Machine Learning

Regularization and Feature Selection

Fabio Vandin

November 18th, 2022

h is described by $\widetilde{W} \in \mathbb{R}^d$

Regularization function: $R(\mathbf{w}) = \lambda ||\mathbf{w}||^2$

Tikhonov regularization

Regularization function: $R(\mathbf{w}) = \lambda ||\mathbf{w}||^2$

- $\lambda \in \mathbb{R}, \lambda > 0$ ℓ_2 norm: $||\mathbf{w}||^2 = \sum_{i=1}^d w_i^2$

Tikhonov regularization

Regularization function: $R(\mathbf{w}) = \lambda ||\mathbf{w}||^2$

- $\lambda \in \mathbb{R}, \lambda > 0$
- ℓ_2 norm: $||\mathbf{w}||^2 = \sum_{i=1}^d w_i^2$

Therefore the learning rule is: pick

$$A(S) = \arg\min_{\mathbf{w}} \left(L_S(\mathbf{w}) + \lambda ||\mathbf{w}||^2\right)$$

Intuition:

- $||\mathbf{w}||^2$ measures the "complexity" of hypothesis defined by \mathbf{w}
- A regulates the tradeoff between the empirical risk $(L_S(\mathbf{w}))$ or overfitting and the complexity $(||\mathbf{w}||^2)$ of the model we pick

Ridge Regression

Linear regression with squared loss + Tikhonov regularization \Rightarrow ridge regression

Ridge Regression

Linear regression with squared loss + Tikhonov regularization \Rightarrow ridge regression

Linear regression with squared loss:

- given: training set $S = ((\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m))$, with $\mathbf{x}_i \in \mathbb{R}^d$ and $y_i \in \mathbb{R}$
- want: w which minimizes empirical risk:

$$\mathbf{w} = \arg\min_{\mathbf{w}} \frac{1}{m} \sum_{i=1}^{m} (\langle \mathbf{w}, \mathbf{x}_i \rangle - y_i)^2$$

equivalently, find \mathbf{w} which minimizes the residual sum of squares $RSS(\mathbf{w})$

$$\mathbf{w} = \arg\min_{\mathbf{w}} RSS(\mathbf{w}) = \arg\min_{\mathbf{w}} \sum_{i=1}^{m} (\langle \mathbf{w}, \mathbf{x}_i \rangle - y_i)^2$$

Linear regression: pick

$$\mathbf{w} = \arg\min_{\mathbf{w}} RSS(\mathbf{w}) = \arg\min_{\mathbf{w}} \sum_{i=1}^{m} (\langle \mathbf{w}, \mathbf{x}_i \rangle - y_i)^2$$

Ridge regression: pick

$$\mathbf{w} = \arg\min_{\mathbf{w}} \left(\lambda ||\mathbf{w}||^2 + \sum_{i=1}^{m} (\langle \mathbf{w}, \mathbf{x}_i \rangle - y_i)^2 \right)$$

RSS: Matrix Form

Let

X: design matrix

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}$$

⇒ we have that RSS is

$$\sum_{i=1}^{m} (\langle \mathbf{w}, \mathbf{x}_i \rangle - y_i)^2 = (\mathbf{y} - \mathbf{X}\mathbf{w})^T (\mathbf{y} - \mathbf{X}\mathbf{w})$$

Ridge Regression: Matrix Form

Linear regression: pick

$$\arg\min_{\mathbf{w}} \left(\mathbf{y} - \mathbf{X} \mathbf{w} \right)^T \left(\mathbf{y} - \mathbf{X} \mathbf{w} \right)$$

Ridge regression: pick
$$\arg\min_{\mathbf{w}} \left(\lambda ||\mathbf{w}||^2 + (\mathbf{y} - \mathbf{X}\mathbf{w})^T (\mathbf{y} - \mathbf{X}\mathbf{w}) \right)$$

Want to find w which minimizes
$$f(\mathbf{w}) = \lambda ||\mathbf{w}||^2 + (\mathbf{y} - \mathbf{X}\mathbf{w})^T (\mathbf{y} - \mathbf{X}\mathbf{w}).$$
How? quadrent: $2\lambda \vec{w}$

Compute gradient $\frac{\partial f(\mathbf{w})}{\partial \mathbf{w}}$ of objective function w.r.t \mathbf{w} and compare it to 0.

Want to find \mathbf{w} which minimizes $f(\mathbf{w}) = \lambda ||\mathbf{w}||^2 + (\mathbf{y} - \mathbf{X}\mathbf{w})^T (\mathbf{y} - \mathbf{X}\mathbf{w}).$

How?

Compute gradient $\frac{\partial f(\mathbf{w})}{\partial \mathbf{w}}$ of objective function w.r.t \mathbf{w} and compare it to 0.

$$\frac{\partial f(\mathbf{w})}{\partial \mathbf{w}} = 2\lambda \mathbf{w} - 2\mathbf{X}^{T}(\mathbf{y} - \mathbf{X}\mathbf{w})$$

Then we need to find w such that

$$\lambda \vec{w} - \lambda \vec{x}^{T} (\mathbf{y} - \mathbf{X} \mathbf{w}) = 0$$

$$\lambda \vec{w} - \lambda^{T} (\vec{y} - \lambda \vec{w}) = 0$$

$$\lambda \vec{w} + \lambda^{T} \times \vec{w} = \lambda^{T} \vec{y}$$

$$(\lambda \mathbf{I} + \lambda^{T} \lambda) \vec{w} = \lambda^{T} \vec{y}$$

$$\Rightarrow \vec{w} = (\lambda \mathbf{I} + \lambda^{T} \lambda) \lambda^{T} \vec{y}$$

$$2\lambda \mathbf{w} - 2\mathbf{X}^T(\mathbf{y} - \mathbf{X}\mathbf{w}) = 0$$

is equivalent to

$$\left(\lambda \mathbf{I} + \mathbf{X}^T \mathbf{X}\right) \mathbf{w} = \mathbf{X}^T \mathbf{y}$$

Note:

- X^TX is positive semidefinite
- **\lambda** is positive definite
- $\Rightarrow \lambda \mathbf{I} + \mathbf{X}^T \mathbf{X}$ is positive definite
- $\Rightarrow \lambda \mathbf{I} + \mathbf{X}^T \mathbf{X}$ is invertible

Ridge regression solution:

$$\mathbf{w} = \left(\lambda \mathbf{I} + \mathbf{X}^T \mathbf{X}\right)^{-1} \mathbf{X}^T \mathbf{y}$$

Exercise 5

Consider the ridge regression problem $\arg\min_{\mathbf{w}} \lambda ||\mathbf{w}||^2 + \sum_{i=1}^m (\langle \mathbf{w}, \mathbf{x}_i \rangle - y_i)^2$. Let: h_S be the hypothesis obtained by ridge regression w with training set S; h^* be the hypothesis of minimum generalization error among all linear models.

- (A) Draw, in the plot below, a *typical* behaviour of (i) the training error and (ii) the test/generalization error of h_S as a function of λ .
- (B) Draw, in the plot below, a *typical* behaviour of (i) $L_{\mathcal{D}}(h_S) L_{\mathcal{D}}(h^*)$ and (ii) $L_{\mathcal{D}}(h_S) L_S(h_S)$ as a function of λ .

