1 Description of the algorithm

1.1 Assumptions

- 1. Goal of the algorithm: minimizing the number of pallet load units.
- 2. The basis for planning is the PRODUCT_ID set in the order, the number of which is smaller than the standard number.
- 3. The number of PRODUCT_ID units in a shipment (WMS) is not subject to division.
- 4. Adding subsequent PRODUCT_ID layers to the mix takes into account:
 - height (H) of the layer,
 - degree of layer filling (fw),
 - fragility (stackability) parameter (CL),
 - weight (W).

1.2 Input data

- order (ORDER_ID)
- place of shipment (DB)
- \bullet product name (PRODUCT_ID)
- \bullet of product units in the order (BU_QUANTITY)
- number of product units per standard volume (Quantity_Max)
- $\bullet\,$ number of layers in the normative pjl (Layers_Norm)
- product fragility (CAPACITY_LOAD_CLASS)

1.3 Output

- pallet loading unit number (LOADUNIT_ID)
- \bullet weight of pallet loading unit (WEIGHT) with carrier [mm]
- height of pallet loading unit (HEIGHT) with carrier [kg]
- type of pallet loading unit (TOP or BASE) due to the possibility of creating sandwich pallets (SNDW)

1.4 Brief description of the algorithm

The algorithm works for collections of orders. The assignment of goods to a pallet loading unit is made within a single order.

For each ordered product (Product_ID), the number of full layers on the pallet loading unit and the size of the residual layer are calculated.

1.5 Indexes

- i product included in the order, where $i = 1, 2, \dots, n, \dots$
- j pallet mix type loading unit
- w layer on a pallet mix loading unit
- z client's order

1.6 Parameters

- CL_i fragility class of the *ith* product (according to the standard)
- CL_j fragility class of the jth pallet loading unit determined as the highest CLi value of the PRODUCT_ID items included in the jth pallet loading unit mix
- fw layer filling degree; parameter subject to control fw = <0.7; 1>
- fW_{top} the degree of filling of the highest pallet layer of a load unit
- H_i unit height of the *ith* product (according to the standard)
- ullet H_j height of the jth pallet load unit mix
- \bullet Hmax maximum height of a pallet load unit mix (system parameter)
- H^{diff} difference between the maximum height of the pallet loading unit mix Hmax and the height of the jth pallet loading unit mix H_j
- LP_i number of units of the ith product in the order
- LP_i^{nor} number of units of the *ith* product on a standard pallet loading unit
- ullet LW_i^{nor} number of layers of the ith product in a standard pallet loading unit
- S_j status of the j-th pallet loading unit mix due to the possibility of being included in the planning of the construction of the SNDW T pallet loading unit TOP, i.e. it can only be placed on the top of the SNDW; B BASE pallet loading unit, i.e. can be placed as a base or intermediate layer
- w_i number of layers of the *ith* product in the order, where $w_i = w_i^{INT} + w_i^R$

- w_i^{INT} total value of the number of layers of the *ith* product in the order
- w_i^R non-integer value of the number of layers of the *ith* product in the order
- W_i weight of the *ith* product in the order
- \bullet W_i^{norm} standard weight of a pallet loading unit with the *ith* product
- W_i weight of the *jth* pallet load unit mix
- W_j^{zpk} the difference in the weight of the standard pallet loading unit with the *ith* Winorm product and the weight of the *jth* mix pallet loading unit, determined when breaking the fragility parameter
- \bullet W a set of single layers opened with 2 or 3 Product_ID. Each layer can be supplemented with another Product_ID and added as the highest layer in the palette
- W_n weight of n products in the order
- W^{max} maximum weight of a pallet load unit mix (system parameter)
- W^{diff} difference between the maximum weight of the pallet loading unit mix W^{max} and the weight of the jth pallet loading unit mix W_j
- ZP a set of products for planning a pallet load unit mix

1.7 Suggested parameter values

- $H^{max} = 1700[mm]$
- $W^{max} = 700[kq]$
- $f_w \in [0.7 \ 1.0]$

1.8 Operators

- \bullet \cup Adding the product layer or Product_ID to the top layer of the palette that is currently being built.
- \sqcup Binary operator. Returns true if the $Product ID_i$ and $Product ID_{i+n}$ items were combined in one layer. False otherwise.
- ⊎ Adding a layer or Product_ID to the palette that is currently being built taking into account the fragility.
- \ Removing the last added layer or Product_ID from the palette that is currently being built.
- $\bullet \ \cap$ Determining the layer filling degree for at least two Product_IDs included in the layer.

