

REPORT SUMMARY

PATIENT AND SAMPLE INFORMATION	2
VARIANT(S) WITH CLINICAL RELEVANCE	2
THERAPEUTIC IMPLICATIONS	
REPORT DETAILS	
VARIANT INTERPRETATION	5
US FDA-APPROVED DRUG(S)ONGOING CLINICAL TRIALS	
ONGOING CLINICAL TRIALS	13
DETAILED TEST RESULTS	14
HOTSPOT GENOTYPES	16
TEST DETAILS	
ACTOnco®+ GENE LIST	22
DISCLAIMER	23
APPENDIX	
SIGNALING PATHWAYS AND MOLECULAR-TARGETED AGENTS	25
DEFEDENCES	27

Project ID: C21-M001-01269 Report No.: AA-21-05568_ONC Date Reported: Dec 01, 2021

PATIENT AND SAMPLE INFORMATION

PATIENT SPECIMEN ORDERING PHYSICIAN

Name: 高明利Type: FFPE tissueName: 陳三奇醫師Gender: MaleDate received: Nov 18, 2021Facility: 臺北榮總Date of Birth: Feb 28, 1955Collection site: Perirenal fatTel: 886-228712121

Patient ID: 23581911 Specimen ID: S11071799E Address: 臺北市北投區石牌路二段 201 號 Diagnosis: Hepatocellular carcinoma Lab ID: AA-21-05568

Diagnosis: Hepatocellular carcinoma Lab ID: AA-D/ID: NA

VARIANT(S) WITH CLINICAL RELEVANCE

Only variant(s) with clinical significance are listed. See the "DETAILED TEST RESULTS" section for full details.

SINGLE NUCLEOTIDE AND SMALL INDEL VARIANTS				
Gene	Amino Acid Change	Coverage	Allele Frequency	COSMIC ID
TP53	E51*	344	66.6%	COSM44907

COPY NUMBER VARIANTS (CNVS)

Loss of heterozygosity (LOH) information was used to infer tumor cellularity. Copy number alteration in the tumor was determined based on <u>66%</u> tumor purity.

Amplification (Copy number ≥ 8)

Amplification (copy number = 0)		
Chr	Gene	Copy Number
chr1	MCL1, NTRK1	6 [¥]

Homozygous deletion (Copy number=0)

Chr

ND ND		
Heterozygous deletion (Copy number=1)		
Chr	Gene	
chr4	FBXW7	
- lO	CDVAIDA	

Gene

ND, Not Detected

TUMOR MUTATIONAL BURDEN (TMB) MICROSATELLITE INSTABILITY (MSI)

3.9 muts/Mb Microsatellite stable (MSS)

Muts/Mb, mutations per megabase

Note:

TMB was calculated by using the sequenced regions of ACTOnco $^{\circ}$ + to estimate the number of somatic nonsynonymous mutations per megabase of all protein-coding genes (whole exome). The threshold for high mutation load is set at \geq 7.5 mutations per megabase. TMB, microsatellite status and gene copy number deletion cannot be determined if calculated tumor purity is < 30%.

Variant Analysis:

醫檢師張筑芜 博士 Chu-Yuan Chang Ph.D. 檢字第 020115 號 Sign Off

醫檢師張筑芜 博士 Chu-Yuan Chang Ph.D. 檢字第 020115 號 Churganchay

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。

行動基因臨床分子醫學實驗室 台北市內湖區新湖二路 345 號 3F

Email: <u>service@actgenomics.com</u> T: +886-2-2795-3660 | F: +886-2-2795-5016

AG4-QP4001-02(05) Page 2 of 32

chr
 Gene

 chr4
 FBXW7

 chr9
 CDKN2A

 chr13
 RB1

 chr17
 TP53

[¥] Increased gene copy number was observed.

Project ID: C21-M001-01269 Report No.: AA-21-05568_ONC Date Reported: Dec 01, 2021

THERAPEUTIC IMPLICATIONS **TARGETED THERAPIES Therapies Effect Genomic Alterations** Level 3B **CDKN2A** Heterozygous deletion Abemaciclib, Palbociclib, Ribociclib sensitive Level 4 FBXW7 Heterozygous deletion Everolimus, Temsirolimus sensitive FBXW7 Heterozygous deletion Gefitinib, Regorafenib resistant Abemaciclib, Palbociclib, Ribociclib **RB1** Heterozygous deletion resistant

Note: Therapies associated with benefit or lack of benefit are based on biomarkers detected in this tumor and published evidence.

Lev	/el	Description	
1	L	FDA-recognized biomarker predictive of response to an FDA approved drug in this indication	
2	2	Standard care biomarker (recommended as standard care by the NCCN or other expert panels) predictive of response to an FDA approved drug in this indication	
3	Α	Biomarkers that predict response or resistance to therapies approved by the FDA or professional societies for a different type of tumor	
	В	Biomarkers that serve as inclusion criteria for clinical trials	
4	1	Biomarkers that show plausible therapeutic significance based on small studies, few case reports or preclinical studies	

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。

行動基因臨床分子醫學實驗室 台北市內湖區新湖二路 345 號 3F

Email: <u>service@actgenomics.com</u> T: +886-2-2795-3660 | F: +886-2-2795-5016

AG4-QP4001-02(05)

[‡] Refer to "ONGOING CLINICAL TRIALS" section for detailed trial information.

Project ID: C21-M001-01269 Report No.: AA-21-05568_ONC Date Reported: Dec 01, 2021

IMMUNE CHECKPOINT INHIBITORS (ICI) THERAPIES

Genomic markers and alterations that are associated with response to ICI therapies

Positive Biomarker	Negative Biomarker
TMB-H: ND	EGFR aberration: ND
MSI-H: ND	MDM2/MDM4 amplification: ND
MMR biallelic inactivation: ND	STK11 biallelic inactivation: ND
PBRM1 biallelic inactivation: ND	PTEN biallelic inactivation: ND
SERPINB3/SERPINB4 mutation: ND	B2M biallelic inactivation: ND
	JAK1/2 biallelic inactivation: ND

MMR, mismatch repair; ND, not detected

Note: Tumor non-genomic factors, such as patient germline genetics, PDL1 expression, tumor microenvironment, epigenetic alterations or other factors not provided by this test may affect ICI response.

CHEMOTHERAPIES

No genomic alterations detected in this tumor predicted to confer sensitivity or lack of benefit to chemotherapies.

HORMONAL THERAPIES

No genomic alterations detected in this tumor predicted to confer sensitivity or lack of benefit to hormonal therapies.

OTHERS

No genomic alterations detected in this tumor predicted to confer sensitivity or lack of benefit to other therapies.

Note:

Therapeutic implications provided in the test are based solely on the panel of 440 genes sequenced. Therefore, alterations in genes not covered in this panel, epigenetic and post-transcriptional and post-translational factors may also determine a patient's response to therapies. In addition, several other patient-associated clinical factors, including but not limited to, prior lines of therapies received, dosage and combinations with other therapeutic agents, patient's cancer types, sub-types, and/or stages, may also determine the patient's clinical response to therapies.

Email: service@actgenomics.com T: +886-2-2795-3660 | F: +886-2-2795-5016

AG4-QP4001-02(05) Page 4 of 32

Project ID: C21-M001-01269 Report No.: AA-21-05568_ONC Date Reported: Dec 01, 2021

VARIANT INTERPRETATION

TP53 E51*, Heterozygous deletion

Biological Impact

TP53 encodes the p53 protein, a crucial tumor suppressor that orchestrates essential cellular processes including cell cycle arrest, senescence and apoptosis^[1]. TP53 is a proto-typical haploinsufficient gene, such that loss of a single copy of TP53 can result in tumor formation^[2].

E51* mutation results in a premature truncation of the p53 protein at amino acid 51 (UniProtKB). This mutation is predicted to lead to a loss of p53 function, despite not having characterized in the literature. Loss of the second wild-type allele resulted in the biallelic inactivation of the gene.

Therapeutic and prognostic relevance

Despite having a high mutation rate in cancers, there are currently no approved targeted therapies for TP53 mutations. A phase II trial demonstrated that Wee1 inhibitor (AZD1775) in combination with carboplatin was well tolerated and showed promising anti-tumor activity in TP53-mutated ovarian cancer refractory or resistant (< 3 months) to standard first-line therapy (NCT01164995)^[3].

In a retrospective study (n=19), advanced sarcoma patients with TP53 loss-of-function mutations displayed improved progression-free survival (208 days versus 136 days) relative to patients with wild-type TP53 when treated with pazopanib^[4]. Results from another Phase I trial of advanced solid tumors (n=78) demonstrated that TP53 hotspot mutations are associated with better clinical response to the combination of pazopanib and vorinostat^[5].

Advanced solid tumor and colorectal cancer patients harboring a TP53 mutation have been shown to be more sensitive to bevacizumab when compared with patients harboring wild-type TP53^{[6][7][8]}. In a pilot trial (n=21), TP53-negative breast cancer patients demonstrated increased survival following treatment with bevacizumab in combination with chemotherapy agents, Adriamycin (doxorubicin) and Taxotere (docetaxel)^[9]. TP53 mutations were correlated with poor survival of advanced breast cancer patients receiving tamoxifen or primary chemotherapy^{[10][11]}. In a retrospective study of non-small cell lung cancer (NSCLC), TP53 mutations were associated with high expression of VEGF-A, the primary target of bevacizumab, offering a mechanistic explanation for why patients exhibit improved outcomes after bevacizumab treatment when their tumors harbor mutant TP53 versus wild-type TP53^[12].

