#### CVL100:Environmental Science(2-0-0)

# Lecture 3: Water Quality Parameters and Water Treatment Dr. Arun Kumar (Tuesday and Friday)

Email: arunku@civil.iitd.ac.in
Check IITD course email daily for information



#### **Excess Nutrients**

- Nitrogen and phosphorus are nutrients required by all living organisms. They are considered pollutants when they are in excess.
- Excessive nutrients often lead to large growths of algae which in turn become oxygen-demanding material whey they die and settle.

#### **Excess Nutrients**

106 
$$CO_2$$
 + 16  $NO_3^-$  +  $HPO_4^{2-}$  + 122  $H_2O$  →  $C_{106}H_{263}O_{110}N_{16}P$  + 138  $O_2$  algae

Algae + 
$$O_2 => CO_2 + H_2O + NH_3$$

Nitrogen and phosphorus are typically the limiting factors

## Phosphorus

- Phosphorus is typically the limiting nutrient in lakes, and algae growth is linked to phosphorus inputs.
- P Sources
  - fertilizers
  - detergents
  - wastewater
- P can exist in a variety of chemical forms

## Nitrogen

- Nitrogen is often the limiting nutrient in ocean waters and some streams
- Nitrogen can exist in numerous forms, but nitrate (NO<sub>3</sub>-), nitrite (NO<sub>2</sub>-), ammonia (NH<sub>3</sub>) are most commonly measured
- Sources are primarily from fertilizers and acid deposition

#### Factors Controlling Eutrophication

Stoichiometry of photosysnthesis (C,N,P, O & H)

$$106 \text{ CO}_2 + 16 \text{ NO}_3^- + \text{HPO}_4^{2-} + 122 \text{ H}_2\text{O} \rightarrow \\ \text{C}_{106} \text{H}_{263} \text{O}_{110} \text{N}_{16} \text{P} + 138 \text{ O}_2$$

$$\frac{N}{P} = \frac{16 \times 14}{1 \times 31} = 7.2$$

It takes ~ 7 times more N than P to produce a given mass of algae

- Liebig's law of the minimum growth will be limited by the availability of the nutrient that is least available relative to the need
- Most fresh water systems are phosphorus limited

#### Salts

- Dissolved solids, or salts, may be present as any number of ions
  - cations: Na+, K+, Mg<sup>2+</sup>, Ca<sup>2+</sup>
  - anions: Cl<sup>-</sup>, SO<sub>4</sub><sup>2-</sup>, HCO<sub>3</sub><sup>-</sup>
- Typically measures as total dissolved solids (TDS)
- Water classification
  - freshwater <1500 mg/L TDS</li>
  - brackish water 1500 5000 mg/L
  - saline water >5000 mg/L
  - sea water 30-34 g/L

#### Salts

#### Sources

- industrial discharges
- deicing
- evaporative losses
- minerals
- sea water intrusion

#### Effects

- natural fresh water population threatened
- limits use for drinking
- crop damage/soil poisoning (cannot use for irrigation)

## Suspended Solids

- Organic and inorganic particles in water are termed <u>suspended solids</u>
- May be distinguished from <u>colloids</u>, particles that do not settle readily

- Sources
  - storm water
  - wastes
  - erosion

- Problems
  - sedimentation
  - may exert oxygen demand
  - primary transport mechanism for many metals, organics and pathogens
  - aesthetic
  - complicates drinking water treatment

## Oxygen-Demanding Wastes

 When <u>organic substances</u> are broken down in water, oxygen is consumed organic C + O<sub>2</sub> → CO<sub>2</sub>

For example:

$$CH_3COOH + 2O_2 => 2CO_2 + 2H_2O$$
  
 $C_6H_{15}O_6N + 6O_2 => 6 CO_2 + 6 H_2O + NH_3$ 

## Oxygen-Demanding Wastes

- High oxygen levels necessary for healthy stream ecology.
- For example:
  - trout require 5-8 mg/L dissolved oxygen (DO)
  - carp require 3 mg/L DO

#### Oxygen Demanding Wastesmeasurement/estimation

- Estimated stoichiometrically by theoretical oxygen demand (ThOD)
- Measured by oxygen demand potential
  - biochemical oxygen demand (BOD)
  - Nitrogenous oxygen demand (NBOD)
  - chemical oxygen demand (COD)

### Example: Calculation of ThOD

reaction:

$$CH_3COOH + 2O_2 => 2CO_2 + 2H_2O$$

- 1 mole/L acetic acid requires 2 moles/L of oxygen
- Theoretical oxygen demand= 2 moles/L \* 32g/mole=64000mg/L oxygen

#### Water Treatment



October 26, 2021

Arun Kumar (arunku@civil.iitd.ac.in)

#### Exercise 1

 Search name of treatment plant in your city and note names of processes and their sequence. Is it water treatment plant or wastewater treatment plant?

