Projet 5 : Segmentez des clients d'un site e-commerce

30/08/2024

Soukaina GUAOUA ELJADDI

Parcours Data Scientist OpenClassrooms

Plan:

- □ Problématique et présentation du jeu de données
- Analyse exploratoire des données et feature engineering
- ☐ Essais de différents approches de Modélisation
- Simulation d'un contrat de maintenance
- Conclusion

Problématique et présentation du jeu de données

Problématique

Contexte: Entreprise brésilienne 'Olist' qui propose une solution de vente sur les marketplaces en ligne, et qui veut monter une équipe data avec un 1er projet sur la segmentation client.

Objectifs et missions:

- Fournir aux équipes d'e-commerce une segmentation des clients pour les campagnes de communication
- Comprendre les différents types d'utilisateurs
- Fournir une description actionable de la segmentation
- Faire une proposition de contrat de maintenance

Présentation du jeu de données

Base de données 'Olist' avec 9 fichiers CSV (132 Mo)

```
name
       customers
          geoloc
     order_items
     order pymts
  order_reviews
          orders
        products
6
         sellers
     translation
```


Présentation du jeu de données

Base de données 'Olist':

- une BD gratuite, anonymisée mise en ligne sur Kaggle
- des données variées (textuelles, chiffrées, catégorielles, géographiques)
- données commerciales Olist sur 2 ans, de 2016 à 2018
- 96 096 clients uniques concernés
- 99 441 commandes distinctes

Partie 1 : Analyse exploratoire des données et feature engineering

	# Afficher les données sur customers customers.head()							
	index	customer_id	customer_unique_id	customer_zip_code_prefix	customer_city	customer_state		
0	0	06b8999e2fba1a1fbc88172c00ba8bc7	861eff4711a542e4b93843c6dd7febb0	14409	franca	SP		
1	1	18955e83d337fd6b2def6b18a428ac77	290c77bc529b7ac935b93aa66c333dc3	9790	sao bernardo do campo	SP		
2	2	4e7b3e00288586ebd08712fdd0374a03	060e732b5b29e8181a18229c7b0b2b5e	1151	sao paulo	SP		
3	3	b2b6027bc5c5109e529d4dc6358b12c3	259dac757896d24d7702b9acbbff3f3c	8775	mogi das cruzes	SP		
4	4	4f2d8ab171c80ec8364f7c12e35b23ad	345ecd01c38d18a9036ed96c73b8d066	13056	campinas	SP		

```
# Afficher des informations générales sur customers
customers.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 99441 entries, 0 to 99440
Data columns (total 6 columns):
#
    Column
                              Non-Null Count Dtype
   index
                              99441 non-null int64
   customer id
                             99441 non-null object
2 customer unique id 99441 non-null object
    customer zip code prefix 99441 non-null int64
    customer city
                             99441 non-null object
                             99441 non-null object
    customer state
dtypes: int64(2), object(4)
memory usage: 4.6+ MB
```

<pre># Statistiques descriptives customers.describe()</pre>					
	index	customer_zip_code_prefix			
count	99441.000000	99441.000000			
mean	49720.000000	35137.474583			
std	28706.288396	29797.938996			
min	0.000000	1003.000000			
25%	24860.000000	11347.000000			
50%	49720.000000	24416.000000			
75%	74580.000000	58900.000000			
max	99440.000000	99990.000000			

```
# Analyse par catégorie de produit
product_categories = products.groupby('product_category_name')['product_id'].count()
product categories.name = 'product count'
product categories
product_category_name
agro industria e comercio
                               74
alimentos
                               82
alimentos bebidas
                              104
artes
                               55
artes e artesanato
                               19
sinalizacao e seguranca
                               93
tablets impressao imagem
telefonia
                             1134
telefonia_fixa
                              116
utilidades domesticas
                             2335
Name: product count, Length: 73, dtype: int64
```

	Date de commande	Date estimé de livraison	Date de livraison	Délai de livraison	Date de review
0	2017-10-02	2017-10-18	2017-10-10	-8.0	2018-01-18
1	2018-07-24	2018-08-13	2018-08-07	-6.0	2018-03-10
2	2018-08-08	2018-09-04	2018-08-17	-18.0	2018-02-17
3	2017-11-18	2017-12-15	2017-12-02	-13.0	2017-04-21
4	2018-02-13	2018-02-26	2018-02-16	-10.0	2018-03-01

```
# Analyse de la satisfaction client
review_scores = order_reviews.groupby('order_id')['review_score'].mean()
review scores.name = 'avg review score'
review scores
order id
00010242fe8c5a6d1ba2dd792cb16214
                                    5.0
00018f77f2f0320c557190d7a144bdd3
                                    4.0
                                    5.0
000229ec398224ef6ca0657da4fc703e
00024acbcdf0a6daa1e931b038114c75
                                    4.0
00042b26cf59d7ce69dfabb4e55b4fd9
                                    5.0
fffc94f6ce00a00581880bf54a75a037
                                    5.0
fffcd46ef2263f404302a634eb57f7eb
                                    5.0
fffce4705a9662cd70adb13d4a31832d
                                    5.0
fffe18544ffabc95dfada21779c9644f
                                    5.0
fffe41c64501cc87c801fd61db3f6244
                                    5.0
Name: avg review score, Length: 98673, dtype: float64
```

