Computational Methods in Power System Analysis

Contact Hours
Theory 48

Credit Hours
3

SUGGESTED COURSE LEARNING OUTCOMES:

Upon successful completion of the course, the student will be able to:

CLO	Domain
To carry out, plan and propose the power flow in electric networks using different	Cognitive
methods and understand the concepts of basic power system stability.	
To solve, analyze and discuss the problems in power system in normal as well as	Cognitive
faulted state.	
To solve and analyze the problems in power system protection.	Cognitive
To demonstrate and construct individually the one line diagrams and Matrices of	Psychomotor
complex power systems.	

RELEVANT PROGRAM LEARNING OUTCOMES (PLOs):

The course is designed so that students will achieve the following PLOs:

Engineering Knowledge:		7	Environment and Sustainability:
Problem Analysis:	7	8	Ethics:
Design/Development of		9	Individual and Team Work:
Solutions:			
Investigation:		10	Communication:
Modern Tool Usage:		11	Project Management:
The Engineer and Society:		12	Lifelong Learning:

COURSE OUTLINE:

Matrix algebra

Introduction, Basic concepts and definitions, Determinants, Matrix operations, Linear dependence and rank of a matrix and Linear equations

Incidence and network matrices

Introduction, Graphs, Incidence matrices, Primitive network, Formation of network matrices by singular transformations, Formation of network matrices by nonsingular transformations and Example of formation of impedance and network matrices.

Algorithms for formation of network matrices

Introduction, Algorithm for formation of bus impedance matrix, Modification of the bus impedance matrix for changes in the network and Example of formation and modification of bus impedance matrix, Derivation of loop admittance matrix from bus impedance matrix. Example of derivation of loop admittance matrix from bus impedance matrix.

Three-phase networks

Introduction, Three-phase network elements, Three-phase balanced network elements, Transformation matrices, Three-phase unbalanced network elements, Incidence and network matrices for three-phase networks, Algorithm for formation of three-phase bus impedance matrix, Modification of the three-phase bus impedance matrix for changes in the network and Example of formation and modification of three-phase network matrices.

Short circuit studies

Introduction, Short circuit calculations using Z_{BUS} , Short circuit calculations for balanced three-phase network using Z_{BUS} , Example of short circuit calculations using Z_{BUS} , Short circuit calculations using Z_{LOOP} and Example of short circuit calculations using Z_{LOOP} .

Solution of simultaneous algebraic equations

Introduction, Direct methods for solution of linear algebraic equations, Example of solution of linear equations by direct methods, Iterative methods for solution of linear algebraic equations, Example of solution of linear equations by iterative methods, Methods for solution of nonlinear algebraic equations, Example of solution of nonlinear equations and Comaprison of methods

Load Flow Studies

Introduction, Power system equations, Solution techniques, Acceleration of convergence, Examples of load flow calculations, Voltage Controlled buses, Representation of transformers, Tie line control, Comaprison of methods and Description of load flow program

Numerical solution of differential equations

Introduction, Numerical methods for solution of differential equations, Solution of higher-order

Transient stability studies

Introduction, Swing equation, Machine equations, Power system equations, Solution techniques, Example of transient stability calculations, Exciter and governor control systems, Distance relays and description of transient stability program.

RECOMMENDED BOOKS:

- 1. Computer Methods in Power System Analysis, Stagg and El-Abiad, International student edition.
- 2. Computational Methods in Power System Analysis by Reijer Idema, Domenico J.P. Lahaye
- 3. William D. Stevensons Jr, "Elements of Power System Analysis", McGraw Hill, Latest Ed.
- 4. B. M. Weedy ,B. J. Cory, N. Jenkins, Janaka B. Ekanayake, Goran Strbac "Electric Power Systems", John Wiley.

Lecture Tentative Plan

Lecture No	Description				
Lecture: 01	Matrix algebra				
Lecture: 02	Introduction, Basic concepts and definitions, Determinants, Matrix operations, Linear dependence and rank of a matrix and Linear equations				
Lecture: 03	Incidence and network matrices				
Lecture: 04	Introduction, Graphs, Incidence matrices, Primitive network, Formation of network				
Lecture: 0 !	matrices by singular transformations, Formation of network matrices by nonsingular				
	transformations and Example of formation of impedance and network matrices.				
Lecture: 05	Algorithms for formation of network matrices				
Lecture: 06	Introduction, Algorithm for formation of bus impedance matrix, Modification of the				
Lecture: 07	bus impedance matrix for changes in the network and Example of formation and				
	modification of bus impedance matrix, Derivation of loop admitance matrix from bus				
	impedance matrix, Example of derivation of loop admittance matrix from bus				
	impedance matrix.				
Lecture: 08	Three-phase networks				
Lecture: 09	Introduction, Three-phase network elements, Three-phase balanced network				
Lecture: 10	elements, Transformation matrices, Three-phase unbalanced network elements,				
	Incidence and network matrices for three-phase networks, Algorithm for formation of				
	three-phase bus impedance matrix, Modification of the three-phase bus impedance				
	matrix for changes in the network and Example of formation and modification of				
	three-phase network matrices.				
Lecture: 11	Short circuit studies				
Lecture: 12	Introduction, Short circuit calculations using Z_{BUS} , Short circuit calculations for				
	balanced three-phase network using Z_{BUS} , Example of short circuit calculations using				
	Z_{BUS} , Short circuit calculations using Z_{LOOP} and Example of short circuit calculations				
T 1 12	using Z _{LOOP} .				
Lecture: 13	Solution of simultaneous algebraic equations				
Lecture: 14	Introduction, Direct methods for solution of linear algebraic equations, Example of				
	solution of linear equations by direct methods, Iterative methods for solution of linear algebraic equations, Example of solution of linear equations by iterative methods,				
	Methods for solution of nonlinear algebraic equations, Example of solution of				
	nonlinear equations and Comaprison of methods				
Lecture: 15	Load Flow Studies				
Lecture: 16	Introduction, Power system equations, Solution techniques, Acceleration of				
Lecture. 10	convergence, Examples of load flow calculations, Voltage Controlled buses,				
	Representation of transformers, Tie line control, Comaprison of methods and				
	Description of load flow program				
Lecture: 17	Numerical solution of differential equations				
Lecture: 18	Introduction, Numerical methods for solution of differential equations, Solution of				
	higher-order				
	Transient stability studies				
	Introduction, Swing equation, Machine equations, Power system equations, Solution				
	techniques, Example of transient stability calculations				