Math 214 Homework 2

Alexander Powell

Due: Jan. 29, 2014

Solve the following problems. Each problem is 4 points.

1. Consider three statements:

$$P: 15 \text{ is odd}, \quad Q: 21 \text{ is prime}, \quad \text{and } R: \frac{1}{2} \in \mathbb{N}.$$

State each of the following in words, and determine whether they are true or false.

(a) $(\sim P) \vee Q$

Solution: 15 is not odd or 21 is prime. This statement is False.

(b) $P \wedge (\sim Q \vee R)$

Solution: 15 is odd and 21 is not prime or $\frac{1}{2}$ is a natural number. This statement is True

(c) $(P \wedge Q) \Rightarrow (\sim R)$

Solution: 15 is odd and 21 is prime implies that $\frac{1}{2}$ is not a natural number. This statement is True

(d) $(P \lor Q) \Leftrightarrow R$

Solution: 15 is odd or 21 is prime if and only if $\frac{1}{2}$ is a natural number. This statement is False.

- 2. Consider a statement: "If I finish my homework, then I will go to the mall or I will play tennis unless it rains."
 - (a) Define statements P,Q,R,S so that the above statement is in a form $(P \land Q) \Rightarrow (R \lor S)$.

Solution:

P: I finish my homework

Q: It does not rain

R: I will play tennis

S: I will go to the mall

(b) Find the negation of $(P \land Q) \Rightarrow (R \lor S)$ by using Theorems 2.18 and 2.21, and write the negation of statement above in words.

Solution: The negation of $(P \land Q) \Rightarrow (R \lor S)$ is written below:

$$\sim (\sim (P \land Q) \lor (R \lor S))$$

$$= (\sim (\sim (P \land Q)) \land \sim (R \lor S))$$

$$= ((P \land Q) \land ((\sim R) \land (\sim S)))$$

$$= (P \land Q \land \sim R \land \sim S)$$

I will finish my homework and it will not rain and I will not play tennis and I will not go to the mall.

3. (a) For the open sentence P(x): 3x-2>4 over the domain \mathbb{Z} , determine the values of x for which P(x) is true.

Solution:

$$P(x): 3x - 2 > 4$$
$$3x > 6$$
$$x > 2$$

Therefore P(x) is true for the values of x > 2 over the domain \mathbb{Z} .

Alternatively,
$$P(x)$$
 is true for $A = \{x > 2, x \in \mathbb{Z}\}.$

(b) Express the following quantified statement in logic symbols: For every integer $n \ge 2$, there exists an integer m such that n < m < 2n.

Solution:

Let
$$S = \{n \in \mathbb{Z} : n \ge 2\}$$

 $\forall n \in S, \exists m \in \mathbb{Z}, n < m < 2n$

4. For statements P,Q and R, use a truth table to show that $P\Rightarrow (Q\vee R)$ and $(\sim Q)\Rightarrow ((\sim P)\vee R)$ are logically equivalent. (Hint: use sample homework tex file for typing a truth table)

Solution:

Р	Q	R	$Q \vee R$	$P \vee R$	$\sim P$	$(\sim P) \vee R$	$P \Rightarrow (Q \lor R)$	$\sim Q \Rightarrow ((\sim P) \lor R)$
T	Т	Т	Т	Т	F	Т	Τ	Т
T	T	F	Τ	Т	\mathbf{F}	F	${ m T}$	T
T	F	Т	Τ	Т	F	T	${ m T}$	T
T	F	F	\mathbf{F}	Т	\mathbf{F}	F	\mathbf{F}	F
F	Т	Т	${ m T}$	Т	${ m T}$	T	${ m T}$	Γ
F	Т	F	${ m T}$	F	${ m T}$	T	${ m T}$	Γ
F	F	Т	${ m T}$	Т	${ m T}$	T	${ m T}$	Γ
F	F	F	F	F	${ m T}$	T	${ m T}$	T

Therefore, $P \Rightarrow (Q \lor R)$ and $\sim Q \Rightarrow ((\sim P) \lor R)$ are logically equivalent.

5. In each of the following, two open sentences P(x) and Q(x) over a domain S are given. For each part, determine $T = \{x \in S : P(x) \Rightarrow Q(x) \text{ is true}\}.$

(a)
$$P(x): x-3=4; \quad Q(x): x \ge 8; \quad S=\mathbb{R}.$$

Solution:
$$T = (-\infty, 7) \cup (7, \infty)$$

(b)
$$P(x): x \in [-1, 2]; \quad Q(x): x^2 \le 2; \quad S = [-1, 1].$$

Solution:
$$T = (-\infty, \sqrt{2}] \cup (2, \infty)$$

- 6. Consider the quantified statement: There exists an integer n such that n is odd and n^3 is even.
 - (a) Express the statement above in logic symbols.

Solution:

$$O = \{2n+1 : n \in \mathbb{Z}\}$$

And
$$E = \{2n : n \in \mathbb{Z}\}\$$

$$(\exists n \in \mathbb{Z}) \land (n \in O) \land (n^3 \in E)$$

(b) Write the negation of the statement above in logic symbols and in words.

Solution: The negation of the statment above is:

$$\sim ((\exists n \in \mathbb{Z}) \land (n \in O) \land (n^3 \in E))$$

$$\equiv (\forall n \in \mathbb{Z}) \lor (n \notin O) \lor (n^3 \notin E)$$

In words, for every $n \in \mathbb{Z}$, n is not odd or n^3 is not even.

7. (extra credit) A very special island is inhabited only by knights and knaves. Knights always tell the truth, and knaves always lie. You meet three inhabitants: Bozo, Carl and Joe. Bozo says that Carl is a knave. Carl tells you, 'Of Joe and I, exactly one is a knight.' Joe claims, 'Bozo and I are different.'Who are knights, and who are knaves? (To get full credit, you need to use a truth table)