CS 161: Design and Analysis of Algorithms

Greedy Algorithms 1: Shortest Paths In Weighted Graphs

- Greedy Algorithm
- BFS as a greedy algorithm
- Shortest Paths in Weighted Graphs
- Dijsktra's Algorithm

Greedy Algorithms

- Build up solution, making most obvious decision at each step
- Example: Making change
 - How can I make x cents using the fewest number of coins/bills?

Making Change

General problem:

- Given integer coin values v_1 , ... v_n , and a target amount W, find a set of coins (allowing repetition) whose total value is w that minimizes the total number of coins

Greedy Algorithm:

- If x = 0, give nothing and stop
- Otherwise, find the largest $v_i \le W$, add v_1 to the set, and subtract v_1 from W. Repeat

Making Change

- For U.S. currency, we have $v_1 = 1$, $v_2 = 5$, $v_3 = 10$, $v_4 = 25$ (ignore higher values)
- Does greedy algorithm give best solution?

Greedy Algorithm Optimal?

- Claim: greedy is optimal for U.S. coins
- Equivalent to showing the following: For any amount W, there is an optimal solution using the largest v_i that is at most W

Greedy Algorithm Optimal

Proof of equivalence:

- If claim true, then greedy is optimal, and greedy uses largest v_i that is at most W
- Other direction: Assume true for all W' < W. Say greedy uses g coins, optimal uses p coins
- Let P be an optimal solution for W that uses largest v_i
- Greedy first picks v_i, then solves W- v_i
- By induction, greedy optimal on W- v_i, g-1 coins
- P without v_i is a solution for W- v_i with p-1 coins
- Therefore, p-1 ≥ g-1, so p ≥ g

Greedy Algorithm Optimal?

- Claim: greedy is optimal for U.S. coins
- Proof:
 - Must have at most 2 dimes (otherwise can replace 3 dimes with quarter and nickel)
 - If 2 dimes, no nickels (otherwise can replace 2 dimes and 1 nickel with a quarter)
 - At most 1 nickel (otherwise can replace 2 nickels with a dime)
 - At most 4 pennies(otherwise can replace 5 pennies with a nickel

Greedy Algorithm Optimal?

- In optimal solutions:
 - Total value of pennies: < 5 cents</p>
 - Total value of pennies and nickels: < 10 cents</p>
 - Total value of non-quarters: < 25 cents</p>
- Therefore we always use the largest coin, so greedy optimal

Making Change

- Is greedy algorithm optimal in general?
 - Say we have 20 cent pieces as well
 - What if w = 40?
 - Optimal: two 20 cent pieces (2 coins)
 - Greedy: first picks quarter, then dime, then nickel (3 coins)
- In general, greedy algorithm does not give optimal solution for the Making Change Problem!

Making Change

- What properties of coin values lets greedy be optimal?
- Let $r_t = Ceiling(v_{i+1}/v_i)$, $s_t = r_t v_t$
- Theorem: If, for each t = 1,...,n-1, greedy algorithm outputs fewer than r_t coins for value $W_t = s_t v_{t+1}$, then greedy always optimal

Example: U.S. Currency

t	1	2	3	4
v_{t}	1	5	10	25
r _t	5	2	3	N/A
S _t	5	10	30	N/A
W_t	0	0	5	N/A
Greedy(W _t)	0	0	1	N/A

Example: U.S. Currency with 20 Cent Coin

t	1	2	3	4	5
v_{t}	1	5	10	20	25
r _t	5	2	2	2	N/A
S _t	5	10	20	40	N/A
W_t	0	0	0	15	N/A
Greedy(W _t)	0	0	0	2	N/A

Greedy Algorithms

- General Goal: give a simple greedy algorithm, prove that it gives optimal solution
- Proving optimality is usually the hard part

BFS as Greedy Algorithm

- Problem: Given a source node v, compute the distances to nodes in graph
- Approach: Set all distances to ∞, update greedily
 - Set distance(u) = ∞ for u ≠ v
 - Set distance(v) = 0
 - Repeatedly process nodes:
 - Find closest node u that hasn't been processed
 - For each edge (u,w), update distance to w

BFS as Greedy Algorithm

- When at a node u, to update distance to w:
 - distance(w) = Min(distance(w), distance(u) + 1)
- Find closest unprocessed node by keeping queue
 - queue contains unprocessed nodes that have distance < ∞
 - Works because we always add nodes to queue in in order of increasing distance, distances never updated once in queue

Why Greedy?

We update neighbors of closest nodes first

Why Correct?

- Let d(u) be correct distance to u
- Claim 1: All nodes have distance(u)≥d(u)

Proof

- True at beginning. Inductively assume true for first i-1 updates
- Let distance_i(u) be distance at step i
- For step i,
 distance_i(w) = Min(distance_{i-1}(w), distance_{i-1}(u) + 1)
- By induction,
 d(w) ≤ distance_{i-1}(w) and d(u) ≤ distance_{i-1}(u)
- $d(w) \le d(u) + 1 \le distance_{i-1}(u) + 1$
- Therefore, d(w) ≤ distance_i(w)

Why Correct?

- Let d(u) be correct distance to u
- Claim 1: All nodes have distance(u)≥d(u)
- Claim 2: After processing a node w, all processed nodes u have distance(u)=d(u)≤d(w), all unprocessed nodes u' have d(u')≥d(w), and for all u, distance(u) is the length of the shortest path from v to u where intermediate nodes are constrained to be processed

Proof

- True at beginning. Inductively assume true for the first i-1 nodes we process. Now process w
- If distance(w) > d(w), then the shortest path to w goes contains nodes that haven't been processed
- Let u be the first such node
- All on shortest path to u have been processed
- distance(u) = d(u) ≤ d(w) < distance(w)
- Therefore, u would have been processed instead of w
- Would have set distance(w) ≤d(u)+1=d(w)

Proof

- Say we are processing w and update w'
- Let dist be length of shortest path to w' through processed nodes, u be last node on this path
- If w is on path, u = w (otherwise, since d(u)≤d(w), we can bypass bypass w without increasing distance)
 - distance(w') = distance(w)+1
- If w is not on path, that distance(w') was already set correctly
- Thus distance(w') = Min of these two cases

Why Correct?

- Let d(u) be correct distance to u
- Claim 1: All nodes have distance(u)≥d(u)
- Claim 2: After processing a node w, all processed nodes u have distance(u)=d(u)≤d(w), all unprocessed nodes u' have d(u')≥d(w), and for all u, distance(u) is the length of the shortest path from v to u where intermediate nodes are constrained to be processed
- Therefore, once all nodes are processed, distances correct

Weighted Edges

Weighted Edges

- Length of path = sum of weights of edges
- Shortest path = path with shortest length
- Distance from v to u = length of shortest path from v to u

Shortest Path with Positive Integer Weights

 Idea: replace edge of length k with k-1 nodes and k unweighted edges

Shortest Path with Positive Integer Weights

 Idea: replace edge of length k with k-1 nodes and k unweighted edges

Running Time?

- Let W be total weight
- |V'|:
 - |V| + extra nodes
 - Edge of weight w gets w-1 extra nodes
 - Sum over all edges: W-|E|
 - |V'| = |V| |E| + W
- |E'| = W
- O(|V'|+|E'|) = O(|V|+W)

Problem

- Can't handle non-integer weights
- W can be very large poor performance

Solution: Dijsktra's Algorithm

- Recall BFS high level idea:
 - Set distance(u) = ∞ for u ≠ v
 - Set distance(v) = 0
 - Repeatedly process nodes:
 - Find closest node u that hasn't been processed
 - For each edge (u,w), update distance to w
- Works for general (non-negative) edge weights!
 - update sets distance(w)=Min(distance(w), distance(u)+weight(u,w))
- Issue: now distances might be updated multiple times, so can't use queue

Why Correct?

- Let d(u) be correct distance to u
- Claim 1: All nodes have distance(u)≥d(u)

Proof

- True at beginning. Inductively assume true for first i-1 updates
- Let distance_i(u) be distance at step i
- For step i,
 distance_i(w) = Min(distance_{i-1}(w), distance_{i-1}(u) + 1)
- By induction,
 d(w) ≤ distance_{i-1}(w) and d(u) ≤ distance_{i-1}(u)
- d(w) ≤ d(u) + weight(u,w) ≤ distance_{i-1}
 (u)+weight(u,w)
- Therefore, d(w) ≤ distance_i(w)

Why Correct?

- Let d(u) be correct distance to u
- Claim 1: All nodes have distance(u)≥d(u)
- Claim 2: After processing a node w, all processed nodes u have distance(u)=d(u)≤d(w), all unprocessed nodes u' have d(u')≥d(w), and for all u, distance(u) is the length of the shortest path from v to u where intermediate nodes are constrained to be processed

Proof

- True at beginning. Inductively assume true for the first i-1 nodes we process. Now process w
- If distance(w) > d(w), then the shortest path to w goes contains nodes that haven't been processed
- Let u be the first such node
- All on shortest path to u have been processed
- distance(u) = d(u) ≤ d(w) < distance(w)
- Therefore, u would have been processed instead of w
- Would have set distance(w) ≤d(u)+weight(u,w)=d(w)

Proof

- Say we are processing w and update w'
- Let dist be length of shortest path to w' through processed nodes, u be last node on this path
- If w is on path, u = w (otherwise, since d(u)≤d(w), we can bypass bypass w without increasing distance)
 - distance(w') = distance(w)+weight(w,w')
- If w is not on path, that distance(w') was already set correctly
- Thus distance(w') = Min of these two cases

Why Correct?

