### **Title Goes Here**

# Firewalls and Related Technologies

### Mike Reiter

Copyright © 2020 by Michael Reiter All rights reserved.

1

1

### **Basic Definitions**

- Firewall: A component or set of components that restricts services between two networks
  - often the two networks are the Internet and an "internal" network
- Bastion host: A computer system that must be highly secured because it is vulnerable to attack
  - usually is exposed to the Internet and is the main point of contact for remote users of the internal network
- Dual-homed host: A general-purpose computer with two or more network interfaces
- Network address translation (NAT): Procedure by which a router alters source or destination addresses in packets
  - not really a security technique, but can augment security and is often performed at a firewall

Copyright © 2020 by Michael Reiter All rights reserved.

2

### **Basic Definitions (cont.)**

- Packet filtering: Selectively passing or blocking packets, usually while routing them from one network to another
  - Can occur in a router, bridge, or host
  - Also called "screening"
- Perimeter network: A network added between an external network and a protected (internal) network, in order to provide an additional level of security
  - Also called a "demilitarized zone" (DMZ)
- Proxy: A program that interacts with external servers on behalf of internal clients
- Virtual private network: Packets that are internal to a private network pass across a public network, without this being obvious to hosts on the internal network

Copyright © 2020 by Michael Reiter All rights reserved.

3

3

### **Packet Filtering** ■ Packet filter selectively passes packets from one External network interface to another network Usually done within a router between external and internal networks screening ■ packet filter is called a router 'screening router" Internal network ■ Can be done by a dedicated network element ▼ then called a "packet filtering bridge" ■ harder to detect and attack than screening routers Copyright © 2020 by Michael Reiter

### **Data Available to a Packet Filter**

- Header data
  - **▼** IP source and destination addresses
  - Transport protocol (TCP, UDP, or ICMP)
  - **▼** TCP/UDP source and destination ports
  - **■** ICMP message type
  - Packet size
- Packet filter can look further into the packet
  - e.g., the URL being requested
- Whether the packet is well-formed
  - ▼ is packet the size it claims to be?
  - **▼** is it formatted properly for its destination port?

Copyright © 2020 by Michael Reiter All rights reserved.

5

5

### Data Available to Packet Filter (cont.)

- The interface the packet arrived on
- The interface the packet would leave on
- And if the filter keeps state ...
  - Whether this packet appears to be a response to another packet it has recently passed
  - How many packets have been seen recently to or from the same host
  - Whether this packet is identical to a recently sent packet
  - If this packet is part of a larger packet that was fragmented

Copyright © 2020 by Michael Reiter All rights reserved.

6

### **Actions Available to the Packet Filter**

- Send the packet toward its intended destination
- Drop the packet, without notifying the sender
- Reject the packet, with notification to the sender
  - e.g., an ICMP "destination unreachable" packet
- Log information about the packet
- Set off an alarm
- Modify the packet (e.g., NAT)
- Send the packet to other than its intended destination
  - ▼ e.g., a proxy or to enforce load balancing
- Modify the filtering rules
  - e.g., accept replies to a UDP packet, or stop all traffic from a host that has sent malformed packets

Copyright © 2020 by Michael Reiter All rights reserved.

7

7

# **Examples of Packet Filtering**

- Block all incoming connections from systems outside the internal network, except for SMTP connections
- Block all connections to or from systems you distrust
- Block or log all connections to specified domains
  - particularly common for pornographic sites
- Allow electronic mail and FTP, but disallow X11, rsh, rcp, ...

Copyright © 2020 by Michael Reiter

8

# **Pros and Cons of Packet Filtering**

### Advantages:

- One screening router can protect an entire network
- Simple packet filtering can be extremely efficient

### Disadvantages:

- Hard to configure and test
- Is susceptible to "failing open"
- Can be slow (even if simple)
  - **▼** filtering is incompatible with certain optimizations
- Cannot implement many useful policies
  - does not have access to user who initiated a packet
  - packets say what port they're for, but not what application will receive them

Copyright © 2020 by Michael Reiter All rights reserved.

