3. Experimentální hodnocení kvality algoritmů

Ladislav Martínek

1 Zadání úlohy

- Prozkoumejte citlivost metod řešení problému batohu na parametry instancí generovaných generátorem náhodných instancí. Máte-li podezření na další závislosti, modifikujte zdrojový tvar generátoru.
- Na základě zjištění navrhněte a provedte experimentální vyhodnocení kvality řešení a výpočetní náročnosti
- Zkoumejte zejména následující metody
 - 1. hrubá síla (pokud z implementace není evidentní úplná necitlivost na vlastnosti instancí)
 - 2. metoda větví a hranic, případně ve více variantách
 - 3. dynamické programování (dekompozice podle ceny a/nebo hmotnosti). FPTAS algoritmus není nutné testovat, pouze pokud by bylo podezření na jiné chování, než DP
 - 4. heuristika poměr cena/váha
- Pozorujte zejména závislosti výpočetního času (případně počtu testovaných stavů) a rel. chyby (v případě heuristiky) na:
 - 1. maximální váze věcí
 - 2. maximální ceně věcí
 - 3. poměru kapacity batohu k sumární váze
 - 4. granularitě (pozor zde si uvědomte smysl exponentu granularity)
- Doporučuje se zafixovat všechny parametry na konstantní hodnotu a vždy plynule měnit jeden parametr. Je nutné naměřit výsledky pro aspoň čtyři (opravdu minimálně) vhodně zvolené hodnoty parametru, jinak některé závislosti nebude možné vypozorovat.

2 Rozbor řešení

Pro určení a sledování citlivosti na různé instance problému jsem využil generátor náhodných instancí, u které lze nastavovat jednotlivé parametry. U instancí problému jsou nastavovány parametry jako granulalita, maximální cena, maximální váha a poměr sumární váhy ke kapacitě batohu. Pokusím se odhadnout chování algoritmů při změnách parametrů jednotlivých instancí. Tedy sledovat citlivost algoritmů na dané parametry.

2.1 Metoda hrubé síly

Medota hrubé síly nebude v tomto experimentu zkoumána, protože je zřejmé, že pokaždé projde všechny instance a tedy vubec není citlivá na jiné parametry, kromě paramentru n, který ale již by prozkoumán v 1. a 2. úloze.

2.2 Metoda větví a hranic (B&B)

U této metody očekávám velkou čitlivost na poměr celkové váhy a kapacity batohu, dále by metody mohla ovlivnit granularita. Tato metoda nemá horní mez a proto její čas může narůst až na metody hrubé síly.

2.3 Metody dynamického programování (obě dekompozice)

U dekompozice očekávám citlivost vždy na daný parametr. U dekompozice podle ceny tedy citlivost na maximální cenu a u dekompozice podle váhy na maximální váhu.

2.4 Řešení heuristikou poměr cena/váha

Očekávám, že heuristická metoda bude datově citlivá a to především na paramentry jako poměr celkové váhy a kapacity batohu nebo granularita. Vliv maximální ceny a váhy neočekávám.

3 Popis kostry algoritmu

Všechny algoritmy a průběh experimentu, zůstali stejné jako v úloze 2. Byli pouze změněny soubory s instancemi, které byli vygenerovány před experimentem.

4 Experimenty

Experimenty jsem prováděl v režimu jednoho vlákna na starším datovém serveru v podobě starého notebooku, který v době výpočtu nebyl používán. Výsledky tedy nejsou ovlivněny jinými běžícími programy. Procesor na testovacím stroji: Intel Pentium T3400 (2 cores). Taktován na 2.16 GHz s 1 MB cache. Měření času CPU probíhalo v knihovně timeit s několika násobným průchodem pro menší instance. Pro každý parametr bylo vygenerováno 100 instancí.

4.1 Závislost na poměru součtu vah předmětů k nosnosti batohu

- 4.2 Závislost na maximální ceně předmětů
- 4.3 Závislost na maximální váze předmětů
- 4.4 Závislost na granularitě instance

Figure 1: Brute-force ve srovnání s dynamickým programováním s dekompozicí podle ceny. Časová náročnost. Na grafu jsou průměrné hodnoty.

5 Závěr

Během experimentu jsem otestoval velké množství instancí s různými parametry a sledoval citlivost algoritmů na tyto parametry. Byli pozorovány časy exaktních algoritmů a u heuristiky byla také měřena relativní chyba.