高等计算机体系结构实验

学号	S211000804	姓名	骆一鑫	专业年级班级	计科 21 级 2 班
学号	S211000820	姓名	金洁茜	专业年级班级	计科 21 级 1 班
实验日期	2021. 12. 19	实验项目		程序优价	化实验

1. 实验内容

1.1. 优化矩阵转置。

如何在软件编译过程中发挥 cache 的性能:

总的来说,就是减少 miss 的数量,增加有效的数据访问的数量。

可以从以下几种来解决

(1) cache 对齐

数据跨越两个 cache line,就意味着两次 load 或者两次 store。如果数据结构是 cache line 对齐的,就有可能减少一次读写。数据结构的首地址 cache line 对齐,意味着可能有内存浪费 (特别是 数组这样连续分配的数据结构),所以需要在空间和时间两方面权衡。

(2) 把相关代码放在一起

把相关代码放在一起有两个涵义,一是相关的源文件要放在一起;二是相关的函数在 object 文件 里面,也应该是相邻的。这样,在可执行文件被加载到内存里面的时候,函数的位置也是相邻的。 相邻的函数,冲突的几率比较小。而且相关的函数放在一起,也符合模块化编程的要求: 那就是 高内聚,低耦合。

(3) 分支预测

代码在内存里面是顺序排列的。对于分支程序来说,如果分支语句之后的代码有更大的执行几率, 那么就可以减少跳转,一般 CPU 都有指令预取功能,这样可以提高指令预取命中的 几率。分支预测 用的就是 likely/unlikely 这样的宏,一般需要编译器的支持,这样做是静态的分支预测。现在也有 很多 CPU 支持在 CPU 内部保存执行过的分支指令的结果(分支指令的

cache),所以静态的分支预测 就没有太多的意义。如果分支是有意义的,那么说明任何分支都会执行到,所以在特定情况下,静态 分支预测的结果并没有多好,而且 likely/unlikely 对代码有很大的侵害(影响可读性),所以一般不 推荐使用这个方法。

(4) 数据预取

指令预取是 CPU 自动完成的,但是数据预取就是一个有技术含量的工作。数据预取的依据 是预取的数据 马上会用到,这个应该符合空间局部性,但是如何知道预取的数据会被用到, 这个 要看上下文的关系。一般来说,数据预取在循环里面用的比较多,因为循环是最符合空 间局部性的代码。

但是数据预取的代码本身对程序是有侵害的(影响美观和可读性),而且优化效果不一定 很明显(命中的概率)。数据预取可以填充流水线,避免访问内存的等待,还是有一定的好处 的。

(5) 提前计算

有些变量,需要计算一次,多次使用的时候。最好是提前计算一下,保存结果,以后再引用,避免每次都 重新计算一次。函数多了,有时就会忽略这个函数都做了些什么,写程序的人可以不了解,但是优化的时候 不能不了解。能使用常数的地方,尽量使用常数,加减乘除都会消耗 CPU 的指令,不可不查。

想要优化 cache,还是需要熟悉 cache 和机器运行你的代码时是怎么做的,同时还需要多多练习。多学多想多做。

2. 实验步骤

2.1. Part A

实现一个根据指令模拟缓存读取的程序(从逻辑熟悉)

2.1.1. 实现-h 选项的实现

```
lyx@ubuntu:~/jsjxtsy/partA/cachelab-handout$ ./csim -h -v -s 4 -E 1 -b 4 -t trac
es/yi.trace
Usage: ./csim-ref [-hv] -s <num> -E <num> -b <num> -t <file>
Options:
                   Print this help message.
   -h
                   Optional verbose flag.
Number of set index bits.
Number of lines per set.
Number of block offset bits.
   -s <num>
   -E <num>
   -b <num>
   -t <file> Trace file.
Examples:
linux> ./csim-ref -s 4 -E 1 -b 4 -t traces/yi.trace
linux> ./csim-ref -v -s 8 -E 2 -b 4 -t traces/yi.trace
lyx@ubuntu:~/jsjxtsy/partA/cachelab-handout$ ./csim-ref -h -v -s 4 -E 1 -b 4 -t
traces/yi.trace
Usage: ./csim-ref [-hv] -s <num> -E <num> -b <num> -t <file>
Options:
                    Print this help message.
                   Optional verbose flag.
   -v optional verbose riag.
-s <num> Number of set index bits.
-E <num> Number of lines per set.
-b <num> Number of block offset bits.
-t <file> Trace file.
   -s <num>
Examples:
  linux> ./csim-ref -s 4 -E 1 -b 4 -t traces/yi.trace
linux> ./csim-ref -v -s 8 -E 2 -b 4 -t traces/yi.trace
lyx@ubuntu:~/jsjxtsy/partA/cachelab-handout$
```

2.1.2. 创建逻辑 cache (初始化)

定义(因为我们不真实储存数据,同时约定不会跨越块,所以 b 信息其实无用),设计一个标记位(组相同,看标记位,组和标记位的组合可以使储存离散,故实现小地址映射大地址),因为使用 LRU,还需要记录使用时间,建立一个时间戳属性,越小代表越近使用(但是理论上无 0,因为最近一次就是上一次,没有上 0次的说法,故 0 可当做有效无效位的标志)。

实现,就是动态申请二维数组。

```
//初始化cache[S][E]
92 void initCache()
93 {
94
      cache=(cacheLine **)malloc(sizeof(cacheLine*)*(cacheInfo.S));
95
      for(int i=0; i<cacheInfo.S; i++)</pre>
96
97
           *(cache+i) = (cacheLine*)malloc(sizeof(cacheLine)*cacheInfo.E);
98
      for(int i=0; i<cacheInfo.S; i++)</pre>
99
90
          for(int j=0; j<cacheInfo.E; j++)</pre>
91
92
93
                                                      //标志位 全1
               cache[i][j].tag = 0xffffffff;
94
                                                      //默认为0 0<=>无效
               cache[i][j].timestamp = 0;
95
          }
      }
96
97 }
```

2.1.3. 读取数据

定义文件指针,然后试图访问路径文件。

```
FILE * file=fopen(cacheInfo.t,"r");  //创建指向文件的指针 对文件进行操作
if(file=NULL)  //打开失败
{
  printf("打开文件失败\n请检查路径\n");
  return 1;  //最好不要常规的返回o 表示这次是错误结束程序
}
else {
  printf("打开成功\n");
}
```

测试:

```
lyx@ubuntu:~/jsjxtsy/partA/cachelab-handout$ ./csim -s 4 -E 1 -b 4 -t traces/yi.trace
打开成功
hits:0 misses:0 evictions:0
lyx@ubuntu:~/isixtsy/partA/cachelab-handout$
```

使用 fscanf 函数读取规律文件内容,尝试输出。

测试:

```
lyx@ubuntu:~/jsjxtsy/partA/cachelab-handout$ ./csim -s 4 -E 1 -b 4 -t traces/yi.trace
打开成功
我读取的: L 10,1
我读取的: M 20,1
我读取的: L 22,1
我读取的: L 31,1
我读取的: L 110,1
我读取的: L 210,1
我读取的: L 210,1
我读取的: M 12,1
hits:0 misses:0 evictions:0
```

2.1.4. 根据读取的数据,模拟 cache 的操作

使用读取的参数,解析(L,S访问一次 cache, M访问两次)

```
while (fscanf(file," %c %lx,%d", &opt, &address, &block) > 0)
    //printf("我读取的: %c %lx,%d\n",opt,address,block);
    switch(opt)
        case 'I':
                             //不做操作
           break;
        case 'L':
            find(address);
           break:
        case 'M':
           find(address);
        case 'S':
            find(address);
           break;
    time();
fclose(file);
```

模拟访问 cache

解析组索引和标记位信息。

通过组索引找到的组,某行(块)标记位与访问标记位相同(Hit)。

未直接 hit,那么已经 miss,考虑是否有 eviction。如果该组有无效的行(块)(时间戳为 0),则直接使用即可,不然就需要替换。

没有无效的行(块), miss+eviction。

每次操作,有效行(块)时间戳都加1。

测试:

```
lyx@ubuntu:~/jsjxtsy/partA/cachelab-handout$ ./csim -v -s 4 -E 1 -b 4 -t traces/yi.trace
打开成功
L 10,1 miss
M 20,1 miss hit
L 22,1 hit
S 18,1 hit
L 110,1 miss eviction
L 210,1 miss eviction
M 12,1 miss eviction hit
hits:4 misses:5 evictions:3
```

2.1.5. 加入-v 参数

操作和地址:

```
char opt:
                                 //操作类型 L S M
                                 //地址
unsigned long address;
                                 //访问字节数
int block;
while (fscanf(file," %c %lx,%d", &opt, &address, &block) > 0)
    //printf("我读取的· %c %lx %d\n" opt address block):
   if(cacheInfo.v==1)printf(" %c %lx,%d", opt,address,block); //-v 操作
   switch(opt)
   {
       case 'I':
                            //不做操作
           break;
       case 'L':
           find(address);
           break;
       case 'M':
           find(address);
       case 'S':
           find(address);
           break;
   }
   time();
                             //每次使用,时间戳整体加1
   if(cacheInfo.v==1)printf("\n");
                                                   //-v 操作
fclose(file);
```

hit:

miss:

miss+eviction:

测试:

```
lyx@ubuntu:~/jsjxtsy/partA/cachelab-handout$ ./test-csim
                         Your simulator
                                             Reference simulator
Points (s,E,b)
                   Hits
                         Misses Evicts
                                             Hits Misses Evicts
     3 (1,1,1)
3 (4,2,4)
                                                                    traces/yi2.trace
                      9
                              8
                                       6
                                                9
                                                        8
                                                                 6
                                                                2 traces/yi.trace
1 traces/dave.trace
                      4
                                                4
                              5
                                       2
                                                        5
     3 (2,1,4)
                      2
                              3
                                       1
                                                2
                                                        3
     3 (2,1,3)
                    167
                              71
                                      67
                                              167
                                                       71
                                                                67 traces/trans.trace
     3(2,2,3)
                    201
                                      29
                                                       37
                                                                29 traces/trans.trace
                              37
                                              201
     3 (2,4,3)
                    212
                              26
                                      10
                                              212
                                                        26
                                                                10 traces/trans.trace
     3 (5,1,5)
                    231
                                       0
                                              231
                                                                    traces/trans.trace
                                                                 0
                                                             21743 traces/long.trace
     6 (5,1,5)
                265189
                                   21743 265189
                          21775
                                                    21775
TEST_CSIM_RESULTS=27
```

2.2. Part B

分析几个固定大小的矩阵并简单优化(从操作熟悉)

2.2.1. 参数设置

设置 s=5、E=1、b=5

故可以得出,缓存有 32 (2⁵)组,每组一行(块),每块 32 (2⁵)字节。有观察到,需要转置的矩阵存储的是 int 型数据,故每行(块)可储存 8 个数据。

