TPC1

Resultados dos exercícios propostos

1. (A)Converta cada um dos valores para os seguintes sistemas:

	Valor a converter	Resultado	Valor a converter Resultado
a) decimal	1101.012	13.25	10.012 2.25
b) octal	110 111 011 1012	67358	11 111.11 ₂ 37.6 ₈
c) hexadecimal	10 1100 1011.0012	0x2CB.2	70.5 0x46.8
d) binário	0xFF1F	1111 1111 0001 1111 ₂	12.03125 1100.000012
e) ternário	26	2223	174 201103

3. ^(A) Preencha a tabela abaixo com a gama de valores representáveis usando 5 bits em um dos sistemas de representação propostos.

Representação	Intervalo		
Binário sem sinal, inteiros	$[0, 2^{5}-1] \rightarrow [0, 31]$		
Binário sem sinal, 1 bit fracionário	[0 , 15.5]		
Binário sem sinal, 3 bits fracionários	[0 , 3.875]		
Sinal + Amplitude, inteiros	[-15 , 15]		
Sinal + Amplitude, 1 bit fracionário	[-7.5 , 7.5]		
Sinal + Amplitude, 3 bits fracionários	[-1.875 , 1.875]		

4. (A) Efetue as seguintes operações aritméticas em binário usando apenas 8 bits:

00110011 ₂ + 01111001 ₂	101011002
011100.01 ₂ + 000011.11 ₂	100000.002
01000001 ₂ + 11000001 ₂	Overflow no resultado
0x4C + 0x2B	$01001100_2 + 00101011_2 = 01110111_2$
1772 ₈ + 2772 ₈	Overflow na codificação de cada operando

5. (A)Codificação binária para as divisões de um prédio de 15 andares, com 6 apartamentos por andar:

Para representar o andar usamos sinal+amplitude com 4 bits.

Para representar o apartamento usamos inteiros positivos com 3 bits.

Temos um máximo de 8 divisões por apartamento, logo usamos 3 bits, com a seguinte codificação:

000 - sala; 001 - cozinha; 010 a 100 - quarto; 101 a 111 - casa de banho.

Total: 10 bits.

O piso -5, apartamento 3, quarto 2, codifica-se como: 1101 011 011