Optimal Pi and Importance Sampling Analysis

Contents

Overview	1
Optimal Pi	1
Hyperparameter specification	. 1
Optimal Hyperparameter Distribution	22
Optimal Sigmabeta_sq as a function of Pi	. 24
Optimal Pi by variable	25
p=20	. 28
Importance Sampling Hybrid	43
Algorithm Overview	43
Hyperparameter Grid	43
Sensitivity and Specificity	43
Data Generation	44
Extraneous Covariate	44
Precision Matrix	45
Data matrix	46

Overview

In this document, I present the results of two experiments. The first describes the distribution of the optimal hyperparameters selected by grid search. In the second, I compare the results of a novel importance sampling - grid search hybrid scheme for hyperparameter specification.

The first two main sections contain the results of these experiments, while the third describes the data and extraneous covariate generation.

Optimal Pi

Hyperparameter specification

[[1]]

Graph 1, Individuals 1,...,26

[[2]]

Graph 2, Individuals 27,...,44,50,...,53

[[3]]

Graph 3, Individuals 45,...,49

[[4]]

Graph 4, Individuals 54,...,82

[[5]]

Graph 5, Individuals 83,...,116

[[6]]

Graph 6, Individuals 117,...,131

[[7]]

Graph 7, Individuals 132,...,143

[[8]]

Graph 8, Individuals 144,...,150

[[9]]

Graph 9, Individuals 151,...,180

[[1]]

Graph 1, Individuals 1,...,33

[[2]]

Graph 2, Individuals 34,...,60

[[3]]

Graph 3, Individuals 61,...,66

[[4]]

Graph 4, Individuals 67,...,71

[[5]]

Graph 5, Individuals 72,73

[[6]]

Graph 6, Individuals 74,...,96

[[7]]

Graph 7, Individuals 97,...,106

[[8]]

Graph 8, Individuals 107,...,109

[[9]]

Graph 9, Individuals 110,...,119

[[10]]

Graph 10, Individuals 120,...,156

[[11]]

Graph 11, Individuals 157,...,180

In this experiment, I applied the grid search algorithm in 100 trials. I generated the grid from the cartesian product of the following marginal grids:

```
# marginal grids
marg_grids
## $pip
  [1] 0.00001 0.00010 0.00100 0.01000 0.02500 0.05000 0.15000 0.25000 0.35000
## [10] 0.45000 0.55000 0.65000 0.75000 0.85000 0.95000 0.99000 0.99900 0.99990
## [19] 0.99999
##
## $ssq
  [1] 1.0e-05 1.0e-04 1.0e-03 1.0e-02 2.5e-02 5.0e-02 1.0e-01 1.5e-01 2.0e-01
## [10] 2.5e-01 3.0e-01 3.5e-01 4.0e-01 4.5e-01 5.0e-01 5.5e-01 6.0e-01 6.5e-01
## [19] 7.0e-01 7.5e-01 8.0e-01 8.5e-01 9.0e-01 9.5e-01 1.0e+00 1.5e+00 2.0e+00
## [28] 2.5e+00 3.0e+00 5.0e+00 1.0e+01
##
## $sbsq
## [1] 1.0e-05 1.0e-04 1.0e-03 1.0e-02 2.5e-02 5.0e-02 1.0e-01 1.5e-01 2.0e-01
## [10] 2.5e-01 3.0e-01 3.5e-01 4.0e-01 4.5e-01 5.0e-01 5.5e-01 6.0e-01 6.5e-01
## [19] 7.0e-01 7.5e-01 8.0e-01 8.5e-01 9.0e-01 9.5e-01 1.0e+00 1.5e+00 2.0e+00
## [28] 2.5e+00 3.0e+00 5.0e+00 1.0e+01
```

number of grid points in the cartesian product

nrow(expand.grid(marg_grids))

Optimal Hyperparameter Distribution

In this section, I display the distribution of optimal hyperparameters aggregated across all variables. Since a unique point in the hyperparameter grid was selected for each of the 5 variables, a total of 500 grid points are represented in each figure.

I begin by displaying the true underlying precision structures to provide context for the optimal pi.

