Math 171 Homework 5 (due May 6)

Problem 34.2.

- (a) Use Exercise 30.8 and the Heine-Borel theorem to prove that if f is continuous on [a, b] and f(x) > 0 for every x in [a, b], then there exists $\varepsilon > 0$ such that $f(x) \ge \varepsilon$ for every $x \in [a, b]$.
- (b) Prove the statement in part (a) by considering the function g(x) = 1/f(x).

Solution:

(a) For every $t \in [a, b]$, consider the function $g_t : [a, b] \to \mathbb{R}$ given by $h_t(x) = f(x) - \frac{1}{2}f(t)$. We have that $h_t(t) = \frac{1}{2}f(t) > 0$ is continuous at x = t, so by Exercise 30.8 there exists $\delta_t > 0$ such that $h_t(x) > 0$ for every $x \in (t - \delta_t, t + \delta_t) \cap [a, b]$.

We know that the collection open intervals $\{(t - \delta_t, t + \delta_t) \mid t \in [a, b]\}$ covers [a, b], so by Heine-Borel Theorem there exists an finite subcollection $\{(t_i - \delta_{t_i}, t_i + \delta_{t_i}) \mid i = 1, \ldots, n\}$.

Let $\varepsilon = \min\{\frac{1}{2}f(t_i) \mid i = 1, ..., n\}$. Then $\varepsilon > 0$ and for every $x \in [a, b]$ there exists an t_i such that $x \in (t_i - \delta_{t_i}, t_i + \delta_{t_i})$, so

$$f(x) - \frac{1}{2}f(t_i) = h_{t_i}(x) > 0$$

and consequently $f(x) > \frac{1}{2}f(t_i) \ge \varepsilon$.

(b) By Theorem 40.4vi, g is continuous on [a, b], so by Theorem 42.6 g is bounded on M. Thus, there exists L > 0 such that for every $x \in [a, b]$ we have that $g(x) \leq M$. Let $\varepsilon := M$. Then for every $x \in [a, b]$ we have that $f(x) \geq \varepsilon$.

Problem 34.6. (Uniform continuity).

Prove that if f is continuous on [a, b] and $\varepsilon > 0$, then there exists $\delta > 0$ such that if $|x - y| < \delta$ and $x, y \in [a, b]$, then $|f(x) - f(y)| < \varepsilon$.

Solution:

By definition of continuity we know that for every $x \in [a, b]$ there exists $\delta_x > 0$ such that for every $y \in (x - \delta_x, x + \delta_x) \cap [a, b]$ we have that $|f(y) - f(x)| < \varepsilon/2$. Then for any two element y and z of $(x - \delta_x, x + \delta_x) \cap [a, b]$ we have that

$$|f(y) - f(z)| \le |f(y) - f(x)| + |f(x) - f(z)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

We know that the collection of open intervals $\{(x - \frac{\delta_x}{2}, x + \frac{\delta_x}{2}) \mid x \in [a, b]\}$ covers [a, b]. Hence, by Heine-Borel Theorem, there exists finite subcollection $\{(x_i - \frac{\delta_{x_i}}{2}, x_i + \frac{\delta_{x_i}}{2}) \mid i = 1, \dots, n\}$ that covers [a, b]. Let

$$\delta := \min \left\{ \frac{\delta_{x_i}}{2} \mid i = 1, \dots, n \right\}.$$

Then given any $x, y \in [a, b]$ with $|x - y| < \delta$, since the intervals $(x_i - \frac{\delta_{x_i}}{2}, x_i + \frac{\delta_{x_i}}{2})$ cover [a, b], there exists i such that x is an element of $(x_i - \frac{\delta_{x_i}}{2}, x_i + \frac{\delta_{x_i}}{2})$.

Then

$$|y - x_i| \le |y - x| + |x - x_i| < \delta + \frac{\delta_{x_i}}{2} \le \delta_{x_i},$$

so y lies in $(x_i - \delta_{x_i}, x_i + \delta_{x_i})$. Since x and y are both elements of $(x_i - \delta_{x_i}, x_i + \delta_{x_i})$, we have that $|f(x) - f(y)| < \varepsilon$, as desired.