2 Algorithm

Algorithm 1 Palet Stacking algorithm

```
Input: z, CL(i), ZP, H^{max}, W^{max}, f_{wmin}, f_{wmax}, h_{diff}
                                                                             Output: SetSofpalletlabeledas, , Top"or, , Base"
1: j \leftarrow 0
2: S \leftarrow \emptyset
 3: for each z \in \mathbb{Z} do
         for each i \in z do
            \begin{split} l_i^{INT} &\leftarrow int(\frac{LP_i}{LP_i^{NOR}*LW_i^{NOR}}) \\ l_i^R &\leftarrow \frac{LP_i}{LP_i^{NOR}*LW_i^{NOR}} - l_i^{INT} \\ l_i^{Planned}(1:l_i^{INT}+l_i^R) &\leftarrow false \end{split}
 6:
 7:
             Added_i \leftarrow false
 8:
            \begin{aligned} &l_i = l_i^{INT} + l_i^R \\ &fw_i^{INT} \leftarrow 0 \\ &fw_i^R \leftarrow 1 - l_i^R \end{aligned}
 9:
                                                                                                                                                  ⊳ resztkowy spolczynnik wypelnienia warstwy pelnej
10:
                                                                                                                                            ⊳ resztkowy wspolczynnik wypelnienia warstwy niepelnej
11:
         end for each
12:
         for each i \in \mathbf{z} do
13:
             if fw_i^{INT} = 0 and fw_i^R = 0 then
14:
                  S \leftarrow S \cup Make\_full\_layers\_pallet(i, CL(i), H^{max}, W^{max}, j)
                                                                                                                                                                          15:
                  Added_i = true
16:
                  go to 22
17:
              else
18:
                  go to 22
19:
              end if
20:
         end for each
21:
22:
         for each i \in \mathbf{z} do
              sort(i, CL(i), 1)
                                                                                                                                                                   ⊳ Sortowanie rosnaco po klasie kruchosci
23:
              sort(i, CL(i), w_i, -1)
                                                                                              ⊳ W obrebie kazdej klasy kruchosci sortowanie malejaco po liczbie warstw w zamowieniu li
24:
         end for each
25:
         for each i \in \mathbf{z} do
26:
             if \exists i: l_i^{Planned}(:) = false \& l_i^{Planned}(:) = true then
27:
                  go to 50
28:
              else
29:
                  if \exists_i : l_i^{Planned}(1:) = false then
30:
                       go to 74
31:
32:
                  else
```

```
for each j \in S do
33:
                          if |W_i - W_{\neq i}| < W^{diff} \& |H_i - H_{\neq i}| < H^{diff} then
34:
35:
36:
                          else
                              W^{max} \leftarrow 0.99 * W^{max}
37:
                              H^{max} \leftarrow 0.99 * H^{max}
38:
                              go to 13
39:
                          end if
40:
                      end for each
41:
                 end if
42:
             end if
43:
             for each j \in S do
44:
             W_{j}^{mix} = \frac{\sum_{j=1}^{J} W_{j}}{W_{max}}
H_{j}^{mix} = \frac{\sum_{j=1}^{J} H_{j}}{H_{max}}
end for each
45:
46:
47:
             W^{max} = max_j(W_i^{mix})
48:
             H^{max} = max_i(H_i^{mix})
49:
             for each j \in S do
50:
                 W_j^{diff} = W^{max} - W_j
51:
                 H_i^{diff} = H^{max} - H_i
52:
             end for each
53:
             for each i \in \mathbf{z} do
54:
                 if W_i \le W^{diff} \| H_i \le H^{diff} then
55:
                      go to 62
56:
                 else
57:
                      S_j \leftarrow, BASE''
58:
                      go to 26
59:
                 end if
60:
             end for each
61:
             for each j \in S do
62:
                 H_i^{diff} = H^{max} - H_j
63:
                 W_i^{diff} = W^{max} - W_i
64:
                 for each i \in \mathbb{Z} do
65:
                     if H_i \le H_{diff} ||W_i \le W_{diff}| then
66:
                          go to ??
67:
68:
                      else
```

