

Universidade do Minho

Escola de Engenharia

Catarina da Cunha Malheiro da Silva Pereira (PG53733)

Inês Cabral Neves (PG53864) Leonardo Dias Martins (PG53996) Miguel José Mendes Gonçalves (PG54101) Rui Fernando dos Santos Barbosa (A89370)

TP3 - Chaves de Cifra, Certificados e o PGP

Relatório Prático de Cibersegurança Mestrado em Engenharia Telecomunicações e Informática

Trabalho efetuado sob a orientação de:

Professor Doutor Henrique Manuel Dinis Santos

Índice

ĺn	Índice de Figuras							
Lis	sta de Acrónimos	17 19 19						
1	Introdução	1						
2 Revisão da Literatura								
3	Opção PGP3.1Gestão de chaves3.2Enviar e receber mensagens seguras3.3Proteger documentos locais	3 10						
4	Opção X5094.1 Gestão de chaves4.2 Enviar e receber mensagens seguras	19						
5	Conclusão	28						
Re	Referências Bibliográficas							

Índice de Figuras

1	Ambiente Kleopatra ao iniciar
2	Criação de Chave no Kleopatra
3	Configuração avançada
4	Confirmação da criação do certificado.
5	Assistente de Criação de pares de chaves
6	Certificações disponíveis no Kleopatra.
7	Detalhes das Subchaves
8	Criação de par de chaves
9	Criação de par de chaves (continuação)
10	Pedido de uma Certification Authority
11	Configurar servidor de chaves OpenPGP
12	Estruturação do servidor
13	Seleção do servidor e da porta a utilizar
14	Exportação no servidor
15	Confirmação da exportação no Kleopatra
16	Resultados da pesquisa por endereço e-mail hsantos@dsi.uminho.pt.
17	Resultados da pesquisa pelo nome "Henrique Santos".
18	Chave publica enviada por e-mail
19	Certificação da chave pública de um membro do grupo.
20	Certificação da chave pública de um membro do grupo (continuação)
21	Certificação terminada com sucesso
22	Adicionar chave OpenPGP ao Thunderbird (1)
23	Adicionar chave OpenPGP ao Thunderbird (2)
24	Chave importada com sucesso (1)
25	Chave importada com sucesso (2)
26	Chave adicionada
27	Envio de chave pública PGP
28	Importar chave pública PGP de outros (1)
29	Importar chave pública PGP de outros (2)
30	Importar chave pública importada com sucesso
31	Gestor de chaves OpenPGP
32	Envio de email seguro da Inês para o Leonardo
33	Receção do email seguro da Leonardo para a Inês
34	Extração do Certificado de Revogação
3 4	Certificado de Revogação
36	Chave Revogadas
37	Importação do Certificado de Revogação
38	Chave revogada no Thunderbird
39	Receção do email encriptado do Leonardo para a Inês
40	
40	Email com certificado de revogação em anexo
42	Tentativa de enviar email para a lnês
43	Opção para assinar/cifrar a pasta
44 45	Escolha do certificado e pasta
45 46	Confirmação da cifra
46	Verificação da Versão do OpenSSL
47	Criação de um novo par de chaves
48	Verificação das chaves criadas
49	Verificação do estado da chave privada

Índice de Figuras

50	Criação do certificado.	20
51	Verificação do estado de pedido de certificado.	20
52	Criação do certificado auto-assinado	21
53	Criação do certificado auto-assinado	21
54	Criação de um repositório remoto	22
55	Criação da diretorias	22
56	Criação da base de dados.	22
57	Pedido de autenticação de certificado	22
58	Criação de um certificado CA auto assinado	22
59	Criação do certificado CA certificado pela Root CA	23
60	Criação de um pedido de certificado de email	23
61	Aceitação do pedido por parte da Signing CA e criação do certificado.	23
62	Criação do ficheiro PKCS12	24
63	Verificação do ficheiro PKCS12 (1)	24
64	Verificação do ficheiro PKCS12 (2)	24
65	Import do certificado	25
66	Import do certificado da autoridade certificadora criada	25
67	Seleção dos certificados para assinar e decifrar	25
68	Email a confirmar a encriptação.	26
69	Seleção dos certificados para assinar e decifrar	26
70	Revogação do Certificado	26
71	Obtenção da CRL	27
72	Lista de CRI	27

Acrónimos

AES Advanced Encryption Standard.

CAs Autoridades de Certificação.

CN Common Name.

CRL Certificate Revocation List.

DES Data Encryption Standart.

OCSP Online Certificate Status Protocol.

PEM Privacy Enhanced Mail.

PKI Public Key Infrastructure.

UC Unidade Curricular.

1 Introdução

Este relatório é parte integrante da Unidade Curricular (UC) de Cibersegurança do 2° semestre do 1° ano do Mestrado Integrado em Engenharia de Telecomunicações e Informática. Foi elaborado em resposta a um problema apresentado pelo docente.

O relatório aborda duas abordagens de comunicação segura para a troca de emails: PGP e x509, divididas em duas partes distintas. A primeira parte analisa a utilização do PGP, incluindo a gestão de chaves, o envio e receção de mensagens seguras, e a proteção de documentos locais. Na segunda parte, é explorada a utilização do x509, com foco na gestão de chaves e no envio e receção de mensagens seguras.

2 Revisão da Literatura

A criptografia pode ser dividida em dois tipos principais: criptografia de chave simétrica e criptografia de chave pública ou assimétrica [1].

