Game Boy: Complete Technical Reference

gekkio https://gekkio.fi

December 4, 2017

Revision 45

Contents

Co	ontents	1
	0.1 Formatting of numbers 0.2 Register definitions	4 5
Ι	Game Boy CPU and the Sharp LR35902 instruction set	6
II	Game Boy CPU peripherals	7
1	Boot ROM	8
2	PPU (Picture Processing Unit)	9
3	Port 1 (Joypad, Super Game Boy communication)	10
4	Serial communication	11
III	I Game Boy game cartridges	12
5	MBC1 mapper chip 5.1 MBC1 registers 5.2 ROM in the 0x0000-0x7FFF area 5.3 RAM in the 0xA000-0xBFFF area 5.4 MBC1 multicarts ("MBC1M") 5.5 Dumping MBC1 carts	13 13 14 15 16 17
6	MBC2	18
7	MBC3	19
8	MBC5	20
9	MBC6	21
10	MBC7	22
11	HuC-1	23
12	HuC-3	24
13	MMM01	25
14	TAMA5	26
A	Instruction set tables	28
ΑĮ	ppendices	28
В	Memory map tables	31

CONTENTS	2
C Game Boy external bus C.1 Bus timings	36 36
Bibliography	37

Introduction

How to read this document

ġ.

This is something that hasn't been verified, but would make a lot of sense.

B

This explains some caveat about this documentation that you should know.

0.1 Formatting of numbers

When a single bit is discussed in isolation, the value looks like this: 0, 1.

Binary numbers are prefixed with 0b like this: 0b0101101, 0b11011, 0b00000000. Values are prefixed with zeroes when necessary, so the total number of digits always matches the number of digits in the value.

Hexadecimal numbers are prefixed with 0x like this: 0x1234, 0xDEADBEEF, 0xFF04. Values are prefixed with zeroes when necessary, so the total number of characters always matches the number of nibbles in the value

Examples:

	4-bit	8-bit	16-bit
Binary	0b0101	0b10100101	0b0000101010100101
Hexadecimal	0x5	0xA5	0x0AA5

CONTENTS 5

0.2 Register definitions

Register 0.1: 0x1234 - This is a hardware register definition

R/W-0	R/W-1	U-1	R-0	R-1	R-x	W-1	U-0
VALUE	<1:0>	_		BIGVAL<7:5>		FLAG	_
bit 7	6	5	4	3	2	1	bit 0

Top row legend:

R Bit can be read.

W Bit can be written. If the bit cannot be read, reading returns a constant value defined in the bit list of the register in question.

U Unimplemented bit. Writing has no effect, and reading returns a constant value defined in the bit list of the register in question.

-n Value after system reset: 0, 1, or x.

1 Bit is set.

0 Bit is cleared.

x Bit is unknown (e.g. depends on external things such as user input).

Middle row legend:

VALUE<1:0>	Bits 1 and 0 of VALUE
_	Unimplemented bit
BIGVAL<7:5>	Bits 7, 6, 5 of BIGVAL
FLAG	Single-bit value FLAG

In this example:

- After system reset, VALUE is 0b01, BIGVAL is either 0b010 or 0b011, FLAG is 0b1.
- Bits 5 and 0 are unimplemented. Bit 5 always returns 1, and bit 0 always returns 0.
- Both bits of VALUE can be read and written. When this register is written, bit 7 of the written value goes to bit 1 of VALUE.
- FLAG can only be written to, so reads return a value that is defined elsewhere.
- BIGVAL cannot be written to. Only bits 5-7 of BIGVAL are defined here, so look elsewhere for the low bits 0-4.

Part I

Game Boy CPU and the Sharp LR35902 instruction set

Part II Game Boy CPU peripherals

Boot ROM

Register 1.1: 0xFF50 - BOOT - Boot ROM lock register

U-1	U-1	U-1	U-1	U-1	U-1	U-1	R/W-0
_	_	_	-	_	_	-	BOOT_OFF
bit 7	6	5	4	3	2	1	bit 0

bit 7-1 Unimplemented: Read as 1

bit 0 BOOT_OFF: Boot ROM lock bit

0b1 = Boot ROM is disabled and 0x0000-0x0100 works normally. 0b0 = Boot ROM is active and intercepts accesses to 0x0000-0x0100.

