Graduate Admission - Linear Regression

Business Problem:

 To understand about the factors which are important in graduate admissions and how these factors are interrelated among themselves which will help Educational Institutions to predict one's chances of admission given the rest of the variables.

Column Profiling:

- Serial No. (Unique row ID)
- GRE Scores (out of 340)
- TOEFL Scores (out of 120)
- University Rating (out of 5)
- Statement of Purpose and Letter of Recommendation Strength (out of 5)
- · Undergraduate GPA (out of 10)
- Research Experience (either 0 or 1)
- Chance of Admit (ranging from 0 to 1)

Overview of the notebook:

EDA

- · Loading and inspecting the Dataset
- · Checking Shape of the Dateset, Meaningful Column names
- Validating Duplicate Records, Checking Missing values
- · Unique values (counts & names) for each Feature
- · Data & Datatype validation

Univariante & Bivariante Analysis

- Numerical Variables
- · Categorial variables
- · Correlation Analysis
- · Handling Multicollinearity

Model Building

- · Handling Categorical variables using dummies
- · Test & Train Split
- · Rescaling features
- Train Model

Validate Linear Regression Assumptions

- · Multicolillinearity check
- Mean of residuals
- · Linearity of variables
- · Test for Homoscedasticity
- · Normality of residuals

- Model Performance Evaluation
- Metrics checked MAE,RMSE,R2,Adj R2
- · Train and Test performances are checked
- · Comments on performance measures
- · Summary of final recommendations

Exploratory data analysis:

Importing required packages:

In [7]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.set(style='whitegrid')
from numpy import NaN, nan
from scipy import stats
import statsmodels.api as sm
import warnings
warnings.filterwarnings("ignore")
# Train & Test data split
from sklearn.model_selection import train_test_split
# Feature scaling
from sklearn.preprocessing import StandardScaler
# Check for the VIF values of the feature variables.
from statsmodels.stats.outliers_influence import variance_inflation_factor
# Importing RFE and LinearRegression
from sklearn.feature_selection import RFE
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_absolute_error, r2_score, mean_squared_error
from sklearn.metrics import mean_absolute_percentage_error
```

Loading data into Dataframe:

In [8]:

```
grad_adm_data=pd.read_csv('Jamboree_Admission.txt')
grad_adm_data.head()
```

Out[8]:

	Serial No.	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit
0	1	337	118	4	4.5	4.5	9.65	1	0.92
1	2	324	107	4	4.0	4.5	8.87	1	0.76
2	3	316	104	3	3.0	3.5	8.00	1	0.72
3	4	322	110	3	3.5	2.5	8.67	1	0.80
4	5	314	103	2	2.0	3.0	8.21	0	0.65

Dropping the unique row Identifier - which is Serial No.

In [9]:

```
grad_adm_data=grad_adm_data.drop('Serial No.',axis =1)
grad_adm_data.head()
```

Out[9]:

	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit
0	337	118	4	4.5	4.5	9.65	1	0.92
1	324	107	4	4.0	4.5	8.87	1	0.76
2	316	104	3	3.0	3.5	8.00	1	0.72
3	322	110	3	3.5	2.5	8.67	1	0.80
4	314	103	2	2.0	3.0	8.21	0	0.65

Identification of variables and data types:

In [10]:

```
grad_adm_data.shape
```

Out[10]:

(500, 8)

```
In [11]:
```

3

4

5

SOP

LOR

CGPA

```
grad_adm_data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 500 entries, 0 to 499
Data columns (total 8 columns):
     Column
                        Non-Null Count
 0
     GRE Score
                        500 non-null
                                        int64
 1
     TOEFL Score
                                        int64
                        500 non-null
 2
     University Rating 500 non-null
                                        int64
```

6 Research 500 non-null int64 7 Chance of Admit 500 non-null float64

500 non-null

500 non-null

500 non-null

dtypes: float64(4), int64(4)

memory usage: 31.4 KB

Analysing the basic metrics:

In [12]:

```
grad_adm_data.describe()
```

float64

float64

float64

Out[12]:

	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	C of
count	500.000000	500.000000	500.000000	500.000000	500.00000	500.000000	500.000000	500
mean	316.472000	107.192000	3.114000	3.374000	3.48400	8.576440	0.560000	0.
std	11.295148	6.081868	1.143512	0.991004	0.92545	0.604813	0.496884	0
min	290.000000	92.000000	1.000000	1.000000	1.00000	6.800000	0.000000	0.
25%	308.000000	103.000000	2.000000	2.500000	3.00000	8.127500	0.000000	0.
50%	317.000000	107.000000	3.000000	3.500000	3.50000	8.560000	1.000000	0.
75%	325.000000	112.000000	4.000000	4.000000	4.00000	9.040000	1.000000	0.
max	340.000000	120.000000	5.000000	5.000000	5.00000	9.920000	1.000000	0.
4								•

In [13]:

```
def missingValue(df):
    #Identifying Missing data.
    total_null = df.isnull().sum().sort_values(ascending=False)
    percent=((df.isnull().sum()/len(df))*100).sort_values(ascending=False)
    print(f"Total records in our data = {df.shape[0]} where missing values are as follows:"
    missing_data=pd.concat([total_null,percent.round(2)],axis=1,keys=['Total Missing','In P return missing_data
```

In [14]:

```
missingValue(grad_adm_data)
```

Total records in our data = 500 where missing values are as follows:

Out[14]:

	Total Missing	In Percent
GRE Score	0	0.0
TOEFL Score	0	0.0
University Rating	0	0.0
SOP	0	0.0
LOR	0	0.0
CGPA	0	0.0
Research	0	0.0
Chance of Admit	0	0.0

Summary:

No missing values present in the dataset

In [15]:

```
numerical_cols = ['GRE Score', 'TOEFL Score', 'University Rating', 'SOP', 'LOR ', 'CGPA', '
for i in numerical_cols:
    print(f" Unique value count in {i} is {grad_adm_data[i].nunique()}")

Unique value count in GRE Score is 49
Unique value count in TOEFL Score is 29
Unique value count in University Rating is 5
Unique value count in SOP is 9
Unique value count in LOR is 9
Unique value count in CGPA is 184
Unique value count in Research is 2
Unique value count in Chance of Admit is 61
```

In [16]:

```
characteristics_catg = ['University Rating', 'SOP', 'LOR ','Research']
for i in characteristics_catg:
    print(f" Unique values in {i} are {grad_adm_data[i].unique()}")

Unique values in University Rating are [4 3 2 5 1]
```

```
Unique values in University Rating are [4 3 2 5 1]
Unique values in SOP are [4.5 4. 3. 3.5 2. 5. 1.5 1. 2.5]
Unique values in LOR are [4.5 3.5 2.5 3. 4. 1.5 2. 5. 1.]
Unique values in Research are [1 0]
```

```
In [17]:
for i in characteristics catg:
    grad_adm_data[i] = grad_adm_data[i].astype("category")
grad_adm_data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 500 entries, 0 to 499
Data columns (total 8 columns):
    Column
                        Non-Null Count Dtype
_ _ _
    -----
                        -----
    GRE Score
0
                        500 non-null
                                        int64
 1
    TOEFL Score
                       500 non-null
                                        int64
 2
    University Rating 500 non-null
                                       category
 3
    SOP
                        500 non-null category
 4
    LOR
                        500 non-null
                                        category
 5
    CGPA
                        500 non-null
                                        float64
 6
    Research
                                        category
                        500 non-null
 7
    Chance of Admit
                        500 non-null
                                        float64
dtypes: category(4), float64(2), int64(2)
memory usage: 18.8 KB
In [18]:
grad_adm_data.select_dtypes('category').columns
Out[18]:
Index(['University Rating', 'SOP', 'LOR ', 'Research'], dtype='object')
In [19]:
list(grad_adm_data.select_dtypes('category').columns)
Out[19]:
['University Rating', 'SOP', 'LOR ', 'Research']
In [20]:
print(f"Columns with category datatypes (Categorical Features) are : \
{list(grad_adm_data.select_dtypes('category').columns)}")
print(f"Columns with integer and float datatypes (Numerical Features) are: \
{list(grad_adm_data.select_dtypes(['int64','float64']).columns)}")
Columns with category datatypes (Categorical Features) are : ['University Ra
ting', 'SOP', 'LOR', 'Research']
Columns with integer and float datatypes (Numerical Features) are: ['GRE Sco
```

Univariate Analysis:

re', 'TOEFL Score', 'CGPA', 'Chance of Admit ']

In [21]:

