基礎コンピュータ工学 第5章 機械語プログラミング (パート1)

https://github.com/tctsigemura/TecTextBook

本スライドの入手:

本科目の目的を再確認

「ノイマン型コンピュータ」の基本原理を学ぶ、

(99%以上のコンピュータはノイマン型だから.)

これまでに学んだこと.

- (1) 情報の表現(2 進数(ON/OFF)で情報を表現できる。) おおかみ情報,数値(計算,負数,小数),文字
- (2) コンピュータの基本回路 (2 進数の計算や記憶ができる.) NOT, AND, OR, XOR, 加算器, RS-FF
- (3) マイコンの組み立てと操作 ハンダ, コンソールパネル, レジスタ, フラグ, メモリ

コンピュータとは

- コンピュータって何?
 Compute (計算する) + er (もの) = Computer (計算機)
 もともとは、数値計算をするための機械
- 計算機? (電卓と何が違うの?) 計算手順を記憶することができる. (平均点を計算する例)

電卓:

コンピュータ:

ノイマン型コンピュータは計算手順を記憶できる.

ノイマン型コンピュータの特徴

プログラム内蔵方式(ストアード・プログラム方式)データだけでなく、プログラムもメモリに記憶する。

• 逐次実行方式

メモリに記憶したプログラムの命令を, 一つ一つ順番に(自動的に)実行する.

• 2進法

コンピュータ内部の情報表現は, ハードウェアで扱いやすい2進数を用いる.

コンピュータの構成(一般的)

- CPU
 (Central Processing Unit)
 (中央処理装置)
- 主記憶装置 (メモリ)
- 入出力インターフェース
- 入出力装置
- バス (BUS)

ロト 4回ト 4 差ト 4 差ト き めので

コンピュータの構成(TeC の場合)

CPU

• 主記憶装置 (メモリ)

- 入出力インターフェース
- 入出力装置
- バス (BUS)

TeC 内部の記憶装置

フラグ		計算結果を表す目印	8bit
レベ	G0,G1,G2	計算対象となるデータや 計算結果を一時的に置く場所	00
ジスタ	SP	G0,G1,G2同様な用途に使える。 特別な使い方もできる。	01
	PC	実行するプログラムのアドレス	03
É	記憶	プログラムや変数を置く場所	0.4
		<u></u> 8bit	
		G0	
		G1	
		G2	
	CZS	SP	FF
		PC	主記憶
	フラグ	レジスタ	(メモリ)

- フラグ
- レジスタ:PC (Program Counter) は**逐次実行**の要
- 主記憶:プログラムとデータを置く(ストアード・プログラム方式)

機械語プログラミングと機械語命令

「機械語 (Machine Language)」 = 機械 (CPU) の言語

「機械語プログラミング」=機械語プログラムを作る作業のこと

「機械語プログラム」=機械語命令で記述したプログラムのこと

「機械語命令」=機械(CPU)が理解できる命令のこと (機械語命令は2進数で表現する.)

機械語プログラムの例

機械語命令	ニーモニック	意味
$0000 \ 0000_2$	NO	No Operation
$1111 \ 1111_2$	HALT	Halt

「ニーモニック」=命令の意味の英語を簡略化した綴

機械語命令の実行

CPU は以下を繰り返し機械語プログラムを実行する.

- 1. CPU はメモリからプログラムの機械語命令を一つ取出す.
- 2. CPU は機械語命令の種類を調べる.
- 3. CPU は機械語命令の内容により計算などを行う.
- 4. CPU は次の機械語命令について 1.~3. を行う.

演習

逐次実行と PC (Program Counter) の働きを確認する.

以下のプログラムを実行した後の PC の値はいくつになるか?

番地	命令	
00_{16}	0016	NO
01_{16}	<i>FF</i> ₁₆	HALT

番地	命令	
00_{16}	00_{16}	NO
01_{16}	00_{16}	NO
02_{16}	00_{16}	NO
03_{16}	FF_{16}	HALT

番地	命令	
00_{16}	00_{16}	NO
01_{16}	00_{16}	NO
02_{16}	00_{16}	NO
03_{16}	00_{16}	NO
04_{16}	00_{16}	NO
05_{16}	00_{16}	NO
06_{16}	FF_{16}	HALT

次の言葉の意味を確認しなさい。

- プログラム内蔵方式
- 逐次実行方式
- 2進法
- CPU、メモリ

- PC
- 機械語
- ニーモニック
- NO, HALT