Time Series Models

```
## # A tibble: 1,726 x 20
##
      TaxID
              Outbreak SRA_release_date SRA_Center AMR_genotypes_co~ Contigs
                                                                                  N50
##
      <fct>
                 <dbl> <date>
                                         <fct>
                                                    <fct>
                                                                         <dbl>
                                                                               <dbl>
##
   1 1399004
                     0 2013-09-10
                                         CFSAN
                                                    fosX=COMPLETE,li~
                                                                            18 535981
                     0 2013-09-10
##
   2 1399005
                                        CFSAN
                                                    fosX=COMPLETE,li~
                                                                            16 584558
                     0 2013-10-25
                                        CFSAN
                                                    fosX=COMPLETE,li~
##
   3 1639
                                                                            17 545164
   4 1639
                     0 2018-07-23
                                        CFSAN
                                                    fosX=COMPLETE,li~
                                                                            14 527852
                     0 2014-01-24
##
   5 1639
                                        CFSAN
                                                    fosX=COMPLETE,li~
                                                                            22 410100
##
   6 1639
                     0 2014-01-24
                                        CFSAN
                                                    fosX=COMPLETE,li~
                                                                            25 438054
##
   7 1639
                     0 2014-01-24
                                        CFSAN
                                                    fosX=COMPLETE,li~
                                                                            19 437998
   8 1639
                     0 2014-01-24
                                        CFSAN
                                                    fosX=COMPLETE,li~
                                                                            21 545215
  9 1639
                     0 2014-01-24
                                        CFSAN
                                                    fosX=COMPLETE,li~
                                                                            21 545164
##
## 10 1639
                     0 2014-01-24
                                        CFSAN
                                                    fosX=COMPLETE,li~
                                                                            37 545164
## # ... with 1,716 more rows, and 13 more variables: Length <dbl>,
      BioProject <fct>, Collection_date <fct>, Collected_by <fct>,
       Scientific name <fct>, Create date <date>, Location <fct>,
## #
       Isolation_source <fct>, Isolation_type <fct>, SNP_cluster <fct>,
       `Min-same` <dbl>, `Min-diff` <dbl>, AMR_genotypes <fct>
```

We will build time series models using cluster PDS000000366.488 data.

##		Date	Frequency
##	1	2013-11	2
##	2	2013-12	0
##	3	2014-01	20
##	4	2014-02	0
##	5	2014-03	4
##	6	2014-04	0
##	7	2014-05	7
##	8	2014-06	9
##	9	2014-07	8
##	10	2014-08	34
##	11	2014-09	2
##	12	2014-10	9
##	13	2014-11	3
##	14	2014-12	6
##	15	2015-01	4
##	16	2015-02	3
##	17	2015-03	2
##	18	2015-04	4
##	19	2015-05	22
##	20	2015-06	6
##	21	2015-07	18
##	22	2015-08	4
##	23	2015-09	1
##	24	2015-10	44
##	25	2015-11	25
##	26	2015-12	30

##	27	2016-01	34
##	28	2016-02	32
##	29	2016-03	16
##	30	2016-04	35
##	31	2016-05	19
##	32	2016-06	13
##	33	2016-07	22
##	34	2016-08	38
##	35	2016-09	10
##	36	2016-10	11
		2016-11	
##	37		26
##	38	2016-12	11
##	39	2017-01	8
##	40	2017-02	14
##	41	2017-03	36
##	42	2017-04	54
##	43	2017-05	18
##	44	2017-06	52
##	45	2017-07	18
##	46	2017-08	7
##	47	2017-09	12
##	48	2017-10	35
##	49	2017-11	16
##	50	2017-12	14
##	51	2017 12	21
##	52	2018-02	29
##	53	2018-03	29
##	54	2018-04	31
##	55	2018-05	35
##	56	2018-06	41
##	57	2018-07	5
##	58	2018-08	9
##	59	2018-09	36
##	60	2018-10	14
##	61	2018-11	10
##	62	2018-12	21
##	63	2019-01	12
##	64	2019-02	19
##	65	2019-03	32
##	66	2019-04	13
##	67	2019-05	11
##	68	2019-06	2
##	69	2019-07	17
##	70	2019-08	15
##	71	2019-09	11
##	72	2019-10	6
##	73	2019-11	8
##	74	2019-12	43
##	75	2020-01	174
##	76	2020-02	8
##	77	2020-03	2
##	78	2020-04	10
##	79	2020-05	1
##	80	2020-06	2
##	00	2020-00	2

```
## 81 2020-07
                       7
## 82 2020-08
                       2
## 83 2020-09
                       6
## 84
       2020-10
                      44
## 85
       2020-11
                       1
## 86
      2020-12
                       6
## 87
       2021-01
                       6
## 88
      2021-02
                       4
## 89
       2021-03
                       0
## 90
      2021-04
                      28
                       7
## 91
      2021-05
## 92
       2021-06
                       8
## 93 2021-07
                       4
## 94
      2021-08
                      10
## 95
      2021-09
                      14
## 96
       2021-10
                       4
## 97 2021-11
                       7
## 98 2021-12
                       5
## 99 2022-01
                       9
## 100 2022-02
                      16
## 101 2022-03
                      15
## 102 2022-04
                       3
## 103 2022-05
                      21
## 104 2022-06
                      14
```

We construct a dataframe that are suitable for the time series models.

##			Date	Frequency
##	Nov	2013	1	2
##		2013	2	0
##	Jan		3	20
##		2014	4	0
##		2014	5	4
##		2014	6	0
##	-	2014	7	7
##	Jun		8	9
##	Jul	2014	9	8
##	Aug	2014	10	34
##	Sep	2014	11	2
##	Oct	2014	12	9
##	Nov	2014	13	3
##	Dec	2014	14	6
##	Jan	2015	15	4
##	Feb	2015	16	3
##	Mar	2015	17	2
##	Apr	2015	18	4
##	May	2015	19	22
##	Jun	2015	20	6
##	Jul	2015	21	18
##	Aug	2015	22	4
##	Sep	2015		1
##	Oct	2015	24	44
##	Nov	2015	25	25
##	Dec	2015	26	30
##	Jan	2016	27	34

##	Feb	2016	28	32
##	Mar	2016	29	16
##	Apr		30	35
##	_	2016	31	19
##	Jun		32	13
##		2016	33	22
##		2016	34	38
	_	2016	35	
## ##	-	2016	36	10 11
##				
##	Nov		37	26
	Dec		38	11
##	Jan		39	8
##	Feb		40	14
##	Mar		41	36
##	Apr		42	54
##	May		43	18
##	Jun		44	52
##		2017	45	18
##	_	2017	46	7
##	Sep		47	12
##	Oct	2017	48	35
##	Nov	2017	49	16
##	Dec	2017	50	14
##	Jan	2018	51	21
##	Feb	2018	52	29
##	Mar	2018	53	29
##	Apr	2018	54	31
##	May	2018	55	35
##	Jun	2018	56	41
##	Jul	2018	57	5
##	Aug	2018	58	9
##	Sep		59	36
##	Oct	2018	60	14
##	Nov	2018	61	10
##	Dec	2018	62	21
##	Jan	2019	63	12
##	Feb	2019	64	19
##	Mar		65	32
##	Apr	2019	66	13
##	May	2019	67	11
##	Jun	2019	68	2
##		2019	69	17
##		2019	70	15
##	_	2019	71	11
##	Oct	2019	72	6
##				
##	Nov	2019	73 74	8 43
	Dec	2019		
##		2020	75 76	174
##	Feb	2020	76	8
##	Mar	2020	77 70	2
##	-	2020	78 70	10
##	May	2020	79	1
##	Jun	2020	80	2
##	Jul	2020	81	7

```
## Aug 2020
                          2
              82
## Sep 2020
                          6
              83
## Oct 2020
                         44
## Nov 2020
              85
                          1
## Dec 2020
              86
                          6
## Jan 2021
              87
                          6
## Feb 2021
              88
                          4
## Mar 2021
                          0
              89
## Apr 2021
              90
                         28
## May 2021
              91
                          7
## Jun 2021
              92
                          8
## Jul 2021
                          4
              93
## Aug 2021
              94
                         10
## Sep 2021
              95
                         14
## Oct 2021
              96
                          4
## Nov 2021
                          7
              97
## Dec 2021
              98
                          5
## Jan 2022
              99
                          9
## Feb 2022
             100
                         16
## Mar 2022
                         15
             101
## Apr 2022
             102
                          3
## May 2022
             103
                         21
## Jun 2022
             104
                         14
```

We convert above dataframe to time series format.

[1] TRUE

##	Date	Frequency
##	Min. : 1.00	Min. : 0.00
##	1st Qu.: 26.75	1st Qu.: 5.75
##	Median : 52.50	Median : 11.00
##	Mean : 52.50	Mean : 16.60
##	3rd Qu.: 78.25	3rd Qu.: 21.25
##	Max. :104.00	Max. :174.00

Above table is the summary table for the time series formatted dataset.

Monthly totals of Listeria Monocytogenes cases, 2013-11 to 2022-0

We visualize the trend for the time series and we can see that there is a huge spike for the cases of the disease around 2020.

[1] 2013 11

The start date of our time series dataset is 2013-11.

[1] 2022 6

The end date of our time series dataset is 2022-06.

[1] 12

The cycle of our time series dataset is 12.

```
## Time Series:
## Start = 1
## End = 104
## Frequency = 1
##
      [1]
             2
                  0
                      20
                            0
                                 4
                                      0
                                           7
                                                9
                                                     8
                                                        34
                                                               2
                                                                    9
                                                                        3
                                                                              6
                                                                                  4
                                                                                       3
                                                                                            2
                                                                                                 4
                                                                       19
                                                                            13
##
     [19]
            22
                  6
                      18
                            4
                                 1
                                     44
                                          25
                                               30
                                                    34
                                                        32
                                                             16
                                                                  35
                                                                                 22
                                                                                      38
                                                                                           10
                                                                                                11
     [37]
            26
                 11
                       8
                           14
                                36
                                     54
                                          18
                                               52
                                                    18
                                                          7
                                                             12
                                                                  35
                                                                       16
                                                                            14
                                                                                 21
                                                                                      29
                                                                                           29
                                                                                                31
##
     [55]
            35
                       5
                            9
                                36
                                          10
                                               21
                                                    12
                                                        19
                                                             32
                                                                             2
                                                                                                 6
                 41
                                     14
                                                                  13
                                                                       11
                                                                                 17
                                                                                      15
                                                                                           11
                                                          2
##
     [73]
             8
                 43 174
                            8
                                 2
                                     10
                                           1
                                                2
                                                     7
                                                               6
                                                                  44
                                                                         1
                                                                              6
                                                                                            0
                                                                                                28
     [91]
             7
                                                5
                                                     9
                                                        16
                                                             15
##
                           10
                                14
                                                                       21
                                                                            14
```

We convert above time series dataframe to a univariate time series dataset.

Series univariate_ts

From the ACF graph, we should choose the order of the MA model to be 1.

Series univariate_ts

From the PACF graph, we should choose the order of the AR model to be 0 since no band is significant.

