Sorting

Hsuan-Tien Lin

Dept. of CSIE, NTU

April 13, 2021

Selection Sort: Review and Refinements

idea: linearly select the minimum one from "unsorted" part; put the minimum one to the end of the "sorted" part

Implementations

- common implementation: swap minimum with a[i] for putting in i-th iteration
- \checkmark rotate implementation: rotate minimum down to a[i] in i-th iteration
 - linked-list implementation: insert minimum to the *i*-th element
 - space O(1): in-place
 - time $O(n^2)$ and $\Theta(n^2)$
 - rotate/linked-list. stable by selecting minimum with smallest index
 —same-valued elements keep their index orders
 - common implementation: unstable

Heap Sort: Review and Refinements

idea: selection sort with a max-heap in original array rather than unordered pile

- space *O*(1)
- time $O(n \log n)$
- not stable
- usually preferred over selection (faster)

Insertion Sort: Review and Refinements

idea: insert a card from the unsorted pile to its place in the sorted pile

Implementations

- naive implementation: sequential search sorted pile from the front O(n) time per search, O(n) per insert
- backwise implementation: sequential search sorted pile from the back O(n) time per search, O(n) per insert
- binary-search implementation: binary search the sorted pile $O(\log n)$ time per search, O(n) per insert
- linked-list implementation: same as naive but on linked lists O(n) time per search, O(1) per insert
 - rotation implementation: neighbor swap rather than insert (gnome sort)

Insertion Sort: Review and Refinements (II)

- space O(1)
 time O(n²)
- stable
- backwise implementation adaptive
- usually preferred over selection (adaptive)

Shell Sort: Introduction

idea: adaptive insertion sort on every k_1 elements; adaptive insertion sort on every k_2 elements; \cdots adaptive insertion sort on every $k_m = 1$ element

- insertion sort with "long jumps"
- space O(1), like insertion sort \subset
- time: difficult to analyze, often faster than $O(n^2)$
- unstable, adaptive
- usually good practical performance and somewhat easy to implement

Merge Sort: Introduction

idea: combine sorted parts repeatedly to get everything sorted

Implementations

bottom-up implementation:

(size-1 sorted) (size-2 sorted) (size-4 sorted) (size-8 sorted) Jlag r

- $O(\log n)$ loops, the *i*-th loop combines size-2^{*i*} arrays $O(n/2^i)$ times
- combine size- ℓ array can take $O(\ell)$ time but need $O(\ell)$ space! (how about lists?)
- thus, bottom-up Merge Sort takes $O(n \log n)$ time
- top-down implementation:

「いしらか MergeSort(arr, left, right)

- = combine(MergeSort(arr, left, mid), MergeSort(arr, mid+1, right));
 - divide and conquer, $O(\log n)$ level recursive calls

Merge Sort: Review and Refinements

idea: combine sorted parts repeatedly to get everything sorted

- time $O(n \log n)$ in both implementations
- usually stable (if carefully implemented), parallellize well
- popular in external sort

Tree Sort: Review and Refinements

idea: replace heap with a BST; an in-order traveral outputs the sorted result

- space O(n)
 time: O(n · h), with worst O(n²) (unbalanced tree), average $O(n \log n)$, careful BST $O(n \log n)$
- unstable
- suitable for stream data and incremental sorting

04/13/2021

Quick Sort: Introduction

idea: simulate tree sort without building the tree

Tree Sort Revisited

```
make [0] the root of a BST
for i \leftarrow 1, \cdots, n-1 do
 ^ if a[i] < a[0]
     insert a[i] to the left-subtree
     of BST
  else
     insert a[i] to the
     right-subtree of BST
  end if
end for
in-order traversal of left-subtree.
then root, then right-subtree
```

Quick Sort

```
name a[0] the pivot
for i \leftarrow 1, \cdots, n-1 do
  if a[i] < a[0]
     put a[i] to the left pile of the
     pivot
  else
     put a[i] to the right pile of
     the pivot
  end if
end for
output quick-sorted left; output
a[0]; output quick-sorted right <
```

Quick Sort Simulation

Quick Sort: Introduction (II)

pivot

Implementations

- naive implementation: pick first element in the pile as pivot
- random implementation: pick a random element in the pile as pivot
- median-of-3 implementation: pick median(front, middle, back) as pivot
- space: worst O(n), average $O(\log n)$ on stack calls
- time: worst $O(n^2)$, average $O(n \log n)$
- not stable long jump
- usually best choice for large data (if not requiring stability), can be mixed with other sorts for small data

$$C_{avg}(0) = 0$$

$$\left(C_{avg}(n) = (n-1) + \frac{1}{n} \sum_{i=1}^{n} C_{avg}(i-i) + C_{avg}(n-i)\right)$$

$$= (n-1) + \frac{2}{n} \sum_{i=1}^{n-1} C_{avg}(i) \cdot n$$

$$- \left(C_{avg}(n-1) = (n-2) + \frac{2}{n-1} \sum_{i=1}^{n-1} C_{avg}(i) \cdot (n-1)\right)$$

$$= n \cdot C(n) - (n-1) \cdot C(n-1) = 2(n-1) + 2 \cdot C(n-1)$$

n - C(n) = 2(n-1) + (n+1) C(n-1)

$$\frac{((n))}{n+1} = \frac{(n)}{1} + \frac{2}{n-1} - \frac{2}{n} + \frac{4}{n-1}$$

$$O(\log n)$$

$$C_{avg} = O(n \log n)$$