Sum-Product Networks

Advances in Sum-Product Networks for Probabilistic Modelling

Martin Trapp July 4, 2019

Sum-Product Networks

Motivation

Bayesian networks?

- Compact specification of the joint distribution
- Exact inference is intractable in the general case

Mixture models?

- GMMs are universal densities approximators in theory
- Exact inference is [tractable] in GMMs

1

Motivation

Bayesian networks?

- Compact specification of the joint distribution
- Exact inference is intractable in the general case

Mixture models?

- GMMs are universal densities approximators in theory
- Exact inference is [tractable] in GMMs

Sum-Product Networks

- Universal densities approximators
- Compact specification of the joint distribution
- Exact inference is tractable if the network is valid

1

Sum-Product Networks

Sum-Product Network (SPN) [Poon 2011]

An SPN is a rooted directed acyclic graph consisting of:

Weights $\textit{w}_{S,C}$ are non-negative and $\sum_{C \in \textit{ch}(S)} \textit{w}_{S,C} = 1$, $\forall S \in \mathcal{S}$

Interpretations of SPNs

SPNs can be seen as:

- A generalisation of mixture models (If the SPN is shallow)
- Deep structured mixture models [Zhao 2016]

$$f(\mathbf{x}_{n} \mid \theta) = \sum_{k=1}^{\kappa} \prod_{\mathbf{w}_{S,C} \in \mathcal{T}_{k}} \mathbf{w}_{S,C} \prod_{L \in \mathcal{T}_{k}} p(\mathbf{x}_{n} \mid \theta_{L})$$
 (1)

Multi-linear feed-forward neural networks with non-linear inputs

Validity Conditions

Completeness

For all sum nodes, all children have the same scope.

Validity Conditions

Completeness

For all sum nodes, all children have the same scope

Decomposability

For all product nodes, the children's scopes are disjoint

Validity Conditions

Completeness

For all sum nodes, all children have the same scope

Decomposability

For all product nodes, the children's scopes are disjoint

Learning Sum-Product Networks

Parameter Learning in SPNs

Generative Learning [Poon 2011, Peharz 2016]

$$\mathcal{L}(\theta \mid \mathcal{X}) = \sum_{n=1}^{N} \log f(\mathbf{x}_n \mid \theta) - \log f(* \mid \theta), \ \mathbf{x}_n \in \mathbb{R}^{D}$$
 (2)

Parameter Learning in SPNs

Generative Learning [Poon 2011, Peharz 2016]

$$\mathcal{L}(\theta \mid \mathcal{X}) = \sum_{n=1}^{N} \log f(\mathbf{x}_n \mid \theta) - \log f(\mathbf{*} \mid \theta), \ \mathbf{x}_n \in \mathbb{R}^{D}$$
 (2)

Supervised Learning [Gens 2012]

$$\mathcal{L}(\theta, \mathbf{y} \mid \mathcal{X}) = \sum_{n=1}^{N} \log f(\mathbf{x}_{n}, y_{n} \mid \theta) - \log f(\mathbf{x}_{n} \mid \theta), \quad \mathbf{x}_{n} \in \mathbb{R}^{D}, \ \mathbf{y}_{n} \in \mathbb{R}$$
(3)

5

Parameter Learning in SPNs

Generative Learning [Poon 2011, Peharz 2016]

$$\mathcal{L}(\theta \mid \mathcal{X}) = \sum_{n=1}^{N} \log f(\mathbf{x}_n \mid \theta) - \log f(* \mid \theta), \ \mathbf{x}_n \in \mathbb{R}^D$$
 (2)

Supervised Learning [Gens 2012]

$$\mathcal{L}(\theta, \mathbf{y} \mid \mathcal{X}) = \sum_{n=1}^{N} \log f(\mathbf{x}_{n}, y_{n} \mid \theta) - \log f(\mathbf{x}_{n} \mid \theta), \quad \mathbf{x}_{n} \in \mathbb{R}^{D}, \ y_{n} \in \mathbb{R}$$
(3)

(Safe) Semi-Supervised Learning [Trapp 2017]

$$\mathsf{CPLE} = \operatorname*{argmax}_{\boldsymbol{\theta} \in \Theta} \operatorname*{arg}_{\boldsymbol{q} \in \Delta^{M}_{K-1}} \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{y}, \boldsymbol{q} \mid \ \mathcal{X}, \mathcal{U}) - \mathcal{L}(\boldsymbol{\theta}^{+}, \boldsymbol{y}, \boldsymbol{q} \mid \ \mathcal{X}, \mathcal{U})$$
(4)

If η is small and all weights are initialised close to zero.

$$\mathbf{w}_{k}^{(t)} \approx \mathbf{w}_{k}^{(t)} + \rho^{(t)} \nabla_{\mathbf{w}_{k}^{(t)}} + \left[\sum_{l=0}^{L-1} \eta \nabla_{\mathbf{w}_{\phi(k,l)}^{[l]}} (\mathbf{w}_{\phi(k,l)}^{[l]})^{-1} \right] \mathbf{w}_{k}^{(t)}$$
(7)

$$= w_k^{(t)} + \rho^{(t)} \nabla_{w_k^{(t)}} + \sum_{\tau=1}^{t-1} \mu^{(t,\tau)} \nabla_{w_k^{(\tau)}}$$
 (8)

Gradient-based optimisation of any deep tree-structured sumproduct network with small (fixed) learning rate and near zero initialisation of the weights is equivalent to gradient-based optimisation with adaptive and time-varying learning rate and momentum term.

