الوحدة الرابعة:

سلسلة ت<mark>36-004-20</mark>25

تمرین رقم:01

 $25\,^{\circ}C$ كل القياسات مأخوذة في درجة الحرارة

 $c_0 = 0.1 mol/L$ تركيزه المولى ($CH_3COOH\left(aq
ight)$) تركيزه المولى محلول حمض الايثانويك الايثانويك النقي في حجم $V = 100 \, mL$ له نجد pH له نجد pH من الماء المقطر ،نقيس قيمة الـ pH له نجد

m أحد قيمة الكتلة.

 (S_0) ب-اذكر البروتوكول التجريبي لتحضير المحلول

2_أ_اكتب معادلة التفاعل المنمذج للتحول الكيميائي بين حمض الايثانويك والماء. ب_هل التفاعل السابق تم: بين حمض وأساسه المرافق أو حمض الثنائية وأساس لثنائية أخرى ؟

3_أ_انشئ جدول تقدم التفاعل.

ب-احسب قيمة نسبة التقدم النهائي للتفاعل au_f مماذا تستنتج ؟.

جـاحسب قيمة ثابت التوازن K للتقاعل.

 $M(CH_3COOH) = 60g/mol$

 $V_0=10mL$ ممددة وذلك بأخذ في كل مرة حجما السابق نحضر محاليل (S_i) ممددة وذلك بأخذ في كل مرة حجما II من المحلول الأصلى (S_0) ونضيف له حجما مناسبا من الماء المقطر V_{H_2O} .

وعند حدوث التوازن الكيميائي للمحاليل (S_i) المحضرة نقوم بقياس الـ pH لكل محلول فنحصل على النتائج المدونة في الجدول التالى :

					ن العالي .	المدوده سي البدو
(S_i) المحاليل	(S_1)	(S_2)	(S_3)	(S_4)	(S_5)	(S_6)
$V_{H_2O}(mL)$	0	10	20	40	60	90
рН	2,9	3,05	3,15	3,25	3,30	3,40
c(mol/L)						
$-\log(c)$						

 V_{H_2O} و C_0 بدلالة C_i بدلالة و للمحاليل التركيز المولي للمحاليل المحاليل التركيز المحاليل المحاليل المحاليل المحالي

ب_اكمل الجدول .

. (S_3) الخطوات العملية لتحضير المحلول =

. $pH = f(-\log(c))$ ا۔ اعتمادا علی سلم رسم مناسب ،ارسم البیان 2

ب_اكتب المعادلة الرياضية للبيان.

 $(CH_3COOH(aq)/CH_3COO^-(aq))$ للثنائية pKa و pH للثنائية pKa المام $pKa=2pH+\log(c)$. $pKa=2pH+\log(c)$ المام pKa بين أن

 $_{.}\left(\!C\!H_{3}COOH\left(aq
ight)/C\!H_{3}COO^{-}\!\left(aq
ight)\!
ight)$ للثنائية pKa للثنائية 4

تمرین رقم:02

حمض البنزويك (C_6H_5COOH) مسحوق لونه أبيض يستعمل كمادة حافظة في صناعة المواد الغذائية و المشروبات الغازية خاصة.

نقوم بتحضير محلول (S_0) لحمض البنزويك $C_6H_5COOH(aq)$ تركيزه المولي C_0 وذلك بإذابت والمحتلة والمحتوق حمض البنزويك النقي في حجم قدره $V_0=100\,m$ من الماء المقطر ، تم قياس ال $D_0=100\,m$ له عند درجة الحرارة $D_0=2.61$ فوجد $D_0=2.61$ فوجد .

1 اكتب معادلة التفاعل للتحول الكيميائي الحادث بين حمض البنزويك والماء.

2. اعتمادا على جدول تقدم التفاعل بين أن عبارة النسبة النهائية لتقدم التفاعل au_{1f} تكتب بالشكل

$$\tau_{1f} = \frac{1}{c_0 \times 10^{pH_0}}$$

 \mathcal{C}_a ونمددها \mathcal{C}_a ونمددها 10 مرات فنتحصل على المحلول (\mathcal{S}_a) تركيزه المولي (02) ونمددها

. (S_a) اليك الوثيقتين التاليتين التي تمثل إحداهما طريقة تحضير المحلول (S_0) والأخرى خاصة بتحضير المحلول S_a

انسب كل وثيقة بطريقة تحضير المحلول المناسب.

