In [1]: # MADRID 2013

In [1]: import pandas as pd
import numpy as np

from matplotlib import pyplot as plt

import seaborn as sns

from sklearn.linear_model import LinearRegression,LogisticRegression,Lasso,Rid
from sklearn.model_selection import train_test_split

In [2]: df=pd.read_csv("C:/Users/user/Downloads/FP1_air/csvs_per_year/csvs_per_year/mad
df

	4 .														
it[2]:		date	BEN	со	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	TOL	
	0	2013- 11-01 01:00:00	NaN	0.6	NaN	NaN	135.0	74.0	NaN	NaN	NaN	7.0	NaN	NaN	2
	1	2013- 11-01 01:00:00	1.5	0.5	1.3	NaN	71.0	83.0	2.0	23.0	16.0	12.0	NaN	8.3	2
	2	2013- 11-01 01:00:00	3.9	NaN	2.8	NaN	49.0	70.0	NaN	NaN	NaN	NaN	NaN	9.0	2
	3	2013- 11-01 01:00:00	NaN	0.5	NaN	NaN	82.0	87.0	3.0	NaN	NaN	NaN	NaN	NaN	2
	4	2013- 11-01 01:00:00	NaN	NaN	NaN	NaN	242.0	111.0	2.0	NaN	NaN	12.0	NaN	NaN	2
	209875	2013- 03-01 00:00:00	NaN	0.4	NaN	NaN	8.0	39.0	52.0	NaN	NaN	NaN	NaN	NaN	2
	209876	2013- 03-01 00:00:00	NaN	0.4	NaN	NaN	1.0	11.0	NaN	6.0	NaN	2.0	NaN	NaN	2
	209877	2013- 03-01 00:00:00	NaN	NaN	NaN	NaN	2.0	4.0	75.0	NaN	NaN	NaN	NaN	NaN	2
	209878	2013- 03-01 00:00:00	NaN	NaN	NaN	NaN	2.0	11.0	52.0	NaN	NaN	NaN	NaN	NaN	2
	209879	2013- 03-01 00:00:00	NaN	NaN	NaN	NaN	1.0	10.0	75.0	3.0	NaN	NaN	NaN	NaN	2

209880 rows × 14 columns

localhost:8890/notebooks/Downloads/madrid_data(2013_14).ipynb#Best-Model-is-Random-Forest

```
In [3]: df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 209880 entries, 0 to 209879
Data columns (total 14 columns):
```

#	Column	Non-Null Count	Dtype
0	date	209880 non-null	object
1	BEN	50462 non-null	float64
2	CO	87018 non-null	float64
3	EBE	50463 non-null	float64
4	NMHC	25935 non-null	float64
5	NO	209108 non-null	float64
6	NO_2	209108 non-null	float64
7	0_3	121858 non-null	float64
8	PM10	104339 non-null	float64
9	PM25	51980 non-null	float64
10	S0_2	86970 non-null	float64
11	TCH	25935 non-null	float64
12	TOL	50317 non-null	float64
13	station	209880 non-null	int64

dtypes: float64(12), int64(1), object(1)

memory usage: 22.4+ MB

In [4]: df1=df.dropna()
 df1

Out[4]:

	date	BEN	со	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	TOL	st
17286	2013- 08-01 01:00:00	0.4	0.2	0.8	0.28	1.0	24.0	79.0	35.0	8.0	3.0	1.49	1.3	2807
17310	2013- 08-01 02:00:00	0.5	0.2	0.9	0.28	1.0	16.0	93.0	60.0	18.0	3.0	1.61	4.0	2807
17334	2013- 08-01 03:00:00	0.5	0.2	1.1	0.29	1.0	14.0	90.0	38.0	12.0	3.0	1.71	2.8	2807
17358	2013- 08-01 04:00:00	0.6	0.2	1.2	0.26	1.0	12.0	84.0	30.0	8.0	3.0	1.44	2.8	2807
17382	2013- 08-01 05:00:00	0.3	0.2	0.8	0.25	1.0	15.0	72.0	25.0	7.0	3.0	1.40	1.7	2807
209622	2013- 02-28 14:00:00	1.1	0.3	0.3	0.27	3.0	17.0	64.0	5.0	5.0	2.0	1.41	0.9	2807
209646	2013- 02-28 15:00:00	1.3	0.4	0.3	0.27	2.0	16.0	66.0	6.0	5.0	1.0	1.40	0.9	2807
209670	2013- 02-28 16:00:00	1.1	0.3	0.3	0.27	1.0	17.0	65.0	5.0	4.0	1.0	1.40	0.7	2807
209694	2013- 02-28 17:00:00	1.0	0.3	0.4	0.27	1.0	18.0	64.0	5.0	5.0	1.0	1.39	0.7	2807
209718	2013- 02-28 18:00:00	1.0	0.3	0.4	0.27	1.0	22.0	62.0	6.0	6.0	1.0	1.39	0.7	2807

7315 rows × 14 columns

In [5]: df1=df1.drop(["date"],axis=1)

```
In [6]: sns.heatmap(df1.corr())
```

```
Out[6]: <AxesSubplot:>
```



```
In [7]: plt.plot(df1["EBE"],df1["PM25"],"o")
```

Out[7]: [<matplotlib.lines.Line2D at 0x25a0674f250>]


```
In [8]: x=df1.drop(["EBE"],axis=1)
    y=df1["EBE"]
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Linear

```
In [9]: li=LinearRegression()
li.fit(x_train,y_train)
```

Out[9]: LinearRegression()

```
In [10]: prediction=li.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[10]: <matplotlib.collections.PathCollection at 0x25a06816790>


```
In [11]: lis=li.score(x_test,y_test)
```

```
In [12]: df1["TCH"].value_counts()
```

```
Out[12]: 1.32
                   888
          1.33
                   843
          1.34
                   729
          1.31
                   719
          1.35
                   556
          1.23
                     1
          2.09
                     1
          1.84
                     1
          2.25
                     1
```

2.29

Name: TCH, Length: 114, dtype: int64

Out[13]: 1.0 5718 2.0 1597

Name: TCH, dtype: int64

Lasso

```
In [14]: la=Lasso(alpha=5)
la.fit(x_train,y_train)
```

Out[14]: Lasso(alpha=5)

```
In [15]: prediction1=la.predict(x_test)
    plt.scatter(y_test,prediction1)
```

Out[15]: <matplotlib.collections.PathCollection at 0x25a0687ed90>


```
In [16]: las=la.score(x_test,y_test)
```

Ridge

```
In [17]: rr=Ridge(alpha=1)
    rr.fit(x_train,y_train)
```

Out[17]: Ridge(alpha=1)

```
In [18]: prediction2=rr.predict(x_test)
    plt.scatter(y_test,prediction2)
```

Out[18]: <matplotlib.collections.PathCollection at 0x25a066009d0>


```
In [19]: rrs=rr.score(x_test,y_test)
```

ElasticNet

```
In [20]: en=ElasticNet()
    en.fit(x_train,y_train)

Out[20]: ElasticNet()

In [21]: prediction2=rr.predict(x_test)
    plt.scatter(y_test,prediction2)
```

Out[21]: <matplotlib.collections.PathCollection at 0x25a07126cd0>

Logistic

```
In [25]: x=df1.drop(["TCH"],axis=1)
y=df1["TCH"]
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [26]: lo=LogisticRegression()
```

In [26]: lo=LogisticRegression()
 lo.fit(x_train,y_train)

Out[26]: LogisticRegression()

```
In [27]: prediction3=lo.predict(x_test)
    plt.scatter(y_test,prediction3)
```

Out[27]: <matplotlib.collections.PathCollection at 0x25a07187280>


```
In [28]: los=lo.score(x_test,y_test)
```

