2.4. Тождество Вальда

Определение 2.5. Пусть задана некоторая последовательность величин $X_1, X_2, ...$ (возможно, зависимых и разнораспределённых). Момент остановки (stopping time, stopping trial) τ - это случайная величина, принимающая значения 1, 2, 3, ..., такая, что для любого $n \in \mathbb{N}$, $\mathbb{I}\{\tau = n\}$ является детерминированной функцией от $X_1, X_2, ..., X_n$.

Пример 2.6. Несколько игроков передвигают фишки по игровому полю в соответствии с подбрасыванием кубика. Пусть $X_1, X_2, ...$ - это результаты поочерёдных подбрасываний кубика, то есть i.i.d. случайные величины, имеющие равномерное распределение на $\{1,...,6\}$. Тогда случайная величина "количество ходов до окончания игры" является моментом остановки.

Теорема 2.7. (Тождество Вальда, Wald's equality) Пусть X_1, X_2, \ldots - i.i.d. случайные величины, $\mathbb{E} X_1 < \infty$. Пусть $\tau-$ момент остановки, $\mathbb{E} \tau < \infty$. Тогда

$$\mathbb{E}[X_1 + \dots + X_{\tau}] = \mathbb{E}X_1 \cdot \mathbb{E}\tau.$$

Доказательство. Запишем математическое ожидание в следующем виде:

$$\mathbb{E}[X_1 + \dots + X_{\tau}] = \mathbb{E}\left[\sum_{n=1}^{\infty} X_n \mathbb{I}\{\tau \ge n\}\right]. \tag{8}$$

Покажем, что для любого $n \in \mathbb{N}$, случайные величины X_n и $\mathbb{I}\{\tau \geq n\}$ являются независимыми. Действительно,

$$\mathbb{I}\{\tau \ge n\} = 1 - \mathbb{I}\{\tau = 1\} - \dots - \mathbb{I}\{\tau = n - 1\}. \tag{9}$$

По определению момента остановки, для любого $k=1..(n-1), \mathbb{I}\left\{\tau=k\right\}$ является детерминированной функцией от $X_1,...,X_k$, и поэтому левая и правая части (9) являются функцией от $X_1,...,X_{n-1}$. Значит, X_n и $\mathbb{I}\left\{\tau\geq n\right\}$ независимы. Продолжим равенство в (8):

$$\mathbb{E}[X_1 + \dots + X_{\tau}] = \sum_{n=1}^{\infty} \mathbb{E}X_n \cdot \mathbb{E}[\mathbb{I}\{\tau \ge n\}]$$
$$= \mathbb{E}X_n \cdot \sum_{n=1}^{\infty} \mathbb{P}\{\tau \ge n\} = \mathbb{E}X_1 \cdot \mathbb{E}\tau.$$

Теперь применим Теорему 2.7 к процессу восстановления. В качестве последовательности величин возьмём $\xi_1,\xi_2,...$. Важно отметить, что N_t не является моментом остановки: для любого натурального n, по $\xi_1,...,\xi_n$ нельзя определить, выполнено ли $N_t=n$. Действительно, если $t>\xi_1+...+\xi_n$, то события $N_t=n$ может быть выполнено (если $t<\xi_1+...+\xi_n+\xi_{n+1}$), а может быть не выполнено.

Однако (N_t+1) является моментом остановки: если $t\geq \xi_1+..+\xi_n$ или $t<\xi_1+..+\xi_{n-1},$ то $\left\{N_t=n-1\right\}$ не выполнено, а если $\xi_1+..+\xi_{n-1}\leq t<\xi_1+..+\xi_n,$ то выполнено.

Таким образом, из Теоремы 2.7 следует такое утверждение.

Следствие 2.8. Пусть задан процесс восстановления $S_n = S_{n-1} + \xi_n$, где ξ_1, ξ_2, \ldots -i.i.d., $\mathbb{E} \xi_1 < \infty$. Обозначим через N_t соответствующий считающий процесс. Тогда

$$\mathbb{E}\big[S_{N_t+1}\big] = \mathbb{E}\big[\xi_1\big] \cdot \Big(\mathbb{E}\big[N_t\big] + 1\Big).$$