Вычисление нормы заданной многоугольником

Вопросы по работе на экзамене

- 1) определение нормы в линейном пространстве
- 2) норма, заданная выпуклым множеством ("метод"вычисления теорема Минковского)
- 3) описание многогранника:

– проверка заданных точек в координатных плоскостях

$$(?)A(a,b), AA(a_1,0,0), BB(0,b_1)$$

$$0 < a < a_1, \ 0 < b < b_1, \ \frac{a}{a_1} + \frac{b}{b_1} > 1$$

расширение **списка** вершин (список $x \ge 0, y \ge 0, z \ge 0$),

(список $x \ge 0, z \ge 0$),

(список $x \geq 0$),

(полный список)

4) четыре(?) конуса, определяющие норму и их базисы необходимое и достаточное условие попадания точки в конус симметрии многогранника в дз1 и модификация вычисления норм

список основных конусов и их базисы

5) алгоритм вычисления нормы (цикл по конусам)

вычисление норм w_1 , w_2 , $w_1 + w_2$ **список** координат во вех основных конусах для w_1 , w_2 , $w_1 + w_2$ неравенство треугольника == выпуклость

6) определение эквивалентности норм $c_1||x||_2 \le ||x||_w \le c_2||x||_2$

— цикл (\mathbf{cnucok}) расстояний) — максимум расстояний до вершин (оценка сверху) d_1 $||x||_w = 1 \rightarrow ||x||_2 \leq d_1 \rightarrow ||x||_2 \leq d_1 ||x||_w$

 $\forall k \in R ||kx||_2 = k||x||_2 \le d_1 k||x||_w = d_1 ||kx||_w$ однородность нормы

$$\forall y \exists k \in R \ y = kx, \ ||x|| = 1 \ (k = ||y||) \ \rightarrow \ ||y||_2 \le d_1 ||y||_w$$

$$\frac{1}{d_1}||y||_2 \le ||y||_w \to c_1 = \frac{1}{d_1}$$

— цикл(**список** расстояний) — минимум расстояний до граней (оценка снизу) d_2 $||x||_w=1 \to ||x||_2 \ge d_2 \to ||x||_2 \ge d_2||x||_w$

$$\frac{1}{d_2}||y||_2 \ge ||y||_w \to c_1 = \frac{1}{d_1}$$

ПРОДОЛЖЕНИЕ ДЗ 1

7) определение нормы оператора линейном нормированном пространстве ...

8)норма
$$l_3^2...$$
 норма оператора $A: l_3^2 \to l_3^2,$ (!!) $A=A^*,$ $A=I-B,$ $||B||_2<1/2$ (сформировать самостоятельно) $||B||_2=\max(|\lambda_1|,|\lambda_2|,|\lambda_1|)$ (из лекций), $\lambda_k\neq 0$

план построения матрицы B

$$D = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix}, \ V_1 = \begin{pmatrix} \cos t_1 & -\sin t_1 & 0 \\ \sin t_1 & \cos t_1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \ V_2 = \begin{pmatrix} \cos t_2 & 0 & -\sin t_2 \\ 0 & 1 & 0 \\ \sin t_2 & 0 & \cos t_2 \end{pmatrix},$$
$$B = V_1^{\top} V_2^{\top} D V_2 V_1$$

здесь $0 < t_1, t_2 < 2\pi$ фиксированные числа

- 9)норма $l_3^1...$, норма $l_3^\infty...$, $||B||_1$, $||B||_\infty$ (формулы!! из лекций)
- $10)^*$ итерационное решение уравнения Ax=b (!! из лекций) решить для b=(1,1,1) проверить сходимость итераций для $x_0=(0,0,0)$
- 11)* $||B||_W$ оценка сверху схема получения оценки из эквивалентности $c_1||x||_2 \leq ||x||_W \leq c_2||x||_2$

$$||Ax||_{W} \le c_{2}||Ax||_{2} \le c_{2}||A||_{2}||x||_{2} \le (c_{2}||A||_{2})\frac{1}{c_{1}}||x||_{W}$$
$$||A||_{W} \le \frac{c_{2}}{c_{1}}||A||_{2}$$