Random Forest

```
In [29]: from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import GridSearchCV
```

```
In [30]: g1={"TCH":{"Low":1.0,"High":2.0}}
df1=df1.replace(g1)
```

```
In [31]: x=df1.drop(["TCH"],axis=1)
y=df1["TCH"]
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

```
In [32]: rfc=RandomForestClassifier()
rfc.fit(x_train,y_train)
```

Out[32]: RandomForestClassifier()

```
In [33]:
         parameter={
              'max_depth':[1,2,4,5,6],
              'min samples_leaf':[5,10,15,20,25],
              'n estimators':[10,20,30,40,50]
         grid search=GridSearchCV(estimator=rfc,param grid=parameter,cv=2,scoring="accur")
In [34]:
         grid_search.fit(x_train,y_train)
Out[34]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                       param_grid={'max_depth': [1, 2, 4, 5, 6],
                                   'min samples leaf': [5, 10, 15, 20, 25],
                                   'n_estimators': [10, 20, 30, 40, 50]},
                       scoring='accuracy')
In [35]: rfcs=grid_search.best_score_
In [36]: | rfc_best=grid_search.best_estimator_
In [37]: | from sklearn.tree import plot_tree
         plt.figure(figsize=(80,40))
         plot tree(rfc best.estimators [5],feature names=x.columns,class names=['Yes',"
Out[37]: [Text(2305.4210526315787, 2019.0857142857144, 'TOL <= 1.75\ngini = 0.337\ns
         amples = 3228\nvalue = [4020, 1100]\nclass = Yes'),
          Text(1204.1052631578948, 1708.457142857143, '0 3 <= 26.5\ngini = 0.195\nsa
         mples = 2605\nvalue = [3677, 453]\nclass = Yes'),
          Text(469.89473684210526, 1397.8285714285716, 'NMHC <= 0.265 \setminus i = 0.436
         \nsamples = 262\nvalue = [124, 262]\nclass = No'),
          Text(234.94736842105263, 1087.2, 'PM10 <= 19.5\ngini = 0.266\nsamples = 59
         \nvalue = [80, 15]\nclass = Yes'),
          Text(176.21052631578948, 776.5714285714287, 'TOL <= 1.55\ngini = 0.217\nsa
         mples = 54\nvalue = [78, 11]\nclass = Yes'),
          Text(117.47368421052632, 465.9428571428573, 'EBE <= 1.15\ngini = 0.147\nsa
         mples = 46\nvalue = [69, 6]\nclass = Yes'),
          Text(58.73684210526316, 155.3142857142857, 'gini = 0.215 \setminus samples = 31 \setminus rva
         lue = [43, 6]\nclass = Yes'),
          Text(176.21052631578948, 155.3142857142857, 'gini = 0.0\nsamples = 15\nval
         ue = [26, 0]\nclass = Yes'),
          Text(234.94736842105263, 465.9428571428573, 'gini = 0.459\nsamples = 8\nva
         lue = [9, 5]\nclass = Yes'),
          Text(293.6842105263158, 776.5714285714287, 'gini = 0.444\nsamples = 5\nval
```

