CLAIMS

We claim:

1	Claim 1 (original): An article of manufacture for use in a computer system for translating a path
2	expression in an object oriented query to a relational database outer join, said path expression
3	comprising a navigation path through a relationship in a schema, said article of manufacture
4	comprising a computer-useable storage medium having a computer program embodied in said
5	medium which causes the computer system to execute the method steps comprising:
6	analyzing each path expression defined in each level of the object oriented query;
7	identifying each path expression which can be a candidate for a translation to an outer
8	join;
9	ordering the path expression starting with path expression defined in a FROM clause,
10	adding to the FROM clause path expression, each path expression identified as a candidate
11	for a translation to an outer join, and making the ordered path expressions as input to a select
12	operator for each level of the object oriented query;
13	grouping the ordered path expressions sequentially based upon on a source-target
14	dependency between ordered path expressions and based upon the identifications as a
15	candidate for a translation to an outer join;
16	creating a quantifier for each path expression, said quantifier comprising a variable
17	representing a table in a relational database;
18	replacing each grouped path expression with a corresponding quantifier and related
19	table in a relational database; and
20	completing a translation of the object oriented query to a relational query.

- 1 Claim 2 (original): The article of manufacture of claim 1 wherein the embodied computer program
- 2 embodied in said medium can further cause the computer system to execute the method steps
- 3 comprising:
- performing optimization on the grouped quantifiers, said optimization identifying quantifiers which can be a candidate for a translation to an inner join;
- generating an outer join for each quantifier which remains after optimization a candidate for a translation to an outer join; and
- generating an inner join for each quantifier which remains after optimization a candidate for a translation to an inner join .
- 1 Claim 3 (original): The article of manufacture of claim 2 wherein the optimization identifies a
- 2 quantifier as a candidate for a translation to an inner join if a corresponding path expression is used
- in a FROM clause.
- 1 Claim 4 (original): The article of manufacture of claim 2 wherein the optimization identifies a
- quantifier as a candidate for a translation to an inner join if a LIKE, IN, or BETWEEN operator
- exists in a WHERE clause containing a corresponding path expression.
- 1 Claim 5 (original): The article of manufacture of claim 2 wherein the optimization identifies a
- quantifier as a candidate for a translation to an inner join if an EQUAL, LESS THAN, GREATER
- 3 THAN, LESS THAN OR EQUAL, GREATER THAN OR EQUAL, NOT EQUAL, or NOT NULL
- 4 operator exits in a WHERE clause.

	Claim o (original). A method of translating a path expression in an object oriented query to a
2	relational database outer join, said path expression comprising a navigation path through a
3	relationship in a schema, said method comprising the steps of:
4	analyzing each path expression defined in each level of the object oriented query;
5	identifying each path expression which can be a candidate for a translation to an outer
6	join;
7	ordering the path expressions starting with path expressions defined in a FROM
8	clause, adding to the FROM clause path expressions, each path expression identified as a
9	candidate for a translation to an outer join, and making the ordered path expressions as input
10	to a select operator for each level of the object oriented query;
11	grouping the ordered path expressions sequentially based upon on a source-target
12	dependency between ordered path expressions and based upon the identifications as a
13	candidate for a translation to an outer join;
	candidate for a translation to all outer join,
14	creating a quantifier for each path expression, said quantifier comprising a variable
15	representing a table in a relational database;
16	replacing each grouped path expression with a corresponding quantifier and related
17	table in a relational database; and
18	completing a translation of the object oriented query to a relational query.

- Claim 7 (original): The method of claim 6 further comprising the steps of:
- performing optimization on the grouped quantifiers, said optimization identifying quantifiers which can be a candidate for a translation to an inner join;
- generating an outer join for each quantifier which remains after optimization a candidate for a translation to an outer join; and
- generating an inner join for each quantifier which remains after optimization a candidate for a translation to an inner join.
- 1 Claim 8 (original): The method of claim 7 wherein the optimization identifies a quantifier as a
- 2 candidate for a translation to an inner join if a corresponding path expression is used in a FROM
- 3 clause.

. 1

- 1 Claim 9 (original): The method of claim 7 wherein the optimization identifies a quantifier as a
- 2 candidate for a translation to an inner join if a LIKE, IN, or BETWEEN operator exists in a
- WHERE clause containing a corresponding path expression.
- 1 Claim 10 (original): The method of claim 7 wherein the optimization identifies a quantifier as a
- 2 candidate for a translation to an inner join if an EQUAL, LESS THAN, GREATER THAN, LESS
- 3 THAN OR EQUAL, GREATER THAN OR EQUAL, NOT EQUAL, or NOT NULL operator exits
- 4 in a WHERE clause.

- 1	Claim 11 (original): A computer system for translating a path expression in an object oriented
2	query to a relational database outer join, said path expression comprising a navigation path through a
3	relationship in a schema, said computer system comprising:
4	computer program instructions for analyzing each path expression defined in each
5	level of the object oriented query;
6	computer program instructions for identifying each path expression which can be a
7	candidate for a translation to an outer join;
8	computer program instructions for ordering the path expressions starting with path
9	expressions defined in a FROM clause, adding to the FROM clause path expressions, each
10	path expression identified as a candidate for a translation to an outer join, and making the
11	ordered path expressions as input to a select operator for each level of the object oriented
12	query;
13	computer program instructions for grouping the ordered path expressions sequentially
14	based upon on a source-target dependency between ordered path expressions and based upon
15	the identifications as a candidate for a translation to an outer join;
16	computer program instructions for creating a quantifier for each path expression, said
17	quantifier comprising a variable representing a table in a relational database;

computer program instructions for replacing each grouped path expression with a corresponding quantifier and related table in a relational database; and

computer program instructions for completing a translation of the object oriented query to a relational query.

- Claim 12 (original): The computer system of claim 11 further comprising:
- 2 computer program instructions for performing optimization on the grouped
- quantifiers, said optimization identifying quantifiers which can be a candidate for a
- 4 translation to an inner join;

• 1

- 5 computer program instructions for generating an outer join for each quantifier which
- 6 remains after optimization a candidate for a translation to an outer join; and
- 7 computer program instructions for generating an inner join for each quantifier which
- remains after optimization a candidate for a translation to an inner join.
- 1 Claim 13 (original): The computer system of claim 12 wherein the optimization identifies a
- 2 quantifier as a candidate for a translation to an inner join if a corresponding path expression is used
- 3 in a FROM clause.
- 1 Claim 14 (original): The computer system of claim 12 wherein the optimization identifies a
- quantifier as a candidate for a translation to an inner join if a LIKE, IN, or BETWEEN operator
- exists in a WHERE clause containing a corresponding path expression.
- 1 Claim 15 (original): The computer system of claim 12 wherein the optimization identifies a
- quantifier as a candidate for a translation to an inner join if an EQUAL, LESS THAN, GREATER
- THAN, LESS THAN OR EQUAL, GREATER THAN OR EQUAL, NOT EQUAL, or NOT NULL
- 4 operator exits in a WHERE clause.