

TPS22958, TPS22958N

SLVSCX7A - FEBRUARY 2015-REVISED MARCH 2015

TPS22958x 5.5-V, 4-A / 6-A, 14-mΩ Load Switch with Adjustable Rise Time

Features

Integrated N-Channel Load Switch

Input Voltage Range: 0.6 V to 5.5 V

VBIAS Voltage Range: 2.5 V to 5.5 V

R_{ON} Resistance

 $- R_{ON} = 14 \text{ m}\Omega \text{ at } V_{IN} = 5 \text{ V } (V_{BIAS} = 5 \text{ V})$

 $-R_{ON} = 13 \text{ m}\Omega \text{ at } V_{IN} = 3.3 \text{ V } (V_{BIAS} = 5 \text{ V})$

 $-R_{ON} = 13 \text{ m}\Omega \text{ at } V_{IN} = 1.8 \text{ V } (V_{BIAS} = 5 \text{ V})$

4 A Maximum Continuous Switch Current (DGK Package)

6 A Maximum Continuous Switch Current (DGN Package)

Low Quiescent Current

55 μA at V_{BIAS} = 5 V

Low Control Input Threshold Enables Use of 1.2 V/1.8 V/2.5 V/3.3 V Logic

Adjustable Rise Time⁽¹⁾

Quick Output Discharge (QOD)(2)

DGK 8-Pin Package:

3.0 mm x 4.9 mm x 1.1 mm and 0.65 mm pitch

DGN 8-Pin Package with Thermal Pad:

3.0 mm x 4.9 mm x 1.1 mm and 0.65 mm pitch

ESD Performance Tested per JEDEC STD.

- 2-kV HBM and 1-kV CDM

Latch-Up Performance Exceeds 100 mA per JESD 78, Class II

GPIO Enable - Active High

See Adjustable Rise Time section for CT value vs. rise time

Not featured in the TPS22958N device.

Applications

- **EPOS**
- Factory Automation/Control
- **Building Automation**
- **Printers**
- Wave Soldering Manufacturing

Description

The TPS22958x is a small, single channel load switch with an adjustable rise time. The device contains an N-Channel MOSFET that can operate over an input voltage range of 0.6 V to 5.5 V and can support a maximum continuous current of 4 A (DGK package) or 6 A (DGN package). The switch is controlled by an on/off input, which is capable of interfacing directly with low voltage control signals.

The rise time of the device can be externally controlled in order to avoid inrush current. Attaching a capacitor to the CT pin will change the rise time: increasing the value of the capacitor will increase the rise time. The TPS22958x is available in two spacesaving packages (DGK and DGN) with or without a thermal pad for high power dissipation. The device is characterized for operation over the free-air temperature range of -40°C to 105°C.

Device Information(1)

PART NUMBER	PACKAGE (PIN)	BODY SIZE (NOM)		
TPS22958x	DGK (8)	3.00 mm × 4.90 mm		
	DGN (8)	3.00 mm × 4.90 mm		

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Typical Application Schematic

Table of Contents

1	Features 1	9	Detailed Description	17
2	Applications 1		9.1 Overview	17
3	Description 1		9.2 Functional Block Diagram	17
4	Revision History2		9.3 Feature Description	17
5	Device Comparison Table3		9.4 Device Functional Modes	19
6	Pin Configuration and Functions	10	Application and Implementation	20
7	Specifications4		10.1 Application Information	20
•			10.2 Typical Application	21
	7.1 Absolute Maximum Ratings	11	Power Supply Recommendations	
	7.3 Recommended Operating Conditions	12	Layout	24
	7.4 Thermal Information		12.1 Layout Guidelines	
			12.2 Layout Example	
	7.5 Electrical Characteristics (V _{BIAS} = 5 V)	13	Device and Documentation Support	
	7.7 Electrical Characteristics (V _{BIAS} = 2.5 V)		13.1 Related Links	
	7.8 Switching Characteristics		13.2 Trademarks	
	7.9 Typical DC Characteristics		13.3 Electrostatic Discharge Caution	
	7.10 Typical AC Characteristics		13.4 Glossary	
8	Parameter Measurement Information	14	Mechanical, Packaging, and Orderable Information	

4 Revision History

Changes from Original (January 2014) to Revision A					
•	Initial release of full version.	1			

5 Device Comparison Table

DEVICE	R _{ON} AT VIN = VBIAS = 5V	RISE TIME	QUICK OUTPUT DISCHARGE	MAX OUTPUT CURRENT	ENABLE
TPS22958DGK	44.0	Adjustable	Yes	4 A	
TPS22958DGN TPS22958NDGK TPS22958NDGN		Adjustable	Yes	6 A	A ationa I limb
	14 mΩ	Adjustable	No	4 A	Active High
		Adjustable	No	6 A	

6 Pin Configuration and Functions

Pin Functions

	PIN I/O		DESCRIPTION
NO.	NAME	1/0	DESCRIPTION
1, 4	VIN	I	Switch input. Bypass this input with a ceramic capacitor to GND. These pins should be tied together as shown in Layout Information.
2	ON	- 1	Active-high switch control input. Do not leave floating.
3	VBIAS	I	Bias voltage. Power supply to the device. Recommended voltage range for this pin is 2.5 to 5.5 V. See <i>VIN and VBIAS Voltage Range</i> .
5, 8	VOUT	0	Switch output
6	GND	_	Ground
7	СТ	0	Switch slew rate control. Can be left floating.
_	Thermal Pad ⁽¹⁾	_	Thermal pad (exposed center pad) to alleviate thermal stress. Tie to GND. See <i>Layout Guidelines</i> for layout guidelines.

(1) Only available for the DGN package

7 Specifications

7.1 Absolute Maximum Ratings

Over operating free-air temperature (unless otherwise noted) (1) (2)

		MIN	MAX	UNIT
V_{IN}	Input voltage	-0.3	6	V
V_{BIAS}	Bias voltage	-0.3	6	V
V_{OUT}	Output voltage	-0.3	6	V
V _{ON}	ON voltage	-0.3	6	V
	Maximum continuous switch current, T _A = 65°C (DGK Package)		4	Α
I _{MAX}	Maximum continuous switch current, T _A = 75°C (DGN Package)		6	Α
	Maximum pulsed switch current, pulse <300 µs, 2% duty cycle (DGK Package)		6	Α
I _{PLS}	Maximum pulsed switch current, pulse <300 µs, 2% duty cycle (DGN Package)		8	Α
TJ	Maximum junction temperature		125	°C
T _{stg}	Storage temperature range	-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

			VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±2000	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1000	V

JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 500-V HBM is possible with the necessary precautions.

7.3 Recommended Operating Conditions

				MIN	MAX	UNIT
V_{IN}	Input voltage range			0.6	V_{BIAS}	V
V _{BIAS}	Bias voltage range			2.5	5.5	V
V _{ON}	ON voltage range			0	5.5	V
V _{OUT}	Output voltage range			V_{IN}	V	
V _{IH, ON}	High-level input voltage, ON	V _{BIAS} = 2.5 to 5.5 V		1.2	5.5	V
$V_{IL, ON}$	Low-level input voltage, ON	V _{BIAS} = 2.5 to 5.5 V		0	0.5	V
T _A	Operating free-air temperature ⁽¹⁾		-40	105	°C	
C _{IN}	Input capacitor			1 ⁽²⁾		μF

⁽¹⁾ In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may have to be derated. Maximum ambient temperature $[T_{A(max)}]$ is dependent on the maximum operating junction temperature $[T_{J(max)}]$, the maximum power dissipation of the device in the application $[P_{D(max)}]$, and the junction-to-ambient thermal resistance of the part/package in the application $(R_{\theta JA})$, as given by the following equation: $T_{A(max)} = T_{J(max)} - (R_{\theta JA} \times P_{D(max)})$.

(2) Refer to the *Application Information* section.

⁽²⁾ All voltage values are with respect to network ground terminal.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 250-V CDM is possible with the necessary precautions.

7.4 Thermal Information

		TPS2		
	THERMAL METRIC ⁽¹⁾ (2)		DGN (8 PINS)	UNIT
$R_{\theta JA}$	Junction-to-ambient thermal resistance	185.7	67.0	
R ₀ JC(top)	Junction-to-case (top) thermal resistance	77.3	66.5	
$R_{\theta JB}$	Junction-to-board thermal resistance	107.0	46.8	°C ///
Ψ_{JT}	Junction-to-top characterization parameter	15.2	5.0	°C/W
ΨЈВ	Junction-to-board characterization parameter	105.4	46.6	
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	n/a	14.9	

⁽¹⁾ For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

Copyright © 2015, Texas Instruments Incorporated

⁽²⁾ For thermal estimates of this device based on PCB copper area, see the TI PCB Thermal Calculator.

7.5 Electrical Characteristics ($V_{BIAS} = 5 V$)

Unless otherwise noted, the specification in the following table applies over the operating ambient temperature $-40^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq 105^{\circ}\text{C}$ and $\text{V}_{\text{BIAS}} = 5 \text{ V}$. Typical values are for $\text{T}_{\text{A}} = 25^{\circ}\text{C}$ (unless otherwise noted).