▶ Pallet is builded

```
S_i \leftarrow, BASE''
                                                                                                                                                                  ▷ Pallet is builded
69:
                        go to 26
70:
                    end if
71:
                end for each
72:
            end for each
73:
            for each i \in \mathbf{z} do
74:
               if Added_i = false\&fw_i \in [0.7:1.0] then
75:
                   go to 82
76:
77:
                else
                    go to 175
78:
                end if
79:
            end for each
80:
            count \leftarrow 0
81:
            for each i \in \mathbf{z} do
82:
               if fw_i \in [0.7:1.0] then
83:
                    count \leftarrow count + 1
84:
                end if
85:
            end for each
86:
            if count >= 2 then
87:
                go to 92
88:
            else
89:
                go to 143
90:
            end if
91:
            for each i \in z \& f w_i \in [0.7:1.0] do
92:
               if \exists_n : \|H_i - H_{i+n}\| <= 10 then

if \sum_{k=1}^{I} W_k > W^{max} \|\sum_{k=1}^{I} H_k > H^{max} then

go to 74
                                                                                                   ▶ Warunek polaczenia dwoch pozycji w warstwe celem dodania do palety
93:
94:
                                                                                                           ▶ Dodanie polaczonych warstw przekroczylo wartości maksymalne
95:
                    end if
96:
                   if \sum_{K=1}^{I} W_k \leq W^{max} \& \sum_{k=1}^{I} H_k <= H^{max} then if fw_i + fw_{i+n} > 1.0 then
97:

⊳ Stopien wypelnienia warstwy wspolnej

98:
                           go to 74
99:
                        else
100:
                            if \exists_i : planned_i = false then
                                                                                                                                          101:
                                for each j \in S do
102:
                                    if W_j + W_i \ge W_{max} ||W_j + W_i \ge W_{max} ||CL_i \ge CL_j then
                                                                                                                                       ▶ Mozliwosc dodania do istniejacej palety
103:
                                        if fw_i + fw_i \leq 1 then
104:
                                            S_i \cup Product\_ID(S_i, i)
105:
```

```
if fw_i + fw_{i+n} < 0.7 then
106:
                                            i \setminus i + n
107:
                                            go to 74
108:
                                         \mathbf{else}
109:
                                            S_j = BASE
110:
                                            go to 30
111:
                                        end if
112:
                                     else
113:
                                        if fw_i + fw_{i+n} < 0.7 then
114:
                                            i \setminus i + n
115:
                                            go to 74
116:
                                         end if
117:
                                        if fw_i + fw_{i+n} \in [0.7; 1.0] then
118:
                                            S_i = BASE
119:
                                            go to 30
120:
                                        end if
121:
                                     end if
122:
                                 else
123:
                                     if fw_i + fw_{i+n} < 0.7 then
124:
                                        i \setminus i + n
125:
                                        go to 74
126:
                                     else
127:
                                        if fw_i + fw_{i+n} \in [0.7; 1.0] then
128:
                                            S_j = BASE
129:
                                            go to 30
130:
                                        end if
131:
                                     end if
132:
                                 end if
133:
                              end for each
134:
                          else
135:
                          end if
136:
                      end if
137:
                   end if
138:
               else
139:
                   go to 30
140:
               end if
141:
            end for each
142:
```

```
if i: fw_i \in [0.7; 1.0] \& \exists_n CL_i < CL_{i+n} then
143:
                  \begin{array}{ll} \textbf{if} & fw_i + fw_{i+n} <= 1 & \textbf{then} \\ & \textbf{if} & \sum_{i=1}^{I} W_i < W^{max} \& \sum_{i=1}^{I} H_i < H^{max} & \textbf{then} \\ & \textbf{if} & fw < 0.7 & \textbf{then} \end{array}
144:
145:
146:
                                 S_i \cup Product\_ID(S_i, i)
147:
                                 S_i = TOP
148:
                                 go to 30
149:
                            end if
150:
                            if fw \in [0.7; 1.0] then
151:
                                 S_i \cup Product\_ID(S_i, i)
152:
                                if Try_Pillars(S_i) = true then
153:
                                     S_j \leftarrow TOP
154:
                                     go to 30
155:
                                 else
156:
                                     S_i \leftarrow BASE
157:
                                     go to 30
158:
                                 end if
159:
                            end if
160:
                        end if
161:
                   end if
162:
               else
163:
                   Make\_new\_Pallet(Product\_ID_i)
164:
                   j \leftarrow j + 1
165:
                   if fw_i < 0.7 then
166:
                        S_i = TOP
167:
                        go to 30
168:
                   end if
169:
                   if fw_i \in [0.7; 1.0] then
170:
                        S_i = base
171:
                        go to 30
172:
                   end if
173:
               end if
174:
               for each i \in z do
175:
                   if \exists_n : ||H_i - H_{i+n}|| \le 10 then
176:
                        go to 182
177:
                   else
178:
179:
                        go to 30
```

▶ Warunek polaczenia dwoch pozycji w warstwe celem dodania do palety

```
end if
180:
             end for each
181:
             W^{sum} \leftarrow 0
182:
             top\_layer \leftarrow \emptyset
183:
             fw_{top\_layer} \leftarrow 0
184:
             for each i \in z do
185:
                 if ||H_i - H_{i+n}|; 10 then
186:
                     top\_layer \leftarrow top\_layer \cup i + n
187:
                     W^{sum} \leftarrow W^{sum} + W_{i+n}
188:
                     fw_{top\_layer} \leftarrow fw_{top\_layer} + fw_{i+w}
189:
                 end if
190:
             end for each
191:
             if W^{sum} + W_j < W^{max} then
192:
                 if fw_{top\_layer} < 1\&H_j + H_{i+n} < H^{max} then
193:
                     Create_Pillars()
194:
                 end if
195:
                 if fw_{top\_layer} < 0.7 then
196:
                     S_i \cup top\_layer
197:
                     S_i = TOP
198:
                     go to 175
199:
                 end if
200:
                 if fw \in [0.7; 1.0] then
201:
                     S_i \cup top\_layer
202:
                     if try\_pillars(S_j) = true then
203:
                         S_i = TOP
204:
                         go to 175
205:
                     else
206:
                         S_i = BASE
207:
                         go to 175
208:
                     end if
209:
                 end if
210:
             else
211:
                 while W^{sum} + W_i > W^{max} do
212:
                     top\_layer \leftarrow top\_layer \setminus i + n
213:
                     W^{sum} \leftarrow W^{sum} - W_{i+n}
214:
                     fw_{top\_layer} \leftarrow fw_{top\_layer} - fw_{i+w}
215:
216:
                 end while
```

⊳ Mozliwosc polaczenia

▶ Koniec budowy

⊳ usuwamy do limitu wagi

```
if fw_{top\_layer} < 1\&H_j + H_{i+n} < H^{max} then
217:
                   Create_Pillars()
218:
               end if
219:
               if fw_{top\_layer} < 0.7 then
220:
                   S_j \cup top\_layer
221:
                   \vec{S_i} = TOP
222:
                   go to 175
223:
               end if
224:
               if fw \in [0.7; 1.0] then
225:
                   S_i \cup top\_layer
226:
                   if try_pillars(S_i) = true then
227:
                      S_i = TOP
228:
                      go to 175
229:
                   else
230:
                      S_i = BASE
231:
                      go to 175
232:
                   end if
233:
               end if
234:
            end if
235:
            CL_i \leftarrow 0
236:
            for each Product\_ID \in S_i do
237:
               if CL_i > CL_j then
238:
                   CL_j \leftarrow CL_i
239:
               end if
240:
            end for each
241:
242:
        end for each
        if Product\_ID \in LP_i = 0 then
243:
           go to 26
244:
        end if
245:
        if Product\_ID \in LP_i = 1 then
246:
           go to 252
247:
        end if
248:
        if Product\_ID \in LP_i > 1 then
249:
           go to 267
250:
        end if
251:
        if CL_i < CL_j then
252:
           if \exists_i : Considered_i = false then
253:
```

