

Curso: Mecanica - AD Professor: Turma: Disciplina: Professor: Data: / // Data:// Data://	Ministério da Educação UNIVERSIDADE FEDERAL DO PARANÁ Setor de Ciências Exatas		Nota:	
Aluno: Turma: $ \begin{array}{cccccccccccccccccccccccccccccccccc$		Disciplina:		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Curso: Mecànica - AD Aluno: CABARI Turma:	Professor:	Data: / _	
$= \lim_{n \to 0} f(h, 0) - f(0, 0) = 3.5 - 4 = -0.5 = -2.5$ $2f(0, -1) = \lim_{n \to 0} f(0, -1 + h) - f(0, -1) = 5.75 - 6 = -0.25 = -0.25$ $2 \text{ a) lim } \ln(1 + x^2 + y) \cos(1 + y^2 + y^2)$ $1^2 \text{ juto } : -1 \le \cos(1 + y^2 + y^2)$ $-\ln(1 + x^2 + y) \le \ln(1 + x^2 + y^2) \cos(1 + y^2 + y^2)$ $Aplicando limite fica 0 \le \lim_{n \to 0} \ln(1 + x^2 + y^2) \cos(1 + x^2 + y^2) 2^2 \text{ juto } : \lim_{n \to 0} \ln(1 + x^2 + y^2) \cos(1 + y^2 + y^2) 2^2 \text{ juto } : \lim_{n \to 0} \ln(1 + x^2 + y^2) \cos(1 + y^2 + y^2) 2^2 \text{ juto } : \lim_{n \to 0} \ln(1 + x^2 + y^2) \cos(1 + y^2 + y^2) 2^2 \text{ juto } : \lim_{n \to 0} \ln(1 + x^2 + y^2) \cos(1 + y^2 + y^2) 2^2 \text{ juto } : \lim_{n \to 0} \ln(1 + x^2 + y^2) \cos(1 + y^2 + y^2) 2^2 \text{ juto } : \lim_{n \to 0} \ln(1 + x^2 + y^2) \cos(1 + y^2 + y^2) 2^2 \text{ juto } : \lim_{n \to 0} \ln(1 + x^2 + y^2) \cos(1 + y^2 + y^2) 2^2 \text{ juto } : \lim_{n \to 0} \ln(1 + x^2 + y^2) \cos(1 + y^2 + y^2) 2^2 \text{ juto } : \lim_{n \to 0} \ln(1 + x^2 + y^2) \cos(1 + y^2 + y^2) 2^2 \text{ juto } : \lim_{n \to 0} \ln(1 + x^2 + y^2) \cos(1 + y^2 + y^2) 2^2 \text{ juto } : \lim_{n \to 0} \ln(1 + x^2 + y^2) \cos(1 + y^2 + y^2) 2^2 \text{ juto } : \lim_{n \to 0} \ln(1 + x^2 + y^2) \cos(1 + y^2 + y^2) 2^2 \text{ juto } : \lim_{n \to 0} \ln(1 + x^2 + y^2) \cos(1 + y^2 + y^2) 2^2 \text{ juto } : \lim_{n \to 0} \ln(1 + x^2 + y^2) \cos(1 + y^2 + y^2) 2^2 \text{ juto } : \lim_{n \to 0} \ln(1 + x^2 + y^2) \cos(1 + y^2 + y^2) 2^2 \text{ juto } : \lim_{n \to 0} \ln(1 + x^2 + y^2) \cos(1 + y^2 + y^2) 2^2 \text{ juto } : \lim_{n \to 0} \ln(1 + x^2 + y^2) \cos(1 + y^2 + y^2) 2^2 \text{ juto } : \lim_{n \to 0} \ln(1 + x^2 + y^2) \cos(1 + y^2 + y^2) 2^2 \text{ juto } : \lim_{n \to 0} \ln(1 + x^2 + y^2) \cos(1 + y^2 + y^2) 2^2 \text{ juto } : \lim_{n \to 0} \ln(1 + x^2 + y^2) \cos(1 + y^2 + y^2) 2^2 \text{ juto } : \lim_{n \to 0} \ln(1 + x^2 + y^2) \cos(1 + y^2 + y^2) 2^2 \text{ juto } : \lim_{n \to 0} \ln(1 + x^2 + y^2) \cos(1 + y^2 + y^2) 2^2 \text{ juto } : \lim_{n \to 0} \ln(1 + x^2 + y^2) \cos(1 + y^2 + y^2) 2^2 \text{ juto } : \lim_{n \to 0} \ln(1 + x^2 + y^2) \cos(1 + y^2 + y^2) 2^2 \text{ juto } : \lim_{n \to 0} \ln(1 + x^2 + y^2) \cos(1 + y^2 + y^2) 2^2 \text{ juto } : \lim_{n \to 0} \ln(1 + x^2 + y^2) \cos(1 + y^2 + y^2) 2^2 \text{ juto } : \lim_{n \to 0} \ln(1 + x^2 + y^2) \cos(1 + y^2 + y^2) 2^2 \text{ juto } : \lim_{n \to 0$				
$= \lim_{n \to 0} f(h, 0) - f(0, 0) = 3.5 - 4 = -0.5 = -2.5$ $2f(0, -1) = \lim_{n \to 0} f(0, -1 + h) - f(0, -1) = 5.75 - 6 = -0.25 = -0.25$ $2 \text{ a) lim } \ln(1 + x^2 + y) \cos(1 + y^2 + y^2)$ $1^2 \text{ juto } : -1 \le \cos(1 + y^2 + y^2)$ $-\ln(1 + x^2 + y) \le \ln(1 + x^2 + y^2) \cos(1 + y^2 + y^2)$ $Aplicando limite fica 0 \le \lim_{n \to 0} \ln(1 + x^2 + y^2) \cos(1 + x^2 + y^2) 2^2 \text{ juto } : \lim_{n \to 0} \ln(1 + x^2 + y^2) \cos(1 + y^2 + y^2) 2^2 \text{ juto } : \lim_{n \to 0} \ln(1 + x^2 + y^2) \cos(1 + y^2 + y^2) 2^2 \text{ juto } : \lim_{n \to 0} \ln(1 + x^2 + y^2) \cos(1 + y^2 + y^2) 2^2 \text{ juto } : \lim_{n \to 0} \ln(1 + x^2 + y^2) \cos(1 + y^2 + y^2) 2^2 \text{ juto } : \lim_{n \to 0} \ln(1 + x^2 + y^2) \cos(1 + y^2 + y^2) 2^2 \text{ juto } : \lim_{n \to 0} \ln(1 + x^2 + y^2) \cos(1 + y^2 + y^2) 2^2 \text{ juto } : \lim_{n \to 0} \ln(1 + x^2 + y^2) \cos(1 + y^2 + y^2) 2^2 \text{ juto } : \lim_{n \to 0} \ln(1 + x^2 + y^2) \cos(1 + y^2 + y^2) 2^2 \text{ juto } : \lim_{n \to 0} \ln(1 + x^2 + y^2) \cos(1 + y^2 + y^2) 2^2 \text{ juto } : \lim_{n \to 0} \ln(1 + x^2 + y^2) \cos(1 + y^2 + y^2) 2^2 \text{ juto } : \lim_{n \to 0} \ln(1 + x^2 + y^2) \cos(1 + y^2 + y^2) 2^2 \text{ juto } : \lim_{n \to 0} \ln(1 + x^2 + y^2) \cos(1 + y^2 + y^2) 2^2 \text{ juto } : \lim_{n \to 0} \ln(1 + x^2 + y^2) \cos(1 + y^2 + y^2) 2^2 \text{ juto } : \lim_{n \to 0} \ln(1 + x^2 + y^2) \cos(1 + y^2 + y^2) 2^2 \text{ juto } : \lim_{n \to 0} \ln(1 + x^2 + y^2) \cos(1 + y^2 + y^2) 2^2 \text{ juto } : \lim_{n \to 0} \ln(1 + x^2 + y^2) \cos(1 + y^2 + y^2) 2^2 \text{ juto } : \lim_{n \to 0} \ln(1 + x^2 + y^2) \cos(1 + y^2 + y^2) 2^2 \text{ juto } : \lim_{n \to 0} \ln(1 + x^2 + y^2) \cos(1 + y^2 + y^2) 2^2 \text{ juto } : \lim_{n \to 0} \ln(1 + x^2 + y^2) \cos(1 + y^2 + y^2) 2^2 \text{ juto } : \lim_{n \to 0} \ln(1 + x^2 + y^2) \cos(1 + y^2 + y^2) 2^2 \text{ juto } : \lim_{n \to 0} \ln(1 + x^2 + y^2) \cos(1 + y^2 + y^2) 2^2 \text{ juto } : \lim_{n \to 0} \ln(1 + x^2 + y^2) \cos(1 + y^2 + y^2) 2^2 \text{ juto } : \lim_{n \to 0} \ln(1 + x^2 + y^2) \cos(1 + y^2 + y^2) 2^2 \text{ juto } : \lim_{n \to 0} \ln(1 + x^2 + y^2) \cos(1 + y^2 + y^2) 2^2 \text{ juto } : \lim_{n \to 0} \ln(1 + x^2 + y^2) \cos(1 + y^2 + y^2) 2^2 \text{ juto } : \lim_{n \to 0} \ln(1 + x^2 + y^2) \cos(1 + y^2 + y^2) 2^2 \text{ juto } : \lim_{n \to 0} \ln(1 + x^2 + y^2) \cos(1 + y^2 + y^2) 2^2 \text{ juto } : \lim_{n \to 0$	(1) 2f (0,0)= lim f(0+h,0	0,0)-f(0,0)		
$2f(0-1) = \lim_{N \to 0} f(0,-1+N) - f(0,-1) = 5.75-6 = -0.25 - 0.25$ $2) a) \lim_{N \to 0} \ln(1+x^2+y) cay = 1$ $1^2 \text{ with } \circ \qquad -1 \le cat = 1$ $-1 \le cat = 1 \le 1$ $-1 \le cat = 1$ $-1 \le cat = 1 \le 1$ $-1 \le cat = 1$		• •	5-11	-05~5
$2f(0-1) = \lim_{N \to 0} f(0,-1+N) - f(0,-1) = 5.75-6 = -0.25 - 0.25$ $2) a) \lim_{N \to 0} \ln(1+x^2+y) cay = 1$ $1^2 \text{ with } \circ \qquad -1 \le cat = 1$ $-1 \le cat = 1 \le 1$ $-1 \le cat = 1$ $-1 \le cat = 1 \le 1$ $-1 \le cat = 1$	= um fcn,0)-	80.07 <u>9</u>	0.25	0,25
2) a) lim $\ln(1+x^2+y)$ cosy 1 (xy^2+000) (x^2+y^2) $-\ln(1+x^2+y) \leq \ln(1+x^2+y) cosy 1 \leq \ln(1+x^2+y)$ Aplicands limite fica. $0 \leq \lim_{x \to 0} \ln(1+x^2+y) cosy 1 \leq 0$ (xy^2+000) (x^2+y^2) (x^2+100) (x^2+100) (x^2+100) (x^2+100) (x^2+100) (x^2+100) (x^2+100)		V O	0 \ 20	
2) a) lim $\ln(1+x^2+y)$ cosy 1 (xy^2+000) (x^2+y^2) $-\ln(1+x^2+y) \leq \ln(1+x^2+y) cosy 1 \leq \ln(1+x^2+y)$ Aplicands limite fica. $0 \leq \lim_{x \to 0} \ln(1+x^2+y) cosy 1 \leq 0$ (xy^2+000) (x^2+y^2) (x^2+100) (x^2+100) (x^2+100) (x^2+100) (x^2+100) (x^2+100) (x^2+100)	26 (0,-1)= lim 6(0,-1+.	h)-f(0,-1)=	5,75-6 =	0,25_
2) a) lim $\ln(1+x^2+y)$ cosy 1 (xy^2+000) (x^2+y^2) $-\ln(1+x^2+y) \leq \ln(1+x^2+y) cosy 1 \leq \ln(1+x^2+y)$ Aplicands limite fica. $0 \leq \lim_{x \to 0} \ln(1+x^2+y) cosy 1 \leq 0$ (xy^2+000) (x^2+y^2) (x^2+100) (x^2+100) (x^2+100) (x^2+100) (x^2+100) (x^2+100) (x^2+100)	2 N-0	2n	0,25	0,25
1º jeto: $-1 \le cox \left(\frac{1}{x^2 + y^2} \right)$ $-ln(1+x^2+y) \le ln(1+x^2+y)cox \left(\frac{1}{x^2 + y^2} \right)$ Aplicando limite fica. $0 \le lim ln(1+x^2+y)cox 1 \le 0$ $(x,y) + (0,0) \xrightarrow{x^2 + y^2}$ $lim ln(1+x^2+y)cox 1 = 0$ $(x,y) + (0,0) \xrightarrow{x^2 + y^2}$ $limitada$ 2) $lim = 2x + 1 = 0 lim x^2(2x) - x(2x)^3 = 2x^4 - 8x^4 = -6x^4$ $1 = 2x \xrightarrow{x^2 + (2x)^4} x^4 + 16x^4 = 17x^4$			·	
