Belief as Willingness to Bet

Bryan Renne

(with Jan van Eijck)

LIRa, ILLC Amsterdam September 11, 2014

- \bullet We study modal logic for $\it qualitative$ probabilistic reasoning:
 - $K\varphi$ means $P(\varphi) = 1$,
 - ▶ $B\varphi$ means $P(\varphi) > c$ for a fixed $c \in (0,1) \cap \mathbb{Q}$.

- \bullet We study modal logic for $\it qualitative$ probabilistic reasoning:
 - $K\varphi$ means $P(\varphi) = 1$,
 - ▶ $B\varphi$ means $P(\varphi) > c$ for a fixed $c \in (0,1) \cap \mathbb{Q}$.
- Some previous work:

- \bullet We study modal logic for $\it qualitative$ probabilistic reasoning:
 - $K\varphi$ means $P(\varphi) = 1$,
 - ▶ $B\varphi$ means $P(\varphi) > c$ for a fixed $c \in (0,1) \cap \mathbb{Q}$.
- Some previous work:
 - ▶ Lenzen (1980): probabilistically complete logic for $c = \frac{1}{2}$.

- We study modal logic for *qualitative* probabilistic reasoning:
 - $K\varphi$ means $P(\varphi) = 1$,
 - ▶ $B\varphi$ means $P(\varphi) > c$ for a fixed $c \in (0,1) \cap \mathbb{Q}$.
- Some previous work:
 - ▶ Lenzen (1980): probabilistically complete logic for $c = \frac{1}{2}$.
 - ▶ Halpern et al. (pre-2003, 2003 book): quantitative logics.

- We study modal logic for *qualitative* probabilistic reasoning:
 - $K\varphi$ means $P(\varphi) = 1$,
 - ▶ $B\varphi$ means $P(\varphi) > c$ for a fixed $c \in (0,1) \cap \mathbb{Q}$.
- Some previous work:
 - ▶ Lenzen (1980): probabilistically complete logic for $c = \frac{1}{2}$.
 - ▶ Halpern et al. (pre-2003, 2003 book): quantitative logics.
 - ▶ Herzig (2003): qualitative logics of action.

$$BA$$
 means $P(A) > P(\neg A)$.

- ★ Equivalent to Lenzen's logic.
- **★** Soundness but no completeness.

- We study modal logic for *qualitative* probabilistic reasoning:
 - $K\varphi$ means $P(\varphi) = 1$,
 - ▶ $B\varphi$ means $P(\varphi) > c$ for a fixed $c \in (0,1) \cap \mathbb{Q}$.
- Some previous work:
 - ▶ Lenzen (1980): probabilistically complete logic for $c = \frac{1}{2}$.
 - ▶ Halpern et al. (pre-2003, 2003 book): quantitative logics.
 - ▶ Herzig (2003): qualitative logics of action.

$$BA$$
 means $P(A) > P(\neg A)$.

- ★ Equivalent to Lenzen's logic.
- **★** Soundness but no completeness.
- ▶ Kyberg and Teng (2012): "acceptance" of A iff $P(\neg A) \leq \epsilon$.

- We study modal logic for *qualitative* probabilistic reasoning:
 - $K\varphi$ means $P(\varphi) = 1$,
 - ▶ $B\varphi$ means $P(\varphi) > c$ for a fixed $c \in (0,1) \cap \mathbb{Q}$.
- Some previous work:
 - ▶ Lenzen (1980): probabilistically complete logic for $c = \frac{1}{2}$.
 - ▶ Halpern et al. (pre-2003, 2003 book): quantitative logics.
 - ▶ Herzig (2003): qualitative logics of action.

$$BA$$
 means $P(A) > P(\neg A)$.

- ★ Equivalent to Lenzen's logic.
- ★ Soundness but no completeness.
- ▶ Kyberg and Teng (2012): "acceptance" of A iff $P(\neg A) \leq \epsilon$.
- Our contributions:
 - ▶ Modern reformulation of Lenzen's syntax, semantics, and results.
 - New epistemic neighborhood semantics:
 - \star Lenzen's logic is sound and complete for a sub-class of our models.
 - **★** Truth-preserving maping: probabilistic \rightarrow neighborhood semantics.

$$\mathcal{M} = (W, R, V, P)$$

• (W, R, V) is a finite S5 Kripke model, where

$$[w] := \{v \in W \mid wRv\} \ .$$

$$\mathcal{M} = (W, R, V, P)$$

• (W, R, V) is a finite S5 Kripke model, where

$$[w] := \{v \in W \mid wRv\} .$$

• P is a probability measure on $\wp(W)$ satisfying full support:

$$P(w) > 0$$
 for each $w \in W$.

$$\mathcal{M} = (W, R, V, P)$$

 \bullet (W, R, V) is a <u>finite</u> S5 Kripke model, where

$$[w] := \{v \in W \mid wRv\} .$$

• P is a probability measure on $\wp(W)$ satisfying full support:

$$P(w) > 0$$
 for each $w \in W$.

• For event $X \subseteq W$, agent assigns to X at $w \in W$ the probability

$$P_w(X) := \frac{P(X \cap [w])}{P([w])} = P(X|[w])$$
.

(Denominator $\neq 0$ by reflexivity & full support.)

$$\mathcal{M} = (W, R, V, P)$$

• (W, R, V) is a finite S5 Kripke model, where

$$[w] := \{v \in W \mid wRv\} .$$

• P is a probability measure on $\wp(W)$ satisfying full support:

$$P(w) > 0$$
 for each $w \in W$.

• For event $X \subseteq W$, agent assigns to X at $w \in W$ the probability

$$P_w(X) := \frac{P(X \cap [w])}{P([w])} = P(X|[w])$$
.

(Denominator $\neq 0$ by reflexivity & full support.)

Notes.

- Multi-agent version defined straightforwardly.
 - Taking S5 and full support is atypical but unproblematic.

- Agent considers each of worlds w_1, w_2, w_3 possible.
- Agent assigns odds 3:2:1 to these worlds.
- Letter h_i true at w_i ("Horse h_i wins the race in world w_i).

