## ECE5984 – Applications of Machine Learning Lecture 3 – Review of Statistics

Creed Jones, PhD











- Graduate Teaching Assistant Ashley Smith
  - Office hours: Tuesday 10 AM to noon, Thursday 11 AM to 1 PM
  - Office hours by zoom: ID #4095579468
- Quiz 1 will be THIS Thursday, January 27
  - On lectures 1-3
  - Must be taken between 12 noon and 6 PM
  - 20 minute time limit
- Homework 1 will be posted this week
  - Due on Tuesday, February 8
- If you send me an email on the course, please put "ECE5984" in the subject line!





- Due to some illness in my family, I have to be away for a few days
  - Maybe more
- Lecture on this Thursday, January 27, will be a video lecture that you can watch at any time
  - It should be posted by Wednesday night sometime
  - Sorry there won't be a chance for live questions please use Piazza for any questions
- Watch for announcements on future class sessions
- Quiz 1 will still occur on Thursday





## Today's Objectives

- Probability
- Conditional Probability
- Dependence
- Descriptive Statistics
- Covariance
- Correlation
- Covariance Matrix





To say that a process is **random** means that when it takes place, one outcome from some set of outcomes is sure to occur, but it is impossible to predict with certainty which outcome that will be.

In case an experiment has finitely many outcomes and all outcomes are equally likely to occur, the *probability* of an event (set of outcomes) is just the ratio of the number of outcomes in the event to the total number of outcomes.



# BRADLEY DEPARTMENT OF ELECTRICAL COMPUTER ENGINEERING

## A single roll of one die is equiprobable

- If the die is truly cubic and weighted well ("fair"), then each number 1 through 6 is just as likely to come up as any other number
  - If we roll one die for a long time, we would expect a 1 to come up 1/6 of the time, a 2 to come up 1/6 of the time, etc.
- The probability of each number is equal to the others this is called "equiprobable"







## **Experimental Probabilities**

- The probability of an event is the likelihood that it will occur; written p(event)
  - probability of 1 means an event certainly will occur
  - probability of 0 means an event certainly won't occur
  - Higher probability events are more likely to happen
  - $p(sun \ will \ rise \ tomorrow) ≈ 1$
- While the probability is impossible to measure directly, because after the fact the event either occurred or it didn't, we can often estimate it by repeated trials
- Given a finite sample space S of size N(S), the probability of an event E is  $p(E) = \frac{N(E)}{N(S)}$



## Probability of various dice totals – the sum of two dice is <u>not</u> equiprobable









## Some useful Probability Axioms

#### **Probability Axioms**

Let S be a sample space, A **probability function** P from the set of all events in S to the set of real numbers satisfies the following three axioms: For all events A and B in S,

- 1.  $0 \le P(A) \le 1$
- 2.  $P(\emptyset) = 0$  and P(S) = 1
- 3. If A and B are disjoint (that is, if  $A \cap B = \emptyset$ ), then the probability of the union of A and B is

$$P(A \cup B) = P(A) + P(B)$$
.

- Probability ranges from 0 to 1
- P(impossible events) = 0, and p(certain events) = 1
- Probabilities of <u>disjoint</u> sets add to give the probability of their union

#### **Probability of a General Union of Two Events**

If S is any sample space and A and B are any events in S, then

$$P(A \cup B) = P(A) + P(B) - P(A \cap B).$$

two sets is the sum of their probabilities, minus the probability of

In general, probability of the union of

their intersection.

9.8.2





## **Expected Value**

- The expected value of an event that generates a real number is the sum of all possible values multiplied by their probabilities.
- In some sense, it's the "most likely" value to result, but in many cases it's a value that cannot actually occur.

#### Definition

Suppose the possible outcomes of an experiment, or random process, are real numbers  $a_1, a_2, a_3, \ldots, a_n$ , which occur with probabilities  $p_1, p_2, p_3, \ldots, p_n$ . The **expected value** of the process is

$$\sum_{k=1}^{n} a_k p_k = a_1 p_1 + a_2 p_2 + a_3 p_3 + \dots + a_n p_n.$$



### Lottery



- Besides moral and ethical arguments against a lottery, they are a bad deal probabilistically.
- The Powerball lottery sells tickets for \$2.
- The grand prize for this ticket is \$1,000,000.
  - If you pay an extra \$1 for your ticket, and pick another number or something, then
    you would win a much larger amount if you win the grand prize.
- The official literature says that the odds of winning the \$1M prize are 1 in 5,153,632.65.
  - in 2018
- The expected value (considering only the \$1M prize) is  $\frac{\$1,000,000}{5,153,632.65} = \$0.194$ , or an expected winnings of 19 cents on a \$2 ticket.





- Note that the expected value of the \$1M prize drawing is about 19 cents per ticket.
- This is <u>not</u> the most likely amount to win; in fact, it's not possible to win 19 cents!
- This is the centroid of the probability-weighted space of possible outcomes, and shows that most of the possible winnings are far below the \$2 break-even point (in fact, all but one are zero).
- This is how the expected value is used in decision-making.



## Conditional probability is the probability of some event, given that we know some relevant information

- Imagine that we are walking down the street. The probability that the next person you meet will be a male is about 0.50.
  - p(male) = 0.50
- However, if we find out that an Engineering class just dismissed in a nearby building, the probability that the next pedestrian will be a male is more than 0.5.
  - $p(male, given that class dismissed) \approx 0.8$ .
- Extra information helped refine our estimate of the probability







The baseline probability of any pedestrian being a female is 0.5.

written p(A|B)

- The conditional probability of a pedestrian being a female, given that an Engineering class just dismissed, is less than that.
- Written  $p(female \mid class \ let \ out)$
- The conditional probability of A given B (that is, the probability of A once we know that B has happened or is true), is written  $p(A \mid B)$ , and usually read as "the probability of A, given B".



