Distributional and Byzantine Robust Decentralized Federated Learning

Kaichuang Zhang, The University of Texas Rio Grande Valley *Ping Xu*, The University of Texas Rio Grande Valley

Decentralized Federated Learning

Traditional Machine Learning

Federated Learning

Decentralized Federated Learning

- **Traditional Machine** Learning
 - Collect datasets into a single node.
 - Data privacy issue.

- **Federated Learning** $(FL)^{[1]}$
 - Without data sharing.
 - Server vulnerable
- **Decentralized Federated** Learning (DFL)
 - Without a server.
 - More Robust.

Still have some Robustness issues in DFL:

Distributional Shift and Byzantine Attack.

Challenge 1: Distributional Shift in DFL

☐ **Distributional shift:** a mismatch between the distributions of train data and test data.

☐ Traditional Machine Learning under Empirical Risk
Minimization (ERM) assumes that train data and test data share the same distribution, but usually fails in practice.

$$\min_{w \in \mathbb{R}^d} \mathbb{E}_{x_n \sim \mathcal{D}_n} f_n(w; x_n)$$

- ☐ Prior work to resolve distributional shifts
 - ❖ Adaptive Regularization [2]
 - ❖ Invariant Risk Minimization [3]
 - Distributionally Robust Optimization (DRO) [4]

$$\min_{w \in \mathbb{R}^d} \sup_{\mathcal{Q} \in \Omega} \mathbb{E}_{x \sim \mathcal{Q}} f(w; x).$$

Construct the ambiguity set Ω based on probability distance, Wasserstein distance, etc.

Challenge 2: Byzantine Attack in DFL

- **Byzantine attacks** refer to dishonest clients who send arbitrary malicious information to intentionally disrupt the entire system.
- Byzantine Robust Aggregation Algorithms
 - Statistics
 - ➤ Median [1], Trimmed Mean [1], etc.
 - Anomaly detection
 - > pre-trained autoencode [2]
 - Performance evaluation
 - Requires an evaluation dataset.
 - > Straightforward and efficient.

Our contributions

- A Byzantine-robust aggregation algorithm designed to eliminate the negative impact of Byzantine attackers.
- * The first framework that achieves Byzantine robustness and distributional robustness simultaneously.

Byzantine Robust: LPE-TSR

Local Performance Evaluation with Temperature- Scaled Softmax Reweighting (LPE-TSR)

Local Performance Evaluation

☐ Determine the updates are benign or malicious using an evaluation dataset

Temperature-Scaled Softmax Reweighting

- Assign larger weights to benign updates and smaller weights to malicious updates.
- Accelerate convergence. Softmax $_T(z_i) = \frac{\exp(z_i/T)}{\sum_j \exp(z_j/T)}$

LPE-TSR summary:

Step 1

Build evaluation dataset;

Step 2

Perform evaluation;

Step 3

Filter out malicious updates;

Step 4

Aggregation;

DB-Robust DSGD

Distributional and Byzantine Robust Decentralized **Stochastic Gradient Descent**

- Distributed Wasserstein DRO for handling distributional shifts.
 - Wasserstein distance to build ambiguity sets: $Q_n: W_c(Q_n, \mathcal{D}_n) \leq \rho_n$
 - Optimization problem:

$$\min_{w \in \mathbb{R}^d} \frac{1}{N} \sum_{n=1}^N \mathbb{E}_{x_n \sim \mathcal{D}_n} f_n(w; x_n)$$

$$\min_{w \in \mathbb{R}^d} \frac{1}{N} \sum_{n=1}^{N} \mathbb{E}_{x_n \sim \mathcal{D}_n} f_n(w; x_n)
\min_{w \in \mathbb{R}^d} \frac{1}{|\mathcal{B}|} \sum_{n=1}^{|\mathcal{B}|} \sup_{\mathcal{Q}_n : W_c(\mathcal{Q}_n, \mathcal{D}_n) \le \rho_n} \mathbb{E}_{x_n \sim \mathcal{Q}_n} f_n(w; x_n)$$

DB-Robust DSGD

Traditional DFL

$$\min_{w \in \mathbb{R}^d} \frac{1}{N} \sum_{n=1}^N \mathbb{E}_{x_n \sim \mathcal{D}_n} f_n(w; x_n)$$

Local SGD training;

$$w_n^{t+\frac{1}{2}} = w_n^t - \eta^t \nabla f_n(w_n^t; x_n^t), x_n^t \sim \mathcal{D}_n$$

Communication;

$$W_n = \{w_n^{t + \frac{1}{2}}\} \cup \{w_m^{t + \frac{1}{2}} | m \in \mathcal{N}_n\}$$

Aggregation;

$$w_n^{t+1} = \sum_{w_i \in W_n} \frac{|\mathcal{D}_i|}{|\mathcal{D}|} w_i^{t+\frac{1}{2}}$$

☐ Distributional and Byzantine robust DFL

$$\min_{w \in \mathbb{R}^d} \frac{1}{|\mathcal{B}|} \sum_{n=1}^{|\mathcal{B}|} \sup_{\mathcal{Q}_n : W_c(\mathcal{Q}_n, \mathcal{D}_n) \le \rho_n} \mathbb{E}_{x_n \sim \mathcal{Q}_n} f_n(w; x_n)$$

Local SGD training;

$$w_n^{t+\frac{1}{2}} = w_n^t - \eta^t \nabla f_n(w_n^t; x_n^t), x_n^t \sim Q_n$$

$$w_n^{t+\frac{1}{2}} = \star$$

Communication;

$$W_n = \{w_n^{t + \frac{1}{2}}\} \cup \{w_m^{t + \frac{1}{2}} | m \in \mathcal{N}_n\}$$

* Robust Aggregation;

$$w_n^{t+1} = \mathbf{BRAgg}(w_i^{t+\frac{1}{2}} | w_i^{t+\frac{1}{2}} \in W_n),$$

where N is the number of clients in DFL system; w is local the weights of local model; D_n is the original data distribution of client n; D is the sum of D_n ; f is loss function; and η is the learning rate; BRAgg() is Byzantine Robust Aggregation Rules.

