IS-ZC444: ARTIFICIAL INTELLIGENCE

Lecture-13: Machine Learning

Dr. Kamlesh Tiwari Assistant Professor

Department of Computer Science and Information Systems, BITS Pilani, Pilani, Jhunjhunu-333031, Rajasthan, INDIA

Nov 15, 2020 FLIPPED

(WILP @ BITS-Pilani Jul-Nov 2020)

Classification

Finding the right label

Classification

Finding the right label

Classification

Finding the right label

What feature (attributes) would you choose?

Color, texture, weight, density, hardness

- Two step algorithm
 - Search k other datum points (most difficult part)
 - Apply majority voting

- Two step algorithm
 - Search k other datum points (most difficult part)
 - Apply majority voting
- A lazy learner
- To avoid ties, k should NOT be a multiple of number of classes
- Small k is sensitive to noise and large one has high bias

- Two step algorithm
 - Search k other datum points (most difficult part)
 - Apply majority voting
- A lazy learner
- To avoid ties, k should NOT be a multiple of number of classes
- Small k is sensitive to noise and large one has high bias

- Two step algorithm
 - Search k other datum points (most difficult part)
 - Apply majority voting
- A lazy learner
- To avoid ties, k should NOT be a multiple of number of classes
- Small *k* is sensitive to noise and large one has high bias

- Two step algorithm
 - Search k other datum points (most difficult part)
 - Apply majority voting
- A lazy learner
- To avoid ties, k should NOT be a multiple of number of classes
- Small k is sensitive to noise and large one has high bias

```
k = 3
```

- Two step algorithm
 - Search k other datum points (most difficult part)
 - Apply majority voting
- A lazy learner
- To avoid ties, k should NOT be a multiple of number of classes
- Small k is sensitive to noise and large one has high bias

- Two step algorithm
 - Search k other datum points (most difficult part)
 - Apply majority voting
- A lazy learner
- To avoid ties, k should NOT be a multiple of number of classes
- Small k is sensitive to noise and large one has high bias

- Two step algorithm
 - Search k other datum points (most difficult part)
 - Apply majority voting
- A lazy learner
- To avoid ties, k should NOT be a multiple of number of classes
- Small k is sensitive to noise and large one has high bias

- Two step algorithm
 - Search k other datum points (most difficult part)
 - Apply majority voting
- A lazy learner
- To avoid ties, k should NOT be a multiple of number of classes
- Small k is sensitive to noise and large one has high bias

- Two step algorithm
 - Search k other datum points (most difficult part)
 - Apply majority voting
- A lazy learner
- To avoid ties, k should NOT be a multiple of number of classes
- Small k is sensitive to noise and large one has high bias

Decision Tree

Decision Tree

is a method for approximating discrete-valued functions. It is robust to noisy data and capable of learning disjunctive expressions. Primarily useful for classification.

 Each node in the tree specifies a test for some attribute

Decision Tree

- Each node in the tree specifies a test for some attribute
- Each branch descending from the node corresponds to one of the possible value

Decision Tree

- Each node in the tree specifies a test for some attribute
- Each branch descending from the node corresponds to one of the possible value
- Decision trees represent a disjunction of conjunctions

Decision Tree

- Each node in the tree specifies a test for some attribute
- Each branch descending from the node corresponds to one of the possible value
- Decision trees represent a disjunction of conjunctions

```
(\textit{Outlook} = \textit{Sunny} \land \textit{Humidity} = \textit{Normal}) \\ \lor (\textit{Outlook} = \textit{Overcast}) \lor (\textit{Outlook} = \textit{Rain} \land \textit{Wind} = \textit{Weak})
```

Characterizes the impurity of an arbitrary collection of examples

Characterizes the impurity of an arbitrary collection of examples

$$Entropy(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$$

Characterizes the impurity of an arbitrary collection of examples

$$Entropy(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$$

- 0 when all members are of same class.
- 1 if equal number of positive and negative

Characterizes the impurity of an arbitrary collection of examples

$$Entropy(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$$

- $|\mathbf{0}|$ when all members are of same class.
- 1 if equal number of positive and negative

Characterizes the impurity of an arbitrary collection of examples

$$Entropy(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$$

- 0 when all members are of same class.
- 1 if equal number of positive and negative

Day	Outlook	Temperature	Humidity	Wind	Play
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rainy	Mild	High	Weak	Yes
D5	Rainy	Cool	Normal	Weak	Yes
D6	Rainy	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rainy	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rainy	Mild	Hiah	Strona	No

Characterizes the impurity of an arbitrary collection of examples

$$Entropy(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$$

Range is 0 to 1, *i.e.* $0 \le Entropy(S) \le 1$

- 0 when all members are of same class.
- 1 if equal number of positive and negative

Day	Outlook	Temperature	Humidity	Wind	Play	
D1	Sunny	Hot	High	Weak	No	1
D2	Sunny	Hot	High	Strong	No	1
D3	Overcast	Hot	High	Weak	Yes	1
D4	Rainy	Mild	High	Weak	Yes	1
D5	Rainy	Cool	Normal	Weak	Yes	1
D6	Rainy	Cool	Normal	Strong	No	1
D7	Overcast	Cool	Normal	Strong	Yes	1
D8	Sunny	Mild	High	Weak	No	1
D9	Sunny	Cool	Normal	Weak	Yes	1
D10	Rainy	Mild	Normal	Weak	Yes	1
D11	Sunny	Mild	Normal	Strong	Yes	1
D12	Overcast	Mild	High	Strong	Yes	1
D13	Overcast	Hot	Normal	Weak	Yes	1
D14	Rainy	Mild	High	Strong	No	1

Entropy([9+,5-])

Characterizes the impurity of an arbitrary collection of examples

$$Entropy(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$$

- 0 when all members are of same class.
- 1 if equal number of positive and negative

Day	Outlook	Temperature	Humidity	Wind	Play	
D1	Sunny	Hot	High	Weak	No	1
D2	Sunny	Hot	High	Strong	No	1.
D3	Overcast	Hot	High	Weak	Yes	4
D4	Rainy	Mild	High	Weak	Yes	1
D5	Rainy	Cool	Normal	Weak	Yes	1
D6	Rainy	Cool	Normal	Strong	No	1
D7	Overcast	Cool	Normal	Strong	Yes	1
D8	Sunny	Mild	High	Weak	No	1
D9	Sunny	Cool	Normal	Weak	Yes	1
D10	Rainy	Mild	Normal	Weak	Yes	1
D11	Sunny	Mild	Normal	Strong	Yes	1
D12	Overcast	Mild	High	Strong	Yes	1
D13	Overcast	Hot	Normal	Weak	Yes	1
D14	Rainy	Mild	High	Strong	No	1

Entropy([9+,5-])
=
$$-(9/14) \log_2(9/14)$$

 $-(5/14) \log_2(5/14)$

Characterizes the impurity of an arbitrary collection of examples

$$Entropy(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$$

- 0 when all members are of same class.
- 1 if equal number of positive and negative

Day	Outlook	Temperature	Humidity	Wind	Play]
D1	Sunny	Hot	High	Weak	No	1
D2	Sunny	Hot	High	Strong	No	١,
D3	Overcast	Hot	High	Weak	Yes	E
D4	Rainy	Mild	High	Weak	Yes	1
D5	Rainy	Cool	Normal	Weak	Yes	1
D6	Rainy	Cool	Normal	Strong	No	1
D7	Overcast	Cool	Normal	Strong	Yes	1
D8	Sunny	Mild	High	Weak	No	1
D9	Sunny	Cool	Normal	Weak	Yes	1
D10	Rainy	Mild	Normal	Weak	Yes	1
D11	Sunny	Mild	Normal	Strong	Yes	1
D12	Overcast	Mild	High	Strong	Yes	1
D13	Overcast	Hot	Normal	Weak	Yes	1
D14	Rainy	Mild	High	Strong	No	1

Entropy([9+,5-])
=
$$-(9/14) \log_2(9/14)$$

 $-(5/14) \log_2(5/14)$
= 0.94

Information Gain of an attribute A¹ is the expected reduction in entropy caused by partitioning the dataset S according to that attribute

¹Outlook, Temperature, Humidity, Wind

Information Gain of an attribute A¹ is the expected reduction in entropy caused by partitioning the dataset S according to that attribute

$$Gain(S, A) = Entropy(S) - \sum_{v \in Value(A)} \frac{|S_v|}{|S|} Entropy(S_v)$$

here S_v contains that data items of S where the value of attribute A is v

¹Outlook, Temperature, Humidity, Wind

Information Gain of an attribute A¹ is the expected reduction in entropy caused by partitioning the dataset S according to that attribute

$$Gain(S, A) = Entropy(S) - \sum_{v \in Value(A)} \frac{|S_v|}{|S|} Entropy(S_v)$$

here S_v contains that data items of S where the value of attribute A is v

Day	Outlook	Temperature	Humidity	Wind	Play
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rainy	Mild	High	Weak	Yes
D5	Rainy	Cool	Normal	Weak	Yes
D6	Rainy	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rainy	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rainy	Mild	High	Strong	No

