Sematic Segmentation using Resource Efficient Deep Learning

Naresh Kumar Gurulingan naresh.gurulingan@smail.inf.h-brs.de

Hochschule Bonn-Rhein-Sieg

October 24, 2018

Hochschule Bonn-Rhein-Sieg University of Applied Sciences

Table of Contents

Introduction

Applications

Dataset

Annotation process

Artificial image generation

Dataset variants

Dataset analysis

DeepLabv3+

Results

Contributions and future work

Introduction

Semantic segmentation

Divide an input image into different regions which contain a desired object or background.

Left: Input image; Right: Segmentation result.

Applications

- a Autonomous cars
- **b** Robotics
- c Augmented reality

(a) Street scene

(b) Indoor scene

(c) Augmented guide

Dataset

Objects in the dataset

This figure shows all the 18 objects in the dataset. First row from left: "distance_tube", "m20", "bearing", "axis", "r20", "m30", "m20_100", "motor", "bearing_box_ax16", 'bearing_box_ax01", "f20_20_B", "f20_20_G". Second row from left: "em_01", "s40_40_B", "s40_40_G", "em_02", "container_box_red", "container_box_blue".

Annotation process

Artificial image generation

Dataset variants

Dataset analysis

DeepLabv3+

DeepLabv3+

Conclusion and future work

Contributions

- Artificial image generation algorithm.
- Segmentation dataset with 18 atWork objects.
- Evaluation of DeepLabv3+ with resource efficient encoders MobileNetv2 and Xception.

Future work

- Model interpretability.
- Architecture search.
- ▶ Fusion of 2D image data with point cloud information.

Thank you very much!

Are there any questions?

References