Structure Learning in SPNs

Tailored to Images

 Poon & Gens presented a structure learning approaches tailored to images which recursively sub-divide the image into sub-regions. [Poon 2011, Gens 2012]

Structure Learning in SPNs

Tailored to Images

 Poon & Gens presented a structure learning approaches tailored to images which recursively sub-divide the image into sub-regions. [Poon 2011, Gens 2012]

Heuristic Structure Learning

 [Gens 2013] proposed a heuristic data driven approach which got adapted by many other authors later on. See https://github.com/arranger1044/awesome-spn

Structure Learning in SPNs

Tailored to Images

 Poon & Gens presented a structure learning approaches tailored to images which recursively sub-divide the image into sub-regions. [Poon 2011, Gens 2012]

Heuristic Structure Learning

 [Gens 2013] proposed a heuristic data driven approach which got adapted by many other authors later on. See https://github.com/arranger1044/awesome-spn

Recent Approaches

- Random tensorized SPNs. [Peharz 2019]
- Bayesian structure and parameter learning. [Trapp 2019 (ArXiv)]

Applications

SPNs for Efficient Non-Linear Non-Parametric Regression

An SPN over GPs (SPN-GP) [Trapp (2018)] is a hierarchically structured mixture model which recursively combines mixtures over SPN-GPs or GPs with sub-divisions of the input space.

SPNs for Efficient Non-Linear Non-Parametric Regression

Experiments on non-stationary data

Left figure shows the density region of an SPN-GP and a full GP on non-stationary data with conditional heteroscedastic noise. The right figure shows the estimated variance hyper-parameter of the noise model for a GP and an SPN-GP.

SPNs for Out-Of-Domain Detection

RAT-SPNs know what they don't know

Histograms of the log-likelihoods of RAT-SPNs [Peharz 2019] on the native data set (blue: train, orange: test) and out-of-domain (ood) data set (green).

SPNs for Unsupervised Scene Understanding

Faster Attend-Infer-Repeat with SPNs [Stelzner 2019]

SuPAIR integrates SPNs as a subroutine into the Attend-Infer-Repeat (AIR) framework. SuPAIR learns an order of magnitude faster than AIR, treats object occlusions in a consistent manner and allows for the inclusion of a background noise model.

SPNs for Unsupervised Scene Understanding

Faster Attend-Infer-Repeat with SPNs [Stelzner 2019] Learning progress of SuPAIR and AIR on the four datasets.

Thank you for your attention!

References

- K. Stelzner, R. Peharz and K. Kersting (2019) Faster Attend-Infer-Repeat with Tractable Probabilistic Models. Proceedings of ICML.
- R. Peharz, A. Vergari, K. Stelzner, A. Molina, M. Trapp, X. Shao, K. Kersting, Z. Ghahramani (2019) Random Sum-Product Networks: A Simple and Effective Approach to Probabilistic Deep Learning. Proceedings of UAI.
- M. Trapp, R. Peharz H. Ge, F. Pernkopf and Z. Ghahramani (2019) Bayesian Learning of Sum-Product Networks. ArXiv.
- M. Trapp, R. Peharz and F. Pernkopf (2019) Optimisation of Overparametrized Sum-Product Networks. 3rd Tractable Probabilistic Models at ICML.
- M. Trapp, R. Peharz, F. Pernkopf and C. E. Rasmussen (2018) Learning Deep Mixtures of Gaussian Process Experts Using Sum-Product Networks. ArXiv.
- M. Trapp, T. Madl, R. Peharz, F. Pernkopf and R. Trappl (2017) Safe Semi-Supervised Learning of Sum-Product Networks. Proceedings of UAI.
- H. Zhao, P. Poupart and G. Gordon (2016) A Unified Approach for Learning the Parameters of Sum-Product Networks. Proceedings of NeurlPS.
- R. Peharz, R. Gens, F. Pernkopf, P. Domingos (2016) On the Latent Variable Interpretation in Sum-Product Networks. TPAMI 39 (10).
- R. Gens and P. Domingos (2013) Learning the Structure Sum-Product Networks: A New Deep Architecture. Proceedings of ICML.
- R. Gens and P. Domingos (2012) Discriminative learning of Sum-Product Networks. Proceedings of NeurIPS.
- H. Poon and P. Domingos (2011) Sum-Product Networks: A New Deep Architecture. Proceedings of UAI.