# International Rectifier

#### **DIGITAL AUDIO MOSFET**

## IRF6785MTRPbF

#### **Features**

- Latest MOSFET Silicon technology
- Key parameters optimized for Class-D audio amplifier applications
- Low R<sub>DS(on)</sub> for improved efficiency
- Low Q<sub>g</sub> for better THD and improved efficiency
- Low Qrr for better THD and lower EMI
- Low package stray inductance for reduced ringing and lower FMI
- Can deliver up to 250W per channel into 8Ω Load in Half-Bridge Configuration Amplifier
- Dual sided cooling compatible
- Compatible with existing surface mount technologies
- RoHS compliant containing no lead or bromide
- •Lead-Free (Qualified up to 260°C Reflow)

Applicable DirectFET Outline and Substrate Outline (see p. 6, 7 for details)

| Key Parameters                     |     |    |  |  |  |  |  |  |  |
|------------------------------------|-----|----|--|--|--|--|--|--|--|
| $V_{DS}$                           | 200 | V  |  |  |  |  |  |  |  |
| $R_{DS(on)}$ typ. @ $V_{GS} = 10V$ | 85  | mΩ |  |  |  |  |  |  |  |
| Q <sub>g</sub> typ.                | 26  | nC |  |  |  |  |  |  |  |
| R <sub>G(int)</sub> max            | 3.0 | Ω  |  |  |  |  |  |  |  |





| photos product and administration of the product of |    |    |    |    |    |    |    |    |  |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|----|----|----|----|----|----|--|---|
| SQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SX | ST | SH | MQ | MX | MT | MN | MZ |  |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | •  |    |    | •  | •  |    | •  |  | • |

#### **Description**

This Digital Audio MOSFET is specifically designed for Class-D audio amplifier applications. This MOSFET utilizes the latest processing techniques to achieve low on-resistance per silicon area. Furthermore, gate charge, body-diode reverse recovery and internal gate resistance are optimized to improve key Class-D audio amplifier performance factors such as efficiency, THD, and EMI.

The IRF6785MPbF device utilizes DirectFET™ packaging technology. DirectFET™ packaging technology offers lower parasitic inductance and resistance when compared to conventional wirebonded SOIC packaging. Lower inductance improves EMI performance by reducing the voltage ringing that accompanies fast current transients. The DirectFET™ package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing method and processes. The DirectFET™ package also allows dual sided cooling to maximize thermal transfer in power systems, improving thermal resistance and power dissipation. These features combine to make this MOSFET a highly efficient, robust and reliable device for Class-D audio amplifier applications.

**Absolute Maximum Ratings** 

|                                        | Parameter                                       | Max.         | Units<br>V |  |
|----------------------------------------|-------------------------------------------------|--------------|------------|--|
| $V_{DS}$                               | Drain-to-Source Voltage                         | 200          |            |  |
| $V_{GS}$                               | Gate-to-Source Voltage                          | ± 20         |            |  |
| I <sub>D</sub> @ T <sub>C</sub> = 25°C | Continuous Drain Current, V <sub>GS</sub> @ 10V | 19           |            |  |
| I <sub>D</sub> @ T <sub>A</sub> = 25°C | Continuous Drain Current, V <sub>GS</sub> @ 10V | 3.4          | A          |  |
| I <sub>D</sub> @ T <sub>A</sub> = 70°C | Continuous Drain Current, V <sub>GS</sub> @ 10V | 2.7          |            |  |
| I <sub>DM</sub>                        | Pulsed Drain Current ①                          | 27           |            |  |
| P <sub>D</sub> @T <sub>C</sub> = 25°C  | Maximum Power Dissipation                       | 57           | W          |  |
| P <sub>D</sub> @T <sub>A</sub> = 25°C  | Power Dissipation ③                             | 2.8          |            |  |
| P <sub>D</sub> @T <sub>A</sub> = 70°C  | Power Dissipation ③                             | 1.8          |            |  |
| E <sub>AS</sub>                        | Single Pulse Avalanche Energy②                  | 33           | mJ         |  |
| I <sub>AR</sub>                        | Avalanche Current ①                             | 8.4          | Α          |  |
|                                        | Linear Derating Factor                          | 0.022        | W/°C       |  |
| T <sub>J</sub>                         | Operating Junction and                          | -40 to + 150 | °C         |  |
| T <sub>STG</sub>                       | Storage Temperature Range                       |              |            |  |