Project ID: C21-M001-01269 Report No.: AA-21-05568_ONC Date Reported: Dec 01, 2021

CDKN2A Heterozygous deletion

Biological Impact

The Cyclin-Dependent Kinase Inhibitor 2A (CDKN2A) gene encodes the p16 (p16INK4a) and p14 (ARF) proteins. p16INK4a binds to CDK4 and CDK6, inhibiting these CDKs from binding D-type cyclins and phosphorylating the retinoblastoma (RB) protein^{[13][14]}whereas p14 (ARF) blocks the oncogenic activity of MDM2 by inhibiting MDM2-induced degradation of p53^[15]. CDKN2A has been reported as a haploinsufficient tumor suppressor with one copy loss that may lead to weak protein expression and is insufficient to execute its original physiological functions^[16]. Loss of CDKN2A has been frequently found in human tumors that result in uncontrolled cell proliferation^{[17][18]}.

Therapeutic and prognostic relevance

Intact p16-Cdk4-Rb axis is known to be associated with sensitivity to cyclin-dependent kinase inhibitors^{[19][20]}. Several case reports also revealed that patients with CDKN2A-deleted tumors respond to the CDK4/6-specific inhibitor treatments^{[21][22][23]}. However, there are clinical studies that demonstrated CDKN2A nuclear expression, CDKN2A/CDKN2B co-deletion, or CDKN2A inactivating mutation was not associated with clinical benefit from CDK4/6 inhibitors, such as palbociclib and ribociclib, in RB-positive patients^{[24][25][26]}. However, CDKN2A loss or mutation has been determined as an inclusion criterion for the trial evaluating CDK4/6 inhibitors efficacy in different types of solid tumors (NCT02693535, NCT02187783).

Notably, the addition of several CDK4/6 inhibitors to hormone therapies, including palbociclib in combination with letrozole, ribociclib plus letrozole, and abemaciclib combines with fulvestrant, have been approved by the U.S. FDA for the treatment of ER+ and HER2- breast cancer^{[20][27][28]}.

In a Phase I trial, a KRAS wild-type squamous non-small cell lung cancer (NSCLC) patient with CDKN2A loss had a partial response when treated with CDK4/6 inhibitor abemaciclib^[22]. Administration of combined palbociclib and MEK inhibitor PD-0325901 yield promising progression-free survival among patients with KRAS mutant non-small cell lung cancer (NSCLC) (AACR 2017, Abstract CT046). Moreover, MEK inhibitor in combination with CDK4/6 inhibitor demonstrates significant anti-KRAS-mutant NSCLC activity and radiosensitizing effect in preclinical models^[29].

A retrospective analysis demonstrated that concurrent deletion of CDKN2A with EGFR mutation in patients with non-small cell lung cancer (NSCLC), predicts worse overall survival after EGFR-TKI treatment^[30].

Project ID: C21-M001-01269 Report No.: AA-21-05568_ONC Date Reported: Dec 01, 2021

FBXW7 Heterozygous deletion

Biological Impact

The F-box/WD repeat-containing protein 7 (FBXW7) gene encodes a protein that belongs to the SCF (SKP1-CUL1-F-box protein) E3 ligase complex. FBXW7 is recognized as a tumor suppressor which is involved in the negative regulation of oncogenes such as c-Myc^{[31][32]}, c-Jun^[33], cyclin E^[34], Notch family members^{[35][36]}, Aurora-A^[37], mTOR^[38], KLF5^[39], and MCL-1^[40]. Inactivating FBXW7 mutation or copy number loss may result in the accumulation of oncoproteins and therefore lead to malignant transformation^[41]. FBXW7 is a haploinsufficient tumor suppressor gene with one copy loss may lead to weak protein expression and is insufficient to execute its original physiological functions^{[39][40][42]}.

Therapeutic and prognostic relevance

Clinical efficacy of mTOR inhibitors was seen in patients harboring aberrations in the FBXW7 gene (one patient with refractory fibrolamellar hepatocellular carcinoma, and one patient with lung adenocarcinoma)^{[43][44]}. Moreover, in vitro assay also suggested that loss or inactivation of FBXW7 may confer sensitivity to mTOR inhibitor^[38].

Preclinical studies suggested that mutations or loss of FBXW7 were associated with regorafenib and oxaliplatin resistance in CRC cell lines^{[45][46]} and gefitinib resistance in lung cancer cells^{[47][48]}.

Retrospective studies have indicated that a relatively low expression level of FBXW7 is an independent prognostic marker of poor survival for patients with hepatocellular carcinoma, lung adenocarcinoma and squamous cell carcinoma^{[49][47]}.

MCL1 Amplification

Biological Impact

The myeloid cell leukemia 1 (MCL1) gene encodes a member of the BCL2 pro-survival family^[50]. MCL1 is highly regulated by various oncogenic signaling pathways, including the mitogen-activated protein kinase (MAPK) pathway^[51], the mTOR pathway^[52], and the phosphatidylinositol-3 kinase (PI3K) pathway^[53]. Oncogenic roles for MCL1 have been previously suggested by the report of increased rates of lymphoma in transgenic mice^[54]. Somatic amplification of MCL1 may be a common mechanism in cancer cells to increase cell survival^[55]. MCL1 overexpression was observed from a retrospective analysis of parotid gland carcinomas, including adenoid cystic carcinoma^[56].

Therapeutic and prognostic relevance

Therapies targeting MCL1 and other BCL2 family members with the pan-BCL2 family inhibitors are currently under investigation^[57]. A case report has demonstrated clinical efficacy of sorafenib, when combined with vorinostat, in a metastatic triple-negative breast cancer (TNBC) patient with MCL1-amplified tumor^[58]. Several in vitro studies also showed that sorafenib induces cell death via inhibition of MCL1 expression in multiple cancer types including, hepatocellular carcinoma (HCC), lung cancer, breast cancer, cholangiocarcinoma, endometrial cancer and chronic

Project ID: C21-M001-01269 Report No.: AA-21-05568_ONC Date Reported: Dec 01, 2021

lymphocytic leukemia^{[59][60][61][62][63][64]}. Preclinical studies have also demonstrated the efficacy of regorafenib in reducing MCL1 expression in human colorectal cancer (CRC) cell lines^{[65][66]}, and shown clinical benefit in two CRC patients when combined with 5-fluorouracil^[66]. In vivo models of colon cancer showed that MCL-1 expression is inhibited by targeting of the mTOR pathway using everolimus, promoting increased tumor cell killing of cancers with KRAS or BRAF mutations^[67].

NTRK1 Amplification

Biological Impact

The NTRK1 gene encodes the TRKA (tropomyosin receptor kinase) receptor which plays an important role in the development and function of the nervous system. Gene fusions of NTRK1 lead to constitutive activation of MAP-kinase, PI3-kinase, and PLC-γ pathways, and represent the main molecular alterations with known oncogenic and transforming potential in various malignancies, including soft tissue sarcoma, non-small cell lung cancer (NSCLC), glioblastoma multiforme (GBM), thyroid carcinoma, and pilocytic astrocytomas^{[68][69]}. A pan-cancer study (n=1250) demonstrated that 2.2% of the metastatic cancer patients harbored NTRK amplification and NTRK protein overexpression was observed in 14.8% of NTRK-amplified tumors (doi.org/10.23838/pfm.2017.00142).

Therapeutic and prognostic relevance

Patients with NTRK1 amplification had only limited benefit from larotrectinib treatment according to the few clinical studies. One of them had a partial response with larotrectinib of short duration (3.7 months)^[70], and the other one with metastatic NTRK1-amplified (copy number=8) esophageal carcinoma showed clinical efficacy for six weeks, and then a progressive disease of new lesions were observed^[71].

RB1 Heterozygous deletion

Biological Impact

The Retinoblastoma (RB1) gene encodes a tumor suppressor that negatively regulates the cell cycle, cell division, and DNA replication^[72]. Loss-of-function RB1 could lead to unregulated cell division and growth, abrogation of multiple mechanisms that safeguard against cellular transformation, and tumorigenesis^[73]. RB1 has also been implicated as a haploinsufficient tumor suppressor with one copy loss may lead to weak protein expression and is insufficient to execute its original physiological functions^{[74][75][76]}. Deletion or inactivating mutation of RB1 is found in a number of tumors, including lung, prostate, bladder, breast cancers and sarcomas. RB1 mutations are found in approximately half of all retinoblastoma cases^[77].

Therapeutic and prognostic relevance

A deleterious mutation in one or more of the three DNA repair genes ATM, RB1, and FANCC predicted pathologic response and better overall survival to cisplatin-based chemotherapy for muscle-invasive bladder cancer patients^[78]. High RB loss was found to be associated with improved pathologic clinical response in breast cancer patients treated with 5-fluorouracil/adriamycin/cytoxan (FAC), T/FAC, and Taxane/Adriamycin neoadjuvant therapy^[79].

AG4-QP4001-02(05) Page 8 of 32

Project ID: C21-M001-01269 Report No.: AA-21-05568_ONC Date Reported: Dec 01, 2021

Clinical and experimental data suggested that a non-functional retinoblastoma pathway is associated with resistance to tamoxifen in breast cancer^{[80][81]}.

Acquired RB1 mutations were found in hormone receptor positive breast cancer patients who developed resistance to palbociclib or ribociclib treatment^[82]. Preclinical data also showed that knockdown of RB1 would impair antitumor activity of CDK4/6 inhibitor, abemaciclib^[83].

Two large-scale genome-sequencing projects have identified a high prevalence of mutations in TP53 and RB1 in small cell lung cancer (SCLC)^{[84][85]}. Analyses of repeat biopsy samples from patients with EGFR-mutant adenocarcinoma that had transformed to the SCLC subtype have revealed that 100% of these patients have loss of RB1 and may be the alteration that induces this non-small-cell to small-cell transformation^{[81][86]}.

Project ID: C21-M001-01269 Report No.: AA-21-05568_ONC Date Reported: Dec 01, 2021

US FDA-APPROVED DRUG(S)

Abemaciclib (VERZENIO)

Abemaciclib is a cyclin-dependent kinase 4/6 (CDK4/6) inhibitor. Abemaciclib is developed and marketed by Eli Lilly under the trade name VERZENIO.

