TIME SERIES AND LOGISTIC REGRESSION ANALYSIS

MSC in Data Analytics, January 2024

Vishnunath Nharekkat School of computing National College of Ireland Dublin, Ireland x22234217@student.ncirl.ie

Abstract— This evaluates a monthly time series dataset of average cocoa prices from October 1995 to March 2024. Initially, the raw data is visually analyzed to detect trends, seasonality, and irregular components. Following that, several time series models are calculated and discussed, including basic models such as Moving Averages, Exponential Smoothing approaches, and ARIMA/SARIMA models. Forecasts for the next six months (October 2023 to March 2024) are made and compared to actual data using data from September 2023 as a training set. The study closes by selecting the best forecasting model based on accuracy and applicability for the cocoa price dataset.

In part B section, we examine a dataset of credit card transactions to better understand and detect fraudulent behaviors. With the increase in digital transactions, the danger of fraud has become a major issue for both customers and financial institutions. Our dataset includes 283,726 transactions, including both fraud and non-fraud events. We hope to discover patterns and features related to fraudulent transactions using exploratory data analysis and logistic regression modeling. We want to construct a reliable fraud detection model by considering data such as transaction timing, quantity, and extra parameters. Our findings underscore the relevance of data-driven methods to fraud prevention and financial transaction security.

PART A: TIME SERIES ANALYSIS

I. INTRODUCTION

The cocoa industry is essential to the world economy because cocoa beans are used to make chocolate and other confectionery items. As a result, cocoa pricing is of great concern to stakeholders throughout the supply chain, from farmers and producers to manufacturers and consumers. Understanding the fluctuations in cocoa prices is critical for making educated decisions, managing risks, and projecting future trends.

In our study, we performed a thorough investigation of a dataset of monthly average cocoa prices. This dataset covers more than three decades, including observations from October 1995 to March 2024. The collection contains a wealth of historical pricing information, including a complete record of cocoa price variations throughout time.

The fundamental goal of this research is to create and analyze time series models that can accurately represent the underlying patterns and volatility in cocoa prices across time. To reach this purpose, we take a systematic methodology that begins with a preliminary evaluation of the raw time series data. This assessment entails displaying the data to determine any discernible trends, seasonal patterns, or irregular components that may present.

Following the preliminary assessment, we will estimate and analyze appropriate time series models from several categories. These include simple time series models like Moving Averages, Exponential Smoothing, and Autoregressive Integrated Moving Averages (ARIMA). Each model is thoroughly examined using relevant diagnostic tests and checks to assure its validity and reliability.

To evaluate the models' predicting performance, we used data up to September 2023 as a training set to generate forecasts for the next six months (October 2023 to March 2024). These estimates are then compared to real cocoa prices for the same time period to determine the accuracy and reliability of each model.

By the end of this study, we aim to develop an ideal forecasting model that produces the most accurate and trustworthy cocoa price forecasts. This model can help cocoa industry stakeholders make educated decisions, manage risks, and prepare for the future more effectively.

II. EXPLORATORY DATA ANALYSIS (EDA)

II.1 Dataset Description

The dataset CocaPrice.csv contains the price of Cocoa from October 1995 to March 2024. The dataset contains historical pricing information, including a complete record of cocoa price variations throughout the time.

This dataset has 354 rows and 2 columns containing both numerical values. The details of the dataset are mentioned below:

- **Date:** integer encoding of the census region.
- **Price:** IT standard encoding for US states.

The CocoaPrice dataset is put into a data frame in a Jupyter notebook for further analysis. Figure 1 provides additional information regarding the dataset's properties.

Fig. 1. Information of the dataset

II.2 Data Visualization

First, we have to create a data index for yearly data. The data frame must include historical cocoa price data from October 1995 to March 2024. This procedure indexes price data by date, making it easy to manipulate, analyze, and visualize the yearly cocoa price.

a) Descriptive Summary Variables: Figure 2 depicts the necessary numerical variables and descriptive summary, including count, mean, percentile, maximum and minimum values.

	Price
count	354.000000
mean	1853.000311
std	623.238555
min	874.140000
25%	1396.147500
50%	1805.985000
75%	2168.545000
max	6510.160000

Fig. 2. Descriptive Statistics

It may be seen that the minimum and maximum prices of Cocoa are 874.14 and 6510.16 respectively.

b) Line plot: A line plot is a sort of graph in which data points are represented as dots or markers on a line. It is commonly used to depict trends or patterns across time.

Fig. 3. Line plot of monthly Cocoa price

From the above figure, we can understand the monthly prices of cocoa. After 2020 we can see a sudden hike in the price of cocoa.

c) Histogram: Histogram is a graphical representation of numerical data. Here, Figure 4 shows the histogram of Cocoa price and its frequency. The range of 1100 to 2500 shows a higher frequency compared to others.

Fig. 4. Histogram of Cocoa price

d) Bar Plot: A Bar plot is a statistical plot that shows the relationship between categorical and numerical variables. Figure 5, shows the relationship between the yearly price variation of Cocoa.

Fig. 5. Bar plot of yearly Cocoa price

Fig. 6. Monthly prices of Cocoa

Figure 6 shows the monthly prices of Cocoa. From this, we can understand that March month has the highest price in a year.

III. METHODOLOGY

Data preparation or data preprocessing is a key step in machine learning procedures. It entails transforming raw data into a form suitable for training machine learning models.

III.1 Handling missing values

To handle missing values, we must determine whether any missing values exist in the dataset. For that, we are using isna().sum() function to check. We don't have any missing values in this dataset.

df.isna().sum()

Price 0 dtype: int64

Fig. 7. Details of null-values

III.2 Components of Time series:

A Time series is essentially a series of data points collected over time to help us understand how a specific variable changes over time. Time acts as a framework, allowing us to meaningfully organize these observations, whether by years, months, days, or hours.

When we look at the elements that influence the values within a time series, we can classify them into three main components: Trend, Seasonal Variation, and Residuals.

Trends: It indicates the long-term trend of the data. It allows us to determine if the variable is generally increasing, decreasing, or staying relatively stable over time.

Seasonal Variation: Seasonality refers to patterns that repeat at defined intervals, such as daily, weekly, or yearly.

Residuals: Residual components reflect random oscillations that do not follow a predefined pattern. They occurs as a result of unanticipated occurrences such as rapid market fluctuations or natural calamities.

