QUY NHON UNIVERSITY DEPARTMENT OF MATHEMATICS AND STATISTICS

Optimization

Nguyen Quoc Duong

Master's Student, Department of Mathematics and Statistics, Quy Nhon University

April 1, 2023

Roadmap

- (1) Optimization Using Gradient Descent
- (2) Constrained Optimization and Lagrange Multipliers
- (3) Convex Sets and Functions
- (4) Convex Optimization
- (5) Convex Conjugate

Summary

- Training machine learning models = finding a good set of parameters
- A good set of parameters = Solution (or close to solution) to some optimization problem
- Directions: Unconstrained optimization, Constrained optimization, Convex optimization
- High-school math: A necessary condition for the optimal point: f'(x) = 0 (stationary point)
 - Gradient will play an important role

Roadmap

- (1) Optimization Using Gradient Descent
- (2) Constrained Optimization and Lagrange Multipliers
- (3) Convex Sets and Functions
- (4) Convex Optimization
- (5) Convex Conjugate

Unconstrained Optimization and Gradient Algorithms

Goal

$$\min f(\mathbf{x}), \quad f(\mathbf{x}) : \mathbb{R}^n \mapsto \mathbb{R}, \quad f \in C^1$$

Graident-type algorithms

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \gamma_k \mathbf{d}_k, \quad k = 0, 1, 2, \dots$$

- Lemma. Any direction $\mathbf{d} \in \mathbb{R}^{n \times 1}$ that satisfies $\nabla f(\mathbf{x}) \cdot \mathbf{d} < 0$ is a descent direction of f at \mathbf{x} . That is, if we let $\mathbf{x}_{\alpha} = \mathbf{x} + \alpha \mathbf{d}$, $\exists \bar{\alpha} > 0$, such that for all $\alpha \in (0, \bar{\alpha}]$, $f(\mathbf{x}_{\alpha}) < f(\mathbf{x})$.
- Steepest gradient descent¹. $\mathbf{d}_k = -\nabla f(\mathbf{x}_k)^{\mathsf{T}}$.
- Finding a local optimum $f(\mathbf{x}_{\star})$, if the step-size γ_k is suitably chosen.
- Question. How do we choose d_k for a constrained optimization?

¹In some cases, just gradient descent often means this steepest gradient descent.

Example

• A quadratic function $f: \mathbb{R}^2 \to \mathbb{R}$.

$$f\left(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}\right) = \frac{1}{2} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}^{\mathsf{T}} \begin{pmatrix} 2 & 1 \\ 1 & 20 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} - \begin{pmatrix} 5 \\ 3 \end{pmatrix}^{\mathsf{T}} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix},$$

whose gradient is $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}^T \begin{pmatrix} 2 & 1 \\ 1 & 20 \end{pmatrix} - \begin{pmatrix} 5 \\ 3 \end{pmatrix}^T$

- $\mathbf{x}_0 = (-3-1)^{\mathsf{T}}$
- constant step size $\alpha = 0.085$
- Zigzag pattern

Taxonomy

- Goal: min $L(\theta)$ for n training data
- Based on the amount of training data used for each iteration
 - Batch gradient descent (the entire n)
 - Mini-batch gradient descent(k < n data)
 - Stochastic gradient descent (one sampled data)
- Based on the adaptive method of update
 - Momentum, NAG, Adagrad, RMSprop, Adam, etc.
- https://ruder.io/optimizing-gradient-descent/

Stochastic Gradient Descent (SGD)

- Assume $L(\theta) = \sum_{i=1}^{n} L_n(\theta)$ (which happens in many cases in machine learning, e.g., negative log-likelihood in regression)
- Gradient update

$$oldsymbol{ heta}_{k+1} = oldsymbol{ heta}_k - \gamma_k
abla L(oldsymbol{ heta}_k)^\mathsf{T} = oldsymbol{ heta}_k - \gamma_k \sum_{n=1}^N
abla L_n(oldsymbol{ heta}_k)^\mathsf{T}$$

