Mathematics

Robin Adams

February 23, 2024

Contents

Ι	Category Theory	5			
1	Foundations				
2	Number Theory 2.1 Congruence	9 10			
3	3.1 Preorders	11 12 12 14 15 15			
4		1 7 17			
II	Group Theory	19			
5	5.1 Order of an Element	21 24 26			
6	6.1 Subgroups	29 31 33 34 35 35 38			
7	7.1 The Category of Abelian Groups	41 45 46			

4	CONTENTS
•	JONIEMID

III Linear Algebra 49

Part I Category Theory

Foundations

This is a placeholder — I am not sure what foundation I want to use for this project yet. I will try to work in a way which is foundation-independent. What I do could be formalized in ZFC, ETCS, or some other system. I will assume the usual set theoretic constructions as needed. Sets will be defined up to bijection only.

Number Theory

2.1 Congruence

Definition 2.1 (Congruence). Let a, b, n be integers with n > 0. We say a is congruent to b modulo n, and write $a \equiv b \mod n$, iff $n \mid b - a$.

Proposition 2.2. For n a positive integer, congruence modulo n is an equivalence relation.

Proof:

$$\begin{split} \langle 1 \rangle 1. & \text{ For any integer } a \text{ we have } a \equiv a \mod n. \\ & \text{Proof: Since } n \mid 0 = a - a. \\ \langle 1 \rangle 2. & \text{ If } a \equiv b \mod n \text{ then } b \equiv a \mod n. \\ & \text{Proof: If } n \mid b - a \text{ then } n \mid a - b = -(b - a). \\ \langle 1 \rangle 3. & \text{ If } a \equiv b \mod n \text{ and } b \equiv c \mod n \text{ then } a \equiv c \mod n. \\ & \text{Proof: If } n \mid b - a \text{ and } n \mid c - b \text{ then } n \mid c - a = (c - b) + (b - a). \end{split}$$

Definition 2.3. Let $\mathbb{Z}/n\mathbb{Z}$ be the quotient set of \mathbb{Z} with respect to congruence modulo n.

Proposition 2.4. $\mathbb{Z}/n\mathbb{Z}$ has exactly n elements.

PROOF: Every integer is congruent to one of $0, 1, \ldots, n-1$ by the division algorithm, and no two of them are conguent to one another, since if $0 \le i < j < n$ then 0 < j - i < n. \square

Proposition 2.5. If $a \equiv a' \mod n$ and $b \equiv b' \mod n$ then $a + b \equiv a' + b' \mod n$.

PROOF: If $n \mid a' - a$ and $n \mid b' - b$ then $n \mid (a' + b') - (a + b)$. \square

Proposition 2.6. If $a \equiv a' \mod n$ and $b \equiv b' \mod n$ then $ab \equiv a'b' \mod n$.

PROOF: If $n \mid a' - a$ and $n \mid b' - b$ then $n \mid a'b' - ab = a'(b' - b) + (a' - a)b$. \square

2.2 Euler's ϕ -function

Definition 2.7. For n a positive integer, let $(\mathbb{Z}/n\mathbb{Z})^* = \{m \in \mathbb{Z}/n\mathbb{Z} : \gcd(m, n) = 1\}.$

PROOF: We prove this is well-defined.

- $\langle 1 \rangle 1$. If $m \equiv m' \mod n$ and gcd(m, n) = 1 then gcd(m', n) = 1.
 - $\langle 2 \rangle 1$. Pick integers a, b such that am + bn = 1
 - $\langle 2 \rangle 2$. PICK an integer c such that m' m = cn
 - $\langle 2 \rangle 3. \ am' + (b ac)n = 1$

Definition 2.8. For n a positive integer, let $\phi(n) = |(\mathbb{Z}/n\mathbb{Z})^*|$.

Proposition 2.9. If n is an odd positive integer then $\phi(2n) = \phi(n)$.

Proof:

- $\langle 1 \rangle 1$. Let: n be an odd positive integer.
- $\langle 1 \rangle$ 2. For any integer m, if $\gcd(m,n)=1$ then $\gcd(2m+n,2n)=1$ PROOF: For p a prime, if $p \mid 2m+n$ and $p \mid 2n$ then $p \neq 2$ (since 2m+n is odd) so $p \mid n$ and hence $p \mid m$, which is a contradiction.
- $\langle 1 \rangle 3$. For any integer r, if $\gcd(r,2n)=1$ then $\gcd(\frac{r+n}{2},n)=1$ PROOF: If $p \mid n$ and $p \mid \frac{r+n}{2}$ then $p \mid r+n$ so $p \mid r$ which is a contradiction.
- $\langle 1 \rangle 4$. The function that maps m to 2m+n is a bijection between $(\mathbb{Z}/n\mathbb{Z})^*$ and $(\mathbb{Z}/2n\mathbb{Z})^*$.

Categories

Definition 3.1 (Category). A category C consists of:

- A class $|\mathcal{C}|$ of *objects*. We write $A \in \mathcal{C}$ for $A \in |\mathcal{C}|$.
- For any objects A, B, a set C[A, B] of morphisms from A to B. We write $f: A \to B$ for $f \in C[A, B]$.
- For any object A, a morphism $id_A : A \to A$, the *identity* morphism on A.
- For any morphisms $f: A \to B$ and $g: B \to C$, a morphism $g \circ f: A \to C$, the *composite* of f and g.

such that:

Associativity Given $f: A \to B$, $g: B \to C$ and $h: C \to D$, we have $h \circ (g \circ f) = (h \circ g) \circ f$

Left Unit Law For any morphism $f: A \to B$, we have $id_B \circ f = f$.

Right Unit Law For any morphism $f: A \to B$, we have $f \circ id_A = f$.

Proposition 3.2. The identity morphism on an object is unique.

PROOF: If i and j are identity morphisms on A then $i = i \circ j = j$. \square

Example 3.3 (Category of Sets). The *category of sets* **Set** has objects all sets and morphisms all functions.

Definition 3.4 (Endomorphism). In a category \mathcal{C} , an *endomorphism* on an object A is a morphism $A \to A$. We write $\operatorname{End}_{\mathcal{C}}(A)$ for $\mathcal{C}[A, A]$.

Definition 3.5 (Opposite Category). For any category C, the *opposite* category C^{op} is the category with the same objects as C and

$$\mathcal{C}^{\mathrm{op}}[A,B] = \mathcal{C}[B,A]$$

3.1 Preorders

Definition 3.6 (Preorder). A *preorder* on a set A is a relation \leq on A that is reflexive and transitive.

A preordered set is a pair (A, \leq) such that \leq is a preorder on A. We usually write A for the preordered set (A, \leq) .

We identify any preordered set A with the category whose objects are the elements of A, with one morphism $a \to b$ iff $a \le b$, and no morphism $a \to b$ otherwise.

Example 3.7. For any ordinal α , let α be the preorder $\{\beta : \beta < \alpha\}$ under \leq .

Definition 3.8 (Discrete Preorder). We identify any set A with the *discrete* preorder (A, =).

3.2 Monomorphisms and Epimorphisms

Definition 3.9 (Monomorphism). In a category, let $f: A \to B$. Then f is a monomorphism or monic iff, for every object X and morphism $x, y: X \to A$, if fx = fy then x = y.

Definition 3.10 (Epimorphism). In a category, let $f: A \to B$. Then f is a *epimorphism* or *epi* iff, for every object X and morphism $x, y: B \to X$, if xf = yf then x = y.

Proposition 3.11. The composite of two monomorphism is monic.

```
Proof:
```

```
\begin{array}{ll} \langle 1 \rangle 1. & \text{Let: } f: A \rightarrowtail B \text{ and } g: B \rightarrowtail C \text{ be monic.} \\ \langle 1 \rangle 2. & \text{Let: } x,y: X \to A \\ \langle 1 \rangle 3. & \text{Assume: } g \circ f \circ x = g \circ f \circ y \\ \langle 1 \rangle 4. & f \circ x = f \circ y \\ \langle 1 \rangle 5. & x = y \\ \end{array}
```

Proposition 3.12. The composite of two epimorphisms is epi.

Proof: Dual. \square

Proposition 3.13. Let $f: A \to B$ and $g: B \to C$. If $g \circ f$ is monic then f is monic.

PROOF: If $f \circ x = f \circ y$ then gfx = gfy and so x = y. \square

Proposition 3.14. Let $f: A \to B$ and $g: B \to C$. If $g \circ f$ is epi then g is epi.

Proof: Dual.

Proposition 3.15. A function is a monomorphism in **Set** iff it is injective.

```
Proof:
\langle 1 \rangle 1. Let: f: A \to B
\langle 1 \rangle 2. If f is monic then f is injective.
   \langle 2 \rangle 1. Assume: f is monic.
   \langle 2 \rangle 2. Let: x, y \in A
   \langle 2 \rangle 3. Assume: f(x) = f(y)
   \langle 2 \rangle 4. Let: \overline{x}, \overline{y}: 1 \to A be the functions such that \overline{x}(*) = x and \overline{y}(*) = y
   \langle 2 \rangle 5. \ f \circ \overline{x} = f \circ \overline{y}
   \langle 2 \rangle 6. \ \overline{x} = \overline{y}
       Proof: By \langle 2 \rangle 1.
   \langle 2 \rangle 7. x = y
\langle 1 \rangle 3. If f is injective then f is monic.
   \langle 2 \rangle 1. Assume: f is injective.
   \langle 2 \rangle 2. Let: X be a set and x, y : X \to A.
   \langle 2 \rangle 3. Assume: f \circ x = f \circ y
            Prove: x = y
   \langle 2 \rangle 4. Let: t \in X
            PROVE: x(t) = y(t)
   \langle 2 \rangle 5. f(x(t)) = f(y(t))
   \langle 2 \rangle 6. \ x(t) = y(t)
       Proof: By \langle 2 \rangle 1.
Proposition 3.16. A function is an epimorphism in Set iff it is surjective.
Proof:
\langle 1 \rangle 1. Let: f: A \to B
\langle 1 \rangle 2. If f is an epimorphism then f is surjective.
   \langle 2 \rangle 1. Assume: f is an epimorphism.
   \langle 2 \rangle 2. Let: b \in B
   \langle 2 \rangle 3. Let: x,y:B\to 2 be defined by x(b)=1 and x(t)=0 for all other
                     t \in B, y(t) = 0 for all t \in B.
   \langle 2 \rangle 4. \ x \neq y
   \langle 2 \rangle 5. x \circ f \neq y \circ f
   \langle 2 \rangle 6. There exists a \in A such that f(a) = b.
\langle 1 \rangle 3. If f is surjective then f is an epimorphism.
   \langle 2 \rangle 1. Assume: f is surjective.
   \langle 2 \rangle 2. Let: x, y : B \to X
   \langle 2 \rangle 3. Assume: x \circ f = y \circ f
            PROVE: x = y
   \langle 2 \rangle 4. Let: b \in B
            PROVE: x(b) = y(b)
   \langle 2 \rangle5. PICK a \in A such that f(a) = b
   \langle 2 \rangle 6. \ x(f(a)) = y(f(a))
   \langle 2 \rangle 7. \ x(b) = y(b)
```

Proposition 3.17. In a preorder, every morphism is monic and epi.

