNAMMNDQLMFLNAGLPSIPVHPVKAAALGTTCYVGAAILLWQPIPVNFLRPRSLQC VKAFLTLSVTWIGVNALLYSLVHNLGAATLMSAMTNL

HIV-1043

MEKVYLAWVPAHKGIGGGPGPGQKQITKIQNFRVYYRGPGPGWEFVNTPPLVKLWYQGPGPGYRKILRQRKID RLIDGPGPGQHLLQLTVWGIKQLQGPGPGGEIYKRWIILGLNKIVRMYGPGPGQGQMVHQAISPRTLNGPGPG IKQFINMWQEVGKAMYGPGPGWAGIKQEFGIPYNPQGPGPGKTAVQMAVFIHNFKRGPGPGSPAIFQSSMTKI LEPGPGPGEVNIVTDSQYALGIIGPGPGHSNWRAMASDFNLPPGPGPGAETFYVDGAANRETKGPGPGGAVVI QDNSDIKVVPGPGPGFRKYTAFTIPSINNE

Sheet 40 of 90
Appl. No. 10/677,754; Filed: Oct 3, 2003
Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned

Inventors: SETTE et al. Tel. No.: 202-371-2600

For: Optimized Multi-Epitope Constructs and Uses Thereof

40/90

HIV-1043 PADRE

.41

MEKVYLAWVPAHKGIGGGPGPGQKQITKIQNFRVYYRGPGPGWEFVNTPPLVKLWYQGPGPGYRKILRQRKID RLIDGPGPGQHLLQLTVWGIKQLQGPGPGGEIYKRWIILGLNKIVRMYGPGPGQGQMVHQAISPRTLNGPGPG IKQFINMWQEVGKAMYGPGPGWAGIKQEFGIPYNPQGPGPGKTAVQMAVFIHNFKRGPGPGSPAIFQSSMTKI LEPGPGPGEVNIVTDSQYALGIIGPGPGHSNWRAMASDFNLPPGPGPGAETFYVDGAANRETKGPGPGGAVVI QDNSDIKVVPGPGPGFRKYTAFTIPSINNEGPGPGAKFVAAWTLKAAA

HIV 75mer

EKVYLAWVPAHKGIGGPGPGQGQMVHQAISPRTLNGPGPGSPAIFQSSMTKILEPGPGPGFRKYTAFTIPSIN NE

GAGAAGGTGTACCTGGCCTGGGTGCCCACAAGGGAATCGGAGGACCTGGCCCTGGACAGGGACAGATGG TGCACCAGGCCATCAGCCCTAGGACCCTGAACGGACCTGGACCTGGAAGCCCTGCCATCTTCCAGAGCAGCAT GACCAAGATCCTGGAGCCCGGACCTGGACCTGGATTCAGGAAGTACACCGCCTTCACCATCCCCAGCATCAAC AACGAGTGA

FIG.18M

Sheet 41 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned

Inventors: SETTE et al. Tel. No.: 202-371-2600

For: Optimized Multi-Epitope Constructs and Uses Thereof

41/90

PfHTL

.44

MQVQIQSLFLLLLWVPGSRGRHNWVNHAVPLAMKLIGPGPGKCNLYADSAWENVKNGPGPGKSKYKLATSVL AGLLGPGPGQTNFKSLLRNLGVSEGPGPGSSVFNVVNSSIGLIMGPGPGVKNVIGPFMKAVCVEGPGPGMNY YGKQENWYSLKKGPGPGGLAYKFVVPGAATPYGPGPGPDSIQDSLKESRKLNGPGPGLLIFHINGKIIKNSE GPGPGAGLLGNVSTVLLGGVGPGPGKYKIAGGIAGGLALLGPGPGMRKLAILSVSSFLFV

FIG. 18N

Sheet 42 of 90

Appl. No. 10/677,754; Filed: Oct 3, 2003

Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned

Inventors: SETTE et al.

Tel. No.: 202-371-2600

For: Optimized Multi-Epitope Constructs and Uses

Thereof

*Protein	Sequence	Restriction
HIV gag 386	VLAEAMSQV	HLA-A2
HIV gag 271	MTNNPPIPV	HLA-A2
HIV pol 774	MASDFNLPPV	HLA-A2
HIV pol 448	KLVGKLNWA	HLA-A2
HIV pol 163	LVGPTPVNI	HLA-A2
HIV pol 498	ILKEPVHGV	HLA-A2
HIV pol 879	KAACWWAGI	HLA-A2
HIV pol 132	KMIGGIGGFI	HLA-A2
HIV pol 772	RAMASDFNL	HLA-A2
HIV pol 183	TLNFPISPI	HLA-A2
HIV env 134	KLTPLCVTL	HLA-A2
HIV env 651	LLQLTVWGI	HLA-A2
HIV env 163	SLLNATDIAV	HLA-A2
HIV nef 221	LTFGWCFKL	HLA-A2
HIV vpr 59	AIIRILQQL	HLA-A2
HIV vpr 62	RILQQLLFI	HLA-A2
HIV pol 929	QMAVFIHNFK	HLA-A3
HIV pol 722	KVYLAWVPAHK	HLA-A3
HIV pol 971	KIQNFRVYYR	HLA-A3
HIV pol 347	AIFQSSMTK	HLA-A3
HIV pol 98	VTIKIGGQLK	HLA-A3
HIV env 61	TTLFCASDAK	HLA-A3
HIV env 47	VTVYYGVPVWK	HLA-A3
HIV nef 100	QVPLRPMTYK	HLA-A3
HIV vif 7	VMIVWQVDR	HLA-A3
HIV gag 162	QMVHQAISPR	HLA-A3
HIV gag 545	YPLASLRSLF	HLA-B7
HIV gag 237	HPVHAGPIA	HLA-B7
HIV pol 186	FPISPIETV	HLA-B7
HIV pol 893	IPYNPQSQGVV	HLA-B7
HIV env 259	IPIHYCAPA	HLA-B7
HIV env 250	CPKVSFEPI	HLA-B7
HIV nef 94	FPVRPQVPL	HLA-B7 .
HIV rev 75	VPLQLPPL	HLA-B7
HIV pol 684	EVNIVTDSQY	HLA-A1
HIV gag 317	FRDYVDRFY	HLA-A1
HIV pol 368	VIYQYMDDLY	HLA-A1
HIV pol 295	VTVLDVGDAY	HLA-A1
HIV pol 533	IYQEPFKNL	HLA-A24
HIV pol 244	PYNTPVFAI	HLA-A24
HIV pol 530	TYQIYQEPF	HLA-A24
HIV pol 597	YWQATWIPEW	HLA-A24
HIV env 681	IWGCSGKLI	HLA-A24
HIV env 671	RYLKDQQLL	HLA-A24

FIG.19A

Sheet 43 of 90

Appl. No. 10/677,754; Filed: Oct 3, 2003

Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned

Inventors: SETTE et al.

Tel. No.: 202-371-2600

For: Optimized Multi-Epitope Constructs and Uses Thereof

Protein	Sequence	Restriction
HIV env 55	VWKEATTTLF	HLA-A24
HIV vpr 46	IYETYGDTW	HLA-A24
HIV vpr 14	PYNEWTLEL	HLA-A24
HIV gag 298	KRWIILGLNKIVRMY	HLA-DR
HIV pol 596	WEFVNTPPLVKLWYQ	HLA-DR
HIV pol 956	QKQITKIQNFRVYYR	HLA-DR
HIV pol 712	KVYLAWVPAHKGIGG	HLA-DR
HIV gag 294	GEIYKRWIILGLNKI	HLA · DR
HIV pol 711	EKVYLAWVPAHKGIG	HLA'-DR
HIV env 729	QHLLQLTVWGIKQLQ	HLA-DR
HIV gag 171	QGQMVHQAISPRTLN	HLA-DR
HIV pol 335	SPAIFQSSMTKILEP	HLA-DR
HIV env 566	IKQFINMWQEVGKAMY	HLA-DR
HIV pol 303	FRKYTAFTIPSINNE	HLA-DR
HIV pol 758	HSNWRAMASDFNLPP	HLA-DR
HIV pol 915	KTAVQMAVFIHNFKR	HLA-DR
HIV vpu 31	YRKILRQRKIDRLID	HLA-DR3
HIV pol 874	WAGIKQEFGIPYNPQ	HLA-DR3
HIV pol 674	EVNIVTDSQYALGII	HLA-DR3
HIV pol 619	AETFYVDGAANRETK	HLA-DR3
HIV pol 989	GAVVIQDNSDIKVVP	HLA-DR3
HCV NS4 1812	LLFNILGGWV	HLA-A2
HCV NS1/E2 728	FLLLADARV	HLA-A2
HCV NS4 1590	YLVAYQATV	HLA-A2
HCV NS5 2611	RLIVFPDLGV	HLA-A2
HCV CORE 132	DLMGYIPLV	HLA-A2
HCV NS4 1920	WMNRLIAFA	HLA-A2
HCV NS4 1666	VLVGGVLAA	HLA-A2
HCV NS4 1769	HMWNFISGI	HLA-A2
HCV NS4 1851	ILAGYGAGV	HLA-A2
HCV CORE 35	YLLPRRGPRL	HLA-A2
HCV NS1/E2 726	LLFLLLADA	HLA-A2
HCV LORF 1131	YLVTRHADV	HLA-A2
HCV CORE 51	KTSERSQPR	HLA-A3
HCV CORE 43	RLGVRATRK	HLA-A3
HCV ENV1 290	QLFTFSPRR	HLA-A3
HCV NS1/E2 632	RMYVGGVEHR	HLA-A3
HCV NS3 1396	LIFCHSKKK	HLA-A3
HCV NS4 1863	GVAGALVAFK	HLA-A3
HCV NS4 1864	VAGALVAFK	HLA-A3
HCV NS3 1262	LGFGAYMSK	HLA-A3
HCV Core 169	LPGCSFSIF	HLA-B7
HCV NS5 2922	LSAFSLHSY	HLA-A1
HCV NS3 1128	CTCGSSDLY	HLA-A1
HCV NS5 2180	LTDPSHITA	HLA-A1
		· · · · · · ·

