k-Nearest Neighbor Learning

DS2500: Intermediate Programming with Data

What is machine learning?

- Can we really make our machines (computers) learn?
- "Secret sauce" is data, and lots of it
- Rather than programming expertise into our applications, we program them to learn from data
- Build working machine-learning models then use them to make remarkably accurate predictions

Prediction

- Improve weather forecasting to save lives, minimize injuries and property damage
- Improve cancer diagnoses and treatment regimens to save lives
- Improve business forecasts to maximize profits and secure people's jobs
- Detect fraudulent credit-card purchases and insurance claims
- Predict customer "churn", what prices houses are likely to sell for, ticket sales of new movies, and anticipated revenue of new products and services
- Predict the best strategies for coaches and players to use to win more games and championships
- All of these kinds of predictions are happening today with machine learning.

Machine Learning Approaches

Classification

Identifying which category an object belongs to.

Applications: Spam detection, image

recognition.

Algorithms: SVM, nearest neighbors,

random forest, and more...

Regression

Predicting a continuous-valued attribute associated with an object.

Applications: Drug response, Stock

prices.

Algorithms: SVR, nearest neighbors,

random forest, and more...

Clustering

Automatic grouping of similar objects into sets.

Applications: Customer segmentation,

Grouping experiment outcomes

Algorithms: k-Means, spectral cluster-

ing, mean-shift, and more...

Popular Machine Learning Applications

Anomaly detection	Data mining social media (like Facebook, Twitter, LinkedIn)	Predict mortgage loan defaults
Chatbots	Detecting objects in scenes	Natural language translation (English to Spanish, French to Japanese, etc.)
Classifying emails as spam or not spam	Detecting patterns in data	Recommender systems ("people who bought this product also bought")
Classifying news articles as sports, financial, politics, etc.	Diagnostic medicine	Self-Driving cars (more generally, autonomous vehicles)
Computer vision and image classification	Facial recognition	Sentiment analysis (like classifying movie reviews as positive, negative or neutral)
Credit-card fraud detection	Handwriting recognition	Spam filtering
Customer churn prediction	Insurance fraud detection	Time series predictions like stock-price forecasting and weather forecasting
Data compression	Intrusion detection in computer networks	Voice recognition
Data exploration	Marketing: Divide customers into clusters	

Machine Learning Recipe

5.1,3.8,1.6,0.2,Iris-setosa 4.6,3.2,1.4,0.2,Iris-setosa 5.3,3.7,1.5,0.2,Iris-setosa 5.0,3.3,1.4,0.2,Iris-setosa 7.0,3.2,4.7,1.4,Iris-versicolor 6.4,3.2,4.5,1.5,Iris-versicolor 6.9,3.1,4.9,1.5,Iris-versicolor 5.5,2.3,4.0,1.3, Iris-versicolor

> load data

transform

training & test split

model building

model tuning

Euclidean Distance

Attribute	Person A	Person B
Age	23	40
Years at current address	2	10
Residential status (1=Owner, 2=Renter, 3=Other)	2	1

$$d(A, B) = \sqrt{(23 - 40)^2 + (2 - 10)^2 + (2 - 1)^2}$$

\$\approx 18.8\$

Distance metrics

Some frequently used distance functions.

Camberra:

$$d(x, y) = \sum_{i=1}^{m} \frac{x_i - y_i}{x_i + y_i}$$

$$d(x, y) = \sum_{i=1}^{m} \frac{|x_i - y_i|}{|x_i + y_i|}$$
Minkowsky:
$$d(x, y) = \left(\sum_{i=1}^{m} |x_i - y_i|^r\right)^{r}$$
Chebychev:
$$d(x, y) = \max_{i=1}^{m} |x_i - y_i|$$

$$d(x, y) = \max_{i=1}^{m} |x_i - y_i|$$

(4)

Euclidean:

(2)
$$d(x,y) = \sqrt{\sum_{i=1}^{m} (x_i - y_i)^2}$$
 Manhattan / city - block :
$$d(x,y) = \sum_{i=1}^{m} |x_i - y_i|$$
 (6)

$$d(x, y) = \sum_{i=1}^{m} |x_i - y_i|$$
 (6)

Euclidean Distance on Iris Dataset

$$diff = \sqrt{(\Delta Slen)^2 + (\Delta Swid)^2 + (\Delta Plen)^2 + (\Delta Pwid)^2}$$

