JULY 2021: END SEMESTER ASSESSMENT (ESA) B TECH IV SEMESTER UE17/18/19MA251 - Linear Algebra and Its Applications

		Time: 3 Hrs Answer All Questions Max Marks: 100	
	(a)	Determine the values of a and b for which the system of equations $x+y+az=2b$, $x+3y+(2+2a)z=7b$, $3x+y+(3+3a)z=11b$ will have (i) trivial solution (ii) unique non-trivial solution (iii) no solution (iv) infinity of solutions.	7
	b)	Factor A=LU and A=LDU for $A = \begin{pmatrix} a & a & 0 \\ a & a+b & b \\ 0 & b & b+c \end{pmatrix}$	6
	c)	Use Gauss-Jordan elimination on [A:I] to solve AA ⁻¹ =I $ \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 1 & 2 & 4 \end{pmatrix} \begin{pmatrix} x_1 & x_2 & x_3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} $	7
		and the second s	
2	a)	Let $A = \begin{pmatrix} 4 & -2 & 0 & 2 \\ -2 & 0 & -5 & -2 \\ 0 & 3 & 1 & 3 \end{pmatrix}$ (a) If column space of A is a subspace of R^k , find k? (b) Find a non-zero vector in nullspace of A. Also find l of R^l such that nullspace of A is a subspace of R^l .	7
	b)	Find a basis and the dimension of the subspaces $V = \{(a,b,c,d)/b - 2c + d = 0\}$, $W = \{(a,b,c,d)/a = d,b = 2c\}$ and $V \upharpoonright W$ in R^4 .	6
	c)	Find a matrix A that has V as its row space, and a matrix B that has V as its nullspace, if V is the subspace spanned by $\left\{ \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\2\\0 \end{pmatrix}, \begin{pmatrix} 1\\5\\0 \end{pmatrix} \right\}$	7
3	a)	What matrix P projects every point in R^3 onto the line of intersection of the planes $x+y+z=0$ and $x-z=0$? Find the nullspace matrix of P. What do the column space and row space of matrix P represent?	7

PE		SRN	
	b)	Find the matrix of the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by $T(x,y,z)=(x+y, 2z-x)$ with respect to (i) the standard basis $(1,0,0),(0,1,0),(0,0,1)$ and (ii) the basis $(1,0,-1),(1,1,1),(1,0,0)$	6
	c)	Find $ E ^2 = Ax - b ^2$ and solve the normal equations $A^T A \hat{x} = A^T b$. Find the solution \hat{x} and	+
		the projection $p = A\hat{x}$. (Use Least squares method) Given $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}, x = \begin{pmatrix} u \\ v \end{pmatrix}, b = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$	7
4	a)	Let $W = \{ (a, b, b) / a, b \text{ are real } \}$ and let $v = (3, 2, 6),$	
		 (i) Find an orthonormal basis for W. (ii) Find the projection of v onto W, say v₁ (iii) Decompose v into a sum of two vectors v₁+ v₂ where v₂ is projection of v onto W¹. 	7
	b)	Check if the following symmetric matrix $A = \begin{pmatrix} 7 & -4 & 4 \\ -4 & 5 & 0 \\ 4 & 0 & 9 \end{pmatrix}$ is orthogonally diagonalizable. If so, orthogonally diagonalize it as $A = S\Lambda S^{-1} = Q\Lambda Q^{-1} = Q\Lambda Q^{T}$ where Q is an orthogonal matrix	6
		25 dir ofthogonal matrix.	
	c)	Use the Gram – Schmidt process to find a set of orthonormal vectors from the independent vectors $a_1 = (1, -1, 0)$, $a_2 = (0, 1, -1)$ and $a_3 = (1, 0, -1)$. How many non-zero orthonormal vectors are obtained?	7
-			-
2	a)	Write the quadratic form of the matrix $\begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$ and express it as a sum of squares	7
18		using A=LDU factorization.	
	b)	Test if A ^T A is positive definite or positive semi-definite given $A = \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 2 & 1 \end{pmatrix}$	4

c)

Find SVD of the matrix $A = \begin{bmatrix} 0 & 1 \end{bmatrix}$