18 de setembro

1.1 Definição

A transformada de Laplace é definida como:

$$F(s) = \mathcal{L}\{f(t)\} := \int_0^\infty f(t)e^{-st}dt, \ \Re(s) > s_0$$

Exemplo:

$$f(t) = 1$$

$$F(s) = \int_0^\infty f(t)e^{-st}dt$$

$$= \int_0^\infty e^{-st}dt$$

$$= \left.\frac{e^{-st}}{-s}\right|_{t=0}^{t\to\infty}$$

$$= \frac{0-1}{-s} = \frac{1}{s}, \quad s > 0.$$

Exemplo:

$$f(t) = e^{as}$$

$$F(s) = \int_0^\infty f(t)e^{-st}dt$$

$$= \int_0^\infty e^{at}e^{-st}dt$$

$$= \int_0^\infty e^{(a-s)t}dt$$

$$= \left.\frac{e^{(a-s)t}}{a-s}\right|_0^\infty$$

$$= \frac{0-1}{a-s}$$

$$= \frac{1}{s-a}, \quad s > a.$$

1.2 Propriedade da linearidade

$$\mathcal{L}\{\alpha f(t) + \beta g(t)\} = \alpha \mathcal{L}\{f(t)\} + \beta \mathcal{L}\{g(t)\}$$

exemplo:

$$\begin{split} \mathcal{L}\{3+2e^t\} &=& 3\mathcal{L}\{1\}+2\mathcal{L}\{e^t\} \\ &=& \frac{3}{s}+\frac{2}{s-1} \end{split}$$

1.3 Propriedade da derivada

$$\mathcal{L}\{f'(t)\} = s\mathcal{L}\{f(t)\} - f(0)$$

Exemplo:

$$f(t) = t$$
$$f'(t) = 1$$

$$\mathcal{L}{1} = s\mathcal{L}{t} - 0$$
$$\mathcal{L}{t} = \frac{1}{s^2}$$

Exemplo:

$$f(t) = t^2$$
$$f'(t) = 2t$$

$$\mathcal{L}{2t} = s\mathcal{L}{t^2} - 0$$
$$\mathcal{L}{t^2} = \frac{2}{s^3}$$

Analogamente:

$$\mathcal{L}\{t^3\} = \frac{6}{s^4}$$

$$\mathcal{L}\{t^n\} = \frac{n!}{s^{n+1}}$$

Aplicação:

$$f'(t) + f(t) = 1$$

com f(0) = 1.

Aplicando a transformada de Laplace, temos:

$$[sF(s) - f(0)] + F(s) = \frac{1}{s}$$

$$F(s)(s+1) = \frac{1}{s} + 1$$

$$F(s) = \frac{1}{s(s+1)} + \frac{1}{(s+1)}$$

$$F(s) = \frac{1+s}{s(s+1)} = \frac{1}{s}$$

$$f(t) = 1$$

OBS: $f(t) = 1, t \neq 2, f(2) = 0.$

21 de setembro

2.1 A transformada inversa

Se $\mathcal{L}{f(t)} = F(s)$, dizemos que f(t) é a transformada inversa de F(s):

$$\mathcal{L}^{-1}(F(s)) = f(t)$$

2.2 Propriedade da derivada - derivada segunda

Vimos a propriedade da derivada:

$$\mathcal{L}\{f'(t)\} = s\mathcal{L}\{f(t)\} - f(0)$$

Agora aplicamos à derivada da função f'(t):

$$\mathcal{L}\{f''(t)\} = s\mathcal{L}\{f'(t)\} - f'(0)$$

$$= s[sF(s) - f(0)] - f'(0)$$

$$= s^2F(s) - sf(0) - f'(0)$$

Analogamente:

$$\mathcal{L}\{f'''(t)\} = s^3 F(s) - s^2 f(0) - sf'(0) - f''(0)$$

Exemplo:

$$f(t) = \cos(\omega t)$$

$$f'(t) = -\omega \sin(\omega t)$$

$$f''(t) = -\omega^2 \cos(\omega t)$$

isto é:

$$f''(t) = -\omega^2 f(t)$$

Aplicando a transformada de Laplace, temos:

$$\mathcal{L}\{f''(t)\} = -\omega^2 \mathcal{L}\{f(t)\}.$$

Usamos a propriedade da derivada (segunda):

$$s^2 F(s) - s f(0) - f'(0) = -\omega^2 F(s)$$

isto é:

$$(s^2 + \omega^2)F(s) = sf(0) + f'(0) = s$$

Portanto:

$$F(s) = \mathcal{L}\{\cos(\omega t)\} = \frac{s}{s^2 + \omega^2}, \quad s > 0$$

Analogamente, temos:

$$\mathcal{L}\{\sin(\omega t)\} = \frac{w}{s^2 + \omega^2}$$

2.3 Método das frações parciais para calcular transformadas inversas

$$F(s) = \frac{s^2 - 6s + 4}{s^3 - 3s^2 + 2s}$$

$$= \frac{s^2 - 6s + 4}{s(s^2 - 3s + 2)}$$

$$= \frac{s^2 - 6s + 4}{s(s - 1)(s - 2)}$$

$$= \frac{A}{s} + \frac{B}{s - 1} + \frac{C}{s - 2}$$

O teorema das frações parciais garante que existem constantes $A,\ B\in C$ tais que:

$$\frac{s^2 - 6s + 4}{s(s-1)(s-2)} = \frac{A}{s} + \frac{B}{s-1} + \frac{C}{s-2}$$
 (2.1)

para todo s complexo.

Primeiro multiplicamos (2.1) por s:

$$\frac{s^2 - 6s + 4}{(s - 1)(s - 2)} = A + \frac{Bs}{s - 1} + \frac{Cs}{s - 2}$$

Substituindo s por 0, temos:

$$\frac{4}{(-1)(-2)} = A \implies A = 2$$

Agora multiplicamos a expressão (2.1) por s-1:

$$\frac{s^2 - 6s + 4}{s(s-2)} = \frac{A(s-1)}{s} + B + \frac{C(s-1)}{s-2}$$

Substituindo s por 1, temos:

$$\frac{1-6+4}{1(1-2)} = B \implies B = 1$$

Finalmente multiplicamos (2.1) por s-2:

$$\frac{s^2 - 6s + 4}{s(s - 1)} = \frac{A(s - 2)}{s} + \frac{B(s - 2)}{s - 1} + C$$

E substuimos por s=2:

$$\frac{4-12+4}{2(2-1)} = C \quad \Longrightarrow \quad C = -2$$

= $\frac{2}{s} + \frac{1}{s-1} - \frac{2}{s-2}$ (2.3)

Olhanda na tabela, encontramos:

$$f(t) = 2 + e^t - 2e^{2t}, \quad t \ge 0$$

Tabela com item 1 e item 7 com a = 1 e a = 2.

Obs:

$$F(s) = \frac{s}{(s^2+1)(s-2)^3} = \frac{A+Bs}{s^2+1} + \frac{C}{(s-2)} + \frac{D}{(s-2)^2} + \frac{E}{(s-2)^3}$$

Propriedade de translação no eixo s 2.4

Se F(s) é a transformada de Laplace de f(t) definida para $s > s_0$, então $e^{at} f(t)$ é a transformada inversa de F(s-a), isto é

$$\mathcal{L}\left\{e^{at}f(t)\right\} = F(s-a), \qquad s > s_0 + a$$

A demostração vem da aplicação da definição da transformada de Laplace F(s-

$$F(s-a) = \int_0^\infty f(t)e^{-(s-a)t}dt$$
$$= \int_0^\infty f(t)e^{at}e^{-st}dt$$
$$= \int_0^\infty \left(f(t)e^{at}\right)e^{-st}dt$$
$$= \mathcal{L}\left\{e^{at}f(t)\right\}$$

Exemplo:

$$\mathcal{L}\left\{t^2\right\} = \frac{2}{s^3}$$

$$\mathcal{L}\left\{t^2e^{at}\right\} = \frac{2}{(s-a)^3}$$

2.5 Oscilador harmônico

$$F(s) = \frac{1}{ms^2 + \gamma s + \kappa}$$

Caso $m=1,\,\gamma=0,\,\kappa=4$:

$$F(s) = \frac{1}{s^2 + 4} = \frac{1}{s^2 + 2^2}$$

$$f(t) = \frac{1}{2}\sin(2t)$$

Caso $m=1,\,\gamma=2,\,\kappa=5$:

$$F(s) = \frac{1}{s^2 + 2s + 5}$$

$$= \frac{1}{\underbrace{(s+1)^2 + 4}}$$

$$= \frac{1}{(s+1)^2 + 2^2}$$

$$= G(s+1)$$

onde $G(s) = \frac{1}{s^2 + 2^2}$ Como

$$g(t) = \mathcal{L}^{-1}{G(s)} = \frac{1}{2}\sin(2t)$$

 $f(t) = \frac{1}{2}e^{-t}\sin(2t)$

Onde usamos o produto notável:

$$(s+a)^2 = s^2 + 2as + a^2.$$

Caso $m=1, \gamma=3, \kappa=2$:

$$F(s) = \frac{1}{s^2 + 3s + 2}$$

$$F(s) = \frac{1}{(s+1)(s+2)}$$

Usando a tabela, encontramos:

$$f(t) = e^{-t} - e^{-2t}$$

Pergunta: Quantas vezes f(t) para por zero para $t \geq 0$.

$$f(t) = e^{-t} - e^{-2t} = 0$$

$$e^{-t}(1 - e^{-t}) = 0$$

Assim f(t) = 0 se e somente se $e^{-t} = 1$, i.e., t = 0.

