Equilíbrio Químico

Gabriel Braun

Colégio e Curso Pensi, Coordenação de Química

Nível I

PROBLEMA 1.1

2G02

2G03

Considere as proposições a respeito de uma reação reversível.

- 1. Uma reação para quando atinge o equilíbrio.
- **2.** Uma reação em equilíbrio não é afetada pelo aumento da concentração de produtos.
- **3.** Se a reação começa com maior pressão dos reagentes, a constante de equilíbrio será maior.
- **4.** Se a reação começa com concentrações maiores de reagentes, as concentrações de equilíbrio dos produtos serão maiores.

Assinale a alternativa que relaciona as proposições *corretas*.

A

- B 4
- **C** 1 e 4
- **D** 2 e 4
- **E** 3 e 4

PROBLEMA 1.2

Considere as proposições a respeito de uma reação reversível.

- Em uma reação de equilíbrio, a reação inversa só ocorre quando todos os reagentes tiverem sido convertidos em produtos.
- As concentrações de equilíbrio serão as mesmas se começarmos uma reação com os reagentes puros ou com os produtos puros.
- **3.** As velocidades das reações direta e inversa são iguais no equilíbrio.
- **4.** Se a energia livre de Gibbs é maior do que a energia livre padrão de reação, a reação avança até o equilíbrio.

Assinale a alternativa que relaciona as proposições *corretas*.

A 2

- B 3
- **c** 2 e 3
- **D** 1, 2 e 3
- **E** 2, 3 e 4

PROBLEMA 1.3

2G06

A reação a seguir é conduzida sob 1 atm.

$$NiO(s) + CO(s) \rightleftharpoons Ni(s) + CO_2(g)$$
 $K = 500$

Para a manutenção da temperatura constante até a situação de equilíbrio, devem ser retirados do meio reacional 16,10 kJ de energia por mol de óxido de níquel reagido, na forma de calor.

Assinale a alternativa que mais se aproxima da temperatura em que a reação é conduzida.

- A 1150 K
- **B** 1350 K
- **c** 1550 K
- **D** 1750 K
- **E** 1950 K

Dados

- $S^{\circ}(CO, g) = 251 \text{ J K}^{-1} \text{mol}^{-1}$
- $S^{\circ}(CO_2, g) = 296 J K^{-1} mol^{-1}$
- $S^{\circ}(Ni, s) = 30 J K^{-1} mol^{-1}$
- $S^{\circ}(NiO, s) = 38 J K^{-1} mol^{-1}$

PROBLEMA 1.4

2G08

Considere a reação a 25 °C.

Assinale a alternativa que mais se aproxima da constante de equilíbrio dessa reação.

- A 5×10^{-3}
- c 5×10^1
- $D 5 \times 10^3$
- $\mathsf{E} \quad 5 \times 10^5$

Dados

• $\Delta G_f^{\circ}(HI,g) = 1,70 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$

2G07

Considere a reação a 25 °C.

$$N_2O_4(g) \Longrightarrow 2NO_2(g)$$

Assinale a alternativa que mais se aproxima da constante de equilíbrio dessa reação.

A
$$1.5 \times 10^{-3}$$

B
$$1.5 \times 10^{-1}$$

c
$$1,5 \times 10^{1}$$

D
$$1.5 \times 10^3$$

E
$$1.5 \times 10^5$$

Dados

- $\Delta H_f^{\circ}(N_2O_4, g) = 9,16 \, kJ \, mol^{-1}$
- $\Delta H_f^{\circ}(NO_2, g) = 33,2 \, kJ \, mol^{-1}$
- $S(N_2O_4,g) = 304 \, J \, K^{-1} \, mol^{-1}$
- $S(NO_2, g) = 240 J K^{-1} mol^{-1}$

PROBLEMA 1.6

2G04

Em um cilindro são adicionados 100 bar de SO_2 , O_2 e SO_3 , respectivamente. O sistema é mantido a 25 °C e ocorre a reação:

$$2\,SO_2(g) + O_2(g) \Longrightarrow SO_3(g)$$

Assinale a alternativa que mais se aproxima da energia livre da reação.

$$\mathbf{B} \quad -142\,\mathrm{kJ}\,\mathrm{mol}^{-1}$$

$$-153 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$$

$$-164 \, \text{kJ mol}^{-1}$$

$$-175 \, \text{kJ} \, \text{mol}^{-1}$$

Dados

- $\Delta G_f^{\circ}(SO_2, g) = -300 \,\text{kJ mol}^{-1}$
- $\Delta G_f^{\circ}(SO_3, g) = -371 \,\text{kJ mol}^{-1}$

