Winter 2023/24 Dr. Peter Gladbach Dr. Adrien Schertzer

Hausaufgabenblatt 1.

Abgabe bis Mi, 25.10.

Für die Klausurzulassung müssen insgesammt 50 % der Punkte erreicht werden. Die Aufgaben dürfen in Gruppen von maximal 3 Personen abgegeben werden.

Aufgabe 1. (10 Punkte)

Schreiben Sie die folgenden komplexen Zahlen in Standardform:

- (i) $(1+3i)^2$,
- (ii) $\frac{1}{5+i}$,
- (iii) $\frac{1+2i}{3+4i}$,
- (iv) $\frac{1}{(2+i)(2+2i)}$.

Aufgabe 2. (10 Punkte)

Wir merken, dass $x + iy = r(\cos(\theta) + i\sin(\theta))$, wobei $r = \sqrt{x^2 + y^2}$, $\theta = \arg(x + iy) \in [0, 2\pi)$. Schreiben Sie die folgenden komplexen Zahlen in Polarkoordinaten (i.e. finden Sie r, θ):

- (i) 100,
- (ii) 5i,
- (iii) 3 + 2i,
- (iv) $\frac{1}{6+i}$.

Aufgabe 3. (10 Punkte)

Finden Sie alle komplexwertigen Lösungen der folgenden Gleichungen:

- (i) $z^4 = 1$,
- (ii) $z^4 = -1$,
- (iii) $z^2 z + 1 = 0$,
- (iv) $z^6 + z^3 + 1 = 0$,
- (v) $z^2 = 10i$.

Winter 2023/24 Dr. Peter Gladbach Dr. Adrien Schertzer

Hausaufgabenblatt 2.

Abgabe bis Don, 2.11.

Für die Klausurzulassung müssen insgesammt 50 % der Punkte erreicht werden. Die Aufgaben dürfen in Gruppen von maximal 3 Personen abgegeben werden.

Aufgabe 1. (6 Punkte)

Berechnen Sie mit Polarkoordinaten:

- $(i) \left(\frac{1}{4-4i}\right)^{20},$
- (ii) $(1+2i)^7$.

Aufgabe 2. (6 Punkte)

Finden Sie alle komplexwertigen Lösungen der folgenden Gleichungen:

- (i) $z^2 + (1+i)z + (1-i) = 0$,
- (ii) $3iz^2 iz + (1 i) = 0$.

Aufgabe 3. (6 Punkte)

Sei $f: \mathbb{C} \to \mathbb{C}: f(z) = z^2 - iz + 1$. Skizzieren Sie die Mengen

- (i) $\{ \text{Re} (f(z)) = 0 \},$
- (ii) $\{ \text{Im} (f(z)) = 0 \},$
- (iii) $\{\operatorname{Re}(f(z)) = 0\} \cap \{\operatorname{Im}(f(z)) = 0\}.$

Aufgabe 4. (9 Punkte)

Berechnen Sie f'(z), Re(f'(z)), Im(f'(z)) für

- (i) $f(z) = z^2 iz + 1$,
- (ii) $f(z) = e^{iz}$,
- (iii) $f(z) = \sqrt{z}$.

Aufgabe 5. (9 Punkte)

Finden Sie Komplexe Stammfunktion von

(i)
$$f(z) = z^2 + (1+i)z + (1-i)$$
,

- (ii) $f(z) = e^{iz}$,
- (iii) $f(z) = \sqrt{z}$.

Winter 2023/24 Dr. Peter Gladbach Dr. Adrien Schertzer

Hausaufgabenblatt 3.

Abgabe bis Mi, 8.11.

Für die Klausurzulassung müssen insgesammt 50 % der Punkte erreicht werden. Die Aufgaben dürfen in Gruppen von maximal 3 Personen abgegeben werden.

Aufgabe 1. (10 Punkte)

Es sei R > 0 der Konvergenzradius der Potenzreihe $\sum_{n=0}^{\infty} a_n z^n$. Bestimmen Sie den Konvergenzradius der folgenden Potenzreihen.

