Pokémon Analysis

Authors: Ricky Wong

Overview

With the new Pokémon Scarlet and Violet's release just around the corner, the competitive Pokémon community are eager to get an edge over the other players by finding the strongest Pokémon. Using linear regression we can highlight two variables that affect the attack of a Pokémon.

Business Understanding

To get an edge over other players, the enthusiast players would like to predict the attack stats of the next generation Pokémon to see if they are worth using. However, the stats of a Pokémon is not the only variable to consider. Our model will not factor in the moves/skills, items or other game mechanics..

```
In [1]: #import packages
   import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import statsmodels.api as sm
   import scipy.stats as stats
   import seaborn as sns

from sklearn.metrics import mean_squared_error, r2_score
   from sklearn.model_selection import train_test_split
   from sklearn.feature_selection import RFE
   from sklearn.linear_model import LinearRegression
   from sklearn.preprocessing import MinMaxScaler
   from sklearn import preprocessing
```

```
In [2]: #read data from file
    pokemon df = pd.read csv('data/Pokemon.csv')
```

Data Understanding

We have obtained the data from Kaggle which uses the Pokémon official site as well as community sites. The data is accurate as it has been extracted from the games. We can see each stat of a Pokémon as well as the name, type, generation and if the Pokémon is legendary or not.

After getting an idea of the data we are dealing with we can see the only null values are from type 2 which is accurate as not all Pokémon have a second type.

```
In [3]: pokemon_df.head()
Out[3]:
```

	#	Name	Type 1	Type 2	Total	HP	Attack	Defense	Sp. Atk	Sp. Def	Speed	Generation
0	1	Bulbasaur	Grass	Poison	318	45	49	49	65	65	45	1
1	2	Ivysaur	Grass	Poison	405	60	62	63	80	80	60	1
2	3	Venusaur	Grass	Poison	525	80	82	83	100	100	80	1
3	3	VenusaurMega Venusaur	Grass	Poison	625	80	100	123	122	120	80	1
4	4	Charmander	Fire	NaN	309	39	52	43	60	50	65	1

In [4]: nokemon df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 800 entries, 0 to 799
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	#	800 non-null	int64
1	Name	800 non-null	object
2	Type 1	800 non-null	object
3	Type 2	414 non-null	object
4	Total	800 non-null	int64
5	HP	800 non-null	int64
6	Attack	800 non-null	int64
7	Defense	800 non-null	int64
8	Sp. Atk	800 non-null	int64
9	Sp. Def	800 non-null	int64
10	Speed	800 non-null	int64
11	Generation	800 non-null	int64
12	Legendary	800 non-null	bool
dtyp	es: bool(1),	int64(9), objec	t(3)
	75	O	

memory usage: 75.9+ KB

In [5]: nokemon df describe()

Out[5]:

	#	Total	НР	Attack	Defense	Sp. Atk	Sp. Def	
count	800.000000	800.00000	800.000000	800.000000	800.000000	800.000000	800.000000	8
mean	362.813750	435.10250	69.258750	79.001250	73.842500	72.820000	71.902500	(
std	208.343798	119.96304	25.534669	32.457366	31.183501	32.722294	27.828916	
min	1.000000	180.00000	1.000000	5.000000	5.000000	10.000000	20.000000	
25%	184.750000	330.00000	50.000000	55.000000	50.000000	49.750000	50.000000	
50%	364.500000	450.00000	65.000000	75.000000	70.000000	65.000000	70.000000	(
75%	539.250000	515.00000	80.000000	100.000000	90.000000	95.000000	90.000000	!
max	721.000000	780.00000	255.000000	190.000000	230.000000	194.000000	230.000000	1

Checking the stats between legendary and non-legendary Pokémon we can see they are not too different with highest total stats for legendary is 780 and normal Pokémon highest is 700. Legendary has a larger mean as they don't have to evolve. We can keep legendary Pokémon in our analysis.

```
In [6]: # check stats for non-legendary
```

Out[6]: nokemon df.loc[nokemon df['legendarv'] == Truel.describe()

