ЛЕКЦИЯ №6

По «Электроника и электротехника»

дисциплине:

Тема №:3 Линейные цепи однофазного синусоидального тока

Занятие №:3 Пассивные элементы в цепях синусоидального тока

Учебные вопросы:

- 1. Цепь синусоидального тока с последовательным и параллельным соединением R, L и C.
- 2. Мощность в цепях синусоидального тока: полная и реактивная мощности.
- 3. Явления резонанса в цепях переменного тока.

Литература для самостоятельной работы обучающихся:

- **1. Иванов, И. И.** Электротехника и основы электроники: учебник. 9-е изд., стер/ И.И. Иванов, Г.И. Соловьев, В.Я Фролов. СПб: Лань, 2017. 736 с.
- 2. **Касаткин, А.С.** Электротехника: учебник/ А.С. Касаткин, М.В. Немцов. 12-е изд. стер. Москва.: Академия, 2008. 544 с. и предыдущие издания.

б) дополнительная литература:

3. **Немцов, М. В.** Электротехника и электроника: учебник/ М. В. Немцов. – Москва: КноРус, 2016. – 560 с. – и предыдущие издания.

1 учебный вопрос: Цепь синусоидального тока с последовательным и параллельным соединением R, L и C.

1. Резистор

Идеальный резистивный элемент не обладает ни индуктивностью, ни емкостью. Если к нему приложить синусоидальное напряжение $u = U_m \sin(at + \Psi)$ (см. рис. 1), то ток i через него будет равен

$$i = \frac{u}{R} = \frac{U_m}{R} sin(\omega t + \Psi) = I_m sin(\omega t + \Psi)$$
 (1)

Соотношение (1) показывает, что ток имеет ту же начальную фазу, что и напряжение. Таким образом, если на входе двухлучевого осциллографа подать сигналы u и i, то соответствующие им синусоиды на его экране будут проходить (см. рис. 2) через нуль

одновременно, т.е. на резисторе напряжение и ток совпадают по фазе.

Из (1) вытекает:

$$U_m = RI_m$$
;
 $U = RI$.

Переходя от синусоидальных функций напряжения и тока к соответствующим им комплексам:

$$u = U_m \sin(at + \Psi) \implies \dot{U} = Ue^{j\Psi};$$

 $i = I_m \sin(at + \Psi) \implies \dot{I} = Ie^{j\Psi}.$

- разделим первый из них на второй:

$$\frac{\dot{U}}{\dot{I}} = \frac{Ue^{j\Psi}}{Ie^{j\Psi}} = \frac{U}{I} = R$$

или

$$\dot{U} = R\dot{I} \tag{2}$$

Полученный результат показывает, что отношение двух комплексов есть вещественная константа. Следовательно, соответствующие им векторы напряжения и тока (см. рис. 3) совпадают по направлению.

2. Конденсатор

Идеальный емкостный элемент не обладает ни активным сопротивлением (проводимостью), ни индуктивностью. Если к нему приложить синусоидальное напряжение $u = U_m \sin(at + \Psi)$ (см. рис. 4), то ток i через него будет равен

$$i = \frac{dq}{dt} = \frac{d}{dt}(Cu) = C\frac{du}{dt} = \omega CU_m \sin\left(\omega t + \Psi + \frac{\pi}{2}\right) = I_m \sin\left(\omega t + \Psi + \frac{\pi}{2}\right)$$
(3)

Полученный результат показывает, что **напряжение на** конденсаторе отстает по фазе от тока на $\pi/2$. Таким образом, если на входы двухлучевого осциллографа подать сигналы u и i, то на его экране будет иметь место картинка, соответствующая рис. 5.

