PROJECT: Classifying Cow's activities

AIM: Classify Cow's activities into 9 categories based on Data collected from IMU SENSORS

Data

IMU Data (Accelerometer, Gyroscope, Magnetometer)

What is IMU?

Inertial measurement unit, used to describe a collection of measurement tools, when installed in some device, catches movement with the help of accelerometer, gyroscope and magnetometer, in 3d space.

Variable names:-

- acc_x,acc_y,acc_z: accelerometer output for all 3 dimensions movement.
- gyr_x,gyr_y,gyr_z: gyroscope outputs, it measures rotation, rotation rate (angular velocity).
- mag_x,mag_y,mag_z: magnetometer outputs, catches magnetic field around the device.
- All three (Acc, Gyr, Mag) gives output in different SI Units i.e The scale for all three are different, so Data must be normalized

Classes and their Encoded values:-

- eating = 1
- drinking = 2
- walking = 3
- standing =4
- lying = 5
- ruminating standing = 6
- ruminating lying = 7
- grooming = 8
- idle/other = 9

Notebook Contents:

- 1. Dataset Information
- 2. Exploratory Data Analysis (EDA)
- 3. Feature Engineering
- 4. Modeling
- 5. Conclusion

1. Dataset Information

```
importing the common libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
import warnings
warnings.filterwarnings('ignore')
```

In [2]: #importing the dataset
 drinking = pd.read_csv(r'D:\dsap class\project\COW DATASET\Classify cow positions using
 eating = pd.read_csv(r'D:\dsap class\project\COW DATASET\Classify cow positions using
 walking = pd.read_csv(r'D:\dsap class\project\COW DATASET\Classify cow positions using
 grooming = pd.read_csv(r'D:\dsap class\project\COW DATASET\Classify cow positions using
 idle = pd.read_csv(r'D:\dsap class\project\COW DATASET\Classify cow positions using Ma
 lying = pd.read_csv(r'D:\dsap class\project\COW DATASET\Classify cow positions using Ma
 ruminating_lying = pd.read_csv(r'D:\dsap class\project\COW DATASET\Classify cow positions
 ruminating_standing = pd.read_csv(r'D:\dsap class\project\COW DATASET\Classify cow positions
 standing = pd.read_csv(r'D:\dsap class\project\COW DATASET\Classify cow positions using

In [3]: # concatenating all the csv files
df = pd.concat([drinking, eating, walking, grooming, idle, lying, ruminating_lying, ru

In [4]: #viewing the concatenated dataset
 df

Out[4]:		time	acc_x	acc_y	acc_z	gyr_x	gyr_y	gyr_z	mag_x	mag_
	0	1628079761	-0.187012	1.071289	0.321289	7.934570	-40.527344	17.028809	-526.5	1437.
	1	1628079761	-0.137207	1.099121	0.294922	0.305176	-44.677734	15.930176	-528.0	1423.
	2	1628079761	0.028320	1.053711	0.215820	-9.216309	-42.541504	10.681152	-510.0	1419.
	3	1628079761	0.151856	0.960938	0.206543	-15.502930	-31.433105	4.943848	-529.5	1428.
	4	1628079761	0.171387	0.883301	0.247070	-0.061035	-27.832031	-2.685547	-526.5	1420.
	•••									
	2539801	1628397674	0.296875	0.908691	0.293457	0.000000	-1.953125	3.540039	-643.5	880.
	2539802	1628397674	0.298828	0.915527	0.294434	0.610352	-2.624512	2.563477	-637.5	903.
	2539803	1628397674	0.301270	0.911133	0.295410	1.037598	-2.746582	3.112793	-622.5	885.
	2539804	1628397674	0.301758	0.920410	0.284668	2.014160	-2.868652	3.662109	-621.0	909.
	2539805	1628397674	0.301270	0.911133	0.289062	0.915527	-2.319336	2.868652	-645.0	900.

