DRAFT: Discrete differential geometry in homotopy type theory

Greg Langmead

Carnegie Mellon University

April 2025

Summary •0000000

Summary

Summary

Summary

This work brings to HoTT

- connections, curvature, and vector fields
- the index of a vector field
- a theorem in dimension 2 that total curvature = total index

Classical \rightarrow HoTT

Summary

Let M be a smooth 2-manifold without boundary, F_A the curvature of a connection A on the tangent bundle, and X a vector field with isolated zeroes x_1, \ldots, x_n .

$$\frac{1}{2\pi} \int_{M} F_{A} = \sum_{i=1}^{n} \operatorname{index}_{X}(x_{i}) = \chi(M)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\Omega\left(\sum_{\text{faces } f} \flat_{f}\right) = \sum_{\text{faces } f} I_{f}^{X}$$

Classical index

Summary

Near an isolated zero there are only three possibilities: index 0, 1, -1.

Index is the winding number of the field as you move clockwise around the zero.

Poincaré-Hopf theorem

The total index of a vector field is the Euler characteristic.

Examples:

Summary

Rotation: index +1 at each pole = 2

Height: index +1 at each pole = 2

Gauss-Bonnet theorem

Summary

Curvature in 2D is a function $F_A: M \to \mathbb{R}$.

 $\int_M F_A$ sums the values at every point.

Positive and negative curvature cancel: 0

Constant curvature 1, area 4π : 2

Plan

Summary 00000000

- Manifolds
- Classifying maps
- Connections and curvature
- Theorems

HoTT background

Summary

- Symmetry,
 - Bezem, M., Buchholtz, U., Cagne, P., Dundas, B. I., and Grayson, D. R., (2021-) https://github.com/UniMath/SymmetryBook.
- Central H-spaces and banded types, Buchholtz, U., Christensen, J. D., Flaten, J. G. T., and Rijke, E. (2023) arXiv:2301.02636
- Nilpotent types and fracture squares in homotopy type theory, Scoccola, L. (2020) MSCS 30(5). arXiv:1903.03245

Combinatorial manifolds

Manifolds in HoTT

Combinatorial manifolds

- Recall the classical theory of simplicial complexes
- Define a realization procedure to construct types

Simplicial complexes

Definition

An abstract simplicial complex M of dimension n is an ordered list of sets $M \stackrel{\text{def}}{=} [M_0, \dots, M_n]$ consisting of

- a set M_0 of vertices
- sets M_{ν} of subsets of M_0 of cardinality k+1
- downward closed: if $F \in M_k$ and $G \subseteq F$, |G| = i + 1 then $G \in M_i$

We call the truncated list $M_{< k} \stackrel{\text{def}}{=} [M_0, \dots, M_k]$ the *k*-skeleton of *M*.

Simplicial complexes

Definition

An abstract simplicial complex M of dimension n is an ordered list of sets $M \stackrel{\text{def}}{=} [M_0, \dots, M_n]$ consisting of

- a set M_0 of vertices
- sets M_k of subsets of M_0 of cardinality k+1
- downward closed: if $F \in M_k$ and $G \subseteq F$, |G| = j + 1 then $G \in M_j$

We call the truncated list $M_{\leq k} \stackrel{\text{def}}{=} [M_0, \dots, M_k]$ the *k*-skeleton of *M*.

Simplicial complexes

Example

The complete simplex of dimension n, denoted $\Delta(n)$, is the set $\{0,\ldots,n\}$ and its power set. The (n-1)-skeleton $\Delta(n)_{\leq (n-1)}$ is denoted $\partial\Delta(n)$ and will serve as a combinatorial (n-1)-sphere.

$$\Delta(1)$$
 is visually $0 \cdot - 1$, $\partial \Delta(1)$ is visually $0 \cdot - 1$

We will realize simplicial complexes by means of a sequence of pushouts.

Base case: the realization $\mathbb M$ of a 0-dimensional complex M is M_0 .

In particular the 0-sphere $\partial \Delta(1) \stackrel{\mathsf{def}}{=} \partial \Delta(1)_0$.

