

Syllabus

TY B.Tech Electronics and Computer Engineering (Third Year: Semester V-VI)

From Academic Year 2024-25 (Revision-1)

TY B.Tech /EXCP/Revision 1.0

K.J. Somaiya College of Engineering, Mumbai-77 (A Constituent College of Somaiya Vidyavihar University)

It is notified for information of all concerned that the Board of Studies at its meeting held on $//20 \rm XX$ and the subsequent meeting of the Faculty of Engineering and Technology (FoET) on / /2023 and Academic Council held on 05/04/2023 amended the syllabus of T.Y. B. Tech EXCP. Same will be brought into force from Academic Year 2024-25 with immediate effect.

Preamble

The Department was established in 1983 and has been accredited thrice by the National Board of Accreditation in 1998, 2009, and 2013. The Department offers UG, PG, and Ph.D. programs. In the era of Industry 4.0, intelligent devices are an integral part of human life, This has resulted in the need for electronics engineers to acquire skill of hardware design and System Software so that they can effectively use their expertise in the domains which are combination of hardware - software; such as Embedded Systems, Robotics, IOT, Machine Vision, Data Analytics, and Artificial intelligence.

Due to the rapid evolution in all the above fields, engineers must possess proficiency in hardware and software. Electronics and Computer engineering aims to integrate two separate engineering domains, exposing the students to the needs of today's industry. It is necessary to map industry requirements into the educational system and develop a continuous knowledge cycle that gives exposure to new technologies. Industrial automation is an interdisciplinary topic covering areas ranging from algorithms to handling processes and system developments to digital manufacturing. By increasing automation through the use of sensors, IoT, and configurable robots on the assembly line, 'smart' factories will be able to mass-produce items satisfying individual customer orders and specifications. Efficiency in productivity and quality of the product can be improved through automation and Internet-of-Things (IoT). The Department strives to provide a conducive environment for the students to develop analytical and practical skills and apply them to real-world problems. The major emphasis of the curriculum is:

- To prepare the Learner with a sound foundation in the mathematical, scientific, and engineering fundamentals.
- To motivate the Learner in the art of self-learning and to use modern tools for solving real-life problems.
- To equip the learners with the skill set of Laboratory tools by including various laboratory courses in the curriculum.
- To equip the Learner with state-of-the-art programming languages to make them ready for placements.
- Our core courses are designed in a manner to prepare the Learner to be equally competent for qualifying competitive technical examinations.
- To encourage, motivate, and prepare the Learner for Lifelong-learning.
- To ingrain in the learner's mind the values of professionalism, ethics, effective leadership, and social responsibility.

HOD ETRX

Vision

To impart excellent quality-education by keeping pace with rapidly changing technologies and to create technical manpower of global standards with ethical and social values.

Mission

Efforts to impart quality and value-based education to:

- Raise satisfaction level of all stakeholders
- Create competent professionals
- Provide all possible support to promote research and development activities

Program Educational Objectives (PEOs)

A graduate of Electronics and Computer Engineering will:

- PEO 1. Adapt to upcoming technologies to solve real-life problems of society
- PEO 2. Pursue higher education or research, demonstrate entrepreneurial qualities
- PEO 3. Emerge as a leader with a professional and ethical outlook, exhibit effective communication, teamwork and multidisciplinary approach

Program Outcomes (POs)

After successful completion of the program an Electronics and Computer Engineering Graduate will be able to:

- PO 1. **Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- PO 2. **Problem Analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO 3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet specified needs with appropriate consideration for public health and safety and the cultural, societal, and environmental considerations.
- PO 4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and inter-

pretation of data, and synthesis of the information to provide valid conclusions.

- PO 5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- PO 6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, cultural, environmental, health, safety and legal issues relevant to the professional engineering practice; understanding the need of sustainable development.
- PO 7. Multidisciplinary competence: Recognize/ study/analyze/provide solutions to real-life problems of multidisciplinary nature from diverse fields
- PO 8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO 9. **Individual and teamwork:** Function effectively as an individual and as a member or leader in diverse teams and in multidisciplinary settings.
- PO 10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- PO 11. **Project Management and Finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- PO 12. Lifelong Learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Specific Outcomes (PSOs)

After successful completion of the program Electronics and Computer Engineering Graduate will be able to:

- PSO 1. Design, construct and implement hardware and software ased modern Electronic systems with varying complexities specialization to the solution of complex engineering problems.
- PSO 2. Demonstrate proficiency in use of software and hardware required in real-life applications.

Somaiya Vidyavihar University

K.J. Somaiya College of Engineering

Acronym	for a category of courses	Acronyms	used in the syllabus document
Acronym	Definition	Acronym	Definition
BS	Basic Science Courses	CA	Continuous Assessment
ES	Engineering Science	ISE	In Semester Exam
HS	Humanities and Social Sci-	ESE	End Semester Exam
	ences including Manage-		
	ment Courses		
PC	Professional Core Courses	IA	Internal Assessment
PE	Professional Elective	О	Oral
	Courses		
OE	Open Elective Courses	P	Practical
LC	Laboratory Courses	P&O	Practical and Oral
P	Project	TH	Theory
\mathbf{AC}	Audit Course	TUT	Tutorial
AOCC	Add on Credit Course	TW	Term Work
AOAC	Add on Audit Course	ISE	In Semester Examination
AVAC	Add on Value Audit Course	CO	Course Outcome
EX	Exposure Course	PO	Program Outcome
I	Interdisciplinary Courses	PSO	Program Specific Outcome

Semester V - Credit Scheme

Course Code	Course Name	Teaching Scheme (Hrs.) TH-P- TUT	Total Hrs.	Credits As- signed TH-P- TUT	Total Cred- its	Course Cate- gory
116U40C501	Theory of Automata	3-0-1	04	3-0-1	04	PC
116U40C502	Automation & Control System	3-0-0	03	3-0-0	03	PC
116U40C503	Computer Organization & Architecture	3-0-0	03	3-0-0	03	PC
116U40E51X	Department Elective – I	3-0-0	03	3-0-0	03	PE
116U06O5XX	Open Elective Technical – I	3-0-0	03	2-0-0	02	OE
116U06H5XX	Open Elective Humanities/ Management	2-0-0	02	2-0-0	02	HS
116U40L501	Web Programming Laboratory	0-2-2	04	0-2-0	02	PC
116U40L502	Automation & Control System Laboratory	0-2-0	02	0-1-0	01	PC
116U40P501	Mini Project - I	0-2-0	02	0-1-0	01	PR
116U40L51X	Department Elective – I Laboratory	0-2-0	02	0-1-0	01	PE
	TOTAL	17-08-3	28	16-5-1	22	

Semester V - Department Elective -I

Course Code	Elective Name
116U40E511	Hardware Description Language and FPGA
116U40E512	Electromagnetics Engineering
116U40E513	Sensors and Measuring Instruments
116U40E514	Information Theory and Coding Techniques
116U40E515	Analog Integrated Circuits and Applications
116U40E516	Software Engineering
116U40E517	#Advanced Python Programming and Applications

ESE based on PR exam

Semester V - Examination Scheme

Course	Course	C	\mathbf{A}	DCD	CDXX7		D0-0	m-4-1
Category	Name	ISE	IA	ESE	TW	O	P&O	Total
116U40C501	Theory of Au-	30	20	50	25	-	-	125
	tomata							
116U40C502	Automation &	30	20	50	-	_	-	100
	Control System							
116U40C503	1 0	30	20	50	-	-	-	100
	nization & Ar-							
	chitecture							
116U40E51X	1	30	20	50	-	_	_	100
_	Elective – I							
116U06O5XX	•	30	20	-	-	-	-	50
	Technical – I							
116U06H5XX	1	30	20	-	-	_	-	50
	Humanities/							
	Management				- 0 sk		2.5	
116U40L501	Web Program-	-	-	-	50*	-	25	75
	ming Labora-							
11611401 500	tory				25		25	F 0
116U40L502	Automation &	-	_	-	25	_	25	50
	Control System							
116H40DF01	Laboratory Mini Project I				25	25		50
116U40P501	Mini Project - I	-	-	-	25	25	-	50
116U40L51X	-	-	-	-	25	25	-	50
	Elective – I							
T	Laboratory OTAL	180	120	200	150	50	50	750
1	OIAL	190	120	200	190	0U	90	7 90

^{*}Term work based on laboratory performance of 25 marks and Mini Project of 25 marks

Semester VI Credit Scheme

Course Code	Course Name	Teaching Scheme (Hrs.) TH-P- TUT	Total Hrs.	Credits As- signed TH-P- TUT	Total Cred- its	Course Cate- gory
116U40C601	Digital Signal & Image Processing	3-0-0	03	3-0-0	03	PC
116U40C602	Computer Communication Networks	3-0-0	03	3-0-0	03	PC
116U40C603	Operating System and Compilers	3-0-0	03	3-0-0	03	PC
116U40E61X	Department Elective – II	3-0-0	03	3-0-0	03	PE
116U06O6XX	Open Elective Technical – II	3-0-0	03	2-0-0	02	OE
116U06H6XX	Open Elective Humanities/ Management	2-0-0	02	2-0-0	02	HS
116U40P601	Mini Project - II	1-2-0	03	0-2-0	02	PR
116U40L601	Digital Signal & Image Processing Laboratory	0-2-0	02	0-1-0	01	PC
116U40L602	Computer Communication Networks Laboratory	0-2-0	02	0-1-0	01	PC
116U40L603	Operating System and Compilers Laboratory	0-2-0	02	0-1-0	01	PC
116U40L61X	Department Elective – II Laboratory	0-2-0	02	0-1-0	01	PE
116U06-601	MNCC	2-0-0	02	-	-	
	TOTAL	20-10-0	30	16-6-0	22	

Course Code	Elective Name
116U40E611	Power Electronics
116U40E612	Basics of VLSI
116U40E613	Computer Graphics
116U40E614	Applied Data Science
116U40E615	#Mobile App Development
116U40E616	Mobile Communication and Ad hoc Networks
116U40E617	Drone Technology

ESE based on PR exam

Semester VI - Examination Scheme

Course	Course	CA		ESE	$\mathbf{T}\mathbf{W}$	O*	P&O	T-4-1
Category	Name	ISE	IA	ESE	1 VV	O*	P&U	Total
116U40C601	Digital Signal &	30	20	50	_	-	-	100
	Image Process-							
	ing							
116U40C602	Computer Com-	30	20	50	-	-	-	100
	munication Net-							
	works							
116U40C603	Operating Sys-	30	20	50	-	-	-	100
	tem and Compil-							
11011400017	ers	9.0	20	50				100
116U40E61X	-	30	20	50	-	_	-	100
116H06O6VV	Elective – II	30	20					F O
116U06O6XX	Open Elective Technical – II	30	20	_	_	_	-	50
116U06H6YY	Open Elective	30	20					50
110000110XX	Humanities/	30	20	_	_	_	_	90
	Management							
116U40P601	Mini Project - II	_	_	_	50*	25	_	75
116U40L601	Digital Signal &	_	_	_	25	25	_	50
	Image Process-							• •
	ing Laboratory							
116U40L602	Computer Com-	-	-	-	25	25	-	50
	munication							
	Networks Labo-							
	ratory							
116U40L603	Operating Sys-	-	-	-	25	25	-	50
	tem and Compil-							
	ers Laboratory							
116U40L61X	Department	-	-	-	25	25	-	50
	Elective – II							
	Laboratory	100	100	900	180	107		
T	OTAL	180	120	200	150	125	-	775

(A Constituent College of Somaiya Vidyavihar University)

Course Code	Course Title							
116U40C501	Theory of Automata							
	TH			P		TU	U T	Total
Teaching Scheme (Hrs.)	03			_		01		04
Credits Assigned	03		03		_)1	04
		Marks						
Examination Scheme	$\mathbf{C}\mathbf{A}$		ESE	TW	O	Р	P&O	Total
Examination Scheme	ISE	IA	ESE	1 1		F	F&O	Total
	30	20	50	25	_	_	_	125

^{*} Batch wise Tutorial

Course prerequisites:

Python Programming

Course Objectives:

The course helps build concepts regarding the fundamental principles of Grammars, Automata Theory, Turing Machines, Push Down Automata, Un-decidability and Intractable Problems. It aims to understand the design of computing machines that can perform complex computation.

Course Outcomes:

- CO 1. Understand Finite Automata, Non-deterministic Finite Automata, Mealy Machines, Moore Machines and its applications
- CO 2. Describe regular languages using Regular Expressions
- CO 3. Simplify and normalize grammars
- CO 4. Implement context free languages using context free grammar and push down automata
- CO 5. Design Turing Machines for various problems and its applications

Somaiya Vidyavihar University

K.J. Somaiya College of Engineering

Module	Unit	Details	Hrs.	CO
No.	No.			
1	1 Finite Automata 1.1 Introduction: Alphabets, String, Language, Basic Op-			CO1
1	1.1			
		erations on language, Concatenation, Kleene Star.		
	1.2	Finite Automata (FA): Its behavior; DFA - Formal		
		definition, State transition diagram, transition table,		
		Language of a DFA. NFA - Formal definition, state		
		transition diagram, transition table Language of an		
		NFA. FA with epsilon-transitions, Eliminating epsilon-		
		transitions, Equivalence of DFAs and NFAs, Conversion		
		from NFA to DFA. Moore machine and Mealy Machine-		
		Formal definition, state transition diagram, transition		
		table, Conversion from Mealy to Moore machine and		
		Moore to Mealy machine. Application of Finite Au-		
		tomata for Lexical Analysis and Lex tools		
		Languages	09	CO2
	2.1	Chomsky hierarchy, Regular sets, Regular Expression,		
		Some closure properties of Regular languages -Closure		
2		under Boolean operations, reversal, homomorphism, in-		
		verse homomorphism, etc.		
	2.2	FA and Regular Expressions, equivalence between FA		
		and regular expressions		
	2 <mark>.3</mark>	Pumping lemma for Regular languages, Equivalence and		
		minimization of Finite Automata, Myhill-Nerode Theo-		
		rem		
	2.4	Application of finite automata and regular expression in		
		lexical analysis		

Module	Unit	Details	Hrs.	CO
No.	No.			
	Context	free Grammars	08	CO3
	3.1	Context-free Grammars (CFGs) -Formal definition, sen-		
		tential forms, leftmost and rightmost derivations, the		
9		language of a CFG. Derivation tree or Parse tree-		
3		Definition, Simplification of CFGs -Removing useless		
		symbols, epsilon-Productions, and unit productions.		
	3.2	Relationship between parse trees and derivations. Pars-		
		ing and ambiguity, Application of CFGs, Ambiguity in		
		grammars and Languages.		
	3.3	Normal forms -CNF and GNF. Proving that some lan-		
		guages are not context free -Pumping lemma for CFL's,		
		applications. Some closure properties of CFL's -Closure		
		under union, concatenation, Kleene closure, substitu-		
		tion, Inverse homomorphism, reversal, intersection with		
	D 1 D	regular set, etc. Some more decision properties of CFL's.	0.0	GO 4
		own Automata	08	CO4
	4.1	Pushdown Automata (PDA) -Formal definition, behav-		
4		ior and graphical notation, Instantaneous descriptions		
	4.2	(Id's).		
	4.2	The language of PDA (acceptance by final state and		
		empty stack). Equivalence of acceptance by final state and empty stack, Equivalence of PDAs and CFGs.		
	4.3	Conversion: CFG to PDA, PDA to CFG		
	4.4	DPDAs -Definition, DPDAs, Multi-stack DPDAs &		
	1.1	NPDAs and CFLs, Languages of DPDAs, NPDAs.		
	Turing I		10	CO5
	5.1	Turing Machines TM -Formal definition and behavior,		
	312	Transition diagrams, Language of a TM, TM as ac-		
		cepters deciders and generators. TM as a computer of		
		integer functions, Design of TMs, Programming tech-		
_		niques for TMs - Storage in state, multiple tracks, sub-		
5		routines, etc.		
	5.2	Universal TMs, Variants of TMs –Multi-tape TMs, Non-		
		deterministic TMs. TMs with semi-infinite tapes, Mul-		
		tistack machines, Simulating TM by computer, Simulat-		
		ing a Computer by a TM.		
		Total	45	

Recommended Books:

S.No.	Name/s of	Title of Book	Name of Publisher	Edition and
	${f Author/s}$		with country	Year of
				publication
1.	John E.	Introduction to Automata	Pearson Education,	3^{rd} Edition,
	Hopcroft,	Theory, Languages and	India	2020
	Rajeev Mot-	Computations		
	wani, Jeffrey			
	D. Ullman			
2.	John C. Mar-	Introduction to Languages	McGraw-Hill Educa-	4th Edition,
	$ ag{tin}$	and the Theory of Compu-	tion, India	2010
		tation		
3.	Michael	Introduction to the Theory	Cengage Learning, In-	3^{rd} Edition,
	Sipser	of Computation	dia	2014
4.	O.G. Kakde	Theory of Computation	Laxmi Publication,	1^{st} Edition,
			India	2008

(A Constituent College of Somaiya Vidyavihar University)

Course Code	Course Title							
$116\mathrm{U}40\mathrm{C}502$	Automation & Control System							
		TH		P		TU	J T	Total
Teaching Scheme (Hrs.)		03		_	_	_		03
Credits Assigned	03		03 –		_		_	03
		Marks						
Examination Scheme	C	\mathbf{A}	ESE	$\mathbf{T}\mathbf{W}$		Р	P&O	Total
Examination Scheme	ISE	IA	ESE	1 **		Г	F&O	Total
	30	20	50	_	_	_	_	100

Course prerequisites:

Networks, Signals and Systems

Course Objectives:

This course offers a comprehensive overview of Industrial Automation and Control technology, commonly observed in various types of factories, serving both discrete and continuous manufacturing processes. The course covers an extensive array of related subjects, encompassing the benefits and architecture of automation systems, measurement systems featuring sensors and signal conditioning, control systems for discrete and continuous variables, as well as hydraulic, pneumatic, and electric actuators, in addition to industrial communication and embedded computing.