BOOT_OFF can only transition from 0b0 to 0b1, so once 0b1 has been written, the boot ROM is permanently disabled until the next system reset. Writing 0b0 when BOOT_OFF is 0b0 has no effect and doesn't lock the boot ROM.

PPU (Picture Processing Unit)

Register 2.1: 0xFF40 - LCDC - PPU control register

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
LCD_EN	WIN_MAP	WIN_EN	TILE_SEL	BG_MAP	OBJ_SIZE	OBJ_EN	BG_EN
bit 7	6	5	4	3	2	1	bit 0

Register 2.2: 0xFF41 - LCDC - PPU status register

	U-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	-	INTR_LYC	INTR_M2	INTR_M1	INTR_M0	LYC_STAT	LCD_MODE<1:0>	
Γ	bit 7	6	5	4	3	2	1	bit 0

Register 2.3: 0xFF42 - SCY - Vertical scroll register

R/W-0 R/W-0 <th< th=""></th<>										
	SCY<7:0>									
bit 7	bit 7 6 5 4 3 2 1 bit 0									

Register 2.4: 0xFF43 - SCX - Horizontal scroll register

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	SCX<7:0>									
bit 7	bit 7 6 5 4 3 2 1 bit 0									

Register 2.5: 0xFF43 - LY - Scanline register

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	LY<7:0>									
bit 7	bit 7 6 5 4 3 2 1 bit 0									

Register 2.6: 0xFF44 - LYC - Scanline compare register

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	LYC<7:0>									
bit 7	bit 7 6 5 4 3 2 1 bit 0									

Port 1 (Joypad, Super Game Boy communication)

Register 3.1: 0xFF00 - P1 - Joypad/Super Game Boy communication register

U-1	U-1	W-0	W-0	R-x	R-x	R-x	R-x
_	_	P15	P14	P13	P12	P11	P10
bit 7	6	5	4	3	2	1	bit 0

bit 7-6 Unimplemented: Read as 1

bit 5 P15:

bit 4 P14:

bit 3 P13:

bit 2 P12:

bit 1 P11:

bit 0 P10:

Serial communication

Register 4.1: 0xFF01 - SB - Serial data register

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0							
	SB<7:0>										
bit 7 6 5 4 3 2 1 bit 0											

bit 7-0 SB<7:0>: Serial data

Register 4.2: 0xFF02 - SC - Serial control register

R/W-0	U-1	U-1	U-1	U-1	U-1	U-1	R/W-0
SIO_EN	_	_	-	_	-	_	SIO_CLK
bit 7	6	5	4	3	2	1	bit 0

bit 7 SIO_EN:

bit 6-1 Unimplemented: Read as 1

bit 0 SIO_CLK:

Part III Game Boy game cartridges

MBC1 mapper chip

The majority of games for the original Game Boy use the MBC1 chip. MBC1 supports ROM sizes up to 16 Mbit (128 banks of 0x4000 bytes) and RAM sizes up to 256 Kbit (4 banks of 0x2000 bytes). The information in this section is based on my MBC1 research, Tauwasser's research notes [3], and Pan Docs [2].

5.1 MBC1 registers

į

These registers don't have any standard names and are usually referred to using their address ranges or purposes instead. This document uses names to clarify which register is meant when referring to one.

The MBC1 chip includes four registers that affect the behaviour of the chip. Of the cartridge bus address signals, only A13-A15 are connected to the MBC, so lower address bits don't matter when the CPU is accessing the MBC and all registers are effectively mapped to address ranges instead of single addresses. All registers are smaller than 8 bits, and unused bits are simply ignored during writes. The registers are not directly readable.

Register 5.1: 0x0000-0x1FFF - RAM_EN - MBC1 RAM enable register

U	U	U	U	W-0	W-0	W-0	W-0
					RAM_EN	N<3:0>	
bit 7	6	5	4	3	bit 0		

bit 7-4 Unimplemented: Ignored during writes

Bit 3-0 RAM_EN<3:0>: RAM enable register 0b1010= enable access to cartridge RAM

All other values disable access to cartridge RAM

The RAM_EN register is used to enable access to the cartridge SRAM if one exists on the cartridge circuit board. RAM access is disabled by default but can be enabled by writing to the 0x0000–0x1FFF address range a value with the bit pattern 0b1010 in the lower nibble. Upper bits don't matter, but any other bit pattern in the lower nibble disables access to RAM.

