C01-01: Ensembles de Nombres

La version pdf de ce cours est téléchargeable ici. (version 2021-2022)

1. Activité : Classer des nombres

- 1. Dans la liste ci-dessus, deux écritures sont interdites. Lesquelles et pourquoi?
- 2. Classer les nombres restants en cinq groupes, en justifiant vos choix.

i Différence entres propriétés et écritures

Un nombre peut être écrit de différentes manières, plus ou moins compliquées. Par exemple :

$$2=rac{6}{3}=20 imes 10^{-1}=\sqrt{4}=-\left(-2
ight)=2,0000$$

Pour autant, ce qui nous intéresse en mathématiques c'est d'étudier les **propriétés** de ce nombre, qui elles sont indépendantes de l'écriture de ce nombre.

2. Nombres entiers naturels et relatifs

b Définitions

- L'ensemble des entiers naturels, noté \mathbb{N} , est l'ensemble des nombres permettant de dénombrer une collection d'objets, de personnes, etc, c'est-à-dire la suite naturelle $0~;~1~;~2~;~3~;~\dots$
- L'ensemble des entiers relatifs, noté \mathbb{Z} , est l'ensemble des entiers naturels et leurs opposés, c'est-à-dire la suite \ldots ; -3; -2; -1; 0; 1; 2; 3; \ldots

1 Info

- L'ensemble $\mathbb N$ possède un plus petit élément, c'est 0.
- Les nombres entiers naturels sont tous positifs ou nuls.
- Tous les entiers naturels sont aussi des entiers relatifs.

6 Vocabulaire et notations

- Appartenance : On dit que 5 appartient à $\mathbb N$, et on note $5\in\mathbb N$. De même -2 n'appartient pas à $\mathbb N$, et on note $-12
 ot\in\mathbb N$.
- Inclusion : Tous les éléments de $\mathbb N$ sont aussi des éléments de $\mathbb Z$. On dit alors que $\mathbb N$ est un sous-ensemble de $\mathbb Z$ et on note alors $\mathbb N \subset \mathbb Z$ (qui se lit $\mathbb N$ est inclus dans $\mathbb Z$).

Application : choix du bon symbole

Exercice

Compléter avec \in ou \notin :

- $7 \dots \mathbb{N}$
- $-3\dots \mathbb{N}$
- $-5 \dots 7$
- $7 \dots Z$
- $\frac{1}{3}\dots$
- $\sqrt{9}\dots \mathbb{N}$
- $-\sqrt{25}\dots$
- $-\sqrt{2}\dots$
- $5 imes 10^3\dots \mathbb{N}$
- $5 \times 10^{-3} \dots 7$
- $-4,2\dots\mathbb{Z}$
- $3 imes (1 rac{1}{3}) \dots \mathbb{N}$

Solution

Compléter avec \in ou \notin :

- $7\in\mathbb{N}$
- $-3
 otin \mathbb{N}$
- $-5\in\mathbb{Z}$
- $7 \in \mathbb{Z}$
- $\frac{1}{3} \notin \mathbb{I}$

$$\sqrt{9}\in\mathbb{N}$$
 car $\sqrt{9}=3$

$$-\sqrt{25}
ot\in\mathbb{N}$$
 car $-\sqrt{25}=-5$

$$-\sqrt{2}
otin\mathbb{Z}$$
 car $-\sqrt{2}\simeq -1,414...$

$$5 imes 10^3 \in \mathbb{N}$$
 car $5 imes 10^3 = 5 imes 1000 = 5000$

$$5 imes 10^{-3}
ot\in\mathbb{Z}$$
 car $5 imes 10^{-3}=5 imes 0,001=0,005$

$$-4,2
otin \mathbb{Z}$$

$$3\times (1-\frac{1}{3})\in \mathbb{N} \text{ car } 3\times (1-\frac{1}{3})=3-1=2 \text{ (en développant) ou } 3\times (1-\frac{1}{3})=3\times \frac{2}{3}=2 \text{ (en calculant entre parenthèses)}.$$

3. Nombres décimaux

6 définition : Nombres décimaux

Un nombre décimal est un nombre pouvant s'écrire sous la forme d'une fraction décimale, c'est à dire sous la forme \$\$ \drac{a} {10^n} \$\$ avec $a \in \mathbb{Z}$ et $n \in \mathbb{N}$.

