Санкт-Петербургский государственный университет Saint-Petersburg State University

Кафедра теоретической и прикладной механики

ОТЧЕТ

По лабораторной работе 4

«Крутильные колебания вала с дисками»

По дисциплине «Лабораторный практикум по теоретической механике»

Выполнили:

Баталов С. А.

Антонова М. Н.

Клюшин М. А.

Хайретдинова Д. Д.

Санкт-Петербург 2021

1. Описание установки

В данной работе рассматриваются колебания механической системы с тремя степенями свободы. Целью работы является экспериментальное определение частот и главных форм собственных колебаний системы, их теоретический расчет и последующее сравнение.

Рис. 1. Схема лабораторной установки.

На рис. 1 изображена схема лабораторной установки. Основной частью установки является упругий вал 8 с тремя жестко укрепленными на нем дисками 1, 2 и 3. Вал может вращаться в подшипниках 4, установленных на станине. К ободу среднего диска 2 прикреплены пружины 5, одна из которых связана со станиной, а другая — с эксцентриком 6, закрепленном на валу электродвигателя 7. На валу электродвигателя укреплены маховик 9 для стабилизации частоты вращения и диск оптоэлектронного тахометрического датчика. Сигнал с тахометрического датчика поступает на вход электронного цифрового тахометра, показания которого соответствуют частоте вращения вала в герцах.

2. Параметры установки

В следующей таблице представлены заранее известные величины: плотность материала дисков – ρ , модуль сдвига материала вала – G, жесткость пружины – c_n .

Таблица 1: Известные константы.

Номер	Величина	Значение	Размерность
1	ρ	$7,85\cdot 10^3$	$\kappa\Gamma/M^3$
2	G	$8,33 \cdot 10^{10}$	Па
3	C_{Π}	4900	Н/м

Для расчета частот и форм собственных колебаний системы потребуется измерить некоторые параметры установки. Данные измерений приведены в таблице 2. Здесь r_i – радиусы дисков, d_i – толщины дисков, l_i – расстояния между дисками, r – радиус упругого вала, e – расстояние от точки крепления пружины до центра эксцентрика.

 Таблица 2: Результаты измерений параметров установки.

Номер	Величина	Значение	Погрешность	Размерность
1	r_1	0,150	0,0005	М
2	r_2	0,150	0,0005	М
3	r_3	0,150	0,0005	М
4	d_1	0,025	0,0005	М
5	d_2	0,020	0,0005	М
6	d_3	0,025	0,0005	М
7	l_1	0,445	0,0005	М
8	l_2	0,616	0,0005	М
9	r	0,005	0,00005	M
10	e	0,021	0,0005	М

3. Теоретические исследования

Для начала произведем вспомогательные вычисления и расчитаем моменты инерции дисков. Для этого воспользуемся формулой (1).

$$I_i = \frac{1}{2}m_i r_i^2 = \frac{1}{2}\rho \pi r_i^4 d_i, \quad i = 1, 2, 3.$$
 (1)

Далее определим жесткость на скручивание участков вала. Воспользуемся формулой (2). Здесь $I_p = \frac{1}{2}\pi r^4$ – полярный момент инерции поперечного сечения вала.

$$c_k = \frac{GI_p}{l_k} = \frac{G\pi r^4}{2l_k}, \quad k = 1, 2.$$
 (2)

Для дальнейшей работы составляется система уравнений Лагранжа второго рода для данной задачи и упрощается. В итоге приходим к уравнению (3), решениями которого являются квадраты искомых частот ω_i собственных колебаний системы.

$$a_0 y^3 + a_1 y^2 + a_2 y + a_3 = 0, \quad y = \omega^2.$$
 (3)

Здесь

$$a_0 = I_1 I_2 I_3, \quad a_1 = -c_2 I_1 I_2 - c_3 I_1 I_3 - c_1 I_2 I_3,$$

$$a_2 = c_2 (c_3 - c_2) I_1 + c_1 c_2 I_2 + c_1 (c_3 - c_1) I_3,$$

$$a_3 = -c_1 c_2 (c_3 - c_1 - c_2), \quad c_3 = c_1 + c_2 + 2c_{\scriptscriptstyle \Pi} r_2^2.$$

Для поиска главных форм собственных колебаний воспользуемся формулами (4) и (5). Найти значения амплитуд $\Phi_i(\omega)$ колебаний дисков можно с помощью выражения (5). Отношение амплитуд при резонансе можно расчитать по формуле (6).

