International Rectifier

PD - 91341B

IRF540N

HEXFET® Power MOSFET

- Advanced Process Technology
- Ultra Low On-Resistance
- Dynamic dv/dt Rating
- 175°C Operating Temperature
- Fast Switching
- Fully Avalanche Rated

Description

Advanced HEXFET® Power MOSFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry.

03/13/01

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	33	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	23	A
I _{DM}	Pulsed Drain Current ①	110	
$P_D @T_C = 25^{\circ}C$	Power Dissipation	130	w
	Linear Derating Factor	0.87	W/°C
V _{GS}	Gate-to-Source Voltage	± 20	V
IAR	Avalanche Current®	16	A
E _{AR}	Repetitive Avalanche Energy®	13	mJ
dv/dt	Peak Diode Recovery dv/dt 3	7.0	V/ns
Tj	Operating Junction and	-55 to + 175	17710
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	- "
	Mounting torque, 6-32 or M3 srew	10 lbf•in (1.1N•m)	

Thermal Resistance

www.irf.com

	Parameter	Тур.	Max.	Units
ReJC	Junction-to-Case		1.15	1
Recs	Case-to-Sink, Flat, Greased Surface	0.50		- °cw
ReJA	Junction-to-Ambient		62	-

IRF540N

International
TOR Rectifier

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Typ.	Max.	Units	Conditions	
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	100	-	-	V	V _{GS} = 0V, I _D = 250μA	
ΔV _{(BR)DSS} /ΔT _J	Breakdown Voltage Temp. Coefficient	_	0.12	_	V/°C	Reference to 25°C, I _D = 1mA V _{GS} = 10V, I _D = 16A @	
R _{DS(on)}	Static Drain-to-Source On-Resistance	_	_	44	mΩ		
V _{GS(th)}	Gate Threshold Voltage	2.0	_	4.0	V	Vps = Vgs, Ip = 250µA	
9fs	Forward Transconductance	21	_		S	V _{DS} = 50V, I _D = 16A⊕	
loss	Drain-to-Source Leakage Current	_	=	25		V _{DS} = 100V, V _{GS} = 0V	
1088	Drain-to-Source Leakage Current		_	250	μA	V _{DS} = 80V, V _{GS} = 0V, T _J = 150°C	
Igss	Gate-to-Source Forward Leakage	_	_	100		V _{GS} = 20V	
'GSS	Gate-to-Source Reverse Leakage	_	_	-100	nA	V _{GS} = -20V	
Qg	Total Gate Charge	_	_	71		In = 16A	
Q _{gs}	Gate-to-Source Charge		_	14	nC	Vps = 80V	
Q _{gd}	Gate-to-Drain ("Miller") Charge	_	_	21	10.5	V _{GS} = 10V, See Fig. 6 and 13	
ld(on)	Turn-On Delay Time		11			V _{DD} = 50V	
tr	Rise Time	_	35	_		In = 16A	
d(off)	Turn-Off Delay Time		39	_	ns	$R_G = 5.1\Omega$	
tı	Fall Time	_	35	_		V _{GS} = 10V, See Fig. 10 ⊕	
Lo	Internal Drain Inductance	_	4.5	_		Between lead, 6mm (0.25in.)	
Ls	Internal Source Inductance	_	7.5	_	nH	from package and center of die contact	
Ciss	Input Capacitance	_	1960			V _{GS} = 0V	
Coss	Output Capacitance	-	250	_		V _{DS} = 25V	
Crss	Reverse Transfer Capacitance	_	40	=	pF	f = 1.0MHz, See Fig. 5	
EAS	Single Pulse Avalanche Energy 2	_	700ග	185©	mJ	I _{AS} = 16A, L = 1.5mH	

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current (Body Diode)	T-	_	33	0	MOSFET symbol showing the
I _{SM}	Pulsed Source Current (Body Diode)®	-	_	110	Α	integral reverse
V _{SD}	Diode Forward Voltage		_	1.2	V	T _J = 25°C, I _S = 16A, V _{GS} = 0V 4
t _{rr}	Reverse Recovery Time		115	170	ns	T _J = 25°C, I _F = 16A
Qrr	Reverse Recovery Charge		505	760	nC	di/dt = 100A/µs @
ton	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by Ls+L				

Notes

- Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- ② Starting $T_J = 25$ °C, L =1.5mH $R_G = 25\Omega$, $I_{AS} = 16A$. (See Figure 12)
- ③ $I_{SD} \le 16A$, $di/dt \le 340A/\mu s$, $V_{DD} \le V_{(BR)DSS}$, $T_{.I} \le 175^{\circ}C$
- Pulse width ≤ 400µs; duty cycle ≤ 2%.
- ⑤ This is a typical value at device destruction and represents operation outside rated limits.
- This is a calculated value limited to T_J = 175°C.

