

Sommaire

O1 Introduction

Espèces étudiées :

Baleines à bosse Baleines boréales Baleines bleues 86 Espèces de cétacés

2Grandes familles

- Baleines à dents (Odontocètes)
- Baleines à fanons (Mysticètes)

Identifier les baleines en analysant leur chant

RÉSOUTION CU nrobeme

Démarche

1. Observations et analyse de spectrogrammes

Spectrogramme d'un son de baleine boréale : unité sonore qui se répète 3 fois.

2. Recherche de valeurs significatives

TABLE III. Mean (SD) spectrogram parameters (see Table I) of measured repetitive and harmonic sounds, the number measured of each vocalization type and the number of pods they were heard in (see Figs. 5-7 for associated spectrograms). All frequency measurements are shown are in the linear scale (Hz). Social vocalizations which were also part of the song structure are highlighted along with the song year in which they were heard.

		Count	Trill	Blow	Bark	Bellow	Creek	Screech	Scream	Grunts	Croaks	Yap	Yelps	Pulses	Low yap
Q	Purr	Growt	6	6	50	4	4	4	8	90	17	10	21	25	5
	16	14				2		1	3	9	3	4	1	2	1.
(groups)	4	5	3	3	13	4			1.179	0.221	0.522	0.372	0.251	0.062	0.129
Dur F ₀	1.566 (0.575)	2.253 (1.268)	2.194 (0.468)	0.281 (0.152)	0.205 (0.119)	0.939 (0.415) 382	1.723 (0.614) 29	1,366 (0,336) 119	(0.288) 678	(0.110) 43	(0.255) 75 (45)	(0.101) 230 (94)	(0.074) 95 (42)	(0.027) 139 (11)	243 (128)
$Min F_0$	56 (43)	60 (18)	245 (83)	45.5 (15) 45.5	(98) 346.9	(117)	(7) 102	(42) 221	(156) 1436 (270)	(20) 45 (23)	120 (61)	2480 (875)	372 (158)	294 (152) 191	820 (310) 712
Max F ₀	59 (41.8)	73 (17)	427 (92)	(15) 45.5	(204) 153,4	(100) 379	(26)	(39) 125 (51)	684 (149)	43 (20)	75 (45)	2480 (875) 250	236 (118) 173	(102) 188	(85) 265
Start Fu	56 (43.9)	62 (18)	261 (72) 342	(15) 46.3	(104) 350.4	(114) 464 (100)	(7) 102 (26)	216.0 (45)	1157 (248)	43 (20) 0	(61) 100	(94)	(111) 100	(39)	(383) 10 (22)
EndF ₀	59 (41.8)	70 (18) 14	(127)	(20)	(201) 100	75 (50)	100	57 (15)	38 (18) 1177	74.8	193	1325 (611)	170	171 (63)	488 (350)
%	0	(36)	(36)	191	225.7	437	243 (15)	365 (38)	(166)	(39)	(62)	1	1	7 - 15	6
Duration Peak F	206 (62)	73 (36)	360 (42) 0	(57)	(106)	(97)	1	1	0	5	4 or 5 (3 - 8)	6 - 8	3 or 4		
Inflects No.J	0	0									02	02	No	No	No.
bout	21.6	67.3	40.5			2.	02	02	No	05, 04	0.	-			1000
Pulse ra	(6.1)			No	02	No		-				100			
Song ut	it 02	04			TOWNS !	41									

TABLE I. Measurements and a description of the measurements made on all vocalizations. Some of the measurements are illustrated in Fig. 2.

Measurement Variables measured on lowes	Abbreviation t frequency cor	Description inponent F_0
Duration (s) Minimum frequency (Hz)	Dur F_0 Min F_0	Vocalization length Minimum frequency
Maximum frequency (Hz)	$\operatorname{Max} F_0$	Maximum frequency
Start frequency (Hz) End frequency (Hz) Percentage to maximum (%) Frequency range (as ratio) Frequency trend (as ratio) Inflections	$\begin{array}{l} \text{Start } F_0 \\ \text{End } F_0 \\ \% \\ \\ \text{Range } F_0 \\ \\ \text{Trend } F_0 \end{array}$	Start frequency End frequency Percentage of duration to the maximum frequency Max freq/min freq Start freq/end freq
Other variables measured Peak frequency (Hz)	Inflec	Number of reversals in slope
Number of man	Peak_F	
bout Pulse rate (/s)	No./bout	Frequency of the spectral peak Equals one for
717	Pulse rate	nonrepetitive sounds

Source: The social vocalization repertoire of east Australian migrating humpback whales (Megaptera novaeangliae)

3. Comparaison avec des références

Résultats référence = résultats mesurés pour un fichier .txt choisi pour chaque baleine.

