Dynamic Programming Lecture 5

Friday, 30 August 2024 6:09 AM

Coin Change Problem

given array of coins of different denomination and a total amount, the task is to find the number of ways to make up the amount using the available coins. Each coin can be used unlimited number of times.

4. Coins = { 1,2,5}

Amount = 5

ways= {1,1,1,1,13 &1,1,23, {1,2,23, f5}

count (coins, n, sum)

= count (coins, n, sum-coins[n-1])

Count (coins, n-1, sum)

T= 0(n. sum)

Matrix Chain Multiplication La given matrices A1, A2, ..., An with dimensions PoxPi, PixPz -.. Pn-1×Pn find the minimum number of scalar multiplications needed to calculate the matrix product A, Az... An $A_1 \times A_2 \neq A_2 \times A_1$ $A_{1} \times A_{2} \times A_{3} \times A_{4} \dots = A$ $2 \times 2 \times 3 \times 1 \times 1 \times 2 \times 6$ $2 \times 6 \times 1 \times 1 \times 1 \times 1 \times 6$ $(A_1 A_2)A_3 = A_1(A_2 A_3)$ $A_{1} \times A_{2}$ $\begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}_{2 \times 2}$ A, A2 A3 2×1 1×3 3×2 $\begin{bmatrix} 1 \\ 0 \end{bmatrix} \qquad \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 2 & 1 \end{bmatrix}$ (A, A) A3 : 2×1×3+ 2×3×2 = 6+12=(8) > A. (A2 A3) : 1×3×2 + 2×1×2 = 6+4=(10) [102] $\begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{pmatrix} 1 & 0 & 2 \\ 1 & 0 & 2 \\ 1 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ $= \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ $= \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ $= \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ $= \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ $= \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ $= \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ $= \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ $= \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ $= \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ $= \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ $= \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ $= \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ A, × Az # scalar multiplication

= Po×P1×P2

Brute: To check all possible ways to multiply the matrices

$$\frac{2n(n = \frac{(2n)!}{n! \ n! \ (n+1)} = \frac{(2n)(2n-1)...(2n-(2n-1))}{n! \ (n+1)} \sim O(n^n)$$

$$A_1 \cdot \begin{bmatrix} A_2 \cdot A_3 \cdot ... \\ P_0 \times P_1 \end{bmatrix} A_n = P_0 \times P_n$$

$$P_0 \times P_1 \cdot \begin{bmatrix} P_1 \times P_2 & P_2 \times P_3 \end{bmatrix} P_{n-1} \times P_n$$

To multiply matrices A; to Aj, the min- # scalar multiplication.

$$\begin{bmatrix}
A_{i} & A_{i+1} & A_{i+2} \\
M(A_{i} - A_{k}) \\
M(A_{i} - A_{k})
\end{bmatrix} \leftarrow \underbrace{Cm(A_{k} - A_{j})} + \underbrace{P_{i-1} \cdot P_{k} \cdot P_{j}}$$

$$\begin{bmatrix}
A_{i} & A_{k} \\
P_{i-1} \times P_{i}
\end{bmatrix} \leftarrow \underbrace{P_{k} \times P_{k+1}}$$

$$\underbrace{P_{k} \times P_{j}}$$

$$\underbrace{P_{k} \times P_{j}}$$

$$\underbrace{P_{k} \times P_{j}}$$

 $m[i,j] = \begin{cases} min & m[i,k] + m[k+1,j] + P_{i-1} \times P_{k} \times P_{j}, & i \neq j \\ i \leq k \leq j & A_{1} \quad A_{2} \quad A_{n} \\ O, & i = j & P_{0}, P_{1}, \dots P_{n} \end{cases}$

```
function matrix Chain Multiplication (p, n):
                                                                       m[i][j]: min scalar
      dp = matrix of size (n+1) \times (n+1)
initialized to \infty
                                                                      multiplication A: ... Aj
                                                                          i=i" j= i+L-1
     \begin{cases} \text{for } (i:0 \rightarrow n) \\ \text{dp [i][i]} = 0 \end{cases}
\begin{cases} \text{for } (L:2 \rightarrow n) \end{cases}
\begin{cases} \text{J-size } 2 \rightarrow n \end{cases}
                                                                       A, A2 A3 ... An
                                                                           A . - - . . An
                                                                            dp[n](n]=0
               for (i: 1 -> n-L+1):
                       i= i+L-1
i: 1 - 4-3+1
                      for (k: i→j-1):
                              mul = dp[i][x] + dp[x+1][j] + P[i-1] * p[x] * P[j]
                              dp[i][j]= min(dp[i][j], mul)
       return dp[17[n]
```


