Prexel University Senior Resign 2022-2023

XEX

By Xiyuan Chang B.S. Data Science. Advisor: Hegler Tissot

Challenges in standard datasets

One-hot Encoding

Wine dataset Categorical feature:

Color: [White, Pink, Green, Purple, Red, Yellow] → Wine's color is Red/White/...

One-hot encoding

Color_White	Color_Pink	Color_Green	Color_Purple	Color_Red	Color_Yellow
0	0	0	0	1	0
1	0	0	0	0	0
0	0	1	0	0	0
0	0	0	1	0	0

Low-Dimensional Embedding Representation

avoid expanding the datasets

keep the information in the original dataset as much as possible

convey the meanings directly

capture the relations inside the dataset

Knowledge Graph Triple

В	С	D
color	fixed_acidity2	volatile_acidity
White	6.9	0.38
White	6	0.19
White	6.1	0.24
White	7.7	0.16
White	7.6	0.26
Red	11	0.26
White	7.4	0.25

HEXTRATO (c_h :h, r, c_t :t): (Wine:1, color, color: White)

(Wine: 1, fixed_acidity2, fixed_acidity2 : 6.9)

color	fixed_acidity2	volatile_acidity
color:White	fixed_acidity2:6.9	volatile_acidity:0.38
color:White	fixed_acidity2:6.0	volatile_acidity:0.19
color:White	fixed_acidity2:6.1	volatile_acidity:0.24
color:White	fixed_acidity2:7.7	volatile_acidity:0.16
color:White	fixed_acidity2:7.6	volatile_acidity:0.26
color:Red	fixed_acidity2:11.0	volatile_acidity:0.26
color:White	fixed_acidity2:7.4	volatile_acidity:0.25

Knowledge Graph Triple

Missing values

X5	X6	X7
56.01	0.21235	0.10215
3.9113	0.23485	0.099814
99.138		0.068143
36.266	0.19715	0.11873
-577.21	-0.13799	-0.09378
-18.533		-0.058892
-90.397	-0.46161	-0.22986
183.65		0.042864
92.114		0.083558
17.584	-0.047503	-0.025623
73.526	-0.036782	0.013112
16.146	0.1462	0.00839
79.761		0.065555

X5	X6	X7
X5:56.01	X6:0.21235	X7:0.10215
X5:3.9113	X6:0.23485	X7:0.099814
X5:99.138		X7:0.068143
X5:36.266	X6:0.19715	X7:0.11873
X5:-577.21	X6:-0.13799	X7:-0.09378
X5:-18.533		X7:-0.058892
X5:-90.397	X6:-0.46161	X7:-0.22986
X5:183.65		X7:0.042864
X5:92.114		X7:0.083558
X5:17.584	X6:-0.047503	X7:-0.025623
X5:73.526	X6:-0.036782	X7:0.013112
X5:16.146	X6:0.1462	X7:0.00839
X5:79.761		X7:0.065555

Knowledge Embeddings

Relation embeddings: wine: 32-D

relation	0	1	2
color	-0.7804594822	-0.8192020747	-0.07953128245
fixed_acidity2	-0.5255801622	-0.3382991964	-0.1927833429
volatile_acidity	-0.5255898598	-0.3388340714	-0.08347075988
citric_acid	-0.5258144627	-0.4031843829	-0.07485047471
residual_sugar	-0.9512547738	-0.8275812002	-0.1933114625
chlorides	-1.525835185	-0.3393879269	-0.1930033517
free_sulfur_dioxide	-0.6406564532	-0.3400373775	-0.1928235659

Tail embeddings: wine: 32-D

А	В	С	D
tail	0	1	2
color:White	0.254239324	0.4795765213	-0.1134585496
fixed_acidity2:6.9	0	0	0
volatile_acidity:0.38	0	0	0
citric_acid:0.25	0	0	0
residual_sugar:9.8	0	0	0
chlorides:0.04	0.9999518896	0	0
free_sulfur_dioxide:2	0	0	0

[relation embeddings, tail embeddings]

shape of embedding vector: (10, 64)

Model Selection

Dataset	Dataset Info	Classification Task
Polish	Continuous values & Missing values	Binary Classification
Wine	Categorical feature & Continuous Features	Binary Classification
Avila	Continuous Features	Multi- Classification

POLISH				
DATASET	MODEL			
TABULAR DATASET WITH ONE-ENCODING	LOGISITIC REGRESSION			
TABULAR DATASET WITH ONE-ENCODING	XGBOOST			
VARIABLE-LENGTH EMBEDDING VECTORS	BiLSTM-Attention			
TAIL EMBEDDING VECTORS	XGBOOST			

Model Selection

Wine				
DATASET	MODEL			
Tabular dataset with one-hot encoding	Logisitic Rgression			
Tabular dataset with one-hot encoding	XGBoost			
Variable-Length Embedding vectors	BiLSTM-Attention			
Tail Embedding Vectors	XGBoost			

Avila			
DATASET	MODEL		
Tabular dataset with one-hot encoding	Logisitic Rgression		
Tabular dataset with one-hot encoding	XGBoost		
Variable-Length Embedding vectors	BiLSTM-Attention		
Tail Embedding Vectors	XGBoost		

Multi-classification Avila label count

Input batch: $[8,1] \rightarrow per$ sample has 1 output for

Input batch: [8, 20]

Input batch: [8, 12, 20]

Input batch: [8, 12, 20]

Input batch: [8, 12, 64],

Evaluation F1-score

Binary Classification

Polish model evaluation Wine model evaluation

Evaluation F1-score

Multi-Classification

Avila dataset:

Continuous values without Missing values

Avila model evaluation

Evaluation Model Results

One-hot Encoding

Knowledge Embeddings

Model	Decision
LR using Tabular dataset with one- encoding	×
XGBoost using Tabular dataset with one-encoding	X
Neural Network Bilstm-Attention using embeddings	
XGBoost using tail embeddings	

Contribution

The low-dimensional knowledge embedding representation contributes to:

◆ Handling Missing Values:

Keep the data information as much as possible and do not cause data distortion

Converting Categorical features:

greatly reduce the dimension

◆ Interpretable features:

Categorical features can be more easily because they are represented in terms of real-world entities and their relationships rather than abstract numerical values.

◆ Enhanced machine Learning models:

Embeddings with ontology feature constraints carries more information. Machine learning models have the potential to more effectively capture the relations inherent in the data. This enhancement is frequently manifested in superior performance in tasks such as prediction and classification.

Future Work

Propose A framework that supports low-dimensional vectorial representation for multi-relational data.

Provide an efficient way to integrate temporal information with multi-relational data represented by low-dimensional embeddings.

Construct and Evaluate time-sensitive models on dynamic multirelational data with temporal information.

Thank you for listening!