```
def outlier detect(df,colname,nrows=2,mcols=2,width=20,height=15):
   fig,ax=plt.subplots(nrows,mcols,figsize=(width,height))
   fig.set_facecolor("peachpuff")
   rows=0
   for var in colname:
        ax[rows][0].set_title("Boxplot for Outlier Detection ", fontweight="bold")
        plt.ylabel(var,fontsize=12)
        sns.boxplot(y=df[var],color='crimson',ax=ax[rows][0])
        #plt.subplot(nrows, mcols, pltcounter+1)
        sns.distplot(df[var],color='purple',ax=ax[rows][1])
        ax[rows][1].axvline(df[var].mean(),color='r',linestyle='--',label="Mean")
        ax[rows][1].axvline(df[var].median(),color='m',linestyle='-',label="Median")
        ax[rows][1].axvline(df[var].mode()[0],color='royalblue',linestyle='-',label="Mode")
        ax[rows][1].set_title("Outlier Detection ",fontweight="bold")
        ax[rows][1].legend({'Mean':df[var].mean(),'Median':df[var].median(),'Mode':df[var].
        rows+=1
   plt.show()
```

In [22]:

```
numerical_cols = ['GRE Score', 'TOEFL Score', 'CGPA', 'Chance of Admit ']
```

In [23]:

outlier_detect(grad_adm_data,numerical_cols,len(numerical_cols),2,14,30)

- The data for 'GRE Score', 'TOEFL Score', 'CGPA' is normally distibuted with no outliers present.
- The data for 'Chance of Admit' has a little skewness towards left, with a very negligible no. of outliers

In [24]:

```
# Frequency of each feature in percentage.
def cat_analysis(df, colnames, nrows=2,mcols=2,width=20,height=30,sortbyindex=False):
   fig,ax=plt.subplots(nrows,mcols,figsize=(width,height))
   fig.set facecolor(color='peachpuff')
    string="Frequency of "
   rows=0
   for colname in colnames:
        count=(df[colname].value_counts(normalize=True)*100)
        string+=colname + ' in (%)'
        if sortbyindex:
            count = count.sort_index()
        count.plot.bar(color=sns.color_palette("flare"),ax=ax[rows][0])
        ax[rows][0].set_ylabel(string,fontsize=14)
        ax[rows][0].set_xlabel(colname, fontsize=14)
        count.plot.pie(colors=sns.color_palette("flare"),autopct='%0.0f%%',textprops={'font
        #explode=[0.2 if colname{i}==min(colname) else 0]
        ax[rows][0].set_title("Frequency wise " + colname, fontweight="bold")
        string ="Frequency of "
        rows+=1
```

In [25]:

```
categorical_cols = ['University Rating', 'SOP', 'LOR ', 'Research']
```

In [26]:

```
(grad_adm_data['University Rating'].value_counts(normalize=True))
```

```
Out[26]:
```

```
3 0.324
2 0.252
4 0.210
5 0.146
1 0.068
Name: University Rating, dtype: float64
```

In [27]:

cat_analysis(grad_adm_data,categorical_cols,len(categorical_cols),2,14,30)

Data Preparation

```
In [28]:
```

```
grad_adm_data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 500 entries, 0 to 499
Data columns (total 8 columns):
#
     Column
                        Non-Null Count
                                        Dtype
     -----
     GRE Score
0
                        500 non-null
                                        int64
 1
     TOEFL Score
                        500 non-null
                                        int64
 2
     University Rating 500 non-null
                                        category
 3
     SOP
                        500 non-null
                                      category
 4
     LOR
                        500 non-null
                                        category
 5
     CGPA
                        500 non-null
                                        float64
 6
     Research
                        500 non-null
                                        category
     Chance of Admit
                        500 non-null
                                        float64
dtypes: category(4), float64(2), int64(2)
memory usage: 18.8 KB
In [29]:
grad_adm_data['GRE Score'].sort_values().head()
Out[29]:
       290
377
       290
117
168
       293
79
       294
       294
Name: GRE Score, dtype: int64
```

Backup of orginial dataset

```
In [30]:
```

```
grad_adm_data_new = grad_adm_data.copy()
```

```
In [31]:
grad_adm_data_new['GRE Score'].sort_values()
Out[31]:
377
       290
117
       290
168
       293
79
       294
272
       294
81
       340
84
       340
143
       340
384
       340
429
       340
Name: GRE Score, Length: 500, dtype: int64
In [32]:
bins = [290,300,310,320,330,340]
labels =["290-300","300-310","310-320","320-330","330-340"]
grad_adm_data_new['GRE Score bins'] = pd.cut(grad_adm_data_new['GRE Score'], bins, labels=1
In [33]:
grad_adm_data_new['TOEFL Score'].sort_values()
Out[33]:
368
        92
28
        93
79
        93
411
        94
347
        94
81
       120
97
       120
297
       120
143
       120
```

```
In [34]:
```

Name: TOEFL Score, Length: 500, dtype: int64

```
bins = [90,100,110,120]
labels =['90-100','100-110','110-120']
grad_adm_data_new['TOEFL Score bins'] = pd.cut(grad_adm_data_new['TOEFL Score'], bins,label
```

```
In [35]:
```

```
grad_adm_data_new['CGPA'].sort_values()
Out[35]:
58
       6.80
28
       7.20
464
       7.21
436
       7.23
348
       7.25
425
       9.86
203
       9.87
496
       9.87
       9.91
202
       9.92
143
Name: CGPA, Length: 500, dtype: float64
In [36]:
bins = [6.5,7.0,7.5,8.0,8.5,9.0,9.5,10.0]
labels =['6.5-7.0','7.0-7.5','7.5-8.0','8.0-8.5','8.5-9.0','9.0-9.5','Above 9.5']
grad_adm_data_new['CGPA bins'] = pd.cut(grad_adm_data_new['CGPA'], bins,labels=labels)
```

In [37]:

grad_adm_data_new

Out[37]:

	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit	GRE Score bins	TOEFL Score bins	CGPA bins
0	337	118	4	4.5	4.5	9.65	1	0.92	330- 340	110- 120	Above 9.5
1	324	107	4	4.0	4.5	8.87	1	0.76	320- 330	100- 110	8.5- 9.0
2	316	104	3	3.0	3.5	8.00	1	0.72	310- 320	100- 110	7.5- 8.0
3	322	110	3	3.5	2.5	8.67	1	0.80	320- 330	100- 110	8.5- 9.0
4	314	103	2	2.0	3.0	8.21	0	0.65	310- 320	100- 110	8.0- 8.5
495	332	108	5	4.5	4.0	9.02	1	0.87	330- 340	100- 110	9.0- 9.5
496	337	117	5	5.0	5.0	9.87	1	0.96	330- 340	110- 120	Above 9.5
497	330	120	5	4.5	5.0	9.56	1	0.93	320- 330	110- 120	Above 9.5
498	312	103	4	4.0	5.0	8.43	0	0.73	310- 320	100- 110	8.0- 8.5
499	327	113	4	4.5	4.5	9.04	0	0.84	320- 330	110- 120	9.0- 9.5

500 rows × 11 columns

In [38]:

grad_adm_data_new.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 500 entries, 0 to 499
Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	GRE Score	500 non-null	int64
1	TOEFL Score	500 non-null	int64
2	University Rating	500 non-null	category
3	SOP	500 non-null	category
4	LOR	500 non-null	category
5	CGPA	500 non-null	float64
6	Research	500 non-null	category
7	Chance of Admit	500 non-null	float64
8	GRE Score bins	498 non-null	category
9	TOEFL Score bins	500 non-null	category
10	CGPA bins	500 non-null	category

dtypes: category(7), float64(2), int64(2)

memory usage: 20.9 KB

```
In [39]:
```

```
#sns.lineplot(x='GRE Score bins',hue='University Rating',data=grad_adm_data_new,palette="ro
In [40]:
characteristics_catg = ['University Rating', 'SOP', 'LOR ','Research','GRE Score bins','CGP
```

Bi-Variate Analysis with Research

Categorical variables

