

Integral Cryptanalysis of WARP based on Monomial Prediction

Hosein Hadipour Maria Eichlseder FSE 2023 - Kobe, Japan

Motivation and Our Contributions

- Motivation
 - **⊘** Integral analysis of WARP
- Contributions
 - Providing a generic SAT model for integral analysis based on monomial prediction
 - Our model takes the key schedule into accoun
 - We proposed a tool for key-recovery taking the FFT technique into account
 - Thanks to our tools, we improved the integral attack of WARP by 11 rounds

Motivation and Our Contributions

- Motivation
 - **⊘** Integral analysis of WARP
- Contributions
 - Providing a generic SAT model for integral analysis based on monomial prediction
 - Our model takes the key schedule into account
 - ❖ We proposed a tool for key-recovery taking the FFT technique into account
 - ◆ Thanks to our tools, we improved the integral attack of WARP by 11 rounds

Outline

- Boolean Functions and Integral Analysis
- 2 Monomial Prediction and Our SAT Model
- 3 Application of Our Modeling to Integral Analysis of WARP
- 4 Key-Recovery
- 5 Conclusion

Boolean Functions and Integral Analysis

$$\bigcirc$$
 $a_{\boldsymbol{u}}(\boldsymbol{k}) = \sum_{\boldsymbol{x} \leq \boldsymbol{u}} f(\boldsymbol{k}, \boldsymbol{x})$

- \implies zero-sum: $\exists u, s.t. \forall k : a_u(k) = 0$
- \bigoplus one-sum: $\exists u, s.t. \forall k : a_u(k) = 1$

$$\odot a_{\boldsymbol{u}}(\boldsymbol{k}) = \sum_{\boldsymbol{x} \leq \boldsymbol{u}} f(\boldsymbol{k}, \boldsymbol{x})$$

- \Leftrightarrow zero-sum: $\exists u, s.t. \forall k : a_u(k) = 0$
- \bigoplus one-sum: $\exists u, s.t. \forall k : a_u(k) = 1$

$$\bigcirc a_{u}(k) = \sum_{x \leq u} f(k, x)$$

- \implies zero-sum: $\exists u, s.t. \forall k : a_u(k) = 0$
- \bigcirc one-sum: $\exists u, s.t. \forall k : a_u(k) = 1$

$$\bigotimes y = f(\mathbf{k}, \mathbf{x}) = \sum_{\mathbf{u} \in \mathbb{F}_2^n} \mathbf{a}_{\mathbf{u}}(\mathbf{k}) \cdot \mathbf{x}^{\mathbf{u}}$$

$$\Theta$$
 $a_{\boldsymbol{u}}(\boldsymbol{k}) = \sum_{\boldsymbol{x} \leq \boldsymbol{u}} f(\boldsymbol{k}, \boldsymbol{x})$

♠ Which monomial is key-independent in the ANF?

$$\Leftrightarrow$$
 zero-sum: $\exists u, s.t. \forall k : a_u(k) = 0$

$$\bigoplus$$
 one-sum: $\exists u, s.t. \forall k : a_u(k) = 1$

$$ext{ } ext{ } y = f(\mathbf{k}, \mathbf{x}) = \sum_{\mathbf{u} \in \mathbb{F}_2^n} \mathbf{a}_{\mathbf{u}}(\mathbf{k}) \cdot \mathbf{x}^{\mathbf{u}}$$

$$\Theta$$
 $a_{\boldsymbol{u}}(\boldsymbol{k}) = \sum_{\boldsymbol{x} \leq \boldsymbol{u}} f(\boldsymbol{k}, \boldsymbol{x})$

- Which monomial is key-independent in the ANF?
 - \Leftrightarrow zero-sum: $\exists u, s.t. \forall k : a_u(k) = 0$
 - \bigoplus one-sum: $\exists u, s.t. \forall k : a_{u}(k) = 1$

Monomial Prediction and Our SAT Model

Core Idea of Monomial Prediction [Hu+20]

Core Idea

The absence (or presence) of a monomial in the ANF of a composite function can be checked by tracking the propagation of the given monomial through the building blocks of composite functions.

