

Digital IC Design

Lecture 18 Sequential Circuit Design (2): Sequencing Static Circuits

Dr. Hesham A. Omran

Integrated Circuits Laboratory (ICL)
Electronics and Communications Eng. Dept.
Faculty of Engineering
Ain Shams University

Combinational vs. Sequential Logic

- Combinational logic
 - Output depends on current inputs
- Sequential logic
 - Output depends on current and previous inputs
 - Uses flip-flops or latches (memory/sequencing elements)
 - Separates previous, current, and next states (tokens)
 - Ex: FSM, pipeline

Sequencing

- If tokens moved through pipeline at constant speed, no sequencing elements would be necessary
- Ex: fiber-optic cable
 - Light pulses (tokens) are sent down cable
 - Next pulse sent before first reaches end of cable
 - No need for hardware to separate pulses
 - But dispersion sets min time between pulses
- ☐ This is called *wave pipelining* in circuits
- In most circuits, dispersion is high
 - Delay fast tokens so they don't catch slow ones.

Sequencing Cont.

- ☐ Use flip-flops to delay fast tokens so they move through exactly one stage each cycle.
- Inevitably adds some delay to the slow tokens
- ☐ Makes circuit slower than just the logic delay
 - Called sequencing overhead
- Some people call this clocking overhead
 - But it applies to asynchronous circuits too
 - Inevitable side effect of maintaining sequence

Static vs. Dynamic Logic

- Combinational circuits:
 - Static circuits: no clock input
 - e.g., complementary CMOS, pseudo NMOS, and PTL
 - Dynamic circuits: requires clock input
 - e.g., domino logic
- Sequential circuits:
 - Static storage: feedback used to retain output indefinitely
 - Dynamic storage: temporary charge on a capacitor
- ☐ Static/dynamic circuits can be sequenced using static/dynamic storage
- **☐** We will focus on sequencing static circuits

Sequencing Elements

- ☐ Latch: Level sensitive
 - a.k.a. transparent latch, D latch
 - Transparent/opaque
- ☐ Flip-flop: edge triggered
 - a.k.a. master-slave flip-flop, D flip-flop,
 D register
 - Simply, a pair of latches using clk and its complement
 - Edge-triggered

Sequencing Elements

- ☐ Latch: Level sensitive
 - a.k.a. transparent latch, D latch
 - Transparent/opaque
- ☐ Flip-flop: edge triggered
 - a.k.a. master-slave flip-flop, D flip-flop,
 D register
 - Simply, a pair of latches using clk and its complement

Flip-Flop

Edge-triggered

Sequencing Methods

- Ideal sequencing methodology
 - Introduce no sequencing overhead
 - Allow sequencing elements back-to-back with no logic in between
 - Grant the designer flexibility in balancing the amount of logic in each clock cycle
 - Tolerate moderate amounts of clock skew without degrading performance
 - Consume zero area and power

Sequencing Methods for Static Circuits

Timing Diagrams

- ☐ Contamination delay: output may begin to change or glitch
- ☐ Propagation delay: output must have settled to final value

t_{pd}	Logic Prop. Delay
t _{cd}	Logic Cont. Delay
t _{pcq}	Latch/Flop Clk-to-Q Prop. Delay
t _{ccq}	Latch/Flop Clk-to-Q Cont. Delay
t _{pdq}	Latch D-to-Q Prop. Delay
t _{cdq}	Latch D-to-Q Cont. Delay
t _{setup}	Latch/Flop Setup Time
t _{hold}	Latch/Flop Hold Time
t _a	Aperture time

 t_{pd}

FF Input Timing Constraints

- ☐ Flip-flop samples *D* at clock edge
 - D must be stable when sampled
 - Similar to a photograph, *D* must be stable around clock edge
 - If not, metastability can occur
- \Box Setup time: t_{setup} = time *before* clock edge data must be stable (i.e. not changing)
- \Box Hold time: t_{hold} = time *after* clock edge data must be stable
- \Box Aperture time: t_a = time *around* clock edge data must be stable (t_a = t_{setup} + t_{hold})

