13 Raindrops of different sizes fall with different terminal velocities through air. The table shows the measured value of the terminal velocity for raindrops of different sizes.

Raindrop size	Drop diameter / mm	Terminal velocity / m s ⁻¹	
small	0.5	2.1	
medium	2.0	6.5	
large	5.0	9.1	

(a)	Derive, using Stokes	' law, the following	expression	for the terminal	velocity v of a
spherical raindrop in terms of its radius r .					

$$v = \frac{2g\rho r^2}{9\eta}$$

where ρ is the density of rainwater and η is the viscosity of air.

You should ignore upthrust.

(2)

(b) Show that the expression given in (a) produces a value of about 800 m s⁻¹ for the terminal velocity of a large raindrop.

$$\rho = 1.0 \times 10^3 \text{ kg m}^{-3}$$

 $\eta = 1.8 \times 10^{-5} \text{ Pa s}$

(2)

(c) Explain whether Stokes' law is suitable for calculating the terminal velocity of raindrops.