Дополнительные задачи для самостоятельной подготовки к контрольной

Этот листок создан для самостоятельной подготовки к контрольной работе. Перечисленные в ниже темы соответствуют темам заданий на контрольной. Задачи на контрольной будут отличаться от представленных в листочке!

Чтобы узнать ответ, выделите область после надписи «Ответ:», скопируйте и вставьте в любое текстовое поле.

Предел последовательности

Задача 6^+ .1. Вычислите пределы:

a)
$$\lim_{n \to \infty} \left(1 + \frac{1}{n^2}\right)^n$$
;

a)
$$\lim_{n\to\infty} \left(1 + \frac{1}{n^2}\right)^n$$
; 6) $\lim_{n\to\infty} \left(\frac{1^2}{n^3} + \frac{2^2}{n^3} + \dots + \frac{(n-1)^2}{n^3}\right)$; B) $\lim_{n\to\infty} \left(\frac{1}{\sqrt{n^2+1}} + \dots + \frac{1}{\sqrt{n^2+n}}\right)$;

B)
$$\lim_{n\to\infty} \left(\frac{1}{\sqrt{n^2+1}} + \ldots + \frac{1}{\sqrt{n^2+n}} \right);$$

Ответ: а) ; б) ; в)

Задача 6⁺.2. Докажите, что последовательность $x_{n+1}=x_n^2-x_n+1,\quad x_1=\frac{1}{2}$ сходится и найдите ее предел.

Ответ: .

Сумма ряда

Задача 6⁺.3. Выясните, имеет ли предел следующая последовательность

$$a_n = \frac{\cos^3 1}{1 + 1^6 \cos^6 1} + \frac{\cos^3 2}{1 + 2^6 \cos^6 2} + \dots + \frac{\cos^3 n}{1 + n^6 \cos^6 n}.$$

Ответ:

Задача 6⁺.4. Установите сходимость или расходимость следующих рядов, а в случае сходимости вычислите пределы:

a)
$$\sum_{k=1}^{\infty} \ln \left(1 + \frac{1}{k}\right)$$

a)
$$\sum_{k=1}^{\infty} \ln\left(1+\frac{1}{k}\right);$$
 б) $\sum_{k=2}^{\infty} \ln\left(1-\frac{1}{k^2}\right);$ в) $\sum_{k=1}^{\infty} \frac{1}{k!(k+2)};$ г) $\sum_{k=1}^{\infty} \frac{1}{\sqrt[k]{k}};$ д) $\sum_{n=1}^{\infty} \frac{\sin \sqrt[3]{n}}{\sqrt[3]{n^2}}.$

B)
$$\sum_{k=1}^{\infty} \frac{1}{k!(k+2)};$$

$$\Gamma) \sum_{k=1}^{\infty} \frac{1}{\sqrt[k]{k}};$$

д)
$$\sum_{n=1}^{\infty} \frac{\sin \sqrt[3]{r}}{\sqrt[3]{n^2}}$$

Ответ: а)

: б)

; в) ; г)

д)

Задача 6⁺.5. Используя критерий Коши, исследуйте на сходимость следующие последо-

a)
$$a_n = \sum_{k=0}^n \frac{\cos k}{2^k}$$

a)
$$a_n = \sum_{k=1}^{n} \frac{\cos k}{2^k};$$
 6) $a_n = \sum_{k=1}^{n} \frac{|\sin k|}{k}.$

Ответ: а)

; б)

Частичный предел

Задача 6+.6. Найдите $\overline{\lim_{n\to\infty}} \ a_n, \ \underline{\lim_{n\to\infty}} \ a_n$, если a) $a_n=\frac{n^2+n+1}{1+2n+3n^2}\cos\frac{2n\pi}{3};$ б) $a_n=\frac{n}{\sqrt{2n^2+1}}-\cos\frac{\pi n}{5}.$

a)
$$a_n = \frac{n^2 + n + 1}{1 + 2n + 3n^2} \cos \frac{2n\pi}{3};$$

б)
$$a_n = \frac{n}{\sqrt{2n^2+1}} - \cos \frac{\pi n}{5}$$

Ответ: а)

Предел функции

a)
$$\lim_{x\to 0} \frac{(1-\cos^2 x)\ln(1+2x)}{\sin x \cdot (\pi^x - 1)^2};$$

Задача 6⁺.7. Вычислите пределы a)
$$\lim_{x\to 0} \frac{\left(1-\cos^2x\right)\ln(1+2x)}{\sin x\cdot(\pi^x-1)^2};$$
 б) $\lim_{x\to 0} \frac{\ln\left(1+3x+x^2\right)+\operatorname{tg}(4x)+\sin\left(x^3\right)}{\sqrt[3]{8+24x}-2}.$

Ответ: а)

; б) .

Задача 6+.8. Пусть $f(x) = \sqrt{x + \sqrt{x}}$. Для каких значений параметров α и β а) $f(x) \sim x^{\alpha}$ при $x \to +0$; б) $f(x) \sim x^{\beta}$ при $x \to +\infty$. Ответ: а) ; б) .

Задача 6⁺.9. Вычислите пределы

a) $\lim_{x\to 0} \frac{\sin 2x + 2 \arctan \cos 3x + 3x^2}{\ln(1+3x+\sin^2 x) + xe^x};$ b) $\lim_{x\to 0} \frac{\sqrt[5]{1+10x} - \sqrt[3]{1+3x}}{\arcsin(3x+x^2) - \sin(2x+x^3)};$ b) $\lim_{x\to +\infty} x \left(\ln\left(1+\frac{x}{2}\right) - \ln\frac{x}{2}\right).$ Other: a) ; b) :