2.2.2. 32×32 矩阵

那么我们先得到组信息,就可以模拟出缓存的过程。

然后写了一个矩阵每个位置对应第几组的小代码(每组只有一行,后文不再强调)寻找规律。

```
#define N 32
#define M 32
int a[N][M];
int main(){
   int i=0,j=0,k=0,1=0;
   while(!(i==N-1&&j==M-1))
        //cout<<setw(4)<<i<<setw(4)<<j<<setw(4)<<k<<endl;
        a[i][j]=l;
        j++;
        if(j==M)
            j=0:
            i++;
        if(k==8){
            k=0:
            1++;
            if(1==32)1=0;
    //cout<<setw(4)<<i<<setw(4)<<feetw(4)<<k<<endl;
    a[i][j]=1;
    for(int i=0;i<N;i++){
        for(int j=0;j<M;j++){</pre>
            cout<<setw(4)<<i<<setw(4)<<a[i][j]<<setw(4)<<a[j][i]<<endl;</pre>
```

下图参数信息是: i,j,A(i,j)位置对应的组,B(j,i)位置对应的值(为了数字敏感,未把数字对应含义的注释信息放在输出里)。

0	0	0	О
0	1	0	4
0	2	0	8
0	3	0	12
0	4	Ô	16
Õ	5	ŏ	20
0	6	n	24
0	7	0	29
0	0	1	20
0	0		1 4
0	9		4
0	10	1	8
0	11	1	12
0	12	1	16
0	13	1	20
0	14	1	24
0	15	1	28
0	16	2	0
0	17	2	4
0	18	2	8
0	19	2	12
Ô	20	2	16
0	21	2	20
0	22	2	24
0	23	2	28
0	24	2	20
0	25	3	1 4
0	20	3	4
0	20	3	8
0	27	3	12
0	28	3	16
0	29	3	20
000000000000000000000000000000000000000	0 1 2 3 4 5 6 7 8 9 10 11 2 3 14 15 16 17 8 9 20 22 24 25 27 28 29 31	00000011111112222222333333333333	0 4 8 12 16 22 16 24 28 0 4 8 12 16 22 24 28 0 4 8 12 16 20 24 28 16 20 24 26 26 26 26 26 26 26 26 26 26 26 26 26
0	31	3	28

	0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20 1 22 23 24 25 27 28 29 30 31	0000001111112222222333333333333	1 5 9 13 17 25 9 13 17 25 9 13 17 25 9 13 17 25 9 13 17 25 9 13 17 25 9 13 17 25 9 13 17 25 9 17 25 17 17 25 17 2
8 8 8 8	9 10 11	1 1 1	5 9 13
8 8 8	12 13 14 15	1 1 1	17 21 25 29
8 8 8 g	16 17 18	2 2 2 2	1 5 9
8 8 8 8	20 21 22	2 2 2	17 21 25
8 8 8 8	23 24 25 26	2 3 3 3	29 1 5 9
8 8 8 8	27 28 29 30	3 3 3 3	13 17 21 25

可以看到,对于逐行置换的置换策略,对于 A 数组是 cache 友好的,读到缓存的数都利用了一遍才丢出缓存只有刚进入缓存时 miss(1/8),但是对 B 数组就不是这样了,每次读一组,用其中一个数,然后就被替换,一直 miss(100%)。故这样大概是 32*32/8+32*32=1152 次 miss。

```
Function 1 (2 total)
Step 1: Validating and generating memory traces
Step 2: Evaluating performance (s=5, E=1, b=5)
func 1 (Simple row-wise scan transpose): hits:870, misses:1183, evictions:1151
```

和预估的差不多,然后开始优化吧。

通过刚刚的分析,我们可以知道,只要每次操作数是 8 的整倍数 (8,16,32) (一个组一起操作),那么对 A 缓存就是最友好状态 (当然,可能为了整体最友好,会舍弃 A 的部分甚至全部友好型,需要做权衡,当然这里不需要)。那么 B 呢?

画出下图(A,B都是32×32,都是下图形状),然后分析。

(横的是 A, 竖的是 B, 但他们图一样, 为了方便就在一张图上分析)

	,,,				-	Alexander of the second	J			-	18	_	1.4.1	1.4	U	
	0	0	0	0	0	0	0	0	1	_1_	1	_1_	1	1	-1	_1
	4	4	4	4	4	4	4	4	5	5	5	5	5	5	5	5
	8	8	8	8	8	8	8	8	9	9	9	9	9	9	9	9
	12	12	12	12	12	12	12	12	13	13	13	13	13	13	13	13
	16	16	16	16	16	10	16	16	17	17	17	17	17	17	17	17
	20	20	20	20	26	20	20	20	21	21	21	21	21	21	21	21
	24	24	24	24	24	24	24	24	25	25	25	25	25	25	25	25
	28	28	29	28	28	28	28	28	29	29	29	29	29	29	29	29
	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
)	4	4	4	4	4	4	4	4	5	5	5	5	5	5	5	5
	8	8	8	8	8	8	8	8	9	9	9	9	9	9	9	9
2	12	12	12	12	12	12	12	12	13	13	13	13	13	13	13	13
3	16	16	16	16	16	16	16	16	17	17	17	17	17	17	17	17
1	20	20	20	20	20	20	20	20	21	21	21	21	21	21	21	21
5	24	24	24	24	24	24	24	24	25	25	25	25	25	25	25	25
5	28	28	28	28	28	28	28	28	29	29	29	29	29	29	29	29
7	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
3	4	4	4	4	4	4	4	4	5	5	5	5	5	5	5	5
)	8	8	8	8	8	8	8	8	9	9	9	9	9	9	9	9
)	12	12	12	12	12	12	12	12	13	13	13	13	13	13	13	13
	16	16	16	16	16	16	16	16	17	17	17	17	17	17	17	17
2	20	20	20	20	20	20	20	20	21	21	21	21	21	21	21	21
3	24	24	24	24	24	24	24	24	25	25	25	25	25	25	25	25
1	28	28	28	28	28	28	28	28	29	29	29	29	29	29	29	29

