Chapitre 19: Espaces vectoriels

Dans tout le chapitre \mathbb{K} désignera \mathbb{R} ou \mathbb{C} .

1 Espaces vectoriels et sous-espaces vectoriels

1.1 Structure de K espace vectoriel

Définition

Soit *E* un ensemble muni :

• d'une addition notée +, c'est à dire une application :

$$E \times E \quad \rightarrow \quad E$$
$$(x, y) \quad \mapsto \quad x + y$$

• d'une multiplication externe notée . , aussi appelée multiplication par un scalaire, c'est à dire une application :

$$\begin{array}{cccc} \mathbb{K} \times E & \to & E \\ (\lambda, y) & \mapsto & \lambda. y \end{array}$$

On dit que (E, +, .) est un \mathbb{K} -espace vectoriel ssi :

- L'addition de E possède les propriétés suivantes :
 - * $\forall (x, y, z) \in E^3$, (x + y) + z = x + (y + z) (associativité) On pourra ainsi écrire x + y + z.
 - * $\exists e \in E, \forall x \in E, x + e = e + x = x.$

Un tel e est unique et on le note généralement 0_E .

- * $\forall x \in E, \exists x' \in E, x + x' = x' + x = 0_E$. Un tel x' est unique. On l'appelle opposé de x et on le note -x. On a ainsi : $x + (-x) = (-x) + x = 0_E$.
- * $\forall (x, y) \in E^2$, x + y = y + x (commutativité).
- La multiplication par un scalaire vérifie :
 - * $\forall (\lambda, \mu) \in \mathbb{K}^2$, $\forall x \in E$, $(\lambda + \mu).x = \lambda.x + \mu.x$.
 - * $\forall \lambda \in \mathbb{K}, \forall (x, y) \in E^2, \lambda.(x + y) = \lambda.x + \lambda.y.$
 - * $\forall (\lambda, \mu) \in \mathbb{K}^2$, $\forall x \in E$, $\lambda \cdot (\mu \cdot x) = (\lambda \mu) \cdot x$.
 - * $\forall x \in E$, 1.x = x.

Démonstration. Prouvons l'unicité de l'élément neutre et de l'opposé :

- Supposons qu'il existe $e, f \in E$ tels que : $\forall x \in E, \ x + e = e + x = x$ et : $\forall x \in E, \ x + f = f + x = x$. Alors e = e + f (car f est élément neutre) et e + f = f (car f est élément neutre) donc f et on a unicité.
- Soit $x \in E$, supposons qu'il existe $y, z \in E$ tels que : $x + y = y + x = 0_E$ et $x + z = z + x = 0_E$. Alors $y + (x + z) = y + 0_E = y$ et $y + (x + z) = (y + x) + z = 0_E + z = z$.

Remarque :Les éléments de E sont appelés vecteurs et les éléments de $\mathbb K$ sont appelés scalaire.

Proposition: Propriétés élémentaires

- Soit $(\lambda, x) \in \mathbb{K} \times E$, on a : $\lambda . x = 0_E \iff \lambda = 0_{\mathbb{K}}$ ou $x = 0_E$.
- Soit $(\lambda, x) \in \mathbb{K} \times E$, on a : $(-\lambda) \cdot x = \lambda \cdot (-x) = -(\lambda \cdot x)$.

Démonstration. • Soit $x \in E$ et $\lambda \in \mathbb{K}$.

• Supposons $\lambda = 0_{\mathbb{K}}$. On a: $0_{\mathbb{K}}.x = (0_{\mathbb{K}} + 0_{\mathbb{K}}).x = 0_{\mathbb{K}}.x + 0_{\mathbb{K}}.x$ par distributivité. Ainsi, en ajoutant l'opposé de $0_{\mathbb{K}}.x$, on obtient : $0_{\mathbb{K}}.x - 0_{\mathbb{K}}.x = 0_{\mathbb{K}}.x + 0_{\mathbb{K}}.x - 0_{\mathbb{K}}.x$. Donc $0_E = 0_{\mathbb{K}}.x + 0_E$. Ainsi $0_E = 0_{\mathbb{K}}.x$.

- Supposons x = 0_E.
 On a: λ.0_E = λ.(0_E + 0_E) = λ.0_E + λ.0_E par distributivité. En ajoutant l'opposé de λ.0_E, on obtient : λ.0_E λ.0_E = λ.0_E + λ.0_E λ.0_E. Donc 0_E = λ.0_E + 0_E. Ainsi : 0_E = λ.0_E.
- Soit $(\lambda, x) \in \mathbb{K} \times E$ tel que $\lambda.x = 0_E$. Supposons $\lambda \neq 0_{\mathbb{K}}$ et montrons que $x = 0_E$. On a $x = 1.x = (\lambda^{-1}\lambda).x = \lambda^{-1}.(\lambda.x) = \lambda^{-1}.0_E = 0_E$.
- Soit $(\lambda, x) \in K \times E$, on a $(-\lambda).x + \lambda.x = (-\lambda + \lambda).x = 0_K.x = 0_E$ (par distributivité). Ainsi $-(\lambda.x) = (-\lambda).x$. Soit $(\lambda, x) \in K \times E$, on a $\lambda.(-x) + \lambda.x = \lambda.(-x + x) = \lambda.0_E = 0_E$. Ainsi $\lambda.(-x) = -(\lambda.x)$.

1.2 Espaces vectoriels de référence

1.2.1 Espace vectoriel \mathbb{K}

L'ensemble $\mathbb K$ muni de son addition et de sa multiplication est un $\mathbb K$ -espace vectoriel. En particulier, $\mathbb R$ -est un $\mathbb R$ -espace vectoriel et $\mathbb C$ est un $\mathbb C$ -espace vectoriel.

 \mathbb{C} est aussi un \mathbb{R} -espace vectoriel si on le munit de son addition et de la multiplication externe : $\begin{pmatrix} \mathbb{R} \times \mathbb{C} & \to & \mathbb{C} \\ (\lambda, r) & \mapsto & \lambda r \end{pmatrix}$

1.2.2 Espace vectoriel \mathbb{K}^n

Soit $n \in \mathbb{N}^*$, on muni usuellement \mathbb{K}^n des lois suivantes :

• l'addition telle que, pour $(x_1, x_2, ..., x_n) \in \mathbb{K}^n$ et $(y_1, y_2, ..., y_n) \in \mathbb{K}^n$:

$$(x_1, x_2, ..., x_n) + (y_1, y_2, ..., y_n) = (x_1 + y_1, x_2 + y_2, ..., x_3 + y_3)$$

• la multiplication par un scalaire telle que, pour $(x_1, x_2, ..., x_n) \in \mathbb{K}^n$ et $\lambda \in \mathbb{K}$:

$$\lambda.(x_1, x_2, ..., x_n) = (\lambda x_1, \lambda x_2, ..., \lambda x_n)$$

Proposition

Muni de ces lois, l'ensemble \mathbb{K}^n est un \mathbb{K} -espace vectoriel et le vecteur nul est $0_{\mathbb{K}^n}=(0,...,0)$.

Démonstration.

• Soit $x = (x_1, ..., x_n), y = (y_1, ..., y_n), z = (z_1, ..., z_n) \in \mathbb{K}^n$, on a:

$$x + (y + z) = (x_1, ..., x_n) + ((y_1, ..., y_n) + (z_1, ..., z_n))$$

$$= x + (y_1 + z_1, ..., y_n + z_n)$$

$$= (x_1 + (y_1 + z_1), ..., x_n + (y_n + z_n))$$

$$= ((x_1 + y_1) + z_1, ..., (x_n + y_n) + z_n)$$

$$= (x_1 + y_1, ..., x_n + y_n) + z$$

$$= ((x_1, ..., x_n) + (y_1, ..., y_n)) + (z_1, ..., z_n)$$

$$= (x + y) + z$$

donc + est associative.