	#	Total	HP	Attack	Defense	Sp. Atk	Sp. Def
count	65.000000	65.000000	65.000000	65.000000	65.000000	65.000000	65.000000
mean	470.215385	637.384615	92.738462	116.676923	99.661538	122.184615	105.938462
std	173.651095	60.937389	21.722164	30.348037	28.255131	31.104608	28.827004
min	144.000000	580.000000	50.000000	50.000000	20.000000	50.000000	20.000000
25%	381.000000	580.000000	80.000000	100.000000	90.000000	100.000000	90.000000
50%	483.000000	600.000000	91.000000	110.000000	100.000000	120.000000	100.000000
75%	642.000000	680.000000	105.000000	131.000000	115.000000	150.000000	120.000000
max	721.000000	780.000000	150.000000	190.000000	200.000000	194.000000	200.000000

In [7]: # check stats for non-legendary

nokemon df.loc[nokemon df['legendary'] == Falsel.describe()

Out[7]:

	#	Total	НР	Attack	Defense	Sp. Atk	Sp. Def
count	735.000000	735.000000	735.000000	735.000000	735.000000	735.000000	735.000000
mean	353.315646	417.213605	67.182313	75.669388	71.559184	68.454422	68.892517
std	208.590419	106.760417	24.808849	30.490153	30.408194	29.091705	25.669310
min	1.000000	180.000000	1.000000	5.000000	5.000000	10.000000	20.000000
25%	175.500000	324.000000	50.000000	54.500000	50.000000	45.000000	50.000000
50%	346.000000	425.000000	65.000000	72.000000	66.000000	65.000000	65.000000
75%	533.500000	498.000000	79.500000	95.000000	85.000000	85.000000	85.000000
max	715.000000	700.000000	255.000000	185.000000	230.000000	175.000000	230.000000

Other observations:

- There are a total of 18 unique Pokémon types.
- Histogram shows the data is slightly positively skewed.
- Hp, defence and special defence has some outliers we can remove

Out[8]: 18

In [9]: # We will be removing Total as that is all the stats added together. pokemon_df.iloc[:,5:12].plot.hist(subplots = True, layout=(3,3), figsize=(1) plt.tight_layout() nlt.show() **—** НР - Attack Defense 300 200 250 200) 150 Frequency 150 150 100 를 100 50 250 Sp. Def Sp. Atk Speed 250 200 200 150 E ည် 150) 150 Freque 100 토 100 100 50 50 50 800 Generation 700 600 Freduency 400 300 300 200 100

100

150

200

250

In [11]: # outliers to remove
 remove_pokemon1 = pokemon_df[pokemon_df['HP'] >= 200]
 remove_pokemon2 =pokemon_df[pokemon_df['Defense'] >= 200]
 remove_pokemon3 =pokemon_df[pokemon_df['Sp. Def'] >= 200]

 remove_pokemon = pd.concat([remove_pokemon1, remove_pokemon2, remove_pokemon remove_pokemon

Speed

Out[11]:

25

	#	Name	Type 1	Type 2	Total	HP	Attack	Defense	Sp. Atk	Sp. Def	Speed	Gener
121	113	Chansey	Normal	NaN	450	250	5	5	35	105	50	
261	242	Blissey	Normal	NaN	540	255	10	10	75	135	55	
223	208	Steelix	Steel	Ground	510	75	85	200	55	65	30	
224	208	SteelixMega Steelix	Steel	Ground	610	75	125	230	55	95	30	
230	213	Shuckle	Bug	Rock	505	20	10	230	10	230	5	
333	306	AggronMega Aggron	Steel	NaN	630	70	140	230	60	80	50	
414	377	Regirock	Rock	NaN	580	80	100	200	50	100	50	
415	378	Regice	Ice	NaN	580	80	50	100	100	200	50	

In [12]: # average stats for each generation
pokemon_stats = ['HP', 'Attack', 'Defense', 'Sp. Atk', 'Sp. Def', 'Speed']
pokemon_stats_by_generation = pokemon_df.groupby('Generation').mean()[pokemon_stats_by_generation_plot_line(figsize=(15.10), title='Average_Stats')

Data Preparation

We will start to go through the data and make changes that fit our needs like removing outliers, mega evolutions as that is part of a game mechanic and is not in every Pokémon game and other columns we don't need like the index number and name. Type 2 will be converted to **1** if it has a second type and **0** if they don't. Total will need to be removed as well because that is just the other stats added up.