Experimental Setups

- **Network topology.** A random undirected graph containing $|\mathcal{B}|$ benign nodes and $|\mathcal{M}|$ malicious nodes, characterized by a connection probability of ρ .
- Datasets.
 - * Fashion MNIST: An image dataset of 10 categories, containing 60,000 (train) and 10,000 (test) samples.
 - Spambase: 4,601 email samples and 57 features.

- □ Distributional shifts. $\begin{cases} L_1 \text{ shift: } ||z x|| \le q \\ L_2 \text{ shift: } ||z x||_2 \le q \end{cases}$ □ Byzantine attacks.
 - Gaussian Attack (GA), Sign-Flipping Attack (S-F),

$$|B| = 10$$
, $|M| = 2$, $p=0.7$.

- ❖ A Little Is Enough Attack (ALIE), Same-Value Attack (SA)
- **Evaluation metric.** We report the average test accuracy (**Acc.**) of all local models on the test dataset.

Experimental Result

Evaluate Byzantine robustness of LPE-TSR

☐ Benchmark

- * No-AT: no attacker, theoretical upper bound;
- Median / Trimmed Mean and Krum.

□ Result

- ❖ LPE-TSR is better than No-AT in some scenarios;
- **LPE-TSR** is better than Median / Trimmed Mean and Krum.

ATTACK	DATA	No-AT	Median	Trimmed Mean	Krum	LPE-TSR(ours)
GA	IID	82.32	82.21	82.31	82.31	82.41
	Non-IID	82.27	82.01	82.15	81.83	82.20
S-F	IID	82.32	79.71	79.20	82.31	82.40
	Non-IID	82.27	74.62	73.20	81.83	82.20
ALIE	IID	82.32	82.19	82.33	82.15	82.37
	Non-IID	82.27	81.10	81.85	79.88	81.12
SA	IID	82.32	79.79	79.22	82.19	82.40
	Non-IID	82.27	74.82	73.29	10.00	82.20

Experimental Result

Evaluate robustness of DB-Robust DSGD

- Benchmark
 - Empirical Risk Minimization (ERM).
- ☐ Result
 - ❖ DB-Robust (*) is better than ERM when just Byzantine Attack or Distributional Shift is exist;
 - ❖ DB-Robust (*) outperforms ERM under the same scenarios when Byzantine Attack and Distributional Shift is exist at the same time;

	ERM	DB-	DB-	DB-	DB-
	LKIVI	Robust(Median)	Robust(TM)	Robust(Krum)	Robust(LPE-TSR)
No-Shifts & No-AT	93.48	92.1	93.02	92.83	92.89
No-Shifts & GA	54.35	91.92	92.44	93.94	92.60
L1 Shifts & No-AT	90.92	90.60	91.20	92.21	91.20
L2 Shifts & No-AT	68.03	71.54	71.28	68.70	71.69
L1 Shifts & GA	54.95	90.61	90.89	91.10	90.59
L2 Shifts & GA	52.90	71.39	71.62	71.24	71.50

Conclusion & Future Work

Conclusion

- * Local Performance Evaluation with Temperature-Scaled Softmax Reweighting (LPE-TSR) efficiently and effectively mitigates the negative impact of Byzantine clients in DFL systems.
- ❖ *DB-Robust DSGD* addresses distributional shifts and Byzantine attacks simultaneously. Distributed Wasserstein DRO is used to mitigate distributional shifts, while Byzantine-robust aggregation algorithms counter Byzantine attacks.
- Experimental results demonstrate that the proposed algorithms achieve superior accuracy and robustness compared to benchmark methods.

☐ Future work

- Theoretical analysis of DB-Robust DSGD and LPE-TSR.
- Other methods to address distribution shifts.
- **Theoretical analysis** of why LPE-TSR outperforms No-AT.

References

- 1. McMahan B, Moore E, Ramage D, et al. Communication-efficient learning of deep networks from decentralized data[C]//Artificial intelligence and statistics. PMLR, 2017: 1273-1282.
- 2. Hansen L K, Rasmussen C E, Svarer C, et al. Adaptive regularization[C]//Proceedings of IEEE Workshop on Neural Networks for Signal Processing. IEEE, 1994: 78-87.
- 3. Arjovsky M, Bottou L, Gulrajani I, et al. Invariant risk minimization[J]. arXiv preprint arXiv:1907.02893, 2019.
- 4. Lin F, Fang X, Gao Z. Distributionally robust optimization: A review on theory and applications[J]. Numerical Algebra, Control and Optimization, 2022, 12(1): 159-212.
- 5. Shi J, Wan W, Hu S, et al. Challenges and approaches for mitigating byzantine attacks in federated learning[C]//2022 IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). IEEE, 2022: 139-146.
- 6. Yin D, Chen Y, Kannan R, et al. Byzantine-robust distributed learning: Towards optimal statistical rates[C]//International conference on machine learning. Pmlr, 2018: 5650-5659.
- 7. Li S, Cheng Y, Liu Y, et al. Abnormal client behavior detection in federated learning[J]. arXiv preprint arXiv:1910.09933, 2019.