[GATE CS 2016 Set 2]

Let A_1 , A_2 , A_3 and A_4 be four matrices of dimensions 10×5 , 5×20 , 20×10 and 10×5 , respectively. The minimum number of scalar multiplications required to find the product $A_1A_2A_3A_4$ using the basic matrix multiplication method is (1500).

$$dp [1][1] = 0, \quad dp[2][2] = 0, \quad dp[3][3] = 0, \quad dp[4][4] = 0 \qquad A(A_2A_3)A_4)$$

$$dp [1][2] = 10 \times 5 \times 20 = 1000$$

$$dp [2][3] = 5 \times 20 \times 10 = 1000$$

$$dp [3][4] = 20 \times 10 \times 5 = 1000$$

$$dp [1][3] = min \begin{cases} 0 + 1000 + 10 \times 5 \times 10 = 1000 + 500 = 1500 \\ 1000 + 0 + 10 \times 20 \times 10 = 1000 + 500 = 3000 \end{cases}$$

$$dp [1][4] = min \begin{cases} 0 + 1000 + 5 \times 10 \times 5 = 1000 + 500 = 1500 \\ 1000 + 0 + 5 \times 10 \times 5 = 1000 + 500 = 1500 \\ 1000 + 0 + 5 \times 10 \times 5 = 1000 + 500 = 1500 \end{cases}$$

$$dp [1][4] = min \begin{cases} 0 + 1000 + 5 \times 10 \times 5 = 1000 + 500 = 1500 \\ 1000 + 0 + 5 \times 10 \times 5 = 1000 + 500 = 1500 \\ 1000 + 1000 + 1000 \times 5 = 1000 + 1000 = 3000 \end{cases}$$

$$dp [1][4] = min \begin{cases} 0 + 1000 + 1000 \times 5 = 1000 + 500 = 1500 \\ 1000 + 1000 + 10000 \times 5 = 1000 + 1000 = 3000 \end{cases}$$

[GATE CS 2018]

Assume that multiplying a matrix G_1 of dimension $p \times q$ with another matrix G_2 of dimension $q \times r$ requires pqr scalar multiplications. Computing the product of n matrices $G_1G_2G_3\dots G_n$ can be done by parenthesizing in different ways. Define G_iG_{i+1} as an **explicitly computed pair** for a given paranthesization if they are directly multiplied. For example, in the matrix multiplication chain $G_1G_2G_3G_4G_5G_6$ using parenthesization $(G_1(G_2G_3))(G_4(G_5G_6)), G_2G_3$ and G_5G_6 are only explicitly computed pairs.

Consider a matrix multiplication chain $F_1F_2F_3F_4F_5$, where matrices F_1, F_2, F_3, F_4 and F_5 are of dimensions $2\times25, 25\times3, 3\times16, 16\times1$ and 1×1000 , respectively. In the parenthesization of $F_1F_2F_3F_4F_5$ that minimizes the total number of scalar multiplications, the explicitly computed pairs is/are

A.
$$F_1F_2$$
 and F_3F_4 only B. F_2F_3 only C. F_3F_4 only D. F_1F_2 and F_4F_5 only

$$(1,3)$$
 = min $\begin{cases} 0+|200+2\times25\times16=2000\\ 150+0+2\times3\times16=246 \end{cases}$

$$(2,4) = \text{win} \begin{cases} 0 + 48 + 25 \times 3 \times) = (123) \\ 1250 + \cdots \end{cases}$$

$$(1,2) = 2 \times 15 \times 3 = 150$$

 $(2,3) = 25 \times 3 \times 16 = 1260$
 $(3,4) = 3 \times 16 \times 1 = 48$
 $(4,5) = 16 \times 1 \times 1000 = 16000$
 $(1,4) = min \begin{cases} 0 + 123 + 2 \times 25 \times 1 = 173 \\ 150 + 48 + \cdots \\ 246 + \cdots \end{cases}$

$$(1.5) = \text{rwin} \begin{cases} 0 + 25723 - \cdots \\ 173 + 0 + 2 \times 1 \times 1000 = 2173 \end{cases}$$