Politechnika Warszawska WYDZIAŁ MATEMATYKI I NAUK INFORMACYJNYCH

RAPORT

Laboratorium 4

 $Milosz\ Mazur$ Grupa A

Programowanie Matematyczne

23 listopada 2023

Oświadczenie

Oświadczam że niniejsza praca stanowiąca podstawę do oceny z przedmiotu Programowanie Matematyczne została przeze mnie wykonana samodzielnie.

Mitor Masur

Spis treści

1	Opis problemu	2
2	Opis rozwiązania	2
	2.1 Przekształcenie zadanie ZP do ZD	2
	2.2 Wybór zmiennych bazowych	3
	2.3 Rozwiązanie ZD	3
	2.3.1 Rozpoznawanie braku rozwiązania optymalnego	4
	2.4 Rozwiązania ZP z rozwiązania ZD	4
3	Przykłady obliczeniowe	4
	3.1 Zadanie posiadające rozwiązanie	4
	3.2 Zadanie nie posiadające rozwiązania	6
4	Porównanie algorytmów	8
\mathbf{B}_{i}	ibliografia	8

1 Opis problemu

Celem zadanie było rozwiązanie następującego problemu programowania liniowego (oznaczane póżniej jako zadanie prymalne ZP):

$$\min_{x} c^{T} x$$

$$\begin{cases} Ax \geqslant b \\ d \leqslant x \leqslant g \end{cases}$$

gdzie $c \in \mathbb{R}^n$, $b \in \mathbb{R}^m$, $A \in \mathbb{R}^{m \times n}$.

Do testów należało przyjąć $m=10,\,n=5$ oraz wylosować dowolne dane z określonych przedziałów:

- dla c oraz A wartości z przedziału [-5, 5]
- dla b wartości z przedziału [1, 1]
- \bullet dla d wartości z przedziału $[\mbox{-}30,\,\mbox{-}1]$
- \bullet dla g wartości z przedziału $[1,\,30]$

Zadanie należało rozwiązać zarówno wbudowaną funkcją $linprog \coprod jak$ i za pomocą zbudowania zadania dualnego ZD do zadania pierwotnego ZP własną implementacją algorytmu symplex.

2 Opis rozwiązania

Przedstawione zostaną kroki konieczne do rozwiązania zadania.

2.1 Przekształcenie zadanie ZP do ZD

Pierwszym krokiem będzie zapisanie naszego zadania w ogólnej postaci, włączymy nasze ograniczenia do nierówności w zadaniu:

$$\min_{x} c^{T} x$$

$$\begin{cases}
Ax \geqslant b \\
-x \geqslant -g \\
x \geqslant d
\end{cases}$$

$$x \in R$$

Korzystając z własności zadań dualnych przekształćmy powyższe do ZD.

$$\max_{y}[b^T, -g^T, d^T]y$$

$$\begin{cases} [A^T, -I, I]y = c \\ y \geqslant 0 \end{cases}$$

2.2 Wybór zmiennych bazowych

Korzystając z własności zadania, że w macierzy $A_D = [A^T, -I, I]$ znajdują się macierze jednostkowe możemy wybrać zmienne bazowe bez korzystania ze zmiennych sztucznych. Zatem zauważmy że jeśli i-ty element wektora $b_D = c$ jest dodatni to odpowiednią dla niego zmienną bazową jest zmienna y_{m+n+i} . Bowiem w kolumnie j = m+n+i znajduje się wektor zawierający same zera oraz 1 na i-tej pozycji.

Natomiast dla przypadku kiedy i-ty element wektora $b_D=c$ jest ujemny możemy przekształcić nasze zadanie tak by znalazła się równiez zmienna bazowa odpowiadające temu wierszowi. Jeśli przemnożymy i-ty wiersz macierzy $A_D=[A^T,-I,I]$ oraz i-ty element wektora $b_D=c$ przez -1 to otrzymamy zarówno to że teraz i-ty element wektora $b_D=c$ jest dodatni oraz możemy zanieść dla niego zmienną bazową. Zauważmy że w macierzy $A_D=[A^T,-I,I]$ po powyższej operacji w kolumnie j=m+i znajduje się wektor zawierający same zera oraz 1 na i-tej pozycji. Zatem zmienna bazowa dla tego elementu to y_{m+i} .

