

Spark Program

CHAPTER 2: DATAFRAMES

Chapter Objectives

In this chapter, we will:

- → Introduce DataFrames
- → Show how to create a structured object using DataFrames
- → Apply transformations and actions on DataFrames

DataFrames

- → Spark 2.0 introduced a more feature rich and easier to use version of RDD's known as a DataFrame
 - Modeled to be similar to Pandas DataFrame so it is easily familiar
 - Is an RDD but has column names and data types
 - Has transformations and actions that are easier to use than RDD versions
 - Attempts to be more SQL-like for even more familiarity
 - Can read and write many more file formats than basic RDD's could

Make a DataFrame

- → Spark 2.0 introduced the SparkSession, simply called spark in PySpark
 - Provides easier access to the different spark contexts
 - spark.sparkContext is the same as the old sc
- ◆ Once we have the Spark context, we can start using DataFrames

```
x = sc.parallelize([(1,'alpha'),(2,'beta')])
x0 = spark.createDataFrame(x)
x0.show()
+---+
| _1| _2|
+---+---+
| 1|alpha|
| 2| beta|
+---+---+
```

Column Names

→ To make the DataFrame more useful, column names can be applied

```
x1 = spark.createDataFrame(x, schema = ['ID', 'Name'])
x1.show()
x1.describe()
+---+
  ID | Name |
+---+
| 1|alpha|
| 2| beta|
+---+
```

DataFrame[summary: string, ID: string, Name: string]

Schemas

→ To make the DataFrame even more useful, a schema with data types can be applied

```
x2 = spark.createDataFrame(x, 'ID:int, Name:string')
x2.show()
print(x2)
+---+---+
| ID| Name|
+---+---+
| 1|alpha|
| 2| beta|
+---+---+
DataFrame[ID: int, Name: string]
```

Schema Objects

→ Sometimes a schema object is required or just preferred

```
schema = StructType([
     StructField('ID', IntegerType()),
     StructField('Name', StringType())
 1)
 x3 = spark.createDataFrame(x, schema = schema)
 x3.show()
 print(x3)
+---+
 ID| Name|
+---+
| 1|alpha|
  2| beta|
+---+
DataFrame[ID: int, Name: string]
```

toDF() Method

→ Alternatively, RDD's have a toDF() method which works the same as spark.createDataFrame()

```
x.toDF()
x.toDF(['ID', 'Name'])
x.toDF('ID:int, Name:string')
x.toDF(schema = schema1)
```

Reading Files

- → There are many file formats directly supported for reading and writing
 - csv
 - json
 - orc
 - parquet
 - jdbc
- → Other formats can be loaded using custom Java classes
 - Cassandra
 - Mongo
 - HBase
 - AVRO

Reading CSV Files

- → There are many different syntaxes that you will see but they all do the same thing
- → The sep parameter can also be used to indicate different separators like \t for tab

```
filename = '/class/datasets/finance/CreditCard.csv'

df4 = spark.read.load(filename, format = 'csv',
    sep = ',', inferSchema = True, header = True)

df4 = spark.read.format('csv').option('header','true').
    option('inferSchema','true').load(filename)

df4 = spark.read.csv(filename, header = True,
    inferSchema = True)
```

Writing Files

- → The write method on a DataFrame can be used just like the read function using many different options
- → Some options are built-in such as:

- → Other formats can use the option to supply a custom Java class that can be downloaded and installed on the computer
 - AVRO:

```
spark.read.format("com.databricks.spark.avro").load("kv.
avro")
```

– Cassandra:

```
sqlContext.read.format("org.apache.spark.sql.cassandra")
.options(table = table_name, keyspace =
keys_space_name).load()
```

Selecting Columns

→ DataFrames have methods with names similar to SQL commands

Sorting

→ The sort and orderBy methods are different aliases for the same function

```
p.sort(p.categoryid)
```

- → They sort a DataFrame in ascending order or descending order if you pass the ascending = False parameter p.sort(p.unitprice, ascending = False)
- → You can sort on multiple columns p.orderBy('categoryid', 'productid')
- → Custom sort functions can use the withColumn method

Calculated Columns

→ New columns can be added to a DataFrame

```
prod2 = prod.withColumn('value', prod.unitprice *
prod.unitsinstock)
```

→ Columns can be removed when not needed

```
prod2 = prod2.drop('quantityperunit')
```

Filtering Data

- → DataFrames can be filtered like a SQL table using either the filter or where method
 - They are the exact same method with different aliases

```
p.filter(p.unitprice > 100)
p.filter('unitprice > 100')
p.where(p.categoryid == 2)
p.where('categoryid = 2')
p.where('unitprice >=50 and unitprice <= 100'))
p.where('unitprice between 50 and 100')
p.where((p.unitprice >=50) & (p.unitprice <= 100))
```

JOIN

- → DataFrames can be joined to other DataFrames just as you would in SQL and all the expected types are supported
 - INNER
 - LEFT
 - RIGHT

```
- FULL
tab1 = sc.parallelize([(1, 'Alpha'), (2, 'Beta'), (3,
'Delta')]).toDF('ID:int, code:string')
tab2 = sc.parallelize([(100, 'One', 1), (101, 'Two', 2),
(102, 'Three', 1), (103, 'Four', 4)]) \
.toDF('ID:int, name:string, parentID:int')
tab1.join(tab2, tab1.ID == tab2.parentID).show()
tab1.join(tab2, tab1.ID == tab2.parentID, 'left').show()
tab1.join(tab2, tab1.ID == tab2.parentID, 'right').show()
tab1.join(tab2, tab1.ID == tab2.parentID, 'full').show()
```

Grouping and Aggregating

→ Grouping in Spark works a little differently—the groupBy method creates a grouped DataFrame which can then have aggregate methods called on it

```
tab3 = sc.parallelize([(1, 10), (1, 20), (1, 30), (2,
40), (2,50)]).toDF('groupID:int, amount:int')
x = tab3.groupby('groupID')
```

- → There are various different syntaxes to accomplish the same results
 - Call the method after grouping

```
x.max().show()
```

Use the agg method with a dictionary

```
x.agg({'amount':'sum', 'amount':'max'}).show()
```

Use the agg method with the function names

```
from pyspark.sql import functions as F
x.agg(F.sum('amount'), F.max('amount')).show()
```

Miscellaneous Useful Methods

- → A lot of standard SQL is supported by Spark
- → Using the expr function in combination with withColumn you can add calculated columns to a DataFrame if you can code the calculation as standard SQL

```
from pyspark.sql.functions import expr
x2.withColumn('uppername', expr('upper(name)')).show()
```

- → Sometimes you just want to easily rename a column
 - withColumnRenamed(oldname, newname)
- → Like collect() the toLocalIterator() method will return all the results to the driver node, but it does it as a generator instead of a list
- → Just like SQL there are methods union, unionAll, subtract, and intersect

Chapter Summary

In this chapter, we have:

- → Introduced DataFrames
- → Shown how to create a structured object using DataFrames
- → Applied transformations and actions on DataFrames