

ヒューマンインタフェース

西崎友規子 yukikon@kit.ac.jp

レポート1について

受理 or 差し戻し 10月9日(水)中に完了予定

- ・未提出の人は,少しでも早く提出すること。
- ・差し戻しの場合は, コメントに従って修正し, できるだけ, 来週までに再提出すること。
- ・コメントは「ヒューマンインタフェース報告書チェック リスト」の番号で指示する。

本実習の目的

より良いインタフェースを実現するための設計手順を 学ぶこと。

目的1

人間の認知特性の特徴を明らかにするための実験を体験し,認知特性の測定方法や分析方法の一端を学ぶ。

目的2

インタフェースの開発手順を学ぶ。

5週間の予定

目的1:人間の認知特性の測定方法や分析方法の一端を学ぶ

第1週(9/30):認知課題実験(1),統計分析

第2週(10/7):認知課題実験(2),統計分析

目的2:インタフェースの開発手順を学ぶ

第3週(10/15):インタフェースの分析的評価,

要求獲得,設計

第4週(10/21): インタフェースの実装

第5週(10/28):インタフェース実験,統計分析

自前Windows PC, 実習室PCともに, 以下のアプリケーションがインストールされているか確認

- Visual Studio 2022
- ・R,Rコマンダー

R, Rコマンダー, エクセル(表計算) は, 自前PCで操作することを推奨 (実験結果は自分のPCでまとめた方が レポートにする時に便利なため)

エクセルなどの表計算ソフト

実習室PCのアカウント: hi (パスワード hi8312)

スパイラルモデル

認知課題実験(2)

指示された図(アイコン)に対応するキーをできるだけ早 く押す課題

人間の認知処理は, どのような時に速くなる/遅くなるのか を調べる。

→インタフェース(グラフィカルユーザインタフェース; GUI) 設計の基礎となるアイコンやキーの対応について考える。

認知課題実験(2)

- ・moodle「認知課題」の3つのファイル(Task1, Task2, Task3)を使用するPCにダウンロードする。
 - ・一人一人, 3つのTaskを実施する。
- ・ログデータが、Taskと同じフォルダに保存されていることを確認する。

2 班分のデータを集めて分析するため,各自で実験を始める前に,少なくとも班内で,Task実施順が同じにならないようにすること(=カウンターバランス)

本日の予定

~14:20頃 〈実習〉

3つの認知課題実験の実施(ログファイルの保存まで)

14:20頃~ 〈講義〉

認知課題実験の内容,集計方法について説明 Rの使い方,統計的分析(t検定)について説明

14:50頃~ 〈実習〉

データ集計,統計的分析

16:00頃~ 〈講義〉

レポートについて説明

*終わった人はレポート作成(自宅でも可)

本日の予定

14:20頃~ 〈講義〉

認知課題実験の内容,集計方法について説明 Rの使い方,統計的分析(t検定)について説明

14:50頃~ 〈実習〉

データ集計,統計的分析

16:00頃~ 〈講義〉

レポートについて説明

*終わった人はレポート作成(自宅でも可)

認知課題実験〈目的〉

インタフェース(特に,グラフィカルユーザインタフェース(GUI))設計に関わる人間の反応特性,及びその理解の方法について理解することを目的とする。表示のわかりやすさが,判断の速さに影響を及ぼすかどうか,実験を通して調べる。

<仮説>

文字と色,文字と図形が一致しているほど,また,文字の弁別性が高いほど,判断が速くなる。

認知課題実験〈方法と仮説〉

Task1

方法:練習10試行。本試行は全60試行(一致条件2種類,各15試行,不一致条件2種類,各15試行)。提示間隔は500-1500sec。

認知課題実験〈方法と仮説〉

Task2

文字と図が一致

判断が促進される(反応速 度が速い)

文字と図が**不一致**

判断が抑制される(反応速度が遅い)

方法:練習10試行。本試行は全60試行(一致条件2種類,各15試行,不一致条件2種類,各15試行)。提示間隔は500-1500sec。

認知課題実験〈方法と仮説〉

Task3

88 6 88

スペース有り

判断が促進される(反応速度が速い)

88688

スペース無し

判断が抑制される(反応速度が遅い)

