1B

Gennady Laptev

Exercise 1. Solution. Clearly, L(f, P, [0, 1]) = 0 for any partition P, since any interval contains an irrational number, so $\inf_{[a,b]} f = 0$, where $[a,b] \subset [0,1]$.

Let q be a prime number. Then consider a partition $P_q = [\frac{j-1}{q}, \frac{j}{q}]_{j=0}^q$. We have $\sup_{[\frac{j-1}{q}, \frac{j}{q}]} f = \frac{1}{q}$ and $U(f, P_q, [0, 1]) = q \cdot \frac{1}{q^2} = \frac{1}{q}$, since we have q segments in partition of length $\frac{1}{q}$. Then by Archimedean property for any $\varepsilon > 0$ we can find some n s.t. $\frac{1}{n} < \varepsilon$, and we can always find a prime number $q \ge n$, since subset of prime numbers is not bounded in the set of natural numbers. Thus for every $\varepsilon > 0$ we can find a partition P_q s.t.

$$U(f, P_q, [0, 1]) - L(f, P_q, [0, 1]) < \frac{1}{q} < \varepsilon.$$

Then by problem 1A.3 we have that f is Riemann integrable and its integral is 0, since L(f, [0, 1]) = 0.

Exercise 2. Solution. (\Longrightarrow) We have

$$L(-f, [a, b]) = \sup L(-f, P, [a, b]) = \sup -L(f, P, [a, b]) = \inf L(f, P, [a, b]) = \inf (U(f, P, [a, b]) + \varepsilon) = U(f, [a, b])$$