МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное автономное образовательное учреждение высшего образования «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ»

КАФЕДРА 44

КУРСОВОЙ ПРОЕКТ ЗАЩИЩЕНА С ОЦЕНКОЙ	
РУКОВОДИТЕЛЬ	
<u>старший преподаватель</u> должность, уч. степень, звание подпись, дата	<u>А.Н. Долидзе</u> инициалы, фамилия
ПОЯСНИТЕЛЬНАЯ ЗАПИО	СКА
К КУРСОВОМУ ПРОЕКТ	Y
по дисциплине: СХЕМОТЕХНИ	IKA
РАБОТУ ВЫПОЛНИЛ СТУДЕНТ гр. № <u>4143</u>	Д.В. Пономарев
подпись, дата	инициалы, фамилия

Проектное задание

Разработать электронное устройство в соответствии с предложенной схемой и исходными данными, которое обеспечило бы заданную точность и качество работы. Работоспособность устройства обязательно подтверждается моделированием с применением САПР Quartus.

Разработка устройства включает в себя следующие этапы:

- составление и обоснование выбора функциональной схемы;
- разработку проектируемой схемы в САПР Quartus с использованием стандартных блоков, предоставляемых САПР (И, НЕ, дешифратор, триггер и т.д.) и описание ее работы с использованием временных диаграмм;
- разработку проектируемой схемы в CAПР Quartus с использованием языка описания аппаратуры SystemVerilog и описание ее работы с использованием временных диаграмм;
- анализ двух подходов к разработке проектируемой схемы;
- обоснование и выбор FPGA на базе которого будет синтезироваться разрабатываемая схема;
- моделированием с применением САПР Quartus.
- назначение входов и выходов проектируемой схемы на выбранном FPGA.

Согласно варианту (схема 1, вариант 14), устройство является преобразователем кодов и должно переводить код 5211 в 7421. Предложенная схема устройства представлена на рисунке 1.

<u>Схема 1</u> Схема преобразователя кода

Рисунок 1 – Схема устройства

В таблице 1 представлено соответствие входных и выходных кодов, с которыми работает устройство.

Таблица 1

5211	7421
0000	0000
0001	0001
0011	0010
0101	0011
0111	0100
1000	0101
1010	0110
1101	1000
1110	1001
1111	1010

ОГЛАВЛЕНИЕ

Проектное задание	2
оглавление	
ВВЕДЕНИЕ	
1. РАЗРАБОТКА ФУНКЦИОНАЛЬНОЙ СХЕМЫ	6
1.1. ВЫБОР ФУНКЦИОНАЛЬНОЙ СХЕМЫ	6
1.2. СОСТАВЛЕНИЕ СХЕМЫ УСТРОЙСТВА СИСПОЛЬЗОВАНИЕМ СТАНДАРТНЫХ БЛОКОВ	
1.3. СОСТАВЛЕНИЕ СХЕМЫ УСТРОЙСТВА СИСПОЛЬЗОВАНИЕМ ЯЗЫКА ОПИСАНИЯ АППАРАТУРЫ SYSTEM VERILOG	
2. BЫБОР FPGA	13
ЗАКЛЮЧЕНИЕ	15
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	16

ВВЕДЕНИЕ

Целью курсового проектирования является освоение методов расчета, схемотехнического проектирования и конструирования элементов и блоков ЦВМ на базе программируемых логических интегральных схема (ПЛИС, далее FPGA).

В ходе выполнения курсового проекта должны быть получены схема устройства и программный код на языке описания аппаратуры System Verilog, соответствующие заданному в проектном задании функционалу. Устройство представляет собой преобразователь кодов, включающее в себя схемы контроля выдачи входного и выходного кодов.

1. РАЗРАБОТКА ФУНКЦИОНАЛЬНОЙ СХЕМЫ

1.1. ВЫБОР ФУНКЦИОНАЛЬНОЙ СХЕМЫ

В ходе работы было решено использовать готовые модули среды Quartus для построения схемы. Исходно рассматривалось применение пары шифратор-дешифратор для реализации схемы. Однако в стандартных модулях Quartus был доступен только 4-битный дешифратор с 16 выходами. Поэтому для второй части схемы решено использовать логические выражения, связанные с выходами дешифратора.