- Batch gradient: $\sum_{n=1}^{N} \nabla L_n(\theta_k)^{\mathsf{T}}$
- Mini-batch gradient: $\sum_{n \in \mathcal{K}} \nabla L_n(\theta_k)^T$ for a suitable choice of $\mathcal{K}, |\mathcal{K}| < n$
- Stochastic gradient: $\nabla L_n(\theta_i)^T$ for some (randomly chosen) *i*. Noisy approximation to the real gradient.
- Tradeoff: computation burden vs. exactness

Adaptivity for Better Convergence: Momemtum

- Step size.
 - Too small: slow update, Too big: overshoot, zig-zag, often fail to converge
- Adaptive update: smooth out the erratic behavior and dampens oscillations
- Gradient descent with momentum

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \gamma_i \nabla f(\mathbf{x}_k)^{\mathsf{T}} + \alpha \Delta \mathbf{x}_k, \quad \alpha \in [0, 1]$$
$$\Delta \mathbf{x}_k = \mathbf{x}_k - \mathbf{x}_{k-1}$$

- Memory term: $\alpha \Delta x_k$, where α is the degree of how much we remember the past
- Next update = a linear combination of current and previous updates

Roadmap

- (1) Optimization Using Gradient Descent
- (2) Constrained Optimization and Lagrange Multipliers
- (3) Convex Sets and Functions
- (4) Convex Optimization
- (5) Convex Conjugate

Standard Constrained Optimization Problem

• An optimization problem in standard form:

```
minimize f(\mathbf{x})
subject to g_i(\mathbf{x}) \leq 0, \quad i = 1, 2, ..., m \quad (Inequality constraints) 
h_j(\mathbf{x}) = 0, \quad j = 1, 2, ..., p \quad (Equality constraints)
```

- Variables: $\mathbf{x} \in \mathbb{R}^n$. Assume nonempty feasible set
- Optimal value: p^* . Optimizer: x^*

Problem Solving via Langrange Multipliers

- Duality Mentality
 - Bound or solve an optimization problem via a different optimization problem!
 - We'll develop the basic Lagrange duality theory for a general optimization problem, then specialize for convex optimization
- Idea: augment the objective with a weighted sum of constraints
 - Lagrangian:

$$\mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) = f(\boldsymbol{x}) + \sum_{i=1}^{m} \lambda_{i} g_{i}(\boldsymbol{x}) + \sum_{i=1}^{p} \nu_{i} h_{i}(\boldsymbol{x})$$

- Lagrange multipliers (dual variables): $\lambda = (\lambda_i : i = 1, \dots, m) \succeq 0$, $\nu = (\nu_1, \dots, \nu_p)$
- Lagrange dual function:

$$\mathcal{D}(\boldsymbol{\lambda}, \boldsymbol{\nu}) = \inf_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu})$$

Lower Bound on the Optimal Value

- The dual function $\mathcal{D}(\lambda, \nu)$ is the lower bound on the optimal value p^* .
- Theorem. $\mathcal{D}(\lambda, \nu) \leq p^*, \ \forall \lambda \succeq 0, \ \nu$
- Proof. Consider feasible \tilde{x} . Then,

$$\mathcal{L}(\tilde{\boldsymbol{x}}, \boldsymbol{\lambda}, \boldsymbol{\nu}) = f(\tilde{\boldsymbol{x}}) + \sum_{i=1}^{m} \lambda_i g_i(\tilde{\boldsymbol{x}}) + \sum_{i=1}^{p} \nu_i h_i(\tilde{\boldsymbol{x}}) \leq f(\tilde{\boldsymbol{x}})$$

since $f_i(\tilde{\mathbf{x}}) \leq 0$ and $\lambda_i \geq 0$.

Hence, $\mathcal{D}(\lambda, \nu) \leq \mathcal{L}(\tilde{\mathbf{x}}, \lambda, \nu) \leq f(\tilde{\mathbf{x}})$ for all feasible $\tilde{\mathbf{x}}$. Therefore, $\mathcal{D}(\lambda, \nu) \leq p^*$.

Lagrangian Dual Problem

- Lower bound from Lagrange dual function depends on (λ, ν) .
- Question. What's the best lower bound?

