Lecture notes Einführung in die Logik 2024W

This is a summary of the material discussed in the lecture "Mathematische Logik". It is still a work in progress and there **may me mistakes** in this work. If you find any, feel free to let me know and I will correct them

The content of this script is intended for educational purposes only. It relies on the book [1] for which all rights belong to their respective owners and I do not claim ownership over this content. However the IATEXcode I wrote is entirely my own work and is provided to you by the MIT-Licence. Dieses Skript ist noch nicht vollständig und wird regelmäßig aktualisiert.

Contents

1	\mathbf{Pro}	positional logic	2		
	1.1	Truth assignments	;		
	1.2	A parsing algorithm	4		
	1.3	Induction and recursion	ļ		
	1.4	Sentential connectives	(
	1.5	Compactness Theorem	,		
2	\mathbf{Pre}	dicate - / first order logic	9		
	2.1	Formulas	9		
	2.2	Semantics of first order logic	10		
	2.3	logical implication	1		
	2.4	definability in a structure	1		
	2.5	Homomorphisms of structures	1		
	2.6	A parsing algorithm for first order logic	1		
	2.7	Unique readability for terms	1		
	2.8	Deductions (formal proofs)	1		
	2.9	Generalization and deduction theorem	1		
		Boolean Algebra			
3	Boo	olean Algebra	11		
3	Boo	olean Algebra	1:		
3		Theory	1:		
		Theory			
	Set	Theory	14		
4	Set 4.1	Theory Axioms of ZFC	1		
4	Set 4.1	Theory	1		
4	Set 4.1	Theory Axioms of ZFC	14		
4	Set 4.1	Theory Axioms of ZFC	14		
4	Set 4.1 ist	Theory Axioms of ZFC of Abbreviations - propositional - expression(s)	14		
4	Set 4.1 ist propexp.	Theory Axioms of ZFC of Abbreviations - propositional - expression(s) - sentence(s)	14		
4	Set 4.1 ist prop exp. sent	Theory Axioms of ZFC of Abbreviations - propositional - expression(s) - sentence(s)	14		
4	Set 4.1 ist prop exp. sent seq.	Theory Axioms of ZFC of Abbreviations - propositional - expression(s) - sentence(s) - sequence	1		
4	set 4.1 ist propexp. sent seq. TA	Theory Axioms of ZFC of Abbreviations c propositional	1		
4	set 4.1 ist propexp. sent seq. TA fla.	Theory Axioms of ZFC of Abbreviations - propositional - expression(s) - sentence(s) - sequence - truth assignment - formula	14		

Propositional logic

Language Definition 1.1. Language of PL: The Language of Propositional logic is a set containing

- logical symbols: consisting of the sentential connective symbols $\neg, \wedge, \vee, \rightarrow, \leftrightarrow$ and parenthesis (,)
- non-logical symbols: A_1, A_2, A_3, \ldots (also called sentential atoms, variables)

from which we assume (for unique readability) that no symbol is a finite sequence of any other symbols.

Note:

- 1. The role of the logical symbols doesn't change, the sentential atoms we see as variables, they function as placeholders or variables.
- 2. we assumed the set of non-logical symbols is countable, for most of our conclusions you could use any set of prop. atoms of any size

expression

Definition 1.2. Expression / prop. sentence: An expression is a any finite sequence of symbols We define grammatically correct exp. recursive

- 1. every prop. atom is a prop. sentence
- 2. if α, β are prop. sentences, then also $\neg \alpha, \alpha \land \beta, \alpha \lor \beta, \alpha \to \beta, \alpha \leftrightarrow \beta$
- 3. nothing else

prop. sentence prop. fla.

and call them **prop. sentences.** or **prop. fla.** Equivalently stated every prop. sentence is built up by applying finitly many operations TODO This allows us to symbolize the **expression tree**

construction sequence

Definition 1.3. Construction sequence: Given a prop. sentence α a **construction sequence** of α is a finite sequence $\langle \alpha_1, \dots \alpha_{n-1}, \alpha \rangle$ such that for all $i \leq n$ the following holds

- α_i is a sentential atom
- or $\alpha_i = \varepsilon_{\neg}(\alpha_i)$ for some j < i
- or $\alpha_i = \varepsilon_{\square}(\alpha_j, \alpha_k)$ for some j, k < i and $\square \in \{\land, \lor, \rightarrow, \leftrightarrow\}$

closure

Definition 1.4.: Let S be a set. We say S is **closed** under an n-ary operational symbol f iff for all $s_1, s_2, \ldots s_n \in S$ it holds $f(s_1, s_2, \ldots s_n) \in S$

Induction principle: Suppose S is a set of prop. sentences containing all prop. atoms and closed under the 5 formula building operations, then S is the set of all prop. sentences.

Proof. let PS = set of all prop. sent.

 $S \subseteq PS$: is clear

 $S \supseteq PS$: let $\alpha \in PS$ then α has a construction seq. $\langle \alpha_1, \dots \alpha_{n-1}, \alpha \rangle$ and $\alpha_1 \in S$ lets assume that α_i for $i \le k < n$ is in S then α_{k+1} is either an atom and therefore in S or its obtained by one of the formula building operations from the and therefore $\alpha_{k+1} \in S$

1.1 TRUTH ASSIGNMENTS

The interpretation of a prop. atom is either true or false, denoted by 0/1 or T/F. A truth assignment is simply any map $\nu: S \mapsto \{0,1\}$, where S is a map of prop. sent. Our goal is going to be to extend any truth assignment v to a function $\overline{v}: \overline{S} \mapsto \{0,1\}$, where \overline{S} is the closure of S under the 5 fla. building functions.

