Problem Solving with AI Techniques Ensemble Methods

Paul Weng

UM-SJTU Joint Institute

VE593, Fall 2018

- Motivation
- 2 Bagging
- Boosting
- 4 Stacking

Ensemble Methods

- Idea: Several models (=ensemble) are better than one!
 - Learn several models
 - Combine their predictions (e.g., majority vote, average)
- Motivations:
 - Variance reduction: combined models less dependent on training set
 - Bias reduction: errors made by one model may be cancelled by another
 - Combined models may be more expressive
 - ML competitions (e.g., Netflix, Yahoo, HiggsML) won with such methods
- Ensemble methods = meta-algorithms to be used on top of other models

Classification: Why This Idea May Work?

- Using an ensemble may help reduce error rate
- Assume you have trained 2n + 1 classifiers, each with **independent** error rate $\varepsilon = 0.4$
- Error rate of ensemble of 2n + 1 classifiers with majority rule:

$$\sum_{k=n+1}^{2n+1} {2n+1 \choose k} \varepsilon^k (1-\varepsilon)^{2n+1-k}$$

Note: in practice, error rates are not independent

Paul Weng (UM-SJTU JI) Ensemble Methods

Regression: Why This Idea May Work?

- Averaging an ensemble's predictions may help reduce variance
- Assume you have trained *n* regressors h_1, \ldots, h_n , each with MSE:

$$\int_{\mathcal{X}} (h_i(x) - f(x))^2 \mu(x) dx = \int_{\mathcal{X}} \varepsilon_i(x)^2 \mu(x) dx$$

MSE of the average prediction:

$$\int_{\mathcal{X}} \left(\frac{1}{n} \sum_{i} h_{i}(x) - f(x)\right)^{2} \mu(x) dx = \int_{\mathcal{X}} \left(\frac{1}{n} \sum_{i} \varepsilon_{i}(x)\right)^{2} \mu(x) dx$$

$$\leq \frac{1}{n} \sum_{i} \int_{\mathcal{X}} \varepsilon_{i}(x)^{2} \mu(x) dx$$

ullet Note: if $arepsilon_i$'s are independent with zero mean, MSE is reduced by 1/n

Bagging: Principle

- Issue: Independent models can be obtained by training them on different i.i.d datasets, but we have only one dataset
- Bootstrap (statistics): Use training dataset ${\mathcal D}$ as an approx. of true distribution μ
- Bagging = Bootstrap aggregating
- Basic procedure:
 - ullet Generate $\mathcal{D}_1,\ldots,\mathcal{D}_K$ by random sampling with replacement from \mathcal{D}
 - For each \mathcal{D}_k , train a model h_k
 - Combine h_1, \ldots, h_K as final model
- Random forest = bagging with decision trees

Bootstrap Sampling

• Example of sampling with replacement:

- Probability of data point not being selected in \mathcal{D}_k : $(1-\frac{1}{N})^N \to e^{-1} \approx 0.3678$
- \bullet Therefore, less than 2/3 (i.e., 63.2%) of data points in ${\cal D}$ is any ${\cal D}_k$

Boosting: Principle

- Idea:
 - Train models sequentially
 - Later models focus on instances mispredicted by earlier models
 - Weighted combination of models with weights given by their errors

- Can reduce bias and variance
- Base model here called weak learner
- How to focus on mispredicted instances?

Adaboost

- Adaboost = Adaptive Boosting
- Assume a classification problem where $h_t: \mathcal{X} \to \{-1, 1\}$
- Idea: Increase probabilities of mispredicted instances (and therefore decrease those of well-classified instances) and train next model on weighted instances
- Procedure: Start with $\hat{\mu}_0$ uniform distribution over \mathcal{D} and repeat:
 - Train model h_t with distribution $\hat{\mu}_t$ $\Rightarrow \varepsilon_t = \mathbb{P}(h_t(\mathbf{X}) \neq Y \mid (\mathbf{X}, Y) \sim \hat{\mu}_t)$

 - Compute $\alpha_t = \frac{1}{2} \ln \frac{1-\varepsilon_t}{\epsilon_t}$ $\hat{\mu}_{t+1}(\mathbf{x}, y) \propto \hat{\mu}_t(\mathbf{x}, y) \times \begin{cases} e^{-\alpha_t} & \text{if } h_t(\mathbf{x}) = y \\ e^{\alpha_t} & \text{if } h_t(\mathbf{x}) \neq y \end{cases}$

Bagging vs Boosting

	Bagging	Boosting
Dataset \mathcal{D}_k for h_k	Boostrap sample	Focuses on difficult instances
Independence of h_k 's	Yes	No
Final model	Linear combination	Linear combination
Weights	Uniform weights	Depend on performance
Variance reduction	Yes	Yes
Bias reduction	No	Yes

Gradient Boosting

- Gradient boosting: adding a new model is seen as a gradient step
- Idea: Train next model on gradient of loss function (e.g. $\frac{\partial \ell(y,y')}{\partial y'} = y y'$ for squared loss)
- Procedure: Repeat with $\mathcal{D}_1 = \mathcal{D}$:
 - ullet Train model h_t on \mathcal{D}_t
 - Compute $\mathcal{D}_{t+1} = \{(\mathbf{x}, \frac{\partial \ell(y, h_t(y))}{\partial y'}) \, | \, (\mathbf{x}, y) \in \mathcal{D}_t \}$

- Adaboost is a special case of Gradient Boosting with exp. loss
- XGBoost = gradient boosting with decision trees

Stacking: Principle

- Can we do better than averaging or voting?
- Idea: Learn to combine the prediction of ensemble
- Basic procedure for two-level stacking:
 - Split \mathcal{D} in K-folds: $\mathcal{D}_1, \ldots, \mathcal{D}_K$
 - For each fold \mathcal{D}_k
 - Train n models on \mathcal{D}_{-k}
 - Predict on \mathcal{D}_k to obtain $\mathcal{D}_k' = \{ ((h_1(x), \dots, h_K(x)), y) | (x, y) \in \mathcal{D}_k \}$
 - Train a model on $\cup_k \mathcal{D}'_k$