Artificial Intelligence

Steve James
Reinforcement Learning

Machine learning

Subfield of AI concerned with learning from data

- Broadly, using:
 - Experience
 - To improve performance
 - On some task

(Tom Mitchell, 1997)

What is machine learning?

- Supervised learning is about making predictions, e.g.
 - Classification
 - Regression

Predictions should inform our behaviours

Reinforcement vs supervised learning

- In SL, model is given data with labels
 - Must learn input-output function
- In RL, environment gives model positive/negative "rewards" (numerical feedback)
 - Learn behaviours to maximise total rewards over time
- Rewards encode what to do, rather than how

Reinforcement learning loop

- Decision maker (agent) exists within an environment
- Agent takes actions based on the environment state
- Environment state updates
- Agent receives feedback as rewards

MDPs

- Agent interacts with environment
- At each time *t*
 - Receives sensor signal s_t
 - Executes action a_t
 - Transition
 - New sensor signal s_{t+1}
 - Reward r_t

Markov decision processes

- S: set of states
- A: set of actions

- $\langle S, A, R, T, \gamma \rangle$
- γ : discount factor $\in [0,1]$
- R: reward function
 - -R(s, a, s') is the reward received taking action a from state s and transitioning to state s'
- T: transition function
 - -T(s'|s,a) is the probability of transitioning to state s' after taking action a in state s

But there's a problem

- We don't know T and/or R!
- Must generate samples of data (s, a, r, s') from environment
 - Use that to learn value functions
- We need:
 - Method to pick actions
 - To keep track of current estimate of value function

RL is harder than you think!

Agent knows nothing

MDPs

Key quantity is the return given by a policy from a state:

$$R^{\pi}(s)$$

Define the value function to estimate this quantity:

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r_t\right]$$

Planning via policy iteration

Repeat

- In planning, we used policy iteration to find optimal policy
 - Start with policy π
 - Estimate V^{π}
 - Improve π

•
$$\pi(s) = \max_{a} \mathbb{E}[r + \gamma V^{\pi}(s')], \forall s$$

More precisely:

$$-\pi(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} T(s, a, s') [r(s, a, s') + \gamma V(s')]$$

Value functions

 For learning, we use a state-action value function:

$$Q^{\pi}(s,a) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r_t \mid s_0 = s, a_0 = a\right]$$

• This is the value of executing a in s, then following π

• Note: $V^{\pi}(s) = Q^{\pi}(s, \pi(s))$

Policy iteration

Repeat

- Start with policy π
- Learn Q^{π}
- Improve π

•
$$\pi(s) = \underset{a}{\operatorname{argmax}} Q(s, a) \, \forall s$$

- Need to do a lot more learning
 - $-|A| \times value functions$
- ... but now one-step greedy lookahead is trivial

Value function learning

- Learning proceeds by gathering samples of Q(s,a)
- Methods differ by
 - How you get the samples?
 - How you use them to update Q?

Action selection

- Assume agent is in state s with value function estimate Q
 - What action should agent take?
- Exploration vs exploitation
 - Exploitation: take best action according to Q
 - Exploration: take a different action
- Tradeoff: how do we know if we're optimal?
 Maybe something better out there?

Action selection strategy

• Common selection strategy is ϵ -greedy

- With probability 1ϵ , exploit:
 - Pick action $a = \underset{a'}{\operatorname{argmax}} Q(s, a')$

- With probability ϵ , explore:
 - Pick action uniformly at random

Learning a value function

- We use action selection strategy and generate (s, a, r, s')
 - Must use to update estimate of value function
- Standard update towards a target:

$$f_{t+1} \leftarrow f_t + \alpha(target - f_t)$$

Value function represents expected optimal return. So we want:

$$Q_{t+1}(s,a) \leftarrow Q_t(s,a) + \alpha(\mathbb{E}[R^{\pi}] - Q_t(s,a))$$

But don't know expected return!