Definition 1.5. Truth assignment: Let $\{0,1\}$ be the set of truth values. A truth assignment (TA) for a set S of prop. atoms is a map $\nu: S \to \{0,1\}$

Truth assigment TA

We now want to extend ν to $\overline{\nu}: \overline{S} \to \{0,1\}$, where \overline{S} is the closure of S under the 5 fla. building operations such that

- 1. $\overline{\nu}(A) = \nu(A)$
- 2. $\overline{\nu}(\neg \alpha) = 1 \nu(\alpha)$

3.
$$\overline{\nu}(\alpha \wedge \beta) = \begin{cases} 1 & \text{iff } \overline{\nu}(\alpha) = 1 = \overline{\nu}(\beta) \\ 0 & \text{otherwise} \end{cases}$$

4.
$$\overline{\nu}(\alpha \vee \beta) = \begin{cases} 1 & \text{iff } \overline{\nu}(\alpha) = 1 \text{ or } \overline{\nu}(\beta) = 1 \\ 0 & \text{otherwise} \end{cases}$$

5.
$$\overline{\nu}(\alpha \to \beta) = \begin{cases} 1 & \text{iff } \overline{\nu}(\alpha) = 0 \text{ or } \overline{\nu}(\beta) = 1 \\ 0 & \text{otherwise} \end{cases}$$

6.
$$\overline{\nu}(\alpha \leftrightarrow \beta) = \begin{cases} 1 & \text{iff } \overline{\nu}(\alpha) = \overline{\nu}(\beta) \\ 0 & \text{otherwise} \end{cases}$$

We also want the extention to be unique, that is

Theorem 1.1. Unique readability: \forall TA ν for a set $S \exists ! \overline{\nu} : \overline{S} \to \{0,1\}$ satisfying the above properties

We will proof this later

We will be talking about TA satisfying prop. sent.

Definition 1.6. Satisfaction: A TA ν satisfies a prop. sent. α iff $\overline{\nu}(\alpha) = 1$ (that is, provided that everery atom of α is in the domain of ν)

Definition 1.7. Tautological implication: Let Σ be a set of prop. sent. and α a prop. sent. then we say: Σ tautologically imlies α iff \forall TA that satisfies Σ then α is also satisfied and we write $\Sigma \models \alpha$

If $\Sigma = \{\beta\}$, we simply write $\beta \models \alpha$ If $\Sigma = \emptyset$ then we write $\models \alpha$ for $\emptyset \models \alpha$ and α is called a **tautology**

 α, β are called **tautologically equivalent** iff $\alpha \models \beta$ and $\beta \models \alpha$, we then write $\alpha \models \beta$

Note: In other words, tautological implication $\Sigma \models \alpha$ means that you can not find a TA, that satisfy all members of Σ but not α . A tautology is satisfied by every TA. Suppose there is no TA that satisfies Σ , then we have $\Sigma \models \alpha$ for every prop. sent. α

Example 1.1.:
$$\{\neg A \lor B\} = \models A \to B$$

Note: In order to check if a prop. sent. is satisfiable we need to check 2^N TAs, where N=# of atoms. It is unknown if this can be done by an algorithm in polynomial time. Answering this would settle the debate whether P=NP

TODO: Add section here? However we can find a way to reduce satisfiability of an infinite set Σ of prop. sent. There later will be a more elementary proof of the compactness theorem, this proof is not part of the exam.

Theorem 1.2. Compactness theorem: Let Σ be an infinite set of prop. sent. such that

 $\forall \Sigma_0 \subseteq \Sigma, \Sigma_0 \text{finite} \exists \text{ TA satisfying every member of } \Sigma_0$

then there is a TA satisfying every member of Σ .

Proof. using topology: We have our infinite set of prop. sent. which satisfies above condition. One way to look at TA is as a sequence of 0, 1, Let $\mathcal{A} = \{A_0, A_1, \dots\}$ be the set of all prop. atoms. We are going to identify TAs with elements in $\{0, 1\}^{\mathcal{A}} := \{f : \mathcal{A} \to \{0, 1\}\}$ (set of all TAs) This is a topological space with product topology, which we will view The basic open sets (called cylinders) will be

- fix finitly many places and set TV on them,
- others beliebig

 $U \subseteq \{0,1\}^{\mathcal{A}}$ such that $p_n(U) = \{0,1\}$ for all but finite many n, where p_n is the n-th projection. Note: basic open sets are also closed. We now define the open sets as unions of basic open sets. The idea is to use Tychonoffs Thm. which tells us that $\{0,1\}^{\mathcal{A}}$ is compact. i.e. the intersection of a family of closed subsets $\mathbf{w}/$ the finite intersection property (FIP) is non-empty finite intersection property means the intersection of finitly many sets is non-empty.

For $\alpha \in \Sigma$ let $T_{\alpha} \subseteq \{0,1\}^{\mathcal{A}}$ be the set of TA that satisfy α . This T_{α} is a finite union of cylinders, bc. it only depends on finitly many assignments, hence closed. The family $\{T_{\alpha} : \alpha \in \Sigma\}$ of closed sets with FIP. Tychonoff tells us, that $\bigcup_{\alpha \in \Sigma} T_{\alpha} \neq \emptyset$ so there is a TA satisfying Σ .

useful might be book p. 26-27

1.2 A PARSING ALGORITHM

To prove Theorem 1.1 we essentially need to show that we have enough parenthesis to make the reading of a prop. sent. unique. TODO Bsp

Lemma 1.1. : Every prop. sent. has the same number of left and right parenthesis.