Problem 35.9.

Let H^{∞} denote the set of all real sequences $\{a_n\}$ such that $|a_n| \leq 1$ for every positive integer n. H^{∞} is called the *Hilbert cube*.

(a) Let $\{a_n\}, \{b_n\} \in H^{\infty}$. Prove that the series

$$\sum_{n=1}^{\infty} \frac{|a_n - b_n|}{2^n}$$

converges.

(b) Prove that

$$d(\{a_n\},\{b_n\}) := \sum_{n=1}^{\infty} \frac{|a_n - b_n|}{2^n}$$

defines a metric on H^{∞} .

Solution:

(a) We have

$$|a_n - b_n| \le |a_n| + |b_n| \le 2$$

for every n. Hence, the series converges by Comparison test with the series $\sum_{n=1}^{\infty} \frac{1}{2^{n-1}}$

- (b) We verify the axioms of a metric:
 - Non-negativity: $d(\{a_n\}, \{b_n\}) \ge 0$, being a sum of a series of non-negative terms.
 - Distance to self: $d(\{a_n\}, \{a_n\}) = 0$ because $d(\{a_n\}, \{a_n\})$ is the sum of a series consisting of zeros.
 - Non-degeneracy: If $d(\{a_n\}, \{b_n\}) = 0$, then $a_n = b_n$ for every n.
 - Symmetry: $d({a_n}, {b_n}) = d({b_n}, {a_n})$ because $|a_n b_n| = |b_n a_n|$.
 - Triangle inequality: we know that triangle inequality holds term-wise:

$$\frac{|a_n - c_n|}{2^n} \le \frac{|a_n - b_n|}{2^n} + \frac{|b_n - c_n|}{2^n}$$

for every n. Hence, it also holds for partial sums:

$$\sum_{n=1}^{k} \frac{|a_n - c_n|}{2^n} \le \sum_{n=1}^{k} \frac{|a_n - b_n|}{2^n} + \sum_{n=1}^{k} \frac{|b_n - c_n|}{2^n}.$$

Taking the limit of both sides as k goes to ∞ and applying Squeeze Theorem we get the desired triangle inequality for d:

$$d(\{a_n\}, \{c_n\}) \le d(\{a_n\}, \{b_n\}) + d(\{b_n\}, \{c_n\}).$$

Problem 41.4.

Let M be a metric space and let X be a subset of M with the relative metric. Prove that if f is a continuous function on M, then its restriction $f|_X$ to X is a continuous function on X.

Solution:

We use the sequential characterization of continuity as in Theorem 40.2.

Let $\{x_n\}$ be a sequence of elements of X converging to x in the relative metric. Then $\{x_n\}$ also converges to x viewed as a sequence in M, hence the sequence $\{f(x_n)\}$ converges to f(x) which is the same as saying that the sequence $\{f(x_n)\}$ converges to f(x) because f(x) for all $x \in X$.

Problem 42.1.

Prove that none of the spaces \mathbb{R}^n , ℓ^1 , ℓ^2 , c_0 , ℓ^∞ is compact.

Solution:

By Theorem 42.6 it suffices to produce an unbounded continuous function f on each of these spaces to show that they are not compact. We will choose the function of the form f(x) := d(x, a) where a is a fixed point in the respective space. Such an f is continuous by Theorem 40.3.

For \mathbb{R}^n pick a to be the zero vector $\underline{0} = (0, \dots, 0)$. For every L > 0, let $x := (L+1, 0, 0, \dots, 0)$. Then

$$f(x) = d(x, \underline{0}) = L + 1 > L.$$

Thus, f is unbounded.

For all the other spaces we pick a to be the zero sequence $\underline{0}$: $\underline{0}_n = 0$. For every L > 0, let x be the sequence whose first element is L+1 and the rest are 0: $x_1 = L+1$ and $x_n = 0$ for n > 1. Note that x is an element of each of the spaces ℓ^1, ℓ^2, c_0 and ℓ^{∞} . Then

$$f(x) = d(x, 0) = L + 1 > L$$

with respect to each of the metrics ℓ^1 , ℓ^2 and ℓ^{∞} .

