Prueba técnica Data Science

Ignacio David Vázquez Pérez

Especificaciones técnicas requeridas:

- Incluir documentación del flujo de trabajo: A través de un documento en pdf explicar procedimiento correspondiente con cada tarea y subtarea. Es decir, agregar las visualizaciones resultantes del exploratorio de los datos, justificar la selección del o los modelos así como la interpretación de los mismos y demás puntos que consideres importantes para tu evaluación.
- Mantener en el código sólo lo necesario para la funcionalidad a realizar, quitar código comentado, así como librerías y código innecesario.
- Crear un repositorio en github, subir código y compartirnos tu url

EDA

- Primero se realizó un análisis de todas las columnas del dataset train_set, donde se realizó la operación de valores y el número de elementos de este, para poder familiarizarse con los atributos.
- Las fechas se cambiaron a un formato único de tipo fecha para poder realizar operaciones y graficas.
- Se creo una nueva columna para categorizar el tiempo del dia de la hora de cada viaje, se clasifico como: Early, Morning, Morning, Noon, Eve, Night, Late Night.

Patrones de tiempo

La suma total de usuarios tiene el patrón del consumo del servicio de la mañana, medio día y la tarde. Casi nadie usa el servicio en la madrugada, la noche y muy noche.

Patrones de tiempo

El patrón de consumo no cambia mucho entre los días de la semana, solamente el viernes es donde hay más personas utilizando el servicio.

Durante los meses de mayo hasta agosto hay una tendencia de consumo al alza, se interrumpe en septiembre y luego el mes con tasa más alta es octubre donde hay más consumo en todo el año.

Durante los días del mes se mantiene igual, solamente decrece hacia finales del mes

Patrones por tipo de membresía

Se realizo un agrupamiento por tipo de membresía para saber los patrones respecto a otras variables como son el tipo de ruta y el tiempo del día donde se realizan los viajes. El grupo de membresía más activo es el del pase mensual, donde el tiempo del día donde más realizan viajes es en la tarde, mediodía y la mañana respectivamente. Todos los tipos de membresía su tipo de ruta la mayoría de las veces es de un solo viaje.

El pase walk-up queda en segundo lugar de consumo, y realizan más viajes durante el mediodía, la tarde y después la mañana.

Series de tiempo

Esta grafica de serie de tiempo muestra la suma total mensual y cuatrimestral de todos los viajes del servicio. La línea verde es la tendencia. En ambas gráficas se muestra una tendencia a la baja respecto a años anteriores, hasta la fecha esta tendencia se ha mantenido estable pero no muestra un crecimiento significativo.

La ultima grafica muestra la suma diaria de todos los viajes del servicio, se muestra una baja importante antes del 2022 que no corresponde al patrón de consumo de los años atrás.

Series de tiempo

Se graficaron las series de tiempo por cada tipo de membresía. Los 3 tipos de membresía que tienen una tendencia a la alza esta el pase de un día, el pase anual se manera poco significativa, y el walk-up. Tanto el pase mensual y el flex pass tienen tendencia a la baja. Se grafico el testing para entender su comportamiento.

Agrupaciones

		time_day_Count
time_day	start_station	
Eve	3005	9805
Noon	3030	9359
Early Morning	3014	9041
Noon	4214	7553
	3005	6745
Morning	3005	5942
Noon	4210	5562
Eve	3035	4768
	3064	4759
	4214	4731
Noon	3035	4683
Eve	3030	4585
	3031	4520
Noon	4215	4261
	3031	4254

			count	mean
46648	Noon	3030_3014	4487	7.224426
410	Early Morning	3014_3030	4281	7.431675
51582	Noon	4214_4214	3377	76.597868
51429	Noon	4210_4210	2336	81.072774
13451	Eve	4214_4214	2116	71.866730
30770	Morning	4214_4214	1921	79.900573
51583	Noon	4214_4215	1905	52.469816
30635	Morning	4210_4210	1715	93.072886
13306	Eve	4210_4210	1503	77.616766
51631	Noon	4215_4215	1358	100.886598
51434	Noon	4210_4215	1347	62.490720
13452	Eve	4214_4215	1296	50.665895
54063	Noon	4345_4345	1181	41.881456
30771	Morning	4214_4215	1155	51.219913
8750	Eve	3030_3014	1069	8.701590

Se realizo la agrupación por la estación más recurrente por el tiempo del día, tanto estación n individual como la combinación de la estación donde se comienza y termina. Se recomienda tomar en consideración ampliar el servicio en estas estaciones para favorecer al usuario con más estaciones y bicicletas. También se comprueba la correlación con el uso del servicio con el tiempo del día. La combinación de estaciones es la misma y se valida que la gente utiliza la misma ruta, pero a diferentes horarios del día.

Agrupaciones

				time_day_Count
passholder_type	trip_route_category	time_day	start_station	
Monthly Pass	One Way	Early Morning	3014	7978
		Noon	3030	7863
		Eve	3005	6719
		Noon	3005	4204
		Morning	3005	3708
		Eve	3030	3535
		Early Morning	3042	3514
		Eve	3064	3396
			3035	3197
Walk-up	One Way	Noon	4214	3120
Monthly Pass	One Way	Eve	3031	3073
		Noon	3035	2907
Walk-up	Round Trip	Noon	4214	2832
Monthly Pass	One Way	Morning	3031	2798
		Noon	3031	2748

Se realizo la agrupación con las diferentes variables categóricas y se contó cuantas veces se repite. Se comprueba que, dependiendo del tipo de membresía, el usuario prefiere un tipo de ruta en específico, así como el tiempo del día y la estación. El pase mensual es el más común que realice viajes de manera más concurrente, y el pase de un solo día se realiza en su mayoría al medio día en la misma estación.

Agrupaciones

					count	mean
50001	Monthly Pass	One Way	Noon	3030_3014	4359	6.849736
17192	Monthly Pass	One Way	Early Morning	3014_3030	4235	7.337662
108323	Walk-up	Round Trip	Noon	4214_4214	2832	76.681497
108319	Walk-up	Round Trip	Noon	4210_4210	1891	78.528821
107170	Walk-up	Round Trip	Eve	4214_4214	1826	72.207010
107716	Walk-up	Round Trip	Morning	4214_4214	1585	79.434069
102884	Walk-up	One Way	Noon	4214_4215	1513	53.352941
107712	Walk-up	Round Trip	Morning	4210_4210	1371	91.079504
107166	Walk-up	Round Trip	Eve	4210_4210	1242	74.282609
102765	Walk-up	One Way	Noon	4210_4215	1144	63.715909
81864	Walk-up	One Way	Eve	4214_4215	1068	53.606742
23303	Monthly Pass	One Way	Eve	3030_3014	998	8.546092
108380	Walk-up	Round Trip	Noon	4345_4345	973	40.684481
18280	Monthly Pass	One Way	Early Morning	3042_3030	886	5.820542
108324	Walk-up	Round Trip	Noon	4215_4215	885	100.714124

En esta agrupación se realizó con la combinación de las dos estaciones y el promedio del recorrido. El pase de un mes tiene una ruta definida. EL pase de un solo día se realiza con rutas más largas de tiempo en promedio. A su vez se comprueba que las variables categóricas así como la duración del viaje tiene una correlación con el tipo de pase. Se va a considerar esta tabla para realizar el entrenamiento del modelo.

Modelo analitico

- Se juntaron las dos columnas de estaciones en una sola para usarse como una variable categórica de predicción
- Las variables para entrenar el modelo son las siguientes: 'dura tion','trip_route_category','station_route','time_day','passhol der_type'
- Se convirtieron a variables categóricas excepto la columna de duración
- Se eliminaron las filas que tienen el tipo de pase "Testing" ya que no aporta a los datos
- Se realizo un Principal Component Analysis para visualizar la separabilidad de los datos en 2 y 3 dimensiones, así como el número de componentes que se necesitan para describir el tipo de pase.
- Debido a la no separabilidad de los datos, se consideraron algoritmos de clasificación que no sean lineales

