EE 511: Homework Assignment 1 Solutions

Solution 1

Solution 1 Given in the problem,

* m characters

* d possible values

* Text is described by Vector Vi

where ith characters.

$$M = \bigvee_{i=1}^{d} V_i^i$$

By using poisson's distribution to find $P(V|L)$
 $P(V|L) = \underbrace{e^{\lambda}}_{V_i, V_2, \dots, V_d} V_i^i$

Vsing the MAP decission rule for defecting

the language,

 $\widehat{L} = argmax \left[log p(V|L) + log p(L) \right]$

= argmax $\left[log \left(\underbrace{e^{\lambda}}_{V_i, V_2, \dots, V_d} \right) + log p(L) \right]$

Into the above equation.

= argmax $\left[log \underbrace{e^{\lambda}}_{V_i, V_2, \dots, V_d} \right] + log q_K$

argmax $\left[log \underbrace{e^{\lambda}}_{V_i, V_2, \dots, V_d} \right] + log q_K$

= argmax $\left[log \underbrace{e^{\lambda}}_{V_i, V_i, V_i, V_i} \right] + log q_K$

= argmax $\left[log \underbrace{e^{\lambda}}_{V_i, V_i, V_i} \right] + log q_K$

= argmax
$$[-d\lambda + \log \lambda] \stackrel{\text{d}}{=} V^{\circ} - \stackrel{\text{d}}{=} \log (V^{\circ})$$

 $+ \log q_{\kappa}$
 $\frac{dl}{d\lambda} = -d + \frac{1}{\lambda} \left(\stackrel{\text{d}}{=} V^{\circ} \right) = 0$
 $\frac{1}{\lambda} \left(\stackrel{\text{d}}{=} V^{\circ} \right) = d$
 $\frac{1}{\lambda} \left(\stackrel{\text{d}}{=} V^{\circ} \right) = d$

Solution 2

Let the number of sample messages be N. For spam, the number of sample messages be Ns and for non-spam be Nns, where Ns = 3 and Nns = 4. Hence, the total number of messages (Ns + Nns) will be 7.

Now, creating the table to check number of frequency of words for spam messages

Words in spam messages	Frequency				
Million	1				
dollar	1				
offer	2				
secret	2				

today	1
is	1
Remaining words	0

Similarly, creating the table to check number of frequency of words for non-spam messages

Words in non-spam messages	Frequency
Low	2
price	2
for	1
valued	1
customer	1
play	1
secret	1
sports	1
today	1
is	1
healthy	1
pizza	1
Remaining words	0

Common words that appeared in the spam and non-spam were, "today", "secret" and "is".

Now, determining the MLE for the following:

$$\Theta s = \frac{3}{7}$$
, $\Theta secret/S = \frac{2}{3}$, $\Theta secret/NS = \frac{1}{4}$, $\Theta sports/NS = \frac{2}{4} = \frac{1}{2}$, $\Theta dollar/S = \frac{1}{3}$

Solution 3

Solution 3. Given in the problem,

$$D = \begin{cases} x_1, x_2 \dots x_n \end{cases}$$

$$S = \frac{1}{n} \sum_{i=1}^{\infty} |x_i|$$

$$\frac{n}{\theta} - \frac{3}{1+1}|x^{2}| = 0$$

$$\frac{n}{\theta} = \frac{3}{1+1}|x^{2}|$$

$$\frac{n}{\theta} = \frac{3}{1+1}|x^{2}|$$

$$\frac{n}{\theta} = \frac{3}{1+1}|x^{2}|$$

$$\frac{n}{\theta} = \frac{3}{1+1}|x^{2}|$$

$$\frac{n}{\theta} = \frac{3}{1+1}|x^{2}|$$
(b) To find the MAP estimate $p(\theta) = \alpha e^{\theta x} e^{\theta x}$

$$\frac{n}{\theta} > 0.$$
Putting the value of prior $(p(\theta))$ in the MAP estimate formula
$$\frac{n}{\theta} = \frac{n}{\theta} = \frac$$