Course Outcomes:

- CO 1. Understand the basic concepts of control systems
- CO 2. Describe and design control systems
- CO 3. Explain automation fundamentals and PLC architecture
- CO 4. Explain various actuators used in control systems
- CO 5. Analyze Industrial standard protocols and their real life applications

Module	Unit	Details	Hrs.	CO			
No.	No.						
	Introduct	introduction to Control Systems					
1	1.1	Introduction to Control System, Types of control sys-					
		tems (open-loop vs. closed-loop), Control system com-					
		ponents and terminology.					
	1.2	Mathematical Modeling of Systems: Transfer functions					
		and block diagrams, Block Diagram Reduction (BDR)					
		technique and Signal Flow Graph (SFG), Mason's Gain					
		Formula, Conversion of BDR to SFG and vice versa.					
		of Control Systems	11	CO2			
	2.1	Concept of Stability of LTI System, Routh-Hurwitz cri-					
		terion for Stability analysis.					
	2.2	Time domain analysis - Transient response analysis-					
		First order systems, Impulse, Step and Ramp response,					
2		Transient response specifications, Steady state error and					
_		error constants.					
	2.3	Frequency Domain Analysis: Bode Plot, stability in fre-					
		quency domain, Nyquist plots. Nyquist stability crite-					
		rion. Gain margin and phase margin via Nyquist dia-					
		gram and Bode plots, Polar Plot.					
		ction to Industrial Automation	10	CO ₃			
	3.1	Architecture of Industrial Automation Systems, Func-					
3		tional Elements, Industrial Control Systems.					
	3.2	PLC Architecture and different components, Fundamen-					
		tals of Programming, Ladder Logic, Interfacing sensors					
		with PLC, Sensor Wiring, Sinking and Sourcing con-					
	2.2	cepts.					
	3.3	Feedback Control Systems: General form of feedback					
		control, ON/OFF control, P, PI, PID control, Control of					
		Process elements (Level, Temperature, Pressure, Flow)					

Somaiya Vidyavihar University

K.J. Somaiya College of Engineering

Module	Unit	Details	Hrs.	CO			
No.	No.						
	Industrial controls & Automation						
	4.1						
4		matic and hydraulic, Pneumatic valves.					
	4.2	Electrical actuation system: Solid state switches -					
		Solenoids, Solenoid valves, PLC controlled Actuators					
	4.3	Role of IoT in Automation, Introduction to Industrial					
		IoT (IIOT), Smart sensors, Interfacing of smart sensors					
		with PLC.					
	Industri	al standard Protocols and Case study	06	CO5			
	5.1	Communication Protocols, Fieldbus, HART, Modbus,					
		Fieldbus, RS-485 Transmission technology, SCADA					
5		Protocols					
	5.2	Role of SCADA In Industrial Automation , Human Ma-					
		chine Interface					
	5.3	Case study of control and automation systems applica-					
		tions					
		Total	45				

Recommended Books:

S.No.	Name/s of	Title of Book	Name of Publisher	Edition and	
	${ m Author/s}$		with country	Year of	
	·			publication	
1.	A Nagoor	Control Systems	CBS Publishers &	5^{th} Edition,	
	Kani		Distributors Pvt Ltd	2020	
2.	I.J. Nagrath	Control Systems	New Age Interna-	6^{th} Edition,	
	and M Gopal		tional Publications,	2019	
			India		
3.	Norman S.	Control Systems Engineer-	Wiley, USA	7^{th} Edition,	
	Nise	ing		2015	
4.	Curtis D.	Process Control Instrumen-	Pearson, USA	8^{th} Edition,	
	Johnson	$tation \ Technology$		2005	
5.	Frank D.	Programmable Logic Con-	McGraw-Hill Educa-	5^{th} Edition,	
	Petruzella	trollers	tion, USA	2016	
6.	Krzystof	Smart Sensors for Indus-	CRC Press, UK	1^{st} Edition,	
	Iniewski	$trial\ Applications$		2013	

(A Constituent College of Somaiya Vidyavihar University)

Course Code	Course Title										
116 U40 C503		Computer Organization & Architecture									
	TH			P		TUT		Total			
Teaching Scheme (Hrs.)	03			_		_		03			
Credits Assigned	03		03		_		_		-	_	03
		Marks									
Examination Scheme	C	$\mathbf{C}\mathbf{A}$		$\mathbf{T}\mathbf{W}$		Р	P&O	Total			
Examination Scheme	ISE	IA	ESE	1 **		Г	F&O	Total			
	30	20	50	_	_	_	_	100			

Course prerequisites:

Digital Electronics, Microprocessors and Microcontrollers

Course Objectives:

This course will introduce students to the fundamental concepts underlying modern computer organization and architecture. Main objective of the course is to familiarize students about hardware design including logic design, basic structure and behavior of the various functional modules of the computer and how they interact to provide the processing needs of the user. It will cover machine level representation of data, instruction sets, computer arithmetic, CPU structure and functions, memory system organization and architecture, system input/output, multiprocessors, and digital logic. The emphasis is on studying and analyzing fundamental issues in architecture design and their impact on performance.

Course Outcomes:

- CO 1. Define the performance metrics of a Computer and working of the arithmetic logic unit(ALU) and its sub modules.
- CO 2. Describe the purpose and function of Control unit and Processor organization and its data path.
- CO 3. Identify different types of memories with cache and virtual memory concepts.
- CO 4. Summarize input output techniques in computer systems.
- CO 5. Explain the advantages and limitations of Parallelism in system.

Module	Unit	Details	Hrs.	CO				
No.	No.							
1	Introduc	09	CO1					
1	1.1							
		puters, Von Neumann model, Introduction to buses, Ba-						
		sic Measures of Computer Performance - Clock Speed, CPI,MIPS						
		CPI,MIPS						
	1.2	Introduction to number representation methods, inte-						
		ger data computation, and multiplication and division						
		algorithms for signed numbers, floating point arithmetic,						
		IEEE standards for Floating point representations :Sin-						
		gle Precision and Double precision Format						
	Processo	or Organization and Architecture	12	CO2				
	2.1	CPU Architecture , Register Organization, Instruction						
		cycle, Instruction Formats, , basic instruction cycle, in-						
2		struction interpretation and sequencing						
	2.2	Control Unit Design- Hardwired and Micro-programmed						
		Control: Vertical and Horizontal Micro-Instructions,						
		Microinstruction sequencing and execution, micro op-						
		erations, concepts of Nano programming, Comparison						
		between CISC and RISC architectures.						
	2.3	Pipeline: An Overview of Pipelining, Pipelined Data						
		path and Control, Data Hazards, Control Hazards						
		Subsystem	12	CO5				
	3.1	Cache memory concept, architecture (L1, L2, L3), map-						
		ping techniques, Write Policies, cache coherency, MESI						
		protocol (* Numerical Problems expected)						
	3.2	Interleaved and associative memory, Memory Hierarchy						
	3.3	Virtual Memory Management-Concept, Segmentation,						
3		Paging, Page Replacement policies, Secondary storage,						
		RAID levels.						
		#Self Learning Topic: Classification of						
		Memories-Primary and Secondary Memories,						
		RAM (SRAM and DRAM) and ROM(EPROM,						
		EEPROM)						

(A Constituent College of Somaiya Vidyavihar University)

Module	Unit	Details	Hrs.	CO	
No.	No.				
4	Input / Output Subsystem				
4	4.1	Types of I/O devices and Access methods, Types of			
		Buses , Bus Arbitration Expansion Bus Concept, PCI			
		Bus			
	4.2	Types of data transfer techniques, programmed I/O, in-			
		terrupt driven I/O and DMA			
5	Introduc	ction To Parallel Processing System	03	CO5	
	5.1	Introduction to Parallel Processing Concepts, Flynn's			
		classification, Array and vector processors, shared mem-			
		ory multiprocessors (SMP)			
		Total	45		

Recommended Books:

S.No.	Name/s of	Title of Book	Name of Publisher	Edition and	
	${ m Author/s}$		with country	Year of	
				publication	
1.	Carl	Computer Organisation	McGraw-Hill Educa-	6 th Edition,	
	Hamacher,		tion, India	2022	
	Zvonko				
	Vranesic and				
	Safwat Zaky				
2.	John P. Hayes	Computer Architecture and	Pearson Education,	3^{rd} Edition,	
		Organization	Singapore	2002	
3.	William	Computer Organization and	Pearson Education,	11 th Edition,	
	Stallings	Architecture - Designing for	India	2022	
		Performance			
4.	D. A. Patter-	Computer Organization	Morgan Kaufmann,	4 th Edition,	
	son and J. L.	and Design - The Hard-	USA	2010	
	Hennessy	$ware/Software\ Interface$			
5.	Andrew S.	Structured Computer Orga-	Pearson Education,	6 th Edition,	
	Tanenbaum	nization	India	2016	
	and Todd				
	Austin				

(A Constituent College of Somaiya Vidyavihar University)

Course Code				Course	Course Title					
116U40E511	H	Hardware Description Language and FPGA								
		TH			P		TUT			
Teaching Scheme (Hrs.)	03			_	_		_	03		
Credits Assigned	03		03			-	_	-	_	03
		Marks								
Examination Scheme	C	CA		$\mathbf{T}\mathbf{W}$		Р	P&O	Total		
Examination Scheme	ISE	IA	ESE	1 **		Г	F&O	Total		
	30	20	50	_	_	_	_	100		

Course prerequisites:

Digital Electronics

Course Objectives:

The objective of this course is to introduce a hardware description language (HDL) for the specification, simulation, synthesis and implementation of digital logic systems. The students are exposed to hardware description language namely Verilog in this course. The students are expected to write Verilog codes using different features and implement designs on FPGA / CPLD. The students will have design practice sessions and implement digital logic systems with commercial Electronic design automation (EDA) tools.

Course Outcomes:

- CO 1. Understand the basic constructs and programming fundamentals of Verilog
- CO 2. Write codes for simple applications using basic Concurrent and Sequential statements in Verilog
- CO 3. Test a Verilog code and verify the circuit model
- CO 4. Synthesize and Implement the simple circuits on CPLD / FPGA
- CO 5. Design a medium scale application using various peripheral interfaces with FPGA

Unit	Details	Hrs.	CO			
No.						
Digital o	08	CO1				
1.1	Overview of Programmable Logic Architectures and					
Hardware Description Language Features						
1.2						
1.3						
	Modules, Ports declaration and connection rules, always					
	and Initial blocks					
Modelin		12	CO2			
2.1	9.					
	- · · · · · · · · · · · · · · · · · ·					
2.2						
	ers, Priority encoder, Priority decoder, Comparators,					
	Adders, subtractors etc.					
Testing		04	CO2			
3.1						
Modelin	g Sequential circuits using Verilog	12	CO2 CO3			
4.1	Sequential Statements. If Statements. Case State-					
4.2	, , ,					
4.3						
	No. Digital of 1.1 1.2 1.3 Modelin 2.1 Testing 3.1 Modelin 4.1 4.2	 No. Digital circuit design with programmable Logic: Overview 1.1 Overview of Programmable Logic Architectures and Hardware Description Language Features 1.2 Fundamental Concepts, Designing with programmable logic, Design Flow. 1.3 Verilog variables, data types, operators, Registers, Nets, Modules, Ports declaration and connection rules, always and Initial blocks Modeling Combinational circuits in Verilog 2.1 Behavioral modeling, structural modeling, Gate level primitives, User defined primitives. Description styles in Verilog- continuous assignment, procedural assignment, blocking and non blocking 2.2 Modeling combinational circuits using Verilog like Decoders and encoders, Multiplexers and Demultiplexers, Priority encoder, Priority decoder, Comparators, Adders, subtractors etc. Testing Combinational circuits using Verilog 3.1 Test Bench: need and examples of TestBench, Features of Verilog useful for testbench like displaymonitor etc. Modeling Sequential circuits using Verilog 4.1 Sequential Statements, If Statements, Case Statements, Loop Statements, Tasks and functions 4.2 Design of sequential circuits, flip flops, counters memories, shift registers etc. 	Digital circuit design with programmable Logic : Overview 08			

Module	Unit	Details	Hrs.	CO
No.	No.			
	Design f	or Synthesis and Implementation	09	CO4
				CO5
	5.1	Simple applications like interfacing of LEDs, Keypad,		
		Sensors, Stepper Motor etc with FPGA and controlling		
5		using Verilog.		
	5.2	Applications		
		from Computer Architecture like, Arithmetic Circuits,		
		FPU, ALU control, Pipelined processor Applications		
		like Signal Processing: Digital Filters and Codecs		
		Total	45	

Recommended Books:

S.No.	Name/s of Au-	Title of Book	Name of Pub-	Edition and	
	thor/s		lisher with coun-	Year of	
			try	publication	
1.	J Bhasker	A Verilog HDL	Taylor & Francis	2^{nd} Edition,	
		Primer	India Pvt Ltd, In-	2013	
			dia		
2.	Morris Mano, Michael	Digital Design: With	Pearson Education,	6^{th} Edition,	
	D. Celetti	an Introduction to the	India	2018	
		$Verilog\ HDL$			
3.	Zainalabedin Navabi	Verilog Digital System	McGraw-Hill Edu-	2^{nd} Edition,	
		Design RT Level syn-	cation, India	2008	
		thesis TestBench and			
		verification			
4.	Michael D. Celetti	Advanced Digital De-	Pearson Education,	2^{nd} Edition,	
		sign with the Verilog	India	2017	
		HDL			

Course Code				Course	ourse Title			
116U40E512		Electromagnetics Engineering						
	TH			P		TUT		Total
Teaching Scheme (Hrs.)	03			_		_		03
Credits Assigned	03		03		_		=	03
	Marks							
Examination Scheme	C	CA		TW	0	Р	P&O	Total
Examination Scheme	ISE	IA	ESE	1 **		Г	F&O	Total
	30	20	50	_	_	_	_	100

Course prerequisites:

Vector Calculus, Applied Physics and Coordinate Systems

Course Objectives:

Electromagnetic Engineering is the study of the underlying laws that governs the manipulation of electricity and magnetism, and how we use these laws to our advantage. This course covers the application of electrostatics, steady magnetic field and time varying fields using Maxwell's equations for different media, wave equation, electromagnetic problems using different numerical methods, use of transmission lines and waveguides in wave propagation.

Course Outcomes:

- CO 1. Understand Fundamental of Electromagnetics Laws.
- CO 2. Derive Maxwell's Equations and Boundary Condition.
- CO 3. Derive and Analyze the electromagnetic wave equation in different mediums.
- CO 4. Analyze EM power transmission through guided structures.
- CO 5. Understand Computational Electromagnetics.

Module	Unit	Details	Hrs.	CO			
No.	No.						
	Fundamental of Electromagnetics						
	1.1	Vector Calculus: Vector Algebra, Dot Product, Cross					
1		Product, Unit Vector, Coordinate system and Transfor-					
1		mation: Cartesian, Cylindrical and Spherical.					
	1.2	Electrostatic: Coulomb's Law, Electric field due to a					
		point charge, line charge, surface charge, and volume					
		charge. Gauss' law, Divergence Theorem.					
	1.3	Magneto static: Bio-Savart's law, Ampere's law, Stokes'					
		Theorem					
	Maxwell	's Equations and Boundary Conditions	08	CO2			
	2.1	Electric Potential, Poisson's and Laplace equations.					
		Maxwell's Equations: Integral and differential form in					
		free space, static, time varying fields, harmonically time					
2		varying fields, Good Conductors and dielectric media					
2		with their interpretations. Continuity Equation.					
	2.2	Boundary Conditions for static electric and magnetic					
		fields and flux densities.					
		nagnetic Wave Propagation	10	CO3			
	3.1	Wave equation and its solution. Wave propagation in					
3		lossy dielectrics, lossless dielectrics, free space, and good					
		conductors. Concept of skin depth.					
	3.2	Poynting Vector and power flow in free space and in					
		dielectric, conducting media. Polarization of wave: Lin-					
		ear, Circular and Elliptical.					

(A Constituent College of Somaiya Vidyavihar University)

Module	Unit	Details	Hrs.	CO
No.	No.			
	Transmi	ssion Lines	12	CO4
	4.1	Transmission line parameters, Transmission line Equa-		
1		tions, Characteristic impedance, Input Impedance,		
1		Standing Wave Ratio and Power.		
	4.2	Smith Chart: Reflection Coefficient, Standing Wave Ra-		
		tio.Scattering Parameters (S-Parameters) and its prop-		
		erties.		
	4.3	Rectangular Waveguide: Basic Parameters, TE, TM,		
		TEM modes		
	Comput	ational Electromagnetics	05	CO5
	5.1	Finite Difference Method (FDM), Finite Element		
5		Method (FEM), Method of Moment (MoM).		
J	5.2	Case studies in recent developments in FDM, FEM,		
		MoM.		
		Total	45	

Recommended Books:

S.No.	Name/s of	Title of Book	Name of Publisher	Edition and
	Author/s		with country	Year of
				publication
1.	Matthew N.	Principles of Electromag-	Oxford University	6 th Edition,
	O Sadiku	$\mid netics \mid$	Press, India	2015
2.	T.V.S. Arun	Electromagnetic Fields	S.Chand Company	3^{rd} Edition,
	Murthy	(Theory and Problems)	Pvt Ltd, India	2014
3.	William	Problems and Solutions	McGraw-Hill Educa-	1^{st} Edition,
	Hayt, John	Electromagnetics	tion, India	2011
	Buck			
4.	Joseph A Ad-	Schaum's Outline Series	McGraw-Hill Educa-	5^{th} Edition,
	minister	Theory and Problems of	tion, India	2018
		Electromagnetics		

(A Constituent College of Somaiya Vidyavihar University)

Course Code		Course Title							
116U40E513	Sensors and Measuring Instruments								
	TH		P		TUT		Total		
Teaching Scheme (Hrs.)	03			_		_		03	
Credits Assigned	03		03		_		=	=	03
		Marks							
Examination Scheme	\mathbf{C}	$\mathbf{C}\mathbf{A}$		ESE TW		Р	P&O	Total	
Examination Scheme	ISE	IA	ESE	1 VV	O	P	P&U	Total	
	30	20	50	_	_	_	_	100	

Course prerequisites:

Elements of Electrical and Electronics Engineering

Course Objectives:

The main objective of this course is to discuss the basic Characteristics of measurement systems working with various electronics instruments. Students will be able to understand the working of different types of Sensors, Transducers and Signal Conditioning Circuits, modern measuring instruments and their applications in industry.

