1100000

Access DB#

SEARCH REQUEST FORM

Scientific and Technical Information Center

Requester's Full Name: Jeffrey E. Russel Examiner #: 62785 Date: 4-6-2004
\sim 1/C.1 Di \sim Ni-libra 28 Colla 20 AG/ α Serial Nilmbell (A) (D) \sim 28 \sim
Mail Box and Bldg/Room Location: Results Format Preferred (circle): PAPER DISK EMIAIL
(CEM < DII (m. Nov) SD19 (othice)
if more than one search is submitted, please prioritize searches in order of need.
Please provide a detailed statement of the search topic, and describe as specifically as possible the subject matter to be searched. Include the elected species or structures, keywords, synonyms, acronyms, and registry numbers, and combine with the concept or utility of the invention. Define any terms that may have a special meaning. Give examples or relevant citations, authors, etc. if known. Please attach a copy of the cover sheet, pertinent claims, and abstract.
Title of Invention: Radiolabeled Mammalian Tachykinin Peptide Analogue
Inventors (please provide full names): P. Armus
Earliest Priority Filing Date: $S-2(-200)$.
For Sequence Searches Only Please include all pertinent information (parent, child, divisional, or issued patent numbers) along with the appropriate serial number.
Please Search SEQ ID NO:1 (FX GLM) in STN,
h. U.S. patest application sequence database (pending, published,
and issued and in Genesey (Swisspret / P.T. Please require any
hits to have 15 or fewer residues.
Mark you.
J3R

10/030388

(FILE 'REGISTRY' ENTERED AT 14:59:16 ON 07 APR 2004) L5 4109 S F[FIV]GLM/SQSP L6 2407 S L5 AND SQL=<15 FILE 'HCAPLUS' ENTERED AT 15:00:15 ON 07 APR 2004 L54109 SEA FILE=REGISTRY ABB=ON PLU=ON F[FIV]GLM/SQSP L6 2407 SEA FILE=REGISTRY ABB=ON PLU=ON L5 AND SQL=<15 14575 SEA FILE=HCAPLUS ABB=ON PLU=ON L6 L7 L9 113 SEA FILE=HCAPLUS ABB=ON PLU=ON L7 AND (RADIOLABEL? OR RADIO LABEL?) L10 51 SEA FILE=HCAPLUS ABB=ON PLU=ON L9 AND TACHYKININ L16 5 SEA FILE=HCAPLUS ABB=ON PLU=ON L10 AND MAMMAL? L16 ANSWER 1 OF 5 HCAPLUS COPYRIGHT 2004 ACS on STN Entered STN: 03 Sep 2002 ACCESSION NUMBER: 2002:662100 HCAPLUS DOCUMENT NUMBER: 138:19555 TITLE: Central neuropeptide systems and respiratory control during development AUTHOR(S): Moss, Immanuela Rave; Laferriere, Andre CORPORATE SOURCE: Development Respiratory Laboratory, The Research Institute of the McGill University Health Centre, Montreal, QC, H3H 1P3, Can. SOURCE: Respiratory Physiology & Neurobiology (2002), 131(1-2), 15-27CODEN: RPNEAV; ISSN: 1569-9048 PUBLISHER: Elsevier Science Ltd. DOCUMENT TYPE: Journal; General Review LANGUAGE: English A review. The substance P/neurotachykinin-1 (NK-1) and the $\mu\text{-opioid}$ G protein-coupled receptor systems endow brain-stem respiratory regions and display discrete developmental patterns. Hypoxia-induced neuropeptide release may increase receptor endocytosis, reducing receptor accessibility to ligands. We wondered whether the attenuated respiratory response to hypoxia of developing piglets after single or repeated daily hypoxic exposure is influenced by differential endocytosis of NK-1 vs. $\mu\text{-opioid}$ receptors. Whereas the long-term (24 h) response of both receptors to recurrent hypoxia in piglet brainstem is similar, i.e. upregulation, the short-term (5 min) response to single or recurrent hypoxia, albeit in rats, is different: radiolabeled NK-1 receptors are greatly reduced, suggesting enhanced endocytosis, but μ -opioid receptors remain unchanged, implying unaltered endocytosis. If confirmed in piglet brainstem, this difference would produce relatively more available $\mu\text{-opioid}$ receptors to opioid peptides in hypoxia that might contribute to the attenuated respiratory responses to single and repeated hypoxia during development. IT 33507-63-0, Substance P RL: BSU (Biological study, unclassified); BIOL (Biological study) (central neuropeptide systems and respiratory control during development) REFERENCE COUNT: 62 THERE ARE 62 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

Searcher : Shears 571-272-2528

```
L16 ANSWER 2 OF 5 HCAPLUS COPYRIGHT 2004 ACS on STN
      Entered STN: 12 Jan 2001
 ACCESSION NUMBER:
                          2001:31364 HCAPLUS
 DOCUMENT NUMBER:
                          134:82815
 TITLE:
                          A radiolabeled mammalian
                          tachykinin peptide analogue
 INVENTOR(S):
                          Ortiz Armua, Pedro
 PATENT ASSIGNEE(S):
                          Spain
 SOURCE:
                          PCT Int. Appl., 12 pp.
                          CODEN: PIXXD2
 DOCUMENT TYPE:
                          Patent
 LANGUAGE:
                          English
FAMILY ACC. NUM. COUNT:
PATENT INFORMATION:
      PATENT NO.
                       KIND
                             DATE
                                            APPLICATION NO. DATE
      ______
                             -----
                                            _____
     WO 2001002021
                       A2
                             20010111
                                            WO 2000-IB1260 20000705
     WO 2001002021
                       A3
                             20020207
             AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR,
             CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU,
             ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT,
             LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU,
             SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ,
             VN, YU, ZA, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM
         RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH,
             CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG
     EP 1196200
                      A2 20020417
                                           EP 2000-954837 20000705
             AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC,
             PT, IE, SI, LT, LV, FI, RO
     ZA 2002000096
                            20030404
                      A
                                           ZA 2002-96
                                                             20020104
PRIORITY APPLN. INFO.:
                                         ES 1999-1489
                                                          A 19990705
                                        WO 2000-IB1260
                                                        W 20000705
AB
     A radiolabeled mammalian tachykinin
     peptide analog; use of the analog for mammalian in vivo
     tachykinin peptide receptor imaging; and a diagnostic kit
     comprising the analog are described. 99mTc-labeled substance P,
     prepared using 2-iminothiolane as linker, showed good uptake in
     salivary glands of mice.
IT
     33507-63-0DP, Substance P peptide, 99mTc-labeled
     RL: BPR (Biological process); BSU (Biological study, unclassified);
     SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological
     study); PREP (Preparation); PROC (Process); USES (Uses)
        (radiolabeled mammalian tachykinin
        peptide analog for diagnostic imaging)
     4846-01-9D, Phe-Ile-Gly-Leu-Met-NH2, radiolabeled
IT
    derivs. 51165-05-0D, Phe-Phe-Gly-Leu-Met-NH2,
    radiolabeled derivs. 86933-74-6D, Neurokinin A,
    radiolabeled 86933-74-6D, Neurokinin A,
    radiolabeled derivs. 86933-75-7D, Neurokinin B
     (swine spinal cord), radiolabeled 89671-31-8D,
    Phe-Val-Gly-Leu-Met-NH2, radiolabeled derivs.
    RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
        (radiolabeled mammalian tachykinin
       peptide analog for diagnostic imaging)
```

Searcher :

Shears

571-272-2528

L16 ANSWER 3 OF 5 HCAPLUS COPYRIGHT 2004 ACS on STN

Entered STN: 17 Feb 1990

ACCESSION NUMBER: 1990:49215 HCAPLUS

DOCUMENT NUMBER: 112:49215

TITLE: Identification of immunoreactive substance P in

human and other mammalian endothelial

cells

AUTHOR(S): Linnik, Matthew D.; Moskowitz, Michael A. CORPORATE SOURCE: Neurol. Neurosurg. Serv., Massachusetts Gen.

Hosp., Boston, MA, 02114, USA

SOURCE: Peptides (New York, NY, United States) (1989),

10(5), 957-62

CODEN: PPTDD5; ISSN: 0196-9781

DOCUMENT TYPE:

Journal

LANGUAGE: English

The existence of the vasodilatory tachykinin substance P within endothelial cell scrapings from human, rat, and dog thoracic aorta and human pial arteries with values ranging from $1.0\,$ (rat aorta) to 1.9 (dog aorta) fmol/mg protein is described. The immunoreactive component eluted with a retention time identical to that of radiolabeled substance P when analyzed by HPLC combined with RIA. Cultured endothelial cells from bovine cerebral microvessels contained measurable levels of substance P in passages 3-8, suggesting the likelihood that these cells synthesize substance P. However, the level of gene expression must be low since efforts to demonstrate the presence of preprotachykinin mRNA by Northern blot anal. of dog and rat aortic endothelial cell RNA or by RNase protection anal. of rat aortic endothelial cell RNA were not successful.

IT 33507-63-0, Substance P RL: BIOL (Biological study)

(in vascular endothelium, of humans and other mammals)

L16 ANSWER 4 OF 5 HCAPLUS COPYRIGHT 2004 ACS on STN

Entered STN: 30 Apr 1989

ACCESSION NUMBER: 1989:148516 HCAPLUS

DOCUMENT NUMBER: 110:148516

TITLE: Substance P and substance K receptor binding

sites in the human gastrointestinal tract:

localization by autoradiography

AUTHOR(S): Gates, T. S.; Zimmerman, R. P.; Mantyh, C. R.; Vigna, S. R.; Maggio, J. E.; Welton, M. L.;

Passaro, E. P., Jr.; Mantyh, P. W.

CORPORATE SOURCE:

Cent. Ulcer Res. Educ., VA Med. Cent. Wadsworth,

Los Angeles, CA, 90073, USA

SOURCE: Peptides (New York, NY, United States) (1988),

9(6), 1207-19 CODEN: PPTDD5; ISSN: 0196-9781

DOCUMENT TYPE: Journal LANGUAGE: English

Quant. receptor autoradiog. was used to localize and quantify the distribution of binding sites for 125I-radiolabeled substance P (SP), substance K (SK) and neuromedin K (NK) in the human gastrointestinal (GI) tract using histol. normal tissue obtained from uninvolved margins of resections for carcinoma. The

> Searcher : 571-272-2528 Shears

distribution of SP and SK binding sites is different for each gastrointestinal segment examined Specific SP binding sites are expressed by arterioles and venules, myenteric plexus, external circular muscle, external longitudinal muscle, muscularis mucosa, epithelial cells of the mucosa, and the germinal centers of lymph nodules. SK binding sites are distributed in a pattern distinct from SP binding sites and are localized to the external circular muscle, external longitudinal muscle, and the muscularis mucosa. Binding sites for NK were not detected in any part of the human GI tract. Thus, surgical specimens from the human GI tract can be effectively processed for quant. receptor autoradiog. Of the 3 mammalian tachykinins tested, SP and SK, but not NK, binding sites are expressed in detectable levels in the human GI tract. Although SK receptor binding sites are expressed almost exclusively by smooth muscle, SP binding sites are expressed by smooth muscle cells, arterioles, venules, epithelial cells of the mucosa and cells associated with lymph nodules; both SP and SK binding sites expressed by smooth muscle are more stable than are SP binding sites expressed by blood vessels, lymph nodules, and mucosal cells.

86933-75-7, Neuromedin K

RL: PROC (Process)

(binding of, by gastrointestinal tract of human)

33507-63-0, Substance P 86933-74-6 IT

RL: BIOL (Biological study)

(receptors for, of gastrointestinal tract of human, localization of)

L16 ANSWER 5 OF 5 HCAPLUS COPYRIGHT 2004 ACS on STN

Entered STN: 01 Nov 1986

ACCESSION NUMBER: 1986:546964 HCAPLUS

DOCUMENT NUMBER: 105:146964

TITLE:

Characterization of a neurokinin B receptor site

in rat brain using a highly selective

radioligand

AUTHOR(S): Laufer, Ralph; Gilon, Chaim; Chorev, Michael;

Selinger, Zvi

CORPORATE SOURCE:

Otto Loewi Cent. Neurobiol., Inst. Life Sci., Jerusalem, 91904, Israel

SOURCE: Journal of Biological Chemistry (1986), 261(22), 10257-63

CODEN: JBCHA3; ISSN: 0021-9258

DOCUMENT TYPE:

Journal

LANGUAGE: English

A tachykinin receptor subtype (SP-N), whose preferred ligand is the mammalian neuropeptide neurokinin B [86933-75-7], was investigated with the radiolabeled peptide 5-11-N α -([1251]desamino-3-iodotyrosyl)-[Asp5,6-Nmethyl-Phe8]-substance P (I) [104499-96-9], which selectively interacts with the SP-N receptor subtype. The binding of I to rat cerebral cortex membranes was studied under conditions that minimized nonspecific binding. Unlike other tachykinin receptor probes, this radioligand is not degraded during the binding experiment Binding of I is reversible, saturable, and of high affinity (dissociation constant = 0.9 nM). The radioligand labels a single class of binding site (122 fmol binding sites/mg of protein), as indicated by a linear Scatchard plot and a Hill coefficient close to unity (1.05).

10/030388

The pharmacol. specificity of this binding site corresponds to that of the neuronal SP-N receptor in guinea pig ileum myenteric plexus, which was determined by a functional bioassay. Among various rat brain regions, the highest binding was observed in the cerebral cortex, olfactory bulb, hypothalamus, and hippocampus. The results suggest the existence and specific distribution of a neurokinin B receptor site of the SP-N type in rat brain. I is the 1st selective and potent probe for this receptor and is thus an important tool for further studies of its distribution, regulation, and functional role.