PROOF: Immediate from definitions.

3.3 Sections and Retractions

Definition 3.18 (Section, Retraction). In a category, let $r: A \to B$ and $s: B \to A$. Then r is a retraction of s, and s is a section of r, iff $r \circ s = \mathrm{id}_B$.

Proposition 3.19. Every identity morphism is a section and retraction of itself.

PROOF: Immediate from definitions.

Proposition 3.20. Let $r, r': A \to B$ and $s: B \to A$. If r is a retraction of s and r' is a section of s then r = r'.

Proof:

$$r = r \circ id_A$$

 $= r \circ s \circ r'$
 $= id_B \circ r'$
 $= r'$

Proposition 3.21. Let $r_1: A \to B$, $r_2: B \to C$, $s_1: B \to A$ and $s_2: C \to B$. If r_1 is a retraction of s_1 and r_2 is a retraction of s_2 then $r_2 \circ r_1$ is a retraction of $s_1 \circ s_2$.

Proof:

$$r_2 \circ r_1 \circ s_1 \circ s_2 = r_2 \circ \mathrm{id}_B \circ s_2$$

= $r_2 \circ s_2$
= id_C

Proposition 3.22. Every section is monic.

Proof:

- $\langle 1 \rangle 1$. Let: $s: A \to B$ be a section of $r: B \to A$.
- $\langle 1 \rangle 2$. Let: $x, y : X \to A$ satisfy sx = sy.
- $\langle 1 \rangle 3$. rsx = rsy
- $\langle 1 \rangle 4. \ x = y$

Proposition 3.23. Every retraction is epi.

Proof: Dual.

Proposition 3.24. In Set, every epimorphism has a retraction.

PROOF: By the Axiom of Choice. \Box

Example 3.25. It is not true in general that every monomorphism in any category has a section. nor that every epimorphism in any category has a retraction.

In the category 2, the morphism $0 \le 1$ is monic and epi but has no retraction or section.

3.4 **Isomorphisms**

Definition 3.26 (Isomorphism). In a category C, a morphism $f: A \to B$ is an isomorphism, denoted $f: A \cong B$, iff there exists a morphism $f^{-1}: B \to A$, the inverse of f, such that $f^{-1} \circ f = \mathrm{id}_A$ and $f \circ f^{-1} = \mathrm{id}_B$.

An automorphism on an object A is an isomorphism between A and itself. We write $Aut_{\mathcal{C}}(A)$ for the set of all automorphisms on A.

Objects A and B are isomorphic, $A \cong B$, iff there exists an isomorphism between them.

Proposition 3.27. The inverse of an isomorphism is unique.

Proof: Proposition 3.20. \square

Proposition 3.28. For any object A we have $id_A : A \cong A$ and $id_A^{-1} = id_A$.

PROOF: Since $id_A \circ id_A = id_A$ by the Unit Laws. \square

Proposition 3.29. If $f : A \cong B$ then $f^{-1} : B \cong A$ and $(f^{-1})^{-1} = f$.

Proof: Immediate from definitions.

Proposition 3.30. If $f:A\cong B$ and $g:B\cong C$ then $g\circ f:A\cong C$ and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

PROOF: From Proposition 3.21.

Definition 3.31 (Groupoid). A *groupoid* is a category in which every morphism is an isomorphism.

3.5 **Initial and Terminal Objects**

Definition 3.32 (Initial Object). An object I in a category is *initial* iff, for any object X, there is exactly one morphism $I \to X$.

Example 3.33. The empty set is the initial object in **Set**.

Definition 3.34 (Terminal Object). An object T in a category is terminal iff, for any object X, there is exactly one morphism $X \to T$.

Example 3.35. Every singleton is terminal in **Set**.

Proposition 3.36. If I and J are initial in a category, then there exists a unique isomorphism $I \cong J$.

Proof:

- $\langle 1 \rangle 1$. Let: i be the unique morphism $I \to J$.
- $\langle 1 \rangle 2$. Let: i^{-1} be the unique morphism $J \to I$. $\langle 1 \rangle 3$. $i \circ i^{-1} = \operatorname{id}_J$

PROOF: Since there is only one morphism $J \to J$.

 $\langle 1 \rangle 4$. $i^{-1} \circ i = \mathrm{id}_I$

Proof: Since there is only one morphism $I \to I$.
Proposition 3.37. If S and T are terminal in a category, then there exists a unique isomorphism $S \cong T$.
Proof: Dual.

Functors

Definition 4.1 (Functor). Let \mathcal{C} and \mathcal{D} be categories. A functor $F:\mathcal{C}\to\mathcal{D}$ consists of:

- for every object $A \in \mathcal{C}$, an object $FA \in \mathcal{D}$
- for any morphism $f: A \to B: \mathcal{C}$, a morphism $Ff: FA \to FB: \mathcal{D}$

such that:

- $Fid_A = id_{FA}$
- $F(g \circ f) = Fg \circ Ff$

Definition 4.2 (Identity Functor). For any category C, the *identity functor* $1_C: C \to C$ is defined by

$$1_{\mathcal{C}}A = A$$
$$1_{\mathcal{C}}f = f$$

Definition 4.3 (Constant Functor). Given categories \mathcal{C} , \mathcal{D} and an object $D \in \mathcal{D}$, the constant functor $K^{\mathcal{C}}D : \mathcal{C} \to \mathcal{D}$ is the functor defined by

$$K^{\mathcal{C}}DC = D$$
$$K^{\mathcal{C}}Df = \mathrm{id}_{D}$$

4.1 Comma Categories

Definition 4.4 (Comma Category). Let $F: \mathcal{C} \to \mathcal{E}$ and $G: \mathcal{D} \to \mathcal{E}$ be functors. The *comma category* $F \downarrow G$ is the category with:

• objects all pairs (C, D, f) where $C \in \mathcal{C}, D \in \mathcal{D}$ and $f : FC \to GD : \mathcal{E}$

• morphisms $(u,v):(C,D,f)\to (C',D',g)$ all pairs $u:C\to C':\mathcal{C}$ and $v:D\to D':\mathcal{D}$ such that the following diagram commutes:

$$FC \xrightarrow{f} GD$$

$$\downarrow_{Fu} \qquad \downarrow_{Gv}$$

$$FC' \xrightarrow{g} GD'$$

Definition 4.5 (Slice Category). Let \mathcal{C} be a category and $A \in \mathcal{C}$. The *slice category* over A, denoted \mathcal{C}/A , is the comma category $1_{\mathcal{C}} \downarrow K^{\mathbf{1}}A$.

Definition 4.6 (Coslice Category). Let C be a category and $A \in C$. The *coslice category* over A, denoted $C \setminus A$, is the comma category $K^1A \downarrow 1_C$.

Definition 4.7 (Pointed Sets). The *category of pointed sets* \mathbf{Set}_* is the coslice category $\mathbf{Set} \setminus 1$.

Part II Group Theory

Groups

Definition 5.1 (Group). A group G consists of a set G and a binary operation $\cdot: G^2 \to G$ such that \cdot is associative, and there exists $e \in G$, the *identity* element of the group, such that:

- For all $x \in G$ we have xe = ex = x
- For all $x \in G$, there exists $x^{-1} \in G$, the *inverse* of x, such that $xx^{-1} = x^{-1}x = e$.

We identify a group G with the category G with one object and morphisms the elements of G, with composition given by \cdot .

The *order* of a group G, denoted |G|, is the number of elements in G if G is finite; otherwise we write $|G| = \infty$.

Proposition 5.2. The identity in a group is unique.

Proof: Proposition 3.2.

Proposition 5.3. The inverse of an element is unique.

PROOF: If i and j are inverses of x then i = ixj = j. \square

Example 5.4. • The *trivial* group is $\{e\}$ under ee = e.

- \mathbb{Z} is a group under addition
- \mathbb{Q} is a group under addition
- $\mathbb{Q} \{0\}$ is a group under multiplication
- \mathbb{R} is a group under addition
- $\mathbb{R} \{0\}$ is a group under multiplication
- \bullet $\mathbb C$ is a group under addition
- $\mathbb{C} \{0\}$ is a group under multiplication

- $\{-1,1\}$ is a group under multiplication
- The set of 2 × 2 real matrices with non-zero determinant is a group under matrix multiplication.
- For any positive integer n, the set $\mathbb{Z}/n\mathbb{Z}$ of integers modulo n under addition is a group.
- For any category C and object $A \in C$, we have $\operatorname{Aut}_{C}(A)$ is a group under $gf = f \circ g$.

For A a set, we call $S_A = \operatorname{Aut}_{\mathbf{Set}}(A)$ the symmetric group or group of permutations of A.

- For $n \geq 3$, the dihedral group D_{2n} consists of the set of rigid motions that map the regular n-gon onto itself under composition.
- Let $SL_2(\mathbb{Z}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{Z}, ad bc = 1 \right\}$ under matrix multiplication.

Example 5.5. • The only group of order 1 is the trivial group.

- The only group of order 2 is \mathbb{Z}_2 .
- The only group of order 3 is \mathbb{Z}_3 .
- There are exactly two groups of order 4: \mathbb{Z}_4 and $\mathbb{Z}_2 \times \mathbb{Z}_2$ under (a, b)(c, d) = (ac, bd).

Example 5.6. For any positive integer n, the set

$$(\mathbb{Z}/n\mathbb{Z})^* = \{ m \in \mathbb{Z}/n\mathbb{Z} : \gcd(m, n) = 1 \}$$

is a group under multiplication.