• Agent does not consider w_3 possible (relative to w_1 or w_2):

$$P_{w_1}(w_3) = P(\{w_3\} | [w_1]) = \frac{P(\{w_3\} \cap [w_1])}{P([w_1])} = \frac{P(\emptyset)}{P(\{w_1, w_2\})} = 0.$$

$$\begin{array}{cccc}
 & & & & & & & \\
h_1 & & & & & \\
w_1 & & & & & \\
P & = & \{w_1 : \frac{3}{6}, w_2 : \frac{2}{6}, w_3 : \frac{1}{6}\}
\end{array}$$

• Agent does not consider w_3 possible (relative to w_1 or w_2):

$$P_{w_1}(w_3) = P(\{w_3\} | [w_1]) = \frac{P(\{w_3\} \cap [w_1])}{P([w_1])} = \frac{P(\emptyset)}{P(\{w_1, w_2\})} = 0.$$

• Probability will always be evaluated w/r/t a world w via $P_w(X)$.

$$\begin{array}{cccc}
 & & & & & & & \\
h_1 & & & & & \\
w_1 & & & & & \\
& & & & & \\
P & = & \{w_1 : \frac{3}{6}, w_2 : \frac{2}{6}, w_3 : \frac{1}{6}\}
\end{array}$$

• Agent does not consider w_3 possible (relative to w_1 or w_2):

$$P_{w_1}(w_3) = P(\{w_3\} | [w_1]) = \frac{P(\{w_3\} \cap [w_1])}{P([w_1])} = \frac{P(\emptyset)}{P(\{w_1, w_2\})} = 0.$$

- Probability will always be evaluated w/r/t a world w via $P_w(X)$.
- So even with full support, worlds can have (relative) probability 0.

Probabilistic Language

$$\begin{array}{ll} \phi & ::= & \top \mid p \mid \neg \phi \mid \phi \land \phi \mid t \geq 0 \\ t & ::= & q \mid q \cdot P(\phi) \mid t + t \\ & p \in \mathbf{P}, q \in \mathbb{Q} \end{array}$$

- Abbreviations for: Booleans, \leq , >, <, =, and linear (in)equalities.
- Standard semantics for Booleans, to which we add:

$$\mathcal{M}, w \models_{p} t \ge 0 \quad \text{iff} \quad [\![t]\!]_{w} \ge 0$$

$$[\![\phi]\!]_{p} := \{u \in W \mid \mathcal{M}, u \models_{p} \phi\}$$

$$[\![q]\!]_{w} := q$$

$$[\![q \cdot P(\phi)]\!]_{w} := q \cdot P_{w}([\![\phi]\!]_{p}) = q \cdot P([\![\phi]\!]_{p}|[w])$$

$$[\![t + t']\!]_{w} := [\![t]\!]_{w} + [\![t']\!]_{w}$$

$$K\varphi := P(\varphi) = 1$$

 $B^c\varphi := P(\varphi) > c \text{ for } c \in (0,1) \cap \mathbb{Q}$

• Duals denoted by \check{K} and \check{B}^c (i.e., \check{O} is $\neg O \neg$); $B\phi$ means $B^{0.5}\phi$.

$$K\varphi := P(\varphi) = 1$$

 $B^c\varphi := P(\varphi) > c \text{ for } c \in (0,1) \cap \mathbb{Q}$

- Duals denoted by \check{K} and \check{B}^c (i.e., \check{O} is $\neg O \neg$); $B\phi$ means $B^{0.5}\phi$.
- Easy results:

$$K\varphi := P(\varphi) = 1$$

 $B^c\varphi := P(\varphi) > c \text{ for } c \in (0,1) \cap \mathbb{Q}$

- Duals denoted by \check{K} and \check{B}^c (i.e., \check{O} is $\neg O \neg$); $B\phi$ means $B^{0.5}\phi$.
- Easy results:
 - ► *K* is S5.

$$\begin{array}{lll} K\varphi &:=& P(\varphi)=1 \\ B^c\varphi &:=& P(\varphi)>c & \text{for } c\in (0,1)\cap \mathbb{Q} \end{array}$$

- Duals denoted by \check{K} and \check{B}^c (i.e., \check{O} is $\neg O \neg$); $B\phi$ means $B^{0.5}\phi$.
- Easy results:
 - ► *K* is S5.
 - Meaning of belief dual:

$$\models_{\mathsf{p}} \check{B}^c \phi \Leftrightarrow (P(\phi) \ge 1 - c) ,$$

so $\check{B}^{0.5}\phi$ says that $P(\phi) \geq 0.5$.

$$K\varphi := P(\varphi) = 1$$

 $B^c\varphi := P(\varphi) > c \text{ for } c \in (0,1) \cap \mathbb{Q}$

- Duals denoted by \check{K} and \check{B}^c (i.e., \check{O} is $\neg O \neg$); $B\phi$ means $B^{0.5}\phi$.
- Easy results:
 - ► *K* is S5.
 - ▶ Meaning of belief dual:

$$\models_{\mathsf{p}} \check{B}^c \phi \Leftrightarrow (P(\phi) \ge 1 - c)$$
,

so $\check{B}^{0.5}\phi$ says that $P(\phi) \geq 0.5$.

 $ightharpoonup B^c$ is not normal (i.e., does not satisfy K):

$$\begin{array}{c}
h_1 \\
w_1
\end{array}
\qquad \begin{array}{c}
h_2 \\
w_2
\end{array}
\qquad \begin{array}{c}
h_3 \\
w_3
\end{array}$$

$$P = \{w_1 : \frac{1}{3}, w_2 : \frac{1}{3}, w_3 : \frac{1}{3}\}$$

$$\mathcal{M} \models_{\mathbf{p}} B \neg h_1 \wedge B \neg h_2 \text{ and yet } \mathcal{M} \not\models_{\mathbf{p}} B(\neg h_1 \wedge \neg h_2).$$

$$K\varphi := P(\varphi) = 1$$

 $B^c\varphi := P(\varphi) > c \text{ for } c \in (0,1) \cap \mathbb{Q}$

- Intuition for this notion of belief:
 - ▶ Agent believes ϕ iff she is "pretty sure" of truth (i.e., $P(\phi) > c$).
 - ▶ So "less sure" about conjunction $A \land B$ if $A \nsubseteq B$ and $B \nsubseteq A$.

$$K\varphi := P(\varphi) = 1$$

 $B^c\varphi := P(\varphi) > c \text{ for } c \in (0,1) \cap \mathbb{Q}$

- Intuition for this notion of belief:
 - Agent believes ϕ iff she is "pretty sure" of truth (i.e., $P(\phi) > c$).
 - ▶ So "less sure" about conjunction $A \land B$ if $A \nsubseteq B$ and $B \nsubseteq A$.
- This permits the "lottery paradox": it is consistent to believe
 - \triangleright there is some winning lottery ticket among the n tickets, and
 - for each ticket i = 1, ..., n, ticket i is not winning.

$$K\varphi := P(\varphi) = 1$$

 $B^c\varphi := P(\varphi) > c \text{ for } c \in (0,1) \cap \mathbb{Q}$

- Intuition for this notion of belief:
 - Agent believes ϕ iff she is "pretty sure" of truth (i.e., $P(\phi) > c$).
 - ▶ So "less sure" about conjunction $A \land B$ if $A \nsubseteq B$ and $B \nsubseteq A$.
- This permits the "lottery paradox": it is consistent to believe
 - \triangleright there is some winning lottery ticket among the n tickets, and
 - for each ticket i = 1, ..., n, ticket i is not winning.
- This notion of belief comes from subjective probability:
 - Suppose agent believes φ with threshold p/q; i.e., $B^{p/q}\varphi$.
 - ▶ Wagers p dollars for chance to win q p dollars on bet φ is true.
 - ► Expected win:

$$(q-p) \cdot P(\varphi) - p \cdot (1 - P(\varphi)) = q \cdot P(\varphi) - p .$$

- ▶ Positive iff $P(\varphi) > p/q$, which is guaranteed by $B^{p/q}\varphi$.
- ▶ So bet is good iff has belief. "Belief as willingness to bet."

$$K\varphi := P(\varphi) = 1$$

 $B^c\varphi := P(\varphi) > c \text{ for } c \in (0,1) \cap \mathbb{Q}$

- Intuition for this notion of belief:
 - Agent believes ϕ iff she is "pretty sure" of truth (i.e., $P(\phi) > c$).
 - ▶ So "less sure" about conjunction $A \land B$ if $A \nsubseteq B$ and $B \nsubseteq A$.
- This permits the "lottery paradox": it is consistent to believe
 - \triangleright there is some winning lottery ticket among the n tickets, and
 - for each ticket i = 1, ..., n, ticket i is not winning.
- This notion of belief comes from subjective probability:
 - Suppose agent believes φ with threshold p/q; i.e., $B^{p/q}\varphi$.
 - Wagers p dollars for chance to win q-p dollars on bet φ is true.
 - ► Expected win:

$$(q-p) \cdot P(\varphi) - p \cdot (1 - P(\varphi)) = q \cdot P(\varphi) - p$$
.

- Positive iff $P(\varphi) > p/q$, which is guaranteed by $B^{p/q}\varphi$.
- ▶ So bet is good iff has belief. "Belief as willingness to bet."
- Will set aside philsophical considerations, accept belief here as-is.

Segerberg Notation

$$(\phi_1,\ldots,\phi_m\mathbb{I}\psi_1,\ldots,\psi_m)$$
,

also written $(\phi_i \mathbb{I} \psi_i)_{i=1}^m$, abbreviates the formula

$$K(C_0 \vee C_1 \vee C_2 \vee \cdots \vee C_m)$$
,

where C_i is the disjunction of all conjunctions

$$d_1\phi_1 \wedge \cdots \wedge d_m\phi_m \wedge e_1\psi_1 \wedge \cdots \wedge e_m\psi_m$$

satisfying:

- exactly i of d_k 's are the empty string,
- at least i of the e_k 's are the empty string,
- and the remaining d_k 's and e_k 's are the negation sign \neg .

Segerberg Notation

$$(\phi_1,\ldots,\phi_m\mathbb{I}\psi_1,\ldots,\psi_m)$$
,

also written $(\phi_i \mathbb{I} \psi_i)_{i=1}^m$, abbreviates the formula

$$K(C_0 \vee C_1 \vee C_2 \vee \cdots \vee C_m)$$
,

where C_i is the disjunction of all conjunctions

$$d_1\phi_1 \wedge \cdots \wedge d_m\phi_m \wedge e_1\psi_1 \wedge \cdots \wedge e_m\psi_m$$

satisfying:

- exactly i of d_k 's are the empty string,
- at least i of the e_k 's are the empty string,
- and the remaining d_k 's and e_k 's are the negation sign \neg .

Intuitive meaning: the agent knows that the number of true ψ_k 's is is no less than the number of true ϕ_k 's.

$$[(\phi_i \mathbb{I}\psi_i)_{i=1}^m \wedge B^c \phi_1 \wedge \bigwedge_{i=2}^m \check{B}^c \phi_i] \to \bigvee_{i=1}^m B^c \psi_i$$
 (Len)

$$\left[\left(\phi_i \mathbb{I} \psi_i \right)_{i=1}^m \wedge B^c \phi_1 \wedge \bigwedge_{i=2}^m \check{B}^c \phi_i \right] \to \bigvee_{i=1}^m B^c \psi_i \tag{Len}$$

If we have that:

• the agent knows the true ψ_k 's are at least as many as the true ϕ_k 's,

$$[(\phi_i \mathbb{I} \psi_i)_{i=1}^m \wedge \underline{B^c \phi_1} \wedge \bigwedge_{i=2}^m \check{B}^c \phi_i] \to \bigvee_{i=1}^m B^c \psi_i$$
 (Len)

- the agent knows the true ψ_k 's are at least as many as the true ϕ_k 's,
- the agent believes ϕ_1 (with threshold c), and

$$[(\phi_i \mathbb{I} \psi_i)_{i=1}^m \wedge B^c \phi_1 \wedge \bigwedge_{i=2}^m \check{B}^c \phi_i] \to \bigvee_{i=1}^m B^c \psi_i$$
 (Len)

- the agent knows the true ψ_k 's are at least as many as the true ϕ_k 's,
- the agent believes ϕ_1 (with threshold c), and
- \bullet the remaining ϕ_k 's are consistent with the agent's (thresh.-c) beliefs

$$[(\phi_i \mathbb{I} \psi_i)_{i=1}^m \wedge B^c \phi_1 \wedge \bigwedge_{i=2}^m \check{B}^c \phi_i] \to \bigvee_{i=1}^m B^c \psi_i$$
 (Len)

- the agent knows the true ψ_k 's are at least as many as the true ϕ_k 's,
- the agent believes ϕ_1 (with threshold c), and
- the remaining ϕ_k 's are consistent with the agent's (thresh.-c) beliefs then the agent believes one of the ψ_k 's (with threshold c).

$$[(\phi_i \mathbb{I}\psi_i)_{i=1}^m \wedge B^c \phi_1 \wedge \bigwedge_{i=2}^m \check{B}^c \phi_i] \to \bigvee_{i=1}^m B^c \psi_i$$
 (Len)

If we have that:

- the agent knows the true ψ_k 's are at least as many as the true ϕ_k 's,
- the agent believes ϕ_1 (with threshold c), and
- the remaining ϕ_k 's are consistent with the agent's (thresh.-c) beliefs then the agent believes one of the ψ_k 's (with threshold c).