Criptografia de Chave Simétrica:

A criptografia de chave simétrica utiliza a mesma chave para cifrar e decifrar informações. Algoritmos de chave simétrica, como o Data Encryption Standart (DES) e Advanced Encryption Standard (AES), empregam essa abordagem, onde a mesma chave é compartilhada entre as partes envolvidas na comunicação.

· Criptografia de Chave Pública ou Assimétrica:

Por outro lado, a criptografia de chave pública, também conhecida como criptografia assimétrica, utiliza um par de chaves matematicamente relacionadas: uma chave pública e uma chave privada. A mensagem é cifrada com a chave pública e decifrada com a chave privada. Isso permite a distribuição livre da chave pública, enquanto a chave privada permanece em posse exclusiva do proprietário [2].

A criptografia de chave pública possibilita a comunicação segura entre partes sem a necessidade de um canal seguro para transmitir chaves secretas, tornando-a uma abordagem mais flexível e segura em comparação com a criptografia simétrica tradicional.

Os certificados digitais e a Public Key Infrastructure (PKI) são essenciais para garantir a segurança e autenticidade das comunicações online [3, 4].

- Os certificados digitais utilizam chaves públicas para validar a identidade dos detentores, permitindo a comunicação segura, integridade de dados e autenticação. As chaves privadas são cruciais para a criptografia assimétrica, garantindo a segurança das transmissões de dados confidenciais em conexões seguras SSL/TLS [3].
- A PKI é o sistema responsável por criar, gerir, armazenar, distribuir e revogar os Certificados de Chave Pública, sendo fundamental para estabelecer a confiança nas interações online. As Autoridades de Certificação (CAs) desempenham um papel crucial na emissão e gestão dos certificados digitais, atuando como agentes de confiança na PKI. A confiança na PKI é baseada na validação das identidades dos usuários e na integridade dos certificados emitidos pelas CAs.

Os certificados digitais e a PKI são elementos fundamentais para garantir a autenticidade, integridade e confidencialidade das comunicações online, protegendo contra atividades fraudulentas e assegurando a confiança nas transações digitais.

3 Opção PGP

Para gerar um certificado PGP, foi utilizado o gestor de certificados Kleopatra num ambiente Windows, Figura 1. Kleopatra é um software gerador de certificados para GnuPG que armazena todas as chaves e certificados OpenPGP no dispositivo do utilizador, facilitando a resolução dos exercícios propostos.

Figura 1: Ambiente Kleopatra ao iniciar.

3.1 Gestão de chaves

Na Figura 2 é demonstrado o processo de criação uma chave PGP, onde se atribuiu o nome e e-mail à mesma.

Figura 2: Criação de Chave no Kleopatra.

Na configuração avançada, Figura 3, do par de chaves, foi escolhido o algoritmo RSA com 1024/2048 bits, sem data-limite de validade e mantendo a lista de algoritmos para a cifra. Este tipo de chave RSA é assimétrico, com uma chave pública e uma chave privada utilizadas pelo destinatário e remetente no processo de criptografia.

Figura 3: Configuração avançada.

A *passphrase* escolhida pelo grupo foi "cibergrupo5", selecionada por ser simples e fácil de memorizar. Esta *passphrase* deve ser inserida sempre que a chave privada for utilizada. A confirmação da criação do certificado está representada na Figura 4.

Figura 4: Confirmação da criação do certificado.

Como se pode observar pela Figura 5 e a Figura 6, os atributos mais significativos da assinatura e da chave são:

- ID da chave.
- Email: inescabral1309@gmail.com.
- Data de criação: 09 de março de 2024.
- Tipo de chave escolhido: OpenPGP.
- · Tempo: Ilimitado
- Impressão digital: C7BF ACAE 895B 3504 7D52 EFAE 0550 E089 5BDF AF97

Esta impressão digital é um *hash* da chave pública e é gerada através de uma relação estabelecida entre a assinatura e uma chave privada. De forma a obter uma verificação, é aplicada a chavevpública que deverá corresponder à chave privada que gerou a assinatura.

Figura 5: Assistente de Criação de pares de chaves.

Figura 6: Certificações disponíveis no Kleopatra.

Na Figura 7, são apresentadas duas sub chaves: uma destinada à certificação e assinatura, e outra exclusivamente para encriptação [5]. Ambas as sub-chaves possuem componentes de chave pública e privada. A primeira sub chave utiliza a chave privada para assinar digitalmente e a chave pública para verificação da autenticidade das mensagens assinadas. Por outro lado, a segunda sub chave utiliza a chave privada para desencriptar dados cifrados, os quais foram encriptados com a chave pública previamente compartilhada pela entidade remetente. A gestão da segunda sub-chave é realizada pela chave mestra, responsável pelo backup e revogação das sub-chaves. É importante destacar que a segunda sub-chave é derivada da chave primária.

Figura 7: Detalhes das Subchaves.

Na Figura 8 e na Figura 9 são apresentados os comandos executados na linha de comandos de um ambiente Windows para a criação de novas sub-chaves. O status da chave é exibido como revogado, no entanto, foi possível adicionar a nova sub-chave.