FDA Approval Summary of Abemaciclib (VERZENIO)

DA Approval Sulmilary of Abelilacicilib (VERZEINIO)		
	Breast cancer (Approved on 2021/10/12)	
monarchE	HR-positive, HER2-negative	
NCT03155997	Abemaciclib+tamoxifen/aromatase inhibitor vs. Tamoxifen/aromatase inhibitor	
	[IDFS at 36 months(%): 86.1 vs. 79.0]	
	Breast cancer (Approved on 2018/02/26)	
MONARCH 3 ^[87]	HR-positive, HER2-negative	
NCT00246621	Abemaciclib + anastrozole/letrozole vs. Placebo + anastrozole/letrozole	
	[PFS(M): 28.2 vs. 14.8]	
	Breast cancer (Approved on 2017/09/28)	
MONARCH 1 ^[88]	HR-positive, HER2-negative	
NCT02102490	Abemaciclib	
	[ORR(%): 19.7 vs. 17.4]	
	Breast cancer (Approved on 2017/09/28)	
MONARCH 2 ^[28]	HR-positive, HER2-negative	
NCT02107703	Abemaciclib + fulvestrant vs. Placebo + fulvestrant	
	[PFS(M): 16.4 vs. 9.3]	

Everolimus (AFINITOR)

Everolimus, a derivative of sirolimus, works as an inhibitor of mammalian target of rapamycin complex 1 (mTORC1) and blocks mTORC1-mediated downstream signals for cell growth, proliferation, and survival. Everolimus is developed and marketed by Novartis under the trade name AFINITOR.

FDA Approval Summary of Everolimus (AFINITOR)

	Lung or gastrointestinal neuroendocrine tumor (Approved on 2016/02/26)		
RADIANT-4 ^[89]	-		
NCT01524783	Everolimus vs. Placebo		
	[PFS(M): 11 vs. 3.9]		

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。

ACTOnco® + Report

高明利

Project ID: C21-M001-01269 Report No.: AA-21-05568_ONC Date Reported: Dec 01, 2021

	Breast cancer (Approved on 2012/07/20)
BOLERO-2 ^[90]	ER+/HER2-
NCT00863655	Everolimus + exemestane vs. Placebo + exemestane
	[PFS(M): 7.8 vs. 3.2]
	Pancreatic neuroendocrine tumor (Approved on 2011/05/05)
RADIANT-3 ^[91]	-
NCT00510068	Everolimus vs. Placebo
	[PFS(M): 11 vs. 4.6]
	Subependymal giant cell astrocytoma (Approved on 2010/10/29)
EXIST-1 ^[92]	-
NCT00789828	Everolimus vs. Placebo
	[ORR(%): 35.0]
	Renal cell carcinoma (Approved on 2009/05/30)
RECORD-1 ^[93]	. 4
NCT00410124	Everolimus vs. Placebo
	[PFS(M): 4.9 vs. 1.9]

Palbociclib (IBRANCE)

Palbociclib is an oral, cyclin-dependent kinase (CDK) inhibitor specifically targeting CDK4 and CDK6, thereby inhibiting retinoblastoma (Rb) protein phosphorylation. Palbociclib is developed and marketed by Pfizer under the trade name IBRANCE.

FDA Approval Summary of Palbociclib (IBRANCE)

	Breast cancer (Approved on 2017/03/31)	
PALOMA-2 ^[94]	ER+, HER2-	
NCT01740427	Palbociclib + letrozole vs. Placebo + letrozole	
	[PFS(M): 24.8 vs. 14.5]	
	Breast cancer (Approved on 2016/02/19)	
PALOMA-3 ^[95]	ER+, HER2-	
NCT01942135	Palbociclib + fulvestrant vs. Placebo + fulvestrant	
	[PFS(M): 9.5 vs. 4.6]	

Project ID: C21-M001-01269 Report No.: AA-21-05568_ONC Date Reported: Dec 01, 2021

Ribociclib (KISQALI)

Ribociclib is a cyclin-dependent kinase (CDK) inhibitor specifically targeting cyclin D1/CDK4 and cyclin D3/CDK6, thereby inhibiting retinoblastoma (Rb) protein phosphorylation. Ribociclib is developed by Novartis and Astex Pharmaceuticals and marketed by Novartis under the trade name KISQALI.

FDA Approval Summary of Ribociclib (KISQALI)

	Breast cancer (Approved on 2017/03/13)	
MONALEESA-2 ^[27]	HR+, HER2-	
NCT01958021	Ribociclib vs. Letrozole	
	[PFS(M): NR vs. 14.7]	

Temsirolimus (TORISEL)

Temsirolimus is a soluble ester of sirolimus (rapamycin, brand-name drug Rapamune) and functions as an inhibitor of mammalian target of rapamycin complex (mTORC). The inhibitory molecular mechanism is similar to Everolimus. Temsirolimus is developed by Wyeth Pharmaceuticals and marketed by Pfizer under the trade name TORISEL.

FDA Approval Summary of Temsirolimus (TORISEL)

	Renal cell carcinoma (Approved on 2007/05/30)
[96]	-
NCT00065468	Temsirolimus vs. Ifn-α
	[OS(M): 10.9 vs. 7.3]

d=day; w=week; m=month

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路 345 號 3F

Email: service@actgenomics.com T: +886-2-2795-3660 | F: +886-2-2795-5016

AG4-QP4001-02(05)

Page 12 of 32

Project ID: C21-M001-01269 Report No.: AA-21-05568_ONC Date Reported: Dec 01, 2021

ONGOING CLINICAL TRIALS

Clinical trials shown below were selected by applying filters: study status, patient's diagnosis, intervention, location and/or biomarker(s). Please visit https://clinicaltrials.gov to search and view for a complete list of open available and updated matched trials.

No trial has been found.

AG4-QP4001-02(05) Page 13 of 32

Project ID: C21-M001-01269 Report No.: AA-21-05568_ONC Date Reported: Dec 01, 2021

DETAILED TEST RESULTS

SINGLE NUCLEOTIDE AND SMALL INDEL VARIANTS

Gene	Chr	Exon	Accession Number	cDNA Change	Amino Acid Change	Coverage	Allele Frequency	COSMIC ID
APC	5	4	NM_000038	c.385G>C	E129Q	450	57.8%	COSM9111347
ATRX	Х	29	NM_000489	c.6437A>G	Q2146R	202	49.5%	COSM9215893
BCL9	1	8	NM_004326	c.2620C>T	P874S	744	32.4%	-
BRCA1	17	10	NM_007294	c.3595G>T	A1199S	291	47.1%	COSM5981230
CDH1	16	10	NM_004360	c.1516A>G	T506A	960	8.3%	-
DNMT3A	2	17	NM_175629	c.2033A>T	Q678L	636	26.4%	-
FANCD2	3	- (NM_001018115	c.2495-2A>T	Splice acceptor	452	73.0%	-
FGF23	12	1	NM_020638	c.197A>T	H66L	1233	50.5%	-
GNAS	20	1	NM_080425	c.1952A>G	E651G	192	14.6%	-
KDM5A	12	23	NM_001042603	c.3721C>T	P1241S	1656	23.5%	COSM693163
KDM5A	12	7	NM_001042603	c.829A>G	M277V	546	22.0%	COSM8294769
LRP1B	2	35	NM_018557	c.5734G>A	A1912T	331	60.7%	COSM5776518
MUC16	19	56	NM_024690	c.40660C>T	R13554C	574	38.2%	-
MUC6	11	11	NM_005961	c.1318_1320del	D440del	87	83.9%	-
NOTCH3	19	5	NM_000435	c.709G>A	V237M	179	34.1%	-
PTCH1	9	23	NM_000264	c.3881C>T	P1294L	867	45.0%	-
SDHA	5	15	NM_004168	c.1960T>G	C654G	996	37.8%	-
SETD2	3	4	NM_014159	c.4547G>T	C1516F	357	39.2%	COSM6097918
SYNE1	6	56	NM_182961	c.8765A>T	E2922V	2188	49.7%	-
SYNE1	6	78	NM_182961	c.14791C>G	Q4931E	1034	49.1%	-
TERT	5	2	NM_198253	c.1138C>T	P380S	903	57.0%	-
TET1	10	2	NM_030625	c.1010C>A	A337E	595	50.3%	-
TP53	17	4	NM_000546	c.151G>T	E51*	344	66.6%	COSM44907

Mutations with clinical relevance are highlighted in red.

Project ID: C21-M001-01269 Report No.: AA-21-05568_ONC Date Reported: Dec 01, 2021

COPY NUMBER VARIANTS (CNVS)

Observed copy number (CN) for each evaluated position is shown on the y-axis. Regions referred to as amplification or deletion are shown in color. Regions without significant changes are represented in gray.

Project ID: C21-M001-01269 Report No.: AA-21-05568_ONC Date Reported: Dec 01, 2021

HOTSPOT GENOTYPES

Listed variants are biomarkers or hotspots that are recommended as standard care by the NCCN or other expert panels and not necessarily FDA-recognized for a particular indication. The genotypes have been manually checked to ensure sufficient coverage for each hotspot of the target gene.