稍微细心点能够发现,对于 B 而言,他想要缓存友好,那么要求 A 分块读取,而不能按行读取, 且此时也使 A 有良好的缓存友好性(虽然空间友好性被破坏,代码可读性变差)。

32*32/8+32*32/8=256。

```
Function 0 (2 total)
Step 1: Validating and generating memory traces
Step 2: Evaluating performance (s=5, E=1, b=5)
func 0 (Transpose submission): hits:1710, misses:343, evictions:311
```

和预估的不一样(此时我满脑袋问号)。

仔细分析,终于找到了原因:对角线上的数据,A和B都是同样的组,读A时,A进入,然后写 B驱赶 A,读A又驱赶 B······相互驱赶造成冲突不命中于是 miss 增加。

非对角线只有刚读(写)是 miss,故 1/8,占 16 份中的 12 份故非对角线:

(32*32* (12/16) /8)*2=192

对角线是 A 每行第一次读一次 miss,然后(转置位于对角线那个数据时)写 B 会驱逐一次 A,故再次读取会 miss(每块的最后一个例外,不需要再次读取)。

A: (7*2+1) *4=60

对角线的块中, B分四种情况(以 0.4.8..28 为例)(以块为单位):

①块的首行(B中)(对应0组):应该是读入A后写B此时第一次miss(针对B),然后,A会驱逐0组中的B。再后面的A的第二行第一个去转置B的首行时,B再次miss。首行2次miss。

②块的第 2^7 行,一开始是 B 占领缓存(B miss)(A 第一行转置到 B 时),然后的 2^7 行转置 B 的 2^7 列时,驱逐 B,然后 A 转置到对角线时,需要写 B,B miss,然后继续用 A 转置 B,直到 A 的这一行结束。但是 A 的下一行对角线之前的转置是对应 B 的上面行,所以最后还是 B 驱逐 A,B miss。 2^6 行 3 次 miss。

③B 的尾行,与②相同,唯一的区别是最后写了B,不会被A拿走(A读完了),同时也不会因为下面行的转置导致(下面还有行+又是对角线=>不是块末尾,后面还有元素=>这里还会被A驱逐)B的再一次miss。尾行2次miss。

B: (2+3*6+2) *4=88

下图是第一块的缓存模拟。

192+60+88=340

接近 343。

```
Function 0 (2 total)
Step 1: Validating and generating memory traces
Step 2: Evaluating performance (s=5, E=1, b=5)
func 0 (Transpose submission): hits:1710, misses:343, evictions:311
```

处理好对角线位置

```
if(N==32){
     //32×32 换成8×8
     int ii,jj,i,j;
     int t1,t2,t3,t4,t5,t6,t7,t8;
     for(ii=0;ii<32;ii+=8){</pre>
                                                //行8为界
         for(jj=0;jj<32;jj+=8){</pre>
                                                //列8为界
                                                               //非对角线
              if(ii!=jj){
                                                     //在小块里操作
                   for(i=ii;i<ii+8;i++){</pre>
                        for(j=jj;j<jj+8;j++){
    B[j][i]=A[i][j];</pre>
                   }
              }
                                                            //对角线 特殊处理
              else
                   for(int i=ii;i<ii+8;i++){</pre>
                                                            //用变量保存,避免了同时访问A,B数组,可以减少因相互驱逐造成的miss
                        //用变量报错A数组
                        t1=A[i][jj] ;t2=A[i][jj+1];t3=A[i][jj+2];t4=A[i][jj+3];
t5=A[i][jj+4];t6=A[i][jj+5];t7=A[i][jj+6];t8=A[i][jj+7];
                        //将变量赋值给B数组
                        B[jj][i]=t1 ;B[jj+1][i]=t2;B[jj+2][i]=t3;B[jj+3][i]=t4;
B[jj+4][i]=t5;B[jj+5][i]=t6;B[jj+6][i]=t7;B[jj+7][i]=t8;
             }
         }
    3
```

现在,非对角线还是 192 个,对角线上, A 每行 miss 一次, B 除了第一行,其余都 miss 两次,一次是 A 的第一行赋值给变量后,写进 B 的第一列, B miss,然后就是 A 每次都要驱逐 B (因为要赋值给变量,然后变量写进 B), B 驱逐 A 一次, B miss。所以除首行 B miss2 次,首行只有一次 B 驱逐 A (A 第一行造成)。故 8+2*7+1=23

```
192+23*4=284。
```

```
Lyx@ubuntu:~/jsjxtsy/partA/cachelab-handout$ ./test-trans -N 32 -M 32

Function 0 (2 total)

Step 1: Validating and generating memory traces

Step 2: Evaluating performance (s=5, E=1, b=5)

Func 0 (Transpose submission): hits:1766, misses:287, evictions:255

Function 1 (2 total)

Step 1: Validating and generating memory traces

Step 2: Evaluating performance (s=5, E=1, b=5)

Func 1 (Simple row-wise scan transpose): hits:870, misses:1183, evictions:1151

Summary for official submission (func 0): correctness=1 misses=287

TEST_TRANS_RESULTS=1:287
```

$2.2.3.64 \times 64$:

先拉出一个组信息(没想到粘上来这么小):

