$$f(x_{0} + h) = f(x_{0}) + \sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}}(x_{0})h^{i} + \frac{1}{2!} \sum_{\substack{i=1\\j=1}}^{n} \frac{\partial^{2} f}{\partial x^{i} \partial x^{j}}(x_{0})h^{i}h^{j} + \dots + \frac{1}{p!}$$

$$\sum_{\substack{i_{1}=1\\i_{p}=1}}^{n} \frac{\partial^{p} f}{\partial x^{i_{1}} \dots \partial x^{i_{p}+1}}(x_{0})h^{i_{1}} \dots h^{i_{p}} + R_{p+1}(x_{0}, h)$$

$$\vdots$$

$$\vdots$$

$$i_{p}=1$$

$$gdzie R_{p+1}(h) = \frac{1}{(p+1)!} \sum_{\substack{i_{1}=1\\i_{p+1}=1}}^{n} \frac{\partial^{p+1} f}{\partial x^{i_{1}} \dots \partial x^{i_{p}+1}} (x_{0} + \theta h) h^{i_{1}} \dots h^{i_{p+1}}$$

$$0 < \theta < 1 \text{ wersja } \mathbb{R}^{n} \text{ dla}$$

$$x_{0} < c < x_{0} + h^{n}$$

Obserwacja 1 $\lim_{h\to 0} \frac{R_{p+1}(x_0,h)}{||h||^p} \to 0$

Przykład 1

$$\begin{split} f: \mathbb{R}^2 &\to \mathbb{R}, \quad f(x,y) = x^2 y^3, f'(x,y) = \left[2xy^3, 3x^2 y^2\right]. \\ \text{Jeżeli } h &= \begin{bmatrix} h_1 \\ h_2 \end{bmatrix}, \text{ to wtedy} \\ &\sum_{\substack{i=1 \\ j=1}}^2 \frac{\partial^2 f}{\partial x^i \partial x^j} h^i h^j = \frac{\partial^2 f}{\partial x^1 \partial x^1} h^1 h^1 + \frac{\partial^2 f}{\partial x^1 \partial x^2} h^1 h^2 + \frac{\partial^2 f}{\partial x^2 \partial x^1} h^2 h^1 + \frac{\partial^2 f}{\partial x^2 \partial x^2} h^2 h^2 = \\ &= \left[h_1, h_1 \right] \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} \end{bmatrix} \begin{bmatrix} h_1 \\ h_2 \end{bmatrix} \end{split}$$

To czy ta macierz jest uśmiechnięta etc. (dodatnio/ujemnie określona) na algebrze. Minima i maksima

Przypomnienie Niech $f: \mathcal{O} \to \mathbb{R}, \mathcal{O} \subset \mathbb{R}^n, \mathcal{O}$ - otwarty, $x_0 \in \mathcal{O}$ Mówimy, że f ma w x_0 minimum lokalne, jeżeli:

Albo inaczej:

$$\exists_{n>0} \quad \forall \quad ||h|| < \eta, \quad x_0 + h \in \mathcal{O}, h \neq 0, \text{ to wtedy } f(x_0 + h) > f(x_0)$$

Stwierdzenie 1 jeżeli $f:\mathcal{O}\to\mathbb{R},\mathcal{O}$ - otwarty, $x_0\in\mathcal{O}, f$ - posiada w x_0 minimum lub maksimum lokalne, to

$$\frac{\partial f}{\partial x^i}(x_0) = 0, i = 1, \dots, n$$

(działa tylko w prawo, bo możliwe punkty przegięcia ((siodła))

Rysunek 1: istnieje otoczenie, dla którego $f(x) > f(x_0)$ (nie musi być styczne!)

Dowód 1

Niech $g_h(t) = f(x_0 + th)$ i $g: [0, \epsilon] \to \mathbb{R}$.

Zauważmy, że jeżeli f ma minimum lub maksimum w x_0 , to znaczy, że $g_h(t)$ ma minimum lub maksimum w t=0, czyli $\frac{\partial}{\partial t}g_h(t)\big|_{t=0}$

Czyli:

$$x_0 = (x_0^1, x_0^2, \dots, x_0^n)$$

 $h = (h^1, h^2, \dots, h^n)$

$$\frac{d}{dt}g_h(t)\Big|_{t=0} = \frac{d}{dt}f(x_0^1 + th^1, \dots, x_0^n + th^n)\Big|_{t=0} =$$

$$\frac{\partial f}{\partial x^1}(x_0 + th^1)h^1 + \frac{\partial f}{\partial x^2}(x_0 + th^2)h^2 + \dots + \frac{\partial f}{\partial x^n}(x_0 + th^n)\Big|_{t=0} =$$

$$= \sum_{i=1}^n \frac{\partial f}{\partial x^i}(x_0)h^i = 0 \quad |\forall : ||h|| < \eta, \text{ to znaczy: } \frac{\partial f}{\partial x^i}(x_0) = 0_{i=1,\dots,n} \square$$

Twierdzenie 1 Niech $f: \mathcal{O} \to \mathbb{R}, \ \mathcal{O} \subset \mathbb{R}^n, \ x_0 \in \mathcal{O}, \ \mathcal{O}$ - otwarty, a f - klasy $C^{2p}(\mathcal{O})$ oraz $f'(x_0) = 0, f''(x_0) = 0, \ldots, f^{(2p-1)}(x_0) = 0$ i

$$\exists \atop c>0} \exists \atop \eta>0} \forall \atop h\in K(x_0,\eta) : \sum_{i_1=1}^n \frac{\partial^{(2p)}f}{\partial x^{i_1}\dots\partial x^{i_{2p}}}(x_0)h^{i_1}\dots h^{i_{2p}} \geqslant c||h||^{2p}(\leqslant c||h||^{2p})$$

$$\vdots \atop i_{2p}=1$$

Rysunek 2

to f ma w x_0 minimum (maksimum) lokalne.