Gene	Variant	Genotype Detected
BRAF	V600X	Not detected
EGFR	A763_Y764insFQEA, E709K, E709_T710delinsD, Exon 19 deletion, Exon 19 insertion, Exon 20 insertion, G719A/C/D/S, L747P, L833V, L858R, L861Q/R, S768I, T790M	Not detected
IDH2	R140Q, R172G/K/M/S	Not detected
KIT	A502_Y503dup, D419del, D579del, D816F/V/Y, D820A/E/G/Y, E554_I571del, E554_K558del, E554_V559del, Exon 11 mutation, F522C, H697Y, I563_L576del, I653T, K550_W557del, K558N, K558_E562del, K558_V559del, K558delinsNP, K642E, M552_W557del, N505I, N564_Y578del, N822H/I/K/Y, P551_M552del, P573_D579del, P577_D579del, P577_W582delinsPYD, P838L, Q556_K558del, T417_D419delinsI, T417_D419delinsRG, T574_Q575insTQLPYD, V530I, V555_L576del, V555_V559del, V559A/C/D/G, V559_V560del, V559del, V560D/G, V560del, V569_L576del, V654A, W557_K558del, Y553N, Y553_K558del, Y570H, Y578C	Not detected
KRAS	A146T/V/P, G12X, G13X, Q61X	Not detected
MET	D1028H/N/Y	Not detected
NRAS	G12X, G13X, Q61X	Not detected
PDGFRA	A633T, C450_K451insMIEWMI, C456_N468del, C456_R481del, D568N, D842I/V, D842_H845del, D842_M844del, D846Y, E311_K312del, G853D, H650Q, H845Y, H845_N848delinsP, I843del, N659K/R/S, N848K, P577S, Q579R, R560_V561insER, R748G, R841K, S566_E571delinsR, S584L, V469A, V536E, V544_L545insAVLVLLVIVIISLI, V561A/D, V561_I562insER, V658A, W559_R560del, Y375_K455del, Y555C, Y849C/S	Not detected
PIK3CA	C420R, E542K/V, E545A/D/G/K, H1047X, Q546E/R	Not detected

V600X= any mutation in the valine (V) at amino acid 600 being replaced by a different amino acid. G12X = any mutation in the glycine (G) at amino acid 12 being replaced by a different amino acid. G13X = any mutation in the glycine (G) at amino acid 13 being replaced by a different amino acid. Q61X = any mutation in the glutamine (Q) at amino acid 61 being replaced by a different amino acid. H1047X = any mutation in the histidine (H) at amino acid 1047 being replaced by a different amino acid.

Gene	Copy Number Detected
CDK4	4
EGFR	2
ERBB2	2
MET	2

Copy number ≥ 8 is considered amplification

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。

ACTOnco® + Report

高明利

Project ID: C21-M001-01269 Report No.: AA-21-05568_ONC Date Reported: Dec 01, 2021

Other known alterations that are associated with sensitivity, resistance, and toxicity to therapies.

Gene	Variant	Genotype Detected
AKT1	E17K	Not detected
ALK	C1156Y, D1203N, G1202R, L1152R, S1206Y, T1151_L1152insT	Not detected
BRAF	K601E, L597V/Q/R/S	Not detected
DPYD	D949V, I560S, splice-site mutation	Not detected
EGFR	A750P, C797S/Y, S492R	Not detected
ERBB2	V659E	Not detected
ESR1	D538G, E380Q, L469V, L536H/P/Q/R, S432L, S463P, V422del, V534E, Y537C/N/S	Not detected
FGFR3	G370C, G380R, K650E/N/R/M/T/Q, R248C, S249C, S371C, Y373C	Not detected
IDH1	R132C/G/H/L/Q/S	Not detected
MAP2K1	D67N, E203K, F53L, K57E/N, P124S, Q56P, Q56_V60del, R47Q, R49L, S222D	Not detected
PTEN	R130*/fs/G/L/P/Q	Not detected
TPMT	A154T, Y240C	Not detected

Gene	Copy Number Detected					
FGFR1	4					
MDM2	4					
MDM4	4					

Copy number ≥ 8 is considered amplification

行動基因臨床分子醫學實驗室 台北市內湖區新湖二路 345 號 3F

Email: <u>service@actgenomics.com</u> T: +886-2-2795-3660 | F: +886-2-2795-5016

AG4-QP4001-02(05)

Project ID: C21-M001-01269 Report No.: AA-21-05568_ONC Date Reported: Dec 01, 2021

TEST DETAILS

ABOUT ACTOnco®+

The test is a next-generation sequencing (NGS)-based assay developed for efficient and comprehensive genomic profiling of cancers. This test interrogates coding regions of 440 genes associated with cancer treatment, prognosis and diagnosis. Genetic mutations detected by this test include small-scale mutations like single nucleotide variants (SNVs), small insertions and deletions (INDELs) (≤ 15 nucleotides) and large-scale genomic alterations like copy number variations (CNVs).

See ACTOnco®+ Gene List' Section for details of gene sequenced.

DATABASE USED

- Reference genome: human genome sequence hg19
- COSMIC v.92
- Genome Aggregation database r2.1.1
- ClinVar (version 20210208)
- ACT Genomics in-house database

NEXT-GENERATION SEQUENCING (NGS) METHODS

Extracted genomic DNA was amplified using four pools of primer pairs targeting coding exons of analyzed genes. Amplicons were ligated with barcoded adaptors. Quality and quantity of amplified library were determined using the fragment analyzer (AATI) and Qubit (Invitrogen). Barcoded libraries were subsequently conjugated with sequencing beads by emulsion PCR and enriched using Ion Chef system (Thermo Fisher Scientific) according to the Ion PI Hi-Q Chef Kit protocol (Thermo Fisher Scientific). Sequencing was performed on the Ion Proton or Ion S5 sequencer (Thermo Fisher Scientific).

Raw reads generated by the sequencer were mapped to the hg19 reference genome using the Ion Torrent Suite (version 5.10). Coverage depth was calculated using Torrent Coverage Analysis plug-in. Single nucleotide variants (SNVs) and short insertions/deletions (INDELs) were identified using the Torrent Variant Caller plug-in (version 5.10). The coverage was down-sampled to 4000. VEP (Variant Effect Predictor) (version 100) was used to annotate every variant using databases from Clinvar (version 20210208), COSMIC v.92 and Genome Aggregation database r2.1.1. Variants with coverage \geq 25, allele frequency \geq 5% and actionable variants with allele frequency \geq 2% were retained.

This test provides uniform coverage of the targeted regions, enabling target base coverage at $100x \ge 85\%$ with a mean coverage $\ge 500x$.

Variants reported in Genome Aggregation database r2.1.1 with > 1% minor allele frequency (MAF) were

Project ID: C21-M001-01269 Report No.: AA-21-05568_ONC

高明利

Date Reported: Dec 01, 2021

ACTOnco® + Report

considered as polymorphisms. ACT Genomics in-house database was used to determine technical errors. Clinically actionable and biologically significant variants were determined based on the published medical literature.

The copy number variations (CNVs) were predicted as described below:

Amplicons with read counts in the lowest 5th percentile of all detectable amplicons and amplicons with a coefficient of variation ≥ 0.3 were removed. The remaining amplicons were normalized to correct the pool design bias. ONCOCNV (an established method for calculating copy number aberrations in amplicon sequencing data by Boeva et al., 2014) was applied for the normalization of total amplicon number, amplicon GC content, amplicon length, and technology-related biases, followed by segmenting the sample with a gene-aware model. The method was used as well for establishing the baseline of copy number variations from samples in ACT Genomics in-house database.

Tumor mutational burden (TMB) was calculated by using the sequenced regions of ACTOnco $^{\circ}$ + to estimate the number of somatic nonsynonymous mutations per megabase of all protein-coding genes (whole exome). The TMB calculation predicted somatic variants and applied a machine learning model with a cancer hotspot correction. TMB may be reported as "TMB-High", "TMB-Low" or "Cannot Be Determined". TMB-High corresponds to \geq 7.5 mutations per megabase (Muts/Mb); TMB-Low corresponds to < 7.5 Muts/Mb. TMB is reported as "Cannot Be Determined" if the tumor purity of the sample is < 30%.

Classification of microsatellite instability (MSI) status is determined by a machine learning prediction algorithm. The change of a number of repeats of different lengths from a pooled microsatellite stable (MSS) baseline in > 400 genomic loci are used as the features for the algorithm. The final output of the results is either microsatellite Stable (MSS) or microsatellite instability high (MSI-H).

STANDARD OPERATING PROCEDURES (SOPS)

Standard operating procedures (SOPs) are shown below:

- AG2-QP-15 Specimen Management Procedure
- AG3-QP16-03 SOP of Cancer Cell DNA and RNA Extraction
- AG3-QP16-07 SOP of Nucleic Acid Extraction with QIAsymphony SP
- AG3-QP16-08 SOP of FFPE Nucleic Acid Extraction
- AG3-QP16-10 SOP of HE Staining
- AG3-QP16-13 SOP of Library Construction and Preparation
- AG3-QP16-17 SOP of DNA Quantification with Qubit Fluorometer
- AG3-QP16-20 SOP of CE-Fragment Analysis
- AG3-QP16-22 SOP of Variant Calling
- AG3-QP16-24 SOP of Ion Torrent System Sequencing Reaction
- AG3-QP16-26 SOP of Ion Chef Preparation

ACTOnco® + Report

高明利

Project ID: C21-M001-01269 Report No.: AA-21-05568_ONC Date Reported: Dec 01, 2021

- AG3-QP16-35 SOP of Variant Annotation
- AG3-QP16-96 SOP of Manual Inspection for SNVIndel Variant
- AG3-QP16-95 SOP of Manual Inspection for Copy Number Variant
- AG3-QP40-08 (02) Standard protocol for variant interpretation, curation and classification
- AG3-QP16-41 SOP of The user manual for clinical report system (CRS)

LIMITATIONS

This test does not provide information of variant causality and does not detect variants in non-coding regions that could affect gene expression. This report does not report polymorphisms and we do not classify whether a mutation is germline or somatic. Variants identified by this assay were not subject to validation by Sanger or other technologies.

NOTES

We do not exclude the possibility that pathogenic variants may not be reported by one or more of the tools and the parameters used.

