Lecture 8: Hypothesis testing part II Statistical Methods for Data Science

Yinan Yu

Department of Computer Science and Engineering

December 8 and December 12, 2022

Today

- 1 Test statistics and hypothesis tests
 - z-test
 - One-sample t-test
 - Two-sample t-test (Welch's t-test unequal variances)
 - Paired t-test
 - Binomial test

Learning outcome

- Be able to explain the following hypothesis tests
 - One-sample and two-sample z-test
 - One-sample and two-sample t-test
 - Paired t-test
 - Binomial test (exact, approximate)
 - McNemar's test (exact, approximate)

For each of these tests, be able to describe the typical set up for the experiment, the general purpose of the test, data produced by the experiment, random variables, parameter of interest, null hypothesis, alternative hypothesis, test statistic, null distribution, the computation of *p*-value

- Be able to generalize the learning routine to new hypothesis tests
- Be able to compare two classifiers using the paired t-test and McNemar's test for different scenarios

Today

- 1 Test statistics and hypothesis tests
 - z-test
 - One-sample t-test
 - Two-sample t-test (Welch's t-test unequal variances)
 - Paired t-test
 - Binomial test

Remark

Regarding α and one-tailed/two-tailed test

Remark (cont.)

- Recall that in this course, we only consider H₀ with an equal sign in them,
 i.e. the null distribution is fully specified; the description of H₀ is based on this assumption
- For symmetric null distributions, e.g. standard Gaussian distribution, student's t distribution, binomial distribution with p=0.5, etc, without loss of generality, we only illustrate examples with the two-tailed alternative hypothesis H_A in this lecture; the one-tailed version can be easily derived
- For the exact binomial test with $p \neq 0.5$, the null distribution is not symmetric; in this case, the computation of the two-tailed p-value is not uniquely defined; in this lecture, we will not go into details for these cases; we will only look at the one-tailed tests for asymmetric binomial null distributions
- For each hypothesis test, the purpose of the Python code snippet is to provide a
 better understanding of the calculation; in practice, there are alternative
 libraries and built-in functions for these tests that might result in a more
 compact implementation

Remark (cont.)

For each of the hypothesis tests we introduce, we present the following components:

- Typical set up for the experiment
 - Test subjects, e.g. number of samples, number of groups, etc
 - Description of the experiment and the result
 - Description of the data type produced in the result
- Purpose: the general purpose of the test
- Data: description of data produced by the experiment
- Random variables and assumptions
- Parameter of interest and the estimates
- Hypotheses H_0 and H_A
- Test statistic
- Null distribution
 - PDF/PMF: description of the PDF/PMF
 - Python: code snippet of the PDF/PMF
- p-value
 - Definition: an expression of p-value in terms of a probability
 - Python: code snippet to illustrate the computation of the p-value (see page 6)

Test statistics and hypothesis tests

z-test One-sample t-test Two-sample t-test (Welch's t-test - unequal variances) Paired t-test Binomial test

z-test

One-sample z-test

- Typical set up for the experiment:
 - One sample of independent test subjects, e.g. a sample of patients, a sample of customers, etc
 - Run the same experiment on each subject and collect the outcomes, e.g. give a new drug to a sample
 of patients and measure the effect on each individual patient; test a new web design on a sample of
 customers and record the time they spend on the web page, etc

z-test

- The outcomes contain one i.i.d. sample with continuous numerical values
- Purpose: to test if the mean of the outcomes differs from a predefined constant
- Data: x_1, \dots, x_N , e.g. blood pressure after taking a new drug
- Random variable and assumption: X_1, \dots, X_N
 - X_i i.i.d.
 - X_i Gaussian or large N (CLT)
 - X_i standard deviation σ known
- Parameter of interest: μ
- Parameter estimate: \bar{x} , $\bar{X} \sim \mathcal{N}(\mu, \sigma^2/N)$
- Hypotheses H_0 and H_A : given c a constant

$$H_0: \quad \mu = c$$
 $H_A: \quad \mu \neq c$

$$H_A: \mu$$

Note: only two-tailed H_A is illustrated here.

z-test

One-sample t-test Two-sample t-test (Welch's t-test - unequal variances Paired t-test Binomial test

One-sample z-test (cont.)