- (i) $\sum_{n=0}^{\infty} a_n z^{2n}$,
- (ii) $\sum_{n=0}^{\infty} a_n^2 z^n,$
- (iii) $\sum_{n=0}^{\infty} a_n^2 z^{2n}$,
- (iv) $\sum_{n=0}^{\infty} \frac{a_n}{n!} z^n$. (Sie können die Stirling Formel verwenden: $n! \geq \sqrt{2\pi n} (\frac{n}{e})^n$)

Aufgabe 2. (10 Punkte)

Es sei $p \in \mathbb{N}, p \geq 2$ und

$$J_p(z) = \sum_{k=0}^{\infty} \frac{(-1)^k \left(\frac{z}{2}\right)^{p+2k}}{k!(p+k)!}$$

die Bessel Funktion der Ordnung p. Zeigen Sie:

- (i) Der Konvergenzradius der Potenzreihe $J_p(z)$ ist ∞ .
- (ii) Für $z \in \mathbb{C} \setminus \{0\}$ gilt

$$\frac{\mathrm{d}^2}{\mathrm{d}z^2}J_p(z) + \frac{1}{z}\frac{\mathrm{d}}{\mathrm{d}z}J_p(z) + \left(1 - \frac{p^2}{z^2}\right)J_p(z) = 0.$$

Aufgabe 3. (10 Punkte)

Bestimmen Sie den Konvergenzradius der folgenden Potenzreihen.

- (i) $\sum_{n=0}^{\infty} (\log n)^2 z^n,$
- (ii) $\sum_{n=0}^{\infty} \frac{(-1)^n}{2^n} z^n$
- (iii) $\sum_{n=0}^{\infty} n^{\frac{1}{\log(1+1/n)}} z^n$.

Aufgabe 4. (5 Punkte)

Sei
$$F(z) = \sum_{k=1}^{+\infty} \frac{z^k}{k}$$

- (i) Bestimmen Sie den Konvergenzradius der Reihe.
- (ii) Zeigen Sie, dass $F'(z) = \frac{1}{1-z}$.
- (iii) Zeigen Sie, dass $F(1 e^z) = -z$.

Winter 2023/24 Dr. Peter Gladbach Dr. Adrien Schertzer

Hausaufgabenblatt 4.

Abgabe bis Mi, 15.11.

Für die Klausurzulassung müssen insgesammt 50 % der Punkte erreicht werden. Die Aufgaben dürfen in Gruppen von maximal 3 Personen abgegeben werden.

Aufgabe 1. (5 Punkte)

Berechnen Sie $\sum_{k=0}^{\infty} kz^k \times \sum_{k=0}^{\infty} z^k$ und zeigen Sie, dass $e^{z_1+z_2}=e^{z_1}e^{z_2}$ mit dem Produkt von Cauchy.

Aufgabe 2. (10 Punkte)

Finden Sie f', f'', f''' von

- (i) $\sum_{k=0}^{\infty} \frac{z^k}{k!},$
- (ii) $\sum_{k=0}^{\infty} 2^k z^k,$
- (iii) $\sum_{k=0}^{\infty} \frac{z^k}{k}$.

Aufgabe 3. (5 Punkte)

Schreiben Sie als Potenzreihe mit Zentrum 0, $\sum_{k=0}^{\infty} 2^{-k} (i+z)^k$.

Aufgabe 4. (10 Punkte)

Wir definieren $\cos(z) := \sum_{k=0}^{\infty} \frac{(-1)^k z^{2k}}{(2k)!}$ und $\sin(z) := \sum_{k=0}^{\infty} \frac{(-1)^k z^{2k+1}}{(2k+1)!} \ \forall z \in \mathbb{C}$.

- (i) Zeigen Sie, dass $e^{iz} = \cos(z) + i\sin(z)$.
- (ii) Zeigen Sie, dass $\sin(z_1 + z_2) = \sin(z_1)\cos(z_2) + \cos(z_1)\sin(z_2)$.
- (iii) Zeigen Sie, dass $\cos(z)^2 + \sin(z)^2 = 1$.

Winter 2023/24 Dr. Peter Gladbach Dr. Adrien Schertzer

Hausaufgabenblatt 5.

Abgabe bis Mi, 22.11.

Für die Klausurzulassung müssen insgesammt 50 % der Punkte erreicht werden. Die Aufgaben dürfen in Gruppen von maximal 3 Personen abgegeben werden.

Aufgabe 1. (7.5 Punkte)

Wir definieren $z^a := e^{a \ln(z)}$:

(i) Ist
$$z^{a+b} = z^a z^b \ \forall z, a, b \in \mathbb{C}$$
?

