第九章 神经网络

一、填空题

- 1 单层感知器无法解决的代表性问题是()。
- 2 从传统神经网络向深度学习转变过程中,具有里程碑式意义的新激活函数是()函数。
- 3 ReLU 函数在x = 1处的梯度值为 ()。

二、选择题

4 以下函数中不是常见的激活函数的有

$A. \ f(x) = x$	B. $f(x) = sign(x)$
$C.\ \ f(x) = \tanh\left(x\right)$	$D. f(x) = \sin(x)$

三、简答题

- 5 请从集成学习的角度解释 MLP 为何能解决 XOR 问题。
- 6 请简述传统 BP 网络的瓶颈问题及成因。
- 7 试分析等激活函数为线性函数时,无论网络多深其总体效果均为线性映射。
- 8 请在下图中标出输入门、输出门和遗忘门,并对其功能加以简要说明

9 请简述 1 种深度学习算法中常用的正则化方法

四、计算(画图) 题

- 10 手绘一副包含输入层、隐层和输出层的神经网络结构图,用于解决 Iris 数据库的分类问题。设训练样本标记为 $\{x_i \in \mathfrak{R}^4, y_i \in \{+1, -1\} | i=1, ..., 150\}$,请给出权重、信号、激活函数与损失函数的符号表达与计算公式。
- 11 请结合上题给出的网络结构和损失函数及相关符号表达,采用 BP 算法,写出损失函数对隐藏第 2 个神经元连接输出层第 1 个神经元的权重的导数的数学表达式。
- 12 对于一个 5 输入的 MP 神经元模型,采用 Logistic Sigmoidal 激活函数,输入样本为[0.2,0.5,-0.3,-0,7,0.6],对应连接权值为[0.2,0.3,-0.1,-0.5,0.9],偏置为-1,请计算该 MP 神经元模型的输出,并给出计算过程。
- 13 在下图的神经网络中,假设输入 $x_1 = 1$, $x_2 = 0.5$,网络的权值分别为: $w_1 = 1$, $w_2 = 2$, $w_3 = 3$, $w_4 = 4$, $w_5 = 0.5$, $x_6 = 0.6$,激活函数使用的是 sigmoid 核,计算网络前向传播之后的输出 y

- 14 假设 $f(z)=z^2$, $z=y^3+2y^2$, y=3x+1, 使用链式求导法则求 $\frac{df(z)}{x}$
- 15 假设当前单通道图像可以用 1 个 4×4 大小的矩阵 X 表示,两个不同的卷积 核分别为 conv1,conv2,请计算经过卷积(stride=1,边界用 0 补齐)和

max pooling (2×2)后的结果,给出计算过程。

-2	4	-1	-1	
-2	-2	4	-1	
-2	-2	4	4	
-2	-2	4	-2	
Х				

1	-0.5	-0.5
-0.5	1	-0.5
-0.5	-0.5	1

0.5	0.5	-1
0.5	0.5	-1
0.5	0.5	-1

Conv1

Conv2