L'ensemble des décimaux est noté $\mathbb{D}.$

Application : Nombres décimaux et puissances de 10

Exercice

Pour chacun des nombres suivants, déterminer si possible une écriture de la forme $\frac{k}{10^n}$

- 4,37
- 0,002
- -12
- $\frac{1}{3}$
- $\frac{2}{5}$
- $\sqrt{0.16}$
- 10³
- 10^{-5}
- -10^{5}
- $\frac{3.10^5}{10^7}$
- $\frac{10^7}{3.10^5}$

Solution

Pour chacun des nombres suivants, déterminer si possible une écriture de la forme $\frac{k}{10^n}$.

$$4,37 = \frac{437}{100} = \frac{437}{10^2}$$

$$0,002 = \frac{2}{1\,000} = \frac{2}{10^3}$$

$$-12=rac{-12}{1}=rac{-12}{10^0}$$
 (car $a^0=1$ pour tout nombre $a
eq 0$).

 $\frac{1}{3} \not\in \mathbb{D} \text{ car } \frac{1}{3} \simeq 0,333..\,.\,\text{(La démonstration réelle sera donnée plus tard dans l'année)}$

$$\frac{2}{5} = \frac{4}{10} = \frac{4}{10^1}$$

$$\sqrt{0,16}=0,4=\frac{4}{10}=\frac{4}{10^1}$$

$$10^3 = \frac{1\ 000}{1} = \frac{1\ 000}{10^0}$$

 $10^{-5}=rac{1}{10^5}$ (par définition des exposants négatifs $a^{-n}=rac{1}{a^n}$ pour tout $n\in\mathbb{Z}$ si a
eq 0)

$$-10^5 = -100\ 000 = \frac{-100\ 000}{1} = \frac{-100\ 000}{10^0} \$$$

$$\frac{3.10^5}{10^7} = \frac{3}{10^2} \text{ par division des puissances (} \frac{a^m}{a^n} = a^{m-n} \text{ pour tout } m,n \in \backslash \mathbf{Z}\text{)}$$

$$\frac{10^7}{3.10^5} = \frac{10^2}{3} \simeq 33,333.\ldots \not \in \mathbb{D}$$

Remarques

- Les entiers relatifs sont des décimaux, car si $k \in \mathbb{Z}$, on peut aussi écrire $k = \frac{k}{1} = \frac{k}{10^0}$. On a donc la propriété $\mathbb{Z} \subset \mathbb{D}$.
- Un nombre décimal possède une écriture décimale finie

4. Nombres rationnels

b Définition : Nombres rationnels

Un nombre rationnel est un nombre pouvant s'écrire sous la forme $\frac{a}{b}$ avec $a \in \mathbb{Z}$ et $b \in \mathbb{N}^*$ (c'est-à-dire \mathbb{N} privé de 0).

L'ensemble des nombres rationnels est noté Q.

1 Remarque

Un nombre décimal est par définition un nombre rationnel.

Par définition de \mathbb{D} et \mathbb{Q} , on a la propriété $\mathbb{D} \subset \mathbb{Q}$.

b Propriété : Caractérisation des rationnels non décimaux

Tous les nombres rationnels ne possèdent pas d'écriture décimale finie. En particulier, $\frac{1}{3}$ n'est pas décimal.

Preuve

La démonstration de cette propriété sera faite plus tard dans l'année, dans le chapitre arithmétique.

Remarques

- Les nombres rationnels non décimaux possèdent une écriture décimale infinie périodique, c'est-à-dire avec une série de chiffres qui se répètent à l'infini. Par exemple $\frac{1}{7}=0,14285714285714...$ (on constate la répétition de la séquence 142857}).
- · Réciproquement, si un nombre possède une écriture décimale infinie périodique, alors c'est un rationnel.

Méthode : Déterminer une fraction égale à une écriture décimale infinie périodique

On considère le nombre a dont l'écriture décimale est infinie périodique a=2,71347134... Démontrons que ce nombre est rationnel.

✓ Solution

On constate que la partie répétitive des chiffres de a est 7134, donc de taille 4.

Donc
$$10^4 \times a = 10\ 000 \times a = 27134,71347134...$$

D'où
$$10\ 000 \times a - a = 27134, 71347134... - 2, 71347134... = 27134 - 2 = 27\ 132.$$

Or
$$10~000 \times a - a = 9~999 \times a$$
.

D'après les deux lignes précédentes, on a alors
$$9~999 \times a = 27132$$
 soit $a = \frac{27~132}{9~999} = \frac{9~044}{3~333}$

Donc a est bien un nombre rationnel puisqu'il s'écrit sous la forme d'une fraction.

