

Cálculo computacional II

Unidade 2: Limite

Cristina Vaz

C2-aula 02/6/25

UFPA

Sumário

<u>∂f</u> ∂t

Operações com funções

Limite

1 Operações com funções

2 Limite

Limite

Dadas as funções $f:D\subset\mathbb{R}^2\to\mathbb{R}$ e $g:D\subset\mathbb{R}^2\to\mathbb{R}$, temse:

Adição: h(x,y) = f(x,y) + g(x,y);

Multiplicação: h(x,y) = f(x,y).g(x,y);

Quociente:
$$h(x,y) = \frac{f(x,y)}{g(x,y)}$$
 para $g(x,y) \neq 0$

Função composta

Operações com funções

Limite

Dadas as funções $g:D_g\subset\mathbb{R}\to\mathbb{R}$ e $f:D_f\subset\mathbb{R}^2\to\mathbb{R}$ com $Im_f\subset D_g$.

Então, a função composta $g \circ f : D_f \subset \mathbb{R}^2 \to \mathbb{R}$ é dada por

$$(g \circ f)(x,y) = g(f(x,y))$$

Limite

Exemplo (1)

Para
$$g(t) = \ln(t)$$
 e $f(x,y) = x^2 + y$, determine $h = g \circ f$ e D_h

Limite

Exemplo (1)

Para $g(t) = \ln(t)$ e $f(x,y) = x^2 + y$, determine $h = g \circ f$ e D_h

Solução:

$$h(x,y) = (g \circ f)(x,y) = g(f(x,y)) \Rightarrow$$

$$h(x,y) = g(x^2 + y) = \ln(x^2 + y)$$
. Logo,

Logo,
$$D_h = \{(x, y); x^2 + y > 0\}$$

Função composta

Operações com funções

Limite

Podemos estender a definição de composta para o caso de funções de n variáveis. De fato,

Dadas as funções $g:D_g\subset\mathbb{R}\to\mathbb{R}$ e $f:D_f\subset\mathbb{R}^n\to\mathbb{R}$ com $Im_f\subset D_g$.

Então, a função composta $g \circ f : D_f \subset \mathbb{R}^n \to \mathbb{R}$ é dada por

$$(g \circ f)(x_1, x_2, ..., x_n) = g(f(x_1, x_2, ..., x_n))$$

Função polinomial

Operações com funções

Limite

Definição

A função $f: D_f \subset \mathbb{R}^2 \to \mathbb{R}$ polinomial é dada por

$$\sum_{i=0}^{m} \sum_{j=0}^{n} a_{m,n} x^m y^n$$

com grau m + n e o expoente de maior grau diferente de zero.

Exemplo: $f(x,y) = 6x^3y^2 - 3xy^3 + 7x^2y - 2x^2 + y - 4$ é uma função polinomial de grau 5

<u>∂f</u> ∂t

Operações com funções

Limite

Cálculo 1 (Animação)

<u>∂f</u> ∂t

Operações com funções

Limite

Conceito de limite é a ideia fundamental do Cálculo!!!

Operações cor funções

Limite

Ideias: Dada uma função f(x,y), um ponto (a,b) e um número L.

Queremos determinar se f(x,y) aproxima-se de L para para pontos (x,y) próximos de (x_0,y_0) (vizinhança de (a,b))

Pergunta 1: O que significa "uma vizinhança de (a,b) para $(x,y) \subset D_f \subset \mathbb{R}^2$?

Pergunta 2: O que significa "f(x,y) aproxima-se de L" para $f(x,y), L \in \mathbb{R}$?

Limite

<u>∂f</u> ∂t

Operações com funções

Limite

<u>∂f</u> ∂t

Operações con funções

Limite

Resposta da Pergunta 1:

Para
$$\delta > 0$$
, $P_0 = (a, b)$ e $P = (x, y)$ tem-se

$$d(P,P_0) \leq \delta$$

Ou seja,

$$||P - P_0|| \le \delta \Rightarrow \sqrt{(x-a)^2 + (y-b)^2} \le \delta$$

Limite

Resposta da Pergunta 2:

Para $\epsilon > 0$, z = f(x, y) e L tem-se

$$d(z,L) \le \epsilon$$

Ou seja,

$$|z-L| \le \epsilon \Rightarrow |f(x,y)-L| \le \epsilon$$

Limite

Assim,

f(x,y) aproxima-se de L significa que:

dado $\epsilon > 0$ temos que $|f(x,y) - L| \le \epsilon$

para pontos (x,y) próximos de (a,b) (vizinhança de (a,b)) significa que:

dado $\delta > 0$ temos que $\sqrt{(x-a)^2 + (y-b)^2} \le \delta$

Operações con funções

Limite

Definição

Dados $L \in \mathbb{R}$, (a,b) e uma função $f: D_f \subset \mathbb{R}^2 \to \mathbb{R}$ tal que D_f contém todos os pontos $(x,y) \in D_f$ próximos de (a,b).

