Моделиране на малария

Въведение в епидемологията и кооперативните динамични системи

изготвил: Калоян Стоилов ръководител: Петър Рашков

СОФИЙСКИ УНИВЕРСИТЕТ "СВ. КЛИМЕНТ ОХРИДСКИ"

ФАКУЛТЕТ ПО МАТЕМАТИКА И ИНФОРМАТИКА

1 април 2025 г.

Съдържание

- Въведение
- 2 Кооперативни системи
- Модел на Ross
- 4 Ендемизъм
- 5 Модел с няколко местообитания
- 6 Модел с репелент
- Модел с две местообитяния и репелент
- В Свойства на задачата

Комари

(a) Culex pipiens

(б) Anopheles barbirostris

Термини от епидемологията

- Патоген е причинител на зараза (напр. вирус, бактерия, прион).
- Вектор е носител на патоген, който може да зарази други индивиди.
- S (Susceptible) податливи са тези, които не носят патогена и могат да бъдат заразени с него
- Е (Exposed) латентни са носители на патогена, които не могат да го предадат
- I (Infectious) заразни са носители на патогена, които могат да го предадат
- R (Removed/Recovered/Resistant) резистентни са тези, които имат (или са получили след заразяване с патогена) имунитет (може да е временен) към патогена и не могат нито да го разпространят, нито да бъдат заразени

Развитие на заразата

В зависимост от природата на заразата, могат да се наблюдават различни преходи на индивид от един в друг клас с течение на времето:

- $S \rightarrow E \rightarrow I \rightarrow R \rightarrow S$ (SEIRS)
- $S \rightarrow I \rightarrow R$ (SIR) напр. рубеола
- $S \rightarrow I \rightarrow R \rightarrow S$ (SIRS)
- $S \rightarrow E \rightarrow I$ (SEI) Hamp. HIV
- $S \rightarrow I \rightarrow S$ (SIS) напр. малария, инфлуенца

Понякога по-сложни заболявания могат да се моделират с по-прости модели (напр. да допуснем, че няма латентна фаза), но тогава няма да получим същата точност при прогноза на развитието на заболяването.

Разпространение на заразата

Категориите влияят една на друга, например заразните могат да заразят човек от податливите и така той да се причисли към тяхната група.

Възможно е да имаме повече от една съвкупност от групи SEIRS хора (напр. разделение по възраст, местообитание), за които да имаме различни податливости на патогена.

Възможно е да имаме повече от една съвкупност от групи SEIRS, отговаряща за различни видове.

Възможно е да се разглежда популационната динамика при развитие за прогнози далеч във времето.

Малария

Патогенът е маларийни плазмодии (едноклетъчни еукариоти, т.е. едноклетъчни с ядро).

Симптоми са периодичен пароксизъм(продължителни спазми, потене, треска), умора, главоболие, белодробен оток, разрастнал се черен дроб, смърт.

През XIX са открили връзката с болестта и присъствието на комари, но първоначално се е предполагало, че патогена се пренася по вода.

Патогенът произхожда от Южна Африка. В днешно време маларията се среща в Южна Африка, Югоизточна Азия.

Малариен плазмодий

Фигура: Оцветена електронно микроскопска снимка на плазмодий нападащ еритроцит

Малариен плазмодий

Фигура: Жизнен цикъл на патогена

Силновдлъбнати системи

$$\dot{\mathbf{x}} = \mathbf{f}(t, \mathbf{x}), \quad \mathbf{x} \in \mathbb{R}^n, \mathbf{f} \in C^1(J \times \mathbb{R}^n, \mathbb{R}^n), J \subset \mathbb{R} \text{ е интервал}$$
 (1)

Дефиниция (Силна вдлъбнатост)

Ако системата 1 е автономна, тя се нарича силно вдлъбната, ако

$$0 < \mathbf{x}_1 < \mathbf{x}_2 \implies \mathrm{D} \boldsymbol{F}(\mathbf{x}_2) < \mathrm{D} \boldsymbol{F}(\mathbf{x}_1) \tag{2}$$

N.B!

В презентацията всичките векторни/матрични (не-)равенства се разбират покомпоненто.

Неразложими системи

Дефиниция ((Не-)разложима матрица)

Матрицата $A = (a_{ij})_{n \times n}$ е разложима, ако съществува пермутационна матрица P, с която:

$$PAP^T = \begin{pmatrix} B & C \\ \emptyset & D \end{pmatrix}, B, D$$
 - квадратни

Матрици, които не са разложими се наричат неразложими.

Теорема (Perron-Frobenius)

Ако A е неразложима, то доминантната ѝ собствена стойност μ е проста и на нея отговаря положителен собствен вектор $\mathbf{v} \in \mathbb{R}^n_+$.

Дефиниция ((Не-)разложима система)

Система 1 се нарича (не-)разложима, ако Якобианът на дясната страна D**F** във всяка точка е (не-)разложим.

