Savarankiško darbo refleksija

Vilius Paliokas

2023/09/29

1 Lygtys

Lygtis: matematinis teiginys, teigiantis dviejų reiškinių lygybę.

Sprendinys: reikšmė (arba reikšmių rinkinys), dėl kurios lygtis yra teisinga, kai jos kintamasis (dažniausiai x) pakeičiamas ja (reikšme).

1.1 Lygties sprendimas

Pagrindiniai žingsniai:

- 1. **Supaprastinimas**: suprastinamos abi lygties pusės (panašių narių jungimas, perkėlimai, skliaustų atskleidimai ir kt.);
- 2. **Izoliuojamas kintamasis**: Naudojami aritmetiniai veiksmai ir atvirkštinės operacijos (jeigu lygybė, tai atimtis; jeigu kėlimas laipsniu, tai šaknies traukimas ir t.t.), kad kintamasis (dažniausiai x) būtų vienintelis kažkurioje tai lygties pusėje.
- 3. **Atsakymo pasitikrinimas**: gavus sprendinį, įdedamas vietoje kintamojo ir patikrinama, kad abi pusės lygios.

Pagrindiniai aspektai:

1. **Atvirkštinės operacijos**: naudojamos operacijos, kurios atšaukia viena kitą (pvz., sudėjimas ir atėmimas, daugyba ir padalijimas).

Operacija	Atvirkštinė operacija
Sudėtis (+a)	Atimtis $(-a)$
Atimtis $(-a)$	Sudėtis $(+a)$
Daugyba $(\times a)$	Dalyba $(\div a)$
Dalyba $(\div a)$	Daugyba $(\times a)$
Kėlimas kvadratu (x^2)	Kvadratinė šaknis (\sqrt{x})
Kelimas kubu (x^3)	Kubinė šaknis $(\sqrt[3]{x})$
Kėlimas laipsniu (x^a)	Šaknis $(\sqrt[a]{x})$
Logaritmas pagrindu $b (\log_b x)$	Kėlimas, kai pagrindas konstanta $b\left(b^{x}\right)$

1 lentelė: Operacijos ir jų atvirkštinės operacijos

- 2. **Panašieji nariai**: Atliekamos operacijos su panašiais nariais. Panašieji nariai tai tie, kurie turi tą patį kintamąjį ir pakelti tuo pačiu laipsniu (daugiau žiūrėti nelygybių temoje).
- 3. Lygties balansas: Kad ir ką darytumėte vienai lygties pusei, turite daryti su kita.

Lygybėms galioja veiksmų eiliškumas - taisyklių rinkinys, kuris nurodo, kokius veiksmus reikia atlikti pirmiausia, kad būtų tinkamai apskaičiuota matematinė išraiška. Žemiau pateikiama operacijų atlikimo tvarka:

- 1. Skliaustai;
- 2. Kėlimas laipsniu, šaknies traukimas, logaritmavimas;
- 3. Daugyba, dalyba (iš kairės į dešinę);
- 4. Atimtis, sudėtis (iš kairės į dešinę).

1.2 Kaip išspręsti $ax^2 + bx = 0$

1.2.1 Teorinis sprendimas

Žingsniai:

1. Turime nepilną kvadratinę lygtį.

$$ax^2 + bx = 0;$$

2. Išskaidome dauginamaisiais - iškeliame x prieš skliaustus:

$$x(ax+b) = 0$$

3. Iškėlus prieš skliaustus, jau turime vieną sprendinį (x), kitą dar reikia susirasti:

$$ax + b = 0$$
 arba $x = 0$

4. Susitvarkome lygtį taip, kad vienoje pusėje atsirastų nariai su x, o kitoje tik skaičiai. Tai padarysime atėmę iš abiejų pusių skaičių b:

$$ax + b = 0|-b$$

5.
$$ax + b - b = 0 - b$$

6. Reikia pasidaryti, kad kintamasis x būtų plikas - be dauginio a. Tai padarysime padalinę lygtį iš to dauginio a:

$$ax = -b|: a$$

7.
$$\frac{ax}{a} = -\frac{b}{a}$$

8.
$$x = -\frac{b}{a}$$

Po 9 žingsnio turime du lygties sprendinius $x = -\frac{b}{a}$ ir x = 0 (3 žingsnis).

1.2.2 Pavyzdys #1

Turime $2x^2 - 4x = 0$;

Pagal formule $ax^2 + bx = 0$:

- a = 2;
- b = -4.

