Classification of neighbourhoods of leaves of singular foliations

joint work with Camille Laurent-Gengoux (Université de Lorraine)

Simon-Raphael Fischer

國家理論科學研究中心 National Center for Theoretical Sciences (National Taiwan University)

Singular Foliations

Singular Foliations:

- Gauge Theory
- Poisson Geometry (Singular foliation of symplectic leaves)
- Lie groupoids and algebroids
- Dirac structures
- Generalised complex manifolds
- Non-commutative geometry
- ...

Singular Foliations 00000000000000000

Definition (Smooth singular foliation)

A smooth singular foliation \mathcal{F} on a smooth manifold is a subspace of $\mathfrak{X}_{c}(M)$ so that

- it is involutive.
- it is stable under $C^{\infty}(M)$ -multiplication,
- it is locally finitely generated.

Definition (Smooth singular foliation)

A smooth singular foliation \mathcal{F} on a smooth manifold is a subspace of $\mathfrak{X}_{c}(M)$ so that

- it is **involutive**, *i.e.* $[\mathcal{F}, \mathcal{F}] \subset \mathcal{F}$,
- it is stable under $C^{\infty}(M)$ -multiplication,
- it is locally finitely generated.

Singular Foliations

Definition (Smooth singular foliation)

A smooth singular foliation \mathcal{F} on a smooth manifold is a subspace of $\mathfrak{X}_{c}(M)$ so that

- it is **involutive**, *i.e.* $[\mathcal{F}, \mathcal{F}] \subset \mathcal{F}$,
- it is stable under $C^{\infty}(M)$ -multiplication, i.e. $fX \in \mathcal{F}$ for all $f \in C^{\infty}(M)$ and $X \in \mathcal{F}$,
- it is locally finitely generated.

Definition (Smooth singular foliation)

A smooth singular foliation \mathscr{F} on a smooth manifold is a subspace of $\mathfrak{X}_c(M)$ so that

- it is **involutive**, *i.e.* $[\mathcal{F}, \mathcal{F}] \subset \mathcal{F}$,
- it is stable under $C^{\infty}(M)$ -multiplication, i.e. $fX \in \mathcal{F}$ for all $f \in C^{\infty}(M)$ and $X \in \mathcal{F}$,
- it is **locally finitely generated**, i.e. around each $p \in M$ there is an open neighbourhood U and a finite family $(X^i)_i^r$ $(X^i \in \mathcal{F})$ such that for all $X \in \mathcal{F}$ there are $f_i \in C^{\infty}(M)$ satisfying on U.

$$X=\sum_i f_i X^i.$$

Definition

Remarks (Leaves)

Following the flows in \mathcal{F} , this gives rise to a partition of connected immersed submanifolds in M.

Theorem $(\mathcal{F}$ -connections)

There is a connection on the normal bundle of a leaf L:

- Horizontal vector fields are in F.
- Parallel transport PT_{γ} has values in $Sym(\tau_{I}, \tau_{I'})$.
- For a contractible loop γ_0 at I: PT_{γ_0} values in $Inner(\tau_I)$.

Singular Foliations

000000000000000

Example of a transverse foliation τ :

Remarks

- Inner(τ_I) maps each circle to itself
- Sym (τ_l) allows to exchange circles
- Both preserve τ_l and fix the origin

Remarks (F-connection)

For $\phi \in \operatorname{Sym}(\tau_l)$ we have an induced parallel transport

$$\mathsf{PT}^{\mathsf{Sym}}_{\gamma}(\phi) \coloneqq \mathsf{PT}_{\gamma} \circ \phi \circ \mathsf{PT}_{\gamma}^{-1}.$$

Then, on the normal bundle $\pi \colon \mathcal{T} \to L$,

$$\mathsf{PT}_{\gamma}(\phi \cdot p) = \mathsf{PT}^{\mathsf{Sym}}_{\gamma}(\phi) \cdot \mathsf{PT}_{\gamma}(p)$$
 $\mathsf{PT}_{\gamma_0}(p) = \varphi \cdot p$

for all $p \in \mathcal{T}_I$, $\phi \in \text{Sym}(\tau_I)$, and for some $\varphi \in \text{Inner}(\tau_I)$.

