

Teoria dos Grafos Unidade 3 - Grafos Hamiltonianos

Prof. Aparecido V. de Freitas Doutor em Engenharia da Computação pela EPUSP aparecidovfreitas@gmail.com

Bibliografia

- Fundamentos da Teoria dos Grafos para Computação M.C. Nicoletti, E.R. Hruschka Jr. 3ª Edição LTC
- Grafos Teoria, Modelos, Algoritmos Paulo Oswaldo **Boaventura** Netto, 5ª edição
- Grafos Conceitos, Algoritmos e Aplicações Marco Goldbarg, Elizabetj Goldbarg, Editora Campus
- A first look at Graph Theory John Clark, Derek Allan Holton 1998, World Cientific
- Introduction to Graph Teory Robin J. **Wilson** 4th Edition Prentice Hall 1996
- Introduction to Graph Theory Douglas West Second Edition 2001 Pearson Edition
- Mathematics A discrete Introduction Third Edition Edward R. Scheinerman 2012
- Discrete Mathematics and its Applications Kenneth H. Rosen 7th edition McGraw Hill 2012
- Data Structures Theory and Practice A. T. Berztiss New York Academic Press 1975 Second Edition
- Discrete Mathematics R. **Johnsonbaugh** Pearson 2018 Eighth Edition
- Graoy Theory R. Diestel Springer 5th Edition 2017
- Graph Theory Theory and Problems of Graph Theory V. Balakrishnan Schaum's Outline McGraw Hill 1997

Grafos Hamiltonianos

- ✓ Dado um grafo G, um Caminho Hamiltoniano em G é um caminho que contém todo vértice de G;
- ✓ Dado um grafo G, um Ciclo Hamiltoniano é um ciclo que contém todo vértice de G;
- ✓ Um grafo G é chamado **Grafo Hamiltoniano** se tiver um **ciclo hamiltoniano**;

Lembrando... Passeio , Trilha e Caminho

Vértice inicial u Vértice final v	u ≠ v	u = v
PASSEIO Nenhuma restrição quanto ao número de vezes que um vértice ou aresta pode aparecer	PASSEIO ABERTO	PASSEIO FECHADO
Trilha Nenhuma aresta pode aparecer mais de uma vez	TRILHA ABERTA	TRILHA FECHADA ou CIRCUITO
CAMINHO Nenhum vértice pode aparecer mais de uma vez, com a possível exceção de que u e v podem ser o mesmo vértice	CAMINHO ABERTO	CAMINHO FECHADO OU CICLO

✓ Dado um grafo **G**, um **Caminho Hamiltoniano** em **G** é um **caminho** que contém todo vértice de **G**;

Grafo G1

√ G1 NÃO contém Caminho Hamiltoniano;

✓ Dado um grafo **G**, um **Caminho Hamiltoniano** em **G** é um **caminho** que contém todo vértice de **G**;

Grafo G2

- √ G2 contém o Caminho Hamiltoniano (V₄ V₁ V₂ V₃);
- ✓ G2 NÃO contém Ciclo Hamiltoniano (ou Circuito Hamiltoniano);

✓ Dado um grafo **G**, um **Caminho Hamiltoniano** em **G** é um **caminho** que contém todo vértice de **G**;

Grafo G3

- √ G3 contém o Caminho Hamiltoniano (V₁V₂ V₅ V₄ V₃);
- √ G3 NÃO contém Ciclo Hamiltoniano (ou Circuito Hamiltoniano);

✓ Dado um grafo **G**, um **Caminho Hamiltoniano** em **G** é um **caminho** que contém todo vértice de **G**;

Grafo G4

✓ G4 contém Ciclo Hamiltoniano (ou Circuito Hamiltoniano) (V₁ V₂ V₃ V₄ V₁);

✓ Dado um grafo **G**, um **Caminho Hamiltoniano** em **G** é um **caminho** que contém todo vértice de **G**;

Grafo G5

✓ G5 contém Ciclo Hamiltoniano (ou Circuito Hamiltoniano) (V₁ V₅ V₂ V₃ V₄ V₁);

Grafo Hamiltoniano Observação

- ✓ Dado qualquer grafo hamiltoniano **G**, se **G*** é um supergrafo de **G**, obtido por meio da adição de novas arestas entre vértices de **G**, **G*** também será hamiltoniano, uma vez que qualquer ciclo hamiltoniano em **G** continuará sendo ciclo hamiltoniano em **G***.
- ✓ Exemplo: Considere o grafo G, mostrado na Figura abaixo, e seu supergrafo G*, obtido por meio da adição das arestas e₅ e e₆.