1º jeto: $-1 \le cox \left(\frac{1}{x^2 + y^2} \right)$ $-ln(1+x^2+y) \le ln(1+x^2+y)cox \left(\frac{1}{x^2 + y^2} \right)$ Aplicando limite fica. $0 \le lim ln(1+x^2+y)cox 1 \le 0$ $(x,y) + (0,0) \xrightarrow{x^2 + y^2}$ $lim ln(1+x^2+y)cox 1 = 0$ $(x,y) + (0,0) \xrightarrow{x^2 + y^2}$ $limitada$ 2) $lim = 2x + 1 = 0 lim x^2(2x) - x(2x)^3 = 2x^4 - 8x^4 = -6x^4$ $1 = 2x \xrightarrow{x^2 + (2x)^4} x^4 + 16x^4 = 17x^4$				
1º jeto: $-1 \le cox \left(\frac{1}{x^2 + y^2} \right)$ $-ln(1+x^2+y) \le ln(1+x^2+y)cox \left(\frac{1}{x^2 + y^2} \right)$ Aplicando limite fica. $0 \le lim ln(1+x^2+y)cox 1 \le 0$ $(x,y) + (0,0) \xrightarrow{x^2 + y^2}$ $lim ln(1+x^2+y)cox 1 = 0$ $(x,y) + (0,0) \xrightarrow{x^2 + y^2}$ $limitada$ 2) $lim = 2x + 1 = 0 lim x^2(2x) - x(2x)^3 = 2x^4 - 8x^4 = -6x^4$ $1 = 2x \xrightarrow{x^2 + (2x)^4} x^4 + 16x^4 = 17x^4$	2) a) lin ln(1+x+y) cos	1 - 1		
$-\ln(1+x^{2}+y) \leq \ln(1+x^{2}+y) \cos_{1}(x^{2}+y^{2})$ Aplicando limite fica $0 \leq \lim_{(x,y)\to(0,0)} \ln(1+x^{2}+y) \cos_{1}(x^{2}+y^{2})$ $2^{2} \text{ jeths: } \lim_{(x,y)\to(0,0)} \ln(1+x^{2}+y) \cot_{1}(x^{2}+y^{2})$ $\lim_{(x,y)\to(0,0)} \ln(1+x^{2}+y) \cot_{1}(x^{2}+y^{2})$ $\lim_{(x,y)\to(0,0)} \ln(1+x^{2}+y) \cot_{1}(x^{2}+y^{2})$ $\lim_{(x,y)\to(0,0)} \ln(1+x^{2}+y) \cot_{1}(x^{2}+y^{2})$ $\lim_{(x,y)\to(0,0)} \ln(1+x^{2}+y^{2}) \cot_{1}(x^{2}+y^{2})$	- C/O)CH(X,X)	(X+ns)		
$-\ln(1+x^{2}+y) \leq \ln(1+x^{2}+y) \cos_{1}(x^{2}+y^{2})$ Aplicando limite fica $0 \leq \lim_{(x,y)\to(0,0)} \ln(1+x^{2}+y) \cos_{1}(x^{2}+y^{2})$ $2^{2} \text{ jeths: } \lim_{(x,y)\to(0,0)} \ln(1+x^{2}+y) \cot_{1}(x^{2}+y^{2})$ $\lim_{(x,y)\to(0,0)} \ln(1+x^{2}+y) \cot_{1}(x^{2}+y^{2})$ $\lim_{(x,y)\to(0,0)} \ln(1+x^{2}+y) \cot_{1}(x^{2}+y^{2})$ $\lim_{(x,y)\to(0,0)} \ln(1+x^{2}+y) \cot_{1}(x^{2}+y^{2})$ $\lim_{(x,y)\to(0,0)} \ln(1+x^{2}+y^{2}) \cot_{1}(x^{2}+y^{2})$	1000+-0			
$-\ln(1+x^{2}+y) \leq \ln(1+x^{2}+y) \cos(x^{2}+y^{2})$ Aplicando limite fica. $0 \leq \lim_{(x,y)\to(0,0)} \ln(1+x^{2}+y) \cot(x^{2}+y^{2})$ $2^{2} \text{ jets: } \lim_{(x,y)\to(0,0)} \ln(1+x^{2}+y) \cot(x^{2}+y^{2})$ $\lim_{(x,y)\to(0,0)} \ln(1+x^{2}+y) \cot(x^{2}+y^{2})$ $\lim_{(x,y)\to(0,0)} \ln(1+x^{2}+y^{2}) \cot(x^{2}+y^{2})$	1- feet 0 -12 Or / -2			