(ii) Gilt
$$(z_1 z_2)^a = z_1^a z_2^a \ \forall z_1, z_2 \in \mathbb{C} \text{ und } a \in \mathbb{Z}$$
?

(iii) Und Falls
$$z_1, z_2, a \in \mathbb{C}$$
?

Aufgabe 2. (7.5 Punkte)

Berechnen Sie

- (i) $\ln(1+i)$,
- (ii) $\ln(-e^{10})$,
- (iii) $(1+i)^{(1+i)}$.

Aufgabe 3. (10 Punkte)

Bestimmen Sie den Rand der folgenden Mengen in Ĉ.

(i)
$$M_1 = \{ z \in \mathbb{C} : |z| = 2 \},$$

(ii)
$$M_2 = \{ z \in \mathbb{C} : |z| \in (1,2) \},$$

(iii)
$$M_3 = \{ z \in \mathbb{C} : \text{Re}(z) > 0 \},$$

(iv)
$$M_4 = \{ z \in \mathbb{C} : \text{Re}(e^z) > 0 \}.$$

Aufgabe 4. (10 Punkte)

Es sei R > 0 und $\gamma_R(t) = Re^{it}, t \in [0, 2\pi]$. Berechnen Sie die folgenden Wegintegrale:

- (i) $\int_{\gamma}\bar{z}dz,$ wobei γ der Streckenzug bestehend aus den Segmenten [0,i],[i,1+i] ist,
- (ii) $\int_{\gamma} \bar{z} dz$, wobei γ der Streckenzug bestehend aus den Segmenten [0,1], [1,1+i] ist,

(iii)
$$\int_{\gamma_{P}} z^{n} \bar{z}^{m} dz$$
, für $n, m \in \mathbb{Z}$,

(iv)
$$\int_{\gamma_R} \operatorname{Re}(z) dz$$
.

Winter 2023/24 Dr. Peter Gladbach Dr. Adrien Schertzer

Hausaufgabenblatt 6.

Abgabe bis Mi, 29.11.

Für die Klausurzulassung müssen insgesammt 50 % der Punkte erreicht werden. Die Aufgaben dürfen in Gruppen von maximal 3 Personen abgegeben werden.

Aufgabe 1. (10 Punkte)

Sei $U \subseteq \mathbb{C}$ offen, sternförmig (eine Menge $U \subseteq \mathbb{C}$ heißt sternförmig, wenn es ein $u_0 \in U$ gibt, so dass für alle $u \in U$ die Strecke $[u_0, u] := \{u_0 + t(u - u_0), t \in [0, 1]\}$ eine Teilmenge von U ist) und sei $\gamma : [a, b] \to U$ einfache geschlossene Kurve.

- (i) Finden Sie ein nicht Sternförmiges Gebiet,
- (ii) Skizzieren Sie γ , Int γ und U,
- (iii) Beweisen Sie, dass $Int \gamma \subseteq U$.

Aufgabe 2. (10 Punkte)

Berechnen Sie folgende Wegintegrale über den Weg $\gamma = \partial B_2(0)$ mit einer positiven Orientierung.

- (i) $\int_{\gamma} \frac{z^3 + 5}{z i} dz,$
- (ii) $\int_{\gamma} \frac{e^z}{i\pi z} dz$,
- (iii) $\int_{\gamma} \frac{z^3+5}{(z+3)(z-1)} dz$.

Aufgabe 3. (10 Punkte)

Zeigen Sie, dass $\int_0^{2\pi} e^{\cos(\theta)} \cos(\theta + \sin(\theta)) = \int_0^{2\pi} e^{\cos(\theta)} \sin(\theta + \sin(\theta)) = 0$. Hinweis: Summieren Sie das erste Integral mit dem zweiten Integral mal i.

Winter 2023/24 Dr. Peter Gladbach Dr. Adrien Schertzer

Hausaufgabenblatt 7.

Abgabe bis Do, 7.12.

Für die Klausurzulassung müssen insgesammt 50 % der Punkte erreicht werden. Die Aufgaben dürfen in Gruppen von maximal 3 Personen abgegeben werden.

Aufgabe 1. (10 Punkte)

Berechnen Sie folgende Wegintegrale über den Weg $\Gamma = \partial B_2(0)$ mit Positivorientierung:

- (i) $\int_{\Gamma} \frac{z}{(z-i)^3(z+3)} dz,$
- (ii) $\int_{\Gamma} \frac{z^3+5}{(z+1)^3} dz,$
- (iii) $\int_{\Gamma} e^z z^n dz$ wobei $n \in \mathbb{Z}$.

