# **Historic Overview of Threat Hunting**

The Victory of Allied troops against Hitler's Army at World War II

#### **Strategies**

- Improved detection equipment to avoid moment of surprise.
- Improved offensive weapons to shoot down the bombers and sub-marines
- Improved training for the hunters.
- Decrypted the coded messages.

# People, Process and Technology

Leverage Open Source Technology to build your SOC

A. S. M. Shamim Reza

Link3 Technologies Limited



# Agenda

```
What to do, to build a SOC?
What not to do, to build a SOC?
```

### What is a SOC?

A **SOC** (*Security Operations Center*) is a team primarily composed of security analysts organized to detect, analyze, respond to, report on, and prevent Cybersecurity incidents.

- Carson Zimmerman, MITRE

#### People

Threat Hunter SOC Analyst Forensic Investigator Incident Responder

#### **Process**

Governance Workflows Best Practice

#### **Technology**

Data collection
Correlation
Monitoring
Threat Intelligence
Forensic Analysis
Incidence Response

# Strategic move to Build a SOC



# Strategic move to Build a SOC - Plan

- Concerned about Cost.
- Define the use cases.
- Choosing the *best fitted* Open Source project; *not the best one*.
- Scalability of the SOC infrastructure.

- Define the Operations policy.
- Categorizes the Awareness & Training phase.
- Define the Single Source of Truth.

# Strategic move to Build a SOC – Plan

- Zero trust policy on employee devices.
- Ensure the authority to do the job of SOC.
- A wiki portal to store
  - SIEM monitoring and Notification (email, mobile, chat, etc.) procedure.
  - Event management process.
  - Security Incident Ticket management process.
  - Incident Handling, Reporting and Escalation process.
  - Daily activities process like checklist and handover.
  - Compliance monitoring process.
  - Daily, weekly and monthly report format to Management.

# Strategic move to Build a SOC - Design

What we had in place, before thinking about the SOC!

- Event and Metric based monitoring system.
  - Run-time alerts
  - Daily, Weekly and Monthly auto-generated report
  - Time-series performance metrics
- Central syslog analytics platform.
  - Incident analysis
- Machine Learning based Threat Hunting into NetFlow data.
  - Pattern analysis
  - Human behavior analysis
- NIST framework to maintain regulatory compliance
- CIS benchmark to assess OS and service configuration security.



# Strategic move to Build a SOC – Design The Technology

| Service ?                                                                                                                                                                                                                                                                                                                      | Platform ?                                                                                                                                              | Others?                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Intrusion Detection</li> <li>File Integrity Monitoring</li> <li>Vulnerability Detection</li> <li>Configuration Assessments</li> <li>Regulatory Compliance</li> <li>Threat Intelligence</li> <li>DNS Metrics</li> <li>Network Traffic</li> <li>Honeypot</li> <li>Packet-capture</li> <li>Incidence Response</li> </ul> | <ul> <li>Docker-Container Based</li> <li>Private Git-repository</li> <li>Private Docker-Hub</li> <li>System Management</li> <li>Isolated LAB</li> </ul> | <ul> <li>Identity &amp; Access Management</li> <li>Documentation</li> <li>Backup</li> <li>Private Communication Channel</li> </ul> |

# Strategic move to Build a SOC - Build

#### The Technology

The SIEM platform





# Strategic move to Build a SOC – Build The Technology

#### The DNS Analytics



- **Promtail** is exporting the **RPZ** log to Loki server.
- **Prometheus-exporter** is exporting DNS metrics to the Prometheus server.
- *Grafana* visualizes the metrics and log data, and send alerts to rocket.chat and in email.

# Strategic move to Build a SOC - Build

# The Technology

#### The NIDS



- *Suricata IDS* is exporting the log with *FileBeats* to *logstash*.
- The *Suricata IDS* event is stored at *EveBox* with *Elasticsearch*,
- *Scirius* is managing *Suricata* rules
- *Arkime* (former *Moloch*) is working with the *Packet-Capture*.
- The Platform is Custom build of *SELKS* distribution.

