מתמטיקה דיסקרטית - תרגול 1

סמסטר קיץ תשפ"ד

נושאים: לוגיקה.

לוגיקה

.(F-ב) או שקרית (נסמן ב-T) או שקרית (נסמן ב-T). הגדרה 1. טענה היא אמירה בעלת ערך אמת: נכונה (נסמן ב-T) או דוגמה 1.

- האמירה "לא יורד גשם בימי חמישי" היא טענה.
 - . האמירה a>b היא לא טענה \bullet

קשרים לוגיים

1. הקשר ∨ ("או").

A	В	$A \vee B$
F	F	F
F	Т	T
T	F	T
Т	Т	Т

.("וגם"). הקשר \wedge

A	B	$A \wedge B$
F	F	F
F	Т	F
Т	F	F
Т	Т	T

3. הקשר ¬ ("לא" - שלילה).

A	$\neg A$
F	T
Т	F

.("אם ... אז ..." - גרירה לוגית). 4

A	В	$A \to B$
F	F	T
F	Т	T
Т	F	F
Т	Т	T

עבור טענות A,B, נסמן ב- $A \leftrightarrow B$, גרירה דו-כיוונית אם ורק אם), והדבר שקול ל-

$$(A \to B) \land (B \to A)$$
.

הגדרה במקרה זהות. במקרה שקולות לוגית אם יש להן טבלאות אמת זהות. במקרה A,B הות טענות במקרה לוגית אם יש להן יש להי

$$A \equiv B$$
.

תרגיל 1. האם שתי הטענות הבאות שקולות לוגית?

$$(p \to q) \to (\neg q \to \neg p)$$
 .1

$$(q \to p) \lor (\neg q \land \neg p)$$
 .2

פתרון 1. נבנה טבלת אמת עבור שתי הטענות, ונבדוק שקילות:

p	q	$p \rightarrow q$	$\neg p$	$\neg q$	$\neg q \rightarrow \neg p$	$(p \to q) \to (\neg q \to \neg p)$	$q \rightarrow p$	$\neg q \wedge \neg p$	$(q \to p) \lor (\neg q \land \neg p)$
F	F	T	T	Т	Т	T	Т	Т	T
F	Т	T	T	F	T	T	F	F	F
T	F	F	F	Т	F	T	Т	F	T
T	Т	T	F	F	Т	T	Т	F	T

נשים לב שיש שוני בין שתי העמודות, ולכן הטענות לא שקולות לוגית.

הגדרה 3.

1. פסוק הוא טאוטולוגיה אם הוא נכון לכל השמה.

2. פסוק הוא פסוק שקר אם הוא לא נכון לכל השמה.

דוגמה 2. הפסוק $p \lor \neg p$ הוא טאוטולוגיה, והפסוק $p \lor \neg p$ הוא פסוק דוגמה בוגמה ביסוק

p	$\neg p$	$p \vee \neg p$	$p \land \neg p$
F	Т	T	F
T	F	Т	F

מספר תכונות:

:(קיבוץ): אסוציאטיביות

$$A \wedge (B \wedge C) \equiv (A \wedge B) \wedge C$$
 (8)

$$A \lor (B \lor C) \equiv (A \lor B) \lor C$$
 (2)

2. דיסטריביוטיביות (פילוג):

$$A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \wedge C)$$
 (8)

$$A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)$$
 (2)

3. כללי דה-מורגן:

$$\neg (A \land B) \equiv \neg A \lor \neg B$$
 (8)

$$\neg (A \lor B) \equiv \neg A \land \neg B$$
 (2)

תרגיל 2.

- בלבד. \lor, \lnot בלבד. \lor, \lnot בלבד. 1.
- .2 בלבד. \lor, \lnot בלבד. באמצעות את הקשר
- .3 בלבד. \lor , \lnot באמצעות \lor , בלבד.
- .בלבד. \wedge, \neg בלבד. + בלבד. + בלבד.
- בלבד. \rightarrow , \neg באמצעות \wedge בלבד. 5.
- .6 הביעו את הקשר \lor באמצעות \lnot , בלבד.

