

VR Learning Showcase

Computergrafik: Realitätserfassung

Block I: Realitätserfassung

- Lektion 3: Classroom Training (VR Learning Showcase)
 - GePro <u>Ge</u>stenbasierte <u>Pro</u>zessanalyse
 - Manuelle Montage
 - 2D Bilddaten (Kinect Video)
 - 3D Punktewolke (Kinect)
 - Panorama
 - Photogrammetrische Erfassung des Arbeitsplatzes
 - Videoclips (Handy)
 - Gelerntes und Neues anwenden

3D Datenerfassung

Photogrammetrie

<u>CAD</u>

Generatives Modellieren

Bildquelle: Google

Stationäres System (2D, 3D)

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

FISCHER COMPUTERTECHNIK

Ziel: Szene aus Realitätserfassung

(Quelle: imdb.com)

Ziel: Szene aus Realitätserfassung

Spezifikation

- Offline (keine Echtzeit-Daten)
- Keine Benutzerinteraktion
- Zielplattform: VR
- Sinnvolle Integration verschiedener Medien (User Experience)

Panorama, 360 Grad

Aufnahme: 2x Fisheye

Umrechnung: Merkator Projektion

Integration in Unity

Statisch: Skybox Material

Videos: RenderTexture auf Skybox

Nutzen: Gesamtüberblick über Szene

Videos

- Quellen:
 - Kinect: Überkopf Aufnahmen
 - Smartphone Videoclips
- Import als Videodateien
- Integration über "Videoplayer"

Nutzen: Detailansicht, "Verstehen durch Vormachen"

Punktewolken

- Formate
 - einfach: csv
 - "formatiert": json, xml, protobuf …
- Inhalte
 - xyz, Farbe, Normalenrichtung ...
- Importieren (Unity, C#)
 - aus Datei
 - aus Stream (Webservice)

Photogrammetrie

- Umlaufende Bilderserie (IPad)
- Rahmenbedingungen:
 - Abstand: Kamera zu Objekt
 - Beleuchtung

Nutzen: Echtes 3D Modell; später: Interaktionspunkte