Langrangian dual problem maximize $\mathcal{D}(\boldsymbol{\lambda}, \boldsymbol{\nu})$ subject to $\boldsymbol{\lambda} \succeq 0$

- Dual variables: (λ, ν)
- Always a convex optimization, because $\mathcal{D}(\lambda, \nu)$ is always concave over λ, ν .
 - Infimum over ${\pmb x}$ of a family of affine functions in $({\pmb \lambda}, {\pmb
 u})$ (we will see this later)
- Denote the optimal value of Lagrange dual problem by d^* .

Weak Duality

• What's the relationship between d^* and p^* ?

Weak Duality

$$d^* \leq p^*$$

- Weak duality always hold (even if the primal problem is not convex):
- Optimal duality gap: $p^* d^*$
- Efficient generation of the lower bounds through the dual problem

Roadmap

- (1) Optimization Using Gradient Descent
- (2) Constrained Optimization and Lagrange Multipliers
- (3) Convex Sets and Functions
- (4) Convex Optimization
- (5) Convex Conjugate

Convex Optimization

Convex optimization problem

minimize
$$f(x)$$
 subject to $x \in \mathcal{X}$,

where $f(\mathbf{x}) : \mathbb{R}^n \mapsto \mathbb{R}$ is a convex function, and \mathcal{X} is a convex set.

- The watershed between easily solvable problem and intractable ones is not 'linearity', but 'convexity'
- Let's overview the background of convex functions, convex sets, and their basic properties.

Convex Set

- Set \mathcal{C} is a convex set if the line segment between any two points in \mathcal{C} lies in \mathcal{C} , i.e., if for any $x_1, x_2 \in \mathcal{C}$ and any $\theta \in [0, 1]$, we have $\theta x_1 + (1 \theta)x_2 \in \mathcal{C}$
- Convex hull of C is the set of all convex combinations of points in C:

$$\left\{\sum_{i=1}^k \theta_i x_i \mid x_i \in \mathcal{C}, \theta_i \geq 0, i = 1, 2, \dots, k, \sum_{i=1}^k \theta_i = 1\right\}$$

- What is k? For all k? For some k?
- Generalize to infinite sums and integrals:

$$\sum_{i=1}^{\infty} \theta_i x_i \in \mathcal{C}, \quad \int_{\mathcal{C}} p(x) x dx \in \mathcal{C},$$

where $\sum_{i=1}^{\infty} \theta_i = 1$ and p(x) is a pdf of some random variable.

18 / 44

Examples

- Convex and Non-convex sets

- Convex hulls

Examples of Convex Sets

- Hyperplane in \mathbb{R}^n is a set: $\{x \mid a^\mathsf{T} x = b\}$ where $a \in \mathbb{R}^n, a \neq 0, b \in \mathbb{R}$ In other words, $\{x \mid a^\mathsf{T} (x x_0) = 0\}$, where x_0 is any point in the hyperplane, i.e., $a^\mathsf{T} x_0 = b$.
- Divides \mathbb{R}^n into two halfspaces: $\{x|a^\mathsf{T}x \leq b\}$ and $\{x|a^\mathsf{T}x > b\}$

 Polyhedron is the solution set of a finite number of linear equalities and inequalities (intersection of finite number of halfspaces and hyperplanes)

Polytope: a bounded polyhedron

Separating Hyperplane Theorem

- \mathcal{C} and \mathcal{D} : non-intersecting convex sets, i.e., $\mathcal{C} \cap \mathcal{D} = \phi$.
- Then, there exist $a \neq 0$ and b such that $a^{\mathsf{T}}x \leq b$ for all $x \in \mathcal{C}$ and $a^{\mathsf{T}}x \geq b$ for all $x \in \mathcal{D}$.

Supporting Hyperplane Theorem

- Given a set $C \in \mathbb{R}^n$ and a point x_0 on its boundary, if $a \neq 0$ satisfies $a^Tx \leq a^Tx_0$ for all $x \in C$, then $\{x|a^Tx = a^Tx_0\}$ is called a supporting hyperplane to C at x_0
- For any nonempty convex set C and any x_0 on boundary of C, there exists a supporting hyperplane to C at x_0
- What happens if C is non-convex?