2_أ_سم العناصر المرقمة المشار إليها في كل وثيقة.

ب_رتب الخطوات ترتيبا صحيحا لكل وثيقة مع الشرح البسيط حتى نتمكن من التحضير الجيد لكل محلول.

 C_0 لتحديد التركيز المولى II

ناخذ حجما قدره PH مترية تمت معايرته بواسطة (S_a) واعتمادا على تقنية المعايرة الـ $V_a=20mL$ مترية تمت معايرته بواسطة محلول الصود $(Na^++OH^-)(aq)$ تركيزه المولى الصود $(Na^++OH^-)(aq)$

education-onec-dz.blogspot.com

 $V_b(mL)$

تمكنا من رسم المنحنى البياني $pH=f(V_b)$ الموضح في الشكل $pH=f(V_b)$

1_أـ أكتب معادلة تفاعل المعايرة.

ب-انشئ جدول تقدم التفاعل.

. E أـجد بيانيا إحداثيتي نقطة التكافؤ

ب استنتج قيمة ثابت الحموضة pKa للثنائية

$$.(C_6H_5COOH/C_6H_5COO^-)$$

د عند إضافة حجم $V_b = 7m$ من السحاحة: 3

أ. بين أن عبارة نسبة التقدم النهائي au_{2f} لتفاعل المعايرة تكتب بالشكل:

$$. \ \tau_{2f} = 1 - \frac{K_e \times 10^{pH}}{c_b} \left(1 + \frac{V_a}{V_b} \right)$$

ب_جد قیمت au_{2f} ماذا تستنتج ؟

 \mathcal{C}_0 ثم استنتج قیمت \mathcal{C}_a ثم استنتج قیمت 4

باتنتج والمائمة au_{1f} ماذا تستنتج والمائمة على au_{1f}

 m_0 بـ احسب قيمت

 $\theta = 25^{\circ}C$ المحاليل مأخوذة عند درجة الحرارة ڪل المحاليل مأخوذة عند درجة الحرارة

 $M(H) = 1g.mol^{-1}$, $M(O) = 16g.mol^{-1}$, $M(C) = 12g.mol^{-1}$, $K_e = 10^{-14}$

تمرین رقم:03

يقدر الإنتاج العالمي من مادة الأمونياك حوالي 160 مليون طن سنويا و يستعمل هذه المادة في مجالات عدة ، حيث تستخدم بالدرجة الأولى لتصنيع الأسمدة الأزوتية في ميدان الزراعة لتخصيب التربة و تستخدم كذلك كمادة أولية في صناعة الأدوية و البلاستيك و غيرها

I ـ دراسة المحلول المائى للأمونياك:

pH نعتبر محلولا مائيا (S_B) للأمونياك (NH_3) حجمه V و تركيزه V حجمه V عطى قياس ال (S_B) أعطى قياس ال (S_B) هذا المحلول القيمة pH=10,74 .

1- اكتب معادلة تفاعل الأمونياك مع الماء.

2-انشئ جدول تقدم التفاعل.

 $au_f = rac{Ke}{C_B imes 10^{-pH}}$ لهذا التفاعل تكتب من الشكل $au_f = rac{Ke}{C_B imes 10^{-pH}}$ بين أن عبارة نسبة التقدم النهائي و $au_f = rac{Ke}{C_B imes 10^{-pH}}$ بين أن عبارة نسبة ماذا تستنتج و بين أن عبارة نسبة بين أن عبارة نسبة التقدم النهائي و بين أن عبارة التقدم النهائي و بين أن أن النهائي و بين أن النهائي و بين أن أنهائي و بين أن أنهائي و بين أن أنهائي و بين أن أنهائي و بين أنهائي و

. عن عبارة كسر التفاعل Q_{r_f} عند التوازن بدلالة و C_B ، أحسب قيمته Q_{r_f}

 $.(NH_4^+/NH_3)$ 5- تحقق من قيمة pKa للثنائية

$H_3O^+(aq) + Cl^-(aq)$ ي ـ معايرة محلول الأمونياك بواسطة محلول حمض كلور الماء $H_3O^+(aq)$

نقوم بمعايرة محلول مائي للأمونياك (S'_B) حجمه $V_B=20m$ تركيزه C'_B بواسطة محلول مائي لحمض . pH في التركيز المولي $C_A=2 imes10^{-2}$ بقياس الـ $C_A=2 imes10^{-2}$

1. اكتب معادلة تفاعل المعايرة.