Proof. Let $M = \operatorname{set}$ of prop. sent. w/ # left parenthesis = # right parenthesis and $PS = \operatorname{set}$ of all prop. sent. We have $M \subseteq PS$. Since atoms have no parenthesis, they are in M, we just need to show that M is closed under the 5 construction operations. $\varepsilon_{\neg} = (\neg \alpha) \dots$

Lemma 1.2.: No proper initial segment of a prop. sent. is itself a prop. sent.

Proof. Let $\alpha = \alpha_1 \alpha_2 \dots \alpha_n$ be a prop. sent. By proper initial segment we understand $\beta = \alpha_1 \dots \alpha_i$ for $1 \leq i < n$. We will prove that every proper initial segment has an excess of left parenthesis, then we use the previous lemma. Let PS = set of all prop. sent. and PF = set of prop. sent. s.t. no proper initial segment has # left parenthesis = # right parenthesis, we will prove that these sets are the same.

Let $\alpha \in PF$. By induction over the fla. building operations

- Atoms: since the empty sequence is no prop. sent. they have no proper initial segment.
- If the above is true for α, β then the proper initial segments of $(\neg \alpha)$ are of the form

```
(\neg \alpha) (\neg \alpha' where \alpha' is a propper initial segment of \alpha) (\neg)
```

Therefore ε_{\neg} preserves this property and under $\varepsilon_{\wedge}, \varepsilon_{\vee}, \varepsilon_{\rightarrow}, \varepsilon_{\leftrightarrow}$ this is also the case.

Parsing algorithm

We now give a parsing algorithm procedure. For input we take some expression τ and the algorithm will determine if τ is a prop. sent. If so, it will generate a unique construction tree (in form of a rooted tree) for τ . (i.e. the construction tree gives us a unique readability) That there is a unique way to perform the algorithm is implied by Lemma 1.2

- 0. create the root and label it τ
- 1. HALT if all leaves are labled w/ prop. atom and return: " τ is a prop. sent."
- 2. select a leaf of the graph which is not labled w/ prop. atom
- 3. if the first symbol of label under consideration is not a left parenthesis, then halt and return: " τ is not a prop. sent."
- 4. if the second symbol of the label is "¬" then GOTO 6.
- 5. scan the expression from left to right if we reach a proper initial segment of the form "(β " where $\#lp(\beta) = \#rp(\beta)$ and β is followed by one of thesection $\land, \lor, \rightarrow, \leftrightarrow$ and the remainder of the expression is of the form β'), where $\#lp(\beta') = \#rp(\beta')$

Then: create two child nodes (left,right) to the selected element and label them (left $:= \beta$, right $:= \beta'$) GOTO 1.

Else: HALT and return " τ is not a prop. sent."

6. if the expression is of the form $(\neg \beta)$ where $\#lp(\beta) = \#rp(\beta)$

Then: construct one child node and label it β and GOTO 1.

Else: HALT and return: " τ is not a prop. sent."

Example 1.2.: TODO The parsing algorithm applied to $((\neg(A_1 \to A_2)) \lor A_3)$ returns the following construction tree.

Correctness of the parsing algorithm

- The algorithm always halts, because the length of a child is less than the label of a parent.
- If the algorithm halts with the conclusion that τ is a prop. sent. then we can prove inductively (starting from the leaves) that each label is a prop. sent
- Unique way to make choices in the algorithm: in particular β, β' in step 5. If there was a shorter choice for β it would be a proper initial segment of β but such prop. sent. can not exist. (This also works under the assumption that a longer choice exists).
- rejections are made correctly

Back to proving the existence and uniqueness of $\overline{\nu}$ in Theorem 1.1. Let α be a prop. sent. of \overline{S} . We apply the parsing algorithm to α to get a unique construction tree For the leaves, use ν go get the truth values then work our way up using the conditions (1-6) in Definition 1.5.

A more formal notation

TODO

1.3 INDUCTION AND RECURSION

A simple case: let \mathcal{U} be a set and $B \subseteq \mathcal{U}$ our initial set. $\mathcal{F} = \{f, g\}$ a class of functions containing just f and g, where

$$f: \mathcal{U} \times \mathcal{U} \to \mathcal{U}, \qquad g: \mathcal{U} \to \mathcal{U}$$

We want to construct the smallest subset $\mathcal{C} \subseteq \mathcal{U}$ such that $B \subseteq \mathcal{C}$ and \mathcal{C} is closed under all elements of \mathcal{F} .

Definition 1.8. Closedness, Inductiveness: We say $\mathcal C$ is

- closed under f and g iff $\forall x, y \in \mathcal{C} (f(x, y) \in \mathcal{C} \land g(x) \in \mathcal{C})$
- inductive if $B \subseteq \mathcal{C}$ and \mathcal{C} is closed under \mathcal{F}

Big TODO

1.4 SENTENTIAL CONNECTIVES

Definition 1.9. Tautological equivalence relation: For α, β prop. sent. we define α, β iff $\alpha = \beta$. This defines an equivalent relation.

Example 1.3. : $A \rightarrow B = = \neg A \lor B$

Note: A k-place boolean function is a function of the form $f: \{0,1\}^k \to \{0,1\}$ and we define 0,1 as the 0-place boolean functions.