▶ Koniec budowy

⊳ Sprawdz liczbe pozycji w zamowieniu

```
S_i = BASE
254:
               Considered_i = true
255:
                go to 50
256:
            else
257:
               S_i = BASE
258:
               j \leftarrow j + 1
259:
               S_i \cup Product\_ID
260:
               go to 74
261:
            end if
262:
263:
        \mathbf{else}
            S_i \cup Product_ID
264:
            go to 26
265:
        end if
266:
        if CL_1 = CL_2 = CL_n = CL_i \& CL_i < CL_i then
267:
268:
            go to 282
        end if
269:
        if CL_1 = CL_2 = CL_n = CL_i \& CL_i \ge CL_j then
270:
271:
            go to 431
        end if
272:
        if CL_1 \neq CL_2 \neq CL_n \neq CL_i \& CL_i < CL_i then
273:
            go to 282
274:
        end if
275:
        if CL_1 \neq CL_2 \neq CL_n \neq CL_i \& CL_i \geq CL_i then
276:
            go to 431
277:
        end if
278:
        if CL_1 \neq CL_2 \neq CL_n \neq CL_i \& CL_i \ge CL_i \& CL_n < CL_i then
279:
            go to ??
280:
        end if
281:
        if \exists_i : fw_i \in [0.7; 1.0] then
282:
            go to 299
283:
284:
        else
            if LP_i = 1 then
285:
               if fw < 0.7 then
286:
                   go to 26
287:
                end if
288:
               if fw \in [0.7; 1.0] then
289:
                   S_i \cup LP_i
290:
```

 \triangleright Czy istnieje Product
. ID o pelnej warstwie

> Sprawdz liczbe pozycji w zamowieniu

⊳ zgodnie z sekwencja CL

```
go to 26
291:
               end if
292:
            else
293:
               if LP_i > 1 then
294:
                   go to 359
295:
               end if
296:
            end if
297:
        end if
298:
        if \exists_{i,...,i+n:n>1}: Product_ID_i \cup Product_ID_i + n\&fw_i, fw_{i+n} \in [0.7; 1.0] then \triangleright Itnieja co najmniej 2 pozycje w zamowieniu, ktore nie były laczone
299:
            go to ??
300:
        else
301:
            go to 330
302:
        end if
303:
        if fw_i, fw_{i+n} \in [0.7; 1.0] then
                                                                                ▷ Czy istnieje mozliwosc polaczenia dwoch pozycji Product_ID o pelnych warstwach
304:
            if ||H_i - H_{i+n}|| \le 10 then
305:
               if fw_i + fw_{i+n} < 0.7 then
                                                                                                                        ⊳ Sprawdzenie mozliwosci dodania 3-rd towaru
306:
                   if ||H_i - H_{i+m}|| \le 10 \& ||H_{i+n} - H_{i+n}|| \le 10 \& f w_{i+m} < 0.7 then
307:
                      Li \cup Product\_ID_{i+m}
                                                                                                                                    ▶ Dodaj produkt do nowej warstwy
308:
                      go to ??
309:
310:
                   else
                      go to ??
311:
                   end if
312:
313:
               else
                   if fw \in [0.7; 1.0] then
314:
                      if then
315:
                          go to 299
316:
                       else
317:
                           S_i \setminus (Product\_IDi, Product\_IDi + n, Product\_IDi + m)
318:
                          go to 299
319:
                      end if
320:
                   end if
321:
                   if fw > 1 then
322:
                       go to 299
323:
                   end if
324:
               end if
325:
326:
            else
                go to 299
327:
```

```
end if
328:
        end if
329:
        if \exists_{i,i+n} : Product_ID_i \cup Product_ID_i + n then
                                                                                                                 ▷ Czy sa pozycje Product_ID, ktore nie byly laczone
330:
            if ||H_i - H_{i+n}|| \le 10 then
331:
               if fw < 0.7 then
332:
                   go to 330
333:
               end if
334:
               if fw \in [0.7; 1.0] then
335:
                   W \leftarrow Product\_ID_i \cup Product\_ID_{i+n}
                                                                                                                                             336:
337:
                                                                                                                            ▷ Dodajemy warstwe z uwzglednieniem CL
                   if \sum_{i}^{I} W_{i} > W^{max} \& \sum_{i}^{I} H_{i} > H^{max} then
338:
339:
                       go to 330
340:
341:
                       if \exists n : Product\_ID_n \in z then
                                                                                                                                ⊳ Czy sa kolejne pozycje w zamowieniu
342:
                           go to 330
343:
                       else
344:
                          S_i = BASE
345:
                          go to 26
346:
                       end if
347:
                   end if
348:
               end if
349:
350:
               if fw > 1 then
                   go to 330
351:
               end if
352:
            else
353:
                go to 330
354:
            end if
355:
356:
        else
357:
            go to 26
358:
        if \exists_{i,n} : Product_ID_i \cup Product_ID_n then
                                                                                              ▷ If there are items (Product_IDs) that were not combined into a layer
359:
            if ||H_i - H_n| < 10 then
360:
               if fw_i \cap fw_n < 0.7 then
361:
                   if \exists_i : i+1 \neq n \$Produc_I D_i \in z then
                                                                                                                    ⊳ Czy mozna dodac kolejna pozycje z zamowienia
362:
                       if ||H_i - H_{i+1}| < 10|| \& ||H_n - H_{i+1}| < 10|| then
363:
                          if fw_i \cap fw_n \cap fw_i + 1 < 0.7 then
364:
```

```
go to 361
365:
                            end if
366:
                           if fw_i \cap fw_n \cap fw_i + 1 \in [0.7; 1.0] then
367:
                               go to 391
368:
                            end if
369:
                           if fw_i \cap fw_n \cap fw_i + 1 > 1.0 then
370:
                               W \cup Product\_id_{i||i+1||n} where fw_i, fw_i, fw_i < 1.0
371:
                               if fW < 0.7 then
372:
                                   go to 361
373:
                               end if
374:
                               if fW \in [0.7; 1.0] then
375:
                                   go to 391
376:
                               end if
377:
                           end if
378:
                        else
379:
                            go to 361
380:
                        end if
381:
382:
                        if fW_{top} \in [0.7; 1.0] \& H_{top}^{diff} < 10 then
383:
                            S_j = BASE
384:
                        else
385:
                            S_i = TOP
386:
                        end if
387:
                       go to 26
388:
                    end if
389:
                end if
390:
                if fw_i \cap fw_n \in [0.7; 1.0] then
391:
                    S_i \cup Product\_ID_i \cup Product\_ID_n
392:
                    if \sum_{i=1}^{I} W_i > W^{max} \| \sum_{i=1}^{I} H_i > H^{max} then
393:
                       go to 359
394:
                    else
395:
                        if \exists n : Product\_ID_n \in z then
396:
                           go to 359
397:
                        else
398:
                            S_i = BASE
399:
                           go to 26
400:
                        end if
401:
```

