Министерство образования и науки Украины Национальный технический университет Украины "Киевский Политехнический Институт" Кафедра ТОЭ

Расчетно-графическая работа

"Периодические несинусоидальные токи в линейных электрических цепях"

Вариант № 017

Выполнил:	 	
Проверил:		

Задание

В электрической цепи, схема которой изображена на рисунке, действует источник периодической несинусоидальной ЭДС. График ЭДС задан кривой. Нелинейный отрезок кривой представляют собой участки синусоиды. Угловая частота изменения ЭДС w=1000 рад/с.

Требуется:

- 1. Разложить заданную ЭДС в ряд Фурье (ограничиться 1-ой, 3-ей и 5-ой гармониками).
- 2. Построить в одной системе координат временные графики составляющих и суммарную кривую ЭДС, последнюю сравнить с заданной.
- 3. Рассчитать мгновенные значения токов всех ветвей заданной схемы.
- 4. Определить показания амперметров электромагнитной системы, включенных в цепь.
- 5. Вычислить мощность P, Q, S, T и коэффициент мощности источника. Составить баланс активных мощностей цепи.
- 6. Считая заданную схему одной из фаз симметричной трехфазной цепи при соединении генератора и нагрузки звездой с нулевым проводом, необходимо:
 - а) Записать выражения мгновенных значений ЭДС во всех фазах трехфазного источника (принять заданную ЭДС в качестве ЭДС фазы А),
 - б) Определить действующие значения линейного напряжения источника и тока в нейтральном проводе,
 - в) Вычислить действующие значения напряжения между нейтральными точками генератора и приемника и токов в линейных проводах при обрыве нейтрального провода.

Разложение заданной ЭДС в ряд Фурье.

Данная функция является симметричной относительно начала координат.

Ряд Фурье такой функции не содержит косинусных членов и постоянной составляющей. А так как функция симметрична относительно и оси абсцисс, то в разложении это функции содержатся только нечетные синусоиды:

$$f(\omega t) = \sum_{k=1,3,5...}^{\infty} Bm_k \cdot \sin(k \cdot \omega t)$$
 $x = \omega t$

Нахождение коэфициента для 1-ой гармоники

$$Bm_{1} := \frac{4}{\pi} \cdot \left[\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \left(\frac{Em}{2} \right) \cdot \sin(x) d(x) + \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} Em \cdot \sin(x) d(x) \right]$$

$$Bm_{1} := 82.616$$

$$B_{m1}(x) := Bm_1 \cdot \sin(x)$$

Нахождение коэфициентов для 3-ой гармоники

$$Bm_3 := \frac{4}{\pi} \cdot \left[\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \left(\frac{Em}{2} \right) \cdot \sin(3 \cdot x) d(x) + \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} Em \cdot \sin(3 \cdot x) d(x) \right] \qquad Bm_3 = -20.16$$

$$B_{m3}(x) := Bm_3 \cdot \sin(3 \cdot x)$$

Нахождение коэфициентов для 5-ой гармоники

$$Bm_{5} := \frac{4}{\pi} \cdot \left[\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \left(\frac{Em}{2} \right) \cdot \sin(5 \cdot x) d(x) + \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} Em \cdot \sin(5 \cdot x) d(x) \right] \qquad Bm_{5} = -4.427$$

$$B_{m5}(x) := Bm_5 \cdot \sin(5 \cdot x)$$

Искомое разложение функции можно представить в виде:

$$F(\omega t) = Bm_1 \cdot \sin(\omega t) + Bm_3 \cdot \sin(3\omega t) + Bm_5 \cdot \sin(5\omega t)$$

$$Cm_1 := 0 \qquad Cm_3 := 0 \qquad Cm_5 := 0$$

$$\psi_1 := 0 \qquad \psi_3 := 0 \qquad \psi_5 := 0$$

Графики составляющих и суммарной ЭДС

Временные графики 1-ой, 3-ей, 5-ой гармоник ЭДС и их суммарная кривая

Нахождение мгновенных значений токов всех ветвей заданной схемы.

Выполнив разложение периодической несинусоидальной ЭДС в ряд Фурье, заменяем её приближенно суммой нескольких составляющих.

