AArch64 Registers AArch32 Instructions AArch64 Instructions Index by Encoding External Registers

EDPRSR, External Debug Processor Status Register

The EDPRSR characteristics are:

Purpose

Holds information about the reset and powerdown state of the PE.

Configuration

When FEAT_DoPD is implemented, EDPRSR is in the Core power domain. Otherwise, EDPRSR contains fields that are in the Core power domain and fields that are in the Debug power domain.

If FEAT_DoPD is implemented then all fields in this register are in the Core power domain.

Attributes

EDPRSR is a 32-bit register.

Field descriptions

313029282726252423222120191817	16	15	14	13	12	11	10	9	8	7	6
RES0	EPMADE	ETADE	EDADE	STAD	ETAD	SDR	SPMAD	EPMAD	SDAD	EDAD	DLK

Bits [31:17]

Reserved, res0.

EPMADE, bit [16]

When FEAT RME is implemented and FEAT PMUv3 EXT is implemented:

External Performance Monitors Access Disable Extended Status. Together with EDPRSR.EPMAD, reports whether access to Performance Monitor registers by an external debugger is permitted.

For a description of the values derived by evaluating EPMAD and EPMADE together, see EDPRSR.EPMAD.

Otherwise:

Reserved, res0.

ETADE, bit [15]

When FEAT_RME is implemented, FEAT_TRC_EXT is implemented and FEAT_TRBE is implemented:

External Trace Access Disable Extended Status. Together with EDPRSR.ETAD, reports whether access to trace unit registers by an external debugger is permitted.

For a description of the values derived by evaluating ETAD and ETADE together, see EDPRSR.ETAD.

Otherwise:

Reserved, res0.

EDADE, bit [14] When FEAT RME is implemented:

External Debug Access Disable Extended Status. Together with EDPRSR.EDAD, reports whether access to breakpoint registers, watchpoint registers, and OSLAR_EL1 by an external debugger is permitted.

For a description of the values derived by evaluating EDAD and EDADE together, see EDPRSR.EDAD.

Otherwise:

Reserved, res0.

STAD, bit [13]

When FEAT TRC EXT is implemented and FEAT TRBE is implemented:

Sticky ETAD error. Set to 1 when a Non-secure external debug interface access to an external trace register returns an error because AllowExternalTraceAccess() == FALSE for the access.

STAD	Meaning
0b0	Since EDPRSR was last read, no
	external accesses to the trace unit
	registers have failed because
	AllowExternalTraceAccess() was
	FALSE for the access.

Ob1 Since EDPRSR was last read, at least one external access to the trace unit registers has failed because
AllowExternalTraceAccess() was FALSE for the access.

If IsCorePowered() == TRUE, the Core power domain is powered up, then, following a read of EDPRSR:

- If FEAT_DoubleLock is not implemented or DoubleLockStatus() == FALSE then this bit clears to 0.
- If FEAT_DoubleLock is implemented and DoubleLockStatus() == TRUE then it is constrained unpredictable whether this bit clears to 0 or is unchanged.

This bit is in the Core power domain.

Note

If FEAT_DoPD is implemented, FEAT_DoubleLock is not implemented.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Accessing this field has the following behavior:

- Access is **UNKNOWN/WI** if any of the following are true:
 - DoubleLockStatus()
 - FEAT DoPD is not implemented and !IsCorePowered()
 - \circ EDPRSR.R == 1
- Otherwise, access to this field is **RC/WI**.

Otherwise:

Reserved, res0.

ETAD, bit [12]

When FEAT_RME is implemented, FEAT_TRC_EXT is implemented and FEAT_TRBE is implemented:

External Trace Access Disable Status. Together with EDPRSR.ETADE, reports whether access to trace unit registers by an external debugger is permitted.

ETADE	ETAD	Meaning
0b0	0d0	Access to trace unit registers by an external debugger is permitted.
0b0	0b1	Root and Secure access to trace unit registers by an external debugger is permitted. Realm and Non-secure access to trace unit registers by an external debugger is not permitted.
0b1	0d0	Root and Realm access to trace unit registers by an external debugger is permitted. Secure and Non-secure access to trace unit registers by an external debugger is not permitted.
0b1	0b1	Root access to trace unit registers by an external debugger is permitted. Secure, Non-secure, and Realm access to trace unit registers by an external debugger is not permitted.

When FEAT_TRC_EXT is implemented and FEAT_TRBE is implemented:

External Trace Access Disable status.

ETAD	Meaning
0b0	External Non-secure trace unit
	accesses enabled.
	<pre>AllowExternalTraceAccess() ==</pre>
	TRUE for a Non-secure access.
0b1	External Non-secure trace unit
	accesses disabled.
	<pre>AllowExternalTraceAccess() ==</pre>
	FALSE for a Non-secure access.

This bit is in the Core power domain.

Note

If FEAT_DoPD is implemented, FEAT_DoubleLock is not implemented.

Accessing this field has the following behavior:

- Access is **UNKNOWN/WI** if any of the following are true:
 - DoubleLockStatus()
 - FEAT DoPD is not implemented and !IsCorePowered()
 - \circ EDPRSR.R == 1
- Otherwise, access to this field is RO.

Otherwise:

Reserved, res0.

SDR, bit [11]

Sticky Debug Restart. Set to 1 when the PE exits Debug state.

Permitted values are:

SDR	Meaning
0d0	The PE has not restarted since
	EDPRSR was last read.
0b1	The PE has restarted since
	EDPRSR was last read.

Note

If a reset occurs when the PE is in Debug state, the PE exits Debug state. SDR is unknown on Warm reset, meaning a debugger must also use the SR bit to determine whether the PE has left Debug state.

If the Core power domain is powered up, then following a read of EDPRSR:

- If FEAT_DoubleLock is not implemented or DoubleLockStatus() == FALSE this bit clears to 0.
- If FEAT_DoubleLock is implemented and DoubleLockStatus() == TRUE, it is constrained unpredictable whether this bit clears to 0 or is unchanged.

This field is in the Core power domain.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Accessing this field has the following behavior:

- Access is **UNKNOWN/WI** if any of the following are true:
 - FEAT DoPD is not implemented and !IsCorePowered()
 - DoubleLockStatus()
 - \circ EDPRSR.R == 1
- When SoftwareLockStatus(), access to this field is **RO**.
- Otherwise, access to this field is RC/WI.

SPMAD, bit [10]

When FEAT_Debugv8p4 is implemented and FEAT_PMUv3_EXT is implemented:

Sticky EPMAD error. Set to 1 if an external debug interface access to a Performance Monitors register returns an error because AllowExternalPMUAccess() == FALSE.

Permitted values are:

SPMAD	Meaning
0b0	No Non-secure external debug
	interface accesses to the external
	Performance Monitors registers
	have failed because
	<pre>AllowExternalPMUAccess() ==</pre>
	FALSE for the access since EDPRSR
	was last read.
0b1	At least one Non-secure external
	debug interface access to the
	external Performance Monitors
	register has failed and returned an
	error because
	AllowExternalPMUAccess() ==
	FALSE for the access since EDPRSR
	was last read.

If the Core power domain is powered up, then following a read of EDPRSR:

- If FEAT_DoubleLock is not implemented or DoubleLockStatus() == FALSE, this bit clears to 0.
- If FEAT_DoubleLock is implemented and DoubleLockStatus() == TRUE, it is constrained unpredictable whether this bit clears to 0 or is unchanged.

This field is in the Core power domain.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Accessing this field has the following behavior:

- Access is **UNKNOWN/WI** if any of the following are true:
 - FEAT DoPD is not implemented and !IsCorePowered()
 - DoubleLockStatus()
 - \circ EDPRSR.R == 1
- When SoftwareLockStatus(), access to this field is RO.
- Otherwise, access to this field is RC/WI.

When FEAT PMUv3 EXT is implemented:

Sticky EPMAD error.

