Microcontrollers & Embeded System Design ${\bf CSE~315}$

Md Awsaf Alam

 $July\ 22,\ 2018$

Contents

Ι	80	86/8088 Hardware Specifications	5
1	Lec	ture 1	7
	1.1	Differneces between 8086 & 8088	7
	1.2		9
2	Lec	ture 2	11
	2.1	Pin Connections Continued	11
	2.2	Minimum Mode Pins	11
	2.3	Bus Control functions	13
3	Lec	ture 3	15
	3.1	Maximum Mode Pins	15
	3.2	Clock Generator (8284A)	16
		3.2.1 Pin diagram	17
		3 2 2 Pin Functions	17

4 CONTENTS

Part I 8086/8088 Hardware Specifications

Chapter 1

Lecture 1

1.1 Differneces between 8086 & 8088

• Virtually no difference between these two μps . Both are packaged in 40-pin dual in-line packages (DIPs)

8086 16 bit μp with a 16-bit data bus $(AD_0 - AD_{15})$ **8088** 16 bit μp with a 8-bit data bus $(AD_0 - AD_7)$

8086 : M/\overline{IO} ; 8088 : IO/\overline{M} ; 8086 (PIN 34): $\overline{BHE}/S7$; 8088 (PIN 34): SSO;

Power Supply Requirements • Both : +5.0V with a supply voltage tolerance of $\pm 10\%$

 \bullet Both : $32^{\circ}F$ to $180^{\circ}F$

• 8086: 360mA; 8088: 340mA (max supply current)

• CMOS version : 80C86 and 80C88 : 10mA and $-40^{\circ}F$ to $225^{\circ}F$

Pin diagram 8086

Figure 1.1: Pin Diagram for Intel 8086 Max mode Min Mode

 Nine pins have functions which depend on the state of MN/MX :

MN/MX =low -- 8088 operates in MAXIMUM MODE

- Minimum mode: 8088 directly generates the control signals necessary for accessing memory and IO ports.
- Maximum mode:- external support chips are used to generate control signals; the processor can work in a system containing other processors

Figure 1.2: Pin Diagram for Intel 8088 Min mode Max Mode

Pin diagram 8088

1.2 Pin Connections

 $AD_7 - AD_0$ • 8088 address / data bus lines

- Multiplexed address data bus
- Rightmost eight bits of the memory address or I/O port no. whenever ALE is active (Logic 1) or data whenever ALE is inactive (Logic 0)
- High impedance state during a hold acknowledge

 $A_{15} - A_8$ • 8088 address bus (upper half memory address bits)

• High impedence state during a hold acknowledge.

 $AD_{15} - AD_8$ • 8086 address/data bus lines

• Contains address bits $A_{15} - A_8$, when ALE is logic 1

• Enter in high-impedence state whenever a hold acknowledge occurs.

 $A_{19}/S_6 - A_{16}/S_3$ • Multiplexed address/ status bus

• Enter in high-impedence during hold acknowledge.

 S_6 Always 0

 S_5 Indicates the condition of Interrupt flag

 S_4, S_3 Indicate segment accessed during current bus cycle

S_4	S_3	Function
0	0	Extra Segment
0	1	Stack Segment
1	0	Code or no segment
1	1	Data Segment

Table 1.1: Segment accessed during current Bus cycle

 \overline{RD} • Whenever this pin goes to logic 0, the data bus becomes receptive to data from the memory or I?O devices connected to the system.

• Floats to high impedence state during a hold acknowledge

READY • μp enters into **WAIT** state and remains idle if this pin is at logic 0

• No effect on operations of μp , if this pin is at logic 1

INTR • Used to request a h/w interrupt

• If INTR is held high when IF = 1, the μp enters an interrupt acknowledge cycle (\overline{INTA} becomes active) after completion of the current instruction

 \overline{TEST} • An input that is tested by the WAIT instruction

- If TEST is logic 0, the WAIT instruction functions as NOP
- If TEST is logic 1, the WAIT instruction waits for TEST to become

NMI • Non markable interrupt pin

• Similar to the **INTR** except that NMI does not check IF (whether it is 1)

Chapter 2

Lecture 2

2.1 Pin Connections Continued

RESET • Causes the μp to reset itself if this pin remains high for a minimum of four clocking periods

ullet whenever the up gets reset , it begins executing instructions at memory location **FFFFOH** and disables future interrupts by clearing IF

CLK • Provides the base timing signal to the up

• Clock signal must have at least 33% duty cycle (high for the one-third of the clocking period and low for two-third of the period)