方法:練習10試行。本試行は全64試行(一致条件32試行,不一致条件32試行)。提示間隔は500-1500sec。

認知課題実験〈考察のヒント〉

Task1, Task2

ストループ効果

文字意味と文字色のように, 同時に目にするふたつの情報 が干渉しあう現象 赤 青 黄 緑 赤 青 黄 緑

Task3

ゲシュタルトの法則:近接の要因

近い距離にあるもの同士がまとまって認識される現象

<仮説>

文字と色,文字と図形が一致しているほど,また,文字の弁別性が高いほど,判断が速くなる。

この仮説を検証

課題毎に,条件間で反応時間を比較

Task1:一致条件 vs. 不一致条件

Task2:一致条件 vs. 不一致条件

Task3:遠隔条件(スペース有)vs. 近接条件(スペース無)

認知課題実験(2) <結果の整理方法>

課題毎に,条件間で反応時間を比較する。 t検定 条件がわかるように結果を並べる。

Task1:一致条件 vs. 不一致条件

Task2: 一致条件 vs. 不一致条件

<u>Task3</u>: 遠隔条件(スペース有) vs. 近接条件(スペース無)

Count (ReactTime	color	Text	Match	T/F
1	0.5660499	green	Go	1	1
2	0.3889566	green	Go	1	1
3	0.5861383	red	Stop	1	1
4	0.3907544	green	Stop	0	0
5	0.4329367	red	Go	0	1
6	0.6599866	green	Stop	0	1
7	0.4411837	red	Go	0	1
8	0.4048147	red	Go	0	1
9	0.4511053	green	Go	1/	0
10	0.5098285	red	Go	0	1

ReactTimeの単位に注意 実際に取得されているのは, 100ns=0.0001ms

結果を分析して解釈するときには, わかりやすいようにsecに換算し直 すとよい

認知課題実験(2) <結果の整理方法>

・各課題において、全試行、正答した試行のみを対象にした た2種類の結果を整理する。

・各課題において,自分の結果の平均値を算出する。 その後,班員の結果を合わせて7-8名のデータを並べる。

Count	ReactTime	color	Text	Match /T/F	
1	0.5660499	green	Go	1/	1
2	0.3889566	green	Go	<u> </u> 1	1
3	0.5861383	red	Stop	1	1
4	0.3907544	green	Stop	0	0
5	0.4329367	red	Go	0	1
6	0.6599866	green	Stop	0	1
7	0.4411837	red	Go	0	1
8	0.4048147	red	Go	þ	1 /
9	0.4511053	green	Go	1	0 /
10	0.5098285	red	Go	0	1

	平均	0.44227261	0.4311213	
		0.4181048	0. 3654502	
		0.4199558	0.3734894	
		0.3398046	0.3841327	1
		0.4268746	0.3855127	
		0.3644231	0.5183284	
		0.48516	0.5337731	
		0.4527296	0.5534622	
		0.5710242	0.459399	
		0.4705802	0.3515014	
		0.4740692	0.3861639	
		RT_0	RT_1	

被験者#1 0.44227261 被験者#2 0.36987521 : 被験者#8 0.58899457

被験者#	課題1	課題 2	
1	109.88	87.66	
2	124.53	122.43	
3	78.96	102.11	
4	132.66	145.76	
5	452.89	99.09	
6	97.34	131.72	
平均	166.04	> 114.80	反応時

課題1の方が時間がかかる(=難しい)といえる?

被験者#	課題1	課題 2	他の被験者に比べて, 非常に時間が長くか
1	109.88	87.66	かっている
2	124.53	122.43	
3	78.96	102.11	
4	132.66	145.76	
5	452.89	99.09	
6	97.34	131.72	
平均	166.04	> 114.80	反応時間

課題1の方が時間がかかる(=難しい)といえる?

