Project 3 (12/4/2020) Maximum points 15

- 1. Solve problem 5-7 of book. Use the angle between the Earth's orbital velocity and the position vector of the launch site, $\theta=74^{\circ}$, $V_{\infty}=10290$ m/s and is to be parallel to the Earth's velocity. This problem is to be solved by iteration. You will get a quadratic equation involving eccentricity ε and the position angle v_L at launch. Also you will get a second equation involving v_L , ε , and θ .
 - a. Begin with $v_L = 0$. Solve the quadratic for ε by using the "roots" function in MATLAB. Using the "find" function in MATLAB, choose the positive solution for ε , and save that solution in an array; obtain the new value of v_L from the second equation. Save the new value of v_L in an array and also store new minus old values of v_L in an array. Use a "while loop" in MATLAB, as long as this difference is greater than 0.4.

 - c. Plot ε , v_L as a function of the iteration.
 - d. Using the converged value of ε , find the perigee of the orbit.
 - e. Also find the launch velocity and corresponding elevation angle.

The submission should be typed and include analysis, diagrams, MATLAB code as necessary.