

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - 1963 - A

UNCLASSIFIED

ARL/AERO-TECH-MEMO-345

60 31038 AD A 1

DEPARTMENT OF DEFENCE SUPPORT

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION **AERONAUTICAL RESEARCH LABORATORIES**

MELBOURNE, VICTORIA

Aerodynamics Technical Memorandum 345

GUST RESPONSE OF A LIGHT, SINGLE-ENGINED, HIGH-WING AIRCRAFT

C.J. LUDOWYK

OTIC FILE COPY

Approved for Public Release

D

(C) CORROHWEALTH OF AUSTRALIA 1983

COPY No

83 08 013 03 UNCLASSIFIED

JANUARY, 1983

AR-002-933

DEPARTMENT OF DEFENCE SUPPORT DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION AERONAUTICAL RESEARCH LABORATORIES

Aerodynamics Technical Memorandum 345

GUST RESPONSE OF A LIGHT, SINGLE-ENGINED, HIGH-WING AIRCRAFT

by

C.J. LUDOWYK*

SUMMARY

A recently developed Fortran program for calculating rigid-aircraft gust response has been applied to obtain Longitudinal and Lateral transfer functions and output response spectra for a general aviation, high-wing aircraft.

* On attachment to Aerodynamics Division from Structures Division during the course of this work.

© COMMONWEALTH OF AUSTRALIA 1983

POSTAL ADDRESS: Director, Aeronautical Research Laboratories, p.O. Box 4331, Melbourne, Victoria, 3001, Australia.

- H-

CONTENTS

		PAGE NO
NOT	PATION	
1.	INTRODUCTION	1
2.	LONGITUDINAL PARAMETERS	1
	2.1 Trim Determination	1
	2.2 Aircraft Weight and Inertias	3
	2.3 Determination of Longitudinal Stability Derivatives	у 3
3.	LATERAL DERIVATIVES	6
4.	RESULTS	7
5.	DISCUSSION	8
6.	CONCLUSION	9
7.	ACKNOWLEDGEMENTS	9
REFI	PERENCES	
TAB	BLES	
FIG	GURES	
DIS:	TRIBUTION LIST	

Acces	sion For	7
NTIS	GRAMI	
DTIC	TAB 🗆	Ì
Unann	ounced 📋	i
Justi	fication	!
Ву		_
Distr	ibution/	
Avei	lability Codes	
	Avail and/or	
Dist	Special	i
1]	1
И		- [
[1	1 1	- 1

DOCUMENT CONTROL DATA

NOTATION

```
lift curve slope of horizontal tail
                   tail span, 3.96 m (13.0 ft)
                   drag coefficient, D/1 pv2s
 c_{_{D}}
                   \partial C_{D}/\partial \alpha, per radian
                   ∂C<sub>D</sub>/∂δ<sub>e</sub>, per radian
c_{_{D_{_{f v}}}}
                   A 9C /9A
                   lift coefficient, L/1 pv s
 \mathsf{c}^{\mathtt{r}}
                   lift curve slope \partial C_{\underline{L}}/\partial \alpha, per radian
c<sub>L</sub>
                   \partial C_{1}/\partial (\dot{\alpha} \ \dot{C}/2 \ V_{p}), per radian
^{\text{C}}_{\text{L}_{\text{q}}}
                   \partial C_L/\partial (q c/2 V_e), per radian
^{\mathsf{C}}_{\mathtt{L}_{\mathbf{v}}}
                  A 9CT \9A
                   rolling-moment coefficient, moment/1 pv Sb
 c_{\ell}
c_{\ell_{\hat{\epsilon}}}
                   effective - dihedral parameter, \partial C_{\ell}/\partial \beta, per radian
 ^{\rm c}_{\ell_{\rm p}}
                   \partial C_{\ell}/\partial (pb/2 \ V_{e}), per radian
c_{\ell_{\mathtt{r}}}
                   \partial C_{\ell}/\partial (rb/2 V_{e}), per radian
                  pitching-moment coefficient, M/1 PV s c
 c<sup>w</sup>
c^{m^{\sigma}}
                  pitch stiffness parameter, \partial C_m/\partial \alpha, per radian
c<sub>m;</sub>
                   \partial C_{m} / \partial (\dot{a} \ \dot{c}/2 \ V_{e}), per radian
                   elevator effectiveness parameter, \vartheta C_{m}/\vartheta \delta_{p} , per radian
                   \partial C_{m} / \partial (q c/2 v_{p}), per radian
                  3Cm /3Tc
c<sub>m</sub>v
                  v 9c /9v
                  yawing-moment coefficient, moment/ PDV S b
 c<sub>n</sub>
c_{n_{\acute{b}}}
                  directional-stability parameter, \partial C_n / \partial \beta, per radian
                  \partial C_n / \partial (pb/2 V_e), per radian
```

.../cont.

