Introducción a Machine Learning para Economistas

Brian Salamanca

27 de agosto de 2019

Descripción del Curso

Este curso esta orientado a estudiantes de 6 semestre en adelante de la Facultad de Ciencias Económicas, que les apasionen los temas de inteligencia artificial, programación y machine learning, utilizando distintas herramientas computacionales como son R, SQL y Python.

Durante el curso, exploraremos las distintas técnicas de aprendizaje de maquina, relacionadas con problemas económicos, permitiendo que el estudiante adquiera habilidades para el adecuado uso de este tipo de herramientas.

Objetivo

El objetivo del curso es orientar a los estudiantes en la elaboración de modelos económicos que permitan entender y explicar una problemática económica en particular con el uso de técnicas de *Machine Learning*. Para ello, se exponen diferentes elementos relevantes en la modelación económica acompañado del uso de distintas herramientas computacionales que permitan efectuar dichas estimaciones y predicciones.

Temas

- 1. Introducción a Inteligencia Artificial
 - a) ¿En qué consite la inteligencia artificial?
 - b) ¿Qué es Machine Learning?
- 2. Introducción a la Ciencia de Datos
 - a) Introducción a Programación
 - b) Procesamiento de datos
 - c) Tipos de campos y Manipulación de datos
 - 1) Uniones, intersecciones y consulta
 - 2) Divisiones
 - d) Visualización de datos
- 3. Modelos de regresión
 - a) Regresión lineal simple y múltiple
 - b) Regresiones polinómicas
 - c) Regresiones con árboles de decisión y Random Forest

- d) Regresiones con máquinas de soporte vectorial (MSV)
- 4. Modelos de clasificación
 - a) Regresión Logística
 - b) K-vecinos más cercanos
 - c) Máquina de vectores de soporte
 - d) Clasificador Naïve Bayes
 - e) Clasificación con Arboles de decisión y Random Forest
- 5. Clustering
 - a) K-means
 - b) Cluster jerárquico
- 6. Reglas de asociación
 - a) Apriori
 - b) Eclat
- 7. Redes neuronales
 - a) Redes neuronales artificiales
 - b) Redes neuronales convolucionales
- 8. Reducción de dimensiones
 - a) Análisis de Componentes Principales (ACP)
 - b) Análisis discriminante lineal
 - c) Kernel ACP
- 9. Selección de modelos
 - a) Validación cruzada

Requisitos

Los estudiantes deben tener conocimientos previos en inferencia estadística, econometría, matemáticas básicas y en los lenguajes R y/o Python.

Software

Debido a la orientación del curso, este se desarrollará en las siguientes aplicaciones gratuitas

- IDE de Python (Ex. Anaconda)
- Rstudio
- MySQL

Evaluación

La evaluación del curso se realizará de la siguiente manera:

- Tres (3) talleres con un valor del 20 % cada uno.
- Un proyecto final con un valor del 40 %

Bibliografía

- [1] O. Theobald. (2015). "Machine Learning for Absolute Beginners: A Plain English Introduction". Ed. ISTE Press.
- [2] S. Shalev y S. Ben. (2015). "Understanding Machine Learning: From theory to algorithms", Ed. Cambridge University Press. 2014.
- [3] I. Goodfellow, Y. Bengio y A. Courville. (2015). "Deep Learning", Ed. The MIT Press. 2016
- [4] G. James, D. Witten, T. Hastie y R. Tibshirani. (2015). "An Introduction to Statistical Learning: with Applications in R", Ed. Springer. 2013
- [5] T. Hastie, R. Tibshirani y J. Friedman. (2015) ."The Elements of Statistical Learning: Data Mining, Inference, and Prediction", Ed. Springer. 2013
- [6] Chang, W. (2015). "R Graphics Cookbook". Sebastopol: O'Reilly Media, Inc.
- [7] Korites, B. (2018). "Python Graphics: A Reference for Creating 2D and 3D Images". Duxbury, Massachusetts: Apress.
- [8] Raschka, S., & Mirjalili, V. (2017). "Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow". Birmingham: Packt Publishing Ltd.
- [9] DuBois, P. (2014). "MySQL Cookbook". Sebastopol: O'Reilly Media, Inc.
- [10] McKinney, W. (2017). "Python for Data Analysis". Sebastopol: O'Reilly Media, Inc.
- [11] Matthes, E. (2016). "Python Crash Course". San Francisco: No Starch Press.
- [12] Beysolow, T. (2017). "Introduction to Deep Learning Using R". San Francisco,: Apress.