COMPENDIO ENUNCIADOS TEMA 4

Daniel Monjas Miguélez 2 DGIIM Universidad de Granada 29 de marzo de 2020

1. Funciones Medibles Lebesgue

Definición 1 Sea E un conjunto medible en \mathbb{R}^n . Sea f una función real definida en E, que es, $-\infty \leq f(x) \leq +\infty$, $x \in E$. Entonces, f es llamada función medible Lebesgue en E, o simplemente función medible, si para todo a finito, el conjunto

$$\{x \in E : f(x) > a\} \tag{1}$$

es un subconjunto medible de \mathbb{R}^n .

1.1. Propiedades elementales de las funciones medibles

Teorema 1 Sea f una funcion real definida en un conjunto medible E. Entonces E es medible si y sólo si cualquiera de las siguientes afirmaciones se cumple para cualquier a finito:

- (I) $\{f \geq a\}$ es medible
- (II) $\{f < a\}$ es medible
- (III) $\{f \leq a\}$ es medible

Corolario 1 Sea f una función definida en un conjunto medible E. Si f es medible, entonces $\{f > -\infty\}$, $\{f < +\infty\}$, $\{a \le f \le b\}$, $\{f = a\}$, etc., son todos medibles. Además, para cualquier f, si bien $\{f = +\infty\}$ o $\{f = -\infty\}$ es medible, entonces f es medible si $\{a < f < +\infty\}$ es medible para todo a finito.

Teorema 2 Sea f una función definida en un conjunto medible E. Si f es medible, entonces para cada conjunto abierto G en \mathbb{R}^1 , la imagen inversa $f^{-1}(G)$ es un subconjunto medible de \mathbb{R}^n y ya sea $\{f = +\infty\}$ o $\{f = -\infty\}$ es medible.

Teorema 3 Sea A un subconjunto denso de \mathbb{R}^1 . Entonces f es medible si $\{f > a\}$ es medible para todo $a \in A$.

Definición 2 Una propiedad se dice que se verifica casi por doquier en E, si se verifica en E excepto en algún subocnjutno de E cuya medida sea 0.

Teorema 4 Si f es medible y si g = f casi por doquier, entonces g es medible y $\lambda(\{g > a\}) = \lambda(\{f > a\})$

Teorema 5 Sea ϕ continua en \mathbb{R}^1 y sea f finita por doquier en E, tal que, en particular, $\phi(f)$ es definida casi por doquier. Entonces $\phi(f)$ es medible si f lo

Remark 1 Los casos que surgen más frecuentemente son $\phi(t) = |t|, |t|^p * (p > 0), e^{ct},$ etc. Además,

$$|f|, |f|^p (p > 0), e^{cf}$$
 (2)

son medibles si f es medible (incluso si no asumimos que f es finita casi por doquier, como se ve facilmente). Otro caso especial que merece mención es que

$$f^{+} = \max\{f, 0\}, \ f^{-} = -\min\{f, 0\} \tag{3}$$

Es suficiente para observar que las funciones x^+ y x^- son continuas.

Demostración 1 Asumamos que f es finita en todo E. Usaremos el hecho de que $|\cdot|$ es continua, y sabemos que la inversa de un conjunto abierto por una función continua es un conjunto abierto. Por el Teorema 2 se tiene que para todo conjunto abierto G en \mathbb{R} , $\{x: |(f(x))| \in G\}$ es medible. Como sea, $\{x: |(f(x))| \in G\} = f^{-1}(|(G)|^{-1})$, y como $|G|^{-1}$ es un conjunto abierto, y f es medible, $f^{-1}(|G|^{-1})$ es medible por el Teorema 2.

Teorema 6 Si f y g son medibles, entonces $\{f > g\}$ es medible.

Demostración 2 Sea $\{r_k\}$ los números racionales. Entonces, por la densidad de los racionales, la definición de función medible, y el Teorema 1 de este compendio, sabemos que:

$$\{f > r_k\} \ y \ \{g < r_k\} \tag{4}$$

son subconjuntos medibles para todo $r_k \in \{r_k\}$, pues cada r_k es un racional. Finalmente si escribimos el conjunto $\{f > g\}$ como unión numerable de conjuntos, pues la unión numerable de conjuntos medibles, es también un conjunto medible, se obtiene lo buscado. Entonces:

$$\{f > g\} = \bigcup_k \{f > r_k > g\} = \bigcup_k (\{f > r_k\} \cap \{g < r_k\})$$
 (5)

Como la intersección de dos conjuntos medibles es medible y la unión numerable de conjuntos medibles también es medible, queda demostrado el teorema.

Teorema 7 Si f es medible $y \mu$ es cualquier número real, entonces $f + \mu y \mu * f$ son medibles.

