Waitlist Mechanisms

Nikhil Agarwal

MIT and NBER

Rationing via Waits

- Many real-world examples of waiting as a rationing tool
- Common reasons
 - Restrictions (legal or otherwise) on using prices
 - Arrival of objects over time
 - In-kind transfers
- How to maximize allocative efficiency with waits?

Outline

- Theory Examples
 - Waiting and "Money Burning"
 - Waitlist Offer Mechanisms
- Deceased Donor Kidney Allocation

Outline

- Theory Examples
 - Waiting and "Money Burning"
 - Waitlist Offer Mechanisms
- Deceased Donor Kidney Allocation

Costs of waiting

- Waiting can be costly in some environments
 - Literally standing in line is wasteful
 - Value of object/allocation can decrease
- Differs from transfers (e.g. auctions) which are costless from a social perspective
- √ (When) does it make sense to use waiting time to screen for agent valuations?

Condorelli (2012)

- Notation:
 - ▶ M objects with quality $x_j > 0$, $x_{j+1} > x_j$
 - N agents indexed by i
 - ▶ Valuations $v_i \sim F_i$ with support V_i
 - ▶ Agent payoff $v_i x_i c_i$ where c_i is money burned (waiting)
- Implementable direct mechanism
 - \triangleright Allocation probabilities $p_{i,j}$ and costs c_i
 - Interim stage expected utility given report s_i

$$U_i(v_i, s_i) = v_i E_{v_{-i}} \left[\sum_{m} x_{i,j} \rho_{i,j}(s_i, v_{-i}) \right] - E_{v_{-i}} \left[c_i(s_i, v_{-i}) \right].$$

• Lemma 1: A direct mechanism is IC iff $P_i(v_i) \ge P_i(v_i')$ for all $v_i \ge v_i'$ and

$$C_i(v_i) = v_i P_i(v_i) - \int_0^{v_i} P_i(x) d(x)$$

where $P_i(v_i) = E_{v_{-i}}[\sum_i x_{i,m} p_{i,j}(v_i, v_{-i})]$ and $C_i(v_i) = E_{v_{-i}}[c_i(s_i, v_{-i})]$.

√ Standard result from Vickrey auctions

"Money Burning"

Objective Function:

$$E_{v}\left\{\sum_{i}^{n}w_{i}\left[v_{i}\sum_{j}x_{j}p_{i,j}(v)-c_{i}(v)\right]\right\}$$

- w_i are welfare weights
- Money burning since "payments" are subtracted
- √ Allocative efficiency vs screening costs
- Corollary 1: First best is not implementable unless n-1 (n-m) agents have zero Pareto weights (and objects are identical)
 - First-best requires highest value agent to receive the object

When Does Waiting Lists Make Sense?

- Theorem 1 characterizes the optimal mechanism allocation to agents with highest marginal contribution to social surplus, $\lambda_i(v_i)$, which depends on w_i and F_i
- Corollary 2: If hazard rates are non-decreasing, then $\lambda_i(x) = w_i E[v_i]$ for all x • Full pooling, no private information extracted, allocation based on w_i
- Corollary 3: If hazard rates are decreasing, then priority functions are

$$\lambda_i(x) = w_i \frac{1 - F(x)}{f_i(x)}$$

- Worth paying the waiting costs only when dispersion in valuations is high enough
 - Exponential distribution is the cutoff
 - Screening with Pareto, lottery/priority with uniform
- Slightly different from virtual valuation $v_i + \frac{1 F_i(v_i)}{f_i(v_i)}$

Outline

- Theory Examples
 - Waiting and "Money Burning"
 - Waitlist Offer Mechanisms

Deceased Donor Kidney Allocation

Dynamic Assignments via Waitlists

- Many markets in which matching occurs over time
 - Organs for deceased donors [Agarwal et al, 2021]
 - Subsidized/public housing [Waldinger, 2021]
 - ► Health services (nursing homes)
 - Adoption/foster care [Robinson-Cortes, 2019]
 - ▶ Ridesharing [Liu et al, 2019]
- √ Focus on allocation of objects to agents
 - ► Contrast with two-sided dynamic matching [e.g. Doval (2014)]
- Waitlist mechanisms are commonly used
 - Priority order over potential applicants
 - Agents can choose (accept/reject) when their turn arrives

