Chapitre 8. Suites numériques.

1 Généralités sur les suites réelles

1.a Définition

Définition:

Une suite réelle est une application u de $\mathbb N$ dans $\mathbb R:\ u:\ \mathbb N\ \to\ \mathbb R$ $n\ \mapsto\ u(n)$

Conventions et vocabulaire :

- L'image u(n) de l'entier n est plutôt noté u_n , et on l'appelle le <u>nième terme de la suite u.</u> On l'appelle aussi le terme général de la suite.
- La <u>suite</u> se note u, ou $(u_n)_{n\in\mathbb{N}}$, ou $(u_n)_n$, ou (u_n) ...

 A En tout cas pas u_n qui est un réel!!
- L'ensemble des suites réelles est noté $\mathbb{R}^{\mathbb{N}}$. On écrit par exemple : $(3^n)_{n\in\mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$.
- La définition s'étend aux suites définies seulement à partir de 1, ou à partir d'un $n_0 \in \mathbb{N}^*$. La suite est alors notée $(u_n)_{n \in \mathbb{N}^*}$ ou $(u_n)_{n \geq n_0}$.

Représentations graphiques possibles

Sur l'axe des réels :

 $0 \longrightarrow$

Représentation comme fonction :

1.b Opérations sur les suites, relation d'ordre

Soient u et v des suites réelles. On définit :

- La suite somme u + v comme la suite de terme général $u_n + v_n$
- La suite produit $u \times v$ comme la suite de terme général $u_n \times v_n$
- La suite $\lambda.u$, avec $\lambda \in \mathbb{R}$, comme la suite de terme général λu_n
- Si pour tout $n \in \mathbb{N}$, $v_n \neq 0$, la suite quotient $\frac{u}{v}$ comme la suite de terme général $\frac{u_n}{v_n}$

Les lois + et \times ainsi définies sur l'ensemble des suites $\mathbb{R}^{\mathbb{N}}$ ont de bonnes propriétés : commutativité, associativité, distributivité... mais attention! Ce n'est pas toujours comme dans \mathbb{R} :

• Si pour tout $n \in \mathbb{N}$, $u_n \leq v_n$, alors on note : $u \leq v$.

1.c Caractéristiques éventuelles d'une suite

Définition:

Soit $u \in \mathbb{R}^{\mathbb{N}}$. On dit qu'elle est :

- constante si
- stationnaire si
- <u>majorée</u> si
- minorée si
- bornée si

- croissante si
- strictement croissante si
- décroissante si
- strictement décroissante si
- monotone si
- strictement monotone si

 $\underline{\bigwedge}$ Il existe des suites ni croissantes, ni décroissantes : par exemple

Deux méthodes (parmi d'autres) pour montrer qu'une suite $(u_n)_{n\in\mathbb{N}}$ est monotone ou strictement monotone :

•

•

Exemples : Étudier la monotonie des suites de termes généraux : $u_n = \sum_{k=0}^n e^k$ $v_n = \frac{2^n}{n!}$

Remarque:

Les deux suites précédentes sont définies explicitement : on donne, pour tout $n \in \mathbb{N}$, l'expression de u_n en fonction de n uniquement. Mais une suite peut aussi être définie :

- implicitement : par exemple, "On pose, pour tout $n \in \mathbb{N}$, u_n le nombre d'entiers inférieurs ou égaux à n qui soient premiers" "On pose, pour tout $n \in \mathbb{N}^*$, u_n l'unique solution de l'équation $x - \ln(x) = n$ dans $[1, +\infty[$ "
- par récurrence : on donne une relation entre u_{n+1} et u_n (ou bien entre u_{n+2} , u_{n+1} et u_n ; entre u_{n+1} et tous les u_k avec $k \leq n...$; et on donne aussi les valeurs d'un ou plusieurs premiers termes; de sorte que l'on pourrait calculer les termes successifs de la suite de proche en proche...

1.d Suites récurrentes

Définition:

On appelle suite récurrente simple toute suite u définie par la donnée de u_0 et d'une relation :

$$\forall n \in \mathbb{N}, \ u_{n+1} = f(u_n)$$

où f est une fonction d'une variable réelle à valeurs réelles.

Exemple:
$$\begin{cases} u_0 = \frac{1}{2} \\ \forall n \in \mathbb{N}, \ u_{n+1} = \sqrt{1 - u_n} \end{cases}$$

⚠ L'existence d'une telle suite n'est pas évidente a priori.

Considérons par exemple :
$$\begin{cases} v_0 = -3 \\ \forall n \in \mathbb{N}, \ v_{n+1} = \sqrt{1 - v_n} \end{cases}$$

Montrons cependant que dans notre premier exemple, la suite (u_n) est bien définie :

Démonstration 2

De façon plus générale, on essaye de trouver un intervalle I qui soit stable par f et tel que $u_0 \in I...$

Définition:

Soit f une fonction d'une variable réelle à valeurs réelles.

On dit qu'un intervalle I de $\mathbb R$ est stable par f si

Par exemple, avec $f: x \mapsto \sqrt{1-x}$:

On peut alors redémontrer que la suite (u_n) est bien définie à l'aide d'une récurrence très rapide, en posant, pour tout $n \in \mathbb{N}$, \mathcal{P}_n : "le réel u_n existe, et il est dans I"

4

Les exemples classiques de suites récurrentes simples à connaître

• S'il existe un réel (ou un complexe...) r tel que : $\forall n \in \mathbb{N}, |u_{n+1} = u_n + r|$: $(u_n)_{n\in\mathbb{N}}$ est une suite arithmétique de raison r.

Une récurrence sur n permet d'obtenir le terme général de façon explicite :

• S'il existe un réel (ou un complexe...) q tel que : $\forall n \in \mathbb{N}, \overline{u_{n+1} = qu_n}$: $(u_n)_{n\in\mathbb{N}}$ est une suite géométrique de raison q.

Une récurrence sur n permet d'obtenir le terme général de façon explicite : Si la suite n'est définie que sur \mathbb{N}^* : $\forall n \in \mathbb{N}^*$,

On verra qu'elle converge si et seulement si

S'il existe des réels a et b tels que : $\forall n \in \mathbb{N}, |u_{n+1} = au_n + b|$: $(u_n)_{n\in\mathbb{N}}$ est une <u>suite arithm</u>ético-géométique.

Méthode à connaître : Résoudre $\ell = a\ell + b$. La suite $(u_n - \ell)$ sera alors géométrique, ce qui permet d'en tirer u_n en fonction de n.

Exemple: Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=0$ et : $\forall n\in\mathbb{N},\ u_{n+1}=\frac{u_n+1}{2}$ Pour tout $n \in \mathbb{N}$, exprimer u_n en fonction de n.

Démonstration 3

S'il existe des réels a et b, avec $b \neq 0$, tels que : $\forall n \in \mathbb{N}, |u_{n+2} = au_{n+1} + bu_n|$: $(u_n)_{n\in\mathbb{N}}$ est une suite récurrente linéaire double/d'ordre $\overline{2}$.

La donnée d'une telle relation et de u_0 et u_1 détermine tous les termes de la suite.

Avec ces notations:

Théorème:

, et on l'appelle l'équation caractéristique de la suite u.

- Si (E) a deux racines réelles distinctes r_1 et r_2 , alors
- Si (E) a une racine réelle double r_1 , alors
- Si (E) a deux racines non réelles distinctes r_1 et r_2 , alors ces racines sont non nulles et conjuguées l'une de l'autre; on les écrit sous forme trigonométrique

Exemple Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $\begin{cases} u_0 = 5, \ u_1 = 2 \\ \forall n \in \mathbb{N}, \ u_{n+1} = 3u_{n+1} - 2u_n \end{cases}$

Pour tout $n \in \mathbb{N}$, exprimer u_n en fonction de n.

Limite d'une suite réelle 2

Limite finie, définition de la convergence

Définition:

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle.

• Soit ℓ un réel. On dit que $(u_n)_{n\in\mathbb{N}}$

On note cela

• Si $(u_n)_{n\in\mathbb{N}}$ n'est pas convergente, on dit qu'elle diverge/est divergente.

Le réel strictement positif quelconque ε est non nul mais aussi petit que l'on veut ; il représente l'erreur commise lorsqu'on prend u_n comme valeur approchée de ℓ .

Remarques sur l'inégalité " $|u_n - \ell| \le \varepsilon$ " :

- Elle s'écrit aussi :
- On peut la remplacer, dans la définition, par " $|u_n \ell| < \varepsilon$ ".

Exemple Montrons que $\frac{1}{n^2} \underset{n \to +\infty}{\longrightarrow} 0$.

Démonstration 5

Proposition:

(unicité de la limite)

Si une suite est convergente, alors elle admet une unique limite.

Démonstration 6

Ceci nous autorise à utiliser la notation lim : si $u_n \underset{n \to +\infty}{\longrightarrow} \ell$, on peut noter $\lim_{n \to +\infty} u_n = \ell$.

Proposition:

Toute suite convergente est bornée.

Démonstration 7

⚠ La réciproque est fausse :

2.b Suites convergentes vers 0

Proposition:

Soit
$$u \in \mathbb{R}^{\mathbb{N}}$$
 et $\ell \in \mathbb{R}$. $(u_n)_{n \in \mathbb{N}}$ converge vers $\ell \iff (u_n)_{n \in \mathbb{N}}$ converge vers $0 \iff$

En effet :

Proposition:

Soient $u \in \mathbb{R}^{\mathbb{N}}$, $M \in \mathbb{R}^{\mathbb{N}}$ et $\ell \in \mathbb{R}$ tels que pour tout $n \in \mathbb{N}$ (ou à partir d'un certain rang) :

$$|u_n - \ell| \le M_n$$

On suppose que $M_n \xrightarrow[n \to +\infty]{} 0$. Alors $u_n \xrightarrow[n \to +\infty]{} \ell$.

Démonstration 8

Méthode à retenir :

Exemples:

Pour tout $n \ge 2$, on pose $u_n = \frac{(-1)^n}{n + (-1)^n}$. Montrer que $(u_n)_{n \ge 2}$ converge vers une limite à préciser. Même question avec $(v_n)_{n \in \mathbb{N}^*}$ définie par $v_n = \frac{2n}{n - \operatorname{Arctan}(n)}$.

Démonstration 9

Corollaire:

$$u_n \underset{n \to +\infty}{\longrightarrow} \ell \in \mathbb{R} \Longrightarrow$$

Démonstration 10

⚠ La réciproque est fausse : contre-exemple

2.c Divergence vers $+\infty$ ou $-\infty$

Définition:

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle.

• On dit que $(u_n)_{n\in\mathbb{N}}$ et on note

si:

• On dit que $(u_n)_{n\in\mathbb{N}}$ et on note

si:

${\bf Remarques}:$

- Dans les définitions, on peut remplacer " $\forall A \in \mathbb{R}$ " par " $\forall A \in \mathbb{R}^+$ "; " $\forall B \in \mathbb{R}$ " par " $\forall B \in \mathbb{R}^-$ "; $u_n \leq B$ par $u_n < B$; $u_N \geq A$ par $u_n > A$.
- \triangle une suite divergente ne tend pas nécessairement vers $+\infty$ ou $-\infty$; elle peut avoir d'autres types de comportements.

Exemples:

Exemple: Montrer que la suite u définie par $u_n = \sqrt{n+4}$ tend vers $+\infty$.

Démonstration 11

Proposition:

- , mais elle est
- Si $u_n \xrightarrow[n \to +\infty]{} +\infty$, alors (u_n) n'est pas Si $u_n \xrightarrow[n \to +\infty]{} -\infty$, alors (u_n) n'est pas
- , mais elle est

Démonstration 12

Conséquences:

- Si $u_n \xrightarrow[n \to +\infty]{} +\infty$ ou $u_n \xrightarrow[n \to +\infty]{} -\infty$, alors $(u_n)_{n \in \mathbb{N}}$ est bien divergente : elle ne converge pas vers un réel ℓ . En effet,
- Une suite ne admettre à la fois $+\infty$ et $-\infty$ comme limite.
- On en déduit qu'il y a encore unicité de la limite, et qu'on peut utiliser la notation lim.

Les réciproques sont fausses :

Opérations sur les limites 3

Pour simplifier les énoncés, on va étendre les opérations + et \times à $\overline{\mathbb{R}}$: \mathbb{R} auquel on adjoint $-\infty$ et $+\infty$. Lorsque l'opération ne peut être définie, on parle de "forme indéterminée" (FI); il faudra faire une étude au cas par cas.

+	$-\infty$	$\ell \in \mathbb{R}$	$+\infty$
$-\infty$			
$\ell' \in \mathbb{R}$			
$+\infty$			

		I	<u> </u>	
×	$-\infty$			$+\infty$
$-\infty$				
$+\infty$				

	$\ell =$	$=-\infty$	$\ell < 0$	$\ell = 0$	$\ell > 0$	$\ell = +\infty$
$\frac{1}{\ell}$						

Dans la suite, u et v désignent deux suites réelles, et ℓ , ℓ' des éléments de $\overline{\mathbb{R}}$.

3.a Somme et mutiplication par un scalaire

Proposition:

- Si $u_n \xrightarrow[n \to +\infty]{} \ell$ et si $\lambda \in \mathbb{R}^*$, alors Si $u_n \xrightarrow[n \to +\infty]{} \ell$ et si $v_n \xrightarrow[n \to +\infty]{} \ell'$, alors

Démonstration 13

$3.\mathrm{b}$ Produit, inverse

Proposition:

(Produit dans un cas particulier)

alors $u_n v_n \xrightarrow[n \to +\infty]{} 0$.

Démonstration 14

Exemple: $\forall n \in \mathbb{N}^*, u_n = \frac{\sin n}{n}.$

Proposition:

Si $u_n \xrightarrow[n \to +\infty]{} \ell$ et si $v_n \xrightarrow[n \to +\infty]{} \ell'$, alors

Démonstration 15

Résultats importants, à connaître et à savoir redémontrer :

• Si $u_n \xrightarrow[n \to +\infty]{} \ell$ avec $\ell > 0$, alors

Plus précisément,

- De même, si $u_n \underset{n \to +\infty}{\longrightarrow} \ell$ avec $\ell < 0$, alors
- En conséquence, si $u_n \xrightarrow[n \to +\infty]{} \ell$ avec $\ell \neq 0$, alors

Proposition:

- Si $u_n \xrightarrow[n \to +\infty]{} \ell$ avec $\ell \in \overline{\mathbb{R}}$ et $\ell \neq 0$, alors la suite $(u_n)_{n \in \mathbb{N}}$ est non nulle à partir d'un certain rang, et $\frac{1}{u_n} \xrightarrow[n \to +\infty]{} \frac{1}{\ell}$.
- Si $u_n \xrightarrow[n \to +\infty]{} 0$, il y a trois cas :
 - Si $\forall n \in \mathbb{N}, u_n > 0$ (ou bien à partir d'un certain rang) :
 - Si $\forall n \in \mathbb{N}, u_n < 0$ (ou bien à partir d'un certain rang) :
 - Sinon,

Démonstration 17

On en déduit les résultats pour les quotients : $\frac{u_n}{v_n} = u_n \times \frac{1}{v_n}$.

Avec le quotient, les formes indéterminées sont

Exemples: Montrer que les suites suivantes convergent, et déterminer leurs limites:

$$\forall n \in \mathbb{N}, \ u_n = \frac{n^2 + 3n + 8}{3n^2 + n + 1} \ v_n = 3n^2 - \sqrt{n}$$

Démonstration 18

Composition par une fonction, applications: limites à connaître

Proposition:

(Composition) Soient $u \in \mathbb{R}^{\mathbb{N}}$, I un intervalle, $f: I \to \mathbb{R}$ et a, ℓ des éléments de $\overline{\mathbb{R}}$. On suppose que

et si

, alors

En particulier, si $\ell \in I$ et si f est continue en ℓ , alors :

Exemples:

Proposition:

(Croissances comparées)

Soient α et β des réels, avec $\alpha > 0$. $\lim_{n \to +\infty}$

 $\lim_{n\to +\infty}$

Proposition:

Soit u une suite qui converge vers 0.

Exemples: $\forall n \in \mathbb{N}^*, u_n = e^n \sin(e^{-n}); v_n = \left(1 + \frac{1}{n}\right)^n$

Démonstration 19

la puissance.

Par exemple, " 1^{∞} " est une FI, ce n'est pas 1...

4 Limites et inégalités

Passage à la limite 4.a

Théorème:

- Soit *u* une suite réelle convergente On suppose que pour tout $n \in \mathbb{N}$ (ou bien à partir d'un certain rang) : $u_n \geq 0$. Alors
- Soient u et v deux suites réelles | convergentes |. On suppose que pour tout $n \in \mathbb{N}$ (ou bien à partir d'un certain rang) : $u_n \leq v_n$. Alors

Démonstration 20

⚠ Cela ne marche plus en général pour les inégalités strictes.

On retiendra donc : "le passage à la limite transforme toute inégalité en inégalités larges".

4.b Théorèmes d'existence

Théorème:

(Théorème d'encadrement ou "théorème des gendarmes")

Soient u, v, w des suites telles que pour tout $n \in \mathbb{N}$ (ou à partir d'un certain rang) :

On suppose que (u_n) et (w_n) sont

Alors:

Démonstration 21

Exemple: $\forall n \in \mathbb{N}^*, u_n = \frac{\lfloor nx \rfloor}{n}$.

Théorème:

Soient u, v des suites telles que pour tout $n \in \mathbb{N}$ (ou à partir d'un certain rang) :

$$u_n \le v_n$$

(théorème d'existence de limite par)

Si $v_n \xrightarrow[n \to +\infty]{}$ alors $u_n \xrightarrow[n \to +\infty]{}$

(théorème d'existence de limite par)

Si $u_n \xrightarrow[n \to +\infty]{}$ alors $v_n \xrightarrow[n \to +\infty]{}$

Théorèmes fondamentaux 5

Suites monotones

Théorème:

Soit $(u_n)_{n\in\mathbb{N}}$ une suite croissante.

• Si $(u_n)_{n\in\mathbb{N}}$ est

alors

• Si $(u_n)_{n\in\mathbb{N}}$ n'est pas

alors

Démonstration 23

Théorème:

Soit $(u_n)_{n\in\mathbb{N}}$ une suite décroissante.

- Si $(u_n)_{n\in\mathbb{N}}$ est
- Si $(u_n)_{n\in\mathbb{N}}$ n'est pas
- alors

Démonstration 24

Ainsi, une suite monotone admet toujours une limite, finie ou infinie.

Exemple: On pose, pour tout $n \in \mathbb{N}^*$, $u_n = \sum_{k=1}^n \frac{1}{n+k}$. Montrons que u converge.

Démonstration 25

On a cependant les résultats faciles suivants :

Proposition:

- Si u est croissante et si elle converge vers un réel ℓ , alors
- Si u est strictement croissante et si elle converge vers un réel ℓ , alors

Démonstration 26

Résultats adaptables pour la décroissance et la stricte décroissance.

5.b Suites adjacentes

Définition:

Soient u et v deux suites réelles.

On dit qu'elles sont adjacentes si :

Exemple: On pose, pour tout $n \in \mathbb{N}^*$, $u_n = \sum_{k=0}^n \frac{1}{k!}$ et $v_n = u_n + \frac{1}{n \cdot n!}$.

Montrer que u et v sont adjacentes.

Démonstration 27

Théorème:

Soient u et v deux suites adjacentes.

Alors

De plus, si u est la suite croissante et v la suite décroissante, en notant ℓ leur limite commune :

Démonstration 28

Si les monotonies de u et v sont strictes, les inégalités sont même strictes :

Remarque:

On sait qu'il y a une limite commune ℓ , mais trouver ℓ est un autre problème.

En informatique, les suites adjacentes peuvent servir de valeurs approchées de la limite commune ℓ . L'avantage est qu'on a une majoration de l'erreur commise :

Exemple : Notons ℓ la limite commune des suites u et v de la démonstration 27.

6 Suites extraites

6.a Définition

Exemple introductif:

$u_0 u_1 u_2 u_3 u_4 u_5 u_6 u_7 u_8 u_9$	u_{10}
--	----------

Définition:

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle.

On appelle suite extraite de u toute suite de la forme

Exemples:

6.b Liens avec les limites et la convergence

Théorème:

On suppose que u a pour limite ℓ , avec $\ell \in \overline{\mathbb{R}}$.

Alors

Utilisation très importante: montrer qu'une suite diverge ou qu'elle n'a pas de limite

 $\overline{\text{Si}}$ on trouve une suite extraite $(u_{\varphi(n)})_{n\in\mathbb{N}}$ qui alors $(u_n)_{n\in\mathbb{N}}$ diverge

En effet:

Si on trouve deux suites extraites qui

alors $(u_n)_{n\in\mathbb{N}}$ n'a pas de limite.

En effet:

Exemples: $\forall n \in \mathbb{N}, u_n = (-1)^n \quad v_n = (-1)^n n$

Démonstration 30

Théorème:

Soit $(u_n)_{n\in\mathbb{N}}$ une suite et ℓ un élément de $\overline{\mathbb{R}}$ tels que

Démonstration 31

Conséquence : à propos des suites géométriques 6.c

Proposition:

 $(q^n)_{n\in\mathbb{N}}$ converge \iff Soit $q \in \mathbb{R}$.

Précisons les limites éventuelles :

Démonstration 32

7 Exemples d'études de suites récurrentes générales

Nous allons voir la méthode pour étudier les suites réelles $(u_n)_{n\in\mathbb{N}}$ définies par la donnée de u_0 et par la relation de récurrence :

$$\forall n \in \mathbb{N}, \ u_{n+1} = f(u_n)$$

Représentation graphique

On commencera toujours par tracer, au brouillon, l'allure du graphe de f, avec la droite d'équation y = x. Cela permet de placer de proche en proche les termes de la suite.

Prenons l'exemple d'une suite définie par : $\begin{cases} u_0 \ge -2 \\ \forall n \in \mathbb{N}, u_{n+1} = \sqrt{u_n + 2} \end{cases}$

Ici on a $f: [-2, +\infty[\rightarrow \mathbb{R}]$

7.b Limites éventuelles

Théorème:

Soit u une suite telle que : $\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$, où f est définie sur un intervalle. Si u converge vers un réel ℓ en lequel f est continue, alors

Démonstration 33

Sur l'exemple ci-dessus, on "voit" graphiquement qu'il n'y a qu'un seul point fixe, 2, pour f (un seul point d'intersection entre la courbe représentative de f et la première bissectrice). Autrement dit, si on arrive à prouver que la suite converge, c'est forcément vers 2!

Il faudra donc d'abord montrer que la suite converge, ce qui se fait habituellement avec les théorèmes sur les suites monotones (toute suite croissante majorée converge...)

7.c Exemples

Exercice 1. Soit $(u_n)_{n\in\mathbb{N}}$ une suite vérifiant : $\forall n\in\mathbb{N}, u_{n+1}=\sqrt{u_n+2}$.

- 1) En notant $f: x \mapsto \sqrt{x+2}$, étudier le signe de f(x) x sur $[-2, +\infty[$. En déduire deux intervalles I_1 et I_2 stables par f, tels que $I_1 \cup I_2 = [-2, +\infty[$.
- 2) On suppose que $u_0 \in I_1$ (celui contenant les valeurs les plus petites).
 - a) Montrer que pour tout $n \in \mathbb{N}$, u_n est bien définie et appartient à I_1 .
 - b) Montrer que $(u_n)_{n\in\mathbb{N}}$ est croissante.
 - c) En déduire que $(u_n)_{n\in\mathbb{N}}$ converge et déterminer sa limite.
- 3) Reprendre la question précédente avec I_2 .

Exercice 2. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par : $\begin{cases} u_0 = 1 \\ \forall n \in \mathbb{N}, u_{n+1} = 1 + \frac{2}{u_n} \end{cases}$

$$\begin{cases} u_0 = 1 \\ \forall n \in \mathbb{N}, & u_{n+1} = 1 + \frac{2}{u_n} \end{cases}$$

Voici le graphe de $f: x \mapsto 1 + \frac{2}{x}$.

- a) À l'aide d'un intervalle I stable par f, justifier que la suite est bien définie.
- b) On pose, pour tout $n \in \mathbb{N}$, $v_n = u_{2n}$ et $w_n = u_{2n+1}$.

Montrer que v et w sont des suites récurrentes simples associées à la fonction $g=f\circ f$:

$$\forall n \in \mathbb{N},$$

- c) Quelle est la monotonie de $g = f \circ f$ sur I?
- d) Montrer que v et w sont monotones de sens contraire.
- e) En déduire que $(u_n)_{n\in\mathbb{N}}$ converge et déterminer sa limite.

Démonstration 35

Exercice 3. Soit la suite $(u_n)_{n\in\mathbb{N}}$ définie par :

$$\begin{cases} u_0 = 1 \\ \forall n \in \mathbb{N}, \ u_{n+1} = u_n + u_n^2 \end{cases}$$

Montrer que $(u_n)_{n\in\mathbb{N}}$ diverge vers $+\infty$.

Idées à retenir pour prouver la monotonie de (u_n) :

- Utiliser le signe de f(x) x. Cela marche si les termes de la suite sont dans un intervalle stable où le signe de f(x) - x est toujours le même.
- Utiliser le fait que la fonction est croissante : selon que $u_0 \leq u_1$ ou $u_0 \geq u_1$, une récurrence montrera que (u_n) est croissante ou décroissante. C'est ce qu'on a fait dans l'exemple 2, mais avec la fonction g, croissante; comme $v_0 < v_1$, la suite (v_n) était croissante; comme $w_0 > w_1$, la suite (w_n) était décroissante.

8 Suites complexes

Définitions 8.a

Une suite complexe est une application u de \mathbb{N} dans \mathbb{C} . On la note $(u_n)_{n\in\mathbb{N}}$.

L'ensemble des suites complexes est noté $\mathbb{C}^{\mathbb{N}}$.

Voici trois suites réelles définies à partir de u:

- la suite $Re(u) = (Re(u_n))_{n \in \mathbb{N}}$. Re(u) est appelée partie réelle de u.
- la suite $\operatorname{Im}(u) = (\operatorname{Im}(u_n))_{n \in \mathbb{N}}$. $\operatorname{Im}(u)$ est appelée partie imaginaire de u.
- la suite $|u| = (|u_n|)_{n \in \mathbb{N}}$ (module).

Les notions de majorant, de minorant, de monotonie ne sont pas définies pour une suite complexe. Cependant:

Définition:

Soit u une suite complexe. On dit que u est bornée si :

$$\exists K \in \mathbb{R}^+, \ \forall n \in \mathbb{N}, \ |u_n| \le K$$

8.b Convergence

Définition:

Soit $\ell \in \mathbb{C}$. Soit u une suite complexe. On dit que u converge vers ℓ si

$$\forall \varepsilon > 0, \ \exists N \in \mathbb{N}, \ \forall n \ge N, \ |u_n - \ell| \le \varepsilon$$

Cela revient à dire que la suite <u>réelle</u> $(|u_n - \ell|)$ converge vers 0.

