### Отчёт по прохождению внешнего курса

Основы информационной безопасности

Бережной Иван Александрович

### Содержание

| 1 | Цел | ь работы                   | 5  |
|---|-----|----------------------------|----|
| 2 | Зад | ание                       | 6  |
| 3 | Выг | олнение тестов             | 7  |
|   | 3.1 | Прохождение первого этапа  | 7  |
|   | 3.2 | Прохождение второго этапа  | 15 |
|   | 3.3 | Прохождение третьего этапа | 22 |
|   | 3.4 | Сертификат                 | 28 |
| 4 | Выв | оды                        | 29 |

# Список иллюстраций

| 3.1  | протокол прикладного уровня                     | /  |
|------|-------------------------------------------------|----|
| 3.2  | Уровень работы протокола ТСР                    | 8  |
| 3.3  | Корректные IP                                   | 8  |
| 3.4  | Функция DNS                                     | 8  |
| 3.5  | Последовательность уровней TCP/IP               | 9  |
| 3.6  | HTTP                                            | 9  |
| 3.7  | HTTPS                                           | 10 |
| 3.8  | TLS определяется всеми                          | 10 |
| 3.9  | TLS                                             | 10 |
| 3.10 | Содержимое куки                                 | 11 |
|      |                                                 | 11 |
| 3.12 | Где генерируются куки                           | 12 |
| 3.13 | Сессионные куки                                 | 12 |
|      |                                                 | 12 |
|      |                                                 | 13 |
|      |                                                 | 13 |
| 3.17 | Одностороннее использование TOR                 | 13 |
| 3.18 | Определение Wi-Fi                               | 14 |
| 3.19 | Уровень работы Wi-Fi                            | 14 |
| 3.20 |                                                 | 14 |
| 3.21 |                                                 | 15 |
|      |                                                 | 15 |
| 3.23 | Возможность шифровки загрузочного сектора диска | 16 |
|      |                                                 | 16 |
|      |                                                 | 16 |
| 3.26 | Устойчивые к брутфорсу пароли                   | 17 |
| 3.27 |                                                 | 17 |
|      |                                                 | 18 |
|      |                                                 | 18 |
| 3.30 | Соль                                            | 18 |
| 3.31 | Методы защиты данных от утечек                  | 19 |
|      | Фишинговые ссылки                               | 19 |
|      | Фишинговый имейл                                |    |
|      | Имейл спуфинг                                   |    |
|      | Вирус-троян                                     |    |
|      | Signal                                          |    |
|      | Суть сквозного шифрования                       |    |

| 3.38 Ассимитричные криптографические примитивы       |
|------------------------------------------------------|
| 3.39 Криптографическая хэш-функция                   |
| 3.40 Алгоритмы цифровой подписи                      |
| 3.41 Код аутентификации сообщения                    |
| 3.42 Обмен ключами Диффи-Хеллмена                    |
| 3.43 Протокол электронной цифровой подписи           |
| 3.44 Верификация ЭЦП                                 |
| 3.45 ЭЦП не обеспечивает                             |
| 3.46 Тип ЭЦП для отправки налоговой отчётности в ФНС |
| 3.47 CA                                              |
| 3.48 Платёжные системы                               |
| 3.49 Примеры многофакторной аутентификации           |
| 3.50 Аутентификация при онлайн платежах              |
| 3.51 Proof of work                                   |
| 3.52 Consensus                                       |
| 3.53 Что хранят участники блокчейна                  |
| 3.54 "Сертификат"                                    |

## 1 Цель работы

Ознакомиться с основными понятиями информационной безопасности

## 2 Задание

Пройти все этапы курса

### 3 Выполнение тестов

Поскольку тестов в совокупности не так много, а на отдельных этапах их вообще мало, я решил, что более целессобразно будет сделать один отчёт по прохождению всего курса, нежели делать множество отчётов по каждому этапу.

#### 3.1 Прохождение первого этапа

Протоколом прикладного уровня является HTTPS, поскольку он устанавливает правила общения с внешним ресурсом (рис. 3.1).



Рис. 3.1: Протокол прикладного уровня

Протокол ТСР работает на транспортном уровне, поскольку определяет правила передачи пакетов (рис. 3.2).



Рис. 3.2: Уровень работы протокола ТСР

Валидными IP-адресами считаются адреса, содержащие 4 октета, каждый из которых состоит из чисел в диапазоне от 0 до 255 (рис. 3.3).