- * Soit $x = (x_1, ..., x_n)$, $y = (y_1, ..., y_n) \in \mathbb{K}^n$, on a: $x + y = (x_1 + y_1, ..., x_n + y_n) = (y_1 + x_1, ..., y_n + x_n) = y + x$ donc + est commutative.
- * Le n-uplet $0_{\mathbb{K}^n} = (0,...,0)$ est élément neutre puisque pour tout $x = (x_1,...,x_n) \in \mathbb{K}^n$, on a : $x + 0_{\mathbb{K}^n} = (x_1 + 0,...,x_n + 0) = x$.
- * Pour tout $x = (x_1, ..., x_n) \in \mathbb{K}^n$, on a : $(x_1, x_2, ..., x_n) + (-x_1, -x_2, ..., -x_n) = (0, ..., 0) = 0_{\mathbb{K}^n}$ et donc l'opposé de x est $-x = (-x_1, ..., -x_n)$.
- Pour tout $x = (x_1, ..., x_n), y = (y_1, ..., y_n) \in \mathbb{K}^n, \lambda \in \mathbb{K}, \mu \in \mathbb{K}, \text{ on a :}$
 - * $\lambda.(\mu.x) = \lambda.(\mu x_1, \dots, \mu x_n) = (\lambda \mu x_1, \dots, \lambda \mu x_n) = (\lambda \mu).x$
 - * $(\lambda + \mu).x = ((\lambda + \mu)x_1, \dots, (\lambda + \mu)x_n) = (\lambda x_1 + \mu x_1, \dots, \lambda x_n + \mu x_n) = (\lambda x_1, \dots, \lambda x_n) + (\mu x_1, \dots, \mu x_n) = \lambda .x + \mu .x$
 - * $\lambda.(x+y) = (\lambda(x_1+y_1), \dots, \lambda(x_n+y_n)) = (\lambda x_1 + \lambda y_1, \dots, \lambda x_n + \lambda y_n) = (\lambda x_1, \dots, \lambda x_n) + (\lambda y_1, \dots, \lambda y_n) = \lambda.x + \lambda.y$
 - * $1.x = (1x_1, ...1x_n) = x$.

1.2.3 Espace vectoriel $\mathscr{F}(\Omega,\mathbb{K})$

Soit Ω un ensemble non vide.

On muni usuellement $\mathcal{F}(\Omega,\mathbb{K})$ des lois suivantes :

• l'addition telle que, pour $f \in \mathcal{F}(\Omega, \mathbb{K})$ et $g \in \mathcal{F}(\Omega, \mathbb{K})$:

$$\begin{array}{cccc} f+g: & \Omega & \to & \mathbb{K} \\ & x & \mapsto & f(x)+g(x) \end{array}$$

• la multiplication par un scalaire telle que, pour $f \in \mathcal{F}(\Omega, \mathbb{K})$ et $\lambda \in \mathbb{K}$:

$$\lambda.f: \quad \Omega \quad \to \quad \mathbb{K}$$

$$\qquad \qquad x \quad \mapsto \quad \lambda \left(f(x) \right)$$

Proposition

Muni de ces lois, $\mathscr{F}(\Omega,\mathbb{K})$ est un \mathbb{K} -espace vectoriel et le vecteur nul est la fonction nulle.

Exemple: $\mathscr{F}(\mathbb{R},\mathbb{R})$ est un \mathbb{R} -espace vectoriel. Les fonctions cos, exp, ..., sont des exemples de vecteurs de cet espace.

Démonstration.

• * Soit $(f, g, h) \in \mathcal{F}(\Omega, E)^3$. Soit $x \in \Omega$, on a:

$$(f + (g + h))(x) = f(x) + (g + h)(x)$$

$$= f(x) + (g(x) + h(x))$$

$$= (f(x) + g(x)) + h(x)$$

$$= (f + g)(x) + h(x)$$

$$= ((f + g) + h)(x)$$

Ainsi, f + (g + h) = (f + g) + h et + est associative.

- * Soit $(f,g) \in \mathcal{F}(\Omega, E)$. Soit $x \in \Omega$, on a (f+g)(x) = f(x) + g(x) = g(x) + f(x) = (g+f)(x) donc f+g=g+f.
- * La fonction nulle:

$$0_{\mathscr{F}(\omega,E)}: \Omega \to E$$
 $x \mapsto 0_E$

est élément neutre puisque pour tout $f \in \mathscr{F}(\Omega, E)$ et pour tout $x \in \Omega$, on a $(f + 0_{\mathscr{F}(\omega, E)})(x) = f(x) + 0_E = f(x)$ donc $f + 0_{\mathscr{F}(\omega, E)} = f$.

- * Soit $f \in \mathcal{F}(\Omega, E)$. La fonction $-f : \Omega \to E$, $x \mapsto -f(x)$ vérifie l'égalité $f + (-f) = 0_{\mathcal{F}(\omega, E)}$. En effet : $\forall x \in \Omega$, $(f + (-f))(x) = f(x) - f(x) = 0_E$.
- Soient $(\lambda, \mu) \in \mathbb{K}^2$ et $f, g \in \mathcal{F}(\Omega, E)$
 - * Soit $x \in \Omega$, on a $(\lambda.(\mu.f))(x) = \lambda.(\mu.f(x)) = (\lambda\mu).f(x) = ((\lambda\mu).f)(x)$ donc $\lambda.(\mu.f) = (\lambda\mu).f$.
 - * Soit $x \in \Omega$, on a $((\lambda + \mu) \cdot f)(x) = \lambda \cdot f(x) + \mu \cdot f(x) = (\lambda \cdot f + \mu \cdot f)(x)$ donc $(\lambda + \mu) \cdot f = \lambda \cdot f + \mu \cdot f$.
 - * Soit $x \in \Omega$, on a $(\lambda.(f+g))(x) = \lambda.(f(x)+g(x)) = \lambda.f(x) + \lambda.g(x) = (\lambda.f+\lambda.g)(x)$ donc $\lambda.(f+g) = \lambda.f + \lambda.g$.

* Soit $x \in \Omega$, (1.f)(x) = 1.f(x) = f(x), donc 1.f = f.

Corollaire

 $\mathbb{K}^{\mathbb{N}}$, ensemble des suites à valeurs dans \mathbb{K} , est un \mathbb{K} -espace vectoriel et le vecteur nul est la suite constante égale à 0.

Soient E et F deux \mathbb{K} -espaces vectoriels.

On muni usuellement $E \times F$ des lois suivantes :

• l'addition telle que, pour $(x, y) \in E \times F$ et $(x', y') \in E \times F$:

$$(x, y) + (x', y') = (x + x', y + y')$$

• la multiplication par un scalaire telle que, pour $(x, y) \in E \times F$ et $\lambda \in \mathbb{K}$

$$\lambda$$
. $(x, y) = (\lambda . x, \lambda . y)$

Proposition

Muni de ces lois, $E \times F$ est un \mathbb{K} -espace vectoriel et le vecteur nul est $0_{E \times F} = (0_E, 0_F)$.

Démonstration.

* Soit $(x_1, y_1), (x_2, y_2), (z_1, z_2) \in E \times F$, on a

$$(x_1, y_1) + ((x_2, y_2) + (x_3, y_3)) = (x_1, y_1) + (x_2 + x_3, y_2 + y_3)$$

$$= (x_1 + (x_2 + x_3), y_1 + (y_2 + y_3))$$

$$= ((x_1 + x_2) + x_3, (y_1 + y_2) + y_3)$$

$$= ((x_1, y_1) + (x_2, y_2)) + (x_3, y_3)$$

donc + est associative.

- * Soit (x_1, y_1) , $(x_2, y_2) \in E \times F$, on a $(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2) = (x_2 + x_1, y_2 + y_1) = (x_2, y_2) + (x_1, y_1)$ donc + est commutative.
- * Notons $0_{E \times F} = (0_E, 0_F)$. Soit $(x, y) \in E \times F$, on a $(x, y) + 0_{E \times F} = (x + 0_E, y + 0_F) = (x, y)$.
- * Soit $(x, y) \in E \times F$. On a alors $(x, y) + (-x, -y) = (x + (-x), y + (-y) = (0_E, 0_F) = 0_{E \times F}$.
- Soient $(x, y), (x', y') \in E \times F$ et $(\lambda, \mu) \in \mathbb{K}^2$. On a :
 - * $\lambda.(\mu.(x, y)) = \lambda.(\mu x, \mu y) = (\lambda \mu x, \lambda \mu y) = (\lambda \mu).(x, y).$
 - * $(\lambda + \mu).(x, y) = ((\lambda + \mu)x, (\lambda + \mu)y) = (\lambda x, \lambda y) + (\mu x, \mu y) = \lambda.(x, y) + \mu.(x, y)$
 - * $\lambda.((x, y) + (x', y')) = \lambda.(x + x', y + y') = (\lambda(x + x'), \lambda(y + y')) = (\lambda x, \lambda y) + (\lambda x', \lambda y') = \lambda.(x, y) + \lambda.(x', y')$
 - * 1.(x, y) = (1.x, 1.y) = (x, y).

