

CS65K Robotics

Modelling, Planning and Control

Welcome to CS 65K Course

WELCOME
DR. ERIC CHOU

IEEE SENIOR MEMBER

Instructor

Eric Chou, Ph.D.

IEEE Senior Member CSTA Member USAT/AAU Coach

National Taiwan University

Eric Chou, Ph.D.

A researcher. An inventor. An Engineer.

- •IEEE Senior Member
- •Founder of eC Academy (<u>Udemy</u>, <u>Teachable</u>, and <u>YouTube</u>)
- •CEO & President, Charisma Comm. Inc.

Ph.D. Dissertation:

- VLSI Array Sensory Information Processing
- •University of Southern California, Dept. of Electrical Engineering and Computer Science
- •Category: VLSI design, Artificial Intelligence, Neural Networks for Machine Learning, Array Processors, Communication Channel Equalization, Parallel Processing.

My Patents (Part):

- •Amorphous Silicon Sensor
- •Ethernet and WIFI Channel Equalization Scheme
- •Multilingual Input System for Mobile Device
- Active Pixel Readout Channel
- Analog Sensor
- •Adjustable Sensor
- Multimedia accessible universal input device
- Auslesungskanal für aktiven Pixelsensor
- •Image sensor
- •输入国际语文文字的系统及方法
- •十鍵國際語文輸入法

National Taiwan University

B.S. in Computer Science and Information Engineering

University of Southern California

M.S./Ph.D. in EECS

Hewlett Packard Labs, Micrel Semiconductore, Glenayre

Communication

Inventor: Eric Y. Chou

Inventor: Eric Ying-Chin Chou

PhD PDF

PhD Dissertation: VLSI Array Sensory Information Processing

Textbook

Robotics

Modelling, Planning and Control

Publisher:

Springer Publishing Company, Incorporated

ISBN:978-1-84628-641-4

Robotics: Modelling, Planning and Control [LINK]

Lorenzo Sciavicco

Luigi Villani

Giuspeppe Oriolo

Syllabus

All Types of Robots by Locomotion

STATIONARY

Cylindrical

Spherical

SCARA

Parallel

WHEELED

2 Wheeled

3 Wheeled

6 Wheeled

LEGGED

Bipedal

Tripedal

Quadrupedal

Hexapod

SWIMMING ROBOTS

FLYING ROBOTS

Robotic Balls

SWARM ROBOTS

MICRO Robots

NANO Robots

SOFT ROBOTS

SNAKE Robots

CRAWLER Robots

HYBRID Robots

Robotics: Modelling, Planning and Control

Planning (Optimization, AI)

Chapter 4: Trajectory Planning (Static)

Chapter 11: Mobile Robots

Chapter 12: Motion Planning (Dynamic)

Appendix E: Graph Search Algorithms

Chapter 1: Introduction

Modelling (Kinematics, Transformation)

Chapter 2: Kinematics (Static)

Chapter 3: Differential Kinematics and Statics

Appendix A: Linear Algebra

Chapter 7: Dynamics

Appendix B: Rigid-body Mechanics

Control

Chapter 8: Motion Control

Chapter 9: Force Control

Chapter 10: Visual Servoing

Appendix C: Feedback Control

Appendix D: Differential Geometry

Robot Architecture

Chapter 5: Actuators and Sensors

Chapter 6: Control Architecture

Grading: Accumulated Point System

- We use an Accumulated Points System for grading.
- For example, quiz 1 is worth of 100 pts with 10 bonus pts. Quiz 2-1 is worth of 50 pts with 5 bonus pts. Term project is worth of 500 pts with 100 bonus pts, and something like that for all assignments.
- At the end of the semester, we sum up all your total points, including bonus points. We divide your total pts with the maximum base pts and get a percentage score. Use the percentage score to decide your course grade. Your total pts may be higher than the maximum base pts due to the bonus pts.

