CS6005 Deep Learning Techniques Natural Language Processing Project Spam V/S Ham SMS Classification

Name	Gokul. S			
Roll Number	2018103026			
Batch	P			
Semester	6 (RUSA)			
Date of Submission	21. 05. 2021			
Github Profile	www.github.com/gokul-sunilkumar			

Problem Statement: To classify an SMS message as either a spam/ham using text analytics, natural language processing and machine learning

Dataset: SMS Spam Collection Data Set

Description: The dataset consists of more than 5000 SMS phone messages belonging to two classes namely spam, ham.

Machine Learning Repository Center for Machine Learning and Intelligent Systems

SMS Spam Collection Data Set

Download: Data Folder, Data Set Description

Abstract: The SMS Spam Collection is a public set of SMS labeled messages that have been collected for mobile phone spam research.

Data Set Characteristics:	Multivariate, Text, Domain-Theory	Number of Instances:	5574	Area:	Computer
Attribute Characteristics:	Real	Number of Attributes:	N/A	Date Donated	2012-06-22
Associated Tasks:	Classification, Clustering	Missing Values?	N/A	Number of Web Hits:	358386

URL: (https://archive.ics.uci.edu/ml/datasets/sms+spam+collection) → UCI Machine Learning Repository

Code/ Execution Snapshots:

Importing packages and checking the structure, shape and contents of the dataset.

Read the csv data file and create a Pandas Dataframe. Check how balanced the dataset is.

Create an additional meaningful column called length and perform Exploratory Data Analysis (EDA)

Remove punctuations and stopwords from the input messages

Pre-process the dataframe using the above strategies and update it in place.

Convert cleaned messages to their bag of words form using Sklearn's CountVectorizer

Use Sklearn's learning_curve function to plot the accuracy curve for different train-test split sizes (considering 50:50, 60:40, 70:30, 80:20) with a cross validation K-Fold value of 5 and the average of the five subordinate accuracies is the overall accuracy for that train size.

Use Sklearn's learning_curve function to plot the log_loss_curve for different train-test split sizes (considering 50:50, 60:40, 70:30, 80:20) with a cross validation K-Fold value of 5 and the average of the five subordinate accuracies is the overall log loss for that train size.

Scoring parameter here is given as "neg_log_loss" as learning_curve function tries to maximise the scoring parameter.

Plotting Accuracy Curve:

```
In [50]: #Plotting accuracy curve
import matplotlib.pyplot as plt

plt.style.use('seaborn')
plt.plot(train_sizes, train_scores_mean, label = 'Training accuracy')
plt.plot(train_sizes, validation_scores_mean, label = 'Validation accuracy')
plt.ylabel('Accuracy', fontsize = 14)
plt.xlabel('Training set size', fontsize = 14)
plt.title('Learning curve for the naive bayes classification model', fontsize = 18, y = 1.03)
plt.legend()
plt.ylim(0.9,1)
```

Plotting Log Loss Curve:

```
In [46]: #Plotting loss curve
import matplotlib.pyplot as plt

plt.style.use('seaborn')
plt.plot(train_sizes, train_error_mean, label = 'Training error')
plt.plot(train_sizes, validation_error_mean, label = 'Validation error')
plt.ylabel('Log Loss', fontsize = 14)
plt.xlabel('Training set size', fontsize = 14)
plt.title('Log Loss curve for the naive bayes classification model', fontsize = 18, y = 1.03)
plt.legend()
plt.ylim(0,0.2)
```

Accuracy Graph:

Loss Graph:

Training and fitting the final model (Pipeline) on the cleaned dataset (With the best hyperparameters and the most optimal train-test split found above).

Methodology:

- Import dataset using pandas
- Exploratory data analysis to check how balanced the dataset actually is (Group by label).
- Add additional length column as a new text attribute for the final MultinomialNB ML model.
- Text pre-processing by removing punctuations, stopwords, etc.
- Tokenization, Normalization followed by Vectorization using CountVectorizer to create a Bag of Words representation of the data.
- Pass through TF-IDF transformer to get the new updated representation.
- Train test split the dataset using Sklearn Model Selection package.
- Create an Sklearn data pipeline and perform the above mentioned steps.

```
from sklearn.pipeline import Pipeline

pipeline = Pipeline([
    ('bow', CountVectorizer(analyzer=text_process)), # strings to token integer counts
    ('tfidf', TfidfTransformer()), # integer counts to weighted TF-IDF scores
    ('classifier', MultinomialNB()), # train on TF-IDF vectors w/ Naive Bayes classifier
])
```

- Fit the pipeline on the cleaned train dataset and transform the cleaned output dataset using the same trained pipeline.
- Check the overall final classification report.

```
In [60]: predictions = pipeline.predict(msg_test)
In [61]: print(classification_report(predictions, label_test))
                    precision recall f1-score
               ham
                                  0.96
                                           0.98
                                                    1001
              spam
                        0.75
                                1.00
                                          0.85
                                                     114
        avg / total
                        0.97
                                 0.97
                                          0.97
                                                    1115
```

Result Metrics:

Final Accuracy: 97% Final Recall: 97% Final F1-Score: 97% Final Support: 1115

Conclusion:

The final model achieves an overall test accuracy of 97 % and a recall of 97% which is really good considering the naturality of the real world dataset that has been considered.

References:

- [1] https://www.nltk.org/api/nltk.html
- [2] https://en.wikipedia.org/wiki/Natural_language_processing
- [3] https://www.ibm.com/cloud/learn/natural-language-processing
- [4] Deep Learning With Python. Manning Publications Co., 3 Lewis Street Greenwich, CT, United States
- $\hbox{[5] https://www.sas.com/en_in/insights/analytics/what-is-natural-language-processing-nlp.html}\\$