Traffic monitoring with Distributed Acoustic Sensing (DAS)

Marco Fontana, Supervised by Ángel F. García-Fernández, Simon Maskell

EPSRC Centre for Doctoral Training in Distributed Algorithms, University of Liverpool, Liverpool, UK

Background & Aims

Distributed acoustic sensing (DAS) turns an optical fibre deployed for telecommunication purposes into an array of sensing units. The high sensitivity, low-cost and low-maintenance requirements make DAS an attractive solution for traffic monitoring compared to other sensors.

Challenges:

- The optical fibre output is highly affected by cabling, soil condition, and proximity of noise sources, which lead to time-varying and position-dependent signal-to-noise ratio (SNR).
- During peak hours, a high number of vehicles is present on the highway, leading to resolution and occlusion problems.

Aims:

To develop a system able to track each single vehicle on the highway, providing real-time estimations of speed and position, as well as the number of vehicles running on the highway.

FIG 1: Schematic of DAS system configuration for traffic monitoring.

FIG 2: Example of DAS data represented in a spatio-temporal map, called waterfall.

Detector

We are working on a new method that uses the concept of **notch periodogram** [1] to iteratively remove the contribution of the trajectories in the DAS data.

Detection: A maximum likelihood (ML) criterion is used to estimate the trajectory parameters according to an alphabet of possible speeds and arrival times.

Trajectory features: The trajectory signal is estimated via blob extraction [2], and it is used to detect false detections.

Notch: The detected trajectories are notched in each sensing unit signal, defining the orthogonal space in which to look for a new detection.

FIG 3: a) input data, b) estimated trajectories, c) data points associated with each trajectory, d) detected trajectories signals, e) residual.

Distance

Tracker

We are developing a new tracker that takes in input the partial trajectories from the detector, also called **tracklets**.

FIG 3: Schematic of the tracker of tracklets.

At each scan, the tracker can receive **full tracklets**, representing detections at the beginning and at the end of the time window, and **partial tracklets**, containing one single detection at time k or k+1.

This approach allow us to perform **sensor data fusion** of tracklets detected on different frequency bands in a efficient and scalable way.

Future Work

- **Efficient multi-parameter estimation:** Analysis of methods to speed-up the current algorithm in high-traffic scenarios.
- ➤ Occlusion detection: Study of possible solutions to model trajectories running on the background of the waterfall, whose power is often occluded by other trajectories.
- Clutter modelling: Definition of a suitable clutter model to represent the variety of false tracklet measurements that can be received by the tracker.

Conclusion

The notched power detector showed outstanding performance compared to the standard Hough transform detector [3], especially in high traffic scenarios. The tracker of tracklets is going to provide an estimation of the full trajectory of each vehicle on the highway.

References

[1] J. K. Hwang and Y.-C. Chen, "Superresolution frequency estimation by alternating notch periodogram," IEEE Transactions on Signal Processing, vol. 41, no. 2, pp. 727–741, 1993.
[2] M. B. Dillencourt and H. Samet, "A general approach to connected-component labeling for arbitrary image representations," Journal of the ACM, 1992, 39, 253-280.

[3] M. Fontana, Á. F. García-Fernández and S. Maskell, "A vehicle detector based on notched power for distributed acoustic sensing," 2022 25th International Conference on Information Fusion (FUSION), 2022.

