PREMIER LEAGUE (**) MATCH WINNER PREDICTIONS

Part 1 is talking about the dataset and appllied operations on from cleaning, munging and applied feature engineering methods

Part 2 showing the applied analytics on the dataset and representing the gained insights using sas analytics and building ML Model to predict the winner team

Used Tools

ABOUT DATASET

This dataset is consists of 1389 recoeds where each record represent single match and 27 features. this data starting date of collection was in 2020-09-12 and ended in 2022-04-25 which stored features about team`s 'venue', 'result', 'gf', 'ga', 'opponent', 'xg', 'xga', 'poss', 'attendance', 'captain', 'formation', 'referee', 'match report', 'notes', 'sh', and 'sot'

Top Six Team IN Epl

Operations Index

1. Uploading Data to SAS	6-7
2. Explatory Data Analysis	8-11
3. Data Manipulation Methods	13-17
4. Data Visuialization by SAS	19-41
5. Statistics & Gained Insights about EPL	42-56
6. Data Preprocessing by SAS	57-62
7. Uploading Data to Sas Viya for Modeling	63-67
8. Building ML Models by Sas Viya	68-83
9. Improving Models Perfromance	84-94

Project Goals

- Showing the impact of playing matches at home versus playing away and that effects on teams' results.
- Checking if there is bias from referees toward specific teams in the English Premier League.
- Analyzing the performance of English teams from 2020-09-12 to 2022-04-25, including studying results, GF, GA, opponent, xG, xGA, possession, attendance, captain, formation, referee, match report, notes, shots, and shots on target for each team.
- Building machine learning models to predict the winning team in the English Premier League based on the collected data.

Uploading Dataset With Ssas

SAS CODE

```
*EdaAndFeatureEngineering.sas *
  CODE
         LOG
                RESULTS
                       OUTPUT DATA
 proc import datafile="/home/u63511609/BigDataFinalProject/matches.csv"
       out=permier league
       dbms=csv
       replace;
  4
       guessingrows=32767;
  5
    run;
```


Uploading Dataset With S.sas.

OUTPUT

EDA: checking if there are null values

SAS CODE

```
proc means data=permier_league nmiss n;
   var _numeric_;
   output out=numeric_missing_summary
       nmiss=Num_Missing
       n=Num_Total;
run;
```

OUTPUT

Variable	N Miss
VAR1	0
date	0
time	0
gf	0
ga	0
xg	0
xga	0
poss	0
attendance	696
sh	0
sot	0
dist	1
fk	0
pk	0
pkatt	0
season	0

EDA: checking if there are duplicated values

SAS CODE

```
proc sort data=permier_league out=sorted_permier_league nodupkey dupout=duplicates;
   by _all_;
run;

proc sql;
   select count(*) as duplicate_count
   from duplicates;
quit;
```

OUT PUT

Dataset Has No Duplicated Values

EDA: checking dtype of each feature

SAS CODE

proc contents data=permier_league;
run;

OUTPUT

Alphabetic List of Variables and Attributes						
#	Variable	Type	Len	Format	Informat	
1	VAR1	Num	8	BEST12.	BEST32.	
15	attendance	Num	8	BEST12.	BEST32.	
16	captain	Char	25	\$25.	\$25.	
4	comp	Char	14	\$14.	\$14.	
2	date	Num	8	YYMMDD10.	YYMMDD10.	
6	day	Char	3	\$3 .	\$3.	
23	dist	Num	8	BEST12.	BEST32.	
24	fk	Num	8	BEST12.	BEST32.	
17	formation	Char	10	\$10.	\$10.	
10	ga	Num	8	BEST12.	BEST32.	
9	gf	Num	8	BEST12.	BEST32.	
31	hour	Num	8			
19	match report	Char	12	\$12 .	\$12 .	
20	notes	Char	1	\$1 .	\$1.	
30	opp_code	Char	2			
11	opponent	Char	15	\$15.	\$15 .	
25	pk	Num	8	BEST12.	BEST32.	
26	pkatt	Num	8	BEST12.	BEST32.	
14	poss	Num	8	BEST12.	BEST32.	

OUTPUT

18	referee	Char	17	\$17.	\$17.
8	result	Char	1	\$1.	\$1.
5	round	Char	12	\$12.	\$12.
27	season	Num	8	BEST12.	BEST32.
21	sh	Num	8	BEST12.	BEST32.
22	sot	Num	8	BEST12.	BEST32.
32	target	Num	8		
28	team	Char	24	\$24.	\$24.
3	time	Num	8	TIME20.3	TIME20.3
7	venue	Char	4	\$4.	\$4.
29	venue_code	Num	8		
12	xg	Num	8	BEST12.	BEST32.
13	xga	Num	8	BEST12.	BEST32.