12263524 rows × 11 columns

In [5]: #to check the number of rows n columns
df.shape

Out[5]: (12263524, 11)

```
#checking for null values
In [6]:
        df.isnull().sum()
        time
Out[6]:
        acc_x
                 0
        acc_y
        acc_z
                 0
        gyr_x
                0
        gyr_y
                0
        gyr_z
                0
        mag_x
        mag_y
        mag z
        label
                 0
        dtype: int64
```

2. Exploratory Data Analysis

```
#checking how many rows and columns are present
In [7]:
       df.shape
       (12263524, 11)
Out[7]:
       #getting to know the column names
In [8]:
       df.columns
       Out[8]:
             dtype='object')
In [9]:
       #creating a function to create a table that has feature_name, dtype, missing values ar
       def insights_table(df):
           summary = pd.DataFrame(df.dtypes,columns=['dtypes'])
           summary = summary.reset index()
           summary['Feature_name'] = summary['index']
           summary = summary[['Feature_name','dtypes']]
           summary['Missing values'] = df.isnull().sum().values
           summary['No. Uniques_values'] = df.nunique().values
           return summary
        insights_table(df)
```

Out[9]:

	Feature_name	dtypes	Missing_values	No. Uniques_values
0	time	int64	0	106341
1	acc_x	float64	0	6843
2	acc_y	float64	0	9373
3	acc_z	float64	0	7552
4	gyr_x	float64	0	9525
5	gyr_y	float64	0	11236
6	gyr_z	float64	0	6473
7	mag_x	float64	0	1280
8	mag_y	float64	0	1920
9	mag_z	float64	0	1404
10	label	int64	0	9

Observation:

- 1. Missing Data: we don't have any missing data.
- 2. There is no object type data, all are either int or float.

```
In [10]:
           df.describe()
Out[10]:
                           time
                                          acc_x
                                                          acc_y
                                                                          acc_z
                                                                                          gyr_x
                                                                                                         gyr_y
                   1.226352e+07
                                   1.226352e+07
                                                   1.226352e+07
                                                                  1.226352e+07
                                                                                  1.226352e+07
                                                                                                  1.226352e+07
            count
                                                                   1.081455e-01
                   1.628243e+09
                                   -2.807402e-02
                                                                                                 -1.837340e+00
            mean
                                                   6.211683e-01
                                                                                  8.722215e-01
                                                                                                                 -6
              std
                   1.205662e+05
                                   2.622167e-01
                                                   7.084800e-01
                                                                   1.888613e-01
                                                                                  1.282481e+01
                                                                                                  2.014151e+01
                                                                                                                 1.
             min
                   1.628067e+09
                                  -1.599756e+01
                                                  -1.314160e+01
                                                                 -1.599121e+01
                                                                                 -1.999756e+03
                                                                                                 -1.998779e+03
             25%
                   1.628106e+09
                                   -2.182617e-01
                                                   8.281250e-01
                                                                   3.173830e-02
                                                                                 -2.014160e+00
                                                                                                 -5.676270e+00
                                                                                                                 -2.
             50%
                   1.628312e+09
                                   -2.490230e-02
                                                   9.370118e-01
                                                                   1.230469e-01
                                                                                  8.544922e-01
                                                                                                 -1.892090e+00
                                                                                                                 -6
             75%
                   1.628335e+09
                                   1.616211e-01
                                                   9.736329e-01
                                                                   2.006836e-01
                                                                                  3.723145e+00
                                                                                                  1.892090e+00
                                                                                                                  1.
                   1.628421e+09
                                   1.051514e+01
                                                   1.182617e+01
                                                                  1.599854e+01
                                                                                  1.999756e+03
                                                                                                  1.999939e+03
           df['label'].value_counts()
```

```
3405702
Out[11]:
               2539806
          7
               1928968
          5
               1711687
          6
               1703683
          9
                405263
          8
                368607
          3
                145369
          2
                  54439
          Name: label, dtype: int64
```

```
In [12]: #distribution of df
plt.pie(df['label'].value_counts(), autopct = '%1.1f%%')
plt.show()
```



```
In [13]: #understanding our target variable
sns.countplot(df['label'])
```



```
27.770990
          1
Out[14]:
                20.710246
          7
               15.729312
          5
               13.957546
          6
               13.892279
          9
                 3.304621
          8
                 3.005718
          3
                 1.185377
          2
                 0.443910
          Name: label, dtype: float64
```

Observation:

The target variables are imbalanced!