-44

Sheet 44 of 90
Appl. No. 10/677,754; Filed: Oct 3, 2003
Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned
Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses Thereof

Protein	Sequence	Restriction
HCV Core 126	LTCGFADLMGY	HLA-A1
HCV NS3 1305	LADGGCSGGAY	HLA-A1
HCV NS4 1765	FWAKHMWNF	HLA-A24
HCV NS5 2875	RMILMTHFF	HLA-A24
HCV NS5 2639	VMGSSYGF	HLA-A24
HCV NS4 1765	FWAKHMWNFI	HLA-A24
P. falciparum SSP2-230	FMKAVCVEV	HLA-A2
P. falciparum EXP1-83	GLLGVVSTV	HLA-A2
P. falciparum CSP-7	ILSVSSFLFV	HLA-A2
P. falciparum LSA1-94	QTNFKSLLR	HLA-A3
P. falciparum LSA1-105	GVSENIFLK	HLA-A3
P. falciparum SSP2-522	LLACAGLAYK	HLA-A3
P. falciparum SSP2-539	TPYAGEPAPF	HLA-B7
P. falciparum LSA1-1663	LPSENERGY	HLA-A1
P. falciparum EXP1-73	KYKLATSVL	HLA-A24
P. falciparum CSP-12	SFLFVEALF	HLA-A24
P. falciparum LSA1-10	YFILVNLLI	HLA-A24
P. falciparum SSP2-14	FLIFFDLFLV	HLA-A2
P. falciparum EXP1-80	VLAGLLGVV	HLA-A2
P. falciparum EXP1-91	VLLGGVGLVL	HLA-A2
P. falciparum SSP2-523	LACAGLAYK	HLA-A3
P. falciparum EXP1-10	ALFFIIFNK	HLA-A3
P. falciparum LSA1-11	FILVNLLIFH	HLA-A3
P. falciparum SSP2-126	LPYGRTNL	HLA-B7
P. falciparum CSP-15	FVEALFQEY	HLA-A1
P. falciparum LSA1-1794	FQDEENIGIY	HLA-A1
P. falciparum LSA1-9	FYFILVNLL	HLA-A24
P. falciparum SSP2-8	KYLVIVFLI	HLA-A24
P. falciparum CSP-394	GLIMVLSFL	HLA-A2
P. falciparum EXP1-2	KILSVFFLA	HLA-A2
P. falciparum CSP-344	VTCGNGIQVR	HLA-A3
P. falciparum LSA1-59	HVLSHNSYEK	HLA-A3
P. falciparum SSP2-207	PSDGKCNLY	HLA-A1
P. falciparum LSA1-1671	YYIPHQSSL	HLA-A24
P. falciparum LSA1-1876	KFIKSLFHIF	HLA-A24
P. falciparum SSP2-13	VFLIFFDLFL	HLA-A24
P. falciparum LSA1-1881	LFHIFDGDNEI	HLA-A24
P. falciparum CSP-55	YYGKQENWYSL	HLA-A24
P. falciparum LSA1-5	LYISFYFI	HLA-A24
P. falciparum CSP-2	MRKLAILSVSSFLFV	HLA-DR
P. falciparum CSP-53	MNYYGKQENWYSLKK	HLA-DR
P. falciparum CSP-375	SSVFNVVNSSIGLIM	HLA-DR
P. falciparum SSP2-61	RHNWVNHAVPLAMKLI	HLA-DR
P. falciparum SSP2-165	PDSIQDSLKESRKLN	HLA-DR3
P. falciparum SSP2-211	KCNLYADSAWENVKN	HLA-DR3

Sheet 45 of 90

Appl. No. 10/677,754; Filed: Oct 3, 2003
Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned
Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses
Thereof

.44

Protein	Sequence	Restriction
P. falciparum SSP2-223	VKNVIGPFMKAVCVE	HLA-DR
P. falciparum SSP2-509		HLA-DR
P. falciparum SSP2-527	GLAYKFVVPGAATPY	HLA-DR
P. falciparum EXP1-71	KSKYKLATSVLAGLL	
P. falciparum EXP1-82	AGLLGNVSTVLLGGV	HLA-DR
P. falciparum LSA1-16	LLIFHINGKIIKNSE	HLA-DR
D foloimom. LCA1 04	OTHERCH I DAIL OVCE	111 A DO
HBV core 18	FLPSDFFPSV	HLA-A2
HBV env 183	FLLTRILTI	HLA-A2
HBV env 335	WLSLLVPFV	HLA-A2
HBV pol 455	GLSRYVARL	HLA-A2
HBV pol 538	YMDDVVLGV	HLA-A2/A1
HBV pol 773	ILRGTSFVYV	HLA-A2
HBV pol 562	FLLSLGIHL	HLA-A2
HBV pol 642	ALMPLYACI	HLA-A2
HBV env 338	FLPSDFFPSV FLLTRILTI WLSLLVPFV GLSRYVARL YMDDVVLGV ILRGTSFVYV FLLSLGIHL ALMPLYACI GLSPTVWLSV	HLA-A2
HBV core 141	STLPETTVVRR	HLA-A3
HBV pol 149	HTLWKAGILYK	
HBV pol 150	TLWKAGILYK	
HBV pol 388	LVVDFSQFSR	HLA-A3
HBV pol 47	NVSIPWTHK	HLA-A3
HBV pol 531	SAICSVVRR	HLA-A3
HBV pol 629	KVGNFTGLY QAFTFSPTYK	HLA-A3/A1
HBV pol 665	QAFTFSPTYK	HLA-A3
HBV core 19	LPSDFFPSV	HLA-B7
HBV env 313	IPIPSSWAF	HLA-B7
HBV pol 354	TPARVTGGVF	HLA-B7
ТВ	RMSRVTTFTV	HLA-A2
TB	ALVLLMLPVV	HLA-A2
ТВ	LMIGTAAAVV	HLA-A2
TB	ALVLLMLPV	HLA-A2
TB	GLMTAVYLV	HLA-A2
ТВ	MALLRLPV	HLA-A2
ТВ	RMFAANLGV	HLA-A2
ТВ	SLYFGGICV	HLA-A2
TB	RLPLVLPAV	HLA-A2
TB .	RLMIGTAAA	HLA-A2
TB	FVVALIPLV	HLA-A2
ТВ	MTYAAPLFV	HLA-A2
ТВ	AMALLRLPLV	HLA-A2
p53 139	KLCPVQLWV	HLA-A2
CEA 687	ATVGIMIGV	HLA-A2
CEA 691	IMIGHLVGV	HLA-A2
Her2/neu 689	RLLQETELV	HLA-A2
MAGE3 112	KVAEIVHFL	HLA-A2

Sheet 46 of 90
Appl. No. 10/677,754; Filed: Oct 3, 2003
Dkt No. 2060,0200003/HCC/PAC; Group Unit: To be assigned
Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses Thereof

41

Protein	Sequence	Restriction
Her2/neu 665	VVLGVVFGI	HLA-A2
p53 149	SMPPPGTRV	HLA-A2
PAP.21.T2	LTFFWLDRSV	HLA-A2
PAP.112	TLMSAMTNL	HLA-A2
PAP.284	IMYSAHDTTV	HLA-A2
PSM.288.V10	GLPSIPVHPV	HLA-A2
PSM.441	LLQERGVAYI	HLA-A2
PSM.469L2	LLYSLVHNL	HLA-A2
PSM.663	MMNDQLMFL	HLA-A2
PSA.3.V11	FLTLSVTWIGV	HLA-A2
PSA.143.V8	ALGTTCYV	HLA-A2
PSA.161	FLTPKKLQCV	HLA-A2
HuK2.4.L2	LLLSIALSV	HLA-A2
HuK2.53.V11	VLVHPQWVLTV	HLA-A2
HuK2.165	FLRPRSLQCV	HLA-A2
HuK2.216.V11	PLVCNGVLQGV	HLA-A2

FIG.19E

Sheet 47 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be

assigned
Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses Thereof

ID#	Epitope	Sequence	Conservation	HLA restriction	Prototype Binding	xRN ¹
924.07 777.03	core 18 env 183	FLPSDFFPSV FLLTRILTI	45 80	A2 A2	3.5 9.8	5 4
1013.01 1168.02	env 335 pol 455	WLSLLVPFV GLSRYVARL	100 55	A2 A2	5.4 55.9	4
1090.77	pol 538	YMDDVVLGV	90	A2/A1	6.4	5
927.11 927.15	pol 562 pol 642	FLLSLGIHL ALMPLYACI	95 95	A2 A2	7.8 12.9	4 3 5 3 4
1083.01	core 141	STLPETTWRR	95	A3/A11	735/4.5	:
1147.16	pol 149	HTLWKAGILYK	100	A3/A1	15.4/15.6	
1069.15	pol 150	TLWKAGILYK	100	A3/A11	2.1/33	5 2 3 3 3
1069.20	pol 388	LVVDFSQFSR	100	A3/A11	6875/17	3
1069.16	pol 47	NVSIPWTHK	100	A3/A11	174/117	3
1090.11	pol 531	SAICSVVRR	95	A3/A11	2189/29	
1142.05	pol 629	KVGNF TGLY	95	A3/A1	58/365	. 3
1090.10	pol 665	QAFTFSPTYK	95	A3/A11	249/8	. 3
988.05	core 19	LPSDFFPSV	45	B7	3026.8	4
1145.04	env 313	IPIPSSWAF	100	B7	42.3	4
1147.04	pol 354	TPARVTGGVF	90	B7	13.2	
1147.02	pol_429	HPAAMPHLL	100	B7	56.6	4
1039.06	env 359	WMMWYWGPSLY	85	A 1	16.3	3 3 3 3
1448.01	core 419	DLLDTASALY	75	A1	2.3	3
1373.88	core 137	LTFGRETVLEY	75	A1	80.0	3
1090.07	pol 415	LSLDVSAAFY	95	A1	6.0	3
20.0271	pol 392	SWPKF AVPNL	95	A24	2.1	2
1373.56	env 332	RFSWLSLLVPF	100	A24	12.0	2
1373.07	core 117	EYLVSFGW	90	A24	16.0	2 2 3
1069.23	pol 745	KYTSFPWLL	· 85	A24	1.0	3

¹ XRN = Cross binding, number of HLA types in the supertype panel of 5 for which significant binding as detected

Sheet 48 of 90

Appl. No. 10/677,754; Filed: Oct 3, 2003
Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned
Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses
Thereof

-44

		Thereo			48/90
		Pol 642	Ø	Pol 642	V 2
•		Core Pol 5 117 642	A24	Env 332	A24
		Pol 415	A1	Env 359	FA
	ç	Core Pol 137 415	A1	Core Env 137 359	A1
	pitope	Pol 392	A24	392	A24
	A1 & A24 epitopes	Core Env 419 332	A24	core 419	¥I.
	8	Core 419	A	Pol 429	87
	•	Pol 429	87	1	A24
		Pol 745	A24		A1
		Pol Env 531 359	A A	Core 117	A24
		Pol 531	æ		
		288 888	₹		
		Pol 47	æ		
		Pol 150	æ		
		Core 1	87		
		Pol 629	æ		
		Env Pol 313 354	83		
			87		
	HBV2 EpiGene	Pol Env Core Pol Env 455 183 141 665 335	Ŋ		
	2 Epi	Pol 665	A3 A3		
	至	Core	•		
		Env 183	ZZ		
		Pol 455	A2		
		Pol 538	A2		
		e Pol 562	A2		
		ORE Core Pol Pol	A 2		
		PADRE			
		Pol PADRE 149 PADRE	æ		
	0 0	Ę			

Sheet 50 of 90

Appl. No. 10/677,754; Filed: Oct 3, 2003

Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned

Inventors: SETTE et al.

Tel. No.: 202-371-2600

For: Optimized Multi-Epitope Constructs and Uses Thereof

50/90

HBV-2

.44

MGMQVQIQSLFLLLLWVPGSRGHTLWKAGILYKAKFVAAWTLKAAAFLPSDFFPSVNFLLSLGIHLYMDDVVLGVGLS RYVARLFLLTRILTISTLPETTVVRRQAFTFSPTYKGAAAWLSLLVPFVNIPIPSSWAFKTPARVTGGVFKVGNFTGL YNLPSDFFPSVKTLWKAGILYKNVSIPWTHKGAALVVDFSQFSRNSAICSVVRRALMPLYACI

ATGGGAATGCAGGTGCAGATCCAGAGCCTGTTTCTGCTCCTCCTGTGGGTGCCCGGGTCCAGAGGACACACCCTGTGG
AAGGCCGGAATCCTGTATAAGGCCAAGTTCGTGGCTGCCTGGACCCTGAAGGCTGCCGCTTTCCTGCCTAGCGATTTC
TTTCCTAGCGTGAACTTCCTGCTGTCCCTGGGAATCCACCTGTATATGGATGACGTGGTGCTGGGAGTGGGACTGTCC
AGGTACGTGGCTAGGCTGTTCCTGCTGACCAGAATCCTGACCATCTCCACCCTGCCAGAGACCACCGTGGTGAGGAGG
CAGGCCTTCACCTTTAGCCCTACCTATAAGGGAGCCGCTGCCTGGCTGAGCCTGCTGGTGCCCTTTGTGAATATCCCT
ATCCCTAGCTCCTGGGCTTTCAAGACCCCAGCCAGGGTGACCGGAGGAGTGTTTAAGGTGGGAAACTTCACCGGCCTG
TATAACCTGCCCAGCGATTTCTTTCCTAGCGTGAAGACCCTGTGGAAGGCCGGAATCCTGTACAAGAATGTGTCCATC
CCTTGGACCCACAAGGGAGCCGCTCTGGTGGTAGCACTTTTCCCAGTTCAGCAGAAATTCCGCTATCTGCTCCGTGGTG
AGGAGAGCTCTGATGCCACTGTATGCCTGTATCTGA

FIG.20D

HBV-2A

MGMQVQIQSLFLLLWVPGSRGHTLWKAGILYKAKFVAAWTLKAAAFLPSDFFPSVNFLLSLGIHLYMDDVVLGVGLS RYVARLFLLTRILTISTLPETTVVRRQAFTFSPTYKGAAAWLSLLVPFVNIPIPSSWAFKTPARVTGGVFKVGNFTGL YNLPSDFFPSVKTLWKAGILYKNVSIPWTHKGAALVVDFSQFSRNSAICSVVRRKAWMMWYWGPSLYKKYTSFPWLLN AHPAAMPHLLKAAADLLDTASALYNAAARFSWLSLLVPFNAASWPKFAVPNLKLTFGRETVLEYKALSLDVSAAFYGA AEYLVSFGVWGAALMPLYACI

ATGGGAATGCAGGTGCAGATCCAGAGCCTGTTTCTGCTCCTCCTGTGGGTGCCGGGTCCAGAGGACACACCCTGTGG
AAGGCCGGAATCCTGTATAAGGCCAAGTTCGTGGCTGCCTGGACCCTGAAGGCTGCCGCTTTCCTGCCTAGCGATTTC
TTTCCTAGCGTGAACTTCCTGCTGTCCCTGGGAATCCACCTGTATATGGATGACGTGGTGCTGGGAGTGGGACTGTCC
AGGTACGTGGCTAGGCTGTTCCTGCTGACCAGAATCCTGACCATCTCCACCCTGCCAGAGACCACCGTGGTGAGGAGG
CAGGCCTTCACCTTTAGCCCTACACAGAATCCTGACCATCTCCACCCTGCCAGAGACCACCGTGGTGAAGATCCCT
ATCCCTAGCTCCTGGGCTTTCAAGACCCCAGCCAGGGTGACCGGAGGAGGTGTTTAAGGTGGGAAACTTCACCGGCCTG
TATAACCTGCCCAGCGATTTCTTTCCTAGCGTGAAGACCCTGTGGAAGGCCGGAATCCTGTACAAGAATGTGTCCATC
CCTTGGACCCACAAGGGAGCCGCTCTGGTGGTGGACCTTTTCCCAGTTCAGCAGAAAATAGCGCCATCTGTTCGGTCGTG
AGAAGGAAAGCCTGGATGATGTGGTACTGGGGTCCTAGTCTGTATAAGAAGTACACCTCATTCCCATGGCTCTTGAAT
GCCCATCCCGCTGCAATGCCACACCTGCTTAAAGCTGCGGCGGATCTGCTGGACACAGCCTCAGCTTTATATAATGCT
GCAGCAAGATTCTCCTGGTTGTCTCTCTTAGTGCCCTTCAACGCAGCTTCCTGGCCCAAAATTTGCCGTTCCGAACCTG
AAGCTCACTTTTTGGAAGAGAGAGACAGTACTTGAATACAAAGCACTAAGCCTTGACGTGCAACTTTTGA
GCAGCAATATCTAGTATCTTTTTGGGGTCTGGGGCGCAGCCCTCATGCCTCTATACGCCTTCCAACGCAGCTTCTTAACGCAGCA

Sheet 51 of 90

Appl. No. 10/677,754; Filed: Oct 3, 2003

Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned

Inventors: SETTE et al.