Convex Functions

• $f: \mathbb{R}^n \mapsto \mathbb{R}$ is a convex function if dom f is a convex set and for all $x, y \in \text{dom } f$ and $\theta \in [0, 1]$, we have

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

- f is strictly convex if the strict inequality in the above holds for all $x \neq y$ and $0 < \theta < 1$.
 - f is concave if -f is convex
 - Affine functions are convex and concave
 - Jensen's inequality. For a rv X, $f(\mathbb{E}[X]) \leq \mathbb{E}[f(X)]$.

Conditions of Convex Functions (1)

• First-order condition. For differentiable functions, f is convex iff

$$f(y) - f(x) \ge \nabla f(x)^{\mathsf{T}} (y - x), \quad \forall x, y \in \mathsf{dom}\ f, \mathsf{and}\ \mathsf{dom}\ f \mathsf{\ is\ convex}$$

$$f(y) = f(x) + \nabla f(x)^{T} (y - x)$$

$$(x, f(x))$$

- Example. $f(y) = y^2$.
- $f(y) \ge \tilde{f}_{x}(y)$ where $\tilde{f}_{x}(y)$ is the first order Taylor expansion of f(y) at x.
- Local information (first order Taylor approximation) about a convex function provides global information (global underestimator).
- If $\nabla f(x) = 0$, then $f(y) \ge f(x)$, $\forall y$. Thus, x is a global minimizer of

Conditions of Convex Functions (2)

Second-order condition. For twice differentiable functions, f is convex iff

$$\nabla^2 f(x) \succeq 0$$

for all $x \in \text{dom } f$ (upward slope) and dom f is convex

- Example: $f(x) = x^2$.
- Meaning: The graph of the function have positive (upward) curvature at x.

Examples of Convex or Concave Functions

- e^{ax} is convex on \mathbb{R} , for any $a \in \mathbb{R}$
- x^a is convex on \mathbb{R}_{++} when $a \geq 1$ or $a \leq 0$, and concave for $0 \leq a \leq 1$
- $|x|^p$ is convex on \mathbb{R} for $p \ge 1$
- $\log x$ is concave on \mathbb{R}_{++}
- $x \log x$ is strictly convex on \mathbb{R}_{++}
- Every norm on \mathbb{R}^n is convex
- $f(x) = \max\{x_1, \dots, x_n\}$ is convex on \mathbb{R}^n
- $f(x) = \log \sum_{i=1}^{n} e^{x_i}$ is convex on \mathbb{R}^n
- $f(x) = (\prod_{i=1}^n x_i)^{\frac{1}{n}}$ is concave on \mathbb{R}^n_{++}

Convexity-Preserving Operations

- $f = \sum_{i=1}^{n} w_i f_i$ convex if f_i are all convex and $w_i \geq 0$
- g(x) = f(Ax + b) is convex iff f(x) is convex
- $f(x) = \max\{f_1(x), f_2(x)\}$ convex if f_i convex, e.g., sum of r largest components is convex
- f(x) = h(g(x)), where $h : \mathbb{R}^k \mapsto \mathbb{R}$ and $g : \mathbb{R}^n \mapsto \mathbb{R}^k$. If k = 1: $f''(x) = h''(g(x))g'(x)^2 + h'(g(x))g''(x)$. So, f is convex if h is convex and nondecreasing and g is convex, or if h is convex and nonincreasing and g is concave ...
- $g(x) = \inf_{y \in \mathcal{C}} f(x, y)$ is convex if f is convex in (x, y) and \mathcal{C} is convex

Point-wise Supremum

• If f(x, y) is convex in x for each $y \in A$, then

$$g(x) = \sup_{y \in \mathcal{A}} f(x, y)$$

is convex. Similarly, if f(x, y) is concave in x for each $y \in A$, then

$$g(x) = \inf_{y \in \mathcal{A}} f(x, y)$$

is concave.

- Example. distance to farthest point in a set C: $f(x) = \sup_{y \in C} ||x y||$ is convex.
- Example. Lagrange dual function

$$\mathcal{D}(\boldsymbol{\lambda}, \boldsymbol{\nu}) = \inf_{\boldsymbol{x}} \mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\nu})$$

is concave.