# Strategic move to Build a SOC - Build The Technology

#### The Threat Intel



# Strategic move to Build a SOC – Operate *Process*

Incidence Response – *Phishing Attack* 



# Strategic move to Build a SOC – Operate *People*

There is **NO**replacement for
the human
analyst.



SOC Chief

# Let's talk Cases



#### **DGA** – Domain Generation Algorithm

1<sup>st</sup> day, Got spike on "Classification: Potentially Bad Traffic" at IDS Platform.

#### **DNS Query Log** to check further –

```
11-Jan-2021 08:14:07.446 client 172.2.2.2 55823 (m21.wbputkk.cc): query: m21.wbputkk.cc IN A + (192.1.1.1)
11-Jan-2021 08:14:07.446 client 172.2.2.2 51934 (m15.harsnic.biz): query: m15.harsnic.biz IN A + (192.1.1.1)
11-Jan-2021 08:14:07.517 client 172.2.2.2 61810 (m36.oeudkwu.biz): query: m36.oeudkwu.biz IN A + (192.1.1.1)
11-Jan-2021 08:14:07.520 client 172.2.2.2 53623 (m38.jiawiqf.biz): query: m38.jiawiqf.biz IN A + (192.1.1.1)
11-Jan-2021 08:14:07.606 client 172.2.2.2 50235 (m37.klrfyid.cc): query: m37.klrfyid.cc IN A + (192.1.1.1)
11-Jan-2021 08:14:07.606 client 172.2.2.2 63923 (m16.zngcyck.cc): query: m16.zngcyck.cc IN A + (192.1.1.1)
11-Jan-2021 08:14:07.726 client 172.2.2.2 56077 (m31.yefjpws.biz): query: m31.yefjpws.biz IN A + (192.1.1.1)
11-Jan-2021 08:14:07.726 client 172.2.2.2 58133 (m7.lfkjkqh.cc): query: m7.lfkjkqh.cc IN A + (192.1.1.1)
11-Jan-2021 08:14:07.815 client 172.2.2.2 50647 (m23.nflotan.cc): query: m23.nflotan.cc IN A + (192.1.1.1)
```

**DGA** (Issues that were raised)

Two Issues are here –

- Never thought of configuring the *Anycast DNS infra* to store *Passive-DNS info*.
  - Had to rely on *Netflow* data to find the *covert channel*.
- The client is located in a remote place.
  - Managing a support personnel is tough, due to the *Covid-19 situation*.

#### **DGA** (Packet Capture)

#### Capturing packet was necessary, cause –

- Need to know the exact nature of the attack.
- Incompetence of Client IT Concern's to deal with IT security
- Need to assist the concern, as a service provider
- Provide some recommendation, not to repeat the issue

