Laboratories A.7

<u>Proof.</u> Trying to find other fixed points than (0,0) we resolve Av = v, for $v = (x, y) \in \mathbb{R}^2$, and this linear system returns as a solution x + y = 0, ay = 0. So if a = 0 there are infinitely many fixed points because y can take any real value and (-y, y), $y \in \mathbb{R}$ (or ((-1, 1))), are solutions of Ax = x. Else, $a \ne 0$ and the only fixed point is (0, 0).

1. This procedure is much ordinary:

$$\det(A_a - x \operatorname{id}_{2\times 2}) = \begin{vmatrix} -x & -1 \\ \frac{a+1}{2} & a + \frac{3}{2} - x \end{vmatrix} = \frac{2x^2 - (2a+3)x + a + 1}{2}$$
$$= \frac{(2x-1)(x-(a+1))}{2} = \frac{2x-1}{2} \cdot \frac{x-(a+1)}{2} = 0.$$

The eigenvalues are $\lambda = \frac{1}{2}$ and $\mu(a) = a + 1 \neq 0$. The eigenvectors can be computed easily: $v_{\lambda} = (-2, 1)$ and $v_{\mu} = (-\frac{1}{a+1}, 1)$. Note that when $\mu \to +\infty$, $v_{\mu} \to (0, 1)$ ($\langle v_{\mu} \rangle$ would become the vertical axis). Therefore, the line L of eigenvectors we are looking for is invariant for L_a , and the only one that doesn't depend on a is $r:(0,0)+\langle (-2,1)\rangle$. The dynamics on this straight line does not depend on a because the eigenvalue associated with the invariant straight line is $\frac{1}{2}$, which remains constant for all values of a. Now, to determine the dynamics on r, we apply the vector that generates r onto the map given by A_a , and confirm what we already know:

$$\begin{pmatrix} 0 & -I \\ \frac{a+I}{2} & \frac{2a+3}{2} \end{pmatrix} \begin{pmatrix} -2x \\ x \end{pmatrix} = \frac{I}{2} \begin{pmatrix} -2x \\ x \end{pmatrix}$$

Every point in r maps via L_a to another point in r, hence r is invariant.

Remark A.7. The two eigenvectors are $v_{\lambda} = (-2, 1)$ and $v_{\mu} = (-\frac{1}{a+1}, 1)$. Note that $\langle (-1, a+1) \rangle$ might not be the same as $\langle v_{\mu} \rangle$, when a = -1. Anyway, even though they seem linearly independent they necessarily aren't, it all depends on the values that a takes.

$$v_{\lambda} = k \cdot v_{\mu} \iff (-2, \mathbf{I}) = \left(-\frac{k}{a+\mathbf{I}}, k\right) \iff \begin{cases} 2 = \frac{k}{a+\mathbf{I}} \\ k = \mathbf{I} \end{cases} \iff a = -\frac{\mathbf{I}}{2}.$$

So we must acknowledge this value of a for further evaluation when needed.

- 2. From now on, keep in mind that $|\lambda| < 1$, but $|\mu|$ can take any positive value, depending on a. Now we are constraining a to |a| < 1, so $\mu(a) = 1 + a \in (0, 2)$. For any value of a, both λ , $\mu \in \mathbb{R}$. Nevertheless, we are forced to segregate in these three cases:
 - 2.1. $a \in (-1, 0)$. Then, $|\lambda|$, $|\mu| < 1$, but more precisely, we should distinguish when $|\mu| \le |\lambda|$. Remembering A.7, we need to make one more distinction: when $a = -\frac{1}{2}$, $\{v_{\lambda}, v_{\mu}\}$ are linearly dependent (i.e. $\lambda = \mu$), which means that (0, 0) is a degenerate attracting node. If $0 < |\lambda| = |\mu| < 1$, the invariant lines and the dynamics can be drawn like:

Figure 8: First case, for a value of $a = -\frac{1}{2}$. Invariant line is $\langle v_{\lambda} \rangle = \langle v_{\mu} \rangle$ (green).