EDA: frequency of each team

Frequency of Each Team

SAS CODE

proc freq data=permier_league;
 tables team / nocum nopercent;
run;

OUTPUT

The FREQ Procedure					
team	Frequency				
Arsenal	71				
Aston Villa	70				
Brentford	34				
Brighton and Hove Albion	72				
Burnley	71				
Chelsea	70				
Crystal Palace	71				
Everton	70				
Fulham	38				
Leeds United	71				
Leicester City	70				
Liverpool	38				

OUTPUT

Manchester City	71
Manchester United	72
Newcastle United	72
Norwich City	33
Sheffield United	38
Southampton	72
Tottenham Hotspur	71
Watford	33
West Bromwich Albion	38
West Ham United	72
Wolverhampton Wanderers	71

Calculating total shots, The total number of goals scored by the team, The total number of goals conceded by the team, The number of shots that were directed towards the goal, The number of free kicks awarded to the team, The number of penalty kicks successfully converted into goals, The number of penalty kick attempts made by the team

SAS CODE

```
proc means data=permier league sum;
   class team;
   var sh gf ga sot dist fk pk pkatt;
   output out=team summary sum=;
run;
/* Printing the summarized dataset */
proc print data=team summary;
   where TYPE = 1;
   var team sh gf ga sot dist fk pk pkatt;
run;
```


- sh Shots: The total number of attempts made by a team or player to score a goal.
- gf Goals For: The total number of goals scored by the team.
- ga Goals Against: The total number of goals conceded by the team.
- sot Shots on Target: The number of shots that were directed towards the goal and would have gone in if not for a save or a block.
- fk Free Kicks: The number of free kicks awarded to the team.
- pk Penalty Kicks Scored: The number of penalty kicks successfully converted into goals.
- pkatt Penalty Kicks Attempted: The number of penalty kick attempts made by the team

DUTPUT

Obs	team	sh	gf	ga	sot	dist	fk	pk	pkatt
2	Arsenal	959	107	79	296	1213.3	42	10	13
3	Aston Villa	898	97	92	306	1184.9	33	8	9
4	Brentford	379	41	49	119	549.1	7	6	6
5	Brighton and Hove Albion	894	71	88	243	1210.7	29	9	14
6	Burnley	727	62	100	222	1181.6	27	3	4
7	Chelsea	1025	125	63	359	1182.1	38	15	18
8	Crystal Palace	693	84	107	247	1141.4	30	8	11
9	Everton	764	81	103	246	1184.7	31	9	11
10	Fulham	440	27	53	123	671.7	10	3	6
11	Leeds United	962	100	122	326	1224.1	21	8	8
12	Leicester City	838	115	101	303	1252.4	34	12	14
13	Liverpool	600	68	42	201	626.8	20	6	6
14	Manchester City	1185	163	53	420	1158.4	34	12	17
15	Manchester United	983	126	95	360	1232.3	37	12	15
16	Newcastle United	796	86	117	256	1257.3	37	8	9
17	Norwich City	327	22	69	92	594.1	17	3	3
18	Sheffield United	319	20	63	92	635.6	5	3	4
19	Southampton	863	87	124	306	1246	40	8	9
20	Tottenham Hotspur	857	124	83	319	1218.6	51	8	8
21	Watford	352	31	67	115	591.8	20	1	2
22	West Bromwich Albion	336	35	76	107	675.2	16	4	4
23	West Ham United	875	114	91	289	1119	29	5	9
24	Wolverhampton Wanderers	809	69	81	266	1260.9	25	5	5

From 2020-09-12 to 2022-04-25

Calculating average expected goals, The average distance in yards from which shots were taken, The average expected goals against, and the average possession percentage

SAS CODE

```
proc means data=permier_league noprint;
   class team;
   var dist xg xga poss;
   output out=result_mean mean=dist_mean xg_mean xga_mean poss_mean;
run;

proc print data=result_mean;
run;
```


- dist Distance: The average distance (in meters or yards) from which shots were taken.
- xg Expected Goals: A metric that estimates the likelihood of a shot resulting in a goal based on factors like shot angle, distance, and type.
- xga Expected Goals Against: The expected number of goals that the team was likely to concede based on the quality of shots taken by the opposition.
- poss Possession Percentage: The average percentage of time the team controlled the ball during the game.