Кооперативни системи

Дефиниция (Квазимонотонна матрица)

Матрица $A = (a_{ij})_{n \times n}$ е квазимонотонна, ако

$$\forall i,j \in \{\overline{1,n}\} \left(i \neq j \implies a_{ij} \geq 0 \right)$$

Дефиниция (Кооперативна система)

Системата 1 е кооперативна (или още квазимонотонна), ако

$$\forall t \in J \ \forall \boldsymbol{x} \in \mathbb{R}^{n}_{+} \ \forall i, j \in \{\overline{1, n}\} \ \left(i \neq j \implies \frac{\partial f_{i}}{\partial x_{j}}(t, \boldsymbol{x}) \geq 0\right)$$
 (3)

Тоест кооперативни са точно системите с квазимонотонен Якобиан.

Кооперативни системи

Теорема (Сравнение на решения)

Нека $\mathbf{f}, \mathbf{g} \in C^1(\mathrm{int}\mathbb{R}^n_+, \mathbb{R}^n)$ са такива, че системите $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$, $\dot{\mathbf{y}} = \mathbf{g}(\mathbf{y})$ са кооперативни, $\mathbf{f} \leq \mathbf{g}$ и $\mathbf{x}_0 \leq \mathbf{y}_0$. Тогава $\forall t > 0(\mathbf{x}(t) \leq \mathbf{y}(t))$.

Теорема

Система, която е кооперативна, неразложима и силно вдлъбната не може да има две различни неподвижни точки, които да не са тривиалната.

Ronald Ross

Роден през 1857 в Индия син на английски офицер. Получава медицинско образование в Англия, а преди това се образова по многобройни теми, включително математика. След поредица експерименти през 90-те години на XIX век, Ronald Ross открива плазмодият в слюнчестите жлези на комари от род Anopheles.

За приноса си получава става носител на Нобеловата награда за медицина през 1902г.

Лансира идеята за изтребване на комарите като начин за справяне с маларията. За да убеди в това твърдения създава математически модел на маларията и го изследва, като така получава рицарско звание.

Почива през 1932 г.

Ronald Ross

Фигура: Sir Ronald Ross, 1857-1932

Допускания на модела:

- Заразен човек/комар не може да бъде заразен повторно.
- 2 Хората могат да оздравеят от заразата, а комарите не.
- Комарите извършват константен брой ухапвания за единица време.
- Популационната динамика на хората се пренебрегва.
- Популациите на хората и комарите са константни.

Означения:

- $\mathbf{0}$ X(t) е броя заразени с малария хора в момент t.
- **2** Y(t) е броя заразени с малария комари в момент t.
- **3** *N* е човешката популация.
- **4** *M* е популацията от комари.
- \bullet γ е скоростта на оздравяване на хората.
- \bullet μ е скоростта на смъртност на комарите.
- **∅** b е честотата на ухапване на комарите за единица време.
- δ β_{vh} е константна вероятност за заразяване на здрав човек с патогена, когато бъде ухапан от заразен комар, а β_{hv} е константна вероятност за заразяване на здрав комар с патогена, когато ухапе заразен човек.

модел:

За интервал Δt :

Заразените хора ще се получат, като се вземат всички ухапвания на заразени комари за периода и се умножат по вероятността да са по незаразен човек, както и да се предаде патогена, т.е. $\beta_{vh}bY(t)\frac{N-X(t)}{N}\Delta t$, а оздравелите ще са $\gamma X(t)\Delta t$. За този интервал пък заразените комари ще се получат, като се вземат всички ухапвания от незаразени комари и се умножат по вероятнстта да са по заразен човек, както и да се предаде патогена, т.е. $\beta hvb(M-Y(t))\frac{X(t)}{N}\Delta t$, а умрелите ще са $\mu Y(t)\Delta t$. След деление на Δt и граничен преход се достига до следния

$$\dot{X}(t) = \beta_{vh} b \frac{N - X(t)}{N} Y(t) - \gamma X(t)$$

$$\dot{Y}(t) = \beta_{hv} b X(t) (M - Y(t)) - \mu Y(t)$$
(4)

Вижда се, че (0,0) е равновесна точка за 4.

Ако има ендемично състояние $E^* = (X^*, Y^*)$, то също е равновесно. Може да се изведе, че:

$$E^* = (X^*, Y^*) = \left(N \frac{1 - \frac{\gamma \mu N}{b^2 \beta_{\nu h} \beta_{h \nu} M}}{1 + \frac{\gamma N}{b \beta_{\nu h} M}}, M \frac{1 - \frac{\gamma \mu N}{b^2 \beta_{\nu h} \beta_{h \nu} M}}{1 + \frac{\mu}{b \beta_{h \nu}}}\right)$$

.

Заключения на Ross: За да съществува E^* е необходимо $M>M^*=rac{\gamma\mu N}{b^2\beta_{\nu h}\beta_{h \nu}}.$

Така ако се намали броя на комари под M^* , заразата ще изчезне след време.

Ross забелязал, че за малки отклонения над M^* , I^* достига някаква стойност, от която малко се мени в последствие. Това обяснява защо хората не са намирали връзка между броя на комарите в местообитанията и броя на заразените хора. С това изследване Ross доказва разсъжденията си за

С това изследване Ross доказва разсъжденията си за изкореняването на маларията.

Ендемично състояние

Зараза има ендемичен характер, когато за дълъг период от време, заразените с нея са положително число.

Възможно е този брой да е приблизително равен във времето, или да се изменя периодично.

В моделите, които ще изследваме, ендемията съответства на равновесна точка, която е асимптотично устойчива. Това ще рече, че към нея се приближава решението на системата с времето, освен ако не сме започнали в състоянието на липса на зараза.

