Amendments to the Claims:

This listing of claims replaces all prior versions, and listings, of claims in the captioned application.

Listing of Claims:

- 1. (currently amended) A method of determining how the solubility of a solid compound-of-interest is affected by its form, which comprises:
 - (a) preparing an array of samples, each comprising a controlled amount of the compound-of-interest, wherein the <u>physical or chemical</u> form of the compound-of-interest in at least two of the samples is different;
 - (b) forming a liquid portion of each sample by adding a solvent to each sample; and
 - (c) determining how much compound-of-interest dissolved in the liquid portion of each sample.
 - 2. (currently amended) The method of claim 1, wherein:
 - (a) the method further comprises comprising the step of separating the liquid portion of each sample from any solid portion each sample may contain prior to the determination;
 - (b) the solid remaining in a sample after separation of its liquid portion is analyzed to determine whether any change of form occurred;
 - (c) the physical form of the compound of interest in one sample differs from the physical form of the compound of interest in another sample;
 - (d) the compound of interest in one sample is amorphous and the compound of interest in another sample is crystalline;
 - (e) the compound of interest in one sample is crystalline and has a first crystal structure and/or a first crystal habit and the compound of interest in another sample is crystalline and has a second crystal structure and/or a second crystal habit, wherein the second crystal structure differs from the first crystal structure and/or the second crystal habit differs from the first crystal habit;
 - (f) the chemical form of the compound of interest in one sample differs from the chemical form of the compound of interest in another sample;

- (g) the compound of interest in one sample is a salt, solvate, or co-crystal of a compound and the compound of interest in another sample is a different salt, solvate, or co-crystal of the compound;
- (h) the compound of interest in one sample is a compound and the compound of interest in another sample is a salt, solvate, or co-crystal of the compound;
- (i) the amount of compound-of-interest is less than about 100 micrograms;
- (i) the amount of compound-of-interest is less than about 50 micrograms; or
- (k) the amount of compound-of-interest is less than about 10 micrograms.
- 3. (currently amended) A method of determining how the dissolution of a solid compound-of-interest is affected by its form, which comprises:
 - (a) preparing an array of samples, each comprising a controlled amount of the compound-of-interest, wherein the <u>physical or chemical</u> form of the compound-of-interest in at least two of the samples is different;
 - (b) forming a liquid portion of each sample by adding a solvent to each sample; and
 - (c) determining how much compound-of-interest dissolved in the liquid portion of each sample as a function of time.
 - 4. (currently amended) The method of claim 3, wherein:
 - (a) the method-further comprises comprising the step of separating the liquid portion of each sample from any solid portion each sample may contain prior to the determination;
 - (b) the solid remaining in a sample after separation of its liquid portion is analyzed to determine whether any change of form occurred; or
 - (c) the method further comprises:
 - (i) preparing a first sub-array of samples, each comprising a controlled amount of the compound-of interest in a first form;
 - (ii) preparing a second sub-array of samples, each comprising a controlled amount of the compound-of-interest in a second form that differs from the first form;
 - (iii) forming a liquid portion of each sample in the first sub-array by adding a controlled amount of a solvent to each sample in the first sub-array at a time point that is unique to each sample in the first sub-array;

- (iv) forming a liquid portion of each sample in the second sub-array by adding a controlled amount of a solvent to each sample in the second-sub-array at a time point that is unique to each sample in the second-sub-array but is the same as the time point at which solvent was added to a sample in the first sub-array;
- (v) separating the liquid portion of each sample in the first and second sub-arrays from any solid portion each sample may contain at a time point that is the same for each sample in the first and second sub-arrays; and
- (vi) determining how much compound of interest dissolved in the liquid portion of each sample;
- (d) the physical form of the compound of interest in one sample differs from the physical form of the compound of interest in another sample;
- (e) the compound of interest in one sample is amorphous and the compound of interest in another sample is crystalline;
- (f) the compound-of-interest in one sample is crystalline and has a first crystal structure and/or a first crystal habit and the compound-of-interest in another sample is crystalline and has a second crystal structure and/or a second crystal habit, wherein the second crystal structure differs from the first crystal structure and/or the second crystal habit differs from the first crystal habit;
- (g) the chemical form of the compound of interest in one sample differs from the chemical form of the compound of interest in another sample;
- (h) the compound of interest in one sample is a salt, solvate, or co-crystal of a compound and the compound of interest in another sample is a different salt, solvate, or co-crystal of the compound;
- (i) the compound of interest in one sample is a compound and the compound of interest in another sample is a salt, solvate, or co-crystal of the compound;
- (j) the amount of compound-of-interest is less than about 100 micrograms;
- (k) the amount of compound of interest is less than about 50 micrograms; or
- (1) the amount of compound-of-interest is less than about 10 micrograms.
- 5. (currently amended) A method of determining how the stability of a solid compound-of-interest is affected by its form, which comprises:

- (a) preparing an array of samples, each comprising a controlled amount of the compound-of-interest, wherein the <u>physical or chemical</u> form of the compound-of-interest in at least two of the samples is different;
- (b) exposing the compound-of-interest in each sample to a condition that may affect the stability of the compound-of-interest; and
- (c) determining whether the form or chemical composition of the compound-ofinterest in each sample changed.
- 6. (currently amended) The method of claim 5, wherein:
- (a) the condition is pH, ionic strength, counter-ion concentration, relative humidity, radiation, oxidative conditions, mechanical stress, temperature, or time;
- (b) the physical form of the compound-of-interest in one sample differs from the physical form of the compound-of-interest in another sample;
- (c) the compound of interest in one sample is amorphous and the compound of interest in another sample is crystalline;
- (d) the compound-of-interest in one sample is crystalline and has a first crystal structure and/or a first crystal habit and the compound-of-interest in another sample is crystalline and has a second crystal structure and/or a second crystal habit, wherein the second crystal structure differs from the first crystal structure and/or the second crystal habit differs from the first crystal habit;
- (e) the chemical form of the compound of interest in one sample differs from the chemical form of the compound of interest in another sample;
- (f) the compound of interest in one sample is a salt, solvate, or co-crystal of a compound and the compound of interest in another sample is a different salt, solvate, or co-crystal of the compound;
- (g) the compound of interest in one sample is a compound and the compound of interest in another sample is a salt, solvate, or co-crystal of the compound;
- (h) the amount of compound-of-interest is less than about 100 micrograms;
- (i) the amount of compound of interest is less than about 50 micrograms; or
- (j) the amount of compound-of-interest is less than about 10 micrograms.

7-23. (canceled)

- 24. (new) The method of claim 2, further comprising the step of analyzing the solid remaining in a sample after separation of its liquid portion to determine whether any change of form occurred.
- 25. (new) The method of claim 4, further comprising the step of analyzing the solid remaining in a sample after separation of its liquid portion to determine whether any change of form occurred.
 - 26. (new) The method of claim 3, wherein said method comprises the steps of:
 - (i) preparing a first sub-array of samples, each comprising a controlled amount of the compound-of-interest in a first form;
 - (ii) preparing a second sub-array of samples, each comprising a controlled amount of the compound-of-interest in a second form that differs from the first form;
 - (iii) forming a liquid portion of each sample in the first sub-array by adding a controlled amount of a solvent to each sample in the first sub-array at a time point that is unique to each sample in the first sub-array;
 - (iv) forming a liquid portion of each sample in the second sub-array by adding a controlled amount of a solvent to each sample in the second sub-array at a time point that is unique to each sample in the second sub-array but is the same as one of the time points at which solvent was added to one of the samples in the first sub-array;
 - (v) separating the liquid portion of each sample in the first and second sub-arrays from any solid portion each sample may contain at a time point that is the same for each sample in the first and second subarrays; and
 - (vi) determining how much compound-of-interest dissolved in the liquid portion of each sample.
- 27. (new) The method of claim 1, wherein the compound-of-interest in one sample is amorphous and the compound-of-interest in another sample is crystalline.

6

- 28. (new) The method of claim 1, wherein the compound-of-interest in one sample is a salt, solvate, or co-crystal of a compound and the compound-of-interest in another sample is a different salt, solvate, or co-crystal of the compound.
- 29. (new) The method of claim 1, wherein the compound-of-interest in one sample is a compound and the compound-of-interest in another sample is a salt, solvate, or co-crystal of the compound.
- 30. (new) The method of claim 3, wherein the compound-of-interest in one sample is amorphous and the compound-of-interest in another sample is crystalline.
- 31. (new) The method of claim 3, wherein the compound-of-interest in one sample is a salt, solvate, or co-crystal of a compound and the compound-of-interest in another sample is a different salt, solvate, or co-crystal of the compound.
- 32. (new) The method of claim 3, wherein the compound-of-interest in one sample is a compound and the compound-of-interest in another sample is a salt, solvate, or co-crystal of the compound.
- 33. (new) The method of claim 5, wherein the compound-of-interest in one sample is amorphous and the compound-of-interest in another sample is crystalline.
- 34. (new) The method of claim 5, wherein the compound-of-interest in one sample is a salt, solvate, or co-crystal of a compound and the compound-of-interest in another sample is a different salt, solvate, or co-crystal of the compound.
- 35. (new) The method of claim 5, wherein the compound-of-interest in one sample is a compound and the compound-of-interest in another sample is a salt, solvate, or co-crystal of the compound.

7