23 de setembro

3.1 Exemplo de cálculo de transformada de Laplace usando função de Heaviside

Representar algebricamente em termos da função de Heaviside a função dada no gráfico da figura 3.2. Observe que podemos representar f(t) da seguinte forma:

Figure 3.1:

$$f(t) = \begin{cases} 0, & t < 1 \\ 2, & 1 < t < 3 \\ -3, & 3 < t < 5 \\ 0, & t > 5. \end{cases}$$
 (3.1)

Para representar em termos da função de Heaviside, olhe para o gráfico pensando em dois pulsos: 2(u(t-1)-u(t-3)) e -3(u(t-3)-u(t-5)). A soma deles é a função desejada:

$$f(t) = 2(u(t-1) - u(t-3)) - 3(u(t-3) - u(t-5)).$$
(3.2)

$$f(t) = 2u(t-1) - 5u(t-3) + 3u(t-5). (3.3)$$

Figure 3.2:

$$F(s) = \frac{2e^s - 5e^{-3s} + 3e^{-5s}}{s}$$

onde usamos que

$$\mathcal{L}\{u(t-a)\} = \frac{e^{-as}}{s}$$

O que vamos provar agora.

3.2 Transformada de Laplace da Heaviside

$$f(t) = u(t - a), \quad a > 0$$

$$F(s) = \int_0^\infty f(t)e^{-st}dt$$

$$= \int_0^\infty u(t-a)e^{-st}dt$$

$$= \int_0^a \underbrace{u(t-a)}_0 e^{-st}dt + \int_a^\infty \underbrace{u(t-a)}_1 e^{-st}dt$$

$$= \int_a^\infty e^{-st}dt$$

$$= \left.\frac{e^{-st}}{-s}\right|_{t=a}^\infty$$

$$= \frac{e^{-as}}{s}, \quad s > 0$$

3.3 Propriedade do deslocamento no tempo

Se F(s) é a transformada de f(t), então f(t-a)u(t-a) é a transformada inversa de $e^{-as}F(s)$, isto é

$$\mathcal{L}\left\{u(t-a)f(t-a)\right\} = e^{-as}F(s), \qquad a > 0 \tag{3.4}$$

ou

$$\mathcal{L}^{-1}\left\{e^{-as}F(s)\right\} = u(t-a)f(t-a), \qquad a > 0.$$
(3.5)

Dem: Aplicamos a definição da transformada de Laplace e obtemos:

$$\begin{split} \mathcal{L}\left\{u(t-a)f(t-a)\right\} &= \int_0^\infty u(t-a)f(t-a)e^{-st}dt \\ &= \int_0^a \underbrace{u(t-a)}_0 f(t-a)e^{-st}dt + \int_a^\infty \underbrace{u(t-a)}_1 f(t-a)e^{-st}dt \\ &= \int_a^\infty f(t-a)e^{-st}dt, \end{split}$$

pois u(t-a) é zero no intervalo [0,a) e um no intervalo (a,∞) . Depois usamos a mudança de variável v=t-a na última integral:

$$\int_{a}^{\infty} f(t-a)e^{-st}dt = \int_{0}^{\infty} f(v)e^{-s(v+a)}dv = e^{-as} \int_{0}^{\infty} f(v)e^{-sv}dv.$$

Logo,

$$\mathcal{L}\left\{u(t-a)f(t-a)\right\} = e^{-as}\mathcal{L}\left\{f(t)\right\} = e^{-as}F(s). \tag{3.6}$$

Observe que tomando f(t) = 1 na propriedade do deslocamento, temos:

$$\mathcal{L}\{1 u(t-a)\} = \frac{e^{-as}}{s}, \quad a > 0$$
 (3.7)

que coincide com a fórmula da transformada de Laplace da Heaviside. Quando a=0 na equação acima, recaímos no item 1 da tabela de transformadas.

Exemplo Aplicando diretamente a propriedade do deslocamento em t e usando que $\mathcal{L}\{t^2\} = \frac{2}{s^3}$, calculamos a transformada inversa de Laplace de $e^{-3s} \frac{2}{s^3}$:

$$\mathcal{L}^{-1}\left\{e^{-3s}\frac{2}{s^3}\right\} = u(t-3)(t-3)^2. \tag{3.8}$$

Cuidado:

$$u(t-3)(t-3)^2 \neq u(t-3)t^2$$
. (3.9)

Exemplo: Vamos calcular a transformada inversa de Laplace da função

$$F(s) = e^{-s} \frac{1}{(s+1)^2 - 1}. (3.10)$$

Obs: As raizes do denominador são:

$$(s+1)^2 - 1 = 0$$

$$(s+1)^2 = 1$$

$$(s+1) = \pm 1$$
$$s = -1 \pm 1$$

Primeiro calculamos a transformada de $\frac{1}{(s+1)^2-1}$ usando a propriedade.

$$\mathcal{L}^{-1} \left\{ \frac{1}{(s+1)^2 - 1} \right\} = e^{-t} \sinh(t)$$

$$= e^{-t} \left(\frac{e^t - e^{-t}}{2} \right)$$

$$= \frac{1 - 2e^{-2t}}{2}$$

Depois usamos a propriedade para concluir

$$\mathcal{L}^{-1}\left\{e^{-s}\frac{1}{(s+1)^2-1}\right\} = u(t-1)\mathcal{L}^{-1}\left\{\frac{1}{(s+1)^2-1}\right\}_{t\to t-1} = u(t-1)e^{-(t-1)}\sinh(t-1).$$
(3.11)

3.4 A propriedade da transformada de Laplace da integral de uma função

Se F(s) é a transformada de Laplace de uma função contínua por partes f(t), então $\int_0^t f(\tau)d\tau$ é a transformada inversa de $\frac{1}{s}F(s)$, isto é

$$\mathcal{L}\left\{\int_{0}^{t} f(\tau)d\tau\right\} = \frac{1}{s}F(s),\tag{3.12}$$

ou

$$\mathcal{L}^{-1}\left\{\frac{1}{s}F(s)\right\} = \int_0^t f(\tau)d\tau. \tag{3.13}$$

Dem: Seja $g(t)=\int_0^t f(\tau)d\tau$. Então g'(t)=f(t). Aplicamos a propriedade da transformada da derivada e temos:

$$\mathcal{L}\lbrace g'(t)\rbrace = s\mathcal{L}\lbrace g(t)\rbrace - g(0). \tag{3.14}$$

Usando o fato que g(0) = 0, temos

$$\mathcal{L}\left\{\int_0^t f(\tau)d\tau\right\} = \mathcal{L}\left\{g(t)\right\}$$

$$= \frac{1}{s}\mathcal{L}\left\{g'(t)\right\}$$

$$= \frac{1}{s}\mathcal{L}\left\{f(t)\right\}$$

$$= \frac{1}{s}F(s).$$

Dia 25 de setembro

4.1 Oscilador harmônico - regime de amortecimento

Ver aula no https://colab.research.google.com/drive/197QbUeLlV2GEulEhjyVfpBeNRngxLls3 Mais exemplos de PVI em: https://colab.research.google.com/drive/1MTC1GSOP_DLPYZusqohP9DcaWr_ab-UX

4.2 Delta de dirac

Muitos fenômenos físicos exigem a representação de uma força muito grande em um intervalo de tempo muito pequeno, por exemplo:

- um circuito elétrico recebe uma força eletromotriz grande em um curto intervalo de tempo.
- um sistema massa-mola é atingido por uma martelo.
- uma bola de futebol parada recebe um chute, ou seja, uma força quase instantânea, que a coloca em movimento.
- um avião é atingido por um raio.