Test statistic:

$$z_0 = \frac{\bar{x} - c}{\sigma / \sqrt{N}}$$

- Null distribution: standard normal distribution
 - PDF: $f(z \mid H_0) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}}$
 - Python: stats.norm.pdf(z, 0, 1)
- p-value
 - Definition: $p = 2 \min (P(Z \le z_0 \mid H_0), P(Z \ge z_0 \mid H_0))$
 - Python: $2 * min(stats.norm.cdf(z_0, 0, 1), 1-stats.norm.cdf(z_0, 0, 1))$

Two-sample z-test

- Typical set up for the experiment:
 - Two samples of independent test subjects, where the two samples \(\mathcal{X} \) and \(\mathcal{Y} \) letters with a calligraphic font are typically used to denote sets are independent from one another, e.g. two samples of independent patients, two samples of independent customers, etc

z-test

- Run two sets of experiments A and B on the test subjects from the two samples $\mathcal X$ and $\mathcal Y$, respectively, and collect the outcomes, e.g. give drug D to patient sample $\mathcal X$ and drug E to patient sample $\mathcal Y$ and measure the effect on each individual patient; test two web designs on two samples of customers and record the time they spend on the web page, etc
- The outcomes contain two i.i.d. samples with continuous numerical values
- Purpose: to test if two alternative options have different effects by testing if the means differ by a constant
- Data: x_1, \dots, x_{N_X} and y_1, \dots, y_{N_X} , e.g. blood pressure measured after taking two different drugs
- Random variable and assumption: $X_1, \dots, X_{N_x}, Y_1, \dots, Y_{N_v}$
 - X_i and Y_j independent
 - X_i i.i.d.; Y_i i.i.d.
 - X_i Gaussian or large N_X; Y_i Gaussian or large N_Y
 - X_i and Y_j have known standard deviation σ_X and σ_Y , respectively
- Parameter of interest: μ_X , μ_Y
- Parameter estimate: x̄, ȳ
- Hypotheses H_0 and H_A : given c a constant

$$H_0$$
: $\mu_X - \mu_Y = c$

$$H_A: \mu_X - \mu_Y \neq c$$

z-test

One-sample t-test Two-sample t-test (Welch's t-test - unequal variances Paired t-test Binomial test

Two-sample z-test (cont.)

Test statistic:

$$z_0 = \frac{\bar{x} - \bar{y} - c}{\sqrt{\frac{\sigma_X^2}{N_X} + \frac{\sigma_Y^2}{N_Y}}}$$

Hint: $\bar{X} - \bar{Y} \sim \mathcal{N}\left(\mu_X - \mu_Y, \sigma_X^2/N_X + \sigma_Y^2/N_Y\right)$

- Null distribution: standard normal distribution
 - PDF: $f(z \mid H_0) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}}$
 - Python: stats.norm.pdf(z, 0, 1)
- p-value
 - Definition: $p = 2 \min (P(Z \le z_0 \mid H_0), P(Z \ge z_0 \mid H_0))$
 - Python: $2 * min(stats.norm.cdf(z_0, 0, 1), 1-stats.norm.cdf(z_0, 0, 1))$

Test statistics and hypothesis tests

One-sample t-test

One-sample t-test

One-sample t-test

- Typical set up for the experiment (same as one-sample z-test):
 - One sample of independent test subjects, e.g. a sample of patients, a sample of customers, etc
 - Run the same experiment on each subject and collect the outcomes, e.g. give a new drug to a sample of patients and measure the effect on each individual patient; test a new web design on a sample of customers and record the time they spend on the web page, etc
 - The outcomes contain one i.i.d. sample with continuous numerical values
- Purpose: to test if the mean of the outcomes differs from a predefined constant
- Data: x_1, \dots, x_N , e.g. blood pressure after taking a new drug
- Random variable and assumption: X_1, \dots, X_N
 - X_i i.i.d.
 - X_i Gaussian or large N
 - X_i standard deviation σ unknown
- Parameter of interest: μ
- Parameter estimate: x̄
- Hypotheses H_0 and H_A : given c a constant

$$H_0: \qquad \mu = c$$

One-sample t-test (cont.)