SPMAD	Meaning
0b0	No external debug interface
	accesses to the Performance
	Monitors registers have failed
	because
	<pre>AllowExternalPMUAccess() ==</pre>
	FALSE since EDPRSR was last read.
0b1	At least one external debug
	interface access to the Performance
	Monitors registers has failed and
	returned an error because
	<pre>AllowExternalPMUAccess() ==</pre>
	FALSE since EDPRSR was last read.

If the Core power domain is powered up, then, following a read of EDPRSR:

- If FEAT_DoubleLock is not implemented or DoubleLockStatus() == FALSE, this bit clears to 0.
- If FEAT_DoubleLock is implemented, and DoubleLockStatus() == TRUE, it is constrained unpredictable whether this bit clears to 0 or is unchanged.

This field is in the Core power domain.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Accessing this field has the following behavior:

- Access is **UNKNOWN/WI** if any of the following are true:
 - FEAT DoPD is not implemented and !IsCorePowered()
 - OSLockStatus()

- DoubleLockStatus()
- \circ EDPRSR.R == 1
- When SoftwareLockStatus(), access to this field is **RO**.
- Otherwise, access to this field is RC/WI.

Otherwise:

Reserved, res0.

EPMAD, bit [9]

When FEAT_RME is implemented and FEAT_PMUv3_EXT is implemented:

External Performance Monitors Access Disable Status. Together with EDPRSR.EPMADE, reports whether access to Performance Monitor registers by an external debugger is permitted.

EPMADE	EPMAD	Meaning
0b0	0b0	Access to
		Performance
		Monitor
		registers by an
		external
		debugger is
		permitted.
0b0	0b1	Root and Secure
		access to
		Performance
		Monitor
		registers by an
		external
		debugger is
		permitted.
		Realm and Non-
		secure access to
		Performance
		Monitor
		registers by an
		external
		debugger is not
		permitted.

EPMADE	EPMAD	Meaning
0b1	0b0	Root and Realm
		access to
		Performance
		Monitor
		registers by an
		external
		debugger is
		permitted.
		Secure and Non-
		secure access to
		Performance
		Monitor
		registers by an
		external
		debugger is not
		permitted.
0b1	0b1	Root access to
		Performance
		Monitor
		registers by an
		external
		debugger is
		permitted.
		Secure, Non-
		secure, and
		Realm access to
		Performance
		Monitor
		registers by an
		external
		debugger is not
		permitted.

When FEAT_Debugv8p4 is implemented and FEAT_PMUv3_EXT is implemented:

External Performance Monitors Non-secure Access Disable status.

EPMAD	Meaning
0b0	External Non-secure Performance
	Monitors access enabled.
	AllowExternalPMUAccess() ==
	TRUE for a Non-secure access.
0b1	External Non-secure Performance
	Monitors access disabled.
	AllowExternalPMUAccess() ==
	FALSE for a Non-secure access.

This field is in the Core power domain.

Accessing this field has the following behavior:

- Access is **UNKNOWN/WI** if any of the following are true:
 - FEAT DoPD is not implemented and !IsCorePowered()
 - DoubleLockStatus()
 - \circ EDPRSR.R == 1
- Otherwise, access to this field is **RO**.

When FEAT_PMUv3_EXT is implemented and FEAT_Debugv8p4 is not implemented:

External Performance Monitors access disable status.

EPMAD	Meaning
0d0	External Performance Monitors
	access enabled.
	AllowExternalPMUAccess() $==$
	TRUE.
0b1	External Performance Monitors
	access disabled.
	<pre>AllowExternalPMUAccess() ==</pre>
	FALSE.

This field is in the Core power domain.

Accessing this field has the following behavior:

- Access is **UNKNOWN/WI** if any of the following are true:
 - FEAT DoPD is not implemented and !IsCorePowered()
 - OSLockStatus()
 - DoubleLockStatus()
 - \circ EDPRSR.R == 1
- Otherwise, access to this field is **RO**.

Otherwise:

Reserved, res0.