Из (3) вытекает:

$$U_m = \frac{1}{\omega C} I_m = X_C I_m \; ; \;$$

$$U = \frac{1}{\omega C}I = X_C I$$

Введенный параметр $X_{\mathcal{C}} = l/(\omega C)$ называют **реактивным емкостным сопротивлением конденсатора**. Как и резистивное сопротивление, $X_{\mathcal{C}}$ имеет размерность **Ом**. Однако в отличие от R данный параметр является функцией частоты, что иллюстрирует рис. 6. Из рис. 6 вытекает, что при f = 0 конденсатор представляет разрыв для тока, а при $f \to \infty$ $X_{\mathcal{C}} = 0$

Переходя от синусоидальных функций напряжения и тока к соответствующим им комплексам:

$$u = U_m \sin(\alpha t + \Psi) \implies \dot{U} = Ue^{j\Psi};$$

$$i = I_m \sin(\alpha t + \Psi + \frac{\pi}{2}) \implies \dot{I} = Ie^{j\left(\Psi + \frac{\pi}{2}\right)}$$

- разделим первый из них на второй:

$$\frac{\dot{U}}{\dot{I}} = \frac{Ue^{j\Psi}}{\int_{e}^{J} \left(\Psi + \frac{\pi}{2}\right)} = \frac{Ue^{j\Psi}}{\int_{e}^{J} \Psi_{e}^{J\frac{\pi}{2}}} = X_{C}e^{-J\frac{\pi}{2}} = -jX_{C} = \underline{Z}_{C}$$

или

$$\dot{U} = -jX_C\dot{I} = \underline{Z}_C\dot{I} \tag{4}$$

В последнем соотношении $\underline{Z}_{\mathcal{C}} = -jX_{\mathcal{C}}$ - комплексное сопротивление конденсатора. Умножение

на $-j = e^{-j\frac{\pi}{2}}$ соответствует повороту вектора на угол $\pi/2$ по часовой стрелке. Следовательно, уравнению (4) соответствует векторная диаграмма, представленная на рис. 7.

Puc.8

3. Катушка индуктивности

Идеальный индуктивный элемент не обладает ни активным сопротивлением, ни емкостью. Пусть протекающий через него ток (см. рис. 8) определяется выражением $i = I_m \sin(ax + \Psi)$. Тогда для напряжения на

зажимах катушки индуктивности можно записать

$$u = -e = \frac{d\Psi}{dt} = \frac{d}{dt}(Li) = \omega LI_m \sin\left(\omega t + \Psi + \frac{\pi}{2}\right) = U_m \sin\left(\omega t + \Psi + \frac{\pi}{2}\right)$$
 (5)

Полученный результат показывает, что **напряжение на катушке индуктивности опережает по фазе ток на** $\pi/2$. Таким образом, если на входы двухлучевого осциллографа подать сигналы u и i, то на его экране (идеальный индуктивный элемент) будет иметь место картинка, соответствующая рис. 9.

Из (5) вытекает:

$$U_m = \omega L I_m = X_I I_m;$$

Введенный параметр $X_L = \omega L$ называют **реактивным индуктивным сопротивлением катушки**; его размерность — Ом. Как и у емкостного элемента этот параметр является функцией частоты. Однако в данном случае эта зависимость имеет линейный характер, что иллюстрирует рис. 10. Из рис. 10 вытекает, что при f = 0 катушка индуктивности не оказывает сопротивления протекающему через него току, и при $f \to \infty$ $X_L \to \infty$.

Переходя от синусоидальных функций напряжения и тока к соответствующим комплексам:

$$u = U_m \sin\left(\omega t + \Psi + \frac{\pi}{2}\right) \implies \dot{U} = Ue^{j\left(\Psi + \frac{\pi}{2}\right)},$$

$$i = I_m \sin(\omega t + \Psi) \implies \dot{I} = Ie^{j\Psi},$$

разделим первый из них на второй:

$$\frac{\dot{U}}{\dot{I}} = \frac{Ue^{j\left(\Psi + \frac{\pi}{2}\right)}}{Ie^{j\Psi}} = \frac{Ue^{j\Psi}e^{j\frac{\pi}{2}}}{Ie^{j\Psi}} = X_L e^{j\frac{\pi}{2}} = jX_L = \underline{Z}_L$$

или

$$\dot{U} = jX_L \dot{I} = \underline{Z}_L \dot{I} \tag{6}$$

В полученном соотношении $\underline{Z}_L = jX_L$ - комплексное

сопротивление катушки индуктивности.

