

A

**NEW UTILITY PATENT APPLICATION TRANSMITTAL
(Large Entity)**

Docket No.
10857Z

(Only for new nonprovisional applications under 37 CFR 1.53(b))

Total Pages in this Submission
3**TO THE ASSISTANT COMMISSIONER FOR PATENTS**Box Patent Application
Washington, D.C. 20231

Transmitted herewith for filing under 35 U.S.C. 111(a) and 37 C.F.R. 1.53(b) is a new utility patent application for an invention entitled:

A NOVEL HAEMOPOIETIN RECEPTOR AND GENETIC SEQUENCES ENCODING SAME

and invented by:

Douglas James Hilton, Nicos Antony Nicola, Alison Farley, Tracy Willson, Jian-Guo Zhang, Warren Alexander, Steven Rakar, Louis Fabri, Tetsuo Kojima, Masatsugu Maeda, Yasufumi Kikuchi, Andrew Nash

If a **CONTINUATION APPLICATION**, check appropriate box and supply the requisite information:

Continuation Divisional Continuation-in-part (CIP) of prior application No.: 08/928,720

Enclosed are:

Application Elements

1. Filing fee as calculated and transmitted as described below
2. Specification having 106 pages and including the following:
 - a. Descriptive Title of the Invention
 - b. Cross References to Related Applications (*if applicable*)
 - c. Statement Regarding Federally-sponsored Research/Development (*if applicable*)
 - d. Reference to Microfiche Appendix (*if applicable*)
 - e. Background of the Invention
 - f. Brief Summary of the Invention
 - g. Brief Description of the Drawings (*if drawings filed*)
 - h. Detailed Description
 - i. Claim(s) as Classified Below
 - j. Abstract of the Disclosure
3. Drawing(s) (*when necessary as prescribed by 35 USC 113*)
 - a. Formal
 - b. Informal

Number of Sheets 27

NEW UTILITY PATENT APPLICATION TRANSMITTAL (Large Entity)

(Only for new nonprovisional applications under 37 CFR 1.53(b))

Docket No.
10857Z

Total Pages in this Submission
3

Application Elements (Continued)

4. Oath or Declaration
 - a. Newly executed (*original or copy*) Unexecuted
 - b. Copy from a prior application (37 CFR 1.63(d)) (*for continuation/divisional application only*)
 - c. With Power of Attorney Without Power of Attorney
5. Incorporation By Reference (*usable if Box 4b is checked*)
The entire disclosure of the prior application, from which a copy of the oath or declaration is supplied under Box 4b, is considered as being part of the disclosure of the accompanying application and is hereby incorporated by reference therein.
6. Computer Program in Microfiche (*Appendix*)
7. Nucleotide and/or Amino Acid Sequence Submission (*if applicable, all must be included*)
 - a. Paper Copy
 - b. Computer Readable Copy (*identical to computer copy*)
 - c. Statement Verifying Identical Paper and Computer Readable Copy

Accompanying Application Parts

8. Assignment Papers (*cover sheet & document(s)*)
9. 37 CFR 3.73(B) Statement (*when there is an assignee*)
10. English Translation Document (*if applicable*)
11. Information Disclosure Statement/PTO-1449 Copies of IDS Citations
12. Preliminary Amendment
13. Acknowledgment postcard
14. Certificate of Mailing
 First Class Express Mail (*Specify Label No.:* EM166372464US)
15. Certified Copy of Priority Document(s) (*if foreign priority is claimed*)

NEW UTILITY PATENT APPLICATION TRANSMITTAL (Large Entity)

(Only for new nonprovisional applications under 37 CFR 1.53(b))

Docket No.
10857Z

Total Pages in this Submission
3

Accompanying Application Parts (Continued)

16. Additional Enclosures (please identify below):

Fee Calculation and Transmittal

CLAIMS AS FILED

For	#Filed	#Allowed	#Extra	Rate	Fee
Total Claims	43	- 20 =	23	x \$22.00	\$506.00
Indep. Claims	15	- 3 =	12	x \$82.00	\$984.00
Multiple Dependent Claims (check if applicable)	<input checked="" type="checkbox"/>				\$270.00
				BASIC FEE	\$790.00
OTHER FEE (specify purpose)					\$0.00
				TOTAL FILING FEE	\$2,550.00

- A check in the amount of \$2,550.00 to cover the filing fee is enclosed.
 The Commissioner is hereby authorized to charge and credit Deposit Account No. 19-1013 as described below. A duplicate copy of this sheet is enclosed.
- Charge the amount of _____ as filing fee.
 Credit any overpayment.
 Charge any additional filing fees required under 37 C.F.R. 1.16 and 1.17.
 Charge the issue fee set in 37 C.F.R. 1.18 at the mailing of the Notice of Allowance, pursuant to 37 C.F.R. 1.311(b).

Dated: March 10, 1998

Signature

Leopold Presser, Registration No. 19,827
Scully, Scott, Murphy Presser
400 Garden City Plaza
Garden City, New York 11530
(516) 742-4343

cc:

CERTIFICATE OF MAILING BY "EXPRESS MAIL" (37 CFR 1.10)

Docket No.

Applicant(s): Douglas James Hilton, et al.

10857Z

Serial No.
unassignedFiling Date
herewithExaminer
unassignedGroup Art Unit
unassigned

Invention: A NOVEL HAEMOPOIETIN RECEPTOR AND GENETIC SEQUENCES ENCODING SAME

I hereby certify that this New CIP Patent Application*(Identify type of correspondence)*

is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under
37 CFR 1.10 in an envelope addressed to: The Assistant Commissioner for Patents, Washington, D.C. 20231 on
March 10, 1998

*(Date)*Karen DeSalvo*(Typed or Printed Name of Person Mailing Correspondence)*
*(Signature of Person Mailing Correspondence)*EM166372464US*("Express Mail" Mailing Label Number)*

Note: Each paper must have its own certificate of mailing.

PATENTS

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Douglas James Hilton, **Examiner:**
et al.

Serial No.: unassigned

Art Unit:

Filed: herewith

Docket: 10857Z

For: A NOVEL HAEMOPOIETIN
RECEPTOR AND GENETIC SEQUENCES
ENCODING SAME

Dated: March 10, 1998

Assistant Commissioner for Patents
Washington, DC 20231

PRELIMINARY AMENDMENT

Sir:

Prior to examination, please amend the above-
identified patent application as follows:

IN THE SPECIFICATION:

Page 1, before line 5 please insert the following:

--CROSS REFERENCE TO RELATED APPLICATION:

The present application is a continuation-in-part of
application Serial Number 08/928,720 filed September 11, 1997.-

IN THE CLAIMS:

Please amend the claims as follows:

Claim 32, line 1 change "trangenic" to --transgenic--

Claim 33, line 1 change "33" to --32--

Claim 34, line 1 change "33 or 34" to --32 or 33--

CERTIFICATE OF MAILING BY EXPRESS MAIL

Express Mail mailing label number: EM166372464US
Date of Deposit: March 10, 1998

I hereby certify that this correspondence is being
deposited with the United States Postal Service as Express Mail
Post Office to Addressee service under 37 C.F.R. §1.10 on the
date indicated above addressed to: Assistant Commissioner for
Patents, Washington, DC 20231, on March 10, 1998.

Dated: March 10, 1998

Karen DeSalvo

REMARKS

It is respectfully requested that this Preliminary Amendment be entered in this application prior to examination. Early and favorable consideration is requested.

Respectfully submitted,

Leopold Presser
Registration No. 19,827

SCULLY, SCOTT, MURPHY & PRESSER
400 Garden City Plaza
Garden City, New York 11530
(516) 742-4343

LP:ae

09022652 024093

A NOVEL HAEMOPOIETIN RECEPTOR AND GENETIC SEQUENCES ENCODING SAME

5 The present invention relates generally to a novel haemopoietin receptor or derivatives thereof and to genetic sequences encoding same. Interaction between the novel receptor of the present invention and a ligand facilitates proliferation, differentiation and survival of a wide variety of cells. The novel receptor and its derivatives and the genetic sequences encoding same of the present invention are useful in the development of a wide range of agonists, antagonists, 10 therapeutics and diagnostic reagents based on ligand interaction with its receptor.

Bibliographic details of the publications numerically referred to in this specification are collected at the end of the description. Sequence Identity Numbers (SEQ ID NOS.) for the nucleotide and amino acid sequences referred to in the specification are defined following the bibliography.

15 Throughout this specification and the claims which follow, unless the context requires otherwise, the word "comprise", or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated integer or group of integers but not the exclusion of any other integer or group of integers.

20 The rapidly increasing sophistication of recombinant DNA techniques is greatly facilitating research into the medical and allied health fields. Cytokine research is of particular importance, especially as these molecules regulate the proliferation, differentiation and function of a wide variety of cells. Administration of recombinant cytokines or regulating cytokine function and/or 25 synthesis is becoming increasingly the focus of medical research into the treatment of a range of disease conditions.

Despite the discovery of a range of cytokines and other secreted regulators of cell function, comparatively few cytokines are directly used or targeted in therapeutic regimens. One reason 30 for this is the pleiotropic nature of many cytokines. For example, interleukin (IL)-11 is a

- 2 -

functionally pleiotropic molecule (1,2), initially characterized by its ability to stimulate proliferation of the IL-6-dependent plasmacytoma cell line, T11 65 (3). Other biological actions of IL-11 include induction of multipotential haemopoietin progenitor cell proliferation (4,5,6), enhancement of megakaryocyte and platelet formation (7,8,9,10), stimulation of acute phase protein synthesis (11) and inhibition of adipocyte lipoprotein lipase activity (12, 13).

Other important cytokines in the IL-11 group include IL-6, leukaemia inhibitory factor (LIF), oncostatin M (OSM) and CNTF. All these cytokines exhibit pleiotropic properties with significant activities in proliferation, differentiation and survival of cells. Members of the haemopoietin receptor family are defined by the presence of a conserved amino acid domain in their extracellular region. However, despite the low level of amino acid sequence conservation between other haemopoietin receptor domains of different receptors, they are all predicted to assume a similar tertiary structure, centred around two fibronectin-type III repeats (18,19).

- 15 The size of the haemopoietin receptor family has now become extensive and includes the cell surface receptors for many cytokines including interleukin-2 (IL-2), IL-3, IL-4, IL-5, IL-6, IL-7, IL-9, IL-11, IL-12, IL-13, IL-15, granulocyte colony stimulating factor (G-CSF), granulocyte-macrophage-CSF (GM-CSF), erythropoietin, thrombopoietin, leptin, leukaemia inhibitory factor, oncostatin-M, ciliary neurotrophic factor, cardiotrophin, growth hormone and prolactin.
- 20 Although most of the members of the haemopoietin receptor family act as classic cell surface receptors, binding their cognate ligand at the cell surface and initiating intracellular signal transduction, some receptors are also produced in naturally occurring soluble forms. These soluble receptors can either act as cytokine antagonists, by binding to cytokines and inhibiting productive interactions with cell surface receptors (eg LIF binding protein; (20) or as agonists,
- 25 binding to cytokine and potentiating interaction with cell surface receptor components (eg soluble interleukin-6 receptor α -chain; (21). Still other members of the family appear to be produced only as secreted proteins, with no evidence of a cell surface form. In this regard, the IL-12 p40 subunit is a useful example. The cytokine IL-12 is secreted as a heterodimer composed of a p35 subunit which shows similarity to cytokines such as IL-6 (22) and a p40
- 30 subunit which shares similarity with the IL-6 receptor α -chain (23). In this case the soluble receptor acts as part of the cytokine itself and essential to formation of an active protein. In

addition to acting as cytokines (eg IL-12p40), cytokine agonists (eg IL-6 receptor α-chain) or cytokine antagonists (LIF binding protein), members of the haemopoietin receptor have been useful in the discovery of small molecule cytokine mimetics. For example, the discovery of peptide mimetics of two commercially valuable cytokines, erythropoietin and thrombopoietin, 5 centred on the selection of peptides capable of binding to soluble versions of the erythropoietin and thrombopoietin receptors (24,25). Due to the importance and multifactorial nature of these cytokines, there is a need to identify receptors, including both cell bound and soluble, for pleiotropic cytokines. Identification of such receptors permits the identification of pleiotropic cytokines and the development of a range of therapeutic and diagnostic agents.

10

Accordingly, one aspect of the present invention relates to a nucleic acid molecule comprising a sequence of nucleotides encoding or complementary to a sequence encoding a novel haemopoietin receptor or a derivative thereof.

15 More particularly, the present invention provides a nucleic acid molecule comprising a sequence of nucleotides encoding or complementary to a sequence encoding a novel haemopoietin receptor or a derivative thereof having the motif:

Trp Ser Xaa Trp Ser [SEQ ID NO:1],

wherein Xaa is any amino acid and is preferably Asp or Glu.

20

Even more particularly, the present invention is directed to a nucleic acid molecule comprising a sequence of nucleotides encoding or complementary to a sequence encoding a novel haemopoietin receptor or a derivative thereof, said receptor comprising the motif:

Trp Ser Xaa Trp Ser [SEQ ID NO:1]

25 wherein Xaa is any amino acid and is preferably Asp or Glu, said nucleic acid molecule is identifiable by hybridisation to said molecule under low stringency conditions at 42°C with

5' (A/G)CTCCA(A/G)TC(A/G)CTCCA 3' [SEQ ID NO:7]

and

5' (A/G)CTCCA(C/T)TC(A/G)CTCCA 3' [SEQ ID NO:8].

30

Still more particularly, the present invention provides an isolated nucleic acid molecule

RECEIVED BY GOVERNMENT AGENT

comprising a sequence of nucleotides substantially as set forth in SEQ ID NO:12 or a nucleotide sequence having at least 60% similarity to the nucleotide sequence set forth in SEQ ID NO:12 or a nucleotide sequence capable of hybridising thereto under low stringency conditions at 42°C and wherein said nucleotide sequence encodes a novel haemopoietin receptor or a derivative thereof.

In a related embodiment, the present invention provides an isolated nucleic acid molecule comprising a sequence of nucleotides substantially as set forth in SEQ ID NO:14 or a nucleotide sequence having at least 60% similarity to the nucleotide sequence set forth in SEQ ID NO:14 or a nucleotide sequence capable of hybridising thereto under low stringency conditions at 42°C and wherein said nucleotide sequence encodes a novel haemopoietin receptor or a derivative thereof.

In another related embodiment, the present invention provides an isolated nucleic acid molecule comprising a sequence of nucleotides substantially as set forth in SEQ ID NO:16 or a nucleotide sequence having at least 60% similarity to the nucleotide sequence set forth in SEQ ID NO:16 or a nucleotide sequence capable of hybridising thereto under low stringency conditions at 42°C and wherein said nucleotide sequence encodes a novel haemopoietin receptor or a derivative thereof.

20

In a further related embodiment, the present invention provides an isolated nucleic acid molecule comprising a sequence of nucleotides substantially as set forth in SEQ ID NO:18 or a nucleotide sequence having at least 60% similarity to the nucleotide sequence set forth in SEQ ID NO:18 or a nucleotide sequence capable of hybridising thereto under low stringency conditions at 42°C and wherein said nucleotide sequence encodes a novel haemopoietin receptor or a derivative thereof.

In yet a further related embodiment, the present invention provides an isolated nucleic acid molecule comprising a sequence of nucleotides substantially as set forth in SEQ ID NO:24 or a nucleotide sequence having at least 60% similarity to the nucleotide sequence set forth in SEQ ID NO:24 or a nucleotide sequence capable of hybridising thereto under low stringency

BIO-TECHNOLOGY

- 5 -

conditions at 42°C and wherein said nucleotide sequence encodes a novel haemopoietin receptor or a derivative thereof.

Still yet a further embodiment of the present invention is directed to a sequence of nucleotides 5 substantially as set forth in SEQ ID NO:28 or a nucleotide sequence having at least 60% similarity to the nucleotide sequence set forth in SEQ ID NO:28 or a nucleotide sequence capable of hybridising thereto under low stringency conditions at 42°C and wherein said nucleotide sequence encodes a novel haemopoietin receptor or a derivative thereof.

10 In still yet another embodiment, the present invention provides an isolated nucleic acid molecule comprising a sequence of nucleotides substantially set forth in SEQ ID NO:38 or a nucleotide sequence having at least 60% similarity to the nucleotide sequence set forth in SEQ ID NO:38 or a nucleotide sequence capable of hybridising thereto under low stringency conditions at 42°C and wherein said nucleotide sequence encodes a novel haemopoietin receptor or a derivative 15 thereof.

Another embodiment of the present invention provides an isolated nucleic acid molecule comprising a sequence of nucleotides substantially set forth in SEQ ID NO:43 or a nucleotide sequence having at least 60% similarity to the nucleotide sequence set forth in SEQ ID NO:43 20 or a nucleotide sequence capable of hybridising thereto under low stringency conditions at 42°C and wherein said nucleotide sequence encodes a novel haemopoietin receptor or a derivative thereof.

The term "receptor" is used in its broadest sense and includes any molecule capable of binding, 25 associating or otherwise interacting with a ligand. Generally, the interaction will have a signalling effect although the present invention is not necessarily so limited. For example, the "receptor" may be in soluble form, often referred to as a cytokine binding protein. A receptor may be deemed a receptor notwithstanding that its ligand or ligands has or have not been identified.

preferred mammals include humans, primates, laboratory test animals (e.g. mice, rats, rabbits, guinea pigs), livestock animals (e.g. sheep, horses, pigs, cows), companion animals (e.g. dogs, cats) or captive wild animals (e.g. deer, foxes, kangaroos). Although the present invention is exemplified with respect to mice, the scope of the subject invention extends to all animals and
5 in particular humans.

The present invention is predicated in part on an ability to identify members of the haemopoietin receptor family with limited sequence similarity. Based on this approach, a genetic sequence has been identified in accordance with the present invention which encodes a novel receptor. The
10 expressed genetic sequence is referred to herein as "NR6". Different forms of NR6 are referred to as, for example, NR6.1, NR6.2 and NR6.3. The nucleotide and corresponding amino acid sequences for these molecules are represented in SEQ ID NOS:12, 14 and 16, respectively.

Preferred human and murine nucleic acid sequences for NR6 or its derivatives include sequences
15 from brain, liver, kidney, neonatal, embryonic, cancer or tumour-derived tissues.

Reference herein to a low stringency at 42°C includes and encompasses from at least about 1% v/v to at least about 15% v/v formamide and from at least about 1M to at least about 2M salt for hybridisation, and at least about 1M to at least about 2M salt for washing conditions. Alternative
20 stringency conditions may be applied where necessary, such as medium stringency, which includes and encompasses from at least about 16% v/v to at least about 30% v/v formamide and from at least about 0.5M to at least about 0.9M salt for hybridisation, and at least about 0.5M to at least about 0.9M salt for washing conditions, or high stringency, which includes and encompasses from at least about 31% v/v to at least about 50% v/v formamide and from at least
25 about 0.01M to at least about 0.15M salt for hybridisation, and at least about 0.01M to at least about 0.15M salt for washing conditions.

The nucleic acid molecules contemplated by the present invention are generally in isolated form and are preferably cDNA or genomic DNA molecules. In a particularly preferred embodiment,
30 the nucleic acid molecules are in vectors and most preferably expression vectors to enable expression in a suitable host cell. Particularly useful host cells include prokaryotic cells,

- 7 -

mammalian cells, yeast cells and insect cells. The cells may also be in the form of a cell line.

Accordingly, another aspect of the present invention provides an expression vector comprising a nucleic acid molecule encoding the novel haemopoietin receptor or a derivative thereof as 5 hereinbefore described, said expression vector capable of expression in a selected host cell.

Another aspect of the present invention contemplates a method for cloning a nucleotide sequence encoding NR6 or a derivative thereof, said method comprising searching a nucleotide data base for a sequence which encodes the amino acid sequence set forth in SEQ ID NO:1, designing one 10 or more oligonucleotide primers based on the nucleotide sequence located in the search, screening a nucleic acid library with said one or more oligonucleotides and obtaining a clone therefrom which encodes said NR6 or part thereof.

Once a novel nucleotide sequence is obtained as indicated above encoding NR6, oligonucleotides 15 may be designed which bind cDNA clones with high stringency. Direct colony hybridisation may be employed or PCR amplification may be used. The use of oligonucleotide primers which bind under conditions of high stringency ensures rapid cloning of a molecule encoding the novel NR6 and less time is required in screening out cloning artefacts. However, depending on the primers used, low or medium stringency conditions may also be employed.

20

Alternatively, a library may be screened directly such as using oligonucleotides set forth in SEQ ID NO:7 or SEQ ID NO:8 or a mixture of both oligonucleotides may be used. In addition, one or more of oligonucleotides defined in SEQ ID NO:2 to 11 may also be used.

25 Preferably, the nucleic acid library is a cDNA, genomic, cDNA expression or mRNA library.

Preferably, the nucleic acid library is a cDNA expression library.

30 Preferably, the nucleotide data base is of human or murine origin and of brain, liver, kidney, neonatal tissue, embryonic tissue, tumour or cancer tissue origin.

Preferred percentage similarities to the reference nucleotide sequences include at least about 70%, more preferably at least about 80%, still more preferably at least about 90% and even more preferably at least about 95% or above.

- 5 Another aspect of the present invention provides an isolated nucleic acid molecule comprising a sequence of nucleotides encoding a novel haemopoietin receptor or derivative thereof having an amino acid sequence as set forth in SEQ ID NO:13 or having at least about 50% similarity to all or part thereof.
- 10 Still yet another aspect of the present invention provides an isolated nucleic acid molecule comprising a sequence of nucleotides encoding a novel haemopoietin receptor or derivative thereof having an amino acid sequence as set forth in SEQ ID NO:15 or having at least about 50% similarity to all or part thereof.
- 15 Even yet another aspect of the present invention provides an isolated nucleic acid molecule comprising a sequence of nucleotides encoding a novel haemopoietin receptor or derivative thereof having an amino acid sequence as set forth in SEQ ID NO:17 or having at least about 50% similarity to all or part thereof.
- 20 A further aspect of the present invention provides an isolated nucleic acid molecule comprising a sequence of nucleotides encoding a novel haemopoietin receptor or derivative thereof having an amino acid sequence as set forth in SEQ ID NO:19 or having at least about 50% similarity to all or part thereof.
- 25 Even yet another aspect of the present invention provides an isolated nucleic acid molecule comprising a sequence of nucleotides encoding a novel haemopoietin receptor or derivative thereof having an amino acid sequence as set forth in SEQ ID NO:25 or having at least about 50% similarity to all or part thereof.
- 30 Another aspect of the present invention provides an isolated nucleic acid molecule comprising a sequence of nucleotides encoding a novel haemopoietin receptor or derivative thereof having

an amino acid sequence as set forth in one or more of SEQ ID NOs:29 or having at least about 50% similarity to all or part thereof.

Still another aspect of the present invention provides an isolated nucleic acid molecule comprising a sequence of nucleotides encoding a novel haemopoietin receptor or derivative thereof having an amino acid sequence as set forth in one or more of SEQ ID NOs:44 or having at least about 50% similarity to all or part thereof.

Preferably, the percentage amino acid similarity is at least about 60%, more preferably at least about 70%, even more preferably at least about 80-85% and still even more preferably at least about 90-95% or greater.

The NR6 polypeptide contemplated by the present invention includes, therefore, derivatives which are components, parts, fragments, homologues or analogues of the novel haemopoietin receptors which are preferably encoded by all or part of a nucleotide sequences substantially set forth in SEQ ID NO:12 or 14 or 16 or 18 or 25 or 20 or 24 or 28 or 38 or 43 or a molecule having at least about 60% nucleotide similarity to all or part thereof or a molecule capable of hybridising to the nucleotide sequence set forth in SEQ ID NO:12 or 14 or 16 or 18 or 20 or 24 or 28 or 38 or 43 or a complementary form thereof. The NR6 molecule may be glycosylated or non-glycosylated. When in glycosylated form, the glycosylation may be substantially the same as naturally occurring haemopoietin receptor or may be a modified form of glycosylation. Altered or differential glycosylation states may or may not affect binding activity of the novel receptor.

The NR6 haemopoietin receptor may be in soluble form or may be expressed on a cell surface or conjugated or fused to a solid support or another molecule.

As stated above, the present invention further contemplates a range of derivatives of NR6. Derivatives include fragments, parts, portions, mutants, homologues and analogues of the NR6 polypeptide and corresponding genetic sequence. Derivatives also include single or multiple amino acid substitutions, deletions and/or additions to NR6 or single or multiple nucleotide substitutions, deletions and/or additions to the genetic sequence encoding NR6. "Additions" to

- 10 -

amino acid sequences or nucleotide sequences include fusions with other peptides, polypeptides or proteins or fusions to nucleotide sequences. Reference herein to "NR6" includes reference to all derivatives thereof including functional derivatives or NR6 immunologically interactive derivatives.

5

Analogues of NR6 contemplated herein include, but are not limited to, modification to side chains, incorporating of unnatural amino acids and/or their derivatives during peptide, polypeptide or protein synthesis and the use of crosslinkers and other methods which impose conformational constraints on the proteinaceous molecule or their analogues.

10

Examples of side chain modifications contemplated by the present invention include modifications of amino groups such as by reductive alkylation by reaction with an aldehyde followed by reduction with NaBH₄; amidination with methylacetimidate; acylation with acetic anhydride; carbamoylation of amino groups with cyanate; trinitrobenzylolation of amino groups 15 with 2, 4, 6-trinitrobenzene sulphonic acid (TNBS); acylation of amino groups with succinic anhydride and tetrahydrophthalic anhydride; and pyridoxylation of lysine with pyridoxal-5-phosphate followed by reduction with NaBH₄.

The guanidine group of arginine residues may be modified by the formation of heterocyclic 20 condensation products with reagents such as 2,3-butanedione, phenylglyoxal and glyoxal.

The carboxyl group may be modified by carbodiimide activation via O-acylisourea formation followed by subsequent derivitisation, for example, to a corresponding amide.

25 Sulphydryl groups may be modified by methods such as carboxymethylation with iodoacetic acid or iodoacetamide; performic acid oxidation to cysteic acid; formation of a mixed disulphides with other thiol compounds; reaction with maleimide, maleic anhydride or other substituted maleimide; formation of mercurial derivatives using 4-chloromercuribenzoate, 4-chloromercuriphenylsulphonic acid, phenylmercury chloride, 2-chloromercuri-4-nitrophenol and 30 other mercurials; carbamoylation with cyanate at alkaline pH.

- 11 -

Tryptophan residues may be modified by, for example, oxidation with N-bromosuccinimide or alkylation of the indole ring with 2-hydroxy-5-nitrobenzyl bromide or sulphenyl halides. Tyrosine residues on the other hand, may be altered by nitration with tetrinitromethane to form a 3-nitrotyrosine derivative.

5

Modification of the imidazole ring of a histidine residue may be accomplished by alkylation with iodoacetic acid derivatives or N-carbethoxylation with diethylpyrocarbonate.

Examples of incorporating unnatural amino acids and derivatives during peptide synthesis
10 include, but are not limited to, use of norleucine, 4-amino butyric acid, 4-amino-3-hydroxy-5-phenylpentanoic acid, 6-aminohexanoic acid, t-butylglycine, norvaline, phenylglycine, ornithine, sarcosine, 4-amino-3-hydroxy-6-methylheptanoic acid, 2-thienyl alanine and/or D-isomers of amino acids. A list of unnatural amino acid, contemplated herein is shown in Table 1.

15 These types of modifications may be important to stabilise NR6 if administered to an individual or for use as a diagnostic reagent.

Crosslinkers can be used, for example, to stabilise 3D conformations, using homo-bifunctional crosslinkers such as the bifunctional imido esters having $(CH_2)_n$ spacer groups with n=1 to n=6,
20 glutaraldehyde, N-hydroxysuccinimide esters and hetero-bifunctional reagents which usually contain an amino-reactive moiety such as N-hydroxysuccinimide and another group specific-reactive moiety such as maleimido or dithio moiety (SH) or carbodiimide (COOH). In addition, peptides can be conformationally constrained by, for example, incorporation of C_α and N_α-methylamino acids, introduction of double bonds between C_α and C_β atoms of amino acids and
25 the formation of cyclic peptides or analogues by introducing covalent bonds such as forming an amide bond between the N and C termini, between two side chains or between a side chain and the N or C terminus.

B607E012/2000/060

TABLE 1

Non-conventional amino acid	Code	Non-conventional amino acid	Code
5			
α -aminobutyric acid	Abu	L-N-methylalanine	Nmala
α -amino- α -methylbutyrate	Mgabu	L-N-methylarginine	Nmarg
aminocyclopropane- carboxylate	Cpro	L-N-methyleasparagine	Nmasn
		L-N-methyleaspartic acid	Nmasp
10 aminoisobutyric acid	Aib	L-N-methylcysteine	Nmcys
aminonorbornyl- carboxylate	Norb	L-N-methylglutamine	Nmgln
		L-N-methylglutamic acid	Nmglu
cyclohexylalanine		Chexa L-N-methylhistidine	Nmhis
cyclopentylalanine	Cpen	L-N-methylisoleucine	Nmile
15 D-alanine	Dal	L-N-methylleucine	Nmleu
D-arginine	Darg	L-N-methyllysine	Nmlys
D-aspartic acid	Dasp	L-N-methylmethionine	Nmmet
D-cysteine	Dcys	L-N-methylnorleucine	Nmnle
D-glutamine	Dgln	L-N-methylnorvaline	Nmnva
20 D-glutamic acid	Dglu	L-N-methylornithine	Nmorn
D-histidine	Dhis	L-N-methylphenylalanine	Nmphe
D-isoleucine	Dile	L-N-methylproline	Nmpro
D-leucine	Dleu	L-N-methylserine	Nmser
D-lysine	Dlys	L-N-methylthreonine	Nmthr
25 D-methionine	Dmet	L-N-methyltryptophan	Nmtup
D-ornithine	Dorn	L-N-methyltyrosine	Nmytr
D-phenylalanine	Dphe	L-N-methylvaline	Nmval
D-proline	Dpro	L-N-methylethylglycine	Nmetg
D-serine	Dser	L-N-methyl-t-butylglycine	Nmbug
30 D-threonine	Dthr	L-norleucine	Nle
D-tryptophan	Dtrp	L-norvaline	Nva

D-tyrosine	Dtyr	α -methyl-aminoisobutyrate	Maib
D-valine	Dval	α -methyl- γ -aminobutyrate	Mgabu
D- α -methylalanine	Dmala	α -methylcyclohexylalanine	Mchexa
D- α -methylarginine	Dmarg	α -methylcyclopentylalanine	Mcpen
5 D- α -methylasparagine	Dmasn	α -methyl- α -naphthylalanine	Manap
D- α -methylaspartate	Dmasp	α -methylpenicillamine	Mpen
D- α -methylcysteine	Dmcys	N-(4-aminobutyl)glycine	Nglu
D- α -methylglutamine	Dmgln	N-(2-aminoethyl)glycine	Naeg
D- α -methylhistidine	Dmhis	N-(3-aminopropyl)glycine	Norn
10 D- α -methylisoleucine	Dmile	N-amino- α -methylbutyrate	Nmaabu
D- α -methyleucine	Dmleu	α -naphthylalanine	Anap
D- α -methyllysine	Dmlys	N-benzylglycine	Nphe
D- α -methylmethionine	Dmmet	N-(2-carbamylethyl)glycine	Ngln
D- α -methylornithine	Dmorn	N-(carbamylmethyl)glycine	Nasn
15 D- α -methylphenylalanine	Dmphe	N-(2-carboxyethyl)glycine	Nglu
D- α -methylproline	Dmpro	N-(carboxymethyl)glycine	Nasp
D- α -methylserine	Dmser	N-cyclobutylglycine	Ncbut
D- α -methylthreonine	Dmthr	N-cycloheptylglycine	Nchep
D- α -methyltryptophan	Dmtrp	N-cyclohexylglycine	Nchex
20 D- α -methyltyrosine	Dmty	N-cyclodecylglycine	Ncdec
D- α -methylvaline	Dmval	N-cyclododecylglycine	Ncdod
D-N-methylalanine	Dnmala	N-cyclooctylglycine	Ncoct
D-N-methylarginine	Dnmarg	N-cyclopropylglycine	Ncpro
D-N-methylasparagine	Dnmasn	N-cycloundecylglycine	Ncund
25 D-N-methylaspartate	Dnmasp	N-(2,2-diphenylethyl)glycine	Nbhm
D-N-methylcysteine	Dnmcys	N-(3,3-diphenylpropyl)glycine	Nbhe
D-N-methylglutamine	Dnmgln	N-(3-guanidinopropyl)glycine	Narg
D-N-methylglutamate	Dnmglu	N-(1-hydroxyethyl)glycine	Nthr
D-N-methylhistidine	Dnmhis	N-(hydroxyethyl)glycine	Nser
30 D-N-methylisoleucine	Dnmile	N-(imidazolylethyl)glycine	Nhis
D-N-methyleucine	Dnmleu	N-(3-indolylyethyl)glycine	Nhtrp

D-N-methyllysine	Dnmlys	N-methyl- γ -aminobutyrate	Nmgabu
N-methylcyclohexylalanine	Nmchexa	D-N-methylmethionine	Dnmmet
D-N-methylornithine	Dnmorn	N-methylcyclopentylalanine	Nmcpen
N-methylglycine	Nala	D-N-methylphenylalanine	Dnmphe
5 N-methylaminoisobutyrate	Nmaib	D-N-methylproline	Dnmpro
N-(1-methylpropyl)glycine	Nile	D-N-methylserine	Dnmser
N-(2-methylpropyl)glycine	Nleu	D-N-methylthreonine	Dnmthr
D-N-methyltryptophan	Dnmtrp	N-(1-methylethyl)glycine	Nval
D-N-methyltyrosine	Dnmtyr	N-methyla-naphthylalanine	Nmanap
10 D-N-methylvaline	Dnmval	N-methylpenicillamine	Nmpen
γ -aminobutyric acid	Gabu	N-(<i>p</i> -hydroxyphenyl)glycine	Nhtyr
L- <i>t</i> -butylglycine	Tbug	N-(thiomethyl)glycine	Ncys
L-ethylglycine	Etg	penicillamine	Pen
L-homophenylalanine	Hphe	L- α -methylalanine	Mala
15 L- α -methylarginine	Marg	L- α -methylasparagine	Masn
L- α -methylaspartate	Masp	L- α -methyl- <i>t</i> -butylglycine	Mtbug
L- α -methylcysteine	Mcys	L-methylethylglycine	Metg
L- α -methylglutamine	Mgln	L- α -methylglutamate	Mglu
L- α -methylhistidine	Mhis	L- α -methylhomophenylalanine	Mhphe
20 L- α -methylisoleucine	Mile	N-(2-methylthioethyl)glycine	Nmet
L- α -methylleucine	Mleu	L- α -methyllysine	Mlys
L- α -methylmethionine	Mmet	L- α -methylnorleucine	Mnle
L- α -methylnorvaline	Mnva	L- α -methylornithine	Morn
L- α -methylphenylalanine	Mphe	L- α -methylproline	Mpro
25 L- α -methylserine	Mser	L- α -methylthreonine	Mthr
L- α -methyltryptophan	Mtrp	L- α -methyltyrosine	Mtyr
L- α -methylvaline	Mval	L-N-methylhomophenylalanine	Nmhph

- 15 -

N-(N-(2,2-diphenylethyl)	Nnbhm	N-(N-(3,3-diphenylpropyl)	Nnbhe
carbamylmethyl)glycine		carbamylmethyl)glycine	
1-carboxy-1-(2,2-diphenyl-	Nmbc		
ethylamino)cyclopropane			

5

The present invention further contemplates chemical analogues of NR6 capable of acting as antagonists or agonists of NR6 or which can act as functional analogues of NR6. Chemical analogues may not necessarily be derived from NR6 but may share certain conformational 10 similarities. Alternatively, chemical analogues may be specifically designed to mimic certain physiochemical properties of NR6. Chemical analogues may be chemically synthesised or may be detected following, for example, natural product screening.

The identification of NR6 permits the generation of a range of therapeutic molecules capable 15 of modulating expression of NR6 or modulating the activity of NR6. Modulators contemplated by the present invention includes agonists and antagonists of NR6 expression. Antagonists of NR6 expression include antisense molecules, ribozymes and co-suppression molecules. Agonists include molecules which increase promoter ability or interfere with negative regulatory mechanisms. Agonists of NR6 include molecules which overcome any negative regulatory 20 mechanism. Antagonists of NR6 include antibodies and inhibitor peptide fragments.

Other derivatives contemplated by the present invention include a range of glycosylation variants from a completely unglycosylated molecule to a modified glycosylated molecule. Altered glycosylation patterns may result from expression of recombinant molecules in different 25 host cells.

Another embodiment of the present invention contemplates a method for modulating expression of NR6 in a subject such as a human or mouse, said method comprising contacting the genetic sequence encoding NR6 with an effective amount of a modulator of NR6 expression 30 for a time and under conditions sufficient to up-regulate or down-regulate or otherwise modulate expression of NR6. Modulating NR6 expression provides a means of modulating

NR6-ligand interaction or NR6 stimulation of cell activities.

Another aspect of the present invention contemplates a method of modulating activity of NR6 in a human, said method comprising administering to said mammal a modulating effective amount of a molecule for a time and under conditions sufficient to increase or decrease NR6 activity. The molecule may be a proteinaceous molecule or a chemical entity and may also be a derivative of NR6 or its ligand or a chemical analogue or truncation mutant of NR6 or its ligand.