AR Model

```
##
## Call:
## arima(x = univariate_ts, order = c(1, 0, 0))
##
## Coefficients:
## ar1 intercept
## 0.1737 16.5616
## s.e. 0.0963 2.3450
##
## sigma^2 estimated as 392: log likelihood = -458.1, aic = 922.19
```


[1] 922.1941 ## [1] 930.1272

The AIC for the AR model is 922 and the BIC for the AR model is 930.

MA Model

```
##
## Call:
## arima(x = univariate_ts, order = c(0, 0, 1))
##
## Coefficients:
## ma1 intercept
## 0.1873 16.5688
## s.e. 0.0992 2.2991
##
## sigma^2 estimated as 391.2: log likelihood = -457.98, aic = 921.97
```


[1] 921.9661 ## [1] 929.8993

The AIC for the MA model is 921 and the BIC for the MA model is 929.

ARMA Model

```
##
## Call:
## arima(x = univariate_ts, order = c(1, 0, 1))
##
## Coefficients:
##
                          intercept
                     ma1
##
         -0.1634
                  0.3457
                            16.5742
## s.e.
                  0.4767
                             2.2400
          0.5014
##
## sigma^2 estimated as 390.8: log likelihood = -457.94, aic = 923.88
```


[1] 923.8775

[1] 934.455

The AIC for the ARMA model is 923 and the BIC for the ARMA model is 934.

ARIMA Model

```
##
## Call:
## arima(x = univariate_ts, order = c(1, 1, 1))
##
## Coefficients:
##
            ar1
                     ma1
##
         0.1432
                -0.9445
                  0.0481
## s.e.
        0.1079
##
## sigma^2 estimated as 403.2: log likelihood = -456.1, aic = 918.21
```


[1] 918.2055

[1] 926.1097

The AIC for the ARIMA model is 918 and the BIC for the ARIMA model is 926.

SARIMA Model

```
## initial value 3.731718
## iter
          2 value 3.395655
## iter
          3 value 3.311211
## iter
          4 value 3.303048
          5 value 3.250697
## iter
          6 value 3.233034
##
  iter
## iter
          7 value 3.230637
## iter
          8 value 3.230459
## iter
          9 value 3.230257
## iter
         10 value 3.230253
         11 value 3.230253
## iter
## iter
         11 value 3.230253
         11 value 3.230253
## iter
## final
         value 3.230253
## converged
## initial
            value 3.204693
          2 value 3.197900
## iter
          3 value 3.176433
## iter
## iter
          4 value 3.172718
## iter
          5 value 3.171409
## iter
          6 value 3.171303
## iter
          7 value 3.171275
## iter
          8 value 3.171275
## iter
          8 value 3.171275
## iter
          8 value 3.171275
```

```
## final value 3.171275
## converged
```



```
## $AIC
## [1] 9.290317
##
## $AICc
## [1] 9.295428
##
## $BIC
## [1] 9.428277
```


[1] 9.290317

[1] 9.428277

The AIC for the SARIMA model is 9.3 and the BIC for the SARIMA model is 9.4.

```
## initial value 3.674311
## iter
          2 value 3.366923
## iter
          3 value 3.216442
## iter
          4 value 3.159545
          5 value 3.146283
## iter
## iter
          6 value 3.135101
## iter
          7 value 3.131381
          8 value 3.126402
## iter
          9 value 3.123548
## iter
## iter
        10 value 3.123372
## iter
         11 value 3.123148
         12 value 3.123082
## iter
## iter
         13 value 3.123081
## iter
         14 value 3.123081
## iter
         14 value 3.123081
## iter 14 value 3.123081
## final value 3.123081
## converged
## initial value 3.186360
```

```
## iter 2 value 3.183769
## iter 3 value 3.182835
## iter 4 value 3.182590
## iter 5 value 3.182587
## iter 5 value 3.182587
## final value 3.182587
## converged
```

\$degrees_of_freedom

[1] 89

\$ttable

##


```
## $fit
##
## Call:
   arima(x = xdata, order = c(p, d, q), seasonal = list(order = c(P, D, Q), period = S),
       include.mean = !no.constant, transform.pars = trans, fixed = fixed, optim.control = list(trace =
##
           REPORT = 1, reltol = tol))
##
##
##
   Coefficients:
##
             ma1
                     sma1
                  -1.0000
##
         -0.8993
## s.e.
          0.0502
                   0.1548
##
## sigma^2 estimated as 427.4: log likelihood = -418.74, aic = 843.48
```

```
##
                     SE t.value p.value
        Estimate
## ma1
         -0.8993 0.0502 -17.9182
        -1.0000 0.1548 -6.4616
                                       0
##
  sma1
##
## $AIC
## [1] 9.268985
##
## $AICc
## [1] 9.270483
##
## $BIC
## [1] 9.35176
```


[1] 9.268985

[1] 9.35176

The AIC for the SARIMA model without AR part is 9.27. The BIC for the SARIMA model without AR part is 9.35.

SARIMA Model without outliers

1. Replace the outlier with 0


```
value 3.163762
## initial
          2 value 2.875234
## iter
## iter
          3 value 2.696893
          4 value 2.687958
## iter
## iter
          5 value 2.686859
          6 value 2.685899
##
  iter
## iter
          7 value 2.685890
## iter
          8 value 2.685888
          9 value 2.685887
## iter
## iter
          9 value 2.685887
## iter
          9 value 2.685887
## final value 2.685887
```

```
## converged
## initial value 2.690780
           2 value 2.685994
           3 value 2.673721
## iter
## iter
           4 value 2.673440
           5 value 2.672888
## iter
           6 value 2.672869
## iter
           7 value 2.672869
## iter
## iter
           8 value 2.672868
           8 value 2.672868
## iter
## iter
           8 value 2.672868
## final value 2.672868
## converged
     Model: (0,1,1) (0,1,1) [12]
                                         Standardized Residuals
  0
                        20
                                                           60
       0
                                          40
                                                                            80
                                                                                             100
                                                    Time
                  ACF of Residuals
                                                              Normal Q-Q Plot of Std Residuals
                                                    Sample Quantiles -4
                       15
                            20
                                  25
                                        30
                                              35
                                                               -2
                                                                      -1
                                                                               0
                                                                                               2
                                                                       Theoretical Quantiles
                                     p values for Ljung-Box statistic
p value
  0.4
              5
                           10
                                        15
                                                      20
                                                                   25
                                                                                 30
                                                                                              35
                                                  LAG (H)
## $fit
##
```

```
## arima(x = xdata, order = c(p, d, q), seasonal = list(order = c(P, D, Q), period = S),
       include.mean = !no.constant, transform.pars = trans, fixed = fixed, optim.control = list(trace =
##
##
           REPORT = 1, reltol = tol))
##
##
   Coefficients:
##
                      sma1
             ma1
                  -1.0000
##
         -0.8365
## s.e.
          0.0545
                    0.1675
##
```

$sigma^2$ estimated as 155.5: log likelihood = -372.35, aic = 750.71

```
##
  $degrees_of_freedom
##
   [1] 89
##
##
##
   $ttable
##
        Estimate
                     SE
                         t.value p.value
## ma1
         -0.8365 0.0545 -15.3586
         -1.0000 0.1675
                        -5.9688
                                        0
##
   sma1
##
##
  $AIC
   [1] 8.249548
##
##
## $AICc
  [1] 8.251046
##
##
## $BIC
##
   [1] 8.332324
  [1] 8.249548
  [1] 8.332324
```

The AIC for this SARIMA model is 8.25. The BIC for this SARIMA model is 8.33.

Above graph represents the time series along with the fitted values

Series univariate_ts2

2. Replace the outlier with the mean value of frequency.


```
value 3.146385
## initial
          2 value 2.876232
## iter
## iter
          3 value 2.700753
          4 value 2.687846
## iter
## iter
          5 value 2.684698
          6 value 2.682128
##
  iter
## iter
          7 value 2.682120
## iter
          8 value 2.682119
## iter
          9 value 2.682119
## iter
          9 value 2.682119
## iter
          9 value 2.682119
## final value 2.682119
```

```
## converged
## initial value 2.687041
           2 value 2.681647
           3 value 2.669783
## iter
## iter
           4 value 2.669598
           5 value 2.668827
## iter
           6 value 2.668792
## iter
           7 value 2.668791
## iter
## iter
           8 value 2.668791
           8 value 2.668791
## iter
## iter
           8 value 2.668791
## final value 2.668791
## converged
     Model: (0,1,1) (0,1,1) [12]
                                         Standardized Residuals
  \alpha
  0
                        20
                                                           60
        0
                                          40
                                                                             80
                                                                                              100
                                                    Time
                   ACF of Residuals
                                                              Normal Q-Q Plot of Std Residuals
                                                    Sample Quantiles 4
                       15
                            20
                                  25
                                              35
                                                               -2
                                                                       -1
                                                                               0
                                                                                               2
                                                                       Theoretical Quantiles
                                     p values for Ljung-Box statistic
p value
  0.4
              5
                           10
                                         15
                                                      20
                                                                    25
                                                                                 30
                                                                                               35
                                                  LAG (H)
## $fit
```

```
##
## arima(x = xdata, order = c(p, d, q), seasonal = list(order = c(P, D, Q), period = S),
       include.mean = !no.constant, transform.pars = trans, fixed = fixed, optim.control = list(trace =
##
##
           REPORT = 1, reltol = tol))
##
##
   Coefficients:
##
                     sma1
             ma1
                   -1.000
##
         -0.8367
## s.e.
          0.0555
                    0.158
##
```

$sigma^2$ estimated as 154.3: log likelihood = -371.98, aic = 749.97

```
##
## $degrees_of_freedom
##
   [1] 89
##
   $ttable
##
##
        Estimate
                     SE
                        t.value p.value
## ma1
         -0.8367 0.0555 -15.0644
        -1.0000 0.1580 -6.3294
                                        0
## sma1
##
## $AIC
  [1] 8.241393
##
##
## $AICc
## [1] 8.242891
##
## $BIC
##
  [1] 8.324168
## [1] 8.241393
## [1] 8.324168
```

The AIC for this SARIMA model is 8.24. The BIC for this SARIMA model is 8.32.

Winsorization for monthly data


```
## initial value 3.121770
## iter
          2 value 2.863193
## iter
          3 value 2.709352
## iter
          4 value 2.693686
          5 value 2.671281
## iter
          6 value 2.665684
## iter
          7 value 2.665145
## iter
##
  iter
          8 value 2.665129
          9 value 2.665123
##
  iter
          9 value 2.665123
##
  iter
## iter
          9 value 2.665123
## final value 2.665123
## converged
## initial
            value 2.672845
## iter
          2 value 2.667456
          3 value 2.656637
## iter
## iter
          4 value 2.655891
## iter
          5 value 2.655435
          6 value 2.655377
## iter
## iter
          7 value 2.655376
## iter
          8 value 2.655375
          8 value 2.655375
## iter
          8 value 2.655375
## iter
## final
          value 2.655375
## converged
```



```
## [1] 8.21606
##
## $BIC
## [1] 8.297337
## [1] 8.214562
## [1] 8.297337
```

The AIC for this SARIMA model is 8.2. The BIC for this SARIMA model is 8.3.