Remarque : En particulier, si E est un \mathbb{K} -espace vectoriel, E^n est aussi un \mathbb{K} -espace vectoriel.

1.2.4 Espaces vectoriel $\mathcal{M}_{n,p}(\mathbb{K})$

Soient $n,p \in \mathbb{N}^*$, $\mathcal{M}_{n,p}(\mathbb{K})$ muni de l'addition matricielle et de la multiplication par un scalaire est un \mathbb{K} -espace vectoriel et le vecteur nul $0_{\mathcal{M}_{n,p}(\mathbb{K})}$ est la matrice nulle de $\mathcal{M}_{n,p}(\mathbb{K})$ c'est à dire $0_{n,p}$.

1.2.5 Espace vectoriel $\mathbb{K}[X]$

 $\mathbb{K}[X]$ muni de l'addition et de la multiplication par un scalaire est un \mathbb{K} -espace vectoriel et le vecteur nul $0_{\mathbb{K}[X]}$ est le polynôme nul.

1.3 Sous-espaces vectoriels

Définition

Soit (E, +, .) un \mathbb{K} espace vectoriel et $p \in \mathbb{N}^*$. On dit que $x \in E$ est combinaison linéaire des vecteurs $x_1, ..., x_p$ s'il existe $(\lambda_1, ..., \lambda_p) \in \mathbb{K}^p$ tel que $x = \sum_{i=1}^p \lambda_i x_i$.

Exemple: Dans $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$, ch et sh sont combinaisons linéaires de $x \mapsto e^x$ et $x \mapsto e^{-x}$.

Définition

Soit E un \mathbb{K} -espace vectoriel. On dit que $F \subset E$ est un sous-espace vectoriel de E ssi

- F est non vide.
- $\forall (x, y) \in F^2, x + y \in F$
- $\forall \lambda \in \mathbb{K}, \forall x \in F, \lambda.x \in F$

Exemple : Si E est un \mathbb{K} -e.v., alors $\{0_E\}$ et E sont des sous-espaces vectoriels de E (appelés sous-espaces vectoriels triviaux de E).

Le sous-ensemble \mathbb{R}_+ de \mathbb{R} constitue un contre-exemple. En effet, \mathbb{R}_+ n'est pas stable par multiplication par un scalaire de \mathbb{R} . **Remarque :** Tout sous-espace vectoriel F de E contient le vecteur nul 0_E : en effet, puisque $F \neq \emptyset$, il existe $x_0 \in F$. D'où $0_E = 0 \cdot x_0 \in F$.

En particulier, si $0_E \notin F$, F ne peut pas être un s.e.v.

Structure induite

Si F est un sous-espace vectoriel d'un espace vectoriel E alors, on peut le munir des lois induites :

$$F \times F \rightarrow F$$

 $(x,y) \mapsto x+y$ et $\mathbb{K} \times F \rightarrow F$
 $(\lambda,x) \mapsto \lambda.x$

Proposition

Soit $(E, +, \cdot)$ un \mathbb{K} -e.v. et F un sous-espace vectoriel de E. Alors F muni des lois induites est lui-même un \mathbb{K} espace vectoriel.

Démonstration. • L'ensemble *F* est muni d'une addition et d'une loi externe.

- * L'addition reste évidemment associative et commutative car ceci est vraie dans E contenant F.
 - * Comme $0_E \in F$ et pour tout $x \in F \subset E$, on a $x + 0_E = 0_E + x = x$ donc l'addition de F possède bien un élément neutre et $0_F = 0_E$.
 - * Soit $x \in F$. Alors $-x = (-1).x \in F$, donc tout élément de F admet un opposé qui est bien dans F.
- Les dernières propriétés, qui sont vraies lorsque x et y appartiennent à E, sont à fortiori vraies lorsque x et y appartiennent à F.

Méthode

- Pour montrer qu'un ensemble E est un \mathbb{K} -espace vectoriel, on montrera systématiquement qu'il s'agit d'un sous-espace vectoriel de l'un des exemples de référence vus dans la sous-partie précédente.
- Pour montrer que F est non vide, on montrera que $0_E \in F$.

Proposition Caractérisation

Soit E un \mathbb{K} -espace vectoriel. Un ensemble $F \subset E$ est un sous-espace vectoriel de E si et seulement si

- F est non vide
- $\forall (\lambda, \mu) \in \mathbb{K}^2$, $\forall (x, y) \in F^2$, $\lambda . x + \mu . y \in F$

Remarque : On montre par récurrence que si $x_1,...x_n \in F$ et $\lambda_1,...,\lambda_n \in K$ alors $\sum_{i=1}^n \lambda_i x_i \in F$.

Démonstration. • Supposons que F est un sous-espace vectoriel de E.

F est non vide.

Soient $(\lambda, \mu) \in \mathbb{R}^2$ et $(x, y) \in F^2$.

Par définition $\lambda . x \in F$ et $\mu . y \in F$ puis $\lambda . x + \mu . y \in F$.

• Réciproquement, Supposons que F est non vide et que : $\forall (\lambda, \mu) \in \mathbb{R}^2$, $\forall (x, y) \in F^2$, $\lambda . x + \mu . y \in F$.

Soit $(x, y) \in F$. En prenant $\lambda = \mu = 1$, on obtient $x + y \in F$.

Soit $\lambda \in \mathbb{K}$ et $x \in E$. Puis, en prenant $\mu = 0$ et $\gamma = 0_E$, on obtient : $\lambda \cdot x = \lambda \cdot x + 0 \cdot 0_E \in F$.

Donc F est un sous-espace vectoriel de E.

Exemple : Une droite D passant par (0,0) est un sous-espace vectoriel de \mathbb{R}^2 . Une droite D ou un plan P passant par (0,0,0) est un sous-espace vectoriel de \mathbb{R}^3 .

Exemples déjà rencontrés

- L'ensemble des matrices diagonales, triangulaires supérieures (ou inférieures), symétriques, antisymétriques de $\mathcal{M}_n(\mathbb{K})$ est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{K})$.
- Pour $n \in \mathbb{N}$. $\mathbb{K}_n[X]$ est un sous-espace vectoriel du \mathbb{K} espace vectoriel $\mathbb{K}[X]$.
- L'ensemble des solutions d'un système linéaire homogène de n équations à p inconnues à coefficients dans \mathbb{K} est un sous-espace vectoriel de \mathbb{K}^p .
- Les ensembles $\mathscr{C}^k(I,\mathbb{K})$, $\mathscr{C}^{\infty}(I,\mathbb{K})$ où I est un intervalle de \mathbb{R} et $k \in \mathbb{N}$, sont des sous-espaces vectoriels de $\mathscr{F}(I,\mathbb{K})$.
- L'ensemble des solutions, sur un intervalle I, d'une équation différentielle linéaire homogène est un sous-espace vectoriel de $\mathscr{F}(I,\mathbb{K})$.

П

1.4 Sous-espace vectoriel engendré par une famille finie

Proposition Intersection de sous-espaces vectoriels

Soit $(F_i)_{i \in I}$ une famille non vide de sous-espaces vectoriels de E. Alors $\bigcap_{i \in I} F_i$ est un sous-espace vectoriel de E.

Démonstration. Pour tout $i \in I$, $0_E \in F_i$, donc $0_E \in \bigcap_{i \in I} F_i$ et $\bigcap_{i \in I} F_i \neq \emptyset$.

Soient
$$(x, y) \in \left(\bigcap_{i \in I} F_i\right)^2$$
 et $(\lambda, \mu) \in \mathbb{K}^2$.

Soit $i \in I$, $(x, y) \in F_i^2$, on a : $\lambda . x + \mu . y \in F_i$. Ainsi $\lambda . x + \mu . y \in \bigcap_{i \in I} F_i$.

