Synthesis of Cyclols from Some Small Peptides via Amide-Amide Reaction

By Gino Lucente and Aurelio Romeo*

(Centro di Studio per la Chimica del Farmaco-C.N.R., Istituto di Chimica Farmaceutica, Università degli Studi, 00100 Roma, Italy)

Summary The synthesis of cyclols from p-nitrophenyl esters of some small peptides, via amide-amide reaction in aqueous alkaline medium, is reported.

There is a long-standing suggestion that unusual bonding of amino-acids in natural products may also arise through intramolecular reactions involving amide groups.¹

Though cyclol intermediates have been suggested,²⁻⁴ only a few examples of well established cyclol structures have been reported.^{4,5} The cyclols known so far result from reaction between an amide and an alcoholic, amino-, or thiol group and only some of them are of the peptide type. Although cyclol intermediates resulting from amide-amide

reaction have been suggested, cyclols of this type have not yet been isolated or characterised.

We report the synthesis of cyclols resulting from an amide-amide reaction. These compounds were obtained from p-nitrophenyl esters of small peptides such as (1), on mild treatment in an alkaline medium.† The cyclol system derives from an amide-amide reaction in an intermediate of the acylalanyl-diketopiperazine type (6) or of the cyclopeptide type (7).

N-Benzyloxycarbonyl-L-alanyl-L-phenylalanylhydrazide was prepared from the corresponding methyl ester; after conversion into the azide, it was condensed with L-proline to give N-benzyloxycarbonyl-L-alanyl-L-phenylalanyl-L-

 $[\]dagger$ Goodman and his co-workers have prepared N-benzyloxycarbonylglycylprolyl-diketopiperazine starting from the p-nitrophenyl ester of N-benzyloxycarbonylglycylproline.

proline $^{+}_{+}$ m.p. 174—176°; $[\alpha]_{D}^{20}$ -45° (c 1·5, CHCl₃). The (c 1·0, ethanol). The i.r. spectrum showed no amide II p-nitrophenyl ester (1), m.p. 109—111°, $[\alpha]_{\mathbf{D}}^{20}$ -48° (c 0.5, ethyl acetate), prepared using p-nitrophenyl sulphite, was

band; in the mass spectrum the molecular peak at m/e 449 and the peak at M^+ -18 (loss of water) are in agreement

(1)
$$R = PhCH_2 \cdot O \cdot CO$$
; $Np = p - NO_2 \cdot C_6H_4$

(2)
$$R = \rho - Br \cdot C_6 H_4 \cdot CH_2 \cdot O \cdot CO$$
; $Np = \rho - NO_2 \cdot C_6 H_4$

(3)
$$R^1 = PhCH_2 \cdot O \cdot CO; R^2 = H$$

(4)
$$R^1 = \rho - Br \cdot C_6 H_4 \cdot CH_2 \cdot O \cdot CO$$
; $R^2 = H$

(5)
$$R^1 = PhCH_2 \cdot O \cdot CO$$
; $R^2 = Me$

(6)

(7)

added to a dioxan-aqueous buffer solution (1:1) and was left at room temperature for 1 h; we attribute the structure (3) to the compound so formed, m.p. 183—185°, $[\alpha]_{D}^{20}$ —32°

with structure (3); n.m.r. (CDCl₃) δ 1·30 (d, 3H, J 6·5 Hz Me), 2·30—1·55 (m, 4H, CH₂·CH₂), 3·75—3·0 [5H, AB part of the ABX system PhCH2·CH superimposed on CH2·N

[‡] All new compounds had satisfactory microanalytical and spectral properties.

[§] Equal volumes of 0.1 m NaHCO3 and Na2CO3 solutions.

multiplets and $C(OH) \cdot CH \cdot N$], 3.95 (q, 1H, $J \cdot 6.5$ Hz MeCH), 4.57 (broad s, 1H, exchangeable with D₂O, OH), 4.84 (1H, X part of the ABX system PhCH₂·CH), 5·16 (s, 2H, Ph $CH_2 \cdot O \cdot CO$), and 7.5 - 7.0 (m, 10H, aromatic H). Compound (3) has acidic properties (it is soluble in 1N-NaOH from which it is reprecipitated on acidification) and reacts with CH₃I-Ag₂O giving the corresponding O-methyl ether (5), m.p. $143-144^{\circ}$, $[\alpha]_{D}^{20}-23^{\circ}$ (c $1\cdot 0$, CHCl₃); n.m.r. $(CDCl_3)$ 3.02 (s, 3H, OMe).

To confirm the structure, we prepared p-bromobenzyloxycarbonyl-L-alanyl-L-phenylalanyl-L-proline from L-alanyl-L-phenylalanyl-L-proline8 on acylation with p-bromobenzyloxycarbonyl chloride. On treatment as for compound (1), the p-nitrophenyl ester (2), m.p. 165—166°, $[\alpha]_{\rm D}^{20}$ -49° (c 1.0, dioxan), gave a product m.p. 167—168°, $[\alpha]_D^{20}$ -23° (c 1.5, CHCl₃), to which the cyclol structure (4) was assigned, on the basis of chemical and spectral properties, analogous to that of cyclol (3). This structure was further confirmed by X-ray analysis.9

Compounds (3) and (4) were obtained in 70% and 50% yield respectively.

(Received, July 30th, 1971; Com. 1322.)

- D. Wrinch, Nature, 1936, 137, 411; 1937, 139, 972.
 D. Wrinch, "Chemical Aspects of Polypeptide Chain Structures, and the Cyclol Theory", Munksgaard, Copenhagen, 1956.
- ² D. Wrinch, 'Chemical Aspects of Polypeptide Chain Structures, and the Cyclol Theory', Munksgaard, Copennagen, 1956.

 ³ G. I. Glover, R. B. Smith, and H. Rapoport, J. Amer. Chem. Soc., 1965, 87, 2003.

 ⁴ M. M. Shemyakin, V. K. Antonov, A. M. Shkrob, V. I. Shchelokov, and Z. E. Agadzhanyan, Tetrahedron, 1965, 21, 3537.

 ⁵ A. Stoll, Fortschr. Chem. org. Naturstoffe, 1952, 9, 114; A. Hofmann, A. J. Frey, and H. Ott, Experientia, 1961, 17, 206; M. Rothe and R. Steinberger, Angew. Chem. Internat. Edn., 1968, 7, 884; M. Rothe, T. Toth, and D. Jacob, ibid., 1971, 10, 128.

 ⁶ M. Goodman and K. C. Stueben, J. Amer. Chem. Soc., 1962, 84, 1279.

 ⁷ E. Schröder, Annalen, 1964, 679, 207.

 ⁸ S. Polimor and T. Loche, Angel Sci. Humz. 1966, 48, 111.
- - ⁸ S. Bajusz and T. Lázár, *Acta Chim. Acad. Sci. Hung.*, 1966, **48**, 111. ⁹ See following communication, by S. Cerrini, W. Fedeli, and F. Mazza.