Pathway Analysis with MetaboAnalyst

From a talk by David Wishart

https://www.youtube.com/watch?v=1EEl9Cze_0I&t=319s

Metabolite Set Enrichment Analysis (MSEA)

http://www.msea.ca

Now part of MetaboAnalyst

- Designed to handle lists of metabolites (with or without concentration data)
- Modeled after Gene Set Enrichment Analysis (GSEA)
- Supports overrepresentation analysis (ORA), single sample profiling (SSP) and quantitative enrichment analysis (QEA)
- Contains a library of 6300 pre-defined metabolite sets including 85 pathway sets & 850 disease sets

Enrichment Analysis

Purpose: To test if there are biologically meaningful groups of metabolites that are significantly enriched in your data

Biological meaningful in terms of:

- Pathways
- Disease
- Localization

Currently, MSEA only supports human metabolomic data

MSEA

- Accepts 3 kinds of input files
 - list of metabolite names only (ORA over representation analysis)
 - list of metabolite names + concentration data from a single sample (SSP – single sample profiling)
 - a concentration table with a list of metabolite names + concentrations for multiple samples/patients (QEA – quantitative enrichment analysis)

The MSEA Approach

Data Set Selected

 Here we are using a collection of metabolites identified by NMR (compound list + concentrations) from the urine from 77 lung and colon cancer patients, some of whom were suffering from cachexia (muscle wasting)

Start with a Compound List for ORA

Upload Compound List

Perform Compound Name Standardization

Compound Name/ID Standardization:

PLease note:

- . Query names in normal white indicate exact match marked by "1" in the download file;
- Query names highlighted in an indicate no match marked by "0" in the downloaded file;
- For compound name mapping, the no match query names will be highlighted in yellow indicate no exact match found. You should click the View link to perform approximate search and manually select the correct match if found;
- . Greek alphabets are not recognized, they should be replaced by English names (i.e. alpha, beta)

Query	100.	HMOB	PubChem	KEGG	Details
Acetoeoetic acid	Apeliacetic and	H550800000	26	\$2000.64	
beta-Allerine	Bela-Alarime	H5/0000056	229	200099	
Creatine	Creatine	HMS2600064	509	900000	
Ometryglysine	Dimethylighycine	F840800005	123	980000	
fumanc and	Furnanc and	EMIDB00124	555272	900122	
Glycine	Glyone	HMS0000123	750	5000027	
Homocysteine	Homocysteine	FW09000745	7.738	206330	
L-Cysteine	L-Cystoine	HMC0000574	2052	200002	
Liteatucina					Your
L-Phonylaianne	1. Phonylatarsins	HASD800159	\$150	C00029	
L-Seme	L-Serine	HMD800182	\$953	C00065	
L-Threonine	L-Threonne	18/2003/62	5205	981992	
L-Tymune	L-Tyrosine	HMIDBOOLSE	5052	200002	
L-Valine	LiVatine	F940600663	5262	900163	
Phenylpyruvic acid	Phenylpysyvic acid	HMD800205	297	000166	
Proponic sold	Propionic acid	HM50800232	1932	920200	
Pyruvic exit	Pyrunc acid	HMC800243	3090	000022	
Sarconine	Sarconne	HND600271	1086	000213	

You can download the result bern

Name Standardization (cont.)

Select a Metabolite Set Library

Result

Result (cont.)

