# predict and margins

Andy Grogan-Kaylor

23 Sep 2020 14:35:15

## Background

Odds ratios, or coefficients showing the association of the independent variables with the log odds, represent the most immediate output of a logistic regression. However, for a variety of reasons, it may make sense to not only report odds ratios, but also to investigate predicted probabilities.

#### The Data

The data are an extract of the National Survey of Children's Health, 2018. The data contain information on children's current depression status, their exposure to various Adverse Childhood Experiences (ACEs) and their sex and race.

- . clear all
- . cd "/Users/agrogan/Desktop/newstuff/categorical/predict-and-margins"/Users/agrogan/Desktop/newstuff/categorical/predict-and-margins
- . use "NSCH\_ACES.dta", clear
- . describe

Contains data from NSCH\_ACES.dta

obs: 30,530 vars: 13 size: 488,480

23 Sep 2020 13:49

| variable name | storage<br>type | display<br>format | value<br>label variable label                                                |
|---------------|-----------------|-------------------|------------------------------------------------------------------------------|
| sc_sex        | byte            | %30.0g            | sc_sex_lab                                                                   |
|               |                 |                   | Sex of Selected Child                                                        |
| sc_race_r     | byte            | %48.0g            | sc_race_r_lab                                                                |
|               |                 |                   | Race of Selected Child, Detailed                                             |
| sc_racer      | byte            | %31.0g            | sc_racer_lab                                                                 |
|               |                 |                   | Race of Selected Child, Recode                                               |
| depress       | float           | %9.0g             |                                                                              |
| ace1R         | byte            | %9.0g             | RECODE of ace1 (Hard to Cover Basics Like Food<br>or Housing)                |
| ace3R         | byte            | %9.0g             | RECODE of ace3 (Child Experienced - Parent or<br>Guardian Divorced)          |
| ace4R         | byte            | %9.0g             | RECODE of ace4 (Child Experienced - Parent or<br>Guardian Died)              |
| ace5R         | byte            | %9.0g             | RECODE of ace5 (Child Experienced - Parent or<br>Guardian Time in Jail)      |
| ace6R         | byte            | %9.0g             | RECODE of ace6 (Child Experienced - Adults<br>Slap, Hit, Kick, Punch Others) |
| ace7R         | byte            | %9.0g             | RECODE of ace7 (Child Experienced - Victim of Violence)                      |
| ace8R         | byte            | %9.0g             | RECODE of ace8 (Child Experienced - Lived with                               |

|      | Mentally Ill) |                                                |  |  |
|------|---------------|------------------------------------------------|--|--|
| byte | %9.0g         | RECODE of ace9 (Child Experienced - Lived with |  |  |
|      |               | Person with Alcohol/Drug Problem)              |  |  |
| byte | %9.0g         | RECODE of ace10 (Child Experienced - Treated   |  |  |
|      |               | Unfairly Because of Race)                      |  |  |
|      | J             |                                                |  |  |

Sorted by:

### Logistic Regression

We estimate a logistic regression using ,or to ask for odds ratios.

```
. logit depress ace1R ace3R ace4R ace5R ace6R ace7R ace8R ace9R ace10R i.sc_race_r i.sc_sex,
                log likelihood = -4742.8248
Iteration 0:
                log \ likelihood = -4256.2811
Iteration 1:
                log likelihood = -4180.3512
Iteration 2:
                log likelihood = -4179.6624
Iteration 3:
Iteration 4: log likelihood = -4179.661
Iteration 5: log likelihood = -4179.661
Logistic regression
                                                                               28,926
                                                    Number of obs
                                                    LR chi2(16)
                                                                              1126.33
                                                    Prob > chi2
                                                                               0.0000
Log likelihood = -4179.661
                                                    Pseudo R2
                                                                               0.1187
```

