

UNIUBE – CAMPUS VIA CENTRO – Uberlândia/MG Curso de Engenharia Elétrica e Engenharia de Computação Disciplina: Sistemas Digitais

Aula 02 Funções lógicas: Portas lógicas. Portas equivalentes/universais. Circuitos Integrados.

Revisão 3, de 17/02/2025

Prof. João Paulo Seno joao.seno@uniube.br

1

Por que lógica binária?

- A lógica multinível vem sendo investigada há muito tempo, porém a lógica de dois níveis (binária) continua sendo a mais viável. Assim, a eletrônica digital opera com apenas dois estados possíveis, representados por níveis lógicos diferentes, um ALTO e um BAIXO.
- Se você tiver mais interesse sobre a lógica multinível, veja o link abaixo, que aponta para a dissertação de mestrado de Meliton Apaza Tito, intitulada "Síntese de circuitos com memória em lógica multinível". O referencial teórico traz uma revisão bibliográfica sobre o assunto.

https://repositorio.ufms.br/handle/123456789/653

Níveis lógicos x níveis de tensão

- Os sinais verdadeiros (físicos) que correspondem a ALTO ou BAIXO são irrelevantes para os usuários do sistema (programadores, por exemplo).
- Nos sistemas digitais, esses dois estados são combinados formando códigos usados para representar números, símbolos, caracteres alfabéticos e outros tipos de informações.
- Os bits são representados por dois níveis de tensão diferentes. <u>Em geral</u> (poderia ser ao contrário), o bit 1 é representado por uma tensão maior, a qual chamamos por nível lógico ALTO, e o bit 0 é representado por uma tensão menor, a qual chamamos de nível lógico BAIXO.

Comportamento dos níveis de tensão

Teoria x Prática

- <u>Na teoria</u>, um nível único de tensão é usado para representar um nível lógico ALTO e o outro nível de tensão é usado para representar um nível BAIXO.
- <u>Na prática</u>, no entanto, em um circuito digital, os níveis lógicos são representados por um intervalo de tensão entre um valor mínimo e um valor máximo especificados, não podendo haver sobreposição entre as faixas aceitáveis para os níveis ALTO e BAIXO.

WUniube

Níveis de tensão e a representação de sinais digitais binários

- Sendo o padrão 0 volts (ou GND ou terra) associado ao dígito 0 e V_{CC} associado ao dígito um 1, é possível observar que existe uma infinidade de valores possíveis entre 0 volts e V_{CC}. Como tratar a condição intermediária (entre 0 e VCC)?
- Para tensões de circuitos digitais na entrada, é adotada a nomenclatura VIH (V Input High) para a menor tensão na qual ainda é possível representar o valor 1. A maior tensão na qual ainda é representado o valor 0 na entrada é chamada VIL (V Input Low).
- O mesmo ocorre na saída de um circuito digital. Os níveis de tensão podem variar entre VCC e VOH (V Output High) para indicar o valor 1, e entre VOL (V Output Low) e GND para indicar 0.

MUniube

Níveis de tensão e a representação de sinais digitais binários

- O valor intermediário (entre VIH e VIL, entre VOH e VOL) são tensões que não são usadas e não são símbolos válidos, ou seja, um circuito digital deve desconsiderar esses valores.
- Veja a figura abaixo:

Valores dos níveis de tensão para cada tecnologia de construção do dispositivo

• Diferentes tecnologias trabalham com diferentes níveis de tensão.

WUniube

- Os níveis de tensão representam dígitos binários, que podem ser gerados em forma de onda, consistidas em níveis de tensão que comutam entre os níveis lógicos ALTO e BAIXO.
- Na figura (a), vemos um <u>pulso positivo</u>, que ocorre quando a tensão ou a corrente passa do nível BAIXO para o nível ALTO, e, em seguida, retorna para o nível BAIXO.
- Já na figura (b), temos um <u>pulso negativo</u>, gerado quando a tensão passa do nível ALTO normal para o nível BAIXO e retorna para o nível ALTO.
- Uma forma de onda digital consiste em uma série desses pulsos.

