Primitive C_2 -actions of classical groups

Raffaele Rainone

University of Southampton

Supervisor: Dr. T. Burness Advisor: Prof. G. Jones

October 26, 2012

- Introduction
- 2 General aim of the project
- Motivations
- 4 Classical groups
- Main tools
- 6 Main results
- General strategy

Introduction

Let $G \leq \operatorname{Sym}(\Omega)$ be a transitive permutation group with point stabiliser H. Hence, we may assume $\Omega = G/H$.

Definition

We say G is primitive if there is no non-trivial G-invariant partition of Ω . Equivalently, if, and only if, H < G is maximal.

For $x \in G$ we define the fixed point space

$$C_{\Omega}(x) = \{\omega \in \Omega : x.\omega = \omega\}$$

Introduction

Example

- **1** Let $G = S_n$ in the standard action on $\Omega = \{1, ..., n\}$. Then $H = S_{n-1}$ and the action is primitive.
- ② Let $G = S_a \wr S_2 \leqslant S_{2a}$ acting on $\Omega = \{1, \ldots, a, a+1, \ldots, 2a\}$. Let $\Omega_i = \{(i-1)a+1, \ldots, ia\}$, then $\Omega = \Omega_1 \cup \Omega_2$ is a G-invariant partition. The action is imprimitive.

Introduction

Let G be an affine algebraic group over a field k. **Prototype:** $SL_n(k) = \{x \in GL_n : det(x) = 1\}.$

Let $\Omega = G/H$ a primitive G-variety, i.e. H < G is a maximal closed subgroup.

Then for any $x \in G$, $C_{\Omega}(x) \subseteq \Omega$ is a subvariety. We define

$$f_{\Omega}(x) = \frac{\dim C_{\Omega}(x)}{\dim \Omega}$$

General aim of the project

Let G be an affine algebraic group defined over an algebraically closed field k of characteristic $p \geqslant 0$. Let $\Omega = G/H$ be a primitive G-variety.

- **①** Obtain global bounds on $f_{\Omega}(x)$, $x \in G$ of prime order.
- Characterise elements which realise the bounds (whenever possible).
- **③** For $G = \mathcal{C}\ell(V)$ classical; obtain local bounds depending on $\nu(x)$, where $\nu(x)$ is the codimension of the largest eigenspace of x on V.

Finite groups

Assume $G \leq \operatorname{Sym}(\Omega)$ is transitive with point stabiliser H. Then for $x \in G$, the fixed point ratio is

$$fpr(x) = \frac{|C_{\Omega}(x)|}{|\Omega|} = \frac{|x^G \cap H|}{|x^G|}$$

Example

Let $G = S_n$ and n > 2 in the standard action on $\Omega = \{1, \ldots, n\}$. Let $\pi = (1, 2)$. Then

$$\mathsf{fpr}(\pi) = \frac{n-2}{n} = 1 - \frac{2}{n}$$

Or, $\pi^G = \{(i,j) : i \neq j\}$ therefore $|\pi^G| = \frac{n(n-1)}{2}$. Similarly, notice $H = S_{n-1}$ and $|\pi^G \cap H| = \frac{(n-1)(n-2)}{2}$.

Some results, finite groups

There are several results concerning bounds on fpr(\cdot).

- (Liebeck-Saxl, '89) G almost simple of Lie type, over \mathbb{F}_q . Then $\operatorname{fpr}(x) \leq \frac{4}{3q}$ or (G, Ω, x) lies in a list of known exception.
- (Burness '07, Liebeck-Shalev '99) G almost simple classical, H non-subspace. Then $\operatorname{fpr}(x) \lesssim |x^G|^{-1/2}$.
- (Frohardt-Magaard, '00) $G = \mathcal{C}\ell(V)$ over \mathbb{F}_q , $H = G_U$ with dim U = k. Then $\mathrm{fpr}(x) \lesssim q^{-\nu(x)k}$.

Applications: Minimal degree $(\mu(G) \leq \frac{n}{3})$, Cameron-Kantor base size conjecture $(b(G) \leq c)$, Guralnick-Thompson genus conjecture, minimal generation of simple groups...

Some results, algebraic groups

Let G be a simple algebraic group acting on the primitive G-variety $\Omega = G/H$.

- (Burness, '03) G adjoint, H is non-subspace. There exists an involution $x \in G$ for which $f_{\Omega}(x) \geq \frac{1}{2} \epsilon$, or (G, H) 'known'.
- (Lawther-Liebeck-Seitz, '02) G exceptional, $x \in G$ of prime order. Then $f_{\Omega}(x) \leq \alpha(G, H)$.

