STAT 5430: Summary to date Where we have been & where we are headed

- Completed: Introduction to Statistical Inference
 - definitions/notation
 - random samples for inference about parametric population distributions
- Next: Point Estimation
 - Defining statistics & point estimators
 - Some strategies for point estimation
 - * Method of Moments Estimation (MME)
 - * Maximum Likelihood Estimation (MLE)

Background

Examples:

Definition: The probability distribution of a statistic T is called the **sampling** distribution of T.

Example: Suppose X_1, \ldots, X_n is a r.s. from $N(\mu, \sigma^2)$.

Background, continued

Definitions:

- 1. A (Borel measurable) function $\gamma: \Theta \to \mathbb{R}^d$, some $1 \leq d < \infty$, is called a **parametric function**.
- 2. If a statistic $T = h(X_1, ..., X_n)$ is used to estimate $\gamma(\theta)$, then T is called an **estimator of** $\gamma(\theta)$; and the observed value $t = h(x_1, ..., x_n)$ is called an **estimate of** $\gamma(\theta)$.

Example:

Some General Approaches to Point Estimation

- I. Method of Moments
- II. Maximum Likelihood
- III. Bayes Estimators

We'll next discuss I. & II., and return to Bayes estimators at a later point.

Method of Moments Estimation

Definition: Let X_1, \ldots, X_n be a r.s. from pdf/pmf $f(x|\theta_1, \ldots, \theta_k)$. Then,

(a) $E\{(X_1)^j\} \equiv \mu_j(\theta_1, \dots, \theta_k)$ is the *j*th population moment, $j = 1, 2, \dots$

(b) $\mu'_j \equiv \frac{1}{n} \sum_{i=1}^n (X_i)^j$ is the *j*th sample moment, $j = 1, 2, \dots$

(c) The method of moments estimators (MMEs), say $\tilde{\theta}_1, \ldots, \tilde{\theta}_k$, of $\theta_1, \ldots, \theta_k$ are defined as the solution to

$$\mu_{1}(\tilde{\theta}_{1}, \dots, \tilde{\theta}_{k}) = \mu'_{1} \\
\vdots & \vdots & \vdots \\
\mu_{k}(\tilde{\theta}_{1}, \dots, \tilde{\theta}_{k}) = \mu'_{k}$$
 $(*)$

(d) The system of equations (*) is called the method of moments equations (MMEquations).

Method of Moments Estimation, cont'd

Example: Let X_1, \ldots, X_n be a random sample from a Beta (α, β) distribution, $\alpha > 0, \beta > 0$. Find the MMEs of α, β .

Remarks on Method of Moments Estimators (MMEs)

1. Method of Moments doesn't work if there are not enough population moments.

2. MMEquations can have no or multiple solutions!

Definition: For a parametric function $\gamma(\theta_1, \dots, \theta_k)$, we define the MME $\tilde{\gamma}(\theta_1, \dots, \theta_k)$ of $\gamma(\theta_1, \dots, \theta_k)$ as

$$\tilde{\gamma}(\theta_1,\ldots,\theta_k) = \gamma(\tilde{\theta}_1,\ldots,\tilde{\theta}_k),$$

where $\tilde{\theta}_1, \dots, \tilde{\theta}_k$ are MMEs of $\theta_1, \dots, \theta_k$.

Example: Let X_1, \ldots, X_n be iid $N(\mu, \sigma^2), \mu \in \mathbb{R}, \sigma > 0$. Find the MME of $\sin(\mu^2)$.