Test statistic:

$$t_0 = \frac{\bar{x} - c}{s/\sqrt{N}}$$

where $s = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2}$ is the sample standard deviation

- Null distribution:
 - Student's-t distribution with degrees of freedom df = N 1
 - Python: stats.t.pdf(t, df = N 1)
- p-value:
 - Definition: $p = 2 \min (P(T \le t_0 \mid H_0), P(T \ge t_0 \mid H_0))$
 - Python: $2 * min(stats.t.cdf(t_0, df = N 1), 1-stats.t.cdf(t_0, df = N 1))$

Test statistics and hypothesis tests Two-sample t-test (Welch's t-test - unequal variances)

Two-sample t-test (Welch's t-test - unequal variances)

Two-sample t-test

- Typical set up for the experiment (same as the two-sample z-test):
 - Two samples of independent test subjects, where the two samples \(\mathcal{X} \) and \(\mathcal{Y} \) are independent from one another,
 e.g. two samples of independent patients, two samples of independent customers, etc
 - Run two sets of experiments A and B on the test subjects from the two samples $\mathcal X$ and $\mathcal Y$, respectively, and collect the outcomes, e.g. give drug D to patient sample $\mathcal X$ and drug E to patient sample $\mathcal Y$ and measure the effect on each individual patient; test two web designs on two samples of customers and record the time they spend on the web page, etc
 - The outcomes contain two i.i.d. samples with continuous numerical values
- · Purpose: to test if two alternative options have different effects by testing if the means differ by a constant
- Data: x_1, \dots, x_{N_X} and y_1, \dots, y_{N_Y} , e.g. blood pressure measured after taking two different drugs
- Random variable and assumption: $X_1, \dots, X_{N_X}, Y_1, \dots, Y_{N_Y}$
 - X_i and Y_j independent
 - X_i i.i.d.; Y_i i.i.d.
 - X_i Gaussian or large N_X; Y_i Gaussian or large N_Y
 - X_i and Y_i have unknown standard deviation σ_X and σ_Y , respectively
- Parameter of interest: μ_X , μ_Y
- Parameter estimate: x̄, ȳ
- Hypotheses H_0 and H_A : given c a constant

$$H_0: \mu_X - \mu_Y = c$$

 $H_A: \mu_X - \mu_Y \neq c$

Two-sample t-test (Welch's t-test - unequal variances) Binomial test

Two-sample t-test (cont.)

Test statistic:

$$t_0 = \frac{\bar{x} - \bar{y} - c}{\sqrt{\frac{s_X^2}{N_X} + \frac{s_Y^2}{N_Y}}}$$

with degrees of freedom $\frac{df}{s_{X}^{2}/N_{X}+s_{Y}^{2}/N_{Y})^{2}} = \frac{(s_{X}^{2}/N_{X}+s_{Y}^{2}/N_{Y})^{2}}{(\frac{s_{X}^{2}}{s_{X}^{2}})^{2}/(N_{X}-1)+(\frac{s_{Y}^{2}}{s_{X}^{2}})^{2}/(N_{Y}-1)}$

- Null distribution:
 - Student's-t distribution with degrees of freedom df
 - Pvthon: stats.t.pdf(t, df = df)
- p-value:
 - Definition: $p = 2 \min (P(T \le t_0 \mid H_0), P(T \ge t_0 \mid H_0))$
 - Python: $2 * min(stats.t.cdf(t_0, df=df), 1-stats.t.cdf(t_0, df=df))$

