TD 2: Dépendances fonctionnelles

Fermeture et couverture minimale

I - Application des règles d'Armstrong

Exercice 1:

Soit la relation **Ordre[Frn, noProd, noCom, adr, reg, qte]** où *Frn* représente un fournisseur, *noProd* un produit, *noCom* une commande, *adr* l'adresse de livraison, *reg* la région et *qte* la quantité du produit commandé.

L'ensemble F des dfs connues est $\{Frn \rightarrow adr, noProd ; adr \rightarrow reg ; noCom, noProd \rightarrow qte\}$

- 1. Trouver toutes les dfs supplémentaires en utilisant les règles d'Armstrong
- 2. Quelles sont les dfs complètes?

Exercice 2:

Soit la relation Colis[noCol, idClt, date, nom, adr] avec l'ensemble F de ses dfs :

 $noCol \rightarrow idClt$ (df1) $noCol \rightarrow date$ (df2) $idClt \rightarrow nom$ (df3) $idClt, date \rightarrow adr$ (df4)

- 1. Trouver les dfs dérivées en utilisant les règles d'Armstrong
- 2. Construire le graphe des dfs (les dfs dérivées seront notées en pointillée).

II – Notions de fermeture et couverture

Pour un ensemble de dfs:

Fermeture F* d'un ensemble F de dfs :

- F ⊂ F⁺
- F' contient toutes les dfs que l'on peut dériver à partir des règles d'Armstrong.
- La fermeture F⁺ est unique.

Couverture minimale G d'un ensemble F de dfs:

- plus petit ensemble de dfs / G⁺ = F⁺
- **G** permet de reconstituer **F** à partir des règles d'Armstrong et $\forall df_i$, G- $\{df\}$ ne le permet plus
- Il peut exister plusieurs couvertures minimales de **F**.

Pour un ensemble d'attributs :

Fermeture d'attributs K d'une relation **R** selon un ensemble **F** de dfs sur **R** :

- **K** ⊂ R
- K⁺ contient tous les attributs de R déductibles en appliquant les dfs de F
 à partir des attributs de K⁺ qui sont des déterminants des dfs de F.

Clé minimale K d'une relation R selon un ensemble F de dfs sur R:

- plus petit ensemble d'attributs / $K^+ = R$ et $\forall a$, $K^-\{a\}$ alors $(K^-\{a\})^+ \neq R$
- Il peut exister plusieurs clés minimales de R.

Exercice 3:

Soit la relation $\mathbf{R}[a, b, c, d, e, f, g]$ muni de l'ensemble F des dfs suivantes :

$$d, e \rightarrow f, g$$

 $b \rightarrow c, e, g$
 $g, a \rightarrow b, d$
 $d \rightarrow b$

- 1. Calculez la couverture minimale G de F.
- 2. Calculez toutes les clés minimales de R selon G. Vous expliquerez votre raisonnement (justifiez bien que vous avez trouvé toutes les clés).
- 3. Appliquer l'algorithme de Bernstein