From Monomial Trails to Integral Distinguisher

From Monomial Trails to Integral Distinguisher

- $m{\sigma}^*$ If $\exists m{u}$ s.t. $m{k}^{m{w}} m{x}^{m{u}} \not \hookrightarrow m{y}^{m{v}}$ for all $m{w} \in \mathbb{F}_2^k$ then $m{a}_{m{u}}(m{k}) = 0$ (zero-sum)

From Monomial Trails to Integral Distinguisher

- \bullet If $\exists u$ s.t. $k^w x^u \not \rightsquigarrow y^v$ for all $w \in \mathbb{F}_2^k$ then $a_u(k) = 0$ (zero-sum)
- \bullet If $\exists u$ s.t. $k^w x^u \not\rightarrow y^v$ for all $w \in \mathbb{F}_2^k \setminus \{0\}$ then $a_u(k) = \text{constant}$ (zero/one-sum)

$$k^{w} \xrightarrow{k}$$
 $x^{u} \xrightarrow{n} y^{v}$
 $y^{v} = \sum_{u \in \mathbb{F}_{2}^{n}} \sum_{v \in \mathbb{F}_{2}^{k}} a_{u,v} k^{v} x^{u} = \sum_{u \in \mathbb{F}_{2}^{n}} a_{u}(k) \cdot x^{u}$

- ${f P}$ Model the propagation of monomial trails through the building blocks by a CNF clause
- Arr Main variables are the monomial exponents, i.e., u, w, v, \ldots not x, k, y, \ldots
- \clubsuit Fix u to a certain vector and set v to e_i (w should be a free variable but non-zero)
- \triangle Any possible solution of the model is a monomial trail from $k^w x^u$ to y^v
- If the model is impossible, then $k^w x^u \not\to y^v$ for all $w \in \mathbb{F}_2^k$, and $a_u(k) = \text{constant}$

$$\mathbf{k}^{w} \xrightarrow{k}$$
 $\mathbf{x}^{u} \xrightarrow{n} \mathbf{y}^{v} \qquad \mathbf{y}^{v} = \sum_{\mathbf{u} \in \mathbb{F}_{2}^{n}} \sum_{\mathbf{v} \in \mathbb{F}_{2}^{k}} a_{\mathbf{u},\mathbf{v}} \mathbf{k}^{v} \mathbf{x}^{u} = \sum_{\mathbf{u} \in \mathbb{F}_{2}^{n}} a_{\mathbf{u}}(\mathbf{k}) \cdot \mathbf{x}^{u}$

- ${f P}$ Model the propagation of monomial trails through the building blocks by a CNF clause
- Main variables are the monomial exponents, i.e., u, w, v, \ldots not x, k, y, \ldots
- \clubsuit Fix u to a certain vector and set v to e_i (w should be a free variable but non-zero)
- f A Any possible solution of the model is a monomial trail from $k^w x^u$ to y^v
- If the model is impossible, then $k^w x^u \not\to y^v$ for all $w \in \mathbb{F}_2^k$, and $a_u(k) = \text{constant}$

$$\mathbf{k}^{w} \xrightarrow{k}$$
 $\mathbf{x}^{u} \xrightarrow{n} \mathbf{y}^{v} \qquad \mathbf{y}^{v} = \sum_{\mathbf{u} \in \mathbb{F}_{2}^{n}} \sum_{\mathbf{v} \in \mathbb{F}_{2}^{k}} a_{\mathbf{u},\mathbf{v}} \mathbf{k}^{v} \mathbf{x}^{u} = \sum_{\mathbf{u} \in \mathbb{F}_{2}^{n}} a_{\mathbf{u}}(\mathbf{k}) \cdot \mathbf{x}^{u}$