In [13]: pokemon_clean_df = pokemon_df.copy(deep=True)
 pokemon_clean_df.head()

Out[13]:

	#	Name	Type 1	Type 2	Total	HP	Attack	Defense	Sp. Atk	Sp. Def	Speed	Generation
0	1	Bulbasaur	Grass	Poison	318	45	49	49	65	65	45	1
1	2	Ivysaur	Grass	Poison	405	60	62	63	80	80	60	1
2	3	Venusaur	Grass	Poison	525	80	82	83	100	100	80	1
3	3	VenusaurMega Venusaur	Grass	Poison	625	80	100	123	122	120	80	1
4	4	Charmander	Fire	NaN	309	39	52	43	60	50	65	1

```
In [14]: # Remove outliers
pokemon clean df.drop(remove pokemon['Name'].index. axis=0. inplace=True)
```

```
In [15]: # remove mega evolutions
pokemon_clean_df.drop(pokemon_clean_df[pokemon_clean_df['Name'].str.contain
```

In [16]: # New binary column for pokemon with second type
pokemon_clean_df['Has Type 2'] = np.where(pokemon_clean_df["Type 2"].isnull
pokemon_clean_df.head()

Out[16]:

	#	Name	Type 1	Type 2	Total	HP	Attack	Defense	Sp. Atk	Sp. Def	Speed	Generation
0	1	Bulbasaur	Grass	Poison	318	45	49	49	65	65	45	1
1	2	lvysaur	Grass	Poison	405	60	62	63	80	80	60	1
2	3	Venusaur	Grass	Poison	525	80	82	83	100	100	80	1
4	4	Charmander	Fire	NaN	309	39	52	43	60	50	65	1
5	5	Charmeleon	Fire	NaN	405	58	64	58	80	65	80	1

In [17]: # remove pokedex number, name, type 2, total, Legendary
pokemon_clean_df.drop(['#','Name','Type 2','Total','Legendary'], axis=1, in
pokemon_clean_df.reset_index(drop=True, inplace=True)
pokemon_clean_df.head()

Out[17]:

	Type 1	HP	Attack	Defense	Sp. Atk	Sp. Def	Speed	Generation	Has Type 2
0	Grass	45	49	49	65	65	45	1	1
1	Grass	60	62	63	80	80	60	1	1
2	Grass	80	82	83	100	100	80	1	1
3	Fire	39	52	43	60	50	65	1	0
4	Fire	58	64	58	80	65	80	1	0

Multicollinearity check

- No correlations over 0.75 with other predictors.
- HP and defence are highly correlated with our dependant variable attack

In [18]: stat_predictors = pokemon_clean_df.iloc[:,1:9]
 pd.plotting.scatter_matrix(stat_predictors, figsize = [20, 20]);
 nlt.show()

In [19]: # none over 0.75
stat predictors.corr().style.background_gradient(cman='coolwarm')

Out[19]:

	НР	Attack	Defense	Sp. Atk	Sp. Def	Speed	Generation	Has Type 2
НР	1.000000	0.511040	0.318909	0.405698	0.393469	0.193413	0.106463	0.072524
Attack	0.511040	1.000000	0.436548	0.376459	0.253266	0.347043	0.099621	0.083202
Defense	0.318909	0.436548	1.000000	0.234861	0.503284	0.035755	0.095425	0.165694
Sp. Atk	0.405698	0.376459	0.234861	1.000000	0.529399	0.455270	0.086140	0.110084
Sp. Def	0.393469	0.253266	0.503284	0.529399	1.000000	0.276801	0.083481	0.111262
Speed	0.193413	0.347043	0.035755	0.455270	0.276801	1.000000	0.011523	0.063425
Generation	0.106463	0.099621	0.095425	0.086140	0.083481	0.011523	1.000000	0.071125
Has Type 2	0.072524	0.083202	0.165694	0.110084	0.111262	0.063425	0.071125	1.000000

Normal distribution of data

In [20]: stat nredictors hist(figsize=(15.10)):

In [21]: # QQ-Plots columns = stat_predictors.columns for c in columns: sm.granhics.qqnlot(stat_predictors[c]._dist=stats.norm._line='45'._fit= 4 3 Sample Quantiles 2 1 0 -1 -2 0 1 2 Theoretical Quantiles Ś -1 ż 3 2 Sample Quantiles 0 -1 -2 -3 ż 3 -1 ò i Theoretical Quantiles 3 2 Sample Quantiles 1 0 -1 -2 -3 -1 Ò i ż ż Theoretical Quantiles 3 2 Quantiles 1

