Recurrent Neural Networks

deep learning 3

$$\sigma(wx + b)$$

$$\sigma(wx + b)$$
Input

Linear

$$\sigma(wx+b)$$
Learnable

$$\hat{y} = \sigma(wx + b)$$
Prediction

$$\hat{y} = \sigma(wx + b)$$

Change w and b such that z is minimal

$$\hat{y} = \sigma(wx + b)$$

$$\frac{\partial z}{\partial w}$$
 $\frac{\partial z}{\partial b}$

How much do we need to change w and b

$$w \leftarrow w + \eta \frac{\partial z}{\partial w}$$
$$b \leftarrow b + \eta \frac{\partial z}{\partial b}$$

Update the weights

Universal approximation theorem

Any function can be approximated to arbitrary precision

Universal approximation theorem

- Any continuous function on a finite interval [a,b]
- Can be approximated to arbitrary precision
- By a shallow neural network $f_2 \circ \sigma \circ f_1$ where f are linear transformations and σ is a nonlinear transformation

Images

The curse of dimensionality

O(n²)

Width x Height

28x28

100x100

200x200

400x400

400x400

160.000

Width x Height	Features	Weights
28x28	784	614.656
100x100	10.000	100.000.000
200x200	40.000	1.600.000.000
400x400	160.000	25.600.000.000

	1		
1	-1	1	
	-1		
	1	-1	

0	0	0
0	1	0
0	0	0

0	1	0	0	0
1	-1	1	0	0
0	0	0	0	0
0	-1	0	0	0
0	1	-1	0	0

0	0	0
0	1	0
0	0	0

0	1	0	0	0
1	-1	1	0	0
0	0	0	0	0
0	-1	0	0	0
0	1	-1	0	0

0	0	0
0	1	0
0	0	0

0	1	0	0	0
1	-1	1	0	0
0	0	0	0	0
0	-1	0	0	0
0	1	-1	0	0

0	0	0
0	1	0
0	0	0

-1	

0	1	0	0	0
1	-1	1	0	0
0	0	0	0	0
0	-1	0	0	0
0	1	-1	0	0

0	0	0
0	1	0
0	0	0

-1	1	

0	1	0	0	0
1	-1	1	0	0
0	0	0	0	0
0	-1	0	0	0
0	1	-1	0	0

0	0	0
0	1	0
0	0	0

-1	1	0

0	1	0	0	0
1	-1	1	0	0
0	0	0	0	0
0	-1	0	0	0
0	1	-1	0	0

0	0	0
0	1	0
0	0	0

-1	1	0
0		

0	1	0	0	0
1	-1	1	0	0
0	0	0	0	0
0	-1	0	0	0
0	1	-1	0	0

0	0	0
0	1	0
0	0	0

-1	1	0
0	0	

0	1	0	0	0
1	-1	1	0	0
0	0	0	0	0
0	-1	0	0	0
0	1	-1	0	0

0	0	0
0	1	0
0	0	0

-1	1	0
0	0	0

0	1	0	0	0
1	-1	1	0	0
0	0	0	0	0
0	-1	0	0	0
0	1	-1	0	0

0	0	0
0	1	0
0	0	0

-1	1	0
0	0	0
-1		

0	1	0	0	0
1	-1	1	0	0
0	0	0	0	0
0	-1	0	0	0
0	1	-1	0	0

O	0	0
0	1	0
0	0	0

-1	1	0
0	0	0
-1	0	

0	1	0	0	0
1	-1	1	0	0
0	0	0	0	0
0	-1	0	0	0
0	1	-1	0	0

0	0	0
0	1	0
0	0	0

-1	1	0
0	0	0
-1	0	0

0	1	0	0	0
1	-1	1	0	0
0	0	0	0	0
0	-1	0	0	0
0	1	-1	0	0

0	0	0
0	1	0
0	0	0

Identity kernel

-1	1	0
0	0	0
-1	0	0

0	1	0	0	0
1	-1	1	0	0
0	0	0	0	0
0	-1	0	0	0
0	1	-1	O	0

\mathcal{W}	W	W
\mathcal{W}	\overline{w}	\overline{w}
W	W	\mathcal{W}

Learnable

ŷ	ŷ	ŷ
ŷ	ŷ	ŷ
ŷ	ŷ	ŷ

Neural networks

Convolutions

Deep neural networks

Deep neural networks

Deep neural networks

Timeseries

Motivation

A lot of data is sequential, varying over time:

- Sentences
- Music
- EEG
- Movement
- Markets

Motivation

With sequences, the past offers context:

- Ik krijg geld van de bank
- Ik wil een nieuwe bank aanschaffen

We need the past to make sense of the future.

Data considerations

We need to worry about:

- How much of the <u>past</u> will we need (window)
- How much of the future do we want to predict (horizon)
- How to prepare the data without leaking data

For the last point, we need to be very careful not to "leak" the future back into the present.

