Assignment for Section 2.5: Inverse matrices

- (1) Suppose A has row 1 + row 2 = row 3.
 - (a) Explain why Ax = (1, 0, 0) cannot have a solution.
 - (b) Which right sides (b_1, b_2, b_3) might allow a solution to Ax = b?
 - (c) In elimination, what happens to equation 3?

Then based on either (a) or (b) or (c), explain why A is not invertible.

- (2) Multiply $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ times $\begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$. What is the inverse of each matrix if $ad \neq bc$.
- (3) If B is the inverse of A^2 , show that AB is the inverse of A.
- (4) Invert the matrix

$$A = \left[\begin{array}{rrr} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{array} \right]$$

by the Gauss-Jordan method starting with [A I].

- (5) (a) Prove that $A = \begin{bmatrix} a & b & b \\ a & b & b \\ a & a & a \end{bmatrix}$ is invertible if $a \neq 0$ and $a \neq b$.
 - (b) Find three numbers c so that $C = \begin{bmatrix} 2 & c & c \\ c & c & c \\ 8 & 7 & c \end{bmatrix}$ is not invertible.