PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:

C07D 277/42, A61K 31/425, C07D 417/12, A61K 31/44, C07D 277/56, 417/06, 417/14, A61K 31/47, 31/50

(11) International Publication Number:

WO 99/21845

(43) International Publication Date:

6 May 1999 (06.05.99)

(21) International Application Number:

PCT/US98/22809

A2

(22) International Filing Date:

27 October 1998 (27.10.98)

(30) Priority Data:

60/063,634 60/063,666 27 October 1997 (27.10.97) 28 October 1997 (28.10.97)

US US

(63) Related by Continuation (CON) or Continuation-in-Part (CIP) to Earlier Application

Filed on

Not furnished (CIP) Not furnished

(71) Applicant (for all designated States except US): AGOURON PHARMACEUTICALS, INC. [US/US]; 10350 North Torrey Pines Road, La Jolla, CA 92037 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): CHONG, Wesley, K., M. [US/US]; 134 Honeycomb Court, Encinitas, CA 92024 (US). CHU, Shao, Song [CN/US]; 1604 Jerrilynn Place, Encinitas, CA 92024 (US). DUVADIE, Rohit, R. [NP/US]; 10320 Maya Linda Road #A-316, San Diego, CA 92024 (US). Ll, Lin [CN/US]; 3950 Mahaila Avenue #J-36, San

Diego, CA 92122 (US). XIAO, Wei [CN/US]; 4043 Carmel Springs Way, San Diego, CA 92130 (US). YANG, Yi [CN/US]; 8976 Gainsborough Avenue, San Diego, CA 92129 (US).

(74) Agents: EVANS, Linda, S. et al.; Agouron Pharmaceuticals, Inc., 10350 North Torrey Pines Road, La Jolla, CA 92037 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: 4-AMINOTHIAZOLE DERIVATIVES, THEIR PREPARATION AND THEIR USE AS INHIBITORS OF CYCLIN-DEPENDENT KINASES

(57) Abstract

This invention is directed to aminothiazole compounds of formula (I) wherein R1 is a substituted or unsubstituted group selected from: C₁₋₆-alkyl; C₁₋₆-alkenyl; C₁₋₆-alkynyl; C₁₋₆-alkoxyl; C₁₋₆-alcohol; carbocyclic or heterocyclic, monocyclic or fused or non-fused polycyclic, cycloalkyl; carbocyclic or heterocyclic, monocyclic or fused or non-fused polycyclic, aryl; carbonyl; ether; $(C_{1-6}-alkyl)$ -carbonyl; $(C_{1-6}-alkyl)$ -aryl; $(C_{1-6}-alkyl)$ -cycloalkyl; $(C_{1-6}-alkyl)$ - $(C_{1-6}-alkoxyl)$; aryl- $(C_{1-6}-alkoxyl)$; thioether; thiol; and sulfonyl; wherein when R1 is substituted, each substituent independently is a halogen; haloalkyl; C1-6-alkyl; C1-6-alkynyl; C1-6-alkynyl; hydroxyl; C1-6-alkoxyl; amino; nitro; thiol; thioether, imine; cyano; amido; phosphonato; phosphine; carboxyl; thiocarbonyl; sulfonyl; sulfonamide; ketone; aldehyde; ester; oxygen; carbocyclic or heterocyclic, monocyclic or fused or non-fused polycyclic, cycloalkyl; or carbocyclic or heterocyclic, monocyclic or fused or non-fused polycyclic, aryl; and R?2 ¿is a carbocyclic or heterocyclic, monocyclic or fused or non-fused polycyclic, ring structure having a substituent at the position adjacent to the point of attachment, which ring structure is optionally further substituted, where each substituent of R2 independently is a halogen; haloalkyl; C1-6-alkyl; C1-6-alkenyl; C1-6-alkynyl; hydroxyl; C1-6-alkoxyl; amino; nitro; thiol; thioether; imine; cyano; amido; phosphonato; phosphine; carboxyl; thiocarbonyl; sulfonyl; sulfonamide; ketone; aldehyde; ester; oxygen; carbocyclic or heterocyclic, monocyclic or fused or non-fused polycyclic, cycloalkyl; or carbocyclic or heterocyclic, monocyclic or fused or non-fused polycyclic, aryl; or a pharmaceutically acceptable salt of a compound of formula (I), or a prodrug or pharmaceutically active metabolite of a compound of formula (I) or pharmaceutically acceptable salt thereof, for inhibiting cyclin-dependent kinases (CDKs), such as CDK1, CDK2, CDK4, and CDK6. The invention is also directed to the therapeutic or prophylactic use of pharmaceutical compositions containing such compounds and to methods of treating malignancies and other disorders by administering effective amounts of such compounds.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain .	· LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
ΑT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑÜ	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	IVIE	Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
	Benin	iE	Ireland	MN		UA	Ukraine
BJ BR		1E 1L	Israel	MR	Mongolia Mauritania	UG	
	Brazil						Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of Americ
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
СН	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		:
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	rc	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

4-AMINOTHIAZOLE DERIVATIVES, THEIR PREPARATION AND THEIR USE AS INHIBITORS OF CYCLIN-DEPENDENT KINASES

Cross-Reference To Related Applications

This regular application claims priority to U.S. Provisional Application No. 60/063,634, filed October 27, 1997, and U.S. Provisional Application No. 60/063,666, filed October 28, 1997.

Field Of The Invention

This invention is directed to pharmaceutical compositions containing aminothiazole compounds for inhibiting cyclin-dependent kinases (CDKs), such as CDK1, CDK2, CDK4, and CDK6. The invention is also directed to the therapeutic or prophylactic use of pharmaceutical compositions containing such compounds and to methods of treating malignancies and other disorders by administering effective amounts of such compounds.

Background Of The Invention

Uncontrolled cell proliferation is the insignia of cancer. Cell proliferation in response to various stimuli is manifested by a deregulation of the cell division cycle, the process by which cells multiply and divide. Tumor cells typically have damage to the genes that directly or indirectly regulate progression through the cell division cycle.

CDKs constitute a class of enzymes that play critical roles in regulating the transitions between different phases of the cell cycle, such as the progression from a quiescent stage in G₁ (the gap between mitosis and the onset of DNA replication for a new round of cell division) to S (the period of active DNA synthesis), or the progression from G₂ to M phase, in which active mitosis and cell-division occur. See, e.g., the articles compiled in *Science*, vol. 274 (1996), pp. 1643-1677; and *Ann. Rev. Cell Dev. Biol.*, vol. 13 (1997), pp. 261-291. CDK complexes are formed through association of a regulatory cyclin subunit (e.g., cyclin A, B1, B2, D1, D2, D3, and E) and a catalytic kinase subunit (e.g., cdc2 (CDK1), CDK2, CDK4, CDK5, and CDK6). As the name implies, the CDKs display an absolute dependence on the cyclin subunit in order to phosphorylate their target substrates, and different kinase/cyclin pairs function to regulate progression through specific portions of the cell cycle.

The D cyclins are sensitive to extracellular growth signals and become activated in response to mitogens during the G₁ phase of the cell cycle. CDK4/cyclin D plays an important role in cell cycle progression by phosphorylating, and thereby inactivating, the retinoblastoma protein (Rb). Hypophosphorylated Rb binds to a family of transcriptional regulators, but upon hyperphosphorylation of Rb by CDK4/cyclin D, these transcription factors are released to

1

30

25

5

10

15

activate genes whose products are responsible for S phase progression. Rb phosphorylation and inactivation by CDK4/cyclin D permit passage of the cell beyond the restriction point of the G₁ phase, whereupon sensitivity to extracellular growth or inhibitory signals is lost and the cell is committed to cell division. During late G₁, Rb is also phosphorylated and inactivated by CDK2/cyclin E, and recent evidence indicates that CDK2/cyclin E can also regulate progression into S phase through a parallel pathway that is independent of Rb phosphorylation (see Lukas et al., "Cyclin E-induced S Phase Without Activation of the pRb/E2F Pathway," *Genes and Dev.*, vol. 11 (1997), pp. 1479-1492).

The progression from G₁ to S phase, accomplished by the action of CDK4/cyclin D and CDK2/cyclin E. is subject to a variety of growth regulatory mechanisms, both negative and positive. Growth stimuli, such as mitogens, cause increased synthesis of cyclin D1 and thus increased functional CDK4. By contrast, cell growth can be "reined in," in response to DNA damage or negative growth stimuli, by the induction of endogenous inhibitory proteins. These naturally occurring protein inhibitors include p21^{WAFI/CIPI}, p27^{KIPI}, and the p16^{INK4} family, the latter of which inhibit CDK4 exclusively (see Harper, "Cyclin Dependent Kinase Inhibitors," Cancer Surv., vol. 29 (1997), pp. 91-107). Aberrations in this control system, particularly those that affect the function of CDK4 and CDK2, are implicated in the advancement of cells to the highly proliferative state characteristic of malignancies, such as familial melanomas, esophageal carcinomas, and pancreatic cancers (see, e.g., Hall and Peters, "Genetic Alterations of Cyclins, Cyclin-Dependent Kinases, and CDK Inhibitors in Human Cancer," Adv. Cancer Res., vol. 68 (1996), pp.67-108; and Kamb et al., "A Cell Cycle Regulator Potentially Involved in Genesis of Many Tumor Types," Science, vol. 264 (1994), pp. 436-440). Over-expression of cyclin D1 is linked to esophageal, breast, and squamous cell carcinomas (see, e.g., DelSal et al., "Cell Cycle and Cancer: Critical Events at the G₁ Restriction Point," Critical Rev. Oncogenesis, vol. 71 (1996), pp. 127-142). Genes encoding the CDK4-specific inhibitors of the p16 family frequently have deletions and mutations in familial melanoma, gliomas, leukemias, sarcomas, and pancreatic, non-small cell lung, and head and neck carcinomas (see Nobori et al., "Deletions of the Cyclin-Dependent Kinase-4 Inhibitor Gene in Multiple Human Cancers," Nature, vol. 368 (1994), pp. 753-756). Amplification and/or overexpression of cyclin E has also been observed in a wide variety of solid tumors, and elevated cyclin E levels have been correlated with poor prognosis. In addition, the cellular levels of the CDK inhibitor p27, which acts as both a substrate and inhibitor of CDK2/cyclin E, are abnormally low in breast, colon, and prostate cancers, and the expression levels of p27 are inversely correlated with the stage of disease (see

2

5

10

15

20

Loda et al., "Increased Proteasome-dependent Degradation of the Cyclin-Dependent Kinase Inhibitor p27 in Aggressive Colorectal Carcinomas," *Nature Medicine*, vol. 3 (1997), pp. 231-234). The p21 proteins also appear to transmit the p53 tumor-suppression signal to the CDKs; thus, the mutation of p53 in approximately 50% of all human cancers may indirectly result in deregulation of CDK activity.

5

10

The emerging data provide strong validation for the use of compounds inhibiting CDKs, and CDK4 and CDK2 in particular, as anti-proliferative therapeutic agents. Certain biomolecules have been proposed for this purpose. For example, U.S. Patent No. 5,621,082 to Xiong et al. discloses nucleic acid encoding an inhibitor of CDK6, and European Patent Publication No. 0 666 270 A2 describes peptides and peptide mimetics that act as inhibitors of CDK1 and CDK2. Several small molecules have been identified as CDK inhibitors (for a recent review, see Webster, "The Therapeutic Potential of Targeting the Cell Cycle," Exp. Opin. Invest. Drugs, vol. 7 (1998), pp. 865-887). The flavone flavopiridol displays modest selectivity for inhibition of CDKs over other kinases, but inhibits CDK4, CDK2, and CDK1 equipotently, with IC_{50} s in the 0.1-0.3 μM range. Flavopiridol is currently in Phase II clinical trials as an oncology chemotherapeutic (Sedlacek et al., "Flavopiridol (L86-8275; NSC 649890), A New Kinase Inhibitor for Tumor Therapy," Int. J. Oncol., vol. 9 (1996), pp. 1143-1168). Analogs of flavopiridol are the subject of other publications, for example, U.S. Patent No. 5,733,920 to Mansuri et al. (International Publication No. WO 97/16447) and International Publication Nos. WO 97/42949, and WO 98/17662. Results with purine-based derivatives are described in Schow et al., Bioorg. Med. Chem. Lett., vol. 7 (1997), pp. 2697-2702; Grant et al., Proc. Amer. Assoc. Cancer Res,. vol. 39 (1998), Abst. 1207; Legravend et al., Bioorg. Med. Chem. Lett., vol. 8 (1998), pp. 793-798; Gray et al., Science, vol. 281 (1998), pp. 533-538; and Furet et al., 216th ACS Natl. Mtg. (Aug 23-27, 1998, Boston), Abst MEDI-218. In addition, the following publications disclose certain pyrimidines that inhibit cyclin-dependent kinases and growth-factor mediated kinases: International Publication No. WO 98/33798; Ruetz et al., Proc. Amer. Assoc. Cancer Res,. vol. 39 (1998), Abst. 3796; and Meyer et al., Proc. Amer. Assoc. Cancer Res., vol. 39 (1998), Abst. 3794.

25

20

There is still a need, however, for small-molecule compounds that may be readily synthesized and are potent inhibitors of one or more CDKs or CDK/cyclin complexes. Because CDK4 may serve as a general activator of cell division in most cells, and because complexes of CDK4/cyclin D and CDK2/cyclin E govern the early G1 phase of the cell cycle, there is a need

for effective and specific inhibitors of CDK4 and/or CDK2 for treating one or more types of tumors.

Summary Of The Invention

Accordingly, one object of the invention is to attain compounds and drug compositions that inhibit the activity of one or more CDKs, such as CDK2, CDK4, and/or CDK6, or cyclin complexes thereof. A further object is to provide an effective method of treating cancer indications through CDK inhibition, preferably through inhibition of CDK4 or CDK4/D-type cyclin complexes and/or CDK2 or CDK2/E-type cyclin complexes. Another object is to achieve pharmaceutical compositions containing compounds effective to block the transition of cancer cells into their proliferative phase. These and other objects and advantages of the invention, which will become apparent in light of the detailed description below, are achieved through cell-cycle control agents of the invention described below.

In one general aspect, the invention relates to pharmaceutical compositions comprising:

- (a) a cell-cycle control agent selected from:
 - (i) compounds of the Formula I:

$$R^1$$
 N S R^2 R^2

wherein:

R¹ is a substituted or unsubstituted group selected from: C₁₋₆-alkyl (e.g., methyl, ethyl, propyl, isopropyl, butyl, isobutyl, *sec*-butyl, or *tert*-butyl); C₁₋₆-alkenyl; C₁₋₆-alkynyl; C₁₋₆-alkoxyl; C₁₋₆-alcohol; carbocyclic or heterocyclic cycloalkyl, which may be monocyclic or fused or non-fused polycyclic (e.g., cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl) or heterocycloalkyl, which may be monocyclic or fused or non-fused polycyclic (e.g., pyrrolidinyl, piperidinyl, morpholinyl); carbocyclic or heterocyclic, monocyclic or fused or non-fused polycyclic aryl (e.g., phenyl, naphthyl, pyrrolyl, indolyl, furanyl, thiophenyl, imidazolyl, oxazolyl, isoxazolyl, thiazolyl, triazolyl, tetrazolyl, pyrazolyl, pyridinyl, quinolinyl, isoquinolinyl, acridinyl, pyrazinyl, pyridazinyl, pyrimidinyl, benzimidazolyl, benzothiophenyl, or benzofuranyl); carbonyl (e.g., carboxyl, ester, aldehyde, or

25

1

5

10

15

20

4

1

ketone); ether; (C_{1-6} -alkyl)-carbonyl; (C_{1-6} -alkyl)-aryl; (C_{1-6} -alkyl)-cycloalkyl; (C_{1-6} -alkyl)-(C_{1-6} -alkoxyl); aryl-(C_{1-6} -alkoxyl); thioether (e.g., aryl-S-aryl, cycloalkyl-S-aryl, cycloalkyl-S-cycloalkyl, or dialkyl sulfide); thiol; and sulfonyl; and

where each optional substituent for R¹ and R² is independently a

5

R² is a substituted or unsubstituted: carbocyclic or heterocyclic, monocyclic or fused or non-fused polycyclic, ring structure;

10

carbocyclic cycloalkyl, which may be monocyclic or fused or non-fused polycyclic (e.g., cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl), or a heterocycloalkyl, which may be monocyclic or fused or non-fused polycyclic

(e.g., pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, or thiazinyl);

halogen (e.g., chloro, iodo, bromo, or fluoro); oxygen (=O); haloalkyl (e.g.,

trifluoromethyl); C_{1-6} -alkyl; C_{1-6} -alkenyl; C_{1-6} -alkynyl; hydroxyl; C_{1-6} -alkoxyl;

15

carbocyclic or heterocyclic, monocyclic or fused or non-fused polycyclic aryl (e.g., phenyl, naphthyl, pyrrolyl, indolyl, furanyl, thiophenyl, imidazolyl,

quinolinyl, isoquinolinyl, acridinyl, pyrazinyl, pyridazinyl, pyrimidinyl, benzimidazolyl, benzothiophenyl, or benzofuranyl); amino (primary,

oxazolyl, isoxazolyl, thiazolyl, triazolyl, tetrazolyl, pyrazolyl, pyridinyl,

secondary, or tertiary); nitro; thiol; thioether; imine; cyano; amido; phosphonato; phosphine; carboxyl; thiocarbonyl; sulfonyl; sulfonamide;

ketone; aldehyde; or ester;

(ii) pharma

(ii) pharmaceutically acceptable salts of compounds of the Formula I; and(iii) prodrugs and pharmaceutically active metabolites of compounds of

the Formula I or pharmaceutically acceptable salts thereof; and

(b) a pharmaceutically acceptable carrier.

In a further general aspect, the invention relates to pharmaceutical compositions comprising:

(a) a cell-cycle control agent selected from:

25

20

(i) compounds of the Formula I:

30

(I)

1

wherein:

R1 is selected from:

5

10

R² is a substituted or unsubstituted: carbocyclic or heterocyclic, monocyclic or fused or non-fused polycyclic, ring structure; where each optional substituent for R² is independently a halogen (e.g., chloro, iodo, bromo, or fluoro); oxygen (=O); haloalkyl (e.g., trifluoromethyl); C₁₋₆-alkyl; C₁₋₆-alkenyl; C₁₋₆-alkynyl; hydroxyl; C₁₋₆-alkoxyl; carbocyclic cycloalkyl, which may be monocyclic or fused or non-fused polycyclic (e.g., cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl), or a heterocycloalkyl, which may be monocyclic or fused or non-fused polycyclic (e.g., pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, or thiazinyl); carbocyclic or heterocyclic, monocyclic or fused or non-fused polycyclic aryl (e.g., phenyl, naphthyl, pyrrolyl, indolyl, furanyl, thiophenyl, imidazolyl, oxazolyl, isoxazolyl, thiazolyl, triazolyl, tetrazolyl, pyrazolyl, pyridinyl, quinolinyl, isoquinolinyl, acridinyl, pyrazinyl, pyridazinyl, pyrimidinyl, benzimidazolyl, benzothiophenyl, or benzofuranyl); amino (primary, secondary, or tertiary); nitro; thiol; thioether; imine; cyano; amido; phosphonato; phosphine; carboxyl; thiocarbonyl; sulfonyl; sulfonamide; ketone; aldehyde; or ester;

20

15

(ii) pharmaceutically acceptable salts of compounds of the Formula I; and

25

- (iii) prodrugs and pharmaceutically active metabolites of compounds of the Formula I or pharmaceutically acceptable salts thereof; and
- (b) a pharmaceutically acceptable carrier.

Such compositions are useful as inhibitors of mammalian CDK/cyclin complexes, insect CDK, or fungal CDK complexes. Such compositions are also useful for controlling

30

proliferation, differentiation, and/or apoptosis. Thus, in one general aspect the invention is directed to pharmaceutical compositions containing pharmaceutically effective amounts of cell-cycle control agents.

In a preferred embodiment, the invention is directed to potent cell-cycle control agents where R^2 in Formula I is an ortho-substituted aryl ring structure (e.g., o-substituted phenyl). Particularly preferred among such agents are those in which R^2 is an o-disubstituted phenyl.

The invention further relates to methods of using cell-cycle control agents for treating diseases or disorders mediated by CDK inhibition, especially those mediated by CDK4 and/or CDK2 inhibition. More particularly, the invention is directed to methods of treating malignancies or cancer-type disorders by administering a pharmaceutical composition comprising a cell-cycle control agent. Additionally, the invention relates to the use of cell-cycle control agents to prevent or treat mycotic infections.

Other aspects, advantages, and preferred features of the invention will become apparent from the detailed description below.

Detailed Description And Preferred Embodiments Of The Invention

In one general embodiment, the invention relates to pharmaceutical compositions each comprising:

- (a) an amount of a cell-cycle control agent effective to inhibit a CDK, the cell-cycle control agent being:
 - (i) a compound of the Formula I:

wherein:

 R^1 is a substituted or unsubstituted group selected from: C_{1-6} -alkyl; C_{1-6} -alkenyl; C_{1-6} -alkynyl; C_{1-6} -alkoxyl; carbocylic or heterocyclic, monocyclic or fused or non-fused polycyclic, cycloalkyl; carbocyclic or heterocyclic, monocyclic or fused or non-fused polycyclic, aryl; carbonyl; ether; $(C_{1-6}$ -alkyl)-carbonyl; $(C_{1-6}$ -alkyl)-aryl; $(C_{1-6}$ -alkyl)-cycloalkyl; $(C_{1-6}$ -alkyl)- $(C_{1-6}$ -alkoxyl); aryl- $(C_{1-6}$ -alkoxyl); thioether; thiol; and sulfonyl; and

25

5

10

15

1

5

10

15

20

R² is a substituted or unsubstituted, carbocyclic or heterocyclic, monocyclic or fused or non-fused polycyclic, ring structure;

where each optional substituent for R^1 and R^2 is independently a halogen; haloalkyl; C_{1-6} -alkyl; C_{1-6} -alkenyl; C_{1-6} -alkynyl; hydroxyl; C_{1-6} alkoxyl; amino; nitro; thiol; thioether; imine; cyano; amido; phosphonato; phosphine; carboxyl; thiocarbonyl; sulfonyl; sulfonamide; ketone; aldehyde; or ester;

- (ii) a pharmaceutically acceptable salt of a compound of the Formula I; or
- (iii) a prodrug or pharmaceutically active metabolite of a compound of the Formula I or a pharmaceutically acceptable salt thereof; and
- (b) a pharmaceutically acceptable carrier.

In another general embodiment, each optional substituent for R¹ and R² may be independently selected from, in addition to the above-identified groups, the following groups: oxygen; carbocyclic or heterocyclic, monocyclic or fused or non-fused polycyclic, cycloalkyl; and carbocyclic or heterocyclic, monocyclic or fused or non-fused polycyclic, aryl. Such substituents may optionally be further substituted with a substituent selected from such groups.

Examples for the moiety R^1 include substituted or unsubstituted aryl and alkyl, such as phenyl, pyridyl, benzimidazole, benzyl, and C_{1-6} -alkyl. In a preferred embodiment, these groups have one or more substituents selected from: halogen; oxygen; haloalkyl; C_{1-6} -alkyl; cycloalkyl; heterocycloalkyl; aryl; hydroxyl; C_{1-6} alkoxyl; amino; nitro thioether; cyano; amido; carboxyl; sulfonamido; ketone; aldehyde; and ester.

Other preferred moieties for R¹ are phenyl groups substituted by an alkylamine or pyridine group having optional substituents selected from the group described in the above paragraph for R¹. The alkylamine substitutent may be a 5- to 7-membered heterocycloalkyl optionally containing, in addition to the nitrogen ring atom, one or more heteroatoms selected from N, O and S.

Examples of such preferred R¹ groups include phenyl substituted in the para position with a heterocycloalkyl, for example piperidinyl, piperazinyl, thiazinyl, or morpholinyl, or a pyridyl group. The following are examples of preferred R¹ groups:

Other particularly preferred R^1 groups include phenyl groups substituted with carbonyl or sulfonamide moieties, wherein the carbonyl carbon and sulfonamide nitrogen are optionally further substituted. The following are examples of preferred R^1 groups:

where R³ is selected from C₁-C₆ alkyl, C₁-C₆ alkoxy, aryl, aryloxy, and amine.

Other preferred examples for the moiety R¹ include substituted or unsubstituted phenyl, alkylbenzyl, alkyl, benzyl carboxyl ester, benzyloxyphenyl, dimethylaminophenyl, pyridinyl, phenethyl, alkylcarboxyl, alkylpiperidinyl, phenylamino, cyclohexyl, benzylcarboxylalkyl, benzylnitro, phenyl-alkoxyl, ethyl benzoate, benzyl carboxyl, alkylbenzoimidazole, benzyldimethylamino, pyridinyl-sulfanyl, cyanobenzyl, and phenyl sulfamyl.

9

In preferred embodiments, R^2 in Formula I is a bulky group such as a substituted or unsubstituted carbocyclic or heterocyclic monocycle, or a substituted or unsubstituted fused or non-fused carbocyclic or heterocyclic polycycle. More preferably, R^2 is a substituted (carbo or poly)-(monocycle or polycycle); even more preferably, R^2 is such a cyclic ring structure bearing a substituent at the position adjacent or vicinal to the point of attachment (to the core structure).

For example, preferred species for R² include an ortho-substituted aromatic ring structure such as *o*-substituted phenyl or thienyl, or a 1,2-substituted cycloalkyl or cycloalkenyl ring structure such as 2-substituted cyclopent-1-enyl. Particularly preferred examples for the moiety R² include substituted or unsubstituted: *o*-halophenyl (e.g., *o*-fluorophenyl, *o*-chlorophenyl, *o*-iodophenyl, or *o*-bromophenyl), *o*-nitrophenyl, *o*-aminophenyl, *o*-C₁₋₆-alkylphenyl, *o*-C₁₋₆-alkoxyphenyl (e.g., *o*-methoxyphenyl or *o*-ethoxyphenyl), *o*-C₁₋₆-alkoxybenzothiophenyl, *o*-methylthiophenyl, benzonitrile, and carboxybenzyl. Particularly preferred examples for the moiety R² also include ortho-disubstituted aryls, for example, 2,6-dihalophenyl (e.g., 2,6-difluorophenyl) and 2-halo-6-trifluoromethylphenyl (e.g., 2-fluoro-6-trifluoromethylphenyl). Compounds of the Formula I where R² is a 1,2-substituted cyclic ring structure, optionally having one or more additional substituents, such as an ortho-substituted aryl having another substituent at the para position, have been surprisingly found to be potent CDK inhibitors.

Particularly preferred examples of compounds of Formula I include:

20
$$H_{3}C_{N} \longrightarrow H_{3}C_{N} \longrightarrow$$

10

Another preferred compound of Formula I is:

30

1

5

10

10

15

20

25

Other particularly preferred examples of compounds of Formula I include:

$$\begin{array}{c} H_2N_-S\\ \\ H_2N_-S\\ \\ H_2N_-S\\ \\ H_3C\\ \\ \end{array}$$

Pharmaceutical compositions according to the invention may, alternatively or in addition to a compound of the Formula I, comprise as an active ingredient a pharmaceutically acceptable salt of a compound of the Formula I, or a prodrug or pharmaceutically active metabolite of such a compound or salt. Such compounds, salts, prodrugs, and metabolites are sometimes referred to herein collectively as "cell-cycle control agents."

Compositions in accordance with the invention inhibit the kinase activity of CDK/cyclin complexes, such as those active in the G_0 or G_1 stage of the cell cycle, e.g., CDK2, CDK4, and/or CDK6 complexes. Preferred compositions of the invention contain cell-cycle control agents having an inhibition constant against CDK4 or a CDK4/D-type cyclin complex of about 1 μ M or less, more preferably of about 500 nM or less, even more preferably of about 200 nM or less, and most preferably of about 100 nM or less. Especially preferred compounds of the invention include those having a CDK4/cyclin D3 inhibition constant (K_i CDK4/D3) of about 100 nM or less. Other preferred compositions of the invention contain cell-cycle control agents having an inhibition constant against CDK2 or a CDK2/E-type cyclin complex of about 1 μ M or less, more preferably of about 500 nM or less, even more preferably of about 200 nM or less, and most preferably of about 100 nM or less.

Certain compounds of the Formula I may exist in various stereoisomeric or tautomeric forms. The present invention encompasses all such CDK-inhibiting compounds, including active compounds in the form of essentially pure enantiomers, racemic mixtures, and tautomers.

The term "pharmaceutically acceptable" means pharmacologically acceptable and substantially non-toxic to the subject being administered the cell-cycle control agent.

11

Pharmaceutically acceptable salts include conventional acid-addition salts or base-addition salts formed from suitable non-toxic organic or inorganic acids or inorganic bases. Exemplary acid-addition salts include those derived from inorganic acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, sulfamic acid, phosphoric acid, and nitric acid, and those derived from organic acids such as p-toluenesulfonic acid, methanesulfonic acid, ethanedisulfonic acid, isethionic acid, oxalic acid, p-bromophenylsulfonic acid, carbonic acid, succinic acid, citric acid, benzoic acid, 2-acetoxybenzoic acid, acetic acid, phenylacetic acid, propionic acid, glycolic acid, stearic acid, lactic acid, malic acid, tartaric acid, ascorbic acid, maleic acid, hydroxymaleic acid, glutamic acid, salicylic acid, sulfanilic acid, and fumaric acid. Exemplary base-addition salts include those derived from ammonium hydroxides (e.g., a quaternary ammonium hydroxide such as tetramethylammonium hydroxide), those derived from inorganic bases such as alkali or alkaline earth-metal (e.g., sodium, potassium, lithium, calcium, or magnesium) hydroxides, and those derived from organic bases such as carbonates, bicarbonates, amines, benzylamines, piperidines, and pyrrolidines.

The term "prodrug" refers to a metabolic precursor of a compound of the Formula I (or a salt thereof) that is pharmaceutically acceptable. A prodrug may be inactive when administered to a subject but is converted *in vivo* to an active compound of the Formula I. The term "active metabolite" refers to a metabolic product of a compound of the Formula I that is pharmaceutically acceptable and effective. Prodrugs and active metabolites of compounds of the Formula I may be determined using techniques known in the art.

Cell-cycle control agents in accordance with the invention are useful as pharmaceuticals for treating proliferative disorders in mammals, especially humans, marked by unwanted proliferation of endogenous tissue. Compounds of the Formula I may be used for treating subjects having a disorder associated with excessive cell proliferation, e.g., cancers, psoriasis, immunological disorders involving undesired proliferation of leukocytes, and restenosis and other smooth-muscle disorders. Furthermore, such compounds may be used to prevent dedifferentiation of post-mitotic tissue and/or cells.

Pharmaceutical compositions or preparations of the invention comprise a pharmaceutically acceptable carrier and an effective amount of at least one cell-cycle control agent. The term "effective amount" means an amount that significantly inhibits proliferation, and/or prevents de-differentiation of a eukaryotic cell, e.g., a mammalian, insect, plant, or fungal cell, and is effective for the indicated utility, e.g., specific therapeutic treatment.

30

5

10

15

20

The specific dosage amount of a cell-cycle control agent being administered to obtain therapeutic or inhibitory effects, of course, may be determined in a manner known in the art according to the particular circumstances surrounding the case, including, e.g., the specific agent being administered, the route of administration, the condition being treated, and the subject or host being treated. An exemplary total daily dose of a cell-cycle control agent, which may be administered in single or multiple doses, contains a dosage level of from about 0.01 mg/kg body weight to about 50 mg/kg body weight.

The cell-cycle control agents of the invention may be administered by any of a variety of suitable routes, such as orally, rectally, transdermally, subcutaneously, intravenously, intramuscularly, or intranasally. The cell-cycle control agents are preferably formulated into compositions suitable for the desired routes before being administered.

A pharmaceutical composition or preparation according to the invention comprises an effective amount of a cell-cycle control agent and a pharmaceutically acceptable carrier, such as a diluent or excipient for the agent. When the carrier serves as a diluent, it may be a solid, semisolid, or liquid material acting as a vehicle, excipient, or medium for the active ingredient(s). Compositions according to the invention may be made by admixing the active ingredient(s) with a carrier, or diluting it with a carrier, or enclosing or encapsulating it within a carrier, which may be in the form of a capsule, sachet, paper container, or the like. Exemplary ingredients, in addition to one or more cell-cycle control agents and any other active ingredients, include Avicel (microcrystalline cellulose), starch, lactose, calcium sulfate dihydrate, terra alba, sucrose, talc, gelatin, agar, pectin, acacia, magnesium stearate, stearic acid, peanut oil, olive oil, glyceryl monostearate, Tween 80 (polysorbate 80), 1,3-butanediol, cocoa butter, beeswax, polyethylene glycol, propylene glycol, sorbitan monostearate, polysorbate 60, 2-octyldodecanol, benzyl alcohol, glycine, sorbic acid, potassium sorbate, disodium hydrogen phosphate, sodium chloride, and water.

The compositions may be prepared in any of a variety of forms suitable for the desired mode of administration. For example, pharmaceutical compositions may be prepared in the form of tablets, pills, powders, lozenges, sachets, cachets, elixirs, suspensions, emulsions, solutions, syrups, aerosols (as solids or in liquid media), ointments (e.g., containing up to 10% by weight of a cell-cycle control agent), soft-gel and hard-gel capsules, suppositories, sterile injectable solutions, sterile packaged powders, and the like.

A pharmaceutical composition according to the invention comprises a cell-cycle control agent and, optionally, one or more other active ingredients, such as a known antiproliferative

13

30

25

20

1

agent that is compatible with the cell-cycle control agent and suitable for the indication being treated. In a preferred embodiment, a pharmaceutical composition of the invention includes an effective amount of a cell-cycle control agent of the Formula I as an active ingredient.

Compounds in accordance with the invention may be prepared in manners analogous to those specifically described below, with the lettered example prefixes (i.e., A, B, C, D, E, F, G, H, J, K, L, M and N) designating general synthesis schemes.

EXAMPLES

5

15

• Example A(1): (4-Amino-2-phenylamino-thiazol-5-yl)-(3-nitrophenyl)-methanone

Following the procedure of Gewald et al., J. Prakt. Chem., vol. 35 (1967), pp. 97-104,

sodium (188 mg, 8.20 mmol) was carefully dissolved in methanol (9 mL) at 0°C and allowed to warm to ambient temperature. The resultant solution was added portionwise to a mixture of

warm to amoient temperature. The resultant solution was added portionwise to a mixture of

cyanamide (345 mg, 8.20 mmol) and phenyl isothiocyanate (0.98 mL, 8.2 mmol), whereupon

heat evolved. 2-Bromo-3'-nitroacetophenone (2.00 g, 8.2 mmol) was added, and the resultant

mixture stirred overnight at ambient temperature. The mixture was diluted with water (150 mL).

A yellow-brown solid was filtered off, rinsed with water and a small amount of ether, dried under vacuum, and recrystallized from ethanol to give 2.17 g (52% yield) of the title compound

in the form of dark brown crystals, melting point (mp) 186-187°C.

¹H NMR (DMSO-d₆): δ 10.95 (1H, s), 8.44 (1H, t, J = 1.9 Hz), 8.54-8.22 (2H, bs), 8.34 (1H, ddd, J = 8.2, 1.9, 0.9 Hz), 8.12 (1H, ddd, J = 8.2, 1.9, 0.9 Hz), 7.78 (1H, t, J = 8.2 Hz), 7.62 (2H, ddd, J = 8.2, 1.9, 0.9 Hz), 7.78 (1H, t, J = 8.2 Hz), 7.62 (2H, ddd, J = 8.2, 1.9, 0.9 Hz), 7.78 (1H, t, J = 8.2 Hz), 7.62 (2H, ddd, J = 8.2, 1.9, 0.9 Hz), 7.78 (1H, t, J = 8.2 Hz), 7.62 (2H, ddd, J = 8.2, 1.9, 0.9 Hz), 7.78 (1H, t, J = 8.2 Hz), 7.62 (2H, ddd, J = 8.2, 1.9, 0.9 Hz), 7.78 (1H, t, J = 8.2 Hz), 7.62 (2H, ddd, J = 8.2, 1.9, 0.9 Hz), 7.78 (1H, t, J = 8.2 Hz), 7.62 (2H, ddd, J = 8.2, 1.9, 0.9 Hz), 7.78 (1H, t, J = 8.2 Hz), 7.62 (2H, ddd, J = 8.2, 1.9, 0.9 Hz), 7.78 (1H, t, J = 8.2 Hz), 7.62 (2H, ddd, J = 8.2, 1.9, 0.9 Hz), 7.78 (1H, t, J = 8.2 Hz), 7.62 (2H, ddd, J = 8.2, 1.9, 0.9 Hz), 7.78 (1H, t, J = 8.2 Hz), 7.62 (2H, ddd, J = 8.2, 1.9, 0.9 Hz), 7.78 (1H, t, J = 8.2 Hz), 7.62 (2H, ddd, J = 8.2, 1.9, 0.9 Hz), 7.78 (1H, t, J = 8.2 Hz), 7.62 (2H, ddd, J = 8.2, 1.9, 0.9 Hz), 7.78 (1H, t, J = 8.2 Hz), 7.62 (2H, ddd, J = 8.2, 1.9, 0.9 Hz), 7.78 (1H, t, J = 8.2 Hz), 7.62 (2H, ddd, J = 8.2, 1.9, 0.9 Hz), 7.78 (1H, t, J = 8.2 Hz), 7.62 (2H, ddd, J = 8.2, 1.9, 0.9 Hz), 7.78 (1H, t, J = 8.2 Hz), 7.62 (2H, ddd, J = 8.2, 1.9, 0.9 Hz), 7.84 (1H, t, J = 8.2, 1.9, 0.9 Hz)

20 d, J = 7.8 Hz), 7.36 (2H, t, J = 7.8 Hz), 7.09 (1H, t, J = 7.8 Hz).

ESIMS (MH⁺): 341.

Anal. Calcd. for C₁₆H₁₂N₄O₃S • EtOH: C, 55.94; H, 4.70; N, 14.50; S, 8.30. Found: C, 55.96; H, 4.73; N, 14.40; S, 8.29.

• Example A(2): (4-amino-2-phenylamino-thiazol-5-yl)-(4-nitrophenyl)-methanone

25

The title compound was prepared in a manner analogous to that described for Example A(1). Phenyl isothiocyanate and 2-bromo-4'-nitro-acetophenone gave, after recrystallization from ethanol, 3.06 g (55% yield) of red-brown crystals, mp 162-164°C.

14

¹H NMR (DMSO-d₆): δ 10.91 (1H, s), 8.38 (2H, bs), 8.30 (2H, d, J = 8.7 Hz), 7.90 (2H, d, J = 8.7 Hz), 7.59 (2H, d, J = 7.5 Hz), 7.36 (2H, t, J = 7.5 Hz), 7.10 (1H, d, J = 7.5 Hz).
 FABMS (MH⁺): 341.
 Anal. Calcd. for C₁₆H₁₂N₄O₃S: C, 56.46; H, 3.55; N, 16.46; S, 9.42. Found: C, 56.54; H,

5 3.54; N, 16.52; S, 9.42.

• Example A(3): [4-Amino-2-(pyridin-3-ylamino)-thiazol-5-yl]-phenyl-methanone

The title compound was prepared in a manner similar to that described for Example A(1). Pyridin-3-yl isothiocyanate and phenacyl chloride provided, after recrystallization from ethanol, 4.1 g (75% yield) of yellow crystals, mp 227-229°C.

 1 H NMR (DMSO-d₆): δ 10.95 (1H, s), 8.82(1H, d, J = 2.5 Hz), 8.28 (1H, dd, J = 4.7, 1.2 Hz), 8.23 (2H, bs), 8.12 (1H, ddd, J = 8.4, 2.8, 1.6 Hz), 7.68 (1H, d, J = 6.9 Hz), 7.66 (1H, d, J = 7.8 Hz), 7.54-7.44 (3H, m), 7.39 (1H, dd, J = 8.4, 4.7 Hz).

HRFABMS: Calcd. for C₁₅H₁₃N₄OS (MH⁺): 297.0810. Found: 297.0815.

Anal. Calcd. for C₁₅H₁₂N₄OS • EtOH: C, 59.63; H, 5.30; N, 16.36; S, 9.36. Found: C, 59.62; H, 5.32; N, 16.43; S, 9.41.

• Example A(4): (4-Amino-2-phenylamino-thiazol-5-yl)-pyridin-2-yl-methanone

20

The title compound was prepared in a manner similar to that described for Example A(1). Phenyl isothiocyanate and 2-(2-bromoacetyl)pyridine (see Menassé et al., *Helv. Chim. Acta*, vol. 38 (1955), pp. 1289-1291; Imuta et al., *J. Org. Chem.*, vol. 45 (1980), pp. 3352-3355) gave, after recrystallization from 95% ethanol, 510 mg (71% yield) of brown needles, mp 181.5-183.0°C.

 $^{1}\text{H NMR (DMSO-d_6): }\delta\ 10.75\ (1\text{H, s}),\ 8.92\ (1\text{H, bs}),\ 8.66\ (1\text{H, ddd},\ J=5.1\ 1.8,\ 1.2\ \text{Hz}),\ 8.22$ $(1\text{H, bs}),\ 8.13\ (1\text{H, dt},\ J=7.5,\ 1.2\ \text{Hz}),\ 8.01\ (1\text{H, dt},\ J=7.5,\ 1.8\ \text{Hz}),\ 7.69\ (2\text{H, dd},\ J=7.5,\ 1.2\ \text{Hz})$ $\text{Hz},\ 7.54\ (1\text{H, ddd},\ J=7.5,\ 5.1,\ 1.2\ \text{Hz}),\ 7.36\ (2\text{H, t},\ J=7.5\ \text{Hz}),\ 7.07\ (1\text{H, dt},\ J=7.5,\ 1.2\ \text{Hz}).$ $\text{HRFABMS: Calcd. for C15H13N4OS\ (MH^+): 297.0810. Found: 297.0818.}$

1 Anal. Calcd. for C₁₅H₁₂N₄OS • H₂O: C, 57.31; H, 4.49; N, 17.82; S, 10.20. Found: C, 57.31; H, 4.46; N, 17.80; S, 10.14.

• Example A(5): Ethyl 4-[4-Amino-5-(2-nitro-benzoyl)-thiazol-2-ylamino]-benzoate

The title compound was prepared in a manner analogous to that used in Example A(1). 4-Carboethoxy-phenyl isothiocyanate and 2-bromo-2'-nitro-acetophenone gave, after recrystallization from ethanol, 1.2 g (59% yield) of yellow crystalline powder, mp 262-265°C.

¹H NMR (DMSO-d₆): δ 11.08 (1H, s), 8.12 (2H, bs), 8.08 (1H, d, J = 8.7 Hz), 7.93 (2H, d, J = 8.7 Hz), 7.82 (1H, dt, J = 7.2, 1.2 Hz), 7.77-7.66 (3H, m), 7.73 (1H, d, J = 8.7 Hz), 4.28 (2H, q, J = 7.2 Hz), 1.30 (3H, t, J = 7.2 Hz).

ESIMS (MH⁺): 413.

5

Anal. Calcd. for C₁₉H₁₈N₄O₃S: C, 55.33; H, 3.91; N, 13.58; S, 7.77. Found: C, 55.22; H, 3.86; N, 13.48; S, 7.67.

• Example A(6): [4-Amino-2-(2-methyl-1H-benzoimidazol-6-ylamino)-thiazol-5-yl]-(2-nitro-phenyl)-methanone

The title compound was prepared in a similar manner to that described in Example

A(1). 6-Isothiocyanato-2-methyl-1H-benzoimidazole (see Galley et al., German Patent

Publication DE 2259220 (1973); C.A. No. 478781 (1973)) and 2-bromo-2'-nitro-acetophenone
gave, after recrystallization from ethanol, 1.2 g (62% yield) of brown crystals, mp 190.0
192.5°C.

¹H NMR (DMSO-d₆): δ 12.20 (1H, bs), 10.76 (1H, s), 8.10-8.76 (3H, m), 7.76 (1H, t, J = 7.0 Hz), 7.70-7.58 (3H, m), 7.40 (1H, d, J = 8.4 Hz), 7.13 (1H, dd, J = 8.4, 1.6 Hz), 2.44 (3H, s).

25 FABMS (MH⁺): 395.

Anal. Calcd. for C₁₈H₁₄N₆O₃S • H₂O: C, 52.42; H, 3.91; N, 20.38; S, 7.77. Found: C, 52,29; H, 3.89; N, 20.31; S, 7.86.

• Example A(7): [4-Amino-2-(4-iodo-phenylamino)-thiazol-5-yl]-(2-nitro-phenyl)-methanone

16

WO 99/21845

The title compound was prepared analogously to Example A(1). 4-lodophenyl isothiocyanate and 2-bromo-2'-nitro-acetophenone provided 7.9 g (88% yield) of orange-red powder, mp 182-184°C.

 1 H NMR (DMSO-d6): δ 10.89 (1H, s), 8.20 (1H, s), 8.50 (1H, d, J = 8.7 Hz), 7.80 (1H, dd, J = 8.7, 6.2 Hz), 7.72-7.62 (4H, m), 7.41 (2H, d, J = 8.7 Hz).

FABMS (MH⁺): 467.

Anal. Calcd. for $C_{16}H_{11}N_4O_3SI$: C, 41.21; H, 2.38; N, 12.02; S, 6.88; I, 27.22. Found: C,

10 41.34; H, 2.46; N, 12.07; S, 7.02; I, 27.35.

• Example A(8): [4-Amino-2-(4-nitro-phenylamino)-thiazol-5-yl]-phenyl-methanone

The title compound was prepared in a manner analogous to that described for Example A(1). 4-Nitrophenyl isothiocyanate and phenacyl chloride furnished 2.5 g (60% yield) of solid, mp 280.0-281.5°C.

 1 H NMR (DMSO-d₆): δ 11.38 (1H, s), 8.30-8.18 (2H, bs), 8.23 (2H, d, J = 9.3 Hz), 7.87 (2H, d, J = 9.3 Hz), 7.69 (2H, dd, J = 7.8, 1.6 Hz), 7.56-7.44 (3H, m).

FABMS (MH⁺): 341.

- 20 Anal. Calcd. for C₁₆H₁₂N₄O₃S: C, 56.46; H, 3.55; N, 16.46; S, 9.42. Found: C, 56.40; H, 3.49; N, 16.40; S, 9.41.
 - Example A(9): [4-Amino-2-(1H-benzoimidazol-6-yl-amino)-thiazol-5-yl]-(2-nitro-phenyl)-methanone

25

The title compound was prepared in a manner similar to that described for Example A(1). 6-Isothiocyanato-1H-benzoimidazole (see Boev et al., *Pharm. Chem. J. (Engl. Transl.)*, vol. 24 (1990), pp. 818-822) and 2-bromo-2'-nitro-acetophenone afforded, after recrystallization from ethanol/methanol, 1.5 g (83% yield) of red-brown amorphous powder, mp 249-255°C.

¹ 1 H NMR (DMSO-d₆): δ 12.50 (1H, bs), 10.84 (1H, s), 8.20 (1H, s), 8.60 (2H, bs), 8.03 (1H, d, J = 8.1 Hz), 7.88-7.78 (1H, m), 7.76 (1H, d, J = 7.5 Hz), 7.66 (1H, t, J = 7.5 Hz), 7.65 (1H, s), 7.55 (1H, d, J = 8.7 Hz), 7.21 (1H, d, J = 8.7 Hz).

FABMS (MH⁺): 381.

- 5 Anal. Calcd. for C₁₇H₁₂N₆O₃S: C, 53.68; H, 3.18; N, 22.09; S, 8.43. Found: C, 53.69; H, 3.14; N, 21.99; S, 8.39.
 - Example A(10): [4-Amino-2-(4-methoxy-phenylamino)-thiazol-5-yl]-(2-nitro-phenyl)-methanone

10

The title compound was prepared in a manner similar to that described for Example A(1). 4-Methoxy-phenyl isothiocyanate and 2-bromo-2'-nitro-acetophenone provided, after recrystallization from aqueous ethanol, 562 mg (43% yield) of brown-red crystals, mp 185-188°C.

¹H NMR (DMSO-d₆): δ 10.65 (1H, s), 8.25 (2H, bs), 8.20 (1H, d, J = 7.5 Hz), 7.77 (1H, t, J = 7.5 Hz), 7.66 (1H, t, J = 7.5 Hz), 7.62 (1H, d, J = 7.5 Hz), 7.41 (2H, d, J = 8.7 Hz), 6.92 (2H, d, J = 8.7 Hz), 3.72 (3H, s).

FABMS (M+Na⁺): 393.

Anal. Calcd. for C₁₇H₁₄N₄O₄S: C, 55.13; H, 3.81; N, 15.13; S, 8.66. Found: C, 55.08; H, 3.83; N, 15.11; S, 8.56.

• Example A(11): [4-Amino-2-(pyridin-3-ylamino)-thiazol-5-yl]-(2-nitro-phenyl)-methanone

The title compound was prepared as essentially described for Example A(1). Pyridin-3-yl isothiocyanate and 2-bromo-2'-nitro-acetophenone afforded, after column chromatography with 5% MeOH/CH₂Cl₂, 750 mg (42% yield) of yellow solid, mp 143.5-146.0°C.

¹H NMR (DMSO-d₆): δ 10.95 (1H, bs), 8.62 (1H, s), 8.19 (1H, dd, J = 4.7, 1.3 Hz), 8.08-7.86 (4H, m), 7.76 (1H, td, J = 8.3, 0.9 Hz), 7.66 (1H, dd, J = 8.4, 1.3 Hz), 7.62 (1H, d, J = 7.5 Hz), 7.31 (1H, dd, J = 8.4, 4.7 Hz).

25

FABMS (MH⁺): 342.

5

10

15

Anal. Calcd. for C₁₅H₁₁N₅O₃S • 0.5 H₂O • 0.4 EtOH: C, 51.46; H, 3.94; N, 18.99; S, 8.69. Found: C, 51.86; H, 3.88; N, 19.24; S, 8.88.

• Example A(12): 4-Amino-2-(1H-benzoimidazol-6-ylamino)-thiazole-5-carboxylic acid methyl ester

The title compound was prepared essentially as described for Example A(1). 6-Isothiocyanato-1H-benzoimidazole (see Boev et al., *Pharm. Chem. J. (Engl. Transl.).* vol. 24 (1990), pp. 818-822) and methyl bromoacetate gave in 63% yield a yellow solid, mp 266-267°C. 1 H NMR (DMSO-d₆): δ 12.37 (1H, bs), 10.52 (1H, s), 8.15 (1H, s), 7.92 (1H, s), 7.52 (1H, d, J = 8.7 Hz), 7.23 (1H, dd, J = 8.7, 1.9 Hz), 6.89 (2H, bs), 3.62 (3H, s).

FABMS (MH+): 250.

Anal. Calcd. for C₁₁H₁₁N₃O₂S • 0.15 EtOH: C, 49.87; H, 4.05; N, 23.64; S, 10.82. Found: C, 49.94; H, 3.94; N, 23.41; S, 10.79.

• Example A(13): [4-Amino-2-(p-tolylamino)-thiazol-5-yl]-(2,4-dimethoxyphenyl)-methanone

The title compound was prepared in a manner similar to that described for Example A(1). p-Tolyl isothiocyanate and 2-bromo-2',4'-dimethoxyacetophenone gave, after recrystallization from MeOH/CHCl₃, 78 mg (24% yield) of a yellow solid, mp 215-216°C.

1H NMR (DMSO-d₆): δ 10.51 (1H, s), 7.88 (2H, bs), 7.41 (2H, d, J = 8.4 Hz), 7.16 (2H, d, J = 8.4 Hz), 7.12 (2H, d, J = 8.4 Hz), 6.58 (1H, d, J = 2.2 Hz), 6.52 (1H, dd, J = 8.4, 2.2 Hz), 3.78 (3H, s), 3.74 (3H, s), 2.24 (3H, s).

²⁵ IR (KBr): 3279, 2959, 1606, 1515, 1432, 1306, 1284, 1209, 1157, 1124, 1032 cm⁻¹.

Anal. Calcd. for C₁9H₁9N₃O₃S: C, 61.77; H, 5.18; N, 11.37; S, 8.68. Found: C, 61.69; H, 5.16; N, 11.33; S, 8.79.

• Example A(14): [4-Amino-2-(p-tolylamino)-thiazol-5-yl]-(2,4-dimethylphenyl)-methanone

19

The title compound was prepared in a manner similar to that described for Example A(1). p-Tolyl isothiocyanate and 2-bromo-2',4'-dimethylacetophenone gave, after recrystallization from MeOH/CHCl₃, 65 mg (33% yield) of a yellow crystals, mp 220-221°C. ¹H NMR (DMSO-d₆): δ 10.58 (1H, s), 7.99 (2H, bs), 7.39 (2H, d, J = 8.1 Hz), 7.17 (2H, d, J = 7.8 Hz), 7.13 (2H, d, J = 8.1 Hz), 7.04 (1H, s), 7.00 (1H, d, J = 7.8 Hz), 2.73 (3H, s), 2.24 (3H, s), 2.22 (3H, s).