Aufgabe 2. (10 Punkte)

Zeigen Sie die folgende Aussage: f sei holomorph auf \mathbb{C} . Falls K, R > 0 und $m \in \mathbb{N}$ existieren, sodass $|f(z)| \leq K |z|^m$ für $|z| \geq R$, dann ist f ein Polynom mit Grad höchstens m. Hinweis: Gucken Sie die m+1- erste Ableitung.

Aufgabe 3. (10 Punkte)

Berechnen Sie folgende Wegintegrale über den Weg $\Gamma = \partial B_2(0)$ mit Positivorientierung:

- (i) $\int_{\Gamma} \frac{1}{z(z-1)} dz$,
- (ii) $\int_{\Gamma} \frac{1}{z^3(z-1)} dz$.

Winter 2023/24 Dr. Peter Gladbach Dr. Adrien Schertzer

Hausaufgabenblatt 8.

Abgabe bis Mi, 13.12.

Für die Klausurzulassung müssen insgesammt 50 % der Punkte erreicht werden. Die Aufgaben dürfen in Gruppen von maximal 3 Personen abgegeben werden.

Aufgabe 1. (10 Punkte)

Es sei f holomorph auf $B_1(0)\setminus\{0\}$, beschränkt und besitze eine isolierte Singularität in 0. Zeigen Sie, dass es g holomorph auf $B_1(0)$ existiert, sodass g(z)=f(z) für alle $z\in B_1(0)\setminus\{0\}$. Hinweis: Laurent Reihe betrachten.

Aufgabe 2. (10 Punkte)

- (i) Berechnen Sie die Laurent-Reihe in $z_0 = 0$ für $f(z) = e^{z+1/z}$ für $z \in \mathbb{C} \setminus \{0\}$.
- (ii) Finden Sie alle Singularitäten und Residuen von $f(z) = \frac{\cos(z)}{z\sin(z)}$.
- (iii) Finden Sie das Residuum von $f(z) = \frac{\cos(z)}{z\sin(z)^2}$ in 0.

Aufgabe 3. (10 Punkte)

Sei $f: \mathbb{R} \to \mathbb{C}$, $f(x) = \sum_{k=0}^{N} \alpha_k \cos(kx) + \beta_k \sin(kx)$, mit $\alpha_k, \beta_k \in \mathbb{C}$. Finden Sie Koeffiezienten $\gamma_k \in \mathbb{C}$, $k = -N, \dots, N$ mit $f(x) = \sum_{k=-N}^{N} \gamma_k e^{ikx}$.

Winter 2023/24 Dr. Peter Gladbach Dr. Adrien Schertzer

Hausaufgabenblatt 9.

Abgabe bis Mi, 20.12.

Für die Klausurzulassung müssen insgesammt 50 % der Punkte erreicht werden. Die Aufgaben dürfen in Gruppen von maximal 3 Personen abgegeben werden.

Aufgabe 1. (10 Punkte)

Finden Sie eine Lösung $u: \mathbb{R} \times [0, \infty) \to \mathbb{R}$,

$$\begin{cases} \partial_{xx}u + \partial_{yy}u = 0, \\ u(x,0) = \cos(x) + \cos(100x), \\ \lim_{y \to \infty} u(x,y) = 0. \end{cases}$$

Hinweis: Schreiben Sie $u(x,y) = f_1(y)\cos(x) + f_{100}(y)\cos(100x)$.

Aufgabe 2. (10 Punkte)

- (i) Berechnen Sie die Fourier-Reihe der Funktion $f(x) = |\sin(x)|, x \in [0, 2\pi]$.
- (ii) Bestimmen Sie periodische Lösungen der Differentialgleichung

$$u'' + u = |sinx|, x \in [0, 2\pi].$$

Aufgabe 3. (10 Punkte)

Bestimmen Sie die Fourier-Reihen der Funktionen $g(x) = x^2$ und $h(x) = x^3$ auf $[0, 2\pi]$.

Winter 2023/24 Dr. Peter Gladbach Sid Maibach

Hausaufgabenblatt 10.

Abgabe bis Mi, 10.01.