FF Output Timing Constraints

- **Propagation delay:** $t_{pcq} = time$ after clock edge that the output Q is guaranteed to be stable (i.e., to stop changing)
- Contamination delay: $t_{ccq} = time$ after clock edge that Q might be unstable (i.e., start changing)

Timing Constraints

- Dynamic discipline: Synchronous sequential circuit inputs must be stable during aperture (setup and hold) time around clock edge
 - The delay between registers has a minimum and maximum value, dependent on the delays of the circuit elements
- Max-delay constraints
 - Maximum propagation delay
 - Setup time failure
- ☐ Min-delay constraints
 - Minimum contamination delay
 - Hold time failure (race condition)

Max-Delay: Flip-Flops

$$T_c \ge t_{pcq} + t_{pd} + t_{setup}$$

$$t_{pd} \le T_c - \left(t_{\text{setup}} + t_{pcq}\right)$$
sequencing overhead

- ☐ The ALU self-bypass is the critical path
- \Box $t_{setup} = 62p, t_{pcq} = 90ps, t_{ccq} = 75ps$
- $\Box T_c = t_{pd} + t_{cq} + t_{setup} = ?$

Element	Propagation Delay	Contamination Delay
Adder	590 ps	100 ps
Result Mux	60 ps	35 ps
Early Bypass Mux	110 ps	95 ps
Middle Bypass Mux	80 ps	55 ps
Late Bypass Mux	70 ps	45 ps
2-mm Wire	100 ps	65 ps

- ☐ The ALU self-bypass is the critical path
- \Box $t_{setup} = 62p, t_{pcq} = 90ps, t_{ccq} = 75ps$
- $T_c = t_{pd} + t_{cq} + t_{setup} = (590 + 60 + 100 + 80 + 100 + 70) + 90 + 62 = 1152ps$

Element	Propagation Delay	Contamination Delay
Adder	590 ps	100 ps
Result Mux	60 ps	35 ps
Early Bypass Mux	110 ps	95 ps
Middle Bypass Mux	80 ps	55 ps
Late Bypass Mux	70 ps	45 ps
2-mm Wire	100 ps	65 ps

16

Max Delay: 2-Phase Latches

The nonoverlap between clocks does not degrade performance: data continues to propagate through the combinational logic

$$T_{c} \ge t_{pdq1} + t_{pd1} + t_{pdq2} + t_{pd2} \qquad \qquad t_{pd} = t_{pd1} + t_{pd2} \le T_{c} - \underbrace{\left(2\,t_{pdq}\right)}_{}$$

Max Delay: Pulsed Latches

- ☐ The ALU self-bypass is the critical path
- Use Pulsed latch: $t_{pw}=150ps$, $t_{setup}=40ps$, $t_{pcq}=82ps$, $t_{ccq}=52ps$, $t_{pdq}=92ps$
- $\Box t_{pdq} ? t_{pcq} + t_{setup} t_{pw}$
- \Box $T_c = ?$

Element	Propagation Delay	Contamination Delay
Adder	590 ps	100 ps
Result Mux	60 ps	35 ps
Early Bypass Mux	110 ps	95 ps
Middle Bypass Mux	80 ps	55 ps
Late Bypass Mux	70 ps	45 ps
2-mm Wire	100 ps	65 ps

- ☐ The ALU self-bypass is the critical path
- Use Pulsed latch: $t_{pw}=150ps$, $t_{setup}=40ps$, $t_{pcq}=82ps$, $t_{ccq}=52ps$, $t_{pdq}=92ps$
- $\Box \quad t_{pdq} > t_{pcq} + t_{setup} t_{pw}$
- $T_c = t_{pdq} + t_{pd} = 92 + (590 + 60 + 100 + 80 + 100 + 70) = 1092ps$

Element	Propagation Delay	Contamination Delay
Adder	590 ps	100 ps
Result Mux	60 ps	35 ps
Early Bypass Mux	110 ps	95 ps
Middle Bypass Mux	80 ps	55 ps
Late Bypass Mux	70 ps	45 ps
2-mm Wire	100 ps	65 ps

Min-Delay: Flip-Flops

- ☐ The earliest input is the *imm* at the late bypass mux, coming from another flip-flop
- $\Box t_{cd} = 45ps, t_{hold} = -10ps, t_{ccq} = 75ps$
- Hold time violation?

