Name:			
Section:			

Math 10560, Final Review May 20, 3000

- The Honor Code is in effect for this quiz. All work is to be your own.
- Please turn off all cellphones and electronic devices.
- Calculators are NOT allowed
- The quiz lasts for 50 min.

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!					
1.	(a)	(b)	(c)	(d)	(e)
2.	(a)	(b)	(c)	(d)	(e)
3.	(a)	(b)	(c)	(d)	(e)
4.	(a)	(b)	(c)	(d)	(e)
5.	(a)	(b)	(c)	(d)	(e)
6.	(a)	(b)	(c)	(d)	(e)
7.	(a)	(b)	(c)	(d)	(e)
8.	(a)	(b)	(c)	(d)	(e)
9.	(a)	(b)	(c)	(d)	(e)
10.	(a)	(b)	(c)	(d)	(e)
11.	(a)	(b)	(c)	(d)	(e)
12.	(a)	(b)	(c)	(d)	(e)
13.	(a)	(b)	(c)	(d)	(e)
14.	(a)	(b)	(c)	(d)	(e)
15.	(a)	(b)	(c)	(d)	(e)

Name: $_$	
Section:	

Multiple Choice

1.(6 pts.) What can be said about the integrals

$$(i) \int_0^1 \frac{e^x}{x^2} dx;$$

$$(ii) \int_1^\infty \frac{\cos^2 x}{x^2} dx?$$

- (a) both (i) and (ii) converge
- (b) (i) diverges and (ii) converges
- (c) (i) converges and (ii) diverges
- (d) both (i) and (ii) diverge
- (e) neither integral (i) nor (ii) is improper

2.(6 pts.) The point $(2, \frac{7\pi}{3})$ in polar coordinates corresponds to which point below in Cartesian coordinates?

(a) $(\sqrt{3}, 1)$

(b) Since $\frac{7\pi}{3} > 2\pi$, there is no such point

(c) $(1, \sqrt{3})$

(d) $(-1, \sqrt{3})$

(e) $(-\sqrt{3}, 1)$

Name: _____ Section:

3.(6 pts.) Which integral below gives the area inside the polar curve $r = \sin(3\theta)$?

(a)
$$\frac{1}{2} \int_0^{\pi} \sqrt{\sin^2(3\theta) + 9\cos^2(3\theta)} \ d\theta$$
 (b) $\frac{1}{2} \int_{\pi/6}^{\pi/3} \sin^2(3\theta) \ d\theta$

(b)
$$\frac{1}{2} \int_{\pi/6}^{\pi/3} \sin^2(3\theta) \ d\theta$$

(c)
$$\frac{1}{2} \int_0^{\pi} \sin^2(3\theta) \ d\theta$$

(d)
$$\frac{1}{2} \int_0^{2\pi} \sin^2(3\theta) \ d\theta$$

(e)
$$\frac{1}{2} \int_0^{2\pi} \sqrt{\sin^2(3\theta) + 9\cos^2(3\theta)} \ d\theta$$

4.(6 pts.) Which of the following gives the graph of the curve described by the polar equation

$$r = \cos(3\theta)$$
.

- (a) V
- (b) IV
- (c) II
- (d) I
- (e) III

Section:

5.(6 pts.) The function $f(x) = x + \sqrt{x}$ is one-to-one. Find the tangent line to the inverse function $f^{-1}(x)$ at the point x = 2.

(a) $y-2=\frac{3}{2}(x-1)$

- (b) $y-2-\sqrt{2}=\frac{3}{2}(x-2)$
- (c) $y-2-\sqrt{2}=\frac{2}{3}(x-2)$
- (d) $y-1=\frac{2}{3}(x-2)$

(e) $y-1=\frac{3}{2}(x-2)$

6.(6 pts.) Compute the integral

$$\int_0^1 4 \tan^{-1}(x) dx \ .$$

- (a) $\pi \ln 4$
- (b) $2\pi \ln 2$ (c) $\frac{\pi}{\ln 2}$

(d) $\pi - 1$

 $(e) \quad 0$

Section:

7.(6 pts.) Find $\int_0^{\frac{\pi}{4}} \tan^2 x \sec^4 x \, dx$.

- (a) $\frac{2}{5}$ (b) $\frac{2}{3}$ (c) $\frac{8}{15}$ (d) $\frac{2}{15}$ (e) 1

8.(6 pts.) Which equation below is the partial fraction decomposition of the rational function

$$\frac{5x^2 - 10x - 8}{(x-2)(x^2+4)}.$$

(a) $\frac{-1}{x-2} + \frac{6x+2}{x^2+4}$

(b) $\frac{-1}{x-2} + \frac{x+2}{x^2+4}$

(c) $\frac{5}{x-2} + \frac{x+1}{x^2+4}$

(d) $\frac{5}{x-2} + \frac{6x+1}{x^2+4}$

(e) $\frac{-1}{x-2} + \frac{2}{x^2+4}$

Name: ______Section: _____

9.(6 pts.) The length of the curve $y = \frac{x^3}{6} + \frac{1}{2x}$, $\frac{1}{2} \le x \le 1$, is given by:

(a)
$$\frac{1}{2} \int_{1/2}^{1} \sqrt{1 + (x + x^{-1})^2} dx$$

(b)
$$\frac{1}{2} \int_{1/2}^{1} \sqrt{(x^2 + x^{-2})} dx$$

(c)
$$\frac{1}{2} \int_{1/2}^{1} (x^2 + x^{-2}) dx$$

(d)
$$\frac{1}{2} \int_{1/2}^{1} \sqrt{1 + (x^2 + x^{-2})^2} dx$$

(e)
$$\frac{1}{2} \int_{1/2}^{1} (x + x^{-1}) dx$$

Name: ______Section: _____

10.(6 pts.) Find the area enclosed by the following cycloid and the x-axis:

$$x(t) = t - \sin t$$

$$y(t) = 1 - \cos t$$

$$0 \le t \le 2\pi.$$

(a) 2π

(b) π

(c) $\frac{\pi^2}{3}$

(d) 3π

(e) π^2

Name: Section:

11.(6 pts.) Let C be a constant. Which of the following is a solution to the differential equation $y' = x + \frac{1}{x}y$?

- (a) y = C (b) y = x + C (c) $y = \frac{x + C}{x}$ (d) y = x(x + C) (e) $y = Cx^2$

12.(6 pts.) Use Simpson's rule with step size $\Delta x = 1$ to appoximate the integral $\int_0^4 f(x)dx$ where a table of values for the function f(x) is given below.

x	0	1	2	3	4
f(x)	2	1	2	3	5

- (a) 9
- (b) 11
- (c) 9.5
- (d) 8
- (e) 10.4

Name: _______
Section: ______

13.(6 pts.) Which one of the following statements is TRUE?

- (a) $\sum_{n=1}^{\infty} \frac{1}{((\sin n)^2 + 1) n}$ is divergent by ratio test.
- (b) $\sum_{n=1}^{\infty} \frac{1}{\left((\sin n)^2 + 1\right)n}$ is absolutely convergent by root test.
- (c) $\sum_{n=1}^{\infty} \frac{1}{((\sin n)^2 + 1) n}$ is divergent by comparison test.
- (d) $\sum_{n=1}^{\infty} \frac{1}{((\sin n)^2 + 1) n}$ is absolutely convergent by ratio test.
- (e) none of the above

14.(6 pts.) Which of the following statements is TRUE?

- (a) $\sum_{n=1}^{\infty} \frac{(-1)^n(\sqrt{n}+1)}{n}$ diverges.
- (b) $\sum_{n=1}^{\infty} \frac{(-1)^n(\sqrt{n}+1)}{n}$ converges conditionally.
- (c) $\sum_{n=1}^{\infty} \frac{(-1)^n 3^n}{5^n}$ diverges by divergence test.
- (d) $\sum_{n=1}^{\infty} \frac{(-1)^n(\sqrt{n}+1)}{n}$ converges absolutely.
- (e) $\sum_{n=1}^{\infty} \frac{(-1)^n 3^n}{5^n}$ converges conditionally.

Name: _______Section: _____

15.(6 pts.) Which line below is the tangent line to the parameterized curve $x = t - \cos t$, $y = t + \sin t$ when t = 0?

- (a) x = -1, a vertical tangent
- (b) $y = \frac{1 + \cos t}{1 + \sin t} (x + 1)$

(c) y = 2x + 2

 $(d) \quad y = \frac{\pi}{2}x + \frac{\pi}{2}$

(e) $y = \frac{t + \sin t}{t - \cos t} (x+1)$

Name:	

Section: ANSWERS

Math 10560, Final Review May 20, 3000

- The Honor Code is in effect for this quiz. All work is to be your own.
- Please turn off all cellphones and electronic devices.
- Calculators are NOT allowed
- The quiz lasts for 50 min.

PLE	ASE MARK	YOUR AN	NSWERS WITH	I AN X, not a	a circle!
1.	(a)	(ullet)	(c)	(d)	(e)
2.	(a)	(b)	(•)	(d)	(e)
3.	(a)	(b)	(ullet)	(d)	(e)
4.	(a)	(b)	(c)	(●)	(e)
5.	(a)	(b)	(c)	(ullet)	(e)
6.	(●)	(b)	(c)	(d)	(e)
7.	(a)	(b)	(ullet)	(d)	(e)
8.	(●)	(b)	(c)	(d)	(e)
9.	(a)	(b)	(ullet)	(d)	(e)
10.	(a)	(b)	(c)	(●)	(e)
11.	(a)	(b)	(c)	(ullet)	(e)
12.	(●)	(b)	(c)	(d)	(e)
13.	(a)	(b)	(•)	(d)	(e)
14.	(a)	(•)	(c)	(d)	(e)
15.	(a)	(b)	(•)	(d)	(e)