Para representar essa força, vamos tomar a função pulso unitário em um curto intervalo de tempo $[-\epsilon,\epsilon]$ em torno da origem, isto é, um pulso com integral unitária:

$$\delta_{\epsilon}(t) = \frac{1}{2\epsilon} \left(u(t+\epsilon) - u(t-\epsilon) \right) = \begin{cases} 0, & t < -\epsilon \\ \frac{1}{2\epsilon}, & -\epsilon < t < \epsilon \\ 0, & t > \epsilon. \end{cases}$$
 (4.1)

Um pulso unitário em torno de t = a é representado por

$$\delta_{\epsilon}(t-a) = \frac{1}{2\epsilon} \left(u(t - (a - \epsilon)) - u(t - (a + \epsilon)) \right) = \begin{cases} 0, & t < a - \epsilon \\ \frac{1}{2\epsilon}, & a - \epsilon < t < a + \epsilon \\ 0, & t > a + \epsilon. \end{cases}$$

$$(4.2)$$

Observe que $\int_{-\infty}^{\infty} \delta_{\epsilon}(t-a) = 1$ para qualquer $\epsilon > 0$. A figura 4.1 apresenta o gráfico de $\delta_{\epsilon}(t-a)$ para a > 0 e $\epsilon = 1$, $\epsilon = \frac{1}{2}$, $\epsilon = \frac{1}{4}$, $\epsilon = \frac{1}{8}$ e $\epsilon = \frac{1}{12}$. A função que representa uma grande força instantânea é chamada de **função impulso** ou **função Delta de Dirac** e pode ser definida pelo limite das funções pulsos:

$$\delta(t-a) = \lim_{\epsilon \to 0} \delta_{\epsilon}(t-a). \tag{4.3}$$

Este limite não pode ser interpretado pontualmente, isto é, como o limite usual de funções reais, mas apenas no contexto de uma integral, como veremos. A figura 4.1 apresenta o gráfico de $\delta_{\epsilon}(t-a)$ quando ϵ diminui e uma representação gráfica para $\delta(t-a)$. **Obs:**A função delta de Dirac pode ser definida como

Figure 4.1:

limite de outras sequências de funções com propriedades análogas a sequência de pulsos. Por exemplo, podemos definir $\delta(t)$ como limite das funções

$$f_{\epsilon}(t) = \frac{1}{\epsilon\sqrt{\pi}}e^{-\frac{t^2}{\epsilon^2}} \tag{4.4}$$

A função Impulso é zero em todo ponto, exceto em t=a:

$$\delta(t-a) = \begin{cases} 0, & t \neq a \\ \infty, & t = a \end{cases}$$
 (4.5)

е

$$\int_{-\infty}^{\infty} \delta(t - a)dt = 1 \tag{4.6}$$

A função Delta de Dirac deve ser sempre compreendida como o limite de funções reais no contexto de uma integração, isto conduz à chamada **propriedade da filtragem**, que define totalmente a Delta da Dirac: Se f(t) for um função contínua em torno de t=a, então

$$\int_{-\infty}^{\infty} \delta(t-a)f(t)dt = f(a). \tag{4.7}$$

Para chegar a esta conclusão, definimos $F(t)=\int_a^t f(\tau)d\tau$ e calculamos:

$$\int_{-\infty}^{\infty} \delta(t-a)f(t)dt = \lim_{\varepsilon \to 0+} \int_{-\infty}^{\infty} \delta_{\varepsilon}(t-a)f(t)dt$$
$$= \lim_{\varepsilon \to 0+} \frac{1}{2\varepsilon} \int_{-a+\varepsilon}^{a+\varepsilon} f(t)dt$$
$$= \lim_{\varepsilon \to 0+} \frac{F(\varepsilon) - F(-\varepsilon)}{2\varepsilon}$$
$$= F'(0) = f(a).$$

4.2.1 Delta de Dirac como derivada distribucional da função Heaviside

Na equação (4.2) definimos a função Delta de Dirac como

$$\delta(t-a) = \lim_{\epsilon \to 0} \frac{1}{2\epsilon} \left(u(t - (a - \epsilon)) - u(t - (a + \epsilon)) \right). \tag{4.8}$$

Por outro lado, usamos a definição de derivada para escrever

$$\lim_{\epsilon \to 0} \frac{1}{2\epsilon} \left(u((t-a) + \epsilon) \right) - u((t-a) - \epsilon) \right) = \frac{d}{dt} u(t-a) \tag{4.9}$$

ou seja,

$$\delta(t-a) = \frac{d}{dt}u(t-a). \tag{4.10}$$

Observe que as funções de Heaviside e de Dirac não são funções no sentido do cálculo diferencial e integral. Naturalmente, a derivada acima também vale somente num sentido generalizado, mas é coerente quando olhamos a função de Heaviside como limite de funções rampas (ver figura ??), pois na origem a derivada tende ao infinito. A transformada de Laplace de função Delta de Dirac é obtido pela propriedade da filtragem dada na equação (4.7):

$$\mathcal{L}\{\delta(t-a)\} = \int_0^\infty \delta(t-a)e^{-st}dt = e^{-as}.$$
 (4.11)

Aula do dia 28/09

5.1 Circuito RLC

Ver https://colab.research.google.com/drive/1R3rC0c8zv70rSwCf7W30yQlleP6J2Mf2 Considere o circuito Resistor/Capacitor/Indutor representado na figura 5.1 com uma tensão V(t) aplicada do tipo pulso,

$$V(t) = V_0 (u(t-a) - u(t-b)). (5.1)$$

O modelo para a corrente i(t) obedece a lei de Kirchoff:

Figure 5.1:

$$Li'(t) + Ri(t) + \frac{1}{C}q(t) = V_0 (u(t-a) - u(t-b)),$$
 (5.2)

onde q(t) é a carga no capacitor, $\frac{1}{C}q(t)$ é a tensão no capacitor de capacitância C, Ri(t) é a tensão no resistor de resistência R e Li'(t) é a tensão no indutor de indutância L. Considere as condições iniciais i(0)=0 e q(0)=0. Dado que $\frac{dq(t)}{dt}=i(t)$, derivamos a equação do circutio para obter a seguinte equação diferencial:

$$Li''(t) + Ri'(t) + \frac{1}{C}i(t) = V_0 \left(\delta(t-a) - \delta(t-b)\right),$$
 (5.3)

onde usamos que a derivada da função de Heaviside é a função delta de Dirac. As condições iniciais para a equação (5.3) são i'(0) = 0 e i(0) = 0. Com o objetivo de resolver a problema de valor inicial, aplicamos a transformada de Laplace para obter a equação subsidiária

$$Ls^{2}I(s) + RsI(s) + \frac{1}{C}I(s) = V_{0} \left(e^{-as} - e^{-bs}\right),$$

que tem solução

$$I(s) = \frac{V_0 \left(e^{-as} - e^{-bs}\right)}{Ls^2 + Rs + \frac{1}{C}}$$

$$= \frac{1}{L} \frac{V_0 \left(e^{-as} - e^{-bs}\right)}{\left(s + \frac{R}{2L}\right)^2 - \left(\frac{R}{2L}\right)^2 + \frac{1}{LC}}$$

$$= \frac{V_0}{L} \left[\frac{e^{-as}}{\left(s + \frac{R}{2L}\right)^2 + \eta} - \frac{e^{-bs}}{\left(s + \frac{R}{2L}\right)^2 + \eta} \right]$$

onde

$$\eta = \frac{1}{LC} - \left(\frac{R}{2L}\right)^2. \tag{5.4}$$

Vamos exemplificar os casos subamortecido, superamortecido e criticamente amortecido tomando $V_0=10V,\,a=1$ e b=5:

• Caso subamortecido $(\eta > 0)$: escolhemos o caso onde L = 1 H, $C = \frac{1}{10}$ F e $R = 2\Omega$. Nesse caso

$$I(s) = 10 \left[\frac{e^{-s}}{(s+1)^2 + 9} - \frac{e^{-5s}}{(s+1)^2 + 9} \right].$$
 (5.5)

Logo,

$$i(t) = \frac{10}{3} \left(u(t-1)e^{-(t-1)} \sin(3(t-1)) - u(t-5)e^{-(t-5)} \sin(3(t-5)) \right).$$
(5.6)

O gráfico da corrente é apresentado na figura 5.2.

