Cat 上の natural モデル構造

よの

2024年3月7日

概要

小圏の圏にモデル構造を入れることにより、圏論 (の一部)をホモトピー論の枠組みで考えられるようになる。まず、圏同値 (categorical equivalence)を weak equivalence とするようなnatural モデル構造が存在する。他にも、圏の脈体の間の射が Kan weak equivalence であるようなThomason モデル構造が存在する。前者の存在は [Rez96]で、後者の存在は [Tho80]でそれぞれ証明された。本稿では、natural モデル構造を定義し、単体的集合の圏上の Joyal モデル構造とQuillen 随伴であることを示す。

目次

1 Natural モデル構造 1

5

2 sSet_{Joyal} と Cat_{nat} の Quillen 随伴

1 Natural モデル構造

小圏の圏にモデル構造を入れるとき、まず weak equivalence として圏同値 (categorical equivalence) が考えられる。選択公理を仮定すると、weak equivalence を圏同値とするような Cat 上のモデル構造は一意である。(Chris Schommer-Pries の The canonical model structure on Cat を参照)

定義 1.1 (擬ファイブレーション). \mathcal{C}, \mathcal{D} を圏, $F: \mathcal{C} \to \mathcal{D}$ を関手とする. 任意の対象 $c \in \mathrm{Ob}(\mathcal{C})$ と domain が F(c) の同型射 $g \in \mathcal{D}$ に対して, domain が c のある同型射 $f \in \mathcal{C}$ が存在して, F(f) = g を満たすとき, F を擬ファイブレーション (quasi-fibration) という.

擬ファイブレーションはリフトを用いて特徴づけることができる.

注意 1.2. C, D を圏, $F: C \to D$ を関手とする. このとき, F が擬ファイブレーションであることと, 次の四角がリフトを持つことは同値である.

ここで、 $\{0\}$ は 1 点圏、I は 2 点対象とその間の一意な同型射からなる圏とする.

定義 1.3 (対象上の mono 関手). \mathcal{C}, \mathcal{D} を圏, $F: \mathcal{C} \to \mathcal{D}$ を関手とする. $\mathrm{Ob}(F): \mathrm{Ob}(\mathcal{C}) \to \mathrm{Ob}(\mathcal{D})$ が mono 射のとき, F を対象上の mono 関手 (monic on objects) という.

定義 1.4 (natural モデル構造). Cat には次のモデル構造が存在する. これを Cat 上の natural モデル構造 *1 といい, Cat $_{nat}$ と表す.

- weak equivalence は通常の圏同値
- fibration は擬ファイブレーション
- cofibration は対象上の mono 関手

注意 1.5. Cat_{nat} において、任意の対象 (小圏) はファイブラントかつコファイブラントである.

注意 1.6. Cat_{nat} は

$$I := \{\emptyset \to \{0\}, \{0\} \sqcup \{1\} \to \{0 \to 1\}, \{0 \rightrightarrows 1\} \to \{0 \to 1\}\}$$
$$J := \{\{0\} \to \{0 \leftrightarrow 1\}\}$$

をそれぞれ generating cofibration, generating trivial cofibration の集合とするコファイブラント生成なモデル圏である.

Proof. まず, I に関して考える. $u:\emptyset \to \{0\}, v:\{0\} \sqcup \{1\} \to \{0 \to 1\}, w:\{0 \Rightarrow 1\} \to \{0 \to 1\}$ とする. まず, u,v,w が cofibration であることは明らかである. よって, trivial fibration は u,v,w に対して RLP を持つ.

逆に、関手 $F:\mathcal{C}\to\mathcal{D}$ が u,v,w に対して RLP を持つとする. u に対して RLP を持つとき、F は 対象上の epi 射である. v に対して RLP を持つとき、G は充満である. w に対して RLP を持つとき、G は忠実である. 注意 1.7 より、F は trivial fibration である.

$$J$$
 に関しては注意 1.2 より従う.

Cat_{nat} における trivial fibration と trivial cofibration は簡単に表すことができる.

注意 1.7. \mathcal{C}, \mathcal{D} を圏, $F: \mathcal{C} \to \mathcal{D}$ を関手とする. このとき, F が trivial fibration であることと, F が 圏同値かつ対象上の epi 関手*2 であることは同値である.