¹Outlook, Temperature, Humidity, Wind

Information Gain of an attribute A¹ is the expected reduction in entropy caused by partitioning the dataset S according to that attribute

$$extit{Gain}(S,A) = extit{Entropy}(S) - \sum_{v \in extit{Value}(A)} rac{|S_v|}{|S|} extit{Entropy}(S_v)$$

here S_v contains that data items of S where the value of attribute A is v

Day	Outlook	Temperature	Humidity	Wind	Play
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rainy	Mild	High	Weak	Yes
D5	Rainy	Cool	Normal	Weak	Yes
D6	Rainy	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rainy	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rainy	Mild	High	Strong	No

For example

$$\begin{array}{lll} S_{Sunny} & = & \{ \textit{D1}, \textit{D2}, \textit{D8}, \textit{D9}, \textit{D11} \} \\ S_{Overcast} & = & \{ \textit{D3}, \textit{D7}, \textit{D12}, \textit{D13} \} \\ S_{Cool} & = & \{ \textit{D5}, \textit{D6}, \textit{D7}, \textit{D9} \} \\ S_{Hot} & = & \{ \textit{D1}, \textit{D2}, \textit{D3}, \textit{D13} \} \\ S_{Normal} & = & \{ \textit{D5}, \textit{D6}, \textit{D7}, \textit{D9}, \textit{D10}, \textit{D11}, \textit{D13} \} \\ S_{High} & = & \{ \textit{D1}, \textit{D2}, \textit{D3}, \textit{D4}, \textit{D8}, \textit{D12}, \textit{D14} \} \end{array}$$

And so on....

¹Outlook, Temperature, Humidity, Wind

$$extit{Gain}(S, A) = extit{Entropy}(S) - \sum_{v \in extit{Value}(A)} rac{|S_v|}{|S|} extit{Entropy}(S_v)$$

```
S_{High} = \{ D1, D2, D3, D4, D8, D12, D14 \} S_{Weak} = \{ D1, D3, D4, D5, D8, D9, D10, D13 \} S_{Normal} = \{ D5, D6, D7, D9, D10, D11, D13 \} S_{Strong} = \{ D2, D6, D7, D11, D12, D14 \}
```

 S_{High}

$$Gain(S, A) = Entropy(S) - \sum_{v \in Value(A)} \frac{|S_v|}{|S|} Entropy(S_v)$$

 S_{Weak}

 S_{Strona}

```
S_{Normal} = \{D5, D6, D7, D9, D10, D11, D13\}
S[9+,5-], E=0.940
Humidity
Normal
S_{High}[3+,4-], E=0.985
S_{Normal}[6+,1-], E=0.592
```

{D1, D2, D3, D4, D8, D12, D14}

 $= \{ D1, D3, D4, D5, D8, D9, D10, D13 \}$ $= \{ D2, D6, D7, D11, D12, D14 \}$

$$Gain(S, A) = Entropy(S) - \sum_{v \in Value(A)} \frac{|S_v|}{|S|} Entropy(S_v)$$

```
S_{High} = \{D1, D2, D3, D4, D8, D12, D14\} S_{Weak} = \{D1, D3, D4, D5, D8, D9, D10, D13\} S_{Normal} = \{D5, D6, D7, D9, D10, D11, D13\} S_{Strong} = \{D2, D6, D7, D11, D12, D14\} S_{High}[3+,4-], E=0.985 S_{Normal}[6+,1-], E=0.592
```

$$Gain(S, Humidity) = 0.940 - (7/14)0.985 - (7/14)0.592 = 0.151$$

$$extit{Gain}(S,A) = extit{Entropy}(S) - \sum_{v \in extit{Value}(A)} rac{|S_v|}{|S|} extit{Entropy}(S_v)$$

$$S_{High} = \{D1, D2, D3, D4, D8, D12, D14\}$$
 $S_{Weak} = \{D1, D3, D4, D5, D8, D9, D10, D13\}$ $S_{Normal} = \{D5, D6, D7, D9, D10, D11, D13\}$ $S_{Strong} = \{D2, D6, D7, D11, D12, D14\}$ $S[9+,5-], E=0.940$ $S[9+,5-], E=0.940$

Gain(S, Humidity) = 0.940 - (7/14)0.985 - (7/14)0.592 = 0.151

Information Gain

$$Gain(S, A) = Entropy(S) - \sum_{v \in Value(A)} \frac{|S_v|}{|S|} Entropy(S_v)$$

$$S_{High} = \{D1, D2, D3, D4, D8, D12, D14\}$$
 $S_{Weak} = \{D1, D3, D4, D5, D8, D9, D10, D13\}$ $S_{Normal} = \{D5, D6, D7, D9, D10, D11, D13\}$ $S_{Strong} = \{D2, D6, D7, D11, D12, D14\}$ $S[9+,5-], E=0.940$ $S[9+,5-], E=0.940$

Gain(S,Humidity)= 0.940 - (7/14)0.985 - (7/14)0.592 = 0.151Gain(S,Wind) = 0.940 - (8/14)0.811 - (6/14)1.000 = 0.048

```
Gain(S, Humidity) = 0.151

Gain(S, Wind) = 0.048

Gain(S, Outlook) = 0.246

Gain(S, Temperature) = 0.029
```

```
Gain(S, Humidity) = 0.151

Gain(S, Wind) = 0.048

Gain(S, Outlook) = 0.246

Gain(S, Temperature) = 0.029
```

 $[\underline{D_1}, \underline{D_2}, D_3, D_4, D_5, \underline{D_6}, D_7, \underline{D_8}, D_9, D_{10}, D_{11}, D_{12}, D_{13}, \underline{D_{14}}]$ $\{9+,5^-\}$

Outlook


```
Gain(S, Humidity) = 0.151
                Gain(S, Wind) = 0.048
             Gain(S, Outlook) = 0.246
       Gain(S, Temperature) =
                                           0.029
       [D_1, D_2, D_3, D_4, D_5, D_6, D_7, D_8, D_9, D_{10}, D_{11}, D_{12}, D_{13}, D_{14}]
                          {9+,5-}
                       Dutlook
             Sunny
[D_1, D_2, D_8, D_9, D_{11}]
```

```
Gain(S, Humidity) = 0.151

Gain(S, Wind) = 0.048

Gain(S, Outlook) = 0.246

Gain(S, Temperature) = 0.029
```



```
Gain(S, Humidity) = 0.151

Gain(S, Wind) = 0.048

Gain(S, Outlook) = 0.246

Gain(S, Temperature) = 0.029
```

[D₁, D₂, D₃, D₄, D₅, D₆, D₇, D₈, D₉, D₁₀, D₁₁, D₁₂, D₁₃, D₁₄]
{9+,5-}
Outlook

Sunny
Overcast
Rain
[D₁, D₂, D₈, D₉, D₁₁]
[D₃, D₇, D₁₂, D₁₃]
[D₄, D₅, D₆, D₁₀, D₁₄]

```
Gain(S, Humidity) = 0.151

Gain(S, Wind) = 0.048

Gain(S, Outlook) = 0.246

Gain(S, Temperature) = 0.029
```