Fig. 8. Seasonal decomposition of Cocoa prices

Figure 8 shows the seasonal decomposition of cocoa prices. We can see three different line plots define the variations of Trends, Seasonal Variations, and Residuals of Cocoa prices.

The trend plot displays the trend component. It shows the long-term pattern of cocoa prices. The Price fluctuates both up and down over time. The second plot depicts the seasonal patterns that occur throughout the year. It helps to discover seasonal patterns in the cocoa price data.

The seasonal decomposition map reveals the underlying components of the cocoa price. It helps us to learn seasonal patterns, long-term trends, and unusual patterns in the data.

IV. MODEL EVALUATION AND RESULT

In this project, we are using three different Simple time series models such as Simple moving average, Weighted moving average, and Naïve. After this, we implemented two exponential smoothing models such as Single exponential smoothing and double exponential smoothing. Finally, we implemented the model ARIMA (Auto Regressive Integrated Moving Average).

IV.1 Simple Moving Average and Weighted Moving Average:

Simple Moving Average (SMA) measures the average of a specified number of data points over a given period. It smooths out fluctuations, helping to identify trends by highlighting the overall direction of the data.

Weighted Moving Average (WMA) assigns various weights to each data point in the calculation. It prioritizes current data, which reflects changing trends more accurately.

Fig. 9. Graphical visualization of simple and weighted moving average

Figure 9 depicts the graphical visualization of the Simple Moving Average and Weighted Moving Average with actual data.

Metrics for Simple Moving Average (SMA):

MAE: 180.18494639376217 RMSE: 289.8563203974798 MSE: 84016.68647436648

Metrics for Weighted Moving Average (WMA):

MAE: 135.55885252661565 RMSE: 222.88515088810465 MSE: 49677.79048641317

Fig. 10. Metric calculations of Simple Moving Average and Weighted Moving Average

Figure 10 shows the Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Mean Square Error (MSE) of the Simple Moving Average and Weighted Moving Average. By

comparing this Weighted Moving Average model performs better than the Simple Moving Average. The Weighted Moving Average has less error compared to Simple Moving Average.

IV.2 Naïve Model:

The Naïve model essentially predicts future values of a time series using the most recent observation. It assumes no change from the previous known values, making it simple but sometimes insufficient for good forecasting.

Fig. 11. Graphical visualization of Naïve Forecast

Figure 11 shows the graphical representation of the Naive forecast model. We can understand that it has very few errors compared to the previous two simple time series models. Most of the lines of the Naïve forecast are very close to the actual values of the data.

Naive Method:

MAE: 81.46195467422098 MSE: 18374.45655552408 RMSE: 135.55241257729085

Fig. 12. Graphical visualization of Naïve Forecast

Figure 12 illustrates the metric calculation of the Naïve forecast model. Here compared to the Simple moving average and Weighted Moving Average, the Naïve method has low error. This simple time series model is performing better than other models.

IV.3 Single Exponential Smoothing and Double Exponential Smoothing:

Single Exponential Smoothing estimates future values of a time series by illustrating current data. It is based on a weighted average of previous observations, with decreasing weights as observations become older.

Double exponential smoothing predicts future values of a time series while considering trend and seasonality. It makes forecasts based on weighted averages of previous observations and past trend estimates, responding to changing patterns over time.

Fig. 13. Graphical visualization of Single Exponential Smoothing

Fig. 14. Graphical visualization of Double Exponential Smoothing

Figures 13 and 14 shows the graphical visualization of Single Exponential Smoothing and Double Exponential Smoothing. By comparing these two graphs we can understand that Single exponential smoothing performs better than Double Exponential Smoothing. Double exponential Smoothing shows more error with actual values.

Metrics for Single Exponential Smoothing (SES):

MAE: 2007.653320577542 RMSE: 2265.201469937214 MSE: 5131137.699405714

Fig. 15. Metrics of Single Exponential Smoothing

Metrics for Double Exponential Smoothing (DES):

MAE: 4521.182084728901 RMSE: 4550.524227697948 MSE: 20707270.746866006

Fig. 16. Metrics of Double Exponential Smoothing

Figures 15 and 16 show the metrics calculation of Single Exponential Smoothing and Double Exponential Smoothing. By comparing the metrics Single Exponential Smoothing has minimum error. So we can understand that in exponential smoothing Single Exponential Smoothing performs better than Double Exponential Smoothing.

IV.3 ARIMA (Auto Regressive Integrated Moving Average):

ARIMA (Auto Regressive Integrated Moving Average) is a statistical technique for evaluating and forecasting time series. It uses autoregression, differencing, and moving average approaches to model and predict values based on previous data, making it suitable for a variety of forecasting jobs.

Fig. 17. Graphical visualization of ARIMA

Figure 17 illustrates the graphical representation of ARIMA. Here by visualizing the graph we can understand that has some errors compare to actual data. Let's discuss it by calculating metrics.

Metrics for ARIMA:

MAE: 3641.4577089028207 RMSE: 3681.7953549422805 MSE: 13555617.035674552

Fig. 18. Metrics of ARIMA

Figure 18 illustrates the metric calculation of the ARIMA model. By evaluating the metrics we can the MSE has high value and it cannot provide good results. A decrease in error helps the model to perform well.

Fig. 19. Comparison of models

By comparing the models Simple Moving Average, Weighted Moving Average, Naïve, Single Exponential Smoothing, Double Exponential Smoothing, and ARIMA. The Naïve Model is performing excellently compared to other models. It shows very little Mean Absolute Error. So, we can suggest Naïve as a good model for predicting.

V. CONCLUSION

Following a thorough examination of several time series models, including simple moving average, weighted moving average, Naive, single exponential smoothing, double exponential smoothing, and ARIMA, it is clear that Naive outperforms the others in terms of forecast accuracy metrics such as RMSE, MSE, and MAE. Despite its simplicity, naive forecasting exhibits strong predictive power for cocoa price data from October 1995 to September 2023, accurately capturing underlying patterns and trends.

Simple moving averages and weighted moving averages, while simple to design, struggle to respond to the dynamic nature of cocoa price variations, yielding less accurate forecasts than Naive. Single and double exponential smoothing approaches, while capable of capturing trends and seasonality, have slightly larger predicting errors than Naive.

ARIMA, a more advanced model, produces competitive results but necessitates careful parameter adjustment and assumption validation, making it more difficult to implement than Naive.

Finally, for this particular time series dataset, Naive emerges as the best forecasting model due to its simplicity, ease of implementation, and greater predictive performance. However, for accurate forecasting in the future, it is critical to examine the specific qualities of the data as well as prospective changes in underlying trends.