注意 **1.8.** \mathcal{C}, \mathcal{D} を圏, $F: \mathcal{C} \to \mathcal{D}$ を関手とする. このとき, F が trivial cofibration であることと, \mathcal{C} が \mathcal{D} と圏同値であるような \mathcal{D} の部分圏であることは同値である.

Cat 上に natural モデル構造が存在することを示すために、いくつか準備をする.

^{*1} 自明な (trivial) モデル構造や圏的 (categorical) モデル構造と呼ばれることもある. このとき, Cat_{nat} における fibration を isofibration, cofibration を isocofibration ということもある.

^{*2} 対象上の epi 関手は対象上の mono 関手と同様に定義される. \mathcal{C},\mathcal{D} を圏, $F:\mathcal{C}\to\mathcal{D}$ を関手とする. $\mathrm{Ob}(\mathcal{C})\to\mathrm{Ob}(\mathcal{D})$ が epi 射のとき, F を対象上の epi 関手 (epic on objects) という.

まず、 Cat_{nat} がリフト性質を満たすことを示す.

補題 1.9. 次の図式において、F を対象上の mono 関手、G を擬ファイブレーションとする.

$$\begin{array}{ccc}
C & \xrightarrow{U} & \mathcal{E} \\
F \downarrow & & \downarrow^{\mathcal{H}} & \downarrow^{G} \\
\mathcal{D} & \xrightarrow{V} & \mathcal{F}
\end{array}$$

更に, F か G が圏同値のとき, この四角はリフト H を持つ.

Proof. まず、G が圏同値のときを考える. このとき、 $\mathrm{Ob}(F):\mathrm{Ob}(\mathcal{C}) \to \mathrm{Ob}(\mathcal{D})$ は mono 射、 $\mathrm{Ob}(G):\mathrm{Ob}(\mathcal{E}) \to \mathrm{Ob}(\mathcal{F})$ は epi 射である. \mathcal{D} の対象 d が $F(\mathcal{C})$ に属するとき,d=F(c) を満たす一意な \mathcal{C} の対象 c を用いて,H(d):=U(c) とする.d が $F(\mathcal{C})$ に属さないとき,V(d)=G(e) を満たす $e\in\mathrm{Ob}(\mathcal{E})$ を用いて,H(d):=e とする.*3 G は圏同値かつ擬ファイブレーションなので,注意 1.7 より,任意の $f:d\to d'\in\mathcal{D}$ に対して,

$$G: \operatorname{Hom}_{\mathcal{E}}(H(d), H(d')) \to \operatorname{Hom}_{\mathcal{N}}(GH(d), GH(d')) = \operatorname{Hom}_{\mathcal{N}}(V(d), V(d'))$$

は同型である.よって、射の対応 $H:\mathcal{C}\to\mathcal{D}$ はこの同型を用いて定める.このとき、求める四角の可換性はすぐに示すことができる.

次に、F が圏同値のときを考える。注意 1.8 より、ある関手 $F':\mathcal{D}\to\mathcal{C}$ が存在して、 $F'F=\mathrm{Id}_{\mathcal{C}}$ かつ $\alpha:FF'\to\mathrm{Id}_{\mathcal{D}}$ は自然同型である。更に、 α を F の像に制限すると、 $\alpha|_{F(\mathcal{C})}=\mathrm{Id}_{F(\mathcal{C})}$ である。まず、対象の対応 $\mathrm{Ob}(H):\mathrm{Ob}(\mathcal{C})\to\mathrm{Ob}(\mathcal{D})$ を次のように定義する。G は擬ファイブレーションなので、 $UF'(d)\in\mathrm{Ob}(\mathcal{E})$ と domain が GUF'(d)=VFF'(d) である同型射 $V(\alpha_d):VFF'(d)\to V(d)$ に対して、ある同型射 $\beta_d:UF'(d)\to x$ が存在して、 $G(\beta_d)=V(\alpha_d)$ かつ G(x)=V(d) となる。よって、任意の $d\in\mathrm{Ob}(\mathcal{D})$ に対して、 $\mathrm{Ob}(H)(d):=x$ とする。