PATHOLOGY EVALUATION

H&E-stained section No.: <u>S11071799E</u>

Collection site: <u>Perirenal fat</u>

Examined by: <u>Dr. Yeh-Han Wang</u>

 Estimated neoplastic nuclei (whole sample): <u>The percentage of viable</u> tumor cells in total cells in the whole slide (%): 60%

The percentage of viable tumor cells in total cells in the encircled areas in the whole slide (%): 60%

The percentage of necrotic cells (including necrotic tumor cells) in total cells in the whole slide (%): 5%

The percentage of necrotic cells (including necrotic tumor cells) in total cells in the encircled areas in the whole slide (%): 5%

Additional comment: NA

• Manual macrodissection: Not performed

The outline highlights the area of malignant neoplasm annotated by a pathologist.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。

Project ID: C21-M001-01269 Report No.: AA-21-05568_ONC Date Reported: Dec 01, 2021

SPECIMEN PHOTO(S)

Collection date: <u>Jun 2021</u>

● Facility retrieved: 臺北榮總

RUN QC

Panel: <u>ACTOnco®+</u>Mean Depth: <u>711x</u>

Target Base Coverage at 100x: 92%

Project ID: C21-M001-01269 Report No.: AA-21-05568_ONC Date Reported: Dec 01, 2021

ACTOnco®+ GENE LIST

ABCB1*	AURKB	CBL	CDKN2B	E2F3	FAT1	GRIN2A	JAK2	MED12	NOTCH4	PMS1	RAD51D	SLCO1B3*	TNFRSF14
ABCC2*	AXIN1	CCNA1	CDKN2C	EGFR	FBXW7	GSK3B	JAK3	MEF2B	NPM1	PMS2	RAD52	SMAD2	TNFSF11
ABCG2*	AXIN2	CCNA2	CEBPA*	EP300	FCGR2B	GSTP1*	JUN*	MEN1	NQ01*	POLB	RAD54L	SMAD3	TOP1
ABL1	AXL	CCNB1	CHEK1	EPCAM	FGF1*	GSTT1*	KAT6A	MET	NRAS	POLD1	RAF1	SMAD4	TP53
ABL2	B2M	CCNB2	CHEK2	EPHA2	FGF10	HGF	KDM5A	MITF	NSD1	POLE	RARA	SMARCA4	TPMT*
ADAMTS1	BAP1	ССПВЗ	CIC	ЕРНАЗ	FGF14	HIF1A	крм5С	MLH1	NTRK1	PPARG	RB1	SMARCB1	TSC1
ADAMTS13	BARD1	CCND1	CREBBP	ЕРНА5	FGF19*	HIST1H1C*	KDM6A	MPL	NTRK2	PPP2R1A	RBM10	SMO	TSC2
ADAMTS15	BCL10	CCND2	CRKL	ЕРНА7	FGF23	HIST1H1E*	KDR	MRE11	NTRK3	PRDM1	RECQL4	SOCS1*	TSHR
ADAMTS16	BCL2*	CCND3	CRLF2	ЕРНВ1	FGF3	HNF1A	KEAP1	MSH2	PAK3	PRKAR1A	REL	SOX2*	TYMS
ADAMTS18	BCL2L1	CCNE1	CSF1R	ERBB2	FGF4*	HR	КІТ	МЅН6	PALB2	PRKCA	RET	SOX9	U2AF1
ADAMTS6	BCL2L2*	CCNE2	CTCF	ERBB3	FGF6	HRAS*	KMT2A	MTHFR*	PARP1	PRKCB	RHOA	SPEN	UBE2A*
ADAMTS9	BCL6	сспн	CTLA4	ERBB4	FGFR1	HSP90AA1	кмт2С	MTOR	PAX5	PRKCG	RICTOR	SPOP	UBE2K
ADAMTSL1	BCL9	CD19	CTNNA1	ERCC1	FGFR2	HSP90AB1	KMT2D	MUC16	PAX8	PRKCI	RNF43	SRC	UBR5
ADGRA2	BCOR	CD274	CTNNB1	ERCC2	FGFR3	HSPA4	KRAS	MUC4	PBRM1	PRKCQ	ROS1	STAG2	UGT1A1*
ADH1C*	BIRC2	CD58	CUL3	ERCC3	FGFR4	HSPA5	LCK	мис6	PDCD1	PRKDC	RPPH1	STAT3	USH2A
AKT1	BIRC3	CD70*	CYLD	ERCC4	FH	IDH1	LIG1	митүн	PDCD1LG2	PRKN	RPTOR	STK11	VDR*
AKT2	BLM	CD79A	CYP1A1*	ERCC5	FLCN	IDH2	LIG3	МҮС	PDGFRA	PSMB8	RUNX1	SUFU	VEGFA
АКТ3	BMPR1A	CD79B	CYP2B6*	ERG	FLT1	IFNL3*	LMO1	MYCL	PDGFRB	PSMB9	RUNX1T1	SYK	VEGFB
ALDH1A1*	BRAF	CDC73	CYP2C19*	ESR1	FLT3	IGF1	LRP1B	MYCN	PDIA3	PSME1	RXRA	SYNE1	VHL
ALK	BRCA1	CDH1	CYP2C8*	ESR2	FLT4	IGF1R	LYN	MYD88	PGF	PSME2	SDHA	TAF1	WT1
AMER1	BRCA2	CDK1	CYP2D6	ETV1	FOXL2*	IGF2	MALT1	NAT2*	РНОХ2В*	PSME3	SDHB	TAP1	XIAP
APC	BRD4	CDK12	CYP2E1*	ETV4	FOXP1	IKBKB	MAP2K1	NBN	РІКЗС2В	РТСН1	SDHC	TAP2	XPO1
AR	BRIP1	CDK2	CYP3A4*	EZH2	FRG1	IKBKE	MAP2K2	NEFH	PIK3C2G	PTEN	SDHD	ТАРВР	XRCC2
ARAF	BTG1*	CDK4	CYP3A5*	FAM46C	FUBP1	IKZF1	МАР2К4	NF1	PIK3C3	PTGS2	SERPINB3	ТВХЗ	ZNF217
ARID1A	BTG2*	CDK5	DAXX	FANCA	GATA1	IL6	МАРЗК1	NF2	PIK3CA	PTPN11	SERPINB4	TEK	
ARID1B	ВТК	CDK6	DCUN1D1	FANCC	GATA2	IL7R	МАРЗК7	NFE2L2	РІКЗСВ	PTPRD	SETD2	TERT	
ARID2	BUB1B	CDK7	DDR2	FANCD2	GATA3	INPP4B	МАРК1	NFKB1	PIK3CD	PTPRT	SF3B1	TET1	
ASXL1	CALR	CDK8	DICER1	FANCE	GNA11	INSR	МАРКЗ	NFKBIA	PIK3CG	RAC1	SGK1	TET2	
ATM	CANX	CDK9	DNMT3A	FANCF	GNA13	IRF4	MAX	NKX2-1*	PIK3R1	RAD50	SH2D1A*	TGFBR2	
ATR	CARD11	CDKN1A	DOT1L	FANCG	GNAQ	IRS1	MCL1	NOTCH1	PIK3R2	RAD51	SLC19A1*	TMSB4X*	
4707	CASP8	CDKN1B	DPYD	FANCL	GNAS	IRS2*	MDM2	NOTCH2	PIK3R3	RAD51B	SLC22A2*	TNF	
ATRX													

^{*}Analysis of copy number alteration not available.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。

Project ID: C21-M001-01269 Report No.: AA-21-05568_ONC Date Reported: Dec 01, 2021

DISCLAIMER

Legal Statement

This test was developed by ACT Genomics and its performing characteristics were determined by ACT Genomics. This test result is to be used for clinical consultative purposes only and is not intended as a substitute for a clinical guidance of your doctor or another qualified medical practitioner. It should not be regarded as investigational or used for research.

The detection of genomic alterations does not necessarily indicate pharmacologic effectiveness (or lack thereof) of any drug or treatment regimen; the detection of no genomic alteration does not necessarily indicate lack of pharmacologic effectiveness (or effectiveness) of any drug or treatment regimen.

Treatment Decisions are the Responsibility of the Physician

Decisions on clinical care and treatment should be based on the independent medical judgment of the treating physician, taking into consideration all applicable information concerning the patient's condition, including physical examinations, information from other diagnostics tests and patient preferences, in accordance with the standard of care in a given community. A treating physician's decisions should not be based on a single test, such as this test, or the information contained in this report.

In terms of consulting a different treating physician, the patient must file an application and fulfill the listed criteria for ACT Genomics to provide the patient's report to the assigned physician. The report may not be copied or reproduced except in its totality.

Genetic Alterations and Drugs Not Presented in Ranked Order

In this report, neither any biomarker alteration nor any drug associated with a potential clinical benefit (or potential lack of clinical benefit), are ranked in order of potential or predicted efficacy.

Level of Evidence Provided

Drugs with a potential clinical benefit (or potential lack of clinical benefit) are evaluated for level of published evidence with at least one clinical efficacy case report or preclinical study. We endeavor to keep the information in the report up to date. However, customers must be aware that scientific understanding and technologies change over time, and we make no warranty as to the accuracy, suitability or currency of information provided in this report at any time.

No Guarantee of Clinical Benefit

This report makes no promises or guarantees about the effectiveness of a particular drug or any treatment procedure in any disease or in any patient. This report also makes no promises or guarantees that a drug without an association of reportable genomic alteration will, in fact, provide no clinical benefit.

Liability

ACT Genomics is not affiliated with any medical facility or medical practitioner. We provide information for informational purposes only, therefore, ACT Genomics and their employees cannot be held responsible for any direct, indirect, special, incidental or consequential damages that may arise from the use of information provided in the report.