Базово число на възпроизводство \mathcal{R}_0

 \mathcal{R}_0 носи смисъла на брой вторични случаи на заразата, причинени от един първичен. За да може болестта да има ендемично състояние, то е необходимо $\mathcal{R}_0 > 1$. Наистина, иначе броят заразени веднага щеше да намалее и съответно нямаше да има равновесна точка, различна от 0. За модела на Ross е:

$$\mathcal{R}_0 = \frac{1}{\gamma} \times \beta_{h\nu} b \frac{M}{N} \times \frac{1}{\mu} \times \beta_{\nu h} b = \frac{b^2 \beta_{\nu h} \beta_{h\nu} M}{\gamma \mu N}$$
 (5)

С други думи Ross е открил сходна по същност до него оценка:

$$\mathcal{R}_0 > 1 \iff M > M^* = \frac{\gamma \mu N}{b^2 \beta_{\nu h} \beta_{h \nu}}$$
 (6)

\mathscr{R}_0 в многомерни модели

Нека имаме няколко категории хора, податливи на заразата, които сме разграничили и това са $\mathbf{z} = (z_1, \cdots, z_n)^T$. Нека системата се представя във вида $\dot{\mathbf{z}} = \mathsf{G}\mathbf{z} = \mathcal{F}(\mathbf{z}) - \mathcal{V}(\mathbf{z})$. \mathcal{F} определя новите заразени, а $\mathcal{V}(\mathbf{z}) = \mathcal{V}^-(\mathbf{z}) - \mathcal{V}^+(\mathbf{z})$ е мобилността, която сме разделили на прииждащи и заминащи за съответните групи.

Може да се покаже, че е в сила следната теорема

\mathscr{R}_0 в многомерни модели

Теорема

Нека са изпълнени следните условия:

$$2_i = 0 \implies \mathcal{V}_i^- = 0$$

3
$$\mathcal{F}(0) = 0, \mathcal{V}(0) = 0$$

• $\mathcal{F}(z) = 0 \implies$ всички собствени стойности на DG0 са с отрицателна реална част

и въведем означения $\mathcal{R}_0 = \rho(FV^{-1})$, където ρ е спектралния радиус, а $F = D\mathcal{F}(0)$, $V = D\mathcal{V}(0)$, където $F \geq \mathcal{O}$, а V е несингулярна M-матрица.

Тогава, 0 е локално асимптотично устойчива, ако $\mathcal{R}_0 \leq 1$ и неустойчива, ако $\mathcal{R}_0 > 1$.

\mathscr{R}_0 в многомерни модели

 F_{ij} е скоростта, с която индивид от група j заразява индивиди от група i, а V_{jk}^{-1} е средната продължителност на пребиваване на индивид от група k сред индивидите от група j, съответно $(FV^{-1})_{ik}$ са средния брой новозаразени от i заради индивид от k.

Многомерен модел на Bichara

Допускания на модела:

- Има *т* области, които се обитават от комари и *п* популации хора, които ги посещават.
- **№** Комарите не се движат между областите.
- Всяка от групите хора и комари е от константен брой.
- Мобилността на хората в различните местообитания е константна.
- Честотата на ухапвания на комари за всяка област е константна.
- Хората могат да оздравеят, а комарите не.

Многомерен модел на Bichara. Означения

- **①** $X_i(t)$ е броя заразени с малария хора в момент t, $i = \overline{1, n}$.
- $Y_j(t)$ е броя заразени с малария комари в момент $t, j = \overline{1, m}$.
- lacktriangle N_i е броя хора, а M_j е броя комари за съответните групи.
- \bullet γ_i са скорости на оздравяване на хората.
- \bullet μ_j са скорости на смъртност на комарите.
- $oldsymbol{6}$ a_j е честотата на ухапване на комарите за единица време.
- **8** p_{ij} средна вероятност човек от i да е в j.

Многомерен модел на Bichara. Уравнение за контактите

Средния брой ухапвания на комари в съответните области по техния брой трябва да е същия като средния брой ухапвания на хора от популации по броя им в съответната област, сумирайки по всяка попилация.

$$a_j M_j = b_j \sum_{i=1}^n p_{ij} N_i \iff b_j = \frac{a_j M_j}{\sum_{i=1}^n p_{ij} N_i}$$
 (7)

При направените допускания, в момент t, в местообитание j съотношението на заразени към всички хора е:

$$\frac{\sum_{i=1}^{n} p_{ij} X_i(t)}{\sum_{i=1}^{n} p_{ij} N_i}$$
 (8)

Аналогично на модела на Ross може да получим:

Многомерен модел на Bichara. Извеждане

В момент t заразените хора X_i се увеличават от ухапване на незаразен човек от i заразени комари в различните местообитания j, а намаляват пропорционално на броя си с коефициента на оздравяване. Заразяването моделираме по закона за масите, като коефициентът за съответните местообитания ще бъде b_j . Тогава може да се изрази $\dot{X}_i(t) = \sum_{j=1}^m \beta_{vh} b_j p_{ij} (N_i - X_i(t)) \frac{l_j}{M_i} - \gamma_i X_i(t)$.