Course Outcomes:

- CO 1. Understand the knowledge of electronics measuring instruments and their characteristics.
- CO 2. Demonstrate different types of Transducers/Sensors and selection for given applications.
- CO 3. Apply the concept of Data Acquisition Systems for measurement of various sensor parameters.
- CO 4. Analyze signal conditioning circuits for measurement of various parameters.
- CO 5. Use Modern Measuring Instruments

Module	Unit	Details	Hrs.	CO
No.	No.			
	Introduc	10	CO1	
	1.1	Basic characteristics of Instruments: static and dy-		
		namic, · Classification of Instruments, Response for		
		standard inputs: Unit step, Ramp and sinusoidal sig-		
1		nals, Performance characteristics and types of errors,		
1		Errors in measurements and error analysis		
	1.2	Function Generator and Signal Generator: Introduc-		
		tion, Sine Wave Generator, Pulse And Square Wave		
		Generator. Oscilloscope Block Diagram, Cathode Ray		
		Tube , Block Diagram Of Digital Signal Oscilloscope,		
		Its Principle and Working. Digital Multimeters.		
	Transdu		12	CO2
2	2.1	Requirement of Transducers, · Classification of trans-		
4		ducers, Advantages of Electrical Transducers.		
	2.2	Transducer used for measurement of physical pa-		
		rameters such as : Temperature (RTD, Ther-		
		mistor, Thermocouple), Pressure (Force and		
		Torque):Electrical Pressure Measurement, Differ-		
		ential Pressure Transmitter and its application.		
		Level Measurement Transducer: Capacitive,		
		Orifice plate, Ultrasonic, and its application.		
		Sensors used in biomedical application, IR sen-		
		sors, PIR sensors, Sensors interfacing with Aurdino.		
	2.3	Displacement: Principle of Transduc-		
		tion, LVDT, RVDT, Strain gauge.		
		Flow: Head type, Electromagnetic Flow meter,		
		Rotameter, Ultrasonic Flow meter, Vortex Flow meter.		
		#Self learning Topic: Application of Data logger		
	D /	to cloud.	00	COS
		quisition systems	08	CO3
3	3.1	Single channel data acquisition, Multi-channel data ac-		
	2.0	quisition systems. SCADA Systems.	_	
	3.2	PC-based Instrumentation System, Data Loggers. Virtual Instrumentation and Data apprinting asferons		
		tual Instrumentation and Data acquisition software		
		(LabVIEW).		

Module	Unit	Details	Hrs.	CO
No.	No.			
	Signal C	Conditioning Circuits	09	CO4
	4.1	Principles of Analog signal conditioning, analog filters,		
		Op Amp circuits in instrumentation, Design guidelines		
4		for analog signal conditioning, Design of signal condi-		
4		tioning circuits for temperature measurement.		
	4.2	Principles of digital signal conditioning, converters de-		
		sign, Various signal generators and its implementa-		
		tion, Switch capacitor filter, Logarithmic amplifier, Fre-		
		quency to voltage and voltage to frequency, converters,		
		Current to voltage and voltage to current converters.		
		Design with DAC and ADCs.		
	Modern	Measuring Instruments	06	CO ₅
	5.1	Measurement of frequency and time. Spectrum ana-		
		lyzer and network analyzer, measurement of temper-		
		ature pressure and humidity, Bio-informatics sensors,		
5		Nano sensors.		
J	5.2 Instrumentation for automation and control, Emerging			
		trends in electronic measurement and instrumentation		
		Total	45	

Recommended Books:

S.No.	Name/s of	Title of Book	Name of Publisher	Edition and
	${ m Author/s}$		with country	Year of
				publication
1.	Albert D.	Modern electronics Instru-	Prentice-Hall of India,	5^{th} Edition,
	Helfrick,	mentation and measure-	India	2015
	William D.	$ment\ techniques$		
	Cooper			
2.	David Bell	Electronic Instruments and	Oxford University	3^{rd} Edition,
		Measurements	Press, India	2013
3.	H.S. Kalsi	Electronic instrumentation	McGraw-Hill Educa-	2^{nd} Edition,
			tion, India	2019
4.	A K Sawhney	Electrical and Electronic	Dhanpat Rai	2^{nd} Edition,
		Measurement and Instru-	&Co.,India	2015
		mentation		
5.	C S Rangan,	Instrumentation Devices	McGraw-Hill Educa-	2^{nd} Edition,
	G R Sarma, V	and Systems	tion, India	2001
	S V Mani			
6.	Curtis D.	Process Control Instrumen-	Pearson Education,	8^{th} Edition,
	Johnson	$tation \ Technology$	India	2014

(A Constituent College of Somaiya Vidyavihar University)

Course Code	Course Title							
116U40E514	Information Theory and Coding Techniques						es	
	TH			P		TUT		Total
Teaching Scheme (Hrs.)	03			-	_	-	_	03
Credits Assigned	03			_		-	_	03
	Marks							
Examination Scheme	CA		ESE	$\mathbf{T}\mathbf{W}$		Р	P&O	Total
Examination Scheme	ISE	IA	ESE	1 1		Г	F&O	Total
	30	20	50	_	_	_	_	100

Course prerequisites:

Analog and Digital Communication, Probability theory, Matrices.

Course Objectives:

The objective of the course is to introduce the concept of information theory and various coding techniques. The course includes different source coding methods useful in data compression. The course also introduces channel coding methods like block codes and convolutional code for error detection and correction.

Course Outcomes:

- CO 1. Apply concepts of Information Theory.
- CO 2. Learn different source coding techniques.
- CO 3. Identify and explain error detection and correction using appropriate techniques.
- CO 4. Know basic operations used by common encryption techniques

Somaiya Vidyavihar University

K.J. Somaiya College of Engineering

Module	Unit	Details	Hrs.	CO
No.	No.			
	Informa	07	CO1	
1	1.1	Introduction to Information Theory, Measure of Infor-		
1				
	1.2			
		channel, bandwidth, S/N trade-off, central limit theo-		
		rem.		
	1.3	Shannon's source coding theorem.		
	Source	9	12	CO2
2	2.1	Huffman coding, Shannon-Fano coding, Lempel Ziv cod-		
2		ing, examples and applications of source coding.		
	2.2	Introduction to image compression, The JPEG Stan-		
		dard for Lossless Compression, The JPEG Standard for		
		Lossy Compression		
		orrecting Codes: Block codes	13	CO3
3	3.1	Need for channel encoding, redundancy, code rate, code		
		efficiency and hamming bound, bit error rate.		
	3.2	Linear block code for error correction, Matrix descrip-		
		tion of a linear block code, Parity Check Matrix, Decod-		
		ing of a linear block code, Syndrome decoding.		
	3.3	Cyclic code, Polynomials, Method for generating Cyclic		
		code, Matrix description of Cyclic codes, Syndrome		
		computation and error detection, Decoding of Cyclic		
		code.		61.0
		tional Codes	08	CO4
	4.1	Introduction to Convolutional Codes, Convolutional En-		
		coder Representation, Tree, Trellis and State diagrams,		
		Polynomial description of Convolutional Codes, Gen-		
4		erating Function, Matrix description of Convolutional		
	4.0	Codes.		
	4.2	Decoding of Convolutional Codes: Viterbi decoding.		

(A Constituent College of Somaiya Vidyavihar University)

Module	Unit	Details	Hrs.	CO
No.	No.			
	Coding	for Secure Communications	05	CO ₅
	5.1	Introduction to Cryptography, An overview of Encryp-		
		tion Techniques, Operations used by Encryption Algo-		
5		rithms.		
J	5.2	Symmetric (Secret Key) Cryptography, Data Encryp-		
		tion Standard (DES), Asymmetric (Public-Key) Algo-		
		rithms, The RSA algorithm.		
		Total	45	

Recommended Books:

S.No.	Name/s of	Title of Book	Name of Publisher	Edition and
	m Author/s		with country	Year of
				publication
1.	Ranjan Bose	Information Theory Coding	McGraw-Hill Educa-	3^{rd} Edition,
		$and \ Cryptography$	tion, India	2016
2.	Thomas M.	Elements of Information	Wiley, India	2^{nd} Edition,
	Cover, Joy A.	Theory		2006
	Thomas			
3.	Wade	Introduction to Cryptogra-	Pearson Education,	2^{nd} Edition,
	Trappe,	phy with Coding Theory	India	2011
	Lawrence C.			
	Washington			
4.	Herbert	Principles of Communica-	McGraw-Hill Educa-	4 th Edition,
	Taub, Donald	tion Systems	tion,India	2017
	Schilling,			
	Goutam Saha			
5.	Shu Lin,	Error control coding Funda-	Pearson Education,	2^{nd} Edition,
	Daniel J	mental and applications	India	2010
	Costello			

(A Constituent College of Somaiya Vidyavihar University)

Course Code				Course	Course Title				
116U40E515	Analog Integrated Circuits and Applications						ns		
	TH			P		TUT		Total	
Teaching Scheme (Hrs.)	03			_	_		_	03	
Credits Assigned	03		03		_		-	_	03
	Marks								
Examination Scheme	\mathbf{C}	\mathbf{A}	ESE	$\mathbf{T}\mathbf{W}$	O	Р	P&O	Total	
Examination Scheme	ISE	IA	ESE	1 **		ı	1 & O	Total	
	30	20	50	_	_	_	_	100	

Course prerequisites:

Elements of Electrical and Electronics Engineering, Analog Electronics Circuits

Course Objectives:

The objective of the course is to learn basic concepts in the design of analog integrated circuits using linear and nonlinear circuits using Op-amp. Students will also be able to design various applications of special function integrated circuits such as timer IC, Voltage Regulators ICs and Instrumentation Amplifier.

Course Outcomes:

- CO 1. Understand the characteristics, ratings, parameters of Operational amplifier.
- CO 2. Design circuits using op-amps for linear applications.
- CO 3. Design circuits using op-amps for nonlinear applications.
- CO 4. Study internal functional blocks and design applications using Timers, regulator circuits, and ADCs

Somaiya Vidyavihar University

K.J. Somaiya College of Engineering

(A Constituent College of Somaiya Vidyavihar University)

Module	Unit	Details	Hrs.	CO
No.	No.			
	Operation	onal Amplifier Fundamentals	07	CO1
	1.1	Basic Op Amp Configurations, Ideal Op Amp parame-		
		ters and Circuits Analysis, Simplified Op Amp Circuits		
1		Diagram, Frequency response for open loop and closed		
1		loop configuration.		
	1.2	Understanding op-amp datasheet for design purpose.		
		Numerical based on op-amp parameters.		
	Linear A	Applications of OP-AMP	08	CO2
	2.1	Shunt-Shunt feedback (Inverting Amplifier), Series		
		shunt feedback (Non-Inverting Amplifier) Summing		
		Amplifier, Averaging Amplifier, Difference Amplifier,		
2		Instrumentation Amplifier, Instrumentation Amplifier		
		(IC AD620)		
	2.2	Integrator/Differentiator using OP-AMP Current-to-		
		Voltage Converters, Voltage-to-Currents Converters,		
		Grounded load V/I Converter, Sample-and-Hold circuit.		
3	Active F		06	CO2
	3.1	The Transfer function, First-Order Active Filters.		
	3.2	Standard Second- Order Responses, KRC Filters.		
		ear Applications of OP-AMP	08	CO3
4	4.1	Voltage Comparators, Comparator Application,		
_		Schmitt Triggers, Precision Rectifier, Peak Detectors.		
	4.2	Mono-shot Multi-vibrator, Astable Multi-vibrator Tri-		
		angular waveform Generator	0.0	GO 1
		ors and Data Converters	08	CO4
	5.1	Functional block diagram of Voltage Regulators, Fixed		
		voltage Regulators (78XX and 79XX). Variable Voltage		
5		Regulators (LM317)		
	5.2	ADC 0808 and DAC 0809	00	004
		m Generators and special ICs	08	CO4
	6.1	Oscillators using OP-AMP (RC –Phase shift and Wien		
6	6.2	Bridge oscillators). Monolithic Timer – NE555		
	6.2		15	
		Total	45	

Recommended Books:

S.No.	Name/s of	Title of Book	Name of Publisher	Edition and
	Author/s		with country	Year of
				publication
1.	Sergio Franco	Design with operational am-	McGraw-Hill Educa-	4^{th} Edition,
		plifiers and analog inte-	tion, India	2016
		grated circuits		
2.	Ramakant A.	OP-AMP and Linear ICs	Pearson Education,	6 th Edition,
	Gayakwad		India	2015
3.	D. Roy	Linear Integrated Circuits	New Age Interna-	5^{th} Edition,
	Choudhary,		tional, India	2010
	Shail Bala			
	Jain			
4.	S Saliva-	Linear Integrated Circuits	McGraw-Hill Educa-	3^{rd} Edition,
	hanan, V.		tion,India	2019
	S. Kanchana			
	Bhaaskaran			

Course Code		Course Title						
116U40E516		Software Engineering						
		TH		P		TUT		Total
Teaching Scheme (Hrs.)		03		-	_	_		03
Credits Assigned		03		03 – –		_	03	
	Marks							
Examination Scheme	$\mathbf{C}\mathbf{A}$		ESE	TW	0	Р	P&O	Total
Examination Scheme	ISE	IA	L SE	1 44		Г	F&O	Total
	30	20	50	_	_	_	_	100

Course prerequisites:

Object Oriented Programming

Course Objectives:

The course aims to provide students with a comprehensive understanding of software engineering, covering software development methodologies, requirements analysis, design principles, programming skills, quality assurance, project management, version control, maintenance, ethics, and effective communication. By the end of the course, students should be well-equipped to participate in software development projects and collaborate effectively in real-world settings.

Course Outcomes:

At the end of successful completion of the course the student will be able to

- CO 1. Understand the software development process and Estimation of the project.
- CO 2. Design UML Model as per the software requirements.
- CO 3. Describe System Design and Model.
- CO 4. Identify configuration management tool for software development.
- CO 5. Apply software testing for software quality assurance.

Module	Unit	Details	Hrs.	CO	
No.	No.		ı		
	Introduc	ction of Software Engineering	08	CO1	
-	1.1	Software life cycle models: Waterfall, RAD, Spiral, Agile			
1		process.	ı		
	1.2	Understanding software process, Process metric, CMM	ı		
		Levels.	ı		
	1.3	Planning & Estimation: Product metrics Estimation-	ı		
		LOC, FP, COCOMO models.	ı		
	1.4	Project Management activities: Planning, Scheduling	ı		
		and Tracking.	İ		
		ment Analysis	08	CO2	
	2.1	Requirements Engineering Tasks, Requirement Elicita-	ı		
2		tion Techniques, and Software Requirements: Func-	ı		
		tional, Non- Functional.	l		
	2.2 Requirements Characteristics, Requirement qualities,				
		Requirement Specification, Requirement Traceability,	ı		
		System Analysis Model Generation, Documentation	ı		
		:Use Case Diagram, Activity Diagram.	ı		
	2.3	Categorizing classes: entity, boundary and control,	ı		
		Modeling associations and collections-Class Diagram.	ı		
	2.4	Dynamic Analysis - Identifying Interaction - Sequence	ı		
		and Collaboration diagrams, State chart diagram.	<u> </u>		
		Design Engineering	07	CO ₃	
	3.1	Design quality, Classification of Design Activities, De-	ı		
3		sign Concepts: Modularity and Layering, Introduction	ı		
		to Pattern-Based Software Design.	İ		
	3.2	Software Architecture, Data Design, Object-Oriented	ı		
		versus Function-Oriented Design, Design of Software	ı		
		Objects, Methods, Cohesion and Coupling between Ob-	l		
	2.2	jects.	ı		
	3.3	User Interface Design: Rules, User Interface Analysis	ı		
		and Steps in Interface Design, Design Evaluation.	1		
		#Self learning Topic: Software Reuse,	ı		
		Component-Based Software Engineering	i		

Somaiya Vidyavihar University

K.J. Somaiya College of Engineering

No. No. System Implementation, Configuration Management & Risk Management	14	CO4
, ,	14	COA
& Risk Management		CO4
4.1 Mapping model to code, Mapping Object Model to		
Database Schema.		
4.2 Component and deployment diagrams: Describing Dependencies.		
4.3 Managing and controlling Changes, Managing and con-		
trolling version.		
#Self learning Topic: Categories of Risks, Na-		
ture Of Risk, Types of Risk, Risk Identifica-		
tion, Risk Assessment, Risk planning and con-		
trol, Risk management, Evaluating risk to sched-		
ule, PERT technique.		
	08	CO5
5.1 Testing Concepts: Purpose of Software Testing,		
Testing Principles, Goals of Testing, Testing as-		
pects: Requirements, Test Scenarios, Test cases, Test		
scripts/procedures.		
5.2 Strategies for Software Testing, Testing Activities:		
Planning Verification and Validation, Software Inspec-		
tions, FTR. 5.3 Levels of Testing: unit testing, integration testing, re-		
gression testing, product testing, acceptance testing and		
White-Box Testing.		
5.4 Black-Box Testing: Test Case Design Criteria, Require-		
ment, Based Testing, Boundary Value Analysis, Equiv-		
alence Partitioning.		
5.5 Case Study: Test case for library management system.		
#Self learning Topic: Testing tools		
	45	

Recommended Books:

S.No.	Name/s of	Title of Book	Name of Publisher	Edition and
	${f Author/s}$		with country	Year of
				publication
1.	Roger Press-	Software Engineering	McGraw-Hill Educa-	9^{th} Edition,
	man		tion, India	2020
2.	Bernd	Object Oriented Software	Pearson Education,	3^{rd} Edition,
	Bruegge	Engineering	India	2009
3.	Ian Som-	Software Engineering	Pearson Education,	10^{th} Edition,
	merville		India	2015
4.	John	Project Management for	Routledge, UK	5^{th} Edition,
	Nicholas,	Business Engineering and		2017
	Herman	Technology		
	Steyn			

(A Constituent College of Somaiya Vidyavihar University)

Course Code		Course Title						
116U40E517	Adv	Advanced Python Programming and Applications						
		TH		P		TUT		Total
Teaching Scheme (Hrs.)		03		_	_	_		03
Credits Assigned		03				_	03	
	Marks							
Examination Scheme	CA		ESE	TW	0	Р	P&O	Total
Examination Scheme	ISE	IA	ESE	1 **		Г	rau	Total
	30	20	50	_	_	_	_	100

Course prerequisites:

Python Programming

Course Objectives:

The primary course objective is to empower students with proficiency in image processing, network programming, Raspberry Pi application development, and game development. By gaining expertise in these diverse domains, students are well-equipped to embark on technology-related projects and pursue dynamic career opportunities in an ever-evolving digital landscape.