0

Obs	team	_TYPE_	_FREQ_	dist_mean	xg_mean	xga_mean	poss_mean
1		0	1389	17.011527378	1.3041756659	1.3384449244	49.702663787
2	Arsenal	1	71	17.088732394	1.4873239437	1.1845070423	53.112676056
3	Aston Villa	1	70	16.927142857	1.2742857143	1.3157142857	47.442857143
4	Brentford	1	34	16.15	1.2117647059	1.2794117647	44
5	Brighton and Hove Albion	1	72	16.815277778	1.2291666667	1.1083333333	53.277777778
6	Burnley	1	71	16.642253521	1.0056338028	1.5028169014	41.056338028
7	Chelsea	1	70	16.887142857	1.7142857143	0.9042857143	60.7
8	Crystal Palace	1	71	16.305714286	1.0295774648	1.3338028169	45.225352113
9	Everton	1	70	16.924285714	1.1785714286	1.3871428571	44.1
10	Fulham	1	38	17.676315789	1.0815789474	1.3921052632	49.578947368
11	Leeds United	1	71	17.24084507	1.4	1.7295774648	55.577464789
12	Leicester City	1	70	17.891428571	1.4014285714	1.4328571429	52.828571429
13	Liverpool	1	38	16.494736842	1.9210526316	1.1868421053	62.210526316
14	Manchester City	1	71	16.315492958	2.085915493	0.7704225352	65.478873239
15	Manchester United	1	72	17.115277778	1.5444444444	1.2569444444	53.986111111
16	Newcastle United	1	72	17.4625	1.0625	1.4125	39.347222222
17	Norwich City	1	33	18.003030303	0.8757575758	1.9575757576	42.939393939
18	Sheffield United	1	38	16.726315789	0.8289473684	1.6421052632	41.842105263
19	Southampton	1	72	17.30555556	1.1958333333	1.455555556	50.263888889
20	Tottenham Hotspur	1	71	17.163380282	1.523943662	1.2098591549	51.746478873
21	Watford	1	33	17.933333333	1.0515151515	1.7212121212	40.818181818
22	West Bromwich Albion	1	38	17.768421053	0.8894736842	1.7815789474	38.157894737
23	West Ham United	1	72	15.541666667	1.3736111111	1.305555556	45.375
24	Wolverhampton Wanderers	1	71	17.75915493	0.9929577465	1.3183098592	49.661971831

Most Used Formations in Permier League

formation	Frequency	Percent
3-4-1-2	50	3.6
3-4-3	209	15.05
3-5-1-1	10	0.72
3-5-2	138	9.94
4-1-4-1	78	5.62
4-2-2-2	6	0.43
4-2-3-1	344	24.77
4-3-2-1	4	0.29
4-3-3	246	17.71
4-4-1-1	46	3.31
4-4-2	206	14.83
4-5-1	16	1.15

SAS CODE

```
/*Saving the most formations used in a csv file */
/*Defining the library */
libname EPL "/home/u63511609/BigDataFinalProject";
/*Capturing the PROC FREQ output in a dataset */
ods output OneWayFreqs=freq_output;
proc freq data=permier league;
    tables formation / nocum;
run;
ods output close;
/*Exporting the dataset to a CSV file */
proc export data=freq output
    outfile="/home/u63511609/BigDataFinalProject/formation freq.csv"
    dbms=csv
   replace;
run;
/*Importing the CSV file into the EPL library */
proc import datafile="/home/u63511609/BigDataFinalProject/formation freq.csv"
    out=EPL.formation freq
    dbms=csv
    replace;
    guessingrows=max;
run;
```

OUTPUT

■ BigDataFinalProject

Data Visuialization

DataAnalyticsCode&Graphs

EPL

Bar Chart 2.ctk

Bar Chart.ctm

EdaAndFeatureEngineering.sas

formation_freq.csv

matches.csv

matches.csv

OUTPUT

DATA VISUIALIZATION

- BigDataFinalProject
 - Data Visuialization
 - ♣ AvgShootingDistance.ctk
 - Ball_Contollling_Through_time.ctk
 - ConcededGoalsDisturbuation.ctk
 - EPL_Formation_Disturbution.ctk
 - FreeKickDisturbuation.ctk
 - **⇔** GA_GF.ctk
 - gf_sot_rel.ctk
 - HomeAwayFK.sas
 - HomeAwayGF.sas
 - HomeAwayGF2.sas

- HomeAwayGF2.sas
- HomeAwayPkatt.sas
- HomeAwaySH.sas
- HomeAwaySOT.sas
- HomeAwayXGA_Mean.sas
- HomeAwayXG_Mean.sas
- HoneAwayGA.sas
- renaltyDisturbution.ctk
- scoredGoalsByEachTeam.ctk
- ShoootingOnTargetDisturbuation.ctk
- TotalAttempsDisturbution.ctk

Most Used Formations in Permier League

Total Number of Goals Scored by Each Team In EPL

Total Number of Goals Scored by Each Team in EPL

Total Number of Goals Conceded by Each team in EPL

Total Number of Goals Conceded by Each Team in EPL

Number of Shots that were Directed Towards the Goal and would have Gone in if not for a Save or a Block in EPL

Number of Shots that were Directed Towards the Goal and would have gone in if not for a Save or a Block in EPL

Total Number of Attempts made by Each Team IN EPL to Score a Goal.

Total Number of Attempts Made by Each team IN EPL to Score a Goal.

Number of Free kicks Awarded to Each team in EPL

Number of Free kicks Awarded to Each team in EPL

THE NUMBER OF PENALTY KICK ATTEMPTS MADE BY EACH TEAM IN EPL

THE NUMBER OF PENALTY KICK ATTEMPTS MADE BY EACH TEAM IN EPL

THE NUMBER OF PENALTY KICKS SUCCESSFULLY CONVERTED INTO GOALS.