NOTATION (CONT.)

```
\partial C_n/\partial (rb/2 V_p), per radian
            weight coefficient, W/1 pv S
            side force coefficient, Y/2 PV S
            \partial C_{\nu}/\partial \beta, per radian
            \partial C_{V}/\partial (pb/2 V_{p}), per radian
            \partial C_{T}/\partial (rb/2 V_{e}), per radian
c
            mean aerodynamic chord, 1.50 m (4.91 ft)
CG
           centre of gravity
D
           drag force, N
           acceleration due to gravity, m/sec
           distance of C.G. from wing leading edge, expressed as a
h
            fraction of c
h'
           altitude, m (2000 ft in this study)
           moment of inertia about X body axis, 1395 kg-m
             (1025.6 slug-ft<sup>2</sup>)
           moment of inertia about Y body axis, 1480 kg-m
             (1088.1 slug-ft<sup>2</sup>)
           moment of inertia about Z body axis, 2563 kg-m2
             (1884.3 slug-ft<sup>2</sup>)
           product of inertia, 123 kg-m<sup>2</sup> (90.4 slug-ft<sup>2</sup>)
           distance from horizontal tail aerodynamic centre to the
            aircraft C.G., 4.51 m (14.8 ft)
           pitching moment, N-m
           aircraft mass, 1318.2 kg (90.06 slugs)
           yawing moment, N-m
           normal acceleration, g units
nz
           roll rate, rad/sec
P
           dynamic pressure
           lateral gust gradient, -(1/V_a) (dw_a/dy)
Pq
q
           pitch rate, rad/sec
           yaw rate, rad/sec
           wing area, 16.26 m (175 ft )
s
           horizontal tail area, 3.59 m (38.65 ft)
```

NOTATION (CONT.)

```
T
            thrust, N
            thrust coefficient, T/ PV S
T
            airspeed, m/sec
            horizontal tail volume ratio, \ell_{t} S<sub>t</sub>/Sc (0.67)
V<sub>H</sub>
            aircraft weight
Y
            side force, N
            angle of attack, radians
a
            angle of attack due to w gust, (w_g/V_e)
\alpha_{\mathbf{g}}
            angle between thrust vector and fuselage ref. line
α<sub>T</sub>
             (-3.5 \text{ deg.})
В
            angle of sideslip, rad
            angle of sideslip due to v gust, (v_q/v_p)
            elevator deflection, positive when trailing edge is down,
             deg.
            damping ratio
            roll angle, deg
            climb angle, deg
            air density, kg/m^3 (0.0022 slug/ft at 2000 ft)
            pitch angle, deg
<sup>C</sup>gust
            input gust intensity, m/sec (10 ft/sec in this study)
^{\sigma}\mathbf{v}
            standard deviation of aircraft velocity response, ft/sec
             (fps units in program)
            standard deviation of angle of attack response, deg.
\sigma_{\mathbf{a}}
\sigma_{\mathbf{q}}
            standard deviation of pitch rate response, deg/sec
            standard deviation of pitch angle response, deg
\sigma_{\theta}
\sigma_{n_z}
            standard deviation of normal acceleration response,
             fractional g
            standard deviation of aircraft sideslip response, deg
\sigma_{\rm S}
            standard deviation of aircraft roll rate response, deg/sec
\sigma_{\mathbf{p}}
            standard deviation of aircraft yaw rate response, deg/sec
            standard deviation of aircraft roll angle response, deg
            standard deviation of aircraft yaw angle response, deg
            time constant, seconds
τ
            yaw angle, deg
```

../cont.

NOTATION (CONT.)

Subscripts

- e Parameter or coefficient at trimmed condition
- g Refers to gust

A dot over a symbol signifies a derivative with respect to time

1. INTRODUCTION

The work reported here is part of a task to determine the response spectra of various aircraft due to gust turbulence. It was done for the Advanced Engineering Laboratory, Salisbury, which requires data for use in the design of inertially stabilised airborne control systems. This work has also served as an introduction to the concepts of aircraft stability and control, to augment the author's instrumentation and control background.

The aircraft configuration which is the subject of this Memo is broadly representative of high wing, general aviation monoplanes. Specifically, the aerodynamic data used in the mathematical models have been obtained from Reference 2 and Reference 3. Estimates for centre of gravity, weight and inertias have been made using information in Reference 3 and Reference 4 as a guide.

This Memo outlines the procedure used to calculate the various stability derivatives and tabulates all the input data to the GUSTR program described in Reference 1. Output frequency responses and spectra results are included and a table of calculated responses to an input gust intensity of 10 ft/sec is given.

2. LONGITUDINAL PARAMETERS

2.1 Trim Determination

The parameters for three CG positions of 15%, 25% and 35% of mean aerodynamic chord, č, were evaluated. These three positions were chosen on the following basis.