If α is a prop. sent. then it determines a k-place boolean function, where k is the number of atoms, α is built up from. If α is $A_1 \vee \neg A_2$ then $B_{\alpha} : \{0,1\}^2 \to \{0,1\}$ and asign its values corresponding a truth table. TODO extend / rearange function

Theorem 1.3.: If α, β are prop. sent. with at most n prop. Atoms (combined), then

- 1. $\alpha \models \beta$ iff $\forall x \in \{0,1\}^n$ it holds $B_{\alpha}(x) \leq B_{\beta}(x)$
- 2. $\alpha = \beta$ iff $\forall x \in \{0,1\}^n$ it holds $B_{\alpha}(x) = B_{\beta}(x)$
- 3. $\models \alpha \text{ iff } \forall x \in \{0,1\}^n \text{ it holds } B_{\alpha}(x) = 1$

Theorem 1.4. Realisation: Let G be an n-ary boolean function for $n \ge 1$. Then there is a prop. sent. α such that. $B_{\alpha} = G$. We say α realizes G.

Proof. 1. if G is constantly equal to 0 then set α to $A_1 \wedge \neg A_1$.

2. Otherwise the set of inputs $\{\vec{x}_1, \vec{x}_2, \dots \vec{x}_k\}$ for which $G(\vec{x}_i) = 1$ holds is not empty. We denote $\vec{x}_i = (x_{i1}, x_{i2}, \dots x_{in})$ and define a matrix $(x_{ij})_{k \times n}$ We further set $\beta_{ij} = \begin{cases} A_j & \text{iff } x_{ij} = 1 \\ \neg A_j & \text{iff } x_{ij} = 0 \end{cases}$ Example:

$$(x_{ij}) = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix} \leadsto \begin{pmatrix} \neg A_1 & A_2 & \neg A_3 \\ A_1 & A_2 & \neg A_3 \end{pmatrix} = (\beta_{ij})$$

We define γ_i as $\beta_{i1} \wedge \beta_{i2} \wedge \dots \beta_{in}$ for $1 \leq i \leq k$ and α as $\gamma_1 \vee \gamma_2 \vee \dots \gamma_k = \vee_{i=1}^k \gamma_i$ Then $B_{\alpha} = G$ is fulfilled.

Note: α as constructed in the proof is in the so-called Disjunctive normal form (DNF).

Corollary 1.4. Every prop. sent. is tautologically equivalent to a sentence in DNF

Corollary 1.4. $\{\neg, \land, \lor\}$ is a complete set of logical connectives, i.e. every prop. sent. is tautologically equivalent to a sentence built up from atoms and \neg, \land, \lor .

Theorem 1.5.: Both $\{\neg, \land\}$ and $\{\neg, \lor\}$ are complete.

Proof. Its sufficient to show that every k-place boolean function is realisable by a prop. sent. built up using only \neg and \land . This is, because $\alpha \land \beta = \models \neg(\neg \alpha \lor \neg \beta)$ We prove this by induction over the number of disjuctions of a prop. sent. α in DNF. Suppose the statement is true for $k \le n$. For n+1 and $\alpha = \bigvee_{j=1}^{n+1} \gamma_j$ there exists an $\alpha' = \bigvee_{j=1}^n \gamma_j$ and

$$\alpha = \bigvee_{j=1}^{n+1} \gamma_j = \models \alpha' \vee \gamma_{n+1} = \models \neg(\neg \alpha' \wedge \neg \gamma_{n+1})$$

Note: We used the observation that, if $\alpha = \mid = \beta$ and we replace a subsequence of α by a so called tautological equivalence then the result is also tautologically equivalent to β TODO S.10

Example 1.4. $\{\rightarrow, \land\}$ is not complete.: Let $\alpha \in PS$ built up from only \rightarrow, \land from the atoms $A_1, \ldots A_n$ then we claim

$$A_1 \wedge A_2 \wedge \cdots \wedge A_n \models \alpha$$

We can also say $\{\rightarrow, \land\}$ is not complete bc. $\neg A$ is not tautological equivalent to a sent. built up from \rightarrow, \land

Proof. Let $C := \{ \alpha \in PS \text{ built up from } \to, \land \text{ and } A_1, \dots A_n \text{ for which } \bigwedge_{i=1}^n A_i \models \alpha \}$ we want to show that $C = \{ \alpha \in PS \text{ built up from } \to, \land \text{ and } A_1, \dots A_n \}$

- We have $\{A_1, A_2 \dots, A_n\} \subseteq C$
- for $\alpha, \beta \in C$ it holds
 - (1) $A_1 \wedge \cdots \wedge A_n \models \alpha \rightarrow \beta$
 - (2) $A_1 \wedge \cdots \wedge A_n \models \alpha \wedge \beta$

Therefore C is closed under the fla. building operations and we have proven our claim. \square

Note: $\{\land, \lor, \rightarrow, \leftrightarrow\}$ is still not complete.

Note: The number of *n*-ary boolean functions existing is 2^{2^n} We define a notation for n=0: \bot (for TV = 0) and \top (for TV = 1) We can conclude that $\{\neg, \rightarrow\}$ and $\{\rightarrow, \bot\}$ are both complete, it holds $\neg A = \models A \rightarrow \bot$

Definition 1.10. Satisfiability:

A set of prop. sent. Σ is called **satisfiable** iff \exists TA that satisfies every member of Σ .