Solution 4 is on the next page

therefore, by Inkerval will be of 1.

$$\Rightarrow 95\% \text{ confident that the true mean}$$
lies in the interval
$$bn+1\cdot 96 = n - (bn-1\cdot 96 = n) = 1$$

$$3\cdot 92 = n = 1$$

$$= n = \frac{1}{3\cdot 92}$$

$$= n^2 = \left(\frac{1}{3\cdot 92}\right)^2 = 0.0650$$
Now putting the value of n^2 in formula(2)

Now putting the value of n^2 in formula(2)
$$n^2 = \frac{1}{3\cdot 92} = \frac{$$

```
size.
            n+R = \frac{e^2}{e_n^2} where e_n^2 = 0.0650 (using same value)
      n+R = \frac{9}{0.0650} = 138.46
       n = 13.8.46-R
                        where, R = \frac{c^2}{c^2} = \frac{9}{18} = 0.5
   n = 138.46-0.5
 Here sample size is slightly larger than the sample size obtained in part (a)
Hence, we can conclude if =27 then sample size increase slightly.
```

4(c) If the mean (prior)
$$\mu_0 = 0.5$$
 then using formula (1)

 $b_1 = \alpha b_{nL} + (1 - \alpha) b_0$

where $\mu_0 = b_0 = 0.5$
 $b_1 = \left(\frac{n}{n+R}\right) \left(\frac{S_{n2}}{n}\right) + \left(1 - \left(\frac{n}{n+R}\right)\right) 0.5$
 $b_1 = \frac{S_{nL}}{n+R} + \left(\frac{R}{n+R}\right) \times 0.5$
 $b_1 = \frac{S_{nL}}{136 + 2.25} + \left(\frac{2.25}{136 + 2.25}\right) \times 0.5$
 $b_1 = \frac{S_{nL}}{138.25} + 0.0081$

where $S_{nL} = \frac{S_{nL}}{138.25} + 0.0081$

Solution 5 Computer Assignment is on the next page

Part (a) by KNN Part (b) by Gaussian

```
In [1]: # In the section below we are importing libraries which will be used in the
# <numpy> to compute mean error for the predicted values
# <matplotlib.pyplot> to plot the error graph
# <pandas> to load and parse the csv file into meaningful dataframes
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
```

```
In [2]: # In the section below we are loading training data csv file into dataframe
    df_train = pd.read_csv('zip.train.p.csv')
    df_train.head()
```

Out[2]:

	6.0000	-1.0000	-1.0000.1	-1.0000.2	-1.0000.3	-1.0000.4	-1.0000.5	-1.0000.6	-0.6310	0.8620	
0	5.0	-1.0	-1.0	-1.0	-0.813	-0.671	-0.809	-0.887	-0.671	-0.853	<u> </u>
1	4.0	-1.0	-1.0	-1.0	-1.000	-1.000	-1.000	-1.000	-1.000	-1.000	
2	7.0	-1.0	-1.0	-1.0	-1.000	-1.000	-0.273	0.684	0.960	0.450	
3	3.0	-1.0	-1.0	-1.0	-1.000	-1.000	-0.928	-0.204	0.751	0.466	
4	6.0	-1.0	-1.0	-1.0	-1.000	-1.000	-0.397	0.983	-0.535	-1.000	

5 rows × 258 columns

```
In [3]: # In the section below we are separating attributes and labels for training
X_train = df_train.iloc[:, 1:256].values
Y_train = df_train.iloc[:, 0].values
```

```
In [17]: # In the section below we are training and validating KNN classifier ...
         # ... for different values of K (1 to 20).
         from sklearn.neighbors import KNeighborsClassifier
         error = []
         min error = 1
         best knn = KNeighborsClassifier(n neighbors=0)
         # find the best classifier for k = \{1:20\} based on minimum mean error.
         for i in range(1, 20):
             knn = KNeighborsClassifier(n_neighbors=i)
             # training the model
             knn.fit(X train, Y train)
             # predicting the label using test data
             y pred = knn.predict(X_validation)
             error i = np.mean(y pred != Y validation)
             error.append(error_i)
             if(error_i < min_error):</pre>
                 print(i, error_i)
                 min error = error i
                 best_knn = knn
```