Proof:

- $\langle 1 \rangle 1$. If $gcd(m_1, n) = gcd(m_2, n) = 1$ then $gcd(m_1m_2, n) = 1$
 - $\langle 2 \rangle 1$. PICK integers a, b, c, d such that $am_1 + bn = cm_2 + dn = 1$
 - $\langle 2 \rangle 2$. $acm_1m_2 + (bcm_2 + d)n = !$
- $\langle 1 \rangle 2$. Multiplication is associative.
- $\langle 1 \rangle 3$. 1 is the identity element.
- $\langle 1 \rangle 4$. Every element has an inverse.
 - $\langle 2 \rangle 1$. Let: $a \in (\mathbb{Z}/n\mathbb{Z})^*$
 - $\langle 2 \rangle 2$. PICK integers b, c such that ab + cn = 1
- $\langle 2 \rangle 3. \ ab = 1 \text{ in } (\mathbb{Z}/n\mathbb{Z})^*$

Proposition 5.7 (Cancellation). Let G be a group. Let $a, g, h \in G$. If ag = ah or ga = ha then g = h.

PROOF: If ag = ah then $g = a^{-1}ag = a^{-1}ah = h$. Similarly if ga = ha. \square

Proposition 5.8. Let G be a group and $g, h \in G$. Then $(gh)^{-1} = h^{-1}g^{-1}$.

PROOF: Since $ghh^{-1}g^{-1} = e$. \square

Definition 5.9. Let G be a group. Let $g \in G$. We define $g^n \in G$ for all $n \in \mathbb{Z}$ as follows:

$$g^{0} = e$$

 $g^{n+1} = g^{n}g$ $(n \ge 0)$
 $g^{-n} = (g^{-1})^{n}$ $(n > 0)$

Proposition 5.10. Let G be a group. Let $g \in G$ and $m, n \in \mathbb{Z}$. Then

$$g^{m+n} = g^m g^n .$$

Proof:

 $\langle 1 \rangle 1$. For all $k \in \mathbb{Z}$ we have $g^{k+1} = g^k g$

 $\langle 2 \rangle 1$. For all $k \geq 0$ we have $g^{k+1} = g^k g$

PROOF: Immediate from definition.

 $\langle 2 \rangle 2. \ g^{-1+1} = g^{-1}g$

PROOF: Both are equal to e.

 $\langle 2 \rangle 3$. For all k > 1 we have $g^{-k+1} = g^{-k}g$

Proof:

$$g^{-k+1} = (g^{-1})^{k-1}$$

$$= (g^{-1})^{k-1}g^{-1}g$$

$$= (g^{-1})^kg$$

$$= g^{-k}g$$

 $\langle 1 \rangle 2$. For all $k \in \mathbb{Z}$ we have $g^{k-1} = g^k g^{-1}$

PROOF: Substitute k = k - 1 above and multiply by g^{-1} .

 $\langle 1 \rangle 3. \ g^{m+0} = g^m g^0$

PROOF: Since $g^m g^0 = g^m e = g^m$.

 $\langle 1 \rangle 4$. If $g^{m+n} = g^m g^n$ then $g^{m+n+1} = g^m g^{n+1}$

Proof:

$$\begin{split} g^{m+n+1} &= g^{m+n}g \\ &= g^m g^n g \end{split} \tag{$\langle 1 \rangle 1$}$$

$$= g^m g^{n+1} \tag{\langle 1 \rangle 1}$$

 $\langle 1 \rangle$ 5. If $g^{m+n} = g^m g^n$ then $g^{m+n-1} = g^m g^{n-1}$ PROOF:

 $g^{m+n-1}g = g^{m+n} \qquad (\langle 1 \rangle 1)$ $= g^m g^n$

$$= g^m g^n$$

$$\therefore g^{m+n-1} = g^m g^n g^{-1}$$

$$= g^m g^{n-1} \qquad (\langle 1 \rangle 2)$$

Proposition 5.11. Let G be a group. Let $g \in G$ and $m, n \in \mathbb{Z}$. Then

$$(g^m)^n = g^{mn} .$$

Proof:

 $\langle 1 \rangle 1. \ (g^m)^0 = g^0$

PROOF: Both sides are equal to e.

 $\langle 1 \rangle 2$. If $(g^m)^n = g^{mn}$ then $(g^m)^{n+1} = g^{m(n+1)}$.

Proof:

$$(g^m)^{n+1} = (g^m)^n g^m$$
 (Proposition 5.10)
= $g^{mn} g^m$
= g^{mn+m} (Proposition 5.10)

 $=g^{mn+m}$ $\langle 1\rangle 3.$ If $(g^m)^n=g^{mn}$ then $(g^m)^{n-1}=g^{m(n-1)}.$ PROOF:

$$(g^{m})^{n} = g^{mn}$$

$$\therefore (g^{m})^{n-1}g^{m} = g^{mn-m}g^{m} \qquad (Proposition 5.10)$$

$$\therefore (g^{m})^{n-1} = g^{mn-m} \qquad (Cancellation)$$

Definition 5.12 (Commute). Let G be a group and $g, h \in G$. We say g and h commute iff gh = hg.

Definition 5.13. Let G be a group. Given $g \in G$ and $A \subseteq G$, we define

$$gA = \{ga : a \in A\}, \qquad Ag = \{ag : a \in A\}.$$

5.1 Order of an Element

Definition 5.14 (Order). Let G be a group. Let $g \in G$. Then g has finite order iff there exists a positive integer n such that $g^n = e$. In this case, the order of g, denoted |g|, is the least positive integer n such that $g^n = e$.

If g does not have finite order, we write $|g| = \infty$.

Proposition 5.15. Let G be a group. Let $g \in G$ and n be a positive integer. If $g^n = e$ then |g| | n.

Proof:

 $\langle 1 \rangle 1$. Let: n = q|g| + d where $0 \le d < |g|$

PROOF: Division Algorithm.

 $\langle 1 \rangle 2. \ g^d = e$

Proof:

$$\begin{split} e &= g^n \\ &= g^{q|g|+d} \\ &= (g^{|g|})^q g^d \\ &= e^q g^d \\ &= g^d \end{split} \tag{Propositions 5.10, 5.11)}$$

 $\langle 1 \rangle 3. \ d = 0$

PROOF: By minimality of |g|.

$$\langle 1 \rangle 4. \ n = q|g|$$

Corollary 5.15.1. Let G be a group. Let $g \in G$ have finite order and $n \in \mathbb{Z}$. Then $g^n = e$ if and only if |g| | n.

Proposition 5.16. Let G be a group and $g \in G$. Then $|g| \leq |G|$.

Proof:

 $\langle 1 \rangle 1$. Assume: w.l.o.g. G is finite.

 $\langle 1 \rangle 2$. Pick i, j with $0 \le i < j \le |G|$ such that $g^i = g^j$. Proof: Otherwise $g^0, g^1, \ldots, g^{|G|}$ would be |G|+1 distinct elements of G.

 $\langle 1 \rangle 3. \ q^{j-i} = e$

 $\langle 1 \rangle 4$. g has finite order and $|g| \leq |G|$

PROOF: Since $|g| \le j - i \le j \le |G|$.

Proposition 5.17. Let G be a group. Let $g \in G$ have finite order. Let $m \in \mathbb{N}$. Then

$$|g^m| = \frac{\operatorname{lcm}(m, |g|)}{m} = \frac{|g|}{\gcd(m, |g|)}$$

Proof: Since for any integer d we have

$$g^{md} = e \Leftrightarrow |g| \mid md$$
 (Corollary 5.15.1)
$$\Leftrightarrow \operatorname{lcm}(m, |g|) \mid md$$

$$\Leftrightarrow \frac{\operatorname{lcm}(m, |g|)}{m} \mid d$$

and so $|g^m| = \frac{\text{lcm}(m,|g|)}{m}$ by Corollary 5.15.1. \square

Corollary 5.17.1. If g has odd order then $|g^2| = |g|$.

Corollary 5.17.2. Let m and n be integers with n > 0. The order of m in $\mathbb{Z}/n\mathbb{Z}$ is $\frac{n}{\gcd(m,n)}$.

PROOF: Since the order of 1 is n. \square

Proposition 5.18. Let G be a group. Let $q, h \in G$ have finite order. Assume gh = hg. Then |gh| has finite order and

$$|gh| \mid \operatorname{lcm}(|g|, |h|)$$

Proof: Since $(qh)^{\operatorname{lcm}(|g|,|h|)} = q^{\operatorname{lcm}(|g|,|h|)} h^{\operatorname{lcm}(|g|,|h|)} = e$.

Example 5.19. This example shows that we cannot remove the hypothesis that gh = hg.

In $GL_2(\mathbb{R})$, take

$$g = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \qquad h = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}.$$

Then |g| = 4, |h| = 3 and $|gh| = \infty$.

Proposition 5.20. Let G be a group and $g, h \in G$ have finite order. If gh = hgand gcd(|g|, |h|) = 1 then |gh| = |g||h|.

Proof:

- $\langle 1 \rangle 1$. Let: N = |gh|
- $\langle 1 \rangle 2. \ g^N = (h^{-1})^N$ $\langle 1 \rangle 3. \ g^{N|g|} = e$
- $\begin{array}{ll} \langle 1 \rangle 4. & |g^N| \mid |g| \\ \langle 1 \rangle 5. & h^{-N|h|} = e \end{array}$
- $\langle 1 \rangle 6. |g^N| |h|$
- $\langle 1 \rangle 7. |g^N| = 1$

PROOF: Since gcd(|g|, |h|) = 1.

- $\langle 1 \rangle 8. \ g^N = e$
- $\langle 1 \rangle 9. |g| | N$
- $\langle 1 \rangle 10. \ h^{-N} = e$
- $\langle 1 \rangle 11. \mid h \mid \mid N$
- $\langle 1 \rangle 12$. N = |g||h|

PROOF: Using Proposition 5.18.

Proposition 5.21. Let G be a finite group. Assume there is exactly one element $f \in G$ of order 2. Then the product of all the elements of G is f.

PROOF: Let the elements of G be g_1, g_2, \ldots, g_n . Apart from e and f, every element and its inverse are distinct elements of the list. Hence the product of the list is ef = f. \square

Proposition 5.22. Let G be a finite group of order n. Let m be the number of elements of G of order 2. Then n-m is odd.