IT 103445-39-2

RL: PROC (Process)

(neurokinin B receptor binding of, in brain)

IT 104499-96-9P

RL: SPN (Synthetic preparation); PREP (Preparation)

(preparation and neurokinin B receptor characterization with)

IT 104499-97-0

RL: PROC (Process)

(radioiodination and neurokinin B receptor binding of)

IT 86933-75-7

RL: BIOL (Biological study)

(receptor for, of brain, selective probe for)

E1 THROUGH E9 ASSIGNED

FILE 'REGISTRY' ENTERED AT 15:07:34 ON 07 APR 2004

L18

9 SEA FILE=REGISTRY ABB=ON PLU=ON (33507-63-0/BI OR 86933-74-6/BI OR 86933-75-7/BI OR 103445-39-2/BI OR 104499-96-9/BI OR 104499-97-0/BI OR 4846-01-9/BI OR 51165-05-0/BI OR 89671-31-8/BI)

=> s 118 and 15

L20 9 L18 AND L5

L20 ANSWER 1 OF 9 REGISTRY COPYRIGHT 2004 ACS on STN

RN 104499-97-0 REGISTRY

CN L-Methioninamide, L- α -aspartyl-L- α -aspartyl-L-phenylalanylglycyl-L-leucyl- (9CI) (CA INDEX NAME)

OTHER NAMES:

CN Aminosenktide

SQL 7

SEQ 1 DDFFGLM

HITS AT: 3-7

RELATED SEQUENCES AVAILABLE WITH SEQLINK

REFERENCE 1: 135:298650

REFERENCE 2: 130:119984

REFERENCE 3: 130:20972

Searcher : Shears 571-272-2528

10/030388

REFERENCE 4: 129:131634 REFERENCE 5: 125:318273 REFERENCE 6: 120:210557 REFERENCE 7: 120:46561 REFERENCE 120:24074 8: REFERENCE 9: 118:205901 REFERENCE 10: 118:33494 L20 ANSWER 2 OF 9 REGISTRY COPYRIGHT 2004 ACS on STN **104499-96-9** REGISTRY L-Methioninamide, N-[3-[4-hydroxy-3-(iodo-125I)phenyl]-1-oxopropyl]- $L-\alpha$ -aspartyl- $L-\alpha$ -aspartyl-L-phenylalanyl-N-methyl-Lphenylalanylglycyl-L-leucyl- (9CI) (CA INDEX NAME) SQL SEQ 1 DDFFGLM HITS AT: 3-7 **RELATED SEQUENCES AVAILABLE WITH SEQLINK** REFERENCE 1: 105:146964 L20 ANSWER 3 OF 9 REGISTRY COPYRIGHT 2004 ACS on STN RN 103445-39-2 REGISTRY L-Methioninamide, 5-oxo-L-prolyl-L-phenylalanyl-N-methyl-L-CN phenylalanylglycyl-L-leucyl- (9CI) (CA INDEX NAME) SQL SEO 1 XFFGLM ===== HITS AT: 2-6 **RELATED SEQUENCES AVAILABLE WITH SEQLINK** REFERENCE 1: 130:25326 REFERENCE 119:181203 2: REFERENCE 3: 110:166270 REFERENCE 4: 109:205353 REFERENCE 5: 109:17666 REFERENCE 6: 107:229502

Searcher : Shears 571-272-2528

REFERENCE

REFERENCE

7:

8:

106:150010

105:146964

```
REFERENCE
             9: 105:57318
 L20 ANSWER 4 OF 9 REGISTRY COPYRIGHT 2004 ACS on STN
 RN
      89671-31-8 REGISTRY
      L-Methioninamide, L-phenylalanyl-L-valylglycyl-L-leucyl- (9CI) (CA
 CN
      INDEX NAME)
 OTHER NAMES:
      6-10-Neurokinin \alpha
      Phe-Val-Gly-Leu-Met-NH2
 CN
 CI
      COM
 SQL 5
 SEQ
          1 FVGLM
 HITS AT:
            1-5
 **RELATED SEQUENCES AVAILABLE WITH SEQLINK**
REFERENCE
             1: 134:82815
REFERENCE
             2:
                 133:190228
REFERENCE
                124:165481
REFERENCE
                122:151508
             4:
REFERENCE
             5:
                121:108267
REFERENCE
             6:
                116:121078
            7: 113:224635
REFERENCE
REFERENCE
            8: 104:168810
REFERENCE
            9:
                104:142380
REFERENCE 10: 103:196387
L20 ANSWER 5 OF 9 REGISTRY COPYRIGHT 2004 ACS on STN
     86933-75-7 REGISTRY
     Neurokinin B (swine spinal cord) (9CI) (CA INDEX NAME)
OTHER CA INDEX NAMES:
     Kassinin, 2-L-methionine-3-L-histidine-4-de-L-lysine-5-de-L-serine-7-
     L-phenylalanine-
OTHER NAMES:
     L-Methioninamide, L-\alpha-aspartyl-L-methionyl-L-histidyl-L-
     \alpha-aspartyl-L-phenylalanyl-L-phenylalanyl-L-valylglycyl-L-
     leucyl-
CN
     Neurokinin \beta
CN
     Neurokinin \beta (pig spinal cord)
     Neurokinin B (human)
CN
CN
     Neurokinin B (pig spinal cord)
CN
     Neurokinin B (porcine)
     Neuromedin K
CN
CN
     Neuromedin K (pig spinal cord)
```

Shears

571-272-2528

Searcher :

```
CN
                  Porcine neurokinin B
   CN
                  Zneurok1 (human)
   CI
                  COM
   SQL 10
   SEO
                               1 DMHDFFVGLM
                                                     =====
  HITS AT:
                                     6-10
   **RELATED SEQUENCES AVAILABLE WITH SEQLINK**
  REFERENCE
                                       1:
                                                   140:174859
  REFERENCE
                                                   140:157919
  REFERENCE
                                       3:
                                                   140:71480
  REFERENCE
                                                   140:71475
                                       4:
  REFERENCE
                                       5:
                                                   139:391722
 REFERENCE
                                       6:
                                                  139:375562
 REFERENCE
                                       7:
                                                  139:362106
 REFERENCE
                                                  139:286548
                                       8:
 REFERENCE
                                      9: 139:224854
 REFERENCE 10: 139:208098
 L20 ANSWER 6 OF 9 REGISTRY COPYRIGHT 2004 ACS on STN
 RN
                86933-74-6 REGISTRY
                Neurokinin A (swine spinal cord) (9CI) (CA INDEX NAME)
 OTHER CA INDEX NAMES:
                Kassinin, 1-de-L-aspartic acid-2-de-L-valine-3-L-histidine-5-L-
                threonine-7-L-serine-
OTHER NAMES:
               L-Methionina mide, \ L-histidyl-L-lysyl-L-threonyl-L-\alpha-aspartyl-L-threonyl-L-\alpha-aspartyl-L-threonyl-L-\alpha-aspartyl-L-threonyl-L-\alpha-aspartyl-L-threonyl-L-\alpha-aspartyl-L-threonyl-L-\alpha-aspartyl-L-threonyl-L-\alpha-aspartyl-L-threonyl-L-\alpha-aspartyl-L-threonyl-L-\alpha-aspartyl-L-threonyl-L-\alpha-aspartyl-L-threonyl-L-\alpha-aspartyl-L-threonyl-L-\alpha-aspartyl-L-threonyl-L-\alpha-aspartyl-L-threonyl-L-\alpha-aspartyl-L-threonyl-L-\alpha-aspartyl-L-threonyl-L-\alpha-aspartyl-L-threonyl-L-\alpha-aspartyl-L-threonyl-L-\alpha-aspartyl-L-threonyl-L-\alpha-aspartyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threonyl-L-threon
                seryl-L-phenylalanyl-L-valylglycyl-L-leucyl-
CN
               Neurokinin \alpha
CN
               Neurokinin \alpha (pig spinal cord)
CN
               Neurokinin \alpha (porcine)
CN
               Neurokinin A
               Neurokinin A (alligator)
CN
               Neurokinin A (pig spinal cord)
CN
               Neurokinin A (Python molurus)
CN
               Neuromedin L
               Neuromedin L (pig spinal cord)
CN
CN
               Porcine neurokinin A
CN
               Substance K
CI
               COM
SQL
              10
SEQ
                           1 HKTDSFVGLM
```

Searcher: Shears 571-272-2528

=====

HITS AT: 6-10

RELATED SEQUENCES AVAILABLE WITH SEQLINK

REFERENCE 1: 140:229875

REFERENCE 2: 140:193438

REFERENCE 3: 140:193061

REFERENCE 4: 140:174869

REFERENCE 5: 140:174859

REFERENCE 6: 140:157919

REFERENCE 7: 140:140827

REFERENCE 8: 140:123112

REFERENCE 9: 140:107276

REFERENCE 10: 140:71486

L20 ANSWER 7 OF 9 REGISTRY COPYRIGHT 2004 ACS on STN

RN 51165-05-0 REGISTRY

CN L-Methioninamide, L-phenylalanyl-L-phenylalanylglycyl-L-leucyl-(9CI) (CA INDEX NAME)

OTHER NAMES:

CN 7-11-Substance P

CN Phe-Phe-Gly-Leu-Met-NH2

CN Substance P pentapeptide

CI COM

SQL 5

SEQ 1 FFGLM

====

HITS AT: 1-5

RELATED SEQUENCES AVAILABLE WITH SEQLINK

REFERENCE 1: 139:341728

REFERENCE 2: 139:144282

REFERENCE 3: 138:21218

REFERENCE 4: 137:195720

REFERENCE 5: 136:366698

REFERENCE 6: 136:260222

REFERENCE 7: 136:227036

REFERENCE 8: 135:283312

Searcher : Shears 571-272-2528

```
REFERENCE
             9: 134:82815
 REFERENCE 10: 133:190228
L20 ANSWER 8 OF 9 REGISTRY COPYRIGHT 2004 ACS on STN
RN
      33507-63-0 REGISTRY
CN
      Substance P (9CI) (CA INDEX NAME)
OTHER NAMES:
     1: PN: US20020037833 SEQID: 1 unclaimed sequence
CN
      21: PN: WO0181408 SEQID: 44 claimed protein
CN
CN
     690: PN: WO2004005342 PAGE: 46 claimed protein
     L-Methioninamide, L-arginyl-L-prolyl-L-lysyl-L-prolyl-L-glutaminyl-L-
     glutaminyl-L-phenylalanyl-L-phenylalanylglycyl-L-leucyl-
CN
     Neurokinin P
     Substance P (1-11)
CN
CN
     Substance P (peptide)
CN
     Substance P (smooth-muscle stimulant)
CI
SQL
     11
SEQ
         1 RPKPQQFFGL M
HITS AT:
           7-11
**RELATED SEQUENCES AVAILABLE WITH SEQLINK**
REFERENCE
            1:
               140:234337
REFERENCE
            2:
                140:233882
REFERENCE
            3:
                140:233683
REFERENCE
            4:
                140:233682
REFERENCE
                140:233642
            5:
REFERENCE
            6:
                140:233061
REFERENCE
            7:
                140:232998
REFERENCE
            8:
                140:231826
REFERENCE
            9:
                140:230888
REFERENCE 10:
                140:229887
L20 ANSWER 9 OF 9 REGISTRY COPYRIGHT 2004 ACS on STN
RN
     4846-01-9 REGISTRY
CN
     L-Methioninamide, L-phenylalanyl-L-isoleucylglycyl-L-leucyl- (9CI)
     (CA INDEX NAME)
OTHER CA INDEX NAMES:
CN
    Methioninamide, L-phenylalanyl-L-isoleucylglycyl-L-leucyl-, L- (7CI)
CN
     Phyllomedusin, 1-de(5-oxo-L-proline)-2-de-L-asparagine-3-de-L-
    proline-4-de-L-asparagine-5-de-L-arginine- (8CI)
OTHER NAMES:
```

Searcher: Shears 571-272-2528

10/030388

CN Eledoisin(7-11)

CN Phe-Ile-Gly-Leu-Met-NH2

CI COM

SQL 5

SEQ 1 FIGLM

=====

HITS AT: 1-5

RELATED SEQUENCES AVAILABLE WITH SEQLINK

REFERENCE 1: 134:82815

REFERENCE 2: 124:165481

REFERENCE 3: 122:151508

REFERENCE 4: 113:224635

REFERENCE 5: 112:51088

REFERENCE 6: 99:116778

REFERENCE 7: 91:21126

REFERENCE 8: 90:204506

REFERENCE 9: 88:23378

REFERENCE 10: 77:13876

FILE 'HOME' ENTERED AT 15:08:24 ON 07 APR 2004

OM protein - protein search, using sw model

April 7, 2004, 09:21:32; Search time 39 Seconds Run on:

(without alignments)

40.451 Million cell updates/sec

US-10-030-388A-1 Title:

Perfect score: 22

Sequence: 1 FXGLM 5

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

Searched: 1017041 seqs, 315518202 residues

Total number of hits satisfying chosen parameters: 3954

Minimum DB seq length: 0 Maximum DB seq length: 15

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 1000 summaries

Database : SPTREMBL 25:*

1: sp_archea:*
2: sp_bacteria:*

3: sp_fungi:*

4: sp_human:*

5: sp_invertebrate:*

6: sp mammal:*

7: sp_mhc:*
8: sp_organelle:*

9: sp phage:*

10: sp plant:*

11: sp rodent:*

12: sp_virus:*

13: sp vertebrate:*

14: sp_unclassified:*

15: sp_rvirus:*

16: sp_bacteriap:*

17: sp_archeap:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result

용 Query

No. Score Match Length DB ID

Description

1	20	90.9	11 5 Q9UAR8	Q9uar8 aedes aegyp
2	18	81.8	15 11 Q924T1	Q924t1 rattus norv
3	15	68.2	10 8 Q35013	Q35013 meloidogyne
4	15	68.2	14 8 Q8M099	08m000 +1
5	15	68.2	15 8 Q9XLJ8	Q8m099 tockus nasu
6	15	68.2		Q9xlj8 grus leucog
7	14	63.6	~	Q9th03 grus paradi
8	13			Q9r541 mycobacteri
9		59.1	11 2 Q9R446	Q9r446 neisseria g
	12	54.5	8 13 P82079	P82079 limnodynast
10	12	54.5	9 6 Q8MJN1	Q8mjn1 cebuella py
11	12	54.5	9 6 Q8MJN6	Q8mjn6 aotus azara
12	12	54.5	9 6 Q8MJN8	Q8mjn8 cebus apell
13	12	54.5	9 6 Q8MJN2	Q8mjn2 callithrix
14	12	54.5	9 6 Q8MJN9	Q8mjn9 ateles fusc
15	12	54.5	9 6 Q8MJN5	Q8mjn5 saguinus fu
16	12	54.5	9 6 Q8MJN3	Q8mjn3 callimico g
17	12	54.5	9 6 Q8MJN7	Q8mjn7 saimiri sci
18	12	54.5	9 6 Q8MJN4	
19	12	54.5	9 15 Q85599	Q8mjn4 leontopithe
20	12	54.5	10 5 Q25356	Q85599 moloney mur
21	12	54.5	10 5 Q25355	Q25356 locusta mig
22	12	54.5	10	Q25355 locusta mig
23	12	54.5		P82080 limnodynast
24	12	54.5	· -	P82084 limnodynast
25	12	54.5	11 6 Q9TRX0	Q9trx0 sus scrofa
26			11 7 077872	077872 oreochromis
	12	54.5	11 7 077873	077873 oreochromis
27	12	54.5	11 7 077871	077871 oreochromis
28	12	54.5	12 2 Q53183	Q53183 rhodococcus
29	12	54.5	12 2 Q93UU4	Q93uu4 escherichia
30	12	54.5	12 6 Q9N2B9	Q9n2b9 gorilla gor
31	12	54.5	12 6 Q9N2B8	Q9n2b8 pongo pygma
32	12	54.5	12 6 Q9N2C0	Q9n2c0 pan troglod
33	12	54.5	12 6 P83127	P83127 bos indicus
34	12	54.5	12 10 Q9SYT4	Q9syt4 arabidopsis
35	12	54.5	12 10 Q02320	Q02320 pinus sylve
36	12	54.5	12 10 Q38715	Q38715 arachis hyp
37	12	54.5	12 10 Q02319	002210 minum molecular
38	12	54.5	12 11 054970	Q02319 pinus sylve
39	12	54.5	12 13 P82085	054970 mus musculu
40	12	54.5	13 4 Q9UDEO	P82085 limnodynast
41	12	54.5	13 4 Q96PIO	Q9ude0 homo sapien
42	12	54.5	13 4 Q90F10 13 5 Q9U5J2	Q96pi0 homo sapien
43	12	54.5		Q9u5j2 trypanosoma
44	12	54.5		Q9tnq8 homo sapien
45	12		13 13 P82848	P82848 rana pipien
		54.5	14 2 P96350	P96350 legionella
46	12	54.5	14 4 Q8IWS6	Q8iws6 homo sapien
47	12	54.5	14 10 P82327	P82327 pisum sativ
48	12	54.5	14 12 Q8V1H7	Q8v1h7 hepatitis b
49	12	54.5	14 13 P82831	P82831 rana luteiv
50	12	54.5	14 13 P82832	P82832 rana luteiv
51	12	54.5	15 2 Q9X637	Q9x637 klebsiella
52	12	54.5	15 2 Q46013	Q46013 caulobacter
53	12	54.5	15 2 Q9X635	Q9x635 escherichia
54	12	54.5	15 4 Q9UQA5	Q9uqa5 homo sapien
55	12	54.5	15 4 Q9BXQ0	Q9bxq0 homo sapien
56	12	54.5	15 5 Q27266	
57	12	54.5	15 6 Q8WNQ2	Q27266 trypanosoma
		-	Acutiva	Q8wnq2 sus scrofa

```
RESULT 1
Q9UAR8
ID
     Q9UAR8
                 PRELIMINARY;
                                   PRT;
                                           11 AA.
AC
     O9UAR8;
DT
     01-MAY-2000 (TrEMBLrel. 13, Created)
     01-MAY-2000 (TrEMBLrel. 13, Last sequence update)
DT
DT
     01-JUN-2003 (TrEMBLrel. 24, Last annotation update)
DE
     Sialokinin I preproprotein (Fragment).
OS
     Aedes aegypti (Yellowfever mosquito).
     Eukaryota; Metazoa; Arthropoda; Hexapoda; Insecta; Pterygota;
OC
OC
     Neoptera; Endopterygota; Diptera; Nematocera; Culicoidea; Aedes.
OX
     NCBI TaxID=7159;
RN
     [1]
RP
     SEQUENCE FROM N.A.
RC
     STRAIN=Rockefeller/Red; TISSUE=Salivary gland;
RX
     MEDLINE=20099025; PubMed=10620041;
RA
     Beerntsen B.T., Champagne D.E., Coleman J.L., Campos Y.A., James A.A.;
RT
     "Characterization of the Sialokinin I gene encoding the salivary
RT
     vasodilator of the yellow fever mosquito, Aedes aegypti.";
     Insect Mol. Biol. 8:459-467(1999).
RL
     EMBL; AF108100; AAD16884.1; -.
DR
     GO; GO:0007268; P:synaptic transmission; IEA.
DR
     GO; GO:0007217; P:tachykinin signaling pathway; IEA.
DR
     InterPro; IPR002040; Tachy_Neurokinin.
DR
     PROSITE; PS00267; TACHYKININ; 1.
DR
FT
     NON TER
                   1
                          1
SQ
     SEQUENCE
                11 AA; 1203 MW; 8BADC77C6B59C33A CRC64;
  Query Match
                          90.9%; Score 20; DB 5; Length 11;
  Best Local Similarity 80.0%; Pred. No. 96;
          4; Conservative 0; Mismatches
  Matches
                                                1; Indels 0; Gaps
Qу
            1 FXGLM 5
              1 111
Db
            6 FYGLM 10
```

Search completed: April 7, 2004, 09:26:16 Job time : 63 secs

OM protein - protein search, using sw model

Run on: April 7, 2004, 09:15:16; Search time 11 Seconds

(without alignments)

23.668 Million cell updates/sec

Title: US-10-030-388A-1

Perfect score: 22

Sequence: 1 FXGLM 5

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

Searched: 141681 seqs, 52070155 residues

Total number of hits satisfying chosen parameters: 801

Minimum DB seq length: 0
Maximum DB seq length: 15

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 1000 summaries

Database : SwissProt_42:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result		% Query				
No.	Score	Match	Length	DB	ID	Description
1 2 3 4 5 6 7 8 9 10 11 12 13	21 20 20 20 20 20 20 20 20 20 20 20	95.5 90.9 90.9 90.9 90.9 90.9 90.9 90.9	13 10 10 10 10 10 10 10 10 10 10		CP1_APLCA TKN1_SCYCA TKNB_CHICK TKNB_ONCMY TKNB_RANCA TKNB_RANRI TKNC_RANCA TKNK_PIG TKN_PHYBI TKS1_AEDAE TKS2_AEDAE TKN1_PSEGU	Q10998 aplysia cal P08608 scyliorhinu P19851 gallus gall P28500 oncorhynchu P22689 rana catesb P29135 rana ridibu P22690 rana catesb P01292 sus scrofa P08610 phyllomedus P42634 aedes aegyp P42986 pseudophryn
13 14 15 16 17	20 20 20 20 20	90.9 90.9 90.9 90.9	11 11 11 11	1 1 1 1	TKN1_UPEIN TKN1_UPERU TKN2_PSEGU TKN2_UPERU TKN3_PSEGU	P82026 uperoleia i P08612 uperoleia r P42987 pseudophryn P08616 uperoleia r P42988 pseudophryn

18	20	90.9	11	1	TKN4 PSEGU	P42989	pseudophryn
19	20	90.9	11	1	TKN5 PSEGU	P42990	pseudophryn
20	20	90.9	11	1	TKNA CHICK	P19850	gallus gall
21	20	90.9	11	1	TKNA GADMO	P284Q8	gadus morhu
22	20	90.9	11	1	TKNA HORSE	P01200	gadus mornu
23	20	90.9	11	1	TKNA_NORSE	P01290	equus cabal
24	20	90.9	11	1		P28499	oncorhynchu
25	20				TKNA_RANCA	P22688	rana catesb
26		90.9	11	1	TKNA_RANRI		rana ridibu
	20	90.9	11	1	TKNA_SCYCA	P41333	scyliorhinu
27	20	90.9	11	1	TKN_ELEMO		eledone mos
28	20	90.9	11	1	TKN_PHYFU	P08615	physalaemus
29	20	90.9	12	1	TKN1_KASMA	P08613	kassina mac
30	20	90.9	12	1	TKN_KASSE		kassina sen
31	20	90.9	14	1	TKNM RANMA		rana margar
32	18	81.8	12	1	TKN2 KASMA	P08614	kassina mac
33	14	63.6	15	1	ATP2 PINPS	P81663	pinus pinas
34	13	59.1	9	1	TRP4 LEUMA	D91726	louge-base
35	13	59.1	10	1	TRP6 LEUMA	P01730	leucophaea
36	13	59.1	10	1	TRP7 LEUMA	P81/38	leucophaea
37	13	59.1				P81739	leucophaea
38	13		10	1	TRP8_LEUMA	P81740	leucophaea
		59.1	10	1	TRP9_LEUMA	P81741	leucophaea
39	13	59.1	12	1	PA2B_VIPBO	P31859	vipera beru
40	13	59.1	15	1	R13A_SPIOL	P82454	spinacia ol
41	12	54.5	9	1	CCAP CARMA	P38556	carcinus ma
42	12	54.5	9	1	FIBB MACFU		macaca fusc
43	12	54.5	9	1	RE42 LITRU		litoria rub
44	12	54.5	9	1	TKC1 CALVO		calliphora
45	12	54.5	9	1	TKL1 LOCMI	D16223	locusta mig
46	12	54.5	10	1	CAER LITXA	PE 62.64	litari
47	12	54.5	10	1	CU30 LOCMI		litoria xan
48	12	54.5	10	1	TKL2 LOCMI	P11/35	locusta mig
49	12	54.5	10	1		P16224	locusta mig
50	12	54.5	10	1	TKL3_LOCMI	P30249	locusta mig
51					TKL4_LOCMI	P30250	locusta mig
52	12	54.5	10	1	TRP5_LEUMA	P81737	leucophaea
	12	54.5	11	1	RE41_LITRU		litoria rub
53	12	54.5	11	1	TKC2_CALVO	P41518	calliphora
54	12	54.5	12	1	CD11_LITXA	P56245	litoria xan
55	12	54.5	12	1	CD14 LITXA		litoria xan
56	12	54.5	12	1	FRE1 LITIN		litoria inf
5 7	12	54.5	13	1	CD71 LITEW	P82051	litoria ewi
58	12	54.5	13	1	CHEP PARID		parapolybia
59	12	54.5	13	1	CRBL ICASP		icaria sp.
60	12	54.5	13	1	CRBL VESAN		
61	12	54.5	13	1	CRBL VESLE		vespa anali
62	12	54.5	13	1			vespula lew
63	12	54.5			CRBL_VESMA		vespa manda
64			13	1	CRBL_VESTR	P17231	vespa tropi
	12	54.5	13	1	CRBL_VESXA	P17234	vespa xanth
65	12	54.5	13	1	HPB9_RANES	P32416	rana escule
66	12	54.5	13	1	TEMC_RANTE		rana tempor
67	12	54.5	14	1	CRBL_VESOR		vespa orien
68	12	54.5	15	1	CDN2_LITGI		litoria gil
69	12	54.5	15	1	CDN4 LITCE	P82076	litoria cae
70	12	54.5	15	1	CDN5 LITCE		litoria cae
71	12	54.5	15	1	CDN6 LITCE		litoria cae
72	12	54.5		1	FRE2 LITIN		
73	12	54.5		1	LEC1 PSOSC		litoria inf
74	12	54.5		1	URE1 MORMO	F22582]	psophocarpu
	-	· -		_	**************************************	P1/33/ I	morganella

```
RESULT 1
CP1 APLCA
ΙD
     CP1 APLCA
                    STANDARD;
                                   PRT;
                                           13 AA.
     Q10998;
AC
DT
     01-OCT-1996 (Rel. 34, Created)
     01-OCT-1996 (Rel. 34, Last sequence update)
DT
DT
     01-OCT-1996 (Rel. 34, Last annotation update)
DΕ
     Cerebral peptide 1 (CP1).
     Aplysia californica (California sea hare).
OS
     Eukaryota; Metazoa; Mollusca; Gastropoda; Orthogastropoda;
OC
     Apogastropoda; Heterobranchia; Euthyneura; Opisthobranchia; Anaspidea;
OC
     Aplysioidea; Aplysiidae; Aplysia.
OC
OX
     NCBI TaxID=6500;
RN
     [1]
RP
     SEQUENCE.
RC
     TISSUE=Ganglion;
RX
     MEDLINE=97001771; PubMed=8844763;
RA
     Phares G.A., Lloyd P.E.;
     "Purification, primary structure, and neuronal localization of
RT
RT
     cerebral peptide 1 from Aplysia.";
RL
     Peptides 17:753-761(1996).
     -!- FUNCTION: May function as a peptide transmitter.
CC
     -!- TISSUE SPECIFICITY: Found predominantly in the cerebral and pedal
CC
CC
         ganglia.
SQ
     SEQUENCE 13 AA; 1314 MW; 9DBC3CE82C667B05 CRC64;
  Query Match
                          95.5%; Score 21; DB 1; Length 13;
 Best Local Similarity 80.0%; Pred. No. 8.8;
 Matches
          4; Conservative 0; Mismatches
                                                 1; Indels
                                                                0; Gaps
                                                                            0;
           1 FXGLM 5
Qу
             \perp
Db
           1 FSGLM 5
```

Search completed: April 7, 2004, 09:25:09 Job time: 20 secs

OM protein - protein search, using sw model

Run on: April 7, 2004, 09:23:37; Search time 21 Seconds

(without alignments)

22.903 Million cell updates/sec

Title: US-10-030-388A-1

Perfect score: 22

Sequence: 1 FXGLM 5

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

Searched: 283366 seqs, 96191526 residues

Total number of hits satisfying chosen parameters: 2522

Minimum DB seq length: 0
Maximum DB seq length: 15

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 1000 summaries

Database: PIR 78:*

1: pir1:* 2: pir2:*

3: pir3:* 4: pir4:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

1 20 90.9 10 1 SPPGNK neuromedin K - pig 2 20 90.9 10 2 JN0024 neurokinin A - chi 3 20 90.9 10 2 A49581 sialokinin I - yel 4 20 90.9 10 2 B49581 sialokinin II - ye 5 20 90.9 10 2 A24867 scyliorhinin I - s 6 20 90.9 10 2 S23307 neurokinin A - rai 7 20 90.9 10 2 S23186 neurokinin A - Atl 8 20 90.9 10 2 S07202 phyllomedulin - tw 9 20 90.9 10 2 B61033 ranatachykinin B - 10 20 90.9 10 2 C61033 ranatachykinin B - 11 20 90.9 10 2 S27178 neurokinin A-relat 12 20 90.9 11 1 SPHO substance P - hors 13 20 90.9 11 1 EOOCC eledoisin - curled	Result No.	Score	% Query Match	Length	DB	ID	Description
	3 4 5 6 7 8 9 10 11	20 20 20 20 20 20 20 20 20 20	90.9 90.9 90.9 90.9 90.9 90.9 90.9 90.9	10 10 10 10 10 10 10 10 10	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	JN0024 A49581 B49581 A24867 S23307 S23186 S07202 B61033 C61033 S27178 SPHO	neurokinin A - chi sialokinin I - yel sialokinin II - ye scyliorhinin I - s neurokinin A - rai neurokinin A - Atl phyllomedulin - tw ranatachykinin B - ranatachykinin C - neurokinin A-relat

