INSTITUT SUPÉRIEUR D'INFORMATIQUE ET DES TECHNIQUES DE DE HAMMAM SOUSSE

Projet sur l'intégration numérique

Réalisé par :

Feidi Rahma

Et

Nada Boudhina

INTÉGRATION NUMÉRIQUE

1.	Méthode des rectangles
	1.1. Principe
	1.2. Evaluation de l'erreur
2.	Méthode des trapèzes
	2.1. Principe
	2.2. Evaluation de l'erreur
3.	Méthode de Simpson
	3.1. Principe
	3.2. Evaluation de l'erreur

1. Méthode des rectangles

1.1. Principe

On remplace f par la fonction en escalier qui prend, sur chaque segment de la subdivision, la même valeur à l'extrémité gauche de ce segment que f. Cela revient donc à interpoler la fonction f sur le segment $[x_i, x_{i+1}]$ par le polynôme de Lagrange de degré 0 qui vaut $f(x_i)$.

Méthode des rectangles à gauche

Proposition 1 — La valeur approchée de l'intégrale de f sur I par la méthode des rectangles à gauche est alors donnée par

$$R_n = \frac{b-a}{n} \sum_{i=0}^{n-1} f(x_i).$$

Démonstration : l'aire du rectangle de base $[x_i, x_{i+1}]$ est $f(x_i)(x_{i+1} - x_i)$, donc

$$R_n = \sum_{i=0}^{n-1} f(x_i)(x_{i+1} - x_i) = \frac{b-a}{n} \sum_{i=0}^{n-1} f(x_i)$$

car $x_{i+1} - x_i = h = (b-a)/n$.

Remarques - • On peut définir de même la méthode des rectangles à droite.

• La formule obtenue est une somme de Riemann.

1.2. Evaluation de l'erreur

Proposition 2 – Si f est de classe \mathcal{C}^1 sur [a,b], alors on a, pour tout entier naturel n non nul

$$|R_n - \int_a^b f(t) dt| \le (b - a)^2 \frac{M_1}{2n}$$

On en déduit que (R_n) converge vers $\int_a^b f(t) dt$.

Démonstration : on a

$$\begin{split} |R_n - \int_a^b f(t) \, dt| &= |\sum_{i=0}^{n-1} f(x_i)(x_{i+1} - x_i) - \sum_{i=0}^{n-1} \int_{x_i}^{x_{i+1}} f(t) \, dt| \\ &= |\sum_{i=0}^{n-1} \int_{x_i}^{x_{i+1}} \left(f(x_i) - f(t) \right) dt | \leq \sum_{i=0}^{n-1} \int_{x_i}^{x_{i+1}} |f(x_i) - f(t)| dt \\ &\leq \sum_{i=0}^{n-1} \int_{x_i}^{x_{i+1}} |x_i - t| M_1 \, dt \text{ d'après l'inégalité des accroissements finis} \\ &\leq \sum_{i=0}^{n-1} \int_{x_i}^{x_{i+1}} (t - x_i) M_1 \, dt \leq \sum_{i=0}^{n-1} \left[\frac{(t - x_i)^2}{2} \right]_{x_i}^{x_{i+1}} M_1 \\ &\leq \sum_{i=0}^{n-1} \frac{h^2}{2} M_1 \leq n \frac{h^2}{2} M_1 = (b - a)^2 \frac{M_1}{2n}. \end{split}$$

2. Méthode des trapèzes

2.1. Principe

Méthode des trapèzes

On remplace la courbe représentative de f, sur chaque segment de la subdivision, par le segment qui joint $(x_i, f(x_i))$ à $(x_{i+1}, f(x_{i+1}))$. Cela revient donc à interpoler la fonction f sur le segment $[x_i, x_{i+1}]$ par le polynôme de Lagrange de degré 1 aux points x_i et x_{i+1} .