SDAD, bit [8] When FEAT_Debugv8p4 is implemented:

Sticky EDAD error. Set to 1 if an external debug interface access to a debug register returns an error because

AllowExternalDebugAccess() == FALSE.

|--|

0b0	No Non-secure external debug
	interface accesses to the debug
	registers have failed because
	<pre>AllowExternalDebugAccess() ==</pre>
	FALSE for the access since EDPRSR
	was last read.
0b1	At least one Non-secure external
	debug interface access to the debug
	registers has failed and returned an
	error because
	<pre>AllowExternalDebugAccess() ==</pre>
	FALSE for the access since EDPRSR
	was last read.

If the Core power domain is powered up, then, following a read of EDPRSR:

- If FEAT_DoubleLock is not implemented or DoubleLockStatus() == FALSE this bit clears to 0.
- If FEAT_DoubleLock is implemented and DoubleLockStatus() == TRUE, it is constrained unpredictable whether this bit clears to 0 or is unchanged.

This field is in the Core power domain.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Accessing this field has the following behavior:

- Access is **UNKNOWN/WI** if any of the following are true:
 - FEAT DoPD is not implemented and !IsCorePowered()
 - DoubleLockStatus()
 - \circ EDPRSR.R == 1
- Otherwise, access to this field is **RO**.

Otherwise:

Sticky EDAD error. Set to 1 if an external debug interface access to a debug register returns an error because AllowExternalDebugAccess() == FALSE.

SDAD	Meaning
0b0	No external debug interface accesses
	to the debug registers have failed
	because
	<pre>AllowExternalDebugAccess() ==</pre>
	FALSE since EDPRSR was last read.

0b1	At least one external debug interface
	access to the debug registers has
	failed and returned an error because
	<pre>AllowExternalDebugAccess() ==</pre>
	FALSE since EDPRSR was last read.

If the Core power domain is powered up, then, following a read of EDPRSR:

- If FEAT_DoubleLock is not implemented or DoubleLockStatus() == FALSE this bit clears to 0.
- If FEAT_DoubleLock is implemented and DoubleLockStatus() == TRUE, it is constrained unpredictable whether this bit clears to 0 or is unchanged.

This bit is unknown on reads if OSLockStatus() == TRUE and external debug writes to $\frac{OSLAR_EL1}{EL1}$ do not return an error when AllowExternalDebugAccess() == FALSE.

This field is in the Core power domain.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Accessing this field has the following behavior:

- Access is **UNKNOWN/WI** if any of the following are true:
 - FEAT DoPD is not implemented and !IsCorePowered()
 - DoubleLockStatus()
 - \circ EDPRSR.R == 1
- Otherwise, access to this field is **RO**.

EDAD, bit [7] When FEAT RME is implemented:

External Debug Access Disable Status. Together with EDPRSR.EDADE, reports whether access to breakpoint registers, watchpoint registers, and OSLAR_EL1 by an external debugger is permitted.

EDADE	EDAD	Meaning
0b0	0b0	Access to Debug registers by an external debugger is permitted.
		permitteu.

EDADE	EDAD	Meaning
0b0	0b1	Root and Secure
		access to Debug
		registers by an
		external debugger is
		permitted. Realm
		and Non-secure
		access to Debug
		registers by an
		external debugger is
		not permitted.
0b1	0b0	Root and Realm
		access to Debug
		registers by an
		external debugger is
		permitted. Secure
		and Non-secure
		access to Debug
		registers by an external debugger is
		not permitted.
0b1	0b1	Root access to
100	100	Debug registers by
		an external
		debugger is
		permitted. Secure,
		Non-secure, and
		Realm access to
		Debug registers by
		an external
		debugger is not
		permitted.

When FEAT_Debugv8p4 is implemented:

External Debug Access Disable status.

EDAD	Meaning
0b0	External Non-secure access to
	breakpoint registers, watchpoint
	registers, and <u>OSLAR_EL1</u> enabled.
	<pre>AllowExternalDebugAccess() ==</pre>
	TRUE for a Non-secure access.
0b1	External Non-secure access to
	breakpoint registers, watchpoint
	registers, and OSLAR_EL1 disabled.
	AllowExternalDebugAccess() ==
	FALSE for a Non-secure access.