Многомерен модел на Bichara. Извеждане

В момент t заразените комари Y_j се увеличават от ухапване на заразен човек от някое от различните местообитания i от незаразен комар в местообитание j, а намаляват пропорционално на броя си с коефициента на смъртност. Заразяването моделираме по закона за масите, като коефициентът ще бъде a_j . Достига се до $\dot{Y}_j(t) = \beta_{hv} a_j (M_j - Y(t)) \frac{\sum_{i=1}^n p_{ij} X_i(t)}{\sum_{i=1}^n p_{ij} N_i} - \mu_j Y_j(t)$.

Многомерен модел на Bichara. Краен вид

$$\dot{X}_{i}(t) = \beta_{vh}(N_{i} - X_{i}(t)) \sum_{j=1}^{m} \frac{p_{ij} a_{j} l_{j}}{\sum_{k=1}^{n} p_{kj} N_{k}} - \gamma_{i} X_{i}(t), \quad i = \overline{1, n}$$

$$\dot{Y}_{j}(t) = \beta_{hv} a_{j} (M_{j} - Y(t)) \frac{\sum_{i=1}^{n} p_{ij} X_{i}(t)}{\sum_{i=1}^{n} p_{ij} N_{i}} - \mu_{j} Y_{j}(t), \quad j = \overline{1, m}$$
(9)

Многомерен модел на Bichara. Ендемизъм

С помощта на теорията на кооперативните системи може да се покаже:

Твърдение

За системата ?? е в сила точно едно от:

- **1** $\mathcal{R}_0 \leq 1$ и 0 е единствената равновесна точка и е глобално асимптотично устойчива.
- $\Re_0 > 1$ и 0 е неустойчива равновесна точка, като ако системата е неразложима, има единствена глобално асимптотично устойчива точка вътрешна за $\times_{i=1}^n [0, N_i] \times \times_{j=1}^m [0, M_j]$ (тоест маларията има ендемичен характер).

Резултати на Bichara

Group 2.

Fig. 7. Trajectories of System (5), with n = 2 groups and m = 3 patches with 4 different initial conditions. The disease dies out for the host of Group 2 whereas it per for those of Group 1. Similarly, the disease dies out for the vector of Patch 2 but persists for the vectors of Patches 1 and 3.

2 and Patch 3.

Фигура: Сложно развитие на малария

Модел с репелент на Rashkov

Модифицираме модела на Ross с $(1 - \kappa u(t))$ в закона за действие на масите, където u(t) функция управление за пропорцията на хора предпазени с помощта на репелента, а κ неговата ефективност.

$$\dot{X}(t) = \beta_{vh} e^{-\mu \tau} a(1 - \kappa u(t)) \frac{N - X(t)}{N} Y(t) - \gamma X(t)$$

$$\dot{Y}(t) = \beta_{hv} a(1 - \kappa u(t)) X(t) (M - Y(t)) - \mu Y(t)$$

$$u(t) \in \mathcal{U} = \{ u : \mathbb{R}_+ \to [0, \bar{u}] | u\text{- измерима} \}$$
(10)

au е инкубационният период на комарите. Така математическото очакване заразèн комар да е станал зарàзен може да се изрази като $e^{-\frac{\tau}{\text{ср. продължителност на живот}}}$. Но средната продължителност на живот на комарите е точно $\frac{1}{\mu}$, откъдето $e^{-\mu\tau}Y$ е броя зарàзни комари.

Модел с репелент на Rashkov

Може да направим смяна от брой към пропорция на заразени. Така модела изглежда:

$$\dot{x}(t) = \beta_{vh} e^{-\mu \tau} a \frac{M}{N} (1 - \kappa u(t)) y(t) - \gamma x(t)$$

$$\dot{y}(t) = \beta_{hv} a (1 - \kappa u(t)) x(t) (M - Y(t)) - \mu y(t)$$

$$u(t) \in \mathcal{U} = \{ u : \mathbb{R}_+ \to [0, \bar{u}] | u\text{- измерима} \}$$
(11)

Надолу ще се пише и z = (x, y).

Възможно ли е всички заразени да бъдат хоспитализирани, т.е. да са под \bar{I} ? Въвеждаме $\Im(\bar{I}) = [0, \bar{I}] \times [0, 1]$.

Дефинира се ядрото на слаба инвариантност на Белман:

$$V(\bar{I},\bar{u}) = \{\boldsymbol{z}_0 = (x_0,y_0) | \exists u \in \mathcal{U} \forall t > 0 \left(\boldsymbol{x}(t) < \bar{I}\right)\}$$

Модел с репелент на Rashkov

Ако заместим с \bar{u} получаваме автономна система и да се намерят равновесните ѝ точки.

Твърдение

Ако $E^* = (x^*, y^*)$ е ендемична с $x^* > \bar{l}$, то $V(\bar{l}, \bar{u}) = \emptyset$, понеже може да се докаже, че е асимптотично устойчива.

Твърдение

$$\bar{I} > \frac{(1 - \kappa \bar{u})\beta_{vh}e^{-\mu\tau}a\frac{M}{N}}{(1 - \kappa \bar{u})\beta_{vh}e^{-\mu\tau}a\frac{M}{N} + \gamma} \implies V(\bar{I}, \bar{u}) = \Im(\bar{I})$$

Как да подходим за другите стойности на \bar{I} ?

Вариационна задача

Дефинираме значна фунцкия на разстоянието Γ до границата на $\Im(\bar{I})$:

$$\Gamma(\mathbf{z}) = \begin{cases} \inf_{\mathbf{z}' \in \mathfrak{J}(\bar{I})} |\mathbf{z} - \mathbf{z}'|, & \mathbf{z} \in \Omega \setminus \mathfrak{J}(\bar{I}) \\ -\inf_{\mathbf{z}' \in \Omega \setminus \mathfrak{J}(\bar{I})} |\mathbf{z} - \mathbf{z}'|, & \mathbf{z} \in \mathfrak{J}(\bar{I}) \end{cases}$$
(12)

Фиксираме l > L > 0 (L - константата на Липшицц за системата) и въвеждаме функция на оценката v:

$$v(\mathbf{z}_0) = \inf_{u \in \mathcal{U}} \sup_{t \in (0, +\infty)} e^{-lt} \Gamma(\mathbf{z}(t; \mathbf{z}_0; u))$$
 (13)

Ако започнем с $z_0 \notin V(\bar{I}, \bar{u})$, то $v(z_0) > 0$ и обратното. Ако започнем с $z_0 \in V(\bar{I}, \bar{u})$, то $v(z_0) \le 0$ и обратното. Така $V(\bar{I}, \bar{u}) = \{z_0 \in \Omega | v(z) \le 0\}$

Уравнение на Хамилтон-Якоби-Белман

Може да се покаже, че е изпълнено:

$$v(\mathbf{z}_0) = \inf_{u \in \mathcal{U}} \max\{e^{-lt}v(\mathbf{z}_0), \sup_{s \in (0,t]} e^{-lt}\Gamma(\mathbf{z}(s; \mathbf{z}_0; u))\}$$
(14)

Може да се покаже, че и е точно решението на:

$$\min\{lv(z) + \max_{u \in \mathcal{U}} \mathcal{H}(z, u, \nabla v), v(z) - \Gamma(z)\} = 0, \quad z \in \mathbb{R}^{2}$$

$$\mathcal{H}(z, u, \nabla v) = \langle -f(z, u), \nabla v \rangle$$
(15)

Диференциалното уравнение се разглежда като стационарно решение на диференцална задача с добавено числено време. За решаване на задачи от този вид има числени методи WENO (Weighted Essentially Non-Oscillatory), които са с голям ред на сходимост - h^5 .

Резултати на Rashkov

Figure 3. Numerical approximation of the viability kernel $\mathbb{V}(\bar{I},\bar{u})$ for the epidemiological model. Parameters for Botswana with maximum coverage: a) $\bar{u}=0.6$, b) $\bar{u}=0.7$, c) $\bar{u}=0.8$, d) $\bar{u}=0.9$.

Задача

Комбинираме моделите на Bichara и Rashkov. Моделът подлежи на скалиране на променливите чрез смяната $(X_1, X_2, Y_1, Y_2) \rightarrow (\frac{X_1}{N_1}, \frac{X_2}{N_2}, \frac{Y_1}{M_1}, \frac{Y_2}{M_2}) = (x_1, x_2, y_1, y_2)$ и след полагания на коефициентите има вида:

$$\begin{split} \dot{x}_1(t) &= (1-x_1(t))(1-\kappa u_1(t)) \left(b_{11}y_1(t) + b_{12}y_2(t)\right) - \gamma_1 x_1(t) \\ \dot{x}_2(t) &= (1-x_2(t))(1-\kappa u_2(t)) \left(b_{21}y_1(t) + b_{22}y_2(t)\right) - \gamma_2 x_2(t) \\ \dot{y}_1(t) &= (1-y_1(t)) \left(c_{11}(1-\kappa u_1(t))x_1(t) + c_{12}(1-\kappa u_2(t))x_2(t)\right) \sqrt{16} y^{u_1y_1(t)} \\ \dot{y}_2(t) &= (1-y_2(t)) \left(c_{21}(1-\kappa u_1(t))x_1(t) + c_{22}(1-\kappa u_2(t))x_2(t)\right) - \mu_2 y_2(t) \end{split}$$

Надолу 16 ще се записва и във векторен вид по следния начин:

$$\begin{pmatrix} \dot{\boldsymbol{x}} \\ \dot{\boldsymbol{y}} \end{pmatrix} = \boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{u}), \quad \boldsymbol{x} = (x_1, \dots, x_n)^T, \quad \boldsymbol{y} = (y_1, \dots y_n)^T \quad (17)$$

Или пък във вида:

$$\dot{\mathbf{z}} = \mathbf{f}(\mathbf{z}, \mathbf{u}), \quad \mathbf{z} = (\mathbf{x}, \mathbf{y})^T$$
 (18)

Задача

Бележим

$$\Omega = \{0 \leq x_1 \leq 1, 0 \leq x_2 \leq 1, 0 \leq y_1 \leq 1, 0 \leq y_2 \leq 1\} = \{ {m z} \in [0,1]^4 \}.$$
 Нека ${m l} = ({m l}_1, {m l}_2)^T, {m l}_1, {m l}_2 \in [0,1]$ са константи, отговарящи за максималната част от населението в съответното местообитание, което може да получи адекватна здравна помощ при заразяване с малария. Ще бележим ${\mathcal F} = [0, {m l}_1] \times [0, {m l}_2].$

Задача

Питаме се има ли такива управления $\boldsymbol{u}(t)$, за които във всеки момент всички заразени да имат възможност да получат помощ от здравната система, т.е. :

$$\forall t > 0(x_1(t) \le \bar{l}_1 \land x_2(t) \le \bar{l}_2) \iff \forall t > 0(\boldsymbol{x}(t) \in \mathcal{I})$$
 (19)

Тъй като първоначалният брой заразени хора и комари влияят на развитието на системата ще търсим:

$$V(\bar{I}, \bar{u}) = \{z_0 \text{ начално условие} | \exists u((16) \text{ има решение} \land (19) \text{ е изпълнено})\}$$
(20)

Свойства на задачата 16

Твърдение

За системата 16 са в сила:

- Съществува единствено решение за произволни управления.
- **2** Решение с начално условие в Ω е ограничено в Ω .
- Оистемата е кооперативна.
- Системата е силно вдлъбната.
- Системата е неразложима.

Кратка лема

Лема

Нека $z, z', s, s', C_z, C_s \in \mathbb{R}$, за които $z, z' < C_z$ и $s, s' < C_s$. Тогава след полагането $C = \max\{2|C_z|, |C_s|\}$ е в сила $|(C_z - z)s - (C_z - z')s'| \le C(|s - s'| + |z - z'|)$.

Доказателство.

$$\begin{split} &|(C_z - z)s - (C_z - z')s'| = |C_z s - zs - C_z s' + z's' + zs' - zs'| = \\ &|C_z(s - s') - z(s - s') - s'(z - z')| \le \\ &|C_z||s - s'| + |z||s - s'| + |s'||z - z'| \le 2|C_z||s - s'| + |C_s||z - z'| \le 1 \\ &\max\{2|C_z|, |C_s|\}(|s - s'| + |z - z'|) \end{split}$$

Съществуване на решение на 16

Трябва да покажем липшицовост по фазовите променливи. Първо от неравенството на триъгълника имаме, че:

$$\|\mathbf{f}(\mathbf{z}, \mathbf{u}) - \mathbf{f}(\mathbf{z}', \mathbf{u}')\| \le |F_{x_1}(\mathbf{z}, \mathbf{u})| + |F_{x_2}(\mathbf{z}, \mathbf{u})| + |F_{y_1}(\mathbf{z}, \mathbf{u})| + |F_{y_2}(\mathbf{z}, \mathbf{u})|$$
(22)

Сега може да ползваме лемата 14 за F_{x_1} :

$$\begin{split} &|(1-x_{1})(1-\kappa u_{1})\left(b_{11}y_{1}+b_{12}y_{2}\right)-\gamma_{1}x_{1}-(1-x_{1}')(1-\kappa u_{1}')\left(b_{11}y_{1}'+b_{12}y_{2}'\right)-\gamma_{1}y_{1}'-(1-x_{1}')\left[(1-\kappa u_{1}')y_{1}'\right]|+\\ &|b_{11}|(1-x_{1})\left[(1-\kappa u_{1})y_{2}\right]-(1-x_{1}')\left[(1-\kappa u_{2}')y_{2}'\right]|+\gamma|x_{1}-x_{1}'|\\ &|b_{12}|(1-x_{1})\left[(1-\kappa u_{1})y_{2}\right]-(1-x_{1}')\left[(1-\kappa u_{2}')y_{2}'\right]|+\gamma|x_{1}-x_{1}'|\\ &(23) \end{split}$$

Съществуване на решение на 16

$$\begin{aligned} x_1, x_1' &\leq 1, (1 - \kappa u_1) y_1, (1 - \kappa u_1) y_1' \leq 1, (1 - \kappa u_1) y_2, (1 - \kappa u_1) y_2' \leq 1 \\ & \left| (1 - x_1) [(1 - \kappa u_1) y_1] - (1 - x_1') [(1 - \kappa u_1') y_1'] \right| \leq \\ & 2 |(1 - \kappa u_1) y_1 - (1 - \kappa u_1') y_1'| + |x_1 - x_1'| \leq \\ & 2 (2|y_1 - y_1'| + \kappa |u_1 - u_1'|) + |x_1 - x_1'| \end{aligned} \tag{24}$$

$$\begin{aligned} \left| (1 - x_1) \left[(1 - \kappa u_1) y_2 \right] - (1 - x_1') \left[(1 - \kappa u_1') y_2' \right] \right| &\leq \\ 2 \left| (1 - \kappa u_1) y_2 - (1 - \kappa u_1') y_2' \right| + \left| x_1 - x_1' \right| &\leq \\ 2 (2 \left| y_2 - y_2' \right| + \kappa \left| u_1 - u_1' \right|) + \left| x_1 - x_1' \right| \end{aligned} (25)$$

Тук също ползвахме $1 - \kappa u_1, 1 - \kappa u_1' \le 1, \quad y_1, y_1' \le 1, \quad y_2, y_2' \le 1.$ Така получихе оценка отгоре за първото събираемо. Аналогично за другите.

