Algebre Lineaire II

David Wiedemann

Table des matières

1	Polynomes			
	1.1	Division avec reste	6	
	1.2	Factorisation des polynomes sur un corps	7	
	1.3	Factorisation des polynomes sur un corps	8	
	1.4	Diviseurs Communs le plus grand	8	
	1.5	Factorisation en elements irreductibles	10	
2	Vale	urs et Vecteurs Propres	11	
3	Le p	olynome caracteristique	14	
	3.1	Theoreme de Cayley-Hamilton	15	
4	Forn	nes Bilineaires	17	
	4.1	Orthogonalite	18	
	4.2	Orthogonalite	19	
	4.3	Matrices congruentes	20	
	4.4	Formes Bilineaires symmetriques definies positives	20	
	4.5	La methode de Gram Schmidt	22	
	4.6	La methode des moindres carres	24	
	4.7	Formes sesquilineaires et produits hermitiens	25	
5	Forn	nes quadratiques reelles et matrices symmetriques reelles	28	
Li	st o	f Theorems		
	1	Definition (Centre d'un anneau)	4	
	2	Definition (Diviseurs de 0)	4	
	3	Definition (Anneau integre)	4	
	1	Theorème	4	
	4	Definition (Polynome)	4	
	2	Theorème	4	
	5	Definition (Degre d'un polynome)	5	

3	Theorème	5
4	Theorème	5
5	Theorème	6
6	Corollaire	6
7	Theorème	6
6	Definition (Diviseurs de polynomes)	7
7	Definition (Racine)	7
8	Theorème	7
8	Definition (Multiplicite d'une racine)	8
9	Theorème (Theoreme fondamental de l'algebre)	8
9	Definition (Polynome irreductible)	8
10	Theorème	8
11	Theorème	8
10	Definition (Polynome Unitraire)	8
11	Definition (Diviseur Commun)	9
12	Theorème	9
12	Definition (PGCD)	9
13	Theorème (Algorithme d'Euclide)	9
14	Theorème	10
15	Theorème (La factorisation est unique)	10
16	Corollaire	11
.3	Definition (Vecteur propre)	11
7	Lemme	11
4	Definition	11
18	Corollaire	12
L 5	Definition (Matrices semblables)	12
16	Definition (Sous-espace propre)	12
19	Lemme	12
20	Corollaire	13
17	Definition (Multiplicite algebrique)	14
21	Proposition	14
22	Theorème (Theoreme de diagonalisation)	14
23	Theorème (Evaluation d'une matrice dans un polynome)	15
24	Theorème (Cayley-Hamilton)	15
18	Definition (Polynome minimal)	16
25	Corollaire	16
19	Definition (Forme Bilineaire)	17
26	Proposition	17
20	Definition (Orthogonalite)	18
21	Definition (Complement orthogonal)	18
27	Proposition	18

28	Lemme	18
22	Definition (Matrices Congruentes)	18
23	Definition (Base orthogonale)	19
29	Lemme	19
30	Theorème	19
31	Lemme	20
24	Definition (Formes Bilineaires definies positives)	20
25	Definition (Norme d'un vecteur)	21
26	Definition	21
32	Proposition	21
33	Theorème (Theoreme de Pythagore)	21
34	Proposition (Regle du parallelogramme)	21
35	Theorème (Inegalite Cauchy-Schwarz)	22
36	Theorème (Inegalite triangulaire)	22
37	Lemme	22
38	Corollaire	23
27	Definition	24
39	Corollaire	24
40	Theorème	24
41	Theorème	25
28	Definition (Produit Hermitien)	25
29	Definition (Matrice hermitienne)	26
42	Proposition	26
30	Definition (Matrices Complexes congruentes)	26
43	Theorème	26
44	Theorème (Theoreme Spectral)	27
45	Lemme	27
46	Corollaire	27
31	Definition (Sphere)	28
32	Definition (Forme Quadratique)	28
47	Lemme	28
33	Definition (Matrice Symmetrique definie positive/negative)	29
48	Theorème	29
34	Definition (k-mineur principal)	30
49	Theorème	30

Lecture 1: Introduction

Tue 23 Feb

1 Polynomes

Definition 1 (Centre d'un anneau)

Le centre Z(R) est l'ensemble des elements x satisfaisant

$$\{x \in R | ra = ar \forall a \in R\}$$

Definition 2 (Diviseurs de 0)

a est un element non nul d'un anneau R satisfaisant qu'il existe $b \in R$ tel que ab = 0 ou ba = 0.

Definition 3 (Anneau integre)

Si un anneau est commutatif et n'a pas de diviseurs de 0, alors l'anneau est integre.

Theorème 1

Soit R un anneau, alors il existe un anneau $S \supseteq R$ (R est un sousanneau) et $\exists x \in S \setminus R$ tel que

$$-ax = xa, \forall a \in R$$

—
$$Si \ a_0 + \ldots + a_n x^n = 0 \ et \ a_i \in R \forall i \ alors \ a_i = 0 \forall i$$

Cet x est appele indeterminee ou variable.

Definition 4 (Polynome)

Un polynomer sur R est une expression de la forme

$$p(x) = a_0 + \ldots + a_n x^n$$

ou a_i est le i-eme coefficient de p(x).

R[x] est l'ensemble des polynomes sur R.

Theorème 2

R[X] est un sous-anneau. R est sans diviseurs de $0 \Rightarrow R[X]$ est sans diviseurs de 0.

De meme, si R est commutatif, R[x] aussi.

Preuve

Soit $f(x) = \sum a_i x_i, g(x) = \sum b_i x^i$ de degre n resp. m.

$$f(x)+g(x)=\sum_{i=1}^{\max(m,n)}(a_i+b_i)x^i$$

De meme, on a

$$f(x)\cdot g(x)=a_0b_0+\ldots=\sum_{k=0}^{m+n}\left(\sum_{i+j=k}a_ib_j
ight)x^k$$

Donc R[X] est stable pour +, \cdot et donc immediatement pour -, donc R[X] est un sous-anneau de S.

Soient $f(x), g(x) \neq 0$ et $n = \max\{i : a_i = 0\}$, le m + n-ieme coefficient de f(x)g(x) est a_nb_m et donc si R est integre, R[x] l'est aussi.

Definition 5 (Degre d'un polynome)

Soit $f(x) = a_0 + \ldots \in R[X]$, $f(x) \neq 0$. On definit

$$\deg(f) = \max\{i : a_i = 0\}$$

Ce dernier terme s'appelle le coefficient dominant de f, de plus on definit

$$f(x) = 0 : \deg(f) = -\infty$$

 $Si \deg(f) = 0$, alors f est une constante.

Theorème 3

Soit R un anneau, $f,g \in R[X] \neq 0$ tel que au moins un de leur coefficients dominants de f ou de g ne sont pas des diviseurs de 0. Alors $\deg(f \cdot g) = \deg(f) + \deg(g)$

Preuve

Soit $f(x)=a_0+\ldots,g(x)=b_0+\ldots$, $\deg f=n,\deg g=m.$ Le n+m ieme coefficient de $f\cdot g=a_n\cdot b_m\neq 0$

Soit $p(x) \in R[x]$, ce polynome induit une application $f_p : R \to R$, on ecrit aussi p(r)

Theorème 4

Soit K un corps et $r_0, r_1, \ldots, r_n \in K$ des elements distincts et soient $g_0, \ldots, g_n \in K$.

