ANALIZA ZŁOŻONOŚCI OBLICZENIOWEJ

ALGORYTM SORTOWANIA BABELKOWEGO

	Pseudokod				Liczba powtórzeń	Koszt
1.	for i in range $(n-1, 0, -1)$:	Dla n = 7			n – 1	c_1
		i: ?			?	
2.	for j in range(i):	i	j	suma		
	if T[j] > T[j+1]:	6	0,1,2,3,4,5	6	n – 1	
	zamień T[j], T[j+1]	5	0,1,2,3,4	5	n – 2	c_2
		4	0,1,2,3	4		
		3	0,1,2	3	3	
		2	0,1	2	2	
		1	0	1	1	

Pierwsza pętla: (n-1)

Druga petla:
$$S = 1 + 2 + \dots + (n-1) = \frac{1 + (n-1)}{2} \cdot (n-1) = \frac{n \cdot n - n}{2} = \frac{1}{2} (n^2 - n)$$

Suma ciągu arytmetycznego: $S_n = \frac{a_1 + a_n}{2} \cdot n$

$$T(n) = c_1(n-1) + c_2\left(\frac{1}{2}(n^2 - n)\right) = c_1n - c_1 + \frac{c_2}{2}n^2 - \frac{c_2}{2}n = \frac{c_2}{2}n^2 + \left(c_1 - \frac{c_2}{2}\right)n - c_1 = an^2 + bn - c_1$$

Podczas **szacowania złożoności obliczeniowej** zazwyczaj nie jesteśmy zainteresowani dokładną liczbą operacji wykonywanych przez algorytm, ale raczej *rzędem wielkości złożoności*. W związku z tym, do szacowania *górnej granicy* złożoności algorytmów, stosujemy notację O (czyt. "O duże"), która pozwala uprościć szacowanie poprzez pominięcie *stałych i wolniej rosnących składników wzoru* w trakcie obliczeń.

$$T(n) = an^2 + bn - c = O(n^2)$$

Algorithm	Time Complexity (Best)	Time Complexity (Average)	Time Complexity (Worst)	Space Complexity
Bubble Sort	O(n)	O(n ²)	O(n ²)	O(1)
Insertion Sort	O(n)	O(n ²)	O(n ²)	O(1)
Selection Sort	O(n ²)	O(n ²)	O(n ²)	O(1)