

Figure 6: Fourth step of encryption.

The last step involves adding some number of transitions under letters from the alphabet $\{0,1\}$ between states belonging to the same copy of a public key in \mathcal{B} . In that case we have added transition $\rho(9a,0)=10a$ (first copy), transitions $\rho(7b,1)=10b$ and $\rho(8b,1)=3b$ (second copy) and transition $\rho(12c,0)=7c$ (third copy).

4 Basic decryption

For that section we assume that we have a ciphertext automaton $\mathcal{B} = (P, \Sigma, \rho)$ constructed from a public key $\mathcal{A} = (Q, \Sigma, \delta)$, and that we know a private key w which is a carefully synchronizing word for the automaton \mathcal{A} . First we state a lemma.

Lemma 1. Let $Q.w = q_l$. After removing letters $x \in \{0, 1\}$ from automaton \mathcal{B} we have that $P.w = \{q_l^1, q_l^2, ..., q_l^{|u|+1}\}$.