

Theoretical Exam - October 27, 2017

Barem de evaluare

Orice altă rezolvare care conduce la rezultate corecte se va puncta corespunzător

Problema teoretică nr. 2 – Partea B Estimarea densității pepenelui din fotografie

NI.		T
Nr. item	Sarcina de lucru nr. 1	Punctaj
1a.	Pentru: volumul discului având raza $r \cdot \sin \theta$ şi grosimea $h' = r \cdot d\theta \cdot \sin \theta$ 0,1p $dv = \pi \cdot r^3 \cdot \sin^3 \theta \cdot d\theta$	0,5p
	rde de o	
	volumul V_0 al porţiunii din pepene, cufundată în apă $V_0 = \int_{\theta_0}^{\pi} \pi \cdot r^3 \cdot \sin^3 \theta \cdot d\theta$ 0,1p	
	$V_0 = \pi \cdot r^3 \cdot \frac{2}{3} \cdot \left[1 + \frac{\cos \theta_0}{2} \cdot \left(3 - \cos^2 \theta_0 \right) \right] $ 0,1p	
	$q = \frac{r_0}{r} = \sin \theta_0 \tag{0.1p}$	
	$V_0 = \frac{2}{3} \cdot \pi \cdot r^3 \cdot \left[1 + \left(1 + \frac{q^2}{2} \right) \sqrt{1 - q^2} \right]$ 0,1p	
1b.	Pentru: → →	0,4p
	Condiţia de plutire a pepenelui la suprafaţa apei $G + F_A = 0$ 0,1p	
	$\rho \cdot \mathbf{V} \cdot \mathbf{g} = \rho_0 \cdot \mathbf{V}_0 \cdot \mathbf{g} $ 0,1p	
	volumul total al pepenelui $V = \frac{4 \cdot \pi \cdot r^3}{3}$ 0,1p	
	$\rho = \frac{\rho_0}{2} \cdot \left[1 + \left(1 + \frac{q^2}{2} \right) \cdot \sqrt{1 - q^2} \right] $ 0,1p	
1c.	Pentru: $\frac{d}{dq} \left(\frac{\rho}{\rho_0} \right) = -\frac{3 \cdot q^3}{4 \cdot \sqrt{1 - q^2}} < 0 \text{funcţia analizată este monoton descrescătoare} \qquad 0.1p$	1,0p
	$ \frac{d^2}{dq^2} \left(\frac{\rho}{\rho_0} \right) = -\frac{d}{dq} \left(\frac{3 \cdot q^3}{4 \cdot \sqrt{1 - q^2}} \right) = -\frac{3}{4} \left(\frac{3q^2 \sqrt{1 - q^2} + q^3 \frac{q}{\sqrt{1 - q^2}}}{1 - q^2} \right) < 0 \qquad \text{graficul} \qquad 0,1p $ funcției este concav	

	condiţia de extrem $\frac{d}{dq} \left(\frac{\rho}{\rho_0} \right) = 0$, $q = 0$	0,1p	
	$\frac{\rho}{\rho_0}$ = 1, pentru q = 0 $\frac{\rho}{\rho_0}$ = $\frac{1}{2}$, pentru q = 1	0,1p	
14	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0,6p	0.45
1d.	Pentru: dependenţa $\frac{\rho}{\rho_0} = f(q)$ descreşte lent pentru valori ale raportului q cuprinse între 0 şi 0,70. Pentru acest domeniu de valori, incertitudinea în determinarea densităţii ρ a pepenelui, datorată incertitudinii în determinarea raportului q este foarte mică şi în consecinţă rezultatele măsurării sunt acurate graficul $\frac{\rho}{\rho_0} = f(q)$ descreşte rapid pentru valori ale variabilei independente q cuprinse între 0,85 şi 1,00. Variaţii mici ale variabilei q conduc la variaţii substanţiale ale raportului $\frac{\rho}{\rho_0}$ şi implicit la variaţii mari ale densităţii pepenelui şi	0,2p 0,2p	0,4p
4.	determinarea densității pepenelui nu mai este acurată		0.45
1e.	Pentru: $q_1 = 0.70$ $\rho_1 = 0.94 g / cm^3$	0,2p 0,2p	0,4p
Nr.	Sarcina de lucru nr. 2	•	Punctaj
item	-		·
2a.	Pentru: aproximarea segmentul ADE ca ipotenuză a triunghiului AOE (figura 2)	0,1p	0,6p
	$tg\theta_A = \frac{r}{h + \sqrt{r^2 - {r_0}^2}}$	0,1p	
	$tg \theta_A = \frac{r'}{h}$	0,1p	
	$r' \cdot \sqrt{r^2 - r_0^2} = h \cdot (r - r')$	0,1p	
	$r^2 \cdot (h^2 - r'^2) - 2 \cdot r \cdot r' \cdot h^2 + r'^2 \cdot (h^2 + r_0^2) = 0$	0,1p	
	$r^{2} \cdot (h^{2} - r'^{2}) - 2 \cdot r \cdot r' \cdot h^{2} + r'^{2} \cdot (h^{2} + r_{0}^{2}) = 0$ $r_{1,2} = r' \cdot \frac{h^{2} \pm \sqrt{h^{2} \cdot (r'^{2} - r_{0}^{2}) + r'^{2} \cdot r_{0}^{2}}}{h^{2} - r'^{2}}$	0,1p	

2b.	Pentru:		1,1p
	$ \int D_{1,foto} = 7,9 cm $		
	$\begin{cases} D_{2,foto} = 4,2 cm \\ D_{3,foto} = 2,9 cm \end{cases}$	0,2p	
	$D_{3,foto} = 2.9 cm$		
	$\begin{cases} r_0 = 5.5 cm \\ r' = 8.0 cm \end{cases}$	0,2p	
	$h = 100 \text{ cm}$ Pentru estimare se acceptă valori ale lui $h \in [90 \text{ cm}, 110 \text{ cm}]$; toate		
	aceste valori conduc la acelaşi rezultat pentru estimarea densităţii pepenelui	0,2p	
	$\int r_1 = 8,52 cm$	0,2p	
	$r_2 = 7,58 cm$	0,20	
	soluţia acceptabilă din punct de vedere fizic este cea pentru care $r > r'$	0,1p	
	r = 8,52 cm	, ,	
	$q_{\parallel} = \frac{5.50}{9.52}$		
	$\begin{cases} q_{\parallel} = \frac{5,50}{8,52} \\ q_{\parallel} \cong 0,65 \end{cases}$	0,1p	
	•	0.4	
NI.	densitatea pepenelui este estimată la $\rho_{\parallel}=0.96g/cm^3$	0,1p	
Nr. item	Sarcina de lucru nr. 3		Punctaj
3a.	Pentru:		0,6р
	$\sin \theta_{A} = n \cdot \sin \theta_{R}$ $\begin{cases} \sin \theta_{A} = \frac{BD'}{AD'} \\ \sin \theta_{A} = \frac{r'}{\sqrt{r'^{2} + h^{2}}} \\ \text{aproximarea liniei } D'E \text{ ca ipotenuză a triunghiului } D'FE \end{cases}$ $\begin{cases} \sin \theta_{R} = \frac{EF}{D'E} \\ \sin \theta_{R} = \frac{EF}{\sqrt{D'F^{2} + EF^{2}}} \\ \sin \theta_{R} = \frac{r - r'}{\sqrt{r^{2} - r_{0}^{2} + (r - r')^{2}}} \end{cases}$	0,1p 0,1p 0,1p	
	$\frac{r'}{\sqrt{r'^2+h^2}} = n \cdot \frac{r-r'}{\sqrt{r^2-r_0^2+(r-r')^2}}$	0,1p	

3b.	Pentru:		1,0p
	$\left[n^2 \cdot (h^2 + r'^2) - 2 \cdot r'^2 \right] \cdot r^2 - 2 \cdot r' \cdot \left[n^2 \cdot (h^2 + r'^2) - r'^2 \right] \cdot r + r'^2 \cdot \left[n^2 \cdot (h^2 + r'^2) - r'^2 + r_0^2 \right] = 0$	0,2p	
	$\begin{cases} r_1 = 8,38 cm \\ r_2 = 7,68 cm \end{cases}$	0,4p	
	soluţia acceptabilă din punct de vedere fizic $r = 8,38 cm$	0,1p	
	$q_{M} = \frac{5,50}{8.38}; \qquad q_{M} \cong 0,66$	0,1p	
	$\rho_{III} = 0.96 g / cm^3$	0,2p	
3c.	Pentru: precizarea că rezultatul estimării nu este influențat semnificativ de fenomenul de refracție	0,2p	0,2p
Nr. item	Sarcina de lucru nr. 4		Punctaj
4a.	Pentru:		0,3p
	expresia înălţimii calotei pepenelui $h_c = r \cdot \left(1 - \sqrt{1 - q^2} ight)$	0,2p	
	$h_{c,N} = 2,08 cm$	0,1p	
4b.	Pentru:		1,0p
	$V(h_c - \Delta h_c) - V(h_c) = \frac{dV}{dh_c} \cdot (-\Delta h_c)$	0,2p	
	expresia forței arhimedice $F_A' = (V(h_c) - V(h_c - \Delta h_c)) \cdot \rho_0 \cdot g = \rho_0 \cdot g \frac{dV}{dh_c} \cdot \Delta h_c$	0,1p	
	$F_A' = -K \cdot \Delta h_c$	0,1p	
	$K = -\rho_0 \cdot g \frac{dV}{dh_c}$	0,1p	
	$\frac{dV}{dh_c} = -\pi \cdot h_c \cdot (2r - h_c)$	0,1p	
	constanta de elasticitate $ m{K} = ho_0 \cdot m{g} \pi \cdot m{h}_c \cdot m{(2r-h_c)} $	0,1p	
	masa pepenelui $M = \frac{4\pi}{3}r^3 \cdot \rho$	0,1p	
	pulsaţia micilor oscilaţii $\begin{cases} \omega = \sqrt{\frac{K}{M}} \\ \omega = \sqrt{\frac{3}{4} \cdot \frac{\rho_0}{\rho} \cdot \frac{g}{r} \cdot \left[\frac{h_c}{r} \left(2 - \frac{h_c}{r} \right) \right]} \end{cases}$	0,2p	
4c.	Pentru:		0,2p
	ecuația micilor oscilații $\frac{d^2}{dt^2}(\Delta h_c) + \omega^2 \cdot \Delta h_c = 0$	0,2p	
4d.	Pentru: $\omega = 6.33 rad / s$	0,1p	0,3p
	$\left\{ T = \frac{2\pi}{\omega} \right\}$	0,1p	
	$T \cong 1s$	•	
TOT	intervalul de timp în care pepenele efectuează 10 de oscilații $t \cong 10$ s AL Problema teoretică nr. $2 - Partea B$	0,1p	8 0n
IUI_{J}	The problem restrict in \mathcal{L} — Tarke \mathcal{D}		8,0p

© Barem de evaluare propus de: Prof. Dr. Delia DAVIDESCU Conf. Univ. Dr. Adrian DAFINEI