SOLAR COOLING

Outline

INTRODUCTION

- Cooling market
- Psychrometric processes
- Basic principle

AVAILABLE TECHNOLOGIES

- Compression chillers
- TDCs:
 - Absorption chillers
 - Adsorption chillers
- Desiccant systems

Vapor compression chiller Operation principle

Vapor compression chiller Operation principle

Vapor compression chiller Operation principle

$$COP_c = \frac{Q_{evap}}{P_{el}}$$

- Instantaneous
- Seasonal
- Annual

Vapor compression chiller **COOLING TOWERS (Condenser)**

Air inlet

Cold water

Vapor compression chiller COOLING TOWERS (Condenser)

Typically: T_{middle} =cte (27-29°C) -> heat rejected depends on water mass flow rate and load

Variable speed fans: reduce electrical consumption (3% of cooling power)

Evaporative cooling -> use of water 2% of mass flow "lost"

Mantainance requirements:

- Frequent cleaning
- Chemical treatment (legionella)

System layout

Vapor compression chiller

Typical Figures

Reciprocating compressors:

- COP = 2.0-4.7
- Cooling capacity = 10-500 kW

Screw compressors:

- COP = 2.0-7.0
- Cooling capacity = 300-2000 kW

Centrifugal compressors:

- COP = 4.0-8.0
- Cooling capacity 300-30000kW

$$T_{\text{middle}} = T_{\text{air}} = T_{\text{cond}}$$
 $T_{\text{chilled water}} (T_{\text{chilled}}) = T_{\text{evap}}...$

Vapor compression chiller Performance

54°C

32°C

10

15

Vapor compression chiller Performance

Commercial data, 150kW

References

- Henning, H.M. (Ed.) 2003. Solar-Assisted Air-Conditioning in Buildings - A Handbook for Planners. Springer-Verlag/Wien (Austria). 2003.