First-Come First-Seved

- Canonical waitlist procedure
 - Rationales?
- ✓ Is it efficient when objects and preferences are heterogeneous? [Bloch and Cantala, 2017]
- Model
 - Time is discrete, t
 - Agent index i = 1, ..., n denotes rank on the list
 - An object arrives each period and must be allocated immediately
 - ▶ Valuations drawn from $\theta \sim F$ on $[\underline{\theta}, \overline{\theta}]$ or $\theta \in \{0, 1\}$
 - Per-period cost of waiting is c
 - Constant size waitlist
- ullet Consider offer mechanisms with probabilities over offer sequences $ho:\mathcal{N} o\mathcal{N}$

Queuing disciplines

- Markovian strategy sets thresholds $\theta(i)$
- Value function

$$\begin{array}{lcl} V(i) & = & P(\text{accepted by } j < i) V(i-1) \\ \\ & = & P(i \text{ picks the object } j) \int_{\theta(i)}^{\bar{\theta}} \theta \mathrm{d}F(\theta) \\ \\ & = & P(\text{not accepted by } j \leq i) V(i) - c \end{array}$$

- Observations
 - Rejections by agents above is not a negative signal
 - lacktriangle In common value case, upper bound changes from $ar{ heta}$ to heta(i-1)
 - Waiting is costly

What are good queuing strategies?

- Efficiency criteria on $V(1), \ldots, V(n)$
- Focus on monotone queues, i.e. if i < j then for two sequence ρ, ρ' with $\rho(k) = \rho'(k)$ for $k \notin \{i, j\}$, and $\rho'(j) < \rho(j) = \rho(i) = \rho'(j)$, we have that $p(\rho) \ge p(\rho')$.
- When is FCFS best in this set?
 - Under private and binary values, all agents prefer FCFS to lotteries
 - With common and binary values, all agents prefer FCFS
 - ▶ Waste is higher in FCFS under common values [see also Su and Zenios, 2004]
 - ▶ With private values and two agents, FCFS is better than other queuing rules

What are good queuing strategies?

- Two externalities from declining an offer
 - 1. Allow other agents to accept an offer quickly, save waiting costs
 - 2. Stay on the list and (potentially) reduce future offers for others
 - ✓ Need to control selectivity using queuing discipline
- Su and Zenios (2004) show that LCFS is best under common values
 - Minimizes waste, allocative effects are null
 - Agents internalize their externality on others
- Leshno (2017) shows that batching can be useful
 - ▶ Two object types A and B, two agent types α and β
 - ▶ Would like to get α to decline B and β to decline A
 - How to get the largest number of mis-matches to be declined?
 - Answer: Lottery amongst the top few
- Incentives to accept/reject are key!
 - e.g. Arnosti and Shi (2020) show that several pairs of mechanisms are outcome equivalent

Outline

- Theory Examples
- Deceased Donor Kidney Allocation
 - Model
 - Estimation Approach
 - Estimates and Counterfactuals

- About 100K patients are waiting for a lifesaving organ transplant
 - ▶ Most remain untransplanted, thousands die while waiting

- About 100K patients are waiting for a lifesaving organ transplant
 - ▶ Most remain untransplanted, thousands die while waiting
- Two-thirds of kidneys for transplants are sourced from deceased donors
 - $ightharpoonup \sim 20\%$ medically suitable kidneys are discarded
 - ✓ Allocation reform can achieve better care at lower costs

- About 100K patients are waiting for a lifesaving organ transplant
 - Most remain untransplanted, thousands die while waiting
- Two-thirds of kidneys for transplants are sourced from deceased donors
 - $ightharpoonup \sim 20\%$ medically suitable kidneys are discarded
 - ✓ Allocation reform can achieve better care at lower costs
- Organ allocation is a prototypical dynamic assignment problem
 - ▶ Patients are offered organs in priority order and may accept or decline

- About 100K patients are waiting for a lifesaving organ transplant
 - Most remain untransplanted, thousands die while waiting
- Two-thirds of kidneys for transplants are sourced from deceased donors
 - $ightharpoonup \sim 20\%$ medically suitable kidneys are discarded
 - ✓ Allocation reform can achieve better care at lower costs
- Organ allocation is a prototypical dynamic assignment problem
 - ▶ Patients are offered organs in priority order and may accept or decline
 - ✓ Similar rationing mechanisms: public housing, long-term care amongst others