Project ID: C21-M001-01269 Report No.: AA-21-05568_ONC Date Reported: Dec 01, 2021

免責聲明

法律聲明

本檢驗報告僅提供專業醫療參考,結果需經專業醫師解釋及判讀。基因突變資訊非必具備藥物或治療有效性指標,反之亦然。本檢驗報告提供之用藥指引不聲明或保證其臨床有效性,反之亦然。本基因檢測方法係由本公司研究開發,已經過有效性測試。

本檢驗報告非經本公司許可,不得私自變造、塗改,或以任何方式作為廣告及其他宣傳之用途。 本公司於提供檢驗報告後,即已完成本次契約義務,後續之報告解釋、判讀及用藥、治療,應自行尋求相關 專業醫師協助,若需將報告移件其他醫師,本人應取得該醫師同意並填寫移件申請書,主動告知行動基因, 行動基因僅能配合該醫師意願與時間提供醫師解說。

醫療決策需由醫師決定

任何治療與用藥需經由醫師在考慮病患所有健康狀況相關資訊包含健檢、其他檢測報告和病患意願後,依照該地區醫療照護標準由醫師獨立判斷。醫師不應僅依據單一報告結果(例如本檢測或本報告書內容)做決策。

基因突變與用藥資訊並非依照有效性排序

本報告中列出之生物標記變異與藥物資訊並非依照潛在治療有效性排序。

證據等級

藥物潛在臨床效益(或缺乏潛在臨床效益)的實證證據是依據至少一篇臨床療效個案報告或臨床前試驗做為評估。本公司盡力提供適時及準確之資料,但由於醫學科技之發展日新月異,本公司不就本報告提供的資料是否為準確、適宜或最新作保證。

責任

本檢驗報告僅提供專業醫療參考,本公司及其員工不對任何由使用本報告之內容引起的直接、間接、特殊、連帶或衍生的損失或損害承擔責任。

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路 345 號 3F

Email: <u>service@actgenomics.com</u> T: +886-2-2795-3660 | F: +886-2-2795-5016

AG4-QP4001-02(05)

Page 24 of 32

ACTOnco® + Report

高明利

Project ID: C21-M001-01269 Report No.: AA-21-05568_ONC Date Reported: Dec 01, 2021

SIGNALING PATHWAYS AND MOLECULAR-TARGETED AGENTS

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。

行動基因臨床分子醫學實驗室 台北市內湖區新湖二路 345 號 3F

Email: service@actgenomics.com T: +886-2-2795-3660 | F: +886-2-2795-5016

AG4-QP4001-02(05)

ACTOnco®+ Report

高明利

Project ID: C21-M001-01269 Report No.: AA-21-05568_ONC Date Reported: Dec 01, 2021

ACTOnco® + Report

高明利

Project ID: C21-M001-01269 Report No.: AA-21-05568_ONC Date Reported: Dec 01, 2021

REFERENCES

- PMID: 24739573; 2014, Nat Rev Cancer;14(5):359-70
 Unravelling mechanisms of p53-mediated tumour suppression.
- 2. PMID: 21125671; 2011, J Pathol;223(2):137-46 Haplo-insufficiency: a driving force in cancer.
- 3. PMID: 27998224; 2016, J Clin Oncol;34(36):4354-4361
 Phase II Study of WEE1 Inhibitor AZD1775 Plus Carboplatin in Patients With TP53-Mutated Ovarian Cancer Refractory or Resistant to First-Line Therapy Within 3 Months.
- 4. PMID: 26646755; 2016, Ann Oncol;27(3):539-43
 TP53 mutational status is predictive of pazopanib response in advanced sarcomas.
- 5. PMID: 25669829; 2015, Ann Oncol;26(5):1012-8
 Phase I study of pazopanib and vorinostat: a therapeutic approach for inhibiting mutant p53-mediated angiogenesis and facilitating mutant p53 degradation.
- 6. PMID: 27466356; 2016, Mol Cancer Ther;15(10):2475-2485
 TP53 Alterations Correlate with Response to VEGF/VEGFR Inhibitors: Implications for Targeted Therapeutics.
- 7. PMID: 23670029; 2013, Oncotarget;4(5):705-14
 P53 mutations in advanced cancers: clinical characteristics, outcomes, and correlation between progression-free survival and bevacizumab-containing therapy.
- 8. PMID: 17145525; 2006, Semin Oncol;33(5 Suppl 10):S8-14
 Bevacizumab in combination with chemotherapy: first-line treatment of patients with metastatic colorectal cancer.
- 9. PMID: 21399868; 2011, Int J Oncol;38(5):1445-52 p53, HER2 and tumor cell apoptosis correlate with clinical outcome after neoadjuvant bevacizumab plus chemotherapy in breast cancer.
- 10. PMID: 20549698; 2011, Int J Cancer;128(8):1813-21 p53 status influences response to tamoxifen but not to fulvestrant in breast cancer cell lines.
- 11. PMID: 10786679; 2000, Cancer Res;60(8):2155-62
 Complete sequencing of TP53 predicts poor response to systemic therapy of advanced breast cancer.
- 12. PMID: 25672981; 2015, Cancer Res;75(7):1187-90
 VEGF-A Expression Correlates with TP53 Mutations in Non-Small Cell Lung Cancer: Implications for Antiangiogenesis Therapy.
- 13. PMID: 17055429; 2006, Cell;127(2):265-75 The regulation of INK4/ARF in cancer and aging.
- 14. PMID: 8521522; 1995, Cell;83(6):993-1000 Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest.
- 15. PMID: 9529249; 1998, Cell;92(6):725-34

 ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways.
- 16. PMID: 16115911; 2005, Clin Cancer Res;11(16):5740-7
 Comprehensive analysis of CDKN2A status in microdissected urothelial cell carcinoma reveals potential

Project ID: C21-M001-01269 Report No.: AA-21-05568 ONC Date Reported: Dec 01, 2021

ACTOnco® + Report

haploinsufficiency, a high frequency of homozygous co-deletion and associations with clinical phenotype.

- PMID: 7550353; 1995, Nat Genet;11(2):210-2 Frequency of homozygous deletion at p16/CDKN2 in primary human tumours.
- 18. PMID: 24089445; 2013, Clin Cancer Res;19(19):5320-8 The cell-cycle regulator CDK4: an emerging therapeutic target in melanoma.
- 19. PMID: 27849562; 2017, Gut;66(7):1286-1296 Palbociclib (PD-0332991), a selective CDK4/6 inhibitor, restricts tumour growth in preclinical models of hepatocellular carcinoma.
- 20. PMID: 25524798; 2015, Lancet Oncol;16(1):25-35 The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study.
- PMID: 28283584; 2017, Oncologist; 22(4):416-421 Clinical Benefit in Response to Palbociclib Treatment in Refractory Uterine Leiomyosarcomas with a Common CDKN2A Alteration.
- 22. PMID: 27217383; 2016, Cancer Discov;6(7):740-53 Efficacy and Safety of Abemaciclib, an Inhibitor of CDK4 and CDK6, for Patients with Breast Cancer, Non-Small Cell Lung Cancer, and Other Solid Tumors.
- 23. PMID: 26715889; 2015, Curr Oncol;22(6):e498-501 Does CDKN2A loss predict palbociclib benefit?
- PMID: 25501126; 2015, Clin Cancer Res;21(5):995-1001 24. CDK 4/6 inhibitor palbociclib (PD0332991) in Rb+ advanced breast cancer: phase II activity, safety, and predictive biomarker assessment.
- PMID: 27542767; 2016, Clin Cancer Res;22(23):5696-5705 A Phase I Study of the Cyclin-Dependent Kinase 4/6 Inhibitor Ribociclib (LEE011) in Patients with Advanced Solid Tumors and Lymphomas.
- PMID: 24797823; 2014, Oncologist;19(6):616-22 Enabling a genetically informed approach to cancer medicine: a retrospective evaluation of the impact of comprehensive tumor profiling using a targeted next-generation sequencing panel.
- 27. PMID: 27717303; 2016, N Engl J Med;375(18):1738-1748 Ribociclib as First-Line Therapy for HR-Positive, Advanced Breast Cancer.
- 28. PMID: 28580882; 2017, J Clin Oncol;35(25):2875-2884 MONARCH 2: Abemaciclib in Combination With Fulvestrant in Women With HR+/HER2- Advanced Breast Cancer Who Had Progressed While Receiving Endocrine Therapy.
- PMID: 26728409; 2016, Clin Cancer Res;22(1):122-33 Coadministration of Trametinib and Palbociclib Radiosensitizes KRAS-Mutant Non-Small Cell Lung Cancers In Vitro and In Vivo.
- PMID: 31401335; 2019, Transl Oncol;12(11):1425-1431 Concomitant Genetic Alterations are Associated with Worse Clinical Outcome in EGFR Mutant NSCLC Patients Treated with Tyrosine Kinase Inhibitors.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路 345 號 3F

Email: service@actgenomics.com T: +886-2-2795-3660 | F: +886-2-2795-5016

AG4-QP4001-02(05)

Page 28 of 32

Project ID: C21-M001-01269 Report No.: AA-21-05568_ONC Date Reported: Dec 01, 2021

ACTOnco® + Report

- 31. PMID: 15498494; 2004, Curr Biol;14(20):1852-7
 A nucleolar isoform of the Fbw7 ubiquitin ligase regulates c-Myc and cell size.
- 32. PMID: 15103331; 2004, EMBO J;23(10):2116-25
 Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7.
- 33. PMID: 16023596; 2005, Cancer Cell;8(1):25-33