BEST 10 TEAMS IN PERCENTAGE OF SUCCESS PENALTY FRPM WHOLE PENALTY

	TEAM	PK score	%
1	TOTTENHAM HOTSPUR	8/8	100 %
2	AFICASTILE UNITED TO THE PUBLIC OF THE PUBLI	8/9	88.8 %
3	TI BALLCUS	12/14	85.7 %
4	CHELSE FOOTBALL CLUB	15/18	83.3 %
5	CHESTRAN GOVERNMENT OF THE PARTY OF THE PART	12/5	80%

	TEAM	PK score	%
6	Everton 1878 NISI OPTIM	9/11	81.8 %
7	WEST BROMWICH ALBION	4/5	80%
8	Arsenal	10/13	76.9 %
9	CRYSTAL PALACE F.C.	8/11	72.7 %
10	18 CITY 94	12/17	70%

XG MEAN FOR EACH TEAM IN EPL

XG MEAN FOR EACH TEAM IN EPL

HIGHEST EXPECTED GOALS AGAINST FOR EACH TEAM IN EPL

HIGHEST EXPECTED GOALS AGAINST FOR EACH TEAM IN EPL

From 2020-09-12 to 2022-04-25

THE AVERAGE PERCENTAGE OF TIME THE TEAM CONTROLLED THE BALL DURING THE GAME.

THE AVERAGE DISTANCE FROM WHICH SHOTS WERE TAKEN IN EPL

From 2020-09-12 to 2022-04-25

The Relationship between Scored Goals and Shooting On Target

The Relationship between Conceded Goals and Shooting On Target

The Relationship between Scored Goals and CONCEDED GOALS

The Relationship between The average percentage of time the team controlled the ball during the game. and CONCEDED GOALS

SCORED GOALS

```
/*calc total scored goals by each team in home*/
proc sql;
    select sum(gf) as Total_Goals_Home
                                         Total_Goals_Home
    from EPL.PERMIER LEAGUE
                                                    963
    where venue = 'Home';
quit;
/*Mean Scored Goals At Home*/
proc sql;
    select mean(gf) as Mean Goals Home
    from EPL.PERMIER LEAGUE
                                         Mean_Goals_Home
    where venue = 'Home';
                                                1.387608
quit;
/*calculating thetotal scored goals Away*/
proc sql;
    select sum(gf) as Total_Goals_Away
    from EPL.PERMIER_LEAGUE
                                         Total_Goals_Away
    where venue = 'Away';
                                                   892
quit;
/*Mean Scored Goals At Away*/
proc sql;
     select mean(gf) as Mean_Goals_Away
     from EPL.PERMIER_LEAGUE
                                        Mean Goals Away
     where venue = 'Away';
                                               1.283453
quit;
```

```
CONCEDE GOALS
proc sql;
    select sum(ga) as Total_Goals_Against_Home
    from EPL.PERMIER LEAGUE
    where venue = 'Home';
                                        Total_Goals_Against_Home
auit:
proc sql;
    select sum(ga) as Total_Goals_Against_Away
    from EPL.PERMIER LEAGUE
    where venue = 'Away';
                                       Total_Goals_Against_Away
quit;
                                                         993
/*Mean Conceded Goal Home*/
proc sql;
    select mean(ga) as Mean Goals Against Home
    from EPL.PERMIER LEAGUE
    where venue = 'Home';
                                      Mean_Goals_Against_Home
quit;
                                                     1.332853
```

```
/*Mean Conceded Goal Away*/
proc sql;
select mean(ga) as Mean_Goals_Against_Away
from EPL.PERMIER_LEAGUE
where venue = 'Away';
quit;

Mean_Goals_Against_Away
1.428777
```


SHOOTING ON TARGET

POSSESSION PERCENTAGE

```
/*controling at home*/
proc sql;
    select mean(poss) as Average_Possession_Home
    from EPL.PERMIER_LEAGUE
    where venue = 'Home';
quit;

Average_Possession_Home
    50.78963
```

```
proc sql;
    select mean(poss) as Average_Possession_Away
    from EPL.PERMIER_LEAGUE
    where venue = 'Away';
quit;

Average_Possession_Away

48.61727
```

PKATT

```
/*Total pk HOME */
proc sql;
    select sum(pkatt) as Total_Pkatt_Home
    from EPL.PERMIER_LEAGUE
    where venue = 'Home';
quit;

Total_Pkatt_Home

109
```

```
/*Total pk Away */
proc sql;
    select sum(pkatt) as Total_Pkatt_Away
    from EPL.PERMIER_LEAGUE
    where venue = 'Away';
quit;

Total_Pkatt_Away
96
```


