Chimique

Correction du TD

Transformations

Identifier la nature des transformations suivantes :

1)
$$CH_4 + 2O_2 = CO_2 + 2H_2O$$

5)
$$\operatorname{Fe}_{(s)} = \operatorname{Fe}_{(l)}$$

____ Réponse ____

Physique

6) $CH_3COOH + CH_3CH_2OH = CH_3COOCH_2CH_3 + H_2O$ _____ Réponse _____

——— Réponse ———

Chimique

7) $Zn + Cu^{+2} = Zn^{+2} + Cu$

_____ Réponse _____ ____ Nucléaire

_____ Réponse _____ Chimique

4) ${}^{14}\text{C} + \text{O}_2 \rightarrow {}^{14}\text{CO}_2$ Chimique

 $\begin{array}{ccc}
\bullet \cup_2 & \to \ ^{14}\mathrm{CO}_2 & & 8) & \mathrm{CH_3COOH} + \mathrm{HO}^- = \mathrm{H_2O} + \mathrm{CH_3COO}^- \\
& & \bullet & \bullet & \bullet \\
\bullet & & \bullet & \bullet & \bullet \\
\bullet & & \bullet & \bullet & \bullet & \bullet \\
\bullet & & & \bullet & \bullet & \bullet & \bullet \\
\bullet & & & & \bullet & \bullet & \bullet & \bullet \\
\bullet & & & & & \bullet & \bullet & \bullet & \bullet \\
\bullet & & & & & & \bullet & \bullet & \bullet \\
\bullet & & & & & & \bullet & \bullet & \bullet \\
\bullet & & & & & & & \bullet & \bullet & \bullet \\
\bullet & & & & & & & & \bullet & \bullet \\
\bullet & & & & & & & & \bullet & \bullet \\
\bullet & & & & & & & & & \bullet & \bullet \\
\bullet & & & & & & & & & \bullet & \bullet \\
\bullet & & & & & & & & & & \bullet \\
\bullet & & & & & & & & & & & \bullet \\
\bullet & & & & & & & & & & & & \bullet \\
\bullet & & & & & & & & & & & & & & & \\
\bullet & & & & & & & & & & & & & & \\
\bullet & & & & & & & & & & & & & \\
\bullet & & & & & & & & & & & & \\
\bullet & & & & & & & & & & & & \\
\bullet & & & & & & & & & & & \\
\bullet & & & & & & & & & & & \\
\bullet & & & & & & & & & & \\
\bullet & & & & & & & & & & \\
\bullet & & & & & & & & & & \\
\bullet & & & & & & & & & \\
\bullet & & & & & & & & & \\
\bullet & & & & & & & & \\
\bullet & & & & & & & & \\
\bullet & & & & & & & & \\
\bullet & & & & & & & & \\
\bullet & & & & & & & \\
\bullet & & & & & & & \\
\bullet & & & & & & & \\
\bullet & & & & & & & \\
\bullet & & & & & & & \\
\bullet & & & & & & & \\
\bullet & & & & & & & \\
\bullet & & & & & & & \\
\bullet & & & & & & & \\
\bullet & & & & & & & \\
\bullet & & & & & \\
\bullet & & & & & \\
\bullet & & & & \\
\bullet & & & & & \\
\bullet & & & & & \\
\bullet & & & & \\
\bullet & & & &$ _____ Réponse _____

II | Calculs de quantités de matière

Données -

$$M(\text{Fe}) = 55.8 \,\text{g} \cdot \text{mol}^{-1}$$
 et $M(\text{Cu}) = 63.5 \,\text{g} \cdot \text{mol}^{-1}$

1) On verse dans un bécher une masse $m = 350 \,\mathrm{mg}$ de poudre de fer métallique. Quelle est la quantité de matière n_{Fe} correspondante?

— Réponse —

2) On dispose d'un flacon contenant $V_0 = 800 \,\mathrm{mL}$ de solution de sulfate de cuivre contenant les ions Cu^{2+} à la concentration $C = 0.50 \,\mathrm{mol} \cdot \mathrm{L}^{-1}$. Quelle est la quantité de matière correspondante?

— Réponse ———

 $n_0 = CV_0 = 0.4 \,\mathrm{mol}$

3) On prélève $V=50\,\mathrm{mL}$ de cette solution. Quelle est la concentration du prélèvement ? Quelle est la quantité de matière $n_{\mathrm{Cu}^{2+}}$ prélevée ?

– Réponse –

Le prélèvement est à la même concentration C que la solution mère :

$$n_{\text{Cu}^{2+}} = CV = 2.5 \times 10^{-2} \,\text{mol} = 25 \,\text{mmol}$$

Le prélèvement est versé dans le bécher; une transformation chimique a lieu.

4) À l'issue de cette transformation, on obtient du cuivre métallique en quantité de matière $n_f = 4.8 \,\mathrm{mmol}$. Quelle est la masse correspondante?

 $\overline{m_{\rm Cu} = n_f M_{\rm Cu}} = 0.30\,\mathrm{g} = 300\,\mathrm{mg}$

5) On obtient également la même quantité de matière n_f d'ions Fe^{2+} . Quelle est la concentration correspondante?

[Fe²⁺]_f = $\frac{n_f}{V}$ = 9.6 × 10⁻² mol·L⁻¹

III Dilution et mélange

On dispose d'une solution de sulfate de cuivre contenant les ions Cu^{2+} et les ions sulfate $\mathrm{SO_4}^{2-}$ à la même concentration $C_0 = 1 \times 10^{-2} \,\mathrm{mol} \cdot \mathrm{L}^{-1}$. On en prélève à la pipette jaugée un volume $V_0 = 10 \,\mathrm{mL}$ que l'on verse dans une fiole jaugée de volume $V_1 = 50 \,\mathrm{mL}$. On remplit la fiole d'eau distillée jusqu'au trait de jauge.

