DATA SCIENCE INTRODUCTION

SUNIL GHIMIRE

I TABLE OF CONTENTS

PREREQUISITE

Things you should be familiar with beforehand

CAREER

Present context vs the long-term endeavour

PIPELINE

Discrete steps to progress towards the result

NETWORKING

Answering questions raised by the audience

PREREQUISITE

Things you should know beforehand

| PROGRAMMING

DSA
Data Structures and Algorithms

Languages
Python / R

Database
Sql Scripting

Version Control
Git and Github

Linux
Linux Commands

| MATHEMATICS

01 Linear Algebra
Vectors and Matrices

Calculus
Limit, Derivative and Integration

Probability

Hypothesis and Testing

Statistics

Mean, Median, Mode, Std

PIPELINIE

Discrete steps to progress (CRISP-DM)

| BASIC ILLUSTRATION

| BUSINESS UNDERSTANDING

BUSINESS OBJECTIVE

Gain insights of business problems, goals and resources for data mining

DATA MINING GOALS

Transfer Business objective to data mining perspective

ASSESS SITUATION

Risk analysis Cost-Benefit analysis Requirements & Availability

PROJECT PLAN

Construct a step-by-step blueprint of the project

I DATA UNDERSTANDING

DATA COLLECTION

Select most promising attributes only

DATA EXPLORATION

Data visualization using tables, charts & other tools

DATA DESCRIPTION

Focus on quantity and quality of data

QUALITY VERIFICATION

Check for missing data, out of order and other errors

DATA PREPARATION

SELECT DATA

Select which dataset to work with and why

CLEAN DATA

Correct, impute or remove useless data

CONSTRUCT DATA

Derive new attribute from existing ones

INTEGRATE DATA

Combine data from multiple sources

FORMAT DATA

Re-format data as necessary

| MODELLING

ALGORITHM SELECTION

Choose an algorithm that works better for the problem

MODEL TRAINING

Implementing Machine Learning model for real

TRAIN TEST SPLIT

Split data into train & test sets (sometimes valid too)

Assess Model

Interpret model based on domain knowledge using test set

I EVALUATION

RESULT EVALUATION

Testing the result on some unseen data and see how our model performs on it

REVIEW

Check if the result works good enough i.e. if it meets the threshold values

RETRAIN OR END?

End the process if threshold values are met else retrain

CAREER

How are data scientists doing all around?

| CAREER

DATA MINING

Collect useful data from different sources

BUSINESS INTELLIGENCE

Write queries to generate reports

DATA ANALYST

Runs queries to find important trends

DATA ENGINEERING

Prepare data to fit to ML models

MACHINE LEARNING

Build AI models for the business

NETWORKING

Answering questions raised by audience

THANK YOU

Linkedin: ghimiresunil