INSTALLING diffTF PROGRAMS

*note: any file highlighted in **bold** is provided

- 1. Install the following programs:
 - 1. Snakemake
 - i. \$ conda install c conda-forge mamba
 - ii. \$ mamba create -c conda-forge -c bioconda -n snakemake
 - iii. \$ conda activate snakemake
 - iv. \$ snakemake --help
 - 2. Subread
 - i. Download the Subread source package
 - 1. (snakemake) [prvaldes@tscc-login11 Subread]\$ wget https://sourceforge.net/projects/subread/files/subread-2.0.1/subread-2.0.1-source.tar.gz
 - ii. Uncompress the source package
 - 1. (snakemake) [prvaldes@tscc-login11 Subread]\$ tar zxvf subread-2.0.1-source.tar.qz
 - iii. Build the Makefile
 - (snakemake) [prvaldes@tscc-login11 src]\$ make -f Makefile.Linux
 - 2. # Installation successfully completed.
 - 3. # Generated executables were copied to directory ../bin/ Location: /home/prvaldes/programs/Subread/subread-2.0.1source/bin
 - II. Clone the git respository
 - 1. (snakemake) [prvaldes@tscc-login11 ~]\$ git clone https://git.embl.de/grp-zaugg/diffTF.git

CREATING HUMAN CIS-BP TFBS DATABASE

- III. Create the cisBP TFBS .tar.gz file using the Find Individual Motif Occurrences (FIMO) from the MEME suite (https://meme-suite.org/meme/doc/fimo.html)
 - 1. Download 1,078 motifs from FIMO using the CIS-BP_FIMO_allmotifs.sh script
 - 2. Convert motif FIMO files in gff3 format to .bed format using the CIS-BP_FIMO_convert2bed.sh script
 - Format the files names for each .bed file -> {TF}_TFBS.bed using the CISBP_human_diffTF_nomenclature.sh script
- IV. Download and format the cisBP Transcription factor binding site (TFBS) database called CIS-BP_MEME_TFBS_human.tar.gz (n = 1,078 total TFs):
 - 1. (base) [prvaldes@tscc-3-12 CIS-BP_MEME_TFBS_human]\$ tar -zxvf CIS-BP_MEME_TFBS_human.tar.gz

- Replace underscores with periods (.) using the CISBP_human_diffTF_replace_underscores.sh script made
- 3. Remove any non Homosapien TF's manually (end product is n = 988 total TFs)
- 4. Create the CISBP_human_TFnames.txt file with the list of CISBP TF's

- Format the files names for each .bed file -> {TF}_TFBS.bed using the CISBP_human_diffTF_nomenclature.sh script
- 6. Indicate which .bed files are empty .bed files found (n = 65 total TFs found)
 - i. (base) [prvaldes@tscc-3-12 CIS-BP_MEME_TFBS_human]\$ find /home/prvaldes/scratch/diffTF/cisBP/CIS-BP_MEME_TFBS_human -type f -empty -print >> /home/prvaldes/scratch/diffTF/cisBP/CIS-BP_MEME_TFBS_human/empty.txt
- 7. Remove the empty .bed files found in the empty.txt file using the **CISBP_human_diffTF_remove.sh** file (n = 923 total TFs to use)
- 8. Change the following TFBS names with hyphens to dots:
 - i. (snakemake) [prvaldes@tscc-login12 CIS-BP_MEME_TFBS_human]\$ mv M00301.2.00.NKX2-8_TFBS.bed M00301.2.00.NKX2.8 TFBS.bed
 - ii. (snakemake) [prvaldes@tscc-login12 CIS-BP_MEME_TFBS_human]\$ mv M00320.2.00.NKX2-5_TFBS.bed M00320.2.00.NKX2.5 TFBS.bed
 - iii. (snakemake) [prvaldes@tscc-login12 CIS-BP_MEME_TFBS_human]\$ mv M05012.2.00.NKX3-2_TFBS.bed M05012.2.00.NKX3.2_TFBS.bed
 - iv. (snakemake) [prvaldes@tscc-login12 CIS-BP_MEME_TFBS_human]\$ mv M05042.2.00.NKX2-3_TFBS.bed M05042.2.00.NKX2.3 TFBS.bed
 - v. (snakemake) [prvaldes@tscc-login12 CIS-BP_MEME_TFBS_human]\$ mv M05242.2.00.NKX6-3_TFBS.bed M05242.2.00.NKX6.3 TFBS.bed
 - vi. (snakemake) [prvaldes@tscc-login12 CIS-BP_MEME_TFBS_human]\$ mv M05255.2.00.NKX3-1_TFBS.bed M05255.2.00.NKX3.1_TFBS.bed
 - vii. (snakemake) [prvaldes@tscc-login12 CIS-BP_MEME_TFBS_human]\$ mv M05558.2.00.BORCS8-MEF2B TFBS.bed M05558.2.00.BORCS8.MEF2B TFBS.bed

V. Create TF-gene translation table for cisBP called **translationTable cisBP.csv** file using Excel

SYMBOL ENSEMBL HOCOID

ZNF200 ENSG0000010539 M00217.2.00.ZNF200

KLF1 ENSG00000105610 M00223.2.00.KLF1

BCL6 ENSG00000113916 M00227.2.00.BCL6

EGR2 ENSG00000122877 M00229.2.00.EGR2

OVOL2 ENSG00000125850 M00234.2.00.OVOL2

VI. Convert double type raw RNA-seq counts to integer only raw RNA-seq counts, called RNA-seq-counts2.tsv using the diffTF Convert to Integers.R script file

OBTAINING THE HUMAN (hg38) REFERENCE GENOME

- VII. Download human (hg38) reference genome to use in the diffTF program
 - (base) [prvaldes@tscc-login11 hg38]\$ wget <u>ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.</u>
 <u>15 GRCh38/seqs for alignment pipelines.ucsc_ids/GCA_000001405.15</u>
 <u>GRCh38 no alt analysis set.fna.gz</u>
 - (base) [prvaldes@tscc-login11 hg38]\$ gunzip GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.gz

RUNNING diffTF for the APP^{V717I} vs. NDC comparison

- VIII. Create a tab-separated file that summarizes the input data for APPV717I and NDC samples called **sampleData_V717I.tsv**
- IX. Create the configuration file (config.json) that defines various parameters of the pipeline *APP*^{V717l} vs. NDC (**config_V717l_cisBP.json**)
- X. Create the **startAnalysis_V717I_cisBP.sh** script file
- XI. Run diffTF analysis for *APP*^{V717l} mutation vs. NDC using the **startAnalysis_V717l_cisBP.sh** script file
 - 1. (base) [prvaldes@tscc-login12 CIS-BP_MEME_bed]\$ qsub -I -q condo -I walltime=8:00:00 -I nodes=2:ppn=24:mem128
 - 2. qsub: waiting for job 24760541.tscc-mgr7.local to start
 - 3. qsub: job 24760541.tscc-mgr7.local ready
 - 4. (base) [prvaldes@tscc-2-58 input]\$ conda activate snakemake
 - 5. (snakemake) [prvaldes@tscc-2-58 input]\$ sh startAnalysis V717I cisBP.sh
- XII. When the program stops with the following error (also do for *PSEN1*^{A79V} vs. NDC and *PSEN2*^{N141I} vs. NDC comparisons):

rerun the startAnalysis_V717I_cisBP.sh script under the TSCC login node where Subread is stored(/home/prvaldes/programs/Subread/subread-2.0.1-source/bin) using 128GB of RAM.

XIII. When finished the program output for **startAnalysis_V717I_cisBP.sh** should look like this:

RUNNING diffTF for the PSEN1^{A79V} vs. NDC comparison

- XIV. Create a tab-separated file that summarizes the input data for *PSEN1*^{A79V} and NDC samples called **sampleData A79V.tsv**
- XV. Create the configuration file (config.json) that defines various parameters of the pipeline *PSEN1*^{A79V} vs. NDC (**config_A79V_cisBP.json**)
- XVI. Create the **startAnalysis_A79V_cisBP.sh** script file
- XVII. Run diffTF analysis for *PSEN1*^{A79V} mutation vs. NDC using the **startAnalysis_A79V_cisBP.sh** script file
 - (base) [prvaldes@tscc-login2 ~]\$ qsub -I -q condo -I walltime=8:00:00 -I nodes=2:ppn=16:mem256:sandy (make sure to increase memory usage here from 128GB to 256GB of RAM under this job run)
 - 2. qsub: waiting for job 24830344.tscc-mgr7.local to start
 - 3. qsub: job 24830344.tscc-mgr7.local ready
 - 4. (base) [prvaldes@tscc-1-9 ~]\$ conda activate snakemake
 - 5. (snakemake) [prvaldes@tscc-1-9 input]\$ sh startAnalysis A79V cisBP.sh

XVIII. When finished the program output for **startAnalysis_A79V_cisBP.sh** should look like this:

RUNNING diffTF for the PSEN2^{N141I} vs. NDC comparison

- I. Create a tab-separated file that summarizes the input data for *PSEN2*^{N141I} and NDC samples called **sampleData_N141I.tsv**
- II. Create the configuration file (config.json) that defines various parameters of the pipeline *PSEN1*^{A79V} vs. NDC (**config_N141I_cisBP.json**)
- III. Create the **startAnalysis_N141I_cisBP.sh** script file
- IV. Run diffTF analysis for *PSEN2*^{N141l} mutation vs. NDC using the **startAnalysis N141l cisBP.sh** script file
 - 1. (base) [prvaldes@tscc-login12 ~]\$ qsub -I -q condo -I walltime=8:00:00 -I nodes=2:ppn=16:mem256:sandy (make sure to increase memory usage here from 128GB to 256GB of RAM under this job run)
 - 2. gsub: waiting for job 24840443.tscc-mgr7.local to start
 - 3. qsub: job 24840443.tscc-mgr7.local ready
 - 4. (base) [prvaldes@tscc-1-9 ~]\$ conda activate snakemake
 - 5. (snakemake) [prvaldes@tscc-1-9 input]\$ sh startAnalysis_N141I_cisBP.sh
- XIX. When finished the program output for **startAnalysis_N141I_cisBP.sh** should look like this: