L'HÔPITAL'S RULE

BLAKE FARMAN

Lafayette College

NT .			
Name:			
I (CIIIC)			

1. Compute

$$\lim_{x \to 1} \frac{x^3 - 2x^2 + 1}{x^3 - 1}$$

in two ways: with and without using L'Hôpital's Rule.

Evaluate the following limits.

$$2. \lim_{x \to \pi} \frac{\sin(3x)}{x - \pi}$$

3.
$$\lim_{t\to 0} \frac{e^{2t}-1}{e^t}$$

4.
$$\lim_{\theta \to 0} \frac{\arctan(\theta)}{2\theta}$$

$$5. \lim_{x \to \infty} \frac{e^{-x}}{1 + \ln(x)}$$

6.
$$\lim_{x \to \infty} \frac{\left(\ln(x)\right)^2}{x}$$

7.
$$\lim_{u \to \infty} \frac{\sqrt{u^2 + 1}}{u}$$

8.
$$\lim_{x \to \infty} (x - \ln(x))$$

$$9. \lim_{x \to 1} \left(\frac{x}{x-1} - \frac{1}{\ln(x)} \right)$$

10.
$$\lim_{x \to 1^+} \left[\ln(x^7 - 1) - \ln(x^5 - 1) \right]$$

11.
$$\lim_{x \to 0^+} x^{\sqrt{x}}$$

12.
$$\lim_{x\to 0} (1-2x)^{1/x}$$

$$13. \lim_{x \to \infty} x^{1/x}$$