Chapter 32: The Magentic Field

Electric Force:	$F_E = qE$

Magnetic Force:
$$\overrightarrow{F}_B = q\overrightarrow{v} \times \overrightarrow{B}$$

Biot-Savart Law:
$$d\vec{B} = \frac{\mu_0}{4\pi} \frac{q\vec{v} \times \hat{r}}{r^2}$$

Current Segment:
$$d\vec{B} = \frac{\mu_0}{4\pi} \frac{i\Delta \vec{s} \times \hat{r}}{r^2}$$

Superposition:
$$\vec{B}_{Total} = \vec{B}_1 + \vec{B}_2 + ...$$

B-Field, long straight wire:
$$B = \frac{\mu_0 i}{2\pi d}$$

B-Field, coil center (N loops):
$$B = \frac{\mu_0 N i \phi}{2R}$$

B-Field, Center of circular arc:
$$B = \frac{\mu_0 i \phi}{4\pi R}$$

B-Field, dipole, on-axis:
$$B_{loop} = \frac{\mu_0 2 \vec{\mu}}{4\pi z^3}$$

Magnetic Dipole Moment (Coil)
$$\vec{\mu} = Ni\vec{A}$$

Ampere's Law:
$$\oint \vec{B} \cdot d\vec{s} = \mu_0 i_{enc}$$

B-Field, inside a long straight wire:
$$B = \frac{\mu_0 i}{2\pi R^2} r$$

B-Field, inside an ideal solenoid:
$$B = \frac{\mu_0 NI}{l} = \mu_0 in$$

Circulating Charged Particle:
$$r = \frac{mv}{|q|B}$$

$$T = \frac{2\pi m}{|q|B}$$

$$f = \frac{|q|B}{2\pi m}$$

$$T = \frac{2\pi m}{|q|B}$$

$$f = \frac{|q|B}{2\pi m}$$

$$|q|vB = \frac{mv^2}{r}$$

Force on a wire:
$$\overrightarrow{F}_B = i\overrightarrow{L} \times \overrightarrow{B}$$

Force between long parallel wires:
$$|F_{ba}| = \frac{\mu_0 L i_a i_b}{2\pi d}$$

Torque on a Mag. Dipole:
$$\vec{\tau} = \vec{\mu} \times \vec{B}$$

Potential Energy for a Mag. Dipole:
$$U(\theta) = -\vec{\mu} \cdot \vec{B}$$

Chapter 33: Electromagnetic Induction

Wire moving at speed v on a U-shaped conductor

Induced Current:
$$I = \frac{vlB}{R}$$

Force:
$$F_{pull} = \frac{vl^2B^2}{R}$$

Power:
$$P_{dissipated} = \frac{v^2 l^2 B^2}{R}$$

Magnetic Flux:
$$\Phi_B = \oint \vec{B} \cdot d\vec{A}$$

Magnetic Flux:
$$(\overrightarrow{B} \perp A, \overrightarrow{B} \text{ uniform})$$
 $\Phi_B = BA$

Faraday's Law:
$$\mathscr{E} = -\frac{d\Phi_B}{dt}$$

(for a coil with N turns):
$$\mathscr{E} = -N \frac{d\Phi_B}{dt}$$

Faraday's Law, reformulated:
$$\oint \vec{E} \cdot d\vec{s} = -N \frac{d\Phi_B}{dt}$$

Inductance (definition):
$$L = \frac{\Phi_B}{I}$$

Inductance of a solenoid:
$$L = \frac{\mu_0 N^2 A}{l}$$

Potential diff, Inductor:
$$\mathscr{E}_L = |L\frac{di}{dt}|$$

RL Circuit: rising current
$$i(t) = \frac{\mathscr{E}}{R}(1 - e^{-t/\tau_L})$$

RL Circuit: decay of current
$$i(t) = i_0(e^{-t/\tau_L})$$

RL Circuit: time constant
$$\tau_L = \frac{L}{R}$$

Energy in a Magnetic Field:
$$U_B = \frac{1}{2}Li^2$$

Chapter 29: Potential and Field

Potential and E-Field:	$\Delta V = V_f - V_i = -\int_{s_i}^{s_f} \overrightarrow{E} \cdot d\vec{s}$
------------------------	--

