## Lab 10: Earth's Magnetic Field

## Philip Kim

## April 15, 2021

- 1. Record the initial dip angle  $\theta_0 = 36^{\circ}$
- 2. Set source to 4V.

| Table 1: Earth's Measurement of Magnetic Field |            |            |            |             |             |             |
|------------------------------------------------|------------|------------|------------|-------------|-------------|-------------|
| Resistance                                     | $20\Omega$ | $40\Omega$ | $75\Omega$ | $150\Omega$ | $180\Omega$ | $200\Omega$ |
| Current i                                      | 0.122A     | 0.0733A    | 0.0442A    | 0.0256A     | 0.0212A     | 0.0182A     |
| Dip Angle $\Theta_i$                           | -71°       | -49°       | -14°       | 6°          | 12°         | 15°         |
| Calculated $B_i$                               | 1.44e-4    | 8.65e-5    | 5.22e-5    | 3.02e-5     | 2.50e-5     | 2.15e-5     |
| $tan(\theta_i)$                                | -2.90      | -1.15      | -2.49      | 1.05        | 2.13        | 2.68        |

- 3. Record the Helmholtz coil radius:  $R = 9.75 \text{cm} \rightarrow \boxed{0.0975 m}$
- 4. Record the Helmholtz coil number of turns: N = 128
- 5. Calculations:  $(B_i = \frac{8N_{\mu_0}I_i}{R\sqrt{125}}, where \mu_0 = 4\pi \times 10^{-7} Tm/A, \tan(36^\circ) = \frac{B_H}{B_V} = 0.727)$ 
  - Plot  $tan\theta_i$  vs  $B_i$  with straight line. Deduce the values of  $B_V$  and  $B_H$  from the graph.
  - $B_V = B_E \cdot cos(\theta_0) \rightarrow B_E \cdot cos(36^\circ) = \boxed{0.809T}$
  - $B_H = B_E \cdot sin(\theta_0) \rightarrow B_E \cdot sin(36^\circ) = \boxed{0.588T}$
  - Calculate  $B_E = \frac{B_H}{\sin(36^\circ)} \rightarrow \frac{0.588}{\sin(36^\circ)} = \boxed{1.0004T}$
  - Lookup value of  $B_E = \frac{3.02e 5}{1.05 0.727} = 9.34 \times 10^{-5} T$
  - $Slope = \frac{1}{9.34 \times 10^{-5}T} \to \boxed{1.07 \times 10^4 T}$

## Graph

