Feuille de TD 6

Convergence en loi, Fonction caractéristique, Théorème de Lévy, TCL

Toutes les variables aléatoires (v.a.) sont définies sur le même espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$.

Exercice 1 Convergence en loi et densités

- 1. Pour tout $n \geq 1$, soit X_n une variable aléatoire de densité $f_n(x) = 1_{[0,1]}(x)(1 \cos(2\pi nx))$.
 - (a) Montrer que $f_n(x)$ converge ssi $x \in \mathbb{N}$.
 - (b) Est-ce que X_n converge en loi? Si oui, déterminer la limite. Indication: on pourra considérer la fonction de répartition.
- 2. Pour tout $n \ge 1$, soit Y_n une variable aléatoire de densité $g_n(x) = \frac{an}{\pi(1+n^2x^2)}$.
 - (a) Calculer a.
 - (b) En considérant les fonctions de répartitions, montrer que Y_n converge en loi et donner la loi de la limite.

Exercice 2 Fonction caractéristique de la loi normale

- 1. Soit X de loi $\mathcal{N}(m, \sigma^2)$. On note ϕ_{m,σ^2} la fonction caractéristique de X.
 - (a) Montrer que $\phi_{m,\sigma^2}(t) = e^{itm}\phi_{0,1}(\sigma t)$.
 - (b) Montrer que $\phi := \phi_{0,1}$ satisfait l'équation différentielle $\phi'(t) + t\phi(t) = 0$ sur \mathbb{R} .
 - (c) Déduire des questions précédentes que $\phi_{m,\sigma^2}(t) = e^{itm \frac{\sigma^2 t^2}{2}}$.
 - (d) Soit $X \sim \mathcal{N}(m, \sigma^2)$ et $Y \sim \mathcal{N}(m', (\sigma')^2)$ deux variables indépendantes. Calculer la loi de X + Y.
- 2. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes et de loi Normale $\mathcal{N}(0,\sigma_n^2)$. Si $X_n \xrightarrow{\text{loi}} \mathcal{N}(0,\sigma^2)$, montrer que $\sigma_n^2 \to \sigma^2$.

Exercice 3 Loi géométrique (?) et loi exponentielle

Soit $\lambda > 0$. Pour tout entier $n \geq \lambda$, on prend $(X_{n,i})_{i\geq 1}$ une suite de variables aléatoires indépendantes de Bernoulli de paramètre $p_n = \frac{\lambda}{n}$. On considère alors la variable aléatoire

$$N_n := \frac{1}{n} \inf\{i \ge 1 : X_{n,i} = 1\}.$$

- 1. Dans quel ensemble N_n prend-elle ses valeurs? Quelle est sa loi?
- 2. Montrer que N_n converge en loi vers une variable aléatoire de loi exponentielle de paramètre λ .

Indication : On pourra considérer soit la fonction de répartition, soit la fonction caractéristique et faire un DL quand n tend $vers \infty$.

Exercice 4

Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes et de loi Normale $\mathcal{N}(0,1)$. Montrer la convergence en loi de la suite $(Y_n)_{n\geq 1}$ où

$$Y_n = \frac{1}{n} \sum_{k=1}^n \sqrt{k} X_k$$

vers une loi qu'on explicitera.

Indication: Utiliser les fonctions caractéristiques.

Exercice 5

Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes de même loi. Soit $\mathbb{P}_{X_1}=\frac{1}{2}\delta_{-1}+\frac{1}{2}\delta_1$.

1. On pose

$$S_n := \sum_{k=1}^n \frac{X_k}{2^k}.$$

Calculer sa fonction caractéristique.

- 2. Calculer la fonction caractéristique de S qui suit la loi uniforme dans [-1,1].
- 3. Montrer que (S_n) converge en loi vers S. Ce résultat vous semble-t-il intuitif? Indication: $\sin(t) = 2\sin(t/2)\cos(t/2) = \cdots = 2^n\sin(t/2^n)\prod_{k=1}^n\cos(t/2^k)$.

Exercice 6 TCL et un calcul de limite

Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes et de loi de Poisson de paramètre $\lambda > 0$.

- 1. Déterminer la loi de $S_n = X_1 + \ldots + X_n$ et donner une expression de $\mathbb{P}(S_n \leq n)$.
- 2. On pose $Z_n = \frac{S_n \lambda n}{\sqrt{\lambda n}}$. Montrer que la suite $(Z_n)_{n \geq 1}$ converge en loi vers une v.a. dont on précisera la loi.
- 3. En déduire que

$$\lim_{n \to +\infty} e^{-n} \sum_{k=0}^{n} \frac{n^k}{k!} = \frac{1}{2}.$$

Indication : On pourra réécrire $e^{-n} \sum_{k=0}^{n} \frac{n^k}{k!}$ comme la probabilité d'un événement portant sur S_n avec $\lambda = 1$, et utiliser le résultat de la question 2.