Centro Universitário São Miguel

Hematologia

Introdução à Hematologia

Prof. Me. Yuri Albuquerque

Conceitos Importantes

Assepsia – é o conjunto de medidas que utilizamos para impedir a penetração de microrganismos num ambiente que logicamente não os tem, logo um ambiente asséptico é aquele que está livre de infecção.

Antissepsia – é o conjunto de medidas propostas para inibir o crescimento de microrganismos ou removê-los de um determinado ambiente, podendo ou não destruí-los e para tal fim utilizamos antissépticos ou desinfetantes.

Recepção do Paciente

- ✓ Cortesia e segurança
- ✓ Identificação
- ✓ Motivação
- ✓ Explicação durante o procedimento

Posicionamento

- ✓ O braço do paciente deve ser posicionado em uma linha reta do ombro ao punho, de maneira que as veias fiquem mais acessíveis e o paciente o mais confortável possível;
- ✓ O cotovelo não deve estar dobrado e a palma da mão voltada para cima.

Coleta de Sangue Venoso – Locais de Escolha para Venopunção

A escolha do local de punção representa uma parte vital do diagnóstico. Existem diversos locais que podem ser escolhidos para a venopunção.

Embora qualquer veia do membro superior que apresente condições para coleta possa ser puncionada, as veias basílica mediana e cefálica são as mais frequentemente utilizadas. A veia basílica mediana costuma ser a melhor opção, pois a cefálica é mais propensa à formação de hematomas.

Veias de membros inferiores não devem ser utilizadas a menos que seja absolutamente necessário, em virtude do **risco de embolias e tromboflebites**.

Coleta de Sangue Venoso – Locais de Escolha para Venopunção

Veia do membro superior

Coleta de Sangue Venoso – Locais de Escolha para Venopunção

Já no dorso da mão, o arco venoso dorsal é o mais recomendado por ser mais calibroso, porém a veia dorsal do metacarpo também poderá ser puncionada.

Coleta de Sangue Venoso – Locais de Escolha para Venopunção

Já no dorso da mão, o arco venoso dorsal é o mais recomendado por ser mais calibroso, porém a veia dorsal do metacarpo também poderá ser puncionada.

Veia do dorso da mão

Áreas à evitar:

- Áreas com terapia ou hidratação intravenosa de qualquer espécie;
- Locais com cicatrizes de queimadura;
- Membro superior próximo ao local onde foi realizado mastectomia, cateterismo ou qualquer outro procedimento cirúrgico;
- Áreas com hematomas;
- Fístulas arteriovenosas;
- Veias que já sofreram trombose porque são poucos elásticas, podem parecer um cordão e têm paredes endurecidas.

Técnicas para evidenciação da veia

- Pedir para o paciente abaixar o braço e fazer movimentos suaves de abrir e fechar a mão;
- Massagear delicadamente o braço do paciente (do punho para o cotovelo);
- Fixação das veias com os dedos nos casos de flacidez;
- Equipamentos ou dispositivos que facilitam a visualização de veias ainda não são de uso rotineiro e são pouco difundidos.

Uso adequado do torniquete

É importante que se utilize adequadamente o torniquete, evitando situações que induzam ao erro diagnóstico (como hemólise, que pode elevar o nível de potássio, hemoconcentração, alterações na dosagem de cálcio, por exemplo), bem como complicações de coleta (hematoma, parestesias).

Portanto recomenda-se

- Posicionar o braço do paciente inclinado para baixo a partir da altura do ombro;
- Posicionar o torniquete com o laço para cima, a fim de evitar a contaminação da área de punção;
- Não aplicar o procedimento de "bater na veia com 2 dedos", no momento de seleção venosa. Este tipo de procedimento provoca hemólise capilar e portanto, altera o resultado de certo analitos;
- Se o torniquete for usado para seleção preliminar da veia, fazê-lo apenas por um breve momento, pedindo ao paciente para abrir e fechar a mão. Localizar a veia e, em seguida, afrouxar o torniquete. Esperar 2 minutos para usá-lo novamente;
- O torniquete não é recomendado para alguns testes como lactato ou cálcio, para evitar alteração do resultado.

Conceitos Importantes

- ✓ Aplicar o torniquete cerca de 8cm acima do local da punção para evitar a contaminação do local.
- ✓ Não usar o torniquete continuamente por mais de 1 minuto, já que poderia levar à hemoconcentração e falsos resultados em certos analitos.
- ✓ Ao garrotear, pedir ao paciente que feche a mão para evidenciar a veia.
- ✓ Não apertar intensamente o torniquete, pois o fluxo arterial não deve ser interrompido. O pulso deve permanecer palpável.

Posicionamento correto do torniquete

Procedimento para Antissepsia e Higienização das Mãos em Coleta de Sangue Venoso

- ✓ Algumas considerações são importantes sobre o uso de soluções de álcool, tanto na antissepsia do local da punção, como na higienização das mãos;
- ✓ O álcool apresenta um amplo espectro de ação envolvendo micobactérias, fungos e vírus, com menor atividade sobre os vírus hidrofílicos não envelopados, particularmente os enterovírus. Durante o tempo usual de aplicação para antissepsia das mãos, ele não apresenta ação esporicida;
- ✓ Em concentrações apropriadas, os álcoois possuem rápida e maior redução nas contagens microbianas. Quanto maior o peso molecular do álcool, maior ação bactericida.

Higienização das mãos

- ✓ As mãos devem ser higienizadas após o contato com cada paciente, evitando assim contaminação cruzada. Esta higienização pode ser feita com água e sabão como procedimento ilustrado abaixo, ou usando álcool gel.
- ✓ A fricção com álcool reduz em 1/3 o tempo despendido pelos profissionais de saúde para a higiene das mãos, aumentando a preferência por esta ação básica de controle.
- ✓ Quanto às desvantagens, é citado o odor que fica nas mãos e a inflamabilidade, que é observada apenas com as soluções de etanol acima de 70%.

Higienização das mãos

Colocando as luvas

As luvas devem ser calçadas com cuidado para que não rasguem, e devem ficar bem aderidas à pele para que o flebotomista não perca a sensibilidade na hora da punção.

Antissepsia do local da punção

- ✓ Recomenda-se usar uma gaze com solução de álcool isopropílico ou etílico 70%, comercialmente preparado.
- ✓ Limpar o local com um movimento circular do centro para a periferia;
- ✓ Permitir a secagem da área por 30 segundos, para evitar hemólise da amostra, e também a sensação de ardência quando o braço do paciente for puncionado;
- ✓ Não assoprar, não abanar e não colocar nada no local;
- ✓ Não tocar novamente na região após a antissepsia.

Antissepsia do local da punção

Abrindo a embalagem de álcool swab

Antissepsia do centro para fora

Critérios para Escolha da Técnica de Coleta de Sangue Venoso a Vácuo ou por Seringa e Agulha

- Recomenda-se que o hospital e laboratório estabeleçam uma política institucional para a escolha da técnica de coleta de sangue;
- Estes critérios de escolha da metodologia a ser utilizada na coleta de sangue vão além do custo do material, devendo-se observar a finalidade do procedimento, o tipo de clientela, as habilidades dos flebotomistas e as características da instituição;
- O flebotomista desempenha um papel importante na garantia da qualidade neste processo;
- Alguns pontos relevantes na escolha da técnica e do material de coleta de sangue são apontados a seguir.

Ordem de Coleta

A "ordem de coleta" recomendada, segundo a NCCLS (National Committee for Clinical Laboratory Standard), quando há necessidade de se coletar várias amostras de um mesmo paciente, durante uma mesma venipunção, é a seguinte:

- 1. Tubo para hemocultura (quando houver);
- 2. Tubo sem aditivo (soro);
- 3. Tubo com citrato (coagulação);
- 4. Tubo com heparina (para plasma);
- 5. Tubo com EDTA-K3 (hematologia);
- 6. Tubo com fluoreto de sódio (glicemia).

Ordem de Coleta

Temos ainda:

Os tubos para tipagem sanguínea ou preservação eritrocitária — são disponíveis com solução de ACD (ácido citrato dextrose)

Ordem de Coleta

Temos ainda:

Os tubos para VHS – contêm solução tamponada de citrato trissódico 3,8% são utilizados para coleta e transporte de sangue venoso para o teste de sedimentação (método de Westergren).

Homogeneização para tubos de coleta de sangue

A homogeneização deve ser feita por inversão conforme ilustrado a seguir:

ORDEM DE TUBOS PARA COLETA VENOSA			
ТАМРА	ADITIVO	INVERSÕES	APLICAÇÃO
	Frascos de hemocultura, Tubo sem aditivo**, Tubo para análise de traços*	2 vezes	Microbiologia Metais Toxicologia*
	Tubo citrato de sódio	3 a 4 vezes	Coagulação
	Tubo seditainer citrato de sódio	8 a 10 vezes	VHS
	Tubo seco com ativador de coágulo	5 a 8 vezes	Sorologia Drogas Terapêuticas Hormônios
	Tubo com gel separador e ativador de coágulo	5 a 8 vezes	Sorologia Bioquímica Drogas Terapêuticas
	Tubo com gel separador e ativador de coágulo a base de trombina	5 a 6 vezes	Sorologia Exames de emergência
	Tubo com heparina de lítio ou sódio	8 a 10 vezes	Bioquímica
	Tubo EDTA K2 - K3	8 a 10 vezes	Hematologia Hemoglobina Glicada VHS
	Tubo EDTA K2 - K3 com gel separador	8 a 10 vezes	Estudos Moleculares
	Tubo fluoreto de sódio /EDTA (para glicemia)	8 a 10 vezes	Bioquímica

Prof.: SILVA, Y. J. de A.

Coleta de Sangue

Coleta, Estiraço Sanguíneo e Coloração

Coleta de Sangue

COM ANTICOAGULANTE

Plasma

Leucócitos e Plaquetas

Hemácias

SEM ANTICOAGULANTE

Soro

Gel separador

Coágulo

Coleta de Sangue

Anticoagulantes: EDTA – Na₂; K₂; K₃

Ação: quelante de cálcio, impede agregação de leucócitos e plaquetas

Proporção recomendada: 1,5 mg (±0,25) EDTA-K₂/mL de sangue

Uso: Hemograma, VHS, Reticulócitos, Pesquisa de HbS, Eletroforese de Hb

Confecção do esfregaço até 4 hs após a coleta

Coleta de Sangue

Anticoagulante: Heparina

Ação: Anti-trombina – não há formação de fibrina, não inibe a agregação de

leucócitos e plaquetas, não altera o volume celular

Proporção: 10 a 20 UI/mL de sangue

Uso: Provas de hemólise: FO e G-6-PD, exames bioquímicos em geral, gasometria, eritrograma. Não deve ser usado para confecção do esfregaço, pois provoca coloração de fundo prejudicando a avaliação morfológica.

Anticoagulante natural produzido pelos mastócitos

Coleta de Sangue

DES CARPACIO

Anticoagulante: Citrato Trissódico (•2H₂O) 3,2 g%

Ação: captação de cálcio, preservação dos fatores de coagulação.

Proporção: 9 partes de sg + 1 parte de citrato

Uso: Provas da hemostasia sanguínea: TAP, TTPA, fibrinogênio, pesquisa de

inibidores, fatores VIII E IX.

Procedimento de Coleta de Sangue a Vácuo

1. Verificar se a cabine da coleta está limpa e guarnecida para iniciar as coletas

- Local de coleta de sangue guarnecido adequadamente

 Material de coleta separado adequadamente

Procedimento de Coleta de Sangue a Vácuo

- 2. Solicitar ao paciente que diga seu nome completo para confirmação do pedido médico e etiquetas
- 3. Conferir e ordenar todo material a ser usado no paciente, de acordo com o pedido médico (tubos, gaze, torniquete, etc). Esta identificação dos tubos deve ser feita na frente do paciente
- 4. Informá-lo sobre o procedimento
- 5. Abrir o lacre da agulha de coleta múltipla de sangue a vácuo em frente ao paciente
- 6. Rosquear a agulha no adaptador
- 7. Higienizar as mãos
- 8. Calçar as luvas
- 9. Posicionar o braço do paciente, inclinando-c para baixo na altura do ombro

Procedimento de Coleta de Sangue a Vácuo

- 10. Se o torniquete for usado para seleção preliminar da veia, pedir para que o paciente abra e feche a mão, afrouxá-lo e esperar 2 minutos para usá-lo novamente
- 11. Fazer a antissepsia
- 12. Garrotear o braço do paciente

Retirar a proteção que recobre a agulha de coleta múltipla de sangue a vácuo.

Fazer a punção numa angulação oblíqua de 30°, com o bisel da agulha voltado para cima. Se necessário, para melhor visualizar a veia, esticar a pele com a outra mão (longe do local onde foi feita a antissepsia).

Inserir o primeiro tubo a vácuo (ver item 4.8).

Quando o sangue começar a fluir para dentro do tubo, desgarrotear o braço do paciente e pedir para que abra a mão

Técnica de Punção Venosa

Utilizando um container a vácuo; a extremidade distal da agulha foi atarraxada no suporte, e a proximal introduzida na veia, após removido o protetor

O container a vácuo foi introduzido no suporte e impelido em direção à ponta da agulha

Procedimento de Coleta de Sangue a Vácuo

17. Realizar a troca dos tubos sucessivamente

Homogeneizar imediatamente após a retirada de cada tubo, invertendo-o suavemente de 5 a 10 vezes (ver item 4.8.3).

Após a retirada do último tubo, remover a agulha e fazer a compressão no local da punção, com algodão ou gaze secos.

Exercer pressão no local, em geral de 1 a 2 minutos, evitando assim a formação de hematomas e sangramentos. Se o paciente estiver em condições de fazê-lo, orientá-lo adequadamente para que faça a pressão até que o orifício da punção pare de sangrar.

Descartar a agulha imediatamente após sua remoção do braço do paciente, em recipiente para materiais perfurocortantes

Fazer curativo oclusivo no local da punção.

Procedimento de Coleta de Sangue a Vácuo

- 23. Orientar o paciente para que não dobre o braço, não carregue peso ou bolsa a tiracolo no mesmo lado da punção por, no mínimo 1h, e não mantenha manga dobrada, que pode funcionar como torniquete
- 24. Verificar se há alguma pendência, fornecendo orientações adicionais ao paciente, se for necessário
- 25. Certificar-se das condições gerais do paciente, perguntando se está em condições de se locomover sozinho, entregar o comprovante para retirada do resultado, e liberá-lo.
- 26. Colocar as amostras em local adequado ou encaminhá-las imediatamente para processamento em casos indicados (como materiais que necessitem ser mantidos em gelo, por ex.) de acordo com o procedimento operacional do laboratório.

Procedimento de Coleta de Sangue com Seringa e Agulha

- 1. Verificar se a cabine da coleta está limpa e guarnecida para iniciar as coletas
- 2. Solicitar ao paciente que diga seu nome completo para confirmação do pedido médico e etiquetas
- 3. Conferir e ordenar todo material a ser usado no paciente, de acordo com o pedido médico (tubos, gaze, torniquete, etc). Esta identificação dos tubos deve ser feita na frente do paciente

Procedimento de Coleta de Sangue com Seringa e Agulha

- 4. Informá-lo sobre o procedimento
- 5. Abrir a seringa na frente do paciente →

- 6. Higienizar as mãos.
- 7. Calçar as luvas.

8. Posicionar o braço do paciente, inclinando-o para baixo na altura do ombro

Procedimento de Coleta de Sangue com Seringa e Agulha

Retirar a proteção da agulha hipodérmica.

Fazer a punção numa angulação oblíqua de 30°, com o bisel da agulha voltado para cima, se necessário, para melhor visualizar a veia, esticar a pele com a outra mão (longe do local onde foi feita a antissepsia).

 Desgarrotear o braço do paciente assim que o sangue começar a fluir dentro da seringa.

Procedimento de Coleta de Sangue com Seringa e Agulha

15. Aspirar devagar o volume necessário de acordo com a quantidade de sangue requerida na etiqueta dos tubos a serem utilizados (respeitar ao máximo a exigência da proporção sangue/aditivo). Aspirar o sangue evitando bolhas e espumas, e com agilidade, pois o processo de coagulação do organismo do paciente já foi ativado no momento da punção

Retirar a agulha da veia do paciente.

Exercer pressão no local, em geral de 1 a 2 minutos, evitando assim a formação de hematomas e sangramentos. Se o paciente estiver em condições de fazê-lo, oriente-o para que faça a pressão até que o orifício da punção pare de sangrar.

Procedimento de Coleta de Sangue com Seringa e Agulha

18 Tenha cuidado com a agulha para evitar acidentes perfurocortantes.

Descartar a agulha imediatamente após sua remoção do braço do paciente, em recipiente adequado, sem a utilização das mãos (de acordo com a normatização nacional – não desconectar a agulha - não reencapar).

Abrir a tampa do 1° tubo, deixar que o sangue escorra pela sua parede devagar para evitar hemólise (ver item 4.5.1).

Fechar o tubo e homogeneizar, invertendo-o suavemente de 5 a 10 vezes de acordo com o tubo utilizado.

Abrir a tampa do 2º tubo, e assim sucessivamente até o último tubo, de acordo com o pedido médico do paciente. Não esquecer de fazer o processo tubo a tubo, para evitar a troca de tampa dos tubos (causando erro de diagnóstico).

Procedimento de Coleta de Sangue com Seringa e Agulha

Ao final, descartar a seringa em descartador apropriado para materiais contaminantes.

Fazer curativo oclusivo no local da punção.

Cuidados para uma Punção Bem Sucedida

O ideal é que o paciente seja puncionado uma única vez, proporcionando assim conforto e segurança ao paciente.

Para se obter uma punção de sucesso, vários fatores devem ser observados, antes de iniciar o procedimento.

Ao observar o acesso venoso do paciente, escolher materiais compatíveis, por exemplo, paciente com acesso venoso difícil, valer-se do uso de agulhas de menor calibre ou escalpes e tubos de menor volume.

- Sempre puncionar a veia do paciente com o bisel voltado para cima.
- Respeitar a proporção sangue/aditivo no tubo.
- Introduzir a gulha mais ou menos 1cm no braço.
- Respeitar a angulação de 30° (ângulo oblíquo), em relação ao braço do paciente

Correta angulação na coleta/30°

Incorreta angulação na coleta

Cuidados para uma Punção Bem Sucedida

- O ângulo oblíquo de 30° da agulha em relação ao braço do paciente foi respeitado, agulha penetrou centralmente na veia e o bisel da agulha foi inserido voltado para cima.
- Deve-se tomar cuidado quando o sangue não for obtido logo na primeira punção, para evitar complicações.

As figuras a seguir exemplificam alguns problemas que podem ocorrer nas situações em que a punção venosa não foi feita adequadamente e como resolvê-los.

- O bisel está encostado na parede superior da veia.
- O ideal é inclinar um pouco para cima e avançar um pouco com a agulha, permitindo a passagem do fluxo sangüíneo para dentro da agulha.

- É eminente a formação de hematoma neste caso. Vemos o extravasamento de sangue abaixo da pele.
- Para evitar que seja feita uma segunda punção, deve-se introduzir um pouco mais a agulha no braço do paciente, tranquilizá-lo e, após o término da coleta, fazer compressa com gelo.

- Retirar ou afrouxar o torniquete para permitir o restabelecimento da circulação.
- Retroceder um pouco a agulha para permitir que o fluxo sangúíneo desobstrua.
- Utilizar a marca guia do adaptador de coleta de sangue a vácuo. Ela serve como orientação, quando no meio de uma punção sem fluxo, como demonstrado acima, e o tubo já inserido no sistema de coleta a vácuo, o flebotomista necessite desobstruir a veia colabada, retrocedendo um pouco o tubo. O tubo perderá o vácuo, caso este retrocesso seja após a marca guia.

- Se durante o ato da coleta, for percebido uma suspeita de colabamento da veia puncionada recomenda-se virar lenta e cuidadosamente o adaptador de coleta de sangue a vácuo para que o bisel seja desobstruído, permitindo a recomposição da luz da veia e liberação do fluxo sanguíneo
- Caso ocorra a perda do vácuo, substituir o tubo
- Evitar movimentos de busca aleatória da veia. Este procedimento induz hemólise da amostra e resulta na formação de hematoma. Em muitos casos é aconselhável realizar nova punção em outro sítio
- Punção acidental de artéria: o fluxo arterial é muito mais rápido que o venoso. O sangue arterial tende a uma cor avermelhada, mais "viva", devido a maior oxigenação da hemoglobina. Ao puncionar acidentalmente uma artéria, recomenda-se retirar rapidamente a agulha, seguida de compressão vigorosa no local da punção, até a parada do sangramento

Cuidados para uma Punção Bem Sucedida

Figura ilustrando os diversos tipos de agulhas de coleta múltipla de sangue a vácuo: verde – 21 G1, amarela – 20 G1 ½, preta – 22 G1 e, na parte inferior, agulhas com dispositivo de segurança.

Adaptadores para coleta de sangue a vácuo – O adaptador é uma peça plástica que, uma vez rosqueada à agulha de coleta múltipla de sangue a vácuo, possibilita ao flebotomista uma melhor empunhadura e segurança na hora da coleta venosa. Cada fabricante produz o adaptador adequado ao seu sistema de coleta de sangue a vácuo (adaptador, agulha, tubo a vácuo).

Escalpes para coleta múltipla de sangue a vácuo

Os escalpes para coleta de sangue a vácuo são similares aos escalpes de infusão, a diferença é que no luer, porção final do tubo vinílico, existe uma peça acoplada, onde o adaptador é rosqueado, com uma agulha recoberta por uma manga de borracha. Alguns escalpes possuem dispositivos de segurança que ao término da punção, recobrem a agulha protegendo o flebotomista de uma contaminação por acidente com perfurocortante

Escalpes para coleta múltipla de sangue a vácuo

Escalpes para coleta de sangue a vácuo; com os seguintes calibres:

- 21G (calibre 8), em geral, verde: Usualmente utilizado para pacientes com bom acesso venoso.
- 23G (calibre 6), em geral, azul claro: Usualmente é o mais utilizado em pacientes geriátricos, neonatos e pacientes em tratamentos com quimioterápicos, isto é, em geral pacientes com acesso venoso difícil.
- 25G (calibre 5) em geral, azul escuro: Usualmente utilizado para o mesmo perfil de pacientes acima descritos, porém com acessos venosos ainda mais difíceis

Cuidados para uma Punção Bem Sucedida – Coleta Infantil

Escalpes para coleta múltipla de sangue a vácuo – Coleta Infantil

Os locais de punção em bebês e neonatos, geralmente são as veias na Cabeça, dorso das mãos e dos pés, e do braço.

A área escolhida para ser puncionada deve ser mantida imobilizada onde a visualização da veia pode ser melhorada aplicando um garroteamento por poucos segundos e/ou aquecendo ou friccionando a área.

Escalpes para coleta múltipla de sangue a vácuo – Coleta Infantil

- 1. Antes de iniciar a punção: acoplar o microtubo ao tubo carregador ou de transporte. Introduzir o funil através da tampa de borracha.
- 2. Puncionar a veia utilizando um butterfly ou cânula luer.
- 3. Deixar que o sangue goteje para dentro do microtubo até completar o volume.
- 4. Remova a cânula ou butterfly, retire o funil e descarte todo o material utilizado na coleta no descartador apropriado.
- 5. Inverter os microtubos de 4-6 vezes, para uma homogeneização perfeita.

Escalpes para coleta múltipla de sangue a vácuo – Sangue Capilar

Após o material estar preparado, iniciar a punção:

- 1. Verificar quais os exames a serem realizados;
- 2. Aquecer a falange distal ou o calcanhar a ser puncionado usando uma bolsa de águaquente ou friccionando o local da punção para estimular a vascularização;
- 3. Lavar e secar as mãos;
- 4. Calçar luvas;
- 5. Fazer antissepsia do local com algodão embebido em álcool etílico a 70%;
- 6. Secar o local da punção com uma gaze estéril; 7. Selecionar a lanceta;
- 7. Segurar firmemente o neonato ou bebê, para evitar movimentos imprevistos.

Escalpes para coleta múltipla de sangue a vácuo – Sangue Capilar

8.1 Punção digital:

Posicionar o dedo e introduzir a lanceta de forma perpendicular na face lateral interna da

Escalpes para coleta múltipla de sangue a vácuo – Sangue Capilar

8.2 Punção no calcanhar:

Posicionar o calcanhar entre o polegar e o indicador e introduzir a lanceta de forma perpendicular na face lateral interna ou externa do calcanhar, evitando a região central.

Escalpes para coleta múltipla de sangue a vácuo – Sangue Capilar

- 9. Desprezar a primeira gota, por conter maior quantidade de fluidos celulares do que sangue. Colher a amostra a partir da segunda gota.
- 10. As gotas de sangue são captadas pelo funil ou tubo-capilar;
- 11. Quando o microtubo estiver com o seu volume completo, troque-o pelo subsequente, na seqüência correta de coleta.
- 12. Após a coleta do último microtubo, o funil ou tubo-capilar deve ser removido e descartado.
- 13. Homogeneizar o microtubo.

Escalpes para coleta múltipla de sangue a vácuo

Causas Pré-Analíticas de Variações dos Resultados de Exames Laboratoriais

- Variação Cronobiológica
- Gênero
- Idade
- Posição
- Atividade física
- Jejum
- Dieta
- Uso de fármacos e drogas de abuso
- Aplicação do torniquete
- Procedimentos diagnósticos e/ou terapêuticos
- Infusão de fármacos
- Gel separador
- Hemólise
- Lipemia

Diferentes Graus de Hemólise

Diferentes Graus de Lipemia

Coloração

- Romanowsky idealizou um método em que uma solução de corantes poderia corar diferentes estruturas. Misturas dos corantes eosina e azul de metileno são preparadas segundo proposição de vários autores: Leishman, May-Grunwald, Giemsa, Wright e outros (que dão os respectivos nomes ao corantes, segundo Leishman, Giemsa, etc....).
- Estes corantes são dissolvidos em álcool (em geral metanol). Na solução envelhecida, o azul de metileno se oxida em gradações diferentes, originando diversos "azures" de metileno. Teremos então uma solução alcoólica de um complexo eosinato de azul e "azures" de metileno.

Nomenclatura

- A Nomenclatura quando uma estrutura se cora, revelando a mesma cor do corante, diz-se que é uma coloração ortocromática; quando a estrutura toma uma cor diferente daquela do corante, diz-se que é uma coloração metacromática.
- As estruturas celulares que tem afinidade pelo azul de metileno são chamadas basófilas, corado-se em azul;
- As que tem afinidade pelos azures são chamadas azurófilas, corando-se em púrpura (metacromasia);
- As que tem afinidade pela eosina são chamadas acidófilas, corando-se em rosa; e
- Quem tem afinidade pela mistura complexa são chamadas neutrófilas, corando-se em salmão.

Etapas da Coloração

- **Fixação**: a preparação a ser corada deverá ser previamente fixada. O fixador rotineiro mais usado em hematologia é o metanol, que deve ser aplicado sobre a lâmina por 01 a 03 minutos. O corante, preparado em solução alcoólica, quando aplicado sobre a lâmina (nesse período de tempo) realiza esta etapa que é a de fixação.
- Coloração: adicionando-se água de coloração (água tamponada, pH=7,0 ou água destilada) sobre o corante, ionizam-se os sais contidos na solução.
- Lavagem: após a coloração, as lâminas são lavadas sob jato de água corrente e em seguida secas ao ar.

Corantes

- O corante de May-Grunwald (1902) é uma mistura de eosina e azul de metileno (não oxidados), que quimicamente se transforma em eosinato de azul de metileno.
- Giemsa (Alemanha) desenvolveu, no mesmo período, um corante que leva seu nome e que hoje se sabe ser uma mistura de azur II (mistura equimolar de azur 1 e azul de metileno) e eosinato de azur II (corante formado pela combinação equimolar de azur 1, azul de metileno e eosina amarelada).
- Esses dois corantes são utilizados em um método de coloração mais demorado em que após fixação e coloração pelo May Grunwald, se processa uma segunda coloração com solução de Giemsa, obtendo-se um resultado final melhor e mais detalhado.

Método MGG (May-Grunwald-Giemsa)

- **Fixação**: sobre a extensão de sangue, dessecada ao ar, colocar algumas gotas do corante (por ex. 30 gotas) e aguardar 3 5 minutos.
- Coloração: sem desprezar o corante, acrescentar um igual número de gotas de água de coloração, homogeneizar e aguardar 15 – 20 minutos .
- Lavagem: Lavar sob jato de água corrente. Secar ao ar.

Método MGG (May-Grunwald-Giemsa)

Corante Panóptico Rápido

- Preparar as extensões sanguíneas, identificá-las e deixar secar em temperatura ambiente;
- Submergir as lâminas na solução nº 1 mantendo-se um movimento contínuo de cima para baixo ou para os lados durante 5 segundos ou 5 imersões de 1 segundo cada;
- Deixar Escorrer tirando o excesso em gaze ou papel absorvente;
- Submergir as lâminas na solução nº 2 mantendo-se um movimento contínuo de cima para baixo ou para os lados durante 5 segundos ou 5 imersões de 1 segundo cada;
- Deixar Escorrer tirando o excesso em gaze ou papel absorvente;
- Submergir as lâminas na solução nº 3 mantendo-se um movimento contínuo de cima para baixo ou para os lados durante 5 segundos ou 5 imersões de 1 segundo cada;
- Deixar Escorrer tirando o excesso em gaze ou papel absorvente;
- Lavar com água destilada recente (de preferência de pH 7) ou em água corrente;
- Secar ao ar na posição vertical.

Corante Panóptico Rápido

Erros na Coloração

Precipitado de Corante

Artefato provocado pela água

Erros na Coloração

Célula destruída durante a distenção do sangue

Hemácias crenadas pelo excesso de EDTA

Erros na Coloração

Satelitismo Plaquetário

Estiraço sem EDTA mostrando agregação plaquetária

Erros na Coloração

Neutrófilo necrobiótico (em degeneração)

Precipitado de Corante

Estiraço Corado Adequadamente

Outros erros

Outros erros

Outros erros

Escrutinar a Lâmina

DOWNLOAD DO https://yurialb.github.io CONTEÚDO

E-mail: yuri.albuquerque@outlook.com