⊳ Czy sa kolejne pozycje w zamowieniu

```
end if
402:
                 end if
403:
                 if fw_i > 1.0 then
404:
                      go to 359
405:
                 end if
406:
             else
407:
                 go to 359
408:
             end if
409:
                                                                                                       ▶ There are no items (Product_IDs) that were not combined in one layer
410:
         else
             if \exists_{i,n} : Product\_ID_i \cup Product\_ID_n then
411:
                 fW \leftarrow \cap fw_i
412:
                 if fW > 1 then
413:
                     S_i \cup Product\_ID_i \forall_i : \sum \_ifw_i \leq 1
414:
                     W_n \leftarrow \sum iW Product ID_i
                                                                                                                                                 be the weight of the items to be added
415:
                     W_j \leftarrow \overline{\sum}_j W_j
                                                                                                                                                           ▷ current weight of the pallet
416:
                     W_i^{zpk} = W^{norm} - W_j
417:
                     if W_n \leq 0.7 * W_j^{zpk} then S_j \cup Product\_ID_i \forall_i
418:
419:
                         S_i = TOP
420:
                         go to 26
421:
                      end if
422:
                     if W_n > 0.7 * W_i^{zpk} then
423:
                         S_j \cup Product\_ID_i \forall_i : W_n \leq 0.7 * W_j^{zpk}
S_j = TOP
424:
425:
                         go to 26
426:
                      end if
427:
                 end if
428:
             end if
429:
         end if
430:
         if \exists_{i,\dots,i+n;n>1}: Product_ID_i \cup Product_ID_i + n\&fw_i, fw_{i+n} \in [0.7;1.0] then
                                                                                                                  ▶ Are in the order any items (Product_IDs) that have not been
431:
    combined and have full layers?
             go to 436
432:
         else
433:
             go to 625
434:
         end if
435:
         if \exists_{i,\dots,i+n;n>1}: Product_ID_i \cup Product_ID_i + n\&fw_i, fw_{i+n} \in [0.7;1.0] then \triangleright Are in the order at least two items that have not been combined and
436:
    have full layers?
```

```
go to 441
437:
           else
438:
               go to 481
439:
           end if
440:
           if \exists_{i,i+n} ||H_i - H_{i+n}|| < 10 then
441:
               if fw_i \cap fw_{i+n} < 0.7 then
442:
                    if \exists Product JD_{i...} \& fw_{i...} < 0.7 then
443:
                         if \forall_{m:m\neq i, m\neq i+n} ||H_m - H_i|| < 10 \& ||H_m - H_i|| < 10 then
444:
                              W \cup Product\_Id_i
445:
                              Si \cup W
446:
                              if fW < 0.7 then
447:
                                   go to 436
448:
                              end if
449:
                             \begin{array}{ll} \textbf{if} & fW \in [0.7; 1.0] & \textbf{then} \\ & \textbf{if} & \sum_{i=1}^{I} W_i \leq W^{max} \| \sum_{i=1}^{I} H_i \leq H^{max} & \textbf{then} \\ & \textbf{go to ??} \end{array}
450:
451:
452:
                                   else
453:
                                        S_i setminusW
454:
                                        go to 436
455:
                                   end if
456:
                              end if
457:
                              if fW > 1 then
458:
459:
                                   go to 436
                              end if
460:
                         else
461:
                              go to 436
462:
                         end if
463:
                    end if
464:
                end if
465:
                if fw_i \cap fw_{i+n} \in [0.7; 1.0] then
466:
                    S_j \cup (Product ID_i, Product ID_{i+n})
if \sum_{i=1}^{I} W_i \leq W^{max} \& \sum_{i=1}^{I} H_i \leq H^{max} then
467:
468:
                         go to 436
469:
                    else
470:
                         S_i \setminus (Product\_ID_i, Product\_ID_{i+n})
471:
                         go to 436
472:
473:
                    end if
```

