Detection of the Radical H₂CO+ by Electron Spin Resonance

By Shuddhodan P. Mishra and Martyn C. R. Symons* (Department of Chemistry, The University, Leicester LEI 7RH)

Summary Exposure of solutions of formaldehyde in sulphuric acid to ^{60}Co γ -rays at 77 K gave a radical whose e.s.r. spectrum is in accord with the structure $H_2\text{CO}^+$.

The iminoxyl radical, H₂CN, which is well characterised by e.s.r. spectroscopy, and is a frequently detected intermediate, has an electronic structure (I) in which the unpaired electron is strongly delocalised onto the two

J.C.S. CHEM. COMM., 1975

hydrogen atoms $[A(^{1}H) = 87.5 G]$. However, the isoelectronic radical H₂CO+ (II) has never been detected by e.s.r. spectroscopy. We find that a well defined, anisotropic, doublet is obtained after exposure of solutions of formaldehyde in H_2SO_4 (or D_2SO_4) to 60Co γ -rays at 77 K.

If these lines are taken as the $M_{\rm I}=\pm 1$ components of a triplet (the central region has intense components from HSO₄ and ·SO₃H radicals which completely conceal the $M_{\rm I}=0$ line) then the data given in the Table are obtained. These results are reasonable for H₂CO+. The positive shift in g₁₁, although not observed for H₂CN, is nevertheless expected for structure (II).

This identification is supported by the observation that on annealing above 77 K these features were lost as an asymmetric doublet characteristic of HCO grew in with a final intensity equal to that for the 'H2CO+' radical (equation 1).

$$H_2C\dot{O}^+ + H_2SO_4 \rightarrow H\dot{C}O + H_3SO_4^+$$
 (1)

This means that whereas HCN⁻ is a strong base,³ H₂CO+ is a strong acid even in concentrated sulphuric acid.

(Received, 10th September 1975; Com. 1030.)

E. L. Cochran, F. J. Adrian, and V. A. Bowers, J. Chem. Phys., 1962, 36, 1938.
M. C. R. Symons, Tetrahedron, 1973, 29, 615.
I. S. Ginns and M. C. R. Symons, J.C.S. Dalton, 1972, 185.