Problem 42.2.

Let X be a compact subset of a metric space M. Prove that X is closed.

Solution:

By Theorem 39.5 it suffices to show that the complement X^c of X is open. Let y be an arbitrary point of X^c . Let $f: M \to \mathbb{R}$ be a function given by f(x) = d(x, y). By Theorem 40.3 f is continuous.

Let $U_n := f^{-1}((1/n, \infty))$. By Theorem 40.5iii U_n is open. Also, for every $x \in X$ we have that d(x,y) > 0, so there exists $n \in \mathbb{N}$ such that 1/n < d(x,y) and consequently $x \in U_n$. Therefore, $\{U_n\}_{n \in \mathbb{N}}$ forms an open cover of X. Since X was compact, there exists an open subcover $\{U_{n_k}\}$ of X. Let n_j be the largest among n_k 's. Then $U_{n_k} \subset U_{n_j}$ for every k. Therefore, $X \subset U_{n_j}$, i.e. for all points $x \in X$ we have d(x,y) > 1/n.

In particular, for every $z \in M$ such that $d(z, y) < 1/n_j$ we have that $z \in X^c$, so X^c contains an open ball of radius $1/n_j$ around y. Thus, X^c is open.

Problem 1. Closures and continuity. Let M and N be metric spaces. Show that the following are equivalent:

- (i) $f: M \to N$ is continuous;
- (ii) $f(\bar{A}) \subset \overline{f(A)}$ for all sets $A \subset M$;
- (iii) $\overline{f^{-1}(B)} \subset f^{-1}(\overline{B})$ for all subsets $B \subset N$.

Solution:

• (ii) \Rightarrow (i) Assume (ii). By Theorem 40.2 to prove continuity of f it suffices to show that the sequence $\{f(x_n)\}$ converges to f(x) for every sequence $\{x_n\}$ of elements of M converging to $x \in M$.

We will show the previous statement by contradiction. Assume a $\{x_n\}$ in M converges to $x \in M$ and the sequence $\{f(x_n)\}$ does not converge to f(x). Then, by definition of convergence, there exists $\varepsilon > 0$ such that for every N there exists $n \geq N$ with $d(f(x_n), f(x)) \geq \varepsilon$.

Hence, there exists a subsequence $\{f(x_{n_k})\}\$ of $\{f(x_n)\}\$ such that $d(f(x_{n_k}), f(x)) \geq \varepsilon$ for every k.

Let A be the set of values of the subsequence $\{x_{n_k}\}$. By construction, for every $p \in A$, $d(f(p), f(x)) \ge \varepsilon$. We know that $\{x_{n_k}\}$ converges to x, being a subsequence of $\{x_n\}$. Therefore, $x \in \bar{A}$.

By assumption (ii), $f(x) \in f(A)$. Therefore, there exists a sequence $\{y_n\}$ of elements of f(A) converging to f(x). So, there exists n such that $d(y_n, f(x)) < \varepsilon$. Since y_n is an element of f(A), it can be written as $y_n = f(p)$ for some $p \in A$. However, $d(f(p), f(x)) \ge \varepsilon$, so we got the desired contradiction.

- (iii) \Rightarrow (ii) Assume (iii). Let A be a subset of M and let x be any element of \bar{A} . Fix a sequence $\{x_n\}$ of elements of A converging to x. It suffices to show that $f(x) \in \overline{f(A)}$. Let B = f(A). For each x_n , $f(x_n)$ is an element of f(A), so x_n is an element of $f^{-1}(B)$. Therefore, $x \in \overline{f^{-1}(B)}$. By assumption (iii), $x \in f^{-1}(\bar{B})$ which implies $f(x) \in \bar{B}$, as desired.
- (i) \Rightarrow (iii) Assume (i). Let B be a arbitrary subset of N and let x be an arbitrary element of $\overline{f^{-1}(B)}$. Fix a sequence $\{x_n\}$ of element of $f^{-1}(B)$ converging to x. By assumption (i), the sequence $\{f(x_n)\}$ converges to f(x). For every n, since $x_n \in f^{-1}(B)$ we have that $f(x_n) \in B$. Therefore, the limit f(x) of $\{f(x_n)\}$ is a limit point of B: $f(x) \in \overline{B}$. Thus, $x \in f^{-1}(\overline{B})$, as desired.

