

UNIVERSIDADE FEDERAL DE SÃO JOÃO DEL-REI DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO ALGORITMOS BIOINSPIRADOS

Problema do Caixeiro-Viajante com CLONALG

Gustavo Henriques da Cunha

São João del-Rei 2024

Lista de Figuras

1	Tabela com comparação entre os testes dantizig42-d	3
2	Tabela com comparação entre os testes att48-d	4
3	Tabela com comparação entre as execuções dantizig42-d	5
4	Tabela com comparação entre as execuções att48-d	5
5	tabela com comparação entre os testes dantizig42-d	6
6	tabela com comparação entre os testes att48-d	7

Sumário

1	1 INTRODUÇÃO			
	1.1 Objetivo	1		
	1.2 Problema do Caixeiro-Viajante	1		
2	ABORDAGEM DO PROBLEMA	1		
3	ANÁLISE DE DESEMPENHO	2		
4	CONCLUSÃO	7		

1 INTRODUÇÃO

Este é um trabalho prático da disciplina de Algoritmos Bioinspirados no curso de Ciência da Computação na UFSJ.

1.1 Objetivo

Neste trabalho, tem-se como objetivo aprender a construir e testar o algoritmo CLO-NALG, buscando resolver o problema do caixeiro viajante.

Além disso, é focado na análise da calibragem dos parâmetros, buscando melhorar a eficiência do algoritmo.

1.2 Problema do Caixeiro-Viajante

O problema do caixeiro-viajante é um dos exemplos mais famosos de problemas de otimização combinatória na Computação. Por ser um problema difícil de resolver, pertencente à classe NP-Difícil, mas fácil de explicar e ilustrar, ele se tornou um problema comum para testar diferentes algoritmos de aproximação, nos quais se busca encontrar uma boa solução em tempo polinomial.

Dado um grafo G = (V, A), onde temos n vértices V que representam as cidades e arestas A que ligam essas cidades com um certo peso, que representa a distância entre elas, o objetivo é encontrar um circuito de menor distância possível, que comece em uma cidade, passe por todas as outras apenas uma vez, e então retorne à cidade inicial.

2 ABORDAGEM DO PROBLEMA

Para resolver o problema, é armazenado o grafo em uma matriz, lendo os dados de um arquivo contendo a matriz com as distâncias das cidades. Note que, para esse problema, só é considerado grafos completos.

Além disso, é utilizado o algoritmo CLONALG (clonal selection algorithm), metaheurística baseada no funcionamento do sistema imunológico humano.

Com métodos semelhantes aos algoritmos genêticos, o CLONALG também é uma metaheurística populacional, que mantém um conjunto de indivíduos de tamanho N que simulam os anticorpos, e a partir desses indivíduos é selecionado n dos melhores, para

serem clonados em uma população de clones C que posteriormente será levada a um processo de hiper-mutação, onde os melhores indivíduos possuem mais clones, gerando uma população de anticorpos maduros C^* . A partir dessa nova população gerada, é escolhido os melhores indivíduos para compor o conjunto de anticorpos original. Por fim, é selecionado d anticorpos com menor afinidade do conjunto para serem substituidos.

O número de clones a ser produzido para cada indivíduo selecionado é dado pela equação 1, onde β é um parâmetro a ser ajustado pelo usuário.

$$N_c = \sum_{i=1}^n \text{round}(\frac{\beta \times N}{i}) \tag{1}$$

Para a hiper-mutação, o valor de mutação em cada indivíduo é dado pela 2, onde ρ é um parâmetro de controle do amortecimento da função exponencial, fixado em 2 neste trabalho, e D^* é o valor normalizado da afinidade D.

$$\alpha = \exp(-\rho D^*) \tag{2}$$

3 ANÁLISE DE DESEMPENHO

Para a análise de sesempenho do CLONALG, é possível ajustar os parâmetros $N,\,n,\,d$ e o número de gerações.

Neste trabalho, é os valores de N e do número de gerações é fixado em 20 e 100, respectivamente. Para os outros parâmetros foram feitos testes para a comparação de qual conjunto apresenta melhores resultados.

Com isso, foi feita a tabela da figura 1, que mostra, ordenadamente, os resultados desses testes com o arquivo "dantizig42_d", que possui solução ótima conhecida de 699 unidades.