Il existe un seul polynome $f \in K[x]$ tel que

- 1. $\deg f < n$
- 2. $f(r_i) = g_i$

Preuve

On cherche $a_0, \ldots a_n$ tel que

$$a_0 + a_1 r_i + \dots a_n r_i^n = g_i$$

Donc, on cherche

$$egin{pmatrix} 1 & r_0 & \dots & r_0^n \ dots & \dots & \dots \end{pmatrix} egin{pmatrix} a_0 \ a_1 \ \dots \end{pmatrix} = egin{pmatrix} g_1 \ \dots \ \end{pmatrix}$$

Il faut donc montrer que la matrice ci-dessus a un determinant non nul. On le montre par induction sur n.

Dans le cas n = 0, le determinant vaut trivialement 1. Dans le cas n > 0, on a

$$\detegin{pmatrix} 1 & 0 \dots \ 1(r_1-r_0) & \dots \ \dots & \ddots \ 1(r_n-r_0) & \dots \end{pmatrix} = (r_1-r_0)(r_2-r_0)\dots\det(V(r_1,\dots,r_n))
eq 0$$

Wed 24 Feb

Lecture 2: Polynomes

Theorème 5

Soit K un corps fini de characteristique q, alors $K \supseteq \mathbb{Z}_q$. De plus K est un espace vectoriel de \mathbb{Z}_q de dimension finie.

Corollaire 6

Soit K un corps infini. Deux polynomes sont egaux si et seulement si leurs evaluations sont les memes.

Preuve

Une direction est triviale.

L'autre suit immediatement du theoreme 1.6

1.1 Division avec reste

Theorème 7

Soit R un anneau, $f, g \in R[x], g \neq 0$ et soit le coefficient de $g \in R^*$ Il existe $q, r \in R[x]$ uniques tel que

1.
$$f(x) = q(x)q(x) + r(x)$$

2. $\deg r < \deg g$

Preuve

 $Si \deg f < \deg g$, on a fini.

Soit donc $\deg f \geq g$, donc

$$f(x) = a_0 + \ldots + a_n x^n$$

et

$$q(x) = b_0 + \dots b_m x^m$$

et b_m^{-1} existe.

On procede par induction sur n.

 $Si \ n = m :$

On note que

$$f(x) - \frac{a_n}{b_m} g(x)$$

est un polynome de degre $< n \ Si \ n > m$:

On note que

$$f(x) - \frac{a_n}{b_m} x^{n-m} g(x)$$

est un polynome de degre < n.

Par hypothese d'induction il existe q(x), r(x) tel que

$$- \deg r < \deg q$$

et donc on a fini de montrer l'existence.

Supposons maintenant qu'il existe r' et q' satisfaisant les memes proprietes que q et g, alors on a

$$q(x)g(x) + r(x) = q'(x)g(x) + r'(x)$$

Donc

$$r' \neq r \ et \ q' \neq q$$

en comparant les degre, on a une contradiction.

1.2 Factorisation des polynomes sur un corps

Definition 6 (Diviseurs de polynomes)

Soit $q(x) \in K[x]$.

q divise f si il existe g(x) tel que

$$q(x)q(x) = f(x)$$

On dit que q est un diviseur de f, on ecrit q(x)|f(x)

Definition 7 (Racine)

Soit $p(x) \in K[x]$, et soit $\alpha \in K$ tel que $p(\alpha) = 0$

Theorème 8

Soit $f(x) \in K[x] \setminus \{0\}$, alors $\alpha \in K$ est une racine de f si et seulement si(x-a)|f(x)

Preuve

 $Si(x-\alpha)q(x)=f(x)$, alors on a fini.

sinon, la division de f(x) par $x - \alpha$ avec reste donne

$$f(x)=q(x)(x-lpha)+r$$
 ou $r\in K$

Si
$$r \neq 0$$
, alors $f(\alpha) = g(\alpha)(\alpha - \alpha) + r = r = 0$ et donc $(x - a)|f(x)$

Definition 8 (Multiplicite d'une racine)

La multiplicite d'une racine α de $p(x) \in K[x]$ est le plus grand $i \geq 1$ tel que

$$(x-\alpha)^i|p(x)$$

Theorème 9 (Theoreme fondamental de l'algebre)

Tout polynome $p(x) \in \mathbb{C}[x] \setminus \{0\}$ de degre ≥ 1 possede une racine complexe.

Lecture 3: Factorisation des polynomes sur un corps

Tue 02 Mar

1.3 Factorisation des polynomes sur un corps

Soit K un corps.

Definition 9 (Polynome irreductible)

Un polynome $p(x) \in K[x] \setminus \{0\}$ est irreductible si

$$- \deg p > 1$$

-
$$si\ p(x) = f(x) \cdot g(x)$$
, alors $\deg f = 0$ ou $\deg g = 0$.

Theorème 10

Un polynome de degre 2 sur K[x] est irreductible si et seulement si le polynome ne possede pas de racines.

1.4 Diviseurs Communs le plus grand

Theorème 11

Soient $f(x), g(x) \in K[x]$ pas tous les deux nuls.

On considere l'ensemble $I = \{u \cdot f + v \cdot g : u, v \in K[x]\}.$

Il existe un polynome $d(x) \in K[x]$ satisfaisant

$$I = \{h \cdot d : h \in K[x]\}$$

Preuve

Soit $a \in I \setminus \{0\}$ de degre minimal.

L'ensemble $\{h \cdot d : h \in K[x]\}$ est clairement un sous-ensemble de I.

Il reste a montre l'inclusion inverse.

 $Si\ d\ ne\ divise\ pas\ uf+vg,\ la\ division\ avec\ reste\ donne$

$$uf + vg = qd + r \iff r = uf + vg - qd = (u - qu')f + (v - qv')g$$

Or le reste est non nul, mais le reste est de degre inferieur a $\deg d$. \oint

Definition 10 (Polynome Unitraire)

Un polynome $f(x) \in K[x]$ dont le coeff. dominant = 1 est un polynome unitaire.

Definition 11 (Diviseur Commun)

Soient $f, g \in K[x]$ non-nuls.

Un diviseur commun de f et g est un polynome qui divise f et g.

Theorème 12

Soient $f, g \in K[x]$ non-nuls.

Soit $d \in K[x]$ comme dans le theoreme precedent.

- d est un diviseur commun de f et g.
- Chaque diviseur commun de f et g est un diviseur de d.
- Si d est unitaire, alors d est unique.

Preuve

- $-f \in I \Rightarrow \exists h \ tel \ que \ hd = f \iff d|f \ et \ g \in I \Rightarrow d|g$
- Soit $d' \in K[x]$ tq d'|f, d'|g, on veut montrer que d'|d.

$$f = f'd', g = g'd'$$

des que $d \in I$, il existe $u, v \in K[x]$ tel que

$$d=uf+vg=uf'd'+vg'd'=(uf'+vg')d'\Rightarrow d'|d$$

— Soit $d' \in I$ tel que $I = \{hd' | h \in K[x]\}$.

Soient d, d' unitaires.

d|d'| et d'|d, donc ils sont les memes a un facteur pres.