Problem 2. Closures and interiors in the relative metric. (Note: this is basically book problem 41.5 rewritten with the notation we've been using in class and homework.)

(a) Let M be a metric space and $X \subset M$ a subset endowed with the relative metric. If Y is a subset of X, let \bar{Y}^X denote the closure of Y in the metric space X. Prove that $\bar{Y}^X = \bar{Y} \cap X$.

(b) Recall that we defined the *interior* B of a set $B \subset N$ in a metric space N on last week's homework. If $Y \subset X \subset M$ as above, state and prove a corresponding result to (a) comparing the interior of Y in X to the interior of Y in M (also, introduce notation for the two different notions.)

Solution:

(a) We get the desired result via the following sequence of equivalences.

$$x \in \bar{Y}^X$$
.

- $\Leftrightarrow x \in X$ and there exists a sequence $\{x_n\}$ in $Y \subset X$ converging to x with respect to the relative metric d_X on X.
- $\Leftrightarrow x \in X$ and there exists a sequence $\{x_n\}$ in $Y \subset X$ converging to X with to the metric d_M on M.
- $\Leftrightarrow x \in \bar{Y} \cap X.$
- (b) Let \mathring{Y}^X denote the interior of Y in X. We show that if $Y \subset X \subset M$ then

$$\mathring{Y} = \mathring{Y}^X \cap \mathring{X}$$
.

by proving inclusions both ways.

 $\mathring{Y} \subset \mathring{Y}^X \cap \mathring{X}$. Indeed, given $y \in \mathring{Y}$, there exists an open ball $B_{\varepsilon}^M(y)$ in M that is a subset of Y. In particular, $B_{\varepsilon}^M(y) \subset X$, so $y \in \mathring{X}$. Also, $B_{\varepsilon}^M(y) \cap X = B_{\varepsilon}^X(y)$ is the ε -ball in X with the relative metric and it is contained in Y. Hence, $y \in \mathring{Y}^X$.

 $\mathring{Y} \supset \mathring{Y}^X \cap \mathring{X}$. Given $y \in \mathring{Y}^X \cap \mathring{X}$, we can find an open ball $B^M_{\varepsilon_1}(y)$ which is a subset of X. Since $y \in \mathring{Y}^X$, there exists an open ball $B^X_{\varepsilon_2}(y)$ which is a subset of Y. Let $\varepsilon = \min\{e_1, e_2\}$. Then any element of $B^M_{\varepsilon}(y)$ is an element of X, hence an element of $B^X_{\varepsilon}(y)$ and consequently and element of Y. Thus, $y \in \mathring{Y}$.

Problem 3. An interesting example of closed sets in the relative metric. Regard \mathbb{Q} , the set of all rational numbers, as a metric space with the metric d(p,q) = |p-q| (this is the relative metric for the inclusion $\mathbb{Q} \subset \mathbb{R}$). Let E be the subset of all $p \in \mathbb{Q}$ such that $2 < p^2 < 3$. Show that E is closed and bounded in \mathbb{Q} but E is not compact. Is E open in \mathbb{Q} ?

Solution:

Since $\sqrt{2}$ and $\sqrt{3}$ are not in \mathbb{Q} , E is the intersection of a closed subset $[-\sqrt{3}, -\sqrt{2}] \cup [\sqrt{2}, \sqrt{3}]$ with \mathbb{Q} , and hence closed by Theorem 41.2ii.

It is bounded because for every $p \in E$ we have |p| < 2.