Ainsi $\bigcap_{i \in I} F_i$ est un sous-espace vectoriel de E.

Définition

Soit $(E, +, \cdot)$ un e.v. et X une partie de E. On appelle sous-espace vectoriel engendré par X et on note Vect(X), l'intersection de tous les sous-espaces vectoriels contenant X:

$$Vect(X) = \bigcap_{\substack{F \text{ s.e.v.} \\ X \subset F}} F$$

Remarque: <u>N</u> la réunion de sous-espaces vectoriels n'est pas, en général, un sous-espace vectoriel.

Dans $E = \mathbb{R}^2$, si F_1 est l'axe des abscisses et F_2 l'axe des ordonnées, (1,0) et (0,1) sont dans $F_1 \cup F_2$, mais pas (1,0)+(0,1)=(1,1). Vect (X) le plus petit des sous-espaces vectoriels de E au sens de l'inclusion contenant X.

En effet:

- $X \subset \bigcap_{X \subset F, \ F \ s.e.v.} F$.
- $\bigcap_{X \subset F, \ F \ s.e.v.} F$ est bien un sous-espace vectoriel de E par la propriété précédente;
- c'est bien le plus petit au sens de l'inclusion. Soit G s.e.v. de E tel que $X \subset G$, on a $\bigcap_{F,\underline{s},\underline{e},\underline{\nu}} F \subset G$.

Proposition

- 1. F est un sous-espace vectoriel si et seulement si F = Vect(F);
- 2. Si $X \subset Y$, alors $Vect(X) \subset Vect(Y)$.

Démonstration. • Supposons que F est un sous-espace vectoriel. On a F ⊂ Vect (F) par définition de F. De plus, Vect (F) est le plus petit sous-espace vectoriel contenant donc comme F est lui même un sous-espace vectoriel contenant F, on a Vect (F) $\subset F$.

Donc F = Vect(F).

Réciproquement supposons que F = Vect(F). Alors F est un sous-espace vectoriel.

• Supposons $X \subset Y$. On a $X \subset Y \subset \text{Vect}(Y)$. Ainsi, Vect(Y) est un sous-espace vectoriel contenant X. Donc contient le plus petit sous-espace vectoriel contenant X. Ainsi: $\text{Vect}(X) \subset \text{Vect}(Y)$.

Proposition

Soit $(E, +, \cdot)$ un e.v. et X une partie non vide de E. Alors :

$$Vect(X) = \{ y \in E \mid \exists n \in \mathbb{N}^*, \exists x_1, ..., x_n \in X, \exists \lambda_1, ..., \lambda_n \in \mathbb{K} \text{ tel que } y = \sum_{k=1}^n \lambda_k x_k \}$$

Démonstration. Notons $\mathscr{C} = \{ y \in E \mid \exists n \in \mathbb{N}^*, \exists x_1, ..., x_n \in X, \exists \lambda_1, \lambda_n \in \mathbb{K} \text{ tel que } y = \sum_{k=1}^n \lambda_k x_k \}.$

Montrons que $Vect(X) = \mathcal{C}$ par double inclusion.

- ⊃ Soit $y \in \mathcal{C}$. Il existe $n \in \mathbb{N}^*$, il existe $x_1, ..., x_n \in X$, il existe $\lambda_1, ..., \lambda_n \in \mathbb{K}$ tels que $x = \sum_{k=1}^n \lambda_k x_k$. Or, Vect(X) est un sousespace vectoriel contenant X donc $x_1, ..., x_n \in \text{Vect}(X)$ puis $y \in \text{Vect}(X)$.
- \subseteq Montrons que \mathscr{C} est un sous-espace vectoriel de E contenant X.
 - Soit $x \in X$. On a x = 1.x donc x est une combinaison linéaire de vecteurs de X. Ainsi $x \in \mathscr{C}$ et on a bien $X \subset \mathscr{C}$.
 - On a déjà que $\mathscr{C} \neq \emptyset$ car $X \subset \mathscr{C}$. Soient $u, v \in \mathscr{C}$ et $\alpha, \beta \in \mathbb{K}$. Alors il existe $n \in \mathbb{N}^*$, il existe $x_1, ..., x_n \in X$, il existe $\lambda_1, \lambda_n \in X$

Soient $u, v \in \mathscr{C}$ et $\alpha, \beta \in \mathbb{K}$. Alors il existe $n \in \mathbb{N}^*$, il existe $x_1, ..., x_n \in X$, il existe $\lambda_1, \lambda_n \in \mathbb{K}$ tel que $u = \sum_{k=1}^n \lambda_k x_k$ et il p

existe $p \in \mathbb{N}^*$, il existe $y_1, ..., y_p \in X$, il existe $\mu_1, \mu_p \in \mathbb{K}$ tel que $v = \sum_{k=1}^p \mu_k y_k \ \alpha u + \beta v = \alpha \sum_{i=1}^n \lambda_i x_i + \beta \sum_{i=1}^p \mu_i y_i \in \mathscr{C}$.

Ainsi \mathscr{C} est un sous-espace vectoriel de E contenant X. Comme Vect(X) est le plus petit (au sens de l'inclusion) sous-espace vectoriel de E contenant X, on obtient $\text{Vect}(X) \subset \mathscr{C}$.

Définition

Soit $n \in \mathbb{N}^*$. Soit $(e_1, ..., e_n)$ une famille de vecteurs de E.

On appelle sous espace engendré par la famille $(e_i)_{i \in [\![1,n]\!]}$ le sous-espace vectoriel engendré par la partie $\{e_1,...,e_n\}$.

On note simplement $Vect(e_1, ..., e_n)$.

On a ainsi:

$$Vect(e_1,...,e_n) = \{ \sum_{k=1}^n \lambda_k e_k | \lambda_1,...,\lambda_n \in \mathbb{K} \}.$$

Soit $x \in E$:

$$x \in \text{Vect}(e_1, ..., e_n) \iff \exists (\lambda_1, ..., \lambda_n) \in \mathbb{K}^n, \ x = \sum_{i=1}^n \lambda_i e_i$$

Vocabulaire:

- Si x ∈ E\{0}, Vect(x) = {λ.x; λ ∈ K}. On l'appelle droite vectorielle de E engendré par x (par analogie avec les droites du plan ou de l'espace).
- Si x et $y \in E$ non colinéaires, Vect $(x, y) = \{\lambda.x + \mu.y; (\lambda, \mu) \in \mathbb{K}^2\}$ est appelé plan vectoriel engendré par x et y.

Exemple:

- Dans le \mathbb{R} -espace vectoriel \mathbb{C} : Vect $(1) = \mathbb{R}$, Vect $(i) = i\mathbb{R}$ Vect $(1, i) = \mathbb{C}$.
- Dans le \mathbb{C} -espace vectoriel \mathbb{C} , Vect $(1) = \mathbb{C}$.
- Dans $\mathbb{K}[X]$, Vect $(1, X, ..., X^n) = \{\lambda_0 + \lambda_1 X + ... + \lambda_n X^n; (\lambda_0, \lambda_1, ..., \lambda_n) \in \mathbb{K}^{n+1}\} = \mathbb{K}_n[x]$.

Méthode

Lorsque l'on décrit une partie F d'un espace vectoriel E comme l'ensemble des combinaisons linéaires d'une famille de vecteurs, alors F est le sous-espace vectoriel engendré par cette famille, et donc F est un sous-espace vectoriel de E.

Exemple : Dans \mathbb{R}^3 , considérons $F = \{(x-2y,2x+y,3x-2y); (x,y) \in \mathbb{R}^2\}.$

Montrer que F est un sous-espace vectoriel d'un espace vectoriel de référence.

On peut écrire:

$$F = \{x(1,2,3) + y(-2,1,-2), (x,y) \in \mathbb{R}^2\}.$$

Ainsi, F = Vect(u, v) avec u = (1, 2, 3) et v = (-2, 1, -2).

1.5 Somme de sous-espaces vectoriels

Définition

Si F et G sont deux sous-espaces vectoriels de E, on appelle somme de F et G et on note F+G l'ensemble :

$$F+G=\{x+y,\;(x,y)\in F\times G\}.$$

Proposition

 $F + G = \text{Vect}(F \cup G)$.

