

Universidade do Minho

Final Report

Radio Frequency Camera Assisted Rover (RFCAR)

Master Degree in Industrial and Computer Electronics Engineering Laboratórios e Práticas Integradas 2

Integrator Project

Group 7

Nuno Rodrigues	A85207
Hugo Carvalho	A85156
Hugo Ferreira	A80665
João Faria	A85632
João de Carvalho	A83564
José Mendes	A85951
José Pires	A50178

June 29, 2020

Contents

List of Abbreviations		2
1	Introduction	3
2	State of the Art	4
3	Analysis	5
4	Design	6
5	Implementation	7
6	Testing	8
7	Verification and Validation	9
8	Conclusions	10
9	Final product	11
Aı	PPENDICES	12

Introduction

The envisioned product consists of a remote controlled car used to assist exploration and maintenance domains, hereby, denominated as Radio Frequency Camera Assisted Rover (RFCAR). To satisfy such requirements, the vehicle must contain a remotely operated camera that provides a live video feed to the user. Additionally, the vehicle must include an odometric system that assists the driving and avoids unintentional collisions when remote control is compromised, e.g., when connection is lost. The vehicle provides means for exploration and conditions assessment in critical or unaccessible areas to human operators, such as fluid pipelines and other hazardous locations. The goal of the present work is to close the gap between design and fabrication of multi-material components from metallic/ceramic materials using Selective Laser Sintering (SLS)/Selective Laser Melting (SLM) technology. To this end several main objectives have been outlined:

State of the Art

Analysis

Design

Implementation

Testing

Verification and Validation

Conclusions

Final product

Appendices