Aplicando limite fica. $0 \le \lim_{(x,y) \to (0,0)} \ln(1+x^2+y) \cot \frac{1}{x^2+y^2}$ 2^2 jetto: $\lim_{(x,y) \to (0,0)} \ln(1+x^2+y) \cot \frac{1}{x^2+y^2} = 0$			= 2n(1+x2	+4)
Aplicandor limite fica. $0 \le \lim_{x \to \infty} \ln \ln(1+x^2+y) \cos 1 = 0$ 2° jeito: $\lim_{x \to \infty} \ln \ln(1+x^2+y) \cos 1 = 0$ $\lim_{x \to \infty} \ln \ln \ln(1+x^2+y) \cos 1 = 0$ $\lim_{x \to \infty} \ln \ln \ln \ln(1+x^2+y) \cos 1 = 0$ $\lim_{x \to \infty} \ln $	- 20110 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1	$\frac{1}{2}\left(\frac{x^2}{x^2+u^2}\right)$		<u>, </u>
$0 \leq \lim_{(x,y) \to (0,0)} x (1+x+y) \cos_{1} \underline{1} \leq 0$ $(x,y) \to (0,0) x^{2}+y^{2} $ $2^{\circ} \text{ gith: } \lim_{(x,y) \to (0,0)} x (1+x^{2}+y) \cos_{1} \underline{1} \underline{1} \underline{1} = 0$ $\lim_{(x,y) \to (0,0)} x^{2}+y^{2} $ $\lim_{(x,y) \to (0,0)} x^{2}+y^{2} = 0$	Aplicando limite fica	0.		
2º jeito: lim en (1+x²+y) cos 1 = 0 (x,y)+(0,0)	0 ≤ lix	n encl+x-	1_ 200 (N+	€0
2º jeito: lim en (1+x²+y) cos 1 = 0 (x,y)+(0,0)	(x, x)-4	·(o,o)	XZ	2
$2by = 2x+1 = 0 \lim_{x \to \infty} x^{3}(2x) - x(2x)^{3} = 2x^{4} - 8x^{4} = -6x^{4}$ $2by = 2x+1 = 0 \lim_{x \to \infty} x^{3}(2x) - x(2x)^{3} = 2x^{4} - 8x^{4} = -6x^{4}$ $x^{4} + (2x)^{4} = x^{4} + 16x^{4} = 17x^{4}$		=0		a
$2by = 2x+1 = 0 \lim_{x \to \infty} x^{3}(2x) - x(2x)^{3} = 2x^{4} - 8x^{4} = -6x^{4}$ $2by = 2x+1 = 0 \lim_{x \to \infty} x^{3}(2x) - x(2x)^{3} = 2x^{4} - 8x^{4} = -6x^{4}$ $x^{4} + (2x)^{4} = x^{4} + 16x^{4} = 17x^{4}$		0		
$2by = 2x+1 = 0 \lim_{x \to \infty} x^{3}(2x) - x(2x)^{3} = 2x^{4} - 8x^{4} = -6x^{4}$ $2by = 2x+1 = 0 \lim_{x \to \infty} x^{3}(2x) - x(2x)^{3} = 2x^{4} - 8x^{4} = -6x^{4}$ $x^{4} + (2x)^{4} = x^{4} + 16x^{4} = 17x^{4}$	2º jets: lim en (1+x2+1	y) cos 4		
$2)by = 2x+1=0 \lim_{x \to \infty} x^{3}(2x) - x(2x)^{3} = 2x^{4} - 8x^{4} = -6x^{4}$ $y - 1 = 2x \qquad x^{4} + (2x)^{4} \qquad x^{4} + 16x^{4} \qquad 17x^{4}$ $= -6$ 17	(x,y)=(0,0)	X FY		
$\frac{2)by=2x+1=0 \lim x^{3}(2x)-x(2x)^{3}=2x^{4}-8x^{4}=-6x^{4}}{x^{4}+(2x)^{4}} = \frac{2x^{4}-8x^{4}=-6x^{4}}{x^{4}+16x^{4}} = \frac{17x^{4}}{17}$		limitado	£	
$\frac{2)671 = 2 \times 47 = 15}{17 \times 4} = \frac{2}{17} \times \frac{1}{17} $	(2) (2) (2) (2) (2) (2) (2) (2)	V(23	24 800	-GV M
$\frac{1}{1-2}$ $= -G$ 17 17		2~11	2071CVA	12/4
iu 341	14-1-21	<u> </u>	1 - 161	G
	iu-341			17

