Przykładowe zadania na kolokwium nr 2

- 1. Sprawdzić, czy zbiór liczb wymiernych dodatnich \mathbb{Q}^+ wraz z działaniem $a\odot b=2ab$ tworzy grupę abelową.
- 2. Udowodnić, że zbiór $\mathbb{Q}(\sqrt{3}):=\{a+b\sqrt{3}:a,b\in\mathbb{Q}\}$ ze zwykłymi działaniami dodawania i mnożenia w \mathbb{R} jest ciałem.
- 3. Rozwiązać równanie $x^2 + x + 3 = 0$ w ciele \mathbb{Z}_5 .
- 4. Udowodnić, że podzbiór $\left\{\begin{bmatrix}0\\0\\0\end{bmatrix},\begin{bmatrix}1\\2\\1\end{bmatrix},\begin{bmatrix}2\\1\\2\end{bmatrix}\right\}\subseteq\mathbb{Z}_3^3$ jest podprzestrzenią przestrzeni wektorowej \mathbb{Z}_3^3 nad ciałem \mathbb{Z}_3 .
- 5. Sprawdzić, czy układ wektorów

$$\mathcal{B} = \left(\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ -2 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 3 \end{bmatrix} \right)$$

jest bazą przestrzeni \mathbb{R}^3 .

- 6. Dla jakiej wartości parametru $a \in \mathbb{Z}_3$ układ wektorów $\begin{pmatrix} 1\\2\\2 \end{pmatrix}, \begin{bmatrix} a\\1\\1 \end{bmatrix}, \begin{bmatrix} 2\\0\\2 \end{bmatrix}$ jest bazą przestrzeni \mathbb{Z}_3^3 ?
- 7. Dane jest przekształcenie $f:\mathbb{R}^2\to\mathbb{R}^2$ określone następująco:

$$f(\begin{bmatrix} x \\ y \end{bmatrix}) = \begin{bmatrix} 3x + 4y \\ 5x + 2y \end{bmatrix}.$$

Sprawdzić, że jest to przekształcenie liniowe. Wyznaczyć macierz endomorfizmu w bazach kanonicznych, jego wartości własnie i odpowiadające im podprzestrzenie wektorów własnych.