Processus de Poisson et Files d'Attente

Probabilités & Statistiques | L2 | 2017/2018

1. Processus de Poisson

On suppose que l'on a des "succès" arrivant de manière aléatoire mutuellement indépendants avec une densité de probabilité $\lambda(t)$. On suppose que pour un $\,\delta t\,$ suffisamment la probabilité d'un succès entre $\,t\,$ et $\,t\,+\,\delta t\,$ est $\,\lambda\delta t\,$, et que la probabilité de deux succès ou plus dans le même intervalle est négligeable devant $\,\delta t\,$ au voisinage de $\,0\,$. On suppose qu'un succès ne peut pas "disparaître" une fois qu'il a eu lieu. On considère la variable aléatoire discrète $\,N_t\,$ du "nombre de succès" enregistrés sur $\,[0,t]\,$.

On pose
$$\,p_n(t):=\mathbb{P}(N_t=n),\,\,\,orall t\geq 0,\,\,\,orall n\in\mathbb{N}\,\,.$$
 En $\,t=0$, $\,N_0=0$, donc $\,p_0(0)=1\,$ et $\,p_n(0)=0\,,\,\,\,orall n>0.$

On va calculer $\,p_n(t+\delta t)\,$ en fonction des $\,p_n(t)\,$. $\,N_{t+\delta t}=n\,$ est possible dans l'un des trois cas suivants :

- aucun succès entre $\,t\,$ et $\,t+\delta t\,$ $\,\longrightarrow\,$ $\,N_t=n$.
- $-\,$ un succès entre $\,t\,$ et $\,t+\delta t\,$ $\,\longrightarrow\,$ $\,N_t=n-1$.
- $\;\; k \;$ succès entre $\; t \;$ et $\; t + \delta t \; \longrightarrow \; N_t = n k \; .$

On utilise la **formule des probabilités totales** :

$$egin{aligned} p_n(t+\delta t) &= \sum_0^n \mathbb{P}(N_{t+\delta t} = n|N_t = n-k) \mathbb{P}(N_t = n-k) \ &= (1-\lambda\delta t - o(\delta t))p_n(t) + \lambda\delta t p_{n-1}(t) + o(\delta t) \sum_2^n p_{n-k}(t) \ &rac{p_n(t+\delta t) - p_n(t)}{\delta t} = -\lambda p_n(t) + \lambda p_{n-1}(t) + o(1) \ &p_n'(t) = -\lambda p_n(t) + \lambda p_{n-1}(t) \end{aligned}$$

Le cas spécial de n=0:

$$p_0(t + \delta t) = (1 - \lambda \delta t - o(\delta t))p_0(t)$$
$$p'_0(t) = -\lambda p_0(t)$$

d'où le système d'équations différentielles suivant :

$$\left\{ egin{aligned} p_0' &= -\lambda p_0 & (S^0) \ p_n' &= -\lambda p_n + \lambda p_{n-1} & (S^n), \ orall n > 0 \ p_0(0) &= 1 \ p_n(0) &= 0, \ orall n > 0 \end{aligned}
ight.$$

La résolution donne successivement:

en injectant cela dans (S^1) il vient :

$$C_1'e^{-\lambda t}=\lambda p_0=\lambda e^{-\lambda t} \ \ \mathrm{donc} \ \ C_1=\lambda t, \ \ p_1=\lambda t e^{-\lambda t}=rac{(\lambda t)^1}{1!}e^{-\lambda t}$$

Par récurrence:

$$C_n'e^{-\lambda t} = \lambda p_{n-1} = \lambda \frac{(\lambda t)^{n-1}}{(n-1)!}e^{-\lambda t}$$
 $C_n = \frac{(\lambda t)^n}{n!} \ ext{donc} \ p_n(t) = \mathbb{P}(N_t = n) = \frac{(\lambda t)^n}{n!}e^{-\lambda t}$ $orall t, \ N_t \sim \mathscr{P}(\lambda t)$

- $m{i}$ Le processus est **sans mémoire** : ce qui se passe sur [a,b] n'a pas d'influence sur ce qui se passe sur [c,d] , pour b < c .
 - Si l'on considère $t_0>0$ quelconque, et si on s'intéresse à $N(t)-N(t_0)$, c'est-à-dire le **nombre de succès dans l'intervalle** $]t_0,t]$, on obtient les mêmes équations différentielles : $N_t-N_{t_0}\sim \mathscr{P}(\lambda(t-t_0))$. L'espérance est $\lambda(t-t_0):\lambda$ est donc le **nombre moyen de succès par unités de temps**.
 - On peut calculer le **temps d'attente** T **d'un premier succès**. Le temps d'attente est supérieur à t ssi on n'a encore enregistré aucun succès au temps t:

$$P(T > t) = P(N_t = 0) = p_0(t) = e^{-\lambda t}$$

Fonction de répartition de $\,T$:

$$F_T = \left\{ egin{array}{ll} 1 - e^{-\lambda t} & ext{ si } t \geq 0 \ 0 & ext{ sinon} \end{array}
ight.$$

On a bien $\,F_T(+\infty)=1\,$. La densité de probabilité de $\,T\,$ est donc

$$F_T'=\lambda e^{-\lambda t}, \ t>0$$
 , donc $T\sim \mathscr{E}(\lambda)$ et donc $\mathbb{E}(T)=rac{1}{\lambda}$.

