Project 1

the BRICS 3/5/2019

1. Loading and pre-processing of Data

1.1 Data introduction

There are 1460 observations in the dataset. Within each observation, we have numerous features of one particular house (such as the building class, first-floor square feet, and the number of bedrooms above basement level) and its sale price. The data is from a kaggle competition.

1.2 Treatment of missing values

There are 80 variables in total. Since 19 variables have missing values, we decide to remove them. After this first data processing step, we have 61 variables left.

2. Feature Selection

2.1 Correlation coefficient

The corrplot is a graphical display of correlation matrix of all features. It is important to identify the hidden structure and pattern in the matrix. From the corrplot, we can see that SalePrice is related to a lot of variables obviously.

Next, we focus on the relationship between SalePrice and other variables. To be specific, we find the variables that have a high correlation with SalePrice through corrplot by filtering them with the standard: correlation coefficient (variable, SalePrice) >0.4.

With this method, we get the following variables: OverallQual, YearBuilt, YearRemodAdd, TotalBsmtSF, X1stFlrSF, GrLivArea, FullBath, TotRms, AbvGrd, Fireplaces, GarageCars, GarageArea.

2.2 Random forest model

Since categorical features are not considered in correlation matrix, we then use the random forest model to rank features by their importance from all the 61 variables. Top 15 variables are: GrLivArea, OverallQual, BsmtFinSF1, GarageArea, TotalBsmtSF, LotArea, X1stFlrSF, GarageCars, X2ndFlrSF, YearBuilt, Fireplaces, YearRemodAdd, OverallCond, MSSubClass, ExterQual.

2.3 Decision on relevant and important variables

By combining the two methods above, we decide to use these variables: OverallQual, YearBuilt, YearRemodAdd, TotalBsmtSF, X1stFlrSF, GrLivArea, FullBath, AbvGrd, Fireplaces, GarageCars, GarageArea, MSSubClass The detailed variable descriptions are shown below.

Determinants	Description	Reason	Expected Effect
OverallQual	Overall material and finish quality	Overall material and finish quality shows the degree of excellence of the house and thus influences the price	The higher the overall quality, the higher the price
YearBuilt	Original construction date	Original construction date shows the degree of oldness and thus influences the price	The earlier the original construction date, the lower the price
YearRemodAdd	Remodel date	Remodel date suggests the degree of oldness and therefore determines the price	The earlier the remodel date, the lower the price
TotalBsmtSF	Total square feet of basement area	Total square feet of basement area implies the size of the storage area and thus influences the price	The more the total square feet of the basement area, the higher the price
X1stFlrSF	First-Floor square feet	The first-floor square feet imply the size of the living area in the first floor and thus influences the price	The more the first-floor square feet, the higher the price
GrLivArea	Above grade (ground) living area square feet	Above grade living area square feet indicates the size of the total living area above ground and thus determines the price	The more the above grade living area square feet, the higher the price
FullBath	Full bathrooms above grade	Full bathrooms above grade indicate the size and functionality of the house and therefore could influence the price	The more the full bathrooms above grade, the higher the price
TotRmsAbvGrd	Total rooms above grade (does not include bathrooms)	Total rooms above grade indicate the size and functionality of the house and therefore may impact the price	The more the total rooms above grade, the higher the price
Fireplaces	Number of fireplaces	Fireplaces bring a luxurious feel to a house and increase the value of the house	The higher the number of fireplaces, the higher the price
GarageCars	Size of the garage in car capacity	Size of the garage in car capacity measures the garage dimension and size and therefore impact the price	The bigger the size of the garage in car capacity, the higher the price
GarageArea	Size of the garage in square feet	Size of the garage in square feet measures the area to accommodate vehicles and store stuff and thus influence the price	The bigger the size of the garage in square feet, the higher the price
MSSubClass	The building class	The building class signals the oldness and quality of the house and thus influences the price	The higher the building class, the higher the price
SalePrice	the property's sale price in dollars. This is the target variable that we are trying to predict.		

