Η ΓΛΩΣΣΑ ΤΗΣ ΘΕΩΡΙΑΣ ΑΡΙΘΜΩΝ

ΚΑΤΗΓΟΡΗΜΑΤΙΚΗ ΛΟΓΙΚΗ www.psounis.gr

Η <u>Γλώσσα της Θεωρίας Αριθμών</u> (συμβολιζεται με $\Gamma_1^{\theta\alpha}$) συμπεριλαμβάνει ερμηνείες που ορίζονται με τα εξής στοιχεία:

- Το σύμπαν είναι οι φυσικοί αριθμοί: $|A| = \mathbb{N} = \{0,1,2,...\}$
- Ορίζονται τα συναρτησιακά σύμβολα:
 - $\bigoplus (x,y)$ με \bigoplus ^A (x,y) = x + y (συναρτησιακό σύμβολο της πρόσθεσης)
 - \bigcirc (*x*, *y*) με \bigcirc ^A (*x*, *y*) = *x* * *y* (συναρτησιακό σύμβολο του πολλαπλασιασμού)
 - '(x) με $'^{A}(x) = x + 1$ (συναρτησιακό σύμβολο που εκφράζει τον επόμενο ενός αριθμού)
- Ορίζονται τα κατηγορηματικά σύμβολα:
 - <(x,y) $\mu \epsilon <^A(x,y)$ $\forall \alpha$ $\alpha \lambda \eta \theta \epsilon \dot{\nu} \epsilon \iota \alpha \nu x < y$
 - $> (x,y) \mu \epsilon >^{\Lambda} (x,y) va a \lambda \eta \theta \epsilon \acute{v} \epsilon \iota a v x > y$
 - $\leq (x,y)$ με $\leq^{A} (x,y)$ να αληθεύει αν $x \leq y$
 - $\geq (x, y)$ με $\geq^{A} (x, y)$ να αληθεύει αν $x \geq y$
- Μοναδικό σύμβολο σταθεράς το μηδέν: 0 με $0^{A} = 0$

(Γνωστές) Ιδιότητες των Φυσικών Αριθμών:

Οι φυσικοί αριθμοί έχουν ελάχιστο στοιχείο (το μηδέν) και δεν έχουν μέγιστο στοιχείο. Άρα:

- Το 0 είναι μικρότερο ή ίσο από όλους τους φυσικούς
- Το 0 δεν είναι μικρότερο από όλους τους φυσικούς (δεν είναι μικρότερο από τον εαυτό του)
- Δεν υπάρχει φυσικός που να είναι μεγαλύτερος (ή ίσος) από όλους τους φυσικούς και Όποιον φυσικό αριθμό και να σκεφτούμε πάντα υπάρχει κάποιος μεγαλύτερος του!

Επίσης ισχύουν και οι ακόλουθες μαθηματικές σχέσεις:

- Αν x<y τότε x≤y (το αντίστροφο δεν ισχύει)
- ν χ=y αν και μόνο αν χ≤y και y≤χ
- x<y αν και μόνο αν x≤y και x≠y
- x>y αν και μόνο αν x≥y και x≠y
 x<y αν και μόνο αν δεν ισχύει ότι x≥y
- x>y αν και μόνο αν δεν ισχύει ότι x≤y

Παράδειγμα: Αντικαθιστώντας κάθε φορά το P με τα κατηγορηματικά σύμβολα <,>,≤,≥ να αποφασιστεί αν οι ακόλουθες προτάσεις είναι Α/Ψ.

		<	≤	>	≥
1	$\forall x P(x,x)$	Ψ(x=0)	A	Ψ(x=0)	Α
2	$\exists x P(x,x)$	A(x=0)	A(x=0)	A(x=0)	A(x=0)
3	$\forall x \forall y P(x, y)$	Ψ(x=1, y=0)	Ψ(x=1, y=0)	Ψ(x=0, y=1)	Ψ(x=0, y=1)
4	$\exists x \exists y P(x, y)$	A(x=0, y=1)	A(x=0, y=1)	A(x=1, y=0)	A(x=1, y=0)
5	$\forall x \exists y P(x,y)$	Α	Α	Ψ(x=0)	Α
6	$\exists x \forall y P(x,y)$	Ψ	A(x=0)	Ψ	Ψ
7	$\forall y \forall x P(x, y)$	Ψ(x=1, y=0)	Ψ(x=1, y=0)	Ψ(x=0, y=1)	Ψ(x=0, y=1)
8	$\exists y \exists x P(x, y)$	A(x=0, y=1)	A(x=0, y=1)	A(x=1, y=0)	A(x=1, y=0)
9	$\exists y \forall x P(x,y)$	Ψ	Ψ	Ψ	A(y=0)
10	$\forall y \exists x P(x, y)$	Ψ(y=0)	Α	Α	Α

Σημαντικές Συντομογραφίες:

- $\mathbf{E}(\mathbf{x}) \equiv \exists y [x ≈ ⊙ ('('(0)), y)]$ που αληθεύει αν το \mathbf{x} είναι άρτιος.
- $\mathbf{O}(\mathbf{x}) \equiv \exists y [x \approx \oplus (\odot ('('(0)), y), '(0))]$ που αληθεύει αν το **x** είναι περιττός.
- $P(x) \equiv \neg(x \approx 0) \land \neg(x \approx '(0)) \land \forall y \forall z [x \approx \bigcirc (y, z) \rightarrow x \approx y \lor x \approx z]$ που αληθεύει αν το x είναι πρώτος (διαιρείται ακριβώς μόνο με τον εαυτό του και την μονάδα).
- $\mathbf{D}(\mathbf{x}, \mathbf{y}) \equiv \exists z [x \approx \bigcirc (y, z)]$ που αληθεύει αν το x διαιρείται (ακριβώς) από το y.

Κάθε άρτιος φυσικός >4 γράφεται σαν άθροισμα δύο περιττών πρώτων:

$$\forall x \left[\exists (x) \land > \left(x, '\left('\left('\left('\left('\left('\left(0\right)\right)\right)\right)\right) \rightarrow \exists y \exists z (x = \bigoplus (y, z) \land P(y) \land P(z) \land O(y) \land O(z))\right] \right]$$