This field is in the Core power domain.

Accessing this field has the following behavior:

- Access is **UNKNOWN/WI** if any of the following are true:
 - FEAT DoPD is not implemented and !IsCorePowered()
 - DoubleLockStatus()
 - \circ EDPRSR.R == 1
- Otherwise, access to this field is **RO**.

When FEAT Debugv8p2 is implemented:

External Debug Access Disable status.

EDAD	Meaning
0b0	External access to breakpoint
	registers, watchpoint registers, and
	OSLAR_EL1 enabled.
	<pre>AllowExternalDebugAccess() ==</pre>
	TRUE.
0b1	External access to breakpoint
	registers, watchpoint registers, and
	OSLAR_EL1 disabled.
	<pre>AllowExternalDebugAccess() ==</pre>
	FALSE.

This bit is not valid and reads unknown if OSLockStatus() == TRUE and external debug writes to $OSLAR_EL1$ do not return an error when AllowExternalDebugAccess() == FALSE.

This field is in the Core power domain.

Accessing this field has the following behavior:

- Access is **UNKNOWN/WI** if any of the following are true:
 - FEAT DoPD is not implemented and !IsCorePowered()
 - DoubleLockStatus()
 - \circ EDPRSR.R == 1
- Otherwise, access to this field is **RO**.

Otherwise:

External Debug Access Disable status.

Meaning
External access to breakpoint
registers, watchpoint registers, and
OSLAR_EL1 enabled.
AllowExternalDebugAccess() ==
TRUE.

Db1 External access to breakpoint registers, watchpoint registers disabled. It is implementation defined whether accesses to OSLAR_EL1 are enabled or disabled.

AllowExternalDebugAccess() == FALSE.

This field is in the Core power domain.

Accessing this field has the following behavior:

- Access is **UNKNOWN/WI** if any of the following are true:
 - FEAT DoPD is not implemented and !IsCorePowered()
 - DoubleLockStatus()
 - \circ EDPRSR.R == 1
- Otherwise, access to this field is **RO**.

DLK, bit [6] When FEAT Debugv8p4 is implemented:

This field is res0.

When FEAT Debugv8p2 is implemented and FEAT DoubleLock is implemented:

Double Lock.

From Armv8.2, this field is deprecated.

This field is in the Core power domain.

Accessing this field has the following behavior:

- Access is **RAZ/WI** if all of the following are true:
 - IsCorePowered()
 - !DoubleLockStatus()
- Otherwise, access to this field is UNKNOWN/WI.

When FEAT_DoubleLock is implemented:

Double Lock.

This field returns the result of the pseudocode function DoubleLockStatus().

If the Core power domain is powered up and DoubleLockStatus() == TRUE, it is implementation defined whether:

• EDPRSR.PU reads as 1, EDPRSR.DLK reads as 1, and EDPRSR.SPD is unknown.

• EDPRSR.PU reads as 0, EDPRSR.DLK is unknown, and EDPRSR.SPD reads as 0.

This field is in the Core power domain.

DLK	Meaning
0b0	DoubleLockStatus() returns
	FALSE.
0b1	DoubleLockStatus() returns
	TRUE and the Core power domain
	is powered up.

Accessing this field has the following behavior:

- Access is **UNKNOWN/WI** if all of the following are true:
 - FEAT DoPD is not implemented
 - !IsCorePowered()
- Otherwise, access to this field is RO.

Otherwise:

Reserved, res0.

OSLK, bit [5]

OS Lock status bit.

A read of this bit returns the value of OSLSR EL1.OSLK.

This field is in the Core power domain.

Accessing this field has the following behavior:

- Access is **UNKNOWN/WI** if all of the following are true:
 - FEAT DoPD is not implemented
 - !IsCorePowered()
 - DoubleLockStatus()
 - \circ EDPRSR.R == 1
- Otherwise, access to this field is **RO**.

HALTED, bit [4]

Halted status bit.

HALTED	Meaning
0b0	PE is in Non-debug state.
0b1	PE is in Debug state.