3. Descriptive Statistics

3.1 Descriptive Statistics

After selecting the relevant and important variables, we have created a summary table with the minimum, average, median, standard deviation and maximum.

	n	min	mean	median	sd	max
OverallQual	876	1	6.13	6.0	1.37	10
YearBuilt	876	1875	1971.59	1973.5	30.45	2009
YearRemodAdd	876	1950	1985.25	1994.0	20.56	2010
TotalBsmtSF	876	0	1061.40	982.5	445.73	6110
X1stFlrSF	876	334	1158.38	1077.0	401.71	4692
GrLivArea	876	334	1503.02	1456.0	509.56	5642
FullBath	876	0	1.56	2.0	0.54	3
${\bf TotRmsAbvGrd}$	876	2	6.45	6.0	1.59	12
Fireplaces	876	0	0.60	1.0	0.64	3
GarageCars	876	0	1.78	2.0	0.74	4
GarageArea	876	0	476.00	480.0	213.51	1418
MSSubClass	876	20	57.46	50.0	42.34	190
SalePrice	876	34900	179801.83	163945.0	74717.48	582933

3.2 box-and-whisker plots

Also, we draw several box-and-whisker plots. We can tell from the plot that overall quality, garages cars, total rooms above ground do influence sale price of a house

3.3 Scatterplots

Then, we create scatter plots. We can tell from the plot that year built, year remodeled, fist floor square footage, ground living area all might have linear relationship with saleprice.

3.4 Target variable

The SalePrice is the target variable and we are trying to predict it.

First, predicting the sale price makes business sense. Generally speaking, when valuing a house, we need to focus on its features. For example, how many full bathrooms above grade (ground)? One bathroom is just the minimum requirement. If there are two to three bathrooms, the house has a bigger size and experiences more functionality. It could be labeled as a "luxury" house and thus has a higher sale price. The logic is that SalePrice might be a function of other variables.

Second, we can observe some important relationships from the box-and-whisker plots and scatter plots. There are some linear relationships between other variables and the SalePrice. For instance, by looking at the scatter plot of "Ground living area and Sale Price", we can find that as the ground living area increases, the sale price ascends. More ground living area means a spacious and large-scale house. It is easy to understand that the house will be sold at a higher price.

4. Model Selection

Based on the analysis above, we choose Sale Price as the target variable for the regression modeling process. In order to find the most appropriate dependent variables for the model, we use forward selection, backward

selection, and forward-and-backward selection to narrow down our choices of variables. We use the 12 variables with the highest correlations with sale price or with most importance to the model we identify before as the original set of variables and let the computer select for us. After conducting these three selection methods, we find the results were all the same, which suggest a drop of 4 variables (*TotalBsmtSF*, *GarageArea*, *TotRmsAbvGrd*, *FullBath*). According to the output in R, the selections are based on the AIC of each model. R only keeps the model with lowest AIC. We then use the 8 remaining variables as the determinants of House Sale Price and run a multiple regression against them. The primary model is called lm.stepf, and the results are shown below.

```
##
## Call:
##
  lm(formula = SalePrice ~ OverallQual + GrLivArea + GarageCars +
##
       MSSubClass + YearBuilt + YearRemodAdd + Fireplaces + X1stFlrSF,
##
       data = train)
##
##
   Residuals:
##
       Min
                1Q
                     Median
                                 3Q
                                         Max
##
   -356061
            -18823
                      -2417
                              14134
                                      246566
##
## Coefficients:
##
                                Std. Error t value
                                                                 Pr(>|t|)
                     Estimate
                                             -8.434 < 0.000000000000000 ***
##
   (Intercept)
                -1261589.078
                                 149581.871
## OverallQual
                    19341.747
                                  1433.036
                                             13.497 < 0.0000000000000000 ***
## GrLivArea
                       39.678
                                      3.538
                                             11.214
                                                    < 0.00000000000000000002 ***
                    15490.426
                                              6.919
                                                         0.0000000000886 ***
## GarageCars
                                  2238.941
## MSSubClass
                     -177.162
                                     31.277
                                             -5.664
                                                         0.0000002008074 ***
## YearBuilt
                                              4.158
                                                         0.00003526680759 ***
                      241.637
                                     58.111
## YearRemodAdd
                      375.689
                                     77.472
                                              4.849
                                                         0.00000146773952 ***
## Fireplaces
                     9311.305
                                  2192.662
                                              4.247
                                                         0.00002405130567 ***
## X1stFlrSF
                       15.451
                                      4.235
                                              3.648
                                                                  0.00028 ***
##
##
  Signif. codes:
                      '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 35900 on 867 degrees of freedom
## Multiple R-squared: 0.7713, Adjusted R-squared: 0.7692
## F-statistic: 365.5 on 8 and 867 DF, p-value: < 0.000000000000000022
```

5. Model improvement

5.1 Model diagnose

To ensure that the assumptions of regression (OLS) are not being violated, we run several diagnoses to check for the model validation. The VIF of the variables are all smaller than 5 which indicates that there's no problem of collinearity. We then closely exam the residual plots of our model. The somewhat curvy Residual vs. Fitted plot shows that with the increase of fitted value, the residuals decrease at first and then increase. It may indicate that the true relationship between sale price and all the the house determinants is not linear. The QQ plot shows a fat tail, suggesting a non-normal distribution of the residuals.