Умножение на $j = e^{j\frac{\pi}{2}}$ соответствует повороту вектора на угол $\pi/2$ против часовой стрелки. Следовательно, уравнению (6) соответствует векторная диаграмма, представленная на рис. 11

. 4. Последовательное соединение резистивного и индуктивного элементов

где

$$U_m = \sqrt{R^2 + (\omega L)^2} \, I_m = Z I_m \,; \quad Z = \sqrt{R^2 + (\omega L)^2} \,; \quad \varPsi = arctg \, \frac{\omega L}{R} \, ,$$
 причем пределы изменения
$$\Psi : \quad 0 < \Psi < \frac{\pi}{2} \, .$$

Уравнению (7) можно поставить в соответствие соотношение

$$\dot{U} = \dot{U}_R + \dot{U}_L = R\dot{I} + jX_L\dot{I} = (R + jX_L)\dot{I} = \underline{Z}\dot{I},$$

которому, в свою очередь, соответствует векторная диаграмма на рис. 13. Векторы на рис. 13 образуют фигуру, называемую**треугольником напряжений**. Аналогично выражение

$$\underline{Z} = R + j X_L = \sqrt{R^2 + X_L^2} e^{j\Psi} = Z e^{j\Psi}$$

графически может быть представлено **треугольником сопротивлений** (см. рис. 14), который подобен треугольнику напряжений.

5. Последовательное соединение резистивного и емкостного элементов

Опуская промежуточные выкладки, с использованием соотношений (2) и (4) для ветви на рис. 15 можно записать

Puc.15

$$\dot{U} = \dot{U}_R + \dot{U}_C = R\dot{I} - jX_C\dot{I} = (R - jX_C)\dot{I} = \underline{Z}\dot{I}$$
(8)

где

$$\underline{Z} = R - jX_C = \sqrt{R^2 + X_C^2} e^{j\Psi} = \underline{Z} e^{j\Psi} \; ; \; \Psi = -arctg \, \frac{X_C}{R} = -arctg \, \frac{l}{\omega CR} \; , \; \text{причем}$$
 пределы изменения
$$\Psi : \; -\frac{\pi}{2} < \Psi < 0 \; .$$

На основании уравнения (7) могут быть построены треугольники напряжений (см. рис. 16) и сопротивлений (см. рис. 17), которые являются подобными.

6. Параллельное соединение резистивного и емкостного элементов

Для цепи на рис. 18 имеют место соотношения:

$$U = U_R = U_C$$
;

$$I_R = \frac{U_R}{R} = gU$$
 , где $g = \frac{l}{R}$ [См] — активная

проводимость;

$$I_C = \frac{U_C}{X_C} = b_C U \qquad b_C = \frac{l}{X_C}$$
, где
$$b_C = \frac{l}{X_C} \quad \text{[Cм]} - \text{реактивная проводимость}$$

конденсатора.

Векторная диаграмма токов для данной цепи, называемая **треугольником токов**, приведена на рис. 19. Ей соответствует уравнение в комплексной форме

$$\begin{split} \dot{I} &= \dot{I}_R + \dot{I}_C = g \dot{U} + j b_C \dot{U} = \left(g + j b_C\right) \dot{U} = \underline{Y} \dot{U} = I e^{-j \, \Psi} \,, \\ \\ \text{где} &\quad I = \sqrt{I_R^2 + I_C^2} \;\;; \end{split}$$

$$\underline{Y} = g + jb_C = \frac{l}{R} + j\varpi C = Ye^{-j\Psi}$$
 - комплексная проводимость;

$$\Psi = -arctg \, \frac{b_C}{g} = -arctg \, aCR$$

Треугольник проводимостей, подобный треугольнику токов, приведен на рис. 20.

Для комплексного сопротивления цепи на рис. 18 можно записать

$$\underline{Z} = \frac{1}{\underline{Y}} = \frac{1}{g + jb_C} = \frac{1}{\frac{1}{R} + \frac{1}{-jX_C}} = \frac{R(-jX_C)}{R - jX_C}$$

Необходимо отметить, что полученный результат аналогичен известному из курса физики выражению для эквивалентного сопротивления двух параллельно соединенных резисторов.

