Clase a Clase

Electromagnetismo Intermedio LFIS322

			- ·
Clase	Fecha	Tema/Lecturas	Detalle
1	24-08	Griffiths: Chapter 1 – skip	Introduction. Vectors, Index Notation for
		section 1.1.5	Scalar and Cross Products. The Symbols
		Tarea 1	δ_{ij} and ε_{ijk} . Differential Vector Calculus.
	25.00	C : CC: 1 P: : 1 1:	Gradient.
2	25-08	Griffiths: Finish reading	Divergence and Curl. Divergence of Curl, and Curl of Gradient. Gauss and Stokes
		Chapter 1	Theorem. From E^{\rightarrow} to Φ . Delta Functions
			as Singular Distributions of Charge.
3	31-08	Tarea 2	Properties of Delta Functions. Delta
	31-00	Tarca 2	Function in Spherical Coordinates. The
			Laplacian of 1/r. Coulomb's Law and
			Calculation of the Electric Field.
4	01-09	Griffiths: From p. 58 to 82	Deriving the Electrostatic Equations from
		1	Coulomb's Law. Scalar Potential, and E
			$= -\delta V$. Examples of use of Gauss's Law.
			Boundary Conditions for Electric Field.
			Conductors.
5	07-09	Griffiths: from p.82 to the	Electrostatic Energy for Discrete and
		end of chap 2. Tarea 3	Continuous Charge Distributions. Energy
		Tarea 5	as $f E ^2$. Comments on Self Energy. Force Computed by the Method of Virtual
			Displacement. Generalized Capacitance,
			Capacitors.
6	08-09	Partial Material in Griffiths:	Uniqueness of Solutions. Green's
		p. 110-120 (you may	Theorem. Green's Functions for the
		consult Jackson sections 1.9	Dirichlet, Neumann and Mixed BV
		and 1.10, but it should not	Problems.
	14.00	be really necessary)	
7	14-09	Tarea 4	Example of Dirichlet Green's Function.
			Mean Value Theorem. Images and Conducting Spheres. Separation of
			Conducting Spheres. Separation of Variables for Laplace's Equation in
			Cartesian Coordinates.
8	15-09	Griffiths: p.121-137	Method of images – Separation of
	15 07	51111111111111111111111111111111111111	variables
	28-09	Primera Prueba	
9	29-09	Griffiths: p. 136 -145	The Case of Axial Symmetry, Finding the
		Tarea 5	Basic Solutions r^{l} P_{l} and $r^{-(l+1)}P_{l}$.
			Generating Function for Legendre

			Polynomials.
10	05-10	Griffiths: p.146-155 Tarea 6	Multipole expansion
11	06-10	Griffiths: p.202-232	Dipoles, Quadrupoles. Azimuthal Symmetry. Magnetostatics, Charge Conservation and Magnetic Force.
12	12-10	Tarea 7	Biot-Savart Law. Magnetic Potential for Loops. Deriving the Basic Equations from the "Inverse Square Law". The Vector Potential A and the Coulomb Gauge ∇ . A = 0.
13	13-10	Griffiths: p. 285-310	Ampere's Law. Boundary Conditions for Magnetic Fields. Multipole Expansion of the Magnetic Field, Magnetic Dipoles.
14	19-10	Griffiths: p. 310-328	Electromotive Force and Faraday's Law. Inductance, Energy in Magnetic Fields, Maxwell Equations.
15	20-10	J: p. 142-143, and J: p. 168- 177	Energy in an External Electric Field. And Basics of Magnetostatics.
16	26-10	J: p.180-183	Magnetic multipoles. Relation between magnetic moment and angular momentum.
	27-10	Segunda Prueba	
17	09-11	J: p. 143-155	Dielectrics. The Polarization Vector P and the Effective Charge Density and Surface Charge. The Modified Gauss' Law in Terms of D and the Free Charge Density. Slits in Dielectrics. The Field of a Polarized Sphere. Clausius-Mossoti Equation.
18	10-11	Jackson: p. 187-191	Magnetic materials. Qualitative Discussion of Diamagnetism Paramagnetism and Ferro Magnetism. The
			Magnetization Vector <i>M</i> and its Effective Currents. The Magnetic Field Strength <i>H</i> .
19	16-11 17-11	Jackson: p. 191-197; p. 209- 213	

21	23-11	Jackson: p. 238-239 Tarea 8	Momentum in the Electromagnetic Field. The Electromagnetic Stress Tensor T_{ij} .
		Tarca o	Examples: Pressure, Force on a Conductor
			and Force on a Solenoid. Derivation of the
			Conservation Law.
22	24-11		Example: Spinning up a Charged
			Cylinder. Conservation of Angular
			Momentum and Flux of Angular
			Momentum.
23	30-11	Jackson: p. 219-226	Solutions of Maxwell Equations in Terms
		Tarea 9	of Potentials. Gauge Transformations. The
			Lorentz Gauge and the Wave Equations for the Potentials. Green's Functions for
			the Wave Equation.
24	01-12	Tarea 10	Derivation of the Lienard-Wiechert
	0112		Potentials. The Fields of an Arbitrarily
			Moving Charge. The Fields of a Charge
			Moving with Constant Velocity.
			Woving with Constant velocity.
	07-12	Tercera Prueba	
25	07-12 14-12	Tercera Prueba Jackson: p. 391-394	Fields of a Charge Moving with a
25			Fields of a Charge Moving with a Constant Velocity $v \rightarrow c$. The Radiation
25			Fields of a Charge Moving with a Constant Velocity $v \rightarrow c$. The Radiation Term. Radiation from Oscillatory Charges.
25			Fields of a Charge Moving with a Constant Velocity $v \rightarrow c$. The Radiation Term. Radiation from Oscillatory Charges. The Expansion of the Vector Potential A
	14-12	Jackson: p. 391-394	Fields of a Charge Moving with a Constant Velocity $v \rightarrow c$. The Radiation Term. Radiation from Oscillatory Charges. The Expansion of the Vector Potential A in Powers of d/λ .
25			Fields of a Charge Moving with a Constant Velocity $v \rightarrow c$. The Radiation Term. Radiation from Oscillatory Charges. The Expansion of the Vector Potential A in Powers of d/λ . Electric Dipole Radiation. The Radiation
	14-12	Jackson: p. 391-394	 Fields of a Charge Moving with a Constant Velocity v → c. The Radiation Term. Radiation from Oscillatory Charges. The Expansion of the Vector Potential A in Powers of d/λ. Electric Dipole Radiation. The Radiation Field, the Near Fields. Radiated Power.
	14-12	Jackson: p. 391-394	Fields of a Charge Moving with a Constant Velocity $v \rightarrow c$. The Radiation Term. Radiation from Oscillatory Charges. The Expansion of the Vector Potential A in Powers of d/λ . Electric Dipole Radiation. The Radiation
26	14-12	Jackson: p. 391-394	 Fields of a Charge Moving with a Constant Velocity v → c. The Radiation Term. Radiation from Oscillatory Charges. The Expansion of the Vector Potential A in Powers of d/λ. Electric Dipole Radiation. The Radiation Field, the Near Fields. Radiated Power. Example: Charge in Circular Motion. Finish electric dipole radiation. Qualitative aspects of electric quadrupole and
26	14-12 15-12 21-12	Jackson: p. 391-394 Jackson: p. 394-401	Fields of a Charge Moving with a Constant Velocity $v \rightarrow c$. The Radiation Term. Radiation from Oscillatory Charges. The Expansion of the Vector Potential A in Powers of d/λ . Electric Dipole Radiation. The Radiation Field, the Near Fields. Radiated Power. Example: Charge in Circular Motion. Finish electric dipole radiation. Qualitative
26 27 28	14-12 15-12 21-12 22-12	Jackson: p. 391-394 Jackson: p. 394-401 Recuperativa	 Fields of a Charge Moving with a Constant Velocity v → c. The Radiation Term. Radiation from Oscillatory Charges. The Expansion of the Vector Potential A in Powers of d/λ. Electric Dipole Radiation. The Radiation Field, the Near Fields. Radiated Power. Example: Charge in Circular Motion. Finish electric dipole radiation. Qualitative aspects of electric quadrupole and
26 27 28 29	14-12 15-12 21-12 22-12 28-12	Jackson: p. 391-394 Jackson: p. 394-401	 Fields of a Charge Moving with a Constant Velocity v → c. The Radiation Term. Radiation from Oscillatory Charges. The Expansion of the Vector Potential A in Powers of d/λ. Electric Dipole Radiation. The Radiation Field, the Near Fields. Radiated Power. Example: Charge in Circular Motion. Finish electric dipole radiation. Qualitative aspects of electric quadrupole and
26 27 28	14-12 15-12 21-12 22-12	Jackson: p. 391-394 Jackson: p. 394-401 Recuperativa	 Fields of a Charge Moving with a Constant Velocity v → c. The Radiation Term. Radiation from Oscillatory Charges. The Expansion of the Vector Potential A in Powers of d/λ. Electric Dipole Radiation. The Radiation Field, the Near Fields. Radiated Power. Example: Charge in Circular Motion. Finish electric dipole radiation. Qualitative aspects of electric quadrupole and
26 27 28 29	14-12 15-12 21-12 22-12 28-12	Jackson: p. 391-394 Jackson: p. 394-401 Recuperativa	 Fields of a Charge Moving with a Constant Velocity v → c. The Radiation Term. Radiation from Oscillatory Charges. The Expansion of the Vector Potential A in Powers of d/λ. Electric Dipole Radiation. The Radiation Field, the Near Fields. Radiated Power. Example: Charge in Circular Motion. Finish electric dipole radiation. Qualitative aspects of electric quadrupole and