Click on details
to see more
1

Metabolite Set	Total.	Hite	Expect	P.velore	Holm P	FOR	Detail
GLYCINE, SERINE AND THREONINE METABOLISM	20	9	0.567	2.74E-10	2.196-8	2.196-8	Yes
PROTEIN BIOSYNTHESIS	10	0	0.415	9.936-7	7.85E-5	3.976-5	Mex
PHENYLALANINE AND TYROSINE METABOLISM	13	5.	0.284	3.156-6	2.46E-4	8.4E-5	Men
METHIONINE METABOLISM	24	6	0.524	8.000-5	0.00691	0.0018	Men
AMMONIA RECYCLING	18	.5	0.393	0.00581	0.443	0.0774	Man
PROPANGATE METABOLISM	18	3.	0.395	0.00581	0.441	0.0774	Micn.
CYSTEINE METABOLISM		1	0.175	0.0117	0.863	0.133	Men
GLUTATHONE METABOLISM	10	2	0.218	0.0183	1.0	0.162	Year
BETAINE METABOLISM	10	2	0.218	0.0163	1.0	0.162	XXX
ASPARTATE METABOLISAI	12	2	0.162	0.03261	1.0	0.209	300m
VALINE, LEUCINE AND ISOLEUCINE DEGRADATION	06	3	0.785	0.0397	1.0	0.288	Your
TYROSINE METABOLISM	58	3	0.829	0.0456	1.0	0.304	Your
UREA CYCLE	20	2	0.436	0.0677	1.0	0.417	Vite
GITRIC ACID CYCLE	25	2	0.502	0.0668	1.0	0.496	Yes
CATECHOLAMNE BIOSYNTHESIS	5	1	0.109	0.105	1.0	0.536	Your
ARGINNE AND PROLINE METABOLISM -	-26	2	0.567	0.107	1.0	0.536	Your
ALANNE METABOLISM	6 .	1	0.131	0.124	1.0	0.585	Mex
TAURINE AND HYPOTAURINE METABOLISM	1	1	0.153	0.144	1.0	0.638	Yes
BUTYRATE METABOLISM		1	0.190	0.181	1.0	0.758	Men.
PANTOTHENATE AND COA BIOSYNTHESIS.	10	1	0.216	0.199	1.0	0.768	You
KETONE BODY METABOLISM	10	1	0.215	0.199	1.0	0.758	Men
GLUCOSE-ALANINE CYCLE	12	1	0.262	0.234	1.0	0.851	York
BETA-ALANNE METABOLISM	13.	1.	0.284	0.251	1.0	0.873	Yen
SPHINGOLPID METABOLISM	15	1	0.327	0.254	1.0	0.908	Mittel.
MTOCHONORIAL ELECTRON TRANSPORT CHAIN.	16	1 -	0.327	0.284	1.0	0.908	30ew
NSLLIN SIGNALLING	19.	1	0.415	0.345	1.0	1.0	YOUR
PYRLVATE METABOLISM	20	1	8.436	0.36	1.0	1.0	Year
GLYCOLYSIS	21	1	0.45E	0.374	1.0	1.0	Vice
PORPHYRIN METABOLISM	22	1	0.48	0.368	1.0	1.0	You
GLUCONEOGENESIS	27	1	0.589	0.454	1.0	1.0	You
PYRIMDINE METABOLISM	36.	1	0.785	0.556	1.0	1.0	Yes
BILE ACID BIOSYNTHESIS	40	1	1.07	0.672	1.0	1.0	Yes

Submit

The Matched Metabolite Set

Phenylalanine and Tyrosine Metabolism in SMPDB

so over-representation analysis is actually a veryweak form of doing pathway analysis

it's just giving you as an exampleit's arguably the easiest one to do because

all you need to do isprovide a simple list of differentially changed metabolites

Single Sample Profiling (SSP)

(Basically used by a physician to analyze a patient)

Single sample profiling is basically what you would do if you were analyzing a single individual and you're trying to determine whether they're sick or healthy

You might be taking out a profile of an individual and here instead of just providing a list of a town length to actually providing a list of metabolites

You have to indicate whether it's blood or serum or urine or wherever but

As long as it knows what type of bio fluid is working with and as long as it knows that it's human because this is what it's goingto be referencing

Concentration Comparison

Comparison with Reference Concentration

Note: reference concentrations are in the form of meanightin - mask) format. In cases where the ranges were not reported in the original iterature, the min and mak were casculated using the WSs confidence intervals, in the Comparison column, M, M, L means higher, medium (within raings), lower compared to the reference concentrations. Click the lesign loon link to see a graphical summary for the comparisons.