This motivates our investigation on upper and lower bounds on $f_{\Omega}(x)$ for $x \in \mathcal{C}\ell(V)$ of any prime order.

Classical groups. Definitions

Let k be an algebraically closed field of characteristic $p \ge 0$. We define the following groups

•
$$GL_n(k) = \{x \in k^{n^2} : \det(x) \neq 0\}$$

 $\cong \{(x, y) \in k^{n^2} \times k : \det(x)y = 1\};$

- $SL_n(k) = \{x \in GL_n(k) : det(x) = 1\};$
- $O_n(k) = \{x \in GL_n(k) : x^t x = I_n\}$ for $p \neq 2$;
- $\operatorname{Sp}_n(k) = \{ x \in \operatorname{GL}_n(k) : x^t J x = J \}$ for

$$J = \left(\begin{array}{c} I_{n/2} \\ -I_{n/2} \end{array}\right)$$

Notice that these groups are affine algebraic varieties.

Subgroup structure of classical groups

Let $G = \mathcal{C}\ell(V)$ be a classical group over an algebraically closed field k of characteristic $p \ge 0$. We define

- Geometric subgroups
 - \mathcal{C}_1 reducible action on V;
 - C_2 irreducible and imprimitive action on V;
 - \mathcal{C}_3 - \mathcal{C}_6 irreducible and primitive action on V.
- Non-geometric subgroups; S, irreducible, tensor-indecomposable action on V.

Theorem (Liebeck-Seitz, '98)

Let $H \leqslant G$ be closed. Then $H \leqslant M$ for some $M \in (\bigcup_i C_i) \cup S$.

Subgroup structure of classical groups

For example, \mathcal{C}_2 -subgroups are defined to be the stabilisers of decompositions of the form

$$V = V_1 \oplus \ldots \oplus V_t$$

where dim $V_i = m$. Hence if $G = GL_n, Sp_n$,

$$H = (GL_m \times ... \times GL_m).S_t = GL_m \wr S_t$$

$$H = (Sp_m \times ... \times Sp_m).S_t = Sp_m \wr S_t$$

The connected component containing 1 is

$$H^{\circ} = (\mathsf{GL}_m)^t, \qquad H^{\circ} = (\mathsf{Sp}_m)^t$$

And for $\Omega = G/H$ we have

$$\dim \Omega = \dim G - \dim H$$

Jordan decomposition

For any $x \in GL_n$

$$x = x_s x_u = x_u x_s$$

where x_s semisimple, x_u unipotent.

Theorem (Linearization theorem)

Let G be an affine algebraic group. Then for some n there exists a closed embedding $G \hookrightarrow \mathsf{GL}_n$.

Theorem (Jordan decomposition)

Let $x \in G$ and $\rho \colon G \hookrightarrow GL_n$. Then $x = x_s x_u = x_u x_s$ such that $\rho(x_s)$ is semisimple and $\rho(x_u)$ is unipotent. Furthermore $x = x_s x_u$ is independent of the chosen embedding.

Jordan decomposition

Theorem

Let $G = \mathcal{C}\ell(V)$ and $x, y \in G$ of prime order r. Assume $(r, p) \neq (2, 2)$ if $G = \operatorname{Sp}_n$ or O_n . Then $x \sim_G y$ if, and only if, $x \sim_{\operatorname{GL}_n} y$.

Up to conjugation, an element of prime order r is

$$x_s = [I_{a_0}, \omega I_{a_1}, \dots, \omega^{r-1} I_{a_{r-1}}]$$
 $r \neq p$
 $x_u = [J_p^{a_p}, \dots, J_1^{a_1}]$ $r = p$

With some known conditions on the a_i 's for $G = \operatorname{Sp}_n$ or O_n .

We have

$$\dim x^G = \dim G - \dim C_G(x)$$

E.g., for
$$r \neq p$$
 we have $C_{\mathsf{GL}_n}(x)^{\circ} = \prod_i \mathsf{GL}_{a_i}$.

Main tools I

Let G be an affine algebraic group over k a.c. acting on $\Omega = G/H$ where $H \leqslant G$ closed.

Proposition (Lawther-Liebeck-Seitz, '98)

Let $x \in H$. Then dim $C_{\Omega}(x) = \dim \Omega - \dim x^G + \dim(x^G \cap H)$.

Theorem (Guralnick, '07)

Assume G is reductive. If H° is reductive then $x^{G} \cap H = x_{1}^{H} \cup \ldots \cup x_{l}^{H}$.

Note: $H \in \mathcal{C}_2$ is reductive. Hence $\dim(x^G \cap H) = \max\{\dim x_i^H\}$.

