(Documento) apresentada à Pró-Reitoria de Pós-Graduação e Pesquisa do Instituto Tecnológico de Aeronáutica, como parte dos requisitos para obtenção do título de (Titulo) em Ciências no Curso de Engenharia Aeronáutica, Área de Sistemas Aeroespaciais e Mecatrônica.

João Paulo de Souza Oliveira

MODELAGEM DE UM CONTROLADOR DE ATUADOR ELETROHIDRÁULICO PARA ESTIMATIVA DE DEMANDA DE POTÊNCIA ELÉTRICA, FATOR DE POTÊNCIA E TOTAL HARMONIC DISTORTION

(Documento) aprovada em sua versão final pelos abaixo assinados:

Prof. Dr. Roberto D'amore Orientador

Eng. MSc. Andre Domingues Rocha de Oliveira Coorientador

Prof. Dr. John von Neumann Pró-Reitor de Pós-Graduação e Pesquisa

Campo Montenegro São José dos Campos, SP - Brasil 2015

Dados Internacionais de Catalogação-na-Publicação (CIP) Divisão Biblioteca Central do ITA/CTA

de Souza Oliveira, João Paulo

Modelagem de um Controlador de Atuador Eletrohidráulico para Estimativa de Demanda de Potência Elétrica, Fator de Potência e *Total Harmonic Distortion* / João Paulo de Souza Oliveira. São José dos Campos, 2015.

(Documento) de — Curso de Engenharia Aeronáutica. Área de Sistemas Aeroespaciais e Mecatrônica — Instituto Tecnológico de Aeronáutica, 2015. Orientador: Prof. Dr. Roberto D'amore. Coorientador: Eng. MSc. Andre Domingues Rocha de Oliveira.

1. Cupim. 2. Dilema. 3. Construção. I. Centro Técnico Aeroespacial. Instituto Tecnológico de Aeronáutica. Divisão de Engenharia Mecânica. II. Título.

REFERÊNCIA BIBLIOGRÁFICA

DE SOUZA OLIVEIRA, João Paulo. Modelagem de um Controlador de Atuador Eletrohidráulico para Estimativa de Demanda de Potência Elétrica, Fator de Potência e *Total Harmonic Distortion*. 2015. 27f. (Documento) de – Instituto Tecnológico de Aeronáutica, São José dos Campos.

CESSÃO DE DIREITOS

NOME DO AUTOR: João Paulo de Souza Oliveira

TITULO DO TRABALHO: Modelagem de um Controlador de Atuador Eletrohidráulico para Estimativa de Demanda de Potência Elétrica, Fator de Potência e *Total Harmonic Distortion*.

TIPO DO TRABALHO/ANO: (Documento) / 2015

E concedida ao Instituto Tecnológico de Aeronáutica permissão para reproduzir cópias desta (Documento) e para emprestar ou vender cópias somente para propósitos acadêmicos e científicos. O autor reserva outros direitos de publicação e nenhuma parte desta (Documento) pode ser reproduzida sem a autorização do autor.

MODELAGEM DE UM CONTROLADOR DE ATUADOR ELETROHIDRÁULICO PARA ESTIMATIVA DE DEMANDA DE POTÊNCIA ELÉTRICA, FATOR DE POTÊNCIA E TOTAL HARMONIC DISTORTION

João Paulo de Souza Oliveira

Composição da Banca Examinadora:

Prof. Dr.	Alan Turing	Presidente	-	ITA
Prof. Dr.	Roberto D'amore	Orientador	-	ITA
Eng. MSc.	Andre Domingues Rocha de Oliveira	Coorientador	-	Embraer
Prof. Dr.	Linus Torwald		-	UXXX
Prof. Dr.	Richard Stallman		-	UYYY
Prof. Dr.	Donald Duck		-	DYSNEY
Prof. Dr.	Mickey Mouse		_	DISNEY

Aos esforçados alunos de Pós-Graduação do ITA, por criarem este magnífico template LATEX, permitindo que eu ficasse ainda mais longe do Word:-)

E a um cara do INPE, que apesar de já ser doutor, ainda se rebaixa a essas coisas de mexer com templates :O).....(Agradeça até ao seu animal de estimação, caso queira.) João

Agradecimentos

Primeiramente, gostaria de agradecer ao Dr. Donald E. Knuth, por ter desenvolvido o T_EX.

Ao Dr. Leslie Lamport,

por ter criado o La TeX, facilitando muito a utilização do TeX, e assim, eu não ter que usar o Word.

