

Analog Operations through Arduino

G V V Sharma*

Abstract—This manual shows how to use an arduino for measuring an unknown resistance by interfacing with a simple voltage divider circuit. This helps understand how to use the analog pins of the arduino. The principle can be readily applied for reading sensor data.

1 Components

Component	Value	Quantity
Resistor	220 Ohm	1
	1K	1
Arduino	Uno	1
Jumper Wires		20

TABLE I

2 Measuring the resistance

Problem 1. Connect the 5V pin of the Arduino to an extreme pin of the Breadboard shown in Fig. 1. Let this pin be V_{cc} .

Fig. 1: Breadboard

Problem 2. Connect the GND pin of the Arduino to the opposite extreme pin of the Breadboard.

Problem 3. Let R_1 be the known resistor and R_2 be the unknown resistor. Connect R_1 and R_2 in

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All material in this manual is released under GNU GPL. Free to use for anything.

Fig. 3: Voltage Divider

series such that R_1 is connected to GND and R_2 is connected to V_{cc} . Refer to Fig. 3

Problem 4. Connect the junction between the two resistors to the A0 pin on the Arduino.

Problem 5. Connect the arduino to the computer so that it is powered.

Problem 6. Open the Arduino IDE and type the following code. Open the *serial monitor* to view the output.

```
// Code released under GNU GPL.
Free to use for anything.
// Remove the following line if
you are using the Arduino IDE
#include "Arduino.h"

// Declarations
int V_out_q=0;
// V_out_q is the quantized voltage
float V_in = 5, V_out;
// V_in = V_cc
float R1=220,R2;
```

```
//R1 is known resistance
//R2 is unknown resistance
void setup()
//Get the result onto the serial
  monitor
  Serial.begin(9600);
void loop()
//V Out q is an integer between 0
  to 1023
V out q=analogRead(0); // reading
  from A0
//V out is the actual voltage at
  the junction of R1 and R2
V out = V in *V out q/1024;
R2 = R1*((V in)/(V out)-1.0);
delay (3000);
Serial.println(R2);
```

Problem 7. Now keep $R_1 = 1K$ and $R_2 = 220\Omega$ and verify by modifying the above code.

3 EXPLANATION

- 1) We create a variable called analogPin and assign it to 0. This is because the voltage value we are going to read is connected to analogPin A0.
- 2) The 10-bit ADC can differentiate 1024 discrete voltage levels, 5 volt is applied to 2 resistors and the voltage sample is taken in between the resistors. The value which we get from analogPin can be between 0 and 1023. 0 would represent 0 volts falls across the unknown resistor. A value of 1023 would mean that practically all 5 volts falls across the unknown resistor.
- 3) V_{out} represents the divided voltage that falls across the unknown resistor.
- 4) The Ohm meter in this manual works on the principle of the voltage divider shown in Fig.

3.

$$V_{out} = \frac{R_1}{R_1 + R_2} V_{in} (7.1)$$

$$\Rightarrow R_2 = R_1 \left(\frac{V_{in}}{V_{out}} - 1 \right) \tag{7.2}$$

In the above, $V_{in} = 5V$, $R_1 = 220\Omega$.