 The v-Jun point mutation allows c-Jun to escape GSK3-dependent recognition and destruction by the Fbw7 ubiquitin ligase.
- 34. PMID: 11533444; 2001, Science;294(5540):173-7
 Phosphorylation-dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase.
- 35. PMID: 11461910; 2001, J Biol Chem;276(38):35847-53
 The Notch intracellular domain is ubiquitinated and negatively regulated by the mammalian Sel-10 homolog.
- 36. PMID: 11425854; 2001, J Biol Chem;276(37):34371-8 Functional interaction between SEL-10, an F-box protein, and the nuclear form of activated Notch1 receptor.
- 37. PMID: 16863506; 2006, Cancer Sci;97(8):729-36 Fbxw7 contributes to tumor suppression by targeting multiple proteins for ubiquitin-dependent degradation.
- 38. PMID: 18787170; 2008, Science;321(5895):1499-502 FBXW7 targets mTOR for degradation and cooperates with PTEN in tumor suppression.
- 39. PMID: 20484041; 2010, Cancer Res;70(11):4728-38

 The Fbw7 tumor suppressor targets KLF5 for ubiquitin-mediated degradation and suppresses breast cell proliferation.
- 40. PMID: 21368833; 2011, Nature;471(7336):104-9 SCF(FBW7) regulates cellular apoptosis by targeting MCL1 for ubiquitylation and destruction.
- 41. PMID: 18094723; 2008, Nat Rev Cancer;8(2):83-93 FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation.
- 42. PMID: 23032637; 2012, Cancer Inform;11():157-71
 Haploinsufficiency of Tumor Suppressor Genes is Driven by the Cumulative Effect of microRNAs, microRNA Binding Site Polymorphisms and microRNA Polymorphisms: An In silico Approach.
- 43. PMID: 24586741; 2014, PLoS One;9(2):e89388
 FBXW7 mutations in patients with advanced cancers: clinical and molecular characteristics and outcomes with mTOR inhibitors.
- 44. PMID: 24360397; 2014, Lung Cancer;83(2):300-1 Temsirolimus therapy in a patient with lung adenocarcinoma harboring an FBXW7 mutation.
- 45. PMID: 27399335; 2017, Oncogene;36(6):787-796 FBW7 mutations mediate resistance of colorectal cancer to targeted therapies by blocking Mcl-1 degradation.
- 46. PMID: 25860929; 2015, Oncotarget;6(11):9240-56 FBXW7-mutated colorectal cancer cells exhibit aberrant expression of phosphorylated-p53 at Serine-15.
- PMID: 29633504; 2018, Mol Oncol;12(6):883-895
 FBXW7 deletion contributes to lung tumor development and confers resistance to gefitinib therapy.
- 48. PMID: 28522751; 2017, Cancer Res;77(13):3527-3539

 Targeting FBW7 as a Strategy to Overcome Resistance to Targeted Therapy in Non-Small Cell Lung Cancer.

AG4-QP4001-02(05) Page 29 of 32

Project ID: C21-M001-01269 Report No.: AA-21-05568_ONC Date Reported: Dec 01, 2021

ACTOnco® + Report

49. PMID: 24884509; 2014, Mol Cancer;13():110

Fbxw7 is an independent prognostic marker and induces apoptosis and growth arrest by regulating YAP abundance in hepatocellular carcinoma.

- 50. PMID: 18955968; 2008, Oncogene;27(50):6398-406 Bcl-2 family proteins and cancer.
- 51. PMID: 18676833; 2008, Cancer Res;68(15):6109-17

Down-regulation of myeloid cell leukemia-1 through inhibiting Erk/Pin 1 pathway by sorafenib facilitates chemosensitization in breast cancer.

- 52. PMID: 18664580; 2008, Proc Natl Acad Sci U S A;105(31):10853-8 mTORC1 promotes survival through translational control of Mcl-1.
- 53. PMID: 11314001; 2001, Oncogene; 20(6): 677-85

The involvement of PI 3-K/Akt-dependent up-regulation of Mcl-1 in the prevention of apoptosis of Hep3B cells by interleukin-6.

54. PMID: 11389033; 2001, Blood;97(12):3902-9

MCL1 transgenic mice exhibit a high incidence of B-cell lymphoma manifested as a spectrum of histologic subtypes.

55. PMID: 20164920; 2010, Nature; 463(7283):899-905

The landscape of somatic copy-number alteration across human cancers.

- 56. PMID: 21734342; 2011, Dis Markers;30(5):229-33 Mcl-1 expression is up-regulated in malignancies of the parotid gland.
- 57. PMID: 26045609; 2015, Blood;126(3):363-72

Inhibition of Mcl-1 with the pan-Bcl-2 family inhibitor (-)BI97D6 overcomes ABT-737 resistance in acute myeloid leukemia.

58. PMID: 27293397; 2016, Case Rep Oncol;9(1):112-8

A Combination of Targeted Therapy with Chemotherapy Backbone Induces Response in a Treatment-Resistant Triple-Negative MCL1-Amplified Metastatic Breast Cancer Patient.

59. PMID: 17178882; 2006, Cancer Res;66(24):11851-8

Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5.

60. PMID: 23392173; 2013, Cell Death Dis;4():e485

Mcl-1-dependent activation of Beclin 1 mediates autophagic cell death induced by sorafenib and SC-59 in hepatocellular carcinoma cells.

61. PMID: 16007148; 2005, Oncogene; 24(46): 6861-9

The role of McI-1 downregulation in the proapoptotic activity of the multikinase inhibitor BAY 43-9006.

62. PMID: 19821497; 2009, Hepatology; 50(6): 1861-70

Sorafenib inhibits signal transducer and activator of transcription-3 signaling in cholangiocarcinoma cells by activating the phosphatase shatterproof 2.

63. PMID: 20071162; 2010, Eur J Cancer; 46(4):836-50

The multikinase inhibitor Sorafenib induces apoptosis and sensitises endometrial cancer cells to TRAIL by different mechanisms.

64. PMID: 21979753; 2012, Mol Med;18():19-28

Sorafenib-induced apoptosis of chronic lymphocytic leukemia cells is associated with downregulation of RAF and

Email: service@actgenomics.com T: +886-2-2795-3660 | F: +886-2-2795-5016

AG4-QP4001-02(05) Page 30 of 32

Project ID: C21-M001-01269 Report No.: AA-21-05568 ONC Date Reported: Dec 01, 2021

ACTOnco® + Report

myeloid cell leukemia sequence 1 (Mcl-1).

- PMID: 24763611; 2014, Clin Cancer Res; 20(13): 3472-84 Regorafenib inhibits colorectal tumor growth through PUMA-mediated apoptosis.
- PMID: 26561209; 2015, Cancer Biol Ther;16(12):1710-9 Regorafenib with a fluoropyrimidine for metastatic colorectal cancer after progression on multiple 5-FU-containing combination therapies and regorafenib monotherapy.
- 67. PMID: 24163374; 2014, Cancer Discov;4(1):42-52 mTOR inhibition specifically sensitizes colorectal cancers with KRAS or BRAF mutations to BCL-2/BCL-XL inhibition by suppressing MCL-1.
- 68. PMID: 24162815; 2013, Nat Med;19(11):1469-1472 Oncogenic and drug-sensitive NTRK1 rearrangements in lung cancer.
- 69. PMID: 27843590; 2016, ESMO Open;1(2):e000023 NTRK gene fusions as novel targets of cancer therapy across multiple tumour types.
- 70. PMID: 30624546; 2019, Ann Oncol;30(2):325-331 Larotrectinib in adult patients with solid tumours: a multi-centre, open-label, phase I dose-escalation study.
- 71. PMID: 32323889; 2020, Oncologist;25(6):e881-e886 Antitumor Activity of Larotrectinib in Esophageal Carcinoma with NTRK Gene Amplification.
- 72. PMID: 22293180; 2012, J Clin Invest;122(2):425-34 Understanding pRb: toward the necessary development of targeted treatments for retinoblastoma.
- PMID: 6320372; 1984, Science; 223(4640): 1028-33 73. Retinoblastoma: clues to human oncogenesis.
- 74. PMID: 27308386; 2015, Mol Cell Oncol;2(1):e968069 Conditional haploinsufficiency of the retinoblastoma tumor suppressor gene.
- 75. PMID: 23687339; 2013, Cancer Res; 73(14): 4247-55 Rb1 haploinsufficiency promotes telomere attrition and radiation-induced genomic instability.
- 76. PMID: 28169375; 2017, Sci Rep;7():42056 The Rb1 tumour suppressor gene modifies telomeric chromatin architecture by regulating TERRA expression.
- 77. PMID: 15884040; 2005, Hum Mutat;25(6):566-74 Sensitive multistep clinical molecular screening of 180 unrelated individuals with retinoblastoma detects 36 novel mutations in the RB1 gene.
- PMID: 26238431; 2015, Eur Urol;68(6):959-67 Defects in DNA Repair Genes Predict Response to Neoadjuvant Cisplatin-based Chemotherapy in Muscle-invasive Bladder Cancer.
- 79. PMID: 22811582; 2012, Clin Cancer Res;18(18):5110-22 RB-pathway disruption is associated with improved response to neoadjuvant chemotherapy in breast cancer.
- PMID: 21358261; 2011, Cell Cycle;10(6):956-62 A non-functional retinoblastoma tumor suppressor (RB) pathway in premenopausal breast cancer is associated with resistance to tamoxifen.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路 345 號 3F

Project ID: C21-M001-01269 Report No.: AA-21-05568_ONC Date Reported: Dec 01, 2021

ACTOnco®+ Report

- 81. PMID: 17160137; 2007, J Clin Invest;117(1):218-28
 The retinoblastoma tumor suppressor modifies the therapeutic response of breast cancer.
- 82. PMID: 29236940; 2018, Ann Oncol;29(3):640-645
 Polyclonal RB1 mutations and acquired resistance to CDK 4/6 inhibitors in patients with metastatic breast cancer.
- 83. PMID: 29483214; 2018, Mol Cancer Ther;17(5):897-907
 Preclinical Activity of Abemaciclib Alone or in Combination with Antimitotic and Targeted Therapies in Breast Cancer.
- 84. PMID: 22941188; 2012, Nat Genet;44(10):1104-10 Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer.
- 85. PMID: 22941189; 2012, Nat Genet;44(10):1111-6

 Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer.
- 86. PMID: 25846096; 2015, Lancet Oncol;16(4):e165-72
 Transformation from non-small-cell lung cancer to small-cell lung cancer: molecular drivers and cells of origin.
- 87. PMID: 28968163; 2017, J Clin Oncol;35(32):3638-3646
 MONARCH 3: Abemaciclib As Initial Therapy for Advanced Breast Cancer.
- 88. PMID: 28533223; 2017, Clin Cancer Res;23(17):5218-5224 MONARCH 1, A Phase II Study of Abemaciclib, a CDK4 and CDK6 Inhibitor, as a Single Agent, in Patients with Refractory HR+/HER2- Metastatic Breast Cancer.
- 89. PMID: 26703889; 2016, Lancet; 387(10022): 968-977
 Everolimus for the treatment of advanced, non-functional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): a randomised, placebo-controlled, phase 3 study.
- 90. PMID: 22149876; 2012, N Engl J Med;366(6):520-9
 Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer.
- 91. PMID: 21306238; 2011, N Engl J Med;364(6):514-23 Everolimus for advanced pancreatic neuroendocrine tumors.
- 92. PMID: 23158522; 2013, Lancet;381(9861):125-32
 Efficacy and safety of everolimus for subependymal giant cell astrocytomas associated with tuberous sclerosis complex (EXIST-1): a multicentre, randomised, placebo-controlled phase 3 trial.
- 93. PMID: 18653228; 2008, Lancet; 372(9637): 449-56
 Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial.
- 94. PMID: 27959613; 2016, N Engl J Med;375(20):1925-1936 Palbociclib and Letrozole in Advanced Breast Cancer.
- 95. PMID: 26030518; 2015, N Engl J Med;373(3):209-19
 Palbociclib in Hormone-Receptor-Positive Advanced Breast Cancer.
- 96. PMID: 17538086; 2007, N Engl J Med;356(22):2271-81 Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma.

3

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。

Project ID: C21-M001-01269 Report No.: AA-21-05568_FUSION Date Reported: Dec 01, 2021

ACTFusion[™] Report

PATIENT						
Name: 高明利 Patient ID: 23581911						
Date of Birth: Feb 28, 1955	Gender: Male					
Diagnosis: Hepatocellular carcinoma						
ORDERING PHYSICIAN						
Name: 陳三奇醫師	Tel: 886-228712121					
Facility: 臺北榮總						
Address: 臺北市北投區石牌路二段 201 號						
SPECIMEN						
Specimen ID: S11071799E Collection site: Perirenal fat	Date received: Nov 18, 2021					
Lab ID: AA-21-05568 Type: FFPE tissue	D/ID: NA					

ABOUT ACTFusion™

The test is a next-generation sequencing (NGS) based in vitro diagnostic assay to detect fusion transcripts of 13 genes, including ALK, BRAF, EGFR, FGFR1, FGFR2, FGFR3, MET, NRG1, NTRK1, NTRK2, NTRK3, RET, and ROS1.

TESTING RESULTS

VARIANT(S) WITH CLINICAL RELEVANCE

- Fusions

Fusion Gene & Exon	Transcript ID
	No fusion gene detected in this sample.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4006-04(02) page 1 of 7

Project ID: C21-M001-01269 Report No.: AA-21-05568_FUSION Date Reported: Dec 01, 2021

ACTFusion[™] Report

THERAPEUTIC IMPLICATION

Not Applicable.

VARIANT INTERPRETATION

Not Applicable.

US FDA-APPROVED DRUG(S)

Not Applicable.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4006-04(02) page **2** of **7**

Project ID: C21-M001-01269 Report No.: AA-21-05568_FUSION Date Reported: Dec 01, 2021

ACTFusion[™] Report

ONGOING CLINICAL TRIALS

Trials were searched by applying filters: study status, patient's diagnosis, intervention, location and/or biomarker(s). Please visit https://clinicaltrials.gov to search and view for a complete list of open available and updated matched trials.

No trial has been found.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4006-04(02) page 3 of 7

Project ID: C21-M001-01269 Report No.: AA-21-05568_FUSION Date Reported: Dec 01, 2021

ACTFusion[™] Report

SPECIMEN RECEIVED AND PATHOLOGY REVIEW

- Collection date: Jun 2021
- Facility retrieved: 臺北榮總
- H&E-stained section No.: S11071799E
- Collection site: Perirenal fat
- Examined by: Dr. Yeh-Han Wang
 - 1. The percentage of viable tumor cells in total cells in the whole slide (%): 60%
 - 2. The percentage of viable tumor cells in total cells in the encircled areas in the whole slide (%): 60%
 - 3. The percentage of necrotic cells (including necrotic tumor cells) in total cells in the whole slide (%): 5%
 - 4. The percentage of necrotic cells (including necrotic tumor cells) in total cells in the encircled areas in the whole slide (%): 5%
 - Additional comment: NA
- Manual macrodissection: Not performed
- The outline highlights the area of malignant neoplasm annotated by a pathologist.

RUN QC

- Panel: ACTFusion™
- Total reads: 732428
- Average unique RNA Start Sites per control GSP2: 141

LIMITATIONS

This test has been designed to detect fusions in 13 genes sequenced. Therefore, fusion in genes not covered by this test would not be reported. For novel fusions detected in this test, Sanger sequencing confirmation is recommended if residue specimen is available.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4006-04(02) page 4 of 7

Project ID: C21-M001-01269 Report No.: AA-21-05568_FUSION Date Reported: Dec 01, 2021

ACTFusion[™] Report

NEXT-GENERATION SEQUENCING (NGS) METHODS

Extracted RNA was reverse-transcribed and subjected to library construction. Sequencing was performed according to Ion Proton or Ion S5 sequencer protocol (Thermo Fisher Scientific). To ensure sequencing quality for fusion variant analysis, the average unique RNA Start Sites (SS) per control Gene Specific Primer 2 (GSP 2) should be ≥ 10.

The fusion analysis pipeline aligned sequenced reads to the human reference genome, identified regions that map to noncontiguous regions of the genome, applied filters to exclude probable false-positive events and, annotated previously characterized fusion events according to Quiver Gene Fusion Database, a curated database owned and maintained by ArcherDX.

STANDARD OPERATING PROCEDURES (SOPs)

- AG2-QP-15 Specimen Management Procedure
- AG3-QP16-08 SOP of FFPE Nucleic Acid Extraction
- AG3-QP16-10 SOP of HE Staining
- AG3-QP16-17 SOP of DNA Quantification with Qubit Fluorometer
- AG3-QP16-20 SOP of CE-Fragment Analysis
- AG3-QP16-24 SOP of Ion Torrent System Sequencing Reaction
- AG3-QP16-26 SOP of Ion Chef Preparation
- AG3-QP40-08 (02) Standard protocol for variant interpretation, curation and classification
- AG3-QP16-94 (01) SOP of ACTFusion v3 Library Construction and Preparation
- AG3-QP16-36(02) SOP of Fusion Gene Detection
- AG3-QP16-41 SOP of The user manual for clinical report system (CRS)

DATABAES USED

- Quiver Gene Fusion Database version 5.1.18

GENE LIST

ALK	BRAF	EGFR	FGFR1	FGFR2	FGFR3	MET	NRG1
NTRK1	NTRK2	NTRK3	RFT	ROS1			

Variant Analysis:

醫檢師張筑芜 博士 Chu-Yuan Chang Ph.D. 檢字第 020115 號 Sign Off

醫檢師張筑芜 博士 Chu-Yuan Chang Ph.D. 檢字第 020115 號

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

AG4-QP4006-04(02) page **5** of **7**

Project ID: C21-M001-01269 Report No.: AA-21-05568_FUSION Date Reported: Dec 01, 2021

ACTFusion[™] Report

法律聲明

本檢驗報告僅提供專業醫療參考,結果需經專業醫師解釋及判讀。基因突變資訊非必具備藥物或治療有效性指標,反之亦然。本檢驗報告提供之用藥指引不聲明或保證其臨床有效性,反之亦然。本基因檢測方法係由本公司研究開發,已經過有效性測試。

本檢驗報告非經本公司許可,不得私自變造、塗改,或以任何方式作為廣告及其他宣傳之用途。

本公司於提供檢驗報告後,即已完成本次契約義務,後續之報告解釋、判讀及用藥、治療,應自行尋求相關專業醫師協助,若需將報告 移件其他醫師,本人應取得該醫師同意並填寫移件申請書,主動告知行動基因,行動基因僅能配合該醫師意願與時間提供醫師解說。

醫療決策需由醫師決定

任何治療與用藥需經由醫師在考慮病患所有健康狀況相關資訊包含健檢、其他檢測報告和病患意願後,依照該地區醫療照護標準由醫師獨立判斷。醫師不應僅依據單一報告結果(例如本檢測或本報告書內容)做決策。

基因突變與用藥資訊並非依照有效性排序

本報告中列出之生物標記變異與藥物資訊並非依照潛在治療有效性排序。

證據等級

藥物潛在臨床效益(或缺乏潛在臨床效益)的實證證據是依據至少一篇臨床療效個案報告或臨床前試驗做為評估。本公司盡力提供適時及 準確之資料,但由於醫學科技之發展日新月異,本公司不就本報告提供的資料是否為準確、適宜或最新作保證。

責任

本檢驗報告僅提供專業醫療參考,本公司及其員工不對任何由使用本報告之內容引起的直接、間接、特殊、連帶或衍生的損失或損害承擔責任。

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4006-04(02) page 6 of 7

Project ID: C21-M001-01269 Report No.: AA-21-05568_FUSION Date Reported: Dec 01, 2021

ACTFusion[™] Report

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4006-04(02) page 7 of 7