## Conditional Probability as a Venn Diagram



• 
$$p(female) = \frac{22,000}{44,000} = 0.5$$

• 
$$p(female) = \frac{22,000}{44,000} = 0.5$$
  
•  $p(female \mid ECE \ student) = \frac{250}{1600} = 0.156$ 





### Conditional Look at Dice Rolls



We have seen that the probability of rolling two dice and getting a 5 is 4/36, or 0.11111.

What is the probability of rolling a 5 if the first die has been rolled and came up a 2?





### Conditional Look at Dice Rolls

We have seen that the probability of rolling two dice and getting a 5 is 4/36, or 0.11111.

What is the probability of rolling a 5 if the first die has been rolled and came up a 2?



If the first die came up a 2, then we must roll a 3 - so the odds are 1/6 = 0.166666.

$$p(5 \mid 2) = 0.16666$$
  
 $p(5 \mid 6) = p(5 \mid 5) = 0$ 





## Conditional probability calculated from set intersection

#### Definition

Let A and B be events in a sample space S. If  $P(A) \neq 0$ , then the **conditional** probability of B given A, denoted P(B|A), is

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)}.$$
9.9.1

• 
$$p(female \mid ECE) = \frac{p(female \cap ECE)}{p(ECE)} = \frac{{}^{250}/_{44000}}{{}^{1600}/_{44000}} = 0.156$$



• Another common form is  $p(B \mid A)p(A) = p(A \cap B)$ 





- Conceptually, "Independent Events" are those for which the likelihood of one
  occurring is not affected by the occurrence of another.
- The probability of both occurring is just the product of each occurring "independently".

#### Definition

If A and B are events in a sample space S, then A and B are **independent** if, and only if,

$$P(A \cap B) = P(A) \cdot P(B)$$
.

Events  $A_1, A_2, A_3, \ldots, A_n$  in a sample space S are **mutually independent** if, and only if, the probability of the intersection of any subset of the events is the product of the probabilities of the events in the subset.







- Successive coin flips are independent.
  - The coin doesn't have a "memory" of past flips to influence future events.
- Don't confuse "fair" or "equiprobable" with "independent"
- Think about an unfair coin that lands heads 60% of the time
  - p(heads) = 0.6
  - Successive flips are still independent; p(heads) = 0.6 no matter what has come before.
- Successive human actions are generally <u>not</u> independent, though we sometimes make that simplifying assumption.

#### Definition

Events  $A_1, A_2, A_3, \ldots, A_n$  in a sample space S are **mutually independent** if, and only if, the probability of the intersection of any subset of the events is the product of the probabilities of the events in the subset.





## Bayes' Theorem

Bayes' Theorem relates conditional probabilities –

Suppose that a sample space S is a union of mutually disjoint events  $B_1, B_2, B_3, \ldots$ ,  $B_n$ , suppose A is an event in S, and suppose A and all the  $B_1$  have nonzero probabilities. If k is an integer with  $1 \le k \le n$ , then

$$P(B_k | A) = \frac{P(A | B_k)P(B_k)}{P(A | B_1)P(B_1) + P(A | B_2)P(B_2) + \dots + P(A | B_n)P(B_n)}$$

A simpler form is:

$$p(B|A) = \frac{p(B)p(A|B)}{p(A)}$$











## Bayes Theorem Applied

$$p(B|A) = \frac{p(B)p(A|B)}{p(A)}$$

$$p(pass|failed\ midterm) = \frac{p(pass)p(failed\ midterm|pass)}{p(failed\ midterm)} = \frac{0.9 \cdot 0.02}{0.1} = 0.18$$

$$p(tsunami) = \frac{p(earthquake)p(tsunami|earthquake)}{p(earthquake|tsunami)} = \frac{0.01 \cdot 0.6}{0.95} = 0.00631$$



**COMPUTER** 

**ENGINEERING** 

## Probabilities for Two Events, A,B

- Marginal Probability = The probability of an event not considering any other events.
   P(A)
- Joint Probability = The probability that two events happen at the same time. P(A,B)
- Conditional Probability = The probability that one event happens given that another event has happened. P(A|B)



# ENGINEERING

#### Probabilities: Inherited Color Blindness\*

- Inherited color blindness has different incidence rates in men and women. Women usually carry the defective gene and men usually inherit it.
- Experiment: pick an individual at random from the population.

= has inherited color blindness CB MALE = gender, Not-Male = FEMALE

Marginal: P(CB) = 2.75%

= 50.0% P(MALE)

P(CB and MALE) = 2.5%Joint:

P(CB and FEMALE) = 0.25%

**Conditional**: P(CB|MALE)

P(CB|MALE) = 5.0% (1 in 20 men) P(CB|FEMALE) = 0.5% (1 in 200 women)

<sup>\*</sup> There are several types of color blindness and large variation in the incidence across different demographic groups. These are broad averages that are roughly in the neighborhood of the true incidence for particular groups.

### Dependent Events

Random variables X and Y are dependent if  $P_{XY}(X,Y) \neq P_X(X)P_Y(Y)$ .

|        | Color |       |       |
|--------|-------|-------|-------|
| Gender | No    | Yes   | Total |
| Male   | .475  | .025  | 0.50  |
| Female | .4975 | .0025 | 0.50  |
| Total  | .9725 | .0275 | 1.00  |

P(Color blind, Male) = .0250

P(Male) = .5000

P(Color blind) = .0275

P(Color blind) x P(Male)

 $= .0275 \times .500 = .01375$ 

.01375 is not equal to .025

Gender and color blindness are not independent.





## Dependent Random Variables

- Random variables are dependent if the occurrence of one affects the probability distribution of the other.
- If P(Y|X) changes when X changes, then the variables are dependent.
- If P(Y|X) does not change when X changes, then the variables are independent.



