State transition table below:

	To	S	X	NC	Е
From					
S		0	0,5	0,5	0
X		0	0,8	0,1	0,1
NC		0	0,2	0,6	0,2
Е		0	0	0	1

Probability to generate one of the four nucleotide subunits A, C, G, T in the four states is given in the table below:

Nucleotide generation	A	С	G	T
State				
S	0	0	0	0
X	0,4	0,1	0,2	0,3
NC	0,4	0,1	0,1	0,4
Е	0	0	0	0

a. A DNA chain starting with two nucleotides in the following order 'G', 'T' is generated. What is the most likely sequence of states to have generated this start of a DNA chain? Use the Viterbi algorithm.

Hint: you may ignore the end state (E) in the calculations.

Aarles i: i=0: "Black" i=1: "X" i=2: "NC" Notation! V4 (i): probability of best path envirg in take i at time 7. sequence of Aares that generates the required obsensations (9",") WA (i): Aate at time to of best path corresponding to y(i) observation: "g" V2 (1) = max [0,1.0,8;0,05.0,2].0,3= $V_1(1) = \frac{1}{5} \cdot 92 = 9,1$ = max [0,08; 0,01] 2.0,3=0,024 W, (1) = 0 ("Stan") V2 (2) = max [0,1.0,1;0,05.0,6] 0,4= $V_1(2) = \frac{1}{2} \cdot 91 = 9.05$ = max [0,01; 0,03].0,4=0,012 $W_{2}(2) = 2 \quad ("NC")$ A=0 9=2

ANSWER: $V_2(1) > V_2(2)$: bed path ends at time l=2 in "X": $S_2^*=1$ sequence of Alabes generating ("\(lambda'', \tau''): \(lambda', \tau'', \tau''')

$$S_{i}^{*} = W_{2}(S_{2}^{*}) = W_{2}(I) = I("x")$$

 $S_{0}^{*} = W_{1}(S_{i}^{*}) = W_{1}(I) = O("8harb")$

Thus: Most likely sequence of Aaks to generative "g", 7":
"Start" > "X" > "X"