Geometric Interpretation of ML

Introduction

- Steps:
 - Idea (elevator pitch)
 - Proof (formalize, correctness, existence, unique)
 - Compute (implementation, runtime, Big-O)
 - Useful (real application, type of question)
- Algorithm development
 - Generalization
 - Extension

Introduction

1. Fit

- Average
- Linear regression
- Piecewise linear regression
- Exponential curve

2. Axis transformation

- PCA
- Kernel methods

3. Separation

- LDA
- Logistic regression
- SVM, perceptron

DataScience@SMU

Fit

Average

Average

Average

Least Squares

Piecewise Linear Regression

Logarithmic Curve

DataScience@SMU

Logistic Axis

Principle Component Analysis (PCA)

Principle Component Analysis

Principle Component Analysis (PCA)


```
data = [[1, 5, 10, 300],
[10, 50, 100, 3000],
[2, 10, 20, 600]]
```

```
data = [[1,0,0,2,3,2],

[1,0,0,0,0,0],

[5,0,0,0,0,0],

[3,0,0,4,6,4],

[2,0,0,6,9,6],

[0,0,0,2,3,2],

[8,0,0,2,3,2]]
```

Motivating Example

DataScience@SMU

Separation

Separation

Linear Discriminant Analysis

Separation

Linear Discriminant Analysis

Logistic Regression

Support Vector Machine/Perceptron

DataScience@SMU