STA261 Lecture 10 — 2017-08-09

Neil Montgomery

Last edited: 2017-08-14 19:06

1. Propose a statistical model, i.e. a family of densities (or pmfs) indexed by a parameter.

- 1. Propose a statistical model, i.e. a family of densities (or pmfs) indexed by a parameter.
- 2. Specify a null hypothesis and an alternative hypothesis.

- 1. Propose a statistical model, i.e. a family of densities (or pmfs) indexed by a parameter.
- 2. Specify a null hypothesis and an alternative hypothesis.
- 3. Plan to collect a sample X_1, \ldots, X_n .

- 1. Propose a statistical model, i.e. a family of densities (or pmfs) indexed by a parameter.
- 2. Specify a null hypothesis and an alternative hypothesis.
- 3. Plan to collect a sample X_1, \ldots, X_n .
- 4. Decide on a test statistic (not obvious how to do this!)

- 1. Propose a statistical model, i.e. a family of densities (or pmfs) indexed by a parameter.
- 2. Specify a null hypothesis and an alternative hypothesis.
- 3. Plan to collect a sample X_1, \ldots, X_n .
- 4. Decide on a test statistic (not obvious how to do this!)
- 5. Decide on α and determine the rejection region (not obvious how to do this!) of this size.

- 1. Propose a statistical model, i.e. a family of densities (or pmfs) indexed by a parameter.
- 2. Specify a null hypothesis and an alternative hypothesis.
- 3. Plan to collect a sample X_1, \ldots, X_n .
- 4. Decide on a test statistic (not obvious how to do this!)
- 5. Decide on α and determine the rejection region (not obvious how to do this!) of this size.
- 6. Observe data and see it if lands in rejection region.

- 1. Propose a statistical model, i.e. a family of densities (or pmfs) indexed by a parameter.
- 2. Specify a null hypothesis and an alternative hypothesis.
- 3. Plan to collect a sample X_1, \ldots, X_n .
- 4. Decide on a test statistic (not obvious how to do this!)
- 5. Decide on α and determine the rejection region (not obvious how to do this!) of this size.
- 6. Observe data and see it if lands in rejection region.
- 7. ???

- 1. Propose a statistical model, i.e. a family of densities (or pmfs) indexed by a parameter.
- 2. Specify a null hypothesis and an alternative hypothesis.
- 3. Plan to collect a sample X_1, \ldots, X_n .
- 4. Decide on a test statistic (not obvious how to do this!)
- 5. Decide on α and determine the rejection region (not obvious how to do this!) of this size.
- 6. Observe data and see it if lands in rejection region.
- 7. ???
- 8. Profit!

likelihood ratio | Neyman-Pearson

(This theorem has been renumbered to be a Lecture 10 theorem!)

Theorem 10.0: Suppose $H_0: \theta = \theta_0$ and $H_1: \theta = \theta_1$ (each contain one value only.) The test of size α that rejects H_0 when:

$$\frac{L(\theta_0)}{L(\theta_1)} < c$$

for some non-negative constant c is at least as powerful as any test of size less than or equal to α .

(proof to be given next class)

examples

Example 10.1: $N(\mu, \sigma^2)$ (σ^2 known) with $H_0 : \mu = \mu_0$ and $H_1 : \mu = \mu_1$ with $mu_1 > \mu_0$.

Example 10.2: Bernoulli(p) with $H_0: p = p_0$ and $H_1: p = p_1$ with $p_1 > p_0$.

Example 10.3: $N(\mu, \sigma^2)$ (μ known) with $H_0: \sigma^2 = \sigma_0^2$ and $H_1: \sigma^2 = \sigma_1^2$ with $\sigma_1^2 > \sigma_0^2$.

implications of Neyman-Pearson

It turns out the likelihood ratio result also applies to hypotheses of these forms:

$$H_0: \theta \leqslant \theta_0$$
 versus $H_1: \theta > \theta_0$

implications of Neyman-Pearson

It turns out the likelihood ratio result also applies to hypotheses of these forms:

$$H_0: \theta \leqslant \theta_0$$
 versus $H_1: \theta > \theta_0$

However, they don't directly apply to the most common type of test for:

$$H_0: \theta = \theta_0 \qquad \text{versus} \qquad H_1: \theta
eq \theta_0$$

likelihood ratio test in in general

Denote by Θ the set of all possible paramater values ("the parameter space") and denote by Θ_0 and Θ_1 the subsets corresponding to H_0 and H_1 .

likelihood ratio test in in general

Denote by Θ the set of all possible paramater values ("the parameter space") and denote by Θ_0 and Θ_1 the subsets corresponding to H_0 and H_1 .

