

1. (Warm up) Let a, m, n be positive integers. Prove that

ive integers. Prove that
$$\gcd(a^n-1,a^m-1)=\gcd(n,m)-1.$$

Definition 1. For a prime number p and a nonnegative integer k, write $p^k \mid\mid n$ to mean that $p^k \mid n$ and $p^{k+1} \nmid n$.

In the case we will say that n is exactly (or fully) divisible by p^k . For example, $5^2 \parallel 50$. It means the same as $\nu_5(50) = 2$.

- 2. Find the number of zeros at the end of 5^{100} !
- 3. Let a and b be positive integers such that $a \mid b^2$, $b^2 \mid a^3$, $a^3 \mid b^4$, $b^4 \mid a^5$, and so on. Show that a = b.
- 4. Determine if the product of all integers from $2^{1917} + 1$ to $2^{1991} 1$ inclusive is a perfect square.
- 5. Prove that $\frac{1}{n+1} \binom{2n}{n}$ is an integer.
- 6. Let p be a prime number and p^r divides $\binom{2n}{n}$. Show that $p^r \leq 2n$.
- 7. If $n \ge 3$, p is a prime number and $\frac{2n}{3} , then <math>\binom{2n}{n}$ is not divisible by p. Prove it.