```
In [38]: print("Linear:",lis)
    print("Lasso:",las)
    print("Ridge:",rrs)
    print("ElasticNet:",ens)
    print("Logistic:",los)
    print("Random Forest:",rfcs)
```

Linear: 0.4114978071131482 Lasso: -6.234443005292967e-05 Ridge: 0.38794864124666883 ElasticNet: 0.09906134120330623 Logistic: 0.7831435079726652

Random Forest: 0.9505859375000001

Best Model is Random Forest

MADRID 2014

In [39]: df2=pd.read_csv("C:/Users/user/Downloads/FP1_air/csvs_per_year/csvs_per_year/ma
df2

Out[39]:

	date	BEN	со	EBE	имнс	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	TOL	
0	2014- 06-01 01:00:00	NaN	0.2	NaN	NaN	3.0	10.0	NaN	NaN	NaN	3.0	NaN	NaN	28
1	2014- 06-01 01:00:00	0.2	0.2	0.1	0.11	3.0	17.0	68.0	10.0	5.0	5.0	1.36	1.3	28
2	2014- 06-01 01:00:00	0.3	NaN	0.1	NaN	2.0	6.0	NaN	NaN	NaN	NaN	NaN	1.1	28
3	2014- 06-01 01:00:00	NaN	0.2	NaN	NaN	1.0	6.0	79.0	NaN	NaN	NaN	NaN	NaN	28
4	2014- 06-01 01:00:00	NaN	NaN	NaN	NaN	1.0	6.0	75.0	NaN	NaN	4.0	NaN	NaN	28
210019	2014- 09-01 00:00:00	NaN	0.5	NaN	NaN	20.0	84.0	29.0	NaN	NaN	NaN	NaN	NaN	28
210020	2014- 09-01 00:00:00	NaN	0.3	NaN	NaN	1.0	22.0	NaN	15.0	NaN	6.0	NaN	NaN	28
210021	2014- 09-01 00:00:00	NaN	NaN	NaN	NaN	1.0	13.0	70.0	NaN	NaN	NaN	NaN	NaN	28
210022	2014- 09-01 00:00:00	NaN	NaN	NaN	NaN	3.0	38.0	42.0	NaN	NaN	NaN	NaN	NaN	28
210023	2014- 09-01 00:00:00	NaN	NaN	NaN	NaN	1.0	26.0	65.0	11.0	NaN	NaN	NaN	NaN	28

210024 rows × 14 columns

4

```
In [40]: df2.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 210024 entries, 0 to 210023
Data columns (total 14 columns):
```

#	Column	Non-Null Count	Dtype
0	date	210024 non-null	object
1	BEN	46703 non-null	float64
2	CO	87023 non-null	float64
3	EBE	46722 non-null	float64
4	NMHC	25021 non-null	float64
5	NO	209154 non-null	float64
6	NO_2	209154 non-null	float64
7	0_3	121681 non-null	float64
8	PM10	104311 non-null	float64
9	PM25	51954 non-null	float64
10	S0_2	87141 non-null	float64
11	TCH	25021 non-null	float64
12	TOL	46570 non-null	float64
13	station	210024 non-null	int64
dtyp	es: float	64(12), int64(1),	object(1)

memory usage: 22.4+ MB

localhost:8890/notebooks/Downloads/madrid_data(2013_14).ipynb#Best-Model-is-Random-Forest

Out[41]:

	date	BEN	со	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	TOL	٤
1	2014- 06-01 01:00:00	0.2	0.2	0.1	0.11	3.0	17.0	68.0	10.0	5.0	5.0	1.36	1.3	280
6	2014- 06-01 01:00:00	0.1	0.2	0.1	0.23	1.0	5.0	80.0	4.0	3.0	2.0	1.21	0.1	280
25	2014- 06-01 02:00:00	0.2	0.2	0.1	0.11	4.0	21.0	63.0	9.0	6.0	5.0	1.36	0.8	280
30	2014- 06-01 02:00:00	0.2	0.2	0.1	0.23	1.0	4.0	88.0	7.0	5.0	2.0	1,21	0.1	280
49	2014- 06-01 03:00:00	0.1	0.2	0.1	0.11	4.0	18.0	66.0	9.0	7.0	6.0	1.36	0.9	280
209958	2014- 08-31 22:00:00	0.2	0.2	0.1	0.22	1.0	28.0	96.0	61.0	15.0	3.0	1.28	0.1	280
209977	2014- 08-31 23:00:00	1.1	0.7	0.7	0.19	36.0	118.0	23.0	60.0	25.0	9.0	1.27	6.5	280
209982	2014- 08-31 23:00:00	0.2	0.2	0.1	0.21	1.0	17.0	90.0	28.0	14.0	3.0	1.27	0.2	280
210001	2014- 09-01 00:00:00	0.6	0.4	0.4	0.12	6.0	63.0	41.0	26.0	15.0	8.0	1.19	4.1	280
210006	2014- 09-01 00:00:00	0.2	0.2	0.1	0.23	1.0	30.0	69.0	18.0	13.0	3.0	1.30	0.1	280

13946 rows × 14 columns

In [42]: df3=df3.drop(["date"],axis=1)