PART B: LOGISTIC REGRESSION

VI. INTRODUCTION

Credit card transactions are now a normal aspect of our daily lives in the digital age. However, the convenience of Internet shopping comes with the risk of fraudulent activity. Credit card fraud happens when unlawful purchases are performed with someone else's credit card information, resulting in financial loss and annoyance for both individuals and organizations.

To address this issue, data analytics techniques such as logistic regression can be used to detect fraudulent transactions and avoid potential losses. Logistic regression is a statistical method for estimating the likelihood of a binary outcome, such as whether a transaction is fraudulent or not.

In this work, we analyze a dataset including anonymized data from over 280,000 credit card transactions that were classed as fraudulent or non-fraudulent. Our goal is to create a logistic regression model that can accurately predict the possibility of fraud based on several transaction characteristics.

We hope to gain a better understanding of the elements that contribute to credit card theft by doing exploratory data analysis, building models, and evaluation. We can help financial institutions and businesses discover and prevent fraudulent actions, thereby protecting consumers' interests and maintaining trust in electronic payment systems.

VII. EXPLORATORY DATA ANALYSIS (EDA)

VII.1 Dataset Description

The fraud.csv dataset contains credit card transaction data that has been cleaned as well as partially standardized. It contains 31 variables, which include the following:

- Time: It is the time of transaction measured in seconds over two days.
- **Amount:** It is the transaction amount in Euro.
- Class: It is the target variable that determines whether the transaction is fraudulent or not. The values of the Class column are in binary format. Binary 1 denotes fraud and 0 represents non-fraud.
- V1 to V28: This is a transformed feature derived from the original dataset.

The fraud dataset is loaded into a data frame in a Jupyter notebook for further processing. More information about the features in the dataset is shown in Figure 20.

Data	columns	(total 31 columns	
#	Column	Non-Null Count	Dtype
	Time	20272611	(1+64
0	Time	283726 non-null	float64 float64
1 2	V1	283726 non-null	float64
	V2	283726 non-null	
3	V3	283726 non-null	float64
4	V4	283726 non-null	float64
5	V5	283726 non-null	float64
6	V6	283726 non-null	float64
7	V7	283726 non-null	float64
8	V8	283726 non-null	float64
9	V 9	283726 non-null	float64
10	V10	283726 non-null	float64
11	V11	283726 non-null	float64
12	V12	283726 non-null	float64
13	V13	283726 non-null	float64
14	V14	283726 non-null	float64
15	V15	283726 non-null	float64
16	V16	283726 non-null	float64
17	V17	283726 non-null	float64
18	V18	283726 non-null	float64
19	V19	283726 non-null	float64
20	V20	283726 non-null	float64
21	V21	283726 non-null	float64
22	V22	283726 non-null	float64
23	V23	283726 non-null	float64
24	V24	283726 non-null	float64
25	V25	283726 non-null	float64
26	V26	283726 non-null	float64
27	V27	283726 non-null	float64
28	V28	283726 non-null	float64
29	Amount	283726 non-null	float64
30	Class	283726 non-null	int64
dtype	es: float	t64(30), int64(1)	
		67.1 MB	

Fig. 20. Information of the dataset

VII.2 Data Visualization

a) Descriptive Summary Variables: The important numerical variables and descriptive summaries including count,

mean, percentile, maximum, and minimum values are shown in Figure. 21.

