Dynamical Clockwork Axions

Rupert Coy

Laboratoire Charles Coulomb (L2C), CNRS-Université de Montpellier

USyd Webinar, 7th September 2017

Based on arXiv: 1706.04529, accepted by JHEP In collaboration with Masahiro Ibe (ICRR/IPMU) and Michele Frigerio

Outline

- What is Clockwork?
- 2 The Strong CP problem and Axions
- Clockwork Composite Axions
- 4 Clockwork Axion phenomenology

What is Clockwork?

• A mechanism for generating exponentially suppressed couplings from a theory with only $\mathcal{O}(1)$ parameters

 Equivalently, generate an interaction scale much larger than the dynamical scale of the theory

Key features

- 1. $U(1)^{N+1}$ symmetry, either global or local
- 2. Breaking $U(1)^{N+1} \to U(1)_0$, either explicitly or spontaneously, by **asymmetric nearest neighbour** couplings
- 3. SM couples only to the last Clockwork site
- 4. Dynamics of remnant $U(1)_0$ symmetry gives exponential suppression

Scalar Clockwork¹

- N+1 complex scalars, ϕ_j , global $U(1)^{N+1}$ symmetry
- Spontaneous symmetry breaking at high scale, f
- Asymmetric **explicit breaking** to $U(1)_0$ by nearest neighbour coupling at much lower scale,

$$V = \sum_{j=0}^{N} \left(-m^2 |\phi_j|^2 + \frac{\lambda}{4} |\phi_j|^4 \right) + \sum_{j=0}^{N-1} \frac{\epsilon}{f^{q-3}} \phi_j^{\dagger} \phi_{j+1}^{q} + h.c.$$
 (1)

¹Choi & Im 1511.00132; Kaplan & Rattazzi 1511.01827; Giudice & McGullough 1<u>6</u>10.07962 ▶ ∢ ≧ ▶ □ ≧ → ✓ ℚ (№

Scalar Clockwork

High-energy Lagrangian,

$$V = \sum_{j=0}^{N} \left(-m^2 |\phi_j|^2 + \frac{\lambda}{4} |\phi_j|^4 \right) + \sum_{j=0}^{N-1} \frac{\epsilon}{f^{q-3}} \phi_j^{\dagger} \phi_{j+1}^q + h.c.$$
 (2)

• Parametrise in terms of NGBs, $\phi_j o U_j \equiv f e^{i\pi_j/\sqrt{2}f}$, then

$$V = -2\epsilon f^4 \sum_{j=0}^{N-1} \cos\left(\frac{\pi_j - q\pi_{j+1}}{\sqrt{2}f}\right)^2$$
 (3)

ullet Orthogonal rotation to mass basis $\pi_j = O_{jk} a_k$, with $m_{a_0} = 0$,

$$O_{j0} - qO_{j+1,0} = 0$$

 $\Rightarrow O_{j0} = \frac{\mathcal{N}}{q^j}, \ \mathcal{N} \approx 1$ (4)

• a_0 component of π_j decreases **exponentially** with j

Scalar Clockwork

 Final step: couple Clockwork to the SM at the final site, e.g. to a dimension-4 operator of SM fields:

$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{CW} + \frac{\pi_N \mathcal{O}_{SM}^{d=4}}{32\pi^2 f} + h.c.$$

$$\approx \mathcal{L}_{SM} + \mathcal{L}_{CW} + \frac{a_0 \mathcal{O}_{SM}^{d=4}}{32\pi^2 q^N f} + \sum_{j=1}^{N} C_j \frac{a_j \mathcal{O}_{SM}^{d=4}}{32\pi^2 f} + h.c., \quad (5)$$

where $C_j \sim \mathcal{O}(1)$.

- ullet Coupling of NGB to SM suppressed by q^N
- New effective scale is $f_{eff} \approx q^N f \gg f$

1 What is Clockwork?

2 The Strong CP problem and Axions

3 Clockwork Composite Axions

4 Clockwork Axion phenomenology

The Strong CP problem

The SM Lagrangian includes the CP-violating term,

$$\mathcal{L}_{\theta} = \frac{\theta_{QCD}}{32\pi^2} G\tilde{G} \tag{6}$$

Measured coefficient of this term is

$$\overline{\theta} = \theta_{QCD} - arg(\det[Y_d Y_u]), \tag{7}$$

and experimentally (neutron EDM) we know $|\overline{\theta}| < 10^{-10}$

- QCD term and EW term should be unrelated!
- Severe fine-tuning required: this is the Strong CP problem

