MATH 170: HOMEWORK 1 SOLUTIONS

TEACHING TEAM

- 1. Are these numbers divisible by 2, 3, 5? To get points, use the criteria of divisibility that we covered in class. Optional: check your answers with a calculator.
 - a. 12345;
 - b. 10101010.

Solution. a. Divisible by 3 and 5 as the sums of the digits is 15 which is divisible by 3 and the last digit is 5.

- b. divisible by 2 and 5 as the last digit is 0.
- 2. a. Let $a, b \in \mathbb{Z}$. Prove that gcd(a, b) = gcd(a, -b).
 - b. Compute gcd(12, -30) using Euclid's algorithm.
 - c. Compute gcd(12345, 11100) using Euclid's algorithm.
 - d. Optional: check your answers on https://www.wolframalpha.com/.

Solution. a. We have that $gcd(a, b) \mid b$. So there exists $q \in \mathbb{Z}$ such that

$$b = q \gcd(a, b)$$
.

This means,

$$-b = (-q)\gcd(a,b).$$

So $gcd(a, b) \mid -b$ and, therefore, $gcd(a, b) \leq gcd(a, -b)$. Argue similarly, $gcd(a, -b) \leq gcd(a, b)$. Thus, the equality holds.

b. By part (a), gcd(12, -30) = gcd(12, 30). Therefore, we can apply Euclid's algorithm

$$30 = 2 \cdot 12 + 6$$

$$12 = 2 \cdot 6 + 0$$
.

Date: September 14, 2021.

So
$$\gcd(12, -30) = 6$$
.

$$12345 = 1 \cdot 11100 + 1245$$

$$11100 = 8 \cdot 1245 + 1140$$

$$1245 = 1 \cdot 1140 + 105$$

$$1140 = 10 \cdot 105 + 90$$

$$105 = 1 \cdot 90 + 15$$

$$90 = 60 \cdot 15 + 0$$

Thus, gcd(12345, 11100) = 15.

3. a. Divide the following numbers by 10 with remainder: 1234, 2021. That is, write them in the form $10 \cdot q + r$, where $0 \le r < 10$. Compute 1234 + 2021 and divide the result by 10 with remainder. Observe that the remainder you get is the sum of the first two remainders.

- b. Compute the remainder of 1236 and 2027 when dividing by 10, then compute the remainder of their sum. Why is it no longer just the sum of remainders?
- c. Rephrase the following rule in your own words: If you divide $a_1, a_2 \in \mathbb{Z}$ by b > 0 with remainder, write the remainder of a_1 as r_1 and the remainder of a_2 as r_2 . Then the remainder of $a_1 + a_2$ is $r_1 + r_2$ or $r_1 + r_2 b$.
- * Bonus: prove c.

Solution. a.

$$1234 = 10 \cdot 123 + 4,$$

$$2021 = 10 \cdot 202 + 1,$$

$$1234 + 2021 = 3255 = 10 \cdot 325 + 5.$$

b.

$$1236 = 10 \cdot 123 + 6,$$

$$2027 = 10 \cdot 202 + 7,$$

$$1236 + 2027 = 3263 = 10 \cdot 326 + 3.$$

c. I will give a proof of this problem, not rephras it.

Let's rewriting a_1 and a_2 so we have a visual effect of what is going on.

$$a_1 = q_1 b + r_1$$

$$a_2 = q_2 b + r_2 \,,$$

for some $q_1, q_2 \in \mathbb{Z}$. We know that because b > 0 and by the definition of remainders,

$$0 \leqslant r_1, r_2 < b$$
.

Note that there is no restriction for $r_1 + r_2$ as they are just another natural number. So, there are 2 cases

(a) When $r_1 + r_2 < b$. Then,

$$a_1 + a_2 = q_1b + q_2b + r_1 + r_2 = (q_1 + q_2)b + (r_1 + r_2).$$

This is the unique representation of $a_1 + a_2$ with its remainder (by the division theorem (look it up again)) as $0 \le r_1 + r_2 < b$. In other words, we have found the unique q and r in the division theorem so that $a_1 + a_2$ can be written in terms of b. So, the remainder of $a_1 + a_2$ divided by b in this case is $r_1 + r_2$.

(b) When $r_1 + r_2 > b$. Note that $r_1 + r_2 < 2b$ as each of them is less than b. Therefore, $r_1 + r_2 - b < b$. We want to find the unique q and r in the division theorem in this case as well. To do that, we write

$$a_1 + a_2 = q_1b + q_2b + r_1 + r_2$$

= $(q_1 + q_2)b + (r_1 + r_2 - b) + b$
= $(q_1 + q_2 + 1)b + (r_1 + r_2 - b)$.

As $r_1 + r_2 - b < b$, we just show that the remainder of $a_1 + a_2$ divided by b in this case is $r_1 + r_2 - b$.