Carles Roca Reverter

Escola Tècnica Superior d'Enginyeria Industrial de Barcelona (ETSEIB)

Universitat Pompeu Fabra (UPF)

Bachelor's Degree in Industrial Technologies and Economic Analysis

July 2024

Contents

Offshore Wind Farm Optimization

1. Introduction

2. Transmission system model

- 2.1 Elements modelling
- 2.2 Cost modelling

3. Power Flow

- 3.1 Admittance matrix
- 3.2 Equations
- 3.3 Newton-Raphson method

4. Optimization

- 4.1 NSGA-II Genetic Algorithm
- 4.2 OPF benchmark approach
- 5. Results
- 6. Conclusions

Introduction

1. Introduction

- 4.1 NSGA-II Genetic Algorithm
- 4.2 OPF benchmark approach

Motivation

Offshore Wind Farm Optimization

Introduction

- ▶ Variable renewable energy like wind and solar is becoming increasingly prevalent in the electrical grid.
- ▶ The presence of these sources is leads to unwanted effects in the grid such as overvoltages and voltage imbalances.
- Historic solutions are not well equipped to deal with these effects and especially the fast response times required.
- New power electronics based solutions, such as the unified power quality converter (UPQC), are investigated to solve this problem.

Goals

Offshore Wind Farm Optimization

Introduction

- ▶ To analyze voltage spread of distribution grid with high penetration of solar.
- ▶ To develop a dynamic model of the UPQC, including all required controllers.
- To develop an equivalent static model of the UPQC and validate its behaviour with the dynamic model.
- ▶ To propose design methodology for the converter sizing making use of the developed tools.
- ▶ To show behaviour of the converter over sample days using different design criteria.

Transmission system model

- 2. Transmission system model
 - 2.1 Elements modelling
 - 2.2 Cost modelling
- - 4.1 NSGA-II Genetic Algorithm
 - 4.2 OPF benchmark approach

Transmission system model

Converters are prone to be saturated during short-circuits (I_{max} is reached).

Table 1: Possible operating states of the converters in grid-following mode.

Converter State	PQ	PV
USS	P, Q	P, V
PSS	Q , I_{max}	V , I_{max}
FSS	$P=0$, I_{max}	$P=0$, I_{max}
DIS	$P = 0, \ Q = 0$	$P = 0, \ Q = 0$

Elements modelling

Offshore Wind Farm Optimization

Elements modelling

Traditional power flow:

$$\begin{pmatrix} \Delta f_P \\ \Delta f_Q \end{pmatrix} = - \begin{pmatrix} \frac{df_P}{d\theta} & \frac{df_P}{d\psi} \\ \frac{df_Q}{d\theta} & \frac{df_Q}{d\nu} \end{pmatrix} \begin{pmatrix} \Delta \theta \\ \Delta \nu \end{pmatrix}. \tag{1}$$

Extended Newton-Raphson considering current saturation:

$$\begin{pmatrix} \Delta f_{P} \\ \Delta f_{Q} \\ \Delta f_{I^{2}} \end{pmatrix} = - \begin{pmatrix} \frac{df_{P}}{d\theta} & \frac{df_{P}}{d\theta} \\ \frac{df_{Q}}{d\theta} & \frac{df_{Q}}{d\nu} \\ \frac{df_{I^{2}}}{d\theta} & \frac{df_{I^{2}}}{d\nu} \end{pmatrix} \begin{pmatrix} \Delta \theta \\ \Delta \nu \end{pmatrix},$$
(2)

where the residuals are:

$$\begin{cases}
\Delta f_{P} = -P_{\text{set}} + \Re([V]Y^{*}V^{*}), \\
\Delta f_{Q} = -Q_{\text{set}} + \Im([V]Y^{*}V^{*}), \\
\Delta f_{I^{2}} = I_{c}I_{c}^{*} = -I_{c,max}^{2} + (YV - [V^{*}]^{-1}S^{*} - I_{I}) \cdot (YV - [V^{*}]^{-1}S^{*} - I_{I})^{*}.
\end{cases} (3)$$

New bus types

Offshore Wind Farm Optimization

Elements modelling

New categories of buses emerge:

Table 2: Traditional types of buses and mapping to new buses depending on the converter state.

