Twitter Sentiment Analysis

Ritu Ramakrishnan

02/27/2023

COMP261 Data Science

_

Pro. Jinzhu Gao

Python Files

- 1. Scapper.py
- 2. tweet_sentiment.py
- 3. term_sentiment.py
- 4. frequency.py
- 5. happiest_state.py
- 6. top_ten.py

Input Files:

- tweets_data.json (generated tweets in json format)
- 2. data.json (file which was provided)
- 3. positive_tweets_data.json (online data to test the term sentiment)
- 4. negative_tweets_data.json (online data to test the term sentiment)

Output Files:

- Output_tweets_sentiment.txt
- 2. Output_term_sentiment.txt
- 3. Output_frequency.txt
- 4. Output_Happiest_State.txt
- 5. Output_Top_Ten.txt

Problem 1: Get Twitter Data

Ans: The **scraper.py** file generates the tweets in the json format. These credentials from the twitter needs to be updated.

```
# credentials
consumer_key = "YOUR_CONSUMER_KEY"
consumer_secret = " YOUR_CONSUMER_SECRET"
access_token = "ACCESS_TOKEN"
access_token_secret = "ACESS_TOKEN_SECRET"
```

Figure: 1 Updating the twitter credentials

The tweets are collected and stored in the **tweets_data.json** file. Attached the screenshot of code execution.

Figure: 2 Scraper.py execution

Problem 2: Derive the sentiment of each tweet

Ans: To run this file run the below comment:

\$ python tweet_sentiment.py AFINN-111.txt tweets_data.json

This **tweet_sentiment.py** file generates the sentiment for the words in the **AFINN-111.txt** file. Attached the screenshot of the code execution:

Figure: 3 tweet_sentiment.py execution

The output file for the execution is available in the **output_tweet_sentiment.txt** file.

Problem 3: Derive the sentiment of new terms

Ans: To run this file run the below comment:

\$ python term_sentiment.py AFINN-111.txt tweets_data.json

This **term_sentiment.py** file generates the sentiments for the terms which are not in the **AFINN-111.txt** . I have eliminated the stop words and numerical values. For the testing purpose I have also used **positive_tweets_data.json** and **negative_tweets_data.json** for better understanding how the values are calculating.

Attached the screenshot of the code execution:

Figure: 4 term_sentiment.py execution

The output file for the execution is available in the **output_term_sentiment.txt** file.

Problem 4: Compute Term Frequency

Ans: The **frequency.py** file is executed to compute the term frequency.

To run this file run the below comment:

\$ python term_sentiment.py tweets_data.json

Attached the screenshot of the code execution:

Figure: 5 frequency.py execution

The output file for the execution is available in the **output_frequency.txt** file.

Problem 5: Which State is happiest?

Ans: The **happiest_state.py** file is executed to calculate the tweets which has the name of the happiest state as a string.

To run this file run the below comment:

\$ python happiest_state.py AFINN-111.txt tweets_data.json

Attached the screenshot of the code execution:

Figure: 6 happiest_state.py execution

The output file for the execution is available in the **output_Happiest_State.txt** file.

Problem 6: Top ten hash tags

Ans: The **top_ten.py** that computes the ten most frequently occurring hashtags from the data.

To run this file run the below comment:

\$ python top_ten.py tweets_data.json

Attached the screenshot of the code execution:

Figure: 7 top_ten.py execution

The output file for the execution is available in the **output_Top_Ten.txt** file.