When RAM access is disabled, all writes to the external RAM area 0xA000–0xBFFF are ignored, and reads return 0xFF. Pan Docs recommends disabling RAM when it's not being accessed to protect the contents [2].

ġ.

We don't know the physical implementation of RAM_EN, but it's certainly possible that the 0b1010 bit pattern check is done at write time and the register actually consists of just a single bit.

Register 5.2: 0x2000-0x3FFF - BANK1 - MBC1 bank register 1

U	U	U	W-0	W-0	W-0	W-0	W-1					
			BANK1<4:0>									
bit 7	6	5	4	3	2	1	bit 0					

bit 7-5 Unimplemented: Ignored during writes

bit 4-0 BANK1<4:0>: Bank register 1

Never contains the value 0b00000.

If 0b00000 is written, the resulting value will be 0b00001 instead.

The 5-bit BANK1 register is used as the lower 5 bits of the ROM bank number when the CPU accesses the 0x4000–0x7FFF memory area.

MBC1 doesn't allow the BANK1 register to contain zero (bit pattern 0b00000), so the initial value at reset is 0b00001 and attempting to write 0b00000 will write 0b000001 instead. This makes it impossible to read banks 0x00, 0x20, 0x40 and 0x60 from the 0x4000–0x7FFF memory area, because those bank numbers have 0b00000 in the lower bits. Due to the zero value adjustment, requesting any of these banks actually requests the next bank (e.g. 0x21 instead of 0x20).

Register 5.3: 0x4000-0x5FFF - BANK2 - MBC1 bank register 2

U	U	U	U	U	U	W-0	W-0	
						BANK2<1:0>		
bit 7	6	5	4	3	2	1	bit 0	

bit 7-2 Unimplemented: Ignored during writes

bit 1-0 BANK2<1:0>: Bank register 2

The 2-bit BANK2 register can be used as the upper bits of the ROM bank number, or as the 2-bit RAM bank number. Unlike BANK1, BANK2 doesn't disallow zero, so all 2-bit values are possible.

Register 5.4: 0x6000-0x7FFF - MODE - MBC1 mode register

U	U	U	U	U	U	U	W-0
							MODE
bit 7	6	5	4	3	2	1	bit 0

bit 7-1 Unimplemented: Ignored during writes

bit 0 MODE: Mode register

0b1 = BANK2 affects accesses to 0x0000-0x3FFF, 0x4000-0x7FFF, 0x4000-0xBFFF

0b0= BANK2 affects only accesses to 0x4000-0x7FFF

The MODE register determines how the BANK2 register value is used during memory accesses.

Most documentation, including Pan Docs [2], calls value 0b0 ROM banking mode, and value 0b1 RAM banking mode. This terminology reflects the common use cases, but "RAM banking" is slightly misleading because value 0b1 also affects ROM reads in multicart cartridges and cartridges that have a 8 or 16 Mbit ROM chip.

5.2 ROM in the 0x0000-0x7FFF area

In MBC1 cartridges, the A0-A13 cartridge bus signals are connected directly to the corresponding ROM pins, and the remaining ROM pins (A14-A20) are controlled by the MBC1. These remaining pins form the ROM bank number.

When the 0x0000-0x3FFF address range is accessed, the effective bank number depends on the MODE register. In MODE 0 the bank number is always 0, but in MODE 1 it's formed by shifting the BANK2 register value left by 5 bits.

When the 0x4000–0x7FFF addess range is accessed, the effective bank number is always a combination of BANK1 and BANK2 register values.

If the cartridge ROM is smaller than 16 Mbit, there are less ROM address pins to connect to and therefore some bank number bits are ignored. For example, 4 Mbit ROMs only need a 5-bit bank number, so the BANK2 register value is always ignored because those bits are simply not connected to the ROM.

Table 5.1: Mapping of physical ROM address bits in MBC1 carts

	Ва	ınk number	Address within bank
ROM address bits	20-19	18-14	13-0
0x0000-0x3FFF, MODE = 0b0	0b00	0b00000	A<13:0>
0x0000-0x3FFF, $MODE = 0b1$	BANK2	0b00000	A<13:0>
0x4000-0x7FFF	BANK2	BANK1	A<13:0>

ROM banking example 1

Let's assume we have previously written 0x12 to the BANK1 register and 0b01 to the BANK2 register. The effective bank number during ROM reads depends on which address range we read and on the value of the MODE register:

```
Value of the BANK1 register
```