```
In [41]:
```

```
def cat_bi_analysis(df,colname,depend_var,nrows=2,mcols=2,width=20,height=15):
   fig,ax=plt.subplots(nrows,mcols,figsize=(width,height))
   sns.set(style='white')
   fig.set_facecolor("peachpuff")
   string=" based Distribution"
   for var in colname:
        string= var + string
        sns.countplot(data=df,x=depend_var, hue=var, palette="hls",ax=ax[rows][0])
        sns.countplot(data=df, x=var, hue=depend_var, palette="hus1",ax=ax[rows][1])
        ax[rows][0].set_title(string, fontweight="bold",fontsize=14)
        ax[rows][1].set_title(string, fontweight="bold",fontsize=14)
        ax[rows][0].set_ylabel('count', fontweight="bold",fontsize=14)
        ax[rows][0].set_xlabel(var, fontweight="bold",fontsize=14)
        ax[rows][1].set_ylabel('count', fontweight="bold",fontsize=14)
        ax[rows][1].set_xlabel(var, fontweight="bold",fontsize=14)
        rows+=1
        string = " based Distribution"
   plt.show()
```

In [42]:

col_names = ['University Rating', 'SOP', 'LOR ','GRE Score bins','TOEFL Score bins','CGPA b
cat_bi_analysis(grad_adm_data_new,col_names,'Research',6,2,20,36)

Research criteria is predominantly useful because of following reasons:

- Students to Research papers have more chances of getting into Universities with top class ratings (4 & 5).
- Students with higher ratings in LOR and SOP are the students with most number of research paper publications.
- It shouldn't be surprising that the students with higher scores in academics (GRE, TOEFL and CGPA) are the one's who are actively publishing or had published Research papers in the past.

Multi-Variant Analysis:

Categorical variables and Numerical variables

```
In [43]:
```

```
def num_bi_analysis(df,colname,category,groupby,nrows=1,mcols=2,width=20,height=8):
    fig,ax=plt.subplots(nrows,mcols,figsize=(width,height),squeeze=False)
    fig.set_facecolor("peachpuff")
    rows=0
    for var in colname:
        sns.boxplot(x=category,y=var,data=df,ax=ax[rows][0])
        sns.lineplot(x=df[category],y=df[var],ax=ax[rows][1],hue=df[groupby])
        ax[rows][0].set_ylabel(var,fontweight="bold",fontsize=14)
        ax[rows][0].set_xlabel(category,fontweight="bold",fontsize=14)
        ax[rows][1].set_ylabel(var,fontweight="bold",fontsize=14)
        ax[rows][1].set_xlabel(category,fontweight="bold",fontsize=14)
        plt.show()
```

```
In [44]:
```

```
col_names = ['University Rating', 'SOP', 'LOR ', 'GRE Score bins', 'TOEFL Score bins', 'CGPA b
```

In [45]:

```
_ _ _
    -----
                      -----
                                     ----
0
    GRE Score
                      500 non-null
                                      int64
1
    TOEFL Score
                      500 non-null
                                      int64
2
    University Rating 500 non-null category
3
    SOP
                      500 non-null category
4
    LOR
                      500 non-null
                                      category
5
    CGPA
                       500 non-null
                                      float64
6
    Research
                      500 non-null
                                      category
7
    Chance of Admit
                      500 non-null
                                      float64
8
    GRE Score bins
                      498 non-null
                                      category
9
    TOEFL Score bins
                      500 non-null
                                      category
10 CGPA bins
                      500 non-null
                                      category
dtypes: category(7), float64(2), int64(2)
memory usage: 20.9 KB
```

Column Cleaning

In [46]:

```
grad_adm_data_new.columns
```

Out[46]:

In [47]:

```
grad_adm_data['LOR'] = grad_adm_data['LOR ']
grad_adm_data['Chance of Admit'] = grad_adm_data['Chance of Admit ']
grad_adm_data_new['LOR'] = grad_adm_data_new['LOR ']
grad_adm_data_new['Chance of Admit'] = grad_adm_data_new['Chance of Admit ']
```

In [48]:

```
col_num = [ 'Chance of Admit']
num_bi_analysis(grad_adm_data_new,col_num,"University Rating",'Research')

col_num = [ 'Chance of Admit']
num_bi_analysis(grad_adm_data_new,col_num,"SOP",'CGPA bins')

col_num = [ 'Chance of Admit']
num_bi_analysis(grad_adm_data_new,col_num,"LOR",'GRE Score bins')

col_num = [ 'Chance of Admit']
num_bi_analysis(grad_adm_data_new,col_num,"LOR",'TOEFL Score bins')

col_num = [ 'Chance of Admit']
num_bi_analysis(grad_adm_data_new,col_num,'Research',"CGPA bins")
```


In [49]:

```
grad_adm_data.columns
```

Out[49]:

In [50]:

```
grad_adm_data = grad_adm_data.drop('Chance of Admit ', axis = 1)
```

In [51]:

```
# Correlation between numerical variables

plt.figure(figsize=(10,5))
sns.heatmap(grad_adm_data.corr(method="pearson"),annot=True)
plt.yticks(rotation=360)
plt.xticks(rotation=45)
plt.show()
```


• As We can See Chance of Admit is highly Correlated with GRE Score, Toefl Score and CGPA

In [52]:

sns.pairplot(grad_adm_data,hue="Research")

Out[52]:

<seaborn.axisgrid.PairGrid at 0x1f38ad0d970>


```
In [53]:
```

```
grad adm data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 500 entries, 0 to 499
Data columns (total 9 columns):
     Column
                        Non-Null Count
 #
                                        Dtype
     -----
                        -----
 0
     GRE Score
                        500 non-null
                                        int64
 1
     TOEFL Score
                                        int64
                        500 non-null
 2
     University Rating 500 non-null
                                        category
 3
     SOP
                        500 non-null
                                        category
 4
     LOR
                        500 non-null
                                        category
 5
     CGPA
                        500 non-null
                                        float64
 6
     Research
                        500 non-null
                                        category
 7
     LOR
                        500 non-null
                                        category
 8
     Chance of Admit
                        500 non-null
                                        float64
dtypes: category(5), float64(2), int64(2)
memory usage: 19.6 KB
In [54]:
categorical_cols_int = ['University Rating','Research']
categorical_cols_float = ['SOP', 'LOR']
for i in categorical_cols_int:
    grad_adm_data[i] = grad_adm_data[i].astype("int64")
for i in categorical_cols_float:
    grad_adm_data[i] = grad_adm_data[i].astype("float64")
grad_adm_data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 500 entries, 0 to 499
Data columns (total 9 columns):
 #
     Column
                        Non-Null Count
                                        Dtype
     -----
                        -----
 0
     GRE Score
                        500 non-null
                                        int64
     TOEFL Score
                        500 non-null
 1
                                        int64
 2
     University Rating
                       500 non-null
                                        int64
 3
     SOP
                        500 non-null
                                        float64
 4
     LOR
                        500 non-null
                                        category
 5
     CGPA
                        500 non-null
                                        float64
 6
                        500 non-null
                                        int64
     Research
 7
     LOR
                        500 non-null
                                        float64
     Chance of Admit
 8
                        500 non-null
                                        float64
dtypes: category(1), float64(4), int64(4)
memory usage: 32.2 KB
In [55]:
grad_adm_data = grad_adm_data.drop('LOR ', axis = 1)
```

In [56]:

grad_adm_data.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 500 entries, 0 to 499
Data columns (total 8 columns):
```

#	Column	Non-Null Count	Dtype
0	GRE Score	500 non-null	int64
1	TOEFL Score	500 non-null	int64
2	University Rating	500 non-null	int64
3	SOP	500 non-null	float64
4	CGPA	500 non-null	float64
5	Research	500 non-null	int64
6	LOR	500 non-null	float64
7	Chance of Admit	500 non-null	float64

dtypes: float64(4), int64(4)

memory usage: 31.4 KB

In [57]:

```
sns.scatterplot(x="GRE Score",y="Chance of Admit",data=grad_adm_data,color='orange')
```

Out[57]:

<AxesSubplot:xlabel='GRE Score', ylabel='Chance of Admit'>

In [58]:

```
fig=plt.figure(figsize=(7,5))
fig.set_facecolor(color='peachpuff')
sns.regplot(x='GRE Score',y='Chance of Admit',color="g",data=grad_adm_data);
fig=plt.figure(figsize=(7,5))
fig.set_facecolor(color='peachpuff')
sns.regplot(x='TOEFL Score',y='Chance of Admit',color="y",data=grad_adm_data);
fig=plt.figure(figsize=(7,5))
fig.set_facecolor(color='peachpuff')
sns.regplot(x='CGPA',y='Chance of Admit',color="r",data=grad_adm_data);
fig=plt.figure(figsize=(7,5))
fig.set_facecolor(color='peachpuff')
sns.regplot(x='University Rating',y='Chance of Admit',color="g",data=grad_adm_data);
fig=plt.figure(figsize=(7,5))
fig.set_facecolor(color='peachpuff')
sns.regplot(x='Research',y='Chance of Admit',color="g",data=grad_adm_data);
```