	Baleines bleues	Baleines à bosses	Baleines boréales
F0min	150.00Hz	327.27Hz	33.33Hz
F0max	300.00Hz	721.21Hz	648.17Hz
FOdébut	200.00Hz	527.27Hz	33.33Hz
F0fin	250.00Hz	518.18Hz	41.67Hz
F0fondamentaleMoy	205.94Hz	493.02Hz	43.18Hz
F0Equart Max-Min	150.00Hz	393.94Hz	614.84Hz

4. Présentation des résultats

Baleine a Bosse trouvée

	Sound Name										
Durée (sec)	2	1.5000	0.4000	0.5000	0.7000	1	1	0.8000	1.5000	2	1
Fréq minimum (Hz)	400	533.3333	333.3333	300	333.3333	500.0000	333.3333	566.6667	600	466.6667	300
Fréq maximum (Hz)	2.2333e+03	2.4333e+03	2.6333e+03	1100	1.8333e+03	1.4667e+03	2100	3.7333e+03	4400	1600	333.3333
Fréq début (Hz)	400	2.0333e+03	1.2333e+03	866.6667	466.6667	533.3333	2100	600	2.5333e+03	566.6667	333.3333
Fréq fin (Hz)	1.0333e+03	700	633.3333	333.3333	733.3333	500.0000	766.6667	1.8000e+03	700	1.3667e+03	300
Fréq moyenne (Hz)	1.2470e+03	1.1473e+03	1.2711e+03	529.1667	660.7843	661.2245	616.3265	1.3274e+03	1.2869e+03	888.5522	302.0408
Equart Max-Min	1.8333e+03	1900	2300	800	1500	966.6667	1.7667e+03	3.1667e+03	3800	1.1333e+03	33.3333

O3 Discussions

Fréquences théoriques :

	Baleine à bosse	Baleine boréale	Baleine bleue
Freq fondamentales	10-40Hz	25-40Hz	15-40Hz
Gamme freq de chant	80-4000Hz	25-900Hz	14-40Hz
Fréquences d'appel	Jusqu'à 24kHz	Jusqu'à 3kHz	Jusqu'à40Hz

Le filtre augmente la précision du son mais apporte juste de petites modifications : filtrage peu utile dans notre cas.

Avant filtrage

Baleine a Bosse trouvée

	Sound Name S	ound Name	Sound Name	Sound Name	Sound Name	Sound Name				
Durée (sec)	1	3	2	3	1	1	1	2.5000	1.5000	1
Fréq minimum (Hz)	300	233.3333	266.6667	266.6667	266.6667	166.6667	200	266.6667	300	533.3333
Fréq maximum (Hz)	2600	1.0667e+03	666.6667	1400	2.0667e+03	900.0000	700	3.7667e+03	2.3333e+03	566.6667
Fréq début (Hz)	566.6667	533.3333	466.6667	566.6667	300	333.3333	266.6667	566.6667	300	566,6667
Fréq fin (Hz)	300	500.0000	300	600	300	533.3333	500.0000	266.6667	300	533.3333
Fréq fondamentale moyenne (Hz)	641.8367	562.1924	302.6936	474.3848	701.3605	389.7959	409.1837	976.0753	590.9910	535.7143
Equart Max-Min	2300	833.3333	400.0000	1.1333e+03	1.8000e+03	733.3333	500	3.5000e+03	2.0333e+03	33.3333

Baleine a Bosse trouvée

	Sound Name S	Sound Name S	ound Name So	ound Name S	Sound Name So	ound Name				
Durée (sec)	1	3	2	3	1	1	1	2.5000	1.5000	1
Fréq minimum (Hz)	66.6667	233.3333	266.6667	266.6667	266.6667	166.6667	66.6667	266.6667	300	300
Fréq maximum (Hz)	733.3333	1.0667e+03	466.6667	900.0000	1.0667e+03	900.0000	933.3333	800	900.0000	566.6667
Fréq début (Hz)	566.6667	566.6667	466.6667	566.6667	300	333.3333	266.6667	566.6667	300	566.6667
Fréq fin (Hz)	300	500.0000	300	600	300	533.3333	500.0000	266.6667	300	533.3333
Fréq fondamentale moyenne (Hz)	344.2177	546.7562	301.3468	456.2640	419.0476	404.4218	411.2245	509.9462	358.5586	533.3333
Equart Max-Min	666.6667	833.3333	200	633.3333	800	733.3333	866.6667	533.3333	600.0000	266.6667

Après filtrage Cohérence de nos résultats avec les résultats attendus:

Identification réussie des baleines

bleues (Cf code matlab)

Identification réussie des baleines à bosse

Contrainte baleine boréale – baleine à bosse

Notre base de données pour baleine boréale est la suivante :

En revanche, l'analyse d'un autre chant de la baleine à bosses nous donne ceci :

=> La similitude des gammes de fréquences des baleines boréales et baleines à bosse rend la distinction entre les deux plus difficile...

O4 Conclusion

Identification des espèces basée sur l'analyse des marges de fréquences, malgré les variations individuelles et régionales.

Malgré les différentes analyses, la communication des baleines à travers leur chants constitue encore un grand mystère.

Bibliographie

Sons marins: Discovery of Sound in the Sea [en ligne]

https://dosits.org/animals/

Données additionnelles sons et localisation :

Watkins Marine Mammal Souds Database [en ligne]

https://cis.whoi.edu/science/B/whalesounds/bestOf.cfm?code=A

C2A

US Navy Marine Species Monitoring [en ligne]

https://www.navymarinespeciesmonitoring.us/data-

access1/passive-acoustic-data

Universal Soundbank

https://universal-soundbank.com/baleines.htm Sons de baleines (universal-soundbank.com)