Correlation

```
In [15]:
             df.corr()
                                                acc_y
 Out[15]:
                          time
                                     асс х
                                                           acc z
                                                                      gyr_x
                                                                                 gyr_y
                                                                                            gyr_z
                                                                                                      mag_x
                                                                                                                 mag
                      1.000000
                                 -0.108821
                                            -0.118527
                                                        0.054428
                                                                  -0.005030
                                                                             -0.002011
                                                                                        -0.008394
                                                                                                    0.187664
                                                                                                               0.06635
               time
                     -0.108821
                                  1.000000
                                            0.068235
                                                       -0.064783
                                                                  -0.001430
                                                                              0.006372
                                                                                        -0.004203
                                                                                                   -0.481286
                                                                                                               0.06821
              асс х
                      -0.118527
                                 0.068235
                                             1.000000
                                                       -0.227910
                                                                  -0.023733
                                                                              0.006674
                                                                                         0.020762
                                                                                                   -0.025147
                                                                                                               0.38258
              acc_y
               acc z
                      0.054428
                                 -0.064783
                                            -0.227910
                                                        1.000000
                                                                   0.012389
                                                                             -0.009027
                                                                                        -0.010025
                                                                                                    0.157934
                                                                                                              -0.19868
                      -0.005030
                                 -0.001430
                                            -0.023733
                                                        0.012389
                                                                   1.000000
                                                                             -0.009946
                                                                                        -0.088246
                                                                                                   -0.004642
                                                                                                              -0.00983
              gyr_x
                      -0.002011
                                 0.006372
                                            0.006674
                                                       -0.009027
                                                                  -0.009946
                                                                              1.000000
                                                                                         0.041503
                                                                                                   -0.008726
                                                                                                               0.00592
              gyr_y
                      -0.008394
                                 -0.004203
                                            0.020762
                                                       -0.010025
                                                                  -0.088246
                                                                              0.041503
                                                                                         1.000000
                                                                                                    0.004679
                                                                                                              -0.00641
              gyr_z
             mag_x
                      0.187664
                                 -0.481286
                                            -0.025147
                                                        0.157934
                                                                  -0.004642
                                                                             -0.008726
                                                                                         0.004679
                                                                                                    1.000000
                                                                                                              -0.32313
                                            0.382588
                                                       -0.198680
                                                                  -0.009834
                                                                              0.005924
             mag_y
                      0.066354
                                 0.068210
                                                                                        -0.006413
                                                                                                   -0.323132
                                                                                                               1.00000
                                            0.574042
                                                      -0.337945
                                                                  -0.033924
                                                                              0.013075
                                                                                         0.022479
             mag_z
                      0.032587
                                 0.144633
                                                                                                   -0.168128
                                                                                                               0.17949
               label
                     -0.156390
                                 0.181582 -0.018375 -0.109248
                                                                   0.000211
                                                                              0.002118
                                                                                         0.001470
                                                                                                   -0.160687
                                                                                                               0.07091
4
 In [16]:
             #checking the correlation between all the features
             plt.figure(figsize=(15,10))
             cor = df.corr()
             sns.heatmap(cor,annot = True, cmap="twilight_shifted", fmt = '.0%')
             plt.show()
```



```
In [17]: plt.figure(figsize=(20,8))
    df.corr()['label'].sort_values(ascending = False).plot(kind='bar')
```

Out[17]: <AxesSubplot:>


```
In [18]: corr = df.corrwith(df['label']).sort_values(ascending = False).to_frame()
    corr.columns = ['Correlations']
    sns.heatmap(corr,annot = True,cmap = 'rainbow',linewidths = 0.6,linecolor = 'black');
    plt.title('Correlation w.r.t Target variable');
```


Seperating the dependent and independent variables

```
In [19]: #seperating the x and y variables
x = df.drop('label', axis = 1) #independent features
#x = df.iloc[:,:-1]

y = df['label'] #dependent features
#y = df.iloc[:,-1]
```