The moment reference for the model in Ref. 2 was 0.2 m from the wing leading edge, or 13.34% c. Ref. 2 also indicated that the model was neutrally stable with the CG as far aft as 40% c̄. Therefore, three CG positions of 15%, 25% and 35% c̄ were chosen for this study, together with two speed cases of 120 knots and 160 knots. This resulted in a total of six sets of trim angle of attack, α , elevator angle, δ , and thrust coefficient, T̄, together with six corresponding sets of longitudinal stability derivatives. An altitude of 2000 ft and zero climb angle have been assumed for all cases.

The trim values of α , $\delta_{\bf e}$, and T´ were obtained by first tabulating the C´, C´, C´ curves in fig. 7(a), (b), (c) of Ref. 2 for

$$0^{\circ} < \alpha < 10^{\circ}$$

-15° < $\delta_{e} < 5^{\circ}$
 $0^{\circ} < T_{1}^{\circ} < 0.3$

This file of 540 data points was used in a least squares fitting program (Fig. 1) to provide coefficients for C_L, C_D and C_m in the following (not necessarily linear) representation :-

$$C_{L}' = a_{0} + a_{1} \cdot \alpha + a_{2} \cdot \hat{\epsilon}_{e} + a_{3} \cdot T_{c}'$$
 ...(1)

$$c_{D}' = b_{0} + b_{1} \cdot a + b_{2} \cdot a^{2} + b_{3} \cdot \delta_{e} + b_{4} \cdot \delta_{e}^{2} + b_{5} \cdot a\delta_{e} + b_{6} \cdot T_{c}' \dots (2)$$

$$C'_{m} = c_{0} + c_{1} \cdot \alpha + c_{2} \cdot \alpha^{2} + c_{3} \cdot \delta_{e} + c_{4} \cdot T'_{c}$$
 ...(3)

Note that the representations of forces and moments, C_L , C_D and C_m , given in Equations (1) to (3) include both aerodynamic and thrust contributions. Consequently the trim equations are (see Fig. 2)

$$C_{L}^{\prime} - C_{W} \sin \gamma_{e} = 0 \qquad ...(4)$$

$$C_{D}' + C_{W} \cos \gamma_{e} = 0 \qquad ...(5)$$

$$C'_{m} = 0 \qquad \dots (6)$$

where $C_W = W/\frac{1}{2} \cap V^2$ S, Y_C is the steady climb angle and C_L^2 , C_D^2 and C_L^2 are given as functions of α , δ_C and T_D^2 by Equations (1) to (3) above. For given values of density, ρ , aircraft weight, W, trim speed, V_C and climb angle, Y_C , Equations (4) to (6) constitute a set of non-linear algebraic equations for trim values of α , δ_C and T_C^2 . The solution is obtained in program TRIM (Fig. 1) and the results for the six cases considered are given in Table 1.

When it is necessary to separate out the aerodynamic component of, say, C_D^c from the thrust component, this can be done by noting that Equation (2) can be rewritten (see Fig. 2)

$$c_{D}^{-T_{C}^{*}}\cos(\alpha+\alpha_{T}) = b_{0}^{*} + b_{1}^{*} + b_{2}^{*} + b_{3}^{*} + b_{3}^{*} + b_{4}^{*} + b_{6}^{*} + b_{5}^{*} + a_{6}^{*} + b_{6}^{*}$$

or, for small $(\alpha + \alpha_T)$

$$c_D = b_0 + b_1 \alpha + b_2 \alpha^2 + b_3 \delta_e + b_4 \delta_e^2 + b_5 \alpha \delta_e + (b_6 + 1) T_C$$
 ... (7

where C_D is now the aerodynamic component only. Similarly, in Equation (1) C_L can be replaced by C_L + T_C sin($\alpha + \alpha_T$) which is approximately equal to C_L (Aerodynamic) for small $(\alpha + \alpha_T)$.

The coefficients for Equations (1) to (3) obtained from the least squares fitting program are listed in Table 2. A sample check on their accuracy was made by verifying that Equations (4) to (6) were satisfied when the trim values of α , δ and T' were substituted in these best regression solutions.

2.2 Aircraft Weight and Inertias

The CG envelope in Reference 4 gives a ratio of

Airplane Weight (Most forward CG position) = 0.81
Max. Take off weight

Using the same factor on the aircraft of reference 2, with maximum take-off weight = 3600 lbf gives

W(fwd CG) = 2916 lbf.

Therefore a figure of 2900 lbf for aircraft weight was used throughout this study, being the smallest maximum allowable weight within the CG envelope considered.

The inertias I_x , I_y , I_z and I_{xz} were taken from Reference 3 and were not corrected for the different CG positions of this study. These values, together with those of the pertinent geometric characteristics used in this study, are listed in the notation.