To show that E is not compact we construct an infinite open cover that does not have a finite subcover as follows. Let $U_n = (-\infty, \sqrt{3} - 1/n) \cap \mathbb{Q}$. Then each U_n is open in \mathbb{Q} by Theorem 41.2i because it is the intersection of an open set with \mathbb{Q} . Together $\{U_n\}$ covers E because every $x \in E$ satisfies $x < \sqrt{3}$, so there exists n such that $1/n < \sqrt{3} - x$ and hence $x \in U_n$. However, no finite subcollection $\{U_{n_k}\}$ covers E. Indeed, given any such finite subcollection let $n = \max\{n_k\}$. By denseness of rationals we can find a rational number q

in $(\sqrt{3} - 1/n, \sqrt{3})$. By construction, this q is an element of E and not an element of any of the U_{n_k} . Thus, no finite subcollection $\{U_{n_k}\}$ covers E, so E is not compact.

E is a also open in \mathbb{Q} because it is the intersection of an open set $(-\sqrt{3}, -\sqrt{2}) \cup (\sqrt{2}, \sqrt{3})$ with \mathbb{Q} .

Problem 4.

- (a) Let M be a metric space. A subset $X \subset M$ is said to be *dense* if $\overline{X} = M$. Show that if $X \subset M$ is dense, then for any point $p \in M$ and any $\varepsilon > 0$, there exists a point $x \in X$ with $x \in B_{\varepsilon}(p)$.
- (b) A metric space M is said to be *separable* if it contains a countable, dense set. Show that \mathbb{R}^k is separable. Hint: Let X be the set of points with only rational coordinates.

Solution:

- (a) Let p be an arbitrary point of M and ε an arbitrary positive number. We have that $p \in \overline{X}$, so there exists a sequence $\{p_n\}$ of elements of X converging to p. By the definition of convergence, there exists N such that for every $n \geq N$, $d(x_n, p) < \varepsilon$. In particular, $x_N \in B_{\varepsilon}(p)$.
- (b) We know that X as defined in the hint is countable, being a finite product \mathbb{Q}^k of countable sets \mathbb{Q} .

We will show that X is dense in \mathbb{R}^k . Let $\underline{x} = (x_1, \dots, x_k)$ be an arbitrary point of \mathbb{R}^k . Since \mathbb{Q} is dense in \mathbb{R} , for every coordinate x_i we can pick a sequence $q_i^{(k)}$ in \mathbb{Q} converging to x_i . Then by Theorem 37.2 we know that the sequence $\{\underline{q}^{(k)}\}$ converges to x.

Problem 5.

A collection $\mathcal{V} := \{V_{\alpha}\}_{{\alpha} \in I}$ of open subsets of a metric space M is said to be a base for M If the following is true: for every $p \in M$ and every open set $U \subset M$ containing p there exists V_{α} containing p and that is a subset of U. In other words, every open set in M is the union of a subcollection of the $\{V_{\alpha}\}_{{\alpha} \in I}$.

Prove that every separable metric space has a countable base. Hint: take all open balls with rational radius whose center lies in some countable dense subset of M.

Solution:

Let M be a separable metric space. Consider a countable dense subset X of M. As suggested in the hint consider the collection $\mathcal{V} := \{B_{1/n}(x) \mid x \in X, n \in \mathbb{N}\}\}$. We know that \mathcal{V} is countable because it is equivalent to cartesian product $X \times \mathbb{N}$ of two countable sets. We show that \mathcal{V} forms a base of M.

Given $p \in M$ and open set U containing p, choose $\varepsilon > 0$ such that $B_{\varepsilon}(p)$ is contained in U. Choose a positive integer n such that $1/n < \varepsilon/2$. By denseness of X, we can choose $x \in X$ that is contained in $B_{1/n}(p)$. Then $p \in B_{1/n}(x)$.

If we show that $B_{1/n}(x) \subset B_{\varepsilon}(p)$ we are done because then $B_{1/n}(x)$ is an element of \mathcal{V} containing p that is a subset of U.

Given any $y \in B_{1/n}(x)$, by the triangle inequality

$$d(y,p) \le d(y,x) + d(x,p) < \frac{1}{n} + \frac{1}{n} < \varepsilon,$$

so $y \in B_{\varepsilon}(p)$, as desired.