Maximum Likelihood Estimation

Definition: Let $f(x_1, \ldots, x_n | \theta)$ be the joint pdf/pmf of (X_1, \ldots, X_n) . Then,

$$L(\theta) = f(x_1, \dots, x_n | \theta), \quad \theta \in \Theta$$

[as a function of θ , given (x_1, \ldots, x_n)] is called the **likelihood function.**

Note:

- 1. If X_1, \ldots, X_n are iid with common pdf/pmf $f(x|\theta)$, then
- 2. If X_1, \ldots, X_n are discrete r.v.'s, then

Definition: Let (X_1, \ldots, X_n) have point pdf/pmf $f(x_1, \ldots, x_n | \theta)$, $\theta \in \Theta$. Then, for a given set of observations (x_1, \ldots, x_n) , the **maximum likelihood estimate** (MLE) of θ is a point $\hat{\theta}$ in Θ , say $\hat{\theta} = h(x_1, \ldots, x_n)$, such that

$$f(x_1, \dots, x_n | \hat{\theta}) = \max_{\theta \in \Theta} f(x_1, \dots, x_n | \theta)$$

And the **maximum likelihood estimator** (MLE) of θ is defined as $\hat{\theta} = h(X_1, \dots, X_n)$.

Example/Discussion:

Finding Maximum Likelihood Estimators (MLEs)

Finding the MLE $\hat{\theta}$ requires maximizing the likelihood $L(\theta)$ function over the parameter space $\theta \in \Theta$. There are several potential ways to achieve this.

- 1. If $L(\theta)$ is smooth (i.e., differentiable) in θ (which happens often), consider using calculus to maximize $L(\theta)$.
- 2. If $L(\theta)$ is not smooth, need to think more carefully about how to maximize $L(\theta)$ over Θ for the specific model at hand.
- 3. Often times in practice, $L(\theta)$ is maximized numerically using some computing.
- 4. Maximizing $\log L(\theta)$ is equivalent to maximizing $L(\theta)$ & can be easier.
- 5. In particular, if X_1, \ldots, X_n are iid with common pdf/pmf $f(x|\theta)$ where the support $\{x : f(x|\theta) > 0\}$ changes with θ , then using indicator functions to write $f(x|\theta)$ and $L(\theta)$ can help in maximization.

Using Calculus to Determine the MLE

If the likelihood function $L(\theta) = f(x_1, \dots, x_n | \theta)$ is differentiable, it can often be maximized over Θ using calculus.

Assume $\Theta \subset \mathbb{R}$ is open and that $L(\theta)$ is twice differentiable on Θ . Then,

$$\hat{\theta}$$
 maximizes $L(\theta) \iff \frac{dL(\theta)}{d\theta}\Big|_{\hat{\theta}} = 0$ and $\frac{d^2L(\theta)}{d\theta^2}\Big|_{\hat{\theta}} < 0$.

Since $\log(\cdot)$ is an increasing function, $\hat{\theta}$ maximizes $L(\theta) \iff \hat{\theta}$ maximizes $\log L(\theta)$. Hence,

$$\hat{\theta}$$
 is an MLE if $\frac{d \log L(\theta)}{d \theta}\Big|_{\hat{\theta}} = 0$ and $\frac{d^2 \log L(\theta)}{d \theta^2}\Big|_{\hat{\theta}} < 0$.

Finding Maximum Likelihood Estimators (MLEs)/Example using Calculus

Example: Let X_1, \ldots, X_n be a random sample from a Geometric (p) distribution, 0 . Find the MLE of <math>p.

Finding Maximum Likelihood Estimators (MLEs)/Examples without Calculus

Example: (Non-differentiable likelihood) Let X_1, \ldots, X_n be a random sample from a Double Exponential(θ) distribution, $\theta \in \mathbb{R}$, with pdf given by

$$f(x|\theta) = \frac{1}{2}e^{-|x-\theta|}, \quad -\infty < x < \infty.$$

Find the MLE of θ .

Example: Let $\theta \geq 1$ be an integer. Let X be a r.v. with a discrete uniform distribution on $\{1, \ldots, \theta\}$; that is,

$$P(X = x | \theta) = \begin{cases} \frac{1}{\theta} & \text{for } x = 1, \dots, \theta \\ 0 & \text{otherwise.} \end{cases}$$

If X=2 is observed, what is the maximum likelihood estimate of θ ?

Finding Maximum Likelihood Estimators (MLEs)/Multiparameter Case

Suppose X_1, X_2, \ldots, X_n have joint pmf/pdf $f(x_1, x_2, \ldots, x_n | \underline{\theta})$ where $\underline{\theta} = (\theta_1, \theta_2, \ldots, \theta_k)' \in \Theta \subset \mathbb{R}^k$ (i.e., k parameters).