- 10 The present invention, therefore, contemplates a pharmaceutical composition comprising NR6 or a derivative thereof or a modulator of NR6 expression or NR6 activity and one or more pharmaceutically acceptable carriers and/or diluents. These components are referred to as the "active ingredients".
- 15 The pharmaceutical forms suitable for injectable use include sterile aqueous solutions (where water soluble) and sterile powders for the extemporaneous preparation of sterile injectable solutions. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier can be a solvent or dilution medium comprising, for example, water, ethanol, polyol (for example, glycerol, propylene glycol and liquid polyethylene glycol, and the like), suitable mixtures thereof, and vegetable oils. The proper fluidity can be maintained, for example, by the use of surfactants. The preventions of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars or sodium chloride. Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminum monostearate and gelatin.

Sterile injectable solutions are prepared by incorporating the active compounds in the required amount in the appropriate solvent with various of the other ingredients enumerated above, as required, followed by filtered sterilization. In the case of sterile powders for the preparation

of sterile injectable solutions, the preferred methods of preparation are vacuum drying and the freeze-drying technique which yield a powder of the active ingredient plus any additional desired ingredient from previously sterile-filtered solution thereof.

- 5 When the active ingredients are suitably protected they may be orally administered, for example, with an inert diluent or with an assimilable edible carrier, or it may be enclosed in hard or soft shell gelatin capsule, or it may be compressed into tablets, or it may be incorporated directly with the food of the diet. For oral therapeutic administration, the active compound may be incorporated with excipients and used in the form of ingestible tablets, buccal tablets, troches,
10 capsules, elixirs, suspensions, syrups, wafers, and the like. Such compositions and preparations should contain at least 1% by weight of active compound. The percentage of the compositions and preparations may, of course, be varied and may conveniently be between about 5 to about 80% of the weight of the unit. The amount of active compound in such therapeutically useful compositions in such that a suitable dosage will be obtained. Preferred compositions or
15 preparations according to the present invention are prepared so that an oral dosage unit form contains between about 0.1 ug and 2000 mg of active compound. Alternative dosage amounts include from about 1 μ g to about 1000 mg and from about 10 μ g to about 500 mg.

The tablets, troches, pills, capsules and the like may also contain the components as listed
20 hereafter: A binder such as gum, acacia, corn starch or gelatin; excipients such as dicalcium phosphate; a disintegrating agent such as corn starch, potato starch, alginic acid and the like; a lubricant such as magnesium stearate; and a sweetening agent such a sucrose, lactose or saccharin may be added or a flavouring agent such as peppermint, oil of wintergreen, or cherry flavouring. When the dosage unit form is a capsule, it may contain, in addition to materials of
25 the above type, a liquid carrier. Various other materials may be present as coatings or to otherwise modify the physical form of the dosage unit. For instance, tablets, pills, or capsules may be coated with shellac, sugar or both. A syrup or elixir may contain the active compound, sucrose as a sweetening agent, methyl and propylparabens as preservatives, a dye and flavouring such as cherry or orange flavour. Of course, any material used in preparing any
30 dosage unit form should be pharmaceutically pure and substantially non-toxic in the amounts employed. In addition, the active compound(s) may be incorporated into sustained-release

preparations and formulations.

The present invention also extends to forms suitable for topical application such as creams, lotions and gels as well as a range of "paints" which are applied to skin and through which the
5 active ingredients are absorbed.

Pharmaceutically acceptable carriers and/or diluents include any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents and the like. The use of such media and agents for pharmaceutical active substances is well known
10 in the art and except insofar as any conventional media or agent is incompatible with the active ingredient, their use in the therapeutic compositions is contemplated. Supplementary active ingredients can also be incorporated into the compositions.

It is especially advantageous to formulate parenteral compositions in dosage unit form for ease
15 of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the mammalian subjects to be treated; each unit containing a predetermined quantity of active material calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. The specification for the novel dosage unit forms of the invention are dictated by and directly dependent on (a) the
20 unique characteristics of the active material and the particular therapeutic effect to be achieved, and (b) the limitations inherent in the art of compounding such an active material for the treatment of disease in living subjects having a diseased condition in which bodily health is impaired as herein disclosed in detail.

25 The principal active ingredient is compounded for convenient and effective administration in effective amounts with a suitable pharmaceutically acceptable carrier in dosage unit form as hereinbefore disclosed. A unit dosage form can, for example, contain the principal active compound in amounts ranging from 0.5 µg to about 2000 mg. Expressed in proportions, the active compound is generally present in from about 0.5 µg to about 2000 mg/ml of carrier. In
30 the case of compositions containing supplementary active ingredients, the dosages are determined by reference to the usual dose and manner of administration of the said ingredients.

Dosages may also be expressed per body weight of the recipient. For example, from about 10 ng to about 1000 mg/kg body weight, from about 100 ng to about 500 mg/kg body weight and for about 1 μ g to above 250 mg/kg body weight may be administered.

- 5 The pharmaceutical composition may also comprise genetic molecules such as a vector capable of transfecting target cells where the vector carries a nucleic acid molecule capable of modulating NR6 expression or NR6 activity. The vector may, for example, be a viral vector.

- Still another aspect of the present invention is directed to antibodies to NR6 and its derivatives.
- 10 Such antibodies may be monoclonal or polyclonal and may be selected from naturally occurring antibodies to NR6 or may be specifically raised to NR6 or derivatives thereof. In the case of the latter, NR6 or its derivatives may first need to be associated with a carrier molecule. The antibodies and/or recombinant NR6 or its derivatives of the present invention are particularly useful as therapeutic or diagnostic agents. For example, NR6 antibodies or antibodies to its
- 15 ligand may act as antagonists.

- For example, NR6 and its derivatives can be used to screen for naturally occurring antibodies to NR6. These may occur, for example in some autoimmune diseases. Alternatively, specific antibodies can be used to screen for NR6. Techniques for such assays are well known in the
- 20 art and include, for example, sandwich assays and ELISA. Knowledge of NR6 levels may be important for diagnosis of certain cancers or a predisposition to cancers or for monitoring certain therapeutic protocols.

- Antibodies to NR6 of the present invention may be monoclonal or polyclonal. Alternatively,
- 25 fragments of antibodies may be used such as Fab fragments. Furthermore, the present invention extends to recombinant and synthetic antibodies and to antibody hybrids. A "synthetic antibody" is considered herein to include fragments and hybrids of antibodies. The antibodies of this aspect of the present invention are particularly useful for immunotherapy and may also be used as a diagnostic tool for assessing apoptosis or monitoring the program of a therapeutic
- 30 regimen.

- 20 -

For example, specific antibodies can be used to screen for NR6 proteins. The latter would be important, for example, as a means for screening for levels of NR6 in a cell extract or other biological fluid or purifying NR6 made by recombinant means from culture supernatant fluid. Techniques for the assays contemplated herein are known in the art and include, for example, 5 sandwich assays and ELISA.

It is within the scope of this invention to include any second antibodies (monoclonal, polyclonal or fragments of antibodies or synthetic antibodies) directed to the first mentioned antibodies discussed above. Both the first and second antibodies may be used in detection assays or a first 10 antibody may be used with a commercially available anti-immunoglobulin antibody. An antibody as contemplated herein includes any antibody specific to any region of NR6.

Both polyclonal and monoclonal antibodies are obtainable by immunization with the enzyme or protein and either type is utilizable for immunoassays. The methods of obtaining both types 15 of sera are well known in the art. Polyclonal sera are less preferred but are relatively easily prepared by injection of a suitable laboratory animal with an effective amount of NR6, or antigenic parts thereof, collecting serum from the animal, and isolating specific sera by any of the known immunoabsorbent techniques. Although antibodies produced by this method are utilizable in virtually any type of immunoassay, they are generally less favoured because of the 20 potential heterogeneity of the product.

The use of monoclonal antibodies in an immunoassay is particularly preferred because of the ability to produce them in large quantities and the homogeneity of the product. The preparation of hybridoma cell lines for monoclonal antibody production derived by fusing an immortal cell 25 line and lymphocytes sensitized against the immunogenic preparation can be done by techniques which are well known to those who are skilled in the art.

Another aspect of the present invention contemplates a method for detecting NR6 in a biological sample from a subject said method comprising contacting said biological sample with 30 an antibody specific for NR6 or its derivatives or homologues for a time and under conditions sufficient for an antibody-NR6 complex to form, and then detecting said complex.

The presence of NR6 may be accomplished in a number of ways such as by Western blotting and ELISA procedures. A wide range of immunoassay techniques are available as can be seen by reference to US Patent Nos. 4,016,043, 4,424,279 and 4,018,653. These, of course, includes both single-site and two-site or "sandwich" assays of the non-competitive types, as well
5 as in the traditional competitive binding assays. These assays also include direct binding of a labelled antibody to a target.

Sandwich assays are among the most useful and commonly used assays and are favoured for use in the present invention. A number of variations of the sandwich assay technique exist, and
10 all are intended to be encompassed by the present invention. Briefly, in a typical forward assay, an unlabelled antibody is immobilized on a solid substrate and the sample to be tested brought into contact with the bound molecule. After a suitable period of incubation, for a period of time sufficient to allow formation of an antibody-antigen complex, a second antibody specific to the antigen, labelled with a reporter molecule capable of producing a detectable signal is then added
15 and incubated, allowing time sufficient for the formation of another complex of antibody-antigen-labelled antibody. Any unreacted material is washed away, and the presence of the antigen is determined by observation of a signal produced by the reporter molecule. The results may either be qualitative, by simple observation of the visible signal, or may be quantitated by comparing with a control sample containing known amounts of hapten. Variations on the
20 forward assay include a simultaneous assay, in which both sample and labelled antibody are added simultaneously to the bound antibody. These techniques are well known to those skilled in the art, including any minor variations as will be readily apparent. In accordance with the present invention, the sample is one which might contain NR6 including cell extract, tissue biopsy or possibly serum, saliva, mucosal secretions, lymph, tissue fluid and respiratory fluid.
25 The sample is, therefore, generally a biological sample comprising biological fluid but also extends to fermentation fluid and supernatant fluid such as from a cell culture.

In the typical forward sandwich assay, a first antibody having specificity for the NR6 or antigenic parts thereof, is either covalently or passively bound to a solid surface. The solid
30 surface is typically glass or a polymer, the most commonly used polymers being cellulose, polyacrylamide, nylon, polystyrene, polyvinyl chloride or polypropylene. The solid supports

may be in the form of tubes, beads, discs or microplates, or any other surface suitable for conducting an immunoassay. The binding processes are well-known in the art and generally consist of cross-linking covalently binding or physically adsorbing, the polymer-antibody complex is washed in preparation for the test sample. An aliquot of the sample to be tested is
5 then added to the solid phase complex and incubated for a period of time sufficient (e.g. 2-40 minutes or overnight if more convenient) and under suitable conditions (e.g. from about room temperature to about 37°C) to allow binding of any subunit present in the antibody. Following the incubation period, the antibody subunit solid phase is washed and dried and incubated with a second antibody specific for a portion of the hapten. The second antibody is linked to a
10 reporter molecule which is used to indicate the binding of the second antibody to the hapten.

An alternative method involves immobilizing the target molecules in the biological sample and then exposing the immobilized target to specific antibody which may or may not be labelled with a reporter molecule. Depending on the amount of target and the strength of the reporter
15 molecule signal, a bound target may be detectable by direct labelling with the antibody. Alternatively, a second labelled antibody, specific to the first antibody is exposed to the target-first antibody complex to form a target-first antibody-second antibody tertiary complex. The complex is detected by the signal emitted by the reporter molecule.

20 In another alternative method, the NR6 ligand is immobilised to a solid support and a biological sample containing NR6 brought into contact with its immobilised ligand. Binding between NR5 and its ligand can then be determined using an antibody to NR6 which itself may be labelled with a reporter molecule or a further anti-immunoglobulin antibody labelled with a reporter molecule could be used to detect antibody bound to NR6.
25

By "reporter molecule" as used in the present specification, is meant a molecule which, by its chemical nature, provides an analytically identifiable signal which allows the detection of antigen-bound antibody. Detection may be either qualitative or quantitative. The most commonly used reporter molecules in this type of assay are either enzymes, fluorophores or
30 radionuclide containing molecules (i.e. radioisotopes) and chemiluminescent molecules.

In the case of an enzyme immunoassay, an enzyme is conjugated to the second antibody,

generally by means of glutaraldehyde or periodate. As will be readily recognized, however, a wide variety of different conjugation techniques exist, which are readily available to the skilled artisan. Commonly used enzymes include horseradish peroxidase, glucose oxidase, beta-galactosidase and alkaline phosphatase, amongst others. The substrates to be used with the specific enzymes are generally chosen for the production, upon hydrolysis by the corresponding enzyme, of a detectable colour change. Examples of suitable enzymes include alkaline phosphatase and peroxidase. It is also possible to employ fluorogenic substrates, which yield a fluorescent product rather than the chromogenic substrates noted above. In all cases, the enzyme-labelled antibody is added to the first antibody hapten complex, allowed to bind, and then the excess reagent is washed away. A solution containing the appropriate substrate is then added to the complex of antibody-antigen-antibody. The substrate will react with the enzyme linked to the second antibody, giving a qualitative visual signal, which may be further quantitated, usually spectrophotometrically, to give an indication of the amount of hapten which was present in the sample. "Reporter molecule" also extends to use of cell agglutination or inhibition of agglutination such as red blood cells on latex beads, and the like.

Alternately, fluorescent compounds, such as fluorescein and rhodamine, may be chemically coupled to antibodies without altering their binding capacity. When activated by illumination with light of a particular wavelength, the fluorochrome-labelled antibody adsorbs the light energy, inducing a state to excitability in the molecule, followed by emission of the light at a characteristic colour visually detectable with a light microscope. As in the EIA, the fluorescent labelled antibody is allowed to bind to the first antibody-hapten complex. After washing off the unbound reagent, the remaining tertiary complex is then exposed to the light of the appropriate wavelength the fluorescence observed indicates the presence of the hapten of interest. Immunofluorescence and EIA techniques are both very well established in the art and are particularly preferred for the present method. However, other reporter molecules, such as radioisotope, chemiluminescent or bioluminescent molecules, may also be employed.

The present invention also contemplates genetic assays such as involving PCR analysis to detect the NR6 gene or its derivatives. Alternative methods or methods used in conjunction include direct nucleotide sequencing or mutation scanning such as single stranded conformational

polymorphisms analysis (SSCP) as specific oligonucleotide hybridisation, as methods such as direct protein truncation tests.

The nucleic acid molecules of the present invention may be DNA or RNA. When the nucleic
5 acid molecule is in a DNA form, it may be genomic DNA or cDNA. RNA forms of the nucleic
acid molecules of the present invention are generally mRNA.

Although the nucleic acid molecules of the present invention are generally in isolated form, they
may be integrated into or ligated to or otherwise fused or associated with other genetic
10 molecules such as vector molecules and in particular expression vector molecules. Vectors and
expression vectors are generally capable of replication and, if applicable, expression in one or
both of a prokaryotic cell or a eukaryotic cell. Preferably, prokaryotic cells include *E. coli*,
Bacillus sp and *Pseudomonas sp*. Preferred eukaryotic cells include yeast, fungal, mammalian
and insect cells.

15

Accordingly, another aspect of the present invention contemplates a genetic construct
comprising a vector portion and a mammalian and more particularly a human NR6 gene portion,
which NR6 gene portion is capable of encoding an NR6 polypeptide or a functional or
immunologically interactive derivative thereof.

20

Preferably, the NR6 gene portion of the genetic construct is operably linked to a promoter on
the vector such that said promoter is capable of directing expression of said NR6 gene portion
in an appropriate cell.

25 In addition, the NR6 gene portion of the genetic construct may comprise all or part of the gene
fused to another genetic sequence such as a nucleotide sequence encoding maltose binding
protein or glutathione-S-transferase or part thereof.

The present invention extends to such genetic constructs and to prokaryotic or eukaryotic cells
30 comprising same.

The present invention also extends to any or all derivatives of NR6 including mutants, part, fragments, portions, homologues and analogues or their encoding genetic sequence including single or multiple nucleotide or amino acid substitutions, additions and/or deletions to the naturally occurring nucleotide or amino acid sequence.

5

NR6 may be important for the proliferation, differentiation and survival of a diverse array of cell types. Accordingly, it is proposed that NR6 or its functional derivatives be used to regulate development, maintenance or regeneration in an array of different cells and tissues *in vitro* and *in vivo*. For example, NR6 is contemplated to be useful in modulating neuronal proliferation, differentiation and survival.

10 Soluble NR6 polypeptides are also contemplated to be useful in the treatment of a range of diseases, injuries or abnormalities.

15 Membrane bound or soluble NR6 may be used *in vitro* on nerve cells or tissues to modulate proliferation, differentiation or survival, for example, in grafting procedures or transplantation.

As stated above, the NR6 of the present invention or its functional derivatives may be provided in a pharmaceutical composition comprising the NR6 together with one or more 20 pharmaceutically acceptable carriers and/or diluents. In addition, the present invention contemplates a method of treatment comprising the administration of an effective amount of a NR6 of the present invention. The present invention also extends to antagonists and agonists of NR6s and their use in therapeutic compositions and methodologies.

25 A further aspect of the present invention contemplates the use of NR6 or its functional derivatives in the manufacture of a medicament for the treatment of NR6 mediated conditions defective or deficient.

Still a further aspect of the present invention contemplates a ligand for NR6 preferably, in 30 isolated or recombinant form or a derivative of said ligand.

The present invention further contemplates knockout animals such as mice or other murine species for the NR6 gene including homozygous and heterozygous knockout animals. Such animals provide a particularly useful live *in vivo* model for studying the effects of NR6 as well as screening for agents capable of acting as agonists or antagonists of NR6.

5

According to this embodiment there is provided a transgenic animal comprising a mutation in at least one allele of the gene encoding NR6. Additionally, the present invention provides a transgenic animal comprising a mutation in two alleles of the gene encoding NR6. Preferably, the transgenic animal is a murine animal such as a mouse or rat.

10

The present invention is further described by the following non-limiting Figures and Examples.

In the Figures:

15 **Figure 1** is a diagrammatic representation showing expansion of sequenced region of the mouse NR6 gene indicating splicing patterns seen in the three forms of NR6 cDNA, NR6.1, NR6.2 and NR6.3.

Figure 2 is a representation of the nucleotide sequence of the mouse NR6 gene, containing 20 exons encoding the cDNA from nucleotide 148 encoding D50 of the cDNAs shown in SEQ ID NOs:12 and 14 to the end of the 3' untranslated region shared by both NR6.1, NR6.2 and NR6.3. In this figure, this region encompasses nucleotides g1182 to g6617. This sequence is also defined in SEQ ID NO:28.

25 **Figure 3** is a representation of the nucleotide sequence of the mouse genomic NR6 gene with additional 5' sequences. The coding exons of NR6 span approximately 11kb of the mouse genome. There are 9 coding exons separated by 8 introns:

exon1	at least 239nt	intron1 5195nt
exon 2	282nt	intron2 214nt
30 exon3	130nt	intron3 107nt
exon4	170nt	intron4 1372nt

exon5	158nt	introns 5 68nt
exon6	169nt	introns 6 2020nt
exon6	188nt	introns 7 104nt
exon8	43nt	introns 8 181nt
5 exon9	252nt	

Exon 1 encoding the signal sequence, exon 2 the Ig-like domain, exons 3 to 6 the haemopoietin domain. Exons 7, 8 and 9 are alternatively spliced.

10 **Figure 4** is a diagrammatic representation showing the genomic structure of murine NR6.

Figure 5 is a diagrammatic representation showing targetting of the NR6 locus by homologous recombination.

15 **Figure 6** is a representation of a comparison of human and mouse NR6 cDNA sequences.

Figure 7 is a representation of a comparison of human and mouse NR6 protein sequences.

20 **Figure 8** is a representation showing transient expression of C-terminal FLAG tagged human NR6 in 293T cells. (A) Biosensor response, M2 immobilised; (B) SDS PAGE/silver staining analysis of M2 eluted fractions; and (C) Western blot analysis of M2 eluted fractions.

25 **Figure 9** a photographic representation showing biosensor analysis of supernatant fluid from each of clones CHO C' FLAG human NR6 clone #30, CHO N' FLAG human NR6 clone #23 and 293T C' FLAG human NR6 clone #38 (lanes 1-3, respectively).

Single and three letter abbreviations for amino acid residues used in the specification are summarised in Table 2:

TABLE 2

5

	Amino Acid	Three-letter Abbreviation	One-letter Symbol
	Alanine	Ala	A
10	Arginine	Arg	R
	Asparagine	Asn	N
	Aspartic acid	Asp	D
	Cysteine	Cys	C
	Glutamine	Gln	Q
15	Glutamic acid	Glu	E
	Glycine	Gly	G
	Histidine	His	H
	Isoleucine	Ile	I
	Leucine	Leu	L
20	Lysine	Lys	K
	Methionine	Met	M
	Phenylalanine	Phe	F
	Proline	Pro	P
	Serine	Ser	S
25	Threonine	Thr	T
	Tryptophan	Trp	W
	Tyrosine	Tyr	Y
	Valine	Val	V
	Any residue	Xaa	X

30

TABLE 3
SUMMARY OF SEQ ID NO.

Sequence	SEQ ID NO.
Amino acid sequence WSXWS	1
5 Oligonucleotide primers and probes listed in Example 1	2-11
Nucleotide sequence of NR6.1 ¹	12
Amino acid sequence of NR6.1	13
Nucleotide sequence of NR6.2 ²	14
Amino acid sequence of NR6.2	15
10 Nucleotide sequence of NR6.3 ³	16
Amino acid sequence of NR6.3	17
Nucleotide sequence of products generated by 5' RACE of brain cDNA using NR6 specific primers ⁴	18
Amino acid sequence of SEQ ID NO:18	19
15 Nucleotide sequence unique to 5' RACE of brain cDNA	20
Amino acid sequence for SEQ ID NO:20	21
Unspliced murine NR6 nucleotide sequence	22
PCR product for human NR6	23
Nucleotide sequence of clone HFK-66 encoding human NR6	24
20 Amino acid sequence of SEQ ID NO:24	25
Oligonucleotide sequences UP1 and LP1, respectively	26-27
Genomic nucleotide sequence of murine NR6	28
Amino acid sequence of SEQ ID NO:28	29
Murine NR6.1 oligonucleotide primers	30, 31
25 Murine IL-3 signal sequence	32
Linker sequence for mouse IL-3 signal sequence and FLAG epitope	33-35
Genomic nucleotide sequence of murine NR6 containing additonal 5' sequence	38
Oligonucleotide 2199 and 2200, respectively	367

- 30 -

N-terminal region of NR6	39
Oligonucleotide sequences	40-42
Nucleotide sequence of NR6	43
Amino acid sequence of NR6	44
5 Oligonucleotide sequences	45-54

- ¹ The polyadenylation signal AATAAAATAAAA is at nucleotide position 1451 to 1460; NR6.1 (SEQ ID NO:12) and NR6.2 (SEQ ID NO:14) are identical to nucleotide 1223 encoding Q407, the represents the end of an exon. NR6.1 splices out an exon present only in NR6.2 and uses a different reading frame for the final exon which is shared with NR6.2; this corresponds to amino acids VLPAKL at amino acid residue positions 408-413. The region of 3'-untranslated DNA shared by NR6.1, NR6.2 and NR6.3 is from nucleotide 1240 to 1475. The WSXWS motif is at amino acid residues 330 to 334.
- ¹⁰ 15 ² The polyadenylation signal AATAAA is at nucleotide positions 1494 to 1503. The WSXWS motif is at amino acid residues 330 to 334. NR6.1 and NR6.2 are identical to nucleotide 1223 encoding Q407 which represents the end of an exon. NR6.2 splices in an exon beginning at amino acid residue D408, nucleotide 1224 and ends at residue G422, nucleotide 1264. The region of 3' untranslated DNA shared by NR6.1, NR6.2 and NR6.3 is from nucleotide position 1283 to 1517.
- ²⁰ 25 ³ The nucleotide and amino acid numbering corresponds to SEQ ID NO:12 and 14. The WSXWS motif is at amino acid residues 330 to 334. The polyadenylation signal AATAAAATAAAA is from nucleotide 1781 to 1780. NR6.1, NR6.2 and NR6.3 are identical to nucleotide 1223 encoding Q407, this represents the end of an exon. NR6.3 fails to splice from this position and, therefore, translation continues through the intron, giving rise to the C-terminal protein region from amino acid residues 408 to 461. The region of 3' untranslated DNA shared by NR6.1, NR6.2 and NR6.3 is from nucleotide 1469 to 1804.

- 31 -

4 The nucleotide sequence is identical to NR6.1, NR6.2 and NR6.3 from nucleotide
 C151, the first nucleotide for Pro51. The numbering from this nucleotide is the same
 as for SEQ ID NO:14 and 16. The 5' of this point is unique to the products generated
 by 5' RACE not being found in NR6.1, NR6.2 and NR6.3 and is represented in SEQ
 5 ID NOS:20 and 21.

5 Structure of the murine genomic NR6 locus. The coding exons of NR6 span
 approximately 11kb of the mouse genome. There are 9 coding exons separated by 8
 introns:

10

	exon 1 at least 239nt	intron1 5195nt
	exon 2 282nt	intron2 214nt
	exon 3 130nt	intron3 107nt
	exon 4 170nt	intron 4 1372nt
15	exon 5 158nt	intron5 68nt
	exon 6 169nt	intron6 2020nt
	exon 7 188nt	intron7 104nt
	exon 8 43nt	intron8 181nt
	exon 9 252nt	

20

Exon 1 encodes the signal sequence, exon 2 the Ig-like domain, exons 3 to 6 the hemopoietin
 domain. Exons 7, 8 and 9 are alternatively spliced.

The NRG molecules of the present invention have a range of utilities referred to in the subject
 25 specification. Additional utilities include:

1. Identification of molecules that interact with NR6. These may include :

a) a corresponding ligand using standard orphan receptor techniques (26),

30

b) monoclonal antibodies that act either as receptors antagonists or agonists,

- 32 -

- c) mimetic or antagonistic peptides isolated using phage display technology (27,28),
- d) small molecule natural products that act either as antagonists or agonists.

5 2. Development of diagnostics to detect deletions/rearrangements in the NR6 gene.

The NR6 knock-out mice studies described herein provide a useful model for this utility. There are also applications in the field of reproduction. For example, people can be tested for their NR6 status. NR6 +/- carriers might be expected to give rise to offspring with developmental problems.

- 33 -

EXAMPLE 1
Oligonucleotides

M116:	5' ACTCGCTCCAGATTCCCGCCTTT 3' [SEQ ID NO:2]
5 M108:	5' TCCCGCCTTTTCGACCCATAGAT 3' [SEQ ID NO:3]
M159:	5' GGTACTTGGCTTGGAAAGAGGAAAT 3' [SEQ ID NO:4]
M242:	5' CGGCTCACGTGCACGTCGGGTGGG 3' [SEQ ID NO:5]
M112:	5' AGCTGCTGTTAAAGGGCTTCTC 3' [SEQ ID NO:6]
WSDWS	5' (A/G)CTCCA(A/G)TC(A/G)CTCCA 3' [SEQ ID NO:7]
10 WSEWS	5' (A/G)CTCCA(C/T)TC(A/G)CTCCA 3' [SEQ ID NO:8]
1944	5' AAGTGTGACCACATGTGGAC 3' [SEQ ID NO:9]
2106	5' GGAGGTGTTAAGGAGGCG 3' [SEQ ID NO:10]
2120	5' ATGCCCGCGGGTCGCCCG 3' [SEQ ID NO:11]

15

EXAMPLE 2

Isolation of initial NR6 cDNA clones using oligonucleotides designed against the conserved WSXWS motif found in members of the haemopoietin receptor family

(i) A commercial adult mouse testis cDNA library cloned into the UNI-ZAP bacteriophage
 20 (Stratagene, CA, USA; Catalogue numbers 937 308) was used to infect *Escherichia coli* of the strain LE392. Infected bacteria were grown on twenty 150 mm agar plates, to give approximately 50,000 plaques per plate. Plaques were then transferred to duplicate 150 mm diameter nylon membranes (Colony/Plaque Screen, NEN Research Products, MA, USA), bacteria were lysed and the DNA was denatured and fixed by autoclaving at 100°C for 1 min
 25 with dry exhaust. The filters were rinsed twice in 0.1% (w/v) sodium dodecyl sulfate (SDS), 0.1 x SSC (SSC is 150 mM sodium chloride, 15 mM sodium citrate dihydrate) at room temperature and pre-hybridized overnight at 42°C in 6 x SSC containing 2 mg/ml bovine serum albumin, 2 mg/ml Ficoll, 2 mg/ml polyvinylpyrrolidone, 100 mM ATP, 10 mg/ml tRNA, 2 mM sodium pyrophosphate, 2 mg/ml salmon sperm DNA, 0.1% (w/v) SDS and 200 mg/ml sodium azide. The pre-hybridisation buffer was removed. 1.2 µg of the degenerate oligonucleotides for hybridization (WSDWS; Example 1) were phosphorylated with T4 polynucleotide kinase
 30

using 960 mCi of $\gamma^{32}\text{P}$ -ATP (Bresatec, S.A., Australia). Unincorporated ATP was separated from the labelled oligonucleotide using a pre-packed gel filtration column (NAP-5; Pharmacia, Uppsala, Sweden). Filters were hybridized overnight at 42°C in 80 ml of the prehybridisation buffer containing 0.1%(w/v) SDS, rather than NP40, and 10^6 - 10^7 cpm/ml of labelled 5 oligonucleotide. Filters were briefly rinsed twice at room temperature in 6 x SSC, 0.1%(v/v) SDS, twice for 30 min at 45°C in a shaking waterbath containing 1.5 l of the same buffer and then briefly in 6 x SSC at room temperature. Filters were then blotted dry and exposed to autoradiographic film at -70°C using intensifying screens, for 7 - 14 days prior to development.

10 Plaques that appeared positive on orientated duplicate filters were picked, eluted in 1 ml of 100 mM NaCl, 10 mM MgCl₂, 10 mM Tris.HCl pH7.4 containing 0.5%(w/v) gelatin and 0.5% (v/v) chloroform and stored at 4°C. After 2 days LE392 cells were infected with the eluate from the primary plugs and replated for the secondary screen. This process was repeated until hybridizing plaques were pure.

15

Once purified, positive cDNAs were excised from the ZAP II bacteriophage according to the manufacturer's instructions (Stratagene, CA, USA) and cloned into the plasmid pBluescript. A CsCl purified preparation of the DNA was made and this was sequenced on both strands. Sequencing was performed using an Applied Biosystems automated DNA sequencer, with 20 fluorescent dideoxynucleotide analogues according to the manufacturer's instructions. The DNA sequence was analysed using software supplied by Applied Biosystems.

Two clones isolated from the mouse testis cDNA library shared large regions of nucleotide sequence identity 68-1 and 68-2 and appeared to encode a novel member of the haemopoietin 25 receptor family and the inventors gave the putative receptor the working name "NR6".

(ii) In a parallel series of experiments, a commercial mouse brain cDNA library (STRATAGENE #967319, Balb/c day-20, whole brain cDNA/Uni-ZAP XR Vector) was used to infect *E.coli* strain XL1-Blue MRF'. Infected bacteria were grown on 90x135mm square 30 agar plates to give about 25,000 plaques per plate. Plaques were then transferred to positively charged nylon membranes, Hybond-N(+) (Amersham RPN 203B), bacteria were lysed and the

PAPERS@ENPOZ246.U.CON

DNA was denatured with denaturing 0.5 M NaOH, 1.5 M NaCl at room temperature for 7 min. The membranes were neutralized with 0.5 M Tris-HCL pH7.2, 1.5 M NaCl, 1 mM EDTA at room temperature for 10 min before the DNA fixation by UV crosslinking.

- 5 A mixture of WSDWS and WSEWS oligonucleotide probes (SEQ ID NOs: 7 and 8) were labelled with a [α -³²P]-ATP (TOYOBO #PNK-104 Kination kit). The membranes from the mouse brain cDNA library were then hybridized with the mixture of WSDWS and WSEWS oligonucleotide probes in the Rapid Hybridization Buffer (Amersham, RPN1636) at 42°C for 16 hours. Filters were washed with 1xSSC/0.1% (w/v) SDS at 42°C before autoradiography.
- 10 Plaques that appeared positive on orientated duplicate filters were picked and replated on *E. coli*, XL1-Blue MRF' with the process of immobilisation on nylon membranes, hybridization of membranes with oligonucleotide probes, washing and autoradiography repeated until pure plaques had been obtained.
- 15 The cDNA fragment from pure positively hybridizing plaques was isolated by excision with the helper phage strain ExAssist according to the manufacturer's instructions (Stratagene, #967319). Sequencing was performed after the amplification with Ampli-Taq DNA polymerase and Taq dideoxy terminator cycle sequencing kit (Perkin Elmer, #401150) by 25 cycles of 96°C for 10 sec, 50°C for 5 sec, 60°C for 4 min followed by 60°C for 5 min with the sequencing primers on an ABI model 377 DNA sequencer.

One clone, MBC-8, from the mouse brain library shared large regions of nucleotide sequence identity with both the 68-1 and 68-2 clones isolated from the mouse testis cDNA library.

- 25 (iii) In a third series of experiments, total RNA was prepared from the mouse osteoblastic cell line, KUSA, according to the method of Chirgwin *et al.* (15), and poly(A)+RNA was further purified by oligo(dT)-cellulose chromatography (Pharmacia Biotech). Complementary DNA was synthesized by oligo(dT) priming, inserted into the UniZAP XR directional cloning vector (Stratagene), and packaged into λ phage using Gigapack Gold (Stratagene), yielding 1.25×10^7 independent clones.

- 36 -

Approximately 10^6 clones were screened essentially as described in (ii) above. Briefly, probes were labeled with ^{32}P using T4 polynucleotide kinase and prehybridization was performed for 4 hr in the Rapid hybridization buffer (Amersham LIFE SCIENCE) at 42°C. Filters (Hybond N+, Amersham) were then hybridized for 19 hr under the same condition with the addition of 5 ^{32}P -labeled WSXWS mix oligonucleotides and washed 3 times. The final wash was for 30 min in 1 x SSPE, 0.1% (w/v) SDS at 42°C. Filters were then exposed with an intensifying screen to Kodak X-OMAT AR film for 5 days.

Isolated clones were subjected to the *in vivo* excision of pBluescript SK(-) phagemid 10 (Stratagene), and plasmid DNA was prepared by the standard method. DNA sequences were determined using an ABI PRISM 377 DNA Sequencer (Perkin Elmer) with appropriate synthetic oligonucleotide primers. A clone pKUSA166 shared large regions of nucleotide sequence identity with the MBC-8, 68-1 and 68-2 clones isolated from the mouse brain and testis cDNA libraries.

15

EXAMPLE 3

Isolation of further NR6 cDNA clones using probes specific for NR6

(i) In order to identify other cDNA libraries containing cDNA clones for NR6, the inventors 20 performed PCR upon 1 μl aliquots of λ -bacteriophage cDNA libraries made from mRNA from various human tissues and using oligonucleotides 2070 and 2057, designed from the sequence of 68-1 and 68-2, as primers. Reactions contained 5 μl of 10 x concentrated PCR buffer (Boehringer Mannheim GmbH, Mannheim, Germany), 1 μl of 10 mM dATP, dCTP, dGTP and dTTP, 2.5 μl of the oligonucleotides HYB2 and either T3 or T7 at a concentration of 100 25 mg/ml, 0.5 μl of Taq polymerase (Boehringer Mannheim GmbH) and water to a final volume of 50 μl . PCR was carried out in a Perkin-Elmer 9600 by heating the reactions to 96°C for 2 min and then for 25 cycles at 96°C for 30 sec, 55°C for 30 sec and 72°C for 2 min. PCR products were resolved on an agarose gel, immobilized on a nylon membrane and hybridized with ^{32}P -labelled oligonucleotide 1943 (SEQ ID NO:42).

30

- In addition to the original library, a mouse brain cDNA library appeared to contain NR6 cDNAs. These were screened using a ^{32}P -labelled oligonucleotides 1944, 2106, 2120 (Example 1) or with a fragment of the original NR6 cDNA clone from 68-1 (nucleotide 934 to the end of NR6.1 in Figure 1) labelled with ^{32}P using a random decanucleotide labelling kit 5 (Bresatec). Conditions used were similar to those described in (i) above except that for the labelled oligonucleotides, filters were washed at 55°C rather than 45°C, while for the NR6 cDNA fragment prehybridization and hybridization was carried out in 2xSSC and filters were washed at 0.2 x SSC at 65°C. Again, as described in (i) above, positively hybridising plaques were purified, the cDNAs were recovered and cloned into plasmids pBluescript II or pUC19.
- 10 Independent cDNA clones were sequenced on both strands.

Using this procedure, 6 further clones, 68-5, 68-35, 68-41, 68-51, 68-77 and 73-23, contained large regions of sequence identity with 68-1, 68-2, MBC-8 and pKUSA166.

- 15 In a parallel series of experiments, further screening was performed with hybridization probes prepared from the 1.7 kbp EcoRI-XbaI fragment excised from pKUSA166. This fragment was excised and labeled with ^{32}P by using T7QuickPrime Kit (Pharmacia Biotech). Approximately 6×10^5 clones were screened. Hybond N+ filters (Amersham) were first prehybridized for 4hr at 42°C in 50% (v/v) formamide, 5xSSPE, 5xDenhardt's solution, 0.1% 20 (w/v) SDS, and 0.1mg/ml denatured salmon sperm DNA. Hybridization was for 16 hours under the same conditions with the addition of ^{32}P - labelled NR6- cDNA fragment probes. Finally the filters were washed once for 1hr in 0.2xSSC, 0.1% (w/v) SDS at 68°C. Eight clones were isolated, and phage clones were subjected to the *in vivo* excision of the pBluescript SK(-) phagemid (Stratagene). The plasmid DNAs were prepared by the standard 25 method. DNA sequences were determined by an ABI PRISM 377 DNA Sequencer using appropriate synthetic oligonucleotide primers.

- Using this procedure 8 further clones from the KUSA library contained large regions of sequence identity with 68-1, 68-2, MBC-8, pKUSA166, 68-5, 68-35, 68-41, 68-51, 68-77 and 30 73-23 were isolated.

EXAMPLE 4

Isolation of genomic DNA encoding NR6

DNA encoding the murine NR6 genomic locus was also isolated using the 68-1 cDNA as a probe. Two positive clones, 2-2 and 57-3, were isolated from a mouse 129/Sv strain genomic DNA library cloned into λ FIX. These clones were overlapping and the position of the restriction sites, introns and exons were determined in the conventional manner. The region of the genomic clones containing exons and the intervening introns were sequenced on both strands using an Applied Biosystems automated DNA sequencer, with fluorescent dideoxynucleotide analogues according to the manufacturer's instructions. Figure 2 shows the nucleotide sequence and corresponding amino acid sequence of the translation regions. This is also shown in SEQ ID NOs:30 and 31. Figure 3 provides the genomic NR6 gene sequence but with additional 5' sequence. This is also represented in SEQ ID NO:38 in relation to this sequence. The coding exons of NR6 span approximately 11kb of the mouse genome. There are 9 coding exons separated by 8 introns:

exon1	at least 239nt	intron1	5195nt	
exon2	282nt	intron2	214nt	
exon3	130nt	intron3	107nt	
20	exon4	170nt	intron4	1372nt
	exon5	158nt	intron5	68nt
	exon6	169nt	intron6	2020nt
	exon7	188nt	intron7	104nt
	exon8	43nt	intron8	181nt
25	exon9	252nt		

Exon 1 encodes the signal sequence, exon 2 the Ig-like domain, exons 3 to 6 the hemopoietin domain. Exons 7, 8 and 9 are alternatively spliced.

EXAMPLE 5

5'-RACE was used to investigate the nature of the sequence 5' of nucleotide 960, encoding Ile321 of NR6.1, 2 and 3. The nucleotide and corresponding amino acid sequences are shown in SEQ ID NOs:12, 14 and 16, respectively. 5'-RACE was performed using Advantage KlenTaq polymerase (CLONTECH, CAT NO. K1905-1) on mouse brain Marathon-ready cDNA (CLONTECH, CAT NO. 7450-1) according to the manufacturer's instructions. Briefly, the first rounds of amplification were performed using 5µl of cDNA in a total volume of 50µl, with 10 1mM each of the primers AP1&M116 [SEQ ID NO:2] or AP1&M159 [SEQ ID NO:4] by 35 cycles of 94°C x 0.5min, 68°C x 2.0min on GeneAmp 2400 (Perkin-Elmer). An amount of 5µl of 50-fold diluted product from the first amplification was then re-amplified ; for the products generated with primers AP1 and M116 [SEQ ID NO:2] in the first amplification, 1 mM of the primers AP2&M108 [SEQ ID NO:3] were used in the second amplification. For 15 the products generated with primers AP1 and M116 [SEQ ID NO:2] in the first amplification, two separate secondary reactions were performed, one reaction with 1 mM primers AP2&M242 [SEQ ID NO:5] and the other with 1 mM primers AP2&M112 [SEQ ID NO:6]. Amplification was achieved using 25 cycles of 94°C x 0.5min, 68°C x 2.0min. These samples were analyzed by agarose gel electrophoresis. When a single ethidium bromide staining 20 amplification product was observed, it was purified by QIAquick PCR purification kit according to the manufacturer's instructions (QIAGEN, CAT NO. DG-0281) and its sequence was directly determined using both primers used in the secondary amplification step, that is AP2 and either M108 [SEQ ID NO:3], M242 [SEQ ID NO:5] or M112 [SEQ ID NO:6].

From the initial screens of mouse brain and testis cDNA libraries with the degenerate WSXWS oligonucleotides and subsequent screening of cDNA libraries from mouse testis, mouse brain 30 and the KUSA osteoblastic cells line a total of 18 NR6 cDNAs have been isolated. Nucleotide sequence of NR6 was also determined from 5'RACE analysis of brain cDNA. Additionally, two

- 40 -

murine genomic DNA clones encoding NR6 have also been isolated.

Comparison of the NR6 cDNA clones revealed a common region of nucleotide sequence which included a 123 base pairs 5'-untranslated region and 1221 base pairs open reading frame, 5 stretching from the putative initiation methionine, Met1 to Gln407 (SEQ ID NOs:12, 14 and 16, respectively). Within this common open reading frame, a haemopoietin receptor domain was observed which contained the four conserved cysteine residues and the five amino acid motif WSXWS typical of members of the haemopoietin receptor family, was observed.

10 Further analyses revealed that after nucleotide 1221, three different classes of NR6 cDNAs could be found, these were termed NR6.1, NR6.2 and NR6.3 (SEQ ID NOs:12, 14 and 16, respectively). Each encoded a receptor that appeared to lack a classical transmembrane domain and, would, therefore be likely to be secreted into the extracellular environment. Although the putative C-terminal region of the three classes of NR6 proteins appear to be different, the 15 cDNAs encoding them also had a common region of 3'-untranslated region.

With regard to SEQ ID NOs:12, 14 and 16, the number of both nucleotides and amino acids begins at the putative initiation methione. NR6.1 and NR6.2 are identical to nucleotide 1223 encoding Q407, this represents the end of an exon. NR6.1 splices out an exon present only in 20 NR6.2 and uses a different reading frame for the final exon which is shared with NR6.2. The 3'-untranslated region is shared by NR6.1, NR6.2 and NR6.3, NR6.2 splices in an exon starting with nucleotide 1224 encoding D408 and ending with nucleotide 1264 encoding the first nucleotide in the codon for G422 and uses a different reading frame for the final exon which is shared with NR6.2 (see Figure 1). NR6.3 fails to splice from position nucleotide 1224, 25 therefore, translation continues through the intron, giving rise to the C-terminal protein region.

The sequence of NR6 cDNA products generated by 5'-RACE amplification from mouse brain cDNA preparation is shown in SEQ ID NO:18. The nucleotide sequence identified using 5'-RACE appeared to be identical to the sequence of cDNAs encoding NR6.1, NR6.2, and 30 NR6.3 from nucleotide C151, the first nucleotide for the codon for Pro51. 5' of this nucleotide, the sequences diverged and the sequence is unique not being found in NR6.1,

- 41 -

NR6.2 or NR6.3. Additionally, there is a single nucleotide difference, with the sequence from the RACE containing an G rather than an A at nucleotide 475, resulting in Thr159 becoming Ala.

5 Analysis of the genomic clones, revealed that they were overlapping and contained exons encoding the majority of the coding region of the three forms of NR6 (Figures 1, 2 and 3). These genomic clones, contained exons encoding from Asp50 (nucleotide 148) of the NR6 cDNAs. Sequence 5' of this in the cDNAs, including the 5'-untranslated region and the region encoding Met1 to Gln49 (SEQ ID NOs:12, 14 and 16), and the 5' end predicted from analysis 10 of 5' RACE products (SEQ ID NO:18) were not present in the two genomic clones isolated.

Analysis of the NR6 genomic DNA clones also provided an explanation of the three classes of NR6 cDNAs found. It is likely that NR6.1, NR6.2 and NR6.3 arise through alternative splicing of NR6 mRNA (Figure 1). The last amino acid residue that these different NR6 proteins are 15 predicted to share is Gln407. SEQ ID NO:18 shows that Gln407 is the last amino acid encoded by the exon that covers nucleotides g5850 to g6037 (see Figure 2). Alternative splicing from the end of this exon (Figure 1) accounts for the generation of cDNAs encoding NR6.1 (SEQ ID NO:12), NR6.2 (SEQ ID NO:14) and NR6.3 (SEQ ID NO:16). In the case of NR6.1, the region from g6038 to g6425 is spliced out, leading to juxtaposition of g6037 and g6426. In the 20 case of NR6.2, the region from g6038 to 6141 is spliced out, an exon from 6142 to g6183 is retained and then this is followed by splicing out of the region from g6183 to g6425. NR6.3 appears to arise when there is no splicing from nucleotide g6038. For all three forms, a secreted rather than transmembrane form is generated, these differ however in their predicted C-terminal region. The genomic NR6 sequence with additional 5' sequence is shown in Figure 25 3.

EXAMPLE 7 ESTs

30 Databases were searched with the murine NR6 corresponding to the unspliced version shown in SEQ ID NO:16. The murine NR6 sequence used is shown in SEQ ID NO:22.

- 42 -

The databases searched were:

(i) dbEST - Database of Expressed Sequence Tags National Center for Biotechnology Information National Library of Medicine, 38A, 8N8058600 Rockville Pike, Bethesda, MD 20894 Phone: 0011-1-301-496-2475 Fax: 0015-1-301-480-9241 USA.

(ii) DNA Data Bank of Japan DNA Database Release 3689. Prepared by: Sanzo Miyazawa Manager/Database Administrator Hidenori Hayashida Scientific Reviewer Yukiko Yamazaki/Eriko Hatada/Hiroaki Serizawa Annotators/reviewers Motono Horie/Shigeko Suzuki/Yumiko Satao Secretaries/typists DNA Data Bank of Japan National Institute of Genetics Center for Genetic Information research Laboratory of Genetic Information Analyses 1111 Yata Mishima, Shizuoka 411 Japan.

(iii) EMBL Nucleic Acid Sequence Data Bank Release 47.0.
15
(iv) EMBL Nucleic Acid Sequence Data Bank Weekly Updates Since Release 44.

(v) Genetic Sequence Data Bank NCBI-GenBank Release 94 National Center for Biotechnology Information National Library of Medicine, 38A, 8N805 8600 Rockville Pike, Bethesda, MD 20894 Phone: 0011-1-301-495-2475 Fax: 0015-1-301-480-9241 USA.

20
(vi) Cumulative Updates since NCBI-GenBank Release 88 National Center for Biotechnology Information National Library of Medicine, 38A, 8N805 8600 Rockville Pike, Bethesda, MD 20894 USA.

25
The search of the databases with the murine probe identified several EST's having sequence similarity to the probe. The EST's were:

W66776 (murine sequence)
30 MM5839 (murine sequence)
AA014965 (murine sequence)

- 43 -

W46604 (human sequence)
 W46603 (human sequence)
 H14009 (human sequence)
 N78873 (human sequence)
 5 R87407 (human sequence).

EXAMPLE 8

Isolation of 3' cDNA clones encoding human NR6

- 10 PCR products encoding human NR6 were generated using oligonucleotides UP1 and LP1 (see below) based on human ESTs (Genbank Acc:H14009, Genbank Acc:AA042914) that were identified from databases searched with murine NR6 sequence (SEQ ID NO:22). PCR was performed on a human fetal liver cDNA library (Marathon ready cDNA CLONTECH #7403-1) using Advantage Klen Taq Polymerase mix (CLONTECH #8417-1) in the buffer supplied at
 15 94°C fro 30s and 68°C for 3 min for 35 cycles followed by 68°C for 4 min and then stopping at 15°C. A standard PCR programme for the Perkin-Elmer GeneAmp PCT system 2400 thermal cycle was used. The PCR yielded a prominent product of approximately 560 base pairs (bp; SEQ ID NO:18), which was radiolabelled with [α -³²P] dCTP using a random priming method (Amersham, RPN, 1607, Mega prime kit) and used to screen a human fetal kidney 5'-
 20 STRETCH PLUS cDNA library (CLONTECH #HL1150x). Library screens were performed using Rapid Hybridisation Buffer (Amersham, RPn 1636) according to manufacturer's instructions and membranes washed at 65°C for 30 min in 0.1xSSC/0.1% (w/v) SDS. Two independent cDNA clones were obtained as lambda phage and subsequently subcloned and sequenced. Both clones (HFK-63 and HFK-66) contained 1.4 kilobase (kb) inserts that showed
 25 sequence similarity with murine NR6. The sequence and corresponding amino acid translation of HFK-66 is shown in SEQ ID NO:24.

The translation protein sequences of clone HFK-66 shows a high degree of scquence similarity with the mouse NR6.

- 44 -

UP1: 5'TCC AGG CAG CGG TCG GGG GAC AAC 3' [SEQ ID NO:26]

LP1: 5' TTG CTC ACA TCG TCC ACC ACC TTC 3' [SEQ ID NO:27]

EXAMPLE 9

5 Genomic Structure of Human NR6

Human genomic DNA clones encoding human NR6 was isolated by screening a human genomic library (Lambda FIX™II Stratagene 946203) with radiolabelled oligonucleotides, 2199 and 2200 (see below). These oligonucleotides were designed based on human ESTs (Genbank 10 Acc:R87407, Genbank Acc:H14009) that were identified from databases searched with murine NR6. Filters were hybridised overnight at 37°C in 6xSSC containing 2 mg/ml bovine serum albumin, 2 mg/ml Ficoll, 2mg/ml polyvinylpyrrolidone, 100 mM ATP, 10 mg/ml tRNA, 2 mM sodium pyrophosphate, 2 mg/ml salmon sperm DNA, 0.1% (w/v) SDS and 200 mg/ml sodium azide and washed at 65°C in 6 x SSC/0.1% SDS. Five independent genomic clones were 15 obtained and sequenced. The extend of sequence obtained has determined that the clones overlap and exhibit a similar genomic structure to murine NR6. Exon coding regions are almost identical over the region covered by the genomic clones while intron coding regions differ, although the size of the introns are comparable. The extent of known overlap is shown in Fig. 5.

20

OLIGONUCLEOTIDES:

2199: 5' CCC ACG CTT CTC ATC GGA TTC TCC CTG 3' [SEQ ID NO:36]

2200: 5' CAG TCC ACA CTG TCC TCC ACT CGG TAG 3' [SEQ ID NO:37]

25

EXAMPLE 10

Northern Blot Analysis of Human NR6 mRNA Expression

30 Clontech Multiple Tissue Northern Blots (Human MTN Blot, CLONTECH #7760-1, Human MTN Blot IV, CLONTECH #7766-I, Human Brain MTN Blot II, CLONTECH #7755-1,

RECORDED BY FAX/EMAIL

- 45 -

Human Brain MTN Blot III, CLONTECH #7750) were probed with a radiolabelled 3' human NR6 cDNA clone, HFK-66 (SEQ ID NO:24). The clone was labelled with [α -³²P] dCTP using a random priming method (Amersham, RPN 1607, Mega prime kit). Hybridisation was performed in Express Hybridisation Solution (CLONTECH H50910) for 3 hours at 67°C and membranes were washed in 0.1xSSC/0.1% w/v SDS at 50°C.

A 1.8 kb transcript was detected in a variety of human tissues encompassing reproductive, digestive and neural tissues. High levels were observed in the heart, placenta, skeletal muscle, prostate and various areas of the brain, lower levels were observed in the testis, uterus, small intestine and colon. Photographs showing these Northern blots are available upon request. This expression pattern differs from the expression pattern observed with murine NR6.

EXAMPLE 11

Mouse NR6 Expression Vectors

15

pEF-FLAG/mNR6.1

The mature coding region of mouse NR6.1 was amplified using the PCR to introduce an in-frame *Asc* I restriction enzyme site at the 5' end of the mature coding region and an *Mlu* I site at the 3' end, using the following oligonucleotides:-

5' oligo 5'-AGCTGGCGCGCCTCCGGGCGGATCGGGAGGCCAC-3' [SEQ ID NO:30]

3' oligo 5'-AGCTACGCGTTAGAGTTAGCCGGCAG-3'[SEQ ID NO:31]

25 The resulting PCR derived DNA fragment was then digested with *Asc* I and *Mlu* I and cloned into the *Mlu* I site of pEF-FLAG. Expression of NR6 is under the control of the polypeptide chain elongation factor 1 α promoter as described (16) and results in the secretion, using the IL3 signal sequence from pEF-FLAG, of N-terminal FLAG-tagged NR6 protein.

30 pEF-FLAG was generated by modifying the expression vector pEF-BOS as follows:-

- 46 -

pEF-BOS (16) was digested with Xba I and a linker was synthesized that encoded the mouse IL3 signal sequence (MVLASSTTSIHTMLLLLLMLFHLGLQASIS) and the FLAG epitope (DYKDDDDK). *Asc* I and *Mlu* I restriction enzyme sites were also introduced as cloning sites. The sequence of the linker is as follows:-

5

M V L A S S T T S I H T M
 CTAGACTAGTGCTGACACAATGGTTCTGCCAGCTCTACCACCAAGCATCCACACCATG
 TGATCACGACTGTGTTACCAAGAACGGTCGAGATGGTGGTCGTAGGTGTGGTAC

10 L L L L M L F H L G L Q A S I S Asc I
 CTGCTCCTGCTCCTGATGCTCTCCACCTGGGACTCCAAGCTTCATCTGGCGCGCC
 GACGAGGACGAGGAAGTGGACCTGAGGTTCGAAGTTAGAGCCGCGCGG

D Y K D D D K Mlu I

15 AGGACTACAAGGACGACGATGACAAGACGCGTGCTAGCACTAGT
 TCCTGATGTTCCCTGCTGCTACTGTTCTGCGCACGATCGTACAGATC

The two oligonucleotides were annealed together and ligated into the Xba I site of
 20 pEF-BOS to give pEF-FLAG.

pCOS1/FLAG/mNR6 & pCHO1/FLAG/mNR6

A DNA fragment containing the sequences encoding IL3 signal sequence/Flag/mNR6
 25 and the poly(A) adenylation signal from human G-CSF cDNA, was excised from pEF-
 FLAG/mNR6 using the restriction enzyme *Eco*R I. This DNA fragment was then
 inserted into the *Eco*R I cloning site of pCOS1 and pCHO1

The pCOS1 and pCHO1 vectors were constructed as follows. pCH01 is also described
 30 in reference (17) but with a different selectable marker.

pCOS1 was prepared by digesting HEF-12h-g α 1 (see Figure 24 of International Patent

- 47 -

Publication No. WO 92/19759) with *EcoRI* and *SmaI* and ligating the digesting product with an *EcoRI-NotI-BamHI* adaptor (Takara 4510). The resulting plasmid comprises an *EF1 α* promoter/enhancer, *Nco'* marker gene, SV40E, ori and an *Amp'* marker gene.

5 pCH01 was constructed by digesting DHFR-PMh-gr1 (see Figure 25 of International Patent Publication No. WO 92/19759) with *PvuI* and *Eco47III* and ligating same with pCOSI digested with *PvuI* and *Eco47III*. The resulting vector, pCH01, comprises an *EF1 α* promoter/enhancer, an DHFR marker gene, SV40E, Ori and a *Amp'* gene.

10

EXAMPLE 12

mRN6 has been expressed as an N' Flag tagged protein following transfection of CHO cells and as a C' Flag tagged protein following transfection of KUSA cells in both cases 15 varying levels of dimeric and aggregated NR6 were secreted.

EXAMPLE 13

Murine NR6 expression

20

NR6 expression studies were conducted in murine Northern Blots. At the level of sensitivity used in the adult mouse, NR6 expression was detected in salivary gland, lung and testis. During embryonic development, NR6 is expressed in fetal tissues from day 10 of gestation through to birth. In cell lines, NR6 expression has been observed in the 25 T-lymphoid line CTLL-2 as well as in FD-PyMT (FDC-P1 myeloid cells expressing polyoma midle T gene), and fibroblastoid cells including bone marrow and fetal liver stromal lines.

30

EXAMPLE 14**Expression, purification and characterisation of CHO and KUSA mNR6**

The methods provide for the production of a dimeric form of CHO derived N' FLAG-5 mNR6 without refolding. All other methods are capable of producing NR6 and are encompassed by the present invention.

A. Production of CHO derived N' FLAG-mNR6 (dimeric form)**(i) Protein Production**

10

To analyse structure and functional activity, a cDNA fragment containing the entire coding sequence of murine NR6 with an N-terminal FLAG (N' FLAG) sequence was cloned into the EcoR1 site of the expression vector pCHO1. For stable production of N-terminal FLAG-tagged NR6 the vector contains the DHFR (dihydrofolate reductase) gene 15 as a selective marker with the NR6 gene under the control of an EF1a promoter. CHO cells were transfected with the construct using a polycationic liposome transfection reagent (Lipofectamine, GibcoBRL).

(ii) Lipofectamine transfection method

20

Using six well tissue culture plates either 2×10^5 KUSA cells in 2ml IMDM + 10% (v/v) FCS or 2×10^5 CHO cells were cultured in 2ml α -MEM + 10% (v/v) FCS until 70% confluent. $2\mu\text{g}$ DNA diluted in 100 μl OPTI-MEM I (Gibco BRL, USA) was mixed gently with 12 μl lipofectamine diluted in 100 μl OPTI-MEM I and incubated at room 25 temperature for 30min to allow DNA complex formation. DNA complexes were gently diluted in a total volume of 1ml of OPTI-MEM I and overlaid onto washed KUSA or CHO cell monolayers. A further 1ml IMDM + 20% (v/v) FCS (KUSA cells) or 1ml α -MEM + 20% (v/v) FCS (CHO cells) was added to transfected cells after 5 hours. At 24 hours, the culture medium was replaced with fresh complete growth medium. At 48 hours 30 after transfection, selection was applied. A methotrexate resistant clone secreting comparatively high levels of NR6 was selected and expanded for further analysis.

(iii) Protein expression

CHO cells were grown to confluence in roller bottles in nucleoside free α -MEM + 10% (v/v) FCS. Selection was maintained by using 100 ng/ml Methotrexate in the conditioned media according to manufacturer instructions. Expression was monitored by Biosensor and harvesting found to be optimal at 3 to 4 days.

B. Protein Analysis

10 (i) Biosensor analysis

Expression and purification was monitored by Biosensor analysis (BiaCoreTM, Sweden) where anti FLAG peptide M2 antibody (Kodak Eastman, USA), specific for the FLAG peptide sequence was bound to the sensorchip. Fractions were analysed for binding to the 15 sensor surface (resonance units) and the sample then removed from the surface using 50 mM Diethylamine pH 12.0 prior to analysis of the next fraction. Immobilisation and running conditions of the Biosensor follow the manufacturer's instructions.

(ii) Protein Production

20

In order to generate and characterise NR6, conditioned media (2 L) produced by CHO cells was harvested after day 3, post confluence. Conditioned media was concentrated using diafiltration with a 10,000 molecular weight cut-off. (Easy flow, Sartorius, Aus). At a volume of 200 ml (i.e. 10 x concentrated) the sample was buffer exchanged into 25 mM Tris, 0.15M NaCl, 0.02% (v/v) Tween 20 pH 7.5 (Buffer A).

(iii) Immunoprecipitation and Western Blot analysis of mNR6

Concentrated conditioned media (1ml) was immunoprecipitated with M2 affinity resin 30 (20 μ l, Kodak Eastman). To examine the structural characterisation of mNR6 SDS PAGE was performed under reducing and non-reducing conditions. Separation was performed

- 50 -

on NOVEX 4-20% (v/v) Tris/glycine gradient gels and protein transferred on PVDF membrane. Western blots were probed with biotinylated M2 antibody (primary, 1:500) and then streptavidin peroxidase (secondary, 1:3000). Samples were visualised by autoradiography using electrochemiluminescence (ECL, Dupont, USA).

5

By regressional analysis of prestained standards (BIORAD, Aus.) the molecular weight of the monomeric unit was calculated to be 65,000 daltons. Under non-reducing conditions the molecular weight was calculated to be 127,000 indicating that NR6 is a disulphide linked dimer. A tetrameric complex running at approximately 250,000 daltons 10 was also observed. Although a band running at approximately 50,000 daltons was observed, no monomeric NR6 was detected under non-reducing conditions indicating that the majority of NR6 expressed in this system is disulphide linked.

(iv) Affinity Chromatography of mNR6

15

Concentrated conditioned media (200 ml) was applied to M2 affinity resin (5ml) under gravity. To enhance recovery the unbound fraction was reapplied to the column four times prior to extensive washing of the column with 200 volumes of Buffer A. Biosensor analysis indicates that approximately 20% of the M2 binding originally present in the 20 concentrate remains in the unbound fraction. The bound fraction was eluted from the column using an immunodesorbant (50 ml); actisep (Sterogene Labs, USA).

(v) Ion exchange and Desalting of mNR6

25 In order to buffer exchange mNR6 prior to anion chromatography, 10 ml batches of the eluted fraction (50 ml) were applied to an XK column (400 x 26 mm I.D.) containing G25 sepharose (Pharmacia, Sweden). Chromatography was developed at 4 ml/min using an FPLC (Pharmacia, Sweden) equipped with an online UV280 and conductivity monitor. The mobile phase was 10 mM Tris, 0.1M NaCl, 0.02% v/v Tween, pH 8.0. 10 ml 30 fractions were collected between 12.5 min and 25 min to optimise recovery and removal of salt. Fractions were analysed by Biosensor analysis and pooled according to binding.

BIOLOGICALS

All pooled active fractions were diluted with an equal volume of 20 mM Tris, 0.02% (v/v) Tween, pH 8.5 (Buffer B) and then loaded onto a Mono Q 5/5 (Pharmacia, Sweden) at a flow rate of 2 ml/min. The column was washed with buffer B. Elution was performed using a linear gradient between buffer B and buffer B containing 0.6M NaCl over 30 min 5 at a flow rate of 1 ml/min. Fractions (1 minute) were collected and analysed on the Biosensor and also by SDS PAGE and Western blot analysis. Fractions 15 to 26 (approximately 0.4M NaCl) appear to contain the majority of mNR6 as indicated by the Biosensor.

10 C. Production of CHO derived N' FLAG-mNR6 (monomeric form)

(i) Protein Production

A cDNA fragment containing the entire coding sequence of murine NR6 with an N-terminal FLAG™ sequence was cloned into the expression vector pCHO1 for production 15 of N-terminal FLAG-tagged protein. This vector contains a neomycin resistance gene with expression of the NR6 gene under the control of an EF1 α promoter. This expression construct was transfected into CHO cells using Lipofectamine (Gibco BRL, USA) according to the manufacturer instructions. Transfected cells were cultured in 20 IMDM + 10% (v/v) FCS with resistant cells selected in geneticin (600 μ g/ml, Gibco BRL, USA). A neomycin resistant clone, secreting comparatively high levels of NR6 was selected and expanded for further analysis.

(ii) Protein expression

25

N' FLAG-NR6 expressed in serum free conditioned media (10 litre) was harvested from transfected CHO and cells. Collected media was concentrated using a CH2 ultrafiltration system equipped with a S1Y10 cartridge (Amicon molecular weight cut-off 10,000). Preliminary examination of the expressed product under reducing and non-reducing SDS 30 PAGE followed by western blot analysis was performed. Visualisation of the protein on Westerns was specific to the primary antibody anti FLAG M2. Under reducing conditions

a band approximately at 65,000 daltons was observed. Under non-reducing conditions, dimer and larger molecular weight aggregates were observed. These are disulphide linked monomers as they are not present in the reducing gel. Small amounts of monomer appear to be present in non-reducing gels.

5

(iii) Affinity Chromatography of NR6

Concentrated conditioned media was applied to an anti FLAG M2 affinity resin (100 x 16 mm I.D.). After washing the unbound proteins off the column, the bound proteins 10 were eluted using FLAG peptide (60 μ g/ml) in PBS.

(iv) Ion Exchange Chromatography of NR6

Eluted fractions from affinity column were dialysed overnight against 20 mM Tris-HCl 15 pH 8.5 (buffer C) containing 50 mM Dithiothreitol (DTT) using 25,000 cut-off dialysis tubing (Spectra/Por7, Spectrum). The dialysed fractions were loaded onto Mono Q 5/5 (Pharmacia, Sweden) previously equilibrated with buffer C containing 5 mM DTT. Chromatography was developed using a linear gradient between buffer C and buffer C containing 1.0 M NaCl at a flow rate of 0.5 ml / min.

20

(v) Refolding of NR6

Fractions containing NR6 from the Mono Q were adjusted to 50 mM DTT and left overnight at 4°C. To initiated refolding the sample was then dialysed against 50 mM Tris- 25 HCl (pH 8.5), 2 M Urea, 0.1% (v/v) Tween 20, 10 mM Glutathione (reduced) and 2 mM Glutathione (oxidised) at a final protein concentration of 100 μ g / ml. Folding was carried out at ambient temperature with one change of the buffer over 24 hours.

(v) Reversed Phase High Performance Liquid Chromatography (RP-HPLC)

30

The folded product was further purified by RP-HPLC using a Vydac C4 resin (250 x 4.6

- 53 -

mm I.D.) previously equilibrated with 0.1% (v/v) Trifluoroacetic acid (TFA). Elution was carried out using a linear gradient from 0 to 80% (v/v) acetonitrile / 0.1% (v/v) TFA at a flow rate of 1 ml per minute.

5 D. pCHO1/NR6/FLAG

In order to determine the native N termini of NR6, a C terminal FLAG NR6 CHO cell line was established.

10 The plasmid pKUSA166 (murine NR6 cDNA cloned into the EcoR I site of pBLUESCRIPT) was digested with BamH I to remove the sequences encoding the last 15 amino acids of murine NR6. Synthetic oligonucleotides which encode the 3' end of mouse NR6 followed by the FLAG peptide tag were annealed and ligated into the BamH I site of pKUSA166. The sequence of the oligonucleotides was as follows:-

15

I L P S G R R G A A R G P A G D Y K D D D D K * [SEQ ID NO:34]
 GATCTTGCCCTCGGGCAGACGGGTGCGCGAGAGGTCTGCCGGCGACT
 ACAAGGACGACGATGACAAGTA G [SEQ ID NO:33]

20 AACGGGAGCCCGTCTGCCAACGCCGCTCTCCAGGACGGCCGCTGATGTT
 CCTGCTGCTACTGTTCATCCTAG [SEQ ID NO:35]

The 5' end of the linker introduces a silent mutation (CTG > TTG), to destroy the 5' BamH I site upon insertion of the linker. The NR6 cDNA (with native signal sequence)
 25 with the C-terminal FLAG was cut out of pKUSA166 with EcoR I and BamH I and cloned into the EcoR I - BamH I cloning sites of pCHO-1. This vector results in the secretion of NR6 protein with a C-terminal flag tag (C' FLAG-mRN6).

This vector results in the secretion of NR6 protein from KUSA cells. The vector pCHO1
 30 has been previously described in (17) although with a different secretable marker.

(i) Production of polyclonal NR6 antiserum

The following peptide from the N terminal area of NR6 was chosen for production of polyclonal antiserum to NR6

5

VISPQDPTLLIGSSLQATCSIHGDT [SEQ ID NO:39]

The peptide was conjugated to KLH and injected into rabbits. Production and purification of the polyclonal antibody specific to the NR6 peptide sequence follows standard methods.

(ii) Protein expression

KUSA cells transfected with cDNA of C terminal tagged mNR6 were grown to confluence in flasks (800ml) using IMDM media containing 10% (v/v) FBS. Conditioned media (100 ml) was harvested 3 -4 days post confluence.

(iii) Characterisation of NR6 by Immunoprecipitation and Western blotting

In order to establish that NR6 with the predicted sequence is produced in KUSA cells transfected with the cDNA, western blot analysis using both M2 antibody and purified NR6 specific rabbit antibody were performed. Conditioned media (1 to 5 ml) was immunoprecipitated with M2 affinity resin (10-20 μ l). Then after sufficient time for binding, the beads were washed with MT-PBS and subsequently NR6 eluted with 100 μ g/ml FLAG peptide (40 μ l, 1, 5 minute incubation). The sample was then subjected to reducing and non reducing SDS PAGE followed by western blot analysis. Both purified NR6 polyclonal antibody (purified by protein G) and M2 antibody recognise a band under reducing conditions of a molecular weight size approximately 65,000 daltons. Since the two antibodies recognising residues at the N terminus and C terminus it is reasonable to assume that full length NR6 is produced. Biotinylation of the respective antibodies by standard methods reduces the background. Under non-reducing conditions polyclonal

- 55 -

NR6 bind antibodies to a band of a molecular weight of approximately 127,000, consistent with a dimeric NR6 disulphide linked form. Minor components of tetrameric NR6 are present, no monomeric NR6 is evident using polyclonal NR6 antibodies.

5

- 56 -

EXAMPLE 15

Generation of NR6 knockout mice

To construct the NR6 targeting vector, 4.1kb of genomic NR6 DNA containing exons 5' 2 through to 6 was deleted and replaced with G418-resistance cassette, leaving 5' and 3' NR6 arms of 2.9 and 4.5 kb respectively. A 4.5 kb Xhol fragment of the murine genomic NR6 clone 2.2 (Figure 3) containing exons 7, 8 and 3' flanking sequence was subcloned into the XhoI site of pBluescript generating pBSNR6Xho4.5. A 2.9kb NotI-StuI fragment within NR6 intron 1 from the same genomic clone was inserted into NotI and 10 EcoRV digested pBSNR6Xho4.5 creating pNR6-Ex2-6. This plasmid was digested with ClaI, which was situated between the two NR6 fragments, and following blunt ending, ligated with a blunted 6kb HindIII fragment from placZneo, which contains the *lacZ* gene and a PGK_{neo} cassette, to generate the final targeting vector, pNR61acZneo. pNR61acZneo was linearised with NotI and electroporated into W9.5 embryonic stem 15 cells. After 48 hours, transfected cells were selected in 175 µg/ml G418 and resistant clones picked and expanded after a further 8 days.

Clones in which the targetting vector had recombined with the endogenous NR6 gene were identified by hybridising SpeI-digested genomic DNA with a 0.6 kb XhoI-StuI 20 fragment from genomic NR6 clone 2.2. This probe (probe A, Figure 4), which is located 3' to the NR6 sequences in the targeting vector, distinguished between the endogenous (9.9 kb) and targeted (7.1 kb) NR6 loci (Figure 5).

Genomic DNA was digested with SpeI for 16hrs at 37°C, electrophoresed through 0.8% 25 (w/v) agarose, transferred to nylon membranes and hybridised to ³²P-labelled probe in a solution containing 0.5M sodium phosphate, 7% (w/v) SDS, 1mM EDTA and washed in a solution containing 40mM sodium posphate, 1% (w/v) SDS at 65°C. Hybridising bands were visualised by autoradiography for 16 hours at -70°C using Kodak XAR-5 film and intensifying screens. Two targeted ES cell clones, W9.5NR6-2-44 and W9.5NR6-4- 30 2, were injected into C57B1/6 blastocysts to generate chimeric mice. Male chimeras were mated with C57B1/6 females to yield NR6 heterozygotes which were subsequently

- 57 -

interbred to produce wild-type ($NR6^{++}$), heterozygous ($NR6^{+/-}$) and mutant ($NR6^{-/-}$) mice. The genotypes of offspring were determined by Southern Blot analysis of genomic DNA extracted from tail biopsies.

- 5 Genotyping of mice at weaning from matings between $NR6^{-/-}$ heterozygous mice derived from both targeted ES cell clones revealed an absence of homozygous $NR6^{-/-}$ mutants. As no unusual loss of mice was observed between birth and weaning, this suggest that lack of NR6 is lethal during embryonic development or immediately after birth. Genotyping of embryonic tissues at various stages of development suggests that death 10 occurs late in gestation (beyond day 16) or at birth.

EXAMPLE 16

Oligonucleotides

1943:

15 5' GTC CAA GTG CGT TGT AAC CCA 3' [SEQ ID NO: 40]

2070:

5' GCT GAG TGT GCG CTG GGT CTC ACC 3' [SEQ ID NO: 41]

2057:

5' GGC TCC ACT CGC TCC AGA 3' [SEQ ID NO: 42]

20

EXAMPLE 17

Isolation of a full-length human NR6 cDNA clones

25 *PCR amplification of a huNR6 specific probe:*

Two human ESTs (Genbank Acc: AA042914 and H14009) showing homology with murine NR6 were used to design oligonucleotides for PCR screening of a range of commercially available human genomic and cDNA libraries. Oligonucleotide sequence:

30 Fwd primer: 5' - TGC CCC CAG AGA AAC CCG TCAAC - 3' [SEQ ID NO: 45] and Rev primer: 5' - CGT GAG TAC ATC GGA GCG GGC AGA G - 3' [SEQ ID NO: 46].

- 58 -

The expected fragment size of 300 bp was amplified (25 cycles, 96°C denaturation, 60°C annealing and 72°C extension, Stratagene Pfu DNA polymerase Cat#600159, Corbett PC-960G) from a human placental cDNA library (Clontech Human Placenta 5'-STRETCH PLUS cDNA library Cat#HL3007b, cloning vector lgt11, oligo(dT) and random primed, 5 source RNA 25 year old Caucasian mother). PCR amplification was repeated using a proof reading polymerase (Stratagene) to generate blunt ended PCR products for cloning into pCR-Blunt vector (Invitrogen ZeroBlunt PCR Cloning Kit, Cat# 440302). PCR colony analysis was used to identify transformed E. coli containing appropriately ligated vector and the identity of the inserts confirmed by sequencing.