Grafo Hamiltoniano Observação

 \checkmark O Ciclo Hamiltoniano ($V_1 V_2 V_3 V_4 V_1$) em G continua sendo um Ciclo Hamiltoniano em G*.

- ✓ Um grafo simples G é chamado não hamiltoniano maximal se não for hamiltoniano, mas a adição a ele de qualquer aresta conectando dois vértices não adjacentes forma um grafo hamiltoniano;
- ✓ Lembrando, um grafo é chamado **simples** se não tem loops, nem arestas paralelas;

- √ O grafo simples G1 não é hamiltoniano;
- ✓ O grafo simples G1 é não hamiltoniano maximal, uma vez que a adição de qualquer aresta transforma G1 em G2 que é hamiltoniano; $(V_1V_2V_3V_4V_1)$
- \checkmark Com a adição de $\mathbf{e_1}$ em $\mathbf{G1}$, obtem-se $\mathbf{G2}$ que é hamiltoniano.

Grafo não hamiltoniano maximal Exemplo

- √ O grafo simples G1 não é hamiltoniano;
- ✓ O grafo simples G1 é não hamiltoniano maximal, uma vez que a adição de qualquer aresta transforma G1 em G2 que é hamiltoniano; (V₂V₁V₃V₄V₂)
- ✓ Com a adição de e₂ em G1, obtem-se G3 que é hamiltoniano.

Grafo não hamiltoniano maximal Contra-Exemplo

- √ O grafo simples G1 não é hamiltoniano;
- ✓ Com a adição de $\mathbf{e_1}$ em $\mathbf{G1}$, obtem-se $\mathbf{G2}$ que é hamiltoniano. $(\mathbf{V_1}\mathbf{V_2}\mathbf{V_4}\mathbf{V_3}\mathbf{V_1})$
- ✓ Por outro lado, se a aresta e₂ for adicionada ao grafo G1, o grafo resultante G2 não é hamiltoniano.
- ✓ Portanto, não é adição de qualquer aresta que torna **G1** hamiltoniano, o que faz com que **G1** não possa ser caracterizado como **não hamiltoniano maximal**.

Exercício

- ✓ O grafo da Figura abaixo é não hamiltoniano maximal ?
- ✓ Ou seja, a adição de qualquer aresta entre vértices não adjacentes irá redundar um grafo Hamiltoniano?

QualitSys

Grafo não hamiltoniano maximal

Exercício

- ✓ O grafo da Figura abaixo é não hamiltoniano maximal ?
- ✓ Ou seja, a adição de qualquer aresta entre vértices não adjacentes irá redundar um grafo Hamiltoniano?

✓ Adicionando-se a aresta V₃V₄, obtém-se o Ciclo Hamiltoniano V₁V₂V₆V₅V₄V₃V₁

QualitSys

Exercício

- ✓ O grafo da Figura abaixo é não hamiltoniano maximal ?
- ✓ Ou seja, a adição de qualquer aresta entre vértices não adjacentes irá redundar um grafo Hamiltoniano?

✓ Adicionando-se a aresta V₄V₁, obtém-se o **Ciclo Hamiltoniano V**₁V₂V₃V₆V₅V₄**V**₁

QualitSys

Exercício

- ✓ O grafo da Figura abaixo é não hamiltoniano maximal ?
- ✓ Ou seja, a adição de qualquer aresta entre vértices não adjacentes irá redundar um grafo Hamiltoniano?

✓ Adicionando-se a aresta V₅V₂, obtém-se o **Ciclo Hamiltoniano V**₁V₂V₅V₄V₆V₃**V**₁

Exercício

- ✓ O grafo da Figura abaixo é não hamiltoniano maximal ?
- ✓ Ou seja, a adição de qualquer aresta entre vértices não adjacentes irá redundar um grafo Hamiltoniano?

✓ Adicionando-se a aresta V₅V₃, obtém-se o Ciclo Hamiltoniano V₁V₂V₆V₄V₅V₃V₁

QualitSys

Grafo não hamiltoniano maximal

Exercício

- ✓ O grafo da Figura abaixo é não hamiltoniano maximal ?
- ✓ Ou seja, a adição de qualquer aresta entre vértices não adjacentes irá redundar um grafo Hamiltoniano?

✓ Adicionando-se a aresta V₅V₃, obtém-se o Ciclo Hamiltoniano V₁V₅V₄V₆V₂V₃V₁

Grafo não hamiltoniano maximal Exercício

- ✓ O grafo da Figura abaixo é não hamiltoniano maximal ?
- ✓ Ou seja, a adição de qualquer aresta entre vértices não adjacentes irá redundar um grafo Hamiltoniano?

✓ Adicionando-se a aresta V₂V₄, obtém-se o Ciclo Hamiltoniano V₁V₂V₄V₅V₆V₃V₁

21

Grafo não hamiltoniano maximal Conclusão

✓ Em razão do Processo de Construção passo a passo descrito nos slides anteriores, observa-se que o grafo G apresentado é Não Hamiltoniano Maximal, uma vez que adicionando-se qualquer aresta entre vértices não adjacentes produz-se um novo Grafo que é Hamiltoniano!

É Não Hamiltoniano Maximal

Teorema de Dirac

✓ Seja G = (V,E) um grafo simples com n vértices, $n \ge 3$. Se para todo vértice $v \in V$, $d(v) \ge n/2$, então G é Hamiltoniano.

Teorema de Dirac - Exemplo

✓ Seja G = (V,E) um grafo simples com n vértices, $n \ge 3$. Se para todo vértice v ∈ V, d(v) ≥ n/2, então G é Hamiltoniano.

O Teorema de Dirac é atendido!

Portanto existe um ciclo hamiltoniano no grafo e, assim, o Grafo é hamiltoniano.

Teorema de Dirac - Observação 1

✓ Seja G = (V,E) um grafo simples com n vértices, $n \ge 3$. Se para todo vértice v ∈ V, d(v) ≥ n/2, então G é Hamiltoniano.

✓ n deve ser maior ou igual a 3, pois se tivermos apenas 2 vértices não se consegue definir um ciclo;

v1e1v2e1v1 não é ciclo!

✓ Com n>= 3, é possível construir-se um ciclo hamiltoniano:

v1e1v2e2v3e3v1 é ciclo hamiltoniano!

Teorema de Dirac - Observação 2

 \checkmark Seja **G** = (V,E) um grafo simples com **n** vértices, **n** ≥ **3**. Se para todo vértice **v** ε V, d(v) ≥ n/2, então **G** é Hamiltoniano.

✓ A condição imposta pelo Teorema de Dirac é SUFICIENTE, mas NÃO Necessária!

✓ Isso significa que podem existir **Grafos Hamiltonianos** que **não** verificam a condição d(v) >= n/2. Exemplo:

O Teorema Dirac ÑÃO é atendido!

Mas, existe um ciclo hamiltoniano no grafo e, assim, o Grafo é hamiltoniano.

v1e1v2e2v4e3v5e4v3e5v1 é ciclo hamiltoniano! Logo, o Grafo é hamiltoniano!

Teorema de Dirac - Exercício

✓ O Grafo **G** abaixo, com 7 vértices, é um **Grafo Hamiltoniano** ?

Grafo G

Teorema de Dirac - Exercício

✓ O Grafo G abaixo, com 7 vértices, é um Grafo Hamiltoniano ?

Grafo G

✓ Cálculo do Grau dos Vértices do Grafo G:

vértice	grau
V ₁	4
V ₂	4
V ₃	4
V ₄	5
V ₅	4
V ₆	5
V ₇	5

- √ Como n=7 vértices, observa-se que, a partir da tabela acima, todos os vértices têm grau acima de n/2;
- ✓ Portanto, o Grafo G acima é Hamiltoniano;
- ✓ Um exemplo de Circuito Hamiltoniando do Grafo é: $\mathbf{V_2} V_6 V_5 V_1 V_4 V_7 V_3 \mathbf{V_2}$

Teorema de Ore

- ✓ Corolário do Teorema de Dirac;
- ✓ Seja G = (V,E) um grafo simples com n vértices, $|V| = n \ge 3$. Se para cada par de vértices não adjacentes u ∈ v, u ∈ V ∈ v ∈ V, d(u) + d(v) ≥ n, então G é Hamiltoniano.

Exemplo:

$$d(v1) + d(v5) = 3 + 2 >= 5$$

 $d(v2) + d(v4) = 3 + 3 >= 6$
 $d(v3) + d(v5) = 3 + 2 >= 5$
 $d(v4) + d(v2) = 3 + 3 >= 5$
 $d(v5) + d(v3) = 2 + 3 >= 5$
 $d(v5) + d(v1) = 2 + 3 >= 5$

O Teorema de Ore é atendido!

Portanto existe um ciclo hamiltoniano no grafo e, assim, o Grafo é hamiltoniano.

✓ O ciclo v1e4v3e6v4e7v5e3v2e1v1 é hamiltoniano. Logo, o grafo é hamiltoniano!

Teorema de Ore - Observação

- ✓ Seja G = (V,E) um grafo simples com n vértices, $|V| = n \ge 3$. Se para cada par de vértices não adjacentes u ∈ v, u ∈ V ∈ v ∈ V, d(u) + d(v) ≥ n, então G é Hamiltoniano.
- ✓ A condição imposta pelo Teorema de Ore é SUFICIENTE, mas NÃO Necessária!

✓ Isso significa que podem existir **Grafos Hamiltonianos** que **não** verificam a condição d(u) + d(v) >= n, sendo u e v vértices quaisquer não adjacentes.

Exemplo:

$$d(v1) + d(v4) = 2 + 2 < 5$$

O Teorema Ore NÃO é atendido!

Mas, existe um ciclo hamiltoniano no grafo e, assim, o Grafo é hamiltoniano.

v1e1v2e2v4e3v5e4v3e5v1 é ciclo hamiltoniano! Logo, o Grafo é hamiltoniano!

Fechamento de um Grafo G

- ✓ Seja G = (V,E) um grafo simples;
- ✓ Se existem dois vértices não adjacentes u_1 e v_1 em V, tal que $d(u_1) + d(v_1) \ge n$ em **G**; una-os por uma aresta, formando o supergrafo **G1**;
- ✓ Se existem dois vértices não adjacentes u_2 e v_2 em **G1**, tal que $d(u_2) + d(v_2) \ge n$ em **G1**, una-os por uma aresta, formando o supergrafo **G2**;
- ✓ Continue esse processo, recursivamente, unindo pares de vértices não adjacentes, cuja soma de graus seja no mínimo n, até que não restem mais pares para serem conectados;
- ✓ O supergrafo final obtido é chamado **Fechamento** de G e é denotado por **c**(G).

