Mixing & heat transfer lab

Mixing: Power consumption and Mixing Time

Heat transfer: Come up with your own heat transfer correlation

(for your geometry and for your fluid)

Experimental Design

Find:

 the Power Consumption, Mixing Time and governing Heat Transfer Equation for heating a non-Newtonian fluid (CMC) using a steam jacketed kettle.

Vary:

- Kettle Type
- Agitator Speed

Measure:

Power (P), Temp vs time, Tank/Impeller Dimensions, Impellor rpm's (N)

Outside data:

 basic rheology data determine fluid properties for your non-Newtonian fluid at different temperatures and agitation speeds.

Learn & Communicate:

 how mixing time, power consumption, heat transfer depend on the agitator and fluid properties.

Batch Process

Solution: Xanthan Gum 0.5% (non – Newtonian, shear thickening)

Procedure

- 1. Hook up a Power meter (measure power)
- 2. Set up a Tachometer (measure rpm)
- 3. Fill Vessel with xanthan gum solution
- 4. Set up Thermometer (measure temp)
- 5. Heat from 30° C 80°C under agitation
 - 1. Variables by team. Kettle Type. Agitation Speed.
 - 2. Measure: Temp vs. time, P, N

-Measure Power consumption:

Different agitation velocities: Different power consumption

-Measure Agitation speed (rpm) using a Tachometer

- Overall Heat Transfer

Combined convection and conduction

U: overall heat transfer coefficient

$$\frac{1}{UA} = R_1 + R_2 + R_3$$

3 resistances in our system

- R1 → resistance across steam
- R2 → conduction thru wall
- R3 → resistance across CMC

We will ignore conduction through the wall. Assume : thin wall $\Delta x = 0$; $R_2 \rightarrow$

- Heat Transfer

Ts: Saturated steam constant pressure (known T)

Tf: Temperature of the fluid, variable (function of time)

Agitation Speed (rpm)	
Power Consumption (W)	
HEATING	
Steam Pressure	
Temperature (°C)	Time (min:sec)
20	0:00
30	1:20
-	-
80	15:30

5 Different agitation speeds

You will measure T_{fluid} for various time T_{steam} is known from the measured pressure (20 psi, saturated steam) T_{o} is and defined

FINALLY,

Come up with your own heat transfer correlation

$$Nu = a * Re^b * Pr^c * Vi^d$$

$$\frac{hD}{k} = a * \left(\frac{D_a^2 N \rho}{\mu_a}\right)^b * \left(\frac{C_p \mu}{k}\right)^c * \left(\frac{\mu}{\mu_o}\right)^d$$

Plot the different h and N, to fit the relationship above and find a and b

WEEK OF Jan 22

VESSEL 1 VESSEL 2
Group 3 Group 4

Prelab due by 5 PM on 01/21

WEEK OF Jan 29

VESSEL 1 VESSEL 2
Group 1 Group 2

Prelab due by 5 PM on 01/28

Same distribution for Monday and Wednesday

Food Science Pilot Plant NLSN 1135 (rear right of food science building)