 $\triangleright Product JD_i$ and $Product JD_{i+n}$ common layer fill factor \triangleright Are there any items in the order that do not have full layers?

 \triangleright Create a new layer from $Product_ID_{i...}$

▷ Remove from the palette the previously added layer

▶ Add both items to the palette

```
end if
474:
              if fw_i \cap fw_{i+n} > 1.0 then
475:
                  go to 436
476:
              end if
477:
478:
          \mathbf{else}
              go to 436
479:
          end if
480:
         if \exists_{i,i+n} ||H_i - H_{i+n}|| < 10 then
481:
              W \leftarrow \emptyset
482:
              W \cup (Product\_ID_i, Product\_ID_{i+n})
483:
              if fW < 0.7 then
484:
                  if \exists Product\_ID_{i,...}\&fw_{i,...} < 0.7 then
485:
                      go to 481
486:
                  \mathbf{else}
487:
                      if \exists_{i,...,i+n;n} : Product_ID_i \cup Product_ID_i + n then
488:
                          if ||H_i - H_{i+n}| < 10 then
489:
                               W \cup (Product_ID_i, Product_ID_i + n)
490:
                              if fW < 0.7 then
491:
                                   if \exists_{i,...,i+n:n>1} : Product_ID_i \cup Product_ID_i + n then
492:
                                       go to 489
493:
                                   else
494:
                                       H_{cmax} \leftarrow 0
495:
                                       for each dom \in W
496:
                                            j_{add} \leftarrow -1
497:
                                           for each j \in S_i do
498:
                                               S_j \cup W_m
499:
                                               if H_i \leq H^{max} \& W_i \leq W^{max} then
500:
                                                    if H_j > H_{cmax} then
501:
                                                        H_{cmax} \leftarrow H_j
502:
                                                        j_{add} \leftarrow j
503:
                                                    else
504:
                                                        S_i \setminus W_m
505:
                                                        j_{add} \leftarrow -1
506:
                                                    end if
507:
                                                else
508:
                                                    S_i \setminus W_m
509:
                                                    j_{add} \leftarrow -1
510:
```

▶ Are there any items in the order that do not have full layers?

▶ Are there any other items that have not been linked together?

