Using the data in the link below, attempt to model a customer's propensity to join our loyalty program

Ayan Karim

```
In [1]: # Import Dependencies
        %matplotlib inline
        import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
        from sklearn.feature selection import RFE
        from sklearn.model selection import train test split, cross val score
        from sklearn.ensemble import RandomForestClassifier, GradientBoostingCla
        ssifier
        from sklearn.svm import LinearSVC
        from sklearn.linear model import LogisticRegression
        from sklearn.naive bayes import GaussianNB
        from sklearn import metrics
        from sklearn.metrics import confusion matrix
        from scipy.stats import boxcox
In [2]: | df = pd.read csv('customers data.csv')
```

Explore Data

```
In [3]: df.head()
```

Out[3]:

	Unnamed: 0	purch_amt	gender	card_on_file	age	days_since_last_purch	loyalty
0	0	19.58	male	no	31.0	35.0	False
1	1	65.16	male	yes	23.0	61.0	False
2	2	40.60	female	no	36.0	49.0	False
3	3	38.01	male	yes	47.0	57.0	False
4	4	22.32	female	yes	5.0	39.0	False

```
In [4]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 120000 entries, 0 to 119999
        Data columns (total 7 columns):
        Unnamed: 0
                                  120000 non-null int64
        purch amt
                                  120000 non-null float64
        gender
                                  120000 non-null object
                                  120000 non-null object
        card on file
                                  120000 non-null float64
        age
        days since last purch
                                  120000 non-null float64
                                  120000 non-null bool
        loyalty
        dtypes: bool(1), float64(3), int64(1), object(2)
        memory usage: 5.6+ MB
In [5]: df.columns
Out[5]: Index(['Unnamed: 0', 'purch_amt', 'gender', 'card_on_file', 'age',
                'days_since_last_purch', 'loyalty'],
               dtype='object')
In [6]: # Drop Unnamed column
        df = df.drop(['Unnamed: 0'], axis=1)
In [7]: df.describe()
Out[7]:
                 nurch amt
                                  age days since last purch
```

	purcn_amt	age	days_since_last_purch
count	120000.000000	120000.000000	120000.000000
mean	44.036234	25.803008	56.605908
std	20.473148	10.153072	16.422187
min	-43.950000	-22.000000	-9.000000
25%	30.210000	19.000000	45.000000
50%	43.970000	26.000000	57.000000
75%	57.830000	33.000000	68.000000
max	142.200000	71.000000	125.000000

Clean Data

```
In [8]: # Remove unrealistice values for continuous variables
        df.purch amt = df.purch amt[df.purch amt > df.purch amt.quantile(.25)]
        df.age = df.age[df.age > df.age.quantile(.25)]
        df.days since last purch = df.days since last purch[df.days since last p
        urch > df.days since last purch.quantile(.25)]
        # Remove rows with null values
        df = df.dropna()
In [9]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        Int64Index: 47455 entries, 1 to 119999
        Data columns (total 6 columns):
        purch amt
                                 47455 non-null float64
        gender
                                 47455 non-null object
        card on file
                                 47455 non-null object
        age
                                 47455 non-null float64
                                 47455 non-null float64
        days since last purch
        loyalty
                                 47455 non-null bool
        dtypes: bool(1), float64(3), object(2)
```

In [10]: df.describe()

Out[10]:

	purch_amt	age	days_since_last_purch
count	47455.000000	47455.000000	47455.00000
mean	52.051808	30.093373	63.38940
std	14.710210	7.180507	11.81037
min	30.220000	20.000000	46.00000
25%	40.300000	24.000000	54.00000
50%	49.870000	29.000000	62.00000
75%	61.360000	35.000000	71.00000
max	125.530000	71.000000	118.00000

memory usage: 2.2+ MB

Visualize Data

```
In [11]: # Visualize distribution of continuous variables
    plt.figure(figsize=(5,5))
    plt.hist(df.purch_amt, edgecolor = 'k')
    plt.title('Purchase Amount')
    plt.show()

    plt.figure(figsize=(5,5))
    plt.hist(df.age, edgecolor = 'k')
    plt.title('Age')
    plt.show()

    plt.figure(figsize=(5,5))
    plt.hist(df.days_since_last_purch, edgecolor = 'k')
    plt.title('Days Since Last Purchase')
    plt.show()
```


In [12]: df.head()

Out[12]:

	purch_amt	gender	card_on_file	age	days_since_last_purch	loyalty
	1 65.16	male	yes	23.0	61.0	False
:	2 40.60	female	no	36.0	49.0	False
;	3 38.01	male	yes	47.0	57.0	False
	6 43.96	male	yes	36.0	64.0	False
,	9 93.63	female	no	40.0	47.0	True

```
In [13]: # from scipy.stats import boxcox

# df.purch_amt = boxcox(df.purch_amt)[0]
# df.age = boxcox(df.age)[0]
# df.days_since_last_purch = boxcox(df.days_since_last_purch)[0]
```

In [14]: df.head()

Out[14]:

	purch_amt	gender	card_on_file	age	days_since_last_purch	loyalty
1	65.16	male	yes	23.0	61.0	False
2	40.60	female	no	36.0	49.0	False
3	38.01	male	yes	47.0	57.0	False
6	43.96	male	yes	36.0	64.0	False
9	93.63	female	no	40.0	47.0	True

```
In [15]: # Visualize categorical variables, class balances
         x = ['female', 'male']
         y = list(df.groupby(['gender']).count().loyalty)
         plt.figure(figsize=(5,5))
         plt.bar(x,y, edgecolor = 'k')
         plt.title('Gender')
         plt.xlabel('Gender')
         plt.ylabel('Count')
         plt.show()
         x = ['no', 'yes']
         y = list(df.groupby(['card_on_file']).count().loyalty)
         plt.figure(figsize=(5,5))
         plt.bar(x,y, edgecolor = 'k')
         plt.title('Card on File')
         plt.xlabel('Yes or No')
         plt.ylabel('Count')
         plt.show()
         x = ['False', 'True']
         y = list(df.groupby(['loyalty']).count().gender)
         plt.figure(figsize=(5,5))
         plt.bar(x,y, edgecolor = 'k')
         plt.title('Loyalty')
         plt.xlabel('Yes or No')
         plt.ylabel('Count')
         plt.show()
```


Correct Class Imbalance

```
In [16]: # Correct Class Imbalance by Under Sampling "No Loyalty"
    no_loyalty = df[df['loyalty'] == False]
    no_loyalty = no_loyalty.sample(frac=.115)

loyalty = df[df['loyalty'] == True]

undersample = pd.concat([no_loyalty, loyalty])
undersample = undersample.reset_index()
undersample = undersample.drop(['index'], axis=1)
```

```
In [17]: undersample.shape
Out[17]: (9741, 6)
```

```
In [18]: # Visualize Class Balabnce of Loyalty
    x = ['False', 'True']
    y = list(undersample.groupby(['loyalty']).count().gender)

plt.figure(figsize=(6,6))
    plt.bar(x,y, edgecolor = 'k')
    plt.title('Loyalty')
    plt.xlabel('Yes or No')
    plt.ylabel('Count')
    plt.show()
```


In [19]: # Visualize Correlation and Distributions of undersampled dataset
sns.pairplot(undersample[['purch_amt', 'age', 'days_since_last_purch']])

Out[19]: <seaborn.axisgrid.PairGrid at 0x1223a2320>

In [20]: # Correct Right Skew distribution with Box Box Distribution
 undersample.purch_amt = boxcox(undersample.purch_amt)[0]
 undersample.age = boxcox(undersample.age)[0]
 undersample.days_since_last_purch = boxcox(undersample.days_since_last_purch)[0]

```
In [21]: # Visualize Distributions after BoxCox Transformation
     sns.pairplot(undersample[['purch_amt', 'age', 'days_since_last_purch']])
```

Out[21]: <seaborn.axisgrid.PairGrid at 0x1223a23c8>


```
In [22]: # Turn categorical Variables in to Numeric
undersample = pd.get_dummies(undersample, columns = ['gender', 'card_on_
file'])
undersample['loyalty'] = np.where(undersample['loyalty']==True, 1, 0)
```

```
In [23]: undersample.head()
```

Out[23]:

	purch_amt	age	days_since_last_purch	loyalty	gender_female	gender_male	card_on_file_
0	3.115137	1.868913	0.511267	0	1	0	_
1	3.308758	1.965896	0.511346	0	0	1	
2	3.217503	2.018075	0.511335	0	0	1	
3	3.315823	2.059608	0.511302	0	1	0	
4	3.181516	1.934152	0.511309	0	0	1	

Baseline Models

```
In [24]: # Split into test and training set
         X = undersample.drop(['loyalty'], axis=1)
         Y = undersample['loyalty']
         x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.2,
         random state=0)
         # List of models
         models = [RandomForestClassifier(n estimators=200, max depth=3, random s
         tate=42), LinearSVC(),
                   GaussianNB(), LogisticRegression(random state=42), GradientBoo
         stingClassifier(n estimators=200, random state=42)]
         model names = []
         accuracies = []
         # Iterate through models to compare accuracies
         for model in models:
             model_name = model.__class__._name__
             model names.append(model name)
             model.fit(x_train, y_train)
             predictions = model.score(x train, y train)
             accuracies.append(predictions)
         # Assign accuracies for each model to view
         accuracy df = pd.DataFrame()
         accuracy_df['Model'] = model_names
         accuracy df['Accuracy'] = accuracies
```

/usr/local/lib/python3.6/site-packages/sklearn/linear_model/logistic.p
y:433: FutureWarning: Default solver will be changed to 'lbfgs' in 0.2
2. Specify a solver to silence this warning.
 FutureWarning)

```
In [25]: accuracy_df
```

Out[25]:

	Model	Accuracy
0	RandomForestClassifier	0.727156
1	LinearSVC	0.614861
2	GaussianNB	0.739861
3	LogisticRegression	0.612038
4	GradientBoostingClassifier	0.764759

In [26]: # GradientBoostingClassifier cross validation

```
gbc = GradientBoostingClassifier(n_estimators=200, random_state=42)
gbc.fit(x_train, y_train)
y_pred = gbc.predict(x_test)
cross_val_score(gbc, X, Y, cv=5)
```

Out[26]: array([0.73114418, 0.73921971, 0.74075975, 0.7412731 , 0.71868583])

In [27]: # View accuracy scores on classifying each author (precission, recall, f 1-score and support)

print(metrics.classification_report(y_test, y_pred))

support	f1-score	recall	precision	
957	0.72	0.69	0.75	0
992	0.75	0.78	0.72	1
1949	0.74	0.74	0.74	micro avg
1949	0.73	0.73	0.74	macro avg
1949	0.73	0.74	0.74	weighted avg

```
In [28]: # Pass linear regression model to the RFE constructor
          selector = RFE(gbc)
          selector = selector.fit(X, Y)
          # Sort ranked features
         pd.set option("display.max rows", 999)
          rankings = pd.DataFrame({'Features': X.columns, 'Ranking' : selector.ran
          rankings = rankings.sort values('Ranking')
          rankings = rankings.reset index()
          rankings = rankings.drop(columns=['index'])
         rankings = rankings.set index('Features')
          rankings = rankings.T
          rankings
Out[28]:
          Features purch amt age days since last purch card on file no gender male card on file yes
                         1
                             1
                                               1
                                                            2
                                                                       3
                                                                                     4
           Ranking
```

In [29]: # RandomForestClassifier cross validation

rfc = RandomForestClassifier(n_estimators=300, max_depth=2, random_state = 42)
 rfc.fit(x_train, y_train)
 y_pred = rfc.predict(x_test)
 cross_val_score(rfc, X, Y, cv=5)

Out[29]: array([0.72652642, 0.73100616, 0.71201232, 0.72022587, 0.70174538])

precision recall f1-score support 0 0.78 0.57 0.66 957 1 0.67 0.85 0.75 992 micro avg 0.71 0.71 0.71 1949 0.73 0.71 0.70 macro avg 1949 weighted avg 0.73 0.71 0.71 1949

```
In [31]: # Pass linear regression model to the RFE constructor
         selector = RFE(rfc)
         selector = selector.fit(X, Y)
         # Sort ranked features
         pd.set option("display.max rows", 999)
         rankings = pd.DataFrame({'Features': X.columns, 'Ranking' : selector.ran
         rankings = rankings.sort values('Ranking')
         rankings = rankings.reset index()
         rankings = rankings.drop(columns=['index'])
         rankings = rankings.set index('Features')
         rankings = rankings.T
         rankings
```

Out[31]:

Features	purch_amt	age	days_since_last_purch	card_on_file_no	gender_male	gender_female	C
Ranking	1	1	1	2	3	4	_

Feature Engineering

```
In [32]: # Feature Engineering
         undersample['purch amt'] = undersample['purch amt'].apply(lambda x: x**2
         undersample = undersample.drop(['card on file yes', 'gender male'], axis
         =1)
```

Second Round Training on New Features and Predictions

```
In [33]: # GradientBoostingClassifier cross validation
         gbc = GradientBoostingClassifier(n_estimators=200, random_state=42)
         gbc.fit(x train, y train)
         y pred = gbc.predict(x test)
         cross_val_score(gbc, X, Y, cv=5)
Out[33]: array([0.73114418, 0.73921971, 0.74075975, 0.7412731 , 0.71868583])
```

		precision	recall	f1-score	support
	0	0.75	0.69	0.72	957
	1	0.72	0.78	0.75	992
micro	avg	0.74	0.74	0.74	1949
macro	avg	0.74	0.73	0.73	1949
weighted	avg	0.74	0.74	0.73	1949

```
In [35]: # RandomForestClassifier cross validation

rfc = RandomForestClassifier(n_estimators=300, max_depth=2, random_state = 42)
    rfc.fit(x train, y train)
```

y_pred = rfc.predict(x_test)

cross_val_score(rfc, X, Y, cv=5)

Out[35]: array([0.72652642, 0.73100616, 0.71201232, 0.72022587, 0.70174538])

In [36]: # View accuracy scores on classifying each author (precission, recall, f
1-score and support)
print(metrics.classification report(y test, y pred))

		precision	recall	f1-score	support
	0	0.78	0.57	0.66	957
	1	0.67	0.85	0.75	992
micro	avg	0.71	0.71	0.71	1949
macro	avg	0.73	0.71	0.70	1949
weighted	avg	0.73	0.71	0.71	1949

```
In [ ]:
```