2.3 Determination of Longitudinal Stability Derivatives

2.3.1 Static derivatives

Parameters C_{L_e} , C_{D_e} , C_{L_α} , C_{D_α} , C_{m_α} , $C_{L_{\delta_e}}$, $C_{m_{\delta_e}}$, $C_{D_{\delta_e}}$, $C_{D_{\delta_e}}$, were evaluated directly from the least squares representations of Eqns. (1), (3) and (7). E.g. From Eqn. (7)

$$c_{D_{\alpha}} = \frac{\partial c_{D}}{\partial \alpha} = b_{1} + 2b_{2} \cdot \alpha_{Trim}$$

2.3.2 The V derivatives

The aircraft has a constant speed propeller, therefore (Ref. 5)

$$C_{T_v} = -3C_{D_e}$$

$$c_{\mathbf{L}_{\mathbf{v}}} = \mathbf{M} \frac{\partial c_{\mathbf{L}}}{\partial \mathbf{M}} + c_{\mathbf{e}} v_{\mathbf{e}}^{2} \frac{\partial c_{\mathbf{L}}}{\partial p_{\mathbf{d}}} + c_{\mathbf{T}_{\mathbf{v}}} \frac{\partial c_{\mathbf{L}}}{\partial \mathbf{T}_{\mathbf{c}}^{2}}$$

 $\frac{\partial C_L}{\partial M}$ $\stackrel{>}{\sim}$ 0 below 0.6M (negligible compressibility effects)

 $\frac{\partial C_L}{\partial p_a} \approx 0$ (negligible aeroelastic effects)

and $\frac{\partial C_L}{\partial T_L^2} \approx 0$ (from the Least Squares representation of C_L).

Thus $C_{L_{qq}} = 0$.

Similarly, the first two terms disappear in the expression for C and C , leaving v

$$C_{p_{\mathbf{v}}} = C_{T_{\mathbf{v}}} \cdot C_{p_{T_{\hat{\mathbf{c}}}}}$$

$$c_{m_{\mathbf{v}}} = c_{\mathbf{v}} \cdot c_{m_{\mathbf{v}}}$$

2.3.3 The q derivatives

$$C_{L_q} = -2C_{L_q}(h - h_o) + (2a_t v_H)$$
 (Ref. 5)

where

 $h_0 = 0.75$ for subsonic flow

$$V_{H} = \frac{\ell_{t} s_{t}}{s\bar{c}} = 0.67$$

 ℓ_{+} = 14.8 ft (scaled from fig. 2, Ref. 2)

$$S_{t} = 38.65 \text{ ft}^{2} \text{ (Ref. 7)}$$

a_t = 3.72/rad (Calculated from Ref. 8, knowing the tail aspect ratio)

Therefore for Case 1, with CG at 15% \bar{c}

$$h = 0.15$$
.

Thus
$$C_{L_q} = 6.40 + 4.99$$

$$C_{L_q} = 11.39/rad.$$

Also

$$C_{m} = \overline{C}_{m} - 2C_{L} + (h - \overline{h})^{2} - 2a_{t} v_{H} \frac{\ell_{t}}{\overline{x}}$$
 (Ref. 5)

For subsonic flow,
$$C_{\underline{M}} = 0$$

$$\bar{h} = 0.5$$

Therefore fore Case 1

$$C_{m_{q}} = 0 - 1.31 - 15.04$$
 $C_{m_{q}} = -16.35/rad.$

2.3.4 The \dot{a} derivatives

Ref. 3 gives
$$C_{\text{m}} + C_{\text{m}}$$
 -18.5 at $C_{\text{L}} = 0.36$

Hence $C_{m_*} = -2.15/\text{rad}$ for Case 1.

and $C_{L_{\dot{\alpha}}} = -\frac{\bar{c}}{\ell_{t}} \cdot C_{m_{\dot{\alpha}}} = 0.713/\text{rad/sec for Case 1.}$

 ${\tt A}$ summary of the Longitudinal derivatives is given in Table 3.

3. LATERAL DERIVATIVES

was found to be 10% higher and $c_{\ell_{\beta}}$ was found to be 7.5% higher in the

wind tunnel results. A listing of the lateral derivatives used is given in Table 4.

The lateral gust response was computed for V = 120 knots at 2000 feet with CG located at 0.15 \bar{c} . Other cases can be run as required.