When $a \neq -\frac{1}{2}$, then (0, 0) is a non-degenerate attracting node. In more detail, if $a < -\frac{1}{2}$, $0 < \mu = |\mu| < |\lambda| = \lambda < 1$:

A Laboratories

Figure 9: Second case, for a value of $a=-\frac{9}{10}$. Invariant lines are $\langle v_{\lambda} \rangle$ (green) and $\langle v_{\mu} \rangle$ (red).

Lastly, if
$$a>-\frac{1}{2},$$
 o $<\lambda=|\lambda|<|\mu|=\mu<$ 1:

Figure 10: Third case, for a value of $a=-\frac{1}{10}$. Invariant lines are $\langle v_{\lambda} \rangle$ (green) and $\langle v_{\mu} \rangle$ (red).

2.2. a = 0. Then, $|\lambda| < 1$, $|\mu| = 1$ and we have encountered with a non-hyperbolic degenerate case. Moreover, $\langle v_{\mu} \rangle = \langle (-1, 1) \rangle$ is a line of fixed points (every point $(x, y) \in \mathbb{R}^2$ in $\langle v_{\mu} \rangle$ meets $A_0(x, y) = (x, y)$).

Figure II: Fourth case, for a value of a=o. Invariant lines are $\langle v_{\lambda} \rangle$ (green) and $\langle v_{\mu} \rangle$ (red).

Laboratories A.7

2.3. $a \in (0, 1)$. Then, $|\lambda| < 1 < |\mu|$ and (0, 0) is a hyperbolic saddle node.

Figure 12: Fourth case, a=0. Stable subspace is $E^s=\langle v_{\lambda}\rangle$ (green) and unstable is $E^u=\langle v_{\mu}\rangle$ (red).

3. If a=-1, then the eigenvalue μ is equal to o. Having a o eigenvalue tells us that A_a is singular or non-invertible. In fact, v_{μ} is not defined, so $\langle v_{\mu} \rangle$ isn't either and there is only one invariant line. The invariant curves are $|y| = C|x|^{\frac{\log |\mu|}{\log |\lambda|}}$ ($c \in \mathbb{R}$) in a certain basis, but the exponent is a constant that does not depend on the basis, and in this case cannot be computed because $\frac{\log |\mu|}{\log |\lambda|}$ is not defined, as $\mu = 0$. We could also argue that for every point $(x_0, y_0) \in \mathbb{R}^2$, $A_{-1}(x_0, y_0) = (-y_0, \frac{1}{2}y_0) \in \langle v_{\lambda} \rangle$.

Figure 13: Invariant line is $\langle v_{\lambda} \rangle$ (green).

4. If the first and third quadrant cannot be forward invariant, then we have to prove that there's at least one point in the first quadrant (resp. third) which orbit does not *stay there*. For example, if we take (x_0, y_0) , $x_0, y_0 > o^4$, we claim that there exists an $n \in \mathbb{N}$ such that $A_a^n(x_0, y_0) = (x_1, y_1)$ and either $x_1 < 0$ or $y_1 < 0$. Take n = 1:

$$\begin{pmatrix} x_{\rm I} \\ y_{\rm I} \end{pmatrix} = \begin{pmatrix} 0 & -{\rm I} \\ \frac{a+{\rm I}}{2} & \frac{2a+{\rm 3}}{2} \end{pmatrix} \begin{pmatrix} x_{\rm o} \\ y_{\rm o} \end{pmatrix} = \begin{pmatrix} -y_{\rm o} \\ \frac{ax_{\rm o}+x_{\rm o}+2ay_{\rm o}+3y_{\rm o}}{2} \end{pmatrix}, \quad x_{\rm I} = -y_{\rm o} < 0. \tag{A.5}$$

