

Licence 1^{ère} année, MATHÉMATIQUES ET CALCUL 2 Fiche de TD nº 4 : Séries

Exercice 1. Etudier la nature de la série de terme général u_n dans les cas suivants :

1.
$$u_n = \frac{n^2 + 1}{n^2}$$

$$2. \ u_n = \frac{2^n + n}{n2^n}$$

3.
$$u_n = \frac{n^2 + 1}{(\ln n)^2 \sqrt{n^6 + 2n + 3}}$$

4.
$$u_n = \frac{1}{n} \ln \left(1 + \frac{1}{n} \right)$$
 5. $u_n = \sin^2 \left(\pi + \frac{\pi}{n} \right)$ 6. $u_n = \frac{\arctan n}{n^2 + \cos^2 n + 1}$

$$5. u_n = \sin^2\left(\pi + \frac{\pi}{n}\right)$$

$$6. \ u_n = \frac{\arctan n}{n^2 + \cos^2 n + 1}$$

$$7. u_n = \frac{1}{n(\ln n)}$$

$$8. \ u_n = \frac{\operatorname{ch} \, n}{\operatorname{ch} \, 2n}$$

$$9. \ u_n = \frac{10^n}{n!}$$

$$10. \ u_n = \frac{n!}{n^n}$$

11.
$$u_n = \left(\frac{5n+7}{2n+1}\right)^n$$

11.
$$u_n = \left(\frac{5n+7}{2n+1}\right)^n$$
 12. $u_n = \left(\frac{n}{4n+1}\right)^n$

Exercice 2. Montrer que les séries suivantes sont convergentes et calculer leur somme :

1.
$$\sum_{n=0}^{\infty} \frac{1}{(n+6)(n+7)}$$

$$2. \sum_{n=1}^{\infty} \frac{1}{4n^2 - 1}$$

3.
$$\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n+1} + (n+1)\sqrt{n}}$$

$$4. \sum_{n=2}^{\infty} \frac{3^n + 2^n}{6^n}$$

5.
$$\sum_{n=0}^{\infty} \frac{n^3 - n + 2}{n!}$$

6.
$$\sum_{n=2}^{\infty} \frac{n^2 + 2}{(n-1)!}$$

Exercice 3. Montrer que les séries de terme général $u_n = \frac{(-1)^n}{\sqrt{n}}$ et $v_n = \frac{(-1)^n}{\sqrt{n}} + \frac{1}{n}$ ne sont pas de même nature (bien que $u_n \sim v_n$).

Exercice 4. Etudier la nature de la série de terme général u_n dans les cas suivants :

1.
$$u_n = (-1)^n$$

$$2. \ u_n = \frac{(-1)^n}{n^2 + 1}$$

3.
$$u_n = (-1)^n \left(\frac{2n+100}{3n+1}\right)^n$$

4.
$$u_n = \begin{cases} (-1)^k \frac{2}{5^k} & \text{si } n = 2k \\ (-1)^{k+1} \frac{4}{5^{k+1}} & \text{si } n = 2k+1 \end{cases}$$
6. $u_n = \frac{\cos n}{n}$
7. $u_n = \frac{\sin^3 n}{\sqrt{n+2}}$

si
$$n=2k$$

$$5. u_n = \frac{(-1)^n}{n \ln n}$$

6.
$$u_n = \frac{\cos r}{r}$$

7.
$$u_n = \frac{\sin^3 n}{\sqrt{n+2}}$$

8.
$$u_n = \frac{(\cos n)^3 (n+1)}{n^3}$$

Exercice 5. Montrer que les séries suivantes sont convergentes et calculer leur somme :

$$1. \sum_{n=2}^{\infty} \ln\left(1 - \frac{1}{n^2}\right)$$

2.
$$\sum_{n=2}^{\infty} (-1)^n \ln \left(\frac{n+1}{n-1} \right)$$

3.
$$\sum_{n=0}^{\infty} \frac{\sin(n\theta)}{2^n}, \quad \theta \in \mathbb{R}$$

$$4. \sum_{n=1}^{\infty} \frac{2n+n^2}{n!}$$

2.
$$\sum_{n=2}^{\infty} (-1)^n \ln\left(\frac{n+1}{n-1}\right)$$
3.
$$\sum_{n=0}^{\infty} \frac{\sin(n\theta)}{2^n}, \quad \theta \in \mathbb{R}$$
5.
$$\sum_{n=0}^{\infty} n^2 r^n \quad \text{avec} \quad |r| < 1$$

Exercice 6. Soient $(u_n)_{n\geq 1}$ une suite qui tend vers zéro et a,b,c trois réels tels que a+b+c=0. On pose $v_n=au_n+bu_{n+1}+cu_{n+2}$. Montrer que $\sum v_n$ converge et calculer sa limite.

Exercice 7. On admet que $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.

- 1. Montrer que la série de terme général $u_n = \frac{1}{n^2(n+1)^2}$ est convergente et calculer $\sum_{n=1}^{\infty} u_n$.
- 2. Montrer que la série de terme général $v_n = \frac{1}{(2n+1)^2}$ est convergente et calculer $\sum_{n=0}^{\infty} v_n$.

Exercice 8.

1. Soient $(u_n)_{n\geq 1}$ une suite de nombres réels positifs et $(v_n)_{n\geq 1}$ la suite déterminée par

$$v_n = u_{2n} + u_{2n+1}.$$

Montrer que $\sum v_n$ et $\sum u_n$ sont de même nature.

2. Soient $(u_n)_{n\geq 1}$ une suite de nombres réels positifs et $(v_n)_{n\geq 1}$ la suite déterminée par

$$v_n = \frac{u_n}{1 + u_n}.$$

Montrer que $\sum v_n$ et $\sum u_n$ sont de même nature. On pourra chercher à exprimer u_n en fonction de v_n .

Exercice 9. Pour $n \in \mathbb{N}$, on pose $w_n = (-1)^n a_n$ et $a_n = \frac{2^{2n} (n!)^2}{(2n+1)!}$.

- 1. Montrer que la suite (a_n) est décroissante.
- 2. Déterminer la nature de la série $\sum_{n\geq 1} -\ln \ \left(\frac{a_n}{a_{n-1}}\right)$.

En déduire la nature de la suite ($\ln (a_n)$) puis celle de la suite (a_n) .

3. Préciser alors la nature de la série $\sum_{n\geq 0} w_n$.

Exercice 10. On pose pour tout $n \ge 0$

$$u_n = \int_0^1 x^n e^{-x} \mathrm{d}x.$$

- 1. Montrer que la suite $(u_n)_{n\geq 0}$ est positive et décroissante.
- 2. Grace à une intégration par parties, établir une relation de récurrence entre u_n et u_{n+1} .
- 3. Montrer par récurrence que $u_n = \frac{n!}{e} \left(e \sum_{k=0}^n \frac{1}{k!} \right)$.
- 4. En revenant à la définition de u_n , montrer que

$$\frac{1}{e(n+1)} \le u_n \le \frac{1}{n+1}.$$

2

5. Quelle est la nature de la série $\sum u_n$? de $\sum \frac{u_n}{n}$? de $\sum (-1)^n u_n$?