The method of correcting C_{n} , given at a particular C_{n}

CG location (e.g. 0.28 \tilde{c} in Ref. 3), for a different CG location, (e.g. 0.15 \tilde{c} in the lateral case computed), is as follows:-

$$C_{n_{\hat{E}}} = C_{n_{\hat{B}}} - (0.28 - 0.15).\bar{\hat{e}} \cdot C_{y_{\hat{B}}}$$

E.g. for
$$c_{n_{\hat{\beta}}(0.28\ \bar{c})} = 0.050/\text{rad}$$
 and $c_{y_{\hat{\beta}}} \approx -0.59/\text{rad}$

$$C_{n_{\beta}} = 0.060/rad.$$

4. RESULTS

The results of all longitudinal and lateral cases run are tabulated in Tables 5 and 6. The computed frequency responses and output spectra of the GUSTR program (Ref. 1) are shown in Figs. 3 to 22. The von Karman gust spectrum was used, with an α_g input to the longitudinal model and both β_g and p_g inputs to the lateral model (Ref. 1). All output variance calculations in Table 5 were based on an input gust intensity of $\sigma_g=10$ ft/sec. and the formula used was (Ref. 1) :-

$$\frac{\sigma^{2}_{\text{response}}}{\sigma^{2}_{q}} = 4.6 \text{ X (area under curve) X (scale factor)}$$

Note that the computer program uses radian measure and f.p.s. units in the output plots.

Areas under the output spectra curves were measured with a planimeter in the range

- 4
$$\leq$$
 Log $\Omega_1 \leq$ - 1

corresponding to a frequency range of

 $0.0032 \text{ Hz} \rightarrow 3.2 \text{ Hz}$ for the 120 knot cases

and 0.0043 Hz \rightarrow 4.3 Hz for the 160 knot cases.

The theoretical range of validity is at $\Omega_1 = \frac{0.2}{\bar{c}}$

i.e. at Log $\Omega_{\eta} = -1.39$.

However, for comparing the relative trends between the various cases, extending the cut-off limit to Log $\Omega_1 = -1.00$ (as done in this exercise) should not introduce significant error.

5. DISCUSSION

The results are generally as expected, especially the variation of natural frequencies and damping ratios of the different modes with speed, V, and CG location. It is worth noting that at both rearward CG locations of 0.35 \bar{c} (Cases 3 and 6), the Short Period Mode has real roots.

The output spectra most likely to be of relevance to the designer of inertially stabilized airborne—control systems are the attitude and rate spectra, viz. θ and q spectra in the longitudinal cases and ϕ , Ψ , p and r in the lateral cases. As shown in Table 5, the deviation of pitch rate response, σ , decreases strongly as the CG shifts rearwards while σ also decreases somewhat, particularly at 160 knots. There is, at the same time, only a slight increase in variance of the normal acceleration response, σ . Therefore from

the inertial platform designers standpoint, a CG location of 0.35 $\bar{\rm c}$ would be desirable. However, a more practical figure of CG at 0.30 $\bar{\rm c}$ may be a better compromise between acceptable handling qualities and inertial platform design requirements.

Of the lateral responses in Table 6, the dominant contribution of p to the roll response, σ , is due to the large value of the roll damping derivative, C_{ℓ} . For all other response, the β_q gust is dominant.

All the results presented here are for the aircraft 'stick fixed' response. Reference 4 suggests that the 'stick free' response of these aircraft would not be significantly different due to control linkage stiction and friction.

6. CONCLUSION

This Memo has outlined the steps taken to obtain the longitudinal and lateral rigid-aircraft gust response of a light single-engined high-wing aircraft configuration for a few specific cases of speed, CG location, aircraft weight and altitude. Estimates of all required static and dynamic derivatives are provided so the results for any other combination of flight conditions or CG location can be readily obtained.

7. ACKNOWLEDGEMENTS

The author wishes to thank Mr. D.A. Secomb and Mr. E.S. Moody for facilitating his attachment to Aerodynamics Division and is especially grateful to Mr. R.A. Feik under whose supervision this work was performed, for his valuable guidance and patience shown to a non-aerodynamicist.

REFERENCES

- FEIK, R.A. "A General Program for Predicting Rigid-Aircraft Gust Response". ARL Aero Note 407, January 1982.
- GREER, H. DOUGLAS et al. "Wind Tunnel Investigation of Static Longitudinal and Lateral Characteristics of a Full-Scale Mockup of a Light, Single-Engine High-Wing Airplane. NASA TN D-7149, May 1973.
- SUIT, WILLIAM T. and CANNADAY, ROBERT L. "Comparison of Stability and Control Parameters for a Light, Single-Engine, High-Winged Aircraft using Different Flight Test and Parameter Estimation Techniques". NASA-TM-80163. September 1979.
- "Measurement of the Handling Characteristics of Two Light Airplanes". Staff of the Flight Dynamics Branch, Langley Research Center. NASA Technical Paper 1636, 1980.
- ETKIN, B. "Dynamics of Atmospheric Flight". John Wiley and Sons, Inc., 1972.
- BLAKELOCK, JOHN H. "Automatic Control of Aircraft and Missiles". John Wiley and Sons, Inc., 1965.
- 7. Jane's All the World's Aircraft. McGraw-Hill.
- 8. STANBROOK, A. "The Lift-Curve Slope and Aerodynamic Centre Position of Wings at Subsonic and Supersonic Speeds". RAE TN Aero 2328, Nov. 1954.

TABLE 1 - TRIM CONDITIONS

In all cases, altitude, h = 2000 ft; climb angle, $\gamma_e = 0^{\circ}$.