0b 10010

Value of the BANK2 register

0b 01

Effective ROM bank number (reading 0x4000-0x7FFF)

0b 01 10010 (= 50 = 0x32)

Effective ROM bank number (reading 0x0000-0x-3FFF, MODE = 0b0)

 $0b\ 00\ 00000\ (=\ 0\ =\ 0x00)$

Effective ROM bank number (reading 0x0000-0x-3FFF, MODE = 0b1)

0b 01 00000 (= 32 = 0x40)

ROM banking example 2

Let's assume we have previously requested ROM bank number 68, MBC1 mode is 0b0, and we are now reading a byte from 0x72A7. The actual physical ROM address that will be read is going to be 0x1132A7 and is constructed in the following way:

Value of the BANK1 register 0b 00100

Value of the BANK2 register 0b 10

ROM bank number 0b 10 00100 (= 68 = 0x44)

Actual physical ROM address 0b 1 0 001 00 11 0010 1010 0111 (= 0x1132A7)

5.3 RAM in the 0xA000-0xBFFF area

Some MBC1 carts include SRAM, which is mapped to the 0xA000–0xBFFF area. If no RAM is present, or RAM is not enabled with the RAM_EN register, all reads return 0xFF and writes have no effect.

On boards that have RAM, the A0-A12 cartridge bus signals are connected directly to the corresponding RAM pins, and pins A13-A14 are controlled by the MBC1. Most of the time the RAM size is 64 Kbit, which corresponds to a single bank of 0x2000 bytes. With larger RAM sizes the BANK2 register value can be used for RAM banking to provide the two high address bits.

In MODE 0 the BANK2 register value is not used, so the first RAM bank is always mapped to the 0xA000–0xBFFF area. In MODE 1 the BANK2 register value is used as the bank number.

Table 5.2: Mapping of physical RAM address bits in MBC1 carts

	Bank number	Address within bank
RAM address bits	14-13	12-0
0xA000-0xBFFF, MODE = 0b0	0b00	A<12:0>
0xA000-0xBFFF, MODE = 0b1	BANK2	A<12:0>

RAM banking example 1

Let's assume we have previously written 0b10 to the BANK2 register, MODE is 0b1, RAM_EN is 0b1010 and we are now reading a byte from 0xB123. The actual physical RAM address that will be read is going to be 0x5123 and is constructed in the following way:

Value of the BANK2 register 0b 10

Actual physical RAM address 0b 10 1 0001 0010 0011 (= 0x5123)

5.4 MBC1 multicarts ("MBC1M")

MBC1 is also used in a couple of "multicart" cartridges, which include more than one game on the same cartridge. These cartridges use the same regular MBC1 chip, but the circuit board is wired a bit differently. This alternative wiring is sometimes called "MBC1M", but technically the mapper chip is the same. All known MBC1 multicarts use 8 Mbit ROMs, so there's no definitive wiring for other ROM sizes.

In MBC1 multicarts bit 4 of the BANK1 register is not physically connected to anything, so it's skipped. This means that the bank number is actually a 6-bit number. In all known MBC1 multicarts the games reserve 16 banks each, so BANK2 can actually be considered "game number", while BANK1 is the internal bank number within the selected game. At reset BANK2 is 0b00, and the "game" in this slot is actually a game selection menu. The menu code selects MODE 1 and writes the game number to BANK2 once the user selects a game.

From a ROM banking point of view, multicarts simply skip bit 4 of the BANK1 register, but otherwise the behaviour is the same. MODE 1 guarantees that all ROM accesses, including accesses to 0x0000–0x3FFF, use the BANK2 register value.

Table 5.3: Mapping of physical ROM address bits in MBC1 multicarts

	Ва	nk number	Address within bank
ROM address bits	19-18	17-14	13-0
0x0000-0x3FFF, MODE = 0b0	0b00	0b0000	A<13:0>
0x0000-0x3FFF, $MODE = 0b1$	BANK2	0b0000	A<13:0>
0x4000-0x7FFF	BANK2	BANK1<3:0>	A<13:0>

ROM banking example 1

Let's assume we have previously requested "game number" 3 (= 0b11) and ROM bank number 29 (= 0x1D), MBC1 mode is 0b1, and we are now reading a byte from 0x6C15. The actual physical ROM address that will be read is going to be 0xF6C15 and is constructed in the following way:

Value of the BANK1 register 0b 1 1101

Value of the BANK2 register 0b 11

ROM bank number 0b 11 1101 (= 61 = 0x3D)

Actual physical ROM address 0b 11 11 01 10 1100 0001 0101 (= 0xF6C15)

Detecting multicarts

MBC1 multicarts are not detectable by simply looking at the ROM header, because the ROM type value is just one of the normal MBC1 values. However, detection is possible by going through BANK2 values and looking at "bank 0" of each multicart game and doing some heuristics based on the header data. All the included games, including the game selection menu, have proper header data. One example of a good heuristic is logo data verification.

So, if you have a 8 Mbit cart with MBC1, first assume that it's a multicart and bank numbers are 6-bit values. Set BANK1 to zero and loop through the four possible BANK2 values while checking the data at 0x0104–0x0133. In other words, check logo data starting from physical ROM locations 0x00104, 0x40104, 0x80104, and 0xC0104. If proper logo data exists with most of the BANK2 values, the cart is most likely a multicart. Note that multicarts can just have two actual games, so one of the locations might not have the header data in place.

5.5 Dumping MBC1 carts

MBC1 cartridge dumping is fairly straightforward with the right hardware. The total number of banks is read from the header, and each bank is read one byte at a time. However, BANK1 register zero-adjustment and multicart cartridges need to be considered in ROM dumping code.

Banks 0x20, 0x40 and 0x60 can only be read from the 0x0000-0x3FFF memory area and only when MODE register value is 0b1. Using MODE 1 has no undesirable effects when doing ROM dumping, so using it at all times is recommended for simplicity.

Multicarts should be detected using the logo check described earlier, and if a multicart is detected, BANK1 should be considered a 4-bit register in the dumping code.

```
write_byte(0x6000, 0x01)
for bank in range(0, num_banks):
    write_byte(0x2000, bank)
    if is_multicart:
        write_byte(0x4000, bank >> 4)
        bank_start = 0x4000 if bank & 0x0f else 0x0000
else:
        write_byte(0x4000, bank >> 5)
        bank_start = 0x4000 if bank & 0x1f else 0x0000
for addr in range(bank_start, bank_start + 0x4000):
        buf += read_byte(addr)
```

Listing 1: Python pseudo-code for MBC1 ROM dumping

MBC2

MBC3

MBC5

MBC6

MBC7

HuC-1

HuC-3

MMM01

TAMA5

Appendices

Appendix A

Instruction set tables

These tables include all the opcodes in the Sharp LR35902 instruction set. The style and layout of these tables was inspired by the opcode tables available at pastraiser.com [1].