Для начала надо понять каких сочетаний нету в нашей таблице и составить таблицу истинности. Схемы контроля выдачи входного и выходного кода были получены с помощью построения нормальной-конъюнктивной формы, при условии, что функция схем активируется в случае распознавания недопустимого кода. В таблице 2 представлены таблицы истинности схем контроля выдачи кодов, где f_x — функция контроля выдачи входного кода. функция контроля выдачи входного кода.

Таблица 2

x_3	x_2	x_1	x_0	$ f_x $	$ f_y $
0	0	0	0	0	0
0	0	0	1	0	0
0	0	1	0	1	0
0	0	1	1	0	0
0	1	0	0	1	0

0	1	0	1	0	0
0	1	1	0	1	0
0	1	1	1	0	1
1	0	0	0	0	0
1	0	0	1	1	0
1	0	1	0	0	0
1	0	1	1	1	1
1	1	0	0	1	1
1	1	0	1	0	1
1	1	1	0	0	1
1	1	1	1	0	1

Теперь после того как мы получили значения, надо составить выражения в которых будут отображены выражения для битов выхода. Выражения составляются по такому принципу, что все возможные значения из таблицы 2 нумеруются от 0 до 15, после чего смотрятся все значения соответствующего выходного бита и в месте где бит равен 1 ставиться qn, где n это номер из таблицы 2.

Составленные выражения приведены ниже:

$$y_0 = q_1 V q_5 V q_8 V q_{14} \tag{1}$$

$$y_1 = q_3 V q_5 V q_{10} V q_{15} \tag{2}$$

$$y_2 = q_7 V q_8 V q_{10} (3)$$

$$y_3 = q_{13} V q_{14} V q_{15} \tag{4}$$

1.2. СОСТАВЛЕНИЕ СХЕМЫ УСТРОЙСТВА С ИСПОЛЬЗОВАНИЕМ СТАНДАРТНЫХ БЛОКОВ

В ходе разработки схемы устройства были использован стандартный модуль *16dmux*, а также стандартные модули, такие как *or* и *and*. На рисунках 2-5 представлен результат моделирования схемы в графическом редакторе среды

Quartus.

Рисунок 2 — Входы и выходы, а также блоки инверсии

Рисунок 3 – Модуль с назначенными выходами q

Рисунок 4— Полученные выражения на схеме

Далее будет часть схемы отвечающая за ошибки. На ней будут приведены все значения для входных(erA) и выходных(erB) кодов, которые отсутствуют в моем варианте, то есть все строки у которых в Fa и Fb проставлены 1 из таблицы 2.

Рисунок 5 – Обработчик ошибок

На рисунке 6 представлен результат симулирования схемы в виде временной диаграммы.

Рисунок 6 – Временная диаграмма

1.3. СОСТАВЛЕНИЕ СХЕМЫ УСТРОЙСТВА С ИСПОЛЬЗОВАНИЕМ ЯЗЫКА ОПИСАНИЯ АППАРАТУРЫ SYSTEM VERILOG

В ходе разработки программного кода для проекта было принято решение придерживаться модульной архитектуры проекта. Программа состоит из четырёх модулей: основной модуль проекта, модуль преобразователя кода, модуль контроля выдачи входного кода, модуль контроля выдачи выходного кода. Код программы представлен в листинге 1.