Slen = Sepal Length

Swid = Sepal Width

Plen = Petal Length

Pwid = Petal Width

A more general distance measure

$$diff = w_1 |\Delta A_1|^r + w_2 |\Delta A_2|^r + ... + w_n |\Delta A_n|^r$$

where

 ΔA_i is the difference with respect to feature i,

 w_k is a feature weighting factor (0.0 to 1.0), and

r is an exponent (> 0.0)

Multiple classes

Source: https://laptrinhx.com/k-nearest-neighbors-unlocked-454254569/

Why 1-NN makes mistakes on the iris dataset

Overfitting

Justifying the k-value

Intelligibility

"The movie Billy Elliot was recommended based on your interest in Amadeus, The Constant Gardener and Little Miss Sunshine"

Amazon: Customers with similar searches purchased....

Amazon: Related to Items You've Viewed.....

We declined your mortgage application because you remind us of the Smiths and the Mitchells, who both defaulted."

Efficiency Issues

Training: very fast (simply store the instances)

Classification: Finding k nearest neighbors requires computing distance to each instance, and sorting \rightarrow **O**(n log n) for each instance.

Reduced to $O(kn) \sim O(n)$ if k is small using selection by partial sorting.

```
function select(list[1..n], k)
  for i from 1 to k
    minIndex = i
    minValue = list[i]
    for j from i+1 to n do
        if list[j] < minValue then
            minIndex = j
            minValue = list[j]
        swap list[i] and list[minIndex]
  return list[k]</pre>
```


KD-Trees

Using the distance bounds and the bounds of the data below each node, we can prune parts of the tree that could NOT include the nearest neighbor.

Heterogeneous Attributes

Attribute	Person A	Person B
Sex	Male	Female
Age	23	40
Years at current address	2	10
Residential status (1=Owner, 2=Renter, 3=Other)	2	1
Income	50,000	90,000

Handling categorical attributes:

- 1. Ignore?
- 2. Convert to numbers?
- 3. Cosine similarity?

The k-NN algorithm

Algorithm:

Suppose you have a training data of size D with d samples, and t is a new test sample.

- 1. Select a value of K, which is the value of the nearest neighbors to be used in the computation of the algorithm.
- 2. For i=0 to d; find the distance of the test point from every point in the training data set.
- 3. Make a set S of the K smallest distances.
- 4. Return the majority label from set S.

Curse of Dimensionality

Since all attributes contribute to the distance calculations, instance similarity can be confused and misled by the presence of too many irrelevant attributes.

Precision and Recall / Sensitivity and Specificity

10 photos, 7 dogs

Perfect Classification:

		True/Actual		
		Positive (😭)	Negative	
Pred	Positive (😫)	7	0	
Predicted	Negative	0	3	

Source: https://towardsdatascience.com/multi-class-metrics-made-simple-part-i-precision-and-recall-9250280bddc2

Imperfect Classification

		True/Actual		
		Positive (😭)	Negative	
Pred	Positive (😭)	5 (TP)	1 (FP) Type I Error	
Predicted	Negative	2 (FN) Type II Error	2 (TN)	

Accuracy: What proportion of photos are correctly classified? Accuracy = (TP + TN) / (TP + TN + FP + FN) = 7 / 10 = 70.0%

Imperfect Classification: Sensitivity

Sensitivity: What proportion of **dogs** (*positives*) are identified? **Sensitivity** = TP / (TP + FN) = TP / T = 5 / (5 + 2) = 71.4% a.k.a. **Recall**

Imperfect Classification: Specificity

	ecificity: Don't assify cats as dogs!	True/Actual		
	•	Positive (😭)	Negative	
Pred	Positive (😭)	5 (TP)	1 (FP) Type I Error	
Predicted	Negative	2 (FN) Type II Error	2 (TN)	

What proportion of the cats (negatives) are identified?

Specificity =
$$TN / (TN + FP) = 2 / (1 + 2) = 66.7\%$$

Specificity = 1 – False Positive Rate

Imperfect Classification

	recision: Identify ogs	True/Actual	
		Positive (😝)	Negative
Pred	Positive (😭)	5 (TP)	1 (FP) Type I Error
Predicted	Negative	2 (FN) Type II Error	2 (TN)

Precision: What proportion of *predicted dogs (positives)* are truly dogs?

$$Precision = TP / (TP + FP) = TP / P = 5 / (5 + 1) = 83.3\%$$

Multiple classes

		True/Actual			
		Cat (🐷)	Fish (��)	Hen (4)
Pr	Cat (🐯)	4		6	3
Predicted	Fish (��)	1		2	0
ed	Hen (﴿)	1		2	6

pr	ecision	recall	f1-score
Cat	0.308	0.667	0.421
Fish	0.667	0.200	0.308
Hen	0.667	0.667	0.667

Cat: Precision = 4 / 13 = 0.308, Recall = 4 / 6 = 0.667

Fish: Precision = 2/3 = 0.667, Recall = 2/10 = 0.200

Hen: Precision = 6/9 = 0.667, Recall = 6/9 = 0.667

Medical Testing

How does this impact patient care and public policy?