Table A.1: Sharp LR35902 instruction set

	ж0	x1	ж2	ж3	х4	ж5	ж6	ж7	ж8	ж9	жA	жB	жC	жD	хE	хF
0x	NOP	LD BC,nn	LD (BC),A	INC BC	INC B	DEC B	LD B,n	RLCA	LD (nn),SP	ADD HL,BC	LD A,(BC)	DEC BC	INC C	DEC C	LD C,n	RRCA
1x	STOP	LD DE,nn	LD (DE),A	INC DE	INC D	DEC D	LD D,n	RLA	JR r	ADD HL,DE	LD A,(DE)	DEC DE	INC E	DEC E	LD E,n	RRA
2x	JR NZ,r	LD HL,nn	LD (HL+),A	INC HL	INC H	DEC H	LD H,n	DAA	JR Z,r	ADD HL,HL	LD A,(HL+)	DEC HL	INC L	DEC L	LD L,n	CPL
3x	JR NC,r	LD SP,nn	LD (HL-),A	INC SP	INC (HL)	DEC (HL)	LD (HL),n	SCF	JR C,r	ADD HL,SP	LD A,(HL-)	DEC SP	INC A	DEC A	LD A,n	CCF
4x	LD B,B	LD B,C	LD B,D	LD B,E	LD B,H	LD B,L	LD B,(HL)	LD B,A	LD C,B	LD C,C	LD C,D	LD C,E	LD C,H	LD C,L	LD C,(HL)	LD C,A
5x	LD D,B	LD D,C	LD D,D	LD D,E	LD D,H	LD D,L	LD D,(HL)	LD D,A	LD E,B	LD E,C	LD E,D	LD E,E	LD E,H	LD E,L	LD E,(HL)	LD E,A
6x	LD H,B	LD H,C	LD H,D	LD H,E	LD H,H	LD H,L	LD H,(HL)	LD H,A	LD L,B	LD L,C	LD L,D	LD L,E	LD L,H	LD L,L	LD L,(HL)	LD L,A
7x	LD (HL),B	LD (HL),C	LD (HL),D	LD (HL),E	LD (HL),H	LD (HL),L	HALT	LD (HL),A	LD A,B	LD A,C	LD A,D	LD A,E	LD A,H	LD A,L	LD A,(HL)	LD A,A
8x	ADD B	ADD C	ADD D	ADD E	ADD H	ADD L	ADD (HL)	ADD A	ADC B	ADC C	ADC D	ADC E	ADC H	ADC L	ADC (HL)	ADC A
9x	SUB B	SUB C	SUB D	SUB E	SUB H	SUB L	SUB (HL)	SUB A	SBC B	SBC C	SBC D	SBC E	SBC H	SBC L	SBC (HL)	SBC A
Ax	AND B	AND C	AND D	AND E	AND H	AND L	AND (HL)	AND A	XOR B	XOR C	XOR D	XOR E	XOR H	XOR L	XOR (HL)	XOR A
Bx	OR B	OR C	OR D	OR E	OR H	OR L	OR (HL)	OR A	CP B	CP C	CP D	CP E	CP H	CP L	CP (HL)	CP A
Cx	RET NZ	POP BC	JP NZ,nn	JP nn	CALL NZ,nn	PUSH BC	ADD n	RST 0x00	RET Z	RET	JP Z,nn	СВ ор	CALL Z,nn	CALL nn	ADC n	RST 0x08
Dx	RET NC	POP DE	JP NC,nn		CALL NC,nn	PUSH DE	SUB n	RST 0x10	RET C	RETI	JP C,nn		CALL C,nn		SBC n	RST 0x18
Ex	LDH (n),A	POP HL	LD (C),A			PUSH HL	AND n	RST 0x20	ADD SP,e	JP HL	LD (nn),A				XOR n	RST 0x28
Fx	LDH A,(n)	POP AF	LD A,(C)	DI		PUSH AF	OR n	RST 0x30	LD HL,SP+e	LD SP,HL	LD A,(nn)	EI			CP n	RST 0x38

- n unsigned 8-bit immediate data
- **nn** unsigned 16-bit immediate data
- e signed 8-bit immediate data
- r signed 8-bit immediate data, relative to PC

Table A.2: Sharp LR35902 CB-prefixed instructions

	ж0	x1	x 2	ж3	x4	ж5	ж6	x 7	x8	x 9	жA	xВ	жC	жD	жE	хF
0х	RLC B	RLC C	RLC D	RLC E	RLC H	RLC L	RLC (HL)	RLC A	RRC B	RRC C	RRC D	RRC E	RRC H	RRC L	RRC (HL)	RRC A
1x	RL B	RL C	RL D	RL E	RL H	RL L	RL (HL)	RL A	RR B	RR C	RR D	RR E	RR H	RR L	RR (HL)	RR A
2x	SLA B	SLA C	SLA D	SLA E	SLA H	SLA L	SLA (HL)	SLA A	SRA B	SRA C	SRA D	SRA E	SRA H	SRA L	SRA (HL)	SRA A
3x	SWAP B	SWAP C	SWAP D	SWAP E	SWAP H	SWAP L	SWAP (HL)	SWAP A	SRL B	SRL C	SRL D	SRL E	SRL H	SRL L	SRL (HL)	SRL A
4x	BIT 0,B	BIT 0,C	BIT 0,D	BIT 0,E	BIT 0,H	BIT 0,L	BIT 0,(HL)	BIT 0,A	BIT 1,B	BIT 1,C	BIT 1,D	BIT 1,E	BIT 1,H	BIT 1,L	BIT 1,(HL)	BIT 1,A
5x	BIT 2,B	BIT 2,C	BIT 2,D	BIT 2,E	BIT 2,H	BIT 2,L	BIT 2,(HL)	BIT 2,A	BIT 3,B	BIT 3,C	BIT 3,D	BIT 3,E	BIT 3,H	BIT 3,L	BIT 3,(HL)	BIT 3,A
6x	BIT 4,B	BIT 4,C	BIT 4,D	BIT 4,E	BIT 4,H	BIT 4,L	BIT 4,(HL)	BIT 4,A	BIT 5,B	BIT 5,C	BIT 5,D	BIT 5,E	BIT 5,H	BIT 5,L	BIT 5,(HL)	BIT 5,A
7x	BIT 6,B	BIT 6,C	BIT 6,D	BIT 6,E	BIT 6,H	BIT 6,L	BIT 6,(HL)	BIT 6,A	BIT 7,B	BIT 7,C	BIT 7,D	BIT 7,E	BIT 7,H	BIT 7,L	BIT 7,(HL)	BIT 7,A
8x	RES 0,B	RES 0,C	RES 0,D	RES 0,E	RES 0,H	RES 0,L	RES 0,(HL)	RES 0,A	RES 1,B	RES 1,C	RES 1,D	RES 1,E	RES 1,H	RES 1,L	RES 1,(HL)	RES 1,A
9x	RES 2,B	RES 2,C	RES 2,D	RES 2,E	RES 2,H	RES 2,L	RES 2,(HL)	RES 2,A	RES 3,B	RES 3,C	RES 3,D	RES 3,E	RES 3,H	RES 3,L	RES 3,(HL)	RES 3,A
Ax	RES 4,B	RES 4,C	RES 4,D	RES 4,E	RES 4,H	RES 4,L	RES 4,(HL)	RES 4,A	RES 5,B	RES 5,C	RES 5,D	RES 5,E	RES 5,H	RES 5,L	RES 5,(HL)	RES 5,A
Вx	RES 6,B	RES 6,C	RES 6,D	RES 6,E	RES 6,H	RES 6,L	RES 6,(HL)	RES 6,A	RES 7,B	RES 7,C	RES 7,D	RES 7,E	RES 7,H	RES 7,L	RES 7,(HL)	RES 7,A
Сж	SET 0,B	SET 0,C	SET 0,D	SET 0,E	SET 0,H	SET 0,L	SET 0,(HL)	SET 0,A	SET 1,B	SET 1,C	SET 1,D	SET 1,E	SET 1,H	SET 1,L	SET 1,(HL)	SET 1,A
Dж	SET 2,B	SET 2,C	SET 2,D	SET 2,E	SET 2,H	SET 2,L	SET 2,(HL)	SET 2,A	SET 3,B	SET 3,C	SET 3,D	SET 3,E	SET 3,H	SET 3,L	SET 3,(HL)	SET 3,A
Ex	SET 4,B	SET 4,C	SET 4,D	SET 4,E	SET 4,H	SET 4,L	SET 4,(HL)	SET 4,A	SET 5,B	SET 5,C	SET 5,D	SET 5,E	SET 5,H	SET 5,L	SET 5,(HL)	SET 5,A
Fx	SET 6,B	SET 6,C	SET 6,D	SET 6,E	SET 6,H	SET 6,L	SET 6,(HL)	SET 6,A	SET 7,B	SET 7,C	SET 7,D	SET 7,E	SET 7,H	SET 7,L	SET 7,(HL)	SET 7,A

Appendix B

Memory map tables

Table B.1: 0xFFxx registers: 0xFF00-0xFF1F

	bit 7	6	5	4	3	2	1	bit 0			
0xFF00 P1			P15 buttons	P14 d-pad	P13 👁 start	P12 • select	Р11 🕝 в	P10 • A			
0xFF01 SB				SB<	7:0>						
0xFF02 SC	SIO_EN						SIO_FAST	SIO_CLK			
0xFF03											
0xFF04 DIV				DIVH	<7:0>						
0xFF05 TIMA	TIMA<7:0>										
0xFF06 TMA	TMA<7:0>										
0xFF07 TAC						TAC_EN	_EN TAC_CLK<1:0>				
0xFF08											
0xFF09											
0xFF0A											
0xFF0B											
0xFF0C											
0xFF0D											
0xFF0E											
0xFF0F IF				IF_JOYPAD	IF_SERIAL	IF_TIMER	IF_STAT	IF_VBLANK			
0xFF10 NR10											
0xFF11 NR11											
0xFF12 NR12											
0xFF13 NR13											
0xFF14 NR14											
0xFF15											
0xFF16 NR21											
0xFF17 NR22											
0xFF18 NR23											
0xFF19 NR24											
0xFF1A NR30											
0xFF1B NR31											
0xFF1C NR32											
0xFF1D NR33											
0xFF1E NR34											
0xFF1F											
	bit 7	6	5	4	3	2	1	bit 0			

