PSTAT231 HW3 Cheng Ye

Cheng Ye

2022-10-30

```
library(tidymodels)
## v broom
               1.0.1
                        v recipes
                                     1.0.1
## v dials
               1.0.0
                        v rsample
                                     1.1.0
               1.0.10
                        v tibble
## v dplyr
                                     3.1.8
## v ggplot2
               3.3.6
                        v tidyr
                                     1.2.1
## v infer
               1.0.3
                        v tune
                                     1.0.1
## v modeldata
               1.0.1
                       v workflows
                                     1.1.0
## v parsnip
             1.0.2
                       v workflowsets 1.0.0
## v purrr
               0.3.4
                        v yardstick
                                     1.1.0
## -- Conflicts ------ tidymodels conflicts() --
## x purrr::discard() masks scales::discard()
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                  masks stats::lag()
## x recipes::step() masks stats::step()
## * Use suppressPackageStartupMessages() to eliminate package startup messages
library(tidyverse)
## -- Attaching packages ------ tidyverse 1.3.2 --
## v readr
           2.1.2
                   v forcats 0.5.2
## v stringr 1.4.1
## -- Conflicts ------ tidyverse conflicts() --
## x readr::col factor() masks scales::col factor()
## x purrr::discard()
                     masks scales::discard()
## x dplyr::filter()
                     masks stats::filter()
## x stringr::fixed()
                     masks recipes::fixed()
## x dplyr::lag()
                     masks stats::lag()
## x readr::spec()
                     masks yardstick::spec()
library(ggplot2)
library(ggthemes)
library(corrr)
library(corrplot)
```

```
## corrplot 0.92 loaded
library(discrim)
##
## Attaching package: 'discrim'
##
## The following object is masked from 'package:dials':
##
##
       smoothness
library(poissonreg)
library(klaR)
## Loading required package: MASS
##
## Attaching package: 'MASS'
##
## The following object is masked from 'package:dplyr':
##
##
       select
library(pROC)
```

```
## Type 'citation("pROC")' for a citation.
##
## Attaching package: 'pROC'
##
## The following objects are masked from 'package:stats':
##
## cov, smooth, var
```

```
tidymodels_prefer()
#Load required packages
```

```
##
     passenger_id survived pclass
                1
## 1
                        No
                2
## 2
                       Yes
                                1
## 3
                3
                       Yes
                                3
                4
                       Yes
## 4
                                1
                5
                                3
## 5
                        No
## 6
                6
                        No
                                3
##
                                                     name
                                                             sex age sib_sp parch
                                                                  22
## 1
                                 Braund, Mr. Owen Harris
                                                            male
## 2 Cumings, Mrs. John Bradley (Florence Briggs Thayer) female
                                                                                0
## 3
                                  Heikkinen, Miss. Laina female
                                                                                0
            Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35
## 4
                                                                                0
## 5
                                Allen, Mr. William Henry
                                                            male 35
                                                                                0
## 6
                                        Moran, Mr. James
                                                            male NA
                                                                                0
##
               ticket
                         fare cabin embarked
            A/5 21171 7.2500 <NA>
## 1
             PC 17599 71.2833
                                C85
## 2
## 3 STON/02. 3101282 7.9250 <NA>
                                            S
               113803 53.1000 C123
                                            S
## 4
## 5
                                            S
               373450 8.0500
                               <NA>
               330877 8.4583 <NA>
## 6
                                            Q
```

set.seed(231) # could be any number

Question 1

```
titanic_split <- initial_split(titanic, prop = 0.80, strata = survived) # split the data and str
atified on survived,train 80%, test 20%
titanic_train <- training(titanic_split) # training the dataset
titanic_test <- testing(titanic_split) # testing the dataset
dim(titanic_train)</pre>
```

```
## [1] 712 12
```

```
dim(titanic_test)
```

```
## [1] 179 12
```

As the outcome variable is imbalanced for this dataset, using stratified sampling method for this data allows every subgroup in the population receives proper representation.

```
ggplot(titanic_train, aes(survived))+geom_bar()
```


Using barchart to visualize the training dataset, we could see that there is slight class imba lance where one class, survived = yes, contains significantly fewer samples than the other class, survived = no. From the graph, it looks like a binomial distribution

Question 3

titanic_train %>% select(is.numeric, -c(survived, name, sex, ticket, cabin, embarked)) %>% cor(u
se = "complete.obs") %>% corrplot(type = "lower", diag=FALSE, bg ="green", method = "number")

```
## Warning: Predicate functions must be wrapped in `where()`.
##
## # Bad
## data %>% select(is.numeric)
##
## # Good
## data %>% select(where(is.numeric))
##
## i Please update your code.
## This message is displayed once per session.
```


