

Outline

Computer Graphics & Geometry

Review Mathematics

3 Summary

Why is it important to understand the mathematics of geometry in computer graphics?

Monsters, Inc.

How do we represent geometry?

- We represent objects using mainly linear primitives:
 - points
 - lines, segments
 - planes, polygons
- Need to know how to compute distances, transformations, projections?

How to approach geometric problems (why formal methods?)

We have two ways:

- Employ our geometric intuition
- Formalize everything and employ our algebra skills

Often we first do No.1 and then solve with No.2 For complex problems No.1 is not always easy?

 Geometric problem: we have two lines (or segments) in 3D, need to find the distance between them

- Geometric approach:
 - If we look from the direction of one of the lines, that line reduces to a point
 - So all we need is point-line distance in 2D (the projection plane)
 - By projecting, we reduced the problem from 3D to 2D

- Geometric approach:
 - We can continue reducing the dimensions
 - Project the red point and the blue line on the plane perpendicular to the blue line
 - Now we get point-point distance

- But how do we get the actual number?
 - Need to represent the lines mathematically
 - OK...
 - Write down the projection formulae
 - · Have to wipe the dust off our algebra...
 - Compute the point-point distance
 - Easy

- Alternatively:
 - (Almost) skip the geometric intuition step?
 - Represent the lines mathematically
 - We know that the distance is achieved at a segment that is perpendicular to both lines
 - Write down the equation for that segment and solve
 - Formal proof! (no graphical)

Mathematics

With or without geometric intuition and good 3D orientation, in any case we need to

review our algebra..

Basic definitions

- Points specify *location* in space (or in the plane)
- Vectors have magnitude and direction (like velocity)

Points ≠ Vectors

point + vector = point

Computer Graphics & Geometry

Parallelogram rule

point - point = vector

point + point: not defined!!

Mapping points to vectors

- If we have a coordinate system with origin at point
 O
- We can define correspondence between points and vectors:

$$p \rightarrow \vec{p} = p - O$$
$$v \rightarrow O + v$$

Inner (dot) product

• Defined for vectors:

$$<\mathbf{v}, \ \mathbf{w}>=||\mathbf{v}||\cdot||\mathbf{w}||\cdot\cos\theta$$

Dot product in coordinates (2D)

- Geometry Part 1

Perpendicular vectors

$$\langle \mathbf{v}, \mathbf{w} \rangle = 0$$

In 2D only:
$$\mathbf{v} = (x_v, y_v) \Rightarrow \mathbf{v}^{\perp} = \pm (-y_v, x_v)$$

Distance between two points

dist
$$(A, B) = ||B - A|| =$$

= $\sqrt{\langle B - A, B - A \rangle} =$
= $\sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$

Parametric equation of a line

$$\ell(t) = \mathbf{p_0} + t\mathbf{v}, \quad t \in (-\infty, \infty)$$

Parametric equation of a ray

$$\ell(t) = \mathbf{p_0} + t\mathbf{v}, \quad t \in (0, \infty)$$

Distance between point and line

Find a point
$$\mathbf{q}$$
' such that $(\mathbf{q} - \mathbf{q}') \perp \mathbf{v}$

$$\mathbf{dist}(\mathbf{q}, l) = ||\mathbf{q} - \mathbf{q}'||$$

$$< q - q', v > = 0$$

$$<\mathbf{q}-(\mathbf{p}_{0}+t\mathbf{v}), \ \mathbf{v}>=0$$

$$<\mathbf{q} - \mathbf{p}_0, \ \mathbf{v} > - \ t < \mathbf{v}, \mathbf{v} > = 0$$

$$t = \frac{\langle \mathbf{q} - \mathbf{p_0}, \ \mathbf{v} \rangle}{\langle \mathbf{v}, \mathbf{v} \rangle} = \frac{\langle \mathbf{q} - \mathbf{p_0}, \ \mathbf{v} \rangle}{\|\mathbf{v}\|^2}$$

$$\operatorname{dist}^{2}(\mathbf{q}, \ l) = \parallel \mathbf{q} - \mathbf{q}' \parallel^{2} = \parallel \mathbf{q} - \mathbf{p}_{0} \parallel^{2} - \frac{\langle \mathbf{q} - \mathbf{p}_{0}, \ \mathbf{v} \rangle^{2}}{\parallel \mathbf{v} \parallel^{2}}$$

 $\mathbf{p_0}$

Easy geometric interpretation

Pythagoras:

(1)
$$L^2 + \text{dist}(\mathbf{q}, \mathbf{q}')^2 = ||\mathbf{q} - \mathbf{p}_0||^2$$

(2)
$$L = \frac{\langle \mathbf{q} - \mathbf{p}_0, \mathbf{v} \rangle}{\| \mathbf{v} \|}$$

⇒ dist(**q**, **q**')² = ||**q** - **p**₀||² - L² =
= ||**q** - **p**₀||² -
$$\frac{\langle \mathbf{q} - \mathbf{p}_0, \mathbf{v} \rangle^2}{||\mathbf{v}||^2}$$
.

