COMPLEX VARIABLES PRELIMINARY EXAM

- 1. Calculate
 - a) $\frac{1+i \tan \theta}{1-i \tan \theta}$

b)
$$\frac{(1+i)^5-1}{(1+i)^5+1}$$

c)
$$\frac{(-1+\sqrt{3}i)}{(1-i)^{20}}$$
 + $\frac{(-1-\sqrt{3}i)}{(1+i)^{20}}$ 15

d)
$$(-2+2i)^{1/3}$$

- a) Is the function $f(z) = \frac{z-i}{1-iz}$ analytic? (Here \bar{z} is the conjugate of z).
 - Consider the harmonic function $u(x,y) = e^{x}\cos y$. Find v(x,y) so that f = u + iv is an entire function of z = x + iy and f(0) = 1.
 - Show that the curves $u = c_1$ and $v = c_2$ for a general analytic function f = u + iv are orthogonal for any constants c_1 and c_2 .
- Classify the singularities of each function: 3.

a)
$$f(z) = e^{\frac{z}{z+1}}$$
 b) $f = \frac{1}{\sinh z}$

b)
$$f = \frac{1}{\sinh z}$$

c)
$$f = \frac{z}{z^{3}+1}$$
 d) $f = \frac{1}{1+nz}$

$$f = \frac{1}{1+ nz}$$

- 4. Express $f(z) = \frac{5+z}{4z^3-z^5}$ as two different infinite series in powers of z, one expanded about z = 0 and the other expanded about z = ∞ . What is the radius of convergence of each?
- 5. Evaluate

a)
$$\int_0^\infty \frac{t^\alpha}{t^2+1} dt, -1 < \alpha < 1$$

b)
$$\int_0^\infty \frac{dt}{t^8+1}$$

6. Evaluate

a)
$$\int_0^{2\pi} \frac{d\theta}{1-2p \cos\theta - p^2}$$

b)
$$\int_{0}^{\infty} \frac{\cos kx}{x^2+1} dx$$