14	20	90.9	11	1	A60654	substance P - guin
15	20	90.9	11	1	EOOC	eledoisin - musky
16	20	90.9	11	2	JN0023	substance P - chic
17	20	90.9	11	2	D60409	kassinin-like pept
18	20	90.9	11	2	F60409	substance P-like p
19	20	90.9	11	2	E60409	substance P-like p
20	20	90.9	11	2	S23308	substance P - rain
21	20	90.9	11	2	S23306	substance P - Atla
22	20	90.9	11	2	B60409	kassinin-like pept
23	20	90.9	11	2	C60409	kassinin-like pept
24	20	90.9	11	2	S07203	uperolein - frog (
25	20	90.9	11	2	S07201	physalaemin - frog
26	20	90.9	11	2	A61033	ranatachykinin A -
27	20	90.9	11	2	S33300	probable substance
28	20	90.9	12	2	S10059	tachykinin - Afric
29	20	90.9	12	2	S07206	kassinin - Senegal
30	18	81.8	12	2	S07436	tachykinin - Afric
31	15	68.2	10	2	S19296	16K protein - poul
32	15	68.2	14	2	PA0096	pyruvate decarboxy
33	15	68.2	15	2	H56978	collagen alpha 1(X
34	14	63.6	11	2	PT0249	Ig heavy chain CRD
35	14	63.6	12	2	B46662	collagen alpha 2(V
36	14	63.6	15	2	S36893	ribosomal protein
37	13	59.1	5	2	A61445	Met-enkephalin - b
38	13	59.1	7	2	A60224	Met-enkephalin-Arg
39	13	59.1	9	2	PT0225	Ig heavy chain CDR
40	13	59.1	9	2	PD0027	pev-tachykinin - p
41	13	59.1	13	2	A32734	enkephalin precurs
42	13	59.1	15	2	A28497	neurotensin-relate
43	12	54.5	8	2	S13661	polygalacturonase
44	12	54.5	9	2	A61357	phyllocaerulein -
45	12	54.5	9	2	C24180	fibrinogen beta ch
46	12	54.5	9	2	A26363	cardioactive pepti
47	12	54.5	9	2	S39766	cardioactive pepti
48	12	54.5	9	2	S27233	cardioactive pepti
49	12	54.5	9	2	S10784	enamelin i - bovin
50	12	54.5	9	2	PH0942	T-cell receptor be
51	12	54.5	9	2	S39767	cardioactive pepti
52	12	54.5	10	1	ECLQ1M	tachykinin I - mig
53	12	54.5	10	1	ECLQ3M	tachykinin III - m
54	12	54.5	10	1	ECLQ4M	tachykinin IV - mi
55	12	54.5	10	2	A61337	caerulein - frog (
56	12	54.5	10	2	S68033	cytochrome P450 1A
57	12	54.5	10	2	A59173	nuclease Bh1 (EC 3
58	12	54.5	11	1	ECLQ2M	tachykinin II - mi
59	12	54.5	11	2	A35594	buccalin - Califor
60	12	54.5	12	2	S26558	T-cell receptor be
61	12	54.5	12	2	PS0213	28K protein 4412 -
62	12	54.5	12	2	S74144	aggrecan - bovine
63	12	54.5	12	2	PH1635	Ig H chain V-D-J r
64	12	54.5	12	2	S39762	cytochrome P450 UT
65	12	54.5	12	2	S23168	Z protein - guinea
66	12	54.5	13	2	S36874	cytochrome P450 CM
67	12	54.5	13	2	S09019	hemolytic protein
68	12	54.5	13	2	B56864	dipeptidyl-peptida
69 70	12	54.5	14	2	JN0390	histamine-releasin
70	12	54.5	14	2	S50900	chlorophyll a/b-bi

```
RESULT 1
 SPPGNK
 neuromedin K - pig
 C; Species: Sus scrofa domestica (domestic pig)
 C;Date: 19-Feb-1984 #sequence_revision 19-Feb-1984 #text_change 23-Aug-1996
 C; Accession: A01560
 R; Kangawa, K.; Minamino, N.; Fukuda, A.; Matsuo, H.
 Biochem. Biophys. Res. Commun. 114, 533-540, 1983
 A; Title: Neuromedin K: a novel mammalian tachykinin identified in porcine spinal
 cord.
 A; Reference number: A01560; MUID: 83282812; PMID: 6576785
 A; Accession: A01560
A; Molecule type: protein
A; Residues: 1-10 <KAN>
A; Note: the structure of the peptide was confirmed by synthesis
C; Comment: The biological source of this peptide is spinal cord. It stimulates
smooth muscle contraction in mammalian assay systems, in a manner similar to
that of substance P.
C; Superfamily: neurokinin B precursor
C; Keywords: amidated carboxyl end; hormone; spinal cord
F;10/Modified site: amidated carboxyl end (Met) #status experimental
  Query Match
                           90.9%; Score 20; DB 1; Length 10;
  Best Local Similarity
                           80.0%; Pred. No. 25;
  Matches
             4; Conservative 0; Mismatches
                                                  1; Indels
                                                                  0; Gaps
                                                                              0;
Qу
            1 FXGLM 5
               1 + 1 + 1
Db
            6 FVGLM 10
RESULT 2
JN0024
neurokinin A - chicken
C; Species: Gallus gallus (chicken)
C;Date: 07-Sep-1990 #sequence_revision 07-Sep-1990 #text_change 18-Aug-2000
C; Accession: JN0024
R; Conlon, J.M.; Katsoulis, S.; Schmidt, W.E.; Thim, L.
Regul. Pept. 20, 171-180, 1988
A; Title: [Arg3] substance P and neurokinin A from chicken small intestine.
A; Reference number: JN0023; MUID: 88204263; PMID: 2452461
A; Accession: JN0024
A; Molecule type: protein
A; Residues: 1-10 <CON>
C; Superfamily: substance P precursor
C; Keywords: amidated carboxyl end; neuropeptide; tachykinin
F;10/Modified site: amidated carboxyl end (Met) #status predicted
  Query Match
                          90.9%; Score 20; DB 2; Length 10;
  Best Local Similarity 80.0%; Pred. No. 25;
  Matches 4; Conservative 0; Mismatches
                                                 1; Indels
                                                               0; Gaps
                                                                              0;
Qy
           1 FXGLM 5
```

Search completed: April 7, 2004, 09:27:06 Job time: 26 secs

OM protein - protein search, using sw model

Run on: April 7, 2004, 09:26:22; Search time 40 Seconds

(without alignments)

32.829 Million cell updates/sec

Title: US-10-030-388A-1

Perfect score: 22

Sequence: 1 FXGLM 5

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

Searched: 1071772 seqs, 262633353 residues

Total number of hits satisfying chosen parameters: 173463

Minimum DB seq length: 0
Maximum DB seq length: 15

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 1000 summaries

Database: Published_Applications AA:*

1: /cgn2_6/ptodata/2/pubpaa/US07 PUBCOMB.pep:*

2: /cgn2_6/ptodata/2/pubpaa/PCT NEW PUB.pep:*

3: /cgn2_6/ptodata/2/pubpaa/US06_NEW PUB.pep:*

4: /cgn2 6/ptodata/2/pubpaa/US06 PUBCOMB.pep:*

5: /cqn2 6/ptodata/2/pubpaa/US07 NEW PUB.pep:*

: /cgn2_6/ptodata/2/pubpaa/PCTUS PUBCOMB.pep:*

7: /cgn2_6/ptodata/2/pubpaa/US08 NEW PUB.pep:*

3: /cgn2_6/ptodata/2/pubpaa/US08_PUBCOMB.pep:*

9: /cgn2 6/ptodata/2/pubpaa/US09A PUBCOMB.pep:*

10: /cgn2 6/ptodata/2/pubpaa/US09B PUBCOMB.pep:*

11: /cgn2_6/ptodata/2/pubpaa/US09C PUBCOMB.pep:*

12: /cgn2_6/ptodata/2/pubpaa/US09 NEW PUB.pep:*

13: /cgn2_6/ptodata/2/pubpaa/US10A PUBCOMB.pep:*

14: /cgn2_6/ptodata/2/pubpaa/US10B_PUBCOMB.pep:*

15: /cgn2_6/ptodata/2/pubpaa/US10C_PUBCOMB.pep:*

16: /cgn2_6/ptodata/2/pubpaa/US10_NEW_PUB.pep:*

17: /cgn2_6/ptodata/2/pubpaa/US60_NEW_PUB.pep:*

18: /cgn2_6/ptodata/2/pubpaa/US60_PUBCOMB.pep:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

용

Result Query

No. Score Match Length DB ID

Description

1	21	95.5	12	14		Sequence 16, Appl
2	20	90.9	5	14		Sequence 4, Appli
3	20	90.9	5	14	US-10-053-669-1	Sequence 1, Appli
4	20	90.9	5	14	US-10-053-669-4	Sequence 4, Appli
5	20	90.9	6	14	US-10-168-789A-38	Sequence 38, Appl
6	20	90.9	7	14	US-10-036-542-110	Sequence 110, App
7	20	90.9	7	14	US-10-036-542-111	Sequence 111, App
8	20	90.9	7	14	US-10-168-789A-37	Sequence 37, Appl
9	20	90.9	8	9	US-09-910-552-36	Sequence 36, Appl
10	20	90.9	8	14	US-10-168-789A-36	Sequence 36, Appl
11	20	90.9	9	14	US-10-036-542-112	Sequence 112, App
12	20	90.9	9	14		Sequence 35, Appl
13	20	90.9	10	9	US-09-853-161-110	Sequence 110, App
14	20	90.9	10	9	US-09-852-659A-110	Sequence 110, App
15	20	90.9	10	9	US-09-852-797-110	Sequence 110, App
16	20	90.9	10	10	US-09-988-792-11	Sequence 11, Appl
17	20	90.9	10	12	US-10-445-400-1	Sequence 1, Appli
18	20	90.9	10	12	US-10-445-400-2	Sequence 2, Appli
19	20	90.9	10	14	US-10-197-954-98	Sequence 98, Appl
20	20	90.9	10	14	US-10-197-954-99	Sequence 99, Appl
21	20	90.9	10	14	US-10-168-789A-34	Sequence 34, Appl
22	20	90.9	10	14	US-10-267-918-1	Sequence 1, Appli
23 24	20	90.9	10	14	US-10-267-918-2	Sequence 2, Appli
25	20	90.9	10	15	US-10-360-101-91	Sequence 91, Appl
25 26	20	90.9	11	9	US-09-935-682-64	Sequence 64, Appl
27	20 20	90.9	11	10	US-09-988-792-1	Sequence 1, Appli
28	20	90.9	11	10	US-09-988-792-6	Sequence 6, Appli
29	20	90.9 90.9	11	10	US-09-988-792-7	Sequence 7, Appli
30	20	90.9	11	10	US-09-988-792-8	Sequence 8, Appli
31	20	90.9	11	10	US-09-988-792-9	Sequence 9, Appli
32	20	90.9	11 11	10	US-09-988-792-10	Sequence 10, Appl
33	20	90.9		12	US-09-841-091B-26	Sequence 26, Appl
34	20	90.9	11 11	13	US-10-002-593-4	Sequence 4, Appli
35	20	90.9	11	$\begin{array}{c} 14 \\ 14 \end{array}$	US-10-230-133-1	Sequence 1, Appli
36	20	90.9	11	$\frac{14}{14}$	US-10-053-669-3	Sequence 3, Appli
37	20	90.9	11	14	US-10-211-994-3	Sequence 3, Appli
38	20	90.9	11	14	US-10-114-823B-24	Sequence 24, Appl
39	20	90.9	11	14	US-10-197-954-48	Sequence 48, Appl
40	20	90.9	11	$\frac{14}{14}$	US-10-197-954-117	Sequence 117, App
41	20	90.9	11	$\frac{14}{14}$	US-10-197-954-130	Sequence 130, App
42	20	90.9	11	14	US-10-197-954-138 US-10-251-703-25	Sequence 138, App
43	20	90.9	11	14		Sequence 25, Appl
44	20	90.9	11	14	US-10-168-789A-17	Sequence 17, Appl
45	20	90.9	11	15	US-10-423-714-4 US-10-289-009-24	Sequence 4, Appli
46	20	90.9	11	15	US-10-289-009-25	Sequence 24, Appl
47	20	90.9	11	15	US-10-289-009-26	Sequence 25, Appl
48	20	90.9	12		US-09-922-093-2	Sequence 26, Appl
49	20	90.9	12		US-09-922-093-5	Sequence 2, Appli
50	20	90.9	12		US-09-922-093-8	Sequence 5, Appli
51	20	90.9	12		US-09-938-112-2	Sequence 8, Appli
52	20	90.9	12		US-09-938-112-5	Sequence 2, Appli
53	20	90.9	12		US-09-938-112-8	Sequence 5, Appli
54	20	90.9	12	14	US-10-082-691-2	Sequence 8, Appli
55	20	90.9	12	14	US-10-082-691-5	Sequence 2, Appli
56	20	90.9	12	14	US-10-082-691-8	Sequence 5, Appli Sequence 8, Appli
						peducince 9, Appl1

```
57
         20
              90.9
                      12 14 US-10-050-200-55
                                                         Sequence 55, Appl
         20
 58
              90.9
                      12 15 US-10-394-511-41
                                                        Sequence 41, Appl
 59
         20
              90.9
                      13 9 US-09-922-093-3
                                                        Sequence 3, Appli
 60
         20
              90.9
                      13 9
                             US-09-922-093-6
                                                        Sequence 6, Appli
 61
         20
              90.9
                      13 9
                             US-09-922-093-9
                                                        Sequence 9, Appli
         20
 62
              90.9
                      13 9 US-09-938-112-3
                                                        Sequence 3, Appli
 63
         20
              90.9
                      13 9
                             US-09-938-112-6
                                                        Sequence 6, Appli
                      13 9 US-09-938-112-9
 64
         20
              90.9
                                                        Sequence 9, Appli
                      13 14 US-10-082-691-3
 65
         20
              90.9
                                                        Sequence 3, Appli
 66
         20
              90.9
                      13 14 US-10-082-691-6
                                                        Sequence 6, Appli
 67
         20
              90.9
                      13 14 US-10-082-691-9
                                                        Sequence 9, Appli
 68
         20
              90.9
                      14 9 US-09-922-093-4
                                                        Sequence 4, Appli
 69
         20
              90.9
                      14 9 US-09-922-093-7
                                                        Sequence 7, Appli
 70
         20
              90.9
                      14 9 US-09-922-093-10
                                                        Sequence 10, Appl
 71
         20
                      14 9 US-09-938-112-4
              90.9
                                                       Sequence 4, Appli
 72
                      14 9 US-09-938-112-7
         20
              90.9
                                                       Sequence 7, Appli
 73
         20
              90.9
                      14 9 US-09-938-112-10
                                                       Sequence 10, Appl
 74
         20
              90.9
                      14 12 US-10-415-024-6
                                                       Sequence 6, Appli
 75
         20
              90.9
                      14 14 US-10-131-543-6
                                                        Sequence 6, Appli
 76
         20
              90.9
                      14 14 US-10-131-546-6
                                                        Sequence 6, Appli
 77
                      14 14 US-10-131-346-6
         20
              90.9
                                                        Sequence 6, Appli
 78
                      14 14 US-10-082-691-4
         20
              90.9
                                                        Sequence 4, Appli
                      14 14 US-10-082-691-7
 79
         20
              90.9
                                                        Sequence 7, Appli
 80
         20
             90.9
                      14 14 US-10-082-691-10
                                                        Sequence 10, Appl
 81
         20
             90.9
                      15 9 US-09-853-161-109
                                                       Sequence 109, App
 82
         20
             90.9
                      15 9 US-09-852-659A-109
                                                       Sequence 109, App
 83
         20
             90.9
                      15 9 US-09-852-797-109
                                                       Sequence 109, App
 84
         19
             86.4
                      14 9 US-09-838-050-10
                                                       Sequence 10, Appl
 85
         19
             86.4
                      14 9 US-09-854-173A-10
                                                       Sequence 10, Appl
 86
         17
             77.3
                      5
                         14 US-10-168-789A-32
                                                        Sequence 32, Appl
 87
         17
             77.3
                      5
                         14 US-10-168-789A-39
                                                        Sequence 39, Appl
 88
         17
             77.3
                      9
                         9 US-09-748-451-20
                                                       Sequence 20, Appl
 89
         17
             77.3
                      9
                         15 US-10-285-394-127
                                                        Sequence 127, App
 90
        17
             77.3
                      10 14 US-10-057-789-123
                                                        Sequence 123, App
 91
        17
             77.3
                         14 US-10-212-628-123
                      10
                                                        Sequence 123, App
 92
        17
             77.3
                          14 US-10-168-789A-26
                      10
                                                        Sequence 26, Appl
 93
        17
             77.3
                      10
                          14 US-10-168-789A-27
                                                        Sequence 27, Appl
 94
        17
             77.3
                      11
                         9 US-09-966-871-20
                                                       Sequence 20, Appl
 95
        17
             77.3
                      11
                         12 US-10-458-860-20
                                                        Sequence 20, Appl
 96
        17
             77.3
                      11
                          13 US-10-039-645-20
                                                        Sequence 20, Appl
 97
        17
             77.3
                      11
                         14 US-10-139-084-20
                                                        Sequence 20, Appl
 98
        17
             77.3
                      11
                         14 US-10-168-789A-25
                                                        Sequence 25, Appl
 99
        17
             77.3
                      12 12 US-10-351-891-114
                                                        Sequence 114, App
100
        17
             77.3
                      12 14 US-10-168-789A-24
                                                        Sequence 24, Appl
101
        17
             77.3
                      13 14 US-10-168-789A-23
                                                        Sequence 23, Appl
102
        17
             77.3
                      14 14 US-10-168-789A-22
                                                        Sequence 22, Appl
103
        17
             77.3
                      15 10 US-09-563-222-139
                                                        Sequence 139, App
104
        17
             77.3
                      15 14 US-10-168-789A-28
                                                        Sequence 28, Appl
105
        16
             72.7
                       6 9 US-09-732-384-5
                                                       Sequence 5, Appli
106
        16
             72.7
                       6 13 US-10-008-355-24
                                                        Sequence 24, Appl
107
             72.7
                      7 14 US-10-286-457-483
        16
                                                        Sequence 483, App
108
        16
             72.7
                       8 14 US-10-194-441A-24
                                                        Sequence 24, Appl
109
        16
             72.7
                         9 US-09-894-018-299
                       9
                                                       Sequence 299, App
110
        16
             72.7
                      9 15 US-10-371-069-162
                                                        Sequence 162, App
111
        16
             72.7
                      9
                         15 US-10-371-645-162
                                                       Sequence 162, App
112
             72.7
        16
                      9
                         15 US-10-371-260-162
                                                       Sequence 162, App
113
        16
             72.7
                      10 9 US-09-848-967-31
                                                       Sequence 31, Appl
```

```
RESULT 1
US-10-172-425B-16
; Sequence 16, Application US/10172425B
; Publication No. US20030147908A1
; GENERAL INFORMATION:
; APPLICANT: Kaempfer, Raymond
; APPLICANT: Arad, Gila
  TITLE OF INVENTION: BROAD SPECTRUM ANTAGONISTS AND VACCINES
; TITLE OF INVENTION: DIRECTED AGAINST PYROGENIC EXOTOXINS
; FILE REFERENCE: A31967-PCT-USA-A-A 066031.0164
; CURRENT APPLICATION NUMBER: US/10/172,425B
  CURRENT FILING DATE: 2002-06-13
  PRIOR APPLICATION NUMBER: 09/150,947
  PRIOR FILING DATE: 1998-09-10
; PRIOR APPLICATION NUMBER: PCT/IL97/00438
; PRIOR FILING DATE: 1997-12-30
; PRIOR APPLICATION NUMBER: ISRAEL 119938
; PRIOR FILING DATE: 1996-12-30
; NUMBER OF SEQ ID NOS: 57
  SOFTWARE: FastSEQ for Windows Version 4.0
; SEQ ID NO 16
   LENGTH: 12
    TYPE: PRT
    ORGANISM: Staphylococcus aureus
US-10-172-425B-16
  Query Match
                         95.5%; Score 21; DB 14; Length 12;
  Best Local Similarity 80.0%; Pred. No. 56;
  Matches 4; Conservative 0; Mismatches
                                               1; Indels
                                                                0; Gaps
                                                                            0;
           1 FXGLM 5
Qу
              1 111
Db
            5 FTGLM 9
RESULT 2
US-10-230-133-4
; Sequence 4, Application US/10230133
; Publication No. US20030040625A1
; GENERAL INFORMATION:
; APPLICANT: Wells, Ibert
; TITLE OF INVENTION: Antagonists of the magnesium binding defect as therapy
agents and
; TITLE OF INVENTION: methods for treatment of abnormal physiological states
; FILE REFERENCE: 2892-106
  CURRENT APPLICATION NUMBER: US/10/230,133
; CURRENT FILING DATE: 2002-08-29
; PRIOR APPLICATION NUMBER: 09/635,266
; PRIOR FILING DATE: 2000-08-09
; NUMBER OF SEQ ID NOS: 4
; SOFTWARE: PatentIn version 3.0
; SEQ ID NO 4
  LENGTH: 5
   TYPE: PRT
```

```
; ORGANISM: Homo sapiens
  FEATURE:
;
; NAME/KEY: MOD_RES
; LOCATION: (5)..(5)
; OTHER INFORMATION: AMIDATION
; FEATURE:
; NAME/KEY: VARIANT
  LOCATION: (2)..(2)
; OTHER INFORMATION: "X" may be either F or V.
US-10-230-133-4
 Query Match
                      90.9%; Score 20; DB 14; Length 5;
 Best Local Similarity 100.0%; Pred. No. 9.7e+05;
 Matches 5; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
          1 FXGLM 5
Qу
           Db
          1 FXGLM 5
```