 As transições em um pulso são classificadas como positiva ou borda de subida (na figura (a), ocorre em t₀), ou como negativa ou borda de descida (na figura(a) ocorre em t₁).

WUniube

Pulso ideal x Pulso real

• Os pulsos vistos nas figuras anteriores são ideais, porque se considera que as bordas de subida e descida comutam instantaneamente. Na prática, essas transições não ocorrem no mesmo instante.

四Uniube

Trem de pulsos

Formas de onda compostas de uma série de pulsos

- Podem ser periódicas ou não periódicas;
- Uma forma de onda periódica (figura (a)) é aquela que se repete num intervalo fixo, denominado de período (T). A frequência (f) é a taxa com que ela se repete, e é medida em hertz (Hz).
- Uma forma de onda não periódica (figura (b)), é claro, não se repete em intervalos fixos, e pode ser composta de pulsos com larguras aleatórias e/ou intervalos aleatórios de tempo entre os pulsos.

Uniube

O que é um circuito digital?

- Um circuito digital é aquele que executa e pode ser descrito por uma função lógica que processa os bits que recebe.
- Por exemplo, considere a e b dois bits recebidos por um certo circuito, o qual produz o bit y na saída.

```
y = \mathsf{NOT}\,a (também representado por y = a'). y = a\,\mathsf{OU}\,b (ou y = a + b, em que "+" representa o OU (OR) lógico, e não deve ser confundido com o sinal de adição aritmética). y = a\,\mathsf{E}\,b (ou y = a \cdot b, em que "\cdot" representa o E (AND) lógico, e não deve ser confundido com o sinal de multiplicação aritmética).
```

WUniube

Circuitos digitais

 As funções lógicas implementadas nos circuitos digitais podem representar somente dois estados: ligado ou desligado; zero ou um; aberto ou fechado, ou seja, tanto na entrada quanto na saída desses blocos lógicos, são permitidos somente esses valores.

Blocos lógicos básicos (há outros)

	Tabela Verdade		ie	Lógica	Expressão
	Α	В	S	Assume valor 1 quando todas a entradas forem 1 e 0 nos outros casos	S = A * B
$_{B}^{A} = \bigcirc \longrightarrow s$	0	0	0		
	0	1	0		
	1	0	0		
	1	1	1		
^ → S	Α	В	S	Assume valor 0 quando todas a entradas forem 1 e 1 nos outros casos	S = A + B
	0	0	0		
	0	1	1		
	1	0	1		
	1	1	1		
A → S	1	A !	5	Inverte o	
	0 1			valor da	$S = \overline{A}$
		1 ()	variavel de entrada A	S = A
		s 0 1 1 1 1 S S S S S S S S S S S S S S S	s 0 1 1 0 1 1 A B 0 0 0 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1	s 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	S O O O O O O O O O

Uniube

Circuitos integrados

• Um circuito integrado, chip, micro chip ou nano chip, é um circuito eletrônico miniaturizado sobre um substrato fino de material semicondutor. Os circuitos integrados são usados em quase todos os equipamentos eletrônicos usados hoje e revolucionaram o mundo da eletrônica.

Porta inversora

• Vamos usar a porta inversora, um elemento básico dos circuitos digitais, para estudar algumas características eletrônicas importantes dos circuitos integrados. Há várias tecnologias, com diferentes desempenhos nestas características.

Circuito eletrônico (CMOS)

四Uniube

CTT (característica de transferência de tensão)de um inversor Parâmetros V_{OH} , V_{OL} , V_{IL} e V_{IH}

	Parametros	Função
i	V _{OL}	Tensão de saída em nível baixo (low-level output voltage). Máximo nível de tensão de saída de um circuito lógico, no estado lógico 0.
	V _{OH}	Tensão de saída em nível alto (high-level output voltage). Mínimo nível de tensão de saída de um circuito lógico, no estado lógico 1.
	V _{IL}	Tensão de entrada em nível baixo (<i>low-level input voltage</i>). Máximo nível de tensão para o nível lógico 0 em uma entrada.
	V _{IH}	Tensão de entrada em nível alto (high-level input voltage). Mínimo nível de tensão requerido para o nível lógico 1 em uma entrada.