	PARAMETER	TEST CONDITIONS	•	T _A	MIN TY	P MA	X UNIT
POWER SI	UPPLIES AND CURRENTS						
				-40°C to 85°C		54 6	00
I _{Q, VBIAS}	V _{BIAS} quiescent current	$I_{OUT} = 0, V_{IN} = V_{ON} = V_{BIAS} = 5 V$		-40°C to 105°C		6	μA 0
				-40°C to 85°C	C	.5	1 .
I _{SD, VBIAS}	V _{BIAS} shutdown current	$V_{ON} = 0 \text{ V}, V_{OUT} = 0 \text{ V}, V_{BIAS} = 5 \text{ V}$		-40°C to 105°C			μA
				-40°C to 85°C	C	.5	8
			$V_{IN} = 5 V$	-40°C to 105°C		1	0
			.,	-40°C to 85°C	C	.1	3
			$V_{IN} = 3.3 \text{ V}$	-40°C to 105°C			4
				-40°C to 85°C	0.0)7	2 .
I _{SD, VIN}	V _{IN} shutdown current	$V_{ON} = 0 \text{ V}, V_{OUT} = 0 \text{ V}, V_{BIAS} = 5 \text{ V}$	$V_{IN} = 1.8 \text{ V}$	-40°C to 105°C			3 µA
				-40°C to 85°C	0.0)5	1
			V _{IN} = 1.2 V	-40°C to 105°C			2
			-40°C to 85°C	0.0)4	1	
			$V_{IN} = 0.6 V$	-40°C to 105°C			2
I _{ON}	ON pin input leakage current	V _{ON} = 5.5 V, V _{BIAS} = 5 V	1	-40°C to 105°C		0.	.1 µA
	ICE CHARACTERISTICS	"					
			V _{IN} = 5 V	25°C		14 1	8
				-40°C to 85°C		2	20 mΩ
				-40°C to 105°C		2	24
			V _{IN} = 3.3 V	25°C		13 1	7
				-40°C to 85°C		2	20 mΩ
				-40°C to 105°C		2	23
			V _{IN} = 2.5 V	25°C		13 1	7
				-40°C to 85°C		2	20 mΩ
				-40°C to 105°C		2	23
				25°C		13 1	7
R _{ON}	ON-state resistance	$I_{OUT} = -200 \text{ mA}, V_{BIAS} = 5 \text{ V}$	V _{IN} = 1.8 V	-40°C to 85°C		2	20 mΩ
				-40°C to 105°C		2	23
				25°C		13 1	7
			V _{IN} = 1.5 V	-40°C to 85°C		2	20 mΩ
				-40°C to 105°C		2	23
				25°C		13 1	7
			V _{IN} = 1.2 V	-40°C to 85°C		2	20 mΩ
				-40°C to 105°C		2	23
				25°C		13 1	7
			V _{IN} = 0.6 V	-40°C to 85°C		2	20 mΩ
			IIV 212	-40°C to 105°C			23
R _{PD}	Output pulldown resistance	$V_{IN} = V_{BIAS} = 5 \text{ V}, V_{ON} = 0 \text{ V}, I_{OUT} = 0 \text{ V}$	10 mA	-40°C to 105°C	1:	35 16	

Submit Documentation Feedback

7.6 Electrical Characteristics ($V_{BIAS} = 3.3 \text{ V}$)

Unless otherwise noted, the specification in the following table applies over the operating ambient temperature $-40^{\circ}\text{C} \leq T_{A} \leq 105^{\circ}\text{C}$ and $V_{BIAS} = 3.3 \text{ V}$. Typical values are for $T_{A} = 25^{\circ}\text{C}$ (unless otherwise noted).

	PARAMETER	TEST CONDITIONS		TA	MIN	TYP	MAX	UNIT
POWER SU	JPPLIES AND CURRENTS							
				-40°C to 85°C		23	27	
I _{Q, VBIAS}	V _{BIAS} quiescent current	$I_{OUT} = 0$, $V_{IN} = V_{ON} = V_{BIAS} = 3.3 \text{ V}$		-40°C to 105°C			27	μA
				-40°C to 85°C		0.3	0.7	
I _{SD, VBIAS}	V _{BIAS} shutdown current	$V_{ON} = 0 \text{ V}, V_{OUT} = 0 \text{ V}, V_{BIAS} = 3.3 \text{ V}$		-40°C to 105°C			0.7	μΑ
			.,,	-40°C to 85°C		0.1	3	
			$V_{IN} = 3.3 \text{ V}$	-40°C to 105°C			4	
				-40°C to 85°C		0.07	2	
I _{SD, VIN}	V 1 11	, , , , , , , , , , , , , , , , , , ,	$V_{IN} = 1.8 \text{ V}$	-40°C to 105°C			3	
	V _{IN} shutdown current	$V_{ON} = 0 \text{ V}, V_{OUT} = 0 \text{ V}, V_{BIAS} = 3.3 \text{ V}$.,	-40°C to 85°C		0.05	1	μA
			V _{IN} = 1.2 V	-40°C to 105°C			2	
			.,	-40°C to 85°C		0.04	1	-
			$V_{IN} = 0.6 \text{ V}$	-40°C to 105°C			2	
I _{ON}	ON pin input leakage current	V _{ON} = 5.5 V, V _{BIAS} = 3.3 V		-40°C to 105°C			0.1	μΑ
RESISTAN	CE CHARACTERISTICS						<u> </u>	
			V _{IN} = 3.3 V	25°C		14	18	
				-40°C to 85°C			20	-
				-40°C to 105°C			24	
			V _{IN} = 2.5 V	25°C		13	17	
				-40°C to 85°C			20	-
				-40°C to 105°C			23	
			V _{IN} = 1.8 V	25°C		13	17	
				-40°C to 85°C			20	mΩ
Б	ON state assistance			-40°C to 105°C			23	
R _{ON}	ON-state resistance	$I_{OUT} = -200 \text{ mA}, V_{BIAS} = 3.3 \text{ V}$		25°C		13	17	
			V _{IN} = 1.5 V	-40°C to 85°C			20	mΩ
				-40°C to 105°C			23	
				25°C		13	17	
			V _{IN} = 1.2 V	-40°C to 85°C			20	-
				-40°C to 105°C			23	
				25°C		13	17	
			V _{IN} = 0.6 V	-40°C to 85°C			20	mΩ
			""	-40°C to 105°C			23	
R _{PD}	Output pulldown resistance	$V_{IN} = V_{BIAS} = 3.3 \text{ V}, V_{ON} = 0 \text{ V}, I_{OUT} =$	10 mA	-40°C to 105°C		135	160	Ω