Žingsniai:

1. Išskaidome dauginamaisiais - iškeliame x prieš skliaustus:

$$x(2x-4) = 0;$$

2. Iškėlus prieš skliaustus, jau turime vieną sprendinį (x), kitą dar reikia susirasti:

$$2x - 4 = 0$$
 arba $x = 0$;

3. Susitvarkome lygtį taip, kad vienoje pusėje atsirastų nariai su x, o kitoje tik skaičiai. Tai padarysime pridėję abiem pusėms skaičių 4:

$$2x - 4 = 0| + 4;$$

4.
$$2-4+4=0+4$$
;

1 pav.: $f(x) = 2x^2 - 4x$ grafikas su sprendiniais $2x^2 - 4x = 0$

5. Reikia pasidaryti, kad kintamasis x būtų plikas - be dauginio 2. Tai padarysime padalinę lygtį iš to dauginio 2:

$$2x = 4|:2;$$

6.
$$\frac{2x}{2} = \frac{4}{2}$$
;

$$\frac{2x}{2} = x;$$

$$-\frac{4}{2} = 2;$$

7.
$$x = 2$$
;

Po 7 žingsnio turime du lygties sprendinius x = 2 ir x = 0 (2 žingsnis).

1.2.3 Pavyzdys #2

Turime $2x^2 + 3x^2 - 5x = 4x$.

Šis reiškinys neatitinka $ax^2 + bx = 0$ formulės. Todėl pirmiausia reikia bandyti susitvarkyti.

1. Visus narius perkeliame į vieną pusę:

$$2x^2 + 3x^2 - 5x = 4x|-4x;$$

$$2x^2 + 3x^2 - 5x - 4x = 4x - 4x;$$

$$2x^2 + 3x^2 - 5x - 4x = 0;$$

2. Sutraukiame panašius narius:

$$2x^2 + 3x^2 - 5x - 4x = 0;$$

$$5x^2 - 9x = 0;$$

3. Dabar jau reiškinys atitinka $ax^2+bx=0$ formulę. Galima išskaidyti dauginamaisiais - iškeliame prieš skliaustus x:

$$x(5x - 9) = 0;$$

4. Iš čia gauname vieną sprendinį:

$$5x - 9 = 0$$
 arba $x = 0$;

5. Toliau sprendžiame pirmąją lygtį:

$$5x - 9 = 0| + 9;$$

$$5x - 9 + 9 = 0 + 9;$$

 $5x = 9;$
 $5x = 9|: 5 \text{ arba } 5x = 9|\cdot \frac{1}{5};$
 $\frac{5x}{5} = \frac{9}{5} \text{ arba } 5x \cdot \frac{1}{5} = 9 \cdot \frac{1}{5};$
abiejais atvejais $x = 1.8.$

Gauname, kad $2x^2+3x^2-5x=4x$ lygties sprendiniai yra x=0 ir x=1.8 (galima dar rašyti $x\in\{0,1.8\}$).

1.3 Kaip išspręsti $ax^2 + b = 0$

1.3.1 Teorinis sprendimas

Žingsniai:

1. Išskiriame ax^2 (paliekame kairėje pusėje be b):

$$ax^{2} + b = 0|-b;$$

 $ax^{2} + b - b = 0 - b;$
 $ax^{2} = -b;$

2. Kairėje pusėje reikia palikt x^2 - abi puses padaliname iš a:

$$ax^2 = -b|: a;$$

$$\frac{ax^2}{a} = \frac{-b}{a};$$

Kairėje pusėje galima suprastinti skaitiklyje ir vardiklyje esančius a:

$$x^2 = \frac{-b}{a}$$
;

3. Ištraukiame šaknį iš abiejų pusių:

Visos kvadratinės lygtys turi du sprendinius (išskyrus, $x^2 = 0$), tai ištraukus šaknį:

$$\begin{split} \sqrt{x^2} &= \sqrt{\frac{-b}{a}};\\ x &= \sqrt{\frac{-b}{a}};\\ \text{ir}\\ \sqrt{x^2} &= -\sqrt{\frac{-b}{a}};\\ x &= -\sqrt{\frac{-b}{a}}; \end{split}$$

Šis sprendimas turi prasmę, kol $x \neq 0$ (dalijimas iš nulio neturi reikšmės) ir $\frac{-b}{a} \geq 0$ (traukiant šaknį iš neigiamo skaičiaus gaunamas kompleksinis skaičius - mokykloje to nesimokoma).