728 0 94811.077600 47481.047891 0.00000 54204.750000 84892.500000 13298.000000 172792.00000 728 0 0.003038 1.00000 -28.956239 -0.470195 0.010464 0.675590 1.260214 728 0 0.003031 1.00000 -28.956239 -0.470195 0.010464 0.675590 1.260214 728 0 0.001069 1.000000 -23.031662 0.589708 0.119285 0.680700 6.219043 728 0 0.001327 1.000000 -82.601759 -0.500968 -0.000856 1.000000 -82.601759 -0.500968 -0.000858 0.033222 0.444600 25.27388 728 0 0.001487 1.000000 -35.479777 -0.450049 0.033282 0.444600 55.034118 728 0 0.001487 1.000000 -62.967827 -0.177115 0.018572 0.276241 16.968858 728 0 0.001487 1.000000 -22.842897 -0.497561 -0.048618 0.421419 22.2566019 728 0 0.000138 1									
728 0 0.003038 1.000000 -28.966239 -0.470195 0.010464 0.675590 1.260214 728 0 -0.002511 1.000000 -44.158375 -0.364559 0.038835 0.485991 13.395087 728 0 -0.002088 1.000000 -4.018893 -0.601448 -0.016732 0.632020 11.932920 728 0 -0.002088 1.000000 -82.601759 -0.500083 -0.038829 0.444600 25.23328 728 0 -0.000856 1.000000 -19.61043 -0.577381 -0.205593 0.297905 55.03418 728 0 -0.001467 1.000000 -36.497777 -0.450049 0.033282 0.464682 98.226798 728 0 -0.001457 1.000000 -62.097827 -0.177115 0.018572 0.276241 16.98858 728 0 -0.001457 1.000000 -12.263038 -0.588065 -0.048011 0.544026 14.235602 728 0 -0.001338 1.000000 -2.479814 -0.487561 -0.086618 0.421419 22.056918 </th <th></th> <th>count</th> <th>mean</th> <th>std</th> <th>min</th> <th>25%</th> <th>50%</th> <th>75%</th> <th>max</th>		count	mean	std	min	25%	50%	75%	max
728.0 -0.002511 1.000000 -44.158375 -0.364559 0.038355 0.485991 13.35608 728.0 0.001069 1.000000 -32.031662 -0.589708 0.119285 0.890700 6.21904 728.0 0.002088 1.000000 -4.018993 -0.601448 -0.015732 0.523020 11.93292 728.0 0.001327 1.000000 -4.61893 -0.600863 -0.038829 0.444600 22.27388 728.0 0.0001487 1.000000 -35.479777 -0.450049 0.035282 0.464882 92.22679 728.0 -0.000725 1.000000 -62.097827 -0.177115 0.018572 0.276241 18.96881 728.0 -0.001487 1.000000 -12.263038 -0.588065 -0.048011 0.544026 14.23560 728.0 -0.001457 1.000000 -12.263038 -0.588065 -0.048011 0.544026 14.23560 728.0 -0.000188 1.000000 -18.783749 -0.497561 -0.086818 0.421419 22.059611	Time	283726.0	94811.077600	47481.047891	0.000000	54204.750000	84692.500000	139298.000000	172792.00000
726.0 0.001069 1.00000 -32.031662 -0.589708 0.119285 0.680700 6.21904 726.0 -0.002098 1.000000 -4.018693 -0.601148 -0.015732 0.523020 11.93292 726.0 -0.000856 1.000000 -8.2601759 -0.500863 -0.038829 0.444800 25.27338 726.0 -0.000856 1.000000 -36.479777 -0.450049 0.033282 0.444800 25.27338 726.0 -0.000725 1.000000 -36.479777 -0.450049 0.033282 0.464892 92.2679 726.0 -0.001457 1.000000 -36.297827 -0.177115 0.018572 0.276241 16.98827 726.0 -0.001457 1.000000 -12.263038 -0.588065 -0.048011 0.544026 14.23560 726.0 -0.00138 1.000000 -22.842897 -0.497561 -0.086618 0.421419 22.05961 726.0 -0.000188 1.000000 -4.8783749 -0.408373 0.139817 0.520280 7.89041 <	V1	283726.0	0.003038	1.000000	-28.956239	-0.470195	0.010464	0.675590	1.26021
728.0 -0.002088 1.000000 -4.018693 -0.601148 -0.015732 0.523020 11.93292 728.0 0.001327 1.000000 -82.601759 -0.500963 -0.038829 0.444600 25.27338 728.0 -0.000856 1.000000 -36.479777 -0.450049 0.033282 0.464682 98.22679 728.0 -0.000725 1.000000 -82.097827 -0.450049 0.033282 0.464682 98.22679 728.0 -0.001457 1.000000 -82.097827 -0.450049 0.033282 0.464682 98.22679 728.0 -0.001457 1.000000 -12.263038 -0.588065 -0.048011 0.544026 14.23560 728.0 -0.001338 1.000000 -2.2842897 -0.497561 -0.086618 0.421419 22.05661 728.0 -0.000719 1.000000 -18.783749 -0.408373 0.139817 0.620280 7.89041 728.0 -0.000265 1.000000 -20.178556 -0.447097 0.0523885 0.710579 9.70357	V2	283726.0	-0.002511	1.000000	-44.158375	-0.364559	0.038835	0.485991	13.39508
728 0 0.001327 1.000000 -82 601759 -0.500963 -0.038829 0.444600 25 27388 728 0 -0.000856 1.000000 -19.641043 -0.577381 -0.206593 0.297908 55.03411 728 0 -0.001467 1.000000 -62.097827 -0.450049 0.033282 0.464682 98.22679 728 0 -0.001457 1.000000 -62.097827 -0.477115 0.018572 0.276241 16.96865 728 0 -0.001457 1.000000 -12.263038 -0.588065 -0.048011 0.544026 14.23560 728 0 -0.001457 1.000000 -22.842997 -0.497861 -0.086618 0.421419 22.058981 728 0 -0.00188 1.000000 -4.709314 -0.747863 -0.031712 0.725999 11.79805 728 0 -0.000608 1.000000 -4.818344 -0.665837 -0.012986 0.66223 7.15660 728 0 -0.000605 1.000000 -4.917451 -0.635540 0.052728 0.517042 11.05737	V3	283726.0	0.001069	1.000000	-32.031662	-0.589708	0.119285	0.680700	6.21904
728.0 -0.000856 1.000000 -19.641043 -0.577381 -0.206593 0.297908 55.03411 728.0 0.001467 1.000000 -35.479777 -0.450049 0.033282 0.484882 98.22679 728.0 0.000725 1.000000 -62.097827 -0.177115 0.018572 0.276241 16.96885 728.0 -0.001457 1.000000 -22.83038 -0.588065 -0.048011 0.544026 14.23560 728.0 -0.00138 1.000000 -22.842897 -0.497561 -0.086618 0.421419 22.05661 7278.0 0.000198 1.000000 -18.733749 -0.408373 -0.03171 0.620280 7.89041 7278.0 0.0000719 1.000000 -18.733749 -0.408373 0.139817 0.620280 7.89041 7278.0 0.000068 1.000000 -29.178556 -0.447097 0.052728 0.517042 11.05503 7278.0 0.001140 1.000000 -49.17451 -0.659540 0.053885 0.710579 9.70357 </td <td>V4</td> <td>283726.0</td> <td>-0.002098</td> <td>1.000000</td> <td>-4.018693</td> <td>-0.601148</td> <td>-0.015732</td> <td>0.523020</td> <td>11.93292</td>	V4	283726.0	-0.002098	1.000000	-4.018693	-0.601148	-0.015732	0.523020	11.93292
