Análise Matemática III Integrais de linha

Ricardo Moura

Escola Naval

16 de novembro de 2021

Exemplo

Seja
$$g: \mathbb{R} \to \mathbb{R}^2$$
 onde $g(t) = (1-2t, 1+t)$.

Se g é contínua em I, então o seu contradomínio chama-se curva. Uma curva pode ter várias expressões, à qual chamaremos caminhos.

Definição

Chama-se caminho em \mathbb{R}^n a qualquer função contínua definida num intervalo (limitado ou não) de números reais I e com valores em \mathbb{R}^n .

O contradomínio de um caminho chama-se curva ou arco.

Se $\mathbf{g}: I \to \mathbb{R}^n$ é um caminho, diz-se que $C = \mathbf{g}(I)$ é a curva representada por \mathbf{g} e que \mathbf{g} é uma representação paramétrica da curva C.

Se \mathbf{g} é um caminho definido num intervalo fechado e limitado I = [a, b], os pontos (a) e (b) chamam-se extremos do caminho \mathbf{g} , respectivamente, o ponto inicial e o ponto final.

Se pudermos definir $\mathbf{g}'(t)$, quando $\mathbf{g}'(t) \neq 0$ o vetor $\mathbf{g}'(t)$ pode ser visto geometricamente como o vetor tangente à curva em $\mathbf{g}(t)$.

Definição (curva de classe C^1)

Diz-se que um caminho $\mathbf{g}: I \to \mathbb{R}^n$ é de classe C^1 se a função \mathbf{g} é de classe C^1 em I. Um conjunto $C \subset \mathbb{R}^n$ é uma curva de classe C^1 se existe um caminho de classe C^1 que representa parametricamente C.

Se pudermos definir $\mathbf{g}'(t)$, quando $\mathbf{g}'(t) \neq 0$ o vetor $\mathbf{g}'(t)$ pode ser visto geometricamente como o vetor tangente à curva em $\mathbf{g}(t)$.

Definição (curva seccionalmente de classe C^1)

Um caminho $\mathbf{g}:[a,b] \to \mathbb{R}^n$ diz-se seccionalmente de classe C^1 se o intervalo [a,b] puder ser decomposto num número finito de subintervalos, em que cada um o caminho é de classe C^1 . Uma curva diz-se seccionalmente de classe C^1 se existir um caminho seccionalmente de classe C^1 que a parametrize.

Se pudermos definir $\mathbf{g}'(t)$, quando $\mathbf{g}'(t) \neq 0$ o vetor $\mathbf{g}'(t)$ pode ser visto geometricamente como o vetor tangente à curva em $\mathbf{g}(t)$.

Definição (fechado e simples)

Sendo $g: I \to \mathbb{R}^n$ um caminho, diz-se que g é um caminho fechado se I é um intervalo fechado e limitado de extremos a e b e g(a) = g(b).

Diz-se que o caminho não fechado **g** é um caminho simples quando **g** é injectiva (isto é, **g** não assume o mesmo valor em quaisquer dois pontos distintos de I).

O caminho fechado **g** diz-se um **caminho simples** se **g** for injectiva no interior de I.

Um conjunto $C \subset \mathbb{R}^n$ é uma curva fechada ou uma curva simples se existe, respectivamente, um caminho fechado ou um caminho simples que o representa parametricamente.

https://www.geogebra.org/3d/yju4px5g

Definição (caminhos equivalentes)

Sejam $\alpha:I\to\mathbb{R}^n$ e $\beta:J\to\mathbb{R}^n$ dois caminhos em \mathbb{R}^n , os caminhos α e β dizem-se **equivalentes** se existe uma função bijectiva e continuamente diferenciável $\phi:I\to J$, tal que $\phi'(t)\neq 0$ em todos os valores de t com excepção dum número finito de pontos $t\in I$ e $\alpha(t)=\beta[\phi(t)]$, em todos os pontos de I. Se $\phi'(t)\geq 0$ diz-se que os caminhos têm o **mesmo sentido**, se $\phi'(t)\leq 0$ diz-se que os caminhos têm **sentidos opostos**; no primeiro caso diz-se que a função ϕ preserva o sentido, e no segundo caso que **inverte o sentido**.

Exemplo

$$\alpha(t) = (t, t^3), t \in [0, 1] \text{ e } \beta(t) = \left(\frac{t}{2} - 2, \left(\frac{t}{2} - 2\right)^3\right), t \in [4, 6]$$

 $\alpha(t) = \beta(2t + 4)$

https://www.geogebra.org/m/GrTpNKnJ

Teorema 1: Retificável e comprimento de caminho

Um caminho $\mathbf{g}:[a,b]\to\mathbb{R}^n$ de classe C^1 é rectificável se ||g'|| é uma função integrável em [a,b], e o comprimento de \mathbf{g} entre $\mathbf{g}(a)$ e $\mathbf{g}(t)$ ($a\leq t\leq b$) é dado por

$$s(t) = \int_{a}^{t} ||g'(u)|| du = \int_{a}^{t} \sqrt{\sum_{i=1}^{n} [g'_{i}(u)]^{2}} du$$

Nota: Independente da respetiva parametrização.

