1.Test der Übung zu Analysis 1, Gruppe A, 28.10.2011

1. (a) Sei $(K, +, \cdot, P)$ ein angeordneter Körper. Man leite aus der Dreiecksungleichung für die Betragsfunktion auf K folgende Aussage mittels vollständiger Induktion her:

Für alle $n \in \mathbb{N}$, $n \ge 2$ und $a_1, a_2, a_3, \ldots \in K$ gilt

$$\left|\sum_{j=1}^{n} a_j\right| \le \sum_{j=1}^{n} |a_j|. \tag{1}$$

(b) Weiters zeige man mittels vollständiger Induktion, dass für alle $n \in \mathbb{N}$ gilt

$$\sum_{k=1}^{2n} (-1)^{k+1} \frac{1}{k} = \sum_{k=1}^{n} \frac{1}{n+k} \,. \tag{2}$$

2. Sei $(K, +, \cdot, P)$ ein angeordneter Körper. Man bestimme die Menge aller oberen Schranken und die Menge aller unteren Schranken der Teilmenge

$$M:=\{0_K\}\cup\bigcup_{n\in\mathbb{N}}(\frac{1_K}{n\cdot 1_K},1_K)\cup[2_K,3_K)\subset K.$$

Hat diese Menge ein Infimum/Supremum in K? Falls ja, dann bestimme man diese und überprüfe, ob diese auch Minimum bzw. Maximum von M sind! Begründen Sie alle ihre Antworten!

Lösung zu Aufgabe 1a

Die Dreiecksungleichung in einem angeordneten Körper $(K, +, \cdot, P)$ wurde in Lemma 2.2.11 (iii) bewiesen:

Für
$$x, y \in K$$
 gilt $|x + y| \le |x| + |y|$. (3)

Beweis der Aussage (1) mittels vollständiger Induktion: *Induktionsanfang:* Die Aussage $A(n_0)$ ist wahr. Für $n_0 = 2$, gilt

$$\left| \sum_{i=1}^{n_0} a_i \right| = |a_1 + a_2|$$

(wegen Dreiecksungleichung (3)) $\leq |a_1| + |a_2| = \sum_{j=1}^{n_0} |a_j|$.

Induktionsschritt: Ist A(n) wahr für $n \ge n_0$, dann ist A(n + 1) wahr.

$$\left|\sum_{j=1}^{n+1} a_j\right| = \left|\sum_{j=1}^n a_j + a_{n+1}\right|$$
(wegen Dreiecksungleichung (3)) $\leq \left|\sum_{j=1}^n a_j\right| + |a_{n+1}|$
(wegen Induktionsvoraussetzung) $\leq \sum_{j=1}^n |a_j| + |a_{n+1}|$

$$= \sum_{j=1}^{n+1} |a_j|.$$

Lösung zu Aufgabe 1b

Beweis der Aussage (2) mittels vollständiger Induktion: *Induktionsanfang:* Die Aussage $A(n_0)$ ist wahr. Für $n_0 = 1$ gilt,

$$\sum_{k=1}^{2n_0} (-1)^{k+1} \frac{1}{k} = (-1)^2 \frac{1}{1} + (-1)^3 \frac{1}{2} = \frac{1}{2} = \sum_{k=1}^{1} \frac{1}{1+k} = \sum_{k=1}^{n_0} \frac{1}{n_0 + k}.$$

Induktionsschritt: Ist A(n) wahr für $n \ge n_0$, dann ist A(n + 1) wahr.

$$\sum_{k=1}^{2(n+1)} (-1)^{k+1} \frac{1}{k} = \sum_{k=1}^{2n} (-1)^{k+1} \frac{1}{k} + \sum_{k=2n+1}^{2(n+1)} (-1)^{k+1} \frac{1}{k}$$
(wegen Induktionsvoraussetzung)
$$= \sum_{k=1}^{n} \frac{1}{n+k} + \sum_{k=2n+1}^{2(n+1)} (-1)^{k+1} \frac{1}{k}$$

$$= \sum_{k=1}^{n} \frac{1}{n+k} + \frac{(-1)^{2n+2}}{2n+1} + \frac{1}{(-1)^{2n+3}} \frac{1}{2n+2}$$

$$= \sum_{k=1}^{n} \frac{1}{n+k} + \frac{1}{2n+1} - \frac{1}{2n+2}$$
(Indexverschiebung $k = l+1$)
$$= \sum_{l=0}^{n-1} \frac{1}{n+l+1} + \frac{1}{(n+1)+n} - \frac{1}{(n+1)+n+1}$$

