

ASSIGNMENT FRONT SHEET

Course Name: ALY6040 Data Mining Applications

Professor Name: Nagadeepa Shanmuganathan

Student Name: Dong Quoc Tuong (Lukas)

Student Class: Fall 2019 CPS Term: Winter 2021

Module 1: Introduction to tm Package in R

Completion Date: Jan 24th Due Time:12:00am

Statement of Authorship

I confirm that this work is my own. Additionally, I confirm that no part of this coursework, except where clearly quoted and referenced, has been copied from material belonging to any other person e.g. from a book, handout, another student. I am aware that it is a breach of Northeastern University's regulations to copy the work of another without clear acknowledgement and that attempting to do so renders me liable to disciplinary procedures. To this effect, I have uploaded my work onto Turnitin and have ensured that I have made any relevant corrections to my work prior to submission.

☐ Tick here to confirm that your paper version is identical to the version submitted through Turnitin

In this paper, we will analyze the Trump's twitter in order to understand more about the person.

To start with, we will install the necessary packages, download the files and set the right directory for the system.

Start the analysis:

We create an empty corpus with VCorpus. Text corpus is defined as a language resource consisting of a large and structured set of texts to perform statistical analysis, hypothesis testing, occurrences, checking or validating linguistic rules ("NLP - Linguistic Resources," 2018)

		Length	Class	Mode
Trump	Black History Month Speech.txt	2	PlainTextDocument	list
Trump	CIA Speech.txt	2	PlainTextDocument	list
Trump	Congressional Address.txt	2	PlainTextDocument	list
Trump	CPAC Speech.txt	2	PlainTextDocument	list
Trump	Florida Rally 2-18-17.txt	2	PlainTextDocument	list
Trump	Immigration Speech 8-31-16.txt	2	PlainTextDocument	list
Trump	Inauguration Speech.txt	2	PlainTextDocument	list
	National Prayer Breakfast.txt	2	PlainTextDocument	list
Trump	Nomination Speech.txt	2	PlainTextDocument	list
Trump	Police Chiefs Speech.txt	2	PlainTextDocument	list
Trump	Response to Healthcare Bill Failure.txt	2	PlainTextDocument	list
- 1				

Next we loaded the details of any documents in the corpus. Looking at the first and second document, we can see that both documents have the same Meta data at 7 but the second one contains 3 times more characters compared to the first one, 12747 and 4068 respectively

<<pre><<PlainTextDocument>>
Metadata: 7
Content: chars: 4068
<<PlainTextDocument>>
Metadata: 7
Content: chars: 12747

Preprocessing

We remove anything that hinders our analysis process. This process includes numbers, capitalization, unnecessary figures (\\, @, etc.) common words – stop words in the English language (the, a, etc.) and punctuation. However that is not enough. Since Trump tends to repeat his messages multiple times in a speech and make vague assumption, we need to also use tm_map(docs, removeWords, c("syllogism", "tautology) to eliminate any words with the same meaning (ex: "ATM machine", because "M" stands for "machine". Another thing to remember while analyzing someone's speech, especially Trump is his frequent use of words that are often associate with each other to have a specific meaning. "Fake" and "news", if separated is totally misconstrued because they are always put together for "fake news" to be established as a contemporary phenomenon

Lastly, we move on to the stemming step and clean the white spaces. Stemming is to reduce inflected words to their word stem, base or root form—generally a written word form. So "Consulting", "Consultant", "Consultative" turns into "consult".

Stage your data

A document-term matrix or term-document matrix is a mathematical matrix that describes the frequency of terms that occur in a collection of documents. (Yangchang Zhao, 2012) The spare entries / non spare entries ratio is 3/1. The longest words have 19 characters in them. Keeping in mind Trump's preference of sound bites and short words to complicated ones, those long words could be the combination of 2 separate words like "politically-correct" (19) that we created above.

```
> dtm
<<DocumentTermMatrix (documents: 11, terms: 3698)>>
Non-/sparse entries: 8443/32235
Sparsity : 79%
Maximal term length: 19
Weighting : term frequency (tf)
```

Then we transpose the matrix and organize terms by frequency. Next, we start having a look at the most and least frequently occurring words. The resulting output is two rows of numbers. The top row reflects the frequency with which words appear while the bottom row indicates how many words appears that frequently. For example, here we are examining 20 least frequent words and we can see that 1655 terms appear once, 631 words appears twice, etc.

