1

Assignment 17

Neha Rani EE20MTECH14014

Download the latex-tikz codes from

https://github.com/neharani289/MatrixTheory/Assignment17

1 **Problem**

(ugcjune/2018/28):

If **A** is a 2×2 matrix over \mathbb{R} with det $(\mathbf{A} + \mathbf{I}) = 1 + \det(\mathbf{A})$, then we can conclude that

- 1) $\det(\mathbf{A}) = 0$
- 2) A = 0
- 3) $tr(\mathbf{A}) = 0$
- 4) A is non singular.

2 Solution

Given	A be a 2×2 matrix over \mathbb{R} with $\det(\mathbf{A} + \mathbf{I}) = 1 + \det(\mathbf{A})$
Explanation	If X is an eigen vector of matrix A corresponding to the eigen value λ i.e $\mathbf{AX} = \lambda \mathbf{X}$
	then, $(\mathbf{I} + \mathbf{A}) \mathbf{X} = (1 + \lambda) \mathbf{X}$
	Thus, X is an eigen vector of $(\mathbf{A} + \mathbf{I})$ corresponding to the eigen value $(1 + \lambda)$.
	Let λ_1, λ_2 be two eigen values of A and $(1 + \lambda_1), (1 + \lambda_2)$ be the eigen values of $(\mathbf{A} + \mathbf{I})$.
	\implies Eigen value of $\mathbf{A} = \lambda_1, \lambda_2$
	\implies Eigen value of $(\mathbf{A} + \mathbf{I}) = \lambda_1 + 1, \lambda_2 + 1$

	Since, $\det (\mathbf{A} + \mathbf{I}) = 1 + \det(\mathbf{A})$
	Trace of any matrix is sum of its eigen values.
	Determinant of matrix is product of its eigen values
	$\implies (\lambda_1 + 1)(\lambda_2 + 1) = 1 + (\lambda_1 \lambda_2)$
	$\Longrightarrow \left[\lambda_1 + \lambda_2 = 0\right]$
	$\Longrightarrow \boxed{tr(\mathbf{A}) = 0}$
Option 1 : $\det \mathbf{A} = 0$	Let,
	$\mathbf{A} = \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix}$
	$\det \mathbf{A} = \begin{vmatrix} 0 & -1 \\ 0 & 0 \end{vmatrix} = 0$
	$(\mathbf{A} + \mathbf{I}) = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$
	$\det\left(\mathbf{A} + \mathbf{I}\right) = \begin{vmatrix} 1 & -1 \\ 0 & 1 \end{vmatrix} = 1$
	$\implies \det(\mathbf{A} + \mathbf{I}) = 1 + \det(\mathbf{A})$ Conclusion:
	$1) tr(\mathbf{A}) = 0$
	2) $\det \mathbf{A} = 0$ 3) $\mathbf{A} \neq 0$
	4) A is singular.
Option $2: \mathbf{A} = 0$	Let,
	$\mathbf{A} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$
	$\det \mathbf{A} = 0$
	$\det\left(\mathbf{A} + \mathbf{I}\right) = 1$

 \implies det $(\mathbf{A} + \mathbf{I}) = 1 + \det(\mathbf{A})$

	Conclusion: 1) $tr(\mathbf{A}) = 0$ 2) $\det \mathbf{A} = 0$ 3) $\mathbf{A} = 0$ 4) \mathbf{A} is singular.
Option 4: A is non singular	Non Singular Matrix: A non-singular matrix is a square one whose determinant is not zero.non-singular matrix is also a full rank matrix. Let, $\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ $\det \mathbf{A} = \begin{vmatrix} 1 & 0 \\ 0 & -1 \end{vmatrix} = -1$ $(\mathbf{A} + \mathbf{I}) = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}$ $\det (\mathbf{A} + \mathbf{I}) = \begin{vmatrix} 2 & 0 \\ 0 & 0 \end{vmatrix} = 0$ $\implies \det (\mathbf{A} + \mathbf{I}) = 1 + \det(\mathbf{A})$ Conclusion: 1) $tr(\mathbf{A}) = 0$ 2) $\det \mathbf{A} \neq 0$ 3) $\mathbf{A} \neq 0$ 4) \mathbf{A} is non singular.
Conclusion	In all options, $tr(\mathbf{A}) = 0$ satisfied. Thus, Option 3 is correct.

TABLE 1: Solution Summary