2

www.irf.com

International IOR Rectifier

PD-91385B

IRF5305

Advanced Process Technology

- Dynamic dv/dt Rating
- 175°C Operating Temperature
- Fast Switching
- P-Channel
- Fully Avalanche Rated

Description

Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, externely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry.

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ -10V	-31	
ID @ TC = 100°C	Continuous Drain Current, VGS @ -10V	-22	— A
l _{DM}	Pulsed Drain Current ①	-110	- 1
P _D @T _C = 25°C	Power Dissipation	110	W
	Linear Derating Factor	0.71	W/°C
V _{GS}	Gate-to-Source Voltage	± 20	V
E _{AS}	Single Pulse Avalanche Energy©	280	mJ
I _{AR}	Avalanche Current®	-16	A
EAR	Repetitive Avalanche Energy®	11	mJ
dv/dt	Peak Diode Recovery dv/dt @	-5.0	V/ns
Tj	Operating Junction and	-55 to + 175	
TSTG	Storage Temperature Range	18.5 15.5 15.51	°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	- ·
	Mounting torque, 6-32 or M3 srew	10 lbf•in (1.1N•m)	

Thermal Resistance

	Parameter	Тур.	Max.	Units
R _{0JC}	Junction-to-Case	_	1.4	
R _{0CS}	Case-to-Sink, Flat, Greased Surface	0.50		°c/w
R _{0JA}	Junction-to-Ambient		62	

IRF5305

International IOR Rectifier

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Typ.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	-55	-	_	V	V _{GS} = 0V, I _D = -250µA
ΔV _{(BR)OSS} /AT _J	Breakdown Voltage Temp. Coefficient	_	-0.034	_	V/°C	Reference to 25°C, ID = -1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance	_	_	0.06	Ω	V _{GS} = -10V, I _D = -16A ⊕
V _{GS(th)}	Gate Threshold Voltage	-2.0	_	-4.0	V	V _{DS} = V _{GS} , I _D = -250μA
9ts	Forward Transconductance	8.0	_	_	S	V _{DS} = -25V, I _D = -16A
loss	Drain-to-Source Leakage Current	_	_	-25		V _{DS} = -55V, V _{GS} = 0V
1055	Diami-to-oddice Leakage Current	_	_	-250	μА	V _{DS} = -44V, V _{GS} = 0V, T _J = 150°C
	Gate-to-Source Forward Leakage	_	_	100		V _{GS} = 20V
GSS	Gate-to-Source Reverse Leakage	-	_	-100	nΑ	V _{GS} = -20V
Qg	Total Gate Charge	-	_	63		In = -16A
Qgs	Gate-to-Source Charge	_	_	13	nC	V _{DS} = -44V
Q _{gd}	Gate-to-Drain ("Miller") Charge	_	_	29		V _{GS} = -10V, See Fig. 6 and 13 ⊚
t _{d(on)}	Turn-On Delay Time	_	14	_		V _{DD} = -28V
t _r	Rise Time	_	66	_		In = -16A
t _{d(off)}	Turn-Off Delay Time		39	=	ns	$R_G = 6.8\Omega$
tı	Fall Time	_	63	_		R _D = 1.6Ω, See Fig. 10 ④
Lo	Internal Drain Inductance	_	4.5	_		Between lead, 6mm (0.25in.)
Ls	Internal Source Inductance	_	7.5	_	nH	from package and center of die contact
Ciss	Input Capacitance	_	1200	_		V _{GS} = 0V
Coss	Output Capacitance	_	520		pF	V _{DS} = -25V
Crss	Reverse Transfer Capacitance	_	250	_	9928	f = 1.0MHz, See Fig. 5

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
ls	Continuous Source Current (Body Diode)		_	-31		MOSFET symbol showing the
I _{SM}	Pulsed Source Current (Body Diode) ①	_	-	-110	A	integral reverse
V _{SD}	Diode Forward Voltage		_	-1.3	V	T _J = 25°C, I _S = -16A, V _{GS} = 0V T
t _{rr}	Reverse Recovery Time		71	110	ns	T _J = 25°C, I _F = -16A
Qrr	Reverse RecoveryCharge		170	250	пС	di/dt = -100A/us ®

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- @ VDD = -25V, starting TJ = 25°C, L = 2.1mH $R_G = 25\Omega$, $I_{AS} = -16A$. (See Figure 12)
- ③ $I_{SD} \le -16A$, $di/dt \le -280A/\mu s$, $V_{DD} \le V_{(BR)DSS}$. $T_J \le 175^{\circ}C$
- Pulse width ≤ 300µs; duty cycle ≤ 2%.

2

www.irf.com

3/3/00

428 HT 08H 1 6H 35H