Dizemos que L é o limite de f quando (x,y) aproxima-se de (a,b) se para todo $\epsilon > 0$, existe um correspondente $\delta = \delta(\epsilon) > 0$ tal que:

se
$$\sqrt{(x-a)^2 + (y-b)^2} \le \delta$$
 então $|f(x,y) - L| \le \epsilon$

Limite

Notações:

$$\lim_{(x,y)\to(a,b)} f(x,y) = L$$

$$f(x,y) \to L$$
 quando $(x,y) \to (a,b)$

Limite

Observação 1: A definição não exige que f esteja definida em (a,b), pois só refere-se apenas aos pontos próximo de (a,b). Ou seja, é uma definição local.

Observação 2: A definição refere-se somente à distância entre (x,y) e (a,b) e não se refere à direção de aproximação. Portanto, se o limite existe, f(x,y) deve se aproximar de L, independentemente do modo como (x,y) se aproxima de (a,b).

Limite

Pela **Observação 2** temos que se acharmos dois caminhos diferentes de aproximação ao longo dos quais f(x,y) tenha limites diferentes isso implica que

$$\lim_{(x,y)\to(a,b)} f(x,y)$$

não existe

Limite

Teorema (1)

Se $\lim_{(x,y)\to(a,b)} f(x,y) = L_1$ ao longo do caminho \mathcal{C}_1 e $\lim_{(x,y)\to(a,b)} f(x,y) = L_2$ ao longo do caminho \mathcal{C}_2 com $\mathcal{C}_1 \neq \mathcal{C}_2$ então $\lim_{(x,y)\to(a,b)} f(x,y)$ não existe.

<u>∂f</u> ∂t

Operações com funções

Limite

Exemplo (2)

Mostre que o limite $\lim_{(x,y)\to(0,0)} \frac{x^2-y^2}{x^2+y^2}$ não existe.

<u>∂f</u> ∂t

Operações com funções

Limite

Solução: Como trata-se da vizinhança da origem vamos considerar o caminho
$$C_1$$
 dado pelo eixo x, ou seja, $y = 0$. Então,

$$\frac{x^2 - y^2}{x^2 + y^2} = \frac{x^2}{x^2} = 1$$

E
$$\lim_{(x,y)\to(0,0)} \frac{x^2-y^2}{x^2+y^2} = 1.$$

Agora, vamos considerar o caminho \mathcal{C}_2 dado pelo eixo y, ou seja, x=0. Então,

$$\frac{x^2 - y^2}{x^2 + y^2} = \frac{-y^2}{y^2} = -1$$

$$E \lim_{(x,y)\to(0,0)} \frac{x^2 - y^2}{x^2 + y^2} = -1.$$

Limite

Assim pelo teorema 1

$$\lim_{(x,y)\to(0,0)} \frac{x^2 - y^2}{x^2 + y^2}$$

não existe.

<u>∂f</u> ∂t

Operações com funções

Limite

Exemplo (3)

O limite
$$\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$$
 existe?

Limite

Solução: Vamos considerar os caminhos \mathcal{C}_1 e \mathcal{C}_2 do exemplo anterior. Assim, para y=0 temos

$$\lim_{(x,y)\to(0,0)}\frac{0}{x^2}=0.$$

E para para x = 0 temos

$$\lim_{(x,y)\to(0,0)}\frac{0}{y^2}=0$$

Pelo teorema 1, nada podemos afirmar!

Operações cor funções

Limite

Agora, considere o caminho C_3 dado pela reta y=x. Assim,

$$\lim_{(x,y)\to(0,0)} \frac{xy}{x^2 + y^2} = \lim_{(x,y)\to(0,0)} \frac{x^2}{2x^2} = \frac{1}{2}$$

Portanto, obtemos dois caminhos \mathcal{C}_1 ou \mathcal{C}_2 e \mathcal{C}_3 para os quais os limites são diferentes. Logo, pelo teorema 1

$$\lim_{(x,y)\to(0,0)} \frac{xy}{x^2 + y^2}$$

não existe.

Limite

Exemplo (4)

O limite
$$\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2+y^4}$$
 existe?

Limite

Solução: Vamos considera a família de retas verticais C_1 dadas por y = mx (em vez de testar uma a uma). Assim,

$$\lim_{(x,y)\to(0,0)}\frac{xy^2}{x^2+y^4}=\lim_{(x,y)\to(0,0)}\frac{m^2x^3}{x^2+m^4x^4}\Rightarrow$$

$$\lim_{(x,y)\to(0,0)} \frac{m^2x}{1+m^4x^2} = \frac{0}{1} = 0$$

Limite

Agora, considere o caminho C_2 dado pela parábola $y = x^2$. Assim,

$$\lim_{(x,y)\to(0,0)}\frac{y^4}{2y^4}=\lim_{(x,y)\to(0,0)}\frac{1}{2}=\frac{1}{2}$$

Logo, pelo teorema 1

$$\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2 + y^4}$$

não existe.

OBRIGADA