IR (KBr): 3266, 2921, 1612, 1598, 1546, 1518, 1431 cm⁻¹.

- 10 Anal. Calcd. for C₁₉H₁₉N₃OS: C, 67.63; H, 5.68; N, 12.45; S, 9.50. Found: C, 67.70; H, 5.73; N, 12.47; S, 9.62.
 - Example B: [4-Amino-2-(p-tolylamino)-thiazole-5-carbonyl]-phenyl Benzoate

15

An intermediate, S-(4-Benzoyloxyphenylacetyl)-N'-cyano-N"-p-tolyl-isothiourea, was first prepared following a procedure in Gewald et al., *J. Prakt. Chem*, vol. 35 (1967), pp. 97-104. Sodium (6.7 mg, 0.29 mmol) was carefully dissolved in methanol (0.5 mL) and allowed to cool to ambient temperature. To the resultant solution was added p-tolyl isothiocyanate (43 mg, 0.29 mmol) and cyanamide (12 mg, 0.29 mmol). After 1 hour, 4-bromoacetylphenyl benzoate (92 mg, 0.29 mmol) was added, and the resultant mixture was stirred overnight at ambient temperature. The mixture was then diluted with water (10 mL). The resulting tan solid was filtered off, rinsed with water and a small amount of ether, dried under vacuum, and recrystallized from ethanol/CHCl3 to give an initial crop of 63 mg (51% yield) of S-(4-benzoyloxyphenylacetyl)-N'-cyano-N"-p-tolyl-isothiourea (as white needles):

25

20

¹H NMR (DMSO-d6): δ 8.10-8.04 (2H, m), 7.72 (1H, ddd, J = 7.5, 1.8, 1.8 Hz), 7.67-7.54 (4H, m), 7.20 (2H, d, J = 8.7 Hz), 7.03 (4H, dd, J = 11.2, 8.7 Hz), 4.10 (1H, d, J = 12.1 Hz), 3.77 (1H, d, J = 12.1 Hz), 2.19 (3H, s).

20

From the intermediate the title compound was prepared as follows. Crude S-(4-benzoyloxyphenylacetyl)-N'-cyano-N"-p-tolyl-isothiourea (0.29 mmol) and triethylamine (101 µL, 0.73 mmol) in ethyl acetate (1 mL) was heated at reflux for 2 hours, then allowed to cool to ambient temperature, and concentrated *in vacuo* to a crude solid, which crystallized from MeOH/CHCl3 in successive crops to afford 67 mg (54% yield) of yellow needles, mp 245-247°C.

1_H NMR (DMSO-d6): δ 10.71 (1H, s), 8.34-8.11 (4H, m), 7.80-7.72 (3H, m), 7.66-7.57 (2H, m), 7.46 (2H, d, J = 8.1 Hz), 7.38 (2H, d, J = 8.4, Hz), 7.16 (2H, d, J = 8.4 Hz), 2.26 (3H, s). IR (KBr): 3451, 3332, 3026, 1732, 1597, 1522, 1444, 1264, 1206, 1164, 1062, 708 cm⁻¹. HRFABMS: Calcd. for C₂₄H₁₉N₃O₃SCs (M+Cs⁺): 562.0201. Found: 562.0184. Anal. Calcd. for C₂₄H₁₉N₃O₃S: C, 67.12; H, 4.46; N, 9.78; S, 7.47. Found: C, 66.90; H, 4.43; N, 9.70; S, 7.50.

• Example C(1): 4-[4-Amino-5-(4-methoxy-benzoyl)-thiazol-2-ylamino]-benzoic Acid Methyl Ester

15

20

10

1

To a mixture of 4-methoxycarbonylphenyl isothiocyanate (82 mg, 0.5 mmol) and cyanamide (23 mg, 0.55 mmol) in acetonitrile (5 mL), a solution of potassium *tert*-butoxide (61 mg, 0.55 mmol) in *tert*-butanol (5 mL) was added. After 30 minutes at ambient temperature, 2-bromo-4'-methoxy-acetophenone (115 mg, 0.5 mmol) was added. After 2 hours at ambient temperature, the reaction mixture was diluted with water (50 mL). The product was collected by filtration, rinsed with water and ethyl ether, and dried under vacuum to furnish a yellow solid, 172 mg (90% yield).

 1 H NMR (DMSO-d₆): δ 8.00 (2H, d, J = 8.2 Hz), 7.84 (2H, d, J = 8.2 Hz), 7.72 (2H, d, J = 8.2 Hz), 7.10 (2H, d, J = 8.2 Hz), 3.90 (6H, s).

25 FABMS (MH+): 384.

Anal. Calcd. for C₁₉H₁₇N₃O₄S • 0.5 H₂O: C, 57.36; H, 4.71; N, 10.56; S, 8.06. Found: C, 56.97; H, 4.74; N, 10.51; S, 8.07.

• Example C(2): [4-Amino-2-(4-benzyloxy-phenylamino)-thiazol-5-yl]-(4-methoxy-phenyl)-methanone

The title compound was prepared in a manner like that described for Example C(1). 4-5 Benzyloxy-phenyl isothiocyanate and 2-bromo-4'-methoxy-acetophenone gave a yellow-brown solid in 85% yield, mp 222-224°C.

¹H NMR (DMSO-d₆): δ 7.70 (2H, d, J = 8.2 Hz), 7.58-7.34 (7H, m), 7.06 (4H, dd, J = 7.5, 1.2 Hz), 5.18 (2H, s), 3.94 (3H, s).

FABMS (MH+): 432.

Anal. Calcd. for C₂₄H₂₁N₃O₃S: C, 66.80; H, 4.91; N, 9.74; S, 7.43. Found: C, 66.86; H, 4.91; N, 9.76; S, 7.53.

• Example C(3): [4-Amino-2-(4-dimethylamino-phenylamino)-thiazol-5-yl]-(4-methoxy-phenyl)-methanone

15

The title compound was prepared similarly as described for Example C(1) from 4-dimethylamino-phenyl isothiocyanate and 2-bromo-4'-methoxy-acetophenone to give the product as a yellow solid in 85% yield, mp 178-180°C.

¹H NMR (DMSO-d₆): δ 7.70 (2H, d, J = 8.2 Hz), 7.34 (2H, d, J = 8.2 Hz), 7.00 (2H, d, J = 8.6 Hz), 6.80 (2H, d, J = 8.6), 3.94 (3H, s), 2.94 (6H, s).

- 20 Anal. Calcd. for C₁₉H₂₀N₄O₂S: C, 61.94; H, 5.47; N, 15.21; S, 8.70. Found: C, 62.22; H, 5.48; N, 15.03; S, 8.58.
 - Example C(4): [4-Amino-2-(4-dimethylamino-phenylamino)-thiazol-5-yl]-(2-nitro-phenyl)-methanone

25

The title compound was prepared in a manner analogous to that described for Example C(1). 4-Dimethylamino-phenyl isothiocyanate and 2-bromo-2'-nitro-acetophenone furnished a yellow solid in 90% yield, mp > 195°C (decomp.).

¹ H NMR (DMSO-d₆): δ 8.06 (2H, bs), 7.76 (2H, m), 7.27 (2H, bs), 6.74 (2H, d, J = 9.0 Hz), 3.38 (6H, s).

FABMS (MH+): 384.

Anal. Calcd. for C₁₈H₁₇N₅O₃S • 0.5 CH₃CN: C, 56.49; H, 4.62; N, 19.07; S, 7.94. Found: C, 56.71; H, 4.64; N, 19.09; S, 7.88.

• Example C(5): (4-Amino-2-phenethylamino-thiazol-5-yl)-(2-nitro-phenyl)-methanone

The title compound was prepared essentially as described for Example C(1). Phenethyl isothiocyanate and 2-bromo-2'-nitro-acetophenone provided an amorphous yellow solid in 90% yield, mp 75.0-81.5°C (decomp.).

¹H NMR (DMSO-d₆): δ 8.67 (1H, bs), 8.00 (1H, d, J = 8.1 Hz), 7.80 (2H, bs), 7.75 (1H, t, J = 7.5 Hz), 7.65 (1H, t, J = 7.5 Hz), 7.58 (1H, d, J = 6.5 Hz), 7.04-7.32 (5H, m), 3.50 (2H, bs), 2.82 (2H, t, J = 7.2 Hz).

15 FABMS (MH⁺): 369.

Anal. Calcd. for $C_{18}H_{16}N_4O_3S \bullet 0.1 H_2O \bullet 0.1 C_6H_{14}$: C, 58.97; H, 4.68; N, 14.79; S, 8.46. Found: C, 58.97; H, 4.78; N, 14.54; S, 8.37.

• Example C(6): Methyl 2(S)-[4-Amino-5-(4-nitro-benzoyl)-thiazol-2-ylamino]-butyrate

20

5

The title compound was prepared in a manner similar to that described for Example C(1). Methyl 2(S)-isothiocyanato-butyrate and 2-bromo-4'-nitro-acetophenone afforded an amorphous red-brown solid in 89% yield.

¹H NMR (CDCl₃): δ 8.28 (2H, d, J = 8.2 Hz), 7.86 (2H, J = 8.2 Hz), 3.94 (3H, s), 4.32 (1H, bs), 2.12 (1H, m), 1.88 (1H, m), 0.96 (3H, t, J = 6.4 Hz).

25 FABMS (MH+): 365.

• Example C(7): [4-Amino-2-((4-dimethylaminophenyl)amino)-thiazol-5-yl]-(3-methylbenzo[b]thiophen-2-yl)-methanone

The title compound was prepared essentially as described for Example C(1). 4-Dimethylaminophenyl isothiocyanate and 2-(2-bromoacetyl)-3-methyl-benzo[b]thiophene gave, after recrystallization from ethanol, 210 mg (92% yield) of yellow powder, mp 123-126°C.

¹H NMR (DMSO-d6): δ 10.50 (1H, s), 8.20 (2H, bs), 7.96 (1H, ddd, J = 5.0, 5.0, 1.9 Hz), 7.82 (1H, ddd, J = 4.1, 4.1, 1.7 Hz), 7.44 (2H, ddd, J = 9.0, 4.5, 4.5 Hz), 7.26 (2H, d, J = 8.5 Hz), 6.69 (2H, d, J = 9.0 Hz), 2.84 (6H, s).

FABMS (MH+): 409.

10 Anal. Calcd. for C₂₁H₂₀N₄OS₂ • 0.5 H₂O • 0.5 McOH: C, 59.56; H, 5.35; N, 12.92; S, 14.79. Found: C, 59.87; H, 5.39; N, 12.86; S, 14.69.

• Example C(8): [4-Amino-2-(1H-benzoimidazol-6-ylamino)-thiazol-5-yl]-(3-methyl-benzo[b]thiophen-2-yl)-methanone

HN NH2 S

15

The title compound was prepared in a manner like that described for Example C(1). 6-Isothiocyanato-1H-benzoimidazole (see Boev et al., *Pharm. Chem. J. (Engl. Transl).*, vol. 24 (1990), pp. 818-822) and 2-(2-bromoacetyl)-3-methyl-benzo[b]thiophene provided 160 mg (53% yield) of yellow powder, mp 235-240°C.

¹H NMR (DMSO-d₆): δ 12.50 (1H, s), 10.9 (1H, s), 8.28 (2H, bs), 8.19 (1H, s), 8.20-7.93 (1H, m), 7.93-8.00 (2H, m), 7.56 (1H, d, J = 8.7 Hz), 7.50-7.40 (2H, m), 7.25 (1H, d, J = 8.7 Hz), 2.49 (3H, s).

FABMS (MH+): 406.

Anal. Calcd. for C₂₀H₁₅N₅OS₂ • 0.5 H₂0: C, 57.95; H, 3.89; N, 16.90; S, 15.47. Found: C, 57.98; H, 3.88; N, 17.06; S, 15.55.

25

• Example C(9): [4-Amino-2-(5-chloro-3-methyl-benzo[b]thiophen-2-ylamino)-thiazol-5-yl]- (4-dimethylamino-phenyl)-methanone

The title compound was prepared essentially as described for Example C(1). 4-Dimethylaminophenyl isothiocyanate and 2-(2-bromoacetyl)-5-chloro-3-methylbenzo[b]thiophene provided 54% yield of yellow powder, mp 265-268°C. 1 H NMR (DMSO-d₆): δ 10.60 (1H, s), 8.04 (2H, bs), 8.00 (1H, d, J = 8.7 Hz), 7.88 (1H, d, J = 8.7 Hz) 1.8 Hz), 7.46 (1H, dd, J = 8.7, 1.8 Hz), 7.34-7.20 (2H, m), 6.68 (2H, d, J = 9.0 Hz), 2.85 (6H, s), 5 2.43 (3H, s).

FABMS (MH+): 443/445.

1

10

Anal. Calcd. for C21H19N4OS2Cl: C, 56.94; H, 4.32; N, 12.65; S, 14.48; Cl, 8.00. Found: C, 56.82; H, 4.39; N, 12.42; S, 14.42; Cl, 8.17.

Example C(10): [4-Amino-2-(1H-benzoimidazol-6-yl-amino)-thiazol-5-yl]-(5-chloro-3methyl-benzo[b]thiophen-2-yl)-methanone

The title compound was prepared in a similar manner as that described for Example C(1). 6-Isothiocyanato-1H-benzoimidazole (see Boev, et al., Pharm. Chem. J. (Engl. Transl.), 15 vol. 24 (1990), pp. 818-822) and 2-(2-bromoacetyl)-5-chloro-3-methyl-benzo[b]thiophene provided 59% yield of yellow powder, mp 275-280°C. 1 H NMR (DMSO-d₆): δ 12.44 (1H, s), 10.86 (1H, s), 8.30 (2H, bs), 8.18 (1H, s), 8.02 (1H, d, J =

8.4 Hz), 7.90 (1H, d, J = 2.0 Hz), 7.86 (1H, bs), 7.55 (1H, d, J = 8.4 Hz), 7.45 (1H, dd, J = 8.7, de)

2.0 Hz), 7.25 (1H, d, J = 8.7 Hz), 2.46 (3H, s).

20 ESIMS (MH+): 440/442.

Anal. Calcd. for C₂₀H₁₄N₅OS₂Cl • 1.0 H₂O: C, 52.45; H, 3.52; N, 15.29; S, 14.00; Cl, 7.74. Found: C, 52.61; H, 3.60; N, 15.15; S, 14.12; Cl, 7.81.

Example C(11): [4-Amino-2-(benzo[1,3]dioxol-5-yl-amino)-thiazol-5-yl]-(2-nitro-phenyl)methanone

The title compound was prepared analogously to Example C(1). 3,4-Methylenedioxyphenyl isothiocyanate and 2-bromo-2'-nitro-acetophenone provided a yellow solid in 73% yield, mp 200.0-202.5°C.

25

30

1 HNMR (DMSO-d₆): δ₆ 10.69 (1H, s), 8.04 (2H, bs), 8.03 (1H, d, J = 7.8 Hz), 7.78 (1H, dd, J = 7.8, 6.5 Hz), 7.67 (1H, dd, J = 7.2, 6.5 Hz), 7.63 (1H, d, J = 7.2 Hz), 7.28 (1H, s), 6.89 (1H, d, J = 8.9 Hz), 6.85 (1H, d, J = 8.9 Hz), 6.00 (2H, s).

FABMS (MH+): 385.

- Anal. Calcd. for C₁₇H₁₂N₄O₅S: C, 53.12; H, 3.15; N, 14.58; S, 8.34. Found: C, 53.02; H, 3.20; N, 14.39; S, 8.27.
 - Example C(12): [4-Amino-2-(4-methoxy-phenylamino)-thiazol-5-yl]-(2-iodo-phenyl)-methanone

10

15

2-Bromo-2'-iodoacetophenone, which has the structural formula , was first prepared as follows. According to a procedure of King et al., *J. Org. Chem*, vol. 29 (1964), pp. 3459-3461, to a solution of 2'-iodoacetophenone (3.54 g, 14.4 mmol) in EtOAc was added copper(II) bromide (6.34 g, 28.8 mmol), and the resulting mixture was heated at reflux for 90 minutes. The mixture was allowed to cool, and the solid was filtered off and rinsed with EtOAc. The filtrate was concentrated, providing 4.60 g (98% yield) of 2-bromo-2'-iodoacetophenone as a yellow oil, which matched previously reported material (Lutz et al., *J. Org. Chem.*, vol. 12 (1947), p. 617).

The title compound was next prepared essentially as described for Example C(1). 4-20 Methoxyphenyl isothiocyanate and 2-bromo-2'-iodoacetophenone provided a yellow solid in 71% yield, mp 187-190°C.

¹H NMR (DMSO-d₆): δ 10.56 (1H, s), 8.03 (2H, bs), 7.85 (1H, d, J = 7.5 Hz), 7.32-7.48 (3H, m), 7.29 (1H, dd, J = 7.5, 1.6 Hz), 7.12 (1H, td, J = 7.5, 1.6 Hz), 6.90 (2H, d, J = 9.0 Hz), 3.51 (3H, s).

FABMS (MH⁺): 452.

Anal. Calcd. for C₁₇H₁₄N₃O₂SI • 0.05 C₆H₆ • 0.2 EtOH: C, 45.78; H, 3.36; N, 9.05; S, 6.90; I, 27.33. Found: C, 46.06; H, 3.54; N, 9.09; S, 7.04; I, 27.62.

• Example C(13): [4-Amino-2-(4-nitro-phenylamino)-thiazol-5-yl]-(2-nitro-phenyl)-methanone

10

15

The title compound was prepared in a manner similar to that described for Example C(1). 4-Nitrophenyl isothiocyanate and 2-bromo-2'-nitroacetophenone provided a yellow solid in 45% yield, mp 266.0-268.2°C.

¹H NMR (DMSO-d₆): δ 10.80 (1H, s), 8.23 (2H, d, J = 9.4 Hz), 8.15 (2H, bs), 8.08 (1H, d, J = 8.1 Hz), 7.84 (2H, d, J = 9.4 Hz), 7.83 (1H, t, J = 7.5 Hz), 7.75-7.66 (2H, m).

FABMS (MH+): 386.

Anal. Calcd. for C₁₆H₁₁N₅O₅S: C, 49.87; H, 2.88; N, 18.17; S, 8.32. Found: C, 49.83; H, 2.90; N, 18.10; S, 8.27.

• Example C(14): (4-Amino-2-cyclohexylamino-thiazol-5-yl)-(2-nitro-phenyl)-methanone

The title compound was prepared analogously to Example C(1). Cyclohexyl isothiocyanate and 2-bromo-2'-nitroacetophenone provided a yellow solid in 45% yield, mp 116-118°C.

 1 H NMR (DMSO-d₆): δ 8.62 (1H, bs), 8.00 (1H, d, J = 8.1 Hz), 7.97 (2H, bs), 7.75 (1H, dd, J = 8.1, 7.5 Hz), 7.64 (1H, dd, J = 8.1, 7.5 Hz), 7.59 (1H, d, J = 7.5 Hz), 3.62 (1H, bs), 1.94-1.78 (2H, m), 1.73-1.60 (2H, m), 1.58-1.46 (1H, m), 1.32-1.02 (5H, m).

FABMS (MH+): 347.

- 20 Anal. Calcd. for C₁₆H₁₈N₄O₃S 0.7 H₂O: C, 53.53; H, 5.45; N, 15.61; S, 8.93. Found: C, 53.79; H, 5.24; N, 15.44; S, 8.93.
 - Example C(15): [4-Amino-2-(4-isopropyl-phenylamino)-thiazol-5-yl]-(2-nitro-phenyl)-methanone

The title compound was prepared essentially as described for Example C(1). Isopropyl isothiocyanate and 2-bromo-2'-nitroacetophenone provided a yellow solid in 58% yield, mp 202.5-205.0°C.

27

1 HNMR (DMSO-d₆): δ 10.74 (1H, s), 8.05 (2H, bs), 8.03 (1H, d, J = 7.5 Hz), 7.78 (1H, dt, J = 7.5, 1.3 Hz), 7.71-7.60 (2H, m), 7.41 (2H, d, J = 8.3 Hz), 7.20 (2H, d, J = 8.3 Hz), 2.83 (1H, heptet, J = 6.9 Hz), 1.16 (6H, d, J = 6.9 Hz).

FABMS (MH+): 383.

- Anal. Calcd. for C₁₉H₁₈N₄O₃S: C, 59.67; H, 4.74; N, 14.65; S, 8.38. Found: C, 59.62; H, 4.77; N, 14.56; S, 8.43.
 - Example C(16): {4-Amino-2-[2-(4-chloro-phenyl)-ethylamino]-thiazol-5-yl}-(2-nitro-phenyl)-methanone

10

15

20

The title compound was prepared in a manner similar to that described for Example C(1). 4-Chlorophenethyl isothiocyanate and 2-bromo-2'-nitroacetophenone provided a yellow solid in 61% yield, mp 117-120°C.

¹H NMR (DMSO-d₆): δ 8.74 (1H, bs), 8.00 (1H, d, J = 8.1 Hz), 7.95 (2H, bs), 7.75 (1H, td, J = 7.5, 1.2 Hz), 7.64 (2H, td, J = 8.1, 1.6 Hz), 7.57 (1H, dd, J = 7.5, 1.2 Hz), 7.33 (2H, d, J = 8.4 Hz), 7.23 (2H, d, J = 8.4 Hz), 3.60-3.35 (2H, m), 2.81 (2H, t, J = 6.8 Hz).

FABMS (MH+): 403.

Anal. Calcd. for C₁₈H₁₅N₄O₃SCl • 0.5 EtOH: C, 53.58; H, 4.26; N, 13.16; S, 7.53; Cl, 8.32. Found: C, 53.63; H, 4.33; N, 13.22; S, 7.47; Cl, 8.45.

• Example C(17): [4-Amino-2-(4-diethylamino-phenylamino)-thiazol-5-yl]-(2-nitro-phenyl)-methanone

The title compound was prepared in a manner like that described for Example C(1). 4-Diethylaminophenyl isothiocyanate and 2-bromo-2'-nitroacetophenone provided a yellow solid in 63% yield, mp 202.5-205.0°C.

¹H NMR (DMSO-d₆): δ 10.45 (1H, s), 8.01 (1H, d, J = 8.1 Hz), 7.97 (2H, bs), 7.75 (1H, dd, J = 8.1, 7.8 Hz), 7.64 (1H, dd, J = 8.1, 7.8 Hz), 7.59 (1H, d, J = 7.8 Hz), 7.18 (2H, d, J = 9.0 Hz); 6.61 (2H, d, J = 9.0 Hz), 3.28 (4H, q, J = 7.2 Hz), 1.05 (6H, t, J = 7.2 Hz).

FABMS (MH+): 412.

Anal. Calcd. for C₂₀H₂₁N₅O₃S: C, 58.38; H, 5.14; N, 17.02; S, 7.79. Found: C, 58.28; H, 5.20; N, 16.77; S, 7.94.

• Example C(18): [4-Amino-2-(4-diethylamino-phenylamino)-thiazol-5-yl]-(4-nitro-phenyl)-methanone

The title compound was prepared in a manner analogous to that described for Example C(1). 4-Diethylaminophenyl isothiocyanate and 2-bromo-4'-nitroacetophenone provided a vellow solid in 63% yield, mp 220-221°C.

¹H NMR (DMSO-d₆): δ 10.51 (1H, s), 8.42 (2H, bs), 8.26 (2H, d, J = 12.0 Hz), 7.84 (2H, d, J = 12.0 Hz), 7.22 (2H, d, J = 9.0 Hz), 6.63 (2H, d, J = 9.0 Hz), 3.26 (4H, q, J = 6.8 Hz), 1.05 (6H, t, J = 6.8 Hz).

FABMS (MH+): 412.

Anal. Calcd. for C₂₀H₂₁N₅O₃S: C, 58.38; H, 5.14; N, 17.02; S, 7.79. Found: C, 58.23; H, 5.16; N, 16.94; S, 7.86.

• Example C(19): [4-Amino-2-(1H-benzoimidazol-6-ylamino)-thiazol-5-yl]-(3-methyl-thiophen-2-yl)-methanone

The title compound was prepared essentially in the manner described for Example C(1). 6-Isothiocyanato-1H-benzoimidazole (see Boev et al., *Pharm. Chem. J. (Engl. Transl).*, vol. 24 (1990), pp. 818-822) and 2-(2-bromoacetyl)-3-methyl-thiophene (U.S. Patent No. 5,189,049; an acetyl brominated with copper(II) bromide according to a procedure from King, et al., *J. Org. Chem.*, Vol. 29 (1964), pp. 3459-3461; representative procedure in Example C(19)) provided 67% yield of yellow powder, mp 285-287°C.

¹H NMR (DMSO-d₆): δ 12.60 (1H, bs), 10.78 (1H, s), 8.23 (1H, s), 8.17 (2H, bs), 7.93 (1H, s), 7.56 (1H, d, J = 8.7 Hz), 7.55 (1H, d, J = 5.0 Hz), 7.27 (1H, dd, J = 8.7, 1.9 Hz), 6.60 (1H, d, J = 5.0 Hz), 2.36 (3H, s).

FABMS (MH+): 356.

Anal. Calcd. for C₁₆H₁₃N₅OS₂ • 0.6 H₂O: C, 52.47; H, 3.91; N, 19.12; S, 17.51. Found: C, 52.50; H, 3.90; N, 19.10; S, 17.71.

• Example C(20): [4-Amino-2-(1H-benzoimidazol-6-ylamino)-thiazol-5-yl]-(2,4-dimethyl-phenyl)-methanone

5

10

The title compound was prepared in a manner similar to that described for Example C(1). 6-Isothiocyanato-1H-benzoimidazole (see Boev et al., *Pharm. Chem. J. (Engl. Transl.)*, vol. 24 (1990), pp. 818-822) and 2-bromo-2',4'-dimethylacetophenone provided 77% yield of yellow powder, mp 290-292°C.

¹H NMR (DMSO- d_6): δ 12.43 (1H, bs), 10.65 (1H, s), 8.18 (1H, s), 8.00 (2H, bs), 7.80 (1H, s), 7.54 (1H, d, J = 8.7 Hz), 7.20 (1H, d, J = 8.7 Hz), 7.16 (1H, d, J = 7.5 Hz), 7.03 (1H, s), 6.99 (1H, d, J = 7.5 Hz), 2.26 (3H, s), 2.22 (3H, s).

FABMS (MH+): 364.

Anal. Calcd. for C₁₉H₁₇N₅OS: C, 62.79; H, 4.71; N, 19.27; S, 8.82. Found: C, 62.50; H, 4.78; N, 19.22; S, 8.72.

• Example C(21): [4-Amino-2-(pyridin-3-ylamino)-thiazol-5-yl]-(2,4-dimethyl-phenyl)-methanone

20

The title compound was prepared in a manner similar to that described for Example C(1). 3-Pyridyl-isothiocyanate and 2-bromo-2',4'-dimethylacetophenone provided 63% yield of yellow powder, mp 200-202°C.

¹H NMR (DMSO-d₆): δ 10.82 (1H, s), 8.76 (1H, d, J = 2.5 Hz), 8.25 (1H, d, J = 4.1 Hz), 8.06 (1H, d, J = 8.4 Hz), 8.04 (2H, bs), 7.36 (1H, dd, J = 8.4, 4.1 Hz), 7.21 (1H, d, J = 7.5 Hz), 7.06 (1H, s), 7.02 (1H, d, J = 7.5 Hz), 2.28 (3H, s), 2.23 (3H, s).

FABMS (MH+): 325.

Anal. Calcd. for C₁₇H₁₆N₄OS: C, 62.94; H, 4.97; N, 17.27; S, 9.88. Found: C, 62.86; H, 5.03; N, 17.17; S, 9.95.

• Example C(22): 3-[4-Amino-5-(2-cyano-benzoyl)-thiazol-2-ylamino]-benzonitrile

30

10

The title compound was prepared essentially as described for Example C(1). 3-Cyanophenyl isothiocyanate and 2-bromo-2'-nitro-acetophenone furnished an orange solid in 94% yield, mp 235-236°C.

¹H NMR (DMSO-d₆): δ 8.26 (1H, bs), 8.06 (1H, d, J = 8.0 Hz), 7.8 (1H, t, J = 7.0 Hz), 7.74-7.64 (3H, m), 7.58-7.48 (2H, m).

IR (KBr): 3460, 3307, 3271, 3083, 2214, 1625, 1601, 1525 cm⁻¹.

Anal. Calcd. For C₁₇H₁₁N₅O₃S: C, 55.80; H, 3.03; N, 19.17; S, 8.78. Found: C, 55.70; H, 3.05; N, 19.01; S, 8.73.

• Example C(23): [4-Amino-2-(3-methoxy-propylamino)-thiazol-5-yl]-(2-nitro-phenyl)-methanone

The title compound was prepared analogously to Example C(1). 3-Methoxypropyl isothiocyanate and 2-bromo-2'-nitro-acetophenone furnished a yellow solid in 90% yield, mp 170-172°C.

¹H NMR (DMSO-d₆): δ 8.02-7.92 (2H, m), 7.4 (1H, t, J = 7.0 Hz), 7.68-7.56 (2H, m), 3.38-3.22 (7H, m), 1.78-1.66 (2H, m).

Anal. Calcd. for C₁₄H₁₆N₄O₄S: C, 49.99; H, 4.79; N, 16.66; S, 9.53. Found: C, 50.04; H, 4.81; N, 16.69; S, 9.61.

• Example C(24): 1-{4-[4-Amino-5-(2-nitro-benzoyl)-thiazol-2-ylamino]-phenyl}-ethanone

The title compound was prepared in a manner similar to Example C(1). 4-Acetylphenyl isothiocyanate and 2-bromo-2'-nitro-acetophenone furnished a yellow solid in 87% yield, mp 264-265°C.

¹H NMR (DMSO-d₆): δ 8.06 (1H, d, J = 8.0 Hz), 7.92 (2H, d, J = 9.0 Hz), 7.84-7.78 (1H, m), 7.73-7.64 (4H, m), 2.42 (3H, s).

31

IR (KBr): 3389, 3248, 1690, 1655, 1537, 1472, 1420, 1273 cm⁻¹.

1 Anal. Calcd. for C₁₈H₁₄N₄O₄S: C, 56.54; H, 3.69; N, 14.65; S, 8.39. Found: C, 56.39; H, 3.73; N, 14.44; S, 8.31.

• Example C(25): {4-Amino-2-[4-(2-chloro-5-trifluoromethyl-pyridin-2-yl sulfanyl)-phenylamino]-thiazol-5-yl}-(2-nitro-phenyl)-methanone

The title compound was prepared in a manner similar to that described for Example C(1). 2-[4-(2-Chloro-5-trifluoromethyl-pyridine-2-yl-sulfanyl)-phenyl] isothiocyanate and 2-bromo-2'-nitro-acetophenone furnished an orange solid in 52% yield, mp 150-152°C.

¹H NMR (DMSO-d₆): δ 8.65 (1H, bs), 8.38 (1H, bs), 8.06 (2H, d, J = 8.0 Hz), 7.80 (1H, t, J = 7.0 Hz), 7.74-7.64 (4H, m), 7.54 (2H, d, J = 8.0 Hz).

IR (KBr): 3272, 3048, 1596, 1531, 1431, 1320 cm⁻¹.

Anal. Calcd. for C₂₂H₁₃ClF₃N₅O₃S₂: C, 47.87; H, 2.37; N, 12.69; S, 11.62; Cl, 6.42. Found: C, 47.79; H, 2.44; N, 12.54; S, 11.70; Cl, 6.52.

• Example C(26): Methyl 3-[4-Amino-5-(2-methoxy-benzoyl)-thiazol-2-ylamino]-benzoate

H₃CO NH₂OCH

The title compound was prepared essentially as described for Example C(1). 3-Methoxycarbonylphenyl isothiocyanate and 2-bromo-2'-methoxy-acetophenone gave an ivory solid in 59% yield, mp 214-215°C.

¹H NMR (DMSO-d6): δ 10.81 (1H, s), 8.12-7.90 (4H, m), 7.62 (1H, ddd, J = 7.8, 1.2, 1.2 Hz), 7.49 (1H, t, J = 7.9 Hz), 7.39 (1H, ddd, J = 8.7, 8.7, 1.7 Hz), 7.25 (1H, dd, J = 7.5, 1.9 Hz), 7.09 (1H, d, J = 8.4 Hz), 6.98 (1H, ddd, J = 7.5, 7.5, 0.6 Hz), 3.85 (3H, s), 3.87 (3H, s). FABMS (MH+): 327.

IR (KBr): 3473, 3333, 3261, 3092, 1718, 1602, 1527, 1417, 1294 cm⁻¹.

- 25 Anal. Calcd. for C₁₉H₁₇N₃O₄S: C, 59.52; H, 4.47; N, 10.96; S, 8.36. Found: C, 59.41; H, 4.46; N, 10.93; S, 8.38.
 - Example C(27): {4-Amino-2-[2-(4-chloro-phenyl)-ethylamino]-thiazol-5-yl}-(2-methoxy-phenyl)-methanone

32

The title compound was prepared in a manner like that described for Example C(1).

The product from 4-chlorophenethyl isothiocyanate and 2-bromo-2'-methoxy-acetophenone was

extracted with 10% i-PrOH/CHCl3. The resultant solid was washed with Et₂O to give an ivory solid in 49% yield, mp 150-151°C.

¹H NMR (DMSO-d6): δ 8.53 (2H, bs), 7.87 (1H, bs), 7.39-7.28 (3H, m), 7.23 (2H, d, J = 8.4 Hz), 7.17 (1H, dd, J = 7.5, 1.6 Hz), 7.03 (1H, d, J = 8.4 Hz), 6.93 (1H, t, J = 7.5 Hz), 3.88 (3H, s), 3.40 (2H, bs), 2.81 (2H, t, J = 7.0 Hz).

10 FABMS (MH+): 388.

IR (KBr): 3354, 3214, 3166, 3103, 1600, 1578, 1544, 1525, 1462, 1363 cm⁻¹.

Anal. Calcd. for C₁₉H₁₈ClN₃O₂S: C, 58.83; H, 4.68; N, 10.83; S, 8.27. Found: C, 58.70; H, 4.62; N, 10.75; S, 8.25.

• Example C(28): [4-Amino-2-(pyridin-3-ylamino)-thiazol-5-yl]-(2,4-dichloro-phenyl)-methanone

15

The title compound was prepared in a manner similar to that described for Example C(1). 3-Pyridyl-isothiocyanate and 2,2',4'-trichloroacetophenone gave a yellow solid in 39% yield, mp 209-210°C.

²⁰ l_{H NMR} (DMSO-d₆): δ 10.95 (1H, s), 8.77 (1H, d, J = 2.5 Hz), 8.28 (1H, dd, J = 4.7, 1.6 Hz), 8.16 (2H, bs), 8.06 (1H, bd, J = 9.6 Hz), 7.70 (1H, d, J = 1.6 Hz), 7.48 (2H, dd, J = 11.5, 8.1 Hz), 7.37 (1H, dd, J = 8.4, 4.7 Hz).

FABMS (MH+): 365.

IR (KBr): 3378, 3272, 3175, 3072, 1608, 1586, 1561, 1525, 1424 cm⁻¹.

- 25 Anal. Calcd. for C₁₅H₁₀Cl₂N₄OS 0.9 H₂O: C, 47.23; H, 3.12; N, 14.69; S, 8.41. Found: C, 47.03; H, 3.09; N, 14.52; S, 8.42.
 - Example C(29): [4-Amino-2-(pyridin-3-ylamino)-thiazol-5-yl]-(2-methoxy-phenyl)-methanone

The title compound was prepared in a manner analogous to Example C(1). 3-Pyridylisothiocyanate and 2-bromo-2'-methoxy-acetophenone gave an off-white/ivory solid in 67% yield, mp 245-246°C.

 1 H NMR (DMSO-d6): δ 10.80 (1H, s), 8.77 (1H, d, J = 2.8 Hz), 8.25 (1H, dd, J = 4.7, 1.2 Hz), 8.07 (1H, ddd, J = 8.4, 2.8, 1.6 Hz), 8.00 (2H, bs), 7.44-7.33 (2H, m), 7.24 (1H, dd, J = 7.5, 1.6 Hz), 7.09 (1H, d, J = 8.1 Hz), 6.98 (1H, t, J = 7.5 Hz), 3.76 (3H, s). FABMS (MH+): 327.

IR (KBr): 3424, 3310, 2971, 1632, 1603, 1526, 1459, 1405 cm⁻¹.

Anal. Calcd. for C₁₆H₁₄N₄O₂S: C, 58.88; H, 4.32; N, 17.17; S, 9.82. Found: C, 58.84; H, 4.33; N, 17.07; S, 9.90.

• Example C(30): [4-Amino-2-(pyridin-3-ylamino)-thiazol-5-yl]-naphthalen-2-yl-methanone

15

20

The title compound was prepared essentially as described for Example C(1). 3-Pyridylisothiocyanate and 2-bromo-2'-acetonaphthone gave, after recrystallization from EtOH, a yellow solid in 12% yield, mp 242-243°C (decomp.).

¹H NMR (DMSO-d₆): δ 10.97 (1H, s), 8.82 (1H, d, J = 2.5 Hz), 8.36-8.18 (3H, m), 8.13 (1H, ddd, J = 8.4, 4.0, 1.6 Hz), 8.08-7.93 (2H, m), 7.77 (1H, dd, J = 8.4, 1.6 Hz), 7.60 (2H, dddd, J = 14.3, 10.6, 7.9, 2.2 Hz), 7.39 (1H, dd, J = 8.4, 5.0 Hz).

FABMS (MH+): 347.

IR (KBr): 3462, 3316, 3261, 3071, 1623, 1584, 1531, 1421 cm⁻¹.

Anal. Calcd. for C₁₉H₁₄N₄OS: C, 65.88; H, 4.07; N, 16.17; S, 9.26. Found: C, 65.80; H, 4.09; N, 16.09; S, 9.34.

• Example C(31): [4-Amino-2-(2-methoxy-benzylamino)-thiazol-5-yl]-(5-chloro-benzofuran-2-yl)-methanone

34

The title compound was prepared in a manner similar to that described for Example C(1). 2-Methoxybenzyl isothiocyanate and 2-bromoacetyl-5-chlorobenzofuran provided 62% yield of yellow powder, mp 241-242°C.

 1 H NMR (DMSO- 1 d₆): δ 9.17 (1H, bs), 8.78 (1H, bs), 8.21 (1H, bs), 7.83 (1H, d, J = 2.2 Hz), 7.66 (1H, d, J = 9.0 Hz), 7.44 (1H, dd, J = 9.0, 2.2 Hz), 7.39 (1H, s), 7.28 (1H, d, J = 8.1 Hz), 7.25 (1H, dd, J = 7.5, 7.2 Hz), 7.01 (1H, d, J = 8.1 Hz), 6.92 (1H, dd, J = 7.5, 7.2 Hz), 4.51 (2H, bs), 3.82 (3H, s).

FABMS (MH+): 414/416.

Anal. Calcd. for C₂₀H₁₆N₃O₃ClS: C, 58.04; H, 3.90; N, 10.15; S, 7.75; Cl, 8.57. Found: C, 57.97; H, 3.85; N, 10.11; S, 7.85; Cl, 8.63.

• Example C(32): [4-Amino-2-(1H-benzoimidazol-6-ylamino)-thiazol-5-yl]-(2-methoxy-phenyl)-methanone

The title compound was prepared in a manner analogous to that described for Example C(1). 6-Isothiocyanato-1H-benzoimidazole (see Boev et al., *Pharm. Chem. J. (Engl. Transl.)*, vol. 24 (1990), pp. 818-822) and 2-bromo-2'-methoxyacetophenone provided 72% yield of amorphous yellow powder, mp 180-185°C (decomp.).

 $^{1}\text{H NMR (DMSO-d_6): } \delta \ 12.40 \ (1\text{H, bs}), \ 10.61 \ (1\text{H, bs}), \ 8.16 \ (1\text{H, s}), \ 7.94 \ (2\text{H, bs}), \ 7.83 \ (1\text{H, bs}), \ 7.53 \ (1\text{H, d, J} = 8.4 \ \text{Hz}), \ 7.36 \ (1\text{H, ddd}, \ J = 8.4, \ 7.6, \ 1.6 \ \text{Hz}), \ 7.24-7.16 \ (2\text{H, m}), \ 7.05 \ (1\text{H, d, J} = 8.1 \ \text{Hz}), \ 6.95 \ (1\text{H, dd}, \ J = 7.6, \ 7.2 \ \text{Hz}), \ 3.74 \ (3\text{H, s}).$

20 FABMS (MH+): 366.

Anal. Calcd. for C₁₈H₁₅N₅O₂S • 0.5 H₂O: C, 57.74; H, 4.31; N, 18.71; S, 8.56. Found: C, 57.78; H, 4.29; N, 18.64; S, 8.53.

• Example C(33): 4-[4-Amino-5-(2,4-dimethoxy-benzoyl)-thiazol-2-ylamino]-benzenesulfonamide

The title compound was prepared essentially as described for Example C(1). 4-Isothiocyanato-benzenesulfonamide and 2-bromo-2',4'-dimethoxyacetophenone provided 75% yield of yellow powder, mp 249-250°C.

¹H NMR (DMSO-d₆): δ 10.93 (1H, bs), 7.93 (2H, bs), 7.75 (4H, bs), 7.25 (2H, bs), 7.21 (1H, d, J = 8.1 Hz), 6.61 (1H, d, J = 1.9 Hz), 6.55 (1H, dd, J = 8.1, 1.9 Hz), 3.79 (3H, s), 3.76 (3H, s). FABMS (MH⁺): 435.

Anal. Calcd. for C₁₈H₁₈N₄O₅S₂: C, 49.76; H, 4.18; N, 12.89; S, 14.76. Found: C, 49.66; H, 4.15; N, 12.77; S, 14.86.

• Example C(34): Ethyl 4-[4-Amino-2-(4-sulfamoyl-phenylamino)-thiazole-5-carbonyl]-benzoate

10

15

20

1

The title compound was prepared substantially as described for Example C(1). 4-Isothiocyanato-benzenesulfonamide and ethyl 4-bromoacetyl-benzoate provided 95% yield of yellow powder, mp 225-227°C.

¹H NMR (DMSO-d₆): δ 11.16 (1H, s), 8.32 (2H, bs), 8.04 (2H, d, J = 8.4 Hz), 7.80 (2H, d, J = 8.4 Hz), 7.78 (4H, bs), 7.26 (2H, bs), 4.33 (2H, q, J = 7.2 Hz), 1.33 (3H, t, J = 7.2 Hz). FABMS (MH⁺): 447.

Anal. Calcd. for C₁₉H₁₈N₄O₅S₂ • 0.4 H₂O: C, 50.30; H, 4.18; N, 12.38; S, 14.13. Found: C, 50.11; H, 3.97; N, 12.26; S, 14.14.

• Example C(35): 4-[4-Amino-5-(2,4-dimethyl-benzoyl)-thiazol-2-ylamino]-benzenesulfonamide

The title compound was prepared essentially as described for Example C(1). 4Isothiocyanatobenzenesulfonamide and 2-bromo-2',4'-dimethylacetophenone furnished a yellow solid in 75% yield, mp 242-244°C.

1 lh NMR (DMSO-d₆): δ 10.97 (1H, bs), 8.00 (2H, bs), 7.76 (2H, d, J = 9.7 Hz), 7.72 (2H, d, J = 9.7 Hz), 7.24 (2H, bs), 7.22 (1H, d, J = 7.5 Hz), 7.07 (1H, s), 7.03 (1H, d, J = 7.5 Hz), 2.29 (3H, s), 2.23 (3H, s).

FABMS (MH+): 403.

- Anal. Calcd. for C₁₈H₁₈N₄O₃S₂: C, 53.71; H, 4.51; N, 13.92; S, 15.93. Found: C, 53.47; H, 4.54; N, 13.69; S, 15.83.
 - Example C(36): {4-Amino-2-[4-(2-chloro-5-trifluoromethyl-pyridine-2-yl sulfanyl)-phenylamino]-thiazol-5-yl}-(2,6-dichloro-4-trifluoromethyl-phenyl)-methanone

10

The title compound was prepared essentially as described for Example C(1). 2-[4-(2-Chloro-5-trifluoromethyl-pyridin-2-yl-sulfanyl)-phenyl] isothiocyanate and 2-bromo-2',6'dichloro-4'-trifluoromethyl-acetophenone furnished an orange solid in 52% yield, mp 130-132°C.

- 15 1_{H NMR} (DMSO-d₆): δ 8.65 (1H, bs), 8.38 (1H, bs), 8.06 (2H, d, J = 8.0 Hz), 7.80 (1H, t, J = 7.0 Hz), 7.74-7.64 (4H, m), 7.54 (2H, d, J = 8.0 Hz).

 IR (KBr): 3272, 3048, 1596, 1531, 1431, 1320 cm⁻¹.

 Anal. Calcd. for C₂₂H₁₃ClF₃N₅O₃S₂: C, 47.87; H, 2.37; N, 12.69; S, 11.62; Cl, 6.42. Found: C, 47.79; H, 2.44; N, 12.54; S, 11.70; Cl, 6.52.
- Example C(37): [4-Amino-2-(1H-benzoimidazol-6-ylamino)-thiazol-5-yl]-(2,6-dichloro-4-trifluoromethyl-phenyl)-methanone

The title compound was prepared in a manner analogous to that described for Example C(1). 6-Isothiocyanato-1H-benzoimidazole (see Boev et al., *Pharm. Chem. J. (Engl. Transl.)*, vol. 24 (1990), pp. 818-822) and 2-bromo-2',6'-dichloro-4'-trifluoromethyl-acetophenone gave a yellow solid in 56% yield that decomposed at a temperature above 180°C.

1H NMR (DMSO-d6): δ 12.45 (1H, bd, J = 16.0 Hz), 11.10-10.80 (1H, m), 8.20 (1H, s), 8.00 (2H, s), 7.70-7.45 (2H, m), 7.20 (1H, d, J = 8.0 Hz).

37

1 IR (KBr): 3191, 2974, 1619, 1559, 1467, 1309 cm⁻¹.

FABMS (MH+): 472.

Anal. Calcd. for C₁₈H₁₀C₁₂F₃N₅OS • 0.6 HOAc • 0.1 CH₂Cl₂ • H₂O: C, 45.58; H, 2.95; N, 12.18; S, 5.69; Cl, 13.92. Found: C, 45.70; H, 3.05; N, 12.45; Cl, 13.87.

• Example C(38): 4-[4-Amino-5-(2,6-dichloro-4-trifluoromethyl-benzoyl)-thiazol-2-ylamino]-benzenesulfonamide

The title compound was prepared essentially as described for Example C(1). 4-

10 Isothiocyanatobenzenesulfonamide and 2-bromo-2',6'-dichloro-4'-(trifluoromethyl) acetophenone furnished, after recrystallization from EtOH/H₂O and drying via benzene azeotrope, a yellow solid in 46% yield, mp 294-296°C.

¹H NMR (DMSO-d₆): δ 8.10 (1H, s), 8.05 (2H, s) 7.77 (4H, dd, J = 9.0, 14.0 Hz).

HRFABMS: Calcd. for C7H12Cl2F3N4O3S2 (MH⁺): 510.9680. Found: 510.9697.

- Anal. Calcd. for C₁₇H₁₁Cl₂F₃N₄O₃S₂ 0.1 H₂O C₆H₆: C, 40.28; H, 2.51; N, 10.30; S, 11.97; Cl, 13.51. Found: C, 40.58; H, 2.28; N, 10.75; S, 12.31; Cl, 13.61.
 - Example C(39): Phenyl 4-[4-Amino-2-(4-sulfamoyl-phenylamino)-thiazole-5-carbonyl]-benzoate

20

The title compound was prepared in a manner analogous to that used in Example C(1). 4-Isothiocyanato-benzenesulfonamide and 4-(bromoacetyl)-phenyl benzoate provided a yellow solid in 77% yield, mp >300°C.

¹H NMR (DMSO-d₆): δ 11.13 (1H, s), 8.26 (2H, bs), 8.15 (2H, dd, J = 7.2, 1.6 Hz), 7.83-7.73 (7H, m), 7.66-7.59 (2H, m), 7.41 (2H, d, J = 6.9 Hz), 7.27 (2H, s).

HRFABMS (MH⁺): Calcd.: 495.0797. Found: 495.0812.

Anal. Calcd. for $C_{23}H_{18}N_4O_5S_2 \cdot 0.2 H_2O$: C, 55.45; H, 3.72; N, 11.25; S, 12.87. Found: C, 55.34; H, 3.592; N, 11.01; S, 12.88.

• Example C(40): [4-Amino-2-(4-methoxy-phenylamino)-thiazol-5-yl]-(4-methyl-1H-imidazol-5-yl)-methanone

5

10

15

5-Bromoacetyl-4-methyl-1H-imidazole, which has the structural formula , was first prepared as follows. Bromine (0.40 mL, 7.77 mmol) was added dropwise to a solution of 5-acetyl-4-methyl-1*H*-imidazole (964 mg, 7.77 mmol; LaMattina et al, *J. Org. Chem.*, vol. 48 (1983), pp. 897-898) in HOAc (20 mL). After two days, the HOAc was removed *in vacuo* and the residue partitioned with CH₂Cl₂ and sat. aq. NaHCO₃. The organic layer was washed with brine, dried over Na₂SO₄, and evaporated to provide a light brown solid, 625 mg (40% yield), which was used without further purification.

¹H NMR (DMSO-d₆): δ 12.65 (1H, bs), 7.67 (1H, s),4.62 (2H, s), 2.44 (3H, s).

The title compound was prepared in a manner analogous to that used in Example C(1). 4-Methoxy-phenyl isothiocyanate and 5-bromoacetyl-4-methyl-1H-imidazole provided a yellow powder in 57% yield, mp 248-50°C.

¹H NMR (DMSO-d₆): δ 12.28 (1H, bs), 10.21 (1H, s), 8.00 (2H, bs), 7.56 (1H, s), 7.49 (2H, d, J = 9.0 Hz), 6.94 (2H, d, J = 9.0 Hz), 3.75 (3H, s), 2.50 (3H, s).

HRFABMS (M+Na⁺): Calcd.: 352.0844. Found: 352.0840.

Anal. Calcd. for $C_{15}H_{15}N_5O_2S \cdot 0.5 H_2O$: C, 53.24; H, 4.77; N, 20.70; S, 9.48. Found: C, 53.43; H, 4.78; N, 20.54; S, 9.38.

• Example C(41): [4-Amino-2-(4-imidazol-1-yl-phenylamino)-thiazol-5-yl]-(2,4-dimethyl-phenyl)-methanone

25

20

1-(4-Isothiocyanato-phenyl)-1H-imidazole, which has the structural formula

NCS
, was first prepared as follows. To a solution of 1-(4-amino-phenyl)-1H-

imidazole (1.00 g, 6.30 mmol; Venuti et al, J. Med. Chem., vol. 31 (1988), pp. 2136-2145) in acetone (10 mL) at 0°C was simultaneously added a solution of thiophosgene (580 µL, 7.6

mmol) in acetone (15 mL) and a solution of 25% aq. Na₂CO₃ (15 mL). The mixture was stirred at 0°C for 0.5 hour and allowed to warm to room temperature over 1.5 hour. The acetone was removed under reduced pressure and the residue diluted with H₂O. The cream-colored precipitate was filtered off, washed with H₂O, and dried under high vacuum to give 1.20g (95% crude yield) of a light tan solid, which was used without further purification.

¹H NMR (DMSO-d₆): δ 8.33 (1H, s), 7.81 (1H, s), 7.76 (2H, d, J = 8.8 Hz), 7.61 (2H, d, J = 8.8 Hz), 7.12 (1H, s).

The title compound was prepared in a manner like that described for Example C(1). 1-(4-Isothiocyanato-phenyl)-1H-imidazole and 2-bromo-2',4'-dimethyl-acetophenone provided a yellow solid in 14% yield, mp 180.0-180.5°C.

10 I_{H NMR} (DMSO-d₆): δ 10.80 (1H, s), 8.10 (1H, s), 8.02 (1H, bs), 7.68 (2H, d, J = 7.5 Hz), 7.58 (2H, d, J = 9.0 Hz), 7.20 (1H, d, J = 7.8 Hz), 7.10-7.00 (2H, m), 2.28 (3H, s), 2.24 (3H, s). IR (KBr): 3393, 3119, 2925, 1612, 1566, 1524, 1425 cm⁻¹.

FABMS (MH+): 390.

Anal. Calcd. for C₂₁H₁₉N₅OS • 0.2 H₂O: C, 64.17; H, 4.97; N, 17.82; S, 8.16. Found: C, 64.14; H, 4.98; N, 17.68; S, 8.21.