This field is in the Core power domain.

Accessing this field has the following behavior:

- Access is **UNKNOWN/WI** if all of the following are true:
 - FEAT DoPD is not implemented
 - !IsCorePowered()
- Otherwise, access to this field is **RO**.

SR, bit [3]

Sticky core Reset status bit.

Permitted values are:

SR	Meaning
0b0	The non-debug logic of the PE is not in reset state and has not been
	reset since the last time EDPRSR was read.
0b1	The non-debug logic of the PE is in reset state or has been reset since
	the last time EDPRSR was read.

If EDPRSR.PU reads as 1 and EDPRSR.R reads as 0, which means that the Core power domain is in a powerup state and that the non-debug logic of the PE is not in reset state, then following a read of EDPRSR:

- If FEAT_DoubleLock is not implemented or DoubleLockStatus() == FALSE this bit clears to 0.
- If FEAT_DoubleLock is implemented and DoubleLockStatus() == TRUE, it is constrained unpredictable whether this bit clears to 0 or is unchanged.

This field is in the Core power domain.

The reset behavior of this field is:

• On a Warm reset, this field resets to 1.

Accessing this field has the following behavior:

- Access is **UNKNOWN/WI** if any of the following are true:
 - FEAT DoPD is not implemented and !IsCorePowered()
 - DoubleLockStatus()
- When SoftwareLockStatus(), access to this field is **RO**.
- Otherwise, access to this field is **RC/WI**.

R, bit [2]

PE Reset status bit.

Permitted values are:

R	Meaning
0b0	The non-debug logic of the PE is
	not in reset state.
0b1	The non-debug logic of the PE is in
	reset state.

If FEAT_DoubleLock is implemented, the PE is in reset state, and the PE entered reset state with the OS Double Lock locked this bit has a constrained unpredictable value. For more information, see 'EDPRSR.{DLK, R} and reset state'.

This field is in the Core power domain.

Accessing this field has the following behavior:

- Access is **UNKNOWN/WI** if any of the following are true:
 - FEAT DoPD is not implemented and !IsCorePowered()
 - DoubleLockStatus()
- Otherwise, access to this field is **RO**.

SPD, bit [1]

Sticky core Powerdown status bit.

If FEAT_DoubleLock is implemented and DoubleLockStatus() ==
TRUE, then:

- If FEAT_Debugv8p2 is implemented, this bit reads as 0.
- If FEAT_Debugv8p2 is not implemented, this bit might read as 0 or 1.

For more information, see 'EDPRSR. {DLK, SPD, PU} and the Core power domain'.

SPD	Meaning
0b0	If EDPRSR.PU is 0, it is not known
	whether the state of the debug
	registers in the Core power
	domain is lost.
	If EDPRSR.PU is 1, the state of
	the debug registers in the Core
	power domain has not been lost.
0b1	The state of the debug registers in
	the Core power domain has been
	lost.

If the Core power domain is powered up, then, following a read of EDPRSR:

• If FEAT_DoubleLock is not implemented or DoubleLockStatus() == FALSE this bit clears to 0.

• If FEAT_DoubleLock is implemented and DoubleLockStatus() == TRUE, it is constrained unpredictable whether this bit clears to 0 or is unchanged.

When FEAT_DoPD is not implemented and the Core power domain is in either retention or powerdown state, the value of EDPRSR.SPD is implementation defined. For more information, see 'EDPRSR.SPD when the Core domain is in either retention or powerdown state'.

EDPRSR.{DLK, SPD, PU} describe whether registers in the Core power domain can be accessed, and whether their state has been lost since the last time the register was read. For more information, see 'EDPRSR.{DLK, SPD, PU} and the Core power domain'.

This field is in the Core power domain.

The reset behavior of this field is:

• On a Cold reset, this field resets to 1.

Accessing this field has the following behavior:

- Access is **RAZ/WI** if all of the following are true:
 - FEAT DoPD is not implemented
 - !IsCorePowered()
- Access is **UNKNOWN/WI** if all of the following are true:
 - IsCorePowered()
 - DoubleLockStatus()
- Otherwise, access to this field is **RO**.