Course Outcomes:

SVU2020- R1.0

At the end of successful completion of the course the student will be able to

- CO 1. Explore OpenCV and its graphical user interface (GUI) features for image processing.
- CO 2. Understand the fundamentals of network programming, including the role of sockets and web services.
- CO 3. Applied knowledge of Raspberry Pi for various applications.
- CO 4. Develop a brief understanding of game development, game frameworks, and Python's role

Somaiya Vidyavihar University

K.J. Somaiya College of Engineering

Module	Unit	Details	Hrs.	CO
No.	No.			
1	Python	tool for Image Processing	12	CO1
1	1.1	Introduction to OpenCV, GUI features in OpenCV		
	1.2	Basic operations on Images, Arithmetic Operations on		
		Images, Mathematical tool in OpenCV		
	1.3	Changing Colorspaces, Geometric Transformation of		
		Images, Image thresholding, Smoothing Images, Image		
		Gradient, Contours in OpenCV, Edge detection, His-		
		tograms		
2	Network	Programming	12	CO2
2	2.1	Introduction to Sockets and Web Services		
	2.2	Sockets in Python: Socket to Socket Communication,		
		Setting Up a Connection, An Example Client Server Ap-		
		plication, Socket Types and Domains, Implementing the		
		Client Application, The Socketserver Module		
	2.3	Web Services in Python: RESTful Services, A RESTful		
		API, Python Web Frameworks, Flask, Hello World in		
		Flask		
3	Raspber	ry Pi with Python	09	CO3
3	3.1	Setup and Management		
	3.2	Software for Raspberry pi		
	3.3	Computer Vision: Introduction, Installing, Simple CV,		
		Setting up a USB Camera for Computer vision, Using		
		a R-pi Camera Module for Computer vision, Counting		
		Coins, Face Detection and Motion Detection, Optical		
		Character Recognition		
	3.4	Controlling Hardware: Connecting an LED, Making		
		a Buzzing Sound, Making a User interface to control		
		PWM for LEDs and Motors, Interface IR and Ultra-		
		sonic Sensors		
	3.5	Applications: Controlling Servo Motors, Controlling		
		Speed and direction of DC motor, Toggling with PUSH		
		Switch, Using a , Measuring temperature with an ADC		

(A Constituent College of Somaiya Vidyavihar University)

Module	Unit	Details	Hrs.	CO
No.	No.			
	Game P	rogramming	12	CO4
	4.1	Introduction to Pygame Library: Games Framework		
		and libraries, Python Games Development, Building		
4		Games with pygame, Display Surface, Events, Sprites		
4		and Images, Input handling, Sound and Music		
	4.2	A First Pygame Application		
		Total	45	

Recommended Books:

S.No.	Name/s of	Title of Book	Name of Publisher	Edition and
	Author/s		with country	Year of
				publication
1.	Dr. R.	Core Python Programming	Wiley, India	2^{nd} Edition,
	Nageswara			2018
	Rao			
2.	Sheetal	Python Programing: A	Pearson Education,	2^{nd} Edition,
	Taneja,	$Modular\ Approach$	India	2018
	Naveen Ku-			
	mar			
3.	Alexander	OpenCV-Python Tutorials	e-book	Release 1
	Mordvintsev,	Documentation		
	Abid K			
4.	John Hunt	Advanced Guide To	Springer, India	1^{st} Edition,
		$Python 3 \ Programming$		2019
5.	Simon Monk	Raspberry Pi Cookbook	O'Reilly Media, USA	2^{nd} Edition,
				2019
6.	Swaroop C.H	Byte of Python	e-book	Kindle Edi-
				tion, 2013

Course Code		Course Title						
116U40L501		Web Programming Laboratory						
		TH			P		TUT	
Teaching Scheme (Hrs.)		_		0	4	_		04
Credits Assigned		_		02		_		02
	Marks							
Examination Scheme	C	A	ESE	TW	O	Р	P&O	Total
Examination Scheme	ISE	IA	ESE	1 **		Г	F&O	Total
	_	_	_	50*	_	_	25	75

^{*}Term work based on laboratory performance of 25 marks and Mini Project of 25 marks

Course prerequisites:

Basic understanding of programming concepts (e.g., variables, control structures), Familiarity with HTML and CSS.

Course Objectives:

This full-stack development course provides students with a strong foundation in web development. By course completion, students will be proficient in creating responsive web pages using HTML, CSS, and Bootstrap. They will also excel in building interactive web applications with JavaScript, utilizing modern frameworks like React, and mastering server-side development with Node.js. Additionally, students will learn to integrate databases, implement user authentication, security measures, and deploy applications to diverse hosting environments, equipping them for successful careers in web development.

Course Outcomes:

At the end of successful completion of the course the student will be able to

- CO 1. Understand the fundamentals of web development technologies, including HTML, CSS, and Bootstrap.
- CO 2. Design responsive web pages using HTML, CSS, and Bootstrap, improving user interfaces.
- CO 3. Create interactive web content with JavaScript, including form validation and event handling.
- CO 4. Apply master front-end frameworks like React, building modern web applications.
- CO 5. Develop back-end applications with Node.js, integrate databases, implement security, and deploy web projects.

Somaiya Vidyavihar University

K.J. Somaiya College of Engineering

Module	Unit	Details	Hrs.	CO
No.	No.			
	Introduc	ction to Web Development, HTML and CSS	12	CO1,
				CO2
1	1.1	Introduction to the course overview of web development		
1		technologies Setting up development environments		
	1.2	HTML structure and tags CSS styling and layout, build-		
		ing a static webpage		
	1.3	Bootstrap grids, layouts, bootstrap components like		
		iconography, dropdowns, input groups, navigation,		
		alerts. and plugins.		
		#Self learning Topic: CSS Preprocessors, Re-		
		sponsive Web Design		
	Front-en	nd Development with JavaScript	16	CO3
	2.1	Introduction to JavaScript: Functions, Asynchronous		
2		Programming, Regular Expressions Callback and		
		Promises DOM manipulation		
	2.2	Event handling, Building interactive web pages		
	2.3	Enhancing and Validating Forms		
	Front-en	nd Frameworks	12	CO4
	3.1	Introduction to front-end frameworks (e.g., React, An-		
3		gular, or Vue) Building a front-end project using a		
		framework		
	3.2	React Introduction:. Understanding basics of react app		
		Understanding JSX, React Lifecycle, Class components		
		vs functions components		
	3.3	Modules, States and Hooks, Event handling., Props		
		Building a basic Forms using React		
		d Development with Node.js	10	CO5
4	4.1	Introduction to Node.js and server-side JavaScript set-		
_		ting up a Node.js server, Asynchronous and synchronous		
	4.2	Modules, Routing, Handling HTTP requests and re-		
		sponse, Middleware, Caching		

Somaiya Vidyavihar University

K.J. Somaiya College of Engineering

Module	Unit	Details	Hrs.	CO						
No.	No.									
	Databas	es and Back-end Development	10	CO ₅						
	5.1	Introduction to databases (SQL and NoSQL) Integrat-								
		ing databases with Node.js, building a RESTful API,								
5		ORMs (Object-Relational Mapping)								
3	5.2	User authentication and authorization Implementing se-								
	curity features, session management									
	5.3	Deploying web applications to servers Hosting options								
		(e.g., AWS, Heroku) Domain registration and DNS con-								
		figuration								
		#Self learning Topic: Continuous Integra-								
		tion/Continuous Deployment (CI/CD), Load								
		Balancing and Scalability								
		Total	60							

Recommended Books:

S.No.	Name/s of	Title of Book	Name of Publisher	Edition and
	${ m Author/s}$		with country	Year of
				publication
1.	Terry Ann	Web Development and	McGraw Hill Educa-	9 th Edition,
	Felke-Morris, Ed.D.	Design Foundations with HTML5	tion, India	2019
2.	Kyle Simpson	Up & Going	O'Reilly,USA	1^{st} Edition,
	1	7		2014
3.	Marijn	Eloquent JavaScript	No Starch Press, USA	3^{rd} Edition,
	Haverbeke			2018
4.	Anthony	Fullstack React: The Com-	Fullstack.io, India	1^{st} Edition,
	Accomazzo,	plete Guide to ReactJS and		2017
	Ari Lerner,	Friends		
	Nate Murray,			
	Clay Allsopp,			
	David Gut-			
	man, Tyler			
	McGinnis			
5.	Mario Cas-	Node.js Design Patterns	Packt Publishing	1^{st} Edition,
	ciaro		Ltd.,UK	2014
6.	Kristina	MongoDB: The Definitive	O'Reilly, USA	3^{rd} Edition,
	Chodorow	Guide		2020

Course Code		Course Title								
116U40L502	1	Automa	ation &	Contr	ol Syste	e <mark>m La</mark> b	oratory	У		
		TH			P	TU	Total			
Teaching Scheme (Hrs.)	_			0	02		_			
Credits Assigned	_			01		-	_	01		
	Marks									
Examination Scheme	\mathbf{C}	A	ESE	TW	O	Р	P&O	Total		
Examination Scheme	ISE	IA	ESE	1 1		F	rau	Total		
	_	_	_	25	_	_	25	50		

Term work will consist of experiments covering entire syllabus of "Automation & Control System" (116U40C502). Students will be graded based on continuous assessment of their term work.

Practical and oral examination will be based on laboratory work and entire syllabus.

- 1. Level control by a 2-step controller using FluidLab
- 2. Continuous level control using FluidLab
- 3. Continuous flow control using FluidLab
- 4. Continuous pressure control using FluidLab
- 5. Study of Programmable Logic Controllers and implementation of Logic gates
- 6. Implementation of Timers and counters in Programmable Logic Controller
- 7. Study of operation of Single acting cylinder in Pneumatic system
- 8. Study of operation of Double acting cylinder in Pneumatic system
- 9. Study of operation of single & Double acting cylinder in Electro-Pneumatic system
- 10. Interfacing of Analog sensor to PLC and display the real time analog values in HMI
- 11. Demonstration of Industrial Internet of Things

(A Constituent College of Somaiya Vidyavihar University)

Course Code		Course Title								
116U40P501			N	Mini Pr	oject -	Ι				
		TH P				TU	Total			
Teaching Scheme (Hrs.)		_		0	12	_		02		
Credits Assigned	_			01		-	_	01		
		Marks								
Examination Scheme	\mathbf{C}	CA		$\mathbf{T}\mathbf{W}$		Р	P&O	Total		
Examination Scheme	ISE	IA	ESE	1 00		Г	F&O	Total		
	_	_	_	25	_	_	25	50		

Course prerequisites:

C Programming

Course Objectives:

This course aims to equip students with the ability to select suitable hardware projects and optimize the selected projected area for design and development of the final prototype. Students will understand project management fundamentals, explore microcontrollers and programming languages, also learn PCB development and debugging techniques, and develop proficiency in hardware based projects.

Course Outcomes:

At the end of successful completion of the course the student will be able to

- CO 1. Identify topics based on hardware design and microcontroller programming.
- CO 2. Design and fabricate printed circuit boards (PCBs).
- CO 3. Develop interpersonal skills to work as a member of a group or leader.
- CO 4. Analyze the impact of solutions in societal and environmental context for sustainable development.

(A Constituent College of Somaiya Vidyavihar University)

Module	Unit	Details	Hrs.	CO
No.	No.			
	Project	Selection	10	CO1
	1.1	Project Idea based on hardware design and microcon-		
1		troller applications, Title Selection and Component List,		
1		Fundamentals of project management		
	1.2	Abstract Development, Summary paragraph		
	Literatu	re review	06	CO1
2	2.1	Literature Review, Author Biographies, Scopus & SCI		
		indexing, Google Scholar profile, GitHub, Research gap		
		analysis. Activities related to Topic Chosen		
	Project	Simulation, PCB design and Prototyping	10	CO2,
				CO3
3	3.1	Writing code for Microcontroller used, Simulation Re-		
		sults		
	3.2	Circuit Diagram Simulation and PCB Layout, PCB De-		
		sign, Manual PCB Fabrication, PCB Assembly and Sol-		
		dering.PowerPoint Presentation, User Manual Develop-		
		ment, Working Circuit Video. Prototyping		
		Documentation	04	CO4
	4.1	Standard publisher paper format, Paper Submission		
		with Methodology, Professional Video Presentation,		
		Overleaf Paper Draft, Graphical Abstract, Standard		
		publisher paper format, Paper Submission with Method-		
4		ology, Professional Video Presentation, Overleaf Paper		
_		Draft, Graphical Abstract		
	4.2	Technical Paper and Project Report		
		Total	30	

(*Project Idea can be such that, it can be extended as Software part in Mini Project-II)

Recommended Books:

S.No.	Name/s of	Title of Book	Name of Publisher	Edition and		
	Author/s		with country	Year of		
				publication		
1.	Jack Mered-	Project Management, A	Wiley, India	7^{th} Edition,		
	ith, Samuel	$Managerial\ Approach$		2010		
	Mantel					
2.	Dennis Lock	Project Management	Gower Publishing,	9^{th} Edition,		
			UK	2013		
3.	Tim Williams	The Circuit Designer Com-	Newnes,Oxford and	2^{nd} Edition,		
		panion	Boston, India	2004		
4.	Paul Scherz,	Practical Electronics for In-	McGraw-Hill Educa-	4^{th} Edition,		
	Simon Monk	ventors	tion, USA	2016		

Course Code				Cour	se Title	е			
116U40L511	Hardy	vare De	escripti	on Lan	guage a	and FP	GA La	boratory	
		TH		P		\mathbf{TUT}		Total	
Teaching Scheme (Hrs.)		_		02		-	_	02	
Credits Assigned		_		01		_		01	
	Marks								
Examination Scheme	\mathbf{C}	CA		TW	0	Р	P&O	Total	
Examination Scheme	ISE	IA	ESE	1 44		Г	F&O	Total	
	_	_	_	25	25	_	_	50	

Term work will consist of experiments covering entire syllabus of "Hardware Description Language and FPGA" (116U40E511). Students will be graded based on continuous assessment of their term work.

Practical and oral examination will be based on laboratory work and entire syllabus.

- 1. Implement half adder , full adder , multibit adder, Full subtractor etc.
- 2. Implement Multiplexer behavior and structural modeling
- 3. Implement a 3:8 decoder with active low enable
- 4. Implement JK FF with Synchronous reset, Asynchronous reset
- 5. Implement 74163 like counter considering all the features of the IC
- 6. Universal 4 bit shift register with selection of functions
- 7. FSM Implementation: Word Problem
- 8. Asynchronous Counter
- 9. Applications like
 - (a) Interfacing of LEDs, Keypad, Sensors, Stepper Motor
 - (b) Interfacing VGA Monitor
 - (c) Arithmetic Circuits, FPU, ALU control, Pipelined processor
 - (d) Digital Filters and Codecs

Course Code		Course Title								
116U40L512		Electro	magne	tics En	gineeri	ng Lab	oratory			
		TH		P		TU	Total			
Teaching Scheme (Hrs.)	-			0	02		_			
Credits Assigned	_			01		-	=	01		
	Marks									
Examination Scheme	C	\mathbf{A}	ESE	TW	O	Р	P&O	Total		
Examination Scheme	ISE	IA	ESE	1 1		Г	F&O	Total		
	_	_	_	25	25	_	_	50		

Term work will consist of experiments covering entire syllabus of "Electromagnetics Engineering" (116U40E512). Students will be graded based on continuous assessment of their term work.

Practical and oral examination will be based on laboratory work and entire syllabus.

- 1. Simulate and visualize electric field lines around point charges or conductive objects and Simulate and visualize magnetic field lines around magnets or current-carrying wires. using octave
- 2. Solve the Electric Field of a Line Charge Density and Surface Charge Density using Octave
- 3. Octave simulation of an Electromagnetic Wave Equation
- 4. Octave simulation of wave equation
- 5. Octave simulation of Transmission lines with losses
- 6. Octave simulation of Telegrapher's equation
- 7. Octave Simulation of different types of Polarisation
- 8. Octave simulation of modes of a Rectangular Waveguide

Course Code		Course Title								
116U40L513		Senso	or Tech	nology	and M	easurei	nents			
		TH			P		\mathbf{TUT}			
Teaching Scheme (Hrs.)		_		0	02		_			
Credits Assigned	_			01		-	=	01		
	Marks									
Examination Scheme	C	A	ESE	TW	O	Р	P&O	Total		
Examination Scheme	ISE	IA	ESE	1 1		Г	F&U	Total		
	_	_	_	25	25	_	_	50		

Term work will consist of experiments covering entire syllabus of "Sensors and Measuring Instruments" (116U40E513). Students will be graded based on continuous assessment of their term work.

