Math Review Notes—Linear Regression

Gregory Faletto

G. Faletto

Contents

L	Line	ear Regression	3
	1.1	Chapter 1: Linear Regression	9
		1.1.1 Preliminaries	3
		1.1.2 Estimation	9
	1.2	Chapter 2: Multiple Regression	5
	1.3	Chapter 3: Hypothesis testing in regression	Ę
	1.4	Chapter 4: Heteroskedasticity	8
	1.5	Chapter 5: Autocorrelated disturbances	Ç

Last updated November 21, 2018

1 Linear Regression

These notes are based on my notes from *Time Series and Panel Data Econometrics* (1st edition) by M. Hashem Pesaran and coursework for Economics 613: Economic and Financial Time Series I at USC. I also borrowed from some other sources which I mention when I use them.

1.1 Chapter 1: Linear Regression

1.1.1 Preliminaries

Suppose the true model is $y_i = \alpha + \beta x_i + \epsilon_i$. Classical assumptions:

- (i) $\mathbb{E}(\epsilon_i) = 0$
- (ii) $Var(\epsilon_i \mid x_i = \sigma^2 \text{ (constant)})$
- (iii) $Cov(\epsilon_i, \epsilon_j) = 0$ if $i \neq j$
- (iv) ϵ_i is uncorrelated to x_i , or $\mathbb{E}(\epsilon_i \mid x_j) = 0$ for all i, j.

1.1.2 Estimation

$$\hat{\beta} = \frac{n \sum_{i=1}^{n} x_i y_i - \sum_{i=1}^{n} x_i \sum_{i=1}^{n} y_i}{n \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i\right)^2} = \frac{\sum_{i=1}^{n} x_i y_i - n \overline{x} \overline{y}}{\sum_{i=1}^{n} x_i^2 - n \overline{x}^2}$$

$$\hat{\alpha} = \overline{y} - \hat{\beta} \overline{x}$$

or

$$\hat{\beta} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2} = \frac{S_{XY}}{S_{XX}}$$

or

$$\hat{\beta} = r \frac{S_{YY}}{S_{XX}}$$

where r is the correlation coefficient.

Let

$$w_i = \frac{x_i - \overline{x}}{\sum_{i=1}^n (x_i - \overline{x})^2}$$

so that

$$\hat{\beta} = \sum_{i=1}^{n} w_i (y_i - \overline{y}) = \sum_{i=1}^{n} w_i y_i - \overline{y} \frac{\sum_{i=1}^{n} x_i - \overline{x}}{\sum_{i=1}^{n} (x_i - \overline{x})^2} = \sum_{i=1}^{n} w_i y_i$$

since $\sum_{i=1}^{n} x_i - \overline{x} = 0$. Then a simple expression for $Var(\hat{\beta})$ is

$$Var(\hat{\beta}) = \sum_{i=1}^{n} w_i^2 Var(y_i \mid x_i) = \sum_{i=1}^{n} w_i^2 Var(\epsilon \mid x_i) = \sigma^2 \sum_{i=1}^{n} w_i^2 = \frac{\sigma^2}{\sum_{i=1}^{n} (x_i - \overline{x})^2} = \frac{\sigma^2}{S_{XX}}$$

We can estimate these quantities as follows:

$$\hat{\sigma}^2 = \frac{1}{n-2} \cdot \sum_{i=1}^n (y_i - \hat{\alpha} - \hat{\beta}x_i)^2$$

Note that

$$\hat{\sigma}^2 = \frac{1}{n-2} \sum_{t=1}^{T} (y_t - \hat{\alpha} - \hat{\beta}x_t)^2 = \frac{1}{n-2} \sum_{t=1}^{T} \left[(y_t - (\overline{y} - \hat{\beta}\overline{x}) - \hat{\beta}x_t)^2 \right] = \frac{1}{n-2} \sum_{t=1}^{T} (y_t - \overline{y} - \hat{\beta}(x_t - \overline{x}))^2$$

$$= \frac{1}{n-2} \sum_{t=1}^{T} (y_t - \overline{y})^2 - 2\hat{\beta}(x_t - \overline{x})(y_t - \overline{y}) + \hat{\beta}^2(x_t - \overline{x})^2$$

In the case where there is no intercept, we have

$$\hat{\sigma}^2 = \frac{1}{T-1} \sum_{t=1}^{T} (y_t - \hat{\beta}x_t)^2 = \frac{1}{T-1} \sum_{t=1}^{T} \left(y_t^2 - 2r \frac{S_{YY}}{S_{XX}} x_t y_t + r^2 \frac{S_{YY}^2}{S_{XX}^2} x_t^2 \right)$$

