Klausurvorbereitung Algebraische Topologie

Günthner

Winter 2024

Inhaltsverzeichnis

1	Sing	guläre Homologie	1	
	1.1	Homologie vom Punkt	1	
	1.2	Homotopie-Invarianz	2	
	1.3	Mayer-Vietoris	2	
2	De-Rahm Cohomologie			
	2.1	Poincaré Lemma	2	
	2.2	Mayer-Vietoris	3	
	2.3	Homologie vom Torus	3	
		2.3.1 Verschieben lässt Homologieklasse gleich	4	
		2.3.2 Mitteln lässt Homologieklasse gleich	4	
		2.3.3 Isomorphie $H^k(\mathbb{T}^n) \cong \Lambda^k(\mathbb{R}^n)$	4	

1 Singuläre Homologie

$$C_{k+1}(X) \xrightarrow{d_{k+1}} C_k(X) \xrightarrow{d_k} C_{k-1}(X)$$

Definition 1.

$$H_k(X) = \ker(d_k) / \operatorname{img}(d_{k+1})$$

1.1 Homologie vom Punkt

$$C_k(*) = \mathbb{R} \cdot \text{konstante Abb.}$$

$$\operatorname{img}(d_k) = \begin{cases} \mathbb{R} & \text{falls } k \text{ gerade} \\ 0 & \text{falls } k \text{ ungerade} \end{cases}$$

$$\ker(d_k) = \begin{cases} \mathbb{R} & \text{falls } k \text{ ungerade} \\ 0 & \text{falls } k \text{ gerade} \end{cases}$$

Für $k \geq 1$:

$$H_k(*) = \ker(d_k) / \operatorname{img}(d_{k+1}) = 0$$

Für k=0:

$$H_0(*) = \ker(d_k) / \operatorname{img}(d_{k+1}) = 0/0 = 0$$

1.2 Homotopie-Invarianz

Seien X,Ytopologische Räume und $g:X\to Y, h:Y\to X$ mit

$$q \circ h \sim \text{id}$$
 and $h \circ q \sim \text{id}$

Zeigen wir, dass

$$g \circ h \sim \mathrm{id} \implies (g \circ h)_* = \mathrm{id}$$

Sei hierfür $H:[0,1]\times X\to X$ eine Homotopie zwischen H(0) und H(1), dann erhalten wir durch den Prismenoperator eine Kettenhomotopie.

$$C(A) \xrightarrow{d} C(A) \xrightarrow{d} C(A)$$

$$\downarrow^{f,g} \stackrel{H}{\longrightarrow} \downarrow^{f,g} \stackrel{H}{\longrightarrow} \downarrow^{f,g}$$

$$C(B) \xrightarrow{d} C(B) \xrightarrow{d} C(B)$$

Mit f - g = dH + Hd

1.3 Mayer-Vietoris

Sei $U \cup V$ ein topologischer Raum mit U,Voffen. Versuchen wir folgende exakte Sequenz zu zeigen:

$$\cdots \longrightarrow H_{k+1}(U \cup V) \longrightarrow H_k(U \cap V) \longrightarrow H_k(U) \oplus H_k(V) \longrightarrow H_k(U \cup V) \longrightarrow \cdots$$

Hierfür werden wir folgende isomorphe Sequenz zeigen:

$$\cdots \longrightarrow H_{k+1}(U+V) \longrightarrow H_k(U\cap V) \longrightarrow H_k(U) \oplus H_k(V) \longrightarrow H_k(U+V) \longrightarrow \cdots$$

Dass können wir unter Verwendung des Schlangenlemmas (?) und folgender kurzen exakten Sequenz zeigen:

$$0 \longrightarrow C_k(U \cap V) \longrightarrow C_k(U) \oplus C_k(V) \longrightarrow C_k(U+V) \longrightarrow 0$$

2 De-Rahm Cohomologie

2.1 Poincaré Lemma

U sternförmig und offen in \mathbb{R}^n , zz. für $\omega \in \Omega_k(U)$ mit $d\omega = 0$:

$$\exists \eta \in \Omega_{k+1}(U) \text{ mit } d\eta = \omega$$

Definieren wir

$$\eta = \iota_X \int_{-\infty}^{0} (\varphi_X^t)^*(\omega) dt$$

Nun erhalten wir für $d\eta$:

$$d\eta = d\iota_X \int_{-\infty}^{0} (\varphi_X^t) * (\omega) dt = (L_X - \iota_X d) \int_{-\infty}^{0} (\varphi_X^t)^* (\omega) dt$$

$$= \frac{d}{ds}|_{s=0} \int_{-\infty}^{0} (\varphi_X^t)^* (\omega) dt - \iota_X d \int_{-\infty}^{0} (\varphi_X^t)^* (\omega) dt$$

$$= \int_{-\infty}^{0} \frac{d}{ds}|_{s=0} (\varphi_X^s)^* (\varphi_X^t)^* (\omega) dt - \iota_X \int_{-\infty}^{0} (\varphi_X^t)^* (d\omega) dt$$

$$= \int_{-\infty}^{0} \frac{d}{ds}|_{s=t} (\varphi_X^s)^* (\omega) dt - 0$$

$$= \omega - \lim_{x \to -\infty} (\varphi_X^x)^* (\omega) = \omega - 0 \qquad = \omega$$

2.2 Mayer-Vietoris

Vorgehen: gleich wie in Abschnitt 1.3

Wir versuchen also Exaktheit von folgender Kette zu zeigen:

$$\Omega_k(U \cup V) \xrightarrow{\alpha} \Omega_k(U) \oplus \Omega_k(V) \xrightarrow{\beta} \Omega_k(U \cap V)$$

$$\omega \longmapsto (\omega, -\omega) \ (\omega_U, \omega_V) \longmapsto \omega_U + \omega_V$$

 α ist injektiv, denn sei ω im Kern von $\alpha,$ dann folgt schon, dass ω null auf $U,\,V$ und somit auch auf $U\cup V$ ist.

TODO

2.3 Homologie vom Torus

Definieren wir den n-Torus als $\mathbb{T}^n = \mathbb{R}^n/\mathbb{Z}^n$. Wir wollen nun mit Hilfe von De-Rahm Cohomologie zeigen, dass $b_k(\mathbb{T}^n) = \binom{n}{k}$. Dass machen wir in drei Schritten:

- 1. Wenn wir Differentialformen verschieben, dann bleibt die Homologieklasse gleich
- 2. Wenn wir dann eine Differentialform mittlen, dann bleibt die Homologieklasse wieder gleich
- 3. Nun gibt es für jede Homologieklasse immer einen konstanten Repräsentanten und wir können nun die Homologie mit dem Zielraum der Differentialformen identifizieren: $\Lambda^k(\mathbb{R}^n)$. Und das hat Dimension $\binom{n}{k}$

- 2.3.1 Verschieben lässt Homologieklasse gleich
- 2.3.2 Mitteln lässt Homologieklasse gleich
- **2.3.3** Isomorphie $H^k(\mathbb{T}^n) \cong \Lambda^k(\mathbb{R}^n)$