$$UF'(d) \qquad VFF'(d) = GUF'(d)$$

$$\beta_d \downarrow \qquad \qquad \downarrow V(\alpha_d)$$

$$Ob(H)(d) := x \qquad V(d)$$

次に、射の対応 $H:\mathcal{C}\to\mathcal{D}$ を次のように定める. 任意の \mathcal{D} の射 $f:d\to d'$ に対して、

$$H(f) := \beta_{d'} \cdot UF'(f) \cdot \beta_d^{-1} : H(d) \xrightarrow{\beta_d^{-1}} UF'(d) \xrightarrow{UF'(f)} UF'(d') \xrightarrow{\beta_{d'}} H(d')$$

とする。また、 $d \in \mathrm{Ob}(\mathcal{D})$ が $F(\mathcal{C})$ に属する、つまりある対象 $c \in \mathrm{Ob}(\mathcal{C})$ が一意に存在して d = F(c) と表せるときを考える。 $\alpha|_{F(c)} = \mathrm{Id}_{F(c)}$ なので、HF(c) = U(c) かつ $\beta_{F(c)} = \mathrm{id}_{U(c)}$ である。これらのことから、求める四角の可換性はすぐに示すことができる.

^{*3} ここで選択公理を用いている。実は、F が圏同値のときも同様の議論で示すことができる。 nlab の Canonical model structure on Cat の Propositin 1.2 を参照。このとき、Ob(F) は epi 射なので、選択公理は用いない。本文中の証明は [Rez96] Theorem 3.1 を参考にした。

 Cat_{nat} が分解系を持つことを示す.

補題 1.10. 任意の関手 $F:\mathcal{C}\to\mathcal{D}$ は圏同値かつ対象上の mono 射 $U:\mathcal{C}\to\mathcal{C}'$ と擬ファイブレーション $V:\mathcal{C}'\to\mathcal{D}$ を用いて F=VU と分解できる. また, 任意の関手 $F:\mathcal{C}\to\mathcal{D}$ は対象上の mono 射 $U:\mathcal{C}\to\mathcal{D}'$ と圏同値かつ擬ファイブレーション $V:\mathcal{D}'\to\mathcal{D}$ を用いて F=VU と分解できる.

Proof. まず、任意の関手 $F: \mathcal{C} \to \mathcal{D}$ が圏同値かつ対象上の mono 射 $U: \mathcal{C} \to \mathcal{C}'$ と擬ファイブレーション $V: \mathcal{C}' \to \mathcal{D}$ を用いて F=VU と分解できることを示す.圏 \mathcal{C}' を次のように定義する.まず、 \mathcal{C}' の対象は

$$\mathrm{Ob}(\mathcal{C}') := \{ (c, d, \alpha) \mid c \in \mathrm{Ob}(\mathcal{C}), d \in \mathrm{Ob}(\mathcal{D}), \alpha : F(c) \cong d \in \mathcal{D} \}$$

C' の任意の対象 $(c,d,\alpha),(c',d',\alpha')$ に対して、

$$\operatorname{Hom}_{\mathcal{C}'}((c,d,\alpha),(c',d',\alpha')) := \operatorname{Hom}_{\mathcal{C}}(c,c')$$

このとき、関手 $U: \mathcal{C} \to \mathcal{C}'$ を任意の $c \in \mathrm{Ob}(\mathcal{C})$ と $f: c \to c' \in \mathcal{C}$ に対して

$$U(c) := (c, F(c), id_{F(c)}), \ U(f) := f$$

とする. 関手 $V: \mathcal{C}' \to \mathcal{C}$ を任意の $(c,d,\alpha) \in \mathrm{Ob}(\mathcal{C}')$ と $f: (c,d,\alpha) \to (c',d',\alpha') \in \mathcal{C}'$ に対して

$$V((c,d,\alpha)) := d, \ V(f) := \alpha^{-1} \cdot F(f) \cdot \alpha'$$

とする. このとき, U は圏同値かつ対象上の mono 射, V は擬ファイブレーションである.