Also,

$$\widehat{\operatorname{Var}}(\hat{\beta}) = \frac{\hat{\sigma}^2}{S_{XX}} = \frac{1}{n-2} \cdot \frac{\sum_{i=1}^n (y_i - \hat{\alpha} - \hat{\beta}x_i)^2}{\sum_{i=1}^n (x_i - \overline{x})^2}$$

Correlation coefficient:

$$r^{2} = \frac{\left(\sum_{t=1}^{T} x_{t} y_{t}\right)^{2}}{\sum_{t=1}^{T} x_{t}^{2} \sum_{t=1}^{T} y_{t}^{2}}$$

$$r = \frac{1}{T - 1} \frac{S_{XY}}{\sqrt{S_{XX}S_{YY}}}$$

Remark. The formulas for the coefficients in univariate OLS can also be derived by considering (x, y) as a bivariate normal distribution and calculating the conditional expectation of y given x. (See Theorem (??).)

1.2 Chapter 2: Multiple Regression

General OLS:

$$\hat{\beta} = (X'X)^{-1}X'y = (X'X)^{-1}X'(X\beta + u) = (X'X)^{-1}X'X\beta + (X'X)^{-1}X'u = \beta + (X'X)^{-1}X'u$$

$$\mathrm{Var}(\hat{\beta}) = \mathrm{Var}(\beta + (X'X)^{-1}X'u) = \mathrm{Var}(\beta) + \mathrm{Var}((X'X)^{-1}X'u) = 0 + \mathbb{E}[(X'X)^{-1}X'uu'X(X'X)^{-1}]$$

$$= \mathbb{E}\big[(X'X)^{-1} X' \mathbb{E}(uu' \mid X) X (X'X)^{-1} \big] = \sigma^2 \mathbb{E}\big[(X'X)^{-1} X' I_T X (X'X)^{-1} \big] = \sigma^2 \mathbb{E}\big[(X'X)^{-1} \big]$$

$$= \sigma^2 (X'X)^{-1}$$

$$\hat{\sigma}^2 = \frac{\hat{\boldsymbol{u}}'\hat{\boldsymbol{u}}}{T - k}$$

1.3 Chapter 3: Hypothesis testing in regression

In this section, I borrow from C. Flinn's notes "Asymptotic Results for the Linear Regression Model," available online at http://www.econ.nyu.edu/user/flinnc/notes1.pdf.

Lemma 1.

$$\frac{1}{n} \cdot X' \epsilon \xrightarrow{p} 0$$

Proof. Note that $\mathbb{E}\frac{1}{n} \cdot X' \epsilon = 0$ for any n. Then we have

$$\operatorname{Var}\left(\frac{1}{n} \cdot X'\epsilon\right) = \mathbb{E}\left(\frac{1}{n} \cdot X'\epsilon\right)^2 = n^{-2}\mathbb{E}(X'\epsilon\epsilon'X) = n^{-2}\mathbb{E}(\epsilon\epsilon')X'X = \frac{\sigma^2}{n}\frac{X'X}{n}$$

implying that $\lim_{n\to\infty} \operatorname{Var}\left(\frac{1}{n}\cdot X'\epsilon\right) = 0$. Therefore the result follows from Chebyshev's Inequality (Theorem ??).

Lemma 2. If ϵ is i.i.d. with $E(\epsilon_i)=0$ and $\mathbb{E}(\epsilon_i^2)=\sigma^2$ for all i, the elements of the matrix X are uniformly bounded so that $|X_{ij}|< U$ for all i and j and for U finite, and $\lim_{n\to\infty} X'X/n=Q$ is finite and nonsingular, then

$$\frac{1}{\sqrt{n}}X'\epsilon \xrightarrow{d} \mathcal{N}(0,\sigma^2Q)$$

Proof. If we have one regressor, then $n^{-1/2} \sum_{i=1}^n X_i \epsilon_i$ is a scalar. Let G_i be the cdf of $X_i \epsilon_i$. Let

$$S_n^2 = \sum_{i=1}^n \operatorname{Var}(X_i \epsilon_i) = \sigma^2 \sum_{i=1}^n X_i^2$$

In this scalar case, $Q = \lim_{n\to\infty} n^{-1} \sum_i X_i^2$. By the Lindberg-Feller Theorem, a necessary and sufficient condition for $Z_n \to \mathcal{N}(0\sigma^2 Q)$ is

$$\lim_{n \to \infty} \frac{1}{S_n^2} \sum_{i=1}^n \int_{|\omega| > \nu S_n} \omega^2 dG_i(\omega) = 0$$

for all $\nu > 0$. Now $G_i(\omega) = F(\omega/|X_i|)$. Then rewrite the above equation as

$$\lim_{n \to \infty} \frac{n}{S_n^2} \sum_{i=1}^n \frac{X_i^2}{n} \int_{|\omega/X_i| > \nu S_n/|X_i|} \left(\frac{\omega}{X_i}\right)^2 dF(\omega/|X_i|) = 0$$

Since $\lim_{n\to\infty} S_n^2 = \lim_{n\to\infty} n\sigma^2 \sum_{i=1}^n X_i^2/n = n\sigma^2 Q$, we have $\lim_{n\to\infty} n/S_n^2 = (\sigma^2 Q)^{-1}$, which is a finite and nonzero scalar. Then we need to show

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} X_i^2 \delta_{i,n} = 0$$

where

$$\delta_{i,n} = \int_{|\omega/X_i| > \nu S_n/|X_i|} \left(\frac{\omega}{X_i}\right)^2 dF(\omega/|X_i|)$$

But $\lim_{n\to\infty} \delta_{i,n} = 0$ for all i and any fixed ν since $|X_i|$ is bounded while $\lim_{n\to\infty} X_n = \infty$, so the measure of the set $\{|\omega/X_i| > \nu S_n/|X_i|\}$ goes to 0 asymptotically. Since $\lim_{n\to\infty} n^{-1} \sum_i X_i^2$ is finite and $\lim_{n\to\infty} \delta_{i,n} = 0$ for all i, $\lim_{n\to\infty} n^{-1} \sum_i X_i^2 \delta_{i,n} = 0$, so $\frac{1}{n} \cdot X' \epsilon \stackrel{p}{\to} 0$.

Theorem 3. Under the conditions of Lemma 2 (ϵ is i.i.d. with $E(\epsilon_i) = 0$ and $\mathbb{E}(\epsilon_i^2) = \sigma^2$ for all i, the elements of the matrix X are uniformly bounded so that $|X_{ij}| < U$ for all i and j and for U finite, and $\lim_{n\to\infty} X'X/n = Q$ is finite and nonsingular),

$$\sqrt{n}(\hat{\beta} - \beta) \xrightarrow{d} \mathcal{N}(0, \sigma^2 Q^{-1})$$

Proof.

$$\sqrt{n}(\hat{\beta} - \beta) = \left(\frac{X'X}{n}\right)^{-1} \frac{1}{\sqrt{n}} X' \epsilon$$

Since $\lim_{n\to\infty} (X'X/n)^{-1} = Q^{-1}$ and by Lemma 2

6

 $\frac{1}{\sqrt{n}}X'\epsilon \xrightarrow{d} \mathcal{N}(0,\sigma^2Q)$

then

$$\sqrt{n}(\hat{\beta} - \beta) \xrightarrow{d} \mathcal{N}(0, \sigma^2 Q^{-1} Q Q^{-1}) = \mathcal{N}(0, \sigma^2 Q^{-1})$$

t-test statistic:

$$t = \frac{\hat{\beta} - 0}{s.e.(\hat{\beta})}$$

F-test statistic:

$$F = \left(\frac{T - k - 1}{r}\right) \left(\frac{SSR_R - SSR_U}{SSR_U}\right)$$

Since

$$R^{2} = \frac{\sum_{t} (y_{t} - \overline{y})^{2} - \sum_{t} (y_{t} - \hat{y}_{t})^{2}}{\sum_{t} (y_{t} - \overline{y})^{2}} = \frac{\sum_{t} (y_{t} - \overline{y})^{2} - SSR_{U}}{\sum_{t} (y_{t} - \overline{y})^{2}}$$

we have

$$SSR_U = \sum_{t} (y_t - \overline{y})^2 - R^2 \sum_{t} (y_t - \overline{y})^2 = (1 - R^2) \sum_{t} (y_t - \overline{y})^2$$

yielding

$$F = \left(\frac{T - k - 1}{r}\right) \left(\frac{\sum_{t} (y_t - \overline{y})^2 - (1 - R^2) \sum_{t} (y_t - \overline{y})^2}{(1 - R^2) \sum_{t} (y_t - \overline{y})^2}\right) = \left(\frac{T - k - 1}{r}\right) \left(\frac{R^2}{1 - R^2}\right)$$

