

Universidad de Granada

Doble Grado en Ingeniería Informática y Matemáticas

ÁLGEBRA III

Autor: Jesús Muñoz Velasco

Índice general

Introducción

Comenzaremos la introducción al contenido de esta asignatura recordando brevemente el concepto de cuerpo¹. Lo primero que sabemos es que un cuerpo es un tipo de anillo conmutativo. Un anillo² es un conjunto no vacío, A que tiene definidas dos aplicaciones binarias y dos elementos especiales, $(A, +, 0, \cdot, 1)$. Con (+, 0) tenemos que A es un grupo aditivo y con $(\cdot, 1)$ tenemos que A es un monoide, es decir, que cuenta con una aplicación asociativa con elemento neutro 1. Además estas 2 operaciones tienen que guardar una cierta compatibilidad (axiomas), que llamamos leyes distributivas y que son los siguientes:

- •) $a \cdot (b+c) = a \cdot b + a \cdot c$
- •) $(b+c) \cdot a = b \cdot a + c \cdot a, \quad \forall a, b \in A$

Con esto habremos completado la definición de anillo. La conmutatividad hace referencia a la siguiente propiedad:

$$a \cdot b = b \cdot a \ \forall a, b \in A$$

Veamos ahora qué tiene que suceder para que a este anillo conmutativo lo llamemos cuerpo. Para ello, es equivalente decir que $A \setminus \{0\}$ es un grupo y que $\forall a \in A \setminus \{0\}$ existe un $a^{-1} \in A \setminus \{0\}$ tal que $a \cdot a^{-1} = 1$ (lo cual implica claramente $0 \neq 1$).

Ejemplo.

- •) Los racionales, Q.
- •) Los reales, \mathbb{R} .
- •) Los complejos, \mathcal{C} .
- •) $\mathbb{Z}_p \text{ con } p \text{ primo.}$

Notación. Denotaremos el producto de 2 elementos por yuxtaposición³, es decir, $a \cdot b = ab$

Recordaremos ahora los conceptos de subanillo y subcuerpo. Para ello consideramos A un anillo y un subconjunto $B \subseteq A$ tal que $1 \in B$. Si además tenemos que (B, +) es un subgrupo de (A, +) y que para todo $a, b \in B$ se tiene que $ab \in B$, entonces diremos que B es un subanillo de A.

¹ field en inglés

 $^{^2}ring$ en inglés

 $^{^3{\}rm Las}$ matemáticas son el arte de ser ambiguo siendo preciso en cada instante (Torrecillas, 18-9-2025)

Ejemplo.

- •) \mathbb{Z} es subanillo de \mathbb{Q} .
- •) \mathbb{Q} es subanillo de \mathbb{R} .
- •) \mathbb{R} es subanillo de \mathbb{C}

Definición 0.1 (Homomorfismo de anillos). Dados A y B dos anillos, un **homomorfismo** $f: A \to B$ es una aplicación que verifica para todo $a, b \in A$ las siguientes propiedades:

- •) f(1) = 1
- •) f(a+b) = f(a) + f(b)
- $\bullet) \ f(ab) = f(a)f(b)$

Definición 0.2 (Característica de un anillo). Dado A un anillo, existe un único homomorfismo de anillos⁴ $\chi : \mathbb{Z} \to A$. Entonces ker χ es un ideal de \mathbb{Z} y por tanto será principal, es decir, que ker $\chi = n\mathbb{Z}$ para cierto $n \in \mathbb{N}$. Dicho n es el número al que llamaremos **característica** de A y la notaremos como n = car(A).

Definición 0.3 (Subanillo). Si K es un cuerpo, entonces un subcuerpo de K es un subanillo F de K tal que F es un cuerpo.

Observación. Sea K un cuerpo y Γ un conjunto no vacío de subcuerpos de K. Entonces $\bigcap_{F \in \Gamma} F$ es un subcuerpo de K.

Definición 0.4 (Subcuerpo primo). Sea K un cuerpo y tomamos $S \subset K$ un subconjunto y consideramos

$$\Gamma = \{ \text{ subcuerpos de } K \text{ que contienen a } S \}$$

En Γ podemos tomar la intersección, $\bigcap_{F \in \Gamma} F$ que es el subgrupo más pequeño que contiene a S. Para $S = \emptyset$ obtengo el menor subcuerpo de K y a este subcuerpo lo llamaremos **subcuerpo primo** de K.