Tel. No.: 202-371-2600

For: Optimized Multi-Epitope Constructs and Uses

Thereof

51/90

.41

HBV-2B

MGMQVQIQSLFLLLLWVPGSRGHTLWKAGILYKAKFVAAWTLKAAAFLPSDFFPSVNFLLSLGIHLYMDDVVL GVGLSRYVARLFLLTRILTISTLPETTVVRRQAFTFSPTYKGAAAWLSLLVPFVNIPIPSSWAFKTPARVTGG VFKVGNFTGLYNLPSDFFPSVKTLWKAGILYKNVSIPWTHKGAALVVDFSQFSRNSAICSVVRRKEYLVSFGV WGLSLDVSAAFYNAAAKYTSFPWLLNAHPAAMPHLLKAAADLLDTASALYNSWPKFAVPNLKLTFGRETVLEY KAAWMMWYWGPSLYKAAARFSWLSLLVPFGAAALMPLYACI

FIG.20F

Sheet 52 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be

assigned Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses Thereof

- 1													-								
XRN	5	4	4	~	ا ا ا	4	5	~	3	4	2	4	2	3	س	3	3	2	2	2	3
Prototype Binding	3.5	9.8	5.4	7.8	6.4	735/4.5	15.4/15.6	2189/29	249/8	42.3	13.2	56.6	58.5	16.3	2.3	80.0	6.0	2.1	12.0	16.0	1.0
HLA restriction	A2	A 2	A2	A2	A2/A1	A3/A11	A3/A1	A3/A11	A3/A11	<u> </u>	87	87	87	A1	A1	A1	A1	A24	A24	A24	A24
Conservation	45	8	100	95	06	96	100	95	95	1001	06	100	95	85	75	75	95	95	100	06	85
Sequence	FLPSDFFPSV	FLLTRILTI	WLSLLVPFV	FLLSLGIHL	YMDDVVLGV	STLPETTWRR	HTLWKAGILYK	SAICSWRR	QAFTFSPTYK	_]PIPSSWAF	TPARVTGGVF	HPAAMPHLL	FPHCLAFSYM	WAMAYWGPSLY	DLLDTASALY	LTFGRETVLEY	LSLDVSAAFY	- SWPKF AVPNL	RFSWLSLLVPF	EYLVSFGW	KYTSFPWLL
Epitope	core 18	env 183	env 335	pol 562	pol 538	core 141	pol 149	pol 531	pol 665	env 313	pol 354	pol 429	pol 530	env 359	core 419	core 137	pol 415	pol 392	env 332	core 117	pol 745
#aı	924.07	777.03	1013.01	927.11	1090.77	1083.01	1147.16	1090.11	1090.10	1145.04	1147.04	1147.02	1147.05	1039.06	1448.01	1373.88	1090.07	20.0271	1373.56	1373.07	1069.23

assigned
Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses Thereof

53/90

nized	Multi	-Epitope Co	onstru	cts an	d Uses Thereof
Pol	665	SA .	Pol	745	A24
Core	137	A1	Pol	415	A1
Core	18	A2	@	PADRE	
Env	335	A 2	Env	335	A2
En	313	87		141	
Pol	295	A2		429	
lоd	531	£A	Core	137	A1
Env	359	A1	Pol	295	A 2
Юď	530	87	Ьol	354	87
Core	419	A1	Env	359	A1
		A2	Ę Š	313	87
Core	117	A24	En	183	4 2
Pol	354	87	Pol	531	A3
	_	A24		665	
Pol	745	A24	Pol	392	A24
Pol	415	A1	En	332	A24
En∨	183	A2	Pol	530	87
Pol	149	A3	Core	18	¥2
Pol	429	87	Pol	149	A3
Core	141 429	ξĄ	Core	419	A1
æ	PADRE		Core	117 419	A24
Pol	392	A24	Pol	538	A2
اممن			اممن	iniliais.	

-41

Sheet 54 of 90
Appl. No. 10/677,754; Filed: Oct 3, 2003
Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned
Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses
Thereof

Sheet 55 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned

Inventors: SETTE et al. Tel. No.: 202-371-2600

For: Optimized Multi-Epitope Constructs and Uses Thereof

55/90

HBV - 21A

MGMQVQIQSLFLLLLWVPGSRGSWPKFAVPNLKAAAAKFVAAWTLKAAAKSTLPETTVVRRKHPAAMPHLLKAAAHTL WKAGILYKKAFLLTRILTIGALSLDVSAAFYNAAAKYTSFPWLLNAAARFSWLSLLVPFNAATPARVTGGVFKAAEYL VSFGVWGAAAYMDDVVLGVNDLLDTASALYNAAAFPHCLAFSYMKAAAWMMWYWGPSLYKAASAICSVVRRKNFLLSL GIHLNIPIPSSWAFKAAWLSLLVPFVNAFLPSDFFPSVKLTFGRETVLEYKOAFTFSPTYK

ATGGGAATGCAGATCCAGAGCCTGTTTCTGCTCCTCTGTGGGTGCCCGGGTCCAGAGGATCTTGGCCTAAA
TTCGCAGTGCCAAACCTTAAAGCCGCGGCTGCTAAGTTCGTAGCTGCCTGGACACTAAAGGCCGCCGCTAAGAGCACA
CTGCCAGAGACCACCGTGGTCCGGCGAAAGCATCCAGCCGCAATGCCCCACTTGCTCAAAGCAGCCGCCCACACTCTT
TGGAAGGCTGGGATATTGTACAAGAAAGCCTTCCTTCTGACCAGGATATTAACTATCGGAGCTCTGTCACTCGACGTT
TCTGCTGCCTTCTACAACGCGGCGGCAAAATACACTAGCTTTCCATGGCTACTCAACGCAGCCGCCAGATTTTCTTGG
CTATCACTACTGGTGCCATTTAATGCAGCAACACCTGCTAGAGTGACTGGCGGCGTCTTTAAAGCAGCCGAGTACTTG
GTGAGCTTTGGCGTCTGGGGTGCAGCGGCATATATGGATGATGTAGTGTTAGGGGTGAACGACCTCCTGGACACAGCC
AGTGCGCTGTACAATGCAGCTGCATTCCCGCATTGCCTAGCCTTCAGTTATATGAAAGCAGCAGCCTGGATGATGTGG
TACTGGGGACCGTCCCTTTATAAAAGCAGCTTCAGCAATCTGTTCCGTTTGTAGAGAGAAAAAAACTTTTTACTCTCCCTC
GGTATTCACCTGAACATTCCCCATCCCTTCCTCATGGGCATTCAAAGCCGCTTGGCTGAGTCTACTCGTACCTTTCGTT
AATGCATTTCTGCCCAGCGACTTTTTTCCCCTCGGTAAAAACTGACATTCGGACGCGAAACAGTCCTTGAATATAAGCAG
GCCTTCACGTTCTCACCAACCTATAAATGA

FIG.21D

HBV-21B

MGMQVQIQSLFLLLLWVPGSRGYMDDVVLGVNAAAEYLVSFGVWNDLLDTASALYGAAHTLWKAGILYKKAFLPSDFF PSVKAFPHCLAFSYMKAARFSWLSLLVPFNAASWPKFAVPNLKAAAQAFTFSPTYKNAAASAICSVVRRKAFLLTRIL TINIPIPSSWAFKAAWMMWYWGPSLYKAAATPARVTGGVFKAANFLLSLGIHLNLTFGRETVLEYKHPAAMPHLLKAA STLPETTVVRRKWLSLLVPFVNAAAAKFVAAWTLKAAAKLSLDVSAAFYNAAAKYTSFPWLL

Sheet 56 of 90
Appl. No. 10/677,754; Filed: Oct 3, 2003
Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned
Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses Thereof

.41}

ID#	Epitope	Sequence	Conservation	HLA restriction	Prototype Binding	XRN
924.07	core 18	FLPSDFFPSV	45	A2	3.5	5
777.03	env 183	FLLTRILTI	80 100	A2	9.8	4
1013.01	env 335 pol 455	WLSLLVPFV GLSRYVARL	55	A2 A2	5.4 55.9	4 3
1090.77	pol 433	YMDDVVLGV	90	A2/A1	6.4	5
927.11	pol 562	FLLSLGIHL	95	A2	7.8	5 3
1083.01	core 141	STLPETTVVRR	95	A3/A11	735/4.5	4
1147.16	pol 149	HTLWKAGILYK	100	A3/A1	15.4/15.6	5
1069.20	pol 388	LVVDFSQFSR	100	A3/A11	6875/17	5 3 3 3
1069.16	pol 47	NVSIPWTHK	100	A3/A11	174/117	3
1090.11	pol 531	SAICSVVRR	95	A3/A11	2189/29	3
1090.10	pol 665	QAFTFSPTYK	95	A3/A11	249/8	3
988.05	core 19	LPSDFFPSV	45	B7	3026.8	4
1145.04	env 313	IP IPSSWAF_	100	<u>B7</u>	42.3	4
1147.04	pol 354	TPARVTGGVF	90	B7	13.2	2
1147.02	pol 429	HPAAMPHLL	100	B7	56.6	4 5
1147.05	pol 530	FPHCLAFSYM YPALMPLYACI	95 95	B7 B7	58.5 1393.4	ว ว
1359.01 1039.06	pol 640 env 359	WMMWYWGPSLY	<u></u>	A1	16.3	<u>3</u>
1448.01	core 419	DLLDTASALY	75	A1	2.3	ے ع
1373.88	core 137		75 75	A1	80.0	3
1373.78	pol 166	ASFCGSPY	100	A1	247.0	3 3 3
1090.07	pol 415	LSLDVSAAFY	95	A1	6.0	3
1069.08	env 249	ILLLCLIFLL	100	A1	192.0	1
20.0269	env 236	RWMCLRRF I I	95	A24	11.0	3
20.0271	pol 392	SWPKFAVPNL	95	A24	2.1	2
1373.56	env 332	RFSWLSLLVPF	100	A24	12.0	2
1373.38	core 101	LWFHISCLTF	85	A24	6.7	. 3
1373.07	core 117	EYLVSFGVW	90	A24	16.0	2
1069.23	pol 745	KYTSFPWLL	85	A24	1.0	3

FIG.22A

Sheet 57 of 90
Appl. No. 10/677,754; Filed: Oct 3, 2003
Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned
Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses
Thereof

Env 359	¥	S \$	83	57/90
(€)		Pol Core 538 101	N24	
S2	Α3	Pol (538)	42	
335 335	A 2	Pol 166	F	
Pol Pol Env Env Pol Env Pol 538 388 236 332 354 335 531 PADRI	87	Env 236		
£18€	A24	Pol 429	87	
Env 236	A24	Pol Core Pol Env 455 141 429 236	æ	
Pol 388	£	Pol 455	¥2	
Pol 538	A 2	® Pol 47	æ	
ore 19	87)RE		
ore C 37	- B	Pol Pol 531 415 PAURE	_	
17 1.	A24 A1	ol P 31 4	3 A1	
30 CC	B7 &	ol P 92 5	A24 A3	
ore P	7 E	ore F 19 3	11 A	00
Pol Core Pol Core Core Core 745 18 530 117 137 19	A24 A2	ore C	7 7	2E
Pol F	A2 A	Env Env Core Core Core Pol 183 313 117 19 18 419 392	1 /8	i.22B
201 66 4	A1 ,	ore C	754	FIG
Pol Pol Pol 640 429 166	87	Env (C 313	87 /	正
Pol 640	87	Env 183	A 2	
	A1	Env 335	V 2	
Pol Env Core Env 562 313 101 249		Pol Env Pol Env 149 359 640 335	187	
313	87	Env 359	A	
Pol 562	A2 B7 A24	Pol 149	Α3	
Pol 47	æ	Env 249	A 1	
Pol 665	3	Pol 388	A3	
Pol Core Pol Pol 149 419 665 47	¥1	Pol Pol Env 530 388 249	187	
Pol 149	S.	Env 332	A24 A24	
Env Pol 183 392	A2 A24 A3 A1 A3	25 5	A24	
183 183	Y 2		K2	
signal	i	signal		

.44

Sheet 58 of 90

Appl. No. 10/677,754; Filed: Oct 3, 2003

Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned
Inventors: SETTE et al.

Tel. No.: 202-371-2600

For: Optimized Multi-Epitope Constructs and Uses Thereof

.44

FIG.22C

Sheet 59 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned Inventors: SETTE et al.

Tel. No.: 202-371-2600

For: Optimized Multi-Epitope Constructs and Uses Thereof

HBV - 30B

MGMQVQIQSLFLLLLWVPGSRGFLLTRILTINAAASWPKFAVPNLKAAAHTLWKAGILYKKADLLDTASALYNQAFTFS PTYKGAAANVSIPWTHKGAAAFLLSLGIHLNIPIPSSWAFKAAALWFHISCLTFKAAAILLLCLIFLLNAAAYPALMPL YACINAHPAAMPHLLKAAASFCGSPYKAAGLSRYVARLNKYTSFPWLLNFLPSDFFPSVKAFPHCLAFSYMKAEYLVSF GVWNAALTFGRETVLEYKAAALPSDFFPSVKAYMDDVVLGVNLVVDFSQFSRNAAARWMCLRRFIINAARFSWLSLLVP FNAATPARVTGGVFKAAWLSLLVPFVNSAICSVVRRKAKFVAAWTLKAAAKWMMWYWGPSLYKAASTLPETTVVRRKLS **LDVSAAFY**

ATGGGAATGCAGGTCCAGATACAGAGCTTGTTCCTCCTCCTGCTTTGGGTCCCCGGATCAAGGGGTTTCCTCCTAACCC GAAAGCAGGGATACTGTACAAGAAAGCCGATCTGCTAGACACAGCGTCTGCGTTGTACAACCAGGCTTTTACTTTCTCT CCTACATATAAAGGCGCAGCTGCAAACGTGAGTATCCCTTGGACGCACAAAGGAGCCGCTGCCAACTTCTTACTGTCCC TGGGCATCCATCTAAATATCCCTATTCCTTCATCCTGGGCATTTAAAGCAGCCGCCTTATGGTTCCACATAAGTTGTCT GACCTTCAAAGCCGCAGCAATCCTGCTCCTTTGCCTCATTTTCTTACTAAACGCCGCTGCCTATCCAGCTCTTATGCCA TTGTACGCATGTATCAACGCCCACCCCGCAGCAATGCCCCACCTCCTTAAAGCTGCCGCCAGTTTCTGCGGTTCTCCTT ATAAAGCAGCAGGGCTGTCCAGATACGTAGCTAGGCTAAACAAGTATACCAGCTTCCCCTGGTTACTTAATTTCCTGCC GTCAGATTTCTTTCCATCAGTTAAGGCCTTCCCTCATTGTCTGGCCTTTAGCTACATGAAGGCTGAATATTTGGTATCC TTCGGCGTGTGGAATGCGGCACTGACATTTGGAAGGGAGACAGTGCTCGAGTACAAAGCCGCCGCACTACCCTCGGACT TCTTCCCATCGGTCAAAGCTTACATGGACGATGTAGTCCTCGGCGTTAACTTAGTAGTAGTGGACTTTTCTCAATTTTCCAG AAACGCAGCGGCCAGATGGATGTCCCTTCGGCGTTTTATAATAAACGCCGCTCGATTCAGCTGGCTATCACTCCTAGTT CCATTTAATGCAGCTACACCCGCACGGGTGACAGGTGGAGTTTTCAAGGCAGCGTGGCTTTCACTGCTTGTGCCATTTG TGAACTCAGCTATTTGCTCAGTAGTGAGAAGGAAGGCAAAATTCGTCGCTGCCTGGACTCTCAAAGCTGCCGCAAAGTG GATGATGTGGTATTGGGGACCGAGCTTGTACAAAGCGGCCTCTACTCTGCCAGAAACTACCGTAGTGAGAAGAAAACTG AGCCTGGACGTCAGCGCGGCATTCTACTGA

FIG.22D

HBV-30C

MGMQVQIQSLFLLLLWVPGSRGFLLSLGIHLNAAAKYTSFPWLLNAAARFSWLSLLVPFNAAFPHCLAFSYMKAALVVD FSQFSRGAILLLCLIFLLNAAAHTLWKAGILYKKAWMMWYWGPSLYKAYPALMPLYACIGAAAWLSLLVPFVNFLLTRI LTINIPIPSSWAFKAAAEYLVSFGVWNLPSDFFPSVKFLPSDFFPSVKDLLDTASALYNSWPKFAVPNLKAAASAICSV VRRKLSLDVSAAFYNAAAKFVAAWTLKAAAKAANVSIPWTHKGAAGLSRYVARLNAAASTLPETTVVRRKHPAAMPHLL KAAARWMCLRRFIINASFCGSPYKAAYMDDVVLGVNALWFHISCLTFKAAATPARVTGGVFKAAALTFGRETVLEYKQA **FTFSPTYK**