Ainsi, F + G est un sous-espace vectoriel de E.

Démonstration. • Si $x \in F$, on écrit x = x + 0 avec $0 \in G$, donc $x \in F + G$ et $F \subset F + G$. On montre de même que $G \subset F + G$. Ainsi, $F \cup G \subset F + G$.

- Comme $0 \in F$ et $0 \in G$, $0 = 0 + 0 \in F + G$ donc $F + G \neq \emptyset$.
- Soient $(x, y) \in (F + G)^2$ et $(\lambda, \mu) \in \mathbb{K}^2$. Il existe $(e, f) \in F^2$ et $(g, h) \in G^2$ tels que x = e + g et y = f + h. Alors $\lambda.x + \mu.y = \lambda.(e + g) + \mu.(f + h) = (\lambda.e + \mu.f) + (\lambda.g + \mu.h)$, avec $\lambda.e + \mu.f \in F$ et $\lambda.g + \mu.h \in G$ car F et G sont des espaces vectoriels. Ainsi $\lambda.x + \mu.y \in F + G$.

F + G est un sous-espace vectoriel de E.

Ainsi,F + G est un sous-espace vectoriel contenant $F \cup G$ donc $Vect(F \cup G) \subset F + G$

• Réciproquement, soit $z \in F + G$, il existe $(x, y) \in F \times G$ tel que z = x + y. Alors $x \in F \subset F \cup G \subset \text{Vect}(F \cup G)$, $y \in G \subset F \cup G \subset \text{Vect}(F \cup G)$. Puisque $\text{Vect}(F \cup G)$ est un s.e.v., on en déduit que $z \in \text{Vect}(F \cup G)$ et donc que $F + G \subset \text{Vect}(F \cup G)$.

Exemple:

- Dans $E = \mathbb{R}^2$, si $F = \{(x,0); x \in \mathbb{R}\}$ et $G = \{(0,y); y \in \mathbb{R}\}, F + G = \mathbb{R}^2$.
- Si $(v_1, ..., v_m)$ et $(w_1, ..., w_n)$ sont deux familles de vecteurs de E, alors :

$$Vect(v_1,...,v_m) + Vect(w_1,...,w_n) = Vect(v_1,...,v_m,w_1,...,w_n)$$

En effet, soit $z \in E$, on a :

$$\begin{aligned} z \in \operatorname{Vect}(v_1, \dots v_m) + \operatorname{Vect}(w_1, \dots w_n) &\Leftrightarrow \exists (x, y) \in \operatorname{Vect}(v_1, \dots, v_m) \times \operatorname{Vect}(w_1, \dots, w_n), \ z = x + y \\ &\Leftrightarrow \exists \lambda_1, \dots, \lambda_m, \mu_1, \dots \mu_n \in \mathbb{K}, z = \sum_{i=1}^m \lambda_i \cdot v_i + \sum_{j=1}^n \mu_j \cdot w_j \\ &\Leftrightarrow z \in \operatorname{Vect}(v_1, \dots, v_m, w_1, \dots, w_n) \end{aligned}$$

Définition

Soit E un \mathbb{K} -espace vectoriel et F, G deux sous-espaces vectoriels de E.

On dit que la somme F+G est directe si et seulement si pour tout $z \in F+G$, la décomposition z=x+y, avec $x \in F$ et $y \in G$, est unique. On note alors $F \oplus G$.

Proposition: Caractérisation des sommes directes

Soit E un \mathbb{K} -espace vectoriel. Soient F et G deux sous-espaces vectoriels de E.

La somme F + G est directe si et seulement si $F \cap G = \{0_E\}$.

Démonstration. • Supposons que la somme F + G est directe.

- On a $0 \in F$ et $0 \in G$ donc $0 \in F \cap G$ et $\{0\} \subset F \cap G$.
- Soit $x \in F \cap G$. Alors x s'écrit x + 0 avec $x \in F$ et $0 \in G$, mais aussi 0 + x, avec $0 \in F$ et $x \in G$. Par unicité de l'écriture, x = 0. Ainsi $F \cap G \subset \{0\}$.

Donc $F \cap G = \{0\}$.

• Réciproquement, supposons $F \cap G = \{0\}$. Soit $z \in F + G$. Supposons qu'il existe (x, y), $(x', y') \in F \times G$ tels que z = x + y et z = x' + y'. Alors x + y = x' + y' donc x - x' = y' - y, avec $x - x' \in F$ (car x et $x' \in F$) et $y' - y \in G$ (car y et $y' \in G$). Ainsi $x - x' = y' - y \in F \cap G = \{0\}$, donc x - x' = y' - y = 0 et x = x', y = y'. On a donc unicité de l'écriture de z comme somme d'un élément de F et d'un élément de G, donc la somme est directe.

Remarque : Tout sous-espace vectoriel contient 0_E donc l'inclusion, $\{0_E\} \subset F \cap G$ est toujours vraie (on dit que c'est une inclusion triviale). On ne montre donc que l'inclusion $F \cap G \subset \{0\}$.

Définition

Soit E un \mathbb{K} -espace vectoriel et F, G deux sous-espaces vectoriels de E. On dit que F et G sont supplémentaires dans E si et seulement si la somme F+G est directe et F+G=E. On le note $F\oplus G=E$.

Proposition

Les propositions suivantes sont équivalentes :

- $E = F \oplus G$
- On a E = F + G et $F \cap G = \{0\}$
- $\forall x \in E, \exists ! (y, z) \in F \times G, x = y + z.$

Démonstration.

- (1) \iff (2) avec une proposition précédente.
- Supposons (1).

Soit $x \in E$. Comme E = F + G, il existe $(y, z) \in F \times G$ tel que x = y + z. De plus, comme la comme est directe, cette décomposition est unique. Ce qui prouve (3).

Réciproquement, supposons (3).

- Montrons que E = F + G.
 - On sait déjà que $F + G \subset E$.

Soit $x \in E$, par hypothèse, il existe $(y, z) \in F \times G$ tel que x = y + z. Ainsi, $x \in F + G$.

Donc E = F + G.

- De plus, l'unicité dans (3) assure que la somme F + G est directe.
- Ainsi, $E = F \oplus G$.

Remarque:

- Pour montrer que $F \oplus G = E$, ne pas oublier de vérifier que F et G sont des sous-espaces vectoriels de E.
- L'inclusion $F + G \subset E$ est triviale, on ne montrera donc que l'autre inclusion quand on voudra montrer F + G = E.

Exemple:

1. Soit *P* un polynôme de $\mathbb{K}[X]$ de degré $n \in \mathbb{N}^*$.

Montrer que $P.\mathbb{K}[X] \oplus \mathbb{K}_{n-1}[X] = \mathbb{K}[X]$, où $P\mathbb{K}[X] = \{PQ, Q \in \mathbb{K}[X]\}$.

- Soit $Q \in P.\mathbb{K}[X] \cap \mathbb{K}_{n-1}[X]$. Si $Q \neq 0$, alors, comme $Q \in P.\mathbb{K}[X]$, il existe $R \in \mathbb{K}[X] \setminus \{0\}$ tel que Q = PR. Ainsi, $\deg(Q) = \deg(P) + \deg(R) \ge \deg(P) = n$ et $\deg(Q) \le n 1$. Absurde. Ainsi, Q = 0 donc la somme $P.\mathbb{K}[X] + \mathbb{K}_{n-1}[X]$ est directe.
- De plus, soit $S \in \mathbb{K}[X]$, par le théorème de division euclidienne $(P \neq 0)$, il existe $Q \in \mathbb{K}[X]$ et $R \in \mathbb{K}_{n-1}[X]$ tels que S = PQ + R. Ainsi, $S \in P\mathbb{K}[X] + \mathbb{K}_{n-1}[X]$ d'où $\mathbb{K}[X] \subset P\mathbb{K}[X] + \mathbb{K}_{n-1}[X]$.

Ainsi : $\mathbb{K}[X] = P.\mathbb{K}[X] \oplus \mathbb{K}_{n-1}[X]$.

Remarque : L'existence et l'unicité de la division euclidienne justifie également l'existence et unicité de la décomposition.

