Example 119 : As shown in Figure 3, $\triangle in$ ABC , AB = AC , if the bisector of $\angle B$ intersects AC at P. Prove that $\angle APB = 3 \angle PBC$.

$$\frac{\left(\frac{B-P}{B-C}\right)^{3}}{\frac{P-B}{P-A}} = \frac{\frac{B-P}{B-C}}{\frac{B-A}{B-P}} \frac{\frac{B-A}{B-C}}{\frac{C-B}{C-A}} \frac{A-P}{A-C}$$