Przykładową startową macierz po takich rozwiązaniach możemy zaobserwować na rysunku 🖪

	xB cB	x1	x2	x 3	x4	x 5	ж6	x7	x8	ж9	x 10
fC	NaN NaN	2.5845	3.063	1.8191	1.8785	2.953	3.9721	2.5414	3.0013	3.9477	2.66
r1	11 -13.785	1.4527	-4.8422	2.8821	3.9753		-0.73419	4.3058	0.4137	-0.49944	1.69
r2	17 -20.797	0.54295	-4.7979	0.42229	-0.35012	3.3828	0.26586	-4.4879	-0.76956		-2.22
r3	18 -9.4471	-2.3236	4.9516	-3.7474	-0.65711	0.33307	0.26902	4.577	-4.5854		-1.06
r4 r5	19 -29.794 15 -7.1142	-1.7872 -2.297	0.68823 1.5906	0.39823 -0.17492	-4.6819 -4.3347	1.9191 1.7751	-1.1966 4.9259	2.107 -3.5671	0.89051 2.5838		1.53 -0.456
	NaN NaN	60.225	87.932	-0.17492	129.02	-206.89	2.6565	-46.654	8.7069		-9.48
z-c	Nan Nan	57.641	84.869	-25.548	127.14	-209.84	-1.3157	-49.195	5.7056		-12.1
x11	x12	x13	x14	x15	x16	x17	x1	В	x19	x20	В
13.785	-4.8362	-19.245	-23.175	-7.1142	-4.459	-20.79	7 -9.4	471 -	29.794	-22.342	NaN
1	0	0	0	0	-1		0	0	0	0	3.1724
0	-1	0	0	0	0		1	0	0	0	4.8565
0	0	-1	0	0	0		0	1	0	0	1.7398
0	0	0	-1	0	0	9	0	0	1	0	4.5367
0	0	0	0	1	0		0	0	0	-1	2.6559
10 505	20.797	9.4471	29.794	-7.1142	13.785	-20.79	7 -9.4	471 -	29.794	7.1142	-315.23
13.785		28.692	52.969	0	18.244		0	0	0	29.456	NaN

Rysunek 1: Przykład macierzy startowej

2.3 Rozwiązanie ZD

Rozwiązanie zadania dualnego uzyskujemy poprzez klasyczną implementację algorytmu symplex polegającą na zmaksymalizowanie funkcji celu poprzez doprowadzenie by wektor z-c był dodatni.

2.3.1 Rozpoznawanie braku rozwiązania optymalnego

Jeśli podczas któregoś kroku algorytm symplex rozwiązujący zadanie dualne nie będzie mógł wykonać kroku, to znaczy dla ujemnego elementu wektora z-c wszystkie elementy kolumny macierzy $A_D=[A^T,-I,I]$ będą niedodatnie, oznacza to że zadanie dualne jest nieograniczone, co implikuje również że zadanie prymalne nie posiada rozwiązania. Drugi warunek stopu to przekroczenie liczby iteracji przez algorytm (założono 50 możliwych iteracji).

2.4 Rozwiązania ZP z rozwiązania ZD

By przekształcić rozwiązanie ZD w rozwiązanie ZP skorzystamy z następujących własności zadaania dualnego.

W przypadku znalezienia punktu optymalnego, należy utworzyć rozwiązanie zadania prymalnego na podstawie rozwiązania dualnego. Wiemy, że jeżeli znamy rozwiązanie zadania prymalnego:

$$x = A_b^{-1}b$$

$$y = c_B^T A_b^{-1}$$

Znajdując odwrotność macierzy bazowej możemy z niej uzyskać zarówno rozwiązanie zadania prymalnego oraz zadania dualnego.

