ДЗ-13. Точечные оценки параметров

- 1. Дана числовая выборка 0,1,6,0,1,3,2,2,1,0,3,4,4,2 из распределения Пуассона с неизвестным параметром λ . Найдите оценки для λ по методу моментов, используя для этого
 - а) первый момент;
 - b) второй момент;
 - с) второй центральный момент.
- 2. Дана выборка $x_1,...,x_N$ из показательного распределения $Exp(\lambda)$. Найдите оценки для λ по методу моментов, используя для этого
 - а) первый момент;
 - b) второй момент;
 - с) второй центральный момент.
- 3. Дана выборка $x_1,...,x_N$ из показательного распределения $Exp(\lambda)$. Найдите оценку для λ по методу максимального правдоподобия.
- 4. Дана выборка $x_1,...,x_N$ из равномерного распределения U(a,b). Найдите оценки для параметров a и b по методу моментов, используя для этого
 - а) первый момент и второй центральный момент;
 - b) первый и второй моменты.
- 5. Найдите оценки для параметров a и b равномерного распределения U(a,b) по методу максимального правдоподобия.
- 6. Автоматом фиксировалась величина, равная продолжительности телефонных звонков, поступивших на АТС в течение часа. После группировки данных в 5 интервалов был получен следующий статистический ряд:

Продолжительность (мин)	[0;2)	[2;4)	[4;6)	[6;8)	[8;10]
Кол-во звонков	300	100	40	20	2

Считая, что продолжительность звонка распределена по показательному закону, оцените неизвестный параметр λ .

7. Известно, что вес новорожденных имеет нормальное распределение $N(a,\sigma^2)$. Оцените неизвестные параметры a и σ^2 по данным сгруппированного статистического ряда:

Вес (кг)	[2:2.4)	[2,4;2,8)	[2.8:3.2)	[3.2:3.6)	[3.6:4]
Кол-во новорожденных		20	40	20	10

8. Дана выборка $x_1,...,x_N$ из равномерного распределения U(0,b). Проверьте, будут ли состоятельными и несмещёнными оценки $b^*=x_{(n)}$ и $b^{**}=x_{(1)}+x_{(n)}$.