

FAST- National University of Computer and Emerging Sciences, Karachi.

FAST School of Computing Bonus Assignment-- Solution, Spring 2023 CS3001- Computer Networks BONUS ASSIGNMENT (Subnetting)

Submission Guidelines:

- > This is an Individual assignment. Student ID and section must be mentioned clearly.
- > Only HAND WRITTEN submission will be acceptable.
- ➤ Submission date: Wednesday, 22nd March 2023 in Lecture room.
- > This assignment has hard deadline and any late submissions won't be accepted.

Bonus Assignment (100 points)

Question #1: (40 points)

Problem 1:

Number of needed subnets = 14

Number of needed usable hosts = 14

Network Address = 192.10.10.0

Address Class: C

Default Subnet Mask: 255.255.255.0 Custom Subnet Mask: 255.255.255.240

Total Number of Subnets: 16

Total Number of Host Addresses: 16 Number of Usable Addresses: 14

Number of Bit Borrowed: 4

CALCULATIONS:

Number of Hosts	256	128	64	32	16	8	4	2
Number of Subnet	2	4	8	16	32	64	128	256
Binary values	128	64	32	16	8	4	2	1
192.10.10.	0	0	0	0	0	0	0	0
		•	•				•	•

CUSTOM SUBNET Mask = 128+64+32+16 = 240 => Custom Subnet Mask = 255.255.255.240

- ➤ Total Number of Subnets = 2^s (s = number of borrowed bits). => Total Number of Subnets = 2⁴ = 16
- Total Number of Host Addresses = 2^h (h= borrowed bits subtracted from total number of bits).

=> Total Number of Host Addresses = 2⁴ = 16

- ightharpoonup NEEDED USABLE HOST = 2^h -2 = 2^4 -2 = 16-2 = 14
- Number of Bit Borrowed: 4

Problem 2:

Number of needed subnets = 1000 Number of needed usable hosts = 60 Network Address = 165.100.0.0

Address Class: B

Default Subnet Mask: 255.255.0.0

Custom Subnet Mask: 255.255.255.192

Total Number of Subnets: 1024

Total Number of Host Addresses: 64 Number of Usable Addresses: 62

Number of Bit Borrowed: 10

CALCULATIONS:

No. of	6553	3276	1638	8192	4096	2048	1024	512	256	128	64	32	16	8	4	2
Hosts	6	8	4													
No. of Subnet	2	4	8	16	32	64	128	256	512	1024	2048	4096	8192	16384	32768	65536
Subhet																
No. of Binary values	128	64	32	16	8	4	2	1	128	64	32	16	8	4	2	1
165.100.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CUSTOM SUBNET Mask = 128+64+32+16+8+4+2+1 = 255, 128+64 = 192 => Custom Subnet Mask = 255.255.255.192

Total Number of Subnets = 2^s (s = number of borrowed bits). => Total Number of Subnets = 2^{10} = 1024 Total Number of Host Addresses = 2^h (h= borrowed bits subtracted from total number of bits).

=> Total Number of Host Addresses = 2⁸ = 64

ightharpoonup NEEDED USABLE HOST = $2^h-2 = 2^8-2 = 64-2 = 62$

Number of Bit Borrowed: 10

Problem 3:

Network Address = 148.75.0.0 /26

Address Class: B

Default Subnet Mask: 255.255.0.0

Custom Subnet Mask: 255.255.255.192

Total Number of Subnets: 1024

Total Number of Host Addresses: 64 Number of Usable Addresses: 62

Number of Bit Borrowed: 10

CALCULATIONS:

No. of	6553	3276	1638	8192	4096	2048	1024	512	256	128	64	32	16	8	4	2
Hosts	6	8	4													
No. of Subnet	2	4	8	16	32	64	128	256	512	1024	2048	4096	8192	16384	32768	65536
No. of Binary values	128	64	32	16	8	4	2	1	128	64	32	16	8	4	2	1
165.100.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

- CUSTOM SUBNET Mask = 128+64+32+16+8+4+2+1 = 255, 128+64 = 192 => Custom Subnet Mask = 255.255.255.192
- Total Number of Subnets = 2^s (s = number of borrowed bits). => Total Number of Subnets = 2^{10} = 1024
- Total Number of Host Addresses = 2^h (h= borrowed bits subtracted from total number of bits).
 - => Total Number of Host Addresses = 28 = 64

- ightharpoonup NEEDED USABLE HOST = $2^h-2 = 2^8-2 = 64-2 = 62$
- ➤ Number of Bit Borrowed: 10

Question #2: (60 points)

Given below is a scenario in which there is an available IP Pool and IP's are to be to be assigned to 3 different companies. You have to perform sub-netting to efficiently assign IP's to each company. Show necessary calculations and result.

Scenario:

Following are the 3 Companies

- Netcom has 50 hosts (PCs)
- Cyber-Safe has 48 hosts (PCs)
- CNSP-Zone has 120 hosts (PCs)

Available IP Pool is: 192.168.1.0 /24 (255.255.255.0)

Your task is to make subnets of the IP given above and assign a range of IP addresses to all of these companies.

• Calculations for CNSP:

CNSP Zone = 120 Hosts

 $2^7 - 2 = 128 - 2 = 126$ usable IP address 192.168.1.0 0000000

So, 192. 168. 1. 0 (/25)

And IP range of hosts will be 192. 168. 1. 1 to 192. 168. 1. 126 (/25)

• Calculations for Netcom:

Netcom = 50 Hosts

 $2^6 - 2 = 64 - 2 = 62$ usable IP addresses 192. 168. 1. <u>01</u> 000000

So, 192. 168. 1. 128 (/26)

Hence, IP range of hosts will be 192. 168. 1. 129 to 192. 168. 1. 190 (/26)

• Calculations for Cyber safe:

Cyber safe = 48 hosts

 $2^6 - 2 = 64 - 2 = 62$ usable IP addresses addresses192.168. 1. 11000000

So, 192. 168. 1. 192 (/26)

So, IP range of hosts will be 192. 168. 1. 193 to 192. 168. 1. 254 (/26)