(3)
$$f(x_1y) = \frac{x^2 + 1/2}{y^2 + 1}$$
 $ky^2 + k = x^2 + y^2 \Rightarrow x^2 + (1 - k)y^2 = k$

So $k = 1$ o

 $x^2 = 1 \Rightarrow x = \pm 1$

So $k > 1$ o

 $x^2 + (1 - k)y^2 = 1$
 $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

So $x = 1 \Rightarrow x = \pm 1$

$$\frac{\partial^2 \mu}{\partial t^2} = c^2 \frac{\partial^2 \mu}{\partial x^2}$$

$$\frac{\partial^2 \mu}{\partial t^2} = c^2 \frac{\partial^2 \mu}{\partial x^2}$$

$$\frac{\partial \mu}{\partial x} = -\sin(x-\pi t) + 2\cos(x+\pi t)$$

$$\frac{\partial^2 \mu}{\partial x} = -\cos(x-\pi t) - 2\sin(x+\pi t)$$

$$\frac{\partial U}{\partial t} = -(\pi) \sec (x - \pi t) + 2\pi \cot (x + \pi t)$$

$$= \pi \sec (x - \pi t) + 2\pi \cot (x + \pi t)$$

$$\frac{\partial^{2} U}{\partial t^{2}} = -\pi^{2} \cot (x - \pi t) - 2\pi^{2} \sec (x + \pi t)$$

