

Regression Model to Predict Cement Compressive **Strength**

Compressive strength of cement at 7 and 28 days

cement.head()


```
# import library
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
# import data
cement = pd.read csv('https://github.com/ybifoundation/Dataset/raw/main/Concrete%20Compres
# view data
```

	Cement (kg in a m^3 mixture)	Blast Furnace Slag (kg in a m^3 mixture)	Fly Ash (kg in a m^3 mixture)	Water (kg in a m^3 mixture)	Superplasticizer (kg in a m^3 mixture)	(kg in a m^3	Fine Aggregate (kg in a m^3 mixture)	(d:
0	540.0	0.0	0.0	162.0	2.5	1040.0	676.0	

info of data
cement.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1030 entries, 0 to 1029
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Cement (kg in a m^3 mixture)	1030 non-null	float64
1	Blast Furnace Slag (kg in a m^3 mixture)	1030 non-null	float64
2	Fly Ash (kg in a m^3 mixture)	1030 non-null	float64
3	Water (kg in a m^3 mixture)	1030 non-null	float64
4	Superplasticizer (kg in a m^3 mixture)	1030 non-null	float64
5	Coarse Aggregate (kg in a m^3 mixture)	1030 non-null	float64
6	Fine Aggregate (kg in a m^3 mixture)	1030 non-null	float64
7	Age (day)	1030 non-null	int64
8	Concrete Compressive Strength(MPa, megapascals)	1030 non-null	float64

dtypes: float64(8), int64(1) memory usage: 72.5 KB

summary statistics
cement.describe()

Coars

check for missing value
cement.isna().sum()

Cement (kg in a m^3 mixture)	0
Blast Furnace Slag (kg in a m^3 mixture)	0
Fly Ash (kg in a m^3 mixture)	0
Water (kg in a m^3 mixture)	0
Superplasticizer (kg in a m^3 mixture)	0
Coarse Aggregate (kg in a m^3 mixture)	0
Fine Aggregate (kg in a m^3 mixture)	0
Age (day)	0
Concrete Compressive Strength(MPa, megapascals)	0
dtype: int64	

check for categories
cement.nunique()

Cement (kg in a m^3 mixture)	280
Blast Furnace Slag (kg in a m^3 mixture)	187
Fly Ash (kg in a m^3 mixture)	163
Water (kg in a m^3 mixture)	205
Superplasticizer (kg in a m^3 mixture)	155
Coarse Aggregate (kg in a m^3 mixture)	284
Fine Aggregate (kg in a m^3 mixture)	304
Age (day)	14
Concrete Compressive Strength(MPa, megapascals) dtype: int64	938

visualize pairplot
sns.pairplot(cement)

<seaborn.axisgrid.PairGrid at 0x7fb8158a6610>


```
# columns name
cement.columns
```

```
Index(['Cement (kg in a m^3 mixture)',
            'Blast Furnace Slag (kg in a m^3 mixture)',
            'Fly Ash (kg in a m^3 mixture)', 'Water (kg in a m^3 mixture)',
            'Superplasticizer (kg in a m^3 mixture)',
            'Coarse Aggregate (kg in a m^3 mixture)',
            'Fine Aggregate (kg in a m^3 mixture)', 'Age (day)',
            'Concrete Compressive Strength(MPa, megapascals) '],
           dtype='object')
# define y
y = cement['Concrete Compressive Strength(MPa, megapascals) ']
# define X
X = cement[['Cement (kg in a m^3 mixture)',
'Blast Furnace Slag (kg in a m^3 mixture)',
'Fly Ash (kg in a m^3 mixture)', 'Water (kg in a m^3 mixture)',
'Superplasticizer (kg in a m^3 mixture)',
'Coarse Aggregate (kg in a m^3 mixture)',
'Fine Aggregate (kg in a m^3 mixture)', 'Age (day)']]
# split data
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(
X, y, test size=.7, random state=2529)
# verify shape
X_train.shape, X_test.shape, y_train.shape, y_test.shape
     ((309, 8), (721, 8), (309,), (721,))
# select model
from sklearn.linear_model import LinearRegression
model = LinearRegression()
```

```
model.fit(X_train, y_train)
    LinearRegression()
# predict with model
y_pred = model.predict(X_test)
# model evaluation
from sklearn.metrics import mean_absolute_error, mean_absolute_percentage_error, mean_squa
# model MAE
mean_absolute_error(y_test,y_pred)
    8.396967949621466
# model MAPE
mean_absolute_percentage_error(y_test, y_pred)
    0.31619362297440723
# model MSE
mean_squared_error(y_test, y_pred)
    114.78747173290049
# future prediction
sample = cement.sample()
sample
```

	Cement (kg in a m^3 mixture)	Blast Furnace Slag (kg in a m^3 mixture)	Fly Ash (kg in a m^3 mixture)	Water (kg in a m^3 mixture)	Superplasticizer (kg in a m^3 mixture)	Coarse Aggregate (kg in a m^3 mixture)	Fine Aggregate (kg in a m^3 mixture)
468	213.5	0.0	174.24	159.21	11.66	1043.6	771.9
4							>

```
X_new = sample.loc[:,X.columns]
X_new
```

	Cement (kg in a m^3 mixture)	Blast Furnace Slag (kg in a m^3 mixture)	Fly Ash (kg in a m^3 mixture)	Water (kg in a m^3 mixture)	Superplasticizer (kg in a m^3 mixture)	Coarse Aggregate (kg in a m^3 mixture)	Fine Aggregate (kg in a m^3 mixture)
468	213.5	0.0	174.24	159.21	11.66	1043.6	771.9
4							•

predict for X_new
model.predict(X_new)

array([29.90205555])