Chapter 2 Essential Dictionary I- Part 1

Writing About Sets

The vocabulary on sets developed so far is sufficient for our purpose. We begin to use it in short phrases which define sets.

- 1. The set of ordered pairs of complex numbers.
- 2. The set of rational points on the unit circle.

Note that we haven't used any symbols. The set in item 1 is \mathbb{C}^2 .

In item 2, among the infinitely many points of the unit circle, we consider those having rational coordinates.

There is no difficulty in writing this set symbolically:

$$\{(x,y) \in \mathbb{Q}^2 : x^2 + y^2 = 1\}$$

It is possible to specify a *type* of set, without revealing its precise identity. In each of the following sets there is at least one unspecified quantity.

The set of fractions representing a rational number.

The set of divisors of an odd integer.

A proper infinite subset of the unit circle.

The cartesian product of two finite sets of complex numbers.

A finite set of consecutive integers.

Next we define sets in two ways, first with a combination of words and symbols, and then with words only. One should consider the relative merits of the two Formulations

$$Let X = \{3\}.$$

The set whose only element is the integer 3.

Let $X = \{m\}$, with $m \in \mathbb{Z}$.

A set whose only element is an integer.

Let $m \in \mathbb{Z}$, and let X be a set such that $m \in X$.

A set which contains a given integer.

Let X be a set such that $X \cap \mathbb{Z} \neq \emptyset$.

A set which contains at least one integer.

Let X be a set such that $\#(X \cap \mathbb{Z}) = 1$.

A set which contains precisely one integer.

In the first two examples the combination of 'let' and '=' replaces an assignment operator. An expression such as ' $Let \stackrel{\text{def}}{=}$ ' would be overloaded.

The distinction between definite and indefinite articles is essential, the former describing a unique object, the latter an unspecified representative of a class of objects. In the following phrases, a change in one article, highlighted in boldface, has resulted in a logical mistake.

Bad: A proper infinite subset of a unit circle.

Bad: A set whose only element is the integer 3.

Bad: **The** set whose only element is an integer.

Bad: **The** set which contains precisely one integer.

As a final exercise, we express some geometric facts using set terminology.

The intersection of a line and a conic section has at most two points.

The set of rational points in any open interval is infinite.

A cylinder is the cartesian product of a segment and a circle.

The complement of the unit circle consists of two disjoint components.

Grammar Part 2

DEFINITE ARTICLE (The)

DEFINITE ARTICLE (The)

➤ 1. Meaning "mentioned earlier", "that":

Example: Let $A \subset X$. If aB = 0 for every B intersecting the set A, then

> 2. In front of a noun (possibly preceded by an adjective) referring to a single, uniquely determined object (e.g. in definitions):

Example: Let f be the linear form defined by (2).

So u = 1 in the compact set K of all points at distance 1 from L.

➤ 3. In the construction: the + property (or another characteristic) + of + object:

Example: The continuity of f follows from

The existence of test functions is not evident.

The intersection of a decreasing family of such sets is convex.

But: Every nonempty open set in \mathbb{R}^k is a union of disjoint boxes.

DEFINITE ARTICLE (The)

➤ In front of a cardinal number if it embraces all objects considered:

Example: The two groups have been shown to have the same number of generators.

Each of the three products on the right of (4) satisfies

In front of an ordinal number:

Example: The first Poisson integral in (4) converges to g.

The second statement follows immediately from the first.

In front of surnames used attributively:

Example: the Dirichlet problem

the Taylor expansion

But: Taylor's formula

In front of a noun in the plural if you are referring to a class of objects as a whole, and not to particular members of the class:

Example: The real measures form a subclass of the complex ones.

This class includes the Helson sets.