Above graph represents the time series along with the fitted values

Using Weekly Data to Model the Time Series

```
##
      Date(YMW) Frequency
## 1
      2013-11-3
                          2
## 2
      2013-11-4
##
  3
      2013-12-1
## 4
      2013-12-2
## 5
      2013-12-3
                          0
                          0
## 6
      2013-12-4
##
      2014-01-1
##
  8
      2014-01-2
                          0
## 9
      2014-01-3
                          0
## 10 2014-01-4
                         19
```

For each month, I coded date 1 to date 7 as the first week; date 8 to date 14 as the second week; date 15 to date 21 as the third week; and the rest of the days within each month as the fourth week.

Model with the outlier

```
## Time Series:
## Start = 1
```

```
## End = 413
## Frequency
                 = 1
                                                              19
                                                                                                     1
                                                                                                          2
##
       [1]
               2
                         0
                               0
                                    0
                                         0
                                               1
                                                         0
                                                                          0
                                                                               0
                                                                                               1
     [19]
              0
                    0
                         0
                               0
                                               0
                                                    0
                                                          1
                                                               4
                                                                    1
                                                                               4
                                                                                    3
                                                                                          1
                                                                                               0
                                                                                                    7
                                                                                                          3
##
                                    6
                                          1
                                                                          3
             22
                    2
                                                               3
                                                                                                    0
##
     [37]
                         0
                               1
                                    0
                                               3
                                                    3
                                                         0
                                                                    0
                                                                          0
                                                                               0
                                                                                    3
                                                                                          6
                                                                                               0
                                                                                                          0
##
     [55]
              4
                    0
                         0
                               0
                                    0
                                         1
                                               1
                                                    1
                                                         2
                                                               0
                                                                    0
                                                                         0
                                                                               3
                                                                                    0
                                                                                          1
                                                                                               1
                                                                                                    3
                                                                                                          1
##
     [73]
             17
                    3
                         0
                               2
                                         1
                                               3
                                                    8
                                                         6
                                                               0
                                                                    3
                                                                          0
                                                                               1
                                                                                    0
                                                                                          0
                                                                                               0
                                                                                                    1
                                                                                                        37
                                    1
     [91]
                    2
                         2
                                               6
                                                         5
                                                                    3
                                                                                                    0
##
              3
                               1
                                   13
                                         5
                                                    1
                                                              21
                                                                          1
                                                                              18
                                                                                    5
                                                                                        10
                                                                                              16
                                                                                                        12
##
    [109]
              4
                    1
                         3
                               6
                                    6
                                         2
                                               0
                                                   30
                                                          3
                                                               2
                                                                   15
                                                                          2
                                                                               0
                                                                                    3
                                                                                          4
                                                                                               1
                                                                                                    5
                                                                                                          4
    [127]
             10
                    6
                         2
                             13
                                    5
                                        10
                                             10
                                                    4
                                                          3
                                                               1
                                                                    2
                                                                          0
                                                                               0
                                                                                    6
                                                                                          5
                                                                                               4
                                                                                                    6
                                                                                                          9
##
##
    [145]
              7
                    1
                         4
                               2
                                    4
                                         1
                                               0
                                                    1
                                                         6
                                                               4
                                                                    0
                                                                          2
                                                                               8
                                                                                   10
                                                                                          0
                                                                                               0
                                                                                                   17
                                                                                                          9
    [163]
              2
                                    7
                                               6
                                                    2
                                                        22
                                                              25
                                                                               0
                                                                                          0
                                                                                                          3
##
                    1
                        36
                             15
                                          3
                                                                    1
                                                                          4
                                                                                    4
                                                                                              14
                                                                                                    1
    [181]
              0
                    3
                         3
                               0
                                    3
                                         6
                                             13
                                                    0
                                                         6
                                                              16
                                                                    0
                                                                         1
                                                                               5
                                                                                   10
                                                                                          8
                                                                                               0
                                                                                                    4
                                                                                                          2
##
    [199]
                         0
                               8
                                                                              12
##
               1
                   12
                                   14
                                          3
                                              11
                                                    1
                                                        17
                                                               0
                                                                    8
                                                                          4
                                                                                    0
                                                                                         18
                                                                                               1
                                                                                                    0
                                                                                                         16
##
    [217]
              6
                   13
                         7
                             22
                                    1
                                               0
                                                    0
                                                         3
                                                               2
                                                                    0
                                                                          2
                                                                               4
                                                                                    3
                                                                                        14
                                                                                              15
                                                                                                    5
                                                                                                          2
                                        11
    [235]
                                                         7
                                                               2
                                                                               5
##
              8
                    0
                         1
                               5
                                    4
                                          1
                                               2
                                                    3
                                                                   11
                                                                          1
                                                                                    4
                                                                                          0
                                                                                               3
                                                                                                     1
                                                                                                          0
##
    [253]
              2
                   16
                        12
                               4
                                   15
                                               1
                                                    4
                                                         2
                                                               6
                                                                    3
                                                                         0
                                                                               0
                                                                                    8
                                                                                          2
                                                                                               0
                                                                                                    0
                                                                                                          0
                                          1
    [271]
                                          5
                                                    9
                                                          3
                                                                    3
                                                                               0
                                                                                          2
                    0
                         6
                             11
                                    0
                                               1
                                                               1
                                                                                               3
                                                                                                     1
                                                                                                          1
    [289]
               1
                    5
                        34
                               5
                                    0
                                          4
                                               0
                                                 172
                                                         0
                                                               2
                                                                    3
                                                                               0
                                                                                    4
                                                                                          0
                                                                                               0
                                                                                                    1
##
                                                                          1
                                                                                                          1
    [307]
                               0
                                                               0
                                                                    0
##
             10
                    0
                         0
                                    0
                                          1
                                               0
                                                    0
                                                          1
                                                                          1
                                                                               0
                                                                                    6
                                                                                          1
                                                                                               0
                                                                                                    0
                                                                                                          0
##
    [325]
              0
                    2
                         1
                               3
                                    2
                                         0
                                               1
                                                    0
                                                          1
                                                              42
                                                                    0
                                                                          1
                                                                               0
                                                                                    0
                                                                                          0
                                                                                               0
                                                                                                    0
                                                                                                          6
##
    [343]
              0
                    0
                         0
                               6
                                    1
                                          1
                                               2
                                                    0
                                                         0
                                                               0
                                                                    0
                                                                         0
                                                                               9
                                                                                   17
                                                                                          2
                                                                                               0
                                                                                                    1
                                                                                                          1
   [361]
                               2
                                                               3
                                                                                                    2
##
              5
                    0
                                         0
                                                    0
                                                         0
                                                                    3
                                                                         0
                                                                                    6
                                                                                        12
                                                                                               0
                                                                                                          0
                         1
                                    5
                                               1
                                                                               1
## [379]
               2
                    0
                         0
                               2
                                    2
                                          2
                                               3
                                                    0
                                                          4
                                                               0
                                                                    1
                                                                         0
                                                                               1
                                                                                    1
                                                                                          2
                                                                                               5
                                                                                                    3
                                                                                                          1
## [397]
               0
                   12
                         9
                               0
                                          2
                                               0
                                                          1
                                                               2
                                                                    0
                                                                                   18
                                                                                          8
                                                                                                     5
                                    4
                                                    0
                                                                          3
                                                                               0
                                                                                               1
       150
univariate_ts4
       100
       50
```

```
## initial value 3.050683
## iter 2 value 2.609056
## iter 3 value 2.480297
## iter 4 value 2.387615
## iter 5 value 2.386751
## iter 6 value 2.386708
## iter 7 value 2.386680
```

Time

```
8 value 2.386679
## iter
## iter
           9 value 2.386672
          10 value 2.386672
          10 value 2.386672
## iter
          10 value 2.386672
## final value 2.386672
## converged
## initial value 2.390980
## iter
           2 value 2.382503
## iter
           3 value 2.381522
## iter
           4 value 2.381042
           5 value 2.380764
## iter
           6 value 2.380744
## iter
           7 value 2.380744
## iter
           8 value 2.380744
## iter
           8 value 2.380744
## iter
## iter
           8 value 2.380744
## final value 2.380744
## converged
     Model: (0,1,1) (0,1,1) [12]
                                        Standardized Residuals
  15
  10
  ٦-
                                                 200
                                                                       300
                            100
                                                                                            400
                                                  Time
                  ACF of Residuals
                                                            Normal Q-Q Plot of Std Residuals
                                                  Sample Quantiles
0 5 10
ACF
0.1
                                                                                            ggoo
                            20
                                  25
                                       30
                                             35
                                                         -3
                                                                -2
                                                                             0
                10
                      15
                                                                     Theoretical Quantiles
                         LAG
                                    p values for Ljung-Box statistic
  9.4
                          10
                                        15
                                                                  25
                                                                               30
                                                                                            35
                                                     20
                                                 LAG (H)
## $fit
##
```

arima(x = xdata, order = c(p, d, q), seasonal = list(order = c(P, D, Q), period = S),

REPORT = 1, reltol = tol))

##

##

include.mean = !no.constant, transform.pars = trans, fixed = fixed, optim.control = list(trace =

```
## Coefficients:
##
             ma1
                     sma1
##
         -0.9762
                  -1.0000
          0.0126
                   0.0533
## s.e.
##
## sigma^2 estimated as 103.7: log likelihood = -1519.87, aic = 3045.75
##
## $degrees_of_freedom
## [1] 398
##
## $ttable
##
                     SE t.value p.value
        Estimate
## ma1
         -0.9762 0.0126 -77.304
   sma1 -1.0000 0.0533 -18.773
##
## $AIC
## [1] 7.614364
##
## $AICc
## [1] 7.61444
##
## $BIC
## [1] 7.6443
## [1] 7.614364
## [1] 7.6443
```

The AIC for this SARIMA model is 7.61. The BIC for this SARIMA model is 7.64.

