TD1: Représentation binaire, algèbre de Boole et entiers naturels

Objectif(s)

- * Premières expressions logiques; présentation du multiplexeur
- ★ Premiers circuits
- * Représentation des entiers naturels

Exercice(s)

Exercice 1 - Tables de vérité

Dans tout le TD, nous notons . le ET logique et + le OU logique. La notation surlignée correspond à la négation logique : par exemple \overline{a} correspond à NON(a). Ces notations sont utilisées dans le cours.

Question 1

Donnez la table de vérité correpondant à l'équation booléenne à trois entrées suivante :

```
s = b + b.a.c
```

Solution:

 $\overline{a \quad b \quad c} \quad s$

0 0 0 0

0 1 0 1

0 1 1

0 1 1 1

1 0 0 0

 $1\quad 0\quad 1\quad 1$

Question 2

L'expression ci-dessus vous semble-t-elle simplifiable ? Justifiez votre réponse.

Solution:

Il y a deux manières de montrer que $b + \bar{b}.a.c = b + a.c$:

- Repartir de la table de vérité et montrer que s = b + a.c
- $-b + \bar{b}.a.c = (b + \bar{b}).(b + a.c) = b + a.c (car x + y.z = (x + y).(x + z)).$

On peut aussi voir que $x + \overline{x}.y = x + y$: si x est vrai alors l'expression $x + \overline{x}.y$ est vraie, sinon \overline{x} est vrai et l'expression est vraie ssi y est vrai : l'expression $x + \overline{x}.y$ est donc bien équivalente à x + y

Question 3

Soit la table de vérité suivante (sortie s), rappelez comment on construit la forme normale disjonctive d'une fonction à partir de sa table, avant de la donner pour la sortie s:

Quelle est l'intuition derrière cette forme normale?

Solution:

$$s_{disjonctive} = \overline{a}.\overline{b}.\overline{c} + \overline{a}.b.\overline{c} + \overline{a}.b.c + a.b.c$$

Question 4

Montrez à l'aide d'une table de vérité qu'en logique booléenne, on a :

$$a + (b.c) = (a+b).(a+c)$$

Développer le membre droit de l'égalité ci-dessus puis simplifier, en justifiant, pour aboutir au membre gauche de l'égalité.

Solution:

a	b	c	b.c	a + b.c	a + b	a + c	(a+b).(a+c)
0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0
0	1	0	0	0	1	0	0
0	1	1	1	1	1	1	1
1	0	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	1	0	0	1	1	1	1
1	1	1	1	1	1	1	1

Développement de la partie de droite : a.a + a.b + a.c + b.c = a.(1 + b + c) + b.c = a + b.c

Question 5

Donner la table de vérité de la fonction XOR.

Solution:

a	b	a XOR b	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

Question 6

À partir de la table de vérité de la fonction XOR, donnez la forme normale disjonctive cette fonction.

FIGURE 1 – Schéma d'un multiplexeur à 4 entrées et un sélecteur

Solution:

Forme normale disjonctive : $a \times DR b = (\overline{a}.b) + (a.\overline{b})$

Question 7

En utilisant les règles de De Morgan, déterminez une expression de la fonction $\overline{(a \text{ XOR } b)}$. Que permet de tester cette fonction?

Solution:

Le développement de la première expression obtenue pour le XOR est décomposé ci-après :

$$\overline{a \; \mathrm{XOR} \, \underline{b}} = ((\overline{a}.b) + (a.\overline{b}))$$

- $=\overline{(\overline{a}.b)}.(a.\overline{b})$
- $=(a+\overline{b}).(\overline{a}+b)$
- $= (a.b) + (\overline{a}.\overline{b})$

On retrouve bien que le *non* XOR est vrai si les deux entrées ont la même valeur.

Exercice 2 - Multiplexeurs

Un multiplexeur à n entrées est un circuit à n entrées plus une entrée (appelée 'sélecteur') permettant de désigner la sortie voulue : un multiplexeur permet de mettre en sortie une seule des n entrées, celle désignée par le 'sélecteur'.

Autrement dit, un multiplexeur à n entrées (n > 1) est un circuit ayant en entrée un ensemble de bits e_0, e_1, \dots, e_{n-1} et un sélecteur utilisé pour coder un numéro d'entrée compris entre 0 et n-1. Le rôle de ce circuit est de produire en sortie la **valeur** de l'entrée dont le numéro est donné par le sélecteur.

Par exemple, dans la figure 1, si la valeur du sélecteur est :

- 0, la sortie Y du multiplexeur est égale à la valeur de l'entrée e_0 (y = 0 si e_0 = 0, y = 1 si e_0 = 1).
- 1, la sortie Y du multiplexeur est égale à la valeur de l'entrée e_1 (y = 0 si e_1 = 0, y = 1 si e_1 = 1).
- 2, la sortie Y du multiplexeur est égale à la valeur de l'entrée e_2 (y = 0 si e_2 = 0, y = 1 si e_2 = 1).
- 3, la sortie Y du multiplexeur est égale à la valeur de l'entrée e_3 (y = 0 si e_3 = 0, y = 1 si e_3 = 1).

Question 1 - Multiplexeur à 2 entrées

Un multiplexeur à deux entrées est un circuit ayant en entrée deux bits e_0 et e_1 et un sélecteur v sur 1 bit permettant de choisir la première entrée lorsque v vaut 0 ou la deuxième lorsque v vaut 1. Ce circuit a été présenté en cours.

Donnez la table de vérité d'un multiplexeur à 2 entrées en exprimant simplement la valeur de la sortie y ($y = e_0$ ou $y = e_1$) en fonction de la valeur du sélecteur v.

