Coloration de graphes

ENAC

Alexandre Gondran alexandre.gondran@recherche.enac.fr

Graphes et réseaux 2024 1/14

V : ensemble des sommets

E : ensemble des arêtes

k : nombre de couleurs

$$\begin{array}{ccc} c: V & \rightarrow & \{1,2,...,k\} \\ v & \mapsto & c(v) \end{array}$$

Définitions

- *k*-coloration légale : respect des contraintes : $c(v_i) \neq c(v_j)$, $\forall (v_i, v_j) \in E$
- G est k-coloriable s'il admet une k-coloration légale
- Le nombre chromatique $\chi(G)$ est le plus petit entier k tel que G est k-coloriable
- Une classe de couleur est un ensemble des sommets coloriés de la même couleur
- Un stable est un ensemble de sommets non adjacents son adjacent son adjac
- \Rightarrow une k-coloration légale = un partitionnement du graphe en k stablesse

←□▶<</p>
□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□□▶
◆□□>
◆□□>
◆□□
◆□□
◆□□
◆□□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
<p

raphes et réseaux 2024 2/14

V: ensemble des sommets

E: ensemble des arêtes

k : nombre de couleurs

$$\begin{array}{ccc} c: V & \rightarrow & \{1,2,...,k\} \\ v & \mapsto & c(v) \end{array}$$

3-coloration légale

Définitions

- k-coloration légale : respect des contraintes : $c(v_i) \neq c(v_j), \forall (v_i, v_j) \in E$
- G est k-coloriable s'il admet une k-coloration légale
- Le nombre chromatique $\chi(G)$ est le plus petit entier k tel que G est k-coloriable
- Une classe de couleur est un ensemble des sommets coloriés de la même couleur
- Un stable est un ensemble de sommets non adjacents
- \Rightarrow une k-coloration légale = un partitionnement du graphe en k stables

◆ロト ◆昼 ト ◆ 差 ト → 差 ・ かへで

raphes et réseaux 2024 2/14

V: ensemble des sommets

E: ensemble des arêtes

k : nombre de couleurs

$$\begin{array}{ccc} c: V & \rightarrow & \{1,2,...,k\} \\ v & \mapsto & c(v) \end{array}$$

3-coloration non légale

Définitions

- *k*-coloration légale : respect des contraintes : $c(v_i) \neq c(v_j)$, $\forall (v_i, v_j) \in E$
- G est k-coloriable s'il admet une k-coloration légale
- Le nombre chromatique $\chi(G)$ est le plus petit entier k tel que G est k-coloriable
- Une classe de couleur est un ensemble des sommets coloriés de la même couleur
- Un stable est un ensemble de sommets non adjacents
- \Rightarrow une k-coloration légale = un partitionnement du graphe en k stables

◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ◆□

phes et réseaux 2024 2/14

V : ensemble des sommets

E: ensemble des arêtes

k : nombre de couleurs

$$\begin{array}{ccc} c: V & \rightarrow & \{1, 2, ..., k\} \\ v & \mapsto & c(v) \end{array}$$

Définitions

- k-coloration légale : respect des contraintes : $c(v_i) \neq c(v_i), \forall (v_i, v_i) \in E$

<ロト 4回り 4 至り 4 至り

2024 2/14

V: ensemble des sommets

E: ensemble des arêtes

k : nombre de couleurs

$$\begin{array}{ccc} c: V & \rightarrow & \{1, 2, ..., k\} \\ v & \mapsto & c(v) \end{array}$$

Définitions

- k-coloration légale : respect des contraintes : $c(v_i) \neq c(v_j), \forall (v_i, v_j) \in E$
- G est k-coloriable s'il admet une k-coloration légale
- Le nombre chromatique $\chi(G)$ est le plus petit entier k tel que G est k-coloriable
- Une classe de couleur est un ensemble des sommets coloriés de la même couleur
- Un stable est un ensemble de sommets non adjacents
- \Rightarrow une k-coloration légale = un partitionnement du graphe en k stables

raphes et réseaux 2024 2/14

V: ensemble des sommets

E: ensemble des arêtes

k : nombre de couleurs

$$\begin{array}{ccc} c: V & \rightarrow & \{1,2,...,k\} \\ v & \mapsto & c(v) \end{array}$$

3-coloration légale

Définitions

- *k*-coloration légale : respect des contraintes : $c(v_i) \neq c(v_j)$, $\forall (v_i, v_j) \in E$
- G est k-coloriable s'il admet une k-coloration légale
- Le nombre chromatique $\chi(G)$ est le plus petit entier k tel que G est k-coloriable
- Une classe de couleur est un ensemble des sommets coloriés de la même couleur
- Un stable est un ensemble de sommets non adjacents
- \Rightarrow une k-coloration légale = un partitionnement du graphe en k stables

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 * りゅ○

aphes et réseaux 2024 2/14

V: ensemble des sommets

E : ensemble des arêtes

k : nombre de couleurs

$$\begin{array}{ccc} c: V & \rightarrow & \{1,2,...,k\} \\ v & \mapsto & c(v) \end{array}$$

3-coloration légale

Définitions

- *k*-coloration légale : respect des contraintes : $c(v_i) \neq c(v_j)$, $\forall (v_i, v_j) \in E$
- G est k-coloriable s'il admet une k-coloration légale
- Le nombre chromatique $\chi(G)$ est le plus petit entier k tel que G est k-coloriable
- Une classe de couleur est un ensemble des sommets coloriés de la même couleur
- Un stable est un ensemble de sommets non adjacents
- \Rightarrow une k-coloration légale = un partitionnement du graphe en k stables

<□ > <□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Graphes et réseaux 2024 2/14

V: ensemble des sommets

E: ensemble des arêtes

k : nombre de couleurs

$$\begin{array}{ccc} c: V & \rightarrow & \{1,2,...,k\} \\ v & \mapsto & c(v) \end{array}$$

3-coloration légale

Définitions

- k-coloration légale : respect des contraintes : $c(v_i) \neq c(v_j), \forall (v_i, v_j) \in E$
- G est k-coloriable s'il admet une k-coloration légale
- Le nombre chromatique $\chi(G)$ est le plus petit entier k tel que G est k-coloriable
- Une classe de couleur est un ensemble des sommets coloriés de la même couleur
- Un stable est un ensemble de sommets non adjacents
- \Rightarrow une k-coloration légale = un partitionnement du graphe en k stables

<□ > <**□** > < **□** > < **□** > < **□** > < **□** > < **□** > < **□** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** < **○** <

Graphes et réseaux 2024 2/14

V : ensemble des sommets

E: ensemble des arêtes

k : nombre de couleurs

$$\begin{array}{ccc} c: V & \rightarrow & \{1,2,...,k\} \\ v & \mapsto & c(v) \end{array}$$

3-coloration légale

Définitions

- k-coloration légale : respect des contraintes : $c(v_i) \neq c(v_i), \forall (v_i, v_i) \in E$
- G est k-coloriable s'il admet une k-coloration légale
- Le nombre chromatique $\chi(G)$ est le plus petit entier k tel que G est k-coloriable
- Une classe de couleur est un ensemble des sommets coloriés de la même couleur
- Un stable est un ensemble de sommets non adjacents
- \Rightarrow une k-coloration légale = un partitionnement du graphe en k stables

イロト イ御 ト イミト イミト

V: ensemble des sommets

 ${\it E}$: ensemble des arêtes

k: nombre de couleurs

$$\begin{array}{ccc} c: V & \rightarrow & \{1,2,...,k\} \\ v & \mapsto & c(v) \end{array}$$

Problèmes

- ullet Problème d'optimisation : problème de coloration de graphe : trouver $\chi(G)$
- ⇒ NP-difficile pour des graphes quelconques
- Problème de décision : problème de *k*-coloration : pour *k* donné, *G* est-il *k*-coloriable ?
- \Rightarrow NP-complet en général pour $k \geqslant 3$

◆□▶◆□▶◆壹▶◆壹▶ 壹 釣९♡

raphes et réseaux 2024 2/14

Applications: allocation de ressources rares

Emplois du temps

Allocation de créneaux horaires à des événements : cours, examens...

