Wyklad02

Rafał Grot

October 11, 2022

Contents

1	Cykl pracy komputrea			1
	1.1	Uruch	omienie komputera	1
		1.1.1	Włączenie zasilania	1
		1.1.2	Ładowanie systemu operacyjnego	2
		1.1.3	Inicjacja systemu operacyjnego	2
		1.1.4	Faza aplikacji	3
		1.1.5	zamykanie systemu operacyjnego	3
2	Konstrukcja i zasada działąnia mikroprocesora			3
	2.1		procesor	3
		2.1.1	Туру	3
		2.1.2	Rodzaje	4
		2.1.3	Moduły	4
	2.2	Archit	sektury	4
		2.2.1	von Neumana	4
		2.2.2	Harwardzka	5
	2.3	Rodzi	ny procoesorów	5
		2.3.1	X86/IA-32	5
		2.3.2	IA-64	7
		2.3.3	ARM	8

1 Cykl pracy komputrea

1.1 Uruchomienie komputera

1.1.1 Włączenie zasilania

1. przejście w stan wysokiej impedancji

- 2. moduły wykonują testy wewnętrzne
- 3. mikroprocesor wystawia na magistralę adresową wartość FFFF:0 (zapis segment:offset)
- 4. mikroprocesor pobiera zawartość zaadresowaniej pamięci i rozpoczyna wykonanie programu
 - (a) BIOS Umieszczony w pamięci nieulotnej, zawiera podprogram POST
 - i. POST Jest pierwszą prcedurą uruchomioną bo BIOS
 - A. Weryfikuje rejsetry CPU :: zapsuje wartości w rejestrach, każda jest przygotowana dla danej architektury procesora
 - B. Weryfikuje integralność BIOSu Liczenie sumy kontrolnej.
 - C. Werifikuje komponenty komputera
 - D. DMA
 - E. Timer
 - F. Kontroler przerwań
 - G. Sprawdzenie i weryfikacja pamięci operacyjnej.
 - H. Zainicjowanie pamięci
 - I. katalogwanie
 - magistrali komputera

1.1.2 Ładowanie systemu operacyjnego

Z pamięci masowej, blokowej

- katalogwanie urządzeń we/wy
- katalogowanie urządzeń blokowych
- Ładowanie sterowników
- zainicjowanie systemu plików

1.1.3 Inicjacja systemu operacyjnego

- 1. uruchamianie usług usługa to np serwer wydruku.
- 2. ładowanie aplikacji w tle Np sterownik wspomagająćy działanie klawiatury lub myszy.

- 3. Organizacja pamięci
- 4. Uruchomienie powłoki

1.1.4 Faza aplikacji

- 1. urzuchomienie aplikacji
- 2. zakończenie aplikacji
- 3. oczekiwanie na polecenia
- 4. od nowa aż do zamknięcia systemu

1.1.5 zamykanie systemu operacyjnego

- 1. zapisanie danych
- 2. zamknięcie plikóœ
- 3. zwolnienie zasobów
- 4. wyłączenie komputera

2 Konstrukcja i zasada działąnia mikroprocesora

2.1 mikroprocesor

Jest ukłądem ctfrowym skewencyjnym, wykonujączym polecenai(instrukcje). CPU jest jedonstka obliczeniwą komputera. Konstrukcyjnie każdy procesor jest układem FSM wykonanym zgodnie z modelem RTL.

2.1.1 Typy

- 1. SISD Single instruction single data.
- 2. SIMD Pojedyńczy strumień instrukcji i wiele strumieni danych. np: MMX+.
- 3. MISD Wiele strumni instrukcji, jeden strumień danych.
- 4. MIMD Wiele strumieni instukcji, wiele strumieni danych.

2.1.2 Rodzaje

- 1. CISC (Complex Insturcion Set Computer) Mnożenie, dzielenie.
- 2. RISC (Reduced Insturcion Set Computer) np: architektura ARM. Potrzeba mniej zasobóœ sprzętowych żeby zrealzować układ, więc mniejsze zurzycie prądu.
- 3. VLIW (Very long instruction word) np: Intel Itanium

2.1.3 Moduly

- 1. Ścieżka danych
 - blok rejstróce ogólnego przeznacznia
 - pamięci podręczne pierwszego poziomu
 - rejestry adresowe
 - pamięć stronnicowania i translaci adresóce TLB
 - układ arytmetyczno-logiczny
- 2. moduły kontrolera
 - sterownik magistal
 - układy sterujące
 - układ adresowy
 - blok pobierania rozkazów

dekoder instrukcji mówi jak instukcja zostanie wykonana

2.2 Architektury

2.2.1 von Neumana

cechy:

- posadanie skończnej, w pełnu fukcjonalnie listy rozkazów.
- posadanie możliwośći wprdazanai programóce oraz przchowywania ich w pamieći.