Para el caso del producto diferenciaremos entre si $\mu > 0$, $\mu < 0$ y $\mu = 0$.

■ Si $\mu > 0$ se tiene que $\{f * \mu > a\}$ para todo a finito. Sabemos que como μ es distinto de 0, $\frac{a}{\mu}$, será un número real finito por ser a y μ numeros reales finitos. Además, todo número real finito $b \in \mathbb{R}$ se puede escribir como $b = \frac{a}{\mu}$, entonces, $\{f * \mu > a\} = \{f > \frac{a}{\mu}\}$, lo que implica que, $f * \mu$ es medible para $\mu > 0$.

- Si mu < 0 la demostración es análoga a la anterior. Sabemos que a/mu es un real finito, y que todo b ∈ ℝ se puede escribir como b = a/μ, para algún a y algún μ. Finalmente, {f * μ > a} = {f < a/μ} (el símbolo se invierte por ser μ un real negativo), obteniendo que se verifica la definición de función medible por el Teorema 1 (ii).</p>
- Finalmente queda el caso en que $\mu = 0$ se pueden dar dos casos. El primero es que $\mu * f \geq a$, luego los conjuntos $\{f * \mu \geq a\}$ serán E, y por tanto serán medibles por el Teorema 1 (i). El otro caso es que $\mu * f < a$, luego el conjunto $\{f * \mu > a\}$, tendrá como único elemento el vacío, y por consiguiente será medible con medida 0.

Con esto queda demostrado que para todo $\mu \in \mathbb{R}$, $\mu * f$ es medible.

Teorema 8 Si f y g son medibles, también lo es f + g.

Demostración 4 Por el teorema 7 tenemos que a-g, con a cualquier real, es medible. Ahora sabemos que f+g es medible si $\{f+g>a\}$, para todo a finito. Por último, tenemos que $\{f+g>a\}=\{f>a-g\}$, que por el teorema 6 sabemos que es medible, y por tanto f+g es una función medible.

Teorema 9 Si f y g son medibles, también lo es f*g. Si $g \neq 0$ casi por doquier, entonces f/g es medible.

Demostración 5 Por el Teorema 5 y el Remark que lo sigue, $f^2(=|f|^2)$ es medible si f lo es. Por lo tanto, si f y g son medibles y finitas, la formula $f*g=[(f+g)^2-(f-g)^2]/4$ implica que fg es medible. Ahora nos queda ver en el caso en el que no sean finitas es decir cuando fg es $0, +\infty$ $\delta-\infty$.

Veamos el caso en el que fg = 0. Denotemos B_1 al conjunto en el que f,g toman valores infinitos, entonces se tiene que:

$$B_{1} = \{x : f(x) = 0 \ y \ g(x) = 0\} \cup \{x : f(x) = 0 \ y \ g(x) = +\infty\}$$

$$\cup \{x : f(x) = 0 \ y \ g(x) = -\infty\} \cup \{x : f(x) = +\infty \ y \ g(x) = 0\}$$

$$\cup \{x : f(x) = -\infty \ y \ g(x) = 0\}$$

$$(6)$$

Para el caso $fg = +\infty$, denotamos el conjunto B_2 tal que:

$$B_2 = \{x : f(x) > 0 \ y \ g(x) = +\infty\} \cup \{x : f(x) < 0 \ y \ g(x) = -\infty\}$$
$$\cup \{x : f(x) = +\infty \ y \ g(x) > 0\} \cup \{x : f(x) = -\infty \ y \ g(x) < 0\}$$
(7)

Por último, sea el caso $fg = -\infty$, denotamos el conjuntos B_3 tal que:

$$B_3 = \{x : f(x) > 0 \ y \ g(x) = -\infty\} \cup \{x : f(x) < 0 \ y \ g(x) = +\infty\}$$
$$\cup \{x : f(x) = +\infty \ y \ g(x) < 0\} \cup \{x : f(x) = -\infty \ y \ g(x) > 0\}$$
(8)

Para la última parte del teorema tomaremos el conjunto $B = \{x : 0 < |g(x)| < \infty\}$, en este conjunto se ingnoran los x tal que g(x) = 0, ya que el conjunto de estas x tiene medida 0. Solamente tendremos que precisar que 1/g es medible sobre el conjunto B.

$$C = \{x \in B : 1/g(x) > a\} = \{x \in B : g(x) > 0\} \cap \{x \in B : a * g(x) < 1\} \cup \{x \in B : g(x) < 0\} \cap \{x \in B : a * g(x) > 1\}$$
(9)

Donde se puede ver que C, es unión e intersección numerable de conjuntos medibles (a*g(x) medible por el Teorema 7), por consiguiente 1/g es una función medible, y por la primera parte de este mismo teorema f*1/g=f/g es medible. El caso de $\frac{1}{g(x)} = \pm \infty$, se tiene que $\{x: g(x) = \pm \infty\} = \{x: 1/g(x) = \pm \infty\}$, y por consiguiente al ser el primero un conjunto medible también lo es el segundo y por la primera parte del teorema en este caso también $\frac{f}{g}$ es una función medible.

