• La matriz de entrada de G es la matriz $n \times m$, $M^-(G)$, definida por

$$m_{ij} := egin{cases} -1 & ext{si } v_i ext{ es la cabeza de } e_j \ 0 & ext{en otro caso} \end{cases}$$

• La matriz de salida de G es la matriz $n \times m$, $M^+(G)$, definida por

$$m_{ij} := \begin{cases} 1 & \text{si } v_i \text{ es la cola de } e_j \\ 0 & \text{en otro caso} \end{cases}$$

$$M^{+}(G) = \begin{bmatrix} e_1 & e_2 & e_3 & e_4 & e_5 & e_6 & e_5 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 6 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

S: G no tiene bucles,
$$M^{-}(G) + M^{+}(G) = M(G)$$

$$d^{-}(u_{1}) = 2 \checkmark$$
 $d^{+}(u_{1}) = 1 \checkmark$

$$N^{-}(u_{2}) = \{ U_{2}, u_{3} \}$$

 $N^{+}(u_{2}) = \{ u_{2}, u_{1}, u_{4} \}$

Conexión débil

Un digrafo es débilmente conexo si su subgrafo subyacente es conexo.

Conexión fuerte

Un digrafo es **fuertemente conexo** o **fuerte** si para cada par ordenado (u, v) existe un camino de u a v. Las componentes fuertes de un digrafo son sus subgrafos fuertes maximales.

(u,v) -> u,v-camino

(U, 4) también es par ordenado ~ U, u-camino.

- · Ges fuertemente conexo.
- · H no es fuertemente conexo:

No existe un e, b-camino

* Componentes fuertes:

Proposición

En un digrafo G,

$$\sum_{v \in V(G)} d^+(v) = e(G) = \sum_{v \in V(G)} d^-(v)$$

$$\sum_{\alpha \in \Lambda(\mathcal{C})} q_{\alpha}(\alpha) = 6(\mathcal{C}) = \sum_{\alpha \in \Lambda(\mathcal{C})} q_{\alpha}(\alpha)$$

Sendero Euleriano - Circuito Euleriano

- Un **sendero Euleriano** en un digrafo *D* es un sendero que contiene todas las aristas de *D*.
- Un **circuito Euleriano** en un digrafo *D* es un circuito que contiene todas las aristas de *D*.

Digrafo Euleriano

Un digrafo D es Euleriano si tiene un circuito Euleriano.

Teorema

Un digrafo G es Euleriano sii $d^+(v) = d^-(v)$ para cada vértice v y el grafo subyacente tiene a lo sumo una componente no trivial.

Teorema

Un digrafo G tiene un u, v-sendero Euleriano sii $d^+(w) = d^-(w)$ para cada vértice w excepto para u y v, $d^+(u) = d^-(u) + 1$, $d^-(v) = d^+(v) + 1$ y el grafo subyacente tiene a lo sumo una componente no trivial.

G no es euleriano

G tiene un and-sendero euleriano

Orientaciones y torneos

- Si n(G) = n, hay n^2 parejas ordenadas de vértices.
- Como un digrafo simple permite un bucle sobre cada vértice, se usa cada par de vértices a lo sumo una vez como arista. Luego hay n^2 pares ordenados que pueden ser o no aristas de un digrafo simple.
- Hay 2^{n^2} digrafos simples con conjunto de vértices $V = \{v_1, v_2, \dots, v_n\}$.

	Parejas	op	
• • b	(a,a)	2	Sí
	(9,6)	2	J i
16 diamonas simples	(6,0)	2	NO
16 digrafor simples	(6,6)	2	ر ک
$\binom{n}{2}$			
2 < 2	$\binom{n}{2} \leq n^2$		

Orientación

Una **orientación** de un grafo G es un digrafo D obtenido a partir de G al seleccionar una orientación $(x \to y \text{ o } y \to x)$ para cada arista $xy \in E(G)$.

Grafo orientado

Un grafo orientado es una orientación de un grafo simple.

Es una prientación de H. (No es un grafo orientado)

• Hay $3^{\binom{n}{2}}$ grafos orientados con vértices $V = \{v_1, v_2, \dots, v_n\}$.

G: Simple
$$\binom{n}{2}$$
: # pares de vértices {u, σ }

OP1: $e = (u, \sigma)$

OP2: $e = (\sigma, u)$

OP3: No hay arista

• Hay $2^{\binom{n}{2}}$ torneos con vértices $V = \{v_1, v_2, \dots, v_n\}$.