Test statistics and hypothesis tests Paired t-test

Paired t-test

Paired t-test

- Typical set up for the experiment:
 - Typically one sample of independent test subjects, e.g. one sample of independent patients; or two paired samples
 - Run two sets of experiments A and B on all subjects from the sample and collect the
 outcomes, e.g. measure the blood pressure of a sample of patients before giving them a new
 drug (experiment A); measure the blood pressure of these patients after giving them the new
 drug (experiment B)
 - The outcomes contain two samples with continuous numerical values
- Purpose: to test if two alternative options have different effects by testing if the mean of their differences differs from a predefined constant
- Data: $x_1, \dots, x_N, y_1, \dots, y_N$
- Random variable and assumption: $X_1, \dots, X_N, Y_1, \dots, Y_N$
 - $X_i Y_i$ i.i.d.
 - $X_i Y_i \sim \mathcal{N}\left(\mu_{X-Y}, \sigma_{X-Y}^2\right)$ or large N (CLT)
 - standard deviation unknown
- Parameter of interest: μ_{X-Y}
- Parameter estimate: $m_{X-Y} = \frac{1}{N} \sum_{i=1}^{N} (x_i y_i)$
- Hypotheses H_0 and H_A : given c a constant

$$H_0: \quad \mu_{X-Y} = c$$

$$H_A: \mu_{X-Y} \neq c$$

Paired t-test

Test statistic:

$$t_0 = \frac{m_{X-Y} - c}{s_{X-Y}/\sqrt{N}}$$

where
$$s_{X-Y} = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - y_i - m_{X-Y})^2}$$

- Null distribution:
 - Student's-t distribution with degrees of freedom N-1
 - Python: stats.t.pdf(t, df = N 1)
- p-value:
 - Definition: $p = 2 \min (P(T < t_0 \mid H_0), P(T > t_0 \mid H_0))$
 - Python: $2 * min (stats.t.cdf(t_0, df = N 1), 1-stats.t.cdf(t_0, df = N 1))$

Exercise 1

 A company claims that a new drug E they have developed can increase the average sleeping hours of people with insomnia. Design three different hypothesis tests to test this statement.

Let's design experiments for running the one-sample t-test, two-sample t-test and paired t-test

Test 1: one-sample t-test

- Statement: drug E does not increase the average sleeping hours of people with insomnia; for the one-sample t-test, the average sleeping hours of people with insomnia is a known constant say, it is 4.5 hours
- Experiment: let N = 40 people with insomnia take drug E and observe the amount of their sleep
- Data: x_1, \dots, x_N the sleeping hours of people who have taken drug E; random variable X_1, \dots, X_N i.i.d.
- Parameter of interest: the mean value μ ; estimate: sample mean

$$\hat{\mu} = \bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

- Null hypothesis H_0 : H_0 : μ = 4.5
- Significance level α : set to 0.05

Test 1: one-sample t-test (cont.)

• Test statistic:

$$t_0 = \frac{\bar{x} - 4.5}{s/\sqrt{N}}$$

where
$$s = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2}$$

- Null distribution:
 - Student's-t distribution with degrees of freedom df = N 1
 - Python: stats.t.pdf(t, df = N 1)
- Alternative hypothesis H_A : H_A : $\mu \neq 4.5$ two tailed test

Test 1: one-sample t-test (cont.)

Run the experiment and collect data

Data in this example is generated using the following command N = 40
x = stats.norm.rvs(loc=5.2, scale=1.2, size=N, random_state=1)
>> x = [7.14921444 4.4658923 4.5661939 3.91243765
6.23848916 2.43815356 7.29377412 4.28655172
5.58284692 4.90075555 6.95452952 2.72783115
4.81309936 4.73913477 6.56052333 3.88013048
4.99308615 4.1465699 5.2506565 5.89937826
3.87925699 6.57366845 6.28190886 5.80299321
6.28102714 4.37952657 5.05253173 4.07707668

4.8785343 5.83642656 4.3700071 4.72389577 4.37539276 4.18575323 4.39450464 5.18480248 3.85922758 5.48129884 7.19176261 6.09045299]

(CHALMERS

 $\Rightarrow \bar{x} = 5.092$

Test 1: one-sample t-test (cont.)

- Compute the test statistic *t*₀ from data:
 - First, estimate the nuisance parameter the parameter that is not the parameter of interest: standard deviation

$$s = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2} = 1.172$$

Then compute the test statistic

$$t_0 = \frac{\bar{x} - 4.5}{s/\sqrt{N}} = \frac{5.09 - 4.5}{1.172/\sqrt{40}} = 3.197$$

Test 1: one-sample t-test (cont.)