Define:

$$\Lambda = \frac{\max\limits_{\theta \in \Theta_0} L(\theta)}{\max\limits_{\theta \in \Theta} L(\theta)}$$

likelihood ratio test in in general

Denote by Θ the set of all possible paramater values ("the parameter space") and denote by Θ_0 and Θ_1 the subsets corresponding to H_0 and H_1 .

Define:

$$\Lambda = \frac{\max\limits_{\theta \in \Theta_0} L(\theta)}{\max\limits_{\theta \in \Theta} L(\theta)}$$

The generalized likelihood ratio test, or LRT, rejects when $\Lambda < c$ for some constant.

Example 10.4: $N(\mu, \sigma^2)$ population $(\sigma^2 \text{ known})$ with $H_0: \mu = \mu_0$ and $H_1: \mu \neq \mu_0$

equivalence of LRT and confidence interval

The rejection region just derived could be written as:

$$\overline{X}\leqslant \mu_0-z_{lpha/2}rac{\sigma}{\sqrt{n}} ext{ or } \overline{X}\geqslant \mu_0+z_{lpha/2}rac{\sigma}{\sqrt{n}}$$

equivalence of LRT and confidence interval

The rejection region just derived could be written as:

$$\overline{X}\leqslant \mu_0-z_{lpha/2}rac{\sigma}{\sqrt{n}} ext{ or } \overline{X}\geqslant \mu_0+z_{lpha/2}rac{\sigma}{\sqrt{n}}$$

Recall the $(1 - \alpha) \cdot 100\%$ confidence interval for μ :

$$\overline{X} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

equivalence of LRT and confidence interval

The rejection region just derived could be written as:

$$\overline{X}\leqslant \mu_0-z_{lpha/2}rac{\sigma}{\sqrt{n}} ext{ or } \overline{X}\geqslant \mu_0+z_{lpha/2}rac{\sigma}{\sqrt{n}}$$

Recall the $(1-\alpha)\cdot 100\%$ confidence interval for μ :

$$\overline{X} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

 H_0 is rejected if and only if μ_0 is outside the C.I.

numerical example $N(\mu, 1)$

Example 10.5: Fix n = 20. Testing $H_0: \mu = 0$ versus $H_1: \mu \neq 0$. Set $\alpha = 0.05$.

1. What is the rejection region?

numerical example $N(\mu, 1)$

Example 10.5: Fix n = 20. Testing $H_0: \mu = 0$ versus $H_1: \mu \neq 0$. Set $\alpha = 0.05$.

- 1. What is the rejection region?
- 2. I simulated data from a N(0.5,1) distribution and $\overline{x}=0.439$. What is the conclusion?

numerical example $N(\mu, 1)$

Example 10.5: Fix n = 20. Testing $H_0: \mu = 0$ versus $H_1: \mu \neq 0$. Set $\alpha = 0.05$.

- 1. What is the rejection region?
- 2. I simulated data from a N(0.5,1) distribution and $\overline{x}=0.439$. What is the conclusion?
- 3. (A question for those with experience...) Does this example suggest any criticisms of "classical" hypothesis testing?

A p-value is defined as the smallest α at which H_0 would be rejected.

A p-value is defined as the smallest α at which H_0 would be rejected.

A less formal but more useful "definition" is the probability of observing a more extreme value of the test statistic.

A p-value is defined as the smallest α at which H_0 would be rejected.

A less formal but more useful "definition" is the probability of observing a more extreme value of the test statistic.

Numerical example 10.5 continued...

A p-value is defined as the smallest α at which H_0 would be rejected.

A less formal but more useful "definition" is the probability of observing a more extreme value of the test statistic.

Numerical example 10.5 continued...

I could simulate from a N(2,1) distribution to get a new $\overline{x}=1.2451801$ What is the p-value this time?