Ao Prof. Dr. Meu Orientador,

pela orientação e confiança depositada na realização deste trabalho.

Ao Dr. Nelson D'Ávilla,

por emprestar seu nome a essa importante via de trânsito na cidade de São José dos Campos.

Ah, já estava esquecendo... agradeço também, mais uma vez ao TEX, por ele não possuir vírus de macro :-)

Resumo

Aqui começa o resumo do referido trabalho. Não tenho a menor idéia do que colocar aqui. Sendo assim, vou inventar. Lá vai: Este trabalho apresenta uma metodologia de controle de posição das juntas passivas de um manipulador subatuado de uma maneira subótima. O termo subatuado se refere ao fato de que nem todas as juntas ou graus de liberdade do sistema são equipados com atuadores, o que ocorre na prática devido a falhas ou como resultado de projeto. As juntas passivas de manipuladores desse tipo são indiretamente controladas pelo movimento das juntas ativas usando as características de acoplamento da dinâmica de manipuladores. A utilização de redundância de atuação das juntas ativas permite a minimização de alguns critérios, como consumo de energia, por exemplo. Apesar da estrutura cinemática de manipuladores subatuados ser idêntica a do totalmente atuado, em geral suas caraterísticas dinâmicas diferem devido a presença de juntas passivas. Assim, apresentamos a modelagem dinâmica de um manipulador subatuado e o conceito de índice de acoplamento. Este índice é utilizado na sequência de controle ótimo do manipulador. A hipótese de que o número de juntas ativas seja maior que o número de passivas $(n_a > n_p)$ permite o controle ótimo das juntas passivas, uma vez que na etapa de controle destas há mais entradas (torques nos atuadores das juntas ativas), que elementos a controlar (posição das juntas passivas).

Abstract

Well, the book is on the table. This work presents a control methodologic for the position of the passive joints of an underactuated manipulator in a suboptimal way. The term underactuated refers to the fact that not all the joints or degrees of freedom of the system are equipped with actuators, which occurs in practice due to failures or as design result. The passive joints of manipulators like this are indirectly controlled by the motion of the active joints using the dynamic coupling characteristics. The utilization of actuation redundancy of the active joints allows the minimization of some criteria, like energy consumption, for example. Although the kinematic structure of an underactuated manipulator is identical to that of a similar fully actuated one, in general their dynamic characteristics are different due to the presence of passive joints. Thus, we present the dynamic modelling of an underactuated manipulator and the concept of coulpling index. This index is used in the sequence of the optimal control of the manipulator.

30

Sumário

Lista de Figuras				
Lista de Tabelas				
Lista de Abreviaturas e Siglas xi				
Lista de Símbolos xiv				
1 Introdução	15			
2 Qualidade de Energia em Aeronaves	<u>16</u>			
2.1 Tendência de Aumento da Capacidade de Geração Elétrica em Ae-				
ronaves	17			
2.1.1 Tipos de Geradores e Sistemas de Distribuição	20			
2.2 Análise de Cargas Elétricas em Aeronaves	20			
2.2.1 Atuadores Eletrohidrostáticos	20			
2.3 Problemas Causados Pelas Harmônicas na Rede	20			
2.3.1 DO-160	20			
2.3.2 MIL-STD 704	20			
2.3.3 Conversores com Alto Fator de Potência	20			
2.3.4 Filtros Passivos	20			
2.3.5 Filtros Ativos	20			
3 FILTROS ATIVOS EM SISTEMAS ELÉTRICOS	21			
3.1 Definição de Potência Ativa, Reativa e Fator de Potência	21			
3.1.1 Definição de Potências em Sistemas Senoidais	21			

3.1.2	Definição de Potências em Sistemas Não-Senoidais	21
3.1.3	Potência Instantânea Utilizando a Teoria P-Q	21
3.2	Filtros Ativos	21
3.2.1	Filtros Ativo Empregando a Teoria P-Q	21
	Conceito de Conversor Estático na Aplicação de Fil-	22
5 (Conclusão	23
Refi	erências Bibliográficas	24
APÊ	NDICE A – TÓPICOS DE DILEMA LINEAR	25
A.1	Uma Primeira Seção para o Apêndice	25
Ane	xo A – Exemplo de um Primeiro Anexo	26
A.1	Uma Seção do Primeiro Anexo	26
Ane	xo B – To usando craque	27

Lista de Figuras

FIGURA 2.1 – Aumento capacidade de geração de aeronaves $[5]$	17
FIGURA 2.2 – Aumento da capacidade de geração ao longo dos anos $\dots \dots$	18
FIGURA 2.3 – Tendência futura para o mercado de aviação [4]	19
FIGURA A 1 –Uma figura que está no apêndice	25