Application: Calculs avec les rationnels

Exercice

Dans chacun des cas suivants, calculer à la main chacune des expressions suivantes :

$$A = \frac{5}{7} - \frac{3}{11}$$

$$B = -\frac{4}{3} + \frac{7}{8}$$

$$C = \frac{3}{8} - \frac{5}{12}$$

$$D = \frac{-6}{7} \times \frac{8}{9}$$

$$B = -\frac{4}{3} + \frac{7}{8}$$

$$C = \frac{3}{8} - \frac{5}{12}$$

$$D = \frac{-6}{7} \times \frac{8}{9}$$

$$E = \frac{3}{2} \times (-\frac{7}{3})$$

$$F=rac{48}{35} imesrac{25}{64}$$
 $G=rac{4}{7}\divrac{8}{21}$

$$G = \frac{4}{7} \div \frac{8}{21}$$

$$H = \frac{\frac{3}{4}}{\frac{18}{20}}$$

$$I = \frac{7}{\frac{5}{3}}$$

$$J = \frac{\frac{7}{5}}{2}$$

$$A = \frac{5}{7} - \frac{3}{11} = \frac{5 \times 11}{7 \times 11} - \frac{3 \times 7}{11 \times 7} = \frac{55}{77} - \frac{21}{77} = \frac{34}{77}$$

$$B = -\frac{4}{3} + \frac{7}{8} = -\frac{4 \times 8}{3 \times 8} + \frac{7 \times 3}{8 \times 3} = -\frac{32}{24} + \frac{21}{24} - \frac{11}{24}$$

$$C = \frac{3}{8} - \frac{5}{12} = \frac{3 \times 3}{8 \times 3} - \frac{5 \times 2}{12 \times 2} = \frac{9}{24} - \frac{10}{24} = -\frac{1}{24}$$

$$D=rac{-6}{7} imesrac{8}{9}=rac{-6 imes8}{7 imes9}=rac{-2 imes3 imes8}{7 imes3 imes3}=-rac{16}{21}$$
 N'oubliez pas de simplifier !

$$E = \frac{3}{2} \times (-\frac{7}{3}) = -\frac{3 \times 7}{2 \times 3} = -\frac{7}{2}$$

$$F = \frac{48}{35} \times \frac{25}{64} = \frac{48 \times 25}{35 \times 64} = \frac{2 \times 3 \times 8 \times 5 \times 5}{5 \times 7 \times 2 \times 4 \times 8} = \frac{15}{28}$$

$$G = \frac{4}{7} \div \frac{8}{21} = \frac{4}{7} \times \frac{21}{8} = \frac{4 \times 21}{7 \times 8} = \frac{4 \times 3 \times 7}{7 \times 2 \times 4} = \frac{3}{2}$$

$$H = \frac{\frac{3}{4}}{\frac{18}{20}} = \frac{3}{4} \div \frac{18}{20} = \frac{3}{4} \div \frac{20}{18} = \frac{3 \times 4 \times 5}{4 \times 3 \times 6} = \frac{5}{6}.$$

$$I = \frac{7}{\frac{5}{3}} = 7 \div \frac{5}{3} = 7 \times \frac{3}{5} = \frac{21}{5}$$

$$J = \frac{\frac{7}{5}}{3} = \frac{7}{5} \div 3 = \frac{7}{5} \times \frac{1}{3} = \frac{7}{15}$$

5. Nombres réels

b Définition : Nombres réels

Un {==nombre réel est un nombre exprimant une longueur, ou l'opposé d'un nombre exprimant une longueur.

L'ensemble des nombres rationnels est noté \mathbb{R} .

Remarques

- Un nombre réel est un nombre dont le carré est positif ou nul.
- Par définition, tous les nombres rationnels sont des réels. On a alors $\mathbb{Q} \subset \mathbb{R}$.
- Certains nombres réels ne sont pas rationnels. Par exemple π n'est pas rationnel, tout comme $\sqrt{2}$ (on le montrera en exercice). Ces nombres sont dits irrationnels.

b Propriété : Ensembles de nombres

Des remarques précédentes, on à la propriété :

$$\mathbb{N}\subset\mathbb{Z}\subset\mathbb{D}\subset\mathbb{Q}\subset\mathbb{R}$$

6 Propriété : Droite des réels

Tout nombre réel est représenté par l'abscisse d'un point sur la droite numérique (appelée aussi droite des réels).

Application : Représenter sur la droite des réels

1. Déterminer l'abscisse de chacun des points de la droite ci-dessous :

1. Représenter la droite des réels (unité : 5) et y placer le plus précisément possible les nombres suivants :

$$3; -0.75; \frac{5}{4}; \frac{-2}{5}; \frac{7}{3}; \sqrt{2}$$