Project2 Phase2 Report

Jiawei Tang 20672550

Figures

Implementations

- Feature detection:
 - Base on OpenCV [cv::goodFeaturesToTrack()] function.
- Feature matching between left image and right image:
 - Base on OpenCV calcOpticalFlowPyrLK() function.
- Generate 3D points
 - Obtain the undistorted points in left and right images with <code>undistortedPts()</code> function, generate the 3D point with <code>generate3dPoints()</code> function.

• Feature matching between current image and key image:

Base on OpenCV ${\tt calcOpticalFlowPyrlK()}$ function.

• Get relative transformation between current frame and key frame:

Obtain the undistorted points with [undistortedPts()] function, get R_{ck} and t_{ck} with [cv::solvePnPRansac()] function.

 R_{ck} means the rotation matrix from current left camera frame to key frame.

 t_{ck} means the translation vector from current left camera frame to key frame.

• Get current frame pose:

Get R_{kc} and t_{kc} with obtained R_{ck} and t_{ck} . Get current pose based on composition rule for rigid body motions.

• Update latest states:

Calculate the body frame pose used on composition rule for rigid body motions.

Other things

- The comments on c_R_k and c_t_k are confused. In my understanding:
 - o c_R_k is the rotation matrix from current left camera to key frame.
 - o c_t_k is the translation vector from current left camera to key frame.
- To deal with outliers, I used findFundamentalMat() function with RANSAC, this implementation is based on <u>VINS-MONO</u>.