Recall/Precision and Sensitivity/Specificity

Perfect recall / sensitivity (TP/P):

Everyone truly sick is detected.

Poor precision (TP/(TP+FP)):

Few of the positives are really sick.

Poor specificity (TN/N):

Many healthy people are test positive.

Poor recall / sensitivity:

Many sick people aren't detected.

Perfect precision:

Every positive is truly sick.

Perfect specificity:

All healthy people test negative.

Recall/Precision and Sensitivity/Specificity

Perfect recall / sensitivity (TP/P):

Everyone truly sick is detected.

Poor precision (TP/(TP+FP)):

Few of the positives are really sick.

High specificity (TN/N):

Most healthy people are test negative.

Good recall / sensitivity:

Most sick people are detected positive.

Good precision:

Most positives are really sick.

Good specificity:

Most healthy people test negative

Precision or Recall? It depends.

Covid-19 Testing:

- → High recall / sensitivity → We detect most patients with Covid (screening)

 High precision → A high proportion of positives are truly sick
- → High specificity → A high proportion of negatives are indeed healthy (diagnosis)

Movie Recommendations:

High recall / sensitivity → We recommend most movies a user would like

→ High precision → Most recommendations are indeed liked

High specificity → Most movies not recommended would not be liked

Output

Description:

Ou

Search Engines / Information Retrieval

High recall / sensitivity → Find all relevant information

★ High precision → Most hits are relevant
High specificity → Most ignored information is not relevant

F1 - Score

Classifier A: precision > recall

Classifier B: recall > precision

Which is better?

The F1-Score is a way of combining precision and recall into a single overall score:

F1-score = $2 \times (precision \times recall)/(precision + recall)$

Combining F1-Scores

		True/Actual		
		Cat (🐯)	Fish (��)	Hen (4)
Pr	Cat (👹)	4	6	3
Predicted	Fish (¶)	1	2	0
ed	Hen (🐴)	1	2	6

Class	Precision	Recall	F1-score
Cat	30.8%	66.7%	42.1%
Fish	66.7%	20.0%	30.8%
Hen	66.7%	66.7%	66.7%

Macro-F1 = (42.1% + 30.8% + 66.7%) / 3 = 46.5%

Weighted-F1 = $(6 \times 42.1\% + 10 \times 30.8\% + 9 \times 66.7\%) / 25 = 46.4\%$

Iris Classification Report

	Setosa	Virginica	Versicolor
Setosa	50	0	0
Virginica	0	47	3
Versicolor	0	3	47

Classification	Report:			
	precision	recall	f1-score	support
setosa	1.000	1.000	1.000	50
versicolor	0.940	0.940	0.940	50
virginica	0.940	0.940	0.940	50
accuracy			0.960	150
macro avg	0.960	0.960	0.960	150
weighted avg	0.960	0.960	0.960	150

Limitations of F1-Score

Main problem: The F1-Score gives equal weight to Precision and Recall

A more general F score, F_{β} , that uses a positive real factor β , where β is chosen such that recall is considered β times as important as precision, is:

$$F_{eta} = (1 + eta^2) \cdot rac{ ext{precision} \cdot ext{recall}}{(eta^2 \cdot ext{precision}) + ext{recall}}.$$

General Distance Measure

$$diff = w_1 |\Delta A_1|^r + w_2 |\Delta A_2|^r + ... + w_n |\Delta A_n|^r$$

where

 ΔA_i is the difference with respect to feature i,

 w_k is a feature weighting factor (0.0 to 1.0), and

r is an exponent (> 0.0)

Can we evolve an optimal distance metric?

 $diff = w_1 |\Delta A_1|^r + w_2 |\Delta A_2|^r + \dots + w_n |\Delta A_n|^r$

where

 ΔA_i is the difference with respect to feature i,

 w_k is a feature weighting factor (0.0 to 1.0), and

r is an exponent (> 0.0)

A <u>solution</u> consists of a specification of the distance metric parameters: $w_1...w_n$, r, k (# of nearest neighbors). So n+2 parameters altogether.

