3ª aula

10 de março de 2021 11:00

- 15. Seja L uma linguagem sobre o alfabeto $A=\{a,b\}$ tal que $\varepsilon \notin L$. Para cada uma das afirmações seguintes, diga se a afirmaçõe é verdadeira ou falsa.
 - (a) $L \setminus aA^* = L \cap bA^*$.
 - (b) $L^*A^* \subseteq (LA)^*$.
- a) L\aA*={MEL: N\notine aA*} = \quel: a nas e prefixo de u}

 L\nbA*= \{N\notine L: n\notine bA*\} = \{n\notine L: b\notine prefixo de n}

 Dizir qui a nas e prefixo e dizin n=\notine on n=\notine n\notine a\notine
 e n'\notine Ax. Norte caso, como \(\notine \notine L), \) entas n\notine \(\notine \notine \notin

Logo, se uE L\aA*, entas u=bu' com u' \aak A*. Consequentemente u \aak \in \nbA*. Isto prova L\aA* \equiv L\nbA*.

Reaprocemente, se u E LN b A* entat o prefixe de comprimente 1 de u é b (b \neq a). Logo u E L\a A*, pelo que LN bA* EL\a.

Podemos entat concluir que a afirmal de a) é verdadeira.

b) $L^{+}A^{+} = \{uv : u \in L^{+}, v \in A^{+}\} = \{uv : u \in L^{+}, v \in A^{+}\} \cup \{v : v \in A^{+}\}$ $= A^{+} \quad (porque \quad \exists uv : u \in L^{+}, v \in A^{+}\} \subseteq A^{+})$

 $(LA)^{*} = \{u_{1}u_{1}u_{2}u_{2}...u_{n}x_{n}: n>0, u_{i}\in L, n\in A \text{ para } i=1,...,n\}$ Verificar Se $L^{*}A^{*}\subseteq (LA)^{*}$, Significa verificar Se $A^{*}\subseteq (LA)^{*}$, on Seja se $A^{*}=(LA)^{*}$ (pg $(LA)^{*}\subseteq A^{*}$).

Serai qui existe uma linguagem L tal que A* \$\operatorname (LA)*?

Contra- \[L=1 \alpha \]

-exemplo \[u=b \in A* \]

e u \$\operatorname (LA)* porque a noi e prefiro de u

Logo A+ & (LA)*. A afirmagl b) e falsa.

- 17. Sejam $A = \{a,b\}$ e L uma linguagem sobre A definida indutivamente por:
 - (i) $\varepsilon \in L$;
 - (ii) se $x \in L$, então xba, $xaa \in L$.

De entre as seguintes afirmações, selecione a afirmação verdadeira.

a) $(ba)^{-1}L \neq L;$ b) $a^{-1}L = aL;$ c) $L \neq L^*;$ d) $(bb)^{-1}L^* \neq \emptyset.$

L={E, Eba, Eaa, baba, baaa, aaba, aaaa,

€ A*: u= € v u= (ba)"(aa)"2 (ba)"3... (aa) k; n; 7,0, k>1 = { aa, ba }* · Como L = Jaa, ba st, entas: L* = ({aa, baj*)* = {aa, baj* = L, logo c) éfalsa. $(bb)^{-1}L^{+} = (bb)^{-1}L = (bb)^{-1}$ Aa, ba $f^{+} = ((bb)^{-1}Aaa, ba$ $f^{+} = (bb)^{-1}Aaa, ba$ = \(\data \, \data \alpha \\ \data \\ $(ba)^{-1}L = (ba)^{-1} \{aa, ba\}^{*} = ((ba)^{-1} \{aa, ba\}^{*}) \{aa, ba\}^{*}$ hogo a) é falsa. e falsa. $E \rightarrow \mu' \rightarrow ... \rightarrow \mu \in L$ usando augras ii). $E \rightarrow 2ba \rightarrow bau \rightarrow ... \rightarrow bau \in L$ (ba) L (ba) bau — M Por exclusa de parter, b) é a afirmas verdadeira De facto $a^{-1}L = a^{-1} + aa, ba = (a^{-1} + aa, ba = a) + aa, ba = a + aa, ba = aa$ 25. Indique uma expressão regular representando o conjunto das palavras sobre o alfabeto (a) que admitem como fator as palavras abc e cbb; ____abc ____ cbb __ Cbb abc abcbb abcbb L= Ataba Ataba At U Ataba Ataba At U Atababb At A expressas agular wrrespondente e (a+b+c) tabc (a+b+c) tcbb (a+b+c) + (a+b+c) tcbb (a+b+c) tabc (a+b+c) $+ (a+b+c)^{\dagger} abcbb (a+b+c)^{\dagger} //$ Simplificando a expressas $(a+b+c)^{+}$ $(abc)(a+b+c)^{+}c$ $+\epsilon)bb$ $+cbb(a+b+c)^{+}abc)(a+b+c^{+})$

26. SejamAum alfabeto, $L\subseteq A^*$ e $L^I=\{x^I\mid x\in L\}.$ //

- (a) Defina uma função que a cada expressão regular $e \in ER(A)$ faça corresponder uma expressão $e' \in ER(A)$, tal que $\mathcal{L}(e') = \mathcal{L}(e)^I$.
- (b) Conclua que se L é uma linguagem regular, então L^I também é regular.

a)
$$u = abbcaac$$
 $u^{T} = caacbba$

$$u^{T} = (aac)^{T} (bbc)^{T} a^{T} = caacbba$$

(smo ER(A) for definido indutivamente, vamos definir a fugo por recurso

b) A funce Inv e' uma fund unja imagem esta contida em

ER (A). hogs be L é uma linguagem regular e $L = \mathcal{L}(c)$, entas $Inv(e) \in ER(A)$. e $L^{\perp} = \mathcal{L}(Inv(e))$. hogs L'é uma linguagen regulat.

- 27. Seja $A = \{a, b, c\}$. Preencha os espaços entre as seguintes expressões regulares sobre A com um dos símbolos =, \leq ou $\not\leq$:
 - (a) $a^* + b^* \underline{\leq} (a+b)^*$;
 - (b) $a(a+b)^* \underline{\hspace{1cm}} a(a^*+b)^*;$

a)
$$\int_{a}^{(a)} \frac{a + b}{a(a + b)^{*}} \frac{a(a^{*} + b)^{*}}{a(a^{*} + b)^{*}};$$
a)
$$\int_{a}^{(a)} (a^{*} + b^{*}) = \int_{a}^{(a^{*})} (a^{*} + b)^{*};$$

$$\int_{a}^{(a)} (a^{*} + b^{*}) = \int_{a}^{(a^{*})} (a^{*} + b^{*})^{*} = \int_{a}$$

ab
$$\notin \{a^n: n>, 0\} \in ab \notin \{b^n: n>, 0\} \}$$
 Logy $b_2 \notin b_1$
 $ab \in b_2 \in ab \notin b_1$

Entas L, & L2.

$$\text{(h)} \ \ (b^*ab^*ab^*)^*c(b^*ab^*ab^*)^*\underline{\qquad} b^*(ab^*a)^*b^*cb^*(ab^*a)^*b^*.$$

30. Seja A um alfabeto e sejam $r, s \in ER(A)$. Mostre que:

(a)
$$r^* = r^*r^*$$
;

(f)
$$(rs^*)^* = \varepsilon + r(r+s)^*$$
;

(g)
$$(r^* + s^*)^* = (r^*s^*)^*$$
.