Compound	Concernation	Reference concentrations	Competent	Deter	Steller
Lindoote	634	3.75 (1 - 6.5); 3.55 (1.7 - 5.4); 0.02125 (0.0006 - 0.0339); 1.3 :0.5 - 2.7); 1.3 (0.4 - 2.6)	st.	Xxx	H
Construint.	9.47	040 (152 - 1881 04 (02 - 03) 104 (23 - 637) 03 (03 - 17)	w	Yes	8
oriote	0.00	224(0-437) 3.9 (3.4-17.0)	9	3000	12
here soil	94	12.6 (6.47 - 24.70), 1.6 (6.6 - 14); 77 (7.8 - 20); 187.2 (20.4 406.2); 105.4 (6 - 342.0); 11.6 (6 - 27.3); 14.46 (71.26 - 77.00); 8.28 (2.6 - 14); 6.5 (7.2 - 5.4); 12.6 (4.6 - 14.6); 14.4 (8.5 - 18.2); 6.2 (2.6 - 15.5); 4.7 (7.1 - 14.5); 6.(3 - 35.2);		Stee	
Mathematics	4.0	4.8(1.9-7.3)(2.3 tt -7.4); 46.1 (t -19.4); 15.9 (t -36.4); 26.1 (t -39.6); 1.3 (t -4.0)(; 45.3 (1.9-47.1); 35.8 tt -70); 15.8 (t -39.4); 36.4); 36 (t -72); 5.00(8); 6.00(8 +3.0); 4.20(4 -20.4)	*	Yes	п
Assessing	1642	296 (0.34 - 1.81) 12.02 (0.87 - 14.37) 10 (4.8 - 14.32) 10.005 (4.66 - 16.03), 8.6 (4.8 - 17.7), 9.3 (2 - 26) 10.1 (4.8 - 17.6)		Your	G.
Mindration	37	42.76 (19.62 - 65.65 12.5 (6.3 - 16.7) (),0146 (6.0012 - 0.0086) 16.1 (2.4 - 56.8)	w	XXX	ш,
Descript	NI W	36.21(10.60 - 61.60), 14.80 (5.67 - 24.50); 14.6 (6.6 - 26.2); 15.3 (6.4 - 25.2)	in	XXX	m L
200000	720	113-05-654); 113-05-654); 46-05-444)	H	Max	P
M. Associa. asid	14.00	15;27 - 40; 879 (143 - 1007); 73.8784 - 1503); 379 (173 - 853); 288 (14.7 - 95.1); 54.5 (22.4 - 76.6); 163 (5.2 - 16.2); 20.9 (3.8 - 96.5)	M	Mark	ш
Instable	2678	15.02 (6.18 - 20.00), 54 (6.3 - 2.1); 6.2 (6.4 - 11.1)	H	Men	98
Comme	18/01	45(662-162) \$67-164	N	Mex	127

Concentration Comparison (cont.)

it will do essentially a concentration comparison so for each of the compounds that are in there it will provide a list of from the known or relative concentration ranges that are expected to be normal and how far whether things are significantly off and abnormal or or normal you can then further view these things and

where we're looking at Concentration Comparison (cont.) levels for threonine

in this particular individual they're read out inurine with something like 90 micro molar and

the information that's beencollected on humans in urine over last number of years there's four studies that were published all the values are typically reported orsomewhere between 20 and 40 micro molar

so this individual clearly has abnormally high values

Quantitative Enrichment Analysis (QEA)

now you're looking at a population with a whole bunch of metabolite concentrations and in this case we'll be indicating names andconcentrations this case got a sample data step you can upload

Result

The Matched Metabolite Set

Select a Module (Pathway Analysis)

While enrichment analysis tells you which diseases pathways other things are are modified

this one is largely more focused on pathways but

it looks not just at the Association ofmetabolites in pathways but also

It considers the pathway structures whether metabolites that are being changed or representative of hubs or spokes in the pathway whether they play a central role and

rather thanjust being restricted only to humans as the over-representation or MSC ais this allows you to look at things from 21 model organisms

Pathway Analysis

- Purpose: to extend and enhance metabolite set enrichment analysis for pathways by
 - Considering pathway structures
 - Supporting pathway visualization
- Currently supports analysis for 21 diverse (model) organisms such as humans, mouse, Drosophila, Arabidopsis, E. coli, yeast, etc. (KEGG pathways only)

