Exponencial e logaritmo

Ricardo Ferreira Paraizo

Meta

Revisar potenciação e suas aplicações dentro de exponencial e logaritmo.

Objetivos

Ao concluir esta aula, você deverá ser capaz de:

- 1. resolver equações exponenciais elementares;
- 2. reconhecer e aplicar o conceito de logaritmo;
- 3. calcular logaritmos;
- 4. reconhecer as propriedades dos logaritmos;
- 5. resolver problema de aplicação de logaritmo.

Pré-requisitos

Para melhor compreensão desta aula, você deverá rever o conceito de função (Aula 9). É importante também ter em mãos uma calculadora científica.

O surgimento da exponencial e do logaritmo

As ferramentas matemáticas costumam extrapolar os fatos que lhes deram origem. A exponencial e o logaritmo, por exemplo, surgiram na época das grandes navegações para serem aplicadas em transações financeiras. Tais curvas também estão ligadas a importantes fatos da natureza, como o crescimento de uma vegetação num lago ou o desenvolvimento da massa de um animal.

Mas para você entender bem esta aula, precisa recordar alguns conceitos importantes sobre potência.

Saiba mais...

Relembrando potenciação

Para que rever potenciação antes de exponencial? É que a palavra exponencial tem a ver com expoente. Expoente está relacionado com potenciação. Aqui você tem a oportunidade de relembrar estas propriedades.

Propriedades da potenciação

Sendo a e b reais e m e n naturais, valem as sequintes propriedades [P]:

[P1] $a^m \bullet a^n = a^{m+n} \to Multiplicação$ de mesma base: repete-se a base e somam-se os expoentes.

[P2] $\frac{a^m}{a^n} = a^{m-n}$ (ressalva: $a \neq 0$) \rightarrow Divisão de mesma base: repete-se a base e subtraem-se os expoentes.

[P3] (a•b)ⁿ = aⁿ•bⁿ → Distributiva da potenciação em relação à multiplicação: Elevam-se as duas parcelas da multiplicação ao expoente indicado.

$$[P4] \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n} \quad (b \neq 0) \quad \to \quad \text{Base fracionaria: elevam-se numerador e}$$

denominador ao expoente indicado.

[P5] $(a^m)^n = a^{m.n} \rightarrow \text{Potência}$ de potência: repete-se a base e multiplicam-se os expoentes.

[P6] Expoente negativo
$$\rightarrow \left(\frac{a}{b}\right)^{-1} = \frac{b}{a}$$

$$a^{-1} = \left(\frac{a}{1}\right)^{-1} = \left(\frac{1}{a}\right)^{1} = \frac{1}{a}$$

Expoente negativo: inverte-se a fração e troca-se o sinal do expoente.

[P7] Expoente fracionário
$$\rightarrow a^{\frac{m}{n}} = \sqrt[n]{a^m}$$

Expoente fracionário: a base da potência passa a ser base do radicando, o numerador do expoente passa a ser expoente do radicando e o denominador passa a ser índice da raiz.

É importante eliminar as suas dúvidas sobre esse assunto para que não tenha dificuldade no estudo da exponencial e do logaritmo.

Agora sim, já podemos desenvolver os conceitos sobre exponencial e logaritmo. Vamos começar estudando um pouco de exponencial.

Entendendo a exponencial

Imagine que um amigo seu resolveu criar coelhos e comprou 4 casais. Na primeira gestação, cada um dos 4 casais gerou outros 4 casais, totalizando 4 X $4 = 4^2 = 16$. A segunda gestação repetiu o número de filhotes, totalizando 4 X 4 X $4 = 4^3 = 64$ casais.

Fonte: www.sxc.hu

Figura 11.1: Os coelhos podem se reproduzir de forma exponencial.

Nas gestações seguintes, os números vão crescendo. A multiplicação cresce rapidamente e logo atinge números muito altos. Esses valores são registrados de um modo mais simples por potências, em que é o expoente que varia. Como essa, existem várias outras situações nas quais ocorrem variações muito altas e rápidas. Para estudá-las, os matemáticos criaram as funções exponenciais.