Axion solution

- ullet Make $\overline{ heta}$ a dynamical field
- Impose a $U(1)_{PQ}$ symmetry, which must be
 - a. Axial
 - b. Spontaneously broken at scale $f_a \gg \Lambda_{QCD}$
 - c. Explicitly broken by the QCD anomaly, i.e. $aG\tilde{G}$ term
- ullet The $U(1)_{PQ}$ pNGB is the axion, defined by $\overline{ heta}=rac{a}{f_a}$
- Axion potential from the QCD anomaly is

$$V(a) \sim -\Lambda_{QCD}^4 \cos\left(\frac{a}{f_a}\right),$$
 (8)

and this takes $\overline{\theta} \to \mathbf{0}$ dynamically

10

Axion phenomenology

 Axions are a CDM candidate when produced via the misalignment mechanism, with relic abundance given by

$$\Omega_a h^2 \approx 0.07 \alpha_i^2 \left(\frac{f_a}{10^{12} \text{ GeV}}\right)^{7/6},\tag{9}$$

where $\alpha_i \sim \mathcal{O}(1)$ is the initial misalignment angle

• Upper bound on f_a from overproduction of DM, lower bound from ν burst duration in SN 1987A:

$$4 \times 10^8 \text{ GeV } \lesssim f_a \lesssim 10^{12} \text{ GeV}$$
 (10)

• $m_{a} \sim 10 \left(rac{10^{12}~{
m GeV}}{f_{a}}
ight) \mu {
m eV}$ from QCD anomaly

KSVZ axion²

- Simple construction of axion model: $U(1)_{PQ}$ must be
 - a. axial \Rightarrow introduce vector-like fermion, ψ
 - b. anomalous w.r.t. to QCD \Rightarrow give ψ QCD charge
 - c. spontaneously broken \Rightarrow add a complex scalar, σ , with a VEV
- Giving ψ_L, ψ_R, σ appropriate charges, we can write

$$\mathcal{L} \supset y\overline{\psi}_L\sigma\psi_R + h.c., \tag{11}$$

and the VEV of $\sigma \sim rac{f_{a}}{\sqrt{2}}e^{ia/f_{a}}$ breaks $U(1)_{PQ}$ spontaneously

• Below the scale f_a , axion couples to QCD,

$$\mathcal{L} \supset \frac{aG\ddot{G}}{32\pi^2 f_a},\tag{12}$$

which generates the cosine potential that takes $\overline{ heta} o 0$

²Kim, J.E., Phys. Rev. Lett. 43 (1979) 103; Shifman, M.A., Vainstein, V.I., and Zakharov, V.I., Nucl. Phys. B 166 (1980) 4933

The Clockwork axion

- Recall Scalar Clockwork model
- If **only** π_N is coupled to QCD anomaly, we have

$$\mathcal{L} = \frac{\pi_N}{32\pi^2 f} G \tilde{G}$$

$$\approx \frac{a_0}{32\pi^2 q^N f} G \tilde{G} + \dots, \tag{13}$$

i.e. an effective axion decay constant $f_a = q^N f \gg f$.

- So it's possible to set f at $\mathcal{O}(\text{TeV})$ and connect EW/LHC-scale physics to axion physics
- Shift in $\overline{\theta}$ from $U(1)_{PQ}$ -breaking gravity terms depends on the size of $\frac{f}{M_{Pl}}$, so lower dynamical scale **better protects** $\overline{\theta}$

But ...

- This is a nice example of the Clockwork in action, but we may wonder:
 - Where do all these scalars come from?
 - What is the origin of the scale f? Is it stable against quantum corrections?
 - What is the effect of gravity on the $U(1)^{N+1}$ symmetry?
 - What is the size of *q*? (not predicted)
 - How can we distinguish this axion model?
- In short, many open theory and phenomenology questions

1 What is Clockwork?

2 The Strong CP problem and Axions

3 Clockwork Composite Axions

4 Clockwork Axion phenomenology

Composite axion³

- \bullet Motivation: avoid elementary scalars, generate f_a dynamically
- Introduce strongly-coupled gauge $SU(N_c)_a$, condenses at Λ_a
- Vector-like fermions $Q_{L,R}\sim (\mathbf{N_c},\mathbf{3})$ and $\psi_{L,R}\sim (\mathbf{N_c},\mathbf{1})$ under $SU(N_c)_a\times SU(3)_{QCD}$
- There is a $U(1)_A^{(Q)} \times U(1)_A^{(\psi)}$ symmetry, which is broken:
 - spontaneously by fermion bilinears, $\left\langle \overline{Q}_{Li}Q_{Ri}\right\rangle = \left\langle \overline{\psi}_L\psi_R\right\rangle \sim \Lambda_a^3$
 - explicitly by $SU(N_c)_a$ and $SU(3)_{QCD}$ anomalies

³Kim, J.E., Phys. Rev. D31 (1985) 1733.