Ш

Proposition 3 — La valeur approchée de l'intégrale de f sur I par la méthode des trapèzes est alors donnée par

$$T_n = \frac{b-a}{n} \left(\frac{f(a) + f(b)}{2} + \sum_{i=1}^{n-1} f(x_i) \right).$$

Démonstration : l'aire du trapèze de base

$$[x_i, x_{i+1}]$$
 est $(x_{i+1} - x_i)(f(x_i) + f(x_{i+1}))/2 = h(f(x_i) + f(x_{i+1}))/2$.

On en déduit que

$$T_n = \sum_{i=0}^{n-1} h(f(x_i) + f(x_{i+1}))/2 = h\bigg(rac{f(a) + f(b)}{2} + \sum_{i=1}^{n-1} f(x_i)\bigg)$$
 \sqcup

2.2. Evaluation de l'erreur

Proposition 4 – Si f est de classe C^2 sur I, alors on a, pour tout entier naturel n non nul

$$|T_n - \int_a^b f(t) dt| \le (b-a)^3 \frac{M_2}{12n^2}$$

On en déduit que
$$(T_n)$$
 converge vers $\int_a^b f(t) dt$.

Démonstration : cette méthode consiste à remplacer f sur le segment $[x_i, x_{i+1}]$ par son polynôme d'interpolation P_i de Lagrange de degré 1 ayant les mêmes valeurs que f aux bornes de l'intervalle. D'après le théorème (EQ??), comme f est de classe C^2 , on a

$$\forall x \in [x_i, x_{i+1}], \quad f(t) - P_i(t) = (x_{i+1} - t)(t - x_i) \frac{f''(\xi)}{2}$$

On en déduit que

$$\left| \int_{x_{i}}^{x_{i+1}} (f(t) - P_{i}(t)) dt \right| \leq \int_{x_{i}}^{x_{i+1}} (x_{i_{1}} - t)(t - x_{i}) \frac{|f''(\xi)|}{2} dt$$

$$\leq \int_{x_{i}}^{x_{i+1}} (x_{i+1} - t)(t - x_{i}) \frac{M_{2}}{2} dt$$

$$= \left(\int_{x_{i}}^{x_{i+1}} (x_{i+1} - t)(t - x_{i+1}) dt + \int_{x_{i}}^{x_{i+1}} (x_{i+1} - t)(x_{i+1} - x_{i}) dt \right) \frac{M_{2}}{2}$$

$$\leq \frac{M_{2}}{12} (x_{i+1} - x_{i})^{3} \leq \frac{M_{2} h^{3}}{12}$$

Pour conclure, il suffit de remarquer que

$$ig|T_n - \int_a^b f(t) dtig| = ig|\sum_{i=0}^{n-1} \int_{x_i}^{x_{i+1}} ig(P_i(t) - f(t)ig) dtig|$$

$$\leq \sum_{i=0}^{n-1} \int_{x_i}^{x_{i+1}} ig|P_i(t) - f(t)ig| dt$$

$$\leq \sum_{i=0}^{n-1} \frac{M_2 h^3}{12} = n \frac{M_2 h^3}{12} = (b-a)^3 \frac{M_2}{12n^2}.$$

3. Méthode de Simpson

3.1. Principe

Méthode de Simpson

On remplace f, sur chaque segment $[x_i,x_{i+1}]$ de la subdivision, par la fonction polynômiale de degré inférieur ou égal à 2 qui prend les mêmes valeurs que f aux extrémités et au milieu ξ_i de ce segment. Cette méthode consiste à remplacer f sur le segment $[x_i,x_{i+1}]$ par son polynôme d'interpolation P_i de Lagrange de degré 2 ayant les mêmes valeurs que f aux bornes de l'intervalle et en son milieu.

Proposition 5 — La valeur approchée de l'intégrale de f sur I par la méthode de Simpson est alors donnée par

$$egin{aligned} S_n &= rac{b-a}{6n} \sum_{i=0}^{n-1} ig(f(x_i) + f(x_{i+1}) + 4f(\xi_i) ig) \ &= rac{b-a}{6n} ig(f(a) + f(b) + 2 \sum_{i=1}^{n-1} f(x_i) + 4 \sum_{i=0}^{n-1} f(\xi_i) ig). \end{aligned}$$

On a $S_n = \sum_{i=0}^{n-1} \int_{x_i}^{x_{i+1}} P_i(t) \, dt$. On est donc ramené au calcul de l'intégrale de Riemann d'un polynôme de degré inférieur ou égal à 2.