1 0.0205761316872428

Out[18]: Text(0, 0.5, 'Mean Error')


```
In [19]: # In the section below we are loading test data csv file into dataframe name
         df test = pd.read csv('zip.test.p.csv')
         print(df_test.head())
                -1 -1.1 -1.2
                                 -1.3 \quad -1.4 \quad -0.948
                                                    -0.561
                                                             0.148
                                                                    0.384
         1.136
         0 6 -1.0
                         -1.0 -1.000 -1.0
                   -1.0
                                               -1.0 -1.000 -1.000 -1.000
         1.000
         1 3 -1.0 -1.0 -1.0 -0.593
                                        0.7
                                               1.0
                                                      1.000 1.000 1.000
         1.000
         2 6 -1.0
                    -1.0 -1.0 -1.000
                                       -1.0
                                               -1.0 -1.000 -1.000 -1.000
         1.000
         3 6 -1.0 -1.0 -1.0 -1.000
                                      -1.0
                                               -1.0 -1.000 -0.858 -0.106
         0.901
         4 0 -1.0 -1.0 -1.0 -1.000 -1.0
                                               -1.0
                                                      0.195 1.000 0.054
         0.224
            -0.908
                     0.43 0.622
                                  -0.973
                                          -1.137
                                                  -1.138
                                                          -1.139
                                                                  -1.140
                                                                          -1.141
         0 \quad -1.000 \quad -1.000 \quad -1.000 \quad -1.000 \quad -1.000
                                                            -1.0
                                                                    -1.0
                                                                            -1.0
             0.717 0.333 0.162
                                 -0.393
                                         -1.000 -1.000
                                                            -1.0
                                                                    -1.0
                                                                            -1.0
         1
         2 -1.000 -1.000 -1.000
                                 -1.000
                                         -1.000 -1.000
                                                            -1.0
                                                                    -1.0
                                                                            -1.0
         3
             0.901 0.901 0.290
                                 -0.369
                                         -0.867 -1.000
                                                            -1.0
                                                                    -1.0
                                                                            -1.0
         4
             1.000
                   0.988
                           0.187
                                   0.139
                                          -0.641
                                                  -0.812
                                                            -1.0
                                                                    -1.0
                                                                            -1.0
         [5 rows x 257 columns]
```

```
In [20]: # In the section below we are separating attributes and labels for test dat
X_test = df_test.iloc[:, 1:256].values
Y test = df test.iloc[:, 0].values
```

```
In [21]: # let's predict the labels using the best model
Y_pred = best_knn.predict(X_test)
```

```
In [22]: # Print out classification report
          from sklearn.metrics import classification_report, confusion_matrix
          print(classification_report(Y_test, Y_pred))
          # Print out confusion matrix
          print(confusion_matrix(Y_test, Y_pred))
                                0.25
                                            U • J I
                                                       U . J Z
                                                                    100
                       6
                                0.96
                                           0.96
                                                       0.96
                                                                    170
                       7
                                0.92
                                           0.94
                                                       0.93
                                                                    147
                       8
                                0.95
                                                       0.92
                                                                    166
                                           0.89
                       9
                                0.89
                                            0.95
                                                       0.92
                                                                    176
                                                       0.94
                                                                   2006
               accuracy
                                                       0.94
                                                                   2006
              macro avg
                                0.94
                                           0.94
                                                                   2006
          weighted avg
                                0.94
                                           0.94
                                                       0.94
          [[355
                   0
                        2
                             0
                                 0
                                      0
                                          0
                                               1
                                                    0
                                                        1]
               0 255
                        0
                                          2
            [
                             0
                                 6
                                      0
                                               1
                                                        0]
                    1 183
                             2
                                               2
            [
               6
                                 1
                                      0
                                          0
                                                    3
                                                        0]
                        2 153
                                 0
                                          0
                                               0
               3
                   0
                                      6
                                                    0
                                                        2]
            ſ
               0
                   3
                        1
                             0 179
                                      1
                                          2
                                               3
                                                    1
                                                       10]
           [
               2
                   0
                        2
                             4
                                 0 145
                                               0
                                                    3
                                                        2]
               0
                   0
                        1
                             0
                                 2
                                      3 164
                                               0
                                                    0
                                                        0]
               0
                   1
                        1
                             1
                                 4
                                      0
                                          0 138
                                                        2]
                        2
               5
                   0
                             5
                                 1
                                      1
                                          0
                                               1 148
            [
                                                        3]
```

