Large language model-based organ contouring/segmentation for cancer in radiotherapy

Integrating vision and language models for enhanced medical analysis.

- Yashaswi Patki •
- Tanay Gawade •

Challenges in Medical Image Segmentation:

- Complex 3D medical image analysis
- Limited context understanding
- Need for multimodal integration
- High accuracy requirements for medical applications

Current Limitations:

- Traditional methods lack contextual understanding
- Single-modal approaches miss valuable information
- Limited integration of medical reports

Technical Stack

Core Technologies:

- → Deep Learning Framework: PyTorch 2.0.1
- → Primary Libraries:
 - ◆ MONAI (Medical Open Network for AI)
 - Hugging Face Transformers
 - ◆ Llama-2 (Meta AI)
 - ◆ TensorBoardX

System Requirements:

- → GPU: NVIDIA GPU (45GB+ VRAM)
- → RAM: 64GB+
- → Storage: 100GB+
- → OS: Linux (Ubuntu) / Windows with WSL

Project Overview

Core Components

2. <u>Language Understanding</u>

- → Llama-2 7B model integration
- → Medical report analysis
- → Context-aware processing

1. Image Processing Pipeline

- → 3D UNet-based architecture
- → Multi-scale feature extraction
- → Region of Interest: 64×352×352

3. Multimodal Fusion

- → Custom attention mechanism
- → Cross-modal feature integration
- → Enhanced segmentation accuracy

Imaging and Textual Data Processing

- → Imaging Data:
 - Voxel standardization
 - ♦ Intensity normalization
 - Spatial cropping around tumor regions
- → <u>Textual Data</u>:
 - ◆ De-identification of patient information
 - ◆ Tokenization using LLaMA-2 tokenizer
 - ◆ Structured prompts for accurate context embedding

Number	Unit No	Subsite 1	Pathology	icT	icN	icM	pT	pΝ	pM	Stage	Chemotherapy	RT aim	Remark
1	1573	Head	scc	T2	N0	M0				icT2N0M0	Adjuvant	Definitive	Definitive RT (BCS)
2	1612	Head	SCC	T1c	N1	МО				pT1cN1M0	Adjuvant	Definitive	Definitive RT (BCS)
3	1672	Head	SCC	T1	N0	M1				pT1N0M0	Adjuvant	Definitive	Definitive RT (BCS)
4	1688	Head	SCC	T2	N1	M2		-23		pT2N1M0	Adjuvant	Definitive	Definitive RT (BCS)

Training Strategy

- → Pretraining: Modality alignment with contrastive learning
- → Fine-tuning: Supervised segmentation with Dice and Focal losses
- → Optimization: AdamW optimizer, cosine scheduler, warmup
- → Visuals: Loss curves and optimization graphs

Results

Dataset and Evaluation Metrics

Dataset: 100 annotated HNC patients, 3D CT volumes, clinical notes

Testing for 2 cases

no	ID	Dice	loU	HD
0	1573	0.802	0.670	27.783
1	1571	0.804	0.672	2.209
Avr	-	0.803	0.671	14.996
Std	-	0.001	0.001	12.787

Testing for 5 cases

no	ID	Dice	loU	HD
0	1573	0.802	0.670	5.569
1	1571	0.804	0.672	2.209
2	1543	0.810	0.672	7.934
3	1545	0.798	0.664	4.449
4	1573	0.807	0.670	10.573
Avr		0.802	0.666	7.546
Std	-	0.006	0.004	2.261

Testing for 10 cases

result_external1_report

	0.00	VZ-SV				
no	ID	Avr	Dice	loU	HD	Report
0	1	0.795	0.795	0.661	21.235	
1	2	0.800	0.800	0.667	18.121	
2	3	0.803	0.803	0.670	14.553	
3	4	0.798	0.798	0.665	17.843	
4	5	0.805	0.805	0.673	11.654	
5	6	0.796	0.796	0.662	23.776	
6	7	0.802	0.802	0.669	13.249	
7	8	0.799	0.799	0.666	19.384	
8	9	0.801	0.801	0.668	15.612	

Data Efficiency and Robustness

- → Data Efficiency Analysis:
 - ♦ Maintained 83% performance with 90% of the data
 - ◆ Effective even in low-data scenarios
- → Robustness Analysis:
 - Handles anatomical variability
 - Adapts to complex structures

Clinical Impact

- → Reduced Time for Manual Contouring
- → Improved Treatment Planning and Precision
- → Better Tumor Localization

Future Work and Improvements

- → Prompt Standardization and Fine-Tuning
- → Multi-Institutional Validation
- → Extension to MRI and PET Modalities
- → Real-Time Deployment for Clinical Use

THANKYOU!