RSA Analysis

DR. ODELU VANGA

INDIAN INSTITUTE OF INFORMATION TECHNOLOGY SRI CITY, CHITTOOR, INDIA

Recap: RSA

Parameters : N=pq. N \approx 1024 bits. p,q \approx 512 bits.

e – encryption exponent. $gcd(e, \varphi(N)) = 1$.

Encryption:

RSA(M) = M^e (mod N) where $M \in Z_N^*$

Trapdoor:

 \mathbf{d} - decryption exponent. Where $\mathbf{e} \cdot \mathbf{d} = 1 \pmod{\varphi(N)}$

Decryption:

 $\mathbf{RSA(M)}^{\mathbf{d}} = \mathbf{M}^{\mathrm{ed}} = \mathbf{M}^{\mathrm{k}\phi(\mathrm{N})+1} = \mathbf{M} \pmod{\mathrm{N}}$

(n,e,t,ε)-RSA Assumption: For any t-time alg. A: $Pr[A(N,e,x) = x^{1/e}(N): N\leftarrow pq, x\leftarrow RZ_N^*] < ε$

Recap: $\Phi(N)$ implies factorization

Knowing both N and $\Phi(N)$, one knows

$$N = pq$$

$$\Phi(N) = (p-1)(q-1) = pq - p - q + 1$$

$$= N - p - N/p + 1$$

$$p\Phi(N) = Np - p^2 - N + p$$

$$p^2 - Np + \Phi(N)p - p + N = 0$$

$$p^2 - (N - \Phi(N) + 1) p + N = 0$$

There are two solutions of p in the above equation.

Both p and q are solutions.

RSA e-small

Decryption Attacks on RSA

Small encryption exponent e

• When e=3, Alice sends the encryption of message m to three people (public

keys
$$(e, n_1), (e, n_2), (e, n_3))$$

$$\circ$$
 $C_1 = M^3 \mod n_1, C_2 = M^3 \mod n_2, C_3 = M^3 \mod n_3$

$$M < n_1, \quad M < n_2, \quad M < n_3$$

- The solution x modulo $n_1 n_2 n_3$ must be M^3
- (No modulus!), one can compute integer cubit root
- Countermeasure: padding required

$$x \equiv c_1 \bmod n_1$$

$$x \equiv c_2 \mod n_2$$

$$x \equiv c_3 \mod n_3$$

Textbook RSA is insecure

Textbook RSA encryption:

```
• public key: (N, e) Encrypt: \mathbf{C} = \mathbf{M}^{e} \pmod{N}, where (\mathbf{M} \in \mathbf{Z_N}^{*})
• private key: d Decrypt: \mathbf{C}^{d} = \mathbf{M} \pmod{N}
```

Completely insecure cryptosystem:

- Does not satisfy basic definitions of security.
- Many attacks exist.

Simple Attack on RSA

Common RSA encryption

Never use textbook RSA.

RSA in practice:

Main question:

- How should the preprocessing be done?
- Can we argue about security of resulting system?

https://www.coursera.org/lecture/crypto/pkcs-1-JwjDq

PKCS1 V1.5

(Public-Key Cryptography Standards)

PKCS1 mode 2: (encryption)

Resulting value is RSA encrypted.

Widely deployed in web servers and browsers.

No security analysis!!

Attack on PKCS1

 \Rightarrow attacker can test if 16 MSBs of plaintext = '02'.

Attack: to decrypt a given ciphertext C do:

- Pick $r \in Z_N$.
- Compute $C' = r^{e} \cdot C = (r \cdot PKCS1(M))^{e}$
- Send C' to web server and use response.

Implementation attacks

Attack the implementation of RSA.

```
Timing attack: (Kocher 97)

The time it takes to compute C<sup>d</sup> (mod N)

can expose d.

Power attack: (Kocher 99)

The power consumption of a smartcard while it is computing C<sup>d</sup> (mod N) can expose d.

Faults attack: (BDL 97)

A computer error during C<sup>d</sup> (mod N)

can expose d.
```

Key lengths

Security of public key system should be comparable to security of block cipher.

NIST:

Cipher key-size

 \leq 64 bits $\stackrel{>}{\leftarrow}$ 80 bits 128 bits 256 bits (AES)

Modulus size

512 bits.

1024 bits

3072 bits.

15360 bits

High security \Rightarrow very large moduli.

Not necessary with Elliptic Curve Cryptography.

Thank You

Factoring when knowing e and d

```
Knowing ed such that ed \equiv 1 \pmod{\Phi(N)}
        write ed - 1 = 2^s r (r odd)
        choose w at random such that 1<w<n-1
        if w not relative prime to N then return gcd(w,N)
                 (if gcd(w,N)=1, what value is (w^{2^s} mod N)?)
        compute w<sup>r</sup>, w<sup>2r</sup>, w<sup>4r</sup>, ..., by successive
        squaring until find w^{2^t r} \equiv 1 \pmod{N}
Fails when w^r \equiv 1 \pmod{N} or w^{2^r} \equiv -1 \pmod{N}
Failure probability is less than ½ (Proof is complicated)
```

Example: Factoring n given (e,d)

Input: N=2773, e=17, d=157

Pick random w, compute w mod n

- w=7, 7⁶⁶⁷=1 not good
- w=8, 8^{667} =471, and **471²=1**, so 471 is a nontrivial square root of 1 mod 2773
- compute gcd(471+1, 2773)=59 and gcd(471-1, 2773)=47.
- 2773=59•47

Chosen ciphertext security (CCS)

No efficient attacker can win the following game: (with non-negligible advantage)

Attacker wins if b=b'