In [20]: #defining a variable named column_name n giving it all the column names expect label
column_name = ['time','acc_x', 'acc_y', 'acc_z', 'gyr_x', 'gyr_y', 'gyr_z', 'mag_x','n

Checking for outliers

```
In [21]: # Using a for loop inside a function to get the box plots(seaborn) of all the columns
def identify_outliers(give_df_name, give_column_name):
    for i in column_name:
        fig = plt.figure(figsize=(6,8))
        sns.boxplot(data = x, y = i)
plt.show()
```

In [22]: identify_outliers(x, column_name)

3. Feature Engineering

Replacing the outliers with meadian value

```
# Using a for loop inside a function to replace the outliers with median value
In [23]:
          def replace outlier(x, column name):
              for i in column_name:
                  print('column name : ',i)
                  Q1 = np.percentile(x[i], 25)
                  Q2 = np.percentile(x[i], 50)
                  Q3 = np.percentile(x[i], 75)
                  IQR = Q3 - Q1
                  print('Q1 =',Q1,'Q2 = ',Q2,'Q3 = ',Q3)
                  upper_val = Q3 + (1.5 * IQR)
                  print('upper', upper_val)
                  lower val = Q1 - (1.5 * IQR)
                  print('lower', lower_val)
                  x.loc[x[i] > upper val, i] = np.median(x[i])
                  x.loc[x[i] < lower_val, i] = np.median(x[i])
                  fig = plt.figure(figsize = (6,8))
                  sns.boxplot(data = x,y = i)
                  plt.xticks(rotation = 'horizontal')
                  plt.show()
```

In [24]: replace_outlier(x, column_name)

```
column name : time
Q1 = 1628105948.0 Q2 = 1628312235.0 Q3 = 1628335043.0
upper 1628678685.5
lower 1627762305.5
```


column name : acc_x
Q1 = -0.2182617000000001 Q2 = -0.0249023 Q3 = 0.1616211
upper 0.7314453000000001
lower -0.7880859000000002

column name : acc_y Q1 = 0.828125 Q2 = 0.9370118 Q3 = 0.9736329 upper 1.1918947500000001

lower 0.60986315

column name : acc_z Q1 = 0.0317383 Q2 = 0.1230469 Q3 = 0.2006836 upper 0.45410154999999996

column name : gyr_x
Q1 = -2.0141601 Q2 = 0.854492199999999 Q3 = 3.7231445
upper 12.329101399999999
lower -10.620116999999999

column name : gyr_y Q1 = -5.6762695 Q2 = -1.8920898 Q3 = 1.8920898

upper 13.24462875 lower -17.02880845

column name : gyr_z Q1 = -2.6855469 Q2 = -0.6103516 Q3 = 1.4648437 upper 7.6904296

column name : mag_x
Q1 = -463.5 Q2 = -253.5 Q3 = -126.0
upper 380.25
lower -969.75

column name : mag_y
Q1 = -49.5 Q2 = 139.5 Q3 = 979.5
upper 2523.0
lower -1593.0

column name : mag_z
Q1 = 69.0 Q2 = 316.5 Q3 = 552.0
upper 1276.5
lower -655.5

looking for outliers after imputing with median

In [25]: identify_outliers(x, column_name)

Observation

Outliers are now imputed with the median value

Normalization

All three (Acc, Gyr, Mag) gives output in different SI Units i.e The scale for all three are different, so Data must be normalized

```
In [26]:
         from sklearn.preprocessing import MinMaxScaler
          scaling = MinMaxScaler()
         scaling.fit_transform(x)
         array([[0.03725611, 0.3953713, 0.79278516, ..., 0.32814238, 0.83820565,
Out[26]:
                 0.6369583 ],
                [0.03725611, 0.42815819, 0.84060391, ..., 0.32703003, 0.83366935,
                 0.62714636],
                 [0.03725611, 0.53712634, 0.76258386, ..., 0.3403782, 0.83215726,
                 0.62142273],
                 [0.93311879, 0.71681137, 0.51761761, ..., 0.25695217, 0.65272177,
                 0.47751431],
                 [0.93311879, 0.71713276, 0.53355714, ..., 0.25806452, 0.66078629,
                 0.46197874],
                 [0.93311879, 0.71681137, 0.51761761, ..., 0.24026696, 0.6577621,
                 0.4627964 ]])
         x_normalized = pd.DataFrame(scaling.fit_transform(x))
In [27]:
         x_normalized.head(3)
```

