COMP9318

Project1 Bonus

Group Name: Twosome

Group Member: GUANQUN ZHOU, z5174741 KAIWEN LUO, z5100899

Significantly outperforms our implementation.(Bonus)

- In Q3, we found that Kneser-Ney smoothing is probably the appropriate method to solve the problem. So we decided to optimize our code and algorithm.
- The formula of Kneser-Ney smoothing is like this:

$$P_{KN}(w_i|w_{i-1}) = \frac{\max(C(w_{i-1}w_i) - d, 0)}{C(w_{i-1})} + \lambda(w_{i-1})P_{continuation}(w_i)$$

where

$$\lambda(w_{i-1}) = \frac{d}{C(w_{i-1})} \cdot |\{w: C(w_{i-1}, w) > 0\}|$$

$$P_{continuation} = \frac{N(.w_i)}{N(..)}$$

and

$$N(. w_i) = |\{w_{i-1} | c(w_{i-1}, w_i) > 0\}|$$

$$N(...) = |\{(w_{i-1}, w_i) | c(w_{i-1}, w_i) > 0\}|$$

• The difference is in Q3, the value of d (discounting) we choose is 0.75 which is the widely recognized empiric value.

In bonus part, after optimizing the algorithm, the expression of d is $d = \frac{n_1}{n_1 + 2n_2}$.

* n_i represents the number of n-gram that occur i times

Similarly, for UNK, we set $N(.w_i) = 1$, which is the best guess.

• In this way, we can outperform our implementation and the result is 113. The margin is raised to 21, which is larger than 17.

The instruction of how to execute our code.

- All the code should be implemented in python3.
- We already combined all the functions we need together, so our code can be executed as the way to execute the implement for Q1,Q2 and Q3 Like this:

import submission as submission bonus_result = submission.Bonus(State_File, Symbol_File, Query_File)