Macierz A_b^{-1} znajduje się w macierzy rozwiązania dualnego - są to kolumny odpowiadające zmiennym bazwowym przed pierwszym krokiem algorytmu symplex, zmienne, których kolumny tworzyły macierz jednostkową. Ponieważ w zadaniu dualnym wprowadzaliśmy modyfikacje, pozwalające na przeprowadzenie algorytmu sympleks, musimy tą macierz przekształcić, by móc otrzymać rozwiązanie prymalne. Przekształcenie polega na tym, że jeżeli w zadaniu dualnym przemnażaliśmy i-ty wiersz przez -1, to musimy przemnożyć w macierzy A_b^{-1} i-tą kolumnę przez -1. W ten sposób otrzymamy oryginalną odwrotność macierzy bazowej.

Zatem traktując nasze zadanie dualne, jako zadanie pierwotne, możemy z niego uzyskać rozwiązanie dualnego zadania, czyli naszego pierwotnego. Zatem wyliczając

$$x = c_{B_u}^T A_{b_u}^{-1}$$

otrzymamy rozwiązanie naszego zadania pierwotnego.

3 Przykłady obliczeniowe

Zaprezentowano ciekawe przypadki obliczeniowe

3.1 Zadanie posiadające rozwiązanie

Zaprezentowano zadanie posiadające rozwiązanie. Na rysunku 2 znajduje się tabela zadania dualnego przed pierwszą iteracją, natomiast na rysunku 3 znajduje się końcowa tabela zadania dualnego po wykonaniu algorytmu symplex. Rozwiązanie zadania dualnego zaprezentowano na rysunku 4.

Т	=

	xВ	сВ	x 1	x 2	x 3	x4	x 5	ж6	x 7	x 8	х9	x10
fC	NaN	NaN	2.8645	2.6183	4.7112	3.7876	1.9188	3.8444	4.5872	3.7381	1.5054	1.569
r1	16	-4.2964	2.0507	-0.20057	0.99578	-3.8045	3.342	2.9791	-2.6073	0.11928		-3.829
r2	12	-19.332	-2.4131	-0.17206	4.3894	0.88158	1.8666	-0.21524	1.6919	-1.5383	-3.4069	4.8
r3	18	-12.504	-3.9408	3.45	-2.0151	2.6294	-1.884	1.1901	-4.3137	-2.1881	-3.127	-4.96
r4	14	-19.434	3.506	4.4992	-3.4792	-1.8166	-4.9869	4.2385	-1.1026	3.5847	2.9162	3.12
r5	20	-19.003	-0.16335	2.8025	-1.2389				3.3904			
	NaN	NaN	22.084	-179.64	27.219			-152.94				
z-c	NaN	NaN	19.219	-182.26	22.508	-55.695	39.273	-156.78	-15.155	-72.671	64.194	-22.9
						(a)						
x 11		x 12	x 13	x14	x 15	x 16	x 17	x 1	8	x 19	x 20	В
	_					-	-					_
24.868	-1	9.332	-23.093	-19.434	-5.2026	-4.2964	-13.20	8 -12.	504 -5	.5746	-19.003	Nal
-1		0	0	0	0	1		0	0	0	0	2.955
0		1	0	0	0	0	-	1	0	0	0	4.70
0		0	-1	0	0	0		0	1	0	0	2.0574
0		0	0	1	0	0		0	0	-1	0	2.653
0		0	0	0	-1	0		0	0	0	1	4.6512
4.2964	-1	9.332	12.504	-19.434	19.003	-4.2964	19.33	2 -12.	504]	9.434	-19.003	-269.36
29.164		0	35.597	0	24.206	0	32.5	4	0 2	5.008	0	Nal