Here are the 20 most frequent words

Then we create the vocabulary table with the frequency of appearances for each word. For example, "also" appears 54 times similarly to "years"

also	always	america	american	another	back	bad
54	24	122	107	22	75	35
believe	big	came	can	care	come	country
60	45	20	100	37	55	174
day	different	done	enforcement	even	ever	every
36	16	24	43	55	42	49
get	getting	give	going	good	great	group
79	23	25	265	58	163	20
happen	job	just		last	1 aw	let
36	38	88		44		40
life	like	little	_	look	lot	love
27	79	24	36	52	44	4.5
made	many	much		nation	need	never
32	101	68	53	48	32	83
new	now	office		people		put
69	111	24			44	35
really	remember	right			say	see
57	27	102		83	66	48
seen	something	special		take		thank
34	25	26	65	64	50	105
things	think	time		_		
40	. 77	76	33	34	18	16
understand	united	want	way			work
29	64	140		51	428	64
world	year	years				
56	47	54				

Next we sort the words according to the frequency of appearances in decreasing order and create a data frame from our next step. Here is the final outcome

	word	freq
will	will	428
people	people	278
going	going	265
country	country	174
great	great	163
want	want	140

Plot Word Frequency, Calculate terms correlations, Create word clouds

To plot the word frequency histogram, we will use the ggplot2 package. In order for the histogram to not get too clustered or all over the place, we will make sure to only include words that appear more than 50 times in the corpus and get some alignment parameters for our code. As we can see that Trump's most favorite words are "will", "people, "going", "country", "great", "one" indicating the fact that he likes to make a lot of promises that target the common folks to make them feel united for the country or something great.

The findings leads us to a question to what words often get associated to the words "American" and "Country" as we can see they are one of the few words Trump likes to use constantly. If the words always appear together then the correlation is 1. In this case we are specifying the correlation limit of 0.85 but we can change that in the future. Looking into this allows us to see whether or not we need to update "Combining words" section that we established above.

\$country								
nothing	cities	countri	es j	jobs	come b	iggest	donors	second
0.95	0.94	0.9	94 (0.92	0.91	0.90	0.90	0.90
begin	border	p1	an cri	imes o	globe	meant the	ousands	means
0.88	0.88	0.	88 (. 87	0.87	0.87	0.87	0.86
workers	also	despir	te t	ake				
0.86	0.85	0.	85 (.85				
\$american								
restore	task	fair	budget	cycle	new	promises	dollars	finally
0.97	0.93	0.92	0.91	0.89	0.89	0.89	0.88	0.88
millions	national	tens	foreign	middle	justice	program	break	joining
0.88 united 0.85	0.88	0.88	0.87	0.87	0.86	Ö.86	0.85	0.85

From the result, we can deduct that Trump likes to use the "country" with "nothing" as the base and then it is the "American" to "restore" the country as his answer.

Wordcloud library was created to specifying in creating word cloud. After preparing the data max 15% and getting colored according to the frequencies. We can see that "will" is the most used words (1st in yellow) followed by "people" and "going" (2nd and 3rd in pink). Then we have "country" and "great" (4th and 5th in purple) the next top ten in orange and the rest in green. The clear and concise visualization allows the readers to digest information faster

Hierarchal Clustering vs. K-means clustering

There are two main clusterisation algorithms that we can dell on: Hierarchical clustering and K-means clustering. Hierarchical clustering is the method of cluster analysis that aims to build a hierarchy of clusters regardless of having a fixed clustered beforehand. Hierarchical methods can be either divisive or agglomerative. K-means, on the other hand, uses pre-specified number of clusters (centroids) to plot the map. The number of centroids is determined by using the elbow methods. (Valentina Alto, 2019)

For hierarchal clustering, we make the matrix that is only 15% empty space and then introduce the "cluster" library. Then we calculate the distance between words with Euclidian method and assign the number of clusters that you are using as 6. Last but not least, we make sure to draw a dendrogram with red borders around the 5 clusters. The horizontal axis indicates the clusters whereas the vertical scale represents the distance or dissimilarity. Each joining (fusion) of two

clusters is pained by the splitting of a vertical line into the vertical line. We can give an example like "like" and "right" are equally distant from "just".

We do the same with K-means clustering where we prepare the data max 15% empty space and use the Euclidian distance. From what we have seen above, there are actually two groups of clusters due to one having a significant number of words and thus decide to assign k as 2 or 3 for this. After running the code, we can see that k=3 is the much better choice compared to 2 due to the fact that the first 2 clusters contain words that appear too frequently compared to the second cluster's ones. "Will" seems to be the outliner, worthy of having its own cluster but it is best to group them with the other popular words that are "people", "going"

References

- NLP Linguistic Resources. (2018). Retrieved January 24, 2021, from https://www.tutorialspoint.com/natural_language_processing/natural_language_processing_ linguistic_resources.htm
- Valentina Alto. (2019, July 8). Unsupervised Learning: K-means vs Hierarchical Clustering. Retrieved January 24, 2021, from https://towardsdatascience.com/unsupervised-learning-k-means-vs-hierarchical-clustering-5fe2da7c9554
- Yangchang Zhao. (2012). Document Matrix an overview. Retrieved January 24, 2021, from https://www.sciencedirect.com/topics/mathematics/document-matrix