 Search names of 3 point-of-use system from market and note what contaminants it can remove and what is sequence of different units you can see. Draw it.

#### **Overall Constituents**

#### constituents:

- lons (calcium; arsenate; chromate ions; nitrate) (anions/cations)
- Organic compounds (pesticides, pharmaceutical compounds, etc.)
- Pathogens (viruses, if we have human fecal pollution)
- Solids (depends if there is a fracturing in subsurface or solids in surface water)
- Gases(methane, etc.)
- nutrients

#### **Overall Parameters**

| Constituents      | Parameters                                                                                       |
|-------------------|--------------------------------------------------------------------------------------------------|
| lons              | Hardness; alkalinity; acidity; conductivity                                                      |
| Solids            | Turbidity; total solids; total suspended solids; dissolved solids; volatile solids; fixed solids |
| Organic compounds | ThOD; biological oxygen demand; chemical oxygen demand; total organic carbon                     |
| Nutrients         | Ammonium ions; phosphates                                                                        |
| pathogens         | Indicators (bacterial; viral); pathogen                                                          |

#### **Water Treatment Plant Schematic**

Objective: To introduce water treatment plant schematic and need for different unit processes

#### Water: Source



October 26, 2021

Arun Kumar (arunku@civil.iitd.ac.in)

# Water: Treatment train of unit processes



## Water: Supply part



October 26, 2021

Arun Kumar (arunku@civil.iitd.ac.in)

# Water: Disposal part (solids waste)

### 1)Chemical sludge 2) Disposal to municipal landfill 3)Reuse in brick making; pavement material, etc.



# Water: Order of constituents removal

Source: Dissolved gases →solids→ions →reduced substances → pathogens → supply to distribution intake system screens disinfectant coaqulants low-lift pump flocculation flash-mix tank sedimentation tank orty backwash sludge to disposal waste to 'disposal system © 1999 Encyclopædia Britannica, Inc.

## Step 1. List water quality characteristics which need to be removed

- Nutrients
- lons (arsenate; chromate ions; nitrate)
- Organic compounds (pesticides, etc.)
- Pathogens (viruses, if we have human fecal pollution)
- Solids (depends if there is a fracturing in subsurface)
- Gases(methane, etc.)

# Step 2. Identify unit(s) which can remove at least one type of contamination

 lons (removal by: adsorption; coagulationflocculation; chemical precipitation; bio-adsorption; membrane process)

#### Step 2 contd.

 Organic compounds (degradation/removal by: oxidation; adsorption; biodegradation; reductionoxidation; irradiation; membrane process)

#### Step 2 contd.

 Pathogens (killed by : adsorption; coagulationflocculation; chemical precipitation; disinfection; boiling; irradiation; membrane process)

#### Step 2 contd.

Solids (removal by : settling; filtration; membrane process)

 Gases (removal by): aeration; adsorption; solubilization)

#### Case:Groundwater → produce drinking water



#### Exercise: Groundwater -> Drinking water



Name: constituents to be removed; unit processes; their role; their sequence; solid waste generation

## Treatment schematic (GW→ Potable drinking water)

- Raw Ground water → aeration chamber →
  Softening unit → Filtration with chlorination
  → Disinfection → Storage
- See sequence of units used
- Chemical is required to be added
- Water is treated
- Chemical sludge is produced

October 26, 2021

#### Units used for (GW→ Potable drinking water

- Aeration chamber (to remove gases; using air)
- Softening unit (to remove cations; using softener and/or cation exchangers)

## Treatment schematic (GW→ Potable drinking water)

 Filtration with chlorination (to remove solids; to kill microbial growth on filter unit surface)

 Disinfection (to kill microorganisms before water is supplied for public consumption)

Storage

## Exercise 2: Yamuna River Water >produce drinking water

- Think for 5 minutes for two steps.
- Step 1: water quality characteristics determination
- Step 2: selection of units, their order

#### Exercise 2: Yamuna River Water → Drinking water