Agarwal et.al., 2021: Research Objectives

- 1. Empirical Methods: Estimate "as-if" value of assignments using decisions
 - Agent's perspective: Optimal Stopping Problem [Pakes, 1986; Rust 1987; Hotz and Miller, 1993]
- 2. Application: Kidney Allocation in the New York City area
 - Administrative data from the OPTN
 - Detailed donor and patient characteristics

3. Design Evaluation

- Equilibrium comparison of mechanisms with different priorities
- √ Focus on wait-list offer mechanisms
 - Direct mechanisms are difficult to implement in practice
- ✓ Equivalent to solving a dynamic game
- √ Nature of preferences are important in dynamic mechanism design
 - ► Few general theoretical results on optimal designs → motivates empirical work [Agarwal et.al.(AEA P&P)]

Deceased Donor Kidney Allocation

- Waiting lists allocates deceased donor organs
 - Pre-2014: Coarse priorities and sequential offers
 - 1. Perfect tissue-type matches
 - 2. Geography: Local, Regional, National
 - Points for years waited and some characteristics, e.g, hard-to-match patients, pediatric patients
 - ▶ Post 2014: Attempts to improve match quality
 - 1. National sharing for extremely difficult to match patients
 - 2. Top 20% of kidneys \rightarrow top 20% healthiest patients
- Factors affecting value of an organ transplant
 - Biological Compatibility
 - Donor health (age, diabetes etc.)
 - Similarity of tissue-types

Data

- Administrative data from the OPTN
 - ✓ Formal mechanisms often generate useful data
- This study: Offers to patients in NYRT between 2010 and 2013
 - Serves NYC, Long Island + neighboring NY counties
 - ► Largest Donor Service Area with standard rules
- Detailed donor and patient characteristics
 - Essentially all donor characteristics known to patient/surgeon
 - ▶ Patient characteristics: demographics and correlates of health

Methodological challenges

1. Ensure Identification of Counterfactuals:

- Well-known problem in dynamic contexts [Aguirregabiria and Suzuki, 2014; Arcidiacono and Miller, 2020; Kaloupstidi et al., 2021]
- ✓ Solution is wlog for mechanism design counterfactuals

2. Complexity of Beliefs/State-Space:

- Data and computational curse of dimensionality
- Complicates both estimation and counterfactuals
- ✓ Assumption on beliefs to simplify beliefs/state-space [c.f. Freshtman and Pakes, 2012]

3. Equilibria in Dynamic Mechanisms:

- Primarily complicates counterfactual analysis
- Propose a steady-state concept for equilibrium analysis [c.f. Hopenhayn, 1992;
 Weintraub et al., 2008; Freshtman and Pakes, 2012]

4. Policy Analysis

- Compare outcomes under alternative waitlist designs
- ✓ Evaluation of optimal designs

Outline

- Theory Examples
- Deceased Donor Kidney Allocation
 - Model
 - Estimation Approach
 - Estimates and Counterfactuals

Payoffs and Discounting

- Agents and objects:
 - i − agent − patient-surgeon pair
 - j − objects − organs
 - ▶ Objects arrive at rate λ , with types drawn from F
- Time, t, is continuous
 - ▶ Days since "birth" joining the kidney list
 - ▶ Finite-horizon, *T* − 100 years of age
 - ρ discount rate
- Primitive Payoffs:
 - $d_i(t)$ flow payoff of remaining on the waiting list dialysis
 - ▶ D_i (t) NPV of departure without assignment
 - Exogenous departures at rate $\delta_i(t)$
 - $ightharpoonup \Gamma_{ij}(t)$ NPV of *i* assigned *j* at *t*
- Primary Restrictions on Payoffs:
 - 1. Only depends on assignments, no cost of considering offers
 - 2. Evolve deterministically given agent identity

Mechanism and Beliefs

- Mechanism:
 - ► Priority score $s_{ij}(t_i)$
 - ▶ Assignment: highest q_j priority agents that accept $(a_i = 1)$
 - ▶ Technological constraint: Up to n_j offers

Mechanism and Beliefs

- Mechanism:
 - Priority score $s_{ij}(t_i)$
 - Assignment: highest q_i priority agents that accept $(a_i = 1)$
 - ► Technological constraint: Up to n_i offers
- ✓ Agent *i* can get a compatible object j ($c_{ij} = 1$) if s_{ij} (t_i) $> s_i^*$