Theorem (Lenzen for $c = \frac{1}{2}$). (Len) is valid for $c \in (0, \frac{1}{2}] \cap \mathbb{Q}$:

$$\models_{\mathsf{p}} [(\phi_i \mathbb{I} \psi_i)_{i=1}^m \wedge B^c \phi_1 \wedge \bigwedge_{i=2}^m \check{B}^c \phi_i] \to \bigvee_{i=1}^m B^c \psi_i .$$

$$[(\phi_i \mathbb{I}\psi_i)_{i=1}^m \wedge B^c \phi_1 \wedge \bigwedge_{i=2}^m \check{B}^c \phi_i] \to \bigvee_{i=1}^m B^c \psi_i$$
 (Len)

If we have that:

- the agent knows the true ψ_k 's are at least as many as the true ϕ_k 's,
- the agent believes ϕ_1 (with threshold c), and
- the remaining ϕ_k 's are consistent with the agent's (thresh.-c) beliefs then the agent believes one of the ψ_k 's (with threshold c).

Theorem (Lenzen for $c = \frac{1}{2}$ **).** (Len) is valid for $c \in (0, \frac{1}{2}] \cap \mathbb{Q}$:

$$\models_{\mathsf{p}} [(\phi_i \mathbb{I}\psi_i)_{i=1}^m \wedge B^c \phi_1 \wedge \bigwedge_{i=2}^m \check{B}^c \phi_i] \to \bigvee_{i=1}^m B^c \psi_i .$$

Lenzen showed:

(Len) is key to modal-language completeness for fixed $c = \frac{1}{2}$.

Other Principles

• $\not\models_{\mathsf{p}} B^c(\phi \to \psi) \to (B^c\phi \to B^c\psi)$. Belief is not closed under logical consequence (i.e., not normal).

- $\not\models_{\mathsf{p}} B^c(\phi \to \psi) \to (B^c\phi \to B^c\psi)$. Belief is not closed under logical consequence (i.e., not normal).
- $\not\models_{\mathsf{p}} B^c \phi \to \phi$. Belief is not veridical.

- $\not\models_{\mathsf{p}} B^c(\phi \to \psi) \to (B^c \phi \to B^c \psi)$. Belief is not closed under logical consequence (i.e., not normal).
- $\not\models_{p} B^{c} \phi \to \phi$. Belief is not veridical.
- $\models_{\mathsf{p}} K\phi \to B^c\phi$. What is known is believed.

- $\not\models_{\mathsf{p}} B^c(\phi \to \psi) \to (B^c\phi \to B^c\psi)$. Belief is not closed under logical consequence (i.e., not normal).
- $\not\models_{p} B^{c}\phi \to \phi$. Belief is not veridical.
- $\models_{\mathsf{p}} K\phi \to B^c\phi$. What is known is believed.
- $\models_{\mathsf{p}} \neg B^c \bot$. The propositional constant \bot for falsehood is not believed.

- $\not\models_{\mathsf{p}} B^c(\phi \to \psi) \to (B^c \phi \to B^c \psi)$. Belief is not closed under logical consequence (i.e., not normal).
- $\not\models_{p} B^{c}\phi \to \phi$. Belief is not veridical.
- $\models_{\mathsf{p}} K\phi \to B^c\phi$. What is known is believed.
- $\models_{\mathsf{p}} \neg B^c \bot$. The propositional constant \bot for falsehood is not believed.
- $\models_{\mathsf{p}} B^c \top$. (Minimal Logic's N) The propositional constant \top for truth is believed.

- $\not\models_{\mathsf{p}} B^c(\phi \to \psi) \to (B^c\phi \to B^c\psi)$. Belief is not closed under logical consequence (i.e., not normal).
- $\not\models_{\mathsf{p}} B^c \phi \to \phi$. Belief is not veridical.
- $\models_{\mathsf{p}} K\phi \to B^c\phi$. What is known is believed.
- $\models_{\mathsf{p}} \neg B^c \bot$. The propositional constant \bot for falsehood is not believed.
- $\models_p B^c \top$. (Minimal Logic's N) The propositional constant \top for truth is believed.
- $\models_{\mathsf{p}} B^c \phi \to K B^c \phi$. What is believed is known to be believed.

- $\not\models_{\mathsf{p}} B^c(\phi \to \psi) \to (B^c \phi \to B^c \psi)$. Belief is not closed under logical consequence (i.e., not normal).
- $\not\models_{\mathsf{p}} B^c \phi \to \phi$. Belief is not veridical.
- $\models_{\mathsf{p}} K\phi \to B^c\phi$. What is known is believed.
- $\models_{\mathsf{p}} \neg B^c \bot$. The propositional constant \bot for falsehood is not believed.
- $\models_p B^c \top$. (Minimal Logic's N) The propositional constant \top for truth is believed.
- $\models_{\mathsf{p}} B^c \phi \to K B^c \phi$. What is believed is known to be believed.
- $\models_{\mathsf{p}} \neg B^c \phi \to K \neg B^c \phi$. What is not believed is known to be not believed.

• $\models_{\mathsf{p}} B^c \phi \to B^c B^c \phi$. Belief is positive introspective.

- $\models_{\mathsf{p}} B^c \phi \to B^c B^c \phi$. (4) Belief is positive introspective.
- $\models_{\mathsf{p}} \neg B^c \phi \to B^c \neg B^c \phi$. (5) Belief is negative introspective.