Rysunek 2: Początek algorytmu dla zadania dualnego

т =												
8×23 <u>tal</u>	ble											
	х В	сВ	x 1	x 2	x 3	x 4	x 5	ж6	x 7	x 8	x 9	x10
fC	NaN	NaN	2.8645	2.6183	4.7112	3.7876	1.918		4.5872	3.7381	1.5054	1.5696
r1	1	2.8645	1	0	0	0	-0.483	1 0	1.756	1.2002	1.4151	2.2676
r2	3	4.7112	0	0	1	0	-0.02273	5 0	0.97563	0.15145	-0.085238	2.4357
r3	6	3.8444	0	0	0	0	2.54	6 1	-0.061649	0.27506	-1.4608	-4.1326
r4	2	2.6183	0	1	0	0	-2.746	8 0	-0.057228	0.069533	0.96251	4.4598
r5	4	3.7876	0	0	0	1	0.993	7 0	1.842	0.86694	0.26462	-0.6048
z	NaN	NaN	2.8645	2.6183	4.7112	3.7876	4.868	8 3.8444	16.216	8.6746	1.5585	11.469
z-c	NaN	NaN	0	0	0	0	2.9	5 0	11.629	4.9365	0.053166	9.8996
							(a)					
x11	_	x12	x13	x14	x1	5	x16	x17	x18	x19	x20	В
-24.868		-19.332	-23.093	-19.434			-4.2964	-13.208	-12.504	-5.5746	-19.003	NaN
0.15922		.050469	0.25342	0.13249			-0.15922	-0.050469	-0.25342	-0.13249	0.090974	0.020296
0.068618		0.26753	0.11173	0.098276			0.068618	-0.26753	-0.11173	-0.098276	-0.0087088	1.0468
-0.36732		0.15429	-0.056752	-0.24166			0.36732	0.15429	0.056752	0.24166	0.33491	1.3926
0.30053		0.29705	-0.008412	0.37746			-0.30053	-0.29705	0.008412	-0.37746	-0.26278	0.30664
0.063149		.039256	0.12185	-0.112			0.063149	0.039256	-0.12185	0.112	0.32287	0.58252
0.39325		1.4409	1.4736	0.47754			-0.39325	-1.4409	-1.4736	-0.47754	2.042	13.353
25.261		20.773	24.567	19.911	3.	1606	3.9032	11.767	11.03	5.0971	21.045	NaN
							(b)					

Rysunek 3: Koniec algorytmu dla zadania dualnego

Rysunek 4: Rozwiązanie zadania dualnego

By otrzymać rozwiązanie zadania pierwotnego skorzystano z własności macierzy bazowej opisanych w 2.4 Na rysunku 5 zaprezentowano odwrotność macierzy bazowej jak, wektor c_{B_y} oraz uzyskane z nich rozwiązanie zadania prymalnego.

```
Macierz A_b^-1
A_b_1 =
   -0.1592 -0.0505 -0.2534 -0.1325
                                           0.0910
  -0.0686 -0.2675 -0.1117 -0.0983
0.3673 0.1543 0.0568 0.2417
                                          -0.0087
                                           0.3349
   -0.3005
            -0.2971
                       0.0084
                                -0.3775
                                           -0.2628
   -0.0631
             0.0393
                      -0.1218
                                 0.1120
                                           0.3229
Wektor c B
    2.8645
              4.7112
                        3.8444
                                 2.6183
                                            3.7876
BRD zadanie pierwotne
ZPx =
   -0.3933
            -1.4409 -1.4736 -0.4775
                                            2.0420
```

Rysunek 5: Rozwiązanie zadania prymalnego

3.2 Zadanie nie posiadające rozwiązania

Zaprezentowano zadanie nie posiadające rozwiązania. Na rysunku $\[6 \]$ znajduje się tabela zadania dualnego przed pierwszą iteracją, natomiast na rysunku $\[7 \]$ znajduje się końcowa tabela zadania dualnego po wykonaniu algorytmu symplex. Jak możemy zaobserwować na komunikacie końcowym znajdującym się na rysunku $\[8 \]$ kolumna 2 nie spełnia warunków ograniczoności, współczynnik z-c dla niej jest ujemny oraz wszystkie jej elementy również, co pokazuje że zadanie dualne jest nieograniczone, zatem zadanie prymalne nie ma rozwiązania.

