Analyzing the Internet Using DNS

Initial Bachelor Talk

Lennart Bader

Advisor: Dr. Oliver Hohlfeld

http://comsys.rwth-aachen.de

Domain name system

Domain name system

Central part of the Internet

Domain name system

- Central part of the Internet
- Allows analyses on several aspects

Domain name system

- Central part of the Internet
- Allows analyses on several aspects

Possibilities

DNS "Junk" Analysis

Domain name system

- Central part of the Internet
- Allows analyses on several aspects

- DNS "Junk" Analysis
- Support for ZMap Port Scans to enable SNI

Domain name system

- Central part of the Internet
- Allows analyses on several aspects

- DNS "Junk" Analysis
- Support for ZMap Port Scans to enable SNI
- Internet evolution: IPv6 deployment

Domain name system

- Central part of the Internet
- Allows analyses on several aspects

- DNS "Junk" Analysis
- Support for ZMap Port Scans to enable SNI
- Internet evolution: IPv6 deployment
- Security, Validity, . . .

Domain name system

- Central part of the Internet
- Allows analyses on several aspects

- DNS "Junk" Analysis
- Support for ZMap Port Scans to enable SNI
- Internet evolution: IPv6 deployment
- Security, Validity, . . .
- Some aspects already in current research:

Domain name system

- Central part of the Internet
- Allows analyses on several aspects

- DNS "Junk" Analysis
- Support for ZMap Port Scans to enable SNI
- Internet evolution: IPv6 deployment
- Security, Validity, . . .
- Some aspects already in current research: DNSSec Analysis [IMC'14]

Domain name system

- Central part of the Internet
- Allows analyses on several aspects

- DNS "Junk" Analysis
- Support for ZMap Port Scans to enable SNI
- Internet evolution: IPv6 deployment
- Security, Validity, . . .
- Some aspects already in current research:
 DNSSec Analysis [IMC'14], Webserver Security [IMC'14]

Domain name system

- Central part of the Internet
- Allows analyses on several aspects

- DNS "Junk" Analysis
- Support for ZMap Port Scans to enable SNI
- Internet evolution: IPv6 deployment
- Security, Validity, . . .
- Some aspects already in current research:
 DNSSec Analysis [IMC'14], Webserver Security [IMC'14],
 DNS Validity [IMC'15], . . .

Domain name system

- Central part of the Internet
- Allows analyses on several aspects

Possibilities

- DNS "Junk" Analysis
- Support for ZMap Port Scans to enable SNI
- Internet evolution: IPv6 deployment
- Security, Validity, . . .
- Some aspects already in current research:
 DNSSec Analysis [IMC'14], Webserver Security [IMC'14],
 DNS Validity [IMC'15], . . .

Goal: Collect DNS data periodically for many domains

foo.org

dig

Just needed $\approx 36 ms$

Just needed $\approx 36 ms$ Where is the challenge?

Internet is huge

Internet is huge

- Millions of domains
- Different analyses (not only IPv6)

Internet is huge

- Millions of domains
- Different analyses (not only IPv6)
- \Rightarrow Multiple Queries per domain + Millions of domains

$$N_{ ext{Queries}} \geq (\underbrace{130M}_{ ext{.com}} + \underbrace{15M}_{ ext{.net}} + \underbrace{10M}_{ ext{.org}} + \underbrace{\dots}_{ ext{Other TLDs}}) * N_{ ext{Queries per Domain}}$$

 \Rightarrow $N_{Queries} \ge 1.55$ Billion

dig www.rwth-aachen.de

dig www.rwth-aachen.de

• www.rwth-aachen.de. 99054 IN A 137.226.107.63

dig www.rwth-aachen.de

- www.rwth-aachen.de. 99054 IN A 137.226.107.63
- Just needed $\approx 36 ms$

dig www.rwth-aachen.de

- www.rwth-aachen.de. 99054 IN A 137.226.107.63
- Just needed $\approx 36 ms$

dig www.rwth-aachen.de AAAA

dig www.rwth-aachen.de

- www.rwth-aachen.de. 99054 IN A 137.226.107.63
- Just needed $\approx 36 ms$

dig www.rwth-aachen.de AAAA

• RWTH has no AAAA record...

dig www.rwth-aachen.de

- www.rwth-aachen.de. 99054 IN A 137.226.107.63
- Just needed $\approx 36 ms$

dig www.rwth-aachen.de AAAA

- RWTH has no AAAA record...
- Again $\approx 36 ms$

dig www.rwth-aachen.de

- www.rwth-aachen.de. 99054 IN A 137.226.107.63
- Just needed $\approx 36 ms$

dig www.rwth-aachen.de AAAA

- RWTH has no AAAA record...
- Again $\approx 36 ms$

Where is the challenge?

 $E.g.: \ Get \ information \ about \ IPv6 \ compatibility$

 $E.g.: \ Get \ information \ about \ IPv6 \ compatibility$

foo.org

 $E.g.: \ Get \ information \ about \ IPv6 \ compatibility$

 $E.g.: \ Get \ information \ about \ IPv6 \ compatibility$

 $E.g.: \ Get \ information \ about \ IPv6 \ compatibility$

 $E.g.: \ Get \ information \ about \ IPv6 \ compatibility$

 $E.g.: \ Get \ information \ about \ IPv6 \ compatibility$

E.g.: Get information about IPv6 compatibility

 \Rightarrow Multiple Queries per Domain

Internet is huge

- Millions of domains
- Different analyses (not only IPv6)

Internet is huge

- Millions of domains
- Different analyses (not only IPv6)

Different TLDs

- .com, .org, .net, ...
- Millions of domains per TLD
- Multiple queries per domain

Internet is huge

- Millions of domains
- Different analyses (not only IPv6)

Different TI Ds

- .com, .org, .net, ...
- Millions of domains per TLD
- Multiple queries per domain

$$N_{\text{Queries}} \geq (\underbrace{130M}_{\text{.com}} + \underbrace{15M}_{\text{.net}} + \underbrace{10M}_{\text{.org}} + \underbrace{\dots}_{\text{Other TLDs}}) * N_{\text{Queries per Domain}}$$

Internet is huge

- Millions of domains
- Different analyses (not only IPv6)

Different TLDs

- .com, .org, .net, ...
- Millions of domains per TLD
- Multiple queries per domain

$$N_{\text{Queries}} \ge (\underbrace{130M}_{\text{.com}} + \underbrace{15M}_{\text{.net}} + \underbrace{10M}_{\text{.org}} + \underbrace{\dots}_{\text{Other TLDs}}) * N_{\text{Queries per Domain}}$$

 \Rightarrow $N_{\text{Queries}} \ge 1.55$ Billion

Scalability

dig does not scale

- 100.000 queries take about 4 hours
- \Rightarrow Querying 130M domains: \approx 216 days

Scalability

dig does not scale

- 100.000 queries take about 4 hours
- \Rightarrow Querying 130M domains: \approx 216 days

Scalability is a big challenge!

Scalability

dig does not scale

- 100.000 queries take about 4 hours
- \Rightarrow Querying 130M domains: \approx 216 days

Scalability is a big challenge!

Can we do better?

Enable performant large scale analyses on the Internet

 Large scale: Hundreds of Millions of domains

- Large scale: Hundreds of Millions of domains
- Multiple Analyses:
 IPv6 deployment, Port Scans with SNI, ...

- Large scale: Hundreds of Millions of domains
- Multiple Analyses:
 IPv6 deployment, Port Scans with SNI, ...
- Long term evolution:
 Repeat analyses periodically over years

- Large scale: Hundreds of Millions of domains
- Multiple Analyses:
 IPv6 deployment, Port Scans with SNI, ...
- Long term evolution:
 Repeat analyses periodically over years
- Performance:
 Be much faster than dig

• Enable performant DNS resolution in large scale

- Enable performant DNS resolution in large scale
 - Investigate performance: Time usage

- Enable performant DNS resolution in large scale
 - Investigate performance: Time usage
 - Investigate suitability:
 Reliability / success rate

- Enable performant DNS resolution in large scale
 - Investigate performance: Time usage
 - Investigate suitability:
 Reliability / success rate
- Analysis Framework:
 - Enable long term and large scale analyses

- Enable performant DNS resolution in large scale
 - Investigate performance: Time usage
 - Investigate suitability:
 Reliability / success rate
- Analysis Framework:
 - Enable long term and large scale analyses
 - Analysis: Investigate specific aspects of the Internet

- Enable performant DNS resolution in large scale
 - Investigate performance: Time usage
 - Investigate suitability:
 Reliability / success rate
- Analysis Framework:
 - Enable long term and large scale analyses
 - Analysis: Investigate specific aspects of the Internet
- Analyze current IPv6 deployment

- Enable performant DNS resolution in large scale
 - Investigate performance: Time usage
 - Investigate suitability:
 Reliability / success rate
- Analysis Framework:
 - Enable long term and large scale analyses
 - Analysis: Investigate specific aspects of the Internet
- Analyze current IPv6 deployment
- (Optional) analyze further aspects (e.g. Junk Analysis)

Tested performance and suitability of ZDNS (released 5 months ago)

• Queried 1 Million domains (Alexa)

- Queried 1 Million domains (Alexa)
- Measured needed time (performance)

- Queried 1 Million domains (Alexa)
- Measured needed time (performance)
- Investigated success rate

- Queried 1 Million domains (Alexa)
- Measured needed time (performance)
- Investigated success rate
- Evaluated result quality:

- Queried 1 Million domains (Alexa)
- Measured needed time (performance)
- Investigated success rate
- Evaluated result quality:
 - Completeness of results

- Queried 1 Million domains (Alexa)
- Measured needed time (performance)
- Investigated success rate
- Evaluated result quality:
 - Completeness of results
 - Intermediate steps of resolution?

Tested performance and suitability of ZDNS (released 5 months ago)

- Queried 1 Million domains (Alexa)
- Measured needed time (performance)
- Investigated success rate
- Evaluated result quality:
 - Completeness of results
 - Intermediate steps of resolution?

Compared results with those obtained from own tool.

Figure: Test results for ZDNS (1.000.000 queries)

Figure: Test results for ZDNS and TDNS (1.000.000 queries)

Implementation

0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16

Tool Analyses

Implementation

0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16

References

Content delivery and the natural evolution of dns.

Tom van Goethem, Ping Chen, Nick Nikiforakis, Lieven Desmet, and Wouter Joosen.

Large-scale security analysis of the web: Challenges and findings.

Roland van Rijswijk-Deij, Mattijs Jonker, Anna Sperotto, and Aiko Pras.

A high-performance, scalable infrastructure for large-scale active dns measurements.

Roland van Rijswijk-Deij, Anna Sperotto, and Aiko Pras. Dnssec and its potential for ddos attacks.