2- يمثل المنحنى الممثل في الشكل - 3 تغير الـ pH الخليط بدلالة الحجم V_A للمحلول (S_A) لحمض كلور الماء المضاف . أحدد الإحداثيتين V_A و pH_E لنقطة التكافؤ .

 $.C'_{B}$ ب التركيز المولي

جـ عين ، معللا جوابك ، الكاشف الملائم لا نجاز هذه المعايرة في غياب جهاز الـ pH متر.

المسعطيات:

تمت جميع القياسات عند درجة حرارة C . $Ke=10^{-14}$. الجداء الشاردي للماء: $pKa=10^{-14}$ للثنائية $pKa=10^{-14}$

_جدول مجالات التغير اللوني لبعض الكواشف الملونة:

مجال التغير اللوني	الكاشف الملون
3,1-4,4	الهيليانتين
5,2-6,8	أحمر الكلوروفينول
6-7,6	أزرق البروموتيمول
8,8-10	الفينول فيتالين

$$m=c_0VM$$
ومنه: $m=m$ ومنه: $m=m$ ومنه: $m=m$ ا_1. الكتلة $m=c_0VM$ أي: $m=m$

$$m = 0.6g$$
 أي: $m = 0.1 \times 100 \cdot 10^{-3} \times 60 = 0.6g$

S_0 ب البروتوكول التجريبي لتحضير المحلول التجريبي المحضير المحلول التجريبي المحضير المحلول المرايب

بواسطة ميزان الكةروني حساس مضبوط نزن الكتلة m=0.6g من مسحوق حمض الايثانويك.

نضيف الكتلة m=0.6g بالاعتماد على قمع في حوجلة عيارية سعتها $100\,m$ فيها $30\,m$ من الماء الماء موالد موالد موالد م

ر ع ب الماء المقطر حتى نصل لخط العيار مع الرج المستمر.

_ على ملصقة نكتب اسم المحلول (S_0) وتركيزه المولي 1mol/L . .

2 أ_معادلة التفاعل المنمذج للتحول الكيميائي بين حمض الايثانويك والماء:

$$CH_3COOH(aq) + H_2O(l) = CH_3COO^{-}(aq) + H_3O^{+}(aq)$$

ب التفاعل السابق تم بين حمض الثنائية $\left(CH_3COOH\left(aq\right)/CH_3COO^{-}\left(aq\right)\right)$ وأساس الثنائية

 $_{\cdot\cdot}\left(H_3O^+(aq)/H_2O(l)\right)$ الأخرى:

3_أ_جدول تقدم التفاعل:

الحالة	تقدم التفاعل	$CH_{3}COOH(aq) + H_{2}O(l) = CH_{3}COO^{-}(aq) + H_{3}O^{+}(aq)$				
	ب mol	, I	2 ()	, 1 /	J (1 /	
الابتدائية	x = 0	n_a	بــالزيادة	0	0	
الانتقالية	x(t)	$n_a - x(t)$	بــالزيادة	x(t)	x(t)	
النهائية.	x_f	$n_a - x_f$	بــالزيادة	x_f	x_f	

: au_f ب عساب قيمة نسبة التقدم النهائي للتفاعل ب

$$\tau_f = \frac{\left[H_3O^+\right]_f V}{c_0 V} = \frac{\left[H_3O^+\right]_f}{c_0} \text{ ومنه: } x_{\max} = c_0 V \text{ و } x_f = \left[H_3O^+\right]_f V \text{ ...}$$
 لدينا:
$$\tau_f = \frac{\left[H_3O^+\right]_f V}{c_0 V} = \frac{\left[H_3O^+\right]_f V}{c_0 V$$