Model without the outlier (replace with the mean value)

```
## Time Series:
## Start = 1
```

```
## End = 413
## Frequency = 1
                                           0 19
      [1]
            2
                        0
                        1
                           3
                                4
                                   3
                                           0
                                               7
                                                   3
                                                     22
                                                          2
                                                              0
                                                                      0
                                                                          1
                                                                              3
                                                                                  3
                                                                                     0
##
     [26]
                                       1
                                0
                                   0
                                                           2
                                                                          3
                                                                                                     3
##
     [51]
            6
                    0
                        0
                            4
                                       0
                                           0
                                                   1
                                                       1
                                                              0
                                                                  0
                                                                      0
                                                                              0
##
     [76]
            2
                    1
                        3
                           8
                                6
                                   0
                                       3
                                           0
                                               1
                                                   0
                                                       0
                                                          0
                                                              1 37
                                                                      3
                                                                          2
                                                                              2
                                                                                  1
                                                                                                     5
                                                                                                       21
   [101]
            3
                1
                   18
                        5
                          10 16
                                   0
                                                   3
                                                       6
                                                          6
                                                                  0
                                                                     30
                                                                          3
                                                                              2
                                                                                15
                                               3
   [126]
               10
                    6
                        2
                          13
                                5
                                  10
                                                       2
                                                                      5
                                                                          4
                                                                              6
                                                                                  9
                                                                                     7
            4
                                      10
                                           4
                                                   1
                                                          0
                                                              0
                                                                  6
                                                                                          1
                                                                                                         1
                                                                          7
    [151]
            0
                1
                    6
                        4
                            0
                                2
                                   8
                                      10
                                           0
                                               0
                                                 17
                                                       9
                                                          2
                                                              1
                                                                36
                                                                     15
                                                                              3
                                                                                  6
                                                                                     2
                                                                                        22
                                                                                                         0
    [176]
                0
                  14
                        1
                           3
                                0
                                   3
                                       3
                                           0
                                               3
                                                   6
                                                     13
                                                          0
                                                              6
                                                                 16
                                                                      0
                                                                              5
                                                                                10
                                                                                     8
                                                                                                        12
                                                                          1
   [201]
            0
                8
                  14
                        3
                          11
                                1 17
                                       0
                                           8
                                               4
                                                 12
                                                       0
                                                         18
                                                              1
                                                                  0
                                                                     16
                                                                          6
                                                                            13
                                                                                  7
                                                                                    22
                                                                                         1
                                                                                            11
   [226]
                    2
                        4
                            3
                              14
                                           2
                                               8
                                                   0
                                                       1
                                                          5
                                                                      2
                                                                          3
                                                                              7
                                                                                  2
                                                                                                     0
                                                                                                         3
            2
                0
                                  15
                                       5
                                                              4
                                                                  1
    [251]
                    2
                      16
                          12
                                4
                                  15
                                               4
                                                   2
                                                       6
                                                          3
                                                                      8
                                                                          2
                                                                              0
                                                                                  0
                                                                                                 6
            1
                0
                                       1
                                           1
                                                              0
                                                                  0
                                                                                             0
                                                                                                   11
                                                                                                         0
                        3
                                3
                                               2
                                                   3
                                                                          5
    [276]
                                                       1
                                                                  5
                                                                     34
                                                                              0
                                                                                                         1
   [301]
            0
                    0
                        0
                            1
                                1
                                  10
                                       0
                                           0
                                               0
                                                   0
                                                       1
                                                          0
                                                              0
                                                                      0
                                                                          0
                                                                              1
                                                                                  0
                                                                                      6
                                                                                                 0
                                                                                                         0
                                                                   1
                        2
                                                                                                     2
    [326]
            2
                1
                    3
                            0
                                1
                                   0
                                       1
                                          42
                                               0
                                                   1
                                                       0
                                                          0
                                                              0
                                                                  0
                                                                      0
                                                                          6
                                                                              0
                                                                                  0
                                                                                     0
                                                                                          6
                                                                                             1
                                                                                                         0
##
    [351]
            0
                0
                    0
                        0
                           9
                              17
                                   2
                                       0
                                           1
                                               1
                                                   5
                                                       0
                                                              2
                                                                  5
                                                                      0
                                                                          1
                                                                              0
                                                                                  0
                                                                                     3
                                                                                          3
                                                                                             0
                                                                                                 1
                                                                                                       12
                                                          1
                                   2
                                           2
                                                                              2
                                                                                  5
   [376]
                        2
                            0
                                0
                                       2
                                               3
                                                   0
                                                          0
                                                                                     3
                                                       4
   [401]
                                2
                                   0
                                       3
                                           0 18
            4
                2
                    0
                        0
                           1
                                                   8
                                                       1
                                                          5
      4
```



```
## initial value 2.479276
          2 value 2.031936
## iter
  iter
          3 value 1.915223
## iter
          4 value 1.850342
          5 value 1.847233
## iter
## iter
          6 value 1.845933
          7 value 1.843551
##
  iter
  iter
          8 value 1.843486
          9 value 1.843472
  iter
         10 value 1.843445
   iter
         11 value 1.843442
   iter
## iter
         11 value 1.843442
## final value 1.843442
```

```
## converged
## initial value 1.824096
          2 value 1.815507
          3 value 1.812237
## iter
##
  iter
          4 value 1.808218
          5 value 1.807888
## iter
## iter
          6 value 1.807873
          7 value 1.807872
## iter
## iter
          8 value 1.807871
          9 value 1.807870
## iter
## iter
          9 value 1.807870
          9 value 1.807870
## iter
## final value 1.807870
## converged
```

s.e.

##

0.0150

0.0465


```
## $fit
##
## Call:
   arima(x = xdata, order = c(p, d, q), seasonal = list(order = c(P, D, Q), period = S),
       include.mean = !no.constant, transform.pars = trans, fixed = fixed, optim.control = list(trace =
##
           REPORT = 1, reltol = tol))
##
##
##
  Coefficients:
##
             ma1
                     sma1
##
         -0.9571
                  -0.9638
```

```
## sigma^2 estimated as 34.08: log likelihood = -1290.72, aic = 2587.45
##
## $degrees_of_freedom
##
  [1] 398
##
## $ttable
##
        Estimate
                     SE t.value p.value
         -0.9571 0.0150 -63.6395
## ma1
##
  sma1 -0.9638 0.0465 -20.7387
                                       0
##
## $AIC
## [1] 6.468617
##
## $AICc
## [1] 6.468693
##
## $BIC
## [1] 6.498553
## [1] 6.468617
## [1] 6.498553
```

The AIC for this SARIMA model is 6.47. The BIC for this SARIMA model is 6.5.

Winsorization for weekly data


```
## initial value 2.206445
          2 value 1.727027
## iter
          3 value 1.630805
## iter
## iter
          4 value 1.582020
## iter
          5 value 1.571189
## iter
          6 value 1.570868
## iter
          7 value 1.570807
## iter
          8 value 1.570780
          9 value 1.570770
##
  iter
          9 value 1.570770
## iter
## iter
          9 value 1.570770
## final value 1.570770
## converged
## initial value 1.546623
## iter
          2 value 1.531170
## iter
          3 value 1.529688
## iter
          4 value 1.529372
## iter
          5 value 1.529162
## iter
          6 value 1.529131
## iter
          7 value 1.529129
## iter
          8 value 1.529129
## iter
          9 value 1.529129
          9 value 1.529129
## iter
## iter
          9 value 1.529129
## final value 1.529129
## converged
```


\$AICc

```
## [1] 5.91121
##
## $BIC
## [1] 5.94107
## [1] 5.911134
## [1] 5.94107
```

The AIC for this SARIMA model is 5.91. The BIC for this SARIMA model is 5.94.

Above graph represents the time series along with the fitted values

Perform cross-validation on ARIMA model

```
[1] 3.329902e+01 3.327590e+01 3.325912e+01 3.320812e+01 3.898795e+01
##
##
   [6] 3.265190e+01 3.266926e+01 3.283018e+01 9.846892e+03 4.046007e+01
## [11] 5.555527e+01 5.524690e+01 2.833033e+06 9.846960e+03 6.914001e+01
  [16] 5.178956e+01 3.326945e+01 3.180089e+01 3.181764e+01 3.190395e+01
  [21] 3.589847e+01 3.266809e+01 3.223645e+01 3.238243e+01 6.433158e+03
  [26] 3.628773e+01 3.916790e+01 4.888327e+01 9.217366e+06 6.737546e+03
##
  [31] 4.588331e+01 4.380248e+01 3.325047e+01 3.181265e+01 3.139406e+01
  [36] 3.145390e+01 3.377326e+01 3.283749e+01 3.237512e+01 3.246927e+01
   [41] 1.551510e+03 3.369907e+01 5.225147e+01 4.900463e+01 2.579588e+06
  [46] 1.547552e+03 4.826784e+01 3.497173e+01 3.324736e+01 3.190548e+01
## [51] 3.145122e+01 3.240938e+01 3.373361e+01 3.266247e+01 3.270203e+01
## [56] 3.282743e+01 6.827320e+02 3.355034e+01 4.306066e+01 5.473041e+01
  [61] 1.777735e+06 6.687179e+02 4.446475e+01 4.063132e+01
   [1] 31.39406
   [1] 35
##
##
## Call:
## arima(x = new_ts, order = c(new_p, new_d, new_q))
```

```
##
## Coefficients:
##
            ar1
                     ar2
                             ma1
                                      ma2
                                            intercept
##
         0.0214
                 0.9501
                          0.0482
                                               3.5089
                                   -0.9517
                                               0.8887
## s.e.
         0.0196
                 0.0188
                          0.0250
                                   0.0248
##
## sigma^2 estimated as 32.34: log likelihood = -1305.1, aic = 2622.2
     4
     30
new_ts
     20
     10
                             100
                                                               300
             0
                                              200
                                                                                400
```

Time

[1] 2622.195

[1] 2646.336

Built time series models on the full dataset.

```
##
      Date(YMW) Frequency
## 1
      2013-11-3
                      275
## 2
      2013-11-4
                       13
## 3
      2013-12-1
                       13
                       52
## 4
      2013-12-2
## 5
      2013-12-3
                       27
## 6
      2013-12-4
                       13
## 7
      2014-01-1
                      136
## 8
      2014-01-2
                       13
## 9
      2014-01-3
                       29
## 10 2014-01-4
                       40
## Time Series:
## Start = 1
## End = 413
## Frequency = 1
     [1] 275.0
                13.0
                      13.0
                            52.0
                                  27.0
                                        13.0 136.0
                                                     13.0
                                                           29.0
                                                                 40.0
                                                                       13.0
                      25.0
                                  19.0
                                        76.0
                                                                 22.0
                                                                             35.0
##
    [13]
         14.0
                13.0
                            38.0
                                               13.0
                                                     43.0 13.0
                                                                       56.0
                      22.0 64.0 23.0 87.0 34.0 43.0 229.0
    [25]
         13.0 13.0
                                                                 27.0 79.0 43.0
```


Time

```
[1] 1.319852e+04 1.323291e+04 1.323780e+04 1.319868e+04 3.140040e+04
##
            [6] 1.139364e+04 1.142786e+04 1.143820e+04 1.409871e+08 3.172855e+04
        [11] 1.086333e+04 1.090663e+04 1.370353e+11 2.031356e+08 9.778919e+05
         [16] 2.813356e+04 1.323070e+04 1.224684e+04 1.217776e+04 1.321470e+04
         [21] 1.540449e+04 1.143063e+04 1.143000e+04 1.144530e+04 5.681044e+07
         [26] 1.569247e+04 1.090730e+04 1.087660e+04 9.300909e+10 8.166685e+07
        [31] 2.614455e+05 4.635361e+04 1.318881e+04 1.216698e+04 1.327003e+04
        [36] 1.320240e+04 1.151650e+04 1.142973e+04 1.143386e+04 1.144148e+04
        [41] 1.771426e+07 1.166139e+04 1.088004e+04 1.089400e+04 2.480627e+10
         [46] 2.629325e+07 6.710611e+04 1.137739e+04
## [1] 10863.33
## [1] 11
##
## Call:
         arima(x = datatouse_full_ts, order = c(0, 2, 2))
##
##
        Coefficients:
##
                                       ma1
                                                               ma2
##
                           -1.9625
                                                     0.9626
                              0.0172
                                                     0.0169
##
## sigma^2 estimated as 7180: log likelihood = -2414.9, log likelihood = -2414.9
                350
datatouse_full_ts
                250
                150
                50
                 0
                                     0
                                                                                  100
                                                                                                                                   200
                                                                                                                                                                                    300
                                                                                                                                                                                                                                    400
                                                                                                                                    Time
## [1] 4835.795
```