9

9

### **Proxies** Special servers that **External** accept client requests network to servers and perform server them on client's behalf ■ generally transparent to **Proxy** client user and server server ■ Effective only when Internal network direct client-server interactions prevented **■** otherwise, proxy will be bypassed client Copyright © 2020 by Michael Reiter All rights reserved. 10

# **Types of Proxies**

- Usually used to control outbound connections, but can also be used to control inbound connections
  - **▼** controlling inbound connections often called "reverse proxying"
- Example proxy: ftp proxy that permits internal users to import files but prohibits them from exporting files
- Example reverse proxy: balancing incoming requests among multiple servers

Copyright © 2020 by Michael Reiter All rights reserved.

11

11

### **Advantages of Proxies**

- Can be good at logging
  - e.g., log only ftp commands, not all data transferred
- Can cache content
  - decreases response latency for client
- Can filter more intelligently than a packet filter
  - filter viruses, active content (Java, Javascript), etc.
- Can perform user-level authentication
  - take actions based on which user is issuing requests
- Can protect clients from malformed IP packets
  - **▼** generates new IP packets to clients

Copyright © 2020 by Michael Reiter All rights reserved.

12

# **Disadvantages of Proxies**

- Proxy availability lags behind introduction of new services
- Typically a new proxy is required for each service
  - though some can be run through generic proxies
- Usually require modifications to client applications

Copyright © 2020 by Michael Reiter All rights reserved.

13

13

# **Network Address Translation (NAT)**



- Can dynamically allocate external address and port for each connection initiated by an internal host
- Not only (or even primarily) a security technology
  - mainly used to multiplex numerous IP addresses over a few

Copyright © 2020 by Michael Reiter All rights reserved.

14

# **Security Advantages of NAT**

### Enforces firewall's control over outbound connections

- if a connection bypasses the firewall, it won't work because its address is not valid on the external network
- Temporally restricts incoming traffic
  - dynamic translation allows only packets that are part of a current interaction initiated from the inside
  - once translation goes away, address that the attacker knows is no longer usable
- Helps to conceal internal network configuration
  - how many internal hosts there are, for example

Copyright © 2020 by Michael Reiter All rights reserved.

15

15

### **Disadvantages of NAT**

- Dynamic allocation requires state information that is not always available
  - How long should the translator keep a translation for the external address inserted into an outbound UDP packet?
- Embedded IP addresses are a problem for NAT
  - NAT systems normally translate the header, but some protocols bury IP addresses elsewhere
- NAT can break authentication
  - NAT is incompatible with IPSec transport mode
  - Integrity-protected, embedded IP addresses are hopeless
- Logging after translation yields confusing logs
  - "Reconstructing" log requires precise clock synchronization and time correlation

Copyright © 2020 by Michael Reiter

16

# **Virtual Private Networks (VPNs)**

- Cryptographic techniques applied to traffic between two distant networks or between end host and network
  - IPSec the most widely used cryptographic protection, most commonly in tunnel mode
- Where to end tunnel?



Copyright © 2020 by Michael Reiter All rights reserved. 17

17

### **Pros and Cons of VPNs**

### Advantages:

- Provide strong confidentiality and authenticity of traffic
  - **▼** channel authenticated only to granularity of tunnel endpoint
- Enables remote use of protocols that would be difficult to secure any other way

### Disadvantages:

- VPNs involve dangerous network connections
  - particularly from mobile devices, which may come under attack
  - ideally, client VPN software disables other uses of client network interface while VPN is in use
- VPNs extend the perimeter that must be secured

Copyright © 2020 by Michael Reiter All rights reserved. 18







### **Motivation for Perimeter Network**

- Many networking technologies permit any machine on the network to see all traffic on the network
  - Ethernet, Token ring, FDDI
- All traffic on the perimeter network should be
  - **▼** to/from External network
  - **▼** to/from bastion host
- Thus, no entirely internal traffic should be exposed to an attacker who compromises the bastion host

Copyright © 2020 by Michael Reiter All rights reserved.

