Physics

 $Akhia^1$

2020年10月15日

 $^{^{1}\}hbox{E-mail:akhialomgir} 362856@gmail.com$

目录

1	气体	动理论	4
	1.1	热力学系统	5
	1.2	平衡态	5
	1.3	理想气体物态方程	5
	1.4	能量均分定理	7
	1.5	内能	7
	1.6	麦克斯韦速率分布律	7
	1.7	三种统计速率	7
	1.8	平均自由程	8
2	热力]学	9
	2.1	热力学过程	9
	2.2	p-V 图	9
	2.3	系统内能	9
	2.4	热力学第一定律	10
	2.5	循环过程	12
		2.5.1 正循环	13
		2.5.2 卡诺循环	13
	2.6	热力学第二定律	13
		2.6.1 热力学过程方向性	14
	2.7	统计学意义	14
	2.8	玻尔兹曼公式与熵增原理	14

3	波动	16
	3.1	光的本质 16
	3.2	光的相干性 16
		3.2.1 发光机制 16
		3.2.2 相干光源
		3.2.3 波动几何描述
	3.3	惠更斯原理
		3.3.1 相干光的获得
	3.4	杨氏双缝实验
		3.4.1 明暗条纹位置的推导
		3.4.2 光程
	3.5	薄膜干涉 19
		3.5.1 薄膜干涉的应用
	3.6	等厚干涉 20
		3.6.1 劈尖干涉 20
		3.6.2 牛顿环
	3.7	迈克耳孙干涉仪
	3.8	光的衍射 21
		3.8.1 菲涅耳衍射 22
		3.8.2 夫琅禾费衍射
		3.8.3 惠更斯-菲涅耳原理
	3.0	光柵衍射 23

Chapter 1

气体动理论

1.1 热力学系统

	能量交换	物质交换
孤立系统	false	false
封闭系统	true	false
开放系统	true	true

1.2 平衡态

- 1. 单一性
- 2. 稳定性
- 3. 热动平衡

1.3 理想气体物态方程

单位换算:

$$1 \text{ atm} = 1.013 \times 10^5$$

$$Pa = 760 mmHg$$

$$T = t + 273.15$$
(1.1)

1. 波义耳定律(T)

$$p_1 V_1 = p_2 V_2 (1.2)$$

2. 盖·吕萨克定律(P)

$$\frac{V_1}{T_1} = \frac{V_2}{T_2} \tag{1.3}$$

3. 查理定律(V)

$$\frac{p_1}{T_2} = \frac{p_2}{T_2} \tag{1.4}$$

理想气体物态方程:

$$pV = \frac{m'}{\mu}RT \qquad m' = Nm, \mu = N_A m \qquad (1.5)$$

理想气体压强公式:

$$\overline{v^2} = \frac{v_1^2 + \dots + V_n^2}{N} = \frac{1}{N} \sum_{i=1}^N v_i^2$$
 (1.6)

$$pV = \frac{m}{M_{\text{mol}}}RT = \nu RT \tag{1.7}$$

1. m(g): 气体质量

2. $M_{\text{mol}}(g/mol)$: 气体摩尔质量

3. R:气体普适常量

4. ν:摩尔数

理想气体常数:

$$p(atm), V(L), \quad T(K) \Rightarrow R = 8.2 \times 10^{-2} atm \cdot L/(mol \cdot K)$$

 $p(atm), V(m^3), \quad T(K) \Rightarrow R = 8.31 J/(mol \cdot K)$ (1.8)

玻尔兹曼常数:

$$k = \frac{R}{N_A} \tag{1.9}$$

$$p = nkT$$

$$p = \frac{2}{3}n\overline{\varepsilon_k}$$

$$\overline{\varepsilon_k} = \frac{1}{2}m\overline{v}^2 = \frac{3}{2}kT$$
(1.10)

	自由度 $(\frac{1}{2}kT/$ 自由度)	
质点	i=3	
刚体	i=6	
刚性分子	i=t+r	

1.4 能量均分定理

1.5 内能

$$E = N_A \overline{\varepsilon} = N_A \frac{i}{2} kT \implies E = \frac{i}{2} RT$$
 (1.11)