EDA specific Observations and Inferences:

- By analyzing the distribution of ChanceOfAdmit, we can say that highest percentage of the getting admission at the university is between "0.6" & "1.0"
- By analyzing the distribution of Research, we can say that highest number of the students Research is "1".
- By analyzing the distribution of LOR, we can say that highest number of the Letter of recommendation (LOR) is between "2.5" & "4.5".
- By analyzing the distribution of SOP, we can say that highest number of the Statement of purpose is between "2.5" & "4.5".
- By analyzing the distribution of University Rating, we can say that highest number of the University rating is "2" & "3".
- By analyzing the distribution of TOEFLScore, we can say that highest number of the students TOEFLscore is "110" & "105". Highest TOEFLScore of students is between "99" & "115".
- By analyzing the distribution of GREScore, we can say that highest number of the students GREscore is "312" & "324". Highest GREScore of students is between "304" & "330".
- There is a strong positive relationship between GREScore and Chance Of Admit.
- There is a strong positive relationship between TOEFLScore and Chance Of Admit.
- There is a strong positive relationship between TOEFLScore and Chance Of Admit.
- We cant see any relationship between SOP and Chance Of Admit.
- · We cant see any relationship between LOR and Chance Of Admit.
- · We can see that the students with Research expericence has higher chance of getting an admit
- There is a strong relationship between UniversityRating and ChanceOfAdmit, but the university with higher rating tends to have a high chance of admit for students

Building Model with Linear Regression:

Assumptions made for Simple Linear Regression:

- **Linearity of residuals:** There needs to be a linear relationship between the dependent variable and independent variable(s).
- **Independence of residuals:** The error terms should not be dependent on one another (like in time-series data wherein the next value is dependent on the previous one). There should be no correlation between the residual terms. The absence of this phenomenon is known as Autocorrelation. There should not be any visible patterns in the error terms.

- **Normal distribution of residuals:** The mean of residuals should follow a normal distribution with a mean equal to zero or close to zero. This is done in order to check whether the selected line is actually the line of best fit or not. If the error terms are non-normally distributed, suggests that there are a few unusual data points that must be studied closely to make a better model.
- The equal variance of residuals: The error terms must have constant variance. This phenomenon is
 known as Homoscedasticity. The presence of non-constant variance in the error terms is referred to as
 Heteroscedasticity. Generally, non-constant variance arises in the presence of outliers or extreme leverage
 values.

Considerations of Multiple Linear Regression:

- All the four assumptions made for Simple Linear Regression still hold true for Multiple Linear Regression along with a few new additional assumptions.
- Linear Relationship should be present between input variables and target variables
 - We have already checked this in EDA
- **Multicollinearity:** It is the phenomenon where a model with several independent variables, may have some variables interrelated.
 - No Multicollinearity should be present among input variables. As Chance of Admit is highly Correlated with GRE Score, Toefl Score and CGPA, we will cross check which one to check after VIF.
- · Normal Distribution of target varaibles.
 - Checked this in EDA.
- Overfitting: When more and more variables are added to a model, the model may become far too complex and usually ends up memorizing all the data points in the training set. This phenomenon is known as the overfitting of a model. This usually leads to high training accuracy and very low test accuracy.
- **Feature Selection:** With more variables present, selecting the optimal set of predictors from the pool of given features (many of which might be redundant) becomes an important task for building a relevant and better model.

Hypothesis in Linear Regression

Once you have fitted a straight line on the data, you need to ask, "Is this straight line a significant fit for the data?" Or "Is the beta coefficient explain the variance in the data plotted?" And here comes the idea of hypothesis testing on the beta coefficient. The Null and Alternate hypotheses in this case are: H0: B1 = 0

HA: B1 ≠ 0

Assessing the model fit

Some other parameters to assess a model are: t statistic: It is used to determine the p-value and hence, helps in determining whether the coefficient is significant or not F statistic: It is used to assess whether the overall model fit is significant or not. Generally, the higher the value of the F-statistic, the more significant a model turns out to be.

In [59]:

```
grad_adm_data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 500 entries, 0 to 499
Data columns (total 8 columns):
     Column
                        Non-Null Count Dtype
0
     GRE Score
                        500 non-null
                                        int64
 1
    TOEFL Score
                        500 non-null
                                        int64
 2
    University Rating 500 non-null
                                        int64
 3
     SOP
                        500 non-null
                                        float64
 4
     CGPA
                        500 non-null
                                        float64
                        500 non-null
 5
                                        int64
     Research
 6
     LOR
                        500 non-null
                                        float64
     Chance of Admit
                        500 non-null
                                        float64
dtypes: float64(4), int64(4)
memory usage: 31.4 KB
```

Model 1

```
In [60]:
```

```
df_1 = grad_adm_data.copy()
```

In [61]:

```
df_1.head()
```

Out[61]:

	GRE Score	TOEFL Score	University Rating	SOP	CGPA	Research	LOR	Chance of Admit
0	337	118	4	4.5	9.65	1	4.5	0.92
1	324	107	4	4.0	8.87	1	4.5	0.76
2	316	104	3	3.0	8.00	1	3.5	0.72
3	322	110	3	3.5	8.67	1	2.5	0.80
4	314	103	2	2.0	8.21	0	3.0	0.65

In [62]:

```
df_1.columns
```

Out[62]:

Performing Linear Regression

Assigning the feature as X and trarget as Y

```
In [63]:
```

```
Y= df_1["Chance of Admit"]
```

In [64]:

Υ

Out[64]:

```
0.92
0
       0.76
1
2
       0.72
3
       0.80
       0.65
        . . .
495
       0.87
496
       0.96
497
       0.93
498
       0.73
499
       0.84
```

Name: Chance of Admit, Length: 500, dtype: float64

In [65]:

```
X= df_1.drop(["Chance of Admit"],axis =1)
```

In [66]:

Χ

Out[66]:

	GRE Score	TOEFL Score	University Rating	SOP	CGPA	Research	LOR
0	337	118	4	4.5	9.65	1	4.5
1	324	107	4	4.0	8.87	1	4.5
2	316	104	3	3.0	8.00	1	3.5
3	322	110	3	3.5	8.67	1	2.5
4	314	103	2	2.0	8.21	0	3.0
				•••			
495	332	108	5	4.5	9.02	1	4.0
496	337	117	5	5.0	9.87	1	5.0
497	330	120	5	4.5	9.56	1	5.0
498	312	103	4	4.0	8.43	0	5.0
499	327	113	4	4.5	9.04	0	4.5

500 rows × 7 columns

In [141]:

X_train_org, X_test_org, y_train_org, y_test_org = train_test_split(X, Y,test_size=0.20, ra

In [143]:

```
X_train_org.shape, X_test_org.shape, y_train_org.shape, y_test_org.shape
```

Out[143]:

```
((400, 7), (100, 7), (400,), (100,))
```

In [144]:

```
print(X.shape)
print(Y.shape)
X.head()
```

(500, 7) (500,)

Out[144]:

	GRE Score	TOEFL Score	University Rating	SOP	CGPA	Research	LOR
0	337	118	4	4.5	9.65	1	4.5
1	324	107	4	4.0	8.87	1	4.5
2	316	104	3	3.0	8.00	1	3.5
3	322	110	3	3.5	8.67	1	2.5
4	314	103	2	2.0	8.21	0	3.0

In [145]:

```
import statsmodels.api as sm
```

In [146]:

```
# Adding a constant to get an intercept
X_train_sm = sm.add_constant(X_train_org)

# Fitting the regression line using 'OLS'
lr = sm.OLS(y_train_org, X_train_sm).fit() #statsmodels.regression.linear_model
```

In [147]:

lr.summary()

Out[147]:

OLS Regression Results

Dep. Variable:	Chan	ce of Adm	it	R-squa	red:	0.817	
Model:		OLS	S Adj .	R-squa	red:	0.814	
Method:	Lea	st Square	S	F-statistic:			
Date:	Wed, 10) Aug 202	2 Prob	Prob (F-statistic): 2.27e-14			
Time:		20:18:4	8 Log	-Likelih	ood:	556.28	
No. Observations:		40	0		AIC:	-1097.	
Df Residuals:		39	2		BIC:	-1065.	
Df Model:			7				
Covariance Type:		nonrobus	st				
	coef	std err	t	P> t	[0.025	0.975]	
const	-1.2511	0.119	-10.551	0.000	-1.484	-1.018	
GRE Score	0.0015	0.001	2.626	0.009	0.000	0.003	
TOEFL Score	0.0031	0.001	3.148	0.002	0.001	0.005	
University Rating	0.0050	0.004	1.164	0.245	-0.003	0.013	
SOP	-0.0010	0.005	-0.195	0.845	-0.011	0.009	
CGPA	0.1234	0.011	10.993	0.000	0.101	0.145	
Research	0.0268	0.007	3.587	0.000	0.012	0.042	
LOR	0.0193	0.005	4.081	0.000	0.010	0.029	
Omnibus:	89.475	Durbin-\	<i>N</i> atson:	2.1	05		
Prob(Omnibus):	0.000 J	Jarque-Be	era (JB):	200.7	88		
Skew:	-1.139	Pı	rob(JB):	2.51e-	44		
Kurtosis:	5.618	Co	ond. No.	1.30e+	04		

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.3e+04. This might indicate that there are strong multicollinearity or other numerical problems.