Uniube

Margem de ruído

- A grande vantagem em um circuito digital, quando comparado a um circuito analógico é a insensibilidade (até certo ponto, é claro) da saída deste circuito digital (V_{out}) com relação ao valor da entrada (V_{in}).
- Considere o circuito abaixo:

• É possível definir:

$$MR_{H} = V_{OH} - V_{IH}$$

Onde

 $MR_L = V_{IL} - V_{OL}$

MR_L = Margem de Ruído para nível baixo e MR_H = Margem de Ruído para nível alto.

Uniube

Atraso de propagação

- Analisando as portas lógicas de forma dinâmica, ou seja, considerando as respostas dadas pelos componentes eletrônicos internos da porta inversora.
- Vamos, então, analisar o seu comportamento dinâmico com relação ao atraso temporal entre o chaveamento de V_i (de alto para baixo e vice-versa) e a sua correspondente mudança na saída, V_o .
- Esse comportamento é chamado de atraso de propagação.
- Define um tempo de atraso de propagação médio $t_P = (t_{PHL} + t_{PLH})/2$

Onde:

- t_{PHL} é o tempo de atraso do estado lógico 1 para estado lógico 0.
- t_{PLH} é tempo de atraso do estado lógico 0 para estado lógico 1.

Dissipação de potência

- Vale lembrar algo bem característico de um circuito digital: ele aquece. Isso é fácil de perceber. Basta observar o momento em que a ventoinha (cooler) do processador do seu notebook é acionado.
- Certamente esse acionamento ocorre devido à necessidade de se dissipar a temperatura acumulada no processador, ou seja, dissipar o calor gerado pela atividade de chaveamento do processor.
- Um circuito integrado dissipa energia mesmo que não esteja chaveando (Potência estática), mas esta dissipação de energia é maior quando suas portas lógicas estão mudando de estado (Potência dinâmica).

Uniube Produto atraso-potência, ou DP – Delay-Power Product

• É dado pela equação abaixo, onde tp corresponde ao atraso de propagação médio:

$$DP = P_{Dinâmica} \times t_P$$

- Sendo que DP é dado em Joules e, quanto menor o valor de DP, melhor a tecnologia quando analisado maior velocidade (tp baixo) e menor consumo na porta ($P_{DIN\hat{A}MICA}$).
- Como é possível concluir, pode ser entendido como uma medida de qualidade da tecnologia.

WUniube

FAN-IN e FAN-OUT

- Estes conceitos tratam da <u>relação de quantidade de portas que um</u> <u>dispositivo de uma família de semicondutor pode ter tanto na entrada quanto na saída</u>.
- O termo *FAN-IN* (leque de entrada) pode ser definido como o número de entradas que uma porta lógica possui, por exemplo: se uma porta AND tiver oito entradas, significa que ela possui *FAN-IN* igual a 8.
- O conceito é similar para FAN-OUT, mas não é igual. FAN-OUT (leque de saída) pode ser definido como o máximo de portas similares que uma porta pode acionar permanecendo dentro das especificações.
- Dessa forma, quanto mais entradas incluímos em uma porta de saída, menor será o V_{OH} e, consequentemente, menor a margem de ruído para nível alto ou $MR_{\rm H}$.

WUniube

Proteção da entrada do CI

- Para proteger o CI CMOS dessas cargas e também de transientes de tensão (liga e desliga de fontes), são empregados circuitos limitadores de tensão com diodos.
 Esses circuitos são simples e, muitas vezes, já vêm integrados no CI.
- Veja os exemplos abaixo:

