- (a) For every p , 1 \leq p < ∞ the following assertions are equivalent.
- (i) The operators T(t) defined by $T(t)f := f \circ \phi_t$ for $f \in L^p(\mu)$, $t \ge 0$, are well-defined as bounded linear operator on $L^p(\mu)$ and $(T(t))_{t \ge 0}$ is a strongly continuous semigroup.
- (ii) There exist constants $t_0>0$, M>0 such that $\mu\left(\phi_t^{-1}(C)\right)\leq M\cdot\mu\left(C\right) \ \ \text{for every open (compact) set} \ \ C\subset X \ \ \text{and every} \ \ t\leq t_0$.
- (b) In case the conditions (i) and (ii) are fulfilled then $(T(t))_{t\geq 0}$ is a semigroup of lattice homomorphisms on $L^p(\mu)$ and $C_c(X)\cap D(A)$ is a core of the generator.
- <u>Proof.</u> (a) Since μ is assumed to be regular, the inequality stated in (ii) holds true for all Borel sets provided it is true for all open sets (compact sets, respectively).
- (i)+(ii): Assume that (T(t)) is a strongly continuous semigroup on $L^p(\mu)$, $1 \le p < \infty$. For $t_0 > 0$ we define $M := (\sup\{\|T(t)\|: 0 \le t \le t_0\})^{1/p}$. Given a Borel set $C \subset X$ we write $C(t) := \phi_t^{-1}(C)$.

Then we have $T(t)\chi_C = \chi_{C(t)}$, hence

$$\mu \left(\phi_{t}^{-1}(C) \right) = \|\chi_{C(t)}\|_{p}^{p} = \|T(t)\chi_{C}\|_{p}^{p} \leq M \cdot \|\chi_{C}\|_{p}^{p} = M \cdot \mu(C).$$

- (ii) + (i): Since the inequality in (ii) holds for all Borel sets, $\phi_t^{-1}(C)$ is a $\mu\text{-null}$ set whenever C is a $\mu\text{-null}$ set. Thus given Borel functions f, g such that f=g $\mu\text{-a.e.}$ then $f\circ\phi_t=g\circ\phi_t$ $\mu\text{-a.e.}$. Moreover, for $0\le f\in L^p(\mu)$, there exists an increasing sequence (h_n) of simple functions converging pointwise to f. Then $(h_n\circ\phi_t)$ is a monotone sequence converging pointwise to $f\circ\phi_t$. Using the fact that $\chi_C\circ\phi_t=\chi_C(t)$, C(t) as above, and the assumption $\mu(C(t))\le M\cdot\mu(C)$ it is easy to see that $\|h_n\circ\phi_t\|_p^p\le M\cdot\|h_n\|_p^p\le M\cdot\|f\|_p^p.$ Thus by the Monotone Convergence Theorem we have $f\circ\phi_t\in L^p(\mu)$ and $\|f\circ\phi_t\|_p\le M^{1/p}\|f\|_p$. It follows that T(t) is a bounded linear operator on $L^p(\mu)$ and $\|T(t)\|\le M^{1/p}$ for $0\le t\le t_0$. Since ϕ is semiflow we have T(0)=Id and T(t+s)=T(s)T(t) ($0\le s,t<\infty$). It remains to prove strong continuity. Since ϕ is continuous and (4.12) holds, we know that $T(t)(C_C(X))\subset C_C(X)$ and that T(t)f tends to f uniformly as $t\to 0$ provided that $f\in C_C(X)$. It follows that $\lim_{t\to 0}\|T(t)f-f\|_p=0$ for $f\in C_C(X)$. Since $C_C(X)$ is dense in $L^p(\mu)$ and $\|T(t)\|\le M^{1/p}$ for $0\le t\le t_0$, the semigroup is strongly continuous.
- (b) Obviously every operator T(t) defined in assertion (i) of (a) is a lattice homomorphism. Above we pointed out that $C_{C}(X)$ is