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.3e+04. This might indicate that there are strong multicollinearity or other numerical problems.

In [148]:

```
# skLearn.Linear_model -- just another way of getting r2 value
final_model = LinearRegression()
final_model.fit(X_train_org,y_train_org)
final_model.score(X_train_org,y_train_org)
```

Out[148]:

0.8171827660479396

Performing predictions on the test set

```
In [149]:
```

```
# Add a constant to X_test
X_test_sm = sm.add_constant(X_test_org)
# Predict the y values corresponding to X_test_sm using stats model mased approach
y_pred = lr.predict(X_test_sm)
```

In [150]:

```
type(lr), type(final_model)
```

Out[150]:

(statsmodels.regression.linear_model.RegressionResultsWrapper, sklearn.linear_model._base.LinearRegression)

Observations:

- Adding constant to X_test then predicting y_pred using final_model (sklearn) is giving an error as size 7 (orginal) is different from 8 (after adding constant) and hence we will use Ir (stats model) to predict y_pred.
- Also, the reason to use stats model is that we don't have to check the normality of input varaiables.

Testing the assumptions of the linear regression model:

1. Multicollinearity check by VIF score:

In [153]:

```
# Check for the VIF values of the feature variables.
from statsmodels.stats.outliers_influence import variance_inflation_factor

# Calculate the VIFs for the new model

def getVIF(X_train):
    vif = pd.DataFrame()
    X = X_train
    vif['Features'] = X.columns
    vif['VIF'] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
    vif['VIF'] = round(vif['VIF'], 2)
    vif = vif.sort_values(by = "VIF", ascending = False)
    return(vif)
```

In [154]:

```
getVIF(X_train_sm)
```

Out[154]:

	Features	VIF
0	const	1519.68
5	CGPA	4.81
1	GRE Score	4.77
2	TOEFL Score	3.89
4	SOP	2.77
3	University Rating	2.56
7	LOR	2.02
6	Research	1.50

Observations from Multicollinearity check:

- All features have VIF < 5
- The problem is we have not considered the some numerical varaiables disguised as categorical varaibles— We will deal with this in next model

Residuals Analysis

In [155]:

```
from sklearn.metrics import mean_absolute_error,r2_score,mean_squared_error,mean_absolute_p
#R-squared value
print("R2 score of the model is ",r2_score(y_test_org,y_pred))

#MAE value
print("mean_absolute_error of the model is ",mean_absolute_error(y_test_org,y_pred))

#RMSE value
print( "Root mean squared error of the model is ",np.sqrt( mean_squared_error( y_test_org,
#MAPE value
print("Mean absolute percentage error of the model is ", mean_absolute_percentage_error(y_test_org)
```

R2 score of the model is 0.8305208734305358
mean_absolute_error of the model is 0.04414761591573461
Root mean squared error of the model is 0.057314907809177654
Mean absolute percentage error of the model is 0.06666612045380146

Final Predictions using original test data and calculating residuals

```
In [81]:
```

```
y_preds = lr.predict(X_test_sm)
errors = y_test_org - y_preds
```

2. The mean of residuals is nearly zero

```
In [82]:
```

```
np.mean(errors)
```

Out[82]:

0.014724738335377853

3. Linearity of variables

No pattern in the residual plot

In [83]:

```
# Plotting y_test and y_pred to understand the spread.
fig = plt.figure()
plt.scatter(y_test_org,y_pred)
fig.suptitle('y_test_org vs y_pred', fontsize=20)  # Plot heading
plt.xlabel('y_test_org', fontsize=18)  # X-label
plt.ylabel('y_pred', fontsize=16)
```

Out[83]:

Text(0, 0.5, 'y_pred')

4. Test for Homoscedasticity

In [84]:

```
fig = plt.figure(figsize=(12,8))
fig = sm.graphics.plot_regress_exog(lr, 'CGPA', fig=fig)
```

eval_env: 1

In [85]:

```
sns.scatterplot(y_preds,errors)
plt.xlabel("Predicted chances of admit")
plt.ylabel("Residuals")
plt.title("Predicted values vs Residuals")
```

Out[85]:

Text(0.5, 1.0, 'Predicted values vs Residuals')

5. Normality of residuals

· Left skewed distribution

In [86]:

```
sns.histplot(errors, kde = True, color = 'orange')
```

Out[86]:

<AxesSubplot:ylabel='Count'>

In [87]:

```
sm.qqplot(errors, line = 's')
plt.show()
```


Observations for Model 1:

Here are some key statistics from the summary:

- The coefficient for TOEFL Score is 0.0032, with a very low p-value (0.002). The coefficient is statistically significant. So the association is not purely by chance. Along with TOEFL Score, other scores are GRE Score, Research and CGPA.
- R squared is 0.83 Meaning that 83.0% of the variance in chance for admit is explained by all the input variables ('GRE Score', 'TOEFL Score', 'University Rating', 'SOP', 'CGPA','Research', 'LOR'). This is a decent R-squared value but the problem here is we have included all features (both numerical and categorical) which is not good for an ideal model. We will deal with this in further models.

- As we have not normalize the data, we have used stats model based approach to predit chance of admit
 and to calculate errors. In further models, we will use sklearn based approach where we will normalize the
 data.
- F-statistics has a very low p-value(2.27e-140 -practically low). Meaning that the model fit is statistically significant, and the explained variance isn't purely by chance.
- Strong multicollinearity or other numerical problems present. So we will be using VIF to detect and solve this problem.
- Observations from Multicollinearity check:
 - All features have VIF < 5
 - The problem is we have not considered the some numerical varaiables disguised as categorical varaibles--We will deal with this in next model
- · Observations from Residual mean check:
 - The mean of residuals is nearly zero (0.01)
- Observations from Linearity of variables check:
 - As there's a clear linear relationship between predicted values and given values for chance of admit,
 we can say that the variance of both the values is similar
- · Observations from test for Homoscedasticity check:
 - No pattern in the residual plot
- Observations from Normality of residuals check:
 - A little Left skewed distribution.

Model 2

Assumptions for Linear Regression:

All the four assumptions made for Simple Linear Regression still hold true for Multiple Linear Regression along with a few new additional assumptions.

- Linear Relationship should be present between input variables and target variables
 - We have already checked this in EDA
- Multicollinearity: It is the phenomenon where a model with several independent variables, may have some variables interrelated. -No Multicollinearity should be present among input variables. As Chance of Admit is highly Correlated with GRE Score, Toefl Score and CGPA, we will cross check which one to check after VIF.
- · Normal Distribution of target varaibles.
 - Checked this in EDA.
- **Overfitting:** When more and more variables are added to a model, the model may become far too complex and usually ends up memorizing all the data points in the training set. This phenomenon is known as the overfitting of a model. This usually leads to high training accuracy and very low test accuracy.
- **Feature Selection:** With more variables present, selecting the optimal set of predictors from the pool of given features (many of which might be redundant) becomes an important task for building a relevant and better model.