- $\models_{\mathsf{p}} B^c \phi \to B^c B^c \phi$. (4) Belief is positive introspective.
- $\models_{\mathsf{p}} \neg B^c \phi \to B^c \neg B^c \phi$. (5) Belief is negative introspective.
- $\models_{\mathsf{p}} K(\phi \to \psi) \to (B^c \phi \to B^c \psi)$. Belief is closed under known logical consequence.

- $\models_{\mathsf{p}} B^c \phi \to B^c B^c \phi$. (4) Belief is positive introspective.
- $\models_{\mathsf{p}} \neg B^c \phi \to B^c \neg B^c \phi$. (5) Belief is negative introspective.
- $\models_{\mathsf{p}} K(\phi \to \psi) \to (B^c \phi \to B^c \psi)$. Belief is closed under known logical consequence.
- $\models_{p} \phi \to \psi$ implies $\models_{p} B^{c}\phi \to B^{c}\psi$. (Minimal Logic's RM) Belief distributes over provable implication.

- $\models_{p} B^{c}\phi \to B^{c}B^{c}\phi$. (4) Belief is positive introspective.
- $\models_{\mathsf{p}} \neg B^c \phi \to B^c \neg B^c \phi$. (5) Belief is negative introspective.
- $\models_{\mathsf{p}} K(\phi \to \psi) \to (B^c \phi \to B^c \psi)$. Belief is closed under known logical consequence.
- $\models_{p} \phi \to \psi$ implies $\models_{p} B^{c}\phi \to B^{c}\psi$. (Minimal Logic's RM) Belief distributes over provable implication.
- $\models_{\mathsf{p}} B^c(\phi \wedge \psi) \to (B^c \phi \wedge B^c \psi)$. (Minimal Logic's M) Belief of a conjunction implies conjunction of beliefs.

- $\models_{\mathsf{p}} B^c \phi \to B^c B^c \phi$. (4) Belief is positive introspective.
- $\models_{\mathsf{p}} \neg B^c \phi \to B^c \neg B^c \phi$. (5) Belief is negative introspective.
- $\models_{\mathsf{p}} K(\phi \to \psi) \to (B^c \phi \to B^c \psi)$. Belief is closed under known logical consequence.
- $\models_{p} \phi \to \psi$ implies $\models_{p} B^{c}\phi \to B^{c}\psi$. (Minimal Logic's RM) Belief distributes over provable implication.
- $\models_{\mathsf{p}} B^c(\phi \wedge \psi) \to (B^c \phi \wedge B^c \psi)$. (Minimal Logic's M) Belief of a conjunction implies conjunction of beliefs.
- $\models_{\mathsf{p}} B^c \phi \to \dot{B}^c \phi$. Belief is consistent: belief in ϕ implies disbelief in $\neg \phi$.

- $\models_{p} B^{c}\phi \to B^{c}B^{c}\phi$. (4) Belief is positive introspective.
- $\models_{\mathsf{p}} \neg B^c \phi \to B^c \neg B^c \phi$. (5) Belief is negative introspective.
- $\models_{\mathsf{p}} K(\phi \to \psi) \to (B^c \phi \to B^c \psi)$. Belief is closed under known logical consequence.
- $\models_{\mathsf{p}} \phi \to \psi$ implies $\models_{\mathsf{p}} B^c \phi \to B^c \psi$. (Minimal Logic's RM) Belief distributes over provable implication.
- $\models_{\mathsf{p}} B^c(\phi \wedge \psi) \to (B^c \phi \wedge B^c \psi)$. (Minimal Logic's M) Belief of a conjunction implies conjunction of beliefs.
- $\models_{\mathsf{p}} B^c \phi \to \check{B}^c \phi$. Belief is consistent: belief in ϕ implies disbelief in $\neg \phi$.
- $\models_{\mathsf{p}} \check{B}^c \phi \wedge \check{K}(\neg \phi \wedge \psi) \to B^c(\phi \vee \psi)$ for $c \in (0, \frac{1}{2}] \cap \mathbb{Q}$. If ϕ is consistent with agent a's beliefs and $\neg \phi \wedge \psi$ is consistent with agent a's knowledge, then agent a believes $\phi \vee \psi$.

• Threshold $c \in (0,1) \cap \mathbb{Q}$ omitted; will come from the semantics.

- Threshold $c \in (0,1) \cap \mathbb{Q}$ omitted; will come from the semantics.
- Define the Segerberg formula $(\phi_i \mathbb{I} \psi_i)_{i=1}^m$ as before.

- Threshold $c \in (0,1) \cap \mathbb{Q}$ omitted; will come from the semantics.
- Define the Segerberg formula $(\phi_i \mathbb{I} \psi_i)_{i=1}^m$ as before.
- Each $c \in (0,1) \cap \mathbb{Q}$ maps modal formulas to probability formulas:

```
\begin{array}{lll} p^c & := & p \text{ for } p \in \mathbf{P} \cup \{\top\} \\ (\neg \phi)^c & := & \neg \phi^c \\ (\phi \wedge \psi)^c & := & \phi^c \wedge \psi^c \\ (K\phi)^c & := & P(\phi^c) = 1 \\ (B\phi)^c & := & P(\phi^c) > c \end{array} \qquad \begin{array}{ll} (= K\phi^c \text{ in probability lang.}) \\ (= B^c\phi^c \text{ in probability lang.}) \end{array}
```

- Threshold $c \in (0,1) \cap \mathbb{Q}$ omitted; will come from the semantics.
- Define the Segerberg formula $(\phi_i \mathbb{I} \psi_i)_{i=1}^m$ as before.
- Each $c \in (0,1) \cap \mathbb{Q}$ maps modal formulas to probability formulas:

```
\begin{array}{lll} p^c & := & p \text{ for } p \in \mathbf{P} \cup \{\top\} \\ (\neg \phi)^c & := & \neg \phi^c \\ (\phi \wedge \psi)^c & := & \phi^c \wedge \psi^c \\ (K\phi)^c & := & P(\phi^c) = 1 \\ (B\phi)^c & := & P(\phi^c) > c \end{array} \qquad \begin{array}{ll} (=K\phi^c \text{ in probability lang.}) \\ (=B^c\phi^c \text{ in probability lang.}) \end{array}
```

• We define a neighborhood semantics; maps are truth-preserving.

