KAMPALA DIPLOMATIC

International School.

COMPUTER SCIENCE

END OF TERM III 2024/25.

YEAR 12 (9618/11)	
Paper 1: Theory Fundamentals	Time: 2 hours
NAME:	
DATE:	
Read the Instructions first.	
✓ Answer ALL Questions.✓ Poor hand writing leads to loss of marks.	

TEACHERS USE C	ONLY

	Binary value	1 kibibyte
	8 bits	1 Kibibyte
		1 gigabyte
	8000 bits	
		1 byte
	1000 kilobytes	1 kilobyte
1	1024 mebibytes	- Tallosyto
		1 gibibyte
	8192 bits	
		1 megabyte
		1 mebibyte
		1 mebibyte
(b) (i)	Perform the following binary addition. Show y	
(b) (i)	Perform the following binary addition. Show y	our working.
b) (i)		our working.
b) (i)	1010101	our working.
	1010101	our working. 0 1
	1010101 + 0011011 State how an overflow can occur when adding	our working. 0 1
	1010101 + 0011011 State how an overflow can occur when adding	your working. 0 1 g two binary integers.

		wants to maintain the integrity and security of data stored on her computer.
(a)	Exp	plain the difference between data security and data integrity.
		[2
(b)	Xar	nthe uses both data validation and data verification when entering data on her computer.
	(i)	Describe how data validation helps to protect the integrity of the data. Give an example in your answer.
		Description
		Example[2
	(ii)	Describe how data verification helps to protect the integrity of the data. Give an example in your answer.
		Description
		Example
(c)	Twe	malware threats are spyware and viruses.
(0)		
		e two similarities and one difference between spyware and a virus.
	Sim	ilarity 1
		Silavita / O
	SIII	nilarity 2
	D:#	
	ווט	erence

2

3 A logic circuit is shown:

(a) Write the logic expression for the logic circuit.

 . [3]

(b) Complete the truth table for the given logic circuit.

Α	В	С	Working space	Х
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

(c)	Identify one logic gate not used in the given logic circuit. Draw the symbol for the logic gate and complete its truth table.			
	Logic gate:			
	Symbol:			

Truth table:

Α	В	Output
0	0	
0	1	
1	0	
1	1	

Fra	ncis	is starting his first job as a software developer for a multinational company.
(a)	Fra	ncis has been advised to join a professional ethical body.
	Des	scribe the benefits to Francis of joining a professional ethical body.
		[3]
	_	
(b)		ncis is shown the software he will be working on. He is unfamiliar with the Integrated velopment Environment (IDE) he is required to use.
	(i)	Describe the ways in which Francis can act ethically in this situation.
		[2]
	(ii)	A typical IDE provides debugging tools to support the testing of a program.
		Identify three other tools or features found in a typical IDE to support the writing of the program.
		1
		2
		3[3]
(c)	Ero	ات ncis is part of a team writing a program. He finds an error in part of the program that
(0)	has	already been tested. He decides not to tell anyone because he is worried about the sequences.
	Exp	plain the reasons why Francis acted unethically in this situation.
		101

(d) Francis's team use language translators.

5 Javier owns many shops that sell cars. He employs several managers who are each in charge of one or more shops. He uses the relational database CARS to store the data about his business.

Part of the database is shown:

SHOP(ShopID, ManagerID, Address, Town, TelephoneNumber)

MANAGER(ManagerID, FirstName, LastName, DateOfBirth, Wage)

CAR(RegistrationNumber, Make, Model, NumberOfMiles, ShopID)

(a) Tick (\checkmark) one box in each row to identify whether each field is a primary key or a foreign key.

