8.5 Linear Regression

Goals for the Day

Scatterplots

Scatterplots

- Displays the relationship between **two quantitative** variables measured on the same individuals.
- Useful to determine if an **association** exists!
 - So is there a <u>pattern</u> where some values of one variable tend to occur with some values of the other variable.
 - Ex) Smaller carat diamonds tend to have lower prices, and as the carat increases prices tend to increase as well.

Scatterplots

Setup of axes

- The <u>explanatory</u> (independent) variable goes on the X (<u>horizontal</u>) axis.
- The <u>response</u> (dependent) variable goes on the Y (vertical) axis.
- Ex) How large a diamond is impacts how much it costs → Carat = X; Price = Y.

Interpreting Scatterplots

- Interpreting a scatterplot (what we are looking for in a scatterplot)
- Form (pattern of the dots)
 - Linear → Points follow a general linear trend; Straight line.
 - Curved → Points show some evidence of curvature; NOT a straight line.
 - Random scatter → No pattern, points are just scattered about randomly kinda like a cloud of points.

Interpreting Scatterplots

- Interpreting a scatterplot (what we are looking for in a scatterplot)
- **Direction** (of the association; only applies to <u>linear relationships</u>)
 - Positive → Upward trend.
 - \rightarrow Negative \rightarrow Downward trend.
 - No Association → There is no pattern or general trend (corresponds to random scatter).

Interpreting Scatterplots

- Interpreting a scatterplot (what we are looking for in a scatterplot)
- **Strength** (how strong the association is; how well the data fits the pattern; only applying this to linear relationships)

Interpreting Scatterplots Example

Example

Form		Direction	Strength			
(1)	Curved	N/A (+/-)	N/A (strong)			
(2)	Linear	Positive	Moderate			
(3)	Linear	Negative	Strong			
(4)	Roughly linear	Negative	Weak			
(5) Random scatter		No association	Very weak			

Correlation

Correlation

- The **correlation** (r) s an index that expresses the <u>direction</u> and <u>strength</u> of the relationship.
 - lt combines both of these aspects into a single number measure.
 - Often referred to as the correlation coefficient (or Pearson's correlation).
- Interpreting correlation
 - Sign = Direction
 - Absolute value |r| = Strength

Correlation

- Properties of Correlation
 - Scale goes from -1 to 1 \rightarrow -1 $\leq r \leq 1$
 - Only applies to <u>LINEAR relationships</u>.

r has no units and is the same regardless of which variable is X or Y.

Does NOT imply a cause-and-effect relationship.

Ex) Ice cream sales and shark attacks have a strong positive correlation.

Using Your Calculator

Using Your Calculator

Using TI-83/84 (and TI-30 XS MultiView / XIIS) to calculate correlation (and regression line).

Steps for the TI-83/84

Enter data: STAT → Edit →

Enter X data in L₁ Enter Y data in L₂

- Calculate: STAT → CALC → LinReg(ax+b)
 - a) XList: L₁.
 - b) YList: L₂.
 - c) Rest leave blank.
 - d) Calculate!

Steps for the TI-30XS MultiView

Data →

Enter X data in L₁ Enter Y data in L₂

- 2. 2nd → stat → 2-Var Stats
 - a) xDATA: L1
 - b) yDATA: L2
 - c) CALC

Steps for the TI-30 XIIS

- 1. $2^{nd} \rightarrow STAT \rightarrow 2-VAR$ (Enter)
- DATA

 $X_1 = \#$ (scroll down)

 $Y_1 = \# (scroll down)$

... (repeat for all data points)

- 3. STATVAR (scroll across)
- To exit this menu: 2nd → EXIT STAT → Y

^{***} One time setup for TI-83/84: $2^{nd} \rightarrow$ Catalog \rightarrow DiagnosticOn \rightarrow Enter

Using Your Calculator

Demo dataset

Inputs

	_
NORMAL FLOAT AUTO REAL RADIAN MP	_ [
EDIT CALC TESTS	
1:1-Var Stats	
2:2-Var Stats	
3: Med-Med	
ELinReg(ax+b)	
5: QuadRe9	
6:CubicRe9	
7:QuartRe9	
8:LinReg(a+bx)	
9↓LnRe9	

<u>Results</u>

Regression

- Ultimately, we want to determine if we can use a straight line to model the relationship between two variables → If so, we can use that model to make predictions!
 - This process is called **Linear Regression**.

Regression

Critical Values of the

Pearson Correlation Coefficient

- Step 1 \rightarrow Determine if there is a significant correlation (linear relationship).
- Calculate correlation.
- Compare it to the Table of Critical Values or the Pearson Correlation Coefficient to see

if it is statistically significant.		$\alpha = 0.05$	$\alpha = 0.01$
		0.950	0.990
ightharpoonup Match the sample size n and the Level of significance $ ightharpoonup$ (Probability our claims about	5	0.878	0.959
the data are wrong) to the specific problem.	6	0.811	0.917
	7	0.754	0.875
$f[r] > Critical Value (CV) \rightarrow r$ statistically significant (unlikely to have occurred by			

 \rightarrow r = 0.982 > 0.950 = CV Demo ex) n = 4, $\alpha = 0.05$

→ Significant → Can make predictions

- Step 2 \rightarrow Once we have a significant correlation, we can find the regression line.
 - Linear equation that fits our data best (aka 'line of best fit').
 - It is IMPORTANT to get the X and Y variables correct!
 - Our calculator gives us our equation!

Equation

· Here is the form of our linear equation (written in slope-intercept form):

$$\hat{y} = ax + b$$
 calculator
= $b_0 + b_1 x$ Hawkes

- x = Value of the explanatory variable
- ŷ = Predicted value of the response variable for the given x
- a (or b₁) = Slope
 - · It measures the direction and steepness of the line
- b (or b₀) = Y intercept
 - It is the location where the regression line crosses the Y-axis (value of Y when X = 0)

Regression

- Step 3 → Make predictions using the regression line.
- We can think of our regression line, and specifically \hat{y} , as <u>predicted values</u> of Y for all X values in the X range of our sample data!
- Calculating these is simple:
 - Just plug in the new X value to our equation and this will give us the predicted Y.
 - Demo example) Predict Y for X = 7.

$$\hat{y} = 1.638x + 1.103 \rightarrow \hat{y} = 1.638(7) + 1.103 = 12.569$$

ax + b

◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇

Hours Spent on Homework	41	20	34	43	9	20	54	52	10	21
Grade on Test	79	63	76	100	55	82	95	80	60	80

- a) Calculate the correlation for the dataset above and determine if it is statistically significant at a level of significance of $\alpha = 0.05$.
- b) If appropriate, determine the regression equation.
- c) If a student spends 35 hours on homework, make a prediction for their grade on the test.
- d) If a student spends 50 hours on homework, make a prediction for their grade on the test.

a)
$$r = 0.779 > 0.632 \rightarrow Significant$$

b) Appropriate
$$\rightarrow \hat{y} = 0.676x + 56.549$$

c)
$$\hat{y} = 80.119$$

d)
$$\hat{y} = 90.259$$