Lista de Tabelas

Lista de Abreviaturas e Siglas

MEA More Electric Aircraft

CTq computed torque

DC direct current

EAR Equação Algébrica de Riccati

GDL graus de liberdade

ISR interrupção de serviço e rotina

LMI linear matrices inequalities

MIMO multiple input multiple output

PD proporcional derivativo

PID proporcional integrativo derivativo

PTP point to point

UARMII Underactuated Robot Manipulator II

VSC variable structure control

xiv

Lista de Símbolos

CO₂ Dióxido de Carbono

nada nada

a Escalar

a Vetor

 a_1 Primeiro componente de **a**

 $a_{1,k}$ Primeiro componente de \mathbf{a}_k

A Matriz

 \mathbf{e}_{j} Vetor unitário de dimensão n e com o j-ésimo componente igual a 1

 δ_{k-k_f} Delta de Kronecker delta no instante k_f

1 Introdução

5 Págs

2 Qualidade de Energia em Aeronaves

O mercado da aviação tem passado por uma mudança nos preceitos de desenvolvimento de sistemas que vão desde a utilização de novas tecnologias embarcadas até a mudança na concepção de operação da aeronave. Essa tendência vem ocorrendo de maneira natural como evolução do mercado pela demanda de aeronaves mais eficientes e competitivas. Nesse contexto há o conceito de *More Electric Aircraft* (MEA) e, como o próprio nome diz, essa concepção baseia-se em aeronaves cuja filosofia de projeto contempla o uso abundante de sistemas alimentados eletricamente com o objetivo de aumentar a eficiência e confiabilidade [1].

As aeronaves comumente possuem sistemas hidráulicos, pneumáticos e elétricos que passam a receber suas potências diretamente do eixo do motor da aeronave. Essa transferência de energia dá-se por caixas de engrenagens que condicionam a velocidade do eixo e o torque de modo a impulsionar bombas hidráulicas e geradores elétricos. Ainda há o sistema pneumático que possui como fonte de energia o sangramento de ar comprimido do motor [2]. Tais sistemas são imprescindíveis para o funcionamento operacional da aeronave visto que equipamentos que provém a aeronavegabilidade e o conforto de cabine utilizam de tais sistemas. Essa topologia de projeto, contemplando a utilização destes sistemas, é comumente utilizada nas aeronaves comerciais e militares em geral.

O conceito de MEA não é exatamente novo, esse tema vem sendo estudado por décadas e a ideia de contemplar uma aeronave com a substituição de sistemas que necessitam de energia do motor por àqueles movidos por eletricidade está bem estabelecido [3]. Devido à falta de tecnologias de condicionamento de energia elétrica para utilização na indústria aeroespacial, seja pela baixa capacidade potência, seja pelo volume e peso excessivos, os conceitos de utilização abundante do sistema elétrico está sendo objeto de estudos para quando as tecnologias de conversão e geração de alta capacidade estiverem melhor estabelecidas. Desse modo, os sistemas hidráulicos e pneumáticos continuam sendo utilizados de maneira convencional [3, 2]. Contudo, o desenvolvimento de novas tecnologias nas áreas de eletrônica de potência, como semicondutores que aguentam maiores capacidade de tensão e corrente, e na área de geração de energia elétrica, como geradores com maior eficiência, com maiores capacidades e densidade de energia por peso específico, vem tornando possível a implementação de sistemas elétricos que substituem parcialmente ou totalmente os sistemas hidráulicos ou pneumáticos. Isso pode ser visto nos mais recentes desenvolvimentos de aeronaves, como por exemplo o Boeing 787, onde a redução da emissão de CO₂ é 20% menor se comparado com o Boeing 767 [4].

O ganho não se dá apenas na redução do consumo de combustível e emissão de

gases pela queima de combustíveis fósseis, mas há também a redução de peso e volume de sistemas, aumento de segurança, melhora na confiabilidade e manutenabilidade [1, 2, 4].