Want to find MLEs $\hat{\theta} \equiv (\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_k)'$ of θ , which solve

$$L(\hat{\underline{\theta}}) = \max_{\theta \in \Theta} L(\underline{\theta}), \text{ where } L(\underline{\theta}) \equiv f(x_1, x_2, \dots, x_n | \underline{\theta})$$

.

Result: If $\Theta \subset \mathbb{R}^k$ is open and $L(\underline{\theta}) \equiv f(x_1, x_2, \dots, x_n | \underline{\theta})$ has 2nd order partial derivatives on Θ , then $\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_k$ are MLEs of $\theta_1, \theta_2, \dots, \theta_k$ provided

1. for each i = 1, ..., k

$$\frac{\partial \log L(\underline{\theta})}{\partial \theta_i} \Big|_{\underline{\hat{\theta}}} = 0;$$

2. denote the $k \times k$ Hessian matrix at $\hat{\theta}$ as

$$H = \begin{pmatrix} h_{11} & h_{12} & \cdots & h_{1k} \\ h_{21} & h_{22} & \cdots & h_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ h_{k1} & h_{k2} & \cdots & h_{kk} \end{pmatrix}$$

where

$$h_{ij} = \frac{\partial^2 \log L(\underline{\theta})}{\partial \theta_i \partial \theta_j} \Big|_{\underline{\hat{\theta}}} \quad \text{for } i, j = 1, \dots k,$$

and let

$$\Delta_i = \det \begin{pmatrix} h_{11} & \cdots & h_{1i} \\ \vdots & \ddots & \vdots \\ h_{i1} & \cdots & h_{ii} \end{pmatrix} \quad \text{for } i = 1, \dots k,$$

be the determinant of the $i \times i$ submatrix of H consisting of the first i rows. Then, we need $\Delta_1 < 0, \Delta_2 > 0, \Delta_3 > 0, \cdots$ and so on. (Must compute k determinants $\Delta_1, \Delta_2, \ldots, \Delta_k$ to see if they alternate in positive/negative.)

Finding Maximum Likelihood Estimators/Example in Multiparameter Case

Example: Let X_1, X_2, \ldots, X_n be iid $N(\mu, \sigma^2), \mu \in \mathbb{R}, \sigma > 0$. Find MLEs of $\mu \& \sigma^2$.

Solution: Write $\theta_1 \equiv \mu$ and $\theta_2 \equiv \sigma^2$ and

$$L(\theta_1, \theta_2) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\theta_2}} e^{-\frac{(x_i - \theta_1)^2}{2\theta_2}} = (2\pi)^{-n/2} \theta_2^{-n/2} e^{-\sum_{i=1}^{n} \frac{(x_i - \theta_1)^2}{2\theta_2}}$$

$$\log L(\theta_1, \theta_2) = -\frac{n}{2} \log(2\pi) - \frac{n}{2} \log \theta_2 - \sum_{i=1}^{n} \frac{(x_i - \theta_1)^2}{2\theta_2}$$

Then, setting

$$\frac{\partial \log L(\underline{\theta})}{\partial \theta_i}\Big|_{\underline{\hat{\theta}}} = 0 \quad \text{for } i = 1, 2,$$

we see that the MLEs $\hat{\ell} \equiv (\hat{\theta}_1, \hat{\theta}_2)'$ satisfy

$$\sum_{i=1}^{n} \frac{(x_i - \hat{\theta}_1)}{\hat{\theta}_2} = 0 \qquad \& \qquad -\frac{n}{2\hat{\theta}_2} - \sum_{i=1}^{n} \frac{(x_i - \hat{\theta}_1)^2}{2(\hat{\theta}_2)^2} = 0,$$

implying that

$$\hat{\theta}_1 = \bar{x}_n = \sum_{i=1}^n x_i / n, \qquad \hat{\theta}_2 = \sum_{i=1}^n (x_i - \hat{\theta}_1)^2 / n = \sum_{i=1}^n (x_i - \bar{x}_n)^2 / n,$$