2D & 3D

Distance between point and line? also works in 3D

- The parametric representation of the line is coordinates-independent
- v and p_0 and the checked point q can be in 2D or in 3D or in any dimensions

Representation of a plane in 3D space

- A plane π is defined by a normal ${\bf n}$ and one point in the plane ${\mathbb P}_0$.
- A point \mathbf{q} belongs to the plane $\Leftrightarrow <\mathbf{q}-\mathbf{p_0}$, $\mathbf{n}>=0$
- The normal n is perpendicular to all vectors in the plane

Distance between point and plane

• Project the point onto the plane in the direction of the normal:

$$dist(\mathbf{q}, \ \pi) = ||\mathbf{q'} - \mathbf{q}||$$

Distance between point and plane

$$\begin{aligned} & (\mathbf{q}' - \mathbf{q}) \parallel \mathbf{n} & \Rightarrow \mathbf{q}' - \mathbf{q} = \alpha \mathbf{n}, \ \alpha \in \mathbf{R} & \Rightarrow \mathbf{q}' = \mathbf{q} + \alpha \mathbf{n} \\ & < \mathbf{q}' - \mathbf{p}_0, \ \mathbf{n} >= 0 \quad \text{(because } \mathbf{q}' \text{ is in the plane } \pi \text{)} \\ & < \mathbf{q} + \alpha \mathbf{n} - \mathbf{p}_0, \ \mathbf{n} >= 0 \\ & < \mathbf{q} - \mathbf{p}_0, \mathbf{n} > + \ \alpha < \mathbf{n}, \mathbf{n} >= 0 \\ & \alpha = \frac{< \mathbf{p}_0 - \mathbf{q}, \ \mathbf{n} >}{\mathbf{q} + \alpha \mathbf{n}} \end{aligned}$$

dist²(
$$\mathbf{q}$$
, π) = $\|\mathbf{q'} - \mathbf{q}\|^2 = \alpha^2 \|\mathbf{n}\|^2 = \frac{\langle \mathbf{q} - \mathbf{p_0}, \mathbf{n} \rangle^2}{\|\mathbf{n}\|^2}$.

Implicit representation of planes in 3D

$$Ax + By + Cz + D = 0$$
, $A, B, C, D \in \mathbb{R}$, $(A, B, C) \neq (0, 0, 0)$

- (x, y, z) are coordinates of a point on the plane
- (A, B, C) are the coordinates of a normal vector to the plane

$$Ax+By+Cz+D > 0$$

$$Ax+By+Cz+D = 0$$

$$Ax+By+Cz+D < 0$$

Distance between two lines in 3D

$$l_1(s) = \mathbf{p_1} + s\mathbf{u}$$
$$l_2(t) = \mathbf{p_2} + t\mathbf{v}$$

$$\tilde{s} = \frac{\langle \mathbf{u}, \mathbf{v} \rangle \langle \mathbf{v}, \mathbf{p}_{1} - \mathbf{p}_{2} \rangle - ||\mathbf{v}||^{2} \langle \mathbf{u}, \mathbf{p}_{1} - \mathbf{p}_{2} \rangle}{||\mathbf{u}||^{2} ||\mathbf{v}||^{2} - \langle \mathbf{u}, \mathbf{v} \rangle^{2}}$$

$$\tilde{t} = \frac{||\mathbf{u}||^{2} \langle \mathbf{u}, \mathbf{p}_{1} - \mathbf{p}_{2} \rangle - \langle \mathbf{u}, \mathbf{v} \rangle \langle \mathbf{u}, \mathbf{p}_{1} - \mathbf{p}_{2} \rangle}{||\mathbf{u}||^{2} ||\mathbf{v}||^{2} - \langle \mathbf{u}, \mathbf{v} \rangle^{2}}$$

Distance between two lines in 3D

$$l_1(s) = \mathbf{p_1} + s\mathbf{u}$$
$$l_2(t) = \mathbf{p_2} + t\mathbf{v}$$

$$\operatorname{dist}(l_1, l_2) = ||l_1(\widetilde{s}) - l_2(\widetilde{t})||$$

Barycentric coordinates

- Define a point's position relatively to some fixed points.
- $P = \alpha A + \beta B + \gamma C$, where A, B, C are not on one line, and $\alpha, \beta, \gamma \in \mathbb{R}$.
- (α, β, γ) are called Barycentric coordinates of P with respect to A, B, C (unique!)
- If P is inside the triangle, then $\alpha+\beta+\gamma=1, \alpha, \beta, \gamma>0$

Barycentric coordinates (2D-plane)

$$\vec{P} = \frac{\langle P, B, C \rangle}{\langle A, B, C \rangle} \vec{A} + \frac{\langle P, C, A \rangle}{\langle A, B, C \rangle} \vec{B} + \frac{\langle P, A, B \rangle}{\langle A, B, C \rangle} \vec{C}$$

 $\langle \cdot, \cdot, \cdot \rangle$ denotes the area of the triangle

Example of usage: warping

Example of usage: warping

We take the barycentric coordinates α , β , γ of P' with respect to A', B', C'.

Color(P) = Color($\alpha A + \beta B + \gamma C$)

Summary

We have now covered the core geometric concepts

- Importance of Geometry
- Mathematics Concepts
- (lines, rays, intersections, triangles, ...)

Recommended Reading

Interactive Computer Graphics, chapter 7

Real-Time Rendering, chapter 6