可以看到,现在8×8分块已经不再像32×32里那么适用了,因为第5行就应经开始冲突了。

64	×	6/		ul .	MI S				8×8	2	
0	0	0	0	0	0	0	0	1	1	1	
8	8	8	8	8	8	8	8	9	9	9	
16	16	16	16	16	16	16	16	17	17	17	1
24	24	24	24	24	24	24	24	25	25	25	2
0	0	0	0	0	0	0	0	1	1	1	
8	8	8	8	8	8	8	8	9	9	9	- 3
16	16	16	16	16	16	16	16	17	17	17	1
24	24	24	24	24	24	24	24	25	25	25	2
U	0	U	U	U	0	U	U	1	1	1	
8	8	8	8	8	8	8	8	9	9	9	1
16	16	16	16	16	16	16	16	17	17	17	1
24	24	24	24	24	24	24	24	25	25	25	2
0	0	0	0	0	0	0	0	1	1	1	
8	8	8	8	8	8	8	8	9	9	9	
16	16	16	16	16	16	16	16	17	17	17	1
24	24	24	24	24	24	24	24	25	25	25	2

那么思考 4×8 和 4×4 分块。

程序优化实验

64	×	64													
0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
8	8	8	8	8	8	8	8	9	9	9	9	9	9	9	9
16	16	16	16	16	16	16	16	17	17	17	17	17	17	17	17
24	24	24	24	24	24	24	24	25	25	25	25	25	25	25	25
0	0	0	0	0	0	0	0	1	1	1	-1	1	1	1	1
8	8	8	8	8	8	8	8	9	9	9	9	9	9	9	9
16	16	16	16	16	16	16	16	17	17	17	17	17	17	17	17
24	24	Δ	24	24	24	24	24	25	25	25	25	25	25	25	25
0	4	0	0	0	0	0	0	1	1	1	1	1	1	1	1
8	8	8	8	8	8	8	8	9	9	9	9	9	9	9	9
16	16	16	16	16	16	16	16	17	17	17	17	17	17	17	17
24	24	24	24	24	24	24	24	25	25	25	25	25	25	25	25

可以看到,冲突没那么多,但是,缓存有8个数据量,每次就使用了4个,每次刚使用还会有miss,所以 cache 友好还是不太好。

 $(4\times4\ A\times8\ \pm0)$,且 4×4 A,B 的利用看起来都是 4个数据量,而事实上,读完 A 的前 4 个,又会马上读 A 的后 4 个,只要不被 B 驱逐,A 的利用量其实就是 8; 4×8 A 表 8 个,B 表 1 个,B 一直疯狂 miss,故只研究 4×4 即可)

C4	V	CA													
64	X	64													
0	0	0	0	0	0	0	0	1_	_1_	1	1	1	1_	1	1
8	8	8	8	8	8	8	8	9	9	9	9	9	9	9	9
16	16	16	16	16	16	16	16	17	17	17	17	17	17	17	17
24	24	24	24	24	24	24	24	25	25	25	25	25	25	25	25
0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
8	8	8	8	3	8	8	8	9	9	9	9	9	9	9	9
16	16	16	10	16	16	16	16	17	17	17	17	17	17	17	17
24	24	21	24	24	24	24	24	25	25	25	25	25	25	25	25
Û	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
8	8	8	8	8	8	8	8	9	9	9	9	9	9	9	9
16	16	16	16	16	16	16	16	17	17	17	17	17	17	17	17
24	24	24	24	24	24	24	24	25	25	25	25	25	25	25	25
0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
8	8	8	8	8	8	8	8	9	9	9	9	9	9	9	9
16	16	16	16	16	16	16	16	17	17	17	17	17	17	17	17
24	24	24	24	24	24	24	24	25	25	25	25	25	25	25	25

64	×	64													
0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
8	8	8	8	8	8	8	8	9	9	9	9	9	9	9	9
16	16	16	16	16	16	16	16	17	17	17	17	17	17	17	17
24	24	24	24	24	24	24	24	25	25	25	25	25	25	25	25
0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
8	8	8	8	8	8	8	8	9	9	9	9	9	9	9	9
16	16	16	16	16	16	16	16	17	17	17	17	17	17	17	17
24	24	14	24	24	24	24	24	25	25	25	25	25	25	25	25
0	4	0	0	0	0	0	0	1	1	1	1	1	1	1	1
8	8	8	8	8	8	8	8	9	9	9	9	9	9	9	9
16	16	16	16	16	16	16	16	17	17	17	17	17	17	17	17
24	24	24	24	24	24	24	24	25	25	25	25	25	25	25	25

非对角线:

B: 只有刚读时 miss, 1/4 的 miss。

A: 看起来是1/4, 其实是1/8。

对角线: 同上文分析 8×8, 就不文字分析了, 画出模拟图。

故总的 miss:(64*64/4+64*64/8)*(56/64) +15*4*8=1824

```
lyx@ubuntu:~/jsjxtsy/partA/cachelab-handout$ ./test-trans -N 64 -M 64

Function 0 (2 total)

Step 1: Validating and generating memory traces

Step 2: Evaluating performance (s=5, E=1, b=5)

func 0 (Transpose submission): hits:6306 misses:1891, evictions:1859
```

与计算结果相差不大(8×8分成4×4肯定不能计算出4×4的,然后扩大4倍,肯定互相有影响,不过不影响大概计算)

另,对角线部分也可像 32×32 时那样优化,但是因为非对角线都超过 1300 了(1344),所以暂时没必要在这个基础上优化。

仔细分析,64×64的两个矩阵,单单第一次的 miss 都有 64*64*2/8=1024次了,非常接近 1300 了。而 4×4 对缓存的利用还是不够高,所以结果离 1300 还差的远,然后又尝试了一些其他方法,都达不到要求(而且差得远,觉得这个真的难),然后就上网看了看别的大神怎么做的。然后发现了一种,让我惊叹的做法——把 B 当一个"缓存"!

```
int i,j,ii,jj;
int t1,t2,t3,t4,t5,t6,t7,t8;
                               //为了减少A, B冲突不命中
for(ii=0;ii<64;ii+=8){
                               //因为cache的行(块)是8,所以为了充分利用cache,8×8
   for(jj=0;jj<64;jj+=8){</pre>
                              //下面的操作 针对的是每个8×8
       //按A的行 , B的列
      for(i=ii,j=jj;i<ii+4;i++){ //A 的上半部分 与B的上半部分 (4×8)
          //先储存A的值,减少冲突不命中
          t1=A[i][j];
          t2=A[i][j+1];
          t3=A[i][j+2];
          t4=A[i][j+3];
          t5=A[i][j+4];
          t6=A[i][j+5];
          t7=A[i][j+6];
          t8=A[i][j+7];
          //B左上角,此时的值直接转置
          B[j][i]=t1;
          B[j+1][i]=t2;
          B[j+2][i]=t3;
          B[j+3][i]=t4;
          //B的右上角,此值不是最终转置的值,只是暂时存放(B成了缓存容器)
          B[j][i+4]=t5;
          B[j+1][i+4]=t6;
          B[j+2][i+4]=t7;
          B[j+3][i+4]=t8;
```

这个步骤的过程

按这个过程把上一部分 A 读完,并完成转置(此时 B 的左上已经转置完成,右上只是充当储存容器)。

```
//按B的行,A的列
for(j=jj+4,i=ii;j<jj+8;j++){ //读A的下半部分(2个4×4),处理B的3个(转置未完成的)4×4
   //变量储存A的左下 ,减少冲突不命中
   t1=A[i+4][j-4];
   t2=A[i+5][j-4];
   t3=A[i+6][j-4];
   t4=A[i+7][j-4];
   //读取一开始储存在B右上的信息
   t5=B[j-4][i+4];
t6=B[j-4][i+5];
   t7=B[j-4][i+6];
t8=B[j-4][i+7];
   //B的右上重新赋值,这才是正确的转置信息
   B[j-4][i+4]=t1;
   B[j-4][i+5]=t2;
   B[j-4][i+6]=t3;
   B[j-4][i+7]=t4;
   //B的左下
              对应A的右上(一开始放在B右上)
   B[j][i]=t5;
   B[j][i+1]=t6;
   B[j][i+2]=t7;
B[j][i+3]=t8;
   //B的右下
   B[j][i+4]=A[i+4][j];
   B[j][i+5]=A[i+5][j];
B[j][i+6]=A[i+6][j];
   B[j][i+7]=A[i+7][j];
```

这个步骤主要是以下部分:

0	0	0	0	0	0	0	0
8	8	8	8	8	8	8	8
16	16	16	16	16	16	16	16
24	24	24	24	24	24	24	24
0	0	0	0	0	0	0	0
8	8	8	8	8	8	8	8
16	16	16	16	16	16	16	16
24	24	24	24	24	24	24	24

								n		
			F					B		•
0	0	0	0	0	0	0	0	0 0 0	0 0 0	-
8	8	8	8	8	8	8	8	8 8 8 8 8	8 8 8	₩.
16	16	16	16	16	16	16	16	10 16 16 16		-
24	24	24	24	24	24	24	24	24 24 24 24 24		
0	0	_0_	0	0	0	0	0	0 0 0 0 0	0 0 0	
8	8	8	8	8	8	8	8	8 8 8 8 8	8 8 8	-
16	16	16	16	16	16	16	16	16 16 16 16 16		-
24	24	24	24	24	24	24	24	24 24 24 24 24	24 24 24	
				A					В	
0	0	0	0	A 0	0	0	0	0 0 0 0	B 0 0 0	0
0 8	0 8	0 8			0 8	0 8	0 8			0 8
	-		0	0			8	0 0 0 0	0 0 0	
8	8	8	0	0 8	8	8	8	0 0 0 0 8 8 8 8	0 0 0	8
8 16	8	8	0 8 16	0 8 16	8	8	8	0 0 0 0 8 8 8 8 16 16 16 16 16	0 0 0 8 8 8 16 16 16	8
8 16 24	8 16 24	8 16 24	0 8 16 24	0 8 16 24	8 16 24	8 16 24	8 16 24	0 0 0 0 8 8 8 8 16 16 16 16 24 24 24 24 24	0 0 0 8 8 8 16 16 16 24 24 24	8 16 24
8 16 24 0	8 16 24 0	8 16 24 0	0 8 16 24 0	0 8 16 24	8 16 24 0	8 16 24 0	8 16 24 0 8	0 0 0 0 8 8 8 8 16 16 16 16 24 24 24 24 0 0 0 0 0	0 0 0 8 8 8 16 16 16 24 24 24 0 0 0	8 16 24 0

分析:

64×64,问题主要是冲突不命中和 cache 利用率的一个矛盾,这个算法,较为完美的解决了这个矛盾,读 A 时就读 A ,能不冲突操作的,直接操作,不能的,先把 A 的信息储存在已在缓存的 B (换成 B 的其他两块都不行,会增加加载进缓存的 miss)充分利用缓存,同时保证不需要再读 A 的这行,减少冲突不命中。

这样的话,非对角线只有冷不命中(真的厉害),对角线有 34 个 miss(分析和上文类似,只给出我的模拟图)

那么, 最终结果为: 8*(64-8)*2+34*8=1168。

```
lyx@ubuntu:~/jsjxtsy/partA/cachelab-handout$ ./test-trans -N 64 -M 64

Function 0 (2 total)

Step 1: Validating and generating memory traces

Step 2: Evaluating performance (s=5, E=1, b=5)

func 0 (Transpose submission): hits:9074 misses:1171, evictions:1139
```