- ${\mathcal V}$ Model the propagation of monomial trails through the building blocks by a CNF clause
- Main variables are the monomial exponents, i.e., u, w, v, \ldots not x, k, y, \ldots
- \clubsuit Fix u to a certain vector and set v to e_i (w should be a free variable but non-zero)
- f A Any possible solution of the model is a monomial trail from $k^w x^u$ to y^v
- If the model is impossible, then $k^w x^u \not\to y^v$ for all $w \in \mathbb{F}_2^k$, and $a_u(k) = \text{constant}$

$$\mathbf{k}^{w} \xrightarrow{k}$$
 $\mathbf{x}^{u} \xrightarrow{n} \mathbf{y}^{v} \qquad \mathbf{y}^{v} = \sum_{\mathbf{u} \in \mathbb{F}_{2}^{n}} \sum_{\mathbf{v} \in \mathbb{F}_{2}^{k}} a_{\mathbf{u},\mathbf{v}} \mathbf{k}^{v} \mathbf{x}^{u} = \sum_{\mathbf{u} \in \mathbb{F}_{2}^{n}} a_{\mathbf{u}}(\mathbf{k}) \cdot \mathbf{x}^{u}$

- ${\mathcal V}$ Model the propagation of monomial trails through the building blocks by a CNF clause
- Main variables are the monomial exponents, i.e., u, w, v, \ldots not x, k, y, \ldots
- \clubsuit Fix u to a certain vector and set v to e_i (w should be a free variable but non-zero)
- f A Any possible solution of the model is a monomial trail from $k^w x^u$ to y^v
- If the model is impossible, then $k^w x^u \not\to y^v$ for all $w \in \mathbb{F}_2^k$, and $a_u(k) = \text{constant}$

$$\mathbf{k}^{w} \xrightarrow{k}$$
 $\mathbf{x}^{u} \xrightarrow{n} \mathbf{y}^{v} \qquad \mathbf{y}^{v} = \sum_{\mathbf{u} \in \mathbb{F}_{2}^{n}} \sum_{\mathbf{v} \in \mathbb{F}_{2}^{k}} a_{\mathbf{u},\mathbf{v}} \mathbf{k}^{v} \mathbf{x}^{u} = \sum_{\mathbf{u} \in \mathbb{F}_{2}^{n}} a_{\mathbf{u}}(\mathbf{k}) \cdot \mathbf{x}^{u}$

- ${f P}$ Model the propagation of monomial trails through the building blocks by a CNF clause
- \bowtie Main variables are the monomial exponents, i.e., u, w, v, \ldots not x, k, y, \ldots
- \clubsuit Fix u to a certain vector and set v to e_i (w should be a free variable but non-zero)
- **A** Any possible solution of the model is a monomial trail from $k^w x^u$ to y^v
- If the model is impossible, then $k^w x^u \not\to y^v$ for all $w \in \mathbb{F}_2^k$, and $a_u(k) = \text{constant}$

$$\mathbf{k}^{w} \xrightarrow{k}$$
 $\mathbf{x}^{u} \xrightarrow{n} \mathbf{y}^{v} \qquad \mathbf{y}^{v} = \sum_{\mathbf{u} \in \mathbb{F}_{2}^{n}} \sum_{\mathbf{v} \in \mathbb{F}_{2}^{k}} a_{\mathbf{u},\mathbf{v}} \mathbf{k}^{v} \mathbf{x}^{u} = \sum_{\mathbf{u} \in \mathbb{F}_{2}^{n}} a_{\mathbf{u}}(\mathbf{k}) \cdot \mathbf{x}^{u}$

- P Model the propagation of monomial trails through the building blocks by a CNF clause
- \bowtie Main variables are the monomial exponents, i.e., u, w, v, \ldots not x, k, y, \ldots
- \clubsuit Fix u to a certain vector and set v to e_i (w should be a free variable but non-zero)
- **A** Any possible solution of the model is a monomial trail from $k^w x^u$ to y^v
- If the model is impossible, then $k^w x^u \not \to y^v$ for all $w \in \mathbb{F}_2^k$, and $a_u(k) = \text{constant}$

X	S(x)				
0	С				
0 1	a				
2	d				
2	3				
4	е				
5	b				
6	f				
6 7	f 7				
8	8				
9	9				
a	1				
ъ	5				
С	0				
d	5 0 2 4 6				
е	4				
f	6				

