Основные понятия машинного обучения

Что такое машинное обучение:

- Машинное обучение (machine learning) это изучение статистических компьютерных алгоритмов, которые автоматически улучшаются на данных. Здесь алгоритмы сами выбирают наилучшее решение на основе входных данных.
- Машинное обучение является частью ИИ

Этапы машинного обучения:

Примеры задач, решаемые с помощью машинного обучения:

- Кредитный скоринг
- Риски страхования
- Предсказания цен
- Фильтрация спама
- Сегментация клиентов
- И многое другое

Общий подход к постановке задач по машинному обучению

- Алгоритмы работают на основе «хороших» данных в достаточном количестве
- На основе признаков (features) в наборе данных найти требуемую целевую переменную (label/target)
- Алгоритмы с помощью статистических методов обрабатывают данные, в результате чего выясняют, какие признаки являются важными в данных

Типы алгоритмов машинного обучения

- Обучение с учителем (supervised learning) используются размеченные исторические данные, на основе которых делается предсказание целевой переменной
- Обучение без учителя (unsupervised learning) применяется к неразмеченным данным. Модель машинного обучения ищет возможные закономерности в данных и пытается сгруппировать данные в кластеры на основе признаков, не зная целевую переменную.

Типы задач:

- Целевая переменная принимает дискретное (категориальное) значение задача классификации
- Целевая переменная принимает непрерывное значение
 - задача регрессии

Определите тип алгоритма машинного обучения (с учителем, без учителя) и тип задачи (классификации или регрессии):

- 1. Предсказать, сколько фильмов просмотрит пользователь в следующем месяце в онлайн кинотеатре
- 2. Выяснить, какая из цифр от 0 до 9 нарисована на картинке
- 3. Поделить пользователей интернет-магазина на группы, чтобы похожие с точки зрения предпочтений пользователи оказались в одной группе.
- 4. Выбрать продукт из каталога, который можно было бы порекомендовать пользователю к его набранной интернет-корзине.
- 5. Понять, является ли электронное письмо спамом.

Процесс машинного обучения с учителем

Задача: Предсказать цену продажи для нового дома с известными значениями площади, кол-ва спален и кол-ва санузлов

Area m²	Bedrooms	Bathrooms	Price
200	3	2	\$500,000
190	2	1	\$450,000
230	3	3	\$650,000
180	1	1	\$400,000
210	2	2	\$550,000

Шаг 1. Разделение данных на признаки и целевую переменную

Area m²	Bedrooms	Bathrooms	Price
200	3	2	\$500,000
190	2	1	\$450,000
230	3	3	\$650,000
180	1	1	\$400,000
210	2	2	\$550,000

Шаг 2. Разделение признаков и целевой переменной на обучающую и тестовую части

Шаг 3. Обучение модели только на обучающем наборе данных

Шаг 4. Предсказание модели для тестового набора данных

Модель видит только признаки Х.

Она не видела еще эти данные и не знает ответы

Шаг 5. Модель предсказывает значения целевой переменной для тестового набора данных

Predictions	Area m²	Bedrooms	Bathrooms
\$410,000	180	1	1
\$540,000	210	2	2

Шаг 6. Оценка работы модели с помощью тестового набора данных

Сравнение предсказаний с истинными значениями целевой переменной

Шаг 7. В случае неудовлетворительного результата работы модели

Шаг 8. Внедрение модели

Возникает задача:

как провести линию так, чтобы она наилучшим образом соответствовала этим точкам

Проведя линию, можем измерить расстояния от точек до линии - это будут ошибки (остатки). Остатки могут быть как положительные, так и отрицательные. Необходимо выбрать такую линию, где общее расстояние между точками и линией будет минимальным

• В случае одной переменной х или одного признака уравнение регрессии имеет вид у = ax+b

• В случае нескольких переменных $x_1, x_2, x_3, ..., x_n$ или нескольких признаков уравнение регрессии имеет вид

$$\hat{y} = w_0 + w_1 x_1 + w_2 x_2 + ... + w_n x_n = w_0 + \sum_{i=1}^n w_i x_i$$
 w_i – параметры модели (веса), i=(0,n)

Необходимо подобрать такие веса w_i , чтобы минимизировать ошибки, т.е. функция суммы квадратов ошибок достигала минимума

$$\hat{y}_j - y_j$$

$$(\hat{y}_j - y_j)^2$$

$$\sum_{i=1}^{m} (\hat{y}_j - y_j)^2$$

$$\frac{1}{m}\sum_{i=1}^{m}(\hat{\mathbf{y}}_{\mathsf{j}}-\mathbf{y}_{\mathsf{j}})^{2}$$
 - среднее значение суммы квадрата ошибок

Функция потерь (стоимостная функция, функционал ошибки):

$$Q(w, X) = \frac{1}{m} \sum_{i=1}^{m} (\hat{y}_{j} - y_{j})^{2} =$$

$$= \frac{1}{m} \sum_{i=1}^{m} (w_{0} + w_{1}x_{1} + w_{2}x_{2} + ... + w_{n}x_{n} - \hat{y}_{j})^{2} \rightarrow \min_{w_{0}, w_{1}, w_{2},..., w_{n}}$$

Процесс поиска оптимального набора параметров (весов) называется обучением

• В случае одной переменной х или одного признака веса \mathbf{w}_0 , \mathbf{w}_1 можно найти методом наименьших квадратов

• В случае нескольких переменных для нахождения w_i используется метод градиентного спуска

1. Находим начальную точку

2. Находим градиент в этой точке

3. В сторону антиградиента делаем шаг, пропорциональный величине градиента

Антиградиент указывает направление наибольшего убывания функции.

4. Повторяем шаги

5. Повторяем шаги

6. Повторяем шаги

В конце находим минимум

В случае нескольких переменных те же самые шаги:

- 1. Вычисляем в точке градиент (производную)
- 2. Двигаемся в направлении антиградиента
- 3. Величина шага пропорциональна градиенту
- 4. Повторяем шаги, пока не найдем минимум функции

$$x_k = x_{k-1} - \mu \nabla f(x_{k-1})$$

Библиотека Scikit-Learn

Scikit-Learn — библиотека со многими алгоритмами машинного обучения

Методы импорта, обучения, использования алгоритмов выполняются одинаково для разных моделей

Scikit-Learn содержит много полезных методов, включая функции разбиения данных на обучающий и тестовый наборы, функции кросс-валидации, а также метрики оценки модели.

Библиотека Scikit-Learn

Установка библиотеки:

pip install scikit-learn

Разбиение на обучающую и тестовую выборки

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y)

Библиотека Scikit-Learn

Импортирование модели из библиотеки:

from sklearn.model_family import ModelAlgo

Создание модели:

model = ModelAlgo(parametr1, parametr2)

Обучение модели:

model.fit(X_train, y_train)

Предсказание модели:

y_pred=model.predict(X_test)

Метрики для регрессии:

Средняя абсолютная ошибка – Mean Absolute Error (MAE)

- усредняет абсолютные значения ошибок:

$$\frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

Для некоторых точек, находящихся далеко от линии регрессии, модель плохо предсказывает

Среднеквадратическая ошибка - Mean Squared Error (MSE) - усредняет квадраты ошибок

$$\frac{1}{n}\sum_{i=1}^{n}(y_i-\hat{y}_i)^2$$

большие ошибки «наказываются» сильнее; неудобство – единицы измерения в квадрате

Среднеквадратическое отклонение - Root Mean Squared Error

(RMSE) – квадратный корень от среднеквадратической ошибки

$$\sqrt{\frac{1}{n}\sum_{i=1}^{n}(y_i-\hat{y}_i)^2}$$

- единицы измерения те же, что и у целевой переменной;
- «наказываются» большие ошибки.

from sklearn.metrics import error_metric error=error_metric(y_test, y_pred)

• Для линейной регрессии имеет смысл смотреть не только на метрики, но и на остатки.

- Линейная регрессия подходит не для каждого набора точек
- Анализ остатков позволяет понять, насколько линейная регрессия подходит для набора точек

Квартет Энскомба

Полиномиальная регрессия

Один из способов улучшения линейной модели - применение для признаков полиномов более высокой степени

При поиске коэффициентов wi в линейном уравнении можно попробовать брать не только сами признаки, но и более высокие степени этих признаков.

Также между признаками возможны зависимости, т.е. один признак важен тогда, когда важен и другой (синергия)

Вопрос: как учесть это в модели?

- Простейший способ добавить произведение двух признаков в дополнение каждому из признаков в отдельности.
- Это можно сделать в Scikit-Learn с помощью методов preprocessing.
- В этой библиотеке есть много полезных методов для обработки данных перед обучением модели.
- Например, PolynomialFeatures автоматически создает полиномы более высоких порядков, а также произведения комбинаций признаков.

- Примеры слагаемых, которые создаются:
- Постоянное число 1 (все признаки равны 0)
- Возведение признака в степень
- Произведение пар признаков в различных возможных комбинациях

В случае 2-х переменных x_1 , x_2 1, x_1 , x_2 , x_1^2 , x_2^2 , $x_1^*x_2$ - итого становится 6 признаков

Для всех 6 признаков ищется w_i и они могут найти больше сигналов в данных

Нет 100% гарантии, что модель улучшится Надо пробовать

Недообучение и переобучение модели

Переобучение:

Модель слишком точно повторяет шумы и неточности в данных.

Это часто приводит к малым ошибкам на обучающем наборе данных, но к большим ошибкам на тестовых/проверочных данных

Недообучение:

Показывает слабые результаты и на обучающем, и на тестовом наборах данных.

Недообученность модели говорит о том, что выбранная модель очень простая и нужно выбрать более сложную модель

Связь между сложностью и ошибкой модели

Переобучение сложнее заметить, потому что модель показывает хорошие результаты на обучающем наборе данных и выглядит все так, что она работает хорошо

Проблема:

Как найти баланс между недообученностью и переобученностью модели

Нужно смотреть результаты на обучающем наборе данных, сравнивая их с результатами на тестовом наборе данных.

Переобученность модели

- При выборе сложности модели, а также оценке работы модели, необходимо изучать ошибки модели как на обучающем, так и на тестовом наборах данных.
- Для полиномиальной регрессии это степень полинома, но другие алгоритмы могут иметь свои гиперпараметры, определяющие сложность модели.

Пусть в задаче регрессии мы использовали:

- А) линейную модель с одним признаком х
- Б) линейную модель с тремя признаками x_1, x_2, x_3
- В) линейную модель с 12 признаками: x_1 , x_2 , x_{3_i} ..., x_{12}

Сравнение весов

Большие значения весов w_i являются признаком переобученности

Чтобы снизить переобучение, необходимо уменьшить веса.

Решение проблемы: регуляризация

Раньше минимизировали функцию потерь Q(w, X)

К этой функции добавим слагаемое $\alpha^*R(w)$:

$$Q(w, X) + \alpha^* R(w) \rightarrow \min$$

R(w) – регуляризатор (штрафует большие веса у модели)

При минимизации новой функции веса будут уменьшаться

Наиболее используемые регуляризаторы:

L1 – регуляризатор: R(w) =
$$||w||_1 = \sum_{i=1}^n |w_i|$$

L2 – регуляризатор: R(w) =
$$||w||_2 = \sum_{i=1}^n w_i^2$$

ElasticNet: R(w) =
$$||w||_1 + ||w||_2 = \sum_{i=1}^n |w_i| + \sum_{i=1}^n w_i^2$$

Какой из регуляризаторов сработает лучше, неизвестно

L1 регуляризация

Не все признаки в задаче могут быть нужны

- Некоторые признаки могут не иметь отношения к задаче, т.е. они не нужны
- Если есть ограничения на скорость получения предсказаний, то чем меньше признаков, тем быстрее
- Если признаков больше, чем объектов, то решение задачи будет неоднозначным

В таких случаях можно не использовать некоторые признаки

В результате обучения модели с L₁-регуляризатором происходит зануление некоторых маленьких весов, т.е. отбор признаков

L1

• В результате обучения модели с L₁-регуляризатором происходит зануление некоторых маленьких весов, т.е. отбор признаков

• Модели, в которых часть весов равна 0, называются разреженными

ElasticNet

ElasticNet: R(w) =
$$||w||_1 + ||w||_2 = \sum_{i=1}^n |w_i| + \sum_{i=1}^n w_i^2$$

$$Q(w, X) + \alpha 1^* \sum_{i=1}^{n} |w_i| + \alpha 2^* \sum_{i=1}^{n} w_i^2 \rightarrow \min$$

ИЛИ

$$Q(w, X) + \alpha(\frac{1-\lambda}{2} * \sum_{i=1}^{n} w_i^2 + \lambda * \sum_{i=1}^{n} |w_i|) \rightarrow \min \qquad \lambda = (0;1)$$

Масштабирование признаков

- Масштабирование признаков ускоряет сходимость итераций для тех алгоритмов, которые зависят от масштаба признаков
- Если признаки имеют разный масштаб, то одни веса могут обновляться быстрее других, поскольку сами значения признаков участвуют в обновлении весов

- Если бы все признаки имели одинаковый масштаб значений, тогда сходимость итераций будет происходить с одинаковой скоростью для каждого из коэффициентов
- Сведение разных признаков к единой шкале позволяет сравнивать признаки, имеющие разные единицы измерения, следовательно можно сравнивать разные коэффициенты модели между собой
- Для некоторых алгоритмов масштабирование необходимое условие

2 способа масштабирования

1) стандартизация — данные должны получить среднее значение μ =0 и среднеквадратическое отклонение σ = 1

$$X_{changed} = \frac{x - \sigma}{\sigma}$$

2) нормализация – данные должны оказаться в диапазоне от 0 до 1

$$X_{changed} = \frac{X - X_{min}}{X_{max} - X_{min}}$$

Масштабирование в sklearn

- Метод *.fit()* проводит предварительную работу, вычисляет необходимые значения. Применяется только для обучающего набора данных
- Метод .transform() масштабирует данные и возвращает новую версию данных
- Целевую переменную не масштабируем

Кросс-валидация

- Можно ли
- обучать модель на всем наборе данных
- Проверять модель на всем наборе данных

- Meтод cross_val_score() позволяет сделать это автоматически.
- На вход подается модель и обучющий набор данных
- Это позволяет применить кросс-валидацию в К шагов для любой модели
- Функция cross_validate() позволяет посмотреть различные метрики кросс-валидации, а также понять, сколько времени заняли процессы обучения и проверки