PROOF: In the list of all elements that are not of order 2, every element and its inverse are distinct except for e. Hence the list has odd length. \square

Corollary 5.22.1. If a finite group has even order, then it contains an element of order 2.

Proposition 5.23. Let G be a group and $a, g \in G$. Then $|aga^{-1}| = |g|$.

PROOF: Since

$$(aga^{-1})^n = e \Leftrightarrow ag^n a^{-1} = e$$
$$\Leftrightarrow g^n = e \qquad \Box$$

Proposition 5.24. Let G be a group and $g, h \in G$. Then |gh| = |hg|.

PROOF: Since $|gh| = |ghgg^{-1}| = |hg|$.

5.2 Generators

Definition 5.25 (Generator). Let G be a group and $a \in G$. We say a generates the group iff, for all $x \in G$, there exists an integer n such that $x^n = a$.

Proposition 5.26. The integer m generates $\mathbb{Z}/n\mathbb{Z}$ if and only if gcd(m, n) = 1.

Proof: By Corollary 5.17.2. \Box

Corollary 5.26.1. If p is prime then every non-zero element in $\mathbb{Z}/p\mathbb{Z}$ is a generator.

Example 5.27. $\mathrm{SL}_2(\mathbb{Z})$ is generated by

$$s = \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right), \qquad t = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right)$$

Proof:

 $\langle 1 \rangle 1$. Let: $H = \langle s, t \rangle$

 $\langle 1 \rangle 2$. For all $q \in \mathbb{Z}$ we have $\begin{pmatrix} 1 & q \\ 0 & 1 \end{pmatrix} \in H$.

PROOF: It is t^q .

 $\langle 1 \rangle 3$. For all $q \in \mathbb{Z}$ we have $\begin{pmatrix} 1 & 0 \\ q & 1 \end{pmatrix} \in H$.

Proof:

$$st^{-q}s^{-1} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -q \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 0 & -1 \\ 1 & -q \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 \\ q & 1 \end{pmatrix}$$

 $\langle 1 \rangle 4$.

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \left(\begin{array}{cc} 1 & q \\ 0 & 1 \end{array}\right) = \left(\begin{array}{cc} a & qa+b \\ c & qc+d \end{array}\right)$$

 $\langle 1 \rangle 5$.

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \left(\begin{array}{cc} 1 & 0 \\ q & 1 \end{array}\right) = \left(\begin{array}{cc} a+qb & b \\ c+qd & d \end{array}\right)$$

 $\langle 1 \rangle$ 6. For any $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z})$, if c and d are both nonzero, then there exists $N \in H$ such that the bottom row of MN has one entry the same as M and one entry with smaller absolute value.

PROOF: From $\langle 1 \rangle 4$ and $\langle 1 \rangle 5$ taking q = -1.

 $\langle 1 \rangle$ 7. For any $M \in \mathrm{SL}_2(\mathbb{Z})$, there exists $N \in H$ such that MN has a zero on the bottom row.

PROOF: Apply $\langle 1 \rangle 6$ repeatedly.

 $\langle 1 \rangle 8$. Any matrix in $SL_2(\mathbb{Z})$ with a zero on the bottom row is in H.

$$\langle 2 \rangle 1. \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \in H$$

Proof: $\langle 1 \rangle 2$

$$\langle 2 \rangle 2. \ \left(\begin{array}{cc} -1 & b \\ 0 & -1 \end{array} \right) \in H$$

PROOF: It is $s^2\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}$ since $s^2 = -I$.

$$\langle 2 \rangle 3. \begin{pmatrix} a & 1 \\ -1 & 0 \end{pmatrix} \in H$$

$$\text{PROOF: It is } \begin{pmatrix} 1 & -a \\ 0 & 1 \end{pmatrix} s.$$

$$\langle 2 \rangle 4. \begin{pmatrix} a & -1 \\ 1 & 0 \end{pmatrix} \in H$$

$$\text{PROOF: It is } s^2 \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} s.$$

$$\langle 1 \rangle 9. \text{ Every matrix in } \text{SL}_2(\mathbb{Z}) \text{ is in } H.$$

Group Homomorphisms

Definition 6.1 (Homomorphism). Let G and H be groups. A (group) homomorphism $\phi: G \to H$ is a function such that, for all $x, y \in G$,

$$\phi(xy) = \phi(x)\phi(y) .$$

Proposition 6.2. Let G and H be groups with identities e_G and e_H . Let $\phi: G \to H$ be a group homomorphism. Then $\phi(e_G) = e_H$.

PROOF: Since $\phi(e_G) = \phi(e_G e_G) = \phi(e_G) \phi(e_G)$ and so $\phi(e_G) = e_H$ by Cancellation. \square

Proposition 6.3. Let $\phi: G \to H$ be a group homomorphism. For all $x \in G$ we have $\phi(x^{-1}) = \phi(x)^{-1}$.

PROOF: Since $\phi(x)\phi(x^{-1}) = \phi(xx^{-1}) = \phi(e_G) = e_H$.

Proposition 6.4. Let G, H and K be groups. If $\phi: G \to H$ and $\psi: H \to K$ are homomorphisms then $\psi \circ \phi: G \to K$ is a homomorphism.

PROOF: For $x, y \in G$ we have $\psi(\phi(xy)) = \psi(\phi(x)\phi(y)) = \psi(\phi(x))\psi(\phi(y)) \ .$

Proposition 6.5. Let G be a group. Then $id_G: G \to G$ is a group homomorphism.

PROOF: For $x, y \in G$ we have $id_G(xy) = xy = id_G(x)id_G(y)$. \square

Proposition 6.6. Let $\phi: G \to H$ be a group homomorphism. Let $g \in G$ have finite order. Then $|\phi(g)|$ divides |g|.

PROOF: Since $\phi(g)^{|g|} = \phi(g^{|g|}) = e$. \square

Definition 6.7 (Category of Groups). Let **Grp** be the category of groups and group homomorphisms.

Example 6.8. There are 49487365402 groups of order 1024 up to isomorphism.

Proposition 6.9. A group homomorphism $\phi: G \to H$ is an isomorphism in **Grp** if and only if it is bijective.

Proof:

 $\langle 1 \rangle 1$. Assume: ϕ is bijective.

PROVE: ϕ^{-1} is a group homomorphism.

 $\langle 1 \rangle 2$. Let: $h, h' \in H$

$$\langle 1 \rangle 3. \ \phi(\phi^{-1}(hh')) = \phi(\phi^{-1}(h)\phi^{-1}(h'))$$

PROOF: Both are equal to hh'.

$$\langle 1 \rangle 4. \ \phi^{-1}(hh') = \phi^{-1}(h)\phi^{-1}(h')$$

Corollary 6.9.1.

$$D_6 \cong C_3$$

PROOF: The canonical homomorphism $D_6 \to C_3$ is bijective. \square

Corollary 6.9.2.

$$(\mathbb{R}, +) \cong (\{x \in \mathbb{R} : x > 0\}, \cdot)$$

PROOF: The function that maps x to e^x is a bijective homomorphism. \square

Proposition 6.10. The trivial group is the zero object in Grp.

PROOF: For any group G, the unique function $G \to \{e\}$ is a group homomorphism, and the only group homomorphism $\{e\} \to G$ maps e to e_G . \sqcup

Proposition 6.11. For any groups G and H, the set $G \times H$ under (g,h)(g',h') =(gg', hh') is the product of G and H in **Grp**.

Proof:

- $\langle 1 \rangle 1$. $G \times H$ is a group.
 - $\langle 2 \rangle 1$. The multiplication is associative.

PROOF: Since $(g_1, h_1)((g_2, h_2)(g_3, h_3)) = ((g_1, h_1)(g_2, h_2))(g_3, h_3) = (g_1g_2g_3, h_1h_2h_3).$

 $\langle 2 \rangle 2$. (e_G, e_H) is the identity.

PROOF: Since $(g, h)(e_G, e_H) = (e_G, e_H)(g, h) = (g, h)$.

(2)3. The inverse of (g,h) is (g^{-1},h^{-1}) . PROOF: Since $(g,h)(g^{-1},h^{-1})=(g^{-1},h^{-1})(g,h)=(e_G,e_H)$.

 $\langle 1 \rangle 2$. $\pi_1 : G \times H \to G$ is a group homomorphism.

Proof: Immediate from definitions.

 $\langle 1 \rangle 3$. $\pi_2 : G \times H \to H$ is a group homomorphism.

PROOF: Immediate from definitions.

 $\langle 1 \rangle 4$. For any group homomorphism $\phi: K \to G$ and $\psi: K \to H$, the function $\langle \phi, \psi \rangle : K \to G \times H$ where $\langle \phi, \psi \rangle (k) = (\phi(k), \psi(k))$ is a group homomorphism.

Proof:

$$\begin{split} \langle \phi, \psi \rangle (kk') &= (\phi(kk'), \psi(kk')) \\ &= (\phi(k)\phi(k'), \psi(k)\psi(k')) \\ &= (\phi(k), \psi(k))(\phi(k'), \psi(k')) \\ &= \langle \phi, \psi \rangle (k) \langle \phi, \psi \rangle (k') \end{split}$$

6.1. SUBGROUPS

31

П

Proposition 6.12.

$$\operatorname{Aut}_{\mathbf{Grp}}(\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z})\cong S_3$$

PROOF: Every permutation of $\{(1,0),(0,1),(1,1)\}$ gives an automorphism of $\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z}$. \square

Proposition 6.13.

$$|\operatorname{Aut}_{\mathbf{Grp}}(C_n)| = \phi(n)$$

PROOF: An automorphism α is determined by $\alpha(1)$ which is any element of order n, and g has order n iff $\gcd(g,n)=1$. \square

Example 6.14.

$$\operatorname{Aut}_{\mathbf{Grp}}(\mathbb{Z}) \cong C_2$$

PROOF: The only automorphisms are the identity and multiplication by -1. \square

6.1 Subgroups

Definition 6.15 (Subgroup). Let (G, \cdot) and (H, *) be groups such that H is a subset of G. Then H is a subgroup of G iff the inclusion $i: H \hookrightarrow G$ is a group homomorphism.

Proposition 6.16. *If* (H, *) *is a subgroup of* (G, \cdot) *then* * *is the restriction of* \cdot *to* H.

PROOF: Given $x, y \in H$ we have

$$x * y = i(x * y) = i(x) \cdot i(y) = x \cdot y$$
.