Problem 6.

Prove that every compact metric space K has a countable base and therefore conclude that K is separable. Hint: for every $n \in \mathbb{N}$, there are finitely many neighborhoods of 1/n which cover K.

Solution:

Fix an arbitrary integer n. The collection of open sets $\{B_{1/n}(x) \mid x \in K\}$ covers K, so by compactness of K there exists a finite subcollection $\{B_{1/n}(x_k^{(n)}) \mid k = 1, \ldots, m_n\}$ that covers K.

Consider the union \mathcal{V} of the finite covers of the form $\{B_{1/n}(x_k^{(n)}) \mid k=1,\ldots,m_n\}$ over all n. We claim that \mathcal{V} forms a base.

Indeed, given any $p \in K$ and an open set U containing p, fix an $\varepsilon > 0$ such that $B_{\varepsilon}(p) \subset U$. Next, fix a positive integer n such that $1/n < \varepsilon/2$. Since $\{B_{1/n}(x_k^{(n)}) \mid k = 1, \ldots, m_n\}$ is a cover of K, there exits k such that $B_{1/n}(x_k^{(n)})$ contains p.

Then $B_{1/n}(x_k^{(n)} \subset B_{\varepsilon}(p))$. Indeed, for every $y \in B_{1/n}(x_k^{(n)})$ by the triangle inequality we have that

$$d(y,p) \le d(y,x_k^{(n)}) + d(x_k^{(n)},p) < \frac{1}{n} + \frac{1}{n} < \varepsilon.$$

Thus, V indeed forms a base of K. We know that V is countable, being a countable union of finite sets.

Finally, we show that if K has a countable base \mathcal{V} then K is separable. For every open set U in \mathcal{V} pick an element x of U. Let X be the set of the picked elements. Then X is countable because \mathcal{V} is. We show that X is dense, by showing the complement of its closure $(\overline{X})^c$ is empty.

Indeed, assume that $(\overline{X})^c$ is non-empty and pick an element $p \in (\overline{X})^c$. Then there exists an element U of the base containing p that is a subset of $(\overline{X})^c$. However, by construction of X, X contains at least one element of U leading to a contradiction.

Problem 7. Constructing open and closed sets. By Theorem 40.5, f is continuous if and only if the preimage under f of any open set (respectively, closed set) is open (respectively, closed). This suggests an easy way to give examples of open and closed sets in a metric space M: write down a function $f: M \to \mathbb{R}$, show that f is continuous and take the preimage under f of an open or closed set in \mathbb{R} . Then we can take intersections/unions of such sets to get even more open and closed sets. Using this method:

- (a) Show that the generalized ellipsoid $E_{a_1,\ldots,a_{k+1}} = \{(x_1,\ldots,x_{k+1}) \mid \sum_{i=1}^{k+1} a_i x_i^2 = 1\}$ is a closed subset of \mathbb{R}^{k+1} for a_1,\ldots,a_{k+1} fixed positive real numbers.
- (b) Show that $V := \{\underline{a} = \{a_n\} \in \ell^{\infty} \mid a_1^2 + a_2 < 1 \text{ and } a_3 > a_4\}$ is an open subset of ℓ^{∞} .

Solution:

(a) Let $f: \mathbb{R}^{k+1} \to \mathbb{R}$ be given by

$$f(x_1, \dots, x_{k+1}) = \sum_{i=1}^{k+1} a_i x_i^2.$$

The function f is continuous, being a sum of products of continuous coordinate functions x_i . Then $E_{a_1,\ldots,a_{k+1}}$ is closed being the preimage of the closed set $\{1\}$ under f.

(b) Let $g, h : \ell^{\infty} \to \mathbb{R}$ be given by

$$g(\underline{a}) = a_1^2 + a_2$$

and

$$h(\underline{a}) = a_3 - a_4.$$

Again, the functions g and h are continuous because they are polynomials in coordinate functions a_i which are continuous. Then V is the intersection of open sets $g^{-1}((-\infty, 1))$ and $h^{-1}((0, \infty))$ and hence open too.