For a 1-dim complex $M \stackrel{\text{def}}{=} [M_0, M_1]$ the realization is given by

$$M_1 imes \partial \Delta(1) \stackrel{\mathsf{pr}_1}{\longrightarrow} M_1$$
 $M_0 = \mathbb{M}_0 \stackrel{}{\longrightarrow} \mathbb{M}_1$

For example the simplicial 1-sphere $\partial \Delta(2) \stackrel{\text{def}}{=} \underbrace{0}^{1}$ is given by

$$\partial\Delta(2)_1 imes \partial\Delta(1) \longrightarrow \partial\Delta(2)_1$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\partial\Delta(2)_0 \longrightarrow \partial\Delta(2)$$
i.e.

$$\{\{0,1\},\{1,2\},\{2,0\}\}\times\{0,1\} \longrightarrow \{\{0,1\},\{1,2\},\{2,0\}\}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\{0,1,2\} \longrightarrow \partial \Delta(2)$$

Or the 1-skeleton of the octahedron \mathbb{O} :

$$\{\{w,g\},\ldots\}\times\{0,1\}\longrightarrow \{\{w,g\},\ldots\}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\{w,g,\ldots\}\longrightarrow \mathbb{O}_1$$

To realize $M \stackrel{\text{def}}{=} [M_0, M_1, M_2]$ use $\partial \Delta(1), \partial \Delta(2)$:

$$M_1 imes \partial \Delta(1) \xrightarrow{\operatorname{pr}_1} M_1$$
 $M_0 = \mathbb{M}_0 \xrightarrow{h_1} \mathbb{M}_1 \xrightarrow{*_{\mathbb{M}_1}} \mathbb{M}_2$
 $A_1 \uparrow \xrightarrow{h_2} \uparrow *_{\mathbb{M}_2}$
 $M_2 imes \partial \Delta(2) \xrightarrow{\operatorname{pr}_1} M_2$

The full octahedron \mathbb{O} :

The link of a vertex w in a 2-complex is: the sets not containing w but whose union with w is a face.

A combinatorial manifold is a simplicial complex all of whose links are * simplicial spheres.

This will be our model of the tangent space.

^{*}the (classical) geometric realization is homeomorphic to a sphere

Combinatorial manifolds ↔ smooth manifolds

Theorem (Whitehead (1940))

Every smooth n-manifold has a compatible structure of a combinatorial manifold: a simplicial complex of dimension n such that the link is a combinatorial (n-1)-sphere, i.e. its geometric realization is an (n-1)-sphere.

https://ncatlab.org/nlab/show/triangulation+theorem

Combinatorial manifolds \leftrightarrow smooth manifolds

Theorem (Whitehead (1940))

Every smooth n-manifold has a compatible structure of a combinatorial manifold: a simplicial complex of dimension n such that the link is a combinatorial (n-1)-sphere, i.e. its geometric realization is an (n-1)-sphere.

https://ncatlab.org/nlab/show/triangulation+theorem

Counterexample: Wikipedia says this is a simplicial complex, but we can see it fails the link condition:

What type families $\mathbb{M} \to \mathcal{U}$ will we consider? Families of torsors, also called principal bundles.

Let G be a (higher) group.

Let G be a (higher) group.

Definition

• A right G-object is a type X equipped with a homomorphism $\phi: G^{op} \to \operatorname{Aut}(X)$.

Let G be a (higher) group.

Definition

- A right G-object is a type X equipped with a homomorphism $\phi: G^{op} \to \operatorname{Aut}(X)$.
- X is a torsor if it is inhabited and the map $(\phi, \operatorname{pr}_1): X \times G \to X \times X$ is an equivalence.

Let G be a (higher) group.

Definition

- A right G-object is a type X equipped with a homomorphism $\phi: G^{op} \to \operatorname{Aut}(X)$.
- X is a torsor if it is inhabited and the map $(\phi, \operatorname{pr}_1): X \times G \to X \times X$ is an equivalence.
- Let G_{reg} be the G-torsor consisting of G acting on itself on the right.

Facts

Facts

 $oldsymbol{0}$ $\Omega(BG,G_{\text{reg}})\simeq G$ and composition of loops corresponds to multiplication in G.

Facts

- $\mathbf{0}$ $\Omega(BG, G_{\text{reg}}) \simeq G$ and composition of loops corresponds to multiplication in G.
- Ø BG is connected.

Facts

- $\mathbf{0}$ $\Omega(BG, G_{\text{reg}}) \simeq G$ and composition of loops corresponds to multiplication in G.
- \bigcirc *BG* is connected.
- **3** 1 & 2 \Longrightarrow BG is a K(G,1).