For linear regression, categorical data should be transformed using one-hot encoding.

```
In [22]: # dummy variables
    type_dum = pd.get_dummies(pokemon_clean_df['Type 1'], prefix='type', drop_f:
        gen_dum = pd.get_dummies(pokemon_clean_df['Generation'], prefix='gen', drop_

# add dummy variables
    pokemon_df = pd.concat([stat_predictors.iloc[:,0:6], stat_predictors['Has Type])
```

Modeling

Model 1

For the first model we use all the predictors that we think should be useful to our model. With an R-Squared value of 0.530 we can explain 53% of the variations of our model. There are quite a few predictors with a P-value over 0.05 which we can remove from our model.

```
In [24]: #all predictors
predictors_int = sm.add_constant(predictors)
model = sm.OLS(dependent, predictors_int).fit()
model.summary()
```

Out[24]: OLS Regression Results

Covariance Type:

Dep. Variable: Attack R-squared: 0.532 Model: **OLS** Adj. R-squared: 0.514 Method: Least Squares F-statistic: 29.07 **Date:** Sat, 25 Jun 2022 **Prob (F-statistic):** 8.32e-99 Time: 20:30:23 Log-Likelihood: -3300.2No. Observations: AIC: 6658. 745 BIC: 6792. **Df Residuals:** 716 **Df Model:** 28

nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const	5.9300	4.108	1.444	0.149	-2.134	13.994
HP	0.4026	0.038	10.479	0.000	0.327	0.478
Defense	0.3526	0.036	9.898	0.000	0.283	0.423
Sp. Atk	0.2311	0.037	6.312	0.000	0.159	0.303
Sp. Def	-0.2350	0.040	-5.889	0.000	-0.313	-0.157
Speed	0.2666	0.033	8.184	0.000	0.203	0.331

```
Has Type 2
                -2.7049
                          1.649
                                 -1.640 0.101
                                                 -5.943
                                                          0.533
                8.4933
   type_Dark
                          4.755
                                  1.786 0.074
                                                 -0.842
                                                         17.828
               17.0461
                          4.970
                                  3.430 0.001
 type_Dragon
                                                  7.290
                                                         26.803
              -10.0813
                          4.323
                                 -2.332 0.020
                                               -18.569
type_Electric
                                                         -1.594
                -7.8512
                          6.084
                                 -1.290 0.197
                                                -19.796
                                                          4.094
   type_Fairy
type_Fighting
               23.9155
                          5.025
                                  4.759 0.000
                                                 14.049
                                                         33.782
    type_Fire
                 1.4326
                          4.133
                                  0.347 0.729
                                                 -6.682
                                                          9.547
                                 -1.025
  type_Flying
               -11.1469
                         10.870
                                        0.305
                                                -32.487
                                                        10.193
                                 -1.068
                                         0.286
  type_Ghost
                -5.0243
                          4.706
                                                -14.264
                                                          4.215
                -3.3612
                                 -0.904
                                         0.366
  type_Grass
                          3.719
                                               -10.663
                                                          3.941
type_Ground
               14.5622
                          4.571
                                  3.186 0.002
                                                         23.536
                                                  5.589
                                 -1.007 0.314
                -5.2251
                          5.189
                                               -15.413
                                                          4.962
     type_lce
                -0.0872
                          3.528
                                 -0.025
                                        0.980
                                                          6.838
 type_Normal
                                                 -7.013
 type_Poison
                2.0323
                          4.790
                                  0.424 0.672
                                                 -7.373
                                                         11.437
              -14.7508
                          4.146
                                 -3.558
                                        0.000
                                                -22.890
                                                          -6.611
type_Psychic
                                  2.889 0.004
                                                  3.992 20.925
   type_Rock
               12.4584
                          4.313
                3.5702
                          5.370
                                  0.665
                                        0.506
                                                 -6.973
                                                         14.114
   type_Steel
  type_Water
                          3.388
                                 -1.805 0.071
                                                -12.767
                -6.1163
                                                          0.535
       gen_2
                -0.2169
                          2.787
                                 -0.078 0.938
                                                 -5.689
                                                          5.255
       gen_3
                2.4176
                          2.507
                                  0.964 0.335
                                                 -2.505
                                                          7.340
                          2.627
                                  0.706 0.481
                                                 -3.305
                                                          7.012
       gen_4
                1.8536
                3.7170
                          2.435
                                  1.526 0.127
                                                          8.498
       gen_5
                                                 -1.064
       gen_6
                -0.9092
                          3.030
                                 -0.300 0.764
                                                 -6.859
                                                          5.041
      Omnibus: 59.386
                           Durbin-Watson:
                                               1.578
Prob(Omnibus):
                  0.000
                         Jarque-Bera (JB):
                                              99.607
                  0.556
         Skew:
                                 Prob(JB):
                                            2.35e-22
```

