Funding Rate Volatility Index (FRVI)

Yi-Chung

September 5, 2025

Contents

1	Introduction	2	
2	Mathematical Definition2.1 Normalized Imbalance2.2 Liquidity Fragility Metric2.3 FRVI Formula	2	
3	Component Analysis 3.1 Properties of S_t and ΔS_t		
4	Interpretation Regimes		
5	Algorithmic Implementation		
6	Implementation Considerations		

1 Introduction

Perpetual futures contracts on cryptocurrency exchanges use a funding mechanism to tether derivative prices to the underlying spot. The periodic payment exchanged between long and short holders—the funding rate—can itself exhibit sharp, short-lived swings during episodes of extreme flows or liquidity drought. Traders and risk managers require a concise metric to detect when funding rates are unstable. The FRVI addresses this need by combining two orthogonal drivers of funding volatility:

- 1. Positioning Skew Velocity—how quickly the net long/short open interest imbalance is changing.
- 2. Liquidity Fragility—how brittle the top of the order book is, measured by the ratio of the bid—ask spread to average depth.

2 Mathematical Definition

At each discrete time t, we observe:

- $OI_{long,t}$ and $OI_{short,t}$: total open interest on long and short perpetual-futures positions.
- A top-N order book snapshot:

$$\{(p_{bid,i,t}, v_{bid,i,t})\}_{i=1}^{N}, \{(p_{ask,i,t}, v_{ask,i,t})\}_{i=1}^{N}.$$

2.1 Normalized Imbalance

Define the normalized skew

$$S_t = \frac{OI_{\text{long},t} - OI_{\text{short},t}}{OI_{\text{long},t} + OI_{\text{short},t}} \in [-1,1].$$

The first term of the FRVI captures the velocity of this skew:

$$\Delta S_t = S_t - S_{t-1}.$$

Large $|\Delta S_t|$ signals a sudden shift in market positioning pressure, which often precipitates funding-rate changes.

2.2 Liquidity Fragility Metric

We measure top-of-book liquidity by

$$Spread_t = p_{ask,1,t} - p_{bid,1,t}, \quad Depth_t = \frac{1}{2N} \sum_{i=1}^{N} (v_{bid,i,t} + v_{ask,i,t}).$$

The ratio

$$L_t = \frac{\text{Spread}_t}{\text{Depth}_t}$$

quantifies how thin or brittle the best-of-book is: a high L_t indicates that even small market orders can trigger large price moves, often coinciding with funding-rate turmoil.

2.3 FRVI Formula

Combining these two drivers in a Euclidean norm yields the FRVI:

$$FRVI_t = \sqrt{(\Delta S_t)^2 + L_t^2} = \sqrt{(S_t - S_{t-1})^2 + (\frac{Spread_t}{Depth_t})^2}.$$

This construction ensures that both rapid skew changes and fragile liquidity contribute symmetrically to the volatility score.

3 Component Analysis

3.1 Properties of S_t and ΔS_t

- Range: $S_t \in [-1, 1]$, so $\Delta S_t \in [-2, 2]$.
- Scale: A 0.1 move in S_t corresponds to a 10% shift in net open interest balance.
- Sign: $\Delta S_t > 0$ indicates net-long pressure building; $\Delta S_t < 0$ shows net-short dominance.

3.2 Behavior of L_t

- Unbounded above: As depth \rightarrow 0, $L_t \rightarrow \infty$ —ultra-fragile market.
- Dimensionally, L_t has units of price per contract volume, but FRVI is interpreted unitlessly via the norm.

4 Interpretation Regimes

Empirically, users can classify FRVI scores into regimes:

$\overline{\mathrm{FRVI}_t}$ Range	Volatility Regime	Typical Funding Behavior
0.00 - 0.02	Very Low	Stable, near-zero funding
0.02 – 0.05	Low	Occasional mild spikes
0.05 – 0.10	Moderate	Clear swings; watch closely
0.10 – 0.20	High	Frequent funding flash
> 0.20	Extreme	Critical, risk of funding anomalies

Table 1: FRVI Regimes and Funding-Rate Implications

5 Algorithmic Implementation

The following pseudo-code outlines the real-time computation:

6 Implementation Considerations

• Sampling Frequency: 1–5s for high-frequency monitoring, 30–60s for broader risk dash-boards.

Algorithm 1 FRVI Real-Time Update

Require: Last skew S_{t-1} , new data $(OI_{long,t}, OI_{short,t}, bids, asks)$

- 1: Compute $S_t \leftarrow \frac{OI_{\text{long},t} OI_{\text{short},t}}{OI_{\text{long},t} + OI_{\text{short},t}}$
- 2: $\Delta S_t \leftarrow S_t S_{t-1}$

 \triangleright If first tick, set $\Delta S_t \leftarrow 0$

- 3: Spread_t $\leftarrow ask_{1,t} bid_{1,t}$
- 4: Depth_t $\leftarrow \frac{1}{2N} \sum_{i=1}^{N} (v_{bid,i,t} + v_{ask,i,t})$ 5: $L_t \leftarrow \text{Spread}_t/\text{Depth}_t$ 6: FRVI_t $\leftarrow \sqrt{(\Delta S_t)^2 + L_t^2}$

- 7: Update state: $S_{t-1} \leftarrow S_t$

Ensure: $FRVI_t$

- Choice of N: N = 5-10 captures top-of-book liquidity. Larger N smooths microstructure noise but may underweight immediate fragility.
- Data Quality: Use redundant API sources to guard against stale feeds or micro-outages.
- Numerical Stability: Cap L_t at a large finite value to avoid overflow when depth ≈ 0 .