[D₁, D₂, D₃, D₄, D₅, D₆, D₇, D₈, D₉, D₁₀, D₁₁, D₁₂, D₁₃, D₁₄]
{9+,5-}
Outlook

Sunny
Overcast
Rain
[D₁, D₂, D₈, D₉, D₁₁]
[D₃, D₇, D₁₂, D₁₃]
[D₄, D₅, D₆, D₁₀, D₁₄]
{2+,3-}

```
Gain(S, Humidity) = 0.151

Gain(S, Wind) = 0.048

Gain(S, Outlook) = 0.246

Gain(S, Temperature) = 0.029
```



```
Gain(S, Humidity) = 0.151

Gain(S, Wind) = 0.048

Gain(S, Outlook) = 0.246

Gain(S, Temperature) = 0.029
```


$$\begin{split} S_{\textit{sunny}} = & [\textit{D}_{1}, \textit{D}_{2}, \textit{D}_{8}, \textit{D}_{9}, \textit{D}_{11}] \\ & \text{Gain}(\textit{S}_{\textit{sunny}}, \text{Humidity}) = 0.970 - (3/5)0.0 - (2/5)0.0 = 0.970 \end{split}$$

$$\begin{split} S_{sunny} = & [\textit{D}_{1}, \textit{D}_{2}, \textit{D}_{8}, \textit{D}_{9}, \textit{D}_{11}] \\ & \text{Gain}(S_{sunny}, \text{Humidity}) = 0.970 - (3/5)0.0 - (2/5)0.0 = 0.970 \\ & \text{Gain}(S_{sunny}, \text{Temperature}) = 0.970 - (2/5)0.0 - (2/5)1.0 - (1/5)0.0 = 0.57 \end{split}$$

$$\begin{split} S_{sunny} = & [D_1, D_2, D_6, D_9, D_{11}] \\ & \text{Gain}(S_{sunny}, \text{Humidity}) = 0.970 - (3/5)0.0 - (2/5)0.0 = 0.970 \\ & \text{Gain}(S_{sunny}, \text{Temperature}) = 0.970 - (2/5)0.0 - (2/5)1.0 - (1/5)0.0 = 0.57 \\ & \text{Gain}(S_{sunny}, \text{Wind}) = 0.970 - (2/5)1.0 - (3/5)1.0 = 0.019 \end{split}$$

$$S_{sunny} = [D_1, D_2, D_8, D_9, D_{11}]$$

 $\begin{aligned} & \mathsf{Gain}(S_{\textit{Sunny}}, \mathsf{Humidity}) = 0.970 - (3/5)0.0 - (2/5)0.0 = 0.970 \\ & \mathsf{Gain}(S_{\textit{Sunny}}, \mathsf{Temperature}) = 0.970 - (2/5)0.0 - (2/5)1.0 - (1/5)0.0 = 0.57 \end{aligned}$

Gain(S_{Sunny} , Wind)= 0.970 - (2/5)1.0 - (3/5)1.0 = 0.019

Decision Tree

A method for approximating discrete-valued functions that is robust to noisy data and capable of learning disjunctive expressions

Day	Outlook	Temperature	Humidity	Wind	Play
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rainy	Mild	High	Weak	Yes
D5	Rainy	Cool	Normal	Weak	Yes
D6	Rainy	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rainy	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rainy	Mild	High	Strong	No

Decision Tree

A method for approximating discrete-valued functions that is robust to noisy data and capable of learning disjunctive expressions

Day	Outlook	Temperature	Humidity	Wind	Play
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rainy	Mild	High	Weak	Yes
D5	Rainy	Cool	Normal	Weak	Yes
D6	Rainy	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rainy	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rainy	Mild	High	Strong	No

What is classification for

(Outlook = Rain, Humidity = High, Wind = Weak)

Decision Tree

A method for approximating discrete-valued functions that is robust to noisy data and capable of learning disjunctive expressions

Day	Outlook	Temperature	Humidity	Wind	Play
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rainy	Mild	High	Weak	Yes
D5	Rainy	Cool	Normal	Weak	Yes
D6	Rainy	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rainy	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rainy	Mild	High	Strong	No

What is classification for

(Outlook = Rain, Humidity = High, Wind = Weak)

ALERT: (missing value) what is Temperature?

Example

 ${\it Classification for} \; ({\it Outlook} = {\it Rain}, {\it Humidity} = {\it High}, {\it Wind} = {\it Weak}) \; {\it is} \;$

YES

Iterative-Dichotomiser-3 (ID3) Algorithm By: John Ross Quinlan

Algorithm 1: ID3(Examples, Target_attribute, Attributes)

- 1 Examples are the training data, Target_attribute is the attribute whose value is to be predicted by the tree. Attributes is a list of other attributes that may be tested by the learned decision tree. Algorithm returns a decision tree that correctly classify the given example.
- 2 Create a single-node tree Root
- 3 IF Examples are all +ve THEN return Root with label +ve
- 4 IF Examples are all -ve THEN return Root with label -ve
- 5 **IF** Attributes = ϕ **THEN** return Root with most common Target_attribute
- 6 A ← attribute from *Attributes* that best classifies *Examples*
- 7 Decision attribute for Root ← A
- 8 foreach value v_i of A do
- Add a new tree branch below Root, to test $A=v_i$
 - Examples $v_i \leftarrow$ subset of *Examples* having value v_i for A
- IF Examples_{v_i} = ϕ **THEN** below this branch add a leaf with label = most common value of *Target_attribute* in *Examples*
- 12 ELSE below this branch add subtree
 - ID3(Examples_{v_i}, *Target_attribute*, *Attributes*-{*A*})
- 13 return Root

10

Issues Decision Tree

Given a collection of training examples, there could be many decision trees consistent with the examples

- ID3 search strategy
 - selects in favor of shorter trees over longer ones, and
 - selects trees that place the attributes with highest information gain closest to the root

Issues Decision Tree

Given a collection of training examples, there could be many decision trees consistent with the examples

- ID3 search strategy
 - selects in favor of shorter trees over longer ones, and
 - selects trees that place the attributes with highest information gain closest to the root
- Issues in decision trees include
 - how deeply to grow
 - handling continuous attributes
 - choosing an appropriate attribute selection measure
 - missing attribute values
 - attributes with differing costs, and
 - improving computational efficiency

Issues in Decision Tree

Overfitting

Given a hypothesis space H, a hypothesis $h \in H$ is said to overfit the training data if there exists some alternative hypothesis $h' \in H$, such that h has smaller error than h' over the training examples, but h' has a smaller error than h over the entire distribution of instances.

 This can occur when training examples contain random errors or noise.

 Stop growing the tree earlier, before it reaches the point where it perfectly classifies the training data

- Stop growing the tree earlier, before it reaches the point where it perfectly classifies the training data
- Allow the tree to overfit the data, and then post-prune the tree

- Stop growing the tree earlier, before it reaches the point where it perfectly classifies the training data
- Allow the tree to overfit the data, and then post-prune the tree

Criterion to determine the correct final tree size include:

 Use a separate set of examples (called validation), distinct from the training examples, to evaluate the utility of post-pruning nodes from the tree

- Stop growing the tree earlier, before it reaches the point where it perfectly classifies the training data
- Allow the tree to overfit the data, and then post-prune the tree

Criterion to determine the correct final tree size include:

- Use a separate set of examples (called validation), distinct from the training examples, to evaluate the utility of post-pruning nodes from the tree
- Use all the available data for training, but apply a statistical test (such as chi-square test) to estimate whether expanding (or pruning) a particular node is likely to produce an improvement beyond the training set.

- Stop growing the tree earlier, before it reaches the point where it perfectly classifies the training data
- Allow the tree to overfit the data, and then post-prune the tree

Criterion to determine the correct final tree size include:

- Use a separate set of examples (called validation), distinct from the training examples, to evaluate the utility of post-pruning nodes from the tree
- Use all the available data for training, but apply a statistical test (such as chi-square test) to estimate whether expanding (or pruning) a particular node is likely to produce an improvement beyond the training set.
- Use an explicit measure of the complexity for encoding the training examples (such as Minimum Description Length) and the decision tree, halting growth of the tree when this encoding size is minimized.

Combination of learning models (ensemble of classifiers) increases classification accuracy. Averaging compensates noise. Resulting model has low variance

Combination of learning models (ensemble of classifiers) increases classification accuracy. Averaging compensates noise. Resulting model has low variance

Random Forest² is a large collection of decorrelated decision trees

Combination of learning models (ensemble of classifiers) increases classification accuracy. Averaging compensates noise. Resulting model has low variance

Random Forest² is a large collection of decorrelated decision trees

 Training data is divided into a number of sub-sets (delete row or columns) that may have overlap (or subset of attributes)

Combination of learning models (ensemble of classifiers) increases classification accuracy. Averaging compensates noise. Resulting model has low variance

Random Forest² is a large collection of decorrelated decision trees

 Training data is divided into a number of sub-sets (delete row or columns) that may have overlap (or subset of attributes)

- For every subset, built a decision tree
- To classify new element: apply voting

Combination of learning models (ensemble of classifiers) increases classification accuracy. Averaging compensates noise. Resulting model has low variance

Random Forest² is a large collection of decorrelated decision trees

 Training data is divided into a number of sub-sets (delete row or columns) that may have overlap (or subset of attributes)

- For every subset, built a decision tree
- To classify new element: apply voting

Combination of learning models (ensemble of classifiers) increases classification accuracy. Averaging compensates noise. Resulting model has low variance

Random Forest² is a large collection of decorrelated decision trees

- For every subset, built a decision tree
- To classify new element: apply voting

Combination of learning models (ensemble of classifiers) increases classification accuracy. Averaging compensates noise. Resulting model has low variance

Random Forest² is a large collection of decorrelated decision trees

- For every subset, built a decision tree
- To classify new element: apply voting