PU, bit [0] When FEAT DoPD is implemented:

Core powerup status bit.

Access to this field is **RAO/WI**.

When FEAT Debugv8p2 is implemented:

Core Powerup status bit. Indicates whether the debug registers in the Core power domain can be accessed.

PU	Meaning
0d0	Either the Core power domain is in
	a low-power or powerdown state,
	or FEAT DoubleLock is
	implemented and
	DoubleLockStatus() $== TRUE$,
	meaning the debug registers in the
	Core power domain cannot be
	accessed.

The Core power domain is in a powerup state, and either FEAT_DoubleLock is not implemented or DoubleLockStatus() == FALSE, meaning the debug registers in the Core power domain can be accessed.

If FEAT_DoubleLock is implemented, the PE is in reset state, and the PE entered reset state with the OS Double Lock locked this bit has a constrained unpredictable value. For more information, see 'EDPRSR.{DLK, R} and reset state'

EDPRSR.{DLK, SPD, PU} describe whether registers in the Core power domain can be accessed, and whether their state has been lost since the last time the register was read. For more information, see 'EDPRSR.{DLK, SPD, PU} and the Core power domain'

Access to this field is **RO**.

Otherwise:

Core Powerup status bit. Indicates whether the debug registers in the Core power domain can be accessed.

When the Core power domain is powered-up and <code>DoubleLockStatus() == TRUE</code>, then the value of EDPRSR.PU is implementation defined. See the description of the DLK bit for more information.

Otherwise, permitted values are:

PU	Meaning
0b0	Core power domain is in a low-
	power or powerdown state where
	the debug registers in the Core
	power domain cannot be accessed.
0b1	Core power domain is in a powerup
	state where the debug registers in
	the Core power domain can be
	accessed.

If FEAT_DoubleLock is implemented, the Core power domain is powered up, and DoubleLockStatus() == TRUE, it is implementation defined whether this bit reads as 0 or 1.

If FEAT_DoubleLock is implemented, the PE is in reset state, and the PE entered reset state with the OS Double Lock locked this bit has a constrained unpredictable value. For more information see 'EDPRSR.{DLK, R} and reset state'

EDPRSR.{DLK, SPD, PU} describe whether registers in the Core power domain can be accessed, and whether their state has been lost since the last time the register was read. For more information, see 'EDPRSR.{DLK, SPD, PU} and the Core power domain'.

Access to this field is **RO**.

Accessing EDPRSR

On permitted accesses to the register, other access controls affect the behavior of some fields. See the field descriptions for more information.

If the Core power domain is powered up (EDPRSR.PU == 1), then following a read of EDPRSR:

- If FEAT_DoubleLock is not implemented or DoubleLockStatus() == FALSE, then:
 - EDPRSR. (SDR, SPMAD, SDAD, SPD) are cleared to 0.
 - EDPRSR.SR is cleared to 0 if the non-debug logic of the PE is not in reset state (EDPRSR.R == 0).
- If FEAT_DoubleLock is implemented and DoubleLockStatus() == TRUE, it is constrained unpredictable whether or not this clearing occurs.

If FEAT_DoPD is not implemented and the Core power domain is powered down (EDPRSR.PU == 0), then:

- EDPRSR.{SDR, SPMAD, SDAD, SR} are all unknown, and are either reset or restored on being powered up.
- EDPRSR.SPD is not cleared following a read of EDPRSR. See the SPD bit description for more information.

The clearing of bits is an indirect write to EDPRSR.

EDPRSR can be accessed through the external debug interface:

Component	Offset	Instance
Debug	0x314	EDPRSR

This interface is accessible as follows:

- When FEAT_DoPD is not implemented or IsCorePowered(), accesses to this register are **RO**.
- Otherwise, accesses to this register generate an error response.

	28/03/2023 16:02; 72747e43966d6b97dcbd230a1b3f0421d1ea3d9	
С	opyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. Th document is Non-Confidentia	is
	document is ivon-confidentic	11.