Language Modeling

Team 5: Steven, Decker, Yash, Jincen UCSC NLP 243

Abstract

Designing and training a language model on the Penn Treebank with a semi unsupervised learning using RNN, LSTM, GRU, and hypertuning.

1 Introduction

002

004

011

017

021

022

023

027

The project is training a language mode without any explicit labeling of the tokens. We are given glove embeddings for the Penn Treebank dataset. We are calculating perplexity for our given loss to predict each token in the sequence.

1.1 Dataset Overview

The Penn Treebank provides detailed annotations for a large corpus of English text. These annotations include part-of-speech (POS) tags, syntactic structure, and more. The depth and accuracy of these annotations make it a valuable resource for training and evaluating various NLP models.

- **Text Source:** The bulk of the text in the Penn Treebank comes from the Wall Street Journal (WSJ). It contains approximately 2,499 stories from WSJ from the years 1987 to 1989.
- Word Tokens and Sentences: The WSJ portion contains about 1 million words. The entire Treebank is typically reported to contain over 4.5 million words of American English.
- Average Sentence Length: The average sentence length in the WSJ part of the Treebank is around 20-25 words. However, this can vary significantly given the nature of news text, which includes both short sentences and more complex structures.
- **Annotations:** The annotations in the Treebank include part-of-speech (POS) tags, syntactic trees, and some semantic information. The POS tags follow a specific set developed

for the Treebank, which has become a standard in NLP tasks.

037

038

040

041

043

045

047

048

051

055

061

062

063

064

065

066

067

Other Components: Besides the WSJ corpus, the Penn Treebank also includes annotated texts from other sources, like transcribed spoken phone conversations from the Switchboard corpus and Brown Corpus, adding variety in style and formality.

2 Models

The allowed models are any neural networks excluding pretrained transformer-based models. A starter code using Recurrent Neural Network (RNN) was provided and recommended to use attention and possibly transformers.

2.1 RNN

Tested various hyperparameters with an RNN that had frozen and tuneable glove embeddings.

2.2 LSTM

Used base RNN model architecture and converted it into LSTM while testing bi-directionality.

2.3 GRU

Used base RNN model architecture and converted it into GRU

3 Experiments

3.1 Basic Metrics

- Step loss and accuracy:
- Perplexity Score:

3.2 Data Split

All models implement the same three-part data split structure for consistency.

• Training set (85%): Used to train the model from train file

- Validation set (7.5%): Used for hyperparameter tuning and early stopping.
 - **Test set** (**6.5**%): Used to evaluate the model's performance on unseen data on the test file

3.3 Training Configurations

General model hyperparameters for each model for consistency when training.

• Embedding Dimension: 300

• Batch Size: 32

071

074

079

084

086

091

096

100

101

102

103

104

105

106

107

108

• Hidden Size: 512

• Bidirectional: True

• Number of Layers: 2

• Dropout Probability: 0.5

• Tunable Pre-Trained Embedding: True

• Learning Rate: 0.001

3.4 Model Architecture

- 1. **Embedding Layer**: Maps token indices to dense vectors.
 - Input: Token indices
 - Output: Embeddings of size E (embedding dimension)
- 2. **Dropout Layer**: Applies dropout for regularization.
 - Dropout probability: p (dropout_p)
- 3. **GRU Layer**: Processes sequence data with temporal dependencies.
 - Input size: E (or 2E if using concatenated embeddings)
 - Hidden size per direction: H (hidden_size)
 - Number of layers: *L* (num_layers)
 - Bidirectional: Outputs concatenated forward and backward states if true.
- 4. **Fully Connected Layers**: Projects GRU output to the desired output size.

FC1: $\mathbb{R}^{H \times N_D} \to \mathbb{R}^E$

FC2: $\mathbb{R}^E \to \mathbb{R}^{\text{vocab_size}}$

where N_D is the number of directions (1 for unidirectional, 2 for bidirectional).

5. **Output**: Log softmax applied to the final layer's output.

4 Results

4.1 RNN

Epoch

Epoch	Loss	Accuracy	Perplexity
15	4.7523	23.02%	115.9
20	4.7827	22.70%	119.4
30	4.8421	22.47%	126.7

109

110

111

112

113

Table 1: Training Data Metrics

Epoch	Loss	Accuracy	Perplexity
15	5.1783	21.86%	177.4
20	5.1676	21.72%	175.5
30	5.1970	21.60%	180.7

Table 2: Validation Data Metrics

Epoch	Loss	Accuracy	Perplexity
15	5.1094	21.40%	165.6
20	5.1098	21.33%	165.6
30	5.1395	21.18%	170.6

Table 3: Test Data Metrics

4.2 LSTM/GRU

LSTM

Epoch	Loss	Perplexity
0	6.4171	612.23
1	5.6037	271.43
2	5.3745	215.83
3	5.2251	185.88
4	5.1205	167.42
19	4.5150	91.38

Table 4: LSTM Performance Metrics over Epochs

Data Type	Loss	Accuracy	Perplexity
Training	4.01	29.15%	55.07
Validation	4.71	25.60%	111.35
Test	4.67	25.01%	106.52