E-Field from a potential:
$$E_x = -\frac{\partial V}{\partial x}$$

$$E_y = -\frac{\partial V}{\partial y}$$

$$E_z = -\frac{\partial V}{\partial z}$$

Kirchhoff's Loop Law:
$$\Delta V_{loop} = \sum_i (\Delta V)_i = 0$$

Capacitor:
$$Q = C\Delta V_C$$

Parallel Plate Capacitor:
$$C = \frac{\epsilon_0 A}{d}$$

Capacitors in series:
$$\frac{1}{C_{eq}} = \sum_{i=1}^{n} (\frac{1}{C_i})$$

Capacitors in parallel:
$$C_{eq} = \sum_{i=1}^{n} (C_i)$$

Energy Stored in Capacitor:
$$U = \frac{Q^2}{2C}$$
 or $U = \frac{1}{2}CV^2$

Energy Stored in an Electric field:
$$U = \frac{1}{2}\epsilon_0 E^2$$

Chapter 30: Current and Resistance

Current:	$i = \frac{a}{a}$	q
Current.	$i = \frac{1}{d}$	t

Junction Rule:
$$\sum I_{in} = \sum I_{out}$$

Resistance:
$$R = \rho \frac{L}{A}$$

Resistance:
$$R = \frac{V}{I}$$

Ohm's law:
$$\Delta V = IR$$

$$I = \frac{\Delta V}{R}$$

	Prefixes		Constants
10^{-6}	micro	μ	$\epsilon_0 = 8.854 \times 10^{-12} \ \frac{\mathrm{C}^2}{\mathrm{Nm}^2}$
10^{-9}	nano	n	$e = 1.6 \times 10^{-19} \text{ C}$
10^{-12}	pico	p	$m_e = 9.109 \times 10^{-31} \text{ kg}$
10^{-15}	femto	f	$k = \frac{1}{4\pi\epsilon_0} = 8.99 \times 10^9 \frac{\text{Nm}^2}{\text{C}^2}$
			$m_p = 1.673 \times 10^{-27} kg$

Chapter 31: Fundamentals of Circuits

Power:
$$P = IV$$

Power (Resistive dissipation):
$$P = I^2 R$$
 or $P = \frac{V^2}{R}$

Resistors in series:
$$R_{eq} = \sum_{i=1}^{n} (R_i)$$

Resistors in parallel:
$$\frac{1}{R_{eq}} = \sum_{i=1}^{n} (\frac{1}{R_i})$$

RC Circuit - Charging
$$Q(t) = C\mathscr{E}(1 - e^{-t/RC})$$

$$I(t) = \frac{\mathscr{E}}{R}(e^{-t/RC})$$

$$V(t) = \mathcal{E}(1 - e^{-t/RC})$$

Time Constant:
$$\tau = RC$$

RC Circuit - discharging
$$Q(t) = Q_0(e^{-t/RC})$$

$$I(t) = -(\frac{Q_0}{RC})e^{-t/RC}$$

$$V(t) = \frac{Q_0}{C} (e^{-t/RC})$$

Units

Force:
$$1 N = 1 kg \frac{m}{s^2}$$

Energy (Joules):
$$1 J = 1 Nm$$

Energy (eV)
$$1 eV = 1.6 \times 10^{-19} J$$

Electric Field:
$$1 \frac{N}{C} = 1 \frac{V}{m}$$

Electric Potential 1
$$V = 1 \frac{J}{C}$$

Charge:
$$1 C = (1 A)(1 s)$$

Current:
$$1 A = 1 \frac{C}{s}$$

Capacitance:
$$1F = \frac{1C}{1V}$$

Resistance:
$$1\Omega = 1\frac{V}{A}$$

Resistivity:
$$1\Omega \cdot m$$

Power:
$$1 W = 1 \frac{J}{s}$$

Magnetic Field:
$$1 T = 1 \frac{N}{A m}$$

Magnetic Flux:
$$1 Wb = 1 T \cdot m^2$$

Inductance:
$$1\ H = 1 \frac{T \cdot m^2}{A}$$

Chapter 25: Electric Charges and Forces

Superposition: $\vec{F}_{Total} = \vec{F}_{12} + \vec{F}_{13} + \dots$

Force on charge in an E-Field: $\overrightarrow{F}_{\mathrm{onq}} = q\overrightarrow{E}$

E-Field at (x,y,z): $\overrightarrow{E}(x,y,z) = \frac{\overrightarrow{F}_{onq} \text{at}(\mathbf{x},\mathbf{y},\mathbf{z})}{q}$