So at least the x coordinate will be outside the scope of the first quadrant. Hence, first quadrant cannot be invariant. Same argument works for third quadrant: if $(x_0, y_0), x_0, y_0 < 0$:

$$\begin{pmatrix} x_{\rm I} \\ y_{\rm I} \end{pmatrix} = \begin{pmatrix} 0 & -{\rm I} \\ \frac{a+{\rm I}}{2} & \frac{2\cdot a+{\rm 3}}{2} \end{pmatrix} \begin{pmatrix} x_{\rm o} \\ y_{\rm o} \end{pmatrix} = \begin{pmatrix} -y_{\rm o} \\ \frac{ax_{\rm o}+x_{\rm o}+2\cdot ay_{\rm o}+3y_{\rm o}}{2} \end{pmatrix}, \quad x_{\rm I} = -y_{\rm o} > o.$$

$$(A.6)$$

5. For the second and third quadrant it isn't that trivial. Note that we aren't trying to refuse, but to prove: the *whole* semi-plane has to be invariant, so the point (x_0, y_0) we consider has to be arbitrary. Hence, we take $(x_0, y_0) \in \mathbb{R}^2$ an arbitrary point

⁴ We discard the points along both axis because if the axis were invariant, they would be linear invariant, but there are, at most, only two invariant lines, $\langle v_{\lambda} \rangle$ and $\langle v_{\mu} \rangle$.

A Laboratories

that meets the conditions $x_0 < 0$, $y_0 > 0$ (i.e. is located in the second quadrant). Following (A.5) and (A.6):

$$\left. \begin{array}{l} x_{1} = -y_{0} < o \checkmark \\ y_{1} = \frac{ax_{0} + x_{0} + 2ay_{0} + 3y_{0}}{2} > o \end{array} \right\} \implies \frac{ax_{0} + x_{0} + 2ay_{0} + 3y_{0}}{2} > o \iff \frac{(a+1)x_{0} + (2a+3)y_{0}}{2} > o.$$

So if both $\frac{a+1}{2}$ < 0 and $\frac{2a+3}{2}$ > 0, and because x_0 < 0, y_0 > 0 the inequality y_1 > 0 will hold, and x_1 < 0, y_1 > 0 as we wanted. For that reason, $a \in (-\frac{3}{2}, -1)$. Note that we have given a *sufficient* condition: it may be the case that other values of a outside the scope of this interval also fulfill the conditions. Analogously for the third quadrant, take (x_0, y_0) such that x_0 > 0 and y_0 < 0:

$$\begin{vmatrix} x_1 = -y_0 > 0 \checkmark \\ y_1 = \frac{ax_0 + x_0 + 2ay_0 + 3y_0}{2} < 0 \end{vmatrix} \implies \frac{ax_0 + x_0 + 2ay_0 + 3y_0}{2} < 0 \iff \frac{(a+1)x_0 + (2a+3)y_0}{2} < 0.$$

And if we want both $\frac{a+1}{2} < 0$ and $\frac{2a+3}{2} > 0$, and because $x_0 > 0$, $y_0 < 0$ the inequality $y_1 < 0$ will hold, and $x_1 > 0$, $y_1 < 0$ as we wanted: $a \in (-\frac{3}{2}, -1)$ as before. Regarding the phase portrait, if $a \in (-\frac{3}{2}, -1)$, then $\mu \in (-\frac{1}{2}, 0)$ and $0 < |\mu| < |\lambda| < 1$ but $\mu < 0 < \lambda < 1$.

Figure 14: a = -1.3. $\langle v_{\lambda} \rangle$ (green) and $\langle v_{\mu} \rangle$ (red).