与计算较为统一。

$2.2.4.61 \times 67:$

```
Function 17 (33 total)
Step 1: Validating and generating memory traces
Step 2: Evaluating performance (s=5, E=1, b=5)
func 17 (Transpose submission17): hits:6229 misses:1950, e ictions:1918
Function 18 (33 total)
Step 1: Validating and generating memory traces
Step 2: Evaluating performance (s=5, E=1, b=5)
func 18 (Transpose submission18): hits:6218, misses:1961, e ictions:1929
Function 19 (33 total)
Step 1: Validating and generating memory traces
Step 2: Evaluating performance (s=5, E=1, b=5)
func 19 (Transpose submission19): hits:6200
                                                        misses:1979, e ictions:1947
Function 20 (33 total)
Step 1: Validating and generating memory traces
Step 2: Evaluating performance (s=5, E=1, b=5)
func 20 (Transpose submission20): hits:6177, misses:2002, e ictions:1970
Function 21 (33 total)
Step 1: Validating and generating memory traces
Step 2: Evaluating performance (s=5, E=1, b=5)
func 21 (Transpose submission21): hits:6222, misses:1957, e ictions:1925
Function 22 (33 total)
Step 1: Validating and generating memory traces
Step 2: Evaluating performance (s=5, E=1, b=5)
func 22 (Transpose submission22): hits:6220, misses:1959, edictions:1927
Function 23 (33 total)
Step 1: Validating and generating memory traces
Step 2: Evaluating performance (s=5, E=1, b
func 23 (Transpose submission23): hits:6251
                                                         nisses:1928.
                                                                            ictions:1896
Function 24 (33 total)
Step 1: Validating and generating memory traces
Step 2: Evaluating performance (s=5, E=1, b=5)
func 24 (Transpose submission24): hits:6164, misses:2015, edictions:1983
Function 25 (33 total)
Step 1: Validating and generating memory traces
Step 2: Evaluating performance (s=5, E=1, b=5)
func 25 (Transpose submission25): hits:6072 misses:2107, elictions:2075
```

下图是块大小和 miss 次数:

								20
1	2	3	4	5	6	7	8	
4423	3115	2648	2425	2296	2224	2152	2118	
9	10	11	12	13	14	15	16	
2092	2076	2089	2057	2048	1996	2021	1992	3.00
17	18	19	20	21	22	23	24	20
1950	1961	1979	2002	1957	1959	1928	2015	8) 8)
25	26	27	28	29	30	31	32	85-
2107	2202	2298	2400	2495	2595	2591	2950	20

所以选取块大小 23 即可。

然后再尝试优化一下对角线(冲突不命中),但是因为对不齐,对角线不一定有用。

61	×	67							
0	0	0	0	0	0	0	0	1	1
8	8	8	8	8	9	9	9	9	9
16	16	17	17	17	17	17	17	17	17
25	25	25	25	25	25	25	26	26	26

但就能看到的,对角线还是有,可尝试一下。

```
lyx@ubuntu:~/jsjxtsy/partA/cachelab-handout$ ./test-trans -N 67 -M 61

Function 0 (4 total)

Step 1: Validating and generating memory traces

Step 2: Evaluating performance (s=5, E=1, h=5)

func 0 (Transpose submission): hits:6258 misses:1921, evictions:1889
```

可以看到,还是减少了几个。

2.3. Part C

优化矩阵转置

1. 首先这个程序局部性不太好,要么读的 src 缓存不友好,要么写的 dst 缓存不友好,优先考虑写(即让 dst 缓存友好)。

```
Speedup
                6.5
                        13.0
                                                 8.4
                                7.7
                                         5.7
                                                         7.9
Rotate: Version = rotate1: Current working version:
                64
                        128
                                         512
                                                 1024
Dim
                                256
                                                         Mean
Your CPEs
                2.1
                                 3.0
                                         4.4
                                                 7.0
                        2.3
Baseline CPEs
                14.7
                        40.1
                                 46.4
                                         65.9
                                                 94.5
Speedup
                7.0
                        17.7
                                 15.5
                                         14.9
                                                 13.6
                                                         13.1
```

效果还行,程序 CPE 平均提高 13.1 倍。

2. 尝试分成 4*4 的小块, 提高空间局部性。

```
Member 1: 骆一鑫
Student ID 1: 201726010123
Rotate: Version = naive_rotate: Naive baseline implementation:
Dim
                                 256
                64
                         128
                                         512
                                                  1024
                                                          Mean
                2.1
                                 5.8
                                         11.2
                                                  10.8
Your CPEs
                         3.0
Baseline CPEs
                14.7
                         40.1
                                 46.4
                                         65.9
                                                  94.5
                7.0
                                                  8.8
Speedup
                         13.4
                                 8.0
                                         5.9
                                                          8.3
Rotate: Version = rotate4: Current working version:
                64
                         128
                                 256
                                         512
                                                  1024
                                                          Mean
Your CPEs
                2.1
                         2.2
                                 2.7
                                         2.9
                                                  6.1
Baseline CPEs
                                         65.9
                                                  94.5
                14.7
                         40.1
                                 46.4
Speedup
                         18.2
                                 17.0
                                         22.4
                                                  15.4
                7.0
                                                          15.0
```