Figura 8: Criação de par de chaves.

```
Alterar (N)ome, (C)omentário, (E)ndereço, ou (O)k/(S)air? O
Precisamos gerar muitos bytes aleatórios. É uma boa ideia realizar outra
atividade (escrever no teclado, mover o rato, usar os discos) durante a
geração dos números primos; isto dá ao gerador de números aleatórios
uma hipótese maior de ganhar entropia suficiente.
gpg: certificado de revogação armazenado como 'C:\Users\Ines Cabral\AppData\Roaming\gnupg\openpgp-revocs.d\B6CFE5
8CAFDA451611695FF0CB88E77386FAA257.rev'
chaves pública e privada criadas e assinadas.

Repare que esta chave não pode ser usada para cifração. Poderá querer usar
o comando "--edit-key" para gerar uma subchave com esta finalidade.
pub rsa2048 2024-03-10 [SC]
B6CFE58CAFDA451611695FF0CB88E77386FAA257
uid Ines Cabral <inescabral1309@gmail.com>
```

Figura 9: Criação de par de chaves (continuação).

Para obter um certificado do tipo X509 com o par de chaves previamente criado, é essencial solicitar à CA, conforme ilustrado na Figura 10. Apesar da criação do par de chaves, o pedido à CA para a emissão do certificado não foi finalizado.

Figura 10: Pedido de uma Certification Authority.

Para este procedimento, foi essencial configurar a aplicação para o servidor PGP, utilizando o "hkps://pgpkeys.mit.edu", onde a chave pública será armazenada e permitirá a sua pesquisa no navegador, Figura 11.

Figura 11: Configurar servidor de chaves OpenPGP.

A chave pública foi exportada para o servidor pgpkeys.mit.edu conforme demonstrado na Figura 12 e Figura 13, seguindo a configuração apresentada.

Figura 12: Estruturação do servidor.

Figura 13: Seleção do servidor e da porta a utilizar.

Na Figura 14, o certificado foi exportado para o servidor hkps://pgpkeys.mit.edu/ após configurar a aplicação para o servidor PGP. Isso permitiu a publicação da chave pública no servidor, conforme ilustrado na Figura 15.

Figura 14: Exportação no servidor.

Figura 15: Confirmação da exportação no Kleopatra.

Após armazenar a chave pública no servidor PGP, foi realizada uma pesquisa pelas chaves públicas utilizando o endereço de e-mail (hsantos@dsi.uminho.pt) e pelo nome (Henrique Santos). Como esperado, a pesquisa pelo nome resultou em mais resultados do que a pesquisa pelo e-mail, devido à natureza única do endereço de e-mail em comparação com o nome. Essa análise foi demonstrada nas Figura 16 e Figura 17 ao consultar o servidor http://pgpkeys.mit.edu/.

Search results for 'uminho pt hsantos dsi'

```
Type bits/keyID Date User ID

pub 2048R/18A842EA 2018-11-01 Henrique M D Santos <henrique.dinis.santos@mail.com>
HSantos <henrique.dinis.santos@dsi.uminho.pt>
Henrique Santos <henrique.dinis.santos@gmail.com>

pub 2048R/3473AE1C 2016-09-14 Henrique Santos (Chave para uso na UM) <hsantos@dsi.uminho.pt>

pub 1024D/475D4617 2006-07-13 Henrique M D Santos (No) <hsantos@dsi.uminho.pt>

pub 1024D/3AE27210 2003-11-14 *** KEY REVOKED *** [not verified]
Henrique M D Santos <hsantos@dsi.uminho.pt>
Henrique M D Santos (Para uso pessoal) <henrique.dinis.santos@gmail.com>
[user attribute packet]

pub 1024D/319D3D84 2001-06-15 Henrique Manuel Dinis dos Santos <hsantos@dsi.uminho.pt>
```

Figura 16: Resultados da pesquisa por endereço e-mail hsantos@dsi.uminho.pt.

Search results for 'santos henrique'

Туре	bits/keyID	Date	User ID
pub	3072R/ <u>49EEE789</u>	2022-02-24	Paulo Henrique dos Santos ≺ownnerbr@gmail.com>
pub	3072R/ <u>26B2A788</u>	2021-05-19	Henrique Santos <hfigueiredosantos@tecnico.ulisboa.pt></hfigueiredosantos@tecnico.ulisboa.pt>
pub	3072R/ <u>5DA4EFEF</u>	2021-05-17	alexandre henrique santos grisende <alexandre.grisende@aedb.br></alexandre.grisende@aedb.br>
pub	3072R/ <u>DBEAD5D7</u>	2021-05-17	alexandre henrique santos grisende <alexandre.grisende@aedb.br></alexandre.grisende@aedb.br>
pub	2048R/ <u>EC68DAD8</u>	2020-04-23	j <u>oao.h.santos@layer8.pt</u> João Henrique Santos <joao.h.santos@layer8.pt></joao.h.santos@layer8.pt>
pub	2048R/ <u>5E458BDA</u>	2020-02-18	JORGE HENRIQUE SANTOS GARCEZ <mistergarcez@hotmail.com></mistergarcez@hotmail.com>
pub	2048R/ <u>18A842EA</u>	2018-11-01	<pre>Henrique M D Santos <henrique.dinis.santosgmail.com> HSantos <henrique.dinis.santos@dsi.uminho.pt> Henirque Santos <henrique.dinis.santos@gmail.com></henrique.dinis.santos@gmail.com></henrique.dinis.santos@dsi.uminho.pt></henrique.dinis.santosgmail.com></pre>
pub	2048R/ <u>86E90D2B</u>	2018-10-23	Henrique Santos <henrique.santos@inf.aedb.br></henrique.santos@inf.aedb.br>
pub	3072R/ <u>F3C5E85D</u>	2018-08-29	Henrique dos Santos Goulart <henrique.goulart@chaordicsystems.com></henrique.goulart@chaordicsystems.com>
pub	1024D/ <u>E759B578</u>	2018-06-12	Luiz Henrique Silva Santos <luizhenriqueeduardoss@gmail.com></luizhenriqueeduardoss@gmail.com>
pub	2048R/ <u>37F1E1F6</u>	2018-05-16	Carlos Henrique dos Santos <kc-ny@hotmail.com></kc-ny@hotmail.com>

Figura 17: Resultados da pesquisa pelo nome "Henrique Santos".

Na Figura 18, a chave pública foi exportada do Kleopatra em formato .asc, convertida para um formato .txt e enviada para o endereço de e-mail Gmail do outro membro do grupo foram passos essenciais nesse processo.

Figura 18: Chave publica enviada por e-mail.

O arquivo é aberto automaticamente no software e a chave é certificada, como evidenciado na Figura 19, Figura 20 e na Figura 21.

A Inês Cabral enviou a sua chave pública para a Catarina Pereira via e-mail, utilizando a técnica "drag and drop" para transferir a chave. É crucial garantir a autenticidade da chave recebida para associá-la corretamente à pessoa, evitando possíveis impostores, o que pode ser feito através de certificados digitais.

Figura 19: Certificação da chave pública de um membro do grupo.

Figura 21: Certificação terminada com sucesso.

Figura 20: Certificação da chave pública de um membro do grupo (continuação).

3.2 Enviar e receber mensagens seguras

Pressupõem-se que os alunos do grupo importem os seus certificados para o cliente de email Thunderbird, para que através do mesmo possam trocar mensagens seguras. Começou-se por adicionar uma chave OpenPGP pessoal ao Thunderbird, conforme documentado nas figuras 22 a 22. Este procedimento foi repetido para os alunos do grupo: Inês Cabral e Leonardo Martins, cada um utilizado as suas próprias chaves. Ambos os alunos utilizaram este cliente em ambiente Windows.

Figura 22: Adicionar chave OpenPGP ao Thunderbird (1).

Figura 23: Adicionar chave OpenPGP ao Thunderbird (2).

As figuras 24, 25 e 26 demonstram a adição no Thunderbird de uma chave OpenPGP pessoal.

Figura 24: Chave importada com sucesso (1).

Figura 25: Chave importada com sucesso (2).

Figura 26: Chave adicionada.

Agora, é necessário inserir as chaves públicas dos destinatários para enviar emails seguros. A Inês e o Leonardo enviaram as suas chaves como anexos por email. Desta forma, ao receber a chave pública de alguém na aplicação Thunderbird, é possível adicioná-la diretamente à lista de chaves, conforme demonstrado na figura 27.

Figura 27: Envio de chave pública PGP.

Ao receber uma chave pública PGP por email, o Thunderbird permite importar a mesma, conforme os passos demonstrados nas figuras 28, 29 e 30.

Figura 28: Importar chave pública PGP de outros (1).

Figura 29: Importar chave pública PGP de outros (2).

Figura 30: Importar chave pública importada com sucesso.

Como é possível observar na figura 31, a chave do Leonardo foi adicionada ao gestor de chaves da Inês.

Figura 31: Gestor de chaves OpenPGP.

O Leonardo efectou os mesmos passos para a importação da chave da Inês, ou seja, estão em condições de trocar emails seguros (encriptados e assinados). Se for selecionado o botão Encrypt, todos os parâmetros do separador Security são ativados. A chave pública também é sempre enviada em anexo. Na figura 32 é possível observar o envio de um email seguro para o Leonardo. Na figura 33 observa-se a receção do email seguro do Leonardo para a Inês, anteriormente o Leonardo também enviou para a Inês um email seguro.

Figura 32: Envio de email seguro da Inês para o Leonardo.

Figura 33: Receção do email seguro da Leonardo para a Inês.

É pretendido revogar os certificados criados e testar as consequências. No caso dos certificados PGP, estes foram revogados na aplicação Kleopatra e o certificado de revogação correspondente foi extraído. Esta revogação pode ser publicada no servidor. As figuras 34 e 36 mostram a chave revogada e a extração do certificado de revogação associado.

Figura 34: Extração do Certificado de Revogação.

Figura 35: Certificado de Revogação.

Figura 36: Chave Revogadas.

Depois de obter o Certificado de Revogação, este foi adicionado ao gestor de chaves no Thunderbird e a chave que a Inês estava a utilizar deixou de ser válida para o envio de emails seguros. Este processo está demonstrado nas figuras 37 e 38.

Figura 37: Importação do Certificado de Revogação.

Figura 38: Chave revogada no Thunderbird.

O cenário pressupõe que a revogação seja publicada no servidor PGP para que qualquer pessoa possa ter acesso a essa informação. Outra opção é a Inês enviar por email o certificado de revogação aos seus contactos, permitindo-lhes revogar a sua chave na lista de chaves PGP e evitar a sua utilização.

No entanto, se o Leonardo não estiver ciente da revogação da chave da Inês, ele pode inadvertidamente enviar um email encriptado com essa chave. Surpreendentemente, ele consegue enviar o email encriptado e a Inês consegue recebê-lo e lê-lo, conforme demonstrado na figura 39.

Figura 39: Receção do email encriptado do Leonardo para a Inês.

Se a Inês, ao enviar um email, anexar a sua chave pública, como esta foi revogada, o Thunderbird enviará automaticamente o certificado de revogação. Assim, o Leonardo pode revogar a chave da Eva no seu gestor de chaves OpenPGP. Na figura 47, observa-se o email que a Inês enviou ao Leonardo com o certificado de revogação em anexo.

Figura 40: Email com certificado de revogação em anexo.

3.3. PROTEGER DOCUMENTOS LOCAIS

Figura 41: Chave revogada no gestor de chaves do Leonardo.

Como se pode observar na figura 42, o Leonardo tenta enviar um email para a Inês, mas não consegue porque a chave da Inês está revogada.

Figura 42: Tentativa de enviar email para a Inês.

3.3 Proteger documentos locais

De forma a proteger documentos locais o Kleopatra possui uma funcionalidade de assinar/cifrar pastas e ficheiros. Para tal fizemos as seguintes etapas. Começamos por selecionar a opção para cifrar a pasta dentro do menu do Kleopatra como pose ser observado na figura 43. Posteriormente, selecionamos o certificado e a pasta desejada, como demonstrado na figura 44. Por fim atingimos o objetivo final como apresenta a figura 45.

Figura 43: Opção para assinar/cifrar a pasta.

3.3. PROTEGER DOCUMENTOS LOCAIS

Figura 44: Escolha do certificado e pasta.

Figura 45: Confirmação da cifra.

4 Opção X509

Para operar com o X509, foi utilizado o OpenSSL na plataforma do sistema operacional Ubuntu. Considerando que o sistema operacional em uso já inclui o OpenSSL por padrão, basta verificar a versão instalada, Figura 46.

```
catarina@catarina-VirtualBox:~/clberseguranca/TP3$ openssl version
OpenSSL 3.0.2 15 Mar 2022 (Library: OpenSSL 3.0.2 15 Mar 2022)
```

Figura 46: Verificação da Versão do OpenSSL.

4.1 Gestão de chaves

Na Figura 47 e na Figura 48, observa-se um novo par de chaves, do qual irá criar uma chave privada e a chave pública associada, de 2048 bits, ambas guardadas no mesmo ficheiro, do tipo Privacy Enhanced Mail (PEM). Desta forma, a chave obtida é adequada para poder cifrar e assinar e não necessita de uma password para ser aplicada.

Um arquivo PEM é um tipo de certificado digital usado para trocar informações com segurança pela Internet [6]. É frequentemente usado na criptografia de e-mail e também pode ser usado para armazenar chaves privadas e certificados [7]. O arquivo é codificado em formato binário ou Base64 e normalmente possui uma extensão .pem [8].

Figura 47: Criação de um novo par de chaves.

Figura 48: Verificação das chaves criadas.

Ao executar o comando de verificação da chave RSA, pode-se confirmar que a mesma foi gerada corretamente. Para assegurar a integridade da chave privada recém-criada, é recomendado utilizar o comando opensel rea —in privkey.pem —check. Ao realizar essa verificação, obtêm-se a confirmação do bom estado da chave privada, como ilustrado na Figura 49.

Figura 49: Verificação do estado da chave privada.

Para solicitar um certificado, é necessário preparar um arquivo contendo informações como a chave pública, dados pessoais e organizacionais, como o Common Name (CN) e o endereço de e-mail associados à chave privada previamente gerada. Este arquivo, conhecido como pedido de certificado, será encaminhado para a CA. Após a validação da identidade pela CA, o certificado assinado será emitido.

Após a elaboração do pedido de certificado com o comando openssl req -new -key privkey.pem -out cert.csr, procede-se à verificação do seu estado para garantir a sua integridade como representado na Figura 50.

```
catarina@catarina-VirtualBox:-/ciberseguranca/TP3$ openssl req -new -key privkey.pem -out cert.csr
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.
----
Country Name (2 letter code) [AU]:PT
State or Province Name (full name) [Some-State]:
Locality Name (eg, city) []:Guimaraes
Organization Name (eg, company) [Internet Widgits Pty Ltd]:UMinho
Organizational Unit Name (eg, section) []:Dept DSI
Common Name (e.g. server FQDN or YOUR name) []:Grp5
Email Address []:pg53733@alunos.uminho.pt

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:cibergrupo5
An optional company name []:
```

Figura 50: Criação do certificado.

Depois do passo anterior, verificar-se-á o estado do ficheiro (de pedido de certificado) com o comando openssl req -text -noout -verify -in cert.csr, Figura 51.

Figura 51: Verificação do estado de pedido de certificado.

Neste ponto de situação, foi gerado um certificado auto-assinado utilizando a chave privada. A utilização de certificados auto-assinados é útil para importar a chave privada em cenários específicos. Para gerar o certificado auto-assinado, utiliza-se o comando openssl x509 -req -in cert.csr -signkey privkey.pem -out privcert.crt.

O comando exemplificado na Figura 52 especifica que o certificado será do tipo x509, assinado pela chave

privada com o nome indicado. Após a geração do certificado auto-assinado com a chave privada previamente criada, verificou-se que o mesmo é válido e contém os valores previamente inseridos.

```
catarina@catarina-VirtualBox:-/ciberseguranca/TP3$ openssl x509 -req -in cert.csr -signkey privkey.pem -out privcert.crt
Certificate request self-signature ok
subject=C = PT, ST = Some-State, L = Guimaraes, O = UMinho, OU = Dept DSI, CN = Grp5, emailAddress = pg53733@alunos.uminho.pt
```

Figura 52: Criação do certificado auto-assinado.

Ao utilizar o comando openssl x509 -text -in privcert.crt, é possível validar o estado do arquivo que contém o certificado auto assinado e os elementos essenciais associados a ele. Este comando permite visualizar informações relevantes presentes no certificado, como a validade, a chave RSA e o algoritmo de assinatura.

Após verificar o estado do certificado, conforme ilustrado na Figura 53, são apresentados dados fundamentais utilizados no pedido de certificado, fornecendo detalhes como a validade, a chave RSA e o algoritmo de assinatura.

```
00:d0:16:9b:53:3e:b8:ab:65:1a:7f:9e:76:57:77:ba
chm: sha256WithRSAEncryption
OT = Some-State, L = Guimaraes, O = UMinho, OU = Dept DSI, CN = Grp5, emailAddress = pg53733@alunos.uminho.pt
                             ....
Guimaraes, O = UMinho, OU = Dept DSI, CN = Grp5, emailAddress = pg53733@alunos.uminho.pt
```

Figura 53: Criação do certificado auto-assinado.

Na etapa atual, o grupo decidiu criar um PKI simples [9]. Começou a ser criado um repositório local, conforme mostrado na Figura 54.

```
catarina@catarina-VirtualBox:~/ciberseguranca/TP3$ git clone https://bitbucket.org/stefanholek/pki-example-1
cloning into 'pki-example-1'...
Unpacking objects: 100% (79/79), 8.36 KiB | 372.00 KiB/s, done.
catarina@catarina-VirtualBox:~/ciberseguranca/TP3$ cd pki-example-1
catarina@catarina-VirtualBox:~/ciberseguranca/TP3/pki-example-1$ s mkdir -p ca/root-ca/private ca/root-ca/db crl certs
catarina@catarina-VirtualBox:~/ciberseguranca/TP3/pki-example-1$ $
```

Figura 54: Criação de um repositório remoto.

Após o descarregamento do repositório mencionado, foram estabelecidas uma série de diretorias destinadas a armazenar os certificados, conforme ilustrado na Figura 55.

```
catarina@catarina-VirtualBox:-/ciberseguranca/TP3/pki-example-1$ mkdir -p ca/signing-ca/private ca/signing-ca/db crl certs catarina@catarina-VirtualBox:-/ciberseguranca/TP3/pki-example-1$ chmod 700 ca/signing-ca/private
```

Figura 55: Criação da diretorias.

Para organizar informações de maneira eficiente, é comum recorrer à utilização de bases de dados. Estas podem ser visualmente representadas, como exemplificado na Figura 56.

```
catarina@catarina-VirtualBox:-/clberseguranca/TP3/pki-example-1$ mkdir -p ca/signing-ca/private ca/signing-ca/db crl certs catarina@catarina-VirtualBox:-/clberseguranca/TP3/pki-example-1$ chmod 700 ca/signing-ca/private catarina@catarina-VirtualBox:-/clberseguranca/TP3/pki-example-1$ cp /dev/null ca/signing-ca/db/signing-ca.db catarina@catarina-VirtualBox:-/clberseguranca/TP3/pki-example-1$ cp /dev/null ca/signing-ca/db/signing-ca.db.attr catarina@catarina-VirtualBox:-/clberseguranca/TP3/pki-example-1$ end 0) > ca/signing-ca/db/signing-ca.crl.srl catarina@catarina-VirtualBox:-/clberseguranca/TP3/pki-example-1$ edo 0) > ca/signing-ca/db/signing-ca.crl.srl
```

Figura 56: Criação da base de dados.

Durante esta etapa, é essencial solicitar a autenticação do certificado e, em seguida, criar uma chave privada para a autoridade certificadora raiz (root CA).

O comando openssl req -new é utilizado para solicitar a autenticação mencionada, cujo resultado pode ser visualizado na Figura 57.

```
Catartaagcatartaa-VirtualBox: /ciberseprance/TDX/pki-sample: | 5 opensal req -new -config etc/signing-ca.com -out ca/signing-ca.csr -keyout ca/signing-ca/private/signing-ca.key

Enter PEM pass phrase:
Verifying - Enter PEM pass phrase:
```

Figura 57: Pedido de autenticação de certificado.

Na Figura 58, como se pode ver foi criado o certificado CA auto assinado.

```
catarina@catarina-VirtualBot:-/ciberagguranca/TP3/pkt-example:15 openssl ca -selfsign -config etc/root-ca.conf -in ca/root-ca.csr -out ca/root-ca.csr -extensions root_ca_ext

Little pais phrase for ./ca/root-ca/private/root-ca.key:

db07a96812776080esror: 0797080680ciconfiguration file routines:NCONF_get_string:no value:../crypto/conf/conf_llb.c:315:group=<NULL> name=unique_subject

check that the request matches the signature

signature of certificate Details:

Serial Number: 1 (0x1)

Validity

Not Before: Mar 23 17:06:32 2024 GMT

Not Before: Mar 23 17:06:32 2034 GMT

Subject Mar 23 17:06:32 2034 GMT

Subject Mar 23 17:06:32 2034 GMT

OrganizationalUnithane

organizationalUnithane

organizationalUnithane

commonName

X509V3 extensions:

X509V3 extensions
```

Figura 58: Criação de um certificado CA auto assinado.

O passo seguinte foi criar a Signing Ca, como se pode obserar na Figura 59, e para isso foram usados os mesmos comandos usados no Root CA, para criar a base de dados e o pedido e certificado da Signing CA.

```
Table Transporter Lab. Virtual Day: (-ther repur maca/Te3/pit-example-:$ openssl ca -config etc/root-ca.conf -in ca/signing-ca.csr -out ca/signing-ca.csr -extensions signing_ca_ext Using configuration from etc/root-ca.conf finter pass phrase for ./ca/root-ca/private/root-ca.key:

check that the request matches the signature signature signature of certificate Details:

Serial Number: 2 (0x2)

Valudity

Not Before: Mar 23 17:12:02 2024 CMT
Not After: Mar 23 17:12:02 2034 CMT
Subject:

Subject:

Subject:

Subject:

Subject:

Occasionement = unino
organizationalunt Hishare = cloberseguranle7a
commonName

X50903 extensions:

X50903 extensions:

X50903 extensions:

X50903 extensions:

X50903 extensions:

X50903 basic Constraints: critical
Ca:TRUE, pathlen:0

SC:SO:Color: 2:2x3:7:95:F9:00:7A:29:20:D0F:8C:27:44:68:90:B0

X50903 bullootty key Identifier:
BC:SO:Color: 2:2x3:7:95:F9:00:7A:29:20:D0F:8C:27:44:68:90:B0

X50903 bullootty key Identifier:
SC:SO:Color: 2:2x3:7:95:F9:00:TA:29:20:D0F:8C:27:44:68:90:B0

X50903 bullootty key Identifier:
SC:SO:Color: 2:2x3:TA:2x3:TA:2x3:TA:2x3:TA:2x3:TA:2x3:TA:2x3:TA:2x3:TA:2x3:TA:2x3:TA:2x3:TA:2x3:TA:2x3:TA:2x3:TA:
```

Figura 59: Criação do certificado CA certificado pela Root CA

Na Figura 60, utilizando o Signing CA, foi criado o pedido de certificado de email.

```
Enter PEM pass phrase:

Verifying: Enter PEM pass p
```

Figura 60: Criação de um pedido de certificado de email.

Pode-se observar na Figura 61 que a Signing CA aceitou o pedido de certificado e por isso o certificado foi criado.

Figura 61: Aceitação do pedido por parte da Signing CA e criação do certificado.

Para se puder adicionar o certificado ao Thunderbird é necessário um ficheiro no formato PKCS12. Para tal, teve-se de executar o comando presente na Figura 62.

catartagicaterina Virtualbox; /clurcagueance/TP3//kl.coangle | \$ openssl pkcs12 -export -in certs/catarina.crt -inkey certs/catarina.key -certfile ca/signing-ca.crt -name "Catarina Pereira" -out catarina Priv-pkcs12-20 for certs/catarina.key: Description of the catarina.key: Verifying: Engler Export Possword:

Figura 62: Criação do ficheiro PKCS12

Após a criação do ficheiro em formato PKCS12 foi verificado o estado do mesmo como podemos ver na Figura 63 e na Figura 64.

```
Catarina@catarina=VirtualBox:-/clberseguranca/(P2)/pkl-example-15 openssl pkcs12 -info -in catarina_priv-pkcs12.pl2
Enter Import Password:
Import Password:
Ack Lengths 23 salt rength: 8
PKCS7 Encrypted data: PBE52, PBKDF2, AES-256-CBC, Iteration 2048, PRF hmacHithSHA256
Certificate bag
Bag Attributes
Locakepilo: 22 AP F3 E3 BS 44 75 E7 E1 BB 26 EB 02 4E E4 24 87 A5 2B CE
Locakepilo: 22 AP F3 E3 BS 44 75 E7 E1 BB 26 EB 02 4E E4 24 87 A5 2B CE
Locakepilo: 22 AP F3 E3 BS 44 75 E7 E1 BB 26 EB 02 4E E4 24 87 A5 2B CE
Locakepilo: 22 AP F3 E3 BS 44 75 E7 E1 BB 26 EB 02 4E E4 24 87 A5 2B CE
Locakepilo: 22 AP F3 E3 BS 44 75 E7 E1 BB 26 EB 02 4E E4 24 87 A5 2B CE
Locakepilo: 24 Loca
```

Figura 63: Verificação do ficheiro PKCS12 (1).

Figura 64: Verificação do ficheiro PKCS12 (2).

4.2 Enviar e receber mensagens seguras

De modo a se comunicar encriptadamente e de forma segura, é necessário a importação dos certificados a usar.

Para adicionar o certificado com sucesso, é necessário utilizar a versão 102.8.0 do Thunderbird, que é a versão do ano passado. Nas versões mais recentes, essa adição não é permitida, o que levou à instalação de uma versão mais antiga. O registo do insucesso ao adicionar o certificado com uma versão mais recente não foi feito. Na Figura 65, observa-se a importação do certificado do remetente.

Figura 65: Import do certificado.

No caso da Figura 65, observa-se a importação do certificado da autoridade certificadora criada.