Cross-validation for SARIMA models using full dataset

[1] 4847.85

```
## [1] 1.319852e+04 1.319852e+04 1.323291e+04 1.327162e+04 3.140040e+04 ## [6] 2.886391e+04 1.139364e+04 1.436352e+04 1.323070e+04 1.329452e+04
```

```
[11] 1.224684e+04 1.342943e+04 1.540449e+04 2.367627e+04 1.143063e+04
    [16] 1.476771e+04 1.323291e+04 1.323291e+04 1.323461e+04 1.328928e+04
##
    [21] 1.139364e+04 2.858923e+04 1.072867e+04 1.415454e+04 1.224684e+04
##
    [26] 1.330581e+04 1.315641e+04 1.339758e+04 1.143063e+04 2.373340e+04
    [31] 1.139310e+04 1.451154e+04 1.323780e+04 1.323780e+04 1.319619e+04
   [36] 1.328675e+04 1.142786e+04 2.863583e+04 1.142911e+04 1.398388e+04
##
   [41] 1.217776e+04 1.329953e+04 1.321549e+04 1.335702e+04 1.143000e+04
    [46] 2.372303e+04 1.142756e+04 1.428484e+04 3.140040e+04 3.140040e+04
##
##
    [51] 1.139364e+04 3.127774e+04 1.409871e+08 1.458639e+05 3.172855e+04
##
    [56] 3.187410e+04 1.540449e+04 3.125740e+04 1.143063e+04 3.146768e+04
    [61] 5.681044e+07 3.498611e+04 1.569247e+04 3.645144e+04 1.139364e+04
    [66] 1.139364e+04 1.072867e+04 1.140546e+04 3.172855e+04 2.880797e+04
##
    [71] 1.094313e+04 1.200696e+04 1.143063e+04 1.140846e+04 1.139310e+04
   [76] 1.159801e+04 1.569247e+04 2.305725e+04 1.089641e+04 1.224547e+04
##
##
   [81] 1.142786e+04 1.142786e+04 1.142911e+04 1.144503e+04 1.086333e+04
##
    [86] 2.849861e+04 1.086756e+04 1.197437e+04 1.143000e+04 1.144901e+04
   [91] 1.142756e+04 1.165617e+04 1.090730e+04 2.312623e+04 1.088658e+04
##
   [96] 1.220021e+04 1.409871e+08 1.409871e+08 3.172855e+04 1.439857e+08
## [101] 1.370353e+11 1.700710e+08 2.031356e+08 1.955894e+08 5.681044e+07
## [106] 1.445909e+08 1.569247e+04 1.487391e+08 9.300909e+10 6.826199e+07
## [111] 8.166685e+07 2.197100e+08 3.172855e+04 3.172855e+04 1.094313e+04
## [116] 3.143941e+04 2.031356e+08 9.411829e+04 1.196374e+05 9.615548e+04
## [121] 1.569247e+04 3.138977e+04 1.089641e+04 3.141893e+04 8.166685e+07
## [126] 7.174315e+04 4.359106e+04 9.761939e+04 1.086333e+04 1.086333e+04
## [131] 1.086756e+04 1.091000e+04 9.778919e+05 2.878702e+04 1.169444e+04
## [136] 1.288410e+04 1.090730e+04 1.090318e+04 1.088658e+04 1.090465e+04
## [141] 2.614432e+05 2.359008e+04 1.154499e+04 1.276781e+04 1.540449e+04
## [146] 1.540449e+04 1.143063e+04 1.517920e+04 5.681044e+07 7.950021e+04
## [151] 1.569247e+04 1.530447e+04 1.343015e+04 1.515189e+04 1.143060e+04
## [156] 1.564298e+04 3.174767e+07 2.399229e+04 1.366992e+04 1.562238e+04
## [161] 1.143063e+04 1.143063e+04 1.139310e+04 1.144931e+04 1.569247e+04
## [166] 2.847066e+04 1.089641e+04 1.196345e+04 1.143060e+04 1.145365e+04
## [171] 1.129460e+04 1.166204e+04 1.366992e+04 2.312537e+04 1.089934e+04
## [176] 1.217818e+04 1.143000e+04 1.143000e+04 1.142756e+04 1.144925e+04
## [181] 1.090730e+04 2.864706e+04 1.088658e+04 1.195912e+04 1.143337e+04
## [186] 1.145380e+04 1.143007e+04 1.139619e+04 1.094411e+04 2.312007e+04
## [191] 1.086513e+04 1.216724e+04 1.151650e+04 1.151650e+04 1.142973e+04
## [196] 1.141354e+04 1.771426e+07 5.819413e+04 1.166139e+04 1.244029e+04
## [201] 1.110799e+04 1.139892e+04 1.147799e+04 1.163882e+04 1.011349e+07
## [206] 2.267954e+04 1.121595e+04 1.238769e+04 1.142973e+04 1.142973e+04
## [211] 1.144791e+04 1.144983e+04 1.166139e+04 2.854566e+04 1.088317e+04
## [216] 1.195350e+04 1.147799e+04 1.145451e+04 1.145754e+04 1.166127e+04
## [221] 1.121595e+04 2.311888e+04 1.088401e+04 1.215162e+04 1.143386e+04
## [226] 1.143386e+04 1.143919e+04 1.144968e+04 1.088004e+04 2.866038e+04
## [231] 1.086784e+04 1.194786e+04 1.143704e+04 1.145356e+04 1.144141e+04
## [236] 1.166463e+04 1.090695e+04 2.312570e+04 1.087098e+04 1.214632e+04
## [1] 10728.67
## [1] 23 67
## [1] 240
## Series: datatouse_full_ts
## ARIMA(0,0,1)
##
```

```
## Coefficients:
##
               ma1
                         sma1
##
          -0.4797
                     -0.4797
## s.e.
                          {\tt NaN}
               {\tt NaN}
##
## sigma^2 = 8397: log likelihood = -2445.45
## AIC=4896.9
                   AICc=4896.96
                                     BIC=4908.97
      350
datatouse_full_ts
      250
      150
      50
      0
                                 100
                                                    200
                                                                       300
                                                                                           400
                                                    Time
```

[1] 4896.905

[1] 4908.968

Perform Nested Cross-Validation on the full dataset

Nested cross-validation is performed on weekly data with winsorization to tune the SARIMA model's hyperparameters.

[1] "this is the number of rows for the testing dataset 1: 41"

- ## [1] "this is the currect values: 0, 1, 1, 1, 0, 0, 12" ## [1] "this is the currect values: 0, 1, 1, 1, 0, 0, 12"
- ## [1] "this is total count: 240"
- ## [1] "there are total 144 different models"
- ## [1] "this is the number of rows for the training dataset 2: 82"
- ## [1] "this is the number of rows for the testing dataset 2: 41"

- ## [1] "this is the currect values: 1, 1, 1, 1, 0, 0, 12"
- ## [1] "this is the currect values: 1, 1, 1, 1, 0, 0, 12"
- ## [1] "this is total count: 144"
- ## [1] "there are total 144 different models"

- ## [1] "this is the number of rows for the training dataset 3: 123"
- $\mbox{\tt \#\#}$ [1] "this is the number of rows for the testing dataset 3: 41"

- ## [1] "this is the currect values: 1, 1, 1, 1, 0, 0, 12"
- ## [1] "this is the currect values: 1, 1, 1, 1, 0, 0, 12"
- ## [1] "this is total count: 144"
- ## [1] "there are total 144 different models"
- ## [1] "this is the number of rows for the training dataset 4: 164"
- ## [1] "this is the number of rows for the testing dataset 4: 41"

- ## [1] "this is the currect values: 1, 1, 1, 1, 0, 0, 12"
- ## [1] "this is the currect values: 1, 1, 1, 1, 0, 0, 12"

```
## [1] "this is total count: 144"
```

[1] "this is the number of rows for the testing dataset 5: 41"

- ## [1] "this is the currect values: 1, 1, 1, 1, 0, 0, 12"
- ## [1] "this is the currect values: 1, 1, 1, 1, 0, 0, 12"
- ## [1] "this is total count: 144"
- ## [1] "there are total 144 different models"
- ## [1] "this is the number of rows for the training dataset 6: 246"

^{## [1] &}quot;there are total 144 different models"

^{## [1] &}quot;this is the number of rows for the training dataset 5: 205"

```
## [1] "this is the currect values: 1, 1, 1, 1, 0, 0, 12" ## [1] "this is the currect values: 1, 1, 1, 1, 0, 0, 12"
```

[1] "this is total count: 144"

[1] "there are total 144 different models"

[1] "this is the number of rows for the training dataset 7: 287"

[1] "this is the number of rows for the testing dataset 7: 41"

- ## [1] "this is the currect values: 1, 1, 1, 1, 0, 0, 12"
- ## [1] "this is the currect values: 1, 1, 1, 1, 0, 0, 12"
- ## [1] "this is total count: 144"
- ## [1] "there are total 144 different models"
- ## [1] "this is the number of rows for the training dataset 8: 328"
- ## [1] "this is the number of rows for the testing dataset 8: 41"

- ## [1] "this is the currect values: 1, 1, 1, 1, 0, 0, 12"
- ## [1] "this is the currect values: 1, 1, 1, 1, 0, 0, 12"
- ## [1] "this is total count: 144"
- ## [1] "there are total 144 different models"
- ## [1] "this is the number of rows for the training dataset 9: 369"
- ## [1] "this is the number of rows for the testing dataset 9: 41"