Identifier	V _e (Knots)	CG Position (% c)	α(trim) (deg.)	^ĉ e(trim) (deg.)	T°C
l ————————————————————————————————————					
Case 1	120	15	1.87	0.90	0.060
Case 2	120	25	1.70	1.98	0.060
Case 3	120	35	1.56	2.96	0.060
Case 4	160	15	-0.09	2.67	0.060
Case 5	160	25	-0.11	2.83	0.060
Case 6	160	35	-0.15	3.07	0.060

TABLE 2 - BEST REGRESSION SOLUTIONS FOR C_L , C_D , C_m

$$C_{L} = 0.1738 + 0.0930 \alpha + 0.0139 \delta_{e}$$

$$(C_{D} - T_{C}') = 0.0513 + 0.0005 \alpha^{2} + 0.0010 \delta_{e} - 0.9436 T_{C}'$$

$$C_{m} = 0.0956 - 0.0354 \alpha - 0.0391 \delta_{e} + 0.0972 T_{C}'$$

$$..[CG @ 0.15 c]$$

$$C_{m} = 0.0991 - 0.0159 \alpha - 0.0010 \alpha^{2} - 0.0377 \delta_{e} + 0.0992 T_{C}'$$

$$..[CG @ 0.25 c]$$

$$C_{m} = 0.1056 - 0.0016 \alpha^{2} - 0.0363 \delta_{e} + 0.1013 T_{C}'$$

$$..[CG @ 0.35 c]$$

TABLE 3 - LONGITUDINAL STABILITY DERIVATIVES

	CASE 1, 4	CASE 2, 5	CASE 3, 6
$C_{D_e} = C_{D_{T_c}}$	0.057	0.057	0.057
C _{L₃} (/rad)	5.330	5.330	5.330
C _{Dα} (/rad)	0.118	0.107	0.098
C _m (/rad)	- 2.029	- 1.110	- 0.292
C _{Lδ} (/rad)	0.797	0.797	0.797
C _m (/rad)	- 2.239	- 2.160	- 2.080
C _D (/rad)	0.059	0.059	0.059
C _m Tć	0.097	0.099	0.101
c _{Tv}	- 0.162	- 0.162	- 0.162
C _L _v	o	0	0
c _D	- 0.009	- 0.009	- 0.009
C _m	- 0.016	- 0.016	- 0.016
C _L (/rad/sec)	11.390	10.320	9.250
C _m (/rad/sec)	-16.350	-15.710	-15.280
C _{m.} (/rad/sec)	- 2.150	- 2.790	- 3.220
C _L (/rad/sec)	0.713	0.926	1.068

 $C_{L_e} = C_{W_e} = 0.36$ for cases 1, 2, 3

= 0.20 for cases 4, 5, 6

TABLE 4 - LATERAL STABILITY DERIVATIVES

CG at 15%
$$\bar{c}$$
; W = 2900 lbf; V_e = 120 knots; h' = 2000 ft (C_{L_e} = 0.36)
 Y_e = 0°.

Note: $C_{n_{\beta}}$ is the corrected value for CG at 0.15 \bar{c} .

TABLE 5 - LONGITUDINAL RESPONSE

								!					
				>0	= 120 knots	ts				{			
						Octob	MODE	INPUT	INPUT O	= 10 ft/sec	sec		
		DHA	PHUGOID MODE	DE	SHOKI	SHORT FERTON 1022			\snr				
	-			+	1			-	5	0	ď	u"	
RUN IDENTIFIER	CG POSITION (% C)	Period (sec)	ن	Time to damp to	Period (sec)	5	Time to damp to ampl.	v (ft/sec)	(d e d)	d (deg/ sec)	(ded)	(d)	
				(sec.)					2000	3 42 2.75	2.75	0.14	
					0,0	25	0.13	1.52	20.7				
CASE 1	15	30.3	0.15		99.0	0.70	0.14	2.31	2.66	2.40	2.40 2.65	0.15	
CASE 2	25	32.5	0.17	21.1	00.0	, 1	í	5.38	2.54	66.0	2.47	0.17	
CASE 3	35	43.7	0.24	20.1	$t_1 = 0.24$								
بسيمي					2			T					
	-	+	-		= 160 knots	nots							
				>0		1	1		,	3.53	2.07	0.18	
		40 3	0.28	15.9	0.51	0.56		1.59	2.03	3,4	1.90	0.19	
CASE 4	<u></u>	: :	2		0.65	0.70	0.10	2.00	1.97	3	7 7 7	0.22	
CASE 5	25	43.5			1,=0.18	1		4.01	7.90	0.70	· · · ·	;	
CASE 6	32	28.0			1 7=0.12								
		===			7	_		1			\ 		

h' = 2000 ft ; W = 2900 lbf ; $\gamma_{\rm e}$ = 0° ; Vertical Gust input ($\alpha_{\rm q}$) in all cases.