#### **Anomalous Net-BIOS Activity**

| No. | Time        | Source        | Destination   | Protocol | Lengtl Info                                                                                    |
|-----|-------------|---------------|---------------|----------|------------------------------------------------------------------------------------------------|
|     | 1 0.000000  | 192.168.0.109 | 13.107.3.128  | TCP      | 66 61862 → 443 [SYN] Seq=0 Win=65535 Len=0 MSS=1460 WS=256 SACK_PERM=1                         |
| Г   | 2 0.025352  | 192.168.0.101 | 192.168.0.255 | NBNS     | 92 Name query NB M4.FJPIOBZ.ME<00>                                                             |
|     | 3 0.063030  | 192.168.0.101 | 192.168.0.255 | NBNS     | 92 Name query NB M42.GDGFCHE.ME<00>                                                            |
|     | 4 0.072055  | 13.107.3.128  | 192.168.0.109 | TCP      | 66 443 → 61862 [SYN, ACK] Seq=0 Ack=1 Win=65535 Len=0 MSS=1440 WS=256 SACK_PERM=1              |
|     | 5 0.072172  | 192.168.0.109 | 13.107.3.128  | TCP      | 54 61862 → 443 [ACK] Seq=1 Ack=1 Win=262144 Len=0                                              |
|     | 6 0.072669  | 192.168.0.109 | 13.107.3.128  | TLSv1.2  | 555 Client Hello                                                                               |
|     | 7 0.073487  | 192.168.0.101 | 192.168.0.255 | NBNS     | 92 Name query NB M2.UOZNMHF.ORG<00>                                                            |
|     | 8 0.102905  | 192.168.0.101 | 192.168.0.255 | NBNS     | 92 Name query NB M22.HNTAZYS.ME<00>                                                            |
|     | 9 0.122896  | 192.168.0.101 | 192.168.0.255 | NBNS     | 92 Name query NB M15.JNUCPWW.NET<00>                                                           |
|     | 10 0.145068 | 13.107.3.128  | 192.168.0.109 | TCP      | 60 443 → 61862 [ACK] Seq=1 Ack=502 Win=262144 Len=0                                            |
|     | 11 0.146885 | 13.107.3.128  | 192.168.0.109 | TCP      | 1514 443 → 61862 [ACK] Seq=1 Ack=502 Win=262144 Len=1460 [TCP segment of a reassembled PDU]    |
|     | 12 0.146887 | 13.107.3.128  | 192.168.0.109 | TCP      | 1514 443 → 61862 [ACK] Seq=1461 Ack=502 Win=262144 Len=1460 [TCP segment of a reassembled PDU] |
|     | 13 0.147026 | 192.168.0.109 | 13.107.3.128  | TCP      | 54 61862 → 443 [ACK] Seq=502 Ack=2921 Win=262144 Len=0                                         |
|     | 14 0.147150 | 13.107.3.128  | 192.168.0.109 | TCP      | 1514 443 → 61862 [ACK] Seq=2921 Ack=502 Win=262144 Len=1460 [TCP segment of a reassembled PDU] |
|     | 15 0.147157 | 13.107.3.128  | 192.168.0.109 | TCP      | 1514 443 → 61862 [ACK] Seq=4381 Ack=502 Win=262144 Len=1460 [TCP segment of a reassembled PDU] |

**DGA** (The DGA Family)

The Characteristics tells the activity is related to *Conficker* Family –

"Conficker use NBNS (NetBIOS Name Service or netbios-ns) protocol to propagate itself into network. NBNS will read the hostname which is tried to attach by Conficker botnet. The hostname will indicate which hostname or computer attach by Conficker."