From the graph, we could deduce that age and sib_sp are negatively correlated, parch and age a re also negatively correlated; parch and sib_sp are postively correlated, fare and parch are postively correlated

```
titanic_survived_recipe <- recipe(survived ~ pclass + sex + age + sib_sp + parch + fare, titanic
_train) %>%
   step_impute_linear(age) %>%
   step_dummy(all_nominal_predictors()) %>%
   step_interact(terms = ~ starts_with('sex'):fare+age:fare)
summary(titanic_survived_recipe)
```

```
## # A tibble: 7 x 4
    variable type
                     role
##
                               source
   <chr>
                     <chr>>
##
             <chr>
                               <chr>>
## 1 pclass nominal predictor original
## 2 sex
             nominal predictor original
## 3 age
             numeric predictor original
## 4 sib_sp numeric predictor original
## 5 parch
           numeric predictor original
## 6 fare
             numeric predictor original
## 7 survived nominal outcome
                               original
```

Question 5

```
log_reg <- logistic_reg() %>%
  set_engine("glm") %>%
  set_mode("classification")
log_wkflow <- workflow() %>%
  add_model(log_reg) %>%
  add_recipe(titanic_survived_recipe)
log_fit <- fit(log_wkflow, titanic_train)</pre>
```

Question 6

```
lda_mod <- discrim_linear() %>%
  set_engine('MASS') %>%
  set_mode('classification')
lda_wkflow <- workflow() %>%
  add_model(lda_mod) %>%
  add_recipe(titanic_survived_recipe)
lda_fit <- fit(lda_wkflow, titanic_train)</pre>
```

Question 7

```
qda_mod <- discrim_quad() %>%
  set_engine('MASS') %>%
  set_mode('classification')
qda_wkflow <- workflow() %>%
  add_model(qda_mod) %>%
  add_recipe(titanic_survived_recipe)
qda_fit <- fit(qda_wkflow, titanic_train)</pre>
```

```
nb_mod <- naive_Bayes() %>%
  set_mode("classification") %>%
  set_engine("klaR") %>%
  set_args(usekernel = FALSE)

nb_wkflow <- workflow() %>%
  add_model(nb_mod) %>%
  add_recipe(titanic_survived_recipe)

nb_fit <- fit(nb_wkflow, titanic_train)</pre>
```

Question 9

observation 6

```
log acc <- predict(log fit, new data = titanic train, type = "class") %>%
  bind_cols(titanic_train %>% select(survived)) %>%
  accuracy(truth = survived, estimate = .pred class)
lda_acc <- predict(lda_fit, new_data = titanic_train, type = "class") %>%
  bind cols(titanic train %>% select(survived)) %>%
  accuracy(truth = survived, estimate = .pred_class)
qda_acc <- predict(qda_fit, new_data = titanic_train, type = "class") %>%
  bind cols(titanic train %>% select(survived)) %>%
  accuracy(truth = survived, estimate = .pred_class)
nb_acc <- predict(nb_fit, new_data = titanic_train, type = "class")%>%
  bind cols(titanic train %>% select(survived)) %>%
  accuracy(truth = survived, estimate = .pred_class)
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 1
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 2
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 3
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 4
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 5
```

Warning in FUN(X[[i]], \dots): Numerical 0 probability for all classes with ## observation 7

Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with

```
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 708
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 709
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 710
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 711
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 712
results <- bind_rows(log_acc, lda_acc, qda_acc, nb_acc) %>%
  tibble() %>%mutate(model = c("Logistic Regression","Linear Discriminant Aanalysis", "Quadratic
Discriminant Analysis", "Naive Bayes")) %>%
  select(model, .estimate)
results
## # A tibble: 4 x 2
##
    model
                                     .estimate
   <chr>
##
                                         <dbl>
## 1 Logistic Regression
                                         0.810
## 2 Linear Discriminant Aanalysis
                                         0.803
## 3 Quadratic Discriminant Analysis
                                         0.813
## 4 Naive Bayes
                                         0.792
```

#From observing the results, the Logistic Regression method performed the best on the training d ata

```
log_test <- fit(log_wkflow, titanic_test)
predict(log_test, new_data = titanic_test, type = "class") %>%
  bind_cols(titanic_test %>% select(survived)) %>%
  accuracy(truth = survived, estimate = .pred_class)
```

```
augment(log_test, new_data = titanic_test) %>%
  conf_mat(truth = survived, estimate = .pred_class) %>%
  autoplot(type = "heatmap")
```



```
augment(log_test, new_data = titanic_test) %>%
  roc_curve(survived, .pred_Yes) %>%
  autoplot()
```


#The model has accuracy 0.8268156, which is close to 1, hence the model performed pretty well, i ts accuracy slightly increased on the testing data, this specifies that the model fitting is well. The cause of such results might be the model being mechanistic thus having lower variance.

Question 11

```
# Denote P(z) = y

# Then y+y*e**(z)=e**z %>% y=e**z - y*e**z %>% y = (1-y)*e**z

# Then e**z = y/(1-y) %>% log(e**z)=log(y/(1-y))

# Then z = log(y/(1-y)) %>% z(p) = log(p/(1-p))

# Q.E.D.
```

Question 12

#If we increase X_1 by 2, the odds of outcome would increase by $e^{**}(2*beta_1)$ times. #If beta_1 is negative, as X_1 approaches infinity, p/1-p approaches 0, as X_1 approaches negative infinity, p/1-p approaches 1