Template-based Approach to Zero-shot Intent Recognition

Dmitry Lamanov¹, Pavel Burnyshev¹, Ekaterna Artemova^{1,2},

Valentin Malykh¹, Andrey Bout¹, Irina Piontkovskaya¹

¹Huawei Noah's Ark lab, ²HSE University

Generalized Zero-Shot paradigm for intent recognition

Task: recognize user intent by utterance

Zero-shot scenarios:

Generalized zero-shot learning

[Xian et al., 2018]

- train with seen intents
- infer with both seen and unseen
- Dataless classification
 - train with seen intent labels, no annotated utterances are available
 - infer with both seen and unseen

Please set up an alarm tomorrow in the

Add Alarm

morning

like to listen Beethoven

I am so damn bored? Find Events

OK. Can you find some classic music? I'd

Lookup Music

Sounds great. Can you play this song?

Play Song

Sentence pair modeling approach

Problem formulation:

- Let X be the set of utterances, $S = \{y_1, \dots, y_k\}$ set of seen intents, $U = \{y_{k+1}, \dots, y_n\}$ set of unseen intents.
- Training data $\{x_i, y_j\}$.
- At the test time in the GZS setup model choses an intent from both seen and unseen $y_i \in S \cup U$.

Our approach:

- Model encodes y_j and x_i concatenated by [SEP] token. Representation of the [CLS] token fed into classification head to get prediction $P(1|y_i|x_i)$
- At the test time we loop over all intents $y_j \in S \cup U$ and select intent with maximum probability of positive class
- Leverages contextualized pretrained encoders like: RoBERTa, BERT, TOD-BERT
- Lexicalization of intent labels: utilize simple grammar templates to convert into natural-sounding sentences
- Negative sampling strategy: sampling hard negative utterances for a fixed intent (y_j, x_l^+) and (y_j, x_m^-)

Lexicalization templates

Most of the intent labels take such form:

```
VERB + NOUN^+ like book hotel NOUN^+ like flight status
```

Lexicalized expression:

```
template + VERB + a/an + NOUN+
Default verb: "get"
```

Examples:

- the user wants to book a hotel
- does the user want to get a flight status

ID	Template
	declarative templates
d_1	the user wants to
	the user wants to book a hotel
d_2	tell the user how to
	tell the user how to book a hotel
	question templates
$\overline{q_1}$	does the user want to
	does the user want to book a hotel
q_2	how do I
	how do I book a hotel

Datasets

Schema-Guided Dialog (SGD)

[Rastogi et al., 2020]
Preprocessing: keep utterances where users express an intent.
Original splitting

MultiWoZ 2.2 (Multi-domain Wizard of Oz) [Budzianowski et al., 2018]

CLINC

[Larson et al., 2019]

	SGD	MultiWoz	CLINC
# Utterances	59.4K	27.5K	23.7K
# Domains	16	7	10
# Intents	46	11	112

Comparison with other methods

	SGD				MultiWoZ				CLINC			
Method	Unseen		Seen		Unseen		Seen		Unseen		Seen	
	Acc	F1	Acc	F1	Acc	F1	Acc	F1	Acc	F1	Acc	F1
SEG (Yan et al., 2020)	0.372	0.403	0.613	0.636	0.371	0.414	0.652	0.646	_	_	_	-
RIDE+PU (Siddique et al., 2021)	0.590	0.573	0.832	0.830	0.569	0.521	0.884	0.885	0.798	0.573	0.908	0.912
ZSDNN + CTIR (Si et al., 2021)	0.603	0.580	0.809	0.878	0.468	0.437	0.827	0.892	0.561	0.493	0.904	0.871
CapsNet + CTIR (Si et al., 2021)	0.567	0.507	0.897	0.912	0.481	0.404	0.903	0.906	0.530	0.572	0.866	0.883
SP RoBERTa (ours)	0.698	0.732	0.917	0.925	0.606	0.686	0.903	0.919	0.661	0.742	0.946	0.954
SP RoBERTa + templates (ours)	0.750	0.805	0.931	0.934	0.624	0.722	0.941	0.948	0.692	0.766	0.927	0.931

Dataless classification

Synthetic utterances: paraphrased lexicalized intent labels

Example:

 $\underbrace{\textit{get alarms} \xrightarrow{\textit{lexicalize}}}_{\textit{tell the user how to get alarms}} \underbrace{\textit{paraphrase}}_{\textit{paraphrase}} \xrightarrow{\textit{What's the best way to get an alarm?}}$

	SGD					Mult	iWoZ		CLINC			
Train data: intent labels +	Uns	seen	Seen		Unseen		Seen		Unseen		Seen	
	Acc	F1	Acc	F1	Acc	F1	Acc	F1	Acc	F1	Acc	F1
original utterances	0.687	0.716	0.916	0.922	0.594	0.705	0.903	0.912	0.639	0.731	0.894	0.903
synthetic utterances	0.666	0.688	0.746	0.778	0.615	0.642	0.621	0.713	0.580	0.613	0.608	0.654

Conclusion

Key contributions of the paper:

- Sentence pair modeling in GZS intent recognition established state-of-the-art results
- Lexicalization of intent labels yields significant improvement
- Training in dataless regime, task transferring experiments, ablation studies and error analysis

Advantages of the proposed approach

- Easy to implement. Doesn't use any extra data structure.
- Interpretability of the results

Limitations and future work

- Resource-greedy: requires to loop over all intents for given utterance
- Meaningful intent labels may not be available (num indices)

Thank you for your attention!

References

Yongqin Xian, et al. 2018. Zero-shot learning—a comprehensive evaluation of the good, the bad and the ugly. IEEE
transactions on pattern analysis and machine intelligence, 41(9):2251–2265.
Abhinav Rastogi, et al. 2020. Towards scalable multi-domain conversational agents: The schema-guided dialogue
dataset. In The ThirtyFourth AAAI Conference on Artificial Intelligence, AAAI 2020
Paweł Budzianowski, et al. 2018. MultiWOZ - a large-scale multi-domain Wizard-of-Oz dataset for task-oriented
dialogue modelling. In Proceedings of the 2019 Conference on Empirical Methods in Natu ral Language
Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
Stefan Larson et al. In Proceedings of the 2019 Conference on Empirical Methods in Natu ral Language Processing
and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

