

Music Listening Behavior: Forecasting Track Skipping

Harnessing LSTM for Enhanced User Experience

Ghina Al Shdaifat, Ansh Jhaveri, and Kendall Brogle

<u>Link to GitHub Repo</u>

1 PROBLEM STATEMENT

The need for improved Music

Recommendation Systems (MRS)

that can predict and adapt to user skip behavior

4 SOLUTION APPROACH

DEEP LEARNING

LSTM MODELS
HYPERPARAMETER
TUNING
SHAP

MACHINE LEARNING

DECISION TREE
GRADIENT BOOSTING
RANDOM FOREST

2 GOAL

Predict the likelihood of track skipping based on the duration for which a track has been played (skip_1, skip_2, skip_3, not_skipped)

3 TECHNICAL CHALLENGES

Balancing model accuracy with computational efficiency

Mitigating overfitting risks

Decipher & understand the meanings and implications of each variable within our dataset

5 VALUE & BENEFIT

Enhanced predictive accuracy that can drive user engagement and refine MRS personalization.

Motivation / Related Works

1. Gap in Existing Research

- Existing studies in music streaming, like Spotify's sequential skip prediction challenge, primarily focus on machine learning
- Noticeable gap in the application of deep learning techniques, particularly LSTM networks

2. Limitations of Previous Studies

- Spotify's study, despite its large dataset, faced challenges in computational efficiency and overfitting
- The MusicRecNt study's deep learning for genre classification was limited by its dataset's scale and diversity

3. Our Drive

- We aim to explore the uncharted territory of using LSTM networks for a deeper understanding of user skip behavior in music streaming
- This approach seeks to uncover complex temporal patterns overlooked by traditional models

4. Anticipated Impact

• By leveraging LSTMs, our project aspires to refine music recommendation systems, achieving a more personalized user experience by aligning with individual listening habits and preferences

5 PERFORMANCE EVALUATION

One hot encoding

1 DATA PREPARATION

2 MODEL SELECTION

- Precision
- Accuracy
- Recall •
- F1-Score
- AUC-ROC scores & curves

- Early stopping
- Model checkpointing

Networks (RNNs) with LSTM Simple LSTMs for skip_1, skip_2, skip_3, not_skipped

2 Hyperparameter

1 Recurrent Neural

Optimization

- Keras Tuner's Hyperband
- Adjusting parameters
- # of LSTM units
- Dropout rates
- Batch Normalization

3 Traditional Machine **Learning Models**

- Random Forest
- Gradient Boosting
- Logistic Regression

3 FEATURE ENGINEERING **AND SELECTION**

- SHAP (SHapley Additive exPlanations)
- Feature Importance

Implementation / Experimentation

DATA PROCESSING

- Merged and preprocessed dataset involving user interaction logs and track features
- o One-hot encoding for categorical variables; StandardScaler applied for numerical data normalization

LSTM MODEL SPECIFICS

- ∘ Batch Size: 64
- Initial Learning Rate: 0.001
- o Data Split: 70% Training, 30% Evaluation
- Architecture: Configured with specific layers for skip_1 and skip_3

HYPERPARAMETER TUNING VIA KERAS TUNER

- o Algorithm: Hyperband, adaptive resource allocation, early stopping, batch normalization
- o Tuned Parameters: LSTM Units (32 to 256), Dropout Rates (0.0 to 0.5), Optimizers ('adam', 'sgd')

BASELINE ML MODELS CONFIGURATION

- Random Forest: 100 Trees, Depth: 5
- o Gradient Boosting: 100 Stages, Learning Rate: 0.1, Max Depth: 3
- Logistic Regression: Max Iterations → 1,000

EVALUATION METRICS AND VALIDATION TECHNIQUES

- o Metrics: Accuracy, Precision, Recall, F1 Score, AUC-ROC
- Early Stopping: Patience set at 10 epochs; ModelCheckpoint based on validation loss

of times users skipped

Performance Metrics on LSTM Models

Targets	Train Accuracy	Test Accuracy	Val Accuracy	Test Loss
$\mathrm{skip}_{-}1$	84.91% - 88.44%	88.35%	$\sim \! 88.69\%$	28.62%
${ m skip}_2$	84.07% - 87.54%	87.61%	${\sim}87.42\%$	26.94%
${ m skip}_3$	95.75% - 98.15%	98.18%	$\sim 98.32\%$	7.50%
$not_skipped$	95.89% - 98.82%	98.96%	$\sim 98.77\%$	4.24%
	·			

Performance metrics of the Random Forest

Targets	Accuracy	Precision (F/T)	Recall (F/T)	F1-Score (F/T)
$\mathrm{skip}_{-}1$	87.80%	0.91/0.84	0.88/0.88	0.89/0.86
${ m skip}_2$	87.33%	0.90/0.85	0.83/0.91	0.86/0.88
skip_3	98.10%	0.99/0.98	0.96/0.99	0.97/0.99

Performance metrics of the Gradient Boosting

Targets	Accuracy	Precision (F/T)	Recall (F/T)	F1-Score (F/T)
$\mathrm{skip}_{-}1$	88.12%	0.92/0.84	0.87/0.89	0.89/0.86
${ m skip}_2$	87.53%	0.90/0.86	0.84/0.91	0.87/0.88
$\mathrm{skip}_{ ext{-}}3$	98.21%	0.99/0.98	0.95/1.00	0.97/0.99

- High predictive performance
- Strong correlation between user engagement and track completion

Could also indicate a sign of overfitting?

Targets	AUC-ROC Score	Accuracy
$skip_{-1}$	93.88%	87.80%
${ m skip}_2$	94.46%	87.33%
$skip_{-3}$	98.88%	98.10%

COMPLEX LSTM MODELS

Skip_1

Skip_3

Validation Accuracy: 88.73%

Test Accuracy: 88.20%

Test Loss: 31.55% AUC/ROC: 0.94

Validation Accuracy: 98.17%

Test Accuracy: 98.17%

Test Loss: 7.46%

AUC/ROC: 0.99

	Feature	Random Forest	Gradient Boosting	Logistic Regression
	End Trackdone	0.186/0.286/0.474	0.595/0.828/0.975	-2.09/-2.08/-2.58
7	Start Trackdone	0.115/0.084/0.071	0.214/0.086/NA	-0.86/-0.56/NA
	End Fwdbtn	0.106/0.114/0.186	0.074/0.113/0.013	1.16/1.12/1.45

Conclusion

Project Recap

Developed LSTM models to forecast user track skipping behavior in a music streaming context

Key Insights

- skip_3 behavior predicted with high accuracy (AUC/ROC of 0.99), with hist_user_behavior_reason_end_endplay as a key feature
- Marginal accuracy difference between complex and simple LSTM models, suggesting **similar predictive** capabilities

Complexity VS Efficiency

- Despite the introduction of complex LSTM models with Hyperparameter Tuning, simple LSTM models yielded comparable accuracy
- Given the **trade-off** between performance and computational efficiency, simpler LSTMs are recommended for operational use

Directions for Future Research

- Employ larger datasets to validate findings and expand model applicability
- Explore other deep learning techniques and their impact on prediction accuracy and interpretability
- Examine external factors influencing user engagement beyond the provided features

Ghina Al Shdaifat Kendall Brogle Ansh Jhaveri

Thank You!

Any questions?

