Improved prediction of breast cancer outcome by identifying heterogeneous biomarkers

User Manual

(version 1.0)

March 4, 2018

Index

1. Installation	3
2. Quick start	3
1) Run	3
2) Example	4
3. Description of class CPR	5
1) class CPR	5
2) method CPR.fit()	6
3) method CPR.get_biomarkers()	6
4) method CPR.get_subnetwork()	6
4. Contact	7
5. Reference	7

1. Installation

```
This library 'CPR' requires:

Python 3,

Numpy,(≥1.6.1)

Scipy, (≥0.9)

Scikit-learn (≥0.18)
```

To download or update those libraries, use 'pip' in command line. *pip install numpy scipy scikit-leanr*

Download the CPR module from https://github.com/mathcom/CPR. If successfully downloaded, user can find the following 4 files:

CPR.py ex_EXPRESSION.txt ex_NETWORK.txt ex_CLINICAL.txt

2. Quick start

1) Run

\$ python CPR.py [-h] [-m NUMCLUSTERS] [-d DAMPINGFACTOR]

[-n NUMBIOMARKERS] [-c CONDITIONHUBGENE]

EXPRESSION_FILE NETWORK_FILE CLINICAL_FILE

RESULT FILE

Option	Name	Description
	EXPRESSION_FILE (positional argument)	Tab-delimited file for gene expression profiles as below: PATIENT TCGA-AR-A24H TCGA-AR-A24L TCGA-AR-A24M A1CF -0.436158 -0.276784 -0.309453 A2M 1.90128 2.72735 4.03939 A4GALT -0.408337 -0.247608 -0.260444
	NETWORK_FILE (positional argument)	Tab-delimited file for gene interaction network as below: GENE1 GENE2 RPL37A RPS27A MRPL1 MRPS36 RFC3 SPRTN
	CLINICAL_FILE (positional argument)	Tab-delimited file for patient's clinical data as below. LABEL=1:poor prognosis and 0:good prognosis: PATIENT LABEL TCGA-AR-A24H 0 TCGA-AR-A24L 0 TCGA-AR-A2LH 1
	RESULT_FILE (positional argument)	The results of CPR are saved with the following names: 1) RESULT_FILE_biomarker.txt 2) RESULT_FILE_subnetwork.txt 3) RESULT_FILE_accuracy.txt

Option	Name	Description
-h	Help message (optional argument)	Show this help message and exit
-m	Number of sample clusters (optional argument)	A parameter of <i>K-means clustering</i> algorithm. This parameter decides number of sample clusters to handle the heterogeneity of patients. The default value makes the number of clusters be determined by using the <i>silhouette score</i> . If a specific number is given, the K-means is carried out with the number. (default=0)
-d	Damping factor (optional argument)	A parameter of <i>PageRank</i> algorithm. This parameter decides an influence of network information on prediction. The value must be between 0 and 1. (default=0.7)
-n	Number of markers (optional argument)	This parameter decides number of biomarkers to use in prediction. (default=70)
-с	Condition of hub-gene (optional argument)	This parameter is used to identify a hub-gene. When c is a given parameter and x is the total of genes, we define top cx genes with high degree as hub-genes. The value must be between 0 and 1. (default=0.02)

2) Example

\$ python CPR.py ex_EXPRESSION.txt ex_NETWORK.txt ex_CLINICAL.txt ex_RESULT.txt

(1) Log in command line

```
>>> 0. Arguments
Namespace(CLINICAL_FILE='ex_CLINICAL.txt',
                                                     EXPRESSION FILE='ex EXPRESSION.txt',
NETWORK_FILE='ex_NETWORK.txt', RESULT_FILE='ex_RESULT', conditionHubgene=0.02,
dampingFactor=0.\overline{7}, numBiomarkers=70, num\overline{Clusters=0})
>>> 1. Load data
>>> 2. Preprocess data
   n_samples: 189
   n_genes : 8819
   n_edges : 150168
>>> 3. Conduct CPR
   K-means clustering
   -> n_clusters: 3
       In cluster[0], n_samples:76, n_goods:44, n_poors:32
       In cluster[1], n_samples:107, n_goods:52, n_poors:55
In cluster[2], n_samples:6, n_goods:3, n_poors:3
   Modified PageRank
>>> 4. 10-fold Cross validation
   10% complete!
   20% complete!
   30% complete!
   40% complete!
   50% complete!
   60% complete!
   70% complete!
   80% complete!
   90% complete!
   100% complete!
   AUC-ROC: 0.710
Accuracy: 0.640
```

(2) ex_RESULT_biomarker.txt

- PRscore is the mean of scores computed in each sample cluster.

