324 | Introduction to Automata Theory, Formal Languages and Computation

ii) A
$$\rightarrow$$
 (00)*00 S \rightarrow (01)*S/1(00)*00

$$S \to (01)*1(00)*00$$

The regular expression is (01)*1(00)*00.

- iii) Reversing the regular expression, we get 00(00)*1(01)*.
- iv) The fi nite automata constructed from the expression in step III is

v) The right linear grammar from the finite automata is

 $A \rightarrow 0B$

 $B \to 0C$

 $\mathrm{C} \to 0\mathrm{D}$

 $D \to 0C$

 $C \rightarrow 0E/1$

 $E \rightarrow 0F$

 $F \rightarrow 1E/1$

This is the equivalent right linear grammar.

6.7 Normal Form

For a grammar, the RHS of a production can be any string of variables and terminals, i.e. , $(VN \cup \sum)^*$. A grammar is said to be in normal form when every production of the grammar has some specific form . That means , instead of allowing any member of $(VN \cup \sum)$ on the RHS of the production, we permit only specific members on the RHS of the production . But these restrictions should not hamper the language generating power of the grammar.

When a grammar is made in normal form $\,$, $\,$ every production of the grammar is converted in some specific form. These help us to design some algorithm to answer certain questions, such as if a CFG