10

Screening of human placental library:

The huNR6 probe was excised from pCR-Blunt using EcoRI, 3' end labelled with 32P (Pharmacia Biotech Ready To Go DNA Labelling Beads Cat # 27-9240-01) and used to screen the placental cDNA library (standard methods, duplicate filters, 106 plaques screened, high stringency washes - 0.2X SSC, 0.1% SDS, 65°C). Twenty positives were identified on primary screening and following two rounds of plaque purification, eighteen cloned tertiary phage stocks containing inserts ranging from ~1-3 kb in size remained. Phage clone #11 was selected for thorough sequencing and found to contain 2079 bp insert, with an ORF of 1260 bases, 515bp of 5'UTR and 304bp of 3'UTR. The sequence of the ORF and the corresponding amino acid translation showed a high degree of homology to the corresponding mouse NR6 cDNA and amino acid sequences (88% and 95% respectively, Fig. 6 and 7).

25

EXAMPLE 18

Human NR6 Expression Vectors

pEF-N'-FLAG/hNR6

30 The coding region of the mature human NR6 protein was amplified using PCR to introduce in frame Asc I restriction enzyme sites at the 5' and 3' ends using the following

00000000000000000000000000000000

- 59 -

oligonucleotides:

5'Oligo 5'-TCAGGCGCGCCTGCCAACACAGCTGTGATC-3' [SEQ ID NO: 47]

3'Oligo 5'-TCAGGGCGCGCCTTATCTGGCAGGACCTCT-3' [SEQ ID NO: 48]

The resulting PCR derived DNA fragment was then digested with Asc I and cloned into

5 the Mlu I site of pEF-FLAG-S. Expression of NR6 is under control of the polypeptide elongation factor 1a promoter and results in the secretion, using the IL3 signal sequence from pEF-FLAG, of N-terminal FLAG-tagged NR6 protein.

pEF-C'-FLAG/hNR6

10

The complete coding region, including the endogenous signal sequence, of human NR6 protein was amplified using PCR to introduce in frame Asc I restriction enzyme sites at the 5' and 3' ends using the following oligonucleotides:

5'Oligo 5'-TCAGGCGCGCCTGCCGCCGGCCGC-3' [SEQ ID NO: 49]

15 3'Oligo 5'-ATAAGGCGCGCCCTGGCAGGACCTCTCG-3' [SEQ ID NO: 50]

The resulting PCR derived DNA fragment was then digested with Asc I and cloned into the Asc I site of pEF-FLAG-I. Expression of NR6 is under control of the polypeptide elongation factor 1a promoter and results in the secretion, using the endogenous NR6 signal sequence, of C-terminal FLAG-tagged NR6 protein.

20

pEF-N'-I-SPY/hNR6

The coding region of the mature human NR6 protein was amplified using PCR to introduce in frame Asc I restriction enzyme sites at the 5' and 3' ends using the following

25 oligonucleotides:

5'Oligo 5'-TCAGGCGCGCCTGCCAACACAGCTGTGATC-3' [SEQ ID NO: 51]

3'Oligo 5'-TCAGGGCGCGCCTTATCTGGCAGGACCTCT-3' [SEQ ID NO: 52]

The resulting PCR derived DNA fragment was then digested with Asc I and cloned into

the Mlu I site of pEF-I-SPY-S. In this vector the region encoding the FLAG tag has been 30 excised from pEF-FLAG-S and replaced with sequence encoding an I-SPY epitope tag (QYPALT, AMRAD Biotech, Australia). Expression of NR6 is under control of the

- 60 -

polypeptide elongation factor 1a promoter and results in the secretion, using the IL3 signal sequence from pEF-FLAG, of N-terminal FLAG-tagged NR6 protein.

pEF-C'-I-SPY/hNR6

5

The complete coding region, including the endogenous signal sequence, of human NR6 protein was amplified using PCR to introduce in frame Asc I restriction enzyme sites at the 5' and 3' ends using the following oligonucleotides:

5'Oligo 5'-TCAGGCGCGCCTGCCGCCGGCCGC-3' [SEQ ID NO: 53]

10 3'Oligo 5'-ATAAGGCGCGCCCTGGCAGGACCTCTCG-3' [SEQ ID NO: 54]

The resulting PCR derived DNA fragment was then digested with Asc I and cloned into the Asc I site of pEF-I-SPY-I (see above for details). Expression of NR6 is under control of the polypeptide elongation factor 1a promoter and results in the secretion, using the endogenous NR6 signal sequence, of C-terminal FLAG-tagged NR6 protein.

15

EXAMPLE 19

Expression, purification and characterisation of CHO human NR6

A. Transient expression and analysis of NR6

20

Transient expression of C'-terminal FLAG-tagged human NR6

For transient expression of human NR6 the pEF-C'-FLAG/hNR6 expression construct described above was transfected into 293T cells using Lipofectamine (Gibco BRL, USA) 25 according to the manufacturers instructions. Briefly, cells grown to approximately 70-80% confluence in 75 cm² tissue culture flasks were washed in serum free DMEM media then exposed to a mixture of pEF-C'-FLAG/hNR6 and Lipofectamine diluted in DMEM. After 5 hours at 37°C with 5% CO₂ the cells were washed once with DMEM and incubated for a further 16 hours in DMEM supplemented with 10% v/v FCS, glutamine 30 and antibiotics (DM10). At this time the DM10 was removed and replaced with a further 10 ml/flask of fresh DM10 and transfected cells incubated for a further 48 hours.

Supernatants containing secreted human NR6 were recovered, centrifuged and filtered to remove cell debri, then stored at 4°C. Expression and purification was monitored by Biosensor analysis (BiaCore TM, Sweden) where anti-FLAG peptide monoclonal antibody (M2, Kodak Eastman, USA) was bound to the sensorchip. Where multiple fractions were analysed for binding to the sensor surface (resonance units) the chip was desorbed with 50 mM Diethylamine pH 12.0 prior to application of the next sample. Biosensor analysis indicated that the transfected 293T cells secreted significant quantities of FLAG-tagged human NR6 protein into the surrounding media (Figure 8A). The conditioned media (5 ml) was applied to M2 affinity resin (1 ml) under gravity. To enhance recovery the unbound fraction was reapplied to the column 4 times prior to extensive washing of the column with 200 volumes of Buffer A (see Example 14).

The bound fraction was eluted from the column with 10 X 1 ml volumes of 100 mg/ml FLAG peptide (Kodak Eastman) in Tris-buffered saline. The first 5 fractions were electrophoresed on an SDS-PAGE gel under non-reducing conditions. Silver staining revealed a band of the expected size for dimeric NR6 at approximately 120 kDa in fractions 1-3 (Figure 8B). To confirm that this band was indeed NR6, an identical gel was subjected to Western blot analysis using the M2 monoclonal antibody. Fractions were electrophoresed under non-reducing conditions, transferred to a PVDF membrane then probed with a biotinylated M2 antibody. Bound antibody was detected using a Streptavidin-HRPO conjugate and ECL substrate. Subsequent autoradiography indicated a band of the expected size for dimeric NR6 at approximately 120 kDa (Figure 8C).

N-terminal amino acid sequence of C-terminal FLAG-tagged NR6

25

For determination of the N-terminal amino acid sequence, C-terminal FLAG-tagged NR6 was purified from 75 ml of transfected 293T cell supernatant by M2 affinity chromatography as described above. Peak fractions (as determined by SDS-PAGE) were concentrated by lyophilization, resuspended in 0.5 ml and applied to a Superose 12 size exclusion column (Pharmacia, Flow rate 0.5 ml/min, 1 min fractions in 1% w/v ammonium bicarbonate, pH7.8). Peak fractions containing NR6, as determined by

- 62 -

Biosensor and SDS-PAGE analysis, were subjected to N-terminal sequence analysis using a Hewlett Packard sequencer with the indicated N-terminus at Ala40. This is identical to the N-terminus of mature CHO cell derived murine NR6.

5 NR6 is secreted as a homodimer

Western blot analysis following non-reducing and reducing SDS-PAGE and N'-terminal sequence analysis indicated that the secreted form of NR6 was as a homodimer rather than a heterodimer. To further confirm secretion of homodimeric NR6, 293 T cells were
10 transiently cotransfected (Lipofectamine, as above) with vectors encoding C'-terminal FLAG-tagged NR6 and C'-terminal I-SPY-tagged NR6. For control purposes 293T cells were also transfected with each vector alone.

Supernatants from each transfection were immunoprecipitated with resin coupled -
15 monoclonal antibody specific for either I-SPY or FLAG epitopes. The precipitates were then electrophoresed on SDS-PAGE, transferred to PVDF and probed with anti-FLAG antibody according to the standard protocol. FLAG specific reactivity of the appropriate molecular weight was detected in appropriate controls and in supernatants from cotransfections following precipitation with both anti-FLAG and anti-I-SPY coupled
20 resins (results not shown). This indicates that FLAG-tagged and I-SPY tagged monomers are associating to form homodimers.

B. Production of stable cell lines secreting dimeric human NR6

25 For the generation of stable cell lines expressing human NR6, CHO cells and 293T cells were cotransfected with the pEF-C'-FLAG/hNR6 or pEF-N'-FLAG/hNR6 expression constructs and a vector incorporating a gene encoding puromycin resistance using Lipofectamine (Gibco BRL, USA) according to the manufacturers instructions.
Following selection in puromycin (25 mg/ml, Sigma) resistant cells were cloned in 96 well
30 microtitre plates by limiting dilution and clones assayed for NR6 production by a combination of Dot-blot analysis and Biosensor analysis (as above). For Dot-blot analysis

50 ml of supernatant from each clone was transferred to nitrocellulose membrane using a Dot-blot apparatus (BioRad, USA). The nitrocellulose was then incubated in blocking buffer (Phosphate buffered saline, PBS + 1% Casein) for 30 min, washed in PBS and then probed with anti-FLAG M2 antibody (1:1000 in blocking buffer, 60 min), washed again 5 and bound M2 detected using a HRPO conjugated anti-mouse antibody (Silenus, 1:2000 in blocking buffer, 60 min) used in conjunction with TMB substrate (Boehringer Mannheim). Following Dot-blot and Biosensor analysis 6 CHO cell clones expressing C-terminal FLAG-tagged human NR6, 6 CHO cell clones expressing N-terminal FLAG-tagged human NR6, and 6 293T cell clones expressing C-terminal FLAG-tagged human 10 NR6 were selected and expanded for further analysis. Following further analysis a single clone was selected from each group of 6 for expansion and production of human NR6 for subsequent biological analysis. Biosensor analysis of supernatant from each of these clones indicated relatively high level production of NR6 (Fig. 9) and Western blot analysis confirmed that the dominant form of FLAG-tagged protein was a dimer of molecular 15 weight approx. 120 kDa (Fig 9).

Those skilled in the art will appreciate that the invention described herein is susceptible to variations and modifications other than those specifically described. It is to be understood that the invention includes all such variations and modifications. The 20 invention also includes all of the steps, features, compositions and compounds referred to or indicated in this specification, individually or collectively, and any and all combinations of any two or more of said steps or features.

RECORDED - FEB 27 2000
RECORDED - MAR 2 2000

BIBLIOGRAPHY:

1. Du, X.X. and Williams, D.A. (1994) *Blood* 83: 2023-2030.
2. Yang, Y.C. and Yin, T. (1992) *Biofactors* 4: 15-21.
3. Paul, S.R., Bennett, F., Calvetti, J.A., Kelleher, K., Wood, C.R., O'Hara, R.J.J., Leary, A.C., Sibley, B., Clark, S.C., Williams, D.A. and Yang, Y.-C. (1990) *Proc. Natl. Acad. Sci. USA* 87: 7512.
4. Musashi, M., Clark, S.C., Sudo, T., Urdal, D.L., and Ogawa, M. (1991) *Blood* 78: 1448-1451.
5. Schibler, K.R., Yang, Y.C. and Christensen, R.D. (1992) *Blood* 80: 900-3.
6. Tsuji, K., Lyman, S.D., Sudo, T., Clark, S.C., and Ogawa, M. (1992) *Blood* 79: 2855-60.
7. Burstein, S.A., Mei, R.L., Henthorn, J., Friese, P. and Turner, K. (1992) *J. Cell. Physiol.* 153: 305-12.
8. Hangoc, G., Yin, T., Cooper, S., Schendel, P., Yang, Y.C. and Broxmeyer, H.E. (1993) *Blood* 81: 965-72.
9. Teramura, M., Kobayashi, S., Hoshino, S., Oshimi, K. and Mizoguchi, H. (1992) *Blood* 79: 327-31.
10. Yonemura, Y., Kawakita, M., Masuda, T., Fujimoto, K., Kato, K. and Takatsuki, K. (1992) *Exp. Hematol.* 20: 1011-6.
11. Baumann, H. and Schendel, P. (1991) *J. Biol. Chem.* 266: 20424-7.
12. Kawashima, I., Ohsumi, J., Mita-Honjo, K., Shimoda-Takano, K., Ishikawa, H., Sakakibara, S., Miyadai, K. and Takiguchi, Y. (1991) *Febs. Lett.* 283: 199-202.
13. Keller, D.C., Du, X.X., Srour, E.F., Hoffman, R. and Williams, D.A. (1993) *Blood* 82: 1428-35.
14. Sambrook *et al* (1989) Cloning: A Laboratory Manual. Cold Spring Harbour Laboratory, Cold Spring Harbour, NY.
15. Chirgwin *et al* (1979) *Biochemistry* 18: 5294-5299.
16. Mizushima and Nagata (1990) *Nucl. Acids Res.*, 18: 5322.
17. *FEBS Lett* (1994) 356: 244-248.

- 65 -

18. Bazan, J.F. (1990) *Proc Natl Acad Sci USA*, 87, 6934-8
19. de Vos, A.M., Ultsch, M. and Kossiakoff, A.A. (1992) *Science*, 255, 306-12
20. Layton, M.J., Cross, B.A., Metcalf, D., Ward, L.D., Simpson, R.J. and Nicola, N.A. (1992) *Proceedings of the National Academy of Sciences of the United States of America* 89: 8616-8620
21. Taga, T., Hibi, M., Hirata, T., Tamasaki, K., Tasukawa, K., Matsuda, T., Hirano, T. and Kishimoto, T. (1989) *Cell* 58: 573-581
22. Merberg, D.M., Wolf, S.F. and Clark, S.C. (1992) Sequence similarity between NKSF and the IL-6/G-CSF family (1992) *Immunology Today* 13: 77-78
23. Cearing, D.P. and Cosman, D. (1991) *Cell* 66:9-10
24. Wrighton, N.C., Farrell, F.X., Chang, R., Kashyap, A.K., Barbone, F.P., Mulcahy, L.S., Johnson, D.L., Barrett, R.W., Jolliffe, L.K. and Dower, W.J. (1996) *Science* 273: 458-464.
25. Cwirla, S.E., Balasubramanian, P., Duffin, D.J., Wagstrom, C.R., Gates, C.M., Singer, S.C., Davis, A.M., Tansik, R.L., Mattheakis, L.C., Boytos, C.M., Schatz, P.J., Baccanari, D.P., Wrighton, N.C., Barret, R.W. and Dower, W.J. (1997) *Science* 276: 1696--9, 1997
26. Samuel Davis *et al* (1996) *Cell* 87:1161-1169.
27. Chitra Suri *et al* (1996) *Cell* 87: 1171-1180.
28. Nicholas C. Wrighton *et al* (1996) *Science* 273: 458-463.

- 66 -

29. Oded Livnah *et al* (1996) *Science* 273: 464-471.
30. Cwirla, Steven E. *et al* (1997) *Science* 276: 1696-1699.

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANT: (Other than US) AMRAD OPERATIONS PTY LTD
 (US only) Douglas James HILTON, Nicos Antony NICOLA, Alison FARLEY, Tracey WILLSON, Jian-Guo ZHANG, Warren ALEXANDER, Steven RAKAR, Louis FABRI, Tetsuo KOJIMA, Masatsugu MAEDA, Yasumfumi KIKUCHI, Andrew NASH

(ii) TITLE OF INVENTION: A NOVEL HAEMPOIETIN RECEPTOR AND GENETIC SEQUENCES ENCODING SAME

(iii) NUMBER OF SEQUENCES: 54

(iv) CORRESPONDENCE ADDRESS:

(A) ADDRESSEE: SCULLY, SCOTT, MURPHY & PRESSOR
 (B) STREET: 400 GARDEN CITY PLAZA
 (C) CITY: GARDEN CITY
 (D) STATE: NEW YORK
 (E) COUNTRY: UNITED STATES OF AMERICA
 (F) ZIP: 11530-0299

(v) COMPUTER READABLE FORM:

(A) MEDIUM TYPE: Floppy disk
 (B) COMPUTER: IBM PC compatible
 (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 (D) SOFTWARE: PatentIn Release #1.0, Version #1.25

(vi) CURRENT APPLICATION DATA:

(A) APPLICATION NUMBER: CIP APPLICATION OF USSN 08/928,720
 (B) FILING DATE: 10-MAR-1998

(vii) PRIOR APPLICATION DATA:

(A) APPLICATION NUMBER: PCT/GB97/02479
 (B) FILING DATE: 11-SEP-1997

(viii) PRIOR APPLICATION DATA:

(A) APPLICATION NUMBER: US APPLICATION NO. 08/928,720
 (B) FILING DATE: 11-SEP-1997

(ix) PRIOR APPLICATION DATA:

(A) APPLICATION NUMBER: PO2246/96
 (B) FILING DATE: 11-SEP-1996

(x) ATTORNEY/AGENT INFORMATION:

(A) NAME: DIGILIO, FRANK S
 (B) REGISTRATION NO: 31,346
 (C) REFERENCE/DOCKET NUMBER: 10857Z

(xi) TELECOMMUNICATION INFORMATION:

(A) TELEPHONE: +516 742 4343
 (B) TELEFAX: +516 742 4366

03037657-034068

- 68 -

(2) INFORMATION FOR SEQ ID NO:1:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 5 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

Trp Ser Xaa Trp Ser

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

ACTCGCTCCA GATTCCCCGCC TTTT

24

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 24 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

TCCCGGCCTTT TTCGACCCAT AGAT

24

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 24 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

GGTACTTGGC TTGGAAGAGG AAAT

24

(2) INFORMATION FOR SEQ ID NO:5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 24 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- 69 -

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

CGGCTCACGT GCACGTCGGG TGGG

24

(2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 22 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

AGCTGCTGTT AAAGGGCTTC TC

22

(2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 15 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Oligonucleotide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

(A/G)CTCCA(A/G)TC(A/G) CTCCA

15

(2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 15 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Oligonucleotide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

(A/G)CTCCA(C/T)TC(A/G) CTCCA

15

(2) INFORMATION FOR SEQ ID NO:9:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 21 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

- 70 -

AAGTGTGACC ATCATGTGGA C

21

(2) INFORMATION FOR SEQ ID NO:10:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

GGAGGTGTTA AGGAGGCG

18

(2) INFORMATION FOR SEQ ID NO:11:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

ATGCCCGCGG GTCGCCCCG

18

(2) INFORMATION FOR SEQ ID NO:12:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1506 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION: 1..1242

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

GGCACCGAGCT TCGCTGTCCG CGCCCAGTGA CGCGCGTGCG GACCCGAGCC CCAATCTGCA

-64

CCCCGAGAC TCGCCCCCGC CCCATACCGG CGTTGCAGTC ACCGCCCCGTT GCGCGCCACC

-4

CCC

-3

ATG CCC GCG GGT CGC CCG GGC CCC GTC GCC CAA TCC GCG CGG CGG CGG
Met Pro Ala Gly Arg Pro Gly Pro Val Ala Gln Ser Ala Arg Arg Pro
1 5 10 15

48

CCG CGG CCG CTG TCC TCG CTG TGG CCT CTG TTG CTC TGT GTC CTC
Pro Arg Pro Leu Ser Ser Leu Trp Ser Pro Leu Leu Leu Cys Val Leu
20 25 30

96

- 71 -

GGG GTG CCT CGG GGC GGA TCG GGA GCC CAC ACA GCT GTA ATC AGC CCC Gly Val Pro Arg Gly Gly Ser Gly Ala His Thr Ala Val Ile Ser Pro 35 40 45	144
CAG GAC CCC ACC CTT CTC ATC GGC TCC TCC CTG CAA GCT ACC TGC TCT Gln Asp Pro Thr Leu Leu Ile Gly Ser Ser Leu Gln Ala Thr Cys Ser 50 55 60	192
ATA CAT GGA GAC ACA CCT GGG GCC ACC GCT GAG GGG CTC TAC TGG ACC Ile His Gly Asp Thr Pro Gly Ala Thr Ala Glu Gly Leu Tyr Trp Thr 65 70 75 80	240
CTC AAT GGT CGC CGC CTG CCC TCT GAG CTG TCC CGC CTC CTT AAC ACC Leu Asn Gly Arg Arg Leu Pro Ser Glu Leu Ser Arg Leu Leu Asn Thr 85 90 95	288
TCC ACC CTG GCC CTG GCC CTG GCT AAC CTT AAT GGG TCC AGG CAG CAG Ser Thr Leu Ala Leu Ala Asn Leu Asn Gly Ser Arg Gln Gln 100 105 110	336
TCA GGA GAC AAT CTG GTG TGT CAC GCC CGA GAC GGC AGC ATT CTG GCT Ser Gly Asp Asn Leu Val Cys His Ala Arg Asp Gly Ser Ile Leu Ala 115 120 125	384
GGC TCC TGC CTC TAT GTT GGC TTG CCC CCT GAG AAG CCC TTT AAC ATC Gly Ser Cys Leu Tyr Val Gly Leu Pro Pro Glu Lys Pro Phe Asn Ile 130 135 140	432
AGC TGC TGG TCC CGG AAC ATG AAG GAT CTC ACG TGC CGC TGG ACA CCG Ser Cys Trp Ser Arg Asn Met Lys Asp Leu Thr Cys Arg Trp Thr Pro 145 150 155 160	480
GGT GCA CAC GGG GAG ACA TTC TTA CAT ACC AAC TAC TCC CTC AAG TAC Gly Ala His Gly Glu Thr Phe Leu His Thr Asn Tyr Ser Leu Lys Tyr 165 170 175	528
AAG CTG AGG TGG TAC GGT CAG GAT AAC ACA TGT GAG GAG TAC CAC ACT Lys Leu Arg Trp Tyr Gly Gln Asp Asn Thr Cys Glu Glu Tyr His Thr 180 185 190	576
GTG GGC CCT CAC TCA TGC CAT ATC CCC AAG GAC CTG GCC CTC TTC ACT Val Gly Pro His Ser Cys His Ile Pro Lys Asp Leu Ala Leu Phe Thr 195 200 205	624
CCC TAT GAG ATC TGG GTG GAA GCC ACC AAT CGC CTA GGC TCA GCA AGA Pro Tyr Glu Ile Trp Val Glu Ala Thr Asn Arg Leu Gly Ser Ala Arg 210 215 220	672
TCT GAT GTC CTC ACA CTG GAT GTC CTG GAC GTG GTG ACC ACG GAC CCC Ser Asp Val Leu Thr Leu Asp Val Leu Asp Val Val Thr Thr Asp Pro 225 230 235 240	720
CCA CCC GAC GTG CAC GTG AGC CGC GTT GGG GGC CTG GAG GAC CAG CTG Pro Pro Asp Val His Val Ser Arg Val Gly Gly Leu Glu Asp Gln Leu 245 250 255	768
AGT GTG CGC TGG GTC TCA CCA CCA GCT CTC AAG GAT TTC CTC TTC CAA Ser Val Arg Trp Val Ser Pro Pro Ala Leu Lys Asp Phe Leu Phe Gln 260 265 270	816
GCC AAG TAC CAG ATC CGC TAC CGC GTG GAG GAC AGC GTG GAC TGG AAG Ala Lys Tyr Gln Ile Arg Tyr Arg Val Glu Asp Ser Val Asp Trp Lys 275 280 285	864
GTG GTG GAT GAC GTC ACC AAC CAG ACC TCC TGC CGT CTC GCG GGC CTG Val Val Asp Asp Val Ser Asn Gln Thr Ser Cys Arg Leu Ala Gly Leu 290 295 300	912
AAG CCC GGC ACC GTT TAC TTC GTC CAA GTG CGT TGT AAC CCA TTC GGG Lys Pro Gly Thr Val Tyr Phe Val Gln Val Arg Cys Asn Pro Phe Gly 305 310 315 320	960
ATC TAT GGG TCG AAA AAG GCG GGA ATC TGG AGC CAG TGG AGC CAC CCC Ile Tyr Gly Ser Lys Lys Ala Gly Ile Trp Ser Glu Trp Ser His Pro	1008

 0000372653
-034098

- 72 -

325	330	335	
ACC GCT GCC TCC ACC CCT CGA AGT GAG CGC CCG GGC CCG GGC GGC GGG Thr Ala Ala Ser Thr Pro Arg Ser Glu Arg Pro Gly Pro Gly Gly Gly	340	345	1056
GTG TGC GAG CCG CGG GGC GGC GAG CCC AGC TCG GGC CCG GTG CGG CGC Val Cys Glu Pro Arg Gly Gly Glu Pro Ser Ser Gly Pro Val Arg Arg	355	360	1104
GAG CTC AAG CAG TTC CTC GGC TGG CTC AAG AAG CAC GCA TAC TGC TCG Glu Leu Lys Gln Phe Leu Gly Trp Leu Lys Lys His Ala Tyr Cys Ser	370	375	1152
AAC CTT AGT TTC CGC CTG TAC GAC CAG TGG CGT GCT TGG ATG CAG AAG Asn Leu Ser Phe Arg Leu Tyr Asp Gln Trp Arg Ala Trp Met Gln Lys	385	390	1200
TCA CAC AAG ACC CGA AAC CAG GTC CTG CCG GCT AAA CTC TAAGGATAGG Ser His Lys Thr Arg Asn Gln Val Leu Pro Ala Lys Leu	405	410	1249
CCATCCTCCT GCTGGGTCAAG ACCTGGAGGC TCACCTGAAT TGGAGCCCCCT CTGTACCATC TGGGCAACAA AGAACCTAC CAGAGGCTGG GGCACAATGA GCTCCCACAA CCACAGCTTT			1309
GGTCCACATG ATGGTCACAC TTGGATATAAC CCCAGTGTGG GTAAGGTTGG GGTATTGCAG GGCCTCCCAA CAATCTCTTT AAATAAATAA AGGAGTTGTT CAGGTAAAAA AAAAAAAA			1369
AAAAAAAAA AAAAAAA			1429
AAAAAAAAA AAAAAAA			1489
			1506

(2) INFORMATION FOR SEQ ID NO:13:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 413 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

Met Pro Ala Gly Arg Pro Gly Pro Val Ala Gln Ser Ala Arg Arg Pro			
1 5 10 15			
Pro Arg Pro Leu Ser Ser Leu Trp Ser Pro Leu Leu Leu Cys Val Leu			
20 25 30			
Gly Val Pro Arg Gly Gly Ser Gly Ala His Thr Ala Val Ile Ser Pro			
35 40 45			
Gln Asp Pro Thr Leu Leu Ile Gly Ser Ser Leu Gln Ala Thr Cys Ser			
50 55 60			
Ile His Gly Asp Thr Pro Gly Ala Thr Ala Glu Gly Leu Tyr Trp Thr			
65 70 75 80			
Leu Asn Gly Arg Arg Leu Pro Ser Glu Leu Ser Arg Leu Leu Asn Thr			
85 90 95			
Ser Thr Leu Ala Leu Ala Asn Leu Asn Gly Ser Arg Gln Gln			
100 105 110			
Ser Gly Asp Asn Leu Val Cys His Ala Arg Asp Gly Ser Ile Leu Ala			
115 120 125			
Gly Ser Cys Leu Tyr Val Gly Leu Pro Pro Glu Lys Pro Phe Asn Ile			
130 135 140			
Ser Cys Trp Ser Arg Asn Met Lys Asp Leu Thr Cys Arg Trp Thr Pro			
145 150 155 160			

- 73 -

Gly Ala His Gly Glu Thr Phe Leu His Thr Asn Tyr Ser Leu Lys Tyr
 165 170 175
 Lys Leu Arg Trp Tyr Gly Gln Asp Asn Thr Cys Glu Glu Tyr His Thr
 180 185 190
 Val Gly Pro His Ser Cys His Ile Pro Lys Asp Leu Ala Leu Phe Thr
 195 200 205
 Pro Tyr Glu Ile Trp Val Glu Ala Thr Asn Arg Leu Gly Ser Ala Arg
 210 215 220
 Ser Asp Val Leu Thr Leu Asp Val Leu Asp Val Val Thr Thr Asp Pro
 225 230 235 240
 Pro Pro Asp Val His Val Ser Arg Val Gly Gly Leu Glu Asp Gln Leu
 245 250 255
 Ser Val Arg Trp Val Ser Pro Pro Ala Leu Lys Asp Phe Leu Phe Gln
 260 265 270
 Ala Lys Tyr Gln Ile Arg Tyr Arg Val Glu Asp Ser Val Asp Trp Lys
 275 280 285
 Val Val Asp Asp Val Ser Asn Gln Thr Ser Cys Arg Leu Ala Gly Leu
 290 295 300
 Lys Pro Gly Thr Val Tyr Phe Val Gln Val Arg Cys Asn Pro Phe Gly
 305 310 315 320
 Ile Tyr Gly Ser Lys Lys Ala Gly Ile Trp Ser Glu Trp Ser His Pro
 325 330 335
 Thr Ala Ala Ser Thr Pro Arg Ser Glu Arg Pro Gly Pro Gly Gly
 340 345 350
 Val Cys Glu Pro Arg Gly Gly Glu Pro Ser Ser Gly Pro Val Arg Arg
 355 360 365
 Glu Leu Lys Gln Phe Leu Gly Trp Leu Lys Lys His Ala Tyr Cys Ser
 370 375 380
 Asn Leu Ser Phe Arg Leu Tyr Asp Gln Trp Arg Ala Trp Met Gln Lys
 385 390 395 400
 Ser His Lys Thr Arg Asn Gln Val Leu Pro Ala Lys Leu
 405 410

(2) INFORMATION FOR SEQ ID NO:14:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1549 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: DNA

- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..1278

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

GGACACGAGCT TCGCTGTCCG CGCCCCAGTGA CGGCCGTGCG GACCCGAGCC CCAATCTGCA
 CCCCGCAGAC TCGCCCCCGC CCCATACCGG CGTTGCAGTC ACCGCCCCGTT GCGCGCCACC

-65

-5

CCCA

-1

ATG CCC GCG GGT CGC CCG GGC CCC GTC GCC CAA TCC GCG CGG CGG CCG Met Pro Ala Gly Arg Pro Val Ala Gln Ser Ala Arg Arg Pro	1 5 10 15	48
10 15		
CCG CGG CCG CTG TCC TCG CTG TGG TCG CCT CTG TTG CTC TGT GTC CTC Pro Arg Pro Leu Ser Ser Leu Trp Ser Pro Leu Leu Cys Val Leu	20 25 30	96
20 25 30		
GGG GTG CCT CCG GGC GGA TCG GGA GCC CAC ACA GCT GTA ATC AGC CCC Gly Val Pro Arg Gly Ser Gly Ala His Thr Ala Val Ile Ser Pro	35 40 45	144
35 40 45		
CAG GAC CCC ACC CTT CTC ATC GGC TCC TCC CTG CAA GCT ACC TGC TCT Gln Asp Pro Thr Leu Leu Ile Gly Ser Ser Leu Gln Ala Thr Cys Ser	50 55 60	192
50 55 60		
ATA CAT GGA GAC ACA CCT GGG GCC ACC GCT GAG GGG CTC TAC TGG ACC Ile His Gly Asp Thr Pro Gly Ala Thr Ala Glu Gly Leu Tyr Thr	65 70 75 80	240
65 70 75 80		
CTC AAT GGT CGC CGC CTG CCC TCT GAG CTG TCC CGC CTC CTT AAC ACC Leu Asn Gly Arg Arg Leu Pro Ser Glu Leu Ser Arg Leu Leu Asn Thr	85 90 95	288
85 90 95		
TCC ACC CTG GCC CTG GCC CTG GCT AAC CTT AAT GGG TCC AGG CAG CAG Ser Thr Leu Ala Leu Ala Asn Leu Asn Gly Ser Arg Gln Gln	100 105 110	336
100 105 110		
TCA GGA GAC AAT CTG GTG TGT CAC GCC CGA GAC GGC AGC ATT CTG GCT Ser Gly Asp Asn Leu Val Cys His Ala Arg Asp Gly Ser Ile Leu Ala	115 120 125	384
115 120 125		
GGC TCC TGC CTC TAT GTT GGC TTG CCC CCT GAG AAG CCC TTT AAC ATC Gly Ser Cys Leu Tyr Val Gly Leu Pro Pro Glu Lys Pro Phe Asn Ile	130 135 140	432
130 135 140		
AGC TGC TGG TCC CCG AAC ATG AAG GAT CTC ACG TGC CGC TGG ACA CCG Ser Cys Trp Ser Arg Asn Met Lys Asp Leu Thr Cys Arg Trp Thr Pro	145 150 155 160	480
145 150 155 160		
GGT GCA CAC GGG GAG ACA TTC TTA CAT ACC AAC TAC TCC CTC AAG TAC Gly Ala His Gly Glu Thr Phe Leu His Thr Asn Tyr Ser Leu Lys Tyr	165 170 175	528
165 170 175		
AAG CTG AGG TGG TAC GGT CAG GAT AAC ACA TGT GAG GAG TAC CAC ACT Lys Leu Arg Trp Tyr Gly Gln Asp Asn Thr Cys Glu Glu Tyr His Thr	180 185 190	576
180 185 190		
GTG GGC CCT CAC TCA TGC CAT ATC CCC AAG GAC CTG GCC CTC TTC ACT Val Gly Pro His Ser Cys His Ile Pro Lys Asp Leu Ala Leu Phe Thr	195 200 205	624
195 200 205		
CCC TAT GAG ATC TGG GTG GAA GCC ACC AAT CGC CTA GGC TCA GCA AGA Pro Tyr Glu Ile Trp Val Glu Ala Thr Asn Arg Leu Gly Ser Ala Arg	210 215 220	672
210 215 220		
TCT GAT GTC CTC ACA CTG GAT GTC CTG GAC GTG GTG ACC ACG GAC CCC Ser Asp Val Leu Thr Leu Asp Val Leu Asp Val Val Thr Thr Asp Pro	225 230 235 240	720
225 230 235 240		
CCA CCC GAC GTG CAC CTG AGC CGC GTT GGG GGC CTG GAG GAC CAG CTG Pro Pro Asp Val His Val Ser Arg Val Gly Gly Leu Glu Asp Gln Leu	245 250 255	768
245 250 255		
AGT GTG CGC TGG GTC TCA CCA CCA GCT CTC AAG GAT TTC CTC TTC CAA Ser Val Arg Trp Val Ser Pro Ala Leu Lys Asp Phe Leu Phe Gln	260 265 270	816
260 265 270		
GCC AAG TAC CAG ATC CGC TAC CGC GTG GAG GAC AGC GTG GAC TGG AAG Ala Lys Tyr Gln Ile Arg Tyr Arg Val Glu Asp Ser Val Asp Trp Lys	275 280 285	864
275 280 285		

- 75 -

GTC GTG GAT GTC AGC AAC CAG ACC TCC TGC CGT CTC GCG GGC CTG Val Val Asp Asp Val Ser Asn Gln Thr Ser Cys Arg Leu Ala Gly Leu 290 295 300	912
AAG CCC GGC ACC GTT TAC TTC GTC CAA GTG CGT TGT AAC CCA TTC GGG Lys Pro Gly Thr Val Tyr Phe Val Gln Val Arg Cys Asn Pro Phe Gly 305 310 315 320	960
ATC TAT GGG TCG AAA AAG GCG GGA ATC TGG AGC GAG TGG AGC CAC CCC Ile Tyr Gly Ser Lys Lys Ala Gly Ile Trp Ser Glu Trp Ser His Pro 325 330 335	1008
ACC GCT GCC TCC ACC CCT CGA AGT GAG CGC CCG GGC CCG GGC GGG Thr Ala Ala Ser Thr Pro Arg Ser Glu Arg Pro Gly Pro Gly Gly 340 345 350	1056
GTG TGC GAG CCG CGG GGC GGC GAG CCC AGC TCG GGC CCG GTG CGG CGC Val Cys Glu Pro Arg Gly Glu Pro Ser Ser Gly Pro Val Arg Arg 355 360 365	1104
GAG CTC AAG CAG TTC CTC GGC TGG CTC AAG AAG CAC GCA TAC TGC TCG Glu Leu Lys Gln Phe Leu Gly Trp Leu Lys Lys His Ala Tyr Cys Ser 370 375 380	1152
AAC CTT AGT TTC CGC CTG TAC GAC CAG TGG CGT GCT TGG ATG CAG AAG Asn Leu Ser Phe Arg Leu Tyr Asp Gln Trp Arg Ala Trp Met Gln Lys 385 390 395 400	1200
TCA CAC AAG ACC CGA AAC CAG GAC GAG GGG ATC CTG CCT TCG GGC AGA Ser His Lys Thr Arg Asn Gln Asp Glu Gly Ile Leu Pro Ser Gly Arg 405 410 415	1248
CGG GGT GCG GCG AGA GGT CCT CCC GGT TAAACTCTAA GGATAGGCCA Arg Gly Ala Ala Arg Gly Pro Ala Gly 420 425	1295
TCCTCCTGCT GGGTCAGACC TGGAGGTCA CCTGAATTGG AGCCCCCTCTG TACCATCTGG GCAACPAAGA AACCTACCAAG AGGCTGGGC ACAATGAGCT CCCACAACCA CAGCTTTGGT CCACATGATG GTCACACTTG GATATACCCC AGTGTGGTA AGGTTGGGT ATTGCAGGGC CTCCCAACAA TCTCTTTAAA TAAATAAAGG AGTTGTTCAAG GTAAAAAAA AAAAAAAA AAAAAAA AAAA	1355 1415 1475 1535 1549