• Example C(42): [4-Amino-2-(4-imidazol-1-yl-phenylamino)-thiazol-5-yl]-(3-methyl-thiophen-2-yl)-methanone

20

15

5

The title compound was prepared in a manner like that described for Example C(1). 1-(4-Isothiocyanato-phenyl)-1H-imidazole (from Example C(41)) and 2-bromoacetyl-3-methyl-thiophene (from Example C(19)) provided a yellow solid in 83% yield, mp>300°C.

¹H NMR (DMSO-d6): δ 10.98 (1H, s), 8.25 (1H, s), 8.18 (1H, bs), 7.77 (1H, s), 7.72 (2H, J = 6.5 Hz), 7.65 (1H, s), 7.62 (2H, J = 4.7), 7.10 (1H, s), 6.98 (1H, d, J = 5.0 Hz), 2.28 (3H, s).

25 IR (KBr): 3402, 3278, 3103, 2982, 1609, 1523, 1422, 1306 cm⁻¹.

Anal. Calcd. for $C_{17}H_{16}N_5OS_2$: C, 56.67; H, 3.96; N, 18.36; S, 16.81. Found: C, 56.38; H, 4.06; N, 18.13; S, 16.67.

• Example C(43): [4-Amino-2-(1H-benzimidazol-5-ylamino)-thiazol-5-yl]-(1-methyl-1H-pyrrol-2-yl)-methanone

1

The title compound was prepared in a manner analogous to that used in Example C(1). 6-Isothiocyanato-1H-benzoimidazole (see Boev et al., *Pharm. Chem. J. (Engl. Transl).*, vol. 24 (1990), pp. 818-822) and 2-chloroacetyl-N-methyl-pyrrole (Croce et al., *Synthesis* (1990), pp. 212-213) provided a yellow solid in 42% yield, mp 284-285°C.

 1 H NMR (DMSO-d₆): δ 12.43 (1H, bs), 10.65 (1H, bs), 8.18 (1H, s), 7.94 (3H, bs), 7.55 (1H, d, J = 8.7 Hz), 7.27 (1H, dd, J = 8.7, 1.9 Hz), 6.92 (1H, m), 6.62 (1H, dd, J = 3.7, 2.1 Hz), 6.04 (1H, dd, J = 4.1, 2.1 Hz), 3.80 (3H, s).

HRFABMS (MH⁺): Calcd.: 339.1028. Found: 339.1024.

10 Anal. Calcd. for C₁₆H₁₄N₆OS • 0.3 H₂O: C, 55.90; H, 4.28; N, 24.45; S, 9.33. Found: C, 56.08; H, 4.28; N, 24.46; S, 9.33.

• Example C(44): 1-{4-[4-Amino-5-(3-methyl-thiophene-2-carbonyl)-thiazol-2-ylamino]-phenyl}-ethanone

15 H₃C N_{H₂}C

The title compound was prepared essentially as described for Example C(1). 4-Acetylphenyl isothiocyanate and 2-bromoacetyl-3-methyl-thiophene (from Example C(19)) gave a yellow solid in 89% yield, mp 171-2°C.

¹H NMR (DMSO-d6): δ 11.14 (1H, s), 8.22 (2H, bs), 7.95 (2H, d, J = 9.0 Hz), 7.76 (2H, d, J = 9.0 Hz), 7.62 (1H, d, J = 5.0 Hz), 7.00 (1H, d, J = 5.0 Hz), 2.53 (3H, s), 2.39 (3H, s).

IR (KBr): 3618, 3354, 3254, 3178, 3072, 1651, 1599, 1524, 1403, 1355, 1318, 1275, 1170 cm⁻¹. FABMS (MH⁺): 357.

Anal. Calcd for C₁₇H₁₅N₃O₂S₂ • 0.5H₂O: C, 55.72; H, 4.40; N, 11.47; S, 17.50. Found: C, 55.92; H, 4.44; N, 11.51; S, 17.44.

• Example C(45): trans-3RS-Amino-4RS-{4-[4-amino-5-(3-methyl-thiophene-2-carbonyl)-thiazol-2-ylamino]-benzoyl}-dihydro-furan-2-one

1,

41

30

The title compound was prepared essentially as described for Example C(1). The product from 4-isothio-cyanato-benzoyl-DL-homoserine lactone and 2-bromoacetyl-3-methyl-thiophene (from Example C(19)) was extracted into 10% i-PrOH/CHCl3. Flash column chromatography with 2-3-4-5-6% MeOH/CH2Cl2 stepwise gradient gave a yellow solid in 43% yield, mp 162-3°C.

¹H NMR (DMSO-d6): δ 11.05 (1H, s), 8.88 (2H, d, J = 8.1Hz), 8.32 (2H, bs), 7.85 (2H, d, J = 9.0 Hz), 7.74 (2H, d, J = 9.0 Hz), 7.61 (1H, d, J = 5.0 Hz), 6.99 (1H, d, J = 5.0 Hz), 4.73 (1H, q, J = 9.3 Hz), 4.40 (1H, ddd, J = 10.8, 8.7, 2.0 Hz), 4.26 (1H, ddd, J = 10.2, 8.7, 6.7 Hz). IR (KBr): 3413, 3284, 3084, 1773, 1637, 1608, 1524, 1413, 1313, 1254, 1181 cm⁻¹. FABMS (MH⁺): 443.

- 10 Anal. Calcd for C₂₀H₁₈N₄O₄S₂ 0.4H₂O: C, 53.41; H, 4.21; N, 12.46; S, 14.26. Found: C, 53.56; H, 4.28; N, 12.30; S, 14.43.
 - Example C(46): Ethyl 3RS-[4-Amino-5-(3-methyl-thiophene-2-carbonyl)-thiazol-2-ylamino]-butyrate

The title compound was prepared essentially as described for Example C(1). The product from ethyl dl-3-isothiocyanato-butyrate and 2-bromoacetyl-3-methyl-thiophene (from Example C(19)) was extracted with 10% i-PrOH/ CHCl₃. Flash column chromatography with 3% MeOH/CH₂Cl₂ gave a yellow solid in 45% yield, mp 129-30°C.

²⁰ 1_{H NMR} (DMSO-d₆): δ 8.61 (1H, d, J = 7.8 Hz), 8.08 (2H, bs), 7.53 (1H, d, J = 5.0 Hz), 6.94 (1H, d, J = 5.0 Hz), 4.05 (2H, q, J = 7.2 Hz), 2.33 (3H, s), 1.22-1.12 (6H, m). IR (KBr): 3307, 3213, 3160, 2976, 1737, 1618, 1586, 1526, 1423, 1349, 1215, 1183, 1091 cm⁻¹. FABMS (MH⁺): 353.

Anal. Calcd for C₁₅H₁₉N₃O₃S₂: C, 50.97; H, 5.42; N, 11.89; S, 18.14. Found: C, 50.81; H, 5.39; N, 11.72; S, 17.97.

• Example C(47): 4-[4-Amino-5-(4-methyl-thiazole-5-carbonyl)-thiazol-2-ylamino]-benzenesulfonamide

30

1

WO 99/21845

5-Bromoacetyl-4-methyl-thiazole, which has the structural formula o, was prepared as described in Sych et al., *J. Gen. Chem. USSR*, vol. 32 (1962), pp. 970-975. Bromine (0.75 mL, 7.77 mmol) was added dropwise into the solution of 1-(4-methyl-thiazol-5-yl)-

ethanone (2.05 mg, 14.5 mmol; Ganapathi et al., *Proc.-Indian Acad. Sci. Sect. A*, vol. 22 (1945), pp. 362-378) in HOAc (3 mL). The mixture was stirred at 85°C for 1.5 hours and turned into yellow cake. HOAc (3 mL) was added, and after 1.5 hours, allowed to cool. The HOAc was removed *in vacuo* and the residue partitioned between CH₂Cl₂ and sat aq NaHCO₃. The organic layer was washed with brine, dried over Na₂SO₄, and evaporated to give a black solid, 1.3 g (41% yield), which was used without further purification.

10 ¹H NMR (CDCl₃): δ 8.85 (1H, s), 4.28 (2H, s), 2.81 (3H, s).

The title compound was prepared in a manner analogous to that used in Example C(1). 4-Isothiocyanato-benzenesulfonamide and 5-bromoacetyl-4-methyl-thiazole provided a brown solid in 31% yield, mp $265-266^{\circ}$ C.

¹H NMR (DMSO-d₆): δ 11.18 (1H, s), 9.08 (1H, s), 8.30 (2H, bs), 7.78 (4H, bs), 7.72 (2H, bs), 2.55 (3H, s).

Anal. Calcd. for $C_{16}H_{13}N_5O_3S_3$: C, 42.52; H, 3.31; N, 17.11; S, 24.32. Found: C, 42.28; H, 3.33; N, 17.15; S, 24.52.

• Example C(48): 4-[4-Amino-5-(3-methyl-thiophene-2-carbonyl)-thiazol-2-ylamino]-benzenesulfonamide

20

15

The title compound was prepared in a manner analogous to that used in Example C(1). 4-Isothiocyanato-benzenesulfonamide and 2-bromoacetyl-3-methyl-thiophene (from Example C(19)) provided a yellow solid in 69% yield, mp 284.5-286.0°C.

¹H NMR (DMSO-d₆): δ 11.11 (1H, s), 8.20 (2H, bs), 7.80 (2H, d, J = 10.7 Hz), 7.76 (2H, d, J = 10.7 Hz), 7.61 (1H, d, J = 5.0 Hz), 7.26 (2H, s), 6.90 (1H, d, J = 5.0 Hz), 2.38 (3H, s). Anal. Calcd. for $C_{15}H_{14}N_4O_3S_3$: C, 45.67; H, 3.58; N, 14.20; S, 24.39. Found: C, 45.52; H, 3.58; N, 14.04; S, 24.36.

• Example C(49): 4-[4-Amino-5-(3-methyl-benzo[b]thiophene-2-carbonyl)-thiazol-2-ylamino]-benzenesulfonamide

5

The title compound was prepared in a manner analogous to that used in Example C(1). 4-Isothiocyanato-benzenesulfonamide and 2-(2-bromoacetyl)-3-methyl-benzo[b]thiophene provided a yellow powder in 73% yield, mp 274.0-275.5°C.

¹H NMR (DMSO-d₆): δ 11.17 (1H, bs), 8.33 (2H, bs), 8.04-7.97 (1H, m), 7.90-7.84 (1H, m), 7.78 (4H, bs), 7.51-7.44 (2H, m), 7.27 (2H, s), 2.52 (3H, s).

Anal. Calcd. for $C_{19}H_{16}N_4O_3S_3$: C, 51.33; H, 3.63; N, 12.60; S, 21.64. Found: C, 51.19; H, 3.67; N, 12.31; S, 21.37.

• Example C(50): 4-[4-Amino-5-(2,5-dimethyl-thiophene-3-carbonyl)-thiazol-2-ylamino]-benzenesulfonamide

15

3-Bromoacetyl-2,5-dimethyl-thiophene, which has the structural formula Ö CH, was prepared in a manner analogous to 2-bromo-2'-iodoacetophenone for Example C(12). 3-Acetyl-2, 5-dimethylthiophene (6.83 g, 44.3 mmol) provided 10.1 g (98% yield) of yellow oil, which was used without further purification.

¹H NMR (CDCl₃): δ 7.22 (1H, s), 4.64 (2H, s), 2.58 (3H, s), 2.36 (3H, s).

20

The title compound was prepared in a manner analogous to that used in Example C(1). 4-Isothiocyanato-benzenesulfonamide and 3-bromoacetyl-2,5-dimethyl-thiophene provided a yellow powder in 69% yield, mp 263-5°C.

¹H NMR (DMSO-d₆): δ 11.02 (1H, s), 8.05 (2H, bs), 7.76 (4H, s), 7.25 (2H, s), 6.87 (1H, s), 2.43 (3H, s), 2.38 (3H, s).

- Anal. Calcd. for $C_{16}H_{16}N_4O_3S_3$: C, 47.04; H, 3.95; N, 13.71; S, 23.55. Found: C, 47.01; H, 3.92; N, 13.62; S, 23.47.
 - Example C(51): 4-[4-Amino-5-(2-oxo-1,2,3,4-tetrahydro-quinoline-6-carbonyl)-thiazol-2-ylaminol-benzenesulfonamide

The title compound was prepared essentially as described for Example C(1). 4
Isothiocyanato-benzenesulfonamide and 6-(bromoacetyl)-2-oxo-1,2,3,4-tetrahydroquinoline gave a grey-yellow solid in 48% yield, mp 300-305°C(d).

 $1_{\rm H~NMR}$ (DMSO-d₆): δ 11.08 (1H, s), 10.32 (1H, s), 8.17 (2H, bs), 7.82-7.70 (4H, m), 7.58-7.45 (3H, m), 7.27 (1H, s), 6.90 (1H, d, J = 8.1 Hz), 2.93 (4H, t, J = 7.7 Hz).

IR (KBr): 3266, 3193, 3069, 1679, 1597, 1525, 1434, 1365, 1317, 1153 cm⁻¹.

HRFABMS. Calcd. for C₁₉H₁₈N₅O₄S₂ (MH⁺): 444.0800. Found: 444.0816.

- 10 Anal. Calcd for C₁₉H₁₇N₅O₄S₂ 0.6 MeOH: C, 50.88; H, 4.23; N, 15.13; S, 13.86. Found: C, 51.02; H, 4.00; N, 15.00; S, 13.60.
 - Example C(52): [4-Amino-2-(1H-benzoimidazol-6-ylamino)-thiazol-5-yl]-(2,6-dichlorophenyl)-methanone

20

2-Bromo-2',6'-dichloro-acetophenone, which has the structural formula , was prepared as follows. To 2',6'-dichloroacetophenone (1.0 g, 5.30 mmol) in HOAc (5 mL) was added dropwise bromine (272 μl, 5.30 mmol). The mixture was heated at 90°C for 1 hour, then diluted with ice-water and partitioned between ether and sat aq NaHCO₃. The organic layer was washed with brine, dried over MgSO₄, concentrated and azeotroped with heptane twice, to obtain 1.41 g (100% yield) of a light yellow oil, which matched by ¹H NMR and IR previously described (see Mlotkowska et al., *Pol. J. Chem.*, vol. 55 (1981), pp. 631-642) and was used

25 ¹H NMR (CDCl₃): δ 7.39-7.33 (3H, m), 4.23 (2H, s).

without further purification.

The title compound was prepared in a manner analogous to that used in Example C(1). 6-Isothiocyanato-1H-benzoimidazole (see Boev et al., *Pharm. Chem. J. (Engl. Transl).*, vol. ½4 (1990), pp. 818-822) and 2-bromo-2',6'-dichloro-acetophenone (from Example C(52)) provided a yellow solid in 47% yield, mp 203-208°C.

¹H NMR (DMSO-d₆): δ 12.47 (1H, d, J = 17.7 Hz), 10.83 (1H, d, J = 16.5 Hz), 8.22-7.80 (3H, m), 8.18 (1H, s), 7.76-7.36 (5H, m), 7.19 (1H, d, J = 8.4 Hz).

Anal. Calcd. for C₁₇H₁₂N₅OSCl₂: C, 50.51; H, 2.74; N, 17.32; S, 7.93; Cl, 17.54. Found: C, 50.32; H, 2.78; N, 17.11; S, 7.91; Cl, 17.75.

• Example C(53): {4-Amino-2-[4-(1H-imidazol-2-yl)-phenylamino]-thiazol-5-yl}-(2,6-dichloro-4-trifluoromethyl-phenyl)-methanone

2-(4-Nitro-phenyl)-1H-imidazole, which has the structural formula H, was first prepared as follows. To a solution of 2-phenylimidazole (5.00 g, 34.7 mmol) in conc. H₂SO₄ (20 mL) at 0°C was added a solution of conc. HNO₃ (2.2 mL, 35 mmol) in conc. H₂SO₄ (5 mL). The resultant brown mixture was stirred at 0°C for 2 hours and quenched with crushedice. A pale white precipitate formed, which was filtered. The filtrate was brought to pH 9 with 2N NaOH. A yellow precipitate formed, which was filtered off, washed with H₂O, and recrystallized from boiling MeOH to give 3.0 g (46% yield) of a yellow solid. This crude

¹H NMR (MeOH-d₄): δ 8.34 (2H, d, J = 9.0 Hz), 8.08 (2H, d, J = 9.0 Hz), 7.26 (2H, s).

product was used without any further purification.

4-(1H-Imidazol-2-yl)-aniline, which has the structural formula H , was next prepared as follows. To a suspension of 2-(4-nitro-phenyl)-1H-imidazole (1.5 g, 7.93 mmol) in absolute ethanol (30 mL) was added 10% Pd-C (250 mg). The resultant mixture was stirred under an atmosphere of H₂ for 5 hours. The mixture was filtered through a pad of Celite. The filtrate was concentrated under reduced pressure to afford 1.20 g (95% in crude yield) of a red gum, which was used without further purification.

2-(4-Isothiocyanato-phenyl)-1H-imidazole, which has the structural formula

Notes was prepared in a manner analogous to 1-(4-isothiocyanato-phenyl)-1H-imidazole for Example C(41). 4-(1H-Imidazol-2-yl)-aniline gave a pale-brown solid, which recrystallized from CHCl₃ in 85% yield, and was used without any further purification.

1H NMR (MeOH-d₄): δ 7.88 (4H, bd, J = 7.8 Hz), 7.58 (2H, s).

46

5

10

The title compound was prepared in a manner like that described for Example C(1). 2-(4-Isothiocyanato-phenyl)-1H-imidazole and 2-bromo-2',6'-dichloro-4'-trifluoromethyl-acetophenone gave, after purification via preparative thin layer chromatography with MeOH:CHCl₃ (8:92) as eluant, a yellow solid in 21% yield, mp 195-197°C.

 1 H NMR (DMSO-d6): δ 11.0 (1H, s), 8.18 (1H, s), 8.02 (2H, s), 7.88 (2H, d, J = 8.7 Hz), 7.62 (2H, d, J = 8.1 Hz), 7.12 (2H, bs).

IR (KBr): 3400, 2929, 1610, 1527, 1426, 1310 cm⁻¹.

HRFABMS: Calcd. for $C_{20}H_{13}Cl_2F_3N_5OS$ (MH+): 498.0170. Found: 498.0183.

Anal. Calcd. for $C_{20}H_{12}Cl_2F_3N_5OS \cdot H_2O$: C, 46.52; H, 2.73; N, 13.56; Cl, 13.73; S, 6.21.

Found: C, 46.45; H, 2.78; N, 13.40; Cl, 13.73, S, 6.11.

• Example C(54): [4-Amino-2-(4-morpholin-4-yl-phenylamino)-thiazol-5-yl]-(2,4-dimethyl-phenyl)-methanone

4-(4-Isothiocyanato-phenyl)-morpholine, which has the structural formula

On Ones

1

15

20

, was made as follows. To 4-morpholinoaniline (2.0 g, 11.2 mmol) and

triethylamine (5.01 mL, 35.9 mmol) in THF (200 mL) at 0°C was added dropwise thiophosgene (1.03 mL, 13.5 mmol). The mixture stirred at ambient temperature overnight, and then was partitioned between ether and water. The ether layer was washed with water and brine, dried

over MgSO₄, and concentrated to give 2.46 g (99%) of dark brown solid.

¹H NMR (CDCl₃): δ 7.15 (2H, d, J = 9.3 Hz), 6.87 (2H, d, J = 9.3 Hz), 3.80 (4H, t, J = 5.0 Hz), 3.19 (4H, t, J = 5.0 Hz).

The title compound was prepared in a manner analogous to that used in Example C(1). 4-(4-Isothiocyanato-phenyl)-morpholine and 2-bromo-2', 4-dimethylacetophenone provided a yellow solid in 28% yield, mp 253-254.5°C.

¹H NMR (DMSO-d₆): δ 10.44 (1H, s), 7.98 (2H, bs), 7.31 (2H, d, J = 9.0 Hz), 7.14 (1H, d, J = 7.8 Hz), 7.02 (1H, s), 6.99 (1H, d, J = 7.8 Hz), 6.90 (2H, d, J = 9.0 Hz), 3.70 (4H, t, J = 4.7 Hz), 3.04 (4H, t, J = 4.7 Hz), 2.26 (3H, s), 2.20 (3H, s).

Anal. Calcd. for $C_{22}H_{24}N_4O_2S$: C, 64.68; H, 5.92; N, 13.71; S, 7.85. Found: C, 64.49; H, 5.97; N, 13.64; S, 7.93.

47

30

Example C(55): [4-Amino-2-(4-morpholin-4-yl-phenylamino)-thiazol-5-yl]-(2,6-dichloro-phenyl)-methanone

5

The title compound was prepared in a manner analogous to that used in Example C(1). 4-(4-Isothiocyanato-phenyl)-morpholine (from Example C(54)) and 2-bromo-2',6'-dichloro-acetophenone (from Example C(52)) provided a yellow solid in 9% yield, mp 245-247°C. 1 H NMR (DMSO-d₆): δ 10.58 (1H, s), 8.02 (2H, bs), 7.52 (2H, d, J = 7.3 Hz), 7.41 (1H, m), 7.30 (2H, d, J = 9.0 Hz), 6.92 (2H, d, J = 9.0 Hz), 3.72 (4H, dd, J = 5.0, 4.2 Hz), 3.06 (4H, dd, J = 5.0, 4.2 Hz).

Anal. Calcd. for $C_{20}H_{18}N_4O_2SCl$: C, 53.46; H, 4.04; N, 12.47; S, 7.14; Cl, 15.78. Found: C, 53.39; H, 4.04; N, 12.47; S, 7.21; Cl, 15.71.

• Example C(56): Ethyl 4-[4-Amino-5-(2,6-dichloro-benzoyl)-thiazol-2-ylamino]-benzoate

15

10

The title compound was prepared in a manner analogous to that used in Example C(1). 4-Ethoxycarbonylphenyl isothiocyanate and 2-bromo-2',6'-dichloro-acetophenone (from Example C(52)) provided an amorphous yellow solid in 48% yield.

¹H NMR (DMSO-d₆): δ 11.13 (1H, s), 8.15 (2H, bs), 7.92 (2H, d, J = 8.7 Hz), 7.70 (2H, d, J =

8.7 Hz), 7.58-7.40 (3H, m), 4.27 (2H, q, J = 7.0 Hz), 1.29 (3H, t, J = 7.0 Hz).

- 20 Anal. Calcd. for C₁₉H₁₅N₃O₃SCl₂: C, 52.30; H, 3.47; N, 9.63; S, 7.35; Cl, 16.25. Found: C, 52.20; H, 3.42; N, 9.63; S, 7.44; Cl, 16.26.
 - Example C(57): [4-Amino-2-(1H-benzoimidazol-6-ylamino)-thiazol-5-yl]-(2,4,6-trimethyl-phenyl)-methanone

25

2-Bromo-2',4',6'-trimethyl-acetophenone, which has the structural formula

Example C(12). 2,4,6-trimethylacetophenone (1.50 g, 9.25 mmol) provided 2.26 g (100%) of clear oil, which was used without further purification.

¹H NMR (CDCl₃): δ 6.87 (2H, s), 4.27 (2H, s), 2.22 (9H, s).

The title compound was prepared in a manner analogous to that used in Example C(1).

6-Isothiocyanato-1H-benzoimidazole (see Boev et al., *Pharm. Chem. J. (Engl. Transl).*, vol. 24

(1990), pp. 818-822) and 2-bromo-2',4',6'-trimethyl-acetophenone provided a yellow powder in 26% yield, that decomposed above 185°C.

¹H NMR (DMSO-d₆): δ 12.42 (1H, bs), 10.66 (1H, bs), 8.17 (1H, s), 7.96 (2H, bs), 7.75 (1H, bs), 7.44 (1H, bs), 7.16 (1H, d, J = 8.7 Hz), 6.82 (2H, s), 2.21 (3H, s), 2.11 (6H, s).

HRFABMS (MH⁺): Calcd.: 378.1389. Found: 378.1381.

- Anal. Calcd. for C₂₀H₁₉N₅OS 0.3 H₂O: C, 62.74; H, 5.16; N, 18.29; S, 8.37. Found: C, 62.96; H, 5.14; N, 18.24; S, 8.35.
 - Example C(58): [4-Amino-2-(1H-benzoimidazol-6-ylamino)-thiazol-5-yl]-(2,3,6-trimethyl-phenyl)-methanone

NH₂ O CH₃

15

20

2-Bromo-2',3',6'-trimethyl-acetophenone, which has the structural formula

Br. H₃C

H₃C CH₃, was prepared in a manner analogous to 2-bromo-2'-iodo-acetophenone for Example C(12). 2',3',6'-trimethylacetophenone (1.50 g, 9.25 mmol) provided 2.10 g (93%) of

clear oil, which was used without further purification.

The title compound was prepared in a manner analogous to that used in Example C(1). 6-Isothiocyanato-1H-benzoimidazole (see Boev et al., *Pharm. Chem. J. (Engl. Transl).*, vol. 24 (1990), pp. 818-822) and 2-bromo-2',3',6'-trimethyl-acetophenone provided a yellow powder in 70% yield, that decomposed above 196°C.

¹H NMR (DMSO-d₆): δ 12.41 (1H, bs), 10.65 (1H, bs), 8.17 (1H, s), 7.96 (2H, bs), 7.70 (1H, bs), 7.52 (1H, bs), 7.17 (1H, dd, J = 8.4, 1.9 Hz), 6.82 (2H, s), 2.11 (9H, s).

Anal. Calcd. for $C_{20}H_{19}N_5OS$: C, 63.64; H, 5.07; N, 18.55; S, 8.50. Found: C, 63.40; H, 5.17; N, 18.37; S, 8.36.

• Example C(59): [4-Amino-2-(4-sulfamoyl-phenylamino)-thiazol-5-yl]-(3,5-dimethyl-pyridin-4-yl)-methanone

5

10

15

4-(Bromoacetyl)-3,5-dimethylpyridine hydrobromide, which has the structural formula

Hz), 7.27 (2H, s), 2.15 (6H, s).

mmol; Kutney et al., *Can. J. Chem.*, vol. 41 (1963), pp. 695-702) was dissolved in 30% HBr in acetic acid (1 mL), heated to 70°C, and treated with a mixture of bromine (0.17 mL, 3.36 mmol) in 30% HBr in acetic acid (0.5 mL). After 2 hours, the mixture was allowed to cool to ambient temperature and ether (8 mL) was added. The resultant precipitate was filtered off, rinsed with ether (2x), and dried to afford 1.03 g (100%) of a purple solid, mp 222-225°C, that was used without further purification.

The title compound was prepared essentially as described for Example C(1). 4- Isothiocyanato-benzenesulfonamide and 4-(bromoacetyl)-3,5-dimethylpyridine hydrobromide provided a tan solid, which was purified via column chromatography with 10% MeOH/CHCl₃ and crystallized from MeOH to obtain 35 mg (51%) of amorphous yellow solid.

1H NMR (DMSO-d6): δ 11.09 (1H, s), 8.32 (2H, s), 8.18 (2H, bs), 7.74 (4H, dd, J = 11.5, 9.3)

IR (KBr): 3378, 3342, 3260, 3160, 1625, 1594, 1560, 1518, 1443, 1342, 1160 cm⁻¹.

HRFABMS: Calcd. for C₁₇H₁₈N₅O₃S₂ (MH⁺): 404.0851. Found: 404.0840.

Anal. Calcd for C₁₇H₁₇N₅O₃S₂ • 0.4 H₂O • 0.3 MeOH: C, 49.44; H, 4.56; N, 16.66; S, 15.26. Found: C, 49.13; H, 4.31; N, 16.61; S, 15.10.

• Example C(60): [4-Amino-2-(1H-benzoimidazol-6-ylamino)-thiazol-5-yl]-(2,6-dimethyl-phenyl)-methanone

25

20

1

2',6'-Dimethylacetophenone, which has the structural formula , was prepared according to a procedure for o-nitro-acetophenone (Reynolds et al, Org. Syn. Coll., vol. IV (1963), pp. 708-710). 2,6-Dimethylbenzoic acid (3.00 g, 20.0 mmol) provided 2.56 g (86% yield) of yellow oil, which was used without further purification.

¹H NMR (CDCl3): δ 7.16 (1H, t, J = 7.2 Hz), 7.02 (2H, d, J = 7.2 Hz), 2.48 (3H, s), 2.25 (6H, s).

Br

2-Bromo-2',6'-dimethyl-acetophenone, which has the structural formula was prepared in a manner analogous to 2-bromo-2'-iodo-acetophenone, see Example C(12).

2',6'-dimethylacetophenone (1.50 g, 10.1 mmol) provided 2.04 g (89% yield) of clear oil, which was used without further purification.

¹H NMR (CDCl₃): δ 7.21 (1H, t, J = 7.2 Hz), 7.05 (2H, t, J = 7.2 Hz), 4.29 (2H, s), 2.26 (6H, s). The title compound was prepared in a manner analogous to that used in Example C(1). 6-Isothiocyanato-1H-benzoimidazole (see Boev et al., *Pharm. Chem. J. (Engl. Transl).*, vol. 24 (1990), pp. 818-822) and 2-bromo-2',6'-dimethyl-acetophenone provided a yellow solid in 71% yield, that decomposed above 185°C.

¹H NMR (DMSO-d₆): δ 12.41 (1H, bs), 10.67 (1H, bs), 8.17 (1H, s), 7.99 (2H, s), 7.60 (1H, s), 7.52 (1H, s), 7.17 (1H, dd, J = 8.7, 1.9 Hz), 7.12 (1H, d, J = 7.1 Hz), 7.02 (1H, d, J = 7.5 Hz), 2.15 (6H, s).

HRFABMS (MH⁺): Calcd.: 364.1232. Found: 364.1227.

Anal. Calcd. for $C_{19}H_{17}N_5OS \cdot 0.3$ CH₃OH: C, 62.14; H, 4.92; N, 18.77; S, 8.60. Found: C, 62.43; H, 5.15; N, 18.91; S, 8.60.

• Example C(61): [4-Amino-2-(1H-benzoimidazol-6-ylamino)-thiazol-5-yl]-(2-methyl-6-nitro-phenyl)-methanone

25

15

2'-Methyl-6'-nitro-acetophenone, which has the structural formula O_2N , was prepared according to a procedure for o-nitro-acetophenone (see Reynolds et al, Org. Syn. Coll.,

vol. IV, (1963), pp. 708-710). 2-Methyl-6-nitrobenzoic acid (15.0 g, 82.8 mmol) provided 14.7 g (99% yield) of yellow oil, which was used without further purification.

¹H NMR (CDCl3): δ 8.04 (1H, d, J = 8.4 Hz), 7.55 (1H, d, J = 7.5 Hz), 7.44 (1H, dd, J = 8.4, 7.5 Hz), 2.56 (3H, s), 2.35 (3H, s).

2-Bromo-2'-methyl-6'-nitro-acetophenone, which has the structural formula

Brook

5

O₂N , was prepared in a manner analogous to 5-bromoacetyl-4-methyl-1H-imidazole for Example C(40). Crude 2'-methyl-6'-nitro-acetophenone (1.56 g, 8.72 mL) furnished a white solid, 2.17 g (97% yield), that was used without further purification.

¹H NMR (CDCl₃): δ 8.11 (1H, d, J = 7.8 Hz), 7.62 (1H, d, J = 7.8 Hz), 7.52 (1H, d, t = 7.8 Hz), 10 4.33 (2H, s), 2.40 (3H, s).

The title compound was prepared in a manner analogous to that used in Example C(1). 6-Isothiocyanato-1H-benzoimidazole (see Boev et al., *Pharm. Chem. J. (Engl. Transl).*, vol. 24 (1990), pp. 818-822) and 2-bromo-2'-methyl-6'-nitro-acetophenone provided a brown solid in 32% yield, mp 198-201°C.

¹H NMR (DMSO-d₆): δ 12.40 (1H, bs), 10.78 (1H, bs), 8.17 (1H, d, J = 10.6 Hz), 8.00 (2H, bs), 7.92 (2H, d, J = 8.4 Hz), 7.68 (1H, d, J = 7.5 Hz), 7.62-7.44 (2H, m), 7.19 (1H, d, J = 7.5 Hz), 2.30 (3H, s).

HRFABMS (MH⁺): Calcd.: 395.0926. Found: 395.0920.

Anal. Calcd. for $C_{18}H_{14}N_6O_3S \cdot 0.5 H_2O$: C, 53.59; H, 3.75; N, 20.83; S, 7.95. Found: C, 53.43; H, 3.67; N, 20.68; S, 7.81.

• Example C(62): [4-Amino-2-(4-morpholin-4-yl-phenylamino)-thiazol-5-yl]-(2,6-dimethyl-phenyl)-methanone

The title compound was prepared in a manner analogous to that used in Example C(1).

4-(4-Isothiocyanato-phenyl)-morpholine (from Example C(54)) and 2-bromo-2',6'-dimethylacetophenone (from Example C(60)) provided a brown solid in 23% yield, mp 221-223°C.

H NMR (DMSO-d₆): δ 10.42 (1H, s), 7.95 (2H, bs), 7.30 (2H, d, J = 9.0 Hz), 7.18-7.10 (1H, m), 7.02 (2H, d, J = 7.5 Hz), 6.91 (2H, d, J = 9.0 Hz), 3.72 (4H, t, J = 4.8 Hz), 3.05 (4H, t, J = 4.8 Hz), 2.16 (6H, s).

1 HRFABMS (M+): Calcd.: 408.1620. Found: 408.1607.

Anal. Calcd. for C₂₂H₂₄N₄O₂S • 0.75 H₂O: C, 62.61; H, 6.09; N, 13.28; S, 7.60. Found: C, 62.64; H, 6.10; N, 13.05; S, 7.55.

• Example C(63): [4-Amino-2-(1H-benzoimidazol-5-yl-amino)-thiazol-5-yl]-(3,5-dichloro-pyridin-4-yl)-methanone

5

4-Bromoacetyl-3,5-dichloropyridine, which has the structural formula CINN, was

first prepared as follows. A mixture of 3,5-dichloropyridine-4-carboxylic acid (4.00 g, 20.9 mmol; Cale et al., *J. Med. Chem.*, vol. 32 (1989), pp. 2178-2199), benzene (20 mL), DMF (0.4 mL), and thionyl chloride (3.80 mL, 52.0 mmol) was heated at reflux for 60 min, allowed to cool to ambient temperature, concentrated *in vacuo*, suspended in ether (20 mL), and cautiously treated with a solution of trimethylsilyldiazomethane (25 mL of 2.0 M in hexanes). After 72 hours, 48% HBr (18 mL) was carefully added dropwise over 20 min, initially with vigorous gas evolution. After 30 min, the mixture was made alkaline carefully with NaHCO3 and extracted with ether. The ethereal layers were dried over Na₂SO₄ and evaporated to give an orange oil, which was purified via column chromatography with 50% CH₂Cl₂/hex eluant to separate 2.50 g (51%) of 3,5-dichloropyridine-4-carbonyl chloride as a yellow oil, providing desired product, 2.00 g (36%) of pale yellow crystals that darkened at ambient temperature, which was used

NMR (CDCl₃): δ 8.58 (2H, s), 4.37 (2H, s).

Anal. Calcd for C₇H₄BrCl₂NO • 0.02 C₆H₁₄: C, 31.60; H, 1.59; N, 5.18. Found: C, 31.92; H,

The title compound was prepared essentially as described for Example C(1). 6Isothiocyanato-1H-benzoimidazole (see Boev et al., *Pharm. Chem. J. (Engl. Transl).*, vol. 24
(1990), pp. 818-822) and 4-(bromoacetyl)-3,5-dichloropyridine gave a product that was extracted into 10% MeOH/CHCl₃ and column chromatography with same to furnish a yellow amorphous solid, 198 mg (55%). An analytical sample precipitated from EtOH, mp 235-240° (d).

1H NMR (CD₃OD): δ 8.60 (2H, s), 8.18 (1H, s), 7.98 (1H, bs), 7.58 (1H, d, J = 9.0 Hz), 7.30 (1H, dd, J = 1.2, 8.7 Hz).

53

1.59; N, 5.24.

IR (KBr): 3183, 1608, 1544, 1461, 1427, 1355 cm⁻¹.
HRFABMS: Calcd. for C₁₆H₁₁Cl₂N₆OS (MH⁺): 405.0092. Found: 405.0079.
Anal. Calcd for C₁₆H₁₀Cl₂N₆OS • 1.1 H₂O: C, 45.21; H, 2.89; N, 19.77; Cl, 16.68; S, 7.54.
Found: C, 45.49; H, 2.59; N, 19.64; Cl, 16.62; S, 7.43.

• Example C(64): 2S-[4-Amino-2-(1H-benzoimidazol-5-yl-amino)-thiazole-5-carbonyl]-N-carbobenzyloxy-pyrrolidine

2S-Bromoacetyl-N-carbobenzyloxy-pyrrolidine, which has the structural formula

5

15

20

25

, was first prepared as follows. The acid chloride of N-carbobenzyloxy-L-proline (1.20 g, 4.80 mmol) was made according to Aoyama et al. *Chem. Pharm. Bull.*, vol. 29 (1981), pp. 3249-3255, with oxalyl chloride and a catalytic amount of DMF. To a solution of the crude acid chloride in THF (5 mL) and MeCN (5 mL) at 0°C was carefully added dropwise a solution of trimethylsilyldiazomethane (5.0 mL of 2.0 M in hex), and initially vigorous gas evolution occurred. The resultant red suspension was allowed to warm and stirred at ambient temperature overnight. The brown mixture was then cooled to 0°C, cautiously treated with a mixture of 47% HBr (4.1 mL) and ether (10 mL), and initially vigorous gas evolution ensued. The mixture was allowed to warm to ambient temperature over 1h, then made alkaline with satd aq NaHCO₃ (20 mL), and extracted with EtOAc (2 x 20 mL). The combined organic layers were dried over Na₂SO₄ and evaporated to give a brown oil, 1.57 g (100%), which was used without further purification.

NMR (CDCl₃): δ 7.44-7.24 (5H, m), 4.34 (1H, d, J = 15.6 Hz), 4.27 (1H, d, J = 15.6 Hz).

The title compound was prepared essentially as described for Example C(1). 6-Isothiocyanato-1H-benzoimidazole (see Boev et al., *Pharm. Chem. J. (Engl. Transl).*, vol. 24 (1990), pp. 818-822) and 2S-bromoacetyl-N-carbobenzyloxy-pyrrolidine provided a solid that was precipitated from iPrOH/hex twice to give a yellow amorphous solid, 154 mg (54%), mp 150-165° (d).

54

1 H NMR (DMSO-d₆): δ 12.40 (1H, d, J = 7.8 Hz), 10.68 (1H, d, J = 19.3 Hz), 8.20 (1H, d, J = 10.6 Hz), 8.10-7.70 (2H, m), 7.52 (1H, dd, J = 8.7, 34.8 Hz), 7.45-7.05 (5H, m), 5.17-4.80 (2H, m), 4.32 (1H, d, J = 4.9 Hz), 4.30-4.18 (1H, bm), 2.33-1.70 (2H, bm).

IR (KBr): 3278, 1686, 1599, 1560, 1421, 1356, 1121 cm⁻¹.

- HRFABMS: Calcd. for $C_{23}H_{23}N_6O_3S$ (MH⁺): 463.1552. Found: 463.1538. Anal. Calcd for $C_{23}H_{22}N_6O_3S \cdot 0.1 H_2O \cdot 0.7 i$ PrOH: C, 59.53; H, 5.53; N, 16.60; S, 6.33. Found: C, 59.53; H, 5.53; N, 16.60; S, 6.22.
 - Example C(65): 2S-[4-Amino-2-(4-sulfamoyl-phenylamino)-thiazole-5-carbonyl]-N-carbobenzyloxy-pyrrolidine

The title compound was prepared essentially as described for Example C(1). 4-Isothiocyanato-benzenesulfonamide and 2S-bromoacetyl-N-carbobenzyloxy-pyrrolidine (see Example C(64)) provided a solid that was purified via column chromatography with 5% MeOH/CHCl₃ eluant to give a yellow amorphous solid, 140 mg (46%), mp 150-160° (d).

15 $l_{H NMR}$ (DMSO-d₆): δ 11.05 (1H, d, J = 10.0 Hz), 7.98 (2H, bd, J = 17.1 Hz), 7.79 (4H, dd, J = 12.1, 9.7 Hz), 7.41-7.11 (5H, m), 5.15-4.89 (2H, m), 4.32-4.21 (1H, bm), 3.51-3.40 (2H, bm), 2.35-2.13 (1H, bm), 1.93-1.75 (3H, bm).

IR (KBr): 3288, 1686, 1598, 1550, 1527, 1420, 1157 cm⁻¹.

HRFABMS: Calcd. for $C_{22}H_{23}N_5O_5S_2Cs$ (M+Cs⁺): 634.0195. Found: 634.0215.

- 20 Anal. Calcd for C₂₂H₂₃N₅O₅S₂ 0.3 H₂O 0.1 CHCl₃: C, 51.15; H, 4.60; N, 13.50; S, 12.36. Found: C, 51.36; H, 4.63; N, 13.31; S, 12.47.
 - Example C(66): [4-Amino-2-(1H-benzoimidazol-6-ylamino)-thiazol-5-yl]-(2-bromo-6-methyl-phenyl)-methanone

25

2'-Bromo-6'-methyl-acetophenone, which has the structural formula

prepared in a manner analogous to o-nitro-acetophenone (see Reynolds et al., Org. Syn. Coll,

PCT/US98/22809 WO 99/21845

vol. IV (1963), pp. 708-710). From 2-methyl-6-bromobenzoic acid (3.10 g, 14.4 mmol) was provided 2.45 g (80%) of yellow oil, which matched previously described material by ¹H NMR (Swenton et al., J. Org. Chem., vol. 58 (1993), pp. 3308-3316) and was used without further purification.

5

2,2'-Dibromo-6'-methyl-acetophenone, which has the structural formula was prepared in a manner analogous to 2-bromo-2'-iodo-acetophenone, see Example C(12). Crude 2'-bromo-6'-methyl-acetophenone (1.00 g, 4.69 mmol) provided 1.48 g of yellow oil, which was used without further purification.

¹H NMR (CDCl3): δ 7.44-7.37 (1H, m), 7.21-7.17 (2H, m), 4.42 (2H, s), 2.31 (3H, s).

10

The title compound was prepared in a manner analogous to that used in Example C(1). 6-Isothiocyanato-1H-benzoimidazole (see Boev et al., Pharm. Chem. J. (Engl. Transl)., vol. 24 (1990), pp. 818-822) and 2,2'-dibromo-6'-methyl-acetophenone provided a brown solid in 32% yield, mp 208-210°C.

¹H NMR (DMSO-d₆): δ 12.43 (1H, bs), 10.74 (1H, bs), 8.18 (1H, s), 8.02 (2H, s), 7.75 (1H, bs), 7.44 (1H, bs), 7.44 (1H, d, J = 7.5 Hz), 7.28-7.14 (3H, m), 2.22 (3H, s).

15 ESIMS(MH⁺): 428/430.

> Anal. Calcd. for C₁₈H₁₄N₅OSBr • 1.0 H₂O: C, 48.44; H, 3.61; N, 15.69; S, 7.18; Br, 17.90. Found: C, 48.54; H, 3.69; N, 15.57; S, 7.11; Br, 17.88.

Example C(67): [4-Amino-2-(1H-benzoimidazol-6-ylamino)-thiazol-5-yl]-(3-methylbiphenyl-2-yl)-methanone

20

, was

1-(3-Methyl-biphenyl-2-yl)-ethanone, which has the structural formula 25 prepared in the following manner. To 2'-bromo-6'-methyl-acetophenone (from Example C(66); 760 mg, 3.58 mmol) and Pd(OAc)2 (114 mg) in DMF (38 mL) at 0°C under Ar° was added in succession phenylboronic acid (495 mg) and 2M aq Na₂CO₃ (1.6 mL). The mixture was heated

at 90°C for 3 hours, then diluted with water (50 mL), and extracted with ether (2 x 100 mL). The ethereal extracts were concentrated to a crude product, which was purified via column

30

chromatography with 2-5% ether/hexane stepwise gradient to obtain 670 mg (89% yield) of yellow oil, used without further purification.

¹H NMR (CDCl₃): δ 7.44-7.31 (5H, m), 7.25-7.19 (2H, m), 7.16-7.09 (1H, m), 2.33 (3H, s), 1.93 (3H, s).

5

Br., was

2-Bromoacetyl-3-methyl-biphenyl, which has the structural formula , was prepared in a manner analogous to 2-bromo-2'-iodo-acetophenone, see Example C(12). Crude 1-(3-methyl-biphenyl-2-yl)-ethanone (295 mg, 1.40 mmol) provided 413 mg of yellow oil, which was used without further purification.

10 HNMR (CDCl3): δ 7.48-7.18 (8H, m), 4.42 (2H, s), 2.38 (3H, s).

The title compound was prepared in a manner analogous to that used in Example C(1). 6-Isothiocyanato-1H-benzoimidazole (see Boev et al., *Pharm. Chem. J. (Engl. Transl).*, vol. 24 (1990), pp. 818-822) and 2-bromoacetyl-3-methyl-biphenyl provided a yellow solid in 49% vield, mp 184-190°C.

¹H NMR (DMSO-d₆): δ 8.13 (1H, s), 7.87 (1H, s), 7.53 (1H, d, J = 8.7 Hz), 7.46-7.39 (2H, m), 7.38-7.15 (7H, m), 2.35 (3H, s).

HRFABMS (M+): Calcd.: 426.1389. Found: 426.1374.

Anal. Calcd. for C₂₄H₁₉N₅OS • 1.0 H₂O • 0.3 CH₃CN: C, 64.82; H, 4.84; N, 16.29; S, 7.03. Found: C, 64.88; H, 4.69; N, 16.40; S, 7.28.

• Example C(68): [4-Amino-2-(4-methoxy-benzylamino)-thiazol-5-yl]-(2,5-dimethyl thiophen-3-yl)-methanone

20

The title compound was prepared in a manner like that described for Example C(1). 3-Bromoacetyl-2,5-dimethyl-thiophene (from Example C(52)) and 1-(2-isothiocyanato-ethyl)-4-methoxy-benzene provided a white solid in 72% yield, mp 175°C.

¹H NMR (DMSO-d6): δ 6.88 (2H, d, J = 8.7 Hz), 6.74 (2H, d, J = 8.7 Hz), 6.41 (1H, s), 6.24 (1H, s), 4.88 (2H, s), 3.78 (3H, s), 2.40 (3H, s), 1.98 (3H, s).

IR (KBr): 3311, 2920, 1663, 1552, 1514, 1244 cm⁻¹.

FABMS (MH+): 380.

1 Anal. Calcd. for C₁₈H₁₉N₃O₂S₂: C, 57.88; H, 5.13; N, 11.25; S, 17.17. Found: C, 57.97; H, 5.11; N, 11.33; S, 17.28.

• Example C(69): {4-Amino-2-[4-morpholin-4-yl-phenylamino]-thiazol-5-yl}-(3,5-dichloro-pyridin-4-yl)-methanone

The title compound was prepared in a manner analogous to that used in Example C(1). 4-(4-Isothiocyanato-phenyl)-morpholine (from Example C(54)) and 4-bromoacetyl-3,5-dichloropyridine (from Example C(63)) provided a yellow solid in 58% yield, mp 291.5-292.5°C.

¹H NMR (DMSO-d₆): δ 10.75 (1H, s), 8.71 (2H, s), 8.32 (1H, bs), 8.01 (1H, bs), 7.30 (2H, bs), 6.92 (2H, d, J = 9.0 Hz), 3.70 (4H, t, J = 4.5 Hz), 3.05 (4H, t, J = 4.5 Hz). FABMS (MH⁺): 450/452

Anal. Calcd. for $C_{19}H_{17}N_5O_2SCl_2$: C, 50.67; H, 3.80; N, 15.55; S, 7.12, Cl, 15.74. Found: C, 50.55; H, 3.83; N, 15.29; S, 6.95, Cl, 15.47.

• Example C(70): {4-Amino-2-[4-(4-methyl-piperazin-1-yl)-phenylamino]-thiazol-5-yl}-(3,5-dichloro-pyridin-4-yl)-methanone

1-Methyl-4-(4-nitro-phenyl)-piperazine, which has the structural formula

20 , was first prepared as follows. A mixture of 1-methyl-piperazine (4.00 g, 39.9 mmol) and 1-chloro-4-nitro-benzene (3.14 g, 20.0 mmol) was heated to 80°C for 24 hours, allowed to cool, and diluted with H₂O. The aqueous layer was extracted with MeOH:CH₂Cl₂ (20:80; 4 x 50 mL). The combined organic layers were dried over MgSO₄, filtered, concentrated under reduced pressure, and recrystallized from ethanol to afford 3.2 g (75% yield) of a yellow solid, which matched previously reported material by ¹H NMR (de Silva et al., *J. Chem. Soc. Perkin Trans.* 2, vol. 9 (1993), pp. 1611-1616) and was used without further purification.

4-(4-Methyl-piperazin-1-yl)-aniline, which has the structural formula

henyl)-piperazine (2 g, 9.02 mmol) in absolute ethanol (30 mL) was added 10% Pd-C (250 mg).

58

30

The resultant mixture was stirred under an atmosphere of H₂ for 5 hours, then filtered through a pad of Celite. The filtrate was concentrated under reduced pressure to afford 1.7 g (99% yield) of a brown solid, which was used without further purification.

¹H NMR (CDCl₃): δ 6.81 (2H, d, J = 8.8 Hz), 6.62 (2H, d, J = 8.8 Hz), 3.42 (2H, bs), 3.15 (4H, t, J = 5.0 Hz), 2.68 (4H, t, J = 5.0 Hz), 2.40 (3H, s).

1-(4-Isothiocyanato-phenyl)-4-methyl-piperazine, which has the structural formula

, was prepared in a manner analogous to 1-(4-isothio-cyanato-phenyl)-1H-imidazole for Example C(41). 4-(4-Methyl-piperazin-1-yl)-aniline provided 1.7 g (83% yield) of a cream-colored solid, mp 118-120°C (lit. 120-122°C, Galstuckova et al., *J. Org. Chem. USSR* (Engl. Transl.), vol. 5 (1969), pp. 1121-1124), which was used without further purification. IR spectrum matched that reported by Martvon et al., *Chem. Zvesti*, vol. 27 (1973), pp. 808-810. ¹H NMR (CDCl₃): δ 7.20 (2H, d, J = 9.0 Hz), 6.82 (2H, d, J = 9.0 Hz), 3.20 (4H, dd, J = 5.0, 4.7 Hz), 2.52 (4H, dd, J = 5.0, 4.7 Hz), 2.24 (3H, s).

Anal. Calcd. for C₁₂H₁₅N₃S: C, 61.77; H, 6.48; N, 18.01; S, 13.69. Found: C, 61.51; H, 6.56; N, 17.86; S, 13.69.

The title compound was prepared in a manner like that described for Example C(1). 1(4-Isothiocyanato-phenyl)-4-methyl-piperazine and 4-bromoacetyl-3,5-dichloro-pyridine (from Example C(63)) gave a crude solid, which after recrystallization with EtOH/H₂O, provided a 40 mg (23% yield) of a pale brown solid, mp 150-151°C.

 1 H NMR (DMSO-d₆): δ 10.78 (1H, s), 8.70 (1H, s), 8.00-8.41 (2H, m), 7.24 (2H, bs), 6.88 (2H, d, J = 9.0 Hz), 3.08 (4H, dd, J = 5.0, 4.7 Hz), 2.40 (4H, dd, J = 5.0, 4.7 Hz), 2.20 (3H, s).

20 IR (KBr): 3395, 2925, 1618, 1546, 1514, 1426, 1240 cm⁻¹.

HRFABMS: Calcd. for $C_{20}H_{21}Cl_2N_6OS$ (MH⁺): 463.0875. Found: 563.0861. Anal. Calcd. for $C_{20}H_{20}N_6OSCl_2 \cdot 0.6 H_2O \cdot 0.1 EtOH \cdot 0.05 CHCl_3$: C, 50.20; H, 5.06; N, 16.22; S, 6.19, Cl, 14.71. Found: C, 50.34; H, 5.11; N, 16.53; S, 6.43; Cl, 14.74.

• Example C(71): {4-Amino-2-[4-(4-methyl-piperazin-1-yl)-phenylamino]-thiazol-5-yl}-(2,6-dichloro-phenyl)-methanone.

H₃C-N S CH CI

The title compound was prepared in a manner like that described for Example C(1). 1-(4-Isothiocyanato-phenyl)-4-methyl-piperazine (from Example C(70)) and 2-bromo-2',6'-

59

30

25

5

dichloro-acetophenone (from Example C(52)) gave, after recrystallization with $H_2O/EtOH/CH_2Cl_2$, 2.2 g (64% yield) of a yellow solid, mp 160-162°C.

HNMR (DMSO-d₆): δ 10.60 (1H, s), 8.00 (2H, bs), 7.20-7.41 (4H, m), 6.88 (2H, d, J = 9.0 Hz), 3.08 (4H, dd, J = 5.0, 4.7 Hz), 2.40 (4H, dd, J = 5.0, 4.7 Hz), 2.18 (3H, s). IR (KBr): 3394, 3164, 2942, 2810, 1610, 1546, 1427, 1242 cm⁻¹.

HRFABMS: Calcd. for $C_{21}H_{22}Cl_2N_5OS$ (MH⁺): 462.0922. Found: 462.0906. Anal. Calcd. for $C_{21}H_{21}N_5OSCl_2 \cdot 0.5 H_20 \cdot 1 EtOH \cdot 0.1 CH_2Cl_2$: C, 52.75; H, 5.40; N, 13.32; S, 6.10, Cl, 14.83. Found: C, 53.06; H, 5.37; N, 13.51; S, 6.26; Cl, 14.63.

• Example C(72): [4-Amino-2-(1H-benzoimidazol-6-ylamino)-thiazol-5-yl]-(3,5-dibromothiophen-2-yl)-methanone

10

5

S Br was

2-Acetyl-3,5-dibromo-thiophene, which has the structural formula Ö

first prepared as follows. To a solution of 2, 4-dibromothiophene (2.0 g, 8.27 mmol) and acetyl chloride (0.82 mL, 11.6 mmol) in ether (3 mL) was added portionwise AlCl₃ (1.5 g, 11.2 mmol). After 4 hours, another portion of acetyl chloride and AlCl₃ were added, the mixture was refluxed for 1 hour and allowed to cool. The reaction was carefully quenched with ice and extracted with ether. The ethereal layers were decolorized with activated carbon, dried over MgSO₄, passed through a pad of silica gel, and concentrated to give 1.8 g (77% yield) of dark brown oil, which had a ¹H NMR spectrum that matched previously described, see del Agua et al, *J. Heterocycl. Chem.*, vol. 18 (1981), pp. 1345-1347, and was used without further characterization.

2-Bromoacetyl-3,5-dibromo-thiophene, which has the structural formula

, was next prepared in a manner analogous to 2-bromo-2'-iodo-acetophenone, see

25 Example C(12). 2-Acetyl-3,5-dibromo-thiophene (220 mg, 0.77 mmol) provided 295 mg of dark brown solid, which was used without further purification.

¹H NMR (CDCl₃): δ 7.13 (1H, s), 4.54 (2H, s).

Finally, the title compound was prepared in a manner analogous to that used in Example C(1). 6-Isothiocyanato-1H-benzoimidazole (see Boev et al., *Pharm. Chem. J. (Engl. Transl).*,

vol. 24 (1990), pp. 818-822) and 2-bromoacetyl-3,5-dibromo-thiophene provided a dark brown solid in 50% yield, mp 261-264°C.

¹HNMR (DMSO-d₆): δ 12.50 (1H, bs), 10.94 (1H, s), 8.27 (2H, bs), 8.21 (1H, s), 7.87 (1H, bs), 7.57 (1H, d, J = 8.7 Hz), 7.36 (1H, s), 7.24 (1H, d, J = 8.7 Hz).

HRFABMS (MH⁺): Calcd.: 499.8673. Found: 499.8686.

5 Anal. Calcd. for C₁₅H₉N₅OS₂Br₂ • 0.5 H₂O: C, 35.45; H, 1.98; N, 13.78; S, 12.62; Br, 31.45. Found: C, 35.37; H, 1.73; N, 13.52; S, 12.75; Br, 31.25.

• Example C(73): 4-[4-Amino-5-(3,5-dibromo-thiophene-2-carbonyl)-thiazol-2-ylamino]-benzenesulfonamide

$$H_2N - S \longrightarrow NH$$

The title compound was prepared in a manner analogous to that used in Example C(1). 4-Isothiocyanato-benzenesulfonamide and 2-bromoacetyl-3,5-dibromo-thiophene (from Example C(72)) provided a yellow powder in 41% yield, mp 254-255°C.

 1 H NMR (DMSO-d₆): δ 11.24 (1H, s), 8.31 (2H, bs), 7.77 (4H, s), 7.40 (1H, s), 7.28 (2H, s).

15 FABMS (MH⁺): 536/538/540.

Anal. Calcd. for $C_{14}H_{10}N_4O_3S_3Br_2$: C, 31.24; H, 1.87; N, 10.41; S, 17.87; Br, 29.69. Found: C, 31.08; H, 1.90; N, 10.16; S, 17.69; Br, 29.96.

• Example C(74): [4-Amino-2-(1H-benzoimidazol-6-ylamino)-thiazol-5-yl]-(1,5-dimethyl-1H-imidazol-4-yl)-methanone

1,5-Dimethyl-1H-imidazole-4-carboxylic acid, which has the structural formula

water (20 mL) was added to a solution of ethyl 1,5-dimethyl-1H-imidazole-4-carboxylate (5.39 g, 32.0 mmol; Ohno et al, *Chem. Pharm. Bull.*, vol. 42 (1994), pp. 1463-1473) in EtOH (20 mL). After 5 hours, the mixture was cooled to 0°C, and acidified with 38% HCl to pH 3-4. The resultant white solid was filtered off, washed with small amount of cold EtOH:H₂O (1:1), and

5

10

20

25

dried under high vacuum to give 3.51 g (78%) of white solid, which was used without further purification.

¹H NMR (D_2O): δ 8.49 (1H, s), 3.73 (3H, s), 2.46 (3H, s).

Anal. Calcd. for C₆H₈N₂O₂: C, 51.42; H, 5.75; N, 19.99. Found: C, 51.52; H, 5.78; N, 19.98.

1,5-Dimethyl-1H-imidazole-4-carboxylic acid N-methoxy-N-methyl-amide, which has

the structural formula , was next prepared as follows. To a mixture of 1,5-dimethyl-1H-imidazole-4-carboxylic acid (2.01 g, 14.4 mmol) in DMF (20 mL) was added O-(7-azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate (HATU; 6.00 g, 15.8 mmol) and diisopropylethylamine (7.5 mL, 43 mmol). After 5 min., to the resultant clear solution was added N,O-dimethylhydroxylamine hydrochloride (1.54 g, 15.79 mmol). After 1 hour, the resultant yellow solution was partitioned between CHCl₃ and water. The separated organic layer was washed with water and brine, dried over K₂CO₃, concentrated, and dried under high vacuum to provide 1.88 g (72% yield) of light brown solid, which was used without further purification.

15 HNMR (CDCl₃): δ 7.36 (1H, s), 3.81 (3H, s), 3.56 (3H, s), 3.47 (3H, s), 2.45 (3H, s). 1-(1,5-Dimethyl-1H-imidazol-4-yl)-ethanone, which has the structural formula

, was prepared as follows. To a solution of crude 1,5-dimethyl-1H-imidazole-4-carboxylic acid N-methoxy-N-methyl-amide (1.69 g, 9.21 mmol) in THF (55 mL) at -78 °C was added dropwise 1.4 M CH₃MgBr in ether (8.55 mL, 12.0 mmol). The mixture was allowed to warm to ambient temperature over one hour, then quenched with 1N HCl, basified to pH 9 with 1N NaOH, concentrated under reduced pressure to remove the THF, and extracted with EtOAc (200 mL). The organic layer was separated, dried over K₂CO₃, and evaporated to furnish 1.2 g (94% yield) of yellow solid, which was used without further purification.

¹H NMR (CDCl₃): δ 7.35 (1H, s), 3.57 (3H, s), 2.55 (3H, s), 2.53 (3H, s).

2-Bromo-1-(1,5-dimethyl-1H-imidazol-4-yl)-ethanone, which has the structural formula

H₃C

N

CH₃

, was next prepared as follows. To 1-(1,5-dimethyl-1H-imidazol-4-yl)-ethanone

(464 mg, 3.36 mmol) in HOAc (8.5 mL) at 0°C was added dropwise bromine (173 μl, 3.36 mmol). After 36 hours at ambient temperature, crude 2-bromo-1-(1,5-dimethyl-1H-imidazol-4-yl)-ethanone

yl)-ethanone hydrobromide salt was filtered off as a brown solid, which was successively washed with a minimal amount of water and ether, dissolved in CHCl₃, cooled to 0°C, treated with NaHCO₃, and concentrated under reduced pressure below 40°C to obtain 719 mg (99% yield) of yellow oil, which was used without further purification.

¹H NMR (DMSO-d₆): δ 8.40 (1H, s), 4.68 (2H, s), 3.66 (3H, s), 2.67 (3H, s).

The title compound was finally prepared in a manner analogous to that used in Example

C(1). 6-Isothiocyanato-1H-benzoimidazole (see Boev et al., *Pharm. Chem. J. (Engl. Transl).*, vol. 24 (1990), pp. 818-822) and 2-bromo-1-(1,5-dimethyl-1H-imidazol-4-yl)-ethanone provided a dark brown solid in 15% yield, mp 275.5-277⁰ C.

¹H NMR (DMSO-d₆): δ 12.42 (1H, s), 10.42 (1H, s), 8.16 (1H, s), 7.94 (1H, bs), 7.61-7.30 (2H, m), 7.26 (1H, dd, J = 8.4, 1.9 Hz), 3.54 (3H, s), 2.51 (3H, s).

HRFABMS (MH⁺): Calcd.: 354.1137. Found: 354.1132.

Anal. Calcd. for C₁₆H₁₅N₇OS • 0.5 H₂O • 0.8 CH₃OH: C, 52.00; H, 4.99; N, 25.27; S, 8.26. Found: C, 52.27; H, 4.81; N, 25.06; S, 8.12.

• Example C(75): [4-Amino-2-(4-morpholin-4-yl-phenylamino)-thiazol-5-yl]-(2,6-dichloro-3-nitro-phenyl)-methanone

H₂N O C

2-Bromo-2',6'-dichloro-3'-nitro-acetophenone, which has the structural formula

20 Br NO₂, was first prepared as follows. To a solution of 2',6'-dichloro-3'-nitro-

acetophenone (1.3 g, 5.6 mmol; Breslin, et al., *J. Med. Chem.*, vol. 38 (1995), pp. 771-793) in glacial acetic acid (5 mL) at ambient temperature was added bromine (352 μ L, 6.83 mmol). The resulting mixture was heated to 80°C for 1 hour, allowed to cool, and diluted with ether. The organic layer was washed with ice-cold H₂O (25 mL), sat aq. NaHCO₃ (3 x 25 mL), and brine (25 mL), dried over MgSO₄, and concentrated under reduced pressure to give 1.7 g (97% in crude yield) of a yellow oil, which was used without further purification.

 1 H NMR (CDCl₃): δ 7.98 (1H, d, J = 8.7 Hz), 7.38 (1H, d, J = 8.7 Hz), 4.40 (2H, s).

The title compound was prepared in a manner like that described for Example C(1). 2-Bromo-2',6'-dichloro-3'-nitro-acetophenone and 4-(4-isothiocyanato-phenyl)-morpholine (from

25

10

Example C(54)) gave a crude solid, which after purification by flash column chromatography with hexane/EtOAc (70:30) as eluant, provided a dark-brown foam in 52% yield, mp 170-172°C.

¹H NMR (DMSO-d₆): δ 10.70 (1H, s), 8.30 (1H, s), 8.10 (1H, d, J = 9.0 Hz), 7.90 (1H, d, J = 8.7 Hz), 7.20-7.30 (2H, m), 6.90 (2H, d, J = 9.0 Hz), 3.70 (4H, dd, J = 5.0, 4.7 Hz), 3.06 (4H, dd, J = 5.0, 4.7 Hz).

5 IR (KBr): 3289, 2966, 2848, 1634, 1542, 1425, 1343, 1225, 1108 cm⁻¹.

HRFABMS: Calcd. for C_{20} $H_{17}Cl_2N_5O_4SNa$ (M+Na⁺): 516.0276. Found: 516.0258. Anal. Calcd. for C_{20} $H_{17}Cl_2N_5O_4S$ • 0.35 CHCl₃: C, 45.59; H, 3.26; N, 13.06; S, 5.98, Cl, 20.07. Found: C, 45.33; H, 3.37; N, 12.96; S, 5.93; Cl, 20.27.

• Example C(76): 4-[4-Amino-5-(1,5-dimethyl-1H-imidazole-4-carbonyl)-thiazol-2-ylamino]-benzenesulfonamide

The title compound was prepared in a manner analogous to that used in Example C(1). 4-Isothiocyanato-benzenesulfonamide and 5-bromoacetyl-1,5-dimethyl-1H-imidazole (from Example C(74)) provided a yellow solid in 8% yield, mp 293-294°C.

¹H NMR (DMSO-d₆): δ 10.80 (1H, s), 7.81 (2H, d, J = 9.0 Hz), 7.75 (2H, d, J = 9.0 Hz), 7.62 (1H, s), 7.24 (2H, s), 3.56 (3H, s), 2.52 (3H, s).

HRFABMS (M+Na⁺): Calcd.: 415.0623. Found: 415.0609.

Anal. Calcd. for $C_{15}H_{16}N_6O_3S_2 \cdot 1.0 \text{ CH}_3\text{OH} \cdot 1.0 \text{ CHCl}_3$: C, 42.53; H, 4.45; N, 18.26; S, 13.93. Found: C, 42.57; H, 4.41; N, 18.18; S, 14.07.

• Example C(77): [4-Amino-2-(4-morpholin-4-yl-phenylamino)-thiazol-5-yl]-(1,5-dimethyl-1H-imidazol-4-yl)-methanone

The title compound was prepared in a manner analogous to that used in Example C(1). 4-(4-Isothiocyanato-phenyl)-morpholine (from Example C(54)) and 5-bromoacetyl-1,5-dimethyl-1H-imidazole (from Example C(74)) provided a yellow solid in 12% yield, mp >300°C. 1 H NMR (DMSO-d₆): δ 10.21 (1H, s), 7.57 (1H, s), 7.42 (2H, d, J = 8.8 Hz), 6.94 (2H, d, J = 8.8 Hz), 3.72 (4H, t, J = 4.7 Hz), 3.54 (3H, s), 3.06 (4H, t, J = 4.7 Hz), 2.50 (3H, s). HRFABMS (M+): Calcd.: 398.1525. Found: 398.1516.

64

30

10

15

Anal. Calcd. for C₁₉H₂₂N₆O₂S • 0.2 CH₃OH • 0.2 CHCl₃: C, 54.34; H, 5.41; N, 19.60; S, 7.48. Found: C, 54.63; H, 5.27; N, 19.56; S, 7.47.

Example C(78): [4-Amino-2-(1H-benzoimidazol-6-ylamino)-thiazol-5-yl]-(3-methyl-5nitro-thiophen-2-yl)-methanone

10

2-Acetyl-3-methyl-5-nitro-thiophene, which has the structural formula

was first prepared as follows. 2-Bromo-3-methyl-5-nitro-thiophene (5.17 g, 23.3 mmol; Spinelli et al, J. Chem. Soc. Perkin Trans. 2, (1975), pp. 620-622), tributyl (1-ethoxyvinyl)tin(IV) (8.65 mL, 25.6 mmol), and dichlorobis-(triphenylphosphine) palladium(II) (163 mg, 0.23 mmol) in toluene (10.5 mL) was heated under Ar° at 100°C for 2.5 hours. 5% ag HCl (78 mL) was added. and the mixture stirred at 60°C for 15 min., then partitioned with ether and water. The organic layer was separated, dried over MgSO₄, and concentrated to a residue that was dissolved in ether 15 (130 mL). 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU; 2.2 eq) and a 0.1M solution of iodine in ether was added dropwise until color persisted for several seconds. The resultant solution was passed through a short column of silica gel and concentrated in vacuo to give 3.74 g (87% yield) of yellow solid, which was used without further purification.

¹H NMR (CDCl₃): δ 7.72 (1H, s), 2.58 (3H, s), 2.57 (3H, s).

2-Bromoacetyl-3-methyl-5-nitro-thiophene, which has the structural formula

, was prepared in a manner analogous to 2-bromo-2'-iodo-acetophenone, see Example C(12). 2-Acetyl-3-methyl-5-nitro-thiophene (230 mg, 1.24 mmol) provided 330 mg of

a cloudy yellow oil, which contained a trace amount of dibrominated byproduct by NMR, which was used without further purification.

25 ¹H NMR (CDCl₃): δ 7.75 (1H, s), 4.28 (2H, s), 2.60 (2H, s).

The title compound was prepared in a manner analogous to that used in Example C(1). 6-Isothiocyanato-1H-benzoimidazole (see Boev et al., Pharm. Chem. J. (Engl. Transl)., vol. 24 (1990), pp. 818-822) and 2-bromoacetyl-3-methyl-5-nitro-thiophene provided a yellow solid in 23% yield, mp >300°C.

65

¹H NMR (DMSO-d₆): δ 12.50 (1H, d, J = 14.3 Hz), 11.01 (1H, bs), 8.40 (2H, bs), 8.21 (1H, s), 8.02 (1H, s), 7.63 (1H, bs), 7.52 (1H, bs), 7.36 (1H, d, J = 11.0 Hz), 2.33 (3H, s). HRFABMS (MH⁺): Calcd.: 401.0491. Found: 401.0474. Anal. Calcd. for C₁₆H₁₂N₆O₃S_{2</sup> • 0.7 H₂O • 0.8 CH₃OH: C, 46.00; H, 3.81; N, 19.16; S, 14.62.}

• Example C(79): [4-Amino-2-(1H-benzoimidazol-6-ylamino)-thiazol-5-yl]-(2,6-difluoro-phenyl)-methanone

10

15

20

5

Br

2-Bromo-2',6'-difluoro-acetophenone, which has the structural formula , was first prepared in a manner analogous to 2-bromo-2'-iodo-acetophenone, see Example C(12). 2',6'-difluoroacetophenone (703 mg, 4.5 mmol) provided 1.01 g (96% yield) of light yellow oil, which was used without further purification.

¹H NMR (CDCl₃): δ 7.56-7.42 (1H, m), 7.07-6.98 (2H, m), 4.38 (2H, s).

Found: C, 45.92; H, 3.50; N, 19.096; S, 14.59.

The title compound was prepared in a manner analogous to that used in Example C(1). 6-lsothiocyanato-1H-benzoimidazole (see Boev et al., *Pharm. Chem. J. (Engl. Transl).*, vol. 24 (1990), pp. 818-822) and 2-bromo-2',6'-difluoro-acetophenone provided yellow crystals in 78% yield, mp 194-200°C.

¹H NMR (DMSO-d₆): δ 12.45 (1H, s), 10.86 (1H, s), 8.19 (1H, s), 8.16 (2H, bs), 7.80 (1H, bs), 7.59-7.44 (2H, m), 7.22-7.11(3H, m).

HRFABMS (MH⁺): Calcd.: 372.0731. Found: 372.0725.

Anal. Calcd. for $C_{17}H_{11}N_5OSF_2 \cdot 0.5 H_2O$: C, 53.68; H, 3.18; N, 18.41; S, 8.43. Found: C, 53.73; H, 3.14; N, 18.32; S, 8.53.

• Example C(80): {4-Amino-2-[4-(4-methyl-piperazin-1-yl)-phenylamino]-thiazol-5-yl}-(2,6-difluoro-phenyl)-methanone

25

The title compound was prepared in a manner analogous to that used in Example C(1). 1-(4-Isothiocyanato-phenyl)-4-methyl-piperazine (from Example C(70)) and 2-bromo-2',6'-

difluoro-acetophenone (from Example C(79)) provided a yellow solid in 71% yield, mp 168-70°C.

¹H NMR (DMSO-d₆): δ 10.62 (1H, s), 8.11 (2H, bs), 7.54-7.43 (1H, m), 7.28 (2H, d, J = 7.5 Hz), 7.20-7.10 (2H, m), 6.90 (2H, d, J = 9.0 Hz), 3.08 (4H, t, J = 4.8 Hz), 2.41 (4H, t, J = 4.8 Hz), 2.19 (3H, s).

- IR (KBr): 2942, 2809, 1620, 1590, 1546, 1516, 1464, 1429, 1238, 1002 cm⁻¹.
 HRFABMS (MH⁺): Calcd.: 430.1513. Found: 430.1502.
 Anal. Calcd. for C₂₁H₂₁N₅OSF₂ 0.3 H₂O: C, 58.00; H, 5.01; N, 16.10; S, 7.37. Found: C, 57.98; H, 4.92; N, 16.08; S, 7.42.
 - Example C(81): ({4-Amino-2-[4-(4-methyl-piperazin-1-yl)-phenylamino]-thiazol-5-yl}-(2,6-dichloro-4-trifluoromethyl-phenyl)-methanone

The title compound was prepared in a manner like that described for Example C(1). 1-(4-Isothiocyanato-phenyl)-4-methyl-piperazine (from Example C(70)) and 2-bromo-2',6'-

dichloro-4'-trifluoromethyl-acetophenone gave, after recrystallization from EtOAc/hexane, yellow needles in 68% yield, mp 239-240°C.

 $1_{\rm H~NMR}$ (DMSO-d6): δ 8.00 (2H, s), 7.28 (2H, bs), 6.92 (2H, d, J = 8.7 Hz), 3.10 (4H, dd, J = 5.1, 4.7 Hz), 2.42 (4H, dd, J = 5.1, 4.8 Hz), 2.20 (3H, s).

IR (KBr): 3377, 3283, 2942, 2813, 1598, 1542, 1513, 1425 cm⁻¹.

20 FABMS (M+Na+): 552.

Anal. Calcd. for $C_{22}H_{20}Cl_2F_3N_5OS \cdot 0.8 H_2O \cdot 0.7 C_6H_{14}$: C, 52.00; H, 5.23; N, 11.57; S, 5.30, Cl, 11.72. Found: C, 51.94; H, 4.98; N, 11.18; S, 5.20; Cl, 11.48.

• Example C(82): N-{3-[4-Amino-2-(1H-benzoimidazol-6-ylamino)-thiazole-5-carbonyl]-2,4-dichloro-phenyl}-acetamide

67

25

1

5

10

15

20

25

H₃C CI NHo

3'-Amino-2',6'-dichloro-acetophenone, which has the structural formula Cl NH₂, was first prepared as follows. To a solution of SnCl₂ • 2 H₂O (7.70 g, 34.2 mmol) in 6N aq HCl (20 mL) was added 2',6'-dichloro-3'-nitro-acetophenone (4.00 g, 17.1 mmol; Breslin, et al., *J. Med. Chem.*, vol. 38 (1995), pp. 771-793). The resultant mixture was heated at reflux for 5 hours, allowed to cool, and carefully treated with anhydrous Na₂CO₃. The resultant white precipitate was filtered off and washed with CHCl₃. The organic layer was reserved and the aqueous layer was extracted with CHCl₃ (3 x 50 mL). The combined organic layers were dried over MgSO₄, filtered, and concentrated *in vacuo* to give a black oil, which was purified via flash column chromatography with EtOAc:hexane (20:80) as eluant. In this manner, 2.6 g (75% yield) of a pale brown oil was obtained and used without further purification.

¹H NMR (CDCl₃): δ 7.08 (1H, d, J = 8.7 Hz), 6.70 (1H, d, J = 8.7 Hz), 4.12 (2H, bs), 2.56 (3H, s).

N-(3-Acetyl-2,4-dichloro-phenyl)-acetamide, which has the structural formula,

H₃C CI N CH₃

ö ci H , was next prepared as follows. To a solution of 3'-amino-2',6'-dichloro-acetophenone (2.40 g, 11.8 mmol) in glacial acetic acid (25 mL) was added acetic anhydride (5.56 mL, 58.8 mmol). The resultant mixture was heated at reflux for 2 hours, allowed to cool, and diluted with ether (100 mL). The organic layer was washed with H₂O (2 x 50 mL), dried over MgSO₄, concentrated *in vacuo*, and azeotroped with n-heptane to give 2.3 g of a pale white solid, which was used without further purification.

¹H NMR (CDCl₃): δ 8.38 (1H, d, J = 9.1 Hz), 7.62 (1H, bs), 7.34 (1H, d, J = 9.0 Hz), 2.60 (3H, s), 2.22 (3H, s).

N-(3-Bromoacetyl-2,4-dichloro-phenyl)-acetamide, which has the structural formula,

B CI N CH₃

ö cl H , was prepared in a manner analogous to 2-bromo-2',6'-dichloro-3'-nitro-acetophenone for Example C(75). N-(3-Acetyl-2,4-dichloro-phenyl)-acetamide gave a pale brown oil in 100% crude yield, which was used without further purification.

¹H NMR (CDCl₃): δ 8.48 (1H, d, J = 8.7 Hz), 7.60 (1H, bs), 7.38 (1H, d, J = 9.0 Hz), 4.40 (2H, s), 2.2 (3H, s).

68

The title compound was prepared in a manner like that described for Example C(1). 6-Isothiocyanato-1H-benzoimidazole (see Boev et al., *Pharm. Chem. J. (Engl. Transl.)*, vol. 24 (1990), pp. 818-822) and N-(3-bromoacetyl-2,4-dichloro-phenyl)-acetamide gave a product which was purified via flash column chromatography with a stepwise gradient of MeOH:CH₂Cl₂ (10:90) to HOAc:MeOH:CH₂Cl₂ (1:10:90) to provide a yellow foam in 56% yield, that decomposed above 200°C.

 $^{1}\text{H NMR (DMSO-d_6): }\delta~9.90~(1\text{H, s}),~8.20~(1\text{H, s}),~7.84-7.96~(1\text{H, m}),~7.68~(1\text{H, d},~J=~7.4~\text{Hz}),\\ 7.58~(1\text{H, d},~J=~8.8~\text{Hz}),~7.24~(1\text{H, d},~J=~8.4~\text{Hz}),~2.20~(3\text{H, s}).$

IR(KBr): 3295, 1625, 1525, 1425 cm⁻¹.

HRFABMS. Calcd. (MH+): 461.0354. Found: 461.0344.

Anal. Calcd. for C₁₉H₁₅Cl₂N₆O₂S • H₂O • 3 HOAc: C, 45.53; H, 4.28; N, 12.74; S, 4.86, Cl, 10.75. Found: C, 45.93 H, 4.08; N, 12.49; S, 4.83; Cl, 10.45.

• Example C(83): [4-Amino-2-(4-morpholin-4-yl-phenylamino)-thiazol-5-yl]-(3-methyl-biphenyl-2-yl)-methanone

15

1

The title compound was prepared in a manner analogous to that used in Example C(1). 4-(4-Isothiocyanato-phenyl)-morpholine (from Example C(54)) and 2-bromoacetyl-3-methyl-biphenyl (from Example C(67)) provided a yellow solid in 29% yield, mp 125-35°C. 1 H NMR (DMSO-d₆): δ 10.40 (1H, s), 7.86 (2H, s), 7.42-7.24 (9H, m), 7.19 (1H, d, J = 7.5 Hz), 6.93 (2H, d, J = 8.7 Hz), 3.73 (4H, t, J = 4.4 Hz), 3.07 (4H, t, J = 4.4 Hz), 2.26 (3H, s). HRFABMS (M⁺): Calcd.: 471.1855. Found: 471.1839. Anal. Calcd. for C₂₇H₂₆N₄O₂S • 1.0 CF₃CO₂H: C, 59.58; H, 4.66; N, 9.58; S, 5.48. Found: C, 59.41; H, 5.01; N, 9.26; S, 5.18.

• Example C(84): [4-Amino-2-(4-morpholin-4-yl-phenylamino)-thiazol-5-yl]-(2-bromo-6-methyl-phenyl)-methanone

25

20

The title compound was prepared in a manner analogous to that used in Example C(1). 4-(4-Isothiocyanato-phenyl)-morpholine (from Example C(54)) and 2,2'-dibromo-6'-methyl-

acetophenone (from Example C(66)) provided a crude solid, which was triturated with MeOH/CHCl₃ to furnish a yellow solid in 22% yield, mp 105-125°C.

¹H NMR (DMSO-d₆): δ 10.57 (1H, s), 8.01 (2H, bs), 7.46 (1H, d, J = 7.5 Hz), 7.39-7.18 (4H, m), 6.96 (2H, d, J = 8.7 Hz), 3.74 (4H, t, J = 4.7 Hz), 3.09 (4H, t, J = 4.7 Hz), 2.20 (3H, s). HRFABMS (MH⁺): Calcd.: 73.0647/475. Found: 473.0657/475.

- 5 Anal. Calcd. for C₂₁H₂₁N₄O₂SBr 0.7 MeOH 0.6 CHCl₃: C, 47.60; H, 4.37; N, 9.98; S, 5.71. Found: C, 47.95; H, 4.05; N, 9.77; S, 5.51.
 - Example C(85): 4-[4-Amino-5-(2,6-difluoro-benzoyl)-thiazol-2-ylamino]-benzenesulfonamide

10

The title compound was prepared in a manner analogous to that used in Example C(1). 4-Isothiocyanato-benzenesulfonamide and 2-bromo-2',6'-difluoro-acetophenone (from Example C(79)) provided light yellow crystals in 69% yield, mp 258-260°C.

¹H NMR (DMSO-d₆): δ 11.20 (1H, s), 8.20 (2H, bs), 7.79 (2H, d, J = 9.0 Hz), 7.74 (2H, d, J = 9.0 Hz), 7.61-7.49 (1H, m), 7.26 (2H, s), 7.22 (1H, d, J = 7.9 Hz), 7.19 (1H, d, J = 8.0 Hz). IR (KBr): 3310, 1622, 1599, 1547, 1525, 1467, 1425, 1410, 1318, 1156 cm⁻¹. HRFABMS (MH⁺): Calcd.: 411.0397. Found: 411.0410. Anal. Calcd. for C₁₆H₁₂N₄O₃S₂F₂ • 0.7 CH₃OH: C, 46.34; H, 3.45; N, 12.94; S, 14.82. Found: C, 46.19; H, 3.12; N, 12.83; S, 14.94.

• Example C(86): N-(3-{4-Amino-2-[4-(4-methyl-piperazin-1-yl)-phenylamino]-thiazole-5-carbonyl}-2,4-dichloro-phenyl)-acetamide

The title compound was prepared in a manner like that described for Example C(1). 1
(4-Isothiocyanato-phenyl)-4-methyl-piperazine (from Example C(70)) and N-(2-bromoacetyl-3-chloro-phenyl)-acetamide (from Example C(82)) gave, after recrystallization with EtOH/CHCl₃, 60 mg (13% yield) of a yellow solid, mp 195-197°C.

- 5 HRFABMS. Calcd. (M+Na⁺): 541.0956. Found: 541.0970.

 Anal. Calcd. for C₂₃H₂₄Cl₂N₆O₂S 0.5 H₂O 0.4 EtOH: C, 52.27; H, 5.05; N, 15.37; S, 4.86, Cl, 12.97. Found: C, 52.13; H, 5.09; N, 15.13; S, 5.78; Cl, 12.96.
 - Example C(87): {4-Amino-2-[4-(4-methyl-piperazin-1-yl)-phenylamino}-thiazol-5-yl}-3-methyl-thiophen-2-yl-methanone

The title compound was prepared in a manner like that described for Example C(1). 1-(4-Isothiocyanato-phenyl)-4-methyl-piperazine (from Example C(70)) and 2-bromoacetyl-3-methyl-thiophene (from Example C(19)) gave, after recrystallization with EtOH/CHCl₃, a dark vellow solid in 75% yield, mp 237.0-237.5°C.

¹⁵ 1 H NMR (DMSO-d₆): δ 10.50 (1H, s), 8.10 (1H, bs), 7.56 (1H, d, J = 5.0 Hz), 7.38 (2H, d, J = 8.8 Hz), 6.96 (3H, m), 3.10 (4H, dd, J = 5.1, 4.7 Hz), 2.45 (4H, dd, J = 4.9, 4.7 Hz), 2.38 (3H, s), 2.24 (3H, s).

IR (KBr): 3484, 3319, 2943, 2809, 1593, 1546, 1414 cm⁻¹.

HRFABMS, Calcd. (MH+): 414.1422. Found: 414.1408.

- 20 Anal. Calcd: C₂₀H₂₃N₅OS₂ 3 H₂O: C, 57.34; H, 5.68; N, 16.72; S, 15.31. Found: C, 57.01; H, 5.72; N, 16.41; S, 15.34.
 - Example C(88): trans-3RS-Amino-4RS-{4-[4-amino-5-(3,5-dichloropyridine-4-carbonyl)-thiazol-2-ylamino]-benzoyl}-dihydro-furan-2-one

The title compound was prepared essentially as described for Example C(1). 4Isothiocyanato-benzoyl-DL-homoserine lactone and 4-bromoacetyl-3,5-dichloropyridine (from Example C(63)) gave a product which was purified via column chromatography with 10%

71

30

25

MeOH/CHCl3 as eluant to provide an amorphous yellow solid, 203 mg (79%), that decomposed above 150°C.

¹H NMR (DMSO-d₆): δ 11.17 (1H, s), 8.89 (1H, d, J = 8.0 Hz), 8.76 (2H, s), 7.86 (2H, d, J = 8.7 Hz), 7.69 (2H, d, J = 8.7 Hz), 4.73 (1H, q, J = 9.3 Hz), 4.42 (1H, ddd, J = 8.9, 8.7, 1.8 Hz), 4.27 (1H, ddd, J = 10.0, 8.7, 6.7 Hz).

HRFABMS. Calcd. for C₂₀H₁₅Cl₂N₅O₄SNa (M+Na⁺): 514.0120. Found: 514.0133. IR (KBr): 3284, 1774, 1610, 1524, 1459, 1423, 1348. 1306, 1180 cm⁻¹. Anal. Calcd for C₂₀H₁₅Cl₂N₅O₄S • 0.25 H₂O • 0.6 CHCl₃: C, 43.52; H, 2.85; N, 12.32; Cl, 23.70; S, 5.64. Found: C, 43.31; H, 2.78; N, 12.46; Cl, 24.07; S, 5.63.

• Example C(89): [4-Amino-2-(1H-benzoimidazol-6-ylamino)-thiazol-5-yl]-(2,6-dichloro-3-nitro-phenyl)-methanone

The title compound was prepared in a manner like that described for Example C(1). 2-5 Bromo-2',6'-dichloro-3'-nitro-acetophenone (from Example C(75)) and 6-isothiocyanato-1H-benzoimidazole (see Boev et al., *Pharm. Chem. J. (Engl. Transl.)*, vol. 24 (1990), pp. 818-822) provided, after column chromatography with 1% HOAc/10% MeOH/CH₂Cl₂ as eluant, 26% yield of yellow powder, mp 250-252°C.

¹H NMR (DMSO-d₆): δ 8.18 (1H, s), 8.00 (2H, d, J = 8.7 Hz), 7.80 (1H, d, J = 8.7 Hz), 7.52 (1H, bd, J = 8.1 Hz), 7.24-7.10 (2H, m).

²⁰ IR (KBr): 3385, 1607, 1500 cm⁻¹.

HRFABMS: Calcd. for $C_{17}H_9Cl_2N_6O_3S(M-H^+)$: 447.9930. Found: 447.9930. Anal. Calcd. for $C_{17}H_{10}Cl_2N_6O_3S \cdot 0.1 \ H_2O \cdot 1 \ MeOH \cdot 0.7 \ HOAc \cdot 0.1 \ CH_2Cl_2$: C, 43.30; H, 3.35; N, 15.54; S, 5.93, Cl, 14.42. Found: C, 43.26; H, 3.01; N, 14.74; S, 7.14; Cl, 14.74.

• Example C(90): {4-Amino-2-[4-(4-methyl-piperazin-1-yl)-phenylamino]-thiazol-5-yl}-(2,5-dimethyl-thiophen-3-yl)-methanone

72

25

The title compound was prepared in a manner like that described for Example C(1). 3-Bromoacetyl-2,5-dimethyl-thiophene (from Example C(50)) and 1-(4-isothiocyanato-phenyl)-4-methyl-piperazine (from Example C(70)) gave, after purification via flash column chromatography with 5-10% MeOH:CH₂Cl₂ as stepwise gradient eluant, a yellow solid in 70% yield, mp 205-206°C.

 5 HNMR (DMSO-d₆): δ 10.50 (1H, s), 8.00 (2H, bs), 7.48 (2H, d, J = 8.7 Hz), 6.95 (2H, d, J = 8.7 Hz), 6.80 (1H, s), 3.10 (4H, dd, J = 5.0, 4.4 Hz), 2.46 (4H, t, J = 4.7 Hz), 2.42 (3H, s), 3.38 (3H, s), 2.24 (3H, s).

IR (KBr): 3154, 2944, 2804, 1609, 1543, 1516, 1420, 1296 cm⁻¹.

HRFABMS: Calcd. for $C_{21}H_{26}N_5OS_2$ (MH+): 428.1579. Found: 428.1566.

Anal. Calcd. for C₂₁H₂₅N₅OS₂ • 0.7 H₂O: C,57.30; H, 6.04; N, 15.91; S, 14.57. Found: C, 57.19; H, 6.06; N, 15.77; S, 14.55.

• Example C(91): [4-Amino-2-(1H-benzoimidazol-6-ylamino)-thiazol-5-yl]-(3-amino-4-bromo-2,6-dichloro-phenyl)-methanone

3'-Amino-4'-bromo-2',6'-dichloro-acetophenone, which has the structural formula

Br
CI NH₂, was first prepared as follows. 3'-Amino-2',6'-dichloro-acetophenone (from

Example C(82); 2.15 g, 11.3 mmol) in HOAc (8.7 mL) was carefully degassed with argon and cooled to 0°C, bromine was added, and the reaction mixture was then allowed to warm to ambient temperature. After 0.5 hour, the mixture was diluted with ice/water and extracted with ether. The combined ethereal layers were washed with sat aq. NaHCO₃ and brine, dried over K₂CO₃, and evaporated to afford 2.87 g (90%) of brown solid, which was used without further purification.

3'-Amino-2,4'-dibromo-2',6'-dichloro-acetophenone, which has the structural formula

73

25

chromatography with a stepwise gradient of 2.5-5% CH₂Cl₂/hex, 725 mg (22% yield) of white solid, which was used without further purification. Later fractions yielded 33% recovery of starting material.

The title compound was prepared in a manner analogous to that used in Example C(1). 6-Isothiocyanato-1H-benzoimidazole (see Boev et al., *Pharm. Chem. J. (Engl. Transl).*, vol. 24 (1990), pp. 818-822) and 3'-amino-2,4'-dibromo-2',6'-dichloro-acetophenone provided light vellow crystals in 34% yield, mp 227-230°C.

¹H NMR (DMSO-d₆): δ 12.48 (1H, bs), 10.85 (1H, s), 8.22 (1H, s), 8.06 (2H, bs), 7.80 (1H, bs), 7.34 (1H, s), 7.58 (1H, d, J = 8.5 Hz), 7.22 (1H, d, J = 8.5 Hz), 5.75 (2H, s).

FABMS (MH⁺): Calcd.: 498.9333. Found: 498.9312.

Anal. Calcd. for $C_{17}H_{11}N_6OSCl_2Br \cdot 0.8 H_2O$: C, 39.83; H, 2.48; N, 16.39; S, 6.26. Found: C, 39.92; H, 2.43; N, 16.26; S, 6.14.

• Example C(92): 4-[4-Amino-5-(2,5-dichloro-thiophene-3-carbonyl)-thiazol-2-ylamino]-benzenesulfonamide

15

20

25

5

3-Bromoacetyl-2,5-dichloro-thiophene, which has the structural formula ci was prepared in a manner analogous to 2-bromo-2'-iodo-acetophenone, see Example C(12): 3-Acetyl-2,5-dichlorothiophene (2.0 g, 10.2 mmol) provided 2.9 g (100% yield) of yellow oil, which was used without further purification.

¹H NMR (CDCl₃): δ 7.25 (1H, s), 4.40 (2H, s).

The title compound was prepared in a manner analogous to that used in Example C(1). 4-Isothiocyanato-benzenesulfonamide and 3-bromoacetyl-2,5-dichloro-thiophene provided a yellow solid in 65% yield, mp 274-276°C.

 1 H NMR (DMSO-d₆): δ 11.20 (1H, s), 8.24 (2H, bs), 7.80 (4H, s), 7.33 (1H, s), 7.31 (2H, s). FABMS (MH⁺): 449/451.

Anal. Calcd. for C₁₄H₁₀N₄O₃S₃Cl₂: C, 37.42; H, 2.24; N, 12.47; S, 21.41; Cl, 15.78. Found: C, 37.56; H, 2.19; N, 12.39; S, 21.29; Cl, 15.71.

• Example C(93): [4-Amino-2-(1H-benzoimidazol-6-ylamino)-thiazol-5-yl]-(2,5-dichloro-thiophen-3-yl)-methanone

5

The title compound was prepared in a manner analogous to that used in Example C(1). 6-Isothiocyanato-1H-benzoimidazole (see Boev et al., *Pharm. Chem. J. (Engl. Transl).*, vol. 24 (1990), pp. 818-822) and 3-bromoacetyl-2,5-dichloro-thiophene (from Example C(92)) provided, after precipitation with THF, an amorphous yellow solid in 52% yield, mp >300°C.

¹H NMR (DMSO-d₆): δ 12.52 (1H, bs), 10.89 (1H, s), 8.26 (1H, s), 8.21 (2H, bs), 7.90 (1H, bs), 7.60 (1H, d, J = 8.4 Hz), 7.28 (1H, s), 7.27 (1H, d, J = 8.4 Hz).

ESIMS(MH⁺): 410/412.

Anal. Calcd. for C₁₅H₉N₅OS₂Cl₂ • 0.1 HCl • 0.6 THF: C, 45.71; H, 3.06; N, 15.32; S, 14.03; Cl, 16.28. Found: C, 45.84; H, 2.83; N, 15.01; S, 14.27; Cl, 16.00.

• Example C(94): {4-Amino-2-[4-(4-methyl-piperazin-1-yl)-phenylamino]-thiazol-5-yl}-(3-methyl-5-nitro-thiophen-2-yl)-methanone

15

20

10

The title compound was prepared in a manner analogous to that used in Example C(1). 1-(4-Isothiocyanato-phenyl)-4-methyl-piperazine (from Example C(70)) and 2-bromoacetyl-3-methyl-5-nitro-thiophene (from Example C(78)) afforded, after precipitation with aqueous EtOH, an amorphous dark brown solid in 64% yield.

¹H NMR (DMSO-d₆): δ 10.88 (1H, s), 8.38 (2H, bs), 8.04 (1H, s), 7.38 (2H, d, J = 9.0 Hz), 6.98 (2H, d, J = 9.0 Hz), 3.35 (4H, bs), 3.15 (4H, bs), 2.34 (3H, s), 2.28 (3H, s).

HRFABMS (MH⁺): Calcd.: 459.1273. Found: 459.1259.

 $Anal.\ Calcd.\ for\ C_{20}H_{22}N_6O_3S_2 \bullet 0.8\ H_2O \bullet 0.2\ EtOH:\ C,\ 50.81;\ H,\ 5.18;\ N,\ 17.43;\ S,\ 13.30.$

Found: C, 50.94; H,4.98; N, 17.13; S, 13.55.

25

Example C(95): 4-[4-Amino-5-(3-methyl-5-nitro-thiophene-2-carbonyl)-thiazol-2-ylamino]-benzenesulfonamide

The title compound was prepared in a manner analogous to that used in Example C(1). 4-Isothiocyanato-benzenesulfonamide and 2-bromoacetyl-3-methyl-5-nitro-thiophene (from Example C(78)) provided a dark brown in 38% yield, mp 268-269°C.

¹H NMR (DMSO-d₆): δ 11.31 (1H, s), 8.46 (2H, bs), 8.08 (1H, s), 7.81 (4H, s), 7.32 (2H, s), 2.38 (3H, s).

- 5 Anal. Calcd. for C₁₅H₁₃N₅O₅S₃: C, 40.99; H, 2.98; N, 15.94; S, 21.89. Found: C, 41.11; H,2.95; N, 15.66; S, 21.70.
 - Example C(96): (3-Amino-4-bromo-2,6-dichloro-phenyl)-{4-amino-2-[4-(4-methyl-piperazin-1-yl)-phenylamino]-thiazol-5-yl}-methanone

The title compound was prepared in a manner analogous to that used in Example C(1). 1-(4-Isothiocyanato-phenyl)-4-methyl-piperazine (from Example C(70)) and 3'-amino-2,4'-dibromo-2',6'-dichloro-acetophenone (from Example C(91)) provided, after recrystallization from EtOH, a yellow powder in 43% yield, mp 180-182°C.

¹H NMR (DMSO-d₆): δ 10.61 (1H, s), 8.01 (2H, bs), 7.59 (1H, s), 7.28 (2H, d, J = 8.7 Hz), 6.94 (2H, d, J = 8.7 Hz), 5.74 (2H, s), 3.11 (4H, bs), 2.45 (4H, bs), 2.23 (3H, s). HRFABMS (MH⁺): Calcd.: 555.0136/557/559. Found: 555.0122/557/559. Anal. Calcd. for $C_{21}H_{21}N_6OSCl_2Br \cdot 0.7 H_2O \cdot 0.6$ EtOH: C, 44.70; H, 4.39; N, 14.09; S, 5.38. Found: C, 44.84; H, 4.18; N, 13.95; S, 5.27.

• Example C(97): 2-[4-(1-Acetyl-piperazin-4-yl)-phenylamino]-4-amino-thiazol-5-yl-(2,6-dichlorophenyl)-methanone

1-Acetyl-4-(4-nitro-phenyl)-piperazine, which has the structural formula

25 , was first prepared in a manner analogous to N-(3-acetyl-2,4-dichlorophenyl)-acetamide for Example C(82). 1-(4-Nitro-phenyl)-piperazine gave a yellow solid in 83% yield, which matched previously reported material by ¹H NMR (Katz et al., *J. Amer. Chem. Soc.*, vol. 111 (1989), pp. 7554-7557).

20

1 1-Acetyl-4-(4-amino-phenyl)-piperazine, which has the structural formula

, was prepared in a manner analogous to 4-(4-methyl-piperazin-1-yl)-aniline for Example C(82). 1-Acetyl-4-(4-nitro-phenyl)-piperazine gave a pale white powder in 100% crude yield, which was used without any further purification.

 5 H NMR (CDCl₃): δ 6.85 (2H, d, J = 8.7 Hz), 6.98 (2H, d, J = 8.7 Hz), 3.78 (2H, dd, J = 5.3, 5.0 Hz), 3.62 (2H, t, J = 5.3, 5.0 Hz), 3.62 (2H, dd, J = 5.3, 5.0 Hz), 2.98-3.10 (4H, m), 2.18 (3H, s).

1-Acetyl-4-(4-isothiocyanato-phenyl)-piperazine, which has the structural formula

, was prepared in a manner analogous to 1-(4-isothiocyanato-phenyl)-1H-

imidazole for Example C(41). 1-Acetyl-4-(4-amino-phenyl)-piperazine provided a creamcolored powder in 88% yield.

¹H NMR (CDCl₃): δ 7.18 (2H, d, J = 9.0 Hz), 6.82 (2H, d, J = 9.0 Hz), 3.78 (2H, dd, J = 5.1, 5.3 Hz), 3.64 (2H, dd, J = 4.9, 5.3 Hz), 3.16-3.27 (4H, m), 2.10 (3H, s).

The title compound was prepared in a manner like that described for Example C(1). 2-Bromo-2',6'-dichloro-acetophenone (from Example C(52)) and 1-acetyl-4-(4-isothiocyanato-

phenyl)-piperazine gave a crude product that precipitated from hexanes to provide a cream solid in 37% yield, mp 265-267°C.

¹H NMR (DMSO-d₆): δ 10.60 (1H, bs), 8.02 (2H, bs), 7.50 (2H, d, J = 1.9 Hz), 7.42 (1H, m), 7.38 (2H, bs), 6.98 (2H, d, J = 9.0 Hz), 3.60 (4H, s), 3.20-3.10 (4H, m), 2.00 (3H, s). IR (KBr): 3377, 3166, 1601, 1542, 11425 cm⁻¹.

HRFABMS: Calcd. for C₂₂H₂₂Cl₂N₅O₂S (MH⁺): 490.0871. Found: 490.0858.

Anal. Calcd. for C₂₂H₂₁Cl₂N₅O₂S • 0.16 H₂O • 0.1 C₆H₁₄: C, 54.08; H, 4.56; Cl, 14.13; N, 13.95; S, 6.39. Found: C, 53.88; H, 4.32; Cl, 14.46; N, 14.28; S, 6.54.

• Example C(98): 2-[4-(1-Acetyl-piperazine-4-yl)-phenylamino]-4-amino-thiazol-5-yl-(3-methyl-thiophen-2-yl)-methanone

25

15

The title compound was prepared in a manner like that described for Example C(1). 1-Acetyl-4-(4-isothiocyanato-phenyl)-piperazine (from Example C(97)) and 2-bromoacetyl-3-methyl-thiophene (from Example C(19)) provided a yellow solid in 37% yield, mp 290-292°C.

¹H NMR (DMSO-d₆): δ 10.60 (1H, bs), 8.10 (2H, bs), 7.48 (1H, d, J = 5.0 Hz), 7.40 (2H, d, J = 8.7 Hz), 6.96-7.04 (2H, m), 3.60 (4H, s), 3.18 (2H, bs), 3.12 (2H, bs), 2.40 (3H, s), 2.02 (3H, s). IR (KBr): 3377, 3166, 1633, 1601, 1542, 1425, 1225 cm⁻¹. Anal. Calcd. for $C_{21}H_{23}N_5O_2S \cdot 1 H_2O$: C, 56.89; H, 5.27; N, 15.80; S,14.46. Found: C, 56.98;

• Example C(99): 4-[4-Amino-5-(2-fluoro-6-trifluoromethyl-benzoyl)-thiazol-2-ylamino]-benzenesulfonamide

2-Bromo-2'-fluoro-6'-trifluoromethyl-acetophenone, which has the structural formula

Example C(12). 2'-Fluoro-6'-(trifluoromethyl)-acetophenone (745 mg, 3.61 mmol) provided 1.05 g of yellow oil, which was used without further purification.

 1 H NMR (CDCl₃): δ 7.69–7.52 (2H, m), 7.44-7.35 (1H, m), 4.42 (3H, s).

H, 5.27; N, 15.72; S, 14.35.

5

10

15

20

The title compound was prepared in a manner analogous to that used in Example C(1). 4-Isothiocyanato-benzenesulfonamide and crude 2-bromo-2'-fluoro-6'-trifluoromethylacetophenone provided a light yellow solid in 21% yield, mp 290-292°C.

¹H NMR (DMSO-d₆): δ 11.15 (1H, s), 8.20 (2H, bs), 7.83-7.68 (7H, m), 7.31 (2H, s). Anal. Calcd. for C₁₇H₁₂N₄O₃S₂F₄: C, 44.35; H, 2.63; N, 12.17; S, 13.93. Found: C, 44.42; H, 2.64; N, 12.13; S, 13.94.

• Example C(100): {4-Amino-2-[4-(4-methyl-piperazin-1-yl)-phenylamino}-thiazol-5-yl}-(2-fluoro-6-trifluoromethyl-phenyl)-methanone

The title compound was prepared in a manner analogous to that used in Example C(1).

1-(4-Isothiocyanato-phenyl)-4-methyl-piperazine (from Example C(70)) and 2-bromo-2'-fluoro-6'-trifluoromethyl-acetophenone (from Example C(99)) produced a crude product that recrystallized from EtOH to provide a yellow powder in 74% yield, mp 155-158°C.

¹H NMR (DMSO-d₆): δ 10.62 (1H, s), 8.06 (2H, bs), 7.72-7.62 (3H, m), 7.10 (2H, d, J = 8.7 Hz), 6.93 (2H, d, J = 8.7 Hz), 3.11 (4H, bs), 2.45 (4H, bs), 2.22 (3H, s). HRFABMS (MH⁺): Calcd.: 480.1481. Found: 480.1468. Anal. Calcd. for $C_{22}H_{21}N_5OSF_4 \cdot 1.0$ EtOH: C, 54.84; H, 5.18; N, 13.33; S, 6.10. Found: C, 55.11; H, 5.11; N, 13.31; S, 6.00.

• Example C(101): 4-Amino-2-[4-(1-tert-butoxycarbonyl-piperazine-4-yl)-phenylamino]-thiazol-5-yl-(2,6-difluorophenyl)-methanone

10 1-tert-Butoxycarbonyl-4-(4-nitro-phenyl)-piperazine, which has the structural formula

, was first prepared as follows. To a suspension of 1-(4-nitro-phenyl)-piperazine (2.00 g, 9.65 mmol) in dioxane (30 mL) was added diisopropylethylamine (1.48 mL, 10.6 mmol) and di-t-butyl dicarbonate (2.10 g, 9.65 mmol). After 12 hours, the mixture was poured into H₂O (100 mL) and extracted with EtOAc (2 x 50 mL). The combined organic layers were dried over MgSO₄, filtered, and concentrated *in vacuo* to give a yellow solid, which recrystallized from EtOAc/hexane to afford 2.2 g of yellow needles. This material was used without further purification.

¹H NMR (CDCl₃): δ 8.20 (2H, d, J = 9.3 Hz), 6.82 (2H, d, J = 9.3 Hz), 3.58-3.64 (4H, m), 3.28-3.44 (4H, m), 1.54 (9H, s).