Practical and oral examination will be based on laboratory work and entire syllabus.

- 1. Study the response of first order system
- 2. Study of Sensors(Temperature, LVDT) in hardware
- 3. Study of basic Industrial Sensors (Temperature Sensor, Strain gauge, Level sensor, LVDT) (Virtual Lab)
- 4. Design an amplifier and Filter
- 5. Data Acquisition in LabVIEW
- 6. Study of IR and PIR sensors
- 7. Tank level detection using LabVIEW

Course Code		Course Title									
116U40L514	Inform	nation	Theory	and C	oding '	Technic	ues La	boratory			
		TH		P		\mathbf{TUT}		Total			
Teaching Scheme (Hrs.)		_		0	2	_		02			
Credits Assigned	_			01		_		01			
	Marks										
Examination Scheme	\mathbf{C}	CA		TW	O	Р	P&O	Total			
Examination Scheme	ISE	IA	ESE	1 44		ı	1 & O	Total			
	_	_	_	25	25	_	_	50			

Term work will consist of experiments covering entire syllabus of "Information Theory and Coding Techniques" (116U40E514). Students will be graded based on continuous assessment of their term work.

Practical and oral examination will be based on laboratory work and entire syllabus.

- 1. To implement Channel Capacity Analysis with different communication channels (e.g., wireless, optical fiber) and measure their capacity in terms of data rate and error rates using Matlab/python/C++
- 2. To implement various error-correcting codes e.g., Hamming codes, experiment with encoding and decoding processes. Measure the error correction capability under different noise conditions using Matlab/python/C++
- 3. Implement entropy and compression techniques like Huffman coding or arithmetic coding. Evaluate compression ratios and reconstruction quality using MATLAB/Python/C++
- 4. Investigate encryption algorithms like AES or RSA. Analyze the impact of encryption on data security and communication throughput
- 5. Implement various channel coding techniques such as convolutional codes and turbo codes. Evaluate their performance in noisy communication channels using MATLAB/PYTHON/C++
- 6. Define and implement appropriate metrics for evaluating the performance of your coding techniques, such as bit error rate (BER), signal-to-noise ratio (SNR), or throughput using MATLAB/Python/C++

- 7. Develop experiments to measure the loss of information in different data transformation and transmission processes using Python/MATLAB
- 8. Apply coding techniques to real-world scenarios, such as data transmission in wireless networks, satellite communications, or data storage systems

Course Code				Cour	rse Titl	e			
116U40L515	Analo	g Integ	grated (Circuits	and A	pplicat	ions La	boratory	
		TH		F)	JT	JT	Total	
Teaching Scheme (Hrs.)		_		0	2	-	_	02	
Credits Assigned		_		01		_		01	
	Marks								
Examination Scheme	\mathbf{C}	A	ESE	TW	O	D	P&O	Total	
Examination Scheme	ISE	IA	ESE	T AA		Г	1 & O	Total	
	_	_	_	25	25	_	_	50	

Term work will consist of experiments covering entire syllabus of "Analog Integrated Circuits and Applications" (116U40E515). Students will be graded based on continuous assessment of their term work.

Practical and oral examination will be based on laboratory work and entire syllabus.

- 1. To measure the parameters of Opamp 741
- 2. To study Inverting Non Inverting Amplifier and Subtractor using IC741
- 3. To implement Practical Differentiator first order active low pass filter
- 4. To implement three Op Amp Instrumentation Amplifier
- 5. To design and implement Inverting Schmitt Trigger for given UTP and LTP value
- 6. To implement triangular and square wave generator using IC741
- 7. Study of R-2R Ladder type DAC
- 8. To design and implement Astable Multivibrator using IC 555 timer
- 9. To implement Precision Full wave rectifier using IC741 (Simulation based)
- 10. To implement Sample and Hold Circuit (Simulation based)
- 11. To implement Instrumentation amplifier (3 opamp based and using IC AD620) (Simulation based)

- 12. To implement various precision rectifier using Opamp IC
- 13. To implement practical peak detector circuit using Opamp IC
- 14. Mini Project based on real life Applications using opamp IC, IC 555, and Regulator IC (use standard datasets available on web)

Course Code		Course Title								
116U40L516		So	ftware	Engine	ering L	aborato	ory			
		TH		I	P	TU	Total			
Teaching Scheme (Hrs.)		_		0	12	_		02		
Credits Assigned	_			01		_		01		
	Marks									
Examination Scheme	\mathbf{C}	\mathbf{A}	ESE	TW	O	Р	P&O	Total		
Examination Scheme	ISE	IA	ESE	1 **		Г	F&O	Total		
	_	_	_	25	25	_	_	50		

Term work will consist of experiments covering entire syllabus of "Software Engineering" (116U40E516). Students will be graded based on continuous assessment of their term work.

Practical and oral examination will be based on laboratory work and entire syllabus.

- 1. Requirement specification document for mini project
- 2. Estimation of project for mini project
- 3. Study of Umbrello Unified Modelling Language tool Or Lucid chart: flowcharts and diagram drawing tool
- 4. Modeling UML Use Case, Activity diagram, Class diagram, Sequence Diagram
- 5. User interface design using UI tools for a project
- 6. Study of Configuration Management tool
- 7. Designing Test plan using various testing methodologies for a project
- 8. Test software application using Selenium Java tool

Course Code	Course Title								
116U40L517	Advar	Advanced Python Programming and Applications Laboratory							
		TH		P		TUT		Total	
Teaching Scheme		_		02		_		02	
(Hrs.)									
Credits Assigned	_			01		_		01	
		Marks							
Examination Scheme	\mathbf{C}	A	ESE	TW	O	D	P&O	Total	
Examination Scheme	ISE	IA	ESE	1 44		Г	F&O		
	_	_		25	25	_	_	50	

Term work will consist of experiments covering entire syllabus of "Advanced Python Programming and Applications" (116U40E517). Students will be graded based on continuous assessment of their term work.

Practical and oral examination will be based on laboratory work and entire syllabus.

Tentative list of Experiments: Image Processing with OpenCV:

- 1. Introduction to OpenCV and Basic Image Operations
 - Display an image using OpenCV.
 - Perform basic operations like resizing, cropping, and rotating images
- 2. Arithmetic Operations and Colorspaces in OpenCV
 - Perform arithmetic operations on two images.
 - Convert images between different colorspaces (RGB, HSV, Grayscale).
- 3. Geometric Transformations and Image Thresholding
 - Apply geometric transformations such as translation, rotation, and scaling.
 - Implement image thresholding techniques.
- 4. Smoothing, Image Gradient, and Contours
 - Apply smoothing techniques like blurring and sharpening.
 - Calculate image gradients and identify contours in an image.

- 5. Edge Detection and Histograms
 - Implement edge detection algorithms (e.g., Canny).
 - Generate and analyze histograms of images.

Network Programming with Python:

- 6. Introduction to Sockets and Socket Communication
 - Create a basic socket server and client for communication.
- 7. Implementing a Client-Server Application
 - Develop a more advanced client-server application with socket communication.
- 8. Web Services with Flask
 - Create a simple RESTful web service using Flask.
 - Implement CRUD operations (GET, POST, PUT, DELETE) for a Bookshop service.

Raspberry Pi with Python:

- 9. Setting Up Raspberry Pi and SimpleCV
 - Install and configure the necessary software on a Raspberry Pi.
 - Set up SimpleCV for image processing.
- 10. Computer Vision with Raspberry Pi
 - Use a USB camera and R-pi Camera Module for basic computer vision tasks.
 - Implement face detection and motion detection.
- 11. Controlling Hardware on Raspberry Pi
 - Connect and control an LED using GPIO.
 - Generate a buzzing sound with a buzzer.
- 12. Interfacing with Sensors on Raspberry Pi
 - Interface with IR and Ultrasonic sensors.

• Develop a user interface to control PWM for LEDs and Motors.

Game Programming with Pygame

- 13. Introduction to Pygame Library
 - Set up Pygame for game development.
 - Understand the basic structure of a Pygame application.
- 14. Building a Simple Pygame Application
 - Create a basic game using Pygame.
 - Incorporate graphics, sprites, and handle user input.

Course Code		Course Title						
116U40C601		Digital Signal & Image Processing						
	TH		P		TUT		Total	
Teaching Scheme (Hrs.)	03			-	_	_		03
Credits Assigned	03			-	_	-	_	03
	Marks							
Examination Scheme	$\mathbf{C}\mathbf{A}$		ESE	TW	O	Р	P&O	Total
Examination Scheme	ISE	IA	LSE	T AA		P	F&U	Total
	30	20	50	_	_	_	_	100

Course prerequisites:

Networks, Signals & Systems

Course Objectives:

The goal of this course is to provide students a broad perspective in the field of signal processing in digital domain and image processing. The course will cover different signal processing concepts and time—frequency domain and their applications in designing different filters. Additionally, the course introduces the fundamentals of image processing, segmentation, and their applications.

Course Outcomes:

At the end of successful completion of the course the student will be able to

- CO 1. Apply the concept of DT domain in analyzing the discrete time systems.
- CO 2. Design different filters in digital domain.
- CO 3. Understand basics of image fundamentals.
- CO 4. Utilize image processing in edge detection, image restoration and segmentation.
- CO 5. Implement the morphological operations and image compression.

Module	Unit	Details	Hrs.	CO				
No.	No.							
1	Discrete	crete-Time Signals and Systems 1 Introduction to Discrete-Time signals and its type and						
1	1.1	Introduction to Discrete-Time signals and its type and						
		properties, Signal manipulations (shifting, reversal, scal-						
		ing, addition, multiplication), Classification of discrete						
		systems.						
	1.2	Linear time invariant (LTI) systems, Concept of impulse						
		response, Convolution in time domain						
	Introduc	ction to Transforms and Filters	10	CO2				
	2.1	Introduction to Discrete-Time Fourier Transform						
		(DTFT) and Discrete Fourier Transform (DFT), Rela-						
2		tion between DFT and DTFT, Z-Transform, Need of						
4		Fast Fourier Transform (FFT), FFT algorithm						
	2.2	Finite impulse response (FIR) filters, Infinite impulse						
		response (IIR) filters						
		Image Fundamentals	12	CO3				
	3.1	Introduction to digital image and its representation,						
		Sampling and Quantization, Basic relationship between						
3		pixels, Connectivity, Image file formats: BMP, TIFF						
		and JPEG.						
	3.2	Basic intensity transformation functions, Histogram						
		processing, Histogram equalization						
	3.3	Fundamental of spatial filtering, Smoothening spatial fil-						
		ters, Sharpening spatial filters, Filtering in the frequency						
		domain, Two dimensional Discrete Fourier Transform						
		etection, Image Restoration and Segmentation	08	CO4				
4	4.1	Image Edge detection using Robert, Sobel, Previtt						
		masks, Image Edge detection using Laplacian Mask.						
	4.2	Fundamentals of Image Degradation/Restoration Pro-						
		cess, Restoration in the Presence of Noise						
	4.3	Image segmentation based on discontinuities: point, line						
		and edge detection (Laplacian, Canny), Thresholding						
		(Global, local, optimum), Region based segmentation,						
		Hough Transform.						

(A Constituent College of Somaiya Vidyavihar University)

Module	Unit	Details	Hrs.	CO
No.	No.			
	Introduc	ction to Morphological Operations,	08	CO ₅
	Image C	ompression and Applications		
	5.1	Morphological operations: Dilation, Erosion, Open-		
5		ing, Closing, Hit or Miss Transform, Boundary extrac-		
9		tion		
	5.2	Image Compression Fundamentals, Basic Compression		
		Techniques.		
		Total	45	

Recommended Books:

S.No.	Name/s of	Title of Book	Name of Publisher	Edition and
	m Author/s		with country	Year of
				publication
1.	S. Haykin	Signals and Systems	Wiley, India	2^{nd} Edition,
				2007
2.	J.G. Proakis,	Digital Signal Processing:	Pearson Education,	4th Edition,
	D.G.Manolakis	Principles, Algorithms and	India	2010
		Applications		
3.	Gonzalez &	Digital Image Processing	Pearson Education,	2^{nd} Edition,
	Woods		India	2016
4.	W. Pratt	Digital Image Processing	Wiley, India	3^{rd} Edition,
				2002

(A Constituent College of Somaiya Vidyavihar University)

Course Code		Course Title						
116U40C602		Computer Communication Networks						
	TH			P		TUT		Total
Teaching Scheme (Hrs.)	03			-	_	_		03
Credits Assigned	03			-	_	-	_	03
	Marks							
Examination Scheme	$\mathbf{C}\mathbf{A}$		ESE	TW	O	Р	P&O	Total
Examination Scheme	ISE	IA	ESE	1 VV		F	F&O	Total
	30	20	50	_	_	_	_	100

Course prerequisites:

Analog and Digital communication

Course Objectives:

The objective of this course is to introduce computer communication and networking concepts. The students will understand the basic computer network architecture, protocol layers and service models. This course will help to enhance students' understanding, analyzing and implementation capability such as interconnecting network devices, network configuration and client-server programs that communicate over the internet.

Course Outcomes:

At the end of successful completion of the course the student will be able to

- CO 1. Understand concept of computer communication & Network models.
- CO 2. Describe different data link and transmission protocols for transmission and control.
- CO 3. Discuss IP addressing and Routing algorithms.
- CO 4. Explain Transport layer protocols.
- CO 5. Analyze network protocols and current trends of computer communication and Network security concept.

Module	Unit	Details	Hrs.	CO
No.	No.			
	Introduct	ion to Network Architectures	08	CO1
1	1.1	Network Topologies, LAN, MAN, WAN, Connecting de-		
		vices:NIC, Hubs, Repeaters, Bridges, Switches, Router,		
		Gateway. Internetworks, Virtual LANs.		
	1.2	Protocol Hierarchies, Design Issues for the layers. Ref-		
		erence Models: Layers details of OSI, TCP/IP Mod-		
		els,Protocol Layers and their service models.		
	1.3	Introduction to physical media, Coax, fiber, twisted		
		pair, Transmission Impairments.		
		#Self learning topic: Home networks, Internet-		
		works		
	Data link		12	CO2
	2.1	Function of data link layer, MAC address, HDLC frame		
		format, Flow and error control concepts and protocols,		
		Noiseless and noisy channels. Piggybacking		
2	2.2	Multiple Access: Random Access, control Ac-		
_		cess, Channelization.		
	2.3	Wired LANs: IEEE standards, Standard Ethernet, Fast		
		Ethernet, Gigabit Ethernet Wired LANs: IEEE stan-		
		dards, Standard Ethernet, Fast Ethernet, Gigabit Eth-		
		ernet		
		Layer Services and Protocols	10	CO ₃
	3.1	Introduction to classful and classless IPv4 addressing		
		subnetting and supernetting, IPv6 addressing. Compat-		
		ibility with IPV4, Tunneling, Dual stack, Encapsulation,		
3		NAT.		
	3.2	Concept of Link State Routing and Distance Vector		
		Routing, Bellman ford algorithm and Disjktra Algo-		
		rithm, Routing in the Internet, Introduction to RIP,		
		OSPF and BGP.		
		#Self-learning topic: Concepts of embedded net-		
		working environment.		

(A Constituent College of Somaiya Vidyavihar University)

Module	Unit	Details	Hrs.	CO
No.	No.			
	Transpo	ort-layer Protocols	09	CO4
	4.1	Services, Transport layer protocols, UDP, TCP, State		
4		Transition diagram, TCP Timers, flow and error control.		
	4.2	Network performance parameters:-Fairness, Delay, jit-		
		ter, and loss in packet switched networks, Bandwidth,		
		throughput, congestion control and quality-of-service,		
		Socket programming.		
		#Self-learning topic: QUIC.		
	Applicat	tion layer and Network security	07	CO ₅
	5.1	Application layer protocols such as HTTP, HTTPS		
		WWW, FTP, FTPS, SMTP, DHCP, DNS, DNSSEC,		
5		Remote Login.		
	5.2	Network security: Key security concepts, threats, vul-		
		nerabilities, exploits, and mitigation techniques.		
		#Self-learning topic: Concept of Internet		
		of Things, Architecture and Communication		
		model.		
		Total	45	

Recommended Books:

S.No.	Name/s of	Title of Book	Name of Publisher	Edition and
	Author/s		with country	Year of
				publication
1.	В. А.	Data Communications and	McGraw-Hill Educa-	4 th Edition,
	Forouzan	Networking	tion, India	2017
2.	William	Data Computer Communi-	Pearson Education,	10 th Edition,
	Stallings	cation	India	2013
3.	A. S. Tanen-	Computer Networks	Pearson Education,	5^{th} Edition,
	baum		India	2013
4.	В. А.	TCP/IP protocol suite	McGraw-Hill Educa-	4 th Edition,
	Forouzan		tion, India	2016

Somaiya Vidyavihar University

K.J. Somaiya College of Engineering

(A Constituent College of Somaiya Vidyavihar University)

Course Code		Course Title						
116U40C603		Operating System and Compilers						
	TH		P		TUT		Total	
Teaching Scheme (Hrs.)	03			-	_	_		03
Credits Assigned	03			_		-	_	03
	Marks							
Examination Scheme	$\mathbf{C}\mathbf{A}$		ESE	TW	0	Р	P&O	Total
Examination Scheme	ISE	IA	ESE	1 1		Г	rau	Total
	30	20	50	_	_	_	_	100

Course prerequisites:

Python Programming, Data Structures, Computer Organization and architecture.

