- Prima definizione
 - È una parte del tutto (la popolazione)
 - Non è detto che sia così:
 - Operazione di estrazione
 - Con ripetizione (può non essere un sottoinsieme)
 - Senza ripetizione
 - In blocco
 - Un'unità per volta

- Altre definizioni
 - Sia una popolazione di N unità $P = \{1, 2, ..., N\}$
 - Si estraggono da questa *n unità* in modo sequenziale
 - con o senza ripetizione
 - Sia i₁ l'etichetta della prima unità estratta
 - Sia i₂ l'etichetta della seconda unità estratta
 - ...
 - Sia i_n l'etichetta dell'ennesima unità estratta
 - Le n estrazioni generano una sequenza di indici

$$S = \{i_1, i_2, ..., i_n\}$$

• Si chiama *campione di dimensione n* della popolazione P un qualsiasi sottoinsieme o sequenza

$$S = \{i_1, i_2, ..., i_n\}$$

di P contenente n unità

 Il campione di dimensione n della popolazione P può essere

Campione ordinato

• Esempio .. se si tiene conto dell'ordine

N=10 unità
$$P = \{1,2,3,4,5,6,7,8,9,10\}$$

- Si supponga di estrarre "<u>con ripetizione</u>" un campione ordinato di n=3 unità
 - i_1 =9 i_2 =3 i_3 =3
- Il campione è identificato dalla sequenza (9,3,3) ed è diverso dalla sequenza (3,9,3)
 - i₁=3 i₂=9 i₃=3

Campione ordinato

- Esempio .. se si tiene conto dell'ordine
 N=10 unità
 - Si supponga di estrarre "<u>senza ripetizione</u>" un campione ordinato di n=3 unità

$$i_1$$
=9 i_2 =3 i_3 =2 e i_2 ≠9 i_3 ≠9 e i_3 ≠3

- Il campione è identificato dalla sequenza (9,3,2) ed è diverso dalla sequenza (2,9,3)

$$i_1=2 i_2=9 i_3=3 e i_2\neq 2 i_3\neq 2 e i_3\neq 9$$

Campione non ordinato

• Esempio .. se non si tiene conto dell'ordine

N=10 unità
$$P = \{1,2,3,4,5,6,7,8,9,10\}$$

- Si supponga di estrarre "con ripetizione" un campione non ordinato di n=3 unità
 - i_1 =9 i_2 =3 i_3 =3
- Il campione è identificato dal sottoinieme (9,3,3) ed è uguale al sottoinsieme (3,9,3)
 - i1=3 i2=9 i3=3

Campione non ordinato

- Esempio .. se non si tiene conto dell'ordine
 N=10 unità
 - Si supponga di estrarre "senza ripetizione" un campione non ordinato di n=3 unità
 : -0 : -2 : -0

$$i_1 = 9 i_2 = 3 i_3 = 2$$

- Il campione è identificato dal sottoinsieme (9,3,2) ed è uguale al sottoinsieme (2,9,3)

$$i_1=2 i_2=9 i_3=3$$

Numero di *campioni distinti* a seconda della tipologia

Ordinato

senza ripetizione

$$D_{N,n} = N(N-1)(N-2)...(N-n+1)$$

Disposizioni senza ripetizione di classe n

• Numero di *campioni distinti* a seconda della tipologia

Ordinato

con ripetizione

Disposizioni con ripetizione di classe n

 N^n

• Numero di *campioni distinti* a seconda della tipologia

$$\binom{N}{n}$$
 Combinazioni di n elementi da N

senza ripetizione

Non ordinato

Numero di campioni distinti a seconda della tipologia

$$\binom{N+n-1}{n}$$
 Combinazioni di n elementi da N+n-1

Non ordinato

con ripetizione

- Qual è il campione più "naturale"?
 - "senza ripetizione" o "con ripetizione"?
 - Ordinato o non ordinato?

Non ordinato e senza ripetizione

Ricapitolando ...

Campioni ordinati (sequenze)

con ripetizione: N^n

senza ripetizione:
$$D_{N,n} = N(N-1)(N-2)...(N-n+1)$$

Se ho una popolazione di N=10 elementi e devo estrarre un campione di n=3 elementi lo spazio campionario sarà costituito da:

$$N^n = 10^3 = 1000$$
 campioni diversi estratti con ripetizione

$$D_{N,n} = N(N-1)(N-2)...(N-n+1) = 10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 = 30.240$$

Ricapitolando ...