Table	Field name	Primary key	Foreign key
MANAGER	ManagerID		
SHOP	ManagerID		
CAR	RegistrationNumber		
CAR	ShopID		

(b)	Describe the ways in which access rights can be used to protect the data in Javier's database from unauthorised access.
	[3]
	V

[2]

(c)			es Data Definition Language ts in his database.	(DDL) and Data Manipulation	n Language (DML)
	(i)	Com shop	plete the following DML stateme	ents to return the number of ca	ars for sale in each
		SELE	CCT COUNT()	
		FROM	1		
				ShopID	[3]
	(ii)	Com	plete the DML statement to inclu	de the following car in the table	
	(,	Com	Field	Data	
			RegistrationNumber	123AA	_
			Make	Tiger	_
			Model	Lioness	_
			NumberOfMiles	10500	
			ShopID	12BSTREET	
			CA	.R	
			("123AA","Tige	r","Lioness",10500,"12B	STREET") [2]

6	(0)	There are two errors	in the following	register transfer petatio	n for the fotob execut	0.00
O	(a)	There are two errors	in the following	register transfer notatio	m for the fetch-execut	e cycle.

1 MAR
$$\leftarrow$$
 [PC]

2
$$PC \leftarrow [PC] - 1$$

3 MDR
$$\leftarrow$$
 [MAR]

4 CIR
$$\leftarrow$$
 [MDR]

Complete the following table by:

- identifying the line number of each error
- describing the error
- writing the correct statement.

Line number	Description of the error	Correct statement

(b) The following table shows part of the instruction set for a processor. The processor has one general purpose register, the Accumulator (ACC), and an Index Register (IX).

Ins	struction	F-ml-matter.		
Opcode Operand		- Explanation		
LDM	#n	Immediate addressing. Load the number n to ACC		
LDD	<address></address>	Direct addressing. Load the contents of the location at the given address to ACC		
STO	<address></address>	Store the contents of ACC at the given address		
INC	<register></register>	Add 1 to the contents of the register (ACC or IX)		
CMP	<address></address>	Compare the contents of ACC with the contents of <address></address>		
JPN	<address></address>	Following a compare instruction, jump to <address> if the compare was False</address>		
JMP	<address></address>	Jump to the given address		
IN		Key in a character and store its ASCII value in ACC		
OUT		Output to the screen the character whose ASCII value is stored in ACC		
END		Return control to the operating system		
XOR	#n	Bitwise XOR operation of the contents of ACC with the operand		
XOR	<address></address>	Bitwise XOR operation of the contents of ACC with the contents of <address></address>		
AND	#n	Bitwise AND operation of the contents of ACC with the operand		
AND	<address></address>	Bitwise AND operation of the contents of ACC with the contents of <address></address>		
OR	#n	Bitwise OR operation of the contents of ACC with the operand		
OR	<address></address>	Bitwise OR operation of the contents of ACC with the contents of <address></address>		
LSL	#n	Bits in ACC are shifted logically n places to the left. Zeros are introduced on the right hand end		
LSR	#n	Bits in ACC are shifted logically n places to the right. Zeros are introduced on the left hand end		

The current contents of main memory are shown:

Address	Data
100	00001111
101	11110000
102	01010101
103	11111111
104	0000000

B denotes a binary number, e.g. B01001101

Each row of the following table shows the current contents of ACC in binary and the instruction that will be performed on those contents.

Complete the table by writing the new contents of the ACC after the execution of each instruction.

Current contents of the ACC	Instruction	New contents of the ACC
11111111	OR 101	
0000000	XOR #15	
10101010	LSR #2	
01010101	AND 104	

(a)	Не	repeats the recording of the sound several times, with a different sample rate each time.
	(i)	Describe the reasons why the sound is closer to the original when a higher sample rate is used.
		[2
	(ii)	Describe the reasons why the sound file size increases when a higher sample rate is used.
		[2
(b)		bby wants to email the sound file to his school email address. He compresses the file ore sending the email.
	(i)	Explain the reasons why Bobby compresses the sound file.
		[2
	(ii)	Bobby uses lossless compression.
		Describe how lossless compression can compress the sound file.
		[2

Bobby is recording a sound file for his school project.

7

A 50	chool is setting up a network within one of its buildings.
(a)	State whether the network will be a LAN (local area network) or a WAN (wide area network) Justify your choice.
	[3]
(b)	One classroom in the building has 30 computers. The computers need to be connected to the network. Each computer has a network interface card (NIC).
	Identify two possible devices that can be used to physically connect the 30 computers to the rest of the network.
	1
	2
	[2]
(c)	The school has several laptops. Each laptop has a Wireless Network Interface Card (WNIC).
	Describe the functions of a Wireless Network Interface Card.
	[4]

8