Ondas. Velocidad de fase. Velocidad de grupo.

Supongamos dos ondas armónicas cuyas ecuaciones son:

$$y_1 = A\cos(\omega_1 t - k_1 x)$$
 ; $y_2 = A\cos(\omega_2 t - k_2 x)$

siendo, ω_1 muy parecida a ω_2 .

$$\omega = \frac{2\pi}{T}$$
 ; $k = \frac{2\pi}{\lambda}$; $v = \frac{\lambda}{T} = \frac{\frac{2\pi}{k}}{\frac{2\pi}{\omega}} = \frac{\omega}{k}$

Si estas dos ondas se superponen

$$Y = A[\cos(\omega_1 t - k_1 x) + \cos(\omega_2 t - k_2 x)] \Rightarrow$$

$$\Rightarrow Y = 2A\cos\frac{(\omega_1 + \omega_2) - x(k_1 + k_2)}{2}\cos\frac{(\omega_1 - \omega_2) - x(k_1 - k_2)}{2}$$
(1)

Designamos como valores promedios a

$$\frac{\omega_1 + \omega_2}{2} = \omega_P \qquad ; \quad \frac{k_1 + k_2}{2} = k_P \qquad ; \frac{\omega_1 - \omega_2}{2} = \omega_M \qquad ; \frac{k_1 - k_2}{2} = k_M$$

Teniendo en cuenta que ω_1 es muy parecido a ω_2 , ω_P es muy diferente de ω_M . Sustituyendo en la ecuación (1) resulta:

$$Y = 2A\cos(\omega_M t - k_M x) * \cos(\omega_P t - k_P x) = A \cos(\omega_P t - k_P x)$$

Caso a)

$$y_{1} = A\cos(\omega_{1}t - k_{1}x) = 2\cos(8t - x) \quad ; \quad y_{2} = A\cos(\omega_{2}t - k_{2}x) = 2\cos\left(7,5t - \frac{15}{16}x\right)$$

$$\omega_{P} = 7,75 \text{ s}^{-1} \quad ; \quad \omega_{M} = 0,25 \text{ s}^{-1} \quad ; \quad k_{P} = \frac{31}{32}m^{-1} \quad ; \quad k_{M} = \frac{1}{32}m^{-1}$$

$$v_{1} = \frac{\omega_{1}}{k_{1}} = \frac{8}{1} = 8 \frac{m}{s} \quad ; \quad v_{2} = \frac{\omega_{2}}{k_{2}} = \frac{7,5}{16} = 8 \frac{m}{s}$$

La velocidad de propagación de las dos ondas es la misma, decimos que el medio en el que se propagan es un *medio no dispersivo*.

$$A = 2 * 2 * \cos \left(0.25t - \frac{1}{16}x\right)$$
; $Y = A * \cos\left(7.75 * t - \frac{31}{16}x\right)$

Ahora fijamos un valor de t=0 y damos sucesivos valores a x en ambas ecuaciones y hacemos la representación gráfica simultanea de A e Y .Luego le damos otro valor a t y representamos juntos A e Y .Seguimos repitiendo el proceso para distintos valores de t. Todas las graficas las colocamos una debajo de las otras y obtenemos la fig.1.

Fig.1

A la vista de la figura 1, podemos deducir:

a) Existe una onda envolvente sobre el conjunto de ondas. La longitud de onda de esta envolvente vale:

$$\lambda_{\rm M} = \frac{2\pi}{k_{\rm M}} = \frac{2\pi}{\frac{1}{16}} = 100,5 \text{ m}$$

A esta envolvente la llamamos modulada y corresponde al valor de A.

b) Dentro de esta envolvente existe un conjunto de ondas que corresponde a la función Y, cuya longitud de onda es:

$$\lambda_{\rm p} = \frac{2\pi}{k_{\rm p}} = \frac{2\pi}{\frac{31}{32}} = 6.4 \text{ m}$$

c) Observamos que la envolvente se desplaza de izquierda a derecha y el conjunto de ondas también lo hace. Para observarlo se ha colocado en el dibujo un punto que sigue el movimiento de la envolvente y una pequeña flecha que sigue a un máximo del conjunto. La distancia entre flecha y punto se mantiene constante con el tiempo, por tanto, la velocidad de la envolvente y la del conjunto de ondas es la misma. Esta situación se da en un medio en donde las dos ondas se propagan a la misma velocidad, lo que se denomina un medio no dispersivo.