## BRADLEY DEPARTMENT OF ELECTRICAL COMPUTER ENGINEERING

## Two Important Math Results

For two random variables,

$$P(X,Y) = P(X|Y) P(Y)$$
  
 $P(Color blind, Male) = P(Color blind|Male)P(Male)$   
 $= .05 \times .5 = .025$ 

For two independent random variables,
 P(X,Y) = P(X) P(Y)
 P(Ace, Heart) = P(Ace) x P(Heart).
 (This does not work if they are not independent.)

So, P(X|Y) = P(X) if X and Y are independent

## Independent Random Variables

One card is drawn randomly from a deck of 52 cards

|       | A     |       |       |
|-------|-------|-------|-------|
| Heart | Yes=1 | No=0  | Total |
| Yes=1 | 1/52  | 12/52 | 13/52 |
| No=0  | 3/52  | 36/52 | 39/52 |
| Total | 4/52  | 48/52 | 52/52 |

P(Ace | Heart) = 1/13

P(Ace|Not-Heart) = 3/39 = 1/13

P(Ace) = 4/52 = 1/13

P(Ace) does not depend on whether the card is a heart or not.

P(Heart | Ace) = 1/4

P(Heart|Not-Ace) = 12/48 = 1/4

P(Heart) = 13/52 = 1/4

P(Heart) does not depend on whether the card is an ace or not.

A Theorem: For two independent random variables, P(X,Y) = P(X) P(Y)

 $P(Ace, Heart) = P(Ace)P(Heart) = 1/13 \times 1/4 = 1/52$ 



## There are several widely used *descriptive statistics* to describe a sample from a population

 The central tendency or mean is the (commonly understood) average; it's considered to be <u>typical</u> of the sample

$$mean_X = \mu_X = \frac{1}{N} \sum_{i=1}^{N} x_n$$

- The mean can be dramatically influenced by *outliers* (unusually large or small values)
- The median is the middle value when the sample values are ranked
  - It's less sensitive to outliers
- The variance is a measure of the amount of variation in the data (about the mean)

$$variance_X = \sigma_X^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu_X)^2$$

– The standard deviation  $\sigma_X$  is often used; it's the square root of the variance (and has appropriate units)





| <u>X</u>    | <u>Y</u>   |
|-------------|------------|
| 1           | 0.10074    |
| 2           | 0.28912372 |
| -3.5        | 0.00835797 |
| 2.71828     | 0.89713234 |
| 1.41421356  | 0.80416532 |
| -1.73205081 | 0.68352129 |
| 4.2         | 0.0071702  |
| -2          | 0.20708702 |
| -6          | 0.91223393 |
| 0.00001     | 0.14566067 |
| 4           | 0.06174395 |
| -5.25       | 0.1182755  |
| 3.14159     | 0.9260739  |
| -2          | 0.00741946 |
|             |            |

0.07569365

| <u>Statistics</u> | stat(X)     | stat(Y)     |
|-------------------|-------------|-------------|
| Mean              | 0.13280285  | 0.349626595 |
| Min               | -6          | 0.007170203 |
| Max               | 4.2         | 0.926073903 |
| Range             | 10.2        | 0.9189037   |
| Median            | 1           | 0.14566067  |
| Mode              | -2          | #N/A        |
| Variance          | 11.46047035 | 0.139748738 |
| Std Deviation     | 3.385331646 | 0.373829825 |
| Quartile 1        | -2          | 0.061743946 |
| Quartile 2        | 1           | 0.14566067  |
| Quartile 3        | 3.14159     | 0.804165321 |

#### **Measure of the Distribution Center: Mean (Average)**

| Year | Jan  | Feb  | Mar  | Apr  | May  | Jun  | Jul  | Aug  | Sep  | Oct  | Nov  | Dec  |
|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 1901 | 2.09 | 0.56 | 5.66 | 5.80 | 5.12 | 0.75 | 3.77 | 5.75 | 3.67 | 4.17 | 1.30 | 8.51 |
| 1902 | 2.13 | 3.32 | 5.47 | 2.92 | 2.42 | 4.54 | 4.66 | 4.65 | 5.83 | 5.59 | 1.27 | 4.27 |
| 1903 | 3.28 | 4.27 | 6.40 | 2.30 | 0.48 | 7.79 | 4.64 | 4.92 | 1.66 | 2.72 | 2.04 | 3.95 |
|      |      |      |      |      |      |      |      |      |      |      |      |      |
| 2000 | 3.00 | 3.40 | 3.82 | 4.14 | 4.26 | 7.99 | 6.88 | 5.40 | 5.36 | 2.29 | 2.83 | 4.24 |



Mean for June = 
$$\frac{.75 + 4.54 + 7.79 + ... + 7.99}{100} = \frac{377.76}{100} = 3.78$$

More generally,

Mean[
$$\boldsymbol{x}$$
] =  $\overline{\boldsymbol{x}} = \frac{x_1 + x_2 + \dots + x_T}{T} = \frac{\sum_{t=1}^{T} x_t}{T}$ 

where T = Total Number of Observations

 $x_1$  = Value of the first observation (June 1901) = .75

 $x_2$  = Value of the second observation (June 1902) = 4.54

 $x_3$  = Value of the second observation (June 1903) = 7.79

.

