Определитель произведения матриц

Если A,B - квадратные матрицы размера n imes n, то $|AB| = |A| \cdot |B|$

Доказательство

Построим специальную матрицу $D = \begin{vmatrix} A & O \\ -E & B \end{vmatrix}$, где -E - единичная матрица размера $n \times n$, у которой на главной диагонали стоят -1, а остальные элементы - нули. Очевидно, что D - транспонированная к полураспавшейся, и её определитель $|D| = |A| \cdot |B|$.

Начнём обнулять позиции, где есть элементы b_{ij} . Далее к n+1-му столбцу прибавим второй столбец, умноженный на b_{21} . Далее к n+1-му столбцу прибавим n-ый, умноженный на b_{n1} . Таким образом, в первых n строках получившейся матрицы расположен первый столбец матрицы $A\cdot B$. Проделывая аналогичные действия со n+2-м столбцом, далее - с 2n столбцом, получим следующую матрицу: $\begin{vmatrix} A & C \\ -E & 0 \end{vmatrix}$. Переставим n+1-й столбец с 1-м, n+2-й - со 2-м, и так далее. $\begin{vmatrix} C & A \end{vmatrix}$

Получим определитель следующего вида: $(-1)^n egin{bmatrix} C & A \\ O & -E \end{bmatrix}$