MINISTÉRIO DA EDUCAÇÃO Universidade Federal do Piauí - UFPI

Campus Senador Helvídio Nunes de Barros - CSHNB Curso de Sistemas de Informação Disciplina: Estrutura de Dados I 2024.2

Lista Duplamente Encadeada

1 -	Implemente	uma	função	que	encontre	е	remova	0	segundo	maior	elemento	de
uma	a lista duplan	nente	encade	ada.	ı							

Entrada:

Lista: $3 \leftrightarrow 5 \leftrightarrow 2 \leftrightarrow 7 \leftrightarrow 6$

Saída:

Lista após remoção: 3 ↔ 5 ↔ 2 ↔ 7 (Segundo maior elemento, 6, foi removido)

Entrada (caso com menos de dois elementos):

Lista: 4 Saída:

Lista após remoção: 4 (Sem alterações)

2 - Desenvolva uma função para mesclar duas listas duplamente encadeadas ordenadas em uma única lista também ordenada.

Entrada:

Lista 1: $1 \leftrightarrow 4 \leftrightarrow 7$

Lista 2: $2 \leftrightarrow 5 \leftrightarrow 8$

Saída:

Lista mesclada: $1 \leftrightarrow 2 \leftrightarrow 4 \leftrightarrow 5 \leftrightarrow 7 \leftrightarrow 8$

Entrada (uma lista vazia):

Lista 1:

Lista 2: $3 \leftrightarrow 6 \leftrightarrow 9$

Saída:

Lista mesclada: $3 \leftrightarrow 6 \leftrightarrow 9$

3 - Crie uma função que, dado um valor, remova todos os nós da lista duplamente encadeada que contenham esse valor.

Entrada:

Lista: $4 \leftrightarrow 2 \leftrightarrow 4 \leftrightarrow 6 \leftrightarrow 4 \leftrightarrow 7$

Valor a remover: 4

Saída:

Lista após remoção: 2 ↔ 6 ↔ 7

Entrada (valor não encontrado):

Lista: $1 \leftrightarrow 3 \leftrightarrow 5$ Valor a remover: 8

Saída:

Lista após remoção: 1 \leftrightarrow 3 \leftrightarrow 5

(Sem alterações)

4 - Crie uma função que remova os nós duplicados de uma lista duplamente encadeada sem alterar a ordem dos elementos restantes.

Entrada:

Lista: $3 \leftrightarrow 5 \leftrightarrow 3 \leftrightarrow 7 \leftrightarrow 5 \leftrightarrow 8 \leftrightarrow 7$

Saída:

Lista após remoção de duplicados: $3 \leftrightarrow 5 \leftrightarrow 7 \leftrightarrow 8$

Entrada (sem duplicados):

Lista: $1 \leftrightarrow 2 \leftrightarrow 3$

Saída:

Lista após remoção de duplicados: $1 \leftrightarrow 2 \leftrightarrow 3$

(Sem alterações)

5 - Escreva uma função para rotacionar os elementos da lista duplamente encadeada para a direita em um número especificado de posições.

Entrada:

Lista: $1 \leftrightarrow 2 \leftrightarrow 3 \leftrightarrow 4 \leftrightarrow 5$ Número de rotações: 2

Saída:

Lista após rotação: $4 \leftrightarrow 5 \leftrightarrow 1 \leftrightarrow 2 \leftrightarrow 3$

Entrada (rotações maiores que o tamanho da lista):

Lista: 10 ↔ 20 ↔ 30 Número de rotações: 5

Saída:

Lista após rotação: 30 ↔ 10 ↔ 20

6 - Desenvolva uma função que verifique se uma lista duplamente encadeada é palíndroma.

Entrada:

Lista: $1 \leftrightarrow 2 \leftrightarrow 3 \leftrightarrow 2 \leftrightarrow 1$

Saída:

É palíndroma: Sim

Entrada:

Lista: $1 \leftrightarrow 2 \leftrightarrow 4 \leftrightarrow 2 \leftrightarrow 1$

Saída:

É palíndroma: Não

Entrada (lista vazia):

Lista: Saída:

É palíndroma: Sim

(Uma lista vazia é considerada palíndroma)

7 - Implemente uma função que receba uma lista duplamente encadeada e dois números inteiros x e y. A função deve localizar os nós correspondentes a x e y e inverter todos os nós que estiverem entre eles. Caso x ou y não sejam encontrados, a lista deve permanecer inalterada. Certifique-se de ajustar corretamente os ponteiros próximo e anterior ao realizar a inversão.

