Inference

Christos Dimitrakakis

June 5, 2024

Outline

Logical inference

Set theory and logic Logical inference

Probability background

Probability facts
Conditional probability and independence
Posterior distributions and model estimation

Statistical Decision Theory

Elementary Decision Theory Random variables, expectation and variance Statistical Decision Theory

Logical inference

Set theory and logic Logical inference

Probability background

Probability facts
Conditional probability and independence
Posterior distributions and model estimation

Statistical Decision Theory

Elementary Decision Theory Random variables, expectation and variance Statistical Decision Theory

Set theory

- ightharpoonup First, consider some universal set Ω .
- ▶ A set A is a collection of points x in Ω .
- ▶ $\{x \in \Omega : f(x)\}$: the set of points in Ω with the property that f(x) is true.

Unary operators

Binary operators

- ▶ $A \cup B$ if $\{x \in \Omega : x \in A \lor x \in B\}$ (c.f. $A \lor B$)
- ► $A \cap B$ if $\{x \in \Omega : x \in A \land x \in B\}$ (c.f. $A \land B$)

Binary relations

- \blacktriangleright $A \subset B$ if $x \in A \Rightarrow x \in B$ (c.f. $A \Longrightarrow B$)
- $ightharpoonup A = B \text{ if } x \in A \Leftrightarrow x \in B (\text{c.f. } A \Leftrightarrow B)$

The inference problem

▶ Given statements $A_1, ..., A_n$ we know to be true (i.e. a knowledge base), is another statement B true?

The following statements are equivalent:

- $A \implies B \text{ iff } (A \cap \neg B) = \emptyset.$
- $ightharpoonup A \implies B \text{ iff } A \subset B.$

In addition

- ▶ If $(A \Rightarrow B) \land A$ then B.
- ▶ If $(A \land B)$ then A.

Illustration

Logical inference

Set theory and logic Logical inference

Probability background

Probability facts
Conditional probability and independence
Posterior distributions and model estimation

Statistical Decision Theory

Elementary Decision Theory Random variables, expectation and variance Statistical Decision Theory

Events as sets

The universe and random outcomes

- lacktriangle The Ω contains all events that can happen.
- ▶ When something happens, we observe an element $\omega \in \Omega$.

Events in the universe

- ▶ An event is true if $\omega \in A$, and false if $\omega \notin A$.
- ▶ The negative event $\neg A = \Omega \setminus A$ is the set
- lacktriangle The possible events are a collection of subsets \varSigma of \varOmega so that
- (i) $\Omega \in \Sigma$, (ii) $A, B \in \Sigma \Rightarrow A \cup Bin\Sigma$ (iii) $A \in \Sigma \Rightarrow \neg A \in \Sigma$

Example: Traffic violation

- ▶ A car is moving with speed $\omega \in [0, \infty)$ in front of the speed camera.
- $ightharpoonup A_0 = [0, 50]$: below the speed limit
- $ightharpoonup A_1 = (50, 60]$: low fine
- ► $A_2 = (60, \infty]$: high fine
- $ightharpoonup A_3 = (100, \infty)$: Suspension of license
- ▶ All combinations of the above events are interesting.

Probability fundamentals

Probability measure P

Probability can be seen as an area-like function assigning a likelihood to sets.

- ▶ $P: \Sigma \to [0,1]$ gives the likelihood P(A) of an event $A \in \Sigma$.
- $ightharpoonup P(\Omega) = 1$
- ▶ For $A, B \subset \Omega$, if $A \cap B = \emptyset$ then $P(A \cup B) = P(A) + P(B)$.

Marginalisation

If $A_1, \ldots, A_n \subset \Omega$ are a partition of Ω

$$P(B) = \sum_{i=1}^{n} P(B \cap A_i).$$

Conditional probability

Definition (Conditional probability)

The conditional probability of an event A given an event B is defined as

$$P(A|B) \triangleq \frac{P(A \cap B)}{P(B)}$$

The above definition requires P(B) to exist and be positive.

Conditional probabilities as a collection of probabilities

More generally, we can define conditional probabilities as simply a collection of probability distributions:

$$\{P_{\theta}: \theta \in \Theta\},\$$

where Θ is indexing possible values of θ .

 \triangleright θ is sometimes called the model or parameter

The theorem of Bayes

Theorem (Bayes's theorem)

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

The theorem of Bayes

Theorem (Bayes's theorem)

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

The general case

If A_1, \ldots, A_n are a partition of Ω , meaning that they are mutually exclusive events (i.e. $A_i \cap A_j = \emptyset$ for $i \neq j$) such that one of them must be true (i.e. $\bigcup_{i=1}^n A_i = \Omega$), then

$$P(B) = \sum_{i=1}^{n} P(B|A_i)P(A_i)$$

and

$$P(A_j|B) = \frac{P(B|A_j)}{\sum_{i=1}^n P(B|A_i)P(A_i)}$$

Independence

```
Independent events A \perp \!\!\! \perp B

A, B are independent iff P(A \cap B) = P(A)P(B).

Conditional independence A \perp \!\!\! \perp B \mid C

A, B are conditionally independent given C iff P(A \cap B|C) = P(A|C)P(B|C).
```

Bayes's theorem

As a conditional measure

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)} = \frac{P(B \mid A)P(A)}{P(B \mid A)P(A) + P(B \mid \neg A)P(\neg A)}$$

As a causal explanation

$$\mathbb{P}(\text{cause} \mid \text{effect}) = \frac{\mathbb{P}(\text{effect} \mid \text{cause}) \, \mathbb{P}(\text{cause})}{\mathbb{P}(\text{effect})}$$

As model inference

- ▶ Prior $\beta(\theta)$
- ▶ Model class $\{P_{\theta}(\beta) : \theta \in \Theta\}$
- ▶ Data *x*

$$\beta(\theta \mid x) = \frac{P_{\theta}(x)\beta(\theta)}{\mathbb{P}_{\beta}(x)} = \frac{P_{\theta}(x)\beta(x)}{\sum_{\theta' \in \Theta} P_{\theta'}(x)\beta(\theta')}$$

Example: Naive Bayes models

Sometimes we observe multiple effects that have a common cause, but which are otherwise independent:

$$\mathbb{P}(\text{effect}_1, \dots \text{effect}_n \mid \text{cause}) = \prod_{i=1}^n \mathbb{P}(\text{effect}_i \mid \text{cause})$$

Naive Bayes model

- ▶ Observations $(x_t, y_t)_{t=1}^T$ with $x_t = (x_{t,1}, \dots, x_{t,n})$.
- ▶ Probability models $P_{\mu}(y \mid x) = \prod_{i=1}^{n} P_{\mu}(y \mid x_i)$.

Conditional independence

For any set of events A_1, A_2, A_3, \ldots , we can write their co-occurence probability as $\prod_i P(A_i \mid \cap A_1 \cap A_2 \cap \cdots \cap A_{i-1})$. However, we can use a Bayesian network to define conditional independence structures.

If A is a parent of B and C is a child of B, and there are no other paths from A to C then the following conditional independence holds:

$$P(C \mid B, A) = P(C \mid B)$$

i.e. C is conditionally independent of A given B.

Conditional probability tables

We can now write the distribution of the above example as

$$P(B, C_1, C_2) = P(A_1)P(A_2)P(B|A_1 \cap A_2)P(C_1|B)P(C_2|B).$$

Example: Wumpus world

Details

- Probability of each world A_i being true: 1/4
- ▶ Probability of each hole generating a breeze: $P(B_1|A_2 \cup A_4) = P(B_2|A_3 \cup A_4)$ with B_1, B_2 conditionally independent given A.

Questions

- ▶ What is the probability of feeling a breeze $B = B_1 \cup B_2$ in each world?
- What is the probability of a hole above if you feel a breeze?
- ▶ What is the probability of a hole above f you don't feel a breeze?

Example: The k-meteorologists problem

▶ A set of stations \mathcal{M} , with $\mu \in \mathcal{M}$ making weather predictions:

$$P_{\mu}(x_{t+1} \mid x_1, \ldots, x_t)$$

- ▶ A prior probability $P(\mu)$ on the stations.
- ► The marginal probability

$$P(x_1,\ldots,x_t)=\sum_{\mu\in\mathcal{M}}P_{\mu}(x_1,\ldots,x_t)P(\mu)$$

The posterior probability

$$P(\mu \mid x_1, \dots, x_t) = \frac{P_{\mu}(x_1, \dots, x_t)P(\mu)}{P(x_1, \dots, x_t)} = \frac{\prod_{i=1}^t P_{\mu}(x_t \mid x_1, \dots, x_{t-1})P(\mu)}{P(x_1, \dots, x_t)}$$
$$= \frac{P_{\mu}(x_t \mid x_1, \dots, x_{t-1})P(\mu \mid x_1, \dots, x_{t-1})}{P(x_t \mid x_1, \dots, x_{t-1})}$$

► The marginal posterior probability

$$P(x_{t+1} \mid x_1, ..., x_t) = \sum_{\mu \in \mathcal{M}} P_{\mu}(x_{t+1} \mid x_1, ..., x_t) P(\mu \mid x_1, ..., x_t)$$

Logical inference

Set theory and logic Logical inference

Probability background

Probability facts
Conditional probability and independence
Posterior distributions and model estimation

Statistical Decision Theory

Elementary Decision Theory Random variables, expectation and variance Statistical Decision Theory

Preferences

Types of rewards

- For e.g. a student: Tickets to concerts.
- For e.g. an investor: A basket of stocks, bonds and currency.
- ► For everybody: Money.

Preferences among rewards

For any rewards $x, y \in R$, we either

- ▶ (a) Prefer x at least as much as y and write $x \leq^* y$.
- ▶ (b) Prefer x not more than y and write $x \succeq^* y$.
- ▶ (c) Prefer x about the same as y and write x = x y.
- \blacktriangleright (d) Similarly define \succ^* and \prec^*

Utility and Cost

Utility function

To make it easy, assign a utility U(x) to every reward through a utility function $U: R \to \mathbb{R}$.

Utility-derived preferences

We prefer items with higher utility, i.e.

- ▶ (a) $U(x) \ge U(y) \Leftrightarrow x \succeq^* y$
- ▶ (b) $U(x) \le U(y) \Leftrightarrow y \succeq^* x$

Cost

It is sometimes more convenient to define a cost function $C: R \to \mathbb{R}$ so that we prefer items with lower cost, i.e.

$$ightharpoonup C(x) \ge C(y) \Leftrightarrow y \succeq^* x$$

Random outcomes

Choosing among rewards

-[A] Bet 10 CHF on black -[B] Bet 10 CHF on 0 -[C] Bet nothing What is the reward here?

Choosing among trips

-[A] Taking the car to Zurich (50' without delays, 80' with delays) -[B] Taking the train to Zurich (60' without delays) What is the reward here?

Random rewards

- Each gamble gives us different rewards with different probabilities.
- ► These rewards are then random
- For simplicity, we assign a real-valued utility to outcomes. This is a random variable

Random variables

A random variable $f: \Omega \to \mathbb{R}$ is a real-valued function, with $\omega \sim P$.

The distribution of *f*

The probability that f lies in some subset $A \subset \mathbb{R}$ is

$$P_f(A) \triangleq P(\{\omega \in \Omega : f(\omega) \in A\}),$$

and we write $f \sim P_f$.

Shorthands for RV

- ▶ For RVs $f: \Omega \to \mathbb{R}$, we can write $P(f \in A)$ to mean $P_f(A)$.
- ▶ For RVs $f: \Omega \to X$, where X is a finite set e.g. $\{1, 2, ..., n\}$, we can write P(f = x) for any $x \in X$.

Independence

Two RVs f,g are independent in the same way that events are independent:

$$P(f \in A \land g \in B) = P(f \in A)P(g \in B) = P_f(A)P_g(B).$$

In that sense, $f \sim P_f$ and $g \sim P_g$.

Expectation

For any real-valued random variable $f: \Omega \to \mathbb{R}$, the expectation with respect to a probability measure P is

$$\mathbb{E}_{P}(f) = \sum_{\omega \in \Omega} f(\omega) P(\omega).$$

When Ω is continuous, we can use a density p

$$\mathbb{E}_P(f) = \int_{\Omega} f(\omega) p(\omega) d\omega.$$

Linearity of expectations

For any RVs x, y:

$$\mathbb{E}_{P}(x+y) = \mathbb{E}_{P}(x) + \mathbb{E}_{P}(y)$$

Multiple variables

The joint distribution P(x, y)

For two (or more) RVs $x: \Omega \to \mathbb{R}$, and $y: \Omega \to \mathbb{R}$, this is a shorthand for the distribution of $(x(\omega), y(\omega))$ when $\omega \sim P$. We can also use P(x=i,y=j) for the probability that the two variables assume the values i,j respectively.

Independence

If x, y are independent RVs then $P(x, y) = P_x(x)P_y(y)$.

Correlation

If x, y are not correlated then $\mathbb{E}_P(xy) = \mathbb{E}(x) \mathbb{E}(y)$.

IID (Independent and Identically Distributed) random variables

A sequence x_t of r.v.s is IID if $x_t \sim P$ so that

$$(x_1,\ldots,x_t,\ldots,x_T)\sim P^T$$

i.e. a *T*-length sample is drawn from the product distribution $P^T = P \times P \times \cdots \times P$.

Conditional expectation

The conditional expectation of a random variable $f: \Omega \to \mathbb{R}$, with respect to a probability measure P conditioned on some event B is simply

$$\mathbb{E}_{P}(f|B) = \sum_{\omega \in \Omega} f(\omega) P(\omega|B).$$

Conditional expectations are similar to conditional probabilities.

Conditional probabilities of RVs

Similarly to the notation over sets,

$$P(A \cap B) = P(A \mid B)P(B),$$

when dealing with RVs, it is common to use the notation

$$P(x,y) = P(x|y)P(y)$$

This equation works for all possible values of x, y e.g.

$$P(x = 1, y = 0) = P(x = 1|y = 0)P(y = 0)$$

which then denotes the probability msas of each

Expected utility

Actions, outcomes and utility

In this setting, we obtain random outcomes that depend on our actions.

- ▶ Actions $a \in A$
- ightharpoonup Outcomes $\omega \in \Omega$.
- ▶ Probability of outcomes $P(\omega \mid a)$
- ▶ Utility $U: \Omega \to \mathbb{R}$

Expected utility

The expected utility of an action is:

$$\mathbb{E}_{P}[U \mid a] = \sum_{\omega \in \Omega} U(\omega) P(\omega \mid a).$$

The expected utility hypothesis

We prefer a to a' if and only if

$$\mathbb{E}_P[U \mid a] \geq \mathbb{E}_P[U \mid a']$$

The St-Petersburg Paradox

The game

If you give me x CHF, then I promise to (a) Throw a fair coin until it comes heads. (b) If it does so after T throws, then I will give you 2^T CHF.

The question

- ► How much x are you willing to pay to play?
- ► Given that the expected amount of money is infinite, why are you only willing to pay a small x?

Example: Betting

In this example, probabilities reflect actual randomness

Choice	Win Probability p	Payout w	Expected gain
Don't play	0	0	0
Black	18/37	2	
Red	18/37	2	
0	1/37	36	
1	1/37	36	

What are the expected gains for these bets?

Example: Route selection

In this example, probabilities reflect subjective beliefs

Choice	Best time	Chance of delay	Delay amount	Expected time
Train	80	5%	5	
Car, route A	60	50%	30	
Car, route B	70	10%	10	

Example: Estimation

► In this example, probabilities are calculated starting from subjective beliefs

Mean-Square Estimation

If we want to guess $\hat{\mu}$, and we knew that $\mu \sim P$, then the guess

$$\hat{\mu} = \mathbb{E}_P(\mu) = \operatorname*{arg\ min}_{\hat{\mu}} \mathbb{E}_P[(\mu - \hat{\mu})^2]$$

Example: The k-meteorologists problem

▶ A set of stations \mathcal{M} , with $\mu \in \mathcal{M}$ making weather predictions:

$$P_{\mu}(x_{t+1} \mid x_1, \ldots, x_t)$$

- ▶ A prior probability $P(\mu)$ on the stations.
- ► The marginal probability

$$P(x_1,\ldots,x_t)=\sum_{\mu\in\mathcal{M}}P_{\mu}(x_1,\ldots,x_t)P(\mu)$$

The posterior probability

$$P(\mu \mid x_1, \dots, x_t) = \frac{P_{\mu}(x_1, \dots, x_t)P(\mu)}{P(x_1, \dots, x_t)} = \frac{\prod_{i=1}^t P_{\mu}(x_t \mid x_1, \dots, x_{t-1})P(\mu)}{P(x_1, \dots, x_t)}$$
$$= \frac{P_{\mu}(x_t \mid x_1, \dots, x_{t-1})P(\mu \mid x_1, \dots, x_{t-1})}{P(x_t \mid x_1, \dots, x_{t-1})}$$

► The marginal posterior probability

$$P(x_{t+1} \mid x_1, ..., x_t) = \sum_{\mu \in \mathcal{M}} P_{\mu}(x_{t+1} \mid x_1, ..., x_t) P(\mu \mid x_1, ..., x_t)$$