Example 6.17. For any group G we have $\{e\}$ is a subgroup of G.

Proposition 6.18. Let G be a group. Let H be a subset of G. Then H is a subgroup of G iff H is nonempty and, for all $x, y \in H$, we have $xy^{-1} \in H$.

Proof:

 $\langle 1 \rangle 1$. If H is a subgroup of G then H is nonempty.

PROOF: Since every group has an identity element and so is nonempty.

- $\langle 1 \rangle 2$. If H is a subgroup of G then, for all $x, y \in H$, we have $xy^{-1} \in H$. PROOF: Easy.
- $\langle 1 \rangle 3$. If H is nonempty and, for all $x, y \in H$, we have $xy^{-1} \in H$, then H is a subgroup of G.
 - $\langle 2 \rangle 1$. Assume: *H* is nonempty.
 - $\langle 2 \rangle 2$. Assume: $\forall x, y \in H.xy^{-1} \in H$
 - $\langle 2 \rangle 3. \ e \in H$

PROOF: Pick $x \in H$. We have $e = xx^{-1} \in H$.

 $\langle 2 \rangle 4. \ \forall x \in H.x^{-1} \in H$

PROOF: Given $x \in H$ we have $x^{-1} = ex^{-1} \in H$.

 $\langle 2 \rangle$ 5. H is closed under the restriction of \cdot

PROOF: Given $x, y \in H$ we have $xy = x(y^{-1})^{-1} \in H$.

 $\langle 2 \rangle 6$. H is a group under the restriction of \cdot

PROOF: Associativity is inherited from G and the existence of an identity element and inverses follows from $\langle 2 \rangle 3$ and $\langle 2 \rangle 4$.

 $\langle 2 \rangle 7$. The inclusion $H \hookrightarrow G$ is a group homomorphism.

PROOF: For $x, y \in H$ we have i(xy) = i(x)i(y) = xy.

Corollary 6.18.1. The intersection of a set of subgroups of G is a subgroup of G.

Corollary 6.18.2. Let $\phi: G \to H$ be a group homomorphism. Let K be a subgroup of H. Then $\phi^{-1}(K)$ is a subgroup of G.

Proof:

 $\langle 1 \rangle 1. \ \phi^{-1}(K)$ is nonempty.

PROOF: Since $e \in \phi^{-1}(K)$.

- $\langle 1 \rangle 2$. Let: $x, y \in \phi^{-1}(K)$
- $\langle 1 \rangle 3. \ \phi(x), \phi(y) \in K$
- $\langle 1 \rangle 4. \ \phi(x)\phi(y)^{-1} \in K$
- $\langle 1 \rangle 5. \ \phi(xy^{-1}) \in K$
- $\langle 1 \rangle 6. \ xy^{-1} \in \phi^{-1}(K)$

Corollary 6.18.3. Let $\phi: G \to H$ be a group homomorphism. Let K be a subgroup of G. Then $\phi(K)$ is a subgroup of H.

Proof:

- $\langle 1 \rangle 1$. Let: $x, y \in \phi(K)$
- $\langle 1 \rangle 2$. PICK $a, b \in K$ such that $x = \phi(a)$ and $y = \phi(b)$
- $\langle 1 \rangle 3. \ xy^{-1} = \phi(ab^{-1})$
- $\langle 1 \rangle 4. \ xy^{-1} \in \phi(K)$

Proposition 6.19. Let G be a subgroup of \mathbb{Z} . Then there exists $d \geq 0$ such that $G = d\mathbb{Z}$.

Proof:

 $\langle 1 \rangle 1$. Assume: w.l.o.g. $G \neq \{0\}$

PROOF: Since $\{0\} = 0\mathbb{Z}$.

 $\langle 1 \rangle 2$. Let: d be the least positive element of G.

Prove: $G = d\mathbb{Z}$

PROOF: If $n \in G$ then $-n \in G$ so G must contain a positive element.

- $\langle 1 \rangle 3. \ G \subseteq d\mathbb{Z}$
 - $\langle 2 \rangle 1$. Let: $n \in G$
 - $\langle 2 \rangle 2$. Let: q and r be the integers such that n = qd + r and $0 \le r < d$.
 - $\langle 2 \rangle 3. \ r \in G$

6.2. KERNEL 33

```
PROOF: Since r=n-qd. \langle 2 \rangle 4. r=0
PROOF: By minimality of d. \langle 2 \rangle 5. n=qd \in d\mathbb{Z} \langle 1 \rangle 4. d\mathbb{Z} \subseteq G
```

6.2 Kernel

Definition 6.20 (Kernel). Let $\phi: G \to H$ be a group homomorphism. The kernel of ϕ is

$$\ker \phi = \{g \in G : \phi(g) = e\} \ .$$

Proposition 6.21. Let $\phi: G \to H$ be a group homomorphism. Then $\ker \phi$ is a subgroup of G.

Proof: Corollary 6.18.2. \square

Proposition 6.22. Let $\phi: G \to H$ be a group homomorphism. Then the inclusion $i: \ker \phi \hookrightarrow G$ is terminal in the category of pairs $(K, \alpha: K \to G)$ such that $\phi \circ \alpha = 0$.

Proof:

- $\langle 1 \rangle 1. \ \phi \circ i = 0$
- $\langle 1 \rangle 2$. For any group K and homomorphism $\alpha: K \to G$ such that $\phi \circ \alpha = 0$, there exists a unique homomorphism $\beta: K \to \ker \phi$ such that $i \circ \beta = \alpha$.

Proposition 6.23. Let $\phi: G \to H$ be a group homomorphism. Then the following are equivalent:

- 1. ϕ is monic.
- 2. $\ker \phi = \{e\}$
- 3. ϕ is injective.

Proof:

- $\langle 1 \rangle 1. \ 1 \Rightarrow 2$
 - $\langle 2 \rangle 1$. Assume: ϕ is monic.
 - $\langle 2 \rangle 2$. Let: $i : \ker \phi \hookrightarrow G$, $j : \{e\} \hookrightarrow \ker \phi \hookrightarrow G$ be the inclusions.
 - $\langle 2 \rangle 3. \ \phi \circ i = \phi \circ j$
 - $\langle 2 \rangle 4$. i = j
- $\langle 1 \rangle 2. \ 2 \Rightarrow 3$
 - $\langle 2 \rangle 1$. Assume: $\ker \phi = \{e\}$
 - $\langle 2 \rangle 2$. Let: $x, y \in G$
 - $\langle 2 \rangle 3$. Assume: $\phi(x) = \phi(y)$
 - $\langle 2 \rangle 4$. $\phi(xy^{-1}) = e$

$$\langle 2 \rangle 5. \quad xy^{-1} \in \ker \phi$$

 $\langle 2 \rangle 6. \quad xy^{-1} = e$
 $\langle 2 \rangle 7. \quad x = y$
 $\langle 1 \rangle 3. \quad 3 \Rightarrow 1$
PROOF: Easy.

Example 6.24. Not all monomorphisms split in Grp.

Define $\phi: \mathbb{Z}/3\mathbb{Z} \to S_3$ by

$$\phi(0) = id_3, \qquad \phi(1) = (1 \ 3 \ 2), \qquad \phi(2) = (1 \ 2 \ 3) \ .$$

Then ϕ is monic but has no retraction.

For if $r: S_3 \to \mathbb{Z}/3\mathbb{Z}$ is a retraction, then we would have

$$r(1\ 2) + r(2\ 3) = 1,$$
 $r(2\ 3) + r(1\ 2) = 2$

which is impossible.

6.3 Inner Automorphisms

Proposition 6.25. Let G be a group and $g \in G$. The function $\gamma_g : G \to G$ defined by $\gamma_g(a) = gag^{-1}$ is an automorphism on G.

Proof:

 $\langle 1 \rangle 1$. γ_g is a homomorphism.

Proof:

$$\gamma_g(ab) = gabg^{-1}$$

$$= gag^{-1}gbg^{-1}$$

$$= \gamma_g(a)\gamma_g(b)$$

 $\langle 1 \rangle 2$. γ_g is injective.

PROOF: By Cancellation.

 $\langle 1 \rangle 3$. γ_q is surjective.

PROOF: Given $b \in G$, we have $\gamma_g(g^{-1}bg) = b$.

Definition 6.26 (Inner Automorphism). Let G be a group. An *inner automorphism* on G is a function of the form $\gamma_g(a) = gag^{-1}$ for some $g \in G$.

We write Inn(G) for the set of inner automorphisms of G.

Proposition 6.27. Let G be a group. The function $\gamma: G \to \operatorname{Aut}_{\mathbf{Grp}}(G)$ that maps g to γ_g is a group homomorphism.

PROOF: Since
$$\gamma_{gh}(a) = ghah^{-1}g^{-1} = \gamma_g(\gamma_h(a))$$
. \square

Corollary 6.27.1. Inn(G) is a subgroup of $Aut_{Grp}(G)$.

6.4 Direct Products

Definition 6.28 (Direct Product). The *direct product* of groups G and H is their product in Grp.

Proposition 6.29. If m and n are positive integers with gcd(m,n) = 1 then $C_{mn} \cong C_m \times C_n$.

Proof: The function that maps x to $(x \mod m, x \mod n)$ is an isomorphism. \sqcap

Definition 6.30 (Cyclic Group). The *cyclic* groups are \mathbb{Z} and $\mathbb{Z}/n\mathbb{Z}$ for positive integers n.

Proposition 6.31. Every finitely generated subgroup of \mathbb{Q} is cyclic.

Proof:

```
\langle 1 \rangle 1. Let: G = \langle a_1/b, \dots, a_n/b \rangle where a_1, \dots, a_n, b are integers with b > 0 \langle 1 \rangle 2. Let: a = \gcd(a_1, \dots, a_n)
```

 $\langle 1 \rangle 3. \ G = \langle a/b \rangle$

Corollary 6.31.1. \mathbb{Q} is not finitely generated.

Theorem 6.32. For any positive integer n we have

$$\sum_{m>0,m|n}\phi(m)=n \ .$$

Proof.

 $\langle 1 \rangle 1$. Define $\chi : \{0, 1, \dots, n-1\} \to \{(m, d) : m > 0, m \mid n, d \text{ generates } \langle n/m \rangle \}$ by: $\chi(x) = (\gcd(x, n), x)$.

 $\langle 1 \rangle 2$. χ is injective.

 $\langle 1 \rangle 3$. χ is surjective.

