The Laplace Transform

Amirhossein Afsharrad

Signals and Systems Tutorial Session 3

March 25, 2020

Overview

- Introduction
- Properties of the ROC
- 3 Properties of the Laplace Transform
- 4 The Laplace Transform and LTI Systems

Introduction

Introduction

Definition

The Laplace transform of a continuous-time signal x(t) is:

$$X(s) = \int_{-\infty}^{+\infty} x(t)e^{-st}dt$$
 , $s \in \mathbb{C}$, $s = \sigma + j\omega$

$\overline{\mathsf{Example}}\ \#1$

$$x_1(t) = e^{-at}u(t)$$
$$X_1(s) =$$

Introduction 0000000

$$x_1(t) = e^{-at}u(t)$$

$$x_1(t) = e^{-at}u(t)$$

$$X_1(s) = \int_{-\infty}^{+\infty} x_1(t)e^{-st}dt$$

$$x_1(t) = e^{-at}u(t)$$

$$X_1(s) = \int_{-\infty}^{+\infty} x_1(t)e^{-st}dt$$

$$= \int_{-\infty}^{+\infty} e^{-at}e^{-st}u(t)dt$$

$$x_1(t) = e^{-at}u(t)$$

$$X_1(s) = \int_{-\infty}^{+\infty} x_1(t)e^{-st}dt$$

$$= \int_{-\infty}^{+\infty} e^{-at}e^{-st}u(t)dt$$

$$= \int_{0}^{+\infty} e^{-(a+s)t}dt$$

$$x_1(t) = e^{-at}u(t)$$

$$X_1(s) = \int_{-\infty}^{+\infty} x_1(t)e^{-st}dt$$

$$= \int_{-\infty}^{+\infty} e^{-at}e^{-st}u(t)dt$$

$$= \int_{0}^{+\infty} e^{-(a+s)t}dt$$

$$= \frac{-1}{a+s}e^{-(s+a)t}\Big|_{0}^{\infty}$$

$$x_1(t) = e^{-at}u(t)$$

$$X_1(s) = \int_{-\infty}^{+\infty} x_1(t)e^{-st}dt$$

$$= \int_{-\infty}^{+\infty} e^{-at}e^{-st}u(t)dt$$

$$= \int_{0}^{+\infty} e^{-(a+s)t}dt$$

$$= \frac{-1}{a+s}e^{-(s+a)t}\Big|_{0}^{\infty} = \frac{1}{s+a}$$

$$x_{1}(t) = e^{-at}u(t)$$

$$X_{1}(s) = \int_{-\infty}^{+\infty} x_{1}(t)e^{-st}dt$$

$$= \int_{-\infty}^{+\infty} e^{-at}e^{-st}u(t)dt$$

$$= \int_{0}^{+\infty} e^{-(a+s)t}dt$$

$$= \frac{-1}{a+s}e^{-(s+a)t}\Big|_{0}^{\infty} = \frac{1}{s+a} \quad , \quad \mathbf{Re}\{s\} > -\mathbf{Re}\{a\}$$

Introduction

$$x_2(t) = -e^{-at}u(-t)$$
$$X_1(s) =$$

$$x_2(t) = -e^{-at}u(-t)$$

$$X_1(s) = \int_{-\infty}^{+\infty} x_2(t)e^{-st}dt$$

$$x_2(t) = -e^{-at}u(-t)$$

$$= \int_{-\infty}^{+\infty} x_2(t)e^{-st}dt = \int_{-\infty}^{+\infty} -e^{-at}e^{-st}u(-t)dt$$

$$x_2(t) = -e^{-at}u(-t)$$

$$= \int_{-\infty}^{+\infty} x_2(t)e^{-st}dt = \int_{-\infty}^{+\infty} -e^{-at}e^{-st}u(-t)dt$$

$$= \int_{-\infty}^{0} -e^{-(s+a)t}dt$$

$$x_2(t) = -e^{-at}u(-t)$$

$$= \int_{-\infty}^{+\infty} x_2(t)e^{-st}dt = \int_{-\infty}^{+\infty} -e^{-at}e^{-st}u(-t)dt$$

