

Tropospheric Ozone Production Pathways with Detailed Chemical Mechanisms

Jane Coates

1st July 2015

Outline

Previous Meeting Re-cap

Comparison of O₃ Production in Chemical Mechanisms

Impact of Solvent Speciations on O₃

Sensitivity of O₃ Production on Modelled Conditions

Timeline

Action Points from Last Meeting

- ightharpoonup Submit mechanism comparison paper to ACP. \checkmark
- lacktriangle Analysis for solvent sector emissions model runs. \checkmark
- Modelling work for third paper. In progress
- ► Action plan timeline for finishing PhD. ✓

Outline

Previous Meeting Re-cap

Comparison of O₃ Production in Chemical Mechanisms

Impact of Solvent Speciations on O_3

Sensitivity of O₃ Production on Modelled Conditions

Timeline

Paper Status

- Submitted to ACP on 10th April.
- ▶ Robert Harley is the editor.
- Accepted for discussion phase on 13th April.
- Manuscript appeared in ACPD forum till 8th July.

Referee (William Stockwell) Comments

- Generally positive review.
- Commented that the older versions of the mechanisms should be considered as "relics of the past".
- Manuscript gives the impression that we consider the MCM to be "correct".
- Question on how much we learn about ozone production from more explicit versus less chemical mechanisms.

Outline

Previous Meeting Re-cap

Comparison of O₃ Production in Chemical Mechanisms

Impact of Solvent Speciations on O_3

Sensitivity of O₃ Production on Modelled Conditions

Timeline

Motivation

Compared Solvent Speciations

Speciation	Reference
TNO	[Builtjes et al., TNO Report, 2002]
IPCC	[Ehhalt et al., IPCC Report, 2001]
EMEP	[Simpson et al., ACP, 2010]
DE94	[Friedrich et. al., JAC, 2002]
GR95	[Sidiropoulos and Tsilingiridis, FEB, 2007]
GR05	[Sidiropoulos and Tsilingiridis, FEB, 2007]
UK98	[Goodwin, UK NAEI report, 2000]
UK08	[Murrells et al., UK NAEI Report, 2010]

Boxmodel Setup

- ▶ MECCA boxmodel over 7 days.
- ▶ Idealised urban area of 1000 km².
- ▶ Use different chemical mechanisms:
 - ► MCM v3.2,
 - ► MOZART-4,
 - ► RADM2.

Boxmodel Setup (Cont.)

- Solvent sector contributes 43 % to total NMVOC emissions (1000 tons/day) [Warnecke et al., JGR, 2007].
 Total NMVOC emissions of 430 tons/day.
- ▶ NMVOC emissions constant until noon of day 1.
- NO source tuned for maximum ozone production.

Ozone Mixing Ratio Time Series

- TNO - IPCC - EMEP - DE94 - GR95 - GR05 - UK98 - UK08

Correlation of Cumulative Ox Production and Alkane Emissions

Paper Status

- Prepared an initial draft focussing on modelling work.
- ► Erika will be first author.
- Final paper will include more background information on comparing the different solvent sector speciations.
- Submit to Atmospheric Environment by end-August.

Outline

Previous Meeting Re-cap

Comparison of O₃ Production in Chemical Mechanisms

Impact of Solvent Speciations on O₃

Sensitivity of O₃ Production on Modelled Conditions

Timeline

Original Boxmodel Setup

- MECCA boxmodel over 7 days.
- ▶ Initial NMVOC typical of Los Angeles.
- ▶ NO source tuned for maximum O₃ production.

Original Boxmodel Setup (cont.)

- Tagging follows organic products from VOC degradation
 ⇒ effects on O₃ production inferred from O_x production.
- Constant PBL height of 1 km
 - \Rightarrow no dilution or vertical mixing.
- Constant temperature of 293 K.

1. Tagging Approach

- ▶ VOC tagging approach implemented in global model by Shuai and Tim.
- Allows allocation of O₃ mixing ratios to source rather than comparing O_x production.
- Tagged MOZART-4 mechanism that was implemented in boxmodel for mechanism comparison study.

Real vs Tagged Mixing Ratios

 Non-tagged — Tagged CO HO₂ 2.0e-07 1.5e-11 1.9e-07 1.0e-11 1.8e-07 Mixing Ratio 5.0e-12 0.0e+00 NO₂ О3 8e-08 -3e-09 7e-08 2e-09 6e-08 5e-08 1e-09 4e-08 -0e+00 7 0 Time (Days) 5 з

Mixing Ratio Comparison between Old and New Tagging

2. Low and High NO_x Conditions

- Modelling rural and polluted urban conditions.
- ▶ MOZART-4 mechanism with VOC tagging approach.
- NO emissions calculated for maximum O₃ production scaled
 - ▶ 0.5 for Low NO_x
 - ▶ 1.5 for High NO_x

Mixing Ratio Comparisons in Different Atmospheric Regimes

Allocated Ozone Mixing Ratios

3. Vertical Mixing

- Included diurnal cycle for PBL height from CARES measurement campaign.
- Vertical mixing with free troposphere approach from Sandra Louren's thesis.
- Free troposphere mixing ratios for O₃ and CO from MATCH-MPIC model.

4. Temperature

- Run boxmodel at 295 K, scenario of a warmer climate.
- Compare O₃ between lower and higher temperatures.
- According to recent review by Pusede et al., temperature dependent chemistry of alkyl nitrates impacts O₃ production.
- Assess how this chemistry is represented in the chemical mechanisms used in comparison study.

Outline

Previous Meeting Re-cap

Comparison of O₃ Production in Chemical Mechanisms

Impact of Solvent Speciations on O₃

Sensitivity of O_3 Production on Modelled Conditions

Timeline

Finishing PhD

- ▶ Submit solvents sector emissions paper by end-August 2015.
- ► Finish sensitivity study paper by end-Dec 2015.
- Present sensitivity study at AGU in December 2015.
- Hand in thesis to reviewers by end-April 2016.
- Six weeks for reviewers to assess thesis.
- Display graded thesis at FU Examinations Office for 2 weeks prior to thesis defense.
- ▶ Defend thesis in July 2016.