# Linear Regression Analysis (4): Polynomial Regression & Interaction

杜裕康

國立台灣大學公共衛生學院流行病學與預防醫學研究所

# **Polynomial Regression**

### Case Study: Peak Power Load & Temperature

- To operate efficiently, power companies must be able to predict the peak power load at their various stations.
- Peak power load is the maximum amount of power that must be generated each day to meet demand.
- A power company wants to use daily high temperature, x, to model daily peak power load, y, during the summer months when demand is greatest.
- Although the company expects peak load to increase as the temperature increases, the *rate* of increase in E(y) might not remain constant as x increases.

- For example, a 1-unit increase in high temperature from 36°C to 37°C might result in a larger increase in power demand than would a 1-unit increase from 26°C to 27°C.
- Therefore, the company postulates that the relationship between temperature and power load may not be linear.
- A random sample of 25 summer days is selected and both the peak load (measured in megawatts) and high temperature (in Celsius degrees) recorded for each day.

### **Linear Regression Model**

### Scatterplot of Load vs Temp



| Load  | Celsius |  |  |  |  |
|-------|---------|--|--|--|--|
| 136   | 34.4    |  |  |  |  |
| 131.7 | 35.6    |  |  |  |  |
| 140.7 | 35.0    |  |  |  |  |
| 189.3 | 42.2    |  |  |  |  |
| 96.5  | 19.4    |  |  |  |  |
| 116.4 | 31.1    |  |  |  |  |
| 118.5 | 31.7    |  |  |  |  |
| 113.4 | 28.9    |  |  |  |  |
| 132   | 32.2    |  |  |  |  |
| 178.2 | 41.1    |  |  |  |  |
| 101.6 | 19.4    |  |  |  |  |
| 92.5  | 21.7    |  |  |  |  |
| 151.9 | 37.8    |  |  |  |  |
| 106.2 | 26.1    |  |  |  |  |
| 153.2 | 36.1    |  |  |  |  |
| 150.1 | 36.7    |  |  |  |  |
| 114.7 | 30.6    |  |  |  |  |
| 100.9 | 24.4    |  |  |  |  |
| 96.3  | 20.0    |  |  |  |  |
| 135.1 | 33.3    |  |  |  |  |
| 143.6 | 37.8    |  |  |  |  |
| 111.4 | 29.4    |  |  |  |  |
| 116.5 | 31.7    |  |  |  |  |
| 103.9 | 23.3    |  |  |  |  |
| 105.1 | 30.0    |  |  |  |  |

### Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 16.1096 10.0946 1.596 0.124
Celsius 3.5498 0.3208 11.066 1.09e-10 ***
```

```
Residual standard error: 10.37 on 23 degrees of freedom Multiple R-squared: 0.8419, Adjusted R-squared: 0.835 F-statistic: 122.4 on 1 and 23 DF, p-value: 1.095e-10
```

### **Residual Plot**

### Scatterplot of Residuals vs Temp



- It is quite obvious the relationship between power load and temperature is not linear
- There are several ways to estimate a curvilinear or nonlinear relationship, such as polynomials, spline and nonlinear functions.
- Polynomial regression is the most widely used method to model a non-linear relationship between an explanatory variable and the outcome

# **Polynomial Regression**

- First-order model with one covariate:  $\hat{y} = b_0 + b_1 x_1$
- Second-order (quadratic) model with one covariate:  $\hat{y} = b_0 + b_1 x_1 + b_2 x_1^2$
- Third-order (cubic) model with one covariate:  $\hat{y} = b_0 + b_1 x_1 + b_2 x_1^2 + b_3 x_1^3$
- Pth-order model with one covariate:  $\hat{y} = b_0 + b_1 x_1 + b_2 x_1^2 + \dots + b_p x_1^p$
- Although the fitted line is not a straight line, these models are still "linear" model, usually known as curvilinear models to be distinguished from non-linear models

- To fit a quadratic model for our case study, we first create a new variable Celsius2, which is squared Celsius
- > Celsius2 <- powerload\$Celsius^2</pre>
- > lm2<-lm(Load~Celsius+Celsius2, data=powerload)</pre>
- > summary(1m2)

#### Residuals:

```
Min 1Q Median 3Q Max -10.5597 -2.2597 0.0827 2.9870 9.7328 Coefficients:
```

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 181.17159 21.71016 8.345 2.91e-08 ***
Celsius -8.04877 1.48894 -5.406 1.98e-05 ***
Celsius2 0.19403 0.02475 7.840 8.24e-08 ***
```

```
Residual standard error: 5.445 on 22 degrees of freedom Multiple R-squared: 0.9583, Adjusted R-squared: 0.9545 F-statistic: 252.9 on 2 and 22 DF, p-value: 6.595e-16
```