ut[27]:		0	1	2	3	4	5	6		7	8		9
	0	0.037256	0.395371	0.792785	0.803907	0.810160	0.5	0.5	0.32814	2 0.83	8206	0.636	958
	1	0.037256	0.428158	0.840604	0.764834	0.475936	0.5	0.5	0.32703	0.83	3669	0.627	146
	2	0.037256	0.537126	0.762584	0.647612	0.058824	0.5	0.5	0.34037	8 0.83	2157	0.621	423
n [28]:	_	normaliz normaliz	•		(scaling	.fit_tran	sfor	m(x)	,columr	ns = x	.colu	ımns)	
	_	normaliz	ed.head(3	3)									mag z
n [28]: ut[28]:	_	-	•		acc_z 0.803907	.fit_tran gyr_x 0.810160		у д		mag_x		g_y	mag_z 0.636958
	x_	normaliz time	ed . head (3	acc_y 0.792785	acc_z	gyr_x 0.810160	gyr_	y g	jyr_z	mag_x 328142	ma	19_y 206	

Feature Selection

Selecting KBest Features using chi2

```
In [29]: #select k best
         from sklearn.feature selection import SelectKBest
         from sklearn.feature_selection import chi2
In [30]:
         #ranking the features
         select k best rank features = SelectKBest(score func = chi2, k = 5)
         k_best_features = select_k_best_rank_features.fit(x_normalized,y)
         df_k_scores = pd.DataFrame(k_best_features.scores_, columns = ['score'])
         dfcolumns = pd.DataFrame(x normalized.columns)
         k_best_feature_rank = pd.concat([dfcolumns, df_k_scores], axis = 1)
         k_best_feature_rank.columns = ('features', 'k_score')
         print(k best feature rank.nlargest(6, 'k score'))
           features
                           k_score
              time 551696.294963
              acc_x 150058.553659
         1
         7
              mag_x 106664.110641
         8
              mag_y 67694.199464
         3
              acc z 43636.740650
              acc_y 36914.462173
```

Observation:

From chi2 we see that the top 6 features are time, acc_x, mag_x, mag_y, acc_z, acc_y

Creating a new dataframe with x_normalized and y values/

```
In [31]: new_df = x_normalized
  new_df['label'] = y.values
  new_df
```

Out[31]:		time	acc_x	acc_y	acc_z	gyr_x	gyr_y	gyr_z	mag_x	mag_y	
	0	0.037256	0.395371	0.792785	0.803907	0.810160	0.500000	0.500000	0.328142	0.838206	C
	1	0.037256	0.428158	0.840604	0.764834	0.475936	0.500000	0.500000	0.327030	0.833669	C
	2	0.037256	0.537126	0.762584	0.647612	0.058824	0.500000	0.500000	0.340378	0.832157	C
	3	0.037256	0.618451	0.603188	0.633864	0.500000	0.500000	0.837037	0.325918	0.835181	C
	4	0.037256	0.631308	0.469799	0.693922	0.459893	0.500000	0.374074	0.328142	0.832661	C
	•••										
	12263519	0.933119	0.713918	0.513423	0.762663	0.462567	0.497976	0.751852	0.241379	0.651210	C
	12263520	0.933119	0.715204	0.525168	0.764110	0.489305	0.475709	0.692593	0.245829	0.658770	C
	12263521	0.933119	0.716811	0.517618	0.765557	0.508021	0.471660	0.725926	0.256952	0.652722	C
	12263522	0.933119	0.717133	0.533557	0.749638	0.550802	0.467611	0.759259	0.258065	0.660786	C
	12263523	0.933119	0.716811	0.517618	0.756150	0.502674	0.485830	0.711111	0.240267	0.657762	C
	12263524 ı	rows × 11	columns								

4. Modeling

```
In [49]: #importing libraries
         from sklearn.model selection import train test split
         from sklearn.metrics import confusion_matrix
         from sklearn.metrics import roc_auc_score
          from sklearn.metrics import plot roc curve
          from sklearn.model selection import cross val score
         from sklearn.metrics import classification report
         from sklearn.metrics import accuracy_score
         from sklearn.model_selection import RepeatedStratifiedKFold
          from sklearn.metrics import precision recall curve
          from sklearn.metrics import f1 score
          from sklearn.metrics import precision score, recall score
         from sklearn.model_selection import train_test_split
In [32]:
         x_train, x_test, y_train,y_test = train_test_split(x_normalized, y,
                                                            test size = 0.3,
                                                            random state = 42)
In [41]:
         x_train.shape, y_train.shape, x_test.shape,y_test.shape
         ((239047, 11), (239047,), (102449, 11), (102449,))
Out[41]:
In [42]:
         239047+102449
         341496
Out[42]:
         from imblearn.under_sampling import NearMiss
In [33]:
In [34]:
         # Implementing Undersampling for Handling Imbalanced
```

```
nm = NearMiss()
         x res,y res=nm.fit resample(x train,y train)
         x_res.shape, y_res.shape
         ((341496, 11), (341496,))
Out[34]:
In [37]: from collections import Counter
         print('Original dataset shape{}'.format(Counter(y_train)))
         print('Resampled dataset shape{}'.format(Counter(y res)))
         Original dataset shapeCounter({8: 26687, 9: 26630, 6: 26612, 7: 26584, 2: 26555, 3: 2
         6530, 5: 26500, 4: 26481, 1: 26468})
         Resampled dataset shapeCounter({1: 37944, 2: 37944, 3: 37944, 4: 37944, 5: 37944, 6:
         37944, 7: 37944, 8: 37944, 9: 37944})
In [46]: #splitting the data
         x train, x test, y train, y test = train test split(x res, y res, test size = 0.3, rar
         print(x train.shape, y train.shape, x test.shape)
          print('Classes and number of values in trainset before nearmiss:',Counter(y train),'\r
          print('Classes and number of values in trainset after nearmiss:',Counter(y_res),'\n')
         print('Classes and number of values in trainset after nearmiss:',Counter(y_test),'\n')
         (239047, 11) (239047,) (102449, 11)
         Classes and number of values in trainset before nearmiss: Counter({8: 26687, 9: 2663
         0, 6: 26612, 7: 26584, 2: 26555, 3: 26530, 5: 26500, 4: 26481, 1: 26468})
         Classes and number of values in trainset after nearmiss: Counter({1: 37944, 2: 37944,
         3: 37944, 4: 37944, 5: 37944, 6: 37944, 7: 37944, 8: 37944, 9: 37944})
         Classes and number of values in trainset after nearmiss: Counter({1: 11476, 4: 11463,
         5: 11444, 3: 11414, 2: 11389, 7: 11360, 6: 11332, 9: 11314, 8: 11257})
```

1. Logistic Regression

```
# importing Logistic Regression
In [47]:
         from sklearn.linear model import LogisticRegression
          classifier lr = LogisticRegression(random state = 1000, multi class = 'multinomial',pe
          #fitting the logistic regression model to x1_train and y1_train
          classifier lr.fit(x train, y train)
         y pred = classifier lr.predict(x test)
          print('model.predict :',y pred)
          print('model.score :', classifier_lr.score(x_train, y_train))
          #accuracy score
         from sklearn.metrics import accuracy score
          accuracy_lr = accuracy_score(y_test, y_pred)
         print('Accuracy : ',accuracy_lr)
         model.predict : [6 3 6 ... 6 1 4]
         model.score : 0.9909055541378892
         Accuracy: 0.9911760973752795
In [50]: #f1_score
         f1_score_lr = f1_score(y_test, y_pred, average='weighted')
         print('F1-score (average = weighted): {:.2f}'.format(f1_score_lr))
         #precision
```

```
precision_score_lr = precision_score(y_test, y_pred, average='weighted')
print('Precision (average = weighted): {:.2f}'.format(precision_score_lr))

#recall
recall_score_lr = recall_score(y_test, y_pred, average='weighted')
print('Recall (average = weighted): {:.2f}'.format(recall_score_lr))

F1-score (average = weighted): 0.99
Precision (average = weighted): 0.99
Recall (average = weighted): 0.99
```