Combination of learning models (ensemble of classifiers) increases classification accuracy. Averaging compensates noise. Resulting model has low variance

Random Forest² is a large collection of decorrelated decision trees

- For every subset, built a decision tree
- To classify new element: apply voting

Combination of learning models (ensemble of classifiers) increases classification accuracy. Averaging compensates noise. Resulting model has low variance

Random Forest² is a large collection of decorrelated decision trees

- For every subset, built a decision tree
- To classify new element: apply voting

Combination of learning models (ensemble of classifiers) increases classification accuracy. Averaging compensates noise. Resulting model has low variance

Random Forest² is a large collection of decorrelated decision trees

- For every subset, built a decision tree
- To classify new element: apply voting

Combination of learning models (ensemble of classifiers) increases classification accuracy. Averaging compensates noise. Resulting model has low variance

Random Forest² is a large collection of decorrelated decision trees

 Training data is divided into a number of sub-sets (delete row or columns) that may have overlap (or subset of attributes)

For every subset, built a decision tree

²Leo Breiman, "Random Forests", ML 45, pp 5-32, 2001 → ← → ← ▼ → ← ▼ → ▼ ▼ → へ ○

Combination of learning models (ensemble of classifiers) increases classification accuracy. Averaging compensates noise. Resulting model has low variance

Random Forest² is a large collection of decorrelated decision trees

- For every subset, built a decision tree
- To classify new element: apply voting

Regression predicts value of continuous a target variable

<i>X</i> ₁	<i>X</i> ₂	<i>X</i> 3	y
10	50	20	10
11	31	22	12
11	12	15	4
20	55	20	22
23	41	27	1
31	12	35	9
13	18	12	23
21	55	16	16
32	56	27	22
8	22	35	??

What should come at the place of ??

Regression predicts value of continuous a target variable

Regression predicts value of continuous a target variable

 A simplest model for regression can be a linear combination of the input variables

$$y(x, w) = w_0 + w_1 x_1 + ... + w_n x_n$$

where x is a n dimensional vector $(x_1, x_2, ..., x_n)$ representing some feature

Regression predicts value of continuous a target variable

 A simplest model for regression can be a linear combination of the input variables

$$y(x, w) = w_0 + w_1 x_1 + ... + w_n x_n$$

where x is a n dimensional vector $(x_1, x_2, ..., x_n)$ representing some feature

• It can be extended by considering linear combination of fixed nonlinear functions ϕ (called basis functions)

$$y(x, w) = w_0 + \sum_{i=1}^n w_i \phi_i(x)$$

Regression predicts value of continuous a target variable

 A simplest model for regression can be a linear combination of the input variables

$$y(x, w) = w_0 + w_1 x_1 + ... + w_n x_n$$

where x is a n dimensional vector $(x_1, x_2, ..., x_n)$ representing some feature

• It can be extended by considering linear combination of fixed nonlinear functions ϕ (called basis functions)

$$y(x,w) = w_0 + \sum_{i=1}^n w_i \phi_i(x)$$

• In short $y(x, w) = w^T \phi(x)$

Regression predicts value of continuous a target variable

 A simplest model for regression can be a linear combination of the input variables

$$y(x, w) = w_0 + w_1 x_1 + ... + w_n x_n$$

where x is a n dimensional vector $(x_1, x_2, ..., x_n)$ representing some feature

• It can be extended by considering linear combination of fixed nonlinear functions ϕ (called basis functions)

$$y(x, w) = w_0 + \sum_{i=1}^n w_i \phi_i(x)$$

- In short $y(x, w) = w^T \phi(x)$
- Objective is to choose w such that it makes $y(x^{(i)}, w)$ as close to $y^{(i)}$ as possible

Our Regression Example

• If we could correct estimate the values of w's we could determine $y(x^{(i)}, w)$ for all values

<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	У	$y(x^{(i)}, w)$
10	50	20	10	8
11	31	22	12	9
11	12	15	4	3
20	55	20	22	26
23	41	27	1	1
31	12	35	9	4
13	18	12	23	30
21	55	16	16	13
32	56	27	22	21
8	22	35	??	6

Now the question is that how good this w is?

 Determining w, is similar to solving a minimization problem. Let us define a squared error cost function as

$$J(w) = \frac{1}{2m} \sum_{i=1}^{m} (y(x^{(i)}, w) - y^{(i)})^{2}$$

where *m* is number of training examples

 Determining w, is similar to solving a minimization problem. Let us define a squared error cost function as

$$J(w) = \frac{1}{2m} \sum_{i=1}^{m} (y(x^{(i)}, w) - y^{(i)})^{2}$$

where *m* is number of training examples

• Then one have to minimize the value of J(w)

$$\underset{w}{\operatorname{argmin}} J(w)$$

 Determining w, is similar to solving a minimization problem. Let us define a squared error cost function as

$$J(w) = \frac{1}{2m} \sum_{i=1}^{m} (y(x^{(i)}, w) - y^{(i)})^{2}$$

where *m* is number of training examples

• Then one have to minimize the value of J(w)

$$\underset{w}{\operatorname{argmin}} J(w)$$

• Basic idea: Push w_i a bit against the direction of its gradient

Linear Regression

<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	У	$y(x^{(i)}, w)$	$\left (y(x^{(i)}, w) - y)^2 \right $
10	50	20	10	8	4
11	31	22	12	9	9
11	12	15	4	3	1
20	55	20	22	26	16
23	41	27	1	1	0
31	12	35	9	4	25
13	18	12	23	30	49
21	55	16	16	13	9
32	56	27	22	21	1

Assume for some w we computed $y(x^{(i)}, w)$ then

$$J(w) = \frac{1}{2 \times 9} \times 114$$
$$= 6.33$$

Algorithm 2: Gradient Descent

- 1 Initialize w randomly
- 2 repeat
- Simultaneously update all w_j with $w_j \alpha \frac{\partial}{\partial w_i} J(w)$
- 4 until converge;
- 5 return w

Algorithm 3: Gradient Descent

- 1 Initialize w randomly
- 2 repeat
- 3 Simultaneously update all w_j with $w_j \alpha \frac{\partial}{\partial w_j} J(w)$
- 4 until converge;
- 5 return w
- Here α is a learning rate. If α is small enough then J(w) would decrease in every iteration

Algorithm 4: Gradient Descent

- Initialize w randomly
- 2 repeat
- Simultaneously update all w_j with $w_j \alpha \frac{\partial}{\partial w_i} J(w)$
- 4 until converge;
- 5 return w
- Here α is a learning rate. If α is small enough then J(w) would decrease in every iteration (large α can overshoot the minimum and may fail to converge)

Algorithm 5: Gradient Descent

- 1 Initialize w randomly
- 2 repeat
- Simultaneously update all w_j with $w_j \alpha \frac{\partial}{\partial w_j} J(w)$
- 4 until converge;
- 5 return w
- Here α is a learning rate. If α is small enough then J(w) would decrease in every iteration (large α can overshoot the minimum and may fail to converge)
- Susceptible to local minimum

Algorithm 6: Gradient Descent

- 1 Initialize w randomly
- 2 repeat
- Simultaneously update all w_j with $w_j \alpha \frac{\partial}{\partial w_i} J(w)$
- 4 until converge;
- 5 return w
- Here α is a learning rate. If α is small enough then J(w) would decrease in every iteration (large α can overshoot the minimum and may fail to converge)
- Susceptible to local minimum
- As it moves closer to local minimum, it automatically takes smaller steps as gradient decreases

Batch-Gradient Descent

Algorithm 7: Batch-Gradient Descent

- 1 Initialize w randomly
- 2 repeat
- Simultaneously update all w_j with $w_j \alpha \frac{1}{m} \sum_{i=1}^m (y(x^{(i)}, w) y^{(i)}) x_j^{(i)}$
- 4 until converge;
- 5 return w

Batch-Gradient Descent

Algorithm 8: Batch-Gradient Descent

- 1 Initialize w randomly
- 2 repeat
- Simultaneously update all w_j with $w_j \alpha \frac{1}{m} \sum_{i=1}^m (y(x^{(i)}, w) y^{(i)}) x_j^{(i)}$
- 4 until converge;
- 5 return w
- At every step it evaluate all training examples

Batch-Gradient Descent

Algorithm 9: Batch-Gradient Descent

- 1 Initialize w randomly
- 2 repeat
- Simultaneously update all w_j with $w_j \alpha \frac{1}{m} \sum_{i=1}^m (y(x^{(i)}, w) y^{(i)}) x_j^{(i)}$
- 4 until converge;
- 5 return w
- At every step it evaluate all training examples
- Some time it is also called multi-variate linear regression

