Application Layer Coding for Delay and Feedback-Constrainted Scenarios

Thesis submitted to the

Indian Institute of Technology Bhubaneswar

For End Semester Evaluation

of

Bachelor of Technology Project

by

Vatsalya Chaubey

Under the guidance of

Dr Siddhartha S Borkotoky

SCHOOL OF ELECTRICAL SCIENCES INDIAN INSTITUTE OF TECHNOLOGY BHUBANESWAR

December 2020

©2020 Vatsalya Chaubey. All rights reserved.

CERTIFICATE

This is to certify that the thesis entitled Application Layer Coding for Delay and Feedback-Constrainted Scenarios, submitted by Vatsalya Chaubey (17EC01044) to Indian Institute of Technology Bhubaneswar, is a record of bonafide research work under my supervision and the report is submitted for end semester evaluation of the B.Tech project.

Date: Dr Siddhartha S Borkotoky

Assistant Professor

School of Electrical Sciences

Indian Institute of Technology Bhubaneswar

Bhubaneswar, India

DECLARATION

I certify that

- a. the work contained in the thesis is original and has been done by myself under the general supervision of my supervisor.
- b. the work has not been submitted to any other institute for any degree or diploma.
- c. I have followed the guidelines provided by the institute in writing the thesis.
- d. I have conformed to the norms and guidelines given in the ethical code of conduct of the institute.
- e. whenever I have used materials (data, theoretical analysis, and text) from other sources, I have given due credit to them by citing them in the text of the thesis and giving their details in the references.
- f. whenever I have quoted written materials from other sources, I have put them under quotation marks and given due credit to the sources by citing them and giving required details in the references.

Vatsalya Chaubey

Acknowledgments

This work was done as part of my final year B.Tech project. I would like to thank my supervisor Dr Siddhartha S Borkotoky for his invaluable guidance and technical help. I would also like to thank him for the level of freedom provided by him to help me do various experiments which often very not fruitful. This work was during the pandemic where everyone was stuck at home and without any direct contact. I would like to thank him for his availability over video calls and his patience in guiding me through this tough times. I would also like to thank my parents for their support during this tough period.

Vatsalya Chaubey

Abstract

Application layer in a communication network is an abstraction layer that provides a set of shared protocols and interfaces between various hosts for information transfer. It is the topmost layer in various communication models like TCP/IP and OSI and masks the underlying mechanisms and allow for communication between various applications in different hosts. Application layer codes ensure that the communication between hosts is reliable with minimum number of data packets lost in transmission. In this work we present a application layer coding scheme which utilizes intermittent feedback and can be used for delay and energy constraint applications. Such a scheme could be widely used for control operations in wireless sensor networks where a number of sensors transmit data to a common gateway for analysis and decision making purposes.

Contents

Cert	${f icate}$	i
Decl	ration	ii
Ackı	owledgments	iii
Abst	act	iv
List	f Figures	vii
List	f Tables v	iii
List	f Abbreviations	ix
${f List}$	f Symbols	x
1 T	ele of Chapter 1	1
1.	Title of Section	1
	1.1.1 Title of Subsection	1
1.	Literature Survey	2
1.	Motivation	3
1.	Problem Formulation	4
1	Contributions	.

	1.6	Organization	5
2	Titl	e of Chapter 2	6
	2.1	Title of Section	6
		2.1.1 Title of Subsection	6
$\mathbf{A}_{\mathbf{J}}$	ppen	dix	8
\mathbf{A}			8
Pι	ıblic	ations	9
Bi	bliog	craphy	10

List of Figures

1 1	Figure Caption																														9
1.1	rigure Capuon	 •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	4

List of Tables

List of Abbreviations

5G Fifth generation

ABER Average bit error rate

ADSL Asymmetric digital subscriber line

AF Amplify-and-forward

ASER Average symbol error rate

AWGN Additive white Gaussian noise

BER Bit error rate

BFSK Binary frequency shift keying

BPSK Binary phase shift keying

List of Symbols

•	Absolute value
$\begin{pmatrix} k \\ l \end{pmatrix}$	Binomial coefficient
$B(\cdot, \cdot)$	Beta function
$\Phi_2^{(n)}(\cdot)$	Confluent form of the generalized Lauricella series
$_1F_1(\cdot,\cdot;\cdot)$	Confluent hypergeometric function
$F_X(\cdot)$	Cumulative distribution function of random variable X
$\mathbb{E}[\cdot]$	Expectation operator
$\exp(\cdot)$	Exponential

Chapter 1

Title of Chapter 1

1.1 Title of Section

1.1.1 Title of Subsection

ADD FIGURE

Figure 1.1: Figure Caption

1.2 Literature Survey

1.3 Motivation

1.4 Problem Formulation

1.5 Contributions

1.6 Organization

Chapter 2

Title of Chapter 2

2.1 Title of Section

2.1.1 Title of Subsection

Appendix A

Title of Appendix

$$y = \alpha x + n \tag{A.1}$$

Publications

Journal Publications

- 1.
- 2.
- 3.

Conference Publication

- 1.
- 2.

Bibliography

- [1] A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, *Tables of Integral Transforms Vol. I.* New York, NY: McGraw-Hill Book Company, Inc., 1954.
- [2] W. C. Jakes, Microwave Mobile Communications, 2nd ed. IEEE Press, 1974.
- [3] H. Exton, Multiple Hypergeometric Functions and Applications. New York: Wiley, 1976.
- [4] H. M. Srivastava and P. K. Karlsson, *Multiple Gaussian Hypergeometric Series*. New York, NY: John Wiley & Sons, 1985.
- [5] A. P. Prudnikov, Y. A. Brychkov, and O. I. Marichev, *Integrals and Series*, 4th ed. Gordon and Breach Science Publishers, 1986, vol. 4.
- [6] W. C. Y. Lee, Mobile Communications Engineering: Theory and Applications, 2nd ed. New York: McGraw-Hill, 1998.
- [7] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 7th ed. New York: Academic Press, 2007.
- [8] R. S. Hoyt, "Probability functions for the modulus and angle of the normal complex variate," *Bell Syst. Tech. J.*, vol. 26, no. 2, pp. 318–359, Apr. 1947.
- [9] M. K. Simon, Probability Distributions Involving Gaussian Random Variables, A Handbook for Engineers and Scientists, 1st ed. New York, NY, USA: Springer, 2006.
- [10] E. Biglieri, R. Calderbank, A. Constantinides, A. Goldsmith, A. Paulraj, and H. V. Poor, MIMO Wireless Communications, 1st ed. Cambridge University Press, 2006.
- [11] J. G. Proakis, Digital Communications, 4th ed. New York: McGraw-Hill, 2001.
- [12] A. Papoulis and S. U. Pillai, *Probability, Random Variables And Stochastic Processes*, 4th ed. New York: McGraw-Hill, 2004.