1 Differential Privacy on graphs

1.1 Edge density

Proposition 1.1. The sufficient and necessary level of the noise to ε -differentiably private estimate the edge density of a graph (where the set of graphs have a "known" degree distribution, scales like $\frac{\max_i d_i}{n^2 \varepsilon}$. In paricular for ρ -sparse graphon like $\frac{\rho_n}{n \varepsilon}$.

1.2 SBMs

Definition 1.2. We say that two (undirected) graphs G_1 and G_2 have distance 1 if G_1 is generated from G_2 by deleting a node from G_1 and all its adjacent edges. Let d be the natural metric induced by this operation.

We start with k-Stochastic Block Models where the clustering sizes can vary arbitrarily.

Proposition 1.3. Let $M, \Delta \in \mathbb{N}$ and $\varepsilon, \eta > 0$ such that $M > 2^{\Delta \varepsilon + 1}$.

Suppose that $Q_1, \ldots, Q_M \in [0,1]^{k \times k}$ induce k-SBM's with the property that $\min_{i,j} ||Q_i - Q_j||_2 \ge \eta$ and any two Q_i, Q_j induce almost surely graphs that are at most Δ -close. Then any ε -differential private mechanism M should have rate at least $\eta/2$.

Proof. Same idea as in the survey. Also k-close Q's imply k-close graphs (check this with a coupling possible argument).

Proposition 1.4. Let k > 2 (possibly not necessary). The rate for ε -diff approximating the matrix Q from the SBM is at least of the order $\frac{k}{n\varepsilon} = \frac{1}{\varepsilon} \sqrt{\frac{k^2}{n^2}}$. That is for any ε -differential private estimator \hat{Q} it holds $\|\hat{Q} - Q\|_2^2 = \Omega(\frac{1}{\varepsilon}\sqrt{\frac{k^2}{n^2}})$.

Proof. Choose a family F of $2^{k/2}$ sets $S \subset \{0,1\}^k$ with $|S\triangle T| \ge k/4$ for any two $S \ne T$ both elements of F. (check constants).

Then choose Q=0 with the block structure that the first k/2 vertices correspond to a block of size $\lambda>0$ and after these we have blocks of size $2(n-\lambda k)/k$. The parameter $\lambda>0$ will be tuned later. We enumerate the blocks so that the first k/2 blocks correspond to the sizes $\lambda>0$.

Now for every $S \in F$, we define Q_S we define the k-SBM probability matrix such that for the block corresponding to $i \in S$, we adjust the inwards and outwards probabilities to be equal to 1, that is $Q_S = 1_{b(i) \in S, j \in [n]}$, where by b(i) we refer to the block that vertex i belongs.

Now clearly every pair Q_S, Q_T is at most λk -away and $\|Q_S - Q_T\|_2^2 \ge c' |S\triangle T| n = c\lambda k n$. Hence by setting $\lambda = \frac{1}{7\varepsilon}$ we have that $M := |F| > 2^{\Delta \varepsilon + 1}$ since k > 2 we are done.

Remark: The above argument using the result from Gao et al [16] can be boosted for the equipartition case to $\lambda \rho$ rate. In particular, no reasonable estimation seems possible in this case with differentiable private estimation. **Differential private algorithms can not give the clustering partition!**

Proposition 1.5. There exists a constant c > 0 small enough such that if $\varepsilon < c \frac{k^2}{n}$ then the trivial estimator is the optimal ε -differentiable private estimator for estimating the probability matrix of a k-SBM.

Proof. Using the Vashanorv-Gilber bound (probabilistic method) we can find $M = 2^{\Omega(k^2)} > 2^{\varepsilon n+1}$ matrices $B_i \in \{0,1\}^{k \times k}$ such that $\inf_{i \neq j} \|B_i - B_j\|_2 = \Omega(1)$. Since each two k-SBMs induces graphs that are n-close we get the result using the Proposition 1.3.

Proposition 1.6. There exists c > 0 such that if $\varepsilon < c \log k$, then the trivial estimator is the optimal ε -differentiable private estimator for estimating the probability matrix of the induced graph of a k-SBM.

Proof. Indeed in pages 26-27 of Gao et al, we see the existence of $\exp(cn \log k)$ probability matrices of graphs induced by balances k-SBMs with pairwise ℓ_2 distance constant. The result follows from the obvious variant of Proposition 1.3.

Proposition 1.7. Suppose for some graphon W we see the $A = G_n(W)$ and then we want to ε -differential private estimate the graphon W given A, by producing say the estimator \hat{W} . Then if $1 > \varepsilon > \frac{1}{n}$, it necessarily holds for some W that $\mathbb{E}\left[\delta_2(\hat{W}, W)\right] \geq \Omega(\frac{1}{n\varepsilon})$.