Lemme 6 – Soit $P \in \mathbb{R}_2[X]$ et c < d, alors

$$\int_{c}^{d} P(t) dt = \frac{d-c}{6} \left[P(c) + P(d) + 4P\left(\frac{c+d}{2}\right) \right].$$

Démonstration : on fait le changement de variables t=(d-c)u+c pour se ramener à une intégrale de 0 à 1.

$$\int_{c}^{d} P(t) dt = (d-c) \int_{0}^{1} P((d-c)u + c) du$$

Les polynômes de Lagrange aux points 0, 1 et 1/2 sont $l_0(x)=2x^2-3x+1$, $l_1(x)=2x^2-x$ et $l(x)=4x-4x^2$; leurs intégrales entre 0 et 1 valent respectivement 1/6, 1/6 et 4/6. Soit $Q(u)=P\big((d-c)u+c\big)$, Q est un polynôme de degré inférieur ou égal à 2, on a donc $Q=Q(0)l_0+Q(1)l_1+Q(1/2)l$ et $\int_0^1Q(u)\,du=\frac{1}{6}\big[Q(0)+Q(1)+4Q(1/2)\big]$. Comme Q(0)=P(c), Q(1)=P(d) et $Q(1/2)=P\big((d+c)/2\big)$, on obtient le lemme.

On applique le lemme à S_n et on obtient que

$$egin{aligned} S_n &= \sum_{i=0}^{n-1} \int_{x_i}^{x_{i+1}} P_i(t) \, dt = \sum_{i=0}^{n-1} rac{x_i + x_{i+1}}{2} ig(P_i(x_i) + P_i(x_{i+1}) + 4 P_i(\xi_i) ig) \ &= \sum_{i=0}^{n-1} rac{x_i + x_{i+1}}{2} ig(f(x_i) + f(x_{i+1}) + 4 f(\xi_i) ig) ext{ par définition de } P_i \ &= rac{h}{6} ig(\sum_{i=0}^{n-1} f(x_i) + \sum_{i=0}^{n-1} f(x_{i+1}) + 4 \sum_{i=0}^{n-1} f(\xi_i) ig) \ &= rac{b-a}{6n} ig(f(a) + f(b) + 2 \sum_{i=0}^{n-1} f(x_i) + 4 \sum_{i=0}^{n-1} f(\xi_i) ig) \end{aligned}$$

3.2. Evaluation de l'erreur

Proposition 7 – Si f est de classe \mathcal{C}^3 sur I, alors, pour tout entier naturel n non nul, on a

$$|S_n - \int_a^b f(t) dt| \le (b - a)^4 \frac{M_3}{192n^3}$$

On en déduit que (S_n) converge vers $\int_a^b f(t) dt$.

 $D\'{e}monstration$: cette méthode consiste à remplacer f sur le segment $[x_i, x_{i+1}]$ par son polynôme d'interpolation P_i de Lagrange de degré 2 ayant les mêmes valeurs que f aux bornes de l'intervalle et en son milieu. D'après le théorème , comme f est de classe \mathcal{C}^3 , on a

$$\forall x \in [x_i, x_{i+1}], \quad |f(t) - P_i(t)| = \le (x_{i+1} - t)(t - x_i)|t - \xi_i| \frac{M_3}{6}.$$

On en déduit que

$$\int_{x_i}^{x_{i+1}} |f(t) - P_i(t)| dt \le \frac{M_3}{6} \int_{x_i}^{x_{i+1}} (t - x_i)(x_{i+1} - t)|t - \xi_i| dt$$

$$\le \frac{M_3}{3} \int_{x_i}^{\xi_i} (t - x_i)(x_{i+1} - t)(\xi_i - t) dt$$

Calculons cette intégrale que l'on appelle J.