2. Les deux sous-espaces vectoriels $F = \{(x,0), x \in \mathbb{R}\}$ et $G = \{(0,y), y \in \mathbb{R}\}$ sont supplémentaires dans \mathbb{R}^2 .

On a déjà prouvé que $F + G = \mathbb{R}^2$. De plus, $F \cap G = \{(0,0)\}$.

Les deux sous-espaces vectoriels $F = \{(x,0), x \in \mathbb{R}\}\$ et G = Vect((1,1)) sont supplémentaires dans \mathbb{R}^2 .

On remarque que F = Vect((1,0)).

On souhaite donc montrer que $Vect((1,0)) \oplus Vect((1,1)) = \mathbb{R}^2$.

Soit $(x, y) \in \mathbb{R}^2$ soient $a, b \in \mathbb{R}$, on a :

$$(x,y) = a \cdot (1,0) + b \cdot (1,1)$$

$$\iff \begin{cases} a+b=x \\ b=y \end{cases}$$

$$\iff \begin{cases} a=x-y \\ b=y \end{cases}$$

Ce système admet une unique solution : b = y et a = x - y, donc $\mathbb{R}^2 = \text{Vect}((1,0)) \oplus \text{Vect}((1,1))$.

Remarque : Comme on le voit dans le dernier exemple, un sous-espace vectoriel a en général plusieurs supplémentaires dans *E*. On parle donc d'**un** supplémentaire et non du supplémentaire.

2 Familles finies de vecteurs

Dans toute cette partie, n désigne un entier naturel non nul et E un \mathbb{K} -espace vectoriel.

2.1 Famille libre-famille liée

Définition

Soit $x_1, ..., x_n$ des éléments de E.

On dit que $(x_1,...,x_n)$ est une famille libre de E si et seulement si :

$$\forall \lambda_1,...,\lambda_n \in \mathbb{K}, \quad \left(\sum_{i=1}^n \lambda_i x_i = 0 \implies (\forall i \in [\![1,n]\!], \; \lambda_i = 0)\right)$$

Dans le cas contraire, on dit que la famille $(x_1,...,x_n)$ est liée.

Si $(x_1,...,x_n)$ est libre, on dit que les vecteurs $x_1,...,x_n$ sont linéairement indépendants.

Exemple

- 1. Toute famille $(x_1,...,x_n)$ contenant le vecteur nul est liée : en effet, si $x_j=0$, alors, en prenant $\lambda_i=0$ pour $i\neq j$ et $\lambda_j=1$, on a : $\sum_{i=1}^n \lambda_i x_i=0$.
- 2. Dans le \mathbb{R} -espace vectoriel \mathbb{C} , la famille (1,i) est libre, puisque : $\forall (a,b) \in \mathbb{R}^2$, $a+ib=0 \implies a=b=0$. En revanche, dans le \mathbb{C} -espace vectoriel \mathbb{C} , la famille (1,i) est liée puisque i.1+(-1).i=0.
- 3. La famille $(1, X, ..., X^n)$ est une famille libre de $\mathbb{K}[X]$.

Soient $\lambda_0, \lambda_1, ..., \lambda_n \in \mathbb{K}$ tels que $\sum_{i=1}^n \lambda_i X^i = 0$ alors on a : $\forall i [\![1, n]\!]$, $\lambda_i = 0$.

Cas particuliers:

- Une famille à un vecteur (x) est libre si et seulement si $x \neq 0$:
 - * si x = 0, 1.x = 0 mais $1 \neq 0$ donc la famille est liée.
 - * si $x \neq 0$, alors, pour tout $\lambda \in \mathbb{K}$, on a $\lambda . x = 0 \implies \lambda = 0$ par propriété d'un espace vectoriel.
- Une famille à deux vecteurs (x, y) est libre si et seulement si x et y ne sont pas colinéaires.

Rappel: Deux éléments x et y sont colinéaires, si : $\exists \lambda \in \mathbb{K}, \ y = \lambda x$ ou x = 0.

On procède par contraposée pour les deux implications et on prouve que : (x, y) est liée ssi x et y sont colinéaires.

- * Supposons *x* et *y* colinéaires :
 - Dans le cas où il existe $\lambda \in \mathbb{K}$ tel que $\gamma = \lambda x$. Alors $\lambda x + (-1) = 0$ avec $-1 \neq 0$ donc la famille est liée.
 - dans le cas où x = 0 alors 1.x + 0.y = 0 et la famille (x, y) est liée.
- * Réciproquement, Supposons (x, y) liée. Alors, il existe $(\lambda, \mu) \in \mathbb{K}^2 \setminus \{(0, 0)\}$ tel que $\lambda x + \mu y = 0$.
 - Si $\mu \neq 0$, alors, $y = -\frac{\lambda}{\mu}x$
 - Sinon $\mu = 0$ et donc $\lambda \neq 0$ car $(\lambda, \mu) \neq (0, 0)$. De plus, $\lambda \cdot x + \mu \cdot y = 0$ donc $\lambda \cdot x = 0$ puis x = 0 car $\lambda \neq 0$.

Donc x et y sont colinéaires.

• Une famille de trois vecteurs (x, y, z) est libre si et seulement si ces vecteurs ne sont pas coplanaires.

Proposition : Unicité de la décomposition

Soit $(x_1, ..., x_n)$ une famille libre d'éléments de E

$$\forall (\lambda_1,...,\lambda_n), (\mu_1,...,\mu_n) \in \mathbb{K}^n, \left(\sum_{i=1}^n \lambda_i x_i = \sum_{i=1}^n \mu_i x_i\right) \implies \left(\forall i \in [1,n], \ \lambda_i = \mu_i\right)$$

Démonstration. Soient $(\lambda_1,...,\lambda_n)$, $(\mu_1,...,\mu_n) \in \mathbb{K}^n$. Supposons $\sum_{i=1}^n \lambda_i x_i = \sum_{i=1}^n \mu_i x_i$.

On a:
$$\sum_{i=1}^{n} (\lambda_i - \mu_i) x_i = 0$$
.

Or, la famille $(x_1,...x_n)$ est libre.

Donc : $\forall i \in [1, n], \lambda_i - \mu_i = 0.$

Ainsi : $\forall i \in [1, n], \lambda_i = \mu_i$.

Définition

On dit que la famille (P_0, \dots, P_n) de polynômes de $\mathbb{K}[X]$ est de degrés échelonnés ssi $\deg(P_0) < \dots < \deg(P_n)$.

Proposition

Toute famille finie de polynômes non nuls à coefficients dans K et de degrés échelonnées est libre.

Démonstration. Pour tout $P \in \mathbb{K}[X] \setminus \{0\}$, on note dom (P) le coefficient dominant de P.

Soit $(P_0, ..., P_n)$ une famille de polynômes non nuls de degrés échelonnés.

Soit $(\lambda_0, ..., \lambda_n) \in \mathbb{K}^{n+1}$ tel que

$$\sum_{k=0}^{n} \lambda_k P_k = 0.$$

П

Pour tout $k \in [0, n]$, notons $d_k = \deg(P_k)$. En identifiant les coefficients en X^{d_n} , on obtient $\lambda_n \operatorname{dom}(P_n) = 0$. Donc $\lambda_n = 0$ car dom $(P_n) \neq 0$.

On obtient alors : $\sum_{k=0}^{n-1} \lambda_k P_k = 0$.

Par récurrence descendante, on obtient : $\lambda_{n-1} = \lambda_{n-2} = \cdots = \lambda_0 = 0$.

Donc (P_0, \ldots, P_n) est libre.

Proposition

Soit $(x_1, ..., x_n)$ une famille d'éléments de E. Soit $p \le n$.

- Si $(x_1, ..., x_n)$ est liée, l'un des vecteurs x_i s'exprime comme combinaison linéaire des autres.
- Si $(x_1,...,x_n)$ est libre alors $(x_1,...,x_n)$ est libre.
- Si $(x_1,...,x_p)$ est liée alors $(x_1,...,x_n)$ est liée.