1-(4-Amino-phenyl)-4-tert-butoxycarbonyl-piperazine, which has the structural formula

brown gel in 100% crude yield, which was used without further purification. 1 H NMR (CDCl₃): δ 6.84 (2H, d, J = 8.7 Hz), 6.67 (2H, d, J = 8.8 Hz), 3.58 (4H, dd, J = 5.1, 5.0)

H NMR (CDCl₃): δ 6.84 (2H, d, J = 8.7 Hz), 6.67 (2H, d, J = 8.8 Hz), 3.58 (4H, dd, J = 5.1, 5.0 Hz), 2.97 (4H, dd, J = 5.2, 4.8 Hz), 1.52 (9H, s).

1-tert-Butoxycarbonyl-4-(4-isothiocyanato-phenyl)-piperazine, which has the structural

30

5

15

20

piperazine afforded cream-colored needles in 87% yield, which were used without further purification.

¹H NMR (CDCl₃): δ 7.18 (2H, d, J = 9.0 Hz), 6.82 (2H, d, J = 9.0 Hz), 3.64 (4H, t, J = 5.3 Hz), 3.24 (4H, t, J = 5.3 Hz), 1.54 (9H, s).

The title compound was prepared in a manner analogous to that used in Example C(1). 1-tert-Butoxycarbonyl-4-(4-isothiocyanato-phenyl)-piperazine and 2-bromo-2',6'-difluoro-acetophenone (from Example C(79)) gave a crude product which recrystallized from EtOH to furnish a yellow solid in 67% yield, mp 140-143°C.

¹H NMR (DMSO-d₆): δ 10.67 (1H, s), 8.13 (2H, bs), 7.59-7.45 (1H, m), 7.35 (2H, d, J = 9.0 Hz), 7.23-7.13 (2H, m), 6.96 (2H, d, J = 9.0 Hz), 3.46 (4H, bs), 3.07 (4H, bs), 1.43 (9H, s). HRFABMS (MH⁺): Calcd.: 516.1881. Found: 516.1900.

Anal. Calcd. for $C_{25}H_{27}N_5O_3SF_2 \cdot 0.8 H_2O \cdot 0.8 EtOH$: C, 56.56; H, 5.57; N, 12.99; S, 5.95. Found: C, 56.34; H, 5.54; N, 12.89; S, 5.83.

• Example C(102): 4-[4-Amino-5-(2,6-difluoro-benzoyl)-thiazol-2-ylamino]-benzamide

15

20

10

5

4-Isothiocyanato-benzamide, which has the structural formula H₂N S, was first prepared according to a method from McKee et al., *J. Am. Chem. Soc.*, vol. 48 (1946), pp. 2506-2507. To a solution of 4-aminobenzamide (5.00 g, 36.7 mmol) in water (60 mL) and 38% aq HCl (15 mL) was added thiophosgene (3.08 mL, 40.4 mmol). After approximately 30 min, the resultant white precipitate was filtered off, washed with water, and dried under high vacuum to obtain 4.66 g (78% yield) of white powder, which was used without further purification.

¹H NMR (DMSO-d₆): δ 8.08 (1H, bs), 7.94 (2H, d, J = 8.7 Hz), 7.53 (2H, d, J = 8.7 Hz), 7.51 (1H, bs).

The title compound was prepared in a manner analogous to that used in Example C(1). 4-Isothiocyanato-benzamide and 2-bromo-2',6'-difluoro-acetophenone (from Example C(79)) provided a yellow solid in 26% yield, mp 297-298°C. 1 H NMR (DMSO-d₆): δ 11.07 (1H, s), 8.22 (2H, bs), 7.91 (1H, s), 7.88 (2H, d, J = 8.7 Hz), $^{\circ}$, 7.66 (2H, d, J = 8.7 Hz), 7.62-7.50 (1H, m), 7.31 (1H, s), 7.27-7.18 (2H, m). Anal. Calcd. for C₁₇H₁₂N₄O₂SF₂: C, 54.54; H, 3.23; N, 14.97; S, 8.57. Found: C, 54.27; H, 3.27; N, 14.68; S, 8.35.

• Example C(103): tert-Butyl ({4-[4-Amino-5-(2,6-difluoro-benzoyl)-thiazol-2-ylamino]-phenyl}-methyl-amino)-acetate

5

tert-Butyl [methyl-(4-nitro-phenyl)-amino]-acetate, which has the structural formula

hydrochloride (2.0 g, 11 mmol) in DMSO (6 mL) was added 4-fluoro-nitrobenzene (1.6 g, 11 mmol) and triethylamine (3.4 mL, 24 mmol). The resultant mixture was heated at 100°C for 12 hours. The resultant yellow suspension was allowed to cool, diluted with H₂O (100 mL), and extracted with ether (2 x 100 mL). The combined organic layers were dried over MgSO₄, filtered, and concentrated *in vacuo* to give yellow needles, which recrystallized from ether/hexane to give 2.0 g of yellow needles, which were used without further purification.

¹H NMR (CDCl₃): δ 8.18 (2H, d, J = 9.3 Hz), 6.62 (2H, d, J = 9.7 Hz), 4.08 (2H, s), 3.20 (3H, s),

15 1.42 (9H, s).

tert-Butyl [(4-amino-phenyl)-methyl-amino]-acetate, which has the structural formula

was prepared in a manner analogous to 4-(4-methyl-piperazin-1-yl)-aniline

for Example C(70). tert-Butyl [methyl-(4-nitro-phenyl)-amino]-acetate provided a red oil in 95% crude yield, which was used without further purification.

¹H NMR (CDCl₃): δ 6.60-6.80 (4H, m), 4.08 (2H, s), 3.20 (2H, bs), 3.80 (2H, s), 2.82 (3H, s), 1.42 (9H, s).

tert-Butyl [(4-isothiocyanato-phenyl)-methyl-amino]-acetate, which has the structural

25

20

, was prepared in a manner analogous to 1-(4-isothiocyanato- $_{\mbox{\tiny D}}$

phenyl)-1H-imidazole for Example C(41). tert-Butyl [(4-amino-phenyl)-methyl-amino]-acetate furnished a pale brown solid in 98% yield, which was used without further purification.

¹H (CDCl₃): \Box 7.10 (2H, d, J = 9.1 Hz), 6.52 (2H, d, J = 9.1 Hz), 3.90 (2H, s), 2.92 (3H, s), 1.30 (9H, s).

The title compound was prepared in a manner like that described for Example C(1). tert-Butyl [(4-isothiocyanato-phenyl)-methyl-amino]-acetate and 2-bromo-2',6'-difluoro-acetophenone (from Example C(79)) provided a cream powder in 34% yield, mp 200.0-200.5°C. ¹H NMR (DMSO-d₆): δ 7.44-7.56 (1H, m), 7.10-7.30 (4H, m), 6.62 (2H, d, J = 9.0 Hz), 4.08 (2H, s), 2.95 (3H, s), 1.32 (9H, s).

IR (KBr): 3248, 3142, 2978, 1725, 1619, 1537, 1466, 1231 cm⁻¹.

Anal. Calcd. for $C_{23}H_{24}F_2N_4O_3S$: C, 58.22; H, 5.10; N, 11.81; S, 6.76. Found: C, 58.27; H, 5.11; Cl, N, 11.53; S, 6.63.

• Example C(104): 4-Amino-2-[4-(1-tert-butoxycarbonyl-piperazine-4-yl)-phenylamino]-thiazol-5-yl-(3-methyl-thiophen-2-yl)-methanone

The title compound was prepared in a manner like that described for Example C(1). 115 tert-Butoxycarbonyl-4-(4-isothiocyanato-phenyl)-piperazine (from Example C(101)) and 2bromoacetyl-3-methyl-thiophene (from Example C(19)) gave, after recrystallization with
EtOAc/hexane, 387 mg (52% yield) of a yellow solid, mp 175-176°C.

¹H NMR (CDCl₃): δ 7.00-6.85 (4H, m), 3.62 (4H, dd, J = 5.3, 5.0 Hz), 3.18 (4H, dd, J = 5.3, 5.0 Hz), 2.48 (3H, s), 1.42 (9H, s).

IR (KBr): 3260, 2978, 1725, 1684, 1601, 1531, 1419, 1231 cm⁻¹.

Anal. Calcd. for $C_{24}H_{29}N_5O_3S_2$: C, 57.68; H, 5.85; N, 14.02; S, 12.83. Found: C, 57.74; H, 5.82; Cl, N, 13.95; S,12.95.

• Example C(105): 4-Amino-2-[4-(1-tert-butoxycarbonyl-piperazine-4-yl)-phenylamino]-thiazol-5-yl-(2,6-dichlorophenyl)-methanone

The title compound was prepared in a manner like that described for Example C(1). 1-tert-Butoxycarbonyl-4-(4-isothiocyanato-phenyl)-piperazine (from Example C(101)) and 2-bromo-2',6'-dichloro-acetophenone (from Example C(52)) afforded a crude product, which was

25

purified via flash column chromatography with MeOH:CH₂Cl₂ (2.5:97.5) as eluant and azeotroped with hexanes to give a yellow solid in 90% yield, mp 165-167°C.

¹H NMR (CDCl₃): δ 7.22 (2H, d, J = 9.0 Hz), 6.92 (2H, d, J = 9.0 Hz), 3.60 (4H, m), 3.18 (4H, m), 1.42 (9H, s).

IR (KBr): 3401, 3271, 2966, 1689, 1607, 1542, 1460, 1225 cm⁻¹.

HRFABMS: Calcd. for C₂₅H₂₈N₅O₃ClS (MH⁺): 548.1290. Found: 548.1270.

Anal. Calcd. for C₂₅H₂₇N₅O₃Cl₂S • 0.1 C₆H₁₄: C, 55.23; H, 5.07; N, 12.58; Cl, 12.74; S, 5.76.

Found: C, 55.34; H, 5.28; N, 12.29; Cl, 12.48; S, 5.58.

• Example C(106): (3-Acetamido-2,6-dichloro-phenyl)-[4-amino-2-(4-tert-butoxycarbonyl-piperazin-1-yl)-amino-thiazol-5-yl]-methanone

The title compound was prepared in a manner like that described for Example C(1). 1-tert-Butoxycarbonyl-4-(4-isothiocyanato-phenyl)-piperazine (from Example C(101)) and N-(3-

bromoacetyl-2,4-dichloro-phenyl)-acetamide (from Example C(82)) provided a pale yellow solid in 57% yield, mp 248-250°C.

 1 H NMR (CDCl₃): δ 7.20 (2H, d, J = 9.0 Hz), 6.92 (2H, d, J = 9.0 Hz), 3.54-3.66 (4H, m), 3.12-3.22 (4H, m), 2.28 (3H, s), 1.42 (9H, s).

IR (KBr): 3377, 3271, 3177, 2978, 1672, 1548, 1437, 1290, 1231 cm⁻¹.

HRFABMS: Calcd. for C₂₇H₃₁Cl₂N₆O₄S (MH⁺): 605.1505. Found: 605.1528.

Anal. Calcd. for C₂₇H₃₀Cl₂N₆O₄S • 1.3 H₂O: C, 51.56; H, 5.22; N, 13.36; Cl, 11.27; S, 5.10.

Found: C, 51.50; H, 5.18; Cl, 11.15; N, 13.19; S, 4.99.

• Example C(107): 4-[4-Amino-5-(2,4,6-trichloro-benzoyl)-thiazol-2-yl-amino]-benzenesulfonamide

2,4,6-Trichloroacetophenone, which has the structural formula

H₃C CI, was first

prepared as follows. Adapted from a procedure by Reynolds et al., Org. Syn. Coll., vol. IV

83

30

25

(1963), pp. 708-710. To Mg turnings (283 mg, 11.3 mmol) and EtOH (0.25 mL) was added CCl₄ (11 μL). The ensuing reaction subsided, before a solution of diethyl malonate (1.71 mL, 11.33 mmol) in EtOH (0.91 mL) was added at a rate to sustain reaction. After 30 min, the mixture was refluxed to consume Mg for one hour, then allowed to cool. The solid mass was suspended in ether (25 mL) and a solution of 2,4,6-trichlorobenzoyl chloride (2.50 g, 10.3 mL) in ether (5 mL) was added cautiously. After 3 days, a solution of H₂SO₄ (0.6 mL) in water (10 mL) was carefully added to dissolve any solids, and extracted with ether (2 x 10 mL). The extracts were dried over MgSO₄ and evaporated to a cloudy oil, which was placed in HOAc (3 mL), H₂O (2 mL) and H₂SO₄ (0.33 mL), and heated to reflux. After 7.5 hours, the mixture was allowed to cool overnight. The mixture was made alkaline with 1N NaOH (35 mL) and extracted with ether (3 x 10 mL). The combined ethereal layers were dried with MgSO₄ and evaporated to give 1.80 g (78%) of a white solid that was used without further purification (previously described in Baker et al., *J. Chem. Soc.* (1941), pp. 796-802).

2-Bromo-2',4',6'-trichloroacetophenone, which has the structural formula

Example C(12). Crude 2',4',6'-trichloroacetophenone afforded 1.27 g (94%) of gold crystals that were used without further purification (previously described in Baker et al., J. Chem. Soc. (1941), pp. 796-802).

¹H NMR: δ 7.42 (2H, s), 4.42 (s, 2H).

The title compound was prepared essentially as described for Example C(1), except that excess potassium t-butoxide (2.2 equivalents) was employed. 4-Isothiocyanato-benzenesulfonamide and 2-bromo-2',4',6'-trichloroacetophenone provided a dark brown gum, which was purified via column chromatography with 10% MeOH/CHCl₃ and precipitated from MeOH/CHCl₃ to obtain 96 mg (21%) of an amorphous, pale yellow solid.

¹H NMR (CD₃OD): δ 7.87 (4H, dd, J = 14.6, 9.0 Hz), 7.60 (2H, s).

IR (KBr): 3312, 1593, 1545, 1459, 1421, 1161 cm⁻¹.

ESIMS (MH⁺): 477/ 479/481. (M⁻⁻): 475/477/479.

Anal. Calcd for C₁₆H₁₁Cl₃N₄O₃S₂: C, 40.22; H, 2.32; N, 11.73; Cl, 22.26; S, 13.42. Found: ₀C, 40.12; H, 2.34; N, 11.56; Cl, 22.41; S, 13.43.

5

10

• Example C(108): 4-[4-Amino-5-(2,6-difluoro-benzoyl)-thiazol-2-ylamino]-N-methyl-benzenesulfonamide

5

10

15

4-Amino-N-methyl-benzenesulfonamide, which has the structural formula

H₃C NH₂, was first made as follows. N-Methyl-4-nitro-benzenesulfonamide (2.58 g, 11.9 mmol; Khanna et al., *J. Med. Chem.*, vol. 40 (1997), pp. 1619-1633) and 10% Pd/C (250 mg) in MeOH (60 mL) was stirred under hydrogen atmosphere for 2 hours and filtered. The filtrate was concentrated *in vacuo* to provide 2.17 g (98% yield) of colorless crystalline flakes, which by ¹H NMR matched that reported in the literature (Khanna et al., *J. Med. Chem.*, vol. 40 (1997), pp. 1619-1633) and was used without further purification.

4-Isothiocyanato-N-methyl-benzenesulfonamide, which has the structural formula

, was prepared in a manner analogous to 4-isothiocyanato-benzamide of

Example C(102). 4-Amino-N-methyl-benzenesulfonamide (2.17 g, 11.7 mmol) gave 2.10 g (79% yield) of white fluffy powder, which was used without further purification.

¹H NMR (DMSO-d₆): δ 7.83 (2H, d, J = 8.4 Hz), 7.65 (2H, d, J = 8.4 Hz), 7.61 (1H, q, J = 4.9 Hz), 2.43 (3H, d, J = 4.9 Hz).

The title compound was prepared in a manner analogous to that used in Example C(1).

4-Isothiocyanato-N-methyl-benzenesulfonamide and 2-bromo-2',6'-difluoro-acetophenone (from Example C(79)) provided a crude product, which was extracted with 10% i-PrOH/CHCl₃ and purified via column chromatography with 5% MeOH/CHCl₃ to afford an amorphous yellow powder in 41% yield, that decomposed above 200°C.

¹H NMR (DMSO-d₆): δ 11.23 (1H, s), 8.33 (2H, bs), 7.81 (2H, d, J = 8.5 Hz), 7.54 (2H, d, J = 8.5 Hz), 7.63-7.41 (1H, m), 7.39 (1H, q, J = 5.0 Hz), 7.23 (2H, t, J = 7.1 Hz), 2.41 (3H, d, J = 5.0 Hz).

HRFABMS (MH⁺): Calcd.: 425.0554. Found: 425.0566 Anal. Calcd. for $C_{17}H_{14}N_4O_3S_2F_2 \cdot 0.5$ CH₃OH: C, 47.72; H, 3.66; N, 12.72; S, 14.56. Found C, 47.56; H, 3.52; N, 12.72; S, 14.77.

• Example C(109): 4-[4-Amino-5-(2,6-difluoro-benzoyl)-thiazol-2-ylamino]-N,N-dimethyl-benzenesulfonamide

5

10

15

20

4-Amino-N, N-dimethyl-benzenesulfonamide, which has the structural formula

H₃C O NH₂
NH₂, was next prepared as follows. Crude N, N-dimethyl-4-nitrobenzenesulfonamide (3.89 g, 16.9 mmol; Khanna et al., *J. Med. Chem.*, vol. 40 (1997), pp. 16191633), 10% Pd/C (800 mg), MeOH (80 mL), and THF (200 mL) were stirred under hydrogen for 6 hours and filtered. The filtrate was concentrated *in vacuo* to furnish 3.68 g of yellow solid, which was identical by ¹H NMR spectrum to previous description by Khanna et al., *J. Med. Chem.*, vol. 40 (1997), pp. 1619-1633 and was used without further purification.

4-Isothiocyanato-N, N-dimethyl-benzenesulfonamide, which has the structural formula

, was next made as follows. To a solution of 4-amino-N, N-dimethyl-

benzenesulfonamide (2.0 g, 10 mmol) in acetone (50 mL) at 5 10°C were added simultaneously a solution of thiophosgene (0.91 mL, 12 mmol) in acetone (20 mL) and 25% aq Na₂CO₃ (10 mL). After 5 min at 5-8°C, the mixture was allowed to warm and was stirred at ambient temperature for a half hour. The solvent was evaporated and water (70 mL) was added. The resultant light-yellow precipitate was filtered off, washed with water, and dried under vacuum to afford 2.35 g (97% yield) of white powder, which was used without further purification.

 1 H NMR (DMSO-d₆): δ 7.82 (2H, d, J = 8.4 Hz), 7.69 (2H, d, J = 8.4 Hz), 2.63 (6H, s).

The title compound was prepared in a manner analogous to that used in Example C(1). 4-Isothiocyanato-N, N-dimethyl-benzenesulfonamide and 2-bromo-2',6'-difluoro-acetophenone (from Example C(79)) provided a crude brown solid that recrystallized from EtOH to give light-brown crystals in 52% yield, mp 240-242°C.

¹H NMR (DMSO-d₆): δ 11.24 (1H, s), 8.14 (2H, bs), 7.84 (2H, d, J = 8.8 Hz), 7.72 (2H, d, J = 8.8 Hz), 7.62-7.49 (1H, m), 7.23 (1H, d, J = 7.9 Hz), 7.20 (1H, d, J = 8.0 Hz), 2.59 (6H, s). Anal. Calcd. for $C_{18}H_{16}N_4O_3S_2F_2$: C, 49.31; H, 3.68; N, 12.78; S, 14.63. Found: C, 49.29; H, 3.71; N, 12.68; S, 14.50.

Example C(110): (4-Amino-2-{4-[(2-dimethylamino-ethyl)-methyl-amino}-phenylamino}thiazol-5-yl)-(2,6-difluoro-phenyl)-methanone

5

10

15

N-(4-Nitrophenyl)-N,N',N'-trimethyl-ethane-1,2-diamine, which has the strutural

NO₂, was first prepared in a manner analogous to tert-butyl [methyl-(4formula nitro-phenyl)-amino]-acetate for Example C(103). 4-Fluoronitrobenzene and N,N,N'-trimethylethylendiamine gave a brown oil in 87% crude yield, which was used without any further purification.

 1 H NMR (CDCl₃): δ 8.14 (2H, d, J = 9.6 Hz), 6.64 (2H, d, J = 9.3 Hz), 3.58 (2H, t, J = 7.5 Hz), 3.12 (3H, s) 2.52 (2H, t, J = 7.5 Hz), 2.32 (6H, s).

N-(4-Aminophenyl)-N,N',N'-ethane-1,2-diamine, which has the structural formula

NH₂, was prepared in a manner analogous to 4-(4-methyl-piperazin-1-yl)-

aniline for Example C(70). N-(4-nitrophenyl)-N,N,N'-trimethyl-ethane-1,2-diamine furnished a reddish-brown oil in 92% crude yield which was used without further purification.

 1 H NMR (CDCl₃): δ 6.62 (4H, s), 3.30 (2H, dd, J = 7.6, 7.4 Hz), 2.85 (3H, s), 2.47 (2H, dd, J = 7.6, 7.4 Hz) 7.7, 7.2 Hz), 2.32 (6H, s).

N-(4-Isothiocyanato-phenyl)-N,N',N'-trimethyl-ethane-1,2-diamine, which has the

20

structural formula isothiocyanato-phenyl)-1H-imidazole for Example C(41). N-(4-Aminophenyl)-N,N',N'-ethane-1,2-diamine provided a brown oil in 75% crude yield, which was used without further purification.

25

 1 H NMR (CDCl₃): δ 7.13 (2H, d, J = 8.8 Hz), 7.01 (2H, d, J = 8.2 Hz), 3.99 (2H, dd, J = 7.6, 7.1) Hz), 3.15 (1H, bs), 3.02 (3H, s), 2.80 (6H, s).

The title compound was prepared in a manner like that described for Example C(1). N-(4-Isothiocyanato-phenyl)-N,N',N'-trimethyl-ethane-1,2-diamine and 2-bromo-2',6'-difluoroacetophenone (from Example C(79)) afforded a crude product, which was purified via flash

87

column chromatography with a stepwise gradient of MeOH:CH₂Cl₂ (2.5:97.5-10:90) to provide a yellow solid in 55% yield, mp 96-98°C.

¹H NMR (DMSO-d₆): δ 7.42-7.55 (1H, m), 7.10-7.24 (4H, m), 6.64 (2H, d, J = 9.0 Hz), 2.90 (3H, s), 2.38 (2H, dd, J = 7.2, 6.5 Hz), 2.18 (6H, s).

IR (KBr): 3394, 3180, 2948, 2828, 1620, 1546, 1523, 1466 cm⁻¹.

5 HRFABMS: Calcd. for C₂₁H₂₄F₂N₅OS (MH⁺): 432.1670. Found: 432.1658.
Anal. Calcd. for C₂₁H₂₃F₂N₅OS • 0.4 H₂O: C, 57.49; H, 5.47; N, 15.96; S, 7.31. Found: C, 57.36; H, 5.45; N, 15.77; S, 7.27.

• Example C(111): 2-[4-(1-Acetyl-piperazin-4-yl)-phenylamino]-4-amino-thiazol-5-yl-(2,6-difluorophenyl)-methanone

H₃C N S

The title compound was prepared in a manner like that described for Example C(1). 1-Acetyl-4-(4-isothiocyanato-phenyl)-piperazine (from Example C(97)) and 2-bromo-2',6'-difluoro-acetophenone (from Example C(79)) provided 320 mg (66% yield) of a cream-colored solid, mp 298°C.

¹H NMR (DMSO-d₆): δ 7.44-7.58 (1H, m), 7.36 (2H, bd, J = 7.2 Hz), 7.18 (2H, dd, J = 8.1, 7.5 Hz), 6.95 (2H, d, J = 9.0 Hz), 3.58 (4H, bs), 3.00-3.20 (4H, m), 2.05 (3H, s) IR (KBr): 3389, 3154, 1607, 1601, 1542, 1419, 1231 cm⁻¹.

HRFABMS: Calcd. for $C_{22}H_{21}F_2N_5OSNa~(M+Na^+)$: 480.1282. Found: 480.1266.

- Anal. Calcd. for $C_{22}H_{21}N_5O_2F_2S \cdot 0.3 H_2O$: C, 57.08; H, 4. 70; N, 15.13; S, 6.93. Found: C, 56.95; H, 4.74; N, 15.16; S,6.82
 - Example C(112): 2-[4-(1-Acetyl-piperazin-4-yl)-phenylamino]-4-amino-thiazol-5-yl-(2,5-dimethyl-thiophen-3-yl)-methanone

NH₂ S NH₂ S CH₃

25

15

The title compound was prepared in a manner like that described for Example C(1).¹ I-Acetyl-4-(4-isothiocyanato-phenyl)-piperazine (from C(97)) and 3-bromoacetyl-2,5-dimethyl-thiophene (from Example C(50)) provided 200 mg (53% yield) of a pale cream-colored solid, mp 282-283 °C.

¹H NMR (DMSO-d₆): δ 7.42 (2H, d, J = 9.0 Hz), 6.98 (2H, d, J = 9.0 Hz), 6.82 (1H, s), 3.60 (4H, bs), 3.02-3.20 (4H, m), 2.46 (3H, s), 2.38 (3H, s), 2.05 (3H, s).

IR (KBr): 3401, 3166, 1637, 1601, 1542, 1425, 1231 cm⁻¹.

HRFABMS: Calcd. for C₂₂H₂₆N₅O₂S₂ (MH⁺): 456.1528. Found: 456.1510.

- 5 Anal. Calcd. for $C_{22}H_{25}N_5O_2S_2$: C, 57.87; H, 5.74; N, 15.34; S, 14.05. Found: C, 57.85; H, 5.53; N, 15.23; S, 14.20.
 - Example C(113): 4-[4-Amino-5-(2-fluoro-6-trifluoromethyl-benzoyl)-thiazol-2-ylamino]-benzamide

10

The title compound was prepared in a manner analogous to that used in Example C(1). 4-Isothiocyanato-benzamide (from Example C(102)) and 2-bromo-2'-fluoro-6'-trifluoromethylacetophenone (from Example C(99)) provided a crude product, which was purified via column chromatography with a stepwise gradient of 8-10% EtOH/CHCl₃ to afford an amorphous yellow solid in 14% yield that decomposed above 145°C.

15 ¹H NMR (DMSO-d₆): δ 8.30 (1H, bs), 8.10 (1H, bs), 7.94-7.82 (3H, m), 7.74-7.62 (5H, m), 7.30 (1H, s).

HRFABMS (MH⁺): Calcd.: 425.0695. Found: 425.0709.

Anal. Calcd. for C₁₈H₁₂N₄O₂SF₄ • 0.9 EtOH: C, 51.05; H, 3.76; N, 12.03; S, 6.88. Found: C, 51.14; H, 3.78; N, 12.36; S, 6.79.

• Example C(114): 4-[4-Amino-5-(3-methyl-thiophene-2-carbonyl)-thiazol-2-ylamino]-N20 methyl-benzenesulfonamide

The title compound was prepared in a manner analogous to that used in Example C(1).

4-Isothiocyanato-N-methyl-benzenesulfonamide (from Example C(108)) and 2-bromoacetyl-3-methyl-thiophene (from Example C(19)) provided a yellow solid in 57% yield, mp 197.0-199.5°C.

¹H NMR (DMSO-d₆): δ 11.19 (1H, s), 8.24 (2H, bs), 7.86 (2H, d, J = 8.7 Hz), 7.75 (2H, d, J = 8.7 Hz), 7.65 (1H, d, J = 5.0 Hz), 7.36 (1H, q, J = 6.1 Hz), 7.03 (1H, d, J = 5.0 Hz), 2.42 (3H, S), 2.41 (3H, d, J = 6.1 Hz).

89

HRFABMS (MH⁺): Calcd.: 409.0463. Found: 409.0474.

Anal. Calcd. for C₁₆H₁₆N₄O₃S₃ • 0.4 H₂O: C, 46.23; H, 4.07; N, 13.48; S, 23.14. Found: C, 46.28; H, 3.98; N, 13.38; S, 23.08.

• Example C(115): 4-[4-Amino-5-(2,4,6-trifluoro-benzoyl)-thiazol-2-yl-amino]-benzenesulfonamide

H₂N S F F

2-Chloro-2',4',6'-trifluoroacetophenone, which has the structural formula

10 F, was first prepared as follows. To a mechanically stirred solution of 1,3,5-trifluorobenzene (5.17 mL, 50.0 mmol) in dichloroethane (12.5 mL) was added gradually AlCl₃ (13.4 g, 115 mmol) over 15 min. time period with caution. Violent bumping and HCl gas evolution was observed. The mixture was carefully heated to reflux, and chloroacetyl chloride (6.20 g, 4.37 mL, 55.0 mmol) was added dropwise over 45 min. time period. After 6 hours at reflux, the mixture was allowed to cool over 12 hours, then carefully poured onto an ice/water slush (~200 mL) and extracted with ether (3 x 50 mL). The combined ethereal layers were washed with 10% aq. HCl (2 x 30 mL), 1N aq. NaOH (3 x 30 mL), and brine (25 mL), dried over MgSO4 and evaporated to give 5.28 g (51%) of a yellow solid that was used without further purification. (An analytical sample crystallized from ether/hexane to give yellow microcrystals,

20 ¹H NMR (CDCl₃): δ 6.81 (2H, t, J = 8.4 Hz), 4.54 (2H, s).

mp 43-45°C.)

IR (KBr): 1721, 1637, 1616, 1447, 1201, 1128, 1045 cm⁻¹.

Anal. Calcd. for C₈H₄ClF₃O: C, 46.07; H, 1.93; Cl, 17.00. Found: C, 45.92; H, 1.95; Cl, 16.97.

The title compound was prepared essentially as described for Example C(1), except that excess potassium t-butoxide (2.2 equivalents) was employed. 4-Isothiocyanato-

benzenesulfonamide and 2-chloro-2',4',6'-trifluoroacetophenone gave a red-brown solid, which was purified via column chromatography with 5% MeOH/CH₂Cl₂ as eluant. Precipitation with trace hexane in MeOH/CH₂Cl₂ gave 70 mg (33%) of yellow amorphous powder that decomposed above 148°C.

¹H NMR (CD₃OD): δ 7.91 (1H, s), 7.86 (4H, dd, J = 14.9, 6.9 Hz), 6.99 (2H, dd, J = 9.0, 7.5 Hz).

90

30

25

IR (KBr): 3278, 1602, 1549, 1425, 1155 cm⁻¹. HRFABMS. Calcd for $C_{16}H_{12}F_3N_4O_3S_2$ (MH⁺): 429.0303. Found: 429.0315. Anal. Calcd for $C_{16}H_{11}F_3N_4O_3S_2 \cdot 1.1 H_2O$: C, 42.87; H, 2.97; N, 12.50; S, 14.31. Found: C, 42.98; H, 2.73; N, 12.12; S, 14.48.

Example C(116): {4-Amino-2-[4-(4-methyl-piperazine-1-sulfonyl)-phenylamino]-thiazol-5yl}-(2,6-difluoro-phenyl)-methanone

1-Methyl-4-(4-nitro-benzenesulfonyl)-piperazine, which has the structural formula

, was prepared in a manner analogous to that used for N-methyl-4-nitrobenzenesulfonamide for Example C(108) (Khanna et al., J. Med. Chem., vol. 40 (1997), pp. 1619-1633). 4-Nitrobenzenesulfonyl chloride and 1-methylpiperazine gave 5.1 g (88% yield) of yellow solid, which was used without further purification.

4-(4-Methyl-piperazine-1-sulfonyl)-aniline, which has the structural formula

15 , was prepared in a manner analogous to that used for N-methyl-4amino-benzenesulfonamide for Example C(108). 1-Methyl-4-(4-nitro-benzenesulfonyl)piperazine provided a gray solid in 99% yield, which was used in the next step without further purification.

¹H NMR (DMSO-d₆): δ 7.37 (2H, d, J = 8.8 Hz), 6.67 (2H, d, J = 8.8 Hz), 6.16 (2H, bs), 3.30 20 (4H, bs), 3.03 (4H, bs), 2.58 (3H, s).

1-(4-Isothiocyanato-benzenesulfonyl)-4-methyl-piperazine, which has the structural

s, was made in a manner analogous to 4-isothiocyanatoformula

benzamide for Example C(102). 4-(4-Methyl-piperazine-1-sulfonyl)-aniline provided 1.1 g (94% yield) of white crystals which were used without further purification.

¹H NMR (CDCl₃): δ 7.74 (2H, d, J = 8.6 Hz), 7.35 (2H, d, J = 8.6 Hz), 3.27 (4H, bs), 2.77 (4H, bs), 2.47 (3H, s).

25

The title compound was prepared in a manner analogous to that used in Example C(1). 1-(4-Isothiocyanato-benzenesulfonyl)-4-methyl-piperazine and 2-bromo-2',6'-difluoroacetophenone (from Example C(79)) provided a yellow solid in 69% yield, mp 172-174°C. ¹H NMR (DMSO-d₆): δ 11.23 (1H, bs), 8.21 (2H, bs), 7.84 (2H, d, J = 8.8 Hz), 7.69 (2H, d, J = 8.8 Hz), 7.62-7.49 (1H, m), 7.22 (1H, d, J = 7.8 Hz), 7.19 (1H, d, J = 8.1 Hz), 2.87 (4H, t, J = 4.55 Hz), 2.35 (4H, t, J = 4.5 Hz), 2.13 (3H, s).

HRFABMS (MH⁺): Calcd.: 494.1132. Found: 494.1120.

Anal. Calcd. for C₂₁H₂₁N₅O₃S₂F₂ • 0.1 H₂O • 0.5 CH₃OH: C, 50.50; H, 4.57; N, 13.70; S, 12.54. Found: C, 50.34; H, 4.39; N, 13.51; S, 12.63.

• Example C(117): (4-Amino-2-{4-[(2-dimethylamino-ethyl)-methyl-amino}-phenylamino}thiazol-5-yl)-(3-methyl-thiophen-2-yl)-methanone

The title compound was prepared in a manner like that described for Example C(1). N-(4-Isothiocyanato-phenyl)-N,N',N'-trimethyl-ethane-1,2-diamine (from Example C(110)) and 2bromoacetyl-3-methyl-thiophene (from Example C(19)) gave, after purification via flash column 15 chromatography with MeOH:CH₂Cl₂ (5:95) as eluant, a yellow foam in 70% yield. ¹H NMR (DMSO-d₆): δ 7.22 (1H, d, J = 5.0 Hz), 7.16 (2H, d, J = 9.0 Hz), 6.72 (1H, d, J = 5.0 Hz), 6.58 (2H, d, J = 9.0 Hz), 3.44 (2H, dd, J = 7.7, 7.4 Hz), 3.00 (3H, s), 2.42 (3H, s), 2.3 (6H, s).

IR (KBr): 3377, 3269, 2937, 2821, 1609, 1543, 1518, 1423 cm⁻¹.

20 HRFABMS: Calcd. for C₂₀H₂₆Cl₂N₅OS₂ (MH⁺): 416.1579. Found: 416.1594. Anal. Calcd. for C₂₀H₂₅Cl₂N₅OS₂ • 1 H₂O: C, 55.40; H, 6.28; N, 16.15; S, 14.71. Found: C, 55.43; H, 5.94; N, 16.37; S, 14.57.

• Example C(118): 4-{4-[4-Amino-5-(2,6-difluoro-benzoyl)-thiazol-2-ylamino]-phenyl}-1methyl-piperazin-2-one

25

1

1 4-(4-Nitro-phenyl)-piperazin-2-one, which has the structural formula

hn No₂, was first prepared in a manner analogous to tert-butyl [methyl-(4-nitrophenyl)-amino]-acetate for Example C(103). Piperazin-2-one (Aspinall et al., *J. Amer. Chem.*

Soc., vol. 62 (1940), pp. 1202-1204) and 4-fluoronitrobenzene furnished a yellow solid in 63% yield, which was used without any further purification.

¹H NMR (CDCl₃): δ 8.10 (2H, d, J = 8.8 Hz), 6.80 (2H, d, J = 9.2 Hz), 6.38 (1H, bs), 4.10 (2H, s), 3.74-2.52 (4H, m).

1-Methyl-4-(4-nitro-phenyl)-piperazin-2-one, which has the structural formula

10 H₃C-N N-NO₂, was next prepared as follows. To a suspension of 4-(4-nitro-phenyl)-piperazin-2-one (500 mg, 2.26 mmol) in THF (5 mL) was added NaH (60 mg, 2.5 mmol). The mixture was cooled to 0°C, iodomethane (162 uL, 2.59 mmol) was added, and then the mixture was allowed to warm to ambient temperature. After 12 hours, the solvent was removed *in vacuo* to give a yellow gum, which was treated with H₂O. The resultant yellow precipitate was filtered off, washed with H₂O, and dried under high vacuum for several hours to afford 420 mg (79% yield).

¹H NMR (CDCl₃): δ 8.18 (2H, d, J = 9.4 Hz), 6.78 (2H, d, J = 9.4 Hz), 4.08 (2H, s), 3.68 (2H, dd, J = 4.7, 3.6 Hz), 3.54 (2H, dd, J = 4.9, 3.7 Hz), 3.02 (3H, s).

4-(4-Amino-phenyl)-1-methyl-piperazin-2-one, which has the structural formula

20 H₃C-N-NH₂ ,was prepared in a manner analogous to 4-(4-methyl-piperazin-1-yl)-aniline for Example C(70). 1-Methyl-4-(4-nitro-phenyl)-piperazin-2-one provided a brown gum, which was used without any further purification.

¹H NMR (CDCl₃): δ 6.78 (2H, d, J = 9.0 Hz), 6.60 (2H, d, J = 9.0 Hz), 3.76 (2H, s), 3.44 (2H, dd, J = 5.8, 4.9 Hz), 3.20 (2H, dd, J = 4.9, 4.0 Hz), 3.02 (3H, s).

4-(4-Isothiocyanato-phenyl)-1-methyl-piperazin-2-one, which has the structural formula

H₃C-N , was prepared in a manner analogous to 1-(4-isothiocyanato-phenyl)-!H-imidazole for Example C(41). 4-(4-Amino-phenyl)-1-methyl-piperazin-2-one gave a cream-colored powder in 85% yield, which was used without further purification.

93

30

¹H NMR (CDCl₃): δ 7.18 (2H, d, J = 9.0 Hz), 6.80 (2H, d, J = 9.0 Hz), 3.90 (2H, s), 3.50 (4H, bs), 3.70 (3H, s).

The title compound was prepared in a manner like that described for Example C(1). 2-bromo-2',6'-difluoro-acetophenone (from Example C(79)) and 4-(4-isothiocyanato-phenyl)-1-methyl-piperazin-2-one provided a yellow solid in 77% yield, mp >300°C.

- ¹H NMR (DMSO-d₆): δ 7.60-7.70 (1H, m), 7.48 (2H, bd, J = 8.3 Hz), 7.31 (2H, t, J = 7.9 Hz), 7.09 (2H, d, J = 9.0 Hz), 3.88 (2H, s), 3.58 (4H, bd, J = 4.4 Hz), 3.02 (3H, s). Anal. Calcd. for $C_{21}H_{19}F_2N_5O_2S$: C, 56.88; H, 4.32; N, 15.79; S, 7.23. Found: C, 56.81; H, 4.42; N, 15.83; S, 7.31.
 - Example C(119): [4-Amino-2-(4-thiomorpholin-4-yl-phenylamino)-thiazol-5-yl]-(2,6-difluoro-phenyl)-methanone

4-Thiomorpholin-4-yl-aniline, which has the structural formula was, was first prepared as follows. 4-(4-Nitro-phenyl)-thiomorpholine (1.50 g, 6.70 mmol; Beach et al., J. Chem. Soc. Perkin Trans. 2 (1984), pp. 217-221) and 10% Pd/C (200 mg of wet DeGussa type, 50% by wt.) was stirred in ethyl acetate (20 mL) and MeOH (20 mL) under hydrogen overnight and filtered. The filtrate was concentrated in vacuo to give 1.28 g (98% yield) of white crystalline flakes, which were used without further purification.

4-(4-Isothiocyanato-phenyl)-thiomorpholine, which has the structural formula

20 s

NCS

N was prepared in a manner analogous to 4-isothiocyanato-N,N-dimethyl-benzenesulfonamide for Example C(109). 4-Thiomorpholin-4-yl-aniline provided a yellow powder in 83% yield.

¹H NMR (CDCl₃): δ 7.13 (2H, d, J = 9.1 Hz), 6.79 (2H, d, J = 9.1 Hz), 3.59 (4H, ddd, J = 5.2, 5.0, 2.6 Hz), 2.72 (4H, ddd, J = 5.2, 5.0, 2.6 Hz).

The title compound was prepared in a manner analogous to that used in Example C(1). 4-(4-lsothiocyanato-phenyl)-thiomorpholine and 2-bromo-2',6'-difluoro-acetophenone (from Example C(79)) provided a yellow powder in 51% yield, mp 128-130°C.

¹ H NMR (DMSO-d₆): δ 10.64 (1H, s), 8.12 (2H, bs), 7.56-7.44 (1H, m), 7.30 (2H, d, J = 9.0 Hz), 7.18 (1H, d, J = 7.7 Hz), 7.15 (1H, d, J = 8.1 Hz), 6.91 (2H, d, J = 9.0 Hz), 3.47 (2H, dd, J = 5.1, 5.0 Hz), 2.65 (2H, dd, J = 5.1, 5.0 Hz).

HRFABMS (MH⁺): Calcd.: 433.0968. Found: 433.0980.

Anal. Calcd. for $C_{20}H_{18}N_4OS_2F_2 \cdot 0.2 H_2O$: C, 55.08; H, 4.25; N, 12.85; S, 14.71. Found: C, 55.02; H, 4.14; N, 12.72; S, 14.53.

• Example C(120): 4-{4-[4-Amino-5-(2,6-difluoro-benzoyl)-thiazol-2-ylamino]-phenyl}-piperazin-2-one

10

4-(4-Amino-phenyl)-piperazin-2-one, which has the structural formula

HN N-N-NH2

, was prepared in a manner analogous to 4-(4-methyl-piperazin-1-yl)-aniline

for Example C(70). 4-(4-Nitro-phenyl)-piperazin-2-one (from Example C(115)) gave a pale brown oil in 100% crude yield, which was used without any further purification.

¹⁵ HNMR (CD₃OD): δ 7.02 (2H, d, J = 8.7 Hz), 6.91 (2H, d, J = 8.8 Hz), 3.81 (2H, s), 3.59 (2H, dd, J = 5.9, 4.8 Hz), 3.46 (2H, dd, J = 5.9, 4.8 Hz).

4-(4-Isothiocyanato-phenyl)-piperazin-2-one, which has the structural formula

HN_N-_N'S

, was prepared in a manner analogous to 1-(4-isothiocyanato-phenyl)-1H-

20 imidazole for Example C(41). 4-(4-Amino-phenyl)-piperazin-2-one provided a cream-colored solid, which was used without further purification.

¹H NMR (CDCl₃): δ 9.00 (1H, bs), 8.20 (2H, d, J = 9.0 Hz), 7.80 (2H, d, J = 9.0 Hz), 4.50 (2H, s), 4.00-4.30 (4H, m).

The title compound was prepared in a manner like that described for Example C(1). 2-bromo-2',6'-difluoro-acetophenone (from Example C(79)) and 4-(4-isothiocyanato-phenyl)-piperazin-2-one provided a yellow solid in 56% yield, mp 280-282°C.

¹H NMR (DMSO-d₆): δ 9.12 (3H, bs), 8.32-8.44 (1H, m), 8.18 (2H, bd, J = 6.9 Hz), 8.05 (2H, t, J = 8.2 Hz), 7.78 (2H, d, J = 9.0 Hz), 4.52 (2H, s).

HRFABMS: Calcd. for $C_{20}H_{18}F_2N_5O_2S$ (MH+): 430.1149. Found: 430.1138.

1 Anal. Calcd. for C₂₀H₁₇F₂N₅O₂S • 0.3 H₂O: C, 55.24; H, 4.08; N, 16.11; S, 7.37. Found: C, 55.24; H, 4.10; N, 15.87; S, 7.34.

• Example C(121): {4-Amino-2-[4-(4-cyclopropylmethyl-piperazin-1-yl)-phenylamino]-thiazol-5-yl}-(2,6-difluoro-phenyl)-methanone

5

1-Cyclopropylmethyl-4-(4-nitro-phenyl)-piperazine, which has the structural formula

NO₂

, was first prepared as follows. To a suspension of 1-(4-nitro-phenyl)-

piperazine (2.50 g, 12.1 mmol) in DMF (10 mL) was added anhydrous Na₂CO₃ (639 mg, 6.03 mmol) and bromomethylcyclopropane (585 μL, 6.03 mmol). The mixture was heated at 100°C overnight, then allowed to cool and diluted with H₂O (30 mL). The separated aqueous layer was extracted with CHCl₃ (3 x 50 mL). The combined organic layers were dried over Na₂SO₄, filtered, and concentrated under reduced pressure to give an orange-brown solid, which was purified via flash column chromatography with 2.5% MeOH/CH₂Cl₂ as eluant to give 2.65 g (84% yield) of a yellow solid. This material was used without any further purification.

¹H NMR (CDCl₃): δ 8.10 (2H, d, J = 10.7 Hz), 7.11 (2H, d, J = 9.5 Hz), 3.45 (4H, dd, J = 5.3, 5.1 Hz), 2.65 (4H, dd, J = 5.3, 5.1 Hz), 2.29 (2H, d, J = 6.6 Hz), 0.84-0.98 (1H, m), 0.50-0.58

4-(4-Cyclopropylmethyl-piperazin-1-yl)-aniline, which has the structural formula

20

(2H, m), 0.10-0.15 (2H, m).

, was prepared in a manner analogous to 4-(4-methyl-piperazin-1-yl)-

aniline for Example C(70). 1-Cyclopropylmethyl-4-(4-nitro-phenyl)-piperazine furnished a red solid in 99% crude yield, which was used without further purification.

¹H NMR (CDCl₃): δ 6.85 (2H, d, J= 9.9 Hz), 6.62 (2H, d, J = 8.8 Hz), 3.42 (2H, bs), 3.10 (4H, dd, J = 5.1, 4.8 Hz), 2.69 (4H, dd, J = 5.1, 4.9 Hz), 2.30 (2H, d, J = 6.5 Hz), 0.90-0.98 (1H, m), 0.50-0.56 (2H, m), 0.10-0.15 (2H, m).

1-Cyclopropylmethyl-4-(4-isothiocyanato-phenyl)-piperazine, which has the structural

formula

was prepared in a manner analogous to 1-(4-isothiocyanato-

phenyl)-1H-imidazole for Example C(41). 4-(4-Cyclopropylmethyl-piperazin-1-yl)-aniline gave a dark-brown oil in 95% crude yield, which was used without further purification.

¹H NMR (CDCl₃): δ 6.80 (2H, d, J= 9.0 Hz), 6.68 (2H, d, J = 9.1 Hz), 3.08 (4H, bs), 2.55 (4H, bs), 2.10 (2H, d, J = 6.2 Hz), 0.65-0.80 (1H, m), 0.42 (2H, d, J = 8.0 Hz), 0.00 (2H, d, J = 4.6 Hz).

The title compound was prepared in a manner like that described for Example C(1). 1-Cyclopropylmethyl-4-(4-isothiocyanato-phenyl)-piperazine and 2-bromo-2',6'-difluoro-acetophenone (from Example C(79)) provided, after crystallization from EtOH, a yellow solid in 17% yield, mp 215-218°C.

¹H NMR (DMSO-d₆): δ 10.60 (1H, s), 8.04 (2H, bs), 7.46-7.56 (1H, m), 7.18-7.20 (2H, m), 7.08 10 (2H, dd, J = 8.0, 7.7 Hz), 6.82 (2H, d, J = 9.1 Hz), 2.98-3.03 (4H, m), 2.47 (4H, bs), 2.12 (2H, d, J = 6.6 Hz), 0.72-0.78 (1H, m), 0.34-0.42 (2H, m), 0.00-0.12 (2H, m).

HRFABMS: Calcd. for $C_{24}H_{25}F_2N_5OSCs$ (M+Cs⁺): 602.0802. Found: 602.0818. Anal. Calcd. for $C_{24}H_{25}F_2N_5OS \cdot 0.5 H_2O \cdot 0.1 EtOH$: C, 60.16; H, 5.55; N, 14.49; S, 6.64. Found: C, 59.94; H, 5.24; N, 14.19; S, 6.92.

• Example C(122): [4-Amino-2-(4-pyridin-4-yl-phenylamino)-thiazol-5-yl]-(2,6-difluoro-phenyl)-methanone

4-Pyridin-4-yl-aniline, which has the structural formula , was first prepared as follows. A mixture of 4-(4-nitro-phenyl)-pyridine (600 mg, 3.0 mmol; Wang et al., *J. Phys. Chem.*, vol. 99 (1995), pp. 6876-6888) and 10% Pd/C (100 mg) in EtOH (20 mL) was stirred under a hydrogen atmosphere overnight. The catalyst was filtered off and the filtrate concentrated *in vacuo* to provide 510 mg (100% yield) of white solid.

¹H NMR (CDCl₃): δ 8.59 (2H, dd, J = 6.2, 1.6 Hz), 7.51 (2H, d, J = 8.6 Hz), 7.46 (2H, dd, J = 6.2, 1.6 Hz), 6.79 (2H, d, J = 8.6 Hz).

4-(4-Isothiocyanato-phenyl)-pyridine, which has the structural formula

97

IR (KBr): 2917, 1620, 1513, 1428 cm⁻¹.

30

5

1 μl, 1.29 mmol) dropwise. After 20 min. at 0°C, then ambient temperature for 10 min., the solvent was evaporated. The residue was suspended in water, filtered, washed with minimal water, and dried under vacuum to give a brown solid, 240 mg (96%), which was used without further purification.

¹H NMR (CDCl₃): δ 8.62 (2H, d, J = 6.3 Hz), 7.57 (2H, d, J = 8.6 Hz), 7.45 (2H, d, J = 6.3 Hz), 7.27 (2H, d, J = 8.6 Hz).

The title compound was prepared in a manner analogous to that used in Example C(1). 4-(4-Isothiocyanato-phenyl)-pyridine and 2-bromo-2',6'-difluoro-acetophenone (from Example C(79)) provided, after recrystallization from EtOH, a brown powder in 64% yield, mp >300°C. 1 H NMR (DMSO-d₆): δ 11.08 (1H, s), 8.61 (2H, d, J = 6.0 Hz), 8.25 (2H, bs), 7.85 (2H, d, J = 8.8 Hz), 7.73 (2H, d, J = 8.8 Hz), 7.71 (2H, d, J = 6.0 Hz), 7.61-7.49 (1H, m), 7.23 (1H, d, J = 7.7 Hz), 7.20 (1H, d, J = 8.1 Hz).

HRFABMS (MH⁺): Calcd.: 409.0935. Found: 409.0921.

Anal. Calcd. for $C_{21}H_{14}N_4OSF_2 \cdot 0.4 H_2O \cdot 0.3 EtOH$: C, 60.41; H, 3.90; N, 13.05; S, 7.47. Found: C, 60.51; H, 3.65; N, 12.69; S, 7.86.

• Example C(123): {4-Amino-2-[4-(4-carbamoyl-piperazin-1-yl)-phenylamino]-thiazol-5-yl}
(2,6-difluoro-phenyl)-methanone

1-Carbamoyl-4-(4-nitro-phenyl)-piperazine, which has the structural formula

20 H₂N , was first obtained according to a procedure from Cain et al., *J. Med. Chem.*, vol. 20 (1977), pp. 987-996, wherein 1-(4-nitrophenyl)piperazine was treated with potassium cyanate to provide a white solid, 705 mg (99%), which was used without further purification.

¹H NMR (CDCl₃): δ 6.71 (2H, d, J = 8.6 Hz), 6.50 (2H, d, J = 8.6 Hz), 5.97 (2H, bs), 4.58 (2H, bs), 3.39 (4H, dd, J = 5.1, 4.9 Hz), 2.82 (4H, dd, J = 5.1, 4.9 Hz).

1-(4-Amino-phenyl)-4-carbamoyl-piperazine, which has the formula

h₂N NH₂, was next prepared as follows. A mixture of 4-(4-nitro-phenyl)-piperazine-1-carboxylic acid amide (760 mg, 3.22 mmol), 10% Pd/C (120 mg), MeOH (20 mL), and THF (20 mL) was stirred under hydrogen for 2 hours. The catalyst was filtered off and the

98

30

25

filtrate concentrated *in vacuo* to provide a white solid, 705 mg (99%), which was used without further purification.

¹H NMR (CDCl₃): δ 6.71 (2H, d, J = 8.6 Hz), 6.50 (2H, d, J = 8.6 Hz), 5.97 (2H, bs), 4.58 (2H, bs), 3.39 (4H, dd, J = 5.1, 4.9 Hz), 2.82 (4H, dd, J = 5.1, 4.9 Hz).

