数学实验 Mathematical Experiments

实验七: 代数方程求根实验 Solutions to algebraic equations

• 在科学研究和工程实践中,常常会遇到非线性方程或非线性方程组的问题

例如

- 在光的衍射理论 (the theory of diffraction of light)中,需要求x-tanx=0的根
- 在行星轨道(planetary orbits)的计算中,对任意的a和b,需要求x-asinx=b的根
- 3 在数学中,需要求n次多项式 $x^n + a_1 x^{n-1} + ... + a_{n-1} x + a_n = 0$ 的根

若干个世纪以来,工程师和数学家花了大量时间用于探索求解方程(组),研究各种各样的方程求解方法。对于方程

$$f(x) = 0 (1)$$

当f(x)为线性函数时,称式(2.1)为线性方程;当f(x)为非线性函数时,称式(2.1)为非线性方程。对于线性方程 (组)的求解,理论与数值求解方法的研究成果较为丰富,我们已在线性代数实验部分介绍求解方法;对于非线性方程求解,由于f(x)的多样性,尚无一般的解析解法。例如,当f(x)为 $n(n\geq 2)$ 次代数多项式时,式(1)称为n次代数方程,即

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = 0 \tag{2}$$

- 寻找代数方程的解一直是个重要的数学问题。
- 由代数基本定理知,一元n次代数方程一定有n个根(含复根)。
- 计算上:
 - 一元一次方程和二次方程很早就找到了公式解。经过努力,16世纪时, 意大利数学家塔塔利亚和卡当等人,发现了一元三次方程的求根公式, 费拉里找到了四次方程的求根公式。当时数学家们非常乐观,以为马 上就可以写出五次方程、六次方程,甚至更高次方程的求根公式了。 然而,时光流逝了几百年,谁也找不出这样的求根公式。
 - 大约三百年之后,在1825年,挪威学者阿贝尔(Abel)终于证明了: 一般的一个代数方程,如果方程的次数n≥5,那么此方程不存在统 一的根式解(即由方程的系数通过有限次的四则运算及根号组合而成 的公式解)。这就是著名的阿贝尔定理。

- 寻找代数方程的解一直是个重要的数学问题。
- 而当f(x)包含三角函数、指数函数、对数函数等类型时,式(1) 称为超越方程,例如

$$\ln x - x \sin \frac{\pi}{2} x + 1 = 0 \tag{3}$$

此类方程不仅很难求得解析解,有时连解的存在性、解的个数也难以判断。

• 前面我们学习了: 符号计算解析地求根(只解决少部分问题) S=solve(eqn1, eqn2,..., eqnM, var1, var2,..., varN)

本次实验我们学习如何用Matlab求代数方程(组)的数值解。

实验目的

- 1. 理解迭代法原理,并利用迭代法求非线性方程的根。
- 2. 熟悉MATLAB软件中非线性方程(组)的求解命令及用法。
- 3. 使用MATLAB解决一些非线性方程问题。

实验的理论基础

1. 迭代格式

将方程f(x)=0转化为等价的方程 $x=\varphi(x)$, 并据此构造迭代格式:

$$x_{n+1} = \varphi(x_n)$$

对某个选定的初值 x_0 进行迭代,得到一个迭代数列 $\{x_n\}$ 。如果数列 $\{x_n\}$ 存在极限,即 $\lim_{n\to\infty}x_n=x^*$

称迭代收敛, x^* 就是 $x = \varphi(x)$ 的根(不动点),亦是f(x)=0的根。

2. 零点定理

将若函数f(x)在闭区间[a,b]上连续,且f(a) f(b) <0,则至少存在一点 $c \in (a,b)$,使得f(c)=0。

实验的理论基础

3. 压缩映射原理

设定义在[a,b]上的函数f(x)满足:对任意 $x \in [a,b]$,有 $f(x) \in [a,b]$,且存在一个常数L>0,使得

$$|f(x) - f(y)| \le L|x - y|, x, y \in [a, b]$$

成立。则当L<1时,称f为[a,b]上的一个压缩映射,且函数f(x)在[a,b]上有唯一的不动点。

实验1: 迭代法之二分法

1、**基本架设:** 设f(x)在闭区间[a,b]上连续、有单根,且f(a)f(b)<0.

