ERPs

Christoph T. Weidemann

		Decision		
		H_0	$\neg H_0$	
Truth	H_o	✓	Type I error (α)	
irutii	$\neg H_0$	Type II error (β)	\checkmark	

the family of tests.

FDR: Expected proportion of Type I errors among all rejections of the null hypothesis (i.e., "significant results")

FWER: Probability of making at least one Type I error in

Controlling FWER

Bonferroni: α/m

Holm: Sort all p-values from smallest to largest and find the smallest index, i, in the resulting list of p-values for which $p_i > \alpha/(m-i+1)$, where m is the number of statistical tests. Reject all null hypotheses corresponding to indices i-1 or below.

Controlling FDR

- Sort p-values from smallest to largest.
- ▶ Find the largest index i in the corresponding list of sorted p-values for which $p_i \leq (i/m) \times \alpha$. (Benjamini & Hochberg, 1995)
- Alternatively find the largest index i in the corresponding list of sorted p-values for which $p_i \leq (i/(m \times (\sum_{j=1}^m 1/j))) \times \alpha$. (Benjamini & Yekutieli, 2001).
- Reject the null hypothesis at this and lower indices.

Controlling for FWER and FDR

FΜ	/ER	FDR		
Bonferroni	Holm	BH95	BY01	
α/m	α/m	α/m		
$lpha/ extbf{m}$	$\alpha/(m-1)$	$2lpha/ extbf{m}$	$2\alpha/(m\sum_{j=1}^{m}1/j)$	
:	:	÷	:	
$lpha/ extbf{m}$	α	α	$\alpha/(\sum_{j=1}^m 1/j)$	

$$E[\hat{\mathbf{s}}] = E\left[\frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{i}\right] = \mathbf{s} + \frac{1}{N} \sum_{i=1}^{N} E[\mathbf{n}_{i}] = \mathbf{s}$$

$$\Sigma_{\hat{\mathbf{s}}} = E\left[(\hat{\mathbf{s}} - \mathbf{s})(\hat{\mathbf{s}} - \mathbf{s})^{T}\right]$$

$$= E\left[\sum_{i=1}^{N} \frac{\mathbf{n}_{i}}{N} \frac{\mathbf{n}_{i}^{T}}{N}\right]$$

 $\hat{\mathbf{s}} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_i = \mathbf{s} + \frac{1}{N} \sum_{i=1}^{N} \mathbf{n}_i .$

 $=\frac{1}{N^2}\sum_{i=1}^N E\left[\mathbf{n}_i\mathbf{n}_i^T\right]$

 $=\frac{1}{N^2}\times N\times \Sigma_n$

 $\sigma_{\hat{s}} = \frac{\sigma_n}{\sqrt{N}}$