Facts

- **1** $\Omega(BG, G_{reg}) \simeq G$ and composition of loops corresponds to multiplication in G.
- \bigcirc BG is connected.
- $\mathbf{3} \ 1 \& 2 \implies BG \text{ is a } \mathsf{K}(G,1).$

See the Buchholtz et. al. H-spaces paper for more.

How to map into BS^1

To construct maps into BS^1 we lift a family of mere circles. (Remark: the lift is a choice of orientation.)

We will assume we have such a lift when we need it.

How to map into BS^1

To construct maps into BS^1 we lift a family of mere circles. (Remark: the lift is a choice of orientation.)

We will assume we have such a lift when we need it.

Other names:

- $\mathsf{BAut}(S^1) = BO(2) = \mathsf{EM}(\mathbb{Z},1)$ (where $\mathsf{EM}(G,n) \stackrel{\mathsf{def}}{=} \mathsf{BAut}(\mathsf{K}(G,n))$)
- $BS^1 = BSO(2) = K(\mathbb{Z}, 2)$

Connections and curvature

Connections

Connections are extensions of the bundle to higher skeleta.

Recall link

The link of a vertex w in a 2-complex is: the sets not containing w but whose union with w is a face.

Connections on the tangent bundle

An extension T_1 of link to M_1 is called a connection on the tangent bundle.

$T_1: \mathbb{M}_1 \to \mathsf{BAut}(S^1)$ extending link

We will define T_1 on the edge wb, so we need a term $T_1(wb)$: $link(w) =_{BAut(S^1)} link(b)$.

We imagine tipping:

$$T_1(g: \mathsf{link}(w)) \stackrel{\mathsf{def}}{=} w: \mathsf{link}(b), \ldots$$

Use this method to define T_1 on every edge.

$T_1: \mathbb{M}_1 \to \mathsf{BAut}(S^1)$ extending link

Denote the path $wb \cdot br \cdot rw$ by $\partial (wbr)$. Consider $T_1(\partial (wbr))$:

We come back rotated by 1/4 turn. Call this rotation $R: link(w) =_{BAut(S^1)} link(w)$.

Let H_{wbr} : refl_w =_{w=mw} $\partial(wbr)$ be the filler homotopy of the face.

Let H_{wbr} : refl_w =_{w=mw} $\partial(wbr)$ be the filler homotopy of the face.

$$T_2$$
 must live in $T_1(\operatorname{refl}_w) =_{\operatorname{link}(w) =_{\operatorname{BAut}(S^1)}\operatorname{link}(w))} T_1(\partial(wbr)) = R$

Let H_{wbr} : refl_w =_{w=m/w} $\partial(wbr)$ be the filler homotopy of the face.

$$T_2$$
 must live in $T_1(\operatorname{refl}_w) =_{\operatorname{link}(w) =_{\operatorname{RAur}(s1)} \operatorname{link}(w))} T_1(\partial(wbr)) = R$

 T_2 must be a homotopy H_R : id = R between automorphisms of link(w).

Let H_{wbr} : refl_w =_{w=mw} $\partial(wbr)$ be the filler homotopy of the face.

$$T_2$$
 must live in $T_1(\text{refl}_w) =_{\text{link}(w) =_{\text{RAur}(s1)} | \text{link}(w))} T_1(\partial(wbr)) = R$

 T_2 must be a homotopy H_R : id = R between automorphisms of link(w).

For example, a path $H_R(g)$: g = Rg = o. Choose go.

Original inspiration

The definition of a connection

Definition

If $\mathbb{M} \stackrel{\text{def}}{=} \mathbb{M}_0 \xrightarrow{\imath_0} \cdots \xrightarrow{\imath_{n-1}} \mathbb{M}_n$ is a combinatorial manifold and all the triangles commute in the diagram:

- The map f_k is a k-bundle on \mathbb{M} .
- The pair given by the map f_k and the proof $f_k \circ i_{k-1} = f_{k-1}$, i.e. that f_k extends f_{k-1} is called a k-connection on the (k-1)-bundle f_{k-1} .

The definition of curvature

Definition (cont.)

The pushout consists of M_2 -many extensions:

Here's the outer square for a single face F:

$$\{F\} imes \partial \Delta(2) \stackrel{\mathsf{pr}_1}{\longrightarrow} \{F\}$$
 $\mathbb{M}_1 \stackrel{\mathbb{A}_1}{\longrightarrow} \mathcal{U}$

The definition of curvature

Definition (cont.)

