30-) $\vec{u} = \vec{i} + 3\vec{k}$, $\vec{v} = 3\vec{i} + 2\vec{j} + \vec{k}$ vektörlerinin belirlediği düzleme paralel olan ve $\vec{w} = \vec{i} - 2\vec{j}$ vektörüne dik olan bir birim vektör bulunuz.

Cözüm:

 \overrightarrow{x} vektörü \overrightarrow{u} ile \overrightarrow{v} nin belirlediği düzleme paralel olduğundan $\overrightarrow{u} \wedge \overrightarrow{v}$ vektörel çarpımına diktir. Yani $(\overrightarrow{u} \wedge \overrightarrow{v}) \cdot \overrightarrow{x} = 0$ dır. Ayrıca \overrightarrow{x} vektörü \overrightarrow{w} vektörüne de dik olduğundan $\overrightarrow{x} \cdot \overrightarrow{w} = 0$ dır.

$$\overrightarrow{x} = a \overrightarrow{i} + b \overrightarrow{j} + c \overrightarrow{k}$$
 olsun.
 $\overrightarrow{x} \cdot \overrightarrow{w} = 0 \implies a - 2b = 0 \implies a = 2b$
 $\overrightarrow{(u \wedge v)} \cdot \overrightarrow{x} = 0 \implies -6a + 8b + 2c = 0 \implies c = 2b$ olur.

Böylece istenilen özellikteki bir birim vektör

$$\frac{\vec{x}}{|\vec{x}|} = \pm \frac{b(2\vec{i} + \vec{j} + 2\vec{k})}{\sqrt{b^2(4+1+4)}} = \pm \left(\frac{2\vec{i} + 1\vec{j} + 2\vec{k}}{3\vec{i} + 3\vec{j} + 3\vec{k}}\right) \quad \text{dir.}$$

b) $\vec{a} = 2\vec{i} - \vec{j} + \vec{k}$ ve $\vec{b} = \vec{i} - 2\vec{j} - \vec{k}$ vektörlerinin belirttiği düzleme paralel olup, $\vec{c} = 3\vec{i} - \vec{k}$ vektörüne dik olan bir birim vektör bulunuz.