. $au_f \prec 1$ أو $au_f \prec 100\%$ أو $au_f \prec 100\%$ أو $au_f \prec 100\%$ أو $au_f \prec 100\%$ أو تستنتج أن حمض الايثانويك ضعيف والتحول الكيميائي محدود (غير تام) لأن ا

$$K = \frac{\left[CH_3COO^-\right]_f\left[H_3O^+\right]_f}{\left[CH_3COOH\right]_f}$$
 جـحساب قيمة ثابت التوازن K للتقاعل: لدينا:

$$\left[CH_{3}COO^{-}\right]_{f}=\left[H_{3}O^{+}\right]_{f}=\frac{x_{f}}{V}:$$
ولدينا أيضا من جدول تقدم التفاعل

$$[CH_3COOH]_f = \frac{c_0V - x_f}{V} = c_0 - [H_3O^+]_f$$

$$K = \frac{10^{-2(2,9)}}{0,1-10^{-(2,9)}} = 1,6.10^{-5}$$
ومنه:
$$K = \frac{10^{-2\,pH}}{c_0-10^{-pH}}$$
ومنه:
$$K = \frac{\left[H_3O^+\right]_f^2}{c_0-\left[H_3O^+\right]_f}$$

.
$$V_i = V_0 + V_{H_2O}$$
 عيث: $c_0 V_0 = c = \frac{c_0 V_0}{(V_0 + V_{H_2O})}$ ومنه: $c_0 V_0 = c_i V_i$

$$c = \frac{c_0 V_0}{(V_0 + V_{H_2o})} = \frac{0.1 \times 10}{(10 + V_{H_2o})}$$
نملأ السطر الرابع . بـ اكمال الجدول:بالاعتماد على العلاقة

ندخل $\log()$ على طرفى المساواة نملاً السطر الخامس .

			-	_	** -	
(S_i) المحاليل	(S_1)	(S_2)	(S_3)	(S_4)	(S_5)	(S_6)
$V_{H_2O}(mL)$	0	10	20	40	60	90
рН	2,9	3,05	3,15	3,25	3,30	3,40
c(mol/L)	0,10	0,05	0,033	0,02	0,014	0,01
$-\log(c)$	1	1,3	1,48	1,7	1,85	2

$--:(S_3)$ الخطوات العملية لتحضير المحلول العملية $--:(S_3)$

. (S_0) من المحلول $V_0=10m$ مزودة بإجاصة مص ناخذ حجما $V_0=10m$ من المحلول .

. نسكبه في حوجلة عيارية سعتها 20m ثم نكمل بالماء المقطر حتى نصل لخط العيار مع الرج.

على ملصقة نكتب اسم المحلول (S_3) وتركيزه المولي . ـ

ب المعادلة الرياضية للبيان: _ _

. $pH = A(-\log(c)) + B$. البيان خط مستقيم مائل لايشمل المبدأ معادلته من الشكل .

$$A = \frac{\Delta pH}{\Delta (-\log(c))} = \frac{3.4 - 2.9}{2 - 1} = 0.5$$
 حيث: A معامل توجيه البيان: A

و B : نقطة تقاطع البيان مع محور التراتيب نجد: B=2,4 أي: B=2,4

 $(CH_3COOH(aq)/CH_3COO^-(aq))$ ي الثنائية (pKa يلثنائية pKa الثنائية العلاقة النظرية بين

$$Ka = \frac{\left[CH_{3}COO^{-}\right]_{f}}{\left[CH_{3}COOH\right]_{f}} \times \left[H_{3}O^{+}\right]_{f}$$
 ومنه: $Ka = \frac{\left[CH_{3}COO^{-}\right]_{f}\left[H_{3}O^{+}\right]_{f}}{\left[CH_{3}COOH\right]_{f}}$ دينا:

$$\log(Ka) = \log\left(\frac{\left[CH_{3}COO^{-}\right]_{f}}{\left[CH_{3}COOH\right]_{f}}\right) + \log\left(\left[H_{3}O^{+}\right]_{f}\right)$$
بادخال $\log(Ka) = \log\left(\frac{\left[CH_{3}COO^{-}\right]_{f}}{\left[CH_{3}COOH\right]_{f}}\right)$ بادخال الطرفين نجد:

$$-\log \left(\left[H_{3}O^{+} \right]_{f} \right) = -\log(Ka) + \log \left(\frac{\left[CH_{3}COO^{-} \right]_{f}}{\left[CH_{3}COOH \right]_{f}} \right)$$
 ومنه:
$$pH = pKa + \log \left(\frac{\left[CH_{3}COO^{-} \right]_{f}}{\left[CH_{3}COOH \right]_{f}} \right)$$
 وعليه:
$$pKa = -\log(Ka) \quad pH = -\log \left(\left[H_{3}O^{+} \right]_{Eq} \right)$$
 وعليه:
$$pKa = 2pH - \log(c) : pKa = 2pH - \log(c)$$

