МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ ДЕРЖАВНИЙ УНІВЕРСИТЕТ «ЖИТОМИРСЬКА ПОЛІТЕХНІКА»

Кафедра інженерії програмного забезпечення

Лабораторні роботи №1-4

з дисципліни: «Проектування та побудова систем на базі платформи Arduino»

студента IV курсу групи IПЗ-21-4 спеціальності 121 «Інженерія програмного забезпечення» <u>Дубницький Ярослав Володимирович</u> (прізвище, ім'я та по-батькові) Керівник <u>ст. викладач кафедри ІПЗ</u> Локтікова Т.М. Дата здачі: "__" ____ 2024 р. Національна шкала _____ Кількість балів: Оцінка: ЕСТЅ _____ Члени комісії <u>_ Локтікова Т.М</u> (підпис) (прізвище та ініціали) Петросян Р.В. (прізвище та ініціали) (підпис)

	3MICT	
1.	Лабораторна робота №1: Основи комп'ютерної арифметики	3
1.	Лабораторна робота №2: Булева арифметика. ДДНФ, ДКНФ. Метод карт Кар 11	но.
2. інди	Лабораторна робота №3: Побудова схеми управління семисегментним катором для відображення десяткових цифр	13
3. прис	Лабораторна робота №4: Вивчення принципів побудови кодів Хеммінга та строїв кодування-декодування цих кодів	24
3.1	Завдання 1:	24
3.2	Завдання 2:	24
3 3	Зарлания 3.	25

		Дубницький Я.В.		
		Локтікова Т.М.		
Змн.	Арк.	№ докум.	Підпис	Дата

1. Лабораторна робота №1: Основи комп'ютерної арифметики.

Мета: Повторити основні системи числення та засвоїтиметодипереведення чисел із однієї системи числення в іншу, формипредставленнячисел та правила виконання основних арифметичних операційвпрямому, доповняльному та оберненому кодах.

Хід роботи:

Варіант 7

Завдання 1:

Згідно з вказаним викладачем варіантом переведіть десяткове число ${\bf A}_{10}$ у двійкову, вісімкову, шістандцяткову системи числення.

№ варіанту	7
A_{10}	291,73

Число – 291,73

Ціла частина – 291

Дробова частина -0.73

		Дубницький Я.В.		
		Локтікова Т.М.		
Змн.	Арк.	№ докум.	Підпис	Дата

Двійкова система числення:

291	1
145	1
72	0
36	0
18	0
9	1
4	0
2	0
1	1

$$291_{10} = 100100011_2$$

$$0.73 * 2 = 1.46$$

$$0,46 * 2 = 0,92$$

$$0.92*2 = 1.84$$

$$0,84 * 2 = 1,68$$

$$0,68 * 2 = 1,36$$

$$0,36 * 2 = 0,72$$

$$0,72 * 2 = 1,44$$

$$0,44 * 2 = 0,88$$

$$0.88 * 2 = 1.76$$

$$0,51 = 1,1011011110_2$$

Відповідь: $291,73_{10} = 100100011,101101110_2$

		Дубницький Я.В.		
		Локтікова Т.М.		
Змн.	Арк.	№ докум.	Підпис	Дата

Вісімкова система числення:

$$291,73_{10} = 100100011,101101110_2$$

 $100\ 100\ 011\ ,\ 101\ 101\ 110_2 =\ 443,567_8$

Шістнадцяткова система числення:

$$291,73_{10} = 100100011,101101110_2$$

 $100\ 100\ 011\ ,\ 101\ 101\ 110_2 = 123,B6_{16}$

Завдання 2: Згідно з вказаним викладачем варіантом переведіть двійкове A_2 вісімкове число B_8 , та шістнадцяткове число C_{16} у десяткову систему числення.

