

SkipWriter: LLM-Powered Abbreviated Writing on Tablets

TAN DIEGO

Zheer Xu¹, Shanqing Cai², Mukund Varma T³, Subhashini Venugopalan², Shumin Zhai² Dartmouth College¹, Google², UC San Diego³

Motivation

Handwriting is well-suited for abbreviated phrase input.

- Prolonged stress on the hand and wrist
- Flexible to modify/extend any abbreviation

Large Language Models (LLMs) have shown significant potential in decoding ambiguous or partial inputs.

intended phrase

Abbreviation Form

when would you come home

Each word in the phrase is abbreviated as a variable-length prefix.

Decoder Implementation

Approach: Recognize-then-decode (avoid costly data collection)

- Recognizer: In-production handwriting recognizer used in Gboard
- LLM: A fine-tuned checkpoint of PALM 2

Data Synthesis for LLM fine-tuning

- Arbitrarily generate abbreviations for millions of phrases.
- Words with common prefixes are likely to end with longer abbrevs.
- Definition of *Prefix Entropy* and *progressive generation* approach:

$$H_{\text{prefix}} = -\sum_{w \in W} p(w) \log(p(w)) \qquad P_i = \frac{H(c_1, c_2, \dots, c_n)}{H_0}$$

Interface Design

Similar to regular keyboard layouts

- Top: Candidate bar Bottom: Function keys
- Middle: Customized handwriting area

Segmented Rule: Automatic accommodation of word abbreviation

- Easy future completion
 - Reminds users to leave additional space for future completion.
 - Reduces the overhead of editing and encourages the user to try shorter abbreviations for maximal character savings.
- Low-cost word delimiters for robust prefix recognition
- Inline visualization of the top candidate to reduce attention switch

User Evaluation

Baseline: Handwriting keyboard on Gboard (non-abbreviated style). **Participants**: Ten right-handed volunteers (9 male, 1 female)

Task: Transcribe 15 given sentences for each technique.

Test Set: Randomly sampled from the test split of 4 public datasets used for fine-tuning the decoder.

Apparatus: Participants use stylus to write on an Android tablet (Lenovo P12 Pro), with the LLM decoder remotely deployed.

	SkipWriter	Baseline
Speed	25.78 WPM	24.18 WPM
Word Error Rate	2.08%	4.05%
Traversal Distance Per Character	11.41 mm* (60 % ↓)	18.74 mm*

Traversal Distance Per Character: the cumulative stylus traversal distance over the course of a test sentence divided by the count of non-whitespace characters in the committed full text

*: statistical significance observed

Offline Simulation

Goal: Understand to what extent users could use the potential of our interface and underlying LLM for motor saving.

Strategy: Simulate the most aggressive abbreviation (i.e., always prefer minimal input instead of appending more characters for safer decoding).

- Step 1: Start with the initials of each word.
- Step 2: If the target not in the candidates: append one more character to the first wrong word.
- Step 3: Repeat Step 2 until the target appears.

• Step 4: Get the final abbreviation.

Contributions Summary

- An intuitive interface and a robust decoder for seamless writing and editing of variable-length prefix-based abbreviations.
- A **user study** demonstrating a 60% reduction in motor efforts during handwriting, with competitive speed and accuracy.
- An offline simulation that quantifies the limit of LLM decoding capabilities for phrase abbreviations and examines how users' abbreviation behavior approached the upper bound of the LLM's abbreviation-expansion capability.