Für die Klausurzulassung müssen insgesammt 50 % der Punkte erreicht werden. Die Aufgaben dürfen in Gruppen von maximal 3 Personen abgegeben werden.

Aufgabe 1. (10 Punkte)

Sei $\alpha > 0$,

(i) berechnen Sie die Fourier-Transformation von $f: \mathbb{R} \to \mathbb{R}$ definiert als

$$f(x) = \begin{cases} e^{-\alpha x} & \text{für } x > 0 \\ 0 & \text{für } x < 0. \end{cases}$$

- (ii) Ist die Funktion $g: \mathbb{R} \to \mathbb{R}$ definiert als $g(k) = \frac{1}{(\alpha + ik)} L^1$ -integrierbar?
- (iii) Berechnen Sie die inverse Fourier-Transformation von g für $x \neq 0$. Das heißt, berechnen Sie

$$\lim_{R\to\infty}\frac{1}{2\pi}\int_{-R}^R e^{ikx}g(k)\,dk.$$

Hinweis: Betrachten Sie einen der Halbkreise $\partial \{z \in \mathbb{C} : \operatorname{Im}(z) > 0, |z| < R\}$ oder $\partial \{z \in \mathbb{C} : \operatorname{Im}(z) < 0, |z| < R\}$, und benutzen Sie den Residuensatz..

Aufgabe 2. (10 Punkte)

Berechnen Sie die Fourier-Transformation von

- (i) f definiert als $f(x) = xe^{-\frac{x^2}{2}}$ für $x \in \mathbb{R}$,
- (ii) g definiert als $g(x) = x^2 e^{-\frac{x^2}{2}}$ für $x \in \mathbb{R}$.

Aufgabe 3. (10 Punkte)

Berechnen Sie die Faltung $f_1 * f_2$ und die Fourier-Transformation von $f_1 * f_2$ für f_1, f_2 definiert als

(i)
$$f_1(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$$
 und $f_2(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{(x-1)^2}{2}}$ (Hinweis: Quadratische Ergänzung)

(ii)

$$f_1(x) = f_2(x) = \begin{cases} e^{-x} & \text{für } x \ge 0 \\ 0 & \text{für } x < 0. \end{cases}$$

(iii) $f_1(x) = f_2(x) = 1_{[0,1]}(x)$.

Winter 2023/24 Dr. Peter Gladbach Sid Maibach

Hausaufgabenblatt 11.

Abgabe bis Mi, 17.01.

Für die Klausurzulassung müssen insgesammt 50 % der Punkte erreicht werden. Die Aufgaben dürfen in Gruppen von maximal 3 Personen abgegeben werden.

Aufgabe 1. (10 Punkte)

Gegeben eine Matrix $A \in \mathbb{R}^{n \times n}$, sei $f_A : \mathbb{R}^n \to \mathbb{R}$ die Funktion

$$e^{-\frac{1}{2}x\cdot Ax}$$
.

Sei A zunächst eine Diagonalmatrix mit $\lambda_1, \ldots, \lambda_n > 0$ auf der Diagonalen.

- (i) Zeigen Sie, dass f_A auf \mathbb{R}^n absolut integrierbar ist.
- (ii) Berechnen Sie die n-dimensionale Fourier-Transformation

$$\mathcal{F}f_A(k) = \int_{\mathbb{R}^n} f_A(x)e^{-ik\cdot x}dx.$$

Hinweis: Benutzen Sie den Staz von Fubini, um das Integral in n eindimensionale Integrale zu zerlegen.

- (iii) Sei nun A eine symmetrische positiv definite Matrix. Was ist dann $\mathcal{F}f_A$ (ohne Beweis)?
- (iv) Was ist, wenn A nur positiv semidefinit ist?

Bemerkung: f_A beschreibt bis auf einen Vorfaktor eine Gaussverteilung in mehreren Variablen mit Erwartungswert 0 und Kovarianzmatrix A.

Aufgabe 2. (10 Punkte)

Überprüfen sie, ob die folgenden Abbildungen $T: C_0^{\infty}(\mathbb{R}) \to \mathbb{R}$ Distributionen sind.