ATGGGAATGCAGGTGCAAATACAGTCTCTCTTCCTTTTGCTTCTCTGGGTTCCAGGATCACGGGGCTTCTTGCTTAGCT TGGGCATCCACCTAAATGCTGCTGCAAAATACACATCTTTTCCTTGGCTCCTTAATGCCGCCGCTAGGTTTTCATGGCT GAGTCTGCTAGTACCTTTCAATGCGGCTTTCCCACATTGCCTAGCTTTTAGCTATATGAAAGCTGCTTTAGTCGTGGAC TTTTCACAGTTTAGCAGAGGAGCAATCCTGCTGCTATGTCTGATATTCCTTCTAAACGCAGCAGCCCACACACTCTGGA AAGCTGGTATCCTTTACAAGAAAGCCTGGATGATGTGGTATTGGGGACCCAGCCTCTACAAAGCATACCCTGCCCTGAT GCCACTATACGCATGCATTGGCGCGGCAGCCTGGTTATCCCTTTTAGTACCGTTTGTCAACTTTCTATTAACCAGAATC CTGACGATTAATATTCCGATCCCAAGTTCCTGGGCATTCAAAGCAGCCGCGGAGTATCTGGTTTCATTTGGCGTATGGA CGCGAGCGCTCTGTACAACTCGTGGCCAAAATTCGCAGTTCCAAACCTAAAAGCCGCCGCCAGTGCCATTTGTTCCGTG GTAAGGAGAAAATTATCACTCGACGTGTCCGCAGCATTTTATAACGCTGCTGCAAAGTTTGTCGCAGCATGGACATTGA AGGCTGCAGCGAAAGCAGCAAATGTATCAATACCCTGGACCCACAAGGGTGCAGCCGGGCTGTCTAGGTATGTGGCGAG GCTAAACGCCGCCGCCTCAACACTGCCTGAGACTACTGTCGTGAGACGCAAACACCCTGCCGCAATGCCCCACCTGCTG ACATGGACGATGTGGTCCTCGGAGTGAATGCCCTCTGGTTCCATATCAGCTGCCTGACATTCAAGGCAGCCGCCACCCC TTCACATTCTCCCCAACATACAAGTGA

Sheet 60 of 90

Appl. No. 10/677,754; Filed: Oct 3, 2003

Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned

Inventors: SETTE et al.

Tel. No.: 202-371-2600

For: Optimized Multi-Epitope Constructs and Uses

Thereof

60/90

.40}

B7 A2 A1 HBV-30C core 19 core 419 K core 18 K HBV-30CL core 419 core 19 core 18 K AAA K AAA **B7 A2 A2** env 183 HBV-30C env 335 N N env 313 HBV-30CL env 335 env 183 NAAA env 313 N

FIG.23A

-41

Sheet 61 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be

assigned
Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses Thereof

Sheet 62 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned

Inventors: SETTE et al. Tel. No.: 202-371-2600

For: Optimized Multi-Epitope Constructs and Uses Thereof

62/90

HBV-CL

. 41

MQVQIQSLFLLLLWVPGSRGFLLSLGIHLNAAAKYTSFPWLLNAAARFSWLSLLVPFNAAFPHCLAFSYMKA ALVVDFSQFSRGAILLLCLIFLLNAAAHTLWKAGILYKKAWMMWYWGPSLYKAYPALMPLYACIGAAAWLSL LVPFVNFLLTRILTINAAAIPIPSSWAFKAAAEYLVSFGVWNLPSDFFPSVKAAAFLPSDFFPSVKAAADLL DTASALYNSWPKFAVPNLKAAASAICSVVRRKLSLDVSAAFYNAAAKFVAAWTLKAAAKAANVSIPWTHKGA AGLSRYVARLNAAASTLPETTVVRRKHPAAMPHLLKAAARWMCLRRFIINASFCGSPYKAAYMDDVVLGVNA LWFHISCLTFKAAATPARVTGGVFKAAALTFGRETVLEYKQAFTFSPTYK

ATGGGAATGCAGGTGCAAATACAGTCTCTCTTTCCTTTTGCTTCTTGGGTTCCAGGATCACGGGGCTTCTTG CTTAGCTTGGGCATCCACCTAAATGCTGCTGCAAAATACACATCTTTTCCTTGGCTCCTTAATGCCGCCGCT AGGTTTTCATGGCTGAGTCTGCTAGTACCTTTCAATGCGGCTTTCCCACATTGCCTAGCTTTTAGCTATATG AAAGCTGCTTTAGTCGTGGACTTTTCACAGTTTAGCAGAGGAGCAATCCTGCTGCTATGTCTGATATTCCTT CTAAACGCAGCCCACACACTCTGGAAAGCTGGTATCCTTTACAAGAAAGCCTGGATGATGTGGTATTGG TCCCTTTTAGTACCGTTTGTCAACTTTCTATTAACCAGAATCCTGACGATTAATGCTGCCGCCATTCCGATC CCAAGTTCCTGGGCATTCAAAGCAGCCGCGGAGTATCTGGTTTCATTTGGCGTATGGAACCTGCCAAGCGAC CTCCTTGATACCGCGAGCGCTCTGTACAACTCGTGGCCAAAATTCGCAGTTCCAAACCTAAAAGCCGCCGCC AGTGCCATTTGTTCCGTGGTAAGGAGAAAATTATCACTCGACGTGTCCGCAGCATTTTATAACGCTGCTGCA AAGTTTGTCGCAGCATGGACATTGAAGGCTGCAGCGAAAGCAGCAAATGTATCAATACCCTGGACCCACAAG GGTGCAGCCGGGCTGTCTAGGTATGTGGCGAGGCTAAACGCCGCCGCCTCAACACTGCCTGAGACTACTGTC TTCATAATAAACGCTTCTTTCTGTGGGTCACCCTACAAAGCCGCTTACATGGACGATGTGGTCCTCGGAGTG AATGCCCTCTGGTTCCATATCAGCTGCCTGACATTCAAGGCAGCCGCCACCCCCGCTCGTGTGACAGGAGGT GTCTTCAAAGCCGCGCACTGACTTTCGGTCGGGAAACTGTATTGGAATATAAGCAGGCCTTCACATTCTCC CCAACATACAAGTGA

FIG.23C

She Ap Ok nv	pl. No. 2 assignmentors l. No.: Ther	of 90 10/67 060.0 ned : SET 202-3	77,754 20000: FE et a 71-260	; Filed 3/HCC il.	: Oct	3, 200: ; Grou	ıp Uni		×
	35	83	72	75	47	8	33	<u></u>	

	∄ DR						HLA-DR Binding Capacity (IC50 nM)	ling Capacity	, (IC50 nM)						
Epitope	Bound	DRB1*0101	DRB1*0101 DRB1*1501 DRB1*0301 DRB1*0401	DRB1*0301		DRB1*0405	DRB1*1101	DRB1*1201	DRB1*1302	DRB1*0701	DRB1*0802	DRB1*0901	DRB5*0101	DRB3*0101	DRB4*0101
pol 412	10	2.0	21	,	10.0	47	303	397	143	173	598	791	1067	1837	4179
pol 664	=	01	41	i	88	181	82	ı	190	06	416	142	144	4848	322
env 180	2	-	217	ı	6	258	9	4229	6	œ	189	92	1158	4374	969
pol 774	6	15	748	ł	119	94	443	1	ı	94	818	220	400	1	ı
core 120	∞	27	43	1	28	220	=	817	565	78	76	1773	7	6454	395
pol 145	2	12	4.0	1	2271	1499	42	149	766	61	36	133	35	1	782
env 339	6	408	14	ı	315	78	54	452	2330	2744	99	31	1516	1661	22
pol 501	∞	248	558	1	11	244	492	9462	ı	ı	800	1551	260	t	102
pol 523	7	77	359	1	260	246	1749	1	29	328	940	1373	4764	ı	1347
pol 618	တ	3.0	4370	1	40	₹ 84	1617	1	821	62	872	5175	1246	1	3060
797 lod	∞	22	386	ı	996	1634	1520	807	143	44	214	299	3276	ı	6553
core 50	7	810	8.0	1	326	1	458	1		9/9	210	952	124	575	48
pol 694	7	7470	5009	<i>L</i> 9	490	1203	1	1	2022	1		1	1	1808	1044
pol 385	~	7372	1368	36	208	251	ı	1	946	ı	1	1	1	2525	8711
96 lod	_	8415	4153	43	3916	1908	9999	1	4461	ı	5354	ı	4330	i	8121
pol 420	₩	38	3089	62	168	11	4923	1859	36	5063	1065	7126	ı	2	٦,

Sheet 64 of 90

Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be

-40}

Sheet 65 of 90
Appl. No. 10/677,754; Filed: Oct 3, 2003
Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned
Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses Thereof

