Predicting Heart Disease

By: Esteban Salazar

Goals:

- ★ Perform data cleaning through two methods:
 - Iterative Regression Imputation
 - Mean Value Imputation
- ★ Perform exploratory data analysis
- ★ Evaluate the performance our predictive models through two criteria:
 - Test Error Rate
 - ROC Curve and Area Under the Curve
- ★ Implications

Itinerary:

- ★ Description of data set
- ★ Methods used during the analysis
- ★ Visualize the exploratory data analysis
- ★ Evaluate the results
- ★ Discuss the findings

Data Description

- 14 Variables total, 13 potential predictors 1 binary response

Response:

heartdisease, Heart disease (True or False)

Quantitative Predictors (5 Total):

- age, Age in years
- trestbps, Resting blood pressure
- chol, Cholesterol
- thalach, Maximum heart rate obtained
- oldpeak, ST depression induced by exercise

Data Description Part II

Qualitative Predictors (5 Total):

- cp, Type of chest pain <u>4 levels</u>
- restecg, Resting electrocardiographic results <u>3 levels</u>
- slope, Slope of peak exercise segment
 3 levels
- ca, # of major vessels <u>4 levels</u>
- thal, normal, fixed defect, or reversible defect <u>3 levels</u>

Binary Predictors (3 Total):

- sex, Male **1** or Female **0**
- fbs, Fasting blood sugar > 120ml/dl
 <u>1</u> for true and <u>0</u> for false
- exang, Exercise induced angina,1 for true and 0 for false

Overview of All Possible Methods

Logistic Regression

No hyperparameters

Bagging

One hyperparameter

Random Forest

Two hyperparameters

Gradient Boosting

Three hyperparameters

KNN

One hyperparameter

LDA

No hyperparameters

QDA

No hyperparameters

Support Vector Machine

Depends...

Why These Methods?

- Logistic Regression
 - Specifically used in binary classification settings
- Random Forest
 - Random forest is a non-parametric approach
- Support Vector Machine
 - No distribution assumptions
 - Performance does not deteriorate with large number of predictors

Exploratory Data Analysis (EDA)

Sections:

- ★ EDA of mean imputed quantitative variables
- ★ EDA of mean imputed qualitative variables
- ★ EDA of iterative regression quantitative variables
- ★ EDA of iterative regression qualitative variables

EDA Mean Imputed Quantitative: I

Boxplots of the six quantitative variables

EDA Mean Imputed Quantitative: II

Scatterplot Matrix

Pearson Correlation Matrix

EDA Mean Imputed Qualitative: I

EDA Mean Imputed Qualitative: II

EDA Mean Imputed Qualitative: III

EDA Mean Imputed Qualitative: IV

EDA Iterative Regression Quantitative: I

Boxplots of Iterative Regression

 For imputed data set, run iterative regression to replace NA values with values from a function

EDA Iterative Regression Quantitative: II

Scatterplot Matrix

Pearson Correlation Matrix

EDA IR Imputed Qualitative: I

EDA IRImputed Qualitative: II

EDA IR Imputed Qualitative: III

EDA IR Imputed Qualitative: IV

Logistic Regression (Mean Imputation)

	Confusion Matrix Test		
		0	1
Pred	0	27	6
	1	4	19

AUC: 0.8310 = 83.10%

Test Error Rate: 0.1786... ~ 17.86%

Random Forest (Mean Imputation)

AUC: 0.8671 = 86.71% Test Error Rate: 0.2321= 23.21%

Random Forest (Mean Imputation)Part II

Support Vector Machine (Mean Imputation)

AUC: 0.0735 = 7.35% Test Error Rate: 0.125 = 12.5%

Logistic Regression (IR Imputed)

	Confusion Matrix			
	Test			
		0	1	
Pred	0	40	9	
	1	13	31	

AUC: 0.8505... ~ 85.05% Test Error Rate: 0.2366 = 23.66%

Random Forest (IR Imputed)

AUC: 0.8670... ~ 86.70%

Test Error Rate: 0.2366 = 23.66%

Random Forest (IR Imputed) Part II

Support Vector Machine (IR Imputed)

AUC: 0.1311... ~ 13.11% Test Error Rate: 0.2151=21.51%

Main Differences With/Without Iterative Regression (IR)

- Number of observations available
 - Without IR: 145 of 303 total observations
 - With IR: 303 of 303 total observations

- Train/Test Data Split (70/30)
 - Without IR: For the test error rate, 43 test responses to compare to prediction.
 - With IR: For the test error rate, 90 test responses to compare to prediction.

Relative Performance: AUC & Test Error Rate (TER)

Logistic Regression

Both Imputed & Non-Imputed AUC performance was the ok

Random Forest

Both Imputed & Non-Imputed AUC performance was best

Support Vector Machine

Both Imputed & Non-Imputed AUC performance was the worst

Thank you for your time!

References

"Heart Disease Data Set." UCI Machine Learning Repository: Heart Disease Data Set, https://archive.ics.uci.edu/ml/datasets/Heart+Disease.

James, Gareth, et al. An Introduction to Statistical Learning: With Applications in R. Springer, 2022.