

DPP – 6 (Current Electricity)

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/98

Video Solution on YouTube:-

https://youtu.be/cDFoPKOXFKU

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/53

Q 1. In the circuit shown in figure the emf of battery are E. At what value of R thermal power generated in it will be maximum?

- (c) 5 ohm
- (d) 14 ohm
- In the figure shown: (All batteries are ideal) Q 2.

- (a) current through 5 V cell is 2 A
- (b) current through 25 V cell is 12.5 A
- (c) current through 10 V cell is 15 A
- (d) current through 30 V cell is 3 A
- Q 3. In the following circuit diagram, the current flowing through resistor of 1/4 Ω is

- (a)1A
- (c) 30 A

(d) None of these

hysicsaholics

Q 4. What is power delivered by an ideal battery of emf ϵ when it is connected across terminal A and B as shown in figure

- (a) $\frac{\varepsilon^2}{R}$
- (b) $\frac{\varepsilon^2}{2R}$
- $(c)\frac{2\varepsilon^2}{R}$
- (d) $\frac{4\varepsilon^2}{R}$
- Q 5. The three resistances A, B and C have values 3R,6R and R respectively. When some potential difference is applied across the network, the thermal powers dissipated by A, B and C are in the ratio

- (a) 2:3:4
- (b) 2:4:3
- (c) 4:2:3

(P)

(Q)

- (d) 3:2:4
- Q 6. Two cells of the same emf 'e' but different internal resistances, $r_1 \& r_2$ are connected in series with an external resistance R.

Column I

(A) value of current

through R

(B) when external

resistance R is $r_1 - r_2$

- (C) when external Resistance R is $r_1 + r_2$
- (D) when external resistance R is $r_2 r_1$

Column II

potential drop across second cell is zero

 $\frac{2e}{R+r_1+r_2}$

- (R) potential drop across first cell is zero
- (S) maximum power output across resistance R
- Q 7. Find the potential difference $V_A V_B$ for the circuit shown in the figure.

- (a) $-\frac{14}{9}v$
- (b) $-\frac{16}{9}v$
- (c) $-\frac{11}{9}v$

P hysicsaholics

$$(d) - \frac{22}{9}v$$

Q 8. In the circuit shown in figure potential difference between point A and B is 16 V. Find the current passing through 2Ω resistance.

- (a) 5A
- (b) 2.5 A
- (c) 3.5 A
- (d) 4.5 A
- Q 9. A constant voltage is applied to a metal wire. The current passing through the wire heat the wire to certain temperature. If half of the wire is cooled by pocering cold water then
 - (a) Temperature of other half increases
 - (b) Temperature of other half decreases
 - (c) Temperature of other half remain same
 - (d) Current through other half decreases
- Q 10. In the circuit shown in figure:

- (a) current in wire AF is 1 A
- (b) current in wire CD is 1 A
- (c) current in wire BE is 2 A
- (d) none of the above
- Q 11. Current capacity of a cylindrical fuse wire is directly proportional to n'th power of radius of wire m'th power of length of wire, then m + n is
 - (a) 1
 - (b) 2
 - (c) 1.5
 - (d) 2.5
- Q 12. In given circuit $V_Q V_P$ is

(a) 0.5 V

Physicsaholics

- (b) -5V
- (c) 0.25 V
- (d) -0.25 V

Q 13. Find current in resistance A

- (a) 3/14 A
- (b) 2/15 A
- (c) 2/7 A
- (d) 6/13 A

Answer Key

Q.1 c	Q.2 b	Q.3 c	Q.4 c	Q.5 c
Q.7 d	Q.8 c	Q.9 a	Q.10 d	Q.11 c
Q.12 a	Q.13 a			

Q.6 A (Q); B(R); C(S); D(P)