Observación. Si tenemos $\chi: \mathbb{Z} \to K$ el homomorfismo de anillos, de forma que p es la característica de K, es decir, $p\mathbb{Z} = \ker \chi$. Entonces por el primer teorema de isomorfía tenemos que

$$\frac{\mathbb{Z}}{p\mathbb{Z}} = \frac{\mathbb{Z}}{\ker \chi} \cong Im\chi \leqslant K$$

Donde la última inclusión es de subanillo. Como $Im\chi$ es un dominio de integridad tendremos que p=0 o, si p>0, entonces p es primo.

Proposición 0.1. Sea K un cuerpo de característica p, entonces,

⁴se prueba fácilmente por inducción

⁵El propio K está en este conjunto

- •) si p > 0, el subcuerpo primo de K es isomorfo a \mathbb{Z}_p
- •) si p=0, el subcuerpo primo de K es isomorfo a \mathbb{Q}

Demostración. Denotamos por Π al subcuerpo primo de K.

- •) Si p > 0, entonces $Im\chi$ es un subcuerpo de $K \Rightarrow \Pi \subseteq Im\chi$, pero $Im\chi \cong \mathbb{Z}_p$ y como \mathbb{Z}_p no tiene subcuerpos propios, entonces $\Pi = Im\chi \cong \mathbb{Z}_p$
- •) Si p=0, entonces $\mathbb{Z}\cong Im\chi\leqslant K$ (subanillo) y entonces $Im\chi\subseteq\Pi$, ya que $Im\chi$ es el subanillo más pequeño. Si Q es el cuerpo de funciones de $Im\chi$, entonces $Q\cong\mathbb{Q}$. Aplicando la propiedad universal del cuerpo de fracciones tenemos que $\mathbb{Q}\subseteq\Pi$ por lo que $\mathbb{Q}=\Pi$ por unicidad del cuerpo de fracciones excepto isomorfismos.

Definición 0.5 (Extensión de cuerpos). Sea F un subcuerpo de K, diremos que $F \leq K$ es una **extensión de cuerpos**.

Observación. Sea $F\leqslant K$ una extensión, entonces Kes un espacio vectorial sobre F donde

- \bullet) la suma de K es la suma como espacio vectorial
- •) la acción de los escalares, $\lambda \in F$, $\alpha \in K$, $\lambda \alpha$ es el producto en K

Definición 0.6. Sea $\mathbb{R} \leq K$ una extensión, entonces la dimensión de K sobre F (como espacio vectorial) se llama **grado** de la extensión $F \leq K$ y se denota por [K:F], es decir

$$[K:F] = \dim_F(K)$$

Ejemplo.

- $\bullet) \ [\mathbb{C}:\mathbb{R}] = 2$
- •) $[\mathbb{R} : \mathbb{Q}] = \infty$, ya que \mathbb{R} no es numerable

Notación. Si $[K:F]<\infty$ diremos que $F\leqslant K$ es finita. Si $[K:F]=\infty$ diremos que $F\leqslant K$ no es finita o es infinita.

Ejercicio 1. Demostrar que el cardinal de un cuerpo finito es de la forma p^n con p primo y $n \ge 1$.

Notación. Sea la extensión $F \subseteq K$ y $S \subseteq K$ un subconjunto de K. Podemos considerar el menor subcuerpo de K que contiene a $F \cup S$ y lo denotaremos por F(S) y lo llamaremos **extensión de** F **generada por** S (dentro de K). Si S es finito, es decir, $S = \{s_1, \ldots, s_t\}$ simplifico la notación como $F(\{s_1, \ldots, s_t\}) = F(s_1, \ldots, s_t)$

Ejemplo. $\mathbb{Q}(\sqrt(2))$ donde $\sqrt{2} \in \mathbb{R}$, es decir, es el menor subcuerpo de los reales que contiene a $\sqrt{2}$. Por tanto $\mathbb{Q}(\sqrt(2)) = \{a+b\sqrt{2} : a,b \in \mathbb{Q}\}$. Esto se ve fácilmente viendo la doble inclusión. La inclución \supseteq es obvia y demostrando que $\{a+b\sqrt{2} : a,b \in \mathbb{Q}\}$ es un subcuerpo tenemos automáticamente la igualdad. Esta extensión tendrá grado 2.

Definición 0.7. Sea K un cuerpo, consideramos el cuerpo de polinomios con coeficientes en K, y lo denotamos por K[x].

Dado un $f \in K[x]$ y $K \leq E$ una extensión de cuerpos tal que f se descompone completamente en E[X] como producto de polinomios lineales⁶ y $E = K(\alpha_1, \ldots, \alpha_t)$ con $\alpha_1, \ldots, \alpha_t \in E$ las raíces de f, entonces diremos que E es un **cuerpo de descomposición** (de escisión) de f (sobre K).