Podemos calcular las velocidades de la envolvente (modulada) y del conjunto de ondas

$$v_{M} = \frac{\omega_{M}}{k_{M}} = \frac{0.25}{\frac{1}{32}} = 8 \frac{m}{s}$$
; $v_{P} = \frac{\omega_{P}}{k_{P}} = \frac{7.75}{\frac{31}{32}} = 8 \frac{m}{s}$

Caso b)

$$y_{1} = A\cos(\omega_{1}t - k_{1}x) = 2\cos(8t - x) \quad ; \quad y_{2} = A\cos(\omega_{2}t - k_{2}x) = 2\cos\left(7,5t - \frac{14,5}{16,5}x\right)$$

$$\omega_{P} = 7,75 \text{ s}^{-1} \quad ; \quad \omega_{M} = 0,25 \text{ s}^{-1} \quad ; \quad k_{P} = \frac{31}{33}m^{-1} \quad ; \quad k_{M} = \frac{2}{33}m^{-1}$$

$$v_{1} = \frac{\omega_{1}}{k_{1}} = \frac{8}{1} = 8 \frac{m}{s} \quad ; \quad v_{2} = \frac{\omega_{2}}{k_{2}} = \frac{7,5}{14,5} = 8,53 \frac{m}{s}$$

La velocidad de propagación de las dos ondas es diferente, decimos que el medio en el que se propagan es un *medio dispersivo*.

$$A = 2 * 2 * \cos \left(0.25t - \frac{2}{33}x\right)$$
; $Y = A * \cos\left(7.75 * t - \frac{31}{33}x\right)$

Ahora fijamos un valor de t=0 y damos sucesivos valores a x en ambas ecuaciones y hacemos la representación gráfica simultanea de A e Y .Luego le damos otro valor a t y representamos juntos A e Y. Seguimos repitiendo el proceso para distintos valores de T,. Todas las graficas las colocamos una debajo de las otras y obtenemos la fig.2.

A la vista de la figura 2, podemos deducir:

a) Existe una onda envolvente sobre el grupo de ondas .la longitud de onda de esta envolvente vale:

$$\lambda_{\rm M} = \frac{2\pi}{k_{\rm M}} = \frac{2\pi}{\frac{2}{33}} = 103,7 \text{ m}$$

A esta envolvente la llamamos modulada y corresponde al valor de A.

b) Dentro de esta envolvente existe un conjunto de ondas que corresponde a la función Y, cuya longitud de onda es:

$$\lambda_{\rm P} = \frac{2\pi}{k_{\rm P}} = \frac{2\pi}{\frac{31}{33}} = 6,69 \text{ m}$$

Fig.2

c) Observamos que la envolvente se desplaza de izquierda a derecha y el conjunto de ondas también lo hace. Para observarlo se ha colocado en el dibujo un punto que sigue el movimiento de la envolvente y una pequeña flecha que sigue a un máximo del conjunto. La distancia entre flecha y punto no se mantiene constante con el tiempo, por tanto, **la velocidad de la envolvente es menor que la del conjunto.** Esta situación se da en un medio en donde las dos ondas no se propagan a la misma velocidad, lo que se denomina un medio dispersivo.

Podemos calcular las velocidades de la envolvente (modulada) y del conjunto de ondas

$$v_{M} = \frac{\omega_{M}}{k_{M}} = \frac{0.25}{\frac{2}{33}} = 4.13 \frac{m}{s}$$
; $v_{P} = \frac{\omega_{P}}{k_{P}} = \frac{7.75}{\frac{31}{33}} = 8.25 \frac{m}{s}$ $\Rightarrow v_{P} = 2v_{M}$

La velocidad del conjunto es doble que la velocidad de la envolvente o modulada.

Caso c)

$$\begin{aligned} y_1 &= A cos (\omega_1 t - k_1 x) = 2 cos \ \left(8 t - x\right) \quad ; \quad y_2 &= A cos (\omega_2 t - k_2 x) = 2 cos \left(7 t - \frac{29}{31} x\right) \\ \omega_P &= 7,5 \ s^{-1} \quad ; \quad \omega_M = 0,5 \ s^{-1} \quad ; \quad k_P = \frac{30}{31} m^{-1} \quad ; \quad k_M = \frac{1}{31} m^{-1} \\ v_1 &= \frac{\omega_1}{k_1} = \frac{8}{1} = 8 \ \frac{m}{s} \quad ; \quad v_2 &= \frac{\omega_2}{k_2} = \frac{7}{29} = 7,48 \ \frac{m}{s} \end{aligned}$$

La velocidad de propagación de las dos ondas es diferente, decimos que el medio en el que se propagan es un *medio dispersivo*.

$$A = 2 * 2 * \cos \left(0.5t - \frac{1}{31}x\right)$$
; $Y = A * \cos\left(7.5 * t - \frac{30}{31}x\right)$

Ahora fijamos un valor de t=0 y damos sucesivos valores a x en ambas ecuaciones y hacemos la representación gráfica simultanea de A e Y .Luego le damos otro valor a t y representamos juntos A e Y .Seguimos repitiendo el proceso para distintos valores de t. Todas las graficas las colocamos una debajo de las otras y obtenemos la fig.3.

Fig.3

A la vista de la figura 3, podemos deducir:

a) Existe una onda envolvente sobre el grupo de ondas .La longitud de onda de esta envolvente vale:

$$\lambda_{\rm M} = \frac{2\pi}{k_{\rm M}} = \frac{2\pi}{\frac{1}{31}} = 194.8 \text{ m}$$

A esta envolvente la llamamos modulada y corresponde al valor de A.

b) Dentro de esta envolvente existe un conjunto de ondas que corresponde a la función Y, cuya longitud de onda es:

$$\lambda_{\rm P} = \frac{2\pi}{k_{\rm P}} = \frac{2\pi}{\frac{30}{31}} = 6{,}49 \text{ m}$$

c) Observamos que la envolvente se desplaza de izquierda a derecha y el conjunto de ondas también lo hace. Para observarlo se ha colocado en el dibujo un punto que sigue el movimiento de la envolvente y una pequeña flecha que sigue a un máximo del conjunto. La distancia entre flecha y punto no se mantiene

constante con el tiempo, por tanto, **la velocidad de la envolvente es mayor que la del conjunto.** Esta situación se da en un medio en donde las dos ondas no se propagan a la misma velocidad, lo que se denomina un medio dispersivo.

Podemos calcular las velocidades de la envolvente (modulada) y del conjunto de ondas

$$v_{M} = \frac{\omega_{M}}{k_{M}} = \frac{0.5}{\frac{1}{31}} = 15.5 \frac{m}{s}$$
; $v_{P} = \frac{\omega_{P}}{k_{P}} = \frac{7.5}{\frac{30}{31}} = 7.75 \frac{m}{s}$ \Rightarrow $v_{P} = \frac{1}{2}v_{M}$

La velocidad del conjunto es la mitad que la velocidad de la envolvente o modulada.

En los libros de texto se deduce que la velocidad de grupo viene dada por la expresión

$$v_g = \frac{d\omega}{dk}$$

Para los casos sencillos tratados anteriormente

$$v_g = \frac{d\omega}{dk} = \frac{\omega_1 - \omega_2}{k_1 - k_2}$$

Que es la formula que hemos empleado para calcular la velocidad de la onda modulada.

Otros ejemplos

1) Radiación electromagnética en el vacío

La relación de dispersión es $\omega = ck$ \Rightarrow $v_g = \frac{d\omega}{dk} = c$

La velocidad de la fase es: $v_g = \frac{\omega}{k} = c$

La velocidad de grupo y la de fase son iguales a c (velocidad de la luz) para la radiación electromagnética en el vacío.

2) Ondas electromagnéticas en la ionosfera

La relación de dispersión para ondas sinusoidales es

$$\omega^2 = \omega_n^2 + c^2 k^2$$

ωp es cuna constante.

De la expresión anterior

$$2\omega \ d\omega = 2c^2k \ dk$$
 \Rightarrow $\left(\frac{\omega}{k}\right)\left(\frac{d\omega}{dk}\right) = c^2$ \Rightarrow $v_f * v_g = c^2$

$$v_{g} = \frac{d\omega}{dk} = \frac{c^{2}k}{\omega} = \frac{c^{2}k}{\sqrt{\omega_{p}^{2} + c^{2}k^{2}}} = \sqrt{\frac{c^{4}k^{2}}{\omega_{p}^{2} + c^{2}k^{2}}} = \sqrt{\frac{c^{2}}{1 + \frac{\omega_{p}^{2}}{c^{2}k^{2}}}} \le c$$

La velocidad de la fase es:

$$v_f \ge c$$

Aun cuando la velocidad de la fase sea mayor que c, la velocidad de grupo es menor. Esto quiere decir que una señal no puede transmitirse a mayor velocidad que la luz.

3) Ondas superficiales en un líquido

Para ondas armónicas y para cuando la profundidad del líquido no sea muy grande comparada con la longitud de onda la velocidad de propagación es:

$$v = \sqrt{\frac{g\lambda}{2\pi} + \frac{2\pi}{\rho} \frac{T}{\lambda}}$$

T es la tensión superficial y ρ la densidad. Para el agua T = 72.10⁻³ N/m y ρ = 1.10³ kg/m³

Cuando la longitud de onda es grande el primer término es mucho mayor que el segundo, por ejemplo para una longitud de onda de 5 metros

$$\frac{g\lambda}{2\pi} = \frac{9.8*5}{2\pi} = 7.8 \quad ; \quad \frac{2\pi}{\rho} \frac{T}{\lambda} = \frac{2\pi*72.10^{-3}}{1.10^{3}*5} = 9.10^{-5}$$

La expresión de la velocidad de las ondas es:

$$v_f = \sqrt{\frac{g\lambda}{2\pi}} = \sqrt{\frac{g}{k}}$$

Podemos hacer uso de otra ecuación que viene en los textos de Física y que relaciona la velocidad de grupo con la velocidad de fase

$$v_{g} = v_{f} + k \frac{dv}{dk}$$

$$\frac{dv_f}{dk} = \frac{-g\frac{1}{k^2}}{2\sqrt{\frac{g}{k}}} = -\frac{1}{2k}\frac{\frac{g}{k}}{\sqrt{\frac{g}{k}}} = -\frac{v_f}{2k} \quad \Rightarrow \quad v_g = v_f - \frac{1}{2}v_f = \frac{1}{2}v_f$$

La velocidad de grupo es la mitad que la velocidad de fase.

4) Ondas de agua profunda

La relación de dispersión para ondas de agua profunda está dada por la siguiente ecuación

$$\omega^2 = gk + \frac{Tk^3}{\rho} \qquad ; \qquad \rho = 10^3 \ \frac{kg}{m^3} \quad ; \quad T = 72.10^{-3} \frac{N}{m}$$

- a) Calcule la longitud de onda para las ondas en las que la velocidad de fase y de grupo son iguales
- b) Represente la velocidad de grupo, en el eje Y, frente a la de fase en el eje X.

$$\begin{aligned} v_g &= \frac{d\omega}{dk} = \frac{g + \frac{3 \ Tk^2}{\rho}}{2\sqrt{gk + \frac{Tk^3}{\rho}}} \quad ; v_f &= \frac{\omega}{k} = \frac{\sqrt{gk + \frac{Tk^3}{\rho}}}{k} \quad \Rightarrow \frac{g + \frac{3 \ Tk^2}{\rho}}{2\sqrt{gk + \frac{Tk^3}{\rho}}} = \frac{\sqrt{gk + \frac{Tk^3}{\rho}}}{k} \Rightarrow \\ a) &\Rightarrow \quad gk + \frac{3 \ Tk^3}{\rho} = 2gk + 2\frac{Tk^3}{\rho} \quad \Rightarrow \quad \frac{Tk^2}{\rho} = g \quad \Rightarrow \quad k = \sqrt{\frac{\rho g}{T}} = \frac{2\pi}{\lambda} \quad \Rightarrow \\ \lambda &= \frac{2\pi}{\sqrt{\frac{10^3 * 9.8}{72.10^{-3}}}} = 0,017 \ m = 1,7 \ cm \end{aligned}$$

