24.11 Intersection of Affine Spaces

In this section we take a closer look at the intersection of affine subspaces. This subsection can be omitted at first reading.

First, we need a result of linear algebra. Given a vector space E and any two subspaces M and N, there are several interesting linear maps. We have the canonical injections $i \colon M \to M+N$ and $j \colon N \to M+N$, the canonical injections $in_1 \colon M \to M \oplus N$ and $in_2 \colon N \to M \oplus N$, and thus, injections $f \colon M \cap N \to M \oplus N$ and $g \colon M \cap N \to M \oplus N$, where f is the composition of the inclusion map from $M \cap N$ to M with in_1 , and g is the composition of the inclusion map from $M \cap N$ to N with in_2 . Then, we have the maps $f + g \colon M \cap N \to M \oplus N$, and $i - j \colon M \oplus N \to M + N$.

Proposition 24.15. Given a vector space E and any two subspaces M and N, with the definitions above,

$$0 \,\longrightarrow\, M \cap N \,\stackrel{f+g}{\longrightarrow}\, M \oplus N \,\stackrel{i-j}{\longrightarrow}\, M + N \,\longrightarrow\, 0$$

is a short exact sequence, which means that f + g is injective, i - j is surjective, and that Im(f + g) = Ker(i - j). As a consequence, we have the Grassmann relation

$$\dim(M) + \dim(N) = \dim(M+N) + \dim(M \cap N).$$

Proof. It is obvious that i-j is surjective and that f+g is injective. Assume that (i-j)(u+v)=0, where $u\in M$, and $v\in N$. Then, i(u)=j(v), and thus, by definition of i and j, there is some $w\in M\cap N$, such that $i(u)=j(v)=w\in M\cap N$. By definition of f and g, u=f(w) and v=g(w), and thus $\operatorname{Im}(f+g)=\operatorname{Ker}(i-j)$, as desired. The second part of the proposition follows from standard results of linear algebra (see Artin [7], Strang [170], or Lang [109]).

We now prove a simple proposition about the intersection of affine subspaces.

Proposition 24.16. Given any affine space E, for any two nonempty affine subspaces M and N, the following facts hold:

- (1) $M \cap N \neq \emptyset$ iff $\overrightarrow{ab} \in \overrightarrow{M} + \overrightarrow{N}$ for some $a \in M$ and some $b \in N$.
- (2) $M \cap N$ consists of a single point iff $\overrightarrow{ab} \in \overrightarrow{M} + \overrightarrow{N}$ for some $a \in M$ and some $b \in N$, and $\overrightarrow{M} \cap \overrightarrow{N} = \{0\}$.
- (3) If S is the least affine subspace containing M and N, then $\overrightarrow{S} = \overrightarrow{M} + \overrightarrow{N} + K\overrightarrow{ab}$ (the vector space \overrightarrow{E} is defined over the field K).