Table 5: LSTM Accuracy Metrics

14	Val Sequence Predictions	no it was n't black monday	143
15	Example 1	\hookrightarrow alternative alternative	144
16	Actual:	Example 2	145
		Actual:	146
17	aer banknote berlitz calloway centrust		
18	\hookrightarrow cluett fromstein gitano guterman	but while the new york stock exchange	147
19	\hookrightarrow hydro-quebec ipo kia memotec mlx	\hookrightarrow did n't fall apart friday as the	148
20	\hookrightarrow nahb punts rake regatta rubens	\hookrightarrow dow jones industrial average	149
21	→ sim snack-food ssangyong swapo	\hookrightarrow plunged N points most of it in	150
22	<pre> wachter </pre>	\hookrightarrow the final hour it barely managed	151
00	Predicted:	\hookrightarrow to stay this side of chaos	152
23		Predicted:	153
24	the <unk> a <unk> and and and snack-</unk></unk>	hut uhila the men newly steel, suchsome	45.0
25	→ food snack-food advancers	but while the new york stock exchange	154
26	\hookrightarrow advancers	\hookrightarrow did n't fall apart friday as the	155
27	Example 2	\hookrightarrow dow jones industrial average	156
28	Actual:	\hookrightarrow plunged N points most of it in	157
20	Actual.	\hookrightarrow the final hour it barely managed	158
29	pierre <unk> N years old will join the</unk>	\hookrightarrow to stay this side of anxiety	159
30	→ board as a nonexecutive director	→ alternative alternative	160
31	→ nov. N		
32	Predicted:	GRU	161
33	the <unk> a years old was retire the</unk>		
34		Epoch Loss Perplexity	

BiLSTM

135

136

137

138

139

140

141

142

Epoch	Loss	Perplexity
0	4.5652	96.09
1	1.7432	5.716
2	1.1339	3.108
3	0.8386	2.313
4	0.6586	1.932
5	0.5354	1.708
Overall Perform		mance
Training	0.0720	1.075
Validation	0.1872	1.206
Test	0.1072	1.113

→ director </s> N </s> advancers

→ ... advancers ...

Table 6: BiLSTM Performance Metrics over Epochs

Test Sequence Predictions

Example 1 Actual:

no it was n't black monday </s>

Predicted:

Epoch	Loss	Perplexity
0	4.0637	58.188
1	1.1313	3.0998
2	0.5903	1.8045
3	0.3702	1.4480
4	0.2618	1.2993
5	0.2007	1.2222
6	0.1654	1.1798
7	0.1439	1.1548

Overall Performance

Type	Loss	Perplexity
Training	1.9318×10^{-5}	1.00002
Validation	0.0078511	1.00788
Test	0.0012214	1.00122

Table 7: BiGRU Performance Metrics over Epochs

162

163

164

165

166

167

168

169

5 Inference

5.1 RNN

RNN performed the worst as it could not get context from previous words and did not perform well for longer sequences. RNN was evaluated with perplexity ignoring the padding. When running my prediction model I ignored any words generated past the EOS token. The model continued

to predict the same word up to the batch size and therefore was not included in my perplexity score. Otherwise, it will be a lot higher. Running a smaller batch size will reduce these padding generations, which was what I observed when calculating the perplexity score from the batch output.

Increasing the epoch made the model overfit

Increasing the epoch made the model overfit more, and had to monitor step size at each epoch. This was more prevalent with BiLSTM and GRU as they learned way faster than an RNN. All of them achieved similar scores as the base model parameters +/- 2%. The extra layer model took way too long to learn and was stopped manually to save computational time.

5.2 LSTM/GRU

LSTM?GRU performed a lot better at perplexity, keeping more long-term memory for sequences. GRU performed similarly to the base model of LSTM. The accuracy only increased by 5% but perplexity reduced by 50. However, there were issues when Bi-Directionality was turned on making the model learn the predictions insanely well. It might be how the tags were basically given to each other and the hidden layer was able to retain the whole sequence prediction.

Using other hyperparameters did not affect the overall accuracy, but may caused training to be longer or shorter. Batch size was important for handling different length sequences. Embed dimension allowed for weight to be calculated taking longer to train. Layers made the model too complex and slowed training significantly. Dropout adjusted the rate of convergence and required manual stopping to prevent overfitting.

6 Appendix

Data Type	Loss	Accuracy	Perplexity
Training	5.0580	20.74%	157.3
Validation	5.3518	20.18%	211.0
Test	5.2758	19.81%	195.5

Table 8: Performance Metrics with Batchsize 16

Data Type	Loss	Accuracy	Perplexity
Training	4.6384	23.50%	103.4
Validation	5.2118	21.83%	183.4
Test	5.1346	21.75%	169.8

Table 9: Performance Metrics with Embedding Dimension 600

Data Type	Loss	Accuracy	Perplexity
Training	4.6791	23.42%	107.7
Validation	5.2206	21.86%	185.0
Test	5.1671	21.42%	175.4

Table 10: Performance Metrics with Dropout = 0.3

Data Type	Loss	Accuracy	Perplexity
Training	6.0019	14.28%	404.2
Validation	6.0861	14.07%	439.7
Test	5.9974	14.06%	402.4

Table 11: Performance Metrics with 4 Layers