Notes:

Kurtosis:

4.405

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Cond. No. 2.67e+03

[2] The condition number is large, 2.67e+03. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [25]: # sort predictors by P-value

coefs = pd.DataFrame({
    'coef': model.params.values,
    'pvalue': round(model.pvalues, 2),
    'name': model.params.index
}).sort_values(by='pvalue', ascending=False)
coefs

Out[25]:
```

14 of 22

	coef	pvalue	name
type_Normal	-0.087166	0.98	type_Normal
gen_2	-0.216896	0.94	gen_2
gen_6	-0.909152	0.76	gen_6
type_Fire	1.432624	0.73	type_Fire
type_Poison	2.032252	0.67	type_Poison
type_Steel	3.570218	0.51	type_Steel
gen_4	1.853621	0.48	gen_4
type_Grass	-3.361231	0.37	type_Grass
gen_3	2.417649	0.34	gen_3
type_lce	-5.225102	0.31	type_lce
type_Flying	-11.146853	0.31	type_Flying
type_Ghost	-5.024296	0.29	type_Ghost
type_Fairy	-7.851161	0.20	type_Fairy
const	5.930004	0.15	const
gen_5	3.717003	0.13	gen_5
Has Type 2	-2.704934	0.10	Has Type 2
type_Water	-6.116295	0.07	type_Water
type_Dark	8.493269	0.07	type_Dark
type_Electric	-10.081291	0.02	type_Electric
Defense	0.352578	0.00	Defense
Sp. Atk	0.231100	0.00	Sp. Atk
Sp. Def	-0.234985	0.00	Sp. Def
type_Fighting	23.915477	0.00	type_Fighting
Speed	0.266608	0.00	Speed
type_Rock	12.458445	0.00	type_Rock
type_Dragon	17.046078	0.00	type_Dragon
type_Ground	14.562232	0.00	type_Ground
НР	0.402615	0.00	HP

```
In [26]: # drop predictors with p-values over 0.05
drop_columns = coefs[coefs['pvalue'] > 0.05]['name'].values
drop_columns = drop_columns[drop_columns != 'const']
pokemon_df2 = pokemon_df.drop(drop_columns, axis=1)
predictors = pokemon_df2.drop(['Attack'], axis=1)
```

Model 2

After removing the high p-values we still have a few predictors that can be removed. We check our data for multicollinearity which there isn't. We also run a min max scaler so that the stats are all on the same scale. Recursive Feature Elimination helps us find the best predictors to remove.