The pushout consists of M_2 -many extensions:

Here's the outer square for a single face F:

$$\begin{cases}
F \\
 \times \partial \Delta(2) \xrightarrow{\mathsf{pr}_1} \begin{cases}
F \\
 \downarrow \\
 M_1 \xrightarrow{b_F} \mathcal{U}
\end{cases}$$

 $T_1(\partial(F))$ is the curvature at the face F and the filler \flat_F : id $= T_1(\partial F)$ is called a flatness structure for the face F.

The definition of curvature

Definition (cont.)

The pushout consists of M_2 -many extensions:

$$\begin{array}{ccc}
M_2 \times \partial \Delta(2) & \xrightarrow{\operatorname{pr}_1} & M_2 \\
 & & \downarrow & \downarrow \\
 & & M_1 & \xrightarrow{} & M_2 \\
 & & & \downarrow & \uparrow \\
 & & & \downarrow & \downarrow \\
 & \downarrow & \downarrow &$$

Here's the outer square for a single face F:

$$\begin{cases}
F \\
 \times \partial \Delta(2) \xrightarrow{pr_1} \begin{cases}
F \\
 \downarrow \\
 M_1 \xrightarrow{b_F} \mathcal{U}
\end{cases}$$

 $T_1(\partial(F))$ is the curvature at the face F and the filler \flat_F : id $= T_1(\partial F)$ is called a flatness structure for the face F.

The distinction between the path \flat_F and the endpoint $T_1(\partial(F))$ is small enough to be confusing.

Let $T : \mathbb{M} \to K(\mathbb{Z}, 2)$ be an oriented tangent bundle on a 2-dim combinatorial manifold.

- Bundles of circles can only model nonzero tangent vectors.
- A global section would be a trivialization of T, so there
 is an obstruction.

Let $T : \mathbb{M} \to K(\mathbb{Z}, 2)$ be an oriented tangent bundle on a 2-dim combinatorial manifold.

- Bundles of circles can only model nonzero tangent vectors.
- A global section would be a trivialization of T, so there is an obstruction.

Our solution:

Let $T : \mathbb{M} \to K(\mathbb{Z}, 2)$ be an oriented tangent bundle on a 2-dim combinatorial manifold.

- Bundles of circles can only model nonzero tangent vectors.
- A global section would be a trivialization of T, so there is an obstruction.

Our solution:

• A vector field is a term $X : \prod_{m:\mathbb{M}_1} Tm$.

Let $T : \mathbb{M} \to K(\mathbb{Z}, 2)$ be an oriented tangent bundle on a 2-dim combinatorial manifold.

- Bundles of circles can only model nonzero tangent vectors.
- A global section would be a trivialization of T, so there is an obstruction.

Our solution:

- A vector field is a term $X : \prod_{m \in M_1} Tm$.
- It's a nonvanishing vector field on the 1-skeleton.

Let $T: \mathbb{M} \to \mathsf{K}(\mathbb{Z},2)$ be an oriented tangent bundle on a 2-dim combinatorial manifold.

- Bundles of circles can only model nonzero tangent vectors.
- A global section would be a trivialization of T, so there is an obstruction.

Our solution:

- A vector field is a term $X : \prod_{m : M_1} Tm$.
- It's a nonvanishing vector field on the 1-skeleton.
- We model classical zeros by omitting the faces.

Reminder: pathovers

- Recall pathovers (dependent paths).
- There is an asymmetry: we pick a fiber to display π, the path over p.
- Dependent functions map paths to pathovers: $apd(X)(p) : tr_p(X(a)) = X(b)$ (simply denoted X(p)).

Next goal: define the index of a vector field on a face.

We will try to show the three ingredients of *X* on this face:

vertices.

The value of X on

- The value of X on edges.
- The transport between vertices, interacting with X.

• Denote by X_1 this vector $X(v_1)$: T_1 .

•

- Denote by X_1 this vector $X(v_1)$: T_1 .
- Say T₁₂ is trivial. Denote the transported vector as thinner.
- •
- •

- Denote by X_1 this vector $X(v_1)$: T_1 .
- Say T₁₂ is trivial. Denote the transported vector as thinner.
- Say T₂₃ rotates counterclockwise. Denote the twice-transported vector as dashed.

