

Figure 9-12. Image segmentation using K-Means with various numbers of color clusters

That wasn't too hard, was it? Now let's look at another application of clustering: preprocessing.

Using Clustering for Preprocessing

Clustering can be an efficient approach to dimensionality reduction, in particular as a preprocessing step before a supervised learning algorithm. As an example of using clustering for dimensionality reduction, let's tackle the digits dataset, which is a simple MNIST-like dataset containing 1,797 grayscale 8 × 8 images representing the digits 0 to 9. First, load the dataset:

```
from sklearn.datasets import load_digits
    X_digits, y_digits = load_digits(return_X_y=True)
Now, split it into a training set and a test set:
    from sklearn.model_selection import train_test_split
    X_train, X_test, y_train, y_test = train_test_split(X_digits, y_digits)
Next, fit a Logistic Regression model:
    from sklearn.linear_model import LogisticRegression
    log_reg = LogisticRegression()
    log_reg.fit(X_train, y_train)
Let's evaluate its accuracy on the test set:
    >>> log_reg.score(X_test, y_test)
    0.968888888888889
```

OK, that's our baseline: 96.9% accuracy. Let's see if we can do better by using K-Means as a preprocessing step. We will create a pipeline that will first cluster the training set into 50 clusters and replace the images with their distances to these 50 clusters, then apply a Logistic Regression model:

```
from sklearn.pipeline import Pipeline
pipeline = Pipeline([
   ("kmeans", KMeans(n_clusters=50)),
   ("log reg", LogisticRegression()),
pipeline.fit(X_train, y_train)
```


Since there are 10 different digits, it is tempting to set the number of clusters to 10. However, each digit can be written several different ways, so it is preferable to use a larger number of clusters, such as 50.

Now let's evaluate this classification pipeline:

```
>>> pipeline.score(X_test, y_test)
0.977777777777777
```

How about that? We reduced the error rate by almost 30% (from about 3.1% to about

But we chose the number of clusters *k* arbitrarily; we can surely do better. Since K-Means is just a preprocessing step in a classification pipeline, finding a good value for k is much simpler than earlier. There's no need to perform silhouette analysis or minimize the inertia; the best value of k is simply the one that results in the best classification performance during cross-validation. We can use GridSearchCV to find the optimal number of clusters:

```
from sklearn.model selection import GridSearchCV
param_grid = dict(kmeans__n_clusters=range(2, 100))
grid_clf = GridSearchCV(pipeline, param_grid, cv=3, verbose=2)
grid_clf.fit(X_train, y_train)
```

Let's look at the best value for *k* and the performance of the resulting pipeline:

```
>>> grid_clf.best_params_
{'kmeans__n_clusters': 99}
>>> grid_clf.score(X_test, y_test)
0.98222222222222
```

With k = 99 clusters, we get a significant accuracy boost, reaching 98.22% accuracy on the test set. Cool! You may want to keep exploring higher values for k, since 99 was the largest value in the range we explored.

Using Clustering for Semi-Supervised Learning

Another use case for clustering is in semi-supervised learning, when we have plenty of unlabeled instances and very few labeled instances. Let's train a Logistic Regression model on a sample of 50 labeled instances from the digits dataset:

```
n labeled = 50
log_reg = LogisticRegression()
log_reg.fit(X_train[:n_labeled], y_train[:n_labeled])
```

What is the performance of this model on the test set?

```
>>> log_reg.score(X_test, y_test)
0.8333333333333334
```

The accuracy is just 83.3%. It should come as no surprise that this is much lower than earlier, when we trained the model on the full training set. Let's see how we can do better. First, let's cluster the training set into 50 clusters. Then for each cluster, let's find the image closest to the centroid. We will call these images the representative images:

```
k = 50
kmeans = KMeans(n_clusters=k)
X_digits_dist = kmeans.fit_transform(X_train)
representative_digit_idx = np.argmin(X_digits_dist, axis=0)
X_representative_digits = X_train[representative_digit_idx]
```

Figure 9-13 shows these 50 representative images.