 $x_T$  = Value of the last (N<sup>th</sup>) observation (June 2000) = 7.99

#### Calculating the **Variance** for 1951

| Month | Precipitation | Mean | <b>Deviation From Mean</b> | <b>Squared Deviation</b> |
|-------|---------------|------|----------------------------|--------------------------|
| Apr   | 3.63          | 3.47 | 3.63 - 3.47 = 0.16         | 0.0256                   |
| May   | 2.96          | 3.47 | 2.96 - 3.47 = -0.51        | 0.2601                   |
| Jun   | 3.05          | 3.47 | 3.05 - 3.47 = -0.42        | 0.1764                   |
| Jul   | 4.15          | 3.47 | 4.15 - 3.47 = 0.68         | 0.4624                   |
| Aug   | 3.56          | 3.47 | 3.56 - 3.47 = 0.09         | 0.0081                   |
|       |               |      | Sum of Squared Dev         | iations = $0.9326$       |



Variance = 
$$\frac{\text{Sum of Squared Deviations}}{T} = \frac{0.9326}{5} = 0.1865$$
  
Standard deviation =  $\sqrt{\text{Variance}} = \sqrt{0.1865} = 0.43$ 

Summary: In 1951, Variance = 0.1865 and Standard deviation = 0.43

In 1998, Variance = 6.5256 and Standard deviation = 2.55

Small spread

All deviations are small

All squared deviations are small

Variance small

Large spread

Some deviations are large

Some squared deviations are large

Variance large

## Histogram: Visual Illustration of a Variable's the Distribution of Values









In 3 years, there was less than 1 inch of rain during September.

In 18 years, there was between 1 and 2 inches of rain during September.

In 26 years, there was between 2 and 3 inches of rain during September.

In 19 years, there was between 3 and 4 inches of rain during September.



## Covariation and Expected Value

- Pick 10,325 people at random from the population. Predict how many will be color blind:  $10,325 \times .0275 =$ 284
- Pick 10,325 MEN at random from the population. Predict how many will be color blind:  $10,325 \times .05 = 516$
- Pick 10,325 **WOMEN** at random from the population. Predict how many will be color blind:  $10,325 \times .005 = 52$
- The expected number of color blind people, given gender, depends on gender.
- **Color Blindness covaries with Gender**











$$cov_{XY} = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu_X)(y_i - \mu_Y)$$

| <u>X</u>    | <u>Y</u>    |
|-------------|-------------|
| 1           | 1.34553764  |
| 2           | 2.03388004  |
| -3.5        | -0.16171495 |
| 2.71828     | 2.38965091  |
| 1.41421356  | 2.004445    |
| -1.73205081 | 2.27773385  |
| 4.2         | 3.30622472  |
| -2          | 2.55819525  |
| -6          | -6.68625651 |
| 0.00001     | 3.45906713  |
| 4           | 7.42686846  |
| -5.25       | -4.4685862  |
| 3.14159     | 5.10221025  |
| -2          | -2.20663644 |
| 4           | 4.32756045  |

| <u>Statistics</u> | stat(X)     | stat(Y)      |
|-------------------|-------------|--------------|
| Mean              | 0.13280285  | 1.51387864   |
| Min               | -6          | -6.686256511 |
| Max               | 4.2         | 7.426868456  |
| Range             | 10.2        | 14.11312497  |
| Median            | 1           | 2.277733847  |
| Mode              | -2          | #N/A         |
| Variance          | 11.46047035 | 13.24393094  |
| Std Deviation     | 3.385331646 | 3.6392212    |
| Quartile 1        | -2          | -0.161714953 |
| Quartile 2        | 1           | 2.277733847  |
| Quartile 3        | 3.14159     | 3.45906713   |

| COVARIANCES |             |  |  |  |
|-------------|-------------|--|--|--|
| 11.46047035 | 10.58259554 |  |  |  |
| 10.58259554 | 13.24393094 |  |  |  |



## Positive Covariation: The distribution of one variable depends on another variable.



Distribution of fuel bills changes (moves upward) as the number of rooms changes (increases).

The per capita number of cars varies (positively) with per capita income. The relationship varies by country as well.







## (Linear) Regression of Bills on Rooms







# BRADLEY DEPARTMENT OF ELECTRICAL COMPUTER ENGINEERING

## Measuring How Variables Move Together: Covariance

$$Cov(X,Y) = \sum_{\text{values of X}} \sum_{\text{values of Y}} P(X=x,Y=y)(x-\mu_X)(y-\mu_Y)$$

Covariance can be positive or negative

The measure will be positive if it is likely that Y is above its mean when X is above its mean.

It is usually denoted  $\sigma_{XY}$ .





