CS4102 Algorithms Fall 2018

Warm up

Simplify:

$$(1 + a + a^2 + a^3 + a^4 + \dots + a^L)(a - 1) = ?$$

$$(a + a^{2} + a^{3} + a^{4} + a^{5} + \dots + a^{L} + a^{L+1}) + (-a - a^{2} - a^{3} - a^{4} - a^{5} - \dots - a^{L} - 1) = a^{L+1} - 1$$

$$\sum_{i=0}^{L} a^i = \frac{a^{L+1} - 1}{a - 1}$$

Finite Geometric Series

a < 1

Finite Geometric Series

Today's Keywords

- Divide and Conquer
- Recurrences
- Merge Sort
- Karatsuba
- Tree Method

CLRS Readings

• Chapter 4

Homeworks

- Hw0 due 11pm Wednesday, Sept 5
 - Submit BOTH pdf and zip!
- Hw1 Due Wednesday, Sept 12
 - Start early!
 - Written (use Latex!)
 - Asymptotic notation
 - Recurrences
 - Divide and Conquer

	Sun 2	Mon 3	Tue 4	Wed 5	Thu 6	Fri	Sat 8
GMT-04							
8am							
9am							
10am	Subhan OH 10am – 12pm	Adam OH 9:50 – 10:50am	Lecture 9:30 – 10:45am Nau Hall 101	Karthik OH 10am – 12pm	Lecture 9:30 – 10:45am Nau Hall 101	Adam OH 9:50 – 10:50am	
11am		Yonathan OH			Robbie OH Robbie's OH 11am - 12:3 11am - 12:3	Karthik OH 11am – 1pm	
12pm	Johnny OH 12 – 1pm	11:30am – 1:30pm	Rahul OH	Subhan OH 12 – 2pm	Rahul OH		Johnny OH 12 – 2pm
1pm	Leon OH 1 – 3pm		12:30 – 1:30pm		12:30 – 1:30pm	Tanya OH 1 – 3pm	
2pm		Trent OH 2 – 4pm	Lecture 2 – 3:15pm Mec 205	Robbie OH 2 – 3:15pm	Lecture 2 – 3:15pm Mec 205	Abey OH 2 – 4pm	Grant OH 2 – 4pm
3pm			Mec 205		Trent OH		
4pm		William Wong OH 4 – 5:30pm	Tanya OH 4 – 6pm	Nate OH 4 - 6pm	3:30 - 5:30p Regrade OH 4 - 5pm	William Wong OH 4 – 5:30pm	
5pm		Eli OH			Sarah OH		
6pm		5:30 – 6:30pm		Eli OH 6 – 7pm	5:30 – 7:30pm		
7pm							+
8pm							

Divide and Conquer*

• Divide:

 Break the problem into multiple subproblems, each smaller instances of the original

Conquer:

- If the subproblems are "large":
 - Solve each subproblem recursively
- If the subproblems are "small":
 - Solve them directly (base case)

• Combine:

Merge together solutions to subproblems

Analyzing Divide and Conquer

- 1. Break into smaller subproblems
- 2. Use recurrence relation to express recursive running time
- 3. Use asymptotic notation to simplify
- Divide: D(n) time,
- Conquer: recurse on small problems, size s
- Combine: C(n) time
- Recurrence:
 - $T(n) = D(n) + \sum T(s) + C(n)$

Recurrence Solving Techniques

"Cookbook"

Merge Sort

• Divide:

■ Break n-element list into two lists of n/2 elements

Conquer:

- If n > 1:
 - Sort each sublist recursively
- If n = 1:
 - List is already sorted (base case)

• Combine:

Merge together sorted sublists into one sorted list

Merge

- Combine: Merge sorted sublists into one sorted list
- We have:
 - 2 sorted lists (L_1, L_2)
 - 1 output list (L_{out})

```
While (L_1 \text{ and } L_2 \text{ not empty}):

If L_1[0] \leq L_2[0]:

L_{out}.\text{append}(L_1.\text{pop()})

Else:

L_{out}.\text{append}(L_2.\text{pop()})

L_{out}.\text{append}(L_1)

L_{out}.\text{append}(L_2)
```

Analyzing Merge Sort

- 1. Break into smaller subproblems
- 2. Use recurrence relation to express recursive running time
- 3. Use asymptotic notation to simplify
- Divide: 0 comparisons
- Conquer: recurse on 2 small problems, size $\frac{n}{2}$
- Combine: *n* comparisons
- Recurrence:
 - $T(n) = 2T(\frac{n}{2}) + n$

Recurrence Solving Techniques

Guess/Check

"Cookbook"

Substitution

Tree method

$$T(n) = 2T(\frac{n}{2}) + n$$

Multiplication

Want to multiply large numbers together

4 1 0 2 n-digit numbers

 $\times 1819$

- What makes a "good" algorithm?
- How do we measure input size?
- What do we "count" for run time?

