

RÉPUBLIQUE FRANÇAISE
INSTITUT NATIONAL
DE LA PROPRIÉTÉ INDUSTRIELLE
PARIS

(11) N° de publication :
(A n'utiliser que pour les commandes de reproduction).

2 332 759

A1

**DEMANDE
DE BREVET D'INVENTION**

(21)

N° 75 36160

(54) Nouveaux dérivés 3-hydroxy 17-hydroxyméthyl gona 1,3,5 (10) triènes, leur procédé de préparation et leur application comme médicament.

(51) Classification internationale (Int. Cl.²). A 61 K 31/56; C 07 J 1/00, 3/00.

(22) Date de dépôt 26 novembre 1975, à 15 h 4 mn.

(33) (32) (31) Priorité revendiquée :

(41) Date de la mise à la disposition du public de la demande B.O.P.I. — «Listes» n. 25 du 24-6-1977.

(71) Déposant : ROUSSEL-UCLAF, résidant en France.

(72) Invention de :

(73) Titulaire : *Idem* (71)

(74) Mandataire :

La présente invention, à la réalisation de laquelle ont participé Monsieur VIGNAU Michel et Madame AZADIAN Geneviève, concerne de nouveaux dérivés 3-hydroxy 17-hydroxy méthyl gona 1,3,5(10)-triènes.

5 L'invention a pour objet les composés répondant à la formule I :

10 dans laquelle R représente un radical alcoyle renfermant de 1 à 3 atomes de carbone et X_1 et X_2 , identiques ou différents, représentent un atome d'hydrogène ou un radical acyle renfermant de 1 à 12 atomes de carbone, le groupement CH_2OX_2 étant en position 17 α ou 17 β . R représente, de préférence, un radical méthyle, éthyle ou propyle.

15 Lorsque X_1 ou X_2 représente un radical acyle, il s'agit, de préférence, du reste acyle dérivé d'un acide aliphatique, saturé ou insaturé, en particulier, d'un acide alcanoïque, tel que l'acide formique, acétique, propionique, butyrique, isobutyrique ou undécylique, d'un acide cycloalcoylcarboxylique ou (cycloalcoyl) alcanoïque; tel que, par exemple, l'acide cyclopropyl, cyclopentyl ou cyclohexylcarboxylique, cyclopentyl ou cyclohexylacétique ou propionique, de l'acide benzoïque ou d'un acide phénylalcanoïque, tel que l'acide phénylacétique ou phényl propionique.

20 L'invention a notamment pour objet les composés de formule I, dans laquelle X_1 et X_2 représentent un atome d'hydrogène, ainsi que les composés de formule I, dans laquelle R représente un radical méthyle.

Parmi les composés de l'invention, on peut citer tout particulièrement :

- Le 3-hydroxy 17 β -hydroxy méthyl estra 1,3,5(10)-triène ;
- 30 - Le 3-hydroxy 17 α -hydroxy méthyl estra 1,3,5(10)-triène.

Les composés de l'invention présentent d'intéressantes propriétés pharmacologiques et notamment une importante activité anti-estrogène, ainsi qu'une activité inhibitrice hypophysaire marquée, tout en étant dénués d'activité secondaire du type estrogène.

35 Ces propriétés les rendent aptes à être utilisés en thérapeutique, notamment, dans le traitement des troubles engendrés par

l'hyperestrogénie, dans le traitement de l'adénome de la prostate et comme adjuvant du cancer de la prostate, sans crainte d'effets secondaires, comme la gynécomastie ou la privation de la libido.

L'invention a donc pour objet les composés de formule I à 5 titre de médicament.

L'invention a notamment pour objet, à titre de médicament :

- Le 3-hydroxy 17β -hydroxy méthyl estra 1,3,5(10)-triène ;
- Le 3-hydroxy 17α -hydroxy méthyl estra 1,3,5(10)-triène.

La posologie usuelle, variable selon l'affection en cause et 10 le sujet à traiter, peut être, par exemple, comprise entre 10 et 200 mg par jour, chez l'adulte, par voie orale.

L'invention a également pour objet les compositions pharmaceutiques, renfermant comme principe actif, au moins un médicament défini précédemment.

15 Ces compositions pharmaceutiques peuvent être administrées par voie buccale, rectale ou parentérale.

Ces compositions peuvent être solides ou liquides et se présenter sous les formes pharmaceutiques couramment utilisées en médecine humaine comme, par exemple, les comprimés, simples ou 20 dragéifiés, les gélules, les granulés, les suppositoires, les préparations injectables ; elles sont préparées selon les méthodes usuelles. Le ou les principes actifs peuvent y être incorporés à des excipients habituellement employés dans ces compositions pharmaceutiques, tels que le talc, la gomme arabique, le lactose, 25 l'amidon, le stéarate de magnésium, le beurre de cacao, les véhicules aqueux ou non, les corps gras d'origine animale ou végétale, les dérivés paraffiniques, les glycols, les divers agents mouillants, dispersants ou émulsifiants, les conservateurs.

L'invention a également pour objet un procédé de préparation 30 des composés de formule I, caractérisé en ce que l'on soumet un composé de formule II :

dans laquelle Y représente un radical alcoyle renfermant de 1 à 35 6 atomes de carbone, un radical aralcoyle, renfermant de 7 à 9 atomes de carbone, ou un radical tétrahydropyranyle, et R représente un radical alcoyle renfermant de 1 à 3 atomes de carbone, à l'ac-

tion d'un agent d'hydroboration, puis à celle d'un agent d'oxydation, pour obtenir le composé de formule III :

sous forme d'un mélange d'isomères 17α et 17β , sépare selon les
5 méthodes usuelles, chacun des isomères ainsi obtenus, puis soumet
chacun des isomères à l'action d'un agent de clivage de la fonction
éther, pour obtenir d'une part, le composé de formule I_A :

dans laquelle le groupement CH_2OH est en position 17β et d'autre
10 part, le composé de formule I_B :

dans laquelle le groupement CH_2OH est en position 17α .

Comme agent d'hydroboration, on peut employer soit le diborane, soit un mélange générateur de diborane, comme le borohydrure de sodium ou de potassium en présence d'un acide de Lewis, comme le trifluorure de bore ou le chlorure d'aluminium. Comme agent d'oxydation, on emploie, de préférence, le peroxyde d'oxygène.

Pour séparer les isomères obtenus lors de la mise en oeuvre du procédé de l'invention, on peut utiliser les méthodes classiques de séparation par cristallisation ou mieux, par chromatographie, comme il est indiqué plus loin dans la partie expérimentale.

Pour cliver le groupement éther en position 3, on peut utiliser soit un dérivé organomagnésien, soit le chlorhydrate ou le bromhydrate de pyridine, soit l'iodure de lithium dans la 2,4,6-triméthylpyridine, soit encore tout autre procédé bien connu de

l'homme de l'art.

L'invention a également pour objet un procédé de préparation des esters de formule I, caractérisé en ce que l'on soumet les composés I_A et I_B obtenus précédemment à l'action d'agents d'estérification de façon à estérifier les hydroxyles.

On peut ainsi préparer les monoesters en 3 et 21 ou les diesters en 3 et 21, les groupements esters en 3 et 21 pouvant être de nature différente.

Pour préparer ces esters, on utilise des procédés classiques d'estérification sélective, d'estérification totale avec ou sans saponification sélective.

Pour procéder à l'estérification, on peut utiliser un acide ou un dérivé fonctionnel d'acide, par exemple, un anhydride d'acide, un anhydride mixte ou un halogénure d'acide, notamment un chlorure ou un bromure d'acide.

L'invention a également pour objet, à titre de produit intermédiaire nécessaire pour la préparation du 3-hydroxy 17 β -hydroxy méthyl estra 1,3,5(10)-triène, le 3-méthoxy 17 α -hydroxy méthyl estra 1,3,5(10)-triène.

Les composés de formule II, utilisés comme produits de départ, sont, en général, connus et peuvent être préparés selon le procédé indiqué dans le brevet américain 3 553 211.

Il va être donné maintenant, à titre non limitatif, des exemples de mise en oeuvre de l'invention.