Confidence interval for sums of coefficients. (Two coefficient case.) Suppose we want to test H_0 : $\beta_1 + \beta_2 = k$. Let $\delta = \beta_1 + \beta_2 - k$, $\hat{\delta} = \hat{\beta}_1 + \hat{\beta}_2 - k$. Note that under the null hypothesis $\delta = 0$. We can construct a t-statistic

$$t_{\hat{\delta}} = \frac{\hat{\delta} - 0}{\sqrt{\hat{\text{Var}}(\hat{\delta})}} = \frac{\hat{\beta}_1 + \hat{\beta}_2 - k}{\sqrt{\hat{\text{Var}}(\hat{\delta})}}$$

where

$$\hat{\text{Var}}(\hat{\delta}) = \hat{\text{Var}}(\hat{\beta}_1) + \hat{\text{Var}}(\hat{\beta}_2) + 2\hat{\text{Cov}}(\hat{\beta}_1, \hat{\beta}_2)$$

This means that a 95% confidence interval for δ can be constructed in the following way:

$$\hat{\delta} \pm t^* \sqrt{\hat{\text{Var}}(\hat{\delta})}$$

where t^* is the 95% critical value for the t-distribution.

1.4 Chapter 4: Heteroskedasticity

Under heteroskedasticity, the OLS estimator $\hat{\beta} = (X'X)^{-1}X'y$ is unbiased, but the true covariance matrix of $\hat{\beta}$ no longer matches the OLS formula. For instance, suppose we have

$$y_t = \sum_{i=1}^K \beta_i x_{ti} + u_t$$

where $Var(u_t) = \sigma^2 z_t^2$.

$$\hat{\beta} = (X'X)^{-1}X'y = (X'X)^{-1}X'X\beta + (X'X)^{-1}X'u = \beta + (X'X)^{-1}X'u$$

$$\implies \mathbb{E}(\hat{\beta}) = \mathbb{E}[\beta] + (X'X)^{-1}X'\mathbb{E}[u] = \beta$$

since $\mathbb{E}(u)$ is still 0. However,

$$\begin{aligned} \operatorname{Var}(\hat{\beta}) &= \mathbb{E}\left[\left(\hat{\beta} - \mathbb{E}(\hat{\beta})\right)\left(\hat{\beta} - \mathbb{E}(\hat{\beta})\right)'\right] = \mathbb{E}\left[\left(\beta + (X'X)^{-1}X'u - \beta\right)\left(\beta + (X'X)^{-1}X'u - \beta\right)'\right] \\ &= \mathbb{E}\left[\left((X'X)^{-1}X'u\right)\left((X'X)^{-1}X'u\right)'\right] = \mathbb{E}\left[(X'X)^{-1}X'uu'X\left((X'X)^{-1}\right)'\right] \\ &= (X'X)^{-1}X'\mathbb{E}\left[uu' \mid X\right]X(X'X)^{-1} \\ &= (X'X)^{-1}X'\begin{bmatrix} \sigma^2z_1^2 & 0 & 0 & \dots & 0 \\ 0 & \sigma^2z_2^2 & 0 & \dots & 0 \\ 0 & 0 & \sigma^2z_3^2 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \sigma^2z_T^2 \end{bmatrix} X(X'X)^{-1} \\ &= \sigma^2(X'X)^{-1}X'\begin{bmatrix} z_1^2 & 0 & 0 & \dots & 0 \\ 0 & z_2^2 & 0 & \dots & 0 \\ 0 & 0 & z_3^2 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & x_3^2 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & x_3^2 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & x_3^2 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & x_3^2 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & x_3^2 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & x_3^2 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & x_3^2 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & x_3^2 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & x_3^2 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & x_3^2 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & x_3^2 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & x_3^2 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & x_3^2 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & x_3^2 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & x_3^2 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & x_3^2 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & x_3^2 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & x_3^2 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & x_3^2 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & x_3^2 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & x_3^2 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & x_3^2 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & x_3^2 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & x_3^2 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & x_3^2 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & x_3^2 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & x_3^2 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & x_3^2 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & x_3^2 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 &$$

which is different from the OLS estimator of the covariance matrix $\sigma^2(X'X)^{-1}$. Therefore the estimate of the variances of $\hat{\beta}$ will be biased if the OLS formulas are used, and the usual t and F tests for $\hat{\beta}$ will be invalid.

1.5 Chapter 5: Autocorrelated disturbances

Generalized least squares model:

$$y = X\beta + u$$

where

$$\mathbb{E}(\boldsymbol{u} \mid \boldsymbol{X}) = 0 \ \forall \ t$$

$$\mathbb{E}(uu' \mid X) = \Sigma$$

where Σ is a positive definite matrix.

$$\hat{\beta}_{GLS} = (X'\Sigma^{-1}X)^{-1}X'\Sigma^{-1}y$$

$$\operatorname{Var}(\hat{\beta}_{GLS}) = (X'\Sigma^{-1}X)^{-1}$$