History of RNNs

- 1982 RNN are discovered by John Hopfield
- 1995 The LSTM architecture was proposed with input and output gates
- 1999 Forget gates were added
- 2009 LSTM won the handwriting recognition competition
- 2013 LSTM outperformed other models at natural speech recognition
- 2014 GRU architecture was introduced
- 2017 probabilistic forecasting (DeepAR, MQRNN, TFT)

Temporal Fusion Transformer, Lim et al. (2021)

Hidden states

State

- A state gives context to new input
- Influences which elements of the input requires attention, and which elements can be ignored
- New input can change the state, such that attention is shifted to other elements of the input

Concatenation

Concatenation

0	1	0	0	0
1	-1	1	0	0
0	0	0	0	0
0	-1	0	0	0
0	1	-1	0	0

Previous state

 h_{t-1}

1 1 -1 0 1

 \mathcal{X}

Concatenation

0	1	0	0	0
1	-1	1	0	0
0	0	0	0	0
0	-1	0	0	0
0	1	-1	0	0

$$h_{t-1}$$

1 1 -1 0 1	
------------	--

0	1	0	0	0
1	-1	1	0	0
0	0	0	0	0
0	-1	0	0	0
0	1	-1	0	0
1	1	-1	0	1

$$[x_t, h_{t-1}]$$

New state

$$y = \sigma (WX + b)$$

 $h_t = \sigma\left(W_x X_t + W_h h_{t-1} + b\right) \qquad \qquad \text{Slower}$ Equivalent output $h_t = \sigma\left(W\left[X_t, h_{t-1}\right] + b\right) \qquad \qquad \text{Faster}$

RNN

RNN

RNN

RNN
$$\hat{y}_{t}$$

$$\uparrow$$

$$h_{t-1} \longrightarrow \sigma\left(w\left[x_{t}, h_{t-1}\right] + b\right) \longrightarrow h_{t}$$

$$\mathcal{X}_{4}$$

$$\hat{y}_t$$

$$\hat{y}_{t+1}$$

$$h_{t-1} \longrightarrow \sigma\left(w\left[x_{t}, h_{t-1}\right] + b\right) \longrightarrow h_{t} \longrightarrow \sigma\left(w\left[x_{t+1}, h_{t}\right] + b\right) \longrightarrow h_{t+1}$$

$$x_t$$

$$[y_1, y_2, ..., y_T]$$

$$\uparrow$$

$$[x_1, x_2, ..., x_T]$$

The art of forgetting

RNNs have not explicit way to forget or retain memory.

We can make this a bit more advanced by adding gates.

A gate Γ controls

- what part of the past we retain
- what part we forget.

GRU - Remember & forget Gated Residual Unit

We need to be able to:

- Remember the past, and completely ignore the new state
- Forget the past, and focus on the present
- Something in between where we find a ratio between forgetting and remembering.

We also want to gate to be influenced by both the new input and the old state.

0	1	0	0
1	-1	1	0
0	0	0	0
0	-1	0	0

0	1	0	O
1	-1	1	0
0	0	0	0
0	-1	0	0

0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

0	1	0	0
1	-1	1	0
0	0	0	0
0	-1	0	0

 Same shape as X

0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

X

 \otimes

0	1	0	0
1	-1	1	0
0	0	0	0
0	-1	0	0

0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

X

Γ

Gate

0	1	0	0
1	-1	1	0
0	0	0	0
0	-1	0	0

0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

X

 \otimes

Y

0	1	0	0
1	-1	1	0
0	0	0	0
0	-1	0	0

0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

X

 \otimes

Y

0	1	0	0
1	-1	1	0
0	0	0	0
0	-1	0	0

1	1	1	1
1	1	1	1
1	1	1	1
1	1	1	1

X

O	1	0	0
1	-1	1	0
0	0	0	0
0	-1	0	0

1	1	1	1
1	1	1	1
1	1	1	1
1	1	1	1

0	1	0	0
1	-1	1	0
0	0	0	0
0	-1	0	0

X

O	1	0	0
1	-1	1	0
0	0	0	0
0	-1	0	0

0.5	0.5	0.5	0.5
0.5	0.5	0.5	0.5
0.5	0.5	0.5	0.5
0.5	0.5	0.5	0.5

X

O	1	0	0
1	-1	1	0
0	0	0	0
0	-1	0	0

0.5	0.5	0.5	0.5
0.5	0.5	0.5	0.5
0.5	0.5	0.5	0.5
0.5	0.5	0.5	0.5

0	0.5	0	0
0.5	-0.5	0.5	0
0	0	0	0
0	-0.5	0	0

X

(x)

0	1	0	0
1	-1	1	0
0	0	0	0
0	-1	0	0

\mathcal{W}	W	W	W
\mathcal{W}	W	\mathcal{W}	W
\mathcal{W}	W	W	\mathcal{W}
\mathcal{W}	W	W	W

y	y	y	y
y	y	y	y
y	y	y	y
y	y	y	y

X

 \otimes

$$\Gamma = \sigma(W[X_t, h_{t-1}] + b)$$
 Sigmoid

$$\Gamma = \sigma(W_{\Gamma}[X_t, h_{t-1}] + b_{\Gamma})$$
 Candidate state
$$\longrightarrow \tilde{h}_t = tanh(W_H[X_t, h_{t-1}] + b_H)$$

$$h_t = \Gamma \otimes h_{t-1} + (1 - \Gamma) \otimes \tilde{h}_t$$

Same input
$$\begin{cases} \Gamma = \sigma(W_{\Gamma}[X_t, h_{t-1}] + b_{\Gamma}) \\ \tilde{h}_t = tanh(W_H[X_t, h_{t-1}] + b_H) \\ h_t = \Gamma \otimes h_{t-1} + (1 - \Gamma) \otimes \tilde{h}_t \end{cases}$$