$$-\pi^{2} \cot (x - \pi t) - 2\pi^{2} \sec (x + \pi t)$$

$$-\pi^{2} \cot (x - \pi t) - 2\pi^{2} \sec (x + \pi t) =$$

$$= \pi^{2} \cot (x - \pi t) - 2c^{2} \sec (x + \pi t)$$

$$c^{2} \cot (x - \pi t) - 2c^{2} \sec (x + \pi t)$$

$$= \pi^{2} \cot (x - \pi t) + 2\cot (x + \pi t)$$

$$T^{2} = c^{2} \Rightarrow c = \pm \pi \Rightarrow \cos (x + \pi t)$$

$$= -\pi^{2} + 2\cot (x - \pi t) + 2\cot (x + \pi t)$$

$$= -\pi^{2} + 2\cot (x - \pi t) + 2\pi \cot (x + \pi t)$$

$$= -\pi^{2} + 2\cot (x - \pi t) + 2\pi \cot (x + \pi t)$$

$$= \pi^{2} \cot (x - \pi t) + 2\pi \cot (x + \pi t)$$

$$= \pi^{2} \cot (x - \pi t) + 2\pi \cot (x + \pi t)$$

$$= \pi^{2} \cot (x - \pi t) + 2\pi \cot (x + \pi t)$$

$$= \pi^{2} \cot (x - \pi t) + 2\pi \cot (x + \pi t)$$

$$= \pi^{2} \cot (x - \pi t) + 2\pi \cot (x + \pi t)$$

$$= \pi^{2} \cot (x - \pi t) + 2\pi \cot (x + \pi t)$$

$$= \pi^{2} \cot (x - \pi t) + 2\pi \cot (x + \pi t)$$

$$= \pi^{2} \cot (x - \pi t) + 2\pi \cot (x + \pi t)$$

$$= \pi^{2} \cot (x - \pi t) + 2\pi \cot (x + \pi t)$$

$$= \pi^{2} \cot (x - \pi t) + 2\pi \cot (x + \pi t)$$

$$= \pi^{2} \cot (x - \pi t) + 2\cot (x + \pi t)$$

$$= \pi^{2} \cot (x - \pi t) + 2\cot (x + \pi t)$$

$$= \pi^{2} \cot (x - \pi t) + 2\cot (x + \pi t)$$

$$= \pi^{2} \cot (x - \pi t) + 2\cot (x + \pi t)$$

$$= \pi^{2} \cot (x - \pi t) + 2\cot (x + \pi t)$$

$$= \pi^{2} \cot (x - \pi t) + 2\cot (x + \pi t)$$

$$= \pi^{2} \cot (x - \pi t) + 2\cot (x + \pi t)$$

$$= \pi^{2} \cot (x - \pi t) + 2\cot (x + \pi t)$$

$$= \pi^{2} \cot (x - \pi t) + 2\cot (x + \pi t)$$

$$= \pi^{2} \cot (x - \pi t) + 2\cot (x + \pi t)$$

$$= \pi^{2} \cot (x - \pi t) + 2\cot (x + \pi t)$$

$$= \pi^{2} \cot (x - \pi t) + 2\cot (x + \pi t)$$

$$= \pi^{2} \cot (x - \pi t) + 2\cot (x + \pi t)$$

$$= \pi^{2} \cot (x - \pi t) + 2\cot (x + \pi t)$$

$$= \pi^{2} \cot (x - \pi t) + 2\cot (x + \pi t)$$

$$= \pi^{2} \cot (x - \pi t) + 2\cot (x + \pi t)$$

$$= \pi^{2} \cot (x - \pi t) + 2\cot (x + \pi t)$$

$$= \pi^{2} \cot (x - \pi t) + 2\cot (x + \pi t)$$

$$= \pi^{2} \cot (x - \pi t) + 2\cot (x + \pi t)$$

$$= \pi^{2} \cot (x - \pi t) + 2\cot (x + \pi t)$$

$$= \pi^{2} \cot (x - \pi t) + 2\cot (x + \pi t)$$

$$= \pi^{2} \cot (x - \pi t) + 2\cot (x + \pi t)$$

$$= \pi^{2} \cot (x - \pi t) + 2\cot (x + \pi t)$$

$$= \pi^{2} \cot (x - \pi t) + 2\cot (x + \pi t)$$

$$= \pi^{2} \cot (x - \pi t) + 2\cot (x + \pi t)$$

$$= \pi^{2} \cot (x - \pi t) + 2\cot (x + \pi t)$$

$$= \pi^{2} \cot (x - \pi t) + 2\cot (x + \pi t)$$

$$= \pi^{2} \cot (x - \pi t) + 2\cot (x + \pi t)$$

$$= \pi^{2} \cot (x - \pi t) + 2\cot (x + \pi t)$$

$$= \pi^{2} \cot (x - \pi t) + 2\cot (x + \pi t)$$

$$= \pi^{2} \cot (x - \pi t) +$$

Scanned by CamScanner