2,5 VARIABLE IMPEDANCE PARAMETER Z MAY VARY IN SPACE, Z=2(X) 2, Zz j-Zj-1, Zj ZHj-1 1 2 Nj c+ dH + Zi- dQ = 0 c: dH - 2, dQ = 0 2; It1 | NTEGRATED (n,j-1) & (N+1,j)
Berwage (n,j+1) & (N+1,j) H; - Hj-1 + Zj-1 (Qj - Qj-1)=0 Hit - Hiti - Zj (Qhti - Qjti)=0 $H_{j} = \frac{2^{j}}{2^{j}} H_{j-1}^{j-1} + \frac{2^{j}}{2^{j-1}} + \frac{2^{j}}{2^{j}} \frac{2^{j-1}}{2^{j-1}} + \frac{2^{j}}{2^{j-1}} \frac{2^{j-1}}{2^{j-1}} + \frac{2^{j}}{2^{j-1}} \frac{2^{j-1}}{2^{j-1}} + \frac{2^{j}}{2^{j-1}} \frac{2^{j-1}}{2^{j-1}} + \frac{2^{j}}{2^{j-1}} \frac{2^{j-1}}{2^{j-1}} + \frac{2^{j-1}}{2^{j-1}} \frac{2^{j-1}}{2^{j-1}} \frac{2^{j-1}}{2^{j-1}} \frac{2^{j-1}}{2^{j-1}} \frac{2^{j-1}}{2^{j-1}} + \frac{2^{j-1}}{2^{j-1}} \frac{2^{j-1}}{2^{j-1}}$ Hi-, + Hj+, FOR と=======

Hin-Hj-1 + Zj-1Qj + ZjQj - Zj-1Qj-1 - Z; Qj+1 = 0 $Q_{j}^{u+1} = \frac{2j-1}{2j-1} + \frac{2j-1}{2j-1} + \frac{1}{2j-1} + \frac{1}{2j-1$ EXAMPLE PIPE 3 - SUDDEN SUBGE (PIPE, 1) 7120m 100 un 2,=10 5/m2 2, = 109 s/m2 Zz = 5 000 5/m2 A=0.01 mz c = 1000 m/s 1000m 500m st = 0.55 EQUATIONS: Q1 = Q2 + 1 (H1 - H2) B: H"= 120m $H_{j}^{H1} = \frac{2j}{2j} H_{j-1} + \frac{2j}{2j-1} + \frac{2j}{2j+2j-1} \left(Q_{j-1} - Q_{j+1}^{M}\right)$ $Q_{j} = \frac{2j-1}{2j-1} Q_{j-1}^{M} + \frac{2j}{2j-2j-1} \left(H_{j-1}^{M} - H_{j+1}^{M}\right)$ $Q_{j} = \frac{2j-1}{2j-1} Q_{j-1}^{M} + \frac{2j}{2j-2j-1} \left(H_{j-1}^{M} - H_{j+1}^{M}\right)$ WIDDEP POINTS]=2,3 H4 = 100 m $Q_4 = Q_3 + \frac{1}{23} (H_3 - H_4)$ 2B:

	X(W)	0		500		1	1000			1500		+	
t(s) H(in)		H(m) Q(g)		HQ		H	H Q						
0	20	100	0	100	0	. 10		0) (0	=-6	
0.5		118,3		100		10) ()		
10		1183	18	1180	3 1.8	10	00	0	100	(
15/	1.7								1				
									Rbc				