• Compute the *p*-value:

$$p = 2 \min(P(T \le t_0 \mid H_0), P(T \ge t_0 \mid H_0)) = 0.003$$

• $p < \alpha$: reject H_0

Example implementation in Python: $stats.ttest_1samp(x, 4.5)$

x is specified on page 25

Test 2: two-sample t-test

- Statement: drug E does not increase the average sleeping hours of people with insomnia
- Experiment: let $N_X = 40$ people with insomnia take drug E and observe their amount of sleep; observe the sleeping hours of $N_Y = 50$ people with insomnia without taking drug E
- Data:
 - x_1, \dots, x_{N_X} sleeping hours of people with insomnia who have taken drug E; random variable X_1, \dots, X_{N_X} i.i.d.
 - y_1, \dots, y_{N_V} sleeping hours of people with insomnia who have not taken drug E; random variable Y_1, \dots, Y_{N_V} i.i.d.
 - ullet X_i and Y_j independent, for $i=1,\cdots,N_X$, $j=1,\cdots,N_Y$

Test 2: two-sample t-test (cont.)

- Parameter of interest:
 - The mean value of the sleeping hours of people with insomnia after taking drug E μ_E ; estimate: sample mean $\hat{\mu}_E = \bar{x} = \frac{1}{N_X} \sum_{i=1}^{N_X} x_i$
 - The mean value of the sleeping hours of people with insomnia without taking drug E μ_0 ; estimate: sample mean $\hat{\mu}_0 = \bar{y} = \frac{1}{N_V} \sum_{i=1}^{N_Y} y_i$
- Null hypothesis H_0 : H_0 : $\mu_E \mu_0 = 0$
- Test statistic:

$$t_0 = \frac{\bar{x} - \bar{y}}{\sqrt{\frac{s_X^2}{N_X} + \frac{s_Y^2}{N_Y}}}$$

with degrees of freedom $df = \frac{(s_X^2/N_X + s_Y^2/N_Y)^2}{(\frac{s_X^2}{N_X})^2/(N_X - 1) + (\frac{s_Y^2}{N_Y})^2/(N_Y - 1)}$, where

$$s_x = \sqrt{\frac{1}{N_X-1}\sum_{i=1}^{N_X}(x_i-\bar{x})^2}$$
 and $s_Y = \sqrt{\frac{1}{N_Y-1}\sum_{i=1}^{N_Y}(y_i-\bar{y})^2}$

Test 2: two-sample t-test (cont.)

- Null distribution:
 - Student's-t distribution with degrees of freedom df (cf. page 29)
 - Python: stats.t.pdf(t, df = df)
- Alternative hypothesis H_A : H_A : $H_E \mu_0 \neq 0$ two tailed test
- Significance level α : set to 0.05

Test 2: two-sample t-test (cont.)

- Run the experiment and collect data: x is the same data as page 25
 - # Data v in this example is generated using the following command v = stats.norm.rvs(loc=4.5, scale=0.9, size=50, random state=2)

$$4.99630864 \ 6.56298721 \ 4.53738545 \ 3.4938671 \ \ 4.98515249$$

$$4.25784874\ 6.50823011\ 2.30870918\ 4.60145385\ 4.83340008$$

$$4.21784262\ 5.19391056\ 2.81871841\ 6.0580662\ 5.82091021$$

4.1978904 5.0502067 4.54317353 3.75377824 4.5789392]

Parameter estimate:

- Parameter of interest: $\bar{x} = 5.092$, $\bar{y} = 4.374$
- Nuisance parameter:

$$s_X = \sqrt{\frac{1}{N_X - 1} \sum_{i=1}^{N_X} (x_i - \bar{x})^2} = 1.172, \ s_Y = \sqrt{\frac{1}{N_Y - 1} \sum_{i=1}^{N_Y} (y_i - \bar{y})^2} = 0.946$$

Test 2: two-sample t-test (cont.)