1.5 COMPACTNESS THEOREM

Theorem 1.6. Compactness Theorem: Σ is satisfiable iff every finite subset $\Sigma_0 \subseteq \Sigma$ is satisfiable. (i.e. Σ is finitely satisfied)

Proof. Let Σ be a finitely satisfiable set of prop. sent. Outline of the proof:

- 1. extend Σ to a maximal finitely satisfiable set Δ of prop. sent.
- 2. construct a thruth assignment using Δ
- 1. Let $\alpha_1, \alpha_2, \ldots$ be an enumeration of all prop. sent. and define Δ_n inductively by $\Delta_0 := \Sigma$

$$\Delta_{n+1} := \begin{cases} \Delta_n \cup \{\alpha_{n+1}\} & \text{if satisfiable} \\ \Delta_n \cup \{\neg \alpha_{n+1}\} & \text{otherwise} \end{cases}$$

Claim: Δ_n is finitely satisfiable for each n

proof of claim. By regular induction over n. Δ_0 is finitely satisfiable. Let us assume Δ_n is finitely satisfiable. If $\Delta_{n+1} = \Delta_n \cup \{\alpha_{n+1}\}$ then we are finished. Otherwise let $\Delta' \subseteq \Delta_n$ be a finite set that $\Delta' \cup \{\alpha_{n+1}\}$ is not satisfiable. It holds $\Delta' \models \neg \alpha_{n+1}$. We assume that $\Delta_n \cup \{\neg \alpha_{n+1}\}$ is not finitely satisfiable. Then there exists a finite subset $\Delta'' \subseteq \Delta_n$ such that $\Delta'' \cup \{\neg \alpha_{n+1}\}$ is (finite and) not satisfiable. It therefore holds $\Delta'' \models \alpha_{n+1}$ But $\Delta' \cup \Delta''$ is a finite subset of Δ_n and by above observations $\Delta' \cup \Delta'' \models \alpha_{n+1}$ and $\Delta' \cup \Delta'' \models \neg \alpha_{n+1}$ A contradiction to the assumption that Δ_n is finitely satisfiable.

We set $\Delta := \bigcup_{i \in \mathbb{N}} \Delta_i$ and get

- (a) $\Sigma \subseteq \Delta$
- (b) (Maximality): for every prop. sent. α it holds $\alpha \in \Delta$ or $\neg \alpha \in \Delta$
- (c) (Satisfiability): Δ is finitely satisfiable. For every finite subset there exists a Δ_n which is a superset.

 \boxtimes

- 2. Let ν be a TA for the prop. atoms A_1, A_2, \ldots such that $\nu(A) = 1$ iff $A \in \Delta$ Claim: For every prop. sent. φ it holds $\overline{\nu}(\varphi) = 1$ iff $\varphi \in \Delta$. proof of claim. Let $S = \{ \varphi \in PS \text{ s.t. } \overline{\nu}(\varphi) = 1 \text{ iff } \varphi \in \Delta \}$.
 - $PS \supseteq S$ is clear.
 - $PS \subseteq S$
 - (a) $\{A_1, A_2 \dots\} \subseteq S$ by definition of ν
 - (b) closure under ϵ_{\neg} : Let $\varphi \in S$ then we get by maximality and satisfiability of Δ :

$$\begin{split} \overline{\nu}(\neg\varphi) &= 1\\ \text{iff} \quad \overline{\nu}(\varphi) &= 0\\ \text{iff} \quad \varphi \not\in \Delta\\ \text{iff} \quad (\neg\varphi) &\in \Delta \end{split}$$

closure under ϵ_{\rightarrow} : Let $\varphi_1, \varphi_2 \in S$ similarly

$$\overline{\nu}(\varphi_1 \to \varphi_2) = 0$$
iff
$$\overline{\nu}(\varphi_1) = 1 \text{ and } \overline{\nu}(\varphi_2) = 0$$
iff
$$\varphi_1 \in \Delta \text{ and } \varphi_2 \notin \Delta$$
iff
$$(\varphi_1 \to \varphi_2) \notin \Delta$$

The closure under the other fla. building operations are similar.

By this claim $\overline{\nu}$ satisfies Σ .

Corollary 1.6. If $\Sigma \models \tau$ then there exists a finite subset $\Sigma' \subseteq \Sigma$ s.t. $\Sigma' \models \tau$

Proof. Recall: $\Sigma \models \tau$ iff $\Sigma \cup \{\neg \tau\}$ is not satisfiable. Suppose $\Sigma \models \tau$ but no finite subset does.

Then $\forall \Sigma' \subseteq \Sigma$ finite $\Sigma' \cup \{\neg \tau\}$ is satisfiable. By the compactness theorem $\Sigma \cup \{\neg \tau\}$ is satisfiable which is a contradiction to $\Sigma \models \tau$.

Note: Theorem 1.6 and Corollary 1.6 are equivalent.