(2) INFORMATION FOR SEQ ID NO:15:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 425 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

Met Pro Ala Gly Arg Pro Gly Pro Val Ala Gln Ser Ala Arg Arg Pro	
1 5 10 15	
Pro Arg Pro Leu Ser Ser Leu Trp Ser Pro Leu Leu Leu Cys Val Leu	
20 25 30	
Gly Val Pro Arg Gly Gly Ser Gly Ala His Thr Ala Val Ile Ser Pro	
35 40 45	
Gln Asp Pro Thr Leu Leu Ile Gly Ser Ser Leu Gln Ala Thr Cys Ser	
50 55 60	
Ile His Gly Asp Thr Pro Gly Ala Thr Ala Glu Gly Leu Tyr Trp Thr	
65 70 75 80	

03037657P 031098

- 76 -

Leu Asn Gly Arg Arg Leu Pro Ser Glu Leu Ser Arg Leu Leu Asn Thr
 85 90 95
 Ser Thr Leu Ala Leu Ala Leu Ala Asn Leu Asn Gly Ser Arg Gln Gln
 100 105 110
 Ser Gly Asp Asn Leu Val Cys His Ala Arg Asp Gly Ser Ile Leu Ala
 115 120 125
 Gly Ser Cys Leu Tyr Val Gly Leu Pro Pro Glu Lys Pro Phe Asn Ile
 130 135 140
 Ser Cys Trp Ser Arg Asn Met Lys Asp Leu Thr Cys Arg Trp Thr Pro
 145 150 155 160
 Gly Ala His Gly Glu Thr Phe Leu His Thr Asn Tyr Ser Leu Lys Tyr
 165 170 175
 Lys Leu Arg Trp Tyr Gly Gln Asp Asn Thr Cys Glu Glu Tyr His Thr
 180 185 190
 Val Gly Pro His Ser Cys His Ile Pro Lys Asp Leu Ala Leu Phe Thr
 195 200 205
 Pro Tyr Glu Ile Trp Val Glu Ala Thr Asn Arg Leu Gly Ser Ala Arg
 210 215 220
 Ser Asp Val Leu Thr Leu Asp Val Leu Asp Val Val Thr Thr Asp Pro
 225 230 235 240
 Pro Pro Asp Val His Val Ser Arg Val Gly Gly Leu Glu Asp Gln Leu
 245 250 255
 Ser Val Arg Trp Val Ser Pro Pro Ala Leu Lys Asp Phe Leu Phe Gln
 260 265 270
 Ala Lys Tyr Gln Ile Arg Tyr Arg Val Glu Asp Ser Val Asp Trp Lys
 275 280 285
 Val Val Asp Asp Val Ser Asn Gln Thr Ser Cys Arg Leu Ala Gly Leu
 290 295 300
 Lys Pro Gly Thr Val Tyr Phe Val Gln Val Arg Cys Asn Pro Phe Gly
 305 310 315 320
 Ile Tyr Gly Ser Lys Lys Ala Gly Ile Trp Ser Glu Trp Ser His Pro
 325 330 335
 Thr Ala Ala Ser Thr Pro Arg Ser Glu Arg Pro Gly Pro Gly Gly
 340 345 350
 Val Cys Glu Pro Arg Gly Gly Glu Pro Ser Ser Gly Pro Val Arg Arg
 355 360 365
 Glu Leu Lys Gln Phe Leu Gly Trp Leu Lys Lys His Ala Tyr Cys Ser
 370 375 380
 Asn Leu Ser Phe Arg Leu Tyr Asp Gln Trp Arg Ala Trp Met Gln Lys
 385 390 395 400
 Ser His Lys Thr Arg Asn Gln Asp Glu Gly Ile Leu Pro Ser Gly Arg
 405 410 415
 Arg Gly Ala Ala Arg Gly Pro Ala Gly
 420 425

(2) INFORMATION FOR SEQ ID NO:16:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 938 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single

- 77 -

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION: 1..468

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

GGC ACC GTT TAC TTC GTC CAA CTG CGT TGT AAC CCA TTC GGG ATC TAT 1 5 10 15	Gly Thr Val Tyr Phe Val Gln Val Arg Cys Asn Pro Phe Gly Ile Tyr	48
GGG TCG AAA AAG GCG GGA ATC TGG AGC GAG TGG AGC CAC CCC ACC GCT 20 25 30	Gly Ser Lys Lys Ala Gly Ile Trp Ser Glu Trp Ser His Pro Thr Ala	96
GCC TCC ACC CCT CGA AGT GAG CGC CCG CCC GGC GGC GGG GTG TGC 35 40 45	Ala Ser Thr Pro Arg Ser Glu Arg Pro Gly Pro Gly Gly Val Cys	144
GAG CCG CGG GGC GGC GAG CCC AGC TCG GGC CCG GTG CCG CCC GAG CTC 50 55 60	Glu Pro Arg Gly Gly Glu Pro Ser Ser Gly Pro Val Arg Arg Glu Leu	192
AAG CAG TTC CTC GGC TGG CTC AAG AAG CAC GCA TAC TGC TCG AAC CTT 65 70 75 80	Lys Gln Phe Leu Gly Trp Leu Lys His Ala Tyr Cys Ser Asn Leu	240
AGT TTC CGC CTG TAC GAC CAG TGG CGT GCT TGG ATG CAG AAG TCA CAC 85 90 95	Ser Phe Arg Leu Tyr Asp Gln Trp Arg Ala Trp Met Gln Lys Ser His	288
AAG ACC CGA AAC CAG GTA GGA AAG TTG GGG GAG GCT TGC GTG GGG GGT 100 105 110	Lys Thr Arg Asn Gln Val Gly Lys Leu Gly Glu Ala Cys Val Gly Gly	336
AAA GGA GCA GAG GAA GAG AGA GAC CCG GGT GAG CAG CCT CCA CAA CAC 115 120 125	Lys Gly Ala Glu Glu Arg Asp Pro Gly Glu Gln Pro Pro Gln His	384
CGC ACT CTT CTT TCC AAG CAC AGG ACG AGG GGA TCC TGC CCT CGG GCA 130 135 140	Arg Thr Leu Leu Ser Lys His Arg Thr Arg Gly Ser Cys Pro Arg Ala	432
GAC GGG GTG CGG CGA GAG GTA AGG GGG TCT GGG TGAGTGGGGC CTACAGCAGT 145 150 155	Asp Gly Val Arg Arg Glu Val Arg Gly Ser Gly	485
CTAGATGAGG CCCTTTCCCC TCCTTCGGTG TTGCTCAAAG GGATCTCTTA GTGCTCATTT CACCACTGC AAAGAGCCCC AGTTTTACT GCATCATCAA GTTGCTGAAG GGTCCAGGCT TAATGTGGCC TCTTTCTGC CCTCAGGTCC TGCCGGCTAA ACTCTAAGGA TAGGCCATCC TCCTGCTGGG TCAGACCTGG AGGCTCACCT GAATTGGAGC CCCTCTGTAC CTATCTGGGC AACAAAGAAA CCTACCATGA GGCTGGGGCA CAATGAGCTC CCACAACCAC AGCTTGGTC CACATGATGG TCACACTTGG ATATAACCCA GTGTGGGTAA GGTTGGGTAA TTGCAGGGCC TCCCAACAAT CTCTTTAAAT AAATAAAGGA GTTGTTCAGG TAAAAAAA AAAAAAAA AAAAAAAAA AAAAAAAA AAAAAAAA AAA		545 605 665 725 785 845 905 938

(2) INFORMATION FOR SEQ ID NO:17:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 155 amino acids
- (B) TYPE: amino acid

- 78 -

(B) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

Gly Thr Val Tyr Phe Val Gln Val Arg Cys Asn Pro Phe Gly Ile Tyr
 1 5 10 15
 Gly Ser Lys Lys Ala Gly Ile Trp Ser Glu Trp Ser His Pro Thr Ala
 20 25 30
 Ala Ser Thr Pro Arg Ser Glu Arg Pro Gly Pro Gly Gly Val Cys
 35 40 45
 Glu Pro Arg Gly Gly Glu Pro Ser Ser Gly Pro Val Arg Arg Glu Leu
 50 55 60
 Lys Gln Phe Leu Gly Trp Leu Lys Lys His Ala Tyr Cys Ser Asn Leu
 65 70 75 80
 Ser Phe Arg Leu Tyr Asp Gln Trp Arg Ala Trp Met Gln Lys Ser His
 85 90 95
 Lys Thr Arg Asn Gln Val Gly Lys Leu Gly Glu Ala Cys Val Gly Gly
 100 105 110
 Lys Gly Ala Glu Glu Glu Arg Asp Pro Gly Glu Gln Pro Pro Gln His
 115 120 125
 Arg Thr Leu Leu Ser Lys His Arg Thr Arg Gly Ser Cys Pro Arg Ala
 130 135 140
 Asp Gly Val Arg Arg Glu Val Arg Gly Ser Gly
 145 150 155

(2) INFORMATION FOR SEQ ID NO:18:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 834 base pair
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(ix) FEATURE:

(A) NAME/KEY: CDS
(B) LOCATION: 1..834

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

CCC ACC CTT CTC ATC GGC TCC TCC CTG CAA GCT ACC TGC TCT ATA CAT
 Pro Thr Leu Leu Ile Gly Ser Ser Leu Gln Ala Thr Cys Ser Ile His
 51 55 60 65

98

GGA GAC ACA CCT GGG GCC ACC GCT GAG GGG CTC TAC TGG ACC CTC AAT
 Gly Asp Thr Pro Gly Ala Thr Ala Glu Gly Leu Tyr Trp Thr Leu Asn
 70 75 80

146

GGT CGC CGC CTG CCC TCT GAG CTG TCC CGC CTC CTT AAC ACC TCC ACC
 Gly Arg Arg Leu Pro Ser Glu Leu Ser Arg Leu Leu Asn Thr Ser Thr
 85 90 95

194

CTG GCC CTG GCC CTG GCT AAC CTT AAT GGG TCC AGG CAG CAG TCA GGA
 Leu Ala Leu Ala Leu Ala Asn Leu Asn Gly Ser Arg Gln Gln Ser Gly
 100 105 110

242

GAC AAT CTG GTG TGT CAC GCC CGA GAC GGC AGC ATT CTG GCT GGC TCC

- 79 -

Asp Asn Leu Val Cys His Ala Arg Asp Gly Ser Ile Leu Ala Gly Ser		
115 120 125 130		
TGC CTC TAT GTT GGC TTG CCC CCT GAG AAG CCC TTT AAC ATC AGC TGC	338	
Cys Leu Tyr Val Gly Leu Pro Pro Glu Lys Pro Phe Asn Ile Ser Cys		
135 140 145		
TGG TCC CGG AAC ATG AAG GAT CTC ACG TGC CGC TGG ACA CCG GGT GCA	386	
Trp Ser Arg Asn Met Lys Asp Leu Thr Cys Arg Trp Thr Pro Gly Ala		
150 155 200		
CAC GGG GAG ACA TTC TTA CAT ACC AAC TAC TCC CTC AAG TAC AAG CTG	434	
His Gly Glu Thr Phe Leu His Thr Asn Tyr Ser Leu Lys Tyr Lys Leu		
205 210 215		
AGG TGG TAC GGT CAG GAT AAC ACA TGT GAG GAG TAC CAC ACT GTG GGG	482	
Arg Trp Tyr Gly Gln Asp Asn Thr Cys Glu Glu Tyr His Thr Val Gly		
220 225 230		
CCC CAC TCA TGC CAT ATC CCC AAG GAC CTG GCC CTC TTC ACT CCC TAT	530	
Pro His Ser Cys His Ile Pro Lys Asp Leu Ala Leu Phe Thr Pro Tyr		
235 240 245 250		
GAG ATC TGG GTG GAA GCC ACC AAT CGC CTA GGC TCA GCA AGA TCT GAT	578	
Glu Ile Trp Val Glu Ala Thr Asn Arg Leu Gly Ser Ala Arg Ser Asp		
255 260 265		
GTC CTC ACA CTG GAT GTC CTG GAC GTG GTG ACC ACG GAC CCC CCA CCC	626	
Val Leu Thr Leu Asp Val Leu Asp Val Val Thr Thr Asp Pro Pro Pro		
270 275 280		
GAC GTG CAC GTG AGC CGC GTT GGG GGC CTG GAG GAC CAG CTG AGT GTG	674	
Asp Val His Val Ser Arg Val Gly Gly Leu Glu Asp Gln Leu Ser Val		
285 290 295		
CGC TGG GTC TCA CCA CCA GCT CTC AAG GAT TTC CTC TTC CAA GCC AAG	722	
Arg Trp Val Ser Pro Pro Ala Leu Lys Asp Phe Leu Phe Gln Ala Lys		
300 305 310		
TAC CAG ATC CGC TAC CGC GTG GAG GAC AGC GTG GAC TGG AAG GTG GTG	770	
Tyr Gln Ile Arg Tyr Arg Val Glu Asp Ser Val Asp Trp Lys Val Val		
315 320 325 330		
GAT GAC GTC AGC AAC CAG ACC TCC TGC CGT CTC GCG GGC CTG AAG CCC	818	
Asp Asp Val Ser Asn Gln Thr Ser Cys Arg Leu Ala Gly Leu Lys Pro		
335 340 345		
GGC ACC GTT TAC TTC GTC CAA GTG CGT TGT AAC CCA TTC GGG ATC TAT	866	
Gly Thr Val Tyr Phe Val Gln Val Arg Cys Asn Pro Phe Gly Ile Tyr		
350 355 360		
GGG TCG AAA AAG GCG GGA	894	
Gly Ser Lys Lys Ala Gly		
365		

(2) INFORMATION FOR SEQ ID NO:19:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 278 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

Pro Thr Leu Leu Ile Gly Ser Ser Leu Gln Ala Thr Cys Ser Ile His
51 55 60 65

Gly Asp Thr Pro Gly Ala Thr Ala Glu Gly Leu Tyr Trp Thr Leu Asn
70 75 80

- 80 -

Gly Arg Arg Leu Pro Ser Glu Leu Ser Arg Leu Leu Asn Thr Ser Thr
 85 90 95

Leu Ala Leu Ala Leu Ala Asn Leu Asn Gly Ser Arg Gln Gln Ser Gly
 100 105 110

Asp Asn Leu Val Cys His Ala Arg Asp Gly Ser Ile Leu Ala Gly Ser
 115 120 125 130

Cys Leu Tyr Val Gly Leu Pro Pro Glu Lys Pro Phe Asn Ile Ser Cys
 135 140 145

Trp Ser Arg Asn Met Lys Asp Leu Thr Cys Arg Trp Thr Pro Gly Ala
 150 155 200

His Gly Glu Thr Phe Leu His Thr Asn Tyr Ser Leu Lys Tyr Lys Leu
 205 210 215

Arg Trp Tyr Gly Gln Asp Asn Thr Cys Glu Glu Tyr His Thr Val Gly
 220 225 230

Pro His Ser Cys His Ile Pro Lys Asp Leu Ala Leu Phe Thr Pro Tyr
 235 240 245 250

Glu Ile Trp Val Glu Ala Thr Asn Arg Leu Gly Ser Ala Arg Ser Asp
 255 260 265

Val Leu Thr Leu Asp Val Leu Asp Val Val Thr Thr Asp Pro Pro Pro
 270 275 280

Asp Val His Val Ser Arg Val Gly Gly Leu Glu Asp Gln Leu Ser Val
 285 290 295

Arg Trp Val Ser Pro Pro Ala Leu Lys Asp Phe Leu Phe Gln Ala Lys
 300 305 310

Tyr Gln Ile Arg Tyr Arg Val Glu Asp Ser Val Asp Trp Lys Val Val
 315 320 325 330

Asp Asp Val Ser Asn Gln Thr Ser Cys Arg Leu Ala Gly Leu Lys Pro
 335 340 345

Gly Thr Val Tyr Phe Val Gln Val Arg Cys Asn Pro Phe Gly Ile Tyr
 350 355 360

Gly Ser Lys Lys Ala Gly
 365

(2) INFORMATION FOR SEQ ID NO:20:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 143 base pairs
- (B) TYPE: nucleic acids
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

GGCATGAAGG CTTAGGGTGG GGATCGCTAG GACCCATGCA CCCAGAGAAA GGGACTGGTG	60
GCAACTTTCA AACTCTCTGG GGAAGGAAGA AGGGCTGAAA GAGG	104
ATG AAC GGG CTC AGA CAC AGC TGT AAT CAG CCC CCA GGA Met Asn Gly Leu Arg His Ser Cys Asn Gln Pro Pro Gly	143
5 10	

(2) INFORMATION FOR SEQ ID NO:21:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 13 amino acids

- 81 -

(B) TYPE: amino acids
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

Met	Asn	Gly	Leu	Arg	His	Ser	Cys	Asn	Gln	Pro	Pro	Gly
5												

10

(2) INFORMATION FOR SEQ ID NO:22:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 1930 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

GGCACGAGCT TCGCTGTCCG CGCCCCAGTGA CGCGCGTGCG GACCCGAGCC CCAATCTGCA	60
CCCCGCAGAC TCGCCCCCGC CCCATACCGG CGTTGCAGTC ACCGCCCGTT GCGCGCCACC	120
CCCAATGCC CCGGGTCGCC CGGGCCCCGT CGCCCAATCC GCGCGGCCGGC CGCCGCGGCC	180
GCTGTCCCTCG CTGTGGTCGC CTCTGTTGCT CTGTGTCCCTC GGGGTGCCTC GGGGCCGGATC	240
GGGAGCCCAC ACAGCTGTAA TCAGCCCCA GGACCCCACC CTTCATCG GCTCCTCCCT	300
GCAAGCTACC TGCTCTATAC ATGGAGACAC ACCTGGGGCC ACCGCTGAGG GGCTCTACTG	360
GACCCCTCAAT GGTCGCCGCC TGCCCTCTGA GCTGTCCCGC CTCCCTTAACA CCTCCACCC	420
GGCCCTGGCC CTGGCTAACCT TTAATGGGTC CAGGCAGCAG TCAGGAGACA ATCTGGTGTG	480
TCACGCCCGA GACGGCAGCA TTCTGGCTGG CTCCCTGCCTC TATGTTGGCT TGCCCCCTGA	540
GAAGCCCTTT AACATCAGCT GCTGGTCCCG GAACATGAAG GATCTCACGT GCGCTGGAC	600
ACCGGGTGCA CACGGGGAGA CATTCTTACA TACCAACTAC TCCCTCAAGT ACAAGCTGAG	660
GTGGTACGGT CAGGATAACA CATGTGAGGA GTACCACACT GTGGGCCCTC ACTCATGCCA	720
TATCCCCAAG GACCTGGGCC TCTTCACTCC CTATGAGATC TGGGTGGAAG CCACCAATCG	780
CCTAGGCTCA GCAAGATCTG ATGTCCTCAC ACTGGATGTC CTGGACGTGG TGACCACCGA	840
CCCCCCACCC GACGTGCACG TGAGCCGCGT TGGGGCCTG GAGGACCAGC TGAGTGTGCG	900
CTGGGTCTCA CCACCAGCTC TCAAGGATTT CCTCTTCAA GCCAAGTACC AGATCCGCTA	960
CCGCGTGGAG GACAGCGTGG ACTGGAAGGT GGTTGATGAC GTCAAGCAACC AGACCTCCTG	1020
CCGTCTCGCG CCCCTGAAGC CCGGCACCGT TTACTTCGTC CAAGTGCCTT GTAACCCATT	1080
CGGGATCTAT GGGTCGAAAA AGGGGGGAAT CTGGAGCGAG TGGAGCCACC CCACCGCTGC	1140
CTCCACCCCT CGAAAGTGAGC GCCCAGGCC GGGCGGCCGG GTGTGCGAGC CGCGGGGGCG	1200
CGAGCCCCAGC TCGGGCCCGG TGCGCGCGGA GCTCAAGCAG TTCTCGGCT GGCTCAAGAA	1260
GCACGCATAC TGCTCGAACCT TAGTTCCG CCTGTACGAC CAGTGGCGTG CTTGGATGCA	1320
GAAGTCACAC AAGACCCGAA ACCAGGTAGG AAAGTTGGGG GAGGCTTGCG TGGGGGGTAA	1380
AGGAGCAGAG GAAGAGAGAG ACCCGGGTGA GCAGCCTCCA CAACACCGCA CTCTTCTTTC	1440

- 82 -

CAAGCACAGG ACGAGGGGAT CCTGCCCTCG GGCAGACGGG GTGCGGCGAG AGGTAAGGGG	1500
GTCTGGTGA GTGGGGCCTA CAGCAGTCTA GATGAGGCC CTTCCCTCC TTCTGGTGTG	1560
CTCAAAGGGA TCTCTTAGTG CTCATTACAC CCACTGCAAA GAGCCCCAGG TTTTACTGCA	1620
TCATCAAGTT GCTGAAGGGT CCAGGCTTAA TGTCGCTCT TTTCTGCCCT CAGGTCCCTGC	1680
CGGCTAAACT CTAAGGATAG GCCATCCTCC TGCTGGTCA GACCTGGAGG CTCACCTGAA	1740
TTGGAGCCCC TCTGTACCTA TCTGGCAAC AAAGAACCT ACCATGAGGC TGGGGCACAA	1800
TGAGCTCCA CAACCACAGC TTTGGTCCAC ATGATGGTCA CACTTGGATA TACCCAGTG	1860
TGGGTAAGGT TGGGGTATTG CAGGGCCTCC CAACAATCTC TTTAAATAAA TAAAGGAGTT	1920
GTTCAAGGTAA	1930

(2) INFORMATION FOR SEQ ID NO:23:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 560 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

TCCAGGCAGC GGTGGGGGGA CAACCTCGTG TGCCACGCC GGTGACGGCAG CATCCTGGCT	60
GGCTCCTGCC TCTATGTTGG CCTGCCCTCA GAGAAACCCG TCAACATCAG CTGCTGGTCC	120
AAGAACATGA AGGACTTGAC CTGCCGCTGG ACGCCAGGGG CCCACGGGGA GACCTTCCTC	180
CACACCAACT ACTCCCTCAA GTACAAGCTT AGGTGGTATG GCCAGGACAA CACATGTGAG	240
GAGTACCAACA CAGTGGGGCC CCACTCCTGC CACATCCCCA AGGACCTGGC TCTCTTACG	300
CCCTATGAGA TCTGGGTGGA GGCCACCAAC CGCCTGGGCT CTGCCGCTC CGATGTACTC	360
ACGCTGGATA TCCTGGATGT CGTGACCAACG GACCCCCCGC CCGACGTGCA CGTGAGCCGC	420
GTCGGGGGCC TGGAGGACCA GCTGAGCGTG CGCTGGGTGT CGCCACCCGC CCTCAAGGAT	480
TTCCTTTTTC AAGCCAAATA CCAGATCCGC TACCCAGTGG AGGACAGTGT GGAATGGAAG	540
GTGGTGGACG ATGTGACCAA	560

(2) INFORMATION FOR SEQ ID NO:24:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1391 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION: 1..1053

- 83 -

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

ACC CTC AAC GGG CGC CGC CTG CCC CCT GAG CTC TCC CGT GTA CTC AAC	48
Thr Leu Asn Gly Arg Arg Leu Pro Pro Glu Leu Ser Arg Val Leu Asn	
1 5 10 15	
GCC TCC ACC TTG GCT CTG GCC CTG GCC AAC CTC AAT GGG TCC AGG CAG	96
Ala Ser Thr Leu Ala Leu Ala Asn Leu Asn Gly Ser Arg Gln	
20 25 30	
CGG TCG GGG GAC AAC CTC GTG TGC CAC GCC CGT GAC GGC AGC ATC CTG	144
Arg Ser Gly Asp Asn Leu Val Cys His Ala Arg Asp Gly Ser Ile Leu	
35 40 45	
GCT GGC TCC TGC CTC TAT GTT GGC CTG CCC CCA GAG AAA CCC GTC AAC	192
Ala Gly Ser Cys Leu Tyr Val Gly Leu Pro Pro Glu Lys Pro Val Asn	
50 55 60	
ATC AGC TGC TGG TCC AAG AAC ATG AAG GAC TTG ACC TGC CGC TGG ACC	240
Ile Ser Cys Trp Ser Lys Asn Met Lys Asp Leu Thr Cys Arg Trp Thr	
65 70 75 80	
CCA GGG GCC CAC GGG GAG ACC TTC CTC CAC ACC AAC TAC TCC CTC AAG	288
Pro Gly Ala His Gly Glu Thr Phe Leu His Thr Asn Tyr Ser Leu Lys	
85 90 95	
TAC AAG CTT AGG TGG TAT GGC CAG GAC AAC ACA TGT GAG GAG TAC CAC	336
Tyr Lys Leu Arg Trp Tyr Gly Gln Asp Asn Thr Cys Glu Glu Tyr His	
100 105 110	
ACA GTG GGG CCC CAC TCC TGC CAC ATC CCC AAG GAC CTG GCT CTC TTT	384
Thr Val Gly Pro His Ser Cys His Ile Pro Lys Asp Leu Ala Leu Phe	
115 120 125	
ACG CCC TAT GAG ATC TGG GTG GAG GCC ACC AAC CGC CTG GGC TCT GCC	432
Thr Pro Tyr Glu Ile Trp Val Glu Ala Thr Asn Arg Leu Gly Ser Ala	
130 135 140	
CGC TCC GAT GTA CTC ACG CTG GAT ATC CTG GAT GTG GTG ACC ACG GAC	480
Arg Ser Asp Val Leu Thr Leu Asp Ile Leu Asp Val Val Thr Thr Asp	
145 150 155 160	
CCC CCG CCC GAC GTG CAC GTG AGC CGC GTC GGG GGC CTG GAG GAC CAG	528
Pro Pro Pro Asp Val His Val Ser Arg Val Gly Gly Leu Glu Asp Gln	
165 170 175	
CTG AGC GTG CGC TGG GTG TCG CCA CCC GCC CTC AAG GAT TTC CTC TTT	576
Leu Ser Val Arg Trp Val Ser Pro Pro Ala Leu Lys Asp Phe Leu Phe	
180 185 190	
CAA GCC AAA TAC CAG ATC CGC TAC CGA GTG GAG GAC AGT GTG GAC TGG	624
Gln Ala Lys Tyr Gln Ile Arg Tyr Arg Val Glu Asp Ser Val Asp Trp	
195 200 205	
AAG GTG GTG GAC GAT GTG AGC AAC CAG ACC TCC TGC CGC CTG GCC GGC	672
Lys Val Val Asp Asp Val Ser Asn Gln Thr Ser Cys Arg Leu Ala Gly	
210 215 220	
CTG AAA CCC GGC ACC GTG TAC TTC GTG CAA GTG CGC TGC AAC CCC TTT	720
Leu Lys Pro Gly Thr Val Tyr Phe Val Gln Val Arg Cys Asn Pro Phe	
225 230 235 240	
GGC ATC TAT GGC TCC AAG AAA GCC GGG ATC TGG AGT GAG TGG AGC CAC	768
Gly Ile Tyr Gly Ser Lys Ala Gly Ile Trp Ser Glu Trp Ser His	
245 250 255	
CCC ACA GCC CCC TCC ACT CCC CGC AGT GAG CGC CCG GGC CCG GGC	816
Pro Thr Ala Ala Ser Thr Pro Arg Ser Glu Arg Pro Gly Pro Gly Gly	
260 265 270	
GGG GCG TGC GAA CCG CGG GGC GGA GAG CCG AGC TCG GGG CCG GTG CGG	864
Gly Ala Cys Glu Pro Arg Gly Gly Glu Pro Ser Ser Gly Pro Val Arg	
275 280 285	

DRAFT GENOME SEQUENCING PROJECT

CGC GAG CTC AAG CAG TTC CTG GGC TGG CTC AAG AAG CAC GCG TAC TGC Arg Glu Leu Lys Gln Phe Leu Gly Trp Leu Lys Lys His Ala Tyr Cys 290 295 300	912
TCC AAC CTC AGC TTC CGC CTC TAC GAC CAG TGG CGA GCC TGG ATG CAG Ser Asn Leu Ser Phe Arg Leu Tyr Asp Gln Trp Arg Ala Trp Met Gln 305 310 315 320	960
AAG TCG CAC AAG ACC CGC AAC CAG CAC AGG ACG AGG GGA TCC TGC CCT Lys Ser His Lys Thr Arg Asn Gln His Arg Thr Arg Gly Ser Cys Pro 325 330 335	1008
CGG GCA GAC GGG GCA CGG CGA GAG GTC CTG CCA GAT AAG CTG TAGGGGCTCA Arg Ala Asp Gly Ala Arg Arg Glu Val Leu Pro Asp Lys Leu 340 345 350	1060
GGCCACCCCTC CCTGCCACGT GGAGACGCAG AGGCCGAACC CAAACTGGGG CCACCTCTGT ACCCCTCACTT CAGGGCACCT GAGCCCCCTCA GCAGGAGCTG GGGTGGCCCC TGAGCTCCAA CGGCCATAAAC AGCTCTGACT CCCACGTGAG GCCACCTTTG GGTGCACCCC AGTGGGTGTG TGTGTGTGTG TGAGGGTTGG TTGAGTTGCC TAGAACCCCT GCCAGGGCTG GGGGTGAGAA GGGGAGTCAT TACTCCCCAT TACCTAGGGC CCCTCCAAAAA GAGTCCTTTT AAATAAATGA GCTATTTAGG TGCAAAAAAAA AAAAAAAAAA A	1120 1180 1240 1300 1360 1391

(2) INFORMATION FOR SEQ ID NO:25:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 350 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

Thr Leu Asn Gly Arg Arg Leu Pro Pro Glu Leu Ser Arg Val Leu Asn
 1 5 10 15

Ala Ser Thr Leu Ala Leu Ala Asn Leu Asn Gly Ser Arg Gln
 20 25 30

Arg Ser Gly Asp Asn Leu Val Cys His Ala Arg Asp Gly Ser Ile Leu
 35 40 45

Ala Gly Ser Cys Leu Tyr Val Gly Leu Pro Pro Glu Lys Pro Val Asn
 50 55 60

Ile Ser Cys Trp Ser Lys Asn Met Lys Asp Leu Thr Cys Arg Trp Thr
 65 70 75 80

Pro Gly Ala His Gly Glu Thr Phe Leu His Thr Asn Tyr Ser Leu Lys
 85 90 95

Tyr Lys Leu Arg Trp Tyr Gly Gln Asp Asn Thr Cys Glu Glu Tyr His
 100 105 110

Thr Val Gly Pro His Ser Cys His Ile Pro Lys Asp Leu Ala Leu Phe
 115 120 125

Thr Pro Tyr Glu Ile Trp Val Glu Ala Thr Asn Arg Leu Gly Ser Ala
 130 135 140

Arg Ser Asp Val Leu Thr Leu Asp Ile Leu Asp Val Val Thr Thr Asp
 145 150 155 160

Pro Pro Pro Asp Val His Val Ser Arg Val Gly Gly Leu Glu Asp Gln
 165 170 175

Leu Ser Val Arg Trp Val Ser Pro Pro Ala Leu Lys Asp Phe Leu Phe

- 85 -

180	185	190	
Gln Ala Lys Tyr Gln Ile Arg Tyr Arg Val Glu Asp Ser Val Asp Trp			
195	200	205	
Lys Val Val Asp Asp Val Ser Asn Gln Thr Ser Cys Arg Leu Ala Gly			
210	215	220	
Leu Lys Pro Gly Thr Val Tyr Phe Val Gln Val Arg Cys Asn Pro Phe			
225	230	235	240
Gly Ile Tyr Gly Ser Lys Lys Ala Gly Ile Trp Ser Glu Trp Ser His			
245	250	255	
Pro Thr Ala Ala Ser Thr Pro Arg Ser Glu Arg Pro Gly Pro Gly Gly			
260	265	270	
Gly Ala Cys Glu Pro Arg Gly Gly Glu Pro Ser Ser Gly Pro Val Arg			
275	280	285	
Arg Glu Leu Lys Gln Phe Leu Gly Trp Leu Lys Lys His Ala Tyr Cys			
290	295	300	
Ser Asn Leu Ser Phe Arg Leu Tyr Asp Gln Trp Arg Ala Trp Met Gln			
305	310	315	320
Lys Ser His Lys Thr Arg Asn Gln His Arg Thr Arg Gly Ser Cys Pro			
325	330	335	
Arg Ala Asp Gly Ala Arg Arg Glu Val Leu Pro Asp Lys Leu			
340	345	350	

(2) INFORMATION FOR SEQ ID NO:26:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 24 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

TCCAGGCAGC GGTGGGGGGA CAAC

24

(2) INFORMATION FOR SEQ ID NO:27:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 24 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

TTGCTCACAT CGTCCACCACT CTTC

24

(2) INFORMATION FOR SEQ ID NO:28:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6663 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

CCCAGAACTC TTGGACGCTG AGGCAGGGAGG ATTCCCAAGT TTCAAGACAG TGTGTTCTA	60
GGTAATGAGA CCCTGTCAAG AAAAGAAAAG AAATAAAGAG ACAAGAAAAT GTTTATAGGC	120
TGTGAGACAG CTTGGTGCGT AAGGGCACT TGCCCTCCAAT CAAGATGACC TCAGCCCCAT	180
CCCTAGGAAT CCATGGTAGA AGGAGAAAAGC AAAACTCGCAG CTGCTGACCT CCATACATGT	240
GCTCCAATGT GCACACACAC AGGGAGACAT AATCAATTAA TAGGATGTAT TTGCTTAGAT	300
TTGAGTAGGC ATTTATGACT GATGTTTAA AATTTTTATT TGATTTATG AAAATATACC	360
TGTTTGTATT TGGTTTGGTT TGGTTTGGT TTTGTTTATT TGAGACAGGG CTTCTCTGTG	420
TAGTCCTGGC TGTCCCTGGGAA ACTCACTCTG TAGACCAGGC TGGCCTGAA CTCAGAAAATC	480
CGCCTGCTTG TGCTTCCCAA GTGCTTAGAT TAAAGGTGTG CACTGCCATT CAGCAAAATT	540
GCATACTTTA ACCCCAGTAT TTGGGAGGCC GAGGCAGACT AATGTGTGAA TTCCAGGCTA	600
GGCAAGGATA CAGAGTGAGA CCCTATTCTT ACCCTCCCCC CCCAAAACCC CAAAATGTAT	660
TTTGTGCTTG TGTATGTACA TGTGTGTTGC AGCACGTAAA TGTCCAAGGA CAACTTGTAG	720
AAGTTCTCTC CGTTCACAGT CTAAGTCCTG AATTCAAACT AAGGTCTCA GGCTTAGCCA	780
CAGTCTTCTT TATGTACTGA GCCATTTCAC TGGCCCTGGG TTGACTGTATG AATTAATT	840
TGAGATAAGG TCTCTTGAG CTCTAGCTAG GCTCAAACCA TGAACCTCCCAGGTCATCTT	900
GAGCTGCTGG TACTCTTGCT TCCACCCCAA GTGGTGGAAAT GATACTCAGG CAGCACTCT	960
CTGGGGAAAGG GGCTGGCCTT GGCTTGATT TTGTTGCCTC AGCTCAATG AGTGCTGGG	1020
TCTCGTTGTT TCTTTCTTT ATCTGTAAA TGGGTGAACA CCTGTTCAAG ACTTCCTGAC	1080
TCTTGAAACA TCCAGGCAGG GTGAGGGACT TGAAGTGGGC TCATCCCATG CCTAACAAAG	1140
TGTCTGCTTT GACCCAGAC ACAGCTGTAA TCAGCCCCCA GGACCCCAACC CTTCTCATCG	1200
GCTCCTCCCT GCAAGCTACC TGCTCTATAC ATGGAGACAC ACCTGGGGCC ACCGCTGAGG	1260
GGCTCTACTG GACCTTAAT GGTCGGCCGCC TGCCCTCTGA GCTGTCCCGC CTCCTTAACA	1320
CCTCCACCCCT GGCCCTGGCC CTGGCTAACCT TTAATGGGTCA CAGGCAGCAG TCAGGAGACA	1380
ATCTGGTGTC TCACGCCGA GACGGCAGCA TTCTGGCTGG CTCTGCCTC TATGTTGGCT	1440
GTAAGTGGGG CCCCCAGACAC TCAGAGATAG ATGGGGGTG GCAATGACAG ATTTAGACCC	1500
TGGGTCTTCT GTCCTGGGC AGAGCCATGG GCTCTCACTT GCATGCAGGC ATGGTCATAC	1560
CCAGCACAGG CATTGCAACT CTAGGGACAG CTGTGGCTGC ACTGTCCCCCT GTGTACCCCA	1620
CAGCTTTAGA AAAGCTGTCA TGTGTTCTT GTAGTGGCCC CTGAGAACCC CTTTAACATC	1680
AGCTGCTGGT CCCGGAAACAT GAAGGATCTC ACGTGCCGT GGACACCCGG TGCACACGGG	1740
GAGACATTCT TACATACCAA CTACTCCCTC AAGTACAAGC TGAGGTTGGT ACCCAGCCAA	1800
GCCTTGCTGT GTGACTTCTG GCAATACTTA CCTTCTCTGA TCAAATATGT TCCTGTTAT	1860
GAACCTAAAA GGGACTCTCG CACCTCCACA GGTGGTACGG TCAGGATAAC ACATGTGAGG	1920
AGTACCAACAC TGTGGGCCCT CACTCATGCC ATATCCCCAA GGACCTGGCC CTCTTCACTC	1980
CCTATGAGAT CTGGGTGGAA GCCACCAATC GCCTAGGCTC AGCAAGATCT GATGTCTCA	2040