```
In [43]: sns.heatmap(df3.corr())
```

Out[43]: <AxesSubplot:>


```
In [44]: x=df3.drop(["TCH"],axis=1)
y=df3["TCH"]
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Linear

```
In [45]: li=LinearRegression()
li.fit(x_train,y_train)
```

Out[45]: LinearRegression()

```
In [ ]:
```

```
In [46]: prediction=li.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[46]: <matplotlib.collections.PathCollection at 0x25a0b165d60>


```
In [47]: lis=li.score(x_test,y_test)
In [48]: df3["TCH"].value_counts()
Out[48]: 1.37
                  601
          1.36
                  598
          1.34
                  529
          1.35
                  528
          1.38
                  515
         2.50
                    1
         2.86
                    1
         2.70
                    1
         3.04
                    1
         4.37
         Name: TCH, Length: 184, dtype: int64
In [49]: |df3.loc[df3["TCH"]<1.40,"TCH"]=1</pre>
         df3.loc[df3["TCH"]>1.40,"TCH"]=2
         df3["TCH"].value_counts()
Out[49]: 1.0
                 9997
          2.0
                 3949
         Name: TCH, dtype: int64
 In [ ]:
```

Lasso

```
In [50]: la=Lasso(alpha=5)
la.fit(x_train,y_train)
Out[50]: Lasso(alpha=5)
```

```
In [51]: prediction1=la.predict(x_test)
    plt.scatter(y_test,prediction1)
```

Out[51]: <matplotlib.collections.PathCollection at 0x25a0b1bca90>


```
In [52]: las=la.score(x_test,y_test)
```

Ridge

```
In [53]: rr=Ridge(alpha=1)
rr.fit(x_train,y_train)
```

Out[53]: Ridge(alpha=1)

```
In [54]: prediction2=rr.predict(x_test)
    plt.scatter(y_test,prediction2)
```

Out[54]: <matplotlib.collections.PathCollection at 0x25a0b21f100>


```
In [55]: rrs=rr.score(x_test,y_test)
```

ElasticNet

```
In [56]:
         en=ElasticNet()
         en.fit(x_train,y_train)
Out[56]: ElasticNet()
In [57]:
         prediction2=rr.predict(x_test)
         plt.scatter(y_test,prediction2)
Out[57]: <matplotlib.collections.PathCollection at 0x25a0b26e6a0>
          3.0
          2.5
          2.0
          1.5
          1.0
                     1.5
                             2.0
                                    2.5
                                            3.0
                                                    3.5
              1.0
In [58]:
         ens=en.score(x_test,y_test)
In [59]:
         print(rr.score(x_test,y_test))
         rr.score(x_train,y_train)
         0.7037488127556343
Out[59]: 0.7081013643502528
         Logistic
In [60]:
         g={"TCH":{1.0:"Low",2.0:"High"}}
         df3=df3.replace(g)
```

df3["TCH"].value_counts() Out[60]: Low 9997

High

Name: TCH, dtype: int64

3949

```
In [61]: x=df3.drop(["TCH"],axis=1)
    y=df3["TCH"]
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [62]: lo=LogisticRegression()
```

Out[62]: LogisticRegression()

lo.fit(x_train,y_train)

```
In [63]: prediction3=lo.predict(x_test)
plt.scatter(y_test,prediction3)
```

Out[63]: <matplotlib.collections.PathCollection at 0x25a0b2a06a0>


