Chapitre 7

Suites et séries de fonctions

1. Suites de fonctions

1.0. <u>Introduction : deux paradoxes</u>

• Une suite de courbes dont la longueur de la courbe limite n'est pas la limite des longueurs des courbes : $\mathcal{C}_n \longrightarrow \mathcal{C}$ mais $\ell(\mathcal{C}_n) \longrightarrow \ell(\mathcal{C})$.

• Le flocon de Von Koch : une surface finie dont le périmètre est infini...

1.1. Convergence simple

- Dans ce chapitre, E et F sont des espaces vectoriels normés de dimension finie ; les fonctions sont définies sur une partie A de E et à valeurs dans F.
- Dans la pratique et notamment dans les exemples et les exercices : A est un intervalle I et $F=\mathbb{R}$ ou \mathbb{C} .
- On remplacera alors dans la pratique $\| \cdot \|_F$ par $| \cdot |$.

a) Définition

Définition 1 : convergence simple d'une suite de fonctions

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions de A à valeurs dans F .

Soit une fonction $f: A \to F$.

On dit que la suite $(f_n)_{n\in\mathbb{N}}$ converge simplement vers f sur A si pour tout $x\in A$, la suite $(f_n(x))_{n\in\mathbb{N}}$ converge (dans F) vers f(x).

Ainsi : $[(f_n)_{n\in\mathbb{N}} \text{ converge simplement vers } f] \Leftrightarrow [\forall x \in A : \lim_{n \to +\infty} f_n(x) = f(x)]$

• Pratiquement : On fixe x dans A et on fait tendre n vers $+\infty$

b) Exemples

• Exemple 1: sur [0,1], $f_n: x \to x^n$

• Exemple 2: sur $[0,+\infty[\ ,\ f_n:x \to \left\{\begin{array}{l} n^2x \text{ si } x \in \left[0,\frac{1}{n}\right] \\ \frac{1}{x} \text{ si } x \in \left[\frac{1}{n},+\infty\right] \end{array}\right.$

1.2. Convergence uniforme

a) <u>Définition</u>

• Intro : changement de place du quantificateur $\forall x \in A$.

Définition 2 : convergence uniforme d'une suite de fonctions

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions de A à valeurs dans F.

Soit une fonction $f: A \to F$.

On dit que la suite $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers f sur A si

$$\forall \varepsilon>0,\, \exists n_0\in\mathbb{N}\,/\ \left[n\in\mathbb{N}\ \text{et}\ n\geqslant n_0\right]\Rightarrow \left[\forall x\in A: \left\|f_n(x)-f(x)\right\|_{\scriptscriptstyle F}<\varepsilon\right].$$

• A partir d'un certain rang N, la fonction f_n-f est donc bornée.

On peut donc alors définir : $\|f_n - f\|_{\infty} = \sup_{x \in A} \|(f_n - f)(x)\|_F$. On a alors : $\left[[(f_n)_{n \in \mathbb{N}} \text{ converge uniformément vers } f] \Leftrightarrow [\lim_{n \to +\infty} \|f_n - f\|_{\infty} = 0] \right]$

$$[(f_n)_{n\in\mathbb{N}}$$
 converge uniformément vers $f] \Leftrightarrow [\lim_{n\to+\infty} ||f_n-f||_{\infty} = 0]$

b) Convergence uniforme entraîne convergence simple

Proposition:

Si $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers f sur A,

alors $(f_n)_{n\in\mathbb{N}}$ converge simplement vers f sur A.