$$= \sum_{l=0}^{n-1} \frac{1}{(n+1)+l} + \frac{1}{(n+1)+n+1} - \frac{1}{(n+1)+n+1}$$
(Erweiterung der Partialsumme)
$$= \sum_{l=0}^{n+1} \frac{1}{(n+1)+l} - \frac{1}{(n+1)+n+1} - \frac{1}{(n+1)+n+1}$$
(Erster Summand der Partialsumme fällt weg)
$$= \sum_{l=1}^{n+1} \frac{1}{(n+1)+l} \cdot \frac{1}{(n+1)+l} = \sum_{l=0}^{n+1} \frac{1}{(n+1)+l} \cdot \frac{1}{(n+1)+n+1} = \sum_{l=0}^{n+1} \frac{1}{(n+1)+l} \cdot \frac{1}{(n+1)+l} = \frac{1}{n+1}$$

Lösung zu Aufgabe 2

Wir zeigen zunächst: 0_K ist das Minimum von M. Sei dazu $m \in M$. Wir machen eine Fallunterscheidung:

- 1. Fall: $m \in \{0_K\}$ Damit ist $m = 0_K$, also $0_K \le m$.
- 2. Fall: $m \in \bigcup_{n \in \mathbb{N}} (\frac{1_K}{n \cdot 1_K}, 1_K)$ Dann exisiert $n \in \mathbb{N}$ mit $m > \frac{1_K}{n \cdot 1_K}$. Da bekanntermaßen gilt: $0_K < 1_K \le n \cdot 1_K$ für alle $n \in \mathbb{N}$, folgt $0 < \frac{1_K}{n \cdot 1_K}$ und damit aus der Transitivität der Ordnung $m > 0_K$.
- 3. Fall: $m \in [2_K, 3_K)$ Es folgt sofort $m > 2_K > 0_K$.

Insgesamt ergibt sich also $m \ge 0_K$ für alle $m \in M$. Es bleibt zu zeigen, dass es keine untere Schranke $a > 0_K$ geben kann. Das ist aber sofort ersichtlich, denn $0_K \in M$, und damit ist $a > 0_K$ bereits ein Widerspruch dazu, dass a eine untere Schranke ist.

Es ist also 0_K das Minimum von M. Das Infimum ist damit gleich dem Minimum, inf $M = 0_K$. Da dies die größte untere Schranke ist ergibt sich aus der Transitivität sofort, dass $(-infty, 0_K]$ die Menge der unteren Schranken ist.

Als nächstes zeigen wir: 3_K ist das Supremum von M. Sei dazu erneut $m \in M$. Wir machen wieder eine Fallunterscheidung:

- 1. Fall: $m \in \{0_K\}$ Damit ist $m = 0_K$, und $3_K > 0_K = m$.
- 2. Fall: $m \in \bigcup_{n \in \mathbb{N}} (\frac{1_K}{n \cdot 1_K}, 1_K)$ Dann gilt aber $m < 1_K < 3_K$.
- 3. Fall: m ∈ [2_K, 3_K)
 Es folgt sofort m < 3_K aus der Definiton von Intervallen.

Insgesamt erhalten wir $3_K > m$ für alle $m \in M$, d.h. 3_K ist eine obere Schranke. Angenommen es gäbe ein $a < 3_K$, dass ebenfalls obere Schranke ist. Wir machen eine Fallunterscheidung:

- 1. Fall: $a < 2_K$. Da $2_K \in [2_K, 3_K) \subset M$ ist dies ein Widerspruch.
- 2. Fall: $a \ge 2_K$. Dann ist $a \in [2_K, 3_K)$, also auch $b := \frac{a+3_K}{2_K} \in [2_K, 3_K) \subset M$. Da aber b > a gilt ist dies erneut ein Widerspruch.

Wir haben also gezeigt: 3_K ist die kleinste obere Schranke und damit das Supremum von M. Da $3_K \notin M$ existiert kein Maximum. Die Menge der oberen Schranken ergibt sich aufgrund der Transitivität der Ordnung als $[3_K, \infty)$.

1.Test der Übung zu Analysis 1, Gruppe B, 28.10.2011

1. (a) Sei $(K, +, \cdot, P)$ ein angeordneter Körper. Man leite folgende Aussage mittels vollständiger Induktion her:

Für alle $n \in \mathbb{N}$, $n \ge 5$ gilt

$$n^2 < 2^n. (4)$$

(b) Weiters zeige man mittels vollständiger Induktion, dass für alle $n \in \mathbb{N}$ gilt

$$\sum_{k=2}^{n+1} (k-1)^2 = \frac{n(n+1)(2n+1)}{6} \,. \tag{5}$$

2. Sei $(K, +, \cdot, P)$ ein angeordneter Körper. Man bestimme die Menge aller oberen Schranken und die Menge aller unteren Schranken der Teilmenge

$$M:=\bigcup_{x\in K, x<-1_K} (x,-1_K) \cup \{-1_K-\frac{1_K}{n\cdot 1_K}| n\in \mathbb{N}\} \cup [3_K,4_K) \subset K.$$

Hat diese Menge ein Infimum/Supremum in K? Falls ja, dann bestimme man diese und überprüfe, ob diese auch Minimum bzw. Maximum von M sind! Begründen Sie alle ihre Antworten!

Lösung zu Aufgabe 1a siehe 3. Übungsblatt Aufgabe 3a)

Lösung zu Aufgabe 1b

Beweis der Aussage (5) mittels vollständiger Induktion: *Induktionsanfang:* Die Aussage $A(n_0)$ ist wahr. Für $n_0 = 1$ gilt,

$$\sum_{k=2}^{n_0+1} (k-1)^2 = \sum_{k=2}^2 (k-1)^2 = (2-1)^2 = 1 = \frac{1(1+1)(2+1)}{6} = \frac{n_0(n_0+1)(2n_0+1)}{6} \, .$$

Induktionsschritt: Ist A(n) wahr für $n \ge n_0$, dann ist A(n + 1) wahr.

$$\sum_{k=2}^{(n+1)+1} (k-1)^2 = \sum_{k=2}^{n+1} (k-1)^2 + ((n+2)-1)^2$$
(wegen Induktions voraus setzung) =
$$\frac{n(n+1)(2n+1)}{6} + (n+1)^2$$
=
$$\frac{n(n+1)(2n+1)}{6} + \frac{6(n+1)^2}{6}$$
=
$$\frac{(n+1)[n(2n+1)+6(n+1)]}{6}$$
=
$$\frac{(n+1)(n+2)(2n+3)}{6}$$
=
$$\frac{(n+1)((n+1)+1)(2(n+1)+1)}{6}$$
.

Lösung zu Aufgabe 2

Wir zeigen zunächst mittels Widerspruch, dass M nach unten unbeschränkt ist: Annahme: $\exists y \in K \forall m \in M : m \ge y$.

- 1. Fall: $y \ge -1_K$. Da $-1_K - 1_K \in M$ und $-2_K < -1_K \le y$ ist dies ein Widerspruch.
- 2. Fall: $y < -1_K$. Da dann auch $y - 1_K < -1_K$ gilt, ist $(y - 1_K, -1_K) \subset M$, d.h. $y - \frac{1_K}{2_K} \in M$. Das ist Widerspruch, da $y > y - \frac{1_K}{2_K}$.

Nun zeigen wir: 4_K ist die kleinste obere Schranke. Sei dazu zunächst $m \in M$. Wir unterscheiden 3 Fälle:

- 1. Fall: $m \in \bigcup_{x \in K, x < -1_K} (x, -1_K)$ Damit existiert $x \in K$, so dass $m \in (x, -1_K)$, d.h. $m < -1_K < 4_K$.
- 2. Fall: $m \in \{-1_K \frac{1_K}{n \cdot 1_K} | n \in \mathbb{N}\}$. Da wie gezeigt stets gilt $0_K < 1_K \le n_K$, ist $0 < \frac{1_K}{n \cdot 1_K} \le 1$, d.h. für $m = -1_K - \frac{1_K}{n \cdot 1_K}$ gilt $m < -1_K < 4_K$.
- 3. Fall: $m \in [3_K, 4_K)$ Es folgt sofort $m < 4_K$ aus der Definition von Intervallen.

Insgesamt ergibt sich also $m < 4_K$ für alle $m \in M$. Damit ist 4_K obere Schranke. Angenommen es gäbe ein $y < 4_K$, das ebenfalls obere Schranke ist. Wir machen erneut eine Fallunterscheidung:

- 1.Fall $y < 3_K$ Da $3_K \in M$ ist dies ein Widerspruch.
- 2. Fall $y \ge 3_K$. Wegen $3_K \le y < 4_K$ gilt auch $3_K \le y < \frac{y+4_K}{2_K} < 4_K$. Damit ist $\frac{y+4_K}{2_K} \in [3_K, 4_K)$, also ein Element von M. Da zudem gilt $y < \frac{y+4_K}{2_K}$ ist dies jedoch ein Widerspruch zu der Tatsache, dass y eine obere Schranke ist.

Wir haben bewiesen: 4_K ist die kleinste obere Schranke. Aufgrund der Transitivität ist damit $\{y \in K | y \ge 4_K\} = [4_K, \infty)$ die Menge der oberen Schranken. Da es keine unteren Schranken gibt, existiert auch kein Infimum. Das Supremum ist nach Definition die kleinste obere Schranke, also 4_K . Da $4_K \notin M$ existiert kein Maximum.