

SR-uSOM-MX6 User Manual

Freescale i.MX6™ based MicroSOM

Documentation Revision History

Date	Owner	Revision	Notes
18-June-2014	Rabeeh	1.0	Initial release
	Khoury		
19-June-2014	Kossay Omary	1.1	Review and slight fixes
09-November-2014	Ohad Barany	1.2	Change picture, add products description
			and add ordering information

Disclaimer

No warranty of accuracy is given concerning the contents of the information contained in this document. To the extent permitted by law no liability (including liability to any person by reason of negligence) will be accepted by SolidRun Ltd. or its employees for any direct or indirect loss or damage caused by omissions from or inaccuracies in this document .SolidRun Ltd. reserves the right to change details in this publication without notice. Product and company names herein may be the trademarks of their respective owners.

Contents

Introduction	4
Overview	4
The SR-uSOM-MX6 Highlighted Features	4
The SR-uSOM-MX6 Supporting Products	4
The SR-uSOM-MX6 Features Summary	4
Block Diagram of the SR-uSOM-MX6	5
Core System Components	6
i.MX6 SoC Family	6
10/100/1000 Mbps Ethernet PHY	8
Wireless LAN 802.11 b/g/n and Bluetooth 4.0 SiP	9
SR-uSOM-MX6 Interfaces	10
SR-uSOM-MX6 External Interfaces	10
SR-uSOM-MX6 On Board Functions	11
10/100/1000 Mbps PHY	11
802.11 b/g/n and Bluetooth SiP	11
SR-uSOM-MX6 External Interfaces Detailed Description	12
Main Board to Board Header	13
Second Board to Board Header	15
Third Board to Board Header	17
SR-uSOM-MX6 Integration Manual	19
SR-uSOM-MX6 Power Up Sequence	19
SR-uSOM-MX6 Debugging Capability	20
Differences between SR-uSOM-MX6 Versions	20
SR-uSOM-MX6 Typical Power Consumption	21
SR-uSOM-MX6 Maximum Rating	22
SR-uSOM-MX6 Mechanical Description	23
Ordering Information	24
Notes	24
Federal Communications Commission (FCC) Statement	25
Canadian Compliance	26
operation of the device	26

Introduction

This User Manual relates to SolidRun SR-uSOM-MX6 series which includes the single core ARM A9 (1 GHz) of the i.MX6 SoC:uSOM-i1 (C1000S-D512-FE), the dual lite core ARM A9 (1GHz) of the i.MX6 SoC: uSOM-i2 (C1000DL-D1024-FE), the dual core ARM A9 (1GHz) of the i.MX6 SoC: uSOM-i2eX (C1000DM-D1024-GE-W) and the quad core ARM A9 (1GHz) of the i.MX6 SoC: uSOM-i4 (C1000QM-D2048-GE-W).

Overview

The SolidRun SR-uSOM-MX6 is a high performance micro system on module that is based on the highly integrated Freescale i.MX6 family of products.

The SR-uSOM-MX6 Highlighted Features

- Ultra small MicroSOM (47x30mm) with 3 board to board connectors. Mating height is carrier board dependent.
- Freescale i.MX6 SoC (supports solo, dual lite, dual and quad versions)
 - o Up to quad Cortex A9 and up to 1.2GHz
 - Integrated multi format decoders and encoders, de-interlacing and color conversion functions
 - o Integrated OpenVG, OpenGL ES 2.0 and OpenCL 1.1 EP GPU
- DDR3 memories in x32 or x64 configurations (either 2 x16 or 4 x16 on a single chip select)
- Power management devices
- Gigabit Ethernet phy based on Qualcomm Atheros 8035 (footprint compatible with 8030 fast Ethernet phy)
- Broadcom BCM4330 based WiFi 11n and Bluetooth 4.0 (2.4GHz)

The SR-uSOM-MX6 Supporting Products

The following products are provided from SolidRun both as production level platforms and reference examples on how to incorporate the MicroSOM in different levels of integration:

- CuBox-i A minicomputer that is only 2"x2"x2" in size that runs Android and Linux with different distribution variants, use cases.
- HummingBoard A board computer that incorporates the MicroSOM, retains the same Android and different Linux distributions while adding extra hardware functionalities and access to the hardware.

The SR-uSOM-MX6 Features Summary

Following is the features summary of the MicroSOM. Notice that some of the features are pinout multiplexed (please refer to the pin muxing below and the Freescale i.MX6 data sheets):

- Freescale i.MX6 series SoC (Solo/Dual Lite/Dual/Quad ARM® Cortex™ A9 Processor, up to 1.2 GHz)
- Up to 2GByte (Special 4GByte orders are possible) DDR3 memory
- HDMI 1.4 interface

- LVDS display interface
- MIPI DSI
- MIPI CSI-2
- Parallel camera interface
- Parallel display interface
- 10/100/1000 Mbps Ethernet PHY
- Wireless LAN 802.11 b/g/n and Bluetooth 4.0
- 1 x USB 2.0 host and 1 x USB 2.0 OTG
- 3 x SD / MMC interfaces
- Serial interfaces
- CAN Bus
- Required power supplies
 - One 3.3V to 5.0V interface (called in the doc VIN 5V0)
 - One 3.3V (called in the doc NVCC_EIM0)
 - One SNVS and VDDHIGH_IN power supply (called in the doc VSNVS_3V0)
 Notice how NVCC_EIMO and VSNVS_3V0 can be combined into one in the HummingBoard design.
 - Optionally Two SD interface power supplies (NVCC_SD2, NVCC_SD3) can be externally set to either 3.3v or 1.8v for UHS-1 support.