| depress                | Odds Ratio | Std. Err. | z      | P> z  | [95% Conf. | Interval] |
|------------------------|------------|-----------|--------|-------|------------|-----------|
| ace1R                  | 1.611495   | .1106592  | 6.95   | 0.000 | 1.408569   | 1.843656  |
| ace3R                  | 1.627997   | .1212124  | 6.55   | 0.000 | 1.406946   | 1.883778  |
| ace4R                  | 1.78926    | .2211975  | 4.71   | 0.000 | 1.404247   | 2.279835  |
| ace5R                  | 1.048195   | .1097253  | 0.45   | 0.653 | .8537646   | 1.286904  |
| ace6R                  | 1.136375   | .1253184  | 1.16   | 0.246 | .9154867   | 1.41056   |
| ace7R                  | 1.9394     | .2129262  | 6.03   | 0.000 | 1.563919   | 2.40503   |
| ace8R                  | 3.72644    | .2966351  | 16.53  | 0.000 | 3.188131   | 4.355642  |
| ace9R                  | 1.410608   | .1304044  | 3.72   | 0.000 | 1.176837   | 1.690815  |
| ace10R                 | 1.535313   | .2020991  | 3.26   | 0.001 | 1.186178   | 1.98721   |
| sc race r              |            |           |        |       |            |           |
| Black or African Ameri | .827289    | .1074881  | -1.46  | 0.144 | .6413015   | 1.067216  |
| American Indian or Ala | .6279865   | .2045843  | -1.43  | 0.153 | .3316252   | 1.189195  |
| Asian alone            | .7145884   | .1439746  | -1.67  | 0.095 | .4814561   | 1.060609  |
| Native Hawaiian and Ot | . 2644952  | .2745993  | -1.28  | 0.200 | .03457     | 2.023654  |
| Some Other Race alone  | .6443303   | .1434801  | -1.97  | 0.048 | .4164493   | .9969076  |
| Two or More Races      | .616392    | .0814335  | -3.66  | 0.000 | .4757754   | .7985681  |
| sc_sex                 |            |           |        |       |            |           |
| Female                 | 1.468479   | .0935905  | 6.03   | 0.000 | 1.296039   | 1.663862  |
| _cons                  | .0150195   | .0010428  | -60.47 | 0.000 | .0131087   | .0172089  |

Note: \_cons estimates baseline odds.

#### **Predicted Probabilities**

Predicted probabilities are each participant's individual predicted probability of experiencing depression based upon the independent variables included in the model. We often denote such predicted probabilities with  $\hat{y}$ 

```
. predict yhat
(option pr assumed; Pr(depress))
(1,604 missing values generated)
```

yhat is a variable in the data, just like any other variable, and we can tabulate and graph it.

```
. tabulate sc_race_r, summarize(yhat)
```

| Race of<br>Selected<br>Child,<br>Detailed | Summary<br>Mean | of Pr(depres | ss)<br>Freq. |
|-------------------------------------------|-----------------|--------------|--------------|
| White alo                                 | .04050317       | .05252093    | 22,418       |
| Black or                                  | .04153355       | .05702566    | 1,878        |
| American                                  | .05128205       | .08430179    | 234          |
| Asian alo                                 | .01963636       | .01999562    | 1,375        |
| Native Ha                                 | .01369863       | .02790487    | 73           |
| Some Othe                                 | .03038309       | .04326265    | 757          |
| Two or Mo                                 | .03286171       | .05022293    | 2,191        |
| Total                                     | .03875406       | .05190828    | 28,926       |

- . graph bar yhat,  $\ensuremath{///}$
- > over(sc\_race\_r, label(angle(forty\_five))) ///
- > title("Predicted Probability of Depression") ///
- > scheme(michigan)
- . graph export mybar.png, width(500) replace
  (file mybar.png written in PNG format)



Figure 1: Bar Graph of Predicted Probabilities

# Predicted Margins (Over A Variable of Interest)

In their simplest form, predictive margins are average predicted probabilities were everyone in the sample were treated as if they were of a particular race.

| sc_race_r              |          |          |       |       |          |          |
|------------------------|----------|----------|-------|-------|----------|----------|
| White alone            | .0415443 | .0013092 | 31.73 | 0.000 | .0389785 | .0441102 |
| Black or African Ameri | .0350812 | .0038971 | 9.00  | 0.000 | .0274431 | .0427194 |
| American Indian or Ala | .0273233 | .0080773 | 3.38  | 0.001 | .0114921 | .0431546 |
| Asian alone            | .0307367 | .0055275 | 5.56  | 0.000 | .019903  | .0415704 |
| Native Hawaiian and Ot | .0121547 | .0120465 | 1.01  | 0.313 | 0114559  | .0357653 |
| Some Other Race alone  | .0279727 | .0056061 | 4.99  | 0.000 | .016985  | .0389605 |
| Two or More Races      | .0268611 | .0031053 | 8.65  | 0.000 | .0207748 | .0329474 |

We could also evaluate margins holding other variables at their *mean* values using the atmeans option. You can also read about obtaining margins for various combinations of the independent variables by typing help margins at the Stata prompt.

The essential graphing command is marginsplot, which will usually produce a perfectly useable graph. The other graphing options are added for clarification and aesthetic purposes.

```
. marginsplot, ///
> title("Predicted Probability of Depression") ///
> ylabel(, labsize(small) angle(horizontal)) ///
> xlabel(, angle(forty_five)) ///
> scheme(michigan)
    Variables that uniquely identify margins: sc_race_r
. graph export mymargins.png, width(500) replace
(file mymargins.png written in PNG format)
```



Race of Selected Child, Detailed

Figure 2: Margins Plot of Predicted Probabilities