

BLANK PAGE

Indian Standard

TOLERANCES FOR WORM GEARS

- 1. Scope Covers the tolerances for machine cut worm gears.
- 2. Terminology For the purpose of this standard, the definitions and notations given in IS: 5267-1969 'Glossary of terms for worm gears', and IS: 2467-1963 'Notation for tooth gearing' shall apply.
- 3. Accuracy Classes The worm gears are classified into four accuracy classes A, B, C and D. The applications of these accuracy classes are as follows:

Accuracy Class	Application
Α	Master gears
В	Precision gears
С	Semi-precision gears
D	Coarse gears

4. Maximum Permissible Errors

4.1 Worms

4.1.1 Lead error — The permissible departure from the designed axial spacing of any two corresponding points on sections of the worm threads in a plane containing the axis shall be as given below:

Class	Tolerance in Micrometres
Α	$\pm (5+1.6 \sqrt{pz})$
В	$\pm (8+2.5\sqrt{pz})$
С	\pm (13 + 4 $\sqrt{\rho z}$)
D	$\pm (20+6 \sqrt{pz})$

where

pz = designed axial distance in mm, of the two points concerned, which must lie at the same radial distance from the axis.

Adopted 9 October 1986 © April 1987, BIS Gr 2

IS: 11863 - 1986

4.1.2 Circular pitch error (indexing error) — The errors in circumferential spacing of the adjacent threads at the pitch circle in any transverse plane for a multi-start worm shall not exceed the following:

Class	Tolerance in Micrometres
А	$\pm \left(5+1.5 \sqrt{\frac{\overline{d_1}}{z_1}}\right)$
В	$\pm \left(8+2.4 \sqrt{\frac{d_1}{z_1}}\right)$
С	$\pm \left(13 + 3.8 \sqrt{\frac{\overline{d_1}}{z_1}}\right)$
D	$\pm \left(20+6 \sqrt{\frac{d_1}{z_1}}\right)$

where

 d_1 = reference diameter of worm, in millimetres; and

 $z_1 =$ number of starts in worm.

4.1.3 Thread thickness error — The departure from the normal designed thread thickness shall not exceed the following values:

Class	Tolerance in Micrometres
А	$^{+}$ 0 $_{-}$ ($0.8p_{x} + 20$)
В	$^{+}$ 0 $_{-}$ (1·1 p_{x} + 33)
С	$\begin{array}{ccc} + & 0 \\ - & (2 & p_x + 51) \end{array}$
D	$\begin{array}{c} + & 0 \\ - & (3.2p_{x} + 81) \end{array}$

where

 p_{\times} = axial pitch of worm, in millimetres.

Note - Not applicable when lead angle exceeds 45°.

4.1.4 Profile error — The error measured by the departure of the thread flank from the base tangent that coincides with the flank at mid-depth is given below:

Tolerance in Micrometres
+ 0 - (0 [.] 25 m + 3)
+ 0 (0·4 m +- 4)
+0 -(m+6)
+ 0 - (2 [·] 5 m + 15)

where

m =axial module of threads, in millimetres.

Note 1 — The design profile represents the maximum metal condition.

Note 2 - Not to be used when the lead angle exceeds 45°.

4.1.5 Run out of tip diameter with reference to datum — This shall not exceed the appropriate value for IT7 in IS: 919 (Part 1)-1963 'Recommendations for limits and fits for engineering: Part 1 General engineering (first revision)', for any class of worm gear.

4.2 Worm Wheels

4.2.1 Circular pitch error — The error in circumferential spacing of the teeth at the pitch circle in any one transverse plane of a wormheel shall not exceed the following:

Class	Tolerance in Micrometres
A	3 + √ pc
В	6 + 2·5 √ pc
С	$16+6.5\sqrt{\rho c}$
D	41 + 16 √pc

where

pc = length of arc of reference circle in mm over which measurements are made. This should not exceed one half the circumference.

4.2.2 Eccentricity of wormwheel as measured by 'run out' with ball check — The maximum 'run out' that is the full range of indicator needle movement recorded by the ball check, shall not exceed the values given below:

Class	Centre Distance	Permissible Run Out, in Micrometres
А	Less than 150 mm 150 mm and above	25 50
В	Less than 150 mm 150 mm and above	50 75
С	Less than 150 mm 150 mm and above	75 100
D	Less than 150 mm 150 mm and above	100 150

5. Normal Backlash — In order to allow for expansion of the wormwheel at working temperature, backlash must be present at the workshop temperature. Allowable backlash values are given below (based on a temperature of 20°C) which may be achieved by adjusting the wormwheel thickness:

Minimum Micrometres	Maximum Micrometres
$0.25 \mathrm{m} (z_2 + 7) + 13$	0·25 m (z ₂ + 20) + 50
$0.25 \; \mathrm{m} \; (z_2 + 7) + 13$	$0.25\mathrm{m}\left(z_2+40 ight)+50$
$0.25 \mathrm{m} \left(z_2 + 15\right) + 25$	$0.25 \mathrm{m} \left(z_2 + 50 ight) + 65$
0.25 m (z ₂ + 15) + 40	$0.25 \mathrm{m}\left(z_2 + 65\right) + 100$
0·25 m (z ₂ + 15) + 40	$0.25 \mathrm{m} \left(z_2 + 80 \right) + 150 $
	0.25 m (z_2 + 7) + 13 0.25 m (z_2 + 7) + 13 0.25 m (z_2 + 15) + 25 0.25 m (z_2 + 15) + 40

IS: 11863 - 1986

Any of the grades may be associated with any class of gear at the discretion of the designer. The following suggestions are given by way of example:

- Grade 1 would be suitable when backlash tolerance relate to critical requirements, such as timing gears and some control mechanisms.
- Grade 2 is applicable to precision drives of machine tools.
- Grade 3 is suitable for industrial applications.
- Grade 4 for axle transmission gears.
- Grade 5 for applications where working temperatures are of the order of 120°C.

Note — For a worm meshing with a bronze wheel in a cast iron or steel case the backlash between worm and wheel is reduced by approximately = 0.0035 m (z_1+7) (t_u-20) micrometres.

where

- m = axial module of threads in mm,
- z_2 = no. of teeth of wheel, and
- t_u = working temperature which is above 20°C.

EXPLANATORY NOTE

In preparation of this standard considerable assistance has been derived from BS: 721-1963 'Specification for worm gearing' issued by the British Standards Institution.