

Fondamenti di Internet e Reti

Antonio Capone, Matteo Cesana, Ilario Filippini, Guido Maier

Fondamenti di Internet e Reti

7 – Livello Fisico

Antonio Capone, Matteo Cesana, Ilario Filippini, Guido Maier

Fondamenti di Internet e Reti

L'informazione

L'informazione è di diversa natura

- Segnali fisici (analogici)
- voce
- immagini
- misure
- **—** ...

Segnali

- Segnali logici (sorgenti numeriche)
 - Sequenze nativamente numeriche
- Segnali fisici (sorgenti continue)
 - Associati a grandezze fisiche e tipicamente continue

Segnali analogici (continui)

Segnali digitali (discreti)

Dalla generazione alla trasmissione digitale di informazione

Caratterizzazione spettrale dei segnali analogici

- L'analisi di Fourier consente di studiare qualsiasi segnale scomponendolo in sinusoidi
- I segnali periodici di periodo T e frequenza f=1/T possono essere scomposti in un numero discreto di sinusoidi di frequenza multipla di quella del segnale (serie di Fourier)
- Le sinusoidi componenti sono dette armoniche

$$f(t) = \frac{a_0}{2} + \sum_{k=1}^{n} a_k \cos(kt) + b_k \sin(kt)$$

Caratterizzazione spettrale dei segnali analogici

- La trasformata di Fourier generalizza l'analisi delle serie di Fourier al caso di segnali non periodici
- La trasformata scompone i segnali non periodici in un insieme continuo di armoniche
- La funzione che descrive le ampiezze e le fasi delle sinusoidi componenti è lo spettro in frequenza del segnale.

Banda di un segnale

• E' il contenuto in frequenze sinusoidali di un segnale

banda del segnale = massimo campo di frequenze usato

Effetto temporale della banda

banda equivale a "dettaglio" Δt

$$\Delta t \approx \frac{1}{2B}$$

Segnali e Bande

Banda di alcuni segnali

Segnale telefonico	300-3400 Hz
Voce	300-8000 Hz
Musica	100-20.000 Hz
TV (PAL)	0-5.000.000 Hz (5 MHz)
Cinema	0-500 MHz

Il campionamento

Teorema di *Nyquist*

Una funzione del tempo è completamente determinata dai suoi campioni presi a distanza T tale che T <= 1/2B, dove B è la banda, o anche, usando la frequenza di campionamento f_c = 1/T:

$$f_c \ge 2B = f_N$$
 frequenza di Nyquist

segnale

segnale campionato

t

Ampiezza

Ampiezza

Il campionamento

$$f_c \ge 2B = f_N$$
 frequenza di Nyquist

- In pratica i campioni presi alla frequenza di Nyquist rappresentano il contenuto informativo del segnale
- Campioni più frequenti non sono indipendenti (l'eccesso è inutile)
- Campioni meno frequenti "perdono informazione" (il segnale non è più ricostruibile esattamente)
- la "Banda" rappresenta il contenuto informativo

Il campionamento

Segnale	Banda	frequenza di campionamento	
Segnale telefonico	300-4000 Hz	8000 Hz	
Voce	300-8000 HZ	16000 HZ	
Musica	100-20.000 Hz	40 KHz	
TV (PAL)	0-5.000.000 Hz (5 MHz)	10 MHz	
Cinema	0-500 MHz	1 GHz	

Teorema del campionamento

- Ogni segnale analogico di banda B può essere ricostruito interamente in base ai suoi campioni presi a frequenza 2B
- La ricostruzione avviene con un filtro che taglia le frequenze oltre 2B

Ricostruzione

- La ricostruzione esatta avviene tramite semplice filtraggio
- (interpolazione con particolari funzioni di banda B)

Quantizzazione

- E' l'operazione con cui una grandezza continua è trasformata in discreta
- Nella trasformazione si commette un errore di approssimazione (quantizzazione)
- Più livelli, meno errore di quantizzazione

Quantizzazione

• Rappresentazione con un numero razionale (numero di bit m finito \longrightarrow numero di livelli l finito)

Esempi

Livelli di quantizzazione di alcuni segnali

Segnale telefonico	256 livelli (8 bit)		
CD (musica)	65536 livelli (16 bit)		
livelli di grigio	256 livelli (8 bit) - 65536 livelli (16 bit)		
livelli di colore	16.777.216 (24 bit)		

Conversione A-to-D

dunque i segnali sono trasformabili in flussi di bit astratti dai supporti fisici: segnali logici

Flussi equivalenti

Segnale	Banda	frequenza di campionamento	flusso binario
Segnale telefonico	300-4000 Hz	8000 Hz	64 kb/s
Voce	300-8000 HZ	16000 HZ	256 kb/s
Musica	100-20.000 Hz	44 KHz	704 kb/s
TV (PAL)	0-5.000.000 Hz (5 MHz)	10 MHz	240 Mb/s
Cinema	0-500 MHz	1 GHz	24 Gb/s

- La trasmissione di un segnale digitale (numerico) richiede di creare un opportuno segnale che sia adatto ad essere trasportato dal mezzo trasmissivo.
- La sequenza digitale viene usata per modificare (modulare) un qualche parametro del segnale (modulato) inviato nel mezzo trasmissivo.

- La modulazione di un segnale può avvenire in banda base o in banda passante
- Banda base: i segnali usati nella modulazione hanno uno spettro contiguo rispetto all'origine
- Banda traslata: i segnali hanno un spettro traslato su intervalli di frequenze non contigue all'origine

Esempio: Modulazione d'ampiezza in banda base (PAM)

Esempio: Modulazioni di ampiezza, frequenza e fase in banda traslata

ASK: Amplitude Shift Keying

FSK: Frequency Shift Keying

PSK: Phase Shift Keying

Mezzi trasmissivi

- Il canale trasmissivo è l'insieme di
 - trasmettitore
 - mezzo trasmissivo
 - Ricevitore

- è caratterizzato da una **velocità di trasmissione** ν (bps) che dipende dalla banda del mezzo e dalla potenza ricevuta
- e da un ritardo di propagazione del segnale τ

Banda di Canale

 Il mezzo trasmissivo è caratterizzato da una funzione di trasferimento in frequenza H(f) che determina le caratteristiche del segnale in uscita dato quello d'ingresso

Banda di Canale

Determina la larghezza dell'impulso ricevuto

Velocità di Canale

- E' la velocità massima di trasmissione degli impulsi
- Si misura in imp/s (baud)

Aaffinché gli impulsi siano distinguibili occorre che $T \ge \Delta t_e \approx \frac{1}{2B_e}$

Velocità massima:
$$V = \frac{1}{T} \approx 2B_e$$

Velocità di trasmissione

- E' la velocità di trasmissione R misurata in bit/s
- Dipende dal n. di bit b (livelli l) associati a ogni impulso h = 100 l

$$b = \log_2 1$$

$$1 = 2^{b}$$

velocità massima $R \approx 2B_e b$

• La velocità massima non può essere aumentata arbitrariamente aumentando i livelli (bit per impulso) a causa del rumore che può far equivocare il livello in ricezione (errore di ricezione)

Errori in ricezione

 In ricezione è possibile che venga riconosciuta una sequenza di bit diversa da quella trasmessa (bit errati)

10011010100100100101000101000

100<mark>0</mark>10101001**1**01001010001**1**1000

- cause:
 - rumore termico (mezzi trasmissivi, apparati di ricezione e trasmissione)
 - interferenza da altre trasmissioni sullo stesso mezzo
 - disturbi elettromagnetici
 - perdite di sincronismo
 - ...

Errori in ricezione

- Il rumore è un processo casuale che altera il valore dell'impulso misurato in ricezione
- Se l'alterazione è più grande della differenza tra i livelli viene commesso un errore
- A pari livello di rumore, la probabilità d'errore dipende dalla differenza tra i livelli (energia dell'impulso)
- Tale energia dipende dalla potenza del segnale ricevuto
- Il mezzo trasmissivo riduce tale energia (attenuazione del mezzo) tanto più quanto maggiore è la distanza percorsa

Errori in ricezione

- Esiste un limite alla potenza trasmessa (e ricevuta)
- Dunque, fissato l'errore e esiste un limite alla distanza massima raggiungibile con una certa velocità R
- Oltre questo limite si può aumentare la distanza raggiunta riducendo la velocità R

Codici correttori

- Si può abbassare la probabilità d'errore in un blocco adottando codici correttori d'errore (Forward Error Correction -FEC)
- Questi consistono nell'aggiungere dei bit di ridondanza (parità) in modo che gli errori che occorrono, se limitati in numero, possono essere corretti: codice (n,k)

k bit di informazione n-k bit di parità

- sono progettati in modo da correggere sino a c errori (potere correttore del codice)
- Esempio: Codice a ripetizione (n,1): consiste nella ripetizione n volte del bit da trasmettere (n-1) cifre di parità.
 Con n dispari è in grado di correggere c=(n-1)/2 errori

Ritrasmissione

- Se un codice non riesce a correggere un errore può spesso riuscire a rilevarlo (il controllo di parità dà risultato negativo)
- Nella trasmissione a commutazione di pacchetto è possibile rilevare gli errori in ricezione e richiedere la ritrasmissione del pacchetto errato (ARQ – Authomatic Repeat reQuest)

Capacità di canale

- In ogni caso, nonostante codici e ritrasmissione, esiste un limite alla velocità massima di un canale
- Tale velocità detta Capacità di Canale è stata scoperta e dimostrata da Claude Shannon nel 1940

$$C = B \log_2\left(1 + \frac{S}{N}\right)$$

C: capacità di canale [bps]

B: banda del canale [Hz]

S: potenza del segnala [w]

N: potenza del rumore [w]