1) Quelle est la concentration C_1 en ions Cu^{2+} et en ions SO_4^{2-} dans la fiole?

------ Réponse ----

On note n_0 la quantité de matière prélevée. Attention, V_1 est le volume **total** de la fiole, différent du volume d'eau ajouté. Ainsi,

$$C_1 = \frac{n_0}{V_1} = \frac{C_0 V_0}{V_1} = 2 \times 10^{-3} \,\text{mol} \cdot \text{L}^{-1}$$

♦ -

On verse le contenu de cette fiole dans un bécher. On y ajoute un volume $V_2=20\,\mathrm{mL}$ d'une solution de sulfate de magnésium, contenant les ions Mg^{2+} et les ions $\mathrm{SO_4}^{2-}$ à la même concentration $C_2=2\times 10^{-2}\,\mathrm{mol}\cdot\mathrm{L}^{-1}$.

2) Calculer les concentrations des trois ions après le mélange.

- Réponse -

Les ions cuivre ne viennent que de la solution 1, les ions magnésium que de la solution 2, mais les ions sulfate sont apportés par les deux solutions.

$$[\mathrm{Cu}^{2+}] = \frac{n_{\mathrm{Ce}^{2+},1}}{V_{\mathrm{tot}}} = \frac{C_1 V_1}{V_1 + V_2} = 1,4 \times 10^{-3} \,\mathrm{mol} \cdot \mathrm{L}^{-1}$$

$$[\mathrm{Mg}^{2+}] = \frac{n_{\mathrm{Mg}^{2+},2}}{V_{\mathrm{tot}}} = \frac{C_2 V_2}{V_1 + V_2} = 5,7 \times 10^{-3} \,\mathrm{mol} \cdot \mathrm{L}^{-1}$$

$$[\mathrm{SO_4}^{2-}] = \frac{n_{\mathrm{SO_4}^{2-},1} + n_{\mathrm{SO_4}^{2-},2}}{V_{\mathrm{tot}}} = \frac{C_1 V_1 + C_2 V_2}{V_1 + V_2} = 7,1 \times 10^{-3} \,\mathrm{mol} \cdot \mathrm{L}^{-1}$$

- 🔷

Concentration en soluté apporté

$$M(Mg) = 24.3 \,\mathrm{g \cdot mol^{-1}}$$
 et $M(Cl) = 35.5 \,\mathrm{g \cdot mol^{-1}}$

1) Identifier les ions présents dans l'acide sulfurique H₂SO₄. Écrire l'équation de dissolution.

—— Réponse —

Ce sont les ions H⁺ et SO₄²⁻. L'équation de la dissolution s'écrit

$$H_2SO_{4(s)} \longrightarrow 2 H^+_{(aq)} + SO_4^{2-}_{(aq)}$$

2) On ajoute une quantité de matière $n_{\rm app}=2\times 10^{-2}\,{\rm mol}$ en acide sulfurique dans de l'eau distillée. Déterminer les quantités de matière de chaque ion dans la solution formée.

– Réponse

D'après l'équation de dissolution, une molécule de solide libère deux ions H⁺ et un ion SO_4^{2-} . On en déduit $n_{H^+} = 2n_{app} = 4 \times 10^{-2}$ mol et $n_{SO_4^{2-}} = n_{app} = 2 \times 10^{-2}$ mol.

3) La solution des questions précédentes a un volume $V=200\,\mathrm{mL}$. Calculer la concentration en soluté approté, puis les concentrations des ions dans la solution après dissolution.

Réponse -

$$C_{\text{app}} = \frac{n_{\text{app}}}{V} = 0.1 \,\text{mol} \cdot \text{L}^{-1} \,; \, [\text{H}^+] = 0.2 \,\text{mol} \cdot \text{L}^{-1} \,\text{et} \, [\text{SO}_4{}^{2-}] = 0.1 \,\text{mol} \cdot \text{L}^{-1}.$$

4) On considère une solution de chlorure de chrome $CrCl_3$ de concentration en soluté apporté $c = 5 \times 10^{-3} \,\mathrm{mol} \cdot \mathrm{L}^{-1}$. Déterminer les concentrations des ions dans la solution.

—— Réponse —

L'équation de dissolution s'écrit

$$\operatorname{CrCl}_{3(s)} \longrightarrow \operatorname{Cr}^{3+}_{(aq)} + 3\operatorname{Cl}^{-}_{(aq)}$$

On en déduit

$$[\mathrm{Cr}^{3+}] = c = 5 \times 10^{-3} \, \mathrm{mol} \cdot \mathrm{L}^{-1} \quad \text{ et } \quad [\mathrm{Cl}^{-}] = 3c = 1.5 \times 10^{-2} \, \mathrm{mol} \cdot \mathrm{L}^{-1}$$

5) On dissout $m=6.0\,\mathrm{g}$ de chlorure de magnésium MgCl₂ dans 200 mL d'eau distillée. Calculer la concentration en soluté approté, puis les concentrations des ions dans la solution

— Réponse -

Raisonnons sur la quantité de matière apportée :

$$n_{\rm app} = \frac{m}{M_{\rm Mg} + 2M_{\rm Cl}}$$
 donc $C_{\rm app} = \frac{m}{(M_{\rm Mg} + 2M_{\rm Cl})V} = 0.315\,{\rm mol\cdot L^{-1}}$

 \Diamond