For the remainder, $G = GL_n, Sp_n$ and $H = GL_{\frac{n}{t}} \wr S_t$ or $Sp_{\frac{n}{t}} \wr S_t$.

Main tools II

Observe that for x of prime order r

$$x^{G} \cap H = \bigcup_{\substack{\pi \in S_{t} \\ |\pi| = r}} (x^{G} \cap H^{\circ}\pi)$$

Lemma

Let $\tau \in \pi^{S_t}$. Then $\dim(x^G \cap H^{\circ}\tau) = \dim(x^G \cap H^{\circ}\pi)$

Lemma (Liebeck-Shalev, '99)

Let $x = [x_1, ..., x_t]\pi_h \in H$ of prime order r and $\pi_h \leftrightarrow (r^h, 1^f)$. Then x is H° -conjugate to $[I_{n/t}, ..., I_{n/t}, x_{hr+1}, ..., x_t]\pi_h$.

Fact:

$$\pi_h \sim_G \left[J_p^{\frac{n}{t}h}, J_1^{\frac{n}{t}f}\right] \qquad r = p$$

$$\pi_h \sim_G \left[I_{\frac{n}{t}(h+f)}, \omega I_{\frac{n}{t}h}, \dots, \omega^{r-1}I_{\frac{n}{t}h}\right] \quad r \neq p$$

Example

Assume
$$p = 3$$
. Let $G = GL_{40}$ and $H = GL_5 \wr S_8$. Let $x = [J_3^5, J_2^7, J_1^{11}]$.

And
$$f_{\Omega}(x) = \frac{303}{700}$$
.

Example

Let ω be an r-th root of 1; $r \neq p$. Let $G = GL_{18}$ and $x = [I_2, \omega I_6, \omega^2 I_2, \omega^3 I_5, \omega^4 I_3] \in GL_3 \wr S_6$.

Example

Let ω be an r-th root of 1; $r \neq p$. Let $G = GL_{18}$ and $x = [I_2, \omega I_6, \omega^2 I_2, \omega^3 I_5, \omega^4 I_3] \in GL_3 \wr S_6$.

One of the possible optimal distribution of eigenvalues:

Notation

 $G=\operatorname{GL}_n,\operatorname{Sp}_n$ and $H=L\wr S_t$ where $L=\operatorname{GL}_{rac{n}{t}},\operatorname{Sp}_{rac{n}{t}}$, respectively.

Theorem 1 (Global upper bounds)

Let $x \in H$ be of prime order r. Then

- r = p: $f_{\Omega}(x) \geqslant \frac{1}{r}$;
 - $r \neq p, r \geqslant n$: $f_{\Omega}(x) \geqslant 0$;
 - $r \neq p, r < n$: $f_{\Omega}(x) \geqslant \frac{1}{r} \epsilon$, with $\epsilon > 0$ small.

Assume $(G, p) \neq (Sp_n, 2)$.

Theorem 2 (Global upper bound)

Let $x \in H$ be of prime order r. Then

$$f_{\Omega}(x) \leq 1 - \frac{2}{\operatorname{rank} G} - \iota$$

Moreover $\iota > 0$, small, only if r = 2 and rank(L) = 1.

Theorem 3 (Characterisation, upper bound)

Let $x \in H$. Then $f_{\Omega}(x)$ realises the upper bound in Theorem 2 if, and only if,

- $\nu(x) = 1$ for $G = GL_n$ or, Sp_n and r = p;
- $\nu(x) = 2$ for $G = \operatorname{Sp}_n$ and $r \neq p$.

Theorem 4 (Characterisation, lower bound - semisimple)

Assume $r \geqslant n$ and $r \neq p$. Let $x \in H$. Then $f_{\Omega}(x) = 0$ if, and only if, x is a regular element.

For r < n and $r \neq p$ we construct a collection of elements $x \in G$ which realise the lower bound on $f_{G/H^{\circ}}$. Note $f_{G/H^{\circ}}(x) \leq f_{G/H}(x)$.

Theorem 5 (Characterisation, lower bound - unipotent)

Assume r = p, and p divides n if $p \le n$. Let $x \in H$. Then $f_{\Omega}(x)$ realises the lower bound if, and only if, x is one of the following

$$p > n \ x = [J_{n/t}^{t-1}, z]$$
 and z any unipotent.

 $p \le n$ If $p | \frac{n}{t}$ then $x = [x_1, \dots, x_t]$ where $x_i = [J_p^{n/pt}] \in L$ for i < t and $x_t \in L$ is any unipotent such that

$$\dim(x^G \cap H^\circ) = \dim x^{H^\circ}$$

$$p \le n$$
 If $p \nmid \frac{n}{t}$ then $x = [J_p^{n/p}]$.

