$$y_t = \theta y_{t-1} + \varepsilon_t$$

 $H_0$ :  $\theta = 1$  — ряд является нестационарным

- содержит единичный корень,
- описывается процессом случайного блуждания

 $H_1$ :  $|\theta| < 1$  — ряд является стационарным

- не содержит единичный корень,
- описывается стационарным авторегрессионным процессом первого порядка

$$y_t = \theta y_{t-1} + \varepsilon_t$$
$$y_t - y_{t-1} = \theta y_{t-1} - y_{t-1} + \varepsilon_t$$

$$y_t= heta y_{t-1}+arepsilon_t$$
  $y_t-y_{t-1}= heta y_{t-1}-y_{t-1}+arepsilon_t$   $\Delta y_t=( heta-1)*y_{t-1}+arepsilon_t$  Обозначим  $heta-1=b$ .  $\Delta y_t=m b*y_{t-1}+arepsilon_t$ 

$$y_t = \theta y_{t-1} + \varepsilon_t$$

$$y_t - y_{t-1} = \theta y_{t-1} - y_{t-1} + \varepsilon_t$$

$$\Delta y_t = (\theta - 1) * y_{t-1} + \varepsilon_t$$

Обозначим  $\theta - 1 = b$ .  $\Delta y_t = b * y_{t-1} + \varepsilon_t$ 

В этом случае:

 $H_0$ :  $\theta = 1 \Rightarrow b = 0$ . Если ряд содержит единичный корень, то коэффициент b должен быть незначимым.

 $H_1$ :  $|\theta| < 1 \Rightarrow b < 0$ . Если ряд стационарен, то коэффициент b должен быть значимым и отрицательным.

$$\Delta y_t = b * y_{t-1} + \varepsilon_t$$

$$H_0: b = 0. \qquad H_1: b < 0.$$

**Идея теста:** давайте оценим уравнение обычным МНК и проверим значимость коэффициента b при помощи обычной t-статистики:

$$\frac{\hat{b}}{se(\hat{b})}$$

$$\Delta y_t = b * y_{t-1} + \varepsilon_t$$

$$H_0: b = 0. \qquad H_1: b < 0.$$

**Идея теста:** давайте оценим уравнение обычным МНК и проверим значимость коэффициента b при помощи обычной t-статистики:

$$\frac{\hat{b}}{se(\hat{b})}$$

**Проблема:** если верна гипотеза  $H_0$ , то эта статистика не будет иметь t-распределение Стьюдента  $\Rightarrow$  нужны другие критич. значения

# Тестирование стационарности для AR(1): тест Дики — Фуллера (DF)

Оцениваем уравнение:

$$\Delta y_t = b * y_{t-1} + \varepsilon_t$$

$$H_0$$
:  $b = 0$ .  $H_1$ :  $b < 0$ .

Расчетное значение статистики:

$$\hat{\tau} = \frac{\hat{b}}{se(\hat{b})}$$

Сравниваем расчетное значение с критическим значением из специальных таблиц Дики и Фуллера (см., например, табл. 8.1. в Вербике)

# Тестирование стационарности для AR(1): тест Дики — Фуллера (DF)

Вычисляем критическую статистику:  $\hat{\tau} = \frac{\hat{b}}{se(\hat{b})}$ 

Сравниваем расчетное значение с критическим значением из специальных таблиц Дики и Фуллера (см., например, табл. 8.1. в Вербике)

Если расчетное значение отрицательное и меньше критического (то есть по модулю больше!), то гипотеза  $H_0$  отвергается  $\Rightarrow$  делаем вывод о том, что ряд стационарен.

В остальных модификациях теста процедура принятия решения будет аналогичной

**Таблица 8.1.** 1%-ые и 5%-ые критические значения для тестов Дики—Фуллера (Fuller, 1976, р. 373)

|               | Без константы<br>Без тренда |       | Константа<br>Без тренда |       | Константа<br>Тренд |       |
|---------------|-----------------------------|-------|-------------------------|-------|--------------------|-------|
| Объем выборки | 1%                          | 5%    | 1%                      | 5%    | 1%                 | 5%    |
| T=25          | -2,66                       | -1,95 | -3,75                   | -3,00 | -4,38              | -3,60 |
| T = 50        | -2,62                       | -1,95 | -3,58                   | -2,93 | -4,15              | -3,50 |
| T = 100       | -2,60                       | -1,95 | -3,51                   | -2,89 | -4,04              | -3,45 |
| T = 250       | -2,58                       | -1,95 | -3,46                   | -2,88 | -3,99              | -3,43 |
| T = 500       | -2,58                       | -1,95 | -3,44                   | -2,87 | -3,98              | -3,42 |
| $T = \infty$  | -2,58                       | -1,95 | -3,43                   | -2,86 | -3,96              | -3,41 |

$$y_t = \delta + \theta y_{t-1} + \varepsilon_t$$

$$y_t - y_{t-1} = \delta + \theta y_{t-1} - y_{t-1} + \varepsilon_t$$

$$\Delta y_t = \delta + (\theta - 1) * y_{t-1} + \varepsilon_t$$

Обозначим  $\theta - 1 = b$ .

