2. 통계적 추론

통계적추론

표본이 갖고 있는 정보를 분석하여 모수를 추론

모수에 대한 가설의 옳고 그름을 판단

표본으로 전체 모집단의 성질을 추론하므로 오류 존재(이 부정확도를 반드시 언급해야 함)

통계적추론

조사자의 관심에 따라 모수 추정 혹은 가설검정으로 구분

모수 추정

- 모수에 대한 추론 혹은
 추론치 제시
- 2. 수치화 된 정확도 제시

가설검정

모수에 대한

여러 가설들이 적합한지

표본으로 판단

모수추정

모수 추정

점추정

추출된 표본으로부터의 모수의 값에 가까울 것이 예상되는 하나의 값을 제시

구간 추정

하나의 값 대신 모수를 포함할 것이 예상되는 적절한 구간을 제시

모평균 점추정

모집단의 모수인 평균 μ 의 추정

모집단에서 크기가 n 인 표본을 n개의 확률변수 $X_1, X_2, ..., X_n$ 로 표현 했을때, 모평균의 추정량 중, 직관적으로 타당한 것은 표본 평균

$$\bar{X} = \frac{1}{n}(X_1 + X_2 + ... + X_n)$$

구간 추정

신뢰 구간

- 추정량의 분포를 이용하여 표본으로 부터 모수의 값을 포함하리라 예상되는 구간
- (작은 값(하한), 큰 값(상한)) 의 형태

신뢰 수준

- 신뢰 구간이 모수를 포함할 확률을 1
 보다 작은 일정한 수준에서 유지할 때 확률이 신뢰수준
- 신뢰수준은 90%, 95%, 99%등으로 정함

모평균 구간 추정

모평균 μ 의 신뢰 구간

- μ 의 분포 : 모집단의 정규 분포, 표준 편차(σ) 가 주어짐
- 추정량 \overline{X} 의 분포 : 평균이 μ , 표준 편차가 σ/\sqrt{n} 인 분포 N(0,1)

•
$$P\left(\frac{\bar{X}-\mu}{\frac{\sigma}{\sqrt{n}}} < z_{\frac{\alpha}{2}}\right) = 1 - \alpha$$

모평균 구간 추정

• $z_{\frac{a}{2}}$ 는 N(0,1) 의 상위 $\frac{a}{2}$ 의 확률을 주는 값

$$P\left(\bar{X} - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} < \mu < \bar{X} + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right) = 1 - \alpha$$

• 모평균 μ 에 대한 신뢰 구간

$$(\bar{X}-z_{\frac{\alpha}{2}}\frac{\sigma}{\sqrt{n}},\bar{X}+z_{\frac{\alpha}{2}}\frac{\sigma}{\sqrt{n}})$$

모평균 구간추정 예제

N(100, 10) 인 분포로부터 크기가 15인 표본을 추출해 표본 평균 $\bar{x} = 105$ 일 때, 모평균에 대한 95% 신뢰구간 :

$$(\bar{x} - 1.96 \frac{10}{\sqrt{15}}, \bar{x} + 1.96 \frac{10}{\sqrt{15}})$$

$$= (105 - 1.96 \frac{10}{\sqrt{15}}, 105 + 1.96 \frac{10}{\sqrt{15}})$$

$$= (99.94, 110.06)$$