$$= \int_{-\infty}^{0} -e^{-(s+a)t}dt = \int_{0}^{+\infty} -e^{(s+a)t}dt$$

$$x_{2}(t) = -e^{-at}u(-t)$$

$$= \int_{-\infty}^{+\infty} x_{2}(t)e^{-st}dt = \int_{-\infty}^{+\infty} -e^{-at}e^{-st}u(-t)dt$$

$$= \int_{-\infty}^{0} -e^{-(s+a)t}dt = \int_{0}^{+\infty} -e^{(s+a)t}dt$$

$$= \frac{-1}{s+a}e^{(s+a)t}\Big|_{0}^{\infty} = \frac{1}{s+a}$$

$$x_{2}(t) = -e^{-at}u(-t)$$

$$= \int_{-\infty}^{+\infty} x_{2}(t)e^{-st}dt = \int_{-\infty}^{+\infty} -e^{-at}e^{-st}u(-t)dt$$

$$= \int_{-\infty}^{0} -e^{-(s+a)t}dt = \int_{0}^{+\infty} -e^{(s+a)t}dt$$

$$= \frac{-1}{s+a}e^{(s+a)t}\Big|_{0}^{\infty} = \frac{1}{s+a} , \quad \mathbf{Re}\{s\} < -\mathbf{Re}\{a\}$$

Summary - Examples #1 and #2

$$x_1(t) = e^{-at}u(t)$$

$$X_1(s) = \frac{1}{s+a}$$

$$\mathbf{Re}\{s\} > -\mathbf{Re}\{a\}$$

$$x_2(t) = -e^{-at}u(-t)$$

$$X_2(s) = \frac{1}{s+a}$$

$$\mathbf{Re}\{s\} < -\mathbf{Re}\{a\}$$

Summary - Examples #1 and #2

$$x_1(t) = e^{-at}u(t)$$

$$X_1(s) = \frac{1}{s+a}$$

$$\mathbf{Re}\{s\} > -\mathbf{Re}\{a\}$$

$$x_2(t) = -e^{-at}u(-t)$$

$$X_2(s) = \frac{1}{s+a}$$

$$\mathbf{Re}\{s\} < -\mathbf{Re}\{a\}$$

• Note that
$$X_1(s) = X_2(s)$$
 while $x_1(t) \neq x_2(t)$.

• The Laplace transform is not unique without specifying where X(s) is defined.

Summary - Examples #1 and #2

$$x_1(t) = e^{-at}u(t)$$

$$X_1(s) = \frac{1}{s+a}$$

$$\mathbf{Re}\{s\} > -\mathbf{Re}\{a\}$$

$$x_2(t) = -e^{-at}u(-t)$$

$$X_2(s) = \frac{1}{s+a}$$

$$\mathbf{Re}\{s\}<-\mathbf{Re}\{a\}$$

- Note that $X_1(s) = X_2(s)$ while $x_1(t) \neq x_2(t)$.
- The Laplace transform is not unique without specifying where X(s) is defined.

The Region of Convergence

Definition

The region of the complex plane for which the Laplace transform X(s) is defined is called the **Region Of Convergence (ROC)**.

Remarl

The Laplace transform of a continuous-time signal is a pair (X(s), ROC). To answer the question "Find the Laplace transform of the signal x(t)", reporting X(s) without specifying the ROC is **an incomplete answer**.

The Region of Convergence

Definition

The region of the complex plane for which the Laplace transform X(s) is defined is called the **Region Of Convergence (ROC)**.

Remark

The Laplace transform of a continuous-time signal is a pair (X(s), ROC). To answer the question "Find the Laplace transform of the signal x(t)", reporting X(s) without specifying the ROC is **an incomplete answer**.

The Inverse Laplace Transform

The following equation for the inverse Laplace transform is *rarely* used.

Formula

$$x(t) = \frac{1}{2\pi i} \int_{\sigma - i\infty}^{\sigma + j\infty} X(s) e^{st} ds$$

The value of σ can be chosen as any value for which X(s) converges – i.e., any value such that the straight line of integration $\mathbf{Re}(s) = \sigma$ is in the ROC.

Property 1

The ROC of X(s) consists of strips parallel to the $j\omega$ -axis in the s-plane.

