

Universität zu Lübeck Institut für Telematik

Prof. Dr. S. Fischer

Wiederholungsklausur: "Modul Betriebs- und Kommunikationssysteme"

11. Oktober 2007

Hinweise zur Bearbeitung:

- Es sind keinerlei Hilfsmittel zugelassen.
- Notieren Sie alle Lösungen deutlich lesbar direkt auf den Aufgabenblättern.
- Schreiben Sie weder mit Rotstift noch mit Bleistift, sondern mit Tinte oder Kugelschreiber.
- Die Bearbeitungszeit beträgt 180 Minuten.
- Diese Klausur umfasst 27 Seiten. Prüfen Sie Ihr Exemplar auf Vollständigkeit.
- Jeglicher Austausch mit Nachbarn ist **nicht erlaubt** und wird bei allen Beteiligten als Täuschversuch geahndet!

•	Füllen	Sie d	las fo	olgend	e For	mul	arfel	d	aus:

Name:	 	
Vorname:	 	
Studiengang:	 	
Matrikel-Nr.:	 	
Wiederholer:	□ nein	\Box ja, $_$. Versuch

Viel Erfolg!

Aufgabe	maximale	erreichte	Aufgabe	maximale	erreichte
	Punktzahl	Punktzahl		Punktzahl	Punktzahl
1	10		8	17	
2	6		9	6	
3	6		10	11	
4	12		11	5	
5	9		12	9	
6	10		13	8	
7	7		14	4	

maximale Summe: 120 erreichte Gesamtpunktzahl:

Note: _____

Seite 1 von 27

Bewerten Sie durch Ankreuzen, welche der folgenden Aussagen korrekt bzw. nicht korrekt sind. Ein richtig gesetztes Kreuz gibt 0,5 Punkte, ein falsch gesetztes Kreuz -0,5 Punkte. Aussagen, die mit keinem Kreuz versehen werden, gehen nicht in die Bewertung ein. Die minimale Punktzahl innerhalb der einzelnen Teilaufgaben (a) und (b) beträgt jeweils 0 Punkte.

a) Betriebssysteme			(6 Punkte)
	korrekt	falsch	
			Ein Echtzeit-Betriebssystem garantiert dem Benutzer maximale Antwortzeiten.
			Eine Erhöhung der Umdrehungsgeschwindigkeit einer Festplatte kann die Zugriffszeit verringern und die Übertragungsgeschwindigkeit erhöhen.
			Interne Fragmentierung kann durch Kompaktierung vermindert werden.
			Externe Fragmentierung kann durch Kompaktierung vermindert werden.
			Beim Swapping werden einzelne Seiten der Adressräume von Prozessen auf den Hintergrundspeicher ausgelagert.
			Durch Interrupts zeigt die CPU einem Gerät den Beginn einer Operation an.
			Mittels langer Zeitscheiben beim Round-Robin-Scheduling lässt sich der durch die Kontextwechsel bedingte Overhead reduzieren.
			Der Algorithmus von Belady wird häufig als Scheduling-Verfahren eingesetzt, um optimale Ergebnisse zu erzielen.
			Eine Verdopplung der Anzahl der CPUs reduziert die Gesamtdurchlaufzeit aller Prozesse auf die Hälfte.
			Fehlt in einem Programm, in dem ein Semaphor zur Synchronisation des Ressourchenzugriffs verwendet wird, ein up (sem)-Aufruf, so kann es zu einer Verklemmung kommen.
			Fehlt in einem Programm, in dem ein Semaphor zur Synchronisation des Ressourchenzugriffs verwendet wird, ein down (sem) -Aufruf, so ist der mehrfache Eintritt in den kritischen Abschnitt nicht mehr ausgeschlossen.
			In verteilten Dateisystemen müssen Dateinamen den Namen des Rechners enthalten, auf dem die Datei gespeichert ist.

(b)	Das Betr	iebssyst	em Linux (4 Punkte)
	korrekt	falsch	
			Die Rechte $rwx-w$ für eine Datei erlauben einem Gruppenmitglied die Datei zu löschen.
			Mit > kann man die Ausabe eines Prozesses in eine Datei umleiten.
			Der Befehl cat d1 d2 > less ist syntaktisch korrekt.
			Das Kommando \mbox{find} sucht in Dateien nach dem übergebenen Parameter.
			./geysir/ und/kaczmira/
			sind relative Pfade.
			$Shellskripte\ dienen\ dazu,\ mehrere\ Befehle\ zu\ einem\ zusammenzufassen.$
			Shellskripte werden von einem Compiler in ausführbare Dateien übersetzt.
			Das nice-Level bestimmt die Priorität eines Prozesses.

Rechnen Sie die beiden folgenden Zahlen ins jeweils angegebene Zahlensysteme um und geben Sie den Lösungsweg an!

(a)
$$3402_5 = ?_{11}$$

(2 Punkte)

(b)
$$0.875_{10} = ?_2$$

(1 Punkt)

(c) Addieren Sie die folgenden beiden Zahlen in IEEE 754 Darstellung! Geben Schenweg an!	Sie den Re-
	(2 Punkte)
0 1000 0011 10110100000000000000000000	
(d) Nennen Sie ein Problem, das bei der IEEE 754 Darstellung auftreten kann.	(1 Punkt)
	(1 I ulikt)

Grundla	agen
---------	------

(a) Welche Hardware-Unterstützung ist notwendig, damit das Betriebssystem jederzeit die Kontrolle über das System behält und unerwünschtes Verhalten (z.B. durch Angriffe oder Fehlfunktionen) erkennen und verhindern kann? Nennen Sie die 4 Realisierungen.

(4 Punkte)

(b) Was passiert, wenn ein Prozess auf fremden Speicherbereich zugreift? Nennen Sie die einzelnen Schritte.

(2 Punkte)

Dateisystem

Nennen Sie drei Arten von Allokationen von Datenblöcken für Dateien und erklären Sie diese an einem Bild. Nennen Sie auch jeweils einen Vor- und einen Nachteil. (12 Punkte)

Scheduling

Ein Mehrprozessorsystem habe 3 identische Prozessoren P_1 , P_2 , P_3 zur parallelen Bearbeitung von Prozessen. Es seien n=10 Pozesse T_1 , ... T_{10} mit den folgenden Ausführungszeiten in Sekunden t_1 , ... t_{10} vom System zu bearbeiten:

t_1	t_2	t_3	t_4	t_5	t_6	t_7	t_8	t_9	t_{10}
3	4	2	1	2	4	3	5	3	3

Es existieren folgende Abhängigkeiten zwischen den Prozessen: Der Prozess T_5 darf erst nach der Beendigung von T_3 gestartet werden. Der Prozess T_6 darf erst nach der Beendigung von T_1 gestartet werden. Der Prozess T_7 darf erst nach der Beendigung von T_2 gestartet werden. Die Prozesse T_7 und T_8 dürfen erst nach der Beendigung von T_5 gestartet werden. Der Prozess T_{10} darf erst nach der Beendigung von T_7 gestartet werden. Die Prozesse T_9 und T_{10} dürfen erst nach der Beendigung von T_6 gestartet werden.

Mit $e_i (i = 1, ..., 10)$ seien die Beendigungszeitpunkte der Prozesse $T_1, ..., T_{10}$ bezeichnet.

(a) Zeichnen Sie den zugehörigen Präzedenzgraphen.

(2 Punkte)

(b) Geben Sie das Gannt-Diagramm für einen soren an, so dass die Gesamtdurchlaufzeit d	
Geben Sie auch den Wert von $t(S)$ an.	(3 Punkte)

- (c) Geben Sie ein Gannt-Diagramm für einen Schedule S der 10 Prozesse auf den 3 Prozessoren an, so dass die mittlere Verweilzeit $\overline{e}=\frac{1}{n}\sum_{i=1}^n e_i$ minimal ist.
 - Geben Sie auch Ihre gewählte Schedulingstrategie an und berechnen Sie den Wert von \overline{e} . (4 Punkte)

Seitenersetzungsstrategien

Betrachten Sie das folgende Programmfragment zur Initialisierung einer Matrix.

```
#define SIZE 128
int main(int argc, char **argv)
{
  int A[SIZE][SIZE];
  int i,j;

  for (i = 0; i < SIZE; i++) {
    for (j = 0; j < SIZE; j++) {
        A[i][j] = 0;
    }
  }
  return 0;
}</pre>
```

Das Programm wird auf einem Intel i32-Bit Rechner (1 Integer entspricht 4 Bytes) mit einem Demand-Paging-System (Seitengröße 4096 Bytes) übersetzt, wobei die Matrix A in der Folge A[0][0], ..., A[0][SIZE-1], A[1][0], ..., A[SIZE-1][SIZE-1] im logischen Adressraum angelegt wird. Der Prozess darf maximal 8 Kacheln für die Matrix belegen. Bei Programmstart ist noch keine der 8 Kacheln in Benutzung. Gehen Sie davon aus, dass Seiten nach der Last-Recently-Used-Strategie ersetzt werden.

(a) Wie viele Seitenfehler werden von dem Programm verursacht?

(3 Punkte)

(b) Wie verändert sich die Seitenfehlerzahl, wenn die beiden Schleifen (also mit den for-Statements) vertauscht werden?	die beiden Zeilen (3 Punkte)
(c) Wie verändern sich die Seitenfehlerzahlen gegenüber den Fällen (a) und um einen 64-Bit Rechner mit gleicher Seitengröße handelt?	l (b), wenn es sich
	(2 Punkte)
(d) Wie verändern sich die Seitenfehlerzahlen gegenüber den Fällen (a) und um einen 16-Bit Rechner mit gleicher Seitengröße handelt?	(2 Punkte)

Bankers Algorithmus

Der in der Vorlesung vorgestellte Bankers Algorithmus umgeht Verklemmungen, indem er nur *sichere* Betriebsmittelzustände zulässt. Gegeben sei die folgende Situation:

- 4 Prozesse
- 5 Betriebsmittelklassen mit jeweils 5, 15, 8, 8 und 9 Instanzen

• Anforderungsmatrix:
$$Max = \begin{pmatrix} 5 & 10 & 5 & 8 & 2 \\ 3 & 12 & 3 & 1 & 2 \\ 3 & 4 & 2 & 4 & 5 \\ 5 & 9 & 2 & 6 & 3 \end{pmatrix}$$

Aufgaben:

(a) Kann das System in den Zustand gelangen, der durch die folgende Zuweisungmatrix beschrieben wird? Begründen Sie Ihre Antwort!

(2 Punkte)

Zuweisungsmatrix:
$$Current = \begin{pmatrix} 0 & 2 & 5 & 3 & 1 \\ 1 & 8 & 0 & 0 & 2 \\ 1 & 0 & 1 & 3 & 2 \\ 3 & 1 & 0 & 1 & 0 \end{pmatrix}$$

(b)	Wie viele Instanzen jeder Betriebsmittelklasse müßten mindestens zusätzlich vorhanden sein, damit der in (a) beschriebene Zustand sicher ist? Geben Sie die einzelnen Schritte an. (3 Punkte)
(c)	Es seien nun die zusätzlichen Betriebsmittel aus (b) vorhanden. Angenommen, der Prozess 1 fordert eine Instanz des zweiten Betriebsmittels an. Wie muss sich das Betriebssystem verhalten?
	(1 Punkt)
(d)	Bedeutet die Tatsache, dass die Zuteilung eines Betriebsmittels an einen Prozess zu einem unsicheren Zustand führt, dass diese Zuteilung zu einer Verklemmung führen muss? (1 Punkt)

Aufgabe 8 – Grundlagen (2+2+4+5+2+2)

Die Zeit, um eine Nachricht vollständig durch einen Übertragungskanal zu senden, wird Transferzeit genannt.

	a)	Aus welchen beiden Zeitanteilen setzt sie sich zusammen und was beschreiben diese einzelnen Zeitanteile (2P)?
1.		
2.		
	b)	Welche physikalischen Parameter des Kanals bestimmen die Transferzeit (2P)?
1.	U)	weiene physikansenen i arameter des Rahais bestimmen die Transferzeit (21):
2		
2.		

Fortsetzung Aufgabe 8 - Grundlagen

c) Benennen Sie in folgender Tabelle die unteren Schichten 1 bis 4 des ISO/OSI-Referenzmodells und die entsprechenden Schichten des Internet-Schichtenmodells (4P).

	ISO/OSI Schicht	Internet-Schicht
4		
3		
2		
1		

d) In der folgenden Tabelle sind Aufgaben eines Kommunikationssystems angegeben. Weisen Sie diese Aufgaben durch Ankreuzen der entsprechenden Schicht des OSI-Modells zu. Mehrfachnennungen sind möglich (5P).

Schicht	Signal- kodierung	Fehler- behandlung	Medienzugriff	Adressierung	Wegewahl
4					
3					
2					
1					

Fortsetzung Aufgabe 8 – Grundlagen

e)	Geben Sie 2 Gründe für die Verwendung von Schichtenmodellen in Kommunikationssystemen an (2P).
1.	
1.	
2.	
f)	Erklären Sie die Begriffe Dienst und Protokoll im Zusammenhang mit den behandelten Schichtenmodellen (2P).
Dienst	:
Protok	roll·
Tioton	

Aufgabe 9 – Bitübertragung (3+1+2)

Der Fast Ethernet Standard 100BASE-TX verwendet zur Datenübertragung die 4B/5B Codierung in Verbindung mit NRZ-I.

a) Geben Sie den Inhalt der folgenden Nachricht in Binärschreibweise an (3P).

b) Was ist das Ziel bei der Verwendung der 4B/5B Codierung in Verbindung mit NRZ-I (1P)?

4B	5B
0000	11110
0001	01001
0010	10100
0011	10101
0100	01010
0101	01011
0110	01110
0111	01111
1000	10010
1001	10011
1010	10110
1011	10111
1100	11010
1101	11011
1110	11100
1111	11101
1101 1110	11011 11100

c) Alternativ könnte man auch die Manchester Codierung verwenden. Geben Sie die maximale Datenrate eines Kanals mit 125 MHz bei Verwendung der unterschiedlichen Codierungen an (2P).

Manchester Codierung:

4B/5B mit NRZ-I Codierung:

Aufgabe 10 – Sicherungsschicht (1+1+1+4+4)

Bei einem Datenübertragungskanal wird zur Fehlersicherung die zyklische Blocksicherung mit dem Generatorpolynom $G(x) = x^3 + x + 1$ eingesetzt. Es werden jeweils 16 Bit lange Nachrichten N(x) durch eine CRC-Prüfsumme gesichert. Es sei

1010 1110 0110 1100

die	Z 11	übertragende	und durch	CRC-Prüfsumme	zu sichernde	Bitfolge.

a)	Wie lang ist die CRC-Prüfsumme, d.h. wieviele Bits werden an die zu übertragende Nachricht angehängt (1P)?
1. \	Calcar Circles Communications of C(a) in Dinimal arithmatics (Dita) and (ID)
b)	Geben Sie das Generatorpolynom $G(x)$ in Binärschreibweise (Bits) an (1P).
c)	Geben Sie die ursprüngliche Nachricht $N(x)$ in Polynomschreibweise an (1P).

Fortsetzung Aufgabe 10 – Sicherungsschicht d) Berechnen Sie die CRC-Prüfsumme der Nachricht N(x) und geben Sie die vom Sender übertragene Bitfolge an. Stellen Sie den Lösungsweg dar (4P).

Fortsetzung Aufgabe 10 – Sicherungsschicht

e) Bei der Übertragung der Nachricht wird bedingt durch einen Übertragungsfehler folgende Nachricht empfangen:

1010 1110 0010 1100 001

Das Generatorpolynom bleibt unverändert. Kann der Empfänger die fehlerhafte Übertragung erkennen? Führen Sie die Berechnung des Empfängers aus und begründen Sie damit Ihre Antwort (4P).

Aufgabe 11 – Vermittlungsschicht (5)

a) In der Entstehungsphase des Internets wurde sehr großzügig mit IP-Adressen umgegangen. Die Aufteilung des IP-Adressraums erfolgte in fünf Klassen. Benennen Sie diese und geben Sie an, welche IP-Adressbereiche der jeweiligen Klasse zugeordnet sind. Geben Sie die Subnetzmaske für die ersten drei Klassen an (5P).

Klasse	Adressbereich	Subnetzmaske

Aufgabe 12 – Vermittlungsschicht (1+1+1+2+1+1+2)

Für Ihr Netzwerk wurde Ihnen die Netzadresse 10.7.64.0/18 zugewiesen.

a)	Geben Sie die Netzmaske des Netzwerks in Binär- und Dezimaldarstellung an (1P).
	Netzmaske binär:
	Netzmaske dezimal:
b)	Geben Sie die Broadcastadresse in Dezimaldarstellung an (1P). Broadcastadresse:
c)	Wie viele IP-Adressen für Hosts stehen innerhalb des Netzwerks insgesamt für Hosts zur Verfügung (1P)?
Beacht muß un	eilen Sie das Netzwerk nun in Subnetze gleicher Größe mit maximal 80 Hosts. ten Sie dabei, daß gemäß RFC 950 die Subnetz- und Broadcastadresse eindeutig sein nd nicht der des Netzes 10.7.64.0/18 entsprechen darf. Berechnen Sie die Anzahl der Subnetze, die gebildet werden können (2P)?
e)	Wie viele IP-Adressen für Hosts stehen pro Subnetz zur Verfügung (1P)?

f)	Geben Sie die Subnetzmaske in Binär- und Dezimalschreibweise an (1P).
	Subnetzmaske binär:
	Subnetzmaske dezimal:
g)	Geben Sie die Subnetz- und Broadcastadressen der ersten und letzten beiden Subnetze an (2P).

Aufgabe 13 – Transportschicht (3+2+3)

a) Der Verbindungsabbau bei TCP scheint auf den ersten Blick sehr aufwändig. Zeichnen Sie ein Weg-Zeit-Diagramm zum Verbindungsabbau inkl. der relevanten TCP-Flags und begründen Sie anhand eines Beispiels die Notwendigkeit der ausgetauschten Nachrichten. (3P)

b) Welches Transportprotokoll würden Sie für den Dienst DNS benutzen? Begründen Sie Ihre Antwort kurz (2P).

Fortsetzung Aufgabe 13 – Transportschicht

c) Im unten stehenden Weg-Zeit-Diagramm sind jeweils die relevanten Java-Befehle des Servers und des Clients angegeben, die für das Verschicken einer Nachricht mittels **UDP** nötig sind. Tragen Sie alle aus den Java-Befehlen resultierenden Pakete in das Weg-Zeit-Diagramm ein (3P).

Bedenken Sie, dass die Methode receive blockiert und auf die Gegenstelle wartet.

Aufgabe 14 – Anwendungen (4)

Ein Webbrowser (Client IP-Adresse: 141.83.68.154) möchte vom Webserver *www.itm.uni-luebeck.de* (IP-Adresse: 141.83.68.100) die Webseite /index.html abrufen. Alle Caches des Clients sind zu Beginn leer.

a) Welche 4 Protokolle tauschen vom Client initiiert aktiv Nachrichten aus, um die Webseite *www.itm.uni-luebeck.de/index.html* abrufen zu können. Erklären Sie kurz die Funktion des jeweiligen Protokolls (4P)?

1.

2.

3.

4.