

Data Science & ML Course Lesson #23 Kaggle Fundamentals

Ivanovitch Silva December, 2018

Update from repository

git clone https://github.com/ivanovitchm/datascience2machinelearning.git

Or

git pull

Agenda

- 1. Getting Started with Kaggle
- 2. Feature Preparation, Selection and Engineering
- 3. Model Selection and Tuning
- 4. Creating a Kaggle Workflow

Introduction to Kaggle

- Approach a Kaggle competition.
- Explore the competition data and learn about the competition topic.
- Prepare data for machine learning.
- Train a model.
- Measure the accuracy of your model.
- Prepare and make your first Kaggle submission.

Titanic: Machine Learning from Disaster

Start here! Predict survival on the Titanic and get familiar with ML basics

Kaggle \cdot 10,331 teams \cdot Ongoing

Overview Data Kernels Discussion Leaderboard Rules

Data Sources

⊞ gender_submission.csv 418 x 2

■ test.csv 418 x 11

■ train.csv 891 x 12

Exploring the Data

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

Exploring the Data

Exploring and Converting the Age Column

```
1 train["Age"].describe()
         714,000000
count
          29.699118
mean
std
          14.526497
min
           0.420000
25%
          20.125000
50%
          28.000000
75%
          38.000000
          80.000000
max
Name: Age, dtype: float64
```

1 train.Age.isnull().sum()

177

Exploring and Converting the Age Column

Exploring and Converting the Age Column

Preparing our Data for Machine Learning

- Sex
- Pclass
- Age
- Age_categories

- Before we build our model, we need to prepare these columns for machine learning.
- Most machine learning algorithms can't understand text labels, so we have to convert our values into numbers.

Preparing our Data for Machine Learning

Pclass

Pclass_1 Pclass_2 Pclass_3

0	0	1
1	0	0
0	0	1
1	0	0
0	0	1
0	0	1
1	0	0
0	0	1
0	0	1
0	1	0

Creating our First Machine Learning Model

The scikit-learn workflow consists of **four main steps**:

- Instantiate (or create) the specific machine learning model you want to use
- Fit the model to the training data
- Use the model to make predictions
- Evaluate the accuracy of the predictions

Creating our First Machine Learning Model

Creating our First Machine Learning Model

```
holdout = test # from now on we will refer to this
                  # dataframe as the holdout data
   from sklearn.model selection import train test split
   columns = ['Pclass 1', 'Pclass 2', 'Pclass 3', 'Sex female', 'Sex male',
7 8 9
          'Age categories Missing', 'Age categories_Infant',
          'Age categories Child', 'Age categories Teenager',
          'Age categories Young Adult', 'Age categories Adult',
10
          'Age categories Senior']
11
  all X = train[columns]
   all y = train['Survived']
14
  train_X, test_X, train y, test y = train test split(
       all X, all y, test size=0.20, random state=0)
16
```

Making Predictions and Measuring their Accuray

```
from sklearn.metrics import accuracy_score

lr = LogisticRegression()
lr.fit(train_X, train_y)
predictions = lr.predict(test_X)

accuracy = accuracy_score(test_y, predictions)
print(accuracy)
```

0.8100558659217877

Our model's prediction	The actual value	Correct
0	0	Yes
1	0	No
0	1	No
1	1	Yes
1	1	Yes

Using cross validation for more accurate error measurement

Using cross validation for more accurate error measurement

```
from sklearn.model_selection import cross_val_score
import numpy as np

lr = LogisticRegression()
scores = cross_val_score(lr, all_X, all_y, cv=10)
accuracy = np.mean(scores)
print(scores)
print(accuracy)
```

```
[0.8 0.81111111 0.7752809 0.87640449 0.80898876 0.78651685 0.76404494 0.76404494 0.83146067 0.80681818] 0.8024670865963002
```