-	

	xВ	сВ	x 1	x 2	ж3	x4	x 5	x 6	x 7	x 8	x 9	x10
fC	NaN	NaN	1.5744	1.899	3.4383	2.3459	1.9434	1.3529	4.3637	4.1743	1.3563	2.421
r1	16	-14.539	3.6318	2.2636	-1.3972	-1.1362	-1.7217	1.608	-2.5315	4.9311	-1.1444	-2.456
r2	17	-9.937	-2.4042	-1.6172	3.3405	-1.3424	-2.6905	0.81349	2.5527	-1.7053	-2.8333	-4.247
r3	13	-4.2739	1.3185	-4.2807	-0.93744	-3.3448	4.6275	-0.019082	-1.8141	2.4652	-3.0607	1.487
r4	19	-16.484	-3.1171	3.8401	1.5245	2.914	-4.223	1.8934	-3.56	0.56538	-2.0005	0.6648
r5	20	-5.5431	-3.4137	-4.7192	-3.3381	-0.32636	-3.6544	4.0556	2.1498	3.1961	2.7843	-3.727
Z	NaN	NaN	35.757	-35.688	-15.501	-2.0726	121.86	-85.073	65.96	-92.321	75.417	81.26
z-c	NaN	NaN	34.182	-37.587	-18.939	-4.4185	119.92	-86.426	61.597	-96.495	74.061	78.84

		- 40					- 40			_
x11	x12	x13	x14	x15	x16	x17	x18	x19	x20	В
-22.755	-2.8103	-4.2739	-8.8611	-26.261	-14.539	-9.937	-22.348	-16.484	-5.5431	NaN
-1	0	0	0	0	1	0	0	0	0	1.7977
0	-1	0	0	0	0	1	0	0	0	4.5494
0	0	1	0	0	0	0	-1	0	0	4.7403
0	0	0	-1	0	0	0	0	1	0	1.1966
0	0	0	0	-1	0	0	0	0	1	2.6574
14.539	9.937	-4.2739	16.484	5.5431	-14.539	-9.937	4.2739	-16.484	-5.5431	-126.06
27 204	12 747	0	25 245	21 004	0	0	26 622	0		Man

(b)