Real Landscape

Consider following data

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	У
1	10	50	20	10
2	11	31	22	12
3	11	12	15	4
4	20	55	20	22
5	23	41	27	1
6	31	12	35	9
7	13	18	12	23
8	21	55	16	16
9	32	56	27	22
10	8	22	35	11

Consider following data

	V	V	· ·	17
	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> 3	y
1	10	50	20	10
2	11	31	22	12
3	11	12	15	4
4	20	55	20	22
5	23	41	27	1
6	31	12	35	9
7	13	18	12	23
8	21	55	16	16
9	32	56	27	22
10	8	22	35	11

Consider following data

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> 3	У
1	10	50	20	10
2	11	31	22	12
3	11	12	15	4
4	20	55	20	22
5	23	41	27	1
6	31	12	35	9
7	13	18	12	23
8	21	55	16	16
9	32	56	27	22
10	8	22	35	11

Learning rate $\alpha = 0.1$

J=396.662506 w=(0.500 0.500 0.500 0.500)

J=19454472.000000

w=(-2.055 -51.070 -100.970 -62.640)

J=1036526813184.000000

w=(590.236 11518.771 23902.906 13778.349)

J=55230041021218816.000000

w=(-135891.922 -2653678.250 -5525792.000 -3170425.000)

J=2942865354556228763648.000000

w=(31365378.000 612476928.000 1275658624.000 731686912.000)

J=156806972273681738831495168.000000

w=(-7240111104.000 -141378551808.000 -294465732608.000

-168895037440.000)

J=8355266546526971027269827428352.000000

w=(1671254376448.000 32634791002112.000 67972370530304.000 38986479304704.000)

J=445200079222591879770706068887306240.000000

w=(-385780270759936.000 -7533178826784768.000

-15690251045437440.000 -8999357718200320.000)

Consider following data

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	У
1	10	50	20	10
2	11	31	22	12
3	11	12	15	4
4	20	55	20	22
5	23	41	27	1
6	31	12	35	9
7	13	18	12	23
8	21	55	16	16
9	32	56	27	22
10	8	22	35	11

Consider following data

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> 3	У
1	10	50	20	10
2	11	31	22	12
3	11	12	15	4
4	20	55	20	22
5	23	41	27	1
6	31	12	35	9
7	13	18	12	23
8	21	55	16	16
9	32	56	27	22
10	8	22	35	11

<u>(</u>	1 3113 90)
J	W
396.663	(0.500 0.500 0.500 0.500)
664.137	(0.474 -0.016 -0.515 -0.131)
1131.021	(0.508 0.631 0.881 0.628)
1943.882	(0.464 -0.249 -0.910 -0.435)
3357.625	(0.523 0.888 1.492 0.914)
5815.401	(0.446 -0.630 -1.641 -0.908)
10087.491	(0.549 1.356 2.518 1.456)
17512.684	(0.415 -1.274 -2.941 -1.693)
30417.834	(0.592 2.183 4.276 2.432)
52847.020	(0.359 -2.383 -5.221 -3.028)
91828.805	(0.668 3.630 7.314 4.151)
159578.781	(0.263 -4.302 -9.200 -5.330)
277327.562	(0.799 6.152 12.580 7.155)
481973.594	(0.093 -7.633 -16.125 -9.316)
837646.250	(1.025 10.537 21.725 12.387)
1455801.375	(-0.201 -13.418 -28.168 -16.234)
2530147.500	(1.417 18.162 37.611 21.491)
4397349.000	(-0.715 -23.472 -49.103 -28.249)
7642525.500	(2.097 31.415 65.218 37.319)
13282603.000	(-1.608 -40.944 -85.492 -49.126)
23084998.000	(3.278 54.449 113.196 64.832)
40121436.000	(-3.162 -71.310 -148.738 -85.405)
69730584.000	(5.329 94.483 196.578 112.653)
121190936.000	(-5.863 -124.085 -258.660 -148.456)
210628448.000	(8.894 164.060 341.494 195.769)
366069856.000	(-10.559 -215.809 -449.705 -258.035)
636225152.000	(15.088 284.983 593.355 340.226)
1105751936.000	(-18.721 -375.224 -781.739 -448.479)
1921783808.000	(25.852 495.147 1031.086 591.291)
3340036608.000	(-32.908 -652.287 -1358.811 -779.468

Consider following data

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> 3	У
1	10	50	20	10
2	11	31	22	12
3	11	12	15	4
4	20	55	20	22
5	23	41	27	1
6	31	12	35	9
7	13	18	12	23
8	21	55	16	16
9	32	56	27	22
10	8	22	35	11

Consider following data

			9	
	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> 3	У
1	10	50	20	10
2	11	31	22	12
3	11	12	15	4
4	20	55	20	22
5	23	41	27	1
6	31	12	35	9
7	13	18	12	23
8	21	55	16	16
9	32	56	27	22
10	8	22	35	11

щ	(IEali	mg rate α_1
	J	W
	396.663	(0.500 0.500 0.500 0.500)
	246.798	(0.497 0.448 0.399 0.437)
	158.286	(0.495 0.408 0.321 0.388)
	105.980	(0.494 0.377 0.262 0.349)
	75.041	(0.493 0.353 0.218 0.319)
	56.711	(0.492 0.334 0.184 0.295)
	45.826	(0.491 0.320 0.159 0.276)
	39.335	(0.491 0.308 0.140 0.260)
	35.439	(0.490 0.299 0.126 0.248)
	33.077	(0.490 0.291 0.115 0.238)
	31.621	(0.490 0.285 0.108 0.229)
	30.703	(0.490 0.280 0.103 0.222)
	30.104	(0.490 0.276 0.099 0.216)
	29.694	(0.489 0.273 0.097 0.210)
	29.399	(0.489 0.270 0.096 0.206)
	29.172	(0.489 0.268 0.095 0.202)
	28.987	(0.489 0.266 0.096 0.198)
	28.830	(0.489 0.264 0.096 0.194)
	28.689	(0.489 0.262 0.097 0.191)
	28.560	(0.489 0.260 0.098 0.188)
	28.439	(0.489 0.259 0.099 0.185)
	28.325	(0.489 0.258 0.101 0.182)
	28.216	(0.489 0.256 0.102 0.179)
	28.111	(0.489 0.255 0.104 0.177)
	28.011	(0.489 0.254 0.105 0.174)
	27.913	(0.489 0.253 0.107 0.172)
	27.819	(0.489 0.252 0.109 0.170)
	27.728	(0.489 0.251 0.110 0.167)
	27.555	(0.490 0.249 0.114 0.163)
-	24.926	(0.507 0.207 0.215 0.020) Iteration 300
	24.768	(0.710 0.219 0.213 0.005) Iteration 3000

Example: Gradient Descent (Feature scaling)

Feature scaling

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> 3	У
1	0.08	0.86	0.35	10
2	0.12	0.43	0.43	12
3	0.12	0.00	0.13	4
4	0.50	0.98	0.35	22
5	0.62	0.66	0.65	1
6	0.96	0.00	1.00	9
7	0.21	0.14	0.00	23
8	0.54	0.98	0.17	16
9	1.00	1.00	0.65	22
10	0.00	0.23	1.00	11

Example: Gradient Descent (Feature scaling)

Feature scaling

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	У
1	0.08	0.86	0.35	10
2	0.12	0.43	0.43	12
3	0.12	0.00	0.13	4
4	0.50	0.98	0.35	22
5	0.62	0.66	0.65	1
6	0.96	0.00	1.00	9
7	0.21	0.14	0.00	23
8	0.54	0.98	0.17	16
9	1.00	1.00	0.65	22
10	0.00	0.23	1.00	11

i <u>li Eature Scairig)</u>
J w
95.472 (0.500 0.500 0.500 0.500)
73.399 (1.679 1.025 1.220 0.983)
58.326 (2.658 1.455 1.822 1.364)
48.020 (3.470 1.808 2.326 1.663)
40.961 (4.147 2.096 2.749 1.893)
36.116 (4.710 2.331 3.106 2.066)
32.778 (5.180 2.522 3.407 2.193)
30.468 (5.574 2.677 3.662 2.283)
28.859 (5.903 2.803 3.880 2.341)
27.729 (6.181 2.904 4.066 2.373)
26.925 (6.415 2.985 4.226 2.385)
26.344 (6.613 3.049 4.364 2.379)
25.916 (6.782 3.100 4.485 2.360)
25.593 (6.926 3.140 4.590 2.329)
25.342 (7.050 3.170 4.683 2.289)
25.141 (7.158 3.193 4.766 2.241)
24.974 (7.252 3.210 4.839 2.188)
24.833 (7.334 3.222 4.906 2.129)
24.708 (7.407 3.230 4.966 2.067)Iteration 18
24.596 (7.472 3.234 5.021 2.003)
24.493 (7.530 3.236 5.071 1.935)
24.397 (7.583 3.235 5.118 1.866)
24.306 (7.632 3.233 5.161 1.796)
24.219 (7.677 3.229 5.202 1.725)
24.136 (7.718 3.225 5.241 1.653)
24.056 (7.757 3.219 5.277 1.581)
23.979 (7.794 3.213 5.311 1.509)
23.903 (7.830 3.206 5.344 1.436)
23.830 (7.863 3.198 5.375 1.364)
23.759 (7.896 3.191 5.405 1.292) Iteration 30
20.174 (12.021 4.618 4.794 -7.329) Iteration 3000

Similar Mechanism for Classification

Classification have predefined fixed number of labels (0 and 1 in this case)

<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	Class
10	50	20	1
11	31	22	1
11	12	15	0
20	55	20	0
23	41	27	0
31	12	35	1
13	18	12	0
21	55	16	1
32	56	27	0
8	22	35	??