```
In [27]: #Removed high p-values
    predictors_int = sm.add_constant(predictors)
    model = sm.OLS(dependent, predictors_int).fit()
    model.summarv()
```

Out[27]: OLS Regression Results

Dep. Variable: R-squared: 0.514 Attack Model: **OLS** 0.507 Adj. R-squared: Method: Least Squares F-statistic: 70.47 Date: Sat, 25 Jun 2022 Prob (F-statistic): 4.97e-107 Time: 20:30:23 Log-Likelihood: -3314.3 No. Observations: 745 AIC: 6653. **Df Residuals:** 733 BIC: 6708. Df Model: 11

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const	4.9010	3.084	1.589	0.112	-1.154	10.956
НР	0.4053	0.037	10.963	0.000	0.333	0.478
Defense	0.3606	0.034	10.713	0.000	0.295	0.427
Sp. Atk	0.2121	0.035	6.144	0.000	0.144	0.280
Sp. Def	-0.2507	0.040	-6.336	0.000	-0.328	-0.173
Speed	0.2815	0.031	8.949	0.000	0.220	0.343
type_Dragon	19.4756	4.236	4.598	0.000	11.160	27.791
type_Electric	-7.8479	3.451	-2.274	0.023	-14.623	-1.073
type_Fighting	26.1335	4.322	6.047	0.000	17.649	34.618
type_Ground	16.1127	3.873	4.160	0.000	8.509	23.716
type_Psychic	-11.6910	3.143	-3.719	0.000	-17.862	-5.520
type_Rock	12.9333	3.559	3.634	0.000	5.947	19.920

 Omnibus:
 55.597
 Durbin-Watson:
 1.548

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 86.354

 Skew:
 0.553
 Prob(JB):
 1.77e-19

 Kurtosis:
 4.249
 Cond. No.
 942.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [28]: nokemon_df2.corr().stvle.hackground_gradient(cman='coolwarm')

Out[28]:

	HP	Attack	Defense	Sp. Atk	Sp. Def	Speed	type_Dragon	1
HP	1.000000	0.511040	0.318909	0.405698	0.393469	0.193413	0.105920	

	HP	Attack	Defense	Sp. Atk	Sp. Def	Speed	type_Dragon	
Attack	0.511040	1.000000	0.436548	0.376459	0.253266	0.347043	0.189920	
Defense	0.318909	0.436548	1.000000	0.234861	0.503284	0.035755	0.060911	
Sp. Atk	0.405698	0.376459	0.234861	1.000000	0.529399	0.455270	0.106504	
Sp. Def	0.393469	0.253266	0.503284	0.529399	1.000000	0.276801	0.104303	
Speed	0.193413	0.347043	0.035755	0.455270	0.276801	1.000000	0.077015	
type_Dragon	0.105920	0.189920	0.060911	0.106504	0.104303	0.077015	1.000000	
type_Electric	-0.094831	-0.065126	-0.054438	0.136066	0.029193	0.153181	-0.046480	
type_Fighting	0.015720	0.116010	-0.046578	-0.134299	-0.041660	-0.026427	-0.035434	
type_Ground	0.048938	0.139245	0.101679	-0.097248	-0.054864	-0.022223	-0.040286	

Standardise data

```
In [29]: # define min max scaler
scaler = MinMaxScaler()
# transform data
scaled = scaler.fit_transform(stat_predictors.iloc[:,0:6])
data = pd.DataFrame(scaled, columns=stat_predictors.iloc[:,0:6].columns)
data.hist(figsize=(15,10))
plt.show()
```


In [30]: pokemon_df3 = pd.concat([data, predictors.iloc[:,5:11]], axis=1)
pokemon_df3

Out[30]:

	HP	Attack	Defense	Sp. Atk	Sp. Def	Speed	type_Dragon	type_Electric	
 0	0.232804	0.251429	0.245810	0.323529	0.321429	0.228571	0	0	_
1	0.312169	0.325714	0.324022	0.411765	0.428571	0.314286	0	0	
2	0.417989	0.440000	0.435754	0.529412	0.571429	0.428571	0	0	

	HP	Attack	Defense	Sp. Atk	Sp. Def	Speed	type_Dragon	type_Electric
3	0.201058	0.268571	0.212291	0.294118	0.214286	0.342857	0	0
4	0.301587	0.337143	0.296089	0.411765	0.321429	0.428571	0	0
740	0.566138	0.542857	0.648045	0.417647	0.535714	0.514286	1	0
741	0.259259	0.542857	0.810056	0.529412	0.928571	0.257143	0	0
742	0.417989	0.600000	0.307263	0.823529	0.785714	0.371429	0	0
743	0.417989	0.885714	0.307263	0.941176	0.785714	0.428571	0	0
744	0.417989	0.600000	0.642458	0.705882	0.500000	0.371429	0	0

RFE

Recursive Feature Elimination

```
In [31]: rfe_df = pokemon_df3.copy(deep=True)
    rfe_pred = rfe_df.drop('Attack',axis=1)
    rfe_pred_head()
```

Out[31]:

	HP	Defense	Sp. Atk	Sp. Def	Speed	type_Dragon	type_Electric	type_Fightin
0	0.232804	0.245810	0.323529	0.321429	0.228571	0	0	
1	0.312169	0.324022	0.411765	0.428571	0.314286	0	0	
2	0.417989	0.435754	0.529412	0.571429	0.428571	0	0	
3	0.201058	0.212291	0.294118	0.214286	0.342857	0	0	
4	0.301587	0.296089	0.411765	0.321429	0.428571	0	0	

