P&ID and Common Abbreviation

Areej February 8, 2018

INTRODUCTION

A piping and instrumentation diagram (P&ID) is a diagram in the process industry which shows the piping of the process flow together with the installed equipment and instrumentation. The P&ID are also used to operate the process system. P&ID shows all of piping including the physical sequence of branches, reducers, valves, equipment, instrumentation and control interlocks. In this session we are going to discuss about P&ID and Common Abbreviation.

Based on Institute of Instrumentation and Control, a piping and instrumentation diagram (P&ID) is defined by the diagram which shows

the interconnection of process equipment and the instrumentation used to control the process. In the process industry, a standard set of symbols is used to prepare drawings of processes. The instrument symbols used in these drawings are generally based on International Society Automation (ISA) Standard S5.1

Functions of P&ID

The main function of P&ID is related with a significant role in the maintenance and modification of the process that it describes. It is critical to demonstrate the physical sequence of equipment and systems, as well as how these systems connect. During the design stage, the diagram also provides the basis for the <u>development of system control schemes</u>, allowing for further safety and operational investigations, such as the hazard and operability study (HAZOP).

	First-letter		Succeeding-Letters		
	Measured or Initiating variable	Modifier	Readout function	Output function	Modifier
A	Analysis				
¢		Section 19		Control	
D		Differential			
F	Flow Rate	Ratio			
н	Hand				High:
-	Current		Indicate		
Ĺ	Level				Low
P.	Pressure, vacuum				
a	Quantity	Totalizer			
8	and the second second	Safety		Switch	
T	Temperature			Transmit	
V	Vibration			Valve, Damper	
2	Position			Actuator	

There are a few rules in preparing a P&ID whereby there are item that should be included and some items should not.

A P&ID should include:

- Instrumentation and designations
- Mechanical equipment with names and numbers
- All valves and their identifications
- Process piping, sizes and identification
- Miscellaneous vents, drains, special fittings, sampling lines, reducers, increasers and swaggers
- Permanent start-up and flush lines
- Flow directions
- Interconnections references
- Control inputs and outputs, interlocks
- Interfaces for class changes
- Seismic category
- · Quality level
- Annunciation inputs
- · Computer control system input
- Vendor and contractor interfaces
- · Identification of components and subsystems delivered by others
- Intended physical sequence of the equipment

A P&ID should not include:

- Instrument root valves
- control relays
- manual switches
- primary instrument tubing and valves
- pressure temperature and flow data

P&ID Common Abbreviation

Analyzer Element (Chemical	Motion TransmitterPressure
----------------------------	-------------------------------

	Composition)Air Operated Valves		Alarm	
AEAOV		MTPA	Pressure Controller	
BE	Burner Element (flame detector)	PC	Pressure Control Valve	
CR	Conductivity Recorder	PCV	Differential Pressure Indicator	
DP	Differential Pressure	PdI		
DT	Density Transmitter	рНТ	pH Transmitter	
FC	(also specific gravity and	PI	Pressure Indicator	
FCV	Baume)	PIC	Press. Indicating Controller	
FE	Flow Controller	PIT	Press. Indicating	
FG	Flow Control Valve	PR	Transmitter	
FHC	Flow Element	PS	Pressure Recorder	
FHS	Flow Sight Glass	PT	Pressure Switch	
FI	Flow Hand Control (manual)	PTd	Pressure Transmitter	
FIC	Hand Switch in Flow Loop	PZV	Pressure Transducer	
FM	Flow Indicator	RO	Pressure Relief Valve	
FQR	Flow Indicating Controller	ST	Restriction Orifice	
FQI	Flow Meter (Pos. Displ. or Turb)	SV	Speed Transmitter	
FR	Flow Qantity Recorder	TC	Solenoid Valve	
	Flow Quantity Indicator		Temp. Controller	
FRC	Flow Recorder	TCV	Temp. Control Valve	
FS 	Flow Recorder Controller	TE	Temp. Element	
FT 	Flow Switch	TI	Temp. Indicator	
Ftd	Flow Transmitter	TIC	Temp. Indicating	
HCV	Flow Transducer	TR	Controller	
HS		TRAP	Temp. Recorder	

LC	Hand operated Control Valve	TS	Steam Trap or Airvent
LCV	Hand switch	TSA	Temp. Switch
LG	Level Controller	TT	Temp. Switch Alarm
LHC	Level Control Valve	TTd	Temp. Transmitter
LI	Level Gage Glass	TW	Temp. Transducer
LIC	Level Hand Control (manual)	TY	Thermowell
LR	Level Indicator	WE	Relay in Temperature
LS	Level Indicating Controller	XA	Loop
LT	Level Recorder	XVE	Weight Measuring Element
Ltd	Level Switch		Annunciator
MOV	Level Transmitter	ZV	Vibration Detector
	Level Transducer		Vibration Switch
	Motor Operated Valve		Safety Shut-down (Pilot) valve