What should come at the place of ??

Logistic Regression

Moving from linear regression $y(x, w) = w_0 + w_1x_1 + ... + w_nx_n$ to **logistic regression**

$$y(x, w) = \sigma(w_0 + w_1x_1 + ... + w_nx_n)$$

Logistic Regression

Moving from linear regression $y(x, w) = w_0 + w_1x_1 + ... + w_nx_n$ to **logistic regression**

$$y(x, w) = \sigma(w_0 + w_1x_1 + ... + w_nx_n)$$

• Enables "classification" apart from the regression. Where σ is called as sigmoid function that produces values in range [0, 1] and is defined as $\sigma(v) = \frac{1}{1+e^{-v}}$

Decision on classification

$$\textit{classification} = \left\{ \begin{array}{ll} 1 & \text{if } y(x,w) \geq 0.5 \\ 0 & \text{otherwise} \end{array} \right.$$

Logistic Regression

Moving from linear regression $y(x, w) = w_0 + w_1x_1 + ... + w_nx_n$ to **logistic regression**

$$y(x, w) = \sigma(w_0 + w_1x_1 + ... + w_nx_n)$$

• Enables "classification" apart from the regression. Where σ is called as sigmoid function that produces values in range [0, 1] and is defined as $\sigma(v) = \frac{1}{1+e^{-v}}$

Decision on classification

$$\textit{classification} = \left\{ \begin{array}{ll} 1 & \text{if } y(x,w) \geq 0.5 \\ 0 & \text{otherwise} \end{array} \right.$$

Decision Boundary in Logistic Regression

$$\textit{classification} = \left\{ \begin{array}{ll} 1 & \text{if } y(x, w) \geq 0.5 \\ 0 & \text{otherwise} \end{array} \right.$$

 This choice of w partitions the space into two sections and the hyper-plane separating them is called decision boundary

Decision Boundary in Logistic Regression

$$\textit{classification} = \left\{ \begin{array}{ll} 1 & \text{if } y(x,w) \geq 0.5 \\ 0 & \text{otherwise} \end{array} \right.$$

- This choice of w partitions the space into two sections and the hyper-plane separating them is called **decision boundary**
- By adding more complex or polynomial terms one can get more complex decision boundary

Cost Function

Cost function used for the liner regression

$$J(w) = \frac{1}{2m} \sum_{i=1}^{m} (y(x^{(i)}, w) - y^{(i)})^{2}$$

becomes a non convex function in case of logistic regression

Cost Function

Cost function used for the liner regression

$$J(w) = \frac{1}{2m} \sum_{i=1}^{m} (y(x^{(i)}, w) - y^{(i)})^{2}$$

becomes a non convex function in case of logistic regression

Therefore, a different cost function is chosen

$$J(w) = \frac{1}{m} \sum_{i=1}^{m} Cost(y(x^{(i)}, w), y^{(i)})$$

where

$$Cost(y(x^{(i)}, w), y^{(i)}) = \begin{cases} -\log(y(x^{(i)}, w)) & \text{if } y^{(i)} = 1\\ -\log(1 - y(x^{(i)}, w)) & \text{otherwise} \end{cases}$$

A simplified version of this cost function is

 $Cost(y(x^{(i)}, w), y^{(i)}) = -y^{(i)}\log(y(x^{(i)}, w)) - (1 - y^{(i)})\log(1 - y(x^{(i)}, w))$

Learning With This Cost Function

• Learning corresponds to the minimization of J(w) by changing w

$$\underset{w}{\operatorname{argmin}} J(w) = \frac{1}{m} \sum_{i=1}^{m} Cost(y(x^{(i)}, w), y^{(i)})$$

Learning With This Cost Function

• Learning corresponds to the minimization of J(w) by changing w

$$\arg\min_{w} J(w) = \frac{1}{m} \sum_{i=1}^{m} Cost(y(x^{(i)}, w), y^{(i)})$$

$$\underset{w}{\operatorname{argmin}} J(w) = \frac{1}{m} \sum_{i=1}^{m} [-y^{(i)} \log(y(x^{(i)}, w)) - (1 - y^{(i)}) \log(1 - y(x^{(i)}, w))]$$

Learning With This Cost Function

• Learning corresponds to the minimization of J(w) by changing w

$$\arg\min_{w} J(w) = \frac{1}{m} \sum_{i=1}^{m} Cost(y(x^{(i)}, w), y^{(i)})$$

$$\underset{w}{\operatorname{argmin}} J(w) = \frac{1}{m} \sum_{i=1}^{m} [-y^{(i)} \log(y(x^{(i)}, w)) - (1 - y^{(i)}) \log(1 - y(x^{(i)}, w))]$$

Gradient Descent can be used for this purpose

Algorithm 12: Logistic Regression

- 1 Initialize w randomly
- 2 repeat
- Simultaneously update all w_j with $w_j \alpha \frac{\partial}{\partial w_i} J(w)$
- 4 until converge;
- 5 return w

Partial derivative term

$$\frac{\partial}{\partial w_j} J(w) = \frac{\partial}{\partial w_j} \frac{1}{m} \sum_{i=1}^m [-y^{(i)} \log(y(x^{(i)}, w)) - (1 - y^{(i)}) \log(1 - y(x^{(i)}, w))]$$

Partial derivative term

$$\frac{\partial}{\partial w_j} J(w) = \frac{\partial}{\partial w_j} \frac{1}{m} \sum_{i=1}^{m} [-y^{(i)} \log(y(x^{(i)}, w)) - (1 - y^{(i)}) \log(1 - y(x^{(i)}, w))]$$

comes out to be

$$\frac{\partial}{\partial w_j} J(w) = \frac{1}{m} \sum_{i=1}^{m} (y(x^{(i)}, w) - y^{(i)}) x_j^{(i)}$$

Partial derivative term

$$\frac{\partial}{\partial w_j} J(w) = \frac{\partial}{\partial w_j} \frac{1}{m} \sum_{i=1}^m [-y^{(i)} \log(y(x^{(i)}, w)) - (1 - y^{(i)}) \log(1 - y(x^{(i)}, w))]$$

comes out to be

$$\frac{\partial}{\partial w_j} J(w) = \frac{1}{m} \sum_{i=1}^m (y(x^{(i)}, w) - y^{(i)}) x_j^{(i)}$$

Algorithm 15: Logistic Regression

- Initialize w randomly
- 2 repeat
- \mathbf{s} | Simultaneously update all \mathbf{w}_i with

$$\mathbf{w}_{j} - \alpha \times \frac{1}{m} \sum_{i=1}^{m} (\mathbf{y}(\mathbf{x}^{(i)}, \mathbf{w}) - \mathbf{y}^{(i)}) \mathbf{x}_{i}^{(i)}$$

- 4 until converge;
- 5 return w

Partial derivative term

$$\frac{\partial}{\partial w_j} J(w) = \frac{\partial}{\partial w_j} \frac{1}{m} \sum_{i=1}^m [-y^{(i)} \log(y(x^{(i)}, w)) - (1 - y^{(i)}) \log(1 - y(x^{(i)}, w))]$$

comes out to be

$$\frac{\partial}{\partial w_j} J(w) = \frac{1}{m} \sum_{i=1}^m (y(x^{(i)}, w) - y^{(i)}) x_j^{(i)}$$

Algorithm 16: Logistic Regression

- 1 Initialize w randomly
- 2 repeat
- Simultaneously update all w_j with
 - $w_j \alpha \times \frac{1}{m} \sum_{i=1}^m (y(x^{(i)}, w) y^{(i)}) x_j^{(i)}$
- 4 until converge;
- 5 return w

It looks identical to liner regression but, $y(x^{(i)}, w)$ is different here $y(x^{(i)}, w) = \frac{1}{1 + e^{-(w_0 + w_1 x_1^{(i)} + \dots + w_n x_n^{(i)})}}$

Example: Logistic Regression

Consider following data

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	Class				
1	2	2	2	1				
2	3	2	2	1				
3	2	3	2	1				
4	3 2 2	2	3	1				
5	7	6	2 3 9	0				
2 3 4 5 6 7	9	7	6	0				
7	9	6	7	0				
8	6	8	9	0				
9	8	9	6	0				
10	8	9	9	0				

Learning rate $\alpha = 0.01$

Example: Logistic Regression

Consider following data

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> 3	Class				
1	2	2	2	1				
2	3	2	2	1				
3	2	3	2 2 3	1				
4	2	2		1				
2 3 4 5 6 7	7	6	9	0				
6	9	7	6	0				
7	9	6	7	0				
8	6	8	9	0				
9	8	9	6	0				
10	8	9	9	0				

Learning rate $\alpha = 0.01$

J	w
6.912	(0.500 0.500 0.500 0.500)
6.496	(0.494 0.453 0.455 0.454)
5.944	(0.488 0.406 0.410 0.408)
5.316	(0.482 0.360 0.366 0.363)
4.692	(0.477 0.313 0.321 0.317)
4.072	(0.471 0.267 0.277 0.272)
3.460	(0.465 0.221 0.233 0.227)
2.860	(0.460 0.175 0.189 0.182)
2.279	(0.454 0.130 0.146 0.138)
1.735	(0.449 0.086 0.104 0.095)
1.262	(0.445 0.044 0.064 0.054)
0.906	(0.441 0.008 0.029 0.018)
0.685	(0.438 -0.022 0.000 -0.011)
0.566	(0.437 -0.044 -0.020 -0.032)
0.504	(0.436 -0.060 -0.035 -0.048)
0.470	(0.436 -0.072 -0.046 -0.059)
0.451	(0.436 -0.081 -0.055 -0.068)
0.438	(0.436 -0.088 -0.061 -0.074)
0.431	(0.437 -0.093 -0.066 -0.080)
0.425	(0.438 -0.098 -0.070 -0.084)
0.422	(0.439 -0.101 -0.074 -0.088)
0.419	(0.440 -0.105 -0.077 -0.091)
0.417	(0.441 -0.107 -0.079 -0.093)
0.416	(0.443 -0.110 -0.081 -0.095)
0.415	(0.444 -0.112 -0.082 -0.097) Iteration 25
0.412	(0.451 -0.119 -0.088 -0.103) Iteration 30
0.348	(0.857 -0.179 -0.084 -0.132) Iteration 300
0.116	(3.256 -0.409 -0.135 -0.291) Iteration 3000
0.012	(7.596 -0.748 -0.361 -0.588) Iteration 30000
	(11.975 -1.091 -0.599 -0.896) Iteration 300000

Example: Find J

As $(w_0, w_1, w_2, w_3) = (0.5, 0.5, 0.5, 0.5)$, $v = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3$ $y(x^{(i)}, w) = \sigma(v)$ And log term is $-y^{(i)} \log(y(x^{(i)}, w)) - (1 - y^{(i)}) \log(1 - y(x^{(i)}, w))$

i	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>y</i> ⁽ⁱ⁾	V	$y(x^{(i)}, w)$	log term
1	2	2	2	1	3.5	0.970	0.029
2	3	2	2	1	4.0	0.982	0.018
3	2	3	2	1	4.0	0.982	0.018
4	2	2	3	1	4.0	0.982	0.018
5	7	6	9	0	11.5	0.999	11.49
6	9	7	6	0	11.5	0.999	11.49
7	9	6	7	0	11.5	0.999	11.49
8	6	8	9	0	12	0.999	11.51
9	8	9	6	0	12	0.999	11.51
10	8	9	9	0	13	0.999	11.51
						Total/10:	6.9118

Example: Find next W

Let
$$(w_0, w_1, w_2, w_3) = (0.5, 0.5, 0.5, 0.5)$$
 and $t_i = (y(x^{(i)}, w) - y^{(i)})x_j^{(i)}$
Then $\frac{1}{m} \sum_{i=1}^m (y(x^{(i)}, w) - y^{(i)})x_j^{(i)} = \frac{1}{m} \sum_{i=1}^m t_i$ let $\hat{y}^{(i)} = y(x^{(i)}, w)$
Then update w_i with $w_i - \alpha \times \frac{1}{m} \sum_{i=1}^m t_i$ we have set $\alpha = 0.01$

i	<i>x</i> ₀	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	$y^{(i)}$	$\hat{y}^{(i)}$	t_0	t_1	t_2	t_3
1	1	2	2	2	1	0.970	-0.029	-0.058	-0.058	-0.058
2	1	3	2	2	1	0.982	-0.017	-0.053	-0.035	-0.035
3	1	2	3	2	1	0.982	-0.017	-0.035	-0.053	-0.035
4	1	2	2	3	1	0.982	-0.017	-0.035	-0.035	-0.053
5	1	7	6	9	0	0.999	0.999	6.999	5.999	8.999
6	1	9	7	6	0	0.999	0.999	8.999	6.999	5.999
7	1	9	6	7	0	0.999	0.999	8.999	5.999	6.999
8	1	6	8	9	0	0.999	0.999	5.999	7.999	8.999
9	1	8	9	6	0	0.999	0.999	7.999	8.999	5.999
10	1	8	9	9	0	0.999	0.999	7.999	8.999	8.999
					1	Total	5.916	46.815	44.815	45.815

| ロ > 4 @ > 4 差 > 4 差 > 差 9 Q (

0.494

0.453

 $\mathbf{w}_i - \alpha \times (total/m)$

0.455

0.454

Example: Classification across Iterations

Following table shows classification as the weights get modified along 1st, 100th, 300th and 500th iteration

i	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>y</i> ⁽ⁱ⁾	1	100	300	500
1	2	2	2	1	1	0	1	1
2	3	2	2	1	1	0	0	1
3	2	3	2	1	1	0	1	1
4	2	2	3	1	1	0	1	1
5	7	6	9	0	1	0	0	0
6	9	7	6	0	1	0	0	0
7	9	6	7	0	1	0	0	0
8	6	8	9	0	1	0	0	0
9	8	9	6	0	1	0	0	0
10	8	9	9	0	1	0	0	0

Grouping data based on their homogeneity (similarity or closeness).

Grouping data based on their homogeneity (similarity or closeness).

Grouping data based on their homogeneity (similarity or closeness).

Objects within a group are similar (or related) and are different from the objects in other groups.

Grouping data based on their homogeneity (similarity or closeness).

Objects within a group are similar (or related) and are different from the objects in other groups. When it is better?

• Unsupervised in nature (i.e. right answers are not known)

³object is closer (more similar) to a prototype

- **Unsupervised** in nature (i.e. right answers are not known)
- Clustering is useful to 1) Summarization,

³object is closer (more similar) to a prototype

- **Unsupervised** in nature (i.e. right answers are not known)
- Clustering is useful to 1) Summarization, 2) Compression,

³object is closer (more similar) to a prototype

- Unsupervised in nature (i.e. right answers are not known)
- Clustering is useful to 1) Summarization, 2) Compression, and 3)
 Efficiently Finding Nearest Neighbors

³object is closer (more similar) to a prototype

- Unsupervised in nature (i.e. right answers are not known)
- Clustering is useful to 1) Summarization, 2) Compression, and 3)
 Efficiently Finding Nearest Neighbors
- Type:
 - Hierarchical (nested) versus Partitional

- Unsupervised in nature (i.e. right answers are not known)
- Clustering is useful to 1) Summarization, 2) Compression, and 3)
 Efficiently Finding Nearest Neighbors
- Type:
 - Hierarchical (nested) versus Partitional
 - Exclusive versus Overlapping versus Fuzzy

- Unsupervised in nature (i.e. right answers are not known)
- Clustering is useful to 1) Summarization, 2) Compression, and 3)
 Efficiently Finding Nearest Neighbors
- Type:
 - Hierarchical (nested) versus Partitional
 - Exclusive versus Overlapping versus Fuzzy
 - Complete versus Partial

- **Unsupervised** in nature (i.e. right answers are not known)
- Clustering is useful to 1) Summarization, 2) Compression, and 3)
 Efficiently Finding Nearest Neighbors
- Type:
 - Hierarchical (nested) versus Partitional
 - Exclusive versus Overlapping versus Fuzzy
 - Complete versus Partial
- **K-means:** This is a prototype-based³, partitional clustering technique that attempts to find a user-specified number of clusters (K), which are represented by their centroids.

Clustering Approaches

Center-based clusters.

Contiguity-based clusters.

Density-based clusters.

Conceptual clusters.

K-means Algorithm

Number of clusters *i.e.* the value of *K* is provided by the user

K-means Algorithm

Number of clusters *i.e.* the value of *K* is provided by the user

Algorithm 18: K-means

- 1 Randomly select K points as centroids
- 2 repeat
- 3 foreach datum point d_i do
- Assign *d_i* to one of the <u>closest</u> centroids (thereby forming *K* clusters)
- Recompute centroid (mean) for each cluster
- 6 until The centroids converge;

K-means Algorithm

Number of clusters *i.e.* the value of *K* is provided by the user

Algorithm 19: K-means

- Randomly select K points as centroids
- 2 repeat
- 3 foreach datum point d_i do
- Assign d_i to one of the <u>closest</u> centroids (thereby forming K clusters)
- Recompute centroid (mean) for each cluster
- 6 until The centroids converge;

Closeness is measured by **Euclidean distance**, cosine similarity, correlation, Bregman divergence *etc*

K-means in Action

For a given data set $\{x_1, x_2, ..., x_n\}$, let K-means partitions it in $\{S_1, S_2, ..., S_K\}$ then the objective is

$$\underset{S}{\operatorname{argmin}} \sum_{i=1}^{K} \sum_{x \in S_i} dist^2(x, \mu_i)$$

⁴Hamerly, Greg and Elkan, Charles, "Learning the k in k-means", pp 281–288, NIPS-2003 🗇 🔻 📱 🔻 📜 💉 🤄 🗸

For a given data set $\{x_1, x_2, ..., x_n\}$, let K-means partitions it in $\{S_1, S_2, ..., S_K\}$ then the objective is

$$\underset{S}{\operatorname{argmin}} \sum_{i=1}^{K} \sum_{x \in S_i} dist^2(x, \mu_i)$$

where μ_i corresponds to i^{th} centroid. $\mu_i = \frac{1}{|S_i|} \sum_{x \in S_i} x$

Typical choice for dist function is Euclidean Distance

Hamerly, Greg and Elkan, Charles, "Learning the k in k-means", pp 281–288, NIPS-2003 🗇 🕨 4 🛢 🕨 4 🛢 🔻 🛇 🤉

For a given data set $\{x_1, x_2, ..., x_n\}$, let K-means partitions it in $\{S_1, S_2, ..., S_K\}$ then the objective is

$$\underset{S}{\operatorname{argmin}} \sum_{i=1}^{K} \sum_{x \in S_i} dist^2(x, \mu_i)$$

where μ_i corresponds to i^{th} centroid. $\mu_i = \frac{1}{|S_i|} \sum_{x \in S_i} x$

• Typical choice for *dist* function is Euclidean Distance

How to proceed?

- Choose a K (How?)
 - Run K-means algorithm multiple times
 - Choose clusters corresponding to the one that minimized sum of squared error (SSE)

⁴Hamerly, Greg and Elkan, Charles, "Learning the k in k-means", pp 281–288, NIPS-2003 🗗 🕨 😩 🕨 😩 🔻 🔍 🔾

For a given data set $\{x_1, x_2, ..., x_n\}$, let K-means partitions it in $\{S_1, S_2, ..., S_K\}$ then the objective is

$$\underset{S}{\operatorname{argmin}} \sum_{i=1}^{K} \sum_{x \in S_i} dist^2(x, \mu_i)$$

where μ_i corresponds to i^{th} centroid. $\mu_i = \frac{1}{|S_i|} \sum_{x \in S_i} x$

• Typical choice for dist function is Euclidean Distance

How to proceed?

- Choose a K (How?)
 - Run K-means algorithm multiple times
 - Choose clusters corresponding to the one that minimized sum of squared error (SSE)
- If K == n, no error.

⁴Hamerly, Greg and Elkan, Charles, "Learning the k in k-means", pp 281–288, NIPS-2003 🗇 🔻 😩 ト 🕻 🖹 ト ト 📜 🔻 🔍 🤉 🦠

For a given data set $\{x_1, x_2, ..., x_n\}$, let K-means partitions it in $\{S_1, S_2, ..., S_K\}$ then the objective is

$$\underset{\mathcal{S}}{\operatorname{argmin}} \sum_{i=1}^{K} \sum_{x \in \mathcal{S}_i} \textit{dist}^2(x, \mu_i)$$

where μ_i corresponds to i^{th} centroid. $\mu_i = \frac{1}{|S_i|} \sum_{x \in S_i} x$

• Typical choice for dist function is Euclidean Distance

How to proceed?

- Choose a K (How?)
 - Run K-means algorithm multiple times
 - Choose clusters corresponding to the one that minimized sum of squared error (SSE)

Good clustering has smaller K

Choosing K:

• Choosing K: 1) Domain Knowledge,

 Choosing K: 1) Domain Knowledge, 2) Preprocessing with another algorithm,

- Choosing K: 1) Domain Knowledge, 2) Preprocessing with another algorithm, 3) Iteration on K
- Initialization of Centers:

- Choosing K: 1) Domain Knowledge, 2) Preprocessing with another algorithm, 3) Iteration on K
- Initialization of Centers: 1) Random point in space,

- Choosing K: 1) Domain Knowledge, 2) Preprocessing with another algorithm, 3) Iteration on K
- Initialization of Centers: 1) Random point in space, 2) Random point of data,

- Choosing K: 1) Domain Knowledge, 2) Preprocessing with another algorithm, 3) Iteration on K
- Initialization of Centers: 1) Random point in space, 2) Random point of data, 3) look for dense region, 4) Space uniformly in feature space
- Cluster Quality:

- Choosing K: 1) Domain Knowledge, 2) Preprocessing with another algorithm, 3) Iteration on K
- Initialization of Centers: 1) Random point in space, 2) Random point of data, 3) look for dense region, 4) Space uniformly in feature space
- Cluster Quality: 1) Diameter of cluster verses Inter-cluster distance,

- Choosing K: 1) Domain Knowledge, 2) Preprocessing with another algorithm, 3) Iteration on K
- Initialization of Centers: 1) Random point in space, 2) Random point of data, 3) look for dense region, 4) Space uniformly in feature space
- Cluster Quality: 1) Diameter of cluster verses Inter-cluster distance, 2) Distance between members of a cluster and the cluster center,

- Choosing K: 1) Domain Knowledge, 2) Preprocessing with another algorithm, 3) Iteration on K
- Initialization of Centers: 1) Random point in space, 2) Random point of data, 3) look for dense region, 4) Space uniformly in feature space
- Cluster Quality: 1) Diameter of cluster verses Inter-cluster distance, 2) Distance between members of a cluster and the cluster center, 3) Diameter of smallest sphere,

- Choosing K: 1) Domain Knowledge, 2) Preprocessing with another algorithm, 3) Iteration on K
- Initialization of Centers: 1) Random point in space, 2) Random point of data, 3) look for dense region, 4) Space uniformly in feature space
- Cluster Quality: 1) Diameter of cluster verses Inter-cluster distance, 2) Distance between members of a cluster and the cluster center, 3) Diameter of smallest sphere, 4) Ability to discover hidden patterns

- Has problem when data has
 - Different size clusters

- Has problem when data has
 - Different size clusters
 - Different densities

- Has problem when data has
 - Different size clusters
 - Different densities
 - Non-globular shape

- Has problem when data has
 - Different size clusters
 - Different densities
 - Non-globular shape
- Handling Empty Clusters

- Has problem when data has
 - Different size clusters
 - Different densities
 - Non-globular shape
- Handling Empty Clusters
- When there are outliers

- Has problem when data has
 - Different size clusters
 - Different densities
 - Non-globular shape
- Handling Empty Clusters
- When there are outliers
- Updating Centroids Incrementally

Important Note:

K-Means and K-NN are different (K nearest neighbors)

K-NN is a supervised approach for classification

Other Clustering Approaches

 K-Medoids: chooses data point as center and minimizes a sum of pairwise dissimilarities. Resistance to noise and/or outliers

Other Clustering Approaches

- K-Medoids: chooses data point as center and minimizes a sum of pairwise dissimilarities. Resistance to noise and/or outliers
- Agglomerative Hierarchical Clustering: repeatedly merging the two closest clusters until a single (Single Link)

Other Clustering Approaches

- K-Medoids: chooses data point as center and minimizes a sum of pairwise dissimilarities. Resistance to noise and/or outliers
- Agglomerative Hierarchical Clustering: repeatedly merging the two closest clusters until a single (Single Link)

 DBSCAN: density-based clustering algorithm that produces a partitional clustering, in which the number of clusters is automatically determined by the algorithm.