1 Consistency Tutorial

基于共享缓存的内存一致性模型

focus on consistency models proposed for hardware-based shared-memory systems

内存一致性模型的影响

programmability 可编程性、performance 性能、portability 移植性兼容性

缓存一致性 (1) (2) 和顺序一致性 (1) (2) (3) (4), Cache Coherence and Sequential Consistency

- (1) 写操作的结果最终会被所有处理器可见
- (2) 对同一个地址的写操作被所有处理器以相同的顺序看见
- (3) 对所有地址的写操作被所有处理器以相同的顺序看见
- (4) 任意一个处理器均是以程序顺序执行操作

写操作的原子性幻象

存在缓存的情况下,系统需要一个方法来获知缓存是否接受到了无效 (invalidation) 或更新 (update) 信息。只有当通知信息(无效 or 更新)全部完成后,处理器才能视一个写操作为完成。需要满足两个条件才能达成写操作的原子性

- 1. 对同一个地址的写操作被所有处理器以相同的顺序看见
- 2. 禁止一个读返回最近一个写的结果,直到这个写操作被通知到所有的缓存副本中

顺序一致性, sequential consistency

- 1 程序顺序要求, program order requirement
- 2 写操作原子性要求, write atomicity requirement

宽松的一致性模型

- 1 对程序顺序要求的宽松: WR, WW, RR/RW
- 2 对写操作原子性的宽松: read other's/own write early
- 一致性的宽松将复杂度推到了编程级别,严格的顺序一致性则将复杂度隐藏在处理器内部

宽松的一致性模型可以得到更好的性能,但是需要在编程级别提供一些信息供底层处理,以免发生与编程意图相违背的结果,编译器需要负责将这些信息交给硬件处理

Relaxation	$W \rightarrow R$	$W \rightarrow W$	$R \rightarrow RW$	Read Others'	Read Own	Safety net
	Order	Order	Order	Write Early	Write Early	
SC [16]					\checkmark	
IBM 370 [14]	\checkmark					serialization instructions
TSO [20]	\checkmark				√	RMW
PC [13, 12]	\checkmark			√	\checkmark	RMW
PSO [20]		\checkmark			\checkmark	RMW, STBAR
WO [5]	\vee	\checkmark	\checkmark		\checkmark	synchronization
RCsc [13, 12]	√	√	√		√	release, acquire, nsync, RMW
RCpc [13, 12]	√	√	√	√	√	release, acquire, nsync, RMW
Alpha [19]	\checkmark	√	\checkmark		√	MB, WMB
RMO [21]		\checkmark			\checkmark	various MEMBAR's
PowerPC [17, 4]				\checkmark	\checkmark	SYNC