$$n=6$$

$$d(V_4) = 3$$

$$d(V_5)=3$$

$$d(u_1) + d(v_1) \ge n$$

Grafo G

$$n=6$$

$$d(V_4) = 3$$

$$d(V_5)=3$$

$$d(u_1) + d(v_1) \ge n$$

$$n=6$$

$$d(V_3)=2$$

$$d(V_4)=4$$

$$d(u_1) + d(v_1) \ge n$$

$$n=6$$

$$d(V_3)=2$$

$$d(V_4)=4$$

$$d(u_1) + d(v_1) \ge n$$

Grafo G2

$$n=6$$

$$d(V_2)=2$$

$$d(V_5)=4$$

$$d(u_1) + d(v_1) \ge n$$

Grafo G2

$$n=6$$

$$d(V_2)=2$$

$$d(V_5)=4$$

$$d(u_1) + d(v_1) \ge n$$

Grafo G3

$$n=6$$

$$d(V_1) = 4$$

$$d(V_6)=2$$

$$d(u_1) + d(v_1) \ge n$$

$$n=6$$

$$d(V_1) = 4$$

$$d(V_6)=2$$

$$d(u_1) + d(v_1) \ge n$$

$$n=6$$

$$d(V_2) = 3$$

$$d(V_6) = 3$$

$$d(u_1) + d(v_1) \ge n$$

$$n=6$$

$$d(V_2) = 3$$

$$d(V_6) = 3$$

$$d(u_1) + d(v_1) \ge n$$

$$n=6$$

$$d(V_3)=3$$

$$d(V_2)=4$$

$$d(u_1) + d(v_1) \ge n$$

Grafo G5

$$n=6$$

$$d(V_3)=3$$

$$d(V_2)=4$$

$$d(u_1) + d(v_1) \ge n$$

$$n=6$$

$$d(V_3)=4$$

$$d(V_6)=4$$

$$d(u_1) + d(v_1) \ge n$$

Grafo G7 = c(G)

O Fechamento é obtido após 7 passos!

- ✓ n=7
- ✓ Para qualquer par de vértices não adjacentes de G, d(u) + d(v) < 7</p>
- ✓ Logo, tem-se c(G) = G.

Teorema de Bondy

- ✓ Um grafo simples **G** é **Hamiltoniano se e somente se** seu **Fechamento** c(G) for **Hamiltoniano**;
- ✓ Corolário: Seja **G** um grafo simples com $n \ge 3$ vértices. Se c(G) é completo, ou seja, c(G) = k_n , então **G** é **Hamiltoniano**.

O problema do Caixeiro Viajante

- ✓ Suponha um vendedor que atue em várias cidades, sendo que algumas delas são conectadas por estradas;
- ✓ O trabalho do vendedor exige que ele visite cada uma das cidades;
- ✓ É possível para ele planejar uma viagem de carro, partindo e voltando a uma mesma cidade, visitando cada uma delas exatamente uma vez?
- ✓ Se tal viagem for possível, é possível planejá-la de modo a se **minimizar** a distância total percorrida?
- ✓ Esse problema é conhecido como o "Problema do Caixeiro Viajante";

O problema do Caixeiro Viajante

- ✓ Esse problema poderia ser modelado por um Grafo G, no qual os vértices corresponderiam às cidades e dois vértices estariam unidos por uma aresta ponderada se e somente se as cidades correspondentes forem unidas por uma estrada, a qual não passa por nenhuma das outras cidades;
- ✓ O peso da aresta poderia representar a distância entre as cidades;
- ✓ O problema se resume a: "O grafo G é hamiltoniano?" Se sim, é possível construir um ciclo hamiltoniano de peso (comprimento) mínimo?
- ✓ Infelizmente, não existe um algoritmo que possa resolver esse problema em Tempo Polinomial.

Problema do Caixeiro Viajante

- √ Não existe algoritmo correto e eficiente para este problema;
- ✓ O problema é atacado com Heurísticas;
- ✓ Na **Engenharia de Computação**, busca-se criar algoritmos com <u>tempo de execução aceitável</u> e ser uma solução ótima para o problema em todas as suas instâncias;
- ✓ Um algoritmo heurístico não cumpre uma dessas propriedades, podendo ser ou um algoritmo que encontra boas soluções a maioria das vezes, <u>mas não há garantias</u> de que sempre as encontrará.

Divisor de Águas

- ✓ A complexidade Polinomial representa o divisor de águas dentre as classes de Algoritmos;
- ✓ Algoritmos polinomais são considerados tratáveis;
- ✓ Algoritmos com complexidades superiores às polinomiais são intratáveis;
- ✓ Exemplo: Caixeiro Viajante **TST** Travelling Salesman Problem.