Dowód 2 (dla minimum) (wersja uproszczona dla f klasy $C^{2p+1}(\mathcal{O})$)

Jeżeli f spełnia założenie z twierdzenia, to wtedy

$$f(x_0 + h) - f(x_0) = \frac{1}{(2p)!} (\Delta) \sum_{i_1=1}^{2p} \frac{\partial^{(2p)} f(x_0)}{\partial x^{i_1} \dots x^{i_{(2p)}}} h^{i_1} \dots h^{i_{(2p)}} + r_{2p+1}(x_0 + h)$$

$$\vdots$$

$$i_{2p}=1$$

Wiemy też , że $\exists \atop c>0$ $\exists \atop \eta>0$ $(\Delta)\geqslant c||h||^{2p}$ Chodzi o to, żeby reszta nie mogła tego przekroczyć Chcemy pokazać, że $\exists \atop \eta \ ||h||<\eta} r_{2p+1}(x,h)\Big|\leqslant \frac{c}{2}||h||^{2p}$ albo 7, albo 2019

Czyli chcemy zbadać wielkość:

$$\frac{1}{(2p+1)!} \sum_{i_1=1}^n \frac{\partial^{(2p+1)} f(x_0 + \theta h)}{\partial x^{i_1} \dots \partial x^{i_{(2p+1)}}} h^{i_1} \dots h^{i_{(2p+1)}} = /*\text{tu potrzebne założenie, że } f - \text{klasy } C^{2p+1}(\mathcal{O})^* / = r_{2p+1}(x, h)$$

$$\vdots$$

Zauważmy, że $\lim_{h\to 0}\frac{r_{2p+1}(x_0+h)}{||h||^{2p}}\to 0,$ ale zatem

$$\bigvee_{M>0} \quad \underbrace{\exists}_{N}, \bigvee_{n>N} \frac{r_{2p+1}(x_0+h)}{||h||^{2p}} < M$$

$$\underset{\exists}{\text{bez sensu!}}_{\exists, ||h|| \le r}$$

$$\operatorname{czyli:} \left| \frac{r_{2p+1}(x_0, h)}{||h||^{2p}} \right| < M$$

$$\underset{M}{\forall} \quad \exists \quad \forall \\ ||h|| < \eta \quad \left| r_{2p+1}(x_0, h) \right| < M ||h||^{2p}$$

Kładziemy $M = \frac{c}{2}$ i mamy

$$\exists, \forall f(x_0 + h) - f(x_0) \ge \frac{c}{2} ||h||^{2p} \quad \Box$$

Uwaga: Dlaczego warunek (|||) > c||h||^{2p}, a nie po prostu () > 0?

Przykład 2

$$\begin{array}{ll} f(x,y) = x^2 + y^4, & \frac{\partial f}{\partial x} = 2x, & \frac{\partial f}{\partial y} = 4y^3. \\ f'() = 0 \iff (x,y) = (0,0) \end{array}$$

Badamy:
$$f(0+h) - f(0) = \begin{bmatrix} h_1, h_2 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 2y^2 \end{bmatrix} \begin{bmatrix} h_1 \\ h_2 \end{bmatrix} = \begin{bmatrix} h_1, h_2 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} h_1 \\ h_2 \end{bmatrix} = 2h_1^2$$
Czyli $f(0+h) - f(0)$ $2h_1^2$ - minimum? maksimum? - zależy w którą stronę.

$$h = \begin{bmatrix} h_1 \\ 0 \\ 0 \end{bmatrix} - \text{minimum}$$

$$h = \begin{bmatrix} 0 \\ h_2 \end{bmatrix}$$
 - równo.

Coś takiego - siodło.

Widzimy zatem, że nie jest spełniony warunek $\exists \begin{bmatrix} h_1, h_2 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} h_1 \\ h_2 \end{bmatrix} \geqslant c ||h||^2$, bo dla h = 0

$$\begin{bmatrix} 0 \\ h_2 \end{bmatrix} \quad 0 \not\geqslant c \middle| \begin{bmatrix} 0 \\ h_2 \end{bmatrix} \middle|$$

Kilka fajnych zastosowań

$$\frac{mv^2}{2} = \begin{bmatrix} v \end{bmatrix} \begin{bmatrix} \frac{m}{2} & & \\ & \frac{m}{2} & \\ & & \ddots \end{bmatrix} \begin{bmatrix} v \end{bmatrix}$$

$$\frac{I\omega^2}{2} = \begin{bmatrix} & \omega & \end{bmatrix} \begin{bmatrix} - & - & - \\ - & - & - \\ - & - & - \end{bmatrix} \begin{bmatrix} \omega \end{bmatrix}$$