The complex inner life of simple regression

Matthew Rudd

Math for Data Science Conference, 12/1/20

▶ Best guess: the average height, 68.02 inches

- ▶ Best guess: the average height, 68.02 inches
- ▶ Probably off by 1 or 2 SDs, 2.8 to 5.6 inches

- ▶ Best guess: the average height, 68.02 inches
- ▶ Probably off by 1 or 2 SDs, 2.8 to 5.6 inches
- ► For better predictions, use more information!

Father's height	Number of sons	Average height	SD
62	15	65.59	1.78
63	36	66.51	2.91
64	60	66.70	2.31
65	101	67.22	2.53
66	139	67.66	2.35
67	134	68.14	2.24
68	157	69.09	2.76
69	142	69.44	2.30
70	115	69.77	2.49
71	77	70.54	2.31
72	50	70.68	2.33
73	28	72.05	2.76

► The average height of a group of sons depends linearly on the father's given height

- ► The average height of a group of sons depends linearly on the father's given height
- Using this data,

Average height of sons $= 33.89 + .514 \times \text{Father's height}$

- ► The average height of a group of sons depends linearly on the father's given height
- Using this data,

Average height of sons $= 33.89 + .514 \times Father's height$

► This is simple linear regression.

Pearson-Lee height data ## ## G-11

```
## Call:
## lm(formula = Son ~ Father, data = heights)
##
## Residuals:
## Min    1Q Median   3Q Max
## -8.8772 -1.5144 -0.0079   1.6285   8.9685
##
## Coefficients:
```

Estimate Std. Error t value Pr(>|t|)
(Intercept) 33.88660 1.83235 18.49 <2e-16 ***
Father 0.51409 0.02705 19.01 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.00
##
Residual standard error: 2.437 on 1076 degrees of freedom

Multiple R-squared: 0.2513, Adjusted R-squared: 0.2500
F-statistic: 361.2 on 1 and 1076 DF, p-value: < 2.2e-10</pre>

The simple linear regression model

blah β

The Gauss-Markov Theorem

you know, OLS is BLUE and whatnot

Chebyshev's Theorem

75% of observations are within 2 SDs – no matter what!