

Description

Image

Caption

Medium carbon steel is the material of cheap tools. Low alloy steels are much superior and only a little more expensive -- quality tools are low alloy. © Granta Design

The material

Medium carbon steel (0.25-0.7% carbon) hardens when quenched - a quality that gives great control over properties. "Hardenability" measures the degree to which it can be hardened in thick sections; plain carbon steels have poor hardenability - additional alloying elements are used to increase it (see Low alloy steels). Medium carbon steels are used on an enormous scale for railroad tracks; there are many other lower-volume applications.

Composition (summary)

Fe/0.3 - 0.7%C

General properties

Density	7.8e3	-	7.9e3	kg/m^3
Price	* 0.64	-	0.77	USD/kg
Date first used	1610			

Mechanical properties

Young's modulus	200	-	216	GPa
Shear modulus	77	-	85	GPa
Bulk modulus	158	-	170	GPa
Poisson's ratio	0.285	-	0.295	
Yield strength (elastic limit)	305	-	900	MPa
Tensile strength	410	-	1.2e3	MPa
Compressive strength	305	-	1.76e3	MPa
Elongation	4	-	39	% strain
Hardness - Vickers	120	-	565	HV
Fatigue strength at 10^7 cycles	* 229	-	600	MPa

TIEDUPIACK			
Fracture toughness	* 12 - 92 MPa.m^0.5		
Mechanical loss coefficient (tan delta)	* 2.2e-4 - 0.00119		
Thermal properties			
Melting point	1.38e3 - 1.51e3 ℃		
Maximum service temperature	* 370 - 420 °C		
Minimum service temperature	* -68.233.2 °C		
Thermal conductor or insulator?	Good conductor		
Thermal conductivity	45 - 55 W/m.℃		
Specific heat capacity	440 - 520 J/kg.℃		
Thermal expansion coefficient	10 - 14 µstrain/℃		
Electrical properties			
Electrical conductor or insulator?	Good conductor		
Electrical resistivity	15 - 22 µohm.cm		
Optical properties	Onemia		
Transparency	Opaque		
Critical Materials Risk			
High critical material risk?	No		
Processability			
Castability	2 - 3		
Formability	4 - 5		
Machinability	3 - 4		
Weldability	4 - 5		
Solder/brazability	5		
Durability: water and aqueous solutions			
Water (fresh)	Acceptable		
Water (salt)	Limited use		
Soils, acidic (peat)	Acceptable		
Soils, alkaline (clay)	Acceptable		
Wine	Unacceptable		
Durahilitu eeide			
Durability: acids	Limited use		
Acetic acid (10%)			
Acetic acid (glacial)	Unacceptable		
Citric acid (10%)	Unacceptable		
Hydrochloric acid (10%)	Unacceptable		
Hydrochloric acid (36%)	Unacceptable		

Hydrofluoric acid (40%)	Unacceptable
Nitric acid (10%)	Unacceptable
Nitric acid (70%)	Unacceptable
Phosphoric acid (10%)	Unacceptable
Phosphoric acid (85%)	Unacceptable
Sulfuric acid (10%)	Unacceptable
Sulfuric acid (70%)	Unacceptable

Durability: alkalis

Sodium hydroxide (10%)	Excellent
Sodium hydroxide (60%)	Acceptable

Durability: fuels, oils and solvents

Amyl acetate	Excellent
Benzene	Excellent
Carbon tetrachloride	Excellent
Chloroform	Excellent
Crude oil	Excellent
Diesel oil	Excellent
Lubricating oil	Excellent
Paraffin oil (kerosene)	Excellent
Petrol (gasoline)	Excellent
Silicone fluids	Excellent
Toluene	Excellent
Turpentine	Excellent
Vegetable oils (general)	Excellent
White spirit	Excellent

Durability: alcohols, aldehydes, ketones

Acetaldehyde	Limited use
Acetone	Excellent
Ethyl alcohol (ethanol)	Acceptable
Ethylene glycol	Acceptable
Formaldehyde (40%)	Unacceptable
Glycerol	Excellent
Methyl alcohol (methanol)	Acceptable

Durability: halogens and gases

Chlorine gas (dry)	Acceptable
Fluorine (gas)	Excellent
O2 (oxygen gas)	Limited use