Corolario 2 Una combinación lineal finita $\mu_1 * f_1 + \ldots + \mu_n * f_N$ de funciones medibles f_1, \ldots, f_N es medible supuesto que está bien definida. Así, la clase de funciones medibles en un conjunto E que son finitas casi por doquier en E forman un espacio vectorial; aquí, identificamos funciones medibles que son iguales casi por doquier.

Teorema 10 Si $\{f_k(x)\}_{k=1}^{\infty}$ es una secuencia de funciones medibles, entonces $\sup_k f_k(x)$ y $\inf_k f_k(x)$ son medibles.

Definición 3 Veamos que si f_1, \ldots, f_N son medibles, entonces también lo son $\max_k f_k$ y $\min_k f_k$. En particular, si f es medible, también lo son $f^+ = \max\{f, 0\}$ y $f^- = -\min\{f, 0\}$, un hecho que se ya se ha observado como consecuencia del teorema f.

Teorema 11 Si $\{f_k\}$ es una secuencia de funciones medibles, entonces $\lim_{k\to\infty} \sup f_k$ y $\lim_{k\to\infty} \inf f_k$ son medibles. En particular, si $\lim_{k\to\infty} f_k$ existe casi por doquier, es medible.

Teorema 12 (I) Toda función f puede ser escrita como el límite de una sucesión $\{f_k\}$ de funciones simples.

- (II) Si $f \ge 0$, la sucesión puede ser elegida para crecer hasta f, que es, elegida de forma que $f_k \le f_{k+1}$ para todo k.
- (III) Si la función f es medible en (i) o en (ii), entonces f_k puede ser elegida para ser medible.

1.2. Funciones semicontinuas

Teorema 13 (I) Una función f es semicontinua superiormente relativa a E si y sólo si $\{x \in E : f(x) \ge a\}$ es relativamente cerrada (equivalentemente, $\{x \in E : f(x) < a\}$ es relativamente abierta) para todo a finito.

(II) Una funcion f es semicontinua inferiormente relativa a E si y sólo si $\{x \in E : f(x) \le a\}$ es relativamente cerrada (equivalentemente, $\{x \in E : f(x) > a\}$ es relativamente abierta) para todo a finito.

Corolario 3 Una función finita f es continua relativa a E si y sólo si todos los conjuntos de la forma $\{x \in E : f(x) \ge a\}$ y $\{x \in E : f(x) \le a\}$ son relativamente cerrados (o, equivalentemente, todo $\{x \in E : f(x) > a\}$ y $\{x \in E : f(x) < a\}$ son relativamente abiertos) para a finito.

Corolario 4 Sea E medible, y sea f una función definida en E. Si f es semicontinua superiormente (semicontinua inferiormente, continua) relativa a E, entonces f es medible.

1.3. Propiedades de funciones medibles y Teoremas de Egorov y Lusin

Definición 4 Sea f definida en E, y sea x_0 un punto límite de E que está en E. Entonces f es denominada simicontinua superiormente en x_0 si

$$\lim_{x \to x_0: x \in E} \sup f(x) \le f(x_0) \tag{10}$$

Análogamente, se dirá que f es semicontinua inferiormente en x_0 , si

$$\lim_{x \to x_0; x \in E} \inf f(x) \ge f(x_0) \tag{11}$$

Teorema 14 (Teorema de Egorov) Supóngase que $\{f_k\}$ es una sucesión de funciones medibles que converge casi por doquier en un conjunto E de medida finita a un limte finito f. Entonces dado $\epsilon > 0$, hay un subconjunto cerrado F de E tal que $\lambda(E - F) < \epsilon$ y $\{f_k\}$ converge uniformemente a f en F.

Lema 1 Bajo las mismas hipótesis que el teorema de Egorov, dado $\epsilon > 0$, $\eta > 0$, hay un F subconjunto cerrado de E y un entero K tal que $\lambda(E - F) < \eta$ y $\lambda(f(x) - f_k(x)) < \epsilon$ para $x \in F$ y k > K

Definición 5 Una función f definida en un conjunto medible E tiene propiedad \mathscr{C} en E si dado $\epsilon > 0$, hay un subconjunto cerrado $F \subset E$ que

- (I) $\lambda(E-F) < \epsilon$
- (II) f es continua relativa a F

Donde (ii) significa que si x_0 y $\{x_k\}$ pertenecen a F y $x_k \to x_0$, entonces $f(x_0)$ es finito y $f(x_k) \to f(x_0)$. Si F está acotado (y, por tanto, compacto), (ii) implica que la restricción de f a F es uniformemente continua.