Course Objectives:

The course aims to introduce basic concepts and functions of operating systems, process, thread and resource management. Process synchronization and deadlock which are major parameters in system performance are also covered up in the course.

Course Outcomes:

At the end of successful completion of the course the student will be able to

- CO 1. Explain the fundamental concepts of operating system Illustrate and analyse the Process, threads, process scheduling and thread scheduling
- CO 2. Describe the problems related to process concurrency and the different synchronization mechanisms available to solve them
- CO 3. Explain disk organization and file system structure with illustration of disk scheduling algorithms
- CO 4. Understand Storage management with allocation, segmentation & virtual memory concepts
- CO 5. Understand compiler construction tools and describes the functionality of each stage of compilation process

Module	Unit	Details	Hrs.	CO
No.	No.			
1	Introduc	ction to Operating Systems and Process Concepts	07	CO1
1	1.1	Concept, introduction to various system programs such		
		as assemblers, loaders, linkers, macro processors, com-		
		pilers, interpreters, operating systems, device drivers		
		Operating System Objectives and Functions.		
	1.2	Operating system structures, System Calls Linux Kernel		
		and Shell System boot.		
	1.3	Process: Concept of a Process, Process States, Process		
		Control Block. Threads: Definition and Types, Concept		
		of Multithreading, Introduction to Thread Scheduling		
		Concurrency	10	CO2
	2.1	Concurrency: Principles of Concurrency, Inter-Process		
2		Communication, Process/Thread Synchronization.		
	2.2	Mutual Exclusion: Requirements, Hardware Support,		
		Operating System Support (Semaphores and Mutex),		
		Programming Language Support (Monitors)		
	2.3	Classical synchronization problems: Readers/Writers		
		Problem, Producer and Consumer problem.		
	2.3	Principles of Deadlock: Conditions and Resource Allo-		
		cation Graphs, Deadlock Prevention, Deadlock Avoid-		
		ance: Banker's Algorithm for Single & Multiple Re-		
		sources, Deadlock Detection and Recovery. Dining		
	<u>.</u>	Philosophers Problem		G 0 0
3		itput and file management	12	CO3
	3.1	File Management: Overview, File Organization and Ac-		
		cess, File Directories, File Sharing, Secondary Storage		
	0.0	Management.		
	3.2	I/O Management and Disk Scheduling: I/O Devices,		
		Organization of the I/O Function, Operating System		
		Design Issues, I/O Buffering, Disk Scheduling algo-		
		rithm: FCFS, SSTF, SCAN, CSCAN, LOOK, CLOOK.		
		Disk Management.		

Module	Unit	Details	Hrs.	CO
No.	No.			
4	Storage management			CO4
4	4.1	Main Memory: Background, Swapping, Contiguous		
		Memory Allocation, Paging, Segmentation, Segmenta-		
		tion with paging, 32 and 64 bit architecture Examples		
	4.2	Virtual Memory: Background, Demand Paging, Page		
		Replacement, Allocation, Thrashing; Allocating Kernel		
		Memory, OS Examples		
5	Compile	er	08	CO4
	5.1	Definition of compiler, interpreter and its differences,		
		the phases of a compiler, role of lexical analyzer, reg-		
		ular expressions, finite automata, from regular expres-		
		sions to finite automata, pass and phases of translation,		
		bootstrapping, LEX-lexical analyzer generator.		
	5.2	PARSING: Parsing, role of parser, context free gram-		
		mar, derivations, parse trees, ambiguity, elimination of		
		left recursion, left factoring, eliminating ambiguity from		
		dangling-else grammar, classes of parsing, top down		
		parsing - backtracking, recursive descent parsing, pre-		
		dictive parsers, LL(1) grammars.		
		Total	45	

S.No.	Name/s of	Title of Book Name of Publisher		Edition and
	${f Author/s}$		with country	Year of
				publication
1.	William	Operating System: Internal	Prentice Hall, India	8 th Edition,
	Stallings	and Design Principles		2014
2.	Abraham	Operating System Concepts	Wiley, India	9^{th} Edition,
	Silberschatz,			2016
	Peter Baer			
	Galvin,Greg			
	Gagne			
3.	Andrew Tan-	Operating System Design	Pearson Education,	3^{rd} Edition,
	nenbaum	$and\ Implementation$	India	2015
4.	D.M Dhamd-	Systems Programming	McGraw-Hill Educa-	3^{rd} Edition,
	here		tion, India	2001
5.	Alfred V.	Principles of Compiler De-	Pearson Education,	1^{st} Edition,
	Aho, Jeffrey	sign	India	2001
	D. Ullman			

(A Constituent College of Somaiya Vidyavihar University)

Course Code	Course Title							
116U40E611		Power Electronics						
		TH			P		IJ T	Total
Teaching Scheme (Hrs.)		03		_	_		_	03
Credits Assigned	03			_		-	_	03
		Marks						
Examination Scheme	\mathbf{C}	CA		TW	O	Р	P&O	Total
Examination Scheme	ISE	IA	ESE	1 VV		Г	rau	Total
	30	20	50	_	_	_	_	100

Course prerequisites:

Analog Electronics Circuits, Electrical Networks.

Course Objectives:

This course introduces the basic concepts of switched-mode converter circuits for controlling and converting electrical power with high efficiency. Principles of converter circuit analysis are introduced and are developed for finding the steady state voltages, current, and efficiency of power converters. A basic understanding of electrical circuit analysis is an assumed prerequisite for this course.

Course Outcomes:

At the end of successful completion of the course the student will be able to

- CO 1. Understand construction, principle of operation and V-I characteristics of various Power Electronics Devices.
- CO 2. Analyze, compare and design power circuit of AC to DC converters.
- CO 3. Design and analyze power circuit of DC to AC converters.
- CO 4. Illustrate the analysis and comparison of various topologies of DC to DC converters.
- CO 5. Distinguish the analysis of various topologies of AC to AC converters.

Somaiya Vidyavihar University

K.J. Somaiya College of Engineering

Module	Unit	Details	Hrs.	CO
No.	No.			
1	Power E	Electronics Devices	09	CO1
1	1.1	Principle of operation of SCR, static and dynamic char-		
		acteristics, gate characteristics. Methods of turning on		
		(type of gate signal), UJT triggering circuit, Commuta-		
		tion circuits.		
	1.2	Principle of operation, characteristics, rating and appli-		
		cations of: DIAC, TRIAC, MOSFET, IGBT and power		
		BJT. Principle of operation, characteristics, rating and		
		applications of: DIAC, TRIAC, MOSFET, IGBT and		
		power BJT.		
		#Self learning topic: Study of turn on and driver		
		ICs for various devices.		
		OC Converters: Controlled Rectifiers	10	CO2
	2.1	Single phase Half wave controlled rectifiers, Full wave		
		controlled rectifiers, half controlled and fully controlled		
		rectifiers with R, R-Land R-L-E load with and without		
2		feedback diodes. (effect of source inductance not to be		
	0.0	considered). Dual converter. Performance Parameters.		
	2.2	Three phase half controlled and fully controlled rectifiers		
	DC / A	with R load only. Performance Parameters.	10	COS
3		C Converters : Inverters	10	CO3
	3.1	Principle of operation of Series and Parallel Inverters.		
		Principles of operation of Single phase half / full bridge		
		voltage source inverters with R and R-L load. Voltage		
	3.2	control of single phase inverters using PWM techniques. Three phase bridge inverters (120° and 180° conduction		
	ე.⊿	mode) with R and R-L load.		
	DC to T	OC Converters: Choppers	09	CO4
	4.1	Basic principle of step up and step down choppers.	Uð	004
	4.1	Type-A, Type-B, Type-C, Type-D and Type-E chop-		
		pers		
4	4.2	Buck, Boost, Buck-Boost converters, Derivation of Vo,		
		Io, Vc and Io under steady state condition.		
		10, ve and to under sucady share condition.		

(A Constituent College of Somaiya Vidyavihar University)

Module	Unit	Details	Hrs.	CO			
No.	No.						
	AC to A	C Voltage Controllers and Cycloconverters	07	CO ₅			
	5.1	Principle of On-Off control, principle of phase control,					
		single phase bidirectional control with R and RL load,					
		TRIAC as light dimmer/ single-phase induction motor					
5		speed controller.					
9	5.2	Principle of cycloconverter operation, single phase to					
		single phase step-up and step-down cycloconverter. In-					
		troduction to three phase Cycloconverter. Applications					
		of cycloconverter.					
		Total	45				

S.No.	Name/s of Au-	Title of Book	Name of Pub-	Edition and
	thor/s		lisher with coun-	Year of
			try	publication
1.	Dr. P.S. Bimbhra	Power Electronics	Khanna Publica-	4^{th} Edition,
			tions, India, India	2008
2.	M.D. Singh, K.B.	Power Electronics	McGraw-Hill Edu-	2^{nd} Edition,
	Khanchandani		cation, India	2013
3.	M. Rashid	Power Electronics	Pearson Education,	4^{th} Edition,
		Circuits Devices and	India	2013
		Applications		
4.	Ned Mohan	Power Electronics:	Wiley, India	3^{rd} Edition,
		Converters, Applica-		2002
		tions and Design		

(A Constituent College of Somaiya Vidyavihar University)

Course Code	Course Title							
116U40E612		Basics of VLSI						
		TH			P		TUT	
Teaching Scheme (Hrs.)		03		_		_		03
Credits Assigned	03		03		_		_	03
		Marks						
Examination Scheme	C	CA		TW	O	Р	P&O	Total
Light Scheme	ISE	IA	ESE	1 **		F	1 & O	Total
	30	20	50	_	_	_	_	100

Course prerequisites:

Analog Electronics, Digital Electronics

Course Objectives:

The objective of the course is to familiarize the student with fundamental principles of VLSI Design. It provides coverage of classical VLSI Design for both combinational and sequential digital circuits. Various design styles used for design of such circuits have also been introduced.

Course Outcomes:

At the end of successful completion of the course the student will be able to

- CO 1. Understand fundamentals of MOS physics and technology scaling
- CO 2. Understand characteristics of different MOS inverters
- CO 3. Implement MOS based circuits using different design styles
- CO 4. Design and implement units of datapath
- CO 5. Design and implement semiconductor memories

Somaiya Vidyavihar University

K.J. Somaiya College of Engineering

Module	Unit	Details	Hrs.	CO	
No.	No.				
	MOS Pl	nysics	12	CO1	
1	1.1	Introduction: VLSI Design Flow, Y-Chart represen-			
		tation			
	1.2 Physics of MOS: MOS capacitor, energy band dia-				
		grams, band bending, flat band voltage, threshold volt-			
		age calculation, threshold adjustment, MOSFET linear			
		and saturated operation (GCA), MOSFET capacitance,			
		Channel length modulation.			
	1.3	Technology Scaling: Types of scaling, functional lim-			
		itations of scaling, short channel, narrow channel effects,			
	MOSTo	hot electron effects	12	CO2	
	MOS In 2.1	Circuit Analysis: Static and dynamic analysis (Noise,	14	CO2	
	2.1	propagation delay and power dissipation) of resistive			
		load and CMOS inverter, comparison of all types of			
2		MOS inverters, design of CMOS inverters.			
	2.2	Logic Circuit Design: Analysis and design of 2-I/P			
		NAND and NOR using equivalent CMOS inverter.			
	MOS Ci	rcuit Design Styles	08	CO3	
0	3.1	Design Styles: Static CMOS, pass transistor logic,			
3		transmission gate, Pseudo NMOS, Domino, C2MOS			
	3.2	Circuit Realization: SR Latch, MUX, decoder using			
		above design styles			
	Transmi	ssion Lines	04	CO4	
4	4.1	Adder: Bit adder circuits, Ripple carry adder, CLA			
_		adder			
	4.2	Multipliers and shifter: Partial-product genera-			
		tion, partial-product accumulation, final addition, bar-			
	~ .	rel shifter.		~~~	
		ductor Memories	09	CO5	
5	5.1	SRAM: ROM Array, SRAM (operation, design strat-			
		egy, leakage currents, read/write circuits), DRAM (Op-			
		eration 3T, 1T, operation modes, leakage currents, re-			
		fresh operation, Input-Output circuits) Total	45		
		10tal	40		

S.No.	Name/s of	Title of Book	Name of Publisher	Edition and
	${ m Author/s}$		with country	Year of
				publication
1.	Sung-Mo	CMOS Digital Integrated	McGraw-Hill Educa-	4^{th} Edition,
	Kang, Yusuf	Circuits – Analysis and De-	tion, India	2016
	Leblebici,	sign		
	Chulwoo Kim			
2.	Jan M	Digital Integrated Circuits –	Pearson Education,	2^{nd} Edition,
	Rabaey	A Design Perspective	India	2016
3.	John P. Uye-	Introduction to VLSI Cir-	Wiley, India	1^{st} Edition,
	mura	cuits and Systems		2006
4.	Debaprasad	VLSI Design	Oxford Publication,	2^{nd} Edition,
	Das		India	2015
5.	Neil Weste,	CMOS VLSI Design: A	Pearson Education,	4^{th} Edition,
	David Harris	Circuits and Systems Per-	India	2010
		spective		
6.	Pucknell,	Basic VLSI Design	Prentice Hall, India	3^{rd} Edition,
	Douglas			1995
	A.Eshraghian,			
	Kamran			

Course Code	Course Title							
116U40E613		Computer Graphics						
		TH			P		IJ T	Total
Teaching Scheme (Hrs.)		03		_	_	_		03
Credits Assigned	03		03 –		03 – –		_	03
		Marks						
Examination Scheme	\mathbf{C}	\mathbf{A}	ESE	$\mathbf{T}\mathbf{W}$		Р	P&O	Total
Examination Scheme	ISE	IA	ESE	1 **		Г	rau	Total
	30	20	50	_	_	_	_	100

Course prerequisites:

Basic familiarity with fundamental algorithms and data structures, Good programming skills, Basics of linear algebra and geometry.

Course Objectives:

The goal of this course is to provide students a broad perspective in the field of Computer Graphics, to explain hardware, software and OpenGL Graphics Primitives. Illustrate interactive computer graphics using OpenGL. Design and implement algorithms for 2D graphics Primitives and attributes. Demonstrate Geometric transformations, viewing on both 2D and 3D objects. Infer the representation of curves, surfaces, colour and illumination models.

Course Outcomes:

At the end of successful completion of the course the student will be able to

- CO 1. Understand the basic concepts of computer graphics and OpenGL
- CO 2. Implement Fill area Primitives, 2D Geometric Transformations and 2D viewing
- CO 3. Implement Clipping, 3D Geometric Transformations and 3D viewing
- CO 4. Understand the computer Input interaction, Curves and Computer Animation

Module	Unit	Details	Hrs.	CO
No.	No.			
	Introduc	ction to Computer Graphics	07	CO1
	1.1	Basics of computer graphics, Application of Computer		
1		Graphics, Video Display Devices: Random Scan and		
		Raster Scan displays		
	1.2	Introduction to Graphics, software OpenGL ,coordinate		
		reference frames, specifying two-dimensional world coor-		
		dinate reference frames in OpenGL, OpenGL point func-		
		tions, OpenGL line functions, point attributes, line at-		
		tributes, curve attributes, OpenGL point attribute func-		
		tions, OpenGL line attribute functions, Line drawing		
		algorithms(DDA, Bresenham's, Midpoint), circle gener-		
		ation algorithms (Bresenham's, Midpoint).		
		Primitives, 2D Geometric Transformations	10	CO2
	and 2D			
	2.1	Fill area Primitives: Polygon fill-areas, OpenGL poly-		
		gon fill area functions, fill area attributes, general scan		
2		line polygon fill algorithm, OpenGL fill-area attribute		
		functions		
	2.2	2DGeometric Transformations: Basic 2D Geometric		
		Transformations, matrix representations and homoge-		
		neous coordinates. Inverse transformations, 2DCom-		
		posite transformations, other 2D transformations, raster		
		methods for geometric transformations, OpenGL raster		
		transformations, OpenGL geometric transformations		
		function.		
	2.3	2D viewing: 2D viewing pipeline, OpenGL 2D viewing		
		functions		

Module	Unit	Details	Hrs.	CO					
No.	No.								
	Clipping	3,3D Geometric Transformations, Color	12	CO3					
	and Illumination Models								
	3.1	Clipping: clipping window, normalization and view-							
		port transformations, clipping algorithms,2D point clip-							
		ping, 2D line clipping algorithms: cohen-sutherland line							
3		clipping only -polygon fill area clipping: Sutherland-							
		Hodgeman polygon clipping algorithm only.							
	3.2	3DGeometric Transformations: 3D translation, rota-							
		tion, scaling, composite 3D transformations, other 3D							
		transformations, affine transformations, OpenGL geo-							
		metric transformations functions.							
	3.3	Color Models: Properties of light, color models, RGB							
		and CMY color models. Illumination Models: Light							
		sources, basic illumination models-Ambient light, dif-							
		fuse reflection, specular and phong model, Correspond-							
		ing openGL functions.							
		ving and Visible Surface Detection	08	CO3					
	4.1	3DViewing:3D viewing concepts, 3D viewing pipeline,							
		3D viewing coordinate parameters, Transformation							
		from world to viewing coordinates, Projection transfor-							
		mation, orthogonal projections, perspective projections,							
4		The viewport transformation and 3D screen coordinates.							
	4.0	OpenGL 3D viewing functions.							
	4.2	Visible Surface Detection Methods: Classification of vis-							
		ible surface Detection algorithms, depth buffer method							
		only and OpenGL visibility detection functions.							

