Name: Dat Truong U78042625

VECTOR CALCULUS: QUIZ 1

Problem 1.1. Compute the area of the domain bounded by the ellipse

$$\vec{r}(t) = (a\cos(t), b\sin(t)), t \in [0, 2\pi)$$

Solution:

$$\iint dA = \frac{1}{2} \int_{C} x \, dy - y \, dx$$

$$= \frac{1}{2} \int_{0}^{2\pi} [(a\cos(t))(b\cos(t)) - (b\sin(t))(-a\sin t)] \, dt$$

$$= \frac{1}{2} \int_{0}^{2\pi} (ab\cos^{2}(t) + ab\sin^{2}(t)) \, dt$$

$$= \frac{1}{2} \int_{0}^{2\pi} ab \, dt$$

$$= \pi ab$$

Problem 1.2. Let C be the spiral $\vec{r}(t) = e^{-t}(\cos(t)\hat{i} + \sin(t)\hat{j}), t \geq 0$. Compute the line integral of $\vec{F}(x,y) = y\hat{i} + x\hat{j}$ along C, from $\vec{r}(0) = (1,0)$ to $\vec{r}(\infty) = (0,0)$

Solution:
$$\int y \, dx = \int x \, dy = xy$$

So $\vec{F} = \vec{\nabla} f$, where $f(x, y) = xy$

$$\int_{C} \vec{F} \cdot d\vec{r} = \int_{C} \left(\frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy \right)$$
$$= f(0,0) - f(1,0) = 0$$