Sponsoring Committee: Professor Juan Pablo Bello, Chairperson

Professor Robert Rowe Doctor Eric J. Humphrey

AUTOMATIC MUSIC TRANSCRIPTION IN THE DEEP LEARNING ERA: PERSPECTIVES ON GENERATIVE NEURAL NETWORKS

Jong Wook Kim

Program in Music Technology Department of Music and Performing Arts Professions

Submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy in the
Steinhardt School of Culture, Education, and Human Development
New York University
2019

ABSTRACT

The problem of automatic music transcription (AMT) is considered by many researchers as the holy grail of the field, because of the notorious complexity and difficulty of the problem. Meanwhile, the current decade has seen an unprecedented surge of deep learning where neural network methods have achieved tremendous success in many machine learning tasks including AMT. The success of deep learning is largely enabled by the ever-increasing amount of available data and the innovation of GPU hardware, allowing a deep learning model to enjoy the increased capacity to process such scale of data. While having more data and higher capacity translates better performance in general, there still remains the question of how to design an AMT model that can effectively incorporate the inductive bias for the task and best utilize the increased capacity.

This thesis hypothesizes that an effective way to address this question is through the use of generative neural networks. Starting with a simplified setup of monophonic transcription, we learn the effectiveness of convolutional representation and the roles of dataset choices in data-driven models for music analysis. In the subsequent chapters, we examine the applications of deep generative models in music analysis and synthesis tasks, by introducing a WaveNet-based music synthesis model that learns a multi-dimensional timbre representation and a music language model applied in an adversarial manner to improve a piano transcription model. Finally, we combine the analysis and synthesis methods to develop a multi-instrument polyphonic music transcription system. From these observations, we conclude that deep generative models can be used to improve AMT in many ways, and they will be a crucial component for further advancing AMT.

ACKNOWLEDGEMENTS

I am truly grateful to many wonderful people who believed in me along this long journey. This dissertation would not have been able to come into existence without their support and guidance.

First of all, I would like to express my sincere gratitude to my supervisor, Prof. Juan Pablo Bello. I am incredibly lucky to have you as my doctoral advisor; thank you for being a dependable teacher, an incredible researcher, and a welcoming friend to me. To my committee members and readers — Prof. Robert Rowe, Dr. Eric Humphrey, Prof. Johanna Devaney, and Prof. Brian McFee — I deeply appreciate taking your time to read through my awkward sentences and giving insights to make them better. And to all professors with whom I have had the pleasure of working with: thank you for your classes, chats, and smiles.

I have been fortunate enough to become friends with almost all of MARL's PhD students and postdocs, and I am thankful to every one of them. To the MARL-doctors — Taemin, Areti, Jon, Aron, Braxton, Finn, Eric, Uri, Rachel, and Finn — thanks for showing the ways that I can follow, including but not limited to the coffee shops and bars. To the MARL-doctor-to-be's — Andrea, Andrew, Marta, Peter, Yu, Ho-Hsiang, Willie, Dirk, Tom, Jason, and Chris — it was so much fun sharing office and hanging out with you, and I will miss the occasional beer sessions. To the MARL postdocs — Brian, Justin, Mark, Charlie, Ron, Vincent, Claire, Magdalena, Hitomi — thank you for the insights during the lab meetings and collaborations, and also for sometimes bearing with my unscholarliness.

And to my Korean friends: thanks for being on KakaoTalk whenever I had silly memes to share with, but more importantly for being always welcoming and cheering for me every time I visited Korea, especially that time when you guys gladly spent a whole day at my wedding.

I am honored to have been a recipient of Samsung Scholarship, which is another factor that made all this possible; thank you for your support, networking, and gifts from Leeum. I would also like to thank everyone I worked with during my brief industry experiences — NCSOFT, Kakao, Pandora, and Spotify — for allowing me to learn and achieve what I could not do in schools, and of course for all the free foods and swags.

To my parents who have always believed me and prayed for me, I can't express enough gratitude for your limitless love and unwavering support. Your passion in education made me grow from an aspiring teenager to a respectable scientist. Now that there are no more degrees for you to worry about, please take it easy and enjoy your 60s!

Finally, to my wife Nayoung, you are the foremost reason why I am writing these words now. I cannot believe how lucky I am to have met you and plowed through this journey mixed with joys and tears with you. Thank you for being my best friend, a fellow researcher, a delightful travel partner, a world-class cook, a witty comedian, and a lovely cheerleader who makes me a better person every day.

