MATH3424 Regression Analysis

Assignment 2

1. Using the following summary statistics:

$$n = 20,$$
 $\sum_{i=1}^{20} x_{i1} = 58,$ $\sum_{i=1}^{20} x_{i2} = 87,$ $\sum_{i=1}^{20} y_{i} = 219,$ $\sum_{i=1}^{20} x_{i1}^{2} = 194,$ $\sum_{i=1}^{20} x_{i1}x_{i2} = 265,$ $\sum_{i=1}^{20} x_{i2}^{2} = 1003,$ $\sum_{i=1}^{20} x_{i1}y_{i} = 696,$ $\sum_{i=1}^{20} x_{i2}y_{i} = 1559,$ $\sum_{i=1}^{20} y_{i}^{2} = 3091,$ $S_{x_{1}x_{1}} = 25.8000,$ $S_{x_{1}x_{2}} = 12.7000,$ $S_{x_{2}x_{2}} = 624.5500,$ $S_{x_{1}y} = 60.9000,$ $S_{x_{2}y} = 606.3500,$ $S_{yy} = 692.9500.$

and

$$\begin{pmatrix} 25.8000 & 12.7000 \\ 12.7000 & 624.5500 \end{pmatrix}^{-1} = \begin{pmatrix} 0.0391516 & -0.000796133 \\ -0.000796133 & 0.00161734 \end{pmatrix},$$

to fit the following model

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + e_i$$
 , $e_i \sim_{iid} N(0, \sigma^2)$

Assume that β_0 β_1 and β_2 is unknown.

- (a) Re-write the model to a centered model. Find the least squares estimates of the unknown parameters β_0 , β_1 and β_2 . Then, write down the fitted line.
- (b) Find the unbiased estimate of the unknown parameter σ^2 . No need to show that it is unbiased.
- (c) Construct an ANOVA table and then test H_0 : $\beta_1 = \beta_2 = 0$ at significance level of $\alpha = 0.05$. Write down your conclusion clearly.
- (d) Test the null hypothesis that $H_0: \beta_1 \beta_2 = 0$ against the alternative hypothesis that $H_1: \beta_1 \beta_2 \neq 0$ at the significant level of $\alpha = 0.05$. Construct the test statistic using
 - i. t-test. Write down the test statistic, the critical value and your conclusion clearly.
 - ii. F test in terms of "Increase in Regression Sum of Squares". Write down the test statistic, the critical value and your conclusion clearly.
 - iii. F test for testing $H_0: \mathcal{C}\beta = d$ Write down the test statistic, the critical value and your conclusion clearly.

2. <u>Ten</u> men were studied during a maximal exercise treadmill test. The dependent and independent variables are: $y = VO_{2max}$, $x_1 = weight$, $x_2 = HR_{max}$, $x_3 = SV_{max}$. The table of parameter estimates, standard error and covariance matrix is given below:

			Covariance Matrix				
Variable	$\hat{eta}_{\pmb{i}}$	St. Error	Intercept	x_1	x_2	$\overline{x_3}$	
Intercept	-1.4545	22.2144	493.4780	-2.1663	-1.5222	-0.4450	
x_1	-0.6985	0.1281	-2.1663	0.01641	0.004525	0.0001291	
x_2	0.2895	0.07810	-1.5222	0.004525	0.006099	0.0008443	
x_3	0.4481	0.05110	-0.4450	0.0001291	0.0008443	0.002611	

- (a) Find the t-value for testing the statistical significance of $\beta_3 = 0$. Do we reject $\beta_3 = 0$ at the 5% significance level?
- (b) Construct a 95% confidence interval for β_1 .
- (c) Test whether the ratio of the regression coefficient of x_2 to that of x_3 is equal to 0.5 at the 5% significance level. Write down your test statistic, critical value and your conclusions clearly.
- (d) Fill in the missing values in the analysis of variance table below. Is the regression significant at the 5% significance level?

Source	Sum of Squares	D.F.	Mean Squares	F value
Regression				
Residual	55.9687			_
Total	1305.0760		_	_

3. Consider the following model (Model A)

$$y_i = \alpha + \beta(x_i - \bar{x}) + \gamma(z_i - \bar{z}) + e_i, \quad 1 \le i \le n$$

where now α , β and γ are unknown scalar parameters, where $e_i \stackrel{iid}{\sim} N(0, \sigma^2)$ with σ^2 known, and where

$$\bar{x} = n^{-1} \sum x_i, \ \bar{z} = n^{-1} \sum z_i$$

- (a) Find $\hat{\beta}$ and $var(\hat{\beta})$.
- (b) Let $\tilde{\beta}$ be the least squares estimate of β under the model (Model B)

$$y_i = \alpha + \beta(x_i - \bar{x}) + e_i, \quad 1 \le i \le n$$

Find $\tilde{\beta}$ and $var(\tilde{\beta})$, and show that $Var(\tilde{\beta}) \leq Var(\hat{\beta})$. When does this equality hold?

4. Consider the studentized residuals

$$\frac{y_i - \hat{y}_i}{s\sqrt{1 - \frac{1}{n} - \frac{(x_i - \bar{x})^2}{S_{xx}}}} \quad \text{where } s = \sqrt{\sum_{i=1}^n \hat{e}_i^2 / (n-2)}, \quad \hat{e}_i = y_i - \hat{y}_i$$

The denominator is found by merely constructing the variance of $y_i - \hat{y}_i$, namely

$$Var(y_i - \hat{y}_i) = \sigma^2 \left[1 - \frac{1}{n} - \frac{(x_i - \bar{x})^2}{S_{xx}} \right]$$

and then standardizing $y_i - \hat{y}_i$.

(a) Show that

$$\sum_{i=1}^{n} \frac{Var(y_i - \hat{y_i})}{\sigma^2} = n - 2$$

- (b) Under the conditions that the e_i are i.i.d. N(0, σ^2), does the studentized residual have a t-distribution with n-2 degrees of freedom? If not, why not?
- 5. (Bonus) Suppose that one assumes the model

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + e_i \quad e_i \sim N(0, \sigma^2)$$

but in fact $\beta_2 = 0$ and thus the above model is an overfitted model. Prove that the residual mean squares for the overfitted model is still an unbiased estimator for σ^2 when $\beta_2 = 0$.

Hint: Use the face that:

Let Y be a n random vector and let $E(Y) = \mu$, $Cov(Y) = \Sigma$. Then $E[Y^TAY] = trace(A\Sigma) + \mu^T A\mu$

3