- ## [1] "this is the currect values: 1, 1, 1, 1, 0, 0, 12"
- ## [1] "this is the currect values: 1, 1, 1, 1, 0, 0, 12"
- ## [1] "this is total count: 144"
- ## [1] "there are total 144 different models"

```
##
     [1] 1.128392e+04 1.128392e+04 8.198454e+03 1.087620e+04 1.293202e+07
##
     [6] 1.404357e+05 3.682282e+05 1.968539e+04 1.129526e+04 1.091487e+04
    [11] 7.858167e+03 1.092590e+04 3.454564e+06 4.956831e+04 6.849556e+04
##
   [16] 1.374233e+04 8.198454e+03 8.198454e+03 9.286062e+03 8.162108e+03
    [21] 3.682282e+05 4.246354e+04 7.665819e+05 1.425913e+04 7.858167e+03
   [26] 7.824566e+03 8.720505e+03 7.814593e+03 6.849556e+04 1.774032e+04
##
   [31] 8.197647e+03 8.473089e+03 8.033121e+03 8.033121e+03 8.026636e+03
    [36] 7.998168e+03 1.190873e+06 3.988090e+04 1.034653e+06 1.398261e+04
##
    [41] 7.830409e+03 7.833936e+03 7.845705e+03 7.827804e+03 9.195394e+03
   [46] 1.708683e+04 8.032651e+03 8.515889e+03 1.129720e+04 1.129720e+04
##
   [51] 7.856331e+03 1.100968e+04 3.604891e+06 7.629489e+04 6.866494e+04
   [56] 1.802852e+04 1.096384e+04 1.106541e+04 7.789643e+03 1.106158e+04
##
   [61] 3.741438e+06 4.061315e+04 2.140244e+04 1.403055e+04 7.856331e+03
  [66] 7.856331e+03 8.718040e+03 7.856312e+03 6.866494e+04 1.928787e+04
##
   [71] 8.076444e+03 9.750512e+03 7.789643e+03 7.788949e+03 8.002322e+03
##
    [76] 7.951615e+03 2.140244e+04 1.617902e+04 3.185026e+04 1.018890e+04
##
   [81] 7.827282e+03 7.827282e+03 7.842906e+03 7.808908e+03 9.183916e+03
   [86] 1.881151e+04 9.079561e+03 9.579784e+03 7.881219e+03 7.797544e+03
  [91] 7.852359e+03 7.823420e+03 3.311344e+04 1.627252e+04 8.981281e+03
   [96] 1.013853e+04 1.606841e+05 1.606841e+05 7.983368e+03 4.995420e+04
## [101] 1.608302e+09 1.159674e+07 1.704248e+07 7.442988e+06 1.760895e+04
## [106] 6.565089e+04 8.171361e+03 1.693867e+05 1.696237e+07 7.339437e+06
## [111] 1.953191e+04 5.814849e+06 7.983368e+03 7.983368e+03 8.611744e+03
## [116] 7.848570e+03 1.704248e+07 1.053711e+05 9.027133e+06 1.038907e+05
## [121] 8.170552e+03 7.850187e+03 7.996706e+03 7.927471e+03 1.952322e+04
## [126] 2.171871e+05 6.422873e+05 2.312944e+05 7.868707e+03 7.868707e+03
## [131] 9.382571e+03 8.356923e+03 2.738219e+06 2.178744e+04 8.221281e+05
## [136] 1.135466e+04 7.937095e+03 7.894734e+03 8.065520e+03 8.353233e+03
## [141] 4.868022e+05 4.112813e+04 5.188009e+06 3.102363e+04
## [1] 7788.949
## [1] 74
## Series: datatouse_full_ts
## ARIMA(1,1,1)(1,0,0)[12]
##
## Coefficients:
            ar1
                    ma1
                            sar1
        0.0394 -0.9689 0.0410
##
## s.e. 0.0513 0.0121 0.0505
## sigma^2 = 7216: log likelihood = -2414.55
## AIC=4837.11 AICc=4837.2 BIC=4853.19
```


[1] 4837.106 ## [1] 4853.19

GSARIMA Model

```
##
## tsglm(ts = datatouse_full_ts, link = "log", distr = "nbinom")
## Coefficients:
                Estimate Std.Error CI(lower)
                                                CI(upper)
##
                   4.618
                              0.043
                                          4.53
                                                      4.7
## (Intercept)
## sigmasq
                   0.754
                                 NA
                                            NA
                                                       NA
## Standard errors and confidence intervals (level = 95 %) obtained
## by normal approximation.
##
## Link function: log
## Distribution family: nbinom (with overdispersion coefficient 'sigmasq')
## Number of coefficients: 2
## Log-likelihood: -Inf
## AIC: Inf
## BIC: Inf
## QIC: Inf
```

ACF of Pearson residuals

Lag
Pearson residuals over time

Cumulative periodogram of Pearson residuals

Non-randomiz

[1] Inf
[1] Inf

Code Appendix:

```
knitr::opts_chunk$set(echo = TRUE)
library(naniar)
library(readr)
library(dplyr)
library(ggplot2)
library(gsarima)
library(forecast)
library(caret)
library(zoo)
library(astsa)
library(DescTools)
library(tscount)
setwd("~/Desktop")
isolates <- read_csv("isolates.csv")</pre>
isolates = isolates %>%
  select(-c(Computed_types, Virulence_genotypes, AST_phenotypes))
isolates = isolates %>%
  select(-c(Host_disease, PFGE_secondary_enzyme_pattern, PFGE_primary_enzyme_pattern, Stress_genotypes,
isolates = isolates %>%
  select(-c(Species_TaxID, `K-mer_group`, Organism_group))
isolates = isolates %>%
  select(-c(WGS_accession, WGS_prefix, Run, Isolate, Assembly))
```

```
isolates = isolates %>%
  select(-c(AMRFinderPlus_version, PD_Ref_Gene_Catalog_version, Level))
isolates <- isolates %>%
   mutate(across(.cols=c(Library_layout, Method, SRA_Center, Platform, AMR_genotypes_core, BioProject,
isolates <- isolates %>%
   mutate(across(.cols=c(SRA release date, Create date), .fns = as.Date))
isolates = isolates %>%
  select(-c(Library_layout, Method, Platform, AMRFinderPlus_analysis_type, Isolate_identifiers, BioSamp
isolates = isolates %>%
  select(-Strain)
isolates$Outbreak = ifelse(is.na(isolates$Outbreak), 0, 1)
count_SNP = as.data.frame(table(isolates$SNP_cluster))
colnames(count_SNP)[colnames(count_SNP) == "Var1"] <- "SNP_cluster"</pre>
colnames(count_SNP)[colnames(count_SNP) == "Freq"] <- "Frequency"</pre>
count_SNP =count_SNP[order(-count_SNP$Frequency),]
count_SNP_20 = count_SNP[1:20,]
SNP_percentage = numeric(20)
for (i in 1:20){
 SNP percentage[i] = (count SNP$Frequency[i]/sum(count SNP$Frequency))*100
count_SNP_20['SNP_percentage'] <- SNP_percentage</pre>
cluster_1 = isolates %>%
 filter((SNP_cluster == count_SNP_20[1,1]))
cluster_1
cluster_1$Create_date_YM = format(as.Date(cluster_1$Create_date), "%Y-%m")
datatouse = as.data.frame(table(cluster_1$Create_date_YM))
colnames(datatouse) [colnames(datatouse) == "Var1"] <- "Date"</pre>
colnames(datatouse) [colnames(datatouse) == "Freq"] <- "Frequency"</pre>
datatouse$Date = as.character(datatouse$Date)
datatouse[nrow(datatouse)+1,] = c("2013-12", 0)
datatouse[nrow(datatouse)+1,] = c("2014-02", 0)
datatouse[nrow(datatouse)+1,] = c("2014-04", 0)
datatouse[nrow(datatouse)+1,] = c("2021-03", 0)
datatouse = datatouse[order(datatouse$Date),]
rownames(datatouse) <- NULL
datatouse$Frequency = as.numeric(datatouse$Frequency)
datatouse
tsData = ts(datatouse, start = c(2013, 11), end = c(2022, 6), frequency = 12)
tsData
is.ts(tsData)
summary(tsData)
ts.plot(tsData, xlab="Year", ylab="Number of Listeria Monocytogenes Cases", main="Monthly totals of Lis
start(tsData)
end(tsData)
frequency(tsData)
univariate_ts = as.ts(datatouse$Frequency)
```

```
univariate_ts
acf(univariate_ts)
pacf(univariate ts)
AR1 <- arima(univariate_ts, order = c(1,0,0))
print(AR1)
ts.plot(univariate_ts)
AR1_fit <- univariate_ts - residuals(AR1)</pre>
points(AR1_fit, type = "1", col = 2, lty = 2) # type = "l" means lines
AIC(AR1)
BIC(AR1)
AR2 \leftarrow arima(univariate_ts, order = c(0,0,1))
print(AR2)
ts.plot(univariate_ts)
AR2_fit <- univariate_ts - residuals(AR2)</pre>
points(AR2_fit, type = "1", col = 2, lty = 2)
AIC(AR2)
BIC(AR2)
AR3 \leftarrow arima(univariate_ts, order = c(1,0,1))
print(AR3)
ts.plot(univariate_ts)
AR3_fit <- univariate_ts - residuals(AR3)
points(AR3_fit, type = "1", col = 2, lty = 2)
AIC(AR3)
BIC(AR3)
AR4 <- arima(univariate_ts, order = c(1,1,1))
print(AR4)
ts.plot(univariate_ts)
AR4_fit <- univariate_ts - residuals(AR4)
points(AR4_fit, type = "1", col = 2, lty = 2)
AIC(AR4)
BIC(AR4)
AR5 <- sarima(univariate_ts,1,1,1,1,1,1,1)
print(AR5)
ts.plot(univariate_ts)
AR5_fit <- univariate_ts - resid(AR5$fit)</pre>
points(AR5_fit, type = "1", col = 2, lty = 2)
AR5$AIC
AR5$BIC
AR6 <- sarima(univariate_ts,0,1,1,0,1,1,12)
print(AR6)
ts.plot(univariate_ts)
AR6_fit <- univariate_ts - resid(AR6$fit)
points(AR6_fit, type = "1", col = 2, lty = 2)
AR6$AIC
AR6$BIC
datatouse[datatouse$Date == '2020-01',]$Frequency <- 0
univariate_ts2 = as.ts(datatouse$Frequency)
ts.plot(univariate_ts)
ts.plot(univariate_ts2)
AR7 <- sarima(univariate_ts2,0,1,1,0,1,1,12)
print(AR7)
AR7$AIC
AR7$BIC
```

```
ts.plot(univariate_ts2)
AR7_fit <- univariate_ts2 - resid(AR7$fit)</pre>
points(AR7_fit, type = "1", col = 2, lty = 2)
Acf(univariate ts2)
Pacf(univariate_ts2)
datatouse[datatouse$Date == '2020-01',]$Frequency <- round(mean(datatouse$Frequency))
univariate_ts3 = as.ts(datatouse$Frequency)
ts.plot(univariate ts)
ts.plot(univariate_ts3)
AR8 <- sarima(univariate_ts3,0,1,1,0,1,1,12)
print(AR8)
AR8$AIC
AR8$BIC
ts.plot(univariate_ts3)
AR8_fit <- univariate_ts3 - resid(AR8$fit)
points(AR8_fit, type = "1", col = 2, lty = 2)
univariate_ts7 = Winsorize(univariate_ts)
ts.plot(univariate_ts7)
AR12 <- sarima(univariate_ts7,0,1,1,0,1,1,12)
print(AR12)
AR12$AIC
AR12$BIC
ts.plot(univariate_ts7)
AR12_fit <- univariate_ts7 - resid(AR12$fit)</pre>
points(AR12_fit, type = "1", col = 2, lty = 2)
cluster_1$Create_date = format(as.Date(cluster_1$Create_date), "%Y-%m-%d")
cluster_1$Create_date_YM = format(as.Date(cluster_1$Create_date), "%Y-%m")
  for (i in 1:dim(cluster_1[1])){
  date = as.numeric(format(as.Date(cluster_1$Create_date[i]), "%d"))
  cluster_1 week[i] = if(date >= 1 && date <= 7){
  } else if(date >= 8 && date <= 14){</pre>
  } else if(date >= 15 && date <= 21){
  } else {
   4
  cluster_1$Create_date_YMW[i] = sprintf("%s-%s", cluster_1$Create_date_YM[i], cluster_1$week[i])
datatouse2 = as.data.frame(table(cluster_1$Create_date_YMW))
colnames(datatouse2)[colnames(datatouse2) == "Var1"] <- "Date(YMW)"</pre>
colnames(datatouse2) [colnames(datatouse2) == "Freq"] <- "Frequency"</pre>
datatouse2$`Date(YMW)` = as.character(datatouse2$Date)
datatouse2[nrow(datatouse2)+1,] = c("2013-11-4", 0)
datatouse2[nrow(datatouse2)+1,] = c("2013-12-1", 0)
datatouse2[nrow(datatouse2)+1,] = c("2013-12-2", 0)
datatouse2[nrow(datatouse2)+1,] = c("2013-12-3", 0)
datatouse2[nrow(datatouse2)+1,] = c("2013-12-4", 0)
datatouse2[nrow(datatouse2)+1,] = c("2014-01-2", 0)
datatouse2[nrow(datatouse2)+1,] = c("2014-01-3", 0)
datatouse2[nrow(datatouse2)+1,] = c("2014-02-1", 0)
datatouse2[nrow(datatouse2)+1,] = c("2014-02-2", 0)
```

```
datatouse2[nrow(datatouse2)+1,] = c("2014-02-3", 0)
datatouse2[nrow(datatouse2)+1,] = c("2014-02-4", 0)
datatouse2[nrow(datatouse2)+1,] = c("2014-03-1", 0)
datatouse2[nrow(datatouse2)+1,] = c("2014-04-1", 0)
datatouse2[nrow(datatouse2)+1,] = c("2014-04-2", 0)
datatouse2[nrow(datatouse2)+1,] = c("2014-04-3", 0)
datatouse2[nrow(datatouse2)+1,] = c("2014-04-4", 0)
datatouse2[nrow(datatouse2)+1,] = c("2014-05-3", 0)
datatouse2[nrow(datatouse2)+1,] = c("2014-05-4", 0)
datatouse2[nrow(datatouse2)+1,] = c("2014-07-4", 0)
datatouse2[nrow(datatouse2)+1,] = c("2014-09-1", 0)
datatouse2[nrow(datatouse2)+1,] = c("2014-09-3", 0)
datatouse2[nrow(datatouse2)+1,] = c("2014-10-3", 0)
datatouse2[nrow(datatouse2)+1,] = c("2014-11-1", 0)
datatouse2[nrow(datatouse2)+1,] = c("2014-11-2", 0)
datatouse2[nrow(datatouse2)+1,] = c("2014-11-3", 0)
datatouse2[nrow(datatouse2)+1,] = c("2014-12-2", 0)
datatouse2[nrow(datatouse2)+1,] = c("2014-12-3", 0)
datatouse2[nrow(datatouse2)+1,] = c("2014-12-4", 0)
datatouse2[nrow(datatouse2)+1,] = c("2015-01-2", 0)
datatouse2[nrow(datatouse2)+1,] = c("2015-01-3", 0)
datatouse2[nrow(datatouse2)+1,] = c("2015-01-4", 0)
datatouse2[nrow(datatouse2)+1,] = c("2015-02-1", 0)
datatouse2[nrow(datatouse2)+1,] = c("2015-03-2", 0)
datatouse2[nrow(datatouse2)+1,] = c("2015-03-3", 0)
datatouse2[nrow(datatouse2)+1,] = c("2015-04-1", 0)
datatouse2[nrow(datatouse2)+1,] = c("2015-04-3", 0)
datatouse2[nrow(datatouse2)+1,] = c("2015-06-2", 0)
datatouse2[nrow(datatouse2)+1,] = c("2015-08-1", 0)
datatouse2[nrow(datatouse2)+1,] = c("2015-08-3", 0)
datatouse2[nrow(datatouse2)+1,] = c("2015-09-1", 0)
datatouse2[nrow(datatouse2)+1,] = c("2015-09-2", 0)
datatouse2[nrow(datatouse2)+1,] = c("2015-09-3", 0)
datatouse2[nrow(datatouse2)+1,] = c("2016-02-2", 0)
datatouse2[nrow(datatouse2)+1,] = c("2016-04-2", 0)
datatouse2[nrow(datatouse2)+1,] = c("2016-05-4", 0)
datatouse2[nrow(datatouse2)+1,] = c("2016-10-1", 0)
datatouse2[nrow(datatouse2)+1,] = c("2016-10-2", 0)
datatouse2[nrow(datatouse2)+1,] = c("2017-01-2", 0)
datatouse2[nrow(datatouse2)+1,] = c("2017-02-2", 0)
datatouse2[nrow(datatouse2)+1,] = c("2017-03-2", 0)
datatouse2[nrow(datatouse2)+1,] = c("2017-03-2", 0)
datatouse2[nrow(datatouse2)+1,] = c("2017-07-1", 0)
datatouse2[nrow(datatouse2)+1,] = c("2017-07-3", 0)
datatouse2[nrow(datatouse2)+1,] = c("2017-08-3", 0)
datatouse2[nrow(datatouse2)+1,] = c("2017-09-2", 0)
datatouse2[nrow(datatouse2)+1,] = c("2017-10-2", 0)
datatouse2[nrow(datatouse2)+1,] = c("2017-11-1", 0)
datatouse2[nrow(datatouse2)+1,] = c("2017-12-2", 0)
datatouse2[nrow(datatouse2)+1,] = c("2018-01-3", 0)
datatouse2[nrow(datatouse2)+1,] = c("2018-03-2", 0)
datatouse2[nrow(datatouse2)+1,] = c("2018-04-2", 0)
datatouse2[nrow(datatouse2)+1,] = c("2018-05-1", 0)
```

```
datatouse2[nrow(datatouse2)+1,] = c("2018-07-1", 0)
datatouse2[nrow(datatouse2)+1,] = c("2018-07-2", 0)
datatouse2[nrow(datatouse2)+1,] = c("2018-08-1", 0)
datatouse2[nrow(datatouse2)+1,] = c("2018-10-2", 0)
datatouse2[nrow(datatouse2)+1,] = c("2019-01-3", 0)
datatouse2[nrow(datatouse2)+1,] = c("2019-02-2", 0)
datatouse2[nrow(datatouse2)+1,] = c("2019-05-2", 0)
datatouse2[nrow(datatouse2)+1,] = c("2019-05-3", 0)
datatouse2[nrow(datatouse2)+1,] = c("2019-06-2", 0)
datatouse2[nrow(datatouse2)+1,] = c("2019-06-3", 0)
datatouse2[nrow(datatouse2)+1,] = c("2019-06-4", 0)
datatouse2[nrow(datatouse2)+1,] = c("2019-07-1", 0)
datatouse2[nrow(datatouse2)+1,] = c("2019-07-2", 0)
datatouse2[nrow(datatouse2)+1,] = c("2019-08-1", 0)
datatouse2[nrow(datatouse2)+1,] = c("2019-10-1", 0)
datatouse2[nrow(datatouse2)+1,] = c("2019-12-3", 0)
datatouse2[nrow(datatouse2)+1,] = c("2020-01-1", 0)
datatouse2[nrow(datatouse2)+1,] = c("2020-01-3", 0)
datatouse2[nrow(datatouse2)+1,] = c("2020-02-3", 0)
datatouse2[nrow(datatouse2)+1,] = c("2020-03-1", 0)
datatouse2[nrow(datatouse2)+1,] = c("2020-03-2", 0)
datatouse2[nrow(datatouse2)+1,] = c("2020-04-2", 0)
datatouse2[nrow(datatouse2)+1,] = c("2020-04-3", 0)
datatouse2[nrow(datatouse2)+1,] = c("2020-04-4", 0)
datatouse2[nrow(datatouse2)+1,] = c("2020-05-1", 0)
datatouse2[nrow(datatouse2)+1,] = c("2020-05-3", 0)
datatouse2[nrow(datatouse2)+1,] = c("2020-05-4", 0)
