Smart Trash

เสนอ

อ. ดร. พิชญะ สิทธีอมร

รายชื่อผู้จัดทำ

	ธนวัฒน์	เจียรวัฒนกนก	6031020321
2.	นิธิภัทร์	ตันติเจริญวิวัฒน์	6031032921
3.	นนท์ธนัต	ชีรธนาพัท ั ธ์กุล	6031019821
4.	คริษฐ์	ชลพันธุ์	6030070521

โครงการนี้เป็นส่วนหนึ่งของรายวิชา 2110366 การปฏิบัติการระบบฝังตัว ภาคการศึกษาต้น ปีการศึกษา 2562 ภาควิชาวิศวกรรมคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

System Architecture

อุปกรณ์ที่เกี่ยวข้อง

- 1. Ultrasonic x2
- 2. Servo
- 3. STM32F4DISCOVERY
- 4. ESP8266

STM32F4DISCOVERY เป็นบอร์ดที่ควบคุมการทำงานต่างๆของ Ultrasonic, Servo และรับผิดชอบในการคำนวณ logic ทั้งหมดที่ใช้ในการทำงานของ Smart Trash ส่วนบอร์ด ESP8266 จะถูกใช้เพื่อเชื่อมต่อกับอินเตอร์เน็ต และติดต่อกับฐานข้อมูล

ทางที่ม[ี]พัฒนาโครงการได้เชื่อมต่อ Ultrasonic และ Servo เข้ากับบอร์ด STM32F4DISCOVERY และส่งผ่านข้อมูลไปยัง ESP8266 ด้วย UART โดยได้มีการกำหนดรูป แบบข้อมูลที่ส่ง ดังตารางต่อไปนี้

รูปแบบข้อมูล	คำอธิบาย
<q: value=""></q:>	ส่ง Value เป็นปริมาณขยะในถังเป็นค่าระหว่าง 0.00 - 1.00 (0.00 คือ ไม่มี ขยะในถัง , 1.00 คือ ขยะเต็มถัง)
<0>	มีการเปิดฝาถัง

ซึ่ง ESP8266 จะทำการอ่านข้อมูลแต่ละ tag และจัดเก็บข้อมูลที่ได้รับใน Firebase จาก นั้นข้อมูลจะถูกนำไปแสดงผลบน Web Application

Embedded System Development

Ultrasonic ตัวที่ 1 (Inner Ultrasonic) ใช้ในการตรวจวัดปริมาณขยะในถัง Ultrasonic ตัวที่ 2 (Outer Ultrasonic) ใช้ในการวัดระยะเพื่อส่งสัญญาณ เปิด/ปิด ฝาถัง Servo ใช้ในการ เปิด/ปิด ฝาถัง

โปรแกรมประกอบไปด้วย 5 states ดังตารางต่อไปนี้

Ctoto	คำอธิบาย
State	ผู้เดือนาย
CLOSE	เป็น state เริ่มต้น ถ้าหาก Outer Ultrasonic สามารถตรวจจับสิ่งก็ดขวาง ในระยะ 30 cm ได้ จะทำการ decrement ตัวแปร counter ถ้า counter น้อยกว่าหรือเท่ากับ 0 จะทำการส่งข้อมูล <0> ซึ่งบ่งบอกว่ามีการเปิดฝา ถังไปยัง ESP8266 แล้วเปลี่ยนไปยัง state OPENING แต่หาก Outer Ultrasonic ตรวจจับสิ่งกีดขวางไม่ได้ไม่ครบตาม counter ที่กำหนด จะ ทำการ reset ค่า counter กลับเป็นค่าเริ่มต้น และอยู่ใน state เดิม
OPENING	จะทำการสั่งให้ Servo หมุนไปที่มุม 90 องศา เพื่อทำการเปิดฝาถัง จาก นั้นจะเปลี่ยนไปยัง state OPEN
OPEN	เป็น state ที่ฝาถังเปิดอยู่ ถ้าหากว่า Outer Ultrasonic ไม่สามารถตรวจ จับสิ่งกีดขวางได้ในระยะ 40 cm โปรแกรมจะทำการ decrement ตัวแปร counter หาก counter น้อยกว่าหรือเท่ากับ 0 จะทำการเปลี่ยนไปยัง state CLOSING
CLOSING	จะทำการสั่งให้ Servo หมุนไปที่มุม 0 องศา เพื่อทำการปิดฝาถัง ซึ่งถ้าเกิด ว่าในระหว่างที่กำลังปิดฝาถังอยู่ Outer Ultrasonic ตรวจจับสิ่งกีดขวาง ในระยะ 30 cm ได้ จะทำการย้อนกลับไป state OPEN เหมือนเดิม แต่ถ้า ไม่มีสิ่งกีดขวางจะทำการเรียกฟังก์ชัน trash_measure_process แล้ว เปลี่ยนไปยัง state CLOSE ซึ่งฟังก์ชัน trash_measure_process จะ ทำการวัดปริมาณขยะในถังโดยใช้ Inner Ultasonic ซึ่งจะทำการวัด 4 รอบแล้วนำมาหาค่าเฉลี่ยเพื่อให้ได้ผลลัพธ์ที่แม่นยำ แล้วส่งข้อมูลปริมาณ ขยะในรูปแบบ <q: value=""> ให้กับ ESP8266</q:>
FOREVER_OPEN	เมื่อ User ทำการกดปุ่ม Blue Button โปรแกรมจะอยู่ใน state FOREVER OPEN ซึ่งจะทำการเปิดฝาถังขยะค้างไว้ ถ้าเกิดมีการกดปุ่ม Blue Button อีกครั้งหนึ่ง โปรแกรมจะทำการเปลี่ยนไปยัง state CLOSING เพื่อทำการปิดฝาถังขยะ

UI Design and Development

UI มีองค์ประกอบดังนี้

- Web application ใช้ Template ของ Creative Tim ซึ่ง license เป็นแบบ MIT
- RECENT GARBAGE : บอกปริมาณขยะล่าสุด
- STATUS : บอกสถานะของขยะ
 - Full เมื่อ RECENT GARBAGE >= 0.8
 - Not full เมื่อ RECENT GARBAGE < 0.8
- RECENT OPEN : บอกเวลาที่ถังขยะเปิดล่าสุด
- TODAY OPEN : บอกจำนวนครั้งที่ถังขยะเปิดในวันนี้
- Garbage 12 hours history : แสดงปริมาณขยะใน 12 ชั่วโมง ที่ผ่านมา
 - โดยหากภายในชั่วโมงเดียวกันเก็บปริมาณขยะหลายค่า ระบบจะนำค่าสุดท้าย ของชั่วโมงนั้นมา plot graph
- Open time : แสดงเวลาที่ถังเปิด 7 อันล่าสุด
- Close time : แสดงเวลาที่ถังปิด 50 อันล่าสุด
- Garbage stats : แสดงข้อมูลปริมาณขยะ ณ เวลาต่างๆ 50 อันล่าสุด

Development

- ใช้ github page ในการ production
- ใช้ realtime database ของ firebase ในการเก็บข้อมูล ทำให้ web application ไม่ จำเป็นต้องรีเฟรชเมื่อข้อมูลมีการอัพเดต
- ใช้ Chart.js ในการ plot graph
- ใช้ Moment.js ในการเปรียบเทียบเวลา และการแสดงผล
- ใช้ jQuery ในการอัพเดตส่วนต่างๆของ web application เมื่อ realtime database ถูก create / update / delete

ลิงค์ที่เกี่ยวข้อง

- https://github.com/tirogen/SmartTrash
- https://tirogen.github.io/SmartTrash/

Team Management

ทางทีมพัฒนาได้แบ่งงานออกเป็น 3 ส่วนหลักๆ คือ

- 1. พัฒนา Embeded System ให้สามารถควบคุมการทำงานต่างๆของ Smart Trash ได้
- 2. พัฒนา ESP8266 ให้สามารถเชื่อมต่อกับฐานข้อมูลได้
- 3. พัฒนา Web Application ให้สามารถนำข้้อมูลที่อ[้]ยู่ในฐานข้อมูลไปแสดงผลได้ ซึ่งงานทั้ง 3 ส่วน สามารถเริ่มต้นพัฒนาได้พร้อมกัน แล้วนำมา integrate กันในภายหลัง

ในการพัฒนาได้มีการใช้ Git เป็น Version Control Tools โดยจะแบ่งเป็น 2 Directories คือ

- 1. ESP8266 เป็น Directory ที่เก็บไฟล์ที่พัฒนา ESP8266
- 2. STM32 main ioc เป็น Directory ที่เก็บไฟล์ที่พัฒนา Embeded System รวมทั้งมีไฟล์ README ระบุว่า อุปกรณ์ต่างๆ ต้องต่อเข้ากับ port ใด

รายชื่อ	รับผิดชอบ
นิธิภัทร์ ตันติเจริญวิวัฒน์	Web Application Development
คริษฐ์ ชลพันธุ	Embeded System Development
นนท์ธนัต ธีรธนาพัทธ์กุล	ESP8266 Development
ธนวัฒน์ เจียรวัฒนกนก	Team Management

ลิงค์ที่เกี่ยวข้อง

• https://github.com/taan02991/SmartTrash