Sulfur diavida (gas)	Aggartable		
Sulfur dioxide (gas)	Acceptable		
Durability: built environments			
Industrial atmosphere	Limited use		
Rural atmosphere	Acceptable		
Marine atmosphere	Limited use		
UV radiation (sunlight)	Excellent		
Durability: flammability			
Flammability	Non-flammabl	е	
Durability: thermal environments			
Tolerance to cryogenic temperatures	Unacceptable		
Tolerance up to 150 C (302 F)	Excellent		
Tolerance up to 250 C (482 F)	Excellent		
Tolerance up to 450 C (842 F)	Acceptable		
Tolerance up to 850 C (1562 F)	Unacceptable		
Tolerance above 850 C (1562 F)	Unacceptable		
Geo-economic data for principal component			
Annual world production, principal component	2.3e9		tonne/yr
Reserves, principal component	1.6e11		tonne
			tonne
Primary material production: energy, CO2 and v	vater	27.8	
Primary material production: energy, CO2 and v Embodied energy, primary production	vater * 25.1 - :		MJ/kg
Primary material production: energy, CO2 and v Embodied energy, primary production CO2 footprint, primary production	* 25.1 - : * 1.72 -	1.9	MJ/kg kg/kg
Primary material production: energy, CO2 and v Embodied energy, primary production CO2 footprint, primary production Water usage	* 25.1 * 1.72 * 43.6		MJ/kg kg/kg l/kg
Primary material production: energy, CO2 and v Embodied energy, primary production CO2 footprint, primary production Water usage Eco-indicator 95	* 25.1	1.9	MJ/kg kg/kg l/kg millipoints/kg
Primary material production: energy, CO2 and v Embodied energy, primary production CO2 footprint, primary production Water usage	* 25.1 * 1.72 * 43.6	1.9	MJ/kg kg/kg l/kg
Primary material production: energy, CO2 and v Embodied energy, primary production CO2 footprint, primary production Water usage Eco-indicator 95 Eco-indicator 99	* 25.1	1.9	MJ/kg kg/kg l/kg millipoints/kg
Primary material production: energy, CO2 and v Embodied energy, primary production CO2 footprint, primary production Water usage Eco-indicator 95 Eco-indicator 99	* 25.1 * 1.72 * 43.6 86	1.9	MJ/kg kg/kg l/kg millipoints/kg
Primary material production: energy, CO2 and v Embodied energy, primary production CO2 footprint, primary production Water usage Eco-indicator 95 Eco-indicator 99 Material processing: energy	* 25.1	1.9 48.2	MJ/kg kg/kg l/kg millipoints/kg millipoints/kg
Primary material production: energy, CO2 and v Embodied energy, primary production CO2 footprint, primary production Water usage Eco-indicator 95 Eco-indicator 99 Material processing: energy Casting energy Extrusion, foil rolling energy	* 25.1	1.9 48.2 12.1	MJ/kg kg/kg l/kg millipoints/kg millipoints/kg
Primary material production: energy, CO2 and v Embodied energy, primary production CO2 footprint, primary production Water usage Eco-indicator 95 Eco-indicator 99 Material processing: energy Casting energy Extrusion, foil rolling energy Rough rolling, forging energy	* 25.1	1.9 48.2 12.1 6.57	MJ/kg kg/kg l/kg millipoints/kg millipoints/kg MJ/kg MJ/kg
Primary material production: energy, CO2 and v Embodied energy, primary production CO2 footprint, primary production Water usage Eco-indicator 95 Eco-indicator 99 Material processing: energy Casting energy Extrusion, foil rolling energy Rough rolling, forging energy Wire drawing energy	* 25.1	1.9 48.2 12.1 6.57 3.44	MJ/kg kg/kg l/kg millipoints/kg millipoints/kg MJ/kg MJ/kg MJ/kg
Primary material production: energy, CO2 and v Embodied energy, primary production CO2 footprint, primary production Water usage Eco-indicator 95 Eco-indicator 99 Material processing: energy Casting energy	* 25.1	1.9 48.2 12.1 6.57 3.44 23.8	MJ/kg kg/kg l/kg millipoints/kg millipoints/kg MJ/kg MJ/kg MJ/kg MJ/kg MJ/kg
Primary material production: energy, CO2 and v Embodied energy, primary production CO2 footprint, primary production Water usage Eco-indicator 95 Eco-indicator 99 Material processing: energy Casting energy Extrusion, foil rolling energy Rough rolling, forging energy Wire drawing energy Metal powder forming energy	* 25.1	1.9 48.2 12.1 6.57 3.44 23.8 42.8	MJ/kg kg/kg l/kg millipoints/kg millipoints/kg MJ/kg MJ/kg MJ/kg MJ/kg MJ/kg MJ/kg MJ/kg
Primary material production: energy, CO2 and v Embodied energy, primary production CO2 footprint, primary production Water usage Eco-indicator 95 Eco-indicator 99 Material processing: energy Casting energy Extrusion, foil rolling energy Rough rolling, forging energy Wire drawing energy Metal powder forming energy Vaporization energy	* 25.1 - * 1.72 - * 43.6 - 86	1.9 48.2 12.1 6.57 3.44 23.8 42.8 1.2e4	MJ/kg kg/kg l/kg millipoints/kg millipoints/kg MJ/kg MJ/kg MJ/kg MJ/kg MJ/kg MJ/kg MJ/kg MJ/kg
Primary material production: energy, CO2 and v Embodied energy, primary production CO2 footprint, primary production Water usage Eco-indicator 95 Eco-indicator 99 Material processing: energy Casting energy Extrusion, foil rolling energy Rough rolling, forging energy Wire drawing energy Metal powder forming energy Vaporization energy Coarse machining energy (per unit wt removed)	* 25.1	1.9 48.2 12.1 6.57 3.44 23.8 42.8 1.2e4 0.994	MJ/kg kg/kg l/kg millipoints/kg millipoints/kg MJ/kg