In [88]:

```
# One hot encoding to convert categorical features to numerical features.

df_2 = pd.get_dummies(grad_adm_data, columns = ['SOP', 'LOR', 'University Rating', 'Researc'
```

```
In [89]:
df 2.columns
Out[89]:
Index(['GRE Score', 'TOEFL Score', 'CGPA', 'Chance of Admit', 'SOP_1.5',
        'SOP_2.0', 'SOP_2.5', 'SOP_3.0', 'SOP_3.5', 'SOP_4.0', 'SOP_4.5', 'SOP_5.0', 'LOR_1.5', 'LOR_2.0', 'LOR_2.5', 'LOR_3.0', 'LOR_3.5',
        'LOR_4.0', 'LOR_4.5', 'LOR_5.0', 'University Rating_2',
        'University Rating_3', 'University Rating_4', 'University Rating_5',
        'Research_1'],
      dtype='object')
In [90]:
df_train, df_test = train_test_split(df_2, train_size = 0.8, random_state = 100)
In [91]:
df_train.shape, df_test.shape
Out[91]:
((400, 25), (100, 25))
OBS: We have converted all the unique values in categorical columns to one hot encoded values.
Performing Linear Regression
Model Corrections - 2.1
In [92]:
X_train = df_train
y_train = df_train.pop('Chance of Admit')
In [93]:
X_{test} = df_{test}
y_test = df_test.pop('Chance of Admit')
In [94]:
print( X_train.shape )
print( X_test.shape )
print( y_train.shape )
print( y_test.shape )
(400, 24)
(100, 24)
(400,)
(100,)
```

In [95]:

```
import statsmodels.api as sm
# Adding a constant to get an intercept
X_train_sm = sm.add_constant(X_train)

# Fitting the regression line using 'OLS'
lr = sm.OLS(y_train, X_train_sm).fit() #statsmodels.regression.linear_model

# Printing the parameters,i.e. intercept and slope of the regression line obtained
lr.params
```

Out[95]:

const	-1.223134
GRE Score	0.001439
TOEFL Score	0.003206
CGPA	0.124173
SOP_1.5	0.000809
SOP_2.0	0.006515
SOP_2.5	0.028547
SOP_3.0	0.017773
SOP_3.5	0.011582
SOP_4.0	0.012419
SOP_4.5	0.019126
SOP_5.0	0.014784
LOR_1.5	0.007156
LOR_2.0	0.031433
LOR_2.5	0.055998
LOR_3.0	0.043623
LOR_3.5	0.056081
LOR_4.0	0.067965
LOR_4.5	0.074233
LOR_5.0	0.093998
University Rating_2	-0.018473
University Rating_3	-0.013666
University Rating_4	-0.011481
University Rating_5	0.004601
Research_1	0.027252
J4 C1 4 C 4	

dtype: float64

In [96]:

#Performing a summary operation lists out all different parameters of the regression line f
print(lr.summary())

OLS Regression Results					
=======================================	=========	======	=========	:=======	=======
Dep. Variable: 22	Chance of	Admit R	-squared:		0.8
Model: 11		OLS A	dj. R-squared:		0.8
Method: 26	Least Sq	uares F	-statistic:		72.
Date: 25	Wed, 10 Aug	2022 P	rob (F-statist	cic):	9.47e-1
Time:	18:	30:58 L	og-Likelihood:		561.
No. Observations:		400 A	IC:		-107
Df Residuals:		375 B	IC:		-97
4.0 Df Model:		24			
Covariance Type:		obust			
=======================================	========	======	========	========	=======
•	coef	std err	t	P> t	[0.025
0.975]					
const -0.951	-1.2231	0.138	-8.837	0.000	-1.495
GRE Score	0.0014	0.001	2.416	0.016	0.000
0.003					
TOEFL Score 0.005	0.0032	0.001	3.174	0.002	0.001
CGPA	0.1242	0.012	10.775	0.000	0.102
0.147	0.0008	0.040	0.020	0.984	-0.078
SOP_1.5 0.080	0.0008	0.040	0.020	0.904	-0.076
SOP_2.0	0.0065	0.039	0.168	0.867	-0.070
0.083 SOP_2.5	0.0285	0.040	0.715	0.475	-0.050
0.107 SOP_3.0	0.0178	0.040	0.448	0.655	-0.060
0.096 SOP_3.5	0.0116	0.040	0.288	0.774	-0.068
0.091					
SOP_4.0 0.092	0.0124	0.041	0.306	0.760	-0.067
SOP_4.5 0.101	0.0191	0.042	0.461	0.645	-0.063
SOP_5.0	0.0148	0.043	0.345	0.730	-0.069
0.099 LOR_1.5	0.0072	0.073	0.099	0.921	-0.135
0.150 LOR_2.0	0.0314	0.072	0.434	0.664	-0.111
0.174 LOR_2.5	0.0560	0.071	0.785	0.433	-0.084
0.196 LOR_3.0	0.0436	0.072	0.605	0.546	-0.098

0.185					
LOR_3.5	0.0561	0.07	2 0.77	6 0.438	-0.086
0.198					
LOR_4.0	0.0680	0.07	2 0.94	0 0.348	-0.074
0.210					
LOR_4.5	0.0742	0.07	3 1.02	1 0.308	-0.069
0.217					
LOR_5.0	0.0940	0.07	3 1.28	4 0.200	-0.050
0.238					
University Ratin	g_2 -0.0185	0.01	5 -1.22	5 0.221	-0.048
0.011					
University Ratin	g_3 -0.0137	0.01	6 -0.85	3 0.394	-0.045
0.018					
University Ratin	g_4 -0.0115	0.01	8 -0.63	9 0.523	-0.047
0.024					
University Ratin	g_5 0.0046	0.02	0 0.22	6 0.821	-0.035
0.045					
Research_1	0.0273	0.00	8 3.56	7 0.000	0.012
0.042					
===========	=========	=======	=======	========	
==					
Omnibus:		83.034	Durbin-Wats	on:	2.1
43					
Prob(Omnibus):		0.000	Jarque-Bera	(JB):	182.6
75					
Skew:		-1.068	Prob(JB):		2.15e-
40			_		
Kurtosis:		5.529	Cond. No.		2.37e+
04					
==========	=========	=======	=======	========	========
==					

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.37e+04. This might indicate that there are

strong multicollinearity or other numerical problems.

Performing predictions on the test set

```
In [97]:
```

```
# Adding a constant to X_test
X_test_sm = sm.add_constant(X_test)

# Predicting the y values corresponding to X_test_sm
y_pred = lr.predict(X_test_sm)

y_pred.head()
```

Out[97]:

```
69 0.857917
29 0.460663
471 0.620067
344 0.434422
54 0.646538
dtype: float64
```

Multicollinearity check by VIF score:

In [98]:

```
# Check for the VIF values of the feature variables.
from statsmodels.stats.outliers_influence import variance_inflation_factor

# Calculate the VIFs for the new model

def getVIF(X_train):
    vif = pd.DataFrame()
    X = X_train
    vif['Features'] = X.columns
    vif['VIF'] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
    vif['VIF'] = round(vif['VIF'], 2)
    vif = vif.sort_values(by = "VIF", ascending = False)
    return(vif)
```

In [99]:

getVIF(X_train_sm)

Out[99]:

	Features	VIF
0	const	2036.62
15	LOR_3.0	87.66
17	LOR_4.0	82.94
16	LOR_3.5	81.89
18	LOR_4.5	65.67
14	LOR_2.5	50.90
13	LOR_2.0	44.44
19	LOR_5.0	44.29
9	SOP_4.0	25.60
8	SOP_3.5	24.32
7	SOP_3.0	23.63
10	SOP_4.5	21.06
6	SOP_2.5	19.18
5	SOP_2.0	13.80
12	LOR_1.5	13.63
11	SOP_5.0	12.27
4	SOP_1.5	7.76
22	University Rating_4	5.90
21	University Rating_3	5.89
23	University Rating_5	5.07
3	CGPA	4.99
1	GRE Score	4.90
20	University Rating_2	4.65
2	TOEFL Score	4.00
24	Research_1	1.54

Observations for Model 2.1:

As we can see, this code gives you a brief summary of the linear regression. Here are some key statistics from the summary:

- R squared is 0.822 Meaning that 82.2% of the variance in chance for admit is explained by all the input variables. This is a decent R-squared value.
- F-statistics has a very low p-value(practically low). Meaning that the model fit is statistically significant, and the explained variance isn't purely by chance.

- No significant drop in adjusted R squared as compared to previous model.
- · Strong multicollinearity exists
- features with p-value > 0.05 and VIF > 5 are :
 - 'SOP_1.5','SOP_2.0', 'SOP_2.5', 'SOP_3.0', 'SOP_3.5', 'SOP_4.0', 'SOP_4.5','SOP_5.0', 'LOR_1.5', 'LOR_2.0', 'LOR_2.5', 'LOR_3.0', 'LOR_3.5','LOR_4.0', 'LOR_4.5', 'LOR_5.0','University Rating_3', 'University Rating_4', 'University Rating_5'.
- Multicollinearity has been checked by VIF score and variables are dropped one-by-one till none has VIF>5
 for above.

