МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Кафедра теоретических основ компьютерной безопасности и криптографии

Классификация бинарных отношений и системы замыканий ОТЧЁТ ПО ДИСЦИПЛИНЕ «ПРИКЛАДНАЯ УНИВЕРСАЛЬНАЯ АЛГЕБРА»

студента 3 курса 331 группы специальности 10.05.01 Компьютерная безопасность факультета компьютерных наук и информационных технологий Яхина Шамиля Илдусовича

Преподаватель		
профессор, д.фм.н.		В. А. Молчанов
	подпись, дата	

СОДЕРЖАНИЕ

1 Бинарные отношения			тношения 4		
	1.1	Опред	деление бинарного отношения 4		
	1.2	Классификация бинарных отношений 4			
2	Сист	Системы замыканий б			
	2.1	Определение системы замыканий 6			
	2.2	Лемма о системах замыканий бинарных отношений б			
	2.3	Определение замыкания и оператора замыкания 6			
	2.4	Лемма	а о замыканиях бинарных отношений 6		
3	Резу	льтаты	работы		
	3.1	Описа	ние алгоритма классификации бинарных отношений 8		
		3.1.1	Алгоритм проверки рефлексивности 8		
		3.1.2	Алгоритм проверки антирефлексивности 9		
		3.1.3	Алгоритм проверки симметричности 9		
		3.1.4	Алгоритм проверки антисимметричности 9		
		3.1.5	Алгоритм проверки транзитивности		
		3.1.6	Алгоритм проверки отношения на эквивалентность, ква-		
			зипорядок и порядок11		
	3.2 Описание алгоритма построения основных замыканий (ние алгоритма построения основных замыканий бинарных		
		отнош	пений11		
		3.2.1	Алгоритм построения замыкания относительно свойства		
			рефлексивности		
		3.2.2	Алгоритм построения замыкания относительно свойства		
			симметричности		
		3.2.3	Алгоритм построения замыкания относительно свойства		
			транзитивности12		
		3.2.4	Алгоритм построения замыкания относительно эквива-		
			лентности		
	3.3	Код пј	рограммы		
	3.4	Результаты тестирования программ 21			
3 <i>A</i>	клю	У ЕНИ	E		

Цель работы: изучение основных свойств бинарных отношений и операций замыкания бинарных отношений.

1 Бинарные отношения

1.1 Определение бинарного отношения

Подмножества декартова произведения $A \times B$ множеств A и B называются бинарными отношениями между элементами множеств A, B и обозначаются строчными греческими буквами: $\rho, \sigma, ..., \rho_1, \rho_2,$

Для бинарного отношения $\rho \subset A \times B$ область определения D_{ρ} и множество значений E_{ρ} определяются как подмножества соответствующих множеств и по следующим формулам:

```
D_{\rho} = \{a : (a, b) \in \rho \text{ для некоторого } b \in B\}, E_{\rho} = \{b : (a, b) \in \rho \text{ для некоторого } a \in A\}.
```

1.2 Классификация бинарных отношений

Бинарное отношение $\rho \subset A \cdot A$ называется:

- 1. *рефлексивным*, если $(a, a) \in \rho$, для любого $a \in A$;
- 2. *симметричным*, если $(a,b) \in \rho \Rightarrow (b,a) \in \rho$, для любого $a,b \in A$;
- 3. антисимметричным, если $(a,b) \in \rho$ и $(b,a) \in \rho \Rightarrow a = b$, для любых $a,b \in A$;
- 4. *транзитивным*, если $(a,b) \in \rho$ и $(b,c) \in \rho \Rightarrow (a,c) \in \rho$, для любых $a,b,c \in A$;

Основываясь на этом, можно выделить три типа отношений:

1. Отношение эквивалентности

Бинарное отношение ε на множестве A называется отношением эквивалентности (или просто эквивалентностью), если оно рефлексивно, симметрично и транзитивно,

2. Отношение квазипорядка

Бинарное отношение ω на множестве A называется отношением квазипорядка (или просто *квазипорядком*), если оно рефлексивно и транзитивно,

3. Отношение порядка

Бинарное отношение ω на множестве A называется отношением порядка (или просто *порядком*), если оно рефлексивно, антисимметрично и транзитивно,

Для того, чтобы реализовать алгоритм классификации бинарных отношений, удобно пользоваться матрицей бинарного отношения.

Mатрицей бинарного отношения ρ между элементами множеств A=

 $\{a_1,...,a_m\}$ и $B=\{b_1,...,b_n\}$ называется прямоугольная таблица $M(\rho)$, состоящая из m строк и n столбцов, в которой на пересечении і-ой строки и ј-го столбца стоит элемент $[M(\rho)]_{ij}$ из множества 0,1, определяемый по правилу:

$$[M(
ho)]_{ij}=egin{cases} 1 & ext{, если } (a_i,b_j)\in
ho \ 0 & ext{, в противном случае} \end{cases}$$

2 Системы замыканий

2.1 Определение системы замыканий

Множество Z подмножеств множества A называется *системой замыканий*, если оно замкнуто относительно пересечений, т.е. выполняется

 $\cap B \in Z$ для любого подмножества $B \subset Z$

2.2 Лемма о системах замыканий бинарных отношений

На множестве $P(A^2)$ всех бинарных отношений между элементами множества A следующие множества являются системами замыканий:

- 1. Z_r множество всех рефлексивных бинарных отношений между элементами множества A,
- 2. Z_s множество всех симметричных бинарных отношений между элементами множества A,
- 3. Z_t множество всех транзитивных бинарных отношений между элементами множества A,
- 4. $Z_{eq} = Eq(A)$ множество всех отношений эквивалентности на множестве A.

Множество Z_{as} всех антисимметричных бинарных отношений между элементами множетсва A не является системой замыкания.

2.3 Определение замыкания и оператора замыкания

Оператором замыкания на множестве называется отображение f множества всех подмножеств P(A) в себя, удовлетворяющее условиям:

- 1. $X \subset Y \Rightarrow f(X) \subset f(Y)$;
- 2. $X \subset f(X)$;
- 3. ff(X) = f(X), для всех $X, Y \in P(A)$.

Для подмножества $X\subset A$ значение f(X) называется замыканием подмножества X.

2.4 Лемма о замыканиях бинарных отношений

На множестве $P(A^2)$ всех бинарных отношений между элементами множества A следующие отображения являются операторами замыканий:

1. $f_r(\rho) = \varrho \cup \Delta_A$ - наименьшее рефлексивное бинарное отношение, содержащее отношение $\rho \subset A^2$,

- 2. $f_s(\rho)=\varrho\cup\varrho^{-1}$ наименьшее симметричное бинарное отношение, содержащее отношение $\rho\subset A^2$,
- 3. $f_t(\rho) = \bigcup_{n=1}^{\infty} \rho^n$ наименьшее транзитивное бинарное отношение, содержащее отношение $\rho \subset A^2$,
- 4. $f_{eq}(\rho) = f_t f_s f_r(\rho)$ наименьшее отношение эквивалентности, содержащее отношение $\rho \subset A^2$.

3 Результаты работы

3.1 Описание алгоритма классификации бинарных отношений

Из пункта 1.2 следует, что в нашем алгоритме будут определяться 5 свойств бинарных отношений, а именно:

- 1. рефлексивность,
- 2. антирефлексивность,
- 3. симметричность,
- 4. антисимметричность,
- 5. транзитивность.

Как по матрице представления определить свойства бинарного отношения:

- 1. Для того, чтобы бинарное отношение было *рефлексивным*, на главной диагонали должны стоять только единицы,
- 2. Для того, чтобы бинарное отношение было *антирефлексивным*, на главной диагонали должны стоять только нули,
- 3. Для того, чтобы бинарное отношение было *симметричным*, матрица представления должна равняться транспонированной матрице,
- 4. Для того, чтобы бинарное отношение было *антисимметричным*, в матрице должны отсутствовать единицы, симметричные относительно главной диагонали,
- 5. Для того, чтобы бинарное отношение было *транзитивным*, матрица, полученная перемножением матрицы саму на себя, должна являться частью исходной матрицы бинарного отношения.

Распишем алгоритмы проверки этих свойств:

3.1.1 Алгоритм проверки рефлексивности

 Bxod : Размерность матрицы N и матрица представления бинарного отношения размерности $N\times N$

Выход: "Бинарное отношение является рефлексивным"или "Бинарное отношение не является рефлексивным".

Шаг 1. res := 0;

 $\underline{\text{Шаг 2.}}$ Цикл for i от 1 до N;

<u>Шаг 3.</u> Если a[i][i] = 1, то res := 1. Иначе res := 0;

<u>Шаг 4.</u> Если res = 0, то вернуть ответ "отношение не рефлексивно". Если

res = 1, то вернуть ответ "отношение рефлексивно".

Временная сложность алгоритма определения рефлексивности = O(n)

3.1.2 Алгоритм проверки антирефлексивности

 Bxod : Размерность матрицы N и матрица представления бинарного отношения размерности $N\times N$

Выход: "Бинарное отношение является антирефлексивным"или "Бинарное отношение не является антирефлексивным".

Шаг 1. res := 0;

 $\underline{\text{Шаг 2.}}$ Цикл for i от 1 до N;

<u>Шаг 3.</u> Если a[i][i] = 0, то res := 1. Иначе res := 0;

<u>Шаг 4.</u> Если res = 0, то вернуть ответ "отношение не антирефлексивно". Если res = 1, то вернуть ответ "отношение антирефлексивно".

Временная сложность алгоритма определения антирефлексивности = O(n)

3.1.3 Алгоритм проверки симметричности

Bxod: Размерность матрицы N и матрица представления бинарного отношения размерности $N\times N$

Выход: "Бинарное отношение является симметричным"или "Бинарное отношение не является симметричным".

Шаг 1. res := 0;

<u>Шаг 3.</u> Если a[i][j] = a[j][i], то res := 1. Иначе res := 0;

<u>Шаг 4.</u> Если res = 1, то вернуть ответ "отношение симметрично". Если res = 0, то вернуть ответ "отношение не симметрично".

Временная сложность алгоритма определения симметричности = $O(n^2/2)$ = $O(n^2)$

3.1.4 Алгоритм проверки антисимметричности

 Bxod : Размерность матрицы N и матрица представления бинарного отношения размерности $N\times N$

Bыход: "Бинарное отношение является антисимметричным" или "Бинарное отношение не является антисимметричным".

Шаг 1. res := 0;

 $\underline{\text{Шаг 2.}}$ Цикл for i от 1 до N и в нем еще один цикл от с j от i+1 до N;

<u>Шаг 3.</u> Если a[i][j] = a[j][i] = 1, то проверяется равенство i = j и если элементы равны, то res := 1. Иначе res = 0. Если элементы не равны единице, то res := 1;

<u>Шаг 4.</u> Если res = 1, то вернуть ответ "отношение антисимметрично". Если res = 0, то вернуть ответ "отношение не антисимметрично".

Временная сложность алгоритма определения антисимметричности = $O(n^2/2)$ = $O(n^2)$

3.1.5 Алгоритм проверки транзитивности

Bxod: Размерность матрицы N и матрица представления бинарного отношения размерности $N\times N$

Bыход: "Бинарное отношение является транзитивным" или "Бинарное отношение не является транзитивным".

Шаг 1. res := 0;

<u>Шаг 2.</u> Цикл for і от 1 до N и в нем еще один цикл от с j от 1 до N и в нем еще один цикл с k от 1 до N;

Шаг 3. Если a[i][k] * a[k][j] <= a[i][j], то res := 1. Иначе res := 0;

<u>Шаг 4.</u> Если res = 1, то вернуть ответ "отношение транзитивно". Если res = 0, то вернуть ответ "отношение не транзитивно".

После проверки бинарного отношения на эти 5 свойств, мы можем судить, к какому типу отношений относится данное бинарное отношение. В этом и заключается алгоритм классификации. Эти проверки проводятся в функции bo_result .

Временная сложность алгоритма определения транзитивности = $O(n^3)$

- 1. Бинарное отношение является отношением эквивалентности, если выполнились следующие три свойства: рефлексивность, симметричность и транзитивность.
- 2. Если выполнились свойства рефлексивности и транзитивности, то это отношение является отношением квазипорядка,
- 3. Бинарное отношение является отношением порядка, если оно рефлексивно, антисимметрично и транзитивно.

3.1.6 Алгоритм проверки отношения на эквивалентность, квазипорядок и порядок

 Bxod : Размерность матрицы N и матрица представления бинарного отношения размерности $N\times N$

Выход: «Данное отношение является отношением эквивалентности» или «Данное отношение является отношением квазипорядка» или «Данное отношение является отношением порядка».

<u>Шаг 1.</u> С помощью написанных выше алгоритмов проверяются свойства заданного отношения. Результаты вносятся в переменные res_refl , $res_antirefl$, res_simm , $res_antisimm$, res_tranz (соответственно: рефлексивность, антирефлексивность, симметричность, антисимметричность и транзитивность).

<u>Шаг 2.</u> Если $res_refl=1$ и $res_tranz=1$, то выводится «Данное отношение является отношением квазипорядка» и проверяется свойство симметричности. Если $res_simm=1$, то выводится «Данное отношение является отношением эквивалентности».

 $\underline{\text{Шаг 3.}}$ Если $res_refl=1, res_antisimm=1$ и $res_tranz=1$, то выводится «Данное отношение является отношением порядка».

Временная сложность алгоритма определения отношения эквивалентности = $O(n^3 + n^2/2 + n) = O(n^3)$

Временная сложность алгоритма определения отношения квазипорядка = $O(n^3 + n^2/2 + n) = O(n^3)$

Временная сложность алгоритма определения отношения порядка = $O(n^3+n)=O(n^3)$

3.2 Описание алгоритма построения основных замыканий бинарных отношений

- 1. Матрица $pe\phi$ лексивного замыкания равна $R \cup E_n$, т.е. необходимо все элементы главной диагонали заменить единицами,
- 2. Матрица *симметричного* замыкания равна $R \cup R^T$, т.е. если элемент матрицы равен единице, то симметричный ему элемент относительно главной диагонали тоже должен быть равен единице,
- 3. Стратегия построения матрицы *транзитивного* замыкания такова: если в отношении имеется две пары элементов (j, k) и (k, d), то необходимо добавить пару (j, d). После этого надо запустить цикл еще раз, т.к. после

добавления новой пары этому условию могут удовлетворять еще две пары.

- 3.2.1 Алгоритм построения замыкания относительно свойства рефлексивности
- Bxod : Размерность матрицы N и матрица представления бинарного отношения размерности $N\times N$

Bыход: Матрица построенного замыкания относительно свойства рефлексивности размерности $N \times N$.

 $\underline{\text{Шаг 1.}}$ Цикл for i от 1 до N;

 $\underline{\coprod}$ a \underline{i}] \underline{i}] := 1.

Временная сложность алгоритма определения построения замыкания рефлексивности = O(n)

- 3.2.2 Алгоритм построения замыкания относительно свойства симметричности
- Bxod: Размерность матрицы N и матрица представления бинарного отношения размерности $N\times N$
- Bыход: Матрица построенного замыкания относительно свойства симметричности размерности $N \times N.$
- <u>Шаг 1.</u> Цикл for і от 1 до N и в нем запускается еще один цикл с j от 1 до N;
 - $\underline{\text{Шаг 2.}}$ Если a[i][j]=1, то a[j][i]:=1.

Временная сложность алгоритма определения построения замыкания симметричности = $O(n^2)$

- 3.2.3 Алгоритм построения замыкания относительно свойства транзитивности
- Bxod : Размерность матрицы N и матрица представления бинарного отношения размерности $N\times N$
- Bыход: Матрица построенного замыкания относительно свойства транзитивности размерности $N\times N.$
- <u>Шаг 1.</u> В данном алгоритме необходимо запустить цикл for 4 раза. Сначала следующие 3 цикла: for с i от 1 до N, в нем for с j от 1 до N и в нем for с k от 1 до N.

- <u>Шаг 2.</u> Если в этом цикле a[j][k] = 1, то запускается цикл for c d от 1 до N.
- <u>Шаг 3.</u> Если a[k][d] = 1, то по свойству транзитивности в отношение надо добавить пару (j, d), т.е. a[j][d] := 1.

Временная сложность алгоритма определения построения замыкания транзитивности = $O(n^4)$

- 3.2.4 Алгоритм построения замыкания относительно эквивалентности
- Bxod : Размерность матрицы N и матрица представления бинарного отношения размерности $N\times N$
- Bыход: Матрица построенного замыкания относительно эквивалентности размерности $N\times N.$
 - Шаг 1. Построение замыкания относительно свойства рефлексивности.
 - Шаг 2. Построение замыкания относительно свойства симметричности.
 - Шаг 3. Построение замыкания относительно свойства транзитивности.

Временная сложность алгоритма определения построения замыкания эквивалентности = $O(n^4+n^2+n)$ = $O(n^4)$

3.3 Код программы

```
#include <iostream>
using namespace std;
int brk = 0;
bool bo_is_reflexive(int N, int** a)
{
  int res = 0;

for (int i = 0; i < N; ++i)
{
  if (a[i][i] == 1)
  res = 1;
  else res = 0;

if (res == 0)</pre>
```

```
{
return res;
}
}
return res;
}
bool bo_is_antireflexive(int N, int** a)
{
int res = 0;
for (int i = 0; i < N; ++i)
{
if (a[i][i] == 0)
res = 1;
else res = 0;
if (res == 0)
{
return res;
}
}
return res;
}
bool bo_is_symmetric(int N, int** a)
{
int res = 0;
for (int i = 0; i < N; ++i)
{
for (int j = i + 1; j < N; ++j)
```

```
{
if (a[i][j] == a[j][i])
res = 1;
else res = 0;
if (res == 0)
{
return res;
}
}
}
return res;
}
bool bo_is_antisymmetric(int N, int** a)
{
int res = 0;
for (int i = 0; i < N; ++i)
{
for (int j = i + 1; j < N; ++j)
if (a[i][j] == 1 && a[j][i] == 1) {
if (i == j)
res = 1;
else res = 0;
}
else res = 1;
if (res == 0)
{
return res;
}
```

```
}
}
return res;
}
bool bo_is_transitive(int N, int** a)
{
int res = 0;
for (int i = 0; i < N; ++i)
{
for (int j = 0; j < N; ++j)
{
for (int k = 0; k < N; ++k)
{
if (a[i][j] >= a[i][k] * a[k][j])
res = 1;
else res = 0;
if (res == 0)
{
return res;
}
}
}
}
return res;
}
//строим замыкания
void z_reflexive(int N, int** a)
{
```

```
for (int i = 0; i < N; i++)
{
a[i][i] = 1;
}
}
void z_sim(int N, int** a)
{
for (int i = 0; i < N; i++)
{
for (int j = 0; j < N; j++)
{
if (a[i][j] == 1)
a[j][i] = 1;
}
}
}
void z_tranz(int N, int** a)
{
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
for (int k = 0; k < N; k++)
if (a[j][k] == 1)
for (int d = 0; d < N; d++)
if (a[k][d] == 1)
a[j][d] = 1;
}
void z_build(int N, int** a, int vvod)
{
int** z_a;
```

```
z_a = new int* [N];
for (int i = 0; i < N; i++) {
z_a[i] = new int[N];
for (int j = 0; j < N; j++) {
z_a[i][j] = a[i][j];
}
}
switch (vvod)
{
case 1:
z_reflexive(N, z_a);
break;
case 2:
z_sim(N, z_a);
break;
case 3:
z_tranz(N, z_a);
break;
case 4:
z_reflexive(N, z_a);
z_sim(N, z_a);
z_tranz(N, z_a);
break;
case 5:
brk = 1;
break;
default:
cout << "Error" << endl;</pre>
break;
}
if (brk == 0) {
cout << "Построенное замыкание:" << endl;
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++)
```

```
cout << z_a[i][j] << ', ';
cout << endl;</pre>
}
}
}
     bo_result(int N, int** a)
{
cout << "Введеная матрица:" << endl;
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++)
cout << a[i][j] << ', ';
cout << endl;</pre>
}
int res_refl = bo_is_reflexive(N, a);
int res_antirefl = bo_is_antireflexive(N, a);
int res_simm = bo_is_symmetric(N, a);
int res_antisimm = bo_is_antisymmetric(N, a);
int res_tranz = bo_is_transitive(N, a);
cout << "Результаты (1 - да, 0 - нет):" << endl;
cout << "Рефлексивность:" << res_refl << endl;
cout << "Антирефлексивность:" << res_antirefl << endl;
cout << "Симметричность:" << res_simm << endl;
cout << "Антисимметричность:" << res_antisimm << endl;</pre>
cout << "Транзитивность:" << res_tranz << endl;
if (res_refl == 1 && res_tranz == 1) {
cout << "Данное отношение является отношением квазипорядка" << endl;
if (res_simm == 1)
cout << "Данное отношение является отношением эквивалентности" << endl;
}
if (res_refl == 1 && res_antisimm == 1 && res_tranz == 1) {
cout << "Данное отношение является отношением порядка" << endl;
}
```

```
int vvod;
cout << "Введите, какое замыкание требуется построить:" << endl;
cout << "1 - рефлексивное" << endl << "2 - симметричное" << endl
 << "3 - транзитивное" << endl << "4 - эквивалентное"
 << endl << "5 - не строить никакое замыкание" << endl;
while (brk == 0) {
cout << "Введите номер:" << endl;
cin >> vvod;
z_build(N, a, vvod);
}
}
int main()
setlocale(LC_ALL, "Rus");
int sposob, i, j, N;
cout << "Введите способ ввода (1 - поэлементно, 2 - построчно): ";
    cin >> sposob;
cout << "Введите размерность матрицы бинарного отношения: ";
cin >> N;
int** a;
a = new int* [N];
cout << "Введите матрицу A" << endl;
if (sposob == 1) {
for (i = 0; i < N; i++) {
a[i] = new int[N];
for (j = 0; j < N; j++) {
cout << "A["
<< i
<< "]["
<< j
<< "] = ";
cin >> a[i][j];
```

```
}
}
}
else
{
for (int i = 0; i < N; i++) {
a[i] = new int[N];
for (int j = 0; j < N; j++) {
cin >> a[i][j];
}
}
}
cout << endl;</pre>
bo_result(N, a);
cout << endl;</pre>
}
}
```

3.4 Результаты тестирования программ

Тестирование №1:

На вход поступает матрица:

$$\begin{pmatrix}
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0
\end{pmatrix}$$

Она обладает свойством симметричности.

Построим рефлексивное замыкание.

```
🖾 Консоль отладки Microsoft Visual Studio
Введите способ ввода (1 - поэлементно, 2 - построчно): 2
Введите размерность матрицы бинарного отношения: 5
Введите матрицу А
11100
11111
11100
01000
01000
Введеная матрица:
11100
 1111
11100
01000
01000
Результаты (1 - да, 0 - нет):
Рефлексивность:0
Антирефлексивность:0
Симметричность:1
Антисимметричность:0
Транзитивность:0
Введите, какое замыкание требуется построить:
1 - рефлексивное
2 - симметричное
3 - транзитивное
4 - эквивалентное
5 - не строить никакое замыкание
Введите номер:
Построенное замыкание:
11100
11111
11100
01010
01001
Введите номер:
```

Рисунок 1 – Тестировние №1

Тестирование №2:

На вход поступает матрица:

```
\begin{pmatrix}
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0
\end{pmatrix}
```

Она обладает свойством антирефлексивности, антисимметричности и транзитивности.

Построим все типы замыканий.

```
C:\Users\Shamil_\source\repos\test_lab1\Debug\test_lab1.exe
Введите способ ввода (1 - поэлементно, 2 - построчно): 2
Введите размерность матрицы бинарного отношения: 5
Введите матрицу А
00000
10000
11000
11000
11100
Введеная матрица:
00000
10000
1 1 0 0 0
11000
11100
Результаты (1 - да, 0 - нет):
Рефлексивность:0
Антирефлексивность:1
Симметричность:0
Антисимметричность:1
Транзитивность:1
Введите, какое замыкание требуется построить:
1 - рефлексивное
2 - симметричное
3 - транзитивное
4 - эквивалентное
5 - не строить никакое замыкание
Введите номер:
Построенное замыкание:
10000
11000
11100
11010
11101
Введите номер:
Построенное замыкание:
0 1 1 1 1
10111
11001
11000
11100
Введите номер:
Построенное замыкание:
00000
10000
11000
11000
11100
Введите номер:
Построенное замыкание:
11111
11111
11111
11111
11111
```

Тестирование №3:

На вход поступает матрица:

```
\begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{pmatrix}
```

Она обладает свойством рефлексивности, симметричности и транзитивности, а значит является отношением квазипорядка и отношением эквивалентности.

```
C:\Users\Shamil_\source\repos\ConsoleApplication41\Debug\ConsoleApplication41.exe
Введите размерность матрицы бинарного отношения: 5
Введите матрицу А
10001
01110
01110
0 1 1 1 0
10001
Введеная матрица:
10001
01110
01110
0 1 1 1 0
10001
Результаты (1 - да, 0 - нет):
Рефлексивность:1
Антирефлексивность:0
Симметричность:1
Антисимметричность:0
Транзитивность:1
Данное отношение является отношением квазипорядка
Данное отношение является отношением эквивалентности
Введите, какое замыкание требуется построить:
1 - рефлексивное
2 - симметричное
3 - транзитивное
4 - эквивалентное
5 - не строить никакое замыкание
```

Рисунок 3 – Тестировние №3

ЗАКЛЮЧЕНИЕ

В данной лабораторной работе были рассмотрены и изучены следующие темы: основные определения видов бинарных отношений, свойства бинарных отношений и основные системы замыкания на множестве бинарных отношений. В третьей части работы были реализованы алгоритмы классификации бинарных отношений и построения основных замыканий бинарных отношений.