2. Decision Tree

```
In [59]: #importing Decision Trees
         from sklearn.tree import DecisionTreeClassifier
         classifier_dtc = DecisionTreeClassifier(random_state=1000,max_depth=6,min_samples_leaf
         #fitting the logistic regression model to x1_train and y1_train
         classifier_dtc.fit(x_train, y_train)
         y pred = classifier dtc.predict(x test)
         print('model.predict :',y_pred)
         print('model.score :', classifier_dtc.score(x_train, y_train))
         #accuracy_score
         from sklearn.metrics import accuracy_score
         accuracy_dtc = accuracy_score(y_test, y_pred)
         print('Accuracy : ',accuracy_dtc)
         model.predict : [6 3 6 ... 6 1 4]
         model.score : 1.0
         Accuracy: 1.0
In [56]: #f1_score
         f1_score_dtc = f1_score(y_test, y_pred, average='weighted')
         print('F1-score (average = weighted): {:.2f}'.format(f1_score_dtc))
         #precision
         precision_score_dtc = precision_score(y_test, y_pred, average='weighted')
         print('Precision (average = weighted): {:.2f}'.format(precision_score_dtc))
         #recall
         recall_score_dtc = recall_score(y_test, y_pred, average='weighted')
         print('Recall (average = weighted): {:.2f}'.format(recall_score_dtc))
         F1-score (average = weighted): 1.00
         Precision (average = weighted): 1.00
         Recall (average = weighted): 1.00
```

3. Random Forest

```
In [53]: #import random forest
from sklearn.ensemble import RandomForestClassifier
    classifier_rf = RandomForestClassifier(n_estimators=20, random_state=23)

#fitting the logistic regression model to x1_train and y1_train
    classifier_rf.fit(x_train, y_train)
    y_pred = classifier_rf.predict(x_test)
    print('model.predict :',y_pred)
    print('model.score :', classifier_rf.score(x_train, y_train))
```

```
#accuracy score
         from sklearn.metrics import accuracy_score
         accuracy_rf = accuracy_score(y_test, y_pred)
         print('Accuracy : ',accuracy_rf)
         model.predict : [6 3 6 ... 6 1 4]
         model.score : 1.0
         Accuracy: 1.0
In [54]: #f1_score
         f1_score_rf = f1_score(y_test, y_pred, average='weighted')
         print('F1-score (average = weighted): {:.2f}'.format(f1 score rf))
         #precision
         precision_score_rf = precision_score(y_test, y_pred, average='weighted')
         print('Precision (average = weighted): {:.2f}'.format(precision_score_rf))
         recall_score_rf = recall_score(y_test, y_pred, average='weighted')
         print('Recall (average = weighted): {:.2f}'.format(recall_score_rf))
         F1-score (average = weighted): 1.00
         Precision (average = weighted): 1.00
         Recall (average = weighted): 1.00
```

4. Support Vector Machine

```
#importing svc
In [60]:
         from sklearn.svm import SVC
          classifier_svc=SVC(decision_function_shape='ovo')
          #fitting the logistic regression model to x1 train and y1 train
          classifier svc.fit(x train, y train)
         y_pred = classifier_svc.predict(x_test)
          print('model.predict :',y_pred)
          print('model.score :', classifier svc.score(x train, y train))
          #accuracy_score
         from sklearn.metrics import accuracy_score
          accuracy_svc = accuracy_score(y_test, y_pred)
          print('Accuracy : ',accuracy_svc)
         model.predict : [6 3 6 ... 6 1 4]
         model.score : 1.0
         Accuracy: 1.0
In [61]:
         #f1 score
         f1_score_svc = f1_score(y_test, y_pred, average='weighted')
          print('F1-score (average = weighted): {:.2f}'.format(f1_score_svc))
          #precision
          precision_score_svc = precision_score(y_test, y_pred, average='weighted')
          print('Precision (average = weighted): {:.2f}'.format(precision score svc))
         #recall
          recall_score_svc = recall_score(y_test, y_pred, average='weighted')
          print('Recall (average = weighted): {:.2f}'.format(recall_score_svc))
```

```
F1-score (average = weighted): 1.00
Precision (average = weighted): 1.00
Recall (average = weighted): 1.00
```