PROOF: Given (m, d) such that d generates $\langle n/m \rangle$ we have $\chi(d) = (m, d)$.

 $\langle 1 \rangle 4$. $n = \sum_{m>0, m|n} \phi(m)$

PROOF: Since $\langle n/m \rangle \cong C_m$ and so has $\phi(m)$ generators.

6.5 Free Groups

Proposition 6.33. Let A be a set. Let \mathcal{F}^A be the category whose objects are pairs (G,j) where G is a group and j is a function $A \to G$, with morphisms $f:(G,j)\to (H,k)$ the group homomorphisms $f:G\to H$ such that $f\circ j=k$. Then \mathcal{F}^A has an initial object.

Proof:

 $\langle 1 \rangle 1$. Let: W(A) be the set of words in the alphabet whose elements are the elements of A together with $\{a^{-1}: a \in A\}$.

- $\langle 1 \rangle 2$. Let: $r: W(A) \to W(A)$ be the function that, given a word w, removes the first pair of letters of the form aa^{-1} or $a^{-1}a$; if there is no such pair, then r(w) = w.
- $\langle 1 \rangle 3$. Let us say that a word w is a reduced word iff r(w) = w.
- $\langle 1 \rangle 4$. For any word w of length n, we have $r^{\lceil \frac{n}{2} \rceil}(w)$ is a reduced word.

PROOF: Since we cannot remove more than n/2 pairs of letters from w.

- $\langle 1 \rangle$ 5. Let: $R: W(A) \to W(A)$ be the function $R(w) = r^{\lceil \frac{n}{2} \rceil}(w)$, where n is the length of w.
- $\langle 1 \rangle 6$. Let: F(A) be the set of reduced words.
- $\langle 1 \rangle$ 7. Define $\cdot : F(A)^2 \to F(A)$ by $w \cdot w' = R(ww')$
- $\langle 1 \rangle 8$. · is associative.

PROOF: Both $w_1 \cdot (w_2 \cdot w_3)$ and $(w_1 \cdot w_2) \cdot w_3$ are equal to $R(w_1 w_2 w_3)$.

- $\langle 1 \rangle 9$. The empty word is the identity element in F(A)
- $\langle 1 \rangle 10$. The inverse of $a_1^{\pm 1} a_2^{\pm 1} \cdots a_n^{\pm 1}$ is $a_n^{\mp 1} \cdots a_2^{\mp 1} a_1^{\mp 1}$.
- $\langle 1 \rangle 11$. Let: $j: A \to F(A)$ be the function that maps a to the word a of length
- $\langle 1 \rangle 12$. Let: G be any group and $k: A \to G$ any function.
- (1)13. The only morphism $f: (F(A), j) \to (G, k)$ in \mathcal{F}^A is $f(a_1^{\pm 1} a_2^{\pm 1} \cdots a_n^{\pm 1}) = k(a_1)^{\pm 1} k(a_2)^{\pm 1} \cdots k(a_n)^{\pm 1}$.

Definition 6.34 (Free Group). For any set A, the *free group* on A is the initial object (F(A), i) in \mathcal{F}^A .

Proposition 6.35. $i: A \to F(A)$ is injective.

Proof:

- $\langle 1 \rangle 1$. Let: $x, y \in A$
- $\langle 1 \rangle 2$. Assume: $x \neq y$

PROVE: $i(x) \neq i(y)$

- $\langle 1 \rangle$ 3. Let: $f: A \to C_2$ be the function that maps x to 0 and all other elements of A to 1.
- $\langle 1 \rangle 4$. Let: $\phi : F(A) \to C_2$ be the group homomorphism such that $f = \phi \circ i$.
- $\langle 1 \rangle 5. \ f(x) \neq f(y)$
- $\langle 1 \rangle 6. \ \phi(i(x)) \neq \phi(i(y))$
- $\langle 1 \rangle 7. \ i(x) \neq i(y)$

Proposition 6.36.

$$F(0) \cong \{e\}$$

PROOF: For any set A, the unique group homomorphism $\{e\} \to A$ makes the following diagram commute.

Proposition 6.37. The free group on 1 is \mathbb{Z} with the injection mapping 0 to 1.

PROOF: Given any group G and function $a:1\to G$, the required unique homomorphism $\phi:\mathbb{Z}\to G$ is defined by $\phi(n)=a(0)^n$. \square

Proposition 6.38. For any sets A and B, we have that F(A + B) is the coproduct of F(A) and F(B) in **Grp**.

Proof:

- $\langle 1 \rangle 1$. Let: $i_A: A \to F(A), i_B: B \to F(B), j: A+B \to F(A+B)$ be the canonical injections.
- $\langle 1 \rangle 2$. Let: κ_1 , κ_2 be the unique group homomorphisms that make the diagram above commute.
- $\langle 1 \rangle 3.$ Let: G be any group and $f: F(A) \to G, \ g: F(B) \to G$ any group homomorphisms.
- $\langle 1 \rangle 4$. Let: $h: A+B \to G$ be the unique function such that $h \circ k_1 = f \circ i_A$ and $h \circ k_2 = g \circ i_B$.
- $\langle 1 \rangle$ 5. Let: $k: F(A+B) \to G$ be the unique group homomorphism such that $k \circ j = h.$
- $\langle 1 \rangle$ 6. k is the unique group homomorphism such that $k \circ \kappa_1 \circ i_A = f \circ i_A$ and $k \circ \kappa_2 \circ i_B = g \circ i_B$.
- $\langle 1 \rangle 7$. k is the unique group homomorphism such that $k \circ \kappa_1 = f$ and $k \circ \kappa_2 = g$.

Definition 6.39 (Subgroup Generated by a Group). Let G be a group and A a subset of G. Let $\phi: F(A) \to G$ be the unique group homomorphism such that $\phi(a) = a$ for all $a \in A$. The subgroup *generated* by A is

$$\langle A \rangle := \operatorname{im} \phi$$

Proposition 6.40. Let G be a group and A a subset of G. Then $\langle A \rangle$ is the set of all elements of the form $a_1^{\pm 1}a_2^{\pm 1}\cdots a_n^{\pm 1}$ (where $n \geq 0$) such that $a_1,\ldots,a_n \in A$.

Proof: Immediate from definitions. \Box

Corollary 6.40.1. Let G be a group and $g \in G$. Then

$$\langle g \rangle = \{ g^n : n \in \mathbb{Z} \} .$$

Proposition 6.41. Let G be a group and A a subset of G. Then $\langle A \rangle$ is the intersection of all the subgroups of G that include A.

Proof: Easy.

Proposition 6.42. Let G be a group and $g \in G$. Then $\langle g \rangle$ is cyclic.

PROOF: If g has finite order then $\langle g \rangle \cong C_{|g|}$, otherwise $\langle g \rangle \cong \mathbb{Z}$. \square

Definition 6.43 (Finitely Generated). Let G be a group. Then G is *finitely generated* iff there exists a finite subset A of G such that $G = \langle A \rangle$.

Example 6.44. Every cyclic group is finitely generated.

Proposition 6.45. Every subgroup of a finitely generated free group is free.

PROOF: TODO.

Proposition 6.46. F(2) includes subgroups isomorphic to the free group on arbitrarily many generators.

PROOF: TODO

Proposition 6.47.

$$[F(2), F(2)] \cong F(\mathbb{Z})$$

PROOF: TODO

6.6 Normal Subgroups

Definition 6.48 (Normal Subgroup). A subgroup N of G is *normal* iff, for all $g \in G$ and $n \in N$, we have $gng^{-1} \in N$.

Proposition 6.49. Let G be a group and N a subgroup of G. Then the following are equivalent.

- 1. N is normal.
- 2. $\forall g \in G.gNg^{-1} \subseteq N$
- 3. $\forall g \in G.gNg^{-1} = N$
- 4. $\forall g \in G.gN \subseteq Ng$
- 5. $\forall g \in G.gN = Ng$

Proof:

 $\langle 1 \rangle 1$. $1 \Leftrightarrow 2$

PROOF: Immediate from definitions. $\langle 1 \rangle 2$. $2 \Rightarrow 3$ PROOF: If 2 holds then we have $gNg^{-1} \subseteq N$ and $g^{-1}Ng \subseteq N$ hence $N = gNg^{-1}$. $\langle 1 \rangle 3$. $3 \Rightarrow 2$ PROOF: Trivial.

 $\langle 1 \rangle 4. \ 2 \Leftrightarrow 4$

Proof: Easy. $\langle 1 \rangle 5$. $3 \Leftrightarrow 5$

PROOF: Easy.

PROOF: Easy

Proposition 6.50. Let $\phi: G \to H$ be a group homomorphism. Then $\ker \phi$ is a normal subgroup of G.

PROOF: Given $g \in G$ and $n \in \ker \phi$ we have

$$\phi(gng^{-1}) = \phi(g)\phi(n)\phi(g)^{-1}$$
$$= \phi(g)\phi(g)^{-1}$$
$$= e$$

and so $gng^{-1} \in \ker \phi$. \square

6.7 Quotient Groups

Proposition 6.51. Let G be a group. Let \sim be an equivalence relation on G. Then there exists an operation $\cdot: (G/\sim)^2 \to G/\sin$ such that

$$\forall a,b \in G.[a][b] = [ab]$$

iff, for all $a, g, g' \in G$, if $a \sim a'$ then $ag \sim a'g$ and $ga \sim ga'$. In this case, $G/\sim is$ a group under \cdot and the canonical function $\pi:G\to G/\sim is$ a group homomorphism, and is universal with respect to group homomorphisms $\phi:G\to G'$ such that if $a\sim a'$ then $\phi(a)=\phi(a')$.

Proof: Easy.

Chapter 7

Abelian Groups

Definition 7.1 (Abelian Group). A group is *Abelian* iff any two elements commute.

In an Abelian group G, we often denote the group operation by +, the identity element by 0 and the inverse of an element g by -g. We write ng for g^n ($g \in G$, $n \in \mathbb{Z}$).

Example 7.2. Every group of order ≤ 4 is Abelian.

Example 7.3. For any positive integer n, we have $\mathbb{Z}/n\mathbb{Z}$ is an Abelian group under addition.