$$\mathcal{M} = (W, R, V, N)$$

• (W, R, V) is a finite S5 Kripke model; notation [w] as before.

$$\mathcal{M} = (W, R, V, N)$$

- (W, R, V) is a finite S5 Kripke model; notation [w] as before.
- $N:W\to\wp(\wp(W))$ is a neighborhood function satisfying:

$$\mathcal{M} = (W, R, V, N)$$

- (W, R, V) is a <u>finite</u> S5 Kripke model; notation [w] as before.
- $N:W\to\wp(\wp(W))$ is a neighborhood function satisfying:
 - ▶ $X \in N(w)$ implies $X \subseteq [w]$, Agent does not believe something known to be false;

$$\mathcal{M} = (W, R, V, N)$$

- (W, R, V) is a <u>finite</u> S5 Kripke model; notation [w] as before.
- $N: W \to \wp(\wp(W))$ is a neighborhood function satisfying:
 - ▶ $X \in N(w)$ implies $X \subseteq [w]$, Agent does not believe something known to be false;
 - ▶ $\emptyset \notin N(w)$, Agent does not believe logical falsehoods;

$$\mathcal{M} = (W, R, V, N)$$

- (W, R, V) is a finite S5 Kripke model; notation [w] as before.
- $N:W\to\wp(\wp(W))$ is a neighborhood function satisfying:
 - ▶ $X \in N(w)$ implies $X \subseteq [w]$, Agent does not believe something known to be false;
 - ▶ $\emptyset \notin N(w)$, Agent does not believe logical falsehoods;
 - ▶ $[w] \in N(w)$, Agent believes logical truths;

$$\mathcal{M} = (W, R, V, N)$$

- (W, R, V) is a <u>finite</u> S5 Kripke model; notation [w] as before.
- $N: W \to \wp(\wp(W))$ is a neighborhood function satisfying:
 - ▶ $X \in N(w)$ implies $X \subseteq [w]$, Agent does not believe something known to be false;
 - ▶ $\emptyset \notin N(w)$, Agent does not believe logical falsehoods;
 - ▶ $[w] \in N(w)$, Agent believes logical truths;
 - ▶ $v \in [w]$ implies N(v) = N(w), Agent believes X iff she knows she believes X; and

$$\mathcal{M} = (W, R, V, N)$$

- (W, R, V) is a <u>finite</u> S5 Kripke model; notation [w] as before.
- $N: W \to \wp(\wp(W))$ is a neighborhood function satisfying:
 - ▶ $X \in N(w)$ implies $X \subseteq [w]$, Agent does not believe something known to be false;
 - ▶ $\emptyset \notin N(w)$, Agent does not believe logical falsehoods;
 - ▶ $[w] \in N(w)$, Agent believes logical truths;
 - $v \in [w]$ implies N(v) = N(w), Agent believes X iff she knows she believes X; and
 - ▶ $X \subseteq Y \subseteq [w]$ and $X \in N(w)$ together imply $Y \in N(w)$, Agent believes all logcal consequences of a given belief.

$$\mathcal{M} = (W, R, V, N)$$

- (W, R, V) is a finite S5 Kripke model; notation [w] as before.
- $N: W \to \wp(\wp(W))$ is a neighborhood function satisfying:
 - ▶ $X \in N(w)$ implies $X \subseteq [w]$, Agent does not believe something known to be false;
 - ▶ $\emptyset \notin N(w)$, Agent does not believe logical falsehoods;
 - ▶ $[w] \in N(w)$, Agent believes logical truths;
 - ▶ $v \in [w]$ implies N(v) = N(w), Agent believes X iff she knows she believes X; and
 - ▶ $X \subseteq Y \subseteq [w]$ and $X \in N(w)$ together imply $Y \in N(w)$, Agent believes all logcal consequences of a given belief.
- Semantics $(\models_n, \llbracket \cdot \rrbracket_n)$: standard Boolean semantics plus

$$\mathcal{M}, w \models_{\mathsf{n}} K\phi \quad \text{iff} \quad [w] \subseteq \llbracket \phi \rrbracket_{\mathsf{n}}^{\mathcal{M}}$$

 $\mathcal{M}, w \models_{\mathsf{n}} B\phi \quad \text{iff} \quad [w] \cap \llbracket \phi \rrbracket_{\mathsf{n}}^{\mathcal{M}} \in N(w)$

Additional Properties on N for "Mid-Threshold" Models

$$\mathcal{M} = (W, R, V, N)$$

• $X \in N(w)$ implies $[w] - X \notin N(w)$, Agent does not believe X and [w] - X (i.e., belief consistency);

Additional Properties on N for "Mid-Threshold" Models

$$\mathcal{M} = (W, R, V, N)$$

- $X \in N(w)$ implies $[w] X \notin N(w)$, Agent does not believe X and [w] - X (i.e., belief consistency);
- $[w] X \notin N(w)$ and $X \subsetneq Y \subseteq [w]$ together imply $Y \in N(w)$, Agent believes strict implications of a non-belief's negation; and

Additional Properties on N for "Mid-Threshold" Models

$$\mathcal{M} = (W, R, V, N)$$

- $X \in N(w)$ implies $[w] X \notin N(w)$, Agent does not believe X and [w] - X (i.e., belief consistency);
- $[w] X \notin N(w)$ and $X \subsetneq Y \subseteq [w]$ together imply $Y \in N(w)$, Agent believes strict implications of a non-belief's negation; and
- if $(X_i \mathbb{I} Y_i)_{i=1}^m$, $X_1 \in N(w)$, and $[w] X_2, \dots, [w] X_m \notin N(w)$, then $Y_j \in N(w)$ for some j, a Lenzen-like property for neighborhoods.

(Note: $(X_i \mathbb{I} Y_i)_{i=1}^m$ is defined semantically.)

Additional Properties on N for "Mid-Threshold" Models

$$\mathcal{M} = (W, R, V, N)$$

- $X \in N(w)$ implies $[w] X \notin N(w)$, Agent does not believe X and [w] - X (i.e., belief consistency);
- $[w] X \notin N(w)$ and $X \subsetneq Y \subseteq [w]$ together imply $Y \in N(w)$, Agent believes strict implications of a non-belief's negation; and
- if (X_i | Y_i)_{i=1}^m, X₁ ∈ N(w), and [w] X₂,..., [w] X_m ∉ N(w), then Y_j ∈ N(w) for some j,
 a Lenzen-like property for neighborhoods.
 (Note: (X_i | Y_i)_{i=1}^m is defined semantically.)

