

阿里巴巴数据库容器化资源调度与实践

炎烈 @ 阿里巴巴

SequeMedia

个人简介

- → 2008 2016曾在云壤、百度、360、

 豌豆荚从事运维与运维开发工作。
- → 2016年2月加入阿里巴巴数据库团队。
- ◆ 2016年7月开始负责阿里巴巴数据库 资源交付与调度
- → 2016年阿里巴巴双11大促实现数据 库业务容器化。

目录

- □需求背景
- 口设计目标
- □调度系统
- 口生产实践

目录

- □需求背景
- 口设计目标
- □调度系统
- 口生产实践

容器为调度提供可能

目录

- □需求背景
- □设计目标
- □调度系统
- 口生产实践

设计目标

- □满足业务需求
- □高效资源交付

业务的需求是什么? 我们的目标是什么?

满足业务需求

打散部署

05

01

业务

需求

服务副本在地域/IDC/交换机/机柜等级别打散部署。

IO 敏感

IO 敏感却无法隔离,需要极 其高效的 IO 调度策略

对称部署

在打散级别内,计算能力完全相同,且宿主机部署的容器完全相同。

独占部署

业务独立占有机器资源,不与 其他业务混合部署,可靠性高 优先级保证。

合并部署

可以与部分白名单中的业务混 部。

指定部署

指定IDC/机型/磁盘/网卡等资源类型 或主机部署

高效资源交付

屏蔽底层资源

▶ 公有云

> 物理机

提升资源利用率

- ➤ 密度 ➤ CPU

减少资源碎片

- ▶ 内存▶ 磁盘

提升运维效率

▶ 有状态 -> 无状态

目录

- □需求背景
- 口设计目标
- □调度系统
- 口生产实践

调度系统

- □ 系统架构
- □调度架构
- □ 快速调度
- □ 支持混部
- □ 存储分离
- □ 弹性调度

系统长什么样子?

如何做最快调度?

如何解决碎片化?

如何更节省成本?

系统架构

调度架构

快速调度

□万台服务器毫秒级

支持混部

- □隔离方案
 - ✓ Cgroup Parent
 - ✓ IO Device
- □调度方式
 - ✓独立调度
 - ✓不同售卖比

存储分离

■ Volume Plugin

✓意义

- 容器与外部存储整合
- 超过容器生命周期

✓ 种类

- "Name": "plugin-example", "Addr": "https://example.com/docker/plugin", "TLSConfig": { "InsecureSkipVerify": false, "CAFile": "/usr/shared/docker/certs/example-ca.pem", "CertFile": "/usr/shared/docker/certs/example-cert.pem", "KeyFile": "/usr/shared/docker/certs/example-key.pem"
- .sock files are UNIX domain sockets
- .spec files are text files containing a URL, such as unix:/// other.sock or tcp://localhost:8080.
- .json files are text files containing a full json specification for the plugin.

✓部署

- .sock /run/docker/plugins
- .spec, .json /etc/docker/plugins or /usr/lib/docker/plugins

存储分离

- ✓ 存储空间
- ✓ 写入放大
- ✓ 网络延时
- □ 存储调度
 - ✓ 多种存储集群
 - ✓ 多个存储集群
- □业务无状态

Format

✓ 数据快速漂移

Destroy

Create

Name

弹性调度

- □精确垂直与水平伸缩
 - ✓ 最小成本迁移
 - ✓ 精确扩容所用
- □基于历史数据的最小成本迁移以及透明伸缩。
 - ✓ 最小成本迁移
 - ✓ 透明扩容缩容

目录

- □需求背景
- 口设计目标
- □调度系统
- 口生产实践

生产实践

- □ 控制风险
- □ 运维工具
- □ 业务混部

OOM频繁怎么办? 出现问题如何运维? 业务混部的现状如何?

控制风险

- □解除隔离
 - ✓10秒
 - ✓数万容器
 - ✓去除限制
- □内存超卖
 - ✓ 防止OOM, 举例:
 - 内存 Limit 与数据库内存设置(x),物理机容器不OOM时 n = sum(x)/capacity (n 即为可分配为容器内存百分比,这里假设 n 为80%,小规格容器不OOM常量为1.2),则:
 - 全部容器 sum(x) = capacity * 80%
 - 容器 limit = min(x + capacity * 20%, capacity, x*1.2)

运维工具

- □监管控平台
 - ✓ 数据展示
 - ✓ 异常报警
 - ✓ 为弹性提供数据
- □黑屏诊断工具
 - ✓ 命令行工具

info		cpu					mem			sda				sdb					net	
Time	Hostname	l usr	sys	idl	wai	l uso	ige		r/s	w/s	rb/s	wb/s		r/s	w/s	rb/s	wb/s	l by	ytin	bytout
2017-05-09T13:29:16+08:00	db251138224	I 01.57	01.00	97.37	00.06	44.	.06		0	0	0Mi	0Mi		15	255	0Mi	1Mi		0Mi	0Mi
2017-05-09T13:29:16+08:00	docker01125009817	1 00.09	00.06	97.42	00.03	31.	.68		0	0	0Mi	0Mi		0	5	0Mi	0Mi		0Mi	0Mi
2017-05-09T13:29:16+08:00	docker01125009808	1 00.09	00.09	97.38	00.03	1 24.	.45		0	0	0Mi	0Mi		0	6	0Mi	0Mi		0Mi	0Mi
2017-05-09T13:29:16+08:00	docker01125009809	I 00.19	00.12	97.41	00.03	1 40.	.28		0	0	0Mi	0Mi		0	6	0Mi	0Mi		0Mi	0Mi
2017-05-09T13:29:16+08:00	docker01125009808	1 00.09	00.03	97.41	00.06	1 24.	.37		0	0	0Mi	0Mi		1	6	0Mi	0Mi		0Mi	0Mi
2017-05-09T13:29:16+08:00	docker01125009816	1 00.09	00.09	97.44	00.03	1 77.	.46		0	0	0Mi	0Mi		4	16	0Mi	0Mi		0Mi	0Mi
2017-05-09T13:29:16+08:00	docker01125009816	1 00.09	00.09	97.35	00.06	I 78.	.42		0	0	0Mi	0Mi		7	14	0Mi	0Mi		0Mi	0Mi
2017-05-09T13:29:16+08:00	docker01125009816	1 00.09	00.06	97.41	00.06	I 79.	.09		0	0	0Mi	0Mi		1	9	0Mi	0Mi		0Mi	0Mi
2017-05-09T13:29:16+08:00	docker01125009813	1 00.06	00.06	97.38	00.03	1 28.	.45		0	0	0Mi	0Mi		1	5	0Mi	0Mi		0Mi	0Mi
2017-05-09T13:29:16+08:00	docker01125009813	1 00.47	00.16	97.41	00.03	1 27.	.34		0	0	0Mi	0Mi		0	6	0Mi	0Mi		0Mi	0Mi
2017-05-09T13:29:16+08:00	docker01125009809	1 00.06	00.12	97.41	00.03	41.	.52		0	0	0Mi	0Mi		1	5	0Mi	0Mi		0Mi	0Mi

业务混部

- □混部现状
 - ✓在线混部
 - ✓ 在离线混部
 - ✓离在线混部

站在巨人肩膀上

- □ 技术选型
 - ✓ docker
 - ✓ golang
 - ✓ etcd3
 - ✓ gnatsd
 - ✓ prometheus
- □ 参考系统
 - ✓ kubernetes
 - ✓ Swarm

相关链接

- □ https://www.docker.com
- □ https://www.golang.org
- https://github.com/coreos/etcd
- https://github.com/nats-io/gnatsd
- □ https://prometheus.io
- □ https://kubernetes.io

Q & A

We are hiring: 技术专家、高级技术专家

- 资源调度开发
 - √ golang/k8s/mesos/docker/swarm
 - ✓ etcd/分布式存储/raft/paxos
- □ 数据库架构师
 - 业务解决方案
 - 业务架构能力

邮箱: guoan.qga@alibaba-inc.com

THANKS

SequeMedia ^{盛拓传媒}

