Azmani Sultana

Id: 22201949

Section: 17

CSE330

Assignment 1

Convention 1 / Lecture note form / General form:

Maximum number = (0.1111) 2 x 26

Minimum number = $-(0.1111) 2 \times 2^6$ = -60

Nonmalized form :

$$F = \pm (1. d_1 d_2 d_3 d_4)_{\beta} \times \beta^{e}$$

$$= \pm (1. d_1 d_2 d_3 d_4)_{2} \times 2^{9}$$

Maximum number = $(1.1111)_2 \times 2^6$ = 1.9375×2^6 = 124

Minimum number = - (1.1111) 2 X 26
= - 124

Denormalized form:

Maximum numben,
$$F = (0.11111) \times \times 2^{6}$$

= 0.96875 x 2^{6}
= 62

Minimum number,
$$F = -(0.11111)_2 \times 2^6$$

= -62

b) General form:

Non-negative minimum number =
$$(0.1000)_2 \times 2^{-2}$$

= 0.5×2^{-2}
= 0.125

Nonmalized form:

Non-negative minimum number =
$$(1.0000)_{2}x^{2-2}$$

= $1x^{2-2}$
= 0.25

Denormalized form:

Non-negative minimum number =
$$(0.10000)_{2}x^{2}$$
 = $0.5x^{2}$ = 0.125

Total exponent = 9

General form:

Total number =
$$2^3 \times 9 \times 2$$

= 144

Normalized form:

Deninmalized sonn:

Total number =
$$2^4 \times 9 \times 2$$

= 288

Ans no 2

b)
$$x = (101.101)_2$$

= $(0.101101)_2 \times 2^3$

$$51(x) = (0.1011)_{2} \times 2^{3}$$

$$= 0.6875 \times 2^{3}$$

$$= 5.5$$

$$f_{\lambda}(\pi) = (0.1011)_{2} \times 2^{3}$$

$$= 0.6875 \times 2^{3} = 5.5$$
Rounding error , $\delta = \frac{|f_{\lambda}(\pi) - \pi|}{|\pi|}$

$$= \frac{|5.5 - 5.625|}{|5.625|}$$

$$= 0.022222$$

Machine epsilon,
$$\epsilon = \frac{1}{2} \beta^{-m}$$

$$= \frac{1}{2} \times 2^{-3}$$

$$= 0.0625$$

$$= \frac{1}{2} \times 10^{-3}$$

$$= 5 \times 10^{-4}$$

Am no 3

a)
$$x^{2} - 60x + 1 = 0$$

$$x = \frac{-b \pm \sqrt{b^{2} - 44ac}}{2a}$$

$$x_{1} = \frac{(0 + \sqrt{(-60)^{2} - 41 \cdot 1})}{2 \cdot 1} = 30 + \sqrt{899}$$

$$= 31 + 29 \cdot 9833287$$

$$= 59 \cdot 9833287$$

$$x_{1} = 30 + 29 \cdot 9833$$

$$= 59 \cdot 9833 \quad (6 \text{ significan+ figure})$$

$$x_{2} = \frac{60 - \sqrt{(-60)^{2} - 41 \cdot 1}}{2 \cdot 1}$$

$$= 30 - \sqrt{899}$$

$$= 30 - 29 \cdot 9833287$$

$$= 0 \cdot 01667129887$$

$$x_{2} = 30 - 29 \cdot 9833$$

$$= 0 \cdot 0167000 \quad (6 \text{ significan+ figure})$$

$$x_{3} = \frac{|41(x_{1}) - x_{1}|}{|x_{1}|}$$

$$= \frac{|59 \cdot 9833 - 59 \cdot 9833287}{|59 \cdot 9833287|}$$

$$= 4 \cdot 784662776 \times 10^{-7} \times 100$$

0.00004784100777

$$82 = \frac{|51(x_2) - x_2|}{|x_2|}$$

$$= \frac{|0.0167 - 0.01667129887|}{|0.01667129887|}$$

 $= 1.721589315 \times 10^{-3} \times 10^{-3}$ $= 0.1721589315 \times 10^{-3} \times 10^{-3}$

82>81

so, the loss of significance problem occurs when I calculate the second noot.

b)
$$x_1 = 59.9833$$

 $x_2 = 0.0167000$

= 0.01667130685 = 0.0166713 (6 significant figure)