- ☐ The earliest input is the *imm* at the late bypass mux, coming from another flip-flop
- $\Box t_{cd} = 45ps, t_{hold} = -10ps, t_{ccq} = 75ps$
- ☐ Hold time is negative → Min delay condition is easily satisfied

Min-Delay: 2-Phase Latches

$$t_{nonoverlap} + t_{ccq} + t_{cd} \ge t_{hold}$$

$$t_{cd1}, t_{cd2} \ge t_{\text{hold}} - t_{ccq} - t_{\text{nonoverlap}}$$

Non-overlapping clocks help avoid race conditions, but difficult to generate and distribute at high speed

Min-Delay: Pulsed Latches

$$t_{ccq} + t_{cd} \ge t_{pw} + t_{hold}$$
$$t_{cd} \ge t_{hold} - t_{ccq} + t_{pw}$$

Hold time risk: effectively increased by t_{pw} compared to flip-flops

- ☐ The earliest input is the *imm* at the late bypass mux, coming from another pulsed latch
- $\Box t_{cd} = 45ps$, $t_{hold} = 5ps$, $t_{pw} = 150ps$, $t_{ccq} = 52ps$
- Hold time violation?

- ☐ The earliest input is the *imm* at the late bypass mux, coming from another pulsed latch
- $\Box t_{cd} = 45ps$, $t_{hold} = 5ps$, $t_{pw} = 150ps$, $t_{ccq} = 52ps$
- \Box $t_{hold} t_{ccq} + t_{pw} = 103ps > t_{cd} \rightarrow \text{Hold time violation}$
- \Box Buffers must be added to delay *imm* by > 103 45 = 58ps

Timing Characteristics

$$t_{ccq}$$
 = 30 ps

$$t_{pca} = 50 \text{ ps}$$

$$t_{\text{setup}} = 60 \text{ ps}$$

$$t_{\text{hold}}$$
 = 70 ps

$$t_{pd} = 35 \text{ ps}$$

$$t_{cd}$$
 = 25 ps

$$t_{pd}$$
=

$$t_{cd}$$
=

Setup time constraint:

$$T_c \ge$$

$$f_c =$$

$$t_{\text{ccq}} + t_{cd} > t_{\text{hold}}$$
?

Timing Characteristics

$$t_{ccq}$$
 = 30 ps

$$t_{pcq}$$
 = 50 ps

$$t_{\text{setup}} = 60 \text{ ps}$$

$$t_{\text{hold}}$$
 = 70 ps

$$t_{pd} = 35 \text{ ps}$$

$$t_{cd}$$
 = 25 ps

$$t_{pd}$$
 = 3 x 35 ps = 105 ps

$$t_{cd}$$
 = 25 ps

Setup time constraint:

$$T_c \ge (50 + 105 + 60) \text{ ps} = 215 \text{ ps}$$

$$f_c = 1/T_c = 4.65 \text{ GHz}$$

$$t_{\text{ccq}} + t_{cd} > t_{\text{hold}}$$
?

$$(30 + 25) ps > 70 ps ? No!$$

Add buffers to the short paths:

$$t_{pd}$$
=

$$t_{cd}$$
=

Setup time constraint:

$$T_c \ge$$

$$f_c =$$

Timing Characteristics

$$t_{cca}$$
 = 30 ps

$$t_{pca} = 50 \text{ ps}$$

$$t_{\text{setup}} = 60 \text{ ps}$$

$$t_{\text{hold}}$$
 = 70 ps

$$t_{pd} = 35 \text{ ps}$$

$$t_{cd}$$
 = 25 ps

$$t_{ccq} + t_{cd} > t_{hold}$$
?