IS PLAYING AT HOME MAKE A DIFFERENCE? • vs 💉

Based on results of statistics

- Teams In EPL scored 963 goal at their stadium while total scored 892 goals out thier stadium with a difference equal 71.
- Avg Scored Goals at home is equal to 1.38 while Average scored goals Away was 1.2
- Total conced goals in Home is equal to 925 while total Away conceded goals is equal to 993 with difference equal 68.
- Avg conceded goals in home is equal to 1.33 while avg concded away goals is equal to 1.43
- Total shots on target in home equal 2954 shot while total shots on target Away 2659 with a difference 295 shots
- Avg shots on target in Home equal 4.2 shot while the avg shots on target Away equal 3.8


```
/* Creating a table with referee statistics */
proc sql;
    create table referee stats as
    select
        referee,
        count(*) as Total_Matches, /* Total matches for each referee */
        count(distinct team) as Unique_Teams, /* Count of unique teams per referee */
        sum(pkatt) as Total PK, /* Sum of penalty kicks (pkatt) */
        sum(fk) as Total Free Kicks /* Sum of free kicks (fk) */
    from matches
    group by referee
    order by referee;
quit;
/* Printing the resulting table to verify */
proc print data=referee_stats;
    title "Referee Statistics";
run;
```


This table show total matches supervised for each referee and how wany different he managed their matches and how he perform in English Premier League

Obs	referee	Total_Matches	Unique_Teams	Total_PK	Total_Free_Kicks
1	Andre Marriner	81	21	13	27
2	Andy Madley	61	20	9	29
3	Anthony Taylor	100	22	22	52
4	Chris Kavanagh	70	21	11	35
5	Craig Pawson	90	21	10	53
6	Darren England	50	18	10	32
7	David Coote	80	22	12	36
8	Graham Scott	48	21	6	20
9	Jarred Gillett	14	11	1	7
10	John Brooks	6	5	1	1
11	Jonathan Moss	91	20	10	43
12	Kevin Friend	79	20	12	30
13	Lee Mason	22	16	3	11
14	Martin Atkinson	96	22	9	29
15	Michael Oliver	99	20	22	45
16	Michael Salisbu	4	4	1	4
17	Mike Dean	87	23	13	41
18	Paul Tierney	85	22	12	37
19	Peter Bankes	54	19	4	29
20	Robert Jones	40	16	7	16
21	Simon Hooper	50	18	6	25
22	Stuart Attwell	78	23	11	28
23	Tony Harrington	4	4	0	3

Saving output in a csv format

```
/* Exporting the table to a CSV file if needed */

proc export data=referee_stats

outfile="/home/u63511609/BigDataFinalProject/refree/refree_stats.csv"

dbms=csv

replace;

refree_analysis.sas

run;

refree_stats.csv
```

Saving the csv to EPL Library

```
/* Defining the EPL library */
libname EPL '/home/u63511609/BigDataFinalProject/EPL';

/* Saving the dataset directly in the EPL library */
data EPL.referee_stats;
   set referee_stats;
run;
```


REFREES WHO MANGED MATCHES FOR DIFFERENT TEAMS IN EPL

TOTAL MATCHES FOR EACH REFREE

PK THAT ACCUARED UNDER CONTROL OF EACH REFREE IN EPL

FK THAT ACCUARED UNDER CONTROL OF EACH REFREE IN EPL

Penalty Kicks
Attempted For Top 6
Teams
vs Other Team In
English Premier League

```
%let top_6 = 'Manchester City', 'Chelsea', 'Arsenal', 'Tottenham Hotspur', 'Manchester United', 'Liverpool';
/* Filtering the data for matches where the team is in the top_6 list */
data filtered_matches;
    set matches;
    if team in (&top_6);
run;
/* Calculating the total pkatt for all matches */
proc sql;
    select sum(pkatt) as total pkatt all
    into :total_pkatt_all
    from matches;
quit;
/* Calculating the total pkatt for filtered matches */
proc sql;
    select sum(pkatt) as total pkatt filtered
    into :total pkatt filtered
   from filtered_matches;
quit;
/* Calculating the difference */
%let diff = %sysevalf(&total_pkatt_all - &total_pkatt_filtered);
/* Creating a table for output */
data pkatt_summary;
    total_pkatt_all = &total_pkatt_all;
    total pkatt filtered = &total pkatt filtered;
    difference = &diff;
run;
/* Displaying the results */
proc print data=pkatt_summary noobs;
    title "PKATT Summary and Difference";
run;
```


From 2020-09-12 to 2022-04-25

OUT PUT

Feature Transformation of venue

```
proc sort data=permier_league;
  by venue;
run;

data permier_league;
  set permier_league;
  if venue = "Home" then venue_code = 1;
  else if venue = "Away" then venue_code = 0;
run;
```


