Introduction to Electronics Laboratory Homework-02 Transistor Amplifier Circuits

Homework 2.1.

Simulate the circuit shown in Fig.1. BC847A should be used for BJT.

Figure 1. BJT Amplifier

Table 1. Values of components in circuit.

R ₁	220 kΩ	Rg	10 kΩ
R ₂	33 kΩ	R _Y	12 kΩ
Rc	8.2 kΩ	C _{1,2}	4.7 μF
R _E	1.2 kΩ	C ₃	220 μF

Table 2. Input Signal Parameter (Vg) for Homework 2.1.

Exp: 3.1 – V _g		
Туре	Sine	
Frequency	5 kHz	
DC Offset	0V	

Introduction to Electronics Laboratory Homework-02 Transistor Amplifier Circuits

Outputs:

1. Note the DC operating points.

Table 3. DC Operating Points.

	Theoretical Value	Measured Value
V _C		
V _B		
VE		
Ic		

- 2. What is the Vg value at which clipping starts? Also, is there symmetrical clipping?
- 3. Plot the output voltage (V_0 -t), input voltage (V_g -t) and (V_e -t). What is the voltage gain (V_o/V_g) ?
- **4.** Remove the C_3 capacitor from circuit and repeat simulation. Plot the output voltage (V_0 -t), input voltage (V_g -t) and (V_e -t). What is the voltage gain (V_0/V_g)?
 - **5.** Explain the circuit and simulation results.

Homework 2.2.

Simulate the circuit shown in Fig.2. BSP89 should be used for MOSFET.

Figure 2. MOSFET Amplifier.

Introduction to Electronics Laboratory Homework-02 Transistor Amplifier Circuits

Table 4. Values of components in circuit.

R ₃	820 kΩ	Rs	220 Ω
R ₄	330 kΩ	R _Y	10 kΩ
R _d	1 kΩ	C 4,5,6	1 μF

Table 5. Input Signal Parameter (Vg) for Homework 2.2.

Exp: 3.2 – V _g		
Туре	Sine	
Frequency	50 kHz	
DC Offset	0V	

Outputs:

1. Note the DC operating points.

Table 6. DC Operating Points.

	Theoretical Value	Measured Value
Vc		
V _B		
V _E		
lc		

- 2. What is the Vg value at which clipping starts? Also, is there symmetrical clipping?
- 3. Plot the output voltage (V_0 -t) and input voltage (V_g -t). What is the voltage gain (V_0/V_g) ?
- **4.** Remove the C_5 capacitor from circuit and repeat simulation. Plot the output voltage (V_0-t) and input voltage (V_g-t) . What is the voltage gain (V_0/V_g) ?
 - **5.** Explain the circuit and simulation results.

Last Update: 24.11.2021