CSE-233: Week 1 Summer 2020

## Introduction to Automata

## Computers



## Theory of Computation

Key areas:

- 1. Complexity Theory
- 2. Computability Theory
- 3. Automata Theory

## Automata



## Automata





## What is automata theory

- Automata theory is the study of abstract computational devices.
- Abstract devices are (simplified) models of real computational devices like computer.
- Computations happen everywhere: On your laptop, on your cell phone, ...

## A simple computer



input: switch

output: light bulb

actions: flip switch

states: on, off

## Another simple "computer"





input: switch

output: light bulb

**actions:** f for "flip switch"

states: on, off

bulb is on if and only if there was an odd number of flips

## Another "computer"



start  $\begin{array}{c|c} & 1 & \text{off} \\ 2 & 2 & 2 \\ \hline & 2 & \\ & & 1 & \\ \hline & & & \\ & & & 1 & \\ \hline & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & &$ 

inputs: switches I and 2

actions: 1 for "flip switch I" 2 for "flip switch 2"

states: on, off

bulb is on if and only if both switches were flipped an odd number of times

## A design problem



Can you design a circuit where the light is on if and only if all the switches were flipped exactly the same number of times?

## A design problem

- Such devices are difficult to reason about, because they can be designed in an infinite number of ways.
- By representing them as abstract computational devices, or automata, we will learn how to answer such questions

# These devices can model many things

- They can describe the operation of any "small computer", like the control component of an alarm clock or a microwave.
- They are also used in lexical analyzers to recognize well formed expressions in programming languages:

ab1 is a legal name of a variable in C 5u= is not

## Some devices we will see

| finite automata              | Devices with a finite amount of memory. Used to model "small" computers.       |
|------------------------------|--------------------------------------------------------------------------------|
| push-down<br>automata        | Devices with infinite memory that can be accessed in a restricted way.         |
|                              | Used to model parsers, etc.                                                    |
| Turing Machines              | Devices with infinite memory.                                                  |
|                              | Used to model any computer.                                                    |
| time-bounded Turing Machines | Infinite memory, but bounded running time.                                     |
|                              | Used to model any computer program that runs in a "reasonable" amount of time. |

## Some highlights of the course

#### Finite automata

- We will understand what kinds of things a device with finite memory can do, and what it cannot do
- Introduce simulation: the ability of one device to "imitate" another device
- Introduce nondeterminism: the ability of a device to make arbitrary choices

#### Types

- Deterministic Finite Automata(DFA).
- Non-Deterministic Finite Automata(NFA).

## Preliminaries of automata theory

- How do we formalize the question.
- First, we need a formal way of describing the problems that we are interested in solving.

## Problems

- Examples of problems we will consider
  - Given a word s, does it contain the subword "food"?
  - Given a number n, is it divisible by 7?
  - Given a pair of words s and t, are they the same?
  - Given an expression with brackets, e.g. (() ()), does every left bracket match with a subsequent right bracket?
- All of these have "yes/no" answers.
- There are other types of problems, that ask "Find this" or "How many of that" but we won't look at those.

## Alphabets and strings

- A common way to talk about words, number, pairs of words, etc. is by representing them as strings
- To define strings, we start with an alphabet

#### An alphabet is a finite set of symbols.

Examples

```
\begin{split} \Sigma_1 &= \{a,b,c,d,...,z\} \text{: the set of letters in English} \\ \Sigma_2 &= \{0,1,...,9\} \text{: the set of (base IO) digits} \\ \Sigma_3 &= \{a,b,...,z,\#\} \text{: the set of letters plus the special symbol } \# \\ \Sigma_4 &= \{\,(,\,)\,\} \text{: the set of open and closed brackets} \end{split}
```

## Strings

A string over alphabet  $\Sigma$  is a finite sequence of symbols in  $\Sigma$ .

- $\Sigma^*$  denotes this set of strings.
- The empty string will be denoted by ε
- Examples

```
abfbz is a string over \Sigma_1 = \{a, b, c, d, ..., z\}
9021 is a string over \Sigma_2 = \{0, 1, ..., 9\}
ab#bc is a string over \Sigma_3 = \{a, b, ..., z, \#\}
))()(() is a string over \Sigma_4 = \{(,)\}
```

## Strings

- $\{0,1\}^* = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, 001, \dots\}$
- Length of a string
  - Number of symbols in a string
  - |s|
  - |0110| = 4
  - | ε |= 0

## Powers of an Alphabet

- $\Sigma = \{0,1\}$
- $\Sigma^k$  = the set of strings of length k, each of whose symbols is in  $\Sigma$ .

## Powers of an Alphabet

If  $\Sigma$  is an alphabet, we can express the set of all strings of a certain length from that alphabet by using the exponential notation:

- $\Sigma^k$ : the set of strings of length k, each of whose is in  $\Sigma$
- Examples:
  - ${\color{red} \blacksquare} \ \Sigma^0: \{\epsilon\},$  regardless of what alphabet  $\Sigma$  is. That is  $\epsilon$  is the only string of length 0
  - If  $\Sigma = \{0, 1\}$ , then:
    - 1.  $\Sigma^1 = \{0, 1\}$
    - 2.  $\Sigma^2 = \{00, 01, 10, 11\}$
    - 3.  $\Sigma^3 = \{000, 001, 010, 011, 100, 101, 110, 111\}$

Note: confusion between  $\Sigma$  and  $\Sigma^1$ :

- 1.  $\Sigma$  is an alphabet; its members 0 and 1 are symbols
- 2.  $\Sigma^1$  is a set of strings; its members are strings (each one of length 1)

## Kleene Star

- $\Sigma^*$ : The set of all strings over an alphabet  $\Sigma$ 
  - $\{0,1\}^* = \{\epsilon,0,1,00,01,10,11,000,\ldots\}$
- The symbol \* is called Kleene star and is named after the mathematician and logician Stephen Cole Kleene.

Thus:  $\Sigma^* = \Sigma^+ \cup \{\epsilon\}$ 

### Concatenation

Define the binary operation . called **concatenation** on  $\Sigma^*$  as follows: If  $a_1a_2a_3\ldots a_n$  and  $b_1b_2\ldots b_m$  are in  $\Sigma^*$ , then

$$a_1 a_2 a_3 \dots a_n b_1 b_2 \dots b_m = a_1 a_2 a_3 \dots a_n b_1 b_2 \dots b_m$$

- Thus, strings can be concatenated yielding another string:
  If x are y be strings then x.y denotes the concatenation of x and y, that is, the string formed by making a copy of x and following it by a copy of y
- Examples:
  - 1. x = 01101 and y = 110Then xy = 01101110 and yx = 11001101
  - 2. For any string w, the equations  $\epsilon w = w\epsilon = w$  hold. That is,  $\epsilon$  is the **identity for concatenation** (when concatenated with any string it yields the other string as a result)
- If S and T are subsets of  $\Sigma^*$ , then

$$S.T = \{s.t \mid s \in S, t \in T\}$$