Roadmap

- (1) Optimization Using Gradient Descent
- (2) Constrained Optimization and Lagrange Multipliers
- (3) Convex Sets and Functions
- (4) Convex Optimization
- (5) Convex Conjugate

Standard Convex Optimization

A standard convex optimization problem with variables x:

minimize
$$f(\mathbf{x})$$

subject to $g_i(\mathbf{x}) \leq 0, \quad i = 1, 2, ..., m$
 $a_i^\mathsf{T} \mathbf{x} = b_i, \quad i = 1, 2, ..., p$

where f, f_1, \ldots, f_m are convex functions.

- Minimize convex objective function (or maximize concave objective function)
- Upper bound inequality constraints on convex functions (⇒ Constraint set is convex)
- Equality constraints must be affine (Only affine functions leads to a convex set for the equality constraints)

Properties for Optimality

- Local optimality implies global optimality.
 - Given x is locally optimal for a convex optimization problem, i.e., x is feasible and for some R > 0,

$$f(\mathbf{x}) = \inf\{f(\mathbf{z}) \mid \mathbf{z} \text{ is feasible }, \|\mathbf{z} - \mathbf{x}\|_2 \le R\}$$

- Theorem. if x is locally optimal in convex program, then globally optimal.
- Optimal condition for differentiable f
 - x is optimal for a convex optimization problem iff x is feasible and for all feasible y:

$$\nabla f(\mathbf{x})^{\mathsf{T}}(\mathbf{y} - \mathbf{x}) \geq 0$$

- $-\nabla f(\mathbf{x})$ defines a supporting hyperplane to the feasible set $(\{\mathbf{y} \mid -\nabla f(\mathbf{x})^\mathsf{T} \mathbf{y} \leq -\nabla f(\mathbf{x})^\mathsf{T} \mathbf{x}\}).$
- (Note) Unconstrained convex optimization: condition reduces to: $\nabla f(\mathbf{x}) = 0$

Strong Duality

Strong duality (zero optimal duality gap):

$$d^* = p^*$$

- If strong duality holds, solving dual is 'equivalent' to solving primal.
 But strong duality does not always hold
- Convexity and constraint qualifications

 Strong duality
- A simple constraint qualification: Slater's condition (there exists strictly feasible primal variables $f_i(x) < 0$ for non-affine f_i) (see Section 5.3.2 of Boyd's book).
- Another reason why convex optimization is 'easy'

Complementary Slackness

Assume strong duality holds. Then,

$$f(\mathbf{x}^*) = \mathcal{D}(\lambda^*, \mathbf{\nu}^*) = \inf_{\mathbf{x}} \left(f(\mathbf{x}) + \sum_{i=1}^m \lambda_i^* f_i(\mathbf{x}) + \sum_{i=1}^p \nu_i^* h_i(\mathbf{x}) \right)$$

$$\leq f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i^* f_i(\mathbf{x}^*) + \sum_{i=1}^p \nu_i^* h_i(\mathbf{x}^*) \leq f(\mathbf{x}^*)$$

- Thus, the two inequalities must hold with equality, implying: $\lambda_i^* f_i(\mathbf{x}^*) = 0, \ \forall i$
- Complementary slackness condition:

$$\lambda_i^* > 0 \implies f_i(\mathbf{x}^*) = 0$$
 $f_i(\mathbf{x}^*) < 0 \implies \lambda_i^* = 0$

• *i*-th optimal Lagrange multiplier is zero unless the *i*th constraint is active at the optimum.

KKT Condition

• Since x^* minimizes $\mathcal{L}(x, \lambda^*, \nu^*)$ over x,

$$\nabla f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i^* \nabla f_i(\mathbf{x}^*) + \sum_{i=1}^p \nu_i^* \nabla h_i(\mathbf{x}^*) = 0$$

Karush-Kuhn-Tucker optimality condition

$$f_i(\mathbf{x}^*) \leq 0, \quad h_i(\mathbf{x}^*) = 0, \quad \lambda_i^* \succeq 0$$

$$\lambda_i^* f_i(\mathbf{x}^*) = 0$$

$$\nabla f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i^* \nabla f_i(\mathbf{x}^*) + \sum_{i=1}^p \nu_i^* \nabla h_i(\mathbf{x}^*) = 0$$

- Any optimization with strong duality, KKT condition is necessary for primal-dual optimality
- Convex optimization with Slater's condition, KKT is also sufficient for primal-dual optimality.