#### Thermal Resistance

|                           | Parameter               | Тур. | Max. | Units |
|---------------------------|-------------------------|------|------|-------|
| $R_{\theta JA}$           | Junction-to-Ambient 39  |      | 45   | °C/W  |
| $R_{\theta JA}$           | Junction-to-Ambient © 9 | 12.5 |      |       |
| $R_{\theta JA}$           | Junction-to-Ambient ⑦ ⑨ | 20   |      |       |
| $R_{\theta JC}$           | Junction-to-Case ® 9    |      | 1.4  |       |
| $R_{\theta J\text{-PCB}}$ | Junction-to-PCB Mounted | 1.4  |      | 1     |

## Static @ T<sub>J</sub> = 25°C (unless otherwise specified)

|                                 | Parameter                            | Min. | Тур. | Max. | Units | Conditions                                         |
|---------------------------------|--------------------------------------|------|------|------|-------|----------------------------------------------------|
| $V_{(BR)DSS}$                   | Drain-to-Source Breakdown Voltage    | 200  |      |      | V     | $V_{GS} = 0V, I_D = 250\mu A$                      |
| $\Delta V_{(BR)DSS}/\Delta T_J$ | Breakdown Voltage Temp. Coefficient  |      | 0.22 |      | V/°C  | Reference to 25°C, I <sub>D</sub> = 1mA            |
| R <sub>DS(on)</sub>             | Static Drain-to-Source On-Resistance |      | 85   | 100  | mΩ    | $V_{GS} = 10V, I_D = 4.2A$ ④                       |
| $V_{GS(th)}$                    | Gate Threshold Voltage               | 3.0  |      | 5.0  | V     | $V_{DS} = V_{GS}$ , $I_D = 100\mu A$               |
| I <sub>DSS</sub>                | Drain-to-Source Leakage Current      |      |      | 20   | μΑ    | $V_{DS} = 200V, V_{GS} = 0V$                       |
|                                 |                                      |      |      | 250  |       | $V_{DS} = 160V, V_{GS} = 0V, T_{J} = 125^{\circ}C$ |
| I <sub>GSS</sub>                | Gate-to-Source Forward Leakage       |      |      | 100  | nA    | $V_{GS} = 20V$                                     |
|                                 | Gate-to-Source Reverse Leakage       |      |      | -100 |       | $V_{GS} = -20V$                                    |
| $R_{G(int)}$                    | Internal Gate Resistance             |      |      | 3.0  | Ω     |                                                    |