7.7 Electrical Characteristics ($V_{BIAS} = 2.5 \text{ V}$)

Unless otherwise noted, the specification in the following table applies over the operating ambient temperature $-40~^{\circ}\text{C} \le T_{\text{A}} \le 105~^{\circ}\text{C}$ and $V_{\text{BIAS}} = 2.5~\text{V}$. Typical values are for $T_{\text{A}} = 25^{\circ}\text{C}$ (unless otherwise noted).

	PARAMETER	TEST CONDITIONS		T _A	MIN	TYP	MAX	UNIT
POWER SI	UPPLIES AND CURRENTS	,						
				-40°C to 85°C		14	17	
I _{Q, VBIAS}	V _{BIAS} quiescent current	$I_{OUT} = 0$, $V_{IN} = V_{ON} = V_{BIAS} = 2.5 \text{ V}$		-40°C to 105°C			17	μA
			$V_{ON} = 0 \text{ V. } V_{OUT} = 0 \text{ V. } V_{BIAS} = 2.5 \text{ V}$	-40°C to 85°C		0.2	0.5	
I _{SD, VBIAS}	V _{BIAS} shutdown current	$V_{ON} = 0 \text{ V}, V_{OUT} = 0 \text{ V}, V_{BIAS} = 2.5 \text{ V}$		-40°C to 105°C			0.5	μA
			.,	-40°C to 85°C		0.1	3	
			$V_{IN} = 2.5 \text{ V}$	-40°C to 105°C			4	
			., , , , , , ,	-40°C to 85°C		0.07	2	
$I_{SD, VIN}$ V_{IN} shutdown current (per channel) $V_{ON} = 0 \text{ V}, V_{OUT} = 0 \text{ V}, V_{BIAS} = 2.5$, ayy ayy asy	V _{IN} = 1.8 V	-40°C to 105°C			3		
	V _{IN} snutdown current (per channel)	$V_{ON} = 0 \text{ V}, V_{OUT} = 0 \text{ V}, V_{BIAS} = 2.5 \text{ V}$		-40°C to 85°C		0.05	1	μA
			V _{IN} = 1.2 V	-40°C to 105°C			2	
			.,	-40°C to 85°C		0.04	1	1
		V _{IN}	$V_{IN} = 0.6 V$	-40°C to 105°C			2	
I _{ON}	ON pin input leakage current	V _{ON} = 5.5 V, V _{BIAS} = 2.5 V	1	-40°C to 105°C			0.1	μΑ
RESISTAN	CE CHARACTERISTICS							
			V _{IN} = 2.5 V	25°C		15	19	
				-40°C to 85°C			23	mΩ
				-40°C to 105°C			26	
			V _{IN} = 1.8 V	25°C		14	18	
				-40°C to 85°C			22	mΩ
				-40°C to 105°C			25	
				25°C		14	18	
R _{ON}	ON-state resistance	$I_{OUT} = -200 \text{ mA}, V_{BIAS} = 2.5 \text{ V}$	V _{IN} = 1.5 V	-40°C to 85°C			22	mΩ
				-40°C to 105°C			25	
				25°C		14	18	
			V _{IN} = 1.2 V	-40°C to 85°C			22	mΩ
				-40°C to 105°C			25	1
				25°C		13	18	
			V _{IN} = 0.6 V	-40°C to 85°C			22	mΩ
				-40°C to 105°C			25	
R _{PD}	Output pulldown resistance	$V_{IN} = V_{BIAS} = 2.5 \text{ V}, V_{ON} = 0 \text{ V}, I_{OUT} =$	10 mA	-40°C to 105°C		135	160	Ω

