

FIG.2A

POTENTIAL ELECTROSTATIC INTERACTIONS

POTENTIAL ELECTROSTATIC INTERACTIONS

FIG.5

FIG.6

FIG.7A

FIG.7B

FIG.7C

FIG.7D

FIG.8A

FIG.8B

FIG.9

68	30	118			Ċ	20	420
/RTISSQQWYKTYFGADSEE	MCKNVLLLGSGFVAQPVIDTLAANDDINVT 30	69 VASLYLKDAKETVEGISDVEAVRLDVSDSESLLKYVSQVDVVLSLLPASC 118 : : : : : : : : : : : : : : : : : : : : :	119 HA 120 :	80 HP 81		1 KHTATLLEFGDIKNGQTTTAMAKTVG1PAAIGALLLIEDKIKTKGVLKPL 50	374 TRISTLVDYGKVGGYSSMAATVGYPVAIATKFVLDGTIKGPGLLAPY 420
19	-	69	119	80	•		374
	SDH						SDH
SEQ ID NO:104	S. cerevisiae SD					SEQ ID NO:105	S. cerevisiae SD

51 EAEVYLPALDIL.QAYGIKLMEKAE 74 .: |: |: |: || |.||. 421 SPEINDPIMKELKDKYGIYLKEKTVA 446

FIG.11

ASP718ECORI CT CCTCTTCTACT TCCGCTA CCTTCTC TTCGACTTCCGCACTATCCATGGCTTAA CATGBAGGAGAAGATGAAGGC GATGGAAGAGAGAAGATGAAGGCGTGATAGGTACGC E K M K A M'E E K M K A EARI NCOI

LIGATE OLIGOS

GATGGAGGAGATGAAGGC CCTCCTCTTCTACTTCCGCTA M E E K M K A LIGATE TO EARI CUT VECTOR

ASP718ECORI CT CCTCTTCTACT TCCGCTA CCTCCTCTTCTACTTCCGCTA CCTTCTC TTCGACTTCCGCACTATCCATGGCTTAA CATGSAGGAGAGAGGAGGAGGGGGGAGAGGATGAAGGC GATG<u>GAAGAGA</u>AGATGAAGGCG<u>TGA</u>TA<u>EGTACC</u>G M F F F F EARI M F F X M X A E X M X A NCOI

FIG. 12

FIG. 13

BASE GENE BSPHI STOP ASP718 ECORI CTCCTCTTCTACTITICTA GCTTCTCTTCTACTTCCAGTACTTCACTATCCATGGCTTAA

E E K M K K L E E K M K V M K CATGAGGAGAGATGAAAAA GCTCGAAGAGAAGATGAAGGTCATGAAGTGATAGGTACCG EARI E K M K ≥

OLIGONUCLEOTIDE INSERTS

CCTTCTTTCTACTTCCGATACCTCCTGTTCTACTTTACCGAACTCCTTTTCTACTTCTTCGA GCTGGAAGAAAAAGATGAAGGCTATGGAGGAGAAGATGAAATGGCTTGAGGAAAAGATGAAGAA L EE KMKAMEEKMKW L EEKMKK OLIGOS LIGATED INTO EARI CUT BASE GENE

NCOT

CTCCTCTTCTACTTTTTCTA CCTTCTTTTCTACTTCCGATACCTCCTGTTCTACTTTACCGAACTCCTTTTCTACTTCTTCGA <u>CATGG</u>AGGAGAAGATGAAAAA GCTGGAAGAAAAGATGAAGGCTATGGAGGAGAGATGAAATGGCTTGAGGAAAAGATGAAGAGCT

M E E K M K K I E E K M K A M E E K M K W I E E K

EARI BSPHI ASP718 ECORI

GCTTCTCTTCTACTTCCAGTACTTCACTATCCATGGCTTAA CLONE pSK34 dGAAGAGAAGATGAAGGTCATGAAGTGATAGGTACCG

FIG.14a

FIG.15

FIG.16

FIG.17

FIG. 18

FIG.19

FIG.20

FIG.21

FIG.22