R - Datavisualisatie

J.J. van Nijnatten

Contents

Het doel van datavisualisatie
Wat wil je weergeven?
Hoe kies je de juiste manier van weergeven? (exp. design)
Essentiele onderdelen van datavisualisatie
gemiddelde
spreiding
titel
Introductie GGplot2 package
Installatie
Opbouw van figuren
Voorbeelden
Data-inspectie
Normaliteit
T-test
Correlatie
Regressie
One-way independent samples ANOVA
Factorial repeated measures ANOVA

contact: J.J.vanNijnatten@uva.nl

 $broncode:\ https://github.com/jonasvannijnatten/R_Data_Visualization$

Het doel van datavisualisatie

Wat wil je weergeven?

Hoe kies je de juiste manier van weergeven? (exp. design)

Essentiele onderdelen van datavisualisatie

gemiddelde

spreiding

legenda

titel

Introductie GGplot2 package

Installatie

Het package downloaden & installeren:

```
install.packages(pkgs="ggplot2", repos = "https://www.freestatistics.org/cran/")
install.packages(pkgs="Hmisc", repos = "https://www.freestatistics.org/cran/")
```

Het package library activeren:

```
library(package="Hmisc")
library(package="ggplot2")
```

Opbouw van figuren

Voorbeelden

Data-inspectie

Normaliteit

T-test

```
# generate data
group1 = rnorm(n = 40, mean = 25, sd = 6.5)
group2 = rnorm(n = 40, mean = 35, sd = 6.5)
data.wide = data.frame(group1, group2)
```

```
# plot means and standard deviations
ggplot(data.long, aes(x=time, y=score, fill=time) ) +
  geom_bar ( stat = "summary", fun.y = "mean" ) +
  geom_errorbar( stat = "summary", fun.data = "mean_sdl", fun.args = 1, width = 0.3 ) +
  geom_jitter ( width = .05 )
```


To plot standard errors instead of standard deviations replace "mean_sdl" with "mean_se", and it is common use to plot 2 (or 1.96) times the standard error to get an 95% confidence interval, so replace "fun.arg = 1" with "fun.arg = 2".

```
ggplot(data.long, aes(x=time, y=score, fill=time) ) +
  geom_bar ( stat = "summary", fun.y = "mean" ) +
  geom_errorbar( stat = "summary", fun.data = "mean_se", fun.args = 2, width = 0.3 ) +
  geom_jitter ( width = .05 )
```


Correlatie

Regressie

One-way independent samples ANOVA

```
set.seed(05)
               # set seed
nrofconds = 3 # set number of conditions
nrofsubs = 20 # set number of subjects
subj = as.factor(1:(nrofsubs*nrofconds))
                                             # create array with subject IDs
cond = as.factor(rep(LETTERS[1:nrofconds],each=nrofsubs)) # create array with condition values
score = as.vector( replicate(
         nrofconds, rnorm(n = nrofsubs, mean = sample(8,1)+10, sd = sample(5,1))
                                               # create array with measurement values
                                               # combine arrays into a data.frame
data.long = data.frame(subj, cond, score);
rm(list=setdiff(ls(), c("data.long", "nrofsubs", "nrofconds"))) # delete arrays
ggplot(data.long, aes(x=cond, y=score, fill=cond) ) +
             ( stat = "summary", fun.y
                                         = "mean" ) +
  geom_errorbar( stat = "summary", fun.data = "mean_se", fun.args = 2, width = 0.3 ) +
 geom_jitter ( width = .05 )
```


Factorial independent samples ANOVA ## One-way repeated measures ANOVA Generate dataset

```
# set seed
set.seed(01)
nrofsubs = 20 # set number of subjects
nrofconds = 3 # set number of conditions
subj = as.factor(rep(1:nrofsubs,nrofconds))
                                                 # create array with subject IDs
cond = as.factor(rep(LETTERS[1:nrofconds], each=nrofsubs))  # create array with condition values
score = as.vector( replicate(
         nrofconds, rnorm(n = nrofsubs, mean = sample(8,1)+10, sd = sample(5,1))
                                                # create array with measurement values
                                                # combine arrays into a data.frame
data.long = data.frame(subj, cond, score);
rm(list=setdiff(ls(), c("data.long", "nrofsubs", "nrofconds"))) # delete arrays
ggplot(data.long, aes(x=cond, y=score, group=1, colour=subj)) +
  geom_point(aes(group=subj)) +
  geom_line
               ( stat = "summary", fun.y = "mean", linetype= "dashed", aes(group=subj) ) +
               ( stat = "summary", fun.y = "mean", colour = "black", linetype= "solid", size=2 ) +
  geom_line
               ( stat = "summary", fun.y = "mean", colour = "black", size=2 ) +
  geom_point
  geom_errorbar( stat = "summary", fun.data = "mean_se", fun.args = 2, width = 0.3, size=1 )
```


Factorial repeated measures ANOVA $\,$