- Denote by X_1 this vector $X(v_1)$: T_1 .
- Say T₁₂ is trivial. Denote the transported vector as thinner.
- Say T₂₃ rotates counterclockwise. Denote the twice-transported vector as dashed.
- Say T₃₁ is trivial. The thrice-transported vecor is dotted.

- $\partial F \stackrel{\text{def}}{=} e_{12} \cdot e_{23} \cdot e_{31}$.
- tr thins out arrows.
- X on a path is drawn in the path's color.
- $X(\partial F)$ traces 3 sides of a square.

Index

$$\operatorname{tr}_F \stackrel{\mathsf{def}}{=} \operatorname{tr}(\partial F) \quad : T_1 =_{\mathsf{K}(\mathbb{Z},2)} T_1 \quad \text{curvature}$$

$$b_F \stackrel{\text{def}}{=} b(\partial F) \quad : id =_{T_1 = T_1} tr_F \quad \text{flatness}$$

$$X_F \stackrel{\mathsf{def}}{=} X(\partial F)$$
 : $\mathsf{tr}_F(X_1) =_{T_1} X_1$ swirling

Index

$$\operatorname{tr}_F \stackrel{\mathsf{def}}{=} \operatorname{tr}(\partial F) \quad : T_1 =_{\mathsf{K}(\mathbb{Z},2)} T_1 \quad \text{curvature}$$

$$b_F \stackrel{\text{def}}{=} b(\partial F) \quad : \text{id} =_{T_1 = T_1} \text{tr}_F \quad \text{flatness}$$

$$X_F \stackrel{\mathsf{def}}{=} X(\partial F) : \mathsf{tr}_F(X_1) =_{T_1} X_1 \quad \mathsf{swirling}$$

Definition

The index of the vector field X on the face F is the integer

$$I_F^{X} \stackrel{\text{def}}{=} \Omega(\flat_F(X_1) \cdot X_F) : \Omega(X_1 =_{T_1} X_1).$$

Main theorem

On a single face we have $I_F^X \stackrel{\text{def}}{=} \Omega(\flat_F(X_1) \cdot X_F)$.

On a single face we have $I_F^X \stackrel{\text{def}}{=} \Omega(\flat_F(X_1) \cdot X_F)$.

We will show

On a single face we have $I_F^X \stackrel{\text{def}}{=} \Omega(\flat_F(X_1) \cdot X_F)$.

We will show

how to sum this over faces

On a single face we have $I_F^X \stackrel{\text{def}}{=} \Omega(\flat_F(X_1) \cdot X_F)$.

We will show

- how to sum this over faces
- that X_F adds up to zero, by a cancellation argument

On a single face we have $I_F^X \stackrel{\text{def}}{=} \Omega(\flat_F(X_1) \cdot X_F)$.

We will show

- how to sum this over faces
- that X_F adds up to zero, by a cancellation argument and the theorem $I_{\text{tot}}^X = \Omega(\flat_{\text{tot}})$ will follow.

On a single face we have $I_F^X \stackrel{\text{def}}{=} \Omega(\flat_F(X_1) \cdot X_F)$.

We will show

- how to sum this over faces
- that X_F adds up to zero, by a cancellation argument

and the theorem $I_{\text{tot}}^X = \Omega(b_{\text{tot}})$ will follow.

We will remove the dependency on M, by using our materials in new ways.

Fix a point $m : \mathbb{M}$ and fix the group $\mathscr{G} \stackrel{\text{def}}{=} (Tm =_{BS^1} Tm)$.

Recall we have an equivalence $(\phi, \operatorname{pr}_1): X \times \mathscr{G} \to X \times X$.

Call the inverse (pr_1, s) where s is subtraction.

Every fiber T_i is pointed by X_i .

Define the \mathscr{G} -equivariant equivalence $\alpha_i \stackrel{\mathsf{def}}{=} s(-, X_i) : T_i \to \mathscr{G}$.

We will compose X_F and \flat_F with α_i .

Classical proof

[26.2] The difference $\Re(\Delta) - 2\pi \Im_F(s)$ can be found by summing over the edges K_j the change $\Phi(K_j)$ in the illustrated angle $\angle Fw_{||}$ i.e., the rotation of $\mathbf{w}_{||}$ relative to \mathbf{F} .

Figure: Needham, T. (2021) Visual Differential Geometry and Forms.

- The classical proof is discrete-flavored.
- " $\angle Fw_{||}$ " looked a lot like a pathover.
- Hopf's Φ is defined on edges, not loops. We imitated that too.

Thank you!