

Machine Learning

Linear regression with one variable

Model representation

Supervised Learning

Given the "right answer" for each example in the data.

Regression Problem

Predict real-valued output

Training set of	Size in feet ² (x)	Price (\$) in 1000's (y)
housing prices	2104	460
(Portland, OR)	1416	232
(or	1534	315
	852	178

Notation:

```
m = Number of training examples
```

x's = "input" variable / features

y's = "output" variable / "target" variable

How do we represent *h* ?

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Linear regression with one variable. Univariate linear regression.

Machine Learning

Linear regression with one variable

Cost function

Training Set

Size in feet ²	(x) Price (\$) in 1000's (y)
2104	460
1416	232
1534	315
852	178
•••	

Hypothesis:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

 θ_i 's: Parameters

How to choose θ_i 's ?

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$\begin{aligned} & \underset{\theta_0, \, \theta_1}{minimize} & \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2 \\ & h_{\theta}(x^{(i)}) = \theta_0 + \theta_1 x^{(i)} \end{aligned}$$

Idea: Choose
$$\theta_0, \theta_1$$
 so that $h_{\theta}(x)$ is close to y for our training examples (x,y)

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$minimize \quad J(\theta_0, \theta_1)$$

$$\theta_0, \theta_1 \quad cost function$$

Machine Learning

Linear regression with one variable

Cost function intuition I

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$\theta_0, \theta_1$$

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal: minimize $J(\theta_0, \theta_1)$

<u>Simplified</u>

$$h_{\theta}(x) = \theta_1 x$$

$$(\theta_0 = 0)$$

$$\theta_1$$

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

$$\underset{\theta_1}{\text{minimize}} J(\theta_1)$$

(for fixed θ_1 , this is a function of x)

 $J(\theta_1)$

(function of the parameter θ_1)

$$h_{\theta}(x)$$
 (for fixed θ_1 , this is a function of x)
$$\begin{array}{c} J(\theta_1) \\ \\ \\ J(\theta_1) \\ \\ J(\theta_1) \\ \\ J(\theta_1) \\ \\ \\ J(\theta_1) \\ \\ \\ J(\theta_1) \\ \\ \\ J(\theta_1)$$

Andrew Ng

- The arrows represent loss.
- The blue lines represent predictions.

High loss in the left model; low loss in the right model.

Consider the following two plots:

Which of the two data sets shown in the plots has the lower loss?

Machine Learning

Linear regression with one variable

Cost function intuition II

Hypothesis:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:
$$\theta_0, \theta_1$$

Cost Function:
$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal:
$$\min_{\theta_0,\theta_1} \text{minimize } J(\theta_0,\theta_1)$$

$h_{\theta}(x)$

(for fixed θ_0 , θ_1 , this is a function of x)

 $J(\theta_0,\theta_1)$

(function of the parameters $heta_0, heta_1$)

 $J(\theta_0, \theta_1)$

(function of the parameters $heta_0, heta_1$)

 $J(\theta_0, \theta_1)$

(function of the parameters θ_0, θ_1)

 $J(\theta_0, \theta_1)$

(function of the parameters θ_0, θ_1)

 $J(\theta_0, \theta_1)$

(function of the parameters θ_0, θ_1)

Machine Learning

Linear regression with one variable

Gradient descent

Have some function $J(\theta_0, \theta_1)$

Want
$$\min_{ heta_0, heta_1} J(heta_0, heta_1)$$

Outline:

- Start with some θ_0, θ_1
- Keep changing $heta_0, heta_1$ to reduce $J(heta_0, heta_1)$ until we hopefully end up at a minimum

Gradient descent algorithm

repeat until convergence {
$$\theta_j := \theta_j - \bigcirc \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \quad \text{(for } j = 0 \text{ and } j = 1)$$
 }
$$\text{learning rate}$$

Correct: Simultaneous update

$$temp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$temp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_0 := temp0$$

$$\theta_1 := temp1$$

Incorrect:

$$\begin{array}{l} \operatorname{temp0} := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) \\ \theta_0 := \operatorname{temp0} \\ \operatorname{temp1} := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) \\ \theta_1 := \operatorname{temp1} \end{array}$$

Machine Learning

Linear regression with one variable

Gradient descent intuition

Gradient descent algorithm

```
repeat until convergence { \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \qquad \text{(simultaneously update } j = 0 \text{ and } j = 1) }
```


$$\theta_{1} := \theta_{1} - \alpha \frac{\partial}{\partial \theta_{1}} J(\theta_{1})$$

$$suppose: \frac{\partial}{\partial \theta_{1}} J(\theta_{1}) > 0$$

$$\theta_{1} := \theta_{1} - \alpha * (positive number)$$

$$\begin{aligned} \theta_1 &:= \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1) \\ &suppose \colon \ \frac{\partial}{\partial \theta_1} J(\theta_1) < 0 \end{aligned}$$

 θ_1 : = $\theta_1 - \alpha * (negative number)$

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

If α is too small, gradient descent can be slow.

If α is too large, gradient descent can overshoot the minimum. It may fail to converge, or even diverge.

Current value of θ_1

- A. Leave θ_1 unchanged
- B. Change θ_1 in a random direction
- C. Move θ_1 in the direction of the global minimum of J(θ_1)
- D. Decrease θ_1

Gradient descent can converge to a local minimum, even with the learning rate α fixed.

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

As we approach a local minimum, gradient descent will automatically take smaller steps. So, no need to decrease α over time.

Machine Learning

Linear regression with one variable

Gradient descent for linear regression

Gradient descent algorithm

repeat until convergence { $\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$ (for j = 1 and j = 0)

Linear Regression Model

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

$$\frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) = \frac{\partial}{\partial \theta_j} \frac{1}{2m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

$$= \frac{\partial}{\partial \theta_j} \frac{1}{2m} \sum_{i=1}^m \left(\theta_0 + \theta_1 x^{(i)} - y^{(i)} \right)^2$$

$$j = 0 : \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})$$
$$j = 1 : \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^{m} ((h_{\theta}(x^{(i)}) - y^{(i)}) \cdot x^{(i)})$$

Gradient descent algorithm

repeat until convergence { $\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) \quad \text{update} \\ \theta_0 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)} \quad \text{simultaneously}$

 $J(\theta_0, \theta_1)$

 $J(\theta_0, \theta_1)$

 $J(\theta_0, \theta_1)$

 $J(\theta_0, \theta_1)$

 $J(\theta_0, \theta_1)$

 $J(\theta_0, \theta_1)$

 $J(\theta_0, \theta_1)$

 $J(\theta_0, \theta_1)$

 $J(\theta_0, \theta_1)$

"Batch" Gradient Descent

"Batch": Each step of gradient descent uses all the training examples.