22

### **Bastion Host**

- Main point of contact for incoming connections from external network
  - For incoming email (SMTP) sessions to deliver electronic mail to the site
  - For incoming FTP connections to site's anonymous FTP server
  - For incoming DNS queries about the site
- Outbound services handled one of two ways
  - Routers set up to allow direct internal-to-external connections
  - **▼** Proxy runs on bastion host
    - Internal filter permits internal clients to connect to proxy server on bastion host

Copyright © 2020 by Michael Reiter All rights reserved.

23

23

### **Interior Router**

- Sometimes called the "choke router"
- Performs most of the packet filtering for your firewall
  - **▼** Permits some internal hosts to connect to external servers
    - **▼** Possible examples are HTTP and telnet
  - For other services, internal hosts forced connect to proxies on bastion host
- Should permit connections only to selected internal hosts
  - And usually only from the bastion host

Copyright © 2020 by Michael Reiter All rights reserved.

24

### **Exterior Router**

- Sometimes called the "access router"
- Filtering rules
  - Duplicate many of the filtering rules on the internal router
  - Permit outbound connections from bastion host proxies

### Two main jobs

- Filters incoming packets with forged source addresses
  - Prevents outsiders from forging packets that
    - **¬** appear to be from hosts on the perimeter network
    - appear to be from hosts on the internal network
- Filters outgoing packets with forged source addresses
  - An important part of being a good "network citizen"

Copyright © 2020 by Michael Reiter All rights reserved.

25

25





# **Independent Screened Subnets (cont.)**

- Provides redundancy
  - No single point of failure for Internet connectivity
- Greater privacy, e.g.,
  - **▼** External network 1 = Internet
  - External network 2 = Supplier network
- Run inbound services across one, outbound across the other
  - Both are easier to secure if separated

Copyright © 2020 by Michael Reiter All rights reserved.

28









# **Multiple Interior Routers (cont.)**

- Though dangerous, it provides redundancy and increased performance ... but ...
- If redundancy is motivating factor, then independent screened subnets are better
- If performance is motivating factor, then either
  - A lot of traffic going to perimeter network is not then going to external network
    - **▼** This probably means a misconfiguration
  - The exterior router is much faster than your interior router
    - Better to upgrade your interior router than buy another

Copyright © 2020 by Michael Reiter All rights reserved.

33

33





# Types of Packet Filtering: By Address

- Simplest form of filtering
- Restricts flow based on source and/or destination addresses
  - Does not consider the protocol involved
- Mainly used to prevent insertion of packets with forged source addresses

| Rule | Direction | Source address | Destination address | Action |
|------|-----------|----------------|---------------------|--------|
| Α    | Inbound   | Internal       | Any                 | Deny   |

### ■ Notation

- **▼** "Inbound" is relative to internal network
- "Internal" and "Any" are abbreviations for IP address ranges
- Rules applied in sequential order until match is found

Copyright © 2020 by Michael Reiter All rights reserved.

36

# Types of Packet Filtering: By Service

- Filtering by service is more common, but also more complex
- As an example, consider filtering telnet
- Outbound telnet
  - **▼** Characteristics of outgoing packets
    - Telnet is a TCP-based service, so the IP packet type is TCP
    - **■** The TCP destination port is 23
    - **■** The TCP source port number is a number y > 1023
    - First outgoing packet will not have the ACK bit set; others will
  - Characteristics of incoming packets
    - **▼** TCP source port is 23
    - $\blacksquare$  TCP destination port is y
    - Has the ACK bit set

Copyright © 2020 by Michael Reiter All rights reserved.

37

37

# Packet Filtering by Service (cont.)

### **■** Example filtering rules

| Rule | Direction | Source address | Destination address | Protocol | Source<br>port | Destination port | ACK<br>set | Action |
|------|-----------|----------------|---------------------|----------|----------------|------------------|------------|--------|
| Α    | Out       | Internal       | Any                 | ТСР      | >1023          | 23               | Either     | Permit |
| В    | In        | Any            | Internal            | ТСР      | 23             | >1023            | Yes        | Permit |
| С    | Either    | Any            | Any                 | Any      | Any            | Any              | Either     | Deny   |