Making Predictions on Unseen Data

Creating a Submission File

PassengerId	Survived
892	0
893	1
894	0

Making our first submission to kaggle

			•				
7999	new	kingsning		0.75598	2	13h	
8000	new	hbruhn		0.75598	2	13h	
8001	new	adam ardiansyah	9	0.75598	1	10h	
8002	new	Penguin9		0.75598	10	6h	
8003	new	Meghna Ayyar		0.75598	4	10h	
8004	new	gauravgupta12	9	0.75598	3	3h	
8005	new	Raph_Partouche	9	0.75598	1	3h	
8006	new	IvanovitchSilva		0.75598	1	~10s	
Your Best Entry ↑ Your submission scored 0.75598, which is not an improvement of your best score. Keep trying!							
8007	▼ 878	Sudarshan Kannan	9	0.75119	7	2mo	
8008	▼ 878	Raunak Kumar		0.75119	1	2mo	
8009	▼ 878	cyrilb38	9	0.75119	1	2mo	
8010	▼ 878	simon 27	9	0.75119	3	2mo	

Next Steps

Improving the features:

- Feature Engineering: Create new features from the existing data.
- Feature Selection: Select the most relevant features to reduce noise and overfitting.

• Improving the model:

- Model Selection: Try a variety of models to improve performance.
- Hyperparameter Optimization: Optimize the settings within each particular machine learning model.

Feature preparation: age, pclass, sex

```
def process_age(df):
    df["Age"] = df["Age"].fillna(-0.5)
    cut_points = [-1,0,5,12,18,35,60,100]
    label names = ["Missing","Infant","Child",
                   "Teenager", "Young Adult", "Adult", "Senior"]
    df["Age_categories"] = pd.cut(df["Age"],cut_points,labels=label_names)
    return df
def create_dummies(df,column_name):
    dummies = pd.get_dummies(df[column_name],prefix=column_name)
    df = pd.concat([df,dummies],axis=1)
    return df
train = process_age(train)
holdout = process age(holdout)
for column in ["Age_categories","Pclass","Sex"]:
    train = create_dummies(train,column)
    holdout = create dummies(holdout,column)
```


Preparing more features

	SibSp	Parch	Fare	Cabin	Embarked
count	891.000000	891.000000	891.000000	204	889
unique	NaN	NaN	NaN	147	3
top	NaN	NaN	NaN	C23 C25 C27	S
freq	NaN	NaN	NaN	4	644
mean	0.523008	0.381594	32.204208	NaN	NaN
std	1.102743	0.806057	49.693429	NaN	NaN
min	0.000000	0.000000	0.000000	NaN	NaN
25%	0.000000	0.000000	7.910400	NaN	NaN
50%	0.000000	0.000000	14.454200	NaN	NaN
75%	1.000000	0.000000	31.000000	NaN	NaN
max	8.000000	6.000000	512.329200	NaN	NaN

```
1 train[columns].isnull().sum()
SibSp
Parch
Fare
Cabin
             687
Embarked
dtype: int64
  1 holdout[columns].isnull().sum()
SibSp
Parch
Fare
Cabin
             327
Embarked
dtype: int64
```

Preparing more features

```
1 from sklearn.preprocessing import minmax scale
2 # The holdout set has a missing value in the Fare column which
 3 # we'll fill with the mean.
4 holdout["Fare"] = holdout["Fare"].fillna(train["Fare"].mean())
 5 columns = ["SibSp", "Parch", "Fare"]
  train["Embarked"] = train["Embarked"].fillna("S")
  holdout["Embarked"] = holdout["Embarked"].fillna("S")
 9
10 train = create dummies(train, "Embarked")
  holdout = create dummies(holdout, "Embarked")
12
13 for col in columns:
       train[col + " scaled"] = minmax scale(train[col])
14
      holdout[col + " scaled"] = minmax scale(holdout[col])
15
```


