PASCAL'S TRIANGLE AND VOLUME OF HYPERCUBES

PETRO KOLOSOV

ABSTRACT. In this short report famous the binomial identity

$$\sum_{k=0}^{n} \binom{n}{k} = 2^n$$

is generalized such that relation between Pascal's triangle and volume of m-dimension n-length hypercubes is shown. Where $\binom{n}{k}$ are binomial coefficients and (m, n) are positive integers.

Contents

1.	Introduction	1
2.	Conclusions	4
Re	oferences	Δ

1. Introduction

We start from the famous relation about row sums of the Pascal triangle, that is

$$\sum_{k=0}^{n} \binom{n}{k} = 2^n, \tag{1.1}$$

where $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ are binomial coefficients [GKPL89]. Identity (1.1) is straightforward because the Pascal's triangle is

Date: May 21, 2022.

²⁰¹⁰ Mathematics Subject Classification. 26E70, 05A30.

Key words and phrases. Binomial coefficients, Binomial theorem, Pascal's triangle, Binomial sums, Binomial distribution, Binomial identities.

n/k	0	1	2	3	4	5	6	7	8
0	1								
1	1	1							
2		2							
3	1	3	3	1					
4	1	4	6	4	1				
5	1	5	10	10	5	1			
6	1	6	15	20	15	6	1		
7	1	7	21	35	35	21	7	1	
8	1	8	28	56	70	56		8	1

Table 1. Pascal's triangle [CG96]. Each k-th term of n-th row is $\binom{n}{k} \cdot 1^k$.

Consider a generating function such as $f_2(n,k) = \binom{n}{k} \cdot 2^k$. The function $f_2(n,k)$ generates the following Pascal-like triangle

n/k	0	1	2	3	4	5	6	7	8
0	1								
1	1	2							
2	1	4	4						
3 4	1	6	12	8					
4	1	8	24	32	16				
5	1	10	40	80	80	32			
6	1	12	60	160	240	192	64		
7	1	14	84	280	560	672	448	128	
8	1	16	112	448	1120	1792	1792	1024	256

Table 2. Triangle generated by the function $\binom{n}{k} \cdot 2^k$. Can be reproduced using Mathematica function GeneratePascalLikeTriangle[2, 8] at [Kol22].

Now we can notice that

$$\sum_{k=0}^{n} \binom{n}{k} \cdot 2^k = 3^n \tag{1.2}$$

Continue similarly we can generalize the equations (1.1), (1.2) as follows

$$2^{n} = \sum_{k=0}^{n} \binom{n}{k} \cdot 1^{k}$$
$$3^{n} = \sum_{k=0}^{n} \binom{n}{k} \cdot 2^{k}$$
$$4^{n} = \sum_{k=0}^{n} \binom{n}{k} \cdot 3^{k}$$

. . .

$$m^n = \sum_{k=0}^n \binom{n}{k} \cdot (m-1)^k$$

Theorem 1.1. Volume of n-dimension hypercube with length m could be calculated as

$$m^{n} = \sum_{k=0}^{n} \sum_{j=0}^{k} \binom{n}{k} \binom{k}{j} (-1)^{k-j} m^{j}$$
(1.3)

where m and n - positive integers, see [?].

Proof. Recall induction over m, in (1.1) is shown a well-known example for m=2.

$$2^{n} = \sum_{k=0}^{n} \binom{n}{k} (2-1)^{k} \tag{1.4}$$

Review (1.5) and suppose that

$$(\underbrace{2+1}_{m=3})^n = \sum_{k=0}^n \binom{n}{k} \cdot (\underbrace{(2-1)+1}_{m-1})^k \tag{1.5}$$

And, obviously, this statement holds by means of Newton's Binomial Theorem [?], [?] given m = 3, more detailed, recall expansion for $(x + 1)^n$ to show it.

$$(x+1)^n = \sum_{k=0}^n \binom{n}{k} x^k$$
 (1.6)

Substituting x = 2 to (1.7) we have reached (1.6).

Next, let show example for each $m \in \mathbb{N}$. Recall Binomial theorem to show this

$$m^n = \sum_{k=0}^n \binom{n}{k} \cdot (m-1)^k \tag{1.7}$$

Hereby, for m+1 we receive Binomial theorem again

$$(m+1)^n = \sum_{k=0}^n \binom{n}{k} \cdot m^k \tag{1.8}$$

Review result from (1.8) and substituting Binomial expansion $\sum_{j=0}^{k} {k \choose j} (-1)^{n-k} m^j$ instead $(m-1)^k$ we receive desired result

$$m^{n} = \sum_{k=0}^{n} \binom{n}{k} \cdot \underbrace{(m-1)^{k}}_{\sum_{j=0}^{k} \binom{k}{j}(-1)^{k-j}m^{j}} = \sum_{k=0}^{n} \binom{n}{k} \sum_{j=0}^{k} \binom{k}{j} (-1)^{k-j}m^{j}$$

$$= \sum_{k=0}^{n} \sum_{j=0}^{k} \binom{n}{k} \binom{k}{j} (-1)^{k-j}m^{j}$$
(1.9)

This completes the proof.

Lemma 1.2. Number of elements k-face elements $\mathcal{E}_k(\mathbf{Y}_n^p)$ of Generalized Hypercube \mathbf{Y}_n^p equals to

$$\mathscr{E}_k(\mathbf{Y}_n^p) = \sum_{j=0}^k \binom{n}{k} \binom{k}{j} (-1)^{k-j} (p-1)^j$$
 (1.10)

Expression (1.10) has Multinomial analog

$$\sum_{a_1 + a_2 + \dots + a_k = n} \binom{n}{a_1, a_2, \dots, a_k} = k^n \tag{1.11}$$

It could be found at .txt file in the last line here.

2. Conclusions

Conclusions of your manuscript.

References

[CG96] JH Conway and RK Guy. Pascal's triangle. The Book of Numbers. New York: Springer-Verlag, pages 68–70, 1996.

[GKPL89] Ronald L Graham, Donald E Knuth, Oren Patashnik, and Stanley Liu. Concrete mathematics: a foundation for computer science. *Computers in Physics*, 3(5):160–162, 1989.

[Kol22] Petro Kolosov. "Pascal's triangle and volume of hypercubes" Source files. published electronically at https://github.com/kolosovpetro/PascalsTriangleAndVolumeOfHypercubes, 2022.

Email address: kolosovp94@gmail.com URL: https://razumovsky.me/