Model Corrections - 2.2

```
In [100]:
```

```
df_2.columns
Out[100]:
```

```
In [101]:
```

```
#Dropping 'GRE Score' as there's a strong corelation between - 'GRE Score', 'TOEFL Score', # Dropping all features with p-value > 0.05 and VIF > 5
```

```
In [102]:
```

```
X_train1 = X_train[['TOEFL Score', 'CGPA', 'Research_1','University Rating_2']]
```

In [103]:

```
import statsmodels.api as sm
# Adding a constant to get an intercept
X_train_sm = sm.add_constant(X_train1)

# Fitting the regression line using 'OLS'
lr = sm.OLS(y_train, X_train_sm).fit() #statsmodels.regression.linear_model

# Printing the parameters,i.e. intercept and slope of the regression line obtained
lr.params
```

Out[103]:

```
const -1.109832
TOEFL Score 0.004614
CGPA 0.153467
Research_1 0.035551
University Rating_2 -0.009927
dtype: float64
```

In [104]:

#Performing a summary operation lists out all different parameters of the regression line f
print(lr.summary())

OLS Regression Results						
==						
Dep. Variable: 05	Chance of	Admit	R-s	squared:		0.8
Model:		0LS	Adj	j. R-squared:		0.8
03 Method:	Least S	quares	F-s	statistic:		40
6.7 Date:	Wed, 10 Au	g 2022	Pro	ob (F-statisti	c):	1.38e-1
38 Time:	18	3:33:41	Log	g-Likelihood:		543.
<pre>02 No. Observations:</pre>		400	AIC	: :		-107
<pre>6. Df Residuals:</pre>		395	BIC	: :		-105
6. Df Model:		4				
Covariance Type:		robust				
=======================================	=======			========		
0.975]	coef	std	err	t	P> t	[0.025
const	-1.1098	0.	064	-17.421	0.000	-1.235
-0.985 TOEFL Score	0.0046	0.	001	5.198	0.000	0.003
0.006 CGPA	0.1535	0.	009	16.756	0.000	0.135
0.171 Research_1	0.0356	0.	007	4.866	0.000	0.021
<pre>0.050 University Rating_2</pre>	-0.0099	0.	008	-1.274	0.203	-0.025
0.005 ========	=======	:=====	:====		======	========
==						
Omnibus: 97		79.874	Dur	bin-Watson:		2.0
Prob(Omnibus): 98		0.000	Jar	rque-Bera (JB)	:	156.4
Skew:		-1.081	Pro	ob(JB):		1.04e-
34 Kurtosis: 03		5.172	Cor	nd. No.		2.19e+
=======================================	=======	======			======	=======

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.19e+03. This might indicate that there are

strong multicollinearity or other numerical problems.

Performing predictions on the test set

In [105]:

```
X_test.columns
```

Out[105]:

In [106]:

```
X_train1.shape
```

Out[106]:

(400, 4)

In [107]:

```
X_test_sm[X_train1.columns]
```

Out[107]:

	TOEFL Score	CGPA	Research_1	University Rating_2
69	115	9.16	1	0
29	99	7.30	0	1
471	103	8.09	0	0
344	96	7.34	0	1
54	110	8.00	0	0
460	105	8.66	1	0
152	112	9.06	1	0
154	108	8.89	0	0
56	102	7.40	0	0
392	112	9.12	1	0

100 rows × 4 columns

In [108]:

```
# Adding a constant to X_test
X_test_sm = sm.add_constant(X_test)

X_test_new = X_test_sm[X_train_sm.columns]
# Predicting the y values corresponding to X_test_sm
y_pred = lr.predict(X_test_new)

y_pred.head()
```

Out[108]:

```
69 0.862071
29 0.457322
471 0.606944
344 0.449619
54 0.625429
dtype: float64
```

Testing the assumptions of the linear regression model:

1. Multicollinearity check by VIF score:

In [109]:

```
# Check for the VIF values of the feature variables.
from statsmodels.stats.outliers_influence import variance_inflation_factor

# Calculate the VIFs for the new model

def getVIF(X_train):
    vif = pd.DataFrame()
    X = X_train
    vif['Features'] = X.columns
    vif['VIF'] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
    vif['VIF'] = round(vif['VIF'], 2)
    vif = vif.sort_values(by = "VIF", ascending = False)
    return(vif)
```

In [110]:

```
getVIF(X_train_sm)
```

Out[110]:

	Features	VIF
0	const	413.62
2	CGPA	3.02
1	TOEFL Score	2.96
3	Research_1	1.35
4	University Rating_2	1.19

- Observations from Multicollinearity check:
 - All features have VIF < 5

■ The problem is we have not considered the some numerical varaiables disguised as categorical varaibles--We will deal with this in next model

Residuals Analysis

In [111]:

```
from sklearn.metrics import mean_absolute_error,r2_score,mean_squared_error,mean_absolute_p
#R-squared value
print("R2 score of the model is ",r2_score(y_test,y_pred))

#MAE value
print("mean_absolute_error of the model is ",mean_absolute_error(y_test,y_pred))

#RMSE value
print( "Root mean squared error of the model is ",np.sqrt( mean_squared_error( y_test, y_pr

#MAPE value
print("Mean absolute percentage error of the model is ", mean_absolute_percentage_error(y_test)
```

R2 score of the model is 0.811517854949051
mean_absolute_error of the model is 0.046343636819315526
Root mean squared error of the model is 0.06044280316240709
Mean absolute percentage error of the model is 0.06959650556889335

Final Predictions using original test data and calculating residuals

In [112]:

```
y_pred = lr.predict(X_test_new)
errors = y_test - y_pred
```

2. The mean of residuals is nearly zero

In [113]:

```
np.mean(errors)
```

Out[113]:

0.016978208743464795

3.Linearity of variables

In [114]:

```
# Plotting y_test and y_pred to understand the spread.
fig = plt.figure()
plt.scatter(y_test,y_pred)
fig.suptitle('y_test vs y_pred', fontsize=20)  # Plot heading
plt.xlabel('y_test', fontsize=18)  # X-label
plt.ylabel('y_pred', fontsize=16)
```

Out[114]:

Text(0, 0.5, 'y_pred')

4. Test for Homoscedasticity

In [116]:

```
fig = plt.figure(figsize=(12,8))
fig = sm.graphics.plot_regress_exog(lr, 'CGPA', fig=fig)
```

eval_env: 1

In [117]:

```
sns.scatterplot(np.arange(1,101,1),errors)
sns.lineplot(np.arange(1,101,1),errors.mean())
```

Out[117]:

<AxesSubplot:>

In [118]:

```
sns.scatterplot(y_preds,errors)
plt.xlabel("Predicted chances of admit")
plt.ylabel("Residuals")
plt.title("Predicted values vs Residuals")
```

Out[118]:

Text(0.5, 1.0, 'Predicted values vs Residuals')

5. Normality of residuals

In [119]:

```
sns.histplot(errors, kde = True, color = 'orange')
```

Out[119]:

<AxesSubplot:ylabel='Count'>

In [120]:

```
sm.qqplot(errors, line = 's')
plt.show()
```


The residuals looks normaly distributed

Observations for Model 2.2:

As we can see, this code gives you a brief summary of the linear regression. Here are some key statistics from the summary:

- R squared is 0.805 Meaning that 80.5% of the variance in chance for admit is explained by all the input variables. This is a decent R-squared value.
- F-statistics has a very low p-value(practically low). Meaning that the model fit is statistically significant, and the explained variance isn't purely by chance.
- No significant drop in adjusted R squared as compared to previous model.