TABLE 6 - LATERAL RESPONSE

CUST (Sec.) Time to MODE MODE $\frac{g}{g}$ \frac{g}		DUTCH	DUTCH ROLL MODE	ODE	ROLL ING	CDIDAL	I	put o	. = 10	ft/sec	
(sec) damp to t t t t (sec.) (GUST	Period		Time to		MODE		n6	st		
1.89 0.23 0.9 0.08 66.8	INPUT	(sec)		damp to \$\frac{4}{2} Ampl. (sec.)	t (sec.)	(sec.)	οβ (deg.)	o p (deg./ sec.)	deg./	⁰ (deg.)	οψ (deg.)
1.89 0.23 0.9 0.08 66.8 RESULTANT											
RESULTANT	Lateral gust R	1.89	0.23	6.0	0.08	66.8	2.80	1.74	3.25	0.58	2.59
	Gust gradient pg						0.24	0.32	1.40	9.20	0
					_					_	
					RESULTAN	<u></u>	2.81	1.77	3.54	9.22	2.59

Wt = 2900 lb; CG @ 15% \vec{c} ; V = 120 knots; h' = 2000 ft; Y = 0°.

FIG. 1 PROCEDURE USED FOR EVALUATING TRIM CONDITIONS.

For equilibrium
$$0 = L + T \sin (\tau + \tau_T) + mg \cos \frac{\tau_T}{e}$$

$$0 = D - T \cos (\alpha + \alpha_T) + mg \sin \frac{\tau_T}{e}$$

$$0 = M$$

FIG. 2 LONGITUDINAL FORCES AND MOMENT FOR STEADY SYMMETRIC FLIGHT

FIG. 3 SPEED RESPONSE TO VERTICAL GUST, w_g , FOR V = 120 KNOTS

FIG. 4 ANGLE OF ATTACK RESPONSE TO VERTICAL GUST, $w_{\mbox{\scriptsize g}}$, FOR V = 120 KNOTS

FIG. 5 PITCH RATE RESPONSE TO VERTICAL GUST, w_g , FOR V = 120 KNOTS

FIG. 6 PITCH ATTITUDE RESPONSE TO VERTICAL GUST, $w_{\mbox{\scriptsize g}}$, FOR V = 120 KNOTS

FIG. 7 NORMAL ACCELERATION RESPONSE TO VERTICAL GUST, $w_{\rm g}$, FOR V = 120 KNOTS

FIG. 8 AIRSPEED RESPONSE TO VERTICAL GUST, w_g , FOR V = 160 KNOTS

FIG. 9 ANGLE OF ATTACK RESPONSE TO VERTICAL GUST, w_g , FOR V = 160 KNOTS

FIG. 10 PITCH RATE RESPONSE TO VERTICAL GUST, w_g , FOR V = 160 KNOTS

FIG. 11 PITCH ATTITUDE RESPONSE TO VERTICAL GUST, w_g , FOR V = 160 KNOTS

FIG. 12 NORMAL ACCELERATION RESPONSE TO VERTICAL GUST, w_g , FOR V = 160 KNOTS

FIG. 13 SIDESLIP ANGLE RESPONSE TO LATERAL GUST, v_g , FOR V = 120 KNOTS

FIG. 14 ROLL RATE RESPONSE TO LATERAL GUST, v_g , FOR V = 120 KNOTS

FIG. 15 YAW RATE RESPONSE TO LATERAL GUST, v_g , FOR V = 120 KNOTS

FIG. 16 ROLL ATTITUDE RESPONSE TO LATERAL GUST, v_g , FOR v = 120 KNOTS

FIG. 17 YAW ATTITUDE PESPONSE TO LATERAL GUST, v_g , FOR V = 120 KNOTS

FIG. 18 SIDESLIP ANGLE RESPONSE TO LATERAL GUST GRADIENT, p_g , FOR V = 120 KNOTS

FIG. 19 ROLL RATE RESPONSE TO LATERAL GUST GRADIENT, p_g , FOR V = 120 KNOTS

FIG. 20 YAW RATE RESPONSE TO LATERAL GUST GRADIENT, p_g , FOR V = 120 KNOTS

FIG. 21 ROLL ATTITUDE RESPONSE TO LATERAL GUST GRADIENT, p_g , FOR V = 120 KNOTS

FIG. 22 YAW ATTITUDE RESPONSE TO LATERAL GUST GRADIENT, p_g , FOR V = 120 KNOTS

DISTRIBUTION

AUSTRALIA

Department of Defence

Central Office

Chief Defence Scientist

Deputy Chief Defence Scientist

Superintendent, Science and Technology Programmes) (1 copy)

Controller, Projects and Analytical Studies

Defence Science Representative (U.K.), (Doc Data sheet only)

Counsellor, Defence Science (U.S.A.) (Doc Data sheet only)

Defence Central Library

Document Exchange Centre, D.I.S.B. (17 copies)

Joint Intelligence Organisation

Librarian H Block, Victoria Barracks, Melbourne

Director General - Army Development (NSC) (4 copies)

Defence Industry & Materiel Policy, FAS

Navy Office

Navy Scientific Adviser

Army Office

Army Scientific Adviser Engineering Development Establishment, Library Royal Military College Library

Air Force Office

Air Force Scientific Adviser
Aircraft Research & Development Unit
Scientific Flight Group
Library
Technical Division Library
RAAF Academy, Point Cook

Central Studies Establishment

Information Centre

.../cont.