## Dynamic @ T<sub>J</sub> = 25°C (unless otherwise specified)

|                       | Parameter                                           | Min. | Тур. | Max. | Units | Conditions                                   |
|-----------------------|-----------------------------------------------------|------|------|------|-------|----------------------------------------------|
| gfs                   | Forward Transconductance                            | 8.9  |      |      | S     | $V_{DS} = 10V, I_D = 4.2A$                   |
| $Q_g$                 | Total Gate Charge                                   |      | 26   | 36   |       | V <sub>DS</sub> = 100V                       |
| Q <sub>gs1</sub>      | Pre-Vth Gate-to-Source Charge                       |      | 6.3  |      |       | $V_{GS} = 10V$                               |
| $Q_{gs2}$             | Post-Vth Gate-to-Source Charge                      |      | 1.3  |      |       | $I_D = 4.2A$                                 |
| $Q_{gd}$              | Gate-to-Drain Charge                                |      | 6.9  |      | nC    | See Fig. 6 and 17                            |
| $Q_{godr}$            | Gate Charge Overdrive                               |      | 11.5 |      |       |                                              |
| $Q_{sw}$              | Switch Charge (Q <sub>gs2</sub> + Q <sub>gd</sub> ) |      | 8.2  |      |       |                                              |
| t <sub>d(on)</sub>    | Turn-On Delay Time                                  |      | 6.2  |      |       | $V_{DD} = 100V$                              |
| t <sub>r</sub>        | Rise Time                                           |      | 8.6  |      |       | $I_D = 4.2A$                                 |
| t <sub>d(off)</sub>   | Turn-Off Delay Time                                 |      | 7.2  |      | ns    | $R_G = 6.0\Omega$                            |
| t <sub>f</sub>        | Fall Time                                           |      | 14   |      |       | V <sub>GS</sub> = 10V ④                      |
| C <sub>iss</sub>      | Input Capacitance                                   |      | 1500 |      |       | $V_{GS} = 0V$                                |
| C <sub>oss</sub>      | Output Capacitance                                  |      | 160  |      |       | $V_{DS} = 25V$                               |
| C <sub>rss</sub>      | Reverse Transfer Capacitance                        |      | 31   |      | pF    | f = 1.0MHz                                   |
| C <sub>oss</sub>      | Output Capacitance                                  |      | 1140 |      |       | $V_{GS} = 0V, V_{DS} = 1.0V, f = 1.0MHz$     |
| C <sub>oss</sub>      | Output Capacitance                                  |      | 69   |      |       | $V_{GS} = 0V, V_{DS} = 160V, f = 1.0MHz$     |
| C <sub>oss</sub> eff. | Effective Output Capacitance                        |      | 140  |      |       | $V_{GS} = 0V, V_{DS} = 0V \text{ to } 160V $ |

#### **Diode Characteristics**

|                 | Parameter                 | Min. | Тур. | Max. | Units | Conditions                                          |
|-----------------|---------------------------|------|------|------|-------|-----------------------------------------------------|
| I <sub>S</sub>  | Continuous Source Current |      |      | 19   |       | MOSFET symbol                                       |
|                 | (Body Diode)              |      |      |      | Α     | showing the                                         |
| I <sub>SM</sub> | Pulsed Source Current     |      |      | 27   |       | integral reverse                                    |
|                 | (Body Diode) ①            |      |      |      |       | p-n junction diode.                                 |
| $V_{SD}$        | Diode Forward Voltage     |      |      | 1.3  | V     | $T_J = 25$ °C, $I_S = 4.2A$ , $V_{GS} = 0V$ ④       |
| t <sub>rr</sub> | Reverse Recovery Time     |      | 71   |      | ns    | $T_J = 25^{\circ}C$ , $I_F = 4.2A$ , $V_{DD} = 25V$ |
| Q <sub>rr</sub> | Reverse Recovery Charge   |      | 190  |      | nC    | di/dt = 100A/μs ④                                   |

#### Notes

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Starting  $T_J$  = 25°C, L = 0.94mH,  $R_G$  = 25 $\Omega$ ,  $I_{AS}$  = 8.4A.
- 3 Surface mounted on 1 in. square Cu board.
- 4 Pulse width  $\leq 400 \mu s$ ; duty cycle  $\leq 2\%$ .
- © Used double sided cooling, mounting pad with large heatsink.
- Mounted on minimum footprint full size board with metalized back and with small clip heatsink.
- ® T<sub>C</sub> measured with thermal couple mounted to top (Drain) of part.
- $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \,$   $\ \ \,$   $\ \ \,$   $\ \ \,$   $\ \,$   $\ \ \,$   $\ \,$   $\ \ \,$   $\ \,$   $\ \ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$   $\ \,$

## IRF6785MTRPbF



Fig 1. Typical Output Characteristics



Fig 3. Typical Transfer Characteristics



Fig 5. Typical Capacitance vs.Drain-to-Source Voltage www.irf.com



Fig 2. Typical Output Characteristics



Fig 4. Normalized On-Resistance vs. Temperature



Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage

## IRF6785MTRPbF



Fig 7. Typical Source-Drain Diode Forward Voltage



Fig 9. Maximum Drain Current vs. Case Temperature



International

Fig 8. Maximum Safe Operating Area



Fig 10. Threshold Voltage vs. Temperature



Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient 3

## International

## IOR Rectifier



Fig 12. On-Resistance vs. Gate Voltage



Fig 15a. Unclamped Inductive Test Circuit



Fig 15b. Unclamped Inductive Waveforms



**Fig 16a.** Switching Time Test Circuit www.irf.com

## IRF6785MTRPbF



Fig 13. On-Resistance vs. Drain Current



Fig 14. Maximum Avalanche Energy vs. Drain Current



Fig 16b. Switching Time Waveforms





Fig 17a. Gate Charge Test Circuit

Fig 17b. Gate Charge Waveform



Fig 18. Diode Reverse Recovery Test Circuit for HEXFET® Power MOSFETs

6 www.irf.com

## DirectFET™ Substrate and PCB Layout, MZ Outline (Medium Size Can, Z-Designation).

Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.