Module	Unit	Details	Hrs.	CO				
No.	No.							
	Input &	interaction, Curves and Computer Animation	08	CO4				
	5.1	Input and Interaction: Input devices, clients and servers,						
		Display Lists, Display Lists and Modeling, Program-						
		ming Event Driven Input, Menus Picking, Building In-						
		teractive Models, Animating Interactive programs, De-						
5								
3	5.2	2 Curved surfaces, quadric surfaces, OpenGL Quadric-						
		Curves, Bezier surfaces, OpenGL curve functions. Cor-						
		responding openGL functions.						
		#Self learning topic: Vulkan API by the						
		Khronos group (known for OpenGL), Game de-						
		velopment using Pygame						
		Total	45					

S.No.	Name/s of	Title of Book	Name of Publisher	Edition and
	${ m Author/s}$		with country	Year of
				publication
1.	Donald	Computer Graphics with	Pearson Education,	4^{th} Edition,
	Hearn,	OpenGL	India	2011
	Pauline			
	Baker			
2.	Edward S.	Interactive Computer	Pearson Education,	6^{th} Edition,
	Angel	Graphics, A top-down ap-	India	2011
		proach with shader-based		
		OpenGL		
3.	Dave	$OpenGL \qquad Programming$	Addison-Wesley, USA	8^{th} Edition,
	Shreiner,	Guide: The Official Guide		2013
	Graham Sell-	$to\ Learning\ OpenGL$		
	ers, John			
	Kessenich,			
	Bill Licea-			
	Kane			
4.	Zhigang Xi-	$Computer\ Graphics$	McGraw-Hill Educa-	2^{nd} Edition,
	ang, Roy		tion,India	2010
	Plastock			
5.	Amrendra	Computer Graphics	McGraw-Hill Educa-	1^{st} Edition,
	Sinha, Arun		tion, India	2008
	Udai			

(A Constituent College of Somaiya Vidyavihar University)

Course Code	Course Title							
116U40E614	Applied Data Science							
	TH P		TH			TU	IJ T	Total
Teaching Scheme (Hrs.)	03			_	_		_	
Credits Assigned	03		03 – –		_		_	03
		Marks						
Examination Scheme	\mathbf{C}	\mathbf{A}	ESE	$\mathbf{T}\mathbf{W}$		Р	P&O	Total
Examination Scheme	ISE	IA	ESE	1 **		Г	rau	Total
	30	20	50	_	_	_	_	100

Course prerequisites:

Python Programming

Course Objectives:

The objective of this course is to impart knowledge of Data Interpretation and how to visualize the data. It also introduces how to handle data in Data Science like exploratory data analysis. It also covers Business intelligence Software like Tableau. It also includes various case studies of data visualization.

Course Outcomes:

At the end of successful completion of the course the student will be able to

- CO 1. Understand the fundamental concepts of data science.
- CO 2. Apply statistical techniques for data analysis.
- CO 3. Perform exploratory data analysis on various datasets.
- CO 4. Create effective data visualizations and visual data storytelling.

Somaiya Vidyavihar University

K.J. Somaiya College of Engineering

(A Constituent College of Somaiya Vidyavihar University)

Module	Unit	Details	Hrs.	CO
No.	No.			
	Data Sc	ience Overview	08	CO1
1	1.1	Introduction to Data Science, Different Sectors of Data		
1		Science		
	1.2	Types of data in Business contexts, Data Categoriza-		
		tion.		
	1.3	Types of data Collection, Structured and Unstructured		
		data.		
	1.4	Sources of data, Data Quality issues		
2	v		12	CO2
2	2.1	Descriptive statistics		
	2.2	Distributions, mean, variance, covariance, covariance		
		matrix		
	2.3	Understanding univariate and multivariate normal dis-		
		tributions		
	2.4	Introduction to hypothesis testing, confidence interval		
		for estimates, Analysis of Variance, Correlation Analysis		
	_	tory data analysis	10	CO3
3	3.1	Understanding Data, Basic Visualization: Matplotlib		
3		and seaborn libraries		
	3.2	Missing value analysis		
	3.3	Outlier detection analysis Outlier detection analysis		
	3.4	Data preparation and preprocessing, Data Standardiza-		
		tion		
		sualization	15	CO4
4	4.1	Need of Visualization, From Visualization To Visual		
_		Data Storytelling: An Evolution		
	4.2	Getting Started With Tableau, Connecting Data, Un-		
		derstanding Dimensions and Measures		
	4.3	Choosing the Right Visual, Colors, Formatting, Dash-		
		board, Preparing Data for Storytelling, Advanced Chart		
	4.4	Case Study on following topics Healthcare, E-commerce,		
		Finance, Social Media, Environmental Science		
		Total	45	

S.No.	Name/s of	Title of Book	Name of Publisher	Edition and
	Author/s		with country	Year of
				publication
1.	Joel Grus	Data Science from Scratch:	O'Reilly, India	2^{dn} Edition,
		First Principles with		2019
		Python		
2.	Peter Bruce,	Practical Statistics for Data	O'Reilly, India	2^{nd} Edition,
	Andrews	Scientists		2020
	Bruce			
3.	Jake Vander-	Python Data Science Hand-	O'Reilly, India	2^{nd} Edition,
	Plas	book		2016
4.	Sharada	Data Visualization: Story-	Wiley,India	1^{st} Edition,
	Sringeswara	telling Using Data		2022

Course Code	Course Title							
116U40E615	Mobile App Development							
	TH		TH P TUT		P		JT	Total
Teaching Scheme (Hrs.)	03		03 – –		_		_	03
Credits Assigned	03		03 – – – – – – – – – – – – – – – – – – –		03 –		=	03
		Marks						
Examination Scheme	\mathbf{C}	$\mathbf{C}\mathbf{A}$		TW	O	Р	P&O	Total
Examination Scheme	ISE	IA	ESE	1 1		P	F&U	Total
	30	20	50	_	_	_	_	100

Course prerequisites:

Fundamentals of Object Oriented Programming concepts

Course Objectives:

The objective of this course is to introduce students to the basics of mobile app development, including the different platforms, tools and technologies involved. The students will learn to design, develop, and test mobile apps and publish their mobile apps to the app store.

Course Outcomes:

At the end of successful completion of the course the student will be able to

- CO 1. Understand the different mobile app platform and technologies.
- CO 2. Design mobile apps using native and cross-platform development.
- CO 3. Create mobile apps with rich functionality Using databases and other back-end service.
- CO 4. Deploy their mobile app to the store.

Module	Unit	Details	Hrs.	CO			
No.	No.						
	Introduc	10	CO1				
	1.1						
1		derstanding the Flutter Architecture, Flutter macOS					
1		Setup, Flutter Windows Setup					
	1.2	Introduction to Dart Programming Language, Cod-					
		ing Style and Naming Convention, Declaring Variables,					
		Numbers, Booleans, Constant and Final Keywords,					
		Dart Types and Operators, Control Flow and Functions,					
		Understanding Classes and Constructors, Data Struc-					
		tures.					
	Building	user interface	10	CO2			
	2.1	Creating UI with Flutter, Basics and Understanding					
		Widgets, Flutter Basic Layouts, Widgets in Flutter:					
		Material App, Scaffold Widget, Different Button Wid-					
		gets, Drawer and Navigation Bar, User Notification					
		Widgets: Snack Bar, Toast, Alert, Handling User In-					
2		put and Working with TextFields, Radios, Checkbox,					
_		Adding Custom Images and Fonts					
	2.2	Navigation and State Management, Navigation Types,					
		Passing Data via the Constructor, Using Named Routes					
		& Passing Data With Named Routes, Dart program-					
		ming (Coding Style and Naming Convention, Declar-					
		ing Variables, Numbers, Booleans, Constant and Final					
		Keywords, Dart Types and Operators, Control Flow					
		and Functions, Understanding Classes and Construc-					
		tors, Data Structures), Flutter App Architecture Pat-					
	A 1 • 1	terns, Provider Package.	10	COS			
		Development	10	CO3			
	3.1	Android, The Android SDK and Android Studio, Cre-					
3		ating your first Android app, Android app structure,					
	2.0	Android app components, Android app lifecycle					
	3.2	User Interface Design, Views and layouts, Creating user					
		interfaces with XML, Working with different types of					
		views, Handling user input, Creating custom views.					

Module	Unit	Details	Hrs.	CO				
No.	No.							
	Mobile app development using Android Studio							
	4.1	Activities and Services, Activities, Services, Intents,						
		Communicating between activities and services, Data						
4		Storage and Retrieval, Shared preferences, SQLite						
4		databases, Content providers.						
	4.2	Advanced Android Topics, Fragments, Networking,						
		Background tasks, Testing and debugging, Publishing						
		your app to the Google Play Store						
5	App dev	velopment	05	CO4				
	5.1	Designing considerations for building a simple game, De-						
		signing considerations for building a social media app,						
	Designing considerations for building, Designing consid-							
	erations for building a shopping app, Designing consid-							
		erations for building a news app.						
		Total	45					

S.No.	Name/s of	Title of Book	Name of Publisher	Edition and
	Author/s		with country	Year of
				publication
1.	Eric Wind-	Flutter in Action	Manning Publica-	1^{st} Edition,
	mill		tions, USA	2019
2.	Marco L.	Beginning Flutter: A Hands	Wrox, England	1^{st} Edition,
	Napoli	On Guide to App Develop-		2019
		ment		
3.	Prajyot	Google Flutter Mobile	Packt Publishing, In-	1^{st} Edition,
	Mainkar,	Development Quick Start	dia	2019
	Salvatore	Guide: Get up and running		
	Giordan	with iOS and Android		
		mobile app development		
4.	Ivo Balbaert ,	Learning Dart	Addison-Wesley, USA	1^{st} Edition,
	Dzenan Rid-			2004
	janovic			
5.	Mark Clow	Learn Google Flutter Fast:	Independently pub-	1^{st} Edition,
		65 Example Apps	lished	2019
6.	Drawn Grif-	Head First Android Devel-	O'Reilly,India	2^{nd} Edition,
	fiths, David	opment ,A Brain -Friendly		2017
	Griffiths	guide		
7.	Jerome Di-	Beginning Android Pro-	Wrox, England	4^{th} Edition,
	Marzio	gramming with Android		2016
		Studio Beginning And roid		
		Programming with Android		
		Studio		

(A Constituent College of Somaiya Vidyavihar University)

Course Code	Course Title							
116U40E616	Mobile Communication and Ad hoc Networks					ks		
	TH			I	P	TU	IJ T	Total
Teaching Scheme (Hrs.)	03			_	_		_	
Credits Assigned	03		03		_		_	03
	Marks							
Examination Scheme	C	\mathbf{A}	ESE	TW	0	Р	P&O	Total
Examination Scheme	ISE	IA	ESE	1 **		Г	rau	Total
	30	20	50	_	_	_	_	100

Course prerequisites:

Basics of Analog and Digital Communication

Course Objectives:

This course aims to introduce the concept of cellular communication. The course offers various characteristic features of ad hoc wireless networks along with the understanding of the concepts such as functioning of different access and routing protocols that can be used for adhoc networks. It also discusses emerging technologies that derived from MANET, their challenges and current development.

Course Outcomes:

At the end of successful completion of the course the student will be able to

- CO 1. Understand the cellular concept and multiple access techniques.
- CO 2. Compare different types of wireless networks used in MANET.
- CO 3. Understand the current topics in MANETs and WSNs, both from an industry and research point of views.
- CO 4. Analyze how proactive routing protocols function and their implications on data transmission delay and bandwidth consumption.
- CO 5. Discuss the applications and challenges in mobile ad hoc networks.

Somaiya Vidyavihar University

K.J. Somaiya College of Engineering

Module	Unit	Details	Hrs.	CO		
No.	No.					
	Principle	es of Cellular Communication and Access techniques	12	CO1		
	1.1	Cellular Terminology, Cell structure and Cluster, fre-				
		quency reuse concept, Cluster size and system capacity,				
1	method of locating Co channel cells, frequency reuse dis-					
1		tance, and Co channel interference.				
	1.2	Multiple access techniques: CDMA, TDMA, FDMA,				
		SDMA, SSMA and hybrid multiple access techniques.				
	Wireless	Networks and Internet	10	CO2		
2	2.1	IEEE 802.11 WLAN, IEEE 802.15 WPAN, IEEE 802.16				
4		WMAN				
	2.2	Wireless ATM, Wireless internet, Mobile IP, TCP in				
		wireless domain, WAP, concept of web over wireless.				
	2.3	4G wireless standards, LTE.				
	Introduc	ction To Ad-Hoc Networks	06	CO3		
	3.1	Introduction and Applications of Ad hoc networks				
3		MANET, Mobile Internet connectivity and Personal				
J		area Networks.				
	3.2	Characteristics and Issues in Ad Hoc wireless networks.				
	Routing	Protocols	10	CO4		
	4.1	Routing, Destination sequence distance vector, Dynamic				
4		source routing, Alternative metrics, Overview ad-hoc				
-		routing protocols.				
	4.2	Design issues, Goals and classification. Proactive Vs				
		reactive routing, Unicast routing algorithms, Multicast				
		routing algorithms.				
	4.3	Hybrid routing algorithm, Energy aware routing algo-				
		rithm, Hierarchical routing, QoS aware routing.				
		ions and Recent Developments	07	CO ₅		
	5.1	Academic Environment Applications, Defence Applica-				
		tions, Healthcare Applications, Vehicular Ad Hoc Net-				
5		works, Search and Rescue.				
	5.2	Challenges: Security, Recent development in the field of				
		sensors, Wireless Ad Hoc sensor networks.				
		Total	45			

S.No.	$rac{ m Name/s}{ m Author/s}$	Title of Book	Name of Publisher with country	Edition and Year of publication
1.	C. Siva Ram Murthy and B.S.Manoj	Ad hoc Wireless Networks Architectures and protocols	Pearson Education, India	2^{nd} Edition, 2007
2.	F. Zhao, L. Guibas	Wireless Sensor Networks: An Information Processing Approach	Morgan Kaufmann, USA	1^{st} Edition, 2005
3.	Stefano Basagni, Marco Conti, Silvia Giordano and Ivan Sojmenovic	Mobile Ad-hoc Networking	Wiley , India	2^{nd} Edition, 2015
4.	Mohammad Ilyas	The Handbook of Ad-hoc Wireless Networks	CRC Press, USA	1^{st} Edition, 2002
5.	Subir Kumar Sarkar, T.G. Basavaraju, C. Putta- madappa	Ad Hoc Mobile Wireless Network	CRC Press, USA	2^{nd} Edition, 2013

Somaiya Vidyavihar University

K.J. Somaiya College of Engineering

(A Constituent College of Somaiya Vidyavihar University)

Course Code		Course Title							
116U40E617			D	rone Te	echnolo	$\mathbf{g}\mathbf{y}$			
		TH			P		TUT		
Teaching Scheme (Hrs.)	03			_	_	_		03	
Credits Assigned		03		-	_	_		03	
	Marks								
Examination Scheme	C	A	ESE	TW	O	Р	P&O	Total	
Examination Scheme	ISE	IA	ESE	1 **		Г	rau	Total	
	30	20	50	_	_	_	_	100	

Course prerequisites:

Software programming

Course Objectives:

Provide students with a foundational understanding of drone technology, including the history, types of drones, and their applications in various industries.

Course Outcomes:

At the end of successful completion of the course the student will be able to

- CO 1. Understand fundamentals of Drone Technology.
- CO 2. Describe drone hardware and sensors.
- CO 3. Develop drone software and simulation.
- CO 4. Illustrate different drone application.
- CO 5. Understand advanced drone technology.

Somaiya Vidyavihar University

K.J. Somaiya College of Engineering

Module	Unit	Details	Hrs.	CO
No.	No.			
	Introduc	ction to Drone Technology	08	CO1
	1.1	Introduction to drone, History of drone technology, ,		
1		Introduction to different applications of drones, Benefits		
		and challenges of drone technology		
	1.2	Different types of drones: Multi-rotor drones, Fixed-		
		wing drones, Hybrid drones, Single-rotor drones, Single-		
		rotor helicopters, Autonomous drones, MicrodronesM,		
		Military drones		
		Iardware	10	CO2
	2.1	Basic components of a drone: Different types of drone		
2		motors, Drone propellers, Drone batteries, Flight con-		
_		trollers, Other drone hardware components		
	2.2	Pixhawk, Drone Parts Categories, Drone Kit, Drone		
		Frame and Accessories, Flight Controller & Accessories,		
		Drone Transmitter and Receiver, FPV Cameras, GPS		
		Modules, Drone Motor, (ESC) Drone Speed Controller,		
		Drone Accessories, Drone Propellers, FPV Antennas		
		and Trans-Receivers, Drone Gimbal and Accessories	- 10	80.5
	Drone S		10	CO3
	3.1	Types of drone software, Drone operating systems,		
3		Drone flight planning software, Mission control software,		
	2.0	Drone image and video processing software		
	3.2	Flight Planning and Mission Control Software, Im-		
		age and Video Processing Software, Simulation Software, Programming Software		
	Drono A	pplications	08	CO4
	4.1	Drone photography and videography, Drone surveying	00	004
4	1.1	and mapping, Drone inspection and maintenance		
	4.2	Drone delivery, Drone agriculture, Other drone applica-		
	-· -	tions		
	Drone A	applications	09	CO5
	5.1	Autonomous drones, Drone swarms, Drone artificial in-		
5		telligence, Drone machine learning		
	.52	Drone computer vision, Other advanced drone technolo-		
		gies FPV drones, Programmable drones		
	<u> </u>	Total	45	

S.No.	Name/s of	Title of Book	Name of Publisher	Edition and	
	Author/s		with country	Year of	
				publication	
1.	Simon Rose	Agricultural Drones	Raintree Publishers,	1^{st} Edition,	
			UK	2017	
2.	Terry Kilby,	Make: Getting Started with	Maker Media, USA	1^{st} Edition,	
	Belinda Kilby	Drones		2015	
3.	Ian Cinna-	DIY Drones for the Evil	McGraw-Hill Educa-	1^{st} Edition,	
	mon, Romi	Genius: Design, Build,	tion	2016	
	Kadri, Fitz	and Customize Your Own			
	Tepper	Drones			
4.	The Editors	Make: DIY Drone and	Maker Media, USA	1^{st} Edition,	
	of Make	$Quadcopter\ Projects$		2016	
5.	Ronald Buchi	How to buy and fly a Quad-	Herstellung and	2^{nd} Edition,	
		$copter\ Drone$	Verlag:BoD-	2022	
			Norderstedt, Ger-		
			many		

(A Constituent College of Somaiya Vidyavihar University)

Course Code			Course Title							
116U40P601			$\mathbf N$	Iini Pro	oject -	II				
	TH			I)	TU	JT	Total		
Teaching Scheme (Hrs.)	01			0	2	_		03		
Credits Assigned	_			02		_		02		
	Marks									
Examination Scheme	\mathbf{C}	\mathbf{A}	ESE	TW	O	Р	P&O	Total		
Examination Scheme	ISE	IA	E SE	T 44		.	1 & 0	Total		
	_	_	_	25	_	_	25	50		

Course prerequisites:

Python, C Programming

Course Objectives:

This comprehensive course equips students with essential project management, full-stack software development, UI/UX design, database design, and software testing knowledge. It emphasizes the importance of project phases, stakeholder identification, and general management skills, allowing students to integrate frontend, backend, and database components for holistic software development.

