Projeto de Software

Engenharia de software I

Projeto: LogicMaster: Calculadora de FBFs da Teoria da Computação

Equipe: Mateus Fuchs e Pedro Camillo

Conteúdo

CONTEÚDO	2
1 INTRODUÇÃO	3
2 MOTIVAÇÃO	3
3 VISÃO DA SOLUÇÃO	3
4 ESCOPO DA SOLUÇÃO	3
4.1 PRINCIPAIS ENTREGÁVEIS	4
5 LIMITES E RESTRIÇÕES DA SOLUÇÃO	4
6 DESCRIÇÃO DOS USUÁRIOS	5
7 CRONOGRAMA INICIAL	6
7.1 Próximas atividades	6
8 INTRODUÇÃO	7
8.1 Especificação	
8.1.1 Identificação dos requisitos funcionais do sistema	
8.1.2 Identificação dos requisitos não funcionais do sistema	
9 ATORES	8
10 CASOS DE USO	9
11 DIAGRAMA DE CLASSES	11
12 DIAGRAMA DE SEQUÊNCIA	12
13 DIAGRAMA DE ATIVIDADES	13
14 PROTÓTIPO	14
15 REFERÊNCIAS	17

1 Introdução

Esse documento tem por objetivo documentar o projeto *LogicMaster* referente ao trabalho de conclusão da disciplina de Engenharia de Software I.

Nas próximas seções, serão apresentados os principais problemas que motivam a realização desse trabalho, as necessidades principais de clientes/usuários identificadas, os limites e restrições da solução e, por fim, o cronograma-macro para o projeto.

2 Motivação

Esta seção descreve a situação atual do negócio a ser explorado pelo projeto e o impacto que a nova solução proverá.

A comunidade acadêmica enfrenta desafios ao analisar e resolver FBFs, muitas vezes complexas, relacionadas à teoria da computação. Atualmente, os estudantes e pesquisadores realizam esses cálculos manualmente, o que pode ser propenso a erros e demandar muito tempo. A falta de uma ferramenta específica para a análise lógica de FBFs dificulta o aprendizado e pode resultar em dificuldades na compreensão dos conceitos da disciplina. Nesse contexto, a Calculadora de Fórmulas para FBFs será uma ferramenta muito efetiva para fornecer uma solução automatizada e confiável para essas questões.

O problema é	A complexidade de se resolver uma FBF, que pode demandar muito tempo para ser resolvida, visto que os cálculos crescem exponencialmente quando uma variável é adicionada ao problema. É esperado que o LogicMaster seja uma ferramenta que automatize este processo e ainda mostre um passo a passo didático de como a tabela verdade foi gerada.	
Que afeta	Os estudantes, docentes e pesquisadores da área da Computação. Os estudantes sofrem com os cálculos complexos a serem resolvidos, os docentes com a dificuldade de lecionar este assunto e os pesquisadores com a improdutividade devida ao tempo gasto.	
O impacto disto é	Um menor interesse na área devido à sua complexidade.	
A solução seria	Implementar uma aplicação que provê as respostas sem que o usuário tenha que fazer cálculos e que mostre a resolução passo a passo.	

3 Visão da Solução

Fornecer uma calculadora interativa para análise e resolução de FBFs, facilitando o aprendizado da teoria da computação.

4 Escopo da Solução

Nessa seção, estão descritas as principais necessidades para a aplicação a ser desenvolvida.

Necessidades	Categoria
Permitir que os usuários insiram fórmulas bem formuladas (FBFs) no sistema.	Essencial
A partir das fórmulas inseridas, gerar automaticamente a tabela verdade correspondente que mostra todas as combinações possíveis de valores para as variáveis envolvidas na fórmula.	Essencial
Realizar testes abrangentes para garantir a precisão dos cálculos realizados pela calculadora e verificar a consistência dos resultados gerados pela calculadora em relação aos resultados esperados.	Essencial
Apresentar a resolução passo a passo da fórmula inserida, mostrando as operações realizadas e as simplificações obtidas.	Importante
Fornecer recursos de navegação, como voltar, avançar e pular etapas, para permitir que o usuário volte a etapas anteriores.	Importante
Desenvolver uma interface amigável e de fácil utilização que organiza os elementos de forma clara e intuitiva para facilitar a inserção de fórmulas e a interpretação dos resultados.	Desejável
Fornecer documentação detalhada sobre o uso da calculadora. Incluir instruções de inserção de fórmulas, análise da tabela verdade e o processo de resolução.	Desejável
Desenvolver a calculadora como uma aplicação web, acessível por meio de navegadores e garantir compatibilidade e responsividade para que a calculadora possa ser utilizada em dispositivos móveis.	Desejável
Conter um sistema de login opcional para que o histórico do usuário seja armazenado	Desejável

4.1 Principais entregáveis

- 1. Aplicação
- 2. Documentação

5 Limites e Restrições da Solução

Idioma e Localização: a calculadora é restrita a um idioma específico e segue uma notação lógica padrão que pode não ser adequada para todas as regiões ou usuários.

Capacidade de Armazenamento: a quantidade de FBFs e resoluções armazenadas pode ser limitada devido às restrições de capacidade de armazenamento dos servidores ou dispositivos utilizados para a aplicação.

Exportação de Resultados: a possibilidade de exportar os resultados da resolução, como a tabela verdade e as simplificações, pode não ser oferecida na versão inicial da aplicação.

Suporte a Múltiplas Notações Lógicas: a aplicação pode se limitar a suportar apenas uma notação lógica específica, sem oferecer opções para alterar a notação utilizada.

6 Descrição dos Usuários

Esta subseção tem como objetivo descrever os futuros usuários da aplicação LogicMaster e os principais problemas que limitam sua produtividade no contexto da análise e resolução de FBFs relacionadas à teoria da computação. Os usuários são um subconjunto dos stakeholders identificados, ou seja, aqueles que possuem um interesse específico na aplicação e serão os principais beneficiários de suas funcionalidades.

1. Usuários Principais:

- Estudantes de graduação e pós-graduação em Ciência da Computação e cursos relacionados.
- Professores e pesquisadores que trabalham com teoria da computação e lógica matemática.
- Profissionais que utilizam FBFs em suas atividades, como engenheiros de software, analistas de sistemas, entre outros.

2. Principais Desafios dos Usuários:

- Complexidadade das FBFs: Os usuários enfrentam desafios ao analisar e resolver FBFs que podem ser bastante complexas, com múltiplas variáveis e operadores lógicos, dificultando a resolução manual precisa e eficiente.
- Tempo e Esforço: A resolução manual de FBFs pode ser trabalhosa e demorada, demandando um grande esforço dos usuários, o que pode limitar sua produtividade em outras atividades acadêmicas ou profissionais.
- Propensão a Erros: A análise manual das FBFs pode ser propensa a erros, principalmente em casos de fórmulas extensas, podendo levar a resultados incorretos e compreensões inadequadas dos conceitos lógicos.
- Aprendizado Efetivo: O aprendizado da teoria da computação pode ser desafiador, e a falta de uma ferramenta interativa e intuitiva pode dificultar a assimilação dos conceitos fundamentais da disciplina.

7 Cronograma Inicial

Esta seção apresenta um cronograma inicial para o projeto, destacando quais serão os principais marcos do projeto, o que conterão e quando eles ocorrerão.

Fases/Marcos do projeto	Entregáveis	Data de início prevista	Data de término prevista
Definição de Requisitos e Escopo	Documento de requisitos e escopo do projeto.	01/08/2023	15/08/2023
Projeto de Interface e Fluxo de Usuário	Protótipos validados e especificações de interface .	16/08/2023	22/08/2023
Desenvolvimento do Backend e Frontend	Aplicação funcional com backend e frontend.	23/08/2023	10/09/2023
Testes e Validação	Relatório de testes e feedback dos usuários beta.	11/09/2023	15/09/2023
Lançamento da Versão Inicial	Aplicação lançada e acessível aos usuários.	18/09/2023	18/09/2023

7.1 Próximas atividades

Esta subseção apresenta o cronograma das próximas atividades a serem realizadas, antes da elaboração do cronograma detalhado para todo o projeto.