c) Méthodes pratiques

Démontrer une convergence uniforme par la défintion

- ① En général, on ne connaît pas la fonction limite : on la détermine donc par convergence simple, en déterminant $f(x) = \lim_{n \to \infty} f_n(x)$
- ${\mathbb Q}$ On peut alors définir* le nombre $\mu_{\scriptscriptstyle n} = \sup_{x} \big\| (f_{\scriptscriptstyle n} f)(x) \big\|_{\scriptscriptstyle F}$
- 3 On montre enfin que $\lim \mu_n = 0$.
 - $\mu_{\scriptscriptstyle n}$ peut n'être défini* qu'à partir d'un certain rang
 - Si $F = \mathbb{R}$, μ_n peut être déterminé par l'étude de la fonction $(f_n f)$
 - Exemple 3: sur \mathbb{R}_+ , $f_n: x \to xe^{-nx}$

Démontrer une convergence uniforme par une majoration

- ① Inchangé
- ② On majore sur $A \mid (f_n f)(x) \mid$ par une quantité ε_n ne dépendant que de n (i.e. "uniformément")
- Exemple 4: sur \mathbb{R}_+ , $f_n: x \to xe^{-nx} \cos(nx)$ 5

Infirmer une convergence uniforme

- Méthode 1 : exhiber une suite $(x_n)_{n\in\mathbb{N}}\in A^{\mathbb{N}}$ telle que $(f_n-f)(x_n)$ ne tende pas vers 0.

 Justification 6.
- Méthode 2 : utiliser une **propriété** des fonctions f_n (cf § 1.3) **non conservée** par la fonction f.

Méthode 3 : calculer $\mu_n = \sup_{x \in A} \|(f_n - f)(x)\|_F$ et montrer que $\mu_n \not \sim 0$

- Exemple 5: sur \mathbb{R}_+ , $f_n: x \to \frac{x\sqrt{n}}{1+nx^2}$ 7.
- d) <u>Interprétation structurelle</u>
 - On a une première propriété conservée par passage à la limite.

Théorème 1 : conservation du caractère borné

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions <u>bornées</u> de A dans F .

Si $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers f sur A, alors f est aussi bornée.

- Démonstration
- <mark>8</mark>. ∠
- Conséquence : on travaille ici sur l'espace vectoriel normé $\mathcal{B}(A,F)$ muni de la norme $\|\ \|_{\infty}$: $\|f\|_{\infty} = \sup_{x \in A} \|f(x)\|_F$
 - **↓** D'une part, la proposition précédente s'écrit :

$$[\forall n \in \mathbb{N}, f_n \in \mathcal{B}(A, F)] \Rightarrow [f \in \mathcal{B}(A, F)]$$

♣ D'autre part, on a immédiatement :

 $[(f_n)_{n\in\mathbb{N}}$ converge uniformément vers $f] \Leftrightarrow [f_n \xrightarrow{\parallel \parallel_{\infty}} f]$

9

e) Interprétation géométrique pour les fonctions de I dans $\mathbb R$

1.3. Conservation de propriétés par passage à la limite

a) Convergence uniforme et continuité

Théorème 2 : conservation de la continuité

Soit $(f_n)_{n\in\mathbb{N}}\in\mathcal{C}(A,F)^{\mathbb{N}}$

Si $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers f sur A, alors $f\in\mathcal{C}(A,F)$.

i.e. Toute limite uniforme de fonctions continues est continue

• Démonstrations

Corollaire : Soit $(f_n)_{n\in\mathbb{N}}\in\mathcal{C}\ I,F^{\mathbb{N}}$ où I est un intervalle de \mathbb{R} .

Si $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers f sur tout segment contenu dans I, alors $f\in\mathcal{C}(I,F)$.

• Exemples 1, 3 et 5: analyse des diverses situations

b) Théorème de la double limite

• Intro : le théorème précédent revient à écrire, lorsque $x \in A$:

$$\overline{\lim_{x \to a} (\lim_{n \to +\infty} f_n(x))} = \lim_{n \to +\infty} (\lim_{x \to a} f_n(x))$$

• Qu'en est-il lorsque $x \in \overline{A} - A$?

<u>Théorème 3</u> : Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions de A dans F et soit $a\in\overline{A}$.

Si $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers f sur A

et si pour tout $\,n\in\mathbb{N}\,,\;f_{\scriptscriptstyle n}$ admet une limite $\,b_{\scriptscriptstyle n}\,$ au point a ,

Alors \Box f admet une limite au point a

- \square la suite $(b_n)_{n\in\mathbb{N}}$ converge
- $lacksquare \lim_a f = \lim_{n o +\infty} b_n$

ainsi
$$\lim_{x\to a} (\lim_{n\to +\infty} f_n(x)) = \lim_{n\to +\infty} (\lim_{x\to a} f_n(x))$$

- © Démonstration non exigible
- <mark>12</mark>. ∠
- Complément : le théorème reste vrai si $A=I\subset\mathbb{R}$ et $a=\pm\infty$
- Exemple 1 (suite):

$$\lim_{x \to 1^-} (\lim_{n \to +\infty} x^n) = 0 \quad \text{ et } \quad \lim_{n \to +\infty} (\lim_{x \to 1^-} x^n) = 1.$$

Que peut-on en déduire?

c) Convergence uniforme et intégration

<u>Théorème 4</u> : limite d'une suite d'intégrales

Soit
$$(f_n)_{n\in\mathbb{N}}\in\mathcal{C}([a,b],F)^{\mathbb{N}}$$

Si $(f_{\scriptscriptstyle n})_{\scriptscriptstyle n\in\mathbb{N}}$ converge uniformément vers f sur $[a,b]\,,$ alors la suite des

intégrales
$$\left(\int_a^b f_n(t)dt\right)_{n\in\mathbb{N}}$$
 converge et $\lim_{n\to+\infty}\int_a^b f_n(t)dt = \int_a^b f(t)dt$

• Ainsi :
$$\lim_{n \to +\infty} \int_a^b f_n(t) dt = \int_a^b \lim_{n \to +\infty} f_n(t) dt$$

- Démonstration
- **13** .
- Interprétation : on peut munir $\mathcal{C}([a,b],\mathbb{K})$ de la norme $\|\ \|_{\infty}$, mais aussi de la norme $\|\ \|_{1}$ définie par $\|f\|_{1} = \int_{a}^{b} |f(t)| \, dt$.

Une conséquence immédiate du théorème 3 s'écrit alors :

$$\underline{\text{Corollaire}}: \text{Soit } (f_n)_{n \in \mathbb{N}} \in \mathcal{C}([a,b], \mathbb{K})^{\mathbb{N}}.$$

Si $(f_n)_{n\in\mathbb{N}}$ converge vers f pour $\|\ \|_{\infty}$, elle converge aussi vers f pour $\|\ \|_1$.

- La réciproque est fausse (cf ex.1 ci-dessous) : ce qui prouve une seconde fois que ces deux normes ne sont pas équivalentes.
- Exemples 14
 - Exemple 1 (suite): la convergence n'est pas uniforme; pourtant $\|f_n f\|_1 = \int_0^1 |f_n(t) f(t)| dt = \int_0^1 f_n(t) dt = \frac{1}{n+1} \to 0 = \int_0^1 f(t) dt$
 - Exemple 3 (suite):

la convergence de $(f_n)_{n\in\mathbb{N}}$ vers la fonction nulle est uniforme donc $\lim_{n\to+\infty}\int_0^1 xe^{-nx}dx\ =0\,,$ ce qu'on peut vérifier par le calcul.

Exemple 5 Ici
$$f_n \xrightarrow{c.s.} 0$$
 mais $\int_0^1 f_n(t)dt = 1 \rtimes \int_0^1 f(t)dt = 0$

d) Convergence uniforme et primitivation

$\underline{\text{Th\'eor\`eme 5}}: \textbf{convergence uniforme des primitives}$

Soit $(f_n)_{n\in\mathbb{N}}\in\mathcal{C}(I,F)^{\mathbb{N}}$ où I est un intervalle de \mathbb{R} . Soit $a\in I$.

Si $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers f sur tout segment de I,

et si on pose :
$$\forall x \in I$$
, $F_n(x) = \int_a^x f_n(t)dt$ et $F(x) = \int_a^x f(t)dt$

alors $(F_n)_{n\in\mathbb{N}}$ converge uniformément vers F sur tout segment de I.

• Ainsi, en notant $\operatorname{Prim}_a(g)$ la primitive sur I de g qui s'annule en a:

$$\begin{bmatrix} f_n & \xrightarrow{c.u.} & f \end{bmatrix} \Rightarrow [\operatorname{Prim}_a(f_n) & \xrightarrow{c.u.} & \operatorname{Prim}_a(f) \end{bmatrix}$$

• © Démonstration non exigible (en cahier de TD)

16

e) Convergence uniforme et dérivabilité

<u>Théorème 6</u>: convergence uniforme et dérivabilité

Soit $(f_n)_{n\in\mathbb{N}}\in\mathcal{C}^1(I,F)^{\mathbb{N}}$ où I est un intervalle de \mathbb{R} .

Si $\mathbb{O}(f_n)_{n\in\mathbb{N}}$ converge simplement vers f sur I,

② la suite des dérivées $(f_n')_{n\in\mathbb{N}}$ converge uniformément vers une fonction g sur tout segment de I,

Alors $f \in \mathcal{C}^1(I, F)$ et f' = g

de plus $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers f sur tout segment de I.

- Ainsi, sous ces hypothèses $\overline{\left(\lim_{n\to+\infty}f_n\right)'=\lim_{n\to+\infty}(f_n')}$
- ② Démonstration non exigible (en cahier de TD)
- Attention : la convergence uniforme doit être celle des dérivées !

$\underline{\mathrm{Th\acute{e}or\grave{e}me~6~bis}}$: généralisation à la classe \mathbf{C}^k

Soit $(f_n)_{n\in\mathbb{N}}\in\mathcal{C}^k(I,F)^{\mathbb{N}}$ où I est un intervalle de \mathbb{R} .

Si $0 \ \forall i \in \mathbb{I} \ 0, k-1 \ \mathbb{I}$: la suite $(f_n^{\ (i)})_{n \in \mathbb{N}}$ converge simplement vers g_i sur I

② la suite $(f_n^{(k)})_{n\in\mathbb{N}}$ converge uniformément vers une fonction g_k sur tout segment de I,

 $\text{Alors} \quad f = g_0 \in \mathcal{C}^k(I, F) \quad \text{et} \quad \forall i \in \llbracket \ 0, k \ \rrbracket : f^{(i)} = g_i \,.$

• Exemple 6:: sur \mathbb{R} , $f_n: x \to \sqrt{x^2 + \frac{1}{n}}$

On a ici un exemple d'une suite de fonctions $(f_n)_{n\in\mathbb{N}}\in\mathcal{C}^1(\mathbb{R},\mathbb{R})^{\mathbb{N}}$ qui converge uniformément sur \mathbb{R} , mais dont la limite, $x\to |x|$, n'est pas dérivable en 0.

2. Séries de fonctions

2.0. Idée générale

- Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions de A à valeurs dans F. On note encore, $\forall n \in \mathbb{N} : \left| S_n = \sum_{k=0}^n f_k \right|$ la somme partielle d'indice n.
- On adapte dans le langage des séries tout ce qui concerne cette nouvelle suite de fonctions $(S_n)_{n\in\mathbb{N}}$ qui se nomme aussi série de fonctions $\left|\sum f_n\right|$.

2.1. Convergence simple

Définition 1 : convergence simple d'une série de fonctions

Soit $\sum f_n$ une série de fonctions de A à valeurs dans F.

On dit que la série de fonctions $\sum f_n$ converge simplement et a pour somme la fonction $S:A\to F$ si la suite de fonctions $(S_n)_{n\in\mathbb{N}}$ converge simplement vers S. On note alors $S = \sum_{n=0}^{\infty} f_n$.

Ainsi $[\sum f_n$ converge simplement et a pour somme S]

 $\Leftrightarrow [\forall x \in A \colon \text{ la série numérique } \sum f_{\scriptscriptstyle n}(x) \text{ converge et a pour somme } S(x)]$

- Pratiquement : 0n fixe x dans A et on étudie la série numérique $\sum f_n(x)$.
- Exemple 1 : la série de fonctions $\sum xe^{-nx}$ convergence, somme

2.2. Convergence uniforme

a) <u>Définition</u>

Définition 2 : convergence uniforme d'une série de fonctions On dit que la série de fonctions $\sum f_n$ converge uniformément sur A si la suite de fonctions $(S_{\scriptscriptstyle n})_{\scriptscriptstyle n\in\mathbb{N}}$ converge uniformément sur A.

b) Propriétés essentielles

- * Si $\sum f_n$ converge simplement, en notant $R_n = S S_n = \sum_{k=n+1}^{+\infty} f_k$: alors $[\sum f_n \text{ converge uniformément}] \Leftrightarrow [R_n \xrightarrow{c.u.} 0]$
- Démonstrations

c) Exemples

21

• Exemple 1 (suite) : $\sum xe^{-nx}$ sur $\mathbb R$

⇒ convergence non uniforme : la somme n'est pas continue

• Exemple 2 : $\sum z^n$ sur B(0,1)

⇒ convergence non uniforme : la somme n'est pas bornée

• Exemple 3: $\sum \frac{(-1)^n x^n}{2n+1} \quad \text{sur } [0,1]$

 \Rightarrow convergence uniforme : par majoration uniforme du reste R_n via le critère spécial des séries alternées (cette méthode est à retenir !).

2.3. Convergence absolue

Définition 3 : convergence absolue d'une série de fonctions

On dit que la série de fonctions $\sum f_n(x)$ converge absolument sur A

si la série de fonctions $\sum \|f_n(x)\|_F$ converge simplement sur A.

• Notamment pour $F = \mathbb{K}$, il n'y a qu'à retenir que :

 $[\sum f_n(x) \text{ converge absolument}] \Leftrightarrow [\sum |f_n(x)| \text{ converge sim plement}]$

2.4. Convergence normale

a) <u>Définition</u>

Définition 4 : convergence normale d'une série de fonctions

On dit que la série de fonctions $\sum f_{\scriptscriptstyle n}$ converge normalement sur A

si la série numérique $\sum \left\| f_n \right\|_{\infty}$ est bien définie et convergente.

b) Méthodes pratiques

Démontrer une convergence normale par la définition

① On détermine* le nombre $\|f_n\|_{\infty} = \sup_{x \in A} \|f_n(x)\|_F$

 ${\mathbb Q}$ On étudie la série numérique $\sum \left\|f_n\right\|_{\!\scriptscriptstyle \infty}$.

* sous réserve d'existence, sinon c'est cuit...

Démontrer une convergence normale par une majoration

① On majore sur A $|f_n(x)|$ par une quantité α_n ne dépendant que de n (i.e. "uniformément")

 ${\mathbb Q}$ On démontre que la série $\sum \alpha_{\scriptscriptstyle n}$ converge

Démonstration

Liens entre les divers type de convergence et exemples 2.5.

a) Incidences: démonstrations

23

- b) Exemples
- 24
- Exemples 1 et 2 (suite) : $\sum xe^{-nx}$ sur \mathbb{R}_+ , $\sum z^n$ sur B(0,1) :
 - ⇒ la fonction limite n'est pas continue (resp. pas bornée)!
 - ⇒ la convergence n'est pas normale : elle n'est déjà pas uniforme!
- Exemple 3 : $\sum \frac{(-1)^n x^n}{2n+1}$ sur [0,1]
 - ⇒ la convergence n'est pas normale bien qu'uniforme.
- Exemple $\underline{4}: \sum \frac{e^{inx}}{n^2}$ sur \mathbb{R} .
 - ⇒ convergence normale donc uniforme, absolue, donc simple...
- Exemple 5: $\sum \frac{1}{n^z}$ sur $V = \{z \in \mathbb{C} / \operatorname{Re}(z) > 1\}$.
 - \Rightarrow convergence absolue donc simple sur V.
 - \Rightarrow convergence normale donc uniforme sur $\,V_{\scriptscriptstyle\alpha} = \{z \in \mathbb{C} \, / \, \mathrm{Re}(z) \geqslant \alpha \}\,$ pour tout $\,\alpha>1,$ d'où continuité de la somme sur $\,V=\bigcup_{\alpha}V_{\alpha}\,.$
 - \Rightarrow non convergence uniforme sur V, donc non convergence normale.
 - Bon à savoir : S'il y avait convergence sur V, il y aurait convergence sur \overline{V} donc notamment pour z=1; absurde...

2.6. Multithéorème : conservation de propriétés

• Principe: on applique les résultats des sept théorèmes vus au § 1.3 aux sommes partielles $(S_n)_{n\in\mathbb{N}}$ et on reformule dans le langage propre aux séries :

Multithéorème : convergence uniforme et passages à la limite

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions de I à valeurs dans \mathbb{K} .

On suppose que $\sum f_n$ converge uniformément sur I (ou même seulement sur tout segment inclus dans I). Sa somme est notée S (définie sur I).

- ① Si $\forall n \in \mathbb{N} : f_n \in \mathcal{B}(I, \mathbb{K}) \text{ alors } S \in \mathcal{B}(I, \mathbb{K}).$
- ② Si $\forall n \in \mathbb{N}$: $f_n \in \mathcal{C}(I, \mathbb{K})$ alors $S \in \mathcal{C}(I, \mathbb{K})$.
- ③ Si $a \in \overline{A}$ et si pour tout $n \in \mathbb{N}$, f_n admet une limite b_n au point a, alors \square S admet une limite au point a
 - \square la série $\sum b_n$ converge

 - $\square \quad \left[\lim_{a} S = \sum_{n=0}^{+\infty} b_{n} \right] \qquad \text{i.e.} \quad \left[\lim_{x \to a} \left(\sum_{n=0}^{+\infty} f_{n}(x) \right) = \sum_{n=0}^{+\infty} \lim_{x \to a} f_{n}(x) \right]$
- 9 Si $\forall n \in \mathbb{N}, f_n \in \mathcal{C}(I, \mathbb{K}),$ alors pour tout segment [a,b] inclus dans I, la

série
$$\sum \int_a^b f_n(t)dt$$
 converge et
$$\int_a^b S(t)dt = \sum_{n=0}^{+\infty} \int_a^b f_n(t)dt$$

i.e.
$$\int_a^b \left(\sum_{n=0}^{+\infty} f_n(t)\right) dt = \sum_{n=0}^{+\infty} \int_a^b f_n(t) dt$$

⑤ Si $\forall n \in \mathbb{N}, f_n \in \mathcal{C}(I, \mathbb{K})$ et si pour $a \in I$, on pose :

$$\forall x \in I, F_n(x) = \int_a^x f_n(t)dt \text{ et } U(x) = \int_a^x S(t)dt$$

alors $\sum F_n$ converge uniformément sur tout segment de I. et a pour

somme U

i.e.
$$\operatorname{Prim}_a\left(\sum_{n=0}^{+\infty}f_n\right) = \sum_{n=0}^{+\infty}\operatorname{Prim}_a(f_n)$$

Par ailleurs:

- ⑥ Si **①** $(f_n)_{n\in\mathbb{N}} \in \mathcal{C}^1(I,F)^{\mathbb{N}}$,

 - lacktriangle la série des dérivées $\sum f_n'$ converge uniformément sur tout segment de I et a pour somme une fonction T,

alors : $S \in \mathcal{C}^1(I, F)$ et S' = T i.e.

$$\left(\sum_{n=0}^{+\infty} f_n\right)' = \sum_{n=0}^{+\infty} f_n'$$

de plus $\sum f_n$ converge uniformément sur tout segment de I.

On retrouve de même une généralisation à la classe \mathcal{C}^k comme on l'a vu dans le théorème 5 bis (§ 1.3.e). La reformuler en exercice.

3. Approximations uniformes

3.1. d'une fonction continue par des fonctions en escalier

Théorème 1 : Toute fonction $f \in \mathcal{C}_m([a,b],F)$ est la limite uniforme d'une suite $(\varphi_n)_{n\in\mathbb{N}}$ de fonctions en escalier. .

- On utilise deux lemmes dont les démontrations sont intéressantes :

Lemme 1 : $\forall f \in \mathcal{C}_m([a,b],F), \exists (g,h) \in \mathcal{C}([a,b],F) \times \mathcal{E}([a,b],F) / f = g + h$

Lemme 2: $\forall g \in \mathcal{C}([a,b],F), \forall \varepsilon > 0: \exists h \in \mathcal{E}([\overline{a,b}],F)/\|g-h\|_{\infty} < \varepsilon$

- Interprétation : en notant $\mathcal{E}([a,b],F)$ l'espace vectoriel des fonctions en escalier sur [a,b] : $\boxed{\mathcal{E}([a,b],F)}$ est dense dans $\mathcal{C}_{\scriptscriptstyle m}([a,b],F)$ muni de $\|\ \|_{\scriptscriptstyle \infty}$
- Application 1 : ce théorème est la base de la théorie de l'intégration puisqu'on peut définir naturellement : $\int_a^b f(t)dt = \lim_{n \to +\infty} \left(\int_a^b \varphi_n(t)dt \right)$
- Application 2 : il est aussi la base de la méthode des rectangles 26

$$\left| \int_a^b f(t)dt \right| = \lim_{n \to +\infty} \left[\frac{b-a}{n} \sum_{i=0}^{n-1} f\left(a+i\frac{b-a}{n}\right) \right]$$

Voir aussi à ce sujet "sommes de Riemann".

3.2. d'une fonction continue par des fonctions affines par morceaux

Théorème 2 : Toute fonction $f \in \mathcal{C}([a,b],\mathbb{R})$ est la limite uniforme d'une suite de fonctions continues et affines par morceaux

- Démonstration H.P. tout comme le théorème, mais 🗵 27
- Application : ce théorème est la base de la méthode des trapèzes 28

$$\left| \int_a^b f(t)dt \right| = \lim_{n \to +\infty} \left[\frac{b-a}{n} \left(f(a) + f(b) + \sum_{i=1}^{n-1} f\left(a + i \frac{b-a}{n}\right) \right) \right] \right|$$

3.3. d'une fonction continue par des fonctions polynômes

Théorème 3 : Toute fonction $f \in \mathcal{C}([a,b],\mathbb{R})$ est la limite uniforme d'une suite de fonctions polynômes.

- Interprétation : en notant K[x] l'espace vectoriel des fonctions polynômes sur [a,b]: K[x] est dense dans $\mathcal{C}([a,b],\mathbb{R})$ muni de $\| \ \|_{\infty}$
- Démonstration non exigible (cf. D.M. facultatif) pour [a,b] = [0,1]:
 - \clubsuit On utilise la famille des polynômes de Bernstein associée à f définie

par:
$$\forall n \in \mathbb{N}$$
: $B_n = \sum_{k=0}^n {n \choose k} f\left(\frac{k}{n}\right) X^k (1-X)^{n-k}$.

 $\underline{\text{Remarque}}: \overline{K[x]} = \mathcal{C}([a,b],\mathbb{R}) \text{ mais } \overline{\mathcal{E}([a,b],\mathbb{R})} \supset \mathcal{C}([a,b],\mathbb{R}) \text{ (fonctions "réglées")}$