TABLE OF CONTENTS

LIST	OF	TABLES	X		
LIST OF FIGURES					
CHA	PTI	ER			
I		INTRODUCTION	1		
	1.	Statement of Problem	1		
	2.	Research Questions	4		
	3.	Limitations 3.1 Scope of Music 3.2 Symbolic Processing of Notes 3.3 On the Need for Perceptual Studies	5 5 6 8		
	4.	Need for Study 4.1 Applications of Automatic Music Transcription 4.2 Generative Modeling for Fully Capturing Semantics 4.3 On the Broader Context of Machine Listening in AI Research 4.4 Organization of The Thesis	9 10 10 13 14		
II		MUSIC INFORMATION RETRIEVAL FOR TRANSCRIPTION	15		
	1.	Introduction	16		
	2.	Monophonic Pitch Estimation	20		
	3.	Multiple Fundamental Frequency Estimation	21		
	4.	Source Separation and Music Translation	25		
	5.	Machine Learning Models for Music Synthesis	27		
	6.	Music Language Models for Symbolic Music Generation	28		
	7.	Summary	30		

III		DEEP LEARNING		
	1.	Neural Network Architectures	32	
	2.	Performance Optimization Techniques	35	
	3.	Toward Deep Generative Models 3.1 Traditional Generative Models 3.2 Early Deep Generative Models and Autoregressive Models 3.3 Variational Autoencoders	38 39 39 41	
	4.	Generative Adversarial Networks 4.1 Evolution of the GAN Architecture 4.2 The GAN Zoo 4.3 Conditional Generation and Other Applications 4.4 Evaluation of Generated Samples 4.5 Theories on GAN Convergence	43 44 44 46 47 48	
	5.	Summary	49	
IV		CREPE: DEEP MONOPHONIC PITCH ESTIMATION	50	
	1.	Introduction	50	
	2.	Architecture	52	
	3.	Experiments 3.1 Datasets 3.2 Methodology 3.3 Results	55 55 56 57	
	4.	Open-Sourcing CREPE 4.1 Python Package and Command-Line Interface 4.2 Real-Time Web Demo 4.3 Argmax-Local Weighted Averaging 4.4 Data-Driven Models and Real-World Applications	63 64 66 67 68	
	5.	Conclusions	68	
V		LEARNING TIMBRE SPACE FOR MUSIC SYNTHESIS	70	
	1.	Introduction	71	
	2.	Background 2.1 Timbre Control in Musical Synthesis 2.2 Timbre Morphing 2.3 Timbre Spaces and Embeddings 2.4 Neural Audio Synthesis using WaveNet	72 72 72 73 73	
	3.	Method 3.1 Timbre Conditioning using FiLM Layers 3.2 Model Details	74 75 76	
	4.	Experiments 4.1 Datasets 4.2 Ablation Study on Model Design 4.3 Synthesis Quality 4.4 The Timbre Embedding Space	78 78 79 81 82	
	5	Conclusions and Futura Directions	9.1	

VI	ADVERSARIAL LEARNING FOR PIANO TRANSCRIPTION	87
1.	Introduction	88
2.	Background	90
	2.1 Automatic Transcription of Polyphonic Music	90
	2.2 Generative Adversarial Networks and pix2pix	92
3.	Method	94
	3.1 Musically Inspired Adversarial Discriminator3.2 TTUR and <i>mixup</i> to Stabilize GAN Training	95 96
4	•	
4.	Experimental Setup 4.1 Model Architecture	98 98
	4.2 Hyperparameters	99
	4.3 Dataset	100
	4.4 Evaluation Metrics	100
5.	Results	102
	5.1 Comparison with the Baseline Metrics	102
	5.2 Visualization of Frame Activations5.3 Training Dynamics and The Generalization Gap	104
_		105
6.	Conclusions	105
VII	SYNTHESIZER-AIDED MULTI-INSTRUMENT TRANSCRIPTION	108
1.	Introduction	109
2.	Related Work	111
	2.1 Multi-Instrument Music Transcription	111
	2.2 Deep Clustering	112
•	2.3 Generative Modeling for Transcription	113
3.	Method 3.1 Synthesizer Model	114 114
	3.1 Synthesizer Model3.2 Training Transcriber with Appended Synthesizer	114
4.		117
	Experimental Setup	
5.	Results 5.1 Synthesizer Output	118 118
	5.2 Transcription Accuracy	120
	5.3 Multi-Instrument Transcription	123
	5.4 MusicNet Inspector	124
6.	Future Work	125
7.	Conclusions	126
VIII	CONCLUSIONS AND FINAL REMARKS	128
1.	Summary and Takeaways	128
2.	Future Research Directions	130
BIBLIO	GRAPHY	134