0

0

1

0

2

0

0

4

1 168]]

In the section below, we are importing libraries which will be used in the pro

```
In [1]:
         # <numpy> to compute mean error for the predicted values
         # <pandas> to load and parse the csv file into meaningful dataframes
         import numpy as np
         import pandas as pd
In [2]:
         # In the section below, we are loading training data csv file into dataframe nam
         df train = pd.read csv('zip.train.p.csv')
         print(df_train.head())
            6.0000
                    -1.0000 \quad -1.0000.1 \quad -1.0000.2
                                                    -1.0000.3
                                                                            -1.0000.5
                                                                -1.0000.4
         0
               5.0
                       -1.0
                                   -1.0
                                              -1.0
                                                        -0.813
                                                                    -0.671
                                                                               -0.809
               4.0
                       -1.0
                                   -1.0
                                              -1.0
                                                        -1.000
                                                                    -1.000
                                                                               -1.000
         1
         2
               7.0
                       -1.0
                                   -1.0
                                              -1.0
                                                        -1.000
                                                                    -1.000
                                                                               -0.273
         3
               3.0
                       -1.0
                                   -1.0
                                              -1.0
                                                        -1.000
                                                                    -1.000
                                                                               -0.928
         4
               6.0
                       -1.0
                                   -1.0
                                              -1.0
                                                        -1.000
                                                                    -1.000
                                                                               -0.397
            -1.0000.6 -0.6310 0.8620
                                              0.8230
                                                       1.0000.39
                                                                   0.4820 - 0.4740
         0
               -0.887
                        -0.671
                                -0.853
                                         . . .
                                              -0.671
                                                          -0.033
                                                                   0.761
                                                                             0.762
                                -1.000
                                                                             1.000
         1
               -1.000
                        -1.000
                                         . . .
                                              -1.000
                                                          -1.000
                                                                  -0.109
                                                                  -0.987
                                                                            -1.000
         2
                0.684
                         0.960
                                  0.450
                                         . . .
                                                1.000
                                                           0.536
         3
               -0.204
                         0.751
                                  0.466
                                                0.639
                                                           1.000
                                                                    1.000
                                                                             0.791
                0.983
                        -0.535
                                -1.000
                                         . . .
                                                0.015
                                                          -0.862
                                                                  -0.871
                                                                            -0.437
            -0.9910 -1.0000.121 -1.0000.122 -1.0000.123 -1.0000.124
                                                                            Unnamed: 257
         0
              0.126
                          -0.095
                                        -0.671
                                                      -0.828
                                                                      -1.0
                                                                                      NaN
            -0.179
                                        -1.000
                                                      -1.000
                                                                                      NaN
         1
                          -1.000
                                                                      -1.0
         2
             -1.000
                          -1.000
                                        -1.000
                                                                      -1.0
                                                                                      NaN
                                                      -1.000
         3
              0.439
                           -0.199
                                        -0.883
                                                      -1.000
                                                                      -1.0
                                                                                      NaN
         4
             -1.000
                           -1.000
                                        -1.000
                                                      -1.000
                                                                      -1.0
                                                                                      NaN
         [5 rows x 258 columns]
         # In the section below, we are separating attributes and labels for training dat
In [3]:
         X train = df train.iloc[:, 1:256].values
         Y train = df train.iloc[:, 0].values
         \# In the section below, we are loading test data csv file into dataframe named d
In [4]:
         df test = pd.read csv('zip.test.p.csv')
         df_test.head()
                               -1.3 -1.4 -0.948 -0.561
                -1 -1.1 -1.2
                                                       0.148 0.384 ...
                                                                       -1.136 -0.908
                                                                                       0.43
                                                                                            0.
Out[4]:
         0 6 -1.0 -1.0 -1.00 -1.0
                                           -1.0
                                                -1.000
                                                       -1.000 -1.000
                                                                       -1.000
                                                                               -1.000 -1.000
         1 3 -1.0 -1.0 -1.0 -0.593
                                    0.7
                                            1.0
                                                 1.000
                                                        1.000
                                                              1.000 ...
                                                                        1.000
                                                                                0.717
                                                                                      0.333
                                                                                             0
           6 -1.0 -1.0 -1.0 -1.000
                                   -1.0
                                                -1.000 -1.000 -1.000 ... -1.000
                                           -1.0
                                                                               -1.000 -1.000 -1.
           6 -1.0 -1.0 -1.00
                                   -1.0
                                           -1.0
                                                -1.000 -0.858
                                                             -0.106
                                                                        0.901
                                                                                0.901
                                                                                      0.901
                                                                                             0.
           0 -1.0 -1.0 -1.00 -1.0
                                           -1.0
                                                 0.195
                                                       1.000
                                                              0.054 ...
                                                                        0.224
                                                                                1.000
                                                                                      0.988
                                                                                             Ω
        5 rows × 257 columns
         # In the section below, we are separating attributes and labels for test data.
In [5]:
         X test = df test.iloc[:, 1:256].values
```

