Devoir pour Aho Alfred

Exercise

La diagonale d'un rectangle fait $212\,\mathrm{cm}$ et un des côtés de ce rectangle fait $180\,\mathrm{cm}$. Quelle est la longueur de l'autre côté du rectangle ?

Corrigé du devoir de Aho Alfred

Exercise

Il faut utiliser le théorème de Pythagore. On a :

 $diagonale^2 = côt\acute{e}_1^2 + côt\acute{e}_2^2.$

 $\mathrm{Donc}:$

 $212^2 = 180^2 + \text{côté}_2^2$

et donc :

 $\hat{\cot e_2} = \sqrt{212^2 - 180^2} = 112.$

Devoir pour Babbage Charles

Exercise

La diagonale d'un rectangle fait $353\,\mathrm{cm}$ et un des côtés de ce rectangle fait $225\,\mathrm{cm}$. Quelle est la longueur de l'autre côté du rectangle ?

Corrigé du devoir de Babbage Charles

Exercise

Il faut utiliser le théorème de Pythagore. On a :

 $diagonale^2 = côt\acute{e}_1^2 + côt\acute{e}_2^2.$

 $\mathrm{Donc}:$

 $353^2 = 225^2 + \text{côté}_2^2$

et donc :

 $c\hat{o}t\acute{e}_2 = \sqrt{353^2 - 225^2} = 272.$

Devoir pour Chaitin Gregory

Exercise

Calculer la longueur de la diagonale d'un rectangle de $111\,\mathrm{cm}$ sur $680\,\mathrm{cm}.$

Corrigé du devoir de Chaitin Gregory

Exercise

Avec le théorème de Pythagore, on a :

 $diagonale^2 = côt\acute{e}_1^2 + côt\acute{e}_2^2.$

Here :

 $\mathrm{diagonale}^2 = 111^2 + 680^2$

and then

diagonale = $\sqrt{111^2 + 680^2} = 689$.

Devoir pour Dijkstra Edsger

Exercise

La diagonale d'un rectangle fait $325\,\mathrm{cm}$ et un des côtés de ce rectangle fait $253\,\mathrm{cm}$. Quelle est la longueur de l'autre côté du rectangle ?

Corrigé du devoir de Dijkstra Edsger

Exercise

Il faut utiliser le théorème de Pythagore. On a :

 $diagonale^2 = côt\acute{e}_1^2 + côt\acute{e}_2^2.$

 $\mathrm{Donc}:$

 $325^2 = 253^2 + \text{côté}_2^2$

et donc :

 $c\hat{o}t\acute{e}_2 = \sqrt{325^2 - 253^2} = 204.$

Devoir pour Eckert John Preper

Exercise

Calculer la longueur de la diagonale d'un rectangle de $189\,\mathrm{cm}$ sur $340\,\mathrm{cm}.$

Corrigé du devoir de Eckert John Preper

Exercise

Avec le théorème de Pythagore, on a :

 $diagonale^2 = côt\acute{e}_1^2 + côt\acute{e}_2^2.$

Here :

diagonale² = $189^2 + 340^2$

and then

diagonale = $\sqrt{189^2 + 340^2} = 389$.

Devoir pour Floyd Robert

Exercise

Calculer la longueur de la diagonale d'un rectangle de $240\,\mathrm{cm}$ sur $238\,\mathrm{cm}.$

Corrigé du devoir de Floyd Robert

Exercise

Avec le théorème de Pythagore, on a :

 $diagonale^2 = côt\acute{e}_1^2 + côt\acute{e}_2^2.$

Here :

diagonale² = $240^2 + 238^2$

and then

diagonale = $\sqrt{240^2 + 238^2} = 338$.

Devoir pour Gödel Kurt

Exercise

La diagonale d'un rectangle fait $260\,\mathrm{cm}$ et un des côtés de ce rectangle fait $132\,\mathrm{cm}$. Quelle est la longueur de l'autre côté du rectangle ?

Corrigé du devoir de Gödel Kurt

Exercise

Il faut utiliser le théorème de Pythagore. On a :

 $diagonale^2 = côt\acute{e}_1^2 + côt\acute{e}_2^2.$

 $\mathrm{Donc}:$

 $260^2 = 132^2 + \text{côt\'e}_2^2$

et donc :

 $c\hat{o}t\acute{e}_2 = \sqrt{260^2 - 132^2} = 224.$

Devoir pour Huffman David

Exercise

Calculer la longueur de la diagonale d'un rectangle de $320\,\mathrm{cm}$ sur $462\,\mathrm{cm}.$

Corrigé du devoir de Huffman David

Exercise

Avec le théorème de Pythagore, on a :

 $diagonale^2 = côt\acute{e}_1^2 + côt\acute{e}_2^2.$

Here :

diagonale² = $320^2 + 462^2$

and then

diagonale = $\sqrt{320^2 + 462^2} = 562$.

