

SEM 2-5 (RC 07-08)

F.E. (Semester – II) (RC) Examination, Nov./Dec. 2016 BASIC ELECTRONICS ENGINEERING

Duration: 3 Hours Duration: 3 Hours

- Instructions: 1) Attempt any five questions with atleast one question from each Module.
 - 2) Assume suitable data if necessary.
 - 3) Neat diagrams should be drawn wherever necessary.
 - 4) Figures to the right indicate full marks.

MODULE-I

- 1. a) With the help of a neat diagram of a V/I characteristic, explain the working of a PN junction diode. Also explain the following terms:
 - i) Reverse saturation current
 - ii) Cut-in or knee voltage of the diode.

3

b) Differentiate between Zener and Avalanche breakdown.

4

7

6

c) Find V_o for the circuit. Given in Fig. 1 (c)

- d) With the help of neat diagram, explain the working of a Half Wave Voltage Doubler. Draw input and output voltage waveforms.
- 2. a) For the Zener diode network given in Fig. 2(a), determine V_L , V_R , I_Z , P_Z . Given V_i is 16 V, R_L is 3 K Ω , V_Z is 10 V and P_{ZM} is 30 mW.

- b) The turns ratio of a transformer used in a half wave rectifier is n1: n2 = 10:1. The primary is connected to the power mains: 220 V, 50 Hz. Assuming the diode resistance in forward bias to be zero, calculate:
 - i) dc voltage across the load
 - ii) dc current through the load of 2.2 $K\Omega$
 - iii) PIV of the diode.

5

c) Determine the output for the following circuit with the input waveform shown in Fig. 2(c).

5

Sí + iov oi R oo

Fig.2(c)

d) Sketch the output waveform for the circuit shown in Fig. 2(d).

-

Fig.2(d)

MODULE-II

3. a) Explain how CE configuration can be used as an amplifier. Also derive the expression for voltage and current gain of CE amplifier.

7

b) Draw CC transistor (pnp) configuration and explain why it is not used as a voltage amplifier.

3

c) Draw the circuit setup of CB (npn) configuration and explain its output characteristics.

7

d) Explain why two back to back connected diodes cannot be used as a transistor.

3

4. a) For the biasing circuit shown in Fig. 4 (a) determine:

6

i) I_b iv) V_e

ii) V_c

iii) I

v) V_{ce}

vi) V_b sion trong s of

Fig.4(a)

b) Derive the stability factor S(I_{CO}) for Emitter stabilized bias circuit.

8

c) Explain the working of a transistor as a switch.

6

MODULE-III

5. a) With the help of neat diagram explain construction and operation of n channel JFET. Show the internal depletion regions and explain their shapes.

8

b) A P-channel JEFT has device parameter of $I_{DSS} = 9$ mA and $V_p = 5V$. Sketch the transfer characteristic.

4

c) Determine the following for the biasing circuit given in Fig. 5(c):

8

i) V_{GSQ}

ii) IDQ

iii) V_{DS}

iv) V_S

v) VG

Fig.5(c)

6. a) With the help of neat sketches explain construction and output characteristic of n channel depletion type MOSFET.
b) Write a short note on CMOS as an inverter.
c) Determine the following for the biasing circuit given in Fig. 6(c).
i) V_{GSQ}
ii) I_{DQ}

Fig.6(c)

MODULE-IV

	7.	a)	With a neat labelled diagrams explain the construction of a Silicon Controlled Rectifier and its working using the two transistor equivalent circuit.	6
		b)	Describe the operation of a solar cell.	4
		c)	Draw and explain Electron Gun Assembly in CRO.	6
		d)	What is an op-amp? Explain the single Ended input operation of an op-amp.	4
8	8.	a)	Give the manufacturing steps involved in the fabrication of diode in a Monolithic IC.	5
		b)	Draw the general structure of a semiconductor IR Emitter diode and explain its working.	5
		c)	Define Nyquist criterion. What is its significance?	5
		d)	Draw and explain the circuit of a Phase Shift Oscillator and write the expression for frequency of oscillation.	5