HCC: Predictive Model

Ph. Nesma Magdy Ahmed

22/04/2022

Data Cleaning:

Demographic Characheristics:

```
data %>% tbl_summary(by=Class) %>%
  bold_labels() %>%
  add_labelled_class()%>%
  modify_footnote(
    all_stat_cols() ~ "Median (IQR) or Frequency (%)"
  ) %>%
  add_p() %>%
  modify_header(label ~ "**Participants Characteristics**") %>%
  modify_caption("**Table 1. Patients' Characteristics (n = 204)**") %>%
  bold_labels() %>%
  bold_p()
```

Table 1: Table 1. Patients' Characteristics (n = 204)

Participants Characteristics	$\mathbf{Died},\mathrm{N}=102$	Lived, $N = 102$	p-value
Gender			>0.9
Female	21 (21%)	21 (21%)	
Male	81 (79%)	81 (79%)	
Symptoms	,	,	< 0.001
No Symptoms	18 (18%)	45 (44%)	
Symptoms	84 (82%)	57 (56%)	
Alcohol	,	, ,	0.9
Not Alcoholic	29 (28%)	28 (27%)	
Alcoholic	73 (72%)	74 (73%)	
HBsAg	,	,	0.5

Participants Characteristics	Died , N = 102	Lived, $N = 102$	p-value
No Hepatitis B Surface Antigen	94 (92%)	91 (89%)	
Hepatitis B Surface Antigen	8 (7.8%)	11 (11%)	
${ m HBeAg}$			0.2
No Hepatitis B e Antigen	99~(97%)	102~(100%)	
Hepatitis B e Antigen	3(2.9%)	0 (0%)	
HBcAb			0.4
No Hepatitis B Core Antibody	78 (76%)	73~(72%)	
Hepatitis B Core Antibody	24 (24%)	29~(28%)	
HCVAb			0.3
No Hepatitis C Virus Antibody	$78 \ (76\%)$	84~(82%)	
Hepatitis C Virus Antibody	24 (24%)	18 (18%)	
Cirrhosis			0.5
No Cirrhosis	12~(12%)	9~(8.8%)	
Cirrhosis	90 (88%)	93~(91%)	
Endemic			0.017
Not living in Endemic Countries	100 (98%)	92 (90%)	
Living in Endemic Countries	2(2.0%)	10 (9.8%)	
Smoking			0.091
Not Smoker	62~(61%)	50 (49%)	
Smoker	40 (39%)	52 (51%)	
Diabetes			0.058
Not Diabetic	59 (58%)	72 (71%)	
Diabetic	43~(42%)	30 (29%)	
Obesity			0.4
Normal Weight	93~(91%)	89 (87%)	
Obese	9~(8.8%)	13~(13%)	
Hemochro			0.8
No Hemochromatosis	96 (94%)	97 (95%)	
Hemochromatosis	6 (5.9%)	5~(4.9%)	
AHT			0.7
No Arterial Hypertension	66~(65%)	63~(62%)	
Arterial Hypertension	36 (35%)	39 (38%)	
CRI			0.071
No Chronic Renal Insufficiency	83 (81%)	92 (90%)	
Chronic Renal Insufficiency	19 (19%)	10 (9.8%)	
HIV			> 0.9
No Human Immunodeficiency Virus (HIV)	101~(99%)	100 (98%)	
Human Immunodeficiency Virus (HIV)	1 (1.0%)	2(2.0%)	
NASH			0.2
No Nonalcoholic Steatohepatitis	99 (97%)	95~(93%)	
Nonalcoholic Steatohepatitis	3(2.9%)	7~(6.9%)	
Varices			0.9
No Esophageal Varices	37 (36%)	38 (37%)	
Esophageal Varices	65~(64%)	64~(63%)	
Spleno			0.5
No Splenomegaly	50 (49%)	45 (44%)	
Splenomegaly	52 (51%)	57 (56%)	
PHT			0.9
No Portal Hypertension	33 (32%)	32 (31%)	
Portal Hypertension	69~(68%)	70~(69%)	
PVT			0.011
No Portal Vein Thrombosis	72 (71%)	87 (85%)	

		Lived, $N = 102$	p-value
Portal Vein Thrombosis	30 (29%)	15 (15%)	
Metastasis	` ,	` ,	< 0.001
No Liver Metastasis	65~(64%)	88 (86%)	
Liver Metastasis	37 (36%)	14 (14%)	
Hallmark	` ,	` ,	0.2
No Radiological Hallmark	39 (38%)	31 (30%)	
Radiological Hallmark	63 (62%)	71 (70%)	
\mathbf{Age}	34 (25, 41)	28 (20, 37)	0.005
Grams_day	21(7,30)	30(1,30)	0.5
Packs_year	3(0,30)	0(0, 40)	0.9
PS			< 0.001
0	25~(25%)	63~(62%)	
1	28 (27%)	16 (16%)	
2	20 (20%)	17 (17%)	
3	$23\ (23\%)$	$6\ (5.9\%)$	
4	6 (5.9%)	0 (0%)	
Encephalopathy	,	,	0.017
1	82 (80%)	91 (89%)	
2	13 (13%)	11 (11%)	
3	7 (6.9%)	0 (0%)	
Ascites	,	,	0.003
1	56 (55%)	78 (76%)	
2	29~(28%)	18 (18%)	
3	17 (17%)	$6\ (5.9\%)$	
INR	$1.37 \ (1.20, \ 1.67)$	$1.25\ (1.16,\ 1.46)$	0.005
AFP	270 (60, 2,418)	9 (5, 72)	< 0.001
Hemoglobin	12.10 (10.80, 13.10)	13.70 (12.03, 14.90)	< 0.001
MCV	94 (89, 100)	95 (90, 100)	0.3
Leucocytes	9 (6, 3,698)	6 (5, 13)	0.020
Platelets	113,500 (272, 209,796)	85,500 (202, 159,750)	0.059
Albumin	3.29 (2.98, 3.54)	3.75 (3.10, 4.20)	< 0.001
Total_Bil	1.71 (1.02, 3.40)	$1.30\ (0.80,\ 2.38)$	0.003
ALT	60 (33, 83)	45 (31, 71)	0.13
AST	85 (60, 124)	59 (38, 93)	< 0.001
GGT	229 (118, 432)	156 (82, 276)	0.006
ALP	222 (146, 335)	130 (97, 182)	< 0.001
TP	6.90 (6.30, 7.30)	$7.15 \ (6.40, 7.60)$	0.11
Creatinine	0.88 (0.76, 1.21)	$0.80\ (0.70,\ 1.02)$	0.022
Nodule	, , ,	, ,	0.2
0	0 (0%)	1 (1.0%)	
1	$32\ (31\%)$	46 (45%)	
2	20 (20%)	14 (14%)	
3	11 (11%)	7(6.9%)	
4	5 (4.9%)	2(2.0%)	
5	34~(33%)	32 (31%)	
Major_Dim	6.8 (3.7, 9.7)	4.7 (2.9, 7.3)	0.004
Dir_Bil	$1.08 \ (0.50, \ 1.79)$	$0.50 \ (0.30, 1.00)$	< 0.001
Iron	75 (46, 106)	87 (47, 123)	0.7
Sat	30 (19, 70)	30 (15, 51)	0.2
Ferritin	452 (173, 856)	130 (60, 363)	< 0.001

Splitting data into Test and Train:

By splitting the data set into random test and train data set will leading to potential colinearity issue.

```
split1 \leftarrow sample(c(rep(0, 0.7 * nrow(data)), rep(1, 0.3 * nrow(dt))))
train <- dt[split1 == 0, ]</pre>
test <- dt[split1== 1, ]
paste("train sample size: ", dim(train)[1])
## [1] "train sample size: 143"
paste("test sample size: ", dim(test)[1])
## [1] "test sample size: 61"
cats.fit <- glm(Class1 ~ Symptoms + Endemic + PVT + Metastasis +</pre>
                  Age + PS + Encephalopathy + Ascites + INR + AFP +
                  Hemoglobin + Leucocytes + Albumin + Total_Bil + AST + GGT +
                  ALP + Creatinine + Major_Dim + Dir_Bil + Ferritin, data=train,
                family=binomial)
summary(cats.fit)
##
## Call:
## glm(formula = Class1 ~ Symptoms + Endemic + PVT + Metastasis +
       Age + PS + Encephalopathy + Ascites + INR + AFP + Hemoglobin +
##
       Leucocytes + Albumin + Total_Bil + AST + GGT + ALP + Creatinine +
       Major_Dim + Dir_Bil + Ferritin, family = binomial, data = train)
##
##
## Deviance Residuals:
##
       Min
                   1Q
                         Median
                                       3Q
                                                Max
## -2.18480 -0.62912 -0.07091
                                  0.51328
                                            2.36182
##
## Coefficients:
##
                    Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                  1.314e+01 4.274e+00 3.075
                                                  0.0021 **
## Symptoms
                 -1.367e+00 6.002e-01 -2.278
                                                  0.0227 *
## Endemic
                  2.887e+00 1.362e+00 2.120
                                                  0.0340 *
## PVT
                  -5.469e-01
                             6.601e-01 -0.828
                                                  0.4074
## Metastasis
                 -1.300e+00 6.993e-01 -1.859
                                                  0.0631 .
## Age
                  -4.936e-02 2.258e-02 -2.186
                                                  0.0288 *
                                                  0.2887
## PS
                  -3.203e-01 3.019e-01 -1.061
## Encephalopathy -4.107e-01
                             6.253e-01
                                        -0.657
                                                  0.5112
## Ascites
                 -2.265e-01 4.223e-01 -0.536
                                                  0.5917
## INR
                 -1.938e+00 8.534e-01 -2.271
                                                  0.0232 *
                                         1.310
## AFP
                  2.901e-06 2.215e-06
                                                  0.1903
## Hemoglobin
                  4.346e-02 1.453e-01
                                         0.299
                                                  0.7649
## Leucocytes
                  8.521e-06 9.517e-05 0.090
                                                  0.9287
                                                  0.2385
## Albumin
                 -5.939e-01 5.039e-01 -1.179
## Total_Bil
                  8.245e-02 2.318e-01
                                         0.356
                                                  0.7221
```

```
## AST
                 -6.054e-03 3.795e-03 -1.595
                                                 0.1107
## GGT
                  1.106e-03
                            1.783e-03
                                         0.621
                                                 0.5349
## ALP
                 -5.901e-03
                             2.361e-03
                                        -2.499
                                                 0.0125 *
                             3.265e-01
                                        -1.268
                                                 0.2050
## Creatinine
                 -4.139e-01
## Major_Dim
                 -9.643e-02
                             6.127e-02
                                        -1.574
                                                 0.1155
## Dir Bil
                 -1.286e-01 3.592e-01
                                       -0.358
                                                 0.7203
## Ferritin
                 -2.046e-03 8.762e-04 -2.335
                                                 0.0195 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
  (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 198.07 on 142 degrees of freedom
##
## Residual deviance: 111.94 on 121 degrees of freedom
## AIC: 155.94
##
## Number of Fisher Scoring iterations: 6
```

check_model(cats.fit)

After the model is created and fitted, this model is used for making predictions on the test data set values.

```
pred <- predict(cats.fit, newdata = test, type = "response")
pred_bens <- as.factor(ifelse(pred>0.5,1,0))

confusionMatrix(data = pred_bens, reference = test$Class1)
```

```
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
## 0 23 10
## 1 5 23
##
```

```
Accuracy : 0.7541
##
##
                    95% CI: (0.6271, 0.8554)
##
       No Information Rate: 0.541
##
       P-Value [Acc > NIR] : 0.0004963
##
##
                     Kappa : 0.5115
##
   Mcnemar's Test P-Value: 0.3016996
##
##
##
               Sensitivity: 0.8214
               Specificity: 0.6970
##
##
            Pos Pred Value : 0.6970
##
            Neg Pred Value: 0.8214
                Prevalence: 0.4590
##
##
            Detection Rate: 0.3770
      Detection Prevalence : 0.5410
##
##
         Balanced Accuracy: 0.7592
##
##
          'Positive' Class : 0
##
```

Cutoff Values vs Accuracy:

```
pred.rocr <- ROCR::prediction(pred, test$Class1)
eval <- ROCR::performance(pred.rocr, "acc")
plot(eval)</pre>
```


Create AUC and ROC for test data:

ROC CURVE - ROC (Receiver Operator Characteristic Curve) can help in deciding the best threshold value. A ROC curve is plotted with FPR on the X-axis and TPR on the y-axis. A high threshold value gives - high specificity and low sensitivity A low threshold value gives - low specificity and high sensitivity.

```
library(pROC)
test_roc <- roc(test$Class1 ~ pred, plot = TRUE, print.auc = TRUE)</pre>
```



```
auc(test_roc)
```

Area under the curve: 0.8019

```
plot(test_roc,
    print.cutoffs.at=-c(50,90,110,120),
    cutoff.label.function=`-`,
    points.pch = 20, points.col = "darkblue",
    text.adj=c(1.2,-0.5), legacy.axes = TRUE,
    print.auc = TRUE)
```


The model was verified in the external data set, AUC =0.824, indicating that the model has a good discrimination in the validation of the external data set.

As the random data splitting results in a potential colinearity issue.

Then, I will try the Bootstraping Method.

Bootstraping:

```
## Logistic Regression Model
##
## lrm(formula = Class1 ~ Symptoms + Endemic + PVT + Metastasis +
```

```
##
        Age + PS + Encephalopathy + Ascites + INR + AFP + Hemoglobin +
##
        Leucocytes + Albumin + Total_Bil + AST + GGT + ALP + Creatinine +
##
        Major_Dim + Dir_Bil + Ferritin, data = dt, x = T, y = T)
##
##
                            Model Likelihood
                                                Discrimination
                                                                    Rank Discrim.
##
                                  Ratio Test
                                                        Indexes
                                                                          Indexes
##
    Obs
                  204
                          LR chi2
                                      110.67
                                                          0.558
                                                                            0.886
                                                R2
                                                                    C
                  102
                                                                            0.772
##
     0
                          d.f.
                                          21
                                                          2.712
                                                                   Dxy
                                                 g
                          Pr(> chi2) <0.0001
##
     1
                   102
                                                         15.055
                                                                    gamma
                                                                            0.772
                                                 gr
##
    max |deriv| 2e-06
                                                          0.389
                                                                    tau-a
                                                                            0.388
                                                 gp
##
                                                 Brier
                                                          0.140
##
                   Coef
##
                            S.E.
                                   Wald Z Pr(>|Z|)
##
    Intercept
                    7.1159 2.8715 2.48 0.0132
##
    Symptoms
                   -0.6939 0.4452 -1.56
                                          0.1191
##
    Endemic
                    2.8928 1.2514 2.31
                                          0.0208
##
    PVT
                   -0.9011 0.5293 -1.70
                                          0.0887
##
    Metastasis
                   -0.7772 0.4987 -1.56
                                          0.1191
                   -0.0395 0.0186 -2.13
##
    Age
                                          0.0335
##
                   -0.3473 0.2242 -1.55
                                          0.1214
##
    Encephalopathy -0.0420 0.5133 -0.08
                                          0.9348
    Ascites
                   -0.1959 0.3236 -0.61
                                          0.5450
##
   INR
                   -1.3484 0.6510 -2.07
                                          0.0383
##
    AFP
                    0.0000 0.0000 1.48
                                          0.1393
                    0.1379 0.1090 1.27
##
  Hemoglobin
                                         0.2057
                   -0.0001 0.0001 -1.01
  Leucocytes
                                          0.3135
##
  Albumin
                    0.0157 0.3790 0.04
                                          0.9669
##
   Total_Bil
                    0.0269 0.1821 0.15
                                          0.8825
##
  AST
                   -0.0037 0.0027 -1.37
                                          0.1695
## GGT
                    0.0009 0.0012 0.74
                                          0.4617
                   -0.0046 0.0018 -2.59
## ALP
                                          0.0096
##
   Creatinine
                   -0.3094 0.2400 -1.29
                                          0.1974
##
  Major_Dim
                   -0.0979 0.0491 -1.99
                                          0.0463
  \mathtt{Dir}_{\mathtt{Bil}}
                   -0.0947 0.2819 -0.34 0.7369
##
##
    Ferritin
                   -0.0016 0.0006 -2.84 0.0045
##
```

According to the calculated results, the C-Statistics is 0.886 in this data, which indicate a strong model.


```
call <- calibrate(fit1, method = "boot", B=100)
plot(call, xlim=c(0, 1.0), ylim=c(0, 1.0))</pre>
```



```
##
## n=204 Mean absolute error=0.063 Mean squared error=0.00459
## 0.9 Quantile of absolute error=0.099
```

it is obvious that the contribution of some predictors to the model are negligible, like, Encephalopathy, Albumin, Total Bilirubin, and Direct Bilirubin.

Exclude these variables that contributes less to the result from the regression model, then reconstruct model "fit2" and display the model parameters.

```
## Logistic Regression Model
##
    lrm(formula = Class1 ~ Symptoms + Endemic + PVT + Metastasis +
##
##
        Age + PS + Ascites + INR + AFP + Hemoglobin + Leucocytes +
##
        AST + GGT + ALP + Creatinine + Major_Dim + Ferritin, data = dt,
        x = T, y = T
##
##
                           Model Likelihood
##
                                                Discrimination
                                                                   Rank Discrim.
##
                                  Ratio Test
                                                        Indexes
                                                                         Indexes
```

```
##
    Obs
                  204
                         LR chi2
                                      110.16
                                                R2
                                                         0.556
                                                                           0.884
##
     0
                  102
                         d.f.
                                                         2.678
                                                                           0.768
                                          17
                                                                   Dxy
                                                g
                         Pr(> chi2) < 0.0001
                                                        14.559
                                                                           0.769
##
     1
                  102
                                                gr
                                                                   gamma
                                                         0.388
                                                                           0.386
##
   max |deriv| 2e-08
                                                                   tau-a
                                                gp
##
                                                Brier
                                                         0.140
##
##
                              Wald Z Pr(>|Z|)
               Coef
                       S.E.
##
   Intercept
                7.0894 2.4005 2.95 0.0031
##
   Symptoms
               -0.7147 0.4360 -1.64
                                      0.1012
   Endemic
##
                2.8795 1.2414 2.32
                                     0.0204
   PVT
               -0.8860 0.5243 -1.69
                                     0.0911
##
   Metastasis -0.8165 0.4871 -1.68
                                     0.0937
##
   Age
               -0.0374 0.0182 -2.06
                                     0.0396
##
   PS
                                     0.0813
               -0.3603 0.2067 -1.74
##
   Ascites
               -0.2543 0.3050 -0.83
                                     0.4044
##
   INR
               -1.3722 0.6157 -2.23
                                     0.0258
##
   AFP
                0.0000 0.0000 1.53
                                     0.1271
   Hemoglobin 0.1418 0.1050 1.35
                                     0.1772
   Leucocytes -0.0001 0.0001 -1.09
                                     0.2749
##
##
   AST
               -0.0041 0.0026 -1.58
                                     0.1145
##
   GGT
                0.0009 0.0012 0.73
                                     0.4676
##
   ALP
               -0.0047 0.0018 -2.67
                                     0.0076
##
   Creatinine -0.3284 0.2331 -1.41
                                     0.1589
   Major_Dim -0.0954 0.0481 -1.98
                                      0.0472
##
##
   Ferritin
               -0.0016 0.0005 -2.89 0.0038
##
```

The C-Statistics = 0.884. The nomogram for the fit2 model become:

And the Calibration Model Become:

```
call2 <- calibrate(fit2, method = "boot", B=100)
plot(call2, xlim=c(0, 1.0), ylim=c(0, 1.0))</pre>
```


Calculation C-Statistics of Logistic Regression Model:

```
dt$predvalue <- predict(fit1)
pred1 <- prediction(dt$predvalue, dt$Class1)
pref <- ROCR::performance(pred1, "tpr", "fpr")
plot(pref)
abline(0, 1, col = 3, lty = 2)</pre>
```


With Hmisc library:

0.8861015

##

Calculating the area under the ROC curve (AUC) is C-statistics = 0.8861015, which is consistent with the above calculation results.

0.0000000

NRI calculation of dichotomous outcome:

0.7722030 204.0000000

Build a matrix out of a subset of the data containing Symptoms, Endemic, PVT, Metastasis, Age, PS, Encephalopathy, Ascites, INR, AFP, Hemoglobin, Leucocytes, Albumin, Total Bilirubin, AST, GGT, ALP, Creatinine, Major Dimension, Direct Bilirubin, and Ferritin.

Build a matrix out of a subset of data containing Symptoms, Endemic, PVT, Metastasis, Age, PS, Ascites, INR, AFP, Hemoglobin, Leucocytes, AST, GGT, ALP, Creatinine, Major Dimension, and Ferritin.

Construct two logistic regression model: mstd and mnew. Model "mnew" has one more variable "protime". Calculation using "nricens" library requires x = TRUE, which means that output contains the matrix.

Calculating the predicted risk of two models.

```
##
           New
## Standard < 0.2 < 0.4 >= 0.4
##
     < 0.2
                57
                       2
                               0
##
     < 0.4
                       25
                               0
                 1
     >= 0.4
##
                 0
                       3
                             116
##
           New
## Standard < 0.2 < 0.4 >= 0.4
     < 0.2
                 5
                       0
##
                               0
##
     < 0.4
                 0
                       10
                               0
     >= 0.4
##
                 0
                       1
                              86
##
           New
## Standard < 0.2 < 0.4 >= 0.4
     < 0.2
                52
                       2
##
                               0
     < 0.4
##
                 1
                      15
                               0
     >= 0.4
                        2
                              30
##
                 0
```



```
##
                     Estimate
## NRI
                  0.00000000
## NRI+
                 -0.009803922
## NRI-
                  0.009803922
## Pr(Up|Case)
                  0.00000000
## Pr(Down|Case)
                  0.009803922
## Pr(Down|Ctrl)
                  0.029411765
## Pr(Up|Ctrl)
                  0.019607843
##
                              Std.Error
                                                            Upper
                     Estimate
                                                 Lower
                  0.00000000 0.05587340 -0.159167550 0.04961538
## NRI
## NRI+
                 -0.009803922 0.02733146 -0.067961165 0.03773585
                  0.009803922 0.04470780 -0.114035088 0.03773585
## NRI-
## Pr(Up|Case)
                  0.000000000 0.01646233
                                         0.000000000 0.05660377
## Pr(Down|Case)
                  0.009803922 0.02565507
                                          0.00000000 0.09782609
## Pr(Down|Ctrl)
                  0.029411765 0.02932570
                                          0.00000000 0.11000000
## Pr(Up|Ctrl)
                  0.019607843 0.04535467
                                          0.009345794 0.17346939
```

```
nribin(event = dt$Class2, z.std = z.std, z.new = z.new, cut = c(0.2, 0.4),
    niter = 100, updown = 'category')
```

```
Calculation of risk difference NRI using ('event', 'z.std', 'z.new')
```

Estimate Std. Error z value Pr(>|z|)

```
## (Intercept)
                   7.115906e+00 2.871519e+00 2.47809795 0.013208488
                  -6.939419e-01 4.451858e-01 -1.55876936 0.119050978
## Symptoms
## Endemic
                   2.892767e+00 1.251439e+00 2.31155280 0.020802340
                  -9.010988e-01 5.292769e-01 -1.70250909 0.088659976
## PVT
## Metastasis
                  -7.771897e-01 4.986863e-01 -1.55847432 0.119120852
## Age
                  -3.951218e-02 1.858395e-02 -2.12614570 0.033491130
                  -3.472762e-01 2.242129e-01 -1.54886812 0.121413426
## PS
## Encephalopathy -4.196384e-02 5.133446e-01 -0.08174595 0.934848741
## Ascites
                  -1.958771e-01 3.235797e-01 -0.60534441 0.544950179
## INR
                  -1.348423e+00 6.509763e-01 -2.07138508 0.038322824
## AFP
                   2.576500e-06 1.742743e-06 1.47841630 0.139296386
                   1.379279e-01 1.089844e-01 1.26557523 0.205665199
## Hemoglobin
## Leucocytes
                  -7.940936e-05 7.879173e-05 -1.00783872 0.313531893
## Albumin
                   1.574888e-02 3.790132e-01 0.04155234 0.966855569
## Total_Bil
                   2.690795e-02 1.820868e-01 0.14777541 0.882520015
## AST
                  -3.691803e-03 2.687179e-03 -1.37385851 0.169485611
## GGT
                   9.169550e-04 1.245702e-03 0.73609483 0.461672991
## ALP
                  -4.647349e-03 1.793620e-03 -2.59104363 0.009568536
                  -3.093852e-01 2.400035e-01 -1.28908630 0.197368086
## Creatinine
## Major Dim
                  -9.785202e-02 4.910300e-02 -1.99279117 0.046284319
## Dir_Bil
                  -9.471961e-02 2.819262e-01 -0.33597305 0.736891186
## Ferritin
                  -1.569376e-03 5.526192e-04 -2.83988686 0.004512954
##
                               Std. Error
                                             z value
                    Estimate
                                                         Pr(>|z|)
                7.089440e+00 2.400407e+00 2.9534318 0.003142620
## (Intercept)
## Symptoms
               -7.147155e-01 4.359751e-01 -1.6393495 0.101140489
## Endemic
                2.879497e+00 1.241203e+00 2.3199253 0.020344918
## PVT
               -8.860239e-01 5.243127e-01 -1.6898769 0.091051512
              -8.165420e-01 4.870997e-01 -1.6763345 0.093672698
## Metastasis
               -3.742097e-02 1.818751e-02 -2.0575088 0.039637306
## Age
## PS
               -3.603437e-01 2.067357e-01 -1.7430167 0.081330699
               -2.542969e-01 3.049926e-01 -0.8337807 0.404404600
## Ascites
## INR
               -1.372158e+00 6.156501e-01 -2.2287951 0.025827543
## AFP
                2.623552e-06 1.719439e-06 1.5258186 0.127055049
                1.417581e-01 1.050356e-01 1.3496199 0.177137938
## Hemoglobin
## Leucocytes
               -8.471347e-05 7.758664e-05 -1.0918564 0.274896229
               -4.077217e-03 2.583308e-03 -1.5782930 0.114498313
## AST
## GGT
                8.980442e-04 1.236181e-03 0.7264665 0.467552867
## ALP
               -4.674011e-03 1.750622e-03 -2.6699149 0.007587046
               -3.284470e-01 2.331042e-01 -1.4090137 0.158831128
## Creatinine
               -9.544225e-02 4.808990e-02 -1.9846632 0.047181955
## Major_Dim
## Ferritin
               -1.577167e-03 5.448224e-04 -2.8948277 0.003793667
##
           New
## Standard < 0.2 < 0.4 >= 0.4
##
     < 0.2
                      2
                             0
               57
     < 0.4
                     25
                             0
##
                1
     >= 0.4
                0
                      3
##
                           116
##
           New
  Standard < 0.2 < 0.4 >= 0.4
##
##
     < 0.2
                5
                      0
                             0
     < 0.4
                             0
##
                0
                     10
##
     >= 0.4
                            86
                0
                      1
##
           New
## Standard < 0.2 < 0.4 >= 0.4
##
     < 0.2
               52
                      2
```

```
## < 0.4 1 15 0
## >= 0.4 0 2 30
```



```
##
                     Estimate
                  0.00000000
## NRI
## NRI+
                 -0.009803922
## NRI-
                  0.009803922
## Pr(Up|Case)
                  0.00000000
## Pr(Down|Case)
                  0.009803922
## Pr(Down|Ctrl)
                  0.029411765
## Pr(Up|Ctrl)
                  0.019607843
##
                     Estimate Std.Error
                                                Lower
                                                            Upper
## NRI
                  0.000000000 0.05448640 -0.155000000 0.06281915
## NRI+
                 -0.009803922 0.02631921 -0.070175439 0.02830189
## NRI-
                  0.009803922 0.04208473 -0.116504854 0.06451613
## Pr(Up|Case)
                  0.00000000 0.01854950
                                         0.000000000 0.06593407
## Pr(Down|Case)
                  0.009803922 0.02215811 0.000000000 0.08080808
## Pr(Down|Ctrl)
                  0.029411765 0.02679062 0.009174312 0.10416667
## Pr(Up|Ctrl)
                  0.019607843 0.04217346 0.009523810 0.17708333
```

```
nribin(mdl.std = mstd, mdl.new = mnew, cut = 0.02, niter = 0, updown = 'diff')
```


Calculation of risk difference NRI using ('mdl.std', 'mdl.new'), updown = 'diff':

```
##
                     Estimate
                  -0.05882353
## NRI
## NRI+
                  -0.03921569
## NRI-
                  -0.01960784
## Pr(Up|Case)
                  0.03921569
## Pr(Down|Case)
                  0.07843137
## Pr(Down|Ctrl)
                  0.03921569
## Pr(Up|Ctrl)
                  0.05882353
```

Calculation of risk difference NRI using ('event', 'z.std', 'z.new'), updown = 'diff':

```
##
                       Estimate
                                  Std. Error
                                                             Pr(>|z|)
                                                  z value
## (Intercept)
                   7.115906e+00 2.871519e+00
                                              2.47809795 0.013208488
## Symptoms
                  -6.939419e-01 4.451858e-01 -1.55876936 0.119050978
## Endemic
                   2.892767e+00 1.251439e+00 2.31155280 0.020802340
## PVT
                  -9.010988e-01 5.292769e-01 -1.70250909 0.088659976
## Metastasis
                  -7.771897e-01 4.986863e-01 -1.55847432 0.119120852
                  -3.951218e-02 1.858395e-02 -2.12614570 0.033491130
## Age
## PS
                  -3.472762e-01 2.242129e-01 -1.54886812 0.121413426
```

```
## Encephalopathy -4.196384e-02 5.133446e-01 -0.08174595 0.934848741
## Ascites
                 -1.958771e-01 3.235797e-01 -0.60534441 0.544950179
## INR
                 -1.348423e+00 6.509763e-01 -2.07138508 0.038322824
## AFP
                  2.576500e-06 1.742743e-06 1.47841630 0.139296386
## Hemoglobin
                  1.379279e-01 1.089844e-01 1.26557523 0.205665199
## Leucocytes
                 -7.940936e-05 7.879173e-05 -1.00783872 0.313531893
## Albumin
                  1.574888e-02 3.790132e-01 0.04155234 0.966855569
## Total Bil
                  2.690795e-02 1.820868e-01 0.14777541 0.882520015
## AST
                  -3.691803e-03 2.687179e-03 -1.37385851 0.169485611
## GGT
                  9.169550e-04 1.245702e-03 0.73609483 0.461672991
## ALP
                 -4.647349e-03 1.793620e-03 -2.59104363 0.009568536
                 -3.093852e-01 2.400035e-01 -1.28908630 0.197368086
## Creatinine
## Major_Dim
                 -9.785202e-02 4.910300e-02 -1.99279117 0.046284319
## Dir_Bil
                 -9.471961e-02 2.819262e-01 -0.33597305 0.736891186
## Ferritin
                  -1.569376e-03 5.526192e-04 -2.83988686 0.004512954
##
                    Estimate
                               Std. Error
                                             z value
                                                        Pr(>|z|)
## (Intercept) 7.089440e+00 2.400407e+00 2.9534318 0.003142620
## Symptoms
              -7.147155e-01 4.359751e-01 -1.6393495 0.101140489
## Endemic
               2.879497e+00 1.241203e+00 2.3199253 0.020344918
## PVT
               -8.860239e-01 5.243127e-01 -1.6898769 0.091051512
## Metastasis -8.165420e-01 4.870997e-01 -1.6763345 0.093672698
              -3.742097e-02 1.818751e-02 -2.0575088 0.039637306
## Age
## PS
               -3.603437e-01 2.067357e-01 -1.7430167 0.081330699
               -2.542969e-01 3.049926e-01 -0.8337807 0.404404600
## Ascites
## INR
              -1.372158e+00 6.156501e-01 -2.2287951 0.025827543
## AFP
               2.623552e-06 1.719439e-06 1.5258186 0.127055049
## Hemoglobin
              1.417581e-01 1.050356e-01 1.3496199 0.177137938
## Leucocytes -8.471347e-05 7.758664e-05 -1.0918564 0.274896229
## AST
              -4.077217e-03 2.583308e-03 -1.5782930 0.114498313
## GGT
               8.980442e-04 1.236181e-03 0.7264665 0.467552867
## ALP
               -4.674011e-03 1.750622e-03 -2.6699149 0.007587046
## Creatinine -3.284470e-01 2.331042e-01 -1.4090137 0.158831128
              -9.544225e-02 4.808990e-02 -1.9846632 0.047181955
## Major_Dim
## Ferritin
              -1.577167e-03 5.448224e-04 -2.8948277 0.003793667
```



```
##
                    Estimate
                 -0.05882353
## NRI
## NRI+
                 -0.03921569
## NRI-
                 -0.01960784
## Pr(Up|Case)
                  0.03921569
## Pr(Down|Case)
                  0.07843137
## Pr(Down|Ctrl)
                  0.03921569
## Pr(Up|Ctrl)
                  0.05882353
                    Estimate
                              Std.Error
                                               Lower
                                                          Upper
                 -0.05882353 0.12873058 -0.47976545 0.01157407
## NRI
## NRI+
                 -0.03921569 0.08683360 -0.27184466 0.07000000
## NRI-
                 -0.01960784 0.08945039 -0.27777778 0.04210526
## Pr(Up|Case)
                  0.03921569 0.05967443 0.05434783 0.28089888
## Pr(Down|Case)
                  0.07843137 0.10656068
                                         0.07207207 0.48543689
## Pr(Down|Ctrl)
                  0.03921569 0.06749205
                                         0.05263158 0.32291667
## Pr(Up|Ctrl)
                  0.05882353 0.10307823
                                         0.08181818 0.47422680
```

IDI calculation of dichotomous outcome:

```
library(PredictABEL)

p.std <- mstd$fitted.values
p.new <- mnew$fitted.values</pre>
```

```
##
##
##
        Reclassification table
##
##
##
    Outcome: absent
##
##
                Updated Model
##
   Initial Model [0,0.2) [0.2,0.4) [0.4,1] % reclassified
##
       [0,0.2)
                       13
                                  0
                                                            0
                                           0
                        0
                                 10
                                           0
                                                            0
##
       [0.2, 0.4)
##
       [0.4,1]
                        0
                                  0
                                          42
                                                            0
##
##
##
    Outcome: present
##
##
                 Updated Model
   Initial Model [0,0.2) [0.2,0.4) [0.4,1] % reclassified
##
##
       [0,0.2)
                       44
                                  2
                                           0
##
       [0.2, 0.4)
                        1
                                 15
                                           0
                                                            6
                                  3
                                          74
                                                            4
##
       [0.4,1]
##
##
##
    Combined Data
##
##
                Updated Model
## Initial Model [0,0.2) [0.2,0.4) [0.4,1] % reclassified
                                  2
##
       [0,0.2)
                       57
                                           0
##
       [0.2, 0.4)
                        1
                                 25
                                           0
                                                            4
##
       [0.4,1]
                        0
                                  3
                                         116
                                                            3
##
##
   NRI(Categorical) [95% CI]: -0.0144 [ -0.0488 - 0.0201 ] ; p-value: 0.41309
##
    NRI(Continuous) [95% CI]: 0.0201 [ -0.2688 - 0.3091 ] ; p-value: 0.89131
    IDI [95% CI]: 0.0039 [ -6e-04 - 0.0084 ] ; p-value: 0.09244
```

IDI is 0.0039, indicating that new model improves 0.39% comparing to original model.

Decision Curve Analysis for Binary Outcome:

We can view the data points on the complex model curve, where NB can also be changed to sNB, indicating a standardized prevalence.

```
library(rmda)
complex <- decision_curve(Class2~Symptoms + Endemic + PVT + Metastasis +</pre>
```

```
Age + PS + Encephalopathy + Ascites + INR + AFP +
Hemoglobin + Leucocytes + Albumin + Total_Bil + AST
+ GGT + ALP + Creatinine + Major_Dim + Dir_Bil +
Ferritin, data = dt,
family = binomial(link = 'logit'),
thresholds = seq(0, 1, by = 0.01),
confidence.intervals = 0.95,
study.design = "cohort",
population.prevalence = 0.3)
summary(complex, measure = 'NB')
```

## ## ## ## ##	risk threshold	cost:benefit ratio	percent high risk	All	Class2 ~ Symptoms + Endemic + PVT + Metastasis + Age + PS + Encephalopathy + Ascites + INR
## · ## ##	0	0:1	100 (100, 100)	0.3 (0.3, 0.3)	0.3 (0.3, 0.3)
## ## ## ##	0.01	1:99	92.451 (69.826, 94.167)	0.293 (0.293, 0.293)	0.294 (0.289, 0.296)
## ## ##	0.02	1:49	87.647 (63.373, 88.989)	0.286 (0.286, 0.286)	0.288 (0.282, 0.293)
## ## ##	0.03	3:97	82.157 (61.468, 84.6)	0.278 (0.278, 0.278)	0.284 (0.276, 0.29)
## ## ##	0.04	1:24	79.412 (58.125, 81.223)	0.271 (0.271, 0.271)	0.279 (0.27, 0.286)
## ## ##	0.05	1:19	77.353 (55.352, 77.79)	0.263 (0.263, 0.263)	0.275 (0.265, 0.283)
## ## ##	0.06	3:47	72.647 (53.229, 74.869)	0.255 (0.255, 0.255)	0.267 (0.26, 0.281)
## ## ##	0.07	7:93	67.549 (50.782, 72.251)	0.247 (0.247, 0.247)	0.262 (0.254, 0.279)
## ## ##	0.08	2:23	65.882 (48.868, 69.296)	0.239 (0.239, 0.239)	0.256 (0.249, 0.277)
## ##	0.09	9:91	62.843 (47.361, 67.535)	0.231 (0.231, 0.231)	0.251 (0.244, 0.275)

##					
##	0.1	1:9	60.784	0.222	0.249
## ##			(46.076, 66.404)	(0.222, 0.222)	(0.239, 0.274)
##	0.11	11:89	59.118	0.213	0.244
##			(44.792, 64.412)	(0.213, 0.213)	(0.235, 0.272)
## ##	0.12	3:22	57.451	0.205	0.239
##	0.12	0.22	(43.135, 63.158)	(0.205, 0.205)	(0.228, 0.269)
##					
##	0.13	13:87	55.49	0.195	0.231
## ##			(42.029, 61.394)	(0.195, 0.195)	(0.225, 0.267)
##	0.14	7:43	54.51	0.186	0.226
##			(41.174, 59.953)	(0.186, 0.186)	(0.22, 0.266)
## ##	0.15	3:17	52.549	0.176	0.219
##	0.10	0.11	(40.245, 57.984)	(0.176, 0.176)	(0.214, 0.265)
##					
##	0.16	4:21	51.569	0.167	0.213
## ##			(39.474, 56.193)	(0.167, 0.167)	(0.211, 0.264)
##	0.17	17:83	50.882	0.157	0.211
##			(38.715, 55.12)	(0.157, 0.157)	(0.207, 0.264)
## ##	0.18	9:41	50.294	0.146	0.202
##	0.10	3.41	(38.182, 53.133)	(0.146, 0.146)	(0.203, 0.261)
##					
##	0.19	19:81	48.922	0.136	0.201
## ##			(37.443, 51.857)	(0.136, 0.136)	(0.201, 0.259)
##	0.2	1:4	47.549	0.125	0.201
##			(36.984, 50.35)	(0.125, 0.125)	(0.196, 0.257)
## ##	0.21	21:79	47.549	0.114	0.198
##	0.21	21.70	(36.127, 49.161)	(0.114, 0.114)	(0.195, 0.256)
##					
## ##	0.22	11:39	47.549 (35.878, 48.641)	0.103 (0.103, 0.103)	0.194 (0.189, 0.255)
##			(55.676, 40.041)	(0.103, 0.103)	(0.103, 0.200)
##	0.23	23:77	46.569	0.091	0.189
##			(34.63, 47.257)	(0.091, 0.091)	(0.189, 0.254)
## ##	0.24	6:19	45.882	0.079	0.188
##			(33.981, 46.54)	(0.079, 0.079)	(0.183, 0.255)
##	0.05	4.0	40.500	0.007	0.400
## ##	0.25	1:3	43.529 (33.811, 46.119)	0.067 (0.067, 0.067)	0.188 (0.18, 0.25)
##			(00.011, 40.110)	(0.001, 0.001)	(0.10, 0.20)
##	0.26	13:37	41.471	0.054	0.192
## ##			(33.58, 44.792)	(0.054, 0.054)	(0.177, 0.249)
## ##	0.27	27:73	40.882	0.041	0.183
##			(32.615, 43.655)	(0.041, 0.041)	(0.172, 0.248)

##					
## ## ##	0.28	7:18	40.882 (32.364, 43.077)	0.028 (0.028, 0.028)	0.18 (0.169, 0.247)
## ## ##	0.29	29:71	38.824 (32.182, 42.016)	0.014 (0.014, 0.014)	0.185 (0.164, 0.243)
## ##	0.3	3:7	38.137 (31.455, 41.322)	0 (0, 0)	0.185 (0.162, 0.244)
## ## ##	0.31	31:69	38.137 (30.882, 40.184)	-0.014 (-0.014, -0.014)	0.182 (0.158, 0.24)
## ## ##	0.32	8:17	34.902 (30.446, 39.333)	-0.029 (-0.029, -0.029)	0.177 (0.152, 0.241)
## ## ##	0.33	33:67	34.608 (29.898, 38.824)	-0.045 (-0.045, -0.045)	0.172 (0.151, 0.24)
## ## ##	0.34	17:33	34.314 (29.342, 37.985)	-0.061 (-0.061, -0.061)	0.166 (0.149, 0.239)
## ## ##	0.35	7:13	34.02 (29.019, 37.255)	-0.077 (-0.077, -0.077)	0.161 (0.147, 0.238)
## ## ##	0.36	9:16	31.765 (28.565, 36.38)	-0.094 (-0.094, -0.094)	0.157 (0.143, 0.237)
## ## ##	0.37	37:63	30.392 (28.039, 35.599)	-0.111 (-0.111, -0.111)	0.162 (0.141, 0.236)
## ## ##	0.38	19:31	29.804 (27.765, 35.196)	-0.129 (-0.129, -0.129)	0.154 (0.138, 0.235)
## ## ##	0.39	39:61	29.804 (27.152, 34.771)	-0.148 (-0.148, -0.148)	0.152 (0.134, 0.234)
## ## ##	0.4	2:3	29.804 (26.35, 34.051)	-0.167 (-0.167, -0.167)	0.149 (0.133, 0.23)
## ## ##	0.41	41:59	28.529 (25.807, 33.624)	-0.186 (-0.186, -0.186)	0.146 (0.132, 0.232)
## ## ##	0.42	21:29	28.529 (25.464, 32.914)	-0.207 (-0.207, -0.207)	0.143 (0.132, 0.228)
## ## ##	0.43	43:57	28.529 (25.115, 32.48)	-0.228 (-0.228, -0.228)	0.141 (0.131, 0.229)
## ## ##	0.44	11:14	28.529 (24.87, 32.174)	-0.25 (-0.25, -0.25)	0.138 (0.13, 0.227)
## ## ##	0.45	9:11	27.549 (24.65, 31.837)	-0.273 (-0.273, -0.273)	0.138 (0.125, 0.224)

##					
##	0.46	23:27	27.549	-0.296	0.136
## ##			(24.246, 31.496)	(-0.296, -0.296)	(0.123, 0.225)
##	0.47	47:53	26.961	-0.321	0.127
## ##			(23.763, 31.067)	(-0.321, -0.321)	(0.118, 0.225)
##	0.48	12:13	26.275	-0.346	0.131
##			(23.605, 30.462)	(-0.346, -0.346)	(0.117, 0.225)
##	0.40	40.51	26 275	-0.373	0.100
## ##	0.49	49:51	26.275 (22.954, 30.157)	-0.373 (-0.373, -0.373)	0.128 (0.115, 0.225)
##			, , , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , , ,	. ,,
##	0.5	1:1	24.608	-0.4	0.136
## ##			(22.639, 29.628)	(-0.4, -0.4)	(0.112, 0.225)
##	0.51	51:49	24.608	-0.429	0.134
##			(21.832, 29.27)	(-0.429, -0.429)	(0.11, 0.222)
## ##	0.52	13:12	24.608	-0.458	0.132
##	0.02	13.12	(21.814, 28.846)	(-0.458, -0.458)	(0.107, 0.221)
##					
##	0.53	53:47	23.922	-0.489	0.137
## ##			(21.511, 28.5)	(-0.489, -0.489)	(0.102, 0.22)
##	0.54	27:23	23.922	-0.522	0.135
##			(21.1, 28.263)	(-0.522, -0.522)	(0.101, 0.219)
## ##	0.55	11:9	23.333	-0.556	0.127
##	0.00	11.0	(20.408, 27.888)	(-0.556, -0.556)	(0.098, 0.217)
##					
## ##	0.56	14:11	22.647 (20.121, 27.389)	-0.591 (-0.591, -0.591)	0.133 (0.096, 0.214)
##			(20.121, 27.505)	(0.551, 0.551)	(0.000, 0.214)
##	0.57	57:43	22.647	-0.628	0.131
## ##			(19.611, 27.104)	(-0.628, -0.628)	(0.09, 0.21)
##	0.58	29:21	22.647	-0.667	0.128
##			(19.272, 26.948)	(-0.667, -0.667)	(0.088, 0.206)
##	0.59	59:41	00 353	-0.707	0.102
## ##	0.59	59:41	22.353 (18.753, 26.812)	-0.707 (-0.707, -0.707)	0.123 (0.086, 0.203)
##			·	, , , , , , , , , , , , , , , , , , , ,	. ,,
##	0.6	3:2	22.353	-0.75	0.121
## ##			(18.329, 26.304)	(-0.75, -0.75)	(0.084, 0.204)
##	0.61	61:39	20.784	-0.795	0.12
##			(17.861, 25.926)	(-0.795, -0.795)	(0.078, 0.205)
## ##	0.62	31:19	20.196	-0.842	0.112
##	0.02	01.10	(17.728, 25.758)	(-0.842, -0.842)	(0.075, 0.205)
##					
## ##	0.63	63:37	19.902	-0.892 (-0.892 -0.892)	0.106
##			(17.07, 25.553)	(-0.892, -0.892)	(0.078, 0.203)

## ## ##	0.64	16:9	19.902 (16.769, 25.05)	-0.944 (-0.944, -0.944)	0.104 (0.074, 0.201)
## ## ## ##	0.65	13:7	19.216 (16.28, 24.988)	-1 (-1, -1)	0.114 (0.071, 0.2)
## ## ##	0.66	33:17	18.922 (16.04, 24.663)	-1.059 (-1.059, -1.059)	0.108 (0.07, 0.199)
## ## ##	0.67	67:33	17.353 (15.492, 24.389)	-1.121 (-1.121, -1.121)	0.111 (0.066, 0.201)
## ## ##	0.68	17:8	16.765 (14.897, 24.076)	-1.188 (-1.188, -1.188)	0.103 (0.064, 0.198)
## ## ##	0.69	69:31	15.882 (14.842, 24.021)	-1.258 (-1.258, -1.258)	0.092 (0.062, 0.199)
## ## ##	0.7	7:3	15.882 (14.487, 23.53)	-1.333 (-1.333, -1.333)	0.09 (0.059, 0.194)
## ## ##	0.71	71:29	15.588 (14.037, 23.4)	-1.414 (-1.414, -1.414)	0.085 (0.057, 0.191)
## ## ##	0.72	18:7	14.608 (13.26, 23.035)	-1.5 (-1.5, -1.5)	0.097 (0.053, 0.19)
## ## ##	0.73	73:27		-1.593 (-1.593, -1.593)	0.114 (0.048, 0.189)
## ## ##	0.74	37:13		-1.692 (-1.692, -1.692)	0.11 (0.047, 0.188)
## ## ##	0.75	3:1	13.039 (11.662, 22.343)	-1.8 (-1.8, -1.8)	0.103 (0.039, 0.188)
## ## ##	0.76	19:6	12.745 (11.134, 22.015)	-1.917 (-1.917, -1.917)	0.099 (0.041, 0.185)
## ## ##	0.77	77:23	12.745 (10.693, 21.672)	-2.043 (-2.043, -2.043)	0.098 (0.039, 0.183)
## ## ##	0.78	39:11	11.863 (10.198, 21.447)	-2.182 (-2.182, -2.182)	0.087 (0.034, 0.182)
## ## ##	0.79	79:21	11.863 (9.722, 21.25)	-2.333 (-2.333, -2.333)	0.086 (0.026, 0.181)
## ## ##	0.8	4:1	10.98 (9.569, 21.181)	-2.5 (-2.5, -2.5)	0.075 (0.019, 0.179)
## ##	0.81	81:19	10.686 (8.66, 20.602)	-2.684 (-2.684, -2.684)	0.071 (0.014, 0.176)

##					
## ## ##	0.82	41:9	9.804 (8.333, 20.315)	-2.889 (-2.889, -2.889)	0.06 (0.011, 0.173)
## ## ##	0.83	83:17	9.51 (7.826, 19.946)	-3.118 (-3.118, -3.118)	0.055 (0.004, 0.175)
## ##	0.84	21:4	8.627 (7.263, 19.51)	-3.375 (-3.375, -3.375)	0.043 (-0.007, 0.169)
## ## ##	0.85	17:3	8.333 (6.323, 19.485)	-3.667 (-3.667, -3.667)	0.038 (-0.016, 0.164)
## ## ##	0.86	43:7	8.039 (6, 19.162)	-4 (-4, -4)	0.031 (-0.019, 0.164)
## ## ##	0.87	87:13	6.471 (5.51, 18.464)	-4.385 (-4.385, -4.385)	0.065 (-0.025, 0.158)
## ## ##	0.88	22:3	5.882 (5.243, 17.908)	-4.833 (-4.833, -4.833)	0.059 (-0.039, 0.156)
## ## ##	0.89	89:11	5 (4.615, 17.129)	-5.364 (-5.364, -5.364)	0.05 (-0.051, 0.151)
## ## ##	0.9	9:1	4.118 (4.322, 16.514)	-6 (-6, -6)	0.041 (-0.06, 0.148)
## ## ##	0.91	91:9	3.529 (3.169, 15.978)	-6.778 (-6.778, -6.778)	0.035 (-0.078, 0.143)
## ## ##	0.92	23:2	2.941 (2.872, 15.288)	-7.75 (-7.75, -7.75)	0.029 (-0.079, 0.138)
## ## ##	0.93	93:7	2.647 (2.581, 14.842)	-9 (-9, -9)	0.026 (-0.094, 0.133)
## ## ##	0.94	47:3	2.647 (2.079, 13.996)	-10.667 (-10.667, -10.667)	0.026 (-0.109, 0.129)
## ## ##	0.95	19:1	2.353 (1.596, 13.5)	-13 (-13, -13)	0.024 (-0.141, 0.123)
## ## ##	0.96	24:1	2.059 (1.348, 13.069)	-16.5 (-16.5, -16.5)	0.021 (-0.132, 0.119)
## ## ##	0.97	97:3	1.765 (0.928, 11.887)	-22.333 (-22.333, -22.333)	0.018 (-0.189, 0.112)
## ## ##	0.98	49:1	1.471 (0.545, 10.606)	-34 (-34, -34)	0.015 (-0.29, 0.101)
## ## ##	0.99	99:1	0.882 (0.278, 8.077)	-69 (-69, -69)	0.009 (0, 0.08)

```
##
##
                   Inf:1
                                       0
                                                            NA
                                                                                        NA
        1
##
                                     (0, 0)
                                                         (NA, NA)
                                                                                     (NA, NA)
plot_clinical_impact(complex, population.size = 1000, cost.benefit.axis = T,
                     n.cost.benefits = 8, col = c('red', 'blue'),
                      confidence.intervals = T,
                     ylim = c(0, 1000),
                     legend.position = 'topright')
```


The red curve (number of high risk) indicates the number of people classified as positive (high risk) by the complex model at each threshold probability; the blue curve [(number high) risk with outcome] is the number of true positives for each threshold probability.

External validation of Logistic regression model:

```
##
## Hosmer and Lemeshow goodness of fit (GOF) test
##
## data: mod$y, fitted(mod)
## X-squared = 9.4905, df = 8, p-value = 0.3026
```

P value is 0.3026, It cannot be considered that the model does not fit well yet.

cbind(h1\$observed, h1\$expected)

```
##
                     y0 y1
                                yhat0
                                           yhat1
## [3.91e-05,0.0541] 21 0 20.4961649
                                      0.5038351
                     18 2 18.1238172
## (0.0541,0.13]
                                      1.8761828
## (0.13,0.211]
                     17 3 16.6864269
                                      3.3135731
## (0.211,0.341]
                     11 10 15.2750427
                                      5.7249573
## (0.341,0.513]
                     15 5 11.2968977 8.7031023
                     8 12 8.9178814 11.0821186
## (0.513,0.617]
## (0.617,0.795]
                     7 14 5.7901046 15.2098954
## (0.795,0.888]
                     4 16 3.1244734 16.8755266
## (0.888,0.942]
                      1 19
                           1.6425664 18.3574336
## (0.942,0.999]
                     0 21 0.6466249 20.3533751
```

Generate Hosmer-Lemeshow contingency table. Among them, y0 is the number of events that didn't occur; y1 is the number of events that occurred; yhat0 represents the probability of events that will not happen predicted by the model; yhat1 represents the probability of events that will happen predicted by the model.

```
pre <- predict(mod, dt, type = c("response"))
h2 <- hoslem.test(dt$Class2, pre, g=10)
h2

##
## Hosmer and Lemeshow goodness of fit (GOF) test
##
## data: dt$Class2, pre
## X-squared = 9.4905, df = 8, p-value = 0.3026</pre>
```

P=0.3026 > 0.05. So, it cannot be considered that the model fitting is poor, suggesting that the model performs well in the new data set. If P < 0.05, the model is poorly fitted.

Calibration plot


```
## $Table_HLtest
                      total meanpred meanobs predicted observed
##
## [3.91e-05,0.0587)
                         21
                                0.024
                                        1.000
                                                    0.50
                                                                21
## [5.87e-02,0.1319)
                                0.094
                                        0.900
                          20
                                                    1.88
                                                                18
## [1.32e-01,0.2190)
                         21
                                0.168
                                        1.000
                                                    3.53
                                                                21
## [2.19e-01,0.3462)
                         20
                                0.276
                                        0.650
                                                    5.51
                                                                13
                                                                12
## [3.46e-01,0.5135)
                         20
                                0.435
                                        0.600
                                                    8.70
  [5.13e-01,0.6473)
                         21
                                0.557
                                        0.667
                                                   11.70
                                                                14
   [6.47e-01,0.8083)
                          20
                                0.730
                                        0.800
                                                   14.59
                                                                16
   [8.08e-01,0.8902)
                          21
                                0.846
                                        0.571
                                                   17.76
                                                                12
## [8.90e-01,0.9453)
                          20
                                                                 9
                                0.921
                                        0.450
                                                   18.41
## [9.45e-01,0.9993]
                          20
                                0.971
                                        0.250
                                                   19.41
                                                                 5
##
## $Chi_square
##
   [1] 1570.332
##
## $df
## [1] 8
##
## $p_value
## [1] 0
library(PredictABEL)
library(pROC)
plotCalibration(data = dt,
```

```
cOutcome = 2,
predRisk = pre,
rangeaxis = c(0, 1))
```

Calibration plot


```
## $Table_HLtest
##
                      total meanpred meanobs predicted observed
## [3.91e-05,0.0587)
                          21
                                0.024
                                        1.000
                                                    0.50
## [5.87e-02,0.1319)
                         20
                                0.094
                                        0.900
                                                    1.88
                                                                18
## [1.32e-01,0.2190)
                         21
                                0.168
                                        1.000
                                                    3.53
                                                                21
## [2.19e-01,0.3462)
                         20
                                0.276
                                        0.650
                                                    5.51
                                                                13
## [3.46e-01,0.5135)
                         20
                                0.435
                                        0.600
                                                    8.70
                                                                12
## [5.13e-01,0.6473)
                         21
                                0.557
                                        0.667
                                                   11.70
                                                                14
## [6.47e-01,0.8083)
                          20
                                0.730
                                        0.800
                                                   14.59
                                                                16
## [8.08e-01,0.8902)
                          21
                                                   17.76
                                                                12
                                0.846
                                        0.571
   [8.90e-01,0.9453)
                          20
                                0.921
                                        0.450
                                                                 9
                                                   18.41
##
   [9.45e-01,0.9993]
                          20
                                        0.250
                                                                 5
                                0.971
                                                   19.41
##
## $Chi_square
## [1] 1570.332
##
## $df
## [1] 8
##
## $p_value
## [1] 0
```

```
library(pROC)
pr <- predict(mod, type = c("response"))
roc_curve <- pROC::roc(dt$Class2 ~ pr)
auc(roc_curve)</pre>
```

Discrimination evaluation:

Area under the curve: 0.8861

```
plot(roc_curve,
    print.cutoffs.at=-c(50,90,110,120),
    cutoff.label.function=`-`,
    points.pch = 20, points.col = "darkblue",
    text.adj=c(1.2,-0.5), legacy.axes = TRUE,
    print.auc = TRUE)
```


The model was verified in the external data set, AUC =0.8861, indicating that the model has a good discrimination in the validation of the external data set.