a) $X(e^{j\omega}) = \frac{z}{z}$ 12. $e^{j\omega m} = 12$. $\frac{\sec(5\omega/2)}{\sec(\omega/2)}$

Quando $w = 2\pi l$ sendo l um inteiro $\forall X(e^{j\omega}) = 12.5 = 60$ Quando $w = 2\pi l$ sendo l um inteiro $\forall X(e^{j\omega}) = 0$

60 $\frac{2\pi}{5}$ $\frac{4\pi}{5}$ $\frac{6\pi}{5}$ $\frac{8\pi}{5}$ 2π

b) $X_{10}(k) = X(e^{j\omega})$ para $\omega = \frac{2\pi}{10} k$

5.
$$\frac{2\pi}{10}$$
. $\frac{1}{2}k = \frac{\pi}{2}$. k

$$X_{10}(k) = \frac{12}{2} \cdot \frac{\text{Sen}(k\pi/2)}{\text{Sen}(k\pi/10)}$$

(X,0(k) = X,0(k+1.10) para qualques 1 inteiro.

 $X_{10}(k) = 0$ para k par $e \neq 10$. l

 $\left(\begin{array}{c} X_{10}(k) = 60 \end{array}\right)$ para k = 10.1.

$$|X_{10}(k)|^{\frac{1}{2}}$$

$$|X_{$$

c) $X_{10}(k) = \begin{cases} x_{10}(k) & para & k=0,..., 9 \\ 0 & para or demais valores de k$

(Assim o esbojo de Xolk) é o mesmo d' X10 (le) para k=0,...,9.

A TFD de N pontos corresponde a N amostrus consentivas de un período da TFTD, por exemplo 05 W < 211.
Essas amostras estas espaçadas 211 radiames.

2: Question

a)
$$re(m) = e^{-\frac{\pi}{N}} k_0 m$$

a.i) $\tilde{X}_N(k) = \sum_{m=0}^{N-1} e^{-\frac{2\pi}{N}} k_0 m$

$$\tilde{X}_N(k) = \sum_{m=0}^{N-1} e^{-\frac{2\pi}{N}} k_0 m$$

Quando $k - k_0 = mN$ (p) m $m = 1$

Quando $k - k_0 = mN$ (p) m $m = 1$

Quando $k - k_0 + mN$

$$\tilde{X}_N(k) = \sum_{m=0}^{N-1} e^{-\frac{2\pi}{N}} k_0 m$$

$$\tilde{X}_N(k) = \sum_{m=0}^{N-1} e^{-\frac{2\pi}{N}} k_0 m$$

$$\tilde{X}_N(k) = N \cdot 5 \left(L k - k_0 J_N \right) = \sum_{m=0}^{N-1} k_0 m \cdot \frac{2\pi}{N} k_0 m$$

$$\tilde{X}_N(k) = \sum_{m=0}^{N-1} e^{-\frac{2\pi}{N}} k_0 m \cdot \frac{2\pi}{N} k_0 m$$

$$\tilde{X}_N(k) = \sum_{m=0}^{N-1} e^{-\frac{2\pi}{N}} k_0 m \cdot \frac{2\pi}{N} k_0 m$$

$$\tilde{X}_N(k) = \sum_{m=0}^{N-1} e^{-\frac{2\pi}{N}} k_0 m \cdot \frac{2\pi}{N} k_0 m$$

$$\tilde{X}_N(k) = \sum_{m=0}^{N-1} e^{-\frac{2\pi}{N}} k_0 m \cdot \frac{2\pi}{N} k_0 m$$

$$\tilde{X}_N(k) = \sum_{m=0}^{N-1} e^{-\frac{2\pi}{N}} k_0 m \cdot \frac{2\pi}{N} k_0 m$$

$$\tilde{X}_N(k) = \sum_{m=0}^{N-1} e^{-\frac{2\pi}{N}} k_0 m \cdot \frac{2\pi}{N} k_0 m$$

$$\tilde{X}_N(k) = \sum_{m=0}^{N-1} e^{-\frac{2\pi}{N}} k_0 m \cdot \frac{2\pi}{N} k_0 m$$

$$\tilde{X}_N(k) = \sum_{m=0}^{N-1} e^{-\frac{2\pi}{N}} k_0 m \cdot \frac{2\pi}{N} k_0 m$$

$$\tilde{X}_N(k) = \sum_{m=0}^{N-1} e^{-\frac{2\pi}{N}} k_0 m \cdot \frac{2\pi}{N} k_0 m$$

$$\tilde{X}_N(k) = \sum_{m=0}^{N-1} e^{-\frac{2\pi}{N}} k_0 m \cdot \frac{2\pi}{N} k_0 m$$

$$\tilde{X}_N(k) = \sum_{m=0}^{N-1} e^{-\frac{2\pi}{N}} k_0 m \cdot \frac{2\pi}{N} k_0 m$$

$$\tilde{X}_N(k) = \sum_{m=0}^{N-1} e^{-\frac{2\pi}{N}} k_0 m \cdot \frac{2\pi}{N} k_0 m$$

$$\tilde{X}_N(k) = \sum_{m=0}^{N-1} e^{-\frac{2\pi}{N}} k_0 m \cdot \frac{2\pi}{N} k_0 m$$

$$\tilde{X}_N(k) = \sum_{m=0}^{N-1} e^{-\frac{2\pi}{N}} k_0 m \cdot \frac{2\pi}{N} k_0 m$$

$$\tilde{X}_N(k) = \sum_{m=0}^{N-1} e^{-\frac{2\pi}{N}} k_0 m \cdot \frac{2\pi}{N} k_0 m$$

$$\tilde{X}_N(k) = \sum_{m=0}^{N-1} e^{-\frac{2\pi}{N}} k_0 m \cdot \frac{2\pi}{N} k_0 m$$

$$\tilde{X}_N(k) = \sum_{m=0}^{N-1} e^{-\frac{2\pi}{N}} k_0 m \cdot \frac{2\pi}{N} k_0 m$$

$$\tilde{X}_N(k) = \sum_{m=0}^{N-1} e^{-\frac{2\pi}{N}} k_0 m \cdot \frac{2\pi}{N} k_0 m$$

$$\tilde{X}_N(k) = \sum_{m=0}^{N-1} e^{-\frac{2\pi}{N}} k_0 m \cdot \frac{2\pi}{N} k_0 m$$

$$\tilde{X}_N(k) = \sum_{m=0}^{N-1} e^{-\frac{2\pi}{N}} k_0 m \cdot \frac{2\pi}{N} k_0 m$$

$$\tilde{X}_N(k) = \sum_{m=0}^{N-1} e^{-\frac{2\pi}{N}} k_0 m \cdot \frac{2\pi}{N} k_0 m$$

$$\tilde{X}_N(k) = \sum_{m=0}^{N-1} e^{-\frac{2\pi}{N}} k_0 m \cdot \frac{2\pi}{N} k_0 m$$

$$\tilde{X}_N(k) = \sum_{m=0}^{N-1} e^{-\frac{2\pi}{N}} k_0 m \cdot \frac{2\pi}{N} k_0 m$$

$$\tilde{X}_N(k) = \sum_{m=0}^{N-1} e^{-\frac{2\pi}{N}} k_0 m \cdot \frac{2\pi}{N} k_0 m$$

$$\tilde{X}_N(k) = \sum_{m=0}^{N-1} e^{-\frac{$$

$$X_{2N}(k) = \begin{cases} 2N; & \text{quando} & k-2k_0 = mN \\ 0; & \text{quando} & k-2k_0 \neq mN \end{cases}$$

$$\nabla X_{2N}(k) = 2N. S(Lk - 2k_0) = X_{2N}(k + 2N)$$

periodo 2N

2ª Questa

b)
$$r^{2}(m) - 2e^{\int \frac{2\pi}{7} \cdot 2m} + 9 \cdot e^{\int \frac{2\pi}{7} \cdot 3m}$$

$$\hat{X}_{7}(k) = 7.2. \, S(Lk-2J_{7}) + 7.9. \, S(Lk-3J_{7})$$

$$\hat{X}_{7}(k) = 14. \, S(Lk-2J_{7}) + 63. \, S(Lk-3J_{7})$$

b.ii)
$$\hat{X}_{14}(k) = 14.25(Lk-2.2) + 14.9.5(Lk-2.3)$$

$$X_{14}(k) = 28.5(Lk-4J_{14}) + 126.5(Lk-6J_{14})$$

$$X_{14}(k) = 28.5(Lk-4J_{14}) + 126.5(Lk-6J_{14})$$

$$V_{14}(k) = 28.5(Lk-4J_{14}) + 126.5(Lk-4J_{14})$$

c)
$$\mathcal{C}(M)$$
 SFD₁₆₀

Tobservando
$$k=0,...,179$$
 $V_{180}(k) \neq 0$
 $k=10; k=20; k=160 e k=180$

$$\frac{2\pi}{180} \cdot 10 = \frac{2\pi}{18}.$$

$$V_{180}(170) \neq 0$$
.

()
$$\theta$$
 periodo fundamental e $N = 18$ =0 $W_0 = \frac{27}{18}$

$$V_{18}(1) = V_{180}(10)/10$$

$$V_{18}(2) = V_{180}(20)/10$$

$$V_{18}(16) = V_{180}(160)/10$$

 $V_{18}(170) = V_{180}(170)/10$

3) a)
$$H_4(k) = W_4^{0h} - W_4^{2h}$$

$$H_4(k) = 1 - e^{-jk\pi}$$

6)
$$G_4(k) = W_4^{-3k} H_4(k) - W_4^{3k} H_4(k)$$

$$G_{4}(k) = W_{4}^{-3k} - W_{4}^{-k} - W_{4}^{3k} + W_{4}^{5k}$$

$$W_{4}^{(-3+4)k} = W_{4}^{k} - W_{4}^{k} + W_{4}^{k} = W_{4}^{k}$$

$$W_{4}^{(-1+4)k}$$

$$G_4(k) = 2.e^{-\frac{2\pi}{4}k} - 2.e^{-\frac{2\pi}{4}.3k}$$

$$[g(m) = 2.5(m-1) - 2.5(m-3)]$$

c)
$$\left[5_4(k) = 4 \cdot W_4^{\circ} - 2 \cdot W_4^{k} + 4 \cdot W_4^{2k} \right]$$

d)
$$Y_4(k) = 5_4(k)$$
. $H_4(k) = (4W_4^0 - 2W_4^k + 4W_4^{2k})(W_4^0 - W_4^{2k})$

$$y_4(k) = -2W_4^k + 2W_4^3k = o[y(m) = -2\delta(m-1) + 2\delta(m-3)]$$

e) y(m) = s(m) (*) h(m) y(m) = 2 h(Lm-l], s(l) y(m) = [h(Ln]4) h(Ln-1)4) h(Ln-2)4) h(Ln-3)4) 512) h(3) h(2) h(1) (410) h(a) R(3) h(2) 5(1) h(1) h(0) h (3) h(Z) y(m) = -28(m-1) + 28(m-3)y (0)

4[m) = 48(m) - 28(m-1) + 28(m-3) - 48(m-4)