Proof. Assume not. Then for all W using Cauchy-Shwartz we get that

$$\mathbb{E}\left[\mathbb{P}\left(|\|\hat{W}\|_{1} - \|W\|_{1}| < \frac{1}{100n\varepsilon}|A\right)\right] \ge 1 - \delta$$

But then we can choose $W_1 = 0$ and $W_2 = 1(\min\{x,y\} < \frac{1}{n\varepsilon})$ and let A_1, A_2 the graphs they induce. Hence it holds

$$\mathbb{E}\left[\mathbb{P}\left(|\|\hat{W}\|_{1}| < \frac{1}{100n\varepsilon}|A_{1}\right)\right] \ge 1 - \delta$$

$$\mathbb{E}\left[\mathbb{P}\left(|\|\hat{W}\|_{1} - \frac{1}{n\varepsilon}| < \frac{1}{100n\varepsilon}|A_{2}\right)\right] \ge 1 - \delta$$

So for $X(A) = \mathbb{P}\left(|\|\hat{W}\|_1| < \frac{1}{100n\varepsilon}|A\right)$ it holds $\mathbb{E}[X(A_1)] \geq 1 - \delta$ and $\mathbb{E}[X(A_2)] \leq \delta$. But from ε -differentiable privacy we have a.s. with the obvious coupling that $\frac{X(A_1)}{X(A_2)} \leq 2^{\varepsilon U}$ a.s. where U follows Binomial $(n, \frac{1}{n\varepsilon})$. Hence,

$$1 - \delta \le \mathbb{E}[X(A_1)]^2 \le \mathbb{E}\left[\left[\frac{X(A_1)}{X(A_2)}\right]^2\right] \mathbb{E}\left[X(A_2)^2\right] \le \mathbb{E}\left[2^{2\varepsilon U}\right] \delta \le O(1)\delta,$$

a contradiction.

Remark: Assuming our sparsity $\rho > \frac{1}{\varepsilon n}$ this min-max bound transfers in this case as well. Important Observation for the Borgs et al question:

We need to to control the $k \times k$ matrices with distances \inf_{π} introduced in Borgs et al [14].

Question 1.8. Given ε find the maximum $\eta > 0$ such that for some $\Delta > 0$ and $M > 2^{\varepsilon \frac{n}{k} \Delta}$ there exist $B_1, \ldots, B_M \in [0, 1]^{k \times k}$ such that for all $i \neq j$, $\inf_{\pi} \|B_{i,\pi} - B_j\|_2 \geq \eta$ and B_i, B_j are Δ -close.

2 Differential Privacy and the Lipschitz Property

Consider $(\mathcal{G}_n, \delta_v)$ the set of all graphs with n vertices treated as a metric space with the vertex-distance and $(\mathcal{M}, D_{\infty})$ the set of probability measures in [0, 1] with the Borel σ -field treated as metric space with the D_{∞} distance. We remind that for measures $\mu, \mu', D_{\infty}(\mu, \mu') = \|\log \mu - \log \mu'\|_{\infty}$.

Proposition 2.1. A mapping $\mu: (\mathcal{G}_n, \delta_v) \to (\mathcal{M}, D_{\infty})$ corresponds to an ε -differential private mechanism if and only if μ is ε -Lipschitz with respect to δ_v and D_{∞} .

Proposition 2.2. Suppose that for some $H_n \subset \mathcal{G}_n$ a function $\hat{\mu}: (H_n, \delta_v) \to (\mathcal{M}, D_\infty)$ is ε -Lipschitz for some $\varepsilon > 0$. Then we can extend the function to a $\mu: (\mathcal{G}_n, \delta_v) \to (\mathcal{M}, D_\infty)$ such that it is 2ε -Lipschitz and for every $G \in H_n$, $\mu(G) = \hat{\mu}(G)$.

Proof. We define for every $G \in \mathcal{G}_n$,

$$d\mu(G) \propto \inf_{G' \in H_n} 2^{\varepsilon \delta_v(G, G')} d\hat{\mu}.$$

Both the properties follow.

2.1 The minimax rate

Given the Proposition the rate we want to find is

$$R = \min_{\mu: (\mathcal{G}_n, \delta_v) \to (\mathcal{M}, D_\infty) \in -Lipschitz} \max_{p \in [0, 1]} \mathbb{E}_{G \sim G_{n, p}, \hat{p} \sim \mu_G}[|\hat{p} - p|]$$

2.2 An upper bound

First we define for every $p \in [0,1]$ we define the distribution over [0,1] given by

$$\hat{\mu}_p(q) \propto 2^{\epsilon \min\{\frac{n^2}{\log n}|p-q|,n\}}$$

for $q \in [0,1]$. Now we define $H_n \subseteq \mathcal{G}_n$ to be a subset of all the graphs such that

$$\forall p \in [0, 1], \frac{1}{n^{10}} \le \mathbb{P}_{G \sim G_{n,p}} (G \notin H_n) \le \frac{1}{n}.$$

Then for any $G \in \mathcal{G}_n$ we set $\mu : (\mathcal{G}_n, \delta_v) \to (\mathcal{M}, D_\infty)$ the mapping given by

$$\mu_G(q) \propto \inf_{G' \in H} \left[2^{\epsilon \delta_v(G,G')} \hat{\mu}_{e(G')}(q) \right],$$

for $q \in [0, 1]$.

Claim 2.3. The map μ_G is 2ε -D.P.

Proof. Follows from the definition.

For typical $G_{n,p}, G_{n,q}$ it holds $\delta_V(G, G') \ge \min\{\frac{n^2}{\log n} | p - q|, n\}$.