Machine Learning 10-315

Maria Florina Balcan

Machine Learning Department Carnegie Mellon University

03/29/2019

Today:

- Artificial neural networks
- Backpropagation

Reading:

- Mitchell: Chapter 4
- Bishop: Chapter 5

Artificial Neural Network (ANN)

- Biological systems built of very complex webs of interconnected neurons.
- Highly connected to other neurons, and performs computations by combining signals from other neurons.
- Outputs of these computations may be transmitted to one or more other neurons.

- Artificial Neural Networks built out of a densely interconnected set of simple units (e.g., sigmoid units).
- Each unit takes real-valued inputs (possibly the outputs of other units)
 and produces a real-valued output (which may become input to many other units).

Connectionist Models

Consider humans:

- Neuron switching time ~ .001 second
- Number of neurons ~ 10¹⁰
- Connections per neuron ~ 10^{4-5}
- Scene recognition time ~ .1 second
- 100 inference steps doesn't seem like enough
- \rightarrow much parallel computation

Properties of artificial neural nets (ANN's):

- Many neuron-like threshold switching units
- Many weighted interconnections among units
- Highly parallel, distributed process

Multilayer Networks of Sigmoid Units

input: two features from spectral analysis of a spoken sound
output: vowel sound occurring in the context "h__d"

ALVINN [Pomerleau 1993]

Artificial Neural Networks to learn f: X -> Y

• f_w typically a non-linear function, $f_w: X \to Y$

- X feature space: (vector of) continuous and/or discrete vars
- Y ouput space: (vector of) continuous and/or discrete vars
- f_w <u>network</u> of basic units

Learning algorithm: given $(x_d, t_d)_{d \in D}$, train weights w of all units to minimize sum of squared errors of predicted network outputs.

Find parameters w to minimize
$$\sum_{d \in D} (f_w(x_d) - t_d)^2$$

Use gradient descent!

What type of units should we use?

- Classifier is a multilayer network of units.
- Each unit takes some inputs and produces one output. Output of one unit can be the input of another.

Multilayer network of Linear units?

Advantage: we know how to do gradient descent on linear units

Problem: linear of linear is just linear.

$$z = w_{3,1}(\mathbf{w_1} \cdot \mathbf{x}) + w_{3,2}(\mathbf{w_2} \cdot \mathbf{x}) = (w_{3,1}\mathbf{w_1} + w_{3,2}\mathbf{w_2}) \cdot \mathbf{x} = \text{linear}$$

Multilayer network of Perceptron units?

Advantage: Can produce highly non-linear decision boundaries!

Threshold function: x = 1 if x is positive, x = 0 if x is negative.

Problem: discontinuous threshold is not differentiable. Can't do gradient descent.

Multilayer network of sigmoid units

- Advantage: Can produce highly non-linear decision boundaries!
- Sigmoid is differentiable, so can use gradient descent

 $\sigma(x) = \frac{1}{1 + e^{-x}}$

Very useful in practice!

The Sigmoid Unit

$$\sigma$$
 is the sigmoid function; $\sigma(x) = \frac{1}{1+e^{-x}}$

Nice property:
$$\frac{d\sigma(x)}{dx} = \sigma(x)(1 - \sigma(x))$$

We can derive gradient descent rules to train

- · One sigmoid unit
- Multilayer networks of sigmoid units → Backpropagation

Gradient Descent to Minimize Squared Error

Goal: Given $(x_d, t_d)_{d \in D}$ find w to minimize $E_D[w] = \frac{1}{2} \sum_{d \in D} (f_w(x_d) - t_d)^2$

Batch mode Gradient Descent:

Do until satisfied

- 1. Compute the gradient $\nabla E_D[w]$
- **2.** $w \leftarrow w \eta \nabla E_D[w]$

Incremental (stochastic) Gradient Descent:

Do until satisfied

- For each training example d in D
- 1. Compute the gradient $\nabla E_d[w]$

2.
$$\mathbf{w} \leftarrow \mathbf{w} - \eta \nabla E_d[\mathbf{w}]$$

$$E_d[\mathbf{w}] \equiv \frac{1}{2}(t_d - o_d)^2$$

Note: Incremental Gradient Descent can approximate Batch Gradient Descent arbitrarily closely if η made small enough

Gradient descent in weight space

Goal: Given $(x_d, t_d)_{d \in D}$ find w to minimize $E_D[w] = \frac{1}{2} \sum_{d \in D} (f_w(x_d) - t_d)^2$

This error measure defines a surface over the hypothesis (i.e. weight) space

figure from Cho & Chow, Neurocomputing 1999

Gradient descent in weight space

Gradient descent is an iterative process aimed at finding a minimum in the error surface.

