$$\lim_{x \to +\infty} \frac{g(x)}{f(x)} = \lim_{x \to +\infty} \frac{x^{\mu}}{a^{x}} = 0.$$

因而指数函数 a^x 的无穷大的阶比任何幂函数 x^μ 高. 为了说明这一事实,我们先来看 $\mu = k \in \mathbb{N}$ 的情形. 已经知道(第二章§1的例 10)

$$\lim \frac{n^k}{a^n} = 0.$$

由此易得

$$\lim \frac{(n+1)^k}{a^n} = \lim \frac{n^k}{a^n} \left(1 + \frac{1}{n}\right)^k = 0.$$

对任意 $\epsilon > 0$,存在 $N \in \mathbb{N}$,使得 n > N 时有

$$0 < \frac{(n+1)^k}{a^n} < \varepsilon.$$

取 $\Delta = N+1$, 则 $x > \Delta$ 时就有

$$0 < \frac{x^k}{a^x} \leqslant \frac{(\lceil x \rceil + 1)^k}{a^{\lceil x \rceil}} < \varepsilon.$$

这证明了

$$\lim_{x\to +\infty} \frac{x^k}{a^x} = 0.$$

对于一般的 $\mu>0$,我们可以取 $k\in\mathbb{N}$, $k\geqslant\mu$. 于是,对于 $x\geqslant1$

$$0 < \frac{x^{\mu}}{a^x} \leqslant \frac{x^k}{a^x}$$
.

因而

$$\lim_{x\to +\infty} \frac{x^{\mu}}{a^x} = 0.$$

例 10 设 $f(x)=x^{\nu}(\nu>0)$, $g(x)=\log_a x(a>1)$. 我们指出

$$\lim_{x \to +\infty} \frac{\log_a x}{x^{\nu}} = 0.$$

这说明对数函数 $\log_a x$ 是比任何幂函数 x^{ν} 更低阶的无穷大量. 事实上,令 $y = \log_a x$,则有