Math 335, Homework 5

Due Wednesday, March 10 Mark S Kim

1. Is the group D_4 (the group of symmetries of a square, under the operation of composition) cyclic? Carefully explain how you know.

Answer:

$$D_4 = \{I, R_{90}, R_{180}, R_{270}, H, V, D, D'\}$$

In order for D_4 to be cyclic, there must be an element of $d \in D_4$ such that $\langle d \rangle = D_4$. If we list all generators for D_4 we come up with the following:

$$\langle I \rangle = \{I\}$$

$$\langle R_{90} \rangle = \langle R_{270} \rangle = \{I, R_{90}, R_{180}, R_{270}\}$$

$$\langle R_{180} \rangle = \{I, R_{180}\}$$

$$\langle H \rangle = \{I, H\}$$

$$\langle V \rangle = \{I, V\}$$

$$\langle D \rangle = \{I, D\}$$

$$\langle D' \rangle = \{I, D'\}.$$

This shows that there is no $d \in D_4$ such that $\langle d \rangle = D_4$.

2. (a) Let $G = \langle a \rangle$ be a cyclic group in which $\operatorname{ord}(a) = \infty$. Prove that

$$\langle a^k \rangle \subseteq \langle a^m \rangle$$

if and only if m|k. (**Hint**: A problem from Homework 4 will be helpful here.)

Proof. For the forward direction, let $\langle a^k \rangle \subseteq \langle a^m \rangle$, which said another way means that $x \in \langle a^k \rangle$ implies $x \in \langle a^m \rangle$. Suppose that $x = (a^k)^i$ for some $i \in \mathbb{Z}$, which implies that $x = (a^m)^j$ for some $j \in \mathbb{Z}$. Then,

$$a^{ki}=a^{mj}, \text{ for some } i,j\in\mathbb{Z},\ i\neq 0, \text{ and } ki=mj \text{ (proved in HW2)}.$$

Recall that the division algorithm states

$$k = mq + r$$
, $0 < r < (m-1)$, $q, r \in \mathbb{Z}$.

By substituting for k in the division algorithm, we find that mqi+ri=mj. But since $i \neq 0$ as stated earlier, r must be zero and k=mj for some $j \in \mathbb{Z}$. By definition, we can conclude that m|k.

Conversely, let m|k. By definition, this means that k = mp for some $p \in \mathbb{Z}$. Suppose $x \in \langle a^k \rangle$ for some $q \in \mathbb{Z}$. Then,

$$x = (a^k)^q = a^{kq}$$
$$= a^{mpq} = (a^m)^{pq}$$

Hence $x \in \langle a^m \rangle$ and $\langle a^k \rangle \subseteq \langle a^m \rangle$.

(b) Give a counterexample to show that part (a) is false if ord(a) is finite. (**Hint**: Try making m larger than the order of a.)

Answer:

Let $G = \langle 3 \rangle = \{0, 1, 2, 3\} = \mathbb{Z}_4$ under addition modulo 4. Then,

$$\langle a^k \rangle = \langle 3 \cdot 2 \rangle = \langle 2 \rangle = \{0, 2\}$$

 $\langle a^m \rangle = \langle 3 \cdot 3 \rangle = \langle 1 \rangle = \{0, 1, 2, 3\}.$

Notice that $\langle 3 \cdot 2 \rangle \subseteq \langle 3 \cdot 3 \rangle$, but 3 does not divide 2.

3. Let G be any group, and let $a \in G$ be an element of order 15. What is the order of a^6 ? Of a^{10} ? Prove your answers.

Answer:

By saying that $\operatorname{ord}(a) = 15$, we are saying that k = 15 is the least positive integer such that $a^k = e$. This also means that for all k < 15, $a^k \neq e$. To find the order of a^6 , we can evaluate $(a^6)^n$ as follows:

$$(a^{6})^{1} = a^{6} \neq e$$

$$(a^{6})^{2} = a^{12} \neq e$$

$$(a^{6})^{3} = a^{18} = a^{15} \cdot a^{3} = e \cdot a^{3} = a^{3} \neq e$$

$$(a^{6})^{4} = a^{24} = e \cdot a^{9} = a^{9} \neq e$$

$$(a^{6})^{5} = a^{30} = e^{2} = e.$$

This shows that $\operatorname{ord}(a^6) = 5$ as any n < 5 does not produce the identity. Similarly, we can follow the previous steps to find that $\operatorname{ord}(a^{10}) = 3$.

- 4. Consider the group $\mathbb{Z}_n = \{0, 1, 2, \dots, n-1\}$ under addition modulo n. We say that an element k of this group generates \mathbb{Z}_n if $\langle k \rangle = \mathbb{Z}_n$.
 - (a) List all of the elements of \mathbb{Z}_9 that generate \mathbb{Z}_9 .

Answer:

All of the elements of \mathbb{Z}_9 that generate \mathbb{Z}_9 are: 1, 2, 4, 5, 7, and 8. $(\langle 1 \rangle = \langle 2 \rangle = \langle 4 \rangle = \langle 5 \rangle = \langle 7 \rangle = \langle 8 \rangle = \{0, 1, 2, 3, 4, 5, 6, 7, 8\})$

(b) Prove that k generates \mathbb{Z}_n if and only if gcd(n, k) = 1.

Proof. Suppose that k generates the group $G = \mathbb{Z}_n$ under addition modulo n, which we know to be a cyclic group. By Theorem, $\operatorname{ord}(k) = n$ (the number of elements in G). Furthermore, by yet another Theorem, $\operatorname{ord}(k) = \frac{n}{\gcd(k,n)}$. Therefore if $\operatorname{ord}(k) = n$, then it must be true that $\gcd(k,n) = 1$.

Conversely, suppose $\gcd(n,k) = 1$ and consider the cyclic group $G = \mathbb{Z}_n$ under addition modulo n. Given any subgroup $\langle k \rangle$, $\operatorname{ord}(k) = \frac{n}{\gcd(k,n)} = n$, which is the number of elements in G. Since $\langle k \rangle$ contains all elements in \mathbb{Z}_n , it generates \mathbb{Z}_n under addition modulo n.

5. Consider the group $\mathbb{Z}_p = \{0, 1, 2, \dots, p-1\}$ under addition modulo p, where p is a prime number. What are all of the subgroups of \mathbb{Z}_p ? Carefully explain how you know that you've found them all.

Answer:

The fundamental Theorem of Cyclic Groups states that there is exactly one subgroup of G with d elements – namely $\langle g^{n/d} \rangle$. Since n is a prime number p, only two divisors exist for p, which are exclusively 1 and p. Hence there are only two subgroups that exist for \mathbb{Z}_p , which are the trivial subgroup $\{0\}$ and the non-proper subgroup $\langle g \rangle = \mathbb{Z}_p$ under addition modulo p.