Determining the most relevant features

lr = LogisticRegression()
lr.fit(train_X,train_y)
coefficients = lr.coef_

Training a model using relevant features

0.8148019521053229

When you submit it to Kaggle, you'll see that the store is 77.33%

Engineering a new feature using binning

Engineering features from text columns

```
Cabin
                                                                           Name
                                                      772 Mack, Mrs. (Mary)
                                                                                                 E77
                                                           Navratil, Mr. Michel ("Louis M Hoffman")
                                                                                                 F2
                                                           Calderhead, Mr. Edward Pennington
                                                                                                 E24
                                                           Potter, Mrs. Thomas Jr (Lily Alexenia Wilson)
                                                                                                 C50
titles = {
                                                      21
                                                           Beesley, Mr. Lawrence
                                                                                                 D56
      "Mme":
                            "Mrs",
                                                      456
                                                           Millet, Mr. Francis Davis
                                                                                                 E38
      "Ms":
                            "Mrs",
                                                      97
                                                           Greenfield, Mr. William Bertram
                                                                                                 D10 D12
      "Mrs":
                            "Mrs",
                                                          Harrison, Mr. William
                                                                                                 B94
      "Countess":
                            "Royalty",
                                                      393
                                                          Newell, Miss. Marjorie
                                                                                                 D36
                                                           Rothes, the Countess. of (Lucy Noel Martha Dye...
                                                                                                 B77
      "Lady":
                            "Royalty"
extracted titles = train["Name"].str.extract('([A-Za-z]+)\.', expand=False)
train["Title"] = extracted titles.map(titles)
```

Finding Correlated Features

Collinearity

Finding Correlated Features

Final Feature Selection using RFECV

```
1 from sklearn.feature selection import RFECV
   columns = ['Age categories Missing', 'Age categories Infant',
          'Age categories Child', 'Age categories Young Adult',
4 5 6 7 8 9
          'Age categories Adult', 'Age categories Senior', 'Pclass 1', 'Pclass 3',
          'Embarked C', 'Embarked Q', 'Embarked S', 'SibSp scaled',
          'Parch scaled', 'Fare categories 0-12', 'Fare categories 50-100',
          'Fare categories 100+', 'Title Miss', 'Title Mr', 'Title Mrs',
          'Title Officer', 'Title Royalty', 'Cabin type B', 'Cabin type C',
          'Cabin type D', 'Cabin type E', 'Cabin type F', 'Cabin type G',
10
          'Cabin type T', 'Cabin type Unknown']
11
12
13 all X = train[columns]
14 all y = train["Survived"]
15 | lr = LogisticRegression()
16 selector = RFECV(lr,cv=10)
   selector.fit(all X,all y)
18
19 optimized columns = all X.columns[selector.support]
```

Training a model using our optimized columns

4014				0.70400	0	101-
4014	new	warrior2005		0.78468	3	10h
4015	new	Manoj reddy		0.78468	1	10h
4016	new	CharlieStElmo	•	0.78468	17	8h
4017	▲ 752	Topornin Dmitry	•	0.78468	8	7h
4018	1 072	SuryaveerSingh		0.78468	8	4h
4019	new	Monster Zhong		0.78468	2	1h
4020	new	IvanovitchSilva		0.78468	3	~10s

You advanced 1,983 places on the leaderboard!

Your submission scored 0.78468, which is an improvement of your previous score of 0.77033. Great job!

Next Steps

Here are some ideas that you can use to work with features for this competition:

- Use SibSp and Parch to explore total relatives onboard.
- Create combinations of multiple columns, for instance Pclass +
 Sex.
- See if you can extract useful data out of the Ticket column.
- Try different combinations of features to see if you can identify features that overfit less than others.
- we'll look at selecting and optimizing different models to improve our score

Model	Cross-validation score	Kaggle score
Previous best Kaggle score	82.36%	78.48%
Logistic regression baseline	82.38%	
K-nearest neighbors, k == 1	78.57%	
K-nearest neighbors, k == 19	82.38%	
K-nearest neighbors, best model from grid search	82.82%	75.59%
Random forests, default hyperparameters	80.70%	
Random forests, best model from grid search	84.28%	77.55%