Monte Carlo

• Simplest thing you can do: sample R(s)

Do this repeatedly and average:

$$Q^{\pi}(s,a) = \frac{R_1(s) + R_2(s) + \dots + R_n(s)}{n}$$

Temporal difference learning

Estimate return based on current value function

$$Q_{t+1}(s,a) \leftarrow Q_t(s,a) + \alpha [r(s,a,s') + \gamma Q_t(s',a') - Q_t(s,a)]$$

- $r(s, a, s') + \gamma Q_t(s', a') Q_t(s, a) = 0$
 - -Q is correct if this holds in expectation for all states
 - When not, temporal difference error

SARSA

- Initialise Q(s, a) = 0 for all s, a
- Repeat (for n episode):
 - -Observe s
 - -Select a using Q (e.g. ϵ -greedy)
 - -Observe transition $\langle s, a, r, s' \rangle$
 - -Select a' from s' using Q (e.g. ϵ -greedy)
 - -Compute TD error: $\delta = r + \gamma Q(s', a') Q(s, a)$
 - $-Q(s,a) \leftarrow Q(s,a) + \alpha\delta$
 - —If not end of episode, repeat

Q learning

- Initialise Q(s,a) = 0 for all s,a
- Repeat (for n episode):
 - -Observe s
 - -Select a using Q (e.g. ϵ -greedy)
 - -Observe transition $\langle s, a, r, s' \rangle$
 - $-\mathrm{Select}\,a'=\mathrm{argmax}\,Q(s',b)$
 - -Compute TD error: $\delta = r + \gamma Q(s', a') Q(s, a)$
 - $-Q(s,a) \leftarrow Q(s,a) + \alpha\delta$
 - —If not end of episode, repeat

Tabular gridworlds

Real-world domains

- What if |S| is large? Or infinite?
- What if |A| is large? Or infinite?

Issues

- We can't fit every state value entry in memory!
- We can't visit every state!
- We may never see the same state twice!
- Must generalise
- Backgammon $\approx 10^{20}$ states
- Atoms in observable universe $\approx 10^{80}$
- Go $\approx 10^{170}$ states
- Robotics: continuous

Function approximation

We will look to approximate the true value function

$$V^{\pi}(s) \approx \hat{V}(s, \mathbf{w}) \text{ or } Q^{\pi}(s, a) \approx \hat{Q}(s, a, \mathbf{w})$$

- We want to learn weights according to some objective
- Objective to minimise:
 target

$$J(\mathbf{w}) = \mathbb{E}_{\pi}[(\mathbf{r} + \gamma \hat{Q}(s', a', \mathbf{w}) - \hat{Q}(s, a, \mathbf{w}))^{2}]$$

• Hopefully \widehat{Q} is differentiable so we can use gradient descent!

Linear function approximation

• We want $\hat{Q}(s, a, w)$ where $w \in \mathbb{R}^d$

• Let
$$\mathbf{x}(s, a) = (x_1(s, a), x_2(s, a), ..., x_d(s, a))^{\mathsf{T}}$$

• Then $\hat{Q}(s, a, \mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{x}(s, a)$

- x(s, a) is the feature vector
 - In linear case, these are called basis functions

Basis functions

$$\widehat{v}(s, \mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{x}(s)$$

- Let's say our state variables are xy-position
- We could use the variables as features directly $\mathbf{x}(s) = (1, x, y)^{\mathsf{T}}$
- More powerful:
 - Polynomials in state variables
 - 1st order: (1, x, y, xy)
 - 2nd order: $(1, x, y, xy, x^2, y^2, x^2y, xy^2, x^2y^2)$

Linear update rule

$$J(\mathbf{w}) = \mathbb{E}_{\pi}[(\mathbf{r} + \gamma \mathbf{w}^{\mathsf{T}} \mathbf{x}(s', a') - \mathbf{w}^{\mathsf{T}} \mathbf{x}(s, a))^{2}]$$

- Objective function quadratic in weights
- SGD converges to global minimum!
- $\nabla \hat{Q}(s, \mathbf{w}) = \mathbf{x}(s, a)$
- $\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha [\mathbf{target} \hat{Q}(s, a, \mathbf{w})] \mathbf{x}(s)$ - Update = step size × prediction error × features

What are the "right" features?

Classic RL

Deep RL

Function Approximation

TD-Gammon: Tesauro (circa 1992-1995)

At or near best human level

- Learn to play Backgammon through self-play
- 1.5 million games
- Neural network function approximator
- $-TD(\lambda)$

States = board configurations ($\approx 10^{20}$) Actions = moves

$$Rewards = \begin{cases} 1 \ win \\ -1 \ lose \\ 0 \ else \end{cases}$$

Changed the way the best human players played

Arcade Learning Environment

[Bellemare 2013]

Deep Q-Networks

[Mnih et al., 2015]

Q-learning

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

```
Algorithm parameters: step size \alpha \in (0,1], small \varepsilon > 0

Initialize Q(s,a), for all s \in S^+, a \in \mathcal{A}(s), arbitrarily except that Q(terminal, \cdot) = 0

Loop for each episode:

Initialize S

Loop for each step of episode:

Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)

Take action A, observe R, S'

Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \max_a Q(S',a) - Q(S,A)\right]

S \leftarrow S'

until S is terminal
```

$$J(\mathbf{w}) = \mathbb{E}_{\pi}[target - \hat{Q}(s, a, \mathbf{w}))^{2}]$$
$$target = r + \gamma \max_{a'} \hat{Q}(s', a', \mathbf{w})$$

Problems

- Use supervised learning to move the Q-value function toward target
- But neural network has ~million parameters!
 Tough to optimise!

- Target changes after each iteration
 - Highly-nonstationary
- Deep Q-learning (DQN) uses a number of tricks

Experience replay

- Reuse batches of old data to update current network
- Take action a_t according to ϵ -greedy policy
 - Store transition $(s_t, a_t, r_{t+1}, s_{t+1})$ in replay memory D
- When updating Q-value function:
 - Single sample not enough!
 - Sample mini-batch of transitions (s, a, r, s') from D
 - Decorrelates samples

Target network

- To overcome changing targets
- Have a second copy of the network
 - Freeze its weights
 - Fixed Q-targets: avoid oscillations
- Compute Q-learning targets w.r.t old fixed parameters w⁻
- Optimise MSE between Q-network and Q-learning targets

$$- L_i(w_i) = \mathbb{E}_{s,a,r,s' \sim D_i} \left[\left(r + \gamma \max_{a'} Q(s', a', w_i^-) - Q(s, a, w_i) \right)^2 \right]$$

- Using stochastic gradient descent on $\nabla_{w_i} L_i(w_i)$
- Periodically reset the target network to the current one

Atari

What if actions are continuous?

- How would we represent $Q_{\pi}(s,a)$?
- Idea: ignore value functions completely!
- Directly learn parameterised policy

$$\pi_{\theta}(s, a) = \pi(s, a; \theta)$$

- Use gradient ascent to find θ that maximises return
 - Note: if π is not differentiable, use gradient free methods like genetic algorithms, etc

REINFORCE

- Execute policy in environment until episode ends
- Compute R, discouted sum of rewards from episode

- Do gradient ascent on $\frac{dR}{d\theta}$
 - Gradient of return with respect to policy parameters

$$\Delta\theta = \alpha R \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$$

REINFORCE

• Initialise θ

- For each episode:
 - Choose actions according to π_{θ} : $a \sim \pi_{\theta}(a|s)$
 - Gather samples $\{s_1, a_1, r_1, \dots, s_T, a_T, r_T\}$
 - For t = 1 to T
 - $\theta \leftarrow \theta + \alpha R_t \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$

Learning Dynamic Arm Motions for Postural Recovery

Scott Kuindersma, Rod Grupen, Andy Barto University of Massachusetts Amherst

> Humanoids 2011 Bled, Slovenia

Reinforcement learning

- Very active area of current research (including here! ©)
 - Robotics
 - Operations research
 - Computer games
 - Theoretical neuroscience

- Al
 - The primary function of the brain is control

Summary

- The problem of learning behaviours from experience
- Components of solutions
 - Policies, value functions
 - Exploration/exploitation
- Large, continuous spaces
 - Function approximation
 - Incorporate ideas from supervised learning, deep learning, etc to scale up