728.0 0.001467 1.00000 -35.479777 -0.460049 0.033282 0.464682 98.22676 728.0 -0.000725 1.000000 -62.097827 -0.177115 0.018572 0.276241 16.96885 728.0 -0.001457 1.000000 -12.263038 -0.588065 -0.048011 0.544026 14.23560 728.0 -0.001338 1.000000 -22.842897 -0.497561 -0.096618 0.421419 22.05981 728.0 -0.000719 1.000000 -18.783749 -0.408373 0.138817 0.620280 7.89941 728.0 -0.000606 1.000000 -5.818474 -0.650937 -0.012986 0.66223 7.15960 728.0 0.000265 1.000000 -2.178556 -0.447097 0.052728 0.517042 11.05503 728.0 0.001330 1.000000 -4.917451 -0.653450 0.053885 0.710579 9.70357 728.0 0.000330 1.000000 -2.9866565 -0.574390 -0.078180 0.473553 19.9831	V5	283726.0	0.001327	1.000000	-82.601759	-0.500963	-0.038829	0.444600	25.27338
728 0 -0.000725 1.000000 -62.097827 -0.177115 0.018572 0.276241 16.96888 728 0 -0.001457 1.000000 -12.263038 -0.588065 -0.048011 0.544026 14.23560 728 0 -0.001338 1.000000 -22.842897 -0.467561 -0.086618 0.421419 22.05361 726 0 -0.000719 1.000000 -4.709314 -0.747653 -0.031712 0.725899 11.79806 726 0 -0.000719 1.000000 -4.8783749 -0.468373 -0.0138817 0.620280 7.15806 726 0 0.000265 1.000000 -5.818474 -0.665037 -0.012896 0.686223 7.15806 726 0 0.00140 1.000000 -4.917451 -0.635540 0.053885 0.710579 9.70357 726 0 0.001330 1.000000 -16.172501 -0.534550 0.078822 0.599192 19.81822 726 0 0.000325 1.000000 -11.343445 -0.547490 -0.078180 0.473553 10.9831 <td>V6</td> <td>283726.0</td> <td>-0.000856</td> <td>1.000000</td> <td>-19.641043</td> <td>-0.577381</td> <td>-0.206593</td> <td>0.297908</td> <td>55.03411</td>	V6	283726.0	-0.000856	1.000000	-19.641043	-0.577381	-0.206593	0.297908	55.03411
728 0 -0.001457 1.000000 -12 263038 -0.588065 -0.048011 0.544026 14 23560 728 0 -0.001338 1.000000 -22 842897 -0.497561 -0.086618 0.421419 22.05961 728 0 0.000188 1.000000 -4 709314 -0.747653 -0.031712 0.725989 11.78905 728 0 0.000606 1.000000 -5 818474 -0.665037 -0.012986 0.66223 7.15960 728 0 0.000265 1.000000 -26 178556 -0.447097 0.052728 0.517042 11.05502 728 0 0.00140 1.000000 -4 917451 -0.635540 0.053885 0.710579 9.70357 728 0 0.001330 1.000000 -16 172501 -0.534350 0.076822 0.599192 19.81822 728 0 0.001330 1.000000 -13 1343445 -0.594731 -0.002588 0.599438 6.02008 728 0 0.000325 1.000000 -13 43445 -0.594731 -0.002588 0.599438 6.02008	٧7	283726.0	0.001467	1.000000	-35.479777	-0.450049	0.033282	0.464682	98.22679
728 0 -0.001338 1.000000 -22.842897 -0.497561 -0.096618 0.421419 2.2.05961 728 0 0.000188 1.000000 -4.709314 -0.747653 -0.031712 0.725999 11.79805 728 0 0.000719 1.000000 -18.783749 -0.408373 0.138917 0.620280 7.89041 728 0 0.000665 1.000000 -20.178566 -0.447097 0.052728 0.517042 11.05503 728 0 0.00140 1.000000 -4.917451 -0.655540 0.053885 0.710579 9.70357 728 0 0.00130 1.000000 -4.917451 -0.635540 0.053885 0.710579 9.70357 728 0 0.00133 1.000000 -29.86655 -0.574390 -0.078180 0.473553 10.98331 726 0 0.001809 1.000000 -13.343445 -0.594731 -0.00258 0.599438 6.0206 728 0 -0.000225 1.000000 -8.88598 -0.594731 -0.004140 -0.693798 6.87499	V8	283726.0	-0.000725	1.000000	-62.097827	-0.177115	0.018572	0.276241	16.96885
728.0 0.000188 1.000000 -4.709314 -0.747653 -0.031712 0.725889 11.79805 728.0 0.000719 1.000000 -18.783749 -0.408373 0.139817 0.620280 7.89041 728.0 0.000606 1.000000 -5.818474 -0.660837 -0.012986 0.666223 7.15960 728.0 0.000265 1.000000 -20.178556 -0.447097 0.052728 0.517042 11.05503 728.0 0.001140 1.000000 -16.172501 -0.53549 0.053885 0.710579 9.70357 728.0 0.001330 1.000000 -16.172501 -0.534390 0.078180 0.473553 19.81822 728.0 0.000202 1.000000 -29.866565 -0.574390 -0.078180 0.473553 19.81822 728.0 0.001809 1.000000 -13.43445 -0.594731 -0.002558 0.599438 6.02006 728.0 0.000325 1.000000 -70.777709 -0.274641 -0.069890 0.173000 51.19702	V9	283726.0	-0.001457	1.000000	-12.263038	-0.588065	-0.048011	0.544026	14.23560
728.0 -0.000719 1.000000 -18.783749 -0.408373 0.139817 0.620280 7.89041 728.0 0.000608 1.000000 -5.818474 -0.650837 -0.012986 0.686223 7.15960 728.0 0.000265 1.000000 -20.178556 -0.447097 0.052728 0.517042 11.05503 728.0 0.001140 1.000000 -4.917451 -0.635540 0.053885 0.710579 9.70357 728.0 0.001330 1.000000 -2.986565 -0.574350 0.078180 0.473553 10.8333 10.83331 11.9832 728.0 0.001202 1.000000 -2.986565 -0.574350 0.078180 0.473553 11.981822 728.0 0.001809 1.000000 -13.43445 -0.594373 -0.002585 0.599438 6.02008 728.0 -0.000325 1.000000 -70.777709 -0.274641 -0.000990 0.173000 51.19702 728.0 -0.000512 1.000000 -48.114286 -0.315378 -0.040669 0.	V10	283726.0	-0.001338	1.000000	-22.842897	-0.497561	-0.086618	0.421419	22.05961
