The Eternal Immortality

2017/2018 // UWr // MIA | Problem code: ETERNAL | Limits: 1 s, 256 MB

Even if the world is full of counterfeits, I still regard it as wonderful.

Pile up herbs and incense, and arise again from the flames and ashes of its predecessor — as is known to many, the phoenix does it like this.

The phoenix has a rather long lifespan, and reincarnates itself once every a! years. Here a! denotes the factorial of integer a, that is, a! = $1 \times 2 \times ... \times a$. Specifically, 0! = 1.

Koyomi doesn't care much about this, but before he gets into another mess with oddities, he is interested in the number of times the phoenix will reincarnate in a timespan of b! years, that is, $\frac{b!}{a!}$. Note that when $b \ge a$ this value is always integer.

As the answer can be quite large, it would be enough for Koyomi just to know **the last digit of the answer in decimal representation**. And you're here to provide Koyomi with this knowledge.

Input

The first and only line of input contains two space-separated integers a and b ($0 \le a \le b \le 10^{18}$).

Output

Output one line containing a single decimal digit — the last digit of the value that interests Koyomi.

Examples

Input:

2 4

Output:

2

Input:

0 10

Output:

0

Input:

107 109

Output:

2

Note

1 of 2 12/15/17, 4:09 PM

In the first example, the last digit of $^{4!}\!/_{2!} = 12$ is 2; In the second example, the last digit of $^{10!}\!/_{0!} = 3628800$ is 0; In the third example, the last digit of $^{109!}\!/_{107!} = 11772$ is 2.

2 of 2 12/15/17, 4:09 PM