MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 3 - DECEMBER 2010 SOLUTION KEY

Round 4

- A) *B* is the midpoint of $\overline{AC} \to \log n = \frac{\log 60 + \log 90}{2} = \frac{1}{2} \log 5400 = \log \sqrt{5400}$ Therefore, $n = \sqrt{5400} = \sqrt{100 \cdot 9 \cdot 6} = 30\sqrt{6}$
- B) $5^{2\log_5 x} 12(4^{\log_2 \sqrt{x}}) 27^{\log_3 4} = 0 \implies 5^{\log_5 x^2} 12(4^{\log_4 x}) 3^{\log_3 (4^3)} = 0$ $\implies x^2 - 12x - 64 = (x - 16)(x + 4) = 0 \implies x = \underline{16} \quad (x = -4 \text{ is extraneous.})$
- C) Let $a = 10^x$. Then $100^x 3 \cdot 2^{x+1} \cdot 5^x + 5 = 0 \implies a^2 6a + 5 = (a-5)(a-1) = 0$ Thus, $10^x = 1 \implies x = \underline{0}$ or $10^x = 5 \implies x = \log_{10} 5$ (or simply $\log 5$)

Round 5

- A) y varies directly as x and $z \rightarrow y = kxz$, for some constant k. Substituting, $5 = k(3)(4) \rightarrow k = 5/12$. Therefore, $y = \frac{5}{12} \cdot 36 \cdot 134 = 15(134) = 2010$
- B) The profit from the sale of the house was \$227000 (\$180000 + \$12000) = \$35000A total of \$5600 worth of repairs were done and Ben contributed $\frac{3600}{5600} = \frac{9}{14}$ th of the money, and Joe contributed $\frac{5}{14}$ th. $14k = 35000 \implies k = 12500 \implies \text{Ben: } \underline{\$22,500}$ Joe: $\underline{\$12,500}$
- C) Let A = 60 + x and B = 20 + y. According to the first student, $\frac{10x + 6}{20 + y} = \frac{3}{2}$. According to the second student, $\frac{60 + x}{10y + 2} = \frac{3}{2}$. Cross multiplying, $20x + 12 = 3y + 60 \Rightarrow 20x - 3y = 48$ and $120 + 2x = 30y + 6 \Rightarrow 2x - 30y = -114$ $\begin{cases}
 -200x + 30y = -480 \\
 2x - 30y = -114
 \end{cases} \Rightarrow -198x = -594 \Rightarrow x = 3, y = 4 \Rightarrow (A, B) = \underline{(63, 24)}.$