#### **DGA** (NetFlow Pattern for C2C server)

|            | Date first seen         | Duration Proto | Src IP Addr:Port   | Dst IP Addr:Port   | Packets | Bytes | Flows |
|------------|-------------------------|----------------|--------------------|--------------------|---------|-------|-------|
| <b>D</b> 4 | 2021-01-11 09:20:02.980 | 0.000 UDP      | 172.2.2.2:60948 -> | 209.58.130.216:53  | 1       | 67    | 1     |
| Day 1      | 2021-01-11 09:20:02.980 | 0.000 UDP      | 172.2.2.2:60940 -> | 119.81.145.164:53  | 1       | 67    | 1     |
|            | 2021-01-11 09:20:02.980 | 0.000 UDP      | 172.2.2.2:60942 -> | 89.187.163.225:53  | 1       | 67    | 1     |
|            | 2021-01-11 09:20:02.980 | 0.000 UDP      | 172.2.2.2:60947 -> | 119.81.212.83:53   | 1       | 67    | 1     |
|            | 2021-01-11 09:20:04.970 | 0.000 UDP      | 172.2.2.2:51716 -> | 185.246.208.33:53  | 1       | 146   | 1     |
|            |                         |                |                    |                    |         |       |       |
|            | 2021-01-12 09:20:10.990 | 0.000 UDP      | 172.2.2.2:63512 -> | 185.246.210.177:53 | 1       | 67    | 1     |
| Day 2      | 2021-01-12 09:20:10.990 | 0.000 UDP      | 172.2.2.2:63506 -> | 119.81.145.164:53  | 1       | 67    | 1     |
| Day 2      | 2021-01-12 09:20:10.990 | 0.000 UDP      | 172.2.2.2:63511 -> | 156.146.38.142:53  | 1       | 67    | 1     |
|            | 2021-01-12 09:20:10.950 | 0.000 UDP      | 172.2.2.2:63516 -> | 89.187.163.225:53  | 1       | 146   | 1     |
|            | 2021-01-12 09:20:10.950 | 0.000 UDP      | 172.2.2.2:63521 -> | 119.81.38.202:53   | 1       | 146   | 1     |
|            |                         |                |                    |                    |         |       |       |
|            | 2021-01-13 09:20:01.980 | 0.000 UDP      | 172.2.2.2:56822 -> | 89.187.163.225:53  | 1       | 67    | 1     |
| Day 2      | 2021-01-13 09:20:01.990 | 0.000 UDP      | 172.2.2.2:56824 -> | 119.81.145.164:53  | 1       | 67    | 1     |
| Day 3      | 2021-01-13 09:20:01.990 | 0.000 UDP      | 172.2.2.2:56829 -> | 84.17.46.133:53    | 1       | 67    | 1     |
|            | 2021-01-13 09:20:01.990 | 0.000 UDP      | 172.2.2.2:56827 -> | 192.99.100.41:53   | 1       | 67    | 1     |
|            | 2021-01-13 09:20:02.950 | 0.000 UDP      | 172.2.2.2:56845 -> | 119.81.212.69:53   | 1       | 146   | 1     |

# Challenges

- False-positive alert flood.
- SOC infrastructure escalation.
- Lack of subject matter expertise.
- Communication gap between the team.
- Amateurishness of end-user to an attack alert.



### **Future Work**

- Container orchestration in *Kubernetes*
- *PassiveDNS* info for Anycast Recursive DNS infrastructure
- Move visualization from ELK stack to *Grafana* eco-system
- Incorporate *osquery* for EDR



## Reference

- Ten Strategies of a World-Class Cybersecurity Operations Center Carson Zimmerman, MITRE. https://www.mitre.org/sites/default/files/publications/pr-13-1028-mitre-10-strategies-cyber-ops-center.pdf
- 6 Phases In The Incident Response Plan, David Ellis. https://www.securitymetrics.com/blog/6-phases-incident-response-plan
- The Incident Handler's Handbook, Patrick Kral. 2012. https://www.sans.org/reading-room/whitepapers/incident/incident-handlers-handbook-33901
- NIST Computer Security Incident Handling Guide, SP 800-61r2, https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-61r2.pdf
- The Tao of Network Security Monitoring, BEYOND INTRUSION DETECTION by Richard Bejtlich
- Blue Team Handbook: SOC, SIEM, and Threat Hunting Use Cases, Don Murdoch
- https://thehive-project.org/
- https://www.misp-project.org/
- https://wazuh.com/
- https://suricata-ids.org/
- https://www.stamus-networks.com/scirius-open-source
- https://evebox.org/
- https://prometheus.io/
- https://grafana.com/
- https://rocket.chat/
- https://dnsrpz.info/
- https://arkime.com/
- https://www.elastic.co/
- https://www.docker.com/
- https://www.open-scap.org/
- https://attack.mitre.org/
- https://academy.apnic.net/
- https://www.gartner.com/doc/reprints?id=1-1YAR7TFJ&ct=200207&st=sb

# APRICOT APNIC 51

Manila, Philippines 22 February – 4 March 2021



#apricot2021