• Caso superamortecido ($\eta < 0$): escolhemos o caso onde $L=1\,\mathrm{H},\,C=1\,\mathrm{F}$ e $R=4\Omega.$ Nesse caso

$$I(s) = 10 \left[\frac{e^{-s}}{(s+2)^2 - 3} - \frac{e^{-5s}}{(s+2)^2 - 3} \right].$$
 (5.7)

Logo,

$$i(t) = 10 \left(u(t-1) \frac{e^{-2(t-1)}}{\sqrt{3}} \sinh\left(\sqrt{3}(t-1)\right) - u(t-5) \frac{e^{-2(t-5)}}{\sqrt{3}} \sinh\left(\sqrt{3}(t-5)\right) \right)$$

$$= \frac{5}{\sqrt{3}} u(t-1) \left(e^{\left(\sqrt{3}-2\right)(t-1)} - e^{-\left(\sqrt{3}+2\right)(t-1)} \right) +$$

$$+ \frac{5}{\sqrt{3}} u(t-5) \left(e^{\left(\sqrt{3}-2\right)(t-5)} - e^{-\left(\sqrt{3}+2\right)(t-5)} \right)$$

O gráfico da corrente é apresentado na figura 5.3.

Figure 5.2:

Figure 5.3:

• Caso criticamente amortecido ($\eta=0$): escolhemos o caso onde $L=1\,{\rm H},$ $C=1\,{\rm F}$ e $R=2\Omega.$ Nesse caso

$$I(s) = 10 \left[\frac{e^{-s}}{(s+1)^2} - \frac{e^{-5s}}{(s+1)^2} \right].$$
 (5.8)

Logo,

$$i(t) = 10 \left(u(t-1)e^{-(t-1)}(t-1) - u(t-5)e^{-(t-5)}(t-5) \right).$$
 (5.9)

O gráfico da corrente é apresentado na figura 5.4.

Figure 5.4:

5.2 Exemplo

Resolva o PVI
$$\left\{ \begin{array}{l} y'' + 3y' + 2y = \delta(t-5) - u(t-10) \\ y(0) = 0, \quad y'(0) = 1/2 \end{array} \right.$$

1. Aplicar a transformada de Laplace e substituir as condições iniciais

$$s^{2}Y(s) - sy(0) - y'(0) + 3(sY(s) - y(0)) + 2Y(s) = e^{-5s} - \frac{e^{-10s}}{s}.$$

$$s^{2}Y(s) - \frac{1}{2} + 3sY(s) + 2Y(s) = e^{-5s} - \frac{e^{-10s}}{s}.$$

2. Resolver o problema algébrico

$$(s^{2} + 3s + 2)Y(s) = \frac{1}{2} + e^{-5s} - \frac{e^{-10s}}{s}.$$

$$Y(s) = \frac{1}{2(s^2 + 3s + 2)} + \frac{e^{-5s}}{(s^2 + 3s + 2)} - \frac{e^{-10s}}{s(s^2 + 3s + 2)}.$$

3. Calcular a transformada inversa.

Primeiro termo

$$\frac{1}{2(s^2+3s+2)} = \frac{1}{2(s+1)} - \frac{1}{2(s+2)}$$

$$\mathcal{L}^{-1}\left\{\frac{1}{2(s^2+3s+2)}\right\} = \frac{1}{2}e^{-t} - \frac{1}{2}e^{-2t}.$$

5.2. EXEMPLO 21

Segundo termo

$$\frac{e^{-5s}}{(s^2+3s+2)} = \frac{e^{-5s}}{(s+1)} - \frac{e^{-5s}}{(s+2)}$$
$$\mathcal{L}^{-1}\left\{\frac{e^{-5s}}{(s^2+3s+2)}\right\} = u(t-5)\left(e^{-(t-5)} - e^{-2(t-5)}\right).$$

Terceiro termo

$$\frac{1}{s(s^2+3s+2)} = \frac{1}{2s} - \frac{1}{(s+1)} + \frac{1}{2(s+2)}$$

$$\mathcal{L}^{-1} \left\{ \frac{1}{s(s^2+3s+2)} \right\} = \frac{1}{2} - e^{-t} + \frac{e^{-2t}}{2}$$

$$\mathcal{L}^{-1} \left\{ \frac{e^{-10s}}{s(s^2+3s+2)} \right\} = u(t-10) \left(\frac{1}{2} - e^{-(t-10)} + \frac{e^{-2(t-10)}}{2} \right)$$

Solução:

$$y(t) = \frac{1}{2}e^{-t} - \frac{1}{2}e^{-2t} + u(t-5)\left(e^{-(t-5)} - e^{-2(t-5)}\right) + u(t-10)\left(\frac{1}{2} - e^{-(t-10)} + \frac{e^{-2(t-10)}}{2}\right).$$

Dia 30 de setembro

6.1 Cálculo da deflexão em vigas sujeitas a cargas concentradas

Ver https://pt.wikipedia.org/wiki/Modelo_de_viga_de_Euler-Bernoulli Considere uma viga elástica horizontal de comprimento L sob a ação de forças verticais. Colocamos o eixo horizontal x com origem no extremo a esquerda da viga e, portanto, x=L é o outro extremo. Supomos que a viga está sujeita a uma carga W(x) que provoca uma deflexão em cada ponto $x \in [0, L]$. A modelo para esse fenômeno é dado pela equação de Euler-Bernoulli:

$$\frac{d^4}{dx^4}y(x) = \frac{1}{EI}W(x). {(6.1)}$$

onde E é o módulo de Young, I é o momento de inércia da viga.

Consideraremos aqui uma viga engastada, ou seja:

$$y(0) = y'(0) = y(L) = y'(L) = 0. (6.2)$$

A carga está concentrada na posição $x=\frac{L}{3}$ e tem intensidade P_0 , sendo modelada pela seguinte expressão:

$$W(x) = P_0 \delta \left(x - \frac{L}{3} \right). \tag{6.3}$$

Aplicando a transformada de Laplace em (6.1) e usando o fato que $\mathcal{L}\left(\delta\left(x-\frac{L}{3}\right)\right)=e^{-\frac{L}{3}s}$, obtemos

$$s^{4}Y(s) - s^{3}y(0) - s^{2}y'(0) - sy''(0) - y'''(0) = \frac{P_{0}}{EI}e^{-\frac{L}{3}s}$$
(6.4)

Substituimos $y(0)=y'(0)=0,\ y''(0)=C_1$ e $y'''(0)=C_2$ onde C_1 e C_2 são constantes a determinar:

$$s^{4}Y(s) - sC_{1} - C_{2} = \frac{P_{0}}{EI}e^{-\frac{L}{3}s}$$
(6.5)

$$Y(s) = \frac{C_1}{s^3} + \frac{C_2}{s^4} + \frac{P_0}{EI} \frac{e^{-\frac{L}{3}s}}{s^4}$$
 (6.6)

e recuperamos a solução do domínio x através da transformada inversa de Laplace:

$$y(x) = \frac{C_1}{2!}x^2 + \frac{C_2}{3!}x^3 + \frac{P_0}{EI}\frac{(x - L/3)^3}{3!}u(x - L/3).$$
 (6.7)

A expressão para y(x) pode ser escrita como função definida por partes na forma:

$$y(x) = \begin{cases} \frac{C_1}{2!} x^2 + \frac{C_2}{3!} x^3, & 0 \le x \le \frac{L}{3} \\ \frac{C_1}{2!} x^2 + \frac{C_2}{3!} x^3 + \frac{P_0}{EI} \frac{(x - L/3)^3}{3!}, & \frac{L}{3} < x \le L. \end{cases}$$
(6.8)

Para calcular o valor das constantes C_1 e C_2 calculamos y(L) e y'(L) usando a segunda parte da função y(x):

$$0 = y(L) = \frac{C_1}{2}L^2 + \frac{C_2}{6}L^3 + \frac{4}{81}\frac{P_0}{EI}L^3$$
$$0 = y'(L) = C_1L + \frac{C_2}{2}L^2 + \frac{2}{9}\frac{P_0}{EI}L^2$$

Colocando na forma matricial:

$$\begin{bmatrix} \frac{L^2}{2} & \frac{L^3}{6} \\ L & \frac{L^2}{2} \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix} = \begin{bmatrix} -\frac{4}{81} \frac{P_0}{E^1} L^3 \\ -\frac{2}{9} \frac{P_0}{E^1} L^2 \end{bmatrix}$$
 (6.9)

Invertemos a matriz do sistema para obter as constantes C_1 e C_2 :

$$\begin{bmatrix} C_1 \\ C_2 \end{bmatrix} = \frac{12}{L^4} \begin{bmatrix} \frac{L^2}{2} & -\frac{L^3}{6} \\ -L & \frac{L^2}{2} \end{bmatrix} \begin{bmatrix} -\frac{4}{81} \frac{P_0}{EI} L^3 \\ -\frac{9}{9} \frac{P_0}{EI} L^2 \end{bmatrix}, \tag{6.10}$$

o que resulta em $C_1=\frac{4P_0L}{27EI}$ e $C_2=-\frac{20P_0}{27EI}$. A figura 6.1 apresenta o gráfico da função y(x) quando L=5 e $\frac{P_0}{EI}=1$.