$$pH = pKa + \log \left(\frac{\left[CH_3COO^- \right]_f}{c - \left[CH_3COO^- \right]_f} \right)$$
 ومنه:
$$pH = pKa + \log \left(\frac{\left[CH_3COO^- \right]_f}{\left[CH_3COOH \right]_f} \right)$$
 لدينا:

$$pH = pKa + \log\left(rac{\left[CH_{3}COO^{-}
ight]_{f}}{c}
ight)$$
 بنجد: c منه: c اهام c نجد: c اهام c امن c اهام c

ونعلم أن: $pH = -\log[H_3O^+]_f$ وهو المطلوب. $pH = -\log[H_3O^+]_f$ وهو المطلوب. $pKa = 2pH + \log(c)$ وهو المطلوب. pKa المثنائية pKa المثنائية pKa المثنائية pKa المثنائية pKa

.
$$pH = \frac{1}{2}pKa - \frac{1}{2}\log(c)$$
 ومنه: $pKa = 2pH + \log(c)$

$$PH = \frac{1}{2}(-\log(c)) + \frac{1}{2}pKa....(2)$$

. pKa = 4,8 إذن: $\frac{1}{2}pKa = 2,4$ إذن: (1) والنظرية (2) طرف لطرف نجد: (2) على العلاقتين البيانية (3)

حل التمرين رقم: 02

 $C_6H_5COOH(aq) + H_2O(l) = C_6H_5COO^-(aq) + H_3O^+(aq)$

2-جدول تقدم التفاعل:

					,
الحالة	تقدم التفاعل	$C_6H_5COOH(aq) +$	$H_2O(l) =$	$C_6H_5COO^-(aq) +$	$-H_3O^+(aq)$
	ب mol		2		3
الابتدائية	x = 0	$n_0 = c_0 V_0$	بــالزيادة	0	0
الانتقالية	x(t)	$n_0 - x(t)$	بالزيادة	x(t)	x(t)
النهائية.	x_f	$n_0 - x_f$	بالزيادة	x_f	x_f

$$au_{1f}=rac{1}{c_0 imes 10^{pH_0}}$$
: تكتب بالشكل تقدم التفاعل تقدم التفاعل تكتب بالشكل: au_{1f}

$$x_{\max} = c_0 V_0$$
 و اعتمادا على جدول تقدم التفاعل نجد: $x_f = [H_3 O^+]_f V_0$ و اعتمادا على جدول تقدم التفاعل نجد ولاء على المعادا على

$$au_{1f} = rac{1}{c_0 imes 10^{pH_0}}$$
 ومنه: $au_{1f} = rac{1}{c_0} imes 10^{-pH_0}$ ونعلم أن: $au_{1f} = rac{1}{c_0 imes 10^{pH_0}}$ ومنه:

02)_ 1_ انساب كل وثيقة بطريقة تحضير المحلول المائي المناسب: _

تحضير المحلول (S_0) : الوثيقة (ب).

 (\mathfrak{S}_a) : الوثيقة (\mathfrak{h}_a) تحضير المحلول

2_أ_تسمية العناصر المرقمة المشار إليها في كل وثيقة: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

رأ	الوثيقة	(الوثيقة (ب
الاسم	رقمالعنصر	الاسم	رقم العنصر
سدادة	1	قمع	1
حوجلة عيارية	2	ملعقة	2
إجاصةمص	3	ميزان الكتروني حساس	3
بيشر	4		
ماصةعيارية	5		

ب_ترتيب الخطوات ترتيبا صحيحا لكل وثيقة مع الشرح البسيط حتى نتمكن من التحضير الجيد لكل محلول:

 $C \longleftarrow F \longleftarrow A \longleftarrow D \longleftarrow B \longleftarrow E$

بواسطة ميزان الكتروني حساس مضبوط واعتمادا على ملعقة نزن الكتلة m_0 من مسحوق حمض البنزويك النقي m_0

. اعتمادا على قمع نضع الكتلة الموزونة في حوجلة عيارية سعتها $100\,m$

- نسكب في محتوى الحوجلة $30\,m$ من الماء المقطر مع الرج الجيد بعد غلقها بسدادة.

