			DATE
	Assignment	No. 1B	
Name:	Mhynali Shri	dhar Virkud	
RO11 No.:-	7-5		
Sem = VI			
class:- B	EIT		
	AI · · · · · · · · · · · · · · · · · · ·		
AOC		Remark	sign
10/10/21			
			, - '

Scanned by TapScanner

$Q \cdot 2 \rightarrow$	Explain various elements of congnitive system.
	with the goal of more accurate models of how the hyman
	brain (mind sense, reasons, & responds to stimulus.
	Generally, the term congnitive computing is used to refer
	to new hardware and/or software that mimic the following
1 11	functioning the human brain thereby improving human
	decision making. Conginitive computing applications links
	data analysis & adaptive page display i.e. Adaptive users
. \	interfaces, to adjust content for a particular type of audience.
	Following are elements of congnitive system:
	They may interact easily with users so that those users can
	define each other needs comfortably. They may also interact with
, -	other processors, edevices & cloud services, as well as with people.
	B Adaptive
	They may be engineered to feed on dynamic data in real
	time. They may learn as information changes & as goal &
	requirements evolve. They may resolve ambiguity of tolerate
	unpredicterbility behaviours.
	© contexual
-	They may understand, identify & extract contexual elements
	Justine & stateful
	They may aid in defining a problem by asking questions
	or finding additional sorce input if a problem statement
	is in complete.

0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	he goal of language model is to compute a probability of token (e.g a sentence or requerce of word) & are seful in different NPL applications. Amount model (LM) actually a grammer of language it give the probability of word that will follow in case of (LM) probability of a sentence as sequence of ords is: p(w) = p(w1, w2, w3,
0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	f a token (e.g a sentence or requence of word) & are seful in diffmany different NPL applications. Amount model (LM) actually a grammer of language it gives the probability of word that will follow. In case of (LM) probability of a sentence as requence of ords is: P(W) = P(W1, W2, W3,
	reful in diffmany different NPL applications anguage model (LM) actually a grammer of language it give the probability of word that will follow in case of (LM) probability of a contence as requence of ords is: P(W) = P(W1, W2, W3,
	anguage model (LM) actually a grammer of language it give the probability of word that will follow. In case of (LM) probability of a centence as cequence of ords is: p(w) = p(w1, w2, w3,
- 3 - 3 - 3 - 4 - 6 - 7 - 7 - 7 - 7 - 7 - 7	it give the probability of word that will follow. In case of (LM) probability of a sentence as sequence of ords is: - P(W) = P(W1, W2, W3,
- T	in case of (LM) probability of a sentence as sequence of ords is: p(w) = p(w1, w2, w3,
- I	ords is: - P(w) = P(w1, w2, w3,
	A model that computes either of these is Language model there are various Language models are available, a few are: Methods using markov assumptions A process which is stochastic in nature, its said to have the
	A model that computes either of these is Language model there are various Language models are available, a few are: Methods using markov assumptions A process which is stochastic in nature, its said to have the
- T	There are various Language Models are available, a few are: Methods using markov assymptions A process which is stochastic in nature, its said to have the
- T	There are various Language Models are available, a few are: Methods using markov assymptions A process which is stochastic in nature, its said to have the
- f	Methods using markov assymptions. A process which is stochastic in nature, its said to have the
- f	A process which is stochastic in nature, its said to have the
S	larkov property, if the conditional probability of future
S	
(a)	tates depends upon present state.
a)	
	N-gram Model
	From the Markov assumptions, we can following formally
d	leffne models where K=n-1 es foilowing:
	$P(w_1 w_1,w_2,\ldots,w_{i-1})$
1 2 t	
	Unigram Model (k=1)
	$P(w_1 w_2 \dots w_n) = \frac{\pi}{i} P(w_i)$
(9)	Bignam Model (K=2)
	P(w, w, w2 w;-1) = P(w; w;-1)
	(w, w;-1) = count (w;=1 w)
	Count (w;-1)

G·4>	Write a Note on Machine Translation
	- Machine Translation is classic test of language understand. It consists of both language analysis & generation. Many transmitted machine translation stytem have huge commercial use.
	· Google translate gow through 100 billion words per day
	border trade & connect buyers (sellers ground globe
	automatically in order to break language barriers.
-1.	Systran become the first software provider to launch a heural Machine translate engine in more than 30 langua in 2016.
	· Microsoft brings AI - powered translation to end wers & developers on Android, ios and Amazon Fire, whether or
	not they have access to the internet. In a traditional Machine translation system, parellel comp
	a collection of trees is used each of width is translated into one or more other languages than the original.
· · · · · ·	For e.g given the sorte source language e.g. English, multiple statistical models needs to build, including a probabilistic formulation using the fayesian Rule, a transla
	model P(v) trained on the english corpus.
	- It is obvious that, this is approach skips hundreds of 9m por tant details, requires a lot of human Recenture
	engineering, & is overall a complex system.

