Работа № 3.4.4

Петля гистерезиса (статистический метод)

В работе используются: генератор токов намагничивания, тороид, соленоид, баллистический гальванометр, мультиметр, автотрансформатор, ключи, переключатели.

Установка

Рис. 1: Схема установки для исследования петли гистерезиса

Рис. 2: Схема установки для калибровки гальванометра

Ход работы

Предельная петля гистерезиса

- 1. Соберём схему по рисунку 1.
- 2. Будем отмечать величину тока I, соответствующею каждой ступени, и величину Δx .
- 3. Рассчитаем H и ΔB по формулам:

$$H = \frac{N_{T_0}}{\pi D} I,$$

$$\Delta B = \mu_0 \left(\frac{d_C}{d_T}\right)^2 \frac{N_{C_0}}{N_{T_1}} \frac{N_{C_1}}{l_C} \Delta I_1 \frac{\Delta x}{\Delta x_1}.$$

Калибровка гальванометра

- 1. Соберём схему по рисунку 2.
- 2. Измерим отклонение гальванометра Δx_1 при изменении тока $\Delta I_1 = I_{max}$
- 3. Данные занесём в таблицу 1.

Начальная кривая намагничивания

- 1. Размагнитим тороид в цепи переменного тока.
- 2. Снимем начальную кривую намагничивания по той же схеме (рис. 1).
- 3. Вычислим максимальное значение дифференциальной магнитной проницаемости $\mu_{\text{диф}}$:

$$\mu_{\text{диф}} = \frac{1}{\mu_0} \frac{dB}{dH}.$$

4. Занесём параметры установки в таблицу 1.

Обработка результатов

Полученные графики и таблицы представлены ниже:

N_{T_0}	N_{T_1}	N_{C_0}	N_{C_1}	D, M	d_C , см	d_T , см	l_C , M	Δx_1 , mm	ΔI_1 , A
1750	300	940	500	0,1	7	1	0,8	171	1,706

Таблица 1: Данные

Рис. 3: Зависимость B от H

H_C , A/M	B_S , Тл	$B_{ m oct}$, Тл	$\mu_{ exttt{диф}}$
1600 ± 6	$1,41 \pm 0,01$	0.81 ± 0.01	472 ± 21

Таблица 2: Вычисления

Вывод

Таким образом, мы исследовали зависимость магнитной индукции от напряжённости магнитного поля для тороида из стали и вычислили коэрцитивную силу, индукцию насыщения, остаточную индукцию, а так же максимальное значение дифференциальной магнитной проницаемости.