- dane i rozkazy powwiny być swobodnie dostępnie.
- przetwarzaine informacji następuje na skutek sekwencyjnego odczytywania instrukcji z pamięci i wykonywania ich przez procesor komputera.

2.2.2 Harwardzka

Starsza od von Neumana. cechy:

- rozdzielenie pamięci danych i pamięci programu (podział logiczny).
- instrukcjie posiadaja prostą konstrukcję, nie występuje mikrokod.

2.3 Rodziny procoesorów

2.3.1 X86/IA-32

- 1. cechy:
 - rodzaju CISC, typu SISD
 - posiada 16/32 bitową archtektórę
 - zapisuje słowa metoda little-endian
 - największa wartość jest wielkości 16,32,64 bitów(zależnie od rodziny)
 - mogącym współpracować z koprocesorem
 - potrafiąćym zaadresować 1MB pamięci RAM (4FB procesor 386+)
 - posiada wiele trybów adresowania pamięci

2. tryby pracy

- (a) rzeczywisty 8086
 - może zadresować 1MB RAM
 - nie ma możliwości ochrony pamięci, zarządzania zadaniami, wątkami
 - nie są dostępnie roszerzone instrukcje

• dostęp do urządzeń jest możliwy przez wywałania funkcji BIOSu

(b) chronionym

- dostępna jest cała przestrzeń adresowa.
- pamięc i zadania są chronione: segmenty definiuje się w tabliczach GDT i LDT
- dostępna jest pamięć wirtualna oraz stronnciowanie
- dostępna jest wieleozadaniowość (wielowątkowość)

dostępny jest tryb "virtual 8086 mode" procesor emuluje jeden ze swoich poprzedników

(c) rejestry

- i. ogólnego przeznaczenia
 - A. akumulator AL,AH,AX,EAX<RAX
 - B. ideksowo bazowy BL,BH,BX,EBX,RBX
 - C. licznik CL,CH,CX,ECXRCX
 - D. roszerzająćy akumulator DL,DH,DX
 - E. indeks źródła SI,ESI,RSI
 - F. ideks przeznaczenia DI,EDI,RDI
 - G. wskaźnik stosu SP,ESP,RSP
 - H. bazowy stosu (ramki stosu) BP,EBP,RBP
 - I. licznika programu IP,EIP,RIP

ii. segmentowe

- programu CS
- stosu SS
- danych DS,ES,FS,GS
- iii. stanu (flags)
- iv. kontrolne (Crx)
- v. debuggera

- 3. zarządzanie panięcią
 - (a) tryby adresowania
 - natychmiastowe
 - rejestrowe
 - bezpośrednie
 - pośrednie
 - bazowe
 - indeksowe
 - bazowo-ideksowe
 - (b) mechanizym ochrony Typu sektor:przemieszczenie bazujące na deskryptorach segmentóœ globlanych GDT i lokalnych LDT.
 - (c) obsługa stronicowania wykorzystuje tablicę TLB do odwzorwania nieciągłego obszaru pamięci fizycznej w ciągłe obszary pamięci logicznej (segmentów).
 - (d) pamięć wirtualna pozwala na wymianę stron pamięci RAM z pamięcią masowoą w trakcie odwołania do segmentów pamięci.

2.3.2 IA-64

Zostałą apracowana przez firmy intel oraz Hewlett-Packard.

- 1. cechy:
 - rodzaju CISC/RISC typu MIMD (SIMD)
 - posadającym 128 rejestrów ogólnego przeznaczenia (16 typu integer, 96 do dyspozycji aplikacji (alokowalnych))
 - super-skalarny
 - posiada zaawansowany mechanizm potokowy.
 - posiada możliwość wykonania instrukcji w innej kolejności (outof-order execution)

- posiada mechanizm spekulatywnego wykonywania rozkazów
- potrafi wyknać 12 instrukcji w jednym cyklu zegara (Itanium 9500 series)
- posiada zaawansowane mechanizmy wirtualizacji
- wyknującym instrukcje w trybie warunkowym
- 2. EPIC / VLIW Architektura IA-64 jest odmianą modelu EPIC ()ang. Explicitly Paraller Instruction Computing), będącego rodzajem modelu MIMD.
 - (a) cechy:
 - zazwyczaj są rodzaju RISC lub o podobnym modelu oblcizeniowym
 - wielordzeniwoość

2.3.3 ARM

RISK