CSE 3521: Introduction to Artificial Intelligence

Machine learning

A set of methods that can automatically <u>detect patterns</u> in data, and then use the <u>uncovered patterns to predict future data</u>, or to perform other kinds of <u>decision making under uncertainty</u>

Kevin Murphy. Machine learning: a probabilistic perspective. The MIT Press

Supervised learning

• Data type: $\{(x_1, y_1), ..., (x_N, y_N)\}$

- Goal: Build a model so that given a future data instance x, it can tell the label y
 - Example: Nearest neighbors
- The "label" in $\{(x_1, y_1), ..., (x_N, y_N)\}$ provides supervision of how to give each data instance a label
- The label can be "numerical" (regression) or "categorical" (classification)

Classification vs. regression

- Classification
 - Supervised learning
 - Form: Data point → Desired category (integer number index)
 - o Ex: 1: Cat, 2: Dog, 3: Horse,, 1000: Car
- Regression (curve Fitting)
 - Supervised learning
 - Form: Data point → Desired real number (e.g., price, chance, etc.)

Machine learning: capture patterns from training data that can be generalized to future data

Classification vs. regression: training data

Regression (bus ticket):

From x (distance), predict y (price)

y: price

Classification (car buying company):

Classification vs. regression: find patterns

Regression (bus ticket):

From x (distance), predict y (price)

y: price

Classification (car buying company):

Classification vs. regression: generalization

Regression (bus ticket):

From x (distance), predict y (price)

y: price

Classification (car buying company):

Classification vs. regression: generalization?

Regression (bus ticket):

From x (distance), predict y (price)

y: price

Classification (car buying company):

Supervised learning: PEAS

- Environment:
 - data distribution (e.g., pictures in the real world)

"Hat" here refers to the fact that this is a predicted label

- Agent function (sensor, actuator):
 - oinput data: x
 - o the model to predict label: $\hat{y} = f(x)$ $f: \mathcal{X} \mapsto \mathcal{Y}$
- Performance (loss/error) in comparison to the true label y:
 - Classification: $\mathbf{1}[y \neq f(x)]$; $\mathbf{1}[\text{True}] = 1, \mathbf{1}[\text{False}] = 0$ —— Indicator function
 - Regression: $\operatorname{dis}(y, f(x))$; e.g., $(y f(x))^2$ or |y f(x)|

Supervised learning: training data

- Training data and test data are assumed to come from the same distribution
 - Train: real images of certain categories; Test: real images of the same categories (V)
 - Train: real images; Test: painting images (X)
 - Train: written digits; Test: written characters (X)

O More discussions in later lectures!

Machine learning: training vs. testing

Patterns learned from the training data should be applicable for test data

$$D_{train} = \{(x_1, y_1), ..., (x_N, y_N)\}$$

$$D_{test} = \{(x_1, y_{N+1}), \dots, (x_N, y_{N+M})\}$$

In finding patterns, we only see training data!

Choosing a more complicated pattern type does not necessarily lead to lower test errors!

X

Machine learning: parameter estimation

- Pick a <u>pattern/model type</u> (e.g., linear curves or nonlinear curves)
- Pick an <u>error function</u> (e.g., SSE)
- Minimize the error on the test data
- How do we know if the learned model can be applicable to the test data?
 - Learning theory
 - o Rule of thumb: more training data, more applicable!

$$\{(x_1, y_1), \dots, (x_N, y_N)\}$$

- How to choose the model type?
 - O Save some training data as "pseudo" test data!

$$\{(x_1, y_1), \dots, (x_{N-K}, y_{N-K})\}\$$

 $\{(x_{N-K+1}, y_{N-K+1}), \dots, (x_N, y_N)\}\$

(Cross) validation

Cross validation

Supervised Classifier Examples

- Decision Tree
- Naïve Bayes
- Logistic Regression
- Support Vector Machine: SVM
- K-nearest neighbors: KNN
- Boosting/Bagging