Feature Transformation of opponent

```
proc format;
    value $opp code
        'Tottenham' = 1
        'Norwich City' = 2
        'Arsenal' = 3
        'Leicester City' = 4
        'Southampton' = 5
        'Chelsea' = 6
        'Liverpool' = 7
        'Burnley' = 8
        'Brighton' = 9
        'Crystal Palace' = 10
        'Manchester Utd' = 11
        'Everton' = 12
        'West Ham' = 13
        'Aston Villa' = 14
        'Watford' = 15
        'Wolves' = 16
        'Leeds United' = 17
        'Newcastle Utd' = 18
        'Brentford' = 19
        'Manchester City' = 20
        'Sheffield Utd' = 21
        'Fulham' = 22
        'West Brom' = 23
        other = .; /* for Handling any missing or unlisted values */
run;
```

opponent		opp_code
Tottenham		1
Leicester City		4
Chelsea		6
Liverpool		7
Brighton		9
Manchester Utd		11
Aston Villa		14
Watford	-	15
Newcastle Utd	Transform	18
Brentford		19
Arsenal		3
Southampton		5
Norwich City		2
Everton		12
Crystal Palace		10
Burnley		8
Arsenal		3
Liverpool		7

Feature Extraction "Extracting Hour From Time"

```
data permier_league;
    set permier_league;
    hour = input(scan(time, 1, ':'), 8.);
run;
```


Feature Extraction "Extracting Target Feature"

```
data permier_league;
    set permier_league;

    if result = 'W' then target = 1;
    else target = 0;
run;

proc print data=permier_league (obs=5);
    var result target;
run;
```


CKECKING IF DATA BALANCED OR NOT

SAS CODE

```
proc freq data=permier_league;
  tables target / nocum nopercent;
run;
```


Data is approximately balanced

SAVING THE DATASET AFTER PROCESSING IN A NEW CSV FILE

```
proc export data=permier_league
   outfile="/home/u63511609/BigDataFinalProject/processed_matches.csv"
   dbms=csv
   replace; /* Overwrite the file if it already exists */
run;
```


UPLOADING PROCESSED DATA TO SAS VIYA

UPLOADING PROCESSED DATA TO SAS VIYA

Football Match Unpredictability

- Football matches are inherently difficult to predict due to random events like goals, injuries, or referee decisions.
- Low Misclassification rates are not uncommon in sports prediction models because of this randomness
- they might still be reasonable compared to a random guess baseline
- The model could still provide valuable insights and predictions for football matches, especially when combined with expert analysis or other strategies.

(C)

SELECTED MODEL	REASONS OF SELECTION		
Random Forest	 Handles Complex and Nonlinear Data Football match outcomes depend on multiple interacting factors such as:		
Gaussian Processes Classification	 Works Well with Small Datasets Football analysis often faces limited training data, especially for specific leagues or teams. GNB performs well on small datasets where complex models like neural networks might overfit. This is because it requires fewer data points to estimate the parameters of a Gaussian distribution. Good Baseline Model Gaussian Naive Bayes is a strong baseline model for football classification tasks. It provides a simple and interpretable starting point. Computationally Efficient GNB is a fast and lightweight model which makes it ideal for Real-time predictions in football. 		

FEATURES SELECTION

Variable Importance					
Variable	Importance	Std Dev Importance	Relative Importance		
opp_code	37.4447	7.7791	1.0000		
hour	20.3868	6.6453	0.5445		
day_code	15.0236	4.5908	0.4012		
venue_code	6.4356	3.2241	0.1719		

DATA SPLITTING

The Model that will use is a supervised model and target is completely label so the problem of When you there is a small amount of labeled data and a large amount of unlabeled data is not found

MODELS BUILDING BY SAS VIYA

								Fit Statistics		
Target	Data Role	Partitio	Formatt	Numbe	Averag	Divisor	Area Unde ↑	Root Av	Misclas	Multi-Cl
target	TEST	2	2	139	0.2503	139	0.5325	0.5003	0.4101	0.6942
target	VALIDATE	0	0	417	0.2340	417	0.5953	0.4838	0.3717	0.6631
target	TRAIN	1	1	833	0.1790	833	0.8205	0.4231	0.2545	0.5370

Gini Co	Gamma	Tau	KS Cutoff	KS at U	Misclas	Misclass
0.0649	0.0668	0.0309	0.2200	0.0404	0.5180	0.4101
0.1907	0.1946	0.0900	0.4000	0.1325	0.3885	0.3717
0.6411	0.6527	0.3019	0.3600	0.3680	0.2725	0.2545