Exemple 1 : Préparation du 3-hydroxy 17 β -hydroxyméthyl estra 1,3,5-(10)-triène et du 3-hydroxy 17 α -hydroxy méthyl estra 1,3,5(10)-triène

Stade A : Préparation du 3-méthoxy 17 β -hydroxy méthyl estra 1,3,5-(10)-triène et du 3-méthoxy 17 α -hydroxy méthyl estra 1,3,5(10)-triène :

On introduit 6 g de 3-méthoxy 17-méthylène estra 1,3,5(10)-triène dans 25 cm³ de tétrahydrofurane. On introduit dans la solution ainsi obtenue, à - 10°C et sous agitation, 13 cm³ d'une solution de diborane dans le tétrahydrofurane (à 2,17 % en gramme d'hydrure de bore). Au bout d'une heure, on introduit à - 30°C, 8,5 cm³ d'eau. On obtient un précipité que l'on dissout en ajoutant à - 10°C, un mélange renfermant 13 cm³ d'eau, 13 cm³ de lessive concentrée de potasse et 38,6 cm³ d'éthanol. On ajoute ensuite à la solution ainsi obtenue à 0°C, 64 cm³ d'une solution d'eau oxygénée à 110 volumes, puis 106 cm³ d'eau. On extrait au

chlorure de méthylène, lave à l'eau et sèche. On obtient ainsi 6,5 g d'une huile épaisse et incolore que l'on chromatographie sur silice (benzène-acétate d'éthyle 9-1). On obtient, après purification, 1,31 g de 3-méthoxy 17α -hydroxy méthyl estra 1,3,5(10)-triène fondant vers 50°C. ΔD^{20} (1 % chloroforme) = 35° + 1 et 4,25 g de 3-méthoxy 17β -hydroxy méthyl estra 1,3,5(10)-triène fondant à 125°C. ΔD^{20} (1 % chloroforme) = 64,5° + 1,5.

5 Stade B₁ : Préparation du 3-hydroxy-17 β -hydroxy méthyl estra 1,3,5(10)-triène :

10 On introduit 5 g de 3-méthoxy 17β -hydroxy méthyl estra 1,3,5(10)-triène et 7,5 g d'iodure de lithium dans 20 cm³ de 2,4,6-triméthyl pyridine. On porte au reflux pendant 60 heures, le mélange réactionnel ainsi obtenu, le refroidit et le verse dans 500 cm³ d'un mélange eau-glace à 10 % d'acide chlorhydrique. On 15 extrait à l'éther, lave, sèche et évapore à sec. On obtient, après chromatographie sur silice, 4,7 g de 3-hydroxy 17β -hydroxy méthyl estra 1,3,5(10) triène fondant à 188°C.

15 Stade B₂ : Préparation du 3-hydroxy-17 α -hydroxy méthyl estra 1,3,5(10)-triène :

20 On introduit 200 mg de 3-méthoxy 17α -hydroxy méthyl estra 1,3,5(10)-triène dans 3,75 g de chlorhydrate de pyridine. On chauffe le mélange pendant 5 heures à 125°C. On ajoute 10 cm³ d'acide chlorhydrique N, extrait à l'éther, lave à l'eau, sèche et évapore à sec. On obtient ainsi 170 mg d'un produit amorphe blanc que l'on 25 chromatographie sur silice et obtient 80 mg de 3-hydroxy 17α -hydroxy méthyl estra 1,3,5(10)-triène fondant à 156°C.

Exemple 2 : Etude pharmacologique du 3-hydroxy 17β -hydroxy méthyl estra 1,3,5(10)-triène (Composé A) et du 3-hydroxy 17α -hydroxy méthyl estra 1,3,5(10)-triène (Composé B)

30 Activité anti-estrogène :

L'activité anti-estrogène des produits A et B a été recherchée sur la souris impubère selon une technique inspirée du test de RUBIN (Endo., 1951, 49, 429) et voisine de celle de DORFMAN et Coll. (Methods in Hormon Research, Dorfman, 1962, Vol. II, 118).

35 L'estrogène utilisé est l'estradiol. Les souris âgées de 19 à 21 jours sont réparties en groupes de 4. Elles reçoivent en injection sous cutanée soit l'estradiol seul, soit l'un des produits étudiés seul, soit l'estradiol et l'un des produits étudiés. Dans ce dernier cas, les stéroïdes sont injectés en des points différents. Les souris sont sacrifiées le quatrième jour et leur utérus 40

est prélevé et pesé.

L'estradiol, en solution dans l'huile d'olive additionnée de 5 % d'alcool benzylique, a été administré à la dose de 0,27γ, chaque injection étant pratiquée sous un volume de 0,1 cm³ par souris.

