Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа	<u>P3207</u>	К работе допущен
Студенты <u></u> Владимировчи	<u>Садовой Григорий</u> и	Работа выполнена
Преподаватель		Отчет принят
Терещени	ко Георгий Викторович	•

Рабочий протокол и отчет по лабораторной работе №3.02

Характеристики источника тока

- 1. Цель работы.
 - Исследовать зависимость полной мощности, полезной мощности, мощности потерь, падения напряжения во внешней цепи и КПД источника от силы тока в цепи.
 - Найти значения параметров источника: электродвижущей силы и внутреннего сопротивления, оценить их погрешность.
- 2. Задачи, решаемые при выполнении работы.
 - 1. Исследовать зависимость полной мощности, полезной мощности, мощности потерь, падения напряжения во внешней цепи и КПД источника от силы тока в цепи.
 - 2. Найти значения параметров источника: электродвижущей силы (ЭДС) и внутреннего сопротивления, оценив их погрешность.
- 3. Объект исследования.

Цепь, собранная на стенде СЗ-ЭМ01. Контур с исследуемым источником тока и регулируемым внешним сопротивлением.

4. Метод экспериментального исследования.

Многократное прямое измерение характеристик тока в цепи

- 5. Рабочие формулы и исходные данные.
 - Полезная мощность:

$$P_R = UI$$

• Полная мощность:

$$P = \varepsilon I$$

• Мощность потерь:

$$P_{\rm S} = I^2 r$$

• Закон Ома для полной цепи:

$$\varepsilon = U + Ir = I(R + r)$$

• Внутреннее сопротивление по МНК:

$$r = \frac{\sum_{i=1}^{N} (I_i - \bar{I})(U_i - \bar{U})}{\sum_{i=1}^{N} (I_i - \bar{I})^2}$$

• Значение ЭДС по известному значению внутреннего сопротивления:

$$\varepsilon = \overline{U} + \overline{I}|r|$$

• Абсолютная погрешность с учётом погрешности приборов:

$$\Delta x = \sqrt{(\Delta x)^2 + \left(\frac{2}{3}\Delta_{ux}\right)^2}$$

• Погрешность косвенного значения:

$$\Delta z = \sqrt{\left(\frac{dz}{dx_1}\Delta x_1\right)^2 + \left(\frac{dz}{dx_2}\Delta x_2\right)^2}; z = f(x_1, x_2)$$

• Относительная погрешность:

$$\varepsilon_{x} = \frac{\Delta x}{\bar{x}} \cdot 100\%$$

• Абсолютные погрешности для МНК значений внутреннего сопротивления и ЭДС:

$$\Delta \mathbf{r} = 2 \cdot \sqrt{\frac{\sum_{i=1}^{N} d_i^2}{D(n-2)}}; \Delta \varepsilon = 2 \cdot \sqrt{\frac{\sum_{i=1}^{N} d_i^2}{(n-2)} \cdot \left(\frac{1}{n} + \frac{I^{-2}}{D}\right)}; d_i = U_i - (\varepsilon - I_i|r|); D = \sum_{i=1}^{N} (I_i - \bar{I})^2$$

6. Измерительные приборы.

№ n/n	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Амперметр	Электронный	$[0.2 \cdot 10^{-2}] A$	$5\cdot 10^{-5}A$
2	Вольтметр	Электронный	[0, 20] B	$5\cdot 10^{-3}B$

7. Схема установки (перечень схем, которые составляют Приложение 1). Принципиальная схема установки состоит из источника тока, резистора с реостатом и измерительных приборов для регистрации напряжения и тока цепи соответственно. В качестве источника электродвижущей силы используется генератор регулируемого постоянного напряжения в составе ГН-1.

Рис. 1. Принципиальная электрическая схема лабораторной установки

Рис. 2. Схема соединений источника, измерительных приборов и измерительного стенда

8. Результаты прямых измерений и их обработки (*таблицы, примеры расчетов*). Задание №1. Исследование сигналов различной формы.

	U, B	I, MA	P_R = UI, MBT	P_3 = I2r, мВт	$P = \varepsilon I$, MBT	η = P_R / P
1	1.02	15.42	15.7284	23.7776	39.506	0.3981
2	2.28	13.57	30.9396	18.4145	49.3541	0.6269
3	3.37	11.98	40.3726	14.352	54.7246	0.7377
4	4.07	10.95	44.5665	11.9902	56.5567	0.788
5	4.71	10.02	47.1942	10.04	57.2342	0.8246
6	5.5	8.86	48.73	7.85	56.58	0.8613
7	6.01	8.11	48.7411	6.5772	55.3183	0.8811
8	6.51	7.37	47.9787	5.4317	53.4104	0.8983
9	6.92	6.78	46.9176	4.5968	51.5144	0.9108
10	7.28	6.24	45.4272	3.8938	49.321	0.9211
11	7.37	6.72	49.5264	4.5158	54.0422	0.9164
12	7.52	5.89	44.2928	3.4692	47.762	0.9274
13	7.78	5.51	42.8678	3.036	45.9038	0.9339
14	8.02	5.17	41.4634	2.6729	44.1363	0.9394
15	7.96	5.24	41.7104	2.7458	44.4562	0.9382

Внутренне сопротивление источника по МНК:

$$r = \frac{\sum_{i=1}^{N} (I_i - \bar{I})(U_i - \bar{U})}{\sum_{i=1}^{N} (I_i - \bar{I})^2} \approx -687,34 \frac{B}{A}$$

ЭДС источника по МНК:

$$\varepsilon = \overline{U} + \overline{I}|r| \approx 11,6122 \text{ B}$$

Значение тока, при котором достигается максимум значения полезной мощности:

$$I_{\scriptscriptstyle
m T}^* = \frac{\varepsilon}{2r} = 8,4472$$
 мА (теоретическое)

$$P_{R_{max}} = \frac{\varepsilon^2}{4r} \approx 49,0451 \text{ BT}$$

Для режима согласования: $R_{\text{согл}} = \frac{P_{R_{max}}}{(I^*)^2} \approx 687,34 \text{ Ом}$

Сила тока при КПД ($\eta = 0, 5$): 7.99247190 мА

Полученное значение практически совпадает с величиной внутреннего сопротивления: $R \approx r$

Это подтверждает, что при R=r достигается режим согласования нагрузки и источника.

