vid#jas un efekt#vas v#rt#bas apr##ins

Table of Contents

vid#jas v#rtibas apr##ins	1
#st#s vid#jas vert#bas apr##ins	
Salidzin#sim 3a formulu ar #sto vid#jo v#rt#bu	
Simulink	
Piez#me	6
Secin#iumi:	

vid#jas v#rtibas apr##ins

```
t = 0:0.1:8;
N= length(t);
• ar formulu 3a
xvid3a = 1/(N-1)*sum(sig(t(1:end-1)))
xvid3a =
    0.6910
• ar formulu 3b
xvid3b = 1/(N-1)*sum(sig(t((1:end-1)+1)))
xvid3b =
    0.6597
ar formulu 3c
h = (t(end)-t(1))/(N-1)
xvid3c = 1/(N-1)*sum(sig(t(1:end-1)+h/2))
% * ar formulu 4
xvid4 = 1/(N-1)*(sig(t(1))/2+sig(t(end))/2 + sum(sig(t(2:end-1))))
h =
    0.1000
xvid3c =
    0.6717
```

xvid4 = 0.6753

#st#s vid#jas vert#bas apr##ins

• sinuso#da

```
syms t_sin
A0=0; A=2.5; T=(2.5-1)/3.5; f=1/T; delay = 1;
y_sin = A0+A*sin(2*pi*f*(t_sin-delay));
int\_sin = int(y\_sin, t\_sin, 1, 2.5)
syms t_saw
k = (2.5-(-2.5))/(6.5-8);
delay = 7.25; %t_sin = 1:0.01:2.5;
y_saw = k*(t_saw-delay);
int_saw = int(y_saw,t_saw,6.5,8)
y = sig(t)
plot(t,y)
int sin =
15/(14*pi)
int_saw =
y =
 Columns 1 through 7
        0
                      0
                                0
                                                    0
 Columns 8 through 14
               0
                     0
                              0
                                      2.4863
                                                 0.5198
                                                         -2.3776
 Columns 15 through 21
  -1.0168
           2.1651 1.4695 -1.8579 -1.8579
                                                 1.4695
                                                          2.1651
 Columns 22 through 28
  -1.0168 -2.3776 0.5198 2.4863
 Columns 29 through 35
        0
                   0 0
                                                     0
                                                              0
```

vid#jas un efekt#vas v#rt#bas apr##ins

Columns 36	through	42					
0	0		0	0	0	0	0
Columns 43	through	49					
0	0		0	2.5000	2.5000	2.5000	2.5000
Columns 50	through	56					
2.5000	2.5000		2.5000	2.5000	2.5000	2.5000	2.5000
Columns 57	through	63					
2.5000	2.5000		2.5000	2.5000	2.5000	2.5000	2.5000
Columns 64	through	70					
2.5000	2.5000		2.5000	2.1667	1.8333	1.5000	1.1667
Columns 71	through	77					
0.8333	0.5000		0.1667	-0.1667	-0.5000	-0.8333	-1.1667
Columns 78	through	81					
-1.5000	-1.8333	-	-2.1667	-2.5000			


```
syms t_const
y_const = 2.5;
int_const = int(2.5,t_const,4.5,6.5)

int_const =
5

Liekam visu kop#
ista_vv = 1/8 *(int_const+int_saw+int_sin)

ista_vv =
15/(112*pi) + 5/8
```

Salidzin#sim 3a formulu ar #sto vid#jo v#rt#bu

```
dt = [1 0.1 0.01 0.001];
xvid3am = [];
for dtc = dt
```

```
t = 0:dtc:8;
N= length(t);
xvid3a = 1/(N-1)*sum(sig(t(1:end-1)));
xvid3am = [xvid3am,xvid3a];
end
semilogx(dt,xvid3am,'-o',dt,dt*0+ista_vv)
```


Simulink

Piez#me

lai simulink palaistos vajadz#tu defin#t dt =0.01

Secin#jumi:

M#s ar MATLAB pal#dz#bu izp#t#jam k# var atr#st funkcijas v#rt#bu un funkcijas vid#jo un efekt#vu v#rt#bu, k# ar# izmantojot Simulink ir iesp#jams konstru#t un modul#t dotas funkcijas. Ar cikla pal#dz#bu m#s sal#dzin#jam 3a formulu ar #sto videjo v#rt#bu.

Published with MATLAB® R2017b