全体のバラツキを見ずに、平均値だけで判断できない

今回の実験で得られたデータが示す特徴を、そのまま母集団の特徴 としてもよいのかどうか確認する

一般に,インタフェース開発に向けて行う人を対象にする実験は,「そのインタフェースの想定ユーザ」がどのような特徴を持っているかを明らかにすることが目的

 \downarrow

想定されるユーザ(何万人?)全員を対象に実験することは不可能

想定されるユーザを包括する属性を持つ,一部の人を対象に実験してデータを 収集

そのデータが偶然ではないこと(確率的に極めて低いこと)を証明

母集団(全ユーザ)から標本(選ばれた被験者)を抽出し, その結果を元に母集団の傾向を確率的に推測する手法

- 1. 仮説を設定
- 2. 標本統計量を選択
- 3. 判断基準の確立を設定
- 4. 実現値を求める
- 5. 仮説の成否を判断

1. 仮説を設定

【帰無仮説】課題1と課題2の反応時間に差がない

「差がない」ことを証明する

= "差がある可能性があること"を示す

統計的検定では, 「差がある」ことを 直接証明できない

帰無仮説が棄却される可能性を計算

可能性が極めて小さい → 課題1と課題2の間に差がある

可能性があまり小さくない**→**課題1と課題2の間に差があるとは言えない

【対立仮説】

本来,証明したいのこれだが,証明 するすべがない

課題1と課題2に差がある

つまり

【帰無仮説】

課題1と課題2に差がない

この帰無仮説が誤りである

確率を計算

2. 標本統計量を選択

母集団全員のデータを集めることは難しい →2班分(14-15名)の標本(データ)を収集

3. 有意水準を設定

有意水準:帰無仮説が棄却される水準

*インタフェースに関わる実験(実験心理学の領域)では5%(a=0.05)に設定することが多い

有意水準を0.05に設定するということ

= 5%以下の確率で起こる事象は,100回に5回以下しか起こらない事象なので,このような稀な事象が起こった場合は,偶然起こったものではないとしよう,とすること

4. 実現値を求める

統計ソフト (R)で計算可

選んだ標本の実際の値を求める

(t検定の場合)

検定統計量 =
$$\frac{\text{群 1 標本平均-群 2 標本平均}}{\text{標準誤差}}$$
 = $\frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s^2}{n_1} + \frac{s^2}{n_2}}}$

統計ソフトで判定可

5. 仮説の成否を判断

→課題1と課題2の反応時間が同じになる確率

【帰無仮説が採択】

課題1と課題2に有意な差はみられなかった

【帰無仮説が棄却】

課題 1 と課題 2 にp<.05で有意差がみられた(課題 1 と 2 のいずれの反応時間が大きかったかは数値で判断)

p値:帰無仮説のもとで実現値以上の値が出る確率

統計量t:サンプルサイズがnの場合は自由度(n-1)のt分布に従う

統計量F:サンプルサイズがnの場合は自由度(n-1)のF分布に従う

①t検定(2つの平均値の差の検定)

- 2つの標本の平均値の差を比較する検定
 - *母集団の分散が等しいと仮定されるときに使う
 - * 2標本のデータに対応がある/なしで方法が異なる

対応のあるデータ:標本間で対になったデータ

対応のないデータ:標本間で対になっていないデータ

Rによる分析

Rコマンダーを開く >library(Rcmdr) Excelデータを読み込む 統計量→平均→対応のあるt検定 を選択

Rによる分析

対応のないt検定の結果,システムAとシステムBの操作時間は有意な差が見られた(t(31)=-3.95,p<.001).

帰無仮説が棄却された

分析開始

16:00頃~ レポート説明

本日の予定

~14:20頃 〈実習〉

3つの認知課題実験の実施(ログファイルの保存まで)

14:20頃~ 〈講義〉

認知課題実験の内容,集計方法について説明 Rの使い方,統計的分析(t検定)について説明

14:50頃~ 〈実習〉

データ集計,統計的分析

16:00頃~ 〈講義〉

レポートについて説明

*終わった人はレポート作成(自宅でも可)

レポート2について

内容:認知課題実験の目的,方法,結果,考察

- ・課題(Task1, 2, 3)それぞれの**方法と結果**をわかりやすくまとめること。
- ・結果は適宜,表やグラフにまとめると良い。
- ・「プロジェクト実習履修の手引き」, 「ヒューマンインタフェース報告書チェックリスト」を見て, 自分でしっかりと確認してから提出すること。
 - ・表紙は「レポート2表紙」を使用すること。
 - ・PDFにして提出すること。

レポート2について

■提出先: Redmine

プロジェクト > ヒューマンインタフェース > レポート > 第2回レポート

■ 〆切:10月15日(火)12:45まで →10月17日(木)中に返却予定