Converter State	PQ Control	PV Control
USS	PQ	PV
PSS	QI	VI
FSS	PI	PI
DIS	PQ	PQ

Costs

Offshore Wind Farm Optimization

Cost modelling

Figure 1: Approximate location of the three converters.

Summary

Offshore Wind Farm Optimization

Table 3: Power flow results for the converters under normal conditions.

VSC	State	ν	heta (°)	1	P	Q	S
vsc1	USS	1.0073	-40.7924	5.8017	-5.0000	3.0260	5.8443
vsc2	USS	1.0050	-63.9565	1.3882	-1.0000	0.9731	1.3953
vsc3	USS	1.0200	-48.6301	6.0529	6.0000	1.4580	6.1746

Table 4: Short-circuit results for the converters with $\underline{Z}_f = 0.002j$.

VSC	State	ν	$oldsymbol{ heta}$ (°)	1	Р	Q	S
vsc1	FSS	0.0633	-14.1576	7.0000	0.0000	0.4431	0.4431
vsc2	USS	0.9997	-63.3836	1.3958	-1.0000	0.9732	1.3954
vsc3	USS	0.9997	-46.1701	6.1764	6.0000	1.4582	6.1746

Table 5: Short-circuit results for the converters with $\underline{Z}_f = 0.05j$.

VSC	State	ν	heta (°)	1	Р	Q	S
vsc1	PSS	0.6423	-34.1962	7.0000	-3.1009	3.2557	4.4962
vsc2	USS	1.0050	-63.9565	1.3882	-1.0000	0.9696	1.3928
vsc3	USS	1.0200	-48.6301	6.0529	6.0000	1.4453	6.1716

Results validation

Offshore Wind Farm Optimization

Cost modelling

Figure 2: Dynamic simulation with PSS/E for a severe fault with $\underline{Z}_f = j0.002$ pu.

Comparison with PSS/E

Offshore Wind Farm Optimization

Cost modelling

Steady-state calculations:

Table 6: Steady-state short-circuit results with the proposed method and PSS/E.

\underline{Z}_f	Proposed method	PSS/E VSCs as generators	PSS/E VSCs as FACTS
j0.05	12.75	13.40	12.17
j0.002	31.40	32.57	25.91

PSS/E dynamic simulation:

Table 7: Comparison of efficiency with PSS/E dynamic simulation.

t _{sim} after fault (s)	Calculation time (s)	Error $ u_{sample} - u_{cal} $ (pu)
0.3	1.43	42×10^{-3}
1	3.52	$19.8 imes 10^{-3}$
2	6.81	$6.5 imes 10^{-3}$
3	10.07	$1.6 imes 10^{-3}$
4	13.14	$<0.1 imes10^{-3}$
Proposed method	0.085	6.17×10^{-11}

Power Flow

3. Power Flow

- 3.1 Admittance matrix
- 3.2 Equations
- 3.3 Newton-Raphson method

- 4.1 NSGA-II Genetic Algorithm
- 4.2 OPF benchmark approach

Optimization

4. Optimization

- 4.1 NSGA-II Genetic Algorithm
- 4.2 OPF benchmark approach

Results

- 4.1 NSGA-II Genetic Algorithm
- 4.2 OPF benchmark approach

5. Results

Conclusions

- 4.1 NSGA-II Genetic Algorithm
- 4.2 OPF benchmark approach
- 6. Conclusions

Conclusions

- ✓ To analyze voltage spread of distribution grid with high penetration of solar.
- ✓ To develop a dynamic model of the UPQC, including all required controllers.
- ✓ To develop an equivalent static model of the UPQC and validate its behaviour with the dynamic model.
- ✓ To propose design methodology for the converter sizing making use of the developed tools.
- ✓ To show behaviour of the converter over sample days using different design criteria.

Next Steps

Offshore Wind Farm Optimization

Conclusions

- Find optimal shunt converter current calculation
- Extend static model to state space to provide pseudo dynamic behaviour
- ► Create a voltage limit condition dependent on the load

Carles Roca Reverter

Escola Tècnica Superior d'Enginyeria Industrial de Barcelona (ETSEIB)

Universitat Pompeu Fabra (UPF)

Bachelor's Degree in Industrial Technologies and Economic Analysis

July 2024