Chapter Two: Mathematical fundamental for studying ANN

Dinesh Mainali Pulchowk Campus

Vector and Matrix foundamentals

- Matrices, vectors and vector function provide framework for visualization and computation
- Many concepts involve visualization of points in ddimensional space
- Its easy if d is less than or equal to 3 but for d>3 its hard

Elementary matrices

• A n x m dimensional matrix arranges mn entities in an array of n rows each with m elements

$$A = [a_{ij}]$$
 $i=1,2...n$ $j=1,2,...m$

Properties

- If m=n—square matrix
- If m=1---column vector
- If n=1--- row vector
- Vectors are represented by underline e.g <u>x</u>, length of vector is also called dimension in vector space within which the vector resides
- If m=n=1 the matrix is scalar
- Transpose of A denoted by A^T is $[a_{ji}]$ j = 1,2...m and i = 1,2,...n
- If A= A^T matrix is called symmetric and A must be square for that

Matrix partition

p and *q* are real and positive integer

Matrix A of order *mxn* is partitioned as above. Such partition is useful for visualization and computation

• A column vector most important partition of a matrix is into an array of column vectors as

$$A = [\underline{a}_{\underline{1}}, \underline{a}_{\underline{2}}, \dots \underline{a}_{\underline{m}}]$$

_here a_i is a nx1 dimensional column vector

Elementary matrix operation

- Addition (subtraction)
- Multiplication
- Scaling

C= A X B A is *mxn* and B is *nxp* order matrix

For this $c_{ij} = \sum a_{ik}b_{kj}$ k runs from 1 to n

Vectors

• For any positive integer 'd' let R^d represents set of all ordered n tuples of the form

$$\{x_1, x_2, \dots, x_d\}$$

- They can be viewed as the co-ordinates of a point x in d dimensional space- and it is necessary that the co-ordinate system is specified
- A x_i co-ordinate can be represented using vector as

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \vdots \\ \mathbf{x}_d \end{bmatrix}$$

Linearity

• If a mapping function holds superposition then it is said to be linear

$$x = ax_1 + bx_2$$
 implies that $f(x) = f(x_1) + f(x_2)$

Vector Matrix equation

Multiple interpretation of this equations