Example 7.4. S_n is not Abelian for $n \geq 3$. If $x = \begin{pmatrix} 1 & 2 \end{pmatrix}$ and $y = \begin{pmatrix} 1 & 3 & 2 \end{pmatrix}$ then $xy = \begin{pmatrix} 2 & 3 \end{pmatrix}$ and $yx = \begin{pmatrix} 1 & 3 \end{pmatrix}$.

Example 7.5. There are 42 Abelian groups of order 1024 up to isomorphism.

Proposition 7.6. Let G be a group. If $g^2 = e$ for all $g \in G$ then G is Abelian.

PROOF: For any $g, h \in G$ we have

$$ghgh = e$$
∴ $hgh = g$ (multiplying on the left by g)
∴ $hg = gh$ (multiplying on the right by h)

Proposition 7.7. Let G be a group. Then G is Abelian if and only if the function that maps g to g^{-1} is a group homomorphism.

Proof:

 $\langle 1 \rangle 1.$ If G is Abelian then the function that maps g to g^{-1} is a group homomorphism.

PROOF: Since $(gh)^{-1} = h^{-1}g^{-1} = g^{-1}h^{-1}$.

 $\langle 1 \rangle 2$. If the function that maps g to g^{-1} is a group homomorphism then G is Abelian.

PROOF: Since $gh = (g^{-1})^{-1}(h^{-1})^{-1} = (g^{-1}h^{-1})^{-1} = hg$.

Proposition 7.8. Let G be a group. Then G is Abelian if and only if the function that maps g to g^2 is a group homomorphism.

Proof:

 $\langle 1 \rangle 1.$ If G is Abelian then the function that maps g to g^2 is a group homomorphism.

PROOF: Since $(gh)^2 = g^2h^2$.

 $\langle 1 \rangle 2$. If the function that maps g to g^2 is a group homomorphism then G is Abelian.

PROOF: Since we have $(gh)^2 = ghgh = g^2h^2$ and so hg = gh.

Proposition 7.9. Let G be a group. Then G is Abelian if and only if the homomorphism $\gamma: G \to \operatorname{Aut}_{\mathbf{Grp}}(G)$ is the trivial homomorphism.

PROOF:

 $\langle 1 \rangle 1$. If G is Abelian then γ is trivial.

PROOF: Since $\gamma_g(a) = gag^{-1} = a$.

 $\langle 1 \rangle 2$. If γ is trivial then G is Abelian.

PROOF: If $\gamma_g(a) = gag^{-1} = a$ for all g and a then ga = ag for all g, a.

Proposition 7.10. Let G be an Abelian group. Let $g, h \in G$. If g has maximal finite order in G, and h has finite order, then |h| |g|.

PROOF.

- $\langle 1 \rangle 1$. Assume: for a contradiction $|h| \nmid |g|$.
- $\langle 1 \rangle 2$. PICK a prime p such that $|g| = p^m r$, $|h| = p^n s$ where $p \nmid r$, $p \nmid s$ and m < n.

 $\langle 1 \rangle 3. |g^{p^m} h^s| = p^n r$

Proof: Proposition 5.20.

- $\langle 1 \rangle 4. |g| < |g^{p^m} h^s|$
- $\langle 1 \rangle 5$. Q.E.D.

PROOF: This contradicts the maximality of |g|.

Proposition 7.11. If p is prime then $(\mathbb{Z}/p\mathbb{Z})^*$ is cyclic.

Proof

- $\langle 1 \rangle 1$. Let: g be an element of maximal order in $(\mathbb{Z}/p\mathbb{Z})^*$.
- $\langle 1 \rangle 2$. For all $h \in (\mathbb{Z}/p\mathbb{Z})^*$ we have $h^{|g|} = 1$. PROOF: Proposition 7.10.

 $\langle 1 \rangle 3$. There are at most |g| elements x such that $x^{|g|} = 1$ in $\mathbb{Z}/p\mathbb{Z}$

- $\langle 1 \rangle 4$. $p-1 \leq |g|$
- $\langle 1 \rangle 5. |q| = p 1$
- $\langle 1 \rangle 6$. g generates $(\mathbb{Z}/p\mathbb{Z})^*$.

Example 7.12. $(\mathbb{Z}/12\mathbb{Z})^*$ is not cyclic. Its elements are 1, 5, 7 and 11 with orders 1, 2, 2 and 2.

Theorem 7.13 (Wilson's Theorem). A positive integer p is prime if and only if $(p-1)! \equiv 1 \pmod{p}$.

```
\begin{split} \langle 1 \rangle 1. & \text{ If } p \text{ is prime then } (p-1)! \equiv 1 (\mod p). \\ \langle 2 \rangle 1. & \text{ Assume: } p \text{ is prime.} \\ \langle 2 \rangle 2. & (p-1)! \text{ is the product of all the elements of } (\mathbb{Z}/p\mathbb{Z})^* \\ \langle 2 \rangle 3. & \text{ The only element of } (\mathbb{Z}/p\mathbb{Z})^* \text{ with order 2 is } -1. \\ \langle 2 \rangle 4. & (p-1)! \equiv -1 (\mod p) \\ & \text{ Proof: Proposition 5.21.} \\ \langle 1 \rangle 2. & \text{ If } (p-1)! \equiv -1 (\mod p) \text{ then } p \text{ is prime.} \\ \langle 2 \rangle 1. & \text{ Assume: } (\\ & (p-1)! \equiv -1 (\mod p)) \\ \langle 2 \rangle 2. & \text{ Let: } d \text{ be a proper divisor of } p. \\ & \text{ Prove: } d=1 \\ \langle 2 \rangle 3. & d \mid (p-1)! \\ \langle 2 \rangle 4. & d \mid 1 \\ & \text{ Proof: Since } d \mid p \mid (p-1)! + 1. \end{split}
```

Proposition 7.14. If p and q are distinct odd primes then $(\mathbb{Z}/pq\mathbb{Z})^*$ is not cyclic.

```
Proof:
```

 $\langle 2 \rangle 5.$ d=1

Proposition 7.15. For any prime p, we have $\operatorname{Aut}_{\mathbf{Grp}}(C_p) \cong C_{p-1}$.

Proof:

```
\langle 1 \rangle 1. Let: \phi : \operatorname{Aut}_{\mathbf{Grp}}(C_p) \to (\mathbb{Z}/p\mathbb{Z})^* be the function \phi(\alpha) = \alpha(1). Proof: \alpha(1) has order p in C_p and so is coprime with p. \langle 1 \rangle 2. \phi is a homomorphism. Proof: \phi(\alpha \circ \beta) = \alpha(\beta(1)) = \alpha(\beta(1)1) = \beta(1)\alpha(1) = \phi(\alpha)\phi(\beta) \langle 1 \rangle 3. \phi is injective. Proof: If \phi(\alpha) = \phi(\beta) then for any n we have \alpha(n) = n\alpha(1) = n\phi(\alpha) = n\phi(\beta) = n\beta(1) = \beta(n).
```

 $\langle 1 \rangle 4$. ϕ is surjective.

PROOF: For any $r \in (\mathbb{Z}/p\mathbb{Z})^*$ we have $r = \phi(\alpha)$ where $\alpha(n) = nr \mod p$. $\langle 1 \rangle 5$. $(\mathbb{Z}/p\mathbb{Z})^* \cong C_{p-1}$

Proposition 7.16. Given a set A and an Abelian group H, the set H^A is an Abelian group under

$$(\phi + \psi)(a) = \phi(a) + \psi(a) \qquad (\phi, \psi \in H^A, a \in A) .$$

Proof:

- $\langle 1 \rangle 1. \ \phi + (\psi + \chi) = (\phi + \psi) + \chi$
- $\langle 1 \rangle 2. \ \phi + \psi = \psi + \phi$
- $\langle 1 \rangle 3$. Let: $0: A \to H$ be the function 0(a) = 0.
- $\langle 1 \rangle 4. \ \phi + 0 = 0 + \phi = \phi$
- $\langle 1 \rangle$ 5. Given $\phi: A \to H$, define $-\phi: A \to H$ by $(-\phi)(a) = -(\phi(a))$.
- $\langle 1 \rangle 6. \ \phi + (-\phi) = (-\phi) + \phi = 0$

Proposition 7.17. Given a group G and an Abelian group H, the set Grp[G, H] is a subgroup of H^G .

Proof:

 $\langle 1 \rangle 1.$ Given $\phi, \psi: G \to H$ group homomorphisms, we have $\phi - \psi$ is a group homomorphism.

Proof:

$$(\phi - \psi)(g + g') = \phi(g + g') - \psi(g + g')$$

$$= \phi(g) + \phi(g') - \psi(g) - \psi(g')$$

$$= \phi(g) - \psi(g) + \phi(g') - \psi(g')$$

$$= (\phi - \psi)(g) + (\phi - \psi)(g')$$

Proposition 7.18. Let G be a group. The following are equivalent.

- 1. Inn(G) is cyclic.
- 2. Inn(G) is trivial.
- 3. G is Abelian.

Proof:

- $\langle 1 \rangle 1. \ 1 \Rightarrow 2$
 - $\langle 2 \rangle 1$. Assume: $Inn(G) = \langle \gamma_a \rangle$
 - $\langle 2 \rangle 2$. g commutes with every element of G
 - $\langle 3 \rangle 1$. Let: $x \in G$
 - $\langle 3 \rangle 2$. PICK $n \in \mathbb{Z}$ such that $\gamma_x = \gamma_q^n$
 - $\langle 3 \rangle 3. \ \forall y \in G.xyx^{-1} = g^n yg^{-n}$
 - $\langle 3 \rangle 4$. $xgx^{-1} = g$

```
\begin{array}{l} \langle 2 \rangle 3. \  \, \gamma_g = \operatorname{id}_G \\ \langle 1 \rangle 2. \  \, 2 \Rightarrow 3 \\ \langle 2 \rangle 1. \  \, \operatorname{Assume:} \  \, \forall g \in G. \gamma_g = \operatorname{id}_G \\ \langle 2 \rangle 2. \  \, \operatorname{Let:} \  \, x, y \in G \\ \langle 2 \rangle 3. \  \, \gamma_x(y) = y \\ \langle 2 \rangle 4. \  \, xyx^{-1} = y \\ \langle 2 \rangle 5. \  \, xy = yx \\ \langle 1 \rangle 3. \  \, 3 \Rightarrow 2 \\ \text{Proof: If } xy = yx \text{ for all } x, y \text{ then } \gamma_x(y) = y \text{ for all } x, y. \\ \langle 1 \rangle 4. \  \, 2 \Rightarrow 1 \\ \text{Proof: Easy.} \\ \end{array}
```

Corollary 7.18.1. If $Aut_{Grp}(G)$ is cyclic then G is Abelian.