Ejemplo. Consideramos el polinomio $x^2 + 1 \in \mathbb{R}[x]$ que es irreducible sobre \mathbb{R} . Un cuerpo de descomposición suyo es \mathbb{C} .

Podemos considerar además $x^2 + 1 \in \mathbb{Q}[x]$ y entonces el c.d.d⁸ es $\mathbb{Q}(i)$ (y además $[\mathbb{C} : \mathbb{Q}(i)] = \infty$ y se deja esto como ejercicio).

$$x^{2} + 1 = (x - i)(x + i)$$

Observación. Si $f \in Q[x]$, entonces tomo⁹ todas sus raíces en \mathbb{C} , digamos $\alpha_1, \ldots, \alpha_t$ y c.d.d de f es $Q(\alpha_1, \ldots, \alpha_t)$

Ejemplo. Dado $f \in \mathbb{Q}[x]$, $f = x^2 - 2$, entonces el c.d.d de f es $\mathbb{Q}(\sqrt{2}) = \mathbb{Q}(\{\sqrt{2}\})$

Ejercicio 2. Si tengo $F \leq K$ una extensión de cuerpos y dos subconjuntos $S, T \subset K$, demostrar que $F(S \cup T) = F(S)(T)$

Ejemplo. Consideramos el polinomio $f = x^3 - 2 \in \mathbb{Q}[X]$. El conjunto de raíces de f será

Raíces de
$$f = {\sqrt[3]{2}, w\sqrt[3]{2}, w^2\sqrt[3]{2}}$$

 $w = e^{\frac{2\pi i}{3}} = \cos\left(\frac{2\pi}{3}\right) + i \operatorname{sen}\left(\frac{2\pi}{3}\right) = -\frac{1}{2} + i \frac{\sqrt{3}}{2}$
 $(\sqrt[3]{2}w)^3 = 2 \Rightarrow \sqrt[3]{2}w \in \text{Raíces de } f$

En este caso decimos que el c.d.d de f es $\mathbb{Q}(\sqrt[3]{2}, w\sqrt[3]{2}, w^2\sqrt[3]{2})$, o lo que es lo mismo¹⁰ $\mathbb{Q}(\sqrt[3]{2}, w)$

Ejercicio 3. (Solo hay que plantearse la pregunta, en eso consiste el ejercicio) ¿Quién es el c.d.d de $x^2 + x + 1 \in \mathbb{Z}_2[x]$?¿Existe?

Ejemplo. $f = x^n - 1$ con $n \ge 1$. Sabemos que tiene n raíces ya que $f = nx^{n-1}$ por lo que no puede haber raíces con multiplicidad mayor que 1 y por tanto hay n raíces distintas en \mathbb{C} . Además, sus raíces son

$$\left\{ \left(e^{\frac{i2\pi}{n}}\right)^k : k = 0, \dots, n-1 \right\}$$

⁶de grado 1

⁷no tiene raíces en \mathbb{R} y no se puede descomponer en producto de polinomios de grado menor

⁸cuerpo de descomposición

⁹alpicando el Teorema Fundamental del Álgebra

 $^{^{10}}$ se puede comprobar fácilmente viendo que el conjunto de generadores de un espacio está en el otro y viceversa

que son las raíces n-ésimas de la unidad real. Esto es un subgrupo cíclico de orden n de $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$, con $e^{\frac{i2\pi}{n}}$ como generador. Cada uno de sus generadores se llama raíz n-ésima compleja primitiva de la unidad.

El c.d.d de $x^n - 1 \in \mathbb{Q}[x]$ es $\mathbb{Q}(\eta)$, $\eta \in \mathbb{C}$ que es $\sqrt[n]{1}$ primitiva.

Definición 0.8. Dado $F \leq K$ una extensión, αinK , diremos que α es algebraico sobre F si $f(\alpha) = 0$ para algún $f \in F[x]$, $f \neq 0$. Sino, α se llama trascendente sobre F.