(1000: $(21/11/i)_{i=1}$ is defined semantically.)

(Will see: Lenzen's logic for $c = \frac{1}{2}$ is complete for mid-threshold models.)

Each $c \in (0,1) \cap \mathbb{Q}$ induces a map

$$\mathcal{M} = (W, R, V, P) \qquad \stackrel{c}{\mapsto} \qquad \mathcal{M}^c = (W, R, V, N^c)$$

given by setting

$$N^{c}(w) := \{X \subseteq [w] \mid P_{w}(X) > c\}$$
.

Each $c \in (0,1) \cap \mathbb{Q}$ induces a map

$$\mathcal{M} = (W, R, V, P) \qquad \stackrel{c}{\mapsto} \qquad \mathcal{M}^c = (W, R, V, N^c)$$

given by setting

$$N^{c}(w) := \{X \subseteq [w] \mid P_{w}(X) > c\}$$
.

Theorem. We have:

ullet N^c satisfies the epistemic neighborhood model properties.

Each $c \in (0,1) \cap \mathbb{Q}$ induces a map

$$\mathcal{M} = (W, R, V, P) \qquad \stackrel{c}{\mapsto} \qquad \mathcal{M}^c = (W, R, V, N^c)$$

given by setting

$$N^c(w) := \{X \subseteq [w] \mid P_w(X) > c\} .$$

Theorem. We have:

- ullet N^c satisfies the epistemic neighborhood model properties.
- $N^{\frac{1}{2}}$ satisfies the additional "mid-threshold" properties.

Each $c \in (0,1) \cap \mathbb{Q}$ induces a map

$$\mathcal{M} = (W, R, V, P) \qquad \stackrel{c}{\mapsto} \qquad \mathcal{M}^c = (W, R, V, N^c)$$

given by setting

$$N^{c}(w) := \{X \subseteq [w] \mid P_{w}(X) > c\}$$
.

Theorem. We have:

- ullet N^c satisfies the epistemic neighborhood model properties.
- $N^{\frac{1}{2}}$ satisfies the additional "mid-threshold" properties.
- For each modal formula ϕ :

$$\mathcal{M}^c, w \models_{\mathsf{n}} \phi \quad \text{iff} \quad \mathcal{M}, w \models_{\mathsf{p}} \phi^c .$$

- \Rightarrow The qualitative modal language "talks correctly" about probability.
- \Rightarrow Epistemic neighborhood models are connected with probability models.

The Basic Qualitative Theory KB

AXIOM SCHEMES

(KS5) S5 axiom schemes for each
$$K$$

(KBC)
$$K\phi \rightarrow B\phi$$

(BF)
$$\neg B \perp$$

(N)
$$B\top$$

(Ap)
$$B\phi \to KB\phi$$

(An)
$$\neg B\phi \to K \neg B\phi$$

(KBM)
$$K(\phi \to \psi) \to (B\phi \to B\psi)$$

$$\begin{array}{ccc} & & \text{Rules} \\ \hline -\phi \rightarrow \psi & \phi & \\ \hline \psi & & \text{(MP)} & \hline -\phi & \\ \hline K\phi & & \text{(MN)} \end{array}$$

The Basic Qualitative Theory KB

Axiom Schemes

(KS5) S5 axiom schemes for each
$$K$$

(KBC)
$$K\phi \to B\phi$$

(BF)
$$\neg B \perp$$

(N)
$$B\top$$

(Ap)
$$B\phi \to KB\phi$$

(An)
$$\neg B\phi \to K \neg B\phi$$

(KBM)
$$K(\phi \to \psi) \to (B\phi \to B\psi)$$

$$\frac{\phi \to \psi \quad \phi}{\psi} \text{ (MP)} \qquad \frac{\phi}{K\phi} \text{ (MN)}$$

Theorem. KB is sound and complete for epist. neighborhood models.

The Basic Qualitative Theory KB

AXIOM SCHEMES

Schemes of Classical Propositional Logic (CL)

(KS5) S5 axiom schemes for each K

(KBC) $K\phi \rightarrow B\phi$

(BF) $\neg B \perp$

(N) $B\top$

(Ap) $B\phi \to KB\phi$

(An) $\neg B\phi \to K \neg B\phi$

(KBM) $K(\phi \to \psi) \to (B\phi \to B\psi)$

$$\begin{array}{ccc} & & \text{Rules} \\ \hline -\phi \rightarrow \psi & \phi & \\ \hline \psi & & \text{(MP)} & \hline -\phi & \\ \hline K\phi & & \text{(MN)} \end{array}$$

Theorem. KB is sound and complete for epist. neighborhood models.

Proof is tricky (extends Segerberg's "logical finiteness" notion).

KB Probability Incompleteness

There exists a modal formula ϕ for which $\models_{\mathsf{p}} \phi^c$ and $\mathsf{KB} \nvDash \phi$.

KB Probability Incompleteness

There exists a modal formula ϕ for which $\models_{\mathsf{p}} \phi^c$ and $\mathsf{KB} \nvDash \phi$.

Sketch of argument (adapted from Walley and Fine, 1979):

- Propositional letters are a, b, c, \ldots, g .
- $\bullet \ X := \{efg, abg, adf, bde, ace, cdg, bcf\} \ \text{with, e.g.,} \ efg = \{e, f, g\}.$
- $\bullet \ Y := \{fga, bca, beg, cef, bdf, dea, cdg\} \ \text{with similar abbreviations}.$
- $\mathcal{M} := (W, R, V, N)$ defied by: W is letter set, R is total, V satisfies p at p, and N(w) is the superset closure of X. This is an epist. neighborhood model.
- σ is the modal formula describing (\mathcal{M}, a) : informally (easily formalized),

$$\sigma := a\bar{b}\cdots\bar{g}\wedge KW\wedge (\bigwedge_{Z\in N(a)}BZ)\wedge (\bigwedge_{Y\in\wp(W)-N(a)}\neg BY).$$

- $\mathcal{M}, w \models_{\mathsf{n}} \sigma$, so $\not\models_{\mathsf{n}} \neg \sigma$ and hence $\mathsf{KB} \not\vdash \neg \sigma$ by our completness result.
- Argue that $\models_{\mathsf{p}} \neg \sigma^c$ by reductio: assume $\mathcal{N}, w \models_{\mathsf{p}} \sigma^c$.