### Scatterplot of Load vs Temp



- Both Celsius and Celsius 2 are highly significant
- The overall model is also significant. This is reflected by the increased  $R^2$  (from 0.842 to 0.958) and the significant F-test result (F = 252.9, df = (2, 22))

### **Residual Plot**

### Scatterplot of Residuals vs Temp



- Now, let us see if a cubic model will further improve the model fit:
- > Celsius3 <- powerload\$Celsius^3</pre>
- > lm3<-lm(Load~Celsius+Celsius2+Celsius3, data=powerload)</pre>
- > summary(1m3)

#### Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.645e+02 1.159e+02 1.419 0.171
Celsius -6.293e+00 1.205e+01 -0.522 0.607
Celsius2 1.349e-01 4.036e-01 0.334 0.742
Celsius3 6.429e-04 4.378e-03 0.147 0.885
```

```
Residual standard error: 5.57 on 21 degrees of freedom Multiple R-squared: 0.9584, Adjusted R-squared: 0.9524 F-statistic: 161.1 on 3 and 21 DF, p-value: 1.186e-14
```

### Scatterplot of Load vs Temp



- The model  $R^2$  only increases marginally from 0.9583 to 0.9584.
- However, none of the explanatory variables is statistically significant! But the *F*-test remains highly significant
- So the model is good but none of the explanatory variables make "important" contribution. How did this happen?
- This is because the linear, quadratic and cubic terms are highly collinear (around 0.97)!
- But why did collinearity not cause any problem for quadratic model?

# **Centering**

- Centering is useful for reducing the collinearity between a variable and its power terms
- Note that centering does not work for other collinearities
- > ## centering Celsius
  > Celsius.c <- powerload\$Celsius mean(powerload\$Celsius)
  > Celsius.c2 <- Celsius.c^2
  > Celsius.c3 <- Celsius.c^3
  > lm4<-lm(Load~Celsius.c+Celsius.c2+Celsius.c3,
  data=powerload)</pre>
- Note that the mean of Celsius is 30.8

### > summary(lm4)

#### Residuals:

```
Min 1Q Median 3Q Max -10.4228 -2.1391 -0.0845 3.1520 9.9008
```

#### Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.174e+02 1.559e+00 75.280 < 2e-16 ***
Celsius.c 3.843e+00 4.353e-01 8.829 1.64e-08 ***
Celsius.c2 1.943e-01 2.537e-02 7.656 1.65e-07 ***
Celsius.c3 6.429e-04 4.378e-03 0.147 0.885
```

Residual standard error: 5.57 on 21 degrees of freedom Multiple R-squared: 0.9584, Adjusted R-squared: 0.9524 F-statistic: 161.1 on 3 and 21 DF, p-value: 1.186e-14

## **How Does Centering Work?**

- After centering, the model correctly shows that both the linear and quadratic terms are statistically significant, while the cubic term is not.
- Note that centered model has the same  $R^2$  as the original model. These two models are identical.

# Correlations between Celsius & Its Power Terms





# Correlations between Celsius & Its Power Terms After Centering





# **Impact of Centering**

We now use the quadratic model to illustrate the impact of centering on polynomial regression model.

Recall the original model:

### **Impact of Centering**

We now re-fit the model using the centered Celsius:

```
> # fit the centered quadratic model
> lm5<-lm(Load~Celsius.c+Celsius.c2, data=powerload)</pre>
> summary(1m5)
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
Celsius.c 3.90166 0.17427 22.39 < 2e-16 ***
Celsius.c2 0.19403 0.02475 7.84 8.24e-08 ***
Residual standard error: 5.445 on 22 degrees of freedom
Multiple R-squared: 0.9583, Adjusted R-squared:
0.9545
F-statistic: 252.9 on 2 and 22 DF, p-value: 6.595e-16
```

# **Impact of Centering**

- Note that the regression coefficients for intercept and linear terms are different in the two models, while the coefficient for the quadratic term remain unchanged.
- Centering at mean value of temperature is equivalent to moving the fitted parabolic curve horizontally to the left by 30.8
- Because the shape of the curve remains unaffected, the coefficient for quadratic term remain unchanged

### Scatterplot of Load vs Temp



### Scatterplot of Load vs Temp



# Interpretation of Polynomial Regression Coefficients

For the original polynomial model,

 $Load = 181.2 - 8.05Celsius + 0.194Celsius^{2}$ 

- The coefficient for intercept (181.2) is the estimated power load in megawatts when temperature is at zero Celsius
- The coefficient for slope (-8.05) for Celsius is the slope of the tangent line for the fitted parabolic curve when temperature is at zero Celsius