```
In [64]: los=lo.score(x_test,y_test)
```

Random Forest

```
In [65]: from sklearn.ensemble import RandomForestClassifier
    from sklearn.model_selection import GridSearchCV

In [66]: g1={"TCH":{"Low":1.0,"High":2.0}}
    df3=df3.replace(g1)

In [67]: x=df3.drop(["TCH"],axis=1)
    y=df3["TCH"]
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

```
In [68]: rfc=RandomForestClassifier()
rfc.fit(x_train,y_train)
```

Out[68]: RandomForestClassifier()

```
In [69]:
                       parameter={
                                  'max_depth':[1,2,4,5,6],
                                  'min samples_leaf':[5,10,15,20,25],
                                  'n estimators':[10,20,30,40,50]
In [70]:
                       grid search=GridSearchCV(estimator=rfc,param grid=parameter,cv=2,scoring="accur")
                        grid_search.fit(x_train,y_train)
Out[70]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                                                         param_grid={'max_depth': [1, 2, 4, 5, 6],
                                                                                        'min samples leaf': [5, 10, 15, 20, 25],
                                                                                        'n_estimators': [10, 20, 30, 40, 50]},
                                                         scoring='accuracy')
In [71]: rfcs=grid_search.best_score_
In [72]: | rfc_best=grid_search.best_estimator_
In [73]: | from sklearn.tree import plot_tree
                        plt.figure(figsize=(80,40))
                        plot tree(rfc best.estimators [5],feature names=x.columns,class names=['Yes',
Out[73]: [Text(2730.6382978723404, 2019.0857142857144, 'TOL <= 3.65\ngini = 0.405\ns
                        amples = 6192\nvalue = [7009, 2753]\nclass = Yes'),
                          Text(1519.659574468085, 1708.457142857143, 'CO <= 0.35\ngini = 0.321\nsamp
                        les = 4987\nvalue = [6278, 1581]\nclass = Yes'),
                          Text(759.8297872340426, 1397.8285714285716, '0 3 <= 24.5\ngini = 0.237\nsa
                        mples = 4172\nvalue = [5672, 902]\nclass = Yes'),
                          Text(379.9148936170213, 1087.2, 'PM25 <= 5.5\ngini = 0.472\nsamples = 398
                        \nvalue = [233, 379]\nclass = No'),
                          Text(189.95744680851064, 776.5714285714287, 'station <= 28079016.0\ngini =
                        0.426\nsamples = 31\nvalue = [36, 16]\nclass = Yes'),
                          Text(94.97872340425532, 465.9428571428573, '0 3 <= 19.0\ngini = 0.48\nsamp
                        les = 14\nvalue = [8, 12]\nclass = No'),
                          Text(47.48936170212766, 155.3142857142857, 'gini = 0.0\nsamples = 8\nvalue
                        = [0, 12] \setminus nclass = No'),
                          Text(142.46808510638297, 155.3142857142857, 'gini = 0.0\nsamples = 6\nvalu
                        e = [8, 0] \setminus class = Yes'),
                          Text(284.93617021276594, 465.9428571428573, 'NO 2 <= 21.0 \neq 0.219 \neq 0.21
                        amples = 17\nvalue = [28, 4]\nclass = Yes'),
                          Text(237.4468085106383, 155.3142857142857, 'gini = 0.0\nsamples = 5\nvalue
```

```
In [74]: print("Linear:",lis)
    print("Lasso:",las)
    print("Ridge:",rrs)
    print("ElasticNet:",ens)
    print("Logistic:",los)
    print("Random Forest:",rfcs)
```

Linear: 0.6984961782299648 Lasso: -0.00010435529624808204 Ridge: 0.7037488127556343

ElasticNet: 0.45599972417723134 Logistic: 0.7194072657743786 Random Forest: 0.8882401147305881

Best model is Random Forest

In []: