Interpretable Machine Learning

Shapley Values for Local Explanations

Learning goals

- See model predictions as a cooperative game
- Transfer the Shapley value concept from game theory to machine learning

• Game: Make prediction $\hat{f}(x_1, x_2, \dots, x_p)$ for a single observation **x**

- ullet Game: Make prediction $\hat{f}(x_1,x_2,\ldots,x_p)$ for a single observation ${f x}$
- Players: Features x_j, j ∈ {1,...,p} which cooperate to produce a prediction
 → How can we make a prediction with a subset of features without changing the model?
 - \leadsto PD function: $\hat{f}_{S}(\mathbf{x}_{S}):=\int_{X_{-S}}\hat{f}(\mathbf{x}_{S},X_{-S})d\mathbb{P}_{X_{-S}}$ ("removing" by marginalizing over -S)

- Game: Make prediction $\hat{f}(x_1, x_2, \dots, x_p)$ for a single observation \mathbf{x}
- Players: Features x_j, j ∈ {1,...,p} which cooperate to produce a prediction
 → How can we make a prediction with a subset of features without changing the model?
 - ightarrow PD function: $\hat{f}_S(\mathbf{x}_S) := \int_{X_{-S}} \hat{f}(\mathbf{x}_S, X_{-S}) d\mathbb{P}_{X_{-S}}$ ("removing" by marginalizing over -S)
- Value function / payout of coalition $S \subseteq P$ for observation **x**:

$$v(\mathcal{S}) = \hat{\mathit{f}}_{\mathcal{S}}(\mathbf{x}_{\mathcal{S}}) - \mathbb{E}_{\mathbf{x}}(\hat{\mathit{f}}(\mathbf{x})), \text{ where } \hat{\mathit{f}}_{\mathcal{S}} : \mathcal{X}_{\mathcal{S}} \mapsto \mathcal{Y}$$

 \leadsto subtraction of $\mathbb{E}_{\mathbf{x}}(\hat{f}(\mathbf{x}))$ ensures that v is a value function with $v(\emptyset) = 0$

$$\mathbb{E}(\hat{f}(\mathbf{x})) \qquad \qquad \hat{f}_{S}(\mathbf{x}_{S})$$

- Game: Make prediction $\hat{f}(x_1, x_2, \dots, x_p)$ for a single observation \mathbf{x}
- Players: Features $x_j, j \in \{1, \dots, p\}$ which cooperate to produce a prediction \leadsto How can we make a prediction with a subset of features without changing the model?
 - ightarrow PD function: $\hat{f}_S(\mathbf{x}_S) := \int_{X_{-S}} \hat{f}(\mathbf{x}_S, X_{-S}) d\mathbb{P}_{X_{-S}}$ ("removing" by marginalizing over -S)
- Value function / payout of coalition $S \subseteq P$ for observation **x**:

$$v(S) = \hat{f}_S(\mathbf{x}_S) - \mathbb{E}_{\mathbf{x}}(\hat{f}(\mathbf{x})), \text{ where } \hat{f}_S : \mathcal{X}_S \mapsto \mathcal{Y}$$

ightharpoonup subtraction of $\mathbb{E}_{\mathbf{x}}(\hat{f}(\mathbf{x}))$ ensures that v is a value function with $v(\emptyset)=0$

• Marginal contribution: $v(S \cup \{j\}) - v(S) = \hat{f}_{S \cup \{j\}}(\mathbf{x}_{S \cup \{j\}}) - \hat{f}_{S}(\mathbf{x}_{S})$ $\rightarrow \mathbb{E}_{\mathbf{x}}(\hat{f}(\mathbf{x}))$ cancels out due to the subtraction of value functions

Shapley value ϕ_i of feature *j* for observation **x** via **order definition**:

$$\phi_j(\mathbf{x}) = \frac{1}{|P|!} \sum_{\tau \in \Pi} \hat{f}_{S_j^{\tau} \cup \{j\}}(\mathbf{x}_{S_j^{\tau} \cup \{j\}}) - \hat{f}_{S_j^{\tau}}(\mathbf{x}_{S_j^{\tau}})$$
marginal contribution of feature j

→ Note: Marginal contributions and Shapley values can be negative

• For exact computation of $\phi_i(\mathbf{x})$, the PD function $\hat{f}_S(\mathbf{x}_S) = \frac{1}{n} \sum_{i=1}^n \hat{f}(\mathbf{x}_S, \mathbf{x}_{-S}^{(i)})$ for any set of features S can be used which yields

$$\phi_j(\mathbf{x}) = \frac{1}{|P|! \cdot n} \sum_{\tau \in \Pi} \sum_{i=1}^n \hat{f}(\mathbf{x}_{S_j^{\tau} \cup \{j\}}, \mathbf{x}_{-\{S_j^{\tau} \cup \{j\}\}}^{(i)}) - \hat{f}(\mathbf{x}_{S_j^{\tau}}, \mathbf{x}_{-S_j^{\tau}}^{(i)})$$

