Discrete Mathematics: Lecture 18

logically equivalent, rule of replacement, tautological implications

Xuming He Associate Professor

School of Information Science and Technology ShanghaiTech University

Spring Semester, 2022

Notes by Prof. Liangfeng Zhang

Continue Thom Met Jee J Logically Equivalent

THEOREM: Let $A^{-1}(\mathbf{T})$ be the set of truth assignments such that A is true. Then $A \equiv B$ if and only if $A^{-1}(\mathbf{T}) = B^{-1}(\mathbf{T})$.

• $A \equiv B$ if and only if $A^{-1}(\mathbf{F}) = B^{-1}(\mathbf{F})$ Just a sign

Proving $A \equiv B$

EXAMPLE: $P \wedge Q \equiv Q \wedge P$

//commutative law

- Idea: Show that $A^{-1}(T) = B^{-1}(T)$.
- $A = P \wedge Q$; $B = Q \wedge P$
 - $A = \mathbf{T}$ if and only if $(P, Q) = (\mathbf{T}, \mathbf{T})$
 - $A^{-1}(\mathbf{T}) = \{(\mathbf{T}, \mathbf{T})\}$
 - $B = \mathbf{T}$ if and only if $(Q, P) = (\mathbf{T}, \mathbf{T})$
 - $B^{-1}(\mathbf{T}) = \{(\mathbf{T}, \mathbf{T})\}$
- $A^{-1}(\mathbf{T}) = B^{-1}(\mathbf{T})$
- $A \equiv B$

REMARK: $P \land (Q \land R) \equiv (P \land Q) \land R$ can be shown similarly.

Associative law

Proving $A \equiv B$

EXAMPLE: $P \lor Q \equiv Q \lor P$

//commutative law

- Idea: Show that $A^{-1}(\mathbf{F}) = B^{-1}(\mathbf{F})$.
- $A = P \vee Q$; $B = Q \vee P$ prove with f better
 - $A = \mathbf{F}$ if and only if $(P, Q) = (\mathbf{F}, \mathbf{F})$
 - $A^{-1}(\mathbf{F}) = \{ (\mathbf{F}, \mathbf{F}) \}$
 - $B = \mathbf{F}$ if and only if $(Q, P) = (\mathbf{F}, \mathbf{F})$
 - $B^{-1}(\mathbf{F}) = \{ (\mathbf{F}, \mathbf{F}) \}$
- $A^{-1}(\mathbf{F}) = B^{-1}(\mathbf{F})$
- $A \equiv B$

REMARK: $P \lor (Q \lor R) \equiv (P \lor Q) \lor R$ can be shown similarly.

Associative law

Tautological Implications

DEFINITION: Let A and B be WFFs in propositional variables p_1, \dots, p_n .

- A tautologically implies ($\mathbf{x} = \mathbf{x} = \mathbf{x}$) B if every truth assignment that causes A to be true causes B to be true.
 - Notation: $A \Rightarrow B$, called a **tautological implication**
 - $A^{-1}(\mathbf{T}) \subseteq B^{-1}(\mathbf{T}); B^{-1}(\mathbf{F}) \subseteq A^{-1}(\mathbf{F})$

THEOREM: $A \Rightarrow B$ iff $A \rightarrow B$ is a tautology.

• $A \Rightarrow B \text{ iff } A^{-1}(\mathbf{T}) \subseteq B^{-1}(\mathbf{T}) \text{ iff } A \rightarrow B \text{ is a tautology}$

•
$$A \Rightarrow B \text{ iff } A \xrightarrow{r} (1) \subseteq B \xrightarrow{r} (1) \text{ iff } A \rightarrow B \text{ is a tautology}$$

THEOREM: $A \Rightarrow B \text{ iff } A \land \neg B \text{ is a contradiction.}$

- $A \rightarrow B \equiv \neg A \lor B \equiv \neg (A \land \neg B)$
- Proving $A \Rightarrow B$: (1) $A^{-1}(\mathbf{T}) \subseteq B^{-1}(\mathbf{T})$; (2) $B^{-1}(\mathbf{F}) \subseteq A^{-1}(\mathbf{F})$;

(3) $A \rightarrow B$ is a tautology; (4) $A \land \neg B$ is a contradiction Stantologically imply

Proving $A \Rightarrow B$ B=4 no mather P.

- **EXAMPLE**: Show the tautological implication $p \land (p \rightarrow q) \Rightarrow q$.
 - Let $A = p \land (p \rightarrow q)$; B = q. Need to show that " $A \Rightarrow B$ " $A^{-1}(\mathbf{T}) = \{(\mathbf{T} \ \mathbf{T})\} \cdot R^{-1}(\mathbf{T}) = \{(\mathbf{T} \ \mathbf{T}) \ (\mathbf{F})\mathbf{T}\} \cdot A^{-1}(\mathbf{T}) \subset R^{-1}(\mathbf{T})$

A = (1) - ((1)	$\mathbf{I}, \mathbf{I}, \mathbf{J}, \mathbf{D} = (\mathbf{I}, \mathbf{I}, \mathbf{J}, \mathbf{J}, \mathbf{D})$		1,1),. /1	J = D (1).
p	q	$p \rightarrow q$	A	В
Т	Т	Т	Ī	<u>T</u>
Т	F	F	F	F
F	Т	Т	F	Т
F	F	Т	F	F

$$\begin{array}{c|cccc}
T & F & F & F & F \\
\hline
F & T & T & F & T \\
\hline
F & F & T & F & F
\end{array}$$

$$\bullet & A \to B \equiv \neg (p \land (p \to q)) \lor q & \bullet & A \land \neg B \equiv (p \land (p \to q)) \land \neg q$$

- $\equiv (\neg p \lor \neg (p \to q)) \lor q \qquad idf \qquad \equiv (\neg q \land p) \land (p \to q)$ 141
- $(p \to q) \vee \neg (p \to q)$ ① A=··· B=·· ② A>B T /A ∩ 76 F/A+T $\equiv T$

Tautological Implications

Name	Tautological Implication	NO.
Conjunction(合取)	$(P) \land (Q) \Rightarrow P \land Q$	1
Simplification(化简)	$P \wedge Q \Rightarrow P$	2
Addition(附加)	$P \Rightarrow P \vee Q$	3
Modus ponens(假言推理)	$P \land (P \to Q) \Rightarrow Q$	4
Modus tollens(拒取)	$\neg Q \land (P \to Q) \Rightarrow \neg P$	5
Disjunctive syllogism(析取三段论)	$\neg P \land (P \lor Q) \Rightarrow Q$	6
Hypothetical syllogism(假言三段论)	$(P \to Q) \land (Q \to R) \Rightarrow (P \to R)$	7
Resolution (归结)	$(P \lor Q) \land (\neg P \lor R) \Rightarrow Q \lor R$	8

Proofs for 5 and 6

EXAMPLE: $\neg Q \land (P \rightarrow Q) \Rightarrow \neg P$

- $A = \neg Q \land (P \rightarrow Q), B = \neg P.$
- $A \to B \equiv \neg (\neg Q \land (P \to Q)) \lor \neg P$ $\equiv (Q \lor \neg (P \to Q)) \lor \neg P$ $\equiv (\neg P \lor Q) \lor \neg (P \to Q)$ $\equiv \mathbf{T}$

EXAMPLE: $\neg P \land (P \lor Q) \Rightarrow Q$

- $A = \neg P \land (P \lor Q), B = Q.$
- $A \rightarrow B \equiv \neg(\neg P \land (P \lor Q)) \lor Q$ $\equiv (P \lor \neg(P \lor Q)) \lor Q$ $\equiv (\neg(P \lor Q) \lor P) \lor Q$ $\equiv \neg(P \lor Q) \lor (P \lor Q)$ $\equiv \mathbf{T}$

Proofs for 7 and 8

```
EXAMPLE: (P \rightarrow Q) \land (Q \rightarrow R) \Rightarrow P \rightarrow R
        • A = (P \rightarrow O) \land (O \rightarrow R): B = (P \rightarrow R).
       • A \wedge \neg B \equiv (\neg P \vee Q) \wedge (\neg Q \vee R) \wedge (P \wedge \neg R)

\equiv ((\neg P \vee Q) \wedge P) \wedge ((\neg Q \vee R) \wedge \neg R)
                             \equiv ((\neg P \land P) \lor (Q \land P)) \land ((\neg Q \land \neg R) \lor (R \land \neg R))
                             \equiv (O \land P) \land (\neg O \land \neg R)
                             = F
EXAMPLE: (P \lor Q) \land (\neg P \lor R) \Rightarrow Q \lor R
        • A = (P \vee O) \wedge (\neg P \vee R); B = (O \vee R).
             A \wedge \neg B \equiv (P \vee Q) \wedge (\neg P \vee R) \wedge (\neg Q \wedge \neg R)
                            \equiv ((P \lor Q) \land \neg Q) \land ((\neg P \lor R) \land \neg R)
                             \equiv (P \land \neg O) \land (\neg P \land \neg R)
                             \equiv \mathbf{F}
```

More Examples

EXAMPLE:
$$(P \leftrightarrow Q) \land (Q \leftrightarrow R) \Rightarrow (P \leftrightarrow R)$$

- $A = (P \leftrightarrow Q) \land (Q \leftrightarrow R); B = (P \leftrightarrow R).$
- $A = \mathbf{T} \text{ iff } (P \leftrightarrow Q) = \mathbf{T} \text{ and } (Q \leftrightarrow R) = \mathbf{T} \text{ iff } P = Q \text{ and } Q = R$
- $A^{-1}(\mathbf{T}) = \{(\mathbf{T}, \mathbf{T}, \mathbf{T}), (\mathbf{F}, \mathbf{F}, \mathbf{F})\}$ • $B = \mathbf{T} \text{ iff } P = R$
 - $B^{-1}(\mathbf{T}) = \{ (\mathbf{T}, \mathbf{T}, \mathbf{T}), (\mathbf{T}, \mathbf{F}, \mathbf{T}), (\mathbf{F}, \mathbf{T}, \mathbf{F}), (\mathbf{F}, \mathbf{F}, \mathbf{F}) \}$
- $A^{-1}(\mathbf{T}) \subseteq B^{-1}(\mathbf{T})$

EXAMPLE:
$$(Q \to R) \Rightarrow ((P \lor Q) \to (P \lor R))$$

- $A = O \rightarrow R$; $B = ((P \lor O) \rightarrow (P \lor R))$.
- $A = \mathbf{F} \text{ iff } (Q, R) = (\mathbf{T}, \mathbf{F})$
- $A^{-1}(\mathbf{F}) = \{(\mathbf{T}, \mathbf{T}, \mathbf{F}), (\mathbf{F}, \mathbf{T}, \mathbf{F})\}$
- $B = \mathbf{F} \text{ iff } (P \vee Q, P \vee R) = (\mathbf{T}, \mathbf{F}) \text{ iff } (P, Q) \neq (\mathbf{F}, \mathbf{F}) \text{ and } (P, R) = (\mathbf{F}, \mathbf{F})$
 - $B^{-1}(\mathbf{F}) = \{ (\mathbf{F}, \mathbf{T}, \mathbf{F}) \}$
- $A^{-1}(\mathbf{F}) \supseteq B^{-1}(\mathbf{F})$

More Examples

EXAMPLE: $(P \to R) \land (Q \to S) \land (P \lor Q) \Rightarrow R \lor S$

- $A = (P \rightarrow R) \land (Q \rightarrow S) \land (P \lor Q); B = R \lor S$
- $A \land \neg B \equiv (P \to R) \land (Q \to S) \land (P \lor Q) \land \neg (R \lor S)$

$$\equiv (\neg P \lor R) \land (\neg Q \lor S) \land (P \lor Q) \land (\neg R \land \neg S)$$

$$\equiv ((\neg P \lor R) \land \neg R)) \land ((\neg Q \lor S) \land \neg S) \land (P \lor Q)$$

$$\equiv ((\neg P \land \neg R) \lor (R \land \neg R)) \land ((\neg Q \land \neg S) \lor (S \land \neg S)) \land (P \lor Q)$$

$$\equiv ((\neg P \land \neg R) \lor \mathbf{F}) \land ((\neg Q \land \neg S) \lor \mathbf{F}) \land (P \lor Q)$$

$$\equiv (\neg P \land \neg R) \land (\neg Q \land \neg S) \land (P \lor Q)$$

$$\equiv \neg R \land (\neg Q \land \neg S) \land (\neg P \land (P \lor Q))$$

$$\equiv \neg R \land (\neg Q \land \neg S) \land ((\neg P \land P) \lor (\neg P \land Q))$$

$$\equiv \neg R \land (\neg Q \land \neg S) \land (\mathbf{F} \lor (\neg P \land Q))$$

$$\equiv \neg R \land (\neg Q \land \neg S) \land (\neg P \land Q)$$

$$\equiv \neg R \land \neg S \land \neg P \land (\neg Q \land Q)$$

$$\equiv \neg R \land \neg S \land \neg P \land \mathbf{F}$$

$$\equiv \mathbf{F}$$