Total No. of Questions : 6]	SEAT No.:
P509	[Total No. of Pages : 3

APR - 18/TE/Insem. - 108

T.E. (Mechanical)

REFRIGERATION & AIR CONDITION

(2015 Pattern) (Semester - II)

Time: 1 Hour] [Max. Marks: 30

Instructions to the candidates:

- 1) Answer Q1 or Q2, Q3 or Q4, Q5 or Q6.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right indicate full marks.
- 4) Assume suitable data, if necessary.
- Q1) a) Explain with neat sketch the working of domestic air conditioner. [4]
 - b) Derive the ASHRAE designation for the refrigerants R22, R134a and Ammonia. [6]

OR

- Q2) a) Explain with neat sketch the working of an ice plant. [6]
 - b) Explain the recovery, recycling and reclaiming of refrigerant. [4]
- **Q3)** a) Explain with diagram three fluid vapour absorption refrigeration system.
 - b) Simple saturated vapour compression cycle using ammonia has capacity of 25 TR. Evaporator and condenser temperatures are 5°C and 40°C respectively. Calculate [6]
 - i) mass flow rate of refrigerant.
 - ii) COP.

Take Cpv = 2.1897 kJ/kgK.

Sat. Temp	h_{f}	h_{g}	S _f	Sg
°C	kJ/kg	kJ/kg	kJ/kg.K	kJ/kg.K
-5	176.9	1456.1	0.9154	5.6856
40	390.6	1490.4	1.6437	5.1558

- **Q4)** a) Explain effect of superheating and sub cooling on the performance of VCC. [4]
 - b) A vapour absorption cycle has generator temperature 120°C, evaporator temperature is 10°C and ambient temperature is 30°C. Calculate COP. If the plant capacity is 100 TR, Calculate the fuel consumption of the plant. Take calorific value of fuel as 40 MJ/kg. [6]
- Q5) A multi evaporator refrigeration system with individual compressors and an individual expansion valves using R-22 as the refrigerant as shown in Fig. 1 Neglecting undercooling of liquid and superheating of vapour refrigerant. Find
 - i) Power required to run the system.
 - ii) COP.

Fig.1 for Q.5

OR

- **Q6)** a) Explain Cascade refrigeration system with schematic and p-h diagram. [6]
 - b) Explain with p-h diagram a Linde-Hampson cycle. [4]