Predicate - / first order logic

Definition 2.1. A First order Language: consists of infinetely many distinct symbols such that no symbol is a proper initial segment of another symbol and the symbols are divided into 2 groups:

1. logical symbols (These elements have a fixed meaning and the equivalence symbol = is optional)

$$(,), \neg, \to, v_1, v_2, \ldots, =$$

- 2. parameters
 - quantifier symbol: ∀ (the range is subject of interpretation)
 - predicate symbols: $\forall n > 0$ we have a set of n-ary predicates
 - constant symbols: Some set of constants (could be \emptyset)
 - function symbols: $\forall n > 0$ we have a set of n-ary function symbols

Note:

- We could drop constants and instead introduce 0-ary function symbols
- to specify language we need to specify the parameters and say if = is included

Example 2.1.:

- $\mathcal{L}_{set} = \{ \in \}, = included$
- $\mathcal{L}_{arith} = \{<, 0, S, E, +, \cdot\}$
 - = included
 - < is a binary rel. symbol
 - 0 is a constant
 - S is a unary function symbol
 - E exponentiation TODO
 - $+, \cdot$ binary function symbols

2.1 FORMULAS

Definition 2.2. Expression: An **expression** is any finite sequence of symbols. There exist two kinds of expressions

Terms: - the names of objects

- they are built up from variables and constants (by use of polish notation)

Formulas: - They express assertions about objects,

- they are built up from atomic formulas
- atomic formulas these are built up from terms using predicate symbols and

Definition 2.3. Building Operations: $\forall n > 0$ and for every n-place function symbol f let \mathcal{F}_f be an n-place term building operation, that is $\mathcal{F}_f(\alpha_1, \dots \alpha_n) := f(\alpha_1, \dots \alpha_n)$ The Set of Terms we then define as the set of expressions that are built up from variables and constants by applying the building operations finitely many times.

Example 2.2.: Let $\mathcal{L} = \mathcal{L}_{arith}$ then the set of terms will contain 0, v_{42} , S0, SSS0, Sv_1 , $+SOv_1$

Definition 2.4. Atomic formula: Any expression of the form

 $t_1 = t_2$ of $P(t_1, \dots t_n)$, where $t_1, \dots t_n$ are terms and P is an n-ary predicate symbol

Note: Atomic formulas are not defined inductively.

Example 2.3.: $cont. = v_1v_{42}, < SOSSO$ are atomic formulas, but $\neg = v_1v_{42}$ is not.

Definition 2.5. Formulas: Let ε_{\neg} , $\varepsilon_{\rightarrow}$, Q_i be fla. building operations $\varepsilon_{\neg}(\alpha) = (\neg \alpha)$, $\varepsilon_{\rightarrow} = (\alpha \rightarrow \beta)$ and $Q_i(\gamma) = \forall v_i \gamma$ The set of formulas is the set of expressions built up from atomic formulas by applying the fla. building operations finitely many times.

Free variables

Example 2.4. "Every non-zero natual number is a successor" $\forall x(x \neq 0 \to \exists y S(y) = x)$ is different then "if a number is not 0, then it is a successor" $x \neq 0 \to \exists y S(y) = x$. In the latter, x occurs free in the fla.

Definition 2.6. Free variables: Let x be a variable. x occurs free in ϕ is defined inductively as follows:

- 1. If ϕ is an atomic fla. then x occurs free in ϕ iff x occurs in ϕ
- 2. If $\phi = (\neg \alpha)$ then x occurs free in ϕ iff x occurs free in α
- 3. If $\phi = (\alpha \to \beta)$ then x occurs free in ϕ iff x occurs free in α or β
- 4. If $\phi = \forall v_i \alpha$ then x occurs free in ϕ iff x occurs free in α and $x \neg v_i$

TODO

2.2 SEMANTICS OF FIRST ORDER LOGIC

Definition 2.7. structure: A structure \mathcal{A} for a first order language \mathcal{L} is a non-empty set set A called **universe** or **underlying set of** \mathcal{A} together with an interpretation of each parameter of \mathcal{L} i.e.

- \forall ranges over the universe A
- for an n-ary pred. symbol $P \in \mathcal{L}$ its interpretation PA is a subset of A^n
- for a constant $c \in \mathcal{L}$ its interpretation $c\mathcal{A}$ is an element of A
- for an *n*-ary function symbol $f \in \mathcal{L}$ its interpretation $f^{\mathcal{A}}$ is a total function $f^{\mathcal{A}} : A^n \to A$

Example 2.5.: Let $\mathcal{L} = \{\in\}$ where \in is a binary relation "An example of an \mathcal{L} structure is $(\mathbb{N}, \in^{\mathbb{N}})$ where $\in^{\mathbb{N}} = \{(x, y) \in \mathbb{N}^2 : x < y\}$

- 2.3 LOGICAL IMPLICATION
- 2.4 DEFINABILITY IN A STRUCTURE
- 2.5 Homomorphisms of structures
- 2.6 A PARSING ALGORITHM FOR FIRST ORDER LOGIC
- 2.7 UNIQUE READABILITY FOR TERMS
- 2.8 DEDUCTIONS (FORMAL PROOFS)
- 2.9 GENERALIZATION AND DEDUCTION THEOREM

TODO evt noch sectioons

Boolean Algebra

Definition 3.1. Boolean Algebra: A boolean algebra is a set B with

- distinguished elements 0, 1 (called zero and unit of B)
- a unary operation ' on B (called **complementation**)
- two binary operations \vee called **join** and \wedge called **meet** s.t. for all $x, y, z \in B$
 - $1. \ x \lor 0 = x \qquad x \land 1 = x$
 - $2. \ x \lor x' = 1 \qquad x \land x' = 0$
 - 3. $x \lor y = y \lor x$ $x \land y = y \land x$
 - 4. $(x \lor y) \lor z = x \lor (y \lor z)$ $(x \land y) \land z = x \land (y \land z)$
 - 5. $x \lor (y \land z) = (x \lor y) \land (x \lor z)$ $x \land (y \lor z) = (x \land y) \lor (x \land z)$

Example 3.1.: Let S be a set, $B := \mathcal{P}(S)$ the power set of $S, 0 := \emptyset$ and 1 := S,

$$': \mathcal{P}(S) \to \mathcal{P}(S), x' := S \setminus x \qquad x \vee y := x \cup y, \quad x \wedge y := x \cap y \text{ for } x, y \in \mathcal{P}(S)$$

