Machine Learning in Remote Sensing —Practice material—

Gustau Camps-Valls

Image Processing Laboratory (IPL) – Universitat de València gustau.camps@uv.es — http://isp.uv.es

- Supervised classification of hyperspectral images
- Feature extraction from hyperspectral images
- Spectral unmixing and abundance estimation
- 4 Hyperspectral and LiDAR data fusion
- Biophysical parameter retrieval with kernel regression

Practice 1: Supervised classification of hyperspectral images: LDA, *k*-NN, and SVMs w/wo spatial information >> demo1.m

Data:

- Standard image: 16 crop classes, Indiana (USA), 1999.
- AVIRIS sensor: 220 bands, 145 × 145 pixels.

Practice 2: Feature extraction from hyperspectral images

P2a Extract standard spatial features >> demo2a.m

P2b Extract advanced spectral feature extraction >> demo2a.m

Data:

- AVIRIS image taken over NW Indiana's Indian Pine test site in June 1992
- ullet 145 imes 145 image size, 220 features (bands), 16 land cover classes
- 80% for training and 20% for testing
- Classifier: linear classifier on top of different number of features

Practice 3: Evaluate several algorithms for signal unmixing

- P3a Signal subspace determination >> demo3a.m
- P3b Endmember determination >> demo3b.m
- P3c Abundance estimation with unconstrained LS linear regression >> demo3c.m
- Data: AVIRIS Cuprite site over Nevada (1995)

Practice 4: Evaluate feature extraction and standard supervised classifiers with and without hyperspectral+LiDAR fusion >> demo4.m

 Data: Hyperspectral CASI1500 (144 bands in the 380-1050 nm) + LiDAR derived Digital Surface Model (DSM)

Practice 5: Evaluate the kernel ridge regression to predict Chla, LAI and fCover from hyperspectral images >> demo5.m

- Data: SPARC data set (2003, 2004; Barrax, Spain)
 - Field data: Chl measured with CCM-200
 - 30 additional bare soil samples
 - CHRIS mode 1 (62 bands; 34m) nadir spectra

Method	Formulation	R
GI	Bon / Bus	0.52 (0.
CVI	(Raw-Ross)/(Reav+Ross)	0.66 (0:
Macc	$(R_{max}R_{max})/(R_{max}+R_{max})$	0.20 (0.
MCARI	$[(R_{2m}-R_{42q})-0.2(R_{2m}-R_{43q})]/(R_{2m}/R_{42q})$	0.35 (0.
MCAR22	$1.2[2.5(R_{max}R_{cm})\cdot 1.3(R_{max}\cdot R_{max})]$	0.71 (0.
mNDVI	$(R_{ano} \cdot R_{oax})/(R_{ano} + R_{oax} \cdot 2R_{oax})$	0.77 (0.
mNDVIvo	(Rmo-Brus)/(Reso+Rmo-2Rass)	0.80 (0.
nSRva	(RmorRass)/(Rmar+Rass)	0.72 (0:
MICI	$(Rm_{\sigma}Rrm)/(Rmn+Rmn)$	0.19 (0.
n(TVI	1.2[1.2(Ruse-Ryas)-2.5(Ruse-Ryas)[])	0.73 (0:
NIIVI	$(R_{800} \cdot R_{370})/(R_{800} + R_{370})$	0.77 (0:
NDVI2	$(R_{200}-R_{200})/(R_{230}+R_{200})$	0.81 (0:
NPCI	$(R_{ano} \cdot R_{ano})/(R_{ano} + R_{ano})$	0.72 (0
NPQI	$(R_{av}R_{av})/(R_{avs}+R_{avs})$	0.61 (0
OSAVI	$1.16(R_{500}-R_{670})/(R_{500}+R_{670}+0.16)$	0.79 (0
PRI	$(R_{531}-R_{523})/(R_{531}+R_{523})$	0.77 (0
PR22	(ReseRen)/(Rese+Ren)	0.76 (0
PSRI	$(R_{000}R_{200})/R_{200}$	0.79 (0
RDVI	$(Ran - Ren)/\sqrt{(Ran + Ren)}$	0.76 (0
SPI	(Ruo-Rass)/(Ruo-Ron)	0.78 (0
SPVI	$0.4[3.7(R_{400}, R_{420})-1.2(R_{520}, R_{420})]$	0.70 (0
SIL	$R_{\rm em}/R_{\rm po}$	0.63 (0
SILL	R_{TM}/R_{TM}	0.74 (0
SR2	Bru/Ree	0.68 (0
5B3	Bru/Bue	0.75 (0
SR4	Berr / Rus	0.76 (0
SRPT	Ren/Bon	0.76 (0
TCABI	SRvor-Ren)-0.2/Rvor-Roo (Rvor/Ren)	0.53 (0
IVI	$0.5[120R_{T00}R_{500}]-200(R_{dW}R_{530})$	0.70 (0
VOG	Rest/(Reso	0.76 (0
VDG2	$(R_{714}, R_{747})/(R_{713}+R_{724})$	0.72 (0
NAOC	Area in 1643, 795	0.79 (0
LR	Least squares	0.88 (0.
SVR Smola and Schöl	hogd 2000 RBF hornel	0.58 (0:
MSVII. Tula et al. 20		0.58 (0.
CIP Norrelat et al. (3)		0.99 (0