Exemplo 1:

Entrada:

Lista: $1 \leftrightarrow 2 \leftrightarrow 3 \leftrightarrow 7 \leftrightarrow 20 \leftrightarrow 30 \leftrightarrow 28$

Intervalos: x = 1, y = 28

Saída:

Lista modificada: $1 \leftrightarrow 30 \leftrightarrow 20 \leftrightarrow 7 \leftrightarrow 3 \leftrightarrow 2 \leftrightarrow 28$

Exemplo 2:

Entrada:

Lista: $4 \leftrightarrow 6 \leftrightarrow 8 \leftrightarrow 10 \leftrightarrow 12 \leftrightarrow 14$

Intervalos: x = 6, y = 12

Saída:

Lista modificada: $4 \leftrightarrow 6 \leftrightarrow 10 \leftrightarrow 8 \leftrightarrow 12 \leftrightarrow 14$

Exemplo 3:

Entrada:

Lista: $5 \leftrightarrow 9 \leftrightarrow 15 \leftrightarrow 22 \leftrightarrow 27$

Intervalos: x = 15, y = 30

Saída:

Lista modificada: $5 \leftrightarrow 9 \leftrightarrow 15 \leftrightarrow 22 \leftrightarrow 27$

(Nenhuma modificação, pois y = 30 não está presente na lista. O mesmo vale para x)

Exemplo 4:

Entrada:

Lista: $5 \leftrightarrow 9 \leftrightarrow 15 \leftrightarrow 22 \leftrightarrow 27$

Intervalos: x = 5, y = 9

Saída:

Lista modificada: $5 \leftrightarrow 9 \leftrightarrow 15 \leftrightarrow 22 \leftrightarrow 27$

(Nenhuma modificação)

8 - Implemente uma função para remover todos os nós de uma lista duplamente encadeada que fazem parte de um subintervalo fechado [x, y]. Considere que x e y podem não estar na lista.

Exemplo 1:

Entrada:

Lista: $10 \leftrightarrow 20 \leftrightarrow 30 \leftrightarrow 40 \leftrightarrow 50$

Intervalo: [15, 35]

Saída:

Lista após remoção: 10 ↔ 40 ↔ 50

Exemplo 2:

Entrada:

Lista: $5 \leftrightarrow 15 \leftrightarrow 25 \leftrightarrow 35 \leftrightarrow 45$

Intervalo: [10, 40]

Saída:

Lista após remoção: 5 ↔ 45

9 - Implemente uma função que insira um novo nó após cada nó que seja um número primo.

Exemplo 1:

Entrada:

Lista: $2 \leftrightarrow 3 \leftrightarrow 4 \leftrightarrow 5$

Valor do nó: 99

Saída:

Lista após inserção: $2 \leftrightarrow 99 \leftrightarrow 3 \leftrightarrow 99 \leftrightarrow 4 \leftrightarrow 5 \leftrightarrow 99$

Exemplo 2:

Entrada:

Lista: $8 \leftrightarrow 9 \leftrightarrow 10$ Valor do nó: 77

Saída:

Lista após inserção: 8 ↔ 9 ↔ 10

(Sem números primos)

10 - Implemente uma função que receba uma lista duplamente encadeada e um número inteiro n. A função deve buscar o número n na lista. Se encontrar o número, a função deve inserir uma sequência de contagem de 1 até n antes e após a posição em que o número foi encontrado. Caso o número não seja encontrado, a lista deve permanecer inalterada.

Exemplo 1:

Entrada:

Lista = $1 \leftrightarrow 2 \leftrightarrow 5 \leftrightarrow 9 \leftrightarrow 10 \leftrightarrow 13$

Número = 5

Saída:

Lista modificada = $1 \leftrightarrow 2 \leftrightarrow 1 \leftrightarrow 2 \leftrightarrow 3 \leftrightarrow 4 \leftrightarrow 5 \leftrightarrow 5 \leftrightarrow 1 \leftrightarrow 2 \leftrightarrow 3 \leftrightarrow 4 \leftrightarrow 5 \leftrightarrow 9 \leftrightarrow 10 \leftrightarrow 13$

Exemplo 2:

Entrada:

Lista =
$$8 \leftrightarrow 15 \leftrightarrow 3 \leftrightarrow 7$$

Número = 7

Saída:

Lista modificada =
$$8 \leftrightarrow 15 \leftrightarrow 3 \leftrightarrow 1 \leftrightarrow 2 \leftrightarrow 3 \leftrightarrow 4 \leftrightarrow 5 \leftrightarrow 6 \leftrightarrow 7 \leftrightarrow 7 \leftrightarrow 1 \leftrightarrow 2 \leftrightarrow 3 \leftrightarrow 4 \leftrightarrow 5 \leftrightarrow 6 \leftrightarrow 7$$

Exemplo 3:

Entrada:

Lista =
$$1 \leftrightarrow 4 \leftrightarrow 6 \leftrightarrow 8 \leftrightarrow 10$$

Número = 12

Saída:

Lista modificada = $1 \leftrightarrow 4 \leftrightarrow 6 \leftrightarrow 8 \leftrightarrow 10$

(O número 12 não está presente, então a lista permanece inalterada)