This includes all recommendations for stencil and substrate designs.





www.irf.com 7

DirectFET™ Outline Dimension, MZ Outline (Medium Size Can, Z-Designation).

Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.

This includes all recommendations for stencil and substrate designs.



## DirectFET™ Part Marking



8 www.irf.com

## IRF6785MTRPbF

## DirectFET™ Tape & Reel Dimension (Showing component orientation).

#### LOADED TAPE FEED DIRECTION



NOTE: CONTROLLING DIMENSIONS IN MM

| DIMENSIONS |       |       |          |       |  |  |  |  |
|------------|-------|-------|----------|-------|--|--|--|--|
|            | ME    | TRIC  | IMPERIAL |       |  |  |  |  |
| CODE       | MIN   | MAX   | MIN      | MAX   |  |  |  |  |
| Α          | 7.90  | 8.10  | 0.311    | 0.319 |  |  |  |  |
| В          | 3.90  | 4.10  | 0.154    | 0.161 |  |  |  |  |
| С          | 11.90 | 12.30 | 0.469    | 0.484 |  |  |  |  |
| D          | 5.45  | 5.55  | 0.215    | 0.219 |  |  |  |  |
| E          | 5.10  | 5.30  | 0.201    | 0.209 |  |  |  |  |
| F          | 6.50  | 6.70  | 0.256    | 0.264 |  |  |  |  |
| G          | 1.50  | N.C   | 0.059    | N.C   |  |  |  |  |
| Н          | 1.50  | 1.60  | 0.059    | 0.063 |  |  |  |  |



NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF6785TRPBF). For 1000 parts on 7" reel, order IRF6785TR1PBF

| -    |                            |      |        |       |        |                       |          |      |  |  |
|------|----------------------------|------|--------|-------|--------|-----------------------|----------|------|--|--|
|      | REEL DIMENSIONS            |      |        |       |        |                       |          |      |  |  |
| S.   | STANDARD OPTION (QTY 4800) |      |        |       |        | TR1 OPTION (QTY 1000) |          |      |  |  |
|      | ME                         | TRIC | IMP    | ERIAL | ME     | TRIC                  | IMPERIAL |      |  |  |
| CODE | MIN                        | MAX  | MIN    | MAX   | MIN    | MAX                   | MIN      | MAX  |  |  |
| Α    | 330.0                      | N.C  | 12.992 | N.C   | 177.77 | N.C                   | 6.9      | N.C  |  |  |
| В    | 20.2                       | N.C  | 0.795  | N.C   | 19.06  | N.C                   | 0.75     | N.C  |  |  |
| С    | 12.8                       | 13.2 | 0.504  | 0.520 | 13.5   | 12.8                  | 0.53     | 0.50 |  |  |
| D    | 1.5                        | N.C  | 0.059  | N.C   | 1.5    | N.C                   | 0.059    | N.C  |  |  |
| E    | 100.0                      | N.C  | 3.937  | N.C   | 58.72  | N.C                   | 2.31     | N.C  |  |  |
| F    | N.C                        | 18.4 | N.C    | 0.724 | N.C    | 13.50                 | N.C      | 0.53 |  |  |
| G    | 12.4                       | 14.4 | 0.488  | 0.567 | 11.9   | 12.01                 | 0.47     | N.C  |  |  |
| Н    | 11.9                       | 15.4 | 0.469  | 0.606 | 11.9   | 12.01                 | 0.47     | N.C  |  |  |

Data and specifications subject to change without notice.

This product has been designed and qualified for the Consumer market.

Qualification Standards can be found on IR's Web site.



IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105