INF2604 – Fundamentos de Computação Gráfica Renderização baseada em Física

Waldemar Celes

Departamento de Informática, PUC-Rio

Renderização

Renderização de uma cena

- ▶ Obter a imagem da cena do ponto de vista de uma câmera
- ▶ Processo de determinar a cor de cada pixel da imagem

Renderização

Renderização de uma cena

- ▶ Obter a imagem da cena do ponto de vista de uma câmera
- ▶ Processo de determinar a cor de cada pixel da imagem

Procedimentos:

- ► Por objeto
 - Determina os pixels afetados por cada objeto
 - Algoritmos de rasterização
- Por pixel
 - Determina os objetos que afetam cada pixel
 - ► Algoritmos baseados em traçado de raios

Renderização foto-realista

Renderização foto-realista

- Simulação precisa da física da luz
- Simulação precisa da interação luz-matéria
- ► Adequação à tecnologia disponível para apresentação de imagens

W. Celes

Tópicos

- Grandezas físicas e suas derivações
- Iluminação direta: Algoritmo de traçado de raio
 - Modelos básicos (câmera pinhole e fonte de luz pontual)
 - Sistemas de coordenadas
 - ► Instanciação de objetos
 - ► Interseção raio-objetos (e visibilidade)
 - Algoritmo de traçado de raios
 - Outras fontes de luz
- ▶ Iluminação indireta: Algoritmo de traçado de caminhos
 - Equação de renderização
 - ► Integração Monte Carlo
 - ► Algoritmo de iluminação direta
 - Conceito de caminhos
 - Algoritmo de traçado de caminhos
 - ► BSDFs (objetos reflexivos e translúcidos)
 - ► Aceleração em placa gráfica

Critério de avaliação

Prática I: Traçado de raios – P_1

- Tarefas incrementais: 20%
- ► Implementação do algoritmo: 80%
 - Funcionalidades básicas
 - Funcionalidades adicionais

Prática II: Traçado de caminhos $-P_2$

- ► Tarefas incrementais: 20%
- ► Implementação do algoritmo: 80%
 - Funcionalidades básicas
 - Funcionalidades adicionais

Conceitual

▶ Lista de exercícios – L

Critério de avaliação

Prática I: Traçado de raios – P_1

- Tarefas incrementais: 20%
- ► Implementação do algoritmo: 80%
 - Funcionalidades básicas
 - Funcionalidades adicionais

Prática II: Traçado de caminhos $-P_2$

- ► Tarefas incrementais: 20%
- ► Implementação do algoritmo: 80%
 - Funcionalidades básicas
 - Funcionalidades adicionais

Conceitual

▶ Lista de exercícios – L

Grau final

$$F = \frac{2P_1 + 2P_2 + L}{5}$$

Desenvolvimento dos trabalhos

Linguagem de programação

- ► Preferencialmente C++
 - ► Aluno pode escolher outra qualquer
 - ▶ javascript, python, gls, ...

Bibliografia

Physically Based Rendering: From Theory To Implementation

- ▶ Matt Pharr, Wenzel Jakob, and Greg Humphreys, 2018
- ▶ https://www.pbr-book.org

Robust Monte Carlo Methods for Light Transport Simulation

- ► Eric Veach, Thesis Dissertation, 1997
- https://graphics.stanford.edu/papers/veach_thesis/thesis.pdf

Fundamentals of Computer Graphics (5th Edition)

► Steve Marschner and Peter Shirley, 2022

Aulas vídeos

- ► TU Wien, Austria
- https://www.youtube.com/watch?v=5sY_hoh_IDc&list= PLmIqTlJ6KsE2yXzeq02hqCDpOdtj6n6A9&index=1

