

Ministry of Education of the Russian Federation Federal budgetary organization of higher education "Moscow State Pedagogical University"

Evaluation method of track membranes' images using computer vision

4th year student

Institute of Physics, Technology and Information Systems

N. V. Kuznetsov

Supervisor

Dr. S. A. Bedin

Outline

- 1. Introduction
 - Definitions
 - Track membranes
 - Motivation of machine learning usage
- 2. Machine learning approach
 - Models, loss functions, metrics
 - Model comparison
 - Training, metric curves and results
- 3. Classical CV algorithms approach
 - Characteristics calculations
 - Comparison with manual approach
- 4. Conclusion

Outline

- 1. Introduction
 - Definitions
 - Track membranes
 - Motivation of machine learning usage
- 2. Machine learning approach
 - Models, loss functions, metrics
 - Model comparison
 - Training, metric curves and results
- 3. Classical CV algorithms approach
 - Characteristics calculations
 - Comparison with manual approach
- 4. Conclusion

Definitions

Machine learning - a type of artificial intelligence in which computers use huge amounts of data to learn how to do tasks rather than being programmed to do them

Image segmentation - process of partitioning a digital image into multiple segments

Computer vision - scientific field that deals with how computers can gain high-level understanding from digital images or videos

Machine learning algorithms

Classical (determined) algorithms

What is track membrane?

- Polymer films
- About 10 μm thick
- Produced by radiation of particle accelerator
 - Track etching

Used for:

- Water filters
- Plasmapheresis
- Template synthesis

SEM image of track membrane

Why characteristics needed?

- Topology of nanomaterial produced by template synthesis
- More accurate calculation of local fields and signal amplification substances in nanoconcentrations
- "Finger-prints" of accelerator

Why characteristics needed?

Fields of interest

- Topology of nanomaterial produced by template synthesis
- More accurate calculation of local fields and signal amplification substances in nanoconcentrations
- "Finger-prints" of accelerator

Why machine learning?

Ways to calculate characteristics:

- ImageJ
- Manually

Main disadvantages:

- Dependence on color distribution
 - Manual adjustment
- Hard to assemble big statistics
 - Takes human-time

Outline

- 1. Introduction
 - Definitions
 - Track membranes
 - Motivation of machine learning usage
- 2. Machine learning approach
 - Models, loss functions, metrics
 - Model comparison
 - Training, metric curves and results
- 3. Classical CV algorithms approach
 - Characteristics calculations
 - Comparison with manual approach
- 4. Conclusion

Models

Zhou Z., Rahman Siddiquee M.M., Tajbakhsh N., Liang J. (2018) UNet++: A Nested U-Net Architecture for Medical Image Segmentation

Ronneberger O., Fischer P., Brox T. (2015) U-Net: Convolutional Networks for Biomedical Image Segmentation

Loss functions

BCE Loss:
$$l_n = -\frac{1}{N} \sum_{i=0}^{N} y_i \cdot \log x_i + (1 - y_i) \cdot \log(1 - x_i)$$

DiceLoss:
$$D = \frac{2\sum_{i}^{N} p_{i}g_{i}}{\sum_{i}^{N} p_{i}^{2} + \sum_{i}^{N} g_{i}^{2}}$$

FocalLoss:
$$FL = -(1 - p_t)^{\gamma} \log(p_t)$$

Metrics

Model comparison

Model	Loss function	Epochs	Metrics value	
			Test score	Val score
U-Net	BCELoss	25	0.86836	0.84576
		50	0.91750	0.91018
	DiceLoss	25	0.92085	0.91542
		50	0.97154	0.95578
	FocalLoss	25	0.77734	0.78690
		50	0.93594	0.90207
Unet++	BCELoss	25	0.95526	0.93887
		50	0.99024	0.98484
	DiceLoss	25	0.94966	0.94163
		50	0.98713	0.98378
	FocalLoss	25	0.94630	0.93150
		50	0.97177	0.96680

Training and metric curves

Result of training

Outline

- 1. Introduction
 - Definitions
 - Track membranes
 - Motivation of machine learning usage
- 2. Machine learning approach
 - Models, loss functions, metrics
 - Model comparison
 - Training, metric curves and results
- 3. Classical CV algorithms approach
 - Characteristics calculations
 - Comparison with manual approach
- 4. Conclusion

Porosity [%]

12.14294 (using model)

13.73415 (manually)

19.31616 (using model) 39.79699 (manually)

Pore localization → Area of all white regions and centers of masses

Area distribution of white regions

Localization of overlapping pores → Number of pores

633 (using model) 624 (manually)

Number of pores:

1257 (using model) 1426 (manually)

Outline

- 1. Introduction
 - Definitions
 - Track membranes
 - Motivation of machine learning usage
- 2. Machine learning approach
 - Models, loss functions, metrics
 - Model comparison
 - Training, metric curves and results
- 3. Classical CV algorithms approach
 - Characteristics calculations
 - Comparison with manual approach
- 4. Conclusion

Conclusion

The main results of the work are...

- Implementation of qualitative image segmentation using UNet++ model
- Reached metrics of segmentation: **0.990** (test), **0.985** (validation)
- Application of classical computer vision algorithms to mask analysis
- Shown that suggested calculation approach can be used to calculate track membrane's characteristics
- A comparison with the manual approach is provided, as well as limitations of the approach

Conferences

- III student conference Higher School of Education "From galaxy nuclei to atomic scales", winner diploma
- 2-nd conference on condensed matter physics, Chernogolovka, DOI: 10.26201/ISSP.2020/FKS-2.351
- Kuznetsov N. V., Bedin S. A. "Search for pores on the surface of track membranes using machine learning", Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques (sent to the journal)

Ministry of Education of the Russian Federation Federal budgetary organization of higher education "Moscow State Pedagogical University"

Evaluation method of track membranes' images using computer vision

4th year student

Institute of Physics, Technology and Information Systems

N. V. Kuznetsov

Supervisor

Dr. S. A. Bedin