Search completed: April 7, 2004, 09:31:30 Job time : 44 secs

OM protein - protein search, using sw model

Run on: April 7, 2004, 09:22:07; Search time 22 Seconds

(without alignments)

11.733 Million cell updates/sec

Title: US-10-030-388A-1

Perfect score: 22

Sequence: 1 FXGLM 5

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

Searched: 389414 seqs, 51625971 residues

Total number of hits satisfying chosen parameters: 146418

Minimum DB seq length: 0
Maximum DB seq length: 15

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 1000 summaries

Database : Issued Patents AA:*

1: /cgn2_6/ptodata/2/iaa/5A_COMB.pep:*
2: /cgn2_6/ptodata/2/iaa/5B_COMB.pep:*
3: /cgn2_6/ptodata/2/iaa/6A_COMB.pep:*
4: /cgn2_6/ptodata/2/iaa/6B_COMB.pep:*

5: /cgn2_6/ptodata/2/iaa/PCTUS_COMB.pep:*
6: /cgn2_6/ptodata/2/iaa/backfiles1.pep:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	% Query Match	Length	DB	ID	Description
1	20	90.9	 5	- -	US-07-753-909B-3	
2	20	90.9	5	1	US-07-934-553-2	Sequence 3, Appli Sequence 2, Appli
3	20	90.9	5	1	US-08-269-288-1	Sequence 1, Appli
4	20	90.9	5	1	US-08-225-474-2	Sequence 2, Appli
5	20	90.9	5	1	US-08-391-910-1	Sequence 1, Appli
6	20	90.9	5	1	US-08-418-994-1	Sequence 1, Appli
7	20	90.9	5	1	US-08-391-814-1	Sequence 1, Appli
8	20	90.9	5	1	US-08-441-591-61	Sequence 61, Appl
9	20	90.9	5	1	US-08-303-362A-61	Sequence 61, Appl
10	20	90.9	5	1	US-08-462-415-1	Sequence 1, Appli
11	20	90.9	5	1	US-08-463-874-1	Sequence 1, Appli

```
20 90.9 5 1 US-08-444-135-1 Sequence 1, Appli 20 90.9 5 1 US-08-318-391-1 Sequence 1, Appli 20 90.9 5 3 US-07-373-371E-6 Sequence 6, Appli 20 90.9 5 3 US-08-257-966-1 Sequence 1, Appli 20 90.9 5 4 US-09-268-690C-1 Sequence 1, Appli 20 90.9 5 4 US-09-268-690C-1 Sequence 1, Appli 20 90.9 5 4 US-09-268-690C-1 Sequence 1, Appli 20 90.9 5 4 US-09-268-690C-4 Sequence 1, Appli 20 90.9 5 4 US-09-635-266-4 Sequence 4, Appli 20 90.9 5 4 US-09-635-266-4 Sequence 4, Appli 20 90.9 5 5 4 US-09-635-266-4 Sequence 4, Appli 20 90.9 5 5 6 US-09-331-33-4 Sequence 4, Appli 20 90.9 6 1 US-08-25-374-3 Sequence 3, Appli 20 90.9 6 1 US-08-25-474-3 Sequence 3, Appli 20 90.9 6 1 US-08-273-371E-5 Sequence 52, Appli 20 90.9 6 2 US-07-737-371E-5 Sequence 52, Appli 20 90.9 6 2 US-07-737-371E-5 Sequence 52, Appli 20 90.9 6 2 US-07-737-371E-5 Sequence 52, Appli 20 90.9 7 2 US-07-737-371E-8 Sequence 54, Appli 20 90.9 7 2 US-07-737-371E-8 Sequence 54, Appli 20 90.9 7 2 US-07-737-371E-8 Sequence 54, Appli 20 90.9 7 2 US-07-737-371E-8 Sequence 56, Appli 20 90.9 8 2 US-07-737-371E-8 Sequence 56, Appli 20 90.9 8 2 US-07-737-371E-6 Sequence 56, Appli 20 90.9 8 2 US-07-737-371E-6 Sequence 56, Appli 20 90.9 8 3 US-09-317-35-5 Sequence 56, Appli 20 90.9 8 2 US-07-737-371E-6 Sequence 56, Appli 20 90.9 8 3 US-09-82002-36 Sequence 56, Appli 20 90.9 8 3 US-09-82002-36 Sequence 56, Appli 20 90.9 8 3 US-09-82002-36 Sequence 56, Appli 20 90.9 9 10 1 US-08-899-2005-2 Sequence 60, Appli 20 90.9 9 10 1 US-08-808-322-6 Sequence 3, Appli 20 90.9 9 10 1 US-08-808-322-6 Sequence 3, Appli 20 90.9 9 10 1 US-08-808-322-6 Sequence 3, Appli 20 90.9 9 10 1 US-08-808-322-6 Sequence 3, Appli 20 90.9 9 10 1 US-08-808-322-6 Sequence 3, Appli 20 90.9 9 10 1 US-08-808-322-6 Sequence 3, Appli 20 90.9 9 10 1 US-08-808-322-6 Sequence 3, Appli 20 90.9 9 10 1 US-08-808-322-6 Sequence 3, Appli 20 90.9 9 10 1 US-08-808-322-6 Sequence 3, Appli 20 90.9 9 10 1 US-08-808-322-6 Sequence 3, Appli 20 90.9 9 10 1 US-08-808-319-10-3 Sequence 4, Appli 20 90.9 9 10 1 US-08-808-319-10-3 Sequence 
        12
                                                                        20
                                                                                                       90.9
                                                                                                                                                                              5 1 US-08-444-135-1
        13
       14
       15
        16
       17
       18
       19
      20
       21
       22
      23
     24
     25
     26
     27
     28
     29
     30
     31
     32
     33
     34
     35
     36
     37
     38
     39
     40
     41
    42
     43
     44
    45
    46
    47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
  58
  59
  60
  61
  62
  63
  64
 65
 66
 67
68
```

```
69
          20
                90.9
                         10 2 US-07-737-371E-74
                                                               Sequence 74, Appl
  70
          20
               90.9
                         10 2 US-07-737-371E-75
                                                              Sequence 75, Appl
 71
                         10 3 US-08-257-966-3
          20
               90.9
                                                              Sequence 3, Appli
 72
          20
                         10 3 US-08-257-966-4
               90.9
                                                              Sequence 4, Appli
 73
          20
              90.9
                         10 3 US-09-168-548-2
                                                              Sequence 2, Appli
 74
          20
                         10 4 US-09-174-216-8
                                                            Sequence 8, Appli
Sequence 3, Appli
Sequence 4, Appli
               90.9
              . US-U8-153-847-3

90.9 10 4 US-08-153-847-4

90.9 10 4 US-09-152-060-110

90.9 10 6 5169865-11

90.9 11 1 US-07-899-205-1

90.9 11 1 US-07-753-909B-2

90.9 11 1 US-08-184
 75
                        10 4 US-08-153-847-3
          20
               90.9
 76
          20
 77
                         10 4 US-09-152-060-110
          20
                                                              Sequence 110, App
 78
          20
                                                             Patent No. 5169865
 79
          20
                                                             Sequence 1, Appli
 80
          20
                        11 1 US-07-753-909B-2
                                                              Sequence 2, Appli
 81
          20
                                                              Sequence 1, Appli
 82
          20
                       11 1 US-08-184-935-12
                                                             Sequence 12, Appl
                       11 1 US-08-269-288-2
 83
          20
               90.9
                                                              Sequence 2, Appli
               90.9
                         11 1 US-08-338-484-1
 84
          20
                                                              Sequence 1, Appli
 85
               90.9
                         11 1 US-08-175-432-1
          20
                                                              Sequence 1, Appli
               90.9
 86
          20
                         11 1 US-08-462-413-2
                                                              Sequence 2, Appli
 87
          20
              90.9
                         11 1 US-08-225-474-1
                                                              Sequence 1, Appli
 88
          20
               90.9
                        11 1 US-08-391-910-2
                                                              Sequence 2, Appli
 89
          20
                        11 1 US-08-418-994-2
               90.9
                                                              Sequence 2, Appli
                        11 1 US-08-480-505-3
 90
          20
               90.9
                                                              Sequence 3, Appli
              90.9 11 1 US-08-391-814-2

90.9 11 1 US-08-167-870-1

90.9 11 1 US-08-428-488-15

90.9 11 1 US-08-428-488-16

90.9 11 1 US-08-428-488-17
 91
          20
                                                              Sequence 2, Appli
 92
          20
                                                              Sequence 1, Appli
 93
          20
                                                              Sequence 15, Appl
 94
          20
                                                              Sequence 16, Appl
 95
          20
                                                              Sequence 17, Appl
              90.9 11 1 US-08-255-272-6

90.9 11 1 US-08-441-591-6

90.9 11 1 US-08-303-362A-6

90.9 11 1 US-08-462-859A-1

90.9 11 1 US-08-123-659A-1
 96
          20
                                                              Sequence 6, Appli
 97
          20
                                                              Sequence 6, Appli
 98
          20
                         11 1 US-08-303-362A-6
                                                              Sequence 6, Appli
 99
          20
                        11 1 US-08-462-859A-1
                                                              Sequence 1, Appli
100
          20
                        11 1 US-08-123-659A-1
                                                              Sequence 1, Appli
101
         20
              90.9
                        11 1 US-08-462-415-2
                                                              Sequence 2, Appli
102
         20
               90.9
                        11 1 US-08-463-874-2
                                                              Sequence 2, Appli
                         11 1 US-08-464-247A-1
103
         20
               90.9
                                                              Sequence 1, Appli
              90.9
90.9
90.9
90.9
90.9
90.9
90.9
                         11 1 US-08-464-248A-1
104
         20
                                                              Sequence 1, Appli
105
         20
                         11 1 US-08-444-135-2
                                                              Sequence 2, Appli
106
         20
                        11 1 US-08-318-391-2
                                                              Sequence 2, Appli
107
         20
                        11 2 US-08-796-598-7
                                                              Sequence 7, Appli
108
                         11 2 US-08-796-598-11
         20
                                                              Sequence 11, Appl
109
         20
                         11 2 US-08-496-118-1
                                                              Sequence 1, Appli
110
         20
                         11 2 US-08-447-175A-7
                                                              Sequence 7, Appli
111
         20
                         11 2 US-08-447-175A-11
                                                              Sequence 11, Appl
112
         20
                         11 2 US-07-737-371E-15
                                                              Sequence 15, Appl
113
         20
                         11 2 US-07-737-371E-16
                                                              Sequence 16, Appl
114
         20
               90.9
                        11 2 US-07-737-371E-18
                                                              Sequence 18, Appl
115
         20
               90.9
                        11 2 US-07-737-371E-19
                                                              Sequence 19, Appl
116
         20
               90.9
                        11 2 US-07-737-371E-25
                                                              Sequence 25, Appl
                        11 2
117
               90.9
         20
                                US-07-737-371E-26
                                                              Sequence 26, Appl
118
         20
               90.9
                         11 2
                                US-07-737-371E-35
                                                              Sequence 35, Appl
119
                        11 2
         20
              90.9
                                US-07-737-371E-36
                                                              Sequence 36, Appl
120
         20
              90.9
                        11 2
                                US-07-737-371E-37
                                                              Sequence 37, Appl
121
         20
              90.9
                                US-07-737-371E-38
                        11 2
                                                              Sequence 38, Appl
122
         20
              90.9
                        11 2
                                US-07-737-371E-73
                                                              Sequence 73, Appl
              90.9
90.9
90.9
123
         20
                        11 2
                                US-07-737-371E-77
                                                              Sequence 77, Appl
                        11 2 US-08-848-766A-1
11 3 US-08-890-157A-4
124
         20
                                                             Sequence 1, Appli
125
         20
                                                             Sequence 4, Appli
```

```
20 90.9 11 3 US-08-927-128-17
20 90.9 11 3 US-08-257-966-2
20 90.9 11 4 US-09-265-690C-3
20 90.9 11 4 US-09-265-690C-3
20 90.9 11 4 US-09-570-022-1
20 90.9 11 4 US-09-570-022-6
20 90.9 11 4 US-09-570-022-1
20 90.9 11 4 US-09-570-022-6
20 90.9 11 4 US-09-570-022-1
20 90.9 11 4 US-10-02-593-4
20 90.9 11 4 US-10-230-133-1
20 90.9 11 5 PCT-US92-06532-1
20 90.9 11 5 PCT-US92-06532-1
20 90.9 11 5 PCT-US92-06532-1
20 90.9 11 6 5441935-1
20 90.9 12 1 US-08-428-488-18
20 90.9 12 1 US-08-428-488-18
20 90.9 12 1 US-08-428-698-10
20 90.9 12 2 US-08-796-598-10
20 90.9 12 3 US-08-505-250-27
20 90.9 12 3 US-08-505-250-27
20 90.9 12 4 US-09-922-093-8
20 90.9 12 4 US-09-922-093-8
20 90.9 12 4 US-09-922-093-8
20 90.9 12 4 US-09-625-098F-5
20 90.9 13 4 US-09-922-093-7
20 90.9 12 4 US-09-922-093-8
20 90.9 12 4 US-09-625-098F-5
20 90.9 13 4 US-09-922-093-7
20 90.9 13 4 US-09-922-093-7
20 90.9 12 4 US-09-625-098F-5
20 90.9 12 4 US-09-625-098F-5
20 90.9 13 4 US-09-922-093-7
20 90.9 13 4 US-09-922-093-8
20 90.9 13 4 US-09-922-093-7
20 90.9 14 4 US-09-625-098F-6
20 90.9 13 4 US-09-625-098F-6
20 90.9 14 4 US-09-625-098F-6
20 90.9 14 4 US-09-625-098F-6
20 90.9 14 4 US-09-625-098F-10
20 90
         126
                                                                                          20
