LUNDS TEKNISKA HÖGSKOLA MATEMATIK

TENTAMENSSKRIVNING LINJÄR ALGEBRA 2014-05-30 kl 8–13

INGA HJÄLPMEDEL.

Lösningarna skall vara försedda med ordentliga motiveringar.

1. Bestäm samtliga lösningar till ekvationssystemet AX = B där

$$A = \begin{pmatrix} 2 & 1 & -1 & -1 \\ 3 & 1 & 1 & -2 \\ -1 & -1 & 2 & 1 \\ -1 & -2 & 5 & 2 \end{pmatrix} \text{ och } B = \begin{pmatrix} -1 \\ -2 \\ 2 \\ 5 \end{pmatrix}.$$

Bestäm också rangen och nollrummet till A.

- **2.** Låt Π vara planet x-y-z=8 i \mathbb{R}^3 och l linjen $(x,y,z)=t(1,1,1)+(1,2,3),\ t\in\mathbb{R}$.
 - a) Skär linjen planet och i så fall var? (0.2)
 - **b)** Bestäm avståndet mellan planet Π och punkten P:(2,3,4). (0.4)
 - c) Bestäm den ortogonala projektionen av linjen l på planet Π . (0.4)
- **3.** Låt $\overline{x} = (1,3,2)$ och $\overline{y} = (-1,1,4)$, och $\overline{z} = (3,0,-1)$ (uttryckta i standardbasen).
 - a) Beräkna $\overline{x} \cdot \overline{y}$ och $\overline{x} \times \overline{y}$. (0.3)
 - b) Bestäm $\overline{x} \cdot (\overline{y} \times \overline{z})$ och ange den geometriska tolkningen av svaret. (0.3)
 - c) Bevisa att $\|\overline{u}\|^2 \|\overline{v}\|^2 = (\overline{u} \cdot \overline{v})^2 + \|\overline{u} \times \overline{v}\|^2$, för godtyckliga vektorer $\overline{u}, \overline{v} \in \mathbb{R}^3$. (0.4)
- **4. a)** Ge definitionen av att vektorerna $\overline{u}_1, \overline{u}_2, \dots, \overline{u}_m$ (i \mathbb{R}^n) är linjärt oberoende. (0.4)
 - **b)** Avgör huruvida vektorerna $\overline{v}_1 = (1, 2, 3, 4), \ \overline{v}_2 = (1, -1, 1, -1), \ \overline{v}_3 = (2, 5, 0, 1), \text{ och } \overline{v}_4 = (1, 1, 1, 1) \text{ utgör en bas för } \mathbb{R}^4.$ (0.6)
- $\mathbf{5}$. Låt A vara matrisen

$$A = \left(\begin{array}{ccc} 2 & 3 & 1 \\ 5 & -2 & 5 \\ 1 & -3 & 2 \end{array}\right).$$

Bestäm samtliga egenvärden och egenvektorer för A. Beräkna också A^5 .

6. Låt Π vara ett plan genom origo med normalvektor \overline{n} . Låt $P: \mathbb{R}^3 \to \mathbb{R}^3$ vara den ortogonala projektionen på detta plan och $V: \mathbb{R}^3 \to \mathbb{R}^3$ vara vridningen med $\pi/2$ radianer runt normalen \overline{n} moturs sett från normalens spets (så att $\overline{n}, \overline{x}, V(\overline{x})$ är positivt orienterade). Låt C vara avbildningsmatrisen i standardbasen för sammansättningen $V \circ P$. Visa att C är skevsymmetrisk, dvs att den uppfyller $C^T = -C$.

Ledning: Uttryck först $V \circ P$ i en lämplig ON-bas och gå därefter över till standardbasen.