Remarks (Sym-connection)

For $\phi \in \operatorname{Sym}(\tau_I)$ we have an induced parallel transport

$$\mathsf{PT}^{\mathsf{Sym}}_{\gamma}(\phi) \coloneqq \mathsf{PT}_{\gamma} \circ \phi \circ \mathsf{PT}_{\gamma}^{-1}.$$

Then

$$\begin{split} \mathsf{PT}_{\gamma}(\phi \circ \phi') &= \mathsf{PT}_{\gamma}^{\mathsf{Sym}}(\phi) \circ \mathsf{PT}_{\gamma}^{\mathsf{Sym}}(\phi') \\ \mathsf{PT}_{\gamma_0}^{\mathsf{Sym}}(\phi) &= \varphi \circ \phi \circ \varphi^{-1} \end{split}$$

for all $\phi, \phi' \in \text{Sym}(\tau_I)$, and for some $\varphi \in \text{Inner}(\tau_I)$.

Idea

Idea

Generators of \mathcal{F} given by:

$$\mathbb{H}(X) + \overline{\nu},$$

where $X \in \mathfrak{X}(L)$, $\mathbb{H}(X)$ its projectable horizontal lift, $\nu \in \Gamma(\operatorname{inner}(\tau))$ and $\overline{\nu}$ its fundamental vector field.

Idea

Fix I and given τ_I : Reconstruct \mathscr{F} .

$$[\mathbb{H}(X) + \overline{\nu}, \mathbb{H}(X') + \overline{\mu}] = \mathbb{H}([X, X']) + \dots$$

$$= \underbrace{[\mathbb{H}(X), \mathbb{H}(X')]}_{\text{\sim curvature}} + \underbrace{[\mathbb{H}(X), \overline{\mu}] - [\mathbb{H}(X'), \overline{\nu}]}_{\text{\sim connection}} + \overline{[\nu, \mu]}$$

Summary

Remarks

Connections

- preserve group bundle action,
- and their curvatures follow corresponding orbits.

The pair of connections may **not** be unique for a given \mathcal{F} !

Multiplicative Yang-Mills connections

Curved Yang-Mills gauge theories:

Classical Curved Lie group G Lie group bundle \mathcal{E}

Remarks (Why a "curved theory"?)

Usually, the field strength F is given by (abelian, for simplicity)

$$F := \mathrm{d}A = \mathrm{d}^{\nabla^0}A.$$

 \leadsto We will use a general connection ∇ instead of ∇^0 , and ∇ may not be flat.

Curved Yang-Mills gauge theories:

Classical Curved
Lie group G Lie group bundle &

$$G \longrightarrow \mathscr{G}$$
 \downarrow
 I

Remarks (Why a "curved theory"?)

Usually, the field strength F is given by (abelian, for simplicity)

$$F := \mathrm{d}A = \mathrm{d}^{\nabla^0}A.$$

 \leadsto We will use a general connection ∇ instead of ∇^0 , and ∇ may not be flat.

Definition (LGB actions)

$$\mathcal{G} \xrightarrow{\downarrow \pi_{\mathcal{G}}} \mathcal{F} \xrightarrow{\pi} \mathcal{L}$$

A **right-action of** \mathscr{G} **on** \mathscr{T} is a smooth map

 $\mathcal{T}*\mathcal{G}\coloneqq\mathcal{T}_{\pi}\times_{\pi_{\mathcal{G}}}\mathcal{G}\to\mathcal{T}$, $(p,g)\mapsto p\cdot g$, satisfying the following properties:

$$\pi(p \cdot g) = \pi(p), \tag{1}$$

$$(p \cdot g) \cdot h = p \cdot (gh), \tag{2}$$

$$p \cdot e_{\pi(p)} = p \tag{3}$$

for all $p \in \mathcal{T}$ and $g, h \in \mathcal{G}_{\pi(p)}$, where $e_{\pi(p)}$ is the neutral element of $\mathcal{G}_{\pi(p)}$.

Connections as parallel transport

Connection on \mathcal{T} : Idea

But:

$$r_g\colon \mathcal{T}_X o \mathcal{T}_X$$
 $\mathrm{D}_{\scriptscriptstyle D} r_g$ only defined on vertical structure

Connection on \mathcal{T} : Idea

But:

$$r_g\colon \mathcal{T}_{\mathsf{x}} o \mathcal{T}_{\mathsf{x}} \ \mathrm{D}_p r_g$$
 only defined on vertical structure

Connection on \mathcal{T} : Idea

Use
$$\sigma \in \Gamma(\mathscr{G})$$
: $r_{\sigma}(p) := p \cdot \sigma_{X}$

Singular Foliations

Connection on \mathcal{T} : Revisiting the classical setup

If \mathscr{G} is trivial, $\sigma \equiv g$ constant, and H a connection:

Connection on \mathcal{T} : Revisiting the classical setup

If $\mathcal G$ is trivial, $\sigma \equiv g$ constant, and H a connection:

Remarks (Integrated case)

Parallel transport $\mathsf{PT}^{\mathcal{T}}_{\gamma}$ in \mathcal{T} :

$$\mathsf{PT}_{\gamma}^{\mathscr{T}}(p\cdot g) = \mathsf{PT}_{\gamma}^{\mathscr{T}}(p)\cdot g$$

where $\gamma: I \rightarrow L$ is a base path

Singular Foliations

Connection on \mathcal{T} : General case

Remarks (Integrated case)

Ansatz: Introduce connection on \mathcal{G} ,

$$\mathsf{PT}_{\gamma}^{\mathscr{T}}(p \cdot g) = \mathsf{PT}_{\gamma}^{\mathscr{T}}(p) \cdot \mathsf{PT}_{\gamma}^{\mathscr{G}}(g).$$

- $0 \mathcal{G} \cong 1 \times G$
- 2 Equip \mathcal{G} with canonical flat connection

Singular Foliations

Connection on \mathcal{T} : General case

Remarks (Integrated case)

Ansatz: Introduce connection on \mathcal{G} ,

$$\mathsf{PT}_{\gamma}^{\mathscr{T}}(p \cdot g) = \mathsf{PT}_{\gamma}^{\mathscr{T}}(p) \cdot \mathsf{PT}_{\gamma}^{\mathscr{G}}(g).$$

Back to the roots

- $\mathfrak{G} \cong I \times G$
- 2 Equip \mathcal{G} with canonical flat connection

Definition (Ehresmann/Yang-Mills connection, [C. L.-G., S.-R. F.])

A surjective submersion $\pi\colon \mathcal{T}\to L$ so that one has a commuting diagram

Ehresmann connection:

$$\mathsf{PT}^{\mathscr{T}}_{\gamma}(p\cdot g) = \mathsf{PT}^{\mathscr{T}}_{\gamma}(p)\cdot \mathsf{PT}^{\mathscr{G}}_{\gamma}(g)$$

Yang-Mills connection: Additionally

$$\mathsf{PT}^{\mathscr{T}}_{\gamma_0}(p) = p \cdot \mathsf{g}_{\gamma_0}$$

for some $g_{\gamma_0} \in \mathcal{G}^0_{\pi(p)}$, where γ_0 is a contractible loop.

General notion of Ehresmann and Yang-Mills connections

Definition (Multiplicative YM connection, [S.-R. F.])

On $\mathcal G$ there is also the notion of multiplicative Yang-Mills connections, that is,

$$\mathsf{PT}_{\gamma}^{\mathscr{G}}(q \cdot g) = \mathsf{PT}_{\gamma}^{\mathscr{G}}(q) \cdot \mathsf{PT}_{\gamma}^{\mathscr{G}}(g), \ \mathsf{PT}_{\gamma_0}^{\mathscr{G}}(q) = g_{\gamma_0} \cdot q \cdot g_{\gamma_0}^{-1}$$

Remarks

Singular Foliations

On the Lie algebra bundle q we have a connection ∇ with

$$\nabla ([\mu, \nu]_{\mathcal{Q}}) = [\nabla \mu, \nu]_{\mathcal{Q}} + [\mu, \nabla \nu]_{\mathcal{Q}},$$

$$R_{\nabla} = \operatorname{ad} \circ \zeta.$$

Given a short exact sequence of algebroids

$$g \longleftrightarrow E \xrightarrow{\chi} TL$$

with splitting $\chi : TL \to E$, then

$$\nabla_X \nu = [\chi(X), \nu]_E,$$

$$\zeta(X, X') = [\chi(X), \chi(X')]_E - \chi([X, X']).$$

Remarks

On the Lie algebra bundle q we have a connection ∇ with

$$\nabla ([\mu, \nu]_{g}) = [\nabla \mu, \nu]_{g} + [\mu, \nabla \nu]_{g},$$

$$R_{\nabla} = \operatorname{ad} \circ \zeta.$$

Example

Given a short exact sequence of algebroids

$$g \longleftrightarrow E \xrightarrow{\chi} TL$$

with splitting $\chi \colon \mathrm{T}L \to E$, then

$$\nabla_X \nu = [\chi(X), \nu]_E,$$

$$\zeta(X, X') = [\chi(X), \chi(X')]_E - \chi([X, X']).$$

Theorem ([C. L.-G., S.-R. F.])

