Thapar Institute of Engineering and Technology, Patiala Electrical and Instrumentation Engineering (EIED)

UCS701

Theory of Computation MID-SEMESTER TEST (MST)

BE-Electrical and Computer, VII Semester, 2023-24

October 7, 2023

Saturday, 3PM

Duration: 2 Hrs

Max. Marks: 35

Name of Faculty:

Dr. Ashish Gupta

General Instructions: Attempt all questions with proper Justification. Without Justification Zero marks will be awarded.

Notation: $n_a(w)$ represents the number of occurrences of the symbol 'a' in the string 'w'.

- 1. (a) Use Thompson's construction to draw the NFA (No DFA required) for the language $L=10^*(01+0)^*$ over $\Sigma=\{0,1\}$. [3]
 - (b) Design an NFA over $\Sigma = \{a,b\}$ to accept $L = \{a^m b^n | m+n \text{ is odd}\}$. Convert the NFA into DFA using subset construction. Use of Thompson's construction is optional. [4]
- 2. Consider the language $L = \{w \in \Sigma^* | n_a(w) \mod 3 \neq 0 \text{ or } n_b(w) \mod 2 = 0\}$. Systematically design a DFA accepting L by using the closure properties of regular languages. Also, demonstrate the steps for constructing a regular grammar (capable of generating the string in L) from a DFA for L. [5+2]
- 3. (a) Use properties of regular languages to prove that the following languages are not regular. $[1.5 \times 2]$
 - i) $L_1 = \{ w \in \{a, b\}^* \mid n_a(w) \neq n_b(w) \}$
 - ii) $L_2 = \{a^n b^k c^{n+k} : n \ge 0, k \ge 0\}$
 - (b) Using Pumping Lemma, prove that $L_{pal} = \{w \in \{a, b\}^* | w \text{ is palindrome}\}$ is not a regular language. [4]