Submit Documentation Feedback

7.8 Switching Characteristics

	PARAMETER	TEST CONDITION	MIN TYP	MAX	UNIT
V _{IN} =	V _{ON} = V _{BIAS} = 5 V, T _A = 25 °C				
t _{ON}	Turn-on time	$R_L = 10 \Omega$, $C_L = 0.1 \mu F$, $CT = 1000 pF$	646		
t _{OFF}	Turn-off time	$R_L = 10 \Omega$, $C_L = 0.1 \mu F$, $CT = 1000 pF$	5		
t_R	V _{OUT} rise time	$R_L = 10 \Omega$, $C_L = 0.1 \mu F$, $CT = 1000 pF$	769		μs
t _F	V _{OUT} fall time	$R_L = 10 \Omega$, $C_L = 0.1 \mu F$, $CT = 1000 pF$	2		
t_D	ON delay time	$R_L = 10 \Omega$, $C_L = 0.1 \mu F$, $CT = 1000 pF$	280		
V _{IN} =	$0.6 \text{ V}, \text{ V}_{ON} = \text{V}_{BIAS} = 5 \text{ V}, \text{ T}_{A} = 25 ^{\circ}\text{C}$			·	
t _{ON}	Turn-on time	$R_L = 10 \ \Omega, \ C_L = 0.1 \ \mu F, \ CT = 1000 \ pF$	303		
t _{OFF}	Turn-off time	$R_L = 10 \Omega$, $C_L = 0.1 \mu F$, $CT = 1000 pF$	91		
t_R	V _{OUT} rise time	$R_L = 10 \Omega$, $C_L = 0.1 \mu F$, $CT = 1000 pF$	126		μs
t _F	V _{OUT} fall time	$R_L = 10 \Omega$, $C_L = 0.1 \mu F$, $CT = 1000 pF$	7		
t_D	ON delay time	$R_L = 10 \Omega$, $C_L = 0.1 \mu F$, $CT = 1000 pF$	243		
V _{IN} = 3	$2.5 \text{ V}, \text{ V}_{ON} = 5 \text{ V}, \text{ V}_{BIAS} = 2.5 \text{V}, \text{ T}_{A} = 25$	°C			
t _{ON}	Turn-on time	$R_L = 10 \Omega$, $C_L = 0.1 \mu F$, $CT = 1000 pF$	983		
t _{OFF}	Turn-off time	$R_L = 10 \Omega$, $C_L = 0.1 \mu F$, $CT = 1000 pF$	7		
t_R	V _{OUT} rise time	$R_L = 10 \Omega$, $C_L = 0.1 \mu F$, $CT = 1000 pF$	987		μs
t _F	V _{OUT} fall time	$R_L = 10 \Omega$, $C_L = 0.1 \mu F$, $CT = 1000 pF$	2		
t _D	ON delay time	$R_L = 10 \ \Omega, \ C_L = 0.1 \ \mu F, \ CT = 1000 \ pF$	518		
V _{IN} =	0.6 V, V _{ON} = 5 V, V _{BIAS} = 2.5 V, T _A = 25	°C			
t _{ON}	Turn-on time	$R_L = 10 \Omega$, $C_L = 0.1 \mu F$, $CT = 1000 pF$	611		
t _{OFF}	Turn-off time	$R_L = 10 \Omega$, $C_L = 0.1 \mu F$, $CT = 1000 pF$	77		
t _R	V _{OUT} rise time	$R_L = 10 \Omega$, $C_L = 0.1 \mu F$, $CT = 1000 pF$	305		μs
t _F	V _{OUT} fall time	$R_L = 10 \Omega$, $C_L = 0.1 \mu F$, $CT = 1000 pF$	7		
t _D	ON delay time	$R_L = 10 \Omega$, $C_L = 0.1 \mu F$, $CT = 1000 pF$	468		

7.9 Typical DC Characteristics

Submit Documentation Feedback

Typical DC Characteristics (continued)

Typical DC Characteristics (continued)

7.10 Typical AC Characteristics

 C_{IN} = 1 μ F, C_{L} = 0.1 μ F, R_{L} = 10 Ω (unless otherwise specified)

Typical AC Characteristics (continued)

Submit Documentation Feedback

Typical AC Characteristics (continued)

TEXAS INSTRUMENTS

Typical AC Characteristics (continued)

8 Parameter Measurement Information

Timing test circuit

(A) Rise and fall times of the control signal is 100ns.

Figure 34. Test Circuit and Timing Waveforms

9 Detailed Description

9.1 Overview

This device is a 5.5 V, 4 A / 6 A, single channel load switch with an adjustable rise time. The device contains an N-channel MOSFET controlled by an on/off GPIO-compatible input. The ON pin must be connected and cannot be left floating. The device is designed to control the turn-on rate and therefore the inrush current. By controlling the inrush current, power supply sag can be reduced during turn on. The slew rate is set by connecting a capacitor from the CT pin to GND.

The slew rate is proportional to the capacitor on the CT pin. Refer to the *Adjustable Rise Time* section to determine the correct CT value for a desired rise time.

The internal circuitry is powered by the VBIAS pin, which supports voltages from 2.5 to 5.5 V. This circuitry includes the charge pump, QOD, and control logic. For these internal blocks to function correctly, a voltage between 2.5 and 5.5 V must be supplied to VBIAS.

When a voltage is supplied to VBIAS and the ON pin goes low, the QOD turns on. This connects VOUT to GND through an on-chip resistor and is not a feature for the TPS22958N. The typical pull-down resistance (R_{PD}) is 135 O.