- Does *not* enforce telnet characteristics exactly
- In fact, permits some seemingly dangerous communication
  - Example: Inbound packets with source port 23 to any port > 1023 will be accepted, if the ACK bit is set
  - Only way to fix this is by keeping some state, or using a proxy

Copyright © 2020 by Michael Reiter All rights reserved. 38

# **Effect of Order on Filtering**

- **■** Consider the following example
  - You're in a corporation working on a project with a university
  - **▼** Corporate network is 172.16 (i.e., 172.16.0.0 to 172.16.255.255)
  - **■** University owns network 10 (i.e., 10.0.0.0 to 10.255.255.255)
  - You're going to link these networks together using a packet filter
  - You want to disallow all Internet access over this link
  - Project uses the 172.16.6 subnet
  - University's 10.1.99 subnet has lots of hostile activity
- Suppose we try the following filtering rules

| Rule | Source address | Destination address | Action |
|------|----------------|---------------------|--------|
| Α    | 10.*.*.*       | 172.16.6.*          | Permit |
| В    | 10.1.99.*      | 172.16.*.*          | Deny   |
| С    | Any            | Any                 | Deny   |

Copyright © 2020 by Michael Reiter All rights reserved.

39

39

### **Effect of Order on Filtering (cont.)**

■ Consider several example packets, assuming rules are applied in order ABC

| Packet | Source address | Destination address | Desired action | Actual action |
|--------|----------------|---------------------|----------------|---------------|
| 1      | 10.1.99.1      | 172.16.1.1          | Deny           | Deny (B)      |
| 2      | 10.1.99.1      | 172.16.6.1          | Permit         | Permit (A)    |
| 3      | 10.1.1.1       | 172.16.6.1          | Permit         | Permit (A)    |
| 4      | 10.1.1.1       | 172.16.1.1          | Deny           | Deny (C)      |
| 5      | 192.168.3.4    | 172.16.1.1          | Deny           | Deny (C)      |
| 6      | 192.168.3.4    | 172.16.6.1          | Deny           | Deny (C)      |

Copyright © 2020 by Michael Reiter All rights reserved.

40

# **Effect of Order on Filtering (cont.)**

- Now suppose the firewall reorders the rules by the number of significant bits in the source address field, resulting in BAC
  - More specific rules are applied first

| Packet | Source address | Destination address | Desired action | Actual action |
|--------|----------------|---------------------|----------------|---------------|
| 1      | 10.1.99.1      | 172.16.1.1          | Deny           | Deny (B)      |
| 2      | 10.1.99.1      | 172.16.6.1          | Permit         | Deny (B)      |
| 3      | 10.1.1.1       | 172.16.6.1          | Permit         | Permit (A)    |
| 4      | 10.1.1.1       | 172.16.1.1          | Deny           | Deny (C)      |
| 5      | 192.168.3.4    | 172.16.1.1          | Deny           | Deny (C)      |
| 6      | 192.168.3.4    | 172.16.6.1          | Deny           | Deny (C)      |

**■** Turns out that B is redundant, anyway

Copyright © 2020 by Michael Reiter All rights reserved.

41

41

# Proxying Proxy server User's illusion Real server Redirection of client request to proxy server usually happens by one of the following four approaches Proxy-aware client application software Proxy-aware client operating system Proxy-aware user procedures (and so the illusion diminishes) Proxy-aware router redirects client request Copyright © 2020 by Michael Reiter All rights reserved.

# **How Proxying Works**

### Proxy-aware client application software

- Not available for all applications and platforms
- Generally requires user configuration, and so may not be transparent

### ■ Proxy-aware client operating system

- When the application tries to make a connection, the O/S invokes the proxy server instead
- Easiest to do this using a dynamically linked library that handles networking calls; otherwise, network drivers need to be modified
- Is fairly fragile; problems arise with
  - Statically linked software
  - Software that provides its own dynamically linked libraries for networking functions
  - **▼** Protocols that use embedded port numbers or IP addresses
  - Software that manipulates connections at a low level

Copyright © 2020 by Michael Reiter All rights reserved.