Definition 12 (PGCD)

L'unique polynome unitaire $d \in K[x]$ qui satisfait les conditions ci-dessus est appele le plus grand commun diviseur de f et g.

Theorème 13 (Algorithme d'Euclide)

Soient f_0, f_1 non nuls et

$$\deg f_0 \geq \deg f_1$$

On cherche $gcd(f_0, f_1)$ Si $f_1 = 0$, alors $gcd = f_0$.

 $Si \ f_1 \neq 0 \ On \ pose$

$$f_0 = q_1 f_1 + f_2$$

Soit $h \in K[x]$: $h|f_0$ et $h|f_1 \Rightarrow h|f_2$ Et donc on pose $\gcd(f_0, f_1) = \gcd(f_1, f_2)$ On repete jusqu'a trouver un f_k nul.

Grace a l'algorithme d'Euclide, on peut aussi trouver $u, v \in K[x]$ tel que $uf_0 + vf_1 = \gcd(f_0, f_1)$.

En effet, on a

$$\begin{pmatrix} f_i \\ f_{i+1} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & -q_i \end{pmatrix} \begin{pmatrix} f_{i-1} \\ f_i \end{pmatrix}$$

et donc en appliquant cette matrice plusieurs fois, on trouve une dependance lineaire entre f_{k-1} et f_k

Et donc le $\gcd(f_0,f_1) = \frac{1}{\operatorname{coeff\ dominant\ de\ } f_{k-1}}(uf_0+vf_1)$

Lecture 4: Polynomes 2

Wed 03 Mar

1.5 Factorisation en elements irreductibles

Un polynome p(x) est irreductible si le degre de p est ≥ 1 , $p(x) \neq 0$. Si h|p, alors h = a ou $h = a \cdot p$.

Tout $f(x) \in K[x]$ se laisse factoriser

$$f(x) = a \prod_i p_i(x), p_i(x)$$
 irreductibles, unitaires

Est-ce que cette factorisation est unique?

Theorème 14

Soit $p(x) \in K[x] \setminus \{0\}$ irreductible et supposons que $p|f_1(x) \dots f_k(x)$, alors il existe i tel que $p(x)|f_i(x)$

Preuve

Par recurrence, il suffit de demontrer l'assertion pour k=2.

Supposons que $p|f \cdot g$, $f, g \in K[x] \setminus \{0\}$.

Si $p \nmid f$, alors gcd(p, f) = 1. Donc, il existe $u, v \in K[x]$ tel que up + vf = 1, donc on a

$$upg + vfg = g \Rightarrow p|upg + vfg \Rightarrow p|g$$

Theorème 15 (La factorisation est unique)

La factorisation est unique a l'ordre pres des p_i .

Preuve

Soit $f(x) = a \prod p_i(x)$ et $f(x) = a \prod q_j(x)$ une autre factorisation en elements irreductible.

Par recurrence sur k.

 $Si \ k = 1$, alors

$$ap_1(x) = aq_1(x) \dots q_l(x)$$

Et donc $q_1(x) = p_1(x)$, car p_1 est irreductible. Si k > 1,

$$ap_1(x) \dots p_k(x) = aq_1(x) \dots q_l(x)$$

Grace au theoreme ci-dessus, $p_1|q_j$ pour un certain $j \iff p_1=q_j$. Et donc on obtient

$$p_2(x)\ldots=q_1(x)\ldots q_l(x)$$

Par recurrence, cette factorisation existe et est la meme a ordre pres.

Corollaire 16

Soit $f(x) \in K[x] \setminus \{0\}$ et $\alpha_1 \dots$ des racines de f de multiplicite k_1, \dots, k_l respectivement.

Alors il existe $g(x) \in K[x]$ tel que

$$f(x)=g(x)\prod (x-lpha_i)^{k_i}$$

Preuve

Exercice

2 Valeurs et Vecteurs Propres

Definition 13 (Vecteur propre)

Soit V un espace vectoriel sur K et f un endomorphisme sur V.

Un vecteur propre de f associe a la valeur propre $\lambda \in K$ est un vecteur $v \neq 0$ satisfaisant

$$f(v) = \lambda v$$

Lemme 17

Soit $B = \{v_1, \ldots, v_n\}$ une base de V et $A \in K^{n \times n}$ la matrice de l'endomorphisme f relatif a B.

La matrice A est une matrice diagonale

$$A = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_n \end{pmatrix}$$

 $\iff v_i$ est un vecteur propre associe a la valeur propre λ_i .

Preuve

On a

$$[f(v_i)]_B = Ae_i = \lambda_i e_i$$

Donc v_i est un vecteur propre associe a λ_i .

Dans l'autre sens, les arguments sont similaires.

Definition 14

Un endomorphisme f sur un espace vectoriel de dimension finie est appele diagonalisable s'il existe une base tel que $\{v_1, \ldots\}$ de V composee de vecteurs propres.

Lecture 5: Vecteurs/Valeurs Propres

Tue 09 Mar

Corollaire 18

Soit $f: V \to V$ un endomorphisme et $\{v_1, \ldots, v_n\}$ une base de V. Alors f est diagonalisable si et seulement si il existe une matrice inversible $P \in K^{n \times n}$ tel que $P^{-1}A_BP$ est diagonale.

Preuve

f est diagonalisable $\iff \exists B' = \{w_1, \ldots\}$ tel que $A_{B'}$ est diagonale. Mais $A_{B'} = P^{-1}A_BP$

Definition 15 (Matrices semblables)

 $A, B \in K^{n \times n}$ sont semblables s'il existe $P \in K^{n \times n}$ inversible tel que

$$P^{-1}AP = B$$

Donc si f est diagonalisable, la matrice de f est semblable a une matrice diagonale.

Definition 16 (Sous-espace propre)

Soit $f: V \to V$ un endomorphisme et λ une valeur propre de f, alors

$$E_{\lambda} = \ker(f - \lambda \cdot \mathrm{Id})$$

est l'espace propre de f associe a λ . dim E_{λ} est la multiplicite geometrique de λ .

Lemme 19

Soit $f: V \to V$ un endomorphisme et v_1, \ldots, v_r des vecteurs propres associes aux valeurs propres $\lambda_1, \ldots, \lambda_r$ distinctes.

Alors $\{v_1, \ldots, v_r\}$ est un ensemble libre.

Preuve

r = 1 est evident.

Pour r=2:

Supposons que v_1, v_2 sont lineairement dependants, alors il existe $\exists \alpha_1, \alpha_2 \in K \setminus \{0\}$ tel que

$$\alpha_1 v_1 + \alpha_2 v_2 = 0$$

Spg $\lambda_2 \neq 0$, en appliquant f, on trouve

$$0 = \alpha_1 f(v_1) + \alpha_2 f(v_2)$$
$$0 = \alpha_1 \frac{\lambda_1}{\lambda_2} v_1 + \alpha_2 v_2$$
$$0 = \alpha_1 (1 - \frac{\lambda_1}{\lambda_2}) v_2$$

Pour r > 2

Supposons l'assertion est fausse et soit r > 2 minimal tel que v_1, \ldots, v_r

sont lin. dependants.. Soit

$$\alpha_1 v_1 + \ldots = 0$$

avec $\alpha_i \neq 0 \ \forall i$, alors

$$0 = \alpha_1 \frac{\lambda_1}{\lambda_r} v_1 + \ldots + \alpha_r v_r$$

En soustrayant les deux egalites, on trouve

$$0 = \alpha_1(1 - \frac{\lambda_1}{\lambda_r})v_1 + \dots$$

Ce qui contredit la minimalite.