Листинг кода 1

```
module OutputReg (
input wire [3:0] outputCode,
output reg result
);
always @* begin
result <=</pre>
```

```
outputCode == 4'b0111 ||
outputCode == 4'b1011 ||
outputCode == 4'b1100 ||
outputCode == 4'b1101 ||
outputCode == 4'b1110 ||
outputCode == 4'b1111;
end
endmodule
module InputIm (
input wire [3:0] inputCode,
output reg result
);
always @* begin
result <=
inputCode == 4'b0010 ||
inputCode == 4'b0100 ||
inputCode == 4'b0110 ||
inputCode == 4'b1001 ||
inputCode == 4'b1100 ||
inputCode == 4'b1011;
end
endmodule
module KontrV (
input wire [3:0] inputCode,
output reg [3:0] outputCode
);
always @* begin
case (inputCode)
4'b0000: outputCode = 4'b0000;
4'b0001: outputCode = 4'b0001;
4'b0011: outputCode = 4'b0010;
4'b0101: outputCode = 4'b0011;
4'b0111: outputCode = 4'b0100;
4'b1000: outputCode = 4'b0101;
4'b1010: outputCode = 4'b0110;
4'b1101: outputCode = 4'b1000;
4'b1110: outputCode = 4'b1001;
4'b1111: outputCode = 4'b1010;
default: outputCode = 4'b0000;
endcase
end
endmodule
module lab7(
```

```
input wire [3:0] inputCode,
output wire [3:0] outputCode,
output wire error
);
wire error_x;
wire error_y;
KontrV m_KontrV(
.inputCode(inputCode),
.outputCode(outputCode)
);
InputIm m_inputIm(
.inputCode(inputCode),
.result(error_x)
OutputReg m_outputReg(
.outputCode(outputCode),
.result(error_y)
);
assign error = error_x || error_y;
endmodule
```

Описание кода:

Модуль OutputReg:

- Принимает на вход 4-битный входной код outputCode.
- Определяет result в зависимости от значений outputCode.
- Если outputCode равен одному из указанных значений, result устанавливается в 1, иначе в 0.

Модуль InputIm:

- Принимает на вход 4-битный входной код inputCode.
- Определяет result в зависимости от значений inputCode.
- Если inputCode равен одному из указанных значений, result устанавливается в 1, иначе в 0.

Модуль KontrV:

- Принимает на вход 4-битный входной код inputCode.
- Производит преобразование inputCode в соответствующий outputCode согласно заданному в таблице преобразования.
- Если входной код inputCode соответствует одному из заданных значений в таблице, устанавливает соответствующий outputCode. В противном случае outputCode устанавливается в 4-битный нулевой код.

Модуль lab7:

• Комбинирует работу модулей InputIm, OutputReg и KontrV.

- Принимает на вход 4-битный входной код inputCode.
- Выводит 4-битный выходной код outputCode.
- Устанавливает флаг ошибки error, если входные коды не соответствуют ожидаемым значениям.

На рисунке 7 представлен результат симуляции схемы, реализованной с помощью языка описания аппаратуры System Verilog.

Рисунок 7 — Временная диаграмма

Рисунок 8— Временная диаграмма с с ошибками

2. ВЫБОР FPGA

В ходе выполнения проекта было принято решение использовать ПЛИС Cyclone IV E— EP4CE6E22C6 как было указанно в задании. На рисунке 9-10 представлена схема подключения кПЛИС.

Рисунок 9 – Схема подключения выходов

Node Name	Direction	Location	I/O Bank	VREF Group	Fitter Location	I/O Standard	
out error	Output				PIN_11	2.5 V (default)	
in_ inputCode[3]	Input				PIN_28	2.5 V (default)	
in inputCode[2]	Input				PIN_33	2.5 V (default)	
in inputCode[1]	Input				PIN_25	2.5 V (default)	
in inputCode[0]	Input				PIN_24	2.5 V (default)	
outputCode[3]	Output				PIN_133	2.5 V (default)	
outputCode[2]	Output				PIN_7	2.5 V (default)	
outputCode[1]	Output				PIN_10	2.5 V (default)	
outputCode[0]	Output				PIN_1	2.5 V (default)	

Рисунок 10 – Таблица назначения входов и выходов схемы

ЗАКЛЮЧЕНИЕ

В ходе выполнения проекта было получено устройство преобразователя кодов. Моделирование устройства выполнено с помощью графической среды САПР Quartus и с помощью языка описания аппаратуры System Verilog. Обе реализации дают одинаковый и подобный друг другу результат.

Устройство работает конкретно и уверенно и соответствует поставленной задачи и заданному функционалу, исправно преобразовывает входной код в выходной, сообщает об ошибках, в случае некорректных кодов.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Чернышев С. А. Синтез и компьютерный анализ элементов и узлов ЦВМ на FPGA с использованием САПР Quartus: метод. указания по курсовому проектированию / С.А. Чернышев. – СПб., 2018. – 31 с.