

Adding Variations and Measuring Their Effects on Accuracy in LSM Neurons

Siddharth Solanki 21D070072 SRE Presentation

Guide: Prof. Udayan Ganguly

Establishing a ground plane

Fig 1: Mechanism of the Experiment

Fig 2: The design team behind the Neuro Chip(36 reservoir neurons)

Image credits: Fig 1: "Real-world Performance Estimation of Liquid State Machines for Spoken Digit Classification" – MeLoDe Lab IITB
Fig 2: ElectronicsForu.com "World's First SNN Developed at IIT Bombay"

What would the future look like?

The two very important graphs if viewed from a manufacturing perspective

Fig 4, Fig 5: The two trade-offs that we need to counter to ship a reliable and cost friendly product

My Goal

IIT BOMBAY

MeLoDe Lab

• Currently the group is dealing with 125 neurons in the reservoir.

Neuronal Parameters

Period

Fig 7: Spiking Pattern of a LIF Neuron

Image credits: Fig 6: Lucidchart and Me Fig 7,8: Matplotlib and Me

The weight of the effect on accuracy

Not every parameter affects the accuracy in the same range.

Fig 9: Plot representing the distribution of accuracy if the parameters are changed globally

• We can conclude that ds and $\tau 1$ do not contribute much and Vrst is basically ground. Hence they are not taken into consideration in further experiments.

Design of Experiment/Process Flow

Fig 10: Process flow of the experiment

How are the variations modelled?

• The baseline values of the parameters are:

Parameter	Baseline Value (μ_X)
Vth	20mV
Refractory Period	2mS
Membrane Time Constant	64ms

And for every neuron 'i' in the reservoir, the parameter X_i varies as follows:

$$X_i = \mu_X + (\sigma/\mu)^*(\mu_X)^*N(0,1)$$

where μ_X is the baseline value of the parameter, and N(0,1) is a standard normal variable.

Results

IIT BOMBAY MeLoDe Lab

Vth Variations

Firing-rate statistics vs V_{th} variability (σ/μ)

Fig 12

Results

IIT BOMBAY MeLoDe Lab

Refractory Period Variations

Fig 13

Firing-rate statistics vs RefPer variability (σ/μ)

Fig 14

Results

IIT BOMBAY MeLoDe Lab

Membrane Time Constant Variations

Fig 15

Firing-rate statistics vs τ variability (σ/μ)

Fig 16

Tolerance Values Measured Algorithmically

Parameter	Variability (σ/μ)
Vth	0.056
Refractory Period	0.340
Membrane Time Constant	0.340

Physical Correlation of the observations

What's Next?

 Discussions with the Circuits team concerning the problems that need to be tackled.

 Finding the intersection point of Cost vs Input Power vs Accuracy and then working forward towards design and manufacturing. Thank You!!