Mechanism and Beliefs

- Mechanism:
 - ▶ Priority score s_{ij} (t_i)
 - ▶ Assignment: highest q_i priority agents that accept $(a_i = 1)$
 - ► Technological constraint: Up to n_i offers
- ✓ Agent *i* can get a compatible object j ($c_{ij} = 1$) if s_{ij} (t_i) $> s_j^*$
 - Beliefs on distribution of s_i^* depend on $\mathcal{F}_{it} = (x_i, t)$

$$\pi_{ij}(t) = H(s_{ij}(t); z_j, \eta_j) \times P(c_{ij} = 1 | x_i, z_j)$$

- ✓ Idea: Beliefs based on long-run averages/experience [e.g. Freshtman and Pakes, 2012; Weintraub et al., 2009]
- Main Assumption: No inferences based on realization of recent offers
 - Waitlist rules are agent-object specific
 - Cannot reject zero auto-correlation in s_j* details
 - ► Time since last offer is not predictive of acceptance details

• Consider the value from waiting Δt

$$egin{aligned} V_{i}\left(t
ight) &= rac{1}{1 +
ho\Delta t} [d_{i}\left(t
ight)\Delta t + \delta_{i}\left(t
ight)\Delta t D_{i}\left(t
ight) \ &+ \lambda\Delta t \int \pi_{ij}\left(t
ight) \int \max\left\{V_{i}\left(t + \Delta t
ight), \Gamma_{ij}\left(t
ight)
ight\} \mathrm{d}G \mathrm{d}F \ &+ \left(1 - \left(\delta_{i}\left(t
ight) + \lambda_{i}\left(t
ight)
ight)\Delta t
ight)V_{i}\left(t + \Delta t
ight) + o\left(\Delta t
ight)], \end{aligned}$$

• Consider the value from waiting Δt

$$\begin{split} V_{i}\left(t\right) &= \frac{1}{1 + \rho \Delta t} [d_{i}\left(t\right) \Delta t + \delta_{i}\left(t\right) \Delta t D_{i}\left(t\right) \\ &+ \lambda \Delta t \int \pi_{ij}\left(t\right) \int \max \left\{V_{i}\left(t + \Delta t\right), \Gamma_{ij}\left(t\right)\right\} \mathrm{d}G \mathrm{d}F \\ &+ \left(1 - \left(\delta_{i}\left(t\right) + \lambda_{i}\left(t\right)\right) \Delta t\right) V_{i}\left(t + \Delta t\right) + o\left(\Delta t\right)], \end{split}$$

• Sending $\Delta t \rightarrow 0$ yields the ODE

$$\left(
ho + \delta_{i}\left(t
ight)
ight)V_{i}\left(t
ight) = \dot{V}_{i}\left(t
ight) + d_{i}\left(t
ight) + \delta_{i}\left(t
ight)D_{i}\left(t
ight) + \lambda\int\pi_{ij}\left(t
ight)\max\left\{0,\Gamma_{ij}\left(t
ight) - V_{i}\left(t
ight)
ight\}\mathrm{d}F$$

✓ See also Arcidiacono et al. (2016) for related derivation of cond. val. func.

Recall the ODE

$$\left(
ho + \delta_{i}\left(t
ight)
ight)V_{i}\left(t
ight) = \dot{V}_{i}\left(t
ight) + d_{i}\left(t
ight) + \delta_{i}\left(t
ight)D_{i}\left(t
ight) + \lambda\int\pi_{ij}\left(t
ight)\max\left\{0,\Gamma_{ij}\left(t
ight) - V_{i}\left(t
ight)
ight\}\mathrm{d}F$$

Recall the ODF

$$\left(
ho + \delta_{i}\left(t
ight)
ight)V_{i}\left(t
ight) = \dot{V}_{i}\left(t
ight) + d_{i}\left(t
ight) + \delta_{i}\left(t
ight)D_{i}\left(t
ight) \\ + \lambda\int\pi_{ij}\left(t
ight)\max\left\{0,\Gamma_{ij}\left(t
ight) - V_{i}\left(t
ight)
ight\}\mathrm{d}F$$