43

43

# **How Proxying Works (cont.)**

### Proxy-aware user procedures

- User tells (unmodified) client to connect to proxy server, and then tells proxy server which host to connect to
- Example: To retrieve a file from anonymous ftp server ftp.foo.com:
  - User, using any ftp client, connects to proxy server, instead of ftp.foo.com
  - At username prompt, user specifies both account name and real server she wants to connect to: anonymous@ftp.foo.com
- Of course, this is no longer transparent to user

### ■ Proxy-aware router

- Also called "hybrid proxying" or "transparent proxying"
- Most transparent of the options: client is unchanged
- Also difficult to administer, since it inherits disadvantages of both packet filtering and proxying

Copyright © 2020 by Michael Reiter

44

# **Types of Proxy Servers**

- "Dedicated" or "Application-level"
  - Understands and interprets the commands in the protocol it proxies
  - Can do intelligent processing
    - Selectively filter or log application-specific commands
    - **¬** Caching, e.g., in an HTTP proxy
- "Generic" or "Circuit-level"
  - Roughly equivalent to a packet filter; does not interpret protocolspecific commands or data
  - Does not work for protocols that embed ports or IP addresses in application payload (e.g., FTP)
  - Automatically protect against malformed packet headers and packet fragmentation problems

Copyright © 2020 by Michael Reiter All rights reserved.

45

45

# An Example Firewall

### **Assumptions**

- Screened subnet architecture
- There are hosts on the internal network that fulfill roles of
  - **■** Mail server
  - **■** Usenet news server
  - **■** DNS server
  - **▼** Clients for various Internet services
- Internal users are assumed trustworthy
- All hosts use properly assigned and routed IP addresses
- Separate network numbers for perimeter and internal nets

Copyright © 2020 by Michael Reiter All rights reserved. 46

# An Example Firewall: HTTP and HTTPS

- Incoming HTTP(S): Web server on bastion host
- Outgoing HTTP(S): Two options
  - **▼** Packet filtering
    - Allow internal hosts to create connections to external hosts' port 80, port 443, and any port above 1023
    - Internal hosts can access any port above 1023 with no help from the firewall ⊗
  - **▼** Proxy server
    - Standard web browsers have built-in support for proxy access ©
    - Supports HTTP(S) access to any port ©
    - **▼** Can provide caching ③
  - Let's assume a proxy server here

Copyright © 2020 by Michael Reiter All rights reserved.

47

47

### An Example Firewall: SMTP

- Underlying thinking
  - **▼** Connection from bastion host to arbitrary internal host is dangerous
  - Connection from arbitrary external hosts to internal host is dangerous
- Incoming SMTP
  - All incoming mail goes to SMTP server on bastion host
    - Achieved using DNS MX records
  - Bastion host passes all incoming mail to single secured internal SMTP server
- Outgoing SMTP

■ All internal hosts direct mail to internal SMTP server

Copyright © 2020 by Michael Reiter All rights reserved. 48

# An Example Firewall: Telnet

- Incoming telnet: Disallow
- Outgoing telnet: Two options
  - ▼ Proxy server
    - Would be needed if users were untrusted
      - proxy authenticates and monitors them
      - not the case here
    - **▼** Proxy server imposes modified clients or user procedures ⊗
  - **▼** Packet filtering
    - Easier alternative; let's choose this

Copyright © 2020 by Michael Reiter All rights reserved.

49

49

### An Example Firewall: SSH

- Permit remote access via SSH (safer than telnet)
- Inbound SSH: Two options
  - SSH to bastion host, and then login to internal target
    - Bastion host can verify that SSH is coming in ©
    - Bastion host SSH server can be carefully configured ©
    - Requires user accounts on bastion host ⊗⊗
  - **▼** SSH to internal hosts

    - Hopefully this risk will be small, since internal users are trusted
  - **▼** We'll assume SSH to internal hosts
- Outbound SSH: permit, but warn users of port forwarding
  - Outgoing SSH can enable incoming attacks if port forwarding is on

Copyright © 2020 by Michael Reiter All rights reserved. 50

### An Example Firewall: FTP

- Outbound normal-mode FTP requires incoming connection to an arbitrary port over 1023
  - Allowing this without doing anything else is too permissive
- Outbound FTP: Two (realistic) choices
  - Passive mode via packet filtering, or normal mode via proxies
  - Here, let's do both
    - **▼** Permit passive mode where we can impose clients that support it
      - Note: internal hosts must be able to access any port over 1023, since that may be the data channel <sup>(3)</sup>
    - **▼** Proxy ftp where we can't, imposing new user procedures
  - Recall that if we wanted to monitor ftp usage, we'd have to proxy exclusively (but we don't)
- Inbound FTP: Disallow except for anonymous on bastion host

Copyright © 2020 by Michael Reiter All rights reserved.