2.1 Tendência de Aumento da Capacidade de Geração Elétrica em Aeronaves

Seguindo a tendência de aumentar a quantidade de sistemas elétricos para melhorar a eficiência em aeronaves, a geração desse tipo de energia teve de acompanhar a demanda de carga de modo a suprir o aumento vertiginoso de potência elétrica requerida. Com o avanço tecnológico nas áreas de geração e distribuição, o aumento de demanda de potência pode ser atendido pelo sistema elétrico, e ainda, seguindo os critérios impostos pelo projeto nos quesitos de peso, confiabilidade e eficiência. Com esse aumento na capacidade de geração e distribuição, cada vez mais os sistemas vêm sendo substituídos por sistema elétricos cujas funções substituem o emprego do sistemas hidráulicos e pneumáticos. Segundo [5], o aumento da capacidade de geração de energia aumentará significativamente com o a troca de sistemas que possuem equivalentes movidos pela energia elétrica. Esse aumento está acontecendo no cenário atual no mercado de aviação e esta tendência pode ser vista na figura 2.1. Ainda, elencando os dados da capacidade de geração segundo o critério da data de lançamento das aeronaves, pode-se notar que a capacidade de geração ao longo do tempo vem crescendo exponencialmente, como é demonstrado na figura 2.2.

FIGURA 2.1 – Aumento capacidade de geração de aeronaves [5]

A elevação na precificação do combustível e o aumento na participação deste fator nos custos operacionais de uma aeronave fazem com que a eficiência e o baixo utilização de energia, atrelado às baixas emissões de gases que aumentam o efeito estufa, sejam itens cruciais para tornar uma aeronave competitiva no mercado de aviação [6]. Para atender a

Dá de en-cher mais lin-guiça pelas referencias Ab-de-lha-fez2009 Ab-

del201

FIGURA 2.2 – Aumento da capacidade de geração ao longo dos anos

esse requisito de mercado no que tange a eficiência, uma série de fatores vem sendo alvo de estudos para melhorar a consumo de combustível. Pode-se enumerar alguns destes fatores como: melhor eficiência aerodinâmica; otimização estrutural; maior eficiência do motor; melhor aproveitamento no suo de energia pelos sistemas [6]. Nesse contexto, futuro da aviação segue uma tendência de utilizar uma gama ainda maior de sistemas dependentes de energia elétrica. Isso reflete em um menor gasto de energia necessária por passageio por quilometro voado e a tendência futura é que todos os sistemas da aeronave seja inteiramente elétricos [4], como mostra a figura 2.3. A intensa utilização de energia elétrica não é feita nas aeronaves atuais pelo simples fato de ainda não haver um desenvolvimento tecnológico suficientemente avançado que propicie tal tendência. Limitações nas áreas de armazenamento de energia, engenharia de materiais, eletrônica de potência, entre outros, fazem com que as aeronaves sejam projetadas com a utilização de sistemas que dependam de arquiteturas convencionais.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

FIGURA 2.3 – Tendência futura para o mercado de aviação [4]

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

2.1.1 Tipos de Geradores e Sistemas de Distribuição

2.2 Análise de Cargas Elétricas em Aeronaves

Assim, o uso de conversores para alimentar cargas não lineares vem poluindo a rede

o uso de cargas não lineares suja a rede, degradando a qualidade de energia

2.2.1 Atuadores Eletrohidrostáticos

[7]

2.3 Problemas Causados Pelas Harmônicas na Rede

os problemas da energia suja são

2.3.1 DO-160

2.3.2 MIL-STD 704

métodos são necessários para mitigar esse problema

2.3.3 Conversores com Alto Fator de Potência

2.3.4 Filtros Passivos

2.3.5 Filtros Ativos

3 Filtros Ativos Em Sistemas Elétricos

30 Págs

3.1 Definição de Potência Ativa, Reativa e Fator de Potência

blbalbablablablablabal

- 3.1.1 Definição de Potências em Sistemas Senoidais
- 3.1.2 Definição de Potências em Sistemas Não-Senoidais
- 3.1.3 Potência Instantânea Utilizando a Teoria P-Q
- 3.1.3.1 Transformada de Clarke
- 3.2 Filtros Ativos
- 3.2.1 Filtros Ativo Empregando a Teoria P-Q

