1.

a)

Internal: 1500 External: 1501

Let n be total number of nodes in complete tree, i be number of internal nodes and e number of external. From structure of tree, we know n = i + e and e = i + 1. We may substitute e into first equation to obtain n = i + (i + 1) which can be rearranged to e = (n+1)/2. We may then subtract this from n to obtain i = (n-1)/2.

b)

$$h = floor(log_2(3) + k)$$

For complete binary tree, we know $n \le 2^{h+1} - 1$, and solving for inequality yields $h = floor(log_2(n))$. In this case, $n = 3(2^k)$, and we may say $h = floor(log_2(3(2^k)))$. Simplifying using properties of logarithm gives $h = floor(k + log_2(3))$

c)

Case 1: long chain of single child nodes, where there is only one external node (last node) and rest are internal nodes

Min external = 1; max internal = n -1

Case 2: only internal node is the root and all children are external nodes Max external = n - 1; min internal = 1

2.

Preorder: X A K C J L B S R

Identified root by taking last element of postorder traversal. Then drew tree based on both outputs – if didn't know where to place a node based off of one output, switch to other and use both outputs (and their respective traversal orders) to see position of node.

Postorder: 1,2,9,7,13,11,6,5 (Not non-increasing)

4. a)

45	12	67	41	30	32	į	58	38	step1
45	29	67	52	20	5	ı	3	34	step 2
45	12	67	41	30	32	;	58	38	step 2
45									step 3 downheaping
45	12 29	43 67	41 52	30	5 32	3	3 58	34 38	step 4
45	29	12	41		5	3	3	34	step 5 downheaping
45		12 67			5 32		58		step 6
		12		3		5			step 7
45	29 43	67	41 52	59	30 32	į	3 58	34 38	step 7 downheaping
									1 3

removeMin() 4x

b)

12 30 32 45 41 67 58 38

45 41 67 58

need reorder

45 38 52 41 67

5
12
30
29
34
58
45
38
52
41
67
43

12
32
30
29
34
58
45
38
52
41
67
43
3

need reorder

3
12
5
30
29
34
32
45
38
52
41
67
43
58

3
12
5
30
29
34
32
45
38
52
41
67
43
58

final heap

45 38 52 41 67 43 58 59

```
5.
class StackwPQ<E>{
Private PriorityQueue <Pair<Integer, E>> p;
//ts assumed to be in min mode. If in max mode, just need change a few things
Private int key = 0;
Public StackwPQ(){
       This.p = new PriorityQueue();
}
Public void push( E val){
       p.add(new Pair(key, val);
       Key - -;//since stack is LIFO, last pushed is min
}
Public E pop(){
       If p.isEmpty()
              Throw exception or something
       Return (p.removeMin().getElement());
}
Public boolean isEmpty(){
       Return p.isEmpty();
}
Public E peek(){
       If (p.isEmpty()) throw exception
       Return p.min();
}
}
```