

Master of Science in Analytics

Beyond Linearity

Machine Learning 1

Outline of techniques

- Linear -/+
 - Data is almost never linear
 - A linear assumption is sometimes a good enough model
- When linear techniques are not good enough
 - Polynomial regression
 - Step functions
 - Splines
 - Local regression
 - Generalized additive models

⟨₹⟩

Data - DJIA close

- See https://github.com/dbrizan/MSAN621-data > djia*csv
- Features: only using days since 1st Feb 1987, inferred from date
- Outcome: Close = csv_file[-1]

Polynomial Regression

Generally form of model:

$$y_i = \beta_0 + \beta_1 x_1 + ... + \beta_d x_d$$

- For degree "d" polynomial
- Other forms of regression have polynomial behaviour
 - Ridge regression, the lasso, etc.
 - These are not classic polynomial regression

Implementation in python

- 1) Import data
 - a) If necessary, split data into train, test sets
- 2) Coerce data into: X (data) and Y (targets)

3) Wait... there's no implementation in sklearn?

import numpy as np

```
d = degree_of_polynomial # 1 = linear; 2 = quadratic; etc.
poly_params = np.polyfit(X, Y, d)
```

"poly_params" now contains betas

Lab 1: best polynomial for DJIA?

- Get data
 - https://github.com/dbrizan/MSAN621-data > djia*csv
 - X: days from 1st Feb, 1987
 - Y: Close
- Goal: find & show best-fitting polynomial
 - Best: d = 1 .. n
 - Using RSS / R², ..., (also cross validation)
- Use matplotlib

Example for plotting data, targets, fitted polynomial

import matplotlib.pyplot as plt

plt.plot(data, targets, color='black')
plt.plot(data, np.polyval(poly_params, data, 'r-')
plt.show()

Polynomial regression - thoughts

- There are d + 1 outputs of polyfit (values for β_i)
- Not widely used for data science models
 - Note: as x —> 0 | x —> 7511, curve looks weird
 - A single global model is a weakness?
 - Note: no implementation in sklearn
- Options to polynomial regression
 - KNN regression
 - Ridge regression, the lasso, etc.
 - Other approaches in this unit
 - Decision trees, SVM, etc.

Step functions

- Reconsider the DJIA data
 - Overall growth trend
 - Areas of growth/retraction (bull/bear) and flat markets

- Task (conceptual): find regions; model each region
 - Each region: "cut" "dummy variables"
 - Popular in advertising ("millennial consumers like...")

Vocabulary & issues

Knots

- Knots / cutpoint: edge of a region (cuts)
- May be implemented as dummy variables
- Our How to choose them?

Region-unique regression?

- Global model may be a mix of linear / polynomial regressions
- Better to add constraints to model so it is not discontinuous
- Spline: function continuous at each knot
 - Linear spline: piecewise linear polynomial continuous at each knot
 - Cubic spline: piecewise polynomial with continuous derivatives up to order 2 at each knot
 - Natural cubic spline: additional smoothing terms

Where should the knots be?

- Decide on K (number of knots) & place at quantiles
 - o Problem: this does not describe some data (eg. DJIA) well
 - Choice of quantiles is arbitrary
- Better to use a smoothing spline:

$$\underset{g \in \mathcal{S}}{\text{minimize}} \sum_{i=1}^{n} (y_i - g(x_i))^2 + \lambda \int g''(t)^2 dt$$

- Place knot at each data point
- First term is RSS i.e. find a $g(x_i)$ with lowest error relative to y_i
- Second term is second derivative (acceleration of slope of line)
- In English: a "roughness" score; the rate at which decreased smoothness is traded for a better fit
- Score is a penalty (b/c we want to minimize summation)
- Penalty is controlled by a single hyperparameter λ lower λ accepts more wiggles

What should λ be?

It depends on data

- Some models for data are better when linear
- \circ Some values for λ overfit the data
- Values for λ
 - ∞ = linear regression
 - 0 = sacrifice for a good fit to the data
- Choose a good value using cross-validation

Implementation in python

- 1) Import data
 - a) If necessary, split data into train, test sets
- 2) Coerce data into: X (data) and Y (targets)

3) Also no implementation in sklearn, but in scipy

import numpy as np
from scipy.interpolate import UnivariateSpline

```
smoothing = 5 # In range 0 .. 5
knots = 1 # Smoothing factor for knots, defaults to len(Y)
```

s = UnivariateSpline(X, Y, k=smoothing, s=knots)

- 4) Use spline, eg.
 - a) get_coeffs(), get_knots(), get_residual()
 - b) Plot: plt.plot(X, s(data))
 - c) Continue with smoothing factor from last knot, etc.

Lab 2: fit smoothing spline to DJIA

Use the same data

- https://github.com/dbrizan/MSAN621-data > djia*csv
- X: days from 1st Feb, 1987
- Y: Close

Goals:

- Determine best λ
- Graph best with matplotlib
- Compare to best polynomial, KNN

Local regression

- Fit data using only local observations
 - Weigh contribution of points so that nearer data contributes more
 - A variant of kNN (i.e. works well with low-dimensional data)
 - Sometimes called "memory-based procedure"
- Decisions (hyperparameters)
 - Size of neighbourhood K ("span s") as fraction of total data
 - How to define weighting of observations
 - Type of fit: linear, quadratic, etc.

(<u>A)</u>

Generalized additive models

- Extend the models
 - \circ So far, we've only handled p = 1
 - GAM handles multiple features $(X_1, ..., X_p)$
- Premise:
 - Extend multiple SLP while maintaining non-linear relationships
 - Replace each linear component with (non-linear?) function $f_i(x_{ij})$

$$y_i = \beta_0 + f_1(x_{i1}) + f_2(x_{i2}) + \dots + f_p(x_{ip})$$

- Replace each linear component with (non-linear?) function $f_i(x_{ij})$
- May also be used for classification
- Use with caution
 - Implementation in SciPy > <u>statsmodels</u>
 - GAMs exist in R