ـنكمل بالماء المقطر حتى نصل لخط العيار مع الرج المستمر.

ـ نغلق فوهـ الحوجلـ جيدا بسدادة مع كتابـ اسم المحلول (S_0) وتركيـزه المولي .

-: الوثيقة (أ): (S_a) بالنسبة لتحضير المحلول

 $A \longleftarrow C \longleftarrow D \longleftarrow B$

<u>الشرح:</u>

- ينفرغ ڪمية من المحلول (S_0) في بيشر.
- ـ بواسطة ماصة مزودة يإجاصة مص نأخذ حجما منها ونضعه في حوجلة عيارية.
 - ـنكمل بالماء المقطرحتى نصل لخط العيارمع الرج المستمر.
- ـ نغلق فوهة الحوجلة جيدا بسدادة مع كتابة اسم المحلول (S_a) وتركيزه المولي.

$$C_6H_5COOH(aq) + OH^-(aq) = C_6H_5COO^-(aq) + H_2O(l)$$

ب_جدول تقدم التفاعل:

الحالة	تقدم التفاعل ب mol	$C_6H_5COOH(aq)$	$+OH^{-}(aq) =$	$= C_6 H_5 COO^-(aq)$	$+H_2O(l)$
الابتدائية	x = 0	n_a	n_b	0	بــالزيادة
النهائية.	x_{Eq}	$n_a - x_{Eq}$	$n_b - x_{Eq}$	x_{Eq}	بــالزيادة

- اـجد بيانيا إحداثيتي نقطة التكافؤE

$$E(V_{bE}=10\,mL\,;\,pH_{E}=8)$$
اعتمادا على طريقة المماسين المتوازيين نجد: $pK_{a}=8$ ل ل المتنتاج قيمة ثابت الحموضة pK_{a} ل ل المتنائية pK_{a} المتنتاج قيمة ثابت الحموضة pK_{a} المتنائية pK_{a} المتنابع قيمة ثابت الحموضة pK_{a} المتنائية pK_{a}

$$pH = pKa + \log \left(\frac{\left[C_6 H_5 COO^- \right]}{\left[C_6 H_5 COOH \right]} \right)$$
نعلم أن:

. $pH_{E'}=pKa$: أي: $\left[C_6H_5COOH\right]_{E'}=\left[C_6H_5COO^-\right]_{E'}$. وعند نقطة نصف التكافؤ '

$$pKa=4,2$$
 وبالاسقاط نجد: $V_{bE'}=rac{10}{2}=5mL$ قي: $V_{bE'}=rac{V_{bE}}{2}$ ولدينا:

 $PKa \left(\frac{C_6 H_5 COOH}{C_6 H_5 COO} \right) = 4.2$

$$au_{2f} = 1 - \frac{K_e.10^{pH}}{c_b} \left(1 + \frac{V_a}{V_b}\right)$$
: لا يان أن عبارة نسبة التقدم النهائي au_{2f} لتفاعل المعايرة تكتب بـ - 3 _ -

. نعلم أن:
$$OH^-(aq)$$
 هو المتفاعل المحد. $V_b = 7mL$ ي وعليه: $T_{2f} = \frac{x_f}{x_{\max}}...(1)$ هو المتفاعل المحد.

$$x_{\text{max}} = c_b V_b ...(2)$$
 إذن:

$$\begin{bmatrix} OH^- \end{bmatrix} V_T = c_b V_b - x_f \text{ ومنه: } n(OH^-) = n_a - x_f \text{ : ولدينا من جدول تقدم التفاعل: } x_f = c_b V_b - \begin{bmatrix} OH^- \end{bmatrix} (V_a + V_b) \dots (3)$$
 وعليه:
$$\begin{bmatrix} OH^- \end{bmatrix} (V_a + V_b) = c_b V_b - x_f \text{ (3)}$$

$$au_{2f} = 1 - rac{\left[OH^{-}\right]\!\left(V_{a} + V_{b}
ight)}{c_{b}V_{b}}$$
 : بتعویض $au_{2f} = rac{c_{b}V_{b} - \left[OH^{-}\right]\!\left(V_{a} + V_{b}
ight)}{c_{b}V_{b}}$: بتعویض $au_{2f} = 1 - rac{\left[OH^{-}\right]\!\left(1 + rac{V_{a}}{V_{b}}
ight)}{c_{b}V_{b}}$: $au_{2f} = 1 - rac{\left[OH^{-}\right]\!\left(rac{V_{a} + V_{b}}{V_{b}}
ight)}{c_{b}}$: ومنه: $au_{e} = \left[OH^{-}\right] \times 10^{-pH}$: $au_{e} = \left[OH^{-}\right] \times 10^{-pH}$

وهو المطلوب.
$$\tau_{2f} = 1 - \frac{K_e \times 10^{pH}}{c_b} \left(1 + \frac{V_a}{V_b}\right)$$
 وهو المطلوب.

 au_{2f} بـایجاد قیمت

.
$$pH=4,6$$
 نجد بیانیا: $V_b=7mL$ ویا $au_b=1-rac{K_e imes10^{pH}}{c_b} igg(1+rac{V_a}{V_b}igg)$ دینا:

$oldsymbol{L}_{a}$ ا بحاد قیمتا $oldsymbol{\mathcal{C}}_{a}$: $oldsymbol{\mathcal{L}}$

عند التكافؤ يتحقق مزيج ستكيومترى :

$$c_a = \frac{c_b V_{bE}}{V_a}$$
 ومنه: $n_a = n_b$ ومنه: $\begin{cases} x_{Eq} = n_a \\ x_{Eq} = n_b \end{cases}$ ومنه: $\begin{cases} n_a - x_{Eq} = 0 \\ n_b - x_{Eq} = 0 \end{cases}$

$$c_a = \frac{2 \times 10^{-2} \times 10}{20} = 10^{-2} \, mol/L$$
 بي- ي:

.
$$c_0 = 10^{-2} \times 10 = 10^{-1} \frac{mol/L}{c_0}$$
 ت یے: $c_0 = c_a \times F$ ومنه: $F = \frac{c_0}{c_a}$ دینا: $c_0 = 10^{-2} \times 10 = 10^{-1} \frac{mol/L}{c_a}$

__
$$au_{1f} = rac{1}{10^{-1} imes 10^{(2,61)}} = 0,025$$
 تـي: $au_{1f} = rac{1}{c_0 imes 10^{pH_0}}$ اليجاد قيمة au_{1f} اليجاد قيمة المراء المراء

أي: $\frac{\tau_{1f} = 2,5\%}{\tau_{1f}}$ وعليه نستنتج أن حمض البنزويك حمض ضعيف و تفاعله مع الماء محدود .

ب_ حساب قیمت ، *m*₀ : _ _ _ _ _ : الم

$$egin{align*} \underline{m_0 = c_0 V_0 M} = c_0 V_0 & m_0 = c_0 V_0 \\ m_0 = c_0 V_0 & m_0 V_0 \\ m_0 = c_0 V_0 & m_0 V_0 \\ m_0 = c_0 V_0 & m_0 V_0 \\ m_0 = c_0 V_0 &$$

حل التمرين رقم: 03

<u> المجلول المائي للأمونياك:</u>

1 معادلة تفاعل الكيميائي بين الأمونياك والماء

$$NH_3(aq) + H_2O(l) = NH_4^+(aq) + OH^-(aq)$$

2-جدول تقدم التفاعل

	$NH_3(aq) + H_2O(l) = NH_4^+(aq) + OH^-(aq)$				
الحالة الابتدائية	C_BV 0 0				
الحالة الانتقالية	C_BV-x		X	х	
الحالة النهائية	C_BV-x_f		x_f	x_f	

 $\overline{\tau_f} = \frac{Ke}{C_n imes 10^{-pH}}$ تبيان أن نسبة التقدم النهائي تكتب من الشكل3

لدينا
$$x_{\max} = C_B V$$
 : هو المتفاعل المحد وبالتالي : $NH_3 \left(aq\right)$: لدينا $au_f = \frac{x_f}{x_{\max}}....(1)$

نجد:
$$(1)$$
نجد: $x_f = [OH^-]_f \times V$: ومنه $(1)_f \times V$ ومنه و منه و $(1)_f \times V$: ومنه و العلاقة $(1)_f \times V$

$$\left[H_3 O^+ \right] = 10^{-pH} \, \text{g} \left[O H^- \right] = \frac{Ke}{\left\lceil H_3 O^+ \right\rceil} = \frac{Ke}{C_B \left\lceil H_3 O^+ \right\rceil} = \frac{\left[O H^- \right]_f \times V}{C_B V}$$

$$\tau_f = \frac{Ke}{C_B \times 10^{-pH}}$$
 ومنه:

$$.\tau_f = \frac{10^{-14}}{2 \times 10^{-2} \times 10^{-10,74}} = 2,75 \times 10^{-2} : \tau_f$$
 حساب قیمت ت