- Compute the test statistic t_0 from data:
 - Then compute the test statistic

$$t_0 = \frac{\bar{x} - \bar{y}}{\sqrt{\frac{s_X^2}{N_X} + \frac{s_Y^2}{N_Y}}} = 3.142$$

• Compute the *p*-value:

$$p = 2 \min(P(T \le t_0 \mid H_0), P(T \ge t_0 \mid H_0)) = 0.002$$

• $p < \alpha$: reject H_0

Test 2: two-sample t-test (cont.)

- In this two-sample t-test, we do not assume equal variance for X_i and Y_i ; this type of two-sample t-test is also called Welch's t-test
- Example implementation in Python:

```
stats.ttest ind(x, y, equal var=False)
```

where equal variance for x and y

Test 3: paired t-test

- Statement: drug E does not increase the average sleeping hours of people with insomnia
- Experiment: let N = 40 people with insomnia take drug E and observe their amount of sleep before and after taking drug E
- Data: let z_1, \dots, z_N and x_1, \dots, x_N be the sleeping hours of people before and after taking drug E, respectively; random variable $X_1 Z_1, \dots, X_N Z_N$ i.i.d.
- Parameter of interest: the mean value of the difference μ_{X-Z} ; estimate: sample mean $\hat{\mu}_{X-Z} = \frac{1}{N} \sum_{i=1}^{N} x_i z_i$
- Null hypothesis H_0 : H_0 : $\mu_{X-Z} = 0$

Test 3: paired t-test (cont.)

Test statistic:

$$t_0 = \frac{\hat{\mu}_{X-Z}}{s_{X-Z}/\sqrt{N}}$$

where
$$s_{X-Z} = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - z_i - \hat{\mu}_{X-Z})^2}$$

- Null distribution:
 - Student's-t distribution with degrees of freedom df = N 1
 - Python: stats.t.pdf(t, df = N 1)
- Alternative hypothesis H_A : H_A : $\mu_{X-Z} \neq 0$ two tailed test
- Significance level α : set to 0.05

Test 3: paired t-test (cont.)

• Run the experiment and collect data: x is the same data as page 25

 $\mbox{\tt\#}$ Data z in this example is generated using the following command N = 40

z = stats.norm.rvs(loc=4.5, scale=0.9, size=N, random_state=0)

>> z = [6.08764711 4.86014149 5.38086419 6.51680388 6.18080219

 $3.62044991\ 5.35507958\ 4.36377851\ 4.40710303\ 4.86953865$

4.62963921 5.80884616 5.18493395 4.60950751 4.89947691

4.80030689 5.84467117 4.31535756 4.78176093 3.73131383

2.20230917 5.08825674 5.27799258 3.83205148 6.54277916

3.19107089 4.54118267 4.33153453 5.87950129 5.82242289

4.63945268 4.84034627 3.70099283 2.71728318 4.18687907

4.64071407 5.60726161 5.58214186 4.15140586 4.22792752]

Parameter estimate:

• Parameter of interest: $\Rightarrow \hat{\mu}_{X-Z} = 0.311$

• Nuisance parameter: $s_{X-Z} = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - z_i - \hat{\mu}_{X-Z})^2} = 1.313$

Test 3: paired t-test (cont.)

• Compute the test statistic t_0 from data:

$$t_0 = \frac{\hat{\mu}_{X-Z}}{s_{X-Z}/\sqrt{N}} = 1.499$$

• Compute the *p*-value:

$$p = 2 \min(P(T \le t_0 \mid H_0), P(T \ge t_0 \mid H_0)) = 0.142$$

• $p > \alpha$: fail to reject H_0

Example implementation in Python: stats.ttest rel(x, z)

Exercise 2

- One of the tests you have designed is a two-sample test. After the experiments, you realized the test subjects being selected in the second group are twins of the first group (and they both have insomnia. Duh!). Would that be a problem? Can you still use the result somehow?
- Solution:
 - The two-sample test is the two-sample t-test (cf. page 28); cannot use the result as is since the two samples are not independent
 - As a potential solution, we can match related subjects in the first group and the second group to create a paired data set $(x_1, y_1), \dots, (x_N, y_N)$, i.e. x_i and y_i in each pair are related to each other
 - Apply the paired t-test on the new data set $(x_1, y_1), \dots, (x_N, y_N)$