Figura 66: Import do certificado da autoridade certificadora criada.

Foi necessário escolher que certificados usar para assinar e decifrar as mensagens, tendo escolhido o mesmo para as duas funções, como é possível ver na Figura 69

Figura 67: Seleção dos certificados para assinar e decifrar.

Com esta etapa concluída, resta apenas a substituição das mensagens. É importante notar que no recetor foi seguido o mesmo procedimento, exceto no passo de importar o próprio certificado e no certificado do remetente,

onde o processo foi inverso. No último passo, utilizaram-se os certificados correspondentes. Resta finalmente trocar as mensagens.

Quando se recebe mensagem assinada da outra pessoa, Figura 68, o Thunderbird importa automaticamente a chave pública da outra pessoa como demonstrado na Figura 69.

Figura 68: Email a confirmar a encriptação.

Figura 69: Seleção dos certificados para assinar e decifrar.

Assim sendo, é possível verificar que o email chega devidamente assinado e encriptado, permitindo a segurança na comunicação entre o recetor e o remetente.

De modo a proceder à revogação do certificado emitido, recorreu-se ao comando demonstrado na Figura 70. Após este, há a necessidade da criação de uma Certificate Revocation List (CRL) que contém a lista dos certificados revogados.

Figura 70: Revogação do Certificado.

Após o certificado ser revogado, irá ser incluído na lista de certificados revogados emitidos pela CA obtida através de uma CRL da CA, como se pode verificar na Figura 71.

catarina@catarina-VirtualBox:-/ciberseguranca/TP3/pki-example-1\$ openssl ca -gencrl -config etc/signing-ca.conf -out crl/signing-ca.crl Using configuration from etc/signing-ca.conf Enter pass phrase for ./ca/signing-ca/private/signing-ca.key:

Figura 71: Obtenção da CRL.

Após a revogação do certificado, não houve nenhuma ocorrência. Tentou-se enviar o e-mail assinado, sem sucesso. O que ocorreu foi exatamente o mesmo que foi demonstrado antes da revogação do certificado.

Ao consultar a lista da Figura 72, foi constatado que os certificados selecionados estão incluídos nela. No entanto, devido à falta de suporte da CA implementada para a verificação de certificados revogados e apesar de várias tentativas, o Thunderbird permite a utilização desse certificado sem emitir qualquer aviso. Isto acarreta sérios problemas na integridade da segurança da comunicação. Para resolver essa questão, é crucial obter os certificados de uma CA legítima e confiável, que mantenha e forneça documentação atualizada sobre o status de validade dos certificados emitidos.

Figura 72: Lista de CRL.

Ou seja, desta forma, para garantir a validade do certificado, o próprio utilizador teria de verificar a CRL atualizada e discernir quais os certificados válidos.

A revogação através do mecanismo Online Certificate Status Protocol (OCSP) não foi realizada devido à falta de tempo. O objetivo era verificar se, por meio deste método, o grupo conseguiria realizar uma revogação bem-sucedida.

5 Conclusão

Com a conclusão deste trabalho prático, o grupo realizou todos os passos e correspondeu ao proposto do trabalho prático. Tendo também desenvolvido competências de trabalho com certificados PGP e X509.

No PGP, a adição de subchaves foi realizada já depois de o grupo ter terminado todos os passos, fazendo com que a subchave adicionada já fosse adicionada como revogada, mas ainda assim o grupo conseguiu adicionar a mesma.

Referências Bibliográficas

- [1] Sourabh Chandra et al. "A comparative survey of Symmetric and Asymmetric Key Cryptography". Em: IEEE, nov. de 2014, pp. 83–93. ISBN: 978-1-4799-5748-4. DOI: 10.1109/ICECCE.2014.7086640.
- [2] José Carlos Bacelar Ferreira Junqueira Almeida. *Criptografia Assimétrica Criptografia e Segurança de Redes*. Acedido a 09 de março de 2024. Dezembro de 2022.
- [3] José Carlos Bacelar Ferreira Junqueira Almeida. *Certificados Digitais Criptografia e Segurança de Redes (LETI)*. Acedido a 09 de março de 2024. Dezembro de 2022.
- [4] P. Wing e B. O'Higgins. "Using public-key infrastructures for security and risk management". Em: *IEEE Communications Magazine* 37 (9 1999), pp. 71–73. ISSN: 01636804. DOI: 10.1109/35.790867.
- [5] Como gerar chaves PGP com GPG? https://pt.linux-console.net/?p=15179. Acedido a 9 de março de 2024.
- [6] William Jones. "Personal Information Management". Em: Annual Review of Information Science and Technology 41 (1 jan. de 2007), pp. 453–504. ISSN: 0066-4200. DOI: 10.1002/aris.2007.1440410117.
- [7] Ofer Bergman et al. "Personal information management". Em: ACM, abr. de 2004, pp. 1598–1599. ISBN: 1581137036. DOI: 10.1145/985921.986164.
- [8] Haris Zafeiropoulos et al. "PEMA: from the raw .fastq files of 16S rRNA and COI marker genes to the (M)OTU-table, a thorough metabarcoding analysis". Em: (). DOI: 10 .1101/709113. URL: https://doi.org/10.1101/709113.
- [9] Simple PKI OpenSSL PKI Tutorial. Acedido a 22 de março de 2024. URL: https://pki-tutorial.readthedocs.io/en/latest/simple/index.html.