Course Outcomes:

At the end of successful completion of the course the student will be able to

- CO 1. Identify problems based on full-stack software development.
- CO 2. Design and develop User Interfaces (UIs).
- CO 3. Develop software programs to function effectively as part of a team or in a leadership role.
- CO 4. Apply skills to solve the problems within societal and environmental frameworks, with a focus on promoting sustainable development.

Module	Unit	Details	Hrs.	CO
No.	No.			
	Fundam	entals of Project Management	01	CO1
1	1.1	Exploring the fundamentals and importance of Project		
		Management, the essential task of identifying project		
		stakeholders, the indispensable general management		
		skills required for the successful project execution.		
	Full-Sta	ck Software Development	03	CO2
2	2.1	Exploring Full-Stack Development, examine its compo-		
		nents, including the front-end, back-end, and database		
		layers, integration of different layers to achieve a com-		
		prehensive full-stack development solution.		
		Design and Implementation	05	CO3
3	3.1	Fundamentals of UI/UX Design and Development, Core		
		development principles for UI/UX designers, Utilizing		
		CSS, HTML, and JavaScript programming languages for		
		user interface design, Crafting an intuitive user experi-		
		ence through effective design.		
		and Development of Database	10	CO5
4	4.1	Understanding the basics of DBMS, Database design		
		process and its significance in software development, Im-		
		plementing robust and efficient databases for applica-		
		tions.s		
		e Testing	04	CO4
5	5.1	Basics of Software Testing, Comprehensive overview		
		of software testing, Introduction to software testing		
		tools and their applications, Ensuring software quality		
		through effective testing practices.		
		Total	15	

(A Constituent College of Somaiya Vidyavihar University)

Module	Unit	Details	Hrs.	CO
No.	No.			
	Project	Idea Submission	10	CO1
1	1.1	Title Selection and Component List, Revised Title Sub-		
		mission, Project Foundation		
	1.2	Abstract Development		
	Literatu	re review	06	CO2
2	2.1	Introduction to Project, Literature Review in software		
		domain, Introduction to IPR.		
	Project	Code & Simulation	10	CO4
	3.1	Code Development and Simulation Results, software de-		
		velopment process and simulation techniques, frontend		
3		and backend design, database integration, and the cre-		
J 3		ation of a working project video.		
	3.2	Development of flowcharts, UML diagrams, simulations,		
		PowerPoint presentations, and user manuals.		
	Final Pr	roject Report	04	CO4
4	4.1	Standard publisher paper format, Paper Submission		
-1		with Methodology, Professional Video Presentation		
	4.2	Final Report Draft Submission, Final Project Report		
		Submission		
		Total	30	

(Note: Project idea can be continuation of Mini Project 1)

S.No.	Name/s of	Title of Book	Name of Publisher	Edition and
	Author/s		with country	Year of
				publication
1.	Jack Mered-	Project Management, A	Wiley, India	7^{th} Edition,
	ith, Samuel	managerial approach		2010
	Mantel			
2.	Chris North-	The Full Stack Developer	APress, India	1^{st} Edition,
	wood			2018
3.	Elvis Canziba	Hands-On UX Design for	Packt Publishing, In-	1^{st} Edition,
		Developers	dia	2018
4.	Henry Lee	Voice User Interface	Packt Publishing, In-	1^{st} Edition,
		Projects	dia	2018

Course Code		Course Title							
116U40L601	Di	gital S	ignal &	Image	Proces	ssing La	aborato	ory	
	TH			I	P	TU	JT	Total	
Teaching Scheme (Hrs.)		_		0	12	_		02	
Credits Assigned	_			0)1	_		01	
	Marks								
Examination Scheme	C	\mathbf{A}	ESE	TW	O	Р	P&O	Total	
Examination Scheme	ISE	IA	ESE	1 **		Г	F&O	Total	
	_	_	_	25	25	_	_	50	

Term work will consist of experiments covering entire syllabus of "Digital Signal & Image Processing" (116U40C601). Students will be graded based on continuous assessment of their term work.

Practical and oral examination will be based on laboratory work and entire syllabus.

- 1. To find DFT / IDFT of given DT signal.
- 2. Program to obtain convolution & correlation of two finite length sequences
- 3. Implementation of FFT of given sequence
- 4. Implementation of FIR filter for a given sequences
- 5. Virtual Lab on study of Infinite Impulse Response (IIR) filters.
- 6. Simulation, display of an image and operations on an Image.
- 7. Transformation of an Image
- 8. Contrast Stretching of a Low Contrast Image.
- 9. Histogram and Histogram Equalization.
- 10. Image Smoothening & Sharpening Filters.
- 11. Implementation of Edge Detection Algorithms.

Course Code		Course Title							
116U40L602	Cor	nputer	Comm	unicati	on Net	works l	Laborat	ory	
	TH			I)	TU	J T	Total	
Teaching Scheme (Hrs.)		_		0	2	_		02	
Credits Assigned	_			0	1	_		01	
	Marks								
Examination Scheme	\mathbf{C}	\mathbf{A}	ESE	TW	O	Р	P&O	Total	
Examination Scheme	ISE	IA	ESE	1 **		Г	F&O	Total	
	_	_	_	25	25	_	_	50	

Term work will consist of experiments covering entire syllabus of "Computer Communication Networks" (116U40C602). Students will be graded based on continuous assessment of their term work.

Practical and oral examination will be based on laboratory work and entire syllabus.

- 1. To Study of Network Devices and connectors using Cisco packet tracer.
- 2. To implement local area Network (LAN) and study basic networking commands
- 3. To implement and study Virtual LAN using Cisco packet tracer
- 4. To make an Ethernet LAN cable for connecting networking devices
- 5. To implement a topology for a company using Cisco packet tracer.
- 6. To learn and implement IP V4 address and subnetting using cisco packet tracer.
- 7. To learn and configure static routing using Cisco packet tracer
- 8. To learn and configure dynamic routing using Cisco packet tracer.
- 9. To understand TCP/IP cell using Wireshark software
- 10. Configuration of DNS DHCP server using Packet Tracer.

Course Code		Course Title								
116U40L603	O	Operating System and Compilers Laboratory								
	TH]]	P	TU	J T	Total		
Teaching Scheme (Hrs.)		_		0	12	_		02		
Credits Assigned	_			0)1	_		01		
	Marks									
Examination Scheme	\mathbf{C}	\mathbf{A}	ESE	TW	O	Р	P&O	Total		
Examination Scheme	ISE	IA	ESE	1 1		Г	F&O	Total		
	_	_	_	25	25	_	_	50		

Term work will consist of experiments covering entire syllabus of "Operating System and Compilers" (116U40C603). Students will be graded based on continuous assessment of their term work.

Practical and oral examination will be based on laboratory work and entire syllabus.

- 1. Exploring basic Commands of DOS, UNIX and Windows Utilities
- 2. Shell Programming and System calls
- 3. Implementation of Basic Process Management Algorithms Non Preemptive (FCFS, SJF, priority)
- 4. Implementation of Basic Process management algorithms Preemptive (SRTN, RR, priority)
- 5. Implementation of Process synchronization algorithms using semaphore producer consumer problem / reader-writers problem
- 6. Implementation of dining philosopher problem using threads
- 7. Implementation of Deadlock Avoidance Policy
- 8. Implementation of Disk scheduling algorithms FCFS,SSTF,SCAN, CSCAN, LOOK
- 9. Implementation of Memory Allocation Algorithms

Course Code				Course	e Title			
116U40L611			Po	ower El	lectroni	cs		
	TH			I	TU		JT	Total
Teaching Scheme (Hrs.)		_		0	2	_		02
Credits Assigned	_			0	1	_		01
	Marks							
Examination Scheme	\mathbf{C}	A	ESE	TW	O	Р	P&O	Total
Examination Scheme	ISE	IA	ESE	1 **		Г	F&O	Total
	_	_	_	25	25	_	_	50

Term work will consist of experiments covering entire syllabus of "Power Electronics" (116U40E611). Students will be graded based on continuous assessment of their term work.

Practical and oral examination will be based on laboratory work and entire syllabus.

- 1. Characteristics of Power Electronics Device
- 2. Half and Full wave CONTROLLED rectifier Simulation with R LOAD
- 3. Half and Full wave rectifier Simulation with RL LOAD
- 4. Simulation of single phase Semiconverter
- 5. Gate triggering circuit using UJT (Proteus software)
- 6. Class C Commutation of SCR
- 7. Class D Commutation of SCR
- 8. Simulation on Single Phase Inverter with RL load
- 9. Simulation on Three Phase Inverter with RL load (120 and 180 degree conduction mode)
- 10. Simulation of Buck Converter

Course Code		Course Title							
116U40L612				Basics (of VLS	I			
	TH			I	P T		JT	Total	
Teaching Scheme (Hrs.)		_		0	2	_		02	
Credits Assigned	_			0	1	_		01	
	Marks								
Examination Scheme	\mathbf{C}	CA		TW	O	Р	P&O	Total	
Examination Scheme	ISE	IA	ESE	1 **		Г	F&O	Total	
	_	_	_	25	25	_	_	50	

Term work will consist of experiments covering entire syllabus of "Basics of VLSI" (116U40E612). Students will be graded based on continuous assessment of their term work.

Practical and oral examination will be based on laboratory work and entire syllabus.

Tentative list of Experiments:Implementation using LTSpice/esim

- 1. V-I characteristics of MOSFET with parameter variation: a) Varying W/L ratio b) Varying lambda
- 2. Comparison of four inverters
- 3. Implementation of digital logic expression
- 4. Estimation of propagation delay of CMOS inverter
- 5. Implementation of NAND and NOR gates using Static CMOS design style
- 6. Implementation of XOR using Pass Transistors and Transmission Gates
- 7. Implementation of MUX and Decoder using Pass Transistors and Transmission Gates
- 8. Implementation of Clocked SR Flip Flop using CMOS (NOR) and CMOS (NAND)
- 9. Implementation of NOR and NAND based ROM array
- 10. Implementation of 1 bit Full adder using a) Static CMOS logic b) Mirror CMOS logic c) Transmission gate

Course Code	Course Title							
116U40L613	Computer Graphics							
	TH P TUT						JT	Total
Teaching Scheme (Hrs.)	_			02		_		02
Credits Assigned	_			01		_		01
	Marks							
Examination Scheme	CA		ESE	$\mathbf{T}\mathbf{W}$	O	Р	P&O	Total
Examination Scheme	ISE	IA	ESE	1 **		Г	F&O	Total
	_	_	_	25	25	_	_	50

Term work will consist of experiments covering entire syllabus of "Computer Graphics" (116U40E613). Students will be graded based on continuous assessment of their term work.

Practical and oral examination will be based on laboratory work and entire syllabus.

- 1. a. Digital Differential Analyser (DDA) Line Drawing Algorithm b. Bresenham Line Drawing Algorithm
- 2. Draw the Following polygon/shape/curve. a. Bresenham Circle Drawing Algorithm. b. Other shapes
- 3. Write a program to demonstrate the LINE CLIPPING algorithm a. Cohensutherland-algorithm b. Mid-Point Subdivision Line Clipping Algorithm c. Liang-Barsky Line Clipping Algorithm
- 4. Write a program to perform 2D and 3D transformation a. Translation b. Scaling c. Rotation d. Shear e. Reflection
- 5. Write a program to demonstrate the Polygon CLIPPING algorithm
- 6. Write a program to implement Shadow Mapping
- 7. Write a program to implement transparency
- 8. Write a program to implement Simple Interaction with the mouse and keyboard
- 9. Write a program to draw "Bucky ball" using OpenGL library
- 10. Mini-Project using any open source not restricted to Pygame and OpenGL

Course Code	Course Title							
116U40L614	Applied Data Science							
	TH P TUT						Total	
Teaching Scheme (Hrs.)	_			02		_		02
Credits Assigned	-			01		_		01
				Ma	rks			
Examination Scheme	CA		ESE	$\mathbf{T}\mathbf{W}$	O	Р	P&O	Total
	ISE	IA	ESE	1 1		Г	F&O	Total
	_	_	_	25	25	_	_	50

Term work will consist of experiments covering entire syllabus of "Applied Data Science" (116U40E614). Students will be graded based on continuous assessment of their term work.

Practical and oral examination will be based on laboratory work and entire syllabus.

- 1. Collect real-world data from different sources and Analyze and assess data quality issues.
- 2. Calculate descriptive statistics for a given dataset.
- 3. Perform hypothesis testing on sample data.
- 4. Explore and visualize a dataset using Matplotlib and Seaborn.
- 5. Detects and handles missing values and outliers.
- 6. Perform Data Preprocessing on given dataset
- 7. Create interactive data visualizations and Dashboard using Tableau
- 8. Design a compelling visual data storytelling presentation.
- 9. Mini Project

Course Code	Course Title							
116U40L615	Mobile App Development							
	TH			I)	TU	Total	
Teaching Scheme	_			02		-	02	
(Hrs.)								
Credits Assigned	_			0	1	-	01	
	Marks							
Examination Scheme	mination Sahama CA		DCD	TW	O	Р	D 0 - O	T-4-1
Examination Scheme	ISE	IA	ESE	1 44		P	P&O	Total
	_	_	_	25	25	_	_	50

Term work will consist of experiments covering entire syllabus of "Mobile App Development" (116U40E615). Students will be graded based on continuous assessment of their term work.

Practical and oral examination will be based on laboratory work and entire syllabus.

- 1. Create a simple Flutter app that displays "Hello World."
- 2. Create a Flutter app that uses various Dart operators and functions.
- 3. Create a Flutter app that showcases different basic layouts and widgets (e.g., Column, Row, Container).
- 4. Add custom images and fonts to your Flutter app.
- 5. Set up the Android development environment, including Android Studio and the Android SDK.
- 6. Explore the Android app structure and understand the component
- 7. Publish a simple Android app to the Google Play Store.
- 8. Choose one of the following app concepts (simple game, social media, shopping, news) and outline its design considerations.

Course Code	Course Title							
116U40L616	Mobile Communication and Ad hoc Netwo					Networ	ks	
	TH			I		TU	Total	
Teaching Scheme	_			0	2	-	02	
(Hrs.)								
Credits Assigned	_			01		_		01
	Marks							
Examination Scheme	CA		DOD	TW	O	Р	P&O	T-4-1
Examination Scheme	ISE	IA	ESE	1 44		P	F&U	Total
				25	25	_	_	50

Term work will consist of experiments covering entire syllabus of "" (116U40E616). Students will be graded based on continuous assessment of their term work.

Practical and oral examination will be based on laboratory work and entire syllabus.

- 1. To demonstrate Frequency reuse concept
- 2. Estimation of received power to understand path loss in cellular communication system
- 3. Experiment based on Wi-Fi network using simulation tool
- 4. Experiment based on Bluetooth network using simulation tool
- 5. Create a mobile Ad-hoc network using a simulation Tool.
- 6. Implement an Ad-hoc On-demand Distance Vector protocol using simulation Tool.
- 7. Understand the OSPF routing using simulation tools.
- 8. Implement Energy aware routing algorithm

Course Code	Course Title							
116U40L617	Drone Technology							
	TH			I		TU	Total	
Teaching Scheme	_			02		=	02	
(Hrs.)								
Credits Assigned	_			01		_		01
				Ma	rks			
Examination Scheme	CA		ESE	TW	O	Р	P&O	Total
Examination Scheme	ISE	IA	LSE	T 44		P	P&U	Total
				25	25	_	_	50

Term work will consist of experiments covering entire syllabus of "Drone Technology" (116U40E617). Students will be graded based on continuous assessment of their term work.

Practical and oral examination will be based on laboratory work and entire syllabus.

- 1. Assemble a simple drone kit and explain its various components.
- 2. Research and present on the historical development of drones and their evolution over time.
- 3. Showcase real-world applications of drones by conducting live drone demonstrations
- 4. Study the benefits and challenges of drone technology, including safety, privacy, and regulations.
- 5. Disassemble and reassemble a drone, identifying and explaining the basic components.
- 6. Compare the performance of different types of drone motors and propellers in terms of thrust and efficiency.
- 7. Conduct battery life tests for various drone batteries and analyze their performance.
- 8. Demonstrate the working of a flight controller and its role in stabilizing a drone's flight.

- 9. Explore other drone hardware components like GPS modules, sensors
- 10. Install and configure different drone operating systems on a compatible drone platform.
- 11. Plan and execute a simulated drone mission using flight planning and mission control software.
- 12. Process drone-captured images and videos, applying filters and enhancements using drone image and video