Composite axion

- $U(1)_{PQ}$ is linear combination broken **only** by QCD anomaly
- Q, ψ have PQ charges +1, -3 respectively
 - recall $Q_{L,R} \sim (N_c, 3)$, $\psi_{L,R} \sim (N_c, 1)$
- ullet Light pNGB is the composite axion, $a\sim rac{\overline{Q}\gamma^5Q-3\overline{\psi}\gamma^5\psi}{\sqrt{10}}$
- ullet Same coupling to QCD as before, with $f_a\sim \Lambda_a$, and $\overline{ heta}
 ightarrow 0$

Extending the composite axion model with Clockwork

- For the composite axion, we introduced an additional, asymptotically-free SU(N_c) and 2 vector-like fermions
- Let's Clockwork this, and introduce
 - N copies of asymptotically-free SU(N_c)
 - N + 1 vector-like fermions

Clockwork realisation in strongly-coupled gauge theories

• In Composite axion model, $\psi \sim (N_c, 1)$, $Q \sim (N_c, 3)$

Our Clockwork extension is:

	$SU(N_c)_1$	$SU(N_c)_2$	$SU(N_c)_3$		$SU(N_c)_N$	$SU(3)_{QCD}$	
ψ_{0}	N _c	1	1		1	1	
ψ_1	R	N _c	1		1	1	
ψ_2	1	R	N _c		1	1	
:	:	:	· · ·		:	:	
ψ_{N-1}	1	1	1	1 N		1	
ψ_{N}	1	1	1		R	3	

 Notably, this arrangement mimics the Clockwork's asymmetric nearest-neighbour couplings

The Clockwork realisation

- For each ψ_j there is a $U(1)_A^{(\psi_j)}$ symmetry, overall there is a $U(1)_A^{N+1}$ symmetry
- Since the $SU(N_c)_j$ confine, the fermion bilinear condensates,

$$\left\langle \overline{\psi}_{i}\psi_{i}\right\rangle \approx\Lambda^{3},$$
 (14)

spontaneously break the $U(1)_A^{N+1}$

- \bullet Assume Λ are all the same, in fact RG running drives them together
- ullet The NGBs, π_j , associated with SSB of $U(1)_A^{(\psi_j)}$ are given by

$$\overline{\psi}_j \psi_j \sim \Lambda^3 e^{i\pi_j} \tag{15}$$

Preserved $U(1)_{PQ}$ symmetry

- $U(1)_A^{(\psi_j)}$ explicitly broken by $SU(N_c)_j$ and $SU(N_c)_{j+1}$ anomalies
- However, there is a **preserved**, anomaly-free $U(1)_A$, with current

$$j_A^{\mu} = \sum_{j=0}^{N} q_j \times j_j^{\mu}; \qquad j_j^{\mu} = \frac{1}{2} \overline{\psi}_j \gamma_5 \gamma^{\mu} \psi_j. \tag{16}$$

- As in scalar example, there is one NGB and N massive pNGBs
- ullet Identify exact NGB as the axion and exact $U(1)_A$ as $U(1)_{PQ}$

Anomaly calculations

• The $U(1)_{PQ}$ charges are $q_j \approx q^{-j}$, with the Clockwork factor

$$q = -\frac{2T(\mathbf{R})N_c}{d(\mathbf{R})},\tag{17}$$

where $T(\mathbf{R})$, $d(\mathbf{R})$ are the Dynkin index and dimension of \mathbf{R}

The axion component in the pNGBs is

$$\pi_j = q_j \frac{a}{f},\tag{18}$$

where $f \sim \Lambda/4\pi$

Group Theory and Clockwork factor

- Choices of N_c , **R** are restricted by: a) $SU(N_c)$ must be asymptotically-free; b) need |q| > 1
- To ensure asymptotic freedom, require

$$11N_c - 4N_c T(\mathbf{R}) - 2d(\mathbf{R}) > 0 \tag{19}$$

• Should choose $\mathbf{R} \equiv \mathbf{A_2}$ and $N_c = 4, 5$, giving

$$q = -\frac{4}{3} (N_c = 4); \qquad q = -\frac{3}{2} (N_c = 5)$$
 (20)

Realising the QCD axion

	$SU(N_c)_1$	$SU(N_c)_2$	$SU(N_c)_3$	 $SU(N_c)_N$	$SU(3)_{QCD}$	
ψ_{0}	N_c	1	1	 1	1 1 1	
ψ_1	R	N_c	1	 1		
ψ_2	1	R	N _c	 1		
:	:	:	:	:	:	
ψ_{N}	1	1	1	 R	3	

• $U(1)_{PQ}$ is broken by the QCD anomaly, and the Clockwork axion arises as desired:

$$\mathcal{L} \supset \frac{d(\mathbf{R})\pi_N}{32\pi^2} G \tilde{G} \approx \frac{d(\mathbf{R})a}{32\pi^2 q^N f} G \tilde{G} + \dots, \tag{21}$$

i.e. effective axion decay constant is $f_a \approx \frac{q^N}{d(\mathbf{R})} f \gg f$

Alternative model: contact connection

Can we have a larger Clockwork factor? Yes!

	$SU(N_c)_1$			$SU(N_c)_2$			$SU(N_c)$ 3	
Q_1	R_Q		Q_2	R_Q	<u>-</u> .	Q_3	R_Q	
ψ_1	R_{ψ}] _ i	ψ_2	R_{ψ}	_ i	ψ_{3}	R_{ψ}	
		$SU(N_c)_N$						

 $egin{array}{c|c} \cdots & \overline{\mathbb{Q}}_N & \mathbf{R}_Q \ \hline \psi_N & \mathbf{R}_\psi \end{array}$

• Contact interactions (enforced by a \mathbb{Z}_m^{N-1} symmetry)

$$\mathcal{L}_{contact} = \frac{1}{M_*^2} \sum_{j=1}^{N-1} \left(\overline{\psi}_{Lj} \psi_{Rj} \right)^{\dagger} \left(\overline{Q}_{Lj+1} Q_{Rj+1} \right) + h.c. \quad (22)$$

Contact-connection model

• $U(1)_A^{2N}$ broken spontaneously by fermion condensates,

$$\overline{Q}_j Q_j \sim \Lambda^3 e^{i\pi_j}; \qquad \overline{\psi}_j \psi_j \sim \Lambda^3 e^{i\xi_j}$$
 (23)

- Contact interactions and anomalies explicitly breaks $U(1)_A^{2N} \to U(1)_A \equiv U(1)_{PQ}$, so there is one exact NGB
- Preserved $U(1)_A$ current given by

$$j_A^{\mu} = \sum_{j=1}^{N} \left(q_{Qj} j_{Qj}^{\mu} + q_{\psi j} j_{Q\psi}^{\mu} \right), \qquad j_{fj}^{\mu} = \frac{1}{2} \overline{f} \gamma_5 \gamma^{\mu} f$$
 (24)

Axion component in pNGB modes is in geometric progression

$$\pi_j pprox q_{Qj} rac{a}{f} + \dots, \qquad \qquad \xi_j pprox q_{\psi j} rac{a}{f} + \dots, ext{ with}$$
 $q_{Qj} = q^{1-j}, \qquad \qquad q_{\psi j} = q^{-j}.$ (25)

This model admits a larger Clockwork factor,

$$q = -\frac{T(\mathbf{R}_{\psi})}{T(\mathbf{R}_{\mathbf{Q}})} \sim \mathcal{O}(N_c) \gg 1. \tag{26}$$

Realising the QCD axion

- ullet Can introduce N_c flavours of Q_{N+1} with $q_{Q_{N+1}}=q_{\psi_N}$
- $U(1)_A$ is broken by the QCD anomaly, and

$$\mathcal{L} \supset \frac{N_c q_{Q_{N+1}} \pi_{N+1}}{32\pi^2} G \tilde{G} \approx \frac{N_c a}{32\pi^2 q^N f} G \tilde{G} + \dots, \tag{27}$$

i.e. effective axion decay constant is $f_a \approx \frac{q^N}{N_c} f \gg f$

Why these models are nice

- We can connect EW/LHC-scale physics to axion physics
- \bullet Better protection of $\overline{\theta}$ against cut-off (depends on $\frac{f}{M_{Pl}})$
- Specific to these realisations:
 - Provides a symmetry explanation for the convenient nearest neighour couplings
 - ullet Initial scale, Λ , is stable against quantum corrections
 - U(1)_{PQ} arises as accidental symmetry from the gauge symmetries and fermion content
 - Predicts Clockwork factor
 - Consequently, interesting phenomenology . . .

What is Clockwork?

2 The Strong CP problem and Axions

3 Clockwork Composite Axions

4 Clockwork Axion phenomenology

Clockwork axion phenomenology

Several interesting avenues:

- Collider signatures
- Cosmology

Coupling to photons

LHC phenomenology

- Spectrum of new coloured particles depends on model
- Dynamical model and one realisation of contact-connection model predicts colour octet scalar meson with mass $m_8 \sim \frac{g_s \Lambda}{4\pi}$, which can be pair produced or singly produced via

$$\mathcal{L} \supset \frac{g_s^2}{4\pi\Lambda} S_8 G \tilde{G} \tag{28}$$

- Dijet search in Run II can constrain production cross section to $\sigma \lesssim \mathcal{O}(0.1)$ pb, testing $m_8 \sim$ TeV ⁴
- $SU(N_c)$ baryons and other hadrons generally too heavy to be found at LHC

LHC phenomenology

• Contact-connection model may include vector-like quarks, Q_{N+1} , with mass $m_{Q_{N+1}} \sim \mathcal{O}(\Lambda^3/M_*^2)$, that interact with the SM, e.g. via

$$\mathcal{L} \supset \epsilon \overline{q}_{Li} \tilde{H} Q_{N+1R} \tag{29}$$

• ATLAS and CMS set $m_{T,B} \gtrsim 800$ GeV at 95% CL

ullet CMS expects to set $m_{T,B}\gtrsim 1.85$ TeV at 95% CL with 3000 fb $^{-1}$ of $\sqrt{s}=14$ TeV data

Cosmology

Coherent oscillation of axion field provides a relic abundance,

$$\Omega_a h^2 \approx 0.07 \alpha_i^2 \left(\frac{f_a}{10^{12} \text{ GeV}} \right)^{7/6},$$
 (30)

for initial misalignment angle, $\alpha_i \in [-\pi, \pi]$

- If f = 1 TeV (recall $f_a \approx q^N f$), correct relic density
 - For $N \sim \mathcal{O}(50)$ in $N_c = 5$ dynamical model
 - For $N \sim \mathcal{O}(15)$ in $N_c = 4$ contact-connection model
- Large domain wall number due to fractional clockwork factor, $N_{DW} \sim s^N$, where q=r/s
- To avoid domain wall problem, require $U(1)_{PQ}$ be broken during inflation and not restored afterwards

Baryonic DM

- Each fermion, ψ_i , Q_i has associated $U(1)_V$ symmetry in contact-connection model
- Lightest baryon under each $U(1)_V$ is a **stable bound state** with mass $m_{\mathcal{B}} \sim \mathcal{O}(N_c \Lambda)$
- Large relic density if reheating temperature lies in the window

$$T_F \lesssim T_R \lesssim \Lambda,$$
 (31)

where the baryonic freeze-out temperature is given by

$$x_F \sim \frac{1}{2}\log(x_F) + 35 - \log\left(\frac{m_B}{\text{TeV}}\right); \quad x_F \equiv \frac{m_B}{T_F}$$
 (32)

Then relic density of baryonic dark matter is

$$\Omega_{\mathcal{B}}h^2 \sim 0.1 \frac{N}{15} \left(\frac{m_{\mathcal{B}}}{20 \text{ TeV}}\right)^2 \tag{33}$$

Coupling to photons

- Suppose ψ_j or Q_j has $\mathcal{O}(1)$ charge under $U(1)_Y$
- Then axion-photon coupling goes as

$$\mathcal{L} \sim \frac{a}{32\pi^2 q^j f} F \tilde{F} \approx \frac{q^{N-J} a}{32\pi^2 f_a} F \tilde{F} + \dots$$
 (34)

- Axion can have much larger coupling to photons than conventional models!⁵
- Makes axion more 'visible' in haloscopes, e.g. ADMX

Rupert Coy

⁵For more details, see Farina, M. et al., JHEP 1701_−(2017) 095_E × ⋅ ≥ → ∞ ∞ ∞

Summary

- Clockwork is an interesting mechanism to generate exponentially small couplings
- We have constructed models where Clockwork emerges in a sequence of strongly-coupled gauge theories, and applied them to the composite axion
- Can link LHC-scale physics to axion physics with stable f_a , protection of $\overline{\theta}$, prediction of Clockwork factor
- Range of phenomenology, from the collider to the cosmos, and the possibility that the axion has a large coupling to photons
- Still early days for Clockwork: many unexplored realisations/applications!

Questions or comments?