№ варіанту	7
A_2	1100,11
\mathbf{B}_8	756,34
C ₁₆	D21,8A

$$\begin{aligned} &1100, &11_2 = 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 0 \times 2^0 + 1 \times 2^{-1} + 1 \times 2^{-2} = 12.75_{10} \\ &756, &34_8 = 7 \times 8^2 + 5 \times 8^1 + 6 \times 8^0 + 3 \times 8^{-1} + 4 \times 8^{-2} = 494.4375_{10} \\ &D21, &8A_{16} = D \times 16^2 + 2 \times 16^1 + 1 \times 16^0 + 8 \times 16^{-1} + A \times 16^{-2} = 3361.5390625_{10} \end{aligned}$$

Завдання 3: Представлення чисел в прямому, оберненому та додатковому коді з фіксованою комою

№ варіанту	7
	+129
	-221

5

		Дубницький Я.В.			
		Локтікова Т.М.			Житомирська політехніка.24.121.07.000 – ІПЗ-21-4
Змн.	Арк.	№ докум.	Підпис	Дата	

$$A = +129_{10} = +10000001_2$$

$$B = -210_{10} = -11011101_2$$

 $[A]_{np} = 0,10000001$

 $[B]_{\pi p} = 1,11011101$

 $[A]_{o6} = 0,10000001$

 $[B]_{ob} = 1,00100010$

 $[A]_{\text{доп}} = 0,10000001$

 $[B]_{\text{non}} = 1,00100011$

Завдання 4: Запишіть зображення дійсних дестякових числе A_{10} та B_{10} у формі з плаваючою комою, якщо для мантиси виділено m двійкових розрядів зі знаком, а для порядку — n двійкових розрядів зі знаком.

№ варіанту	7
A_{10}	-375,98
B_{10}	216,78
m	17
n	6

$$A = -375.98_{10} = -101110111.111110101_2$$

$$B=216.78_{10}=11011000.110001_2\\$$

		Дубницький Я.В.		
		Локтікова Т.М.		
Змн.	Арк.	№ докум.	Підпис	Дата

Запишемо число А в номалізованому вигляді:

$$A = \text{-}\ 0.1011101111111110101 \times 2^8$$

Запишемо число В в нормалізованому вигляді:

$$B = 0.11011000110001 \times 2^8$$

Форма з плаваючею комою для числа А:

3.M		Мантиса											3.П	Порядок										
											•													
1	1	0	1	1	1	0	1	1	1	1	1	1	1	1	0	1	0	0	0	0	1	0	0	0

Форма з плаваючею комою для числа В:

3.M.		Мантиса										3.П.		Π	[op	ядо	К					
0	1	1	0	1	1	0	0	0	1	1	0	0	0	1	0	0	0	0	1	0	0	0

Завдання 5: Для числе із завдання №1 записати модифіковані коди.

№ варіанту	2
	+129
	-221

$$A = +129_{10} = +10000001_2$$

$$B = -221_{10} = -11011101_2$$

$$[A]_{MOJ} = 00,10000001$$

$$[B]_{MOД} = 11,11011101$$

		Дубницький Я.В.		
		Локтікова Т.М.		
Змн.	Арк.	№ докум.	Підпис	Дата

Завдання 6: Число A_{10} задане в десятковій системі числення, число B_8 задане у вісімковій системі числення. Згідно з вказаним викладачем варіантом переведіть ці числа у двійкову систему числення та виконайте такі дії у двійковому коді над числами: Додавання у прямому, оберненому та доповняльному кодах.

№ варіанту	7
A_{10}	145
B_8	-253

$$A = 145_{10} = 10010001_2$$

$$B = -253_8 = -010101011_2$$

Додавання в прямому коді:

Вирівняємо розрядну сітку

A = 010010001

B = -110101011

| B | > |A|

|B| - |A| = 110101011 - 010010001 = 100011010

 $[A]_{\pi p} + [B]_{\pi p} = 1100011010$

Додавання в оберненому коді:

 $A = 145_{10} = 010010001_2$

 $B = -253_8 = -101010100_2$

		Дубницький Я.В.		
		Локтікова Т.М.		
Змн.	Арк.	№ докум.	Підпис	Дата

$$[A]_{o6} = 010010001$$

$$[B]_{ob} = 101010100$$

$$[A]_{o6} + [B]_{o6} = 010010001 + 101010100 = \ 111100101 \ \text{->} \ \text{-} \ 10000110$$

Додавання в доповняльному коді:

$$A = 145_{10} = 10010001_2$$

$$B = -253_8 = -010101011_2$$

$$[A]_{\text{доп}} = 010010001$$

$$[B]_{\text{доп}} = 101010101$$

$$[A]_{\text{доп}} + [B]_{\text{доп}} = 010010001 + 101010101 = 111100110 -> -10000111$$

Порівнюючи результати можна зробити висновок, що розрахункибуловиконано правильно.

