

第8章 沉淀滴定法和滴定分析小结

- ❸ 银量法的基本原理
- 愛 莫尔(Mohr)法
- 佛尔哈德(Volhard)法
- 签 法扬司 (Fajans) 法

沉淀滴定: 沉淀反应为基础的容量分析方法

- ※ 沉淀滴定法的条件:
 - ◎ 沉淀的溶解度必须很小
 - ◎ 反应迅速、定量
 - ◎ 有适当的指示终点的方法
 - ◎ 沉淀的吸附现象不能影响终点的确定

目前应用较多的是以硝酸银为滴定剂,生成难溶性银盐的沉淀滴定法,

称为银量法,常用于测定卤素离子、拟卤素阴离子等。

银量法(argentometric methods): $Ag^+ + X^- = AgX \downarrow$

$$X^{-} = Cl^{-}, Br^{-}, I^{-}, CN^{-}, SCN^{-}$$

$$K_{\rm sp} = [Ag^+][X^-]$$
 $pAg+pX=pK_{\rm sp}$

1. 滴定曲线

以0.1000 mol·L-1 AgNO。滴定20.00 mL 同浓度NaCl 溶液为例

$$Ag^+ + Cl^- = AgCl \downarrow$$

$$Ag^{+} + Cl^{-} = AgCl \downarrow$$
 $K_{sp} = [Ag^{+}][Cl^{-}] = 1.8 \times 10^{-10}$

滴定开始前:溶液中[Cl-]决定于NaCl浓度,[Cl-]=0.1000 mol·L-1, pCl = 1.00

滴定开始至化学计量点前:溶液中[Cl-]决定于剩余的NaCl浓度

-0.1%
$$[Cl^-]_{(\overline{p})} = 5.0 \times 10^{-5} \text{ mol} \cdot L^{-1}, pCl = 4.30$$
 $pAg = pK_{sp} - pCl = 9.81 - 4.30 = 5.51$

化学计量点: [Ag+]=[Cl-] $pCl = pAg = 1/2 pK_{sp} = 4.89$

化学计量点后:根据过量的Ag+计算

+ 0.1% [Ag⁺]_(ith) = 5.0×10^{-5} mol·L⁻¹, pAg = 4.30 pCl = p $K_{\rm sp}$ -pAg = 9.81-4.30 = 5.51

以0.1000 mol·L⁻¹ AgNO₃溶液滴定20.00mL 0.1000 mol·L⁻¹ NaCl或0.1000 mol·L⁻¹ KBr溶液时化学计量点前后pAg与pX的变化

加入0.1mol/L AgNO ₃ 溶液量		滴定Cl ⁻ (p <i>K</i> _{sp} =9.74)		滴定Br ⁻ (p <i>K</i> _{sp} =12.30)		
ml	%	pCl	pAg	pBr	pAg	
0.00	0	1.00		1.00		
18.00	90.0	2.28	7.46	2.28	10.02	
19.60	98.0	3.00	6.74	3.00	9.30	
19.80	99.0	3.30	6.44	3.30	9.00	
19.96	99.8	4.00	5.74	4.00	8.30	
19.98	99.9	4.30	5.44	4.30	8.00	
20.00	100.0	4.87	4.87	6.15	6.15	
20.02	100.1	5.44	4.30	8.00	4.30	
20.04	100.2	5.74	4.00	8.30	4.00	
20.20	101.0	6.44	3.30	9.00	3.30	
20.40	102.0	6.74	3.00	9.30	3.00	
22.00	110.0	7.42	2.32	10.00	2.30	

滴定突越

浓度增大10倍,突跃增加2个pAg单位

0.1 mol ·L⁻¹ AgNO₃滴定0.1 mol ·L⁻¹ Cl⁻, Br, l⁻的滴定曲线

沉淀	p <i>K</i> _{sp}
AgCI	9.74
AgBr	12.30
AgI	16.08

 $K_{\rm sp}$ 减小 10^n ,突跃增加n个pAg单位

中山大學 SUN YAT-SEN UNIVERSITY

待测物: X- (=Cl-、Br、I-、SCN-)

滴定剂: Ag+标准溶液 (AgNO₃)

滴定反应: Ag⁺ + X⁻ ≒ AgX ↓

指示剂

创立者名字命名

K₂CrO₄

⇒ 莫尔法

铁铵矾(NH₄Fe(SO₄)₂) → 佛尔哈德法

吸附指示剂

→ 法扬司法

检测滴定终点 的方法不同

沉淀滴定法

- ₩ 银量法的基本原理
- 愛 莫尔 (Mohr) 法
- ₩ 佛尔哈德 (Volhard) 法
- 签 法扬司 (Fajans) 法

滴定反应: Ag⁺ + X⁻ ≒ AgX ↓

滴定剂:AgNO3标准溶液

待测物: Br、Cl-

指示剂: K₂CrO₄

指示原理: $CrO_4^{2-} + Ag^+ \hookrightarrow Ag_2CrO_4 \downarrow K_{sp} = 2.0 \times 10^{-12}$