on each iteration

- current weights define a point in this space
- find direction in which error surface descends most steeply
- take a step (i.e. update weights) in that direction

Gradient descent in weight space

Calculate the gradient of
$$E$$
: $\nabla E(\mathbf{w}) = \left[\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \cdots, \frac{\partial E}{\partial w_n} \right]$

Take a step in the opposite direction

$$\mathsf{D}\boldsymbol{w} = -h\,\nabla E(\boldsymbol{w})$$

$$Dw_i = -h \frac{\partial E}{\partial w_i}$$

Taking derivative: chain rule

Recall the chain rule from calculus

$$y = f(u)$$
$$u = g(x)$$

$$\frac{\P y}{\P x} = \frac{\P y}{\P u} \frac{\P u}{\P x}$$

Gradient Descent for the Sigmoid Unit

Given $(x_d, t_d)_{d \in D}$ find **w** to minimize $\sum_{i=1}^{n} (o_{d^{-i}} t_d)^2$

$$o_d$$
 = observed unit output for x_d

$$o_d = \sigma(net_d); net_d = \sum_i w_i x_{i,d}$$

$$\begin{split} \frac{\partial E}{\partial w_i} &= \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2 = \frac{1}{2} \sum_{d \in D} \frac{\partial}{\partial w_i} (t_d - o_d)^2 \\ &= \frac{1}{2} \sum_{d \in D} 2(t_d - o_d) \frac{\partial}{\partial w_i} (t_d - o_d) \ = \sum_{d \in D} (t_d - o_d) \left(-\frac{\partial o_d}{\partial w_i} \right) \\ &= -\sum_{d \in D} (t_d - o_d) \frac{\partial o_d}{\partial net_d} \frac{\partial net_d}{\partial w_i} \end{split}$$

But we know:
$$\frac{\partial o_d}{\partial net_d} = \frac{\partial \sigma(net_d)}{\partial net_d} = o_d(1 - o_d)$$
 and $\frac{\partial net_d}{\partial w_i} = \frac{\partial (\mathbf{w} \cdot \mathbf{x_d})}{\partial w_i} = x_{i,d}$

So:
$$\frac{\partial E}{\partial w_i} = -\sum_{d \in D} (t_d - o_d) o_d (1 - o_d) x_{i,d}$$

Gradient Descent for the Sigmoid Unit

Given $(x_d, t_d)_{d \in D}$ find **w** to minimize $\sum_{i=0}^{\infty} (o_{d^{-i}} t_d)^2$

$$\sum_{d \in D} (o_d - t_d)^2$$

 o_d = observed unit output for x_d

$$o_d = \sigma(net_d); net_d = \sum_i w_i x_{i,d}$$

$$\frac{\partial E}{\partial w_i} = -\sum_{d \in D} (t_d - o_d) o_d (1 - o_d) x_{i,d}$$

 δ_d error term $t_d - o_d$ multiplied by $o_d(1 - o_d)$ that comes from the derivative of the sigmoid function

$$\frac{\partial E}{\partial w_i} = -\sum_{d \in D} \delta_d \, x_{i,d}$$

Update rule: $w \leftarrow w - \eta \nabla E[w]$

Gradient Descent for Multilayer Networks

Given $(x_d, t_d)_{d \in D}$ find **w** to minimize $\frac{1}{2} \sum_{d \in D} \sum_{k \in Outputs} (o_{k,d} - t_{kd})^2$

Backpropagation Algorithm

Incremental/stochastic gradient descent

Initialize all weights to small random numbers.

Until satisfied, Do:

- For each training example (x, t) do:
 - Input the training example to the network and compute the network outputs
 - 2. For each output unit k:

$$\delta_k \leftarrow o_k (1 - o_k)(t_k - o_k)$$

3. For each hidden unit *h*:

$$\delta_h \leftarrow o_h (1 - o_h) \sum_{k \in outnuts} w_{h,k} \delta_k$$

4. Update each network weight $w_{i,j}$

$$w_{i,j} \leftarrow w_{i,j} + \Delta w_{i,j}$$
 where $\Delta w_{i,j} = \eta \delta_j x_{i,j}$

o = observed unit output

t = target output

x = input

 $x_{i,j} = i$ th input to jth unit

 $\mathbf{w}_{ij} = \mathbf{wt} \text{ from } i \text{ to } j$

More on Backpropagation

- Gradient descent over entire *network* weight vector
- Easily generalized to arbitrary directed graphs
- Will find a local, not necessarily global error minimum
 - In practice, often works well (can run multiple times)
- Often include weight momentum α

$$\Delta w_{i,j}(n) = \eta \delta_j x_{i,j} + \alpha \Delta w_{i,j}(n-1)$$

- Minimizes error over *training* examples
 - Will it generalize well to subsequent examples?
- Training can take thousands of iterations \rightarrow slow!
- Using network after training is very fast

Overfitting in ANNs

- Validation/generalization error first decreases, then increases.
- Weights tuned to fit the idiosyncrasies of the training examples that are not representative of the general distribution.
- Stop when lowest error over validation set.

 Not always obvious when lowest error over validation set has been reached.

Dealing with Overfitting

Our learning algorithm involves a parameter n=number of gradient descent iterations How do we choose n to optimize future error?

- Separate available data into <u>training</u> and <u>validation</u> set
- Use <u>training</u> to perform gradient descent
- n ← number of iterations that optimizes <u>validation</u> set error

Dealing with Overfitting

- Regularization techniques
 - norm constraint
 - dropout
 - batch normalization
 - data augmentation
 - early stopping
 - •

Convergence of Backpropagation

Gradient descent to some local minimum

- Perhaps not global minimum...
- Add momentum
- Stochastic gradient descent
- Train multiple nets with different inital weights

Nature of convergence

- Initialize weights near zero
- Therefore, initial networks near-linear
- Increasingly non-linear functions possible as training progresses

Expressive Capabilities of ANNs

Boolean functions:

- Every Boolean function can be represented by a network with a single hidden layer
- But might require exponential (in number of inputs) hidden units

Continuous functions:

- Every bounded continuous function can be approximated with arbitrarily small error, by network with one hidden layer [Cybenko 1989; Hornik et al. 1989]
- Any function can be approximated to arbitrarily accuracy by a network with two hidden layers [Cybenko 1988]

Representing Simple Boolean Functions

Inputs $x_i \in \{0,1\}$

Or function

$$x_{i_1} \vee x_{i_2} \vee \dots \vee x_{i_k}$$

 $w_i = 1$ if i is an i_i

 $w_i = 0$ otherwise

And function

$$x_{i_1} \wedge x_{i_2} \wedge \cdots \wedge x_{i_k}$$

 $w_i = 1$ if i is an i_j

 $w_i = 0$ otherwise

And with negations

$$x_{i_1} \wedge \bar{x}_{i_2} \wedge \cdots \wedge x_{i_k}$$

 $w_i = 1$ if i is i_j not negated

 $w_i = -1$ if i is i_j negated

 $w_i = 0$ otherwise

t =# not negated

General Boolean functions

Every Boolean function can be represented by a network with a single hidden layer; might require exponential # of hidden units

Can write any Boolean function as a truth table:

+
_
<u> </u>
+
_
_
+
+

View as OR of ANDs, with one AND for each positive entry.

$$\bar{x}_1\bar{x}_2\bar{x}_3 \vee \bar{x}_1x_2x_3 \vee x_1x_2\bar{x}_3 \vee x_1x_2x_3$$

Then combine AND and OR networks into a 2-layer network.

Learning Hidden Layer Representations

A target function:

Input		Output
10000000	\rightarrow	10000000
01000000	\rightarrow	01000000
00100000	\rightarrow	00100000
00010000	\rightarrow	00010000
00001000	\rightarrow	00001000
00000100	\rightarrow	00000100
00000010	\rightarrow	00000010
00000001	\rightarrow	00000001

Can this be learned??

Learning Hidden Layer Representations

A network:

Learned hidden layer representation:

Input		Hidden				Output			
Values									
10000000	\rightarrow	.89	.04	.08	\rightarrow	10000000			
01000000	\rightarrow	.01	.11	.88	\rightarrow	01000000			
00100000	\rightarrow	.01	.97	.27	\rightarrow	00100000			
00010000	\rightarrow	.99	.97	.71	\rightarrow	00010000			
00001000	\rightarrow	.03	.05	.02	\rightarrow	00001000			
00000100	\rightarrow	.22	.99	.99	\rightarrow	00000100			
00000010	\rightarrow	.80	.01	.98	\rightarrow	00000010			
00000001	\rightarrow	.60	.94	.01	\rightarrow	00000001			

Artificial Neural Networks: Summary

- Highly non-linear regression/classification
- Vector valued inputs and outputs
- Potentially millions of parameters to estimate
- Actively used to model distributed comptutation in the brain
- Hidden layers learn intermediate representations
- Stochastic gradient descent, local minima problems
- Overfitting and how to deal with it.

Problem with sigmoid: saturation

Figure borrowed from Pattern Recognition and Machine Learning, Bishop

Activation function ReLU (rectified linear unit)

Figure from *Deep learning*, by Goodfellow, Bengio, Courville.


```
- Generalizations of ReLU gReLU(z) = \max\{z,0\} + \alpha \min\{z,0\}

- Leaky-ReLU(z) = \max\{z,0\} + 0.01 \min\{z,0\}

- Parametric-ReLU(z): \alpha earnable
```