51

51

### An Example Firewall: NNTP

- Need to have a news server on internal network
  - To support internal newsgroups
  - To support older Unix-based (non-NNTP) news clients, which read news from local files
- News server an administrative pain for bastion host
  - **▼** Fail often
  - If anything, put it on a different bastion host, but that's expensive ③
- Here, let's assume we permit direct NNTP transfers from selected external news feeds to our internal news server
  - A somewhat dangerous posture ③
  - Should use NNTP authentication in this case

Copyright © 2020 by Michael Reiter All rights reserved. 52

# An Example Firewall: DNS

- DNS network activities include lookups and zone transfers
  - Zone transfer copies zone from a *primary* server to a *secondary* one
  - Zone transfers happen among servers who serve queries for the same zone
- Here, let's assume we put
  - a secondary server on the bastion host, to serve external queries
  - a primary server on an internal host, to serve internal ones
- Note: no information hiding in secondary server

Copyright © 2020 by Michael Reiter All rights reserved.

53

53

# An Example Firewall: Interior Router

| Rule    | Dir | Source<br>address | Dest.<br>Address | Protocol | Source port | Dest.<br>port | ACK<br>set | Action |
|---------|-----|-------------------|------------------|----------|-------------|---------------|------------|--------|
| Spoof-1 | In  | Internal          | Any              | Any      | Any         | Any           | Any        | Deny   |
| Spoof-2 | Out | External          | Any              | Any      | Any         | Any           | Any        | Deny   |

### ■ Blocks packets with forged IP source addresses

| Rule   | Dir | Source<br>address | Dest.<br>Address | Protocol | Source port | Dest.<br>port | ACK<br>set | Action |
|--------|-----|-------------------|------------------|----------|-------------|---------------|------------|--------|
| HTTP-1 | Out | Internal          | Bastion          | ТСР      | >1023       | 80            | Any        | Permit |
| HTTP-2 | In  | Bastion           | Internal         | TCP      | 80          | >1023         | Yes        | Permit |

Permit internal client to connect to HTTP server on proxy

Copyright © 2020 by Michael Reiter All rights reserved.

54

| Rule     | Dir | Source<br>address | Dest.<br>Address | Protocol | Source<br>port | Dest.<br>port | ACK<br>set | Action |
|----------|-----|-------------------|------------------|----------|----------------|---------------|------------|--------|
| Telnet-1 | Out | Internal          | Any              | ТСР      | >1023          | 23            | Any        | Permit |
| Telnet-2 | In  | Any               | Internal         | ТСР      | 23             | >1023         | Yes        | Permit |

### ■ Permits outbound telnet connections

| Rule  | Dir | Source<br>address | Dest.<br>Address | Protocol | Source<br>port | Dest.<br>port | ACK<br>set | Action |
|-------|-----|-------------------|------------------|----------|----------------|---------------|------------|--------|
| SSH-1 | Out | Internal          | Any              | ТСР      | Any            | 22            | Any        | Permit |
| SSH-2 | In  | Any               | Internal         | ТСР      | 22             | Any           | Yes        | Permit |

### ■ Permits outbound ssh connections

■ "Any" instead of ">1023" since some forms of authentication require SSH clients to use ports at or below 1023

Copyright © 2020 by Michael Reiter All rights reserved.