滴定条件: pH 6.5~10.0

指示剂用量

sp时刚好变色,
$$[Ag^+]=[Cl^-]=K_{sp(AgCl)}^{1/2}=1.34\times10^{-5} \text{ mol}\cdot\text{L}^{-1}$$

$$[CrO_4^{2-}]=K_{sp(Ag2CrO_4)}/[Ag^+]^2=1.1\times10^{-2} \text{ mol}\cdot\text{L}^{-1}$$

实验确定: 浓度 ~ 5×10⁻³ mol·L⁻¹

CrO₄²· 用量过大, 终点提前, CrO₄²·自身颜色 (黄色) 干扰;

CrO₄²⁻用量偏小,终点滞后。

例: 用0.1000 mol·L⁻¹ Ag⁺ 滴定同浓度的KCl, 指示剂[CrO₄²⁻]= 5.00×10⁻³ mol·L⁻¹。计算由指示剂引入的终点误差。(生成可判断终点的AgCrO₄需消耗2.00×10⁻⁵ mol·L⁻¹的Ag⁺)

解: sp时,
$$[Ag^+]_{sp} = [Cl^-]_{sp} = K_{sp(AgCl)}^{1/2} = 1.34 \times 10^{-5} \text{ mol·L}^{-1}$$

$$[CrO_4^{2-}] [Ag^+]^2 = K_{sp(Ag_2CrO_4)}$$
 出现沉淀时: $[Ag^+] = \{K_{sp(Ag_2CrO_4)} / [CrO_4^{2-}] \}^{1/2} = 2.00 \times 10^{-5} \text{ mol·L}^{-1}$ 明显 Ag^+ 过量了,此时 $[Cl^-] = K_{sp} / [Ag^+] = 0.9 \times 10^{-5} \text{ mol·L}^{-1}$
$$[Ag^+]_{ij} = [Ag^+] - [Cl^-] = 2.00 \times 10^{-5} - 0.9 \times 10^{-5} = 1.10 \times 10^{-5}$$
 总多消耗的 Ag^+ : $[Ag^+]_{\dot{\mathbb{R}}} = 1.10 \times 10^{-5} + 2.00 \times 10^{-5} = 3.10 \times 10^{-5} \text{ mol·L}^{-1}$ 终点误差: 滴定剂过量的量 $\times 100\% = \frac{3.10 \times 10^{-5} \times 2V}{0.1000 \times V} \times 100\% = 0.062\%$

酸度: pH 6.5 ~ 10.0; 有NH₃存在: pH 6.5 ~7.2

$$H^++CrO_4^{2-} \leftrightarrows Cr_2O_7^{2-} (K=4.3\times10^{14}) \longrightarrow pH>6.5$$

酸性过强,导致[CrO42-]降低,终点滞后

碱性太强: Ag_2O 沉淀 \longrightarrow pH< 10.0

$$Ag^++ nNH_3 \not = Ag(NH_3)_n \longrightarrow pH < 7.2$$

$$NH_3 + H^+ \leftrightarrows NH_4^+$$

优点:测Cl-、Br 直接、简单、准确

缺点: 干扰大,生成沉淀Ag_mA_n、M_m(CrO₄)_n、M(OH)_n等

不可测I⁻、SCN⁻(AgI和AgSCN 沉淀具有强烈吸附作用)

沉淀滴定法

- 〉银量法的基本原理
- > 莫尔法
- > 佛尔哈德法
- 〉法扬司法

中山大學 SUN YAT-SEN UNIVERSITY

滴定反应: Ag+ + SCN-≒AgSCN ↓

滴定剂: NH₄SCN 标准溶液

待测物: Ag⁺

指示剂: 铁铵矾 FeNH₄(SO₄)₂

指示原理: SCN⁻+ Fe³⁺

「FeSCN²⁺ (K=138)

当[FeSCN²⁺]= 6×10⁻⁶ mol·L⁻¹即显红色

滴定条件: 酸性(0.3 mol·L⁻¹ HNO₃)---防止Fe³⁺水解

Volhard 返滴定法

待测物: X⁻(Cl⁻、Br、I⁻、SCN⁻)

标准溶液:AgNO₃、NH₄SCN

指示剂: 铁铵矾 FeNH₄(SO₄)₂

滴定Cl 时, 到达终点,振荡,红色退去(沉淀转化)

Volhard返滴定法测Cl⁻时应采取的措施

- 〉 过滤除去AgCl ↓(煮沸, 凝聚, 滤, 洗)
- > 加硝基苯(有毒),包住AgCl↓
- \triangleright 增加指示剂浓度, $cFe^{3+}=0.02 \text{ mol·L-1以减小[SCN-]}_{ep}$

改进的Volhard法

优点:返滴法可测I·、SCN·,

选择性好,干扰小,

弱酸盐不干扰滴定,如PO₄³⁻, AsO₄³⁻, CO₃²⁻, S²⁻

强酸性溶液(0.3 mol·L-1 HNO₃)中,弱酸盐不沉淀Ag+

沉淀滴定法

- 〉银量法的基本原理
- > 莫尔法
- > 佛尔哈德法
- 〉法扬司法

AgNO₃标准溶液

指示剂: 荧光黄 (FI-)

 $c = c_{Ag^+}V_{Ag^+}/V_{Cl^-}$

含CI·待测溶液

吸附指示剂的变色原理:

化学计量点后, 沉淀表面荷电状态发生变

化,指示剂在沉淀表面静电吸附导致其结构变

化, 进而导致颜色变化, 指示滴定终点。

$$AgCl \mid Cl^- + FI^- \xrightarrow{Ag^+} AgCl \mid Ag^+ FI^-$$

吸附指示剂对滴定条件的要求:

指示剂要带与待测离子相同电荷 —— 控制溶液pH

荧光黄 HFI ≒ H⁺ + FI⁻ pKa=7.0

静电作用强度要满足指示剂的吸附

pH > pKa (7.0) 以FI-为主

充分吸附,沉淀表面积大

指示剂的吸附能力弱于待测离子

吸附指示剂对滴定条件的要求:

指示剂的吸附能力弱于待测离子

Br > E > Cl > FI

吸附指示剂的滴定条件的要求:

静电作用强度要满足指示剂的吸附 —— 离子强度

充分吸附,沉淀表面积大 加入糊精

滴定剂Ag+对滴定条件的要求:

不能生成Ag(OH)的沉淀 → pH< 10.0

沉淀AgCl对滴定条件的要求:

卤化银沉淀光照下易变为灰黑色 —— 避免强光照射

法扬司法的滴定条件:

- ◆ 控制溶液pH在 pK_a~10.0之间
- ◆ 浓度在0.01~0.1 mol·L-1之间, 控制离子强度
- ◆ 加入糊精作保护剂,防止沉淀凝聚
- ◆ 选择适当吸附能力的指示剂 I->SCN->Br>曙红>Cl->荧光黄
- ◆ 避免强光照射

常用的吸附指示剂

指示剂	pK _a	测定对象	滴定剂	颜色变化	滴定条件 (pH)
荧光黄	7.0	Cl ⁻ ,Br ⁻ ,I ⁻ ,	$\mathbf{A}\mathbf{g}^{+}$	黄绿 -粉红	7.0 ~ 10.0
二氯 荧光黄	4.0	Cl ⁻ ,Br ⁻ ,I ⁻	$\mathbf{A}\mathbf{g}^{+}$	黄绿 -粉红	4.0 ~ 10.0
曙红	2.0	Br,I ⁻ , SCN ⁻	$\mathbf{A}\mathbf{g}^{+}$	粉红- 红紫	2.0 ~ 10.0
甲基紫		$\mathbf{A}\mathbf{g}^{+}$	Cl-	红-紫	酸性

标准溶液的配制与标定

NaCl: 基准纯或优级纯

直接配制

AgNO₃:

粗配后用NaCl标液标定

棕色瓶中保存

三种银量法对比

指示剂	K ₂ CrO ₄	$Fe NH_4 (SO_4)_2$	吸附指示剂
滴定剂	Ag+	SCN-	Cl ⁻ 或Ag ⁺
滴定反应	Ag++Cl=AgCl	SCN-+Ag+=AgSCN	Ag++Cl=AgCl
指示原理	沉淀反应 2Ag++CrO ₄ =Ag ₂ CrO ₄	配位反应 Fe ³⁺ +SCN ⁻ =FeSCN ²⁺	物理吸附导致指示 剂结构变化
pH条件	pH = 6.5~10.5	0.3 mol·L ⁻¹ 的HNO ₃	与指示剂pKa有关, 使其以离子形态存 在
测定对象	Cl-, Br-, CN-,Ag+	Ag+, Cl-, Br-, I-, SCN-等	Cl ⁻ , Br ⁻ , SCN ⁻ ,Ag ⁺ 等

本章习题 (P284-286)

思考题: 1,3

习题: 9,10

四种滴定分析方法的异同?

thanks