Figure 9-13. Fifty representative digit images (one per cluster)

Let's look at each image and manually label it:

```
y_representative_digits = np.array([4, 8, 0, 6, 8, 3, ..., 7, 6, 2, 3, 1, 1])
```

Now we have a dataset with just 50 labeled instances, but instead of being random instances, each of them is a representative image of its cluster. Let's see if the performance is any better:

```
>>> log_reg = LogisticRegression()
>>> log_reg.fit(X_representative_digits, y_representative_digits)
>>> log_reg.score(X_test, y_test)
0.9222222222223
```

Wow! We jumped from 83.3% accuracy to 92.2%, although we are still only training the model on 50 instances. Since it is often costly and painful to label instances, especially when it has to be done manually by experts, it is a good idea to label representative instances rather than just random instances.

But perhaps we can go one step further: what if we propagated the labels to all the other instances in the same cluster? This is called *label propagation*:

```
y_train_propagated = np.empty(len(X_train), dtype=np.int32)
for i in range(k):
   y_train_propagated[kmeans.labels_==i] = y_representative_digits[i]
```

Now let's train the model again and look at its performance:

```
>>> log reg = LogisticRegression()
>>> log_reg.fit(X_train, y_train_propagated)
>>> log reg.score(X test, y test)
0.9333333333333333
```

We got a reasonable accuracy boost, but nothing absolutely astounding. The problem is that we propagated each representative instance's label to all the instances in the same cluster, including the instances located close to the cluster boundaries, which are more likely to be mislabeled. Let's see what happens if we only propagate the labels to the 20% of the instances that are closest to the centroids:

```
percentile_closest = 20
X_cluster_dist = X_digits_dist[np.arange(len(X_train)), kmeans.labels_]
for i in range(k):
   in_cluster = (kmeans.labels_ == i)
   cluster_dist = X_cluster_dist[in_cluster]
   cutoff_distance = np.percentile(cluster_dist, percentile_closest)
   above_cutoff = (X_cluster_dist > cutoff_distance)
   X cluster dist[in cluster & above cutoff] = -1
partially_propagated = (X_cluster_dist != -1)
X_train_partially_propagated = X_train[partially_propagated]
y_train_partially_propagated = y_train_propagated[partially_propagated]
```

Now let's train the model again on this partially propagated dataset:

```
>>> log_reg = LogisticRegression()
>>> log_reg.fit(X_train_partially_propagated, y_train_partially_propagated)
>>> log_reg.score(X_test, y_test)
0.94
```

Nice! With just 50 labeled instances (only 5 examples per class on average!), we got 94.0% accuracy, which is pretty close to the performance of Logistic Regression on the fully labeled digits dataset (which was 96.9%). This good performance is due to the fact that the propagated labels are actually pretty good—their accuracy is very close to 99%, as the following code shows:

Active Learning

To continue improving your model and your training set, the next step could be to do a few rounds of active learning, which is when a human expert interacts with the learning algorithm, providing labels for specific instances when the algorithm requests them. There are many different strategies for active learning, but one of the most common ones is called *uncertainty sampling*. Here is how it works:

- 1. The model is trained on the labeled instances gathered so far, and this model is used to make predictions on all the unlabeled instances.
- 2. The instances for which the model is most uncertain (i.e., when its estimated probability is lowest) are given to the expert to be labeled.
- 3. You iterate this process until the performance improvement stops being worth the labeling effort.

Other strategies include labeling the instances that would result in the largest model change, or the largest drop in the model's validation error, or the instances that different models disagree on (e.g., an SVM or a Random Forest).

Before we move on to Gaussian mixture models, let's take a look at DBSCAN, another popular clustering algorithm that illustrates a very different approach based on local density estimation. This approach allows the algorithm to identify clusters of arbitrary shapes.

DBSCAN

This algorithm defines clusters as continuous regions of high density. Here is how it works:

- For each instance, the algorithm counts how many instances are located within a small distance ε (epsilon) from it. This region is called the instance's ε neighborhood.
- If an instance has at least min_samples instances in its ε-neighborhood (including itself), then it is considered a core instance. In other words, core instances are those that are located in dense regions.
- All instances in the neighborhood of a core instance belong to the same cluster. This neighborhood may include other core instances; therefore, a long sequence of neighboring core instances forms a single cluster.