次に、任意の関手 $F:\mathcal{C}\to\mathcal{D}$ が対象上の mono 射 $U:\mathcal{C}\to\mathcal{D}'$ と圏同値かつ擬ファイブレーション $V:\mathcal{D}'\to\mathcal{D}$ を用いて F=VU と分解できることを示す。圏 \mathcal{D}' を $D'=\mathcal{C}\sqcup\mathcal{D}$ で定義する。このとき、関手 $U:\mathcal{C}\to\mathcal{D}'$ を任意の $c\in\mathrm{Ob}(\mathcal{C})$ と $f:c\to c'\in\mathcal{C}$ に対して

$$U(c) := c, \ U(f) := F(f)$$

とする. 関手 $V: \mathcal{D}' \to \mathcal{D}$ を任意の $(c,d) \in \mathrm{Ob}(\mathcal{C} \sqcup \mathcal{D})$ に対して、

$$V((c,d)) := (F(c),d)$$

とする.このとき, U は対象上の mono 射, V は圏同値かつ擬ファイブレーションである.

Cat 上に natural モデル構造が存在することを示す.

Proof. まず、Cat は任意の (有限) 極限と (有限) 余極限を持つ.

次に、weak equivalence が 2-out-of-3 を満たすことは明らかである.

また、weak equivalence と cofibration が retract で閉じることは簡単に示すことができる. fibration が retract で閉じることは注意 1.2 より、リフトの一般論から示すことができる.

リフト性質を満たすことは補題 1.9 で、分解系を持つことは補題 1.10 で既に示した.

2 sSet_{Joval} と Cat_{nat} の Quillen 随伴

第2章の目標は次の命題2.1を示すことである.

命題 2.1 ([Joy08] Proposition 6.14). 基本圏をとる関手 $\tau_1: \mathbf{sSet_{Joyal}} \to \mathbf{Cat_{nat}}$ と脈体 $N: \mathbf{Cat_{nat}} \to \mathbf{sSet_{Joyal}}$ は、 $\mathbf{sSet_{Joyal}}$ と $\mathbf{Cat_{nat}}$ の Quillen 随伴を定める.

$$\tau_1: \mathbf{sSet}_{\mathsf{Joval}} \rightleftarrows \mathbf{Cat}_{\mathsf{nat}}: N$$

Proof. まず、左随伴が cofibration を保つことを示す。任意の単体的集合 X に対して、 $Ob(au_1(X))=X_0$ である。また、単体的集合の射 $f:X\to Y$ が mono 射 (\mathbf{sSet}_{Joyal} における cofibration) のとき、特に $f_0:X_0\to Y_0$ は対象上の mono 射 (\mathbf{Cat}_{nat} における cofibration) である。よって、左随伴は cofibration を保つ。

次に、左随伴が weak equivalence を保つことを示す. X を単体的集合、 \mathcal{C} を圏とする. [Joy08] B.0.16 より、

$$\operatorname{Fun}(X, N(\mathcal{C})) = \operatorname{Fun}(\tau_1(X), N(\mathcal{C}))$$

である. \mathbf{sSet}^{τ_0} の定義より,

$$\tau_0(X, N(\mathcal{C})) = \tau_0(\tau_1(X), N(\mathcal{C}))$$

である. 従って、任意の単体的集合の射 $f: X \to Y$ に対して、

$$\tau_0(f, N(\mathcal{C})) = \tau_0(\tau_1(f), N(\mathcal{C}))$$

である。任意の圏 $\mathcal C$ に対して $N(\mathcal C)$ は擬圏である。よって、f が弱圏同値 ($\mathbf s\mathbf S\mathbf e\mathbf t_{Joyal}$ における weak equivalence) のとき、 $au_0(f,N(\mathcal C))$ は同型である。つまり、 $au_0(au_1(f),N(\mathcal C))$ も同型である。Yoneda の補題より、 $au_1(f)$ は $\mathbf C\mathbf a\mathbf t^{ au_0}$ における同型射である。つまり、 $au_1(f)$ は圏同値 ($\mathbf C\mathbf a\mathbf t_{nat}$ における weak equivalence) である。

参考文献

[Joy08] Andre Joyal. The theory of quasi-categories and its applications, 2008.

[Rez96] Charles Rezk. A model category of categories, 1996.

[Tho80] R. W. Thomason. Cat as a closed model category. <u>Cahiers de Topologie et Géométrie</u> Différentielle Catégoriques, 21(3):305–324, 1980.