03037652-031038

CACTGGATGT CCTGGACGTG GGTGAGCCCC CAGTGTCCAC CTGTGTTCTG CCCTAGACCT	2100
TATAGGGCGC CTCCCCCCCAGA CTTTTGGTT CTCTAGAGG TCTTAGCCAC	2160
AGCCACGGTG GTTGCAGGAC AGTGGTTGTT CATAACTTAA TGCAAAGACT TTCCCCAAG	2220
ACAGTCAGA TTTTCCCCCT CCCCACCCCC AACACACACA TACACACACA CTCTGCAGAG	2280
AACACCTGGC CTGACCACCC TCCCTCTCTA CAGCCCAGGT GTTCAGAAGG GAGTCCTAGG	2340
GGACTGAGAG GAGGGGCCA GGTCTGAAGG CGCCCCAGGA AGCCGAGGCC TTGAGCTGGG	2400
GGGGGGGGCG AGGGTTGGAG GCACGAAGT GATGATCCCT GAGCACAACT GGGCTTAATC	2460
TAATTAGGGT GTTCCCAGCC CAAAGCAGCC TGGGCCATTT ACCCTTCAA GTCCCTCACT	2520
GAAGACTCAG GGGAGAGATC AGCTTGACT CTCTCCATGG TCCCCCAGGA GGTTCTGG	2580
GTCCCCCTGG CTCATTCCCA CATCCAGAGG TTTTGTGTCT TCCCTGGCATC TAACCCCTCAG	2640
TTGIGCTCTG TGGCTGGCAC ASCTGCCCCG TGGAGGCTCT TGGTAATGTA CAAGGCATCA	2700
GAGGTGGACA TGGGATGGGG ATACATAGG ATGGAGCCAA ATAGCACCTC AAGGTGGGT	2760
GATATACAAT AAAGCTTGTC ACCCTGACCC TCAGAAAGCC TACTCATGAT GATCACAATT	2820
GTTGACATCA CTCTGGGACA TGTAGTGAGA CCCTAGCTCA AAACACAGAC AGTAGCTTA	2880
AGAGTCAGCT TGTGACTTAA TACTGGAAC TAGGGCCTAA TAGGTGCTGG GTGATGCTCG	2940
CCTCACTCCC TGTTTAGTGA GATCTCTGCG CTAATCTCCA CCCCAGCTGG GTGGGCTGCT	3000
CTGTCCCCCTT GAGGGCAGGA ATGTGTGTCT TCCATCAGAG ATAGGACCCG TGGTAGCAGC	3060
AACTGCTGCT GGCTGTTCTC CGAATATTAA ATGACAGTAA TCTATCAGGC CTGGGTGAGT	3120
AGCTAACAGG GGTGGGGGGC TGGTCTGGAA AACGCAGATA GGGTCATAGG AGCCACTGCA	3180
GCCTAGATTA CACCACTGGG TGTTCTGTCA CTAGGCCATT CTCACCAAGC AGTCCTCAGA	3240
ACTGGGAGCA CTGTTGCCAG CATTAAATGC CAGCATTAA TGCCAGCATT AGGGGAGGCA	3300
GAGGCAGAAG GATCTCTCTG AGTICAAGGC CATCCTGAAT TTACATAAAG AGCTCCAGGC	3360
CAGCCAGGGT GCGCAGTAAA ACCTTGTCTC AAAAAACAAA GCATCTTGT TGACCAGGCT	3420
TGCTCCACCC CCAGTGACCA CGGACCCCCC ACCCGACGTG CACGTGAGCC GCGTTGGGG	3480
CCTGGAGGAC CAGCTGAGTG TGGCCTGGGT CTCACCAACCA GCTCTCAAGG ATTCCTCTT	3540
CCAAGCCAAG TACCAAGATCC CCTACCGCGT GGAGGACAGC GTGGACTGGA AGGTGCCCGT	3600
CCCGCCCCGG ACCCGCCCCCT GACCCCGCCC CCCGCATCTG ACTCCTCCCT CACCGTGCAG	3660
GTGGTGGATG ACGTCAAGCAA CCAGACCTCC TGCCGTCTCG CGGGCCTGAA GCCCCGGCACC	3720
GTTTACTTCG TCCAAGTGGC TTGTAACCCA TTCGGGATCT ATGGCTGAA AAAGGCGGGA	3780
ATCTGGAGCG AGTGGAGCCA CCCCCACCGCT GCCTCCACCC CTCGAAGTGG TGAGCACCTC	3840
TCCAGGGCTG GCTGGCCCAT GGAATCCCCA ATCCATCCTG TTCCCTCCCC CCCACCCCTT	3900
TTTTGAGACA CGCTCTTCAG GTAGCGCATG CTGGCCTTAA ATTCACTATG TAGTCAAGGA	3960
TGACCTCGAG CTCCTGGTCT TTTTGTCTCC ACTTAGAGAC AATGGCCAGT GGCCATCACC	4020
ACCTTGGGA GACTAGCCAT GGAGTCTATT TAGCCTGTCA TTTGGTGACA GATGGAGTAC	4080
AACAGTGTGA CCTCTTGAA GAGAACTGAA GACAGGCTGT TTTTAACCCC AATATCCTAG	4140
GCTCTCTAGA GTTAACTTT ATATAAAATA GAGACTATTA CAGCCAGTTA TCACATGGTC	4200
CCACAGAACCC TTTTGTCAACA CAACCTATAG ACCACAGTGC CTGTGCCTAC CACATAAGGG	4260

TCTCTACTGC TGGCCCACCC CTCCAACCCT TAAAAGGTAA CCTAGGCAGC CTTAATATT	4320
GCAATCCTCC TACCTCAGCC TCTTGAATGC TCAGAAACCA GGCATTAACC CAAGTTCTC	4380
TTCTCTGGGT CCCTTCTTA AGGTGGGAGG GCCTAAAGAT GACTTCCTT GTCTGAAGA	4440
CTCTCCGAGC CCATGGATCT GCACTCTCTA ATATGAAATA TATTGCATAA AATGCTGGC	4500
CTCAGTTCC CCACCTGTCA GGTTTAGGCA GCACAGTCGG TCCAAGACAC TTCATTATT	4560
GCAGGCAGTA TAAGAAGAACG CTCCCATCCC CCACCCGCTT CCTCCGGTCC CTAAGACAGA	4620
ATACTTCTAC ACTGAAACTG AACTCTCGCA GACCGCATATG CTCACTTTAA TGATGATGAA	4680
ATAATGGGGA AACTGAGGCT CCGAGAGATT CCTGGAGGAA GAGGGTCAAA ACCAGCTCCA	4740
GGAAGCTCTC CAGCCCCAT CGGGCCCTCT CCAGGTTCTG GGCTTGGCGG GAGTGAACAC	4800
AGCTGGGAGG GGCTGGAGCC TGGGAGCTT GGCCCTGCT CGTGCCCCAGC ACCTGCGATT	4860
CTTGCACGGG AGCCAGCAGG CGGCTGGCTC CGCCCCAGAG ACTGAAGAACG CGGGGGTAG	4920
GGTTGGAGGG AGGTAAACCG AGGCTGGGG GGCGGAAGCT TGTGCCAGGG CCTGTCAGCG	4980
AGTCCCCAGT TTTATTTATG GCGTGAGGCC GATGCTTTA TCCGCTGGCC TGCTGGGGA	5040
TGGCTGCAGC TGGGAGTTGG ACCCAAGGGC TGGCTTCCCA CTCAGTCTC CAGCCCAC	5100
CATGTACAC CCGTGCATTC TCTGAGGCTT ATCTTGGAA CCCGCCCTTG TTCTGTGCTG	5160
TCTGTCTCTA TTTCTGTAT TCACCTTCCC AGAGCTTTT TTTTATGCTT TTAATATAAC	5220
TACGTTTAA AAATTGCTTT TGTATAATGT GTGTCCTTC GTGAGCGTGC GTGCCACAAC	5280
ACACACGTGA AGGTTAGAGA ACTTTGTTGA GTAGGCTCCT TCCACCATGT GGGACTAGGG	5340
CTGGCGACAA GAGCAATTAC TGACTCATCT CGCCAGCCCC TCACCCCTCA CTTCCCAC	5400
TGTTTGGATA GTCATAGGTA ATCGAAGGTA AATCGCTGGC TTTAATTTCG TAGCTATCCT	5460
GCCTCAGCCT ACCAACTGCT GTGCTACCAC GTTTGTGGGA GGGGCTCTCC TCCCAGTGT	5520
TGGGGGTGAC ACAGTCCCAA GATCTCTGCT TTCTAGGTCT TTGTCTTAGT TTGCCCTTG	5580
CTTTGTCCGT GTCCCTAGAG TCTCCGGCC CACTTATCCA TTGACTGGTC TTTCCCTTAC	5640
CGAATACTCG GTTTTACCTC CCACTGATTT GACTCCCTCC TTTGCTTGTGTC TCCATGCCG	5700
TGGCATTGCC ATTCCCTCTGG GTGACTCTGG GTCCACACCT GACACCTTTC CCAACTTCC	5760
CCAGCCGAAG CTGGTCTGGT ATGGGAGGCC GCCGTCGGC ECGCGCCCTCC TGCTGGCGC	5820
GCCCCAACAC TGCCGCTCCA TTCTCTTAG AGCGCCCGGG CCCGGGGGGC GGGGTGTGCG	5880
AGCCCCGGGG CGGGGAGCCC AGCTCGGGCC CGGTGCGGGCG CGAGCTCAG CAGTTCTCG	5940
GCTGGCTCAA GAAGCACGCA TACTGCTCGA ACCTTAGTTT CCGCCTGTAC GACCAGTGGC	6000
GTGCTTGGAT GCAGAAAGTCA CACAAGACCC GAAACCAGGT AGGAAAGTTG GGGGAGGCTT	6060
GGCTGGGGGG TAAAGGAGCA GAGGAAGAGA GAGACCCGGG TGAGCAGCCT CCACAACACC	6120
GCACCTCTCT TTCCAAGCAC AGGACGAGGG GATCCTGCC TCGGGCAGAC GGGGTGGGGC	6180
GAGAGGTAAG GGGGTCTGGG TGAGTGGGGC CTACAGCAGT CTAGATGAGG CCCTTTCCCC	6240
TCCCTCGGTG TTGCTCAAAG GGATCTCTTA GTGCTCATTT CACCCACTGC AAAGAGCCCC	6300
AGGTTTACT GCATCATCAA GTTGCTGAAG GGTCCAGGCT TAATGTCGGC TCTTTCTGC	6360
CCTCAGGTCC TGCCGGCTAA ACTCTAAGGA TAGGCCATCC TCCCTGCTGGG TCAGACCTGG	6420
AGGCTCACCT GAATTGGAGC CCCTCTGTAC CATCTGGCA ACAAGAAC ACACAGAGG	6480

- 89 -

CTGGGCACAA TGAGCTCCC	CAACCACAGC TTTGGTCCAC ATGATGGTCA CACTTGGATA	6540
TACCCCAGTG TGGTAGGGT	TGGGTATTG CAGGGCTCC CAAGAGTCTC TTTAAATAAA	6600
TAAAGGAGTT GTTCAGGTCC	CGATGGCCAG TGTGTTGGG GCCTATGTGC TGGGGTGGGG	6660
		6663
GGA		

(2) INFORMATION FOR SEQ ID NO:29:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 186 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

Asp Pro Thr Leu Leu Ile Gly Ser Ser Leu Gln Ala Thr Cys Ser Ile			
1	5	10	15
His Gly Asp Thr Pro Gly Ala Thr Ala Glu Gly Leu Tyr Trp Thr Phe			
20	25	30	
Asn Gly Arg Arg Leu Pro Ser Glu Leu Ser Arg Leu Leu Asn Thr Ser			
35	40	45	
Thr Leu Ala Leu Ala Leu Ala Asn Leu Asn Gly Ser Arg Gln Gln Ser			
50	55	60	
Gly Asp Asn Leu Val Cys His Ala Arg Asp Gly Ser Ile Leu Ala Gly			
65	70	75	80
Ser Cys Leu Tyr Val Gly Leu Pro Pro Glu Lys Pro Phe Asn Ile Ser			
85	90	95	
Cys Trp Ser Arg Asn Met Lys Asp Leu Thr Cys Arg Trp Thr Pro Gly			
100	105	110	
Ala His Gly Glu Thr Phe Leu His Thr Asn Tyr Ser Leu Lys Tyr Lys			
115	120	125	
Leu Arg Leu Val Arg Ser Gly * His Met * Gly Val Pro His Cys			
130	135	140	
Gly Pro Ser Leu Met Pro Tyr Pro Gln Gly Pro Gly Pro Leu His Ser			
145	150	155	160
Leu * Asp Leu Gly Gly Ser His Gln Ser Pro Arg Leu Ser Lys Ile			
165	170	175	
* Cys Pro His Thr Gly Cys Pro Gly Arg			
180	185		

(2) INFORMATION FOR SEQ ID NO:30:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 35 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

- 90 -

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:
 AGCTGGCGCG CCTCCCCGGGC GGATCGGGAG CCCAC

35

(2) INFORMATION FOR SEQ ID NO:31:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 28 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

AGCTACGCGT TTAGAGTTA GCCGGCAG

28

(2) INFORMATION FOR SEQ ID NO:32:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 30 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:

Met Val Leu Ala Ser Ser Thr Thr Ser Ile His Thr Met Leu Leu Leu			
1	5	10	15
Leu Leu Met Leu Phe His Leu Gly Leu Gln Ala Ser Ile Ser			
20	25	30	

(2) INFORMATION FOR SEQ ID NO:33:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 30 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

Ile Lys Pro Ser Gly Arg Arg Gly Ala Ala Arg Gly Pro Ala Gly Asp Tyr Lys Asp Asp			
5	10	15	20
Asp Asp Lys			

(2) INFORMATION FOR SEQ ID NO:34:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 73 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- 91 -

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:

GATCTTGC	CCC TCGGGCAGAC CGGGTGCGGC GAGAGGTCTT GCCGGCGACT ACAAGGACGA	60
CGATGACAAG	TAG	73

(2) INFORMATION FOR SEQ ID NO:35:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 73 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:

AACGGGAGCC CGTCTGCCCC ACGCCGCTCT CCAGGACGGC CGCTGATGTT CCTGCTGCTA	60
CTGTTCATCC TAG	73

(2) INFORMATION FOR SEQ ID NO:36:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 27 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:

CCCACGCTTC TCATCGGATT CTCCCTG	27
-------------------------------	----

(2) INFORMATION FOR SEQ ID NO:37:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 27 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:

CAGTOCACAC TGTCTCCAC TCGGTAG	27
------------------------------	----

(2) INFORMATION FOR SEQ ID NO:38:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 11832 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:

GGGGCCGCTG	CA GTGATTAC	T CACCGCGTG	GCGCACCCC	CCC GCGGGCC	GCTGACTGGA	60
TTTTTCCGTG	GGGGGATGTG	AAGAAGTTA	GGGAGAACTC	TTCTGCACCG	ATGGGAACTA	120
CGAATGCAGG	GTT CGGTCCC	GT TCCCCAAA	GGACACACCT	CTCCCCATAA	GCCCACTCAT	180
AAGGGCTCCC	TGCACGCCCT	CCGGGACATC	CCC ATATCCA	ATACCCGCAG	ATATGATAGT	240
TGAGAAGGGA	CCAGAGGCCG	GAGACTCCCT	CCCTGCCTTC	TGGCTTCCC	CCCCCCCTGC	300
ACGAAACGAG	ACTACAGCGA	TGGGAGAGGT	GGCATGAAGG	C TTAGGGTGG	GGATCGGTAG	360
GACCCATGCA	CCCAGAGAAA	GGGACTGGTG	GCAACTTTCA	AACTCTCTGG	GGAAGGAAGA	420
AGGGCTGAAA	GAGGATGAAC	GGGCTCAGGT	ACTGCTCAAT	GTGTGTGTGG	CGGACCAAAG	480
TGGGTATGGG	GGCCCCGTAA	GAGGGCCGGG	GAAGGTGGAT	AGGAAGGATC	CCGGTAGACT	540
GGAGGGATC	CTGGAAAAGC	ACCAGGGCTG	CGAGCTAGGA	ACCCATT CGG	AGT TAAAGGGT	600
ACAGGATCCC	AGATGAGGGG	TGGGAAAGCC	TGGGACGGGC	GGGACCCAGAG	AGGGAGGTCC	660
CACGGGCTGG	TGGGGAAAGA	GTGGGGGGCT	T CGCGCAGGA	CGATGGGACG	TTCAGGAGTG	720
GTA ACTGGGC	GGAGGCCGGC	CGGGCGGGGC	GCGCGGTGCC	CGCGGGCGGT	GGGAAGGCCG	780
GTGCGGGGCC	CACGATCAAC	CCCCCCCCAG	GGGCCGGGCC	GGGCGGGGGG	CGGGGCCGGG	840
CGGGCGAGC	GGCGCATTAG	CGCGTTGTCA	ATTTCGGCTG	CTCAGACTTG	CTCGGGCCTT	900
CGCTGTCCGC	GCCCAGTGAC	GCGCGTGAGG	ACCCGAGCCC	CAATCTGCAC	CCCCCAGACT	960
CGCCCCCGCC	CCATACCGGC	GTTGCAGTCA	CCGCCCCMTG	CGCGCCACCC	CCATGCCCGC	1020
GGGTGCCCCG	GGCCCCGTCG	CCCAATCCGC	CGGGCGGGCG	CCGCGGGCGC	TGTCTCGCT	1080
GTGGTCGCCT	CTGTTGCTCT	GTGTCTCGG	GGTGCCTCGG	GGCGCATCGG	GAGCCCGTGA	1140
GTACCGTGC	CCCTGCTCCC	CACCTCCCCA	GGGAAGGCCG	GATCCGGCGC	CCC GGGGGGT	1200
AGTCGCGGGG	GATGGAAGAA	GGGGCCCGAG	CGCCACCTGG	ACGTCCCCGG	AACAAAGGAA	1260
GGCGGCCCTC	GGGGCGCCCT	CACCTGTGGG	GCTCATGGCA	CCACCACCCA	GCCTCCCAAG	1320
AGTACCCCGT	TATACATCAG	AGGCCTTTA	TCTGTATCCC	CTTTGCCAGG	CTGTCTGGCC	1380
AGGCTCAGTT	TGAAGGACAT	CGCAGTGTCC	TGGGACCCCC	CTCCCTCAGG	GTGCTGGGAC	1440
GCTTCGGGGC	GCACGCCCTGT	GTCTTGATA	TCAGAGCGGA	AGGGAAGCCT	CCCTGGCCGG	1500
GGGCGCACGC	TTGGGTGCGT	TGGGTTGGGT	GCTGGCGCAA	AGTGGGGTCC	CCCTCCCCAT	1560
GAAGTGATGA	TCCCCGGGGG	GAGGGTGGGG	CGTTATCGTG	AGCCCTCCTG	TCCGCGTGGC	1620
ATGCGGCCCG	GGCTCCCTCG	GGACTTGCT	CTCCGTGGGG	TCGGCGCCGC	CCCCCTCCCC	1680
CTATAGCAGA	CTCCATGCTT	TGGTATCCTC	GAAGTCCTCT	CCACTGGTGG	GGCTCACAAC	1740
CGGTCTCATT	CAGGCTGCCG	TGGGTTGAGA	GCCTCTAGCG	ACTGAAATT	CGGTGAGGAG	1800
CGAGAGCAAG	CGTGTCCGGG	CACCGCGAGC	CCAGACTTCA	TTGTCTAAGG	GGCACCCAGT	1860

GGGGGTCA	G TGCCGAGAGA ATCCCAGTGT CCCAGGAGGA ACTCCTGGCC TTGAGCCCCC	1920	
ATCACCAAC	GCACACATCC CCGCCAGGAT GCGGTC	TCCA CATCCAGACC CTCTCTGGGA	1980
CACACCCAAA	GACACACAAA AGAGCCCCAC TGGCTTATGT CCCGTCA	CCCC TGCCCTCCGA	2040
CGCGCGCTGC	AGCCCAGATG CGTATTGCA CACCATCGCG GCGCTCGCAT TCCATCCTCT	2100	
ACACACACAC	ACACACACAC ACACACACAC ACACACACAC ACACACAGAC ACGCACACAC	2160	
ACACGCACGC	ACACACACAC ACGCCCGCAC TC GTGGTCCC ACATTTATTT CACAGGGGAG	2220	
GCAACACCGG	GGTACGCATA TGGTTGAGTG CACTGGAGAT CTTTCCCCAC CACTCTCAGG	2280	
ACCCCATCCG	GAGACACAGG CCACACCGCA GGGGCACCAC GCTGCCTGC TGCTCTGGC	2340	
TACTAGCTT	GTGCAGTTTG TCCGCGGTGT CTGTGGACGC CCTCCCGCTC TTGTCA	GGGG 2400	
ACAGGAACCT	ACACTCCTGC TTGCCCCAAGG CGGCTGGGCA CGTGATGTGG TGACACCCGG	2460	
GACCTTTCCG	GGGAGTTGGT GTTGCTGCCA AGCCTGGTA GTTTTGAAAT GCCACCAATA	2520	
GCGCTAACGCT	TTGTTTCCGG CGGGGCTGCA GAGCAACAGG CGAAGGTGGC GGAGTGGGG	2580	
TGGCGCGTGT	GTGTTTCTT TTAAGGGGAG GAGAAATTAA ATAAGAGGTT CTCACACCTC	2640	
TGCAATCTGT	TTGTACTTAC CGTGTGTCTT AACACCTGAC CAGCCAGCCG GTGGCTCGTA	2700	
AAAGTGTATG	CAGGTACCAAG CGGGACACGA GATGGGGGCC CCTGGGGTAT GGCTGGGATG	2760	
GAGGCCACCT	TCCCGTTGGC CTTTCAGGGA ATCTCACACT TTTCCCTTTT AAAACACATG	2820	
GTGTTCTTTT	TAATAACGGC AGCAACTCCG CATTGGAAA GGGGGAAATA AGCTTGATA	2880	
GGCCCCGGCT	TTGTGGAAAG GACCGGAAGA CGGAAGAAAA AAGGAGGGGT GTCTCCTCCA	2940	
GGCTTAGGGG	GCTGTCAGCT GCTGCTCTGT CTAGCTGGC ATGTGTGTGC CCCAGTCCCC	3000	
AGTGGCTTTG	GCCATTGTT TGTGAAGCC AAGACGGAGA CTGGAGTCCT CTATCTCTGG	3060	
TACTCCAGAG	TCAGGCTTCT CAGTCCGAGC CCAGAGAACG TCTTCCCTGT TTTATGGAGG	3120	
GAATCAGGGA	AGGGGGTGCC AGGTGGACTA CGTTCTGCTG AGGACTGTAC CAGTCGCTCG	3180	
AAGGAGAAAG	CTTGGGCTTG CCCCCCTCCC CCCTCAAGCC ACGAAGGGCA GCTGCTAGGC	3240	
TAGTGTGGTA	AAAGGGCATT ACTCCCCAGC CAGGACCCCC CAGAGAGTCC CCTTCCTGCC	3300	
CAGACAAATG	CTGGGGAGGG ACAGAGGGGT GTGATCATTG CCCAGGAGTG CAGACAGTGG	3360	
GGTCCCGGGT	CGGGCAGTGC CTCCCACCT GCTGAGGGGG GCGCCCAGGC AGGAAGCGGT	3420	
GGGTGGGCCG	GGGTAGAGAC GCTGGCACGT CCCAGTTCAT GCCGAAGGAA TTCTGAATTA	3480	
GGGGCGGGCT	GGCTGCCTGG GACCTCCGGG GCGGGCCCT GGCCTCCGCC GCTCCGTCTG	3540	
GCCTGCTCCT	CCTGCTCCTT CGCACGGACG CTGAGACCTC CGCTGAGCCC TGGGACAAGC	3600	
CCCAAATGCA	ACTGCGATTG CAGGCTTCGC AAGACCCGCC TCCTCCCAAG GCCAAATTIG	3660	
CCTGGGAGAA	GTCATTCAGG GCCCAGACTA GAACCATGTT GGTGCCACCT CATCCATCTG	3720	
GGGCATGAAG	GACCGTCCAG GGCTGCAAGT TAGCTTCTTA ATAGGAACCT GGGGGTGGGT	3780	
GCAGCCTCTG	TTCTCCGAGC CTCTTTGGAA ATCGGTTTTG TTTTTGTTTT TGTTTTTCC	3840	
AATACTCTT	TCTCTCATC CCATCCCCGG ACTGTTTCC TCCCTAAGGG TTGAGAGGCC	3900	
TGCAGCTCTC	CCTAACCTTT TCTTTGCTTC TACCCCAGGG CCTTTGCACA TGGAGTCCCC	3960	
CCTCTCCCT	TGCCCAACTG GGGCTCCAGC CTTACTGCAT TGGCTCTTG GTAAGTGTCC	4020	
CAGGGCCTCT	CTGACACACAA GGGTTGAGC CCCAGCTCCC TCTCTCTC TCCCCCTTT	4080	

CTCTTTGCT TCTGAGACTT AATTTCCTTC TTTTCTTTT TGGCTTTTG AGACAGGGTT	4140
TCTCTGTACA CCCCTGGCTG CCTTGGCACT CATTCTGTAG ACCAGGCTAG CCTCCTAAC	4200
ACAAACCTAC CTGCCTCTGC CTTTCCAGTG CTGGCACTAA AGATGTGGGC CACCACAACT	4260
AGTAGTTAAG TGTTTGCTG TGTCTTATT CCTATACTGA CCTCAGTTCC TGGCATATTG	4320
TAGGCATGG ATGGATGAAT GGATGGATGG ATGGATGGAT GGATGGTTGG ATGGAGCAAG	4380
CTTGAATCGT CCTGAGTGAA AAAAGAGACC TCAGAGAACT GAATGGAGTT AGGTTCCCAG	4440
GGCAGCCTGG CCTGCTGGTC TCATGGGAGC TCCCCTGTGAA ACTTCCCCCA CACCTCCAC	4500
CACCCGCCA TCCCTGTGTGG CTGACAAGAA AGGCAATGG CCAGATGGGG ACACAGACTC	4560
AGGAAAGCTT GGAATATGTT CCCCTCCTCA TATCCTAGGC CTTGTTGTCC CCCTGAGGGC	4620
CCAGCCTATG AGTAGGGCAG CTGTTGGCTG CCCTAAGGTT GGGTAGGCAA GAAGGGGGTG	4680
GTCCTCAGG GTGGGTACACA GGATTGAGGT CATTTCAAA GTGGCCATCA CAGTGGCCCT	4740
AGGAAATGAT TGTGGAGAGT CAGAACTCCT GTTGGGAGTT GTAGAGGGCC TTGCATGTGG	4800
GCTTCTGTGG CTGTCCTTC TCTTGTGGTC CTTGCACAG TCCCCTCGTG TGTGCTGGGA	4860
TGTGAGGAGG GCACGGGAA AATGAAGGCT CAGCCCCCTCA CTTGCCCTT CACGGTTCAC	4920
CCAACAGGGC TCACCTCTCC TCTGGACAGG CTCTCACTGT ATGCACAGAT TGGCTCAC	4980
TTTGATTCCC TTCTTTGGT CTCCCTGGAT GACAAACATT TACCAAGGTA GGATTTACA	5040
TTTGTAGATAT GTCCATTCTC CAGAAACACA CTTGTGAGGT TAGGGTATCA GTGAAAGGAC	5100
ACCACCAAGGA CAGACAAAGA ATTGGAGAGG AAGGAAATTG GTAAGCCAGG CCATGCTGA	5160
TGGCTTATGT GTAATCCCAG AACTCTGGAC GCTGAGGCAG GAGGATTCCA AGTTTCAAGA	5220
CAGTGTGTTG TAGGTAATGA GACCTCTCA AGAAAAGAAA AGAAAATAAG AGACAAGAAA	5280
ATGTTTATAG GCTGTGAGAC AGCTTGGTGG GTAAGGGCA CTTGCCCTCA ATCAAGATGA	5340
CCTCAGCCCC ATCCCTAGGA ATCCATGGTA GAAGGGAGAA CCAAACCTCCA GCTGCTGACC	5400
TCCATACATG TGCTCCAATG TGCACACACA CAGGGAGACA TAATCAATTAA ATAGGATGTA	5460
TTTGCTTAGA TTGAGTAGG CATTATGAC TGATGTTTA AAATTTTTAT TTGATTTAT	5520
GAAAATATAC CTGTTTGTAT TTGGTTTGGT TTGGTTTGAG TTTGTTTAT TTGAGACAGG	5580
GCTTCTCTGT GTAGTCCTGG CTGTCCTGG AACTCACTCT GTAGACCAGG CTGGCCTTGA	5640
ACTCAGAAAT CCGCCTGCTT GTGCTCCCA AGTGTAGTA TTAAAGGTGT GCACGCCAT	5700
TCAGCAAAAT TGCATACTTT AACCCCACTA TTTGGGAGGC AGAGGCAGAC TAATGTGTGA	5760
ATTCCAGGCT AGCCAAGGGAT ACAGAGTGA ACCCTATTCT TACCCCTCCCC CCCCCAAACC	5820
CCAAAATGTA TTTGTGCTT GTGTATGTAC ATGTGTGTG CAGCACGTAA ATGTCCAAGG	5880
ACAACCTGTA GAAGTTCTCT CCGITCACAG TCTAAGTCCT GAATTCAAAC TAAGGTCTC	5940
AGGCTTAGCC ACAGTCTCT TTATGTACTG AGCCATTCA CTGGCCCTGG ATTGACTGAT	6000
GAATTAAATT TTGAGATAAG GTCTCTGTGA CCTCTAGCTA GGCTCAAACAT ATGAACCTCCC	6060
AAGGTCATCT TGAGCTGCTG GTACTCTTGC TTCCACCCCCA AGTGGTGGAA TGATACTCAG	6120
GGAGCACTTC TCTGGGAAG GGGCTGGCT TGGCCTTGAT TTTGTTGCCT CAGCTTCAAT	6180
GAGTGTGCTGG GTCTCGTTGT TTCTTTCTT TATCTGTGAA ATGGGTGAAC ACCTGTTCAA	6240
GACTTCCCTGA CTCTTGAAAC ATCCAGGCAG GGTGAGGGAC TTGAAGTGGG CTCATCCCAT	6300

- 95 -

GCCTAACAAA	GTGTCGTCTT	TGACCCCCAGA	CACAGCTGTA	ATCAGCCCCC	AGGACCCCAC	6360
CCTTCTCATC	GGCTCCTCCC	TGCAAGCTAC	CTGCTCTATA	CATGGAGACA	CACCTGGGC	6420
CACCCCTGAG	GGGCTCTACT	GGACCTCAA	TGGTCGCCGC	CTGCCCTCTG	AGCTGTCCC	6480
CCTCCTAAC	ACCTCCACCC	TGGCCCTGGC	CCTGCCAAC	CTTAATGGGT	CCAGGCAGCA	6540
GTCACGGAGAC	AATCTGGTGT	GTCACGCCCG	AGACGGCAGC	ATTCTGGCTG	GCTCCTGCCT	6600
CTATGTTGGC	TGTAAGTGGG	GCCCCAGACA	CTCACAGAGATA	GATGGGGTT	GGCAATGACA	6660
GATTAGAGC	CTGGGTCTTC	TGTCCTGGGG	CAGAGCCATG	GGCTCTCACT	TGCATGCAGG	6720
CATGGTCATA	CCCAGCACAG	GCATTGCAAC	TCTAGGGACA	GCTGTGGCTG	CACTGTCCCC	6780
TGTGTACCCC	ACAGCTTTAG	AAAAGCTGTC	ATGTTTCCT	TGTAGTGCCC	CCTGAGAACG	6840
CCTTTAACAT	CAGCTGCTGG	TCCCGGAACA	TGAAGGATCT	CACGTGCCGC	TGGACACCGG	6900
GTGCACACGG	GGAGACATTC	TTACATACCA	ACTACTCCCT	CAAGTACAAG	CTGACGTTGG	6960
TACCCAGCCA	AGCCTGCTG	TGTGACTTCT	GGCAATACTT	ACCTTCTCTG	ATCAAATATG	7020
TTCCCTGTTA	TGAACTCAAA	AGGGACTCTC	GCACCTCCAC	AGGTGGTACG	GTCAGGATAA	7080
CACATGTGAG	GAGTACCACA	CTGTGGCCC	TCACTCATGC	CATATCCCCA	AGGACCTGGC	7140
CCTCTTCACT	CCCTATGAGA	TCTGGGTGGA	AGCCACCAAT	CGCCTAGGCT	CAGCAAGATC	7200
TGATGTCTC	ACACTGGATG	TCTGGACGT	GGGTGAGCCC	CCAGTGTCCA	CCTGTGTCT	7260
GCCCTAGACC	TTATAGGGCG	CCTCCCCCCC	ATCCCCCCCAG	ACTTTTGTT	TCTTCTAGAG	7320
GTCTTAGCCA	CAGCCACGGT	GGTTGCAGGA	CAGTGGTTGT	TCATAACTTA	ATGCAAAGAC	7380
TTTCCCCCAA	GACAGTCAAG	ATTTTCCCT	CCCCACCCCC	AACACACACA	TACACACACA	7440
CTCTGCAGAG	AAACACCTGGC	CTGACCACCC	TCCCTCTCTA	CAGCCCAGGT	GTTCAGAAAG	7500
GAGTCCTAGG	GGACTGAGAG	GAGGCCCCA	GGTCTGAAGG	CGCCCCAGGA	AGCCGAGGCC	7560
TTGAGCTGGG	GGGGGGGGCG	AGGGTTGGAG	GCACGAACG	GATGATCCCT	GAGCACAACT	7620
GGGCCTAACAT	TAATTAGGGT	GTTCCCAGCC	CAAAGCAGCC	TGGGCCATT	AAACCTTCAA	7680
GTGCCTCACT	GAAGACTCAG	GGGAGAGATC	AGCTGTACT	CTCTCCATGG	TCCCCCAGGA	7740
GGGTTCCCTGG	GTGCCCTGG	CTCATTCCA	CATCCAGAGG	TTTGTGTCT	TCCTGGCATE	7800
TAACCCCTCAG	TTGTGCTCTG	TGGCTGGCAC	AGCTGCCCG	TGGAGGCTCT	TGGTAATGTA	7860
CAAGGCATCA	GAGGTGGACA	TGGGATGGGG	ATACATAGGG	ATGGAGCCAA	ATAGCACCTC	7920
AAGGTGGGGT	GATATACAAT	AAACCTTGTGTC	ACCCGTACGC	TCAAGAAAGCC	TACTCATGAT	7980
GATCACAATT	GTGACATCA	CTCTGGGACA	TGTAGTGAGA	CCCTAGCTCA	AAACACACAG	8040
AGTAGCTTTA	AGAGTCAGCT	TGTGACTTAA	TACTGGAAC	CAGGGCCTAA	TAGGTGCTGG	8100
GTGATGCTCG	CCTCACTCCC	TGTTTAGTGA	GATCTCTGCG	CTAATCTCCA	CCCCAGCTGG	8160
GTGGGCTGCT	CTGTCCCCCTT	GAGGGCAGGA	ATGTGTGTCT	TCCATCAGAG	ATAGGACCCG	8220
TGGTAGCAGC	AACGTGCTGCT	GGCTGTTCT	GGAATATTAA	ATGACAGTAA	TCTATCAGGC	8280
CTGGGTGAGT	AGCTAACAGG	GGTGGGGCG	TGGTCTGGAA	AACGCAGATA	GGGTCACTAGG	8340
AGCCACTGCA	GCCTAGATTAA	CACCACTGGG	TGTTCTGTCA	CTAGGCCATT	CTCACCAAGC	8400
AGTCCTCAGA	ACTGGGAGCA	CTGTMGCCAG	CATTAACTGC	CAGCATTAA	TGCCAGCATT	8460
AGGGGAGGCA	GAGGCAGAAG	GATCTCTCTG	AGTTCAAGGC	CATCCTGAAT	TTACATAAAG	8520

- 96 -

AGCTCCAGGC CAGCCAGGGT GCGCAGTAAA ACCTTGTCTC AAAAAACAAA GCATCTTAG	8580
TGACCAGGCT TGCTCCACCC CCAGTGACCA CGGACCCCCC ACCCGACGTG CACGTGAGCC	8640
GCGTTGGGGG CCTGGAGGAC CAGCTGAGTG TGCGCTGGGT CTCACCACCA CCTCTCAAGG	8700
ATTTCCTCTT CCAAGCCAAG TACCAAGATCC GCTACCGCGT GGAGGACAGC GTGGACTGGA	8760
AGGTGCCCGT CCCGCCCGG ACCCGCCCGT GACCCCGCCC CCCGCATCTG ACTCCTCCCT	8820
CACCGTGCAG GTGGTGGATG ACGTCAAGAA CCAGACCTCC TGCGCTCTCG CGGGCCTGAA	8880
GCCCGGCACC GTTTACTTCG TCCAAGTGCG TTGTAACCCA TTCGGGATCT ATGGGTGAA	8940
AAAGGCAGGA ATCTGGAGCG AGTGGAGCCA CCCCACCGCT GCCTCCACCC CTCGAAGTGG	9000
TGAGCACCTC TCCAGGGCTG GCTGGCCCAT GGAATCCCCA ATCCATCCTG TTCCCTCCCC	9060
CCCACCCCTT TTTTGAGACA GCGTCTTCAG GTAGCGCATG CTGGCCTTAA ATTCAAGTATG	9120
TAGTCAAGGA TGACCTCGAG CTCTGGTCT TTTGTCTCC ACTTAGAGAC AATGGCCAGT	9180
GGCCATCACC ACCTTTGGGA GACTAGCCAT GGAGTCTATT TAGCTGTCA TTTGGTGACA	9240
GATGGAGTAC AACAGTGTGA CCTCTTGAA GAGAACTGAA GACAGGCTGT TTTAACCCC	9300
AATATCCTAG GCTCTCTAGA GGTAACTTT ATATAAAATA GAGACTATTAA CAGCCAGTTA	9360
TCACATGGTC CCACAGAACC TTTTGTACA CAACCTATAG ACCACAGTGC CTGTGCCTAC	9420
CACATAAGGG TCTCTACTGC TGGCCCACCC CTCCAACCTT TAAAAGGTAA CCTAGGCAGC	9480
CTTAATATTT GCAATCCTCC TACCTCAGCC TCTTGAATCC TCAGAAACCA GGCATTAACC	9540
CAAGTTCTC TTCTCTGGGT CCCCTTCTTA AGGTGGGAGG CCCTAAAGAT GACTTCCTT	9600
GTCCTGAAGA CTCTCCGAGC CCATGGATCT GCACTCTCTA ATATGAAATA TATTGCATTA	9660
AATGTCTGGC CTCAGTTCC CCACCTGTCA GGTTAGGCA GCACAGTCGG TCCAAGACAC	9720
TTCAATTATTT GCAGGCAGTA TAAGAAGAAG CTCCCCTCCC CCACCCGCTT CCTCCGGTCC	9780
CTAAGACAGA ATACTTCTAC ACTGAAACTG AACTCTCGCA GACGCATATG CTCACTTTAA	9840
TGATGTGAA ATAATGGGG AACTGAGGCT CCCGAGAGATT CCTGGAGGAA GAGGGTCAA	9900
ACCAAGCTCCA GGAAGCTCTC CAGCCCCAT CCGGGCCTCT CCAGGTTCTG GGCTTGGCGG	9960
GAGTGAACAC AGCTGGGAGG GGCTGGAGCC TGGGAGCTTT GGCCCTTGCT CGTGCCTCAGC	10020
ACCTGCAGATT CTTGCACGGG AGCCAGCAGG CGGCTGCGTC CGCCCCGAGAG ACTGAAAGAAG	10080
CCGGCCGTAG GGTTGGAGGG AGGTAAGCAG CGGCTGTGGG GGCCGAAGCT TGTGCCAGGG	10140
CCTCTCAGCG AGTCCCCAGT TTTATTTATG CGGTGAGGCC GATGTCTTAA TCCGCTGGCC	10200
TGCTGGGGGA TGGCTGCAGGC TGGGGATTGG ACCCAAGGGC TGGCTCCCA CTCAGTCCTC	10260
CAGCCCCACTC CATGTACACAC CCGTGCATTC TCTGAGGCTT ATCTGGGAA CCCGCCCTG	10320
TTCTGTGCTG TCTGTCTCTA TTTCTGTCTA TCACCTTCCC AGAGCCTTTT TTTTATGCTT	10380
TTAAATATAAC TACGTTTTAA AAATTGCTTT TGTATAATGT GTGTGCCTTC GTGACCGTGC	10440
GTGCCACAAAC ACACACGTGA AGGTTAGAGA ACTTGTGTA GTAGGCTCCT TCCACCATGT	10500
GGGACTAGGG CTGGCAGCAA GAGCAATTAC TGAGTCATCT CGCCAGCCCC TCACCCCTCA	10560
CTTCCCCATCC TGTTGGATA GTCATAGGTA ATCGAAGGTA AATCGCTGGC TTTAATTTCG	10620
TAGCTATCCT GCCTCAGCCT ACCAAAGTGC GTGCTACCAC GTTGTGGGA GGGGCTCTCC	10680
TCCCAAGTGTGTC TGGGGGTACA CAGTCCCAAG ATCTCTGCTT TCTAGGTCTT TGTCTTAGTT	10740

- 97 -

TGCCCCCTTGC	TTTGTCCCGTG	TCCCCTAGAGT	CTCCGGCCCC	ACTTAGTCTC	CATTGATTC	10800
CTTTCTGACC	GAATACTCGG	TTTTACCTCC	CACTGATTTG	ACTCCCTCCT	TTGCTTGTCT	10860
CCATCGCCGT	GCGATTGCCA	TTCCCTCTGGG	TGACTCTGGG	TCCACACCTG	ACACCTTC	10920
CAACTTTCCC	CAGCCGAAGC	TGGTCTGGTA	TGGGAGGGCG	CGTCCCCGGG	CGCCGCCCTCCT	10980
GCTGGCCGCG	CCCCAACACT	GCGCGCCCAT	TCTCTTTAGA	GCGCCCGGGG	CGGGGGCGCG	11040
GGGTGTGCGA	GCGCGGGGGC	GGCGAGGCCA	GCTCGGGCCC	GGTGCAGGCC	GAGCTCAAGC	11100
ACTTCCTCGG	CTGGCTCAAG	AAGCACCCAT	ACTGCTCGAA	CCTTAGTTTC	CGCCTGTACG	11160
ACCAGTGGCG	TGCTTGGATG	CAGAAGTCAC	ACAAGACCCG	AAACCAGGTA	GGAAAGTTGG	11220
GGGAGGCTTG	CGTGGGGGGT	AAAGGAGCAG	AGGAAGAGAG	AGACCCGGGT	GAGCACCC	11280
CACAAACACCG	CACTCTTCTT	TCCAAGCACA	GGACGAGGGG	ATCCTGCCCT	CGGGCAGACG	11340
GGGTGCGGGCG	AGAGGTAAGG	GGGTCTGGGT	GAGTGGGGCC	TACAGCAGTC	AGATGAGGC	11400
CCTTTCCTCT	CCTTCGGTGT	TGCTCAAAGG	GATCTCTTAG	TGCTCATTTC	ACCCACTGCA	11460
AAGAGCCCCA	GGTTTTACTG	CATCATCAAG	TTGCTGAAGG	GTCCAGGCTT	AATGTGGCCT	11520
CTTTTCTGCC	CTCAGGTCCCT	GCCGGCTAAA	CTCTAAGGAT	AGGCCATCCCT	CCTGCTGGGT	11580
CAGACCTGGA	GGCTCACCTG	AATTGGAGCC	CCTCTGTACC	ATCTGGGCAA	CAAAGAAACC	11640
TACCCAGAGGC	TGGGCACAAT	GAGCTCCAC	AACCACAGCT	TTGGTCCACA	TGATGGTCAC	11700
ACTTGGATAT	ACCCCACTGT	GGGTAGGGTT	GGGGTATTGC	AGGGCCTCCC	AAGAGTCTCT	11760
TTAAATAAAAT	AAAGGAGTTG	TTCAGGTCCC	GATGCCAGT	GTGTTGGGG	CCTATGTGCT	11820
GGGGTGGGGG	GA					11832

(2) INFORMATION FOR SEQ ID NO:39:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 26 amino acids
 - (B) TYPE: amino acids
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:

Val	Ile	Ser	Pro	Gln	Asp	Pro	Thr	Leu	Leu	Ile	Gly	Ser	Ser	Leu	Gln	Ala	Thr	Cys	Ser

5

10

15

20

Ile	His	Gly	Asp	Thr	Pro

25

- 98 -

(2) INFORMATION FOR SEQ ID NO:40:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 21 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:

GTCCAAGTGC GTTGTAACCC A

21

(2) INFORMATION FOR SEQ ID NO:41:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 24 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:

GCTGAGTGTG CGCTGGGTCT CACC

24

(2) INFORMATION FOR SEQ ID NO:42:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 18 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:

GGCTCCACTC GCTCCAGA

18

CLAIMS:

1. A nucleic acid molecule comprising a sequence of nucleotides encoding or complementary to a sequence encoding a novel haemopoietin receptor or derivative thereof having the motif:

Trp Ser Xaa Trp Ser [SEQ ID NO:1],

wherein Xaa is any amino acid.

2. A nucleic acid molecule according to claim 1 wherein Xaa is Asp or Glu.
3. A nucleic acid molecule according to claim 1 or 2 wherein said nucleic acid molecule is capable of hybridisation under low stringency conditions at 42°C to:

5' (A/G)CTCCA(A/G)TC(A/G)CTCCA 3' [SEQ ID NO:7]; and
5' (A/G)CTCCA(C/T)TC(A/G)CTCCA 3' [SEQ ID NO:8].
4. A nucleic acid molecule according to claim 3 comprising a sequence of nucleotides substantially as set forth in SEQ ID NO:12 or a nucleotide sequence having at least 60% similarity to the nucleotide sequence set forth in SEQ ID NO:12 or a nucleotide sequence capable of hybridising thereto under low stringency conditions at 42°C.
5. A nucleic acid molecule according to claim 3 comprising a sequence of nucleotides substantially as set forth in SEQ ID NO:14 or a nucleotide sequence having at least 60% similarity to the nucleotide sequence set forth in SEQ ID NO:14 or a nucleotide sequence capable of hybridising thereto under low stringency conditions at 42°C.
6. A nucleic acid molecule according to claim 3 comprising a sequence of

- 100 -

nucleotides substantially as set forth in SEQ ID NO:16 or a nucleotide sequence having at least 60% similarity to the nucleotide sequence set forth in SEQ ID NO:16 or a nucleotide sequence capable of hybridising thereto under low stringency conditions at 42°C.

7. A nucleic acid molecule according to claim 3 comprising a sequence of nucleotides substantially as set forth in SEQ ID NO:18 or 24 or a nucleotide sequence having at least 60% similarity to the nucleotide sequence set forth in SEQ ID NO:18 or 24 or a nucleotide sequence capable of hybridising thereto under low stringency conditions at 42°C.

8. A nucleic acid molecule according to claim 3 comprising a sequence of nucleotides substantially as set forth in SEQ ID NO:28 or a nucleotide sequence having at least 60% similarity to the nucleotide sequence set forth in SEQ ID NO:28 or a nucleotide sequence capable of hybridising thereto under low stringency conditions at 42°C.

9. A nucleic acid molecule according to claim 3 comprising a sequence of nucleotides substantially as set forth in SEQ ID NO:38 or a nucleotide sequence having at least 60% similarity to the nucleotide sequence set forth in SEQ ID NO:38 or a nucleotide sequence capable of hybridising thereto under low stringency conditions at 42°C.

10. A nucleic acid molecule according to claim 4 or 5 or 6 or 7 or 8 or 9 wherein said haemopoietin receptor is of murine origin.

11. A nucleic acid molecule according to claim 9 wherein said haemopoietin receptor is of human origin.

12. An expression vector comprising a nucleic acid molecule selected from the list consisting of:

- (i) a nucleotide sequence as set forth in SEQ ID NO:12;
- (ii) a nucleotide sequence as set forth in SEQ ID NO:14;
- (iii) a nucleotide sequence as set forth in SEQ ID NO:16;
- (iv) a nucleotide sequence as set forth in SEQ ID NO:18;
- (v) a nucleotide sequence as set forth in SEQ ID NO:24;
- (vi) a nucleotide sequence as set forth in SEQ ID NO:28; and
- (vii) a nucleotide sequence as set forth in SEQ ID NO:38.

13. A method for cloning a nucleotide sequence encoding a haemopoietin receptor having the characteristics of NR6 or a derivative thereof, said method comprising searching a nucleotide database for a sequence which encodes an amino acid sequence as set forth in one or more of SEQ ID NO:1, SEQ ID NO:7 and/or SEQ ID NO:8, designing one or more oligonucleotide primers based on the nucleotide sequence located in said search, screening a nucleic acid library with said one or more oligonucleotides and obtaining a clone therefore which encodes NR6 or a part or derivative thereof.

14. An isolated nucleic acid molecule comprising a sequence of nucleotides encoding a haemopoietin receptor or derivative thereof having an amino acid sequence substantially as set forth in SEQ ID NO:13 or having at least about 50% similarity thereto.

15. An isolated nucleic acid molecule comprising a sequence of nucleotides encoding a haemopoietin receptor or derivative thereof having an amino acid sequence substantially as set forth in SEQ ID NO:15 or having at least about 50% similarity thereto.

16. An isolated nucleic acid molecule comprising a sequence of nucleotides encoding a haemopoietin receptor or derivative thereof having an amino acid sequence substantially as set forth in SEQ ID NO:17 or having at least about 50% similarity thereto.

17. An isolated nucleic acid molecule comprising a sequence of nucleotides encoding a haemopoietin receptor or derivative thereof having an amino acid sequence substantially as set forth in SEQ ID NO:19 or having at least about 50% similarity thereto.
18. An isolated nucleic acid molecule comprising a sequence of nucleotides encoding a haemopoietin receptor or derivative thereof having an amino acid sequence substantially as set forth in SEQ ID NO:25 or having at least about 50% similarity thereto.
19. An isolated nucleic acid molecule comprising a sequence of nucleotides encoding a haemopoietin receptor or derivative thereof having an amino acid sequence substantially as set forth in SEQ ID NO:29 or having at least about 50% similarity thereto.
20. An isolated novel haemopoietin receptor comprising the amino acid motif:

Trp Ser Xaa Trp Ser [SEQ ID NO:1]

wherein Xaa is any amino acid.
21. An isolated haemopoietin receptor according to claim 20 wherein Xaa is Asp or Glu.
22. An isolated haemopoietin receptor according to claim 21 comprising the amino acid sequence substantially as set forth in SEQ ID NO:13.
23. An isolated haemopoietin receptor according to claim 21 comprising the amino acid sequence substantially as set forth in SEQ ID NO:15.
24. An isolated haemopoietin receptor according to claim 21 comprising the amino

acid sequence substantially as set forth in SEQ ID NO:17.

25. An isolated haemopoietin receptor according to claim 21 comprising the amino acid sequence substantially as set forth in SEQ ID NO:19.

26. An isolated haemopoietin receptor according to claim 21 comprising the amino acid sequence substantially as set forth in SEQ ID NO:25.

27. An isolated haemopoietin receptor according to claim 21 comprising the amino acid sequence substantially as set forth in SEQ ID NO:29.

28. A method for modulating expression of NR6 in a mammal, said method comprising contacting a genetic sequence encoding said NR6 with an effective amount of a modulator of NR6 expression for a time and under conditions sufficient to up-regulate or down-regulate or otherwise modulate expression of NR6, wherein the genetic sequence encoding said NR6 is selected from the nucleotide sequence set forth in SEQ ID NO:12 or 14 or 16 or 18 or 24 or 28 or 38 or is a sequence having at least about 60% similarity to at least one of SEQ ID NO:12 or 14 or 16 or 18 or 24 or 28 or 38 and is capable of hybridising thereto under low stringency conditions at 42°C.

29. A method of modulating activity of NR6 in a mammal, said method comprising administering to said mammal, a modulating effective amount of a molecule for a time and under conditions sufficient to increase or decrease NR6 activity wherein said NR6 comprises an amino acid sequence:

- (i) encoded by a nucleotide sequence selected from the nucleotide sequence set forth in SEQ ID NO:12 or 14 or 16 or 18 or 24 or 28 or 38 or a nucleotide sequence having at least 60% similarity to the nucleotide sequence set forth in SEQ ID NO:12 or 14 or 16 or 18 or 24 or 28 or 38 and which is capable of hybridising thereto under low stringency conditions at 42°C; and
- (ii) substantially as set forth in SEQ ID NO:12 or 14 or 16 or 18 or 32 or 30 or a

sequence having at least 50% similarity thereto.

30. A pharmaceutical composition comprising an NR6 receptor in soluble form and one or more pharmaceutically acceptable carriers and/or diluents wherein said NR6 comprises the amino acid sequence:

- (i) encoded by a nucleotide sequence selected from the nucleotide sequence set forth in SEQ ID NO:12 or 14 or 16 or 18 or 24 or 28 or 38 or a nucleotide sequence having at least 60% similarity to the nucleotide sequence set forth in SEQ ID NO:12 or 14 or 16 or 18 or 24 or 28 or 38 and which is capable of hybridising thereto under low stringency conditions at 42°C; and
- (ii) substantially as set forth in SEQ ID NO:12 or 14 or 16 or 18 or 32 or 30 or a sequence having at least 50% similarity thereto.

31. An isolated antibody or a preparation of antibodies to an NR6 receptor, said NR6 receptor comprising the amino acid sequence:

- (i) encoded by a nucleotide sequence selected from the nucleotide sequence set forth in SEQ ID NO:12 or 14 or 16 or 18 or 24 or 28 or 38 or a nucleotide sequence having at least 60% similarity to the nucleotide sequence set forth in SEQ ID NO:12 or 14 or 16 or 18 or 24 or 28 or 38 and which is capable of hybridising thereto under low stringency conditions at 42°C; and
- (ii) substantially as set forth in SEQ ID NO:12 or 14 or 16 or 18 or 24 or 28 or 38 or a sequence having at least 50% similarity thereto.

32. A transgenic animal comprising a mutation in at least one allele of the gene encoding NR6.

33. A transgenic animal according to claim 32 comprising a mutation in two alleles of the gene encoding NR6.

- 105 -

34. A transgenic animal according to claim 33 or 34 wherein said animal is a murine animal.

卷之三

ABSTRACT

The present invention relates generally to a novel haemopoietin receptor or derivatives thereof and to genetic sequences encoding same. Interaction between the novel receptor of the present invention and a cytokine ligand facilitates proliferation, differentiation and survival of a wide variety of cells. The novel receptor and its derivatives and the genetic sequences encoding same of the present invention are useful in the development of a wide range of agonists, antagonists, therapeutics and diagnostic reagents based on ligand interaction with its receptor.

09037557 034036

FIGURE 1

FIGURE 2

3/23

4/23

5/23

6/23

7/23

8/23

9/23

10/23

11/23

FIGURE 2 (continued)

FIGURE 2 (continued)

g1118 ggctcatccatggctaacaagggtcgctttgaccggagacac
 D P T L L I G S S
 agctgttaatcaggccccaggACCCCATGGCTTCATGGCTCCCTC
 L Q A T C S I H G D T P G A T
 CCTGGCAAGGCTAACCTGCTTATAACATGGAGACACACCTGGGCCAC

g1163 A E G L Y W T F N G R R L P S
 CGCTGAGGGCTCTACTGGACCTTCATTGGCTCCACCCCTGGCCCTGGCCCTC

g1208 E L S R L L N T S T L A L A L
 TGAGCTGTCCCCCTTAACACCTCCACCGCTTGGCCCTGGCCCTGGCCCT

g1253 A N L N G S R Q Q S G D N L V
 GGCTAACCTTAATGGTCCAGGCAGTCAGGAGACAATCTGGT

g1298 C H A R D G S I L A G S C L Y
 GTGTCAAGCCCCAGACGGCAGGATTCTGGCTCCCTGGCTTA
 V G

g1343 TTGGCTTAAAGGGGGCCAGACACTcagagaTAGATGGGG
 ttggcaatgacagatttagggctgggttttcctgtccctggggcag
 agccatgggcactcaactggcatggcatacccaac
 aggcatggcaactctaggacaggctgtggctgtccctgt

g1388 L
 g1433

g1478
 g1523
 g1568

g1613 gtaccccacagcttttagaaaaaggctgtcatgttttcccttgttagTGC

FIGURE 2 (continued)

FIGURE 2 (continued)

P P E K P F N I S C W S R N M
CCCCCTGAGAAGCCCTTTAACATCAGCTGCTGGTCCCCGAACATGA

K D L T C R W T P G A H G E T
AGGATTCACGTGCCGCCTGGACACCCGGGTGCACACCGGGAGACAT

F L H T N Y S L K Y K L R
TCTTACATACCAACCTACTTCCCTCAAGTACAAGCTGAGgttggtaC
ccagccaaaggccttgctgtgacttctggcaataacttacttttc
tgatcaaataatgtttccctgttatgaactaaaaggactctcgca

W Y G Q D N T C E E Y H
cctccacacggGTACGGTCAGGATAAACACATGTGAGGAGTACCA

T V G P H S C H I P K D L A L
CACTGTGGCCCTCACTCATGCCATATCCCCAAGGACCTGGCCCT

F T P Y E I W V E A T N R L G
CTTCACCTCCCTATGAGATCTGGTGGAAAGCCACCAAATGCCCTAGG

S A R S D V L T L D V L D V
CTCAGCAAGATCTGATGTCCTCACACTGGATGTCCCTGGACGTTGGG

g1658

g1703

g1748

g1793

g1838

g1883

g1928

g1973

g2018

g2063

g2108

g2153

g2198

FIGURE 2 (continued)

ccaccccaacacacatcacacacactcttcggcaggatccat
 ggcctgaccacctccctctacagccaggcgcccaggcttccaaggaa
 gtccctaggacttgaggaggcttggcttgggggggggggggggggg
 ggaaggccaggcccaggcttgggggggggggggggggggggggg
 agaactggatgtatcccttggccatggcacaactggcccttaatct
 gggttccaggccaaaggcaggcttggccatttaacccttcaagt
 gcctcaactgaagactcaggggaggatcaggcttggtaatgttcca
 tggtcccccaggagggtttccctggcatctaacccctcagggttgt
 tcaggaggtttgttgttgtatatacaataaggatgttca
 ctgtggctggcacaggctggccgggggggggggggggggggggggg
 aggcatcaggatggacatggggatggggatggggatggggatgggg
 caaataggcacctcaagggtggatgtggggatggggatggggatgggg
 cctgacgctcagaaggccatgtggatgtggatgtggggatggggatgggg
 tcactctgggacatgtggatgtggatgtggggatggggatggggatgggg
 tagcttaaaggatcaggcttggacttggatgtggggatggggatgggg
 taatagggtggatgtggatgtggatgtggggatggggatggggatgggg
 tctctggcttaatctccacccaggctgggtgggtgggtgggtgggtgg
 ctggggcaggaaatgtgtgtgtgtgtgtgtgtgtgtgtgtgt
 taatctatcaggccatgtggatgtggatgtggatgtggatgtggatgt
 gttagcaggcaactggcaggatagggtcataggccatccatccatcc
 taatctatcaggccatgtggatgtggatgtggatgtggatgtggatgt
 gtctggaaaacgcaggatagggtcataggccatccatccatccatcc
 ttacaccactgggtgtgtgtgtgtgtgtgtgtgtgtgtgtgt
 tcctcagaactggggaggcactgttgccaggatgtggatgtggatgt
 taatggccaggcataggggaggcaggaggcaggaggcaggaggcagg
 ttcaaggccatcctgaattacataaaaggcttggctcaaaaaacaa
 ggtgcgcaggtaaaacaccttggctcttttagtg

g2243
 g2288
 g2333
 g2378
 g2423
 g2468
 g2513
 g2558
 g2603
 g2648
 g2693
 g2738
 g2783
 g2828
 g2873
 g2918
 g2963
 g3008
 g3053
 g3098
 g3143
 g3188
 g3233
 g3278
 g3323
 g3368

B E G I N "Z S E N D E D "

FIGURE 2 (continued)

g3413	V T T D P P P D	accaggcttgctccaccccaagttGACCACGGACCCCCACCCGAC
g3458	V H V S R V G G L E D Q L S V	GTGCACAGTGTGAGCCCGCGTGGGGCCTGGAGGACCAAGCTGAGTGTg
g3503	R W V S P P A L K D F L F Q A	CGCTGGGTCTCACCAAGCTCTCAAGGATTTCCTCTCCAAGGCC
g3548	K Y Q I R Y R V E D S V D W K	AAGTACCAAGATCCGCTACCGCGTGGAGGACAGCGTGGACTGGAAAG
g3593	gtggcccggtccccggacccggccccctgaccggccccccat	
g3638	V V D D V S N	ctgactcctccctcacccgtggcaggGTGGATGACCGTCAGCAACC
g3683	Q T S C R L A G L K P G T V Y	AGACCTCCTGCCGCTCGCCCTGAAGCCCCGGCACCGTTACT
g3728	F V Q V R C N P F G I Y G S K	TCGTCCAAAGTGCGTTGTAACCCATTTCGGATCTATGGGTGCAAAA
g3773	K A G I W S E W H P T A A S	AGGGGGAAATCTGGAGCCAGTGAGCTGGAGCCACCCACGGCTGCCCTCCA
g3818	T P R S	CCCCCTCGAAGTGGtaggcaccttcagggtggctggcccatgg
g3863		aatcccccaatccatccctgttcccccaccccttttttag

FIGURE 2 (continued)

bioRxiv preprint doi: <https://doi.org/10.1101/26060>; this version posted April 1, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

g3908 acaggcgtttcaggtagcgcatgtggcttaattcagtatgtaa
g3953 gtcggatgaccctcgagctccggccatcaccacccatgg
g3998 agtctatttagccctgtcatttggagactagccatgg
g4043 tgaccttgttaagagaactgaagacaggctgttttaacccaa
g4088 tatccctaggctcttagaggttaacttataaaaatagagacta
g4133 ttacaggcgttatcacatggtcccacacaataaggtaacccatggcaggct
g4178 tgctggcccacccctccaaacccctaaaggtaacccatggcaggct
g4223 actatagaccacatggctgtgcctaccacataaggtaacccatggcaggct
g4268 taatatttgcattccctcacccatggctttgaatgtctcaggaa
g4313 ccaggcataacccaaaggtttctctgggtcccttttaag
g4358 gtggggggccctaaaggatgacttcatttgcctgaagacttcgg
g4403 agccatggatctgcactctcaatattggataatttgcataaaaa
g4448 tgtctggcctcaggtttcccacactgtcaggtttaggcaggcatgt
g4493 cgtccaaagacacttcatttgcaggcaggatataaggaaaggct
g4493 cccatccccacccgcttcctcggtccctaaggacagaataacttc
g4538 tacactgaaactgaacttcgcagacgcataatgtcactttatg
g4583 atgatgaaataattggggaaacttagggcaggatcccgaggatccctggag
g4628 gaagagggtcaaaaaccaggctccaggaaaggcttcaggccccatcc
g4673 gggcctccaggttctgggttggcccttgctcggtccaggac
g4718 ggggcgtggagcgtggggatgtggggatggggaggatggagggg
g4763 ctggcattttgcacggcaggccaggccaggatggggatgggg
g4808 gagactgaaaggccggggtagggttggggaggatgggg
g4853 gctgtggggccggaaaggcttgcggcaggccgtgtcaggagatccc
g4898 agtttattatggcgtggccatgtccctatccgtggcctg
g4943 ctggggatggctgggatggggatggacccaagggtggctggcttc
g4988 g5033

Sequence Legend

FIGURE 2 (continued)

g5078 ccactcaggctccaggccactccatgtcacacccgtgcatttc
g5123 tgaggcttatcttggaaaccggccttgttctgtctgtct
ctatttctgtcattcactttccagggcctttttatgtcttt
g5168 aataaactacgttttaaaaatgttttgatataatgtgttgtgccc
g5213 ttctgtgaggcggtgcgtgcacaacacgtggacttaggtggcga
g5258 ttgttgttaggttaggtccaccatgtggacttaggtggcga
g5303 caagagcaattactgtgatgtccatccacccctcact
g5348 tcacccatctgtttggatagtcatggtaatcgaaaggtaatcgct
g5393 ggcttttaatttgcgttagctatccctcagccataccaaatgtgt
g5438 gcttaccacgtttgggggggtctcccaatgtgtgtgtgggt
g5483 gacacatcccaagatcttgcgtttaggttttttttagtt
g5528 gcccccttgcattgtccgtgtcccttagatctccggcccaacttac
g5573 cattgacttggttttcccttacccatactcggttttaccccca
g5573 ctgatttgcactccctttgtctccatcgccgtggcatttg
g5618 ccattcccttgggtgactctgggtccacacctgacaccttccca
g5663 acttccccaggccgaaggctgggtctggatgggaggccggcgcccc
g5708 ggcgcgcgccttgcgtggcccaactggccgtttccatcc
g5753 ggcgcgcgccttgcgtggcccaactggccgtttccatcc
g5798 ggcgcgcgccttgcgtggcccaactggccgtttccatcc

g5843 E R P G P G V C E P R
tctttagAGGGCCCCGGGGGGGGGTGCGAGGCCGGGG
G G E P S S G P V R R E L K Q
GGGGGGAGCCCCAGCTCGGGCCGGTGGGGGGAGGCTCAAGCAG
F L G W L K H A Y C S N L S
TTCCTGGCTGGCTCAAGAACGCATACTGCTCGAACCTTAGT

g5888

g5933

FIGURE 2 (continued)

F R L Y D Q W R A W M Q K S H
TTCCGGCTGTACGACCAGTGGCGTGGATGCAGAACGTCACAC

AAGACCCGAAACCAGGTAGGAAAAGTTGGGGAGGCTTGGGTGGGG

GGTAAAGGAGCAGAGGAAGAGAGACCCGGGTGACCGAGCTCCA

Q H R T L L S R H R T R G S C
D E G I L
CAACACCGCACTCTTCCAAAGCACAGGACGGAGGGATCCTGC

P R A D G V R R E V R G S G *
 P S G R R G A A R
 CCTCGGGCAGACGGGTAGCTAGATGAGGCCCTTCCCCCTCCCTTCGG
 GTGGGGCCTACAGCAGTCTAGATGAGGCCCTTCCCCCTCCCTTCGG
 TGTGCTCAAAGGGATCTCTAGTGCTCATTTCACTGCAGGTTACTGCATCAAGTTGCTGAAGGGTCCAGG
 GAGCCCCAGGGTTACTGCATCAAGTTGCTGAAGGGTCCAGG

CCTTAATGTGCCCTCTTCTGCCCTCAGGTCCCTGCCGGCTAACT
V L P A K L
G P A G *

* CTAAGGATAGGCCATCCTCC'TGCTGGGTCAAGACCTGGAGGCTCAC

95978

g6023

g6068

α6113

g6158
g6203
g6248
g6293

g6338

q6383

FIGURE 2 (continued)

CTGAATTGGAGCCCTCTGTACCATCTGGCAACAAGAACCTA
CCAGAGGCTGGCACAAATGAGCTCCACAAACCACAGCTTTGGTCC
ACATGATGGTCACACTGGATA'ACCCCAGTGTGGTAGGGTTGG
GGTATTGCAGGGCTCCCAAGAGTCCTTAATAATAAGGAG
TTGTTCAGGTCCCGatgccaggatgtgtttggggccatgtgtgg
ggtgtggggga

g6428
g6473
g6518
g6563
g6608
g6653

FIGURE 3

13/23
14/23
15/23
16/23
17/23
18/23
19/23
20/23
21/23

FIGURE 3

030137857 0314058
GCGGCCGCTG CAGTGATTAC TCACCCCGTG GCGCACCCCCA CCCGCAGGGCC GCTGAGTGG 60
TTTTTCCGTG GGGGGATGTG AAGAAAGTTA GGGAGAACTC TTCTGCACCG ATGGGAAC 120
GGAATGCAGG GTTCGGTCCC GTTCCCCAAA GGACACACCT CTCCCCATAA GCCCACTCAT 180
AAGGGCTCCC TGCACGGCT CGGGACATC CCCATATCCA ATACCCGCAG ATATGATAGT 240
TGAGAAGGGA CCAGAGGCCG GAGACTCCCT CCCTGCCTTC TGGCTTCCTC CCCCCCTGC 300
ACGAAACGAG ACTACAGCGA TGGGAGAGGT GGCAATGAAGG CTTAGGGTGG GGATCGGTAG 360
GACCCATGCA CCCAGAGAAA GGGACTGGTG GCAACTTCA AACTCTCTGG GGAAGGAAGA 420
AGGGCTGAAA GAGGATGAAC GGGCTCAGGT ACTGCTCAAT GTGTGTGTGG CGGACCAAAG 480
TGGGTATGGG GGCCCCGTAA GAGGGGGGGG GAAGGTGGAT AGGAAGGATC CCGGTAGACT 540
GGAGGGGATC CTGGAAAAGC ACCAGGGCTG CGAGCTAGGA ACCCATTCTGG AGTTAAGGGT 600
ACAGGATCCC AGATGAGGGG GTGGGAAGCC TGGGACGGGC GGGACCAGAG AGGGAGGTCC 660
CACGGGCTGG TGGGGAAAGA GTGGGGGCT TCGCGCAGGA GGATGGGACG TTCAGGGAGTG 720
GTAACTGGGC GGAGGCCGGC CGGGCGGGC GCGCGGTGCC CGCGGGCGGT GGGAAAGGCCG 780
GTGCGGGGCC CACGATCAAC CCCCCCCCCAG GGGCCGGGCC GGGCCGGGGG CGGGGCCGGG 840
CGGGGCGAGC GGCGCATTAG CGCCTTGTC ATTTCGGCTG CTCAGACTTG CTCCGGCCTT 900
CGCTGTCCGC GCCCAGTGAC GCGCGTGAGG ACCCGAGCCC CAATCTGCAC CCCGCAGACT 960
CGCCCCCGCC CCATACCGGC GTGCGAGTCA CGGCCCCGTG CGCGCCACCC CCATGCCCGC 1020
GGGTCGCCCCG GGCCCCGTGCCC GCGGCAGGCCG CGCGGGCCGC TGTCTCGCT 1080
GTGGCTGGCT CTGTTGCTCT GTGTCTCGG GGTGCTCGG GGCGGATCGG GAGCCCCGTGA 1140
GTACCGTGCG CCCTGCTCCC CACCTCCCCA GGGAAAGCCGG GATCCGGCGC CCCGGGGG 1200
AGTCGGGGGG GATGGAAGAA GGGGCGCGAG CGCCACCTGG ACGTCCCCGGG AACAAAGGAA 1260
GGCGGCCCTC GGGGCGCCCT CACCTGTGGG GCTCATGGCA CCACCAACCA GCCTCCCAAG 1320

FIGURE 3 (CONTINUED)

AGTACCCCGT TATACATCAG AGGCCTCTTA TCTGTATCCC CTTTGCAGG CTGTCTGGCC 1380
AGGCTCAGTT TGAAGGACAT CGCAGTGTCC TGGGACCCCC CTCCTTCAGG GTGCTGGGAC 1440
GCTTCGGGGC GCACGCCCTGT GTCTTGGATA TCAGAGCGGA AGGAAAGCCT CCCTGGCCGG 1500
GGGCACGC TTGGGTGCGT TGGGTTGGGT GCTGGCGCAA AGTGGGGTCC CCTCCCCCAT 1560
GAAGTGATGA TCCCCGGGGG GAGGGTGGGG CGTTATCGTG AGCCCTCCTG TCCGCCTGGC 1620
ATGCGGCCCG GGACTTGCCT CTCCGTGGGG TCGGCGCCGC CCCCTCCCCC 1680
CTATAGCAGA CTCCATGCTT TGGTATCCTC GAAGTCCTCT CCACTGGTGG GGCTCACAAAC 1740
CGGTCTCATT CAGGCTGCGC TGGGTTGAGA GCCTCTAGCG ACTGAAATTG CGGTGAGGAG 1800
CGAGAGCAAG CGTGTCCGGG CACCGCGAGC CCAGACTTCA TTGTCTAAGG GGCACCCAGT 1860
GGGGTCAGC TGCCGAGAGA ATCCCACGT CCCAGGAGGA ACTCCTGGCC TTGAGCCCC 1920
ATCACCCAAC GCACACATCC CCGCCAGGAT GCGCTCTCCA CATCCAGACC CTCTCTGGGA 1980
CACACCAAA GACACACAAA AGAGCCCCAC TGGCTTATGT CCCGTCACCC TGCCCTCCGA 2040
CGCGCGCTGC AGCCCAGATG CGTATTGCA CACCATCGCG GCGCTCGCAT TCCATCCTCT 2100
ACACACACAC ACACACACAC ACACACACAC ACACACAGAC ACGCACACAC 2160
ACACGCACGC ACACACACGC ACGCCCCACAC TCGTGGTCCC ACATTTATTT CACAGGGAG 2220
GCAACACCGG GGTACGCATA TGGTTGAGTG CACTGGAGAT CTTTCCCCAC CACTCTCAGG 2280
ACCCCATCCG GAGACACAGG CCACACCGCA GGGGCACCAAC GCTGCGCTGC TGCTCTGGC 2340
TAGTAGTCCTT GTGCAGTTTG TCCGGGGTGT CTGTGGACGC CCTCCCGCTC TTGTCAGGGG 2400
ACAGGAACCT ACACTCCTGC TTGCCCCAGG CGGCTGGCA GGTGATGTGG TGACACCCGG 2460
GACCTTCGG GGGAGTTGGT GTTGCTGCCA AGCCTGGCA GTTTTGAAAT GCCACCAATA 2520
GCGCTAACGCT TTGTTTCCGG GCGGGCTGCA GAGCAACAGG CGAACGGTGGC GGAGTGGGGG 2580
TGGCGCGTGT GTTTTTCTT TTAAGGGGA GAGAAATTAA ATAAGAGGTT CTCACACCTC 2640
TGCAATCTGT TTGTAATTAC CGTGTGTCTT AACACCTGAC CAGCCAGCCG GTGGGTGTA 2700
AAAGTGTATG CAGGTACCAAG CGGGACAGGA GATGGGGGCC CCTGGGGTAT CGCTGGGATG 2760

FIGURE 3 (CONTINUED)

GAGGCCACCT TCCCCTTGGC CTTTCAGGGA ATCTCACACT TTTCCCTTT AAAACACATG	2820
GTGTTCTTT TAATAACGGC AGCAACTCCG CATTGGAAA GGGGGAAATA AGCTTGATA	2880
GGCCCCGGCT TTGTGGAAAG GAGGGGAAGA GGGAGAAAAA AAGGAGGGT GTCTCCTCCA	2940
GCCTTAGGGG GCTGTCAGCT GCTGCTCTGT CTAGCTTGGC ATGTGTGTGC CCCAGTCCCC	3000
AGTGGCTTTG GCCCATTGTT TGTGGAAAGCC AAGAGGGAGA CTGGAGTCCT CTATCTCTGG	3060
TACTCCAGAG TCAGGCTTCT CAGTCCGAGC CCAGAGAACG TCTTCCCTGT TTTATGGAGG	3120
GAATCACGGG AGGGGGTGCC AGGTGGACTA CGTCTGCTG AGGACTGTAC CAGTCGCTCG	3180
AAGGAGAAAG CTTGGGCTTG CCCCCCTCCC CCCTCAAGCC AC GAAGGGCA GCTGCTAGGC	3240
TA GTGTGGTA AAAGGGCATT ACTCCCCAGC CAGGACCCCC CAGAGAGTCC CCTTCCCTGGC	3300
CACACAAATG CTGGGGAGGG ACAGAGGGT GTGATCATTTG CCCAGGAGTG CAGACAGTGG	3360
GGTCCCCGGT CGGGCAGTGC CTCCCCACCT GCTGAGGGGG GCGCCCAGGC AGGAAGGGT	3420
GGGTGGGCCG GGGTAGAGAC GCTGGCACGT CCCAGTTCAT GCCGAAGGAA TTCTGAATTA	3480
GGGGCCGGCT GGCTGCCTGG GACCTCCGGG GCGGGCCCCCT GGCCCCCGCC GCTCCGTCTG	3540
GCCTGCTCCT CCTGCTCCTT CGCACGGACG CTGAGACCTC CGCTGAGCCC TGGGACAAGC	3600
CCCAAATGCA ACTGCGATTG CAGGCTTCGC AAGACCCGCC TCCTCCCAAG GCCAAATTG	3660
CCTGGGAGAA GTCATTCAAGG GCCCCAGACTA GAACCATGTT GGTGCCACCT CATCCATCTG	3720
GGGCATGAAG GACCGTCCAG GGCTGCAGTT TAGCTTCTTA ATAGGAACCT GGGGGTGGGT	3780
GCAGCCTCTG TTCTCCGAGC CTCTTGGAA ATCGGTTTG TTTTTGTTT TGTTTTTCC	3840
AATACTCTTT TCCTCTCATC CCATCCGGG ACTGTTTCC TCCCTAAGGG TTGAGAGCCC	3900
TGCAGTCTTC CCTAACCTTT TCTTGTCTTC TACCCCAAGG CCTTGCACA TGGAGTCCC	3960
CCTCTCCCCCT TGCCCAACTG GGGCTCCAGC CTTACTGCAT TTGGCTCTTG GTAACGTCC	4020
CAGGGCCTCT CTGACACACA GGGTTGTAGC CCCAGCTCCC TCTCTCTCC TCCCCCTTT	4080
CTCTTTGCT TCTGAGACTT AATTTTTTTC TTTTTCTTTT TGGCTTTTG AGACAGGGTT	4140
TCTCTGTACA GCCCTGGCTG CCCTGGCACT CATTCTGTAG ACCAGGCTAG CCTCAAACTC	4200

FIGURE 3 (CONTINUED)

ACAAACCTAC CTGCCTCTGC CTTCCAGTG CTGGCACTAA AGATGTGGGC CACCACAAC 4260
AGTAGTTAAC TGTTTTGCTG TGTCTTATT CCTATAGTGA CCTCAGTTCC TGGCATATTG 4320
TAGGGATGG ATGGATGAAT GGATGGATGG ATGGATGGAT GGATGGGTGG ATGGAGCAAG 4380
CTTGAATCGT CCTGAGTGAA AAAAGAGACC TCAGAGAACT GAATGGAGTT AGGTTCCCAG 4440
GGCAGCCTGG CCTGCTGGTC TCATGGGAGC TCCCTGTGAA ACTTCCCCCA CACCTCCCAC 4500
CACCCCTGCCA TCCTGTGTGG CTGACAAGAA AGGCCAATGG CCAGATGGGG ACACAGACTC 4560
AGGGAAGCTT GGAATATGTT CCCCTCCTCA TATCCTAGGC CTTGTTGTCC CCCTGAGGGC 4620
CCAGCCTATG AGTAGGGCAG CTGTGGCTG CCCTAAGGTT GGGTAGGCAA GAAGGGGTG 4680
GTCCCTCAGG GTGGGTACCA GGATTGAGGT CATTTCAAA GTGGCCATCA CAGTGGCCCT 4740
AGGAAATGAT TGTGGAGAGT CAGAACTCCT GTTGGGAGTT GTAGAGGGCC TTGCATGTGG 4800
GCTTCTGTGG CTGTCCCTTC TCTTGTGGTC CTTTGCACAG TCCCCTCGTG TGTGCTGGGA 4860
TGTGAGGAGG GCACGGGAA AATGAAGGCT CAGCCCCCTCA GCTTGCCTT CACGGTCAC 4920
CCAACAGGGC TCACCTCTCC TCTGGACAGG CTCTCACTGT ATGCACAGAT TGGCCTCACA 4980
TTTGATTCCC TTCCTTTGGT CTCCCTGGAT GACAAACATT TACCAGGGTA GGATTTACA 5040
TTTTAGATAT GTCCATTCTC CAGAAACACA CTTGTGAGGT TAGGGTATCA GTGAAAGGAC 5100
ACCACCAAGGA CACACAAAGA ATTGGAGAGG AAGGAATTG GTAAGGCCAGG CCATGCTTGA 5160
TGGCTTATGT GTAATCCCAG AACTCTGGAC GCTGAGGCAG GAGGATTCCA AGTTTCAAGA 5220
CACTGTGTTG TAGGTAATGA GACCTGTCA AGAAAAGAAA AGAAATAAAG AGACAAGAAA 5280
ATGTTTATAG GCTGTGAGAC AGCTTGTGG GAAAGGGCA CTTGCCTCCA ATCAAGATGA 5340
CCTCAGCCCC ATCCCTAGGA ATCCATGGTA GAAGGGAGAAA GCAAACCTCA GCTGCTGACC 5400
TCCATACATG TGCTCCAATG TGCACACACA CAGGGAGACA TAATCAATTAA ATAGGATGTA 5460
TTTGCTTAGA TTTGAGTAGG CATTATGAC TGATGTTTA AAATTTTAT TTGATTTAT 5520
GAAAATATAC CTGTTTGTAT TTGGTTTGGT TTGGTTTGAG TTTTGTATTTAT TTGAGACAGG 5580
GCTTCTCTGT GTAGTCCTGG CTGTCCCTGG AACTCACTCT GTAGACCAGG CTGGCCTTGA 5640

FIGURE 3 (CONTINUED)

ACTCAGAAAT CGGCCTGCTT GTGCTTCCA AGTGCTTAGA TTAAAGGTGT GCACTGCCAT 5700
TCAGCAAAAT TGCATACTTT AACCCCAGTA TTTGGGAGGC AGAGGCAGAC TAATGTGTGA 5760
ATTCCAGGCT ACCCAAGGAT ACAGAGTGAG ACCCTATTCT TACCCCTCCCC CCCCAAAACC 5820
CCAAAATGTA TTTTGTGCTT GTGTATGTAC ATGTGTGTTG CAGCACGTAA ATGTCCAAGG 5880
ACAACCTTGTA GAAGTTCTCT CCGTTCACAG TCTAAGTCCT GAATTCAAAC TAAGGTCTC 5940
AGGCTTAGCC ACAGTCTTCT TTATGTACTG AGCCATTCA CTGGCCCTGG ATTGACTGAT 6000
GAATTAATTT TTGAGATAAG GTCTCTTGTA GCTCTAGCTA GGCTCAAACAT ATGAACTCCC 6060
AAGGTCACT TGAGCTGCTG GTACTCTTGC TTCCACCCCA AGTGGTGGAA TGATACTCAG 6120
GCAGCACTTC TCTGGGGAAAG GGGCTGGCCT TGGCCTTGAT TTTGTTGCCT CAGCTTCAT 6180
GAGTGCTTGG GTCTCGTTGT TTCTTTCTT TATCTGTGAA ATGGGTGAAC ACCTGTTCAA 6240
GACTTCCTGA CTCTTGAAAC ATCCAGGCAG GGTGAGGGAC TTGAAGTGGG CTCATCCCAT 6300
GCCTAACAAA GTGTCGTCTT TGACCCCAGA CACAGCTGTA ATCAGCCCCC AGGACCCCAC 6360
CCTTCTCATC GGCTCCTCCC TGCAAGCTAC CTGCTCTATA CATGGAGACA CACCTGGGGC 6420
CACCGCTGAG GGGCTCTACT GGACCTCAA TGGTCGCCGC CTGCCCTCTG AGCTGTCCCG 6480
CCTCCCTAAC ACCTCCACCC TGGCCCTGGC CCTGGCTAAC CTTAATGGGT CCAGGCAGCA 6540
GTCAGGAGAC AATCTGGTGT GTCACGCCCG AGACGGCAGC ATTCTGGCTG GCTCCTGCCT 6600
CTATGTTGGC TGTAAGTGGG GCCCCAGACA CTCAGAGATA GATGGGGGTT GGCAATGACA 6660
GATTTAGAGC CTGGGTCTTC TGTCTGGGG CAGAGCCATG GGCTCTCACT TGCATGCAGG 6720
CATGGTCATA CCCAGCACAG GCATTGCAAC TCTAGGGACA GCTGIGGCTG CACTGTCCCC 6780
TGTGTACCCC ACAGCTTCTAG AAAAGCTGTC ATGTTTCCT TGTAGTGCCT CCTGAGAAGC 6840
CCTTTAACAT CAGCTGCTGG TCCCGGAACA TGAAGGATCT CACGTGCCGC TGGACACCGG 6900
GTGCACACGG GGAGACATTC TTACATACCA ACTACTCCCT CAAGTACAAG CTGAGGTTGG 6960
TACCCAGCCA AGCCTTGCTG TGTGACTTCT GGCRAATACTT ACCTTCTCTG ATCAAATATG 7020
TTCCCTGTTA TGAACCTCAAAGGGACTCTC GCACCTCCAC AGGTGGTACG GTCAGGATAA 7080

03032657-1632098

FIGURE 3 (CONTINUED)

CACATGTGAG GAGTACCAACA CTGTGGGCC CCACTCATGC CATATCCCCA AGGACCTGGC 7140
CCTCTTCACT CCCTATGAGA TCTGGTGGA AGCCACCAAT CGCCTAGGCT CAGCAAGATC 7200
TGATGTCCCTC ACACCTGGATG TCCTGGACGT GGTTGAGCCC CCAGTGTCCA CCTGTGTTCT 7260
GCCCTAGACC TTATAGGGCG CCTCCCCCCC ATCCCCCAG ACTTTTGTT TCTTCTAGAG 7320
GTCTTAGCCA CAGCCACGGT GGTTGCAGGA CAGTGGTTGT TCATAACTTA ATGCAAAGAC 7380
TTTCCCCCAA GACAGTCAAG ATTTTCCCTT CCCCACCCCC AACACACACA TACACACACA 7440
CTCTGCAGAG AACACCTGGC CTGACCAACCC TCCCTCTCTA CAGCCAGGT GTTCAGAAGG 7500
GAGTCCTAGG GGACTGAGAG GAGGCGCCCA GGCTGAAGG CGCCCCAGGA AGCCCCAGGCC 7560
TTGAGCTGGG GGGGGGGCG AGGGTTGGAG GCACGAACTG GATGATCCCT GAGCACAAC 7620
GGGCCTAACATC TAATTAGGTT GTTCCCAGCC CAAAGCAGCC TGGGCCATT AACCCTTCAA 7680
GTGCCTCACT GAAGACTCAG GGGAGAGATC AGCTTGTACT CTCTCCATGG TCCCCCAGGA 7740
GGGTTCTGG GTGCCCTGG CTCATCCCA CATCCAGGG TTTTGTGTCT TCCCTGGCATC 7800
TAACCCCTCAG TTGTGCTCTG TGGCTGCCAC AGCTGCCCG TGGAGGCTCT TGGTAATGTA 7860
CAAGGCATCA GAGGTGGACA TGGGATGGGG ATACATAGGG ATGGAGCCAA ATAGCACCTC 7920
AAGGTGGGT GATATAAAAT AAAGCTTGTC ACCCTGACCC TCAGAAAGCC TACTCATGAT 7980
GATCACAAATT GTTGACATCA CTCTGGACA TGTAGTGAGA CCCTAGCTCA AAACACAGAC 8040
AGTAGCTTTA AGAGTCAGCT TGTGACTTAA TACTGGAACCT CAGGGCCTAA TAGGTGCTGG 8100
GTGATGCTCG CCTCACTCCC TGTTTAGTGA GATCTCTGGG CTAATCTCCA CCCAGCTGG 8160
GTGGGCTGCT CTGTCCCCCTT GAGGGCAGGA ATGTGTGTCT TCCATCAGAG ATAGGACCCG 8220
TGGTAGGCC AACTGCTGCT GGCTGTTCT GGAATATTAA ATGACAGTAA TCTATCAGGC 8280
CTGGGTGAGT AGCTAACAGG GGTGGGGCG TGCTCTGAA AACCCAGATA CGGTCACTAGG 8340
AGCCACTGCA GCCTAGATTA CACCACTGGG TGTTCTGTCA CTAGGCCATT CTCACCAAGC 8400
AGTCCTCAGA ACTGGGAGCA CTGTTGCCAG CATTAAATGC CAGCATTAA TGCCAGCATT 8460
AGGGGAGGCA GAGGCAGAAAG GATCTCTCTG AGTTCAAGGC CATCCTGAAT TTACATAAAG 8520

FIGURE 3 (CONTINUED)

AGCTCCAGGC CAGCCAGGGT GCGCAGTAAA ACCTTGTCTC AAAAAACAAA GCATCTTAG	8580
TGACCAGGCT TGCTCCACCC CCAGTGACCA CGGACCCCCC ACCCGACGTG CACGTGAGCC	8640
CGCTTGGGG CCTGGAGGAC CAGCTGAGTG TGCCTGGGT CTCACCACCA GCTCTCAAGG	8700
ATTCCTCTT CCAAGCCAAG TACCAAGATCC GCTACCGCGT GGAGGACAGC GTGGACTGGA	8760
AGGTGCCCGT CCCGCCCCGG ACCCGCCCT GACCCCGCCC CCCGCATCTG ACTCCTCCCT	8820
CACCGTGCAG GTGGTGGATG ACGTCAGCAA CCAGACCTCC TGCCGTCTCG CGGGCCTGAA	8880
GCCCCGGCACC GTTTACTTCG TCCAAGTGCG TTGTAACCCA TTCGGGATCT ATGGGTGAA	8940
AAAGGGGGAA ATCTGGAGCG AGTGGAGCCA CCCCACCGCT GCCTCCACCC CTCGAAGTGG	9000
TGAGCACCTC TCCAGGGCTG GCTGGCCCAT GGAATCCCCA ATCCATCCTG TTCCCTCCCC	9060
CCCACCCCTT TTTTGAGACA GCGTCTTCAG GTAGGGCATG CTGGCCTTAA ATTCACTATG	9120
TAGTCAAGGA TGACCTCGAG CTCCCTGGTCT TTTTGTCTCC ACTTAGAGAC AATGGCCAGT	9180
GGCCATCACCC ACCTTTGGGA GACTAGCCAT GGAGTCTATT TAGCCTGTCA TTTGGTGACA	9240
GATGGAGTAC AACAGTGTGA CCTCTTGAA GAGAACTGAA GACAGGGCTGT TTTTAACCCC	9300
AATATCCTAG GCTCTCTAGA GGTTAACCTT ATATAAAATA GAGACTATTA CAGCCAGTTA	9360
TCACATGGTC CCACAGAACCC TTTTGTACA CAACCTATAG ACCACAGTGC CTGTGCCCTAC	9420
CACATAAGGG TCTCTACTGC TGGCCACCC CTCCAACCCCT TAAAAGGTAA CCTAGGCAGC	9480
CTTAATATTT GCAATCCTCC TACCTCAGCC TCTTGAATGC TCAGAAACCA GGCATTAACC	9540
CAAGTTTCTC TTCTCTGGGT CCCTTTCTTA AGGTGGGAGG GCCTAAAGAT GACTTCCTTT	9600
GTCCTGAAGA CTCTCCGAGC CCATGGATCT GCACTCTCTA ATATGAAATA TATTGCATAA	9660
AATGTCTGGC CTCAGTTCC CCACCTGTCA CGTTTAGGCA GCACAGTCGG TCCAAGACAC	9720
TTCATTATTT GCAGGGAGTA TAAGAAGAACG CTCCCATCCCC CCACCCGCTT CCTCCGGTCC	9780
CTAAGACAGA ATACTTCTAC ACTGAAACTG AACTCTCGCA GACGCATATG CTCACTTTAA	9840
TGATGATGAA ATAATGGGGA AACTGAGGCT CCGAGAGATT CCTGGAGGAA GAGGGTCAAA	9900
ACCAGCTCCA GGAAGCTCTC CAGCCCCCAT CGGGCCCTCT CCAGGTTCTG GGCTTGCGG	9960

FIGURE 3 (CONTINUED)

GAGTGAACAC AGCTGGGAGG GGCTGGAGCC TGGGAGCTT GGCCCTTGCT CGTGCCCAGC	10020
ACCTGCGATT CTTCACCGGG AGCCAGCAGG CGGCTGCGTC CGCCCGAGAG ACTGAAGAAG	10080
CGGGGGGTAG GGTGGGAGGG AGGTAAGCAG GGGCTGTGGG GGCGAAGCT TGTGCCAGGG	10140
CCTGTCAGCG AGTCCCCAGT TTTATTTATG GCGTGAGGCC GATGTCCTTA TCCGCTGGCC	10200
TGCTGGGGA TGGCTGCGGC TGGGGATTGG ACCCAAGGGC TGGCTTCCCA CTCAGTCCTC	10260
CAGCCCACTC CATGTCACAC CCGTGCATTC TCTGAGGCTT ATCTTGGGAA CCCGCCCTG	10320
TTCTGTGCTG TCTGTCTCTA TTTCTGTCTA TCACCTTCCC AGAGCCTTTT TTTTATGCTT	10380
TTAATATAAC TACGTTTAA AAATTGCTTT TGTATAATGT GTGTCCTTC GTGAGCGTGC	10440
GTGCCACAAC ACACACGTGA AGGTTAGAGA ACTTTGTTGA GTAGGCTCCT TCCACCATGT	10500
GGGACTAGGG CTGGCGACAA GAGCAATTAC TGAGTCATCT CGCCAGCCCC TCACCCCTCA	10560
CTTCCCACATCC TGTGGGATA GTCATAGGTA ATCGAAGGTA AATCGCTGGC TTTAATTTCG	10620
TAGCTATCCT GCCTCAGCCT ACCAAGTGCT GTGCTACAC GTTTGTGGGA GGGGCTCTCC	10680
TCCCAGTGTC TGGGGTACA CAGTCCAAG ATCTCTGCTT TCTAGGTCTT TGTCTTAGTT	10740
TGCCCTTGC TTTGTCCGTG TCCCTAGAGT CTCCGGCCCC ACTTAGTCTC CATTGATTTC	10800
CTTTCTGACC GAATACTCGG TTTTACCTCC CACTGATTTG ACTCCCTCCT TTGCTTGTCT	10860
CCATCGCCGT GCCATTGCCA TTCCCTCTGGG TGACTCTGGG TCCACACCTG ACACCTTTCC	10920
CAACTTTCCC CAGCCGAAGC TGGTCTGGTA TGGGAGGCCG CCGTCCCGCG CGCGCCTCCT	10980
GCTGGCCGCG CCCCAACACT GCGGCTCCAT TCTCTTTAGA GCGCCCGGGC CGGGCGGCG	11040
GGGTGTGCGA GCGCGGGGGC GCGGAGCCCC GCTCGGGCCC GGTGCGGCGC GAGCTCAAGC	11100
AGTTCTCGG CTGGCTCAAG AAGCACCGAT ACTGCTCGAA CCTTAGTTTC CGCCTGTACG	11160
ACCAGTGGCG TGCTTGGATG CAGAAGTCAC ACAAGACCCG AAACCAGGTA GGAAAGTTGG	11220
GGGAGGCTTG CGTGGGGGGT AAACGGACAG AGGAAGAGAG AGACCCGGGT GAGCAGCCTC	11280
CACAAACACCG CACTCTTCTT TCCAAGCACA GGACGAGGGG ATCCTGCCCT CGGGCAGACG	11340
GGGTGCGGGCG AGAGGTAAGG GGGTCTGGGT GAGTGGGCC TACAGCAGTC TAGATGAGGC	11400

FIGURE 3 (CONTINUED)

CCTTCCCCCT CCTTCGGTGT TGCTCAAAGG GATCTCTTAG TGCTCATTTC ACCCACTGCA	11460
AAGAGCCCCA GGTTTTACTG CATCATCAAG TTGCTGAAGG GTCCAGGCCTT AATGTGGCCT	11520
CTTTTCTGCC CTCAGGTCTT GCCGGCTAAA CTCTAAGGAT AGGCCATCCT CCTGCTGGGT	11580
CAGACCTGGA GGCTCACCTG AATTGGAGCC CCTCTGTACC ATCTGGGCAA CAAAGAAACC	11640
TACCAGAGGC TGGGCACAAT GAGCTCCCAC AACCCACAGCT TTGGTCCACA TGATGGTCAC	11700
ACTTGGATAT ACCCCAGTGT GGGTAGGGTT GGGGTATTGC AGGGCCTCCC AAGAGTCTCT	11760
TTAAATAAAT AAAGGAGTTG TTCAGGTCCC GATGGCCAGT GTGTTGGGG CCTATGTGCT	11820
GGGGTGGGGG GA	11832

FIGURE 4

Murine NR-6 genomic structure

FIGURE 5

Targeting the NR6 locus by homologous recombination

1 ATGCCCGCCGGCGCCGGGGCTCGCGCCCAATCGGCCGCGGCCGCGC---CGTGTCTGCCCCCTG-----CTGCTGCTCTGC Human NR6
1 ATGCCCGCGGCTGGCTGGCCCGCGCCCAATCGGCCGCGGCCGCGC---CGTGTCTGCCCCCTG-----CTGCTGCTCTGC Mouse NR6
79 GTCCTCGGGGCGCCCGGCGAATCGATCACAGCTGTGATGAGCTCCAGGATCCCACCTTCTCATCGCTCTCCCTGCTG Human NR6
91 GTCCTCGGGGCGCCCGGCGAATCGATCACAGCTGTGAGCTCCAGGAGCCACGCTGCGATGAGCTGCTGCCCCCTGCTG Mouse NR6
169 GCCACCTGCTCAAGTGACGGAGACCACCGAGGAGCCACCGCCGAGGGCTCTACTGGACCCCTCAATGGGCGCCCTGCCCCCTGAGCTC Human NR6
181 GCAACCTGCTCAAGTGACGGAGACCACCGAGGAGCCACCGCCGAGGGCTCTACTGGACCCCTCAATGGGCGCCCTGCCCCCTGAGCTC Mouse NR6
259 TCCCGTGTACTCAACGCCCTCACCTGGCTCTGGCCCTGGCCAACCTCAATGGTCCAGGCACGGTCGGGGACAACCTCGTGTGCCAC Human NR6
271 TCCCGTGTACTCAACGCCCTCACCTGGCTCTGGCCCTGGCCAACCTCAATGGTCCAGGCACGGTCGGGGACAACCTCGTGTGCCAC Mouse NR6
349 GCCCCGTGACGGCAGCATCCTGGCTGGCTCTATGTTGGCTGCCCCAGAGAAAACCGTCAACATCAGCTGCTGGTCAAGAAC Human NR6
361 GCCCCGTGACGGCAGCATCCTGGCTGGCTCCCTCTATGTTGGCTGCCCCAGAGAAAACCGTCAACATCAGCTGCTGGTCAAGAAC Mouse NR6
439 ATGAAGGACTTGACCTGGCGCTGGACGCCAGGGGGGACCTCTCTCCACACCAACTACTCCCTCAAGTACAAGCTTAGGTGG Human NR6
151 ATGAAGGACTTGACCTGGCGCTGGACGCCAGGGGGACCTCTCCACACCAACTACTCCCTCAAGTACAAGCTAGGTGG Mouse NR6
529 TATGGCCAGGACAACACATGTGAGGAGTACCAACAGTGGGGGGGACTCTGGCCACATCCCCAAGGACCTGGCTCTTIAAGCCCTAT Human NR6
541 TACGGTCAAGGAAACACATGTGAGGAGTACCAACACAGTGGGCGCTCCACATCCCCAAGGACCTGGCTCTTIAAGCCCTAT Mouse NR6
619 GAGATCTGGGTGGAGGCCACCGCTGGGCTCTGGCCCTCCGATGTACTCACCGCTGGATATCTGGATGTGGTACCGGACCCCC Human NR6
631 GAGATCTGGGTGGAGGCCACCAACCGCTGGGCTCTGGGATGTGGTACCGGACCCCCCAAGGATTTCCCTC Human NR6
709 CCGCCCGACGTGCACGTGAGCCGCTGGGGGGCTGGAGGACCGAGCTGGCTGGCTGGGTGCCCCACCCGCOCTCAAGGATTTCCCTC Human NR6
721 CCGCCCGACGTGCACGTGAGCCGCTGGGGGGCTGGAGGACCGAGCTGGCTGGCTGGGATGTGGCTACCGGACCCCCCAAGGATTTCCCTC Mouse NR6
799 TTTCAGCCAAATACCAAGATCCGCTACCGAGTGGAGGACAGTGTGGACTTGGAGGATGTGAGCAACCAGACCTCTGGCGC Human NR6
811 TTCAAGCCAAATACCAAGATCCGCTACCGAGTGGAGGACAGTGTGGACTTGGAGGATGTGAGCAACCAGACCTCTGGCGC Mouse NR6
889 CTGCCCGGCCCTGAAACCCGGCACCGTGTACTTCGTGCAAGTGGCTCCACCCCTTGGCATATGGCTCCAAGAAAGCCGGGATCTGG Human NR6
901 CTGGCGCTGAAACCCGGCACCGTGTACTTCGTGCAAGTGGCTGGCATATGGCTCCAAGAAAGCCGGGATCTGG Mouse NR6
979 AGTGAAGTGGAGCCACCCACAGCGCCCTCAACTCCCGCAGTGAGCGCCGGGGCGGGCGGGCGTCCGAACCGGGGGGAGAG Human NR6
991 AGGGAGTGGAGCCACCCACAGCGCCCTCAACTCCCGCAGTGAGCGCCGGGGCGGGCGGGCGGGCGGGAGAG Mouse NR6
1069 CCGAGCTCGGGGCGGCGCGAGCTCAAGCAGTCTCTGGCTGGCTCAAGAAGCACCGCTACTGCTCCACCTCAAGCTTCCGCCCTC Human NR6
1081 CGAGAGCTCGGGCGGCGAGCTCAAGCAGTCTCTGGCTGGCTCAAGAAGCACCGCTACTGCTCAACCTCAAGCTTCCGCCCTC Mouse NR6
1159 TACGACCAGTGGGAGCCCTGGATGCGAGAAGTGGCACAAGACCCGCAACCCAGGACGAGGGGATCTGGCTGGGAGACGGGGCAGGGCG Human NR6
1171 TACGACCAGTGGGAGCCCTGGATGCGAGAAGTGGCACAAGACCCAGGACGAGGGGATCTGGCTGGGAGACGGGGCAGGGGGCGGGCG Mouse NR6
1249 AGAGGTCTGCGAGATAAGCTGTGAGGGCTCAAGGCCACCCCTCCACGTGGAGGACCGAGGGCGAACCCAAACTGGGGCACCTCT Human NR6
1261 AGAGGTCTGCGAGATAAGCTGTGAGGGCTCAAGGCCACCCCTCCACGTGGAGGCTCAAGCTGGGAGACGGGGCACCTCT Human NR6
1339 GTACCCCTACATTCAAGGCACCTGAGCCACCCCTGAGCAGGACCTGGGGTGGCCCTGAGCTCCAACGCCATAACAGCTCTGACTCCACG Human NR6
1351 TCTGGGCAACAAAGAAACCTACAGAGGCGCTGGGGCACAAATGAGCTCCACACGCTTGGTCCACATGAGCTCACACTTGGATAT Mouse NR6
1429 TGAGGCCACCTTGGGTGACCCCAAGTGGGTGTTGTTGAGGGTTGGTTGAGCTGCTAGAACCCCTGCCAGGGCTGGGGTG Human NR6
1441 ACCCCAGTGTGGGAGGGTGGGTATGAGGCGCTGGGGCACAAAGTCTMCCTGAGCTGAGCTGAGGAAATTC Mouse NR6
1519 AGAACGGAGTCATTACTCCCCATTACCTAGGGCCCCCTCCAAAAGATCC Human NR6
1504 Mouse NR6

Figure 6: Comparison of human and mouse NR6 cDNA sequences

1 MetProAlaGlyArgArgGlyProAlaAlaGlnSerAlaArgArgProPro - ProLeuLeuProLeu - - - LeuLeuLeuCys Human NR6
 1 MetProAlaGlyArgProGlyProValAlaGlnSerAlaArgArgProProArgProLeuSerSerLeuTrpSerProLeuLeuLeuCys Mouse NR6

 27 ValLeuGlyAlaProArgAlaGlySerGlyAlaHisThrAlaValIleSerProGlnAspProThrLeuLeuIleGlySerSerLeuLeu Human NR6
 31 ValLeuGlyValProArgGlyGlySerGlyAlaHisThrAlaValIleSerProGlnAspProThrLeuLeuIleGlySerSerLeuGly Mouse NR6

 57 AlaThrCysSerValHisGlyAspProProGlyAlaThrAlaGluGlyLeuTyrTrpThrLeuAsnGlyArgArgLeuProProGluLeu Human NR6
 61 AlaThrCysSerIleHisGlyAspThrProGlyAlaThrAlaGluGlyLeuTyrTrpThrLeuAsnGlyArgArgLeuProSerGluLeu Mouse NR6

 87 SerArgValLeuAsnAlaSerThrLeuAlaLeuAlaAsnLeuAsnGlySerArgGlnArgSerGlyAspAsnLeuValCysHis Human NR6
 91 SerArgLeuLeuAsnThrSerThrLeuAlaLeuAlaAsnLeuAsnGlySerArgGlnGlnSerGlyAspAsnLeuValCysHis Mouse NR6

 117 AlaArgAspGlySerIleLeuAlaGlySerCysLeuTyrValGlyLeuProProGluLysProValAsnIleSerCysTrpSerLysAsn Human NR6
 121 AlaArgAspGlySerIleLeuAlaGlySerCysLeuTyrValGlyLeuProProGluLysProPheAsnIleSerCysTrpSerArgAsn Mouse NR6

 147 MetLysAspLeuThrCysArgTrpThrProGlyAlaHisGlyGluThrPheLeuHisThrAsnTyrSerLeuLysTyrLysLeuArgTrp Human NR6
 151 MetLysAspLeuThrCysArgTrpThrProGlyAlaHisGlyGluThrPheLeuHisThrAsnTyrSerLeuLysTyrLysLeuArgTrp Mouse NR6

 177 TyrGlyGlnAspAsnThrCysGluGluTyrHisThrValGlyProHisSerCysHisIleProLysAspLeuAlaLeuPheThrProTyr Human NR6
 181 TyrGlyGlnAspAsnThrCysGluGluTyrHisThrValGlyProHisSerCysHisIleProLysAspLeuAlaLeuPheThrProTyr Mouse NR6

 207 GluIleTrpValGluAlaThrAsnArgLeuGlySerAlaArgSerAspValLeuThrLeuAspIleLeuAspValValThrThrAspPro Human NR6
 211 GluIleTrpValGluAlaThrAsnArgLeuGlySerAlaArgSerAspValLeuThrLeuAspValLeuAspValValThrThrAspPro Mouse NR6

 237 ProProAspValHisValSerArgValGlyGlyLeuGluAspGlnLeuSerValArgTrpValSerProProAlaLeuLysAspPheLeu Human NR6
 241 ProProAspValHisValSerArgValGlyGlyLeuGluAspGlnLeuSerValArgTrpValSerProProAlaLeuLysAspPheLeu Mouse NR6

 267 PheGlnAlaLysTyrGlnIleArgTyrArgValGluAspSerValAspTrpLysValValAspAspValSerAsnGlnThrSerCysArg Human NR6
 271 PheGlnAlaLysTyrGlnIleArgTyrArgValGluAspSerValAspTrpLysValValAspAspValSerAsnGlnThrSerCysArg Mouse NR6

 297 LeuAlaGlyLeuLysProGlyThrValTyrPheValGlnValArgCysAsnProPheGlyIleTyrGlySerLysAlaGlyIleTrp Human NR6
 301 LeuAlaGlyLeuLysProGlyThrValTyrPheValGlnValArgCysAsnProPheGlyIleTyrGlySerLysAlaGlyIleTrp Mouse NR6

 327 SerGluTrpSerHisProThrAlaAlaSerThrProArgSerGluArgProGlyGlyGlyAlaCysGluProArgGlyGlyGlu Human NR6
 331 SerGluTrpSerHisProThrAlaAlaSerThrProArgAsnGluArgProGlyGlyGlyValCysGlnProArgGlyGlyGlu Mouse NR6

 357 ProSerSerGlyProValArgArgGluLeuLysGlnPheLeuGlyTrpLeuLysLysHisAlaTyrCysSerAsnLeuSerPheArgLeu Human NR6
 361 ProSerSerGlyProValArgArgGluLeuLysGlnPheLeuGlyTrpLeuLysLysHisAlaTyrCysSerAsnLeuSerPheArgLeu Mouse NR6

 387 TyrAspGlnTrpArgAlaTrpMetGlnLysSerHisLysThrArgAsnGlnAspGluGlyIleLeuProSerGlyArgArgGlyThrAla Human NR6
 391 TyrAspGlnTrpArgAlaTrpMetGlnLysSerHisLysThrArgAsnGlnAspGluGlyIleLeuProSerGlyArgArgGlyAlaAla Mouse NR6

 417 ArgGlyProAlaArgter Human NR6
 421 ArgGlyProAla - Gly Mouse NR6

Figure 7: Comparison of human and mouse NR6 protein sequences

Figure 8

Transient Expression of C Terminal FLAG tagged Human NR6 in 293T cells

Figure 9

Biosensor response

Lane 1: CHO C' FLAG human NR6 clone #30
Lane 2: CHO N' FLAG human NR6 clone #23
Lane 3: 293T C' FLAG human NR6 clone #38

1577 Units
2141 Units
Not Determined

United States Patent & Trademark Office
Office of Initial Patent Examination – Scanning Division

Application deficiencies found during scanning:

1. Application papers are not suitable for scanning and are not in compliance with 37 CFR 1.52 because:
 - All sheets must be the same size and either A4 (21 cm x 29.7 cm) or 8-1/2" x 11" Pages _____ do not meet these requirements.
 - Papers are not flexible, strong, smooth, non-shiny, durable, and white.
 - Papers are not typewritten or mechanically printed in permanent ink on one side.
 - Papers contain improper margins. Each sheet must have a left margin of at least 2.5 cm (1") and top, bottom and right margins of at least 2.0 cm (3/4").
 - Papers contain hand lettering.
2. Drawings are not in compliance and were not scanned because:
 - The drawings or copy of drawings are not suitable for electronic reproduction.
 - All drawings sheets are not the same size. Pages must be either A4 (21 cm x 29.7 cm) or 8-1/2" x 11".
 - Each sheet must include a top and left margin of at least 2.5 cm (1"), a right margin at least 1.5 cm (9/16") and a bottom margin of at least 1.0 cm (3/8").
3. Page(s) _____ are not of sufficient clarity, contrast and quality for electronic reproduction.
4. Page(s) _____ are missing.
5. OTHER: No Declaration