1.3.2 Pavyzdys #1

Turime $2x^2 + 8 = 0$. Ši atitinka $ax^2 + b = 0$ formą. Sprendžiame pagal auksčiau duotą teorinį sprendimą:

1. Išskiriame ax^2 (paliekame kairėje pusėje be b):

$$2x^{2} + 8 = 0 | -8;$$

 $2x^{2} + 8 - 8 = 0 - 8;$
 $2x^{2} = -8;$

2. Kairėje pusėje reikia palikt x^2 - abi puses padaliname iš 2:

$$2x^2 = -8|:2;$$

 $\frac{2x^2}{2} = \frac{-8}{2};$

Kairėje pusėje galima suprastinti skaitiklyje ir vardiklyje esančius a, o dešinėje padalinti skaičius:

$$r^2 = -4$$

3. Ištraukiame šaknį iš abiejų pusių:

Visos kvadratinės lygtys turi du sprendinius (išskyrus, $x^2 = 0$), tai ištraukus šaknį:

$$\sqrt{x^2} = \sqrt{-4};$$

$$x = \sqrt{-4};$$

ir

$$\sqrt{x^2} = -\sqrt{-4};$$

$$x = -\sqrt{-4};$$

Kadangi dešinėje pusėje esantis skaičius yra mažiau už nulį (-4<0), tai ši lygtis neturi realiųjų sprendinių.

1.3.3 Pavyzdys #2

Turime $6x^2=3x^2+12$. Ši lygtis neatitinka $ax^2\pm b=0$ formos. Todėl pirmiausia reikia bandyti susitvarkyti.

1. Persikeliame narius su x^2 į vieną pusę (pasirenkame kairę), tai galima padaryti atėmus abi puses iš $3x^2$:

$$6x^{2} = 3x^{2} + 12| - 3x^{2};$$

$$6x^{2} - 3x^{2} = 3x^{2} + 12 - 3x^{2};$$

$$3x^{2} = 12:$$

2. Dabar reiškinys atitinka $ax^2 - b = 0$, nes tai yra tas pats kas $ax^2 = b$. Toliau sprendžiame pagal taisykles, reikia x^2 palikti be skaičiaus esančio priekyje, tai padarysime padaline iš skaičiaus esančio prieš x^2 :

$$3x^2 = 12|:3;$$

$$\frac{3x^2}{3} = \frac{12}{3}$$
;

Kairėje pusėje galima padalinti 3 iš 3, o dešinėje 12 iš 3:

$$x^2 = 4$$

3. Dabar galima iš abiejų pusių ištraukti šaknį:

$$\sqrt{x^2} = \sqrt{4};$$

$$x = 2;$$

ir

$$\sqrt{x^2} = -\sqrt{4};$$

$$x = -2;$$

Lygtis $6x^2=3x^2+12$ turi du sprendinius: x=2 ir x=-2. Sprendinius visada galima pasitikrinti įdėjus atgal į lygtį.

5

1.3.4 Pavyzdys #3

Nevisada išeis ištraukti šaknį "gražiai" sprendžiant $ax^2 + b = 0$ lygtį. Pavyzdžiui turime paprastą lygtį $x^2 = 40$.

1. Iš karto galime ištraukti šaknį iš abiejų pusių:

$$\sqrt{x^2} = \sqrt{40}$$
; $x = \sqrt{40}$; arba $\sqrt{x^2} = -\sqrt{40}$; $x = -\sqrt{40}$;

2. Nors galėtume čia ir baigti spręsti, bet dar galime išskaidyti dauginamaisiai ir dalinai ištraukti šaknį:

Šiam tikslui naudosime vieną iš šaknų savybių (žiūrėti bendrojo kurso brandos egzamino formulyną): $\sqrt[n]{a \cdot b} = \sqrt[n]{a} \cdot \sqrt[n]{b}$.

$$x = \sqrt{4 \cdot 10} = \sqrt{4} \cdot \sqrt{10} = 2\sqrt{10}$$
, nes $40 = 4 \cdot 10$;

arba

$$x = -\sqrt{4 \cdot 10} = -\sqrt{4} \cdot \sqrt{10} = -2\sqrt{10};$$

Lygtis $x^2 = 40$ turi du sprendinius: $\pm 2\sqrt{10}$. Sprendinius visada galima pasitikrinti įdėjus atgal į lygtį.