Devoir pour Ichbiah Jean

Exercise

La diagonale d'un rectangle fait $569\,\mathrm{cm}$ et un des côtés de ce rectangle fait $231\,\mathrm{cm}$. Quelle est la longueur de l'autre côté du rectangle ?

Corrigé du devoir de Ichbiah Jean

Exercise

Il faut utiliser le théorème de Pythagore. On a :

 $diagonale^2 = côt\acute{e}_1^2 + côt\acute{e}_2^2.$

 $\mathrm{Donc}:$

 $569^2 = 231^2 + \text{côté}_2^2$

et donc :

 $c\hat{o}t\acute{e}_2 = \sqrt{569^2 - 231^2} = 520.$

Devoir pour Joshi Aravind

Exercise

Calculer la longueur de la diagonale d'un rectangle de $207\,\mathrm{cm}$ sur $224\,\mathrm{cm}.$

Corrigé du devoir de Joshi Aravind

Exercise

Avec le théorème de Pythagore, on a :

 $diagonale^2 = côt\acute{e}_1^2 + côt\acute{e}_2^2.$

Here :

diagonale² = $207^2 + 224^2$

and then

diagonale = $\sqrt{207^2 + 224^2} = 305$.

Devoir pour Knuth Donald

Exercise

Calculer la longueur de la diagonale d'un rectangle de $119\,\mathrm{cm}$ sur $120\,\mathrm{cm}.$

Corrigé du devoir de Knuth Donald

Exercise

Avec le théorème de Pythagore, on a :

 $diagonale^2 = côt\acute{e}_1^2 + côt\acute{e}_2^2.$

Here :

diagonale² = $119^2 + 120^2$

and then

diagonale = $\sqrt{119^2 + 120^2} = 169$.

Devoir pour Lovelace Ada

Exercise

La diagonale d'un rectangle fait $245\,\mathrm{cm}$ et un des côtés de ce rectangle fait $147\,\mathrm{cm}$. Quelle est la longueur de l'autre côté du rectangle ?

Corrigé du devoir de Lovelace Ada

Exercise

Il faut utiliser le théorème de Pythagore. On a :

 $diagonale^2 = côt\acute{e}_1^2 + côt\acute{e}_2^2.$

 $\mathrm{Donc}:$

 $245^2 = 147^2 + \text{côté}_2^2$

et donc :

 $c\hat{o}t\acute{e}_2 = \sqrt{245^2 - 147^2} = 196.$

Devoir pour Moore Gordon

Exercise

La diagonale d'un rectangle fait $505\,\mathrm{cm}$ et un des côtés de ce rectangle fait $377\,\mathrm{cm}$. Quelle est la longueur de l'autre côté du rectangle ?

Corrigé du devoir de Moore Gordon

Exercise

Il faut utiliser le théorème de Pythagore. On a :

 $diagonale^2 = côt\acute{e}_1^2 + côt\acute{e}_2^2.$

 $\mathrm{Donc}:$

 $505^2 = 377^2 + \text{côté}_2^2$

et donc :

 $c\hat{o}t\acute{e}_2 = \sqrt{505^2 - 377^2} = 336.$

Devoir pour Neumann (Von) John

Exercise

La diagonale d'un rectangle fait $305\,\mathrm{cm}$ et un des côtés de ce rectangle fait $273\,\mathrm{cm}$. Quelle est la longueur de l'autre côté du rectangle ?

Corrigé du devoir de Neumann (Von) John

Exercise

Il faut utiliser le théorème de Pythagore. On a :

 $diagonale^2 = c\hat{o}t\acute{e}_1^2 + c\hat{o}t\acute{e}_2^2.$

 $\mathrm{Donc}:$

$$305^2 = 273^2 + \text{côté}_2^2$$

et donc :

$$\hat{\cot}e_2 = \sqrt{305^2 - 273^2} = 136.$$

Devoir pour Ouserhout John

Exercise

Calculer la longueur de la diagonale d'un rectangle de $240\,\mathrm{cm}$ sur $418\,\mathrm{cm}.$

Corrigé du devoir de Ouserhout John

Exercise

Avec le théorème de Pythagore, on a :

 $diagonale^2 = côt\acute{e}_1^2 + côt\acute{e}_2^2.$

Here :

 $diagonale^2 = 240^2 + 418^2$

and then

diagonale = $\sqrt{240^2 + 418^2} = 482$.

Devoir pour Pascal Blaise

Exercise

La diagonale d'un rectangle fait $425\,\mathrm{cm}$ et un des côtés de ce rectangle fait $375\,\mathrm{cm}$. Quelle est la longueur de l'autre côté du rectangle ?