Different weights

$$\Gamma = \sigma(W_{\Gamma}[X_t, h_{t-1}] + b_{\Gamma})$$

$$\tilde{h}_t = tanh(W_{H}[X_t, h_{t-1}] + b_{H})$$

$$h_t = \Gamma \otimes h_{t-1} + (1 - \Gamma) \otimes \tilde{h}_t$$

$$\Gamma = \sigma(W_{\Gamma}[X_t, h_{t-1}] + b_{\Gamma})$$

$$\tilde{h}_t = tanh(W_H[X_t, h_{t-1}] + b_H)$$

$$h_t = \Gamma \otimes h_{t-1} + (1 - \Gamma) \otimes \tilde{h}_t$$

The gate Γ controls, based on input and context, how much remembered.

GRU - full

The full GRU has two gates, but the principle is the same

$$\Gamma_{u} = \sigma(W[X_{t}, h_{t-1}] + b)$$

$$\Gamma_{r} = \sigma(W[X_{t}, h_{t-1}] + b)$$

$$\tilde{h}_{t} = tanh(W[X_{t}, \Gamma_{r} \otimes h_{t-1}] + b)$$

$$h_{t} = \Gamma_{u} \otimes h_{t-1} + (1 - \Gamma_{u}) \otimes \tilde{h}_{t}$$

$$\Gamma_u = \sigma(W[X_t, h_{t-1}] + b)$$

$$\Gamma_r = \sigma(W[X_t, h_{t-1}] + b)$$

$$\tilde{h}_t = tanh(W[X_t, \Gamma_r \otimes h_{t-1}] + b)$$

$$h_t = \Gamma_u \otimes h_{t-1} + (1 - \Gamma_u) \otimes \tilde{h}_t$$

We use the hidden state h_{t-1} and X_t to create two gates.

The reset gate Γ_r controls how much of the past h_{t-1} is mixed into X_t to create a new candidate context \tilde{h}

The other gate is the update gate Γ_u and this balances the old h_{t-1} and the new \tilde{h}_t

Compare the <u>Trax implementation</u> with the formulas

$$\begin{split} &\Gamma_{u} = \sigma(W[X_{t}, h_{t-1}] + b) \\ &\Gamma_{r} = \sigma(W[X_{t}, h_{t-1}] + b) \\ &\tilde{h}_{t} = tanh(W[X_{t}, \Gamma_{r} \otimes h_{t-1}] + b) \\ &h_{t} = \Gamma_{u} \otimes h_{t-1} + (1 - \Gamma_{u}) \otimes \tilde{h}_{t} \end{split}$$

```
def forward(self, inputs):
 x, gru_state = inputs
  # Dense layer on the concatenation of x and h.
 w1, b1, w2, b2 = self.weights
  y = jnp.dot(jnp.concatenate([x, gru_state], axis=-1), w1) + b1
 # Update and reset gates.
  u, r = jnp.split(fastmath.sigmoid(y), 2, axis=-1)
 # Candidate.
  c = jnp.dot(jnp.concatenate([x, r * gru_state], axis=-1), w2) + b2
  new\_gru\_state = u * gru\_state + (1 - u) * jnp.tanh(c)
 return new_gru_state, new_gru_state
```

LSTM

The LSTM has

- three gates (update, input and forget) instead of two (update and reset)
- Has both a context C and a hidden state h

$$\Gamma_{u} = \sigma(W[X_{t}, h_{t-1}] + b)$$

$$\Gamma_{i} = \sigma(W[X_{t}, h_{t-1}] + b)$$

$$\Gamma_{f} = \sigma(W[X_{t}, h_{t-1}] + b)$$

$$\tilde{h} = \Gamma_{i} \otimes tanh(W[X_{t}, h_{t-1}] + b)$$

$$\tilde{C} = tanh(\Gamma_{f} \otimes C + \tilde{h})$$

$$h_{t} = \Gamma_{u} \otimes \tilde{C}$$

Overview

Temporal Fusion Transformer, Lim et al. (2021)

RNN architectures

- One to one: Stock price prediction (current price → next price)
- One to many: Music generation (single note/seed → melody sequence)
- Many to one: Sentiment analysis (sentence → positive/negative)
- Many to many (different lengths): Machine translation (English sentence → French sentence)
- Many to many (same length): Named entity recognition (word sequence → entity tag sequence)

Summary

- The Simple RNN is the most basic, but does not has good ways to control memory
- LSTM has more parameters with three gates and two hidden states, and thus more complexity
- GRU is a simplified version of the LSTM with two gates and one hidden state.

There is no "best" Recurrent Neural Network, this depends on your usecase.