Exercise 9.1

Task

Theorem

If the DDH problem is hard, then the El Gamal cryptosystem is CPA secure.

Problem

Prove the above theorem.

- 1. Construct an algorithm B that uses Adv as subroutine and attempts to solve DDH. Concretely, this means that B gets as input G, α , α^a , α^b , α^c , and must eventually output a guess, either c is random or c=ab.
- 2. Show that your algorithm achieves advantage at least ϵ . The conclusion is that if Adv is polynomial time and ϵ is not negligible, the existence of B demonstrates that DDH cannot be hard, we have a contradiction, and so such an adversary cannot exist.

Solution

We can prove the theorem by contradiction. Let's assume that an adversary Adv that plays the CPA security game with an advantage at least ϵ exists. Then, we'll show that we can construct a polynomial time algorithm that answers the DDH problem using that adversary. If we can do this we'll get that the DDH problem is not hard, which will be a contradiction.

Construct an algorithm to solve DDH

We have an adversary A, which generates a message m and the CPA oracle 0. 0 either encrypts the message it receives under El Gamel or encrypts a random message of the same length and sends it back to A. This is all things we know, now let's see how we can adapt this adversary-oracle situation to solve DDH.

We replace the oracle with our custom implementation 0', which will interact with the adversary A in the same way but at the end will answer the DDH problem based on the adversary's result.

- 1. 0' is given at the start G, α , α^a , α^b , α^c . 0' chooses α^a as its public key and sends it to A. (In the notes the public key is noted as α^r where r is uniformly chosen in Z_t)
- 2. A generates a message m and sends that message to 0 \(^1\).
- 3. 0' returns to A the tuple $(\alpha^b, \alpha^c \times m)$
- 4. Now A does its magic and returns either real or ideal.
 - 1. If A outputs real it means A thinks that the message has been properly encrypted (and A can break that encryption), which would be the case if $\alpha^c = \alpha^{ab}$, so we output YES for DDH.
 - 2. If A outputs ideal it means A thinks the message is random garbage, which would be the case when $\alpha^c \neq \alpha^{ab}$ (i.e. c is some random number). We output N0 for DDH.

2. Show that the algorithm achieves advantage at least ϵ

The advantage of the above algorithm (which maps directly to the CPA definition) would be:

$$Adv = |P[real|real] - P[real|ideal]| =$$

$$|P[real|\alpha^{c} = \alpha^{ab}] - P[real|\alpha^{c} : c \text{ is random}]| =$$

We know that in the case real|real A has an advantage ϵ , hence $P[real|real] = \frac{1}{2} + \epsilon$. In the real|ideal case, the adversary has no advantage because c in α^c is uniformly chosen in Z_t and therefore reveals no information whatsoever. Therefore $P[real|ideal] = \frac{1}{2}$. From that, we get that the advantage of the above algorithm is the same ϵ

$$Adv = |P[real|real] - P[real|ideal]| = |\frac{1}{2} + \epsilon - \frac{1}{2}| = \epsilon$$