Departamento de Sistemas e Computação – FURB Curso de Ciência da Computação Trabalho de Conclusão de Curso – 2017/1

FISHMING

Sistema para controle e monitoramento de peixes domésticos por aplicativo mobile

Philip Stefan Haertel
Acadêmico
philipstefan@gmail.com

Miguel Alexandre Wisitainer
Orientador
maw@furb.br

ROTEIRO

- Motivação
- Objetivos
- FundamentaçãoTeórica
- TrabalhosCorrelatos
- Requisitos
- Especificação

- Implementação
- Operacionalidade da Implementação
- Resultados e
 Discussões
- Conclusões
- Sugestões

MOTIVAÇÃO

- Necessidade de controlar as condições da água e do ambiente dos peixes
- Trabalhar com um módulo Wi-Fi novo e pouco explorado
- Explorar e aprender uma área nova particularmente

OBJETIVOS

- Desenvolver um hardware para controlar e monitorar o ambiente dos peixes utilizando o módulo ESP8266 com sensores e atuadores
- Desenvolver um aplicativo para Android para realizar a interação com o hardware

FUNDAMENTAÇÃO TEÓRICA

Internet das Coisas ESP8266

INTERNET DAS COISAS

- Rede de objetos que podem compartilhar informações e realizar tarefas
- Principal conceito é a conectividade com a internet
- Grande expansão com módulos de baixo custo: Arduino, ESP8266, Raspberry Pi

INTERNET DAS COISAS

Crescente no número de desenvolvedores

ESP8266

 System on Chip de baixo consumo de energia e alto desempenho

Wi-Fi de acordo com o padrão

IEEE802.11bgn

Baixo preço

Wemos D1 mini

TRABALHOS CORRELATOS

Seneye Insight 24/7 Controller Apex AquaController

SENEYE

- Desenvolvido pela Seneye
- Compacto
- Saída USB
- Temperatura, pH e luminosidade
- Necessário manter conexão com o computador

INSIGHT 24/7 CONTROLLER

Desenvolvido pela Puratek

 Automatização de controle de luz e alimentação automática

- Conexão com a tomada
- Completo e profissional
- Extremamente caro

APEX AQUA CONTROLLER

- Desenvolvido pela Neptune
- Entrada Ethernet para conectá-lo a internet
- Conexão com a tomada
- Completo e profissional
- Extremamente caro

REQUISITOS

Requisitos Funcionais Requisitos Não Funcionais

REQUISITOS FUNCIONAIS

- Manutenção do cadastro dos peixes
- Cadastro do hardware por meio de rede Wi-Fi
- Consulta e histórico dos sensores através de gráficos: temperatura da água, pH da água, temperatura externa, umidade, fluxo de água, e funcionamento da lâmpada UV.
- Configurar alertas para temperatura, pH e lâmpada UV desligada

REQUISITOS NÃO FUNCIONAIS

- Utilização do módulo ESP8266
- Alimentado por bateria carregada por energia solar
- Utilizar Wi-Fi para enviar os dados para o servidor
- Hardware: C++ e Sming Framework
- Software: Typescript e Ionic Framework

ESPECIFICAÇÃO

Diagrama de arquitetura
Diagrama de casos de uso
Diagrama de atividade dos sensores
Diagrama de atividade dos atuadores

DIAGRAMA DE ARQUITETURA

DIAGRAMA DE CASOS DE USO

DIAGRAMA DE ATIVIDADE SENSORES

DIAGRAMA DE ATIVIDADE ATUADORES

IMPLEMENTAÇÃO

Construção do Hardware Esquema Elétrico Hardware Montado Técnicas e Ferramentas Utilizadas CONSTRUÇÃO DO HARDWARE

- Wemos D1 mini (ESP8266)
- Sensor de temperatura
- Sensor de pH
- Sensor de fluxo de água
- Sensor de temperatura e umidade
- Sensor de luminosidade
- Módulo relê com 2 canais

ESQUEMA ELÉTRICO

HARDWARE MONTADO

TÉCNICAS E FERRAMENTAS

Hardware

- Eclipse
- o C++
- Sming Framework

Software

- Visual Studio Code
- Typescript
- o Ionic
- Angular

OPERACIONALIDADE DA IMPLEMENTAÇÃO

Hardware Lago Tela de Sensores

HARDWARE

LAGO

TELA DE SENSORES

■ Sensores	•
Temperatura da Água	22.56°C
pH da Água	4.76
Fluxo de Água	457L/h
Temperatura Externa	24°C
Umidade Externa	55%
Lâmpada UV	Desligada

RESULTADOS E DISCUSSÕES

Resultados Trabalhos Correlatos

RESULTADOS

- Dados capturados pelos sensores foram satisfatórios e próximos da realidade
- Conexão Wi-Fi de qualidade
- Problemas com DNS do servidor ThingSpeak
- Duração da bateria pode ser melhorada

TRABALHOS CORRELATOS

Características mais relevantes	Trabalhos correlatos		Haertel (2017)	
	Seneye	Puratek Insight 24/7	Apex AquaControll er	Fishming
Medição de temperatura da água	Х	Х	X	Х
Medição de pH da água	X	Х	X	X
Medição de vazão de água da bomba				X
Medição de luminosidade	X	Х		
Medição de temperatura externa		Х		Х
Medição de umidade externa				X
Consulta do histórico através de gráficos	X	x	х	X
Possiblidade de criar alertas	X	Х	X	X
Necessário conexão com computador	х			
Visualização através de smartphone	X	X	X	X
Conexão Wi-Fi				X

CONCLUSÕES E SUGESTÕES

Conclusões Sugestões

CONCLUSÕES

- O hardware utilizado atendeu a necessidade do projeto
- Sming framework importante para o desenvolvimento
- Preço pode ser diminuído em escala (~R\$180)
- Os principais objetivos do trabalhos foram alcançados

SUGESTÕES

- Implementar servidor para guardar os dados coletados pelo sensor
- Substituir o módulo Wemos D1 mini por um módulo ESP-12
- Criar um esquema de autenticação para permitir multiusuários
- Criar uma interface web
- Adicionar um display ao hardware

DEMONSTRAÇÃO