- 1. Considerar el "plano" $P := \mathbb{Z} \times \mathbb{Z} = \{(m,n) : m,n \in \mathbb{Z}\}$ y las "rectas" como los subconjuntos de P de dos elementos. Verificar que este es un ejemplo donde se satisfacen los axiomas de incidencia pero donde las rectas no tienen una cantidad infinita de puntos.
- **2.** Sea $V = \mathbb{R}^3$ el espacio vectorial tridimensional sobre los números reales \mathbb{R} . Consideremos el plano π de subespacios unidimensionales de V. Éstos serán los puntos. Si $W \subset V$ es un subespacio de V de dimensión 2, entonces el conjunto de puntos contenidos en W será llamado una recta. Mostrar que este modelo cumple con los axiomas de incidencia.
- 3. Dada una geometría que verifica los siguientes axiomas:
 - AXIOMA I': El plano es un conjunto finito de puntos.
 - AXIOMA II': Las rectas son subconjuntos propios del plano de exactamente dos puntos.
 - AXIOMA III': Dados dos puntos del plano existe una única recta a la cual pertenecen.
 - AXIOMA IV: Dada una recta existen exactamente cuatro rectas paralelas a la dada. (Dos rectas se dicen paralelas si son coincidentes o si no tienen ningún punto en común.)
 - (a) ¿Se puede determinar la cantidad de puntos que tiene esta geometría? ¿Y la cantidad de rectas?
 - (b) Haga un modelo gráfico para esta geometría
 - (c) ¿Es el paralelismo una relación de equivalencia?
- **4.** El plano de Fano \mathcal{F} consta de 7 puntos $P = \{1, 2, 3, 4, 5, 6, 7\}$ y 7 rectas dadas por $\mathcal{R} = \{\{1, 2, 3\}, \{1, 4, 5\}, \{1, 6, 7\}, \{2, 4, 7\}, \{2, 5, 6\}, \{3, 4, 6\}, \{3, 5, 7\}\}.$
 - (a) Haga un modelo gráfico de este plano.
 - (b) Chequear que \mathcal{F} es un plano finito, que por un punto cualquiera pasan exactamente 3 rectas y que \mathcal{F} es unión de 3 rectas.
 - (c) ¿Cuántas rectas paralelas a una recta dada pasan por un punto exterior a \mathcal{R} ?
- 5. Probar las siguientes afirmaciones.
 - (a) Sean a, b, c tres puntos sobre una recta con c entre a y b. Entonces $\overline{ac} \cup \overline{cb} = \overline{ab} y$ $\overline{ac} \cap \overline{cb} = \{c\}.$
 - (b) Sean $a \ y \ b$ dos puntos sobre <u>la recta</u> A. Entonces $\overrightarrow{ab} \cup \overrightarrow{ba} = A \ y \ \overrightarrow{ab} \cap \overrightarrow{ba} = \overline{ab}$.
 - (c) Si b pertenece al interior de \overline{ac} entonces c no pertenece al interior de \overline{ab} .
- **6.** Dados cuatro puntos a, b, c y d alineados, demostrar que si d está entre a y b entonces también estará entre a y c, o entre b y c.
- 7.(a) Demostrar, usando los axiomas de orden, que las rectas tienen una cantidad infinita de puntos.
 - (b) Demostrar que las semirrectas tienen infinitos puntos.
 - (c) Demostrar que los segmentos tienen infinitos puntos.
- 8. Demostrar que en un plano π , existen siempre infinitas rectas:
 - (a) Primero, usando los axiomas de orden.
 - (b) Luego, sin usar los axiomas de orden.

- 9. Dado $p \in \pi$, denotamos con H_p el haz de rectas que pasan por p.
 - (a) Demostrar que todo punto del plano pertenece a alguna recta de H_p .
 - (b) No toda recta del plano, es una recta de H_p .
 - (c) Demostrar que los axiomas de orden implican que H_p tiene infinitas rectas.
 - (d) Mostrar con un ejemplo que sin los axiomas de orden se puede construir un plano (que satisfaga los axiomas de incidencia) que no satisfaga (c).

- 10. Decidir si las siguientes afirmaciones son verdaderas o falsas y justificar sus respuestas.
 - (a) Si C y D semirrectas tales que $C\cap D$ es un punto, entonces C y D son semirrectas opuestas.
 - (b) Dadas A y B semirrectas contenidas en la recta R, si $A \cup B = R$ entonces $A \cap B$ es un punto.