- Strong multicollinearity still exists
- No features with p-value > 0.05 and VIF > 5
- Observations from Multicollinearity check:
 - All features have VIF < 5
- Observations from Residual mean check:
 - The mean of residuals is nearly zero (0.01)
- Observations from Linearity of variables check:
 - As there's a clear linear relationship between predicted values and given values for chance of admit, we can say that the variance of both the values is similar
- · Observations from test for Homoscedasticity check:
 - No pattern in the residual plot
- · Observations from Normality of residuals check:
 - The residuals looks nearly normally distributed

Model Corrections - 2.3

```
In [121]:
```

```
X_train2 = X_train[['CGPA','Research_1']]
```

In [122]:

```
import statsmodels.api as sm
# Adding a constant to get an intercept
X_train_sm = sm.add_constant(X_train2)

# Fitting the regression line using 'OLS'
lr = sm.OLS(y_train, X_train_sm).fit() #statsmodels.regression.linear_model

# Printing the parameters,i.e. intercept and slope of the regression line obtained
lr.params
```

Out[122]:

const -0.946642 CGPA 0.191245 Research_1 0.043043

dtype: float64

In [123]:

#Performing a summary operation lists out all different parameters of the regression line f print(lr.summary())

=========			Regressi		Results		=======
==							
Dep. Variable	:	Chance of A	Admit	R-sc	quared:		0.7
Model:			OLS	Adj.	R-squared:		0.7
Method:		Least Squ	iares	F-st	catistic:		74
6.5 Date:		Wed, 10 Aug	2022	Prob	(F-statistic):		3.02e-1
35 Time:		18:3	37:06	Log-	-Likelihood:		528.
51							
No. Observati 1.	ons:		400	AIC:	:		-105
Df Residuals:			397	BIC	:		-103
Df Model:			2				
Covariance Ty	pe:	nonro	_				
	======		======	====			=======
==	coof	std onn		+	P> t	[0 025	0.97
5]	coei	Stu en		Ĺ	P> C	[0.025	0.97
const	-0.9466	0.051	-18	.482	0.000	-1.047	-0.8
46 CGPA	0.1912	0.006	30	.992	0.000	0.179	0.2
03 Research_1	0.0430	0.007	5.	.840	0.000	0.029	0.0
58							
==							
Omnibus: 59		65	.845	Durb	oin-Watson:		2.0
Prob(Omnibus)	:	6	.000	Jaro	que-Bera (ЈВ):		118.2
52 Skew:		-6	.941	Prob	р(JB):		2.10e-
26 Kurtosis:		4	.886	Cond	d. No.		13
8.							
=======================================	======	=======	:=====:	====	===========		======
_							
Notes:	Frrors a	issume that t	he cov	arian	nce matrix of the	e errors	is corre

^[1] Standard Errors assume that the covariance matrix of the errors is corre ctly specified.

```
In [124]:
```

```
X_test.columns
```

Out[124]:

In [125]:

```
# Adding a constant to X_test
X_test_sm = sm.add_constant(X_test)
X_test_new1 = X_test_sm[X_train_sm.columns]
# Predicting the y values corresponding to X_test_sm
y_pred = lr.predict(X_test_new1)

y_pred.head()
```

Out[125]:

```
69 0.848201
29 0.449444
471 0.600527
344 0.457093
54 0.583315
dtype: float64
```

Testing the assumptions of the linear regression model (2.3):

1. Multicollinearity check by VIF score:

In [126]:

```
# Check for the VIF values of the feature variables.
from statsmodels.stats.outliers_influence import variance_inflation_factor

# Calculate the VIFs for the new model

def getVIF(X_train):
    vif = pd.DataFrame()
    X = X_train
    vif['Features'] = X.columns
    vif['VIF'] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
    vif['VIF'] = round(vif['VIF'], 2)
    vif = vif.sort_values(by = "VIF", ascending = False)
    return(vif)
```

In [127]:

```
getVIF(X_train_sm)
```

Out[127]:

	Features	VIF
0	const	249.93
1	CGPA	1.28
2	Research_1	1.28

- Observations from Multicollinearity check:
 - All features have VIF < 5

Model performance evaluation and Residuals Analysis

In [128]:

```
from sklearn.metrics import mean_absolute_error,r2_score,mean_squared_error,mean_absolute_p
#R-squared value
print("R2 score of the model is ",r2_score(y_test,y_pred))

#MAE value
print("mean_absolute_error of the model is ",mean_absolute_error(y_test,y_pred))

#RMSE value
print( "Root mean squared error of the model is ",np.sqrt( mean_squared_error( y_test, y_pred))

#MAPE value
print("Mean absolute percentage error of the model is ", mean_absolute_percentage_error(y_test))
```

R2 score of the model is 0.7924005722145115
mean_absolute_error of the model is 0.050028583149944475
Root mean squared error of the model is 0.06343406832938923
Mean absolute percentage error of the model is 0.0745103804105193

Final Predictions using original test data and calculating residuals

```
In [129]:
```

```
y_pred=lr.predict(X_test_new1)
errors=y_test-y_pred
```

2. The mean of residuals is nearly zero

In [130]:

np.mean(errors)

Out[130]:

0.020401593595412038

3.Test for Homoscedasticity

- No pattern in the residual plot

In [131]:

```
fig=plt.figure(figsize=(12,8))
fig=sm.graphics.plot_regress_exog(lr,'Research_1',fig=fig)
```

eval_env: 1

In [132]:

```
fig=plt.figure(figsize=(12,8))
fig=sm.graphics.plot_regress_exog(lr,'CGPA',fig=fig)
```

eval_env: 1

In [134]:

```
sns.scatterplot(np.arange(1,101,1),errors)
sns.lineplot(np.arange(1,101,1),errors.mean())
```

Out[134]:

<AxesSubplot:>

In [135]:

```
sns.scatterplot(y_preds,errors)
plt.xlabel("Predicted chances of admit")
plt.ylabel("Residuals")
plt.title("Predicted values vs Residuals")
```

Out[135]:

Text(0.5, 1.0, 'Predicted values vs Residuals')

4.Linearity of variables

- As there's a clear linear relationship between predicted values and given values for chance of admit, we can say that the variance of both the values is similar

In [136]:

```
# Plotting y_test and y_pred to understand the spread.
fig=plt.figure()
plt.scatter(y_test,y_pred)
fig.suptitle('y_test vs y_pred', fontsize=20)  # Plot heading
plt.xlabel('y_test',fontsize=18)  # X - Label
plt.ylabel('y_pred', fontsize=16)
```

Out[136]:

Text(0, 0.5, 'y_pred')

5. Normality of residuals

In [137]:

```
sns.histplot(errors,kde=True,color='orange')
```

Out[137]:

<AxesSubplot:ylabel='Count'>

In [138]:

```
sm.qqplot(errors,line='s')
plt.show()
```


Observations for Model 2.3

- If only GRE score is considered out of GRE, TOEFL and CGPA, we are getting less R2 value (0.65)
- If only TOEFL score is considered out of GRE, TOEFL and CGPA, we are getting R2 value (0.666)
- If only CGPA is considered out of GRE, TOEFL and CGPA, we are getting less R2 value (0.791) and ajusted R2 as (0.790), which concludes that **CGPA** is the best fit out of the three highly corelated features
- If we are not including 'University Rating_2' then R2 is not having any drop at all -> 0.790, so we will remove it from our input variable.
- If we are not including 'Research_1' then R2 is dropping to 0.75, so we will keep it as our input variable.
- F-statistics has a very low p-value(practically low). Meaning that the model fit is statistically significant, and the explained variance isn't purely by chance.
- No significant drop in adjusted R squared as compared to previous model.
- There's hardly any difference between the **R2(0.790)** and adjusted **R2(0.789)**. Meaning that 79% of the variance in chance for admit is explained by all the input variables (Research and CGPA). This is a decent R-squared value.

Observations from Multicollinearity check:

• All features have VIF < 5

Observations from Residual mean check:

• The mean of residuals is nearly zero (0.02)

Observations from Linearity of variables check:

• As there's a clear linear relationship between predicted values and given values for chance of admit, we can say that the variance of both the values is similar

Observations from test for Homoscedasticity check:

· No pattern in the residual plot

Observations from Normality of residuals check:

The distribution looks normal

Actionable Insights & Recommendations:

- Although GRE Score, TOEFL Score, CGPA, University Rating, Research publications, Statement of Purpose and Letter of Recommendation Strength helps in predicting chance of admit, the most important factors in graduate admissions are **CGPA and Research Publications**.
- As there's a strong corelation between GRE Score, TOEFL Score and CGPA, any one of these three can be used to give similar predictions along with the Research criterion.
- The Research criteria is predominantly useful because of following reasons:
 - Students to Research papers have more chances of getting into Universities with top class ratings (4 & 5).
 - Students with higher ratings in LOR and SOP are the students with most number of research paper publications.
 - It shouldn't be surprising that the students with higher scores in academics (GRE, TOEFL and CGPA) are the one's who are actively publishing or had published Research papers in the past.
- Everything students do in high school can impact their admissions outcomes. Grades matters a
 lot. However, during the model building phase I noticed that LOR (letter of recommendation) also is a
 strong feature which can be linked with student's behaiviour and extra curricular activities. There
 are factors outside student's control that have an impact on their chances as colleges and universities build
 each freshman class to include a diverse array of students, and that means selecting for diverse racial,
 economic, and personal backgrounds can be considered for getting a good LOR ratings which increases
 the chances of admission given the rest of the variables.