The BrutalB beamer theme

Euclid of Alexandria euclid@alexandria.edu

27th International Symposium of Prime Numbers

Section 1

Section Page

Fuzzy Modeling

The proof uses reductio ad absurdum.

Theorem

There is no largest prime number.

1. Suppose *p* were the largest prime number.

4. But q + 1 is greater than 1, thus divisible by some prime number not in the first p numbers.

Fuzzy Modeling

The proof uses reductio ad absurdum.

Theorem

There is no largest prime number.

- 1. Suppose *p* were the largest prime number.
- 2. Let *q* be the product of the first *p* numbers.

4. But q + 1 is greater than 1, thus divisible by some prime number not in the first p numbers.

Fuzzy Modeling

The proof uses reductio ad absurdum.

Theorem

There is no largest prime number.

- 1. Suppose *p* were the largest prime number.
- 2. Let *q* be the product of the first *p* numbers.
- 3. Then q + 1 is not divisible by any of them.
- 4. But q + 1 is greater than 1, thus divisible by some prime number not in the first p numbers.

A Tilz figure

Fonts

italics The fast bulldog jumps the great happy wizard

bold The fast bulldog jumps the great happy wizard

smallcaps The fast bulldog jumps the great happy wizard

roman The fast bulldog jumps the great happy wizard

source The fast bulldog jumps the great happy wizard

Typesetting Mathematics

Gaussian Probability Density Function

$$f(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\sigma^2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$