Modelo analitico

- Se realizo una búsqueda aleatoria con validación cruzada personalizada utilizando diferentes modelos de clasificación. AL principio se descartaron los demás modelos que no tenían una accuracy más de 60% y se fueron descartando los modelos sencillos.
- Se realizaron numerosas pruebas con los algoritmos de Support Vector Machine, Balanced Random Forest (es un modelo modificado para datos imbalanceados como es el caso), y Gradient Boosting.
- Estos modelos se probaron combinaciones aleatorias de sus hiperparametros, y ada modelo con su configuración se entrenó 3 veces para evitar el sobre entrenamiento. Al final se registraron las métricas de cada modelo, asi cmo el tiempo de entrenamiento N veces (al final probe con 30, 15, y 10 iteraciones, pero el tiempo fue demasiado y decidí terminarlo).
- Debido al volumen del dataset, al realizar numerosas veces el entrenamiento, mi laptop llego al tope de recursos (tanto de memoria RAM como de procesamiento), y por las impresiones de pantalla, se eligió al mejor modelo y sus hiperparametros aunque no haya termina terminado el proceso completo.

El modelo con mejores métricas es computacionalmente más demandante pero la diferencia era mucha comparado con los demás y se eligió el modelo gradient boost con esos mismos hiperparametros.

Con cada iteración modifique el número de iteraciones de validación cruzada, el número de hiperparametros, pero siempre llegaba al tope mi laptop de recursos.

- Influye mucho el número de ejemplos de cada etiqueta al momento de realizar una predicción multivariable. Mientras menos ejemplos, menor va a ser la métrica de evaluación
- La predicción más alta fue el pase mensual, seguido con el anual pass y el walk-up pass (auquue walkup tenga más datos). Se confirma que hay un patrón más marcado los usuarios del anual pass aunque no tenga muchos datos.
- En la matriz de confusión, en la categoría de pase mensual se confunde con otro tipo de membresías. Se considera que en las demás no hay un patrón marcado con las variables.
- La curva ROC promedio micro es la suma de la tasa de verdaderos positivos dividida por la suma de la tasa de falsos **positivos, y** se muestra que tienen un buen estado de falsos/positivos, por lo cual este modelo y los datos se puede mejorar para realizar predicciones más altas. No hay ninguna categoría que se encuentre debajo del 50%.

0.6

0.4

0: 'Annual Pass' 34,092

1: 'Flex Pass' 11,604

2: 'Monthly Pass' 394,769

3: 'One Day Pass' 44,455

4: 'Walk-up' 212,426

	,		,	
	precision	recall	fl-score	support
0	0.673983	0.092792	0.163125	11251.000000
1	0.299517	0.032384	0.058449	3829.000000
2	0.707686	0.918894	0.799578	130274.000000
3	0.438458	0.064349	0.112227	14670.000000
4	0.672289	0.545256	0.602146	70101.000000
accuracy	0.695461	0.695461	0.695461	0.695461
macro avg	0.558387	0.330735	0.347105	230125.000000
weighted avg	0.671302	0.695461	0.652170	230125.000000

- Se confirma la hipótesis que dependiendo del tipo de membresía, las variables tienen una diferente proporción de influencia, lo cual se vio influido en el rendimiento de las métricas del modelo
- Se realizo una operación para explicar el peso de las variables después que el modelo se entrenó con la librería SHAP, hay que considerar que se utilizó una pequeña proporción de los datos debido a que este algoritmo es muy demandante computacionalmente

0: 'Annual Pass' 34,092

1: 'Flex Pass' 11,604

2: 'Monthly Pass' 394,769

3: 'One Day Pass' 44,455

4: 'Walk-up' 212,426

Conclusiones

- Claramente hay un patrón marcado en el uso del servicio dependiendo del tiempo en el día, que a su vez influye las estaciones que se utilizan por el tipo de membresía
- Se puede considerar la tendencia al alza de usuarios en estaciones específicas para proporcionar un servicio que se adecue a la demanda
- Al tener un desbalance de las etiquetas de predicción, se propone generar datos de manera artificial para probar la eficacia del entrenamiento
- Se comprobó el dependiendo del tipo de usuario, van a tener rutas, horarios, duración del viaje, y el tipo de ruta definido
- Si se pretende vender más membresías, se puede segmentar el tipo de usuario que tiene pase de un día a pase mensual, y los que tienen el pase mensual invitarlos a pagar el pase anual, considerando su patrón de consumo del servicio.
- Entrenar el modelo con más hilos e hiperparametros para poder mejorar las métricas