

Rem:
$$\frac{1}{3}$$
 $\frac{1}{3}$ $\frac{1}{3}$

Scanned with CamScanner

G. Progression Series: $n^{2} \frac{k!}{\sum_{i\neq 0}^{1}} \left(\frac{1}{3^{i}}\right) =$

Page-5 $T(n) = 2T\left(\frac{n}{2}\right) + n^2$ Rem:
2
2×2 $T(k) = \frac{n}{2k} \quad n=2k$ $k=\log_2 n$ 2×2×2 .. T(n/2) T(n/2) $T(\frac{n}{2}) = 2T(\frac{n}{4}) + (\frac{n}{2})^2 = 2T(\frac{n}{4}) + \frac{n^2}{4}$ $\frac{n^2}{4}$ $T(n/4) = 2T(\frac{n}{8}) + (\frac{n}{4})^2 = 2T(\frac{n}{8}) + \frac{n^2}{16}$ $n^{2}/4$ $n^{2}/4$ $n^{2}/6$ $n^{2}/16$ $n^{2}/16$. n^{2} n^{2} $n^{2}/4$ $n^{2}/6$ $n^{2}/6$ $T(\frac{n}{8}) = 2T(\frac{n}{16}) + (\frac{n}{8})^2 = 2T(\frac{n}{16}) + \frac{n^2}{64}$ 18/00 2 × 1/2 1/2 $\rightarrow 2^{k-1} \qquad 2^{k-1} \times \left(\frac{n^2}{2^{k-1}}\right)^2$ > At ith level At K-1 level At kth level $\frac{n}{2^k} = 1$ $n = 2^k$ $k = \log_2 n$ Similarly $\frac{n^2}{2^k} = (2^k)^2 - (2^k)$ + $2^{k} * \frac{n^{2}}{(ok)^{2}} = \frac{n^{2}}{2k}$ $\frac{n^2}{2k} = \frac{(2^k)^2}{2k} = 2^k$