                                                                                                                                       90.9
                                                                                                                                                                                                       11 3 US-08-927-128-17
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  Sequence 17, Appl
         127
                                                                                          20
                                                                                                                        90.9
                                                                                                                                                                                                                      11 3 US-08-257-966-2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Sequence 2, Appli
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          Sequence 2, Appli
Sequence 3, Appli
Sequence 2, Appli
Sequence 1, Appli
Sequence 1, Appli
Sequence 5, Appli
Sequence 6, Appli
Sequence 10, Appli
Sequence 1, Appli
Sequence 2, Appli
Sequence 1, Appli
Sequence 1, Appli
Sequence 23, Appl
Patent No. 5441935
Sequence 18, Appli
Sequence 7, Appli
        128
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Sequence 1, Appli
        129
      130
        131
        132
      133
      134
      135
      136
      137
      138
     139
     140
     141
     142
     143
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Sequence 7, Appli
                                                                                                                                                                                                       12 1 US-08-303-362A-7
12 2 US-08-796-598-10
12 2 US-08-447-175A-10
12 2 US-08-447-175A-10
12 2 US-08-505-250-27
12 3 US-08-505-250-27
13 US-08-505-250-27
14 US-09-264-709A-16
15 US-08-505-250-27
16 US-08-505-250-27
17 US-08-505-250-27
18 US-08-505-250-27
19 US-08-505-250-27
10 US-08-505-250-27
11 US-09-922-093-2
12 US-09-922-093-5
13 US-08-505-250-53
14 US-09-922-093-8
15 US-09-922-093-8
16 US-09-922-093-8
17 US-09-625-098F-5
18 US-09-625-098F-5
19 US-09-922-093-3
10 US-07-737-371E-46
11 US-09-922-093-3
12 US-07-737-371E-46
13 US-09-922-093-6
14 US-09-625-098F-8
15 US-07-092-093-9
16 US-09-922-093-1
17 US-09-625-098F-8
18 US-09-922-093-1
19 US-09-922-093-1
10 US-09-922-093-1
11 US-09-625-098F-9
12 US-07-737-371E-46
13 US-09-625-098F-9
14 US-09-625-098F-10
15 US-07-737-371E-42
16 US-09-625-098F-10
17 US-09-625-098F-10
18 US-09-625-098F-10
19 US-07-737-371E-44
19 US-09-570-022-7
10 US-07-737-371E-44
10 US-09-570-022-7
11 US-09-570-022-7
12 US-07-737-371E-44
12 US-09-570-022-7
13 US-09-570-022-7
14 US-09-570-022-7
15 Sequence 10, Appli Sequence 4, Appli Sequence 7, Appli Sequence 10, Appl Sequence 10, A
     144
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Sequence 7, Appli
     145
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Sequence 10, Appl
     146
    147
     148
    149
     150
     151
    152
    153
    154
    155
    156
   157
   158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
 173
 174
 175
 176
 177
 178
179
180
181
182
```

```
183
        19
             86.4
                     11 4 US-09-570-022-8
                                                      Sequence 8, Appli
184
                      11 4 US-09-570-022-9
                                                      Sequence 9, Appli
        19
             86.4
185
                      14 3 US-08-869-285-10
        19
                                                      Sequence 10, Appl
             86.4
186
        19
                      14 3 US-09-255-533-10
             86.4
                                                     Sequence 10, Appl
                     5 2 US-07-737-371E-48
187
        17
                                                     Sequence 48, Appl
             77.3
188
        17
             77.3
                     6 3 US-08-987-743-13
                                                     Sequence 13, Appl
            17
189
                                                     Sequence 20, Appl
190
        17
                                                     Sequence 21, Appl
        17
191
                                                     Sequence 21, Appl
192
        17
                                                     Sequence 21, Appl
193
        17
                                                     Sequence 21, Appl
194
        17
                                                     Sequence 12, Appl
195
        17
                                                     Sequence 17, Appl
196
        17
                                                     Sequence 17, Appl
197
        17
                                                     Sequence 4, Appli
                    6 1 US-08-277-660A-3
             72.7
198
        16
                                                     Sequence 3, Appli
             72.7
199
        16
                     6 1 US-08-424-957-3
                                                     Sequence 3, Appli
200
                     6 3 US-09-035-686-3
        16
            72.7
                                                     Sequence 3, Appli
201
        16
            72.7
                     8 1 US-07-920-519-9
                                                     Sequence 9, Appli
202
                     8 1 US-08-086-410-6
        16
             72.7
                                                     Sequence 6, Appli
             72.7
203
                     8 1 US-08-314-586-9
        16
                                                     Sequence 9, Appli
            72.7
72.7
72.7
72.7
72.7
                      8 3 US-08-444-818-431
204
        16
                                                     Sequence 431, App
205
        16
                      8 3 US-08-444-818-432
                                                     Sequence 432, App
206
        16
                     9 3 US-08-159-339A-337
                                                     Sequence 337, App
207
                     9 3 US-08-159-339A-824
        16
                                                     Sequence 824, App
208
        16
             72.7
                     9 4 US-09-311-784A-162
                                                     Sequence 162, App
            72.7
72.7
209
        16
                     10 1 US-08-277-660A-8
                                                     Sequence 8, Appli
                     10 1 US-08-424-957-12
210
        16
                                                     Sequence 12, Appl
211
        16
             72.7
                     10 3 US-08-159-339A-854
                                                     Sequence 854, App
212
        16
             72.7
                     10 3 US-09-035-686-12
                                                     Sequence 12, Appl
213
        16
            72.7
                     11 4 US-09-462-951B-8
                                                     Sequence 8, Appli
214
        16
            72.7
                     12 2 US-08-764-640-128
                                                     Sequence 128, App
215
        16
            72.7
                     12 2 US-08-553-257A-25
                                                     Sequence 25, Appl
216
                     12 2 US-08-553-257A-27
        16
            72.7
                                                     Sequence 27, Appl
217
                     12 2 US-08-553-257A-28
        16
             72.7
                                                     Sequence 28, Appl
                     12 2 US-08-553-257A-29
218
        16
             72.7
                                                     Sequence 29, Appl
                     12 2 US-08-553-257A-30
219
        16
            72.7
                                                     Sequence 30, Appl
220
        16
            72.7
                     12 3 US-08-973-225-128
                                                     Sequence 128, App
221
        16
            72.7
                     12 3 US-09-244-298A-128
                                                     Sequence 128, App
222
        16
             72.7
                     12 3 US-09-516-704-128
                                                     Sequence 128, App
223
        16
             72.7
                     12 4 US-09-549-090-128
                                                     Sequence 128, App
224
             72.7
                     12 4 US-09-832-230A-128
        16
                                                     Sequence 128, App
225
        16
             72.7
                     12 4 US-09-441-992-25
                                                     Sequence 25, Appl
226
        16
            72.7
                     12 4 US-09-441-992-27
                                                     Sequence 27, Appl
227
        16
            72.7
                     12 4 US-09-441-992-28
                                                     Sequence 28, Appl
228
        16
            72.7
                     12 4 US-09-441-992-29
                                                     Sequence 29, Appl
229
        16
             72.7
                     12 4 US-09-441-992-30
                                                     Sequence 30, Appl
230
                     12 4 US-09-428-082B-50
        16
             72.7
                                                     Sequence 50, Appl
231
                     13 4 US-09-385-740B-14
        16
             72.7
                                                     Sequence 14, Appl
232
                     13 4 US-10-073-679-14
        16
            72.7
                                                     Sequence 14, Appl
233
                     13 4 US-10-009-999A-14
        16
            72.7
                                                     Sequence 14, Appl
234
        16
            72.7
                     14 3 US-09-335-098A-4
                                                     Sequence 4, Appli
235
        16
            72.7
                     14 4 US-09-385-740B-4
                                                     Sequence 4, Appli
                     14 4 US-10-073-679-4
236
        16
            72.7
                                                     Sequence 4, Appli
                     14 4
237
        16
             72.7
                           US-10-009-999A-4
                                                     Sequence 4, Appli
                     15 1 US-08-277-660A-5
238
        16
             72.7
                                                     Sequence 5, Appli
239
        16
            72.7
                     15 1 US-08-277-660A-6
                                                     Sequence 6, Appli
```

```
RESULT 1
US-07-753-909B-3
; Sequence 3, Application US/07753909B
; Patent No. 5304632
   GENERAL INFORMATION:
     APPLICANT: Vaudry, Hubert
     APPLICANT: Conlon, Michael J.
     TITLE OF INVENTION: Neuropeptides of the Tachykinin Family
    NUMBER OF SEQUENCES: 3
     CORRESPONDENCE ADDRESS:
      ADDRESSEE: Zarley, McKee, Thomte, Voorhees, and Sease
      STREET: 801 Grand, Suite 3200
      CITY: Des Moines
      STATE: Iowa
     COUNTRY: United States
      ZIP: 50309
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
       SOFTWARE: PatentIn Release #1.0, Version #1.25
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/07/753,909B
      FILING DATE: 19910903
      CLASSIFICATION: 530
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: FR 9106759
      FILING DATE: 04-JUN-1991
    ATTORNEY/AGENT INFORMATION:
      NAME: Sease, Edmund J.
      REGISTRATION NUMBER: 24,741
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: (515)-288-3667
      TELEFAX: (515)-288-1338
  INFORMATION FOR SEQ ID NO: 3:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 5 amino acids
      TYPE: AMINO ACID
      STRANDEDNESS: single
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
    FRAGMENT TYPE: C-terminal
    ORIGINAL SOURCE:
      ORGANISM: Rana ridibunda
      DEVELOPMENTAL STAGE: adult
      TISSUE TYPE: brain
US-07-753-909B-3
                         90.9%; Score 20; DB 1; Length 5;
 Query Match
 Best Local Similarity 100.0%; Pred. No. 3e+05;
 Matches 5; Conservative 0; Mismatches 0; Indels 0; Gaps
                                                                          0;
```

Qу

1 FXGLM 5

```
RESULT 2
US-07-934-553-2
; Sequence 2, Application US/07934553
; Patent No. 5314690
; GENERAL INFORMATION:
    APPLICANT: PATTERSON, ROY
    APPLICANT: HARRIS, KATHLEEN E
    TITLE OF INVENTION: METHOD AND COMPOSITION FOR REDUCING IGE
    TITLE OF INVENTION: ANTIBODIES TO SPECIFIC ALLERGENS
    NUMBER OF SEQUENCES: 5
    CORRESPONDENCE ADDRESS:
     ADDRESSEE: TILTON, FALLON, LUNGMUS & CHESTNUT
     STREET: 100 SOUTH WACKER DRIVE
     CITY: CHICAGO
      STATE: ILLINOIS
;
      COUNTRY: USA
;
      ZIP: 60606-4002
;
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
     SOFTWARE: PatentIn Release #1.0, Version #1.25
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/07/934,553
      FILING DATE: 19920821
     CLASSIFICATION: 424
   PRIOR APPLICATION DATA:
      APPLICATION NUMBER: US 07/705,071
      FILING DATE: 24-MAY-1991
    ATTORNEY/AGENT INFORMATION:
      NAME: FENTRESS, SUSAN B
      REGISTRATION NUMBER: 31,327
      REFERENCE/DOCKET NUMBER: NU-9033CIP
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: 312/456-8000
  INFORMATION FOR SEQ ID NO: 2:
    SEQUENCE CHARACTERISTICS:
;
      LENGTH: 5 amino acids
      TYPE: AMINO ACID
      STRANDEDNESS: unknown
     TOPOLOGY: unknown
   MOLECULE TYPE: peptide
US-07-934-553-2
 Query Match
                         90.9%; Score 20; DB 1; Length 5;
 Best Local Similarity 80.0%; Pred. No. 3e+05;
 Matches
           4; Conservative 0; Mismatches 1; Indels 0; Gaps
                                                                           0;
Qу
           1 FXGLM 5
             1 111
           1 FFGLM 5
Search completed: April 7, 2004, 09:26:37
Job time : 32 secs
```

OM protein - protein search, using sw model

Run on: April 7, 2004, 09:14:31; Search time 53 Seconds

(without alignments)

26.655 Million cell updates/sec

Title: US-10-030-388A-1

Perfect score: 22

Sequence: 1 FXGLM 5

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

Searched: 1586107 seqs, 282547505 residues

Total number of hits satisfying chosen parameters: 447529

Minimum DB seq length: 0
Maximum DB seq length: 15

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 1000 summaries

Database: A Geneseq 29Jan04:*

1: geneseqp1980s:*

2: geneseqp1990s:*

3: geneseqp2000s:*

4: geneseqp2001s:*

5: geneseqp2002s:*

6: geneseqp2003as:*

7: geneseqp2003bs:*

8: geneseqp2004s:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

R	esult No.	Score	% Query Match	Length	DB	ID	Descripti	.on
	1	21	95.5	12	2	AAW64648	Aaw64648	Synthetic
	2	21	95.5	14	4	AAM97765	Aam97765	Human pep
	3	20	90.9	5	2	AAR33009	Aar33009	Alpha-sub
	4	20	90.9	5	2	AAR33008	Aar33008	Alpha-sub
	5	20	90.9	5	2	AAR33007	Aar33007	Alpha-sub
	6	20	90.9	5	2	AAR33010	Aar33010	Alpha-sub
	7	20	90.9	5	2	AAW80134	Aaw80134	COOH-term
	8	20	90.9	5	2	AAR54549	Aar54549	Cholecyst
	9	20	90.9	5	2	AAR54551	Aar54551	Cholecyst

10	20	90.9	5	2	AAR54550			Cholecyst
11	20	90.9	5	2	AAR54548			Cholecyst
12	20	90.9	5	2	AAW41687			Tetrapept
13	20	90.9	5	2	AAW99643			Substance
14	20	90.9	5	2	AAY50325			Neutrophi
15	20	90.9	5	2	AAW92660			Human tac
16	20	90.9	5	3	AAB23028			Mammalian
17	20	90.9	5	3	AAB23025			Human/rat
18	20	90.9	5	3	AAY67576		-	P antagon
19	20	90.9	5	4	AAB66674			C-termina
20	20	90.9	5	4	AAB82430			Fluorinat
21	20	90.9	5	4	AAB82431			Fluorinat
22	20	90.9	5	4	AAB91428			Tachykini
23	20	90.9	5	4	AAB70556			Octopus t
24	20	90.9	5	5	AAU10880			Human bet
25	20	90.9	5	5	ABB10088			Substance
26	20	90.9	5	5	AAU77847			Tachykini
27	20	90.9	5	5	AAU77845			Tachykini
28	20	90.9	5	7	ADC64000			Tachykini
29	20	90.9	6	1	AAP30443		-	Sequence
30	20	90.9	6	1	AAP40519		_	Sequence
31	20	90.9	6	1	AAP50694			Sequence
32	20	90.9	6	1	AAP50632		•	Substance
33	20	90.9	6	1	AAP61486			Peptide h
34	20	90.9	6	2	AAR07897			Cylcopept
35	20	90.9	6	2	AAR07893			Cylcopept
36	20	90.9	6	2	AAR21959			Substance
37	20	90.9	6	2	AAR27696			Cyclic ta
38	20	90.9	6	2	AAR27694			Cyclic ta
39	20	90.9	6	2	AAR27695			Cyclic ta
40	20	90.9	6	2	AAW99686	= =		Substance
41	20	90.9	6	2	AAW92706			Human tac
42	20	90.9	6	2	AAW92659			Human tac
43	20	90.9	6	2	AAY31052			Non-cross
44	20	90.9	6	3	AAY67575			P antagon
45	20	90.9	6	4	AAB82453			Fluorinat
46	20	90.9	6	4	AAB82432			Fluorinat
47	20	90.9	6	4	AAB82436			Fluorinat
48	20	90.9	6	4	AAB82433			Fluorinat
49	20	90.9	6	4	AAB91421			Tachykini Tachykini
50	20	90.9	6	4	AAB91425			Tachykini
51	20	90.9	6	4	AAB91419			_
52	20	90.9	6	4	AAG99351		_	Atypical
53	20	90.9	6	4	AAB74306			Peptide a Chimeric
54	20	90.9	6	4	AAB98884			Chimeric
55	20	90.9	6	4	AAB98886			Substance
56	20	90.9	6	5	ABB10087			Substance
57	20	90.9	6	5	ABB10086			Rhodopsin
58	20	90.9	6	6	ABJ37288			Tyr8-SP5-
59	20	90.9	7	1	AAP20310			Substance
60	20	90.9	7	2	AAR21956			Substance
61	20	90.9	7 7	2	AAR21957			Asp-Ser-P
62	20	90.9		2	AAW29539 AAY50324			Neutrophi
63	20	90.9	7	2			_	Human tac
64 65	20	90.9	7 7	2	AAW92662			Human tac
65 66	20 20	90.9 90.9	7	3	AAW92705 AAY67574			P antagon
00	20	30.9	1	ے	AA10/3/4	A	ayorara	i antagon

67	20	90.9	7	4	AAB80323	Aab80323 Human pro
68	20	90.9	7	4	AAB80324	Aab80324 Human pro
69	20	90.9	7	4	AAB82428	Aab82428 Fluorinat
70	20	90.9	7	4	AAB82429	Aab82429 Fluorinat
71	20	90.9	7	4	AAB91354	Aab91354 Tachykini
72	20	90.9	7	4	AAB91431	Aab91431 Tachykini
73	20	90.9	7	4	AAB91420	Aab91420 Tachykini
74	20	90.9	7	4	AAG99350	Aag99350 Atypical Aab98845 Chimeric
75	20	90.9	7	4	AAB98845	Abb10085 Substance
76	20	90.9	7	5	ABB10085	Abb10003 Substance Abb09500 Substance
77	20	90.9	7	5 1	ABB09500	App09300 Substance App20303 Gastroint
78	20	90.9	8		AAP20303	Aar28444 Neurokini
79	20	90.9	8	2	AAR28444 AAW57536	Aaw57536 Molecular
80	20	90.9	8	2 2	AAW92664	Aaw92664 Human tac
81	20	90.9	8	2	AAW92710	Aaw92710 Human tac
82	20	90.9	8	3	AAW 92710 AAY 67573	Aay67573 P antagon
83	20	90.9	8 8	3 4	AA107373 AAB91407	Aab91407 Tachykini
84	20	90.9	8	4	AAB91416	Aab91416 Tachykini
85	20 20	90.9	8	4	AAB91424	Aab91424 Tachykini
86 87	20	90.9	8	4	AAG99349	Aag99349 Atypical
8 7 8 8	20	90.9	8	4	AAB97571	Aab97571 Substitut
89	20	90.9	8	5	ABB09498	Abb09498 Substance
90	20	90.9	8	5	ABB09499	Abb09499 Substance
91	20	90.9	9	1	AAP50634	Aap50634 Substance
92	20	90.9	9	2	AAW92714	Aaw92714 Human tac
93	20	90.9	9	4	AAB80325	Aab80325 Human pro
94	20	90.9	9	4	AAB91446	Aab91446 Tachykini
95	20	90.9	9	4	AAB91369	Aab91369 Tachykini
96	20	90.9	9	4	AAG99348	Aag99348 Atypical
97	20	90.9	10	1	AAP40414	Aap40414 Decapepti
98	20	90.9	10	1	AAP40413	Aap40413 Decapepti
99	20	90.9	10	1	AAP50633	Aap50633 Substance
100	20	90.9	10	2	AAR21933	Aar21933 Substance
101	20	90.9	10	2	AAR65181	Aar65181 S. cerevi
102	20	90.9	10	2	AAR77311	Aar77311 Neurokini
103	20	90.9	10	2	AAR77312	Aar77312 Neurokini
104	20	90.9	10	2	AAW79777	Aaw79777 Neurokini
105	20	90.9	10	2	AAW79776	Aaw79776 Neurokini
106	20	90.9	10	2	AAW48951	Aaw48951 Tachykini
107	20	90.9	10	2	AAW75251	Aaw75251 Fragment
108	20	90.9	10	2	AAW74415	Aaw74415 HPMBQ91 p
109	20	90.9	10	2	AAY23264	Aay23264 Protein b
110	20	90.9	10	2	AAY06939	Aay06939 Substance
111	20	90.9	10	2	AAW92663	Aaw92663 Human tac
112	20	90.9	10	2	AAW92697	Aaw92697 Human tac
113	20	90.9	10	2	AAW92729	Aaw92729 Human tac
114	20	90.9	10	2	AAW92728	Aaw92728 Human tac
115	20	90.9	10	4	AAB82417	Aab82417 Neurokini
116	20	90.9	10	4	AAB91383	Aab91383 Tachykini
117	20	90.9	10	4	AAB91398	Aab91398 Tachykini Aab91355 Tachykini
118	20	90.9	10	4	AAB91355	Aab91335 Tachykini Aab91397 Tachykini
119	20	90.9	10	4	AAB91397	Aab91397 Tachykini Aab91368 Tachykini
120	20	90.9	10	4	AAB91368	Aab91366 Tachykini Aab91445 Tachykini
121	20	90.9	10	4	AAB91445	Aab91445 Tachykini Aab91356 Tachykini
122	20	90.9	10	4	AAB91356	Aag99355 Neurokini
123	20	90.9	10	4	AAG99355	Ady 99000 Neurokini

124	20	90.9	10	4	AAG99356	Aag99356 Neurok	ini
125	20	90.9	10	4	AAG99347	Aag99347 Atypic	
126	20	90.9	10	4	AAG64746	Aag64746 Substa	nce
127	20	90.9	10	4	AAB82381	Aab82381 Human	
128	20	90.9	10	5	AAE27017	Aae27017 Human	_
129	20	90.9	10	5	AAE27155	Aae27155 Human	gen
130	20	90.9	10	5	ABB99004	Abb99004 Neurok	
131	20	90.9	10	5	ABB99003	Abb99003 Neurok	ini
132	20	90.9	10	6	ABG76074	Abg76074 Sea la	mpr
133	20	90.9	10	6	ABU65028	Abu65028 Human	sec
134	20	90.9	10	7	ADC63999	Adc63999 Mosqui	to
135	20	90.9	10	7	ADC63998	Adc63998 Mosqui	to
136	20	90.9	11	1	AAP50425	Aap50425 Hypote	nsi
	20	90.9	11	1	AAP61480	Aap61480 Sequen	
137	20	90.9	11	1	AAP80312	Aap80312 Sequen	
138		90.9	11	2	AAR11854	Aar11854 Undeca	
139	20		11	2	AAR13162	Aar13162 Sialio	
140	20	90.9 90.9	11	2	AAR28445	Aar28445 Neurok	
141	20		11	2	AAR28442	Aar28442 Substa	
142	20	90.9		2	AAR20442 AAR21971	Aar21971 Cyclic	
143	20	90.9	11			Aar21942 Substa	
144	20	90.9	11	2	AAR21942	Aar21962 Substa	
145	20	90.9	11	2	AAR21962	Aar21945 Substa	
146	20	90.9	11	2	AAR21945	Aar21943 Substa	
147	20	90.9	11	2	AAR21963	Aar21949 Substa	
148	20	90.9	11	2	AAR21949	Aar21949 Substa	
149	20	90.9	11	2	AAR21951		
150	20	90.9	11	2	AAR21946	Aar21946 Substa	
151	20	90.9	11	2	AAR21964	Aar21964 Substa	
152	20	90.9	11	2	AAR21972	Aar21972 Cyclic	
153	20	90.9	11	2	AAR21970	Aar21970 Cyclic	
154	20	90.9	11	2	AAR21938	Aar21938 Substa	
155	20	90.9	11	2	AAR21941	Aar21941 Substa	
156	20	90.9	11	2	AAR21939	Aar21939 Substa	
157	20	90.9	11	2	AAR21954	Aar21954 Substa	
158	20	90.9	11	2	AAR42646	Aar42646 Neurok	
159	20	90.9	11	2	AAR42649	Aar42649 Neurok	
160	20	90.9	11	2	AAR32183	Aar32183 Ranaki	
161	20	90.9	11	2	AAR32182	Aar32182 Generi	
162	20	90.9	11	2	AAR85243	Aar85243 Substa	
163	20	90.9	11	2	AAR77109	Aar77109 Uperol	
164	20	90.9	11	2	AAR77310	Aar77310 Substa	ance
165	20	90.9	11	2	AAW33181	Aaw33181 Mono-I	
166	20	90.9	11	2	AAW33180	Aaw33180 Mono-I	
167	20	90.9	11	2	AAW04616	Aaw04616 Substa	ance
168	20	90.9	11	2	AAW04613	Aaw04613 Physal	laem
169	20	90.9	11	2	AAW79775	Aaw79775 Substa	ance
170	20	90.9	11	2	AAW42973	Aaw42973 Substi	rate
171	20	90.9	11	2	AAW48950	Aaw48950 Tachyl	kini
172	20	90.9	11	2	AAW48280	Aaw48280 Tyrosy	ylpe
173	20	90.9	11	2	AAW79663	Aaw79663 Substa	
174	20	90.9	11	2	AAW79662	Aaw79662 Substa	
	20	90.9	11	2	AAW92679	Aaw92679 Human	
175 176	20	90.9	11	2	AAW92676	Aaw92676 Human	
176			11	2	AAW92720	Aaw92720 Human	
177	20	90.9	11	2	AAW92720 AAW92673	Aaw92673 Human	
178	20	90.9		2	AAW92073 AAW92708	Aaw92708 Human	
179	20	90.9	11	2	AAW92700 AAW92731	Aaw92731 Human	
180	20	90.9	11	2	MMW 32 / 31	Adw/2/51 Indition	