2 Nelygybės

Nelygybės išreiškia ryšį tarp dviejų dydžių, kurie nėra lygūs. Jose naudojami kintamieji ir konstantos, o nelygybės simboliais parodoma, kad viena teiginio pusė yra didesnė arba mažesnė už kitą.

Naudojami simboliai:

- 1. Daugiau už (>), pavyzdžiui: x > 3 (skaitoma x daugiau už 3);
- 2. Mažiau už (<), pavyzdžiui: x < 5, (skaitoma x mažiau už 5);
- 3. Daugiau už arba lygu (\geq), pavyzdžiui: $x \geq 4$ (skaitoma x daugiau arba lygu už 4);

Vietoje "daugiau už arba lygu" galima vartoti "ne mažiau".

4. Mažiau už arba lygu (\leq), pavyzdžiui: $x \leq 6$ (skaitoma x mažiau arba lygu už 4).

Vietoje "mažiau už arba lygu" galima vartoti "ne daugiau".

2.1 Pagrindiniai principai sprendžiant nelygybes

Sprendžiant nelygybes, pritaikomi tokie pat principai, kaip ir lygtyse (ir atvirkščiai). Prisideda tik nelygybės apvertimas dauginant ar dalinant iš negiamo skaičiaus.

- 1. Kad ir ką darytumėte vienai nelygybės pusei, turite padaryti kitai, kad išlaikytumėte nelygybę;
 - x + 3 > 5 tampa x > 2 atėmus 3 iš abiejų pusių.
- 2. Nelygybės apvertimas:
 - 2.1. Kai padauginate arba padalijate abi nelygybės puses iš neigiamo skaičiaus, nelygybės ženklas turi būti apverstas.

$$-2x > 6$$
 tampa $x < -3x$ padalinus nelygybę iš -2 ($> \rightarrow <$).

- 2.2. Jeigu yra perkeliamas narys iš vienos nelygybės pusės į kitą, tai reiktų laikyti tai, kaip to nario pridėjimą ar atėmimą iš abiejų pusių. Būtina atkreipti dėmesį į ženklą:
 - 3>x tampa x<3 (atkreipkite dėmesį į ženklą), nes

$$3>x|-3 \Rightarrow$$

$$\Rightarrow 0 > x - 3| - x \Rightarrow$$

$$\Rightarrow -x > -3 | \cdot -1 \Rightarrow$$

$$\Rightarrow x < 3$$
.

3. Panašių narių tvarkymas.

Panašūs nariai turi tuos pačius kintamuosius (x, y, z ir kt.), kuriuo pakelti tais pačiais laipsniais. Iš esmės jie atrodo taip pat, išskyrus koeficientą prie jo (skaičius prieš kintamąjį).

Pavyzdžiai:

- 5x ir 3x yra panašūs nariai, nes abu turi kintamąjį x ir jie pakilti pirmuoju ($x^1 = x$), nors ir koeficientai (5 ir 3) prie šių kintamųjų skirtingi.
- $7y^2$ ir $-y^2$ yra panašūs nariai, nes abu turi kintamąjį y ir jie pakilti antruoju laipsniu, nors ir koeficientai (5 ir -1) prie šių kintamųjų skirtingi.
- -4ab ir 5ab yra panašūs nariai, nes abu turi kintamuosius a ir b, bei jie pakilti pirmuoju laipsniu.

Atvirkštiniai pavyzdžiai:

- 3x ir 3y nėra panašūs nariai, nes abu turi skirtingus kintamuosius x ir y.
- x^2 ir x nėra panašūs nariai, nes abu kintamieji pakelti skirtingais laipsniais (2 ir 1);
- 4xy ir $4xy^2$ nėra panašūs nariai, antrojo nario kintamasis y pakeltas kvadratu. laipsniu.
- 3.1. Konstantos ir kintamieji turi būti suprastinti, jeigu tai įmanoma:

$$2x + 5 > x + 8$$
 tampa $x > 3$ atėmus abiu puses iš x ir 5 .

3.2. Panašūs nariai gali būti sudėti arba atimti:

$$3x + 2x > 10$$
 tampa $5x > 10$, o po to ir $x > 2$.

2.2 Atsakymo pasitikrinimas

Visada galima pasitikrinti nelygybės atsakymą. Pavyzdžiui turime nelygybę 2x + 3 < 11:

1. Atimame abi pusęs iš 3

$$2x + 3 - 3 < 11 - 3$$
;

$$2x < 8$$
;

2. Padaliname abi pusęs iš 2

$$\frac{2x}{2} < \frac{8}{2};$$

Radome, kad nelygybės sprendinys yra x<4 arba $x\in(-\infty;4)$. Galime pasitikrinti šį sprendinį įstatydami skaičių mažesnį negu 4, pavyzdžiui 3. Įstačius į pradinę nelygybę gauname, kad $2\cdot 3+3<11$. Atlikus aritmetinius veiksmus gauname, kad 9<11, kas yra tiesa ir tai reiškia, kad sprendinys yra teisingas.

2.3 Kaip spręsti ax - b < 0 nelygybę?

2.3.1 Teorinis sprendimas

Žingsniai, kad išspręstume ax - b < 0 nelygybę:

1. Prie abiejų pusių pridedame b:

$$ax - b + b < 0 + b;$$
$$ax < b;$$

2. Padaliname iš a, kad paliktumę kintamij x be koeficiento (daugiklio):

$$\frac{ax}{a} < \frac{b}{a};$$
 $x < \frac{b}{a};$

3. Neužmirškite, jeigu skaičius a yra neigiamas, reikia apversti nelygybės ženklą:

$$x > -\frac{b}{a}$$
;

2.3.2 Pavyzdys #1

Turime 3x - 5 < 0. Sprendimas:

1. Prie abiejų pusių pridedame 5:

$$3x - 5 + 5 < 0 + 5$$
; $3x < 5$:

2. Padaliname abi puses iš 3, kad paliktumę kintamijx be koeficiento (daugiklio):

$$\frac{3x}{3} < \frac{5}{3};$$

 $x < \frac{5}{3};$

Nelygybės sprendinys: $x \in (-\infty; \frac{5}{3})$.

2.3.3 Pavyzdys #2

Turime $-3x + 2 \ge 5x - 8$. Sprendimas:

1. Visus narius su \boldsymbol{x} kintamuoju perkeliame į vieną pusę. Aš pasirenku kelti į dešinę:

$$-3x + 2 \ge 5x - 8|-5x;$$

 $-3x + 2 - 5x \ge 5x - 8 - 5x;$
 $-8x + 2 \ge -8.$

2. Visus skaičius be kintamųjų (konstantas) perkeliame į kitą pusę. Šiuo atveju į kairę:

8

$$-8x + 2 \ge -8|-2$$
;
 $-8x + 2 - 2 \ge -8 - 2$;
 $-8x \ge -10$;

3. Panaikiname skaičių prie x padalindami abi puses iš jo:

$$-8x \ge -10|$$
 : (-8) ; $\frac{-8x}{-8} \le \frac{-10}{-8}$ (atkreipkite dėmesį į ženklo pasikeitimą); $x \le \frac{5}{4}$;

Nelygybės sprendinys: $x \in (\infty; \frac{5}{4}]$.

3 Aibės

Aibė yra skirtingų elementų rinkinys. Jeigu elementas a yra aibės A elementas, tai rašoma, kad $a \in A$. Jeigu elementas b nėra aibės A elementas, tai rašoma, kad $b \notin A$. Aibės žymimos didžiąją raide, o jos elementai mažosiomis. Matematikos šaka nagrinėjanti aibes vadinama aibių teorija.

Aibės pavyzdžiai:

- mokyklos mokinių aibė;
- saulės sistemos planetų aibė;
- visų natūraliųjų skaičių aibė;
- lygties sprendinių aibė;
- ...

3.1 Būdai užrašyti aibę

Pagal elementų skaičių, yra dviejų tipų aibės: baigtinės ir begalinės. Baigtines aibes galima lengvai išrašyti. Tokiam būdui naudojami figūriniai skliaustai {...}. Pavyzdžiui:

$$A = \{1; 5; 6; 7; 8; 10; 30\}; \quad B = \{c; b; e\};$$

Dvi aibės yra vienodos, jeigu šių elementai nesiskiria, nors ir skiriasi jų išdėstymo tvarka. Pavyzdžiui, $\{1,2,3\}=\{2,3,1\}$. Bet matematikoje sutarta, jeigu aibės elementai yra skaičiai, tai jie užrašomi didėjimo tvarka.

Taip pat baigtines ir begalines aibes galima užrašyti tam tikromis taisyklėmis:

• taisyklėmis.

 $B=\{x|x\ {
m yra}\ {
m pirminis}\ {
m skaičius}\ {
m mažesnis}\ {
m už}\ 10\}$ - toks užrašymas reikštų, kad aibę B sudaro pirminiai skaičiai mažesni už 10. Tokią aibę dar būtų galima užrašyti šitaip $B=\{2;3;5;7\}$.

• žodiniu apibūdinimu.

Tegul, aibė C yra sudaryta iš visų sveikųjų skaičių mažesnių už 100.

• intervalu.

D=(2;5) - tokia aibė yra sudaryta iš visų realių skaičių nuo 2 neįskaitant iki 5 neįskaitant.

E = [2; 5] - tokia aibė yra sudaryta iš visų realių skaičių nuo 2 įskaitant iki 5 įskaitant.

• Veno diagramomis.

Nors tai nėra tekstinis aibės apibrėžimo būdas, Veno diagrama vizualiai vaizduoja aibes ir jų ryšius (įprastai apskritimais).

3.2 Realiųjų skaičių aibė

Matematikoje, yra skaičių rinkiniai, kurie naudojami taip dažnai, kad jie turi specialius pavadinimus ir simbolius:

- 1. Natūralūs (ℕ);
- 2. Sveikieji (\mathbb{Z});
- 3. Racionalieji (ℚ);
- 4. Iracionalieji (I);
- 5. Realūs (\mathbb{R});
- 6. ir kt.

2 pav.: Realių skaičių aibė ir jos poaibiai

Mokyliniame kurse yra mokomi tik 5 pagrindinės skaičių aibės. Bet reiktų žinoti, kad jų yra ir daugiau, pavyzdžiui menamasis vienetas ir kompleksniai skaičiai. Toliau apibūdinama realiųjų skaičių aibė ir jos poaibiai.

3.2.1 Natūralūs skaičiai

- Apibrėžimas: skaičiai naudojami skaičiuoti, nuo 1 iki begalybės (kartais įtraukiamas ir 0).
- Simbolis: N.
- Pavyzdys: $\mathbb{N} = \{1; 2; 3; 4; 5; 6; 7; 8; 9; \cdots \}.$

3.2.2 Sveikieji skaičiai

• **Apibrėžimas**: 0, visi natūralieji skaičiai ir jiems atvirkštiniai skaičiai (natūralieji skaičiai su minuso ženklu).

• Simbolis: \mathbb{Z} .

• Pavyzdys:

$$\mathbb{Z} = \{ \cdots; -9; -8; -7; -6; -5; -4; -3; -2; -1; 0; 1; 2; 3; 4; 5; 6; 7; 8; 9; \cdots \}.$$

3.2.3 Racionalieji skaičiai

- Apibrėžimas: Skaičiai, kurie gali būti užrašyti trupmena $\frac{a}{b}$, kur a ir b sveikieji skaičiai, o $b \neq 0$.
- Simbolis: Q.
- Pavyzdys: $\mathbb{Q} = \{ \cdots; -\frac{8}{6}, -\frac{1}{1}, \frac{0}{1}, \frac{1}{2}, \frac{22}{7} \cdots \}.$

Ankščiau aprašytą sveikųjų skaičių aibę \mathbb{Z} , taip pat galima išreikšti per racionaliųjų skaičių aibę: sveikieji skaičiai yra tie, racionalieji skaičiai $\frac{a}{b}$, kurių vardiklis b yra lygus 1.

3.2.4 Iracionalieji skaičiai

- **Apibrėžimas**: Skaičiai, kurių negalima išreikšti trupmena $\frac{a}{b}$, kur a ir b sveikieji skaičiai. Šių skaičių dešimtainė dalis yra nesikartojanti ir nesibaigianti.
- Simbolis: \mathbb{Q}' arba $\mathbb{R}\setminus\mathbb{Q}$ (realiųjų skaičių ir racionaliųjų skaičių aibės skirtumas).
- Pavyzdys: $\sqrt{2}$, π , e.

3.2.5 Realių skaičių aibės ir poaibių hierachija

Visos aukščiau nurodytos aibės yra kažkokios tai kitos aibės poaibis. Šį ryšį galima pamatyti veno diagramose 3.2 paveiksle.

- ullet N yra sveikųjų skaičių aibės $\mathbb Z$ poaibis.
- $\bullet~\mathbb{Z}$ yra racionaliųjų skaičių aibės \mathbb{Q} poaibis.
- ℚ yra realiųjų skaičių aibės ℝ poaibis.
- ullet Iracionalieji skaičiai taip pat yra realiųjų skaičių aibės ${\mathbb R}$ poaibis.

Šiuos ryšius galima taip pat pavaizduoti su simboliais:

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R};$$

Literatūra