- (i) $T(\varphi) := (\varphi(0))^2$,
- (ii) $T(\varphi) := \int_{\mathbb{R}} |\varphi(x)| dx$,
- (iii) $T(\varphi) := \int_{[0,1]} \frac{d^j}{dx^j} \varphi(x) \ dx, j \in \mathbb{N},$
- (iv) $T(\varphi) = \varphi(1) \varphi(0)$,
- (v) $T(\varphi) = \int_{\mathbb{R}} \varphi(x)e^{-x^2} dx$.

Aufgabe 3. (10 Punkte)

Sei $u_0 \in L^1(\mathbb{R})$. Löse die Wärmegleichung mit Konvektion, also finde $u : [0, \infty) \times \mathbb{R} \to \mathbb{R}$, das das Anfangswertproblem löst

$$\begin{cases} \partial_t u(t,x) - \partial_x^2 u(t,x) + \partial_x u(t,x) = 0\\ u(0,x) = u_0(x) \end{cases}$$

mithilfe der Fourier-Transformation in x. Hinweis: Schreibe $u(t,x) = \mathcal{F}_k^{-1}(\mathcal{F}_x u)(t,x)$ und finde eine entsprechende gewöhnliche Differentialgleichung für $\mathcal{F}_x u(t,k)$.

Winter 2023/24 Dr. Peter Gladbach Sid Maibach

Hausaufgabenblatt 12.

Abgabe bis Mi, 24.01.

Für die Klausurzulassung müssen insgesammt 50 % der Punkte erreicht werden. Die Aufgaben dürfen in Gruppen von maximal 3 Personen abgegeben werden.

Aufgabe 1. (10 Punkte)

In dieser Aufgabe nutzen wir die Fourier-Transformation, um das Anfangswertproblem der Wellengleichung

$$\begin{cases} \partial_t^2 u(t,x) - \partial_x^2 u(t,x) = 0\\ u(0,x) = 0\\ \partial_t u(0,x) = h(x) \end{cases} \tag{1}$$

zu lösen. Hier ist $h \in L^1(\mathbb{R}; \mathbb{R})$. Die Lösung soll eine Funktion $u(t, x) : [0, \infty) \times \mathbb{R} \to \mathbb{R}$ sein.

- (i) Berechne für festes t die Fourier-Transformation der Gleichung (1) in der Variablen x. Gebe auch die Randwerte an.
- (ii) Löse die gewöhnliche Differentialgleichung aus (i) für jedes $k \in \mathbb{R}$. Schreibe dann die Lösung mit Fouriermultiplikatoren $u(t,x) = \mathcal{F}^{-1}(\mathcal{F}f_t\mathcal{F}h)$.
- (iii) Nutze (i) und (ii) um die Lösung der Wellengleichung (1) herzuleiten. *Hinweis:* Gehe wie bei vorherigen Übungsaufgaben dieser Art vor. Das Endergebnis lautet

$$u(t,x) = \frac{1}{2} \int_{x-t}^{x+t} h(y) dy.$$

Aufgabe 2. (10 Punkte)

Überprüfe, ob die folgenden Abbildungen $T: \mathcal{S} \to \mathbb{C}$ temperierte Distributionen sind.

(i)
$$T(\varphi) := \int_{[0,1]} \frac{d^j}{dx^j} \varphi(x) \ dx, \ j \in \mathbb{N},$$

(ii)
$$T(\varphi) = \int_{\mathbb{R}} \varphi(x)e^{-x^2}dx$$
,

(iii)
$$T(\varphi) = \int_{\mathbb{R}} \varphi(x)e^{x^2} dx$$
,

(iv)
$$T = \sum_{x \in \mathbb{Z}} \delta_x$$
.

Aufgabe 3 befindet sich auf der nächsten Seite.

Aufgabe 3. (10 Punkte)

Sei $\varphi \in C_c^{\infty}(\mathbb{R}; \mathbb{C})$.

- (i) Sei $a \in \mathbb{R}$. Berechne die Faltung $g(x) = \delta_a * \varphi(x)$ und beschreibe das Ergebnis.
- (ii) Sei

$$f(x) = \begin{cases} 0 : x < 0 \\ 1 : x \ge 0 \end{cases}$$

die Heaviside-Step-Funktion. Berechne die Faltung $T_f * \varphi$ und beschreibe das Ergebnis.

(iii) Zeige, dass die Faltung von $T = \sum_{t \in 2\pi\mathbb{Z}} \delta_t$ mit φ eine 2π -periodische Funktion ist. Berechne die Koeffizienten von $T * \varphi$ als Fourier-Reihe.