USING RANDOM FOREST MODEL ON UNSEEN DATA

Model exposed to 417 Match in Vaildation Set

Predicted 246 Match True

Model exposed to 139 Match in Testing SetPredicted 74 Match True

						Fit St	atistics				
Data Role	Partitio	Formatt	Numbe	Average Squared Error	Divisor	Root Av	Misclas	Multi-Cl	KS (You	Area Un	Gini Co
TEST	2	2	139	0.2321	139	0.4818	0.3957	0.6575	0.2328	0.6124	0.2249
TRAIN	1	1	833	0.2094	833	0.4576	0.3313	0.6064	0.2811	0.6929	0.3858
VALIDATE	0	0	417	0.2243	417	0.4736	0.3573	0.6381	0.1869	0.6134	0.2268
	TEST	TEST 2 TRAIN 1	TEST 2 2 TRAIN 1 1	TEST 2 2 139 TRAIN 1 1 833	TEST 2 2 139 0.2321 TRAIN 1 1 833 0.2094	TEST 2 2 139 0.2321 139 TRAIN 1 1 833 0.2094 833	Data Role Partitio Formatt Numbe Average Squared Error Divisor Root Av TEST 2 2 139 0.2321 139 0.4818 TRAIN 1 1 833 0.2094 833 0.4576	TEST 2 2 139 0.2321 139 0.4818 0.3957 TRAIN 1 1 833 0.2094 833 0.4576 0.3313	Data Role Partitio Formatt Numbe Average Squared Error Divisor Root Av Misclas Multi-Cl TEST 2 2 139 0.2321 139 0.4818 0.3957 0.6575 TRAIN 1 1 833 0.2094 833 0.4576 0.3313 0.6064	Data Role Partitio Formatt Numbe Average Squared Error Divisor Root Av Misclas Multi-Cl KS (You TEST 2 2 139 0.2321 139 0.4818 0.3957 0.6575 0.2328 TRAIN 1 1 833 0.2094 833 0.4576 0.3313 0.6064 0.2811	Data Role Partitio Formatt Numbe Average Squared Error Divisor Root Av Misclas Multi-Cl KS (You Area Un TEST 2 2 139 0.2321 139 0.4818 0.3957 0.6575 0.2328 0.6124 TRAIN 1 1 833 0.2094 833 0.4576 0.3313 0.6064 0.2811 0.6929

Misclas	Multi-Cl	KS (You	Area Un	Gini Co	Gamma	Tau	KS Cutoff	KS at U
0.3957	0.6575	0.2328	0.6124	0.2249	0.2394	0.1069	0.3300	0.0491
0.3313	0.6064	0.2811	0.6929	0.3858	0.4048	0.1817	0.4100	0.1736
0.3573	0.6381	0.1869	0.6134	0.2268	0.2377	0.1070	0.3100	0.1285

USING GAUSSIAN PROCESSES CLASSIFICATION MODEL ON UNSEEN DATA

Model exposed to 417 Match in Vaildation Set

Predicted 255 Match True

Model exposed to 139 Match in Testing Set

Predicted 85 Match True

Model Comparison

hampi	Name	Algorith	KS (You	Accuracy	Averag	Area Un	Cumula	Cumula	Cutoff	Data Role	Depth	F1 Score	False Di	False Po	Gain	Gini Co	ROC Se.
*	Gaussian Process Classificati on	Gaussian Process Classificati on	0.2328	0.6043	0.2321	0.6124	1.4151	14.1509	0.5000	TEST	10	0.2667	0.5455	0.1395	0.4151	0.2249	0.049
	Random forest that trained on 100 trees	Forest	0.1411	0.5899	0.2503	0.5325	0.7547	7.5472	0.5000	TEST	10	0.2963	0.5714	0.1860	-0.2453	0.0649	0.040
	Random forest that trained on 50 trees	Forest	0.1178	0.5971	0.2508	0.5323	0.7547	7.5472	0.5000	TEST	10	0.3333	0.5484	0.1977	-0.2453	0.0645	0.066
	Random forest that trained on 30 tree	Forest	0.0946	0.5971	0.2519	0.5293	0.9434	9.4340	0.5000	TEST	10	0.3171	0.5517	0.1860	-0.0566	0.0586	0.059

IMPROVING (1) MODEL PERFROMANCE

FACULTY OF COMPUTERS AND DATA SCIENCE

FEATURES SELECTION

Adding xg, xga fratures and retraining the models

						Fit	Statistics			
Target	Data Role	Partitio	Formatt	Numbe	Averag	Area Under ROC↓	Divisor	Root Av	Misclas	Multi-Cl
target	TRAIN	1	1	833	0.1169	0.9422	833	0.3419	0.1429	0.3826
target	VALIDATE	0	0	417	0.1802	0.7800	417	0.4244	0.2926	0.5348
target	TEST	2	2	139	0.1980	0.7318	139	0.4450	0.2950	0.5816

	Fit s	Statistics								
Root Av	Misclas	Multi-Cl	KS (You	Gini Co	Gamma	Tau	KS Cutoff	KS at U	Misclas	Misclass
0.3419	0.1429	0.3826	0.7491	0.8843	0.8883	0.4164	0.4000	0.6620	0.1321	0.1429
0.4244	0.2926	0.5348	0.4126	0.5600	0.5659	0.2642	0.3800	0.3290	0.2974	0.2926
0.4450	0.2950	0.5816	0.3510	0.4636	0.4697	0.2203	0.5200	0.3350	0.2806	0.2950