728.0 0.000606 1.00000 -5.818474 -0.660837 -0.012986 0.666223 7.15960 728.0 0.000265 1.00000 -20.178556 -0.447097 0.052728 0.517042 11.05503 728.0 0.001140 1.000000 -4.917451 -0.635540 0.053885 0.710579 9.7057 728.0 0.001330 1.000000 -29.866565 -0.574380 0.078182 0.599192 19.81822 728.0 0.001809 1.000000 -29.866565 -0.574380 0.078180 0.473553 10.98331 728.0 0.000325 1.000000 -13.43445 -0.59431 -0.002568 0.599438 6.02068 728.0 0.000325 1.000000 -13.86598 -0.569880 0.04140 0.563708 6.87498 728.0 0.000243 1.000000 -70.777709 -0.274841 -0.086980 0.173000 51.19702 728.0 0.000512 1.000000 -15.098554 -0.749016 0.009212 0.729066 14.49600	V11	283726.0	0.000198	1.000000	-4.709314	-0.747653	-0.031712	0.725989	11.79805
728.0 0.000265 1.00000 -20.178556 -0.447097 0.052728 0.517042 11.05502 728.0 0.001140 1.00000 -4.917451 -0.635540 0.053885 0.710579 9.70357 728.0 0.001330 1.000000 -16.172501 -0.534350 0.078180 0.473553 10.98331 728.0 0.000202 1.000000 -11.343445 -0.594731 -0.002588 0.959438 6.20068 728.0 0.000325 1.000000 -13.868598 -0.560880 0.004140 0.583708 6.87498 728.0 0.000243 1.000000 -70.777709 -0.274641 -0.090980 0.173000 51.19702 728.0 0.000512 1.000000 -48.814286 -0.315378 -0.04669 0.257206 37.57768 728.0 0.000318 1.000000 -15.089554 -0.749016 0.009212 0.729066 14.49600 7126.0 0.000318 1.000000 -48.83788 -0.585287 0.067724 0.728088 7.56992 <t< td=""><td>V12</td><td>283726.0</td><td>-0.000719</td><td>1.000000</td><td>-18.783749</td><td>-0.408373</td><td>0.139817</td><td>0.620280</td><td>7.89041</td></t<>	V12	283726.0	-0.000719	1.000000	-18.783749	-0.408373	0.139817	0.620280	7.89041
726.0 0.001140 1.00000 -4.917451 -0.635540 0.053885 0.710579 9.70357 726.0 0.001330 1.00000 -16.172501 -0.534350 0.076822 0.599192 19.81822 726.0 0.000202 1.000000 -29.868565 -0.574390 -0.078180 0.473553 10.98331 726.0 0.001809 1.000000 -13.43445 -0.560980 0.001410 0.583708 6.87496 726.0 -0.000325 1.000000 -70.877709 -0.274641 -0.000980 0.173000 51.19702 726.0 -0.000512 1.000000 -70.8787709 -0.274641 -0.000980 0.173000 51.19702 726.0 -0.000512 1.000000 -15.089554 -0.749016 0.000212 0.729066 14.49600 7126.0 -0.000318 1.000000 -15.089554 -0.749016 0.007811 0.236889 36.12045 7126.0 0.000318 1.000000 -18.91533 -0.259264 -0.017891 0.236889 36.12045 <td>V13</td> <td>283726.0</td> <td>0.000606</td> <td>1.000000</td> <td>-5.818474</td> <td>-0.650837</td> <td>-0.012986</td> <td>0.666223</td> <td>7.15960</td>	V13	283726.0	0.000606	1.000000	-5.818474	-0.650837	-0.012986	0.666223	7.15960
728.0 0.001330 1.000000 -16.172501 -0.534350 0.076822 0.599192 19.81822 728.0 0.000202 1.000000 -29.866565 -0.574390 -0.078180 0.473553 10.98331 728.0 0.001809 1.000000 -11.343445 -0.594731 -0.002558 0.599438 6.02006 728.0 -0.000325 1.000000 -8.868598 -0.560980 0.004140 0.563708 6.87496 728.0 -0.000243 1.000000 -70.777709 -0.274641 -0.090980 0.173000 51.19702 728.0 -0.000512 1.000000 -15.089554 -0.749016 0.009212 0.729066 14.49600 728.0 -0.000318 1.000000 -71.841533 -0.259264 -0.017891 0.236889 36.12045 728.0 0.000318 1.000000 -71.841533 -0.259264 -0.017891 0.236889 36.12045 728.0 0.000346 1.000000 -19.752486 -0.809119 0.031231 0.872781 14.42689 <	V14	283726.0	0.000265	1.000000	-20.178556	-0.447097	0.052728	0.517042	11.05503
728.0 0.000202 1.000000 -29.866565 -0.574390 -0.078180 0.473553 10.98331 728.0 0.001809 1.000000 -11.343445 -0.594731 -0.002558 0.599438 6.02006 728.0 0.000325 1.000000 -8.888598 -0.560980 0.004140 0.583708 6.87496 728.0 0.000243 1.000000 -70.777709 -0.274641 -0.080980 0.173000 51.19702 726.0 -0.000512 1.000000 -15.089554 -0.749016 0.009212 0.729066 14.49600 726.0 -0.000318 1.000000 -71.841533 -0.259264 -0.017891 0.236889 36.12045 726.0 0.000314 1.000000 -77.841533 -0.259264 -0.017891 0.236889 36.12045 726.0 0.000354 1.000000 -19.752486 -0.899119 0.031231 0.872781 14.42689 726.0 0.000310 1.000000 -5.403038 -0.677558 0.108228 0.498413 7.28698	V15	283726.0	0.001140	1.000000	-4.917451	-0.635540	0.053885	0.710579	9.70357
728.0 0.001809 1.00000 -11.343445 -0.594731 -0.002558 0.599438 6.02000 728.0 -0.000325 1.000000 -8.868598 -0.560980 0.004140 0.563708 6.87496 728.0 0.000243 1.000000 -70.777709 -0.274641 -0.080980 0.173000 51.19702 728.0 -0.000512 1.000000 -48.114286 -0.315378 -0.040669 0.257206 37.5776 728.0 -0.000021 1.000000 -15.089554 -0.749016 0.009212 0.729066 14.4960 7726.0 0.000318 1.000000 -71.841533 -0.259284 -0.017891 0.236889 36.12045 7726.0 0.000354 1.000000 -48.83788 -0.585267 0.067724 0.726088 7.56989 7726.0 0.000446 1.000000 -5.403038 -0.679588 -0.108228 0.498413 7.29658 7726.0 0.004455 1.000000 -5.7020918 -0.178501 0.003411 0.230473 7.98040	V16	283726.0	0.001330	1.000000	-16.172501	-0.534350	0.076822	0.599192	19.81822
726.0 -0.000325 1.000000 -8.868598 -0.560980 0.004140 0.563708 6.87496 726.0 0.000243 1.000000 -70.777709 -0.274841 -0.080980 0.173000 51.19702 726.0 -0.000512 1.000000 -48.114286 -0.315378 -0.040689 0.257206 37.57768 726.0 -0.000021 1.000000 -15.098554 -0.749016 0.009212 0.729066 14.49600 7126.0 0.000318 1.000000 -71.841533 -0.259264 -0.017891 0.236889 36.12045 7126.0 0.000354 1.000000 -48.83788 -0.585267 0.067724 0.726088 7.56992 7126.0 0.000310 1.000000 -54.03038 -0.679588 -0.108228 0.49841 1.24289 7126.0 0.004455 1.000000 -57.020918 -0.178501 0.003411 0.230473 79.88044 7126.0 0.001688 1.000000 -57.020918 -0.178501 0.004411 0.23827 103.18616 </td <td>V17</td> <td>283726.0</td> <td>0.000202</td> <td>1.000000</td> <td>-29.866565</td> <td>-0.574390</td> <td>-0.078180</td> <td>0.473553</td> <td>10.98331</td>	V17	283726.0	0.000202	1.000000	-29.866565	-0.574390	-0.078180	0.473553	10.98331