Given a multiplicative Yang-Mills connection on *G* and a Yang-Mills connection $\mathbb H$ on $\mathcal T$, then there is a natural foliation on \mathcal{T} generated by

$$\mathbb{H}(X) + \overline{\nu},$$

where $X \in \mathfrak{X}(L)$ and $\nu \in \Gamma(q)$.

We have

$$[\mathbb{H}(X), \overline{\nu}] = \overline{\nabla_X \nu},$$
$$[\mathbb{H}(X), \mathbb{H}(X')] = \mathbb{H}([X, X']) + \overline{\zeta(X, X')},$$

where $\zeta \in \Omega^2(L; q)$.

Given a multiplicative Yang-Mills connection on $\mathcal G$ and a Yang-Mills connection $\mathbb H$ on $\mathcal T$, then there is a natural foliation on $\mathcal T$ generated by

$$\mathbb{H}(X) + \overline{\nu},$$

where $X \in \mathfrak{X}(L)$ and $\nu \in \Gamma(g)$.

Proof.

We have

$$\begin{split} [\mathbb{H}(X), \overline{\nu}] &= \overline{\nabla_X \nu}, \\ [\mathbb{H}(X), \mathbb{H}(X')] &= \mathbb{H}([X, X']) + \overline{\zeta(X, X')}, \end{split}$$

where $\zeta \in \Omega^2(L; \mathcal{Q})$.

Fix a point $l \in L$ with transverse model (\mathbb{R}^d, τ_l) :

- ② P a principal G-bundle, equipped with an ordinary connection

Fix a point $l \in L$ with transverse model (\mathbb{R}^d, τ_l) :

- $\bullet G = \operatorname{Inn}(\tau_I)$
- $oldsymbol{Q}$ P a principal G-bundle, equipped with an ordinary connection
- $\mathfrak{G} := (P \times G) / G$, the inner group bundle

Fix a point $l \in L$ with transverse model (\mathbb{R}^d, τ_l) :

- $oldsymbol{Q}$ P a principal G-bundle, equipped with an ordinary connection
- $\mathfrak{F} \coloneqq (P \times G) / G, \text{ the inner group bundle}$
- ① $\mathcal{T} := \left(P \times \mathbb{R}^d\right) / G$, the normal bundle

Fix a point $l \in L$ with transverse model (\mathbb{R}^d, τ_l) :

- $oldsymbol{Q}$ P a principal G-bundle, equipped with an ordinary connection
- $\mathfrak{F} \coloneqq (P \times G) / G, \text{ the inner group bundle}$
- $\mathscr{T} := (P \times \mathbb{R}^d) / G$, the normal bundle

Remarks

- ullet Think of the induced connection on ${\mathcal T}$ as the ${\mathcal F}$ -connection.
- \mathcal{G} acts on \mathcal{T} (canonically from the left).

Fix a point $l \in L$ with transverse model (\mathbb{R}^d, τ_l) :

- P a principal G-bundle, equipped with an ordinary connection
- $\mathfrak{F} \coloneqq (P \times G) / G, \text{ the inner group bundle}$

Remarks

- Think of the induced connection on \mathcal{T} as the \mathcal{F} -connection.
- \mathscr{G} acts on \mathscr{T} (canonically from the left).

Proposition ([C. L.-G., S.-R. F.])

The associated connection on $\mathcal G$ is a multiplicative Yang-Mills connection and the one on $\mathcal T$ is a corresponding Yang-Mills connection.

Remarks

Thus, we have a singular foliation on \mathcal{T} , which, by construction, admits L as a leaf and τ_l as transverse data.

Proposition ([C. L.-G., S.-R. F.])

The reconstructed foliation is independent of the choice of connection on P.

Proof

- The adjoint bundle of P, $Ad(P) := (P \times \mathfrak{g})/G$, is the Lie algebra bundle of \mathscr{G}
- $\tau = \overline{\mathrm{Ad}(P)}$
- Difference of two connections on P has values in Ad(P)

Proposition ([C. L.-G., S.-R. F.])

The reconstructed foliation is independent of the choice of connection on P.

Proof.

- The adjoint bundle of P, $Ad(P) := (P \times \mathfrak{g})/G$, is the Lie algebra bundle of \mathscr{G}
- $\tau = \overline{\mathsf{Ad}(P)}$
- Difference of two connections on P has values in Ad(P)

Summary

Summary

Remarks ([C. L.-G., S.-R. F.])

In the simply connected case, the following are equivalent:

- ullet Singular foliations with leaf L and transverse model $\left(\mathbb{R}^d, au_I
 ight)$
- Principal Inner(τ_I)-bundles over L

Thank you!