9.2 Functional Block Diagram

9.3 Feature Description

9.3.1 ON/OFF Control

The ON pin controls the state of the switch. Asserting ON high enables the switch. ON is active high and has a low threshold, making it capable of interfacing with low-voltage signals. The ON pin is compatible with standard GPIO logic threshold. It can be used with any microcontroller with 1.2 V or higher GPIO voltage. This pin cannot be left floating and must be tied either high or low for proper functionality.

Copyright © 2015, Texas Instruments Incorporated

Feature Description (continued)

9.3.2 Quick Output Discharge (QOD)

The TPS22958 includes a QOD feature while the TPS22958N does not. When the device is disabled, a discharge resistor is connected between VOUT and GND. This resistor has a typical value of 135 Ω and prevents the output from floating while the switch is disabled.

9.3.3 VIN and VBIAS Voltage Range

For optimal R_{ON} performance, make sure $V_{IN} \le V_{BIAS}$. The device will still function if $V_{IN} > V_{BIAS}$ but will exhibit an R_{ON} greater than what is listed in the Electrical Characteristics table. See Figure 35 for an example of a typical device. R_{ON} increases as V_{IN} exceeds the V_{BIAS} voltage. For the maximum voltage ratings on the VIN and VBIAS pins, please refer to the Absolute Maximum Ratings table.

Figure 35. R_{ON} vs V_{IN}

Feature Description (continued)

9.3.4 Adjustable Rise Time

A capacitor from the CT pin to GND sets the slew rate, and it should be rated for 25 V and above. An approximate formula for the relationship between CT and slew rate with $V_{BIAS} = 5$ V is:

 $SR = 0.146 \times CT + 14.78$

where

- SR = slew rate (in µs/V)
- CT = the capacitance value on the CT pin (in pF)
- The units for the constant 14.78 is μs/V.
- The units for the constant 0.146 is μs/(VxpF)

(1)

Rise time can be calculated by multiplying the input voltage by the slew rate. Table 1 contains rise time values measured on a typical device.

Table 1. Rise Time Table

CTx (pF)	RISE TIME (µs) 10% - 90%, C_L = 0.1 µF, C_{IN} = 1 µF, R_L = 10 Ω , V_{BIAS} = 5 V Typical values at 25°C with a 25-V X7R 10% ceramic capacitor on CT												
,	VIN = 5 V	VIN = 3.3 V	VIN = 1.8 V	VIN = 1.5 V	VIN = 1.2 V	VIN = 0.8 V	VIN = 0.6 V						
0	79	59	41	37	33	26	23						
220	227	158	97	86	74	55	48						
470	397	270	160	139	116	88	72						
1000	769	522	301	258	211	153	126						
2200	1659	1118	640	548	450	315	256						
4700	3445	2314	1315	1128	927	656	528						
10000	7310	4884	2778	2372	1950	1379	1103						

9.4 Device Functional Modes

The following table lists the VOUT pin connections for a particular device as determined by the ON pin.

Table 2. VOUT Functional Table

ON (Control Input)	TPS22958	TPS22958N
L	GND	Open
Н	VIN	VIN

Copyright © 2015, Texas Instruments Incorporated

10 Application and Implementation

10.1 Application Information

10.1.1 Input Capacitor (Optional)

To limit the voltage drop on the input supply caused by transient inrush currents when the switch turns on into a discharged load capacitor, a capacitor can be placed between VIN and GND. A 1 μ F ceramic capacitor, C_{IN}, placed close to the pins, is usually sufficient. Higher values of C_{IN} can be used to further reduce the voltage drop during high-current application. When switching heavy loads, TI recommends to have an input capacitor about 10× higher than the output capacitor to avoid excessive voltage drop.

10.1.2 Output Capacitor (Optional)

Due to the integrated body diode in the NMOS switch, TI recommends a C_{IN} greater than C_L . A C_L greater than C_{IN} can cause the voltage on VOUT to exceed VIN when the system supply is removed. This could result in current flow through the body diode from VOUT to VIN. TI recommends a C_{IN} to C_L ratio of 10 to 1 for minimizing V_{IN} dip caused by inrush currents during startup.

10.1.3 Power Supply Sequencing Without a GPIO Input

Figure 36. Power Supply Sequencing Without a GPIO Input

In many end equipments, there is a need to power up various modules in a pre-determined manner. The TPS22958x can solve the problem of power sequencing without adding any complexity to the overall system. Figure 36 shows the configuration required for powering up two modules in a fixed sequence. The output of the first load switch is tied to the enable of the second load switch, so when Module 1 is powered the second load switch is enabled and Module 2 is powered.

0 Submit Documentation Feedback

10.2 Typical Application

This application demonstrates how the TPS22958 can be used to power a downstream load with a large capacitance. The example in Figure 37 is powering a 22 µF capacitive output load.