5 Les produits A et B, utilisés en solution dans l'huile d'olive additionnée de 5 % d'alcool benzylique, ont été administrés à la dose de 30γ ; les injections étant également pratiquées sous un volume de 0,1 cm³ par souris.

Les résultats sont réunis dans le tableau suivant :

10		:	:)
		:	Moyenne des poids)
		:	Doses)
		:	des utérus en mg)
		-----	-----)
	(Témoin.....	:	0	: 14,0 ± 1,7)
		-----	-----)
	(Estradiol.....	:	0,27γ	: 48,1 ± 6,3)
		-----	-----)
	(Produit A.....	:	30 γ	: 17,6 ± 1,2)
		-----	-----)
	(Produit A	:	30 γ	:)
	(+ estradiol.....	:	0,27γ	: 36,5 ± 0,7)
		-----	-----)
	(Produit B.....	:	30 γ	: 23,5 ± 1,4)
		-----	-----)
	(Produit B	:	30 γ	:)
	(+ estradiol.....	:	0,27γ	: 32,2 ± 3,4)
		-----	-----)

Conclusion :

Les composés de l'invention présentent une intéressante activité anti-estrogène.

Exemple 3 : Exemple de compositions pharmaceutiques

15 On a réalisé des comprimés répondant à la formule :

- Composé A..... 50 mg ;

- Excipient q. s. pour un comprimé..... 350 mg.

(Détail de l'excipient : lactose, amidon, talc, stéarate de magnésium).

REVENDEICATIONS

1. Les composés répondant à la formule I :

5 dans laquelle R représente un radical alcoyle renfermant de 1 à
10 3 atomes de carbone et X_1 et X_2 , identiques ou différents, repré-
sentent un atome d'hydrogène ou un radical acyle renfermant de 1
à 12 atomes de carbone, le groupement CH_2OX_2 étant en position 17 α
ou 17 β .

2. Les composés répondant à la formule I de la revendication 1,
10 dans laquelle X_1 et X_2 représentent un atome d'hydrogène.

3. Les composés, tels que définis à la revendication 1 ou 2 pour
lesquels R représente un radical méthyle.

4. Les composés, tels que définis à la revendication 3 dont les
noms suivent :

15 - Le 3-hydroxy 17 β -hydroxy méthyl estra 1,3,5(10)-triène ;
- Le 3-hydroxy 17 α -hydroxy méthyl estra 1,3,5(10)-triène.

5. Procédé de préparation des composés définis à l'une quelconque
des revendications 1 à 4, caractérisé en ce que l'on soumet un
composé de formule II :

dans laquelle Y représente un radical alcoyle renfermant de 1 à
6 atomes de carbone, un radical aralcoyle renfermant de 7 à 9 ato-
mes de carbone, ou un radical tétrahydropyranylique, et R représente
un radical alcoyle renfermant de 1 à 3 atomes de carbone à l'ac-
tion d'un agent d'hydroboration, puis à celle d'un agent d'oxyda-
tion, pour obtenir le compoxé de formule III :

sous forme d'un mélange d'isomères 17 α ou 17 β , sépare selon les méthodes usuelles chacun des isomères ainsi obtenus, puis soumet chacun des isomères à l'action d'un agent de clivage de la fonction éther, pour obtenir, d'une part, le composé de formule I_A :

dans laquelle le groupement CH₂OH est en position 17 β et d'autre part, le composé de formule I_B :

- 10 dans laquelle le groupement CH₂OH est en position 17 α .
- 6. Procédé de préparation selon la revendication 5, caractérisé en ce que l'on soumet, en outre, les composés de formules I_A et I_B à l'action d'agents d'estérification de façon à estérifier les hydroxyles.
- 15 7. A titre de produit intermédiaire nécessaire pour la préparation du 3-hydroxy 17 α -hydroxy méthyl estra 1,3,5(10)-triène, le 3-méthoxy 17 α -hydroxy méthyl estra 1,3,5(10)-triène.
- 8. A titre de médicament, les composés définis à la revendication 1, 2 ou 3.
- 20 9. A titre de médicament, les composés définis à la revendication 4.
- 10. Les compositions pharmaceutiques renfermant comme principe actif au moins un médicament défini à la revendication 8.

11. Les compositions pharmaceutiques renfermant comme principe actif au moins un médicament défini à la revendication 9.