Lema 2 Una función medible simple tiene propiedad C

Teorema 15 (Teorema de Lusin) Sea f finita en un conjunto medible E. Entonces f es medible si y sólo si tiene propiedad \mathscr{C} en E.

1.4. Convergencia en medida

Definición 6 Sean f y $\{f_k\}$ funciones medibles que son definidas y finitas casi por doquier en un conjunto E. Entonces $\{f_k\}$ se dice convergente en medida a f en E si para todo $\epsilon > 0$,

$$\lim_{k \to \infty} \lambda(\{x \in E : |f(x) - f_k(x)| > \epsilon\}) = 0 \tag{12}$$

 $oldsymbol{Notaci\'on:}$ Usaremos la siguiente notaci\'on para indicar convergencia en medida

$$f_k \xrightarrow{m} f$$
 (13)

Teorema 16 Sean f y f_k , k = 1, 2, ..., medibles y finitas casi por doquier en E. Si $f_k \to f$ casi por doquier en E y $\lambda(E) < +\infty$, entonces $f_k \xrightarrow{m} f$ en E (f_k converge en medida a f).

Teorema 17 Si $f_k \xrightarrow{m} f$ en E, hay una subsucesión f_{k_j} tal que $f_{k_j} \to f$ casi por doquier en E.

Teorema 18 Una condición necesaria y suficiente para que $\{f_k\}$ converja en medida en E es que para cada $\epsilon > 0$,

$$\lim_{k \to \infty} \lambda(\{x \in E : |f_k(x) - f_I(x)| > \epsilon\}) = 0$$
 (14)

1.5. Ejercicios

Ejercicio 4. Sea f definida y medible en \mathbb{R}^n . Si T es una trasformación lineal no singular de \mathbb{R}^n , demuestra que f(Tx) es medible.

Utilizando la pista del libro consideramos los conjuntos $E_1 = \{x : f(x) > a\}$ y $E_2 = \{x : f(Tx) > a\}$, donde el primero es medible para todo a finito, por ser f una función medible, y el segundo es el que queremos comprobar que sea medible. Para ello se tiene que verificar que $T^{-1}(E_1) = E_2$, pues de esta manera implicaria que E_2 es un conjunto medible por el Teorema 3.33. Para ello haremos:

$$E_2 = \{y : f(Ty) > a\} \xrightarrow{y = T^{-1}x} \{T^{-1}x : f(TT^{-1}x) > a\} = \{T^{-1}x : f(x) > a\} = T^{-1}E_1$$

Por el Teorema 3.33, al ser E_1 medible, la inversa de un medible es medible, por tanto, E_2 es medible, y por consiguiente la composición f(Tx) es medible por serlo el conjunto E_2 .

Ejercicio 7. Sea f semicontinua superiormente, menor que $+\infty$ en un conjunto compacto E. Demuestra que f está acotada superiormente en E. Demuestra que f alcanza su máximo en E, que es, que existe $x_0 \in E$ tal que $f(x_0) \ge f(x)$ para todo $x \in E$.

Sabemos que el conjunto $\{x \in E : -\infty \le f(x) < +\infty\} = E$. Además se tiene que $E \subset \{x : -\infty \le f(x) \le +\infty\}$, y por lo tanto,

$$B = \{x : -\infty \le f(x) \le +\infty\} - E \ne \emptyset$$

por tanto sea c un punto del conjunto B, este verificará que f(c) > f(x) para todo $x \in E$, por consiguiente se tiene que f está acotada superiormente.

Ahora sea M el supremo de f, y vemos que $M-\frac{1}{n}$ con $n\in\mathbb{N}$ no puede ser supremo. Entonces, existe un punto $d_n\in E$, tal que $M-\frac{1}{n}< f(d_n)$. Esto genera una sucesión $\{d_n\}$ según vamos dando valores naturales a n. Como M es supremo de f, se tiene que $M-\frac{1}{n}< f(d_n)\leq M$ para todo n natural. Entonces, si hacemos tender n hacia infinito por el "Lema del Sandwich (notación del año pasado)", tenemos que $\{f(d_n)\}$ converge a M. Por el Teorema de Bolzano-Weierstrass nos dice que existe una subsucesión $\{d_{n_k}\}$, que converge a un punto d, y, dado que E es compacto, d está en E. Entonces tenemos que, la sucesión $\{f(d_{n_k})\}$ converge a f(d). Como esta es una subsucesión de $f(d_n)$ y esta última converge al supremo se tiene que f(d) = M. Como hemos visto que el punto d pertenece al conjunto E, llegamos a la conclusión de que el supremo pertenece a E y por tanto en E se alcanza un máximo.