# Interpretation of Polynomial Regression Coefficients

For the centered polynomial model,

 $Load = 117.3 + 3.90Celsius + 0.194Celsius^{2}$ 

- The coefficient for intercept (117.3) is the estimated power load in megawatts when temperature is at 30.8 Celsius
- The coefficient slope (3.90) for Celsius is the slope of the tangent line for the fitted parabolic curve when temperature is at 30.8 Celsius

# Interaction

# **Interaction in Regression Analysis**

- Interaction between two binary variables
  - Estimate means for four groups
- Interaction between one binary and one continuous variable
  - Estimate two regression lines with different slopes for the two groups
- Interaction between two continuous variables
  - Estimate a curved plane

• We use the FEV example of 654 children to illustrate:

| Id  | fev   | age | gender | smoking | height |
|-----|-------|-----|--------|---------|--------|
| 1   | 1.404 | 3   | 1      | 0       | 131    |
| 2   | 1.072 | 3   | 0      | 0       | 117    |
| 3   | 0.839 | 4   | 0      | 0       | 122    |
| 4   | 1.569 | 4   | 0      | 0       | 127    |
| 5   | 1.577 | 4   | 0      | 0       | 124    |
| 6   | 0.796 | 4   | 1      | 0       | 119    |
| 7   | 1.789 | 4   | 1      | 0       | 132    |
| 8   | 1.102 | 4   | 0      | 0       | 122    |
|     |       |     |        |         |        |
| 650 | 4.404 | 18  | 1      | 1       | 179    |
| 651 | 2.853 | 18  | 0      | 0       | 152    |
| 652 | 5.102 | 19  | 1      | 0       | 183    |
| 653 | 3.519 | 19  | 0      | 1       | 168    |
| 654 | 3.345 | 19  | 0      | 1       | 166    |
|     |       |     |        |         |        |

- We first create a new variable agecat which is coded "younger" for children <= 11 y/o and coded "older" for those > 11 y/o
- We then calculate the means for those children stratified by gender and agecat:

```
FEV$agecat <- ifelse(FEV$age > 11, c("older"),
c("younger"))

FEV$sex <- ifelse(FEV$gender == 0, c("girls"),
c("boys"))

aggregate(x = FEV$fev, by = list(FEV$sex,
FEV$agecat), FUN = "mean")</pre>
```

```
Group.1 Group.2 x

1 boys older 3.933056

2 girls older 2.986833

3 boys younger 2.402467

4 girls younger 2.258880
```

We now run a regression model with sex and agecat as covariates

```
lm1 <- lm(fev ~ sex + agecat, data = FEV)
summary(lm1)</pre>
```

### 

The intercept 3.65 is the estimated mean fev for older boys, which is smaller than the real mean fev 3.93

- In this model, we assume the difference in mean fev between boys and girls is the same for younger and older children and vice versa,
- i.e. we also assume the difference in mean fev between younger and older children is the same in boys and girls
- However, it is very likely the difference in mean fev between boys and girls is greater for older children
- This is equivalent to an interaction between gender and age groups

 To test the interaction, we create a new variable sex.age.i, which is product of agecat and sex

| Id  | fev   | age | sex       | smoking | height | agecat      | sex.age.i |
|-----|-------|-----|-----------|---------|--------|-------------|-----------|
| 1   | 1.404 | 3   | 0 (boys)  | 0       | 131    |             | 0         |
|     |       |     |           |         |        | 1 (younger) |           |
| 2   | 1.072 | 3   | 1 (girls) | 0       | 117    | 1 (younger) | 1         |
| 3   | 0.839 | 4   | 1 (girls) | 0       | 122    | 1 (younger) | 1         |
| 4   | 1.569 | 4   | 1 (girls) | 0       | 127    | 1 (younger) | 1         |
| 5   | 1.577 | 4   | 1 (girls) | 0       | 124    | 1 (younger) | 1         |
| 6   | 0.796 | 4   | 0 (boys)  | 0       | 119    | 1 (younger) | 0         |
|     |       |     |           |         |        |             |           |
| 650 | 4.404 | 18  | 0 (boys)  | 1       | 179    | 0 (older)   | 0         |
| 651 | 2.853 | 18  | 1 (girls) | 0       | 152    | 0 (older)   | 0         |
| 652 | 5.102 | 19  | 0 (boys)  | 0       | 183    | 0 (older)   | 0         |
| 653 | 3.519 | 19  | 1 (girls) | 1       | 168    | 0 (older)   | 0         |
| 654 | 3.345 | 19  | 1 (girls) | 1       | 166    | 0 (older)   | 0         |

