

Fachbereich Mathematik

Seminar zu Lie-Algebren

Wurzelsysteme: einfache Wurzeln, Weyl-Gruppe und Irreduzibilität

Fabian Gabel

29.05.2016

Betreuer: Prof. Dr. rer. nat. Jan-Hendrik Bruinier, M.Sc. Markus Schwagenscheidt

Version vom 13. Mai 2016

Inhaltsverzeichnis

Einleitung		3
1	Grundlagen zu Wurzelsystemen	3
2	Einfache Wurzeln	6
3	Die Weyl-Gruppe	6
4	Irreduzible Wurzelsysteme	6
Li	teraturverzeichnis	6

Einleitung

1 Grundlagen zu Wurzelsystemen

Dieser Abschnitt beinhaltet die für diese Arbeit benötigten Grundlagen zu Wurzelsystemen.

Im Folgenden bezeichne E stets einen EUKLIDischen Vektorraum, also einen \mathbb{R} -Vektorraum mit Skalarprodukt (\cdot,\cdot) . Unter einer $Spiegelung\ \sigma$ versteht man eine orthogonale Abbildung, welche eine Hyperebene, also einen Unterraum der Kodimension 1, punktweise fixiert und jeden Vektor des orthogonalen Komplements der Hyperebene auf sein Negatives abbildet. Jeder Vektor $\alpha \in E \setminus \{0\}$ induziert eine $Spiegelung\ \sigma_{\alpha}$ an der Hyperebene

$$P_{\alpha} := \operatorname{span}(\{\alpha\})^{\perp} = \{\beta \in E \mid (\beta, \alpha) = 0\}.$$

Definiert man nun $\langle \beta, \alpha \rangle := \frac{2(\beta, \alpha)}{(\beta, \alpha)}$, so gilt

$$\sigma_{\alpha}(\beta) = \beta - \frac{2(\beta, \alpha)}{(\alpha, \alpha)} \alpha = \beta - \langle \beta, \alpha \rangle \alpha,$$

denn $\sigma_{\alpha}(\alpha) = -\alpha$ und $\sigma_{\alpha}(\beta) = \beta$ für alle $\beta \in P_{\alpha}$. Man beachte, dass im Gegensatz zum Skalarprodukt, der Ausdruck $\langle \alpha, \beta \rangle$ nur linear in der ersten Variablen ist. Es gilt jedoch $\operatorname{sign}\langle \alpha, \beta \rangle = \operatorname{sign}(\alpha, \beta)$ für alle $\alpha, \beta \in E$.

Definition 1.1. Eine Teilmenge Φ des euklidischen Vektorraums E heißt Wurzelsystem in E, falls folgende Bedingungen erfüllt sind:

- (R1) Die Menge Φ ist endlich, sie spannt E auf und sie enthält nicht die 0.
- (R2) Falls $\alpha \in \Phi$, so sind $\pm \alpha$ die einzigen Vielfachen von α in Φ .
- (R3) Falls $\alpha \in \Phi$, so lässt die Spiegelung σ_{α} die Menge Φ invariant, also $\sigma_{\alpha}(\Phi) = \Phi$.
- (R4) Falls $\alpha, \beta \in \Phi$, dann ist $\langle \beta, \alpha \rangle \in \mathbb{Z}$.

Oft lassen sich Eigenschaften von Wurzelsystemen, bereits anhand der Eigenschaften von Erzeugern dieses Wurzelsystems ausmachen.

Definition 1.2. Eine Teilmenge Δ von Φ heißt *Fundamentalsystem*, falls die folgenden Bedingungen erfüllt sind:

- (B1) Es ist Δ eine Vektorraumbasis von E.
- (B2) Jede Wurzel $\beta \in \Phi$ lässt sich schreiben als $\beta = \sum_{\alpha \in \Delta} k_{\alpha} \alpha$ mit ganzzahligen Linearfaktoren k_{α} die alle dasselbe Vorzeichen besitzen.

Die Elemente von Δ bezeichnet man auch als *einfache* Wurzeln.

Bemerkung. Einen Beweis dafür, dass jedes Fundamentalsystem eine Basis besitzt, findet man zum Beispiel in [Hum72, S.48] oder [EW06, S.116]. Aus Eigenschaft (B1) von Fundamentalsystemen folgt sofort, dass die Linearfaktoren in (B2) eindeutig bestimmt sind. Es lässt sich daher die Höhenfunktion

$$\operatorname{ht}(\beta) := \sum_{\alpha \in \Delta} k_{\alpha}$$

definieren. Entsprechend des Vorzeichens der Höhenfunktion bezeichnet man Wurzeln auch als *positiv* oder *negativ*. Einfache Wurzeln sind stets positiv. Zudem induziert jedes Fundamentalsystem Δ eine Halbordnung auf Φ durch

 $\beta \leq \alpha$ gilt genau dann, wenn $\alpha - \beta$ positiv ist oder $\alpha = \beta$ gilt.

Abbildung 1: Das Wurzelsystem A2

Bezüglich eines Wurzelsystems Φ lassen sich auch Vektoren des umfassenden Vektorraums klassifizieren.

