BLURTHE BABY!

Harold Kim & Mary Zhuo Ke

What is the Problem?

Data Privacy

for Infants and Children of Parents who share their data with research institutions

- In 2016, Feinstein Institute for Medical Research was fined \$3.9 Million for disclosing identifying data and violating HIPAA.
- https://www.hhs.gov/hipaa/for-professionals/compliance-enforcement/agreements/feinstein/index.html

Data Sharing for Collaborative Research

- Identifiable data cannot be shared easily, limiting further research on data types that can be better informed by video recordings
- Consent forms given to participants/patients are not intuitive, leading to sharing without full awareness of the risks.

How will we solve it?

Blur the Baby!

- Takes video recordings of infants/children
- Detects identifiable faces with assessment of overall accuracy
- Blurs faces frame by frame
- Compiles a de-identified video that is safer to share in the research community.

Why videos?

- They take up a lot of space, so extracting features in tabular form would save a lot of cost and storage (secondary goal to de-identification).
- They have more complexities that pose a challenge to evaluate compared to photos (e.g., animations, transitions from frame to frame, blurred movements), which makes it a great deep learning problem.

What will Blur the Baby achieve?

- Protect privacy of minors who are not able to give consent yet,
 thus reducing their risk of privacy concerns when they are older.
- Increase trust from study participants that their data is handled securely
- Motivate ways to improve privacy consent without completely discarding valuable data.
- Enable privacy-informed data sharing by removing the identifiable piece of video recording data so that researchers can use other elements of the data.
- Stress-test existing tools, find essential areas of improvement

Affordably Efficient

100% Accuracy

What kind of solution do we need?

There shouldn't be a high cost to data privacy. If we can propose a solution that doesn't take too much time and heavy resources, that would be ideal.

The **solution should scale**, so if you have 1M videos, you don't want it to take forever.

We **can't** have partially blurred videos, so we need to aim for 100% accuracy.

What's the point of de-identification if one of the frames has an exposed face?

Solutions available today

17 Detections vs 44 Detections

Haar Cascade

YuNet

https://opency.org/blog/opency-face-detection-c ascade-classifier-vs-yunet/

YuNet

Wu, W., Peng, H. & Yu, S. YuNet: A Tiny Millisecond-level Face Detector. Mach. Intell. Res. 20, 656-665 (2023). https://doi.org/10.1007/s11633-023-1423-V

- CNN-based
- trained on WIDER FACE dataset
- lightweight, great for edge devicesfocuses on small faces that are hard to detect
- tiny feature pyramid network

RetinaFace

RetinaFace: Single-shot Multi-level Face Localisation in the Wild

https://medium.com/analytics-vidhya/exploring-other-facedetection-approaches-part-1-retinaface-9boof453fd15

- trained on WIDER FACE dataset
- ResNet, MobileNet using pretrained ImageNet
- computationally intense
- uses comprehensive techniques that help estimate 3D attributes too
- focuses on accuracy at multiple scales

Face Detection Output Data

- Face features:
 - left eye
 - right eye
 - nose

 - left edge of mouthright edge of mouth
- bounding box of the face
- confidence score in face detection

https://github.com/opencv/opencv zoo/t ree/main/models/face detection yunet

BTB (Blur The Baby) model

Intersection and Union Ensemble Model of YuNet and RetinaFace

Datasets

WIDER FACE validation data

- Focused on validation datasets of the Family Group photos
- Ground truth labels of number of faces per photo
- http://shuoyang1213.me/WIDER FACE/

Brainy Baby Video

- Videos of babies and toddlers that are for public use
- https://archive.org/about/
- Used cv2 python library
- Breakdown .mp4 video into individual frames
 - 30 frames per second video
 - 14,500+ frames used
- Over 15 different baby faces, 10 different toddler faces, and 5 different adult faces
- Multiple orientations and occluded faces

Assessment of models using WIDER FACE validation dataset

Quick sanity check: WIDER FACE validation data

Metric	YuNet	RetinaFace	YuNet + RetinaFace
Number of Images	58	58	58
Time to Blur	1.71 seconds	27.85 seconds	29.49 seconds
Accuracy	Accuracy 36.21%		77.59%

We see that **RetinaFace outperformed** for **WIDER FACE validation photos**, as expected, but, this might have something to do with WIDER FACE dataset not being enough of a challenge, like we mentioned.

So let's take it up a notch...

BTB (Blur The Baby) w/YuNet as first pass and RetinaFace as second pass

that takes 1/3 of the time.

Assessment of BTB using Brainy Baby Video

CHALLENGE CASE: BABY VIDEO

Metric	YuNet	RetinaFace	BTB w/ Intersection and Union	BTB w/ YuNet as first pass and RetinaFace as second pass
Number of Frames (with and without human faces)	14,434	14,434	14,434	14,434
Number of Faces (Human or Not) Detected	11,066	15,456	15,479	~15,400
Time to Blur	5.95 minutes	2.72 hours	2.75 hours	1 hour

Cases YuNet misses

Cases RetinaNet misses

Video
Demonstration
of Final Output
Video
(30 seconds)

Future work that could enable better solutions

- Having more face datasets that are labeled to enable better training and assessment of accuracy
- Handle transitions/animations more robustly as videos increase the variations of orientations/scales, especially if it were 60 fps.
- More efficient ways to construct 3D poses in order to differentiate faces of people from those of animals, objects, portraits

References

- 1. Yang, S., Luo, P., Loy, C. C., & Tang, X. (2016). WIDER FACE: A face detection benchmark. *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 5525–5533. http://shuoyang1213.me/WIDERFACE/
- 2. Wu, W., Peng, H. & Yu, S. YuNet: A Tiny Millisecond-level Face Detector. Mach. Intell. Res. 20, 656–665 (2023). https://doi.org/10.1007/s11633-023-1423-y
 - a. https://github.com/opencv/opencv_zoo/blob/main/models/face_detection_yunet_zoz3mar.onnx (need to download this model)
 - b. Support from chatGPT to help understand YuNet.
- 3. J. Deng, J. Guo, E. Ververas, I. Kotsia and S. Zafeiriou, "RetinaFace: Single-Shot Multi-Level Face Localisation in the Wild," 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 2020, pp. 5202-5211, doi: 10.1109/CVPR42600.2020.00525.
 - a. Support from chatGPT to help understand RetinaFace.
- 4. Baby video dataset: https://archive.org/details/BrainyBabyShapesandColors