### Correlation is Units Free

### Correlation Coefficient

 $\rho_{XY} = \frac{1}{\text{Standard deviation(X) Standard deviation(Y)}}$ 

$$-1.00 \le \rho_{XY} \le +1.00.$$





## Correlation

$$\mu_{R} = .8 \quad \mu_{F} = .7$$

$$Var(F) = 0^{2}(.3)+1^{2}(.7) - .7^{2} = .21$$
  
Standard deviation = ..46

Var(R) = 
$$0^2(.45)+1^2(.30)+2^2(.25) - .8^2$$
  
= .66  
Standard deviation = 0.81

Covariance = +0.04

Correlation== 
$$\frac{0.107}{.46 \times .81}$$







| Line     | Observation        | MICROSOFT | WALMART | Line | Observation        | MICROSOFT | WALMART |
|----------|--------------------|-----------|---------|------|--------------------|-----------|---------|
| 1        | 1995.Ja            | .06105    | .03825  | 36   | 1997.Dc            | .10587    | 07535   |
| 2        | 1995.Fb            | .12897    | .08112  | 37   | 1998.Ja            | 05267     | .08254  |
| 3        | 1995.Mr            | .14939    | 07317   | 38   | 1998.Fb            | .24470    | .12798  |
| 4        | 1995.Ap            | .03592    | .04737  | 39   | 1998.Mr            | 03216     | .17625  |
| 5        | 1995.Ma            | .06717    | .07750  | 40   | 1998.Ap            | 03886     | 07843   |
| 6        | 1995.Jn            | 07927     | 19758   | 41   | 1998. <b>M</b> a   | 07853     | .09587  |
| 7        | 1995.Jl            | .02197    | 09463   | 42   | 1998.Jn            | .18007    | .03312  |
| 8        | 1995.Au            | .16347    | .05133  | 43   | 1998.Jl            | .06274    | .12368  |
| 9        | 1995.Sp            | .14906    | .07767  | 44   | 1998.Au            | .32138    | .05658  |
| 10       | 1995.0c            | .07591    | .05774  | 45   | 1998.Sp            | .13594    | 05313   |
| 11       | 1995.Nv            | 12341     | .14858  | 46   | 1998.0c            | .12014    | .05717  |
| 12       | 1995.Dc            | 00512     | 09360   | 47   | 1998.Nv            | 01213     | .00188  |
| 13       | 1996.Ja            | .03478    | 01491   | 48   | 1998.Dc            | 06274     | .11772  |
| 14       | 1996.Fb            | 00668     | .05844  | 49   | 1999.Ja            | .28434    | 06084   |
| 15       | 1996.Mr            | .02507    | 16006   | 50   | 1999.Fb            | .11580    | .10886  |
| 16       | 1996.Ap            | .03730    | .01830  | 51   | 1999.Mr            | 15430     | .06616  |
| 17       | 1996. <b>M</b> a   | 05005     | .07009  | 52   | 1999.Ap            | .01907    | 02551   |
| 18       | 1996.Jn            | 08999     | 16833   | 53   | 1999. <b>M</b> a   | 13560     | .00580  |
| 19       | 1996.Jl            | .02205    | .02185  | 54   | 1999.Jn            | 01654     | .03969  |
| 20       | 1996.Au            | .03833    | 02855   | 55   | 1999.Jl            | .18923    | .13860  |
| 21       | 1996.Sp            | 23185     | 08104   | 56   | 1999.Au            | 07742     | .08195  |
| 22       | 1996.0c            | .13686    | .08677  | 57   | $1999.\mathrm{Sp}$ | .08946    | 02582   |
| 23       | 1996.Nv            | 03846     | 01522   | 58   | 1999.Oc            | 10049     | 04920   |
| 24       | 1996.Dc            | .13650    | .09063  | 59   | 1999.Nv            | .08774    | .00121  |
| 25       | 1997.Ja            | .06838    | .05314  | 60   | 1999.Dc            | .03362    | 13887   |
| 26       | 1997.Fb            | .25603    | .11412  | 61   | 2000.Ja            | .16265    | .06255  |
| 27       | 1997.Mr            | .28069    | .02381  | 62   | 2000.Fb            | .03871    | .00144  |
| 28       | 1997.Ap            | .05665    | .06262  | 63   | 2000.Mr            | 05742     | .04246  |
| 29       | 1997.Ma            | 00059     | 09532   | 64   | 2000.Ap            | .00938    | 09826   |
| 30       | 1997.Jn            | .00507    | 00469   | 65   | 2000. <b>M</b> a   | .16490    | 06795   |
| 31       | 1997.Jl            | .22767    | .28018  | 66   | 2000.Jn            | .16640    | .05390  |
| 32       | 1997.Au            | .23415    | .01870  | 67   | 2000.Jl            | .05384    | .01202  |
| 33       | 1997.Sp            | 03533     | .00943  | 68   | 2000.Au            | 03610     | 02408   |
| 34<br>35 | 1997.0c<br>1997.Nv | .11070    | .14296  | 69   | $2000.\mathrm{Sp}$ | 09943     | .02524  |
| 33       | 1331.NV            | .05510    | .06759  | 70   | 2000.Oc            | 04410     | .04711  |

<sup>\*</sup> Averaged yearly return



# BRADLEY DEPARTMENT OF ELECTRICAL COMPUTER ENGINEERING

#### The two returns are positively correlated.







#### Descriptive Statistics for 2 variables

| Variable           | Mean               | Std.Dev.           | Minimum          | Maximum            | Cases Mi | Missing |  |
|--------------------|--------------------|--------------------|------------------|--------------------|----------|---------|--|
| MICRSOFT   WALMART | .050071<br>.021906 | .114264<br>.086035 | 231850<br>197580 | .321380<br>.280180 | 70<br>70 | 0       |  |

Correlation = .2486345

## Descriptive Statistics: The Relationship between Two Variables

Scatter Diagram: Visual Illustration of How Two Variables Are Related



| Year | Jan   | Feb   | Mar   | Apr   | May   | Jun   | Jul   | Aug   | Sep   | Oct    | Nov   | Dec   |
|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|-------|-------|
| 1985 | 6.21  | -0.22 | -1.34 | -0.69 | 4.55  | 1.53  | 0.90  | -1.00 | -0.40 | 3.44   | 7.12  | 5.07  |
| 1986 | 1.57  | 8.79  | 6.41  | -1.90 | 5.20  | 0.85  | -6.20 | 6.93  | -6.89 | 6.23   | 1.94  | -0.95 |
| 1987 | 13.82 | 3.06  | 3.63  | -0.79 | 0.23  | 5.54  | 6.35  | 3.53  | -2.50 | -23.22 | -8.02 | 5.74  |
|      |       |       |       |       |       |       |       |       |       |        |       |       |
| 2000 | -4.84 | -7.42 | 7.84  | -1.72 | -1.97 | -0.71 | 0.71  | 6.59  | -5.03 | 3.01   | -5.07 | 3.59  |

#### **Monthly Percentage Growth Rate of NASDAQ Composite Average**

| Year | Jan   | Feb   | Mar   | Apr    | May    |
|------|-------|-------|-------|--------|--------|
| 1985 | 12.79 | 1.97  | -1.76 | 0.50   | 3.64   |
|      |       |       |       | 2.27   |        |
| 1987 | 12.41 | 8.39  | 1.20  | -2.86  | -0.31  |
| 2000 | -3.17 | 19.19 | -2.64 | -15.57 | -11.91 |

Each point on the scatter diagram represents the growth rate of the Dow and the growth rate of the Nasdaq for one specific month.



From Prof. Frank Westhoff Amherst University VIRGINIA TECH.

COMPUTER ENGINEERING

## **Correlation Coefficient**

Numerator: Up by a factor of 2.54



 $CorrCoef[x, y] = \frac{Cov[x, y]}{\sqrt{Var[x]}\sqrt{Var[y]}}$ The denominator is positive.