Definition 1.3. Sei Φ ein Wurzelsystem in E. Ein Vektor $\gamma \in E$ heißt $regul\"{a}r$, falls $\gamma \in E \setminus \bigcup_{\alpha \in \Phi} P_{\alpha}$. Die Familie $(P_{\alpha})_{\alpha \in \Phi}$ liefert eine Partition von E in maximal zusammenhängende Mengen, die sogenannten WEYL-Kammern. Die jedem $\gamma \in E$ eindeutig zugeordnete WEYL-Kammer zuordnen, werde mit $\mathfrak{C}(\gamma)$ bezeichnet.

Liegen zwei reguläre Wurzeln γ, γ' in derselben WEYL-Kammer, so liegen sie bezüglich allen Hyperebenen P_{α} derselben Seite, was bedeutet, dass $\mathrm{sign}(\gamma, \alpha) = \mathrm{sign}(\gamma', \alpha)$ gilt, für alle $\alpha \in \Phi$. Bezeichnet man mit

$$\Phi^+(\gamma) := \{ \alpha \in \Phi \mid (\gamma, \alpha) > 0 \}$$

die Menge aller Wurzeln, die mit γ einen spitzen Winkel einschließen, so gilt in diesem Falle $\Phi^+(\gamma) = \Phi^+(\gamma')$. Bezeichnet man zudem mit $\Delta(\gamma)$ das Fundamentalsystem aller Wurzeln $\alpha \in \Phi^+(\gamma)$, die sich als Summe $\alpha = \beta_1 + \beta_2$ zweier positiver Wurzeln $\beta_1, \beta_2 \in \Phi^+(\gamma)$ schreiben lassen, so gilt zusätzlich $\Delta(\gamma) = \Delta(\gamma')$. Dass $\Delta(\gamma)$ tatsächlich ein Fundamentalsystem von Φ ist, lässt sich in [Hum72, S.48] nachlesen. Wurzeln, die sich in der oben genannten Weise ausdrücken lassen, bezeichnet man auch als *zerlegbar*.

Das folgende Lemma fasst nochmals die vorangehenden Überlegungen zusammen.

Lemma 1.4. Seien $\gamma, \gamma' \in E$ regulär bezüglich des Wurzelsystems Φ . Dann folgt aus $\mathfrak{C}(\gamma) = \mathfrak{C}(\gamma')$, dass $\Phi^+(\gamma) = \Phi^+(\gamma')$. Dies ist wiederum genau dann der Fall, wenn $\Delta(\gamma) = \Delta(\gamma')$ gilt. Jeder WEYL-Kammer $\mathfrak{C}(\gamma)$ entspricht also genau ein Fundamentalsystem $\Delta(\gamma)$.

Die soeben eingeführten Begriffe veranschaulicht Abbildung 1.

Definition 1.5. Sei Φ ein Wurzelsystem in E mit Fundamentalsystem Δ . Gilt für ein reguläres $\gamma \in E$, dass $\Delta = \Delta(\gamma)$, so bezeichnet man $\mathfrak{C}(\Delta) := \mathfrak{C}(\gamma)$ als Fundamental-kammer bezüglich Δ .

Wir betrachten nun einen Spezialfall von Spiegelungsgruppen. Allgemeine Spiegelungsgruppen werden in [Hum92] behandelt.

6 LITERATUR

Definition 1.6. Sei Φ ein Wurzelsystem in E. Dann bezeichnet \mathcal{W} die von den Spiegelungen σ_{α} , $\alpha \in \Phi$, erzeugte Untergruppe der allgemeinen linearen Gruppe $\mathrm{GL}(E)$. Man nennt \mathcal{W} die Weyl-*Gruppe* von Φ .

2 Einfache Wurzeln

In diesem Abschnitt sollen einige Eigenschaften einfacher Wurzeln bewiesen werden. Im Folgenden bezeichne Δ eine fest gewählte Basis des Wurzelsystems Φ .

Lemma 2.1. Ist $\alpha \in \Phi$ eine positive aber nicht einfache Wurzel, so ist für alle $\beta \in \Delta$ die Differenz $\alpha - \beta$ eine notwendig positive Wurzel.

Korollar 2.2. Jedes $\beta \in \Phi^+$ lässt sich als Linearkombination $\alpha_1 + \cdots + \alpha_k$ mit $\alpha_i \in \Delta$ so schreiben, dass jede Partialsumme $\alpha_1 + \cdots + \alpha_i$, $i \in \{1, \dots, k\}$, eine Wurzel ist.

Lemma 2.3. Sei $\alpha \in \Delta$. Dann permutiert die Spiegelung σ_{α} alle von α verschiedenen Wurzeln, also

$$\sigma_{\alpha}(\Phi^+ \setminus \{\alpha\}) = \Phi^+ \setminus \{\alpha\}.$$

Korollar 2.4. Sei $\delta := \frac{1}{2} \sum_{\beta \succ 0} \beta$. Dann gilt $\sigma_{\alpha}(\delta) = \delta - \alpha$ für alle $\alpha \in \Delta$.

3 Die Weyl-Gruppe

4 Irreduzible Wurzelsysteme

Literatur

- [EW06] ERDMANN, K.; WILDON, M.J.: *Introduction to Lie Algebras*. Springer, 2006 (Springer Undergraduate Mathematics Series)
- [Hum72] HUMPHREYS, J.E.: *Introduction to Lie Algebras and Representation Theory*. Springer, 1972 (Graduate Texts in Mathematics)
- [Hum92] HUMPHREYS, J.E.: *Reflection Groups and Coxeter Groups*. Cambridge University Press, 1992 (Cambridge Studies in Advanced Mathematics)