5. KNearest Neighbors

```
In [62]:
         #importing kneighbours classifier
         from sklearn.neighbors import KNeighborsClassifier
         classifier knn= KNeighborsClassifier()
         #fitting the logistic regression model to x1_train and y1_train
         classifier knn.fit(x train, y train)
         y pred = classifier knn.predict(x test)
         print('model.predict :',y_pred)
         print('model.score :', classifier_knn.score(x_train, y_train))
         #accuracy score
         from sklearn.metrics import accuracy score
         accuracy_knn = accuracy_score(y_test, y_pred)
         print('Accuracy : ',accuracy_knn)
         model.predict : [6 3 6 ... 6 1 4]
         model.score : 1.0
         Accuracy: 1.0
In [63]: #f1_score
         f1_score_knn = f1_score(y_test, y_pred, average='weighted')
         print('F1-score (average = weighted): {:.2f}'.format(f1_score_knn))
         #precision
         precision_score_knn = precision_score(y_test, y_pred, average='weighted')
         print('Precision (average = weighted): {:.2f}'.format(precision_score_knn))
         #recall
         recall_score_knn = recall_score(y_test, y_pred, average='weighted')
         print('Recall (average = weighted): {:.2f}'.format(recall_score_knn))
         F1-score (average = weighted): 1.00
         Precision (average = weighted): 1.00
         Recall (average = weighted): 1.00
```

6. AdaBoost Classifier

```
In [64]: #importing adaboost classifier
from sklearn.ensemble import AdaBoostClassifier
classifier_ada = AdaBoostClassifier()

#fitting the logistic regression model to x1_train and y1_train
classifier_ada.fit(x_train, y_train)
y_pred = classifier_ada.predict(x_test)
print('model.predict :',y_pred)
print('model.score :', classifier_ada.score(x_train, y_train))

#accuracy_score
from sklearn.metrics import accuracy_score
accuracy_ada = accuracy_score(y_test, y_pred)
print('Accuracy : ',accuracy_ada)
```

```
model.score : 0.5561751454734843
Accuracy : 0.5541098497789144

In [65]: #f1_score
    f1_score_ada = f1_score(y_test, y_pred, average='weighted')
    print('F1-score (average = weighted): {:.2f}'.format(f1_score_ada))

#precision
precision_score_ada = precision_score(y_test, y_pred, average='weighted')
print('Precision (average = weighted): {:.2f}'.format(precision_score_ada))

#recall
recall_score_ada = recall_score(y_test, y_pred, average='weighted')
print('Recall (average = weighted): {:.2f}'.format(recall_score_ada))

F1-score (average = weighted): 0.48
Precision (average = weighted): 0.47
Recall (average = weighted): 0.47
Recall (average = weighted): 0.55
```

model.predict : [6 6 6 ... 6 1 6]

MAKING A DATAFRAME OF ALL THE SCORES FOR EVERY MODEL BUILT

0.965151	0.965244	0.965520	0.965151
0.809880	0.749018	0.720360	0.809880
0.999997	0.999997	0.999997	0.999997
1.000000	1.000000	1.000000	1.000000
1.000000	1.000000	1.000000	1.000000
0.554110	0.480179	0.465484	0.554110
	0.809880 0.999997 1.000000 1.000000	0.809880 0.749018 0.999997 0.9999997 1.000000 1.000000 1.000000 1.000000	0.809880 0.749018 0.720360 0.999997 0.999997 0.999997 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000

Conclusion:

We see that almost all the algorithms expect adaboost classifier gives almost 99% accuracy

```
In [ ]:
```