Roll No-12

M.sc. 3rd semester

Date of Assignment-21/12/2020

Date of Submission-12/01/2021

Experiment No -11

<u>Topic</u>-- Fitting of Auto Regression (AR) series to time series data.

Problem — Fit a auto regressive series of order 2 from the following data.

$$u_{t+2} + a u_{t+1} + b u_t = e_{t+2}$$

t	u_t
1	7
2	6
3	-6
	-4
5	3
6	-4
7	-5
8	-8
9	10
10	10
11	6
12	-4
13	-4
14	-7
15	-2
16	6
17	17
18	24
19	13
20	1
21	1

Also find the period of the auto regressive series of order 2.

Theory and Calculation-

Fitting of AR(2)

The auto regressive series of order k is given by –

$$u_{t} = \phi_{1} \, u_{t-1} + \phi_{2} \, u_{t-2} + \dots + \phi_{k} \, u_{t-k} + \in_{t} \; \; ; \; where \; \in_{t} \sim N(0, \sigma^{2})$$

Now, taking the deviation of the observations u_t from their mean \overline{u} and replacing the u_t 's with these deviations, the series becomes

$$u'_{t} = \phi_{1} u'_{t-1} + \phi_{2} u'_{t-2} + \dots + \phi_{k} u'_{t-k} + \in_{t}$$

When, k=2, the AR series of order k reduces to

$$u'_{t} = \phi_{1} u'_{t-1} + \phi_{2} u'_{t-2} + \in_{t}$$
 -----(1)

Multiplying eqⁿ by u'_{t-k} , we get

$$u'_{t}u'_{t-k} = \phi_{1}u'_{t-1}u'_{t-k} + \phi_{2}u'_{t-2}u'_{t-k} + \in_{t}u'_{t-k}$$
 -----(2)

Taking expectation on both sides of equation (2) we get-

$$E(u'_{t}, u'_{t-k}) = \phi_1 E(u'_{t-1}, u'_{t-k}) + \phi_2 E(u'_{t-2}, u'_{t-k}) + E(\in_t u'_{t-k})$$

$$c_k = \phi_1 c_{k-1} + \phi_2 c_{k-2}$$
 -----(3)

Where, c_k represents the auto-covariance function at lag k. Dividing both sides by $c_0 = E(u_t^2)$, we get from (3)

$$\rho_k = \phi_1 \, \rho_{k-1} + \phi_2 \, \rho_{k-2}$$
 -----(4)

Where $\rho_{\mathbf{k}}$ represents the autocorrelation at lag k.

[When k=3, the AR reduces to

$$u'_{t} = \phi_{1} u'_{t-1} + \phi_{2} u'_{t-2} + \phi_{3} u'_{t-3} + \in_{t}$$
 -----(5)

Multiplying both sides of eqn (5) by u'_{t-k} and taking expectation, we get—

$$E(u'_{t} u'_{t-k}) = \phi_{1} E(u'_{t-1} u'_{t-k}) + \phi_{2} E(u'_{t-2} u'_{t-k}) + \phi_{3} E(u'_{t-3} u'_{t-k}) + E(\in_{t} u'_{t-k})$$

$$c_k = \phi_1 c_{k-1} + \phi_2 c_{k-2} + \phi_3 c_{k-3}$$
 ----(6)

Dividing both sides of eqⁿ (6) by c_0 , we get—

$$\frac{c_k}{c_0} = \phi_1 \frac{c_{k-1}}{c_0} + \phi_2 \frac{c_{k-2}}{c_0} + \phi_3 \frac{c_{k-3}}{c_0}$$

$$\rho_k = \phi_1 \rho_{k-1} + \phi_2 \rho_{k-2} + \phi_3 \rho_{k-3} - \cdots (7)$$

In practice, ρ_k is determined by the sample counter part of ρ_k i.e. r_k . Putting k = 1 and k = 2 in eqⁿ (4) we get-

$$\begin{split} \rho_1 &= \phi_1 \rho_{1-1} + \phi_2 \rho_{1-2} \\ &=> \rho_1 = \phi_1 \rho_0 + \phi_2 \rho_{-1} \\ &=> \rho_1 = \phi_1 + \phi_2 \rho_1 \end{split} \qquad \textit{Since} \quad \rho_0 = 1 \quad \& \quad \rho_{-1} = \rho_1 \end{split}$$

And

$$\rho_{2} = \phi_{1}\rho_{2-1} + \phi_{2}\rho_{2-2}$$

$$=> \rho_{2} = \phi_{1}\rho_{1} + \phi_{2}\rho_{0}$$

$$=> \rho_{2} = \phi_{1}\rho_{1} + \phi_{2}$$
Since $\rho_{0} = 1$

Replacing ρ_1 & ρ_2 by r_1 and r_2 respectively, we get -

$$r_1 = \phi_1 + \phi_2 r_1$$

$$r_2 = \phi_1 r_1 + \phi_2$$

$$=> \begin{pmatrix} r_1 \\ r_2 \end{pmatrix} = \begin{pmatrix} 1 & r_1 \\ r_1 & 1 \end{pmatrix} \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix}$$

$$=> \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix} = \begin{pmatrix} 1 & r_1 \\ r_1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} r_1 \\ r_2 \end{pmatrix} -----(8)$$

Solving (8) , we get the estimate of the coefficients ϕ_i 's . Therefore the fitted AR series of order 2 is-

$$\widehat{u}_t' = \widehat{\phi}_1 \, \widehat{u}_{t-1}' + \widehat{\phi}_2 \, \widehat{u}_{t-2}'$$

The period of the fitted second order AR series is given by-

period =
$$\frac{2\pi}{\theta}$$
 , where $\theta = \cos\left(\frac{\hat{\phi}_1}{2\sqrt{|\hat{\phi}_2|}}\right)$

Finally, we have -

$$\widehat{u}_t' = \widehat{\phi}_1 \, \widehat{u}_{t-1}' + \widehat{\phi}_2 \, \widehat{u}_{t-2}'$$

$$\therefore \quad \widehat{u}_t = \widehat{u}_t' + \overline{u}$$

Calculation-

we construct the following table-

<u>t</u>	<u>ut</u>
1	0
2	0
3	4.66925
4	-4.96459
5	2.265444
6	7.23029
7	-1.89507
8	0.499542
9	-1.56221
10	14.96881
11	6.647786
12	3.282412
13	-3.28191

14	1.340886
15	-1.18315
16	4.41041
17	8.829762
18	14.38631
19	15.19064
20	2.699908
21	-2.31114

Programming in R

```
library(readxl)
df_1 = read_excel("Autocorrelation_3.xlsx")
View(df_1)
ut=c(7,6,-6,-4,3,-4,-5,-8,10,10,6,-4,-4,-7,-2,6,17,24,13,1,1)
Mean=mean(ut)
Mean
N=length(ut)
N
#Calculation of sample auto-covariance and auto-correlation at lag1 and lag2
c0=var(ut)*((N-1)/N)
c0
c_k=mat.or.vec(2,1)
r_k=mat.or.vec(2,1)
for(i in 1:2){
c_k[i]=(sum((ut[1:(N-i)]-Mean)*(ut[(1+i):N]-Mean)))/N
r_k[i]=c_k[i]/c0
}
```

```
c_k
r_k
#auto-covariance at lag1 and lag2
cov1=c_k[1]
cov2=c_k[2]
#auto-correlation at lag1 and lag2
r1=r_k[1]
r2=r_k[2]
#Calculation of coefficients phai1 and phai2
A=array(c(r1,r2),dim=c(2,1))
B=array(c(1,r1,r1,1),dim=c(2,2))
coeff=solve(B)%*%A
coeff
phai_1=coeff[1,1]
phai_1
phai_2=coeff[2,1]
phai_2
#Calculation of period of AR(2) process
theta=acos(phai_1/(2*sqrt(abs(phai_2))))
theta
pi=22/7
period=(2*pi)/theta
period
#Here, in R propgram pi represents 22/7 value
#Calculation of 1st and 2nd term of our fitted AR(2) model
```

```
first_term=phai_1*ut[2:20]
second_term=phai_2*ut[1:19]
ut_des_est=first_term+second_term
ut_des_est
ut_est=ut_des_est+Mean
ut_est
df_a = append(0,ut_est)
df_2 = append(0,df_a)
View(df 2)
Data = cbind(df_1,df_2)
Data
#using ggplot to plot the graph
library(ggplot2)
ggp = ggplot(NULL, mapping = aes(t)) +
     geom_point(data = Data, mapping = aes(y=ut), col = "black") + geom_line(data = Data,
mapping = aes(y=ut), col = "orange", size = 1) +
     geom_point(data = Data, mapping = aes(y=df_2), col = "blue") + geom_line(data = Data,
mapping = aes(y=df_2), col = "green", size = 1) +
labs(
 title = paste("Plotting of observed ut and estimated ut against t"),
 subtitle = paste("orange_line=observed ut and green_line=estimated ut"),
 caption = "Data from Model",
 x = "t"
 y = "observed_ut_and_estimated_ut"
 )
ggp
```

Graph plotting

We plot the graph of observed and estimated values for the second order series considering t along X-axis and u_t & \hat{u}_t along Y-axis by Using ggplot2-

Plotting of observed ut and estimated ut against t orange_line=observed ut and green_line=estimated ut

8

Data from Model

Tableau-

The trends of ut and ut 1 for t. Color shows details about ut and ut 1.

Measure Names

ut ut 1

Conclusion-

The fitted AR(2) is-

$$\widehat{u}_{t} = 0.8413435 \ u_{t-1} - 0.4622792 \ u_{t-2}$$

Hence, The period of the fitted AR series of order 2 is 6.955614.