Complex Variables Qualifying Exam Spring 1990

In what follows \mathbb{R} is the real numbers, \mathbb{C} the complex numbers, \mathbb{N} the natural numbers, \mathbb{Z} the integers, \mathbb{D} the open disc cented at 0 in \mathbb{C} , \mathbb{T} the boundary of \mathbb{D} .

- 1. What is the "reflection principle" for holomorphic functions? Prove the simplest version of this principle, i.e., that involving reflection in the real axis.
- **2.** Show that if f is holomorphic and zero-free in the open set U, then $|f|^p$ is subharmonic in U for every real p. **Hint:** If $f = e^g$, the problem is easy. (For extra credit: Is the result true if f is permitted to have zeros?)
- **3.** Write an essay on the role of simple-connectivity in complex analysis. Touch on the following points:
 - (a) A definition of simple-connectivity appropriate to regions in \mathbb{C} ,
 - (b) several important equivalences of your definiton,
 - (c) connection with holomorphic logarithms and holomorphic roots of holomorphic functions,
 - (d) Cauchy's Integral Theorem and existence of primitives,
 - (e) special role of the regions \mathbb{D} and \mathbb{C} ,
 - (f) existence of harmonic conjugates and solvability of the Dirichlet problem.
- **4.** ϕ is meromorphic in \mathbb{C} . Explain why (or why not) there must exist entire functions f and g such that $\phi = \frac{f}{g}$.
- **5.** Describe pictorially the region $\Omega := \mathbb{C} \setminus \{z : \text{Rez} = \text{Im} z \geq 1\}$ and find explicitly a conformal map of it onto \mathbb{D} .
- **6.** Suppose f has a pole at z_0 , that $0 \le \alpha < \beta \le 2\pi$ and $T_r(\alpha, \beta) := \{re^{i\theta} + z_0 : \alpha \le \theta \le \beta\}$. Evaluate $\lim_{r\to 0} \int_{T_r(\alpha,\beta)} f(z)dz$ in terms of the Laurent coefficients of f at z_0 .
- 7. Let f(z) denote any holomorphic square-root of z in $D_1 := \{z \in \mathbb{C} : |z-1| < 1\}$ and let F be an analytic continuation of f along a curve from 1 to -1. Show that F(-1) is either i or -i.
- 8. Consider the (concentric) annulus $A := \{z \in \mathbb{C} : 1 < |z| < 2\}$. What linear fractional transformations map A to another annulus $A^* := \{z \in \mathbb{C} : r < |z a| < s\}$? **Hint:** Build the map as a composite of simpler ones.
- **9.** (a) Define: z_0 is an *n*-th order zero of the holomorphic function f.
 - (b) Define: z_0 is an essential singularity of the holomorphic function F.
 - (c) Can the poles of a holomorphic function have an accumulation point? Explain.
 - (d) Just what kind of set can be the set of poles of a meromorphic function?
 - (e) f is entire and $f(\mathbb{Z}) = 0$. Explain why $\frac{f(z)}{\sin(2\pi z)}$ is an entire function.
- **10.** Show that $\operatorname{Re}\left(\frac{e^{it}+z}{e^{it}-z}\right) = \frac{1-|z|^2}{|e^{it}-z|^2}$ and that its integral over $t \in [0,2\pi]$ is 2π if $z \in \mathbb{D}$. What is the value of this integral for $z \in \mathbb{C} \setminus \overline{\mathbb{D}}$?