Optimal Sigmabeta_sq as a function of Pi

Here, I visualize the optimal sigmabeta_sq as a function of pi. Note that the count is on the log scale.

##															
##		1e-05	1e-04	0.001	0.01	0.025	0.05	0.1	0.15	0.2	0.25	0.3	0.35	0.4	0.45
##	1e-05	26	0	0	0	0	0	0	0	0	0	0	0	0	0
##	1e-04	0	0	0	0	0	0	0	0	0	0	0	0	0	0
##	0.001	0	0	0	0	0	0	0	0	0	0	0	0	0	0
##	0.01	0	0	0	0	0	0	0	0	0	0	0	0	0	0
##	0.025	0	0	0	1	0	0	0	0	0	0	0	0	0	0
##	0.05	0	0	0	0	0	1	0	1	0	0	0	0	0	0
##	0.15	0	0	1	1	3	1	1	0	0	0	0	0	0	0
##	0.25	0	0	0	3	3	5	1	0	0	0	0	0	0	0
##	0.35	0	0	0	7	3	3	0	2	0	0	0	0	0	0
##	0.45	0	0	0	7	1	0	0	3	6	2	1	0	1	1
##	0.55	0	0	2	8	1	1	3	7	3	7	7	14	7	3
##	0.65	0	0	1	9	1	1	5	13	12	12	17	18	5	4
##	0.75	0	0	1	7	3	0	5	8	8	9	16	0	2	0
##	0.85	0	0	2	5	3	1	6	8	9	9	4	3	1	0
##	0.95	0	0	0	3	1	0	4	4	6	4	0	1	0	0
##	0.99	0	0	0	2	1	0	1	0	0	0	0	0	0	0
##	0.999	0	5	17	19	4	0	1	0	0	0	0	1	0	0
##	0.9999	0	0	0	14	12	4	4	6	7	10	1	0	0	0
##	0.99999	0	0	6	0	0	0	0	0	0	0	0	0	0	0
##															
##				0.65		0.75 0.			.9 0.9		1.0			3 5	10
##	1e-05	0	0 (-	0	0	0	0	0	0 (0	-	0	0
##	1e-04	0	0 (-	0	0	0	0	0	0 (0	-	0	0
##	0.001	0	0 (-	0	0	0	0	0	0 (0	-	0	0
##	0.01	0	0 (0	0	0	0	0	0	0 () 0	0	0 (0 0	0

Optimal Pi by variable

In this section, I visualize the optimal pi by variable.

[[1]]

[[2]]

[[3]]

[[4]]

[[5]]

$$p = 20$$

In this section, I present the same analyses as above for a dataset with p = 20.

The marginal grids are:

marginal grids marg_grids

```
##
          pip
                  ssq
                         sbsq
## 1
      0.00001 1.0e-05 1.0e-05
      0.00010 1.0e-04 1.0e-04
      0.00100 1.0e-03 1.0e-03
## 4
      0.01000 1.0e-02 1.0e-02
## 5
      0.02500 2.5e-02 2.5e-02
## 6
     0.05000 5.0e-02 5.0e-02
      0.15000 2.0e-01 2.0e-01
      0.25000 3.5e-01 3.5e-01
## 8
## 9
      0.35000 5.0e-01 5.0e-01
## 10 0.45000 6.5e-01 6.5e-01
## 11 0.55000 8.0e-01 8.0e-01
## 12 0.65000 9.5e-01 9.5e-01
## 13 0.75000 1.0e+00 1.0e+00
## 14 0.85000 1.5e+00 1.5e+00
## 15 0.95000 2.0e+00 2.0e+00
## 16 0.99000 2.5e+00 2.5e+00
## 17 0.99900 3.0e+00 3.0e+00
## 18 0.99990 5.0e+00 5.0e+00
## 19 0.99999 1.0e+01 1.0e+01
```

number of grid points in the cartesian product nrow(expand.grid(marg_grids))

[1] 6859

The true precision structures are given below:

Below is the distribution of the optimal hyperparameters aggregated across all variables.

The optimal value of sbsq as a function of pi is visualized below.