Denominator: Up by a factor of 2.54

#### How are the covariance and correlation coefficient similar?

The sign of covariance and the sign of the correlation coefficient are the same.

#### How do the covariance and correlation coefficient differ? Two important ways:

#### **Correlation Coefficient Is Unaffected by the Choice of Units**

**Question:** Again, what if we were to measure precipitation, the "x variable," in centimeters rather than inches?

$$\operatorname{Var}[\boldsymbol{x}] = \frac{\sum_{t=1}^{T} (x_t - \overline{\boldsymbol{x}})^2}{T} \qquad \operatorname{Cov}[\boldsymbol{x}, \boldsymbol{y}] = \frac{\sum_{t=1}^{T} (x_t - \overline{\boldsymbol{x}})(y_t - \overline{\boldsymbol{y}})}{T}$$

$$(x_t - \overline{\boldsymbol{x}}) \text{ up by a factor of } 2.54$$

 $(x_t - \overline{x})^2$  up by a factor of 2.54<sup>2</sup>

What happens to Var[x]?

Var[x] up by a factor of  $2.54^2$ 

Cov[x, y], up by a factor of 2.54.

What happens to Cov[x, y]?

 $\sqrt{\text{Var}[x]}$  up by a factor of 2.54

Both the numerator and denominator of CorrCoef[x, y] increase by a factor of 2.54

#### How do the covariance and correlation coefficient differ – continued?

#### Correlation Coefficient Has a Limited Range: -1 to +1.







Consequently, the correlation coefficient reflects the magnitude of the correlation.

To illustrate that the correlation coefficient has a limited range, we shall consider the two polar cases:

Perfect positive correlation.

Perfect negative correlation.

To show that the correlation coefficient lies between -1 and +1, we consider two polar cases.

#### An Example of Perfect Positive Correlation: The two variables have identical values:





What does

Cov[x, y]

equal?

$$y_t = x_t$$

for each 
$$t = 1, 2, ..., T$$

What does Var[y]equal?

$$y - \overline{x}$$

$$y_t - \overline{y} = x_t - \overline{x}$$

$$(y_t - \overline{y})^2 = (x_t - \overline{x})^2$$

$$= (x_t - \overline{x})^2$$

$$= (x_t - \overline{x})^2$$

$$\frac{(y_t - \overline{y})^2}{T} = \frac{(x_t - \overline{x})^2}{T}$$

$$\frac{(x_t - \overline{x})(y_t - \overline{y})}{T} = \frac{(x_t - \overline{x})^2}{T}$$

$$Var[y] = Var[x]$$

$$Cov[x, y] = Var[x]$$

$$\operatorname{Var}[\boldsymbol{x}] = \frac{\sum_{t=1}^{T} (x_t - \overline{\boldsymbol{x}})^2}{T} \qquad \operatorname{Var}[\boldsymbol{y}] = \frac{\sum_{t=1}^{T} (y_t - \overline{\boldsymbol{y}})^2}{T} \qquad \operatorname{Cov}[\boldsymbol{x}, \boldsymbol{y}] = \frac{\sum_{t=1}^{T} (x_t - \overline{\boldsymbol{x}})(y_t - \overline{\boldsymbol{y}})}{T}$$

$$Cov[x, y] = \frac{\sum_{t=1}^{T} (x_t - \overline{x})(y_t - \overline{y})}{T}$$

$$CorrCoef[x, y] = \frac{Cov[x, y]}{\sqrt{Var[x]}\sqrt{Var[y]}} = \frac{Var[x]}{\sqrt{Var[x]}\sqrt{Var[x]}} = \frac{Var[x]}{Var[x]} = 1$$

#### An Example of Perfect Negative Correlation: One variable is the negative of the other:



$$y_t = -x_t$$

for each t = 1, 2, ..., T



What does Var[y]equal?

What does Cov[x, y]equal?



$$\overline{y} = -\overline{x}$$

$$y_t - \overline{y} = -(x_t - \overline{x})$$

$$(y_t - \overline{y})^2 = (x_t - \overline{x})^2$$

$$\frac{(y_t - \overline{y})^2}{T} = \frac{(x_t - \overline{x})^2}{T}$$

$$Var[y] = Var[x]$$

$$(x_t - \overline{x})(y_t - \overline{y}) = -(x_t - \overline{x})(x_t - \overline{x})$$

$$= -(x_t - \overline{x})^2$$

$$\frac{(x_t - \overline{x})(y_t - \overline{y})}{T} = -\frac{(x_t - \overline{x})^2}{T}$$

$$Cov[x, y] = -Var[x]$$

$$\operatorname{Var}[\boldsymbol{x}] = \frac{\sum_{t=1}^{T} (x_t - \overline{\boldsymbol{x}})^2}{T}$$

$$\operatorname{Var}[\boldsymbol{y}] = \frac{\sum_{t=1}^{T} (y_t - \overline{\boldsymbol{y}})^2}{T}$$

$$\operatorname{Var}[\boldsymbol{x}] = \frac{\sum_{t=1}^{T} (x_t - \overline{\boldsymbol{x}})^2}{T} \qquad \operatorname{Var}[\boldsymbol{y}] = \frac{\sum_{t=1}^{T} (y_t - \overline{\boldsymbol{y}})^2}{T} \qquad \operatorname{Cov}[\boldsymbol{x}, \boldsymbol{y}] = \frac{\sum_{t=1}^{T} (x_t - \overline{\boldsymbol{x}})(y_t - \overline{\boldsymbol{y}})}{T}$$

$$CorrCoef[x, y] = \frac{Cov[x, y]}{\sqrt{Var[x]}\sqrt{Var[y]}} = \frac{-Var[x]}{\sqrt{Var[x]}\sqrt{Var[x]}} = \frac{Var[x]}{Var[x]} = -1$$

#### Summary Scatter Diagrams, of Deviations From Means, Covariance, and Correlation Coefficient









Nasdaq

Not independent. Positively correlated: Knowing one variable helps us predict the other.

