Problem Set 3.5, page 190

- **1** (a) Row and column space dimensions = 5, nullspace dimension = 4, $\dim(N(A^T))$ = 2 sum 5+5+4+2=16=m+n
 - (b) Column space is \mathbb{R}^3 ; left nullspace contains only 0.
- 2 A: Row space basis = row 1 = (1,2,4); nullspace (-2,1,0) and (-4,0,1); column space basis = column 1 = (1,2); left nullspace (-2,1). B: Row space basis = both rows = (1,2,4) and (2,5,8); column space basis = two columns = (1,2) and (2,5); nullspace (-4,0,1); left nullspace basis is empty because the space contains only y = 0: the rows of B are independent.
- 3 Row space basis = first two rows of U; column space basis = pivot columns (of A not U) = (1,1,0) and (3,4,1); nullspace basis (1,0,0,0,0), (0,2,-1,0,0), (0,2,0,-2,1); left nullspace (1,-1,1) = last row of $E^{-1}=L$.
- **4** (a) $\begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$ (b) Impossible: r + (n-r) must be 3 (c) $\begin{bmatrix} 1 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} 9 & -3 \\ 3 & -1 \end{bmatrix}$
 - (e) Impossible Row space = column space requires m=n. Then m-r=n-r; nullspaces have the same dimension. Section 4.1 will prove N(A) and $N(A^T)$ orthogonal to the row and column spaces respectively—here those are the same space.
- **5** $A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 0 \end{bmatrix}$ has those rows spanning its row space. $B = \begin{bmatrix} 1 & -2 & 1 \end{bmatrix}$ has the same rows spanning its nullspace and $AB^{\mathrm{T}} = 0$.
- **6** A: dim **2**, **2**, **2**, **1**: Rows (0,3,3,3) and (0,1,0,1); columns (3,0,1) and (3,0,0); nullspace (1,0,0,0) and (0,-1,0,1); $N(A^{T})(0,1,0)$. B: dim **1**, **1**, **0**, **2** Row space (1), column space (1,4,5), nullspace: empty basis, $N(A^{T})(-4,1,0)$ and (-5,0,1).
- 7 Invertible 3 by 3 matrix A: row space basis = column space basis = (1,0,0), (0,1,0), (0,0,1); nullspace basis and left nullspace basis are *empty*. Matrix $B = \begin{bmatrix} A & A \end{bmatrix}$: row space basis (1,0,0,1,0,0), (0,1,0,0,1,0) and (0,0,1,0,0,1); column space basis

Solutions to Exercises 67

(1,0,0), (0,1,0), (0,0,1); nullspace basis (-1,0,0,1,0,0) and (0,-1,0,0,1,0) and (0,0,-1,0,0,1); left nullspace basis is empty.

- **8** $\begin{bmatrix} I & 0 \end{bmatrix}$ and $\begin{bmatrix} I & I; & 0 & 0 \end{bmatrix}$ and $\begin{bmatrix} 0 \end{bmatrix} = 3$ by 2 have row space dimensions = 3, 3, 0 = column space dimensions; nullspace dimensions 2, 3, 2; left nullspace dimensions 0, 2, 3.
- 9 (a) Same row space and nullspace. So rank (dimension of row space) is the same
 - (b) Same column space and left nullspace. Same rank (dimension of column space).
- **10** For rand (3), almost surely rank= 3, nullspace and left nullspace contain only (0,0,0). For rand (3,5) the rank is almost surely 3 and the dimension of the nullspace is 2.
- **11** (a) No solution means that r < m. Always $r \le n$. Can't compare m and n here.
 - (b) Since m r > 0, the left nullspace must contain a nonzero vector.
- **12** A neat choice is $\begin{bmatrix} 1 & 1 \\ 0 & 2 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 1 & 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 1 \\ 2 & 4 & 0 \\ 1 & 0 & 1 \end{bmatrix}; \ r + (n-r) = n = 3 \text{ does}$ not match 2+2=4. Only $\boldsymbol{v}=\boldsymbol{0}$ is in both $\boldsymbol{N}(A)$ and $\boldsymbol{C}(A^{\mathrm{T}})$.
- **13** (a) *False*: Usually row space \neq column space (they do not have the same dimension!)
 - (b) *True*: A and -A have the same four subspaces
 - (c) False (choose A and B same size and invertible: then they have the same four subspaces)
- **14** Row space basis can be the nonzero rows of U: (1,2,3,4), (0,1,2,3), (0,0,1,2); nullspace basis (0,1,-2,1) as for U; column space basis (1,0,0), (0,1,0), (0,0,1) (happen to have $\mathbf{C}(A) = \mathbf{C}(U) = \mathbf{R}^3$); left nullspace has empty basis.
- **15** After a row exchange, the row space and nullspace stay the same; (2, 1, 3, 4) is in the new left nullspace after the row exchange.
- **16** If $A\mathbf{v} = \mathbf{0}$ and \mathbf{v} is a row of A then $\mathbf{v} \cdot \mathbf{v} = 0$. So $\mathbf{v} = \mathbf{0}$.
- 17 Row space = yz plane; column space = xy plane; nullspace = x axis; left nullspace = x axis. For x + x: Row space = column space = x0, both nullspaces contain only the zero vector.

- **18** Row 3-2 row 2+ row 1= zero row so the vectors c(1,-2,1) are in the left nullspace. The same vectors happen to be in the nullspace (an accident for this matrix).
- 19 (a) Elimination on Ax = 0 leads to $0 = b_3 b_2 b_1$ so (-1, -1, 1) is in the left nullspace. (b) 4 by 3: Elimination leads to $b_3 2b_1 = 0$ and $b_4 + b_2 4b_1 = 0$, so (-2, 0, 1, 0) and (-4, 1, 0, 1) are in the left nullspace. Why? Those vectors multiply the matrix to give zero rows in vA. Section 4.1 will show another approach: Ax = b is solvable (b is in C(A)) exactly when b is orthogonal to the left nullspace.
- 20 (a) Special solutions (-1,2,0,0) and (-\frac{1}{4},0,-3,1) are perpendicular to the rows of R (and rows of ER).
 (b) A^Ty = 0 has 1 independent solution = last row of E⁻¹.
 (E⁻¹A = R has a zero row, which is just the transpose of A^Ty = 0).
- **21** (a) u and w (b) v and z (c) rank < 2 if u and w are dependent or if v and z are dependent (d) The rank of $uv^{T} + wz^{T}$ is 2.
- $\mathbf{22} \ A = \begin{bmatrix} \mathbf{u} & \mathbf{w} \\ \mathbf{v} \end{bmatrix} \begin{bmatrix} \mathbf{v}^{\mathrm{T}} \\ \mathbf{z}^{\mathrm{T}} \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 4 & 2 \\ 5 & 1 \end{bmatrix} \mathbf{u}, \mathbf{w} \text{ span column space;}$ $\mathbf{v}, \mathbf{z} \text{ span row space}$
- **23** As in Problem 22: Row space basis (3,0,3), (1,1,2); column space basis (1,4,2), (2,5,7); the rank of (3 by 2) times (2 by 3) cannot be larger than the rank of either factor, so rank ≤ 2 and the 3 by 3 product is not invertible.
- **24** $A^{T}y = d$ puts d in the *row space* of A; unique solution if the *left nullspace* (nullspace of A^{T}) contains only y = 0.
- **25** (a) $\mathit{True}(A \text{ and } A^{\mathrm{T}} \text{ have the same rank})$ (b) $\mathit{False}(A) = \begin{bmatrix} 1 & 0 \end{bmatrix}$ and A^{T} have very different left nullspaces (c) $\mathit{False}(A)$ can be invertible and unsymmetric even if $\mathit{C}(A) = \mathit{C}(A^{\mathrm{T}})$) (d) $\mathit{True}(A) = \mathit{True}(A)$ are always the same. If $A^{\mathrm{T}} = A$ or $A^{\mathrm{T}} = -A$ they are also the same for A^{T})
- **26** Choose d = bc/a to make $\begin{bmatrix} \mathbf{a} & \mathbf{b} \\ \mathbf{c} & \mathbf{d} \end{bmatrix}$ a rank-1 matrix. Then the row space has basis (a,b) and the nullspace has basis (-b,a). Those two vectors are perpendicular!
- 27 B and C (checkers and chess) both have rank 2 if $p \neq 0$. Row 1 and 2 are a basis for the row space of C, $B^T y = 0$ has 6 special solutions with -1 and 1 separated by a zero;

Solutions to Exercises 69

 $N(C^{\mathrm{T}})$ has (-1,0,0,0,0,0,0,1) and (0,-1,0,0,0,0,1,0) and columns 3,4,5,6 of I; N(C) is a challenge: one vector in N(C) is $(1,0,\ldots,0,-1)$.

- **28** $a_{11} = 1, a_{12} = 0, a_{13} = 1, a_{22} = 0, a_{32} = 1, a_{31} = 0, a_{23} = 1, a_{33} = 0, a_{21} = 1.$ (Need to specify the five moves).
- **29** The subspaces for $A=uv^{\mathrm{T}}$ are pairs of orthogonal lines (v and v^{\perp} , u and u^{\perp}). If B has those same four subspaces then B=cA with $c\neq 0$.
- 30 (a) AX = 0 if each column of X is a multiple of (1,1,1); dim(nullspace) = 3.
 (b) If AX = B then all columns of B add to zero; dimension of the B's = 6.
 (c) 3+6=dim(M^{3×3}) = 9 entries in a 3 by 3 matrix.
- **31** The key is equal row spaces. First row of A = combination of the rows of B: only possible combination (notice I) is 1 (row 1 of B). Same for each row so F = G.