##															
##		1e-05	1e-04	0.001	0.01	0.025	0.05	0.2	0.35	0.5	0.65	0.8	0.95	1	1.5
##	1e-05	3	0	0	0	0	0	0	0	0	0	0	0	0	0
##	1e-04	0	0	0	0	0	0	0	0	0	0	0	0	0	0
##	0.001	0	0	0	0	0	0	0	0	0	0	0	0	0	0
##	0.01	0	0	0	0	0	0	0	0	0	0	0	0	0	0
##	0.025	0	0	0	0	0	0	1	1	0	0	0	0	0	1
##	0.05	0	0	0	1	1	7	2	6	3	1	0	0	0	0
##	0.15	0	0	0	3	31	27	35	14	0	0	2	1	0	2
##	0.25	0	0	1	23	57	31	92	2	0	0	0	0	0	0
##	0.35	0	0	1	55	62	32	30	0	0	0	0	0	0	0
##	0.45	0	0	0	77	81	20	3	0	0	0	0	0	0	0
##	0.55	0	1	1	94	68	25	0	0	0	0	0	0	0	0
##	0.65	0	0	1	100	58	11	1	0	0	0	0	0	0	0
##	0.75	0	0	2	101	63	6	0	0	0	0	0	0	0	0
##	0.85	0	0	0	95	47	4	0	0	0	0	0	0	0	0
##	0.95	0	0	1	69	16	1	0	0	0	0	0	0	0	0
##	0.99	0	0	0	15	5	0	0	0	0	0	0	0	0	0
##	0.999	0	2	47	297	14	1	0	0	0	0	0	0	0	0
##	0.9999	0	0	0	127	15	1	0	0	0	0	0	0	0	0
##	0.99999	0	0	0	0	0	0	0	0	0	0	0	0	0	0
##															
##		2 2.		5 :	10										
##	1e-05	0	0 0	0	0										
##	1e-04	0	0 0	0	0										
##	0.001	0	0 0	0	0										
##	0.01	0	0 0	0	0										
##	0.025	0	1 0	0	0										
##	0.05	0	0 0	0	0										
##	0.15	1	0 0	0	0										

```
##
     0.25
                0
                     0
                         0
                             0
                                  0
##
     0.35
                0
                    0
                         0
                             0
                                  0
##
     0.45
##
     0.55
                0
                    0
                         0
                             0
                                  0
                0
                     0
                         0
                             0
                                  0
##
     0.65
                    0
##
     0.75
                0
                         0
                             0
                                  0
                0
                     0
##
     0.85
                         0
                             0
                                  0
##
     0.95
                0
                     0
                         0
                                  0
                             0
##
     0.99
                0
                     0
                         0
                             0
                                  0
##
     0.999
                0
                     0
                         0
                             0
                                  0
                0
                     0
                         0
                                  0
##
     0.9999
                             0
                     0
##
     0.99999
                0
                         0
                             0
                                  0
```


Here the distribution of the optimal pi is visualized by variable.

[[1]]

[[2]]

[[3]]

[[4]]

[[5]]

[[6]]

[[7]]

[[8]]

[[9]]

[[10]]

[[11]]

[[12]]

[[13]]

[[14]]

[[15]]

[[16]]

[[17]]

[[18]]

[[19]]

[[20]]

Importance Sampling Hybrid

Algorithm Overview

This algorithm averages over a deterministic grid of pi. For each value of pi, the values of sigmasq and sigmasq_beta are chosen using grid search. The importance weights are calculated by assigning a uniform prior to each value of pi and approximating the marginal likelihood using the ELBO.

Hyperparameter Grid

Below, I display the grid of pi that are averaged over, as well as the marginal grids for sigmasq and sigmabeta_sq.

```
## $pip
## [1] 0.1 0.2 0.3 0.4 0.5
##
## $ssq
   [1] 0.001 0.010 0.050 0.100 0.250 0.500 0.750 1.000 2.000 3.000
##
##
## $sbsq
## [1] 1.0e-05 1.0e-03 1.0e-02 1.0e-01 2.5e-01 5.0e-01 1.0e+00 3.0e+00 5.0e+00
## [10] 1.0e+01
```

