- Complete Binary Tree
- Max-Heap

n = 6
h = 2
$$2^{h}$$
 = 4
 2^{h+1} - 1 = 7

Heap

- What is a complete binary tree?
- What is a heap?
 - What is a max heap?
 - What is a min heap?
- Two ways to build a heap
 - Top down (Time complexity O(nlog n)) is iterative and in place.
 - Bottom up (Time complexity O(n)) is iterative and in place.
- Heap Sort
 - Phase I: Build the heap bottom up (Reason: it is O(n) and we have all the data)
 - Phase II: Sort (Time complexity O(nlog n)) is iterative and in place.
- Priority Queue
 - Insert (Time complexity : O(log n))
 - Delete ((Time complexity : O(log n). You must restore the heap)
 - Build the heap top down (Reason: we do not have all the data)

Note: An **in-place algorithm** is an algorithm which transforms input using no auxiliary **data structure**. (Can use O(1) temporary variables).

Build Max-Heap in-place Iteratively

- There two ways you can build the heap
- Both are iterative and in-place

An **in-place algorithm** is an algorithm which transforms input using no auxiliary **data structure**. (Can use O(1) temporary variables).

Top-down: O(nlog n).

Bottom-up: O(n)

```
build_MaxHeap_TopDown(A, n)
  for (i <- 1 to n)
       upHeap(A, i)
                                       upHeap(A, i)
                                       j <- i
                                       while (j > 1 \& A[j/2] < A[j])
                                           swap(A[i], A[i/2])
                                            i < -i/2
```


Heap Sort

There are two phases.

Phase I: Build the heap. In-place, bottom-up, iteratively

Phase II: Sort. In-place, iteratively

- $\lceil n/2 \rceil$ = 3 leaves are already heaps.
- There are $\lfloor n/2 \rfloor = 2$ internal nodes.

```
build_MaxHeap_BottomUp(A, n)
    for (i <- [n/2] to 1) downHeap(A, i)

downHeap(A, i)
    j <- i
    k <- maxChildIndex(A, j)
    while (k !=0)
        swap(A[j], A[k])
        j <- k
        k <- maxChildIndex(A, j)</pre>
```

Note: maxChildIndex returns the index of a child of A[j] with maximum value among A[j], A[2j], A[2j+1]. If there is no such child it returns 0.

0	1	2	3	4	5
			14	18	75

Put the root to sorted list, place the last element in the heap to the root and rebuild the heap