Figure 6.1:

6.2 Aplicação: metabolismo de uma medicação

Durante um período de consumo de uma medicação, a concentração da substância ingerida na corrente sanguinea evolui segundo um modelo simples da seguinte forma:

- No caso de ausência de dosagens, a variação da concentração é proporcional a concentração.
- O organismo metaboliza o medicamento com uma taxa τ .

• As doses de medicamento são liberadas e entra na corrente sanguinea instantaneamente e homogeneamente.

O modelo que descreve esse fenômeno é

$$c'(t) = -\frac{1}{\tau}c(t) + x(t), \qquad t > 0 \tag{6.11}$$

onde c(t) é a concentração e x(t) representa a dosagem ao longo do tempo t. Em geral, as dosagens não são únicas e são tomadas periodicamente. Seja c_0 a concentração administrada instantaneamente a cada período T, então

$$x(t) = c_0 \left(\delta(t) + \delta(t - T) + \delta(t - 2T) + \delta(t - 3T) + \cdots \right)$$
 (6.12)

Supondo que c(0) = 0, ou seja, inicialmente não havia substância no organismo, vamos calcular c(t). Começamos aplicando a transformada de Laplace:

$$sC(s) + \frac{1}{\tau}C(s) = c_0 \left(1 + e^{-sT} + e^{-2sT} + e^{-3sT} + \cdots\right) = c_0 \sum_{n=0}^{\infty} \left(e^{-sT}\right)^n.$$
(6.13)

e encontramos:

$$C(s) = \left(\frac{c_0}{s + \frac{1}{\tau}}\right) \sum_{n=0}^{\infty} \left(e^{-sT}\right)^n. \tag{6.14}$$

OBS:

$$\mathcal{L}^{-1}\left\{\frac{c_0}{s+\frac{1}{\tau}}\right\}$$

$$\mathcal{L}^{-1}\left\{\frac{1}{s+\frac{1}{\tau}}\right\} = e^{-\frac{t}{\tau}}$$

Calculamos a transformada inversa usando a propriedade do deslocamento no eixo s.

$$c(t) = c_0 \left(e^{-\frac{t}{\tau}} + e^{-\frac{t-T}{\tau}} u(t-T) + e^{-\frac{t-2T}{\tau}} u(t-2T) + e^{-\frac{t-3T}{\tau}} u(t-3T) + \cdots \right)$$

$$= c_0 e^{-\frac{t}{\tau}} \left(1 + e^{\frac{T}{\tau}} u(t-T) + e^{\frac{2T}{\tau}} u(t-2T) + e^{\frac{3T}{\tau}} u(t-3T) + \cdots \right)$$

O gráfico da concentração é apresentado na figura 6.2, usando $c_0=1,\,\tau=1$ e T=1. O salto em cada descontinuidade é exatamente c_0 , pois os limites

Figure 6.2:

laterais são

$$\lim_{t \to nT^{-}} c(t) = \lim_{t \to nT^{-}} \left(c_{0}e^{-\frac{t}{\tau}} \left(1 + e^{\frac{T}{\tau}} + e^{\frac{2T}{\tau}} + \dots + e^{\frac{(n-1)T}{\tau}} \right) \right)$$

$$= \left(c_{0}e^{-\frac{nT}{\tau}} \left(1 + e^{\frac{T}{\tau}} + e^{\frac{2T}{\tau}} + \dots + e^{\frac{(n-1)T}{\tau}} \right) \right)$$

$$= \left(c_{0} \left(e^{-\frac{nT}{\tau}} + e^{-\frac{(n-1)T}{\tau}} + e^{-\frac{(n-2)T}{\tau}} + \dots + e^{-\frac{T}{\tau}} \right) \right)$$

 ϵ

$$\lim_{t \to nT^{+}} c(t) = \lim_{t \to nT^{+}} \left(c_{0}e^{-\frac{t}{\tau}} \left(1 + e^{\frac{T}{\tau}} + e^{\frac{2T}{\tau}} + \dots + e^{\frac{(n-1)T}{\tau}} + e^{\frac{nT}{\tau}} \right) \right)$$

$$= \left(c_{0}e^{-\frac{nT}{\tau}} \left(1 + e^{\frac{T}{\tau}} + e^{\frac{2T}{\tau}} + \dots + e^{\frac{(n-1)T}{\tau}} + e^{\frac{nT}{\tau}} \right) \right)$$

$$= \left(c_{0} \left(e^{-\frac{nT}{\tau}} + e^{-\frac{(n-1)T}{\tau}} + e^{-\frac{(n-2)T}{\tau}} + \dots + e^{-\frac{T}{\tau}} + 1 \right) \right),$$

que possuem diferença igual a c_0 . Observe que quando calculamos o limite $\lim_{t\to 0^+} c(t)$ obtemos $c(0^+)=c_0$, valor diferente da condição inicial dada, que é c(0)=0. Apesar de parecer estranho, não está errado. Tudo é consequência da presença do Dirac em t=0, que produz uma discontinuidade na origem. Este assunto será discutido na seção 6.3.

6.3 Problemas na origem

Para entender melhor esse fenômeno, vamos considerar um problema um pouco mais simples, dado pelo seguinte problema de valor inicial:

$$\begin{cases} y'(t) + y(t) &= \delta(t) \\ y(0) &= 0 \end{cases}$$

Tomando a Transformada de Laplace, temos:

$$sY(s) - y(0) + Y(s) = 1$$

ou seja, $Y(s) = \frac{1}{s+1}$, o que implica

$$y(t) = e^{-t}. (6.15)$$

Observamos que $y(0) = 1 \neq 0$, ou seja, a condição inicial não é satisfeita. Para entendermos o que está acontecendo, devemos lembrar que a Transformada de Laplace só produz a solução para t > 0 e interpretar y(t) como

$$y(t) = u(t)e^{-t}. (6.16)$$

Desta forma y(0) simplesmente não está definido. De fato, para compreender esse comportamento, vamos definir um problema auxiliar colocando no lugar da função delta de Dirac uma função pulso:

$$\begin{cases} y'(t) + y(t) &= \frac{u(t) - u(t - \varepsilon)}{\varepsilon} \\ y(0) &= 0 \end{cases}$$

onde ε é uma constante positiva pequena. Sabemos que o termo

$$\frac{u(t) - u(t - \varepsilon)}{\varepsilon} \tag{6.17}$$

converge para $\delta(t)$ quando $\varepsilon \to 0+$. Aplicando a Transformada de Laplace e resolvendo para Y(s), temos:

$$Y(s) = \frac{1}{s(s+1)} \frac{1 - e^{-\varepsilon s}}{\varepsilon} = \left(\frac{1}{s} - \frac{1}{s+1}\right) \frac{1 - e^{-\varepsilon s}}{\varepsilon},\tag{6.18}$$

ou seja,

$$y(t) = \frac{1 - e^{-t}}{\varepsilon} u(t) - u(t - \varepsilon) \frac{1 - e^{-(t - \varepsilon)}}{\varepsilon}.$$
 (6.19)

Esta solução pode ser escrita como uma função contínua:

$$y(t) = \begin{cases} 0, & t \le 0, \\ \frac{1 - e^{-t}}{\varepsilon}, & 0 < t \le \varepsilon, \\ \frac{e^{\varepsilon} - 1}{\varepsilon} e^{-t}, & t \ge \varepsilon. \end{cases}$$
 (6.20)

Para $\varepsilon > 0$ pequeno podemos usar a seguinte aproximação:

$$e^{t} = 1 + t + \frac{t^{2}}{2} + \frac{t^{3}}{3!} + \dots \approx 1 + t$$
 (6.21)

Assim, temos:

$$y(t) \approx \begin{cases} 0, & t \le 0, \\ \frac{t}{\varepsilon}, & 0 < t \le \varepsilon, \\ e^{-t}, & t \ge \varepsilon. \end{cases}$$
 (6.22)

Ou seja, existe uma pequena região de transição entre 0 e ε onde a solução y(t) sobe rapidamente. O gráfico apresentado na figura 6.3 mostra o comportamento de y(t) para $\varepsilon=0.2,\ \varepsilon=0.1$ e $\varepsilon=0.05$ em azul, vermelho e verde, respectivamente, assim como a solução limite $e^{-t}u(t)$ em preto.