Figure 37. Typical Application Schematic

10.2.1 Design Requirements

For this design example, use the following as the input parameters.

rable of Boolgii i arametere								
DESIGN PARAMETER	EXAMPLE VALUE							
V _{IN}	3.3 V							
V_{BIAS}	5.0 V							
Load current	4 A							
Output capacitance (C _L)	22 µF							
Allowable inrush current on VOUT	0.33 A							

Table 3. Design Parameters

10.2.2 Detailed Design Procedure

To begin the design process, the designer needs to know the following:

- V_{IN} voltage
- V_{BIAS} voltage
- Load current
- Allowable inrush current on VOUT due to C_L capacitor

10.2.2.1 VIN to VOUT Voltage Drop

The VIN to VOUT voltage drop in the device is determined by the R_{ON} of the device and the load current. The R_{ON} of the device depends upon the V_{IN} and V_{BIAS} conditions of the device. Refer to the R_{ON} specification of the device in the Electrical Characteristics table. After the R_{ON} of the device is determined based upon the V_{IN} and V_{BIAS} conditions, use Equation 2 to calculate the VIN to VOUT voltage drop:

$$\Delta V = I_{LOAD} \times R_{ON}$$

where

- ΔV = voltage drop from VIN to VOUT
- I_{LOAD} = load current
- R_{ON} = On-resistance of the device for a specific V_{IN} and V_{BIAS} combination

An appropriate I_{LOAD} must be chosen such that the I_{MAX} specification of the device is not violated.

Submit Documentation Feedback

(2)

10.2.2.2 Inrush Current

To determine how much inrush current will be caused by the C_L capacitor, use Equation 3.

$$I_{INRUSH} = C_L \times \frac{dV_{OUT}}{dt}$$

where

- I_{INRUSH} = amount of inrush caused by C_L
- C₁ = capacitance on VOUT
- dt = time it takes for change in V_{OUT} during the ramp up of VOUT when the device is enabled
- dV_{OUT} = change in V_{OUT} during the ramp up of VOUT when the device is enabled

The device offers adjustable rise time for VOUT and allows the user to control the inrush current during turn-on through the CT pin. The appropriate rise time can be calculated using the design requirements and the inrush current equation (Equation 3).

330 mA =
$$22 \mu F \times 3.3 \text{ V/dt}$$
 (4)

$$dt = 22 \mu F \times 3.3 \text{ V} / 300 \text{mA}$$
 (5)

$$dt = 220 \,\mu s$$
 (6)

To ensure an inrush current of less than 330 mA, choose a CT based on Table 1 or Equation 1 value that will yield a rise time of more than 220 µs. See the oscilloscope captures in the *Application Curves* for an example of how the CT capacitor can be used to reduce inrush current. See Table 1 for correlation between rise times and CT values.

An appropriate C_L value should be placed on VOUT such that the I_{MAX} and I_{PLS} specifications of the device are not violated.

10.2.2.3 Thermal Considerations

The maximum IC junction temperature should be restricted to 125° C under normal operating conditions. To calculate the maximum allowable dissipation, $P_{D(max)}$ for a given output current and ambient temperature, use Equation 7.

$$P_{\text{D(MAX)}} = \frac{T_{\text{J(MAX)}} - T_{\text{A}}}{R_{\text{A,IA}}}$$

where

- P_{D(max)} = maximum allowable power dissipation
- T_{J(max)} = maximum allowable junction temperature (125°C for the TPS22958)
- T_A = ambient temperature of the device
- R_{θJA} = junction to air thermal impedance. See *Thermal Information*. This parameter is highly dependent upon board layout.

For the DGK package, $V_{BIAS} = 5 \text{ V}$, and $V_{IN} = 3.3 \text{ V}$, the maximum ambient temperature with a 4 A load can be determined by using the following calculation:

$$P_D = I^2 \times R \tag{8}$$

$$T_{A} = T_{J(MAX)} - R_{\theta JA} \times P_{D} \tag{9}$$

$$T_{A} = T_{J(MAX)} - R_{\theta JA} \times I^{2} \times R \tag{10}$$

$$T_A = 125^{\circ}C - 185.7^{\circ}C/W \times (4 \text{ A})^2 \times 20 \text{ m}\Omega = 65.6^{\circ}C$$
 (11)

Therefore, with the conditions mentioned above, a maximum ambient temperature of 65.6°C is recommended.

For the DGN package, $V_{BIAS} = 5 \text{ V}$, and $V_{IN} = 3.3 \text{ V}$, the maximum ambient temperature with a 4 A load can be determined by using the following calculation:

$$P_D = I^2 \times R \tag{12}$$

$$T_{A} = T_{J(MAX)} - R_{\theta JA} \times P_{D} \tag{13}$$

$$T_{A} = T_{J(MAX)} - R_{\theta JA} \times I^{2} \times R \tag{14}$$

$$T_A = 125^{\circ}\text{C} - 67.0^{\circ}\text{C/W} \times (4 \text{ A})^2 \times 20 \text{ m}\Omega = 103.6^{\circ}\text{C}$$
 (15)

Therefore, with the conditions mentioned above, a maximum ambient temperature of 103.6°C is recommended.