1-Carbamoyl-4-(4-isothiocyanato-phenyl)-piperazine, which has the structural formula

, was prepared as follows. To a suspension of 1-(4-amino-phenyl)-4-carbamoyl-piperazine (300 mg, 1.36 mmol) in THF (30 mL) at -35°C was successively added triethylamine (0.38 mL, 2.73 mmol) and thiophosgene (104 μl, 1.36 mmol) dropwise. The solvent was evaporated and the tarry residue diluted with water. The resultant light brown solid was filtered off, washed with a small amount of water, and dried under vacuum to afford a brown powder, 337 mg (94% yield), which was used without further purification.

¹H NMR (CDCl₃): δ 7.08 (2H, d, J = 9.0 Hz), 6.76 (2H, d, J = 9.0 Hz), 4.45 (2H, bs), 3.50 (4H, dd, J = 5.4, 5.0 Hz), 3.15 (4H, dd, J = 5.4, 5.0 Hz).

The title compound was prepared in a manner analogous to that used in Example C(1). 1-Carbamoyl-4-(4-isothiocyanato-phenyl)-piperazine and 2-bromo-2',6'-difluoro-acetophenone (from Example C(79)) provided a light-gray powder in 45% yield, mp 278.5-279°C.

¹H NMR (DMSO-d₆): δ 10.69 (1H, s), 8.16 (2H, bs), 7.63-7.51 (1H, m), 7.38 (2H, d, J = 9.0 Hz), 7.25 (1H, d, J = 7.8 Hz), 7.21 (1H, d, J = 7.9 Hz), 7.02 (2H, d, J = 9.0 Hz), 6.09 (2H, bs), 3.48 (2H, t, J = 4.7 Hz), 3.11 (2H, t, J = 4.7 Hz).

HRFABMS (M+Na⁺): Calcd.: 81.1234. Found: 481.1246.

Anal. Calcd. for $C_{21}H_{20}N_6O_2SF_2 \cdot 0.5 H_2O$: C, 53.95; H, 4.53; N, 17.98; S, 6.86. Found: C, 53.92; H, 4.35; N, 17.64; S, 6.64.

• Example C(124): {4-Amino-2-[4-(3R,4-dimethyl-piperazin-1-yl)-phenylamino]-thiazol-5-yl}-(2,6-difluoro-phenyl)-methanone

25
3R-Methyl-1-(4-nitro-phenyl)-piperazine, which has the structural formula

H₃C , was made first as follows. (R)-(-)-2-Methylpiperazine (186 mg, 1.86 mmol), 1-fluoro-4-nitrobenzene (131 mg, 0.93 mmol), Et₃N (0.26 mL, 1.86 mmol), and acetonitrile (2 mL) was refluxed overnight and then concentrated *in vacuo*. The residue was

99

30

5

10

15

suspended in water and the resultant solid was filtered off, washed with minimal water, and dried under vacuum to provide a bright yellow solid 128 mg (62% yield), which was used without further purification.

¹H NMR (CDCl₃): δ 8.12 (2H, d, J = 9.5 Hz), 6.82 (2H, d, J = 9.5 Hz), 3.80-3.71 (2H, m), 3.18-3.08 (1H, m), 3.04-2.88 (3H, m), 2.58 (1H, dd, J = 12.3, 12.3 Hz), 1.16 (3H, d, J = 6.3 Hz).

1,2R-Dimethyl-4-(4-nitro-phenyl)-piperazine, which has the structural formula

5

10

 $^{\text{H}_3\text{C}}$, was prepared as follows. A mixture of 3R-methyl-1-(4-nitro-phenyl)-piperazine (124 mg, 0.56 mmol), sodium formate (93 mg, 1.37 mmol), formic acid (1.5 mL), and formalin (1.5 mL) was stirred at 80°C overnight, cooled, poured into ice/water, and extracted with CHCl₃. The organic layer washed with brine, dried over Na₂SO₄, and concentrated to give 116 mg (71% yield) of yellow crystals, which were used without further purification. 1 H NMR (CDCl₃): δ 8.12 (2H, d, J = 9.4 Hz), 6.82 (2H, d, J = 9.4 Hz), 3.76 (1H, d, J = 12.4 Hz), 3.67 (1H, d, J = 12.4 Hz), 3.14 (1H, ddd, J = 12.4, 11.7, 1.5 Hz), 2.90 (1H, d, J = 11.7 Hz), 2.74 (1H, dd, J = 11.7, 10.9 Hz), 2.40 (1H, m), 2.34 (3H, s), 2.22 (1H, m), 1.16 (3H, d, J = 6.3 Hz).

4-(3R,4-Dimethyl-piperazin-1-yl)-aniline, which has the structural formula

H₃C , was made as follows. A mixture of 1,2R-dimethyl-4-(4-nitro-phenyl)-piperazine (168 mg, 0.71 mmol), 10% Pd/C (30 mg), and MeOH (10 mL) was stirred under hydrogen for 1.5 hours. The catalyst was filtered off and the filtrate concentrated *in vacuo* to provide a cloudy yellow oil, which was used without further purification.

¹H NMR (CDCl₃): δ 6.91 (2H, d, J = 8.8 Hz), 6.75 (2H, d, J = 8.8 Hz), 3.66-3.32 (4H, m), 3.05-2.89 (2H, m), 2.63-2.48 (2H, m), 2.44-2.36 (1H, m), 2.44 (3H, s), 1.22 (3H, d, J = 6.1 Hz).

4-(4-Isothiocyanato-phenyl)-1,2R-dimethyl-piperazine, which has the structural formula

, was prepared as follows. To 4-(3R,4-dimethyl-piperazin-1-yl)-aniline

(0.71 mmol) in THF (15 mL) at -35°C was added in succession Et₃N (0.20 mL, 1.43 mmol) and thiophosgene (58 μl, 0.75 mmol) dropwise. The solvent was evaporated and the residue partitioned with CHCl₃ and water. The organic layer was dried with Na₂SO₄ and concentrated to furnish a brown powder, 184 mg, which contained trace Et₃N by NMR, but was sufficient for use without further purification.

100

30

¹H NMR (CDCl₃): δ 7.12 (2H, d, J = 9.1 Hz), 6.82 (2H, d, J = 9.1 Hz), 3.58-3.46 (2H, m), 3.13-3.03 (2H, m), 2.89-2.75 (1H, m), 2.65-2.41 (2H, m), 2.49 (3H, s), 1.27 (3H, d, J = 6.3 Hz).

The title compound was prepared in a manner analogous to that used in Example C(1). 4-(4-Isothiocyanato-phenyl)-1,2R-dimethyl-piperazine and 2-bromo-2',6'-difluoro-acetophenone (from Example C(79)) provided a yellow powder in 57% yield, mp 115-118°C.

¹H NMR (DMSO-d₆): δ 10.65 (1H, bs), 8.15 (2H, bs), 7.62-7.50 (1H, m), 7.35 (2H, d, J = 9.0 Hz), 7.23 (1H, d, J = 7.7 Hz), 7.20 (1H, d, J = 8.0 Hz), 6.97 (2H, d, J = 9.0 Hz), 3.59-3.49 (2H, m), 3.34 (3H, s), 2.90-2.72 (2H, m), 2.40 (1H, t, J = 10.9 Hz), 2.28-2.05 (2H, m), 1.09 (3H, d, J = 6.2 Hz),.

HRFABMS (MH⁺): Calcd.: 444.1670. Found: 444.1656.

Anal. Calcd. for C₂₂H₂₃N₅OSF₂ • 0.8 H₂O • 0.6 t-BuOH: C, 58.33; H, 6.14; N, 13.94; S, 6.38. Found: C, 58.38; H, 5.92; N, 13.89; S, 6.33.

• Example C(125): {4-Amino-2-[4-(3S,4-dimethyl-piperazin-1-yl)-phenylamino]-thiazol-5-yl}-(2,6-difluoro-phenyl)-methanone

15

4-(4-Isothiocyanato-phenyl)-1,2S-dimethyl-piperazine, which has the structural formula

, was prepared according to the route employed for its enantiomer, 4-(4-isothiocyanato-phenyl)-1,2R-dimethyl-piperazine for Example C(124). The resultant yellow powder displayed a comparable NMR spectrum and was used without further purification.

20

The title compound was prepared in a manner analogous to that used in Example C(1). 4-(4-Isothiocyanato-phenyl)-1,2S-dimethyl-piperazine and 2-bromo-2',6'-difluoro-acetophenone (from Example C(79)) provided a yellow powder in 77% yield, mp 110-116°C. 1 H NMR (DMSO-d₆): δ 10.65 (1H, bs), 8.15 (2H, bs), 7.62-7.50 (1H, m), 7.35 (2H, d, J = 9.0

Hz), 7.23 (1H, d, J = 7.7 Hz), 7.20 (1H, d, J = 8.0 Hz), 6.97 (2H, d, J = 9.0 Hz), 3.59-3.49 (2H,

25 m), 3.34 (3H, s), 2.90-2.72 (2H, m), 2.40 (1H, t, J = 10.9 Hz), 2.28-2.05 (2H, m), 1.09 (3H, d, J = 6.2 Hz).

IR (KBr): 3386, 3274, 3168, 2970, 2807, 1620, 1589, 1547, 1517, 1464, 1429, 1238, 1001 cm⁻¹. HRFABMS (MH⁺): Calcd.: 444.1670. Found: 444.1659.

Anal. Calcd. for $C_{22}H_{23}N_5OSF_2 \cdot 0.7 H_2O \cdot 0.2 t$ -BuOH: C, 58.15; H, 5.65; N, 14.87; S, 6.81. Found: C, 58.06; H, 5.61; N, 14.58; S, 6.90.

101

• Example C(126): (4-Amino-2-{4-[(3-dimethylamino-propyl)-methyl-amino}-phenylamino}-thiazol-5-yl)-(2,6-difluoro-phenyl)-methanone

5

N-(4-Nitrophenyl)-N,N',N'-trimethyl-propane-1,3-diamine, which has the structural

formula H₃C NO₂, was first prepared in a manner analogous to tert-butyl [methyl-(4-nitro-phenyl)-amino]-acetate for Example C(103). 4-Fluoronitrobenzene and N,N,N'-trimethyl-propanediamine gave a yellow oil, which was heated up to 280°C at 1 torr to remove starting materials, furnishing an orange oil, 4.26 g (85% crude yield), which was used without any further purification.

¹H NMR (CDCl₃): δ 8.10 (2H, ddd, J = 9.5, 8.2, 5.3 Hz), 6.64 (2H, ddd, J = 9.5, 8.2, 5.3 Hz), 3.50 (2H, t, J = 7.2 Hz), 3.08 (3H, s), 2.07 (3H, t, J = 6.8 Hz), 2.23 (6H, s), 1.72-1.82 (2H, m).

N-(4-Aminophenyl)-N,N',N'-propane-1,3-diamine, which has the structural formula

15

10

H₃C NH₂, was prepared as follows. A mixture of N-(4-nitrophenyl)-N,N',N'-trimethyl-propane-1,3-diamine (1.72 g, 7.25 mmol), tin(II) chloride dihydrate (8.05 g, 36.2 mmol), dioxane (25 mL), and ethanol (5 mL) was heated at reflux for 3.5 hours, then allowed to cool. To the resultant mixture was added sat aq. Na₂CO₃ until no gas evolution was observed. Celite was added to ease subsequent filtering. The solids were rinsed with MeOH, and the

filtrate was concentrated under reduced pressure and extracted with 10% MeOH/CHCl₃ (4x).

The combined extracts were washed with brine, dried over Na₂SO₄, and evaporated to give a black oil, which was purified via column chromatography with alumina (neutral, activity I) and 1% MeOH/CH₂Cl₂ as eluant to afford 0.39 g (26%) of a darkening brown oil that was used without further purification.

¹H NMR (CDCl₃): δ 6.67 (4H, dd, J = 9.0, 8.6 Hz), 3.22 (2H, t, J = 7.2 Hz), 2.82 (3H, s), 2.31 (2H, t, J = 7.5 Hz), 2.23 (6H, s), 1.70 (2H, p, J = 7.4 Hz).

N-(4-Isothiocyanato-phenyl)-N,N',N'-trimethyl-propane-1,3-diamine, which has the

structural formula H₃C, N, N, N, S

, was prepared in a manner analogous to 4-(4-

isothiocyanato-phenyl)-1,2R-dimethyl-piperazine for Example C(124). N-(4-Aminophenyl)-

N,N',N'-propane-1,3-diamine provided a black oil in 86% crude yield, which was used without further purification.

¹H NMR (CDCl₃): δ 7.09 (2H, d, J = 9.0 Hz), 6.59 (2H, d, J = 9.0 Hz), 3.38 (2H, J = 7.2 Hz), 2.94 (3H, s), 2.36 (2H, t, J = 7.2 Hz), 2.29 (6H, s), 1.78 (2H, p, J = 7.2 Hz). IR (KBr): 2127, 1605, 1514, 1379 cm⁻¹.

The title compound was prepared in a manner like that described for Example C(1). N-(4-Isothiocyanato-phenyl)-N,N',N'-trimethyl-propane-1,3-diamine and 2-bromo-2',6'-difluoro-acetophenone (from Example C(79)) afforded a brown oil, which was purified via flash column chromatography with a stepwise gradient of 7-14% MeOH/CHCl₃ and precipitated from CH₂Cl₂/hex to provide an amorphous yellow solid in 51% yield, mp 115-120°C (decomp).

¹H NMR (DMSO-d₆): δ 10.50 (1H, bs), 8.05 (2H, bs), 7.50 (1H, ddd, J = 15.3, 8.4, 6.7 Hz), 7.10-7.35 (4H, m), 6.68 (2H, d, J = 9.1 Hz), 2.84 (3H, s), 2.27 (2H, t, J = 7.2 Hz), 2.16 (6H, s), 1.61 (2H, p, J = 7.3 Hz).

IR (KBr): 3393, 3279, 3165, 2951, 1619, 1545, 1524, 1462, 1436 cm⁻¹.

HRFABMS: Calcd. for C₂₂H₂₆F₂N₅OS (MH⁺): 446.1826. Found: 446.1810.

Anal. Calcd. for $C_{21}H_{23}F_2N_5OS \cdot 0.8 H_2O \cdot 0.4 C_6H_{14}$: C, 59.28; H, 6.56; N, 14.16; S, 6.49.

15 Found: C, 59.37; H, 6.31; N, 13.76; S, 6.26.

• Example C(127): (2,6-Difluoro-phenyl)-{2-[4-(4-pyridin-4-yl-piperazin-1-yl)-phenylamino]-thiazol-5-yl}-methanone

20

25

30

BNSDOCID: <WO__9921845A2_I_>

5

1-(4-Nitro-phenyl)-4-pyridin-4-yl-piperazine, which has the structural formula

, was prepared in a manner analogous to tert-butyl [methyl-(4-nitro-

phenyl)-amino]-acetate for Example C(103). 4-Fluoronitrobenzene and 1-(4-pyridyl)piperazine (Ratous et. al., *J. Med. Chem.*, vol. 8 (1965), pp. 104-107) gave a brown powder in 27% yield,

which was used without further purification.

¹H NMR (CD₃OD): δ 8.20 (2H, d, J = 5.0 Hz), 8.08 (2H, d, J = 9.4 Hz), 7.04 (2H, d, J = 9.5 Hz), 3.62-3.68 (4H, m), 3.50-3.56 (4H, m).

4-(4-Pyridin-4-yl-piperazin-1-yl)-aniline, which has the structural formula

aniline for Example C(70). 1-(4-Nitro-phenyl)-4-pyridin-4-yl-piperazine afforded a brown powder in 100% crude yield, which was used without further purification.
 ¹H NMR (CD₃OD): δ 8.16 (2H, d, J = 6.7 Hz), 6.90 (4H, bd, J = 8.9 Hz), 6.74 (2H, d, J = 6.6 Hz), 3.56 (4H, dd, J = 5.3, 5.0 Hz), 3.14 (4H, dd, J = 5.0, 4.2 Hz).

1-(4-Isothiocyanato-phenyl)-4-pyridin-4-yl-piperazine, which has the structural formula

5

10

15

s, was prepared as follows. To a solution of 4-(4-pyridin-4-yl-piperazin-1-yl)-aniline (2.00 g, 7.86 mmol) in 10% aq HCl (10 mL) was added thiophosgene (720 μ L, 9.43 mmol). After 0.5 hour, the resultant yellow precipitate was filtered off, washed with sat aq NaHCO₃ and H₂O, and dried under high vacuum to give 1.9 g (82% yield) of a yellow powder, which was used without further purification.

¹H NMR (DMSO-d₆): δ 6.73 (4H, d, J = 8.8 Hz), 6.51 (4H, d, J = 8.8 Hz), 3.32 (4H, bs), 3.29 (4H, bs).

The title compound was prepared in a manner like that described for Example C(1). 1-(4-Isothiocyanato-phenyl)-4-pyridin-4-yl-piperazine and 2-bromo-2',6'-difluoroacetophenone (from Example C(79)) provided, after recrystallization with trace DMSO in MeOH/CHCl₃, a pale tan powder in 30% yield, mp 155-157°C.

¹H NMR (DMSO-d₆): δ 8.16 (2H, d, J = 6.0 Hz), 8.04 (1H, bs), 7.40-7.52 (1H, m), 7.32 (2H, d, J = 8.7 Hz), 7.15 (2H, t, J = 7.7 Hz), 6.96 (2H, d, J = 9.0 Hz), 6.85 (2H, d, J = 5.5 Hz), 3.60 (4H, bs).

HRFABMS: Calcd. for $C_{25}H_{23}F_2N_6OS$ (MH⁺): 493.1622. Found: 493.1606. Anal. Calcd. for $C_{25}H_{22}F_2N_6OS \cdot 0.7$ MeOH \cdot 0.1 CHCl₃ \cdot 0.1 DMSO: C, 58.40; H, 4.81; N, 15.72; S, 6.60. Found: C, 58.38; H, 4.50; N, 15.37; S, 7.00.

• Example C(128): {4-Amino-2-[4-(1-methyl-[1,4]-diazepan-4-yl)-phenylamino}-thiazol-5-yl}-(2,6-difluoro-phenyl)-methanone

25

20

1-Methyl-4-(4-nitro-phenyl)-[1,4]diazepane, which has the structural formula

104

, was prepared in a manner analogous to tert-butyl [methyl-(4-nitrophenyl)-amino]-acetate for Example C(103). 1-Methyl-homopiperazine provided a yellow powder in 93% yield, which was used without further purification.

¹H NMR (CDCl₃): δ 8.12 (2H, d, J = 9.5 Hz), 6.64 (2H, d, J = 9.5 Hz), 3.56-3.70 (4H, m), 2.74 (2H, dd, J = 4.9, 3.3 Hz), 2.58 (2H, dd, J = 5.6, 5.4 Hz), 2.40 (3H, s), 2.00-2.08 (2H, m).

4-(4-Methyl-[1,4]diazepan-1-yl)-aniline, which has the structural formula

was prepared in a manner analogous to 4-(4-methyl-piperazin-1-yl)-aniline for Example C(70). 1-Methyl-4-(4-nitro-phenyl)-[1,4]diazepane furnished a purple oil in 100% crude yield, which was used immediately without further purification.

¹H NMR (CDCl₃): δ 6.68 (2H, d, J = 12.2 Hz), 6.60 (2H, d, J = 6.8 Hz), 3.52 (2H, dd, J = 4.8, 4.7 Hz), 3.43 (2H, t, J = 6.3 Hz), 2.71 (2H, dd, J = 4.9, 4.7 Hz), 2.58 (2H, dd, J = 5.5, 5.4 Hz), 2.38 (3H, s), 1.95-2.04 (1H, m).

1-(4-Isothiocyanato-phenyl)-4-methyl-[1,4]diazepane, which has the structural formula

s, was prepared in a manner analogous to 1-(4-isothiocyanato-phenyl)-1H-imidazole for Example C(41). 4-(4-Methyl-[1,4]diazepan-1-yl)-aniline gave a crude product that was extracted with CHCl₃ to eventually afford a black oil in 85% crude yield. This material was used immediately without any further purification.

¹⁵ H NMR (CDCl₃): δ 7.02 (2H, d, J = 9.0 Hz), 6.56 (2H, d, J = 9.0 Hz), 3.54 (2H, dd, J = 4.8, 4.8 Hz), 3.45 (2H, t, J = 6.3 Hz), 2.67 (2H, dd, J = 4.9, 4.8 Hz), 2.53 (2H, dd, J = 5.6, 5.4 Hz), 2.36 (3H, s), 1.97 (2H, p, J = 5.7 Hz).

The title compound was prepared in a manner like that described for Example C(1). 1-(4-Isothiocyanato-phenyl)-4-methyl-[1,4]diazepane and 2-bromo-2',6'-difluoro-acetophenone (from Example C(79)) provided, after crystallization from boiling EtOH, a light-tan powder in 26% yield, mp 138-140°C.

¹H NMR (DMSO-d₆): δ 8.05 (1H, s), 7.42-7.52 (1H, m), 7.10-7.22 (4H, m), 6.64 (2H, d, J = 9.1 Hz), 3.36-3.52 (4H, m), 2.58 (2H, dd, J = 4.8, 4.7 Hz), 2.42 (2H, dd, J = 5.6, 5.4 Hz), 2.25 (3H, s), 1.82-1.92 (2H, m).

HRFABMS: Calcd. for $C_{22}H_{24}F_2N_5OS$ (MH⁺): 444.1670. Found: 444.1656.

Anal. Calcd. for C₂₂H₂₃F₂N₅OS • 0.5 H₂O • 0.8 EtOH: C, 57.92; H, 5.93; N, 14.31; S, 6.55. Found: C, 58.05; H, 5.69; N, 14.15; S, 6.55.

105

30

20

5

Example C(129): 3-({4-[4-Amino-5-(2,6-difluorobenzoyl)-thiazol-2-yl-amino]-phenyl}-methylamino)-propionitrile

5

10

20

25

3-[Methyl-(4-nitro-phenyl)-amino]-propionitrile, which has the structural formula

NC NO₂, was prepared as follows. Benzyltrimethylammonium hydroxide (7.23 mL of a 40% solution in MeOH) was added to a suspension of N-methyl-4-nitroaniline (5.00 g, 32.9 mmol) and acrylonitrile (7.23 mL) in dioxane (80 mL). The resultant solution was heated at 55°C for 3.5 hours, then poured into water, and extracted with 20% isopropanol in chloroform. The separated organic layer was washed with water, dried over K₂CO₃, and concentrated to a suspension of yellow solid, which was diluted with ether. The solid was filtered off and dried under vacuum to obtain 6.15 g (91 % yield) of yellow solid, which was used without further purification.

¹H NMR (CDCl₃): δ 8.17 (2H, d, J = 9.4 Hz), 6.66 (2H, d, J = 9.4 Hz), 3.82 (2H, t, J = 6.7 Hz), 3.19 (3H, s), 2.66 (2H, t, J = 6.7 Hz).

3-[(4-Amino-phenyl)-methyl-amino]-propionitrile, which has the structural formula

NC NH₂, was prepared in a manner analogous to 4-(3S,4-dimethyl-piperazin-1-yl)-phenylamine for Example C(134). 3-[Methyl-(4-nitro-phenyl)-amino]-propionitrile gave a brown oil in 100% yield, which was used without further purification.

¹H NMR (CDCl₃): δ 6.68 (4H, s), 3.57 (2H, t, J = 7.0 Hz), 2.90 (3H, s), 2.51 (2H, t, J = 7.0 Hz). 3-[(4-Isothiocyanato-phenyl)-methyl-amino]-propionitrile, which has the structural

formula NC , was prepared in a manner analogous to 4-(4-isothiocyanato-phenyl)-1,2S-dimethyl-piperazine for Example C(134). 3-[(4-Amino-phenyl)-methyl-amino]-propionitrile gave a brown solid in 95% yield, which was used without further purification. 1 H NMR (CDCl₃): δ 7.15 (2H, d, J = 9.1 Hz), 6.62 (2H, d, J = 9.1 Hz), 3.72 (2H, t, J = 6.8 Hz), 3.05 (3H, s), 2.58 (2H, t, J = 6.8 Hz).

The title compound was prepared in a manner analogous to that used in Example C(1). 3-[4-(4-Isothiocyanato-phenyl)-methylamino]-propionitrile and 2-bromo-2',6'-difluoro-

acetophenone (from Example C(79)) provided an amorphous yellow powder in 66% yield, mp 120-130°C (decomp).

¹H NMR (DMSO-d₆): δ 10.52 (1H, bs), 8.10 (2H, bs), 7.49 (1H, ddd, J = 15.3, 8.2, 6.7 Hz), 7.26 (2H, bd, J = 8.2 Hz), 7.15 (2H, dd, J = 8.1, 7.7 Hz), 6.76 (2H, d, J = 9.1 Hz), 3.63 (2H, t, J = 6.7 Hz), 2.91 (3H, s), 2.69 (2H, t, J = 6.7 Hz).

- IR (KBr): 3417, 3309, 1618, 1548, 1523, 1463, 1436, 1376, 1356, 1234, 1001 cm⁻¹.

 HRFABMS Calcd. for C₂₀H₁₇N₅OSF₂Na (M+Na⁺): 436.1020. Found: 436.1030.

 Anal. Calcd. for C₂₀H₁₇N₅OSF₂ 0.2 H₂O 0.45 t-BuOH: C, 58.13; H, 4.90; N, 15.55; S, 7.12.

 Found: C, 57.88; H, 4.79; N, 15.16; S, 6.95.
 - Example C(130): 2-[4-Amino-2-(4-nitro-phenylamino)-thiazole-5-carbonyl]-phenyl
 Benzoate

The title compound was prepared essentially as described for Example C(1). In addition, two other reaction products were isolated after flash column chromatography and identified: characteristics for (Z)- and (E)-4-(2-hydroxy-phenyl)-3-(4-nitro-phenyl)-3H-thiazol-2-ylidene-cyanamide follow below. 4-Nitro-phenyl isothiocyanate and 2'-benzoyloxy-2-bromo-acetophenone provided title compound as a yellow solid, mp 258-260°C.

¹H NMR (DMSO-d₆): δ 11.35 (1H, s), 8.23 (2H, d, J = 9.3 Hz), 7.98-8.04 (4H, m), 7.85 (2H, d, J = 9.2 Hz), 7.35-7.67 (1H, m), 7.52-7.63 (4H, m), 7.39-7.45 (2H, m).

20 ¹³C NMR (MeOH-d₄): δ 181.5, 166.4, 164.4, 147.2, 145.8, 142.0, 135.2, 134.3, 131.2, 130.0, 129.3, 129.2, 128.3, 126.5, 125.6, 123.9, 118.3.

Anal. Calcd. for $C_{23}H_{16}N_4O_5S$: C, 59.99; H, 3.50; N, 12.17; S, 6.96. Found: C, 58.25; H, 3.54; N, 11.77; S, 6.94.

Earlier-eluting component, (Z)-4-(2-hydroxy-phenyl)-3-(4-nitro-phenyl)-3H-thiazol-2-

10

yellow amorphous solid.

¹ H NMR (DMSO-d₆): δ 9.79 (1H, s), 8.18 (2H, d, J = 9.0 Hz), 7.55 (2H, d, J = 9.0 Hz), 7.26 (1H, dd, J = 7.5, 1.5 Hz), 7.17 (1H, ddd, J = 7.5, 7.4, 1.5 Hz), 7.05 (1H, s), 6.79 (1H, dd, J = 7.6, 7.4 Hz), 6.65 (1H, d, 8.2 Hz).

¹³C NMR (MeOH-d₄): δ 176.8, 157.9, 150.3, 143.6, 141.7, 134.4, 134.2, 132.0, 126.0, 122.1, 119.5, 119.3, 117.9, 107.3.

HRFABMS: Calcd. for $C_{16}H_{10}N_4O_3S$ (MH⁺): 339.0552. Found: 339.0550.

A later-eluting component, (E)-4-(2-hydroxy-phenyl)-3-(4-nitro-phenyl)-3H-thiazol-2-

O₂N C N S

10 ylidene-cyanamide, which has the structural formula amorphous solid.

¹H NMR (DMSO-d₆): δ 13.2 (1H, s), 8.25 (2H, d, J = 9.2 Hz), 7.75 (1H, dd, J = 7.8, 1.5 Hz), 7.55 (1H, ddd, J = 8.6, 7.5, 1.1 Hz), 7.41 (1H, ddd, J = 8.6, 7.5, 1.1 Hz), 7.25 (1H, dd, J = 8.1, 1.0 Hz), 7.13 (1H, d, 9.2 Hz), 7.01 (1H, s).

¹³C NMR (MeOH-d₄): δ 174.8, 162.1, 152.2, 143.6, 134.0, 131.4, 129.9, 126.4, 126.2, 122.0, 121.5, 117.8, 105.6.

ESIMS: Calcd. for C₁₆H₁₀N₄O₃S (MH⁺): 339. Found: 339.

• Example C(131): (4-Amino-2-{4-[4-(2,2,2-trifluoro-ethyl)-piperazin-1-yl]-phenylamino}-thiazol-5-yl)-(2,6-difluoro-phenyl)-methanone

20

5

1-(4-Nitro-phenyl)-4-(2,2,2-trifluoro-ethyl)-piperazine, which has the structural formula

NO₂, was first prepared in a manner analogous to tert-butyl [methyl-(4-nitro-

phenyl)-amino]-acetate for Example C(103). 1-(4-Nitro-phenyl)-piperazine and 1,1,1-trifluoro-2-iodo-ethane gave a yellow-orange solid in 33% crude yield.

¹H NMR (CDCl3): δ 8.13 (2H, d, J = 9.2 Hz), 6.82 (2H, d, J = 9.2 Hz), 3.51-3.38 (4H, m), 3.10-2.99 (2H, m), 2.87-2.77 (4H, m).

4-[4-(2,2,2-Trifluoro-ethyl)-piperazin-1-yl]-aniline, which has the structural formula

F NH₂, was next prepared in a manner analogous to 4-(4-methyl-piperazin-1-yl)-aniline for Example C(70). 1-(4-Nitro-phenyl)-4-(2,2,2-trifluoro-ethyl)-piperazine gave a

yl)-aniline for Example C(70). 1-(4-Nitro-phenyl)-4-(2,2,2-trifluoro-ethyl)-piperazine gave a pale-brown solid in 100% crude yield.

¹H NMR (CDCl3): δ 6.83 (2H, d, J = 8.8 Hz), 6.68 (2H, d, J = 8.8 Hz), 3.40 (2H, bs), 3.11-3.06 (6H, m), 2.86 (4H, dd, J = 5.1, 4.7 Hz).

1-(4-Isothiocyanato-phenyl)-4-(2,2,2-trifluoro-ethyl)-piperazine, which has the

structural formula formula was prepared in a manner analogous to 1-(4-

isothiocyanato-phenyl)-4-methyl-piperazine for Example C(70) from 4-[4-(2,2,2-trifluoro-ethyl)-piperazin-1-yl]-aniline, providing a brown powder in 89% yield.

¹H NMR (CDCl3): δ 7.15 (2H, d, J = 9.1 Hz), 6.85 (2H, d, J = 9.0 Hz), 3.25 (4H, dd, J = 4.9, 5.2 Hz), 3.05 (2H, q, J = 9.5 Hz), 2.86 (4H, dd, J = 5.1, 4.8 Hz).

The title compound was prepared in a manner like that described for Example C(1). 1-(4-isothiocyanato-phenyl)-4-(2,2,2-trifluoro-ethyl)-piperazine and 2-bromo-2',6'-difluoroacetophenone (from Example C(79)) provided, after purification via column chromatography with 5% MeOH/CHCl3 as eluant, a yellow powder in 63% yield, mp 99-102°C. ¹H NMR (DMSO-d6): δ 8.12 (1H, bs), 7.58-7.46 (1H, m), 7.30 (2H, bd, J = 7.4 Hz), 7.18 (2H, dd, J = 7.8, 7,7 Hz), 6.92 (2H, d, J = 8.9 Hz), 3.24 (2H, q, J = 10.3 Hz), 3.12 (4H, dd, J = 4.1, 5.0 Hz), 2.76 (4H, bd, J = 4.6 Hz).

IR (KBr): 3394, 3276, 3178, 3058, 2954, 2829, 1617, 1588, 1547, 1462, 1426, 1231 cm⁻¹.

Anal. Calcd. for C₂₂H₂0F₂N₅OS • 0.15 CHCl₃: C, 51.62; H, 3.94; N, 13.59; S, 6.22. Found: C, 51.68; H, 3.93; N, 13.39; S, 6.03.

• Example C(131): (4-Amino-2-{4-[4-(2,2,2-trifluoroethyl)-piperazin-1-yl]-phenylamino}-thiazol-5-yl)-(2,6-difluoro-phenyl)-methanone

F N NH2 O F

1-(4-Nitro-phenyl)-4-(2,2,2-trifluoro-ethyl)-piperazine, which has the structural formula

109

30

25

1

phenyl)-amino]-acetate for Example C(103). 1-(4-Nitro-phenyl)-piperazine and 1,1,1-trifluoro-2-iodo-ethane gave a yellow-orange solid in 33% crude yield.

¹H NMR (CDCl3): δ 8.13 (2H, d, J = 9.2 Hz), 6.82 (2H, d, J = 9.2 Hz), 3.51-3.38 (4H, m), 3.10-2.99 (2H, m), 2.87-2.77 (4H, m).

4-[4-(2,2,2-Trifluoro-ethyl)-piperazin-1-yl]-aniline, which has the structural formula

5 FX N NH2

10

15

NH₂, was next prepared in a manner analogous to 4-(4-methyl-piperazin-1-

yl)-aniline for Example C(70). 1-(4-Nitro-phenyl)-4-(2,2,2-trifluoro-ethyl)-piperazine gave a pale-brown solid in 100% crude yield.

¹H NMR (CDCl3): δ 6.83 (2H, d, J = 8.8 Hz), 6.68 (2H, d, J = 8.8 Hz), 3.40 (2H, bs), 3.11-3.06 (6H, m), 2.86 (4H, dd, J = 5.1, 4.7 Hz).

1-(4-Isothiocyanato-phenyl)-4-(2,2,2-trifluoro-ethyl)-piperazine, which has the

FXFN N Cus

structural formula , was prepared in a manner analogous to 1-(4-

isothiocyanato-phenyl)-4-methyl-piperazine for Example C(70) from 4-[4-(2,2,2-trifluoro-ethyl)-piperazin-1-yl]-aniline, providing a brown powder in 89% yield.

¹H NMR (CDCl3): δ 7.15 (2H, d, J = 9.1 Hz), 6.85 (2H, d, J = 9.0 Hz), 3.25 (4H, dd, J = 4.9, 5.2 Hz), 3.05 (2H, q, J = 9.5 Hz), 2.86 (4H, dd, J = 5.1, 4.8 Hz).

The title compound was prepared in a manner like that described for Example C(1). 1-(4-isothiocyanato-phenyl)-4-(2,2,2-trifluoro-ethyl)-piperazine and 2-bromo-2',6'-

difluoroacetophenone (from Example C(79)) provided, after purification via column

chromatography with 5% MeOH/CHCl3 as eluant, a yellow powder in 63% yield, mp 99-102°C. ¹H NMR (DMSO-d6): δ 8.12 (1H, bs), 7.58-7.46 (1H, m), 7.30 (2H, bd, J = 7.4 Hz), 7.18 (2H, dd, J = 7.8, 7,7 Hz), 6.92 (2H, d, J = 8.9 Hz), 3.24 (2H, q, J = 10.3 Hz), 3.12 (4H, dd, J = 4.1, 5.0

IR (KBr): 3394, 3276, 3178, 3058, 2954, 2829, 1617, 1588, 1547, 1462, 1426, 1231 cm⁻¹.

Anal. Calcd. for $C_{22}H_20F_2N_5OS \cdot 0.15$ CHCl₃: C, 51.62; H, 3.94; N, 13.59; S, 6.22. Found: C,

25 51.68; H, 3.93; N, 13.39; S, 6.03.

Hz), 2.76 (4H, bd, J = 4.6 Hz).

Example D(1): (3-Amino-phenyl)-(4-amino-2-phenylamino-thiazol-5-yl)-methanone

110

A mixture of the title compound from Example A(1) ((4-amino-2-phenylamino-thiazol-5-yl)-(3-nitrophenyl)-methanone, 520 mg, 1.53 mmol) and 10% palladium on carbon (80 mg) in THF (10 mL) was stirred under a hydrogen atmosphere overnight. The catalyst was filtered off and the filtrate concentrated *in vacuo* to give 470 mg of a crude solid that recrystallized from ethyl acetate/benzene to provide 100 mg (19% yield) of light yellow powder, mp 162-164°C.

¹H NMR (DMSO-d₆): δ 10.75 (1H, s), 8.42 (2H, bs), 8.15 (2H, bs), 7.60 (2H, d, J = 7.8 Hz), 7.34 (2H, d, J = 7.8 Hz), 7.23 (1H, t, J = 7.8 Hz), 7.14 (1H, s), 7.07 (1H, d, J = 7.8 Hz), 7.05 (1H, t, J = 7.8 Hz), 6.91 (1H, d, J = 7.8 Hz).

FABMS (MH⁺): 311.

1

5

15

20

25

Anal. Calcd. for C₁₆H₁₄N₄OS • H₂O • C₆H₆: C, 59.30; H, 4.98; N, 16.66; S, 9.54. Found: C, 59.02; H, 4.61; N, 16.34; S, 9.25.

• Example D(2): (4-Amino-phenyl)-(4-amino-2-phenylamino-thiazol-5-yl)-methanone

The title compound was prepared in a manner like that described for Example D(1). Catalytic reduction of the title compound of Example A(2) ((4-nitro-phenyl)-(4-amino-2-phenylamino-thiazol-5-yl)-methanone) provided, after recrystallization from ethanol, 410 mg (90% yield) of red amorphous powder, mp >300°C.

¹H NMR (DMSO-d₆): δ 10.85 (1H, bs), 8.44-8.20 (2H, bs), 8.36 (1H, d, J = 8.7 Hz), 8.17 (1H, d, J = 8.7 Hz), 7.89 (1H, d, J = 15.9 Hz), 7.86 (1H, d, J = 15.9 Hz), 7.62 (2H, d, J = 7.8 Hz), 7.37 (2H, t, J = 7.8 Hz), 7.09 (1H, t, J = 7.8 Hz).

FABMS (MH⁺): 311.

Anal. Calcd. for C₁₆H₁₄N₄OS • 0.5 H₂O: C, 60.17; H, 4.73; N, 17.54; S, 10.04. Found: C, 60.09; H, 4.73; N, 17.58; S, 9.93.

• Example D(3): [4-Amino-2-(4-dimethylamino-phenylamino)-thiazol-5-yl]-(2-amino-phenyl)-methanone

The title compound was prepared essentially as described for Example D(1). Catalytic reduction of the title compound of Example C(4) gave 26 mg (30% yield) of an amorphous solid.

¹ H NMR (DMSO- d_6): δ 10.38 (1H, s), 8.06 (2H, bs), 7.31 (2H, d, J = 9.0 Hz), 7.30 (1H, d, J = 7.5 Hz), 7.08 (1H, t, J = 7.5 Hz), 6.72 (2H, d, J = 9.0 Hz), 6.68 (1H, d, J = 7.5 Hz), 6.51 (1H, t, J = 7.5 Hz), 5.75 (2H, s), 2.88 (6H, s).

FABMS (MH⁺): 354.

5 Anal. Calcd. for C₁₈H₁₉N₅OS • 0.5H₂O • 0.3 MeOH: C, 59.07; H, 5.74; N, 18.82; S, 8.62. Found: C, 59.24; H, 5.56; N, 18.51; S, 8.36.

• Example D(4): [4-Amino-2-(4-amino-phenylamino)-thiazol-5-yl]-phenyl-methanone

The title compound was prepared in a manner similar to that described for Example D(1). Catalytic reduction of the title compound from Example A(8) (i.e., [4-amino-2-(4-nitrophenylamino)-thiazol-5-yl]-phenyl-methanone, 450 mg, 1.32 mmol) gave, after recrystallization from ethanol, 120 mg (29% yield) of orange powder, mp 167-169°C.

¹H NMR (DMSO-d₆): δ 10.38 (1H, s), 8.15 (2H, bs), 7.64-7.55 (2H, m), 7.47-7.38 (3H, m), 7.10 (2H, d, J = 8.6 Hz), 6.55 (2H, d, J = 8.6 Hz), 5.20 (2H, bs).

FABMS (MH⁺): 311.

Anal. Calcd. for C₁₆H₁₄N₄OS • H₂O: C, 56.96; H, 5.08; N, 16.61; S, 9.50. Found: C, 56.94; H, 5.07; N, 16.60; S, 9.64.

• Example D(5): 4-[4-Amino-5-(3-amino-5-amino-thiophene-2-carbonyl)-thiazol-2-ylamino]-benzenesulfonamide

20

15

The title compound was prepared in a manner analogous to that used in Example D(1). The title compound of Example C(95) was hydrogenated and recrystallized from EtOH to provide a brown powder in 96% yield, mp 268-271°C.

¹H NMR (DMSO-d₆): δ 10.97 (1H, s), 7.91 (2H, s), 7.82 (2H, d, J = 9.1 Hz), 7.78 (2H, d, J = 9.1 Hz), 7.28 (2H, s), 6.43 (2H, s), 5.81 (1H, s), 2.34 (3H, s).

FABMS (MH⁺): 410.

Anal. Calcd. for $C_{15}H_{15}N_5O_3S_3 \cdot 0.1 H_2O \cdot 0.3 EtOH$: C, 44.07; H, 4.03; N, 16.47; S, 22.63. Found: C, 44.23; H, 3.93; N, 16.07; S, 23.01.

• Example E(1): 4-[4-Amino-5-(2-nitro-benzoyl)-thiazol-2-ylamino]-benzoic Acid

5

10

To a suspension of the title compound of Example A(5) (i.e., ethyl 4-[4-amino-5-(2-nitro-benzoyl)-thiazol-2-ylamino]-benzoate, 950 mg, 2.3 mmol), in methanol (15 mL) was added 3N NaOH (10 mL). After 30 minutes, the mixture was acidified to a pH of 4 with 1N HCl, whereupon a yellow precipitate formed. The mixture was diluted with water (100 mL). The solid was filtered off and rinsed with water. Recrystallization from ethanol provided 672 mg (76% yield) of yellow crystals, mp 289-292°C.

¹H NMR (DMSO-d₆): δ 12.75 (1H, s), 11.13 (1H, s), 8.12 (2H, bs), 8.08 (1H, d, J = 7.8 Hz), 7.91 (2H, d, J = 8.7 Hz), 7.82 (1H, td, J = 8.4, 0.9 Hz), 7.78-7.68 (4H, m).

FABMS (MH⁺): 385.

Anal. Calcd. for C₁₉H₁₈N₄O₃S: C, 53.12; H, 3.15; N, 14.58; S, 8.34. Found: C, 53.29; H, 3.25; N, 14.31; S, 8.11.

• Example E(2): 4-[4-Amino-2-(4-sulfamoyl-phenylamino)-thiazole-5-carbonyl]-benzoic Acid

20

To a suspension of ethyl 4-[4-amino-2-(4-sulfamoyl-phenylamino)-thiazole-5-carbonyl]-benzoate (500 mg, 1.12 mmol; Example C(34)) in MeOH (10 mL) was added 1N aq NaOH (3.4 mL, 3.4 mmol). After 4 hours, the resultant mixture was acidified with 1N aq HCl to pH 3 and filtered. The isolated brown solid crystallized in EtOH to provide 330 mg (70% yield) of light brown crystals, mp 298.5-300°C.

¹H NMR (DMSO-d₆): δ 13.15 (1H, s), 11.14 (1H, s), 8.31 (2H, bs), 8.02 (2H, d, J = 8.1 Hz), 7.78 (4H, s), 7.77 (2H, d, J = 8.1 Hz), 7.26 (2H, s).

HRFABMS (M+Na⁺): Calcd.: 441.0303. Found: 441.0320.

Anal. Calcd. for $C_{17}H_{14}N_4O_5S_2 \cdot 0.4 H_2O$: C, 47.97; H, 3.50; N, 13.16; S, 15.07. Found: C, 48.04; H, 3.48; N, 12.98; S, 15.18.

• Example F: 2-[4-Amino-2-(4-methoxy-phenylamino)-thiazole-5-carbonyl]-benzonitrile

To a solution of the compound of Example C(12) (2.00 g, 4.43 mmol) in pyridine (5 mL) was added copper(I) cyanide (709 mg, 8.86 mmol), and the mixture was heated to reflux. After 2 hours, the resultant mixture was allowed to cool, acidified with 1N aqueous HCl, and extracted with 20% MeOH/CHCl3. The CHCl3 extracts were combined, washed with H2O and brine, dried over Na2SO4, and evaporated to provide a dark-brown viscous oil, which was purified via preparative thin-layer chromatography with 5% MeOH/CH2Cl2 and precipitated from EtOH to furnish 255 mg (61% yield) of yellow amorphous solid that decomposed at 110-116°C.

¹H NMR (DMSO-d₆): δ 10.70 (1H, s), 8.24 (2H, bs), 7.91 (1H, d, J = 7.8 Hz), 7.80-7.66 (2H, m), 7.61 (1H, td, J = 7.8, 1.2 Hz), 7.42 (2H, d, J = 9.0 Hz), 6.92 (2H, d, J = 9.0 Hz), 3.72 (3H, s). FABMS (MH⁺): 351.

Anal. Calcd. for C₁₈H₁₄N₄O₂S • 0.25 H₂O • 0.2 EtOH: C, 60.69; H, 4.35; N, 15.39; S, 8.81. Found: C, 60.84; H, 4.24; N, 15.07; S, 9.02.

• Example G: [4-Amino-2-(1H-benzoimidazol-6-ylamino)-thiazol-5-yl]-(3-amino-2,6-dichloro-phenyl)-methanone

20

25

15

The title compound of Example C(82), N-{3-[4-amino-2-(1H-benzoimidazol-6-ylamino)-thiazole-5-carbonyl]-2,4-dichloro-phenyl}-acetamide (100 mg, 0.220 mmol), was placed in 6N aq. HCl (4 mL) and stirred at ambient temperature for 24 hours. The mixture was brought to pH 7 with 2N aq NaOH and the resultant pale yellow precipitate was filtered off, washed with H₂O, recrystallized from MeOH/H₂O, and dried under high vacuum. A yellow solid was obtained in 36% yield, mp 235-237°C.

¹H NMR (DMSO-d₆): δ 8.16 (1H, bs), 7.86 (2H, bs), 7.38-7.62 (1H, m), 7.18 (1H, d, J = 8.5 μ Hz), 7.02 (1H, d, J = 8.8 Hz), 6.68 (1H, d, J = 8.7 Hz), 5.50 (1H, bs).

IR (KBr): 3177, 1614, 1543, 1443, 1308 cm⁻¹.

FABMS (MH+): 419.

114

1 Anal. Calcd. for C₁₇H₁₂Cl₂N₆OS • 0.8 H₂O • 1 MeOH: C, 46.42; H, 3.81; N, 18.04; S, 6.88. Found: C, 46.37; H, 3.45; Cl, 15.29; N, 17.84; S, 6.77.

• Example H(1): [4-Amino-2-(4-piperazin-1-yl-phenylamino)-thiazol-5-yl]-(3-methyl-thiophen-2-yl)-methanone Trihydrochloride

The title compound was prepared as follows. To a solution of the title compound of Example C(104) (100 mg, 0.20 mmol) in a mixture of THF (1 mL) and MeOH (0.5 mL) was added a solution of 4N HCl in dioxane (200 μ L, 0.80 mmol). The resultant suspension was

heated at reflux for 2 hours. The suspension was allowed to cool and filtered. The isolated solid was washed with anhydrous ether and dried to provide a yellow solid in 97% yield, mp 198-200°C.

¹H NMR (DMSO-d₆): δ 10.80 (1H, m), 9.22 (1H, bs), 7.60 (1H, d, J = 5.0 Hz), 7.42 (1H, d, J = 8.7 Hz), 6.98-7.08 (3H, m), 3.38 (4H, d, J = 4.4 Hz), 3.22 (4H, s), 2.18 (3H, s). IR (KBr): 3177, 1614, 1543, 1443, 1308 cm⁻¹.

HRFABMS: Calcd. for C₁₉H₂₂N₅OS₂ (MH⁺): 400.1266. Found: 400.1254.
 Anal. Calcd. for C₁₉H₂₁N₅OS₂ • 0.6 H₂O • 3 HCl: C, 43.91; H, 4.89; N, 13.47; S, 12.34. Found: C, 43.61; H, 4.97; N, 13.12; S, 12.16.

• Example H(2): (3-Amino-2,6-dichloro-phenyl)-[4-amino-2-(4-piperazin-1-yl-phenylamino)-thiazol-5-yl]-methanone Trihydrochloride

The title compound was prepared in a manner like that described for Example H(1).

The title compound of Example C(106) provided a yellow solid in 48% yield, mp >280°C.

¹H NMR (DMSO-d₆): δ 8.88 (1H, bs), 8.00 (1H, bs), 7.40(2H, bs), 7.18 (1H, d, J = 8.7 Hz), 6.98

25 (2H, d, J = 8.4 Hz), 6.80 (1H, d, J = 8.7 Hz), 3.38 (4H, s), 3.12 (4H, s).

IR (KBr): 3406, 1618, 1560, 1458, 1308 cm⁻¹.

HRFABMS: Calcd. for $C_{20}H_{21}Cl_2N_6OS$ (MH⁺): 463.0875. Found: 463.0862. Anal. Calcd. for $C_{20}H_{20}Cl_2N_6OS \cdot 3$ HCl \cdot 0.5 dioxane: C, 42.84; H, 4.41; Cl, 28.74; N, 13.62; S, 5.20. Found: C, 42.96; H, 4.47; Cl, 28.58; N, 13.53; S, 5.15.

115

• Example H(3): [4-Amino-2-(4-piperazin-1-yl-phenylamino)-thiazol-5-yl]-(2,6-dichloro-phenyl)-methanone

5

The title compound was prepared in a manner like that described for Example H(1). The title compound of Example C(105) provided a yellow solid in 44% yield, mp 298-300°C. 1 H NMR (DMSO-d₆): δ 7.60-7.50 (5H, m), 7. 08 (2H, d, J = 7.8 Hz), 3.44 (4H, bs). IR (KBr): 3395, 2959, 1618, 1513, 1425 cm⁻¹.

HRFABMS: Calcd. for $C_{20}H_{20}Cl_2N_5OS$ (MH+): 448.0766. Found: 448.0749.

- 10 Anal. Calcd. for C₂₀H₁₉Cl₂N₅OS 1.2 H₂0 0.9 HCl: C, 47.78; H, 4.47; Cl, 20.45; N, 13.93; S, 6.38. Found: C, 47.99; H, 4.38; Cl, 20.57; N, 13.56; S, 6.24.
 - Example J(1): [4-Amino-2-(4-piperazin-1-yl-phenylamino)-thiazol-5-yl]-(2,4,6-trichloro-phenyl)-methanone

HN N S CI

15

{4-Amino-2-[4-(4-t-butoxycarbonyl-piperazin-1-yl)-phenylamino]-thiazol-5-yl}-(2,4,6-trichloro-phenyl)-methanone, which has the structural formula

20

, was prepared essentially as described for Example C(1).

1-t-Butoxycarbonyl-4-(4-isothiocyanato-phenyl)-piperazine (from Example C(101)) and 2-bromo-2',4',6'-trichloroacetophenone (from Example C(107)) gave a black tar, which precipitated from EtOH to give 144 mg (50%) of yellow amorphous powder, mp 192-193°C (d).

¹H NMR (DMSO-d₆): δ 7.78 (2H, s), 7.33 (2H, bm), 6.98 (2H, d, J = 9.0 Hz), 3.15-3.05 (4H, m), 1.45 (s, 9H).

25

IR (KBr): 3389, 3276, 3166, 1676, 1608, 1577, 1544, 1461, 1421, 1366, 1235, 1202, 1164 cm⁻¹. HRFABMS: Calcd for C₂₅H₂₆Cl₃N₅O₃SCs (M+Cs⁺): 715.9847. Found: 715.9822.

Anal. Calcd for C₂₅H₂₆Cl₃N₅O₃S • 0.75 H₂O • 0.4 EtOH: C, 50.40; H, 4.90; N, 11.39; Cl, 17.30; S, 5.22. Found: C, 50.69; H, 5.16; N, 10.98; Cl, 17.70; S, 4.90.

The title compound was prepared as follows. {4-Amino-2-[4-(4-tert-butoxycarbonyl-piperazin-1-yl)-phenylamino]-thiazol-5-yl}-(2,4,6-trichloro-phenyl)-methanone (50 mg, 0.086 mmol) was stirred in trifluoroacetic acid (TFA; 0.5 mL) at 0°C. After 20 min at 0°C, a minimal amount of water was added, and sat aq NaHCO₃ was used for neutralization. The resultant suspension was filtered to obtain a yellow paste, which gave a suspension with MeOH/CHCl₃ and led to isolation of 22 mg (42%) of yellow amorphous powder.

¹H NMR (DMSO-d₆): δ 7.80 (2H, s), 7.38 (2H, d, J = 9.0 Hz), 7.01 (2H, d, J = 9.0 Hz). IR (KBr): 3396, 3284, 3178, 1676, 1614, 1543, 1461, 1423, 1202, 1137 cm⁻¹. HRFABMS: Calcd for $C_{20}H_{18}Cl_3N_5OS$ (MH⁺): 484.0346. Found: 484.0333. Anal. Calcd for $C_{20}H_{18}Cl_3N_5OS$ • 0.8 MeOH • 0.8 CHCl₃: C, 42.96; H, 3.67; N, 11.60. Found: C, 42.87; H, 3.45; N, 11.27.

• Example J(2): [4-Amino-2-(4-piperazin-1-yl-phenylamino)-thiazol-5-yl]-(2,6-difluoro-phenyl)-methanone

The title compound was prepared essentially as described for Example J(1). To the title compound of Example C(101) (250 mg, 0.48 mmol) in CH₂Cl₂ at 0□C was added TFA (5 mL). After 20 min at 0°C, the resultant clear solution was concentrated *in vacuo* to a residue which was suspended in a minimal amount of water, cooled to 0°C, and basified with sat. Na₂CO₃ to pH 9. The solid was collected and recrystallized from EtOH to obtain 116 mg (58% yield) of yellow solid, mp 190-193°C.

¹H NMR (DMSO-d₆): δ 8.13 (2H, bs), 7.52 (1H, p, J = 7.3 Hz), 7.36 (2H, d, J = 8.7 Hz), 7.19 (2H, t, J = 8.7 Hz), 6.99 (2H, t, d = 8.7 Hz), 3.24 (4H, bs), 3.13 (4H, bs). HRFABMS (MH⁺): Calcd.: 416.1357. Found: 416.1370. Anal. Calcd. for $C_{20}H_{19}N_5OSF_2 \cdot 0.7 H_2O \cdot 0.7 CF_3COOH$: C, 49.96; H, 4.11; N, 13.49; S, 6.17. Found: C, 50.16; H, 4.33; N, 13.14; S, 6.06.

• Example J(3): [4-Amino-2-(4-piperazin-1-yl-phenylamino)-thiazol-5-yl]-(2,4,6-trifluoro-phenyl)-methanone

117

1

{4-Amino-2-[4-(4-t-butoxycarbonyl-piperazin-1-yl)-phenylamino]-thiazol-5-yl}-(2,4,6-trifluoro-phenyl)-methanone, which has the structural formula

, was prepared essentially as described for Example C(1).

1-tert-Butoxycarbonyl-4-(4-isothio-cyanato-phenyl)-piperazine (from Example C(101)) and 2'-bromo-2,4,6-trifluoroacetophenone (from Example C(115)) gave a yellow solid, which crystallized from EtOH to give 200 mg (80%) of yellow amorphous powder that darkened at 125-130°C, mp 132-135°C (decomposed).

¹H NMR (CD₃CN): δ 8.69 (1H, bs), 7.46 (2H, d, J = 9.0 Hz), 7.20-7.10 (4H, m), 3.74-3.62 (4H, m), 3.28-3.20 (4H, m), 1.60 (s, 9H).

IR (KBr): 3389, 3282, 3178, 1686, 1637, 1604, 1546, 1427, 1366, 1343, 1233, 1168, 1121, 1035, 999 cm⁻¹.

HRFABMS: Calcd for $C_{25}H_{27}F_3N_5O_3S$ (MH⁺): 534.1787. Found: 534.1772.

Anal. Calcd for C₂₅H₂₆F₃N₅O₃S • 1 H₂O • 0.5 EtOH: C, 54.35; H, 5.44; N, 12.19; S, 5.58.

Found: C, 54.26; H, 5.07; N, 11.92; S, 5.50.

The title compound was prepared essentially as described for Example J(1) to give a brown solid, which was purified via column chromatography with 10% MeOH/CHCl₃ as eluant to provide 57 mg (60%) of a yellow-orange amorphous solid that decomposed above 205°C. ¹H NMR (CD₃CN): δ 7.78 (2H, s), 7.42 (2H, d, J = 9.0 Hz), 7.01 (2H, d, J = 9.0 Hz), 3.30-3.18 (4H, m), 3.14-3.02 (4H, m).

20 IR (KBr): 33406, 1603, 1544, 1430, 1237, 1120, 1034 cm⁻¹.

HRFABMS: Calcd for C₂₀H₁₈F₃N₅OS (MH⁺): 434.1262. Found: 434.1274.

Anal. Calcd for C₂₀H₁₈F₃N₅OS • 0.7 MeOH • 0.7 CHCl₃: C, 47.65; H, 4.02; N, 12.98; S, 5.94.

Found: C, 47.84; H, 3.64; N, 12.59; S, 5.69.

• Example J(4): 4-[4-Amino-5-(2,6-difluoro-benzoyl)-thiazol-2-ylamino]-N-piperidin-4-ylmethyl-benzenesulfonamide

25

1

5

10

N-tert-Butoxycarbonyl-4-carbamoyl-piperidine, which has the structural formula

, was made as follows. To isonipecotamide (5.00 g, 39.0 mmol) in dioxane (100 mL) was added di-tert-butyl dicarbonate (8.51 g, 39.0 mmol) and N, N-

diisopropylethylamine (6.0 mL, 42.9 mmol). The mixture was allowed to stir overnight, then evaporated undr reduced pressure to dryness. The residue was partitioned between CHCl₃ and 1N HCl. The organic layer was washed with water and brine, dried over Na₂SO₄, and concentrated to give 8.3 g (93% yield) of white solid, which was used without further purification.

¹H NMR (CDCl₃): δ 5.53 (2H, bs), 4.03 (2H, d, J = 13.7 Hz), 2.33 (2H, tt, J = 11.8, 3.7 Hz), 2.08 (2H, bs), 1.89 (2H, dd, J = 13.7, 3.7 Hz), 1.69 (1H, dd, J = 11.8, 4.4 Hz), 1.65-1.57 (1H, m), 1.44 (9H, s).

4-Aminomethyl-N-tert-butoxycarbonyl-piperidine, which has the structural formula

, was made as follows. To N-tert-butoxycarbonyl-4-carbamoyl-piperidine (15.6 mmol) in THF (40 mL) at -78°C under Ar was added LiAlH₄ (592 mg, 15.6 mmol). The mixture was allowed to warm to ambient temperature slowly and after a half hour, recooled to -78°C, quenched with ethyl acetate, and partitioned between EtOAc and 2N NaOH. The organic layer was separated, dried over K₂CO₃, and concentrated to give 1.98 g (59% yield) of yellow slurry, which was used without further purification.

N-tert-Butoxycarbonyl-4-[(4-nitro-benzenesulfonylamino)-methyl]-piperidine, which

has the structural formula , was made as follows. 4nitrobenzenesulfonyl chloride (2.05 g, 9.24 mmol) was added to a solution of 4-aminomethyl-Ntert-butoxycarbonyl-piperidine (1.98 g, 9.24 mmol) in THF (20 mL) at ambient temperature.

The mixture was refluxed for 1 hour, concentrated *in vacuo*, and partitioned between CH₂Cl₂ and
1N HCl. The organic layer was washed with brine, dried over Na₂SO₄, passed through a pad of
silica gel, and concentrated to give 1.71 g (46% yield) of yellow solid, which was used without
further purification.

4-[(4-Amino-benzenesulfonylamino)-methyl]-N-tert-butoxycarbonyl-piperidine, which

has the structural formula , was prepared as follows. N-tert-

30

1

5

Butoxycarbonyl-4-[(4-nitro-benzenesulfonylamino)-methyl]-piperidine (1.70 g, 4.26 mmol), 10 % Pd/C (250 mg), MeOH (10 mL), and THF (10 mL) was stirred under hydrogen for 2 hours and filtered. The filtrate was concentrated to a residue that was purified via column chromatography with 5% MeOH/CHCl₃ as eluant, producing 1.39 g (88% yield) of white solid, which was used without further purification.

N-tert-Butoxycarbonyl-4-[(4-isothiocyanato-benzenesulfonylamino)-methyl]-

piperidine, which has the structural formula , was prepared in a manner analogous to 1-(4-isothiocyanato-phenyl)-morpholine for Example C(54). 4-[(4-Amino-benzenesulfonylamino)-methyl]-N-tert-butoxycarbonyl-piperidine provided a yellow solid in 39% yield, which was used without further purification.

4-{[4-(5-Acetyl-4-amino-thiazol-2-ylamino)-benzenesulfonylamino]-methyl}-N-tert-butoxycarbonyl-piperidine, which has the structural formula

15 Example C(1). N-tert-Butoxycarbonyl-4-[(4-isothiocyanato-benzenesulfonylamino)-methyl]piperidine and 2-bromo-2',6'-difluoro-acetophenone (from Example C(79)) provided a yellow solid in 50% yield.

¹H NMR (DMSO-d₆): δ 11.22 (1H, s), 8.20 (2H, bs), 7.84-7.73 (3H, m), 7.62-7.54 (2H, m), 7.24 (2H, dd, J = 7.8, 7.7 Hz), 3.89 (2H, d, J = 12.8 Hz), 3.35 (2H, s), 2.52 (2H, d, J = 1.2 Hz), 1.60 (2H, d, J = 10.1 Hz), 1.56-1.42 (1H, m), 1.39 (9H, s), 0.91 (2H, d, J = 12.8 Hz).

The title compound was prepared in a manner analogous to that used in Example J(1). 4-{[4-(5-Acetyl-4-amino-thiazol-2-ylamino)-benzenesulfonylamino]-methyl}-N-tert-butoxycarbonyl-piperidine provided a brown solid in 28% yield.

¹H NMR (DMSO-d₆): δ 8.11 (2H, bs), 7.70 (4H, bs), 7.58-7.42 (1H, m), 7.20 (1H, d, J = 7.8 Hz), 7.15 (1H, d, J = 7.8 Hz), 3.80 (2H, bs), 3.05 (2H, d, J = 10.0 Hz), 2.60 (2H, d, J = 6.8 Hz),

25 1.65 (2H, d, J = 12.2 Hz), 1.52 (1H, bs), 1.07 (2H, d, J = 10.0 Hz). HRFABMS (MH⁺): Calcd.: 507.1210. Found: 507.1206.

Anal. Calcd. for C₂₂H₂₃N₅O₃S₂F₂ • 0.1CH₃OH • 0.2 CF₃COOH: C, 50.65; H, 4.73; N, 13.12; S, 12.02. Found: C, 50.92; H, 4.46; N, 12.87; S, 12.18.

120

30

10

• Example J(5): {4-Amino-2-[4-(cis-3,5-dimethyl-piperazin-1-yl)-phenylamino]-thiazol-5-yl}-(2,6-difluoro-phenyl)-methanone

2,6-cis-dimethyl-4-(4-nitro-phenyl)-piperazine, which has the structural formula

5

, was first prepared essentially as described for 3R-methyl-1-(4-nitro-phenyl)-piperazine for Example C(124). cis-2, 6-Dimethylpiperazine gave 2.19 g (100% yield) of yellow powder mp 130-131.5□C, which was used without further purification.

¹H NMR (CDCl₃): δ 8.03 (2H, d, J = 9.5 Hz), 7.02 (2H, d, J = 9.5 Hz), 3.88 (2H, dd, J = 12.4, 2.0 Hz), 2.82-2.68 (2H, m), 2.44-2.33 (3H, m), 1.03 (6H, d, J = 6.3 Hz).

IR (KBr): 1596, 1509, 1482, 1316, 1252, 1193, 1119, 1101 cm⁻¹.

Anal. Calcd. for C₁₂H₁₇N₃O₂: C, 61.26; H, 7.28; N, 17.86. Found: C, 61.25; H, 7.42, N, 17.84. l-tert-Butoxycarbonyl-2,6-dimethyl-4-(4-nitro-phenyl)-piperazine, which has the

15 structural formula

, was prepared as follows. To 2,6-cis-dimethyl-4-(4-nitro-phenyl)-piperazine (1.00 g, 4.25 mmol) in dioxane (20 mL) was added di-tert-butyl dicarbonate (1.12 g, 5.12 mmol) and N, N-diisopropylethylamine (1.37 mL, 9.76 mmol). After 3 hours at 80°C, the mixture was allowed to cool and evaporated to dryness. The solid was suspended in water, filtered off, washed with water, and dried under vacuum to give 1.40 g (98%)

¹H NMR (CDCl₃): δ 8.12 (2H, ddd, J = 7.3, 2.1, 2.1 Hz), 6.80 (2H, ddd, J = 7.3, 2.1, 2.1 Hz), 4.30 (2H, ddd, J = 13.2, 6.8, 4.5 Hz), 3.71 (d, 2H, J = 13.2 Hz), 3.22 (dd, 2H, J = 12.8, 4.5 Hz), 1.49 (9H, s), 1.29 (6H, d, J = 6.8 Hz).

IR (KBr): 1689, 1594, 1489, 1400, 1322, 1257, 1057 cm⁻¹.

yield) a yellow powder, which was used without further purification.

1-(4-Amino-phenyl)-4-tert-butoxycarbonyl-3,5-dimethyl-piperazine, which has the

ctural formula

structural formula , was prepared as follows. Hydrogenation of crude 1-tert-butoxycarbonyl-2,6-dimethyl-4-(4-nitro-phenyl)-piperazine (1.48 g, 4.41 mmol) in THF

121

30

20

1 (20 mL) and McOH (20 mL) with 10% Pd/C as catalyst gave 1.12 g (83% yield) of a clear sticky oil, which was used without further purification.

¹H NMR (CDCl₃): δ 8.13 (2H, d, J = 9.4 Hz), 6.81 (2H, d, J = 9.4 Hz), 4.30 (2H, ddd, J = 13.2, 6.8, 4.5 Hz), 3.71 (2H, d, J = 13.2 Hz), 3.21 (2H, dd, J = 13.2, 4.5 Hz), 1.49 (9H, s), 1.29 (6H, d, J = 6.8 Hz).

1-(tert-Butoxycarbonyl)-2,6-cis-dimethyl-4-(4-isothiocyanato-phenyl)-piperazine,

which has the structural formula

5

10

15

, was prepared in a manner analogous

PCT/US98/22809

to 4-(4-isothiocyanatophenyl)-morpholine for Example C(54). 1-(4-Amino-phenyl)-4-tert-

butoxycarbonyl-3,5-dimethyl-piperazine provided a clear sticky foam that recrystallized from cold ether/hexanes to furnish pale tan crystals in 68% yield, mp 97-98 \Box C.

¹H NMR (CDCl₃): δ 6.74 (2H, d, J = 8.7 Hz), 6.67 (2H, d, J = 8.7 Hz), 4.20-4.08 (2H, m), 3.08 (2H, d, J = 11.6 Hz), 2.71 (2H, dd, J = 11.6, 3.9 Hz), 1.41 (9H, s), 1.28 (6H, d, J = 6.8 Hz). IR (KBr): 2175, 2135, 1691, 1507, 1395, 1341, 1246, 1177, 1098 cm⁻¹.

Anal. calcd for $C_{18}H_{25}N_3O_2S$: C, 62.21; H, 7.25; N, 12.09; S, 9.23. Found: C, 62.31; H, 7.32; N, 11.96; S, 9.39.

4-Amino-2-[4-(1-tert-butoxycarbonyl-2,6-cis-dimethyl-piperazine-4-yl)-phenylamino]-thiazol-5-yl-(2,6-difluorophenyl)-methanone, which has the structural formula

, was prepared in a manner analogous to that used in

Example C(1). 1-(tert-Butoxycarbonyl)-2,6-cis-dimethyl-4-(4-isothiocyanato-phenyl)-piperazine and 2-bromo-2',6'-difluoro-acetophenone (from Example C(79)) provided a yellow solid in 51% yield, which was used without further purification.

¹H NMR (DMSO-d₆): δ 10.66 (1H, s), 8.12 (2H, bs), 7.56-7.44 (1H, m), 7.38 (2H, d, J = 9.0 Hz), 7.18 (1H, d, J = 7.7 Hz), 7.15 (1H, d, J = 8.1 Hz), 6.95 (2H, d, J = 9.0 Hz), 4.14-4.03 (2H, m), 3.49-3.41 (2H, m), 2.75 (2H, dd, J = 12.2, 4.4 Hz), 1.42 (9H, S), 1.24 (6H, d, J = 6.7 Hz).

25 FABMS (M+Na⁺): 566

The title compound was prepared in a manner analogous to that used in Example J(1). 4-Amino-2-[4-(1-tert-butoxycarbonyl-2,6-dimethyl-piperazine-4-yl)-phenylamino]-thiazol-5-yl-(2,6-difluorophenyl)-methanone provided a brown powder in 52% yield, mp 293-294.5°C.

122

¹H NMR (DMSO-d₆): δ 8.11 (2H, bs), 7.56-7.44 (1H, m), 7.26 (2H, d, J = 9.0 Hz), 7.18 (1H, d, J = 7.7 Hz), 7.14 (1H, d, J = 8.1 Hz), 6.89 (2H, d, J = 9.0 Hz), 3.48 (2H, dd, J = 10.9, 2.2 Hz). 2.88-2.76 (2H, m), 2.07 (4H, t, J = 10.9 Hz), 1.00 (6H, d, J = 6.3 Hz).

HRFABMS (MH⁺): Calcd.: 444.1670. Found: 444.1658.

Anal. Calcd. for C₂₂H₂₃N₅OSF₂ • 0.4 H₂O: C, 58.63; H, 5.32; N, 15.54; S, 7.11. Found: C, 58.64; H, 5.40; N, 15.23; S, 6.96.

• Example J(6): {4-Amino-2-[4-(3,3-dimethyl-piperazin-1-yl)-phenylamino]-thiazol-5-yl}-(2,6-difluoro-phenyl)-methanone

10

15

2,2-Dimethyl-4-(4-nitro-phenyl)-piperazine, which has the structural formula

, was first prepared as follows. Crude 2, 2-dimethylpiperazine (10.0 mmol;

Chu et al., Can. J. Chem., vol. 70 (1992), pp. 1328-1337), 4-fluoro-nitrobenzene (5.0 mmol, 706 mg), and K₂CO₃ (8.3 g, 60.0 mmol) in DMSO (10 mL) was heated at 100 °C for 4 hours, cooled, diluted with water (100 mL), and extracted with ether:ethyl acetate (200:50 mL). The organic layer was washed with water (3x) and brine, and concentrated to provide 1.17 g (100% yield) of yellow solid, which was used without further purification.

¹H NMR (CDCl₃): δ 8.13 (2H, d, J = 9.5 Hz), 6.80 (2H, d, J = 9.5 Hz), 3.38 (2H, dd, J = 5.5, 5.0 Hz), 3.20 (2H, s), 3.07 (2H, dd, J = 5.5, 5.0 Hz), 1.21 (6H, s).

1-tert-Butoxycarbonyl-2,2-dimethyl-4-(4-nitro-phenyl)-piperazine, which has the

20

was prepared in a manner analogous to 1-(4structural formula amino-phenyl)-4-(tert-butoxycarbonyl)-2,6-dimethyl-piperazine for Example J(5). 2,2-Dimethyl-4-(4-nitro-phenyl)-piperazine provided a bright yellow solid in 99% yield, which was used without further purification.

25 ¹H NMR (CDCl₃): δ 8.15 (2H, d, J = 9.4 Hz), 6.64 (2H, d, J = 9.4 Hz), 3.90 (2H, dd, J = 6.0, 5.5) Hz), 3.54 (2H, dd, J = 6.0, 5.5 Hz), 3.53 (2H, s), 1.51 (9H, s), 1.44 (6H, s).

1-(4-Amino-phenyl)-4-(tert-butoxycarbonyl)-3,3-dimethyl-piperazine, which has the

structural formula , was prepared as follows. 1-tert-Butoxycarbonyl-

123

2,2-dimethyl-4-(4-nitro-phenyl)-piperazine (700 mg, 2.09 mmol) and 10% Pd/C (100 mg) in THF (15 mL) and MeOH (15 mL) was stirred under hydrogen for 2 hours and filtered. The filtrate was concentrated *in vacuo* to give a light brown slurry, which was used without further purification.

¹H NMR (CDCl₃): δ 6.69-5.65 (4H, m), 3.67 (2H, dd, J = 5.8, 5.4 Hz), 3.21-3.14 (2H, m), 3.01 (2H, s), 1.49 (9H, s), 1.43 (6H, s).

1-(tert-Butoxycarbonyl)- 2,2-dimethyl-4-(4-isothiocyanato-phenyl)-piperazine, which

> NCS

has the structural formula

, was prepared analogous to 4-

PCT/US98/22809

isothiocyanato-benzamide for C(102). 1-(4-Amino-phenyl)-4-(tert-butoxycarbonyl)-3,3-dimethyl-piperazine provided a white solid in 80% yield, which was used without further

purification.

¹H NMR (CDCl₃): δ 7.15 (2H, d, J = 9.0 Hz), 6.63 (2H, d, J = 9.0 Hz), 3.85 (2H, dd, J = 5.9, 5.5 Hz), 3.42 (2H, dd, J = 5.9, 5.5 Hz), 3.37 (2H, s), 1.57 (9H, s), 1.44 (6H, s).

4-Amino-2-[4-(1-tert-butoxycarbonyl-2,2-dimethyl-piperazine-4-yl)-phenylamino]-thiazol-5-yl-(2,6-difluorophenyl)-methanone, which has the structural

+ H₃C N S F

formula

15

20

5

, was prepared in a manner analogous to that used in

Example C(1). 1-(tert-Butoxycarbonyl)- 2,2-dimethyl-4-(4-isothiocyanato-phenyl)-piperazine and 2-bromo-2',6'-difluoro-acetophenone (from Example C(79)) provided a yellow powder in 60% yield, which was used without further purification.

¹H NMR (DMSO-d₆): δ 10.58 (1H, s), 8.13 (2H, bs), 7.61-7.48 (1H, m), 7.40-7.15 (5H, m), 6.79 (2H, d, J = 9.1 Hz), 3.74 (2H, dd, J = 5.8, 5.3 Hz), 3.41-3.30 (4H, m), 1.48 (9H, s), 1.39 (6H, s).

The title compound was prepared in a manner analogous to that used in Example J(1). 4-Amino-2-[4-(1-tert-butoxycarbonyl-2,2-dimethyl-piperazine-4-yl)-phenylamino]-thiazol-5-yl-(2,6-difluorophenyl)-methanone provided a yellow solid in 51% yield, mp 205-210°C.

25 HNMR (DMSO-d₆): δ 8.15 (2H, bs), 7.63-7.54 (1H, m), 7.35 (2H, d, J = 9.0 Hz), 7.25 (1H, d, J = 7.7 Hz), 7.22 (1H, d, J = 8.1 Hz), 6.98 (2H, d, J = 9.0 Hz), 3.10-3.04 (2H, m), 3.02-2.95 (2H, m), 2.92 (2H, s), 1.21 (6H, s).

IR (KBr): 3276, 2961, 1620, 1590, 1546. 1516, 1464, 1429, 1364, 1257, 1232, 1002 cm⁻¹. HRFABMS (MH⁺): Calcd.: 444.1670. Found: 444.1657.

124

1 Anal. Calcd. for C₂₂H₂₃N₅OSF₂ • 0.7 CH₃OH: C, 58.51; H, 5.58; N, 15.03; S, 6.88. Found: C, 58.601; H, 5.68; N, 14.87; S, 6.76.

• Example K: {4-Amino-2-[4-(4-pyridin-2-yl-piperazin-1-yl)-phenylamino]-thiazol-5-yl}-(2,6-difluoro-phenyl)-methanone

5

1-(4-Nitro-phenyl)-4-pyridin-2-yl-piperazine, which has the structural

formula , was first prepared in a manner analogous to

tert-butyl [methyl-(4-nitro-phenyl)-amino]-acetate for Example C(103). 1-Pyridin-2-yl-piperazine and 4-fluoronitrobenzene gave a yellow solid in 85% yield.

¹H NMR (CDCl₃): δ 8.13-8.28 (3H, m), 7.50-7.58 (2H, m), 7.52 (1H, ddd, J = 15.7, 7.3, 2.0 Hz), 6.88 (2H, d, J = 9.4 Hz), 6.70 (2H, dd, J = 7.4, 5.1 Hz), 3.78 (4H, dd, J = 7.4, 5.0 Hz), 3.62 (4H, dd, J = 5.7, 3.3 Hz).

4-(1-Pyridin-2-yl-piperazin-4-yl)-aniline, which has the structural formula

15 , was prepared in a manner analogous to 4-(4-methyl-piperazin-1-yl)-aniline for Example C(70). 1-(4-Nitro-phenyl)-4-pyridin-2-yl-piperazine afforded a gray solid in 94% crude yield, which was used without further purification.

¹H NMR (CDCl₃): δ 8.22 (1H, bd, J = 3.5 Hz), 7.52 (1H, ddd, J = 17.6, 7.2, 1.9 Hz), 6.88 (2H, d, J = 8.7 Hz), 6.62-6.78 (4H, m), 3.72 (4H, dd, J = 5.2, 5.0 Hz), 3.48 (2H, bs), 3.18 (4H, t, J = 5.2, 5.0 Hz).

1-(4-Isothiocyanato-phenyl)-4-pyridin-2-yl-piperazine, which has the structural

formula , was prepared in a manner analogous to 1-(4-isothiocyanato-phenyl)-4-pyridin-4-yl-piperazine for Example C(127). 4-(4-Pyridin-2-yl-piperazin-1-yl)-aniline gave 2.2 g (95% yield) of a yellow solid, which was used without any further purification. ¹H NMR (CDCl₃): δ 8.26 (1H, bd, J = 6.3 Hz), 7.91 (1H, ddd, J = 18.1, 7.1, 1.8 Hz), 7.18 (2H,

d, J = 9.0 Hz), 6.82-7.00 (4H, m), 4.10 (4H, dd, J = 5.3, 5.1 Hz), 3.48 (4H, dd, J = 5.3, 5.2 Hz).

The title compound was prepared as follows. To a solution of 1-(4-isothiocyanato-phenyl)-4-pyridin-2-yl-piperazine (250 mg, 0.84 mmol) in dry MeOH (4 mL) was added cyanamide (35 mg, 0.84 mmol) and a fresh solution of NaOH (67 mg, 1.67 mmol) in dry MeOH

125

30

1 (4 mL). After 1 hour, 2-bromo-2',6'-difluoro-acetophenone (from Example C(79); 178 mg, 0.76 mmol) was added. The next day, the resultant yellow suspension was filtered. The solid was washed with H₂O and dried under high vacuum to afford a yellow solid in 86% yield, mp 138-140°C.

¹H NMR (DMSO-d₆): δ 8.12 (2H, dd, J = 6.5, 1.7 Hz), 7.42-7.60 (2H, m), 7.32 (2H, bd, J = 8.5 Hz), 7.08 (2H, t, J = 9.0 Hz), 6.98 (2H, d, J = 9.0 Hz), 6.88 (2H, d, J = 8.7 Hz), 6.64 (1H, dd, J = 7.0, 5.0 Hz), 3.62 (4H, t, J = 4.7 Hz), 3.20 (4H, t, J = 4.7 Hz).

IR (KBr): 3369, 3180, 2835, 1620, 1597, 1546, 1466, 1433, 1232 cm⁻¹.

HRFABMS: Calcd. for C₂₅H₂₃F₂N₆OS (MH⁺): 493.1622. Found: 493.1608.

Anal. Calcd. for $C_{25}H_{22}F_2N_6OS \cdot 0.9 H_2O$: C,58.90; H, 4.90; N, 16.49; S, 6.29. Found: C, 58.91; H, 4.64; N, 16.55; S, 6.24.

• Example L: {4-Amino-2-[4-(4-carboxamido-piperidin-1-yl)-phenylamino]-thiazol-5-yl}-(2,6-difluoro-phenyl)-methanone

15

10

4-Carboxamido-1-(4-nitro-phenyl)-piperidine, which has the structural formula

, was prepared in a manner analogous to tert-butyl [methyl-(4-nitro-

phenyl)-amino]-acetate for Example C(103). 4-Fluoronitrobenzene and isonipecotamide gave a yellow powder in 98% crude yield, which was used without further purification.

¹H NMR (CD₃OD): δ 8.22 (2H, d, J = 9.5 Hz), 7.12 (2H, d, J = 9.5 Hz), 4.20 (2H, d, J = 12.5 Hz), 3.16 (2H, ddd, J = 25.6, 13.3, 2.7 Hz), 2.62-2.70 (1H, m), 2.02 (2H, bd, J = 10.3 Hz), 1.85-1.95 (2H, m).

1-(4-Amino-phenyl)-4-carboxamido-piperidine, which has the structural formula

, was prepared in a manner analogous to 4-(4-methyl-piperazin-1-yl)-

aniline for Example C(70). 4-Carboxamido-1-(4-nitro-phenyl)-piperidine gave a pale yellow powder in 100% crude yield, which was used without further purification.

¹H NMR (CD₃OD): δ 6.60 (2H, bs), 6.42 (2H, bs), 3.22 (2H, bs), 2.38 (2H, bs), 2.02 (1H, bs), 1.72-1.92 (4H, m).

4-Carboxamido-1-(4-isothiocyanato-phenyl)-piperidine, which has the structural

formula o, was prepared in a manner analogous to 1-(4-isothiocyanato-phenyl)-4-pyridin-2-yl-piperazine for Example K(1). 1-(4-Amino-phenyl)-4-carboxamido-piperidine to give a cream-colored powder in 93% yield, which was used without further purification.

¹H NMR (CDCl₃): δ 7.14 (2H, d, J = 9.0 Hz), 6.86 (2H, d, J = 9.0 Hz), 5.50 (1H, bs), 5.30 (1H, bs), 3.74 (2H, d, J = 12.8 Hz), 2.82 (2H, ddd, J = 24.3, 12.5, 2.8 Hz), 2.30-2.40 (1H, m), 1.80-2.08 (4H, m).

The title compound was prepared as follows. To a solution of 4-carboxamido-1-(4isothiocyanato-phenyl)-piperidine (198 mg, 0.76 mmol) in MeOH (3 mL) was added cyanamide
(32 mg, 0.76 mmol) and a solution of sodium methoxide in MeOH (1.65 mL of 0.5 N, 0.83 mmol). After 30 min, 2-bromo-2',6'-difluoro-acetophenone (162 mg, 0.69 mmol; from Example C(79)) was added. After 2 hours, H₂O was added. The yellow precipitate was filtered off, washed with water, and recrystallized from boiling MeOH to give 200 mg (63% in yield) of an amorphous yellow powder, mp> 300°C.

¹H NMR (DMSO-d₆): δ 7.46-7.58 (1H, m), 7.28 (2H, dd, J = 8.8, 7.5 Hz), 7.16 (3H, dd, J = 8.0, 7.7 Hz), 6.82 (2H, d, J = 9.1 Hz), 3.68 (2H, bd, J = 12.6 Hz), 3.64 (2H, ddd, J = 23.7, 12.1, 2.8 Hz), 2.04-2.18 (1H, m), 1.52-1.82 (4H, m).

HRFABMS: Calcd. for. C₂₂H₂₁F₂N₅O₂SNa (M+Na⁺): 480.1282. Found: 480.1266.

Anal. Calcd. for C₂₂H₂₁F₂N₅O₂S • 0.2 H₂O: C, 57.31; H, 4.68; N, 15.19; S, 6.95. Found: C, 57.25; H, 4.63; N, 15.31; S, 7.01.

• Example M: 1-{4-[4-Amino-5-(2,6-difluoro-benzoyl)-thiazol-2-ylamino]-phenyl}piperidine-4-carboxylic Acid

1-(4-Nitrophenyl)-piperidine-4-carboxylic acid, which has the structural formula

NO2, was prepared in a manner analogous to tert-butyl [methyl-(4-nitrophenyl)-amino]-acetate for Example C(103). 4-Fluoronitrobenzene and isonipecotic acid. afforded a yellow powder in 89% crude yield, which was used without further purification.

127

30

¹ H NMR (CDCl₃): δ 8.00 (2H, d, J = 10.8 Hz), 6.71 (2H, d, J = 10.7 Hz), 3.80 (1H, t, J = 3.9 Hz), 3.72 (1H, t, J = 3.8 Hz), 2.98 (2H, ddd, J = 24.3, 11.1, 3.0 Hz), 2.48-2.60 (1H, m), 1.88-2.02 (2H, m), 1.68-1.82 (2H, m).

Benzyl 1-(4-nitrophenyl)-piperidine-4-carboxylate, which has the structural formula

5 COLONO

 NO_2 , was prepared as follows. To a suspension of 1-(4-nitro-phenyl)-piperidine-4-carboxylic acid (500 mg, 2.01 mmol) in acetonitrile (10 mL) was added K_2CO_3 (612 mg, 4.44 mmol) and benzyl bromide (265 μ L, 2.22 mmol). The resultant mixture was heated at reflux for 2 hours, allowed to cool, and diluted with H_2O . The aqueous layer was extracted with ether (2 x 50 mL). The combined organic layers were dried over MgSO₄, filtered, and concentrated *in vacuo* to give 470 mg (64% in crude yield) of a yellow solid, which was

¹H NMR (CDCl₃): δ 8.13 (2H, d, J = 9.4 Hz), 7.30-7.42 (5H, m), 6.83 (2H, d, J = 9.4 Hz), 5.18 (2H, s), 3.92 (2H, dd, J = 3.9, 3.5 Hz), 3.10 (2H, ddd, J = 24.5, 13.7, 2.9 Hz), 2.62-2.70 (1H, m), 2.08 (2H, dd, J = 13.5, 3.5 Hz), 1.84-1.94 (2H, m).

Benzyl 1-(4-aminophenyl)-piperidine-4-carboxylate, which has the structural formula

used without further purification.

NH₂, was prepared as follows. To a solution of benzyl 1-(4-nitro-phenyl)-piperidine-4-carboxylate (400 mg, 1.18 mmol) in dioxane (5 mL) and ethanol (1 mL) was added tin(II) chloride dihydrate (1.06 g, 4.70 mmol). The resultant solution was heated at reflux for 4 hours, allowed to cool, and to aggregate solids, a small amount of Celite added. The mixture was brought to pH 8 with saturated aq NaHCO₃ and filtered. The filtrate was diluted with H₂O (50 mL) and extracted with 5% MeOH in CHCl₃ (2 x 50 mL). The combined organic layers were dried over MgSO₄, filtered, and concentrated *in vacuo* to furnish 400 mg (100% crude yield) of a cream-colored powder, which was used without further purification.

¹H NMR (CDCl₃): δ 7.30 (5H, bs), 6.58 (2H, d, J = 8.8 Hz), 6.42 (2H, d, J = 8.8 Hz), 4.94 (2H, s), 3.28 (1H, dd, J = 3.6, 3.1 Hz), 3.18 (1H, dd, J = 3.6, 3.0 Hz), 2.46 (2H, ddd, J = 23.2, 11.8, 2.8 Hz), 2.14-2.28 (1H, m), 1.60-1.88 (4H, m).

25

10

15

Benzyl 1-(4-isothiocyanatophenyl)-piperidine-4-carboxylate, which has the structural

formula

1

5

10

15

20

, was prepared as follows. To a solution of benzyl 1-(4-

amino-phenyl)-piperidine-4-carboxylate (400 mg, 1.29 mmol) in THF (5 mL) at -35°C was added in succession Et₃N (435 μ L, 3,12 mmol) and thiophosgene (108 μ L, 1.42 mmol). The resultant mixture was allowed to warm to ambient temperature, stirred for 0.5 hour, diluted with H₂O (50 mL), and extracted with CHCl₃ (2 x 50 mL). The combined organic layers were dried over MgSO₄, filtered, and concentrated under reduced pressure to give 400 mg (92% in yield) of a yellow powder, which was used without further purification.

¹H NMR (CD₃OD): δ 8.10 (2H, d, J = 9.5 Hz), 7.38 (5H, d, J = 4.5 Hz), 6.92 (2H, d, J = 9.5 Hz), 5.18 (2H, s), 4.00 (1H, t, J = 3.4 Hz), 3.96 (1H, dd, J = 3.5, 3.2 Hz), 3.13 (2H, ddd, J = 24.9, 13.8, 2.9 Hz), 2.71-2.77 (1H, m), 2.05 (2H, dd, J = 14.1, 3.4 Hz), 1.74-1.83 (2H, m).

Benzyl 1-{4-[4-amino-5-(2,6-difluorobenzoyl)-thiazol-2-ylamino]-phenyl}-piperidine-

NH2 N S F

4-carboxylate, which has the structural formula , wa prepared as prepared in a manner like that described for the title compound of Example C(1). Benzyl 1-(4-isothiocyanato-phenyl)-piperidine-4-carboxylate and 2-bromo-2',6'-difluoro-acetophenone (from Example C(79)) provided brown powder in 82% yield, and was used without further purification.

¹H NMR (DMSO-d₆): δ 7.30 (1H, m), 7.18 (2H, d, J = 8.9 Hz), 6.92 (2H, d, J = 9.0 Hz), 4.96 (2H, s), 3.62 (2H, bd, J = 9.2 Hz), 2.80 (2H, ddd, J = 26.4, 14.1, 2.6 Hz), 2.36-2.58 (1H, m), 2.04 (2H, bd, J = 3.1 Hz), 1.80-1.92 (2H, m).

The title compound was prepared as follows. To a mixture of benzyl 1-{4-[4-amino-5-(2,6-difluoro-benzoyl)-thiazol-2-ylamino]-phenyl}-piperidine-4-carboxylate (150 mg, 0.27 mmol) in ethanol (10 mL) was added 20% palladium(II) hydroxide on carbon (60 mg). The resultant mixture stirred under a hydrogen atmosphere for 48 hours. The catalyst was filtered onto a pad of Celite and rinsed with ethanol. The filtrate was concentrated under reduced pressure, and minimal ethyl acetate and CHCl₃ were added to induce precipitation. The solid was filtered off, washed with ethyl acetate, and dried to give 40 mg (30%) of a pale blue amorphous powder, mp 275-277°C, which was used without further purification.

129

¹H NMR (DMSO-d₆): δ 8.10 (1H, bs), 7.46-7.58 (1H, m), 7.30 (2H, bd, J = 7.5 Hz), 7.16 (2H, dd, J = 8.0, 7.9 Hz), 6.92 (2H, d, J = 9.1 Hz), 3.58 (2H, bd, J = 12.6 Hz), 2.52 (2H, dd, J = 11.2, 10.4 Hz), 2.32-2.40 (1H, m), 1.88 (2H, bd, J = 16.1 Hz), 1.58-1.70 (2H, m). Anal. Calcd. for $C_{22}H_{20}F_2N_4O_3S \cdot 0.9 H_2O \cdot 0.1$ CHCl₃: C, 54.55; H, 4.54; N, 11.51; S, 6.59. Found: C, 54.55; H, 4.30; N, 11.13; S, 6.40.

• Example N(1): [4-Amino-2-(4-nitro-phenylamino)-thiazol-5-yl]-(2-hydroxy-phenyl)-methanone

and Example N(2): N-[5-(2-Hydroxy-benzoyl)-2-(4-nitro-phenylamino)-thiazol-4-yl]-benzamide

15

20

5

Both title compounds were obtained from the same experiment. The title compound of Example C(130) stirred in a mixture of 2.5% aq. KOH (5 eq) in tetrahydrofuran for one hour. The crude product mixture was separated via flash column chromatography with 5% MeOH/CH₂Cl₂ to furnish the two title compounds, as yellow amorphous solids in 30 and 50% yields, respectively, of Examples N(1) and N(2).

For Example N(1): [4-Amino-2-(4-nitro-phenylamino)-thiazol-5-yl]-(2-hydroxy-phenyl)-methanone:

¹H NMR (DMSO-d₆): δ 11.40 (1H, s), 11.00 (1H, s), 8.24 (4H, d, J = 9.3 Hz), 7.89 (2H, d, J = 9.3 Hz), 7.47 (1H, d, J = 6.9 Hz), 7.34 (1H, dd, J = 7.9, 7.7 Hz), 6.92 (2H, d, J = 7.8 Hz). HRFABMS: Calcd. for $C_{16}H_{12}N_4O_4S$ (MH⁺): 357.0658. Found: 357.0660.

For Example N(2): N-[5-(2-Hydroxy-benzoyl)-2-(4-nitro-phenylamino)-thiazol-4-yl]-

25 benzamide:

¹H NMR (DMSO-d₆): δ 11.80 (1H, s), 11.60 (1H, s), 10.30 (1H, s), 8.27 (2H, d, J = 9.2 Hz), 8.00 (2H, d, J = 9.2 Hz), 7.92 (2H, d, J = 7.1 Hz), 7.56-7.68 (3H, m), 7.43 (1H, dd, J = 7.6, 1.6 Hz), 7.34 (1H, ddd, J = 8.5, 7.0, 1.6 Hz), 6.94 (1H, d, J = 8.2 Hz), 6.89 (1H, dd, J = 7.6, 7.5 Hz). ESIMS: Calcd. for $C_{23}H_{16}N_4O_5S$ (MH⁺): 461. Found: 461.

Other compounds may be made in accordance with the invention in manners similar to those described above. Additional exemplary compounds of the invention are identified in Tables I, II, and III below, which provide results of biochemical and biological assays.

BIOCHEMICAL AND BIOLOGICAL EVALUATION:

Cyclin-dependent kinase activity was measured by quantifying the enzyme-catalyzed, time-dependent incorporation of radioactive phosphate from [32P]ATP or [33P]ATP into a protein substrate. Unless noted otherwise, assays were performed in 96-well plates in a total volume of 50 μL, in the presence of 10 mM HEPES (N-[2-hydroxyethyl]piperazine-N'-[2-ethanesulfonic acid]) (pH 7.4), 10 mM MgCl₂, 25 μM adenosine triphosphate (ATP), 1 mg/mL ovalbumin, 5 μg/mL leupeptin, 1 mM dithiothreitol, 10 mM □-glycerophosphate, 0.1 mM sodium vanadate, 1 mM sodium fluoride, 2.5 mM ethylene glycol-bis(β-aminoethyl ether)-N,N,N'N'-tetraacetic acid (EGTA), 2% (v/v) dimethylsulfoxide, and 0.03 - 0.4 μCi [32/33P]ATP per reaction. Reactions were initiated with enzyme, incubated at 30°C, and terminated after 20 minutes by the addition of ethylenediaminetetraacetic acid (EDTA) to 250 mM. The phosphorylated substrate was then captured on a nitrocellulose or phosphocellulose membrane using a 96-well filtration manifold, and unincorporated radioactivity was removed by repeated washing with 0.85% phosphoric acid. Radioactivity was quantified by exposing the dried membranes to a phosphorimager.

Apparent K_i values were measured by assaying enzyme activity in the presence of different inhibitor compound concentrations and subtracting the background radioactivity measured in the absence of enzyme. The kinetic parameters (kcat, Km for ATP) were measured for each enzyme under the usual assay conditions by determining the dependence of initial rates on ATP concentration. Inhibition data were fit to an equation for competitive inhibition using Kaleidagraph (Synergy Software), or were fit to an equation for competitive tight-binding inhibition using the software KineTic (BioKin, Ltd.).

Inhibition of CDK4/Cyclin D Retinoblastoma Kinase Activity:

A complex of human CDK4 and cyclin D3, or a complex of cyclin D1 and a fusion protein of human CDK4 and gluathione-S-transferase (GST-CDK4), or a complex of human CDK4 and genetically truncated (1-264) cyclin D3, was purified using traditional biochemical chromatographic techniques from insect cells that had been co-infected with the corresponding baculovirus expression vectors (see e.g., Meijer and Kim, "Chemical Inhibitors of Cyclin-Dependent Kinases," *Methods in Enzymol*, vol. 283 (1997), pp. 113-128.). The enzyme complex (5 or 50 nM) was assayed with 0.3-0.5 µg of purified recombinant retinoblastoma

131

30

25

1

5

10

15

protein fragment (Rb) as a substrate. The engineered Rb fragment (residues 386-928 of the native retinoblastoma protein; 62.3 kDa) contains the majority of the phosphorylation sites found in the native 106-kDa protein, as well as a tag of six histidine residues for ease of purification. Phosphorylated Rb substrate was captured by microfiltration on a nitrocellulose membrane and quantified using a phosphorimager as described above. For measurement of tight-binding inhibitors, the enzyme complex concentration was lowered to 5 nM, and the assay duration was extended to 60 minutes, during which the time-dependence of product formation was linear. Inhibition of CDK2/Cyclin A Retinoblastoma Kinase Activity:

CDK2 was purified using published methodology (Rosenblatt et al., "Purification and Crystallization of Human Cyclin-dependent Kinase 2," *J. Mol. Biol.*, vol. 230, 1993, pp. 1317-1319) from insect cells that had been infected with a baculovirus expression vector. Cyclin A was purified from *E. coli* cells expressing full-length recombinant cyclin A, and a truncated cyclin A construct was generated by limited proteolysis and purified as described previously (Jeffrey et al., "Mechanism of CDK activation revealed by the structure of a cyclin A-CDK2 complex," *Nature*, vol. 376 (27 July 1995), pp. 313-320). Purified, proteolyzed cyclin A was included in the assay at a three- to five-fold molar excess to CDK2. Alternatively, a complex of CDK2 and proteolyzed cyclin A was prepared and purified by gel filtration. The substrate for this assay was the same Rb substrate fragment used for the CDK4 assays, and the methodology of the CDK2/cyclin A and the CDK4/cyclin D3 assays was essentially the same, except that CDK2 was present at 150 nM or 5 nM. K_i values were measured as described above. Inhibition of CDK1(cdc2)/Cyclin B Histone H1 Kinase Activity:

The complex of human CDK1 (cdc2) and cyclin B was purchased from New England Biolabs (Beverly MA). Alternatively, a CDK1/glutathione-S-transferase-cyclin B1 complex was purified using glutathione affinity chromatography from insect cells that had been co-infected with the corresponding baculovirus expression vectors. The assay was executed as described above at 30°C using 2.5 units of cdc2/cyclin B, 10 μg Histone H1 protein, and 0.1-0.3 μCi [32/33P]ATP per assay. Phosphorylated histone substrate was captured by microfiltration on a phosphocellulose P81 membrane and quantified using a phosphorimager as described above. K_i values were measured using the described curve-fitting programs.

Results of assays performed on compounds, which include the specific examples described above as well as additional examples designated by the prefix "I" (e.g., Examples I(1), I(2), etc.), where "*" denotes a compound having a known structure (i.e., the compound *per se* is known), are provided below in Tables I, II, and III. Unless indicated otherwise in a particular

i₃₀ 132

5

10

15

20

entry, the units and assays used are as indicated in the applicable column of the table. The abbreviation "N.I." indicates that no inhibition was observed at the concentration indicated.

