

AGENDA

- 5G Spectrum
- 5G NR Frame Structure
- 5G NR Initial Access Channels/Signals
- Bandwidth Parts (BWP)
- · Resource Grid
- · Modulation and coding
- OFDMA
- Duplex Schemes
- · Scheduler Resource Allocation
- · Carrier Aggregation

Frame Structure

a. Time Domain Structure

Structure Element	Length (ms)	Description
Frame	10	
Subframe	1	1 frame =10 subframes
Slot	1/2 ^µ	1 subframe = 2 ^µ slots
OFDM symbol	1/(1/1×2µ)	1 slot = 14 symbols

b. Frequency Domain Structure

μ	$\Delta f = 2^{\mu} \times 15 \text{ [kHz]}$
0	15
1	30
2	60
3	120
4	240

Numerology	scs	Slots per subframe	symbols per slot	symbols per subframe	RB size (kHz)
0	15kHz	1	14	14	180
1	30kHz	2	14	28	360
2	60kHz	4	14	56	720
3	120kHz	8	14	112	1440
4	240kHz	16	14	224	2880

itelcotech

5G NR Frame and DL Channels (Initial Access)

Synchronization Signal Block **(SSB**)– Synchronization Signal plus PBCH block

carries system information required by the UE to access the network PBCH spanning across 3 OFDM symbols and 240 subcarriers, but on one symbol leaving an unused part in the middle for SSS

Physical Broadcast Channel (PBCH)-

Primary and Secondary Synchronization Signals (PSS/SSS)-

Used for cell-search procedures and cell identification.

PSS sends one of three orthogonal sequences and SSS sends one of 336 binary sequences. 1008 unique PCIs.

Occupies 127 subcarriers

Bandwidth Part (BWP)

4G: Downlink control channels occupy the full carrier bandwidth - significantly increase the power consumption of device.

5G: bandwidth adaptation - narrower bandwidth for monitoring control channels/ small-to-medium-sized data transmissions,

Resource Grid

Resource block = 12 subcarriers

Resource element = 1 subcarrier in OFDM symbol

itelcotech

OFDMA

 $\textbf{OFDM} \ (\text{Orthogonal frequency division multiplex}) - \textbf{Multicarrier transmission with overlapping and orthogonal} \\$

narrowband subchannels.

No guard band between subcarriers are needed

OFDMA is the "access" version of OFDM, where the access to resources is shared between users in both time and frequency domain

Modulation and Coding Scheme (MCS)

Modulation and Coding Scheme defines the modulation order (QPSK, 16QAM, 64 QAM, 256QAM) based on the channel quality index. If CQI is good, a higher number of bits can be transferred using high modulation, which in turn improves spectral efficiency.

Duplex Schemes

- TDD uplink and downlink transmissions use the same carrier frequency and are separated in time only
- FDD uplink and downlink transmissions use different frequencies but can occur simultaneously
- Half-duplex FDD uplink and downlink transmissions are separated in frequency and time, suitable for simpler devices operating in paired spectra

<u>Scheduler - Resource Allocation</u>

In NR, the *downlink scheduler* is responsible for dynamically controlling the device(s) to transmit to.

Each of the scheduled devices is provided with a *scheduling assignment* including information on the set of time–frequency resources upon which the device's DL-SCH is transmitted.

Scheduler depends on the specific scheduling strategy -

- Channel conditions at the device, including spatial-domain properties
- Buffer status of the different data flows
- Priorities of the different data flows, including the amount of data pending retransmission

gNB use CSI reports to measure the channel quality in the time, frequency, and spatial domains.

25

Scheduler - Resource Allocation

Choice of the scheduler has a significant impact on network performance such as throughput, delay and fairness index

NC	2 485 XXV														
Schedule Mode	T	THP(Mbps)			RSRP (dBm)		Avg SINR(dB)			RANK2 SINR (dB)			QCI/Priority Weight		
	UE 1	UE 2	UE 3	UE 1	UE 2	UE 3	UE 1	UE 2	UE 3	UE 1	UE 2	UE 3	UE 1	UE 2	UE 3
MAX C by I	33. 3	0.66	0.209	-100	-107	-123	25. 76	15. 99	2.26	15. 9	7. 27	-0.79			
, RR	11.5	5. 2	1.9	-101	-108	-119	22. 58	16.63	4.26	15. 11	7. 68	-0.2	9/1	8/5	6/10
/ PF <	11.9	5. 3	2.5	-101	-108	-121	21.49	16. 35	2.67	13.82	7. 35	-0.52			
/ EPF	7.3	5	4.9	-99	-107	-121	26. 4	17. 36	3.5	16. 94	10.94	-0.52			
10															
↓		<i>'</i> /\	atech.												
round-robin principle - each objective is to maintain the balance between								n							

round-robin principle - each UE gets an equal share of something in turn

objective is to maintain the balance between getting high total throughput and guarantee all UEs getting a proportionally level of service