2. Graphe de Transition d'un Processus de Poisson

On dira que le processus est **dans l'état** $\,n\,$ **à l'instant** $\,t\,$ si $\,N_t=n\,$.

Les flèches partant toutes d'un même état doivent avoir des probabilités dont la somme doit donner 1.

3. File D'Attente (exemple)

Il y a un **guichet** qui sert des clients. Le guichet ne traite qu'une personne à la fois. L'arrivée et le départ des clients dans la file d'attente sont supposés être deux Processus de Poisson de paramètres λ et μ .

Les clients arrivent et repartent aléatoirement et de manière indépendante, indépendamment de t.

Tout probabilité en $(\delta t)^2$ (départ et arrivée simultanés, n départs ou arrivées simultanés, n > 1) est supposée négligeable.

Graphe de transition de la file d'attente :

4. Loi de la Longueur de la File

$$\triangle$$

$$-~~p_n(t):=\mathbb{P}(N(t)=n),~~orall t\geq 0,~~orall n\in\mathbb{N}$$

A partir du graphe de transition, pour $n \neq 0$:

$$\mathbb{P}(N(t+\delta t)=n|N(t)=n)=1-\lambda\delta t-\mu\delta t$$

$$\mathbb{P}(N(t+\delta t)=n|N(t)=n-1)=\lambda \delta t$$

$$\mathbb{P}(N(t+\delta t) = n|N(t) = n+1) = \mu \delta t$$

Donc:

$$p_n(t + \delta t) = \lambda \delta t p_{n-1}(t) + \mu \delta t p_{n+1}(t) + (1 - \lambda \delta t - \mu \delta t) p_n(t)$$

$$p_n' = \lambda p_{n-1} + \mu p_{n+1} - (\lambda + \mu) p_n$$

Et pour n = 0:

$$egin{align} p_0(t+\delta t) &= \mu \delta t p_1(t) + (1-\lambda \delta t) p_0(t) \ & p_0' &= \mu p_1 - \lambda p_0 \ & \left\{ egin{align} \mu p_1 - \lambda p_0 &= p_0' & (S^0) \ \mu p_{n+1} - \lambda p_n &= p_n' + \mu p_n - \lambda p_{n-1} & (S^n), \ orall n > 0 \end{array}
ight.$$

On obtient un système trop complexe dans le cas général. On peut cependant trouver les solutions constantes, pour lesquelles les $\,p_i\,$ sont des fonctions constantes, et donc pour lesquelles $\,p_i'\,=0\,$:

$$\left\{ egin{aligned} \mu p_1 - \lambda p_0 &= 0 & (S^0) \ \mu p_2 - \lambda p_1 &= \mu p_1 - \lambda p_0 & (S^1) \ \mu p_{n+1} - \lambda p_n &= \mu p_n - \lambda p_{n-1} & (S^n), \ orall n > 0 \end{aligned}
ight.$$

D'où:

$$p_{n+1}=rac{\lambda}{\mu}p_n=rac{\lambda^{n+1}}{\mu^{n+1}}p_0$$

La condition $\ \sum p_i = p_0 \sum \left(rac{\lambda}{\mu}
ight)^k = 1 \ \ ext{permet de déduire que nécessairement} \ \ \lambda < \mu$, et

surtout : $rac{p_0}{1-\lambda/\mu} = 1$ d'où $p_0 = 1-rac{\lambda}{\mu}$ et finalement :

$$orall t \geq 0, \,\, orall n \geq 0, \,\, p_n = \mathbb{P}(N(t) = n) = \left(rac{\lambda}{\mu}
ight)^n \left(1 - rac{\lambda}{\mu}
ight)$$

Loi de la longueur L = N(t) de la file d'attente en régime stationnaire :

 $-\,$ Si $\,\lambda \geq \mu$, la file d'attente s'allonge indéfiniment.

$$-$$
 Sinon, $\mathbb{P}(L=n)=\left(rac{\lambda}{\mu}
ight)^n\left(1-rac{\lambda}{\mu}
ight),\,\,orall n\in\mathbb{N}$

Dans ce cas-là, on remarque que $\,1 + L \sim \mathscr{G}\left(1 - rac{\lambda}{\mu}
ight)$.

D'où:

$$\mathbb{E}(1+L) = 1 + \mathbb{E}(L) = \frac{1}{1-\frac{\lambda}{\mu}} \ \text{donc} \ \mathbb{E}(L) = \frac{1}{1-\frac{\lambda}{\mu}} - 1 = \frac{\lambda/\mu}{1-\frac{\lambda}{\mu}} = \frac{\lambda}{\mu-\lambda}$$

5. Temps Moyen d'Attente

- Lorsqu'un client arrive, il y a en moyenne $\frac{\lambda}{\mu-\lambda}$ clients qui attendent déjà. Le temps moyen de service d'un client est l'espérance du départ d'un client, qui suit une loi $\mathscr{E}(\mu)$, donc ce temps moyen de service par client est $\frac{1}{\mu}$. En conséquence, le temps d'attente moyen T avant d'être servi est $T=\frac{1}{\mu}\frac{\lambda}{\mu-\lambda}$.
- Si l'on a en moyenne 5 clients/h, et si le service dure 8 min, alors on aura $\lambda=5$ clients/h et $\mu=60/8=7,5$ clients/h, d'où $\mathbb{E}(L)=\frac{\lambda}{\mu-\lambda}=\frac{5}{2,5}=2$ clients et finalement $T=2/\mu=4/15=16$ min. Remarquons que $\mathbb{P}(L=0)=1-\frac{\lambda}{\mu}=1-\frac{5}{7,5}=\frac{1}{3}$ d'où $\mathbb{P}(L>0)=\frac{2}{3}$. Cette dernière valeur est appelée **taux d'occupation**.

6. Modèles plus généraux de Files d'Attente

On généralise le modèle précédent :

- $-\,$ Il peut y avoir un nombre quelconque $\,x\in |[1,\infty]|\,$ de guichets.
- Il peut y avoir une taille limite $y \geq x$ pour la file d'attente : les clients arrivant devant une file pleine se font rejeter.
- Les lois gérant l'arrivée et le départ des clients peuvent être quelconques. Pour nous elles resteront du type exponentiel, noté $\,M\,$.

Notation d'un modèle : $A/D/x/y\,\,$ où A et D désignent des types de lois pour l'arrivée et le départ des clients.

- eg Le premier modèle était du type $M/M/1/\infty$.
 - Files à plusieurs guichets : $M/M/x/\infty$.
 - Files à plusieurs guichets et avec rejets : $M/M/x/y, \ y \geq x$.
 - $-\,\,$ Files à plusieurs guichets et avec rejets mais sans attente : $\,M/M/x/x\,$.
 - Files sans attente et sans rejets : $M/M/\infty/\infty$.

7. Loi de la Longueur de la File (Cas Général)

La méthode de résolution est la même que pour le premier modèle. Au lieu de trouver

$$\begin{cases} \mu p_1 - \lambda p_0 = 0 & (S^0) \\ \mu p_2 - \lambda p_1 = \mu p_1 - \lambda p_0 & (S^1) \\ \mu p_{n+1} - \lambda p_n = \mu p_n - \lambda p_{n-1} & (S^n), \ \forall n > 0 \end{cases}$$

on trouve alors

$$\begin{cases} \mu_1 p_1 - \lambda_0 p_0 = 0 & (S^0) \\ \mu_2 p_2 - \lambda_1 p_1 = \mu_1 p_1 - \lambda_0 p_0 & (S^1) \\ \mu_{n+1} p_{n+1} - \lambda_n p_n = \mu_n p_n - \lambda_{n+1} p_{n-1} & (S^n), \ \forall n > 0 \end{cases}$$

ďoù

$$p_{n+1}=rac{\lambda_n}{\mu_{n+1}}p_n=rac{\lambda_n\cdots\lambda_0}{\mu_{n+1}\cdots\mu_1}p_0$$

et finalement

$$orall n>0, \,\, p_n=rac{\lambda_0\cdots\lambda_{n-1}}{\mu_1\cdots\mu_n}p_0=rac{\prod_0^{n-1}\lambda_i}{\prod_1^n\mu_i}p_0$$

 $eg-M/M/1/\infty$: un unique λ puisque la longueur de la file n'influe pas sur l'arrivée de nouveaux clients, et un unique μ car il n'y a qu'un guichet, et car la loi de départ des clients ne dépend pas de la longueur de la file, d'où l'on retrouve

$$p_n = \left(rac{\lambda}{\mu}
ight)^n p_0 \ .$$

 $-M/M/\infty/\infty$: toujours un unique λ , mais ici, pour n clients dans la file, sur les n guichets actifs, n'importe lequel peut relâcher son client. Les guichets étant indépendants, on doit sommer la valeur μ (vitesse d'un guichet) par le nombre de guichets actifs, qui dépend de l'état dans lequel le système se trouve :

Donc : $orall n\geq 0,\ \ p_n=rac{\lambda^n}{n!\mu^n}p_0$. On reconnaît une loi de Poisson $\,\mathscr{P}(\lambda/\mu)$, et donc $\, p_0=e^{-\lambda/\mu}$.