Property 2

For rational Laplace transforms, the ROC does not contain any poles.

Property 3

If x(t) is of finite duration and is absolutely integrable, then the ROC is the entire s-plane.

Property 4

If x(t) is right-sided, and if the line $\mathbf{Re}\{s\} = \sigma_0$ is in the ROC, then all values of s for which $\mathbf{Re}\{s\} > \sigma_0$ will also be in the ROC.

Definition

The signal x[n] or x(t) is called **right-sided** if:

$$\exists n_0 \ , \ \forall n < n_0 \ : \ x[n] = 0$$

$$\exists t_0, \forall t < t_0 : x(t) = 0$$

Property 5

If x(t) is left sided, and if the line $\mathbf{Re}\{s\} = \sigma_0$ is in the ROC, then all values of s for which $\mathbf{Re}\{s\} < \sigma_0$ will also be in the ROC.

Definition

The signal x[n] or x(t) is called **left-sided** if:

$$\exists n_0 \ , \ \forall n > n_0 \ : \ x[n] = 0$$

$$\exists t_0 , \forall t > t_0 : x(t) = 0$$

Property 6

If x(t) is two sided, and if the line $\mathbf{Re}\{s\} = \sigma_0$ is in the ROC, then the ROC will consist of a strip in the s-plane that includes the line $\mathbf{Re}\{s\} = \sigma_0$.

Definition

The signal x[n] or x(t) is called **two sided** if it is neither left-sided nor right-sided.

Property 7

If the Laplace transform X(s) of x(t) is rational, then its ROC is bounded by poles or extends to infinity. In addition, no poles of X(s) are contained in the ROC.

Property 8

If the Laplace transform X(s) of x(t) is rational, then if x(t) is right sided, the ROC is the region in the s-plane to the right of the rightmost pole. If x(t) is left sided, the ROC is the region in the s-plane to the left of the leftmost pole.

$$X(s) = \frac{2(s+2)}{s^2 + 7s + 12} \Rightarrow x(t) = ?$$

$$X(s) = \frac{2(s+2)}{s^2 + 7s + 12} \Rightarrow x(t) = ?$$

$$X(z) = \frac{2(s+2)}{(s+3)(s+4)}$$

$$X(s) = \frac{2(s+2)}{s^2 + 7s + 12} \Rightarrow x(t) = ?$$

$$X(z) = \frac{2(s+2)}{(s+3)(s+4)}$$
$$= \frac{4}{s+4} - \frac{2}{s+3}$$

$$X(s) = \frac{2(s+2)}{s^2 + 7s + 12} \Rightarrow x(t) = ?$$

$$X(z) = \frac{2(s+2)}{(s+3)(s+4)}$$
$$= \frac{4}{s+4} - \frac{2}{s+3}$$

Do you remember the results from examples #1 and #2?

$$X(s) = \frac{2(s+2)}{s^2 + 7s + 12} \Rightarrow x(t) = ?$$

$$X(z) = \frac{2(s+2)}{(s+3)(s+4)}$$
$$= \frac{4}{s+4} - \frac{2}{s+3}$$

$$x(t) = \begin{cases} 4e^{-4t}u(t) - 2e^{-3t}u(t) \\ 4e^{-4t}u(t) + 2e^{-3t}u(-t) \\ -4e^{-4t}u(-t) + 2e^{-3t}u(-t) \\ -4e^{-4t}u(-t) - 2e^{-3t}u(t) \end{cases}$$

$$X(s) = \frac{2(s+2)}{s^2 + 7s + 12} \Rightarrow x(t) = 4e^{-4t}u(t) - 2e^{-3t}u(t)$$

$$X(s) = \frac{2(s+2)}{s^2 + 7s + 12} \Rightarrow x(t) = 4e^{-4t}u(t) + 2e^{-3t}u(-t)$$

$$X(s) = \frac{2(s+2)}{s^2 + 7s + 12} \Rightarrow x(t) = -4e^{-4t}u(-t) + 2e^{-3t}u(-t)$$

$$X(s) = \frac{2(s+2)}{s^2 + 7s + 12} \Rightarrow x(t) = -4e^{-4t}u(-t) - 2e^{-3t}u(t)$$