					Event C	lassification				
/iew chart: Table ▼										
Cutoff	Cutoff Source	Target Name	Response	Event	Value	Training Frequ	Validation Freq	Test Frequency	Training Percen.	
0.3800	KS	target	CORRECT	1	True Positive	×.	114	W.		
0.3800	KS	target	INCORRECT	1	False Negative	×.	44	¥.		
0.3800	KS	target	CORRECT	0	True Negative	¥.	179	¥.		
0.3800	KS	target	INCORRECT	0	False Positive	*	80			
0.4000	KS	target	CORRECT	1	True Positive	284	14		90.158	
0.4000	KS	target	INCORRECT	1	False Negative	31	14		9.841	
0.4000	KS	target	CORRECT	0	True Negative	439			84.749	
0.4000	KS	target	INCORRECT	0	False Positive	79			15.251	
0.5000	Default	target	CORRECT	1	True Positive	228	77	27	72.381	
0.5000	Default	target	INCORRECT	1	False Negative	87	81	26	27.619	
0.5000	Default	target	CORRECT	0	True Negative	486	218	71	93.822	
0.5000	Default	target	INCORRECT	0	False Positive	32	41	15	6.177	
0.5200	KS	target	CORRECT	1	True Positive	e.	13	26		
0.5200	KS	target	INCORRECT	1	False Negative	e.	19	27		
0.5200	KS	target	CORRECT	0	True Negative	×.	19	74		
0.5200	KS	target	INCORRECT	0	False Positive	e ,		12		

USING RANDOM FOREST MODEL ON UNSEEN DATA

After Adding XG, XGA

Model exposed to 417 Match in Vaildation Set

Predicted 325 Match True

Model exposed to 139 Match in Testing Set

Predicted 101 Match True

								Fit Stati	stics		
Target	Data Role	Partitio	Formatt	Numbe	Averag	Divisor	Root Av	Misclas	Multi-Cl	KS (You	Area Un
target	TEST	2	2	139	0,2009	139	0.4482	0.2878	0.5888	0.4379	0.7352
target	TRAIN	1	1	833	0.1735	833	0.4165	0.2509	0.5244	0.4789	0.8141
target	VALIDATE	0	0	417	0.1908	417	0.4368	0.2566	0.5655	0.4446	0.7696

Gini Co	Gamma	Tau	KS Cutoff	KS at U	Misclas	Misclass
0.4704	0.4777	0.2235	0.4200	0.3322	0.2806	0.2878
0.6281	0.6353	0.2958	0.3900	0.4199	0.2629	0.2509
0.5391	0.5457	0.2544	0.3900	0.4042	0.2806	0.2566

					Event C	Classification					
chart: Table	17.9%										
Cutoff	Cutoff Source	Target Name	Response	Event	Value	Training Frequ	Validation Freq	Test Frequency	Training Percen	Validation Perc	Test Percentag
0.3900	KS	target	CORRECT	1	True Positive	236	116	6	74.9206	73.4177	
0.3900	KS	target	INCORRECT	1	False Negative	79	42	6	25.0794	26.5823	
0.3900	KS	target	CORRECT	0	True Negative	378	184	<u></u>	72.9730	71.0425	
0.3900	KS	target	INCORRECT	0	False Positive	140	75	12.1	27.0270	28.9575	
0.4200	KS	target	CORRECT	1	True Positive	700	· ·	38	ŷ.	12	71.698
0.4200	KS	target	INCORRECT	1	False Negative	700	· ·	15	φ.	12	28.301
0.4200	KS	target	CORRECT	0	True Negative	7020	· ·	62	φ.	12	72.093
0.4200	KS	target	INCORRECT	0	False Positive	7720	· ·	24	ŷ.	12	27.907
0.5000	Default	target	CORRECT	1	True Positive	173	84	25	54.9206	53.1646	47.169
0.5000	Default	target	INCORRECT	1	False Negative	142	74	28	45.0794	46.8354	52.830
0.5000	Default	target	CORRECT	0	True Negative	451	226	74	87.0656	87.2587	86.046
0.5000	Default	target	INCORRECT	0	False Positive	67	33	12	12.9344	12.7413	13.953

USING GAUSSIAN PROCESSES CLASSIFICATION MODEL ON UNSEEN DATA

After Adding XG, XGA

Model exposed to 417 Match in Vaildation Set

Predicted 316 Match True

Model exposed to 139 Match in Testing Set

Predicted 101 Match True

Impact of XG, XGA on Improving Models Performance

BEFORE Using XG, XGA	AFTER USING XG, XGA
Random Forest Model	Random Forest Model
246 True Match from 417 Match (Vaildation Set) 74 True Match from 139 Match (Testing Set)	325 True Match from 417 Match (Vaildation Set) 101 True Match from 139 Match (Testing Set)
	Expecteing 77 True MatcheMore + (Vaildation Set) Expecteing 27 True Match More + (Testing Set)
Gaussian Processes Classification	Gaussian Processes Classification
255 True Match from 417 Match (Vaildation Set) 85 True Match from 139 Match (Testing Set)	316 True Match from 417 Match (Vaildation Set) 101 True Match from 139 Match (Testing Set)
	Expecteing 61 True Match More + (Vaildation Set) Expecteing 16 True Match More + (Testing Set)