Table B.2: 0xFFxx registers: 0xFF20-0xFF3F

	bit 7	6	5	4	3	2	1	bit 0
0xFF20 NR41								
0xFF21 NR42								
0xFF22 NR43								
0xFF23 NR44								
0xFF24 NR50								
0xFF25 NR51								
0xFF26 NR52								
0xFF27								
0xFF28								
0xFF29								
0xFF2A								
0xFF2B								
0xFF2C								
0xFF2D								
0xFF2E								
0xFF2F								
0xFF30 WAV00								
0xFF31 WAV01								
0xFF32 WAV02								
0xFF33 WAV03								
0xFF34 WAV04								
0xFF35 WAV05								
0xFF36 WAV06								
0xFF37 WAV07								
0xFF38 WAV08								
0xFF39 WAV09								
0xFF3A WAV10								
0xFF3B WAV11								
0xFF3C WAV12								
0xFF3D WAV13								
0xFF3E WAV14								
ØxFF3F WAV15								
	bit 7	6	5	4	3	2	1	bit 0

Table B.3: 0xFFxx registers: 0xFF40-0xFF5F

	bit 7	6	5	4	3	2	1	bit 0
0xFF40 LCDC	LCD_EN	WIN_MAP	WIN_EN	TILE_SEL	BG_MAP	OBJ_SIZE	OBJ_EN	BG_EN
0xFF41 STAT		INTR_LYC	INTR_M2	INTR_M1	INTR_M0	LYC_STAT	LCD_MODE<1:0>	
0xFF42 SCY								
0xFF43 SCX								
0xFF44 LY								
0xFF45 LYC								
0xFF46 DMA								
0xFF47 BGP								
0xFF48 OBP0								
0xFF49 OBP1								
0xFF4A WY								
0xFF4B WX								
0xFF4C ????								
0xFF4D KEY1	KEY1_FAST							KEY1_EN
0xFF4E								
0xFF4F VBK							VBK-	(1:0)
0xFF50 BOOT								BOOT_OFF
0xFF51 HDMA1								
0xFF52 HDMA2								
0xFF53 HDMA3								
0xFF54 HDMA4								
0xFF55 HDMA5								
0xFF56 RP								
0xFF57								
0xFF58								
0xFF59								
0xFF5A								
0xFF5B								
0xFF5C								
0xFF5D								
0xFF5E								
0xFF5F								
	bit 7	6	5	4	3	2	1	bit 0

Table B.4: 0xffxx registers: 0xff60-0xff7f, 0xffff

	bit 7	6	5	4	3	2	1	bit 0	
0xFF60							-	•	
0xFF61									
0xFF62									
0xFF63									
0xFF64									
0xFF65									
0xFF66									
0xFF67									
0xFF68 BCPS									
0xFF69 BCPD									
0xFF6A OCPS									
0xFF6B OCPD									
0xFF6C ????						,		•	
0xFF6D									
0xFF6E									
0xFF6F									
0xFF70 SVBK							SVBK	<1:0>	
0xFF71									
0xFF72 ????									
0xFF73 ????									
0xFF74 ????									
0xFF75 ????									
0xFF76 PCM12			2_CH2		PCM12_CH1				
0xFF77 PCM34		PCM3	4_CH4		PCM34_CH3				
0xFF78									
0xFF79									
0xFF7A									
0xFF7B									
0xFF7C									
0xFF7D									
0xFF7E									
0xFF7F									
0xFFFF IE		IE_UNUSED<2:0>		IE_JOYPAD	IE_SERIAL	IE_TIMER	IE_STAT	IE_VBLANK	
		6						bit 0	

Appendix C

Game Boy external bus

C.1 Bus timings

Figure C.1: External bus timings for read cycles

 $^{^{1}\}mbox{Does}$ not apply to 0x0000–0x00FF accesses while boot ROM is enabled

Bibliography

- [1] Gameboy CPU (LR35902) instruction set. $http://www.pastraiser.com/cpu/gameboy/gameboy_opcodes.html.$
- [2] Pan of ATX, Marat Fayzullin, Felber Pascal, Robson Paul, and Korth Martin. Pan Docs Everything You Always Wanted To Know About GAMEBOY. http://bgb.bircd.org/pandocs.htm.
- [3] Tauwasser. MBC1 Tauwasser's Wiki. https://wiki.tauwasser.eu/view/MBC1.