Table of Contents

```
Calculations: 1
function [power, powerReserve, maxV] = PowerRequiredQ4(V, height, plotVal)
응응응응응응응응응응응응
% Author: Hudson Reynolds, Preston Wright
% Description: function that finds power for prop aircraft based on the
% velocity
응
% Inputs:
% V - velocity [m/s]
% Outputs:
% thrust - the required thrust to maintain SLUF conditions [N]
% thrustReserve - the percentage of thrust remaining [N]
% plots - see outputs
% included so script doesn't throw errors when publishing. Delete these to
% run it as a function
height = 4618.0248;
V = 50:1:175;
plotVal = 0;
```

Constants:

```
[\sim, \sim, \sim, \text{ rho0}] = \text{atmosisa}(0);
                                    % density of air at sea level [kg/m^3]
[\sim, \sim, \sim, \text{ rho}] = \text{atmosisa(height)}; % density of air [kg/m^3]
A = 39.4;
                                        %wing area [m^2]
b = 19.78;
                                        %wing length [m]
W = 10500;
                                        % weight [kg]
cD0 = 0.021;
                                        % zero AoA cD
p0max = 1342.26 * 2 * 1000;
                                       % sea level power [W]
eta = 0.8;
                                        % propeller efficiency
e = 0.7;
                                        % oswald efficiency
AR = b^2 / A;
                                        % wing aspect ratio
```

Calculations:

```
cDa = 1 / (pi * e * AR); % induced drag coefficient
% perform power calculations:
```

```
power = 1/2 * rho * A * V.^3 * cD0 + 2 * (W * 9.81)^2 ./ (e * AR * pi * rho
* A * V);

powerMax = eta * (rho / rho0)^0.6 * p0max;

powerReserve = 1 - (power / powerMax);

% find the power closest to the max power and the corresponding velocity:
[~, minIndex] = min(abs(power - powerMax));

maxV = V(minIndex);

% solve symbolically to check:

syms x

eqn = powerMax == 1/2 * rho * A * x^3 * cD0 + 2 * (W * 9.81)^2 / (e * AR * pi * rho * A * x);

sol = solve(eqn, x, real=true);

fprintf("%.2f\n %.2f\n", sol(1), sol(2))

19.86
165.05
```

Plots

```
if plotVal == 1
    close all

hfig = figure; % save the figure handle in a variable
    fname = 'Power v Velocity Graph Q4';

hold on

plot(V, power / 1e3)
    yline(powerMax/ 1e3 ,'r--')
    title("Velocity v. Power at 15,151 ft")
    xlabel("Velocity [m/s]")
    ylabel("Power [kW]")

picturewidth = 20; % set the width of image in cm
    hw_ratio = .6; % aspect ratio
    set(findall(hfig,'-property','FontSize'),'FontSize',16) % adjust font
size

legend('Power Required', 'Max Power', 'FontSize', 12, 'location',
'northwest')
```

```
grid on
    set(findall(hfig,'-property','Box'),'Box','off') % turn off box
    set(findall(hfig,'-property','Interpreter'),'Interpreter','latex')
    set(findall(hfig,'-
property','TickLabelInterpreter'),'TickLabelInterpreter','latex')
    set(hfig, 'Units', 'centimeters', 'Position', [3 3 picturewidth
hw ratio*picturewidth])
    pos = get(hfig, 'Position');
set(hfig, 'PaperPositionMode', 'Auto', 'PaperUnits', 'centimeters', 'PaperSize',
[pos(3), pos(4)])
    %print(hfig,fname,'-dpdf','-vector','-fillpage')
    print(hfig, fname, '-dpng', '-r300')
end
ans =
   1.0e+06 *
  Columns 1 through 7
                                  0.6539
    0.6827
              0.6726
                        0.6630
                                             0.6454
                                                       0.6374
                                                                 0.6299
  Columns 8 through 14
              0.6163
                        0.6102
                                  0.6044
                                             0.5991
                                                       0.5942
                                                                 0.5897
    0.6229
  Columns 15 through 21
    0.5856
              0.5818
                                   0.5753
                                                                 0.5682
                        0.5784
                                             0.5726
                                                       0.5702
  Columns 22 through 28
    0.5664
                                   0.5631
                                             0.5626
              0.5650
                        0.5639
                                                       0.5624
                                                                 0.5625
  Columns 29 through 35
    0.5628
              0.5635
                        0.5644
                                  0.5656
                                             0.5671
                                                       0.5688
                                                                 0.5709
  Columns 36 through 42
    0.5732
              0.5757
                        0.5785
                                  0.5816
                                             0.5850
                                                       0.5886
                                                                 0.5925
  Columns 43 through 49
    0.5966 0.6010 0.6056
                                  0.6105
                                             0.6157
                                                       0.6211
                                                                 0.6268
  Columns 50 through 56
```

3

0.6327	0.6389	0.6453	0.6520	0.6589	0.6661	0.6736
Columns 57	through	63				
0.6813	0.6892	0.6975	0.7059	0.7147	0.7237	0.7329
Columns 64	through	70				
0.7424	0.7522	0.7622	0.7725	0.7830	0.7939	0.8049
Columns 71	through	77				
0.8163	0.8279	0.8398	0.8519	0.8643	0.8770	0.8899
Columns 78	through	84				
0.9032	0.9167	0.9304	0.9445	0.9588	0.9734	0.9883
Columns 85	through	91				
1.0035	1.0189	1.0346	1.0506	1.0669	1.0835	1.1004
Columns 92	through	98				
1.1176	1.1350	1.1528	1.1708	1.1891	1.2078	1.2267
Columns 99	through	105				
1.2459	1.2655	1.2853	1.3055	1.3259	1.3467	1.3677
Columns 106	6 through	112				
1.3891	1.4108	1.4328	1.4551	1.4777	1.5007	1.5240
Columns 113	3 through	119				
1.5476	1.5715	1.5957	1.6203	1.6452	1.6704	1.6960
Columns 120) through	126				
1.7219	1.7481	1.7747	1.8016	1.8288	1.8564	1.8844

Published with MATLAB® R2023b