65/90

HBV-HTL

MGTSFVYVPSALNPADGPGPGLCQVFADATPTGWGLGPGPGRHYLHTLWKAGILYKGPGPGPHHTALRQAILC WGELMTLAGPGPGESRLVVDFSQFSRGNGPGPGPFLLAQFTSAICSVVGPGPGLVPFVQWFVGLSPTVGPGPG LHLYSHPIILGFRKIGPGPGSSNLSWLSLDVSAAFGPGPGLQSLTNLLSSNLSWLGPGPGAGFFLLTRILTIP QSGPGPGVSFGVWIRTPPAYRPPNAPIGPGPGVGPLTVNEKRRLKLIGPGPGKQCFRKLPVNRPIDWGPGPGA ANWILRGTSFVYVPGPGPGKOAFTFSPTYKAFLCGPGPGAKFVAAWTLKAAA

FIG.24C

Sheet 66 of 90

Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses Thereof

FIG.25B

Sheet 68 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned

Inventors: SETTE et al. Tel. No.: 202-371-2600

For: Optimized Multi-Epitope Constructs and Uses Thereof

FIG.26A

FIG.26B

Sheet 69 of 90
Appl. No. 10/677,754; Filed: Oct 3, 2003
Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned
Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses
Thereof

		-	•	
	_		_	
Env 332 Pol 530 Pol 388 Env 249 Pol 149 Env 359 Pol 640	87		415]_
Env 359	A1		Env 335 Env 183 Env 313 Core 117 Core 19 Core 18 Core 419 Pol 392 Pol 531 Pol 415	A1
149	₽¥		2 Pol	A3
249 Po			Pol 39	A24
Env ;	A1		re 419	P4
Pol 388	A3		18 Co	
230	87		9 Core	P2
332 Pol		**	Core 1	87
	A24		e 117	A24
ol 745	A24		313 Cor	•
562 F	V 2		3 Env 3	87
signal Pol 562 Pol 745	*		Env 18.	V
sign		·	v 335 l	82
			<u> </u>	

PADRE® Pol. 47 Pol 455 Core 141	Pol . 47	7 Pol	455	Core	 Pol	429	Env	429 Env 236 Pol	Pol	166	166 Pol 538 Core 101 Pol 354 Core 137 Pol	338 (Sore	101	Pol	354	Core	137	Pol 6	992
	A3	 	2	\\ \S \\ \	B7		A2		A		A2	1	A24		B7		A A		£3	ר ר
						正	<u>G</u>	FIG.27A	A											

Sheet 70 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned
Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses Thereof

-44

rir kesbouse (on)

Sheet 71 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be

assigned Inventors: SETTE et al. Tel. No.: 202-371-2600

For: Optimized Multi-Epitope Constructs and Uses Thereof

Sheet 73 of 90
Appl. No. 10/677,754; Filed: Oct 3, 2003
Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned
Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses Thereof

73/90

i CMV CTL IRES HTL

ii CMV CTL HTL

iii FIG.29A

Sheet 74 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned
Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses Thereof

40

Sheet 75 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned Inventors: SETTE et al. Tel. No.: 202-371-2600 For: Optimized Multi-Epitope Constructs and Uses
Thereof 75/90 5835: 50µg 3697: 50µg 5835: 5µg <u>a</u> 538 <u>8</u> pol 455 183 100

CTL Response (SFC/10 CD8 cells)

41

Sheet 76 of 90
Appl. No. 10/677,754; Filed: Oct 3, 2003
Dkt No. 2060,0200003/HCC/PAC; Group Unit: To be assigned Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses Thereof
76/90

44

Sheet 77 of 90
Appl. No. 10/677,754; Filed: Oct 3, 2003
Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned
Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses Thereof
77/90

FIG.32B

assigned Inventors: SETTE et al. Tel. No.: 202-371-2600 For: Optimized Multi-Epitope Constructs and Uses Thereof 78/90 ∞ Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse FIG.33A Peptide **Pol455** 1000007 Single Immunization (IIII)

Sheet 78 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be

Sheet 79 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned
Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses Thereof

· At

Sheet 80 of 90
Appl. No. 10/677,754; Filed: Oct 3, 2003
Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned
Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses Thereof

.44}

80/90

Composition of HBV polyepitope vaccine

Ý						,	,
		83 core 141 pol 665 env 335 env 313 pol 354 pol 629 core 19 pol 150 pol 47 pol 388 pol 531 pol 642					
		9					
_		8	777	¥			ļ
		3					
_		g.		S			
_		88					
		≈					
		Œ					
₹							
-		4					
		<u>a</u>		Z			
		0					
		55					ျှ
		豆		-		1	흲
¥			77				욡
- 1		5					8
		9				1	يوا
z		2	$\angle\!$	_		 	윤
		53					ق
		=					를
		8		×			2
		25					HLA-B7 supertype epitopes
		~ ∽					A-
ار		8		-			크
ᅩ		~					17
		~	///				///
		2					V//
_		ته	K/4	_	ļ	ļ	<i>Y//</i>
-		33					
		7					
ا≳		E		*			1
₩		5					
-		99					
		2		_		1	ျွ
		\vdash)			∤ĕૂੱ
		141					
		စ္					ertype epitopes
		8		S			8
\neg			12				1 <i>ই</i>
		8					B
		≥					HLA-A3 supe
		ਚ	777	_			~
		55				1	Y
		2					١Š
		18	(22)	၁		ļ	工
		8					
		5					
		8		>-			
_		52	177				1
l		25					
ŀ		B		1			
2	_	8	1	=			\vdash
		=					es
1		100				1	ΙĞ
		٦	رججا	4		 	ŀŧĒ.
		بيرا	1.3.4			l	ته ا
		Ş	[*:			l	8
		P		~			ΙĘ
		5					1 8
		=	e				l IS
		8		_			LA-A2 supertype epitopes
			<i></i>			-	X
y 1		-	Ullin				1 .

Sheet 82 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned

Inventors: SETTE et al. Tel. No.: 202-371-2600

. 44

For: Optimized Multi-Epitope Constructs and Uses Thereof

82/90

Detection of HBV AOSIb (un-optimized epitope string)
-MG132

Sheet 84 of 90
Appl. No. 10/677,754; Filed: Oct 3, 2003
Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned
Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses
Thereof

84/90

and the state of t

Comparison of fluorescence intensity

Sheet 85 of 90

Appl. No. 10/677,754; Filed: Oct 3, 2003

Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned

Inventors: SETTE et al.

Tel. No.: 202-371-2600

For: Optimized Multi-Epitope Constructs and Uses Thereof

85/90

Fold Increase (aver.)	1.1	2.1	5.3	
with inhibitor	35% 33%	12% 8%	10%	
No inhibitor	30% 34%	5% 4.4	2% 1.2%	
plasmid	Fluorescent Protein (no epitopes control)	HBV AOSIb fusion	HBV AOSIb2 fusion	

Sheet 86 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003
Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned Inventors: SETTE et al. Tel. No.: 202-371-2600

For: Optimized Multi-Epitope Constructs and Uses Thereof

FIG.36

Sheet 87 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003
Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned
Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses
Thereof

.41

87/90

Contracting the service of the servi

41

GCR-3697 Immunogenicity Data

Sheet 88 of 90
Appl. No. 10/677,754; Filed: Oct 3, 2003
Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned /

assigned Inventors: SETTE et al. Tel. No.: 202-371-2600

For: Optimized Multi-Epitope Constructs and Uses Thereof

HLA—A2 env 335 12/12 199.3 2.1 4/4 288.9 env 183 12/12 171.2 2.8 4/4 153.6 env 335 12/12 12/12 12/14 1.8 4/4 153.6 env 335 12/12 12/12 12/14 1.8 4/4 11.3 pol 538 12/12 2.66.2 2 4/4 148.1 pol 547 6/6 10.1 2.3 12/12 386.7 HLA—A3 pol 655 5/6 10.1 2.3 12/12 386.7 pol 47 0/6 33 12/12 3.2 12/12 386.7 pol 330 0/6 10.1 2.3 12/12 3.3 10.1 2.3 10/11 54.8 pol 332 2/6 16.7 1.1 54.8 10/11 54.8 pol 530 6/6 51.2 1.3 1/11 32.6 pol 545 6/6 51.2 1.3 1/11 32.6 pol 540 640 640 640 640 640 535.1 pol 549 2/11 1.3 1/11 32.6 pol 549 2/12 2.5 5/11 2.4 pol 540 640 640 640 640 640 535.1 pol 354 2/6 13.7 1.1 1/6 1.4 1.4 1.6 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4					CTL response	use (SU)		
Epitope Freq. GeoMean X/\div Freq. core 18 $12/12$ 199.3 2.1 $4/4$ env 183 $12/12$ 199.3 2.1 $4/4$ env 335 $12/12$ 171.2 2.8 $4/4$ pol 455 $12/12$ 120.4 1.8 $4/4$ pol 538 $12/12$ 160.4 1.8 $4/4$ pol 538 $12/12$ 266.2 2 $4/4$ pol 149 $6/6$ 94.4 1.4 $12/12$ pol 149 $6/6$ 10.3 2.2 $4/4$ pol 149 $6/6$ 10.3 2.2 $4/4$ pol 149 $6/6$ 10.3 2.2 $12/12$ pol 149 $6/6$ 10.3 2.2 $12/12$ pol 655 $5/6$ 10.1 2.3 $12/12$ pol 47 $0/6$ 0.1 0.1 0.1 pol 392 $5/6$ 1.6 0.1	₽		2 ×	3	ation	CT	Pre-treatment	ent
core 18 12/12 199.3 2.1 4/4 env 183 12/12 171.2 2.8 4/4 env 335 12/12 171.2 2.8 4/4 pol 455 12/12 120.4 1.8 4/4 pol 538 12/12 149.9 3.2 4/4 pol 562 12/12 266.2 2 4/4 pol 562 12/12 266.2 2 4/4 pol 563 1/6 94.4 1.4 12/12 pol 655 5/6 10.1 2.2 4/4 pol 388 0/6 10.3 2.2 4/4 pol 47 0/6 3.9 2.2 4/4 pol 531 1/6 22.6 10.1 2.3 12/12 pol 392 5/6 16.7 1.1 3/11 2/11 pol 392 5/6 16.7 1.1 3/11 2/12 pol 392 5/6 16.7 1.1 3/11 2/12 pol 392 5/6 16.7 1.3 1/11 2/11 <tr< th=""><th>Supertype</th><th>Epitope</th><th>Freq.</th><th>GeoMean</th><th>÷⁄x</th><th>Freq.</th><th>GeoMean</th><th>* *</th></tr<>	Supertype	Epitope	Freq.	GeoMean	÷⁄x	Freq.	GeoMean	* *
env 183 12/12 171.2 2.8 4/4 env 335 12/12 120.4 1.8 4/4 pol 455 12/12 120.4 1.8 4/4 pol 538 12/12 120.4 1.8 4/4 pol 538 12/12 266.2 2 4/4 pol 54 14 16/6 94.4 1.4 12/12 pol 149 6/6 10.3 2.2 12/12 pol 388 0/6 10.1 2.3 12/12 pol 38 0/6 10.1 2.3 12/12 pol 392 5/6 18.1 1.5 10/11 pol 392 5/6 16.7 1.1 3/11 pol 745 2/6 51.2 1.3 1/11 pol 530 6/6 292.4 3.1 3/6 pol 640 4/6 76.5 1.7 5/7 env 313 0/6 0 0 6/6 pol 354 2/6 13.7 1.1 1/6		core 18	12/12	1	2.1	4/4	288.9	1.3
env 335		env 183	12/12	171.2	2.8	4/4	401.2	1.4
pol 455 12/12 120.4 118 4/4 pol 538 12/12 12/12 266.2 2 4/4 pol 562 12/12 266.2 2 4/4 pol 562 12/12 266.2 2 4/4 12/12 266.2 2 4/4 12/12 266.2 2 4/4 12/12 266.2 2 4/4 12/12 266.2 2 4/4 12/12 266.2 2 4/4 12/12 266.2 2 4/4 12/12 2/12 2/12 2/12 2/12 2/12 2	U A A2	env 335	12/12	86.4	2.3	4/4	153.6	1.7
pol 538	אואויי	pol 455	12/12	120.4	∞ .	4/4	411.3	1.8
core 141 6/6 6/6 103 2.2 12/12 pol 149 6/6 103 2.2 12/12 pol 149 6/6 103 2.2 12/12 pol 388 0/6 pol 388 0/6 pol 388 0/6 pol 381 pol 531 pol 531 pol 392 core 101 pol 745 pol 640 pol 530 pol 640 pol 540 pol 540 pol 540 pol 540 pol 540 pol 550 pol 550 pol 550 pol 550 pol 560 pol 570 pol 560 pol 570 pol 57		pol 538	12/12	149.9	3.2	4/4	148.1	2.2
core 141 6/6 94.4 1.4 12/12 pol 149 6/6 10.3 2.2 12/12 pol 388 0/6 10.1 2.3 12/12 pol 388 0/6 3.9 2/12 pol 47 0/6 3.9 2/12 pol 531 1/6 22.6 22.6 pol 531 1/6 22.6 2/11 pol 392 5/6 78.1 1.5 10/11 pol 392 5/6 78.1 1.3 1/11 pol 345 2/6 51.2 1.3 1/11 pol 745 2/6 51.2 1.3 1/11 pol 640 4/6 76.5 1.7 5/7 pol 640 4/6 76.5 1.7 5/7 pol 354 0/6 0 0 6/6 pol 429 2/6 13.7		pol 562	12/12	266.2	2	4/4	353.3	1.5
pol 149 6/6 103 2.2 12/12 pol 655 5/6 10.1 2.3 12/12 pol 388 0/6 0/6 3.9 $\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ pol 38 0/6 0/12 $\frac{1}{2}$ $\frac{1}{$		core 141	9/9	94.4	1.4	12/12	167.6	1.4.
pol 655 5/6 10.1 2.3 $12/12$ pol 388 0/6 $0/6$ pol 47 0/6 $3/12$ pol 47 0/6 $3/12$ env 236 $1/6$ $1/6$ $2/2.6$ $1/6$ $1/6$ $1/6$ $1/6$ $1/6$ $1/6$ $1/6$ $1/1$ $1/6$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ pol 745 $1/6$ $1/6$ $1/6$ $1/6$ $1/1$ $1/1$ $1/1$ pol 640 $1/6$ $1/6$ $1/6$ $1/6$ $1/6$ $1/6$ pol 650 $1/6$ $1/6$ $1/6$ $1/6$ pol 354 $1/6$ $1/6$ $1/6$ $1/6$ pol 429 $1/6$		pol 149	9/9	103	2.2	12/12	386.7	1.5
pol 388 0/6	HLA-A3	pol 655	2/6	10.1	2.3	12/12	108	3.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$)	pol 388	9/0			0/12		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		pol 47	9/0			3/12	3.2	=
env 236 1/6 22.6	 	pol 531	1/6	3.9	-	2/12	5.5	
pol 392 5/6 78.1 1.5 10/11 core 101 1/6 37 0/11 core 117 3/6 16.7 1.1 3/11 core 117 3/6 34.4 1.9 2/11 pol 745 2/6 51.2 1.3 1/11 pol 530 6/6 292.4 3.1 3/6 pol 640 4/6 76.5 1.7 5/7 core 19 3/6 12 2.5 2/7 env 313 0/6 0 0 6/6 pol 354 0/6 13.7 1.1 1/6		env 236	1/6		 	2/11	23.4	1.2
core 101 1/6 37 1.1 3/11 core 101 1/6 37 0/11 core 117 3/6 34.4 1.9 2/11 pol 745 2/6 51.2 1.3 1/11 pol 530 6/6 292.4 3.1 3/6 pol 640 4/6 76.5 1.7 5/7 core 19 3/6 12 2.5 2/7 env 313 0/6 0 0 6/6 pol 354 0/6 13.7 1.1 1/6		pol 392	9/6	78.1	1.5	10/11	54.8	2.2
core 101 1/6 37 0/11 core 117 3/6 34.4 1.9 2/11 2/11 2/6 51.2 1.3 1/11 1/11 pol 530 $6/6$ $-\frac{2}{202.4}$ $-\frac{3.1}{3.1}$ $\frac{3}{3}$ $\frac{1}{11}$ $\frac{1}{11}$ core 19 3/6 12 2.5 2/7 env 313 0/6 0 0 6/6 pol 354 0/6 13.7 1.1 1/6	HI A-A74	env 332	5/6	16.7	- :	3/11	25.6	1.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		core 101	1/6	37		0/11		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		core 117	3/6	34.4	1.9	2/11	27.4	~
pol 530 6/6 292.4 3.1 3/6 pol 640 4/6 76.5 1.7 5/7 core 19 3/6 12 2.5 2/7 env 313 0/6 0 0 6/6 pol 354 0/6 13.7 1.1 1/6	 	pol 745	2/6	51.2	1.3	1/11	32.6	
pol 640 4/6 76.5 1.7 5/7 core 19 3/6 12 2.5 2/7 env 313 0/6 0 0 6/6 pol 354 0/6 13.7 1.1 1/6	 	pol 530	9/9	292.4	3.1	3/6	$-\frac{7}{71}$	
core 19 3/6 12 2.5 2/7 env 313 0/6 0 0 6/6 pol 354 0/6 0 0 4/6 pol 429 2/6 13.7 1.1 1/6		pol 640	4/6	76.5	1.7	2/1	104.6	. .
env 313 0/6 0 0 6/6 pol 354 0/6 0 0 4/6 pol 429 2/6 13.7 1.1 1/6	HI A-R7	core 19	3/6	12	2.5	2/7	8.8	1.6
354 0/6 0 0 4/6 429 2/6 13.7 1.1 1/6		env 313	9/0	0	0	9/9	323.1	2.9
429 2/6 13.7 1.1 1/6		pol 354	9/0	0	0	4/6	351.5	3.2
		pol 429	2/6	13.7	=	1/6	1.4	

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
☑ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.