Colles de mathématiques en PCSI 5

15 mai 2011

Programme

Algèbre linéaire (révision du programme précédent). Calcul matriciel : calculs, formules de changement de base, rang d'une matrice.

Exercice 1. Soient E de dimension finie, et F,G deux sous-espaces de E. Prouver l'équivalence :

F et G admettent un supplémentaire commun \iff dim(F) = dim(G).

Exercice 2. Soit E un espace vectoriel de dimension finie paire, égale à 2p, $p \in \mathbb{N}$. Soit u un endomorphisme de E tel que Rg(u) = p et $u^2 = 0$. Comparer Ker u et Im u.

Exercice 3. Soient $E = \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$ et $d : f \in E \mapsto f' \in E$ l'endomorphisme de dérivation. On note $F = \text{Vect}(\sin, \cos, \cosh, \sinh)$.

- 1. Déterminer dim F et prouver que $d(F) \subset F$, et donc que d induit un endomorphisme de F, noté φ .
- 2. Écrire la matrice de φ dans une base bien choisie, et calculer ses puissances positives.
- 3. Montrer que $\varphi \in \operatorname{Aut}(F)$ et donner M^{-1} .
- 4. Déterminer $\ker(\varphi \mathrm{id})$ et $\mathrm{Im}(\varphi \mathrm{id})$. En déduire les éléments de F solutions de l'équation différentielle :

$$\forall t \in \mathbb{R}, \ y'(t) - y(t) = e^{-t} + \sin(t).$$

5. Déterminer $\ker(\varphi^2 - \mathrm{id})$ et $\operatorname{Im}(\varphi^2 - \mathrm{id})$ en utilisant la matrice M. L'équation : $\forall t \in \mathbb{R}, \ y''(t) - y(t) = \cosh(t)$ a-t-elle des solutions dans F?

Exercice 4. Soient $A, B, C \in M_n(\mathbb{K})$, toutes non nulles et telles que ABC = 0. Prouver qu'au moins deux parmi ces trois matrices sont non inversibles.

Exercice 5. Soit $A \in M_2(\mathbb{K})$.

- 1. Écrire une relation entre A^2 , A et I_2 faisant intervenir les coefficients de A.
- 2. En déduire une CNS pour que A soit inversible, donner alors l'expresion de A^{-1} .
- **3.** Montrer que $\forall n \in \mathbb{N}, A^n \in \text{Vect}(A, I_2)$.

4. On suppose Tr $A \neq 0$. Montrer que

$$\forall B \in M_2(\mathbb{K}), \ A^2B = BA^2 \Longrightarrow AB = BA.$$

Exercice 6. Soit $A=\begin{pmatrix}1&1&0\\0&1&1\\0&0&1\end{pmatrix}$. Calculer A^n , pour $n\in\mathbb{N}$. Même question avec

$$B = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{pmatrix}.$$

Exercice 7. Soit $A \in M_n(\mathbb{K})$ de rang 1.

- 1. Prouver qu'il existe deux vecteurs colonnes $X, Y \in M_{n,1}(\mathbb{K})$ tels que $A = X^tY$.
- 2. Interpréter ${}^{t}YX$ puis déterminer les puissances de A.
- **3.** En déduire une CNS pour que $I_n + A$ soit inversible et donner alors son inverse en fonction de A.

Exercice 8. Pour
$$n \ge 1$$
, on note $M = {\binom{j}{i}}_{0 \le i, j \le n} = \begin{pmatrix} {\binom{0}{0}} & {\binom{1}{0}} & \cdots & {\binom{n-1}{0}} & {\binom{n}{0}} \\ 0 & {\binom{1}{1}} & \cdots & {\binom{n-1}{1}} & {\binom{n}{1}} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & {\binom{n-1}{n-1}} & {\binom{n}{n-1}} \\ 0 & 0 & \cdots & 0 & {\binom{n}{n}} \end{pmatrix}.$

En considérant l'espace $E = \mathbb{K}_n[X]$, et l'endomorphisme $u : P(X) \in E \mapsto P(X+1) \in E$, prouver que M est inversible et déterminer son inverse.

Exercice 9. Soit $f \in \mathcal{L}(\mathbb{R}^3)$ tel que $f \neq 0$ et $f^2 = 0$.

Prouver qu'il existe une base de \mathbb{R}^3 dans laquelle f a pour matrice : $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$.

Exercice 10. Soit $A = \begin{pmatrix} 0 & a & a^2 \\ 1/a & 0 & a \\ 1/a^2 & 1/a & 0 \end{pmatrix}$, avec $a \in \mathbb{R}^*$. Calculer A^n pour $n \in \mathbb{N}$.

Exercice 11. On se donne deux matrices carrées de taille $2n \times 2n$, $n \ge 1$:

$$M = \begin{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} & 0 & \cdots & 0 \\ 0 & \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \end{pmatrix} \text{ et } N = \begin{pmatrix} 0 & -I_n \\ I_n & 0 \end{pmatrix},$$

N étant définie par 4 blocs de taille $n \times n$. Prouver que M et N sont semblables.

Exercice 12. Soient $x, y, z \in \mathbb{R}$ tels que $x^2 + y^2 + z^2 = 1$. Posons

$$M = \begin{pmatrix} 0 & z & -y \\ -z & 0 & x \\ y & -x & 0 \end{pmatrix}, \ P = I_3 + M^2.$$

Vérifier que P est un projecteur et que PM = MP = 0.

Exercice 13. Soit $J = \begin{pmatrix} 1 & \cdots & 1 \\ \vdots & 1 & \vdots \\ 1 & \cdots & 1 \end{pmatrix}$. Pour tout $A \in M_n(\mathbb{R})$, en notant $\sigma(A)$ la somme des coefficients de A, prouver que $JAJ = \sigma(A)J$.

Exercice 14. Soit A une matrice de taille 2×2 . On note f_A l'endomorphisme de $M_2(\mathbb{R})$ défini par $X \mapsto AX$. Déterminer le rang de f_A en fonction de celui de A. Généraliser à

défini par $X \mapsto AX$. Déterminer le rang de f_A en fonction de celui de A. Généraliser à des dimensions quelconques.

Exercice 15. Soit $n \ge 1$. Prouver qu'il n'existe aucunes matrices A, B de $M_n(\mathbb{C})$ tels que $I_n = AB - BA$.

Exercice 16. Soit $f \in \mathcal{L}(E)$.

- 1. Si Rg(f) = 1, f est-il nécessairement un projecteur?
- 2. Si de plus, Tr(f) = 1, prouver que f est un projecteur.