Une variable aléatoire réel (v.a.r) X est une fonction de Ω (espace échantillon ou espace des épreuves) vers $\mathbb R$.

Variable aléatoire réel discrète: Définie par la fonction de masse p_X et la fonction de répartition F_X .

 $p_X(k)=P(X=k)=\{\omega\in\Omega:X(\omega)=k\}$ La probabilité que la v.a.r X prend la valeur k.

Conditions à satisfaire pour une fonction de masse valide :

$$p_X(k) \ge 0 \ et \sum_{x \in D_X} p(x) = 1$$

 $F_X(k) = P(X \le k) = \sum_{x \in D_X}^k p(x)$ La probabilité que la v.a.r X prend une valeur inférieur ou égale à k.

$$E[X] = Moyenne \ de \ X = \sum_{x \in D_X} x \ p_X(x)$$

 $VAR[X] = comment \ X \ varie \ par \ rapport \ à la \ moyenne = \sum_{x \in D_X} (x - E[X])^2 \ p_X(x)$

$$VAR[X] = E[X^2] - (E[X])^2$$

$$E[X^2] = \sum_{x \in D_X} x^2 \, p_X(x)$$

 $\sigma = ecart \ type \ (distance \ moyenne \ par \ rapport \ à \ la \ moyenne) = \sqrt{VAR[X]}$

Exemple de variable aléatoire discrète :

Soit une expérience aléatoire qui consiste à jeter une pièce monétaire 3 fois et d'enregistrer les résultats :

$$\Omega = \{ (P,P,P), (P,P,F), (P,F,P), (F,P,P), (F,F,P), (F,P,F), (P,F,F), (F,F,F) \} P : Pile, F : Face \}$$

Soit X la v.a.r. qui donne le nombre de Faces obtenues lors des trois jets. Le support de X, D_X représente les valeurs possibles pour X:

$$D_x = \{0,1,2,3\}$$

k	X=k	X<=k	F _x (k)	p _x (k)
-1	ϕ	ϕ	0	0
0	{(P,P,P)}	{(P,P,P)}	1/8	1/8
1	{(P,P,F),(P,F,P),(F,P,P)}	{(P,P,P),(P,P,F),(P,F,P),(F,P,P)}	4/8	3/8
			=1/2	
2	{(P,F,F),(F,P,F),(F,F,P)}	{(P,P,P),(P,P,F),(P,F,P),(F,P,P),	7/8	3/8
		(P,F,F),(F,P,F),(F,F,P)}		
3	{(F,F,F)}	{(P,P,P),(P,P,F),(P,F,P),(F,P,P),(F,F,P),	1	1/8
		(F,P,F), (P,F,F),(F,F,F) } (Ω)		
4	ϕ	Ω	1	0

Variable aléatoire réel continue: Définie par la fonction de densité f_{χ} et la fonction de répartition F_{χ} .

$$F_X(x) = \int_{-\infty}^x f(t)dt$$

conditions: $f_X(x) \ge 0 \ \forall x \in \mathbb{R}$

 $conditions: \mathit{F}_{\mathit{X}}\ est\ continue\ est\ croissante$

$$F_X(+\infty) = \int_{-\infty}^{+\infty} f_X(x) dx = 1$$

$$E[X] = \int_{-\infty}^{+\infty} x \, p_X(x)$$

$$VAR[X] = \int_{-\infty}^{+\infty} (x - E[X])^2 p_X(x)$$

$$VAR[X] = E[X^2] - (E[X])^2$$