Sensitivity and Specificity

In this section, I compare the sensitivity and the specificity for the two methods.

```
# grid sensitivity
summary(grid_sens)
##
      Min. 1st Qu.
                    Median
                              Mean 3rd Qu.
                                              Max.
   0.4286 0.7732 0.8083
                            0.8041 0.8571
                                            0.9738
# importance sensitivity
summary(impt_sens)
##
     Min. 1st Qu.
                   Median
                              Mean 3rd Qu.
                                              Max.
           0.7065
                    0.7476 0.7379 0.7911
# difference in the sensitivities
summary(grid_sens - impt_sens)
##
       Min.
               1st Qu.
                          Median
                                      Mean
                                             3rd Qu.
                                                          Max.
## -0.002381 0.023810 0.069048 0.066190 0.091071
                                                      0.216667
# grid specificity
summary(grid_spec)
##
      Min. 1st Qu.
                    Median
                              Mean 3rd Qu.
                                              Max.
   0.9672 1.0000 1.0000 0.9991
```

1.0000

1.0000

```
# importance specificity
summary(impt_spec)
##
      Min. 1st Qu.
                    Median
                              Mean 3rd Qu.
                                               Max.
##
   0.9885 1.0000 1.0000 0.9999 1.0000
                                            1.0000
# difference in the specificities
summary(grid_spec - impt_spec)
                             Median
                                                   3rd Qu.
         Min.
                 1st Qu.
                                           Mean
                                                                 Max.
               0.0000000
                          0.0000000 -0.0007432
                                                 0.0000000 0.0005464
## -0.0256831
# visualize the difference in the sensitivity
ggplot() + geom_histogram(aes(grid_sens - impt_sens), binwidth = 0.025, color = "black")
  30 -
  20 -
```

Data Generation

0.00

0.05

count

10-

0 -

Extraneous Covariate

I generated the covariate, Z, as the union of three almost disjoint intervals of equal measure. That is, $Z = Z_1 \cup Z_2 \cup Z_3$ with $Z_1 = (-3, -1), Z_2 = (a, b) = (-1, 1), Z_3 = (1, 3)$. Within each interval, I generated 60 covariate values from a uniform distribution. For example:

0.10 grid_sens – impt_sens 0.15

0.20

Precision Matrix

All of the individuals in interval 1 had the same precision matrix, $\Omega^{(1)}$:

$$\Omega_{i,j}^{(1)} = \begin{cases} 2 & i = j \\ 1 & (i,j) \in \{(1,2), (2,1), (2,3), (3,2)\} \\ 0 & o.w. \end{cases}$$

Also, all of the individuals in interval 3 had the same precision matrix, $\Omega^{(3)}$:

$$\Omega_{i,j}^{(3)} = \begin{cases} 2 & i = j \\ 1 & (i,j) \in \{(1,3), (3,1), (2,3), (3,2)\} \\ 0 & o.w. \end{cases}$$

However, the individuals in interval 2 had a precision matrix that was dependent upon Z and (a,b). Let $\beta_0 = -a/(b-a)$ and $\beta_1 = 1/(b-a)$. Then:

$$\Omega_{i,j}^{(2)}(z) = \begin{cases}
2 & i = j \\
1 & (i,j) \in \{(2,3), (3,2)\} \\
1 - \beta_0 - \beta_1 z & (i,j) \in \{(1,2), (2,1)\} \\
\beta_0 + \beta_1 z & (i,j) \in \{(1,3), (3,1)\} \\
0 & o.w.
\end{cases}$$

Thus, $\Omega^{(2)}(a) = \Omega^{(1)}$ and $\Omega^{(2)}(b) = \Omega^{(3)}$. That is, an individual on the left or right boundary of Z_2 would have precision matrix $\Omega^{(1)}$ or $\Omega^{(3)}$, respectively. The conditional dependence structures corresponding to each of these precision matrices are visualized below.

Data matrix

Let z_l be the extraneous covariate for the l-th individual. To generate the data matrix for the l-th individual, I took a random sample from $\mathcal{N}(0, \{\Omega_l(z_l)\}^{-1})$, where:

$$\Omega_l(z_l) = \begin{cases} \Omega^{(1)} & z_l \in Z_1 \\ \Omega^{(2)}(z_l) & z_l \in Z_2 \\ \Omega^{(3)} & z_l \in Z_3 \end{cases}$$