Übungen zur Experimentalphysik 3

Prof. Dr. L. Oberauer Wintersemester 2010/2011 Übungsblatt 13 - 31. Januar 2011

Franziska Konitzer (franziska.konitzer@tum.de)

Aufgabe 1 (★) (2 Punkte)

Der Mensch kann mit bloßem Auge gelbes Licht wahrnehmen, wenn die Netzhaut eine Lichtleistung von $1.8 \cdot 10^{-18} \, W$ empfängt. Die Wellenlänge des gelben Lichts beträgt ca. 600 nm. Wie viele Photonen müssen je Sekunden auf die Netzhaut treffen?

Aufgabe 2 $(\star\star)$ (9 Punkte)

Unter dem Compton-Effekt versteht man die inelastische Streuung eines Photons an einem freien Elektron. Der Streuwinkel θ des gestreuten Photons wird gegen die Richtung des einfallenden Photons gemessen.

- a) Berechnen Sie die kinetische Energie der gestreuten Elektronen in Abhängigkeit vom Streuwinkel θ der Photonen und der Energie der einfallenden Photonen $E = h\nu$.
- b) Berechnen Sie die maximale Energie eines gestreuten Elektrons und die minimale Energie eines gestreuten Photons.
- c) Ein Festkörper wird mit Lichtquanten der Energie 21.2eV bestrahlt. Wie groß wäre der maximale Energieübertrag auf die Elektronen beim Compton-Effekt? Vergleichen Sie dies mit dem Energieübertrag auf die Photoelektronen beim Photoeffekt.

Hinweis: Rechnen Sie relativistisch.

Aufgabe 3 $(\star\star)$ (13 Punkte)

- a) Skizzieren Sie die Streuung eines Röntgenstrahls an einem ruhenden Elektron. Was passiert mit der Wellenlänge des gestreuten Photons? Welche Bedeutung hat die Größe $\frac{h}{m_e c}$? Diskutieren Sie den Streuprozess im Zusammenhang mit dem Welle-Teilchen Dualismus!
- b) Silber wird mit Licht der Wellenlänge $\lambda=150$ nm bestrahlt. Dabei treten Photoelektronen aus. Die Grenzwellenlänge des photoelektrischen Effekts bei Silber beträgt $\lambda_G=261$ nm. Berechnen Sie die Geschwindigkeit v der ausgelösten Elektronen.
- c) Ein Röntgenquant der Wellenlänge $\lambda_1 = 11.2 \times 10^{-12} \text{m}$ überträgt auf ein Elektron die Energie $\Delta E = 13.8 \text{keV}$. Wie groß ist die Wellenlänge λ_2 des gestreuten Röntgenquants?
- d) Unter welcher Bedingung wird die Wellenlänge des gestreuten Röntgenquants maximal?