Add buffers to the short paths:

$$t_{pd}$$
 = 3 x 35 ps = 105 ps

$$t_{cd}$$
 = 2 x 25 ps = 50 ps

Setup time constraint:

$$T_c \ge (50 + 105 + 60) \text{ ps} = 215 \text{ ps}$$

$$f_c = 1/T_c = 4.65 \text{ GHz}$$

Timing Characteristics

$$t_{cca} = 30 \text{ ps}$$

$$t_{pca} = 50 \text{ ps}$$

$$t_{\text{setup}} = 60 \text{ ps}$$

$$t_{\text{hold}} = 70 \text{ ps}$$

$$t_{nd} = 35 \text{ ps}$$

$$t_{cd} = 25 \text{ ps}$$

$$t_{\text{ccq}} + t_{cd} > t_{\text{hold}}$$
?

$$(30 + 50) ps > 70 ps ? Yes!$$

Timing Constraints in Synthesis Tools

```
external_delay -clock clk1 -input 200 -name in_con [all_inputs]
external_delay -clock clk2 -output 400 -name out_con [all_outputs]
```


Timing Constraints in Synthesis Tools

dc_shell>set_input_delay -clock clk -max 6.4 in1 dc_shell>set_input_delay -clock clk -min 4.4 in1

dc_shell>set_output_delay -clock clk -max 5.3 out1

Pipelining Revisited

☐ Assume sequencing overhead = 0.5 ns

Token: Group of inputs processed to produce group of outputs

Latency: Time for one token to pass from start to end **Throughput**: Number of tokens produced per unit time

Pipelining Revisited

☐ Assume sequencing overhead = 0.5 ns

Token: Group of inputs processed to produce group of outputs

Latency: Time for one token to pass from start to end **Throughput**: Number of tokens produced per unit time

Pipelining Revisited

☐ Assume sequencing overhead = 0.5 ns

Token: Group of inputs processed to produce group of outputs

Latency: Time for one token to pass from start to end **Throughput**: Number of tokens produced per unit time

Time Borrowing

- ☐ In a flop-based system:
 - Data launches on one rising edge
 - Must setup before next rising edge
 - If it arrives late, system fails
 - If it arrives early, time is wasted
 - Flops have hard edges
- ☐ In a latch-based system
 - Data can pass through latch while transparent
 - Long cycle of logic can borrow time into next
 - As long as each loop completes in one cycle

Time Borrowing Example

Loops may borrow time internally but must complete within the cycle

How Much Borrowing?

2-Phase Latches

$$t_{\text{borrow}} \leq \frac{T_c}{2} - \left(t_{\text{setup}} + t_{\text{nonoverlap}}\right)$$

$$t_{\text{borrow}} \le t_{pw} - t_{\text{setup}}$$

 $t_{borrow} = 0$ for a feedback cycle

Example: Intel Itanium 2

- $\Box t_{setup} = 40ps$, $t_{hold} = 5ps$, $t_{pcq} = t_{pdq} = 82ps$, $t_{ccq} = 52ps$
- How much time is borrowed through the mid-cycle latch at min T_c ? If the cycle time is increased to 2000 ps, how much time is borrowed?

Element	Propagation Delay	Contamination Delay
Adder	590 ps	100 ps
Result Mux	60 ps	35 ps
Early Bypass Mux	110 ps	95 ps
Middle Bypass Mux	80 ps	55 ps
Late Bypass Mux	70 ps	45 ps
2-mm Wire	100 ps	65 ps

Example: Intel Itanium 2

- \Box $t_{setup} = 40ps$, $t_{hold} = 5ps$, $t_{pcq} = t_{pdq} = 82ps$, $t_{ccq} = 52ps$
- \Box How much time is borrowed through the mid-cycle latch at min T_c ? If the cycle time is increased to 2000 ps, how much time is borrowed?
- $T_c = t_{pdq1} + t_{pd1} + t_{pdq2} + t_{pd2} = 82 \times 2 + (590 + 60 + 100 + 80 + 100 + 70)$ = 1164ps
- \Box Time borrowed = $t_{pdq1} + t_{pd1} T_c/2 = 90ps$

Element	Propagation Delay Contamination Del	
Adder	590 ps	100 ps
Result Mux	60 ps	35 ps
Early Bypass Mux	110 ps	95 ps
Middle Bypass Mux	80 ps	55 ps
Late Bypass Mux	70 ps	45 ps
2-mm Wire	100 ps	65 ps

Clock Skew

- ☐ We have assumed zero clock skew
- Clocks really have uncertainty in arrival time
 - Decreases maximum propagation delay
 - Increases minimum contamination delay
 - Decreases time borrowing
- It is better to differentiate between
 - Skew and jitter
 - Skew: spatial variation across chip
 - Jitter: temporal variation at the same element
 - Positive/negative skew

Skew: Max-Delay: Flip-Flops

- ☐ Worst scenario: launching flop clock is late and the receiving flop clock is early.
 - Positive skew is good, negative skew is bad

$$t_{pd} \le T_c - \underbrace{\left(t_{pcq} + t_{\text{setup}} + t_{\text{skew}}\right)}_{\text{sequencing overhead}}$$

Skew: Min-Delay: Flip-Flops

- ☐ Worst scenario: launching flop clock is early and the receiving flop clock is late.
 - Positive skew is bad, negative skew is good

18: Sequencing Ca HOIG CCQ SKEW

Example

18: Sequencing [Wikipedia: Clock Skew]

Example

18: Sequencing [Wikipedia: Clock Skew]

Skew: Latches

- For transparent latches, clock skew does not degrade performance (skew tolerant)
- But increases effective hold time and reduces t_{borrow}

2-Phase Latches

$$t_{pd} \le T_c - \left(2t_{pdq}\right)$$
sequencing overhead

$$t_{cd1}, t_{cd2} \ge t_{\text{hold}} - t_{ccq} - t_{\text{nonoverlap}} + t_{\text{skew}}$$

$$t_{\text{borrow}} \le \frac{T_c}{2} - \left(t_{\text{setup}} + t_{\text{nonoverlap}} + t_{\text{skew}}\right)$$

Pulsed Latches

$$\begin{aligned} t_{pd} & \leq T_{c} - \max \left(t_{pdq}, \ t_{pq} + t_{\text{setup}} - t_{pw} + t_{\text{skew}} \right) \\ & \qquad \qquad \text{sequencing overhead} \end{aligned}$$

$$t_{cd} & \geq t_{\text{hold}} + t_{pw} - t_{cq} + t_{\text{skew}}$$

$$t_{\text{borrow}} & \leq t_{pw} - \left(t_{\text{setup}} + t_{\text{skew}} \right)$$

Sequencing Summary

- ☐ Flip-Flops: mainstream automated flow
 - Very easy to use, supported by all tools
 - The right choice if performance is not near the process edge
- 2-Phase Transparent Latches: rarely used today
 - Lots of skew tolerance and time borrowing
 - More design effort to partition logic into half cycles
- \square Pulsed Latches: only for extreme performance full custom (ex: Pentium 4 and Itanium 2)
 - Fast, lower power, some skew tolerance and time borrowing, hold time risk

	Sequencing Overhead (T_c-t_{pd})	Minimum Logic Delay t _{cd}	Time Borrowing t _{borrow}
Flip-Flops	$t_{pcq} + t_{\text{setup}} + t_{\text{skew}}$	$t_{\text{hold}} - t_{ccq} + t_{\text{skew}}$	0
Two-Phase Transparent Latches	$2t_{pdq}$	$t_{\text{hold}} - t_{ccq} + t_{\text{nonoverlap}} + t_{\text{skew}}$ in each half-cycle	$T_c/2 - (t_{\text{setup}} + t_{\text{nonoverlap}} + t_{\text{skew}})$
Pulsed Latches	$\max(t_{pdq}, t_{pcq} + t_{\text{setup}} - t_{pw} + t_{\text{skew}})$	$t_{\text{hold}} - t_{ccq} + t_{pw} + t_{\text{skew}}$	$t_{pw} - (t_{\text{setup}} + t_{\text{skew}})$

Academia Safe Flip-Flop

- ☐ If setup times are violated, reduce clock speed
- If hold times are violated, chip fails at any speed
- ☐ An easy way to guarantee hold times is to use 2-phase latches with big non-overlap times
 - Slow: nonoverlap adds to setup time
 - But no hold times
- In industry, use a better timing analyzer
 - Add buffers to slow signals if hold time is at risk

Thank you!