WEEK-10

LARGE SCALE MACHINE LEARNING

m= 100,000,000

$$Q_{j'} := \theta_{j'} - \alpha \left[\frac{1}{m} \left[\frac{m}{i=1} \left(h_{\theta}(x') - y' \right) x_{j'}^{i'} \right] \right]$$

add more examples.

- * add more is unlikely to help
- * add extra features/ add hidden nuits.

Stochastic Gradient Descent:

$$\cos (0, x^{i}, y^{i}) = \frac{1}{2} (h_{\theta}(x^{i}) - y^{i})^{2}$$

1. Randomly shuffle dataset

2. Repeat

for
$$i=1...m$$

$$\begin{cases}
\theta_j := \theta_j = \lambda. \left(h_0(x^j) - y^{\lambda}\right). \chi_j^{\lambda} \\
\text{for } j = 0.... \\
\end{cases}$$

Batch Gradient descent.

$$J_{train}(\theta) = \sum_{2m}^{\infty} (h_{\theta}(x^{i}) - y^{i})^{2}$$

Repeat:

$$0_{j} := 0_{j} - \frac{\alpha}{m} \left[\frac{2(h_{\theta}(x_{i}) - y^{*})}{2 x_{j}^{*}} \right]$$

$$\frac{\partial J_{train}(\theta_{j})}{\partial \theta_{j}}$$

1

- fitting (21, y1) - update parameters - fit

-> fitting (x2, y2) -> update parameters -> fit

, ... (x3, y3)

(xm, ym)

Mini-Batch gradient descent

- Batch gradient descent: use all m examples in each iteration
- -> Sto chastic gradient descent: use 1 example in each iteration
- → Mini-Batch gradient descent: Use b examples in each iteration

b = mini - Batch size $b \in [2, 100]$

}

cost
$$(0, x^{i}, y^{i}) = \frac{1}{2} (h_{0}(x^{i}) - y^{i})^{2}$$

Ly During learning, compute cost (0, x', y') before updating 0 using (x', y').

Ly Every 1000 iterations (say), plot cost (0, x', y') averaged over the last 1000 examples procured.

* learning rate &, is typically held constant. Can slowly decrease & over time if we want 0 to converge.

DNLINE LEARNING

- -> Shipping service website where user comes, specifies origin and destination, you offer to ship their parkage for some arking price, & users cometimes choose to use you shipping service (y=1), sometimes not (y=0)
- -> Features on capture properties of uper, of origin/ destination and asking price. We want to learn $p(y=1 \mid \pi; \theta)$ to optimize price.
- -> Algorithm: [* can adapt to changing user preference]

j # 50,--,n}

** we don't train on a pouticular data set]
rather our years come in D; gets updated]

Example: Product Search | Predicted CTR.

- -> uper searches for "Android phone 1080p camera"
- -> Have loo phones in store. Will return 10 everulty.
- x = features of phone | how many words in user grery match name of the phone | match description of the phone. etc.

* y=1 if user clicks on link. y=0 otherwise

Features
$$\frac{0}{\sqrt{2}} \left(\frac{(x^2, y^2)}{\sqrt{2}} \right) = 0$$
 remark.

0 100 units but only 10 of them is will 10

other examples: choosing special offers to show user ? and mised selection of news earlies. I

Batch gradient descent:
$$0j := 0j - \lambda \perp \underbrace{\sum_{i=1}^{m} (h_{\theta}(x^{i}) - y^{i})^{2}}_{\partial 0j}$$

Machine 1: Use (x1,y1).... (x100, y100)

temp; =
$$\frac{i\omega}{\xi}(h_0(x^i) - y^i) x_j^i$$

 $-\frac{m=1...\omega}{m=1...\omega}$ temp; = $\frac{2\omega}{j=1}(h_0(x^i) - y^i) x_j^i$
 $\frac{m=1\omega...2\omega}{m=2\omega...2\omega}$ $\frac{1}{j=1\omega}$

temp;

temp;

temp;

Compine:

$$o_j = o_j - \alpha \perp (temp_j^1 + \dots + temp_j^m)$$

n= no. of machines.