Report on Homework 3

Exploring Classification using Naive Bayes

Course: CS725 - Foundations of Machine Learning

Submitted By:

Ankush Mitra - 23M0755

Shariq Faraz - 23M0779

Parameters

1. Gaussian (Features: X1, X2):

		Classes		
Feature	Parameter	0	1	2
X1	Mean (μ)	2.02	0.02	8.02
	Variance (σ^2)	9.05	25.16	35.67
X2	Mean (μ)	3.91	0.86	-0.02
	Variance (σ^2)	78.43	230.03	4.01

2. Bernoulli (Features: X3, X4):

		Classes		
Feature	Parameter	0	1	2
Х3	р	0.20	0.60	0.91
X4	p	0.10	0.80	0.19

3. Laplace (Features: X5, X6):

		Classes		
Feature	Parameter	0	1	2
X5	μ	0.06	0.38	0.75
	b	78.42	230.03	4.01
Х6	μ	0.87	0.29	0.21
	b	78.42	230.03	4.01

4. Exponential (Features: X6, X7):

		Classes		
Feature	Parameter	0	1	2
X7	λ	1.97	2.96	8.86
Х8	λ	3.92	7.92	14.47

5. Multinomial (Features: X9, X10)

		Classes		
Feature	Parameter	0	1	2
Х9	p_{0}	0.202	0.098	0.205
	$p_{_1}$	0.203	0.198	0.299
	p_{2}	0.204	0.405	0.103
	$p_{_3}$	0.197	0.158	0.341
	$p_{_4}$	0.194	0.141	0.051
X10	p_{0}	0.121	0.101	0.197
	p_{1}	0.124	0.051	0.048
	p_2	0.128	0.051	0.048
	p_3	0.127	0.010	0.105
	$p_{_4}$	0.127	0.152	0.155
	$p_{_{5}}$	0.127	0.149	0.152
	p_{6}	0.124	0.200	0.098
	$p_{_{7}}$	0.123	0.097	0.194

Results

	Performance Metrics			
Data	Accuracy	F1 score		
	(%)	Class 0	Class 1	Class 2
Training	90.14 %	0.881	0.879	0.943
Validation	90.20 %	0.881	0.878	0.946

Approach

The following is a description of the approach taken in the implementation of Naive Bayes classifier:

• The __init__ method of the class takes an optional parameter smoothing_alpha, which is a small positive value that is added to the counts or estimates of probabilities to avoid zero probabilities and improve generalization. The default value is 0.001.

For each class c in self.classes, we do the following:

- Filters the rows of X that belong to class c and stores them in class_data.
- Calculates the **prior probability** of class c using **Laplace smoothing** and stores it in self.class_priors[c].

■ The model fits different distributions for each feature given each class, depending on the feature index. For each feature index, the model assumes a certain distribution (Gaussian, Bernoulli, Laplace, Exponential, or Multinomial) and estimates its parameters using maximum likelihood estimation with smoothing. The model then appends a tuple of the distribution name and the parameters to a list that stores the distributions and parameters for each class.

To make a prediction we do the following:

- Initializes a variable posterior to store the logarithm of the posterior probability of class c given x. This is done to avoid numerical underflow when multiplying many small probabilities.
- Add the logarithm of the prior probability of class c to posterior.
- For each feature index feature_idx in range from 0 to self.features, it does the following:

Extrats the distribution and parameters of feature index feature_idx given class c from self.distributions[c][feature_idx].

- For each feature, the model uses a different distribution (Gaussian, Bernoulli, Laplace, Exponential, or Multinomial) and applies the corresponding formula to compute the logarithm of the likelihood. The model then adds the logarithm of the likelihood to the posterior probability of the class.
- It then adds the logarithm of the likelihood to posterior.

It then finds the class predicted_class that has the **maximum posterior probability** and appends it to predictions.