Atividades	Duração	Data de Início Prevista	Data de Término Prevista
Levantamento de Requisitos	1 semana	01/07/2023	7/07/2023
Análise de Viabilidade Técnica	1 semana	8/07/2023	15/07/2023
Planejamento de Recursos	1 semana	16/07/2023	24/07/2023
Definição de Metodologia	1 semana	25/07/2023	31/07/2023

8 Introdução

Este documento especifica o sistema as funcionalidades esperadas e os principais diagramas do projeto intitulado *LogicMaster*, referente ao trabalho de conclusão da disciplina de Engenharia de software I. O objetivo do documento é fornecer aos desenvolvedores as informações necessárias para o projeto e implementação, assim como para a realização dos testes e homologação da aplicação.

8.1 Especificação

A seguir são descritos os principais requisitos do sistema bem como os casos de uso derivados.

8.1.1 Identificação dos requisitos funcionais do sistema

A seguir são listados os principais requisitos funcionais do sistema.

Identificador	Descrição	Prioridade	
RF01	O sistema deve permitir que o usuário insira FBFs	•	
RF02	O sistema deve gerar automaticamente a tabela verdade correspondente a FBF inserida	mente a tabela verdade	
RF03	O sistema deve apresentar a resolução passo a passo da FBF, mostrando as operações e simplificações	o passo a passo da FBF, rando as operações e	
RF04	O sistema deve disponibilizar a documentação de uso da calculadora		
RF05	O sistema deve armazenar e disponibilizar o histórico dos usuários logados.	órico dos usuários	

8.1.2 Identificação dos requisitos não funcionais do sistema

A seguir são listados os principais requisitos não funcionais do sistema.

Identificador	Descrição	Categoria	Escopo	Prioridade	Depende de
RNF01	A interface deve ser intuitiva e de fácil utilização	Usabilidade	Geral	Alta	
RNF02	O sistema deve apresentar resultados precisos e confiáveis	Confiabilidade	Geral	Alta	

RNF03	O sistema deve ter tempo de resposta rápido ao gerar a tabela verdade e resolução	Desempenho	Geral	Média	
RNF04	A calculadora deve ser acessível em plataformas web e móveis	Portabilidade	Geral	Média	

8.1.3 Identificação dos casos de uso

[UC01] - Resolução das FBFs

[FA01] - O usuário opta por fazer o login

[FE01] - Login incorreto

[FE02] – FBF inválida

[UC02] - Acesso ao Histórico

[FA01] – Histórico vazio

9 Atores

A tabela abaixo descreve brevemente cada ator da aplicação.

Ator	Descrição
Usuário Não Autenticado	Acessa a aplicação LogicMaster sem a necessidade de realizar login. Esse usuário pode utilizar as funcionalidades básicas de resolução de FBFs, como inserção de fórmulas e visualização das tabelas verdade correspondentes.
Usuário Autenticado	Além das funcionalidades disponíveis para o usuário não autenticado, esse ator tem acesso a um recurso adicional, como visualizar histórico de resoluções anteriores.
Dispositivos de Acesso	Representa os diversos dispositivos de hardware que os usuários podem utilizar para acessar a aplicação LogicMaster, como computadores, laptops, tablets ou smartphones.

10 Casos de Uso

Essa seção apresenta todos os requisitos funcionais da aplicação, especificados como casos de uso

Diagrama do caso de uso [UC01]

Figura 1: Caso de uso [UC01]

[UC01] Resolução das FBFs

Prioridade:	Essencial	Importante	Desejável
Ator(es):	Usuário		

Descrição: Neste caso de uso, o usuário pode autenticar-se para acessar recursos adicionais. Ele insere uma FBF, o sistema gera a tabela verdade correspondente e exibe passo a passo a resolução. Em caso de erro na FBF ou autenticação, mensagens de erro são mostradas.

Pré-condições: O usuário pode optar por estar autenticado na aplicação, caso esteja autenticado, terá acesso a funcionalidades adicionais.

Pós-condições: A tabela verdade correspondente à FBF é apresentada ao usuário, permitindo que ele analise a resolução da FBF passo a passo.

Fluxo Principal:

- 1. O sistema exibe a opção para o usuário realizar o login na aplicação.
- 2. O sistema exibe a interface para inserção da FBF.
- 3. O usuário digita a FBF desejada e clica no botão "Calcular".
- 4. O sistema gera a tabela verdade correspondente à FBF inserida.
- 5. O usuário pode acompanhar o processo de resolução passo a passo, visualizando as operações e simplificações realizadas pelo sistema.

Fluxos Alternativos:

- 1a. O usuário opta por fazer o login.
- 1a. A funcionalidade de ver histórico é disponibilizada.
- 1a. O caso de uso avança ao passo 2 do Fluxo Principal.

Fluxos de Erro:

- 1a. Se o usuário digitar o login ou senha incorretamente, o sistema exibe uma mensagem de erro e solicita que tente novamente.
- 1a. O caso de uso retorna ao passo 1 do Fluxo Principal.
- 3a. Caso o usuário insira uma FBF inválida, o sistema exibe uma mensagem de erro e solicita uma nova inserção válida.
- 3a. O caso de uso retorna ao passo 2 do Fluxo Principal.

Diagrama do caso de uso [UC02]

Figura 2: Caso de uso [UC02]

[UC02] Acesso ao Histórico			
Prioridade:	Essencial	Importante	Desejável
Ator(es):	Usuário		

Descrição: O usuário autenticado acessa seu histórico de cálculos anteriores. Ele seleciona "Histórico de Cálculos" na interface, vê uma lista de cálculos passados e escolhe um. O sistema exibe detalhes completos, incluindo FBF, tabela verdade e resolução. Se vazio, mostra uma mensagem erro.

Pré-condição: O usuário está autenticado na aplicação.

Pós-condição: O usuário visualiza os detalhes do cálculo selecionado a partir do histórico, incluindo a FBF, a tabela verdade e o processo de resolução passo a passo.

Fluxo Principal:

- 1. O usuário seleciona a opção "Histórico de Cálculos" na interface da aplicação.
- 2. O sistema exibe uma lista dos cálculos anteriores realizados pelo usuário, mostrando detalhes como data e hora.
- 3. O usuário escolhe um cálculo passado da lista.
- 4. O sistema exibe os detalhes completos do cálculo selecionado, incluindo a FBF inserida, a tabela verdade gerada e o processo de resolução passo a passo.

Fluxo Alternativo:

- 2a. Se o usuário não tiver realizado nenhum cálculo anteriormente, o sistema exibe uma mensagem informando que o histórico está vazio.
- 2a. O caso de uso retorna ao passo 1 do Fluxo Principal.

11 Diagrama de Classes

Esta seção provê um maior detalhamento dos componentes da aplicação, apresentando suas classes através de diagramas.

Figura 3: Diagrama de classes

Este diagrama representa as classes do sistema e o relacionamento entre elas. As entidades "Usuario" e "Historico" serão persistidas em um banco de dados, o restante são classes necessárias para a lógica de negócio do sistema. O "Historico" será uma tabela que possui id, id do usuário, data e formula. O usuário será uma tabela que possui id, e-mail e senha. Além disso a senha do usuário será criptografada usando o PasswordEncoder antes de ser persistida. O Validated e Validator são usadas para validar os campos e-mail, senha e formula, verificando se estão no formato correto.

12 Diagrama de Sequência

Esta seção descreve as interações que acontecem entre os atores e/ou objetos do sistema. Detalhando como eles colaboram.

Figura 4: Diagrama de sequência do caso de uso [UC01]

O diagrama apresentado na figura 4, mostra o caso de uso [UC01] onde o usuário tem a opção de fazer o login ou prosseguir normalmente para a tela de inserção de fórmulas. Ao ser feita a inserção de uma FBF e o botão de calcular for acionado, o backend processará a FBF e no fim retornará a tabela verdade juntamente à sua resolução.

13 Diagrama de Atividades

O objetivo desta seção é apresentar o fluxo de execução dos processos que compõem a aplicação.

Figura 5: Diagrama de atividade do caso de uso [UC02]

O diagrama apresentado na figura 5, mostra o caso de uso [UC02] onde o usuário seleciona a opção de visualizar o histórico de FBFs. Se o histórico estiver vazio, uma mensagem de erro será exibida, caso contrário, o histórico será exibido e o usuário pode selecionar um FBF para ser processada. Ao ser escolhida e processada, o sistema retornará a tabela verdade e resolução correspondentes.

14 Protótipo

O objetivo desta seção é apresentar as principais telas do sistema. As telas que representam as funcionalidades mais importantes. As próximas versões do documento incluirão as demais funcionalidades que compõem a aplicação.

Figura 6: Tela de Login

A figura 6 representa a tela de login de usuário, com opção de logar, registrar, ou prosseguir sem a senha, visto que o login é opcional.

Olá, Usuário! Histórico **Logic Master** Instruções de Uso: Insira as Fórmulas Bem Formuladas (FBFs) utilizando os botões abaixo para adicionar as operações lógicas. Os botões disponíveis são: • ¬ (Negação): Representa a negação lógica, ou seja, inverte o valor de uma proposição. Exemplo: ¬A significa "não A". • A (E): Representa a conjunção lógica, que só é verdadeira quando ambas as proposições são verdadeiras. Exemplo: A A B significa "A e B". • v (Ou): Representa a disjunção lógica, que é verdadeira se pelo menos uma das proposições é verdadeira. Exemplo: A v B significa "A ou B". • → (Condicional): Representa a implicação lógica, que é verdadeira quando a proposição anterior implica na proposição seguinte. Exemplo: A → B significa "Se A, então B". • \leftrightarrow (Bicondicional): Representa a bicondicional lógica, que é verdadeira quando as proposições têm o mesmo valor lógico. Exemplo: A \leftrightarrow B significa "A se e somente se B". Clique em "Calcular" para gerar a tabela verdade correspondente à Fórmula Bem Formulada (FBF) inserida. Acompanhe a resolução passo a passo para entender o processo de análise da FBF e como a tabela verdade é obtida. Observações: • Use o máximo de parênteses possíveis para evitar ambiguidades nas fórmulas. São permitidas no máximo 5 variáveis proposicionais (A, B, C, D, E) na FBF. Fórmula:

Figura 7: Tela de inserção de fórmulas

A figura 7 representa a tela de inserção de fórmulas. Nela o usuário pode ler as instruções de uso, inserir fórmulas, calcular e acessar o histórico caso esteja logado.

Tabela Verdade: ¬A↔B∨C F F F F F F ٧ ٧ F ٧ F ٧ F ٧ V V ٧ F F ٧ F V F V ٧ ٧ F F ٧ ٧ ٧ F

Passo a Passo:

Figura 8: tela de resoluções

A figura 8 representa a tela de resoluções, que será exibida após o usuário acionar o botão "Calcular". Nela é mostrada a tabela verdade e o passo a passo de resolução de cada linha.

Figura 9: Tela de histórico de fórmulas

A figura 9 representa a tela de histórico de fórmulas. Nela, é possível visualizar os cálculos que foram realizados anteriormente e, também, é possível clicar em uma fórmula para recalculá-la.

15 Referências

Nesta seção, são apresentadas as referências utilizadas para a elaboração deste documento.

Marco Tulio Valente. Engenharia de Software Moderna: Princípios e Práticas para Desenvolvimento de Software com Produtividade, Editora: Independente, 2020.