Х	S(x)
0	С
1	a
1 2 3	d
3	3
4 5	е
5	b
6	f
7	f 7
6 7 8 9	8
9	9
a	1
b	5
С	0
d	2
е	0 2 4 6
f	6

u\v	0	1	2	3	4	5	6	7	8	9	a	b	С	d	е	f
0	1				1				1				1			
1			1		1						1		1			
2		1				1				1				1		
3				1		1			1	1	1			1		
4			1				1				1				1	
5		1	1	1			1			1	1	1			1	
6				1				1				1				1
7		1			1	1	1			1						1
8					1								1			
9		1	1		1					1	1		1			
a						1			1	1				1		
ъ		1		1	1				1		1			1		
С			1				1		1		1				1	
d				1			1				1	1			1	
е		1		1	1			1	1			1				1
f																1

X	S(x)			
0	С	(,,), ,,), ,,)		
1	a	$(u_2 \vee \neg v_1 \vee \neg v_3)$	$\wedge \; (\neg u_1 \vee \neg v_0 \vee \neg v_1 \vee v_2)$	$\wedge (\neg u_0 \vee \neg u_1 \vee \neg u_2 \vee \neg v_2 \vee v_3)$
2	d	$\wedge (u_2 \vee u_3 \vee \neg v_3)$	$\wedge \; (\neg u_0 \vee \neg u_1 \vee \neg u_3 \vee v_2)$	$\wedge (\neg u_0 \vee \neg u_3 \vee v_0 \vee \neg v_1 \vee \neg v_3)$
3	3	$\wedge \; (u_1 \vee \neg v_1 \vee \neg v_2)$	$\wedge (\neg u_1 \vee u_2 \vee v_0 \vee v_2 \vee v_3)$	$\wedge (\neg u_0 \vee \neg u_1 \vee \neg u_3 \vee v_0 \vee v_1 \vee v_3)$
4	е	$\wedge (u_1 \vee u_3 \vee \neg v_2)$	$\wedge (u_2 \vee \neg u_3 \vee v_1 \vee v_2 \vee v_3)$	$\wedge (\neg u_0 \vee \neg u_2 \vee \neg u_3 \vee \neg v_0 \vee v_1 \vee \neg v_3)$
5	Ъ	,,	\(\(\mathbb{a}_2\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	/ (120 v 122 v 123 v 100 v v1 v 103)
6	f	$\wedge (u_0 \vee \neg u_2 \vee u_3 \vee v_3)$	$\wedge (u_1 \vee \neg v_0 \vee \neg v_2 \vee \neg v_3)$	$\wedge (\neg u_1 \vee \neg u_2 \vee \neg u_3 \vee v_1 \vee \neg v_2)$
7	7	$\wedge (u_0 \vee \neg u_1 \vee u_3 \vee v_2)$	$\wedge (\neg u_0 \vee u_1 \vee u_3 \vee v_0 \vee v_1)$	$\wedge \; (\neg u_1 \vee \neg u_2 \vee \neg u_3 \vee v_1 \vee v_3)$
8	8	$\wedge (\neg u_2 \vee v_0 \vee v_1 \vee v_3)$	$\wedge (\neg u_1 \vee u_3 \vee \neg v_0 \vee v_2 \vee \neg v_3)$	$\wedge (u_0 \vee u_1 \vee \neg u_3 \vee v_0 \vee v_1 \vee v_2)$
9	9	/		
a	1	$\wedge (u_0 \vee u_1 \vee u_2 \vee \neg v_3)$	$\wedge (u_0 \vee u_1 \vee \neg u_2 \vee \neg v_1 \vee v_3)$	$\wedge (\neg u_3 \vee v_0 \vee \neg v_1 \vee \neg v_2 \vee \neg v_3)$
b	5	$\wedge (u_1 \vee u_2 \vee \neg v_2 \vee \neg v_3)$	$\wedge (u_1 \vee \neg u_2 \vee u_3 \vee \neg v_1 \vee v_3)$	$\wedge (\neg u_0 \vee u_1 \vee u_2 \vee v_1 \vee v_2 \vee v_3)$
С	0	$\wedge (\neg u_2 \vee \neg v_0 \vee \neg v_1 \vee v_3)$	$\wedge (\neg u_1 \vee u_3 \vee \neg v_1 \vee v_2 \vee \neg v_3).$	
d	2	0 1 3	1 2 3	
е	4			
f	6			