Figure 6.3:

2 de outubro

7.1 Propriedade da convolução

Dada duas funções contínuas por partes em $[0,\infty]$, a convolução de f e g denotada por f*g é definida pela integral

$$(f * g)(t) = \int_0^t f(\tau)g(t - \tau)d\tau. \tag{7.1}$$

Dadas $f(t) = e^t$ e $g(t) = \cos(t)$, vamos calcular f * g:

$$(f * g)(t) = \int_0^t e^{\tau} \cos(t - \tau) d\tau$$
$$= \frac{1}{2} e^{\tau} \left(\cos(t - \tau) - \sin(t - \tau) \right) \Big|_0^t$$
$$= \frac{1}{2} \left(e^t - \cos(t) + \sin(t) \right).$$

onde usamos que $\int e^{\tau} \cos(t-\tau) d\tau = \frac{1}{2} e^{\tau} (\cos(t-\tau) - \sin(t-\tau)) + \text{constante.}$ (Propriedade da convolução) Se $F(s) = \mathcal{L}\{f(t)\}$ e $G(s) = \mathcal{L}\{g(t)\}$, então

$$\mathcal{L}\{(f*g)(t)\} = F(s)G(s). \tag{7.2}$$

ou

$$\mathcal{L}^{-1}\{F(s)G(s)\} = (f * g)(t). \tag{7.3}$$

Dem: Partimos da definição das transformadas:

$$F(s) = \mathcal{L}\lbrace f(t)\rbrace = \int_0^\infty f(t)e^{-st}dt \tag{7.4}$$

е

$$G(s) = \mathcal{L}\{g(\tau)\} = \int_0^\infty g(\tau)e^{-s\tau}d\tau. \tag{7.5}$$

Logo,

$$F(s)G(s) = \int_0^\infty f(t)e^{-st}dt \int_0^\infty g(\tau)e^{-s\tau}d\tau$$
$$= \int_0^\infty f(t) \int_0^\infty g(\tau)e^{-s(t+\tau)}d\tau dt$$

Mantemos t fixo e fazemos a mudança de variável $v=t+\tau$ para obter:

$$F(s)G(s) = \int_0^\infty f(t) \int_t^\infty g(v-t)e^{-sv} dv dt$$

Agora, vamos mudar a ordem de integração na região que é a metade inferior do primeiro quadrante: em vez de variar v em $[t,\infty]$ depois t em $[0,\infty]$, primeiro vamos variar t em [0,v], depois v em $[0,\infty]$, ou seja,

$$F(s)G(s) = \int_0^\infty \int_0^v f(t)g(v-t)e^{-sv}dtdv$$

$$= \int_0^\infty \left(\int_0^v f(t)g(v-t)dt\right)e^{-sv}dv$$

$$= \int_0^\infty (f*g)e^{-sv}dv$$

$$= \mathcal{L}\{f*g\}$$

Exemplo Vamos calcular a transformada inversa de $\frac{s}{(s-1)(s^2+1)}$. Primeiro observamos que a expressão pode ser escrita como um produto de duas funções tabelas:

$$\frac{s}{(s-1)(s^2+1)} = \frac{1}{s-1} \frac{s}{s^2+1},\tag{7.6}$$

onde $\mathcal{L}^{-1}\left\{\frac{1}{s-1}\right\}=e^t$ e $\mathcal{L}^{-1}\left\{\frac{s}{s^2+1}\right\}=\cos(t)$. Usando a propriedade 7.1 da convolução, temos

$$\mathcal{L}^{-1}\left\{\frac{1}{s-1}\frac{s}{s^2+1}\right\} = \int_0^t e^{\tau} \cos(t-\tau)d\tau.$$
 (7.7)

A convolução acima foi calculada no exemplo 7.1, logo

$$\mathcal{L}^{-1}\left\{\frac{1}{s-1}\frac{s}{s^2+1}\right\} = \frac{1}{2}\left(e^t - \cos(t) + \sin(t)\right). \tag{7.8}$$

A propriedade da convolução pode ser útil para resolver equações integrais, como veremos no próximo exemplo.

Exemplo: Vamos resolver a seguinte equação integral:

$$y(t) = 4 + 9 \int_{0}^{t} y(\tau)(t - \tau)d\tau.$$
 (7.9)

Aplicamos a transformada de Laplace e usamos a propriedade 7.1 da convolução com f(t)=y(t) e g(t)=t para obter:

$$\mathcal{L}{y(t)} = \frac{4}{s} + 9\mathcal{L}{y(t)}\mathcal{L}{t}$$
(7.10)

ou seja,

$$Y(s) = \frac{4}{s} + 9Y(s)\frac{1}{s^2}. (7.11)$$

Logo,

$$Y(s) = \frac{s^2}{s^2 - 9} \frac{4}{s} = \frac{4s}{s^2 - 9}. (7.12)$$

Portanto,

$$y(t) = 4\cosh(3t) \tag{7.13}$$

7.2

Nesse capítulo discutiremos a transformada de Laplace envolvendo funções especiais, tais como função de Bessel, função Gama e funções Seno Integrado. Também, desenvolveremos ferramentas capaz de resolver alguns problemas de valor iniciais com coeficientes não constantes. Para iniciar as discussões vamos demonstrar o item 6 da tabela no próximo exemplo.

Exemplo: Vamos calcular a transformada de Laplace da função t^{k-1} , dada por:

$$\mathcal{L}\{t^{k-1}\} = \int_0^\infty t^{k-1} e^{-st} dt. \tag{7.14}$$

Fazemos a mudança de variável x=st para obter:

$$\mathcal{L}\{t^{k-1}\} = \int_0^\infty \frac{x^{k-1}}{s^{k-1}} e^{-x} \frac{dx}{s}$$
$$= \frac{1}{s^k} \int_0^\infty x^{k-1} e^{-x} dx.$$

A função que aparece acima é a multiplicação de $\frac{1}{s^k}$ por uma que não depende de s, chamada de função Gama e denotada por $\Gamma(k)$. Portanto, demonstramos o item 6 da tabela:

$$\mathcal{L}\lbrace t^{k-1}\rbrace = \frac{\Gamma(k)}{s^k}, \qquad k > 0, \tag{7.15}$$

onde

$$\Gamma(k) = \int_0^\infty e^{-x} x^{k-1} dx. \tag{7.16}$$

Observe que o item 3 da tabela é

$$\mathcal{L}\lbrace t^{n-1}\rbrace = \frac{(n-1)!}{s^n}, \quad n \in \mathbb{N}. \tag{7.17}$$

Isso nos indica que, para que os itens 3 e 6 sejam consistentes, $\Gamma(n+1) = n!$ se $n \in \mathbb{N}$. De fato, primeiro observe que, se $k = (n+1) \in \mathbb{N}$, temos:

$$\Gamma(n+1) = \int_0^\infty e^{-x} x^n dx = \left[-e^{-x} x^n \right]_0^\infty - \int_0^\infty (-e^{-x}) n x^{n-1} dx = n \int_0^\infty e^{-x} x^{n-1} dx = n \Gamma(n). \tag{7.18}$$

Como

$$\Gamma(1) = \int_0^\infty e^{-x} dx = \left[-e^{-x} \right]_0^\infty = 1,$$
 (7.19)

temos

$$\Gamma(2) = 1,$$
 $\Gamma(3) = 2 \cdot 1 = 2!,$ $\Gamma(4) = 3\Gamma(3) = 3 \cdot 2! = 3!, \dots$ (7.20)

Logo, $\Gamma(n+1) = n!$ se $n \in \mathbb{N}$.

Exemplo: Os itens 4 e 5 da tabela são casos particulares do item 6:

$$\mathcal{L}\left\{t^{-\frac{1}{2}}\right\} = \frac{\Gamma\left(\frac{1}{2}\right)}{s^{\frac{1}{2}}}\tag{7.21}$$

е

$$\mathcal{L}\left\{t^{\frac{1}{2}}\right\} = \frac{\Gamma\left(\frac{3}{2}\right)}{c^{\frac{3}{2}}}.\tag{7.22}$$

Basta calcular os valores de $\Gamma\left(\frac{1}{2}\right)$ e $\Gamma\left(\frac{3}{2}\right)$ para completar a demonstração. Começamos com $\Gamma\left(\frac{1}{2}\right)$:

$$\Gamma\left(\frac{1}{2}\right) = \int_0^\infty e^{-x} x^{-\frac{1}{2}} dx = \int_0^\infty \frac{e^{-x}}{\sqrt{x}} dx. \tag{7.23}$$

Fazendo a mudança de variáveis $x = t^2$, obtemos dx = 2tdt e

$$\Gamma\left(\frac{1}{2}\right) = 2\int_0^\infty e^{-t^2} dt \tag{7.24}$$

Utilizando a técnica de Liouville, definimos:

$$I = \int_0^\infty e^{-t^2} dt \tag{7.25}$$

Logo

$$I^{2} = \int_{0}^{\infty} e^{-x^{2}} dx \int_{0}^{\infty} e^{-y^{2}} dy = \int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^{2}+y^{2})} dx dy$$
 (7.26)

