Protocolo TCP

"Transmission Control Protocol"

Volnys Borges Bernal

volnys@lsi.usp.br

Agenda

- □ Introdução
- □ Segmento TCP
- □ Estados TCP
 - * Estabelecimento de conexão
 - ❖ Troca de dados
 - ❖ Encerramento de conexão
- □ Utilitários

Introdução ao Protocolo TCP

Introdução ao Protocolo TCP

□ O que é o protocolo TCP?

- ❖ TCP = "Transport Control Protocol"
- Protocolo da camada de transporte

□ Objetivo

 Protocolo da camada de transporte para permitir comunicação entre apliações

□ Algumas características

- Orientado a conexão: é necessário estabelecimento de conexão entre emissor e receptor antes de enviar um pacote TCP
- Ponto a ponto: conexão é estabelecida entre dois processos
- Confiável: se um pacote não for entregue ele é retransmitido
- Entrega ordenada: reconstrói a ordem correta dos pacotes
- Controle de fluxo: usa janela deslizante para controle de fluxo

□ Porta TCP

- Processo fica associado a uma porta TCP
- Forma indireta para identificação do processo associado ao serviço

Introdução ao Protocolo TCP

Meio físico

Introdução ao protocolo TCP: Exemplo

- □ Porta TCP na origem
 - Valor de 1 a 65535
- □ Porta TCP no destino
 - Valor de 1 a 65535
- □ Número de seqüência
 - Numero de seqüência do pacote sendo transmitido
- □ Número de acknowledgment
 - Número de seqüência do último pacote recebido acrescido de 1
- □ Comprimento do cabeçalho
 - Comprimento do cabeçalho (em palavras de 32 bits)

□ Flags:

- ❖ SYN (Synchronize)
 - Pedido de sincronização de números de seqüência
 - Utilizado no estabelecimento da conexão
- ❖ FIN (Finalize)
 - Pedido de término de conexão

- ACK (Acknowledgment)
 - confirmação de recebimento

□ Flags (cont.)

- URG (Urgent)
 - dados com urgência foram colodados no fluxo de dados
 - localização: "ponteiro de urgência" + "número de seqüência"
- ❖ PSH (Push)
 - receptor deve passar os dados recebidos para a aplicação o quanto antes
- ❖ RST (Reset)
 - pedido de reset da conexão
 - enviado geralmente após o recebimento de um pacote que aparentemente não satisfaz o número de seqüênica esperado

□ Empacotamento do pacote TCP em um pacote IP

Estados TCP

Estados TCP

LISTEN □ Servidor Processo pele finalização processo: close **ESTABLISHED** Send:FIN FIN_WAIT_1 **Recv: ACK** FIN WAIT 2 **Recv: FIN** Send: ACK Após ~2min

TIME_WAIT

Recv: SYN

Send:SYN,ACK

SYN_RCVD

CLOSED

Recv: ACK

Parceiro pede finalização

Recv: FIN Send:ACK

CLOSE_WAIT

Send: FIN

Recv: ACK

LAST_ACK

Estados TCP: Estabelecimento de conexão

Estados TCP: Encerramento de conexão

Utilitários

Utilitários

□ netstat -a

 Permite verificar as conexões TCP estabelecidas e as portas TCP abertas aguardando conexões

```
# netstat -na | more
Proto RecQ SendQ Local Remore State
```

Bibliografia deste módulo

Bibliografia deste módulo

□ Referências

- ❖ Redes de Computadores: das LANs MANs e WANs às Redes ATM.
 - SOARES, LUIZ F. G.
 - Editora Campus. 1995
- Computer Networks.
 - TANENBAUM, ANDREW S.
 - 3rd edition. Prentice Hall 1996.