55

55

### An Example Firewall: Internal Router (cont.)

| Rule  | Dir | Source<br>address | Dest.<br>Address | Protocol | Source<br>port | Dest.<br>port | ACK<br>set | Action |
|-------|-----|-------------------|------------------|----------|----------------|---------------|------------|--------|
| SSH-3 | In  | Any               | Internal         | ТСР      | Any            | 22            | Any        | Permit |
| SSH-4 | Out | Internal          | Any              | ТСР      | 22             | Any           | Yes        | Permit |

### ■ Permit incoming SSH connections

| Rule  | Dir | Source<br>address | Dest.<br>Address | Protocol | Source<br>port | Dest.<br>port | ACK<br>set | Action |
|-------|-----|-------------------|------------------|----------|----------------|---------------|------------|--------|
| FTP-1 | Out | Internal          | Any              | ТСР      | >1023          | 21            | Any        | Permit |
| FTP-2 | In  | Any               | Internal         | ТСР      | 21             | >1023         | Yes        | Permit |

 Allow outgoing command-channel connections to FTP servers, for use by passive-mode internal clients

Copyright © 2020 by Michael Reiter All rights reserved.

56

| Rule  | Dir | Source<br>address | Dest.<br>Address | Protocol | Source<br>port | Dest.<br>port | ACK<br>set | Action |
|-------|-----|-------------------|------------------|----------|----------------|---------------|------------|--------|
| FTP-3 | Out | Internal          | Any              | ТСР      | >1023          | >1023         | Any        | Permit |
| FTP-4 | In  | Any               | Internal         | TCP      | >1023          | >1023         | Yes        | Permit |

- Allow outgoing data-channel connections to FTP servers, for use by passive-mode internal clients
  - A very permissive rule, but required to support passive-mode FTP

| Rule  | Dir | Source<br>address | Dest.<br>Address | Protocol | Source<br>port | Dest.<br>port | ACK<br>set | Action |
|-------|-----|-------------------|------------------|----------|----------------|---------------|------------|--------|
| FTP-5 | Out | Internal          | Bastion          | ТСР      | >1023          | 21            | Any        | Permit |
| FTP-6 | In  | Bastion           | Internal         | ТСР      | 21             | >1023         | Yes        | Permit |

■ Allow internal, normal-mode FTP clients to make commandchannel connection to FTP proxy on bastion host

Copyright © 2020 by Michael Reiter All rights reserved.

57

57

### An Example Firewall: Internal Router (cont.)

| Rule  | Dir | Source<br>address | Dest.<br>Address | Protocol | Source<br>port | Dest.<br>port | ACK<br>set | Action |
|-------|-----|-------------------|------------------|----------|----------------|---------------|------------|--------|
| FTP-7 | In  | Bastion           | Internal         | ТСР      | Any            | 6000-<br>6020 | Any        | Deny   |
| FTP-8 | In  | Bastion           | Internal         | ТСР      | 20             | >1023         | Any        | Permit |
| FTP-9 | Out | Internal          | Bastion          | TCP      | >1023          | 20            | Yes        | Permit |

- Permits FTP data connections from proxy server on bastion host to normal-mode internal FTP clients
- FTP-7 prevents attacker on bastion host from attacking internal X11 servers via hole created by FTP-8 and FTP-9
  - If other servers are listening on internal ports above 1023, similar rules should be added for them
  - Trying to list things to deny (ala FTP-7) is a losing battle, but the best that can be done in this case

Copyright © 2020 by Michael Reiter All rights reserved.

58

| Rule   | Dir | Source<br>address       | Dest.<br>Address        | Protocol | Source<br>port | Dest.<br>port | ACK<br>set | Action |
|--------|-----|-------------------------|-------------------------|----------|----------------|---------------|------------|--------|
| SMTP-1 | Out | Internal<br>SMTP server | Bastion                 | ТСР      | >1023          | 25            | Any        | Permit |
| SMTP-2 | In  | Bastion                 | Internal<br>SMTP server | ТСР      | 25             | >1023         | Yes        | Permit |

### ■ Permit outgoing mail from internal mail server to bastion host

| Rule   | Dir | Source<br>address       | Dest.<br>Address        | Protocol | Source<br>port | Dest.<br>port | ACK<br>set | Action |
|--------|-----|-------------------------|-------------------------|----------|----------------|---------------|------------|--------|
| SMTP-3 | In  | Bastion                 | Internal<br>SMTP server | TCP      | >1023          | 25            | Any        | Permit |
| SMTP-4 | Out | Internal<br>SMTP server | Bastion                 | TCP      | 25             | >1023         | Yes        | Permit |

■ Permit incoming mail from bastion host to internal mail server

Copyright © 2020 by Michael Reiter All rights reserved.