7. Параллельное соединение резистивного и индуктивного элементов

проводимость;

$$I_L = \frac{U_L}{X_L} = b_L U \qquad b_L = \frac{l}{X_L} = \frac{l}{\varpi L}$$
 [См] — реактивная проводимость катушки индуктивности.

Векторной диаграмме токов (рис. 22) для данной цепи соответствует уравнение в комплексной форме

$$\begin{split} \dot{I} &= \dot{I}_R + \dot{I}_L = g \, \dot{U} - j b_L \dot{U} = (g - j b_L) \dot{U} = \underline{Y} \dot{U} = I e^{-j \, \Psi} \ , \end{split}$$
 где $I = \sqrt{I_R^2 + I_L^2} \ ;$
$$\underline{Y} = g - j b_L = \frac{1}{R} - j \, \frac{1}{\varpi L} = Y e^{-j \, \Psi} \ - \text{комплексная проводимость}; \end{split}$$
 $\Psi = arctg \, \frac{b_L}{g} = arctg \, \frac{R}{\varpi L} \ . \end{split}$

Треугольник проводимостей, подобный треугольнику токов, приведен на рис. 23.

2 учебный вопрос: Мощность в цепях синусоидального тока: полная и реактивная мощности.

По аналогии с мощностью в цепях постоянного тока P = U I, в цепях переменного тока рассматривают мгновенную мощность p = u i. Для упрощения рассмотрим мгновенную мощность в каждом из элементов R, L и C отдельно.

Элемент R (резистор)

Зададим напряжение и ток в виде соотношений

$$u(t) = U_m \sin(\omega t + \psi_u),$$

$$i(t) = I_m \sin(\omega t + \psi_i).$$

Известно, что для резистора $\psi_u = \psi_i$, тогда для р получим (2.32)

$$p(t) = u(t) i(t) = U_m I_m \sin^2(\omega t + \psi_i).$$

Из уравнения (2.32) видно, что мгновенная мощность всегда больше нуля и изменяется во времени. В таких случаях принять рассматривать среднюю за период Т мощность

(2.33)

$$P = \frac{1}{T} \int_{0}^{T} p dt = \frac{U_{m}I_{m}}{T} \int_{0}^{T} sin^{2} (\omega t + \psi_{i}) dt = \frac{U_{m}I_{m}}{2}$$

Если записать U_m и I_m через действующие значения U и $I:\ U_m=U\sqrt{2}\ ,\ I_m=I\sqrt{2}\ ,$ то получим

(2.34)

$$P = U I$$
.

По форме уравнение (2.34) совпадает с мощностью на постоянном токе. Величину Р равную произведению действующих значений тока и напряжения называют активной мощностью. Единицей ее измерения является Ватт (Вт).

Элемент L (индуктивность)

Известно, что в индуктивности соотношение фаз $\psi_u = \psi_i + 90^\circ$. Для мгновенной мощности имеет

(2.35)

$$p_L = ui = U_m \sin\left(\omega t + \frac{\pi}{2}\right) I_m \sin \omega t = \frac{U_m I_m}{2} \sin 2\omega t$$

Усредняя уравнение (2.35) по времени за период Т получим

$$\frac{1}{T}\int_{0}^{T} \mathbf{p}_{L} dt = 0$$

Для количественной оценки мощности в индуктивности используют величину Q_L равную максимальному значению p_L

(2.36)

$$Q_{L} = (U_{m} I_{m}) / 2$$

и называют ее реактивной (индуктивной) мощностью. Единицей ее измерения выбрали ВАр (вольт-ампер реактивный). Уравнение (2.36) можно записать через действующие значения U и I и используя формулу $U_L = I \; X_L$ получим

(2.37)

$$Q_L = I^2 X_L.$$

Элемент С (ёмкость)

Известно, что в емкости соотношение фаз $\psi_u = \psi_i$ - 90° . Для мгновенной мощности получаем

$$p_C(t) = u(t) I(t) = (U_m I_m) / 2 \cdot \sin(2\omega t).$$

Среднее значение за период здесь также равно нулю. По аналогии с уравнением (2.36) вводят величину $Q_C = I^2 \, X_C$, которую называют реактивной (емкостной) мощностью. Единицей ее измерения также является ВАр.