Main results. Local

Here $x = [I_s, -I_{n-s}]$ or $[J_2^s, J_1^{n-2s}]$. Assume $s \leqslant \frac{n}{2}$.

Theorem 6 (Involutions in GL_n)

Let $x \in H$ be an involution with $\nu(x) = s$. If t = n, or $\frac{n}{t}$ odd and either

- (i) $p \neq 2$ and $s \geq \max\{n/t, (n-t)/2\}$
- (ii) p=2 and $n/t \le s \le (n-t)/2$

then

$$f_{\Omega}(x) = 1 - \frac{2s(n-s)-s}{n^2(1-\frac{1}{t})} + \frac{n-t}{2n(t-1)}$$

Otherwise, for $s \equiv b \mod t$ and $0 \le b < t$,

$$f_{\Omega}(x) = f_{G/H^{\circ}}(x) = 1 - \frac{2s(n-s)}{n^2} - \frac{2b(t-b)}{n^2(t-1)}$$

Main results. Local

Theorem 7 (Local upper bounds)

Let $G = GL_n$. Let $x \in H$ with $\nu(x) = s$. Then

$$f_{\Omega}(x) \leqslant U = \left\{ \begin{array}{cc} 1 - \frac{s}{n} & s > n/2 \\ 1 - \frac{2s(n-s)}{n^2} & s \leq n/2 \end{array} \right.$$

For semisimple elements we construct elements $x \in H$ with $\nu(x) = s$ for which

$$f_{\Omega}(x) \geq U - \frac{2}{n} - \frac{1}{16}$$

We can drop the 1/16 term in some special case.

Main results. Local

Theorem 8 (Local lower bounds - semisimple)

Let $G = GL_n$. Let $x \in H$ semisimple with $\nu(x) = s$. Then

$$f_{\Omega}(x) \geq 1 - \frac{s(2n-s)}{n^2} - \frac{s(2n-s)}{n^3(1-\frac{1}{t})}$$

Better (and sharp) bounds for s < r.

Also here we construct a collection of elements $x \in G$ which realise the lower bound for $f_{G/H^{\circ}}$.

Key results I

For the upper bounds some key results are:

Theorem (Burness, '05)

Let $x \in G$ of prime order. Then $\dim(x^G \cap H) \leq (\frac{1}{t} + \zeta) \dim x^G$, where $\zeta = 0$ unless $G = \operatorname{Sp}_n$ in which case ζ is known.

And the bound is sharp.

Proposition (Burness, Liebeck-Shalev)

Let $x \in G$ of prime order r and $\nu(x) = s$. Then

$$f(n,s) \leq \dim x^G \leq g(n,s)$$

For example, in the case $G = GL_n$ we have

$$f(n,s) = \max\{ns, 2s(n-s)\}$$
$$g(n,s) = s(2n-s-1)$$

Key results II

Assume $r \neq p$ if $p \leq \operatorname{rank}(G)$.

Lemma

Let $x \in H^{\circ}$. Them there exists $y \in H$ with $\nu(y) \geqslant \nu(x)$ such that

$$f_{G/H^{\circ}}(x) \geqslant f_{G/H^{\circ}}(y)$$

An easy consequence of this is that in a finite number of steps we find an element which realises lower bound on $f_{G/H^{\circ}}$.

Proposition

Let r be a prime. Then there exists $\bar{x} \in H^{\circ}$ of order r such that for all $x \in H^{\circ}$ of order r

$$f_{G/H^{\circ}}(x) \geqslant f_{G/H^{\circ}}(\bar{x})$$

Key results II. Comments

- **1** If r = p < rank(G) let $x \in H$ of prime order. Then $f_{\Omega}(x) \ge \frac{1}{p}$ proved with combinatorics methods using the formulae;
- ② If $r = p \geqslant \operatorname{rank}(G)$ we have $x^G \cap H = x^G \cap H^\circ$. And from $x = [x_1, \dots, x_t]$ we define $y = [J_{\frac{n}{t}}, x_2, \dots, x_t]$. Then $f_{\Omega}(x) \geqslant f_{\Omega}([J_{\frac{n}{t}}^t]) = \frac{t}{n}$.
- **3** If $r \neq p$. Then for all $x \in H$ of order $r, x^G \cap H^o \neq \emptyset$.

Future work

- **1** Obtain explicit formula for involutions in Sp_n in C_2 -actions;
- ② Obtain same results for O_n in C_2 -actions;
- **3** Obtain same results for $G = GL_n, Sp_n, O_n$ in other primitive geometric actions, i.e. C_1, C_3, C_4, C_6 .