DISTRIBUTION (CONT.)

Department of Defence Support

Aeronautical Research Laboratories

Director

Library

Superintendent - Aerodynamics

Divisional File - Aerodynamics

Author: C.J. Ludowyk

D.A. Secomb D.C. Collis

R.A. Feik

C.A. Martin

G. Long

P.A. Farrell

C.K. Rider

D.J. Shorman

E.S. Moody

Materials Research Laboratories

Director/Library

Defence Research Centre

Library

Government Aircraft Factories

Manager

Library

Department of Science & Technology

Bureau of Meteorology, Library

Department of Aviation

Library

Flying Operations and Airworthiness Division

DISTRIBUTION (CONT.)

Statutory & State Authorities and Industry

Trans-Australia Airlines, Library Qantas Airways Limited Ansett Airlines of Australia, Library Commonwealth Aircraft Corporation, Library Hawker de Havilland Aust. Pty Ltd, Bankstown, Library

Universities and Colleges

Melbourne Engineering Library

Monash Hargrave Library

Sydney Engineering Library

N.S.W. Physical Science Library

Professor R.A.A. Bryant, Mechanical Engineering

R.M.I.T. Library

Dr H. Kowalski, Mech. & Production Engineering

SPARES (5 copies)

TOTAL (72 copies)

Department of Defence Support

DOCUMENT CONTROL DATA

1.a. AR No	1. b. Establishment No.		2 Docum	ent Date	3. Task No	
AR-002-933	ARL-AERO-TECH-	-MEMO-345	Januar	у, 1983	DEF 89/101	
4. Title			5. Security	,	6. No Pages	
CUST PECDONS	E OE & LICUM CIN	CID DUCT	a, docume		9	
GUST RESPONSE OF A LIGHT, SINGLE-ENGINED, HIGH-WING AIRCRAFT		NED, UNCLAS	SIFIED c. abstract	7 No Refs		
			U	υ	8	
8, Author(s)			9. Downgr	ading Instruc	tions	
C.J. LUDOWYK			-			
10. Corporate Author	and Address		11 Autho	rity (as appro	oriate)	
Aeronautical Research Laboratories.			a.Sporsor	a.Sportor b.Stourity c.Downgrading d.Approvel		
P.O. Box 4331, MELBOURNE, VIC. 3001			-			
			İ			
			Ì			
						
12. Secondary Distribu	rtion (of this document)					
Approved for	Public Release.					
inpproved for	tubiic Release.					
	tside stated limitations shoul oz, Campbell Park, CANBER			fence Informe	ition Services Branch,	
	may be ANNOUNCED in ca			milebre to		
No limitation	ıs.					
	er purposes (ie casuel annou	ncement) may	be ferrest unrest	ricted (author)	or: \$23coc	
13. b. Citation for oth				146		
13. b. Citation for oth 14. Descriptors				119	. COSATI Group	
14 Descriptors Gust response		Fransfer	functions	-	COSATI Group	
14 Descriptors Gust response Flight dynami		Pransfer	functions	-		
14. Descriptors Gust response Flight dynami Stability	.cs	Transfer	functions	-		
14 Descriptors Gust response Flight dynami	.cs	Transfer	functions	-		

16. Abstract

A recently developed Fortran program for calculating rigidaircraft gust response has been applied to obtain Longitudinal and Lateral transfer functions and output response spectra for a general aviation, high-wing aircraft. This page is to be used to record information which is required by the Establishment for its own use but which will not be added to the DISTIS data base unless specifically requested.

16 Abstract (Contd)		
		•
17. Imprint		
Aeronautical Research Laborator	ies, Melbourne.	
		İ
18. Document Series and Number	19, Cost Code	20. Type of Report and Period Covered
	•	
Aerodynamics Technical	52 2107	
Memorandum 345		
343	9	
21. Computer Programs Used		
COMP AND AND AND AND AND AND AND AND AND AND		
GSTLON.CES: GUSTB.CES: GUSTP.CE	S: DETPOL.FOR:	POLSUB.FOR - all Fortran.
		•
		i
		5
		j
		ĺ
20 English and Ella Galla)		
22. Establishment File Ref(s)		i

END

DATE FILMED

9.83