K-means clustering: Takeaways 🖻

by Dataquest Labs, Inc. - All rights reserved $\ensuremath{\mathbb{C}}$ 2020

Syntax

• Computing the Euclidean distance in Python:

```
def calculate_distance(vec1, vec2):
    root_distance = 0
    for x in range(0, len(vec1)):
        difference = centroid[x] - player_values[x]
        squared_difference = difference**2
        root_distance += squared_difference
euclid_distance = math.sqrt(root_distance)
return euclid_distance
```

• Assigning observations to clusters:

```
def assign_to_cluster(row):
    lowest_distance = -1
    closest_cluster = -1
    for cluster_id, centroid in centroids_dict.items():
        df_row = [row['ppg'], row['atr']]
        euclidean_distance = calculate_distance(centroid, df_row)
        if lowest_distance == -1:
            lowest_distance = euclidean_distance
            closest_cluster = cluster_id
        elif euclidean_distance < lowest_distance:
            lowest_distance = euclidean_distance
            closest_cluster = cluster_id
        return closest_cluster</pre>
```

• Initializing the KMeans class from scikit-learn:

```
from sklearn.cluster import KMeans
kmeans_model = KMeans(n_clusters=2, random_state=1)
```

Concepts

- Centroid-based clustering works well when the clusters resemble circles with centers.
- K-Means clustering is a popular centroid-based clustering algorithm. The K refers to the number of clusters we want to segment our data into. K-Means clustering is an iterative algorithm that switches between recalculating the centroid of each cluster and the items that belong to each cluster.
- Euclidean distance is the most common technique used in data science for measuring distance between vectors. The formula for distance in two dimensions is:

where q and p are the two vectors we are comparing.

• Example: If \mathbf{q} is (5,2) and \mathbf{p} is (3,1), the distance comes out to:

.

- If clusters look like they don't move a lot after every iteration, this means two things:
 - K-Means clustering doesn't cause massive changes in the makeup of clusters between iterations, meaning that it will always converge and become stable.
 - Where we pick the initial centroids and how we assign elements to clusters initially matters a lot because K-Means clustering is conservative between iterations.
- To counteract the problems listed above, the sklearn implementation of K-Means clustering does some intelligent things like re-running the entire clustering process lots of times with random initial centroids so the final results are a little less biased.

Resources

- Sklearn implementation of K-Means clustering
- <u>Implementing K–Means clustering from scratch</u>

Takeaways by Dataquest Labs, Inc. - All rights reserved © 2020