Math 455 HW 12

Total 16 points

- The Honor Code is in effect for this HW. All work is to be your own.
- Be sure that your name is on the top of the page.

1. Solve
$$\begin{pmatrix} \theta & -1 & 1 \\ 1 & \theta & -1 \\ -1 & 1 & \theta \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} \theta \\ \theta \\ \theta \end{pmatrix}, x^0 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Stopping tolerance	# of iterations			
	Jacobi method		Gauss-Seidel method	
θ	$\theta = 3$	$\theta = 2$	$\theta = 3$	$\theta = 2$
10 ⁻⁵	/	1	16	can't stop, too big
10^{-10})	31	can't stop, too big

2. Solve
$$\begin{pmatrix} 1+\delta & -1 & 0 \\ -1 & 2+\delta & -1 \\ 0 & -1 & 1+\delta \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \\ 2 \end{pmatrix}, x^0 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

δ	# of iterations with St	# of iterations with Stopping tolerance 10^{-5}		
	Jacobi method	Gauss-Seidel method		
1	2	11		
10^{-1}	158	67		
10^{-2}	1523	486		
10^{-3}	15165	3 3 0 3		
0	can't stop, too big	2		

3. Solve
$$\begin{pmatrix} 10 & 1 & 1 \\ 1 & -10 & 1 \\ 1 & 1 & 10 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, x^0 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Stopping	# of iterations for SOR method			
tolerance	$\omega = 1.1$	$\omega = 1.4$	$\omega = 1.6$	$\omega = 1.9$
10^{-5}	8	19	38	NaN

10^{-10}	1()	35	29	NuM
10	14	ر	2	10 400

4. Solve $(R + \lambda I)x = b$, where R is a randomized matrix, I is the identity matrix and b is a randomized vector. (Hint: R=rand(n); I=eye(n);b=rand(n,1);)

Size n	# of iterations			
	Jacobi method		Gauss Seidel method	
	$\lambda = 100$	$\lambda = 10$	$\lambda = 100$	$\lambda = 10$
10	4	12	3	6
100	13	NaN	4	26
1000	NaN	NaN	2 4	70.2