Rysunek 6: Początek algorytmu dla zadania dualnego

	жB	cB	x1	x2	x 3	x4	x 5	x 6	x7	x 8	x 9	x10
fC	NaN	NaN	1.5744	1.899	3.4383	2.3459	1.9434	1.3529	4.3637	4.1743	1.3563	2.4217
r1	8	4.1743	0.2616	-4.2744	0	-2.9929	3.135	0	0	1	-2.5256	0
r2	7	4.3637	-0.84942	-4.7062	0	-2.422	2.6946	0	1	0	-1.549	0
r3	10	2.4217	-1.1172	-3.6982	0	-1.6347	2.5374	0	0	0	-1.5843	1
r4	3	3.4383	-0.80144	-3.4065	1	-2.2152	2.1355	0	0	0	-2.8869	0
r5	6	1.3529	-2.284	-1.5029	0	0.23641	-0.71042	1	0	0	-0.33421	0
Z	NaN	NaN	-11.166	-61.081	3.4383	-34.318	37.371	1.3529	4.3637	4.1743	-31.517	2.4217
z-c	NaN	NaN	-12.74	-62.98	0	-36.664	35.428	0	0	0	-32.873	0
						(a)						
x11		x12	x 13	x14	x15	(a) *16	x 17	x	18	x19	x20	В
x11	_	x12	x13	x14	x15	. ,	x17	x	18	x19	x20	В
	_	x12 -2.8103	x13 	x14 	x15 -26.261	. ,			2.348	x19 -16.484	x20 	B ———
-22.755	_					x16	9 -9.9	937 -2	2.348			
-22.755).082173 0.28448	-(-2.8103 0.25322 0.23875	-4.2739 0.72395 0.59642	-8.8611 0.10752 0.13295	-26.261 -0.035391 -0.12978	-14.53 -0.08217 -0.2844	9 -9.9 3 0.253 8 0.238	937 -2 322 -0. 375 -0.	2.348 72395 59642	-16.484 -0.10752 -0.13295	-5.5431 0.035391 0.12978	NaN 4.4015 3.5878
-22.755	-(-2.8103 0.25322	-4.2739 0.72395	-8.8611 0.10752 0.13295 -0.053124	-26.261 -0.035391	-14.53 -0.08217 -0.2844 -0.3316	9 -9.9 3 0.253 8 0.238 8 0.0951	937 -2 322 -0. 375 -0.	2.348 72395 59642	-16.484 -0.10752	-5.5431 0.035391 0.12978 0.090319	NaN 4.4015 3.5878 2.9893
-22.755 .082173 0.28448	-(-(-0,	-2.8103 0.25322 0.23875 .095781	-4.2739 0.72395 0.59642	-8.8611 0.10752 0.13295 -0.053124 -0.053793	-26.261 -0.035391 -0.12978 -0.090319 0.019135	-14.53 -0.08217 -0.2844	9 -9.9 3 0.253 8 0.238 8 0.0951	937 -2 322 -0. 375 -0. 781 -0.	2.348 72395 59642 60043	-16.484 -0.10752 -0.13295	-5.5431 0.035391 0.12978 0.090319 -0.019135	NaN 4.4015 3.5878 2.9893 4.2881
-22.755 .082173 0.28448 0.33168 0.18709 0.24325	-(-0, -0,	-2.8103 0.25322 0.23875 .095781 0.35483	-4.2739 0.72395 0.59642 0.60043 0.63215 0.18543	-8.8611 0.10752 0.13295 -0.053124 -0.053793 -0.24831	-26.261 -0.035391 -0.12978 -0.090319 0.019135 -0.21714	*16 -14.53 -0.08217 -0.2844 -0.3316 -0.1870 -0.2432	9 -9.5 3 0.253 8 0.238 8 0.0957 9 0.354 5 0.0535	937 -2 322 -0. 375 -0. 781 -0. 483 -0. 965 -0.	2.348 72395 59642 60043 63215 18543	-16.484 -0.10752 -0.13295 0.053124 0.053793 0.24831	-5.5431 0.035391 0.12978 0.090319 -0.019135 0.21714	NaN 4.4015 3.5878 2.9893 4.2881 1.5614
-22.755 .082173 0.28448 0.33168 0.18709	-(-0, -0,	-2.8103 0.25322 0.23875 .095781	-4.2739 0.72395 0.59642 0.60043 0.63215	-8.8611 0.10752 0.13295 -0.053124 -0.053793	-26.261 -0.035391 -0.12978 -0.090319 0.019135	-14.53 -0.08217 -0.2844 -0.3316 -0.1870	9 -9.9 3 0.25 8 0.23 8 0.095 9 0.35 5 0.053 6 3.62	937 -2 322 -0. 875 -0. 781 -0. 483 -0. 965 -0.	2.348 72395 59642 60043 63215 18543 9.503	-16.484 -0.10752 -0.13295 0.053124 0.053793	-5.5431 0.035391 0.12978 0.090319 -0.019135	NaN 4.4015 3.5878 2.9893 4.2881

(b)

Rysunek 7: Koniec algorytmu dla zadania dualnego

```
Kolumna 2 spelnia warunki nieograniczonosci.
Zadanie nieograniczone.
x =
    []
ZPx =
    []
```

Rysunek 8: Komunika końcowy

4 Porównanie algorytmów

Zostały porównane funkcje linprog oraz własna implementacja algorytmu simplex rozwiązująca zadanie dualne oraz przekształcająca to rozwiązanie w rozwiązanie zadania prymalnego. W tabeli zaprezentowane są wyniki określające czy algorytmy uzyskiwały te same wyniki dla tego samego problemu. Przeprowadzono 1000 losowych symulaqcji. Z powodu naturalnego dla obliczeń numerycznych błędu zaokrągleń zastosowano następującą formułę porównania rozwiązań obu algorytmów:

$$abs(x_{linprog} - x_{symplex}) < eps$$

W obliczeniach przyjęto $eps = 10^{-5}$

Tabela 1: Porównanie algorytmów - 1000 symulacji

Przyj	padek	Liczba przypadków					
Linprog	Linprog Symplex						
Brak roz	Brak rozwiązania						
Brak rozwiązania	Rozwiązanie	0					
Rozwiązanie	Brak rozwiązania	0					
To samo r	ozwiązanie	332					
Różne ro	związania	0					

Możemy zauważyć że algorytmy zawsze uzyskiwały te same wyniki co dowodzi poprawności implementacji algorytmu symplex rozwiązującego zadanie dualne.

Bibliografia

 $[1] \ \, \text{Linprog Matlab} \ \, https://uk.mathworks.com/help/optim/ug/linprog.html$