Veja outro exemplo:

Alguns técnicos estão trabalhando numa pesquisa num laboratório de **PISCICULTURA** e estão verificando que os peixes do aquário estão morrendo. Na semana da pesquisa, apareceram 3 peixes mortos na segunda-feira. Na terça-feira morreram 9 peixes. Na quarta-feira morreram 27 outros.

PISCICULTURA Criação de peixes.

Fonte: www.sxc.hu

Figura 11.2: A quantidade de peixes mortos nesse aquário é cada vez maior, crescendo em progressão geométrica.

Vimos a seqüência.

```
a_1 = 3 = 3^1 \rightarrow \text{segunda-feira}

a_2 = 9 = 3^2 \rightarrow \text{terça-feira}

a_3 = 27 = 3^3 \rightarrow \text{quarta-feira}

a_4 = 81 = 3^4 \rightarrow \text{quinta-feira}

a_4 = 81 = 3^4 \rightarrow \text{quinta-feira}
```

Podemos observar que, a cada dia que se passa, o número de peixes mortos está triplicando. Ao calcular o número de peixes mortos no domingo, vamos encontrar 3^7 . Enfim, para cada dia x que se escolha, há um número de peixes mortos em função desse x, chamado f(x). O valor de f(x), portanto, é uma função de x, e a lei que expressa f(x) em função de x é $f(x) = 3^x$, que é um caso particular de função exponencial. Vimos, na aula anterior, que essa seqüência é uma progressão geométrica de razão 3 (q=3).

Saiba mais...

Bactérias e mais bactérias

O crescimento populacional pode ser escrito por meio de uma função exponencial. Por exemplo, o número M de bactérias de uma população no instante t - M(t) - é dado por M(t)= M_o . e^{kt} , onde e é um número irracional cujo valor aproximado é 2,7, k é uma constante que depende do número de bactérias e M_o é o número de bactérias da população no instante t=0.

Para que você consiga entender e resolver alguns problemas envolvendo exponenciais, na próxima seção, vamos trabalhar um pouco com as equações.

Resolvendo equações exponenciais

Você já sabe que uma equação é caracterizada por ter uma igualdade e a presença de uma ou mais incógnitas. Na equação exponencial, a incógnita encontra-se no expoente.

Veja alguns exemplos:

a.
$$2^{x} = 64$$

b.
$$10^{3x} = 1000$$

Para resolvê-las, utilizamos métodos que se valem das propriedades de potenciação. Não existe uma fórmula mágica para a resolução de equações exponenciais, existe um objetivo a ser alcançado.

Ao solucionar uma equação exponencial, devemos procurar uma forma de *igualar* as bases de ambos os lados da igualdade. E para realizar tal igualdade, você precisará lançar mão das propriedades de potenciação.

Agora, que tal resolver os exemplos apresentados anteriormente?

a.
$$2^x = 64$$

Em primeiro lugar, vamos fatorar o número 64.

$$\begin{array}{c|cccc}
64 & 2 & & & \\
32 & 2 & & & \\
16 & 2 & & & \\
8 & 2 & & & \\
4 & 2 & & & \\
2 & 2 & & & \\
64 & = 2^6 & & & \\
\end{array}$$

Para resolver uma equação exponencial, o objetivo principal é igualar as bases. Depois que igualarmos as bases das potências, podemos igualar os expoentes:

$$2^{x} = 64$$

$$2^{x} = 2^{6}$$

$$x = 6$$

$$S = \{6\}$$

Vamos ao outro exemplo:

b.
$$10^{3x} = 1000$$

Fatorando o número 1000, temos 10³. Com as bases iguais, basta igualar os expoentes.

Veja:

$$10^{3x} = 10^3$$

$$3x = 3$$

$$X = 1$$

$$S = \{1\}$$

Agora, faça a atividade a seguir e verifique seu aprendizado.

Atividade 1

Atende ao Objetivo 1

Resolva as equações:

a.
$$3^{2x} = 27$$

b.
$$25^{x} = 125$$

c.
$$9^{x} = 243$$

d.
$$8^{2x} = 128$$

Entendendo os logaritmos

Os logaritmos surgiram para facilitar a vida, na medida em que vão permitir simplificar os cálculos mais complicados, como, por exemplo, quando você pretende calcular o tempo durante o qual seu dinheiro deve ficar investido em uma conta poupança para alcançar a quantia desejada.

Com os logaritmos podemos diminuir o grau de dificuldade das operações transformando: multiplicação em adição; divisão em subtração; potenciação em multiplicação e radiciação em divisão.

Saiba mais...

A história do logaritmo

A invenção dos logaritmos deve-se ao matemático escocês John Napier (1550-1617), que se interessou fundamentalmente pelo cálculo numérico e pela trigonometria. Em 1614, ao fim de 20 anos de trabalho, publicou a obra *Logarithmorum canonis descriptio*, onde explica como se utilizam os logaritmos, mas não relata o processo pelo qual se chegou a eles.

Um ano depois, em 1615, o matemático inglês Henry Briggs (1561-1631) visitou

Napier e sugeriu-lhe a utilização da base 10. Napier interessou-se pela idéia e resolveram, juntos, elaborar as respectivas tábuas dos logaritmos decimais. Com a morte de Napier é Brigs que conclui o trabalho e faz o cálculo para os números de 1 a 20 000 e de 90 000 a 100 000. Em 1618, publica *Logarithmorum Chiliaes prima*, primeiro tratado sobre os logaritmos de base 10.

Adaptado do site http://www.jornallivre.com.br. Acesso em: 14 jan 2009.

O estudo do logaritmo depende muito do conhecimento sobre potenciação e as suas propriedades, pois para encontrarmos o valor numérico de um logaritmo precisamos desenvolver uma equação exponencial.

Observe a seguinte equação:

 $2^{x} = 4$

Você acabou de ver que esta é uma equação exponencial. No entanto, podemos transformar esta potência em logaritmo.

Veja:

Você deve estar se perguntando: como uma potência pode ser transformada em logaritmo? A resposta é simples. Vamos ao exemplo $2^x = 4$.

A base 2 (cujo expoente é x) continua sendo base do logaritmo, o resultado 4 passa a ser o logaritmando e o x é o resultado denominado logaritmo.

$$2^x = 4 \Leftrightarrow \log_2 4 = x$$

 $Log_2 4 = x$ é o mesmo que perguntar: a qual número devemos elevar o 2 para obtermos 4?

Você sabe que 2 ao quadrado (ou seja, à potência 2) é igual a 4. Assim, chegamos à conclusão de que o logaritmo de 4 na base 2 é igual a 2 (ou seja, x = 2).

Na próxima atividade, observe o primeiro item (letra a), que já está resolvido e serve de modelo para os outros itens da atividade.

Atividade 2

Atende ao Objetivo 2

Escreva em forma de logaritmo e calcule os resultados, se possível. Observe a solução do item a e tente fazer os outros itens.

a.
$$3^x = 9 \Rightarrow \log_3 9 = x \Rightarrow x = 2$$

 $\log^3 9 = 2 \rightarrow \text{Lemos: o logaritmo de 9 na base 3 é igual a 2.}$

a.
$$5^{x} = 25$$

b.
$$10^{x} = 100$$

c.
$$10^{x} = 1000$$

d.
$$2^x = 3$$

Definição de logaritmo

Com a idéia básica vista anteriormente, podemos avançar um pouco. O logaritmo é um expoente, e com isso podemos enunciar a equivalência fundamental dos logaritmos:

$$log_a b = x \Leftrightarrow a^x = b$$

Note que temos, na definição anterior, as duas maneiras de mostrar a pergunta feita no início do estudo de logaritmos: "A qual expoente x devemos elevar a base a para resultar *b*?".

Cuidado! O cálculo de logaritmo depende de algumas condições especiais. Na próxima seção, você vai conhecer as condições para um logaritmo existir.

Condições de existência

- i. b > 0: o logaritmando deve ser um número positivo.
- ii. $0 < a \ne 1$: a base deve ser um número positivo diferente de 1.

Observe que a primeira restrição já inclui o fato de que o logaritmando deve ser diferente de zero. Na segunda restrição é dito que a base deve ser um número positivo, ou seja, também não pode ser zero.

Atenção!

Veja alguns exemplos e preste atenção nas condições de existência:

1.
$$\log_2 8 = x \Rightarrow 2^x = 8 \Rightarrow 2^x = 2^3 \Rightarrow x = 3$$

2.
$$\log 100 = x \Rightarrow 10^x = 10^2 \Rightarrow x = 2$$

→ Quando o logaritmo não apresenta base é porque a base é 10.

3. ln e= log_e e

Logaritmo neperiano ou logaritmo natural. Nesse caso, o logaritmo tem base <u>e</u> (e = 2,718...), mais usado em assuntos técnicos.

Saiba mais...

Calculando a intensidade do som

Para medir o nível sonoro, utiliza-se a escala logarítmica. Considerando $I_{\scriptscriptstyle 0}$ a menor intensidade do som que somos capazes de perceber e I a intensidade física do som que se quer medir, o nível sonoro β de I é calculado por:

$$\beta = \log \frac{I}{I_0}$$

A unidade que mede o nível sonoro é o *bel* (símbolo B), nome dado em homenagem a Graham Bell. Na prática, utiliza-se o *decibel* (símbolo dB), que equivale à décima parte do bel.

Para calcular logaritmo você deve conhecer, além das condições de existência, as propriedades operatórias. São elas que vão facilitar as operações, transformando multiplicação em adição e divisão em subtração.

Propriedades operatórias

P1.Logaritmo do produto $\rightarrow \log A$. B= $\log A + \log B$

O logaritmo do produto é igual à soma dos logaritmos dos fatores.

Exemplo: $\log_2 8.4 = \log_2 8.+ \log_2 4 = 3+2 = 5$

P2.Logaritmo do quociente $\rightarrow \log \frac{A}{B} = \log A - \log B$

O logaritmo do quociente é igual à diferença entre o logaritmo do dividendo e o logaritmo do divisor.

Exemplo:
$$\log_2 32/4 = \log_2 32 - \log_2 4 = 5 - 2 = 3$$

P3.Logaritmo da potência $\rightarrow \log A^n = n.\log A$

O logaritmo da potência é igual ao produto do expoente pelo logaritmo da base da potência.

Exemplo:
$$log 10^2 = 2log 10 = 2$$

Obs.:
$$a^{\log_a b} = b$$

A potência de base a e expoente loga b é igual a b.

Exemplo:
$$\sqrt[3]{7}^{\log_{\sqrt[3]{7}} \sqrt[5]{3}} = \sqrt[5]{3}$$

Outra coisa importante no estudo dos logaritmos é a transformação de base. Por exemplo, uma calculadora científica só calcula o logaritmo de base 10 (log) ou o logaritmo neperiano (ln). Então, por exemplo, quando precisamos calcular o log₃ 9 nessas calculadoras devemos transformar a base 3 para a base 10 ou para a base e.

Mudança de base

Quando vamos passar $\log_a b$ para base c, temos $\frac{\log_c b}{\log_a a}$

Ou seja:

$$\log_a b = \frac{\log_c b}{\log_c a}$$

Alguns exemplos:

1. Passar log₃ 2 para base 10.

Solução:

$$\log_3 2 = \frac{\log_{10} 2}{\log_{10} 3} = \frac{\log 2}{\log 3}$$

2. Calcular:

a.
$$\log_{27} \sqrt[3]{9} = x$$

Solução:

Lemos logaritmo de $\sqrt[3]{9}$ na base 27 é igual a x.

$$\log_{27} \sqrt[3]{9} = x$$

$$(27)^{x} = \sqrt[3]{9} \implies (3^{3})^{x} = \sqrt[3]{3^{2}} \implies 3^{3x} = 3^{\frac{2}{3}} \implies x = \frac{2}{9}$$
b. $\log_{4} \frac{1}{\sqrt{8}} = x$

Solução:

$$4^{x} = \frac{1}{\sqrt{2^{3}}} \Rightarrow 2^{2x} = \frac{1}{2^{\frac{3}{2}}} \Rightarrow 2^{2x} = 2^{-\frac{3}{2}} \Rightarrow 2x = -\frac{3}{2} \Rightarrow x = -\frac{3}{4}$$

Saiba mais...

Usando calculadora para obter logaritmo de um número na base 10

Exemplo: Para calcular log 100 na calculadora, siga estes passos:

(1°) Digite o 100.

(2°) Clique na tecla log.

O resultado 2 aparecerá no visor.

Cuidado para não confundir a tecla log com a tecla ln.

A tecla ln é do logaritmo neperiano. No logaritmo neperiano a base é $\underline{\mathbf{e}}$.

e= 2,718281828... (número irracional)

Exemplo: $\ln 7 = \log_e 7 = 1,945910149...$

Atividade 3

Atende ao Objetivo 3

Calcular x - y, sendo $x = \log 0,001 e y = \log 0,00001$.

Atividade 4

Atende ao Objetivo 4

Assinale a(s) propriedade(s) sempre válida(s):

- a. log(a.b) = log a + log b
- b. log(a + b) = log a + log b
- c. log m.a = m.log a
- d. $\log a^m = \log m.a$
- e. $log a^m = m.log a (com a>0)$

Agora, vamos trabalhar um exemplo de problema que pode ser aplicado em sua vida profissional.

Veja:

Suponha que um técnico em agropecuária resolva estudar o crescimento de um certo animal nos primeiros meses de vida e observa que a massa desse animal aumentou de 10% ao mês. Sabendo-se que a massa no início da observação era de m = 35Kg, quanto tempo o animal levará para atingir a massa de 70 Kg desde o início da observação?

Dados:

$$log 1,1 = 0,04$$

$$log 2,0 = 0,30$$

Para resolver esse problema, vamos usar uma fórmula M_f (massa final), facilmente obtida. Veja a seguir:

 $M_f = massa final$

 $m_0 = massa inicial$

i = porcentagem

Para chegarmos à fórmula $M_f = m_0 \left(1 + \frac{i}{100}\right)^t$ vamos seguir o seguinte raciocínio:

Massa inicial é igual a 35 kg

No final do 1° mês, a massa passa a ser: 35 + 10% de 35, ou seja $35 + \frac{10}{100} \cdot 35$ $= 35 \left(1 + \frac{10}{100}\right)^{1}$

No final do 2º mês, a massa passa a ser:

$$35\left(1+\frac{10}{100}\right)+\frac{10}{100}\cdot35\left(1+\frac{10}{100}\right)=35\left(1+\frac{10}{100}\right)^2$$

No final do 3º mês, a massa passa a ser: +=

$$35\left(1+\frac{10}{100}\right)^2+\frac{10}{100}\cdot 35\left(1+\frac{10}{100}\right)^2=35\left(1+\frac{10}{100}\right)^3$$

...

Em t meses, a massa passa a ser: $m_0 \left(1 + \frac{i}{100} \right)^t$

Veja o cálculo realizado no final do 1º mês:

Colocando em evidência o número $35 \rightarrow 35 \left(1 + \frac{10}{100}\right)^{1}$

Veja o cálculo realizado no final do 2º mês:

Colocando em evidência
$$35\left(1+\frac{10}{100}\right) \rightarrow 35\left(1+\frac{10}{100}\right) \cdot \left(1+\frac{10}{100}\right) = 35\left(1+\frac{10}{100}\right)^2$$

Veja o cálculo realizado no final do 3º mês:

Colocando em evidência

$$35\left(1+\frac{10}{100}\right)^2 \rightarrow 35\left(1+\frac{10}{100}\right)^2 \rightarrow 35\left(1+\frac{10}{100}\right)^2 \cdot \left(1+\frac{10}{100}\right) = 35\left(1+\frac{10}{100}\right)^3$$

Com isso, chegamos à fórmula $M_f = m_0 \left(1 + \frac{i}{100} \right)^t$

Substituindo os valores na fórmula, temos:

$$M_f = m_0 (1 + \frac{i}{100})^t$$

$$\Rightarrow$$
 70 = 35(1 + $\frac{10}{100}$)^t

$$\Rightarrow \frac{70}{35} = (1,1)^t$$

$$\Rightarrow$$
 2 = $(1,1)^t$

$$\Rightarrow \log 2 = \log(1,1)^t$$

$$\Rightarrow \log 2 = t \log 1, 1$$

$$\Rightarrow t = \frac{\log 2}{\log 1, 1}$$

$$\Rightarrow t = \frac{0.3}{0.04} = 7.5 \text{ meses}$$

Observe que você pode usar esta fórmula em todos os problemas envolvendo crescimento em porcentagem sobre porcentagem. Veja a atividade a seguir:

Atividade 5

Atende ao Objetivo 5

A área de uma represa é de 1.200.000 m^2 . Uma parte dela correspondendo a 8000 m^2 está infestada por uma vegetação que aumenta 50% ao ano.

Dados:

$$log 150 = 2,17$$

$$log 1,5 = 0,17$$

a. Depois de 3,5 anos, qual é a área coberta pela vegetação?

b. Depois de aproximadamente quanto tempo a represa estará totalmente coberta pela vegetação?

Resumindo...

 Equação exponencial: Uma equação é denominada exponencial quando a variável aparece no expoente. Exemplo: 2^{x+1} = 64

Para resolver uma equação exponencial, o objetivo principal é igualar as bases. Depois que igualamos as bases das potências, podemos igualar os expoentes:

$$a^x = a^y \Leftrightarrow x = y \text{ (com } 0 < a \neq 1)$$

 Logaritmo: Denomina-se logaritmo do número b na base a o expoente x ao qual se deve elevar a para se obter b.

$$a^x = b$$
 \Leftrightarrow $\log_a b = x$ forma exponencial logarítmica

a, b
$$\in$$
 IR, b>0 e 0< a \neq 1

$$a = base$$
 $b = logaritmando$ $x = logaritmo$

• Propriedades operatórias dos logaritmos:

Logaritmo do produto
$$\rightarrow$$
 log A . B= log A + log B
Logaritmo do quociente \rightarrow log $\frac{A}{B}$ = log A - log B
Logaritmo da potência \rightarrow log Aⁿ = n.log A

- Mudança de base: Efetuamos a mudança de um logaritmo de base a para base c, através da fórmula: $\log_a b = \frac{\log_c b}{\log_a a}$
- Logaritmos decimais: O sistema de logaritmos mais usado em cálculos numéricos é o de base 10 (obtidos em calculadoras científicas e em computadores), denominado sistema de logaritmos decimais. Indica-se: log b (omite-se a base na sua numeração).

Exemplo:
$$\log_{10} 200 = \log 200$$

 Fórmula geral para se resolver problemas utilizando logaritmo: Fórmula para se resolver problemas envolvendo crescimento em porcentagem sobre porcentagem:

$$V_f = V_0 \left(1 + \frac{i}{100} \right)^t$$

Onde:

$$V_f = Valor final$$
 $v_o = valor inicial$

$$i = porcentagem$$
 $t = tempo$

Informação sobre a próxima aula

Na próxima aula, você vai aprender a diferenciar comprimento, área, volume, área e outras grandezas usadas no nosso dia-a-dia.

Respostas das Atividades

Atividade 1

a.
$$3^{2x} = 27$$

Fatorando o número 27

$$\begin{array}{c|c}
27 & 3 \\
9 & 3 \\
3 & 1
\end{array}$$

$$3^{2x} = 3^3 \Rightarrow 2x = 3 \Rightarrow x = \frac{3}{2}$$

$$S = \left\{\frac{3}{2}\right\}$$

b.
$$25^{\times} = 125$$

Fatorando
$$25 = 5^2$$

Fatorando
$$125 = 5^3$$

$$(5^2)x = 5^3 \Rightarrow 5^{2x} = 5^3 \Rightarrow 2x = 3 \Rightarrow x = \sqrt[3]{2}$$

$$S = \{ \frac{3}{2} \}$$

c.
$$9^{x} = 243$$

Fatorando as bases 9 e 243:

Resolvendo a equação:

$$9^{x} = 243 \Rightarrow (3^{2})^{x} = 3^{5} \Rightarrow 3^{2^{x}} = 3^{5}$$

Bases iguais? Igualamos os expoentes

$$2x = 5 \Rightarrow x = \frac{5}{2}$$
$$S = \left\{\frac{5}{2}\right\}$$

d.
$$8^{2x} = 128$$

Fatorando as bases 8 e 128:

Resolvendo a equação:

$$8^{2x} = 128 \Rightarrow (2^3)^{2x} = 2^7 \Rightarrow 2^{6x} = 2^7$$

Bases iguais ⇒ Igualamos os expoentes

$$6x=7 \quad x = \frac{7}{6}$$

 $S = \{\frac{7}{6}\}$

Atividade 2

b.
$$\log_5 25 = x \Rightarrow x = 2$$

c.
$$\log_{10} 100 = x \Rightarrow x = 2$$

d.
$$x = 3$$

e.
$$\log_2 3 = x$$

Atividade 3

$$\begin{aligned} \text{Log}_{10} \ 0,001 &= x \Rightarrow 10^x = 0,001 \Rightarrow 10^x = \frac{1}{10^3} \Rightarrow 10^x = 10^{-3} \Rightarrow x = -3 \\ \text{log}_{10} \ 0,00001 &= y \Rightarrow 10^y = 0,00001 \Rightarrow 10^y = \frac{1}{10^5} \ 10^y = 10^{-5} \Rightarrow y = -5 \end{aligned}$$

Como está pedindo para calcular x - y, temos

$$x - y = -3 - (-5) = 2$$

Atividade 4

Letra e - Propriedade do logaritmo da potência (propriedade P₃ da seção 3.3).

Atividade 5

a. a área coberta pela vegetação depois de 3,5 anos:

$$S_f = \text{Área final}$$

$$S_0 = \text{Área inicial}$$

$$t = Tempo$$

$$S_f = S_0(1 + i/100)^t$$

$$S_f = 8000 (1 + 50/100)^{3.5}$$

$$S_f = 8000 (1 + 0.5)^{3.5}$$

$$S_f = 8000 (1.5)^{3.5}$$

$$S_f = 8000 . 4,13$$

$$S_f = 33068,11 \text{ m}^2$$

Logo, depois de 3,5 anos, a área coberta pela vegetação será de aproximadamente $33068,11~\mathrm{m}^2$.

b. A represa estará totalmente coberta pela vegetação depois de:

$$S_f = S_0(1 + i/100)^t$$

$$1200\ 000 = 8000\ (1 + 50/100)^t$$

$$1200\ 000 = 8000\ (1 + 0.5)^t$$

$$1200\ 000 = 8000\ (1.5)^t$$

$$150 = (1.5)^t$$

$$\log\ 150 = \log\ (1.5)^t$$

Aplicando a propriedade do logaritmo da potência (propriedade P3 da seção 3.3) no 2º membro, temos:

$$2,17 = \text{t.log}1,5 \Rightarrow \text{t} = \frac{2,17}{0,17} = 12,76$$

Depois de aproximadamente 13 anos, a represa estará totalmente coberta pela vegetação.

Referência bibliográfica

IEZZI Gelson. et al. *Matemática*: ciência e aplicação. 2. ed. São Paulo. Atual, 2004. v. 1.

Site consultado

JORNAL livre: o portal de notícias. Disponível em: http://www.jornallivre.com.br. Acesso em: 14 jan. 2009.

Referências complementares

DANTE, Luiz Roberto. *Matemática*: contexto & aplicações. São Paulo. Ática. 1999. v.1.

GIOVANNI, José Ruy; BONJORNO, Roberto. *Uma nova abordagem*. São Paulo. FTD. 2000. v.1.

PAIVA, Manuel Rodrigues. Matemática. São Paulo: Moderna, 1997. v.1.