Exemplo

```
Qual o comprimento da catenária \mathbf{g}:[0,1]\to\mathbb{R}^2 dada por \mathbf{g}(t)=(t,\cosh(t))?
https://www.geogebra.org/m/yqrenyek
```

Exemplo

```
Qual o comprimento da catenária \mathbf{g}:[0,1]\to\mathbb{R}^2 dada por \mathbf{g}(t)=(t,\cosh(t))?
https://www.geogebra.org/m/yqrenyek
R:sinh(1)
```

Exemplo

```
Qual o comprimento da catenária \mathbf{g}:[0,1] \to \mathbb{R}^2 dada por \mathbf{g}(t)=(t,\cosh(t))?
https://www.geogebra.org/m/yqrenyek
R:sinh(1)
```

Exemplo

Qual o comprimento do arco da hélice dada por $f(t) = (2e^t \cos(t), 2e^t \sin(t), 2e^t)$, desde (2,0,2) a $(-2e^\pi, 0, 2e^\pi)$?

Exemplo

```
Qual o comprimento da catenária \mathbf{g}:[0,1]\to\mathbb{R}^2 dada por \mathbf{g}(t)=(t,\cosh(t))?
https://www.geogebra.org/m/yqrenyek
R:sinh(1)
```

Exemplo

Qual o comprimento do arco da hélice dada por
$$f(t) = (2e^t \cos(t), 2e^t \sin(t), 2e^t)$$
, desde $(2,0,2)$ a $(-2e^\pi, 0, 2e^\pi)$? R: $2\sqrt{3}(e^\pi - 1)$

Seguindo raciocínio semelhante ao que tem vindo a ser efetuado, usando as somas de Riemann, podemos calcular a àrea de uma superfície definida por uma curva em xOy e altura ortogonal a xOy limitada por $z = \varphi(x,y)$. https://www.math3d.org/2wBs9Tuu

Definição

Seja φ um campo escalar contínuo cujo domínio contém uma curva C representada por $\mathbf{g}:[a,b]\to\mathbb{R}^n$, seccionalmente de classe C^1 . O integral, $\int_C \varphi ds$, dado por

$$\int_{C} \varphi ds = \int_{a}^{b} \varphi[\mathbf{g}(t)] ||\mathbf{g}'(t)|| dt$$

chama-se integral de linha de φ sobre C relativo ao comprimento de arco s definido pelo caminho g.

Nota: Também se chama a este integral de linha, como integral de linha de $1.^{\underline{a}}$ espécie e a ds = ||g'(t)||dt elemento de comprimento de arco. Pode-se também chamar integral de linha do campo escalar φ ao longo da curva/linha C.

Definição

Seja φ um campo escalar contínuo cujo domínio contém uma curva C representada por $\mathbf{g}:[a,b]\to\mathbb{R}^n$, seccionalmente de classe C^1 . O integral, $\int_C \varphi dx_i$, dado por

$$\int_{C} \varphi dx_{i} = \int_{a}^{b} \varphi[\mathbf{g}(t)] \ \mathbf{g}'_{i}(t) dt$$

chama-se integral de linha de φ ao longo de C relativo à componente x_i .

Aplicações:

- Comprimentos de arco.
- Massa de um fio, onde $\varphi: S \to \mathbb{R}$ será a densidade por unidade de comprimento do material do fio.
- ► Centro de massa, $x_i = \frac{1}{M} \int_C x_i \varphi(x_1, ..., x_n) ds = \int_a^b g_i(t) \varphi[\mathbf{g}(t)] ||\mathbf{g}'(t)|| dt$
- Momento de inércia da linha C relativo à eixo L será $I_L = \int_C d_L^2 \varphi(x_1, ..., x_n) ds = \int_a^b \sum_{j \neq i} g_i^2(t) \varphi[\mathbf{g}(t)] ||\mathbf{g}'(t)|| dt$

Exemplo

Considere um fio de um material cuja densidade de massa é dada por $\rho(x,y)=\frac{1}{\sqrt{1+x^2+y^2}}$ e que tem a configuração de uma espiral descrita por $g(t)=(t\cos(t),t\sin(t)),0< t<4\pi$. Qual a coordenada y do seu centro de massa? Resposta: $\bar{y}=-1$

Exemplo

Calcule $\int_C 4y - xds$ onde C é dado por

Exemplo

Calcule $\int_C 4y - x ds$ onde C é dado por

$$g_1(t) = (3\cos(t), 3\sin(t)), \pi/4 \le t \le 5\pi/4$$

 $g_2(t) = (t, -3/\sqrt{2}), -3/\sqrt{2} \le t \le 4$ e
 $g_3(t) = (4, t), -3/\sqrt{2} \le t \le 4$

Exemplo

Calcule $\int_C 4y - xds$ onde C é dado por

$$\begin{split} I_1 &= \int_{C_1} 4y - x ds = \int_{\frac{\pi}{4}}^{\frac{5\pi}{4}} [4(3\sin(t)) - 3\cos(t)] ||g_1'(t)|| dt = 45\sqrt{2} \\ I_2 &= \int_{C_2} 4y - x ds = \int_{-\frac{3}{\sqrt{2}}}^{\frac{4}{4}} [4(-\frac{3}{\sqrt{2}}) - t] ||g_2'(t)|| dt = -\frac{95}{4} - 24\sqrt{2} \text{ e} \\ I_3 &= \int_{C_3} 4y - x ds = \int_{-\frac{3}{\sqrt{2}}}^{\frac{4}{4}} [4t - 4] ||g_3'(t)|| dt = 7 - 6\sqrt{2} \end{split}$$

Exemplo

Calcule $\int_C 4y - xds$ onde C é dado por

$$I = I_1 + I_2 + I_3 = 15\sqrt{2} - \frac{67}{4}$$