 \triangleright The filling degree of the layer cannot exceed 1.0

▶ Are in order other items that were not combined?

```
end if
511:
                                      end for each
512:
                                     if j_{add} \neq -1 then
513:
                                         if \exists_i : Product\_ID_i \in z\&W_j + W_i \leq W^{max}\&H_j - H_m + H_i then \triangleright Can we add Product\_ID from the order to the top
514:
    layer?
                                             S_i \cup Product\_ID_i
515:
                                          end if
516:
                                         S_i \leftarrow TOP
517:
                                          go to 26
518:
                                     end if
519:
                                  end for each
520:
                                  for each m \in W do
521:
                                      W \setminus Product\_ID_i \in W\&H_i = max
                                                                                               ▶ From each set we remove the Product_ID whose height is the highest
522:
                                      go to 495
523:
                                  end for each
524:
                               end if
525:
                           end if
526:
                          if fw \in [0.7; 1.0] then
527:
                              W \cup (Product_ID_i, Product_ID_i + n)
528:
                              if W_i \leq W^{max} then
529:
                                  \S_i \leftarrow BASE
530:
                                  go to 26
531:
532:
                               else
                                  while W_j + W_{Product\_Idi} \leq W^{max} do > Add additional Product_id items that do not exceed the maximum weight limit W^{max}
533:
                                      S_i \cup Product\_ID_i
534:
                                  end while
535:
                                  if fw < 0.7 then
536:
                                      go to 481
537:
                                  end if
538:
                                  if fw \in [0.7; 1.0] then
539:
                                      S_i \leftarrow BASE
540:
                                      go to 26
541:
                                  end if
542:
                               end if
543:
                          end if
544:
545:
                       else
                                                                             \triangleright Add Product_ID to the linked items so as not to exceed the fill factor value 1(fw \le 1)
                           for each m \in W do
546:
```

```
while fw_i + fW < 1.0 do
547:
                                        W_m \cup Product\_ID_i
548:
                                     end while
549:
                                    S_j \cup W_m
550:
                                    if \sum_{i=1}^{I} W_i \leq W^{max} \& \sum_{i=1}^{I} H_i \leq H^{max} then S_j \leftarrow TOP
551:
552:
                                        go to 26
553:
                                     else
554:
                                        while \sum_{i=1}^{I} W_i > W^{max} \& \sum_{i=1}^{I} H_i > H^{max} do
                                                                                                               \triangleright Remove the added Product_id until the W^{max} and H^{max} values of the
555:
     pallet are not exceeded
                                             S_i \setminus Product\_ID_i
556:
                                         end while
557:
                                         S_i \leftarrow TOP
558:
                                         go to 26
559:
                                     end if
560:
                                end for each
561:
                           end if
562:
                                                                                                                    \triangleright We add Product_ID for which the height difference exceeds 10[mm]
563:
                           if \sum_{i=1}^{I} W_i \leq W^{max} \& \sum_{i=1}^{I} H_i \leq H^{max} then S_j = TOP
564:
565:
                                go to 26
566:
                           else
567:
                                while W_j + W_{Product\_ID_i} \le W^{max} \& W_j + W_{Product\_ID_i} \le W^{max} do
568:
                                    S_i \cup Product\_ID
569:
                                end while
570:
                                S_i = TOP
571:
                                go to 26
572:
                           end if
573:
                       end if
574:
                   end if
575:
              end if
576:
              if fW \in [0.7; 1.0] then
577:
                  S_i \cup Product\_ID
578:
                  if \sum_{i=1}^{I} W_i \leq W^{max} \& \sum_{i=1}^{I} H_i \leq H^{max} then if \exists_{i,n} : Product\_ID_i, Product\_ID_{i+n} \in z\&Product\_ID_i \sqcup Product\_ID_{i+n} then
579:
580:
                           go to 481
581:
                       else
582:
```

```
\S_i \leftarrow TOP
583:
                           go to 26
584:
                       end if
585:
586:
                   else
                                                                                                                        \triangleright Add Product_ID to the palette until W^{max} or H^{max} is reached
                       while W_j + W_{Product\_ID_i} \leq W^{max} \& W_j + W_{Product\_ID_i} \leq W^{max} do
587:
                           S_i \cup Product\_ID_i
588:
                       end while
589:
                       if fw < 0.7 then
590:
                           S_i \leftarrow TOP
591:
592:
                            go to 26
                       end if
593:
                       if fw \in [0.7; 1.0] then
594:
                           if h_{diff} \leq 10 then
595:
                                S_i \leftarrow BASE
596:
597:
                            else
                                S_i \leftarrow TOP
598:
                           end if
599:
                           go to 26
600:
                       end if
601:
                       if fw > 1.0 then
602:
                           while fw > 1.0 do
603:
                                S_i \setminus Product\_ID_i
604:
                            end while
605:
                           if fw < 0.7 then
606:
                                S_i \leftarrow TOP
607:
                            end if
608:
                           if fw \in [0.7; 1.0] then
609:
                                S_i \leftarrow BASE
610:
                            end if
611:
612:
                            go to 26
                       end if
613:
                  end if
614:
              end if
615:
616:
              while \sum_{i=1}^{I} W_{i} \leq W^{max} \& \sum_{i=1}^{I} H_{i} \leq H^{max} \& fw \leq 1 do

if \exists_{n} Product JD_{n} : H_{n} = max \& \sum_{i=1}^{I} W_{i} + W_{n} \leq W^{max} \& \sum_{i=1}^{I} H_{i} + H_{n} \leq H^{max} \& fw \cap fw_{n} \leq 1 then
617:
618:
                       S_i \sum Product\_ID_n
619:
```

```
S_i = TOP
620:
                       go to 26
621:
                  end if
622:
              end while
623:
          end if
624:
          if \exists_{i,...,i+n;n>1} : ||H_i - H_i ... n|| \le 10 then
625:
              if fw < 0.7 then
626:
                  if \exists_i : Product ID_i \in z then
627:
                       go to 625
628:
                  else
629:
                       S_i \cup Product\_ID_{i...n}
630:
                       if \sum_{i=1}^{I} W_i \leq W^{max} \| \sum_{i=1}^{I} H_i \leq H^{max} then S_j = TOP
631:
632:
                           go to 26
633:
634:
                           S_i \setminus Product\_ID_{i...n}
635:
                           if \exists_i : Product\_ID_i \in z then
636:
                                go to ??
637:
                           else
638:
                                go to 26
639:
                           end if
640:
                       end if
641:
642:
                   end if
              end if
643:
              if fw \in [0.7; 1.0] then
644:
                  S_i \cup Product\_ID_{i...n}
645:
                  if \sum_{i=1}^{I} W_i \leq W^{max} \| \sum_{i=1}^{I} H_i \leq H^{max} then if \exists_i : Product JD_i \in z then
646:
647:
                           go to 625
648:
                       else
649:
                           S_i = BASE
650:
                           go to 26
651:
                       end if
652:
                  else
653:
                       S_i \setminus Product\_ID_{i...n}
654:
                       if \exists_i : Product\_ID_i \in z then
655:
                           go to 625
656:
```

 \triangleright Are there Product_ID items whose height difference does not exceed 10[mm]

▶ There are items in the order that can be added to the pallet unit load

 \triangleright There are no additional items in the order that can be added to the pallet unit load \triangleright We add those that meet the height difference condition

▶ Remove from the pallet loading unit previously added items

▶ Remove from the pallet loading unit previously added items

```
else
657:
                        go to 26
658:
                    end if
659:
                end if
660:
             end if
661:
            if fw > 1.0 then
662:
                if \exists_i : Product JD_i \in z then
663:
                    go to 625
664:
665:
                    if \sum_{i=1}^{I} W_i > W^{max} then
666:
                        while \sum_{i=1}^{I} W_i > W^{max} do
667:
                                                                  \triangleright Remove the Product_ID of the maximum weight from the pallet unit load until the W^{max} value is
                            S_i \setminus Product\_ID_i : W_i = max
668:
    reached
                        end while
669:
670:
                    if \sum_{i=1}^{I} H_i > H^{max} then
671:
                        while \sum_{i=1}^{I} H_i > H^{max} do
672:
                            S_i \setminus \overline{Product} ID_i : H_i = max
                                                                   \triangleright Remove the Product_ID of the maximum height from the pallet unit load until the H^{max} value is
673:
    reached
                        end while
674:
                    end if
675:
                    if fw > 1.0 then
676:
                        while fw > 1.0 do
677:
                            S_i \setminus Product ID_i : fw = max \triangleright Remove the Product ID of the maximum height from the pallet unit load until the fw value of top
678:
    layer is reached
                        end while
679:
                    end if
680:
                    if \forall_{i,j}: Product\_ID_i, Product\_ID_j \in Top_layer\&||H_i - H_j|| \le 10\&fw \in [0.7; 1.0] then
681:
                        S_i = BASE
682:
                        go to 26
683:
                    end if
684:
                    if \forall_{i,j}: Product\_ID_i, Product\_ID_j \in Top_layer\&||H_i - H_j|| > 10\&fw < 0.7 then
685:
                        S_i = TOP
686:
                        go to 26
687:
                    end if
688:
                end if
689:
             end if
690:
```

```
691:
         else
             if fw < 0.7 then
692:
                S_i \cup Product\_ID_{i...n}
693:
                if \sum_{i=1}^{I} W_i > W^{max} then
                                                                                           \triangleright We check whether the weight of the pallet loading unit has not been exceeded
694:
                     while \sum_{i=1}^{I} W_i > W^{max} do
                                                                  \triangleright We remove those with the lowest weight until the weight of the pallet loading unit W^{max} is reached
695:
                        S_i \setminus Product\_ID_i : W_i = min
696:
                     end while
697:
                 end if
698:
                if \sum_{i=1}^{I} H_i > H^{max} then
                                                                                           ▶ We check whether the weight of the pallet loading unit has not been exceeded
699:
                     while \sum_{i=1}^{I} H_i > H^{max} do
                                                                  \triangleright We remove those with the lowest weight until the weight of the pallet loading unit W^{max} is reached
700:
                        S_i \setminus Product\_ID_i : H_i = min
701:
                     end while
702:
                 end if
703:
                S_i = TOP
704:
                go to 26
705:
             end if
706:
            if fw \in [0.7; 1.0] then
707:
                S_i \cup Product\_ID_{i...n}
708:
                if \sum_{i=1}^{I} W_i > W^{max} then
                                                                                           > We check whether the weight of the pallet loading unit has not been exceeded
709:
                     while \sum_{i=1}^{I} W_i > W^{max} do
                                                                  \triangleright We remove those with the lowest weight until the weight of the pallet loading unit H^{max} is reached
710:
                        S_i \setminus Product JD_i : W_i = min
711:
                     end while
712:
                end if
713:
                if \sum_{i=1}^{I} H_i > H^{max} then
                                                                                           > We check whether the weight of the pallet loading unit has not been exceeded
714:
                    while \sum_{i=1}^{I} H_i > H^{max} do
                                                                  \triangleright We remove those with the lowest weight until the weight of the pallet loading unit H^{max} is reached
715:
                        S_i \setminus Product JD_i : H_i = min
716:
717:
                     end while
                 end if
718:
                S_i = TOP
719:
                go to 26
720:
             end if
721:
             if fw > 1.0 then
722:
                S_j \cup Product\_ID_{i...n}: fw_i = max
                                                                          \triangleright We add to the pallet loading unit the Product_ID with the highest degree of layer filling fw_i
723:
                if \sum_{i=1}^{I} W_i > W^{max} then
                                                                                           > We check whether the weight of the pallet loading unit has not been exceeded
724:
                    while \sum_{i=1}^{I} W_i > W^{max} do
                                                                  \triangleright We remove those with the lowest weight until the weight of the pallet loading unit H^{max} is reached
725:
                        S_i \setminus \overline{Product} ID_i : W_i = min
726:
```

```
end while
727:
                end if if \sum_{i=1}^{I} H_i > H^{max} then while \sum_{i=1}^{I} H_i > H^{max} do S_j \setminus Product\_ID_i : H_i = min
728:
                                                                                           ▶ We check whether the weight of the pallet loading unit has not been exceeded
729:
                                                                  \triangleright We remove those with the lowest weight until the weight of the pallet loading unit H^{max} is reached
730:
731:
                     end while
732:
                 end if
733:
             end if
734:
             if fw \in [0.7; 1.0] then
735:
                S_j = BASE
736:
                go to 26
737:
             else
738:
                 S_j = TOP
739:
                go to 26
740:
             end if
741:
         end if
742:
         for each Product\_Id_i do
743:
             if CL_i < CL_j then
744:
                 go to 282
745:
             else
746:
                 go to 431
747:
             end if
748:
         end for each
749:
750: end for each
751: STOP
```