Investigating Supervised Classification on Stress Recognition: The Case of SWELL - KW Dataset

Dilruba Showkat

May 6, 2022

Overview

- Dataset Description and Objective
- □ Methods
- □ Results and Discussion

Dataset Description

Dataset: Smart Reasoning for Well-being at Home and at Work (SWELL- KW)

- Created from an experiment with 25 people doing knowledge work (e.g., searching for info)
- Test
 - → Training Sample size: 41033
 - → Test features size: 36
 - \rightarrow Labels: class 1-3

- **☐** Train
 - → Sample size: 369289
- → Total features: 36 numerical attributes
- \rightarrow Labels: class 1-3

- Samples Per Class (Training Set)
 - \rightarrow No-stress: 200082
 - → Interruption: 105150
- \rightarrow Time pressure: 64057

Objective

Primary Objective: to investigate various supervised classification algorithms on the dataset.

Methods

Data Preprocessing

- Class label encoding; drop sampen, higuci, datasetId
- Cross Validation: K fold
- Feature Engineering:
 - 'Feature importance' and 'select K best' method
 - Select top 5 scored subset of features: MEAN_RR, MEDIAN RR, pNN25, pNN50, HR
 - o PCA
 - \blacksquare n components = 5, 10

Algorithms

- Support Vector Machine (SVM)
- Multi-class Decision Tree (DT)
- Multi-class Random Forest (RF)
- Deep Neural Network (DNN) with Pytorch
- Multinomial Naive Bayes (NB)/ Gaussian NB
- ☐ Multi-class Logistic Regression (LR)

Results

Results: Best Performance Across Models

Results: Optimal Parameter Set Across Models

Model	Optimal Parameter Set	Accuracy	Time (sec)
KNN	k = 5	.99	5.99
RF	$criterion = gini, n_estimator = 200, max_depth = 30$	1.0	193
SVM	$kernel = rbf, \gamma = .01, C = 50$.99	3986.188
Multi-LR	Regularizer = $L2$, $C = 1000$, solver = $lbgfs$.59	92.3
NB	var smooting = .0018	.63	0.77
DT	depth = 100, criterion = gini	.948	5.29
DNN	$num_layer = 3$, $hidden-layer size = 512$, $lr = 0.01$ or 0.05	.54	1222.62

Results: Accuracy and Time Across Features Set

Accuracy was almost same across different feature set.

Time (sec) vs Features

Running time increased with increasing number of features.

Results: Parameter Tuning Across Models (1)

Depth

K Neighbors

Results: Parameter Tuning for DNN (2)

Train Batch	LR	Train	Validation	Test	Time (sec)
20	0.05	28.47	28	28	7874.09
32	0.1	54.19	54	54	8416.52
64	0.01	54.17	54	54	8734.35
128	0.001	68.61	75	44	8947.85
512	0.0001	59.84	72	42	9082.19

- Increasing batch size and decreasing Ir improved train/validation score, but not test score.
- Increasing hidden layer and neuron size didn't improve test accuracy for NN, however, they significantly increased running time

Key Takeaways

- In addition to exhaustive hyper-parameter tuning and experimentation, this work
 - improved accuracy over several related prior work and
 - propose 5 optimal set of parameter $\{MEAN_RR, MEDIAN_RR, pNN25, pNN50, HR\}$ as opposed to 10 in prior work without compromising accuracy or running time.

[1] Saskia Koldijk, Maya Sappelli, Suzan Verberne, Mark A Neerincx, and Wessel Kraaij. 2014. The swell knowledge work dataset for stress and user modeling research. In Proceedings of the 16th international conference on multimodal interaction. 291–298

Thank you!