Donnez la forme normale disjonctive de ce multiplexeur.

Solution:

v	y
0	e_0
1	e_1

$$y = \overline{v}.e_0 + v.e_1$$

Question 2 – Multiplexeur à 4 entrées

On souhaite maintenant donner l'expression booléenne correspondant à un multiplexeur à 4 entrées. Puisque l'on est en logique booléenne, la valeur du sélecteur, comprise entre 0 et 3, est codée en binaire à l'aide deux bits notés i_0 et i_1 , tel que le i_1i_0 soit le codage "entiers naturels" du numéro de l'entrée à sélectionner : i_0 est le bit de poids faible du sélecteur et la **valeur v** du sélecteur est donnée par $\mathbf{v} = \sum_{k=0}^{n-1} i_k . 2^k$.

Remplissez la table ci-dessous en indiquant dans la 3ème colonne la valeur \mathbf{v} du sélecteur encodée par les deux bits d'entréee puis indiquer dans la 4ème colonne la valeur de sortie de y.

i_1	i_0	v	s
0	0		
0	1		
1	0		
1	1		

En déduire une expression algébrique ¹ de y.

Solution:

i_1	i_0	v	s
0	0	0	e_0
0	1	1	e_1
1	0	2	e_2
1	1	3	e_3

On trouve l'expression booléenne pour un multiplexeur à 4 entrées à partir de la table de la même manière que celle pour le multiplexeur à 2 entrées :

$$y = \overline{i_1}.\overline{i_0}.e_0 + \overline{i_1}.i_0.e_1 + i_1.\overline{i_0}.e_2 + i_1.i_0.e_3$$

Exercice 3 – Représentation des entiers naturels

Question 1

Remplissez le tableau suivant qui pourra vous servir pour la suite de ce TD pour les conversions.

^{1.} dans l'algèbre de Boole

base 10	base 2	base 16
0		
1		
2		
3		
4		
5		
6		
7		

base 10	base 2	base 16
8		
9		
10		
11		
12		
13		
14		
15		

Question 2

Combien de valeurs différentes peut-on coder dans un mot binaire de longueur n?

Quel est l'intervalle des valeurs représentables dans un mot de n bits avec le codage "entiers naturels"?

Combien faut-il de bits au minimum dans un mot pour qu'il puisse encoder les valeurs suivantes (selon le codage "entiers naturels") : 127_d et 32_d ?

Solution:

On peut représenter 2^n valeurs différentes sur n bits.

Soit N un nombre entier, alors ce nombre s'exprime en binaire selon le codage "entiers naturels" selon la relation :

$$N = \sum_{i=0}^{n-1} a_i . 2^i.$$

Un mot binaire de n bits permet de représenter les nombres entiers compris dans l'intervalle $[0; ...2^n - 1]$. Il faut 7 bits et 6 bits pour représenter 127_d et 32_d respectivement.

Question 3

Combien de valeurs différentes peut-on coder dans un mot hexadécimal de longueur n?

Quel est l'intervalle des valeurs représentables dans un mot de n chiffres hexadécimaux avec le codage "entiers naturels"?

Solution:

On peut représenter 16^n valeurs différentes. Soit N un nombre entier, alors ce nombre s'exprime en hexadécimal selon la relation : $N = \sum_{i=0}^{n-1} a_i.16^i$

Ainsi, un mot hexadécimal de n chiffres permet de représenter les nombres entiers compris dans l'intervalle entier $[0;16^n-1]$.

Question 4

Complétez le tableau suivant :

Mot binaire de 8 bits	Nombre d en décimal	Mot hexadécimal de 8 bits
qui encode la valeur d		(2 chiffres) qui encode la valeur d
	10	
0ь0000 0010		
		0x10
	57	
	127	
		0x17
		0x5B
0b0010 1001		
0b1010 1010		

Solution:

base 2 (sur 8 bits)	base 10	base 16 (sur 1 octet)
0 <i>b</i> 0000 1010	10	0x0A
050000 0010	2	0x02
050001 0000	16	0x10
060011 1001	57	0x39
050111 1111	127	0x7F
050001 0111	23	0x17
060101 1011	91	0x5B
060010 1001	41	0x29
0 <i>b</i> 1010 1010	170	0xAA

Exercice 4 - Exercices de conversion

Conversion binaire \rightarrow hexadécimal

- $1\ 1101_b =$
- $1001\ 1000\ 0011\ 1100_b =$

Solution:

 $\begin{array}{c} 1\ 1101_b = 0001\ 1101_b = 1D_h \\ 1001\ 1000\ 0011\ 1100_b = 983C_h \end{array}$

Conversion hexadécimal \rightarrow binaire

- $75_h =$
- $1A_h =$
- $34DF_h =$

Solution:

$$\begin{aligned} 75_h &= 0111\ 0101_b = 111\ 0101_b \\ 1A_h &= 0001\ 1010_b \\ 34DF_h &= 0011\ 0100\ 1101\ 1111_b \end{aligned}$$

Conversion binaire \rightarrow décimal

- $1001\ 0110_b =$
- $1100\ 0110_b =$

Solution:

$$1001\ 0110_b = 150$$

 $1100\ 0110_b = 198$

Conversion décimal \rightarrow binaire. Pour ces conversions, vous utiliserez et l'approche par divisions successives et celle par tableau de puissances.

- $57_d =$
- $1272_d =$

Solution:

 $\begin{aligned} 57_d &= 11\ 1001_b \\ 1272_d &= 100\ 1111\ 1000_b \end{aligned}$