Рис. 3.3: Корректные ІР

DNS - специальные сервера, которые сообщают устройству, какой IP привязан к домену (рис. 3.4).



Рис. 3.4: Функция DNS

Последовательность протоколов определяется абстрактной моделью OSI (рис. 3.5).



Рис. 3.5: Последовательность уровней ТСР/ІР

НТТР не шифрует данные (рис. 3.6).



Рис. 3.6: НТТР

Для успешной передачи данных в протоколе HTTPS была реализована двухфазная передача, состоящая из рукопожатия и непосредственно передачи (рис. 3.7).



Рис. 3.7: HTTPS

В каждом устройстве определена своя версия протокола TLS. При общении выбирается наименьшая, поскольку присутствует поддержка обратной совместимости (рис. 3.8).



Рис. 3.8: TLS определяется всеми

Шифрование данных происходит после рукопожатия (рис. 3.9).



Рис. 3.9: TLS

Куки не хранят чувствительные данные, поскольку их не составляет труда перехватить (рис. 3.10).



Рис. 3.10: Содержимое куки

Куки не используются для улучшения надёжности соединения, поскольку создавались с другой целью (рис. 3.11).



Рис. 3.11: Куки не используется для

Куки генерируются сервером в ходе общения с пользователем, затем отправляются этому пользователю и хранятся на его хосте (рис. 3.12).



Рис. 3.12: Где генерируются куки

Сессионные куки хранятся до тех пор, пока эта сессия не завершится. Отсюда и название (рис. 3.13).



Рис. 3.13: Сессионные куки

В луковой маршрутизации используется 3 ноды (рис. 3.14).



Рис. 3.14: Количество узлов TOR

Благодря тройному шифрованию адрес получателя известен только отправителю и выходной ноде. Таким образом ни одна нода не обладает полной информацией о всех участниках "общения" (рис. 3.15 и рис. 3.16).



Рис. 3.15: Скрытие ІР



Рис. 3.16: Множественные ключи

Получателю необязательно использовать Tor при общении, поскольку всю дешифровку осуществляют ноды (рис. 3.17).



Рис. 3.17: Одностороннее использование TOR

Определение Wi-Fi (рис. 3.18).



Рис. 3.18: Определение Wi-Fi

Wi-Fi работает на канальном уровне, поскольку связывает локальные устройства с интернетом (рис. 3.19).



Рис. 3.19: Уровень работы Wi-Fi

WEP считается устаревшим и небезопасным, потому что его ключ шифрования ограничен 40 битами (рис. 3.20).



Рис. 3.20: Небезопасный метод шифрования

Данные между хостом и роутером передаются в зашифрованном виде, дабы исклюлчить использование данных при перехвате (рис. 3.21).



Рис. 3.21: Передача данных Wi-Fi

Для домашней сети используется WPA2 Personal, поскольку это удобнее для пользователей, ведь Enterprise использует динамические ключи (рис. 3.22).



Рис. 3.22: Метод аутентификации в домашней сети

#### 3.2 Прохождение второго этапа

Загрузочный сектор диска можно и рекомендуется шифровать (рис. 3.23).



Рис. 3.23: Возможность шифровки загрузочного сектора диска

Шифрование дисков симметричное, поскольку оно гораздо быстрее асимметричного, что идёт в плюс пользователям (рис. 3.24).



Рис. 3.24: Симметричное шифрование диска

BitLocker установлен в Windows по умолчанию, а VeraCrypt является наиболее популярной сторонней программой для шифрования дисков (рис. 3.25).



Рис. 3.25: Программы для шифрования диска

Пароли должны состоять из цифр, символов и спец. символов, чтобы подобрать было труднее (рис. 3.26).



Рис. 3.26: Устойчивые к брутфорсу пароли

Пароли безопасно хранить в менеджере паролей, а пароль от него самого нужно хранить на нецифровом носителе или в голове (рис. 3.27).



Рис. 3.27: Безопасное место для хранения паролей

Капча используется для защиты от брутфорса ботами (рис. 3.28).



Рис. 3.28: Капча

Хэширование паролей нужно, чтобы сделать потенциальные утечки баз данных менее опасными (рис. 3.29).



Рис. 3.29: Хэширование паролей

Соль помогает изменить хэш слабого пароля, но это не защищает от перебора (рис. 3.30).