- Sommets : les événements
- Arêtes : les contraintes; deux événements ne peuvent se dérouler simultanément
- Couleurs : les créneaux horaires
- ⇒ Minimiser la durée totale des événements

3/14

Graphes et réseaux 2024

Applications : allocation de ressources rares

Allocation de fréquences dans les réseaux GSM

Attribuer aux antennes relais des bandes de fréquences pour communiquer avec les usagers.

- Sommets : les antennes relais
- Arêtes: entre deux antennes trop proches géographiquement l'une de l'autre (niveau d'interférence trop important)
- Ouleurs : les canaux de fréquences radio
- ⇒ Minimiser le nombre de fréquences utilisées ou pour un nombre de fréquences donné minimiser les interférences

Beaucoup de contraintes supplémentaires sur les interférences et la qualité de service

Graphes et réseaux 2024

Applications: allocation de ressources rares

Allocation de niveaux de vol

Attribuer un niveau de vol aux avions pour éviter les conflits aériens.

- Sommets: les avions
- Arêtes : entre deux avions en conflits (ne respectant pas les distances de sécurité)
- Couleurs : les niveaux de vol
- Minimiser le nombre de niveaux de vol utilisés

5/14

Applications: allocation de ressources rares

Coloration de carte géographique

Sommets : les départements

 Arêtes : entre deux départements frontaliers

⇒ colorier en 4 couleurs

Sudoku, carré latin...

Compléter une grille de sudoku

• Sommets : les cases de la grille

 Arêtes : entre deux cases de la même ligne, même colonne et même carré

Couleurs : les numéros

⇒ Existence d'une solution à partir d'une solution partielle

9		8		7			4	2
			9				6	
		6	8		4		9	
5	8	3						4
				6	3			7
3	5				2	8		
	6			3	7			9
2		7			5			6

6/14

Problème de coloration de graphe

Théorème de Brooks

Un graphe connexe G de degré maximum d possède une coloration avec d couleurs, à l'exception du graphe complet et du graphe cycle de longueur impaire qui nécessitent d+1 couleurs.

- Minorant : trouver une clique maximale de taille m ($\chi(G) \ge m$).
- Majorant : colorer les sommets un à un en choisissant une couleur différente de toutes celles déjà utilisées par ses voisins $(\chi(G) \le d+1 \le n)$.

7/14

Graphes et réseaux 2024

Théorème de Hall

Théorème

Un graphe biparti $G = (S_1 \cup S_2, A)$ admet un couplage parfait si et seulement si pour tout sous-ensemble X de S_1 (de S_2 , respectivement), le nombre de sommets de S_2 (de S_1 , respectivement) adjacents à un sommet de X est supérieur ou égal à la cardinalité de X.

aphes et réseaux 2024 8/14

Couleurs numérotées

Ordre de coloration des sommets Règle : colorier les sommets avec la plus petite couleur disponible

4□ > 4□ > 4 = > 4 = > = 90

Graphes et réseaux 2024 9/14

Couleurs numérotées

Règle : colorier les sommets avec la plus petite couleur disponible

Ordre de coloration des sommets :

$$E \to D \to C \to B \to A \to F \to G$$

⇒ coloration en 4 couleurs

 ✓ □ ▷ ✓ □ ▷ ✓ □ ▷ ✓ □ ▷ ✓ □ ▷ ✓ □
 □
 ♥ ○ ○

 Graphes et réseaux
 2024
 9/14

Couleurs numérotées

Règle : colorier les sommets avec la plus petite couleur disponible

Ordre de coloration des sommets :

$$A \to B \to C \to D \to E \to F \to G$$

⇒ coloration en 3 couleurs

<ロト 4部ト 4 差 ト 4 差 ト 9/14

Couleurs numérotées

Règle : colorier les sommets avec la plus petite couleur disponible

Ouel ordre? d'intervalles.

