Chapter 4- Time series features

Forecasting Book Club

Dr. Bahman Rostami-Tabar

Outline

- Some simple statistics
- ACF features
- STL Features
- Other features
- Exploring Australian tourism data

Time series feature

- are numerical summaries computed from the series, e.g. autocorrelation, trend.
- The feasts package in R includes functions for computing FEatures And Statistics from Time Series (hence the name).

When time series feature are useful?

- If you work with many time series
- If you don't know anything about features/characteristics of your time series (one or many)
- We can compute many different features on many different time series, and use them to explore the properties of the series.

Some simple statistics

Extract features using feast package

your_data %>% features(your_measurement, function)

tourism %>% features(Trips, mean)

mean

tourism %>% features(Trips, mean)

```
## # A tibble: 304 x 4
##
      Region
                     State
                                         Purpose
                                                    . . . 4
                                         <chr>
                                                   <dbl>
      <chr>
                     <chr>
##
##
    1 Adelaide
                     South Australia
                                         Business 156.
    2 Adelaide
                     South Australia
                                         Holiday
##
                                                  157.
    3 Adelaide
                     South Australia
                                         0ther
                                                   56.6
##
##
    4 Adelaide
                     South Australia
                                         Visiting 205.
    5 Adelaide Hills South Australia
##
                                         Business
                                                    2.66
    6 Adelaide Hills South Australia
                                         Holiday
##
                                                   10.5
    7 Adelaide Hills South Australia
                                         0ther
                                                    1.40
##
    8 Adelaide Hills South Australia
                                         Visiting
                                                   14.2
##
    9 Alice Springs Northern Territory Business
                                                   14.6
   10 Alice Springs Northern Territory Holiday
                                                   31.9
## # ... with 294 more rows
```

mean

```
tourism %>%
  features(Trips, list(mean=mean)) %>%
  arrange(mean)
```

```
## # A tibble: 304 x 4
##
      Region
                      State
                                          Purpose
                                                    mean
##
      <chr>
                      <chr>
                                          <chr>
                                                   <dbl>
    1 Kangaroo Island South Australia
                                          0ther
                                                   0.340
    2 MacDonnell
                      Northern Territory Other
                                                   0.449
##
##
    3 Wilderness West Tasmania
                                          0ther
                                                   0.478
                      Northern Territory Other
##
    4 Barkly
                                                   0.632
    5 Clare Vallev
                      South Australia
                                          0ther
                                                   0.898
##
                      South Australia
                                          0ther
                                                   1.02
##
    6 Barossa
##
    7 Kakadu Arnhem
                      Northern Territory Other
                                                   1.04
    8 Lasseter
                      Northern Territory Other
                                                   1.14
##
    9 Wimmera
                      Victoria
                                          0ther
                                                   1.15
##
  10 MacDonnell
                      Northern Territory Visiting 1.18
## # ... with 294 more rows
```

Five summary statistics

```
tourism %>%
  features(Trips,
                quantile,
                prob=seq(0,1,by=0.25))
```

```
## # A tibble: 304 x 8
##
      Region
                      State
                                         Purpose
                                                     `0%`
                                                            `25%`
      <chr>
                      <chr>>
                                         <chr>
                                                    <dbl>
                                                           <dbl>
##
    1 Adelaide
                      South Australia
                                         Busine...
                                                   68.7
                                                          134.
    2 Adelaide
                      South Australia
                                         Holiday 108.
##
                                                          135.
    3 Adelaide
                      South Australia
                                         0ther
                                                   25.9
                                                           43.9
##
##
    4 Adelaide
                      South Australia
                                         Visiti... 137.
                                                          179.
    5 Adelaide Hills South Australia
##
                                         Busine...
                                                             0
    6 Adelaide Hills South Australia
                                         Holiday
##
                                                    0
                                                             5.77
    7 Adelaide Hills South Australia
                                         0ther
                                                    0
                                                             0
    8 Adelaide Hills South Australia
                                         Visiti...
                                                            8.91
##
                                                    0.778
    9 Alice Springs Northern Territo... Busine...
                                                    1.01
                                                            9.13
   10 Alice Springs Northern Territo... Holiday
                                                           16.9
                                                    2.81
## # ... with 294 more rows
```

ACF features

ACF features

- All the autocorrelations of a series
- the sum of the first ten squared autocorrelation coefficients is a useful summary of how much autocorrelation there is in a series, regardless of lag.
- autocorrelations of transformations of a time series.
 - "difference" the data and create a new time series consisting of the differences between consecutive observations. Then we can compute the autocorrelations of this new differenced series.
- Occasionally, we may compute the differences of the differences.
- Another related approach is to compute seasonal differences of a series.

feat_acf() function

The feat_acf() function will return the following features:

- the first autocorrelation coefficient from the original data;
- the sum of square of the first ten autocorrelation coefficients from the original data;
- the first autocorrelation coefficient from the differenced data;
- the sum of square of the first ten autocorrelation coefficients from the differenced data;
- the first autocorrelation coefficient from the twice differenced data;
- the sum of square of the first ten autocorrelation coefficients from the twice differenced data;
- For seasonal data, the autocorrelation coefficient at the first seasonal lag is also returned.