Рис. 3.30: Соль

Все методы, которые усложняют пароль или замедляют возможность перебора, помогут защитить от брутфорса (рис. 3.31).



Рис. 3.31: Методы защиты данных от утечек

Фишинговые ссылки похожи на настоящие, но имеют в пути другие доменные зоны или как-то видоизменяют сам путь (рис. 3.32).



Рис. 3.32: Фишинговые ссылки

Фишинговый имейл может прийти от знакомого адреса, если используется слабый протокол почтового сервиса (рис. 3.33).



Рис. 3.33: Фишинговый имейл

Спуфинг уже практически неактуален, поскольку придуманы более защищённые протоколы отправки Email (рис. 3.34).



Рис. 3.34: Имейл спуфинг

Троян маскирутеся под легитимную программу и пытается получить контроль над устройством (рис. 3.35).



Рис. 3.35: Вирус-троян

Ключ шифрования в протоколе Signal генерируется при отправке первого со-

общения пользователем (рис. 3.36).



Рис. 3.36: Signal

Сквозное шифрование использует пару ключей для конфеденциального общения узлов (рис. 3.37).



Рис. 3.37: Суть сквозного шифрования

Для правильной работы криптографических примитивов требуется наличие пары ключей у всех участников общения (рис. 3.38).

#### 3.3 Прохождение третьего этапа



Рис. 3.38: Ассимитричные криптографические примитивы

Криптографическая хэш-функция не обеспечивает конфиденциальность захэшированных данных, поскольку её невозможно вычислить в обратном порядке (рис. 3.39).



Рис. 3.39: Криптографическая хэш-функция

Перечисление алгоритмов цифровой подписи (рис. 3.40).



Рис. 3.40: Алгоритмы цифровой подписи

Код аутентификации сообщения относится к симметричным примитивам, поскольку используется симметричное шифрование (рис. 3.41).



Рис. 3.41: Код аутентификации сообщения

Определение обмена ключами Диффи-Хеллмана (рис. 3.42).



Рис. 3.42: Обмен ключами Диффи-Хеллмена

Протокол электронной цифровой подписи отностися к протоколам с публичным ключом, ведь пользователи могут проверить подпись этим ключом (рис. 3.43).



Рис. 3.43: Протокол электронной цифровой подписи

Механизм работы верификации ЭЦП (рис. 3.44).



Рис. 3.44: Верификация ЭЦП

ЭПС не обеспечивает конфиденциальность, поскольку содержит информацию о пользователе, сделавшем эту подпись (рис. 3.45).



Рис. 3.45: ЭЦП не обеспечивает

Усиленная квалифицированная электронная подпись при отправки налоговой отчётности в ФНС требуется для обеспечения юридической значимости, безопасности и достоверности (рис. 3.46).



Рис. 3.46: Тип ЭЦП для отправки налоговой отчётности в ФНС

Сертификаты для доменов выдают сертифицированные центры (рис. 3.47).



Рис. 3.47: СА

Список платёжных систем (рис. 3.48).



Рис. 3.48: Платёжные системы

Многофакторная аутентификация подразумевает собой ввод нескольких ключей для доступа к информации (рис. 3.49).



Рис. 3.49: Примеры многофакторной аутентификации

Для безопасности платёжных счетов пользователей при онлайн оплатах сегодня используется многофакторная аутентификация перед банком-эмитентом (рис. 3.50).



Рис. 3.50: Аутентификация при онлайн платежах

Устройство proof of work (рис. 3.51).



Рис. 3.51: Proof of work

Консенсус позволяет участникам блокчейна согласовывать операции без доверия друг к другу (рис. 3.52).



Рис. 3.52: Consensus

Все участники блокчейна хранят цифровую подпись (рис. 3.53).



Рис. 3.53: Что хранят участники блокчейна

Данный курс не предусматривает выдачу сертификатов, поэтому прикладываю скриншот-доказательство прохождения курса (рис. 3.54).

#### 3.4 Сертификат



Рис. 3.54: "Сертификат"

### 4 Выводы

В результате прохождения внешнего курса мы узнали, как обеспечивается безопасность в сети, с помощью каких протоколов общаются устройства в ней, как защитить свои устройства и аккаунты от злоумышленников, а также рассмотрели криптографическую составляющую сети.