5.2 Deal with Outlier

By looking at all four plots, we notice that there are some outlier problems for our model. The outliers with index of 524,770, 804, 1047, and 1299 prevail in all four plots and are therefore removed from the dataset. After the removal of outliers, the new model, model1, has an improved adjusted R-Squared, lower AIC, and all statistically significant coefficients. The residual plots also improve a lot after the removal of the outliers. The histogram of residuals has a bell shape, which indicates a normal distribution of the residuals. Finally, we check for heteroskedasticity and fix the problem by robusting the standard errors. We would then conclude that the model 1 is the final best linear regression model to estimate the house sale price. The final model is shown below. The adjusted r-squared is 0.8322 and the RMSE using validation data is 39203.

```
##
## Call:
##
   lm(formula = SalePrice ~ ., data = train1)
##
##
   Residuals:
##
                 1Q
                     Median
                                  3Q
                                         Max
                      -1301
                               14882
                                      145822
##
   -137828
            -17332
##
##
  Coefficients:
##
                     Estimate
                                 Std. Error t value
                                                                  Pr(>|t|)
                                 122218.099 -10.774 < 0.0000000000000000 ***
   (Intercept) -1316783.414
```

```
15.343 < 0.000000000000000 ***
## OverallQual
                  18006.845
                                1173.593
## YearBuilt
                    279.472
                                  47.569
                                           5.875 0.000000006035496444 ***
## YearRemodAdd
                                  63.258
                                           5.699 0.000000016519515638 ***
                    360.522
## X1stFlrSF
                     29.593
                                   3.570
                                           8.290 0.000000000000000432 ***
## GrLivArea
                     46.940
                                   3.018
                                          ## Fireplaces
                   8478.929
                                1800.389
                                           4.709 0.000002893137214814
## GarageCars
                  10152.849
                                1857.722
                                           5.465 0.000000060548712390 ***
## MSSubClass
                   -147.347
                                  25.595
                                          -5.757 0.000000011908547014 ***
##
                  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
## Residual standard error: 29300 on 862 degrees of freedom
## Multiple R-squared: 0.8337, Adjusted R-squared: 0.8322
## F-statistic: 540.3 on 8 and 862 DF, p-value: < 0.00000000000000022
```


Histogram of model1\$residual

model1\$residual

5.3 Add Polynomial Term

When we draw the residual independent variable plots, we notice that there are high powers for OverallQual and YearBuilt (these plots have trends).

Therefore, we try the quadratic and cubic terms for these variables. We don't include powers higher than 3 in order to avoid overfit. After adding the polynomial terms and removal of outliers, the new model is called polymodel2, with imporved adjusted R-squared and smaller RMSE. Our final adjusted R-squared is 0.8723, and the RMSE for test data is 32911. The residual plots also improve a lot after add higher order terms and the removal of the outliers. The residual plots as well as the results for the final model are shown below.


```
##
       I(OverallQual^3e+00) + I(OverallQual^2e+00), data = train[-outlier_index2,
##
       1)
##
## Residuals:
##
        Min
                  1Q
                       Median
                                     3Q
  -7.5e+04 -1.6e+04
                      1.9e+02
                               1.3e+04
                                         1.0e+05
##
##
## Coefficients:
##
                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                    -9.9e+07
                                 2.1e+08 -5.0e-01
                                                      6e-01
## OverallQual
                     4.2e+04
                                 1.5e+04
                                          2.7e+00
                                                      7e-03 **
## YearBuilt
                     1.5e+05
                                 3.2e+05
                                          5.0e-01
                                                      6e-01
## YearRemodAdd
                     4.0e+02
                                 5.9e+01
                                          6.8e+00
                                                      2e-11 ***
## X1stFlrSF
                     1.9e+01
                                 3.2e+00
                                          5.7e+00
                                                      1e-08 ***
## GrLivArea
                                 2.7e+00
                                          1.9e+01
                     5.0e+01
                                                     <2e-16 ***
## Fireplaces
                     9.9e+03
                                 1.6e+03
                                          6.2e+00
                                                      1e-09 ***
## GarageCars
                                 1.6e+03 6.3e+00
                     1.0e+04
                                                      6e-10 ***
## MSSubClass
                    -1.3e+02
                                 2.2e+01 -5.9e+00
                                                      6e-09 ***
## I(YearBuilt^2)
                    -7.3e+01
                                 1.6e+02 -4.0e-01
                                                      7e-01
## I(YearBuilt^3)
                     1.2e-02
                                 2.8e-02 4.0e-01
                                                      7e-01
## I(OverallQual^3)
                     7.7e + 02
                                 1.4e+02 5.5e+00
                                                      5e-08 ***
## I(OverallQual^2) -9.4e+03
                                 2.6e+03 -3.6e+00
                                                      3e-04 ***
## ---
## Signif. codes: 0e+00 '***' 1e-03 '**' 1e-02 '*' 5e-02 '.' 1e-01 ' ' 1e+00
##
## Residual standard error: 2.5e+04 on 855 degrees of freedom
## Multiple R-squared: 0.87,
                                 Adjusted R-squared:
## F-statistic: 4.9e+02 on 1.2e+01 and 8.55e+02 DF, p-value: <2e-16
```

