Lista 3 – estrutura de controle: repetição – for (sala de aula)

Assunto:

Variáveis, instruções de entrada e saída de dados e expressões matemáticas, estruturas de decisão e de repetição.

Forma de resolução:

- a) Se necessário:
- a.1) representar o algoritmo em descrição narrativa, utilizando o seguinte procedimento para análise do problema e definição da solução:
 - a.1.1) Dados de entrada
 - a.1.2) Processamento (instruções a serem realizadas)
 - a.1.3) Dados de saída
 - a.2) representar o algoritmo em fluxograma.
- b) Representar o algoritmo de solução do problema na linguagem C, com as entradas informadas pelo usuário.

Importante:

- a) Chaves
 - a. Elas delimitam um bloco de instruções (comandos) que estão subordinados a uma cláusula if, else ou else if ou a uma estrutura de repetição do, while e do while.
 - b. As instruções delimitadas por um conjunto de chaves deve obrigatoriamente estar identada. Um conjunto de espaços (tab) de avanço.
 - c. Cada chave aberta deve ter a sua correspondente fechada. Para facilitar, sempre, abra uma chave, feche-a e retorne para escrever o código (as instruções) dentro dessas chaves.
 - d. Para haver um teste lógico é obrigatória a existência de if e vice-versa. O teste lógico é colocado dentro de parênteses.
- b) Erros:
 - a. Verificar se as chaves estão corretas
 - b. Verificar se há teste lógico sem if.
 - c. Loop infinito. A variável de controle não está sendo incrementada ou decrementada, o teste lógico que verifica a condição de continuidade ou parada não está sendo realizado corretamente.

Exercícios:

- 1) Apresente (separados por tabulação) os números entre 1 e 1000 que são divisíveis por 11 e ímpares.
- 2) Faça um programa que apresente uma tabela de lucro esperado, em decorrência do número de pessoas e valor do ingresso. O valor do ingresso vai de R\$ 15 até 20, aumentando de 0,50 centavos. É informada a quantidade de pessoas.

Exemplo:

Informado 1000 para a quantidade de pessoas, mostrar:

Valor do ingresso	Valor total recebido
15,00	15000,00
15,50	15500,00
16,00	16000,00
16,50	16500,00
17,00	17000,00
17,50	17500,00
18,00	18000,00
18,50	18500,00
19,00	19000,00
19,50	19500,00
20,00	20000,00

3) Faça um programa que mostre o resultado da seguinte soma, sendo n o valor informado pelo usuário :

Soma =
$$1 + 1/2 + 1/3 + 1/4 + 1/5 + ... + 1/n$$

4) Leia dos valores que representam os limites de um intervalo. O usuário pode informar os valores em ordem crescente ou decrescente. Mostrar os divisíveis por x e não divisíveis por y nesse intervalo. X e y são variáveis informadas pelo usuário.

Exemplo:

Informados: 5 e 15 como limites e 2 para x e 3 para y.

Mostrar os divisíveis por 2 e não divisíveis por 3 entre 5 e 100:

- 2 4 6 8 10 14
- 5) Mostrar os valores ímpares e não divisíveis por 5 entre 200 e 0. Apresentar os valores em ordem decrescente. Fazer a média dos valores desse intervalo que são divisíveis por 3 e por 5.
- 6) Apresente os pares entre entre 0 e 100, sem utilizar if dentro do for.

- 7) Ler 10 número e contar desses quantos são pares, quantos são ímpares e quantos são divisíveis por 7 ou por sete. Apresentar essas quantidades.
- 8) Apresentar os números entre 100 e 200. Contar quantos são ímpares e não divisíveis por 3 nesse intervalo. Fazer a média dos valores pares e divisíveis por 5 do intervalo.
- 9) Ler dois valores que representam os limites de um intervalo. Apresentar os valores separados por tabulação. Fazer a média dos valores que são divisíveis por 11 e por 7, desse intervalo.
- 10) Escreva um algoritmo que gere a série de Fibonacci até o termo 'n' que é informado pelo usuário. A série de Fibonacci é formada pela sequência: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ..., etc.
- 11) Ler um número inteiro e determinar se o mesmo é primo. Um número é primo quando é divisível de maneira exata somente por 1 e por ele mesmo.
- 12) Faça um programa que imprima os 'n' (indicado pelo usuário) primeiros números pares. Apresentar cinco valores por linha.

Por exemplo, se o usuário informar 10, mostrar:

- 0 2 4 6 8 //primeira linha com cinco números
- 10 12 14 16 18 // segunda linha com cinco números.
- 13) Apresentar os múltiplos de 10 entre 1000 e 0 (ordem decrescente). Mostrar os valores separados por uma marca de tabulação e em colunas com 8 números por linha.
- 14) Implemente um cronômetro, apresentando dados de horas, minutos e segundos da seguinte forma: 00:00:00. O cronômetro inicia com 00:00:00 e quando chegar a 23:59:59, deverá ir para 00:00:00.