Properties of the Laplace Transform

Linearity

lf

$$x_1(t) \xleftarrow{\mathcal{L}} X_1(s)$$
, with ROC = R_1

and

$$x_2(t) \xleftarrow{\mathcal{L}} X_2(s)$$
, with ROC = R_2

then

$$ax_1(t) + bx_2(t) \xleftarrow{\mathcal{L}} aX_1(s) + bX_2(s)$$

with ROC containing $R_1 \cap R_2$

Time Shifting

lf

$$x(t) \xleftarrow{\mathcal{L}} X(s)$$
, with ROC = R

then

$$x(t - t_0) \xleftarrow{\mathcal{L}} e^{-st_0} X(s)$$

with ROC = R

Shifting in the s-Domain

lf

$$x(t) \xleftarrow{\mathcal{L}} X(s)$$
, with ROC = R

then

$$e^{s_0t}x(t) \longleftrightarrow X(s-s_0)$$

with
$$ROC = R + \mathbf{Re}\{s_0\}$$

Time Scaling

lf

$$x(t) \xleftarrow{\mathcal{L}} X(s)$$
, with ROC = R

then

$$x(at) \xleftarrow{\mathcal{L}} \frac{1}{|a|} X\left(\frac{s}{a}\right)$$
 with $ROC = |a|R$

Conjugation

lf

$$x(t) \xleftarrow{\mathcal{L}} X(s)$$
, with ROC = R

then

$$x^*(t) \longleftrightarrow \mathcal{L} X^*(s^*)$$

with
$$ROC = R$$

Convolution Property

lf

$$x_1(t) \xleftarrow{\mathcal{L}} X_1(s)$$
, with ROC = R_1

and

$$x_2(t) \xleftarrow{\mathcal{L}} X_2(s)$$
, with ROC = R_2

then

Property 6

$$x_1(t) * x_2(t) \longleftrightarrow \mathcal{L} \to X_1(s)X_2(s)$$

with ROC containing $R_1 \cap R_2$

Differentiation in the Time Domain

lf

$$x(t) \xleftarrow{\mathcal{L}} X(s)$$
, with ROC = R

then

Property 7

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} \longleftrightarrow sX(s)$$

with ROC containing ${\it R}$

Differentiation in the s - Domain

lf

$$x(t) \xleftarrow{\mathcal{L}} X(s)$$
, with ROC = R

then

$$-tx(t) \longleftrightarrow \frac{\mathrm{d}X(s)}{\mathrm{d}s}$$

with
$$ROC = R$$

Integration in the Time Domain

lf

$$x(t) \xleftarrow{\mathcal{L}} X(s)$$
, with ROC = R

then

Property 9

$$\int_{-\infty}^{t} x(\tau) d\tau \longleftrightarrow \frac{\mathcal{L}}{s} X(s)$$

with ROC containing $R \cap \{\mathbf{Re}\{s\} > 0\}$

The Initial Value Theorem

If x(t) = 0 for t < 0 and x(t) contains no impulses or higher order singularities at the origin, then

$$\lim_{t \to 0^+} x(t) = \lim_{s \to \infty} sX(s)$$

The Final Value Theorem

If x(t) = 0 for t < 0 and x(t) has a finite limit as $t \to \infty$, then

$$\lim_{t \to \infty} x(t) = \lim_{s \to 0} sX(s)$$

Suppose the following facts are given about the signal x(t) with Laplace transform X(s):

- x(t) is real and even.
- X(s) has four poles and no zeros in the finite s-plane.
- X(s) has a pole at $s=\left(\frac{1}{2}\right)\,e^{j\pi/4}.$
- $\bullet \int_{-\infty}^{\infty} x(t) dt = 4$

Determine X(s) and its ROC.