Оцениваем уравнение  $\Delta y_t = \delta + b * y_{t-1} + \varepsilon_t$  Расчетное значение статистики:

$$\hat{\tau} = \frac{\hat{b}}{se(\hat{b})}$$

Сравниваем расчетное значение с критическим значением из специальных таблиц Дики и Фуллера (для теста с константой)

Пример: Логарифм обменного курса доллара США к немецкой марке (2 января 1980 — 21 мая 1987)



Пример: Логарифм обменного курса доллара США к немецкой марке (2 января 1980 — 21 мая 1987)

#### Результаты оценивания в gretl

Тест Дики-Фуллера для I\_DM объем выборки 1866 нулевая гипотеза единичного корня: а = 1

тест с константой

модель: (1-L)y = b0 + (a-1)\*y(-1) + e

коэф. автокорреляции 1-го порядка для е: -0,059

оценка для (а - 1): -0,00125568

тестовая статистика:  $tau_c(1) = -1,19626$ 

Р-значение 0,6782

Пример: Логарифм обменного курса доллара США к немецкой марке (2 января 1980 — 21 мая 1987)

#### Результаты оценивания в gretl

Тест Дики-Фуллера для I\_DM объем выборки 1866 нулевая гипотеза единичного корня: а = 1

тест с константой

модель: (1-L)y = b0 + (a-1)\*y(-1) + e

коэф. автокорреляции 1-го порядка для е: -0,059

оценка для (a - 1): **-0,00125568** 

тестовая статистика:  $tau_c(1) = -1,19626$ 

Р-значение 0,6782

Пример: Логарифм обменного курса доллара США к немецкой марке (2 января 1980 — 21 мая 1987)

#### Результаты оценивания в gretl

Тест Дики-Фуллера для I\_DM объем выборки 1866 нулевая гипотеза единичного корня: а = 1

тест с константой

модель: (1-L)y = b0 + (a-1)\*y(-1) + e

коэф. автокорреляции 1-го порядка для е: -0,059

оценка для (а - 1): -0,00125568

тестовая статистика:  $tau_c(1) = -1,19626$ 

Р-значение 0,6782

Пример: Логарифм обменного курса доллара США к немецкой марке (2 января 1980 — 21 мая 1987)

#### Результаты оценивания в gretl

Тест Дики-Фуллера для I\_DM объем выборки 1866 нулевая гипотеза единичного корня: а = 1

тест с константой

модель: (1-L)y = b0 + (a-1)\*y(-1) + e

коэф. автокорреляции 1-го порядка для е: -0,059

оценка для (а - 1): -0,00125568

тестовая статистика:  $tau_c(1) = -1,19626$ 

Р-значение 0,6782 => нестационарность

#### Тест Дики — Фуллера с константой и трендом

$$y_t = \delta + \theta y_{t-1} + \varphi t + \varepsilon_t$$

 $H_0$ :  $\theta = 1$  — ряд является нестационарным описывается процессом случайного блуждания с дрейфом

Также в этом случае говорят, что ряд содержит стохастический тренд.

 $H_1$ :  $|\theta| < 1$  — ряд является стационарным. При  $|\theta| < 1$  и  $\varphi \neq 0$  ряд  $y_t$  называется стационарным относительно линейного тренда (тренд-стационарным, trend-stationary)

Также в этом случае говорят, что ряд содержит только *детерминированный* тренд.

В этом случае ряд  $z_t = y_t - \varphi t$  стационарен

#### Тест Дики — Фуллера с константой и трендом



#### Тест Дики — Фуллера с константой и трендом

$$y_t = \delta + \theta y_{t-1} + \varphi t + \varepsilon_t$$

$$y_t - y_{t-1} = \delta + \theta y_{t-1} - y_{t-1} + \varphi t + \varepsilon_t$$

$$\Delta y_t = \delta + (\theta - 1) * y_{t-1} + \varphi t + \varepsilon_t$$

Обозначим  $\theta - 1 = b$ .

Оцениваем уравнение  $\Delta y_t = \delta + b * y_{t-1} + \varphi t + \varepsilon_t$  Расчетное значение статистики:

$$\hat{\tau} = \frac{\hat{b}}{se(\hat{b})}$$

Сравниваем расчетное значение с критическим значением из специальных таблиц Дики и Фуллера (для теста с константой и трендом)

# Расширенный тест Дики — Фуллера (Augmented DF-test, ADF-test)

Рассмотрим более общий случай авторегрессионного процесса

$$y_t = \theta_1 * y_{t-1} + \dots + \theta_p * y_{t-p} + \varepsilon_t$$

 $H_0$ : ряд является нестационарным, содержит единичный корень

 $H_1$ : ряд является стационарным процессом AR(p).

#### Расширенный тест Дики — Фуллера

Оцениваем уравнение

$$\Delta y_t = b y_{t-1} + c_1 \Delta y_{t-1} + \dots + c_{p-1} \Delta y_{t-p+1} + \varepsilon_t$$

Расчетное значение статистики:

$$\hat{\tau} = \frac{\hat{b}}{se(\hat{b})}$$

- Аналогично можно осуществлять ADF-тест с добавлением константы и тренда.
- Порядок лага для ADF-теста можно выбирать при помощи информационного критерия Шварца, который мы обсудим на следующей лекции