Campioni non ordinati (sottoinsiemi)

con ripetizione:
$$C'_{N,n} = \begin{pmatrix} N+n-1 \\ n \end{pmatrix}$$

senza ripetizione:

$$C_{N,n} = \binom{N}{n}$$

Se ho una popolazione di N=10 elementi e devo estrarre un campione di n=3 elementi lo spazio campionario sarà costituito da:

$$C_{N,n} = {N \choose n} = {10 \choose 3} = \frac{10 \times 9 \times 8}{3 \times 2} = 120$$
 campioni non ordinati senza ripetizione

Dimensione campionaria

In una sequenza il <u>numero di componenti di s</u> è chiamata dimensione campionaria

n(S)

Se le estrazioni sono <u>con ripetizione</u> e sequenzialmente effettuate

n(S) può essere maggiore di N

L'effettiva dimensione campionaria

v(S) è rappresentata

dal numero dei componenti distinti in una sequenza quando in n(S) gli elementi sono tutti distinti

$$n(S) = v(S)$$

Dimensione campionaria

Estrazioni senza ripetizione

il campione è costituito da unità elementari differenti:

$$S \subset P e n \leq N$$

Estrazioni con ripetizione

il campione può essere costituito da unità elementari già presenti:

 $S \not\subset P$ e si può verificare che n > N

• Definizione:

- Lo spazio campionario è l'insieme di tutte le sequenze o di tutti i sottoinsiemi e si indica con S (o S* o Ω o Ω *)
- Lo spazio campionario è l'insieme di tutti i possibili campioni di dimensione n che si possono estrarre da una popolazione di dimensioni N, in base ad una tecnica predefinita
- Numero di possibili campioni?
 - Dipende dall'ordine e dalla tecnica di estrazione

- Si può considerare anche il numero di campioni non ordinati di ampiezza variabile
- In questo caso il piano di campionamento viene indicato con Ω^*

- Il numero di campioni non ordinati può essere ottenuto come
 - Riduzione dall'insieme di campioni ordinati
 - S* è lo spazio campionario dei campioni ordinati
 - S è lo spazio campionario dei campioni non ordinati

$$\Omega_{n,ord} < \Omega_{ord}^* \longrightarrow S < S^*$$

- Esempio

• P(1,2,3) n=1,2,3 senza ripetizione

$$S_1 = 1$$

$$s_4 = 1,2$$

$$s_{10}=1,2,3$$

$$s_2 = 2$$

$$s_5 = 2, 1$$

$$s_{11}=2,3,1$$

$$S^{3} = 3$$

$$s_6 = 1,3$$

$$s_{12}=3,1,2$$

$$s_7 = 3,1$$

$$s_{13}=1,3,2$$

$$s_8 = 2,3$$

$$s_8 = 2,3$$
 $s_{14} = 2,1,3$

$$s_0 = 3,2$$

$$s_{15}$$
=3,2,1

Lo spazio campionario che tiene conto dell'ordine sarà

$$\Omega_{ord} = \{s_1, s_2, ..., s_{15}\}$$

Lo spazio campionario senza ordine, invece, sarà

$$\Omega_{n.ord}^* = \{s_1, s_2, s_3, s_4, s_6, s_8, s_{10}\}$$

Associamo ad ogni campione s una misura di probabilità

 $p(s) \ge 0; \quad \sum_{s} p(s) = 1$

Definizione:

 Il piano di campionamento è una funzione p(s) su S che soddisfa le due relazioni precedenti

- Per gli spazi campionari descritti si hanno i seguenti piani di campionamento:
 - Piano di campionamento per campioni ordinati senza ripetizione

$$p(s) = \frac{1}{D_{N,n}} = \frac{1}{N(N-1)(N-2)...(N-n+1)}$$

Piano di campionamento per campioni ordinati con ripetizione
 1

$$p(s) = \frac{1}{D_{N,n}} = \frac{1}{N^n}$$

- Per gli spazi campionari descritti si hanno i seguenti piani di campionamento:
 - Piano di campionamento per campioni non ordinati senza ripetizione

$$p(s) = \frac{1}{C_{N,n}} = \frac{1}{\binom{N}{n}}$$

Piano di campionamento per campioni non ordinati con ripetizione

$$p(s) = \frac{1}{C_{N,n}} = \frac{1}{\binom{N+n-1}{n}}$$

- .. Processo di selezione e stima dei parametri incogniti della popolazione
 - •Varia al variare dell'obiettivo
 - •Deve essere misurabile

