

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université de Carthage

Institut Supérieur des Technologies de l'Information et de la Communication

Licence Fondamentale Sciences de l'informatique Classes : LGLSI-2				
TP n°2 Techniques d'indexation et recherche multimédia				
Objectifs	Indexation textuelle			

TP2: INDEXATION TEXTUELLE

L'objectif de ce TP2 et du TP suivant (le TP3) est de réaliser un système de recherche d'information complet. Celui-ci comprendra deux modules principaux :

- 1. le module d'indexation textuelle (TP2)
- 2. le module de recherche (TP3)

A la fin du TP3, l'étudiant sera évalué sur la totalité du travail (TP2 + TP3). La note obtenue après cette évaluation sera considérée comme sa note de TP.

Ce TP sera réalisé en deux séances, séance 1 (exercice 1 et exercice2) et séance 2 (exercice3).

Avant de commencer, il faut ajouter la librairie python nltk :

- Dans un terminal, lancez la commande 'pip install --user nltk'
- Dans un terminal, lancez python
- Taper la commande 'import nltk'
- Taper la commande 'nltk.download()'
- A partir de l'onglet 'All packages', sélectionner 'punkt' et 'snowball data'

Partie 1: INDEXATION:

EXERCICE 1:

Executer les commandes suivantes et interpreter les résultats obenus:

Splitting Tokens:

>>> "This is a test for text-based search".split()

>>> import re

>>> re.split(r"\W", "This is a test for text-based search")

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université de Carthage

Institut Supérieur des Technologies de l'Information et de la Communication

Licence Fondamentale Sciences de l'informatique Classes : LGLSI-2				
TP n°2 Techniques d'indexation et recherche multimédia				
Objectifs	Indexation textuelle			

Case Sensitivity

- >>> "Paris is the capital of France".split()
- >>> "Paris is the capital of France".lower().split()

Stemming

- >>> from nltk.stem.porter import PorterStemmer
- >>> stemmer = PorterStemmer()
- >>> [stemmer.stem(token) for token in ["developed", "develop", "developing"]]

Stop Words

- >>> tokens = "This is a test for text-based search".lower().split()
- >>> [t for t in tokens if t not in ["a", "for", "is", "this"]]

Filtering

- >>> import re
- >>> tokens = "1234 test1234 rejected".lower().split()
- >>> [t for t in tokens if re.match(r"^[a-z]+\$", t)]

EXERCICE 2:

On considère la liste des stop-words suivantes:

```
"a", "an", "and", "are", "as", "at", "be", "but", "by", "for", "if", "in", "into", "is", "it", "no", "not", "of", "on", "or", "such", "that", "the", "their", "then", "there", "these", "they", "this", "to", "was", "will", "with"
```

Ecrire un programme qui permet de lire un fichier **fich-test.txt** à partir du repertoire courant et d'effectuer les operations suivantes:

- Extraction des mots
- Suppression des stop-words
- Réecriture des mots en minuscule
- Supprime les valeurs numeriques et les dates
- Racinisation (stemming) en utilisant l'algorithme de Porter
- Enregistrement du résultat dans un fichier nommé sortie.txt

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université de Carthage

Institut Supérieur des Technologies de l'Information et de la Communication

Licence Fondamentale Sciences de l'informatique Classes : LGLSI-2				
TP n°2 Techniques d'indexation et recherche multimédia				
Objectifs	Indexation textuelle			

EXERCICE 3: Pondération et Fichier Inversé

Dans cette partie, on souhaite construire un fichier inversé à partir d'un ensemble de fichiers.txt disponibles dans le dossier "documents" (à récupérer à partir du Drive). Il vous est demandé de:

- Ecrire une fonction qui permet de retourner pour chaque document, la liste des mots stem (résultat de l'étape précedente)
- Ecrire une fonction qui permet de retourner pour chaque document, un dictionnaire comprenant les mots stem ainsi que leurs frequences d'apparition (TF mesure simple).
- Ecrire une fonction qui permet de retourner un dictionnaire global (pour tous les fichiers) comprenant les mots stem ainsi que leurs frequences d'apparition TF dans chaque document.
- Ecrire une fonction qui permet de retourner le poids W de chaque mot stem par rapport à chaque document aprés avoir calculer son IDF en utilisant la formule simple.
- Ecrire une fonction qui permet de construire le fichier inversé. Cette fonction génère un fichier nommé "fich-inv.txt" ayant la structure suivante: stem----doc(i)-----W(i)......
- Ecrire un programme qui permet d'indexer le corpus "documents"