Principal components analysis

Victor Kitov

v.v.kitov@yandex.ru

Table of Contents

- Linear algebra reminder
- 2 Dimensionality reduction intro
- Principal component analysis

Scalar product reminer

- Here we will assume $\langle a, b \rangle = a^T b$
- $||a|| = \sqrt{\langle a, a \rangle}$
- Signed projection of x on a is equal to $\langle x, a \rangle / \|a\|$
- Unsigned projection (length) of x onto a is equal to $|\langle x,a\rangle|/\|a\|$

Eigenvectors, eigenvalues

- If for some $A \in \mathbb{R}^{D \times D}$ there exist scalar λ and D-dimensional vector v such that $Av = \lambda v$ then
 - \bullet v is called eigenvector of A
 - λ is called eigenvalue of A, corresponding to eigenvector ν .
- $\exists v \neq 0$: $Av = \lambda v \Leftrightarrow (A \lambda I) v = 0 \Leftrightarrow det(A \lambda I) = 0$. So all eigenvalues satisfy $det(A \lambda I) = 0$ which
 - is a polynomial equation of order D
 - so has D solutions¹ (accounting for their multiplicity, possibly complex)

¹According to Fundamental theorem of algebra.

Symmetric matrices

- Matrix $A \in \mathbb{R}^{D \times D}$ is called *symmetric* if $A^T = A$.
- Properties:
 - All eigenvalues of symmetric matrix are real.
 - Eigenvectors, corresponding to different eigenvalues of symmetric matrix B are orthogonal to each other.
 - If $\tilde{\lambda}$ is a repeated root of $\det(A \lambda I) = 0$ for some symmetric $A \in \mathbb{R}^{D \times D}$ with multiplicity m then there exist m orthonormal eigenvectors of A, corresponding to $\tilde{\lambda}$.
 - For any symmetric matrix $A \in \mathbb{R}^{D \times D}$ there exists orthonormal basis of eigenvectors of this matrix.

Spectral decomposition

Theorem 1 (Spectral decomposition.)

Every symmetric $A \in \mathbb{R}^{D \times D}$ can be factorized

$$A = P \Lambda P^T$$

where $P \in \mathbb{R}^{D \times D}$ is orthogonal matrix whose columns $p_1, ... p_D$ are eigenvectors of A and $\Lambda = \text{diag}\{\lambda_1, ... \lambda_D\}$ is diagonal matrix with corresponding eigenvalues on the diagonal.

Intuition: transformation Ax by symmetric matrix is equivalent to

- $oldsymbol{0}$ rotation of x to ortonormal basis formed by eigenvectors of A
- 2 scaling coordinates in this basis by eigenvalues $\lambda_1,...\lambda_D$.
- 3 reverse rotation to initial basis.

Positivity of matrices

Definition

Symmetric matrix $A \in \mathbb{R}^{D \times D}$ is called *positive semi-definite* when

$$\forall x \in \mathbb{R}^D : \langle x, Ax \rangle = x^T Ax \ge 0$$

- Positive semi-definiteness of A is denoted as $A \geq 0$.
- Are the following matrix positive semi-definite: $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$?²

Theorem

Symmetric matrix A is positive semi-definite <=> all its eigenvalues are non-negative.

 $^{^2}$ Are these matrices \succcurlyeq 0 for D>2 dimensional case?

Distribution properties

Let $x_1,...x_N \in \mathbb{R}^N$ be observations of some vector random variable $x \sim F$. Group these observations into matrix

$$X = [x_1^T, ... x_N^T]^T \in \mathbb{R}^{N \times D}$$

- Expectation: $\mu = \mathbb{E}x$
- Covariance matrix $\Sigma = \mathbb{E}(x \mu)(x \mu)^T$.
- Sample mean $\widehat{\mu} = \frac{1}{N} \sum_{n=1}^{N} x_n$
- Sample covariance matrix $\widehat{\Sigma} = \frac{1}{N} \sum_{n=1}^{N} (x_n \mu)(x_n \mu)^T = \frac{1}{N} X^T X$

Properties of covariance matrix

- If random vector $x \in \mathbb{R}^D$ has covariance Σ , then random variable $\alpha^T x$ for any $\alpha \in \mathbb{R}^D$ has variance $\alpha^T \Sigma \alpha$.
- Covaraince matrix is symmetric and positive semi-definite.
- For any matrix $X \in \mathbb{R}^{N \times D}$ $X^T X \in \mathbb{R}^{D \times D}$ is symmetric and positive semi-definite.
 - So all eigenvalues of X^TX are non-negative
- Sample covaraince matrix is symmetric and positive semi-definite.

Estimating scatter by covariance matrix

- For different $\alpha \in \mathbb{R}^D$, $\alpha^T \alpha = 1$ estimate $var(\alpha^T x) = \alpha^T \Sigma \alpha = \alpha^T P \Lambda P^T \alpha = (\Lambda^{1/2} P^T \alpha)^T (\Lambda^{1/2} P^T \alpha)$.
- α gets rotated to new orthonormal basis P, then stretched along axes with factors $\sqrt{\lambda_1},...\sqrt{\lambda_D}$.

- We can evaluate scatter by looking at trace $\Sigma = \lambda_1 + ... + \lambda_D$ or det $\Sigma = \lambda_1 \cdot ... \cdot \lambda_D$.
 - This is similar to arithmetic and geometric averaging.

Vector derivatives

• Suppose $x = [x^1, ... x^D]$ and $f(x) = f(x^1, ... x^D)$. Vector derivative

$$\frac{\partial f(x)}{\partial x} := \begin{pmatrix} \frac{\partial f(x)}{\partial x^1} \\ \frac{\partial f(x)}{\partial x^2} \\ \cdots \\ \frac{\partial f(x)}{\partial x^D} \end{pmatrix}$$

• For any $x, b \in \mathbb{R}^D$ it holds that³:

$$\frac{\partial [b^T x]}{\partial x} = b$$

• For any $x \in \mathbb{R}^D$ and symmetric $B \in \mathbb{R}^{D \times D}$ it holds that 4 :

$$\frac{\partial [x^T B x]}{\partial x} = 2Bx$$

³Prove it

 $^{^4}$ Prove it. How will the formula change for non-symmetric B?

Table of Contents

- Linear algebra reminder
- 2 Dimensionality reduction intro
- Principal component analysis

Dimensionality reduction

Feature selection / Feature extraction

Feature extraction: find transformation of original data which extracts most relevant information for machine learning task.

Applications of dimensionality reduction

Applications:

- visualization in 2D or 3D
- reduce operational costs on data storage, transfer and processing
 - memory
 - disk
 - CPU usage
- remove multi-collinearity to improve performance of some machine-learning models

Categorization of dimensionality reduction methods

Supervision:

- supervised
- unsupervied

Mapping to reduced space:

- linear
- non-linear

Principal components analysis - linear unsupervised method of dimensionality reduction.

Table of Contents

- Linear algebra reminder
- 2 Dimensionality reduction intro
- Principal component analysis
 - Definition
 - Applications of PCA
 - Application details
 - Construction of principal components
 - Proof of optimality of principal components

- Principal component analysis
 - Definition
 - Applications of PCA
 - Application details
 - Construction of principal components
 - Proof of optimality of principal components

Projections, orthogonal complements

- For point x and subspace L denote:
 - p: the projection of x on L
 - h: orthogonal complement
 - x = p + h, $\langle p, h \rangle = 0$.
- For training set $x_1, x_2, ... x_N$ and subspace L find:
 - projections: $p_1, p_2, ...p_N$
 - orthogonal complements: $h_1, h_2, ... h_N$.

Best subspace fit⁵

$\frac{\mathsf{De}\mathsf{finition}}{\mathsf{1}}$

Best-fit k-dimensional subspace for a set of points $x_1, x_2, ... x_N$ is a subspace, spanned by k vectors $v_1, v_2, ... v_k$, solving

$$\sum_{n=1}^{N} \|h_n\|^2 \to \min_{v_1, v_2, \dots v_k}$$

Proposition 1

Vectors $v_1, v_2, ..., v_k$, solving

$$\sum_{n=1}^{N} \|p_n\|^2 \to \max_{\nu_1, \nu_2, \dots \nu_k}$$

also define best-fit k-dimensional subspace.

⁵Prove 1 using that $||x||^2 = ||p||^2 + ||h||^2$ for x = p + h and $\langle p, h \rangle = 0$.

Definition of PCA

Definition 2

Principal components $a_1, a_2, ... a_k$ are vectors, forming orthonormal basis in the k-dimensional subspace of best fit.

- Properties:
 - Not invariant to translation:
 - center data before PCA:

$$x \leftarrow x - \mu$$
 where $\mu = \frac{1}{N} \sum_{n=1}^{N} x_n$

- Not invariant to scaling:
 - scale features to have unit variance before PCA

Example: line of best fit

 In PCA the sum of squared perpendicular distances to line is minimized:

• What is the difference with least squares minimization in regression?

Example: plane of best fit

Principal components analysis - Victor Kitov
Principal component analysis
Applications of PCA

- Principal component analysis
 - Definition
 - Applications of PCA
 - Application details
 - Construction of principal components
 - Proof of optimality of principal components

Visualization

Data filtering

Remove noise to get a cleaner picture of data distribution:

X. Huo and Jihong Chen (2002). Local linear projection (LLP). First IEEE Workshop on Genomic Signal Processing and Statistics (GENSIPS), Raleigh, NC, October. http://www.gensips.gatech.edu/proceedings/.

Economic description of data

Faces database:

Eigenvectors (called eigenfaces)

Projections on first several eigenvectors describe most of face variability.

Text analysis

- Objects=text files
- Binary, TF, TF-IDF representations have huge D.
 - math operations with X inefficient
 - ML methods work longer
- Sparsity induces complications with query matching
 - consider query "automobile"
 - simple cosine-metric matching won't match documents with "car","bus",etc.

Latent semantic analysis (LSA)

Latent semantic analysis (LSA)

Get economical document representations with coordinates of most important PCA components found without centering.

Comments:

- usually 200-300 components are sufficient.
- Do not center X before computing PCA
 - ullet otherwise will lose sparsity of X
 - $\mu \approx 0$ anyway, because most features are 0.
- Techically done with truncated SVD of X.

Principal components analysis - Victor Kitov
Principal component analysis
Application details

- Principal component analysis
 - Definition
 - Applications of PCA
 - Application details
 - Construction of principal components
 - Proof of optimality of principal components

Quality of approximation

Consider vector x. Since all D principal components form a full othonormal basis, x can be written as

$$x = \langle x, a_1 \rangle a_1 + \langle x, a_2 \rangle a_2 + \dots + \langle x, a_D \rangle a_D$$

Let p^K be the projection of x onto subspace spanned by first K principal components:

$$p^{K} = \langle x, a_1 \rangle a_1 + \langle x, a_2 \rangle a_2 + ... + \langle x, a_K \rangle a_K$$

Error of this approximation is

$$h^K = x - p^K = \langle x, a_{K+1} \rangle a_{K+1} + \dots + \langle x, a_D \rangle a_D$$

Quality of approximation

Using that $a_1, ... a_D$ is an orthonormal set of vectors, we get

$$\|x\|^{2} = \langle x, x \rangle = \langle x, a_{1} \rangle^{2} + \dots + \langle x, a_{D} \rangle^{2}$$
$$\|p^{K}\|^{2} = \langle p^{K}, p^{K} \rangle = \langle x, a_{1} \rangle^{2} + \dots + \langle x, a_{K} \rangle^{2}$$
$$\|h^{K}\|^{2} = \langle h^{K}, h^{K} \rangle = \langle x, a_{K+1} \rangle^{2} + \dots + \langle x, a_{D} \rangle^{2}$$

We can measure how well first K components describe our dataset $x_1, x_2, ... x_N$ using relative loss

$$L(K) = \frac{\sum_{n=1}^{N} \|h_n^K\|^2}{\sum_{n=1}^{N} \|x_n\|^2}$$
 (1)

or relative score

$$S(K) = \frac{\sum_{n=1}^{N} \|p_n^K\|^2}{\sum_{n=1}^{N} \|x_n\|^2}$$
 (2)

Evidently L(K) + S(K) = 1.

Contribution of individual component

Contribution of a_k for explaining x is $\langle x, a_k \rangle^2$. Contribution of a_k for explaining $x_1, x_2, ... x_N$ is:

$$\sum_{n=1}^{N} \langle x_n, a_k \rangle^2$$

Explained variance ratio:

$$E(a_k) = \frac{\sum_{n=1}^{N} \langle x_n, a_k \rangle^2}{\sum_{d=1}^{D} \sum_{n=1}^{N} \langle x_n, a_d \rangle^2} = \frac{\sum_{n=1}^{N} \langle x_n, a_k \rangle^2}{\sum_{n=1}^{N} \|x_n\|^2}$$

- Explained variance ratio measures relative contribution of component a_k to explaining our dataset $x_1, ... x_N$.
- Note that $\sum_{k=1}^K E(a_k) = S(K)$.

How many principal components to select?

- Data visualization: 2 or 3 components.
- Take most significant components until their explained variance ratio falls sharply down:

• Or take minimum K such that $L(K) \le t$ or $S(K) \ge 1 - t$, where typically t = 0.95.

Transformation $\xi \rightleftharpoons x$

Dependence between original and transformed features:

$$\xi = A^T(x - \mu), x = A\xi + \mu,$$

where $\mu = \frac{1}{N} \sum_{n=1}^{N} x_n$.

Taking first r components - $A_r = [a_1|a_2|...|a_r]$, we get the image of the reduced transformation:

$$\xi_r = A_r^T (x - \mu)$$

 ξ_r will correspond to

$$x_r = A \begin{pmatrix} \xi_r \\ 0 \end{pmatrix} + \mu = A_r \xi_r + \mu$$

$$x_r = A_r A_r^T (x - \mu) + \mu$$

 $A_rA_r^T$ is projection matrix with rank r (follows from the property $rank\left[A_rA_r^T\right]=rank\left[A_r^TA_r\right]$ for arbitrary A_r).

Local linear projection

X. Huo and Jihong Chen (2002). Local linear projection (LLP). First IEEE Workshop on Genomic Signal Processing and Statistics (GENSIPS), Raleigh, NC, October. http://www.gensips.gatech.edu/proceedings/.

Local linear projection

Local linear projection method makes denoised version of original data by locally projecting it onto hyperplane of small rank.

INPUT:

p-local dimensionality of data
K-number of nearest neighbours

for each x_i in X:

- 1) find K nearest neighbours of x_i : $x_{j(i,1)},...x_{j(i,K)}$
- 2) find linear hyperplane L_p of dimensionality p, describing $x_{i(i,1)},...x_{i(i,K)}$ # hyperplane-subspace with offset
- 3) let \hat{x}_i be the projection of x_i onto this hyperplane

OUTPUT:

denoised version of objects $\hat{x}_1, \hat{x}_2, ... \hat{x}_K$.

• Projection is made on hyperplane, not subspace!

PCA solution

- Center $x_1, ... x_N$ to have zero mean.
- Scale $x_1, ... x_N$ to have equal variance.
- Form $X = [x_1^T; ...x_N^T]^T \in \mathbb{R}^{N \times D}$
- Estimate sample covariance matrix of x: $\widehat{\Sigma} = \frac{1}{N} X^T X$
- Find eigenvalues $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_D \geq 0$ and corresponding eignevectors $a_1, a_2, ... a_D$.
- $a_1, a_2, ... a_k$ are first k principal components, k = 1, 2, ... D.
- Sum of squared projections onto a_i is $\|Xa_i\|^2 = \lambda_i$.
- Explained variance ratio by component a; is equal to

$$\frac{\lambda_i}{\sum_{d=1}^D \lambda_d}$$

Principal components analysis - Victor Kitov
Principal component analysis
Construction of principal components

- Principal component analysis
 - Definition
 - Applications of PCA
 - Application details
 - Construction of principal components
 - Proof of optimality of principal components

Constructive definition of PCA

- Principal components $a_1, a_2, ... a_D \in \mathbb{R}^D$ are found such that $\langle a_i, a_j \rangle = \begin{cases} 1, & i = j \\ 0 & i \neq j \end{cases}$
- Xa_i is a vector of projections of all objects onto the i-th principal component.
- For any object x its projections onto principal components are equal to:

$$p = A^T x = [\langle a_1, x \rangle, ... \langle a_D, x \rangle]^T$$

where $A = [a_1; a_2; ...a_D] \in \mathbb{R}^{D \times D}$.

Constructive definition of PCA

- **1** a_1 is selected to maximize $\|Xa_1\|$ subject to $\langle a_1, a_1 \rangle = 1$
- ② a_2 is selected to maximize $\|Xa_2\|$ subject to $\langle a_2, a_2 \rangle = 1$, $\langle a_2, a_1 \rangle = 0$
- ③ a_3 is selected to maximize $||Xa_3||$ subject to $\langle a_3, a_3 \rangle = 1$, $\langle a_3, a_1 \rangle = \langle a_3, a_2 \rangle = 0$ etc.
 - It turns out that:
 - $a_1, ... a_k$ form k-dimensional subspace of best fit.
 - $a_1, a_2, ...$ are first, second,... eigenvectors of $X^T X$ (ordered by decreasing eigenvalue).

Principal components analysis - Victor Kitov
Principal component analysis
Proof of optimality of principal components

- Principal component analysis
 - Definition
 - Applications of PCA
 - Application details
 - Construction of principal components
 - Proof of optimality of principal components

Componentwise optimization leads to best fit subspace

Theorem 2

Let L_k be the subspace spanned by $a_1, a_2, ... a_k$. Then for each k L_k is the best-fit k-dimensional subspace for X.

Proof: use induction. For k=1 the statement is true by definition since projection maximization is equivalent to distance minimization.

Suppose theorem holds for k-1. Let L_k be the plane of best-fit of dimension with dim L=k. We can always choose an orthonormal basis of L_k b_1 , b_2 , ... b_k so that

$$\begin{cases} ||b_k|| = 1 \\ b_k \perp a_1, b_k \perp a_2, \dots b_k \perp a_{k-1} \end{cases}$$
 (3)

by setting b_k perpendicular to projections of $a_1, a_2, ... a_{k-1}$ on L_k .

Componentwise optimization leads to best fit subspace

Consider the sum of squared projections:

$$||Xb_1||^2 + ||Xb_2||^2 + ... + ||Xb_{k-1}||^2 + ||Xb_k||^2$$

By induction proposition $L[a_1, a_2, ... a_{k-1}]$ is space of best fit of rank k-1 and $L[b_1, ... b_{k-1}]$ is some space of same rank, so sum of squared projections on it is smaller:

$$||Xb_1||^2 + ||Xb_2||^2 + ... + ||Xb_{k-1}||^2 \le ||Xa_1||^2 + ||Xa_2||^2 + ... + ||Xa_{k-1}||^2$$

and

$$\|Xb_k\|^2 \leq \|Xa_k\|^2$$

since b_k by (3) satisfies constraints of optimization problem (??) and a_k is its optimal solution.

Summary

• Every symmetric matrix A can be decomposed into rotation, scaling and backward rotation:

$$A = P\Lambda P^T$$

- Sample covariance matrix $\frac{1}{N}X^TX$ is symmetric and ≥ 0 .
 - so it has non-negative eigenvalues $\lambda_1 \geq ... \geq \lambda_D \geq 0$ with corresponding eigenvectors $a_1,...a_D$.
 - spread of distribution is characterized by eigenvalues.

Summary

- Dimensionality reduction common preprocessing step for efficiency and numerical stability.
- Subspace of best fit of rank k for training set $x_1, ... x_N$ is k-dimensional subspace $\mathcal{L}(b_1, ... b_k)$, minimizing:

$$||h_1||^2 + ... + ||h_N||^2 \to \min_{b_1,...b_k}$$

- Solution vectors are called top k principal components.
- Principal component analysis expression of x in terms of first k principal components.
- It is unsupervised linear dimensionality reduction.
- Solution: principal components $a_1, ... a_k$ are top k eigenvectors of $X^T X$.