2、二分法原理:将区域二分,根据零点定理,判断根在某个分段内,再进行二分,依次推,重复进行,直到满足精度为止。算法流程如下:

Step 1: 赋初值a, b及k = 0, $a_k = a$, $b_k = b$ 。

Step 3: 若 $f(x_k) = 0$,则 x_k 是 $f(x_k) = 0$ 的根,停止计算,输出结果 $x = x_k$;若 $f(a_k)f(x_k) < 0$,则令 $a_{k+1} = a_k$, $b_{k+1} = x_k$;若 $f(a_k)f(x_k) > 0$,则令 $a_{k+1} = x_k$, $b_{k+1} = b_k$ 。

实验1: 迭代法之二分法

Step 4: 令k=k+1, $x_k = \frac{a_k+b_k}{2}$, 若 $|f(x_k)| \le \varepsilon$ (ε 为精度要求),退出计算,输出结果 x_k ; 若 $|f(x_k)| > \varepsilon$,则转入Step 3。

3、误差估计: 若执行以上过程, 可得到每次缩小1/2的区间序列{ $[a_k,b_k]$ }, 在 (a_k,b_k) 中含有方程的根 x^* 。当区间长度 $b_k - a_k$ 很小时, 取其中点 $x_k = \frac{a_k + b_k}{2}$ 为根的近似值。因此:

$$b_k - a_k$$
 很小时,取其中点 $x_k = \frac{a_k + b_k}{2}$ 为根的近似值。因此:
$$|x_k - x^*| \le \frac{1}{2}(b_k - a_k) = \frac{1}{2} \times \frac{1}{2} \times (b_{k-1} - a_{k-1}) = \cdots$$
$$= \frac{1}{2^{k+1}}(b-a)$$

实际问题计算时,根据 ε 的数值,利用上式可估计二分次数k。

实验1: 迭代法之二分法

小实验:

编写MATLAB程序,使用二分法求方程 $x^3 + x - 1 = 0$ 在[0,1]内的根的近似值(误差< 10^{-5}).

基本思想

将方程f(x)=0转化为等价的方程x=g(x),并据此构造迭代格式:

$$x_{n+1} = g(x_n)$$

对某个选定的初值 x_0 进行迭代,得到一个迭代数列 $\{x_n\}$ 。如果数列 $\{x_n\}$ 存在极限,即 $\lim_{n\to\infty}x_n=x^*$

称迭代收敛, x^* 就是x = g(x)的根(不动点), 亦是f(x)=0的根

一个简单的例子

设计不同迭代算法求方程 $x^2 = 2$ 的正根。

方法1:
$$x^2 = 2 \Leftrightarrow x = \frac{2}{x}$$
,从而设置迭代格式 $x_{n+1} = \frac{2}{x_n}$ 。

方法2:
$$x^2 = 2 \Leftrightarrow x = \frac{2}{x} \Leftrightarrow x + x = x + \frac{2}{x} \Leftrightarrow x = \frac{1}{2}(x + \frac{2}{x})$$
, 从而设置迭代格式 $x_{n+1} = \frac{1}{2}(x_n + \frac{2}{x_n})$ 。

方法3:
$$x^2 = 2 \Leftrightarrow x^3 = 2x$$
,所以 $x^3 = 2x - x^2 + 2$,故 $x = \sqrt[3]{2x - x^2 + 2}$,从而设置迭代格式 $x_{n+1} = \sqrt[3]{2x_n - x_n^2 + 2}$ 。

方法4:
$$x^2 = 2 \Leftrightarrow x^2 + x = 2 + x$$
,所以 $x = \frac{2+x}{1+x}$,故 $x = 1 + \frac{1}{1+x}$,从而设置迭代格式 $x_{n+1} = 1 + \frac{1}{1+x_n}$ 。

一个简单的例子

设计不同迭代算法求方程 $x^2 = 2$ 的正根。

选用初值x=1,同时按以上四种格式进行迭代计算。

编程实现

一个简单的例子

序号	1	2	3	4
方法1	1.0000000000000000	2.0000000000000000	1.0000000000000000	2.0000000000000000
方法2	1.0000000000000000	1.5000000000000000	1.416666666666667	1.414215686274510
方法3	1.0000000000000000	1.442249570307408	1.410200215949785	1.414764790503810
方法4	1.0000000000000000	1.5000000000000000	1.4000000000000000	1.416666666666667
序号	5	6	7	8
方法1	1.0000000000000000	2.0000000000000000	1.0000000000000000	2.0000000000000000
方法2	1.414213562374690	1.414213562373095	1.414213562373095	1.414213562373095
方法3	1.414137398906688	1.414224077308350	1.414212110543581	1.414213762828541
方法4	1.413793103448276	1.414285714285714	1.414201183431953	1.414215686274510
序号	9	10	11	
方法1	1.0000000000000000	2.0000000000000000	1.0000000000000000	
方法2	1.414213562373095	1.414213562373095	1.414213562373095	
方法3	1.414213534695966	1.414213566194509	1.414213561845468	
方法4	1.414213197969543	1.414213624894870	1.414213551646055	

如何设计收敛的不动点迭代法?