Chapter 26: The Electric Field

Electric dipole moment: $\vec{p} = q\vec{d}$

E-Field - dipole (on axis): $\overrightarrow{E} = \frac{1}{4\pi\epsilon_0} \frac{2\overrightarrow{p}}{r^3}$

E-Field - dipole (bisecting plane): $\overrightarrow{E} = -\frac{1}{4\pi\epsilon_0} \frac{\overrightarrow{p}}{r^3}$

Linear charge density: $\lambda = \frac{Q}{L}$

Surface charge density: $\eta = \frac{Q}{A}$

E-Field - charged rod: $\overrightarrow{E}_{rod} = \frac{1}{4\pi\epsilon_0} \frac{|Q|}{r\sqrt{r^2 + (L/2)^2}}$

E-Field - infinite line: $\overrightarrow{E}_{line} = \frac{1}{4\pi\epsilon_0} \frac{2|\lambda|}{r}$

E-Field - charged ring (on axis): $\vec{E}_{ring} = \frac{zQ}{4\pi\epsilon_0(z^2+R^2)^{3/2}}$

E-Field - charged disk: $\vec{E}_{disk} = \frac{\eta}{2\epsilon_0} \left(1 - \frac{z}{\sqrt{z^2 + R^2}}\right)$

E-Field - above a plane of charge: $\overrightarrow{E} = \frac{\eta}{2\epsilon_0}$

E-Field - below a plane of charge: $\frac{\overrightarrow{E}}{E} = \frac{-\eta}{2\epsilon_0}$

E-Field - Outside a Sphere of charge: $\overrightarrow{E}_{sphere} = \frac{|Q|}{4\pi\epsilon \alpha r^2} \hat{r}$

E-Field - Capacitor (+ to -): $\overrightarrow{E}_{capacitor} = \frac{\eta}{\epsilon_0}$

Motion in a uniform field: $\vec{a} = \frac{q\vec{E}}{m}$

Torque on a dipole: $\vec{\tau} = \vec{p} \times \vec{E}$

Chapter 27: Gauss's Law

Electric Flux (constant E-field): $\Phi_E = \vec{E} \cdot \vec{A}$

Electric Flux: $\Phi_E = \int \vec{E} \cdot d\vec{A}$

Gauss's Law: $\epsilon_0 \Phi_E = q_{enc}$

Gauss's Law: $\epsilon_0 \oint \vec{E} \cdot d\vec{A} = q_{enc}$

Chapter 28: The Electric Potential

Work from a constant force: $W = \overrightarrow{F} \cdot \Delta \overrightarrow{r}$

Potential Energy and work: $\Delta U = -W$

Work (general) : $W = \int_i^f \vec{F} \cdot d\vec{s}$

Pot. Energy - uniform E-field: $U_{elec} = U_0 + qEs$

Pot. Energy - 2 point charges: $U_{elec} = k \frac{q_1 q_2}{r}$

Pot. Energy - Multiple point charges: $U_{elec} = \sum_{i < j} k \frac{q_i q_j}{r}$

Potential Energy - dipole: $U = -\vec{p} \cdot \vec{E}$

Potential Difference: $\Delta V = V_f - V_i$

 $\Delta V = \frac{\Delta U}{q}$ $\Delta V = -\frac{W}{q}$

 $\Delta V = -\frac{r}{q}$

Potential - capacitor: V = Es

Potential - point charge: $V = \frac{q}{4\pi\epsilon_0 r}$

Potential - many point charges: $V = \sum_{i} \frac{q_i}{4\pi\epsilon_0 r_i}$

Potential - dipole: $V = \frac{p cos \theta}{4 \pi \epsilon_0 r^2}$

Potential - charge distr: $V = \frac{1}{4\pi\epsilon_0} \int \frac{dq}{r}$

Potential - ring of charge (on axis): $V_{ring} = \frac{1}{4\pi\epsilon_0} \frac{Q}{\sqrt{R^2 + z^2}}$

Potential - charged disk (on axis): $V_{disk} = \frac{Q}{2\pi\epsilon_0 R^2} (\sqrt{z^2 + R^2} - z)$

Kinematic Equations

Position vs time for a constant (\vec{a}) : $x(t) = x_0 + v_0 t + \frac{1}{2}at^2$

velocity vs time for a constant (\vec{a}) : $v(t) = v_0 + at$