datatouse2[nrow(datatouse2)+1,] = c("2020-06-2", 0)
datatouse2[nrow(datatouse2)+1,] = c("2020-06-3", 0)
datatouse2[nrow(datatouse2)+1,] = c("2020-07-1", 0)
datatouse2[nrow(datatouse2)+1,] = c("2020-07-4", 0)
datatouse2[nrow(datatouse2)+1,] = c("2020-08-1", 0)
datatouse2[nrow(datatouse2)+1,] = c("2020-08-2", 0)
datatouse2[nrow(datatouse2)+1,] = c("2020-08-3", 0)
datatouse2[nrow(datatouse2)+1,] = c("2020-09-4", 0)
datatouse2[nrow(datatouse2)+1,] = c("2020-10-2", 0)
datatouse2[nrow(datatouse2)+1,] = c("2020-11-1", 0)
datatouse2[nrow(datatouse2)+1,] = c("2020-11-3", 0)
datatouse2[nrow(datatouse2)+1,] = c("2020-11-4", 0)
datatouse2[nrow(datatouse2)+1,] = c("2020-12-1", 0)
datatouse2[nrow(datatouse2)+1,] = c("2020-12-2", 0)
datatouse2[nrow(datatouse2)+1,] = c("2020-12-3", 0)
datatouse2[nrow(datatouse2)+1,] = c("2021-01-1", 0)
datatouse2[nrow(datatouse2)+1,] = c("2021-01-2", 0)
datatouse2[nrow(datatouse2)+1,] = c("2021-01-3", 0)
datatouse2[nrow(datatouse2)+1,] = c("2021-02-4", 0)
datatouse2[nrow(datatouse2)+1,] = c("2021-03-1", 0)
datatouse2[nrow(datatouse2)+1,] = c("2021-03-2", 0)
datatouse2[nrow(datatouse2)+1,] = c("2021-03-3", 0)
datatouse2[nrow(datatouse2)+1,] = c("2021-03-4", 0)
datatouse2[nrow(datatouse2)+1,] = c("2021-04-4", 0)
datatouse2[nrow(datatouse2)+1,] = c("2021-05-4", 0)
datatouse2[nrow(datatouse2)+1,] = c("2021-06-4", 0)
```

```
datatouse2[nrow(datatouse2)+1,] = c("2021-07-2", 0)
datatouse2[nrow(datatouse2)+1,] = c("2021-07-3", 0)
datatouse2[nrow(datatouse2)+1,] = c("2021-08-2", 0)
datatouse2[nrow(datatouse2)+1,] = c("2021-09-2", 0)
datatouse2[nrow(datatouse2)+1,] = c("2021-09-4", 0)
datatouse2[nrow(datatouse2)+1,] = c("2021-10-2", 0)
datatouse2[nrow(datatouse2)+1,] = c("2021-10-3", 0)
datatouse2[nrow(datatouse2)+1,] = c("2021-11-4", 0)
datatouse2[nrow(datatouse2)+1,] = c("2021-12-2", 0)
datatouse2[nrow(datatouse2)+1,] = c("2021-12-4", 0)
datatouse2[nrow(datatouse2)+1,] = c("2022-02-3", 0)
datatouse2[nrow(datatouse2)+1,] = c("2022-03-2", 0)
datatouse2[nrow(datatouse2)+1,] = c("2022-04-1", 0)
datatouse2[nrow(datatouse2)+1,] = c("2022-04-2", 0)
datatouse2[nrow(datatouse2)+1,] = c("2022-05-1", 0)
datatouse2[nrow(datatouse2)+1,] = c("2022-05-3", 0)
datatouse2 = datatouse2[order(datatouse2$Date),]
rownames(datatouse2) <- NULL
datatouse2$Frequency = as.numeric(datatouse2$Frequency)
datatouse2[1:10,]
univariate_ts4 = as.ts(datatouse2$Frequency)
univariate_ts4
ts.plot(univariate ts4)
AR9 \leftarrow sarima(univariate ts4,0,1,1,0,1,1,12)
print(AR9)
AR9$AIC
AR9$BIC
ts.plot(univariate_ts4)
AR9_fit <- univariate_ts4 - resid(AR9$fit)
points(AR9_fit, type = "1", col = 2, lty = 2)
datatouse2{Date == '2020-01-2',]$Frequency <- 0</pre>
datatouse2[datatouse2$Date == '2020-01-2',]$Frequency <- round(mean(datatouse2$Frequency))</pre>
univariate_ts5 = as.ts(datatouse2$Frequency)
univariate_ts5
ts.plot(univariate_ts5)
AR10 <- sarima(univariate_ts5,0,1,1,0,1,1,12)
print(AR10)
AR10$AIC
AR10$BIC
ts.plot(univariate_ts5)
AR10_fit <- univariate_ts5 - resid(AR10$fit)
points(AR10_fit, type = "1", col = 2, lty = 2)
univariate_ts6 = Winsorize(univariate_ts4)
ts.plot(univariate_ts6)
AR11 <- sarima(univariate_ts6,0,1,1,0,1,1,12)
print(AR11)
AR11$AIC
AR11$BIC
ts.plot(univariate_ts6)
AR11_fit <- univariate_ts6 - resid(AR11$fit)</pre>
points(AR11_fit, type = "1", col = 2, lty = 2)
```

```
datatouse2_train = datatouse2[1:round(4*(nrow(datatouse2)/5)),]
datatouse2_test = datatouse2[-(1:round(4*(nrow(datatouse2)/5))),]
univariate_ts_train = as.ts(datatouse2_train$Frequency)
p = c(0,1,2,3)
d = c(0,1,2,3)
q = c(0,1,2,3)
mse_list = c()
for(a in p){
  for (b in d){
    for (c in q){
      arima_models = arima(univariate_ts_train, order = c(a,b,c))
      predict_arima_models = predict(arima_models, n.ahead = 83)
      mse_value = mean((predict_arima_models$pred - datatouse2_test$Frequency)^2)
      mse_list = append(mse_list, mse_value)
    }
}
print(mse_list)
print(min(mse_list))
print(which(mse_list == min(mse_list)))
new_p = 2
new_d = 0
new_q = 2
new_ts = as.ts(datatouse2$Frequency)
ARIMA_model_cv = arima(new_ts, order = c(new_p, new_d, new_q))
print(ARIMA_model_cv)
ts.plot(new_ts)
ARIMA_model_cv_fit = new_ts - residuals(ARIMA_model_cv)
points(ARIMA_model_cv_fit, type = "1", col=2, lty = 2)
AIC(ARIMA_model_cv)
BIC(ARIMA_model_cv)
isolates$Create_date = format(as.Date(isolates$Create_date), "%Y-%m-%d")
isolates$Create_date_YM = format(as.Date(isolates$Create_date), "%Y-%m")
for (i in 1:dim(isolates[1])){
  date = as.numeric(format(as.Date(isolates$Create_date[i]), "%d"))
  isolates$week[i] = if(date >= 1 && date <= 7){</pre>
  } else if(date >= 8 && date <= 14){
  } else if(date >= 15 && date <= 21){
  } else {
  }
  isolates$Create_date_YMW[i] = sprintf("%s-%s", isolates$Create_date_YM[i], isolates$week[i])
datatouse_full = as.data.frame(table(isolates$Create_date_YMW))
colnames(datatouse_full)[colnames(datatouse_full) == "Var1"] <- "Date(YMW)"</pre>
```

```
colnames(datatouse_full)[colnames(datatouse_full) == "Freq"] <- "Frequency"</pre>
datatouse_full$`Date(YMW)` = as.character(datatouse_full$Date)
datatouse_full = datatouse_full[order(datatouse_full$`Date(YMW)`),]
datatouse_full = datatouse_full[17:nrow(datatouse_full),]
datatouse_full[nrow(datatouse_full)+1,] = c("2013-11-4", 0)
datatouse_full[nrow(datatouse_full)+1,] = c("2013-12-1", 0)
datatouse_full = datatouse_full[order(datatouse_full$`Date(YMW)`),]
rownames(datatouse full) <- NULL
datatouse_full$Frequency = as.numeric(datatouse_full$Frequency)
datatouse_full$Frequency = Winsorize(datatouse_full$Frequency)
datatouse full[1:10,]
datatouse_full_ts = as.ts(datatouse_full$Frequency)
datatouse_full_ts
ts.plot(datatouse_full_ts)
datatouse_full_train = datatouse_full[1:round(4*(nrow(datatouse_full)/5)),]
datatouse_full_test = datatouse_full[-(1:round(4*(nrow(datatouse_full)/5))),]
univariate_ts_train_full = as.ts(datatouse_full_train$Frequency)
p = c(0,1,2)
d = c(0,1,2,3)
q = c(0,1,2,3)
mse_list = c()
for(a in p){
  for (b in d){
    for (c in q){
      arima_models = arima(univariate_ts_train_full, order = c(a,b,c))
      predict_arima_models = predict(arima_models, n.ahead = 83)
      mse_value = mean((predict_arima_models$pred - datatouse_full_test$Frequency)^2)
      mse_list = append(mse_list, mse_value)
    }
}
print(mse_list)
print(min(mse_list))
print(which(mse_list == min(mse_list)))
new_p = 0
new_d = 2
new q = 2
arima_full = arima(datatouse_full_ts, order = c(0,2,2))
print(arima_full)
ts.plot(datatouse_full_ts)
arima_full_cv_fit = datatouse_full_ts - residuals(arima_full)
points(arima_full_cv_fit, type = "1", col=2, lty = 2)
AIC(arima_full)
BIC(arima_full)
datatouse_full_train = datatouse_full[1:round(4*(nrow(datatouse_full)/5)),]
datatouse_full_test = datatouse_full[-(1:round(4*(nrow(datatouse_full)/5))),]
univariate_ts_train_full = as.ts(datatouse_full_train$Frequency)
```

```
p = c(0,1,2)
d = c(0,1,2)
q = c(0,1,2)
p2 = c(0,1)
d2 = c(0,1)
q2 = c(0,1)
s = c(0,12)
mse_list2 = c()
count = 0
for(a in p){
  for (b in d){
    for (c in q){
      for (d in p2){
        for (e in d2){
          for (f in q2){
            for (g in s){
              sarima_models = Arima(univariate_ts_train_full, order = c(a,b,c), seasonal = list(order=c
              predict_sarima_models = predict(sarima_models, n.ahead = 83)
              mse_value = mean((predict_sarima_models$pred - datatouse_full_test$Frequency)^2)
              mse_list2 = append(mse_list2, mse_value)
              # print(sprintf("this is the currect values: %s, %s, %s, %s, %s, %s, %s", a,b,c,d,e,f,g))
              count = count + 1
          }
        }
      }
    }
}
print(mse_list2)
print(min(mse_list2))
print(which(mse_list2 == min(mse_list2)))
new_p = 0
new d = 0
new_q = 1
new_p2 = 0
new_d2 = 1
new_q2 = 1
s = 0
print(count)
sarima_model1 = Arima(datatouse_full_ts, order = c(0,0,1), seasonal = list(order=c(0,1,1), period=0))
print(sarima_model1)
ts.plot(datatouse_full_ts)
sarima_full_cv_fit = datatouse_full_ts - residuals(sarima_model1)
points(sarima_full_cv_fit, type = "1", col=2, lty = 2)
AIC(sarima_model1)
BIC(sarima_model1)
p = c(0,1,2)
```

```
d = c(0,1,2)
q = c(0,1,2)
p2 = c(0,1)
d2 = c(0,1)
q2 = c(0,1)
s = c(0,12)
mse_list_full = rep(0,144)
for (i in 1:9){
  start = 1
  end = i * round(nrow(datatouse_full)/10)
  end2 = (i+1) * round(nrow(datatouse_full)/10)
  if (end2 > nrow(datatouse_full)){
    end2 = dim(datatouse_full)[1]
  }
  datatouse_full_train = datatouse_full[start:end,]
  datatouse_full_test = datatouse_full[(end+1):end2,]
  print(sprintf("this is the number of rows for the training dataset %s: %s", i, nrow(datatouse_full_tr
  print(sprintf("this is the number of rows for the testing dataset %s: %s", i, nrow(datatouse_full_tes
  univariate_ts_train = as.ts(datatouse_full_train$Frequency)
  ts.plot(univariate_ts_train)
  mse_list_nested = c()
  count = 0
  for(a in p){
    for (b in d){
      for (c in q){
        for (d in p2){
          for (e in d2){
            for (f in q2){
              for (g in s){
                sarima_models = Arima(univariate_ts_train, order = c(a,b,c), seasonal = list(order=c(d,
                predict_sarima_models = predict(sarima_models, n.ahead = 83)
                mse_value = mean((predict_sarima_models$pred - datatouse_full_test$Frequency)^2)
                mse_list_nested = append(mse_list_nested, mse_value)
                count = count + 1
                if (count == 74){
                  print(print(sprintf("this is the currect values: %s, %s, %s, %s, %s, %s, %s", a,b,c,d
            }
         }
       }
     }
   }
  print(sprintf("this is total count: %s", count))
  mse_list_nested = mse_list_nested[1:144]
  mse_list_full = mse_list_full + mse_list_nested
  print(sprintf("there are total %s different models", length(mse_list_nested)))
```

```
}
mse_list_full = mse_list_full/9
print(mse_list_full)
print(min(mse_list_full))
print(which(mse_list_full == min(mse_list_full)))
new_p = 1
new_d = 1
new_q = 1
new_p2 = 1
new d2 = 0
new_q2 = 0
s = 12
sarima_model2 = Arima(datatouse_full_ts, order = c(1,1,1), seasonal = list(order=c(1,0,0), period=12))
print(sarima_model2)
ts.plot(datatouse_full_ts)
sarima_full_cv_fit_2 = datatouse_full_ts - residuals(sarima_model2)
points(sarima_full_cv_fit_2, type = "1", col=2, lty = 2)
AIC(sarima_model2)
BIC(sarima_model2)
glmts = tsglm(datatouse_full_ts, distr = "nbinom", link = "log")
summary(glmts)
plot(glmts)
ts.plot(datatouse_full_ts)
gsarima_model_fit = datatouse_full_ts - residuals(glmts)
points(gsarima_model_fit, type = "1", col=2, lty=2)
AIC(glmts)
BIC(glmts)
```