

Евгений Шуранов Huawei Principal Engineer ITMO associate professor PhD evgeniy.shuranov@huawei.com

Agenda

- Overview
 - Directions in speech processing
 - First steps
- SOTA TTS
- Example of interesting research in TTS
 - Multi-lingvo Multi-speaker Text-to-Speech
 - TTS improves speech recognition
 - Emotional Text-to-Speech system
- About our team and contacts

Рост рынка ИИ

Доходы рынка ИИ 2016-2015. Данные Tractica

Рынок ИИ будет расти на 31% ежегодно -Frost & Sullivan

Expectations

How to start:

What you need	How to find	
Papers	Arxiv / conferences /challenges /habr/telegram /slark and e.t.c.	
Source examples		
Datasets		
GPU	google colab / universities	

Main events in speech technology

Name	Main domain Type	
Blizzard	TTS	Chalenge
Voice Conversion Challenge	TTS / Voice Conversion	Chalenge
Chime	ASR	Chalenge
NIST	Voice recognition	Chalenge
Interspeech	ASR++	Conference
Speecom	ASR++	Conference
Icasp	ASR++	Conference
EmotiW	Emo recognition	Chalenge
Dcase	Event detection	Chalenge
OMG	Emo recognition	Chalenge

First step errors

KJ Cheetham 🗱 #FBPE 🔷

1 Math is always not enough!

A maths meme that is actually funny rather than stupid: Solve carefully! 230 - 220 x 0.5 =

You probably won't believe it but the answer is 5!

#maths

01:59 - 13 июл. 2019 г.

2 If you good at math remember about physics! (or business value;))

What is TTS? Applications?

Any text to produce!

Text-to-Speech method

Intelligible speech

In 1779 the German scientist Christian Gottlieb Kratzenstein won the first prize in a competition announced by the Russian Imperial Academy of Sciences

and Arts for models he built of the human vocal tract that could produce the five long vowel sounds. In International Phonetic Alphabet notation:

[aː], [eː], [iː], [oː] and [uː].

[7]

Viterbi algorithm to produce speech waveform

Front-End: Text preprocessing

1. Normalization

- 1. She was born on 1994
- 2. She was born on nineteen ninety four
- **2. Phonemization** (IPA or Arpabet for English)
 - 1. She was born on 1994 –
 - 2. SH IY1 / W AA1 Z / B AO1 R N / AA1 N / W AH1 N / TH AW1 . Z AH0 N D / N AY1 N / HH AH1 N . D R AH0 D / AH0 N D / N AY1 N . T IY0 / F AO1 R
 - 3. 你好,你好吗?(nǐ hǎo nǐ hǎo mǎ)

	EXPN	abbreviation	adv, N.Y, mph, gov't
alpha	LSEQ	letter sequence	CIA, D.C, CDs
	ASWD	read as word	CAT, proper names
	MSPL	misspelling	geogaphy
	NUM	number (cardinal)	12, 45, 1/2, 0.6
	NORD	number (ordinal)	May 7, 3rd, Bill Gates III
	NTEL	telephone (or part of)	212 555-4523
	NDIG	number as digits	Room 101
N	NIDE	identifier	747, 386, 15, pc110, 3A
U	NADDR	number as street address	5000 Pennsylvania, 4523 Forbes
M	NZIP	zip code or PO Box	91020
В	NTIME	a (compound) time	3·20, 11:45
E	NDATE	a (compound) date	2/2/99, 14/03/87 (or US) 03/14/87
R	NYER	year(s)	1998, 80s, 1900s, 2003
S	MONEY	money (US or other)	\$3.45, HK\$300, Y20,000, \$200K
	BMONEY	money tr/m/billions	\$3.45 billion
	PRCT	percentage	75%, 3.4%
	SPLT	mixed or "split"	WS99, x220, 2-car
			(see also SLNT and PUNC examples)
	SLNT	not spoken,	word boundary or emphasis character:
M		word boundary	M.bath, KENT*RLTY, _really_
I	PUNC	not spoken,	non-standard punctuation: "***" in
S		phrase boundary	\$99,9K***Whites, "" in DECIDE Year
C	FNSP	funny spelling	slloooooww, sh*t
	URL	url, pathname or email	http://apj.co.uk, /usr/local, phj@tpt.com
	NONE	should be ignored	ascii art, formatting junk

SOTA TTS

System	MOS
Parametric	3.492 ± 0.096
Tacotron (Griffin-Lim)	4.001 ± 0.087
Concatenative	4.166 ± 0.091
WaveNet (Linguistic)	4.341 ± 0.051
Ground truth	4.582 ± 0.053
Tacotron 2 (this paper)	$\boldsymbol{4.526 \pm 0.066}$

- High quality speech
- Meets hardware constraints

Vocoder

Flexible architecture

https://habr.com/ru/post/465941/

SOTA. Vocoder evolution.

Vocoder	Year	Type of network	Speed	Training time
Wavenet	2016	Fully-convolutional	Extremelyslow (Open versions take several minutes to produce 1 second)	Weeks
WaveRNN	2018	Fullyrecurrent	4xfaster than realtimeon GPU	Around 1 week (according to open implementations)
LPCNet	2018	Convolutional+Reccurent+ Algorithmic(LPC)	4x faster than realtimeon CPU	1-2 days
MelGAN	2019	Fully-convolutional	20x faster than realtimeon CPU	3-4days

Frontend

Languages are very different

Hello Sota Machine learning School:

Disentaglement

Speech data contains a lot of information:

Speech data = Text+ Speaker+ Prosody+ Recording conditions

Some of theme are present in the annotation and some are not.

- -random or flat prosody,
- -some level of noise during synthesis if recording artifacts were present in the data.

Aim:

- 1.We want to control all components of the speech during synthesis.
- 2.We want to train TTS without additional mark-up.

Disentaglement

GMVAE:

- •uses hierarchical model for latent variables
- most of the component has interpretable role
 (noise/speed/pitch/accent etc) –easy control

VAE:

- Latent space is not interpretable:
- Separate dimensions of the vector have no meaning
- •Due to the above control (in practice) is problematic

arxiv.org/pdf/1810.07217.pdf

Multi-lingvo Multi-speaker Text-to-Speech

Target:

Complexity: <50% bigger that single speaker model

Size: <50% bigger that single speaker model

Quality: same MOS as single speaker model

Challenges:

Speaker/accent/language disentanglement NO product-ready open technology

Key technology:

VAE + RNN combination

TTS improves speech recognition

Figure 1. The overall model structure for TTS and ASR. Figure (a): The unified training flow of our method, which consists of a denoising auto-encoder (DAE) of speech and text, and dual transformation (DT) of TTS and ASR, both with bidirectional sequence modeling. Figure (b): The speech and text encoder and decoder based on Transformer. Figure (c): The input and output module for speech and text.

Method	MOS (TTS)	PER (ASR)
GT	4.54	-
GT (Griffin-Lim)	3.21	-
Supervised	3.04	2.5%
Pair 200	Null	72.3%
Our Method	2.68	11.7%

Table 1. The comparison between our method and other systems on the performance of TTS and ASR.

Paired Data	100	200	300	400	500
PER (ASR) MOS (TTS)	64.2% Null	11.7% 2.45	8.4% 2.49	5.2% 2.64	4.4% 2.78

Table 3. The PER on ASR with different amount of paired data for our method.

Authors used mutual training of unified transformers architecture for TTS, ASR.

Authors achieved 99.84% in terms of word level intelligible rate and 2.68 MOS for TTS, and 4.4% PER for ASR with just 500 paired data on LJSpeech dataset. They stated to prove that it is possible to train ASR with close to SOTA performance only with 500 audio clips (~1 hour).

Emotional Text-to-Speech system

- 1) Speech Emotion Recognition (2020-2021)
 - by voice
 - by text
- 2) Emotional Text-to-Speech System (2020-2022)

Challenges:

poorly defined task
not determined basic emotion list
dataset transfer problems
language transfer
audio/text/video transfer
actors/spontaneous speach transfer
different labeling process
model robustness and stability
NO product-ready open technology

Key technology:

pretrained features + LSTM/CNN combination

Own research

TTS improvement

Controlled TTS

ASR improvement

on device

Cooperation research

Emotion recognition (Voice)

Emotional TTS

Emotion recognition (Text)

Anti spoofing

GANs approach (ASR + TTS)

Goals of my team

- Find new perspective research directions in the speech domain
- Achieve result better then SOTA and find ways to implement this result for CBG products
- Make POC and production ready prototype
- Support delivery process of technology to production team

Workshops & open days 2020 in SPb

01

СПбГУ

Thank you for your attention

https://docs.google.com/forms/d/e/1FAIpQLSfXzHrmdxdOKizMksoFi3IMSPoG_JMz4FH6QWYJ43IgUidIQA/viewform

Contacts

Cooperation: viktor.rakhmanov@huawei.com HR: nikulina.daria@huawei.com