Useful Tips

- Minimization problem (min-min-max rule)
 - Problem: min f(x) s.t. $f_i(x) \le 0$, $g_i(x) = 0$, x = 0
 - f(x): convex, $f_i(x)$: convex, $g_i(x)$: affine
 - $L(x, \lambda, \mu) = f(x) + \sum_{i} \lambda_{i} f_{i}(x) + \sum_{i} \mu_{i} g_{i}(x)$
 - $\inf_{\mathbf{x}} L(\mathbf{x}, \lambda, \mu) = \mathcal{D}(\lambda, \mu)$
 - $\max_{\lambda>0} \mathcal{D}(\lambda,\mu)$
- Maximization problem (max-max-min rule)
 - Problem: max f(x) s.t. $f_i(x) \ge 0$, $g_i(x) = 0$, x
 - f(x): concave, $f_i(x)$: concave, $g_i(x)$: affine
 - $L(x, \lambda, \mu) = f(x) + \sum_{i} \lambda_{i} f_{i}(x) + \sum_{i} \mu_{i} g_{i}(x)$
 - $\sup_{x} L(x, \lambda, \mu) = \mathcal{D}(\lambda, \mu)$
 - $\min_{\lambda \geq 0} \mathcal{D}(\lambda, \mu)$

Linear Programming

- Primal problem

$$\min_{\boldsymbol{x} \in \mathbb{R}^d} \quad \boldsymbol{c}^\mathsf{T} \boldsymbol{x}$$
 subject to $\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}$,

where $\boldsymbol{A} \in \mathbb{R}^{m \times d}$ and $\boldsymbol{b} \in \mathbb{R}^m$.

- Dual problem

$$egin{array}{ll} \mathsf{max}_{m{\lambda}\in\mathbb{R}^m} & -m{b}^\mathsf{T}m{\lambda} \\ \mathsf{subject to} & m{c}+m{A}^\mathsf{T}m{\lambda}=0, \ m{\lambda}\succeq 0, \end{array}$$
 where $m{\lambda}\in\mathbb{R}^m.$

• The Lagrangian: $\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}) = (\mathbf{c} + \mathbf{A}^{\mathsf{T}} \boldsymbol{\lambda})^{\mathsf{T}} \mathbf{x} - \boldsymbol{\lambda}^{\mathsf{T}} \boldsymbol{b}$, whose derivative w.r.t. \mathbf{x} becomes zero, when $\mathbf{c} + \mathbf{A}^{\mathsf{T}} \boldsymbol{\lambda} = 0$.

• The dual function: $\mathcal{D}(\boldsymbol{\lambda}) = -\boldsymbol{\lambda}^{\mathsf{T}}\boldsymbol{b}$

Quadratic Programming

Primal problem

$$\min_{\boldsymbol{x} \in \mathbb{R}^d} \quad \frac{1}{2} \boldsymbol{x}^\mathsf{T} \boldsymbol{Q} \boldsymbol{x} + c^\mathsf{T} \boldsymbol{x}$$

subject to $\boldsymbol{A} \boldsymbol{x} \preceq \boldsymbol{b}$,

where $\mathbf{A} \in \mathbb{R}^{m \times d}$, $\mathbf{b} \in \mathbb{R}^m$, $\mathbf{c} \in \mathbb{R}^d$, the square matrix \mathbf{Q} is symmetric, positive definite.

Dual problem

$$\max_{oldsymbol{\lambda} \in \mathbb{R}^m} \quad \left(-\frac{1}{2} (oldsymbol{c} + oldsymbol{A}^\mathsf{T} oldsymbol{\lambda})^\mathsf{T} oldsymbol{A} oldsymbol{Q}^{-1} (oldsymbol{c} + oldsymbol{A}^\mathsf{T} oldsymbol{\lambda}) - oldsymbol{\lambda}^\mathsf{T} oldsymbol{b}
ight)$$
 subject to $oldsymbol{\lambda} \succeq 0$,

where $\lambda \in \mathbb{R}^m$.