Independent. Uncorrelated: Knowing

one variable does not help

us predict the other.

 $Cov = -.91 \approx 0$ 

$$CorrCoef = -.07 \approx 0$$

50

$$Cov = 19.61$$

$$CorrCoef = .67$$

Perfect Positive Perfect Negative Independent Correlation Correlation CorrCoef





## Let's correct a well-known fallacy: <u>correlation does not</u> <u>imply causation</u>

- Just because two variables are well-correlated does not mean that there is a causal link, either way
  - They might both be caused by a hidden third variable
  - It might be a coincidence
- Proving causality is really hard
  - Strong evidence (but not proof) of causation can come from randomized controlled experiments
    - Randomly split a group of people who suffer from a disease
    - Give one group a proposed cure, give the other group a placebo
    - Compare the outcome of the two groups
    - Key element: groups are statistically alike in all other ways
  - Often cannot do this





• 
$$K_{X_iX_j} = cov[X_i, X_j] = \sigma_{X_iX_j} = E[(X_i - E[X_i])(X_j - E[X_j])]$$

• 
$$K_{XX} = \begin{bmatrix} E[(X_1 - E[X_1])(X_1 - E[X_1])] & E[(X_1 - E[X_1])(X_2 - E[X_2])] & \cdots & E[(X_1 - E[X_1])(X_n - E[X_n])] \\ E[(X_2 - E[X_2])(X_1 - E[X_1])] & E[(X_2 - E[X_2])(X_2 - E[X_2])] & \cdots & E[(X_2 - E[X_2])(X_n - E[X_n])] \\ \vdots & \vdots & \ddots & \vdots \\ E[(X_n - E[X_n])(X_1 - E[X_1])] & E[(X_n - E[X_n])(X_2 - E[X_2])] & \cdots & E[(X_n - E[X_n])(X_n - E[X_n])] \end{bmatrix}$$

• 
$$K_{XX} = \begin{bmatrix} \sigma^2_{X_1} & \sigma_{X_1X_2} & \cdots & \sigma_{X_1X_n} \\ \sigma_{X_2X_1} & \sigma^2_{X_2} & \cdots & \sigma_{X_2X_n} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{X_nX_1} & \sigma_{X_nX_2} & \cdots & \sigma^2_{X_n} \end{bmatrix}$$
, where  $\sigma^2_{X_i} = \sigma_{X_iX_i} = E[(X_i - E[X_i])(X_i - E[X_i])]$ 





# The covariance matrix for a set of variables carries a lot of information about their relationship

- Non-zero off-axis elements indicate some correlation between the variables
  - Any independent (uncorrelated) variables will have zeroes off-axis
- The magnitude of the off-axis elements is related to the correlated (or joint) variance
  - In relation to the on-axis variances, we can determine degree of correlation
- For any two variables, the correlation coefficient can be calculated from the covariance matrix