```
In [33]: # best 2 predictors
    selector = RFE(linreg, n_features_to_select = 2)
    selector = selector.fit(rfe_pred, rfe_df['Attack'])
    nrint(list(zin(rfe_pred, selector.ranking_)))
    [('HP', 1), ('Defense', 1), ('Sp. Atk', 4), ('Sp. Def', 3), ('Speed', 2),
    ('type_Dragon', 6), ('type_Electric', 10), ('type_Fighting', 5), ('type_Ground', 7), ('type_Psychic', 9), ('type_Rock', 8)]
```

Model 3

With our final model we have an R-Squared value that can explain 50.3% of the variance in our model. All our predictors can be considered statistically significant as their P-Value is less than 0.05.

One of the assumptions for linear regression is that our data needs to have normal distribution. This can be seen with our QQ-Plot mostly falling on the red line. The skew value also reinforces this by being between -0.5 and 0.5.

Another assumption for linear regression is that the data needs to be homoscedastic which is represented in our residuals scatterplot not having a cone like shape or pattern.

```
In [34]:
         dependent = rfe_df['Attack']
         predictors = rfe_pred.drop(['type_Electric', 'type_Psychic'], axis=1)
         predictors int = sm.add constant(predictors)
         model = sm.OLS(dependent, predictors_int).fit()
         model.summarv()
Out[34]:
```

OLS Regression Results

Dep. Variable: Attack R-squared: 0.503 Model: OLS Adj. R-squared: 0.497 Method: Least Squares F-statistic: 82.53 **Date:** Sat, 25 Jun 2022 **Prob (F-statistic):** 2.59e-105 20:30:24 Log-Likelihood: Time: 524.89 No. Observations: 745 AIC: -1030. **Df Residuals:** 735 BIC: -983.6 Df Model:

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]	
const	-0.0016	0.017	-0.095	0.925	-0.035	0.031	
НР	0.4600	0.040	11.564	0.000	0.382	0.538	
Defense	0.3848	0.035	11.137	0.000	0.317	0.453	
Sp. Atk	0.1786	0.033	5.381	0.000	0.113	0.244	
Sp. Def	-0.2138	0.032	-6.728	0.000	-0.276	-0.151	
Speed	0.2749	0.032	8.697	0.000	0.213	0.337	
type_Dragon	0.1215	0.024	4.994	0.000	0.074	0.169	
type_Fighting	0.1536	0.025	6.160	0.000	0.105	0.203	
type_Ground	0.0953	0.022	4.264	0.000	0.051	0.139	
type_Rock	0.0782	0.021	3.813	0.000	0.038	0.118	

Omnibus: 40.719 **Durbin-Watson:** 1.551 Prob(Omnibus): 0.000 Jarque-Bera (JB): 57.851 Skew: 0.460 **Prob(JB):** 2.74e-13 Kurtosis: 4.008 Cond. No. 12.8

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

QQ-Plot

Mostly follows the red line indicating data is normally distributed

Homoscedasticity

Plots don't show a cone like pattern

Training

Training and test MSE is similar so we can expect the model to perform similarly on different

data. Accuracy of the model is 50.14%

```
In [37]: y = dependent
         X = predictors
         X_train, X_test, y_train, y_test = train_test_split(X, y)
         linreg = LinearRegression()
         linreg.fit(X_train, y_train)
         y_hat_train = linreg.predict(X_train)
         y_hat_test = linreg.predict(X_test)
         train_mse = mean_squared_error(y_train, y_hat_train)
         test_mse = mean_squared_error(y_test, y_hat_test)
         print('Train Mean Squared Error:', train_mse)
         nrint('Test Mean Squared Error:'. test mse)
         Train Mean Squared Error: 0.015127276429836516
```

Test Mean Squared Error: 0.01200812854901391

```
In [38]:
        Accuracy=r2_score(y_test,y_hat_test)*100
         nrint(" Accuracy of the model is %.2f" %Accuracy)
          Accuracy of the model is 51.43
```


Conclusion

The best 2 predictors for our model is HP and defence which is also highlighted from the correlation matrix. With an accuracy of 50% this model may not be enough to provide players with enough insight on the upcoming generation of Pokémon. Even if our model had high accuracy with predicting the attack of the new generation there are so many other factors to account for.

Having high attack doesn't mean it is a top tier Pokémon to use as the other stats like speed may be a lot lower meaning that Pokémon attacks second. There are also varying skills and other game mechanics that can change the outcome of a high attack Pokémon versus a low attack Pokémon.

```
In [ ]:
```