

CS/IS F214 Logic in Computer Science

MODULE: PREDICATE LOGIC

Proof System - Natural Deduction

- Universal Quantifier Elimination
- Existential Quantifier Introduction

25-09-2018 Sundar B. CS&IS, BITS Pilani 0

Predicate Logic: Proof System: Natural Deduction

- Predicate Logic includes operations -->, ∧, ∨, and ¬ with the same meanings as in Propositional Logic:
 - i.e.
 - the (introduction and elimination) rules for these operations (-->i, -->e, \land i, \land e, \lor i, \lor e, \neg i and \neg e)
 - along with
 - the rules for double negation
 - are applicable as is in Predicate Logic with the caveat:
 - the premises and the conclusion are to be treated as predicate logic formulas.

ND: Eliminating universal quantifier and Introducing existential quantifier

Recall:

• Ex. 1: Prove $\forall X \phi \mid -- \exists X \phi$

1	$\forall X \ \phi$	Premise
2	ϕ [t/X] for	∀e 1
	some term t	
3	$\exists X \ \phi$	∃i 2

• Ex. 2: Prove P(t), $\forall X P(X) --> \neg Q(X) | -- \exists Y \neg Q(Y)$

1	P(t)	Premise
2	$\forall X(P(X) \longrightarrow Q(X))$	Premise

$$\exists Y \neg Q(Y)$$

• Ex. 2: Prove P(t), $\forall X(P(X) \longrightarrow Q(X)) \mid -- \exists Y \neg Q(Y)$

1	P(t)	Premise
2	$\forall X(P(X) \longrightarrow \neg Q(X))$	Premise
3	$P(t) \longrightarrow Q(t)$	∀e 2
4	¬Q(t)	>e 1,3
5	$\exists Y \neg Q(Y)$	∃i 4

CS/IS F214 Logic in Computer Science

MODULE: PREDICATE LOGIC

Proof System - Natural Deduction

- Universal Quantifier Introduction

25-09-2018 Sundar B. CS&IS, BITS Pilani 6

ND: Introducing Universal Quantifier

•What does this rule state?

X0 does not occur outside the bounding box

Universal Quantifier:
Introduction

ND: Introducing Universal Quantifier

introduce X0

.

 ϕ [XO/X]

 $\forall x \phi$

X0 does not occur outside the bounding box

∀ i Universal Quantifier: Introduction •What does this rule state?

- •If ϕ (with free occurrences of variable X) is proved
 - without any assumptionsand without any conditionson X -
- then $\forall X \phi$ is proved.
- ullet Proving ϕ without any conditions on X is achieved by
 - introducing X0 in place of X
 - where X0 is a fresh variable that does not occur elsewhere.

Sundar B. CS&IS, BITS Pilani 8

Ex. 3: Prove \(\forall X(P(X) --> Q(X))\), \(\forall X P(X) \) | -- \(\forall X Q(X)\)

1	$\forall X P(X)$	Premise
2	$\forall X(P(X)>Q(X))$	Premise

Ex. 3: Prove \(\forall X(P(X) --> Q(X))\), \(\forall X P(X) \) |-- \(\forall X Q(X)\)

1	∀X P(X)	Premise
2	$\forall X(P(X)>Q(X))$	Premise
3	introduce X0	Fresh variable
	Q(X0)	
	∀X Q(X)	∀i 3-?

Ex. 3: Prove \(\forall X(P(X) --> Q(X))\), \(\forall X P(X) \) |-- \(\forall X Q(X)\)

1	AX b(x)	Premise
2	$\forall X(P(X)>Q(X))$	Premise
3	introduce X0	Fresh variable
4	P(X0)	∀e 1
5	P(X0)> Q(X0)	∀e 2
6	Q(X0)	>e 4,5
7	AX O(X)	∀i 3-6

CS/IS F214 Logic in Computer Science

MODULE: PREDICATE LOGIC

Proof System - Natural Deduction: Proof Rules

- Existential Quantifier Elimination

25-09-2018 Sundar B. CS&IS, BITS Pilani 12

ND: Eliminating Existential Quantifier

• What does this rule state?

X0 does not occur outside the bounding box

∃ e Existential Quantifier: Elimination

ND: Eliminating Existential Quantifier

- What does this rule state?
 - If $\exists X \phi$ is true (for formula ϕ with free occurrences of X) and
 - if ψ can be proved assuming ϕ (with no conditions on X)
 - then ψ has been proved.
- No conditions on X are being assumed in the sub-proof because we use a fresh variable X0 in place of X.

• Ex. 4: Prove $\forall X(p(X) --> q(X)), \exists X p(X) | -- \exists X q(X)$

1	∃X p(X)	Premise
2	$\forall X(p(X)>q(X))$	Premise

• Ex. 4: Prove $\forall X(p(X) --> q(X)), \exists X p(X) | -- \exists X q(X)$

1	∃X p(X)	Premise
2	$\forall X(p(X)>q(X))$	Premise
3	introduce X0	Fresh variable
4	p(X0)	Assumption
	(X)p XE	
	∃X p(X)	∃e 1, 3-?

• Ex. 4: Prove $\forall X(p(X) --> q(X)), \exists X p(X) | -- \exists X q(X)$

1	∃X p(X)	Premise
2	$\forall X(p(X)>q(X))$	Premise
3	introduce X0	Fresh variable
4	p(X0)	Assumption
5	p(X0)> q(X0)	∀e 2
6	q(X0)	>e 4,5
7	∃X p(X)	∃i 6
8	(X)p XE	∃e 1, 3- 7

- Exercise:
 - Prove the following sequents.
 - ∃X s() --> p(X) | -- s() --> ∃X p(X)

ND: Comparing the rules ∀i and ∃e

Introduce X0 ϕ [X0/X] \vdots ψ

X0 does not occur outside the bounding box

 $\exists x \phi$

∃е

Existential Quantifier:

Elimination

ψ

Consider this:

Free variable X is treated as an existentially quantified variable in

rule ∃e

Introduce X0

•

 ϕ [X0/X]

 $\forall X \phi$

X0 does not occur outside the bounding box

Free variable X is treated as a universally quantified variable in rule ∀i

 $\forall i$

Universal Quantifier:

Introduction

Sundar B. CS&IS, BITS Pilani

19

CS/IS F214 Logic in Computer Science

MODULE: PREDICATE LOGIC

Predicate Logic –
Proofs - Examples

Predicate Logic: ND Proofs – Example

- Prove the following:
 - $\forall X (\neg p(X) \land q(X)) \mid \forall X (p(X) --> q(X))$
 - $\exists X (\neg p(X) \lor q(X)) \mid \exists X \neg (p(X) \land \neg q(X))$
 - $\forall X \forall Y (q(Y) \longrightarrow f(X)) \mid (\exists Y q(Y)) \longrightarrow \forall X f(X)$

Prove the sequent: $\forall X \forall Y (q(Y) \rightarrow f(X)) \mid -(\exists Y q(Y)) \rightarrow \forall X f(X)$

	Step	Remark
1	$\forall X \ \forall Y \ (q(Y)> f(X))$	Premise
2	∃Y q(Y))	Assumption
3		fresh X0
4	$\forall Y (q(Y)> f(XO))$	∀e 1 [X0/X]
5	∃Y q(Y))	copy 2
6		fresh Y0
7	q(Y0)	Assumption
8	q(Y0)> f(X0)	∀e 4 [Y0/Y]
9	f(X0)	>e 7, 8
10	f(X0)	∃e 5, 6-9
11	∀X f(X)	∀i 3-10
12	∃Y q(Y))> ∀X f(X)	>i 2-11