Test statistics and hypothesis tests Binomial test

Binomial test

Binomial distribution

- Discrete distribution
- Applies to discrete numerical data the number of success from n independent Bernoulli trials with probability of success p
- Example: You try to catch 10 ducks one by one (they need their cuddles!); the success rate of catching a duck is p = 20%; what is the probably of catching k ducks successfully, where $k = 0, 1, \dots, 10$?
- PMF:
 - Equation

$$f_X(k \mid n, p) = P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}, \ k = 0, \dots, n, \ p \in [0, 1]$$

where $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ is the binomial coefficient (choose k from n)

- Shape
 - ullet When p=0.5, the PMF is symmetric
 - When $p \neq 0.5$, the PMF is asymmetric

• Parameters: p and n; n is typically known

(exact) Binomial test

- Typical set up for the experiment:
 - One sample of independent test subjects, e.g. one sample of independent patients
 - Run the same experiment on all subjects from the sample and collect the outcomes,
 e.g. give a new drug to a sample of patients and measure how many patients are cured
 - The outcomes contain one sample with nominal categorical values with two categories, which is then summarized into one discrete numerical value - the number of "success" cases
- Purpose: to test if the proportion of "success" differs from a predefined constant
- Data: N independent Bernoulli trials x_i with k_0 "success" outcomes, e.g. the number of cured patients within the sample of size N
- Random variable and assumption: $X_i \sim Bernoulli(p)$, $K \sim Binomial(N, p)$ with known N and unknown success rate p
- Parameter of interest: p
- Parameter estimate: $\hat{p} = \frac{k_0}{N}$
- Null hypothesis: given π a constant,

$$H_0: p=\pi$$

(exact) Binomial test (cont.)

- Test statistic: k_0
- Null distribution:

$$P(X = k) = \binom{N}{k} \pi^{k} (1 - \pi)^{N-k}$$

- ullet Binomial distribution with parameters N and π
- Python: stats.binom.pmf(k, N, π)
- As discussed in the remarks (cf. page 6), we only introduce the following scenarios:
 - ullet One-tailed (left) binomial test with any $\pi \in (0,1)$
 - One-tailed (right) binomial test with any $\pi \in (0,1)$
 - Two-tailed binomial test with $\pi=$ 0.5, where the null distribution is symmetric

(exact) One-tailed (left) binomial test

• Hypotheses H_0 and H_A :

$$H_0: p = \pi$$

 $H_A: p < \pi$

- p-value:
 - Definition: $P(K \le k_0 \mid H_0)$
 - Python: stats.binom.cdf(k_0 , n=N, p= π)

(exact) One-tailed (right) binomial test

• Hypotheses H_0 and H_A :

$$H_0: p = \pi$$

 $H_A: p > \pi$

- p-value:
 - Definition: $P(K \ge k_0 \mid H_0)$
 - ullet Python: 1- stats.binom.cdf($k_0, n=N, p=\pi$) + stats.binom.pmf($k_0, n=N, p=\pi$)

(exact) Two-tailed binomial test

• Hypotheses H_0 and H_A :

$$H_0: p = 0.5$$

 $H_A: p \neq 0.5$

- p-value:
 - Definition: $2 \min (P(K \le k_0 \mid H_0), P(K \ge k_0 \mid H_0))$
 - Python:
 - $c = \text{stats.binom.cdf}(k_0, n = N, p = 0.5)$
 - $2 * min(c, 1 c + stats.binom.pmf(k_0, n = N, p = 0.5))$

(large N) Binomial test

Same set up as page 41, but with large N

Test statistic:

$$z_0 = \frac{k_0 - N\pi}{\sqrt{N\pi(1-\pi)}}$$

- Null distribution: standard normal distribution
 - PDF: $f(z \mid H_0) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}}$
 - Python: stats.norm.pdf(z, 0, 1)
- p-value:
 - Definition: $p = 2 \min (P(Z \le z_0 \mid H_0), P(Z \ge z_0 \mid H_0))$
 - Python: $2 * min (stats.norm.cdf(z_0, 0, 1), 1-stats.norm.cdf(z_0, 0, 1))$