1.6 麦克斯韦速率分布律

- 1. 单个分子速率分布具有偶然性
- 2. 大量分子速率分布具有规律性

麦克斯韦分布函数:表示单位速率区间的分子数占总数的百分比

$$f(v) = \frac{1}{N} \frac{dN}{dv} \tag{1.12}$$

$$f(v) = 4\pi \left(\frac{m_0}{2\pi kT}\right)^{3/2} e^{-m_0 v^2/2kT} v^2$$
(1.13)

1.7 三种统计速率

1. 最概然速率

$$v_p = \sqrt{\frac{2kT}{m}} \approx 1.41\sqrt{\frac{RT}{M}}, \approx 1.41\sqrt{\frac{kT}{m}}$$
 (1.14)

2. 平均速率

$$\overline{v} = \frac{1}{N} \sum_{i=1}^{n} v_i N_i = \sqrt{\frac{8kT}{\pi m}} \approx 1.60 \sqrt{\frac{RT}{M}}, \approx 1.60 \sqrt{\frac{kT}{m}}$$
(1.15)

3. 方均根速率 $\sqrt{\overline{v^2}}$

$$\overline{v}^2 = \frac{1}{N} \sum_{i=1}^n v_i^2 N_i, \sqrt{\overline{v}^2} = \sqrt{\frac{3kT}{m}} \approx 1.73 \sqrt{\frac{RT}{M}}, \approx 1.73 \sqrt{\frac{kT}{m}}$$
 (1.16)

比较:

$$v_p < \overline{v} < \sqrt{\overline{v}^2} \tag{1.17}$$

归一化条件:

$$\int_{\infty}^{0} f(v)dv = 1$$

$$dS = f(v)dv = \frac{dN}{N}$$
(1.18)

1.8 平均自由程

单位时间内平均碰撞次数: $\overline{Z} = \sqrt{2\pi} d^2 v n$ 平均自由程**每两次**碰撞之间,一个分子自由运动的**平均路程**。

$$\overline{\lambda} = \frac{kT}{\sqrt{2\pi}d^2p}$$
 $\overline{\lambda} \propto \frac{1}{p}, T$ $d = 10^{-10}m$ (1.19)

Chapter 2

热力学

2.1 热力学过程

系统从**平衡态**到另一**平衡态**的过程。 准静止状态:无限缓慢,每个中间态都可视为**平衡态**。

2.2 p-V 图

- 1. 点: 一个平衡态
- 2. 线: 一个准静态过程

2.3 系统内能

1. 功(过程量)

p-V 图与曲线对 p-V 轴积分所成面积即为功

$$dW = Fdl = pSdl (2.1)$$

$$W = \int_{V1}^{V2} p dV (2.2)$$

- (a) W > 0 系统对外界作正功
- (b) W < 0 系统对外界作负功
- 2. 热(过程量)
 - (a) 同:
 - i. 过程量: 与过程有关
 - ii. 等效性: 对系统热状态改变的作用相同
 - (b) 异:
 - i. 功: 宏观运动-分子热运动
 - ii. 功:分子热运动-分子热运动
- 3. 内能 $E_2 E_1 = W + Q$ $W + Qffi + \Delta \Psi sfiffiffs$

2.4 热力学第一定律

系统吸收的能量,一部分使内能增加,另一部分用于系统对外作功。

$$Q = E_2 - E_1 + W = \Delta E + W \tag{2.3}$$

$$dQ = dE + dW (2.4)$$

$$Q = \Delta E + \int_{V1}^{V2} pdV \tag{2.5}$$

$$C_V = \frac{i}{2}R\tag{2.6}$$

1. 等容过程

$$\frac{p_1}{T_1} = \frac{p_2}{T_2} = const \tag{2.7}$$

$$\nu = \frac{M}{M_{\text{mol}} = \frac{pV}{RT}} \tag{2.8}$$

$$Q_V = E_2 - E_1 = \nu \frac{i}{2} R \Delta T \tag{2.9}$$

p-V 图为横线

系统从外界吸收的热量全部转化为内能的增加。

定容摩尔热容 C_V : 1mol 理想气体在等体过程中,温度变化 1 摄氏度所变化的热量。

2. 等压过程

$$\frac{V_1}{T_1} = \frac{V_2}{T_2} = const (2.10)$$

$$\Delta E = E_2 - E_1 = \nu C_V \Delta T \tag{2.11}$$

$$Q_p = \nu C_V \Delta T + \nu R \Delta T \tag{2.12}$$

定压摩尔热容 C_p : 1mol 理想气体在等压过程中,温度变化 1 摄氏度所变化的热量。

$$C_p = C_V + R = \frac{i+2}{2}R\tag{2.13}$$

比热容比:

$$\gamma = \frac{C_p}{C_V} = \frac{i+2}{i} \tag{2.14}$$

3. 等温过程

$$Q_T = W = \int_{V_1}^{V_2} \frac{m}{M} \frac{Rt}{V} dV = \frac{m}{M} RT \ln \frac{V_2}{V_1} = \frac{m}{M} RT \ln \frac{p_1}{p_2}$$
 (2.15)

p-V 图为曲线

- (a) 等温膨胀吸热作功
- (b) 等温压缩放热被作功

4. 绝热过程

系统对外界作功,通过系统内能减小完成。

热一律:

$$dW + dE = 0dQ = 0 (2.16)$$

$$\Delta E = \frac{m}{\mu} C_V (T_2 - T_1) \Delta W = -\frac{m}{\mu} C_V (T_2 - T_1) Q = 0$$
 (2.17)

$$V^{\gamma-1}T = const$$

$$pV^{\gamma} = const \qquad (2.18)$$

$$p^{\gamma-1}T^{-\gamma} = const$$

$$\gamma = \frac{C_p}{C_V} = \frac{i+2}{i} \tag{2.19}$$

绝热膨胀 $T_1 > T_2, W > 0$ 绝热压缩 $T_1 < T_2, W < 0$ 绝热过程曲线斜率**大于等于**等温过程。

2.5 循环过程

热机: 持续将热量转变为功的机器。

工质: 吸收热量, 对外作功。

p-V 图呈闭合曲线。

1. 顺时针:正循环,热机

2. 逆时针: 负循环,制冷机

2.5.1 正循环

$$\Delta W = W_1 + W_2 > 0 \tag{2.20}$$

闭合曲线包裹过程为净功。

热机效率:

$$\eta = \frac{\Delta W}{Q_{in}} = \frac{Q_{in} - Q_{out}}{Q_{in}} = 1 - \frac{Q_{out}}{Q_{in}}$$
 (2.21)

绝热线、等温线不能相交。

2.5.2 卡诺循环

卡诺循环由两个准静态的等温过程和两个准静态的绝热过程组成。

$$\eta = 1 - \frac{T_2}{T_1} T_1 > T_2 \tag{2.22}$$

2.6 热力学第二定律

一切实际热力学过程都只能按一定的方向进行,**符合自然过程的方向** 的规律。

热力学第二定律微观实质:与热有关的宏观过程都不可逆(有序到无序)。

热力学第二定律:

- 1. 开尔文说法:不能制造出一种**循环**热机,从**单一**热源吸收热量,使之变为完全有用的功,而外界不发生变化。
- 2. 克劳修斯说法:不可能把热量从低热物体自动传到高温物体而不引起外界变化。

2.6.1 热力学过程方向性

- 1. 可逆过程:可以使系统回复原状态,**同时外界也回复原状**,则称为可逆过程。
- 2. 不可逆过程:不可以使系统回复原状态,或可以回复,但**同时外界不能回复原状**,则称为不可逆过程。
- 1. 单摆无摩擦摆动过程为可逆过程
- 2. 准静态无摩擦过程为可逆过程
- 1. 热功转换不可逆
- 2. 热传导不可逆
- 3. 绝热自由膨胀不可逆
- 4. 墨水扩散不可逆

2.7 统计学意义

封闭系统总是由**概率小到概率大、微观状态数目少到微观状态数目多、 有序宏观态到无序宏观态**的方向进行

2.8 玻尔兹曼公式与熵增原理

熵(S): 体系内的混乱程度, 与过程无关。

玻尔兹曼公式: $S = k \ln \Sigma$

玻尔兹曼关系给出了熵的统计意义: 熵是一个系统内部微观粒子热运动无序度的量度。

热温比: $\frac{Q}{T}$

克劳修斯公式: $dS = \frac{dQ}{T}$

$$S_B - S_A = \int_A^B \frac{dQ}{T} \tag{2.23}$$

熵增原理:

- 1. 孤立系统不可逆过程: $\Delta S > 0$
- 2. 孤立系统可逆过程: $\Delta S = 0$

Chapter 3

波动光学

3.1 光的本质

光波是电磁波 同一媒质中的相对光强: $I=E_0^2$

3.2 光的相干性

3.2.1 发光机制

光源

- 1. 普通光源
 - (a) 热光源:热能激发原子能级跃迁
 - (b) 冷光源: 化学能, 电能等激发
- 2. 激光光源

原子发光特点:

- 1. 随机性
- 2. 间歇性

- 3. 各原子各级发光独立,波列互不相干
- 4. 不相干性(独立光源不可能是一对相干光源:原子发光间歇而随机, 振动方向和相位差不可能相同)

3.2.2 相干光源

相干光源条件:

- 1. 振动频率相同
- 2. 振动方向相同
- 3. 相位差恒定

原子自发辐射的间断性和相位随机性,不利于实现干涉条件。

$$x_1 + x_2 = \sqrt{A_1^2 + A_2^2 + 2A_1A_2\cos(\varphi_2 - \varphi_1)}\cos(\omega t + \varphi)$$
 (3.1)

相长、相消:

$$\delta = r_2 - r_1 = \pm k\lambda$$

$$\delta = r_2 - r_1 = \pm (2k+1)\lambda$$
(3.2)

3.2.3 波动几何描述

- 1. 波线
- 2. 波面
- 3. 平面波
- 4. 球面波

3.3 惠更斯原理

惠更斯原理:媒质中波动到的各点,都可以看作新波源,子波的包络面就是该时刻的波面。

3.3.1 相干光的获得

干涉光的获得:

- 1. 分波面法
- 2. 分振幅法

3.4 杨氏双缝实验

3.4.1 明暗条纹位置的推导

明纹条件

$$\delta = r_2 - r_1 = d \sin \theta \approx d \tan \theta$$

$$= \frac{xd}{D} = k\lambda$$

$$x = k \frac{D\lambda}{d}$$

$$\Delta x = \frac{D\lambda}{d}$$

$$k = 0, \pm 1, \pm 2 \dots$$
(3.3)

暗纹条件

$$\mu \pm \delta = \frac{xd}{D} = (2k+1)\frac{\lambda}{2}$$

$$x = (2k+1)\frac{D\lambda}{2d} \qquad k = 0, 1, 2 \dots$$

$$\Delta x = \frac{D\lambda}{d}$$
(3.4)

3.4.2 光程

真空光速: C

光在介质中的速度: $v = \frac{C}{n}$

真空中: $\lambda_0 = \frac{C}{\nu}$

$$\lambda = \frac{v}{\nu} = \frac{C}{n\nu} = \frac{\lambda_0}{n} \tag{3.5}$$

$$\lambda = \frac{\lambda_0}{n}$$

$$\frac{x}{\lambda} = \frac{x}{\lambda_0} = \frac{xn}{\lambda_0}$$

$$(r_2 - t) + nt = r_2 + (n - 1)$$

$$r_2 = (r_1 - d) + nd$$

3.5 薄膜干涉

当光从折射率小的光疏介质,正入射或掠入射于折射率大的光密介质时,则反射光有半波损失。当光从折射率大的光密介质,正入射于折射率小的光疏介质时,反射光没有半波损失。折射光没有相位突变。

若厚度 e 一定,则相同入射角入射的光束,经膜的上下表面反射后产生的相干光束都有相同的光程差,从而对应于干涉图样中的一条条纹,此称干涉为**等倾干涉**(不要求)若入射角 i 一定,则称此干涉为**等厚干涉**(重点)薄膜厚度在 $10^{-7}m$ 数量级。

相位相差了 π 相当于波程差了 $\frac{\lambda}{2}$,称为半波损失。

$$\delta = \delta_0 + \delta' = 2e\sqrt{n_2^2 - n_1^2 \sin^2 i} + \begin{cases} \frac{\lambda}{2} & 反射条件不同\\ 0 & 反射条件相同 \end{cases}$$
 (3.6)

明文暗纹:

$$\delta_r = \begin{cases} k\lambda & (k = 1, 2, 3...) \\ \frac{2k+1}{2}\lambda & (k = 0, 1, 2...) \end{cases}$$
(3.7)

k 的取值要注意: 如 k=3 则表示明纹 3 条, 暗纹 4 条。

3.5.1 薄膜干涉的应用

增透膜:现代光学仪器中,为了减少入射光能量,在仪器表面上反射时所引起的损失,常在仪器表面上镀一层厚度均匀的薄膜。

3.6 等厚干涉

3.6.1 劈尖干涉

 $\theta \approx 10^{-4} \sim 10^{-5} \text{rad}$

$$\delta = 2e + \frac{\lambda}{2} = \begin{cases} k\lambda & ,k = 1, 2, 3, \dots \\ \frac{2k+1}{2}\lambda & ,k = 0, 1, 2, \dots \end{cases}$$
(3.8)

e=0 时是暗纹,证明了半波损失的存在。

条纹与厚度关系

相邻两条明纹暗纹间的厚度差:

$$2e_{k} + \frac{\lambda}{2} = k\lambda$$
条纹间距: $e_{k+1} - e_{k} = \frac{\lambda}{2}$

$$2e_{k+1} + \frac{\lambda}{2} = (k+1)\lambda$$
(3.9)

干涉条纹移动

- 1. e 变大,条纹下移
- 2. e 变小,条纹上移

劈尖干涉的应用

测膜厚: $e = k \frac{\lambda}{2n}$ k = 0, 1, 2, 3, ... 检验光学元件平整度:

- 1. 外弯: 工件凸起
- 2. 内弯: 工件凹陷

测量细丝直径:

$$\tan \theta = \frac{\lambda}{2b}$$

$$d = \tan \theta \times L = \frac{\lambda}{2} \cdot \frac{L}{b}$$
(3.10)

3.6.2 牛顿环

由一块平板玻璃和一平凸透镜组成。 由于 e 变化呈曲线,条纹距离变化不等,中疏边密。

$$\delta = 2e + \frac{\lambda}{2} \tag{3.11}$$

$$r = \sqrt{2eR} = \sqrt{(\delta - \frac{\lambda}{2})R} = \begin{cases} \sqrt{(k - \frac{1}{2})R\lambda} & \text{明环半径} \\ \sqrt{kR\lambda} & \text{暗环半径} \end{cases}$$
 (3.12)

牛顿环应用

测量透镜的曲率半径:

$$r_k^2 = kR\lambda r_{k+m}^2 = (k+m)R\lambda R = \frac{r_{k+m}^2 - r_k^2}{m\lambda}$$
 (3.13)

工件标准件对比。

3.7 迈克耳孙干涉仪

$$\Delta d = \Delta k \frac{\lambda}{2} \tag{3.14}$$

在 M₂ 反射镜的左侧插入介质后:

光程差变化: $\delta' = 2d + 2(n-1)t$ 。

介质片厚度: $t = \frac{\Delta k}{n-1} \cdot \frac{\lambda}{2}$

3.8 光的衍射

光在传播过程中碰到**尺寸比光的波长大得不多**的障碍物时,光会传播 到障碍物的阴影区并形成明暗变化的光强分布的现象。

衍射后会形成明暗相间的图样,中央明纹最亮,两侧显著递减。

- 1. 单缝夫琅禾费衍射
- 2. 圆孔夫琅禾费衍射
- 3. 矩形孔夫琅禾费衍射
- 4. 长方孔夫琅禾费衍射

3.8.1 菲涅耳衍射

光源-障碍物-接收屏距离有限远。

3.8.2 夫琅禾费衍射

光源-障碍物-接收屏距离无限远。

明暗条件

衍射角 θ : 衍射光线与单缝平面法线间的夹角,向上为+ ,反之为负,取值范围: $0 \to \frac{\pi}{2}$ 。

衍射角相同, 汇聚在焦平面同一点, 光强由这些平行光线干涉结果决 定。

中央明条纹: $\theta = 0$ 。

最大光程差: $\delta = a \sin \theta$ 。

3.8.3 惠更斯-菲涅耳原理

惠更斯原理:波阵面上的每一点都可以看作发射子波的新波源,子波的包络面就是该时刻的波阵面。

子波的干涉

次级子波相干叠加。

3.9 光栅衍射

光栅: 等宽等距的狭缝排列构成的光学元件。

光栅常数: $d = a + b = \frac{1}{N}$, 量级为 $10^{-5} \rightarrow 10^{-6}$ m。