Обозначим реактивные сопротивления цепи для К-ой гармоники:

$$X_{C} := \frac{1}{\omega \cdot C \cdot k \cdot 10^{-6}}$$

$$X_{L} := \omega \cdot L \cdot k \cdot 10^{-3}$$

Расчет токов, обусловленных каждой из составляющих ЭДС, выполним в комплексной форме. Комплексное сопротивление цепи для К-ой гармоноки равно:

$$Z_{k} = -i \cdot X_{C} \cdot k + R + \frac{R \cdot (i \cdot X_{L} \cdot k + R)}{R + (i \cdot X_{L} \cdot k + R)}$$

Для основной гармоники ЭДС (K=1):

$$E_1 := \frac{Bm_1}{\sqrt{2}} \cdot e^{i \cdot \psi_1}$$
 $E_1 = 58.418$ $F(E_1) = (58.418 \ 0)$

Комплексное сопротивление цепи для 1-ой гармоноки равно:

$$Z_{1} := -i \cdot X_{C} + R + \frac{R \cdot (i \cdot X_{L} + R)}{R + (i \cdot X_{L} + R)}$$

$$Z_{1} = 45.405 - 53.123i$$

За законом Ома находим ток I1:

$$I_{1_1} := \frac{E_1}{Z_1}$$
 $I_{1_1} = 0.543 + 0.635i$ $F(I_{1_1}) = (0.836 \ 49.479)$

Остальные токи находим за формулами чужого сопротивления:

$$I_{2_{1}} := I_{1_{1}} \cdot \frac{i \cdot X_{L} + R}{R + (i \cdot X_{L} + R)}$$

$$I_{2_{1}} = 0.227 + 0.37i$$

$$I_{2_{1}} = 0.227 + 0.37i$$

$$I_{3_{1}} := I_{1_{1}} \cdot \frac{R}{R + (i \cdot X_{L} + R)}$$

$$I_{3_{1}} = 0.316 + 0.265i$$

$$F(I_{3_{1}}) = (0.412 + 40.016)$$

Для основной гармоники ЭДС (K=3):

$$E_3 := \frac{Bm_3}{\sqrt{2}} \cdot e^{i \cdot \psi_3}$$
 $E_3 = -14.255$ $F(E_3) = (14.255 \ 180)$

Комплексное сопротивление цепи для 3-ой гармоноки равно:

$$Z_3 := -i \cdot X_C + R + \frac{R \cdot (i \cdot X_L + R)}{R + (i \cdot X_L + R)}$$
 $Z_3 = 48 - 12.519i$

За законом Ома находим ток I1:

$$I_{1_3} := \frac{E_3}{Z_3}$$
 $I_{1_3} = -0.278 - 0.073i$ $F(I_{1_3}) = (0.287 - 165.383)$

Остальные токи находим за формулами чужого сопротивления:

$$I_{2_{3}} := I_{1_{3}} \cdot \frac{i \cdot X_{L} + R}{R + (i \cdot X_{L} + R)}$$

$$I_{2_{3}} = -0.152 - 0.099i$$

$$F(I_{2_{3}}) = (0.182 - 146.948)$$

$$I_{3_{3}} := I_{1_{3}} \cdot \frac{R}{R + (i \cdot X_{L} + R)}$$

$$I_{3_{3}} = -0.126 + 0.027i$$

$$F(I_{3_{3}}) = (0.129 - 168.052)$$

Для пятой гармоники ЭДС(K=5):

$$E_5 := \frac{Bm_5}{\sqrt{2}} \cdot e^{i \cdot \psi_5}$$
 $E_5 = -3.131$ $F(E_5) = (3.131 \ 180)$

Комплексное сопротивление цепи для 5-ой гармоноки равно:

$$Z_5 := -i \cdot X_C + R + \frac{R \cdot (i \cdot X_L + R)}{R + (i \cdot X_L + R)}$$

$$Z_5 = 51.148 - 3.734i$$

За законом Ома находим ток I1:

$$I_{1_5} := \frac{E_5}{Z_5} \qquad \qquad I_{1_5} = -0.061 - 4.445i \times 10^{-3} \qquad \qquad F(I_{1_5}) = (0.061 - 175.824)$$

Остальные токи находим за формулами чужого сопротивления:

$$\begin{split} &I_{2_5} \coloneqq I_{1_5} \cdot \frac{i \cdot X_L + R}{R + \left(i \cdot X_L + R\right)} & I_{2_5} = -0.042 - 0.018i & F\left(I_{2_5}\right) = (0.046 - 156.594) \\ &I_{3_5} \coloneqq I_{1_5} \cdot \frac{R}{R + \left(i \cdot X_L + R\right)} & I_{3_5} = -0.019 + 0.014i & F\left(I_{3_5}\right) = (0.023 - 144.37) \end{split}$$

Мгновенные значения токов ветвей:

$$\begin{aligned} \mathbf{i}_1 &= 0.836 \cdot \sqrt{2} \cdot \sin(\omega t + 49.479) + 0.287 \cdot \sqrt{2} \cdot \sin(3 \cdot \omega t - 165.383) + 0.061 \cdot \sqrt{2} \cdot \sin(5 \cdot \omega t - 175.824) \\ \mathbf{i}_2 &= 0.435 \cdot \sqrt{2} \cdot \sin(\omega t + 58.451) + 0.182 \cdot \sqrt{2} \cdot \sin(3 \cdot \omega t - 146.948) + 0.046 \cdot \sqrt{2} \cdot \sin(5 \cdot \omega t - 156.594) \\ \mathbf{i}_3 &= 0.412 \cdot \sqrt{2} \cdot \sin(\omega t + 40.016) + 0.129 \cdot \sqrt{2} \cdot \sin(3 \cdot \omega t + 168.052) + 0.023 \cdot \sqrt{2} \cdot \sin(5 \cdot \omega t + 144.37) \end{aligned}$$