Съществуване на решение на 16

За да проверим липшицовостта по фазовите променливи, то заместваме с $u_1 = u_1'$, $u_2 = u_2'$ всичко и за цялата дясна страна е в сила:

$$||f(z, u) - f(z', u')|| \le b_{11}(4|y_1 - y_1'| + |x_1 - x_1'|) + b_{12}(4|y_2 - y_2'| + |x_1 - x_1'|) + \gamma_1|x_1 - x_1'| + b_{21}(4|y_1 - y_1'| + |x_1 - x_1'|) + b_{22}(4|y_2 - y_2'| + |x_1 - x_1'|) + \gamma_2|x_2 - x_2'| + c_{11}(4|x_1 - x_1'| + |y_1 - y_1'|) + c_{22}(4|x_2 - x_2'| + |y_1 - y_1'|) + \mu_1|y_1 - y_1'| + c_{21}(4|x_1 - x_1'| + |y_2 - y_2'|) + c_{22}(4|x_2 - x_2'| + |y_2 - y_2'|) + \mu_2|y_2 - y_2'| \le L||z - z'||$$
 (26)

Накрая се използват неравенства от вида $|x_1 - x_1'| \le \|(x_1, x_2, y_1, y_2) - (x_1', x_2', y_1', y_2')\| = \|\mathbf{z} - \mathbf{z}'\|.$

Ограниченост на решението на 16

Трябва да се покаже, че f сочи към вътрешността на Ω , ако решението се намира по границата $\partial \Omega$. Но това наистина е така, от:

$$\begin{split} \dot{x}_1(t)|_{\Omega\cap\{x_1(t)=0\}} &= (1-\kappa u_1(t))(b_{11}y_1(t)+b_{12}y_2(t)) \geq 0 \\ \dot{x}_1(t)|_{\Omega\cap\{x_1(t)=1\}} &= -\gamma_1 < 0 \\ \dot{x}_2(t)|_{\Omega\cap\{x_2(t)=0\}} &= (1-\kappa u_2(t))(b_{21}y_1(t)+b_{22}y_2(t)) \geq 0 \\ \dot{x}_2(t)|_{\Omega\cap\{x_2(t)=1\}} &= -\gamma_2 < 0 \\ \dot{y}_1(t)|_{\Omega\cap\{y_1(t)=0\}} &= c_{11}(1-\kappa u_1(t))x_1(t)+c_{12}(1-\kappa u_2(t))x_2(t) \geq 0 \\ \dot{y}_1(t)|_{\Omega\cap\{y_1(t)=1\}} &= -\mu_1 < 0 \\ \dot{y}_2(t)|_{\Omega\cap\{y_2(t)=0\}} &= c_{21}(1-\kappa u_1(t))x_1(t)+c_{22}(1-\kappa u_2(t))x_2(t) \geq 0 \\ \dot{y}_2(t)|_{\Omega\cap\{y_2(t)=1\}} &= -\mu_2 < 0 \end{split}$$

Кооперативност на 16

Якобианът за системата 16 може да се представи във вида:

$$\mathbf{D}\boldsymbol{f}(x_1,x_2,y_1,y_2)(t) = \begin{pmatrix} \frac{\partial f_{x_1}}{\partial x_1} & \frac{\partial f_{x_1}}{\partial x_2} & \frac{\partial f_{x_1}}{\partial y_1} & \frac{\partial f_{x_1}}{\partial y_2} \\ \frac{\partial f_{x_2}}{\partial x_1} & \frac{\partial f_{x_2}}{\partial x_2} & \frac{\partial f_{x_2}}{\partial y_1} & \frac{\partial f_{x_2}}{\partial y_2} \\ \frac{\partial f_{y_1}}{\partial x_1} & \frac{\partial f_{y_1}}{\partial x_2} & \frac{\partial f_{y_1}}{\partial y_1} & \frac{\partial f_{y_1}}{\partial y_2} \\ \frac{\partial f_{y_2}}{\partial x_1} & \frac{\partial f_{y_2}}{\partial x_2} & \frac{\partial f_{y_2}}{\partial y_1} & \frac{\partial f_{y_2}}{\partial y_2} \end{pmatrix}$$

$$\begin{split} \frac{\partial f_{x_1}}{\partial x_1} &= \frac{\partial \dot{x}_1}{\partial x_1} = -(1 - \kappa u_1(t)) \left(b_{11} y_1(t) + b_{12} y_2(t) \right) - \gamma_1 < 0 \\ \frac{\partial f_{x_1}}{\partial x_2} &= \frac{\partial \dot{x}_1}{\partial x_2} = 0 \\ \frac{\partial f_{x_1}}{\partial y_1} &= \frac{\partial \dot{x}_1}{\partial y_1} = (1 - x_1(t)) (1 - \kappa u_1(t)) b_{11} \ge 0 \\ \frac{\partial f_{x_1}}{\partial y_2} &= \frac{\partial \dot{x}_1}{\partial y_2} = (1 - x_1(t)) (1 - \kappa u_1(t)) b_{12} \ge 0 \cdots \end{split}$$

Силна вдлъбнатост на 16

Достатъчно условие за това е всяка компонента на Якобиана да е нерастяща функция по всички променливи, като за поне една от тях да е намаляваща. Това може да проверим с производни по различните променливи.

