

SIGMOID — LEARNING ALGORITHM

SHARMILA BANU K PHD
VIT, VELLORE
SCHOOL OF COMPUTER SCIENCE
& ENGINEERING

LEARNING - OBJECTIVE

$$h=rac{1}{1+e^{-(w*x+b)}}$$

Initialise

Iterate over data:

I/P	O/P
2	0.047
3	0.268
4	0.73
5	0.952
8	0.999

LEARNING BY GUESSING

Initialise w, b

Iterate over data:

 $guess_and_update(x_i)$

O/P
0.047
0.268
0.73
0.952
0.999

$$h=rac{1}{1+e^{-(w*x+b)}}$$

W	b

FIRST GUESS

W	b
0	0

Initialise w, b

Iterate over data:

 $guess_and_update(x_i)$

$$h=rac{1}{1+e^{-(w*x+b)}}$$

SECOND GUESS

w	b
1	0

Initialise w, b

Iterate over data:

 $guess_and_update(x_i)$

I/P	O/P
2	0.047
3	0.268
4	0.73
5	0.952
8	0.999

$$h=rac{1}{1+e^{-(w*x+b)}}$$

THIRD GUESS BASED ON PROGRESS IN

SECOND GUESS w b

- To get closer to intended sigmoid, we have to move > the sigmoid along x
- It can be done by decreasing b

NEXT GUESS IS

W	b
3	-4

MORE GUESSING

OVERSHOT!

FINAL ADJUSTMENT

I/P	O/P
2	0.047
3	0.268
4	0.73
5	0.952
8	0.999

- Exact fit
- Guessing worked for1D

LEARNING ALGORITHM

Initialise w, b

Initialise w, b

Initialise w, b

Initialise w, b

Iterate over data:

Iterate over data:

Iterate over data:

Iterate over data:

$$w=w+\Delta w$$

$$b=b+\Delta b$$

$$w = 0$$

$$b = 0$$

$$1 = 0 + \Delta 1$$

$$0 = 0 + \Delta 0$$

$$2 = 1 + \Delta 1$$

$$0 = 0 + \Delta 0$$

till satisfied

till satisfied

till satisfied

LEARNING ALGORITHM —CTD...

Initialise w, b

Initialise w, b

Initialise w, b

Iterate over data:

$$3 = 2 + \Delta 1$$

$$0 = 0 + \Delta 0$$

$$3 = 3 + \Delta 0$$

$$-2 = 0 + \Delta - 2$$

$$3 = 3 + \Delta 0$$

$$-4 = -2 + \Delta - 2$$

till satisfied

till satisfied

WHY GUESSING IS NOT GOOD?

Initialise w, b

Iterate over data:

$$w = w + \Delta w$$

$$b=b+\Delta b$$

$$\Delta w = some_guess$$

$$\Delta b = some_guess$$

INFERENCE

Guessing is not feasible in real-life situations

It will take a long time to converge to a solution

It is good to follow a principled approach based on Loss

Function

LEARNING W.R.T LOSS FUNCTION (MSE)

Initialise w, b

Iterate over data:

$$w = 0$$

$$b = 0$$

I/P	O/P
3	0.268
4	0.73
5	0.952
6	0.994
8	0.999

W	b	Loss
0	0	0.1609

LOSS FOR THE SECOND GUESS

Initialise w, b

Iterate over data:

$$1 = 0 + \Delta 1$$

$$0 = 0 + \Delta 0$$

I/P	O/P
3	0.268
4	0.73
5	0.952
6	0.994
8	0.999

W	b	Loss
1	0	0.1064

HAS THE LOSS COME DOWN WITH NEXT GUESS?

Initialise w, b

Iterate over data:

$$2 = 1 + \Delta 1$$

$$0 = 0 + \Delta 0$$

I/P	O/P
3	0.268
4	0.73
5	0.952
6	0.994
8	0.999

W	b	Loss
2	0	0.1210

$$3 = 2 + \Delta 1$$
$$0 = 0 + \Delta 0$$

$$3 = 3 + \Delta 0$$

 $-2 = 0 + \Delta - 2$

$$2 = 1 + \Delta 1$$
$$0 = 0 + \Delta 0$$

W	b	Loss
3	0	0.1217

W	'	b	Loss
3		-2	0.1215

W	b	Loss
2	0	0.1210

$$3 = 3 + \Delta 0$$

 $-4 = -2 + \Delta - 2$

$$3 = 3 + \Delta 0$$

$$-7 = -4 + \Delta -3$$

$$3 = 3 + \Delta 0$$

$$-9 = -7 + \Delta - 2$$

$$2 = 3 + \Delta - 1$$

$$-9 = -7 + \Delta - 2$$

W	b	Loss
3	-4	0.1198

W	b	Loss
3	-7	0.1081

W	b	Loss
3	-9	0.0209

W	b	Loss
2	-9	0.0636

W	b	Loss
2	-7	0.000

INFERENCE

$$w=w+\Delta w$$
 $b=b+\Delta b$

- NO CONSTANT INCREASE OR <u>DECREASE</u> IN LOSS FUNCTION
- IT IS FLUCTUATING WITH THE GUESSES MADE

VISUALISING THE ERROR SURFACE

LOSS VS W,B (LOOK OUT FOR ABSOLUTE MINIMUM AND IF THERE IS A STEADY DECREASE FROM INITIAL GUESS)

AN INSIGHT ON MATHS

DERIVING GRADIENT DESCENT RULE

Gradient Descent Rule,

- The direction u that we intend to move in should be at 180° w.r.t. the gradient.
- In other words, move in a direction opposite to the gradient.

Parameter Update Rule

$$egin{aligned} w_{t+1} &= w_t - \eta \Delta w_t \ b_{t+1} &= b_t - \eta \Delta b_t \end{aligned}$$

where
$$\Delta w_t = rac{\partial \mathscr{L}(w,b)}{\partial w}_{at \ w=w_t,b=b_t}, \Delta b_t = rac{\partial \mathscr{L}(w,b)}{\partial b}_{at w=w_t,b=b_t}$$

LEARNING ALGORITHM - REDEFINED

ComputeGradient(L, θ)

$$\hat{y}=rac{1}{1+e^{-(wx+b)}}$$

Initialise w, b

Iterate over data:

 $compute \ \hat{y}$

compute $\mathcal{L}(w,b)$

$$w_{t+1} = w_t - \eta \Delta w_t$$

$$b_{t+1} = b_t - \eta \Delta b_t$$

I/P	O/P
3	0.268
4	0.73
5	0.952
6	0.994
8	0.999

$$Loss\mathscr{L}(w,b) = \sum_{i=1}^5 (y_i - \hat{y_i})^2$$