Y test = df test.iloc[:, 0].values

```
In [6]: #Import Gaussian Naive Bayes model
    from sklearn.naive_bayes import GaussianNB

#Create a Gaussian Classifier
    model = GaussianNB()

#Train the model using the training sets
    model.fit(X_train,Y_train)

#Predict Output
Y_pred= model.predict(X_test)
```

In [7]: # Print out classification report
 from sklearn.metrics import classification_report, confusion_matrix
 print(classification_report(Y_test, Y_pred))
 # Print out confusion matrix
 print(confusion_matrix(Y_test, Y_pred))

	prec		isio	n	red	call	f1-	f1-score		pport		
			0.9	4	(0.82		0.87		359		
			1		0.9	1	(0.96		0.94		264
			2		0.7	7	(72		0.74		198
			3		0.9	0	(0.48		0.62		166
			4		0.7	5	(0.28				200
			5		0.8	1	(0.48		0.60		160
			6		0.6	6	0.89			0.76		170
			7		0.8	0.85		0.90		0.87		147
			8		0.4	0.44		0.66		0.53		166
	9			0.4	5	(0.86		0.59		176	
	ac	cura	асу							0.72		2006
macro avq					0.7	5	0.70			0.69		2006
weighted avg				0.7	7	0.72			0.72		2006	
0				•			1.0		0.1			
[[2		1	13	0	4	2	12	1	31	1]		
[0	254	1	0	1	0	4	0	1	3]		
[2	0	142	3	3	4	12	1	30	1]		
[6	0	11	79	1	3	4	6	47	9]		
[0	4	4	0	57	1	7	5	5	117]		
[9	1	2	5	2	77	36	2	19	7]		
[3	6	5	0	0	2	151	0	3	0]		
[0	1	1	0	3	0	0	132	1	9]		
[0	1	5	1	3	6	2	0	109	39]		
[0	10	0	0	2	0	0	9	3	152]]		