10.2.3 Application Curves

The three scope captures show the usage of a CT capacitor in conjunction with the device. A higher CT value results in a slower rise and a lower inrush current.

11 Power Supply Recommendations

The device is designed to operate from a V_{BIAS} range of 2.5 to 5.5 V and V_{IN} range of 0.6 to 5.5 V. The power supply should be well regulated and placed as close to the device terminals as possible. It must be able to withstand all transient and load current steps. In most situations, using the minimum recommended input capacitance of 1 uF is sufficient to prevent the supply voltage from dipping when the switch is turned on. In cases where the power supply is slow to respond to a large transient current or large load current step, additional bulk capacitance may be required on the input. To avoid ringing on the VBIAS pin from a noisy power supply, a bypass capacitance of 0.1 μ F is recommended.

The requirements for large input capacitance can be mitigated by adding additional capacitance to the CT pin. This will cause the load switch to turn on more slowly. Not only will this reduce transient inrush current, but it will also give the power supply more time to respond to the load current step.

12 Layout

12.1 Layout Guidelines

- VIN and VOUT traces should be as short and wide as possible to accommodate for high current. When
 connecting the two VIN or VOUT pins together, an equal trace length should be used to avoid an unequal
 distribution of current through each pin.
- Use vias under the exposed thermal pad to connect to the power ground plane for thermal relief during high current operation.
- VIN pins should be bypassed to ground with low-ESR ceramic bypass capacitors. The typical recommended bypass capacitance is 1-µF ceramic with X5R or X7R dielectric. This capacitor should be placed as close to the device pins as possible.
- VOUT pins should be bypassed to ground with low-ESR ceramic bypass capacitors. The typical recommended bypass capacitance is one-tenth of the VIN bypass capacitor of X5R or X7R dielectric rating. This capacitor should be placed as close to the device pins as possible.
- The CT capacitor should be placed as close to the device pins as possible. The typical recommended CT capacitance is a capacitor of X5R or X7R dielectric rating with a rating of 25 V or higher.

24

Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

Product Folder Links: TPS22958 TPS22958N

12.2 Layout Example

DGN Package

DGK Package

13 Device and Documentation Support

13.1 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

Table 4. Related Links

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY		
TPS22958	Click here	Click here	Click here	Click here	Click here		
TPS22958N	Click here	Click here	Click here	Click here	Click here		

13.2 Trademarks

All trademarks are the property of their respective owners.

13.3 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

13.4 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

14 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

21-Jun-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TPS22958DGKR	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 105	(ZBUO ~ ZBUX)	Samples
TPS22958DGNR	ACTIVE	MSOP- PowerPAD	DGN	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 105	ZBVX	Samples
TPS22958NDGKR	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 105	ZBWX	Samples
TPS22958NDGNR	ACTIVE	MSOP- PowerPAD	DGN	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 105	ZBXX	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and

PACKAGE OPTION ADDENDUM

21-Jun-2017

continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 3-Aug-2017

TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS22958DGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
TPS22958DGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.3	1.3	8.0	12.0	Q1
TPS22958DGNR	MSOP- Power PAD	DGN	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
TPS22958NDGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
TPS22958NDGNR	MSOP- Power PAD	DGN	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1

www.ti.com 3-Aug-2017

*All dimensions are nominal

7 til diffictioloris are floriffiat							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS22958DGKR	VSSOP	DGK	8	2500	364.0	364.0	27.0
TPS22958DGKR	VSSOP	DGK	8	2500	346.0	346.0	35.0
TPS22958DGNR	MSOP-PowerPAD	DGN	8	2500	364.0	364.0	27.0
TPS22958NDGKR	VSSOP	DGK	8	2500	364.0	364.0	27.0
TPS22958NDGNR	MSOP-PowerPAD	DGN	8	2500	364.0	364.0	27.0

DGK (S-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
- E. Falls within JEDEC MO-187 variation AA, except interlead flash.

DGN (S-PDSO-G8)

PowerPAD™ PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 for information regarding recommended board layout. This document is available at www.ti.com www.ti.com.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
- F. Falls within JEDEC MO-187 variation AA-T

PowerPAD is a trademark of Texas Instruments.

DGN (S-PDSO-G8)

PowerPAD™ PLASTIC SMALL OUTLINE

THERMAL INFORMATION

This PowerPAD $^{\text{M}}$ package incorporates an exposed thermal pad that is designed to be attached to a printed circuit board (PCB). The thermal pad must be soldered directly to the PCB. After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For additional information on the PowerPAD package and how to take advantage of its heat dissipating abilities, refer to Technical Brief, PowerPAD Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 and Application Brief, PowerPAD Made Easy, Texas Instruments Literature No. SLMA004. Both documents are available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

Exposed Thermal Pad Dimensions

4206323-2/1 12/11

NOTE: All linear dimensions are in millimeters

DGN (R-PDSO-G8)

PowerPAD™ PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002, SLMA004, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com www.ti.com.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.
- F. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PowerPAD is a trademark of Texas Instruments

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.