181	20	90.9	11	2	AAW92670	Aaw92670	Human tac
182	20	90.9	11	2	AAW92689		Human tac
183	20	90.9	11	2	AAW92715	- · · · · · · · · · · · · · · · · · · ·	Human tac
184	20	90.9	11	2	AAW92719		Human tac
185	20	90.9	11	2	AAW92727		Human tac
186	20	90.9	11	2	AAW92680) Human tac
187	20	90.9	11	2	AAW92692		Human tac
188	20	90.9	11	2	AAW92681		Human tac
189	20	90.9	11	2	AAW92669		Human tac
190	20	90.9	11	2	AAW92691		Human tac
191	20	90.9	11	2	AAW92672		Human tac
192	20	90.9	11	2	AAW92690		Human tac
193	20	90.9	11	2	AAY30985		Non-cross
194	20	90.9	11	2	AAY03156	-	Substance
195	20	90.9	11	3	AAB23027		Human/rat
196	20	90.9	11	3	AAB18483		B Peptide s
197	20	90.9	11	3	AAY67965		Carboxyfl
198	20	90.9	11	3	AAY32382	-	2 Cell diff
199	20	90.9	11	3	AAB06260) Substance
200	20	90.9	11	3	AAB08614		4 Peptide i
201	20	90.9	11	4	AAB50311		l Previn pe
202	20	90.9	11	4	AAB50312		2 Previn pe
203	20	90.9	11	4	AAB50306		5 Substance
204	20	90.9	11	4	AAB50316		6 Previn pe
205	20	90.9	11	4	AAB50544		4 Prolyl en
206	20	90.9	11	4	AAB91371		l Tachykini
207	20	90.9	11	4	AAB91357		7 Tachykini
208	20	90.9	11	4	AAB91409		9 Tachykini
209	20	90.9	11	4	AAB91450		O Tachykini
210	20	90.9	11	4	AAB91438		8 Tachykini
211	20	90.9	11	4	AAB91449		9 Tachykini
212	20	90.9	11	4	AAB91437	Aab9143	_
213	20	90.9	11	4	AAB91351		1 Tachykini
214	20	90.9	11	4	AAB91386		6 Tachykini
215	20	90.9	11	4	AAB91402		2 Tachykini
216	20	90.9	11	4	AAB91436		6 Tachykini
217	20	90.9	11	4	AAG99358		8 ATT-short
218	20	90.9	11	4	AAG99354		4 Substance
219	20	90.9	11	4		_	7 Human aty
220	20	90.9	11	4	AAU07298		8 Substance
221	20	90.9	11	4	AAG62768		8 Amino aci
222	20	90.9	11	4	AAB84527		7 Amino aci
223	20	90.9	11	4	AAB49755		5 Complex s
224	20	90.9	11	4	AAB98866		6 Chimeric
225	20	90.9	11	4	AAB82070		0 Substance
226	20	90.9	11	5	ABB75676		6 Pseudo-me
227	20	90.9	11	5	AAO17685		5 Equine gu
228	20	90.9	11	5	AAU85994		4 Modified
229	20	90.9	11	5	ABB09496		6 Substance
230	20	90.9	11	5	ABB09481		1 Substance
231	20	90.9	11	5	AAU96752		2 Substance
232	20	90.9	11	5	AAU77844		4 Tachykini
233	20	90.9	11	5	AAE19492		2 Substance
234	20	90.9	11	5	AAU91346		6 Substance
235	20	90.9	11	5	AAU10409		9 Subtance-
236	20	90.9	11	5	AA015554		4 Human Sub
237	20	90.9	11	5	ABB99002	000eeddA	2 Substance

238	20	90.9	11	5	ABB09842	Abb09842	
239	20	90.9	11	6	ABP72531	Abp72531	
240	20	90.9	11	6	ABG76071	Abg76071	
241	20	90.9	11	6	ABG76064	Abg76064	
242	20	90.9	11	6	ABG76073	Abg76073	Rainbow t
243	20	90.9	11	6	ABG76069	Abg76069	Spotted d
244	20	90.9	11	6	ABG76070	Abg76070	Guinea pi
245	20	90.9	11	6	ABG76072	Abg76072	Atlantic
	20	90.9	11	7	ADD69983	Add69983	Primate n
246	20	90.9	11	7	ABR83030	Abr83030	Substance
247		90.9	12	2	AAR32798		Tyr-1 sub
248	20		12	2	AAR85244		Substance
249	20	90.9		2	AAW04615	Aaw04615	
250	20	90.9	12		AAW04013 AAW94412		Cancer pr
251	20	90.9	12	2			Human tac
252	20	90.9	12	2	AAW92730		Substance
253	20	90.9	12	2	AAY03157		Galanin p
254	20	90.9	12	4	AAB92032		Octopus t
255	20	90.9	12	4	AAB70553		
256	20	90.9	12	4	AAB70557		Octopus t
257	20	90.9	12	4	AAB70554		Octopus t
258	20	90.9	12	4	AAG62772		Amino aci
259	20	90.9	12	4	AAG62775		Amino aci
260	20	90.9	12	4	AAG62769	-	Amino aci
261	20	90.9	12	4	AAB84528		Amino aci
262	20	90.9	12	4	AAB98873	Aab98873	
263	20	90.9	12	4	AAB98870	Aab98870	
264	20	90.9	12	4	AAB98867	Aab98867	Chimeric
265	20	90.9	12	5	ABB09480	Abb09480	Substance
266	20	90.9	12	5	AAU96753	Aau96753	Substance
267	20	90.9	12	5	AAU96756	Aau96756	Substance
	20	90.9	12	5	ABB04922	Abb04922	Memory-en
268	20	90.9	12	5	AAE19496		Substance
269		90.9	12	5	AAE19499		Substance
270	20		12	5	AAE19493	7	Substance
271	20	90.9	12	7	ABR84705		Aggrecana
272	20	90.9	13	2	ABR04703 AAR29593		Vertebrat
273	20	90.9		2			Human tac
274	20	90.9	13	2	AAW92700		Substance
275	20	90.9	13		AAY03158	-	Amino aci
276	20	90.9	13	4			Amino aci
27 7	20	90.9	13	4	AAG62770		Amino aci
278	20	90.9	13	4	AAG62776		
279	20	90.9	13	4	AAB98874		Chimeric
280	20	90.9	13	4	AAB98871		Chimeric
281	20	90.9	13	4	AAB98868		Chimeric
282	20	90.9	13	5	AAU96757		Substance
283	20	90.9	13	5	AAU96754		Substance
284	20	90.9	13	5	AAE19494		Substance
285	20	90.9	13	5	AAE19497		Substance
286	20	90.9	13	5	AAE19500		Substance
287	20	90.9	14	2	AAY03159		Substance
288	20	90.9	14	4	AAB91440		Tachykini
289	20	90.9	14	4	AAG62771		Amino aci
290	20	90.9	14	4	AAG62777		Amino aci
291	20	90.9	14	4	AAG62774		Amino aci
292	20	90.9	14	4	AAB98872		Chimeric
	20	90.9	14	4	AAB98869		Chimeric
293	20	90.9	14	4	AAB98875		Chimeric
294	20	20.2	7.4	7	10100010		

295	20	90.9	14	5	AAU96755	Aau96755	Substance
296	20	90.9	14	5	AAU96758	Aau96758	Substance
297	20	90.9	14	5	AAE19498	Aae19498	Substance
298	20	90.9	14	5	AAE19495	Aae19495	Substance
299	20	90.9	14	5	AAE19501	Aae19501	Substance
300	20	90.9	14	6	ABP56241	Abp56241	Targeting
301	20	90.9	14	8	ADE64332	Ade64332	Radiophar
302	20	90.9	15	2	AAW75250		Fragment
	20	90.9	15	5	AAE27016	Aae27016	Human gen
303	20	90.9	15	5	AAE27154	Aae27154	Human gen
304		90.9	15	6	ABU65027		Human sec
305	20	86.4	10	2	AAW92698		Human tac
306	19		10	2	AAW92696		Human tac
307	19	86.4	10	4	AAB91370		Tachykini
308	19	86.4		2	AAR21968		Cyclic su
309	19	86.4	11		AAR21900 AAW92687		Human tac
310	19	86.4	11	2			Previn pe
311	19	86.4	11	4	AAB50314		Previn pe
312	19	86.4	11	4	AAB50315		Previn pe
313	19	86.4	11	4	AAB50313		Antigenic
314	19	86.4	14	2	AAW47171		_
315	19	86.4	14	3	AAB01939		MAb 12f3.
316	19	86.4	14	4	AAE12476		XMEL anti
317	19	86.4	14	5	AAE26378		Melag 7 a
318	19	86.4	14	6	ABG72920		Anti-mrk-
319	18	81.8	9	2	AAW45712		MAGE-3 19
320	18	81.8	10	7	ADD94752		Human SIM
321	18	81.8	10	7	ADD94536		Human SIM
322	18	81.8	10	7	ADD94736		Human SIM
323	18	81.8	10	7	ADD94724		Human SIM
324	18	81.8	10	7	ADD94684		Human SIM
325	18	81.8	10	7	ADD94543		Human SIM
326	18	81.8	12	1	AAP50357		Hylambati
327	18	81.8	12	2	AAW79348		Staphyloc
328	18	81.8	15	4	AAB67932		? Internal
329	17	77.3	5	2	AAW92702	Aaw92702	Human tac
330	17	77.3	5	4	AAG99352	Aag99352	Atypical
331	17	77.3	5	4	AAG99346	Aag99346	Atypical
332	17	77.3	5	5	AAG80461	Aag80461	Enzyme cl
333	17	77.3	5	5	ABB10089	Abb10089	Substance
334	17	77.3	6	2	AAW29545	Aaw29545	Suc(psi(C
335	17	77.3	6	2	AAY22121	Aay22121	Human uri
336	17	77.3	6	4	AAB82442	Aab82442	? Fluorinat
337	17	77.3	6	4	AAB82421	Aab82423	l Fluorinat
	17	77.3	6	4	AAB82449		Fluorinat
338	17	77.3	6	4	AAB82420) Fluorinat
339		77.3	6	4	AAB82450) Fluorinat
340	17		7	2	AAW29544		Asp-Ser(p
341	17	77.3	7	2	AAW29543		3 Asp-Ser-P
342	17	77.3	7	2	AAW29543 AAW29547		7 Asp-Ser-P
343	17	77.3					Asp-Ser-P
344	17	77.3	7	2	AAW29540		3 Fluorinat
345	17	77.3	7	4	AAB82418		7 Fluorinat
346	17	77.3	7	4	AAB82437		Fluorinat
347	17	77.3	7	4	AAB82445		6 Fluorinat
348	17	77.3	7	4	AAB82446		4 Fluorinat
349	17	77.3	7	4	AAB82424		9 Fluorinat
350	17	77.3	7	4	AAB82419		5 Fluorinat
351	17	77.3	7	4	AAB82425	Ad00242	JIIGUIIIAC

```
RESULT 1
AAW64648
     AAW64648 standard; peptide; 12 AA.
ΙD
XX
АC
     AAW64648;
XX
     23-OCT-1998 (first entry)
DT
XX
     Synthetic SEB-related peptide (position 13-24).
DE
XX
     Enterotoxin B; SEB; pyrogenic exotoxin; PET; protective immunity;
KW
     toxic shock; toxin-mediated activation; T-cell; antagonist; inhibitor;
KW
     therapeutic; vaccine; food poisoning.
KW
XX
     Synthetic.
OS
     Staphylococcus aureus.
OS
XX
     WO9829444-A1.
PN
XX
     09-JUL-1998.
PD
XX
                    97WO-IL000438.
     30-DEC-1997;
PF
XX
                    96IL-00119938.
     30-DEC-1996;
PR
XX
     (YISS ) YISSUM RES & DEV CO.
PA
XX
     Kaempfer R, Arad G;
PΙ
XX
     WPI; 1998-388042/33.
DR
XX
     New peptide(s) derived from pyrogenic exotoxin - useful for, e.g.
PT
     antagonising toxin-mediated activation of T cells and prevention or
PT
     treatment of toxic shock caused by exotoxin(s).
PT
XX
     Example 2; Page 38; 68pp; English.
PS
XX
     AAW64636-W64657 are peptides homologous to the amino acid sequence of a
CC
     fragment of a pyrogenic exotoxin (PET), and derivatives of the peptide
CC
     capable of eliciting protective immunity against toxic shock induced by
CC
     PET or by a mixture of PETs. Such peptides are also capable of
CC
     antagonising toxin-mediated activation of T-cells, inhibiting expression
CC
      of pyrogenic toxin (PT)-induced mRNA encoded by IL-2, IFN-gamma or TNF-
CC
     beta genes. The peptides may be used to prepare therapeutics or vaccines
CC
      for the treatment of prophylaxis of toxin-mediated activation of T cells
 CC
      and eliciting protective immunity against toxic shock induced by PETs.
 CC
      They can also be used for the treatment of harmful effects (especially
 CC
      food poisoning) and toxic shock caused by PET. Antiserum to the peptides
 CC
      can also be used for alleviating toxic shock induced by PET
 CC
 XX
      Sequence 12 AA;
 SQ
```

95.5%; Score 21; DB 2; Length 12;

Query Match

```
Best Local Similarity 80.0%; Pred. No. 82;
                               0; Mismatches 1; Indels
                                                                 0; Gaps
                                                                             0;
          4; Conservative
 Matches
            1 FXGLM 5
QУ
              +
            5 FTGLM 9
Db
RESULT 2
AAM97765
     AAM97765 standard; peptide; 14 AA.
XX
     AAM97765;
AC
XX
     24-JAN-2002 (first entry)
DT
XX
     Human peptide #1040 encoded by a SNP oligonucleotide.
DE
XX
     Immunosuppressive; immunostimulatory; antiinflammatory; cytostatic;
KW
     neuroprotective; antimicrobial; gene therapy; vaccine; amylase; cancer;
KW
     amyloid protein; angiopoietin; apoptosis related protein; cadherin;
KW
     cyclin; polymerase; oncogene; histone; kinase; colony stimulating factor;
KW
     complement related protein; cytochrome; kinesin; cytokine; interferon;
KW
     interleukin; G-protein coupled receptor; thioesterase; inflammation;
KW
     multifactorial disease; autoimmune disease; infection;
KW
     nervous system disease.
KW
XX
     Homo sapiens.
OS
XX
     WO200147944-A2.
PN
XX
PD
     05-JUL-2001.
XX
     28-DEC-2000; 2000WO-US035498.
PF
XX
     28-DEC-1999;
                    99US-0173419P.
PR
     27-DEC-2000; 2000US-00173419.
PR
XX
      (CURA-) CURAGEN CORP.
PA
XX
     Shimkets RA, Leach M;
PΙ
XX
     WPI; 2001-465210/50.
DR
XX
      Polymorphic nucleic acids encoding e.g. amylases, cyclins, polymerases,
 PT
      oncogenes and histones, useful for diagnosing and treating, e.g. cancer,
 PT
      autoimmune diseases and infections.
 PT
 XX
      Disclosure; Page 3895; 4143pp; English.
 PS
 XX
      The present invention relates to oligonucleotides (see AAL26793-AAL34659)
 CC
      encoding polymorphic variants of proteins related to amylases, amyloid
 CC
      proteins, angiopoietin, apoptosis related proteins, cadherin, cyclin,
 CC
      polymerase, oncogenes, histones, kinases, colony stimulating factors,
 CC
      complement related proteins, cytochromes, kinesins, cytokines,
 CC
      interferons, interleukins, G-protein coupled receptors and thioesterases.
 CC
      The present sequence is a peptide encoded by one such oligonucleotide.
 CC
```

The oligonucleotides and the peptides encoded by them may be used in the CC prevention, diagnosis and treatment of diseases associated with CC inappropriate expression of the proteins listed above. Disorders that may CC be prevented, diagnosed and/or treated include multifactorial diseases CC with a genetic component, such as autoimmune diseases (e.g. rheumatoid CC arthritis, multiple sclerosis, diabetes, systemic lupus erythromatosus CC and Grave's disease), inflammation, cancer (e.g. cancers of the bladder, CC brain, breast, colon and kidney, leukaemia), diseases of the nervous CC system and an infection of pathogenic organisms CC XX Sequence 14 AA; SQ 95.5%; Score 21; DB 4; Length 14; Query Match Best Local Similarity 80.0%; Pred. No. 95; 1; Indels 0; Gaps 0; 4; Conservative 0; Mismatches 1 FXGLM 5 Qу 1 111 9 FSGLM 13 Db

Search completed: April 7, 2004, 09:24:58

Job time : 75 secs