Compito di Geometria e Algebra per Ing. Informatica ed Elettronica 18-12-2015-A

1) Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ la funzione lineare definita da

$$f((x,y,z)) = (x + ky - z, x - 5y + z, x - 2y) \ \forall (x,y,z) \in \mathbf{R}^3, \ k \in \mathbf{R}$$
.

- a) Per ogni $k \in \mathbf{R}$ trovare una base e la dimensione di N_f (nucleo di f) ed I_f (immagine di f).
- b) Stabilire, al variare di k, se f è iniettiva o suriettiva.
- c) Discutere l'appartenenza di $\mathbf{v} = (3, 5, \alpha)$ ad $I_f, \alpha \in \mathbf{R}$
- 2) Discutere i seguenti sistemi lineari

a)
$$\begin{cases} 2x - 2y + z = -1 \\ 4x - z = \beta \\ x + \alpha y + 2z = \alpha \end{cases}$$
 b)
$$\begin{cases} 2x - 2y + z - t = 0 \\ 4x - z + \beta t = 0 \\ x + \alpha y + 2z + \alpha t = 0 \end{cases}$$
 $(\alpha, \beta \in \mathbf{R})$

3) Sia
$$A = \begin{pmatrix} 9 & 0 & 0 \\ 10 & \alpha & 0 \\ -2 & 1 & 9 \end{pmatrix}$$
.

- a) Trovare gli eventuali valori di $\alpha \in \mathbf{R}$ per i quali A è diagonalizzabile.
- b) Indicato con f_A l'operatore lineare in \mathbb{R}^3 associato ad A, trovare la dimensione di I_{f_A} (immagine di f_A).

4) Sia
$$A = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 3 & 2 \\ 0 & 2 & 0 \end{pmatrix}$$
 (A è simmetrica).

- a) Diagonalizzare A con una matrice ortogonale U
- b) Detto f_A l'operatore in \mathbf{R}^3 associato ad A, trovare $\alpha \in \mathbf{R}$ in modo che $f_A((1,1,1))$ sia ortogonale al vettore $\mathbf{v} = (-1, -2, \alpha)$.

5) Siano date le rette
$$r \equiv \left\{ \begin{array}{l} x=3z+5 \\ y=2z+2 \end{array} \right.$$
, $s \equiv \left\{ \begin{array}{l} x=4z+4 \\ y=2z+5 \end{array} \right.$ Trovare:

- a) le equazioni ridotte della retta t passante per P(1,2,3), e perpendicolare sia ad r che ad s,
- b) le equazioni ridotte delle rette parallele ad r e tali che la loro distanza da s sia maggiore di $\sqrt{5}$,
- c) l'equazione del cono L che proietta la curva $\mathcal{C} \equiv \left\{ \begin{array}{l} 2x^2-6y^2-1=0\\ z=-1 \end{array} \right.$ dal punto V(0,0,1).
- **6)** Trovare l'operatore lineare f in \mathbf{R}^2 sapendo che f((1,0)) = (1,-1) e che (0,1) è un autovettore di f associato all'autovalore $\lambda = 2$.

N.B. Tutti i passaggi devono essere opportunamente motivati.