CSC 211: Computer Programming Arrays, Vectors

Michael Conti

Department of Computer Science and Statistics University of Rhode Island

Spring 2023

Question

• Write a program that reads in 3 values and outputs the same values in reverse order

• Write a program that reads in **n** values and outputs the same values in reverse order

Arrays

- An array is a **contiguous** sequence of elements of the **same type**
- Each element (data in array) can be accessed using its **index**

```
array name: A array length: n
```


all elements of the same data type

Declaration

```
// array declaration by specifying size
int myarray1[100];

// can also declare an array of
// user specified size
int n = 8;
int myarray2[n];

// can declare and initialize elements
double arr[] = { 10.0, 20.0, 30.0, 40.0 };
// compiler figures the right size

// a different way
int arr[5] = { 1, 2, 3 };
// compiler creates an array of length 5 and
// initializes first 3 elements
```

http://pythontutor.com/cpp.html

Initialization and indexing

- · Elements in an array must be initialized before use
 - √ otherwise, their initial values are **undetermined**
 - can use a loop to initialize values or std::fill()
- Individual elements can be accessed by using the subscription operator []

```
int array[4];
array[0] = 5;
array[1] = array[0] + 10;
array[2] = array[1] + 20;
array[3] = array[2] + 30;
```

```
    0
    1
    2
    3

    5
    15
    35
    65
```

Trace the code

```
C++ (gcc 4.8, C++11)

EXPERIMENTAL! known bugs/limitations

1 int main() {

→ 2 int val = 0;
3 int array[10];

4

5 for (int i = 0; i < 10; i++) {
6 val += 50;
7 array[i] = val;
8 }

9

10 return 0;
11 }
```


Out of bounds?

• There is no **out of bounds** checking at compile time

✓ unexpected output

A[9] ?

			0	Τ		3	4	5	О	/		
?	?	?	10	20	50	100	70	50	30	5	?	

What is the output?

```
#include <iostream>
int main() {
    int myarray[5];
    for (int i = 0 ; i < 5 ; i++) {
        myarray[i] = i;
    }
    for (int i = -10 ; i < 10 ; i++) {
        std::cout << myarray[i] << ' ';
    }
    std::cout << '\n';
    return 0;
}</pre>
```

Computer memory

- A **memory address** is a reference to a specific memory location
- Memory addresses are fixed-length sequences of digits (hexadecimal codes)
- Word-oriented memory organization (word size 32-bit in this illustration)

0×00000000	
0x00000004	
0×00000008	
0×0000000C	
0×00000010	
0×00000014	
0×00000018	
0xFFFFFFEC	
0xFFFFFF6	
0xFFFFFFF4	
0xFFFFFF8	
0xFFFFFFC	

address content

Computer memory (example)

```
int main() {
    int a = 4;
    int i = 0;
    double b = 10;
    int arr[5];

    for (; i < 5 ; i++) {
        arr[i] = i * 100;
    }

    return 0;
}</pre>
```

Assuming 32-bit words

•••			
0x91340A04			
0x91340A08	4		
0x91340A0C	5		
0x91340A10	10		
0x91340A14	10		
0x91340A18	0		
0x91340A1C	100		
0x91340A20	200		
0x91340A24	300		
0x91340A28	400		
0×91340A2C			
0×91340A30			
0x91340A34			

https://en.wikipedia.org/wiki/Random-access_memory

11

Passing arrays to functions

- · When specifying the parameter, use **empty brackets**
- When providing the argument, use the **array name**
 - ✓ need to pass the **array length** separately

```
void zeros(int a[], int n) {
    for (int i = 0; i < n; i ++) {
        a[i] = 0;
    }
}
int main() {
    int array[5];
    zeros(array, 5);
    // do stuff
}</pre>
```

Base address

- Base address is the memory location of the first element in an array
 - base address of arr is 0x91340A18 (previous example)
- When passing arrays to functions, the base address of the array is passed to the formal parameter

0x91340A04		
0x91340A08	4	
0x91340A0C	5	
0×91340A10	10	
0x91340A14	10	
0x91340A18	0	
0x91340A1C	100	
0x91340A20	200	
0x91340A24	300	
0x91340A28	400	
0x91340A2C		
0×91340A30		
0x91340A34		
•••		

Base address

Passing arrays to functions

http://pythontutor.com/cpp.html

Vectors

Vectors

- Data structor for organizing elements
- * # include <vector>

```
// declare
std::vector<int> myVector;

// initializer list (c++17)
std::vector<int> vector1 = {1, 2, 3, 4, 5};
```

13

Declaration

```
// declare
std::vector<int> myVector;

// initializer list (c++17)
std::vector<int> vector1 = {1, 2, 3, 4, 5};
```

Important Methods

```
//declare vector without size
std::vector<int> myVector;
//declare vector with size
std::vector<int> myVector(20);
//add element into vector
myVector.push_back(5);
//add element into vector
myVector[0] = 5;
//access vector (with bound checking)
myVector.at(0);
//access vector (without bound checking)
myVector[0];
//change vector element
myVector[0] = 10;
//remove element into vector
myVector.pop_back();
```

19

Question

• Write a function that receives an array of integers and reverses the contents of the array

Question

• Write a function that receives an array and returns the smallest element in that array.

21