Lemma 3.1.: Let $(B, ', \lor, \land, 0, 1)$ be a boolean algebra. Then it holds

- a) 0' = 1, 1' = 0
- b) $x \lor x = x, x \land x = x$
- c) (x')' = x
- d) $(x \lor y)' = x' \land y', (x \land y)' = x' \lor y'$
- e) $x \lor y = y$ iff $x \land y = x$

Lemma 3.2. :

- a) $x \leq y :\Leftrightarrow x \vee y = y$ defines a partial ordering on B (inclusion) and it holds
- b) $x \lor y$ is the least upper bound of $\{x, y\}$ in B $x \land y$ is the greatest lower bound of $\{x, y\}$ in B
- c) $0 \le x \le 1$ for all $x \in B$

Note: A boolean algebra is a complemented distributive lattice.

Definition 3.2. Opposite of boolean algebra: Let $(B,',\vee,\wedge,0,1)$ be a boolean algebra. The boolean algebra B^{op} is defined by

$$B^{\mathrm{op}} := B, \quad 0^{\mathrm{op}} := 1, \quad 1^{\mathrm{op}} := 0, \quad \text{' stayes the same as for} B, \quad \vee^{\mathrm{op}} := \wedge, \quad \wedge^{\mathrm{op}} := \vee$$

Note: $(B^{op})^{op} = B$

Definition 3.3. Subalgebra: A subalgebra of B is a subset $A \subseteq B$ s.t. $0, 1 \in A$ and A is closed under $', \land, \lor$. The subalgebra generated by $P \subseteq B$ is defined to be the smallest subalgebra containing P. Equivalently it is the intersection of all Subalgebras of B that contain P.

Example 3.2. Power set algebra: Let S be a set then $\mathcal{P}(S)$ defines a boolean algebra on S. $B := \{x \in \mathcal{P}(S) : x \text{ is finite or cofinite}\}$ is a subalgebra of $\mathcal{P}(S)$ w/ set of generators $\{\{s\} : s \in S\}$

Note: We will prove the Tarski-Stone Theorem: every boolean algebra is isomorphic to an algebra on a set.

Example 3.3. Lindenbaum Algebra of Σ : Let A be a set of prop. atoms, $\operatorname{Prop}(A)$ the set of prop. generated by A. Further let $\Sigma \subseteq \operatorname{Prop}(A)$ and p,q,r range over $\operatorname{Prop}(A)$. We say p is Σ -equivalent to q iff $\Sigma \models_{\text{taut}} p \leftrightarrow q \Sigma$ -Equivalence is an equivalent relation on $\operatorname{Prop}(A)$ and $\operatorname{Prop}(A)/\Sigma$ is a boolean algebra with

 $0 := \pm/\Sigma$, $1 := \top/\Sigma$, $(p/\Sigma)' := (\neg p)/\Sigma$, $(p/\Sigma \lor q/\Sigma) := (p \lor q)/\Sigma$, $(p/\Sigma \land q/\Sigma) := (p \land q)/\Sigma$ a set of generators is $\{a/\Sigma : a \in A\}$

Definition 3.4. Homomorphisms of boolean algebras: Let B, C be boolean algebras. A map $\phi: B \to C$ is a (homo)morphism of boolean algebras iff $\forall x, y \in B$ it holds

- $\phi(0_B) = 0_C$
- $\phi(x') = \phi(x)'$
- $\phi(x \vee y) = \phi(x) \vee \phi(y)$
- $\phi(x \wedge y) = \phi(x) \wedge \phi(y)$

If $\phi: B \to C$ is bijective too , we call ϕ an isomorphism and $\phi^{-1}: C \to B$ is also a morphism of boolean algebras.

Note: $\phi(B)$ is subalgebra of C

Example 3.4.: Let S,T be sets then a function $f:S\to T$ induces a morphism of boolean algebras $\mathcal{P}(T)\to\mathcal{P}(S):y\mapsto f^{-1}(y)$ If $S\subseteq T$ and f the inclusion map $S\hookrightarrow T$ then we get a boolean algebra morphism $Y\to Y\cap S$.

• $id_B: B \to B$ • $x \mapsto x': B \to B^{\mathrm{op}}$ are both isomorphism

Note: A boolean algebra morphism $\phi: B \to C$ is injective iff ker $f = 0_B$

Lemma 3.3.: Let $X_1, ... X_m \subseteq S$ and \mathcal{A} a boolean algebra on S generated by $\{X_1, ... X_m\}$. Then \mathcal{A} is finite and isomorphic to $\mathcal{P}(\{1, 2, ... n\})$ for some $n \leq 2^m$.

Proof. TODO

Definition 3.5. Trivial algebras:

- B is trivial if |B| = 1 (equivalently $0 = 1 \in B$) according to Lemma 3.3 B is isomorphic to $\mathcal{P}(\emptyset)$
- If |S| = 1 then $|\mathcal{P}(S)| = 2$ TODO

Definition 3.6. Ideal: An ideal of B is a subset of $I \subseteq B$ s.t.

- (I1) $0 \in I$
- (I2) $\forall a, b \in B$ it holds $a \leq b$ and $b \in I \implies a \in I$ and $a, b \in I \implies a \vee b \in I$

Example 3.5.: $F_{\text{in}} = \{ F \subseteq S : F \text{ finite} \} \text{ is ideal in } \mathcal{P}(S).$

Note: If I is an ideal of B then $I \vee b := \{x \in B : x = a \vee b \text{ for some } a \in I\}$ is the smallest ideal w/ respect of \subseteq of B that contains $I \cup \{b\}$.