$$\begin{split} \frac{\partial^2 f_{x_1}}{\partial x_1 \partial x_1} &= \frac{\partial^2 f_{x_1}}{\partial x_1 \partial x_2} = 0 \\ \frac{\partial^2 f_{x_1}}{\partial x_1 \partial y_1} &= -(1 - \kappa u_1(t)) b_{11} < 0, \quad \frac{\partial^2 f_{x_1}}{\partial x_1 \partial y_2} = -(1 - \kappa u_1(t)) b_{12} < 0 \\ \frac{\partial^2 f_{x_1}}{\partial x_2 \partial x_1} &= \frac{\partial^2 f_{x_1}}{\partial x_2 \partial x_2} = \frac{\partial^2 f_{x_1}}{\partial x_2 \partial y_1} = \frac{\partial^2 f_{x_1}}{\partial x_2 \partial y_2} = 0 \\ \frac{\partial^2 f_{x_1}}{\partial y_1 \partial x_1} &= -(1 - \kappa u_1(t)) b_{11} < 0, \quad \frac{\partial^2 f_{x_1}}{\partial y_1 \partial x_2} = \frac{\partial^2 f_{x_1}}{\partial y_1 \partial y_1} = \frac{\partial^2 f_{x_1}}{\partial y_1 \partial y_2} = 0 \\ \frac{\partial^2 f_{x_1}}{\partial y_2 \partial x_1} &= -(1 - \kappa u_1(t)) b_{12} < 0, \quad \frac{\partial^2 f_{x_1}}{\partial y_2 \partial x_2} = \frac{\partial^2 f_{x_1}}{\partial y_2 \partial y_1} = \frac{\partial^2 f_{x_1}}{\partial y_2 \partial y_2} = 0 \end{split}$$

Неразложимост на 16

Теорема

Матрица $A=(a_{ij})$ е неразложима точно когато ориентираният граф G=(V,E), с върхове $V=\{1,\cdots,n\}$ и ребра $E=\{(i,j)|a_{ij}\neq 0\}$, е силно свързан.

Заместваме ненулевите елементи на D \boldsymbol{f} с 1 (тях знаем от 49). Така получаваме графа с матрица на съседство D:

$$D = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix} \implies D^{3} = \begin{pmatrix} 7 & 7 & 6 & 7 \\ 7 & 7 & 7 & 6 \\ 6 & 7 & 7 & 7 \\ 7 & 6 & 7 & 7 \end{pmatrix} > \mathcal{O}$$
(28)

Тъй графа има 4 върха, всеки прост път е с дължина не по-голяма от 3. С матрицата на съседство повдигната на 3-та степен виждаме кои върхове са свързани помежду си и кои не. Понеже има единствена свързана компонента, то графът е силно свързан.

Неподвижни точки

Тъй като системата е с управление, не може в общия случай да говорим за равновесни точки, понеже промени по него водят до промени по дясната страна.

Да предположим, че сме фиксирали константно управление. Тогава системата става автономна, но е силно нелинейна и с голяма размерност, откъдето не е възможно да бъдат изведени аналитични изрази за координатите на равновесните точки, различни от 0.

Неподвижни точки

Твърдение

За система 16 са в сила точно едно от:

- $\mathcal{R}_0(u) \le 1$ и 0 е единствена равновесна точка (асимптотично устойчива).
- $\mathfrak{B}_0(\mathbf{u}) > 1$ и 0 е неустойчива равновесна точка и съществува точно една друга равновесна точка \mathbf{E}^* (асимптотично устойчива).

$$\begin{split} N_1 = &9.37798 \times 10^6, \, N_2 = 4.46765 \times 10^6, \, M_1 = 1.73119 \times 10^7, \, M_2 = 2.98887 \times 10^7, \\ \gamma_1 = &0.0627078, \, \gamma_2 = 0.0575472, \, \mu_1 = 0.031957, \, \mu_2 = 0.0460705, \\ a_1 = &0.157777, \, a_2 = 0.159436, \, u_1 = 0.389824, \, u_2 = 0.118354, \, \kappa = 0.372943 \end{split}$$

Area1 Area2

$$\begin{split} N_1 = &8.68198 \times 10^6, \ N_2 = &3.83969 \times 10^7, \ M_1 = 1.05939 \times 10^7, \ M_2 = 6.61885 \times 10^7, \\ \gamma_1 = &0.0680502, \ \gamma_2 = 0.0669463, \ \mu_1 = 0.032585, \ \mu_2 = 0.0391196, \\ a_1 = &0.189739, \ a_2 = 0.246516, \ u_1 = 0.208555, \ u_2 = 0.162928, \ \kappa = 0.301138 \end{split}$$

Area1 Area2

$$\begin{split} N_1 = & 7.41246 \times 10^6, \ N_2 = 1.57956 \times 10^7, \ M_1 = 6.6873 \times 10^7, \ M_2 = 5.46521 \times 10^7, \\ \gamma_1 = & 0.0748865, \ \gamma_2 = 0.0805342, \ \mu_1 = 0.0414654, \ \mu_2 = 0.0394666, \\ a_1 = & 0.10829, \ a_2 = 0.173949, \ u_1 = 0.215882, \ u_2 = 0.309516, \ \kappa = 0.209412 \end{split}$$

Area1 Area2

Благодаря за вниманието