While enrichment analysis tells you which diseases pathways other things are are modified

this one is largely more focused on pathways but

it looks not just at the Association ofmetabolites in pathways but also

It considers the pathway structures whether metabolites that are being changed or representative of hubs or spokes in the pathway whether they play a central role and

rather thanjust being restricted only to humans as the over-representation or MSC ais this allows you to look at things from 21 model organisms

Data Set Selected

 Here we are using a collection of metabolites identified by NMR (compound list + concentrations) from the urine from 77 lung and colon cancer patients, some of whom were suffering from cachexia (muscle wasting)

Perform Data Normalization

Select Pathway Libraries

Perform Network Topology Analysis

Pathway Position Matters

Which positions are important?

- Hubs
 - Nodes that are highly connected (red ones)
- Bottlenecks
 - Nodes on many shortest paths between other nodes (blue ones)

Graph theory

- Degree centrality
- Betweenness centrality

Junker et al. BMC Bioinformatics 2006

Which Node is More Important?

Pathway Visualization

Pathway Visualization

Pathway Impact

- Incorporates parameters such as the log foldchange of the DE metabolites, the statistical significance of the set of pathway genes and the topology of the signaling pathway
- Combines the pathway topology with the overrepresentation evidence

Result

			N.	2 3 40	(10)			
Pathway Name	Total	Hits	p	-log(p)	Holm p	FDR	Impact	Details
Valine, leucine and isoleucine degradation	40	2	1.1954E-4	9.0319	0.0059769	0.0031356	0.02232	KEGG SMP
Valine, leucine and isoleucine biosynthesis	27	4	1.25426-4	8.9838	0,0061458	0.0031356	0.04823	KEGG SMP
Glycine, serine and threonine metabolism	48	8	2.4586E-4	8.3107	0.011801	0.0040977	0.48394	KEGG SMP
Methane metabolism	34	6	3.8485E-4	7.8626	0.018088	0.0043833	0.16466	KEGG
Sulfur metabolism	18	2	4.755E-4	7.6512	0.021873	0.0043833	0.03307	KEGG SMP
Arginine and proline metabolism	77	6	6.578E-4	7.3266	0.029601	0.0043833	0.06203	KEGG SMP
Aminoscul-IRNA biosynthesis	75	10	6-6275E-4	7.3191	0.029601	0.0043833	0.11268	KEGG
Nicotinate and nicotinamide metabolism	44	5	7.0133E-4	7.2625	0.030157	0.0043833	0.04113	KEGG SMP
Glucathione mesabolism	38	2	0.0011587	6.7605	0.048664	0.0063514	0.0019	KEGG SMP
Proparoate metabolism	35	4	0.0013934	6.576	0.057129	0.0063514	0.01603	KEGG SMP
Galactose metabolism	41	3	0.001486	8.5116	0.059441	0.0063514	0.01992	KEGG SMP
Taurine and hypotaurine metabolism	20	3	0.0015243	6.4862	0.059449	0.0063514	0.35252	KEGG SMP
Cyanoamino acid metabolism	16	4	0.0016826	6.3874	0.06394	0.0064716	0.0	KEGG
Nitropen metabolism	39	7	0.0021434	6.1454	0.079305	0.0070701	0.00763	KEGG SMP
Inositol phosphate metabolism	39	1	0.002215	6.1125	0.079741	0.0070701	0.13703	KEGG SMP
Pyruvate metabolism	32	4	0.0022624	6,0913	0.079741	0.0070701	0.41957	KEGG SMP
Cysteine and methionine metabolism	56	2	0.0026796	5.9221	0.091106	0.0078811	0.02846	KEGG SMP SMP
Alanine, asparate and olutamate metabolism	24	8	0.0029727	5.8183	0.0981	0.0082576	0.25546	KEGG SMP SMP SMP
Pantothenate and CoA biosynthesis	27	4	0.0034143	5.6798	0.10926	0.0069486	0.18014	KEGG SMP
Phenylalanine metabolism	45	6	0.0036864	5.6026	0.11434	0.0089486	0.0315	KEGG SMP

Submit