Satisfaction client:

Tableau de bord des performances des vendeurs :

seller_id	price	review_score	delay_days
0015a82c2db000af6aaaf3ae2ecb0532	2685.00	3.66	-16.33
001cca7ae9ae17fb1caed9dfb1094831	25080.03	3.90	-13.21
001e6ad469a905060d959994f1b41e4f	250.00	1.00	NaN
002100f778ceb8431b7a1020ff7ab48f	1254.40	3.98	-8.21
003554e2dce176b5555353e4f3555ac8	120.00	5.00	-27.00

La distribution des clients par ville (top 10)

Partie 1 : Feature engineering

La méthode RFM (Récence, Fréquence, Montant) pour le ciblage marketing.

Récence (Recency) : Nombre de jours depuis la dernière commande de chaque client.

Fréquence (Frequency) : Nombre total de commandes passées par chaque client.

Montant (Monetary) : Montant total dépensé par chaque client.

Partie 1 : Feature engineering

RFM:

	customer_id	recency	frequency	monetary
0	00012a2ce6f8dcda20d059ce98491703	337.056852	1	89.80
1	000161a058600d5901f007fab4c27140	458.326227	1	54.90
2	0001fd6190edaaf884bcaf3d49edf079	596.266377	1	179.99
3	0002414f95344307404f0ace7a26f1d5	427.181227	1	149.90
4	000379cdec625522490c315e70c7a9fb	198.158345	1	93.00

K-means: un algorithme d'apprentissage non supervisé, qui permet d'analyser un jeu de données afin de regrouper les données « similaires » en groupes (ou clusters)

DBSCAN : un algorithme de clustering fondé sur la densité, il identifie les régions denses de points et les considère comme des clusters.

Paramètres Clés :

- **Epsilon (ε\varepsilonε)**: La distance maximale entre deux points pour qu'ils soient considérés comme voisins.
- MinPts (Minimum Points): Le nombre minimum de points requis pour former un cluster dense.

wikipedia

CAH ou la Clustering Hiérarchique Ascendant : méthode de regroupement qui construit une hiérarchie de clusters en procédant par étapes successives.

Elle ne nécessite pas de spécifier le nombre de clusters à l'avance.

La CAH construit un arbre de clusters (ou dendrogramme) en fusionnant ou en divisant des groupes de données successivement.

https://www.imo.universite-par is-saclay.fr/

K-means: détermination du nombre de clusters optimal

K-means: visualisation des clusters 2D

K-means: visualisation des clusters 3D

K-means: visualisation

des clusters après ACP

K-means: visualisation des clusters avec t-sne

DBSCAN: détermination de l'eps et min_samples optimales

Best eps: 1.2,

Best min_samples: 100,

Best silhouette score: 0.64

DBSCAN:

évaluation

de la qualité

de clustering

avec DBSCAN

DBSCAN:

Visualisation des
6 clusters obtenus
en utilisant l'ACP

DBSCAN:

Visualisation des
6 clusters obtenus
en utilisant
l'ACP + t-sne

CAH:

5 clusters

identifiés

CAH:

Visualisation
des clusters
obtenus avec
l'ACP

CAH:

Visualisation
des clusters
obtenus avec
l'ACP + t-sne

Evaluation de la qualité du clustering avec les métriques :

1. Score de silhouette

- Quoi : Évalue la cohésion (proximité des points au sein d'un même cluster) et la séparation (distance entre les clusters).
- Valeurs :
 - Proche de 1 = Bon clustering (points bien regroupés et clusters bien séparés).
 - Proche de 0 = Points proches des frontières entre clusters.
 - Négatif = Mauvaise affectation des points.

Evaluation de la qualité du clustering avec les métriques :

2. Coefficient de Davies-Bouldin

- Quoi : Mesure la moyenne des pires ratios de similarité entre clusters. Combinaison de compacité et séparation.
- Valeurs :
 - Plus bas = Meilleure séparation et compacité.

Evaluation de la qualité du clustering avec les métriques :

3. Index de Calinski-Harabasz

- Quoi : Rapport entre la variance inter-cluster (séparation) et intra-cluster (compacité).
- Valeurs :
 - Plus élevé = Clusters bien séparés et compacts.

Comparaison entre les 3 méthodes de clustering après ACP:

	K-means	DBSCAN	САН
Score de silhouette	0.478	0.323	0.463
Coefficient de Davies-Bouldin	0.727	1.291	0.766
Index de Calinski-Harabasz	76435.975	6045.697	22074.959

Interprétation des clusters d'un point de vue métier: analyse des

centroïdes des clusters

Les **centroïdes** des clusters sont des points qui représentent la "moyenne" ou le **centre** des points appartenant à chaque cluster dans un espace de caractéristiques.

khayyam.dev eloppez.com/

$$ext{Centro\"ide}_i = rac{1}{N} \sum_{i=1}^N X_{ij}$$

où Xij est la valeur de la caractéristique i du point j, et N est le nombre de points dans le cluster.

Interprétation des clusters d'un point de vue métier: analyse des centroïdes des clusters

clusters	recency	frequency	monetary
0	0.976706	-0.123726	-0.103287
1	-0.723421	-0.130162	-0.109941
2	-0.033731	2.963620	2.491135

Recency: Nombre de jours depuis la dernière interaction ou achat du client.

Frequency: Nombre total d'achats ou d'interactions effectués par le client.

Monetary : Montant total dépensé par le client.

Visualisation des clusters 'clients' avec ACP + t-sne

Interprétation des Centroïdes et des Descriptions de Clusters

Cluster 0: Clients Premium

Recency: 0.976706 (élevée) -> Ces clients ont une valeur élevée sur l'échelle de recency, ce qui signifie qu'ils ont acheté récemment.

Frequency: -0.123726 (légèrement négative) -> Leur fréquence d'achat n'est pas particulièrement élevée.

Monetary: -0.103287 (légèrement négative) -> Ils ne dépensent pas énormément.

Interprétation: Ces clients ne sont pas des acheteurs fréquents ni de gros dépensiers. Mais leur récente activité pourrait indiquer une tendance à devenir plus actifs. Ils sont qualifiés de "Clients Premium" en raison de leur récente activité, suggérant qu'ils sont engagés ou potentiellement intéressés par de nouveaux achats.

Interprétation des Centroïdes et des Descriptions de Clusters

Cluster 1 : Clients à faible valeur

Recency: -0.723421 (faible) -> Ces clients ont acheté il y a longtemps.

Frequency: -0.130162 (légèrement négative) -> Ils n'achètent pas souvent.

Monetary: -0.109941 (légèrement négative) -> Ils dépensent peu.

Interprétation : Ces clients sont moins actifs, achètent rarement, et dépensent peu lorsqu'ils le font. Ils peuvent être considérés comme des clients à faible valeur pour l'entreprise. Ces clients nécessitent peut-être des stratégies de réengagement pour augmenter leur activité.

Interprétation des Centroïdes et des Descriptions de Clusters

Cluster 2 : Clients à potentiel de croissance

Recency: -0.033731 (presque neutre) -> Ces clients n'ont pas acheté récemment, mais pas il y a très longtemps non plus.

Frequency: 2.963620 (très élevée) -> Ils achètent très fréquemment.

Monetary: 2.491135 (très élevée) -> Ils dépensent beaucoup.

Interprétation : Ce cluster représente des clients extrêmement actifs, avec une fréquence d'achat et un montant dépensé bien supérieurs à la moyenne. Ce segment pourrait correspondre à nos meilleurs clients ou à ceux qui sont les plus engagés.

Déductions métiers

Stratégies Marketing Personnalisées:

Clients Premium (récents et réguliers) : Ils pourraient être réceptifs à des offres exclusives ou à des programmes de fidélité pour renforcer leur engagement.

Clients à faible valeur (inactifs ou en désengagement) : Ils nécessitent des efforts de réactivation, comme des promotions ou des campagnes de réengagement.

Clients à potentiel de croissance (Meilleurs clients) : Ils peuvent être ciblés par des stratégies visant à maintenir ou à augmenter leur niveau d'engagement actuel, comme des offres VIP ou des récompenses pour fidélité.

Partie 3 : Simulation d'un contrat de maintenance

Partie 3 : Simulation d'un contrat de maintenance

Conclusion:

La segmentation doit être mise à jour tous les 15 jours.

Conclusion

Conclusion

K-means est la meilleure méthode de segmentation des clients de ce site e-commerce.

La mise à jour du modèle de segmentation est à faire chaque 15 jours.