Roadmap

- (1) Optimization Using Gradient Descent
- (2) Constrained Optimization and Lagrange Multipliers
- (3) Convex Sets and Functions
- (4) Convex Optimization
- (5) Convex Conjugate

Conjugate Function: Definition and Meaning

• Given $f: \mathbb{R}^n \to \mathbb{R}$, the conjugate function $f^*: \mathbb{R}^n \to \mathbb{R}$ defined as:

$$f^*(\mathbf{y}) = \sup_{\mathbf{x} \in \text{dom } f} (\mathbf{y}^\mathsf{T} \mathbf{x} - f(\mathbf{x}))$$

with domain consisting of $\mathbf{y} \in \mathbb{R}^n$ for which the supremum is finite

- Assume \mathbb{R}^1 .
- For a given slope of y, yx f(x) is the vertical distance between the line yx and f(x).
- Thus, $f^*(y)$ is the maximum distance

Conjugate Function: Properties

• Given $f: \mathbb{R}^n \to \mathbb{R}$, the conjugate function $f^*: \mathbb{R}^n \to \mathbb{R}$ defined as:

$$f^*(\mathbf{y}) = \sup_{\mathbf{x} \in \text{dom } f} (\mathbf{y}^\mathsf{T} \mathbf{x} - f(\mathbf{x}))$$

with domain consisting of $\mathbf{y} \in \mathbb{R}^n$ for which the supremum is finite

- $f^*(y)$: always convex (the pointwise supremum of a family of affine functions of y)
- $f^* = f$ if f is convex and closed
- Fenchel's inequality: $f(x) + f^*(y) \ge x^T y$ for all x, y (by definition)
 - Example. $f(x) = |x|^2/2$. Then, $f^*(y) = |y|^2/2$. Thus, F-inequality tells us:

$$\frac{1}{2}(|x|^2 + |y|^2) \ge xy$$

Examples of Conjugate Functions

•
$$f(x) = ax + b$$
, $f^*(a) = -b$

•
$$f(x) = -\log x$$
, $f^*(y) = -\log(-y) - 1$ for $y < 0$

•
$$f(x) = e^x$$
, $f^*(y) = y \log y - y$

•
$$f(x) = x \log x$$
, $f^*(y) = e^{y-1}$

•
$$f(x) = \frac{1}{2}x^{\mathsf{T}}Qx$$
, $f^*(y) = \frac{1}{2}y^{\mathsf{T}}Q^{-1}y$ (Q is positive definite)

•
$$f(x) = \log \sum_{i=1}^n e^{x_i}$$
,

$$f^*(y) = \begin{cases} \sum_{i=1}^n y_i \log y_i & \text{if } y \succeq 0 \text{ and } \sum_{i=1}^n y_i = 1, \\ \infty & \text{otherwise} \end{cases}$$

Conjugate Function and Lagrangian Dual Function

• They are closely related. Consider the following problem:

minimize
$$f(x)$$

subject to $Ax \leq b$,
 $Cx = d$

• Using the conjugate of f, we can write the dual function as:

$$\mathcal{D}(\lambda, \nu) = \inf_{\mathbf{x}} \left(f(\mathbf{x}) + \lambda^{\mathsf{T}} (\mathbf{A}\mathbf{x} - \mathbf{b}) + \nu^{\mathsf{T}} (\mathbf{C}\mathbf{x} - \mathbf{d}) \right)$$

$$= -\mathbf{b}^{\mathsf{T}} \lambda - \mathbf{d}^{\mathsf{T}} \nu + \inf_{\mathbf{x}} \left(f(\mathbf{x}) + (\mathbf{A}^{\mathsf{T}} \lambda + \mathbf{C}^{\mathsf{T}} \nu)^{\mathsf{T}} \mathbf{x} \right)$$

$$= -\mathbf{b}^{\mathsf{T}} \lambda - \mathbf{d}^{\mathsf{T}} \nu - f^* \left(-\mathbf{A}^{\mathsf{T}} \lambda - \mathbf{C}^{\mathsf{T}} \nu \right)$$

THANKS FOR YOUR ATTENTION

Discussions