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

Расчёт абсолютных погрешностей для значений внутреннего сопротивления и ЭДС:

$$d_i = U_i - (\varepsilon - I_i|r|); D = \sum_{i=1}^{N} (I_i - \bar{I})^{\frac{1}{2}}$$

$$S = \sum_{i=1}^{N} d_i^2 = 0,156 \text{ B}^2; D = 144,269 \text{ mA}^2$$

$$s_r = \sqrt{\frac{S}{(n-2)D}} = \sqrt{\frac{0,156}{13 \cdot 144,269}} \approx 9,1207 \,\Omega,$$

$$s_{\varepsilon} = \sqrt{\frac{S}{n-2} \left(\frac{1}{n} + \frac{\overline{I^2}}{D}\right)} \approx 0,0827 \text{ B}.$$

Для доверительного интервала $\approx 95\%$ (коэф. t ≈ 2) получаем **абсолютные** погрешности: $\Delta r = 2s_r \approx 2 \cdot 9,1207 = 18,24 \ \Omega, \qquad \Delta \epsilon = 2 \ s_\epsilon \approx 2 \cdot 0,0827 = 0,1654 \ B.$

Относительные погрешности:

$$\delta_r = \frac{\Delta r}{|r|} \times 100\% = \frac{18,24}{687,34} \times 100\% \approx 2.65\%, \qquad \delta_\varepsilon = \frac{\Delta \varepsilon}{\varepsilon} \times 100\% = \frac{0.1654}{11.6122} \times 100\% \approx 1.44\%.$$

10. Графики.

11. Окончательные результаты.

Доверительные интервалы (≈ 95%) для параметров источника:

$$r = (687,34 \pm 18,24) \Omega$$
, $\delta_r = \frac{18,24}{687.34} \cdot 100\% \approx 2,65\%$;

$$\mathcal{E} = (11,6122 \pm 0,1654) \text{ B}, \quad \delta_{\mathcal{E}} = \frac{0,1654}{11,6122} \cdot 100\% \approx 1,42\%.$$

Ток максимальной полезной мощности:

$$I_{\mathrm{reop}}^* = \frac{\mathcal{E}}{2\,r} = \frac{11,6122}{2\cdot 687,34} \approx 8,4472 \; \mathrm{mA},$$

$$I_{
m 9KC\Pi}^* = 6,72 \ {
m MA} \quad \left(P_{R,max}^{
m 9KC\Pi} = 49,5264 \ {
m MBT}
ight),$$

$$\Delta I^* = \left| I_{\text{эксп}}^* - I_{\text{теор}}^* \right| = \left| 8,4472 - 6,72 \right| = 1,7272 \text{ MA,}$$

$$P_{R_{max}}^{
m Teop} = rac{\mathcal{E}^2}{4\,r} = rac{(11,6122)^2}{4\cdot 687,34} pprox 49,0451 \ {
m MBT},$$

$$\Delta P_{R_{max}} = |49,5264 - 49,0451| = 0,4813 \text{ MBT}.$$

Режим согласования нагрузки и источника:

$$R_{\text{согл}} = \frac{P_{R,max}^{\text{теор}}}{\left(I_{\text{теор}}^*\right)^2} = 0,6873 \ \Omega \approx r.$$

Проверка тока при $(\eta = 0, 5)$:

 $I_{\eta=0.5}=16,14$ мА (из графика аппроксимации),

$$\Delta I_{\eta=0.5} = \left|I_{\text{reop}}^* - I_{\eta=0.5}\right| = \left|8,45 - 16,14\right| = 7,69 \text{ MA}.$$

12. Выводы и анализ результатов работы.

В ходе работы на основе экспериментальных данных были рассчитаны значения полезной, полной и потерь мощности, а также КПД источника. Построены графики зависимости мощности и КПД от силы тока, выявлена точка максимальной полезной мощности. Методом наименьших квадратов определены значения ЭДС источника (ϵ =11,61 B) и его внутреннего сопротивления r = 687, Ом), с учётом доверительных интервалов. Теоретически и экспериментально найдено значение тока, при котором достигается максимум полезной мощности: Ітеор*=8, мА, Іэксп*=6,72 мА, что даёт отклонение порядка 1,73 мА. При этом значение мощности отличается менее чем на 0,5 мВт. Расчёт значения тока при КПД 50 % по аппроксимации дал результат $I\eta$ =0.5 \approx 16, мА, что существенно отклоняется от теоретического I^* , что может быть связано с нелинейностью зависимости или экспериментальными погрешностями. Отдельно определено сопротивление, соответствующее условию согласования R=Pmax/ I^* 2 \approx 0,687 Ом, что подтверждает совпадение с найденным внутренним сопротивлением источника.