6. If a = 5, then $|\lambda| < 1 < |\mu| = 6$ and (0, 0) becomes an hyperbolic saddle node (by the slides, we know what will J be). Note that $\omega_{n+1} = L_5(\omega_n)$, $\omega_i \in \mathbb{R}^2$, for all $i \in \mathbb{N}$ and that means that A_5 takes the form:

$$A_5 = \begin{pmatrix} 0 & -\mathrm{I} \\ 3 & \frac{13}{2} \end{pmatrix}, \quad v_{\lambda} = \langle (-2, \mathrm{I}) \rangle, \quad v_{\mu} = \left\langle \left(-\frac{\mathrm{I}}{6}, \mathrm{I} \right) \right\rangle = \langle (-\mathrm{I}, 6) \rangle.$$

As it was already stated in the slides, $\omega_{n+1} = A_5^{n+1} \omega_0$, $\omega \in \mathbb{R}^2$, but A_5^{n+1} might be uncomfortable to iterate. All linear systems in \mathbb{R}^2 are linearly conjugate to one of the fundamental examples with same phase portrait, modulo a change of basis.

$$\begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix} = CJ^{n+1}C^{-1} = \begin{pmatrix} C \cdot \begin{pmatrix} \lambda^{n+1} & 0 \\ 0 & \mu^{n+1} \end{pmatrix} \cdot C^{-1} \end{pmatrix} \cdot \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} = \frac{1}{\text{II} \cdot 2^n} \begin{pmatrix} -6 \cdot 2^{2n} \cdot 3^n + 6 & -12 \cdot 2^{2n} \cdot 3^n + 1 \\ 36 \cdot 2^{2n} \cdot 3^n - 3 & \frac{144 \cdot 2^{2n} \cdot 3^n - 1}{2} \end{pmatrix} \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}.$$
 (A.7)

Previously, we have had to compute C, which is the change of basis matrix, from the canonical $\{(1, 0), (0, 1)\}$ to the one set by the eigenvectors, $\{(-2, 1), (-1, 6)\}$. Because A_5 is diagonalitzable:

$$\begin{array}{c} (\mathbf{I}, \mathbf{O}) = x_{\mathbf{I}}(-2, \mathbf{I}) + y_{\mathbf{I}}(-\mathbf{I}, \mathbf{6}) \\ (\mathbf{O}, \mathbf{I}) = x_{2}(-2, \mathbf{I}) + y_{\mathbf{I}}(-\mathbf{I}, \mathbf{6}) \end{array} \right\} \implies C = \begin{pmatrix} -2 & -\mathbf{I} \\ -\mathbf{I} & \mathbf{6} \end{pmatrix} \implies C^{-1} = \frac{\mathbf{I}}{\mathbf{II}} \begin{pmatrix} -6 & -\mathbf{I} \\ \mathbf{I} & 2 \end{pmatrix}$$

$$\implies CJ^{n+1}C^{-1} = \begin{pmatrix} -2 & -\mathbf{I} \\ -\mathbf{I} & \mathbf{6} \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{2^{n+1}} & \mathbf{0} \\ \mathbf{0} & 6^{n+1} \end{pmatrix} \cdot \frac{\mathbf{I}}{\mathbf{II}} \begin{pmatrix} -6 & -\mathbf{I} \\ \mathbf{I} & 2 \end{pmatrix} = \frac{\mathbf{I}}{\mathbf{II}} \begin{pmatrix} \frac{12}{2^{n+1}} - 6^{n+1} & \frac{2}{2^{n+1}} - 2 \cdot 6^{n+1} \\ \frac{2}{2^{n+1}} + 6 \cdot 6^{n+1} & -\frac{1}{2^{n+1}} + 12 \cdot 6^{n+1} \end{pmatrix}$$

The latter expression can be arranged in order to look as in (A.7). The explicit solutions for $\omega_n = (x_n, y_n)$ taking $\omega_0 = (x_0, y_0)$ are:

$$x_n = \frac{I}{II \cdot 2^n} \left(-6 \cdot 2^{2n} \cdot 3^n \cdot x_o + 6x_o - I2 \cdot 2^{2n} \cdot 3^n \cdot y_o + y_o \right),$$

$$y_n = \frac{I}{II \cdot 2^{n+1}} \left(72 \cdot 2^{2n} \cdot 3^n \cdot x_o - 6x_o + I44 \cdot 2^{2n} \cdot 3^n \cdot y_o + y_o \right).$$

Once and for all, we are done.