PROBLEMA 1.7

2G05

Em um cilindro são adicionados 4,2 bar, 1,8 bar e 20 bar de N_2 , H_2 e NH_3 , respectivamente. O sitema é mantido a 400 K e ocorre a reação:

$$N_2(g) + 3H_2(g) \Longrightarrow 2NH_3(g)$$
 $K = 40$

Assinale a alternativa que mais se aproxima da energia livre da reação.

$$-4,5 \text{ kJ mol}^{-1}$$

B
$$-3,6 \, \text{kJ} \, \text{mol}^{-1}$$

$$-2.7 \, \text{kJ} \, \text{mol}^{-1}$$

$$-1,8 \, \text{kJ} \, \text{mol}^{-1}$$

$$\mathbf{E}$$
 $-0.9 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$

Considere as reações a 350 K.

$$\begin{split} N_2(g) + 3\,H_2(g) & \Longrightarrow 2\,NH_3(g) & \qquad K_1 = 36 \\ 4\,NH_3(g) & \Longrightarrow 2\,N_2(g) + 6\,H_2(g) & \qquad K_2 \end{split}$$

Assinale a alternativa que mais se aproxima da constante de equilíbrio K_2 .

PROBLEMA 1.9

2G10

Considere as reações a 350 K.

$$\begin{split} 2\,SO_2(g) + O_2(g) & \Longrightarrow 2\,SO_3(g) & \qquad \quad K_{c,1} = 1\times 10^{12} \\ SO_3(g) & \Longleftrightarrow SO_2(g) + \frac{1}{2}\,O_2(g) & \qquad K_{c,2} \end{split}$$

Assinale a alternativa que mais se aproxima da constante de equilíbrio $K_{\rm c,2}$.

B
$$1 \times 10^{-9}$$

C
$$1 \times 10^{-6}$$

$$1 \times 10^6$$

E
$$1 \times 10^{12}$$

PROBLEMA 1.10

2G11

Considere as reações a 300 K.

$$\begin{split} H_2(g) + Cl_2(g) & \Longrightarrow 2 \, HCl(g) & \qquad K_1 = 4 \times 10^{31} \\ 2 \, BrCl(g) & \Longrightarrow Br_2(g) + Cl_2(g) & \qquad K_2 = 400 \\ 2 \, BrCl(g) + H_2(g) & \Longrightarrow Br_2(g) + 2 \, HCl(g) & \qquad K_3 \end{split}$$

Assinale a alternativa que mais se aproxima da constante de equilíbrio K_3 .

A
$$1.0 \times 10^{29}$$

B
$$1.6 \times 10^{29}$$

$$1.0 \times 10^{34}$$

D
$$1.6 \times 10^{34}$$

E
$$4.0 \times 10^{34}$$

Considere as reações a 500 K.

$$H_2(g) + I_2(g) \Longrightarrow 2\,HI(g)$$

$$K_1 = 160$$

$$N_2(g) + 3 H_2(g) \Longrightarrow 2 NH_3(g)$$

$$K_2 = 3.6 \times 10^{-2}$$

2G12

$$2\,NH_3(g) + 3\,I_2(g) \Longrightarrow N_2(g) + 6\,HI(g) \quad \, K_3$$

Assinale a alternativa que mais se aproxima da constante de equilíbrio K_3 .

- **B** $7,1 \times 10^5$
- $1,1 \times 10^8$
- **D** $3,1 \times 10^9$
- **E** 8.8×10^{10}

PROBLEMA 1.12

2G13

Considere a reação a 500 K.

$$2 \operatorname{NOCl}(g) \Longrightarrow 2 \operatorname{NO}(g) + \operatorname{Cl}_2(g) \quad K = 1.8 \times 10^{-2}$$

Assinale a alternativa que mais se aproxima da constante de equilíbrio K_c para essa reação.

- **A** 3.2×10^{-5}
- **B** 4.3×10^{-4}
- **C** 5.4×10^{-3}
- **D** 6.5×10^{-2}
- **E** 7.6×10^{-1}

PROBLEMA 1.13

2G14

Considere a reação a 1073 K.

$$CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$$
 $K = 167$

Assinale a alternativa que mais se aproxima da constante de equilíbrio K_c para essa reação.

- **A** $1,9 \times 10^{-2}$
- **B** $1,9 \times 10^{-1}$

c 1,9

- **D** $1,9 \times 10^{1}$
- **E** $1,9 \times 10^2$

Em um recipiente contendo NH₃, N₂, H₂ a 400 K o equilíbrio é estabelecido:

$$N_2(g) + 3\,H_2(g) \Longrightarrow 2\,NH_3(g) \quad \, K = 40$$

No equilíbrio, as pressões de NH₃ e H₂ são 380 torr e 190 torr, respectivamente.

Assinale a alternativa que mais se aproxima da concentração molar de N_2 no equilíbrio.

- A 106 torr
- B 205 torr
- **c** 304 torr
- **D** 403 torr
- **E** 502 torr

PROBLEMA 1.15

2G16

Em um recipiente contendo HI, H₂, I₂ a 500 K o equilíbrio é estabelecido:

$$H_2(g) + I_2(g) \Longrightarrow 2 HI(g)$$
 $K = 160$

No equilíbrio, as concentrações de HI e $\rm I_2$ são $40\,mmol\,L^{-1}$ e 5 mmol $\rm L^{-1}$, respectivamente.

Assinale a alternativa que mais se aproxima da concentração molar de H_2 no equilíbrio.

- \mathbf{A} 1 mmol \mathbf{L}^{-1}
- ${\bf B}$ 2 mmol ${\bf L}^{-1}$
- \mathbf{C} 3 mmol L^{-1}
- $4 \,\mathrm{mmol}\,\mathrm{L}^{-1}$
- \mathbf{E} 5 mmol L^{-1}

2G17

As concentrações dos reagentes e produtos de uma reação foram monitoradas ao longo do tempo.

Assinale a alternativa que mais se aproxima da constante de equilíbrio dessa reação balanceada com os menores coeficientes inteiros.

- **A** 1,35
- **B** 1,64
- **c** 1,86

- **D** 2,03
- **E** 2,35

As pressões parciais dos reagentes e produtos de uma reação foram monitoradas ao longo do tempo.

Assinale a alternativa que mais se aproxima da constante de equilíbrio dessa reação balanceada com os menores coeficientes inteiros.

- **A** 0,016
- **B** 0,29

- **c** 0,46
- **D** 1,6

E 29

PROBLEMA 1.18

2G19

Em um recipiente são adicionados 3,3 mbar de BrCl. O sistema é mantido a 500 K e o equilíbrio é estabelecido:

$$2\,BrCl\left(g\right) \Longrightarrow Br_{2}(g) + Cl_{2}(g) \quad \ K = 36$$

Assinale a alternativa que mais se aproxima da pressão parcial de Br₂ na mistura em equilíbrio.

- A 1,0 mbar
- B 1,5 mbar
- **c** 2,0 mbar
- **D** 2,5 mbar
- **E** 3,0 mbar

Uma amostra de 3,12 g de PCl_5 , é adicionada em um recipiente de 500 mL. O sistema é mantido a 250 °C e o equilíbrio é estabelecido:

$$PCl_5(g) \Longrightarrow PCl_3(g) + Cl_2(g)$$
 $K = 80$

Assinale a alternativa que mais se aproxima da pressão parcial de PCl_5 na mistura em equilíbrio.

- A 10 mbar
- B 20 mbar
- c 30 mbar
- **D** 40 mbar
- E 50 mbar

PROBLEMA 1.20

2G21

2G20

Uma amostra de $25\,g$ de carbamato de amônio, $NH_4(NH_2CO_2)$, é adicionada em um recipiente de $250\,mL$. O sistema é mantido a $25\,^{\circ}C$ e o equilíbrio é estabelecido:

$$NH_4(NH_2CO_2)(s) \Longrightarrow 2NH_3(g) + CO_2(g)$$

No equilíbrio, a massa de dióxido de carbono é 17,4 mg. **Assinale** a alternativa que mais se aproxima da constante de equilíbrio da reação.

- **A** 1.6×10^{-8}
- **B** 2.3×10^{-8}
- $1,6 \times 10^{-4}$
- **D** 2.3×10^{-4}
- **E** 5.7×10^{-4}

PROBLEMA 1.21

2G22

A um recipiente de 5 L são adicionados 2 mol de NH3, H_2S e de NH4HS. O sistema é mantido a 35 °C e o equilíbrio é estabelecido:

$$NH_3(g) + H_2S(g) \Longrightarrow NH_4HS(s)$$
 $K = 400$

Assinale a alternativa que mais se aproxima da massa de NH_4HS no equilíbrio.

- **A** 132 g
- **B** 152 g
- **c** 172 g
- **D** 192 g
- **E** 212 g

Quando NaHCO $_3$ sólido é colocado em um recipiente rígido de 2,5 L e aquecido a 160 °C o equilíbrio é estabelecido:

$$2 \text{ NaHCO}_3(s) \Longrightarrow \text{Na}_2\text{CO}_3(s) + \text{CO}_2(g) + \text{H}_2\text{O}(g)$$

No equilíbrio, a pressão total é 8 bar. Em um segundo experimento, é adicionada a mesma massa de sólido em um recipiente de mesmo volume com 1 bar de $\rm CO_2$.

Assinale a alternativa que mais se aproxima da pressão de equilíbrio de CO₂ no segundo experimento.

