EXERCISE SHEET 2

CATHARINA STROPPEL

- 1. Recall that if \mathscr{A} is an abelian category, then $Z(\mathscr{A}) = \operatorname{End}(\operatorname{id})$. Show that $Z(A\operatorname{-mod}) = Z(A)$.
- 2. Show that the braid group action on $\mathcal{O}_0(\mathfrak{sl}_2)$ by shuffling functors is faithful.

(Hint: Let $T_s = \text{Cone}(\text{id} \xrightarrow{\text{adj}} \Theta_s)$). Apply this to good modules, and then show that it categorifies the regular module for $\mathbb{C}[S_2]$.)

3. Show for $A = A_{\text{conv}}^1$ in the case of the (n-1,1) nilpotent, that

$$Ae_i \otimes e_i A \xrightarrow{\text{mult}} A$$

is a tilting complex in $D^b(A)$.

- (a) Compute its action on modules.
- (b) Define an inverse of the induced derived equivalence.
- (c) Put a grading on A by setting $H^*(C_i) = H^*(\mathbb{P}^1)$ to be in degrees 0 and 2, and $H^*(C_i \cap C_j)$ to be in degree 1 if it is one-dimensional. With this grading, compute the induced action on $\mathcal{K}_0(A\text{-grmod})$.
- 4. Compute the indecomposable tilting modules $T(\lambda)$ for $\mathcal{O}_0(\mathfrak{sl}_2)$, and show that

$$T = \bigoplus_{\lambda} T(\lambda)$$

is a tilting module in the sense of Happel. Show that $Z(\mathcal{O}_0(\mathfrak{sl}_2) = Z(\operatorname{End}_g(T))$, and compute it explicitly.

- 5. Show that the braid group action factors through a Weyl group action in the cases described.
- 6. Given a highest weight category of finite global dimension, give a construction to produce modules which have Δ and ∇ flags, and show that they are tilting.

1