Block Diagram of the SR-uSOM-MX6

i.MX6 MicroSOM

Up to 2GByte
DDR3 x32 or x64
DDR3 Devices

Power Management

Freescale i.MX6

1,2 or 4 32/64 bit **ARM Cortex-A9** DDR3 With Neon 2D and 3D GPU 32KB I **32KB D OpenGL ES2.0** cache cache OpenCL 1.0e **Multi Format** 512KB / 1MB Video Unified Decode/Encode **L2 CACHE Low Speed IO High Speed IO** Timers, WDOG, **PHYs and SERDES** PLLs, etc... **Other Peripherals**

BCM4330 802.11b/g/n Bluetooth 4.0

UFL Conn.

AR8030/AR8035 Ethernet PHY

80 pin Board to Board Header (Hirose DF40) 80 pin Board to Board Header (Hirose DF40) Optional 70 pin Board to Board Header (Hirose DF40)

Core System Components

i.MX6 SoC Family

The Freescale i.MX6 SoC is an implementation of the ARM CortexTM-A9 core, which operates at frequencies up to 1.2 GHz. The i.MX6 provides a variety of interfaces and supports the following main features:

- Single, dual and quad processor ARM Cortex[™]-A9 SMP configuration. Each processor includes:
 - o 32 Kbyte L1 Instruction Cache
 - o 32 Kbyte L1 Data Cache
 - Private Timer and Watchdog
 - o Cortex-A9 NEON MPE (Media Processing Engine) Co-processor -
 - SIMD Media Processing Architecture
 - NEON register file with 32x64-bit general-purpose registers
 - NEON Integer execute pipeline (ALU, Shift, MAC)
 - NEON dual, single-precision floating point execute pipeline (FADD, FMUL)
 - NEON load/store and permute pipeline
- Unified L2 cache
- General Interrupt Controller (GIC) with 128 interrupt support
- Global Timer
- Snoop Control Unit (SCU)
- Integrated Power Management unit:
 - Die temperature sensor with alarms
 - Dynamic voltage and frequency scaling for low power modes
 - o Flexible clock gating control scheme
- Graphics and Multimedia and hardware acceleration engines:
 - Video Processing Unit (VPU) A DSP with hardware acceleration engines for video decoding and encoding
 - Image Processing Unit (IPUv3) A hardware engine for processing images, frames, de-interlacing and various other tasks
 - 3D Graphics Processing Engine (3D GPU) OpenGL ES 2.0 and OpenCL 1.1 EP GPU engine scalable from one shader up to 4
 - o 2D Graphics Processing Engine (2D GPU) For BitBlt function etc...
 - o 2D Graphics Processing Engine (OpenVG) OpenVG compliant GPU
 - Asynchronous sample rate converters (ASRC)
- Security:
 - ARM TrustZone including the TZ architecture (interrupt and memory separation)
 - CAAM module cipher acceleration and assurance module including a true pseudo random number generator (NIST certified)
 - Secure boot (HAB) and central security unit controlled via OTP fuses
- I/O:
 - o High Speed USB 2.0 OTG (Up to 480 Mbps) with integrated HS USB Phy

- o High Speed USB 2.0 HOST (Up to 480Mbps) with integrated USB phy
- o Single lane PCI-Express 2.0 (includes clock generation)
- Misc. SD and MMC interface with 3.3v / 1.8v voltage level support (for UHS-1 speeds)
- o Misc. serial interfaces (SPI, NOR, I2S, I2C, CAN etc...)

Refer to Freescale i.MX6 datasheets with regards to differences between the different devices, number of processors, L2 cache size, GPU supported (i.e. gc880 vs gc2000), etc...

10/100/1000 Mbps Ethernet PHY

The Ethernet PHY is based on Qualcomm / Atheros AR8035 phy and incorporates the following features:

- 10BASE-Te/100BASE-TX/1000BASE-T IEEE 802.3 compliant
- 1000BASE-T PCS and auto-negotiation with next page support
- IEEE 802.3az EEE
- Green ETHOS power saving modes with internal automatic DSP power-saving scheme
- SmartEEE
- Wake on LAN
- Automatic MDI/MDIX crossover and polarity correction
- IEEE 802.3u compliant auto negotiation
- Cable Diagnostic Test (CDT)

The phy is connected via the i.MX6 RGMII interface.

Wireless LAN 802.11 b/g/n and Bluetooth 4.0 SiP

The system in package (SiP) is based on AzureWave AW-NH660 module and incorporates the following features:

- BCM4330 WiFi / BT based
- WiFi / BT co-existence support
- WiFi
 - Integrated CPU with on-chip memory for complete WLAN subsystem minimizing the need to wake up the application processor
 - o SDIO based interface (connected via the i.MX6 SD1 interface)
 - o Single band 2.4 GHz 802.11 b/g/n
 - O Supports IEEE 802.11d, e, j, I, j, r, k, w
 - o WEP, WPA/WPA2, AES, TKIP, CKIP (SW) based security
 - o WMM/WMM-PS/WMM-SA
 - Proprietary protocols CCXv2/CCXv3/CCXv4/CCXv5, WFAEC
- Bluetooth:
 - Fully supports Bluetooth 4.0 + EDR (AFH, QoS, eSCO, fast connect, SSP, SSR, EPR, EIR, LST)
 - High speed UART (max 4Mbps) and PCM for Bluetooth support (connected via i.MX6 UART4 interface and i.MX6 AUD3 audio PCM interface)
 - o HS packet types, class 1 or class 2 transmitter type operation

SR-uSOM-MX6 Interfaces

SR-uSOM-MX6 External Interfaces

The MicroSOM incorporates 3 Hirose DF40 board to board headers.