- **A** 2,5 bar
- **B** 3,5 bar
- **c** 4,5 bar
- **D** 5,5 bar
- **E** 6,5 bar

PROBLEMA 1.23

2G24

Considere reação exotérmica em fase gasosa, inicialmente conduzida a 400 °C sob 200 atm.

$$2\mathbf{A}(g) + \mathbf{B}(g) \rightleftharpoons \mathbf{C}(g) + \mathbf{D}(g)$$

Considere as proposições.

- Conduzir a reação a 600 °C gera uma fração maior de C e D.
- 2. Conduzir a reação a 600 °C faz com que o equilíbrio seja alcançado em menos de 60 min.
- Conduzir a reação a uma pressão de 100 atm gera uma fração menor de C e D.
- Remover C e D do meio reacional após o equilíbrio e então retomar a reação permitem obter uma fração total maior de C e D.
- A 2 e 3
- **B** 2 e 4
- **c** 3 e 4
- D 2, 3 e 4
- **E** 1, 2, 3 e 4

A amônia é produzida em escala industrial pelo processo Haber-Bosch. A reação de formação exotérmica a partir de hidrogênio e nitrogênio é conduzida a $450\,^{\circ}$ C sob $200\,$ atm.

- 1. O aumento da pressão no reator, mediante adição de um gás inerte, aumenta o rendimento do processo.
- **2.** O uso de um catalisador mais eficiente aumenta o rendimento do processo.
- Uma vez atingido o equilíbrio, não ocorrem mais colisões efetivas entre moléculas de hidrogênio e nitrogênio.
- **4.** A redução da temperatura no reator diminui a velocidade da reação, mas favorece a formação de amônia.
- Δ 3

- B
- **C** 1 e 4
- **D** 2 e 4
- **E** 3 e 4

PROBLEMA 1.25

2G26

2G25

Em um reator mantido à temperatura constante, PCl_5 encontrase em equilíbrio com 1 atm de Cl_2 e 2 atm de PCl_3 .

$$PCl_5 \Longrightarrow PCl_3 + Cl_2$$
 $K = 4$

Assinale a alternativa que apresenta a nova pressão de equilíbrio de PCl₅ após adição de mais 2 atm desse gás ao reator.

- **A** 1,0 atm
- **B** 1,5 atm
- **c** 2,0 atm
- **D** 2,5 atm
- **E** 3,0 atm

PROBLEMA 1.26

2G27

As pressões parciais de uma mistura de $N_2O_4(g)$ e $NO_2(g)$ em equilíbrio são 0,34 atm e 1,2 atm. O volume do recipiente é duplicado mantendo a temperatura constante.

 $\begin{tabular}{ll} \textbf{Assinale} a alternativa que mais se aproxima da pressão parcial de N_2O_4 na mistura em equilíbrio. \end{tabular}$

- **A** 0,06 atm
- **B** 0,12 atm
- **c** 0,18 atm
- **D** 0,24 atm
- **E** 0,30 atm

Considere a reação de síntese da amônia:

$$N_2(g) + 3\,H_2(g) \Longrightarrow 2\,NH_3(g) \quad K_{298\,K} = 6.8 \times 10^5$$

Assinale a alternativa que mais se aproxima da constante de equilíbrio da reação a 400 K.

- $-100 \, \text{kJ} \, \text{mol}^{-1}$
- $-50 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
- \mathbf{c} 25 kJ mol⁻¹
- $D 50 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
- \mathbf{E} 100 kJ mol⁻¹

Dados

• $\Delta H_f^{\circ}(NH_3, g) = -46,1 \text{ kJ mol}^{-1}$

PROBLEMA 1.28

2G29

Considere a reação:

$$2\,SO_2(g) + O_2(g) \Longrightarrow 2\,SO_3(g)$$

A constante de equilíbrio dessa reação é 4×10^{24} a $27\,^{\circ}\text{C}$ e 2,5 \times 10^{10} a $227\,^{\circ}\text{C}$.

Assinale a alternativa que mais se aproxima da variação de entalpia da reação.

- \mathbf{A} $-203 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
- $\mathbf{B} -74 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
- $-8 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
- \mathbf{D} 8 kJ mol⁻¹
- E 203 kJ mol⁻¹

Equilíbrio Químico | Gabriel Braun, 2022

Nível II

PROBLEMA 2.1 2G01

Enunciado

Gabarito

Nível I

1. B	2. C	3. A	4. B	5. B
6. C	7. C	8. B	9. C	10. D
11. D	12. B	13. C	14. C	15. B
16	17. A	18. D	19. D	20. D
21. D	22. C	23. D	24. B	25. B
26. B	27. D	28. A		

Nível II

1. -