Roll	No.:	

National Institute of Technology, Delhi

Name of the Examination: B. Tech

Branch : ECE

Semester

: 111

Title of the Course

: Solid State Devices

Causa Cada

Course Code : ECB 201

Time: 3 Hours

Maximum Marks: 50

- Questions are printed on BOTH sides. Answers should be CLEAR AND TO THE POINT.
- · All parts of a single question must be answered together. ELSE QUESTION SHALL NOT BE EVALUATED.

Section A

Choose the appropriate answer and write on the answer sheet only.

- (a) Common base current gain can be increased by enhancing the injection efficiency/ [1x10=10] base transport factor/both of the above.
 - (b) Carrier recombination in E-B depletion region increases/ decreases injection efficiency.
 - (c) As reverse bias increases, collector current increases/ decreases/ remains same.
 - (d) Emitter injection efficiency increases/ decreases with increase in doping concentration at E region.
 - (e) Lower base doping increases/ decreases base current.
 - BJT Operation is controlled by carrier transport in base through diffusion/drift process.
 - (g) Quantum mechanics is supported by Schrödinger equation/ Poisson's equation/ Shockley equation.
 - (h) With a phase shift of 90°, Lissajous figure at CRO will produce an ellipse/ circle/ trapezoid.
 - In a CRO in sweep rate frequency is 100 Hz with 2 full sinusoidal cycles observed, then frequency of the input vertical voltage will be 100 Hz/200 Hz/1000Hz.
 - At pinch-off situation of a JFET, pinch-off voltage refers to the corresponding gatesource voltage/ drain source voltage/ gate- drain voltage.

Section B

Write brief note on following:

- (a) Thermal runaway
 - (b) Base width narrowing and early effect.
 - (c) Depletion mode MOSFET
 - (d) Tunnel diode
 - (e) Hall effect

[2x5=10]

Section C

	Section C			
	In a very long p-type Si bar with area = 0.5 cm² and Na = 10^{17} /cm³, holes are injected such that steady state excess hole concentration becomes 5 x 10^{16} /cm³ at x=0. What is the separation between E_{Fp} (Quasi Fermi Level for holes) and E_c at x=1000Å? [μ p= 500 cm²/ V-sec, Eg1.1eV]	[3]		
(a)	An n- type Si semiconductor sample having with equilibrium carrier concentration, n_o = $10^{14}/cm^3$. After steady shining of light, let optically generated EHP's are 10^{13} EHP/cm³/µs when $\tau_n=\tau_p$ = 1µs. Calculate total e^- and hole concentrations after shining of light. [n _i =1.5 x $10^{10}/cm^3$]	[5]		
(b)	Find the positions of Quasi-Fermi levels with respect to intrinsic energy level. Draw the energy band diagram.			
	A cylindrical Si bar has 1mm length and 0.1 $$ mm 2 cross-section. Find conductivity and resistances for Si (ignoring minority carriers) for following cases:	[2]		
(a) (b)	When pure When doped with $10^{16}/cm^3$ donors. [$\mu_n=1500cm^2/V\cdot S,~\mu_p=500~cm^2/V\cdot S,~n_i=1.5x10^{10}/cm^3]$			
	Sketch and label energy band diagrams across the Metal-Semiconductor Junction of all following cases (after contact only). [q χ = 4.0 eV, E $_g$ =1.1eV, KT= 0.026eV, n $_i$ = 1.5x $10^{10}/cm^3$ at 300k for Si]	[7]		
(a)	$q\varphi_m$ = 4.5eV, $q\varphi_m$ =2eV for n-type for V= 0V, 0.2V(FB), +1V(RB)			
(b)	Depletion width (if any) for above cases:			
	Consider a Si p-n junction diode of area 10^{-4} cm ² at 300k. For p-type part: N_a = $2.5x10^{15}/cm^3$ τ_n = 10^{-6} s μ_n = 1350 cm ² /V·s For n-type part: N_d = $5x10^{16}/cm^3$	[3]		
	$\tau_{\rm p} = 10^{-7} {\rm s}$			
(a)	$\mu_p = 325~\text{cm}^2/\text{V·S} \\ n_i = 1.5 \times 10^{10}/\text{cm}^3 \\ \text{Express I}_o \text{ (Reverse Saturation Current) in terms of above diode parameters and then calculate its value.}$			
(b)	Calculate total current (I) for FB of 0.6V.			
Section D				
	Explain in detail the transistor amplification process with the help of graphical analysis.	[3]		
	What is the implication of p-i-n diode? How it overcomes the disadvantages of p-n diode?	[2]		
	Define JFET parameters?	[3]		
	Discuss briefly the formation of energy bands in an multiatomic crystal lattice	[2]		
	(b) (a) (b) (a) (b)	 injected such that steady state excess hole concentration becomes 5 x 10¹⁹/cm³ at x=0. What is the separation between E_{Fp} (Quasi Fermi Level for holes) and E_c at x=1000Å? [μp= 500 cm²/V-sec, Eg1.1eV] (a) An n- type Si semiconductor sample having with equilibrium carrier concentration, n₀= 10¹⁴/cm³. After steady shining of light, let optically generated EHP's are 10¹³ EHP/cm³/µs when τ_n = τ_p= 1µs. Calculate total e¹ and hole concentrations after shining of light, [n₁=1.5 x 10¹⁰/cm³] (b) Find the positions of Quasi-Fermi levels with respect to intrinsic energy level. Draw the energy band diagram. A cylindrical Si bar has 1mm length and 0.1 mm² cross-section. Find conductivity and resistances for Si (ignoring minority carriers) for following cases: (a) When pure (b) When doped with 10¹⁶/cm³ donors. [μ_n = 1500cm²/V·S, μ_p = 500 cm²/V·S, n_i = 1.5x10¹⁰/cm³ Sketch and label energy band diagrams across the Metal-Semiconductor Junction of all following cases (after contact only). [qx = 4.0 eV, E_g=1.1eV, KT= 0.026eV, n_i= 1.5x 10¹⁰/cm³ at 300k for Si] (a) qф_m= 4.5eV, qф_m=2eV for n-type for V= 0V, 0.2V(FB), +1V(RB) (b) Depletion width (if any) for above cases: Consider a Si p-n junction diode of area 10⁻⁴ cm² at 300k. For p-type part: N_a = 2.5x10¹⁵/cm³ τ_p = 10⁻⁶ s μ_a = 1350cm²/V·s For n-type part: N_a = 5x10¹⁶/cm³ τ_p = 10⁻⁷ s μ_p = 325 cm²/V·s n_i=1.5x10¹⁰/cm³ n_i=1.5x10¹⁰/cm³ a_i=1.5x10¹⁰/cm³ a_i=1.5x10¹⁰/cm³ a_i=1.5x10¹⁰/cm³ b_i=325 cm²/V·s n_i=1.5x10¹⁰/cm³ c_i=1.5x10¹⁰/cm³ c_i=1.5x10¹⁰/cm³ d_i=3.25 cm²/V·s n_i=1.5x10¹⁰/cm³ d_i=3.25 cm²/V·s n_i=1.5x10¹⁰/cm³ d_i=3.25 cm²/V·s n_i=1.5x10¹⁰/cm³ d_i=3.25 cm²/V·s e_i=3.25 cm²/V·s e_i=3.25 cm²/V·s e_i=3.25 cm²/V·s<!--</td-->		

Useful Equations

Fermi-Dirac
$$e^-$$
 distribution: $f(E) = \frac{1}{e^{(E-E_c)/kT} + 1} = e^{(E_c-E_c)/kT}$ for $E \gg E_F$

Equilibrium:
$$n_0 = \int_E^\infty f(E)N(E)dE = N_c f(E_c) = N_c e^{-(E_c - E_c)/kT}$$

$$N_{c} = 2\left(\frac{2\pi m_{n}^{*} kT}{h^{2}}\right)^{3/2} \quad N_{v} = 2\left(\frac{2\pi m_{p}^{*} kT}{h^{2}}\right)^{3/2} \quad n_{0} = n_{e} e^{(E_{r} - E_{r})/kT} \quad n_{0} p_{0} = n_{e}^{2} e^{(E_{r} - E_{r})/kT}$$

$$\rho_0 = N_{\nu}[1 - f(E_{\nu})] = N_{\nu}e^{-(E_{\nu} - E_{\nu})/kT}$$

$$n_i = N_c e^{-(E_c - E_c)/kT}, \quad p_i = N_c e^{-(E_c - E_c)/kT} \quad n_i = \sqrt{N_c N_c} e^{-E_c/2kT} = 2\left(\frac{2\pi kT}{h^2}\right)^{3/2} (m_n^* m_p^*)^{3/4} e^{-E_c/2kT}$$

$$n = Ne^{-(E_e - F_e)/kT} = n_e e^{(F_e - E_e)/kT}$$

$$p = N_e e^{-(F_e - E_e)/kT} = n_e e^{(E_e - F_e)/kT}$$

$$np = n_e^2 e^{(F_e - F_e)/kT}$$

$$\frac{d\mathscr{E}(x)}{dx} = -\frac{d^2V(x)}{dx^2} = \frac{p(x)}{\epsilon} = \frac{q}{\epsilon} \left(p - n + N_d^{\perp} - N_a^{\perp} \right) \quad \mathscr{E}(x) = -\frac{d\mathcal{V}(x)}{dx} = \frac{1}{q} \frac{dE_t}{dx}$$

$$\frac{I_x}{A} = J_x = q(n\mu_n + p\mu_p)\mathcal{E}_x = \sigma\mathcal{E}_x$$

Diffusion length:
$$L = \sqrt{D\tau}$$
 Einstein relation: $\frac{D}{\mu} = \frac{kT}{q}$

Continuity:
$$\frac{\partial p(x,t)}{\partial t} = \frac{\partial \delta p}{\partial t} = -\frac{1}{q} \frac{\partial J_p}{\partial x} - \frac{\delta p}{\tau_p} \frac{\partial \delta n}{\partial t} = \frac{1}{q} \frac{\partial J_n}{\partial x} - \frac{\delta n}{\tau_n}$$

For steady state diffusion:
$$\frac{d^2 \delta n}{dx^2} = \frac{\delta n}{D_n \tau_n} = \frac{\delta n}{L_n^2} = \frac{d^2 \delta p}{dx^2} = \frac{\delta p}{L_p^2}$$

Equilibrium:
$$V_0 = \frac{kT}{q} \ln \frac{p_p}{p_n} = \frac{kT}{q} \ln \frac{N_a}{n_t^2/N_d} = \frac{kT}{q} \ln \frac{N_a N_d}{n_t^2} \qquad \frac{p_p}{p_n} = \frac{n_a}{n_p} = e^{qV_a kT} \qquad W = \left[\frac{2e(V_a - V)}{q} \left(\frac{N_e + N_d}{N_a N_d}\right)\right]^{1/2}$$

Junction Depletion:
$$C_i = \epsilon A \left[\frac{q}{2\epsilon (V_{tt} - V)} \frac{N_d N_a}{N_d + N_a} \right]^{1/2} = \frac{\epsilon A}{W}$$

One-sided abrupt
$$p^*$$
- n : $x_{n0} = \frac{WN_s}{N_s + N_d} = W$ $V_0 = \frac{qN_sW^2}{2\epsilon}$

$$\Delta p_n = p(x_m) - p_n = p_n(e^{4V/kT} - 1)$$

$$\delta p(x_n) = \Delta p_n e^{-x_n L_p} = p_n (e^{qV/kT} - 1)e^{-x_n L_p}$$

Ideal diode:
$$I = qA\left(\frac{D_p}{L_p}p_n + \frac{D_n}{L_n}n_p\right)(e^{dV/kT} - 1) = I_0(e^{dV/kT} - 1)$$

Stored charge exp. hole dist.:
$$Q_{\rho}=qA\int_{0}^{\infty}\delta\rho(x_{s})dx_{s}=qA\Delta\rho_{\sigma}\int_{0}^{\infty}e^{-i\omega L_{\sigma}}dx_{s}=qAL_{\rho}\Delta\rho.$$

$$I_{\rho}(x_n = 0) = \frac{Q_{\rho}}{\tau_{\rho}} = qA \frac{L_{\rho}}{\tau_{\rho}} \Delta p_n = qA \frac{D_{\rho}}{L_{\rho}} p_n(e^{qV_{\rho}kT} - 1)$$

$$I_{Ep} = qA \frac{D_p}{L_p} \left(\Delta \rho_E \coth \frac{W_b}{L_p} - \Delta \rho_C \operatorname{csch} \frac{W_b}{L_p} \right)$$

$$I_C = qA \frac{D_\rho}{L_\rho} \left(\Delta p_E \operatorname{csch} \frac{W_b}{L_\rho} - \Delta p_C \operatorname{ctnh} \frac{W_b}{L_\rho} \right) \quad \text{Substrate bias:} \quad \Delta V_T \simeq \frac{\sqrt{2\epsilon_s q N_a}}{C_i} (-V_B)^{1/2}$$

Oxide:
$$C_i = \frac{\epsilon_i}{d}$$
 Depletion: $C_d = \frac{\epsilon_s}{W}$ MOS: $C = \frac{C_i C_d}{C_i + C_d}$

Inversion:
$$\phi_s(\text{inv.}) = 2\phi_F = 2\frac{kT}{q}\ln\frac{N_a}{n_s}$$
 (6-15) $W = \left[\frac{2\epsilon_s\phi_s}{qN_a}\right]^{1/2}$

$$Q_d = -qN_dW_m = -2(\epsilon_a q N_a \phi_F)^{1/2}$$
 (6-32) At V_{FB} : $C_{FB} = \frac{C_i C_{dehye}}{C_i + C_{dehye}}$

$$\Delta p_E = p_n (e^{qV_{EB}/kT} - 1)$$

$$\Delta p_C = p_n (e^{qV_{CB}/kT} - 1)$$

$$I_B = qA \frac{D_p}{L_p} \left[(\Delta p_E + \Delta p_C) \tanh \frac{W_b}{2L_p} \right]$$

$$B = \frac{I_C}{I_{Ep}} = \frac{\operatorname{csch} W_b/L_p}{\operatorname{ctnh} W_b/L_p} = \operatorname{sech} \frac{W_b}{L_p} \simeq 1 - \left(\frac{W_b^2}{2L_p^2}\right)$$

(Base transport factor)

$$\gamma = \frac{I_{E_P}}{I_{E_n} + I_{E_P}} = \left[1 + \frac{L_p^n n_n \mu_n^p}{L_p^n p_n \mu_n^p} \tanh \frac{W_b}{L_p^n}\right]^{-1} \simeq \left[1 + \frac{W_b n_n \mu_n^p}{L_p^n p_n \mu_n^p}\right]^{-1}$$

(Emitter injection efficiency)

$$\frac{i_C}{i_E} = B\gamma = \alpha \quad (7-3)$$

$$\frac{i_C}{i_B} = \frac{B\gamma}{1 - B\gamma} = \frac{\alpha}{1 - \alpha} = \beta \quad i_C = \frac{\tau_\rho}{i_B} = \frac{\tau_\rho}{\tau_\tau}$$
(Common base gain)
(Common emitter gain)

(Common base gain) (Common emitter gain) (For
$$\gamma = 1$$
)