The choice of the Hirose DF40 is due to the following:

- Miniature (0.4m pitch)
- Highly reliable manufacturer
- Highly available (worldwide distribution channels)
- Excellent signal integrity (supports 6Gbps). Contact Hirose or SolidRun for reliability and test result data.
- 1.5mm to 4.0mm mating height (1.5mm to 3.0mm if using 70-pin Board-to-Board header). SR-uSOM-MX6 headers are fixed and mating height is determined by carrier implementation

The different board to board functionality is defined as follows:

- Main 80pin B2B. Includes the following functionality:
 - O Main supply +3.3v to +5.0v in (5 pins)
 - I/O supply +3.3V and SD2, SD3 supplies (can be fixed +3.3V or externally switched +3.3V / 1.8V to support UHS-1)
 - Ethernet MDI (4 differential pairs), LED activity or link (10/100/1000) and Ethernet TCT
 - SATA TX/RX (2 differential pairs)
 - USB OTG and HOST (2 differential pairs)
 - Various GPIOs and pins that can be muxed. By default it is configured to be 2xI2C, PWM1..4, SPI 2, SD2 interface and USB enable.
- Second 80pin B2B. The board to board exposes the following functionality:
 - System power on reset
 - HDMI 1.4 (4 differential pairs), CEC, +5V boosted I2C and HDMI HPD
 - PCI express 2.0 (3 differential pairs include TX/RX and clock)
 - USB OTG charge detect and USB OTG ID
 - MIPI CSI 2 (3 differential pairs for solo / dual lite and 5 differential pairs for dual / quad versions)
 - o MIPI DSI (3 differential pairs)
 - LVDS 0 (5 differential pairs)
 - UART1 (typically used for main system debug port)
 - Various GPIOs and pins that can be muxed. By default it is configured to be AUD5 I2S interface, CCM CLKO1/CLKO2, SD2 voltage select, SPDIF out, USB HOST / OTG over current indication.
- Third 70pin B2B. This board to board exposes the following functionality:
 - Power management (EIM_WAIT, TAMPER, PMIC standby, MX6_ONOFF, PMIC_ON_REQ)
 - Boot mode override

- MLB interface (marked as reserved. Contact SolidRun about availability of i.MX6 MicroSOM with MLB interface)
- Various GPIOs and pins that can be muxed. By default it is configured to be UART3, SPDIF in, Display and camera parallel interface, UART2, Watchdog timer, SD3 and SD4 interfaces)

SR-uSOM-MX6 On Board Functions

10/100/1000 Mbps PHY

The MicroSOM incorporates a Qualcomm / Atheros AR8035 PHY. The phy connectivity is as follows:

- Uses 2.5V interface voltage level
- RGMII (optional AR8030 with RMII)
- Phy reset function via i.MX6 pad V5 (KEY_ROW4). Active low
- Default phy address either 0x0 or 0x4 (depends on LED activity reset strap, either pulled down or pulled up)

802.11 b/g/n and Bluetooth SiP

The MicroSOM incorporates AzureWave AW-660 system in package (SiP) that is based on BCM4330. The SiP interfaces are:

- 1. WiFi connectivity via i.MX6 SDIO1
- 2. Bluetooth connectivity via i.MX6 UART4
- 3. Audio PCM connectivity via i.MX6 AUD3
- 4. Antenna via onboard UFL connector

^{*} Note that due to internal i.MX6 buses the 1000Mbps interface speed is limited to 470Mbps.

SR-uSOM-MX6 External Interfaces Detailed Description

As previously described, the MicroSOM incorporates three Hirose DF40 based board to board headers.

The MicroSOM uses the header of those board to board connectors which is fixed in height, while the mating height is determined by the carrier, by using different Hirose DF40 receptacle mating heights (1.5 to 4.0mm) (1.5mm to 3.0mm if using 70-pin Board-to-Board header).

Following is a color legend to be used for the description of the board to board connectors:

Color Legend

Digital I/O (3.3v voltage level)

Main Board to Board Header

This board to board header uses Hirose DF40 DH40C-80DP-0.4V(51) header. The pin description is described below:

Mater	IC ball	10 1	Driving	Oak and factors of	Pin	Pin	Oak a santia a sant	Daining 10	10 1	IC ball	Nata
Notes	number	IC pad name	IC	Schematics pad	number	number	Schematics pad	Driving IC	IC pad name	number	Notes
				GND	2	1	MDI_TRXN3	Ethernet PHY	MDI_TRXN3	19	Diff 100 Ohm
Diff 100 Ohm	B14	SATA_RXP	i.MX6	SATA_RXP	4	3	MDI_TRXP3	Ethernet PHY	MDI_TRXP3	18	Diff 100 Ohm
Diff 100 Ohm	A14	SATA_RXM	i.MX6	SATA_RXN	6	5	GND				
				GND	8	7	MDI_TRXN2	Ethernet PHY	MDI_TRXN2	16	Diff 100 Ohm
Diff 100 Ohm	B12	SATA_TXM	i.MX6	SATA_TXN	10	9	MDI_TRXP2	Ethernet PHY	MDI_TRXP2	15	Diff 100 Ohm
Diff 100 Ohm	A12	SATA_TXP	i.MX6	SATA_TXP	12	11	GND				
				GND	14	13	MDI_TRXN1	Ethernet PHY	MDI_TRXN1	13	Diff 100 Ohm
Diff 90 Ohm	A6	USB_OTG_DP	i.MX6	USB_OTG_DP	16	15	MDI_TRXP1	Ethernet PHY	MDI_TRXP1	12	Diff 100 Ohm
Diff 90 Ohm	В6	USB_OTG_DN	i.MX6	USB_OTG_DN	18	17	GND				
				GND	20	19	MDI_TRXN0	Ethernet PHY	MDI_TRXN0	10	Diff 100 Ohm
Diff 90 Ohm	E10	USB_H1_DP	i.MX6	USB_HOST_DP	22	21	MDI_TRXP0	Ethernet PHY	MDI_TRXP0	9	Diff 100 Ohm
Diff 90 Ohm	F10	USB_H1_DN	i.MX6	USB_HOST_DN	24	23	GND				
				GND	26	25	LED_10_100_1000	Ethernet PHY	LED_10_100_1000	22	
	T5	GPIO_0	i.MX6	USB_H1_PWR_EN	28	27	LED_ACT	Ethernet PHY	LED_ACT	21	
	E23	EIM_D22	i.MX6	USB_OTG_PWR_EN	30	29	ETH_TCT	Ethernet PHY	ETH_TCT	N/A	
	K20	EIM_RW	i.MX6	ECSPI2_SS0	32	31	I2C3_SCL	i.MX6	EIM_D17	F21	4.7kohm NVCC_EIM0 pulled up
	K22	EIM_LBA	i.MX6	ECSPI2_SS1	34	33	I2C3_SDA	i.MX6	EIM_D18	D24	4.7kohm NVCC_EIM0 pulled up
				GND	36	35	GND				
	C21	SD2_CLK	i.MX6	SD2_CLK	38	37	SD3_CLK	i.MX6	SD3_CLK	D14	
	F19	SD2_CMD	i.MX6	SD2_CMD	40	39	SD3_CMD	i.MX6	SD3_CMD	B13	
	A22	SD2_DATA0	i.MX6	SD2_DATA0	42	41	PWM2_OUT	i.MX6	DISP0_DAT9	T25	
	E20	SD2_DATA1	i.MX6	SD2_DATA1	44	43	USB_OTG_VBUS	i.MX6	USB_OTG_VBUS	E9	
	A23	SD2_DATA2	i.MX6	SD2_DATA2	46	45	ECSPI2_MISO	i.MX6	EIM_OE	J24	
	B22	SD2_DATA3	i.MX6	SD2_DATA3	48	47	ECSPI2_MOSI	i.MX6	EIM_CS1	J23	
	R6	GPIO_4	i.MX6	SD2_CD_B	50	49	ECSPI2_SCLK	i.MX6	EIM_CS0	H24	

D10	USB_H1_VBUS	i.MX6	USB_H1_VBUS	52	51	I2C1_SDA	i.MX6	EIM_D28	G23	4.7kohm NVCC_EIM0 pulled up
K25	EIM_DA6	i.MX6	DISP1_DATA03	54	53	I2C1_SCL	i.MX6	EIM_D21	H20	4.7kohm NVCC_EIM0 pulled up
L25	EIM_DA7	i.MX6	DISP1_DATA02	56	55	PWM3_OUT	i.MX6	SD4_DAT1	B19	
K24	EIM_DA3	i.MX6	DISP1_DATA06	58	57	PWM4_OUT	i.MX6	SD4_DAT2	F17	
L24	EIM_DA8	i.MX6	DISP1_DATA01	60	59	NCSPDIF_CLK_IN	NC			
L22	EIM_DA4	i.MX6	DISP1_DATA05	62	61	NVCC_SD2	i.MX6	NVCC_SD2	G17	
L23	EIM_DA5	i.MX6	DISP1_DATA04	64	63	NVCC_SD3	i.MX6	NVCC_SD3	G14	
M21	EIM_DA9	i.MX6	DISP1_DATA00	66	65	NVCC_EIM0				Although called NVCC_EIM0,
R22	DISP0_DAT8	i.MX6	PWM1_OUT	68	67	NVCC_EIM0	Many			this power rail supplies the i.MX6, Ethernet phy, WiFi / BT and others. Refer to the public schematics for more details.
								Rev 1.1 – VDD_SNVS_IN Rev 1.2 and beyond - VDD_SNVS_IN	Rev 1.1 – G11 Rrev 1.2 - G11, H9 and	In rev 1.2 and beyond this is VDD_SNVS_IN and
			GND	70	69	VSNVS_3V0	i.MX6	and VDDHIGH_IN	J9	VDDHIGH_IN power domains
			GND	72	71	VIN_5V0				
			GND	74	73	VIN_5V0				
			GND	76	75	VIN_5V0				Supply for –
			GND	78	77	VIN_5V0				 Power management. WiFi / BT VBAT
			GND	80	79	VIN_5V0				3. I2C Boost

Second Board to Board Header

This board to board header uses Hirose DF40 DH40C-80DP-0.4V(51) header. The pin description is described below:

Mater	IC ball	IC and arms	Driving IC	Cabamatica nad	Pin number	Pin	Cabamatias mad	Data da ar 10	IC and areas	IC ball number	Notes
Notes	number	IC pad name		Schematics pad		number	Schematics pad	Driving IC	IC pad name		
Diff 85 Ohm	B1	PCIE_RXM	i.MX6	PCIE_RXM	2	1	CLK1_P	i.MX6	CLK1_P	D7	Diff 85 Ohm
Diff 85 Ohm	B2	PCIE_RXP	i.MX6	PCIE_RXP	4	3	CLK1_N	i.MX6	CLK1_N	C7	Diff 85 Ohm
				GND	6	5	GND				
Diff 100 Ohm	E4	CSI_D0M	i.MX6	CSI_D0M	8	7	PCIE_TXM	i.MX6	PCIE_TXM	A3	Diff 85 Ohm
Diff 100 Ohm	E3	CSI_D0P	i.MX6	CSI_D0P	10	9	PCIE_TXP	i.MX6	PCIE_TXP	B3	Diff 85 Ohm
				GND	12	11	GND				
Diff 100 Ohm	D1	CSI_D1M	i.MX6	CSI_D1M	14	13	CSI_CLK0P	i.MX6	CSI_CLK0M	F3	Diff 100 Ohm
Diff 100 Ohm	D2	CSI_D1P	i.MX6	CSI_D1P	16	15	CSI_CLK0M	i.MX6	CSI_CLK0P	F4	Diff 100 Ohm
				GND	18	17	GND				
Diff 100 Ohm	E1	CSI_D2M	i.MX6	CSI_D2M	20	19	HDMI_D2P	i.MX6	HDMI_D2P	K4	Diff 100 Ohm
Diff 100 Ohm	E2	CSI_D2P	i.MX6	CSI_D2P	22	21	HDMI_D2M	i.MX6	HDMI_D2M	K3	Diff 100 Ohm
				GND	24	23	GND		GND		
Diff 100 Ohm	F2	CSI_D3M	i.MX6	CSI_D3M	26	25	HDMI_D1P	i.MX6	HDMI_D1P	J4	Diff 100 Ohm
Diff 100 Ohm	F1	CSI_D3P	i.MX6	CSI_D3P	28	27	HDMI_D1M	i.MX6	HDMI_D1M	J3	Diff 100 Ohm
				GND	30	29	GND		GND		
Diff 100 Ohm	H2	DSI_D1M	i.MX6	DSI_D1M	32	31	HDMI_D0P	i.MX6	HDMI_D0P	K6	Diff 100 Ohm
Diff 100 Ohm	H1	DSI_D1P	i.MX6	DSI_D1P	34	33	HDMI_D0M	i.MX6	HDMI_D0M	K5	Diff 100 Ohm
				GND	36	35	GND		GND		
Diff 100 Ohm	G2	DSI_D0M	i.MX6	DSI_D0M	38	37	HDMI_CLKP	i.MX6	HDMI_CLKP	J6	Diff 100 Ohm
Diff 100 Ohm	G1	DSI_D0P	i.MX6	DSI_D0P	40	39	HDMI_CLKM	i.MX6	HDMI_CLKM	J5	Diff 100 Ohm
				GND	42	41	GND				
Diff 100 Ohm	НЗ	DSI_CLK0M	i.MX6	DSI_CLK0M	44	43	HDMI_TX_CEC_LINE	i.MX6	KEY_ROW2	W4	
Diff 100 Ohm	H4	DSI_CLK0P	i.MX6	DSI_CLK0P	46	45	HDMI_TX_DDC_SCL	i.MX6	KEY_COL3	U5	Boosted to 5V
		_		GND	48	47	HDMI TX DDC SDA	i.MX6	KEY ROW3	T7	and 4.7kohm pulled up
				O N D	70	71		1.101/(0	INET_INOVIO	17	Level shifted to
	R1	GPIO_17	i.MX6	SPDIF_OUT	50	49	HDMI_HPD	i.MX6	HDMI_HPD	K1	3.3v
	M1	CSI0_DAT10	i.MX6	UART1_TX_DATA	52	51	AUD5_TXC	i.MX6	KEY_COL0	W5	

	M3	CSI0_DAT11	i.MX6	UART1_RX_DATA	54	53	AUD5_TXD	i.MX6	KEY_ROW0	V6	
	T4	GPIO_1	i.MX6	USB_OTG_ID	56	55	AUD5_TXFS	i.MX6	KEY_COL1	U7	
				GND	58	57	AUD5_RXD	i.MX6	DISP0_DAT19	U23	
Diff 100 Ohm	U2	LVDS0_TX0_N	i.MX6	LVDS0_TX0_N	60	59	CCM_CLKO1	i.MX6	GPIO_5	R4	
Diff 100 Ohm	U1	LVDS0_TX0_P	i.MX6	LVDS0_TX0_P	62	61	GND				
				GND	64	63	CCM_CLKO2	i.MX6	NANDF_CS2	A17	
Diff 100 Ohm	U4	LVDS0_TX1_N	i.MX6	LVDS0_TX1_N	66	65	POR_B	i.MX6	POR_B	C11	
Diff 100 Ohm	U3	LVDS0_TX1_P	i.MX6	LVDS0_TX1_P	68	67	USB_OTG_OC	i.MX6	KEY_COL4	T6	
				GND	70	69	USB_H!_OC	i.MX6	GPIO_3	R7	
Diff 100 Ohm	V2	LVDS0_TX2_N	i.MX6	LVDS0_TX2_N	72	71	USB_OTG_CHD_B	i.MX6	USB_OTG_CHD_B	B8	
Diff 100 Ohm	V1	LVDS0_TX2_P	i.MX6	LVDS0_TX2_P	74	73	SD2_VSELECT	i.MX6	KEY_ROW1	U6	
				GND	76	75	GND				
Diff 100 Ohm	V4	LVDS0_CLK_N	i.MX6	LVDS0_CLK_N	78	77	LVDS0_TX3_P	i.MX6	LVDS0_TX3_P	W1	Diff 100 Ohm
Diff 100 Ohm	V3	LVDS0_CLK_P	i.MX6	LVDS0_CLK_P	80	79	LVDS0_TX3_N	i.MX6	LVDS0_TX3_N	W2	Diff 100 Ohm

Third Board to Board Header

IC ball number	IC pad name	Driving IC	Schematics pad	Pin number	Pin number	Schematics pad	Driving IC	IC pad name	IC ball number
F13	SD3_DAT7	i.MX6	SD3_DATA7	2	1	EIM_WAIT	i.MX6	EIM_WAIT	M25
E13	SD3_DAT6	i.MX6	SD3_DATA6	4	3	BOOT_MODE0	i.MX6	BOOT_MODE0	C12
C13	SD3_DAT5	i.MX6	SD3_DATA5	6	5	BOOT_MODE1	i.MX6	BOOT_MODE1	F12
D13	SD3_DAT4	i.MX6	SD3_DATA4	8	7	TAMPER	i.MX6	TAMPER	E11
			GND	10	9	PMIC_STBY_REQ	i.MX6	PMIC_STBY_REG	QF11
			NC	12	11	NC			
			NC	14	13	MX6_ONOFF	i.MX6	ONOFF	D12
			GND	16	15	PMIC_ON_REQ	i.MX6	PMIC_ON_REQ	D11
B15	SD3_DAT3	i.MX6	SD3_DATA3	18	17	RSRVD1	i.MX6	MLB_CP	B11
A15	SD3_DAT2	i.MX6	SD3_DATA2	20	19	RSRVD2	i.MX6	MLB_CN	A11
F14	SD3_DAT1	i.MX6	SD3_DATA1	22	21	RSRVD3	i.MX6	MLB_SP	B9
E14	SD3_DAT0	i.MX6	SD3_DATA0	24	23	RSRVD4	i.MX6	MLB_SN	A9
D15	SD3_RST	i.MX6	SD3_RST	26	25	RSRVD5	i.MX6	MLB_DP	A10
P6	GPIO_18	i.MX6	SD3_VSELECT	28	27	RSRVD6	i.MX6	MLB_DN	B10
			GND	30	29	UART3_TX_DATA	i.MX6	EIM_D24	F22
E16	SD4_CLK	i.MX6	SD4_CLK	32	31	UART3_RX_DATA	i.MX6	EIM_D25	G22

B17	SD4_CMD	i.MX6	SD4_CMD	34	33	GND			
D18	SD4_DAT0	i.MX6	SD4_DATA0	36	35	SPDIF_IN	i.MX6	ENET_RX_ER	V
A20	SD4_DAT3	i.MX6	SD4_DATA3	38	37	NC	i.MX6		
J20	EIM_D30	i.MX6	DISP1_DATA21	40	39	NC	i.MX6		
H21	EIM_D31	i.MX6	WDOG1_B	42	41	DI1_PIN02	i.MX6	EIM_DA11	M
E18	SD4_DAT4	i.MX6	UART2_RX_DATA	44	43	DI1_PIN15	i.MX6	EIM_DA10	М
D19	SD4_DAT7	i.MX6	UART2_TX_DATA	46	45	DI1_D0_CS	i.MX6	EIM_DA13	М
B20	SD4_DAT6	i.MX6	UART2_CTS_B	48	47	GND			
C19	SD4_DAT5	i.MX6	UART2_RTS_B	50	49	DI1_D1_CS	i.MX6	EIM_DA14	N2
			GND	52	51	DI1_PIN03	i.MX6	EIM_DA12	M
H25	EIM_A16	i.MX6	DI1_DISP_CLK	54	53	DI1_PIN01	i.MX6	EIM_DA15	N2
J21	EIM_A23	i.MX6	DISP1_DATA18	56	55	DISP1_DATA08	i.MX6	EIM_DA1	J2
H21	EIM_D31	i.MX6	DISP1_DATA20	58	57	DISP1_DATA10	i.MX6	EIM_EB1	K2
L20	EIM_DA0	i.MX6	DISP1_DATA09	60	59	DISP1_DATA12	i.MX6	EIM_A17	G
H22	EIM_A20	i.MX6	DISP1_DATA15	62	61	DISP1_DATA22	i.MX6	EIM_D26	E2
J22	EIM_A18	i.MX6	DISP1_DATA13	64	63	DISP1_DATA14	i.MX6	EIM_A19	G
H23	EIM_A21	i.MX6	DISP1_DATA16	66	65	DISP1_DATA23	i.MX6	EIM_D27	E2
K21	EIM_EB0	i.MX6	DISP1_DATA11	68	67	DISP1_DATA19	i.MX6	EIM_A24	F2
L21	EIM_DA2	i.MX6	DISP1_DATA07	70	69	DISP1_DATA17	i.MX6	EIM_A22	F2

SR-uSOM-MX6 Integration Manual

SR-uSOM-MX6 Power Up Sequence

Integration with the SR-uSOM-MX6 is easy, power sequencing wise. Note the following requirements:

- The MicroSOM internal power management contains a soft-start clamp that gradually raises its internally generated power supplies once VIN_5V0 is applied. The soft-start timing is set to be 800us (typ.). SNVS_3V0 must be applied well ahead of the internal power rails. We recommend that SNVS_3V0 be applied no later than 200uS after VIN_5V0.
- SNVS_3V0 must be applied before NVCC_EIM0, NVCC_SD2 and NVCC_SD3.
 Alternatively, SNVS_3V0 can be shorted with those power supplies as long as they do not exceed 3.3v (absolute maximum including overvoltage ripples).
 Notice the HummingBoard design, where there is a single 3.2V power rail generated from the 5V DC IN (either via LDO or external DC-DC), and that rail is directly applied to VSNVS_3V0, NVCC_EIM0 together with the VIN_5V0.

SR-uSOM-MX6 Debugging Capability

The SR-uSOM-MX6 exposes two main debugging interfaces:

- 1. UART RS-232 interface
- 2. JTAG interface

The UART RS-232 interface is a null modem interface that is internally pulled up to two different voltage levels:

- 1. NVCC_EIMO voltage in case AzureWave SiP is not used (typically 3.3V)
- 2. 2.8v when the AzureWave SiP is used (signals are shared with SDIO interface that is limited to 2.8V)

The UART interface is optional to use and mentioned here since most of the software infrastructure used in CuBox-i and HummingBoard uses those two signals for debugging.

JTAG interface is on the SR-uSOM-mx6 and is exposed as test pins. Following is a snapshot of the test points and its connectivity traces:

Differences between SR-uSOM-MX6 Versions

Changes between SR-uSOM-MX6 rev 1.1 to rev 1.2:

Moved VDD_HIGH_IN power rail from NVCC_EIMO power pin to SNVS_3V0 power pin.

Changes between SR-uSOM-MX6 rev 1.2 to rev 1.3:

Added three mechanical holes for RF cage to cover BRCM4330 based WiFi/BT SiP.

SR-uSOM-MX6 Typical Power Consumption

The following power measurements were performed on a CuBox-i4pro based system, where the main supply is 5V and internally a 5V to 3.3V LDO is being used on the carrier board (refer to CuBox-i rev-1.1 schematics).

The CuBox-i4pro incorporates the quad processor at 1GHz, 2GByte of DDR3 memory, gigabit Ethernet phy and the WiFi and Bluetooth chipset.

Setup	5V DC input power	Notes
Android idle	consumption 240mA	Performance governor, HDMI is on, USB, eSata, WiFi and Ethernet are off
Android idle with Ethernet	340mA	Performance governor, HDMI is on, USB, eSata, WiFi and Ethernet is 1Gbps (note #1)
Android Nenamark2 benchmark	750mA	Performance governor, HDMI is on, usb, sata, wifi and Ethernet are off
Full load - Android Nenamark2 benchmark + 4 processors running 100% (dd command memory to memory)	1190mA	Performance governor, HDMI is on, USB, eSata, WiFi and Ethernet is 1Gbps (note #1). Tj is 55c
Full load - Android Nenamark2 benchmark + 4 processors running 100% (dd command memory to memory)	1300mA	Performance governor, HDMI is on, usb, sata, wifi and Ethernet is 1Gbps (note #1). Tj is 87c (note #2)
Video 1080p Big Buck Bunny with AC3 audio codec (gstreamer from local SD)	Varies between 340mA to 410mA	Performance governor, HDMI is on, USB, eSata, WiFi and Ethernet are off
Linux idle	170mA	Performance governor, HDMI, USB, eSata, WiFi and Ethernet are all off.
Linux suspend to memory	30mA	Note #3

Notes:

- 1. CuBox-i uses an LDO that provides 5V to 3.3V conversion that feeds the Ethernet PHY on the MicroSOM. Due to that, the addition of 100mA on the 3.3V rail when PHY is set to 1Gbps, adds 100mA consumption on the 5.0V power rails.
- Notice the power difference between the same workload while Tjunction of the die
 is 55c and 87c (~110mA difference from the 5V power rail).
 It takes about 60 minutes to reach that stable 87c Tjunction.
- 3. This is using Linux suspend to memory when the front LED is off. This consumption is mainly due to DDR entering self-refresh (2GByte) and some consumption on the 3.3V LDO and leakage on the processor and SoC digital part rails.

SR-uSOM-MX6 Maximum Rating

Following are the maximum ratings on different power signals and power rails.

Parameter Description	Symbol	Min	Max	Unit
Supplies VDD_SNVS_IN and	VSNVS_3V0	2.8	3.3	٧
VDD_HIGH_IN on i.MX6 starting rev				
1.2				
eMMC/SD supply voltage	NVCC_SD2	1.65	3.6	V
	NVCC_SD3			
Main 3.3v supply voltage for i.MX6,	NVCC_EIM0	3.2	3.6	V
Ethernet phy and other				
USB OTG and H1 supply voltage	USB_OTG_VBUS	4.4	5.25	V
	USB_H1_VBUS			
DC-DC supplies, HDMI I2C boost and	VIN_5V0	3.3	6	V
WiFi/BT main supply (1)				
Supplies VDD_SNVS_IN and	VSNVS_3V0	-	250	mA
VDD_HIGH_IN on i.MX6				
Supplies i.MX6 (GPIO, Parallel display	NVCC_EIM0	-	300 (2)	mA
interface etc), AR8030/AR8035				
Ethernet phy, part of the AzureWave				
SiP				
SD2 I/O	NVCC_SD2	-	22 (3)	mA
SD3 I/O	NVCC_SD3	-	40 (3)	mA
Supplies all SR-uSOM-MX6 power	VIN_5V0	-	1500 (4)	mA
management devices.				

- (1) HDMI I2C is voltage boosted using VIN_5V0 power rail. Due to that VIN_5V0 = 5V is recommended since HDMI EDID requires 5V voltage levels.
- (2) AR8035 Gigabit Ethernet PHY consumes 150mA out of those in a 100meter cable configuration.
 - This is reduced to 150mA when the AR8035 is not active.
- (3) Assumes ultra-high speed: 1.8v, 100MHz clock rate and double data rate on data; 4 bit data on SD2 and 8 bit data on SD3.
- (4) Assumes VIN_5V0 = 5v. When supplying less than 5V, the maximum current increases accordingly; it is recommended to add additional margins on current limit.

SR-uSOM-MX6 Mechanical Description

Following is a diagram of the **TOP VIEW** of the SR-uSOM-MX6.

Notice the following details:

- The carrier board must use the same footprint as in the above mechanical footprint.
- J5002 is the main board to board header (bottom side in the diagram).
- J8004 is the second board to board header (upper side in the diagram).
- J5001 is the third board to board header (right side in the diagram).
- CuBox-i design does not use the mechanical holes, since the mating strength of two Hirose DF40 pairs and the internal heat spreader is satisfactory for the design requirements.
- In case 1.5mm mating height was chosen, then the SR-uSOM-MX6 requirement would be that all area beneath it on the carrier will be all dedicated ONLY for the board to board connectivity; no other components are allowed.
 In case higher mating is chosen, then 1.5mm should be reserved for the SR-uSOM-MX6. For instance, if 3.5mm mating height is chosen, then 1.5mm is dedicated to the MicroSOM print side components and the remaining 2mm for the carrier components underneath the MicroSOM.
- Refer to SolidRun HummingBoard and CuBox-i design and layout, where there are examples of the main and second 80 pin header board to board usage.

Ordering Information

P/N	Name	Description
usom01	SR-uSOM-MX6-C1000S-D512-FE	Single Core ARM A9, 512MB DDR3, w/o WIFI/ Bluetooth
usom01w	SR-uSOM-MX6-C1000S-D512-FE	Single Core ARM A9, 512MB DDR3, with WIFI/ Bluetooth
usom01i	SR-uSOM-MX6-C1000S-D512-FE	Single Core ARM A9, 512MB DDR3,Industrial temp. w/o WIFI/ Bluetooth
usom02	SR-uSOM-MX6-C1000DL-D1024FE	Dual- Lite Core ARM A9, 1GB DDR3, w/o WIFI/ Bluetooth
usom02w	SR-uSOM-MX6-C1000DL-D1024FE	Dual- Lite Core ARM A9, 1GB DDR3, with WIFI/ Bluetooth
usom02i	SR-uSOM-MX6-C1000DL-D1024FE	Dual- Lite Core ARM A9, 1GB DDR3,Industrial temp. w/o WIFI/ Bluetooth
usom03	SR-uSOM-MX6-C1000DM-D1024-GE	Dual Core ARM A9,1GB DDR3, w/o WIFI/ Bluetooth
usom03w	SR-uSOM-MX6-C1000DM-D1024-GE	Dual Core ARM A9,1GB DDR3, with WIFI/ Bluetooth
usom03i	SR-uSOM-MX6-C1000DM-D1024-GE	Dual Core ARM A9, 1GB DDR3,Industrial temp. w/o WIFI/ Bluetooth
usom04w	SR-uSOM-MX6-C1000QM-D2048-GE	Quad Core ARM A9,2GB DDR3, with WIFI/ Bluetooth
usom04i	SR-uSOM-MX6-C1000QM-D2048-GE	Quad Core ARM A9, 2GB DDR3,Industrial temp. w/o WIFI/ Bluetooth

Notes

- 1. The Quad Core uSOM includes WIFI & Bluetooth "built- in"
- 2. Industrial temperatures are -40C-85C
- 3. Industrial modules do not include WIFI/ Bluetooth

Federal Communications Commission (FCC) Statement

Labelling requirement for small device statement (FCC15.19(3))

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation

Radio Frequency Interference (RFI) (FCC 15.105)

This equipment has been tested and found to comply with the limits for Class B digital devices pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential environment. This equipment generates, uses, and can radiate radio frequency energy, and if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try and correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and the receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

Modifications (FCC 15.21)

Changes or modifications to this equipment not expressly approved by SolidRun Ltd. may void the user's authority to operate this equipment.

RF Exposure info(FCC 2.1093)

This equipment has been approved for mobile applications where the equipment should be used at distances greater than 20cm from the human body (with the Exception of hands, wrists, feet and ankles). Operation at distances less than 20 cm is strictly prohibited

Modular approval labeling (FCC 15.212)

When integrating the module into the final product, it must be ensured that the FCC labelling requirements, as specified below, are satisfied.

Based on the Public Notice from FCC, the final product must display a label referring to the enclosed module. The label should use wording such as the following:

Contains Transmitter Module

FCC ID: 2ACMW-MX6 IC: 12107A-MX6 *General comments*

This product only uses frequency band from 2412MHz - 2462MHz. Tampering with the device to enable operation beyond this range (i.e. enabling 802.11 channels 12 and 13) in the USA is prohibited and would violate FCC regulations.

Canadian Compliance

This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes: (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

The device meets the exemption from the routine evaluation limits in section 2.5 of RSS 102 and compliance with RSS-102 RF exposure, users can obtain Canadian information on RF exposure and compliance.

Le dispositif rencontre l'exemption des limites courantes d'évaluation dans la section 2.5 de RSS 102 et la conformité à l'exposition de RSS-102 rf, utilisateurs peut obtenir l'information canadienne sur l'exposition et la conformité de rf.

This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter. This equipment should be installed and operated with a minimum distance of 20 centimeters between the radiator and your body.

Cet émetteur ne doit pas tre Co-placé ou ne fonctionnant en même temps qu'aucune autre antenne ou émetteur. Cet équipement devrait être installé et actionné avec une distance minimum de 20 centimètres entre le radiateur et votre corps.

This radio transmitter with model: **SR-uSOM-mx6** has been approved by Industry Canada to operate with the antenna type listed below with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna type not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.

Le présent émetteur radio with model: **SR-uSOM-mx6** a été approuvé par Industrie Canada pour fonctionner avec les types d'antenne énumérés ci-dessous et ayant un gain admissible maximal et l'impédance requise pour chaque type d'antenne. Les types d'antenne non inclus dans cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l'exploitation de l'émetteur.

Antenna	Manufacture	Brand	Module	Antenna	Connector	Gain	Frequency
			Name	Type		(dBi)	band
xxxx	SRT	SRT	SRT- 2.4G- PCB-8	SRT- 2.4G- PCB-8	IPEX	3DBI	2.4~2.5G

RF Exposure info(IC RSS-102)

"The installer of this radio equipment must ensure that the antenna is located or pointed such that it does not emit RF field in excess of Health Canada limits for the general population; consult Safety Code 6, obtainable from Heath Canada's website www.hc-sc.gc.ca/rpb."

Class B Notice for Canada

This Class B digital apparatus complies with Canadian ICES-003.

Cet appareil numérique de la classe B est conforme à la norme NMB-003 du Canada.