.2 פתרון

1. נשתמש בדה-מורגן ונקבל

$$\neg \left(p \wedge q \right) \equiv \neg p \vee \neg q \implies p \wedge q \equiv \neg \left(\neg p \vee \neg q \right).$$

2. נשתמש בדה-מורגן ונקבל

$$\neg (p \lor q) \equiv \neg p \land \neg q \implies p \lor q \equiv \neg (\neg p \land \neg q).$$

.3 ער אם T- או אי $p\equiv F$ (אם ורק אם אמ"מ אמ"מ אם אם אם אם אים או יפר .3 $p\to q\equiv \neg p\vee q.$

, לכן,
$$q \equiv {
m F}$$
 וגם $p \equiv {
m T}$ אמ"
מ $p \rightarrow q \equiv {
m F}$.4

$$p \to q \equiv \neg (p \land \neg q).$$

ולכן ,יי
$$(p o q) \equiv p \wedge \neg q$$
 : ניעזר בסעיף הקודם: .5 $p \wedge q \equiv \neg \, (p o \neg q)$.

ולכן ,
$$p o q \equiv \neg p \lor q$$
 ולכן .6
$$p \lor q \equiv (\neg p) o q.$$

תרגיל 3. נגדיר קשר חדש ↑, עם טבלת האמת הבאה:

p	q	$p \uparrow q$
F	F	Т
F	Т	Т
T	F	T
Т	Т	F

- $.
 eg, \wedge$ ובאמצעות , eg, \vee באמצעות $p \uparrow q$ את הביעו .1
- 2. הוכיחו כי ניתן לבטא כל פסוק באמצעות ↑ בלבד.

פתרון 3.

, לכן, $p \wedge q \equiv \mathsf{T}$ אמ"מ $p \equiv \mathsf{T}$ וגם $p \equiv \mathsf{T}$ אמ"מ $p \uparrow q \equiv \mathsf{F}$. לכן, נשים לב

$$p \uparrow q \equiv \neg (p \land q)$$
.

:=, \vee נשתמש בדה-מורגן כדי לבטא את ל

$$p \uparrow q \equiv \neg (p \land q) \equiv \neg (\neg (\neg p \lor \neg q)) \equiv \neg p \lor \neg q.$$

בטא שניתן מספיק להוכיח לכן, מספיק לבטא את לבטא את לבטא מדה-מורגן מדה-מורגן כי ניתן לבטא את את מסתכל על טבלת האמת הבאה:

p	$p \uparrow p$
F	T
Т	F

לכן, $p\uparrow q\equiv \neg\,(p\wedge q)$ כי האינו כי $p\equiv p\uparrow p$, ולכן את הביע את הביע את הביע את העם לכן, אינו כי

$$p \wedge q \equiv \neg (p \uparrow q),$$

וניתן להביע את ∧ עם ↑.

הגדרה 4. פרדיקט הוא אמירה שמכילה משתנים, שמקבלת ערך אמת לכל הצבה של המשתנים.

הערה 1. נסמן את הפרדיקט באות לעז, ובסוגריים את משתני הפרדיקט. למשל:

- "x > 5" נסמן ב-P(x) את הפרדיקט •
- "x=y" נסמן ב-P(x,y) את הפרדיקט

תרגיל 4. כתבו כל אחת מהטענות הבאות בשפה מתמטית ואת שלילתה ללא הקשר -. בנוסף, קבעו את נכונות הטענות.

