2. Linux Security Basics

Linux & System Security

🥯 1. What is Linux?

Linux is a free and open-source UNIX-like operating system kernel originally created by Linus Torvalds in 1991.

It forms the core of various distributions (distros) like Ubuntu, Kali, CentOS, Arch, etc., which package the kernel with GNU tools and services.

Why it's important for cybersecurity:

- Used in servers, embedded devices, routers, IoT, and infosec tools.
- Powers platforms like Kali Linux, the de facto OS for penetration testing.

2. What is a Linux Command?

A Linux command is a text-based instruction given to the system via a shell (like bash, zsh, etc.).

Examples:

- 1s list directory contents
- cd change directory
- chmod change file permissions
- grep search for patterns in files
- ps view running processes
- Commands follow the structure:

```
command [options] [arguments]
```

Commands can be:

- Built-in (e.g., cd, echo)
- External binaries (e.g., /bin/ls, /usr/bin/ssh)

3. What is the Structure of the Linux Operating System?

Linux OS is divided into the following layers:

Layer	Description
Kernel	Core of the OS; manages hardware, memory, processes, and I/O.
Shell	Interface for users to interact with the OS (e.g., bash, zsh).
Utilities	System tools (e.g., cp, mv, apt).
File System	Hierarchical structure defined by FHS .
User Programs	Apps like browsers, editors, terminals.

* For OSCP, understanding **kernel space vs. user space**, and how **system calls** bridge them, is crucial.

► 4. What is the Purpose of the FHS (Filesystem Hierarchy Standard) and its Benefits?

FHS defines the directory structure and directory contents in Unix/Linux.

★ Purpose:

- Ensures consistency across distributions.
- Helps developers know where to place files.
- Makes scripts and software portable.
- Simplifies automation, backups, monitoring.

5. What Are the Different Directories in the Linux File System and Their Purposes?

Directory	Purpose
7	Root of the entire filesystem.
/bin	Essential binaries for all users (e.g., 1s, cp).
[/sbin]	System binaries (used for booting, repairing).
/etc	System configuration files.
/home	User directories ([/home/karli]).
/root	Home directory of the root user.
/var	Variable data (logs, mail, spool files).
/tmp	Temporary files (cleared on reboot).
/usr	User-installed software and libraries.
/lib, //lib64	Libraries needed by binaries.

Directory	Purpose
/dev	Device files (e.g., /dev/sda1, /dev/null).
/proc	Virtual filesystem for process and system info.
/boot	Files needed for booting (e.g., GRUB, kernel).

6. How to Protect Files and Directories?

Permissions:

Use chmod, chown, chgrp to manage access.

Symbol	Meaning
r	Read
w	Write
X	Execute

Command:

chmod 700 secret.txt # Owner can read/write/execute; no access to others

Other techniques:

- Use ACLs (setfacl) for fine-grained permissions.
- Immutable files: chattr +i filename (can't be changed/deleted even by root).
- Audit access with auditd.
- Secure backups and restrict physical access.

7. How to Monitor and Investigate System Activity?

Q Common Tools:

Tool	Purpose
top), [htop]	Real-time process and memory usage.
ps aux	List active processes.
lsof	List open files and sockets.
netstat, ss	Show network connections.
journalctl	System logs from [systemd].
dmesg	Kernel ring buffer (hardware logs).
[auditctl], [ausearch]	Monitor security events.

Tip:

For forensics, focus on:

- Suspicious users (/etc/passwd, who, last)
- Unexpected services (ps, systematl, chkconfig)
- File modifications (stat, find -mtime, inotifywait)
- Log tampering

8. How to Securely Transfer Files and Data?

• Secure Methods:

Tool	Use Case
scp	Secure file copy over SSH.
sftp	Secure FTP-like interface using SSH.
rsync -e ssh	Efficient sync over SSH.
gpg	Encrypt files before transfer.
curl -kcert	Transfer via HTTPS with certs.

Example:

scp file.txt karli@192.168.1.10:/home/karli/

Use strong keys instead of passwords and verify host fingerprints.

• 9. How to Configure and Manage a Firewall?

Linux uses iptables or nftables (newer), and distros often include frontends like ufw or firewalld.

Tools:

Tool	Description
iptables	Packet filtering framework (netfilter).
nft	Modern replacement for iptables.
ufw	Uncomplicated Firewall (Ubuntu-friendly).
firewalld	Dynamic firewall daemon (RHEL/CentOS).

Example with ufw:

```
sudo ufw enable
sudo ufw default deny incoming
```

```
sudo ufw allow ssh
sudo ufw status
```

Example with iptables:

```
iptables -A INPUT -p tcp --dport 22 -j ACCEPT iptables -P INPUT DROP
```

Always allow SSH before dropping INPUT or risk locking yourself out!

• 10. How to Identify and Terminate Malicious Processes?

⊗ Steps:

1. List Processes:

```
ps aux | grep suspicious
```

2. Check Resource Usage:

```
top, htop
```

3. Identify Network Activity:

```
lsof -i, netstat -tunlp, ss -lntp
```

4. Find Executables and Paths:

```
which processname
```

5. Kill the Process:

```
kill -9 <PID>
```

- 6. Investigate Further:
 - Check binaries with strings, file, md5sum.
 - o Run in sandbox (e.g., Cuckoo, strace, gdb).
 - Use chkrootkit or rkhunter.
- Don't just kill investigate first to avoid destroying evidence!