	_		M-di-	Denvis
n	d	β	Media	Desvio
8	8	0.9	789.90	13.19
10	10	0.9	791.10	12.74
8	5	0.2	792.90	20.61
8	8	0.5	795.30	17.14
8	8	0.2	797.20	17.11
5	8	0.5	799.00	9.03
10	5	0.5	801.70	13.21
5	5	0.9	803.50	22.24
5	2	0.5	804.80	21.80
10	5	0.2	805.40	13.12
8	5	0.5	806.30	15.51
3	2	0.2	806.50	20.00
5	5	0.9	806.50	14.66
5	5	0.5	806.80	12.42
8	5	0.9	814.40	8.16
3	2	0.5	815.50	19.58
3	2	0.9	817.30	12.66
10	1	0.2	818.40	8.73
1	1	0.2	825.80	15.92
5	1	0.2	830.50	8.63

Figura 1: Tabela com comparação entre os testes dantizig42-d.

É possível observar que, apesar do algoritmo não conseguir chegar no ótimo global, conceguiu encontrar soluções relativamente boas. Principalmente com os valores de d e n iguais, o que significa que metada da população é selecionado para a clonagem e outra metáde é substituída.

Assim, utilizando como base os resultados dessa entrada, foi feitos os mesmos testes para a entrada "att48_d" que possui 48 cidades e solução ótima conhecida de 33551 unidades, e criado a tabela da figura 2.

n	d	β	Media	Desvio
8	8	0.9	35452.40	282.85
5	15	0.5	35481.80	451.78
8	8	0.99	35642.90	369.59
10	8	0.3	35642.90	256.62
5	8	0.5	35678.60	219.17
10	5	0.5	35689.90	386.13
8	8	0.5	35709.30	436.59
8	8	0.2	35735.80	432.10
6	6	0.8	35776.00	470.64
5	5	0.9	35832.50	348.23
10	5	0.2	35847.00	404.84
8	8	0.8	35873.90	463.42
10	10	0.9	35910.50	200.48
8	5	0.2	35932.30	403.50
8	5	0.5	35965.80	370.39
5	5	0.8	36104.00	425.45
2	2	0.7	36335.30	435.79
2	2	0.4	36504.30	461.45
5	2	0.5	36562.40	585.38
10	1	0.9	36699.30	763.03

Figura 2: Tabela com comparação entre os testes att48-d.

Pode ser observado resultados semelhantes ao teste na outra entrada, o que mostra consistência nos melhores parâmetros.

Depois disso, usando a melhor combinação de parâmetros de cada uma de suas respectivas tabelas, foi traçado gráficos para cada entrada.

Os gráficos das imagens 3 e 4 mostram dez execuções usando esses parâmetros onde foram traçados retas que mostram o progresso da qualidade da melhor solução por geração.

Figura 3: Tabela com comparação entre as execuções dantizig42-d

Figura 4: Tabela com comparação entre as execuções att48-d

É possível observar em todas as soluções a confirmação dos resultados vistos na tabela, com as execuções encontrando valores próximos, mas ainda ssim com algum desvio.

Além disso, é possível ver em ambos os gráficos uma maior variação nas soluções até a geração 40, tendo os resultados depois disso, na maioria dos casos, estabilizado. Isso sugere a necessidade de aprimoramento do algoritmo em alguns métodos, para proporcionar maior variação na população

No caso dos gráficos nas imagens 5 e 6 abaixo, é mostrado a análise, em uma execução, do melhor e pior de cada geração, além da média e mediana da população durante a execução.

Consegue-se perceber pelos gráficos a variação na pior solução e na média, proporcionados pela taxa de substituição de indivíduos d. Mas apesar disso, essa variação não resulta em uma fuga do ótimo local que foi achado em poucas iterações pelo algoritmo.

Figura 5: tabela com comparação entre os testes dantizig42-d

Figura 6: tabela com comparação entre os testes att48-d

4 CONCLUSÃO

Em todos os testes realizados, podemos ver que mesmo ao ajustar os parâmetros, o CLONALG ainda não conseguiu desempenho excepcional. Isso se deve a implementação utilizada no trabalho, onde faltou técnicas mais avançadas de seleção e substituição da população, para garantir maior diversidade na população, o que iria garantir uma procura maior pelo espaço de busca.

No mais, o trabalho possibilitou o entendimento do algoritmo e pode ser identificado questões sobre seu funcionamento e maneiras de melhorá-lo.