$$p_{1} = \left(\frac{1}{2}\right) e^{j\pi/4}$$

$$p_{2} = \left(\frac{1}{2}\right) e^{-j\pi/4}$$

$$p_{3} = -\left(\frac{1}{2}\right) e^{j\pi/4}$$

$$p_{4} = -\left(\frac{1}{2}\right) e^{-j\pi/4}$$

$$X(s) = \frac{K}{(s^{2} - \frac{1}{\sqrt{2}}s + \frac{1}{4})(s^{2} + \frac{1}{\sqrt{2}}s + \frac{1}{4})}$$

$$X(s) = \frac{K}{(s^2 - \frac{1}{\sqrt{2}}s + \frac{1}{4})(s^2 + \frac{1}{\sqrt{2}}s + \frac{1}{4})}$$
$$\int_{-\infty}^{\infty} x(t)dt = 4$$
$$\Rightarrow X(s) = \frac{\frac{1}{4}}{(s^2 - \frac{1}{\sqrt{2}}s + \frac{1}{4})(s^2 + \frac{1}{\sqrt{2}}s + \frac{1}{4})}$$
$$ROC: -\frac{1}{2\sqrt{2}} < \mathbf{Re}\{s\} < \frac{1}{2\sqrt{2}}$$

The Laplace Transform and LTI Systems

System Transfer Function

The input-output relationship for an LTI system with impulse response h(t):

$$y(t) = h(t) * x(t)$$

Using the convolution property of the Laplace transform:

$$Y(s) = H(s)X(s)$$

$$H(s) = \frac{Y(s)}{X(s)}$$

Definition

H(s) is called the **transfer function** (or **system function**) of the system.

Note that H(s) is the Laplace transform of the impulse response of the system.

Causality of LTI Systems

Theorem

The ROC associated with the system function for a causal LTI system is a right-half plane.

Note that the converse of this statement is not necessarily true. That is, an ROC to the right of the rightmost pole does not guarantee that a system is causal; rather, it guarantees only that the impulse response is right sided.

$$h(t) = e^{-(t+1)}u(t+1) \Rightarrow H(s) = \frac{e^s}{s+1}$$
, $\mathbf{Re}\{s\} > -1$

Causality of LTI Systems

Theorem

For a system with a rational system function, causality of the system is equivalent to the ROC being the right-half plane to the right of the rightmost pole.

Stability of LTI Systems

Theorem

An LTI system is stable if and only if the ROC of its system function H(s) includes the entire jw-axis [i.e., $\mathbf{Re}\{s\}=0$].

Find the impulse response of the system described by the differential equation

$$\frac{\mathrm{d}^2 y(t)}{\mathrm{d}t^2} - \frac{\mathrm{d}y(t)}{dt} - 2y(t) = x(t)$$

if the system is:

- (a) stable.
- (b) causal.
- (c) non-causal and unstable.

$$\frac{d^2 y(t)}{dt^2} - \frac{dy(t)}{dt} - 2y(t) = x(t)$$
$$s^2 Y(s) - sY(s) - 2Y(s) = X(s)$$

$$s^{2} Y(s) - s Y(s) - 2 Y(s) = X(s)$$

$$\frac{d^2 y(t)}{dt^2} - \frac{dy(t)}{dt} - 2y(t) = x(t)$$
$$s^2 Y(s) - sY(s) - 2Y(s) = X(s)$$

$$H(s) = \frac{Y(s)}{X(s)} = \frac{1}{s^2 - s - 2}$$

$$\frac{d^2 y(t)}{dt^2} - \frac{dy(t)}{dt} - 2y(t) = x(t)$$
$$s^2 Y(s) - sY(s) - 2Y(s) = X(s)$$

$$H(s) = \frac{Y(s)}{X(s)} = \frac{1}{s^2 - s - 2}$$
$$= \frac{1/3}{s - 2} - \frac{1/3}{s + 1}$$

For a stable system:

$$H(s) = \frac{1/3}{s-2} - \frac{1/3}{s+1}$$

$$h(t) = -\frac{1}{3}e^{2t}u(-t) - \frac{1}{3}e^{-t}u(t)$$

For a causal system:

$$H(s) = \frac{1/3}{s-2} - \frac{1/3}{s+1}$$

$$h(t) = \frac{1}{3}e^{2t}u(t) - \frac{1}{3}e^{-t}u(t)$$

For a non-causal and unstable system:

$$H(s) = \frac{1/3}{s-2} - \frac{1/3}{s+1}$$

$$h(t) = -\frac{1}{3}e^{2t}u(-t) + \frac{1}{3}e^{-t}u(-t)$$