VCC • Power supply input

• Provides +5.0 volt with 10% tolerance to the up

GND • 2 pins, both must be connected to ground

 MN/\overline{MX} • Selects either minimum mode or maximum mode operation of the up

 $\overline{BHE}/\mathbf{S7}$ • Bus high Enable

- Used in 8086 to enable the most signifant data bus bits (D15 D8) during a read or write operations
- The state of S7 is always a logic 1

2.2 Minimum Mode Pins

 IO/\overline{M} or M/\overline{IO} • Selects memory or I/O

• Indicates the $\mu p's$ address bus contains either a memory address or an I/O port address

• High impedence state during a hold acknowledge

 \overline{WR} • Indicates that the μp is outputting data to a mem or I/O device

- Data bus contains valid data for memory or I/O during the time \overline{WR} remains 0

 \overline{INTA}

- A response to the INTR input pin
- Used to gate the interrupt vector number onto the databus in response to an interrupt request.

 \overline{ALE}

- Address Latch Enable
- Indicates that the $\mu p's$ address/ data bus contains address informa-
- The address can be a mem address or I/O port number
- [Does **NOT** float during a hold acknowledge]

 \mathbf{DT}/\overline{R}

- Data Transmit or Receive
- Indicates that the $\mu p's$ data bus is transmitting $(DT/\overline{R}=1)$ or receiving $(DT/\overline{R}=0)$ data.
- Used to enable external data bus buffers.

DEN

- Data bus enable
- Activates external data bus buffers.

HOLD

- Requests a direct memory access (DMA)
- If it is a logic 1, μp stops executing S/W and places its address, data and control bus at high impedence state
- If it is a logic 0, the μp executes S/W normally

HLDA

- Hold acknowledge
- Indicates that the μp has entered the hold state

 \overline{SSO}

- Equivalent to SO pin in maximum mode option of the μp
- It is combined with IO/\overline{M} and DT/\overline{R} to decode function of the current bus cycle

2.3 Bus Control functions

IO/\overline{M}	DT/\overline{R}	\overline{SSO}	Function
0	0	0	Interrupt acknowl- edge
0	0	1	Memory read
0	1	0	Memory write
0	1	1	Halt
1	0	0	Opcode fetch
1	0	1	I/O read
1	1	0	I/O write
1	1	1	Passive inactive

Table 2.1: Bus cycle status (8088) [Minimum mode]

$\overline{S_2}$	$\overline{S_1}$	$\overline{S_0}$	Function
0	0	0	Interrupt acknowl- edge
0	0	1	I/O read
0	1	0	I/O write
0	1	1	Halt
1	0	0	Opcode fetch
1	0	1	Memory read
1	1	0	Memory write
1	1	1	Passive inactive

Table 2.2: Bus control functions generated by the bus controller 8288 [Maximum mode]

Chapter 3

Lecture 3

3.1 Maximum Mode Pins

For using external coprocessors:

 $\overline{S2}, \overline{S1}$ and $\overline{S0}$ • Indicate the function of current bus-cycle

• Normally decoded by 8288 bus controllers

 $\overline{R1}/\overline{G1}$ and $\overline{R0}/\overline{GT0}$

- Request/grant pins
- Request Direct Memory Access
- Bi-Directional lines
- used to both request and grant a DMA operations

 \overline{LOCK} • Used to lock peripherals off the system

 $\overline{QS_1}$ and $\overline{QS0}$

- Queue status bits
- Show status of the internal instructions queue
- Accessed by numeric coprocessor (8087)

$\overline{QS_1}$	$\overline{QS_0}$	Function
0	0	Queue is idle
0	1	First byte of opcode
1	0	Queue is empty
1	1	Subsequent byte of opcode

Table 3.1:

3.2 Clock Generator (8284A)

Basic functions • Clock generation

- \bullet $\ensuremath{\mathbf{RESET}}$ synchronization
- READY synchronization
- \bullet TTL-level peripheral clock signal

3.2.1 Pin diagram

Figure 3.1: Pin Diagram for Intel 8284A

3.2.2 Pin Functions

- **AEN1 and AEN2** Qualify the bus ready signals, RDY1 and RDY2 respectively
 - wait states are generated by the **READY** pin of μP , which is controlled by $\overline{AEN1}$ and $\overline{AEN2}$ pins

RDY1 and RDY2 • Bus ready inputs

• Cause wait states in conjunction with $\overline{AEN1}$ and $\overline{AEN2}$ pins

 \overline{ASYNC} • Ready synchronization

 \bullet Selects either one or two stages of synchronization for RDY1 and RDY2 inputs

READY • An output pin that connects to the $\mu P's$ READY input

• Synchronized with RDY1 and RDY2 inputs