Corollaire 20

Soit $f: V \rightarrow V$ un endomorphisme de V sur K et $\dim V = n$.

Soient λ_1, \ldots , les valeurs propres differentes de f.

Soit $n_1 ldots$ les multiplicites geometriques respectives.

Soient $B_i = \left\{v_1^{(i)}, \dots, v_{n_i}^{(i)}
ight\}$ des bases de E_{λ_i} , alors

est un ensemble libre.

f est diagonalisable $\iff n_1 + \ldots + n_r = n$

Preuve

Soit

$$\sum_{i=1}^{r}\sum_{j=1}^{n_{i}}lpha_{ij}v_{j}^{(i)}=0$$

Montrons que $\alpha_{ij} = 0 \forall i, j$ "Immediat" par lemme d'avant.

On remarque immediatement que si $\sum n_i = n$, les vecteurs propres forment une base.

A l'inverse, soit f diagonalisable, cad il existe une base B de V composee de vecteurs propres. Soit $m_i = |B \cap E_{\lambda_i}|$, donc m_i est le nombre de vecteurs dans B associe a λ_i .

Clairement $\sum m_i = n$, mais $m_i \leq n_i \leq \dim E_{\lambda_i}$, donc $\sum n_i = n$.

3 Le polynome caracteristique

Soit A une matrice $n \times n$, $\lambda \in K$ est une valeur propre de l'endomorphisme defini par A si et seulement si $\ker(A - \lambda \operatorname{Id}) \supseteq \{0\}$. On note

$$\det(A-\lambda I) = \sum_{\pi \in S_n} \operatorname{sgn}(\pi) \prod_{i=1}^n (A-\lambda\operatorname{Id})_{i\pi(i)}$$

On observe que λ est une valeur propre de f si et seulement si λ est une racine de p_A .

Soit $f: V \to V$ un endomorphisme, $B = \{v_1, \ldots\}$ une base de V. Le polynome caracteristique de f est donne par

$$\det(A_B - \lambda \operatorname{Id})$$

Cette definition fait du sens, car le changement de base n'influence pas la valeur du determinant.

Definition 17 (Multiplicite algebrique)

La multiplicite algebrique d'une valeur propre est la multiplicite comme racine du polynome caracteristique.

Proposition 21

Soit f un endomorphisme de $V \rightarrow V$.

Soit $\lambda \in K$ une valeur propre.

La multiplicite geometrique de λ est au plus la mutliplicite algebrique.

Preuve

Soit $\{v_1,\ldots,v_r\}$ une base de E_λ , on complete cette base en une base de V avec $\{w_1,\ldots,w_{n-r}\}$. Dans cette base, la representation de la matrice de $A-\lambda$ Id implique que

$$\det(A - x \operatorname{Id}) = (\lambda - x)^r \det C \qquad \qquad \Box$$

et donc r est au plus la multiplicite algebrique.

Theorème 22 (Theoreme de diagonalisation)

Soit V un espace vectoriel sur K de dimension $n, f: V \to V$ un endomorphisme $\lambda_1, \ldots \in K$ les valeurs propres distinctes, alors f est diagonalisable si et seulement si

$$- p_f(x) = (-1)^n \prod_{i=1}^r (x - \lambda_i)^{g_i}$$

—
$$\dim E_{\lambda_i} = g_i$$
 pour tout i

Preuve

Soit f diagonalisable et soit $B = \{v_1, \ldots\}$ une base composee de vecteurs propres. A_B est une matrice diagonale, alors $p_f(x) = \det(A_B - x \operatorname{Id}) = (-1)^n \prod (\lambda_i - x)^{g_i}$.

De plus $\dim(\ker(A_B - \lambda_i \operatorname{Id})) = g_i$

Soient m_i les multiplicites geometriques des valeurs propres. car

$$\deg(p_f) = n$$

on a fini.

Lecture 7: Cayley-Hamilton

Tue 16 Mar

3.1 Theoreme de Cayley-Hamilton

Theorème 23 (Evaluation d'une matrice dans un polynome)

Soit
$$p(x) = a_0 + \ldots + a_n x^n \in K[x]$$
 Pour $A \in K^{n \times n}$, on definit

$$p(A) = a_0 \operatorname{Id} + \ldots + a_n A^n$$

Theorème 24 (Cayley-Hamilton)

Soit $A \in K^{n \times n}$ et $p(\lambda) \in K[\lambda]$ le polynome caracteristique de A, alors $p(A) = 0 \in K^{n \times n}$

Preuve

Supposons d'abord que $A \in K^{n \times n}$ est diagonalisable.

Alors $\exists \{v_1, \ldots\}$ une base composee de vecteurs propres de A.

Considerons

$$p(A) \cdot v_i = a_0 v_i + a_1 A v_i + \dots$$

= $a_0 v_i + a_1 \lambda_i v_i + \dots$
= $p(\lambda_i) v_i = 0$

Supposons donc que A n'est pas diagonalisable.

Notons que

$$\operatorname{Id} = rac{cof(A-\lambda\operatorname{Id})^T}{\det(A-\lambda\operatorname{Id})}\cdot(A-\lambda\operatorname{Id})$$

Alors

$$a_0 + a_1 \lambda \operatorname{Id} + \ldots = cof(A - \lambda \operatorname{Id})^T \cdot (A - \lambda \operatorname{Id})$$

$$cof(A-\lambda\operatorname{Id})^T\cdot(A-\lambda\operatorname{Id})=B_0A+\sum_{i=1}^{n-1}\lambda^i(B_iA-B_{i-1})-\lambda_nB_{n-1}$$

Ce qui implique

$$a_0\operatorname{Id}=B_0A$$
 $a_i\operatorname{Id}=B_iA-B_{i-1}\ pour\ i\in\{1,\ldots,n-1\}$ $a_n\operatorname{Id}=-B_{n-1}$

On multiplie chacune de ces equations par A^i et on les additionne. On trouve alors

$$p(A) = 0$$

Definition 18 (Polynome minimal)

Le polynome unitaire de degre minimal parmi ceux, qui annullent la matrice $A \in K^{n \times n}$ est appele le polynome minimal de A.

Preuve

Ce polynome est unique.

Supposons qu'il existe q, p des polynomes qui annullent A. Alors

$$p \nmid q et q \nmid p$$

Donc

$$p = qq' + r$$

ou $r \neq 0$, $\deg r < \deg p$, donc

$$0 = p(A) = r(A) + q'(A)q(A) = r(A)$$

Donc p n'est pas de degre minimal $\frac{1}{4}$.

Corollaire 25

Soit $A \in K^{n \times n}$

- A^k est combinaison lineaire de Id, A, \ldots, A^{n-1} pour tout $k \in \mathbb{N}$
- A inversible, alors A^{-1} s'ecrit comme combinaison lineaire de $\operatorname{Id},A,\ldots,A^{n-1}$

Preuve

— Pour $k \in 0, \ldots, n-1$ clair.

