



 $\mathcal{E}$  Now, with 3 points  $\mathcal{Q}$ . R,  $S \in \mathbb{R}^2$   $2 := \left\{ P \in \mathbb{R}^2 : d(P, Q) = d(P, R) = d(P, S) \right\}$   $\mathcal{Q}$ : What is  $\mathcal{E}$ 

Z'is a unique pt.

Proposition: Any nometry  $f: \mathbb{R}^2 \to \mathbb{R}^2$ is uniquely determined by
the images f(A), f(B), f(C)of any 3 non-alinean pts  $(8.8.C \in \mathbb{R}^2)$ 

 $\rightarrow$  A.B.C must be non-calinear because f = 7d, f = 7L preserve the line L = 2A, B. C) A.B.C calinear.

Af: First a pt P is uniquely

determined by its distances to

A. B. C. Need to know who

fup)  $\in \mathbb{R}^2$  is

Now, fup has distance to flas

exactly d(P, A)



## MAIN THEOREM

Any isometry  $f \in Iso(\mathbb{R}^2)$  nouse be a product of 1, 2, 3 reflections

Pt Choose A. B.  $C \in \mathbb{R}^2$  three non-calineon points. We study the cases for f(A), f(B) & f(C)

Case  $o^{th}$ : f(A) = A, f(B) = B, f(C) = C. Then f = Id. <u>done</u>.

Case 1st: 
$$f(A) = A$$
,  $f(B) = B$ ,  $(f(c)?)$ 

From  $B = f(B)$ 

Guess is that  $f(C) = f(C)$ 

By prop  $f(C) = f(C)$ 

Claim:  $f(C) = f(C)$ 

Claim:  $f(C) = f(C)$ 

Claim:  $f(C) = f(C)$ 

Claim:  $f(C) = f(C)$ 

The Consider the set  $f(C)$ 

Find  $f(C) = f(C)$ 

Find  $f(C) = f(C)$ 

Find  $f(C) = f(C)$ 

Claim:  $f(C) = f(C)$ 

Find  $f(C) = f(C)$ 

Find  $f(C) = f(C)$ 

Come argument says  $f(C)$ 

Some argument says  $f(C)$ 

Hence  $f(C) = f(C)$ 

Some argument says  $f(C)$ 

Claim:  $f(C) = f(C)$ 

Claim:  $f(C) = f(C)$ 

A  $f(C)$ 

A  $f(C)$ 

Claim:  $f(C) = f(C)$ 

Find  $f(C) = f(C)$ 

A  $f(C)$ 

A  $f(C)$ 

Claim:  $f(C) = f(C)$ 

A  $f(C)$ 

Find  $f(C) = f(C)$ 

A  $f(C)$ 

Find  $f(C) = f(C)$ 

Find  $f$ 

Case 2<sup>nd</sup>: f(A) = A, let  $f(B) \neq B$  nor  $f(C) \neq C$ and  $f(C) \neq C$ Case 3<sup>rd</sup>:  $f(A) \neq A$ ,  $f(B) \neq B$ ,  $f(C) \neq C$ In  $f(A) \Rightarrow A$ ,  $f(B) \Rightarrow B$ ,  $f(C) \Rightarrow C$