$$\Delta(\omega) = \begin{vmatrix} c_1 - \omega^2 I_1 & -c_1 & 0 \\ -c_1 & c_3 - \omega^2 I_2 & -c_2 \\ 0 & -c_2 & c_2 - \omega^2 I_3 \end{vmatrix}, \qquad b = \begin{pmatrix} 0 \\ r_2 c_{\pi} e \\ 0 \end{pmatrix}. \tag{4}$$

Далее используется обозначение $\Delta_i(\omega)$ – определитель, полученный из определителя $\Delta(\omega)$ заменой i-го столбца столбцом свободных членов b.

$$\Phi_i(\omega) = \frac{\Delta_i(\omega)}{\Delta(\omega)}, \quad i = 1, 2, 3.$$
 (5)

$$\frac{\Phi_1(\omega_k)}{\Phi_2(\omega_k)} = \frac{\Delta_1(\omega_k)}{\Delta_2(\omega_k)}, \quad \frac{\Phi_2(\omega_k)}{\Phi_3(\omega_k)} = \frac{\Delta_2(\omega_k)}{\Delta_3(\omega_k)}, \quad k = 1, 2, 3.$$
 (6)

4. Результаты расчетов

Все вычисления производились в системе CU с использованием пакета вычислительных инструментов Mathlab. Программа для проведения рассчетов находится в файле $*script_4.m*$, входные данные располагаются в файле $*input_data.csv*$. Далее представлены таблицы с результатами вычислений.

Номер	Величина Значение		Размерность	
1	I_1	0,1560	кг ⋅ м ²	
2	I_2	0,1248	$_{ m K\Gamma \cdot M}^2$	
3	I_3	0,1560	$_{ m K\Gamma \cdot M}^2$	
4	c_1	183,7743	Н · м	
5	c_2	132,7590	Н · м	
6	c_3	537,0334	Н • м	

Таблица 3: Расчет вспомогательных величин.

Таблица 4: Расчет коэффициентов уравнения (3).

Номер	Величина	Значение
1	a_0	0,0030
2	a_1	-19,2468
3	a_2	21553,4703
4	a_3	-5379695,0995

В таблице 5 представлены окончательные результаты теоретических рассчетов. Иллюстрация главных форм собственных колебаний представлена на рис. 2.

Рис. 2. Схема главных форм колебаний.

Таблица 5: Собственные частоты и формы колебаний системы.

Номер	Величина	Значение	Размерность
1	ω_1	18,8936	1/c
2	ω_2	31,5569	1/c
3	ω_3	70,5473	1/c
4	$\Phi_1(\omega_1)$	0,5844	_
5	$\Phi_2(\omega_1)$	0,4073	_
6	$\Phi_3(\omega_1)$	0,7017	_
7	$\Phi_1(\omega_2)$	-0,7368	_
8	$\Phi_2(\omega_2)$	-0,1137	_
9	$\Phi_3(\omega_2)$	0,6664	_
10	$\Phi_1(\omega_3)$	-0,2904	_
11	$\Phi_2(\omega_3)$	0,9371	_
12	$\Phi_3(\omega_3)$	-0,1932	_

5. Результаты экспериментов

Далее представлены значения величин полученных в ходе эксперимента. Все замеры производились три раза. Теоретические рассчеты и экспериментальные результаты представлены в таблице 6.

Таблица 6: Экспериментальные значения частот

собственных колебаний системы.

Величина	Теория	Эксперимент				Разморности
Беличина	теория	<i>№</i> 1	№ 2	№ 3	Среднее	Размерность
ω_1	18,90	18,22	18,85	16,96	18,01	1/c
ω_2	31,47	32,04	32,67	32,00	32,24	1/c
ω_3	71,22	70,99	70,37	71,00	70,79	1/c

Далее представлены нормированные векторы главных форм собственных колебаний системы, соответствующие разным частотам.

$$\Phi(\omega_1) = \begin{pmatrix} 0,5844 \\ 0,4073 \\ 0,7017 \end{pmatrix}, \qquad \Phi(\omega_2) = \begin{pmatrix} -0,7368 \\ -0,1137 \\ 0,6664 \end{pmatrix}, \qquad \Phi(\omega_3) = \begin{pmatrix} -0,2904 \\ 0,9371 \\ -0,1932 \end{pmatrix}. \tag{7}$$

Данные таблицы 6 позволяют заключить, что теоретический рассчет оказался довольно точным и хорошо приблизил действительные характеристики установки. Также важно отметить, что теоретические значения векторов главных форм соответствуют распределениям амплитуд колебаний дисков, наблюдаемым в ходе работы установки.

В результате проделанной работы были получены частоты и главные формы собственных колебаний системы, состоящей из трех дисков, закрепленных на упругом валу рис. 1. Все теоретические и практические результаты представлены выше.