

SBGN Competition 2010 How to represent EGFR pathway? A Case Study

2010/Aug Manami Katoh, Yukiko Matsuoka JST ERATO Kawaoka Infection-Induced Host Response Network Project

SBGN Process Description Diagram EGFR Signaling Pathway

What would be the best representation of SBGN Process Description Diagram notation, using EGFR signaling pathway as an example?

Protocol

- 1. Take a model from Panther Pathways Database: http://www.pantherdb.org/pathway/
- Import the model to CellDesigner Ver.4.1.
 http://celldesigner.org
- 3. Re-layout the model.
- 4. Convert it using SBGN Viewer function of CellDesigner.
- 5. Export the model image in .SVG or .PDF format.
- 6. Adjust the detail settings of the model using Illustrator.

Panther Pathways Database Standard View

Get the original file from Pantherdb

Panther Pathways Database Lite View

Panther Pathways Database SBGN view

Layout a Signaling Pathway

- Align: to illustrate Flow of Information
 - Cascade
 - Input / Output (Top-to-Bottom or Left-to-Right)
- Merge: Duplicate Species or Merge them?
- Connect: Lines Straight or Orthogonal bend?
- Modifications: Catalyse or Inhibit?
- Complex: Position of the Components?
- Dimer: Dimer? Two Components in parallel?

MAP-1: Align

Align Components Vertically and Horizontally

MAP-2: Merge

Merge the common components

MAP-3-1: Connect - Straight

Connecting Modification Reactions in Direct lines

MAP-3-2: Connect - Orthogonal

Connecting Modification in Orthogonal

Pattern: Modifications at Process Node

A

Easy to identify the number of modifications but the connections are overlapped around the process node.

C

Drawing the same type of modifications lines from the same direction.

B

Easy to identify the number of modifications and connection types can easily detect.

D

Use a Boolean logic gates

Pattern: Receptors 1

A Show details of modifications

B Show flow of state transition (simplified)

C Show state transition and the details of modifications

Pattern: Receptors 2

Gab1-mediated downstream signalin

Oda et al. 2005

A Show everything (details of modifications of all the component in the complexes.)

EGFR ShC ShC EGF@EGFR EGF EGF EGFR **EGFR** Shč³¹7 Grb2 Grb2@EGFR_Y1068/1086F b1@EGFR Y1068/108 EGFR **EGFR** Gab1 b1@EGFR_Y1068/1086 EGFR EGFR Active D

Grb2-mediated downstream signalin

hc-mediated downstream signaling

B Highlight modifications only

Pattern: Dimerization

A Receptor as a Dimer

B Two receptors in a complex

C Different receptors form a complex

Supplementary files

Files:

- EGF_receptor_signaling_pathway(.xml/.png)*Original Panther Pathways Models
- MAP1_Align(.xml /.ai /.png)
- MAP2_Merge(.xml /.ai /.png)
- MAP3-1_Connect-Straight(.xml /.ai /.png)
- MAP3-2_Connect-Orthogonal(.xml /.ai /.png)
- Modifications (.xml /.ai /.png)
- Receptors1_ErbB2 (.xml)
- Receptors1 (.ai /.png)
- Receptors2_Oda-etal2005_A (.xml /.ai /.png)
- Receptors2_Oda-etal2005_B (.xml /.ai /.png)
- Dimerization (.ai /.png)