We also draw a residual \sim predicted price plot in the in validation data. We can tell from the plot that the model is good since residuals are symmetrically distributed around 0 except for the 3 outliers.

6. Outliers

Among all, eight of our observations were removed outliers. The outliers accounted for about 0.9% of our

observations. It's an acceptable number which would not lead to an obvious drop of total observation number.

7. Model Interpretation and reflection

Our final model is different because we have added higher-order terms including the square of original construction date, cube of original construction date, square of Overall Quality and cube of Overall Quality. The following table provides a simple intrepretation of the coefficients.

Variable Name	Coefficient	Interpretation	Process in terms of marketing
YearRemodAdd	402.479	With the date of the remodel	When listing the house in the
		one year later, the sales price of	market, the remodel should be
		the house would increase by	highlighted if the remodel date
		\$402.479 on average.	of the house is pretty close and
			the this could give the potential
			customer a feeling that this
			house rather new and
			functionable when comparing
			with other houses that built in
			the same year.
X1stFlrSF	18.512	With one more square feet in	The first-floor area suggests the
		the first floor, the sales price of	living area or the common area
		the house would increase by	of the house, so for the family
		\$18.512 on average.	with kids, the common area for
			them is very important.
GrLivArea	50.133	With one square feet of the	The above ground area suggests
		house, the sales price would	mostly the living area for
		increase by \$50.133 on	bedrooms. When listing in the
		average.	market, different customer has
			different requirements, so the
			bigger family the family is, the
			larger above ground living area
			is more preferred.
Fireplaces	9857.507	With one more fireplace in the	Fireplace is not a very frequent
		house, the sales price would	choice in the house market
		increase by \$9857.507 on	these years, while for some
		average.	customers who prefer Medieval
			European style, the fireplace
			maybe a good add-on item for
			the house. While, the cost on the
			fireplace is also expensive and
			the costs for the usage and
			maintaining are also expensive,
			so the sales price of the house
			increased a lot when the

			fireplaces are included.
GarageCars	10107.446	With one more car available in	Most family owns at least one
		the garage, the sales price of	car, so the garage is a must-have
		the house would increase by	item for the house to be
		\$10107.466 on average.	attractive in the markets. Also,
			the larger the garage is, the
			more attractive the house is in
			the market since many families
			own more than one car or have
			the intend to purchase more
			cars in the future.
MSSubClass	-131.993	With one level of the class	The class of the house suggests
		increases in the building class	the quality of the house overall,
		of the house, the sales price	and in extreme weather, the
		decrease by \$131.993 on	better the class is the more
		average.	attractive the house is in the
			market. So, with high level of
			class, the house could be more
			preferred.
YearBuilt	146717.559	When year of the house-built	The year the house is built
I(YearBuilt^2)	-73.273	increases by one year, the	determines the first impression
I(YearBuilt^3)	0.012	house price increases by	of the functionable ability of the
		0.036*year of the house	house when customers look at
		built^2-146*year of the house	it.
		built+146645 dollars.	
OverallQual	41875.654	When overall quality rating of	The quality and the area of the
I(OverallQual^3)	769.683	house increases by 1 unit, the	house are two main
I(OverallQual^2)	-9377.121	house price will increase by	considerations most customers
		2310*overall quality rating of	have when searching for a
		house^2-16444*overall	potential house to purchase. So,
		quality rating of house+33269	the houses with higher quality
		dollars.	are generally more preferable,
			while the cost performance
			between the quality and the
			house price is also important. In
			the market, the house with the
			best cost performance between
			the quality and the house price
			is the most attractive.

Figure 1: