

Data Collection and Preprocessing Phase

Date	13 july 2024
Team ID	739805
Project Title	Prediction and Analysis of Liver Patient Data Using Machine Learning
Maximum Marks	6 Marks

Data Exploration and Preprocessing Template

Identifies data sources, assesses quality issues like missing values and duplicates, and implements resolution plans to ensure accurate and reliable analysis.

Section		Description 583 rows × 11 columns								
Data Overview	2	Age Total_Bilirubin	Direct_Bilirubin	Alkaline_Phosphotase	Alamine_Aminotransferase	Aspartate_Aminotransferase	Total_Protiens	Albumin Albumin_an		
	count 583.00	000 583.000000	583.000000	583.000000	583.000000	583.000000	583.000000	583.000000		
	mean 44.74	141 3.298799	1.486106	290.576329	80.713551	109.910806	6.483190	3.141852		
	std 16.18	833 6.209522	2.808498	242.937989	182.620356	288.918529	1.085451	0.795519		
	min 4.000	000 0.400000	0.100000	63,000000	10.000000	10.000000	2.700000	0.900000		
	25% 33.000	000008.0 000	0.200000	175.500000	23.000000	25.000000	5.800000	2,600000		
	50% 45.000	000 1.000000	0.300000	208.000000	35.000000	42.000000	6.600000	3.100000		
	75% 58.000	000 2.600000	1.300000	298.000000	60.500000	87.000000	7.200000	3.800000		
	max 90.000	000 75.000000	19.700000	2110.000000	2000.000000	4929.000000	9.600000	5.500000		

	Age Gender To	tal_Bilirubin Direct_Bili	irubin Alkaline_Phospl	notase Alamine_An	ninotransferase Aspartate_An	minotransferase Total	Protiens Al	bumin Albumin_and_G
	0 65 Female 1 62 Male	0.7	0.1 5.5	187 699	16 64	18 100	6.8 7.5	3.3
	1 62 Male 2 62 Male	7.3	4.1	490	60	100	7.0	3.3
	3 58 Male	1.0	0.4	182	14	20	6.8	3,4
	4 72 Male	3.9	2.0	195	27	59	7.3	2.4
Handling Missing Data	data.isnul Age Gender Total_Bili Direct_Bil Alkaline_F Alamine_Am Aspartate_ Total_Prot Albumin Albumin_an Dataset dtype: int data['Albu data.isna(Age Gender Total_Bili Direct_Bil	l().sum() rubin irubin hosphotase inotransferas Aminotransferiens d_Globulin_Ra 64 min_and_Globu rubin irubin	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	illna(data['Albumin_and_Glo	bulin_Ratio']	.mode()	[0],inplace=True)
	Alkaline_F Alamine_Am Aspartate_ Total_Prot Albumin	hosphotase inotransferas Aminotransfer iens d_Globulin_Ra	0 e 0 ase 0 0					
Data Transformation	from sklearn.preprocessing import StandardScaler sc=StandardScaler() x=sc.fit_transform(x) x array([[1.25209764, -1.76228085, -0.41887783,, 0.29211961, 0.19896867, -0.14789798], [1.06663704, 0.56744644, 1.22517135,, 0.93756634, 0.07315659, -0.65069686], [1.06663704, 0.56744644, 0.6449187,, 0.47653296, 0.19896867, -0.17932291],, [0.44843504, 0.56744644, -0.4027597,, -0.0767071, 0.07315659, 0.16635131], [-0.84978917, 0.56744644, -0.32216906,, 0.29211961, 0.32478075, 0.16635131], [-0.41704777, 0.56744644, -0.37052344,, 0.75315299, 1.58290153, 1.73759779]])							
Feature Engineering	: le=LabelEncode : x['Gender']=le : x['Gender']=le : x['Gender'] : 0	reprocessing impor r() .fit_transform(x['	Gender'])					

Save Processed Data

import pickle

pickle.dump(svm , open('model.pkl','wb'))

pickle.dump(sc , open('sc.pkl','wb'))