Name 🗸	Grading Period	Category 🗸	Due Date 🗸	Date Created 🗸	Points Possible 🗸
⊕	Not in a Grading Period	Calculated Grade		None	0 (may vary by student)
Total (External Grade)	Not in a Grading Period	Calculated Grade		None	2255 (may vary by student)
WK1 DB1: Introductions	Not in a Grading Period	Discussion	None	Jan 26, 2017	20
⊕ WK1 DB2: Language	Not in a Grading Period	Discussion	None	Jan 28, 2017	20
⊕ WK2 DB1: NFA	Not in a Grading Period	Discussion	None	Jan 28, 2017	20
⊕ WK3 DB1: Dynamic Binding	Not in a Grading Period	Discussion	None	Jan 28, 2017	20
⊕ WK4 DB1: IEEE 754	Not in a Grading Period	Discussion	None	Jan 28, 2017	20
⊕ WK5 DB1: Data Types	Not in a Grading Period	Discussion	None	Jan 28, 2017	20
₩K6 DB1: Calling Sequence	Not in a Grading Period	Discussion	None	Jan 28, 2017	20
₩K7 DB1: Object-oriented Programming	Not in a Grading Period	Discussion	None	Jan 28, 2017	20
₩K8 DB1: Synchronization Schemes	Not in a Grading Period	Discussion	None	Jan 28, 2017	20
Quiz 1	Not in a Grading Period	Test	None	Feb 6, 2017	100
	Not in a Grading Period	Test	None	Feb 6, 2017	50
Domain Name Checking Project	Not in a Grading Period	Assignment	None	None	50
Term Project Assignment Submission	Not in a Grading Period	Assignment	None	None	500
🐤 🔲 Quiz 2-2	Not in a Grading Period	Test	None	Feb 22, 2017	150
□ Term Project Proposal	Not in a Grading Period	Assignment	None	None	100
D Quiz 3	Not in a Grading Period	Test	None	Feb 23, 2017	75
□ Quiz 4	Not in a Grading Period	Test	None	Feb 23, 2017	75
🕒 🔲 Quiz 5	Not in a Grading Period	Test	None	Feb 23, 2017	75
D Quiz 6	Not in a Grading Period	Test	None	Feb 23, 2017	75
🕩 🔲 Quiz 7	Not in a Grading Period	Test	None	Feb 23, 2017	75
🕒 🔲 Quiz 8	Not in a Grading Period	Test	None	Feb 23, 2017	75
D Quiz 9	Not in a Grading Period	Test	None	Feb 23, 2017	100
D Quiz 10	Not in a Grading Period	Test	None	Feb 23, 2017	100
D Quiz 13	Not in a Grading Period	Test	None	Feb 23, 2017	100
₩eek 1 Homework Due	Not in a Grading Period	Assignment	None	None	50
₩eek 2 Homework Due	Not in a Grading Period	Assignment	None	None	50
₩eek 3 Homework Due	Not in a Grading Period	Assignment	None	None	50
₩eek 4 Homework Due	Not in a Grading Period	Assignment	None	None	50
Deek 5 Homework Due	Not in a Grading Period	Assignment	None	None	50
Deek 6 Homework Due	Not in a Grading Period	Assignment	None	None	50
Deek 7 Homework Due	Not in a Grading Period	Assignment	None	None	50
Exit Reviews	Not in a Grading Period	Test	None	Mar 8, 2017	25

(Subject to changes)

Grades are calculated based on the percentage score, as follows:

Score	Grade		
90% and above	A		
80% up to 89%	В		
70% up to 79%	С		
60% up to 69%	D		
59% and below	F		

Week	Lecture	Assignments	
One	Chapter 1: Introduction Appendix A: Review of Linear Algebra and Python	Discussion, Quiz	
Two	Chapter 2: Kinematics, Rotational Matrix and Displacement Vector	Discussion, Quiz	
Three	Chapter2/3: Inverse Kinematics/Differential Kinematics	Discussion, Quiz, Term Project Proposal	
Four	Chapter3/4: Differential Kinematics/Trajectory Planning	Discussion, Quiz	
Five	Chapter 5: Actuators and Sensors	Discussion, Quiz	
Six	Chapter 10: Vision and Image Processing	Discussion, Quiz	
Seven	Chapter 6/7/9: Control, Dynamics and Force Control	Discussion, Quiz	
Eight	Chapter 8/11/12: Motion Control, Mobile Robots, and Motion Planning	Discussion, Quiz, Term Project	

Background

High School:

Physics (AP 1/2/C), Chemistry, Biology, Calculus (BC), Trigonometry, Geometry, Number Theory and Statistics

College:

Computer Science: Programming Skills (Java I/II/III, C++ I/II/III, Python I/II/III), Data Structures/Algorithms,

Assembly and Computer Organization, Embedded OS, Logic Design, Digital Electronics,

Computer Architecture, Networks, Neural Network, Graph Algorithms

Mathematics: Linear Algebra, Discrete Math, Calculus I/II/III, Multivariable Calculus, Differential Equation,

College Probability and Statistics, Transform Theory, Optimization Theory

Engineering: College Physics I/II/III (Mechanism, Electricity and Electromagnetism, Wave and Optics),

Basic Electrical Engineering, Circuit and System, Signal and System, Control System

(Feekback control), Adaptive Filtering, Micro-processor-based System

AI and Robotics:

- Machine Learning
- Decision-making & Robotics
- Perception & Language
- •Human-AI Interaction
- •Ethics & AI

Robotics

- •To play a robot is easy. All high school students can do it.
- •To program a robot need some programming skills, a college student can do it.
- •To design a robot is hard, it needs a lot of knowledge.

CPSC 65000 Course Schedule – Fall 2 Term - 2022							
Date	Topic	Quiz	Assignment	Discussion	Project		
W1-10/24-10/30	Introduction to Robotics, and the review of Linear Algebra (Ch. 1, Appendix A)	100 pts	150 pts	DB1-20 pts			
W2-10/31-11/06	Kinematics, Rotational Matrix and Displacement Vectors (Ch. 2)	150 pts	150 pts	20 pts			
W3-11/07-11/13	Inverse Kinematics and differential Kinematics. (Ch.2/Ch.3)	150 pts	150 pts	20 pts	Proposal 100 pts		
W4-11/14-11/20	(Ch.3/Ch.4)	100 pts	150 pts	20 pts			
W5-11/21-11/27	Actuator and Sensor (Ch.5)	100 pts	150 pts	DB1-20 pts DB2-20 pts			
W6-11/28-12/04	Visual Control and Image Processing. (Ch.10)	100 pts	150 pts	20 pts			
W7-12/05-12/11	Control (Ch. 6/7/9)	100 pts	150 pts	20 pts			
W8-12/12-12/17	Motion Robotics. (Ch. 8/11/12)	100 pts	150 pts	20 pts	Final Report 500 pts		
Class Participation	300 pts (Professor will provide this grade based on your class attendance record, discussion involvement, and many other factors.)						
Total	300 pts	900 pts	1200 pts	200 pts	600 pts		
Grand Total (maximum base points)	3200 pts (May change)						