

Technische Fakultät

Entwicklung und Evaluation von Lokalisierungssystemen mit 2,4 GHz LoRa

Von: Nico Peterson

Motivation

Motivation

- Wo bin ich?

Motivation

- Wo bin ich?

Motivation

- Wo bin ich?
- Wo bin ich in einem Gebäude?

Ziele der Arbeit

- Lokales System zur Positionsbestimmung innerhalb von Gebäuden

Ziele der Arbeit

- Lokales System zur Positionsbestimmung innerhalb von Gebäuden
- Einbinden von Kalibrierungsmethoden an die Umwelt um Fehler zu minimieren

Ziele der Arbeit

- Lokales System zur Positionsbestimmung innerhalb von Gebäuden
- Einbinden von Kalibrierungsmethoden an die Umwelt um Fehler zu minimieren
- Testen des Systems unter Real World Conditions in der Uni

Ziele der Arbeit

- Lokales System zur Positionsbestimmung innerhalb von Gebäuden
- Einbinden von Kalibrierungsmethoden an die Umwelt um Fehler zu minimieren
- Testen des Systems unter Real World Conditions in der Uni
- Anschließende Evaluation der Genauigkeit

Background

Was ist LoRa

- Übertragungsstandard

Was ist LoRa

- Übertragungsstandard
- LoRa = Long Range

Was ist LoRa

- Übertragungsstandard
- LoRa = Long Range
- LoRa Parameter (Spreading Factor, Bandbreite)

Was ist LoRa

- Übertragungsstandard
- LoRa = Long Range
- LoRa Parameter (Spreading Factor, Bandbreite)
- Verschiedene Frequenzen verwendbar

 T_B

$$T_A - T_B$$

$$\frac{T_A-T_B}{2}$$

$$d = \frac{T_A - T_B}{2 \cdot c}$$

Trilateration

- Verwendet von GPS
- Anchor Umfeld

Trilateration

- Verwendet von GPS
- Anchor Umfeld
- Masterarbeit Vergangenes Jahr

Master thesis

Design and Evaluation of an Indoor Localization System using 2.4 GHz LoRa

> Ashok Vaishnav Kiel, Germany 2022

KIEL UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE
DISTRIBUTED SYSTEMS GROUP

Gradient Descent

- Optimierungs Algorithmus

- Optimierungs Algorithmus
- Fehlerfunktion
- Eingabe Parameter

- Optimierungs Algorithmus
- Fehlerfunktion
- Eingabe Parameter
- Learning Rate

- Optimierungs Algorithmus
- Fehlerfunktion
- Eingabe Parameter
- Learning Rate

- Optimierungs Algorithmus
- Fehlerfunktion
- Eingabe Parameter
- Learning Rate = 1

Linear Regression

Linear Regression

- Lineare Funktion
- Ziel: Approximation zukünftiger Werte

Random Forest

- Entscheidungsbaum

Random Forest

- Entscheidungsbaum
- Random Forest
 - Mehrere zufällige
 Entscheidungsbäume

Design

Design

- Anchor Nodes (Position bekannt)
- Mobile Node (Messungen zu allen Ankerpunkten)
- Gradient Descent zur Positionsberechnung

Gradient Descent Design

- 2-Dimensionale Fehlerfunktion

Gradient Descent Design

- 2-Dimensionale Fehlerfunktion
- Sum of Squares Errors

Gradient Descent Design

- 2-Dimensionale Fehlerfunktion
- Sum of Squares Errors

$$f(x, y) = \sum_{i=0}^{\infty} (|m_i - d_i|^2)$$

Gradient Descent Design

- 2-Dimensionale Fehlerfunktion
- Sum of Squares Errors

$$f(x,y) = \sum_{i=0}^{\infty} (|m_i - d_i|^2)$$
$$f(x,y) = \sum_{i=0}^{\infty} (|m_i - \sqrt{(x - x_i)^2 + (y - y_i)^2}|^2)$$

Problem LoRa Non-Line-of-Sight

- Durch typische Gebäude Aufteilung

Problem LoRa Non-Line-of-Sight

- Durch typische Gebäude Aufteilung
- Korrektur Faktor
 - Pro Anchor

Problem LoRa Non-Line-of-Sight

- Durch typische Gebäude Aufteilung
- Korrektur Faktor
 - Pro Anchor
 - Lineare Regression
 - Random Forest Regression
 - Nicht nur Entfernung als Parameter

Systemablauf

Evaluation

Evaluation LoRa Parameter

Evaluation Testbed

Evaluation Korrekturfaktor

Dichtes Anchor Umfeld

Evaluation Korrekturfaktor

Alleinstehende Node

Dichtes Anchor Umfeld

Alleinstehende Node

Hohe Interferenz

Linear Regression

Random Forest

Conclusion

- Lokalisierungs System
- Erreichen unter gewissen Bedingungen verwendbare Genauigkeiten

Conclusion

- Lokalisierungs System
- Erreichen unter gewissen Bedingungen verwendbare Genauigkeiten
- Aber,
- Viele Anomalien
 - ,die wir nicht direkt erklären können
 - Nicht allgemein verwendbar

Take Home Message

- Ziele sollten so früh wie möglich festgelegt werden