- 1. כל מספר ממשי שהוא ריבוע שלם הוא זוגי.
- x = y + 1ים ממשיים x, y כך ש-1 $x^2 + y^2 = 1$ ים גx, y פיימים ממשיים.
 - .5. יש מספר טבעי שמתחלק ב-5.
 - p+rפריק. לכל ראשוני p קיים ממשי r כך ש-p+r
 - $\alpha=x/y$ כך ש- $x,y\in\mathbb{Q}$ קיימים. 5
 - x>yכך ש- $y\in\mathbb{R}$ כיים.
 - x>y מתקיים y כך שלכל טבעי $x\in\mathbb{R}$ קיים.

n=q-ש כך שים $n\in\mathbb{N}$ קיים פוע .8

.4 פתרון

 $E\left(x
ight)=$ הוא הוא $S\left(x
ight)=\exists y\in\mathbb{N}:x=y^2$ הוא הפרדיקט x" וגי" הפרדיקט. 1 הפרדיקט. $\exists y\in\mathbb{R}:S\left(x
ight) o E\left(x
ight)$ הטענה היא . $\exists y\in\mathbb{N}:x=2y$

$$\forall x \in \mathbb{R} : ((\exists y \in \mathbb{N} : x = y^2) \to (\exists y \in \mathbb{N} : x = 2y)),$$

ושלילת הטענה היא

$$\exists x \in \mathbb{R} : (\exists y \in \mathbb{N} : x = y^2) \land (\forall y \in \mathbb{N} : x \neq 2y).$$

הטענה אינה נכונה.

2. הטענה בניסוח מתמטי היא

$$\exists x, y \in \mathbb{R} : (x^2 + y^2 = 1) \land (x = y + 1),$$

ושלילת הטענה היא (נשתמש בדה-מורגן)

$$\forall x, y \in \mathbb{R} : (x^2 + y^2 \neq 1) \lor (x \neq y + 1).$$

$$(x^2+y^2=1) \wedge (x=y+1)$$
 מתקיים $x=1,y=0$ בור עבור נכונה: עבור

3. הטענה בניסוח מתמטי היא

$$\exists n \in \mathbb{N} (\exists k \in \mathbb{N} : n = 5k),$$

ושלילת הטענה היא

$$\forall n \in \mathbb{N} (\forall k \in \mathbb{N} : n \neq 5k).$$

הטענה נכונה.

היא מתמטי בניסוח מתמטי אזי, הטענה בניסוח מתמטי היא 4

$$\forall p \in P \exists r \in \mathbb{R} : (p+r) \notin P$$

ושלילת הטענה היא

$$\exists p \in P \forall r \in \mathbb{R} : (p+r) \in P.$$

 $p+r=4\notin P$ של ונקבל $r=4-p\in\mathbb{R}$ נבחר ,
 pראשוני לכל נכונה: הטענה נכונה:

5. הטענה בניסוח מתמטי היא

 $\forall \alpha \in \mathbb{Q} \exists x, y \in \mathbb{Q} : \alpha = x/y,$

ושלילת הטענה היא

 $\exists \alpha \in \mathbb{Q} \forall x, y \in \mathbb{Q} : \alpha \neq x/y.$

הטענה נכונה.

6. הטענה בניסוח מתמטי היא

 $\forall x \in \mathbb{R} \exists y \in \mathbb{R} : x > y,$

ושלילת הטענה היא

 $\exists x \in \mathbb{R} \forall y \in \mathbb{R} : x \le y.$

הטענה אינה נכונה.

7. הטענה בניסוח מתמטי היא

 $\exists x \in \mathbb{R} \forall y \in \mathbb{N} : x > y,$

ושלילת הטענה היא

 $\forall x \in \mathbb{R} \exists y \in \mathbb{N} : x \le y.$

הטענה אינה נכונה.

8. הטענה בניסוח מתמטי היא

 $\forall q \in \mathbb{Q} \exists n \in \mathbb{N} : n = q,$

ושלילת הטענה היא

 $\exists q \in \mathbb{Q} \forall n \in \mathbb{N} : n \neq q.$

הטענה אינה נכונה.