We evaluate the solution by testing it against a dataset and finding:

- 1 classification accuracy (error rate)
- 1 macro-F1 / weighted-F1
- # of weights > 0
- 1 macro-precision / weighted-precision?
- 1 macro-recall / weighted-recall?

Tweaking / modifying a solution

Tradeoffs

Tweaking / modifying a solution

Predicting recurrence of breast cancer

Breast Cancer Wisconsin (Prognostic) Data Set Download: Data Folder, Data Set Description

Abstract: Prognostic Wisconsin Breast Cancer Database

Data Set Characteristics:	Multivariate	Number of Instances:	198	Area:	Life
Attribute Characteristics:	Real	Number of Attributes:	34	Date Donated	1995-12-01
Associated Tasks:	Classification, Regression	Missing Values?	Yes	Number of Web Hits:	224238


```
predicted
              R
        N
actual
   N [[151
              0]
              3]]
       [ 44
                     precision
                                    recall
                                            f1-score
                                                         support
                  N
                       0.77436
                                   1.00000
                                              0.87283
                                                              151
                  R
                       1.00000
                                  0.06383
                                              0.12000
                                                               47
                                              0.77778
                                                              198
          accuracy
                       0.88718
                                  0.53191
                                              0.49642
                                                             198
         macro avg
     weighted avg
                       0.82792
                                  0.77778
                                              0.69413
                                                              198
```

discarded	accuracy	recall	precision	weights	R	Κ
32	0.76263	0.50000	0.38131	000000000000000000000000000000000000000	2.0085	3
31	0.74747	0.59264	0.62700	000000000000000000000000000000000000000	2.1085	4
31	0.73232	0.62667	0.62858	000000000000000000000000000000000000000	2.1085	1
30	0.73232	0.64133	0.63554	000000001000000000000000000000000000000	1.0264	2
31	0.75758	0.59194	0.64133	00000000000000000000001000000000	2.0085	5
31	0.76768	0.59124	0.66087	00000000001000000000000000000000	2.6851	5
31	0.76768	0.54727	0.66310	0000000000000010000000000000000	2.0085	8
31	0.76768	0.53995	0.66667	000000000000000100000000000000000	2.0085	10
30	0.77778	0.63449	0.68437	000000001000000000000000000000000000000	1.0537	3
30	0.79293	0.62977	0.72055	000000010000000000000000000000000000000	1.1662	5
29	0.79798	0.66972	0.72121	0000000010000000000000001000010	1.7124	3
30	0.78788	0.58983	0.73224	000000001000000000000000000000000000000	1.4039	7
31	0.77273	0.52860	0.76160	00000000001000000000000000000000	2.0223	22
29	0.81313	0.64302	0.78511	000001010000000000000000000000000000000	1.0179	9
30	0.79798	0.58912	0.80749	000000010100000000000000000000000	2.9913	7
30	0.79293	0.57116	0.83224	000000001000000000000000000000000000000	2.7197	8
31	0.76768	0.51064	0.88325	0000000000000000010000000000000	2.2906	17
30	0.77778	0.53191	0.88718	0010000000000000000010000000000	2.1623	19

predicted N R N [[138 13] お R [27 20]]

R=1.7, K=3, Features = 3

[27 20]]	precision	recall	f1-score	support
N R	0.83636 0.60606	0.91391 0.42553	0.87342 0.50000	151 47
accuracy macro avg weighted avg	0.72121 0.78170	0.66972 0.79798	0.79798 0.68671 0.78478	198 198 198

0.675 [[123 [25 28] 0.650 2211 0.625 0.600 0.575 0.550 0.525 0.500 -0.5 0.6 0.7 0.8 0.9 precision

Recall: What fraction of the recurring cancers are we detecting (predicted to recur)? (20 / 47 = 0.42553)

Precision: What fraction of those cancers predicted to recur actually recurred? (20 / 33 = 0.60606)

actual	N R	predic N [[151 [44	eted R 0] 3]]				
Ø				precision	recall	f1-score	support
			N R	0.77436 1.00000	1.00000 0.06383	0.87283 0.12000	151 47
			curacy ro avg ed avg	0.88718 0.82792	0.53191 0.77778	0.77778 0.49642 0.69413	198 198 198
	R=2.3, K=17, Features = 1						