Example 3.6.:

- For a boolean algebra morphism $\phi: B \to C$ the kernel $\ker(\phi)$ is an ideal in B.
- If I is an ideal in B then $a =_I b :\Leftrightarrow a \lor x = b \lor x$ for some $x \in I$ defines an equivalent relation and $B/_{=_I}$ is a boolean algebra w/

$$0 := 0/_{=_I} \quad 1 := 1/_{=_I} \quad (a/_{=_I})' := a'/_{=_I} \quad a/_{=_I} \lor b/_{=_I} := (a \lor b)/_{=_I} \quad a/_{=_I} \land b/_{=_I} := (a \land b)/_{=_I}$$

Then $\phi: B \to B/_{=_I}: b \mapsto b/_{=_I}$ is a boolean algebra morphism w/ $\ker(\phi) = I$

Set Theory

Example 4.1. Russel's paradox: Let $A = \{a : a \notin a\}$. If any collection of elements is a set, then A would be a set. Question: is $A \in A$? if yes, then $A \notin A$, if not then $A \in A$

Trying to resolve this, we will introduce the ZFC (Zermelo-Frankel axioms w/ choice) System. Let $\mathcal{L} = \{\in\}$ be a Language of first order, where \in ... binary relation "beeing element of" For (\mathcal{U}, \in) If $(\mathcal{U}, \in) \models$ ZFC, then the elements of the universe \mathcal{U} are called sets. TODO

4.1 AXIOMS OF ZFC

Definition 4.1. Axiom of extensionality:

$$\forall x \forall y (x = y \leftrightarrow \forall u (u \in x \leftrightarrow u \in y))$$

Definition 4.2. Pairing Axiom: for any two sets a, b one can form a set whose elements are precicely a, b

$$\forall x \forall y \exists z (u \in z \leftrightarrow (u = x \lor u = y))$$

Our notation will be $z = \{x, y\}$

Note: $\{x,y\}$ is unique by Definition 4.1

Lemma 4.1.: Let x, y be sets. We define $(x, y) := \{\{x\}, \{x, y\}\}$. Then it holds (x, y) = (a, b) iff x = a and y = b

Proof. • if x = y, then $(x, y) = \{\{x\}\}$ therefore a = b and by Definition 4.1 it holds x = a.

• if $x \neq y$, then $\{\{x\}, \{x, y\}\} = \{\{a\}, \{a, b\}\}$ iff $\{x\} = \{a\}$ and $\{x, y\} = \{a, b\}$. That is, iff x = a and y = b.

TODO oredered n-tuples

Definition 4.3. Union Axiom: For every set x there is a set z consisting of all elements of the elements of x.

$$\forall x \exists z \forall y (y \in z \leftrightarrow (\exists uu \in x \land y \in u))$$

We call z the union of x, notation: $\bigcup_x := z$

Definition 4.4. Power set Axiom: Let $x \subseteq y$ be the abbreviation for $\forall z (z \in x \to z \in y)$ The **Powerset Axiom** states, that for every set x there exists a set z consisting of all subsetes $y \subseteq x$ that are themselve sets.

$$\forall x \exists z \forall y (y \in z \leftrightarrow y \subseteq x)$$

Notation: $\mathcal{P}(x) := z$.

TODO class relations

Definition 4.5. Axiom of replacement / substitution: Let $\varphi(x, y, \underline{\mathbf{a}})$ a \mathcal{L} -fla., w/ free variables among x, y and set-parameters $\underline{\mathbf{a}}$. Suppose φ defines a class function on \mathcal{U} , than the following is an axiom:

$$\forall u \exists z \forall y (y \in z \leftrightarrow \exists x (x \in u \land \varphi(x, y, \mathbf{a})))$$

i.e. the image of a set under a class function is a set.

Definition 4.6. Axiom scheme of comprehension: TODO

Seite 14 von 16 J.Petermann: LogicNotes [V0.3-2024-10-03 at 18:08:37]

List of definitions

Definition 1.1	Language of PL
Definition 1.2	Expression / prop. sentence
Definition 1.3	Construction sequence
Definition 1.4	
Definition 1.5	Truth assignment
Definition 1.6	Satisfaction
Definition 1.7	Tautological implication
Definition 1.8	Closedness, Inductiveness
Definition 1.9	Tautological equivalence relation
Definition 1.10	Satisfiability
Definition 2.1	A First order Language
Definition 2.2	Expression
Definition 2.3	Building Operations
Definition 2.4	Atomic formula
Definition 2.5	Formulas
Definition 2.6	Free variables
Definition 2.7	structure
Definition 3.1	Boolean Algebra
Definition 3.2	Opposite of boolean algebra
Definition 3.3	Subalgebra
Definition 3.4	Homomorphisms of boolean algebras
Definition 3.5	Trivial algebras
Definition 3.6	Ideal
Definition 4.1	Axiom of extensionality
Definition 4.2	Pairing Axiom
Definition 4.3	Union Axiom
Definition 4.4	Power set Axiom
Definition 4.5	Axiom of replacement / substitution
Definition 4.6	Axiom scheme of comprehension

Bibliography

[1] Herbert B Enderton and Herbert Enderton. A Mathematical Introduction to Logic. eng. United States: Elsevier Science and Technology, 2001. ISBN: 0122384520.