Corrigé du devoir de Pascal Blaise

Exercise

Il faut utiliser le théorème de Pythagore. On a :

 $diagonale^2 = côt\acute{e}_1^2 + côt\acute{e}_2^2.$

 $\mathrm{Donc}:$

 $425^2 = 375^2 + \text{côté}_2^2$

et donc :

 $c\hat{o}t\acute{e}_2 = \sqrt{425^2 - 375^2} = 200.$

Devoir pour Ritchie Dennis

Exercise

Calculer la longueur de la diagonale d'un rectangle de $185\,\mathrm{cm}$ sur $672\,\mathrm{cm}.$

Corrigé du devoir de Ritchie Dennis

Exercise

Avec le théorème de Pythagore, on a :

 $diagonale^2 = côt\acute{e}_1^2 + côt\acute{e}_2^2.$

Here :

diagonale² = $185^2 + 672^2$

and then

diagonale = $\sqrt{185^2 + 672^2} = 697$.

Devoir pour Shannon Claude

Exercise

Calculer la longueur de la diagonale d'un rectangle de $224\,\mathrm{cm}$ sur $360\,\mathrm{cm}.$

Corrigé du devoir de Shannon Claude

Exercise

Avec le théorème de Pythagore, on a :

 $diagonale^2 = côt\acute{e}_1^2 + côt\acute{e}_2^2.$

Here :

diagonale² = $224^2 + 360^2$

and then

diagonale = $\sqrt{224^2 + 360^2} = 424$.

Devoir pour Thompson Ken

Exercise

La diagonale d'un rectangle fait $458\,\mathrm{cm}$ et un des côtés de ce rectangle fait $120\,\mathrm{cm}$. Quelle est la longueur de l'autre côté du rectangle ?

Corrigé du devoir de Thompson Ken

Exercise

Il faut utiliser le théorème de Pythagore. On a :

 $diagonale^2 = côt\acute{e}_1^2 + côt\acute{e}_2^2.$

 $\mathrm{Donc}:$

 $458^2 = 120^2 + \text{côté}_2^2$

et donc :

 $c\hat{o}t\acute{e}_2 = \sqrt{458^2 - 120^2} = 442.$

Devoir pour Ullman Jeffrey

Exercise

Calculer la longueur de la diagonale d'un rectangle de $153\,\mathrm{cm}$ sur $104\,\mathrm{cm}.$

Corrigé du devoir de Ullman Jeffrey

Exercise

Avec le théorème de Pythagore, on a :

 $diagonale^2 = côt\acute{e}_1^2 + côt\acute{e}_2^2.$

Here :

diagonale² = $153^2 + 104^2$

and then

diagonale = $\sqrt{153^2 + 104^2} = 185$.

Devoir pour Vixie Paul

Exercise

Calculer la longueur de la diagonale d'un rectangle de $175\,\mathrm{cm}$ sur $600\,\mathrm{cm}.$

Corrigé du devoir de Vixie Paul

Exercise

Avec le théorème de Pythagore, on a :

 $diagonale^2 = côt\acute{e}_1^2 + côt\acute{e}_2^2.$

Here :

 $\mathrm{diagonale}^2 = 175^2 + 600^2$

and then

diagonale = $\sqrt{175^2 + 600^2} = 625$.

Devoir pour Wall Larry

Exercise

Calculer la longueur de la diagonale d'un rectangle de $112\,\mathrm{cm}$ sur $384\,\mathrm{cm}$.

Corrigé du devoir de Wall Larry

Exercise

Avec le théorème de Pythagore, on a :

 $diagonale^2 = côt\acute{e}_1^2 + côt\acute{e}_2^2.$

Here :

diagonale² = $112^2 + 384^2$

and then

diagonale = $\sqrt{112^2 + 384^2} = 400$.

Devoir pour Yao Adrew Chi-Chih

Exercise

Calculer la longueur de la diagonale d'un rectangle de $105\,\mathrm{cm}$ sur $608\,\mathrm{cm}.$

Corrigé du devoir de Yao Adrew Chi-Chih

Exercise

Avec le théorème de Pythagore, on a :

 $diagonale^2 = côté_1^2 + côté_2^2$.

Here :

 $diagonale^2 = 105^2 + 608^2$

and then

diagonale = $\sqrt{105^2 + 608^2} = 617$.

Devoir pour Zuse Konrad

Exercise

Calculer la longueur de la diagonale d'un rectangle de $319\,\mathrm{cm}$ sur $360\,\mathrm{cm}.$

Corrigé du devoir de Zuse Konrad

Exercise

Avec le théorème de Pythagore, on a :

 $diagonale^2 = côt\acute{e}_1^2 + côt\acute{e}_2^2.$

Here :

 $\mathrm{diagonale}^2 = 319^2 + 360^2$

and then

diagonale = $\sqrt{319^2 + 360^2} = 481$.