 - \triangleright Each letter p occurs in exactly three X-sets:

$$7c < \sum_{x \in X} P_w(x) = \sum_{p \in W} 3 \cdot P\left(p \wedge \bigwedge_{q \in W - \{p\}} \neg q\right)$$
.

▶ Each letter p occurs in exactly three Y-sets, none of which is in N(a):

$$7c \ge \sum_{y \in Y} P_w(y) = \sum_{p \in W} 3 \cdot P\left(p \land \bigwedge_{q \in W - \{p\}} \neg q\right)$$
.

$\mathsf{KB}^{0.5}$: (our name for) Lenzen's Theory for $c=\frac{1}{2}$

(KB) Schemes and rules of KB

(D)
$$B\phi \to \check{B}\phi$$

(SC)
$$\check{B}\phi \wedge \check{K}(\neg \phi \wedge \psi) \to B(\phi \vee \psi)$$

(L)
$$[(\phi_i \mathbb{I}\psi_i)_{i=1}^m \wedge B\phi_1 \wedge \bigwedge_{i=2}^m \check{B}\phi_i] \rightarrow \bigvee_{i=1}^m B\psi_i$$

KB^{0.5}: (our name for) Lenzen's Theory for
$$c = \frac{1}{2}$$
 (KB) Schemes and rules of KB

(D)
$$B\phi \to \check{B}\phi$$

(SC)
$$\check{B}\phi \wedge \check{K}(\neg \phi \wedge \psi) \to B(\phi \vee \psi)$$

(L)
$$[(\phi_i \mathbb{I}\psi_i)_{i=1}^m \wedge B\phi_1 \wedge \bigwedge_{i=2}^m \check{B}\phi_i] \to \bigvee_{i=1}^m B\psi_i$$

In minimal modal logic terms: $KB^{0.5}$ is

- EMND45 + $\neg B \bot$ + (L) for belief
- plus S5 knowledge and knowledge-belief connection principles.

KB^{0.5}: (our name for) Lenzen's Theory for
$$c = \frac{1}{2}$$

(KB) Schemes and rules of KB
(D) $B\phi \to \check{B}\phi$
(SC) $\check{B}\phi \wedge \check{K}(\neg\phi \wedge \psi) \to B(\phi \vee \psi)$

(L)
$$[(\phi_i \mathbb{I}\psi_i)_{i=1}^m \wedge B\phi_1 \wedge \bigwedge_{i=2}^m \check{B}\phi_i] \to \bigvee_{i=1}^m B\psi_i$$

In minimal modal logic terms: $KB^{0.5}$ is

- EMND45 + $\neg B \bot$ + (L) for belief
- plus S5 knowledge and knowledge-belief connection principles.

Theorem. $KB^{0.5}$ is sound and complete for mid-threshold models.

KB^{0.5}: (our name for) Lenzen's Theory for
$$c = \frac{1}{2}$$
 (KB) Schemes and rules of KB

(D)
$$B\phi \to \check{B}\phi$$

(SC)
$$\check{B}\phi \wedge \check{K}(\neg \phi \wedge \psi) \rightarrow B(\phi \vee \psi)$$

(L)
$$[(\phi_i \mathbb{I}\psi_i)_{i=1}^m \wedge B\phi_1 \wedge \bigwedge_{i=2}^m \check{B}\phi_i] \to \bigvee_{i=1}^m B\psi_i$$

In minimal modal logic terms: $\mathsf{KB}^{0.5}$ is

- EMND45 + $\neg B \bot$ + (L) for belief
- plus S5 knowledge and knowledge-belief connection principles.

Theorem. $\mathsf{KB}^{0.5}$ is sound and complete for mid-threshold models.

Theorem (Lenzen). KB^{0.5} is probabilistically complete for $c = \frac{1}{2}$:

$$\mathsf{KB}^{0.5} \vdash \phi \qquad \text{iff} \qquad \models_{\mathsf{p}} \phi^{\frac{1}{2}} \ .$$

Conclusions

- Contributions:
 - ► Formulate Lenzen's result in modern modal language.
 - ▶ Modal completeness for epistemic neighborhood semantics.
 - ▶ Truth-preserving connection: neighborhoods and probabilities.

Conclusions

- Contributions:
 - ▶ Formulate Lenzen's result in modern modal language.
 - ▶ Modal completeness for epistemic neighborhood semantics.
 - ▶ Truth-preserving connection: neighborhoods and probabilities.
- Open questions:
 - ▶ Probabilistic comleteness for high-thresholds $c \in (\frac{1}{2}, 1) \cap \mathbb{Q}$:

$$\mathsf{KB}^c \vdash \phi \text{ iff } \models_{\mathsf{p}} \phi^c \text{ for which } \mathsf{KB}^c$$
?

Principles: for s' := c/(1-c) and $s := \mathsf{ceiling}(s')$,

$$(SC_0^s) \quad (\check{K}\phi_0 \wedge \bigwedge_{i=1}^s \check{B}\phi_i \wedge \bigwedge_{i\neq j=0}^s K(\phi_i \to \neg \phi_j)) \to B(\bigvee_{i=0}^s \phi_i)$$

$$(SC_1^s) \quad (\bigwedge_{i=1}^s \check{B}\phi_i \wedge \bigwedge_{i\neq j=1}^s K(\phi_i \to \neg \phi_j)) \to B(\bigvee_{i=1}^s \phi_i)$$

(WL)
$$[(\phi_i \mathbb{I} \psi_i)_{i=1}^m \wedge \bigwedge_{i=1}^m B \phi_i] \rightarrow \bigvee_{i=1}^m B \psi_i$$

(WL) sound. SC_1^s sound if $s \neq s'$, SC_0^s sound if s = s'.

- ▶ Segerberg's/Gardenfors' probability comparison $\phi \ge \psi$ connection?
- ▶ De Jongh–Ghosh belief strength comparison $\phi \ge \psi$ connection?
- ▶ Neighborhoods for public announcements (i.e., Bayesian updates)?

The End

Bryan Renne

http://bryan.renne.org/