效果一般,程序 CPE 平均提高 15 倍。

3. 采用 32*32 分块, 4*4 路循环展开。

```
void rotate5(int dim, pixel *src, pixel *dst)
{
    register int i, j, ii, jj;
    for(ii=0; ii<dim; ii+=32)</pre>
         for(jj=0; jj<dim; jj+=32)</pre>
         {
             for(i=ii; i<ii+32; i+=4) {
                  for(j=jj; j<jj+32; j+=4){</pre>
                       dst[RIDX(dim-1-j, i, dim)] = src[RIDX(i,j, dim)];
                       dst[RIDX(dim-2-j, i, dim)] = src[RIDX(i,j+1, dim)];
                       dst[RIDX(dim-3-j, i, dim)] = src[RIDX(i,j+2, dim)];
dst[RIDX(dim-4-j, i, dim)] = src[RIDX(i,j+3, dim)];
                       dst[RIDX(dim-1-j, i+1, dim)] = src[RIDX(i+1,j, dim)];
                       dst[RIDX(dim-2-j, i+1, dim)] = src[RIDX(i+1,j+1, dim)];
                       dst[RIDX(dim-3-j, i+1, dim)] = src[RIDX(i+1,j+2, dim)];
                       dst[RIDX(dim-4-j, i+1, dim)] = src[RIDX(i+1,j+3, dim)];
                       dst[RIDX(dim-1-j, i+2, dim)] = src[RIDX(i+2,j, dim)];
                       dst[RIDX(dim-2-j, i+2, dim)] = src[RIDX(i+2,j+1, dim)];
                       dst[RIDX(dim-3-j, i+2, dim)] = src[RIDX(i+2,j+2, dim)];
dst[RIDX(dim-4-j, i+2, dim)] = src[RIDX(i+2,j+3, dim)];
                       dst[RIDX(dim-1-j, i+3, dim)] = src[RIDX(i+3,j, dim)];
                       dst[RIDX(dim-2-j, i+3, dim)] = src[RIDX(i+3,j+1, dim)];
                       dst[RIDX(dim-3-j, i+3, dim)] = src[RIDX(i+3,j+2, dim)];
                       dst[RIDX(dim-4-j, i+3, dim)] = src[RIDX(i+3,j+3, dim)];
             }
        }
    }
```

测试效果如下:

```
Student ID 1: 201726010123
Rotate: Version = naive_rotate: Naive baseline implementation:
Dim
                 64
                         128
                                  256
                                           512
                                                   1024
                                                            Mean
Your CPEs
                 2.3
                         3.1
                                  5.9
                                           11.7
                                                   11.7
Baseline CPEs
                         40.1
                                  46.4
                                           65.9
                                                   94.5
                 14.7
                         12.9
                                  7.8
                                                   8.1
Speedup
                 6.4
                                           5.7
                                                            7.8
Rotate: Version = rotate5: Current working version:
Dim
                 64
                         128
                                  256
                                           512
                                                   1024
                                                            Mean
Your CPEs
                 2.7
                         2.6
                                  2.9
                                           3.3
                                                   6.4
                                  46.4
                                                   94.5
Baseline CPEs
                 14.7
                         40.1
                                           65.9
                         15.6
                                  15.8
Speedup
                 5.5
                                           20.2
                                                   14.7
                                                            13.2
```

效果还是不错的,平均提高 13 倍。但是没想到还没有上一个 4*4 的效果好

4. 利用循环分块、循环展开以及消除不必要的存储器引用,这里采用 32*1 分块,32 路循环展开。

```
char rotate6_descr[] = "rotate6: Current working version"
void rotate6(int dim, pixel *src, pixel *dst)
{
    int i, j;
    dst += (dim-1)*dim;
    for (i = 0; i < dim; i+=32){
        for (j = 0; j < dim; j++){
            *dst=*src;
            src+=dim;
            dst+=1;

            *dst=*src;
            src+=dim;
            dst+=1;
</pre>
```

```
*dst=*src;
src+=dim;
dst+=1;
*dst=*src;
src+=dim;
```

```
*dst=*src;
src+=dim;
dst+=1;

*dst=*src;
src+=dim;
dst+=1;

*dst=*src;
src++;
src -= (dim<<5)-dim;
dst-=31+dim;
}
dst+=dim*dim;
dst+=32;
src += (dim<<5)-dim;
}
}</pre>
```


先将 src 第一块中(32 行 dim 列)的第一列(32 行)转为 dst 第一块(dim 行 32 列)中的最后一行(32 列),

再将 src 第一块中(32 行 dim 列)的第二列(32 行)转为 dst 第一块(dim 行 32 列)中的倒数第二行(32 列),

.....

再将 src 第二块中(32 行 dim 列)的第一列(32 行)转为 dst 第二块(dim 行 32 列)中的最后一行(32 列),

•••••

```
Member 1: 骆一鑫
Student ID 1: 201726010123
Rotate: Version = naive_rotate: Naive baseline implementation:
Dim
                64
                         128
                                  256
                                          512
                                                   1024
                                                           Mean
Your CPEs
                 2.3
                                  6.1
                                          11.4
                                                   11.7
                         3.2
Baseline CPEs
                 14.7
                                  46.4
                                          65.9
                                                   94.5
                         40.1
Speedup
                 6.4
                         12.7
                                  7.7
                                          5.8
                                                   8.1
                                                           7.8
Rotate: Version = rotate6: Current working version:
Dim
                 64
                         128
                                  256
                                          512
                                                   1024
                                                           Mean
Your CPEs
                         2.0
                                  2.1
                                          2.0
                                                   4.5
                 2.0
Baseline CPEs
                 14.7
                         40.1
                                  46.4
                                          65.9
                                                   94.5
Speedup
                 7.4
                         20.4
                                  22.6
                                          32.8
                                                   21.2
                                                            18.8
```

效果很理想,大约提高18倍。