LAB IX Simulation of a quantum particle in harmonic potential

Jakub Tworzydlo

Institute of Theoretical Physcis
Jakub.Tworzydlo@fuw.edu.pl

26/04/2022 Pasteura 5, Warszawa

Pseudo-code

```
procedure naive-harmonic-path
input \{x_0, ..., x_{N-1}\}
\Delta_{\tau} \leftarrow \beta/N
k \leftarrow \operatorname{nran}(0, N-1)
k_{\pm} \leftarrow k \pm 1 \text{ modulo N}
x'_{k} \leftarrow x_{k} + \operatorname{ran}(-\delta, \delta)
\pi_a \leftarrow \rho^{\text{free}}(x_{k_-}, x_k, \Delta_\tau) \rho^{\text{free}}(x_k, x_{k_+}, \Delta_\tau) \exp\left(-\frac{1}{2}\Delta_\tau x_k^2\right)\pi_b \leftarrow \rho^{\text{free}}(x_{k_-}, x_k', \Delta_\tau) \rho^{\text{free}}(x_k', x_{k_+}, \Delta_\tau) \exp\left(-\frac{1}{2}\Delta_\tau x_k^2\right)
\Upsilon \leftarrow \pi_b/\pi_a
if (\operatorname{ran}(0,1) < \Upsilon)x_k \leftarrow x'_k
output \{x_0, ..., x_{N-1}\}
```

where $\rho^{\text{free}}(x, y, \Delta \tau) = e^{-(x-y)^2/2\Delta \tau}$

Task I

Simulate a string (quantum path) for the harmonic potential $V(x) = -\frac{1}{2}x^2$ by implementing our pseudo-code. Consider 1MCS when every x_k is updated once on average.

Plot average string position $< x >= \sum_k x_k/N$ and variance $< (x-< x>)^2 >$ versus simulation time (preferably panel plot). Take $N=8, \beta=4, \delta=1$ and MCS_max = 10 000, start with a random configuration $x_k \in [-\delta, \delta]$.

Add horizontal lines to the plot, with mean (over MCS) position and mean (over MCS) variance. What are the values?

Task II

Speed up the simulation by implementing the update routine (Task I) under numba package. On a few trial runs estimate the acceptance ratio of Metropolis step. Update (by hand) $\delta_{\rm new} = \delta r_{\rm acc}/0.75$ untill you find a value for which $r_{\rm acc} \approx 0.75$

As before, plot average string position $< x >= \sum_k x_k/N$ and variance $< (x-\langle x \rangle)^2 >$ versus simulation time (preferebly panel plot). Take $N=40, \ \beta=4, \ \text{and} \ \text{MCS}_{\text{max}} = 100\ 000$. Store positions: x_0 and $x_{N//2}$ throughout the simulation.

Make normalized histogram of the stored values of positions. Compare with the analytic solution for the harmonic oscillator:

$$\pi(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-x^2/2\sigma^2}, \ \ \sigma^2 = \frac{1}{2\tanh\beta/2}.$$