1 Introduction to Galois theory assignmens 2, Problem 1

2 Introduction to Galois theory assignmens 2, Problem 2

Let k be a field of characteristic p > 0, $0 \neq a \in k$, $P = X^p - aX - b \in k[X]$, K splitting field of P.

Problem 2.1 Why is K a Galois extension of k? Show that $X^{p-1} - a$ is split over K and its roots together with 0 form a subgroup of K, isomorphic to $\mathbb{Z}/p\mathbb{Z}$.

Solution: Obviously by differential it's separable, hence must be galois. Let x be a root of P and y be a root $X^{p-1} - a$, then by Frobenious mapping:

$$(x+y)^p - a(x+y) - b = P(x) - y(y^{p-1} - a) = y(y^{p-1} - a) = 0$$

So $x + y_i$ where y_i are all roots of $X^{p-1} - a$ are roots of P, because P split, hence $X^{p-1} - a$ must split.(Because $x + y_i \in K$ and $x \in K$)

Because any y_i or 0 induce the following mapping:

$$y_i: x \mapsto x + y_i$$

which is an element of Gal(K/k), it forms a group, and of order p, which is prime, must be cyclic.

Problem 2.2 What do we know about the Galois group of the splitting field L of the polynomial $X^{p-1} - a$ over k?

Solution: It's subfield of K.

Problem 2.3 Let G = Gal(K/k), H = Gal(K/L). Show that for any $g \in G$ and x a root of P, gx - x is either zero or a root of $X^{p-1} - a$; moreover for $g \in H$ this element does not depend on x.

Solution:

$$0 = g(x^p - ax - b) - (x^p - ax - b) = g(x)^p - ag(x) - b - x^p + ax + b$$

= $g(x)^p - x^p - a(g(x) - x) = (gx - x)^p - a(gx - x)$
= $(gx - x)((gx - x)^{p-1} - a)$

hence gx - x = 0 or gx - x is a root of $X^{p-1} - a$.

All roots of P can be written as $x + y_i$, hence $g(x + y_i) - (x + y_i) = gx - x$ for $g \in Gal(K/L)$, hence independent on x.

Problem 2.4 Show that H has either 1 or p elements.

Solution: From 2.3, we have map

$$h \mapsto hx - x$$

whose images are isomorphic to $\mathbb{Z}/p\mathbb{Z}$. Hence must to either trivial or full. \square

Problem 2.5 Prove the equivalence of the following three properties:

- 1. $H = \mathbb{Z}/p\mathbb{Z}$
- 2. P is irreducible over L
- 3. P is irreducible over k

Solution: $1 \to 2$, P is splitting, have to be irreducible, or the degree less than p.

 $2 \to 3$, by 2.1, all Gal(K/k) have already p elements, P have to be irreducible.

 $3 \to 1$, by 2.4, if not, then K = L, impossible for P to be irreducible because $[L:k] \le p-1$.

Problem 2.6 Let $k = \mathbb{F}_p(T)$ (the field of rational functions in one variable and coefficients in \mathbb{F}_p). What is the order of the Galois group of $P(X) = X^p - TX - T$?

Solution: Let $L = k(\sqrt[p-1]{T})$, and P is irreducible over $\mathbb{F}_p[T]$, hence [K:L] = p. Hence the order is p(p-1).

2