Ordre inverse des dates au plus tard pour les graphes

 \Longrightarrow Algorithme optimale en O(|V|log(|V|))!

9/14

2024

Stratégies gloutones Orientation dynamique des sommets - DSATUR

Définition : degré de saturation

DSAT(v): nombre de couleurs différentes utilisées par ses voisins

Heuristique dynamique DSATUR [Daniel Brélaz, 1979]

- Ordonner les sommets par ordre décroissant de degrés
- Colorer un sommet de degré maximum avec la couleur 1
- Shoisir $v^{best} = DSAT(v)$ (à égalité, degré max.)
- Colorer v^{best} par la plus petite couleur possible
- Si tous les sommets sont colorés alors stop, sinon aller en 3

Stratégies gloutones Extractions successives de stabes - RLF

Coloration = Partition en stables

 $k \leftarrow 0$

tant que il exsite de sommets non coloriés faire

 $k \leftarrow k + 1$

tant que il exsite de sommets non coloriés et non marqués faire

Choisir le sommet v non colorié et non marqué ayant le plus de voisins marqués (à égalité, celui de degré max.)

Colorier v avec la couleur k

Marquer tous les sommets adjacents à v non coloriés

Enlever toutes les marques

retourner k

Algorithme 1 : RLF (Recursive-Large-First) [Leighton, 1979]

<ロト 4回り 4 至り 4 至り

Orientation relative des sommets

Graphe orienté sans cycle [Gendron et al.07]

Théorème de Vitaver, 1962

La longueur du plus long chemin dans une orientation d'un graphe est supérieure ou égale à son nombre chromatique.

Graphe simple

12/14

2024

Orientation relative des sommets

Graphe orienté sans cycle [Gendron et al.07]

Théorème de Vitaver, 1962

La longueur du plus long chemin dans une orientation d'un graphe est supérieure ou égale à son nombre chromatique.

Graphe avec une orientation sans cycle

Couleurs numérotées

2024 12/14

Orientation relative des sommets

Graphe orienté sans cycle [Gendron et al.07]

Théorème de Vitaver, 1962

La longueur du plus long chemin dans une orientation d'un graphe est supérieure ou égale à son nombre chromatique.

Plus long chemin : 5 sommets \Rightarrow coloration en 5 couleurs

Couleurs numérotées

4□ > 4₫ > 4 분 > 1 분 9 < 0</p>

Graphes et réseaux 2024 12/14

Orientation relative des sommets

Graphe orienté sans cycle [Gendron et al.07]

Théorème de Vitaver, 1962

La longueur du plus long chemin dans une orientation d'un graphe est supérieure ou égale à son nombre chromatique.

Plus long chemin : 3 sommets \Rightarrow coloration en 3 couleurs

Couleurs numérotées

4□ > 4□ > 4 = > 4 = > = 90

Méthodes exactes

```
Données : G = (V, E) un graphe.
C, la coloration vide (\forall v \in V : C[v] \leftarrow None)
\chi \leftarrow |V|
DSATUR(C,0)
retourner \chi
DSATUR(C,k) (k est nombre de couleurs utilisées par C) si tous les sommets de C sont coloriés alors
    si k < \chi alors
     \ \ \ \chi \leftarrow k
sinon
    Sélectionner un sommet non colorié v de C (selon DSAT max)
    for chaque couleur i \in [1; k+1] possible pour v do
```

Algorithme 2 : DSATUR Branch&Bound qui renvoie $\chi(G)$.

◆□ > ◆□ > ◆重 > ◆重 > ・重 ・ か Q ()・

Graphes et réseaux 2024 13/14

Logiciels, lectures

Outils de résolution du problème de coloration de graphe

DSATUR branch&bound et Exactcolors (exactes pour n < 200)

https://github.com/heldstephan/exactcolors

HEAD (approchée pour n < 10000)

https://github.com/graphcoloring/HEAD

NetworkX

https://networkx.github.io

Article

Emmanuel Hébrard, George Katsirelos. A Hybrid Approach for Exact Coloring of Massive Graphs. CPAIOR'2019, Thessaloniki, Greece.

2024