• Comme (x_1,\ldots,x_n) est liée, il existe $(\lambda_1,\ldots,\lambda_n)\in\mathbb{K}^n\setminus\{(0,\ldots,0)\}$ tel que $\sum\limits_{i=1}^n\lambda_i.xi=0.$

Comme $(\lambda_1, ..., \lambda_n) \neq (0, ..., 0)$, il existe $k \in [1, n]$ tel que $\lambda_k \neq 0$. On a alors $x_k = -\frac{1}{\lambda_k} \sum_{i \in I} \lambda_i x_i$. Ainsi, x_k est combination naison linéaire de $(x_1, \dots, x_{k-1}, x_{k+1}, \dots, x_n)$.

• Supposons $(x_1, ..., x_n)$ une famille libre.

Soit $(\lambda_1, ..., \lambda_p) \in \mathbb{K}^p$ tel que $\sum_{i=1}^p \lambda_i x_i = 0$.

Pour tout $j \in \llbracket p+1, n \rrbracket$, on pose $\lambda_j = 0$. On a ainsi : $\sum_{i=1}^n \lambda_i x_i = 0$. Or (x_1, \ldots, x_n) est libre donc : $\forall i \in \llbracket 1, n \rrbracket$, $\lambda_i = 0$. Ainsi : $\forall i \in \llbracket 1, p \rrbracket$, $\lambda_i = 0$.

• Ce résultat est la contraposée du point précédent.

Exemple: La famille $(1, \sin, \cos, \sin^2, \cos^2)$ est-elle libre dans $\mathscr{F}(\mathbb{R}, \mathbb{R})$?

Etant donné que $\cos^2 + \sin^2 = 1$, on a : $(-1).1 + 1.\cos^2 + 1.\sin^2 = 0$, ce qui entraine que la famille $(1,\sin^2,\cos^2)$ est liée. On en déduit que la famille donnée est liée.

Proposition

Soient $(x_1, x_2, ..., x_n)$ une famille libre d'éléments de E et $x \in E$. On a :

$$(x_1,...,x_n,x)$$
 est liée \iff $x \in \text{Vect}(x_1,x_2,...,x_n)$.

• Supposons que $x \in \text{Vect}(x_1, x_2, ..., x_n)$. Alors, il existe $\lambda_1, \lambda_2, ..., \lambda_n \in \mathbb{K}$ tels que $x = \sum_{i=1}^{n} \lambda_i x_i$. Démonstration.

On a alors : $1.x + \sum_{i=1}^{n} (-\lambda_i)x_i = 0$. Donc la famille $(x_1, x_1, ..., x_n, x)$ est liée.

• Supposons que la famille $(x_1,...,x_n,x)$ est liée.

Alors, il existe
$$(\lambda_1, \dots, \lambda_n, \alpha) \in \mathbb{K}^n \setminus \{(0, \dots, 0, 0)\}$$
 tel que $\sum_{i=1}^n \lambda_i x_i + \alpha x = 0$.

Montrons par l'absurde que $\alpha \neq 0$.

Supposons que $\alpha = 0$, alors $\sum_{i=1}^{n} \lambda_i x_i = 0$ donc : $\forall i \in [1, n], \ \lambda_i = 0$ car (x_1, \dots, x_n) est libre. Absurde.

Ainsi $\alpha \neq 0$. On a alors $x = -\frac{1}{\alpha} \sum_{i=1}^{n} \lambda_i x_i$. Donc $x \in \text{Vect}(x_1, x_2, ..., x_n)$.

2.2 Famille génératrice

Définition

Une famille $(e_1, e_2, ..., e_n)$ de vecteurs d'un \mathbb{K} -espace vectoriel E est dite génératrice de E si et seulement si $\text{Vect}(e_1, e_2, ..., e_n) = E$.

Autrement dit, $(e_1, ..., e_n)$ est génératrice de E si et seulement si : $\forall x \in E, \exists \lambda_1, ..., \lambda_n \in \mathbb{K}, x = \sum_{i=1}^n \lambda_i e_i$.

Exemple:

- 1. La famille (1, i) est une famille génératrice de $\mathbb C$ en tant que $\mathbb R$ espace vectoriel.
- 2. La famille (1) est une famille génératrice de $\mathbb C$ en tant que $\mathbb C$ espace vectoriel.
- 3. Soit $n \in \mathbb{N}$, alors $(1, X, ..., X^n)$ est une famille génératrice de $\mathbb{K}_n[X]$ puisque pour tout polynôme P de degré inférieur ou égal à n, il existe $\lambda_0, \lambda_1, ..., \lambda_n \in \mathbb{K}$ tel que $P = \sum_{i=1}^n \lambda_i X^i$.

Proposition

Soit $(x_1,...,x_n)$ une famille d'éléments de E. Soit $p \le n$.

Si $(x_1,...,x_p)$ est génératrice de E alors $(x_1,...,x_n)$ est génératrice de E.

Démonstration. Supposons $(x_1,...,x_p)$ génératrice de E. Alors, on a : $E = \text{Vect}(x_1,...,x_p)$.

De plus : Vect $(x_1, ..., x_p) \subset \text{Vect}(x_1, ..., x_n)$.

Ainsi : $E \subset \text{Vect}(x_1, ..., x_n) \subset E$.

Donc Vect $(x_1,...,x_n) = E$. Donc $(x_1,...,x_n)$ est génératrice de E.

2.3 Bases

Définition

Une famille d'un \mathbb{K} -espace vectoriel E est une base de E si la famille est libre et génératrice de E.

Théorème

Une famille $\mathscr{F} = (e_1, ..., e_n)$ d'un \mathbb{K} espace vectoriel E est une base de E si et seulement si tout vecteur de E s'écrit de manière unique comme combinaison linéaire d'éléments de \mathscr{F} .

Démonstration. • Supposons que \mathcal{F} est une base de E.

Soit $x \in E$. Comme \mathscr{F} est génératrice de E, il existe $\lambda_1,...,\lambda_n \in \mathbb{K}$ tel que $x = \sum_{i=1}^n \lambda_i e_i$. De plus, \mathscr{F} est libre donc cette décomposition est unique.

• Supposons que tout vecteur de *E* s'écrive de manière unique comme combinaison linéaire d'éléments de *F*.

On sait que : $\forall x \in E$, $\exists \lambda_1, ..., \lambda_n \in \mathbb{K}$, $x = \sum_{i=1}^n \lambda_i e_i$. Ainsi, $(e_1, ..., e_n)$ est génératrice.

Montrons que \mathcal{F} est libre.

Soient $\lambda_1, ..., \lambda_n \in \mathbb{K}$ tels que $\sum_{i=1}^n \lambda_i e_i = 0$.

Alors : $\sum_{i=1}^{n} \lambda_i e_i = \sum_{i=1}^{n} 0 e_i$. Par unicité de la décomposition de 0 comme combinaison linéaire des vecteurs $e_1, ..., e_n$, on a :

Donc F est libre.

Base canonique de \mathbb{K}^n

Dans \mathbb{K}^n , on pose :

$$e_1 = (1,0,0,...,0) \quad , \quad e_2 = (0,1,0,...,0), \quad ... \quad , \quad e_i = (0,...,0,1,0,...,0) \quad , \quad ... \quad , \quad e_n = (0,0,...,0,1)$$
 items position

 (e_1, \ldots, e_n) est une base de \mathbb{K}^n , dite base canonique de \mathbb{K}^n .

Soit $x = (x_1, ..., x_n) \in \mathbb{K}^n$. Soit $\lambda_1, ..., \lambda_n \in \mathbb{K}$.

$$x = \sum_{i=1}^{n} \lambda_i e_i$$

$$\iff (x_1, ..., x_n) = (\lambda_1, ..., \lambda_n)$$

$$\iff \forall i \in [1, n], \lambda_i = x_i$$

Ainsi, tout élément de \mathbb{K}^n s'écrit de manière unique comme combinaison linéaire de $e_1,...,e_n$.

Base canonique de $\mathcal{M}_{n,p}(\mathbb{K})$, $n, p \in \mathbb{N}^*$

Dans $\mathcal{M}_{n,p}(\mathbb{K})$, pour $(i,j) \in [1,n] \times [1,p]$, on note $E_{i,j}$ la matrice élémentaire d'indice (i,j), i.e la matrice n'ayant que des 0, sauf un 1 en position (i,j).

La famille $(E_{i,j})_{1 \le i \le n, 1 \le j \le p}$ est une base de $\mathcal{M}_{n,p}(\mathbb{K})$, dite base canonique de $\mathcal{M}_{n,p}(\mathbb{K})$.

