Working Title: Applied Machine Learning In Aging Neuroscience

Paderborn University

Christian Goelz

25.06.2021

Contents

Acknowledgement														
Abstract														
Figures														
Tables														
Li	st of	Abrev	viations	vi										
Pι	ublic	ations	and other scientific contributions	vii										
1	Intr	coduct	ion	1										
2			al Background	3										
	2.1		cience in Neuroscience	3										
			Dimensionality reduction	3										
			Machine learning	3										
		2.1.3	1 1	3										
	2.2		nd Expertise related changes	3										
			"Central Changes"	3										
			"Behavioral Changes"	3										
		2.2.3	Machine learning framework	3										
3	Ain	ns and	scope	4										
4	Ger	neral n	nethodology	5										

5	Publications																							
	5.1	Paper 1																						
	5.2	Paper 2																						
	5.3	Paper 3																						
6	General discussion																							
7	Bib	liography	y																					
8	Sta	tutory D	ec	la	ara	\mathbf{at}	io	n																

Acknowledgement

Abstract

Aim: Apply data science methods to questions in aging Neuroscience Methods: Supervised and unsupervised methods in different settings

Results: Novel Data Driven insights

Coclusion: ML rocks!

Figures

Tables

List of Abreviations

Publications and other scientific contributions

Chapter 1

Introduction

- ML as the next frontier in science
- Open questions in aging neuroscience
- What can ML tell us?
- Age related changes occur at different scales and are manifestet at several levels.
- There is a wide variety in how this changes occur
- Changes are e.g. neural dedifferentiation and compensatory mechanisms (see Reuter Lorenz et al. 2010) and are noticable brain network level and dynamics
- NOTE: Check what EEG studies said about this...
- The idea is to model these changes with tools from datascience to answer questions in aging neurosci
- First study is about detecting dedifferentiated and compensatory mechanisms with EEG
- Tools used are DMD and Machine learning
- Main idea: Study classification performance as proxy for age related changes in different motor control tasks
- Expertise as possible way of builing a reserve:

- Higher individuality
- Dynamics of dedifferentiation and how do they relate to fitness
- Basic for targeted interventions
- How much and what (relate to Julia)
- Background of ML
- ML as tool
- novel insights
- Problem: Data is multidimensional and we have often limited data
- Solution: Use DMD to reduce Complexity and "model" evolution of signal
- Dynamic Mode Decompsition
- DMD extracts coupled spatio-temporal modes and is able to kind of model the evolution of the signal
- Backgrouund + Papers
- Mathematical Formulation
- What can ML tell us?
- ML applied in aging Neuroscience
- Formulating Aims and goals
- Formulation expectred outcomes

Chapter 2

Theoretical Background

- 2.1 Datascience in Neuroscience
- 2.1.1 Dimensionality reduction
- 2.1.2 Machine learning
- 2.1.3 Applications to Neuroscience
- 2.2 Age and Expertise related changes
- 2.2.1 "Central Changes"
- 2.2.2 "Behavioral Changes"
- 2.2.3 Machine learning framework

Chapter 3 Aims and scope

Chapter 4
General methodology

Chapter 5

Publications

- 5.1 Paper 1
- 5.2 Paper 2
- 5.3 Paper 3

Chapter 6 General discussion

Chapter 7
Bibliography

Chapter 8 Statutory Declaration