Computer Vision and Image Understanding

(Segmentation: Edge detection)

Bhabatosh Chanda bchanda57@gmail.com

Outline

- Edge detection
 - Gradient magnitude and direction
- · First and second derivative
 - 4-neighbour, Prewitt, Sobel operators
 - Convolution with Gaussian
 - Marr and Hildreth operator
 - Canny's edge detector
- Hough transform

2/27/2024

Segmentation

Example:

- 1. Region extraction (based on some measure of homogeneity).
- 2. Edge detection (based on abrupt change in some feature).

Segmentation

Example:

- 1. Region extraction (based on some measure of homogeneity)
- 2. Edge detection (based on detection of some abrupt change)

2/27/2024

.

2/27/2024

First derivative in 2D

· First derivative along any arbitrary direction z making an angle θ is $\frac{\partial f}{\partial z} = \frac{\partial f}{\partial x} \cos \theta + \frac{\partial f}{\partial y} \sin \theta$

where

- Magnitude = $\sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$
- Angle $\theta = tan^{-1} \left[\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right]$

2/27/2024

Detecting edge by first derivative

• 4-neighbour Edge Detector

Detecting edge by first derivative

• Prewitt Edge Detector

2/27/2024

2/27/2024

Detecting edge by first derivative

• Sobel Edge Detector

Detecting edge by Sobel operator

2/27/2024

2/27/2024

10

Detecting edge by Sobel operator

 $\frac{d}{dy}f$

 $\Delta \ge Threshold = 100$

 $\Delta = \sqrt{\left(\frac{d}{dx}f\right)^2 + \left(\frac{d}{dy}f\right)^2}$

Marr and Hildreth Edge Operator

• Smooth by Gaussian

$$S = G_{\sigma} * f$$
 where $G_{\sigma} = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^2 + y^2}{2\sigma^2}}$

• Use Laplacian to find derivatives

$$\nabla^2 S = \frac{\partial^2}{\partial x^2} S + \frac{\partial^2}{\partial y^2} S$$

$$\nabla^2 S = \nabla^2 (G_\sigma * f) = \nabla^2 G_\sigma * f$$

$$\nabla^2 G_\sigma = -\frac{1}{\sqrt{2\pi}\sigma^3} \left(2 - \frac{x^2 + y^2}{\sigma^2}\right) e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

2/27/2024

Canny Edge Detector

- <u>Criterion 1.</u> **Good Detection:** The optimal detector must minimize the probability of false positives as well as false negatives.
- <u>Criterion 2.</u> **Good Localization:** The edges detected must be as close as possible to the true edges.
- <u>Criterion 3: Single Response Constraint:</u> The detector must return one point only for each edge point.

2/27/2024

Canny Edge Detector

• Smooth by Gaussian

$$S = G_{\sigma} * f \qquad G_{\sigma} = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

• Compute x and y derivatives

$$\nabla S = \begin{bmatrix} \frac{\partial}{\partial x} S & \frac{\partial}{\partial y} S \end{bmatrix}^T = \begin{bmatrix} S_x & S_y \end{bmatrix}^T$$

· Compute gradient magnitude and orientation

$$|\nabla S| = \sqrt{S_x^2 + S_y^2} \qquad \theta = \tan^{-1} \frac{S_y}{S_x}$$

2/27/2024

Canny Edge Detector: Steps

- Convolution with derivative of Gaussian
- Non-maximum Suppression
- Hysteresis Thresholding

2/27/2024

Canny Edge Operator

$$\nabla S = \nabla (G_{\sigma} * f) = \nabla G_{\sigma} * f$$

$$\nabla G_{\sigma} = \begin{bmatrix} \frac{\partial G_{\sigma}}{\partial x} & \frac{\partial G_{\sigma}}{\partial y} \end{bmatrix}^{T}$$

$$\nabla S = \left[\frac{\partial G_{\sigma}}{\partial x} * f \quad \frac{\partial G_{\sigma}}{\partial y} * f \right]^{T}$$

2/27/2024

2/27/2024

Gradient Orientation

• Reduce angle of Gradient $\vartheta(x,y)$ to one of the 4 sectors

- Check the 3x3 region of each M(x,y)
- If the value at the center is not greater than the 2 values along the gradient, then M(x,y) is set to 0

2/27/2024

33

Non-Maxima Suppression

0 0 0 0 1 1 1 3 0 0 0 1 2 1 3 1 0 0 2 1 2 1 1 0 0 1 3 2 1 1 0 0 0 3 2 1 0 0 1 0 2 3 2 0 0 1 0 1 2 3 2 0 1 0 2 1

- Thin edges by keeping large values of Gradient
 - not always at the location of an edge
 - there are many points on thick edges

2/27/2024 3

Non-Maxima Suppression

2/27/2024

35

Non-Maxima Suppression

 The suppressed magnitude image will contain many false edges caused by noise or fine texture

2/27/2024

Non-Maxima Suppression

- Apply thresholding (>2) on thin ridges in M(x,y) that are only one pixel wide.
- Obtain edge pixels on the object contour.

2/27/2024

2/27/2024

37

Non-Maximum Suppression

 $M \ge Threshold = 25$

2/27/2024

Hysteresis Thresholding

Hysteresis Thresholding

- If the gradient at a pixel is above 'High',
 - declare it an 'edge pixel'
- If the gradient at a pixel is below 'Low',
 - declare it a 'non-edge-pixel'
- If the gradient at a pixel is between 'Low' and 'High' then
 - declare it an '<u>edge pixel</u>' if and only if it is connected to an 'edge pixel'
- Iterate the third step until no change takes place.

2/27/2024

Double Thresholding

- Apply two thresholds in the suppressed image
 - Set $T_2 > T_1$
 - two images in the output
 - the image from ${\it T_2}$ contains fewer edges but has gaps in the contours
 - the image from T₁ has many false edges
 - Then combine the results from T₁ and T₂
 - link the edges of T₂ into contours until we reach a gap
 - link the edge from $\rm T_2$ with edge pixels from a $\rm T_1$ contour until a $\rm T_2$ edge is found again

2/27/2024

41

original image (Lena)

2/27/2024

Similarity with 2nd order Gaussian

•
$$G(x) = \frac{1}{K} \exp(-\frac{x^2}{2\sigma^2})$$

•
$$G'(x) = \frac{dG}{dx}$$

$$G''(x) = \frac{d^2G}{dx^2}$$

2/27/2024

HOUGH TRANSFORM

2/27/2024

Line detection results

Line Detection by Hough Transform

Algorithm:

- Quantize Parameter Space (m,c)
- Create Accumulator Array A(m,c)
- Set $A(m,c) = 0 \quad \forall m,c$
- For each image edge (x_i, y_i) increment:

$$A(m,c) = A(m,c) + 1$$

• If (m,c) lies on the line:

$$c = -x_i m + y_i$$

• Find local maxima in A(m,c)

2/27/2024

Hough Transform for Straight Line Detection

• A more useful representation in this case is

$$x\sin\theta + y\cos\theta = \rho$$

Better Parameterization

NOTE: $-\infty \le m \le \infty$

Large Accumulator

More memory and computations

Improvement: (Finite Accumulator Array Size)

Line equation: $\rho = -x \cos \theta + y \sin \theta$

Here $0 \le \theta \le 2\pi$ $0 \le \rho \le \rho_{max}$

Given points (x_i, y_i) find (ρ, θ)

Hough Space Sinusoid

2/27/2024

Hough Transform for Straight Lines

- Advantages of Parameterization
 - Values of ' ρ ' and ' θ ' become bounded
- How to find intersection of the parametric curves
 - Use of accumulator arrays concept of 'Voting'
 - To reduce the computational load use Gradient information

2/27/2024

Computational Load

- Image size = 512 X 512
- Maximum value of $\rho = 512 * 2\sqrt{2}$
- With a resolution of 1°, maximum value of $\theta = 360^{\circ}$
- Accumulator size = $512 * 2\sqrt{2} * 360$
- Use of direction of gradient reduces the computational load by 1/360

2/27/2024

57

Hough Transform for Straight Lines - Algorithm

- Quantize the Hough Transform space: identify the maximum and minimum values of ρ and θ
- Generate an accumulator array $A(\rho, \theta)$; set all values to zero
- For all edge points (x_i, y_i) in the image
 - $-\,$ Use gradient direction for θ
 - $-% \left(-\right) =\left(-\right) \left(-\right) =\left(-\right) \left(-\right) \left($
 - Increment A(ρ , θ) by one
- For all cells in $A(\rho, \theta)$
 - Search for the maximum value of $A(\rho, \theta)$
 - Calculate the equation of the line
- To reduce the effect of noise more than one element (elements in a neighborhood) in the accumulator array are increased

2/27/2024 58