Если в цепи присутствуют элементы R, L и C, то активная и реактивная мощности определяются уравнениями

(2.37)

$$P = U I \cos \varphi$$
,

(2.38)

$$Q = Q_L - Q_C$$

(2.39)

$$Q = U I \sin \varphi$$
,

где ф – угол сдвига фаз.

Вводят понятие полной мощности цепи

(2.40)

$$S = \sqrt{P^2 + Q^2}$$

С учетом уравнений (2.37) и (2.39), (2.40) можно записать в виде (2.41)

$$S = U I$$
.

Единицей измерения полной мощности является ВА – вольт-ампер.

3 учебный вопрос: Явления резонанса в цепях переменного тока.

Резонансом называется такой режим работы цепи, включающей в себя индуктивные и емкостные элементы, при котором ее входное сопротивление (входная проводимость) вещественно. Следствием этого является совпадение по фазе тока на входе цепи с входным напряжением.

Резонанс в цепи с последовательно соединенными элементами (резонанс напряжений)

Для цепи на рис.1 имеет место

$$\dot{U} = \dot{U}_R + \dot{U}_L + \dot{U}_C = \dot{I} \left[R + j \left(\omega L - \frac{I}{\omega C} \right) \right] = \dot{I} \underline{Z}$$

где

$$\underline{Z} = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2} e^{j\varphi} ;$$

$$\varphi = \operatorname{arctg} \frac{\omega L - 1/(\omega C)}{R}$$
(2)

$$\varphi = arctg \, \frac{\omega L - l/(\omega C)}{R} \tag{2}$$

В зависимости от соотношения величин ωL и $l/(\omega C)$ возможны три различных случая.

1. В цепи преобладает индуктивность, т.е. ${}^{\omega L>\,l/\!\left(\omega C\right)}$, а следовательно, $\dot{U}_L>\dot{U}_C$. Этому режиму соответствует векторная диаграмма на рис. 2,а.

- 2. В цепи преобладает емкость, т.е. $\omega^L < l/(\omega C)$, а значит, $\dot{U}_L < \dot{U}_C$. Этот случай отражает векторная диаграмма на рис. 2,6.
- 3. $\dot{U}_L = \dot{U}_C$ случай резонанса напряжений (рис. 2,в).

Условие резонанса напряжений

$$\omega L = \frac{I}{\omega C} \tag{3}$$

При этом, как следует из (1) и (2), $\underline{Z} = R$; $\varphi = 0$.

При резонансе напряжений или режимах, близких к нему, ток в цепи резко возрастает. В теоретическом случае при R=0 его величина стремится к бесконечности. Соответственно возрастанию тока увеличиваются напряжения на индуктивном и емкостном элементах, которые могут во много раз превысить величину напряжения источника питания.

Пусть, например, в цепи на рис. 1
$$U=10\,B$$
; $R=1\,O$ м; $X_L=X_C=1000\,O$ м . Тогда $I=U/Z=U/R=10\,A$, и, соответственно, $U_L=U_C=IX_L=IX_C=10^4\,B$.

Явление резонанса находит полезное применение на практике, в частности в радиотехнике. Однако, если он возникает стихийно, то может привести к аварийным режимам вследствие появления больших перенапряжений и сверхтоков.

Физическая сущность резонанса заключается в периодическом обмене энергией между магнитным полем катушки индуктивности и электрическим полем конденсатора, причем сумма энергий полей остается постоянной.

Суть дела не меняется, если в цепи имеется несколько индуктивных и

$$L_{\mathfrak{I}} = \sum_{k=1}^{n} L_{k} \, ;$$
емкостных элементов. Действительно, в этом случае

$$1/C_{5} = \sum_{k=1}^{n} 1/C_{k}$$
, и соотношение (3) выполняется для эквивалентных значений L_{3} и C_{3} .

Как показывает анализ уравнения (3), режима резонанса можно добиться путем изменения параметров L и C, а также частоты. На основании (3) для резонансной частоты можно записать

$$f_p = \frac{1}{2\pi\sqrt{LC}} \tag{4}$$

Резонансными кривыми называются зависимости тока и напряжения от частоты. В качестве их примера на рис. 3 приведены типовые кривые $I(f); \ ^{U_L(f)}$ и $^{U_C(f)}$ для цепи на рис. 1 при U=const.