| AB | APF | <u> </u> | <u>2B</u> | <u>3B</u> | HR | HRBASES | RBI | JUNK  |             |          |           |            |          |           |           |           |          |            |             |
|----|-----|----------|-----------|-----------|----|---------|-----|-------|-------------|----------|-----------|------------|----------|-----------|-----------|-----------|----------|------------|-------------|
| 1  | 4   | 1        | 0         | 0         | 0  | 0 (     | 0   | 0 18  | COV         | <u>G</u> | <u>AB</u> | <u>APP</u> | <u>H</u> | <u>2B</u> | <u>3B</u> | <u>HR</u> | HRBASES  | <u>RBI</u> | <u>JUNK</u> |
| 25 | 118 | 25       | 32        | 6         | 0  | 0 (     | 0   | 13 9  | <u>G</u>    | 2210.474 | 8168.775  | 2210.474   | 2277.836 | 398.0319  | 79.29819  | 202.1473  | 808.5891 | 1077.756   | 5.702245    |
| 29 | 137 | 29       | 40        | 4         | 5  | 0 (     | 0   | 19 1  | <u>AB</u>   | 8168.775 | 33961.27  | 8168.775   | 9537.537 | 1660.304  | 342.2181  | 826.0891  | 3304.357 | 4493.652   | 42.63293    |
| 27 | 133 | 27       | 44        | 10        | 2  | 2 8     | 3   | 27 18 | APP         | 2210.474 | 8168.775  | 2210.474   | 2277.836 | 398.0319  | 79.29819  | 202.1473  | 808.5891 | 1077.756   | 5.702245    |
| 25 | 120 | 25       | 39        | 11        | 3  | 0 (     | ס   | 16 1  | ' <u>H</u>  | 2277.836 | 9537.537  | 2277.836   | 2745.703 | 479.7856  | 100.5687  | 237.0437  | 948.1746 | 1297.509   | 13.42671    |
| 12 | 49  | 12       | 11        | 2         | 1  | 0 (     | ס   | 5     | 2 <u>2B</u> | 398.0319 | 1660.304  | 398.0319   | 479.7856 | 93.46701  | 16.45938  | 45.13218  | 180.5287 | 234.5061   | 1.981836    |
| 1  | 4   | 1        | 1         | 0         | 0  | 0       | 0   | 2 18  | <u>3B</u>   | 79.29819 | 342.2181  | 79.29819   | 100.5687 | 16.45938  | 6.802997  | 5.763516  | 23.05406 | 45.49688   | 0.332044    |
| 31 | 157 | 31       | 63        | 10        | 9  | 0 (     | ס   | 34 16 | HR HR       | 202.1473 | 826.0891  | 202.1473   | 237.0437 | 45.13218  | 5.763516  | 40.91035  | 163.6414 | 141.6601   | 0.453692    |
| 1  | 5   | 1        | 1         | 1         | 0  | 0       | 0   | 1 8   | HRBASES     | 808.5891 | 3304.357  | 808.5891   | 948.1746 | 180.5287  | 23.05406  | 163.6414  | 654.5656 | 566.6403   | 1.814767    |
| 18 | 86  | 18       | 13        | 2         | 1  | 0       | 0   | 11 10 | <u>RBI</u>  | 1077.756 | 4493.652  | 1077.756   | 1297.509 | 234.5061  | 45.49688  | 141.6601  | 566.6403 | 693.6194   | 5.187408    |
| 22 | 89  | 22       | 27        | 1         | 10 | 3 12    | 2   | 18 12 | <u>JUNK</u> | 5.702245 | 42.63293  | 5.702245   | 13.42671 | 1.981836  | 0.332044  | 0.453692  | 1.814767 | 5.187408   | 3364.827    |
| 1  | 3   | 1        | 0         | 0         | 0  | 0 (     | 0   | 0 13  | 3           |          |           |            |          |           |           |           |          |            |             |
| 10 | 36  | 10       | 7         | 0         | 0  | 0 (     | 0   | 1 19  |             |          |           |            |          |           |           |           |          |            |             |
| 3  | 15  | 3        | 6         | 0         | 0  | 0       | 0   | 5 4   | l           |          |           |            |          |           |           |           |          |            |             |
| 20 | 94  | 20       | 33        | 9         | 1  | 1 4     | 4   | 21 7  |             |          |           |            |          |           |           |           |          |            |             |
| 29 | 128 | 29       | 32        | 3         | 3  | 0 (     | O   | 23 9  | CORREL      | <u>G</u> | <u>AB</u> | <u>APP</u> | <u>H</u> | <u>2B</u> | <u>3B</u> | HR        | HRBASES  | <u>RBI</u> | <u>JUNK</u> |
| 1  | 4   | 1        | 0         | 0         | 0  | 0 (     | כ   | 0     | <u>G</u>    | 1        | 0.942806  | 1          | 0.924598 | 0.875681  | 0.646652  | 0.672216  | 0.672216 | 0.869378   | 0.002091    |
| 1  | 4   | 1        | 1         | 0         | 0  | 0 (     | כ   | 0 16  | AB AB       | 0.942806 | 1         | 0.942806   | 0.987683 | 0.931894  | 0.711969  | 0.700839  | 0.700839 | 0.924371   | 0.003988    |
| 17 | 73  | 17       | 17        | 1         | 1  | 0 (     | כ   | 8 15  | APP         | 1        | 0.942806  | 1          | 0.924598 | 0.875681  | 0.646652  | 0.672216  | 0.672216 | 0.869378   | 0.002091    |
| 1  | 2   | 1        | 0         | 0         | 0  | 0 (     | כ   | 0     | <u>H</u>    | 0.924598 | 0.987683  | 0.924598   | 1        | 0.94709   | 0.735844  | 0.70727   | 0.70727  | 0.93854    | 0.004417    |
| 25 | 106 | 25       | 28        | 2         | 5  | 0 (     | כ   | 13 18 | <u>2B</u>   | 0.875681 | 0.931894  | 0.875681   | 0.94709  | 1         | 0.652731  | 0.729862  | 0.729862 | 0.919224   | 0.003534    |
| 29 | 152 | 29       | 46        | 3         | 3  | 0 (     | 0   | 24 15 | 3 <u>B</u>  | 0.646652 | 0.711969  | 0.646652   | 0.735844 | 0.652731  | 1         | 0.345478  | 0.345478 | 0.663192   | 0.002195    |
| 30 | 134 | 30       | 30        | 4         | 0  | 0 (     | 0   | 21 17 | HR HR       | 0.672216 | 0.700839  | 0.672216   | 0.70727  | 0.729862  | 0.345478  | 1         | 1        | 0.838508   | 0.001223    |
| 3  | 14  | 3        | 1         | 0         | 0  | 0 (     | כ   | 0 7   | HRBASES     | 0.672216 | 0.700839  | 0.672216   | 0.70727  | 0.729862  | 0.345478  | 1         | 1        | 0.838508   | 0.001223    |
| 12 | 63  | 12       | 15        | 2         | 3  | 1 4     | 4   | 14 18 | . RBI       | 0.869378 | 0.924371  | 0.869378   | 0.93854  | 0.919224  | 0.663192  | 0.838508  | 0.838508 | 1          | 0.003395    |
| 19 | 87  | 19       | 20        | 2         | 0  | 0 (     | 0   | 10 14 | JUNK        | 0.002091 | 0.003988  | 0.002091   | 0.004417 | 0.003534  | 0.002195  | 0.001223  | 0.001223 | 0.003395   | 1           |
| 29 | 127 | 29       | 32        | 8         | 1  | 0 (     | 0   | 18 15 | ·           |          |           |            |          |           |           |           |          |            |             |
| 19 | 77  | 19       | 20        | 3         | 1  | 0 (     | 0   | 16 19 |             |          |           |            |          |           |           |           |          |            |             |
| 7  | 33  | 7        | 7         | 0         | 0  | 0 (     | )   | 2 14  |             |          |           |            |          |           |           |           |          |            |             |
| 27 | 118 | 27       | 38        | 8         | 1  | 0 (     | 0   | 26 9  |             |          |           |            |          |           |           |           |          |            |             |
| 28 | 150 | 28       | 37        | 7         | 5  | 3 1     | 2   | 30 18 | 3           |          |           |            |          |           |           |           |          |            |             |
| 6  | 22  | 6        | 4         | 0         | 1  | 0 (     | 0   | 2 6   |             |          |           |            |          |           |           |           |          |            |             |







## Today's Objectives

- Probability
- Conditional Probability
- Dependence
- Descriptive Statistics
- Covariance
- Correlation
- Covariance Matrix