$$J = \int_{x_i}^{\xi_i} (t - x_i)(h + x_i - t)(\frac{h}{2} + x_i - t) dt$$

$$= \int_{x_i}^{\xi_i} (t - x_i)[\frac{h^2}{2} + \frac{3h}{2}(x_i - t) + (x_i - t)^2] dt$$

$$= \frac{h^2}{2} \frac{h^2}{8} - \frac{3h}{2} \frac{h^3}{24} + \frac{h^4}{64} = \frac{h^4}{64}$$

On a donc

$$|S_n - \int_a^b f(t) dt| \le \sum_{i=0}^{n-1} \int_{x_i}^{x_{i+1}} |f(t) - P_i(t)| dt$$

$$\le \sum_{i=0}^{n-1} \frac{M_3}{3} \frac{h^4}{64} = nM_3 \frac{h^4}{192} = (b-a)^3 \frac{M_3}{192n^3}.$$

Le résultat précédent peut être affiné si la fonction f est un peu plus régulière :

Proposition 8 – Si f est de classe C^4 sur I, alors, pour tout entier naturel n non nul, on a

$$|S_n - \int_a^b f(t) dt| \le (b-a)^5 \frac{M_4}{2880n^4}$$

 ${\it D\'{e}monstration}$: on pose $x_i=lpha-h/2,\, \xi_i=lpha$ et $x_{i+1}=lpha+h/2.$ Montrons que

$$|\int_{\alpha-h/2}^{\alpha+h/2} (f(t) - P_i(t)) dt| \le \frac{h^5}{2880} M_4.$$

où P_i est la fonction polynômiale de degré 2 égale à f aux points $x_i,\,\xi_i$ et $x_{i+1}.$ Posons

$$egin{aligned} arphi(h) &= \int_{lpha - h/2}^{lpha + h/2} ig(f(t) - P(t)ig) \, dt \ &= \int_{lpha - h/2}^{lpha + h/2} f(t) \, dt - rac{h}{6} ig(f(lpha + h/2) + f(lpha - h/2) + 4f(lpha)ig) \end{aligned}$$

Calculons ses dérivées jusqu'à l'ordre 3.

$$\varphi'(h) = \frac{1}{3} \Big(f(\alpha + h/2) + f(\alpha - h/2) - 2f(\alpha) \Big) - \frac{h}{12} \Big(f'(\alpha + h/2) - f'(\alpha - h/2) \Big)$$

$$\varphi'(0) = 0$$

$$\varphi''(h) = \frac{1}{12} \Big(f'(\alpha + h/2) - f'(\alpha - h/2) \Big) - \frac{h}{24} \Big(f''(\alpha + h/2) + f''(\alpha - h/2) \Big)$$

$$\varphi''(0) = 0$$

$$\varphi^{(3)}(h) = -\frac{h}{48} \Big(f^{(3)}(\alpha + h/2) - f^{(3)}(\alpha - h/2) \Big)$$

$$\varphi^{(3)}(0) = 0$$

La fonction f étant de classe C^4 , d'après l'inégalité des accroissements finis, on a

$$|\varphi^{(3)}(h)|\leq \frac{h^2}{48}M_4.$$

Par intégrations successives entre 0 et h, on trouve que

$$|\varphi(h)| \leq \frac{h^5}{2880} M_4.$$

On a alors, en notant P la fonction polynômiale par morceaux égale à P_i sur chaque segment $[x_i, x_{i+1}]$,

$$|S_n - \int_a^b f(t) dt| \le \sum_{i=0}^{n-1} |\int_{\xi_i - h/2}^{\xi_i + h/2} (f(t) - P(t)) dt|$$

$$\le \sum_{i=0}^{n-1} \frac{h^5}{2880} M_4$$

$$\le n \frac{h^5}{2880} M_4 \le (b-a)^5 \frac{M_4}{2880n^4}$$

 $\operatorname{car} h = (b-a)/n.$

Ш