Exercício 1

Em cada um dos exercícios abaixo verifique se a função f é contínua no ponto a indicado:

1.
$$a = 2 e f(x) = \begin{cases} \frac{x^2 + x - 6}{x - 2} & \text{se } x < 2\\ 5 & \text{se } x = 2\\ \text{sen}(x^2 - 4) & \text{se } x > 2 \end{cases}$$
2. $a = 3 e f(x) = \begin{cases} \frac{|x^2 - 4x + 3|}{x - 3} & \text{se } x \neq 3\\ 1 & \text{se } x = 3 \end{cases}$

2.
$$a = 3 \text{ e } f(x) = \begin{cases} \frac{|x^2 - 4x + 3|}{x - 3} & \text{se } x \neq 3\\ 1 & \text{se } x = 3 \end{cases}$$

Exercício 2

Determine os valores das constantes a e b para que as funções abaixo sejam contínuas em $\mathbb R$

1.
$$f(x) = \begin{cases} \frac{x^2 - 1}{x + 1} & \text{se } x < -1\\ ax + b & \text{se } -1 \le x \le 0\\ \frac{\sin(3x)}{x} & \text{se } x > 0 \end{cases}$$

2.
$$f(x) = \begin{cases} \frac{|x+2|}{x+2} & \text{se } x < -2 \text{ ou } x > 0\\ ax^2 + b & \text{se } -2 \leqslant x \leqslant 0 \end{cases}$$

Exercício 3

Para cada função g definida nos itens abaixo, diga se existe uma função $f: \mathbb{R} \to \mathbb{R}$, contínua em \mathbb{R} tal que f(x)=g(x) para todo x no domínio de g. Caso seja possível, dê a expressão da função f

1.
$$g(x) = \begin{cases} \frac{\sin(3x-3)}{x-1} & \text{se } x < 1\\ \frac{x^2+x-2}{x-1}, & \text{se } x > 1 \end{cases}$$

2.
$$g(x) = \frac{|x-3|}{x-3}$$

Exercício 4

Sejam f, g e h funções com domínio \mathbb{R} , representadas pelos gráficos abaixo.

Verifique se as funções $(f \cdot g)$ e $(h \circ g)$ são contínuas em x = 0.

Exercício 5

Seja $f: \mathbb{R} \to \mathbb{R}$, tal que $x^2 \cos^2(x) \le f(x) \le x \sin(x)$, $\forall x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Verifique se f é contínua em x = 0.

Exercício 6

Considere a função f definida por $f(x) = x^3 - 4x^2 + 5$. Mostre que f(x) = 10 tem pelo menos uma solução no intervalo (4,5).

Exercício 7

Seja f uma função contínua, de domínio [0,5] e contradomínio [3,4]. Seja g a função de domínio [0,5], definida por g(x) = f(x) - x. Prove que a função g tem, pelo menos, um zero.

Exercício 8

Para cada função abaixo determine um intervalo de amplitude 1, no qual está localizado pelo menos um zero dessa função.

1.
$$f(x) = x^3 + x - 1$$

$$2. \ f(x) = 1 + x \cos\left(\frac{\pi x}{2}\right)$$

Exercício 9

Mostre que os gráficos de y=1 e $y=x^2\tan(x)$ têm interseção em pelo menos um ponto do intervalo $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$.

Exercício 10

Use o Teorema do Valor Intermediário para mostrar que existe uma solução da equação dada no intervalo especificado.

1.
$$x^2 = \sqrt{x+1}$$
, (1, 2)

2.
$$\ln x = e^{-x}$$
, (1, 2)

Solução do Exercício 1

Para verificar a continuidade de f no ponto a indicado devemos verificar se $\lim_{x\to a} f(x) = f(a)$.

- 1. Não, pois $\lim_{x\to 2^+} \text{sen}(x^2 4) = \text{sen}(0) = 0 \neq 5 = f(2)$.
- 2. Não, pois

Como
$$x \to 3^-$$
 então $x < 3$ e assim $(x - 3)(x - 1) < 0$.
Portanto $|(x - 3)(x - 1)| = -(x - 3)(x - 1)$

$$\lim_{x \to 3^{-}} \frac{|x^2 - 4x + 3|}{x - 3} = \lim_{x \to 3^{-}} \frac{|(x - 3)(x - 1)|}{x - 3} \stackrel{\downarrow}{=} \lim_{x \to 3^{-}} -\frac{(x - 3)(x - 1)}{x - 3}$$
$$= \lim_{x \to 3^{-}} -(x - 1) = -2 \neq 1 = f(3)$$

2

Solução do Exercício 2

1. Precisamos descobrir a e b para que

$$\lim_{x \to -1} f(x) = f(-1) \quad \text{e} \quad \lim_{x \to 0} f(x) = f(0).$$

Como

$$\lim_{x \to -1^{-}} f(x) = \lim_{x \to -1^{-}} \frac{x^{2} - 1}{x + 1} = \lim_{x \to -1^{-}} \frac{(x + 1)(x - 1)}{x + 1} = \lim_{x \to -1^{-}} x - 1 = -2,$$

precisamos ter $-2 = f(-1) = a \cdot (-1) + b = b - a$.

Por outro lado, como

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{\sin(3x)}{x} = \lim_{x \to 0^+} 3 \cdot \frac{\sin(3x)}{3x} = 3,$$

precisamos ter $3 = f(0) = a \cdot 0 + b$, logo b = 3. Como já sabemos que b - a = -2, temos 3 - a = -2, logo a = 5.

2. Queremos

$$\lim_{x \to -2} f(x) = f(-2) \quad \text{e} \quad \lim_{x \to 0} f(x) = f(0).$$

Como

$$\lim_{x \to -2^{-}} f(x) = \lim_{x \to -2^{-}} \frac{|x+2|}{x+2} = \lim_{x \to -2^{-}} \frac{-(x+2)}{x+2} = -1,$$

$$(x+2 < 0)$$

precisamos ter $-1 = f(-2) = a \cdot (-2)^2 + b = 4a + b$.

Por outro lado, como

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{|x+2|}{x+2} = \lim_{x \to -2^-} \frac{x+2}{x+2} = 1,$$

$$\boxed{x+2 > 0}$$

precisamos ter $1 = f(0) = a \cdot 0^2 + b = b$. Logo, b = 1.

Como já tínhamos 4a+b=-1, temos 4a+1=-1, logo 4a=-2 e então $a=-\frac{1}{2}$.

3. Queremos

$$\lim_{x \to 2} f(x) = f(2)$$
 e $\lim_{x \to 4} f(x) = f(4)$.

Como

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} \frac{\operatorname{sen}(b(x-2))}{|x-2|} = \lim_{x \to -2^{-}} \frac{\operatorname{sen}(b(x-2))}{-(x-2)} = \lim_{x \to -2^{-}} b \cdot \frac{\operatorname{sen}(b(x-2))}{-b(x-2)} = -b,$$

$$(x-2 < 0)$$

precisamos ter -b = f(2) = 2a, logo b = -2a.

Por outro lado, como

$$\lim_{x \to 4^+} f(x) = \lim_{x \to 4^+} \frac{x^2 - 9x + 20}{x - 4} = \lim_{x \to 4^+} \frac{(x - 5)(x - 4)}{x - 4} = \lim_{x \to 4^+} x - 5 = -1$$

3

precisamos ter -1 = f(4) = 4a. Logo, $a = -\frac{1}{4}$.

Como já tínhamos b = -2a, temos $b = -2 \cdot \left(-\frac{1}{4}\right)$, logo $b = \frac{1}{2}$.

Solução do Exercício 3

1. Observe que g é contínua em $\mathbb{R} - \{1\}$. Temos ainda que

$$\lim_{x \to 1^{-}} g(x) = \lim_{x \to 1^{-}} \frac{\sin(3x - 3)}{x - 1} = \lim_{x \to 1^{-}} \frac{\sin(3(x - 1))}{x - 1} = \lim_{x \to 1^{-}} 3 \cdot \underbrace{\frac{\sin(3(x - 1))}{3(x - 1)}}^{1} = 3.$$

$$\lim_{x \to 1^+} g(x) = \lim_{x \to 1^+} \frac{x^2 + x - 2}{x - 1} = \lim_{x \to 1^+} \frac{(x + 2)(x - 1)}{x - 1} = \lim_{x \to 1^+} (x + 2) = 3.$$

Assim, $\lim_{x\to 1} g(x) = 3$. Definindo

$$f(x) = \begin{cases} \frac{\sin(3x-3)}{x-1} & \text{se } x < 1\\ 3, & \text{se } x = 1\\ \frac{x^2+x-2}{x-1}, & \text{se } x > 1 \end{cases}$$

temos f contínua em \mathbb{R} . A continuidade em x=1 vem de

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} g(x) = 3 = f(1).$$

2. Observe que g é contínua em $\mathbb{R} - \{3\}$. Temos ainda que

$$\lim_{x \to 3^{-}} g(x) = \lim_{x \to 3^{-}} \frac{|x-3|}{x-3} = \lim_{x \to 3^{-}} \frac{-(x-3)}{x-3} = -1,$$

$$\lim_{x \to 3^+} g(x) = \lim_{x \to 3^+} \frac{|x-3|}{x-3} = \lim_{x \to 3^+} \frac{x-3}{x-3} = 1,$$

portanto, não podemos definir um valor para f(3) de forma a termos $\lim_{x\to 3} f(x) = f(3)$, pois $\lim_{x\to 3} f(x) = \lim_{x\to 3} g(x)$, que não existe.

Solução do Exercício 4

Pelos gráficos podemos verificar que $\lim_{x\to 0^+} f(x)=2$, $\lim_{x\to 0^-} f(x)=1$, $\lim_{x\to 0^+} g(x)=1$ e $\lim_{x\to 0^-} g(x)=2$. Então

$$\lim_{x\to 0^+}(fg)(x)=\left(\lim_{x\to 0^+}f(x)\right)\left(\lim_{x\to 0^+}g(x)\right)=2\quad \text{e}\quad \lim_{x\to 0^-}(fg)(x)=\left(\lim_{x\to 0^-}f(x)\right)\left(\lim_{x\to 0^-}g(x)\right)=2.$$

Além disso, $(fg)(0) = 2 \cdot 1 = 2$. Logo, fg é contínua em x = 0.

Para verificar se $h \circ g$ é contínua em 0, precisamos observar que quando x tende para 0^- então g(x) tende para 2^- (pela esquerda) e quando x tende para 0^+ então g(x) tende para 1^- (pela esquerda). Logo

$$\lim_{x\to 0^-}(h\circ g)(x)=\lim_{y\to 2^-}h(y)=1\quad \text{e}\quad \lim_{x\to 0^+}(h\circ g)(x)=\lim_{y\to 1^-}h(y)=1.$$

$$(x\to 0^-\implies y=g(x)\to 2^-)$$

$$(x\to 0^+\implies y=g(x)\to 1^-)$$

Além disso $(h \circ g)(0) = h(1) = 1$. Portanto $h \circ g$ é contínua em 0.

Solução do Exercício 5

Temos que $\lim_{x\to 0} x^2 \cos(x) = 0$ e $\lim_{x\to 0} x \sin(x) = 0$, logo, pelo Teorema do Confronto, obtemos $\lim_{x\to 0} f(x) = 0$. Além disso f(0) = 0, pois se substituirmos x por 0 nas desigualdades $x^2 \cos^2(x) \le f(x) \le 1$

4

 $x \operatorname{sen}(x)$, obtemos $0 \le f(x) \le 0$. Portanto f é contínua em x = 0.

Solução do Exercício 6

Temos que f é contínua em \mathbb{R} Como f(4) = 5 e f(5) = 30, então pelo TVI, existe $x \in (4,5)$ tal que f(x) = 10.

Solução do Exercício 7

A função g(x) = f(x) - x é contínua em [0, 5]. Como $g(0) = f(0) - 0 = f(0) \in [3, 4]$ e $g(5) = f(5) - 5 \in [-2, -1]$, então g(0) > 0 e g(5) < 0. Assim, pelo TVI, existe $x \in [0, 5]$ tal que g(x) = 0.

Solução do Exercício 8

- 1. A função f é contínua, pois é um polinômio. Como f(0) = -1 < 0 e f(1) = 1 > 0, pelo TVI, existe pelo menos um zero de f no intervalo (0,1).
- 2. A função f é contínua, por ser a soma de uma constante com uma função trigonométrica. Como f(1) = 1 > 0 e f(2) = -1 < 0, pelo TVI, existe pelo menos um zero de f no intervalo (1, 2).

Solução do Exercício 9

Considere a função $f(x) = x^2 \tan(x)$. Temos que a função f é contínua em $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$,

$$\lim_{x \to \left(-\frac{\pi}{2}\right)^+} f(x) = -\infty \quad \text{e} \quad \lim_{x \to \left(\frac{\pi}{2}\right)^-} f(x) = +\infty.$$

Logo pelo TVI, a função f admite um zero no intervalo $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, ou seja, exsite $x_1 \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ tal que $f(x_1) = 1$.

(Obs: Note que a conclusão é equivalente a dizer que a equação $x^2 \tan(x) = 1$ tem solução no intervalo $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.)

Solução do Exercício 10

- 1. Defina $f(x) = x^2 \sqrt{x+1}$. Temos que f é contínua em [1,2] (o único problema à continuidade seria a raiz não estar definida, mas $x+1\geqslant 0$ para todo $x\in [1,2]$). Temos ainda $f(1)=1-\sqrt{2}<0,\ f(2)=4-\sqrt{3}>0$. Assim, f(1)<0< f(2), logo, pelo TVI, existe $x\in (1,2)$ tal que $f(x)=x^2-\sqrt{x+1}=0$, logo $x^2=\sqrt{x+1}$.
- 2. Defina f(x) = sen(x) x + 1. Temos que f é contínua em $(\frac{\pi}{2}, \pi)$, $f(\frac{\pi}{2}) = 1 \frac{\pi}{2} + 1 = 2 \frac{\pi}{2} > 0$ e $f(\pi) = 0 \pi + 1 < 0$. Assim, $f(\pi) < 0 < f(\frac{\pi}{2})$, logo, pelo TVI, existe $x \in (\frac{\pi}{2}, \pi)$ tal que f(x) = sen(x) x + 1 = 0, logo sen(x) = x 1.
- 3. Defina $f(x) = \ln x e^{-x}$. Temos que f é contínua em [1,2] (o único problema à continuidade seria ln não estar definida, mas $x \ge 1 > 0$). Temos ainda $f(1) = -e^{-1} < 0$, $f(2) = \ln 2 e^{-2} > 0$. Assim, f(1) < 0 < f(2), logo, pelo TVI, existe $x \in (1,2)$ tal que $f(x) = \ln x e^{-x} = 0$, logo $\ln x = e^{-x}$.