59

59

# An Example Firewall: Internal Router (cont.)

| Rule   | Dir | Source<br>address       | Dest.<br>Address        | Protocol | Source<br>port | Dest.<br>port | ACK<br>set | Action |
|--------|-----|-------------------------|-------------------------|----------|----------------|---------------|------------|--------|
| NNTP-1 | Out | Internal<br>NNTP server | NNTP feed server        | ТСР      | >1023          | 119           | Any        | Permit |
| NNTP-2 | In  | NNTP feed server        | Internal<br>NNTP server | ТСР      | 119            | >1023         | Yes        | Permit |

### ■ Allow outgoing news from internal server to service provider

| Rule   | Dir | Source<br>address       | Dest.<br>Address        | Protocol | Source<br>port | Dest.<br>port | ACK<br>set | Action |
|--------|-----|-------------------------|-------------------------|----------|----------------|---------------|------------|--------|
| NNTP-3 | In  | NNTP feed server        | Internal<br>NNTP server | TCP      | >1023          | 119           | Any        | Permit |
| NNTP-4 | Out | Internal<br>NNTP server | NNTP feed server        | ТСР      | 119            | >1023         | Yes        | Permit |

Allow incoming news from service provider to internal server

Copyright © 2020 by Michael Reiter All rights reserved.

60

| Rule  | Dir | Source<br>address   | Dest.<br>Address    | Protocol | Source<br>port | Dest.<br>port | ACK<br>set | Action |
|-------|-----|---------------------|---------------------|----------|----------------|---------------|------------|--------|
| DNS-1 | Out | Internal DNS server | Bastion             | UDP      | 53             | 53            |            | Permit |
| DNS-2 | In  | Bastion             | Internal DNS server | UDP      | 53             | 53            |            | Permit |

 Allow UDP-based queries & answers between internal DNS server & bastion DNS server

| Rule  | Dir | Source<br>address   | Dest.<br>Address    | Protocol | Source<br>port | Dest.<br>port | ACK<br>set | Action |
|-------|-----|---------------------|---------------------|----------|----------------|---------------|------------|--------|
| DNS-3 | Out | Internal DNS server | Bastion             | ТСР      | >1023          | 53            | Any        | Permit |
| DNS-4 | In  | Bastion             | Internal DNS server | ТСР      | 53             | >1023         | Yes        | Permit |

■ Allow TCP-based queries from internal DNS server to bastion DNS server, and their responses

Copyright © 2020 by Michael Reiter All rights reserved.

61

61

### An Example Firewall: Internal Router (cont.)

| Rule  | Dir | Source<br>address   | Dest.<br>Address    | Protocol | Source<br>port | Dest.<br>port | ACK<br>set | Action |
|-------|-----|---------------------|---------------------|----------|----------------|---------------|------------|--------|
| DNS-5 | In  | Bastion             | Internal DNS server | TCP      | >1023          | 53            | Any        | Permit |
| DNS-6 | Out | Internal DNS server | Bastion             | ТСР      | 53             | >1023         | Yes        | Permit |

■ Allow TCP-based queries from bastion DNS server to internal DNS server, and their responses

| Rule      | Dir | Source<br>address | Dest.<br>Address | Protocol | Source<br>port | Dest.<br>port | ACK<br>set | Action |
|-----------|-----|-------------------|------------------|----------|----------------|---------------|------------|--------|
| Default-1 | Out | Any               | Any              | Any      | Any            | Any           | Any        | Deny   |
| Default-2 | In  | Any               | Any              | Any      | Any            | Any           | Any        | Deny   |

■ Deny anything not explicitly allowed by the preceding rules

Copyright © 2020 by Michael Reiter All rights reserved.

62