"Schoolbook" Method

How many total multiplications? 4 1 0 2 *n*-digit numbers $\times 1819$ *n* mults 36918 4 1 0 2 *n* mults n levels n mults 32816 $\Rightarrow \theta(n^2)$ +4102*n* mults

7461538

1. Break into smaller subproblems

a b =
$$10^{\frac{n}{2}}$$
 a + b
 \times c d = $10^{\frac{n}{2}}$ c + d

$$10^{n}$$
 (a \times c) +

$$10^{\frac{n}{2}}$$
 (a \times d + b \times c) +
(b \times d)

Divide and Conquer Multiplication

Divide:

■ Break n-digit numbers into four numbers of $^n/_2$ digits each (call them a, b, c, d)

Conquer:

- If n > 1:
 - Recursively compute ac, ad, bc, bd
- If n = 1: (i.e. one digit each)
 - Compute ac, ad, bc, bd directly (base case)

Combine:

$$10^{n}(ac) + 10^{\frac{n}{2}}(ad + bc) + bd$$

2. Use recurrence relation to express recursive running time

$$10^{n}(ac) + 10^{\frac{n}{2}}(ad + bc) + bd$$

Recursively solve

$$T(n) = 4T\left(\frac{n}{2}\right) + 5n$$

3. Use asymptotic notation to simplify

$$T(n) = 4T\left(\frac{n}{2}\right) + 5n$$

$$T(n) = 5n \sum_{i=0}^{\log_2 n} 2^i$$

$$T(n) = 5n \frac{2^{\log_2 n + 1} - 1}{2 - 1}$$

$$T(n) = 5n(2n - 1) = \Theta(n^2)$$

1. Break into smaller subproblems

a b =
$$10^{\frac{n}{2}}$$
 a + b
 \times c d = $10^{\frac{n}{2}}$ c + d

$$10^{n}$$
 (a \times c) +

$$10^{\frac{n}{2}}$$
 (a \times d + b \times c) +
(b \times d)

$$10^{n}(ac) + 10^{\frac{n}{2}}(ad + bc) + bd$$

Can't avoid these

This can be simplified

$$(a+b)(c+d) =$$

$$ac + ad + bc + bd$$

2. Use recurrence relation to express recursive running time

$$10^{n}(ac) + 10^{\frac{n}{2}}((a+b)(c+d) - ac - bd) + bd$$

Recursively solve

$$T(n) = 3T\left(\frac{n}{2}\right) + 8n$$

Divide:

■ Break n-digit numbers into four numbers of n/2 digits each (call them a, b, c, d)

Conquer:

- If n > 1:
 - Recursively compute ac, bd, (a + b)(c + d)
- If n = 1:
 - Compute ac, bd, (a + b)(c + d) directly (base case)

Combine:

■
$$10^{n}(ac) + 10^{\frac{n}{2}}((a+b)(c+d) - ac - bd) + bd$$

Karatsuba Algorithm

- 1. Recursively compute: ac, bd, (a + b)(c + d)
- 2. (ad + bc) = (a + b)(c + d) ac bd
- 3. Return $10^{n}(ac) + 10^{\frac{n}{2}}(ad + bc) + bd$

Pseudo-code

- 1. x = Karatsuba(a,c)
- 2. y = Karatsuba(a,d)
- 3. z = Karatsuba(a+b,c+d)-x-y
- 4. Return $10^{n}x + 10^{n/2}z + y$

$$T(n) = 3T\left(\frac{n}{2}\right) + 8n$$

3. Use asymptotic notation to simplify

$$T(n) = 3T\left(\frac{n}{2}\right) + 8n$$

$$T(n) = 8n \sum_{i=0}^{\log_2 n} (3/2)^i$$

$$8 \cdot 1n$$

$$\frac{8}{2} \cdot 3n$$

$$\frac{8}{4} \cdot 9n$$

$$\frac{8}{2^{\log_2 n}} \cdot 3^{\log_2 n} n$$

3. Use asymptotic notation to simplify

$$T(n) = 3T\left(\frac{n}{2}\right) + 8n$$

$$T(n) = 8n \sum_{i=0}^{\log_2 n} (3/2)^i$$

$$T(n) = 8n \frac{(^{3}/_{2})^{\log_{2} n+1} - 1}{^{3}/_{2} - 1}$$

Math, math, and more math...(on board, see lecture supplement)

$$T(n) = 24(n^{\log_2 3}) - 16n = \Theta(n^{\log_2 3})$$

 $\approx \Theta(n^{1.585})$

