

Przedmiotowy Konkurs Informatyczny LOGIA powołany przez Mazowieckiego Kuratora Oświaty

Zadanie Kolorowy zegar – LOGIA 24 (2023/24), etap 2

Treść zadania

Jola korzysta z cyfrowego zegara, na którym czas (godzina i minuty) wyświetlany jest na kolorowych planszach. Każda z 24 plansz określających godziny ma jeden z czterech kolorów:

- czerwony (c) godziny 0, 4, 8, 12, 16, 20;
- zielony (z) godziny 1, 5, 9, itd.;
- niebieski (n) godziny 2, 6, 10, itd.;
- fioletowy (f) godziny 3, 7, 11, itd.

Plansze z minutami mają 5 cyklicznie powtarzających się kolorów: 0-z, 1-n, 2-f, 3-c, 4-p (pomarańczowy).

Napisz program, który wczyta dwie liczby określające czas (godzinę i minuty), a następnie policzy i wypisze minimalną liczbę minut, jakie muszą upłynąć do chwili, gdy obie plansze na zegarze będą miały ten sam kolor.

Wejście

Dwie liczby całkowite nieujemne g i m oddzielone spacją, $0 \le g \le 23$, $0 \le m \le 59$.

Wyjście

Liczba całkowita nieujemna.

Przykłady:

Wejście	6 33	7 36	22 58
Wyjście	3	1	4
	6 – niebieska,	7 – fioletowa,	22 – niebieska,
	33 – czerwona,	36 – niebieska,	58 – czerwona,
	za 3 minuty będą dwie	za 1 minutę obie będą	za 4 minuty obie będą
	plansze niebieskie	fioletowe	fioletowe

Omówienie rozwiązania

Rozwiązanie zadania najlepiej konstruować wykorzystując arytmetykę modularną. Istotna własność – okresowość operacji reszta z dzielenia przy stałym dzielniku znacznie uprości rozwiązanie.

Weźmy sekwencje pierwszych liter pojawiających się kolorów oddzielnie dla godzin – "cznf" i minut – "znfcp". Do sprawdzenia jaki mamy kolor karteczki dla danej godziny obliczamy resztę z dzielenia g przez 4 i sprawdzamy numer litery w napisie "cznf". Podobnie w przypadku minut, lecz dzielenie z resztą jest przez 5, a literę sprawdzamy w napisie "znfcp". Numerowanie zaczynamy od zera. W zmiennej odp będziemy zliczać czas do momentu pojawienia się dwóch jednokolorowych karteczek.

Zwiększanie wartości czasu g i m o jedną minutę może być przeprowadzone na kilka sposobów. Można przykładowo po dodaniu minuty i obliczeniu reszty z dzielenia przez 60 sprawdzić, czy otrzymaliśmy wartość 0. W tym przypadku zwiększamy wskazania godziny o 1. Nie przejmujemy się zmienną g

Przedmiotowy Konkurs Informatyczny LOGIA powołany przez Mazowieckiego Kuratora Oświaty

z wartością 24 zamiast 0, bo interesuje nas w zasadzie jej wartość dzielenia przez 4, która w obu przypadkach jest ta sama.

Pseudokod rozwiązania:

```
wczytaj g, m
godz ← "cznf"
min ← "znfcp"
odp ← 0
dopóki godz[g mod 4] <> min[m mod 5] wykonuj
    odp = odp + 1
    m ← (m + 1) mod 60
    jeżeli m = 0 to g ← g + 1
wypisz odp
```

Rozwiązanie w języku Python

```
1 g, m = input().split()
2 g, m = int(g), int(m)
3
4 godz = "cznf"
5 min = "znfcp"
6 odp = 0
7
8 while godz[g % 4] != min[m % 5]:
9 odp = odp + 1
10 m = (m + 1) % 60
11 if m == 0: g += 1
12
13 print(odp)
```

Testy

Najpierw należy przetestować zadanie na przykładach z treści zadania. Następnie dla różnych testów, uwzględniając zmianę godziny oraz przejście przez północ. Możliwe wyniki to wartości od 0 do 5, więc należy tak dobrać testy, aby uwzględnić wszystkie możliwe wyniki.

Test	Wynik
20 0	3
14 0	1
75	2
17 16	4
18 22	4
23 58	5
0 59	1
9 15	0
21 56	5
11 52	0