### **Interaction between Two Binary Variables**

```
> lm3 <- lm(fev ~ sex + agecat + sex.age.i, data = FEV)</pre>
> summary(1m3)
Residuals:
              10 Median
    Min
                               30
                                       Max
-2.01706 -0.50003 -0.00888 0.40919 2.23453
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.93306 0.06949 56.600 < 2e-16 ***
            -0.94622 0.10001 -9.461 < 2e-16 ***
sex.girls
agecat.younger -1.53059 0.08121 -18.847 < 2e-16 ***
sex.age.i 0.80264 0.11673 6.876 1.45e-11 ***
Residual standard error: 0.6592 on 650 degrees of freedom
Multiple R-squared: 0.4246, Adjusted R-squared: 0.4219
F-statistic: 159.9 on 3 and 650 DF, p-value: < 2.2e-16
```

## Interaction between Two Binary Variables

- The intercept 3.93 is the estimated mean fev for older boys, which is identical to the real mean fev
- We can work out the remaining means:
  - Older girls = 3.93 0.95 = 2.99
  - Younger boys = 3.93 1.53 = 2.40
  - Young girls = 3.93 0.95 1.53 + 0.80 = 2.26
- Those values are identical to their real means

# Interaction between One Binary and One Continuous Variables

 Recall that in linear regression with one binary and one continuous covariates, the results are two fitted lines:



# Interaction between One Binary and One Continuous Variables

 The interaction model is to fit two straight lines with different slopes for girls and boys

| _ |     |       |     |           |         |        |        |         |
|---|-----|-------|-----|-----------|---------|--------|--------|---------|
|   | Id  | fev   | age | sex       | smoking | height | agecat | sex.age |
|   | 1   | 1.404 | 3   | 0 (boys)  | 0       | 131    | 1      | 0       |
|   | 2   | 1.072 | 3   | 1 (girls) | 0       | 117    | 1      | 3       |
|   | 3   | 0.839 | 4   | 1 (girls) | 0       | 122    | 1      | 4       |
|   | 4   | 1.569 | 4   | 1 (girls) | 0       | 127    | 1      | 4       |
|   | 5   | 1.577 | 4   | 1 (girls) | 0       | 124    | 1      | 4       |
|   | 6   | 0.796 | 4   | 0 (boys)  | 0       | 119    | 1      | 0       |
|   |     | ••••  |     |           | ••••    |        |        |         |
|   | 650 | 4.404 | 18  | 0 (boys)  | 1       | 179    | 0      | 0       |
|   | 651 | 2.853 | 18  | 1 (girls) | 0       | 152    | 0      | 18      |
|   | 652 | 5.102 | 19  | 0 (boys)  | 0       | 183    | 0      | 0       |
|   | 653 | 3.519 | 19  | 1 (girls) | 1       | 168    | 0      | 19      |
|   | 654 | 3.345 | 19  | 1 (girls) | 1       | 166    | 0      | 19      |
|   |     |       |     |           |         |        |        |         |

# Interaction between One Binary and One Continuous Variables

```
> lm5 <- lm(fev ~ sex*age, data = FEV)</pre>
> summary(lm5)
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.07360 0.09966 0.739 0.46
sex.girls 0.77587 0.14275 5.435 7.74e-08 ***
   0.27348 0.00954 28.667 < 2e-16 ***
age
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '
Residual standard error: 0.5196 on 650 degrees of freedom
Multiple R-squared: 0.6425, Adjusted R-squared: 0.6408
F-statistic: 389.4 on 3 and 650 DF, p-value: < 2.2e-16
```



#### **Interaction Between Two Continuous Variables**

We now regress fev on both age and height:

$$\widehat{fev} = b_0 + b_1 age + b_2 height$$

- The fitted values form a plane in a 3-dimensional space
- If we include an interaction between age and height, i.e. a product term into the model:

$$\widehat{fev} = b_0 + b_1 age + b_2 height + b_3 age * height$$

The fitted valued form a curved plane

#### fev ~ age + height



### fev ~ age + height + age\*height



#### **Interaction Between Two Continuous Variables**

```
> lm7<-lm(fev ~ age*height, data = FEV)</pre>
> summary(lm7)
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.7084499 0.5116033 -1.385
                                           0.167
    -0.4108097 0.0562053 -7.309 7.92e-13 ***
age
height 0.0182820 0.0034521 5.296 1.62e-07 ***
age:height 0.0029097 0.0003471 8.383 3.19e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '
Residual standard error: 0.3997 on 650 degrees of freedom
Multiple R-squared: 0.7884, Adjusted R-squared: 0.7875
F-statistic: 807.4 on 3 and 650 DF, p-value: < 2.2e-16
```

$$\widehat{fev} = -0.708 - 0.411 age + 0.018 height + 0.003 age * height$$

- We usually only interpret the coefficient for the interaction term, as coefficients for age and height is a little tricky to interpret
- The equation can be re-arranged as:

$$\widehat{fev} = -0.708 + (-0.411 + 0.003 height) * age + 0.018 height$$

• This means that the effect of age on fev depends on height, i.e. for people with different body heights, the changes in their fev when they become 1 year older are *different*