Proposition 7.19. Every subgroup of an Abelian group is normal.

PROOF: Let G be an Abelian group and N a subgroup of G. Given $g \in G$ and $n \in N$ we have $qnq^{-1} = n \in N$. \square

7.1 The Category of Abelian Groups

Definition 7.20 (Category of Abelian Groups). Let **Ab** be the full subcategory of **Grp** whose objects are the Abelian groups.

Definition 7.21 (Direct Sum). Given Abelian groups G and H, we also call the direct product of G and H the direct sum and denote it $G \oplus H$.

Proposition 7.22. Given Abelian groups G and H, the direct sum $G \oplus H$ is the coproduct of G and H in \mathbf{Ab} .

Proof:

- $\langle 1 \rangle 1$. Let: $\kappa_1 : G \to G \oplus H$ be the group homomorphism $\kappa_1(g) = (g, e_H)$.
- $\langle 1 \rangle 2$. Let: $\kappa_2 : H \to G \oplus H$ be the group homomorphism $\kappa_2(h) = (e_G, h)$.
- $\langle 1 \rangle 3$. Given group homomorphism $\phi : G \to K$ and $\psi : H \to K$, define $[\phi, \psi] : G \oplus H \to K$ by $[\phi, \psi](g, h) = \phi(g) + \psi(h)$.
- $\langle 1 \rangle 4$. $[\phi, \psi]$ is a group homomorphism.

Proof:

$$\begin{split} [\phi,\psi]((g,h)+(g',h')) &= [\phi,\psi](g+g',h+h') \\ &= \phi(g+g')+\psi(h+h') \\ &= \phi(g)+\phi(g')+\psi(h)+\psi(h') \\ &= \phi(g)+\psi(h)+\phi(g')+\psi(h') \\ &= [\phi,\psi](g,h)+[\phi,\psi](g',h') \end{split}$$

$$\langle 1 \rangle 5. \ [\phi, \psi] \circ \kappa_1 = \phi$$

Proof:

$$[\phi, \psi](\kappa_1(g)) = [\phi, \psi](g, e_h)$$
$$= \phi(g) + \psi(e_H)$$
$$= \phi(g) + e_K$$
$$= \phi(g)$$

 $\langle 1 \rangle 6. \ [\phi, \psi] \circ \kappa_2 = \psi$

Proof: Similar.

 $\langle 1 \rangle$ 7. If $f: G \oplus H \to K$ is a group homomorphism with $f \circ \kappa_1 = \phi$ and $f \circ \kappa_2 = \psi$ then $f = [\phi, \psi]$.

Proof:

$$f(g,h) = f((g,e_H) + (e_G,h))$$

= $f(\kappa_1(g)) + f(\kappa_2(h))$
= $\phi(g) + \psi(h)$

Theorem 7.23. Every finitely generated Abelian group is a direct sum of cyclic groups.

PROOF: TODO

7.2 Free Abelian Groups

Proposition 7.24. Let A be a set. Let \mathcal{F}^A be the category whose objects are pairs (G,j) where G is an Abelian group and j is a function $A \to G$, with morphisms $f:(G,j)\to (H,k)$ the group homomorphisms $f:G\to H$ such that $f\circ j=k$. Then \mathcal{F}^A has an initial object.

Proof:

- $\langle 1 \rangle 1$. Let: $\mathbb{Z}^{\oplus A}$ be the subgroup of \mathbb{Z}^A consisting of all functions $\alpha : A \to \mathbb{Z}$ such that $\alpha(a) = 0$ for only finitely many $a \in A$.
- $\langle 1 \rangle 2$. Let: $i: A \to \mathbb{Z}^{\oplus A}$ be the function such that i(a)(b) = 1 if a = b and 0 if $a \neq b$.
- $\langle 1 \rangle 3$. Let: G be any Abelian group and $j: A \to G$ any function.
- (1)4. The unique homomorphism $\phi: \mathbb{Z}^{\oplus A} \to G$ required is defined by $\phi(\alpha) = \sum_{a \in A} \alpha(a) j(a)$

Definition 7.25 (Free Abelian Group). For any set A, the free Abelian group on A is the initial object $(F^{ab}(A), i)$ in \mathcal{F}^A .

Proposition 7.26. For any sets A and B, we have that $F^{ab}(A+B)$ is the coproduct of $F^{ab}(A)$ and $F^{ab}(B)$ in **Grp**.

Proof:

- $\langle 1 \rangle 1$. Let: $i_A: A \to F^{ab}(A), i_B: B \to F^{ab}(B), j: A+B \to F^{ab}(A+B)$ be the canonical injections.
- $\langle 1 \rangle$ 2. Let: κ_1 , κ_2 be the unique group homomorphisms that make the diagram above commute.
- $\langle 1 \rangle 3$. Let: G be any group and $f: F^{ab}(A) \to G, g: F^{ab}(B) \to G$ any group homomorphisms.
- $\langle 1 \rangle 4$. Let: $h: A+B \to G$ be the unique function such that $h \circ k_1 = f \circ i_A$ and $h \circ k_2 = g \circ i_B$.
- $\langle 1 \rangle$ 5. Let: $k: F^{ab}(A+B) \to G$ be the unique group homomorphism such that $k \circ j = h$.
- $\langle 1 \rangle 6$. k is the unique group homomorphism such that $k \circ \kappa_1 \circ i_A = f \circ i_A$ and $k \circ \kappa_2 \circ i_B = g \circ i_B$.
- $\langle 1 \rangle 7$. k is the unique group homomorphism such that $k \circ \kappa_1 = f$ and $k \circ \kappa_2 = g$.

Proposition 7.27. For A and B finite sets, if $F^{ab}(A) \cong F^{ab}(B)$ then $A \cong B$.

Proof:

- $\langle 1 \rangle 1$. For any set C, define \sim on $F^{ab}\left(C\right)$ by: $f \sim f'$ iff there exists $g \in F^{ab}\left(C\right)$ such that f f' = 2g.
- $\langle 1 \rangle 2$. For any set C, \sim is an equivalence relation on $F^{\mathrm{ab}}\left(C\right)$.
- $\langle 1 \rangle$ 3. For any set C, we have $F^{ab}(C) / \sim$ is finite if and only if C is finite, in which case $|F^{ab}(C)| / \sim |=2^{|C|}$.

PROOF: There is a bijection between $F^{ab}(C) / \sim$ and the finite subsets of C, which maps f to $\{c \in C : f(c) \text{ is odd}\}.$

 $\langle 1 \rangle 4$. If $F^{ab}(A) \cong F^{ab}(B)$ then $A \cong B$.

PROOF: If $|F^{ab}(A)/\sim|=|F^{ab}(B)/\sim|$ then $2^{|A|}=2^{|B|}$ and so |A|=|B|.

Proposition 7.28. Let G be an Abelian group. Then G is finitely generated if and only if there exists a surjective homomorphism $\mathbb{Z}^{\oplus n} \twoheadrightarrow G$ for some n.

Proof:

 $\langle 1 \rangle 1$. If G is finitely generated then there exists a surjective homomorphism $\mathbb{Z}^{\oplus n} \twoheadrightarrow G$ for some n.

PROOF: Let $G = \langle a_1, \dots, a_n \rangle$. Define $\phi : \mathbb{Z}^{\oplus n} \twoheadrightarrow G$ by $\phi(i_1, \dots, i_n) = i_1 \cdot a_1 + \dots + i_n \cdot a_n$.

 $\langle 1\rangle 2.$ If there exists a surjective homomorphism $\phi:\mathbb{Z}^{\oplus n}\twoheadrightarrow G$ for some n then G is finitely generated.

PROOF: G is generated by $\phi(1, 0, ..., 0), \phi(0, 1, 0, ..., 0), ..., \phi(0, ..., 0, 1)$.

Part III Linear Algebra

Definition 7.29. Let $GL_n(\mathbb{R})$ be the group of invertible $n \times n$ real matrices.

Definition 7.30. Let $GL_n(\mathbb{C})$ be the group of invertible $n \times n$ complex matrices.

Definition 7.31. Let $SL_n(\mathbb{R}) = \{M \in GL_n(\mathbb{R}) : \det M = 1\}.$

Definition 7.32. Let $SL_n(\mathbb{C}) = \{ M \in GL_n(\mathbb{C}) : \det M = 1 \}.$

Definition 7.33. Let $O_n(\mathbb{R}) = \{ M \in GL_n(\mathbb{R}) : MM^T = M^TM = I_n \}.$

Definition 7.34. Let $SO_n(\mathbb{R}) = \{M \in O_n(\mathbb{R}) : \det M = 1\}.$

Definition 7.35. Let $U_n(\mathbb{C}) = \{ M \in GL_n(\mathbb{C}) : MM^{\dagger} = M^{\dagger}M = I_n \}.$

Definition 7.36. Let $SU_n(\mathbb{C}) = \{M \in U_n(\mathbb{C}) : \det M = 1\}.$

Proposition 7.37. Every matrix in $SU_2(\mathbb{C})$ can be written in the form

$$\left(\begin{array}{ccc}
a+bi & c+di \\
-c+di & a-bi
\end{array}\right)$$

for some $a, b, c, d \in \mathbb{R}$ with $a^2 + b^2 + c^2 + d^2 = 1$.

Proof:

TROOF.
$$\langle 1 \rangle 1. \text{ LET: } M = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in \mathrm{SU}_2(\mathbb{C})$$
$$\langle 1 \rangle 2. \ M^{-1} = M^{\dagger}$$

$$\langle 1 \rangle 2$$
, $M^{-1} = M^{\dagger}$

(1)4. Let:
$$\alpha = a + bi$$
 and $\beta = c + di$

$$\langle 1 \rangle 5. \ \delta = \overline{\alpha} = a - bi$$

$$\langle 1 \rangle 6. \ \gamma = -\beta = -c + da$$

$$\begin{array}{l} \langle 1 \rangle 6. \quad \gamma = -\overline{\beta} = -c + di \\ \langle 1 \rangle 7. \quad \det M = a^2 + b^2 + c^2 + d^2 = 1 \\ \square \end{array}$$

Corollary 7.37.1. $SU_2(\mathbb{C})$ is simply connected.