though need to check 2nd partials conditions too. Note

$$\frac{\partial^2 \log L(\theta_1, \theta_2)}{\partial \theta_1^2} = \frac{\partial}{\partial \theta_1} \left[\frac{\partial \log L(\theta_1, \theta_2)}{\partial \theta_1} \right] = -\frac{n}{\theta_2},$$

$$\frac{\partial^2 \log L(\theta_1, \theta_2)}{\partial \theta_2^2} = \frac{\partial}{\partial \theta_2} \left[\frac{\partial \log L(\theta_1, \theta_2)}{\partial \theta_2} \right] = \frac{n}{2(\theta_2)^2} - \frac{\sum_{i=1}^n (x_i - \theta_1)^2}{(\theta_2)^3}$$

$$\frac{\partial^2 \log L(\theta_1, \theta_2)}{\partial \theta_2 \partial \theta_1} = \frac{\partial}{\partial \theta_2} \left[\frac{\partial \log L(\theta_1, \theta_2)}{\partial \theta_1} \right] = -\frac{\sum_{i=1}^n (x_i - \theta_1)}{(\theta_2)^2} = \frac{\partial}{\partial \theta_1} \left[\frac{\partial \log L(\theta_1, \theta_2)}{\partial \theta_2} \right] = \frac{\partial^2 \log L(\theta_1, \theta_2)}{\partial \theta_1 \partial \theta_2}$$

and hence

$$h_{11} \equiv \frac{\partial^{2} \log L(\theta_{1}, \theta_{2})}{\partial \theta_{1}^{2}} \Big|_{\hat{\theta}} = -\frac{n}{\hat{\theta}_{2}}, \quad h_{22} \equiv \frac{\partial^{2} \log L(\theta_{1}, \theta_{2})}{\partial \theta_{2}^{2}} \Big|_{\hat{\theta}} = \frac{n}{2(\hat{\theta}_{2})^{2}} - \frac{\sum_{i=1}^{n} (x_{i} - \hat{\theta}_{1})^{2}}{(\hat{\theta}_{2})^{3}} = -\frac{n}{2(\hat{\theta}_{2})^{2}}$$

$$h_{12} \equiv \frac{\partial^{2} \log L(\theta_{1}, \theta_{2})}{\partial \theta_{1} \partial \theta_{2}} \Big|_{\hat{\theta}} = -\frac{\sum_{i=1}^{n} (x_{i} - \bar{x}_{n})}{(\hat{\theta}_{2})^{2}} = 0 = \frac{\partial^{2} \log L(\theta_{1}, \theta_{2})}{\partial \theta_{2} \partial \theta_{1}} \Big|_{\hat{\theta}} \equiv h_{21}$$

$$H \equiv \begin{bmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{bmatrix} = \begin{bmatrix} -n/\hat{\theta}_{2} & 0 \\ 0 & -n/(2\hat{\theta}_{2}^{2}) \end{bmatrix} \quad \Rightarrow \quad \Delta_{1} \equiv -\frac{n}{\hat{\theta}_{2}} < 0 \ \& \ \Delta_{2} \equiv \det(H) = \frac{n^{2}}{2\hat{\theta}_{3}^{2}} > 0$$

Maximum Likelihood Estimators (MLEs) of Parametric Functions

Definition: For a parametric function $\gamma(\theta_1, \theta_2, \dots, \theta_k)$, we define $\gamma(\hat{\theta}_1, \dots, \hat{\theta}_k)$ as the MLE of $\gamma(\theta_1, \theta_2, \dots, \theta_k)$, where $\hat{\theta}_1, \dots, \hat{\theta}_k$ are the MLEs of $\theta_1, \dots, \theta_k$.

Last Example: Let X_1, X_2, \ldots, X_n be iid $N(\mu, \sigma^2), \mu \in \mathbb{R}, \sigma > 0$. Find the MLE of $\log(EX_1^2) = \log(\mu^2 + \sigma^2)$.