Remarques:

- En particulier, dire que u_n → 0 est équivalent à dire que |u_n| → 0.
 Il y a encore unicité de la limite. On note : ℓ = lim u_n.
- Si une suite complexe ne converge pas alors on dit qu'elle diverge.
- \triangle Pour une suite complexe non réelle, il n'y a pas de définition possible pour des limites $\pm \infty$.

Proposition:

Soit u une suite complexe et $\ell \in \mathbb{C}$.

$$u_n \underset{n \to +\infty}{\longrightarrow} \ell \Longleftrightarrow \begin{cases} \operatorname{Re}(u_n) \underset{n \to +\infty}{\longrightarrow} \operatorname{Re}(\ell) \\ \operatorname{Im}(u_n) \underset{n \to +\infty}{\longrightarrow} \operatorname{Im}(\ell) \end{cases}$$

Démonstration 37

Exemples:

- 1) Etudier la convergence de la suite u définie par : $\forall n \in \mathbb{N}, u_n = 1 + \frac{1}{2^n} + \left(2 + \frac{1}{n}\right)i$.
- 2) Etudier la convergence de la suite u définie par : $\forall n \in \mathbb{N}, u_n = 1 + ni$.
- 3) On pose : $\forall n \in \mathbb{N}, u_n = \frac{(1+i)^n}{2^n}$. Montrer que u converge vers 0.

Démonstration 38

Proposition:

Soit u une suite complexe et $\ell \in \mathbb{C}$. Si (u_n) converge vers ℓ alors $(|u_n|)$ converge vers $|\ell|$.

Démonstration 39

Corollaire:

Toute suite convergente est bornée.

Démonstration 40

La réciproque est bien sûr encore fausse.

Proposition:

Soit $q \in \mathbb{C}$. La suite $(q^n)_{n \in \mathbb{N}}$ converge si et seulement si |q| < 1 ou q = 1Dans le cas |q| < 1, la limite est 0; dans le cas q = 1, la limite est 1.

Démonstration 41

Proposition:

Soient u et v deux suites convergeant respectivement vers ℓ et ℓ' . Soit $\lambda \in \mathbb{C}$. Alors λu converge vers $\lambda \ell$; u+v converge vers $\ell+\ell'$; uv converge vers $\ell\ell'$; et si, pour tout $n \in \mathbb{N}, v_n \neq 0$, alors $\frac{u}{v}$ converge vers $\frac{\ell}{\rho}$.

Remarque:

On peut aussi définir la notion de suite extraite et les résultats concernant les suites extraites réelles restent valables dans le domaine complexe.

Plan du cours

1	Généralités sur les suites réelles						
	1.a	Définition	1				
	1.b	Opérations sur les suites, relation d'ordre	2				
	1.c	Caractéristiques éventuelles d'une suite	3				
	1.d	Suites récurrentes	4				
	1.e	Les exemples classiques de suites récurrentes simples à connaître	5				
2	Liı	mite d'une suite réelle	6				
	2.a	Limite finie, définition de la convergence	6				
	2.b	Suites convergentes vers 0	7				
	2.c	Divergence vers $+\infty$ ou $-\infty$	8				
3	Op	Opérations sur les limites					
	3.a	Somme et mutiplication par un scalaire	10				
	3.b	Produit, inverse	10				
	3.c	Composition par une fonction, applications : limites à connaître	11				
4	Liı	Limites et inégalités					
	4.a	Passage à la limite	12				
	4.b	Théorèmes d'existence	13				
5	\mathbf{T} h	néorèmes fondamentaux	14				
	5.a	Suites monotones	14				
	5.b	Suites adjacentes	15				
6	\mathbf{Su}	ites extraites	16				
	6.a	Définition	16				
	6.b	Liens avec les limites et la convergence	16				
	6.c	Conséquence : à propos des suites géométriques	17				
7	Ex	Exemples d'études de suites récurrentes générales					
	7.a	Représentation graphique	17				
	7.b	Limites éventuelles	18				
	7.c	Exemples	18				
8	\mathbf{Su}	ites complexes	20				
	8.a	Définitions	20				
	8.b	Convergence	20				