GeneSymbol	PRscore	
PIK3R2	1.684137	
HSPA8	1.645991	
CALM1	1.555840	
POLR2L	1.516215	
HDAC2	1.481628	
H3F3A	1.480993	
GSK3B	1.422521	
EGFR	1.395188	
POLR2C	1.383287	

(3) ex_RESULT_subnetwork.txt

- A resulting subnetwork is a subnetwork of the given whole network.
- Each edge has at least one biomarker gene.

source	target
MAPK13	NFATC3
CREBBP	EP400
GMNN	PSMC2
RNPS1	RPSA
EGFR	TLR2

(4) ex_RESULT_accuracy.txt

```
AUC-ROC: 0.710
Accuracy: 0.640
```

3. Description of class CPR

A user can import and utilize CPR.py in python. CPR.py provides one class and its three functions.

1) class CPR

Clustering and PageRank-based gene selection method. For more detail, please refer to "Improved prediction for breast cancer outcome by identifying heterogeneous biomarkers".

Parameters	dampingFactor: float, optional (default=0.7)	
	A parameter of <i>PageRank</i> algorithm.	
	This parameter decides an influence of network information on prediction	
	Range = $0.0 \sim 1.0$	
	n_biomarkers: int, optional (default=70) User can control the number of prognostic biomarkers.	
	n_clusters : int, optional (default=0)	
	A parameter of <i>K-means clustering</i> algorithm.	

This parameter decides number of sample clusters to handle the heterogeneity of patients. The default value makes the number of clusters be determined by using the *silhouette score*. If a number is given, the K-means is carried out with the number.

c hubgene: float, optional (default=0.02)

This parameter is used to identify a hub-gene. When c is a given parameter and x is the total of genes, we define top cx genes with high degree as hub-genes.

logshow: bool, optional (default=False)

If logshow is False, any log in class CPR is not shown in command line.

2) method CPR.fit()

Build a CPR gene selection model.

Parameters	expr: numpy.array(shape=[n_samples,n_genes], dtype=numpy.float32)
	A gene expression dataset without any header.
	The order of sample must be equal to one of <i>labels</i> .
	The order of gene must be equal to one of <i>genes</i> .
	labels: numpy.array(shape=[n_samples], dtype=numpy.int32)
	A value of vector represents a label of sample.
	(0: good prognosis and 1: poor prognosis)
	The order of label must be equal to one of sample in <i>expr</i> .
	genes: list A list of genes in expression data. The order of gene must be equal to one of gene in <i>expr</i> .
	edges: list
	A list of edges, and all edges have <i>tuple</i> type.
	random_state: int or None, optional (default=1)
	This parameter is used in scikit-learn functions.
	If <i>int</i> , the results are always same. If <i>None</i> , a result can be different each time.

3) method CPR.get_biomarkers()

A list of biomarkers identified by built model is provided as list type.

Returns	biomarkers: list
	An element of the result has <i>tuple</i> type and two values.
	(0:gene symbol and 1:PRscore)
	The list is sorted by the descending order of PRscore.

4) method CPR.get_subnetwork()

A list of edges containing at least one biomarker is provided as list type.

Returns	edges: list
	An element of the result has <i>tuple</i> type.
	Each tuple consists of two gene symbols.

4. Contact

Bug reporting, questions or any suggestions are highly appreciated.

Jonghwan Choi (mathcom@inu.ac.kr)

Jaegyoon Ahn (jgahn@inu.ac.kr)

5. Reference

Choi, Jonghwan, et al. "Improved prediction of breast cancer outcome by identifying heterogeneous biomarkers." *Bioinformatics* **33.22** (2017): 3619-3626.