4 Conceito de Conversor Estático na Aplicação de Filtros Ativos

40 Págs

5 Conclusão

5 Págs

Referências Bibliográficas

- [1] MOIR, I. More-electric aircraft-system considerations. In: *IEE Colloquium on Electrical Machines and Systems for the More Electric Aircraft*. Londres: IET, 1999.
- [2] ABDEL-HAFEZ, A.; FORSYTH, A. A review of more-electric aircraft. In: 13th International Conference on Aerospace Science & Aviation Technology (ASAT-13). Cairo: Military Technical College, 2009.
- [3] ABDEL-HAFEZ, A. Recent Advances in Aircraft Technology. Arábia Saudita: IN-TECH, 2012. Cap. Power Generation and Distribution System for a More Electric Aircraft-A Review.
- [4] KARIMI, K. J. Future Aircraft Power Systems Integration Challenges. [S.l.]: The Boeing Company, 2007.
- [5] SRIMOOLANATHAN, B. Aircraft Electrical Power Systems Charged with Opportunities. 2008. Acessado em 29/03/2014. Disponível em: https://www.frost.com/sublib/display-market-insight.do?id=150507057.
- [6] BABIKIAN, R.; LUKACHKO, S. P.; WAITZ, I. A. The historical fuel efficiency characteristics of regional aircraft from technological, operational, and cost perspectives. *Journal of Air Transport Management*, Elsevier, v. 8, n. 6, p. 389–400, 2002.
- [7] RAJASHEKARA, K. More electric aircraft trends. IEEE Electrification Magazine, v. 2, 2014.

Apêndice A - Tópicos de Dilema Linear

A.1 Uma Primeira Seção para o Apêndice

A matriz de Dilema Linear M e o vetor de torques inerciais b, utilizados na simulação são calculados segundo a formulação abaixo:

$$M = \begin{bmatrix} M_{11} & M_{12} & M_{13} \\ M_{21} & M_{22} & M_{23} \\ M_{31} & M_{32} & M_{33} \end{bmatrix}$$
 (A.1)

FIGURA A.1 – Uma figura que está no apêndice

Anexo A - Exemplo de um Primeiro Anexo

A.1 Uma Seção do Primeiro Anexo

Algum texto na primeira seção do primeiro anexo.

Anexo B - To usando craque

FOLHA DE REGISTRO DO DOCUMENTO 2. DATA $^{1.}$ CLASSIFICAÇÃO/TIPO $^{3.}$ DOCUMENTO No 4. Nº DE PÁGINAS TD25 de março de 201527 DCTA/ITA/TD-018/2015 ^{5.} TÍTULO E SUBTÍTULO: Modelagem de um Controlador de Atuador Eletrohidráulico para Estimativa de Demanda de Potência Elétrica, Fator de Potência e Total Harmonic Distortion $\overline{6}$. AUTOR(ES): João Paulo de Souza Oliveira $^{7.}$ INSTITUIÇÃO(ÕES)/ÓRGÃO(S) INTERNO(S)/DIVISÃO(ÕES): Instituto Tecnológico de Aeronáutica – ITA 8. PALAVRAS-CHAVE SUGERIDAS PELO AUTOR: Cupim; Cimento; Estruturas 9. PALAVRAS-CHAVE RESULTANTES DE INDEXAÇÃO: Cupim; Dilema; Construção ¹⁰. APRESENTAÇÃO: (X) Nacional () Internacional ITA, São José dos Campos. Curso de Doutorado. Programa de Pós-Graduação em Engenharia Aeronáutica e Mecânica. Área de Sistemas Aeroespaciais e Mecatrônica. Orientador: Prof. Dr. Adalberto Santos Dupont. Defesa em 05/03/2015. Publicada em 25/03/2015. ¹¹. RESUMO: Aqui começa o resumo do referido trabalho. Não tenho a menor idéia do que colocar aqui. Sendo assim, vou inventar. Lá vai: Este trabalho apresenta uma metodologia de controle de posição das juntas passivas de um manipulador subatuado de uma maneira subótima. O termo subatuado se refere ao fato de que nem todas as juntas ou graus de liberdade do sistema são equipados com atuadores, o que ocorre na prática devido a falhas ou como resultado de projeto. As juntas passivas de manipuladores desse tipo são indiretamente controladas pelo movimento das juntas ativas usando as características de acoplamento da dinâmica de manipuladores. A utilização de redundância de atuação das juntas ativas permite a minimização de alguns critérios, como consumo de energia, por exemplo. Apesar da estrutura cinemática de manipuladores subatuados ser idêntica a do totalmente atuado, em geral suas caraterísticas dinâmicas diferem devido a presença de juntas passivas. Assim, apresentamos a modelagem dinâmica de um manipulador subatuado e o conceito de índice de acoplamento. Este índice é utilizado na sequência de controle ótimo do manipulador. A hipótese de que o número de juntas ativas seja maior que o número de passivas $(n_a > n_p)$ permite o controle ótimo das juntas passivas, uma vez que na etapa de controle destas há mais entradas (torques nos atuadores das juntas ativas), que elementos a controlar (posição das juntas passivas).

^{12.} GRAU DE SIGILO:

(X) OSTENSIVO () RESERVADO

() CONFIDENCIAL

() SECRETO