- Let d(u) be correct distance to u
- Claim 1: All nodes have distance(u)≥d(u)
- Claim 2: After processing a node w, all processed nodes u have distance(u)=d(u)≤d(w), all unprocessed nodes u' have d(u')≥d(w), and for all u, distance(u) is the length of the shortest path from v to u where intermediate nodes are constrained to be processed
- Therefore, once all nodes are processed, distances correct

How to Allow Multiple Updates

- Queue no longer works
- Instead, use a heap!
- Heap contains all unprocessed nodes
 - Ordered by distance
- To find closest, deletemin()
- To update:
 - distance(w) =
 Min(distance(w), distance(u)+weight(u,w))
 - decreasekey(w)

Solution: Dijsktra's Algorithm

- Set distance(v) = 0, distance(u) = ∞ for u \neq v
- Create heap q with all nodes, ordered by distance
- While q is not empty:
 - Let u = q.deletemin()
 - For each edge (u,w) in E:
 - distance(w) = Min(distance(w), distance(u)+weight(u,w))
 - decreasekey(w)

Running Time?

- |V| deletemin operations
- |V|+|E| insert/decreasekey operations
 (|V|+2|E| in undirected graphs)
- Recall heap operations:
 - deletemin: O(log |V|)
 - insert/decreasekey: O(log |V|)
- Total time: O((|V|+|E|)log |V|)

Potential Optimization: Lists

- Implement heap operations using a linked list
 - Insert: add beginning of list O(1)
 - decreasekey: do nothing O(1)
 - deletemin: search whole list for minimum O(|V|)
- Total time: O(|V|²)
 - Better for dense graphs $|E|=O(|V|^2)$
 - Worse for sparse graphs

Best of Both Worlds: d-ary Heaps

- Recall d-ary heap operations:
 - deletemin: O(d log |V|/log d)
 - decreasekey: O(log |V|/log d)
- Total time:

```
O(|V| d log |V|/log d +(|V|+|E|) log |V|/log d)
= O( (d |V|+|E|)log |V|/log d)
```

What d minimizes this quantity?

Choosing d

- Minimize O((d | V|+|E|)log | V|/log d)
- Difficult to minimize exactly
- Possible to show that d = O(|E|/|V|) is optimal
- Some cases:
 - Sparse: |E|=O(|V|), d=O(1), time=O(|V| log |V|)
 - Same as with binary heaps
 - Dense: $|E|=O(|V|^2)$, d=O(|V|), time= $O(|V|^2)$
 - Same as with linked lists
 - Intermediate: $|E|=O(|V|^{1+c})$, $d=O(|V|^c)$, time= $O(|V|^{1+c})$
 - Linear, better than both binary heaps and linked lists

Even Better: Fibonacci Heap

- Complicated data structure
 - deletemin: O(log |V|)
 - insert/decreasekey: O(1) amortized
- Total running time: O(|E|+|V|log |V|)
 - Only asymptotically better when |E| is close to |V|,
 but not O(|V|)
 - Example: |E|=O(|V|log |V|)

Finding Actual Path

- So far, we only compute distance from v to other nodes
- How do we compute the actual shortest path?
- If processing node u causes last change to distance(w), some shortest path to w passes through u
- Keep track of prev(w), the previous node in shortest path

Finding Actual Path

- Set distance(v) = 0, distance(u) = ∞ for u \neq v
- Create heap q with all nodes, ordered by distance
- While q is not empty:
 - Let u = q.deletemin()
 - For each edge (u,w) in E:
 - If(distance(u)+weight(u,w) < distance(w)):
 - distance(w) = distance(w)+weight(u,w)
 - prev(w) = u

Finding Actual Path

 To find path from v to w, follow prev pointers form w back to v

• If we have negative edges, Dijsktra's algorithm fails

• If we have negative edges, Dijsktra's algorithm fails

If we have negative edges, Dijsktra's algorithm fails

• If we have negative edges, Dijsktra's algorithm fails

Distance from V to C is 3, not 4!

Why Fail on Negative Edges?

- Let d(u) be correct distance to u
- Claim 1: All nodes have distance(u)≥d(u)
- Claim 2: After processing a node w, all processed nodes u have distance(u)=d(u)≤d(w), all unprocessed nodes u' have d(u')≥d(w), and for all u, distance(u) is the length of the shortest path from v to u where intermediate nodes are constrained to be processed

Why Fail on Negative Edges

- True at beginning. Inductively assume true for the first i-1 nodes we process. Now process w
- If distance(w) > d(w), then the shortest path to w goes contains nodes that haven't been processed
- Let u be the first such node
- All on shortest path to u have been processed
- distance(u) = $d(u) \le d(w) < distance(w)$
- Therefore, u would have been processed instead of w
- Would have set distance(w) ≤d(u)+weight(u,w)=d(w)

Bigger Problem: Negative Cycles

 In the presence of a negative cycle, the shortest path problem is undefined

- Path VAC has length 2
- Path VABAC has length 1
- Path VABABAC has length 0
- Path VABABABAC has length -1 ...

Negative Cycles

- If negative cycles, no shortest path
- Possible solution: add constant value to every edge
 - Does not compute shortest paths!
- Possible solution: shortest simple path
 - Finite number of simple paths, so shortest exists
 - Turns out to be very hard in presence of negative cycles