728.0 0.000243 1.000000 -70.777709 -0.274641 -0.080980 0.173000 51.19702 728.0 -0.000512 1.000000 -48.114286 -0.315378 -0.040669 0.257206 37.57768 728.0 -0.000021 1.000000 -15.089554 -0.749016 0.009212 0.729066 14.49600 1728.0 0.000318 1.000000 -71.841533 -0.259284 -0.017891 0.236899 36.12045 1728.0 0.000354 1.000000 -4.883788 -0.585287 0.067724 0.726088 7.56992 1728.0 0.000310 1.000000 -5.403388 -0.677858 -0.108228 0.498413 7.29659 1728.0 0.004455 1.000000 -57 020918 -0.178601 0.003738 0.230473 7.988044 1728.0 0.00468 1.000000 -57 020918 -0.168011 0.003738 0.230473 7.988044 1728.0 0.001688 1.000000 -57 030918 -0.161018 0.034411 0.238627 103.18616	V18	283726.0	0.001809	1.000000	-11.343445	-0.594731	-0.002558	0.599438	6.02006
726.0 -0.000512 1.000000 -48.114286 -0.315378 -0.040669 0.257206 37.57768 726.0 -0.000021 1.000000 -15.089554 -0.749016 0.009212 0.729066 14.49600 726.0 0.000318 1.000000 -71.841533 -0.259264 -0.017891 0.236889 36.12045 726.0 0.000354 1.000000 -4.883788 -0.585267 0.067724 0.726088 7.56992 726.0 0.000446 1.000000 -19.752486 -0.609119 0.031231 0.672781 1.42689 726.0 0.000430 1.000000 -57.020918 -0.178501 0.003236 0.203473 79.88044 726.0 0.001688 1.000000 47.039123 -0.161018 0.034411 0.238627 103.18616 726.0 8.472687 250.399437 0.000000 5.600000 22.000000 77.510000 26691.16000	V19	283726.0	-0.000325	1.000000	-8.868598	-0.560980	0.004140	0.563708	6.87499
728.0 -0.00021 1.00000 -15.089554 -0.749016 0.009212 0.729066 14.49600 1728.0 0.000318 1.00000 -71.841533 -0.259284 -0.017891 0.236899 36.12045 1728.0 0.000354 1.00000 -4.883788 -0.595267 0.067724 0.726088 7.56992 1726.0 0.000446 1.00000 -19.752486 -0.609119 0.031231 0.672781 1.42689 1726.0 0.000310 1.000000 -54.03038 -0.677858 -0.108228 0.498413 7.29659 1726.0 0.004455 1.00000 -57.020918 -0.178501 0.003736 0.230473 79.88044 1726.0 0.001688 1.00000 -47.039123 -0.161018 0.034411 0.238627 103.18616 1726.0 0.8472687 250.399437 0.000000 5.60000 22.000000 77.51000 2569116000	V20	283726.0	0.000243	1.000000	-70.777709	-0.274641	-0.080980	0.173000	51.19702
	V21	283726.0	-0.000512	1.000000	-48.114286	-0.315378	-0.040669	0.257206	37.57768
1726 0 0.000354 1.000000 -4.683788 -0.585267 0.067724 0.726088 7.56992 1726 0 -0.000446 1.000000 -19.752486 -0.609119 0.031231 0.672781 1.42688 1726 0 0.000310 1.000000 -5.403038 -0.677858 -0.108228 0.498413 7.29658 1726 0 0.004455 1.00000 -57.020918 -0.178501 0.003738 0.230473 79.88044 1726 0 0.001688 1.000000 -47.039123 -0.161018 0.034411 0.238627 103.18618 1726 0 88.472687 250.399437 0.000000 5.600000 22.000000 77.510000 25691.16000	V22	283726.0	-0.000021	1.000000	-15.089554	-0.749016	0.009212	0.729066	14.49600
1726 0 0.000354 1.000000 -4.683788 -0.585267 0.067724 0.726088 7.56982 1726 0 -0.000446 1.000000 -19.752486 -0.609119 0.031231 0.672781 1.4 42689 1726 0 0.000310 1.000000 -54.03038 -0.677858 -0.108228 0.498413 7.29659 1726 0 0.004455 1.00000 -57.020918 -0.178501 0.003736 0.230473 79.88044 1726 0 0.001688 1.000000 -47.039123 -0.161018 0.034411 0.238627 103.18616 1726 0 88.472687 250.399437 0.000000 5.600000 22.000000 77.510000 25691.16000	V23	283726.0	0.000310	1.000000	71 041522	0.350364	0.017001	0.226000	26 12046
1726 0 -0.000446 1.000000 -19.752486 -0.609119 0.031231 0.672781 1.4.2688 1726 0 0.000310 1.000000 -5.403038 -0.677858 -0.108228 0.498413 7.29659 1726 0 0.004455 1.000000 -57.020918 -0.178501 0.003736 0.230473 79.88044 1726 0 0.001688 1.000000 -47.039123 -0.161018 0.034411 0.238627 103.18618 1726 0 88.472687 250.399437 0.00000 5.600000 22.000000 77.510000 25691.16000	V24	283726.0							
/726.0 0.000310 1.000000 -5.403038 -0.677858 -0.108228 0.498413 7.29659 /726.0 0.004455 1.000000 -57.020918 -0.178501 0.003736 0.230473 79.88044 /726.0 0.001688 1.000000 -47.039123 -0.161018 0.034411 0.238627 103.18618 /726.0 88.472687 250.399437 0.000000 5.600000 22.000000 77.510000 25691.16000	V25	283726.0							
1726.0 0.004455 1.000000 -57.020918 -0.178501 0.003736 0.230473 79.88044 1726.0 0.001688 1.000000 -47.039123 -0.161018 0.034411 0.238627 103.18616 1726.0 88.472687 250.390437 0.000000 5.600000 22.000000 77.510000 25691.16000	V26	283726.0							
726.0 0.001668 1.000000 -47.039123 -0.161018 0.034411 0.238627 103.18616 726.0 88.472687 250.399437 0.000000 5.600000 22.000000 77.510000 25691.16000	V27	283726.0							
726.0 88.472687 250.399437 0.000000 5.600000 22.000000 77.510000 25691.16000	V28	283726.0							
	mount								
7.20.0 0.001007 0.040796 0.000000 0.000000 0.000000 0.000000 1.00000	Class	283726.0							
	28372	26.0	88.472687	250.399437	0.000000	5.600000	22.000000	77.510000	25691.160000