 \rightarrow Note: \hat{f}_S marginalizes over all other features -S using all observations $i=1,\ldots,n$

 Exact Shapley value computation is problematic for high-dimensional feature spaces

 \leadsto For 10 features, there are already |P|!= 10! \approx 3.6 million possible orders of features

- Exact Shapley value computation is problematic for high-dimensional feature spaces
 - \leadsto For 10 features, there are already |P|!= 10! \approx 3.6 million possible orders of features
- Additional problem due to estimation of the marginal prediction $\hat{f}_{S_j^{\tau}}$: Averaging over the entire data set for each coalition S_j^{τ} introduced by τ can be very expensive for large data sets

- Exact Shapley value computation is problematic for high-dimensional feature spaces
 - \leadsto For 10 features, there are already |P|!= 10! \approx 3.6 million possible orders of features
- Additional problem due to estimation of the marginal prediction $\hat{f}_{S_j^{\tau}}$: Averaging over the entire data set for each coalition S_j^{τ} introduced by τ can be very expensive for large data sets
- Solution to both problems is sampling: Instead of averaging over $|P|! \cdot n$ terms, we approximate it using a limited amount of M random samples of τ to build coalitions S_j^{τ}

- Exact Shapley value computation is problematic for high-dimensional feature spaces
 - \leadsto For 10 features, there are already |P|!= 10! \approx 3.6 million possible orders of features
- Additional problem due to estimation of the marginal prediction $\hat{f}_{S_j^\tau}$: Averaging over the entire data set for each coalition S_j^τ introduced by τ can be very expensive for large data sets
- Solution to both problems is sampling: Instead of averaging over $|P|! \cdot n$ terms, we approximate it using a limited amount of M random samples of τ to build coalitions S_i^{τ}

Estimation of ϕ_i for observation **x** of model \hat{t} fitted on data \mathcal{D} using sample size M:

1 For m = 1, ..., M do:

Estimation of ϕ_i for observation **x** of model \hat{t} fitted on data \mathcal{D} using sample size M:

- **1** For m = 1, ..., M do:
 - Select random order / permutation of feature indices

$$au = (au^{(1)}, \dots, au^{(p)}) \in \Pi$$

Estimation of ϕ_i for observation **x** of model \hat{t} fitted on data \mathcal{D} using sample size M:

- **1** For m = 1, ..., M do:
 - Select random order / permutation of feature indices $\tau = (\tau^{(1)}, \ldots, \tau^{(p)}) \in \Pi$
 - **2** Determine coalition $S_m := S_j^{\tau}$, i.e., the set of features before feature j in order τ

Estimation of ϕ_i for observation **x** of model \hat{f} fitted on data \mathcal{D} using sample size M:

- **1** For m = 1, ..., M do:
 - Select random order / permutation of feature indices $\tau = (\tau^{(1)}, \ldots, \tau^{(p)}) \in \Pi$
 - **2** Determine coalition $S_m := S_j^{\tau}$, i.e., the set of features before feature j in order τ
 - **3** Select random data point $\mathbf{z}^{(m)} \in \mathcal{D}$

Estimation of ϕ_i for observation **x** of model \hat{f} fitted on data \mathcal{D} using sample size M:

- **1** For m = 1, ..., M do:
 - Select random order / permutation of feature indices $\tau = (\tau^{(1)}, \ldots, \tau^{(p)}) \in \Pi$
 - **2** Determine coalition $S_m := S_i^{\tau}$, i.e., the set of features before feature j in order τ
 - Select random data point $\mathbf{z}^{(m)} \in \mathcal{D}$
 - Construct two artificial observations by replacing feature values from x with $\mathbf{z}^{(m)}$:

Estimation of ϕ_i for observation **x** of model \hat{t} fitted on data \mathcal{D} using sample size M:

- **1** For m = 1, ..., M do:
 - Select random order / permutation of feature indices $\tau = (\tau^{(1)}, \dots, \tau^{(p)}) \in \Pi$
 - **2** Determine coalition $S_m := S_i^{\tau}$, i.e., the set of features before feature j in order τ
 - Select random data point $\mathbf{z}^{(m)} \in \mathcal{D}$
 - Construct two artificial observations by replacing feature values from x with $\mathbf{z}^{(m)}$:

•
$$\mathbf{x}_{+j}^{(m)} = (\underbrace{x_{\tau^{(1)}}, \dots, x_{\tau^{(|S_m|-1)}}, x_j}_{\mathbf{x}_{S_m \cup \{j\}}}, \underbrace{z_{\tau^{(|S_m|+1)}}^{(m)}, \dots, z_{\tau^{(p)}}^{(m)}}_{\mathbf{z}_{-\{S_m \cup \{j\}\}}})$$
 takes features

 $S_m \cup \{j\}$ from **x**

Estimation of ϕ_i for observation **x** of model \hat{f} fitted on data \mathcal{D} using sample size M:

- **1** For m = 1, ..., M do:
 - Select random order / permutation of feature indices $\tau = (\tau^{(1)}, \ldots, \tau^{(p)}) \in \Pi$
 - **2** Determine coalition $S_m := S_i^{\tau}$, i.e., the set of features before feature j in order τ
 - Select random data point $\mathbf{z}^{(m)} \in \mathcal{D}$
 - Construct two artificial observations by replacing feature values from x with $\mathbf{z}^{(m)}$:

$$\bullet \ \mathbf{x}_{+j}^{(m)} = (\underbrace{x_{\tau^{(1)}}, \dots, x_{\tau^{(|S_m|-1)}}, x_j}_{\mathbf{x}_{S_m \cup \{j\}}}, \underbrace{z_{\tau^{(|S_m|+1)}}^{(m)}, \dots, z_{\tau^{(p)}}^{(m)}}_{\mathbf{z}_{-\{S_m \cup \{j\}\}}}) \text{ takes features}$$

 $S_m \cup \{j\}$ from **x**

$$\bullet \ \ \mathbf{x}_{-j}^{(m)} = (\underbrace{x_{\tau^{(1)}}, \dots, x_{\tau^{(|S_m|-1)}}}_{\mathbf{x}_{S_m}}, \underbrace{z_{j}^{(m)}, z_{\tau^{(|S_m|+1)}}^{(m)}, \dots, z_{\tau^{(p)}}^{(m)}}_{\mathbf{z}_{-S_m}^{(m)}}) \text{ takes features}$$

 S_m from **x**

Estimation of ϕ_i for observation **x** of model \hat{f} fitted on data \mathcal{D} using sample size M:

- **1** For m = 1, ..., M do:
 - Select random order / permutation of feature indices $\tau = (\tau^{(1)}, \dots, \tau^{(p)}) \in \Pi$
 - **2** Determine coalition $S_m := S_j^{\tau}$, i.e., the set of features before feature j in order τ
 - **3** Select random data point $\mathbf{z}^{(m)} \in \mathcal{D}$
 - Construct two artificial observations by replacing feature values from \mathbf{x} with $\mathbf{z}^{(m)}$:

$$\bullet \ \mathbf{x}_{+j}^{(m)} = (\underbrace{x_{\tau^{(1)}}, \dots, x_{\tau^{(|S_m|-1)}}, x_j}_{\mathbf{x}_{S_m \cup \{j\}}}, \underbrace{z_{\tau^{(|S_m|+1)}}^{(m)}, \dots, z_{\tau^{(p)}}^{(m)}}_{\mathbf{z}_{-\{S_m \cup \{j\}\}}}) \text{ takes features}$$

 $S_m \cup \{j\}$ from **x**

$$\bullet \ \ \mathbf{x}_{-j}^{(m)} = (\underbrace{x_{\tau^{(1)}}, \dots, x_{\tau^{(|S_m|-1)}}}_{\mathbf{x}_{S_m}}, \underbrace{z_{j}^{(m)}, z_{\tau^{(|S_m|+1)}}^{(m)}, \dots, z_{\tau^{(p)}}^{(m)}}_{\mathbf{z}_{-S_m}^{(m)}}) \text{ takes features}$$

 S_m from **x**

Gompute difference
$$\phi_j^m = \hat{f}(\mathbf{x}_{+j}^{(m)}) - \hat{f}(\mathbf{x}_{-j}^{(m)})$$

$$\rightsquigarrow \hat{f}_{S_m}(\mathbf{x}_{S_m}) \text{ is approximated by } \hat{f}(\mathbf{x}_{-j}^{(m)}) \text{ and } \hat{f}_{S_m \cup \{j\}}(\mathbf{x}_{S_m \cup \{j\}}) \text{ by } \hat{f}(\mathbf{x}_{+j}^{(m)})$$

Estimation of ϕ_i for observation **x** of model \hat{f} fitted on data \mathcal{D} using sample size M:

- **1** For m = 1, ..., M do:
 - Select random order / permutation of feature indices $\tau = (\tau^{(1)}, \dots, \tau^{(p)}) \in \Pi$
 - **2** Determine coalition $S_m := S_j^{\tau}$, i.e., the set of features before feature j in order τ
 - **3** Select random data point $\mathbf{z}^{(m)} \in \mathcal{D}$
 - Construct two artificial observations by replacing feature values from \mathbf{x} with $\mathbf{z}^{(m)}$:

•
$$\mathbf{x}_{+j}^{(m)} = (\underbrace{x_{\tau^{(1)}, \dots, x_{\tau^{(|S_m|-1)}, X_j}}_{\mathbf{x}_{S_m \cup \{j\}}}, \underbrace{z_{\tau^{(|S_m|+1)}, \dots, z_{\tau^{(p)}}}^{(m)}}_{\mathbf{z}_{-\{S_m \cup \{j\}\}}})$$
 takes features

 $S_m \cup \{j\}$ from **x**

$$\bullet \ \ \mathbf{x}_{-j}^{(m)} = (\underbrace{x_{\tau^{(1)}}, \dots, x_{\tau^{(|S_m|-1)}}}_{\mathbf{x}_{S_m}}, \underbrace{z_{j}^{(m)}, z_{\tau^{(|S_m|+1)}}^{(m)}, \dots, z_{\tau^{(p)}}^{(m)}}_{\mathbf{z}_{-S_m}^{(m)}}) \text{ takes features}$$

 S_m from **x**

Gompute difference
$$\phi_j^m = \hat{f}(\mathbf{x}_{+j}^{(m)}) - \hat{f}(\mathbf{x}_{-j}^{(m)})$$
 $\Rightarrow \hat{f}_{S_m}(\mathbf{x}_{S_m})$ is approximated by $\hat{f}(\mathbf{x}_{-j}^{(m)})$ and $\hat{f}_{S_m \cup \{j\}}(\mathbf{x}_{S_m \cup \{j\}})$ by $\hat{f}(\mathbf{x}_{+j}^{(m)})$

over *M* iters

Interpretable Machine Learning - 5/9

SHAPLEY VALUE APPROXIMATION - ILLUSTRATION

 $\phi_j(\mathbf{x}) = \frac{1}{M} \sum_{m=1}^{M} \left[\hat{f}(\mathbf{x}_{+j}^{(m)}) - \hat{f}(\mathbf{x}_{-j}^{(m)}) \right]$

Definition

x: obs. of interest

x with feature values in $S_m \cup \{j\}$

	Temperature	Humidity	Windspeed	Year
\boldsymbol{x}	10.66	56	11	2012
x_{+j}	10.66	56	$random: z_{windspeed}^{(m)}$	2012
x_{-j}	10.66	56	$random: z_{windspeed}^{(m)}$	$random: z_{year}^{(m)}$
			,	•
				7

SHAPLEY VALUE APPROXIMATION - ILLUSTRATION

Definition

$$\phi_j(\mathbf{x}) = \frac{1}{M} \sum_{m=1}^{M} \left[\hat{f}(\mathbf{x}_{+j}^{(m)}) - \hat{f}(\mathbf{x}_{-j}^{(m)}) \right] = \Delta(j, S_m)$$

Contribution of feature j to coalition S_m

- $\Delta(j, S_m) = \hat{f}(\mathbf{x}_{+j}^{(m)}) \hat{f}(\mathbf{x}_{-j}^{(m)})$ is the marginal contribution of feature j to coalition S_m
- Here: Feature *year* contributes +700 bike rentals if it joins coalition $S_m = \{temp, hum\}$

	Temperature	Humidity	Windspeed	Year	Count	
\boldsymbol{x}	10.66	56	11	2012		
x_{+j}	10.66	56	$random: z_{windspeed}^{(m)}$	2012	5600	700
x_{-j}	10.66	56	$random: z_{windspeed}^{(m)}$	$random: z_{year}^{(m)}$	4900	700
				<u> </u>	$\overset{}{\sim}$	$\Delta(j,S_m)$
				${\mathcal J}$	f	marginal contribution

SHAPLEY VALUE APPROXIMATION - ILLUSTRATION

Definition

$$\phi_j(\mathbf{x}) = \frac{1}{M} \sum_{m=1}^{M} \left[\hat{f}(\mathbf{x}_{+j}^{(m)}) - \hat{f}(\mathbf{x}_{-j}^{(m)}) \right]$$