ACF features with Australian tourism data

```
tourism %>%
  features(Trips, feat_acf)
```

```
## # A tibble: 304 x 10
      Region State Purpose
                                  acf1 acf10 diff1 acf1 diff1 acf1
##
      <chr> <chr> <chr>
                                 <dbl> <dbl>
                                                    <dbl>
                                                                 <dbl
##
    1 Adela... Sout... Busine...
                              0.0333
                                                   -0.520
                                                                 0.46
                                       0.131
    2 Adela... Sout... Holiday
                               0.0456
                                       0.372
                                                   -0.343
                                                                 0.61
    3 Adela... Sout... Other
                               0.517
                                                   -0.409
                                                                 0.38
                                        1.15
    4 Adela... Sout... Visiti...
                              0.0684
                                       0.294
                                                   -0.394
                                                                 0.45
    5 Adela... Sout... Busine...
                               0.0709
                                       0.134
                                                   -0.580
                                                                 0.41
    6 Adela... Sout... Holiday
                               0.131
                                       0.313
                                                   -0.536
                                                                 0.50
    7 Adela... Sout... Other
                               0.261
                                       0.330
                                                   -0.253
                                                                 0.31
    8 Adela... Sout... Visiti... 0.139
                                       0.117
                                                   -0.472
                                                                 0.23
    9 Alice... Nort... Busine...
                                                                 0.38
                              0.217
                                       0.367
                                                   -0.500
   10 Alice... Nort... Holiday -0.00660 2.11
                                                                 2.11
                                                   -0.153
## # ... with 294 more rows, and 2 more variables: diff2_acf10 <d
## #
       season acf1 <dbl>
```

STL Features

STL features: trend and seasonality

The STL decompositions discussed in Chapter 3.

A time series decomposition can be used to measure the strength of trend and seasonality in a time series. Recall that the decomposition is written as:

$$y_t = T_t + S_t + R_t,$$

- ullet measure of the strength of the trend: $F_T = \max\left(0, 1 rac{\mathrm{Var}(R_t)}{\mathrm{Var}(T_t + R_t)}
 ight)$.
- measure of the strength of the seasonality:

$$F_S = \max\left(0, 1 - rac{ ext{Var}(R_t)}{ ext{Var}(S_t + R_t)}
ight)$$
 .

feat_stl() function

The feat_stl() function returns several more features:

- seasonal_peak measures timing of peaks which season (e.g.month or quarter) contains the largest seasonal component
- seasonal_troughs measures timing of troughs which season (e.g.month or quarter) contains the smallest seasonal component.
- spikiness measures the prevalence of spikes in the remainder component
- linearity measures the linearity of the trend component of the STL decomposition.
- curvature measures the curvature of the trend component of the STL decomposition.
- stl_e_acf1 is the first autocorrelation coefficient of the remainder series.
- stl_e_acf10: is the sum of squares of the first ten autocorrelation coefficients of the remainder series.

STL features with Australian tourism data

```
tourism %>%
  features(Trips, feat_stl)
```

```
## # A tibble: 304 x 12
      Region State Purpose trend_strength seasonal_streng... seas
      <chr> <chr> <chr>
                                       <dbl>
                                                          <dbl>
    1 Adela... Sout... Busine...
                                       0.451
                                                         0.380
    2 Adela... Sout... Holiday
                                       0.541
                                                         0.601
    3 Adela... Sout... Other
                                                         0.189
                                       0.743
    4 Adela... Sout... Visiti...
                                       0.433
                                                         0.446
   5 Adela... Sout... Busine...
                                                         0.140
                                       0.453
    6 Adela... Sout... Holiday
                                       0.512
                                                         0.244
    7 Adela... Sout... Other
                                       0.584
                                                         0.374
    8 Adela... Sout... Visiti...
                                       0.481
                                                         0.228
    9 Alice... Nort... Busine...
                                       0.526
                                                         0.224
## 10 Alice... Nort... Holiday
                                       0.377
                                                         0.827
## # ... with 294 more rows, and 6 more variables: seasonal_troug
## #
       spikiness <dbl>, linearity <dbl>, curvature <dbl>, stl e
       stl e acf10 <dbl>
## #
```

STL features with Australian tourism data

Identify most seasonal series with Australian tourism data

Other Features

The remaining features in the feasts package

- *feat_spectral* will compute the (Shannon) spectral entropy of a time series, which is a measure of how easy the series is to forecast.
- coef_hurst will calculate the Hurst coefficient of a time series which is a measure of "long memory". A series with long memory will have significant autocorrelations for many lags.
- box_pierce gives the Box-Pierce statistic for testing if a time series is white noise, and the corresponding p-value.
- ljung_box gives the Ljung-Box statistic for testing if a time series is white noise, and the corresponding p-value.
- feat_pacf function contains several features involving partial autocorrelations
- unitroot_kpss gives the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) statistic for testing if a series is stationary, and the corresponding p-value.
- unitroot_pp gives the Phillips-Perron statistic for testing if a series is nonstationary, and the corresponding p-value.

The remaining features in the feasts package (continue)

- unitroot_ndiffs gives the number of differences required to lead to a stationary series based on the KPSS test.
- unitroot_nsdiffs gives the number of seasonal differences required to make a series stationary.
- var_tiled_mean gives the variances of the "tiled means" (i.e., the means of consecutive non-overlapping blocks of observations).
- var_tiled_var gives the variances of the "tiled variances" (i.e., the variances of consecutive non-overlapping blocks of observations).
- *shift_level_max* finds the largest mean shift between two consecutive sliding windows of the time series.
- shift_level_index gives the index at which the largest mean shift occurs.
- shift_var_max finds the largest variance shift between two consecutive cardiplicating windows of the time series.

The remaining features in the feasts package (continue)

- shift_var_index gives the index at which the largest mean shift occurs
- shift_kl_max finds the largest distributional shift (based on the Kulback-Leibler divergence) between two consecutive sliding windows of the time series.
- shift_kl_index gives the index at which the largest KL shift occurs.
- n_crossing_points computes the number of times a time series crosses the median.
- longest_flat_spot computes the number of sections of the data where the series is relatively unchanging.
- stat_arch_lm returns the statistic based on the Lagrange Multiplier (LM)
 test of Engle (1982) for autoregressive conditional heteroscedasticity (ARCH).
- 'guerrerocomputes the optimal(λ)' value for a Box-Cox transformation using the Guerrero method

Exploring Australian tourism data

Exploring Australian tourism data

```
## # A tibble: 304 x 51
##
      Region State Purpose trend_strength seasonal_streng... seas
      <chr> <chr> <chr>
                                      <dbl>
                                                        <dbl>
##
    1 Adela... Sout... Busine...
                                      0.451
                                                        0.380
    2 Adela... Sout... Holiday
                                      0.541
                                                        0.601
    3 Adela... Sout... Other
                                                        0.189
                                      0.743
##
##
   4 Adela... Sout... Visiti...
                                      0.433
                                                        0.446
    5 Adela... Sout... Busine...
                                                        0.140
##
                                      0.453
    6 Adela... Sout... Holiday
                                      0.512
                                                        0.244
   7 Adela... Sout... Other
                                      0.584
                                                        0.374
    8 Adela... Sout... Visiti...
                                      0.481
                                                        0.228
##
    9 Alice... Nort... Busine...
                                      0.526
                                                        0.224
## 10 Alice... Nort... Holiday
                                      0.377
                                                        0.827
## # ... with 294 more rows, and 45 more variables: seasonal trou
## #
       spikiness <dbl>, linearity <dbl>, curvature <dbl>, stl e
## #
       stl e acf10 <dbl>, acf1 <dbl>, acf10 <dbl>, diff1 acf1 <
## #
       diff1 acf10 <dbl>, diff2 acf1 <dbl>, diff2 acf10 <dbl>,
## #
       pacf5 <dbl>, diff1 pacf5 <dbl>, diff2 pacf5 <dbl>, seaso
## #
       zero run mean <dbl>, nonzero squared cv <dbl>, zero star
## #
       zero_end_prop <dbl>, lambda_guerrero <dbl>, kpss_stat <d</pre>
       kpss pvalue <dbl>, pp stat <dbl>, pp pvalue <dbl>, ndiff
## #
## #
       nsdiffs <int>, bp_stat <dbl>, bp_pvalue <dbl>, lb_stat <</pre>
## #
       lb pvalue <dbl>, var tiled var <dbl>, var tiled mean <db
## #
       shift_level_max <dbl>, shift_level_index <dbl>, shift_va
## #
       shift_var_index <dbl>, shift_kl_max <dbl>, shift_kl_inde
## #
       spectral_entropy <dbl>, n_crossing_points <int>, n_flat_
       coef hurst <dbl>, stat arch lm <dbl>
## #
```

all the features involving seasonality

Dimension reduction technique

- It is difficult to explore more than a handful of variables seperately.
- A useful way to handle many more variables is to use a dimension reduction technique such as principal components.
- This gives linear combinations of variables that explain the most variation in the original data. We can compute the principal components of the tourism features as follows.

principal components for Australian toursime

Extract unusual series

```
## # A tibble: 4 x 5
##
    Region
                            State
                                              Purpose
     <chr>
##
                            <chr>
                                              <chr>
## 1 Australia's North West Western Australia Busines
## 2 Australia's South West Western Australia Holiday
## 3 Melbourne
                            Victoria
                                              Holiday
## 4 South Coast
                            New South Wales
                                              Holiday
```

Plot unusual series

Outlying time series in PC space

thank you!

- Slides are available at here
- Email rostami-tabarb@cardiff.ac.uk
- Website www.bahmanrt.com
- Twitter @Bahman_R_T