8.6-6.5-1.1

EE24BTECH11063 - Y. Harsha Vardhan Reddy

Question:

Find the minimum value of the function

$$f(x) = (2x - 1)^2 + 3$$

Solution:

Theoritical solution:

Given.

$$\frac{dy}{dx} = 4(2x - 1) = 0 ag{0.1}$$

$$\implies x = \frac{1}{2} \tag{0.2}$$

$$\frac{d^2y}{dx^2} = 8\tag{0.3}$$

(0.4)

1

Since, $\frac{d^2y}{dx^2} > 0$, at $x = \frac{1}{2}$ there exists minimum

Therefore, $f\left(\frac{1}{2}\right) = 3$ is the minimum value of the function

Computational Solution Using Gradient Descent

To verify the analytical results, we use gradient descent to find the local minimum Gradient Descent for local minimum :

- Start with $x_0 = 4$
- Update x iteratively using

$$x_{n+1} = x_n - \eta \cdot f'(x_n) \tag{0.5}$$

where:

$$\eta = 0.1 \tag{0.6}$$

$$f'(x) = 4(2x - 1) \tag{0.7}$$

$$x_{n+1} = x_n - \eta \cdot (4(2x_n - 1)) \tag{0.8}$$

Computational Results

- Local minimum

$$x \approx 0.5, \ g(x) \approx 3.000$$
 (0.9)

Computational Solution Using Quadratic programming problem

We aim to find the minimum value of the quadratic function:

$$f(x) = (2x - 1)^2 + 3$$

Expanding the terms, we get:

$$f(x) = 4x^2 - 4x + 1 + 3 = 4x^2 - 4x + 4$$

Formulating the Problem as Quadratic Programming The general form of a quadratic programming problem is:

$$Minimize \frac{1}{2}x^{T}Qx + c^{T}x$$

where:

- Q is the coefficient matrix for the quadratic term,
- c is the coefficient vector for the linear term.

For the given function:

$$f(x) = 4x^2 - 4x + 4$$

we identify:

$$Q = 4$$
, $c = -4$

The constant term +4 does not affect the minimization process but will be added back to compute the final minimum value.

Steps to Solve Using cvxpy

We use the Python library cvxpy to solve this quadratic programming problem. The steps are as follows:

- 1) Define the variable x to be optimized.
- 2) Write the objective function $\frac{1}{2}Qx^2 + cx$ in terms of x.
- 3) Solve the problem using cvxpy.
- 4) Add the constant term +4 to the resulting minimum value of the objective function.

Computational solution

From the code, the solution is:

• The value of x at the minimum is:

$$x = \frac{-c}{2Q} = \frac{-(-4)}{2(4)} = \frac{4}{8} = 0.5$$

• The minimum value of the function is:

$$f(0.5) = 4(0.5)^2 - 4(0.5) + 4 = 1 - 2 + 4 = 3$$

Thus, the minimum value of the function is:

3

and it occurs at:

$$x = 0.5$$