迭代收敛判别

如果在区间[a, b]上,g为[a, b]上的一个压缩映射,则迭代格式 $x_{n+1} = g(x_n)$ 收敛。

特殊地,如果在区间[a,b]上,g(x)连续可导,且满足 $|g'(x)| \le q \le 1$,则迭代格式 $x_{n+1} = g(x_n)$ 收敛。

如何设计收敛的不动点迭代法?

根据上述四种迭代格式,也可以从理论分析的方式判别收敛性。

对于方法2, 令
$$\varphi_2(x) = \frac{1}{2}(x + \frac{2}{x}), \quad \varphi_2'(x) = \frac{1}{2}(1 - \frac{2}{x^2});$$

对于方法3, 令
$$(x) = \phi_3^{'3}\sqrt{2x - x^2 + 2}$$
, $\phi_3^{'}(x) = \frac{1}{3}(2x - x^2 + 2)^{-\frac{2}{3}}(2 - 2x)$;

对于方法4,令 $\varphi_4(x) = 1 + \frac{1}{1+x}$, $\varphi_4'(x) = 1 - \frac{1}{(1+x)^2}$ 。当 $1 \le x \le 2$ 时, $|\varphi_i'(x)| < 1$ (i = 2,3,4)成立,即满足迭代收敛条件,而对于方法1中情形不满足要求。

用蛛网图观察不动点迭代

实验问题: 用求不动点的方法求方程f(x) = 0的根,这里方程为 $f(x) = x^2 + x - 4 = 0$. 对这一方程,构造如下三个函数:

$$g_1(x) = 4 - x^2, g_2(x) = \frac{4}{1+x}, g_3(x) = x - \frac{x^2 + x - 4}{2x + 1},$$
 (3)

容易验证 $f(x) = 0 \Leftrightarrow g_i(x) = x(i = 1,2,3)$,于是求根转化为求不动点问题,试用如下给出的迭代法观察它们的收敛性和收敛快慢.

用蛛网图观察不动点迭代

观察: 运行观察程序 $Exp7_3.m$,在程序中选择参数s=2,观察函数 $g_2(x) = 4/(1+x)$ 的迭代蛛网图

理解蛛网图的原理

用蛛网图观察不动点迭代

如图所示,不动点 $x^* = g(x^*)$ 是直线y = x和曲线y = g(x)交点的横坐标. 选定初始点 $x_0 = 4$ 后,迭代 $x_1 = f(x_0)$ 可以看成如下两个步骤的合成:

- (1) 计算 $y_1 = g(x_0) = 0.8$,在图中以一条自 $x_0 = 4$ 出发,并与y轴平行的有向线段表示这一过程,箭头指向曲线y = g(x),线段的终点位于点 $(x_0, g(x_0)) = (4,0.8)$;
- (2) 由(x_0 , $g(x_0)$) = (4,0.8) 出发,作平行于x 轴的有向线段(如图所示),其终点位于直线y = x之上,这时由于终点的横坐标与纵坐标相等,即得 $x_1 = y_1 = g(x_1) = 0.8$,也就完成了第一次迭代,在横轴上用箭头指示了 $x_1 = 0.8$ 的位置.

用蛛网图观察不动点迭代

于是可以如图那样用两条垂直的有向线段表示一次迭代过程. 当迭代继续时,这种表示也随之跟进,最终形成了一个类似于蛛网的迭代过程图,这个用来形象表示迭代过程的图形叫做蛛网图.

用蛛网图观察不动点迭代

- 在程序中令参数s=1,即对函数 $g_1(x)$ = $4-x^2$ 进行迭代(初始点为 x_0 = 4),观察结果,这时迭代发散到负无穷.
- 再选取控制参数s=3, 对函数 $g_3(x) = x (x^2 + x 4)/(2x + 1)$ 进行选代,仍取初始点为 $x_0 = 4$,并控制坐标系范围和右图一致,以便与 $f_2(x) = 4/(1 + x)$ 的迭代过程进行比较.

比较,在两种情况下,蛛网图的箭头一直 指向点 (x^*,x^*) ,这里 $y^* = x^*$,迭代均收敛 到不动点 x^* .

用蛛网图观察不动点迭代

• 思考: 虽然两者均收敛到不动点,但它们收敛速度有快慢之分,从相同的初始点出发,图?的收敛速度显然要比图?的快. 前者在两次迭代后便十分接近不动点了,而后者经过了6次迭代才到达前者的精度. 是什么因素决定了收敛速度的快慢? 仔细观察图形,你能够洞察到其中的原因吗?

简单和复杂:二次函数的迭代和混沌

二次函数是非常简单的,如果将它进行迭代,它还会简单吗?让我们进行如下的观察:观察:对二次函数进行迭代:

$$x_{n+1} = f(x_n) = rx_n(1 - x_n), n = 0,1,2,...$$
 (5)

其中r ∈ (0,1)是一个可变的参数,观察不同的r值对迭代点列的影响.

简单和复杂:二次函数的迭代和混沌

步骤1. 固定若干个不同的r的值,观察迭代序列(5)的极限;

$$x_{n+1} = f(x_n) = rx_n(1 - x_n), n = 0,1,2,...$$
 (5)

可采用下面的方法: 如果对固定的r,极限 $x^* = \lim_{n \to \infty} x_n$ 存在,则n 充分大时有 $x_n \approx x^*$. 所以按(5)迭代N次,略去前n个迭代值,并将后N-n个迭代值画在以r为横坐标,x为纵坐标的图形窗口中,即可观察迭代序列(5)的极限性态.取r=[0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 3.3 3.6 3.9],运行观察程序Exp7_4a.m,结果显示在图中.

简单和复杂:二次函数的迭代和混沌

步骤2. 用蛛网图观察三种不同类型的迭代。

上面的运算取了14个r值,每一个r值所对应迭代序列的"极限"如图所示,注意在本次计算中,对每个r值做了N=150次代,仅画出了最后的50个代值.由图可见: (1) 当r分别等于0.0.3.0.6.0.9.1.2.

- (1) 当r分别等于0, 0.3, 0.6, 0.9, 1.2, 1.5, 1.8, 2.1, 2.4时, 每个r对应的这50个迭代值均重合为一占, 这说明对这些r值极限存在:
- (2)当r分别等于3.0和3.3时,迭代值对应 着两个点,这说明极限不存在;
- (3) 当r等于3.6和3.9时,出来更多的点,这种情况显然有别于情形(1)和(2). 分别选取代表这三种类型的r值用蛛网图进行观察.

简单和复杂:二次函数的迭代和混沌

步骤2. 用蛛网图观察三种不同类型的迭代。

在图(a)中,迭代序列收敛到一个不动点x = f(x),我们用 $x \to x$ 来表示这件事情;

简单和复杂:二次函数的迭代和混沌

步骤2. 用蛛网图观察三种不同类型的迭代。

在图(b)的情况,迭代序列呈现出周期性: $x_{2k+1} \rightarrow x_1^*, x_{2k} \rightarrow x_2^*;$ 如果迭代点具有性质: $f(x_1) = x_2, f(x_2) = x_3, \cdots, f(x_{k-1}) = x_k, f(x_k) = x_1, 则 x_1, x_2, \cdots, x_k$ 形成了一个k循环. 我们用 $x_1 \rightarrow x \rightarrow \cdots \rightarrow x_k$ 来表示这件事,并说 x_1 是一个k周期点, x_1, x_2, \cdots, x_k 为一个周期轨道. 在图中,迭代点列的前18个值为0. 5120 0. 7995 0. 5129 0. 7995 0. 5130 0. 7995 0. 51

简单和复杂:二次函数的迭代和混沌

步骤2. 用蛛网图观察三种不同类型的迭代。

在图(c)和(d)的情况,迭代序列既不收敛也不呈现出周期性,而是反映出一种十分混乱的混沌现象:轨道不再是趋向任何稳定的周期轨道,而似乎随机的在(0,1)区间(或在其中的某些子区间)中跳来跳去,但这一轨道在这些区间内的任何一个子区间(a,b)内都会出现无数次,这就是混沌的遍历性.

简单和复杂:二次函数的迭代和混沌

步骤3.加密r的取值,得到Feigenbaum(费根鲍姆)图,在Feigenbaum 图中你看到了什么?上面说的三种情况是怎样表现在这一图中的?适当修改观察程序Exp7_4.m中的参数和某些绘图属性值,对r=2.6:0.001:4重新计算,运行结果显示在图中,这个图形叫做Feigenbaum图.

简单和复杂:二次函数的迭代和混沌

我们看到,随着r的增加,图中从开始的一条曲线(不动点)分裂为两条曲线(2周期循环)、4条曲线(4周期循环)和8条曲线(8周期循环),这种现象叫**倍周期现象**.

在8条曲线曲线之后是否是16条曲线→32条曲线等等,由于尺度很小的原因已经很难看清了.

如果编制一个横向放大镜程序做进一步观察. 例如设定一个适当的横向放大比例c, 使得可以在一个很小的r的取值区间段观察Feigenbaum图. 观察程序Exp7 4. m

如何直观的理解收敛快慢?

函数越平坦, 迭代越快吗?

通过对实例观察和分析,找到问题的规律,是数学实验的重要方法之一.在上面的实验观察中,对比图g2(b)和图g3(c),我们看到在不动点附近,后者的曲线图形要比前者平坦.这是否是影响迭代收敛速度的内在原因?你能否构造一些更为平坦的函数做进一步的观察呢?如果你想从理论上进行分析,首先需要考虑的问题是不是如何描述一个函数在某点附近的平坦性?

如何直观的理解收敛快慢?

函数越平坦, 迭代越快吗?

切线的斜率也就是导数可以用来描述曲线的平坦程度,如果 $f'(x^*) = 0$,则函数f在 x^* 处有水平切线,也就是最平坦了. 根据上面的观察,可以猜想到如下结论: 一般,若函数f具有连续导数,则 $|f'(x^*)|$ 越小,函数f在不动点 x^* 附近就越平坦,从而收敛速度也就越快.

这与我们的理论分析相一致。

如何构造迭代函数使之具有较快的收敛速度?

通把方程f(x) = 0的求根转化为求不动点问题来处理,可以从不动点方程g(x) = x自然地引出迭代式 $x_{n+1} = g(x_n)$. 同时通过上面的讨论我们知道,函数f的构造是十分重要的,不同构造方法将导致不同的收敛性(收敛或发散)和收敛速度. 例如,对 g_1 的迭代是发散的;而对 g_2 、 g_3 的迭代是收敛的,但两者的收敛速度又不同. 当初始点靠近不动点时,如果迭代函数f在不动点附近的导数绝对值较小,收敛的可能性就较大,收敛的速度也就较快.

如何构造迭代函数使之具有较快的收敛速度?

从前面的实验观察中知道,使得迭代序列收敛并尽快收敛到方程f(x)=0的某一解的条件是迭代函数g(x)在解的附近的导数的绝对值尽量小. 这启发我们将迭代方程修改成 $x = h(x) = \lambda g(x) + (1 - \lambda)x$. (4)

我们需要选取 λ 使得|h'(x)|在解的附近尽量小. 为此,我们可以令 $h'(x) = \lambda g'(x) + 1 - \lambda = 0$,

得
$$\lambda = \frac{1}{1-g'(x)}$$
.

于是
$$h(x) = x - \frac{g(x)-x}{g'(x)-1}$$
.

特别地,如果取g(x) = f(x) + x,则我们得到迭代公式

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, n = 0, 1, \dots,$$
 (5)

牛顿迭代公式

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, n = 0, 1, \dots,$$
 (5)

能否给出上述改进公式的几何解释?使用改进的迭代公式求方程的根.将它的收敛速度与你得到的其他的迭代公式相比较,哪个更快?

牛顿迭代公式

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, n = 0, 1, \dots,$$
 (5)

能否给出上述改进公式的几何解释?使用改进的迭代公式求方程的根.将它的收敛速度与你得到的其他的迭代公式相比较,哪个更快?

设 x_0 为f(x)上一点,则过 x_0 的切线方程为

$$y = f(x_0) + f'(x_0)(x - x_0)$$

式中: 令y=0,得到切线与x轴交点为

$$x = x_0 - \frac{f(x_0)}{f'(x_0)}$$

根据式(2.9)构造迭代关系式

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

收敛的理论条件?

牛顿迭代公式

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, n = 0, 1, \dots,$$
 (5)

$$\varphi'(x) = 1 - \frac{(f'(x))^2 - f(x)f''(x)}{(f'(x))^2} = \frac{f(x)f''(x)}{(f'(x))^2}$$

 $在x = x^*$ 处,有

$$\varphi'(x^*) = \frac{f(x^*)f''(x^*)}{(f'(x^*))^2} = 0$$

因此在 $x = x^*$ 充分小的邻域内有 $|\varphi'(x)| \le q \le 1$,则牛顿迭代法收敛。

对初值敏感性

$$f(x) = x^3 - 2*x^2 - 11*x + 12 = 0$$

- 2.35287527 converges to 4;
- 2. 35284172 converges to -3;
- 2.35283735 converges to 4;
- 2.352836327 converges to -3;
- 2.352836323 converges to 1.

吸引域 (basin of attraction):

When dealing with complex functions, Newton's method can be directly applied to find their zeroes. Each zero has a basin of attraction in the complex plane, the set of all starting values that cause the method to converge to that particular zero.

Basins of attraction for $x^5 - 1 = 0$;

darker means more iterations to converge.

示例 使用牛顿迭代求方程 $x^3 + x - 1 = 0$ 在[0,1]内的近似根。

写出格式 程序Exp7_6. m

讨论: 比较优缺点

- 牛顿法
- 基本不动点迭代
- 二方法

实验4: 迭代法之弦截法

牛顿迭代法的每一步不但要计算函数值,而且要计算导数值,在使用过程中有一定的局限性。特别是遇到以下情况:①导数计算比较困难;②在根的领域内导数值非常小;③方程有多重根,牛顿迭代法可能失效。对

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, n = 0, 1, \dots,$$

使用割线代替切线, 若取 $f'(x_n) = \frac{f(x_n) - f(x_0)}{x_n - x_0}$

可得单点弦截法:
$$x_{n+1} = x_n - \frac{f(x_n)(x_n - x_0)}{f(x_n) - f(x_0)}$$

若取
$$f'(x_n) = \frac{f(x_n) - f(x_{n-1})}{x_n - x_{n-1}}$$

可得两点弦截法:
$$x_{n+1} = x_n - \frac{f(x_n)(x_n - x_{n-1})}{f(x_n) - f(x_{n-1})}$$

实验4: 迭代法之弦截法

实验练习:

使用两点弦截法求方程 $x^3 - 3x - 1 = 0$ 在 $x_0 = 2$ 内的近似根(误差< 10^{-5} ,取 $x_0 = 2$, $x_1 = 1.9$)。

分析, 写出格式

程序Exp7_7.m

命令窗口执行:

>>format long

>>[result, n]=Exp7_7(1e-5, 100, 2, 1. 9)

result=

- 2. 0000000000000 1. 900000000000 1. 881093935790725
- 1. 879411060169918 1. 879385274283925 1. 879385241572444

上述迭代过程表明:使用两点弦截法,迭代n-2=4步,即可达到误差限内近似解x=1.879385241572444。

实验5: 求解方程组的迭代法

不动点迭代:

$$F(x) = 0$$
 恰当地变形 $\rightarrow x = G(x)$

基本格式: $\mathbf{x}_{n+1} = \mathbf{G}(\mathbf{x}_n)$

以线性方程组 Ax = b 为例:

• Jacobi method:

Then A can be decomposed into a diagonal component D_r , a lower triangular part L and an upper triangular part U.

$$A = D + L + U \qquad ext{where} \qquad D = egin{bmatrix} a_{11} & 0 & \cdots & 0 \ 0 & a_{22} & \cdots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & a_{nn} \end{bmatrix} ext{ and } L + U = egin{bmatrix} 0 & a_{12} & \cdots & a_{1n} \ a_{21} & 0 & \cdots & a_{2n} \ dots & dots & \ddots & dots \ a_{n1} & a_{n2} & \cdots & 0 \end{bmatrix}.$$

The solution is then obtained iteratively via

$$\mathbf{x}^{(k+1)} = D^{-1}(\mathbf{b} - (L+U)\mathbf{x}^{(k)}),$$

where $\mathbf{x}^{(k)}$ is the kth approximation or iteration of \mathbf{x} and $\mathbf{x}^{(k+1)}$ is the next or k+1 iteration of \mathbf{x} . The element-based formula is thus:

$$x_i^{(k+1)} = rac{1}{a_{ii}}\left(b_i - \sum_{j
eq i} a_{ij}x_j^{(k)}
ight), \quad i=1,2,\ldots,n.$$

实验5: 求解方程组的迭代法

不动点迭代:

$$F(x) = 0$$
 恰当地变形 $\rightarrow x = G(x)$

基本格式: $\mathbf{x}_{n+1} = \mathbf{G}(\mathbf{x}_n)$

以线性方程组 Ax = b 为例:

• Gauss-Seidel method:

Then the decomposition of A into its lower triangular component and its strictly upper triangular component is given by:

$$A = L_* + U \qquad ext{where} \qquad L_* = egin{bmatrix} a_{11} & 0 & \cdots & 0 \ a_{21} & a_{22} & \cdots & 0 \ dots & dots & \ddots & dots \ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}, \quad U = egin{bmatrix} 0 & a_{12} & \cdots & a_{1n} \ 0 & 0 & \cdots & a_{2n} \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & 0 \end{bmatrix}.$$

The system of linear equations may be rewritten as:

$$L_*\mathbf{x} = \mathbf{b} - U\mathbf{x}$$

The Gauss-Seidel method now solves the left hand side of this expression for x, using previous value for x on the right hand side. Analytically, this may be written as:

$$\mathbf{x}^{(k+1)} = L_*^{-1} \left(\mathbf{b} - U \mathbf{x}^{(k)}
ight).$$

However, by taking advantage of the triangular form of L_* , the elements of $\mathbf{x}^{(k+1)}$ can be computed sequentially using forward substitution:

$$x_i^{(k+1)} = rac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^n a_{ij} x_j^{(k)}
ight), \quad i = 1, 2, \dots, n. \ ^{ ext{[5]}}$$

实验5: 求解方程组的迭代法

Newton's method for Systems of equations

$$\mathbf{x}_{n+1} = \mathbf{x}_n - J_F(\mathbf{x}_n)^{-1} F(\mathbf{x}_n)$$

Rather than actually computing the inverse of the Jacobian matrix, one may save time and increase numerical stability by solving the system of linear equations

$$J_F(\mathbf{x}_n)(\mathbf{x}_{n+1}-\mathbf{x}_n)=-F(\mathbf{x}_n)$$

在MATLAB中,主要有solve、fzero、fsolve、roots等函数用于方程(组)求解,下面介绍其详细用法。

1. solve函数solve函数可用来求解代数方程(组)与非线性方程(组),具体使用格式: solve ('F', 'var'): 用于求解单个方程情形, F表示求解方程, var表示求解变量, 当求解变量省略时, 表示对默认变量求解, 若方程为符号方程, 求解变量为符号变量时, 上述格式中的单引号可省略;

[x1, x2, ···, xn]=solve('F1', 'F2', ···, 'Fn', 'var11', 'var2', ···, 'varn'):用于求解n个方程组成的方程组问题,F1、F2、···、Fn表示各个方程, var1, var2, ···, varn表示各个求解变量,[x1, x2, ···, xn]表示求解结果。

例 求一元二次方程 $ax^2 + bx + c = 0$ 的根。

```
>>syms x a b c
>>ff=a*x^2+b*x+c;
>>solve(ff)
ans=
-1/2*(b-(b^2-4*a*c)^(1/2))/a
-1/2*(b+(b^2-4*a*c)^(1/2))/a
```

2. fzero函数

fzero函数用于求非线性方程的最优解,使用格式:fzeno(F,[a,b]):F表示求解的方程,一般通过子程序建立F,[a,b]表示求解区间,该格式寻求F在[a,b]内的根;

fzero('F',x0):F表示解的方是建立方式同上,x0表示迭代初值。

例 求方程 $x + 2 \sin xe^x - 1 = 0$ 的根。

```
先在文件编辑窗口编写如下M文件,并保存在当前工作目录下。
function f=exam2 10(x)
f = x + 2 * \sin(x) * \exp(x) - 1;
然后在命令窗口中执行:
>>fzero(@exam2 10, [0, 1])
ans=0.2774
>>fzero(@exam2 10, 0.8)
ans=
0. 2774
```

例 求方程 $x + 2 \sin xe^x - 1 = 0$ 的根。

对于方程的建立,也可以通过@方式也可以建立函数,执行如下:

>>test=@(x)[x+2*sin(x)*exp(x)-1];

 \Rightarrow fzero(test, 0.8)

ans=

0. 2774

3. fsolve函数

fsolve函数用于求非线性方程组的最优解,使用格式:fsolve('F',x0):F表示求解的方程组,一般通过子程序建立F,x0表示迭代初值。

例 求方程组
$$\begin{cases} x_1 - \sin x_1 - x_2 = \mathbf{0} \\ 2x_1 + x_2 - \cos x_2 = \mathbf{0} \end{cases}$$
的解。

先在文件编辑窗口编写如下M文件,并保存在当前工作目录下。function F=exam2 11(x)

$$F(1) = x(1) - \sin(x(1)) - 5 * x(2);$$

$$F(2) = 2 *_{X} (1) +_{X} (2) - \cos(x(2));$$

然后在命令窗口中执行如下语句

Optimization terminated:first-order optimality is less than options. TolFun.

ans=

0.4980 0.0041

4. roots函数

roots函数用于求多项式方程的根,使用格式:

roots (A): 表示在复数范围内求多项式方程 $a_n x^n + a_{n-1} x^{n-1} + \cdots a_1 x + a_0 = 0$ 的所有根,其中A=[$a_n, a_{n-1}, \cdots a_1, a_0$]。

例 求方程 $x^5 - 6x^4 + 5x^3 - 3x + 8 = 0$ 的根。

$$>>$$
a=[1, -6, 0, 5, -3, 8];

 \rightarrow roots (a)

ans=

- 5.8626
- -1.2901
- 1.2681
- 0.0797+0.9098i
- 0.0797-0.9098i

实验7: 求根的可视化方法

图形放大法

在科学研究与工程计算过程中,有些问题只需要大致确定方程根的取值范围,并不需要计算精确解;有些问题需要求精确解,但无解析表达式,而设计的迭代方法对初值具有敏感性。对上述两个问题,可以通过图形放大的方法,确定根的取值范围或找到根值附近的初始迭代点,具体步骤如下:

- (1)绘制函数曲线。
- (2)图形放大,确定曲线与x轴的交点或两曲线的交点。

实验7: 求根的可视化方法

例1 使用图形放大法确定方程 $x^5 - 6x^4 + 5x^3 - 3x + 8 = 0$ 各根的取值范围。

```
>>x=-2:0.01:6;
>>y=x.^5-6*x.^4+5*x.^2-3*x+8;
>>plot(x, y)
>>grid on
由图可知,三个实根大致取值范围为
(-1.4,-1.2),(1.25,1.3),(5.8,5.9)。
```

实验7: 求根的可视化方法

例2 使用图形放大法确定方程组 $\begin{cases} 3x^2 - y^3 = 1 \\ e^{-x} - y = -2 \end{cases}$ 解的取值范围。

- \Rightarrow ezplot('3*x^2-y3-1', [-7, 7, -7, 7])
- >>hold on
- \Rightarrow ezplot ('exp(-x)-y+2', [-7, 7, -7, 7])
- >>grid on

由图可知,方程组的解的大致范围为1.8<x<2,2.1<y<2.2。

11月8日实验课实验题

随机模拟实验

上交截止日期:

2023年11月8日23:00

• 实验课实验题1:

用所给迭代法求方程 x^3 -sinx-12x+1=0全部根。

(a)
$$x = \varphi(x) = \sqrt[3]{12x + \sin x - 1}, -4 \le x \le 3.$$

(b)
$$x = \varphi(x) = \frac{1}{12}(x^3 - \sin x + 1), \quad 0 \le x \le 0.1.$$

(c)
$$x = \varphi(x) = \sqrt[3]{12x + \sin x - 1}$$
, $3 \le x \le 4$.

并绘制迭代过程可视化的蛛网图。

• 实验课实验题2:

设有方程组 Ax = b, $A \in \mathbb{R}^{20 \times 20}$, 其中A是一个稀疏的五对角矩阵:

$$A = \begin{pmatrix} 3 & 1 & 1 \\ 1 & 3 & 1 & \ddots \\ 1 & 1 & \ddots & \ddots & 1 \\ & \ddots & \ddots & \ddots & 1 \\ & & 1 & 1 & 3 \end{pmatrix},$$

随机取一个非零的右端向量b。分别采用Jacobi迭代和Gauss-Seidel迭代两种方法求解上述线性方程组,画出误差的收敛历史图,观察和分析计算结果。

实验课实验题3:

考虑以下问题并编程实现

- (1) 构造三种基本迭代法求 $f(x) = 3x^2 e^x = 0$ 的根。
- (2) 用恰当的方法求方程 $x^9-522+e^x=0$ 在1.9附近的根。
- (3) 设多项式 $p(x)=(x-1)(x-2)\cdots(x-20)$,取多个非常小的 ε ,解方程 $p(x)+\varepsilon x^{19}=0$,并对结果进行分析。

注:

对于第(2)问,要求计算出的根精确到小数点后13位,并给出理论依据。

对于第(3)问,假如不使用roots函数,你还有其它方法求出所有的根吗? (鼓励提出其它的方法)