Soit $M = (m_{i,j}) \in \mathcal{M}_{n,p}(\mathbb{K})$. Soit $\lambda_{1,1},...,\lambda_{n,p} \in \mathbb{K}$.

$$M = \sum_{i=1}^{n} \sum_{j=1}^{p} \lambda_{i,j} E_{i,j}$$

$$\iff \begin{pmatrix} m_{1,1} & \cdots & m_{1,p} \\ \vdots & & \vdots \\ m_{n,1} & \cdots & m_{n,p} \end{pmatrix} = \begin{pmatrix} \lambda_{1,1} & \cdots & \lambda_{1,p} \\ \vdots & & \vdots \\ \lambda_{n,1} & \cdots & \lambda_{n,p} \end{pmatrix}$$

$$\iff \forall (i,j) \in [1,n] \times [1,p], \ \lambda_{i,i} = m_{i,i}$$

Ainsi, tout élément de $\mathcal{M}_{n,p}(\mathbb{K})$ s'écrit de manière unique comme combinaison linéaire de $E_{1,1},...,E_{n,p}$.

Base canonique de $\mathbb{K}_n[X]$, $n \in \mathbb{N}$

Dans $\mathbb{K}_n[X]$, $(1, X, ..., X^n)$ est une base (dite base canonique de $\mathbb{K}_n[X]$).

Soit
$$P = \sum_{k=0}^{n} a_k X^k$$
, soient $\lambda_0, ..., \lambda_n \in \mathbb{K}$.

$$P = \sum_{k=0}^{n} \lambda_k X^k$$

$$\iff \sum_{k=0}^{n} a_k X^k = \sum_{k=0}^{n} \lambda_k X^k$$

$$\iff \forall k \in [0, n], \ \lambda_k = a_k$$

Ainsi, tout élément de $\mathbb{K}_n[X]$ s'écrit de manière unique comme combinaison linéaire de $1, X, ..., X^n$.

Remarque : On peut maintenant dire qu'une droite vectorielle est un \mathbb{K} -espace vectoriel possédant une base formée d'un seul vecteur.

Définition

Soient E un \mathbb{K} -espace vectoriel et $B = (e_1, ..., e_n)$ une base de E.

- On appelle coordonnées de x en base B l'unique n-uplet $(\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n$ tel que $x = \sum_{i=1}^n \lambda_i e_i$.
- On appelle matrice colonne de x en base B et on note $\operatorname{mat}_B(x)$ le vecteur colonne $\begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix}$ des coordonnées de x en base B.

2.4 Bases et sommes directes

Proposition: Concaténation de familles

Soient F et G deux sous-espaces vectoriels de E.

Soient $(f_1, ..., f_p) \in F^p$ et $(g_1, ..., g_q) \in G^q$ des familles de vecteurs de F et G.

Si $(f_1, ..., f_p)$ et $(g_1, ..., g_q)$ sont des bases respectivement de F et G et si F et G sont supplémentaires dans E alors $(f_1, ..., f_p, g_1, ..., g_q)$ est une base de E, appelée base adaptée à la somme directe $E = F \oplus G$.

Démonstration. Supposons que (f_1, \ldots, f_p) , (g_1, \ldots, g_q) sont des bases respectivement de F et G et que F et G sont supplémentaires dans E.

• Montrons que $(f_1,...,f_p,g_1,...g_q)$ est libre.

Soient
$$\lambda_1, \ldots, \lambda_p \in \mathbb{K}$$
 et $\mu_1, \ldots, \mu_q \in \mathbb{K}$ tels que $\sum_{i=1}^p \lambda_i f_i + \sum_{j=1}^q \mu_j g_j = 0$.

On a donc $\sum_{i=1}^{p} \lambda_i f_i = -\sum_{i=1}^{q} \mu_j g_j$, avec $\sum_{i=1}^{p} \lambda_i f_i \in F$ et $\sum_{i=1}^{q} \mu_j g_j \in G$. Or, F et G sont supplémentaires dans E donc la somme

$$F+G \text{ est directe. Ainsi}: F\cap G=\{0\}. \text{ D'où } \sum_{i=1}^p \lambda_i f_i=0 \text{ et } \sum_{j=1}^q \mu_j g_j=0.$$
 Ainsi: $\forall i\in [\![1,p]\!], \ \lambda_i=0 \text{ (car } (f_1,\ldots,f_p) \text{ est libre) et : } \forall j\in [\![1,q]\!], \ \mu_j=0 \text{ (car } (g_1,\ldots,g_q) \text{ est libre)}.$

Ainsi, $(f_1, ..., f_p, g_1, ..., g_q)$ est libre.

• Montrons que $(f_1,...,f_p,g_1,...,g_q)$ est génératrice de E. On a $F = \text{Vect}(e_1, \dots e_p)$ et $G = \text{Vect}(f_1, \dots, f_q)$. D'où:

$$E = F + G = \text{Vect}(e_1, \dots, e_p) + \text{Vect}(f_1, \dots, f_q) = \text{Vect}(e_1, \dots, e_p, f_1, \dots, f_q).$$

Donc $(e_1, \dots e_p, f_1, \dots, f_q)$ est une famille génératrice de E.

On a donc prouvé que $(f_1,...,f_p,g_1,...,g_q)$ est libre et génératrice de E, il s'agit donc d'une base de E.

Exemple: Soient

$$F = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1 + x_2 + x_3 = 0\}$$
 et $G = \text{Vect}((1, 1, 1)).$

- Le vecteur $e_3 = (1, 1, 1)$ engendre G et est non nul. Donc (e_3) est une base de G.
- On a montré que $F = \text{Vect}(e_1, e_2)$ avec $e_1 = (1, 0, -1)$, $e_2 = (0, 1, -1)$. Donc (e_1, e_2) est une famille génératrice de F. Or, il s'agit d'une famille de deux vecteurs non colinéaires, donc cette famille est libre. Ainsi (e_1, e_2) est une base de F.
- On a montré que $\mathbb{R}^3 = F \oplus G$. On déduit de la propriété précédente que (e_1, e_2, e_3) est une base de \mathbb{R}^3 .

Proposition

Soit $(e_1, \dots, e_n) \in E^n$ une famille libre d'un \mathbb{K} -espace vectoriel de E. Soit $k \in [1, n]$. Posons $F = \text{Vect}(e_1, \dots, e_k)$ et $G = \text{Vect}(e_{k+1}, \dots, e_n)$. Alors F et G sont en somme directe.

Démonstration. Soit $x \in F \cap G$. Comme $x \in F$, il existe $\lambda_1, \dots, \lambda_k \in \mathbb{K}$ tels que : $x = \sum_{i=1}^k \lambda_i e_i$. De plus, $x \in G$ donc il existe

 $\mu_{k+1}, \dots, \mu_n \in \mathbb{K}$ tels que : $x = \sum_{i=k+1}^n \mu_i e_i$. On a alors $\sum_{i=1}^k \lambda_i e_i - \sum_{i=k+1}^n \mu_i e_i = 0$. Comme la famille (e_1, \dots, e_n) est libre, on en déduit

$$\forall i \in [1, k], \ \lambda_i = 0 \text{ et} : \forall i \in [k+1, n], \ \mu_i = 0. \text{ Alors } x = \sum_{i=1}^k \lambda_i e_i = 0.$$

Ainsi $F \cap G = \{0\}$ et la somme F + G est directe.

Remarque : Si $(e_1, ..., e_n)$ est une base de E, alors $F = \text{Vect}(e_1, ..., e_k)$ et $G = \text{Vect}(e_{k+1}, ..., e_n)$ sont supplémentaires dans E.

Démonstration. Supposons que (e_1, \ldots, e_n) est une base de E. Alors (e_1, \ldots, e_n) est une famille libre de E. Donc d'après la proposition précédente, la somme F + G est directe.

De plus : $(e_1, ..., e_n)$ est génératrice de E. Donc E = Vect $(e_1, ..., e_n)$ = Vect $(e_1, ..., e_k)$ + Vect $(e_{k+1}, ..., e_n)$ = F + G. Ainsi F et G sont supplémentaires dans E.