Queues

- · Is a linear list of elements
- . Deletion take place only at one end called
 - · Insertion take place only at other end
 - . Queues are also called first-in-first-out
 - The order in which elements enter a queue is the order in which they leave.
 - egy > people vainting in a line at a Bank. → Movie Ticket Counter

 - -> Railway Ticket Counter.
 - -> Time sharing system -> in operating system in which programs with same priority journ a queue while waiting to be enewted. Called priority queue

Queues may be sepsembed by in computer by one-way list linear Arrays.

Array Representation of a Queue: -

- . If FRONT = NULL | queue is empty
- . When an element is added to the queue, the value of Rear increased by 1

 REAR = REAR +1
- When an element is deleted from the greve, then the value of FRONT is increased by I FRONT = FRONT +1

FRONT=NULL
REAR = NULL

FRONT=1 REAR = 2

REAR = 4

FRONT=2 REAR= 4

FRONT = 3 REAR = 5

-	1.	and the second second
١	rage	-3
,	0	

Assume Array Queue as circular queue.

i.e if REAR = N

and we want to insert another item

then we seset REAR = 1 // since queue is

circular

· Similarly , if FRONT = N and an element of Queue is to be deleted, then we reset

FRONT = 1 instead of of FRONT to N+1

°: queve à ciouler

Suppose an Queue Contain only I element

Suppose an Queue Contain only I element

FRONT = NULL J 99 we delete it

So we seset mem

L REAR = NULL as shown

Example

FRONT =0 REAR =0

Insert A, B, C

FRONT=1 REAR=3

Delete A

FRONT=2 RRAR=3

queue.

QINSERT ()

S

1. If FRONT = 1 and REAR N Then: / Onene is Write: Overflow & setum filled.

2 If FRONT = NULL then: | Queue is intially

Set FRONT = 1 and Rear = 1 | empty.

Else if REAR = N then

Else if REAR = N then

Set REAR = 1

Else

RET REAR = REAR +1

3. Set Queue [REAR] = item | 9 noest new element remains arrange.

4. Return.

Page - 6 This proceduse deletes on element from a queue and assigns it to the warriable ITEM If front FRONT = NULL then: | Queue already empty. Set ITEM = Queue [FRONT] // April no rapiable If FRONT = REAR then: || Queue has only one

Set FRONT = NULL

and REAR = NULL

Set FRONT = N then:

Set FRONT = I

Set FRONT = FRONT+1

Set FRONT = FRONT+1

Scanned by CamScanner

	Page -8
The	my edure insert on ITEM in a linked queue
1.	Create a new node with help of ponter say Temp either using melluc()
2	Read the item into the new nesde i.e INFO[Temp] = ITEM and LINK[Temp] = NULL
	If FRONT = NULL then: Queue is empty. Then insert Temp CRONT = REAR = Temp Containing item as first rushe. of the Queue Q.
	Else Set LINK [REAR] = Temp Rear points to new rule and REAR = Temp. appended to the end of list.

4. Exit

This procedure deletes from the front element.

I If FRONT = NULL than | Winhed queue is write Underflow & Exit empty.

de Set Temp = FRONT | arrige a possule at the

3: ITEM = INFO[Temp] || saves me value of

y. FRONT = LINK [temp] | Reset FRONT to
point to nixt rade

OF PRONT = LINK [PRONT]

5: Free (temp);

6. Evit