Proposición 0.2. Sea $F \leq K$ una extensión de cuerpos, $\alpha \in K$ algebraico sobre F. Entonces existe un único polinomio mónico¹¹ irreducible¹² $f \in F[X]$ tal que $f(\alpha) = 0$. Además, se tiene un isomorfismo de cuerpos

$$F(\alpha) \cong \frac{F[X]}{\langle f \rangle}$$

y además, $\{1, \alpha, \dots, \alpha^{\deg f - 1}\}$ es una F-base de $F(\alpha)$. Adí, $[F(\alpha): F] = \deg f$

Demostración. Tomo $e_{\alpha}: F[X] \to K$ la aplicación definida por $e_{\alpha}(y) = g(\alpha)$. Entonces tenemos que e_{α} es un homomorfismo de anillos. Tomo ker e_{α} , que es un ideal de F[X] y

$$\exists f \in F[X] \text{ tal que } \ker e_{\alpha} = \langle f \rangle \text{ mónico}$$

Por el teorema de isomofismo para anillos tenemos que

$$Im \ e_{\alpha} \cong \frac{F[X]}{\ker e_{\alpha}} = \frac{F[X]}{\langle f \rangle}$$

Como $Im\ e_{\alpha}$ es subanillo de K, resulta ser un dominio de integridad por lo que $\frac{F[X]}{\langle f \rangle}$ es un DI. Por tanto f es irreducible y $\frac{F[X]}{\langle f \rangle}$ es un cuerpo.

Veamos ahora la unicidad. Si tomo $h \in F[X]$ irreducible y mónico tal que $h(\alpha) = 0$, entonces $h \in \langle f \rangle$, luego $\langle h \rangle \subseteq \langle f \rangle$ y al ser maximal se tiene que $\langle h \rangle = \langle f \rangle$ y al ser mónicos se tiene h = f.

NVeamos el isomorfismo. Sabemos que $Im\ e_{\alpha}$ es un subcuerpo de K, que $F\leqslant Im\ e_{\alpha}$ y $\alpha\in Im\ e_{\alpha}$. Tenemos entonces que $F(\alpha)\leqslant Im\ e_{\alpha}$. Un elemento de $Im\ e_{\alpha}$ es de la forma $g(\alpha)$ para $g\in F[X]$. Tendremos que $g(x)=\sum\limits_{i=0}^ng_iX^i$, con $g_i\in F$ por lo que $g(\alpha)=\sum\limits_{i=0}^ng_i\alpha^i$ luego tenemos el espacio completo y la otra inclusión. Concluimos que $F(\alpha)=Im\ e_{\alpha}\cong \frac{F[X]}{\langle f\rangle}$.

Finalmente, $\{1, \alpha, \dots, \alpha^{\deg f - 1}\}$ es F-lineal de $F(\alpha)$ porque $\{1 + \langle f \rangle, X + \langle f \rangle, \dots, X^{\deg f - 1} + \langle f \rangle\}$ es F-base de $\frac{F[X]}{\langle f \rangle}$ en vista de la división euclidiana.

 $^{^{11}}$ el coeficiente director es 1

¹²que no se puede factorizar como producto de polinomios propios

Definición 0.9. El f de la proposición anterior se llama **polinomio irreducible** (o **mínimo**) de α sobre F. Lo notaremos como $f = Irr(\alpha, F)$.

Observación. $Irr(\alpha, F)$ es el mónico de grado mínimo en F[X] del cual α es raíz. Todo otro polinomio $g \in F[X]$ tal que $g(\alpha) = 0$ satisface que $g = h \cdot Irr(\alpha, F)$

Ejemplo.

- •) $Irr(i, \mathbb{Q}) = x^2 + 1 \in \mathbb{Q}[x]$, por lo que $\{1, i\}$ es una $\mathbb{Q} base$ de $\mathbb{Q}(i)$
- •) $Irr(\sqrt{2}, \mathbb{Q}) = x^2 2 \in \mathbb{Q}[x]$
- •) $Irr(e^{\frac{i2\pi}{3}}, \mathbb{Q})$. Sabemos que $e^{\frac{i2\pi}{3}}$ es raíz de $x^3 1 \in \mathbb{Q}$, sin embargo no es irreducible ya que $x^3 1 = (x 1)(x^2 + x + 1)$ y como $(x^2 + x + 1)$ es irreducible (si se calculan las raíces es fácil ver que no están en \mathbb{Q}) y $e^{\frac{i2\pi}{3}}$ sigue siendo raíz suya por lo que $Irr(e^{\frac{i2\pi}{3}}, \mathbb{Q}) = (x^2 + x + 1)$. Una \mathbb{Q} -base de $\mathbb{Q}(e^{\frac{i2\pi}{3}})$ es $\{1, e^{\frac{i2\pi}{3}}\}$ y $[\mathbb{Q}(e^{\frac{i2\pi}{3}}), \mathbb{Q}] = 2$.