A última integral é uma integral dupla que pode ser calculada em coordenadas polares fazendo $r^2=x^2+y^2$ e $dxdy=rdrd\theta$:

$$I^{2} = \int_{0}^{\frac{\pi}{2}} \int_{0}^{\infty} e^{-r^{2}} r dr d\theta = \frac{\pi}{2} \left[-\frac{e^{-r^{2}}}{2} \right]_{0}^{\infty} = \frac{\pi}{4}$$
 (7.27)

Assim,

$$I^2 = \frac{\pi}{4} \Rightarrow I = \frac{\sqrt{\pi}}{2} \tag{7.28}$$

е

$$\Gamma\left(\frac{1}{2}\right) = 2\int_0^\infty e^{-t^2} dt = 2I = \sqrt{\pi}.$$
 (7.29)

Agora, usando a propriedade da função Gama que $\Gamma(k+1) = k\Gamma(k)$, temos:

$$\Gamma\left(\frac{3}{2}\right) = \frac{1}{2}\Gamma\left(\frac{1}{2}\right) = \frac{\sqrt{\pi}}{2}.\tag{7.30}$$

Portanto, os itens 4 e 5 da tabela são válidos:

$$\mathcal{L}\left\{t^{-\frac{1}{2}}\right\} = \frac{\sqrt{\pi}}{\sqrt{s}}\tag{7.31}$$

е

$$\mathcal{L}\{t^{\frac{1}{2}}\} = \frac{\sqrt{\pi}}{2s^{\frac{3}{2}}}. (7.32)$$

Exemplo: Vamos calcular a transformada de Laplace da função $\ln(t)$ (item 38 da tabela). Com esse objetivo, usamos a transformada de Laplace de t^k dada no item 6 da tabela:

$$\int_0^\infty t^k e^{-st} dt = \frac{\Gamma(k+1)}{s^{k+1}}.$$
 (7.33)

Agora, como o integrando do lado esquerdo é uma função contínua e tem derivada parcial com respeito a k contínua podemos diferenciar ambos os lados com respeito ao parâmetro k usando a regra de Leibniz

$$\frac{d}{dk} \left(\int_0^\infty t^k e^{-st} dt \right) = \frac{d}{dk} \left(\frac{\Gamma(k+1)}{s^{k+1}} \right)$$

$$\downarrow \downarrow$$

$$\int_0^\infty t^k \ln(t) e^{-st} dt = \frac{s^{k+1} \Gamma'(k+1) - \Gamma(k+1) s^{k+1} \ln(s)}{s^{2(k+1)}}$$

Agora, fazemos $k \to 0$ para obter

$$\int_0^\infty \ln(t)e^{-st}dt = \frac{s^1\Gamma'(1) - \Gamma(1)s^1\ln(s)}{s^2},\tag{7.34}$$

ou seja,

$$\int_{0}^{\infty} \ln(t)e^{-st}dt = \frac{\Gamma'(1) - \ln(s)}{s},$$
(7.35)

já que $\Gamma(1)=1$. Do lado esquerdo aparece a transformada da função $\ln(t)$ e do lado direito $\Gamma'(1)$. Então calculamos

$$\Gamma'(k) = \int_0^\infty x^{k-1} \ln(x) e^{-x} dx \tag{7.36}$$

е

$$\Gamma'(1) = \int_0^\infty \ln(x)e^{-x}dx = -\gamma \tag{7.37}$$

where γ é a constante de Euler - Mascheroni,

$$\gamma = 0.57721566490153286060651209008240243104215933593992 \cdots$$
 (7.38)

Finalmente, concluímos

$$\mathcal{L}\{\ln(t)\} = \frac{-\gamma - \ln(s)}{s} \tag{7.39}$$

7.3 Transformada de Laplace de funções periódicas

Nesta seção apresentaremos uma propriedade da transformada de Laplace de funções periódicas e calcularemos algumas delas.

Seja f(t) uma função contínua por partes e periódica de período T. Então sua transformada de Laplace é da forma

$$\mathcal{L}\{f(t)\} = \frac{1}{1 - e^{-sT}} \int_0^T f(t)e^{-st}dt.$$
 (7.40)

Dem: Aplicamos a definição e separamos a integral nos períodos da função f(t) para obter:

$$\mathcal{L}\{f(t)\} = \int_0^\infty f(t)e^{-st}dt$$

$$= \int_0^T f(t)e^{-st}dt + \int_T^{2T} f(t)e^{-st}dt + \int_{3T}^{4T} f(t)e^{-st}dt + \cdots$$

$$= \sum_{n=0}^\infty \int_{nT}^{(n+1)T} f(t)e^{-st}dt.$$

Fazemos a mudança de variável $\tau = t - nT$ e obtemos

$$\begin{split} \mathcal{L}\{f(t)\} &= \sum_{n=0}^{\infty} \int_{0}^{T} f(\tau+nT) e^{-s(\tau+nT)} d\tau \\ &= \sum_{n=0}^{\infty} e^{-snT} \int_{0}^{T} f(\tau+nT) e^{-s\tau} d\tau. \end{split}$$

Usando o fato que a função é periódica, ou seja, $f(\tau) = f(\tau + nT)$, temos:

$$\mathcal{L}\{f(t)\} = \sum_{n=0}^{\infty} e^{-snT} \int_{0}^{T} f(\tau)e^{-s\tau}d\tau$$

$$= \int_{0}^{T} f(\tau)e^{-s\tau}d\tau \left[\sum_{n=0}^{\infty} \left(e^{-sT}\right)^{n}\right]$$

$$= \int_{0}^{T} f(\tau)e^{-s\tau}d\tau \left[\frac{1}{1-e^{-sT}}\right]$$

$$= \frac{1}{1-e^{-sT}} \int_{0}^{T} f(\tau)e^{-s\tau}d\tau,$$

onde usamos a soma de uma série geométrica de razão e^{-sT} .

Exemplo Observe o cálculo da transformada da função $f(t) = \cos(wt)$ sabendo que

$$\int \cos(wt)e^{-st}dt = \frac{e^{-st}\left(w\sin(wt) - s\cos(wt)\right)}{s^2 + w^2} + \text{Constante}$$
 (7.41)

e usando a propriedade ??:

$$\begin{split} \mathcal{L}\{\cos(wt)\} &= \frac{1}{1-e^{-s\frac{2\pi}{w}}} \int_{0}^{\frac{2\pi}{w}} \cos(wt)e^{-st}dt \\ &= \frac{1}{1-e^{-s\frac{2\pi}{w}}} \left[\frac{e^{-st} \left(w\sin(wt) - s\cos(wt)\right)}{s^2 + w^2} \right]_{0}^{\frac{2\pi}{w}} \\ &= \frac{1}{1-e^{-s\frac{2\pi}{w}}} \frac{s - se^{-s\frac{2\pi}{w}}}{s^2 + w^2} \\ &= \frac{s}{s^2 + w^2}. \end{split}$$

Exemplo A função f(t) apresentada no gráfico da figura 7.1 é chamada de **onda quadrada** de período 2a. Calculamos a transformada de Laplace usando

Figure 7.1:

a propriedade ?? colocando T = 2a

$$\begin{split} \mathcal{L}\{f(t)\} &= \frac{1}{1-e^{-2sa}} \int_0^{2a} f(t)e^{-st}dt \\ &= \frac{1}{1-e^{-2sa}} \left(\int_0^a e^{-st}dt - \int_a^{2a} e^{-st}dt \right) \\ &= \frac{1}{1-e^{-2sa}} \left(\frac{1-2e^{-as} + e^{-2as}}{s} \right) \\ &= \frac{1}{(1-e^{-sa})(1+e^{-sa})} \left(\frac{(1-e^{-as})^2}{s} \right) \\ &= \frac{1}{s} \frac{1-e^{-as}}{1+e^{-sa}}. \end{split}$$

Multiplicando por $e^{\frac{as}{2}}$, podemos escrever a expressão em termos de funções hiperbólicas:

$$\mathcal{L}{f(t)} = \frac{1}{s} \frac{e^{\frac{as}{2}} - e^{-\frac{as}{2}}}{e^{\frac{as}{2}} + e^{-\frac{as}{2}}}$$
$$= \frac{1}{s} \frac{\sinh\left(\frac{as}{2}\right)}{\cosh\left(\frac{as}{2}\right)}$$
$$= \frac{1}{s} \tanh\left(\frac{as}{2}\right).$$

A função g(t) apresentada no gráfico da figura é chamada de **onda triangular** de perído 2a. Para calcular a transformada de Laplace, observe que:

Figure 7.2:

- a) A função g(t) representada na figura tem como derivada uma onda quadrada. De fato, no intervalo [0,a], a derivada é $\frac{1}{a}$ e no intervalo [a,2a] a derivada é $-\frac{1}{a}$. Esse padrão se repete periodicamente. Logo, a derivada da onda triangular é a onda quadrada multiplicada por $\frac{1}{a}$.
- b) Temos:

$$\mathcal{L}\{g(t)\} = -\frac{1}{s}\mathcal{L}\{g'(t)\} + \frac{1}{s}g(0). \tag{7.42}$$

Logo,

 $\mathcal{L}\{\text{onda triangular}\} = \frac{1}{as}\mathcal{L}\{\text{onda quadrada}\} + \frac{1}{s}(\text{onda triangular na origem}),$

e, portanto, usando o fato que a onda triangular vale zero na origem e o resultado do exemplo, temos

$$\mathcal{L}\{g(t)\} = \frac{1}{as} \frac{1}{s} \tanh\left(\frac{as}{2}\right)$$
$$= \frac{1}{as^2} \tanh\left(\frac{as}{2}\right).$$

Exemplo A função h(t) dada por

$$h(t) = \begin{cases} \sin(wt), & 0 < t < \frac{\pi}{w} \\ 0, & \frac{\pi}{w} < t < \frac{2\pi}{w}, \end{cases}$$
 (7.43)

 $h\left(t+\frac{2\pi}{w}\right)=h(t)$, é chamada de **retificador de meia onda** de período $\frac{2\pi}{w}$. A figura ?? apresenta o gráfico da função h(t).

Figure 7.3:

Calculamos a transformada de Laplace usando a propriedade ?? com $T = \frac{2\pi}{v}$

$$\mathcal{L}\{f(t)\} = \frac{1}{1 - e^{-s\frac{2\pi}{w}}} \int_{0}^{\frac{2\pi}{w}} f(t)e^{-st}dt$$

$$= \frac{1}{1 - e^{-s\frac{2\pi}{w}}} \int_{0}^{\frac{\pi}{w}} \sin(wt)e^{-st}dt$$

$$= \frac{1}{1 - e^{-s\frac{2\pi}{w}}} \left[-\frac{e^{-st} \left(s\sin(wt) + w\cos(wt)\right)}{s^{2} + w^{2}} \right]_{0}^{\frac{\pi}{w}}$$

$$= \frac{1}{(1 - e^{-\frac{s\pi}{w}})(1 + e^{-\frac{s\pi}{w}})} \frac{w(1 + e^{-\frac{s\pi}{w}})}{s^{2} + w^{2}}$$

$$= \frac{1}{1 - e^{-\frac{s\pi}{w}}} \frac{w}{s^{2} + w^{2}}$$

Exemplo: A função p(t) dada por

$$p(t) = |\sin(wt)| \tag{7.44}$$

é chamada de **retificador de onda completa** de período $\frac{\pi}{w}$. A figura ?? apresenta o gráfico da função p(t). Calculamos a transformada de Laplace usando

Figure 7.4:

a propriedade ?? com $T = \frac{\pi}{w}$

$$\mathcal{L}\{p(t)\} = \frac{1}{1 - e^{-s\frac{\pi}{w}}} \int_{0}^{\frac{\pi}{w}} \sin(wt)e^{-st}dt$$

$$= \frac{1}{1 - e^{-s\frac{\pi}{w}}} \left[-\frac{e^{-st}\left(\sin(wt) + w\cos(wt)\right)}{s^2 + w^2} \right]_{0}^{\frac{\pi}{w}}$$

$$= \frac{1}{1 - e^{-\frac{s\pi}{w}}} \frac{w(1 + e^{-\frac{s\pi}{w}})}{s^2 + w^2}$$

$$= \frac{w}{s^2 + w^2} \frac{e^{\frac{s\pi}{2w}} + e^{-\frac{s\pi}{2w}}}{e^{\frac{s\pi}{2w}} - e^{-\frac{s\pi}{2w}}}$$

$$= \frac{w}{s^2 + w^2} \coth\left(\frac{\pi s}{2w}\right)$$

Exemplo: A função q(t) dada por

$$\begin{cases} q(t) = \frac{t}{a}, & 0 \le t < a \\ q(t+a) = q(t), \end{cases}$$
 (7.45)

é chamada de **onda dente de serra** de período T=a. A figura ?? apresenta o gráfico da função q(t). Calculamos a transformada de Laplace usando a

Figure 7.5:

propriedade com T = a:

$$\begin{split} \mathcal{L}\{q(t)\} &= \frac{1}{1-e^{-sa}} \int_0^a \frac{t}{a} e^{-st} dt \\ &= \frac{1}{1-e^{-sa}} \frac{1}{a} \left[-\frac{e^{-st}(1+st)}{s^2} \right]_0^a \\ &= \frac{1}{1-e^{-sa}} \frac{1-e^{-sa}(1+as)}{s^2 a} \\ &= \frac{1}{1-e^{-sa}} \left(\frac{1-e^{-sa}-e^{-sa}as)}{s^2 a} \right) \\ &= \frac{1}{as^2} - \frac{e^{-sa}}{s(1-e^{-sa})}. \end{split}$$

7.4 Propriedades do Valor Inicial e Final

Se F(s) é a transformada de Laplace de f(t) e

$$\lim_{t \to \infty} f(t) = L,\tag{7.46}$$

então

$$\lim_{s \to 0^+} sF(s) = L. \tag{7.47}$$

Dem: Usamos a definição de transformada de Laplace para escrever

$$sF(s) = s \int_0^\infty f(t)e^{-st}dt$$
$$= s \int_0^a f(t)e^{-st}dt + s \int_a^\infty f(t)e^{-st}dt.$$

Observe que a primeira parcela do lado direito tende a zero independentemente do valor de a. Porém, para a suficientemente grande, f(t) se aproxima de L, pois $\lim_{t\to\infty} f(t) = L$, ou seja,

$$s \int_{a}^{\infty} f(t)e^{-st}dt \approx s \int_{a}^{\infty} Le^{-st}dt.$$
$$\approx s \frac{L}{-s} \left[e^{-st}\right]_{a}^{\infty} = Le^{-as}$$

Como $e^{-as} \to 1$ quando $s \to 0$, então

$$\lim_{s \to 0^+} sF(s) = L. \tag{7.48}$$

Se F(s) é a transformada de Laplace de uma função f(t) de ordem exponencial c e

$$\lim_{t \to 0^+} f(t) = L,\tag{7.49}$$

então

$$\lim_{s \to \infty} sF(s) = L. \tag{7.50}$$

7.5. SISTEMAS 39

Dem: Usamos a definição de transformada de Laplace para escrever

$$sF(s) = s \int_0^\infty f(t)e^{-st}dt$$
$$= s \int_0^a f(t)e^{-st}dt + s \int_a^b f(t)e^{-st}dt + s \int_b^\infty f(t)e^{-st}dt.$$

Observe que a segunda parcela do lado direito tende a zero quando $s \to \infty$ independentemente do valor de a e b, pois o fato da função ser de ordem exponencial e contínua por partes implica em f(t) limitada em [a,b], ou seja, |f(t)| < M e, portanto,

$$\begin{split} \left| s \int_a^b f(t) e^{-st} dt \right| & \leq s \int_a^b |f(t)| e^{-st} dt \\ & \leq M s \int_a^b e^{-st} dt \\ & \leq M s \frac{1}{-s} e^{-st} \Big|_a^b = M(e^{-sa} - e^{-sb}). \end{split}$$

Também, a terceira parcela tende a zero se b for suficientemente grande, pois existem c e M > 0 tal que $|f(t)| < Me^{ct}$ para t > b e, portanto,

$$\left| s \int_{b}^{\infty} f(t)e^{-st}dt \right| \leq s \int_{b}^{\infty} |f(t)|e^{-st}dt$$

$$\leq s \int_{b}^{\infty} Me^{-(s-c)t}dt$$

$$\leq Ms \frac{1}{c-s} e^{-(s-c)t} \Big|_{b}^{\infty} = \frac{Ms}{s-c} (e^{-(s-c)b}).$$

Porém, para a suficientemente pequeno, f(t) se aproxima de L, pois $\lim_{t\to 0} f(t) = L$, ou seja,

$$s \int_0^a f(t)e^{-st}dt \approx s \int_0^a Le^{-st}dt.$$
$$\approx s \frac{L}{-s} \left[e^{-st}\right]_0^a = L\left(1 - e^{-as}\right)$$

Como $e^{-as} \to 0$ quando $s \to \infty$, então

$$\lim_{s \to \infty} sF(s) = L. \tag{7.51}$$

7.5 Sistemas