Material	processi	ing: (CO2 f	ootprint

Casting CO2	* 0.819	-	0.906	kg/kg
Extrusion, foil rolling CO2	* 0.446	-	0.492	kg/kg
Rough rolling, forging CO2	* 0.233	-	0.258	kg/kg
Wire drawing CO2	* 1.61	-	1.78	kg/kg
Metal powder forming CO2	* 2.87	-	3.42	kg/kg
Vaporization CO2	* 815	-	901	kg/kg
Coarse machining CO2 (per unit wt removed)	* 0.0674	-	0.0745	kg/kg
Fine machining CO2 (per unit wt removed)	* 0.354	-	0.391	kg/kg
Grinding CO2 (per unit wt removed)	* 0.672	-	0.743	kg/kg
Non-conventional machining CO2 (per unit wt removed	8.15	-	9.01	kg/kg

Material recycling: energy, CO2 and recycle fraction

Recycle	✓
Embodied energy, recycling	* 6.96 - 7.69 MJ/kg
CO2 footprint, recycling	* 0.547 - 0.605 kg/kg
Recycle fraction in current supply	40 - 44 %
Downcycle	√
Combust for energy recovery	×
Landfill	√
Biodegrade	×
Toxicity rating	Non-toxic
A renewable resource?	×

Environmental notes

The production energy of steel is comparatively low - per unit weight, about a half that of polymers; per unit volume, though, twice as much. Carbon steels are easy to recycle, and the energy to do so is small.

Supporting information

Design guidelines

Hardenability measures the degree to which it can be hardened in thick sections; plain carbon steels have poor hardenability - additional alloying elements are used to increase it (see Low alloy steels).

Technical notes

The two standard classifications for steels, the AISI and the SAE standards, have now been merged. In the SAE-AISI system, each steel has a four-digit code. The first two digits indicate the major alloying elements. The second two give the amount of carbon, in hundredths of a percent. Thus the plain carbon steels have designations starting 10xx, 11xx, 12xx or 14xxx, depending on how much manganese, sulfur and phosphorus they contain. The common low-carbon steels have the designations 1015,1020, 1022, 1117,1118; the common medium carbon steels are 1030,1040, 1050, 1060, 1137, 1141, 1144 and 1340; the common high alloy steels are 1080and 1095. More information on designations and equivalent grades can be found on the Granta Design website at www.grantadesign.com/designations

Phase diagram

Phase diagram description

Medium carbon steels are alloys of iron (Fe) with 0.3 - 0.7% carbon (C), for which this is the phase diagram.

Typical uses

General construction, general mechanical engineering, automotive, tools, axles, gears, bearings, cranks, shafts, bells, cams, knives and scissors.

Links

Reference

ProcessUniverse

Producers