Fig. 21. Table of dataset statistics

The first column indicates the number of values in each variable. The mean and standard deviation values indicates the range of variation for each value. Min and max provide the least and maximum values. Figure 2 displays descriptive statistics values for each variable, indicating their range of variation. The first quartile is 25%, the median is 50% and the third quartile is 75%. These three metrics will provide distribution information for the dataset.

b) Countplot: Countplot is a type of plot used in data visualization that displays the count of observation in each category of a categorical variable.

Fig. 22. Count plot of Class (Target variable)

Figure 22 depicts the visualization of the target variable (Class). From this we can understand that, the data is imbalanced. To solve this problem, we are implementing some methods in the project. Will discuss it later.

VIII.DATA PREPARATION

Data preparation, often known as preprocessing, is a key step in machine learning procedures. It entails transforming raw data into a format suitable for training machine learning models.

VIII.1 Handling missing values and duplicates

For handling missing values we are using isna().sum() function to verify is there are any missing values in the dataset.

df.isna	a().sum()
Time	0
V1	0
V2	0
V3	0
V4	0
V5	0
V6	0
V7	0
V8	0
V9	0
V10	0
V11	0
V12	0
V13	0
V14	0
V15	0
V16	0
V17	0
V18	0
V19	0
V20	0
V21	0
V22	0
V23	0
V24	0
V25	0
V26	0
V27	0
V28	0
Amount	0
Class	0
dtype:	int64

Fig. 23. Details of missing values

From the above figure, we can understand that there is no missing values in the data.

After handling missing values, we check any duplicate data found in the data using duplicated().sum(). As a result of using the function, we got zero duplicate data.

VIII.2 Feature engineering

Multicollinearity occurs when two or more predictor variables in a regression model are substantially associated with one another. In other words, multicollinearity develops when there are linear correlations between the independent variables.

VIF (Variance Inflation Factor) is a measure used to assess the severity of multicollinearity in a regression model. It estimates how much the estimated regression coefficient variance is increased as a result of model multicollinearity.

Here we are going to use VIF to find out the multicollinearity of the data.

Fig. 24. Multicollinearity of variables

From the above figure, we can understand that 'Amount' has high multicollinearity. For a good model, VIF should be less than 5. so we will have to transform our data.

We cannot use log transformation as there are a lot of negative values in every row of our data. So we are using the Yeo-Johnson method to do transformation.

Fig. 25 Multicollinearity of data after transformation

The above figure shows the visualization of multicollinearity after using transformation.

VIII.3 Data Normalization

Data normalization is a preprocessing technique that rescales numerical features in a dataset to a common scale.

In this data, we have already done the normalization. So it is suitable for data splitting.

VIII.4 Data Splitting

The train_test_split function is used in this method to divide the data into training and testing sets. We split 70% of the data for training and 30% for testing.

IX. MODEL EVALUATION AND RESULT

IX.1 Model 1

In Model 1 we are using basic Logistic regression to generate the model. The confusion matrixes display of model 1 is shown below:

Fig. 26 Confusion matrix of model 1

In this model, we are finding accuracy, precision, recall, and f2_score. The result of this model is mentioned below:

Fig. 27 Metrics of Model 1

The below graph shows the Precision recall curve of model 1.

Fig. 28 Precision recall curve of Model1

We got Recall as 0.592 and Precision as 0.83. From this, we can understand the value of precision is high compared to recall. It means that the model classifies a lot of fraudulent transactions as non-fraud.

IX.2 Model 2

In Model 2 we are balancing the data. From the model 1, we get low precision and recall because of unbalanced data. So, in this model, we are using the SMOTE function from imblearn to balance the data. Then we are using the logistic regression model to find the metrics. The confusion matrixes display of model 2 is shown below:

Fig. 29 Confusion matrixes of Model 2

Fig. 30. Metrics of Model 2

By evaluating the result, we got a better Precision and Recall value. The below figure shows the Precision-Recall curve of model 2.

Fig. 31 Precision-Recall curve of model 2

IX.3 Model 3

In Model 3 we are using a basic Random Forest Classifier to generate the model. The confusion matrixes display of model 3 is shown below:

Fig. 32 Confusion matrixes of Model 3

In this model, we are finding accuracy, precision, recall, and f2_score. The result of this model is mentioned below:

The below graph shows the Precision recall curve of model 3.

Fig. 34 Precision recall curve of Model 3

We got Recall as 0.72 and Precision as 0.95. From this, we can understand the value of precision is high compare to recall. It means that the model classifies a lot of fraudulent transactions as non-fraud.

IX.4 Model 4

In Model 4 we are balancing the data. From the model 1 and 3, we get low precision and recall because of unbalanced data. So, in this model, we are using the SMOTE function from imblearn to balance the data. Then we are using the Random Forest Classifier model to find the metrics. The confusion matrixes display of model 4 is shown below:

Fig. 35 Confusion matrixes of Model 4

Fig. 36. Metrics of Model 4

By evaluating the result we got a better Precision and Recall value. The below figure shows the Precision-Recall curve of model 4.

Fig. 37 Precision-Recall Curve of Model 4

X. CONCLUSION

In conclusion, our study solves the issue of balanced data in credit card fraud detection by applying a variety of models and methodologies. We explored four models: Basic logistic regression, Logistic regression with SMOTE oversampling, Basic Random Forest Classifier, and Random Forest Classifier with SMOTE oversampling. Our evaluation metrics included Precision, Recall, Accuracy, and F2-score providing a good picture of model performance.

After evaluation, logistic regression with SMOTE and random forest with SMOTE consistently outperformed their simple counterparts. These models showed enhanced capabilities in correctly recognizing fraudulent transactions, which is critical for minimizing financial losses and preserving client security. The use of SMOTE for data balance greatly improved the model's capacity to generalize to the minority class, resulting in improved overall performance.

XI. REFERENCE

- [1] https://www.analyticsvidhya.com/blog/2022/05/a-comprehensive-guide-to-time-series-analysis-and-forecasting/
- [2] https://www.wisdomgeek.com/development/machine-learning/sarima-forecast-seasonal-data-using-python/,
- [3] https://thesai.org/Downloads/Volume11No12/Paper_65-Fraud_Detection_in_Credit_Cards.pdf
- [4] https://www.icco.org/,