- Compute marginal contribution of feature j towards the prediction across all randomly drawn feature coalitions S_1, \ldots, S_m
- Average all *M* marginal contributions of feature *i*
- Shapley value ϕ_j is the payout of feature j, i.e., how much feature year contributed to the overall prediction in bicycle counts of a specific observation \mathbf{x}

We take the general axioms for Shapley Values and apply it to predictions:

• **Efficiency**: Shapley values add up to the (centered) prediction:

$$\sum_{j=1}^{p} \phi_j = \hat{f}(\mathbf{x}) - \mathbb{E}_{\mathbf{x}}(\hat{f}(X))$$

We take the general axioms for Shapley Values and apply it to predictions:

• **Efficiency**: Shapley values add up to the (centered) prediction:

$$\sum_{j=1}^{p} \phi_j = \hat{f}(\mathbf{x}) - \mathbb{E}_{\mathbf{x}}(\hat{f}(X))$$

• **Symmetry**: Two features *j* and *k* that contribute the same to the prediction get the same payout

→ interaction effects between features are fairly divided

$$\hat{f}_{S\cup\{j\}}(\mathbf{x}_{S\cup\{j\}}) = \hat{f}_{S\cup\{k\}}(\mathbf{x}_{S\cup\{k\}})$$
 for all $S \subseteq P \setminus \{j,k\}$ then $\phi_j = \phi_k$

We take the general axioms for Shapley Values and apply it to predictions:

• **Efficiency**: Shapley values add up to the (centered) prediction:

$$\sum_{j=1}^{p} \phi_j = \hat{f}(\mathbf{x}) - \mathbb{E}_{\mathbf{x}}(\hat{f}(X))$$

• **Symmetry**: Two features *j* and *k* that contribute the same to the prediction get the same payout

→ interaction effects between features are fairly divided

$$\hat{f}_{S \cup \{j\}}(\mathbf{x}_{S \cup \{j\}}) = \hat{f}_{S \cup \{k\}}(\mathbf{x}_{S \cup \{k\}})$$
 for all $S \subseteq P \setminus \{j, k\}$ then $\phi_j = \phi_k$

 Dummy / Null Player: Shapley value of a feature that does not influence the prediction is zero → if a feature was not selected by the model (e.g., tree or LASSO), its Shapley value is zero

$$\hat{f}_{S\cup\{j\}}(\mathbf{x}_{S\cup\{j\}})=\hat{f}_S(\mathbf{x}_S)$$
 for all $S\subseteq P$ then $\phi_j=0$

We take the general axioms for Shapley Values and apply it to predictions:

• **Efficiency**: Shapley values add up to the (centered) prediction:

$$\sum_{j=1}^{p} \phi_j = \hat{f}(\mathbf{x}) - \mathbb{E}_{\mathbf{x}}(\hat{f}(X))$$

• **Symmetry**: Two features *j* and *k* that contribute the same to the prediction get the same payout

 \sim interaction effects between features are fairly divided $\hat{f}_{S \cup \{i\}}(\mathbf{x}_{S \cup \{i\}}) = \hat{f}_{S \cup \{k\}}(\mathbf{x}_{S \cup \{k\}})$ for all $S \subseteq P \setminus \{j, k\}$ then $\phi_i = \phi_k$

• **Dummy / Null Player:** Shapley value of a feature that does not influence the prediction is zero
$$\leadsto$$
 if a feature was not selected by the model (e.g., tree or LASSO), its Shapley value is zero $\hat{t}_{S\cup\{i\}}(\mathbf{x}_{S\cup\{i\}}) = \hat{t}_S(\mathbf{x}_S)$ for all $S \subseteq P$ then $\phi_i = 0$

• Additivity: For a prediction with combined payouts, the payout is the sum of payouts: $\phi_j(v_1) + \phi_j(v_2) \rightsquigarrow$ Shapley values for model ensembles can be combined

BIKE SHARING DATASET

- Shapley values of observation i = 200 from the bike sharing data
- ullet Difference between model prediction of this observation and the average prediction of the data is fairly distributed among the features (i.e., $4434-4507 \approx -73$)
- Feature value temp = 28.5 has the most positive effect, with a contribution (increase of prediction) of about +400

ADVANTAGES AND DISADVANTAGES

Advantages:

- Solid theoretical foundation in game theory
- Prediction is fairly distributed among the feature values → easy to interpret for a user
- Contrastive explanations that compare the prediction with the average prediction

Disadvantages:

- Without sampling, Shapley values need a lot of computing time to inspect all possible coalitions
- Like many other IML methods, Shapley values suffer from the inclusion of unrealistic data observations when features are correlated

