Travail pratique - Automne 2016

Reconnaissance de formes et analyse d'images avancée $\operatorname{IMN}\ 601$ - $\operatorname{IMN}\ 712$

Date limite pour remettre votre travail: 10 octobre

Objectifs

Implémenter les algorithmes suivants :

- 1. l'algorithme de segmentation par baguette magique (magic wand.)
- 2. Les algorithmes d'estimation des paramètres d'une mixture de gaussiennes Expectation Maximization (EM), Soft K-Means et K-Means (N classes)
- 3. L'algorithme de segmentation Mean-Shift
- 4. Maximum a posteriori par ICM (N-Classes)
- 5. Segmentation interactive (Méthode de Boykov Jolly)

Description

À l'aide du code C++ fournit (fichiers tp1*.cpp,MImage.h,MImage.cpp) vous devez implémenter les différents algorithmes de segmentation vus en classe. Pour ce faire, il est fortement recommandé de récupérer les fonctions $MMagic\,Wand,\,MExpectationMaximization,\,MKMeans-Segmentation,\,MSoftKMeansSegmentation,\,MICMSegmentation,\,MSASegmentation,\,MInteractiveGraphCutSegmentation\,$ and MMeanShift. Vous pouvez toutefois ajouter des fonctions à la classe MImage si vous en éprouvez le besoin. Vos fonctions seront testées sur des images en niveaux de gris uniquement.

Recommandations pour ce TP

- 1. TP1A: Vous devez implémenter l'algorithme A2.
- 2. TP1B: Vous devez implémenter les algorithmes A6, A8 et A10 de segmentation d'images pour N classes. La fonction MOptimalThresholding de seuil optimal (A3) vous est fournie en guise d'exemple.
- 3. TP1C : Implémeter l'algorithme A19 et A20 de segmentation N-Classes par ICM et recuit simulé.
- 4. TP1D : Implémeter l'algorithme A14 ou A15 de segmentation par mean-shift.
- 5. TP1E : Construire un graph comme celui présenté aux pages 83 et 84. Les contraintes "dures" (hard constraints) sont données dans l'images "mask.pgm".

Évaluation

Ce travail doit être fait seul. Pour simplifier la correction, nous vous demandons de modifier le moins possible la fonction **main**. Au moment de soumettre votre travail, assurer vous que votre code compile bien sous Linux (vous n'avez qu'à taper la commande *make* dans un shell Linux). Utilisez la commande **turnin** pour soumettre votre travail.