Errori standardFunzioni di verosimiglianzaDistribuzioni di campionamento

- Analisi di fattibilità economica
 - •raggiungimento degli obiettivi al minimo costo (denaro/tempo)
- •Cura nel tradurre un modello teorico di selezione in un insieme di istruzioni utili per gli esecutori
 - •Chiare, Semplici, Pratiche, Complete

Probabilità di inclusione

La probabilità che una unità (o un gruppo di unità) appartenga al campione estratto

Probabilità di inclusione del primo ordine

- Si consideri la generica unità i della popolazione P
- Sia Ai l'insieme dei campioni dello spazio campionario S (o S*) che contengono l'unità i

La probabilità di inclusione del primo ordine dell'unità $i = \pi_i$

è data dalla somma delle probabilità dei campioni appartenenti ad Ai

$$\pi_i = \sum_{A_i} p(s)$$

Esempio:

Sia P una popolazione P(1,2,3,4)

Costruiamo i campioni di n=2

non ordinati senza ripetizione

Probabilità associate ai campioni
$$s$$
 $[(1,2)$ $(1,3)$ $(1,4)$ $(2,3)$ $(2,4)$ $(3,4)$ $[0,15]$ $[0,15]$ $[0,10]$ $[0,20]$

$$\pi_{1} = 0.15 + 0.10 + 0.20 = 0.45$$

$$\pi_{2} = 0.15 + 0.15 + 0.20 = 0.50$$

$$\pi_{3} = 0.10 + 0.15 + 0.20 = 0.45$$

$$\pi_{4} = 0.20 + 0.20 + 0.20 = 0.60$$

$$\pi_{i} = \sum_{s} \delta_{i} p(s) = E(\delta_{i})$$

Probabilità di inclusione del secondo ordine

- •Si concentri l'attenzione su una particolare coppia di unità (i e j) della popolazione P.
- •Sia Aij l'insieme dei campioni dello spazio campionario S (o S*) che contengono le unità i e j

La probabilità di inclusione del secondo ordine delle unità i e j π_{ij}

è data dalla somma delle probabilità dei campioni appartenenti ad A_{ij}

$$\pi_{ij} = \sum_{A_{ij}} p(s)$$

Esempio:

Sia P una popolazione P(1,2,3,4,5) Costruiamo i campioni di n=4

non ordinati senza ripetizione

Probabilità associate ai campioni s $\left[(1,2,3,4) \quad (1,2,3,5) \quad (1,2,4,5) \quad (2,3,4,5) \quad (1,3,4,5) \right] p(s) \left[0,15 \quad 0,25 \quad 0,10 \quad 0,30 \quad 0,20 \right]$

$$\pi_{12} = 0.15 + 0.25 + 0.10 = 0.50$$

$$\pi_{13} = 0.15 + 0.25 + 0.20 = 0.60$$

$$\pi_{14} = 0.15 + 0.10 + 0.20 = 0.45$$

$$\pi_{23} = 0.15 + 0.25 + 0.30 = 0.70$$

$$\pi_{24} = 0.15 + 0.10 + 0.30 = 0.55$$

$$\pi_{34} = 0.15 + 0.30 + 0.00 = 0.65$$

$$\pi_{ij} = \sum_{s} \delta_{i} \delta_{j} p(s) = E(\delta_{i} \delta_{j})$$

 δ_i 1 se le unità i e j sono incluse nel campione δ_j 0 se i o se j o se i e j non sono incluse nel campione

Se il campionamento è **con ripetizione** ci si chiede qual è il numero di volte (in media) che una singola unità si presenta nel campione

Sia γ_i il numero di volte che l'unità i appare nel campione S.

In un campione di dimensione n
 tale variabile può assumere i valori $\{0,1,2,3,....,n\}$

La quantità
$$\phi_i = \sum_s \gamma_i p(s) = E(\gamma_i)$$

È la frequenza attesa di inclusione

$$\pi_i = \phi_i$$

Se il campionamento è senza ripetizione $\delta_i = \gamma_i$

Un piano campionario è autoponderante se tutte le unità della popolazione hanno la

stessa probabilità di inclusione del primo ordine o la

stessa frequenza attesa di inclusione

Si definisce probabilità di inclusione di ordine k la probabilità che k unità prestabilite appartengano contemporaneamente al campione estratto

Strategia campionaria

.. Si intende il binomio

Piano di campionamento

Stimatore

Dato un piano di campionamento vi è una pluralità di stimatori possibili **Come scegliere ?**

- a) in base alle proprietà degli stimatori
- b) per l'effetto del disegno (Kish, 1965)

Stimatori e effetto del disegno

La scelta degli stimatori viene effettuata prima di definire il piano dell'indagine, ma può essere rinviata alla fase di analisi dei dati.

- •Quando lo stimatore scelto è corretto, la strategia campionaria si definisce corretta
- •quando lo stimatore è efficiente la strategia campionaria si dirà efficiente

Proprietà degli stimatori: distorsione

$$\hat{\theta} = f(X_1, X_2, ..., X_n)$$

è uno stimatore non distorto di θ se ha la distribuzione campionaria con media uguale al parametro da stimare. La distorsione non è altro che la differenza fra il valor medio dello stimatore ed il valor del parametro da stimare

 $Distorsione = B(\hat{\theta}) = E(\hat{\theta}) - \theta$

La distorsione può essere positiva o negativa, ovvero la differenza maggiore o minore di 0.

$$B(\hat{\theta}) = 0$$
 se $E(\hat{\theta}) = \theta$

Stimatori e effetto del disegno

Proprietà degli stimatori: Efficienza

Uno stimatore
$$\hat{ heta}$$
 è efficiente se: $E(\hat{ heta}) = heta$ $E(\hat{ heta}_1) = heta$ $Var(\hat{ heta}) < Var(\hat{ heta}_1)$

dove

 $\hat{ heta}_{ extsf{1}}^{ extsf{2}}$ è qualsiasi altro stimatore non distorto.

nella classe degli stimatori non distorti lo stimatore efficiente è quello che ha la varianza minima

Stimatori e effetto del disegno

Proprietà degli stimatori: Efficienza

è possibile fare riferimento ad una grandezza che tiene conto sia della distorsione che della (efficienza) varianza

$$MSE(\hat{\theta}) = E(\hat{\theta} - \theta)^2 = var(\hat{\theta}) + B^2(\hat{\theta})$$

Errore quadratico medio – misura la precisione delle stime

permette di definire l'efficienza anche per gli stimatori distorti, infatti se due o più stimatori sono distorti, lo stimatore efficiente è quello che ha il più piccolo M.S.E.

$$EF\left(\frac{\hat{\theta}_1}{\hat{\theta}_2}\right) = \frac{MSE(\hat{\theta}_1)}{MSE(\hat{\theta}_2)} \quad \text{se} \quad EF<1 \quad \hat{\theta}_1 \longrightarrow \text{più efficiente } di \quad \hat{\theta}_2$$

- 1. con n grande si preferiscono stimatori non distorti
- 2. fra due stimatori non distorti si sceglie quello più efficiente (con MSE più piccolo)

Stimatori e effetto del disegno

Effetto del disegno

Dato uno stimatore non distorto $\hat{\theta}$ di θ

ed un piano di campionamento, si chiama effetto del disegno il rapporto

$$Deff = \frac{Var(\hat{\theta})}{Var_0(\hat{\theta})}$$

Dove – a parità di n – il denominatore coincide con la varianza nel caso di campionamento casuale semplice (proprio perché il più semplice).

Al numeratore la varianza dello stimatore nel piano di campionamento scelto.

Il Deff è maggiore di 1 se la precisione dello stimatore nel piano di campionamento considerato è minore della stessa nel campionamento casuale semplice ovvero: $V(\widehat{\theta}) > V_0(\widehat{\theta})$

$$V(\widehat{\theta}) > V_{o}(\widehat{\theta})$$

Il Deff è minore di 1 se la precisione dello stimatore nel piano di campionamento considerato è maggiore della stessa nel campionamento casuale semplice:

$$V(\widehat{\theta}) < V_0(\widehat{\theta})$$

- \bullet P = popolazione finita
 - Una popolazione finita P è una raccolta di N unità, N<∞
 - 1, 2, 3,N "etichette"
- Y Caratteristica oggetto di studio $(Y_1, Y_2,...,Y_N)$

unità
$$\begin{bmatrix} 1 & 2 & . & . & N \\ Y_1 & Y_2 & . & . & Y_N \end{bmatrix}$$
 \rightarrow distribuzione semplice

Caso più frequente

valori di Y
$$\begin{bmatrix} Y_1 & Y_2 & . & . & Y_k \\ N_1 & N_2 & . & . & N_k \end{bmatrix}$$
 \rightarrow distribuzione di frequenza

$$\sum_{h=1}^{K} N_h = N = N_1 + N_2 + \dots + N_k$$

- Se osserviamo due variabili X e Y
 - Distribuzione doppia

$$\begin{array}{c|cccc} \textit{unità} & 1 & 2 & . & . & N \\ \textit{valori di X} & X_1 & X_2 & & X_N \\ \textit{valori di Y} & Y_1 & Y_2 & & Y_N \end{array} \rightarrow \textit{distribuzione doppia}$$

- Caso più frequente
 - Tabella a doppia entrata

	\mathbf{Y}_1	Y_2	•	$\mathbf{Y}_{\mathbf{k}}$	
X_1	N_{11}	N_{12}	•	N_{1k}	$N_{1.}$
X_2	N_{21}	N_{22}	•	N_{2k}	$N_{2.}$
•	•	•	•		•
X_h	N_{h1}	N_{h2}	•	N_{hk}	$N_{h.}$
	N _{.1}	N.2	•	N _{:k}	N

Media

$$\overline{Y} = \begin{vmatrix} \frac{1}{N} \sum_{i=1}^{N} Y_i & \text{se Y è quantitativa} \\ \frac{1}{N} \sum_{i=1}^{N} Y_i & = \frac{N_A}{N} & \text{se Y è qualitativa dicotoma} \end{vmatrix}$$

$$Y_i = 1$$
 se $i \in$ alla caratteristica A
 $\sum Y_i = N_A$

• Totale
$$\hat{Y} = N\overline{Y} = \begin{bmatrix} \sum_{i=1}^{N} Y_i & \text{se Y è quantitativa} \\ \sum_{i=1}^{N} Y_i & \text{se Y è qualitativa dicotoma} \end{bmatrix}$$

N_A= Numero di unità che presentano la modalità A

• Varianza
$$\sigma^2 = \frac{1}{N} \sum (Y_i - \overline{Y})^2$$

- Deviazione standard $\sigma = \left[\frac{1}{N}\sum (Y_i \overline{Y})^2\right]^{\frac{1}{2}}$
- Coefficiente di variazione $CV = \frac{\sigma}{\overline{Y}}$
- Momento centrale $\overline{\mu_r} = \frac{1}{N} \sum (Y_i \overline{Y})^r$

- Momento non centrale $\mu_r = \frac{1}{N} \sum_{i=1}^{n} (Y_i k)^r$
- Con K=0

$$\mu_r = \frac{1}{N} \sum (Y_i)^r$$

r=1 → media aritmetica

Asimmetria

$$\gamma_1 = \frac{\overline{\mu_3}}{\sigma^3} < 0 \rightarrow \text{asimmetria negativa}$$

$$\gamma_1 = \frac{\overline{\mu_3}}{\sigma^3} < 0 \rightarrow \text{asimmetria positiva}$$

Curtosi

$$\gamma_2 = \frac{\overline{\mu_4}}{\sigma^4} < 0 \rightarrow \text{iponormalità}$$

$$\gamma_2 = \frac{\overline{\mu_4}}{\sigma^4} < 0 \rightarrow \text{ipernormalità}$$

- Distribuzioni doppie
 - Rapporto fra medie $\frac{X}{\overline{Y}}$
 - Rapporto fra totali $\frac{X}{Y} = \frac{NX}{N\overline{Y}}$

coincide con il primo

- Covarianza
$$\sigma_{XY} = \frac{1}{N} \sum (X_i - \overline{X})(Y_i - \overline{Y})$$

Se frequenza = 1

Distribuzioni doppie

- Coefficiente di correlazione
$$\rho_{XY} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}$$

- Coefficiente di regressione
$$\beta = \frac{\sigma_{XY}}{\sigma_{X}^{2}}$$

Nel seguito si userà

$$S^{2} = \frac{N}{N-1}\sigma^{2}$$

$$S_{XY} = \frac{N}{N-1}\sigma_{XY}$$

Notazioni sul campione

- s campione
- n dimensione del campione

osservazioni
$$\begin{bmatrix} 1 & 2 & . & . & n \\ y_1 & y_2 & . & . & y_n \end{bmatrix}$$

- Media campionaria $\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$
- Varianza campionaria $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (y_i \overline{y})^2$

Notazioni sul campione

• Covarianza campionaria $s_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})$

• Coefficiente di correlazione campionario $r_{xy} = \frac{s_{xy}}{s_x s_y}$

• Coefficiente di regressione campionario $b = \frac{s_{xy}}{s_x^2}$