Soit
$$k \geq n$$
: $x^k = q(x)p_A(x) + r(x)$, on evalue

$$A^k = q(A)p_A(A) + r(A) = r(A)$$

et r est de degre n-1.

$$\det A \neq 0 \qquad \qquad \Box$$

Donc il suffit de reformuler p(A) = 0.

Lecture 8: Formes bilineaires

Wed 17 Mar

4 Formes Bilineaires

Definition 19 (Forme Bilineaire)

 $-BL1 \ \forall u \in V$

$$f_u: V \to K$$
 $v \to \langle u, v \rangle$

est lineaire

 $-BL2 \ \forall u \in V$

$$f_u:V o K$$
 $v o \langle v,u
angle$

est lineaire

La forme $\langle . \rangle$ est dite symmetrique si pour tout $u, v \in V : \langle u, v \rangle = \langle v, u \rangle$.

La forme $\langle . \rangle$ est dite non degeneree a gauche (resp. a droite) si $\forall v \in V \ \langle v, w \rangle = 0 \Rightarrow w = 0$.

Soit V un espace vect de dimension n et $\{v_1, \ldots, v_n\}$ une base.

 $x,y\in V$ sont representes comme combinaison lineaire de $\{v_1,\ldots\}$, soit $x=\sum x_iv_i$, et $y=\sum y_iv_i$, alors

$$egin{aligned} \left\langle \sum x_i v_i, y
ight
angle &= \sum \left\langle x_i v_i, y
ight
angle \\ &= \sum x_i \left\langle v_i, y
ight
angle \\ &= \sum x_i \left\langle v_i, \sum y_j v_j
ight
angle \\ &= \sum x_i \sum y_j \left\langle v_i, v_j
ight
angle \\ &= \left(x_1, \dots, x_n
ight) \left(egin{aligned} \left\langle v_1, v_1
ight
angle & \dots & \left\langle v_1, v_n
ight
angle \\ &\vdots & \ddots & \vdots \\ & \left\langle v_n, v_1
ight
angle & \dots & \left\langle v_n, v_n
ight
angle \end{aligned} \left(y_1, \dots, y_n
ight)^T \end{aligned}$$

Proposition 26

Soit V un espace vectoriel sur K de dimension finie et $B = \{b_1, \ldots, b_n\}$ une base de V.

Soit $f: V \times V \rightarrow K$ une forme bilineaire.

Les conditions suivantes sont equivalentes

$$-- rg(A_B^f) = n$$

- f est non degeneree a gauche
- f est non degeneree a droite

Preuve

On demontre que 1 est equivalent a 2.

Il faut montrer que $\exists u \in V$ tel que $f(v,u) \neq 0$, or

$$f(v, u) = [v]_B^T \cdot A_B^f \cdot [u]_B$$

 $\textit{mais } \textit{rgA}_{B}^{\textit{f}} = n \Rightarrow [v]_{B}^{\textit{T}} \cdot A_{B}^{\textit{f}} \neq 0^{\textit{T}}.$

Soit $i \in \{1, \ldots, n\}$ tel que la i-eme composante de $([v]_B^T \cdot A_B^f)_i \neq 0$, alors pour $u = b_i$ on a fini.

Supposons maintenant que $rgA_B^f < n$, alors $\exists x \in K^n \setminus \{0\}$ tel que $x^T \cdot A_B^f = 0$ donc les lignes de A sont lineairements independantes.

4.1 Orthogonalite

Soit (.) une forme bilineaire symetrique.

Definition 20 (Orthogonalite)

Deux elements u, v sont orthogonaux si

$$\langle u,v\rangle=0$$

Definition 21 (Complement orthogonal)

Soit $E \subseteq V$, alors

$$E^{\perp} = \{u \in V : u \perp e \forall e \in E\}$$

Proposition 27

Soit $E \subseteq V$, alors E^{\perp} est un sous-espace de V.

Lemme 28

Soit K un corps de characteristique differente de 2.

$$Si\;\langle u,u
angle = 0\; pour\; tout\; u\in V$$
, $alors\;\langle u,v
angle = 0 orall u,v\in V$

Preuve

Soient $u, v \in V$:

$$2\langle u,v\rangle = \langle u+v,u+v\rangle - \langle u,u\rangle - \langle v,v\rangle$$

et donc $\langle u, v \rangle = 0$.

Lecture 9: Formes bilineaires

Definition 22 (Matrices Congruentes)

iste une matrice inver-

Tue 23 Mar

Deux matrices $A, B \in K^{n \times n}$ sont congruentes s'il existe une matrice inversible $P \in K^{n \times n}$ inversible tel que

$$P^T \cdot A \cdot P = B$$

4.2 Orthogonalite

On supposera que (.) est une forme bilineaire symmetrique.

Definition 23 (Base orthogonale)

Soit $\{v_1, \ldots, v_n\}$ une base de V. B est une base orthogonale si $\langle v_i, v_j \rangle = 0$ $\forall i \neq j$.

Lemme 29

Soit V de $\dim V = n$ et $B = \{v_1, \dots, v_n\}$ une base de V. B est orthogonale si et seulement si la matrice $A_B^{\langle . \rangle}$ est une matrice diagonale.

Theorème 30

Soit $char(K) \neq 2$ et $\dim V = n < \infty$.

Alors V possede une base orthogonale.

Preuve

Dans le cas n = 1, le theoreme est trivial.

 $Si \ n > 1$, alors on distingue deux cas.

 $Si \langle u, u \rangle = 0$, la base est trivialement orthogonale.

Sinon, soit $u \in V$ tel que $\langle u, u \rangle \neq 0$.

On complete avec $v_2, \ldots, v_n \in V$ tel que $\{u, v_2, \ldots\}$ est une base de V.

FIGURE 1 - gramschmidt

On construit une nouvelle base definie par

$$\{u, v_2 - \beta_2 u, \dots, v_n - \beta_n u\} := \{u, v_2', \dots\}$$

Avec
$$eta_i = rac{\left\langle \overrightarrow{v_i}, u
ight
angle}{\left\langle u, u
ight
angle}$$

On remarque que $u \perp v_i'$ et donc $u \perp span \{v_2', \ldots\}$.

Par hypothese de recurrence, on voit que qu'on peut repeter ce procede pour $\{v_2',\ldots,v_n'\}$

4.3 Matrices congruentes

On dit que $A \simeq B$ s'il existe $P \in K^{n \times n}$ inversible tel que

$$P^TAP = B$$

Etre congruent est une relation d'equivalence.

Lemme 31

Soit $B=\{v_1,\ldots,v_n\}$ une base de V. V possede une base orthogonale si et seulement si $\exists D$ une matrice diagonale $\in K^{n\times n}$ tel que $A_B^{\langle . \rangle} \simeq D$

Algorithme pour trouver une matrice diagonale congruente a $A \in K^{n \times n}$ symmetrique

L'algorithme prend n iterations.

Apres la i-1 ieme iteration A est transformee en

$$\begin{pmatrix} c_1 & \cdot & \cdot \\ \cdot & c_1 & \cdot \\ \cdot & \cdot & M \end{pmatrix}$$

Ou M est une matrice quelconque.

S'il existe un index $j \ge i$ tel que $b_{jj} \ne 0$, on echange la colonne i et la colonne j et la ligne i et la ligne j.

Si $b_{ij} = 0 \ \forall j \geq i$, on procede a la i + 1-ieme iteration.

Pour chaque $j \in \{i+1,\ldots,n\}$ on additionne $\frac{-b_{ij}}{b_{ii}}$

Lecture 11: Formes Bilineaires definies positives et Espaces Euclidiens

Tue 30 Mar

4.4 Formes Bilineaires symmetriques definies positives

Ici, V sera toujours un espace vectoriel reel.

Definition 24 (Formes Bilineaires definies positives)

Une forme bilineaire (.) est definie positive, si

$$\forall v \in V \setminus \{0\} : \langle v, v \rangle > 0$$

Une f.b.s. definie positive est appellee un produit scalaire.

Definition 25 (Norme d'un vecteur)

La longueur(ou norme) d'un vecteur de $v \in V$:

$$||v|| = \sqrt{\langle v, v \rangle}$$

Definition 26

Un espace vectoriel reel muni d'un produit scalaire est appele espace euclidien.

Proposition 32

Pour $u \in V, \alpha \in \mathbb{R}$,

$$\|lpha\cdot u\|=|lpha|\,\|u\|$$

Preuve

$$\|\alpha \cdot u\| = \sqrt{\langle \alpha u, \alpha u \rangle} = |\alpha| \|u\|$$

Theorème 33 (Theoreme de Pythagore)

Pour $v,w\in V$:, $si\ \langle v,w\rangle=$ 0, alors

$$||v + w||^2 = ||v||^2 + ||w||^2$$

Preuve

$$\begin{aligned} \left\|v + w\right\|^2 &= \left\langle v + w, v + w \right\rangle \\ &= \left\langle v, v \right\rangle + \left\langle v, w \right\rangle + \left\langle w, v \right\rangle + \left\langle w, w \right\rangle \\ &= \left\langle v, v \right\rangle + \left\langle w, w \right\rangle \end{aligned} \square$$

Proposition 34 (Regle du parallelogramme)

Pour $u, w \in V$:

$$||u + w||^2 + ||u - w||^2 = 2 ||u||^2 + 2 ||w||^2$$

Sans preuve(facile)

Soit $w, v \in V$, on cherche α tel que

$$\langle v - \alpha w, w \rangle = 0$$

Donc

$$lpha = rac{\langle v,w
angle}{\langle w,w
angle}$$

On appelle α la composante de v sur w et αw la projection de v sur w.

Theorème 35 (Inegalite Cauchy-Schwarz)

Pour tout $v, w \in V$,

$$|\langle v, w \rangle| \leq ||v|| \, ||w||$$

Preuve

On considere d'abord le cas special ||w|| = 1.

Donc, $\alpha = \langle v, w \rangle$, le theoreme de pythagore donne

$$\|v\|^2 = \|v - \alpha w\|^2 + \|\alpha \cdot w\|^2 \ge \alpha^2 \cdot \|w\|^2 = \alpha^2 = |\langle v, w \rangle|^2$$

Le cas general donne donc

$$\left\langle v,\left\Vert w\right\Vert \frac{w}{\left\Vert w\right\Vert }\right
angle \leq\left\Vert w\right\Vert ^{2}\left\Vert v\right\Vert ^{2}$$

Theorème 36 (Inegalite triangulaire)

$$||v + w|| \le ||v|| + ||w||$$

Preuve

$$||v + w||^2 = \langle v + w, v + w \rangle^2$$

= $||v||^2 + w \langle v, w \rangle + ||w||^2$
 $< (||v|| + ||w||)^2$

4.5 La methode de Gram Schmidt

Pour (.) un produit scalaire, on a

$$\forall v \in V \setminus \{0\}, \langle v, v \rangle \neq 0$$

Lemme 37

soit V un espace euclidient et soient v_1, \ldots, v_n deux-a-deux orthogonaux. Soit $v \in V$, il existe $a_1, \ldots, a_n \in \mathbb{R}$ uniques tel que

$$v-a_1v_1-\ldots-a_nv_n$$

 $est\ orthogonal\ a\ chaque\ v_i$

Preuve

$$\left\langle v - \sum_{i=1}^{n} a_i v_i, v_j
ight
angle = \left\langle v, v_j
ight
angle - \left\langle \sum_{i=1}^{n} a_i v_i, v_j
ight
angle = \left\langle v, v_j
ight
angle - a_j \left\langle v_j, v_j
ight
angle$$

On peut donc poser $a_j = \frac{\langle v, v_j \rangle}{\langle v_j, v_j \rangle}$

Le procede de Gram-Schmidt

Soit V un espace vectoriel euclidien et $\{v_1, \ldots, v_n\}$. Il existe un ensemble libre $\{u_1, \ldots, u_n\}$ tel que

- 1. $\langle u_i, u_j \rangle = 0 \forall i \neq j$
- 2. $\forall k \in \{1, ..., n\}$:

$$span\{v_1,\ldots,v_k\}=span\{u_1,\ldots,u_k\}$$

Pour ceci, on itere sur tous les elements de $\{v_1, \ldots, v_n\}$, on pose

$$egin{aligned} u_1 &= v_1 \ u_2 &= v_2 - rac{\langle v_2, u_1
angle}{\langle u_1, u_1
angle} \cdot u_1 \ &dots \ u_3 &= v_2 - rac{\langle v_2, u_1
angle}{\langle u_1, u_1
angle} \cdot u_1 - rac{\langle v_3, u_2
angle}{\langle u_2, u_2
angle} u_2 \end{aligned}$$

etc

Pour $i \in \{1, ..., k\}$:

$$u_1 = v_i - \sum_{i=1}^{i-1} rac{\langle v_i, u_j
angle}{\langle u_j, u_j
angle} u_j$$

Par induction, on demontre que

$$span\{v_1,\ldots,v_i\}=span\{u_1,\ldots,u_{i-1},v_i\}$$

Or u_i est combinaison lineaire des autres elements de la famille.

Corollaire 38

Soit $A \in \mathbb{R}^{m \times n}$ une matrice de rang-colonne plein.

On peut factoriser A comme

$$A=A'\cdot egin{pmatrix} 1 & \dots & \mu_{ij} \ dots & \ddots & \ 0 & & 1 \end{pmatrix}$$

Tel que A' est compose de colonnes 2-a-2 orthogonales pour le produit

scalaire standard.

Preuve

Pour a_i les colonnes de A, Gram-Schmidt donne

$$a_i' = a_i - \sum_{j=1}^{i-1} rac{\langle a_i, a_j
angle}{\left\langle a_j', a_j'
ight
angle} a_j'$$

Donc

$$a_i = \sum_{j=1}^{i-1} rac{\left\langle a_i, a_j'
ight
angle}{\left\langle a_j', a_j'
ight
angle} \cdot a_j' + a_i' \Rightarrow A = A' \cdot egin{pmatrix} 1 & \dots & \mu_{ij} \ dots & \ddots & \ 0 & 1 \end{pmatrix}$$

Wed 31 Mar

Lecture 12: ...

Definition 27

Soit V un espace Euclidien, et $\langle . \rangle$ un produit scalaire.

Une base $\{u_1, \ldots, u_n\}$ orthogonale est appelee orthonormale si $||u||_i = 1 \forall i$.

Corollaire 39

Soit $V \in \mathbb{R}^{m \times n}$ une matrice de plein rang colonne, alors on peut factoriser $V = U^* \cdot R$ ou $U^* \in \mathbb{R}^{m \times n}$ dont les colonnes sont deux-a-deux orthogonales et de norme = 1, et ou R est une matrice triangulaire superieur

4.6 La methode des moindres carres

Soit $A\cdot x=b$ un systeme lineaire en m variables sans solution. On cherche un x tel que $\|A\cdot x-b\|$ est minimale. On resout donc

$$\min_{x \in \mathbb{R}} ||A \cdot -b||$$

Theorème 40

Soit V un espace euclidien et soient v_1, \ldots, v_n des vecteurs deux-a-deux orthogonaux non-nuls. Soit $v \in V$ et $\alpha_i = \frac{\langle v, v_i \rangle}{\langle v_i, v_i \rangle}$, alors

$$\left\|v - \sum_{i=1}^{n} \alpha_i v_i \right\| \leq \left\|v - \sum_{i=1}^{n} \beta_i v_i \right\|$$

pour tout $\beta_1, \ldots, \beta_n \in \mathbb{R}$

Preuve

on a

$$\left\|v - \sum_{i=1}^{n} \beta_{i} v_{i}\right\|^{2} = \left\|\underbrace{v - \sum_{i=1}^{n} \alpha_{i} v_{i}}_{perpendiculaire\ a\ tous\ les\ v_{i}} - \sum_{i=1}^{n} (\beta_{i} - \alpha_{i}) v_{i}\right\|^{2}$$

$$= \left\|v - \sum_{i=1}^{n} \alpha_{i} v_{i}\right\|^{2} + \left\|\sum_{i=1}^{n} (\beta_{i} - \alpha_{i}) v_{i}\right\|^{2} \ge \left\|v - \sum_{i=1}^{n} \alpha_{i} v_{i}\right\|$$

Donc, pour resourdre $\min_{x \in \mathbb{R}^n} ||Ax - b||$, on calcule d'abord une base orthogonale de l'espace engendre par les vecteurs-collone de A.

Ensuite, on calcule la projection de b, cad $\sum_{i=1}^{n} \frac{\langle b, a_i^* \rangle}{\langle a_i^*, a_i^* \rangle}$

Ensuite, on resout Ax = proj(b) et on trouve un x proche.

Theorème 41

Les solutions du systeme

$$A^T \cdot Ax = A^T b$$

sont les solutions optimales de $\min_{x \in \mathbb{R}^n} \|Ax - b\|$

Preuve

x est une solution optimale $\iff A \cdot x = proj(b)$, de plus proj(b) est le vecteur v unique dans $\{A \cdot x : x \in \mathbb{R}^n\}$ tel que $b-v \perp span\{A\} = \{A \cdot x : x \in \mathbb{R}^n\}$ Donc

$$A^TAx = A^Tb \iff A^T(Ax - b) = 0 \iff Ax - b \perp \{A \cdot x : x \in \mathbb{R}^n\}$$

4.7 Formes sesquilineaires et produits hermitiens

Soit
$$v=egin{pmatrix} a_1+ib_1\ dots\ a_n+ib_n \end{pmatrix}\in\mathbb{C}^n, ext{ avec } a_i,b_i\in\mathbb{R}.$$

On definit

$$\sum_{i=1}a_i^2+b_i^2=\sum_{i=1}^nv_i\overline{v_i}$$

Definition 28 (Produit Hermitien)

Soit V un espace vectoriel sur \mathbb{C} , $\langle . \rangle$ une application, alors on a

- PH1 :
$$\langle v, w \rangle = \overline{\langle w, v \rangle} \forall v, w \in V$$

— PH2

$$\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle$$
 , $\langle w + u, v \rangle = \langle v, w \rangle + \langle u, w \rangle$

— РН3

$$orall x \in \mathbb{C}, u,v \in V, \langle xu,v
angle = x \, \langle u,v
angle \, , \langle u,xv
angle = \overline{x} \, \langle u,v
angle$$

- 1. Une forme sesquilineaire satisfait PH2, PH3
- 2. Forme hermitienne satisfait PH1,PH2, PH3
- 3. Un produit hermitien satisfait PH1,PH2,PH3 et de plus

$$\langle v, v \rangle > 0 \forall v \in V \setminus \{0\}$$

Le produit hermition est l'analogue d'un produit scalaire.

Definition 29 (Matrice hermitienne)

 $A \in \mathbb{C}^{n \times n}$ est appellee hermitienne si $A^T = \overline{A}$

Proposition 42

Soit V un espace vectoriel sur $\mathbb C$ de dimension finie et soit B une base de V. Une forme sesquilineaire est une forme hermitienne si et seulement si A_B^f est une matrice hermitienne.

Si B, B' sont deux bases differentes, alors $f(v, w) = [v]_B^T A_B^f \overline{[w]}_B$.

Si B' est une autre base, et $P_{BB'}, P_{B'B}$ les matrices de changement de base correspondentes. Alors on a

$$[v_{B'}]^T (P_{B'B})^T A_B^f \overline{P_{B'B}} \overline{[w]}_B' = f(v, w)$$

On en deduit que

$$A_{B'}^f = (P_{B'B})^T A_B^f \overline{P_{B'B}}$$

Definition 30 (Matrices Complexes congruentes)

Deux matrices complexes A, B sont congruentes complexes, si il existe P une matrice inversible satisfaisant

$$A = P^T B \overline{P}$$

Comme avant, une base $B=\{b_1,\ldots\}$ est une base orthogonale si et seulement si $A_B^{\langle . \rangle}$ est diagonale.

Theorème 43

Soit V un espace vectoriel complexe et $\langle . \rangle$ une forme hermitienne, alors V possede une base orthogonale.

On utilise le procede analogue aux espaces hermitiens.

Lecture 13: Matrices Symmetriques

Tue 13 Apr

Theorème 44 (Theoreme Spectral)

Soit $A \in \mathbb{R}^{n \times n}$ symmetrique, alors il existe $P \in \mathbb{R}^{n \times n}$ orthogonale tel que

$$P^T \cdot A \cdot P$$

est diagonale.

 $Donc\ A$ est congruent a une matrice diagonale et est semblable D.

Lemme 45

Soit $A \in \mathbb{C}^{n \times n}$ une matrice hermitienne, alors toutes ses valeurs propres sont reelles.

Preuve

Soit $\lambda \in \mathbb{C}$ une valeur propre et $v \in \mathbb{C}^n \setminus \{0\}$ un vecteur propre associe a λ . On va montrer que $\lambda v^T \overline{v} = \overline{\lambda} v$.

On a

$$\lambda v^T \overline{v} = v^T A^T \overline{v} = v^T \overline{A} \overline{v} = v^T \overline{\lambda} \overline{v} = \overline{\lambda} v \overline{v}$$

Corollaire 46

Soit $A \in \mathbb{R}^{n \times n}$ resp. $\mathbb{C}^{n \times n}$ une matrice symmetrique resp., hermitienne. Alors A possede une valeur propre reelle.

Preuve

Les valeurs propres de A sont les racines relles resp. complexes du polynome characteristique de A.

Soit $\lambda \in \mathbb{C}$ une racine, donc λ est une valeur propre de A sur \mathbb{C}^n , par le lemme ci-dessus, λ est reel.

Et donc λ est une valeur propre d'une matrice reelle de A.

Prouvons maintenant le theoreme spectral.

Preuve

On demontre le cas reel.

Soit $A \in \mathbb{R}^{n \times n}$ symmetrique. Il existe $U \in \mathbb{R}^{n \times n}$ orthogonale tel que U^TAU est orthogonale.

On procede par recurrence.

Le cas n = 1, $A = (a_{11})$ est clair.

Pour n > 1, soit $\lambda \in \mathbb{R}$ une valeur propre de A et $v \in \mathbb{R}^n \setminus \{0\}$ un vecteur propre associe tel que $v^Tv = 1$.

Soit $\{v_1, u_2, \ldots\}$ une base de \mathbb{R}^n .

Avec Gram-Schmidt, on peut supposer que cette base est orthonormale.

Soit U la matrice donnee par les colonnes $(u_2, \ldots, u_n) \in \mathbb{R}^{n \times (n-1)}$, on considere U

 $^TAU \in \mathbb{R}^{(n-1)\times (n-1)}$, c'est une matrice symmetrique (parce que A est symmetrique).

Par recurrence, il existe une matrice orthogonale tel que K^TU^TAUK est diagonale et reelle.

Posons $P = (v, U \cdot K) \in \mathbb{R}^{n \times n}$.

P est orthogonale, en effet

$$P^T P = \begin{pmatrix} v^T \\ K^T U^T \end{pmatrix} \begin{pmatrix} v \\ U K \end{pmatrix} = \begin{pmatrix} v^T v & v^T U K \\ K^T U^T v & K^T U^T U K \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & \text{Id} \end{pmatrix}$$

Et donc

$$P^T A P = \begin{pmatrix} v^T \\ K^T U^T \end{pmatrix} A(V, UK)$$

Or v est orthogonal a tous les u_i et donc cette matrice est orthogonale.

Lecture 14: Formes quadratiques reelles

Wed 14 Apr

5 Formes quadratiques reelles et matrices symmetriques reelles

Definition 31 (Sphere)

$$S^{n-1} \subseteq \mathbb{R}^n$$
 est defini comme $S^{n-1} = \{x \in \mathbb{R}^n : ||x|| = 1\}$

Definition 32 (Forme Quadratique)

Une forme quadratique est une application $f: \mathbb{R}^n \to \mathbb{R}, x \to x^T A x$, avec A une matrice symmetrique ¹

Probleme d'optimisation

On veut trouver le maximum

$$\max_{x \in S^{n-1}} x^T A x$$

L'existence du maximum est garantie car S^{n-1} est compacte et $x \to x^T A x$ est continue

Donc il existe $x \in S^{n-1}: x^T A x > y^T A y \forall y \in S^{n-1}$.

Par symmetrie, il existe au moins deux solutions optimales sur S^{n-1} .

Lemme 47

Soit $A \in \mathbb{R}^{n \times n}$ symmetrique et $v \in S^{n-1}$ une solution optimale. On a

$$Av = \lambda v$$

^{1.} La symmetrie n'est pas necessaire, car $x^TBx=x^T(\frac{1}{2}B+\frac{1}{2}B^T)x$

pour $\lambda \in \mathbb{R}$ cad A possede une valeur propre reelle.

Preuve

On suppose que $A \cdot v \neq \lambda v \forall \lambda \in \mathbb{R}$ (avec v une solution optimale du système).

$$A \cdot v = \alpha v + \beta w(\alpha, \beta \in \mathbb{R})$$

Notons que

$$\sqrt{(1-x^2)}v + xw, x \in [-1, 1] \in S^{n-1}$$

Posons

$$q(x) := (\sqrt{1-x^2}v + xw)^T A(\sqrt{1-x^2}v + xw)$$

avec $g(0) = v^T A v$, il reste a montrer que $g'(0) \neq 0$.

On a

$$g(x) = (1 - x^{2})v^{T}Av + \sqrt{1 - x^{2}}xv^{T}Aw + x\sqrt{1 - x^{2}}w^{T}Av + x^{2}w^{T}Aw$$
$$= (1 - x^{2})v^{T}Av + 2x\sqrt{1 - x^{2}}v^{T}Av + x^{2}w^{T}Aw$$

Donc

$$g'(0) = 2w^T A w = 2\beta \neq 0$$

Definition 33 (Matrice Symmetrique definie positive/negative)

Soit $A \in \mathbb{R}^{n \times n}$ symmetrique, A est

- definie positive si $x^T Ax > 0 \forall x \in \mathbb{R}^n \setminus \{0\}$
- definie negative si $x^T A x < 0 \forall x \in \mathbb{R}^n \setminus \{0\}$
- semi-definie positive si $x^TAx \geq 0 \forall x \in \mathbb{R}^n$
- semi-definie negative si $x^TAx \leq 0 \forall x \in \mathbb{R}^n$

Theorème 48

Une matrice symmetrique $A \in \mathbb{R}^{n \times n}$ *est*

- definie positive si et seulement si toutes ses valeurs propres sont
 0
- definie negative si et seulement si toutes ses valeurs propres sont < 0
- semi-definie positive si et seulement si toutes ses valeurs propres sont > 0
- semi-definie negative si et seulement si toutes ses valeurs propres sont < 0

Preuve

$$A = P egin{pmatrix} \lambda_1 & & & & \ & \ddots & & \ & & \lambda_n \end{pmatrix} P^T$$

— Si $\lambda_1,\ldots,\lambda_n>0$, alors, en reccrivant $v=\sum \beta_i p^i$

$$v^T A v = \sum_{i=1}^n eta_i^2 \lambda_i > 0$$

On en deduit facilement les autres points.

Definition 34 (k-mineur principal)

Soit $A \in K^{n \times n}$. On considere la matrice formee par les k premieres lignes et colonnes de A, notons la B, le k-mineur principal est le determinant de B.

Theorème 49

Soit $A \in \mathbb{R}^{n \times n}$ une matrice symmetrique.

A est definie positive si et seulement si tous ses mineurs principaux sont strictement positif.

Preuve

Si A est definie positive, alors C_k est definie positive (ie. toutes les sousmatrices). On a

$$C_k = P_k egin{pmatrix} \lambda_1 & & & \ & \ddots & \ & & \lambda_k \end{pmatrix} P_k^T$$

Ou on a utilise la decomposition selon le theoreme spectral.

Par le theoreme ci-dessus $\det C_k > 0$

Montrons l'implication inverse.

Supposons maintenant que le determinant $det(C_k) > 0 \forall k \in \{1, ..., n\}$.

On veut montrer que $x^T Ax > 0 \forall x \in \mathbb{R}^n \setminus \{0\}$.

On applique l'algorithme d'orthogonalisation sur A.

Par recurrence, on a jamais echange de lignes et de colonnes car sinon un determinant serait nul.

L'algorithme produit une matrice triangulaire superieure $R \in \mathbb{R}^{n \times n}$ (avec une diagonale contenant des 1) tel que

On observe donc que $\det C_k = c_1 \dots c_k$ et donc tous les c_i sont positifs.