Определение показаний амперметров электромагнитной системы, включенных в цепь.

$$\Gamma_{1} := \sqrt{\left(\left|I_{1_{1}}\right|\right)^{2} + \left(\left|I_{1_{5}}\right|\right)^{2}} \qquad \Gamma_{1} = 0.838$$

$$\Gamma_{2} := \sqrt{\left(\left|I_{2_{1}}\right|\right)^{2} + \left(\left|I_{2_{5}}\right|\right)^{2}} \qquad \Gamma_{2} = 0.437$$

$$\Gamma_{3} := \sqrt{\left(\left|I_{3_{1}}\right|\right)^{2} + \left(\left|I_{3_{5}}\right|\right)^{2}} \qquad \Gamma_{3} = 0.413$$

Вычисление мощности P, Q, S, T и коэффициента мощности источника. Баланс активных мошностей цепи.

Активная мощность источника (на входе цепи):

$$P := \left| E_1 \right| \cdot \left| I_{1_1} \right| \cdot \cos \left(\arg \left(I_{1_1} \right) - \arg \left(E_1 \right) \right) + \left| E_5 \right| \cdot \left| I_{1_5} \right| \cdot \cos \left(\arg \left(I_{1_5} \right) - \arg \left(E_5 \right) \right)$$

$$P = 31.919$$

Реактивная мощность источника:

$$Q := \left| E_1 \right| \cdot \left| I_{1_1} \right| \cdot \sin \left[-\left(\arg \left(I_{1_1} \right) - \arg \left(E_1 \right) \right) \right] + \left| E_5 \right| \cdot \left| I_{1_5} \right| \cdot \sin \left[-\left(\arg \left(I_{1_5} \right) - \arg \left(E_5 \right) \right) \right]$$

$$Q = -37.136$$

Полная мощность источника:

$$E := \sqrt{(|E_1|)^2 + (|E_3|)^2 + (|E_5|)^2}$$
 $S := E \cdot I_1$ $S = 50.469$

Мощность искажения на входе цепи:

$$T := \sqrt{S^2 - P^2 - Q^2}$$

$$T = 12.214$$

Мощность, поступающая в активные сопротивления цепи:

$$Pa := (I_1^2 + I_2^2 + I_3^2) \cdot R$$
 $Pa = 31.919$

Считем заданную схему одной из фаз симметричной трехфазной цепи при соединении генератора и нагрузки звездой с нулевым проводом.

Выражения мгновенных значений ЭДС во всех фазах трехфазного источника (принимаем заданную ЭДС в качестве ЭДС фазы А).

В симметричных трёхфазных электрических цепях кривые напряжения (тока) во второй и третьей фазах аналогичны кривой напряжения (тока) первой фазы со сдввигом на треть периода:

Схема трехфазной цепи

$$\begin{aligned}
\mathbf{e_A} &= 82.616 \cdot \sin(\omega t) - 20.16 \cdot \sin(3\omega t) - 4.427 \cdot \sin(5\omega t) \\
\mathbf{e_B} &= 82.616 \cdot \sin(\omega t - 120) - 20.16 \cdot \sin(3\omega t) - 4.427 \cdot \sin(5\omega t - 240) \\
\mathbf{e_C} &= 82.616 \cdot \sin(\omega t + 120) - 20.16 \cdot \sin(3\omega t) - 4.427 \cdot \sin(5\omega t + 240)
\end{aligned}$$

Определение действующего значения линейного напряжения источника и тока в нейтральном проводе.

Действующее значение линейного напряжения источнока (показание вольтметра V1):

$$U_{L} := \sqrt{3} \cdot \sqrt{(|E_{1}|)^{2} + (|E_{5}|)^{2}}$$
 $U_{L} = 101.328$

Действующее значение тока в линейном проводе (показания амперметра A2 при замкнутом ключе K):

$$I_{N} := 3 \cdot \sqrt{\left(\left|I_{1_{3}}\right|\right)^{2}}$$

$$I_{N} = 0.862$$

Определение действующего значения напряжения между нейтральными точками генератора и приемника и токов в линейных проводах при обрыве нейтрального провода.

Действующее значение напряжения между нейтральными точками генератора О и приемника О' при размыкании ключа К (показания вольтметра V2):

$$U_N := |E_3|$$
 $U_N = 14.255$

Действующее значение токов в линейных проводах при обрыве нейтрального провода (показание амперметра A1):

$$I_1 := \sqrt{\left(\left|I_{1_1}\right|\right)^2 + \left(\left|I_{1_5}\right|\right)^2}$$
 $I_1 = 0.838$