Важной характеристикой резонансного контура является добротность Q, определяемая отношением напряжения на индуктивном (емкостном) элементе к входному напряжению:

$$Q = \frac{U_L}{U} = \frac{U_C}{U} = \frac{\omega_p L}{R} = \frac{1}{\omega_p CR}$$
 (5)

- и характеризующая "избирательные" свойства резонансного контура, в частности его полосу пропускания $\Delta \omega = \omega_p / \mathcal{Q}$.

Другим параметром резонансного контура является характеристическое сопротивление, связанное с добротностью соотношением

$$\rho = QR \,, \tag{6}$$

или с учетом (4) и (5) для ρ можно записать:

$$\rho = \omega_p L = \frac{l}{\omega_p C} = \sqrt{\frac{L}{C}}$$
 (7)

Резонанс в цепи с параллельно соединенными элементами (резонанс токов)

Для цепи рис. 4 имеем

$$\dot{I} = \dot{I}_R + \dot{I}_L + \dot{I}_C = \dot{U} \left(\frac{1}{R} + \frac{1}{j\omega L} + j\omega C \right) = \dot{U} [g + j(b_C - b_L)] = \dot{U} \underline{Y}$$

где

$$\underline{Y} = \sqrt{g^2 + (b_C - b_L)^2} e^{-j\varphi} ; \qquad (8)$$

$$\varphi = arctg \frac{b_L - b_C}{g} \tag{9}$$

В зависимости от соотношения величин b_L и b_C , как и в рассмотренном выше случае последовательного соединения элементов, возможны три различных случая.

В цепи преобладает индуктивность, т.е. $^{b_L}>^{b_C}$, а следовательно, $^{I_L}>^{I_C}$. Этому режиму соответствует векторная диаграмма на рис. 5,а.

В цепи преобладает емкость, т.е. b_L $^{<}b_C$, а значит, I_L $^{<}I_C$. Этот случай иллюстрирует векторная диаграмма на рис. 5,б.

 $I_L = I_C$ - случай резонанса токов (рис. 5,в).

Условие резонанса токов $b_L = b_C$ или

$$\frac{1}{\omega L} = \omega C \tag{10}$$

При этом, как следует из (8) и (9), $\underline{Y} = g = l/R$; $\varphi = 0$. Таким образом, при резонансе токов входная проводимость цепи минимальна, а входное сопротивление, наоборот, максимально. В частности при отсутствии в цепи на рис. 4 резистора R ее входное сопротивление в режиме резонанса стремится к бесконечности, т.е. при резонансе токов ток на входе цепи минимален.

Идентичность соотношений (3) и (5) указывает, что в обоих случаях резонансная частота определяется соотношением (4). Однако не следует использовать выражение (4) для любой резонансной цепи. Оно справедливо только для простейших схем с последовательным или параллельным соединением индуктивного и емкостного элементов.

При определении резонансной частоты в цепи произвольной конфигурации или, в общем случае, соотношения параметров схемы в режиме резонанса следует исходить из условия вещественности входного сопротивления (входной проводимости) цепи.

Например, для цепи на рис. 6 имеем

$$\underline{Y} = j\omega C + \frac{1}{R + j\omega L} = j\omega C + \frac{R - j\omega L}{R^2 + \omega^2 L^2} = \frac{R}{R^2 + \omega^2 L^2} + j\left(\omega C - \frac{\omega L}{R^2 + \omega^2 L^2}\right)$$

Поскольку в режиме резонанса мнимая часть $\frac{Y}{}$ должна быть равна нулю, то условие резонанса имеет вид

$$C = \frac{L}{R^2 + \omega_p^2 L}$$

откуда, в частности, находится резонансная частота.

Puc.23

Выражение комплексного сопротивления цепи на рис. 21 имеет вид:

$$\underline{Z} = \frac{1}{\underline{Y}} = \frac{1}{g - jb_L} = \frac{1}{\frac{1}{R} + \frac{1}{jX_L}} = \frac{RjX_L}{R + jX_L} \ .$$