- 2) на одном рисунке истинное распределение энерговыделения $W_{LCT}(x),$ расчетное распределение $W_p(x)$, коэффициенты коррекции $V(x_i)$, рассчитанные значения величин $\widetilde{V}(x)$, V(x), восстановленное по методу оптимальной статистической интерполяции поле энерговыделения $W_b(x)$;
 - 3) результаты работы вышеизложенных методов для восстановления поля отклонений энерговыделения W_p - $W_{LCT}(x)$ = $\Delta W(x)$ трех зависимостей на одном рисунке; анализ полученных результатов;

Контрольные вопросы

краткие выводы.

- 1. Основное значение алгоритмов обработки внутриреакторной инфор-
- 2. Для решения каких задач применяется метод наименьших квадратов
- 3. Для решения какой задачи служит метод оптимальной статистической при обработке внутриреакторной информации?
 - - 4. Суть метода сплайн-интерполяции. интерполяции?
- 5. За счет чего достигается оперативность в применении метода наимень
 - пих квадратов при обработке внутриреакторной информации?
- 6. Какие усповия накладываются на набор функций $\left\{ \phi_{c}\left(\vec{r}\right) \right\}$ при применении метода наименьших квадратов и почему?
- 7. Зависит ли величина оценок коэффициентов амплитуд A_t, \dots, A_k в методе наименьших квадратов от числа ортогональных пробных функций?
- функционал в методе наименьших квадратов достигает наименьшего значения? 8. Если число датчиков равно И, при каком числе пробных
 - 9. Какая величина и почему является более неравномерно распределенной по активной зоне реактора— поле нейтронов или поле энерговыделения?
- 10. Какие физические предпосылки лежат в основе применения метода сплайн-интерполяции для восстановления поля нейтронов в реакторе?
- детального распределения энерговыделения по методу оптимальной статистиче-11. Какие основные этапы обработки информации при восстановлении ской интерполяции?
 - 12. Исходя из какого условия находятся коэффициенты оптимальной
- 13. От чего зависит величина коэффициентов оптимальной статистичесстатистической интерполяции?
- 14. Каким образом можно оценить дисперсию ошибки восстанавливаекой интерполяции случайной функции?
- 15. Что предпочтительней восстанавливать по методу наименьших квадмой величины?
 - ратов поле нейтронов, поле энерговыделения или изменения этих величин? 16. Линейной ли операцией является восстановление поля нейтронов
 - по приведенным выше алгоритмам?

17. Что предпринять в алгоритме метода наименьших квадратов, если один или несколько датчиков дают заведомо ложные значения?

Лабораторная работа 4

АЛГОРИТМЫ СЖАТИЯ ТЕХНОЛОГИЧЕСКИХ ПАРАМЕТРОВ ЯДЕРНОГО **ЭНЕРГОБЛОКА**

Цель: изучение алгоритмов сжатия данных при обработке технологических параметров, контролируемых на АЭС.

Проблема сжатия данных, контролируемых на АЭС

формации оперативному персоналу. Решение задачи сокращения объема информая во внимание большой объем контролируемых параметров и необходимость разветвленных систем контроля, базирующихся на работе ЭВМ. Функции сущене входящие в регламент работы системы контроля. К ним, например, относят-Опыт эксплуатации показал, что с течением времени на АЭС возникают задачи. ся диагностика состояния основного оборудования, планирование его ремонта, Как правило, для решения таких задач недостаточно одной только текущей инсокращения объема данных, поступающих в систему контроля. Такая обработка данных полезна еще и с точки зрения более компактного представления инна АЭС с реакторами большой мощности, достигает нескольких тысяч единиц. блока. При этом количество параметров, контролируемых системой контроля формации о состоянии энергоблока, необходимо знать также предысторию поствующих в настоящее время систем контроля, таких, как СЦК СКАЛА [5], увс "ТИТАН" [10], ИВС "ГИНДУКУШ" [12], заключаются в основном в данных, широко применяемых в других областях науки и техники — при телерешении задач оперативного контроля за состоянием основных узлов энергоконтроль ведения технологических процессов оперативным персоналом и т.д. ведения отдельных параметров за значительный промежуток времени. Принимации целесообразно осуществлять на основе применения апгоритмов сжатия Эксплуатация энергоблоков АЭС большой мощности с реакторами типа РБМК-1000 и РБМК-1500, ВВЭР-1000, БН-600 невозможна без применения проводить измерения или расчет их значений с довольно высокой частотой (обычно не реже 1 раза в 10 мин), можно сделать вывод о необходимости измерениях и передаче данных по каналам связи [8

значительной избыточностью во времени. Это означает, что для восстановления с требуемой так называемой верностью картины поведения отдельных измеряемых или расчетных параметров необходимо значительно меньшее количество Анализ протекания физических процессов на энергоблоках АЭС показывает, что потоки данных, контролируемые системой контроля, обладают