Завдання 7: Число A_{10} та B_{10} задані в десятковій системі числення. Згідно з варіантом перевести числа в двійокву систему числення і виконати додавання цих чисел за правилами.

№ варіанту	7
A_{10}	-375,98
B_{10}	216,78

$$-375,98_{10} = -101110111,111110011100010_2$$

		Дубницький Я.В.			
		Локтікова Т.М.			Житомирська політехніка.24.121.07.000 – ІПЗ-21-4
Змн.	Арк.	№ докум.	Підпис	Дата	

Арк.

Числа в нормалізованому вигляді:

 $A = -0.10111011111111110011100010 * 2^8$

 $B = 0.11011000110001111 * 2^8$

Додаємо мантиси:

 $[A]_{ob} = 10100100000001100011010$

 $[B]_{of} = 11011000110001111$

101001000000001100011010

+

11011000110001111

=

1001000001101110011001100110011

Усуваємо порушення нормалізоції:

1001000001101110011001100110011

 $A + B = 0.01000001101110011001100110011 \times 2^9 = 131.45$

Висновки: в ході виконання лабораторної роботи було повторено основні системи числення та засвоєно методи переведення чисел із однієї системи числення в іншу, форми представлення чисел та правила виконання основних арифметичних операцій в прямому, доповняльному та оберненому кодах.

		Дубницький Я.В.		
		Локтікова Т.М.		
Змн.	Арк.	№ докум.	Підпис	Дата

1. Лабораторна робота №2: Булева арифметика. ДДНФ, ДКНФ. Метод карт Карно.

Мета: Вичити булеві операції. Дослідити досконалу диз'юнктивну нормальну форму, досконалу кон'юнктивну нормальну форму логічних функцій. Опанувати метод мінімізації логічних функцій методом карт Карно.

Хід роботи:

Варіант 7

Завдання 1: Згідно з заданим викладачем варіантом запишіть досконалу диз'юнктивну нормальну форму (ДДНФ) і досконалу кон'юнктивну нормальну форму (ДКНФ) для логічної функції F чотирьох змінних, яка задана таблицею ітснності (табл. К8).

Но	мер		Номер набору														
вар	о-ту	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
7	F ₇	1	0	1	0	1	0	0	1	0	1	0	0	1	1	0	1

$$f(x_1 \ x_2 \ x_3 x_4)_{ДДН\Phi} = \overline{x_1} \ \overline{x_2} \ \overline{x_3} \ \overline{x_4} \ + \overline{x_1} \ \overline{x_2} x_3 \overline{x_4} + \overline{x_1} x_2 \ \overline{x_3} \ \overline{x_4} + \overline{x_1} x_2 x_3 \overline{x_4} + \overline{x_1} x_3 \overline{x_4} + \overline{x_1} x_3 \overline{x_4} + \overline{x_1} x_3 \overline{x_2} + \overline{x_1} x_3 \overline{x_2} + \overline{x_1} x_3 \overline{x_2} + \overline{x_1} x_3 \overline{x_2} + \overline{x_1} x_3 \overline{x_2}$$

$$f(x_1 \ x_2 \ x_3 x_4)_{\text{ДКНФ}} = (x_1 + x_2 + x_3 + \overline{x_4}) * (x_1 + \overline{x_2} + x_3 + x_4) * (\overline{x_1} + x_2 + x_3 + \overline{x_4}) * (\overline{x_1} + x_2 + \overline{x_3} + \overline{x_4}) * (\overline{x_1} + x_2 + \overline{x_3} + \overline{x_4}) * (\overline{x_1} + \overline{x_2} + \overline{x_3} + \overline{x_4})$$

		Дубницький Я.В.		
		Локтікова Т.М.		
Змн.	Арк.	№ докум.	Підпис	Дата

Завдання 2: Використовуючи закони алгебри логіки, спростіть вирази, одержані при виконанні завдання 2.1.

$$f(x_1 \ x_2 \ x_3 x_4)_{ДДН\Phi} = \overline{x_1} \ \overline{x_2} \ \overline{x_3} \ \overline{x_4} + \overline{x_1} \ \overline{x_2} x_3 \overline{x_4} + \overline{x_1} x_2 \overline{x_3} \ \overline{x_4} + \overline{x_1} x_2 x_3 \overline{x_4} + \overline{x_1} x_2 \overline{x_3} \ \overline{x_4} + x_1 x_2 \overline{x_3} \ \overline{x_4} + x_1 x_2 x_3 x_4 = \overline{x_1} (\overline{x_2} (\overline{x_3} \ \overline{x_4} + x_3 \overline{x_4}) + \overline{x_2} (\overline{x_3} \ \overline{x_4} + x_3 \overline{x_4}) + \overline{x_2} (\overline{x_3} \ \overline{x_4} + x_3 \overline{x_4}) + \overline{x_2} (\overline{x_3} \ \overline{x_4} + x_3 \overline{x_4}) =$$

$$\overline{x_3} \overline{x_4} + \overline{x_1} x_3 \overline{x_4} + x_1 \overline{x_2} x_3 \overline{x_4} + x_1 x_2 x_3 \overline{x_4}$$

$$f(x_1 \ x_2 \ x_3 x_4)_{\text{ДКНФ}} = (x_1 + x_2 + x_3 + \overline{x_4}) * (x_1 + \overline{x_2} + x_3 + x_4) * (\overline{x_1} + x_2 + x_3 + \overline{x_4}) * (\overline{x_1} + x_2 + \overline{x_3} + \overline{x_4}) * (\overline{x_1} + \overline{x_2} + \overline{x_3} + x_4)$$

Завдання 3: Виконати мінімізацію логічної функції F методом карт Карно.

X3X	4			
x_1x_2	00	01	11	10
00	0	1	3	2
01	4	5	7	6
11	12	13	15	14
10	8	9	11	10

X ₃ X X ₁ X ₂	00	01	11	10
00	1			1
01	1		1	
11	1	1	1	
10		1		

$$F(x_1 \ x_2 \ x_3 x_4) = \overline{x_3} \ \overline{x_4} + x_4 \overline{x_1} + x_3 x_2$$

Висновки: в ході виконання лабораторної роботи було вивчено булеву математику.

		Дубницький Я.В.				Арк
		Локтікова Т.М.			Житомирська політехніка.24.121.07.000 – ІПЗ-21-4	12
Змн.	Арк.	№ докум.	Підпис	Дата		12

Лабораторна робота №3: Побудова схеми управління семисегментним індикатором для відображення десяткових цифр

Mema: Побудувати схему управління семисегментним індикатором для відображення де-сяткових цифр у програмі draw.io та здійснити моделювання її роботи у програмі Electronics WorkBench.

Хід роботи:

3.1. Виконання роботи

3.2. Побудуємо схему управління семисегментним індикатором для відображення всіх десяткових цифр.

Заповнимо таблицю 3.1 відповідно до системи відображення десяткової цифри, з використанням семисегментного індикатора, схема якого позначена на рисунку 3.1. Одиницями позначимо кожен сегмент, що повинен бути увімкненим, а нулями ті сегменти, які не використовуються для відображення певної цифри.

		Дубницький Я.В.		
		Локтікова Т.М.		
Змн.	Арк.	№ докум.	Підпис	Дата

Таблиця 3.1

Десяткова		Bxc	оди				I	Зиході	И		
цифра	\mathbf{x}_1	X ₂	X 3	X4	y 1	y ₂	y ₃	y 4	y 5	y 6	y 7
0	0	0	0	0	1	1	1	1	1	1	0
1	0	0	0	1	0	1	1	0	0	0	0
2	0	0	1	0	1	1	0	1	1	0	1
3	0	0	1	1	1	1	1	1	0	0	1
4	0	1	0	0	0	1	1	0	0	1	1
5	0	1	0	1	1	0	1	1	0	1	1
6	0	1	1	0	1	0	1	1	1	1	1
7	0	1	1	1	1	1	1	0	0	0	0
8	1	0	0	0	1	1	1	1	1	1	1
9	1	0	0	1	1	1	1	1	0	1	1

Рисунок 3.1 – Схема семисегментного індикатора

Мінімізуємо кожен вираз, що необхідний для роботи кожного з семи сегментів, за допомогою карт Карно. Після цього запишемо кожен вираз.

Таблиця 3.2

$X_3, X_4 \setminus X_1, X_2$	00	01	11	10
00	1		1	1
01		1	1	1
11	*	*	*	*
10	1	1	*	*

Таблиця 3.3

			Дубницький Я.В.				$Ap\kappa$.
			Локтікова Т.М.			Житомирська політехніка.24.121.07.000 – ІПЗ-21-4	1.1
3л	ин.	Арк.	№ докум.	Підпис	Дата		14

$X_3, X_4 \setminus X_1, X_2$	00	01	11	10
00	1	1	1	1
01	1		1	
11	*	*	*	*
10	1	1	*	*

Таблиця 3.4

$X_3, X_4 \setminus X_1, X_2$	00	01	11	10
00	1	1	1	
01	1	1	1	1
11	*	*	*	*
10	1	1	*	*

Таблиця 3.5

$X_3, X_4 \setminus X_1, X_2$	00	01	11	10
00	1		1	1
01		1		1
11	*	*	*	*
10	1	1	*	*

Таблиця 3.6

$X_3, X_4 \setminus X_1, X_2$	00	01	11	10
00	1			1
01				1
11	*	*	*	*
10	1		*	*

		Дубницький Я.В.		
		Локтікова Т.М.		
Змн.	Арк.	№ докум.	Підпис	Дата

Таблиця 3.7

$X_3, X_4 \setminus X_1, X_2$	00	01	11	10
00	1			
01	1	1		1
11	*	*	*	*
10	1	1	*	*

Таблиця 3.8

$X_3, X_4 \setminus X_1, X_2$	00	01	11	10
00			1	1
01	1	1		1
11	*	*	*	*
10	1	1	*	*

Запишемо отримані оптимізовані вирази для кожного з семи виходів:

$$y_{1} = x_{1} + x_{3} + x_{2}x_{4} + \overline{x_{2}} \, \overline{x_{4}}$$

$$y_{2} = \overline{x_{2}} + x_{3}x_{4} + \overline{x_{3}} \, \overline{x_{4}}$$

$$y_{3} = x_{2} + \overline{x_{3}} + x_{4}$$

$$y_{4} = x_{1} + \overline{x_{2}} \, \overline{x_{4}} + x_{2} \overline{x_{3}} x_{4} + x_{3} \overline{x_{4}} + \overline{x_{2}} x_{3}$$

$$y_{5} = \overline{x_{2}} \, \overline{x_{4}} + x_{3} \overline{x_{4}}$$

$$y_{6} = x_{1} + x_{2} \, \overline{x_{3}} + \overline{x_{3}} \, \overline{x_{4}} + x_{2} \overline{x_{4}}$$

$$y_{7} = x_{1} + x_{2} \, \overline{x_{3}} + x_{3} \overline{x_{4}} + \overline{x_{2}} x_{3}$$

Отримані дані використаємо для схеми, що буде використана для подальшої розробки у симуляторі Electronics WorkBench.

Схему зображено на рисунку 3.2, яка зроблена у програмі draw.io.

На схемі зобразимо 4 входи та 7 виходів, проміжні отримані результати буде використано у подальшому.

		Дубницький Я.В.		
		Локтікова Т.М.		
Змн.	Арк.	№ докум.	Підпис	Дата

Рисунок 3.2 – Схема у програмі draw.io

У програмі Electronics WorkBench створимо робочу схему для відображення десяткових цифр на семисегментному індикаторі.

Для схеми використаємо основні логічні елементи, які зображено на рисунках 3.3 - 3.5.

Рисунок 3.4 – Кон'юнктор

Рисунок 3.5 – Диз'юнктор

		Дубницький Я.В.		
		Локтікова Т.М.		
Змн.	Арк.	№ докум.	Підпис	Дата

Додатково використаємо перемикачі, елементи живлення, семисегментний індикатор.

Результат роботи зображно на рисунках 3.6 - 3.15 для кожної цифри окремо. Перемикачі для введення цифри в двійковому коді працюють по перемиканню кнопок Q(8), W(4), E(2), R(1) починаючи старшим бітом та закінчуючи молодшим.

Рисунок 3.6 – Схема для цифри 0

Рисунок 3.7 – Схема для цифри 1

		Дубницький Я.В.		
		Локтікова Т.М.		
Змн.	Арк.	№ докум.	Підпис	Дата

Рисунок 3.8 – Схема для цифри 2

Рисунок 3.9 – Схема для цифри 3

		Дубницький Я.В.		
		Локтікова Т.М.		
Змн.	Арк.	№ докум.	Підпис	Дата

Рисунок 3.10 – Схема для цифри 4

Рисунок 3.11 – Схема для цифри 5

		Дубницький Я.В.		
		Локтікова Т.М.		
Змн.	Арк.	№ докум.	Підпис	Дата

Рисунок 3.12 – Схема для цифри 6

Рисунок 3.13 – Схема для цифри 7

		Дубницький Я.В.		
		Локтікова Т.М.		
Змн.	Арк.	№ докум.	Підпис	Дата

Рисунок 3.14 – Схема для цифри 8

Рисунок 3.15 – Схема для цифри 9

Висновки: в ході виконання лабораторної роботи було побудовано схему управління семисегментним індикатором для відображення десяткових цифр в програмі draw.io та здійснено моделювання її роботи у програмі Electronics WorkBench.

Для побудови готової схеми необхідно було оптимізувати вирази кожного сегменту за допомогою карт Карно та зобразити схематично. В

		Дубницький Я.В.			
		Локтікова Т.М.			İ
Змн.	Арк.	№ докум.	Підпис	Дата	

робочій програмі Electronics WorkBench для побудови відповідної схеми було використано такі елементи:

- Логічні елементи:
 - о Інвертор
 - о Кон'юнктор
 - о Диз'юнктор
- Базові елементи
 - о Елемент живлення
 - о Перемикач
- Індикатори
 - о Семисегментний індкатор

		Дубницький Я.В.		
		Локтікова Т.М.		
Змн.	Арк.	№ докум.	Підпис	Дата

3. Лабораторна робота №4: Вивчення принципів побудови кодів Хеммінга та пристроїв кодування-декодування цих кодів.

Mema: вивчити властивості кодів Хеммінга, правила їх побудови за заданими характеристиками, а також принципи побудови пристроїв кодування й декодування.

ĺ	№		Вихідні дані	
l	варіанту	Кількість	Перевірочні	Вихідна кодова
l		інформаційних	символи	комбінація
		входів, k	розташувати	
				1
	7	7	в кінці	1100011

Хід роботи:

Варіант 7

3.1 Завдання 1:

За заданою кількістю k інформаційних символів визначається кількість r перевірочних символів, як мінімальне r, що задаовольняє виразу (3.2)

$$2^r > k + r + 1$$

Підставляємо значення: k = 7

$$2^r \ge +r + 1$$

Із виразу знаходимо, що r=4, тоді n=k+r=7+4=11

3.2 Завдання 2:

Будується перевірочна матриця коду, що має г рядків і п стовпців з урахуванням вимог до розміщення перевірочних символів у кодовій комбінації.

За умов розташування перевірочних символів на початку кодової комбінації необхідно перевірочну матрицю побудувати так, щоб перші чотири стовпці містили рівно по одній одиниці, тобто:

		Дубницький Я.В.				Арк.
		Локтікова Т.М.			Житомирська політехніка.24.121.07.000 – ІПЗ-21-4	21
Змн.	Арк.	№ докум.	Підпис	Дата		24

Породжуюча матриця для цього коду буде мати вигляд

3.3 Завдання 3:

За побудованою перевірочною матрицую записують перевірочні співвідношення, які задают алгоритм кодування й декодування. Для мого варіанту такими співвідношеннями будуть:

$$a_1 \oplus a_5 \oplus a_6 \oplus a_8 \oplus a_9 = 0$$

$$a_2 \oplus a_5 \oplus a_7 \oplus a_8 \oplus a_{10} = 0$$

$$a_3 \oplus a_6 \oplus a_7 \oplus a_8 = 0$$

$$a_4 \oplus a_9 \oplus a_{10} = 0$$

Перевірочні символи тут a_1 , a_2 , a_3 , a_4 , інші символи — інформаційні.

Значення перевірочних символів визначають із перевірочних рівнянь. Так, для нашої системи отримаємо:

$$a_1 = a_5 \oplus a_6 \oplus a_8 \oplus a_9$$

$$a_2 = a_5 \oplus a_7 \oplus a_8 \oplus a_{10}$$

$$a_3 = a_6 \oplus a_7 \oplus a_8$$

$$a_4 = a_9 \oplus a_{10}$$

		Дубницький Я.В.		
		Локтікова Т.М.		
Змн.	Арк.	№ докум.	Підпис	Дата

Елементи синдрому обчислюються за лівими частинами перевірочних рівнянь. Так, для розглянутого прикладу

$$s_{1} = a_{1}^{*} \oplus a_{5}^{*} \oplus a_{6}^{*} \oplus a_{8}^{*} \oplus a_{9}^{*}$$

$$s_{2} = a_{2}^{*} \oplus a_{5}^{*} \oplus a_{7}^{*} \oplus a_{8}^{*} \oplus a_{10}^{*}$$

$$s_{3} = a_{3}^{*} \oplus a_{6}^{*} \oplus a_{7}^{*} \oplus a_{8}^{*}$$

$$s_{4} = a_{4}^{*} \oplus a_{9}^{*} \oplus a_{10}^{*}$$

Обрахуємо код Хеммінга для мого варіанта:

Вихідна кодова комбінація: 1100011

a_5	a_6	a_7	a_8	a_9	a_{10}
1	1	0	0	1	1

Для обрахунку перевірочних символів підставимо значення в перевірочні рівняння:

$$a_1 = 1 \oplus 1 \oplus 0 \oplus 1 = 1$$

$$a_2 = 1 \oplus 0 \oplus 0 \oplus 1 = 0$$

$$a_3 = 1 \oplus 0 \oplus 0 = 1$$

$$a_4 = 1 \oplus 1 = 0$$

Отримаємо код Хеммінга:

a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8	a_9	a_{10}
1	0	1	0	1	1	0	0	1	1

або в іншому записі:

c_1	c_2	c_3	<i>C</i> ₄	a_1	a_2	a_3	a_4	a_5	a_6
1	0	1	0	1	1	0	0	1	1

		Дубницький Я.В.		
		Локтікова Т.М.		
Змн.	Арк.	№ докум.	Підпис	Дата

Зробимо перевірку спотворивши один із бітів:

$$A = 1010110111$$

$$A^* = 1010100111$$

Обрахуємо синдром:

$$s_1 = 1 \oplus 1 \oplus 1 \oplus 0 \oplus 1 = 0$$

$$s_2 = 0 \oplus 1 \oplus 0 \oplus 0 \oplus 1 = 0$$

$$s_3 = 1 \oplus 1 \oplus 0 \oplus 0 = 0$$

$$s_4 = 0 \oplus 1 \oplus 1 = 0$$

Отримаємо синдром:

$$\bar{S} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Після перевірки, отриманий синдром дорівнює нулю, що означає, що код ϵ правильним і помилки не виявлено.

Висновки: в ході виконання лабораторної роботи було вивчено властивості кодів Хеммінга, правила їх побудови за заданими характеристиками, а також принципи побудови пристроїв кодування й декодування.

		Дубницький Я.В.		
		Локтікова Т.М.		
Змн.	Арк.	№ докум.	Підпис	Дата