- Estimation requires additional restrictions to address underidentification
 - 1. Common to set payoff from one action in each state to zero
 - 2. Setting discount rate [Magnac and Thesmar, 2003]
- "Normalizations" in 1. are not necessarily without loss [Aguirregabiria and Suzuki, 2014; Arcidiacono and Miller, 2020; Kaloupstidi et al., 2021]
 - Counterfactuals may change transitions to different states
 - May affect payoffs in these states

Recall the ODE

$$\left(
ho + \delta_{i}\left(t
ight)
ight)V_{i}\left(t
ight) = \dot{V}_{i}\left(t
ight) + d_{i}\left(t
ight) + \delta_{i}\left(t
ight)D_{i}\left(t
ight) \ + \lambda\int\pi_{ij}\left(t
ight)\max\left\{0,\Gamma_{ij}\left(t
ight) - V_{i}\left(t
ight)
ight\}\mathrm{d}F$$

Recall the ODE

$$\left(
ho + \delta_{i}\left(t
ight)
ight)V_{i}\left(t
ight) = \dot{V}_{i}\left(t
ight) + d_{i}\left(t
ight) + \delta_{i}\left(t
ight)D_{i}\left(t
ight)
onumber \ + \lambda\int\pi_{ij}\left(t
ight)\max\left\{0,\Gamma_{ij}\left(t
ight) - V_{i}\left(t
ight)
ight\}\mathrm{d}F$$

- Normalize the NPV of rejecting every offer to zero
 - ✓ Appropriate for counterfactuals that do not change
 - 1. Payoffs of remaining on the list costs/benefits of dialysis
 - 2. Value and rate of departures Death and Live-Donor Transplantation

Recall the ODF

$$\left(
ho + \delta_{i}\left(t
ight)
ight)V_{i}\left(t
ight) = \dot{V}_{i}\left(t
ight) + d_{i}\left(t
ight) + \delta_{i}\left(t
ight)D_{i}\left(t
ight) \ + \lambda\int\pi_{ij}\left(t
ight)\max\left\{0,\Gamma_{ij}\left(t
ight) - V_{i}\left(t
ight)
ight\}\mathrm{d}F$$

- Normalize the NPV of rejecting every offer to zero
 - ✓ Appropriate for counterfactuals that do not change
 - 1. Payoffs of remaining on the list costs/benefits of dialysis
 - 2. Value and rate of departures Death and Live-Donor Transplantation
- Solution:

$$V_{i}\left(t\right) = \int_{t}^{T} \exp\left(-\rho\left(\tau - t\right)\right) p\left(\tau | t\right) \left[\lambda \int \pi_{ij}\left(\tau\right) \max\left\{0, \Gamma_{ij}\left(\tau\right) - V_{i}\left(\tau\right)\right\} dF\right] d\tau$$

where $p(\tau|t)$ is the probability of remaining in the list at τ (conditional on t)

Outline

- Theory Examples
- Deceased Donor Kidney Allocation
 - Model
 - Estimation Approach
 - Estimates and Counterfactuals

Estimation Approach

$$V_{i}\left(t\right) = \int_{t}^{T} \exp\left(-\rho\left(\tau - t\right)\right) p_{i}\left(\tau | t\right) \left[\lambda \int \pi_{ij}\left(\tau\right) \max\left\{0, \Gamma_{ij}\left(\tau\right) - V_{i}\left(\tau\right)\right\} dF\right] d\tau$$

- Estimated/set "offline"
 - ▶ Donor arrival rate $\lambda = \text{empirical average}$
 - ▶ Discount rate $\rho = 5\%$ per year
 - ▶ Hazards model for $p_i(\tau|t)$ using (censored) observed departures
 - Gompertz hazards model: $\delta_i(t) = \exp(x_i\beta + pt)$
 - ✓ Primary source of discounting is departure 16% per year

Conditional Choice Probabilities

Specify binary choice model

$$\Gamma_{ij}(t) - V_i(t) = \chi(z_j, x_i, t)\theta + \eta_j + \varepsilon_{ijt},$$

- \triangleright z_i and η_i are observed and unobserved object characteristics
- x_i are observed agent characteristics
- $ightharpoonup \eta_i \sim N(0, \sigma_\eta)$ and $\varepsilon_{iit} \sim N(0, 1)$ scale normalization
- $\chi(z_j, x_i, t)$ flexibly piece-wise linear forms with interactions
- Probability of declining an offer:

$$P_{ij}(t) = 1 - \Phi\left(\chi\left(z_{j}, x_{i}, t\right)\theta + \eta_{j}\right)$$

- Estimation: Gibbs' Sampler using conjugate priors (MCMC)
- \checkmark Identification of σ_{η} relies on each donor having two kidneys

Estimator for Mechanism/Beliefs

• Hotz-Miller (1987), recover:

$$\mathbb{E}\max\left\{ 0,\Gamma_{ij}\left(t\right)-V_{i}\left(t\right)\right\} =\psi\left(P_{ij}\left(t\right)\right)$$

• Use knowledge of the mechanism to estimate inclusive value

$$\int \pi_{ij}\left(t\right) \max\left\{0, \Gamma_{ij}\left(t\right) - V_{i}\left(t\right)\right\} \mathrm{d}F = \int \pi_{ij}\left(t\right) \psi\left(P_{ij}\left(t\right)\right) \mathrm{d}F$$

$$\approx \frac{1}{J} \sum_{j} 1\left\{s_{ij}\left(t\right) > s_{j}^{*}\right\} \psi\left(\hat{P}_{ij}\left(t\right)\right)$$

- $ightharpoonup s_j^*$ is the score of the last patient that received an offer for j
- √ Formally justified in the paper
 - s_{ij} (t) independent of other agents
 - ▶ Beliefs: $1\{s_{ij}(t) > s_i^*\}$ does not depend on presence of i'
 - LLN under weak stationarity and continuity assumptions
- ✓ No parametric approximations for the mechanism/beliefs

Outline

- Theory Examples
- Deceased Donor Kidney Allocation
 - Model
 - Estimation Approach
 - Estimates and Counterfactuals

NPV of Transplant By Age and Dialysis Status

Steady-State Equilibrium

- Steady state equilibrium of mechanism
 - 1. Optimality given beliefs π^* Backwards induction
 - 2. Consistent beliefs π^* given strategies, queue length, and queue composition
 - ✓ Calculate acceptance rates above each score level
 - 3. Steady state composition
 - i. Queue Composition: Survival curve calculated using forward simulation
 - ii. Queue length N^* to satisfy detail balance

arrival rate of agents = $N^* \times$ (average departure rate $|m^*$)

Steady-State Equilibrium

- Steady state equilibrium of mechanism
 - 1. Optimality given beliefs π^* Backwards induction
 - 2. Consistent beliefs π^* given strategies, queue length, and queue composition \checkmark Calculate acceptance rates above each score level
 - 3. Steady state composition
 - i. Queue Composition: Survival curve calculated using forward simulation
 - ii. Queue length N^* to satisfy detail balance

```
arrival rate of agents = N^* \times (average departure rate |m^*)
```

√ Abstracts away from transition dynamics

Optimal Mechanisms

Maximize aggregate welfare

$$\max_{V,m,\sigma,\pi} \sum_{i} \alpha_{i} \left(\frac{V_{i}(0)}{\rho} + \int_{0}^{T} m_{x}(x) V_{i}(\tau) d\tau \right)$$

- Optimal Assignment
 - ► Full information on payoffs; uncertain object/agent arrivals and departures
 - Steady-state conditions, but no agent optimality
 - ✓ Allocate j to i after wait-time t if assignment payoff exceeds a threshold $\underline{\Gamma}_{iit}$
- Optimal Offer Rates
 - ▶ Restrict to offer mechanisms independent of the past offers
 - Agents make optimal decisions given π
- Approximately Optimal Priorities
 - Implementable version of Optimal Offers Rate
- Approximately Optimal Pareto Improving Priorities
 - ▶ Implementable version of a Pareto Constrained Optimal Offers Rate

Welfare and Resource Utilization

Conclusion

- Dynamic assignment design requires an empirical approach
 - ► Limited guidance from theory
 - ► Simulations commonly used by policy-makers e.g. liver allocation reforms
- Empirical framework for predicting outcomes in dynamic assignment systems
- Many applications and extensions
 - Rationing through waitlists is empirically under-explored
 - ► Interactions with other markets and policies
- Commonly studied mechanisms are far from optimal
- Scope for increasing aggregate outcomes subject to distributional barriers