. نلاحظ أن $au_{
m f} \prec 1$ و منه التفاعل غير تام و الأساس $au_{
m f} \prec 1$ ضعيف

 au_f و C_B عند توازن المجموعة الكيميائية بدلالة و Q_{r_f} وعند توازن المجموعة الكيميائية بدلالة و4

$$Q_{r_f} = \frac{\left(\left[OH^{-}\right]_{f}\right)^{2}}{\left[NH_{3}\right]_{f}}$$
 ولدينا: $Q_{r_f} = \left[OH^{-}\right]_{f}$ ولدينا: $Q_{r_f} = \frac{\left[NH_{4}^{+}\right]_{f}\left[OH^{-}\right]_{f}}{\left[NH_{3}\right]_{f}}$

 $\left[OH^{-}
ight]_{f}=C_{B} imes au_{f}$ و لدينا من جدول التقدم : $\left[NH_{3}
ight]_{f}=C_{B}-\left[OH^{-}
ight]_{f}$ و لدينا من جدول التقدم

$$Q_{r_f} = \frac{{C_B}^2 {\tau_f}^2}{C_B - C_B {\tau_f}} = \frac{{C_B} {\tau_f}^2}{1 - {\tau_f}}$$
اذن:

$$Q_{r_f} = K = \frac{2 \times 10^{-2} \times (2,75 \times 10^{-2})^2}{1 - 2,75 \times 10^{-2}} = 1,55 \times 10^{-5}$$

$$\left(NH_{4}^{+}\,/\,NH_{3}
ight)$$
للثنائية pKa التحقق من قيمة

$$Ka = \frac{\left[NH_3\right]_f \left[H_3O^+\right]_f}{\left[NH_4^+\right]_f}$$
 و $K = \frac{\left[NH_4^+\right]_f \left[OH^-\right]_f}{\left[NH_3\right]_f}$:لاينا

$$K \times Ka = \frac{\left[NH_4^+\right]_f \left[OH^-\right]_f}{\left[NH_3\right]_f} \times \frac{\left[NH_3\right]_f \left[H_3O^+\right]_f}{\left[NH_4^+\right]_f} :$$
بضرب العلاقتين طرف لطرف نجد:
$$\frac{\left[NH_4^+\right]_f}{\left[NH_4^+\right]_f} = \frac{\left[NH_4^+\right]_f}{\left[NH_4^+\right]_f} =$$

$$K \times Ka = [H_3O^+]_f[OH^-]_f = Ke$$
 ومنه:

$$pKa = -\log Ka = -\log \frac{Ke}{K} = \log K - \log Ke$$
 ومنه: $Ka = \frac{Ke}{K}$

$$pKa = -\log 1,55 \times 10^{-5} - \log 10^{-14} = 9,2$$

ا معايرة محلول الأمونياك بواسطة محلول حمض كلور الماء

<u>1</u>_معادلة تفاعل المعايرة

$$NH_3(aq) + H_3O^+(aq) = NH_4^+(aq) + H_2O(l)$$

 $pH_{\scriptscriptstyle E}$ و اـ تعيين احداثيتي نقطة التكافؤ $V_{\scriptscriptstyle AE}$ و 2

باستعمال طريقة المماسين المتوازيين:

$$(V_{AE} = 15mL; pH_E = 5,63)$$

 C'_{B} ب حساب التركيز المولي

عند نقطة التكافؤ (يتحقق مزيج ستوكيومتري):

$$n_{B}=n_{AE}$$
 :أي

$$C'_B V_B = C_A V_{AE}$$

$$C'_B = \frac{C_A V_{AE}}{V_{\scriptscriptstyle R}}$$
: أي

$$C'_B = \frac{2 \times 10^{-2} \times 15}{20} = 1,5 \times 10^{-2} \, mol \, / L$$
 :وـــع:

جـ الكاشف الملائم لانجاز هذه المعايرة هو أحمر الكلورو فينول لأن قيمة pH_E تنتمي لمجال تغيره اللوني.