Application of Our Modeling to Integral Analysis of WARP

WARP[Ban+20]

- Proposed in SAC 2020 [Ban+20] as the lightweight alternative of AES-128
- 128-bit block/key size, and 41 rounds (40.5 rounds)
- lacktriangle Splits 128-bit K into two halves $K^{(0)}||K^{(1)}$ and uses $K^{(r-1 \mod 2)}$ in the rth round

The best previous integral distinguisher: 20 rounds [Ban+20]

(2)
$$\xrightarrow{22 \text{ rounds}}$$
 (20, 21, 22, 23, 118, $\underline{60, 61, 62, 63}$),

The best previous integral distinguisher: 20 rounds [Ban+20]

$$(2) \xrightarrow{\text{22 rounds}} (\underline{20, 21, 22, 23}, 118, \underline{60, 61, 62, 63}),$$

Any r-round integral distinguisher of WARP can be extended by 1 round

$$\sum_{\mathbb{C}} X_4^{(22)} = \sum_{\mathbb{C}} X_1^{(23)}$$

$$X_{11}^{(22)} = \sum_{\mathbb{C}} \left(S(X_4^{(23)}) \oplus X_0^{(23)} \right) \oplus \sum_{\mathbb{C}} K_i^{(b)}$$

Any r-round integral distinguisher of WARP can be extended by 1 round

$$ho = \sum_{\mathbb{C}} X_4^{(22)} = \sum_{\mathbb{C}} X_1^{(23)}$$

$$X_{11}^{(22)} = \sum_{\mathbb{C}} \left(S(X_4^{(23)}) \oplus X_0^{(23)} \right) \oplus \sum_{\mathbb{C}} K_i^{(b)}$$

23-round Integral Distinguisher for WARP

 \blacktriangleleft Any r-round integral distinguisher of WARP can be extended by 1 round

$$\sum_{\mathbb{C}} X_4^{(22)} = \sum_{\mathbb{C}} X_1^{(23)}$$

Key-Recovery

Naive Approach v.s. FFT Technique [TA14]

A Naive approach:

$$\bigcirc \sum \mathbf{x} = \sum_{\mathbf{c} \in \mathbb{C}} f(\mathbf{k}, \mathbf{c})$$

$$oldsymbol{\mathcal{O}} \ \ \mathcal{T}_{tot} = 2^{|\mathbf{k}|} |\mathbb{C}|$$
, where $\mathbb{C} = \mathbf{2}^{|\mathbf{k}|}$

$$OT_{tot} = 2^{2|k|}$$

- **▶** FFT technique:

Naive Approach v.s. FFT Technique [TA14]

$$\Theta \sum \mathbf{x} = \sum_{\mathbf{c} \in \mathbb{C}} f(\mathbf{k}, \mathbf{c})$$

$$oldsymbol{\Theta}$$
 $\mathcal{T}_{tot}=2^{|\mathbf{k}|}|\mathbb{C}|$, where $\mathbb{C}=\mathbf{2}^{|\mathbf{k}|}$

$$\Theta T_{tot} = 2^{2|k|}$$

→ FFT technique:

$$\bullet$$
 $T_{tot} = 4 \cdot |\mathbf{k}| \cdot 2^{|\mathbf{k}|}$

MitM [SW12]

$$\Theta x = F(k_1, k_2, c)$$

$$\Theta T = 2^{|k_1 \cup k_2|}$$

- $y = F(k_1, c), z = g(k_2, c)$
- $T = 2^{|k_1|} + 2^{|k_2|}$

$$\sum \mathbf{x} = 0$$

MitM [SW12]

