Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського" Факультет Електроніки Кафедра мікроелектроніки

ЗВІТ

Про виконання лабораторної роботи №6 з дисципліни: «Твердотільна електроніки-2»

«ІНТЕГРАЛЬНІ СХЕМИ СТАТИЧНОЇ ЛОГІКИ НА МДН – ТРАНЗИСТОРАХ»

Виконавець: Студент 3-го курсу	(підпис)	О.О.Грабар		
Превірив:	(підпис)	Л.М. Королевич		

1. МЕТА РОБОТИ

Дослідження характеристик керуючого транзистора та властивостей базових інверторів інтегральних схем виготовлених за МДН-технологією.

2. ЗАВДАННЯ

- 2.1 Виконати вимірювання сімейства вихідних вольт-амперних характеристик керуючого інтегрального МДН-транзистора T_y залежності струму стоку від напруги сток-виток. Побудувати сімейство характеристик $I_c = I_c (U_{cc})$ [при $U_3 = \text{const}$] на одному малюнку.
- 2.2 Визначити крутизну, динамічний опір стоку, коефіцієнт підсилення напруги для крутої і для пологої областей вихідних характеристик транзистора $(S_1; S_2; r_{c_1}; r_{c_2}; \mu_1; \mu_2)$
- 2.3 Виміряти передавальні характеристики інтегрального МДН-інвертора при різних видах навантаження: а) лінійний резистор R_n , б) МДН-транзистор T_y ідентичний керуючому, в) МДН-транзистор з довгим та вузьким каналом T_n .
- 2.4 Побудувати на одному малюнку графіки передавальних характеристик Знятих для трьох типів інверторів. Визначити коефіцієнти передачі для різних видів навантажень.
- 2.5 За результатами вимірювань побудувати на сімействі вихідних ВАХ керуючого транзистора навантажувальні характеристики для трьох типів навантаження: R_n, T_y, T_n
- 2.6 Виконати порівняльний аналіз досліджуваних схем інверторів і зробити висновки про доцільність використання розглянутих типів навантаження в схемах статичної логіки.
- 2.7 Намалюйте можливу структуру одного із досліджених інтегральних МДНінверторів (найоптимальнішого). Запропонуйте заходи щодо зниження порогової напруги та зменшення паразитних ємностей інтегрального МДН інвертора.

Рис. 1: Еквівалентна схема $_{y}$ з каналом $W_{\scriptscriptstyle {
m 9KB.}}=3W.$

Рис. 2: Схема дослідження.

Таб. 1: Сімейство вихідних характеристик керуючого МДН-транзистора.

U3 = 4,5 B U3 = 5 B		U3 = 5,5 B		U3 = 6 B		Uз = 6,5 В		Uз = 7 В		Uз = 7,5 В			
Uc, B	Іс, мкА	Uc, B	Іс, мкА	Uc, B	Іс, мкА	Uc, B	Іс, мкА	Uc, B	Іс, мкА	Uc, B	Іс, мкА	Uc, B	Іс, мкА
0	120	0	60	0	15	0	30	0	35	0	40	0	30
0,1	170	0,1	85	0,1	65	0,1	70	0,1	85	0,1	90	0,1	105
0,2	185	0,2	110	0,2	105	0,2	115	0,2	140	0,2	145	0,15	130
0,3	195	0,3	140	0,3	140	0,3	160	0,3	180	0,3	200	0,2	165
0,4	205	0,4	162	0,4	170	0,4	200	0,4	235	0,4	255	0,25	190
0,5	220	0,5	180	0,5	200	0,5	240	0,5	285	0,5	300	0,3	220
0,7	240	0,6	198	0,6	225	0,6	280	0,55	300			0,35	250
0,9	265	0,7	215	0,7	265	0,66	300					0,4	275
1,2	285	0,8	239	0,8	290							0,44	300
1,5	300	0,9	245	0,84	300								
		1	255										
		1,2	275										
		1,5	295										

Таб. 2: Передавальні характеристики МДН інтегрального інвертора для різних видів навантажень.

Навантаж	ення - Кн	Навантаж	ення - Ту	Навантаження - Тн		
U3, B	Uc, B	U3, B	Uc, B	U3, B	Uc, B	
0	17,5	0	13	0	10	
1	17,5	1	13	1	10	
2	17,5	2	13	2	10	
3	17,5	3	13	3	10	
4	16,5	4	11	3,2	7,8	
5	14	4,5	10	3,4	7	
5,5	12,5	5	9,5	3,5	5,8	
6	10,5	5,5	8,2	3,6	4,8	
7	8,2	6	7	3,7	3,4	
7,5	6,3	6,5	5,9	3,8	2,3	
8	4,6	7	4,9	3,9	0,3	
9	3,4	7,5	3,8	4	0	
10	2,8	8	3,4			
11	2,7	8,5	3			
		9	2,7			
		9,5	2,5			
		10	2,4			

2. ВИКОНАННЯ РОБОТИ

Рис. 3: Вихідні характеристики транзистора

Рис. 4: Передавальні характеристики для трьох типів інверторів

Можна знайти крутизну характеристики при $\triangle U_{\text{CB}} = const$:

$$S = \frac{\triangle I_C}{\triangle U_3} = \frac{(236 - 200) \cdot 10^{-6}}{0.5} = 72 \frac{\text{MKA}}{B}$$

Тепер можна знайти диференційний опір при $\Delta U_3 = const$:

$$r_i = rac{ riangle U_{BC}}{ riangle I_{C_2}} = rac{0.29}{30 \cdot 10^{-6}} = 12,6$$
 кОм

I тепер можна занати граничний кофіцієнт підсилення за напругою:

$$K_U = S \cdot r_i = S \cdot r_i = 0,91$$

Тепер за формулою $K = \frac{\triangle U_C}{\triangle U_3}$ та знаходимо:

Для Тн

$$K_{Tn} = \frac{6 - 4}{3,82 - 3,74} \approx 4.2$$

Для Ту

$$K_{Ty} = \frac{6 - 4}{7,67 - 6,43} \approx 1.6$$

Для Rн

$$K_{Rn} = \frac{6 - 4}{8,45 - 6,66} \approx 1.1$$

Рис. 5: Одна з оптимальних структур КМОП інвертора

Висновок

У цій лабораторній роботі було побудовано сімейство вихідних вольт-амперних характеристик керуючого інтегрального МДН-транзистора. На сімействах вихідних характеристик гарно помітна лінійна область зміни, та зона насичення, можна сказати, що отримані на практиці ВАХ відповідають теоретичним припущенням, оскильки на всіх сімействах добре вихідна дилянка змини, а перехідні характеристики спадають, починаючи зі значення очевидного занченя Наступним кроком визначили крутизну, динамічний опір стоку, коефіцієнт підсилення напруги для крутої області вихідних характеристик транзистора, а от для поллогої ми не можемо — у нас немає вимірів для пологої частини ВАХ, за побудованими на малюнку графіками передавальних характеристик знятих для трьох типів інверторів визначили К для R_n, T_y та T_n .