Table I. Ki with CDKs

		Idole I. It with 02.			
5	Example	Structure	4/D (nM)	K _i CDK 2/A (nM)	Κ _i CDK 1/B (μΜ)
	I(1)*		640 ^a ; 102 ^b	460	0.5
10	I(2)*		8000°; ~ 30 μΜ ^b	8700	
10	I(3)*	D hard	>5 μM ^a ; >100 μM ^b		
	A(1)	On the state of th	660°; 770°	1200	
15	D(1)	Cr. Cs. Cs.	490 ⁶	900	
	I(4)*	ON TO	3.1 µM ^b	4.3 μM	3.9
20	l(5)*	NH ₂	1100 ^a 870 ^b	4600	4.5
	C(4)	H ₃ C-N ² S-N ² S-NO ₂	95ª	810	0.09
	A(2)	NH ₂ NO ₂	~300 ^a		
25	D(2)	NH ₂ NH ₂	>5000°		

a = D-type cyclin is D3; b = D-type cyclin is D1; c = D-type cyclin is truncated D3

133

Table I. K_i with CDKs (Continued)

	Example	Structure	K _i CDK 4/D (nM)	K _i CDK 2/A (nM)	Κ _i CDK 1/B (μΜ)
5	A(3)		2000°	6100	3.5
	C(5)	NIT'S ANO,	140°	780	0.293
10	C(6)	M,CQ NH2 NO2	> 10 µM ^a		
	I(6)		none @ 10 μMª		
	D(3)	H ₃ C-NH ₂	380°		
15	I(7)	H ₂ C NH ₂ C F	~ 1500°		
	I(8)		4300°		
20	I(9)	NH ₂ NO ₂	2500 ^a		
	A(4)	C _N L _S C _S C	2000 ^a	3100	2.7
25	I(10)	Charles Coche	>20 μM ^a		

a = D-type cyclin is D3; b = D-type cyclin is D1; c = D-type cyclin is truncated D3

134

Table I. K_i with CDKs (Continued)

Example	Structure	K _i CDK 4/D	K _i CDK 2/A	K _i CDK 1/B
		(nM)	(nM)	(μM)
I(11)		520ª		
I(12)	Cho CHo	380 ^a	4170	
I(13)	H ₃ CQ	2400°		
I(14)	H ₃ CQ O	>50		
, ,		μM ^a		
1(15)	Hood NH42	440 ^a		
I(16)	H ₉ CO OCH ₉ OCH ₃ OCH ₃	1880ª		
I(17)	NO ₂ H ₃ CO Y	<1000°		
I(18)	H ₂ CO S S S S S S S S S S S S S S S S S S S	>25 µM ^a		
I(19)	Mac Mary Nata San Mary San Mar	1600ª	4800	none @ 100 µM
A(5)	O CH2CH3	97ª	690	0.163

a = D-type cyclin is D3; b = D-type cyclin is D1; c = D-type cyclin is truncated D3

Table I. K_i with CDKs (Continued)

5	
10	
15	
20	

Example	Structure	K _i CDK 4/D (nM)	K _i CDK 2/A (nM)	K _i CDK 1/B (μM)
E(1)	HO NH2 NO2	420°	320	0.03
A(6)	HSCH SHAP NO2	150ª	292	0.052
A(7)	NH2 CHO2	310 ^a		
A(8)	STATE OF THE STATE	>25 µMª		
D(4)	H ₂ N O ₁ C S S S S S S S S S S S S S S S S S S	800 ^a		
A(9)	NH2 NO2	100°	230	0.053
A(10)	H ₅ CO NH ₂ NO ₂	36ª	318	0.057
I(20)	H ₃ C-N	none @ 25 μM		
I(21)	H ₅ C-NH ₅	none @ 25 μM		
I(22)	H ₂ C-NH ₂	none @ 25 μM		

a = D-type cyclin is D3; b = D-type cyclin is D1; c = D-type cyclin is truncated D3 $^{\circ}$

136

30

Table I. K_i with CDKs (Continued)

5

10

والإوارات

15

20

25

Example	Structure	K _i CDK 4/D (nM)	K _i CDK 2/A (nM)	K _i CDK 1/B (μM)
I(23)	HSC NH2	1500 ^a	(===-/	(
A(11)	NH ₂ No ₂	130ª		
I(24)	HO NH ₂ NO ₂	N.I. at 25 μM ^a		
C(7)	H ₃ C NH ₂ s	510°		
C(9)	H,COM STATE OF COL	740 ^a		
C(10)	MH2 S C	680ª		
C(8)	NH ₂ s	27ª	389	0.097
C(11)	No.	130 ^a		
C(12)	H ₃ CQ NH ₂	27ª	670	
A(12)	NH12 OCH,	9400°	4100	

a = D-type cyclin is D3; b = D-type cyclin is D1; c = D-type cyclin is truncated D3 "

137

Table I. K_i with CDKs (Continued)

Example	Structure	K _i CDK 4/D (nM)	K _i CDK 2/A (nM)	Κ _i CDK 1/B (μΜ)
C(13)	O ₂ N C ₁ N C ₂ NO ₂	51ª		
C(14)	NH2 NO2	57ª		
C(15)	NO ₂	57ª		
C(16)	NH ₂ NO ₂	170ª		
C(25)	F ₃ C N NO ₂	1300 ^a		
C(24)	I THE PAOS	8ª	248	0.046
C(22)	NC C NOS NOS	67ª		
C(17)	NO ₂	72ª		
C(18)	NH ₂ NO ₂	12900°	none @ 10 μΜ	
C(37)	H CI-CF3	7ª	310	0.233
C(23)	OCH3 NH ₂ NO ₂	330 ^a		

a = D-type cyclin is D3; b = D-type cyclin is D1; c = D-type cyclin is truncated D3

Table I. K_i with CDKs (Continued)

	Example	Structure	4/D (nM)	K _i CDK 2/A (nM)	K _i CDK 1/B (µM)
5	C(19)	Harry State of the	15.8°	277	
	F	H ₃ CC NH ₂ CN	40.7ª	350	0.2
. 10	C(20)	H S CH3	22ª	145	
10	C(21)	CH ₃ .	117°	480	
	A(13)	H ₂ N OCH ₃	250 ^a		
15	A(14)	H ₃ C-CH ₃	180ª		
	C(36)	F ₃ C N S CI CI CF ₃	13900ª		
20	В	H ₂ N H ₃ C H	N.I. at 100 µM ^a		
	C(31)	H ₃ CO CI	N.I. at 100 µM ^a		
25	C(32)	NH2 OCH3	94ª		

a = D-type cyclin is D3; b = D-type cyclin is D1; c = D-type cyclin is truncated D3

139

Table I. Ki with CDKs (Continued)

Example	Structure	K _i CDK 4/D (nM)	K _i CDK 2/A (nM)	Κ _i CDK 1/B (μΜ)
C(33)	Han Shape Cocho	57ª	20	(1)
C(35)	H ₂ N ₂ P ₂ P ₂ P ₃ P ₄ P ₃ P ₄ P ₅ P ₄ P ₅	11ª	23	
C(34)		140ª	131	
C(26)	Coch, Mtz Coch,	330 ^a		
C(27)	The second	1020ª		
C(28)	Charles Carried Carrie	240ª		
C(29)	NH ₂ OCH ₃	357ª		
C(30)	CN NH2	1400ª		
C(38)	HAND CF3	25ª	39	
C(39)	Ham So	>100 µMª		

a = D-type cyclin is D3; b = D-type cyclin is D1; c = D-type cyclin is truncated D3

Table I. K_i with CDKs (Continued)

Example	Structure	K _i CDK 4/D (nM)	K _i CDK 2/A (nM)	Κ _i CDK 1/B (μΜ)
E(2)	H ₂ N ₂ O ₁ O ₂ O ₁ O ₁ O ₂ O ₁ O ₂ O ₁ O ₂ O ₁ O ₂ O ₂ O ₁ O ₂ O ₂ O ₂ O ₃ O ₄ O ₂ O ₃ O ₄ O ₅	1170 ^a		
C(40)	H,CO CH ₃	3840 ^a		
C(41)	CHS CHS	350 ^a	336	
C(42)	NO Hace	750 ^a	207	
C(43)	NH2 CH3	315ª		
C(44)	H ₅ C \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	~ 128ª		
C(45)	H ₂ N S S S S S S S S S S S S S S S S S S S	51ª	103	0.249
C(46)	EIO ₂ C H ₃ C	244ª	1790	
C(47)	H ₂ N ₂ S CH ₃	30 ^a	26	
C(48)	H ₂ N ₂ S CH ₃	14ª	11.1	0.015

a = D-type cyclin is D3; b = D-type cyclin is D1; c = D-type cyclin is truncated D3

Table I. K_i with CDKs (Continued)

	Example	Structure	K _i CDK	K _i CDK	K _i CDK
	Example	Structure	4/D	2/A	1/B
:			(nM)	(nM)	(µM)
5	C(49)	H ₂ N ₂ S ₂ S ₃ S ₄ S ₅	23ª	10	0.034
	C(50)	Hand Sho	25.5ª	5.6	0.029
10	C(51)		85ª	33.3	
	C(52)		11°	105	
	C(53)	12-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	85ª	180	
15	C(54)	NH ₂ CH ₃	34 ^a	453	
	C(55)	00,156	8.5°	493	0.504
20	C(56)		195°	1020	
	C(57)	NH2 CH3	30 a	259	
25	C(58)	1 5 5 CH3	34 ª	306	

25

a = D-type cyclin is D3; b = D-type cyclin is D1; c = D-type cyclin is truncated D3

142

30

BNSDOCID: <WO___9921845A2_1_>

Table I. K_i with CDKs (Continued)

_	

10

15

20

25

Structure NH2 H2N H3C NH2 H3C NH2 H3C NH2 NH2 CH3 NH2 NH2 CH3	K _i CDK 4/D (nM) 100 a 56 a	K _i CDK 2/A (nM) 135	K _i CDK 1/B (μM)
H ₂ N ₂ CH ₃ H ₂ C CH ₃ H ₃ C CH ₃	4/D (nM) 100 a 56 a	2/A (nM) 135 574	1/B
H ₂ N ₂ CH ₃ H ₂ C CH ₃ H ₃ C CH ₃	(nM) 100°a 56°a	(nM) 135 574 280	
HOLD NHS HOLD NHS HOLD NHS CHS	(nM) 100°a 56°a	(nM) 135 574 280	
HOLD NHS HOLD NHS HOLD NHS CHS	100 ^a 56 ^a 639 ^a	574	
HOLD NHS HOLD NHS HOLD NHS CHS	56 ^a	574	
HO NHO CHO	639 ª	280	
	639 ª	280	
NH ₅ CH ₅			
COL SCHO	120°		[
S' >		1200	
H 02N			
NH ₂	72 a	1710	
O La Hace			
NH ₂	17 a	200	0.133
NH ₂	44000°	42	
		μM	
S NH2	38000°	14.3	
		μM	
CH3	53 ª	574	
NH2	3170°a	132	+
	3170	μM	
		72 a 72 a 72 a 72 a 73 a 74 a 75 c 76 c 77 a 78 c	17 a 1710 17 a 200 17 a 200 18 a 4000 a 42 μΜ 38000 a 14.3 μΜ 53 a 574

a = D-type cyclin is D3; b = D-type cyclin is D1; c = D-type cyclin is truncated D3

Table I. K_i with CDKs (Continued)

	Example	Structure	K _i CDK 4/D	K _i CDK 2/A	K _i CDK 1/B
			(nM)	(nM)	(µM)
5	C(68)	H ₃ CC CH ₃	>30 µM ^a		
·	C(69)		20 ª	638	
10	C(70)	H ₃ C ₁ O ₁ O ₁ O ₁ S ₁ S ₁ O ₂ C ₁ S	2.8 a	1120	1.37
	C(71)	Hace No Alas Carlos	2 ª	482	0.827
	C(72)	NH ₂ S B ₁	13.5 ª	169	
15	C(73)	H ₂ N ₂ S B _r	6.3 ^a	6.8	0.02
	C(74)	H S CHo	4800 ^a	μМ	
20	C(75)		23 ª	1080	
	C(76)	H-M-SO CH3	2000°	507	
25	C(77)	CH ₃	3000 a	None @ 5µM	

a = D-type cyclin is D3; b = D-type cyclin is D1; c = D-type cyclin is truncated D3

144

Table I. K_i with CDKs (Continued)

Example	Structure	K _i CDK 4/D (nM)	K _i CDK 2/A (nM)	Κ _i CDK 1/B (μΜ)
C(78)	NH2 s NO2	32 ^a	83	(μινι)
C(79)	The state of the s	54 ª	162	
C(80)	Has Note to the second of the	3.3 ª	220	0.325
C(81)	H ₂ C-N CF ₃	12.3 ª	872	1.24
C(82)	The section of the se	44.2 ª	467	
C(83)	C Hyc.	1800°	32 µM	
C(84)	Charles B'	53 ª	1040	
C(85)	HAN BE STORY	13 ª	5.7	0.002
C(86)	H ₃ C ₁	15 a	1100	1.31
C(87)	H ₃ C ₁ H ₃	9 a	607	0.82

a = D-type cyclin is D3; b = D-type cyclin is D1; c = D-type cyclin is truncated D3

Table I. K_i with CDKs (Continued)

5		
10		
15		
:		
20		

	Table 1. K, with CDRS (C)		, · · · · · · · · · · · · · · · · · · ·	
		\mathbf{K}_{i}	\mathbf{K}_{i}	\mathbf{K}_{i}
Example	Structure	CDK	CDK	CDK
	İ	4/D	2/A	1/B
:		(nM)	(nM)	(µM)
C(88)	NH ₂	65°	305	
	O H S CH N			
C(89)	NH ₂	55°	326	
	H 20 NO 2			
G	NH ₂	23 a	178	
	L CI NHS			
C(90)	Hac No	27°	771	
	TO pt on,			
C(91)	NH2 P	6.8 a	81	
	S CH			
C(92)	H ₂ N ₂	63 a	9.4	
			ļ !	
C(93)	N S NH	285 a	1040	
C(94)	H ₃ C _N NO ₂	41 a	1040	1.41
	CHO CHO			
C(95)	H ₂ N ₂ O NO ₂	25 a	<50	0.075
	Chr. St.			
D(5)	H ₂ M ₂ O NH ₂	159 a	233	
	NHS S			
	<u> </u>	<u></u>		1

25

a = D-type cyclin is D3; b = D-type cyclin is D1; c = D-type cyclin is truncated D3

146

Table I. K_i with CDKs (Continued)

Example	Structure	K _i CDK 4/D (nM)	K _i CDK 2/A (nM)	K _i CDK 1/B (μM)
C(96)	H ₂ C-N-S-D-NH ₂	1.5°	324	0.231
H(1)	HIV -3 HCI NH2 S CH3	8.2 a	370	0.681
H(2)	+NO SHCI NH2	3.6 a	474	0.361
C(97)	H.5 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	8.5 ª	392	
C(98)	H3 CH3	27 ª	565	0.72
H(3)	HN C 1 5 C C C C C C C C C C C C C C C C C	2.4 °	405	0.472
J(1)	H10-10-10-10-10-10-10-10-10-10-10-10-10-1	2.3 °	452	0.73
C(99)	HAND SEFS	16.4°	39.5	0.04
C(100)	H ₃ C ₁ O	6.5 a	620	0.91
C(101)	12 C C L S F L S	103 a	300	0.32

a = D-type cyclin is D3; b = D-type cyclin is D1; c = D-type cyclin is truncated D3

Table I. K_i with CDKs (Continued)

	Example	Structure	K _i CDK 4/D	K _i CDK 2/A	K _i CDK 1/B
5	C(102)	H ₂ N - N - S - N - N	(nM) 21 ^a	(nM) 49	(μ M) 0.017
	C(103)	The state of the s	110 ª	595	
10	C(104)	X & O O T & HOUSE	190 ª	730	
	C(105)	+3-0-0-1-5-5-5	60 ª	1060	
	C(106)	7 NH2 P N	134 ª	1460	
15	J(2)	HI SEPTION NHS	6.4 ^a	135	0.405
	C(107)	HAND SOLITION OF THE SOLITION	13.8 ^a	12.5	
20	C(108)	Har Park	23 ª	6.8	0.009
·	C(109)	Has a hard a har	83 ^a	28	0.035
25	C(110)	H ₃ C _{H₃} NH ₂	14 ^a	260	0.104

a = D-type cyclin is D3; b = D-type cyclin is D1; c = D-type cyclin is truncated D3

148

Table I. K_i with CDKs (Continued)

	Example	Structure	K _i CDK 4/D (nM)	K _i CDK 2/A (nM)	Κ _i CDK 1/B (μΜ)
5	C(111)	Hack Or Charles	21 ^a	216	
	C(112)	NO NO NO SECHO	23 ª	408	
10	C(113)	H ₂ N CF ₃	17.3 °	238	
	C(114)	H ₃ C B H ₃ C S	21 ª	8.5	0.028
	C(115)	HAN & C. L. S. L.	57 ^a 55 ^c	18	0.05
15	J(3)	HN S S	15 ° 19°	572	2.0
	J(4)		10.2 a	13.5	0.022
20	C(116)	HACA OF A SE	121°	120	0.077
	J(5)		6.3 a	331	0.76
	C(117)	Harry Harry	10°	423	0.417

a = D-type cyclin is D3; b = D-type cyclin is D1; c = D-type cyclin is truncated D3

149

30

Table I. K, with CDKs (Continued)

1				•	
	Example	Structure	K _i CDK 4/D (nM)	K _i CDK 2/A (nM)	Κ _i CDK 1/B (μΜ)
5	C(118)	HSC C LS LS	10.3 ^a	191	0.097
	C(119)		24 ª	86	0.247
10	C(120)		10.9 ^a	80	0.062
	C(121)		10.6°	953	
	K		43°	364	
15	C(122)		35°	165	
	J(6)	H ₂ C	8.1°	548	0.511
20	C(123)	H. A. C. L. S.	15.4 ª	164	
	C(124)	H ₅ C A A A A A A A A A A A A A A A A A A A	17°	611	0.68
25	C(125)	H3CN H3CV	5.4°	602	0.65

a = D-type cyclin is D3; b = D-type cyclin is D1; c = D-type cyclin is truncated D3

150

1

5

10

15

Table I. K_i with CDKs (Continued)

Example	Structure	K _i CDK 4/D (nM)	K _i CDK 2/A (nM)	Κ _i CDK 1/B (μΜ)
L	H-2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	22°		0.193
М	HO LO LO FE	46 ^c	290	
C(126)	H ₃ CN _{CH₃} H ₅ F	24 ^c	390	
C(127)		26 ^c	215	
C(128)		30°	440	
C(129)	Hose No	64 ^c	270	

a = D-type cyclin is D3; b = D-type cyclin is D1; c = D-type cyclin is truncated D3

20 Inhibition of Cell Growth: Assessment of Cytotoxicity:

Inhibition of cell growth was measured using the tetrazolium salt assay, which is based on the ability of viable cells to reduce 3-(4,5-dimethylthiazol-2-yl)-2,5-[2H]-diphenyltetrazolium bromide (MTT) to formazan (Mossman, *Journal of Immunological Methods*, vol. 65 (1983), pp. 55-58). The water-insoluble purple formazan product was then detected spectrophotometrically. Various cell lines (HCT-116, Saos-2, U2-OS, SW480, COLO-205, RXF-393, M14, MDA-MB-468, and MCF7) were grown in 96-well plates. Cells were plated in the appropriate medium at a volume of 135 µl/well in either McCoy's 5A Medium (for Saos-2, U2-OS, SW480, and HCT-116 cells), RPMI (for COLO-205, RXF-393, M14 cells), or Minimum Essential Medium Eagle (for MDA-MB-468 and MCF7 cells). Plates were incubated for four hours before addition of

30

inhibitor compounds. Different concentrations of inhibitor compounds were added in 0.5% (v/v) dimethylsulfoxide (15 μL/well), and cells were incubated at 37°C (5% CO₂) for four to six days (depending on cell type). At the end of the incubation, MTT was added to a final concentration of 0.2 mg/mL, and cells were incubated for 4 hours more at 37°C. After centrifugation of the plates and removal of medium, the absorbance of the formazan (solubilized in dimethylsulfoxide) was measured at 540 nm. The concentration of inhibitor compound causing

concentration versus percentage inhibition. All results were compared to control cells treated

50% inhibition of growth was determined from the linear portion of a semi-log plot of inhibitor

only with 0.5% (v/v) dimethylsulfoxide.

10

15

20

25

PCT/US98/22809

TABLE II. IC50 with Various Cancer Cell Lines in MTT Assay

	SW-480	4,9	0.4, 3	15%@	30	3,9	0 @ 10,	@ %99	30	22, (58%	@ 30)	1.7,3		23% @	30	5, 15
	MDA- MB-468															
	MCF-7															
	393															
(Ми)	M14 melanoma															
IС50, IС90 (µМ)	COLO- 205										·····					
	Saos-2															
Table II:	U2-OS															
	HCT116	2.5, 10	0.7, 30	41% @ 30		6, 25	29% @ 30			16% @ 30		26, (85% @	30)	17% @ 10 &	30	20, 30
L	Example	A(1)	C(4)	A(3)		C(5)	A(4)	-		I(19)		A(5)		E(1)		A(6)

153

9

		Table II:		IC ₅₀ , IC ₉₀ (μM)	(µМ)				
Example	HCT116	U2-OS	Saos-2	.0T00	M14	RXF.	MCF-7	MDA.	SW-480
Compound				205	melanoma	393		MB-468	
A(9)	20, 30								4, 10
A(10)	0.95, 1.8	0.9, 1.6	1.3, 4.6				0.65, 5.5	0.72, 1.7	0.7, 7.5
C(8)	18, >25 (88%)	10,	6.2, 18.0				15, >25	6.8, 15	8.3, 20.0
		>25(84%)					(82%)		
C(12)	2.0, 5.0	1.9, 6.0	2.1,4.8						
C(24)	0.7, 1.5	1.9, 3.0	1.4, 2.8		-				
C(37)	10.0, 25.0	16.0,>25(80	14.0,>25(
		(%)	70%)						
C(19)	9.0, 23.0	15.0,	7.0, 18.0						
		>25(77%)							
Ţ	1.0, 2.6	1.0, 20.0	1.0, 1.6						
C(20)	6.1, 25	6.5,>25(74%	4.9, 13.0						
C(21)	9.0, 22.0	22.0,	13.0, 23.0						
		>25(57%)							
C(35)	9.0, 19.0	12.0, 22.0	8.0, 20.0						

.

15

 \subseteq

		Table II:		IC ₅₀ , IC ₉₀ (μM)	(µM)				
Example	HCT116	U2-0S	Saos-2	coro-	M14	RXF.	MCF-7	MDA-	SW-480
Compound				205	melanoma	393		MB-468	
C(38)	4.3, 19.0	11.0,	3.0,						
		>25(87%)	>25(80%)						
C(45)	2.0,8.0	5.5, 12.0	2.0, 10.0						
C(47)	4.2, 7.8	10.0, 20.0	2.5, 5.1						
C(48)	0.34, 0.70	1.0, 1.5	0.42, 0.75	0.29, 0.60	0.6, 1.8	0.8,	2.6, >25	0.26,	
. 						1.6	(82%)	09.0	
C(49)	5.6, 12.0	14.0, 22.0	4.0, 20.0						
C(50)	0.61, 1.6	2.0, 3.0	1.3, 2.8				3.0, >25	0.48, 1.5	
							(88%)		
C(52)	8.5, 17.0	15.0, 23.0	9.0, 22.0						
C(55)	4.3, 17.0	18,	17,						
		>25(74%)	>25(69%)			·			
C(63)	12.0, 22.0	16.0,	9.0, 20.0						
		>25(84%)							
C(69)	5.0, 15.0	14.0, 26.0	12.0, 26.0						
C(70)	2.2, 5.9	5.0, 11.0	5.8, 12.0						
C(71)	1.7, 4.4	3.3, 6.0	4.0, 7.0	1.2, >5.0	2.0, 1.8	>5.0			

Example HCT116 Compound 1.4, 3.4 C(80) 0.4, 1.1 C(81) 10.0, 20.0 C(82) >25 (1%) C(82) >25 (1%) C(85) 0.25, 0.56 C(86) 6.5, 17.0 C(87) 0.95, 2.9 C(88) 19 >25 (70%)	U2-OS 4.1, 9.5 1.0, 2.3 7.9, 12.0 >25 (1%)	Saos-2 1.3, 5.0 0.9, 1.5 13.0, 22.0	COLO- 205	M14 melanoma	293	MCF-7	MDA-	SW-480
1.4, 3.4 0.4, 1.1 10.0, 20.0 >25 (1%) 6.5, 17.0 6.5, 17.0 0.95, 2.9	4.1, 9.5 1.0, 2.3 7.9, 12.0	1.3, 5.0 0.9, 1.5 13.0, 22.0	205	melanoma	303			
1.4, 3.4 0.4, 1.1 10.0, 20.0 >25 (1%) 0.25, 0.56 0.25, 0.56 0.95, 2.9	4.1, 9.5 1.0, 2.3 7.9, 12.0 >25 (1%)	1.3, 5.0 0.9, 1.5 13.0, 22.0			270		MB-468	
0.4, 1.1 10.0, 20.0 >25 (1%) 0.25, 0.56 0.5, 17.0 0.95, 2.9	1.0, 2.3	0.9, 1.5						
10.0, 20.0 >25 (1%) 0.25, 0.56 0.5, 17.0 0.95, 2.9	7.9, 12.0	13.0, 22.0	0.28, 1.0	0.92, 2.5	0.84,	0.4, 1.7	0.49, 1.3	
10.0, 20.0 >25 (1%) 0.25, 0.56 0.5, 17.0 0.95, 2.9	7.9, 12.0	13.0, 22.0			1.3			
525 (1%) 0.25, 0.56 6.5, 17.0 0.95, 2.9	>25 (1%)		>5.0	3.8, >5	>5.0	3.9, 16.0	4.7, 9.3	
0.25, 0.56 6.5, 17.0 0.95, 2.9		>25						
0.25, 0.56 6.5, 17.0 0.95, 2.9		(15%)						
0.95, 2.9	1.7, 2.8	0.28, 0.67	0.24, 0.58	0.71, 2.2	1.2,	3.9, 13.0	0.22,	
0.95, 2.9					3.0		0.59	
0.95, 2.9	14, 22	12, 22						
10 >25 (70)	1.8, 4.0	2.0, 4.0	0.39, 1.7	1.5, 4.2	1.5,			
19 >25 (70)					2.3	ļ		
	%) >25 (26%)	22, >25						
		(26%)	·			j		
C(91) 4.7, 18.0	19.0, >25	5.9, 23.0						
C(94) 1.3, 3.1	3.4, 6.0	2.2, 5.0						
C(95) 1.5, 3.0	3.9, 5.8	1.8, 4.5						
D(5) 1.9, 5.0	>25	17.0, 25.0						

10

15

WO 99/21845

		Table II:		IC ₅₀ , IC ₉₀ (μΜ)	(μМ)				
Example	HCT116	U2-0S	Saos-2	.0T00	M14	RXF-	MCF-7	MDA-	SW-480
Compound				205	melanoma	393		MB-468	
(96)	18.0, >25	8.0, 12.0	4.2, 10.0						
	(82%)								
H(1)	0.58, 1.4	0.85, 1.5	0.73, 1.4	0.2, 0.6	2.4, 9.0	0.46,			
						0.88			
H(2)	15.0, 25.0	16.0, 21.0	13.0, 22.0						
C(97)	3.9, 11.0	10.0, 21.0	9.0, 20.0						
C(98)	1.3, 2.9	2.4, 5.2	2.7, 5.3						
H(3)	0.88, 2.4	3.5, 5.8	1.8, 3.0						
J(1)	1.3, 3.0	3.5, 5.9	1.0, 5.9						
C(99)	0.88, 2.7	4.0, 8.0	1.1, 2.9						
C(100)	2.3, 6.1	12.0, 22.0	4.5, 10.0						
C(102)	1.1, 2.4	3.1, 5.4	0.88, 2.2						
J(2)	0.3, 0.73	1.7, 2.8	0.58, 1.3	0.9, 2.7	0.65, 2.0	0.55,	0.48, 1.7	0.48, 1.7 0.34, 0.7	
						1.1			
C(107)	2.5, 7.0	7.9, 12.0	5.7, 12.0						
C(108)	0.4, 1.4	1.4, 4.8	0.31, 3.2						

10

Ž.

•

L		Table II:		IC ₅₀ , IC ₉₀ (µM)	(Ми)				
Example	HCT116	U2-0S	Saos-2	.0T00	M14	RXF-	MCF-7	MDA-	SW-480
Compound				205	melanoma	393		MB-468	
C(109)	1.6, 3.0	4.7, 19.0	1.5, 14.0						
C(110)	0.64, 1.7	0.7.1.6	0.89, 1.8				0.4, 1.7	0.44,	
								6.73	
C(111)	1.7, 3.8	3.0, 5.5	3.8, 5.9						
C(113)	3.8, 8.0	8.0, 19.0	2.8, 9.0						
C(114)	1.1, 2.8	3.0, 5.2	1.3, 4.8						
C(115)	0.98, 2.1	2.7, 5.0	0.8, 2.2						
J(3)	0.9, 2.8	2.9, 5.2	2.2, 4.9						
J(5)	0.7, 1.6	1.0, 1.8	0.9, 1.5						
C(117)	1.8, 2.9	0.9, 1.7	0.89, 1.5						
C(118)	0.64, 1.4	2.4, 5.0	0.94, 1.5						
C(119)	4.0, 7.0	7.8, 12.0	7.0, 13.0						
C(120)	3.5, 6.0	5.7, 11.0	2.6, 5.2						
C(121)	2.5, 5.3	6.0, 11.0	5.1, 12.0						
K	3.5, 6.2	3.5, 6.0	6.0, 13.0						
C(122)	1.7, 4.8	1.5, 4.7	3.7, 10.0						

15

 \simeq

		Table II:		IC ₅₀ , IC ₉₀ (μΜ)	(µМ)				
Example	HCT116	U2-0S	Saos-2	coro-	M14	RXF.	RXF. MCF-7 MDA- SW-480	MDA-	SW-480
Compound				205	melanoma	393		MB-468	
(9)f	0.26, 0.6	0.51, 1.3	0.51, 1.3 0.47, 0.77					·	
C(123)	2.7, 7.0	7.1, 12.0	2.9, 5.7						
C(124)	0.54, 1.6	1.3, 2.5	0.98, 1.6						
C(125)	0.62, 1.8	1.2, 2.3	0.9, 1.5						
L	>12.5								
M	>25								
C(126)	0.6, 1.4								

pRb Immunoblotting:

The ability of compounds to inhibit phosphorylation of the retinoblastoma protein (pRb) was assessed by western blot analysis. An anti-Rb antibody was used to measure the conversion of hyper-phosphorylated pRb to hypo-phosphorylated pRb. An anti-phospho-Rb (ser780) antibody was used to specifically measure dephosphorylation at serine 780, a site that has previously been shown to be phosphorylated by CDK4/cyclin D. Inhibition of pRb phosphorylation is indicated by a "+" in Table III below, and failure to inhibit pRb phosphorylation is indicated by a "-" in the table.

Human colon tumor cells (HCT-116 cells; 5x10⁶) were plated on 100 mM dishes and allowed to grow overnight. Five micromolar of each compound was added for 12 hours. The cells were then collected and centrifuged. The cell pellets were lysed by the addition of 100 μL lysis buffer (50 mM HEPES (pH 7.0), 250 mM NaCl, 5 mM ethylenediaminetetraacetic acid, 0.1% Nonidet P-40, 1 mM dithiothreitol, 2 mM sodium pyrophosphate, 1 mM sodium orthovanadate, 1 μg/ml aprotonin, 1 μg/ml leupeptin, 50 μg/ml phenylmethylsulfonyl fluoride). Forty micrograms of protein were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) on a 6% gel. The proteins were transferred to nitrocellulose and blocked with 5% blocking buffer in Tris-buffered saline overnight. The anti-Rb antibody (Pharmingen), the anti-phospho-Rb (Ser 780) antibody (MBL), and secondary antibody were incubated for 1 hour at room temperature followed by three wash steps in 0.01% Tween–20 in Tris-buffered saline. The Rb protein was detected using chemiluminescence according to the manufacturer (Amersham).

20

15

5

10

Table III: Inhibition of pRb Phosphorylation

Example	Inhibits	Inhibits
Compound	pRb	pRb
	phosphory	(ser 780)
	l-ation	phosphoryl
		-ation
C(85)	+	+
J(2)	+	+
C(80)	+	+
C(48)	+	+
H(1)	+	+
C(50)	+	+
C(87)	+	+
C(73)	+	+
C(81)	+	+
C(94)	+	+
F	-	-
C(71)	+	+

The examples above illustrate compounds according to Formula I and assays that may readily be performed to determine their activity levels against the various CDK/cyclin complexes. It will be apparent that such assays or other suitable assays known in the art may be used to select an inhibitor having a desired level of activity against a selected target.

While the invention has been illustrated by reference to specific and preferred embodiments, those skilled in the art will recognize that variations and modifications may be made through routine experimentation and practice of the invention. For example, those of ordinary skill in the art will recognize that variations or substitutions to the compounds of Formula I may be made without adversely affecting in a significant manner their efficacy in the pharmaceutical compositions. Thus, the invention is intended not to be limited by the foregoing description, but to be defined by the appended claims and their equivalents.

What is claimed is:

5

15

20

25

1. A compound of the Formula I:

$$R^1$$
 N
 S
 R^2
 (I)

wherein:

R¹ is a substituted or unsubstituted group selected from: C₁₋₆-alkyl; C₁₋₆-alkenyl; C₁₋₆-alkynyl; C₁₋₆-alcohol; carbocyclic or heterocyclic, monocyclic or fused or nonfused polycyclic, cycloalkyl; carbocyclic or heterocyclic, monocyclic or fused or nonfused polycyclic, aryl; carbonyl; ether; (C₁₋₆-alkyl)-carbonyl; (C₁₋₆-alkyl)-aryl; (C₁₋₆-alkyl)-cycloalkyl; (C₁₋₆-alkyl)-(C₁₋₆-alkoxyl); aryl-(C₁₋₆-alkoxyl); thioether; thiol; and sulfonyl; wherein when R¹ is substituted, each substituent independently is a halogen; haloalkyl; C₁₋₆-alkyl; C₁₋₆-alkenyl; C₁₋₆-alkynyl; hydroxyl; C₁₋₆-alkoxyl; amino; nitro; thiol; thioether; imine; cyano; amido; phosphonato; phosphine; carboxyl; thiocarbonyl; sulfonyl; sulfonamide; ketone; aldehyde; ester; oxygen; carbocyclic or heterocyclic, monocyclic or fused or non-fused polycyclic, cycloalkyl; or carbocyclic or heterocyclic, monocyclic or fused or non-fused polycyclic, aryl; and

R² is a carbocyclic or heterocyclic, monocyclic or fused or non-fused polycyclic, ring structure having a substituent at the position adjacent to the point of attachment, which ring structure is optionally further substituted, where each substituent of R² independently is a halogen; haloalkyl; C₁₋₆-alkyl; C₁₋₆-alkenyl; C₁₋₆-alkynyl; hydroxyl; C₁₋₆-alkoxyl; amino; nitro; thiol; thioether; imine; cyano; amido; phosphonato; phosphine; carboxyl; thiocarbonyl; sulfonyl; sulfonamide; ketone; aldehyde; ester; oxygen; carbocyclic or heterocyclic, monocyclic or fused or non-fused polycyclic, cycloalkyl; or carbocyclic or heterocyclic, monocyclic or fused or non-fused polycyclic, aryl;

or a pharmaceutically acceptable salt of a compound of the Formula I, or a prodrug or pharmaceutically active metabolite of a compound of the Formula I or pharmaceutically acceptable salt thereof.

2. A compound, pharmaceutically acceptable salt, prodrug, or pharmaceutically active metabolite thereof according to claim 1, wherein: when R¹ is substituted, each substituent independently is a halogen, haloalkyl, C₁₋₆-alkyl, C₁₋₆-alkenyl, C₁₋₆-alkynyl, hydroxyl, oxygen, C₁₋₆-alkoxyl, amino, nitro, thiol, thioether, imine, cyano, amido, phosphonato, phosphine,

30 162

BNSDOCID: <WO___9921845A2_I_>

carboxyl, thiocarbonyl, sulfonyl, sulfonamide, ketone, aldehyde, or ester; and each substituent of R² independently is a halogen, haloalkyl, C₁₋₆-alkyl, C₁₋₆-alkenyl, C₁₋₆-alkynyl, hydroxyl, C₁₋₆-alkoxyl, amino, nitro, thiol, thioether, imine, cyano, amido, phosphonato, phosphine, carboxyl, thiocarbonyl, sulfonyl, sulfonamide, ketone, aldehyde, or ester.

- 3. A compound, pharmaceutically acceptable salt, prodrug, or active metabolite according to claim 1, wherein R¹ is a substituted phenyl group.
- 4. A compound, pharmaceutically acceptable salt, prodrug, or active metabolite according to claim 1, wherein R¹ is phenyl substituted with an alkylamine or pyridine group.
- 5. A compound, pharmaceutically acceptable salt, prodrug, or active metabolite according to claim 1, wherein R¹ is selected from the group consisting of:

6. A compound, pharmaceutically acceptable salt, prodrug, or active metabolite according to claim 1, wherein R¹ is phenyl substituted by optionally substituted carbonyl or sulfonamide.

7. A compound, pharmaceutically acceptable salt, prodrug, or active metabolite according to claim 1, wherein R¹ is selected from the group consisting of:

where R³ is selected from the group consisting of C₁-C₆ alkyl, C₁-C₆ alkoxy, aryl, aryloxy, and amine.

- 8. A compound, pharmaceutically acceptable salt, prodrug or active metabolite according to claim 1, wherein R² is ortho-substituted phenyl or thienyl.
 - 9. A compound, pharmaceutically acceptable salt, prodrug or active metabolite according to claim 9, wherein R² is o-halophenyl or o-dihalophenyl.
 - 10. A compound, pharmaceutically acceptable salt, prodrug or active metabolite according to claim 10, wherein R^2 is o-difluorophenyl.
 - 11. A compound according to claim 1 selected from the group consisting of:

15

$$H_{3}C-N$$
 $H_{3}C-N$
 and pharmaceutically acceptable salts, prodrugs, and active metabolites thereof.

12. A compound according to claim 1 selected from the group consisting of:

1

5

1

$$H_2N$$
 H_2N
 H_2N
 H_2N
 H_3N
 H

and pharmaceutically acceptable salts, prodrugs, and active metabolites thereof.

13. A compound selected from the group consisting of:

Į,

10

$$H_{3}C_{N}$$
 $H_{3}C_{N}$
 or a pharmaceutically acceptable salt, prodrug, or active metabolite of said compound.

- 14. A pharmaceutical composition comprising:
- 20 (a) an amount of a cell-cycle control agent effective to inhibit CDK4 or a CDK4/cyclin complex, said cell-cycle control agent being selected from the group consisting of:
 - (i) a compound of the Formula I:

$$R^1$$
 N S R^2 (I)

wherein:

 R^{1} is a substituted or unsubstituted group selected from: C_{1-6} -alkyl; C_{1-6} -alkenyl; C_{1-6} -alkoxyl; C_{1-6} -alcohol;

30

1

5

10

15

20

25

carbocyclic or heterocyclic, monocyclic or fused or non-fused polycyclic, cycloalkyl; carbocyclic or heterocyclic, monocyclic or fused or non-fused polycyclic, aryl; carbonyl; ether; (C₁₋₆-alkyl)-carbonyl; (C₁₋₆-alkyl)-aryl; (C₁₋₆-alkyl)-cycloalkyl; (C₁₋₆-alkyl)-(C₁₋₆-alkoxyl); aryl-(C₁₋₆-alkoxyl); thioether; thiol; and sulfonyl; wherein when R¹ is substituted, each substituent independently is a halogen; haloalkyl; C₁₋₆-alkyl; C₁₋₆-alkenyl; C₁₋₆-alkynyl; hydroxyl; C₁₋₆-alkoxyl; amino; nitro; thiol; thioether; imine; cyano; amido; phosphonato; phosphine; carboxyl; thiocarbonyl; sulfonyl; sulfonamide; ketone; aldehyde; ester; oxygen; carbocyclic or heterocyclic, monocyclic or fused or non-fused polycyclic, cycloalkyl; or carbocyclic or heterocyclic, monocyclic or fused or non-fused polycyclic, aryl; and

R² is a carbocyclic or heterocyclic, monocyclic or fused or non-fused polycyclic, ring structure having a substituent at the position adjacent to the point of attachment, which ring structure is optionally further substituted, where each substituent of R² independently is a halogen; haloalkyl; C₁₋₆-alkyl; C₁₋₆-alkenyl; C₁₋₆-alkynyl; hydroxyl; C₁₋₆-alkoxyl; amino; nitro; thiol; thioether; imine; cyano; amido; phosphonato; phosphine; carboxyl; thiocarbonyl; sulfonyl; sulfonamide; ketone; aldehyde; ester; oxygen; carbocyclic or heterocyclic, monocyclic or fused or non-fused polycyclic, cycloalkyl; or carbocyclic or heterocyclic, monocyclic or fused or non-fused polycyclic, aryl;

- (ii) a pharmaceutically acceptable salt of a compound of the Formula I; and
- (iii) a prodrug or pharmaceutically active metabolite of a compound of the Formula I or a pharmaceutically acceptable salt thereof; and
- (b) a pharmaceutically acceptable carrier.
- 15. A method of treating a disease or disorder mediated by inhibition of CDK4 or a CDK4/cyclin complex, comprising administering to a subject in need of such treatment a cell-cycle control agent selected from the group consisting of:

compounds of the Formula I:

wherein:

1

5

10

15

20

25

 R^1 is a substituted or unsubstituted group selected from: C_{1-6} -alkyl; C_{1-6} -alkynyl; C_{1-6} -alkoxyl; C_{1-6} -alcohol; carbocyclic or heterocyclic, monocyclic or fused or non-fused polycyclic, cycloalkyl; carbocyclic or heterocyclic, monocyclic or fused or non-fused polycyclic, aryl; carbonyl; ether; $(C_{1-6}$ -alkyl)-carbonyl; $(C_{1-6}$ -alkyl)-aryl; $(C_{1-6}$ -alkyl)-cycloalkyl; $(C_{1-6}$ -alkyl)- $(C_{1-6}$ -alkoxyl); aryl- $(C_{1-6}$ -alkoxyl); thioether; thiol; and sulfonyl; wherein when R^1 is substituted, each substituent independently is a halogen; haloalkyl; C_{1-6} -alkyl; C_{1-6} -alkynyl; hydroxyl; oxygen; C_{1-6} -alkoxyl; amino; nitro; thiol; thioether; imine; cyano; amido; phosphonato; phosphine; carboxyl; thiocarbonyl; sulfonyl; sulfonamide; ketone; aldehyde; or ester; and

R² is a carbocyclic or heterocyclic, monocyclic or fused or non-fused polycyclic, ring structure having a substituent at the position adjacent the point of attachment, which ring structure is optionally further substituted, where each substituent of R² independently is a halogen; haloalkyl; C₁₋₆-alkyl; C₁₋₆-alkenyl; C₁₋₆-alkynyl; hydroxyl; C₁₋₆-alkoxyl; amino; nitro; thiol; thioether; imine; cyano; amido; phosphonato; phosphine; carboxyl; thiocarbonyl; sulfonyl; sulfonamide; ketone; aldehyde; or ester;

pharmaceutically acceptable salts of compounds of the Formula I; and prodrugs and pharmaceutically active metabolites of compounds of the Formula I and their pharmaceutically acceptable salts.

16. A compound of the Formula I:

$$R^1$$
 N S R^2 (I)

wherein:

R¹ is selected from:

R² is a substituted or unsubstituted: carbocyclic or heterocyclic, monocyclic or fused or non-fused polycyclic, ring structure; where each optional substituent for R² is independently a halogen; oxygen; haloalkyl; C₁₋₆-alkyl; C₁₋₆-alkenyl; C₁₋₆-alkynyl; hydroxyl; C₁₋₆-alkoxyl; carbocyclic or heterocyclic, monocyclic or fused or non-fused polycyclic, cycloalkyl; carbocyclic or heterocyclic, monocyclic or fused or non-fused polycyclic aryl; amino; nitro; thiol; thioether; imine; cyano; amido; phosphonato; phosphine; carboxyl; thiocarbonyl; sulfonyl; sulfonamide; ketone; aldehyde; or ester; or a pharmaceutically acceptable salt of a compound of the Formula I, or a prodrug or pharmaceutically active metabolite of a compound of the Formula I or pharmaceutically acceptable salt thereof.

- 17. A pharmaceutical composition comprising:
- (a) an effective amount for inhibiting a CDK or a CDK/cyclin complex of a cell-cycle control agent selected from:
 - (i) compounds of the Formula I:

wherein:

R¹ is selected from:

$$H_2N-S \longrightarrow \{ H_1N-S \longrightarrow \{-$$

169

25

10

$$N-S$$
 $N-S$ $N-S$

R² is a substituted or unsubstituted: carbocyclic or heterocyclic, monocyclic or fused or non-fused polycyclic, ring structure; where each optional substituent for R² is independently a halogen; oxygen; haloalkyl; C₁₋₆-alkyl; C₁₋₆-alkyl; C₁₋₆-alkoxyl; carbocyclic or heterocyclic, monocyclic or fused or non-fused polycyclic, cycloalkyl; carbocyclic or heterocyclic, monocyclic or fused or non-fused polycyclic, aryl; amino; nitro; thiol; thioether; imine; cyano; amido; phosphonato; phosphine; carboxyl; thiocarbonyl; sulfonyl; sulfonamide; ketone; aldehyde; or ester;

10

- (ii) pharmaceutically acceptable salts of compounds of the Formula I; and
- (iii) prodrugs and pharmaceutically active metabolites of compounds of the Formula I or pharmaceutically acceptable salts thereof; and
- 15
- (b) a pharmaceutically acceptable carrier.

20

25

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C07D 277/42, A61K 31/425, C07D 417/12, A61K 31/44, C07D 277/56, 417/06, 417/14, A61K 31/47, 31/50

A3

(11) International Publication Number:

WO 99/21845

(43) International Publication Date:

6 May 1999 (06.05.99)

(21) International Application Number:

PCT/US98/22809

(22) International Filing Date:

27 October 1998 (27,10,98)

(30) Priority Data:

60/063,634

27 October 1997 (27.10.97)

92129 (US). (74) Agents: EVANS, Linda, S. et al.; Agouron Pharmaceuticals, Inc., 10350 North Torrey Pines Road, La Jolla, CA 92037

Diego, CA 92122 (US). XIAO, Wei [CN/US]; 4043 Carmel

Springs Way, San Diego, CA 92130 (US). YANG, Yi [CN/US]; 8976 Gainsborough Avenue, San Diego, CA

60/063,666

28 October 1997 (28.10.97)

US US

(63) Related by Continuation (CON) or Continuation-in-Part (CIP) to Earlier Application

US Filed on

Not furnished (CIP) Not furnished

(71) Applicant (for all designated States except US): AGOURON PHARMACEUTICALS, INC. [US/US]; 10350 North Torrey Pines Road, La Jolla, CA 92037 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): CHONG, Wesley, K., M. [US/US]; 134 Honeycomb Court, Encinitas, CA 92024 (US). CHU, Shao, Song [CN/US]; 1604 Jerrilynn Place, Encinitas, CA 92024 (US). DUVADIE, Rohit, R. INP/US1: 10320 Maya Linda Road #A-316, San Diego, CA 92024 (US). LI, Lin [CN/US]; 3950 Mahaila Avenue #J-36, San (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IS, IP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR,

IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF,

CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(88) Date of publication of the international search report: 19 August 1999 (19.08.99)

(54) Title: 4-AMINOTHIAZOLE DERIVATIVES, THEIR PREPARATION AND THEIR USE AS INHIBITORS OF CYCLIN-**DEPENDENT KINASES**

(57) Abstract

This invention is directed to aminothiazole compounds of formula (I) wherein R¹ is a substituted or unsubstituted group selected from: C_{1.6}-alkyl; C_{1.6}-alkenyl; C_{1.6}-alkynyl; C_{1.6}-alkoxyl; C_{1.6}-alcohol; carbocyclic or heterocyclic, monocyclic or fused or non-fused polycyclic, cycloalkyl; carbocyclic or heterocyclic, monocyclic or fused or non-fused polycyclic, aryl; carbonyl; ether; (C1-6-alkyl)-carbonyl; (C1-6alkyl)-aryl; (C1.6-alkyl)-cycloalkyl; (C1.6-alkyl)-(C1.6-alkoxyl); aryl-(C1.6-alkoxyl); thioether; thiol; and sulfonyl; wherein when R1 is substituted, each substituent independently is a halogen; haloalkyl; C₁₋₆-alkyl; C₁₋₆-alkenyl; C₁₋₆-alkynyl; hydroxyl; C₁₋₆-alkoxyl; amino; nitro; thiol; thioether; imine; cyano; amido; phosphonato; phosphine; carboxyl; thiocarbonyl; sulfonyl; sulfonamide; ketone; aldehyde; ester; oxygen; carbocyclic or heterocyclic, monocyclic or fused or non-fused polycyclic, cycloalkyl; or carbocyclic or heterocyclic, monocyclic or fused or non-fused polycyclic, aryl; and R² is a carbocyclic or heterocyclic, monocyclic or fused or non-fused polycyclic, ring structure having a substituent at the position adjacent to the point of attachment, which ring structure is optionally further substituted, where each substituent of R² independently is a halogen; haloalkyl; C₁₋₆-alkyl; C₁₋₆-alkenyl; C₁₋₆-alkynyl; hydroxyl; C₁₋₆-alkoxyl; amino; nitro; thiol; thioether; imine: cyano; amido; phosphonato; phosphine; carboxyl; thiocarbonyl; sulfonyl; sulfonamide; ketone; aldehyde; ester; oxygen; carbocyclic or heterocyclic, monocyclic or fused or non-fused polycyclic, cycloalkyl; or carbocyclic or heterocyclic, monocyclic or fused or non-fused polycyclic. aryl; or a pharmaceutically acceptable salt of a compound of formula (I), or a prodrug or pharmaceutically active metabolite of a compound of formula (I) or pharmaceutically acceptable salt thereof, for inhibiting cyclin-dependent kinases (CDKs), such as CDK1, CDK2, CDK4, and CDK6. The invention is also directed to the therapeutic or prophylactic use of pharmaceutical compositions containing such compounds and to methods of treating malignancies and other disorders by administering effective amounts of such compounds.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand	2,,	Zimbabwe
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

INTERNATIONAL SEARCH REPORT

Internacional Application No
PCT/US 98/22809

			PCI	/US 98/22809
A CLASSI IPC 6		17/12 A6 1/47 A6		C07D277/56
According to	o International Patent Classification (IPC) or to both national clas	sification and IPC		
B. FIELDS	SEARCHED			
Minimum do IPC 6	ocumentation searched (classification system followed by classif CO7D	fication symbols)		
Documenta	tion searched other than minimum documentation to the extent t	hat such documents	are included in th	ne fields searched
Electronic d	lata base consulted during the international search (name of date	a base and, where	practical, search to	erms used)
		•		
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT			
Category *	Citation of document, with indication, where appropriate, of the	e relevant passages	······	Relevant to claim No.
Y	WO 92 20642 A (RHONE-POULENC R INTERNATIONAL (HOLDINGS) INC.) 26 November 1992 see claims 1-4,7			1-14,16, 17
Y	WO 95 15758 A (RHONE-POULENC R PHARMACEUTICALS INC.) 15 June see claims 1-3,6,7			1-14,16, 17
Υ	WO 96 39145 A (RHONE-POULENC R PHARMACEUTICALS INC.) 12 Decem see claims 1,2,15			1-14,16, 17
P,X	WO 98 33798 A (WARNER LAMBERT 6 August 1998 cited in the application see claims 1-3,9,20,21,26-36	COMPANY)		1-4,14, 17
		-/		
X Furt	ther documents are listed in the continuation of box C.	X Pate	nt family members	are listed in annex.
A docum	ategories of cited documents : ent defining the general state of the art which is not dered to be of particular relevance	or priority cited to u	y date and not in o inderstand the pri	ter the international filing date conflict with the application but nciple or theory underlying the
"E" earlier of filing of "L" docume	document but published on or after the international	cannot b involve a	of particular relev e considered nove in inventive step w	rance; the claimed invention of cr cannot be considered to when the document is taken alone
oitatio "O" docum	i is case to establish the publication date or another on or other special reason (as specified) tentreferring to an oral disclosure, use, exhibition or means	cannot b documen ments, s	e considered to in it is combined with uch combination b	rence; the claimed invention volve an inventive step when the hone or more other such docu- being obvious to a person skilled
	ent published prior to the international filing date but than the priority date claimed	in the ari "ä" document	i. : member of the sa	une patent family
	actual completion of the international search 10 June 1999	Date of m	railing of the intern	sational search report
Name and	mailing address of the ISA	Authorize		
	European Petent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Ha	rtrampf,	G

INTERNATIONAL SEARCH REPORT

International Application No PCT/US 98/22809

		FC1/03 30/22003
C.(Continua	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	GEWALD K. ET AL.: "4-Amino-thiazole" JOURNAL FÜR PRAKTISCHE CHEMIE, vol. 35, no. 4, 1967, pages 97-104, XP002095703 cited in the application see compounds VIa and VIb	1-13,16
A	RAJASEKHARAN K.N. ET AL.: "Studies on the synthesis of 5-acyl-2,4-diaminothiazoles from amidinothioureas" SYNTHESIS, vol. 5, 1986, pages 353-355, XP002095704 see compounds 4a-4g and 4i-4m	1-13,16
A	NESTEROV V.N. ET AL.: "Cyclization of nitriles. XXIV. Reactions of cyanamide derivatives of thiocarbamic acids with cyanothioacetamide. Crystal structure of 2-allylamino-4-amino-5-benzoyl-1,3-thiazole" JOURNAL OF ORGANIC CHEMISTRY, USSR, vol. 24, no. 4, April 1988, pages 762-770, XP002095705 see compounds VI, pages 765 and 769	1-13,16
A	JENARDANAN G.C. ET AL.: "1-(N-Arylthiocarbamoyl)amidino-3,5-dimeth ylpyrazoles - preparation and use in heterocycle synthesis" SYNTHETIC COMMUNICATIONS, vol. 27, no. 19, 1997, pages 3457-3462, XP002095706 see compounds 5a - 5e, page 3458	1-13,16
P,A	BINU R. ET AL.: "Synthesis and cyclization of 1-(N-nitroamidino)thioureas to 2,4-diaminothiazoles" ORGANIC PREPARATIONS AND PROCEDURES INTERNATIONAL, vol. 30, no. 1, 1998, pages 93-96, XP002095707 see compounds 4a - 4h, page 94	1-13,16

International application No. PCT/US 98/22809

INTERNATIONAL SEARCH REPORT

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This Inte	ernational Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X	Claims Nos.: 15 because they relate to subject matter not required to be searched by this Authority, namely:
	Rule 39.1(iv) PCT - Method for treatment of the human or animal body by therapy
2. X	Claims Nos.: 1-14,16,17 because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically: see FURTHER INFORMATION sheet PCT/ISA/210
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)
This Inte	ernational Searching Authority found multiple inventions in this international application, as follows:
	see additional sheet
1. X	As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4.	No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remar	The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claims: 1-12, 13 (partially), 14

Compounds of formula (I) wherein R2 is a carbocyclic or heterocyclic, monocyclic or fused or non-fused polycyclic, ring structure having a substituent at the position adjacent to the point of attachment and pharmaceutical compositions containing them

2. Claims: 13 (partially), 16, 17

Compounds of formula (I) wherein R1 is a certain benzenesulfonamide group and R2 is a substituted or unsubstituted carbocyclic or heterocyclic, monocyclic or fused or non-fused polycyclic, ring structure and pharmaceutical compositions containing them

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Claims Nos.: 1-14,16,17

The claims contain the expression "pharmaceutically active metabolite" which is considered to be a functional feature and renders the scope of the claims ambiguous. Due to such a definition the compounds of formula (I) encompass too broad a range of different chemical groups, not supported by any examples in the descriptive part of the application. Thus claims 1 to 14, 16 and 17 are considered to be insufficiently substantiated by the description, cf. Article 6 PCT. The vast number of theoretically conceivable compounds resulting from claims drafted in such an ambiguous way precludes a comprehensive search. Thus the search should not be considered to cover any pharmaceutically active metabolites of the compounds of formula (I).

A further ambiguity arises since some of the examples, see e.g. compounds A(1) - A(4), A(8), A(12), B, C(1) - C(3), C(6), C(18), C(30), C(31), D(1), D(2), D(4), I(6) - I(17) and I(19) - I(23) are obviously not covered by the present claims. Although explicitly made and tested for inhibitory activity of cyclin-dependent kinases, they do neither contain the mandatory ortho-substitution of radical R2 (see claim 1 to 12, 13 and 14), nor the benzenesulfonamide moiety for radical R1 (see claims 13, 16 and 17) which otherwise could be considered to be the distinguishing feature in comparison to the prior art.

INTERNATIONAL SEARCH REPORT

Information on patent family members

Internacional Application No
PCT/US 98/22809

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
WO 9220642	Α	26-11-1992	AT	159009	T	15-10-1997
			AU	658646	В	27-04-1995
			AU	1993492		30-12-1992
			CA	2102780	A	11-11-1992
			DE	69222637	D	13-11-1997
			DE	69222637	T	26-02-1998
			DK	584222	Ť	23-02-1998
			EP		À	02-03-1994
			ES		T	16-12-1997
			GR	3024955	Ť	30-01-1998
			. JP	6507643	Ť	01-09-1994
			- MX	9202181		01-05-1993
			US		Ä	25-04-1995
			ÜS	5480883		02-01-1996
•			ÜS		A	20-01-1998
			ÜS	5795889	A	18-08-1998
			US	5646153	A	08-07-1997
			US	5721237		24-02-1998
			US	5714493	A	03-02-1998
W0 9515758	Α	15-06-1995	US	5480883	Α	02-01-1996
	• •	20 00 2000	ÜS	5710158		20-01-1998
			AU		Ä	27-06-1995
			EP	0871448		21-10-1998
			SG	54172		16-11-1998
			US	5795889	Â	18-08-1998
			ÜS		Ä	08-07-1997
			- US	5721237		24-02-1998
			US	5714493	A	03-02-1998
WO 9639145	Α	12-12-1996	US	5721237	Α	24-02-1998
			AU	696456		10-09-1998
			AU	6104496	Α	24-12-1996
			CA	2223016	Α	12-12-1996
			CZ	9703503	Α	18-03-1998
			EP	0831831		01-04-1998
			SI	9620092		31-08-1998
				166397		03-06-1998
			SK	10033/	^	03-00-1990