$$\mathbf{O} \ T = 2^{|\mathbf{k}_1 \cup \mathbf{k}_2|}$$

$$T = 2^{|\mathbf{k}_1|} + 2^{|\mathbf{k}_2|}$$

$$\sum \mathbf{x} = 0 \iff \sum \mathbf{y} = \sum \mathbf{z}$$

Overall View of Our Key-Recovery Tool

- 1- Assume that $\mathbf{x} = \mathbf{y} \oplus \mathbf{z}$ and $\sum \mathbf{x} = 0$
- 2- For each path, i.e., y, and z:
 - Build the graph of dependencies: $\mathbf{y} = f(\mathbf{k}, \mathbf{c})$
 - Simplify the dependency graph: reform $f(\boldsymbol{k}, \boldsymbol{c})$ to $F(\tilde{\boldsymbol{k}} \oplus \tilde{\boldsymbol{c}})$
 - Use FFT to compute the list $[\sum \mathbf{y} \mid \tilde{\mathbf{k}} = 0, \dots, 2^{|\mathbf{k}|-1}]$
- 3- Compare the two lists to find candidates for the involved key bits
- 4- Brute force the remaining keys to find the correct key

Example: 3-Round Key Recovery

Example: 3-Round Key Recovery

Example: Dependency Graph

Example: Dependency Graph

Example: Dependency Graph

Summary of Our Result

#R	Data	Time	Memory	Attack	Reference
32 21	$2^{127} \\ 2^{124}$	2 ¹²⁷	2 ¹⁰⁸	Integral Integral	This paper [Ban+20]
18 21	2 ^{104.62}	-	-	Differential Impossible diff.	[TB22] [Ban+20]
21 23 24	$2^{113} 2^{106.62} 2^{126.06}$	2^{113} $2^{106.62}$ $2^{125.18}$	$ 2^{72} \\ 2^{106.62} \\ 2^{127.06} $	Differential Differential Rectangle	[KY21] [TB22] [TB22]

Conclusion

Contributions

- We provided a SAT model for integral analysis based on Monomial prediction
- Our modeling is generic and can be applied to other (binary field) block ciphers
- ❖ We proposed a tool for key-recovery taking the FFT technique into account
- ♥ Overall, we improved the integral attack of WARP by 11 rounds

Thanks for your attention!

https://github.com/hadipourh/mpt

Bibliography I

- [Ban+20] Subhadeep Banik et al. WARP: Revisiting GFN for Lightweight 128-Bit Block Cipher. SAC 2020. Vol. 12804. LNCS. Springer, 2020, pp. 535–564. DOI: 10.1007/978-3-030-81652-0_21.
- [Hu+20] Kai Hu et al. An Algebraic Formulation of the Division Property: Revisiting Degree Evaluations, Cube Attacks, and Key-Independent Sums. ASIACRYPT 2020. Vol. 12491. LNCS. Springer, 2020, pp. 446–476. DOI: 10.1007/978-3-030-64837-4_15.
- [KY21] Manoj Kumar and Tarun Yadav. MILP Based Differential Attack on Round Reduced WARP.
 SPACE 2021. Vol. 13162. LNCS. Springer, 2021, pp. 42–59. DOI: 10.1007/978-3-030-95085-9_3.
- [SW12] Yu Sasaki and Lei Wang. Meet-in-the-Middle Technique for Integral Attacks against Feistel Ciphers. SAC 2012. Vol. 7707. LNCS. Springer, 2012, pp. 234–251. DOI: 10.1007/978-3-642-35999-6_16.
- [TA14] Yosuke Todo and Kazumaro Aoki. FFT Key Recovery for Integral Attack. CANS 2014. Vol. 8813. LNCS. Springer, 2014, pp. 64–81. DOI: 10.1007/978–3–319–12280–9_5.

Bibliography II

[TB22] Je Sen Teh and Alex Biryukov. Differential cryptanalysis of WARP. J. Inf. Secur. Appl. 70 (2022), p. 103316. DOI: 10.1016/j.jisa.2022.103316. URL: https://doi.org/10.1016/j.jisa.2022.103316.