(19) 日本国特許庁 (J P)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-101836

(43)公開日 平成5年(1993)4月23日

審査請求 未請求 請求項の数3(全 5 頁)

(21)出願番号

特膜平3-261494

(22)出願日

平成3年(1991)10月9日

(71)出願人 000000284

大阪瓦斯株式会社

大阪府大阪市中央区平野町四丁目1番2号

(72)発明者 赤木 功典

大阪府大阪市中央区平野町四丁目1番2号

大阪瓦斯株式会社内

(74)代理人 弁理士 北村 修

(54)【発明の名称】 固体電解質型燃料電池

(57)【要約】

[目的] セルの複数個が、燃料ガス流路又は酸素含有ガス流路を形成すべく互いに間隔を隔てて上下方向に並置されるとともに、セル間に、降合うセル同士を導電状態に接続する状態で、気体の通流を許容する形状に形成された導電性フェルト状材が配置されている固体電解質型燃料電池において、内部抵抗を低くして性能の向上を図る。

【構成】 導電性フェルト状材6のセルCに隣接する一対の外側部分6 a. 6 a を、セルCに押圧する弾性体1 3 が、導電性フェルト状材6に収納されている。又、導電性フェルト状材6の外側部分6 a の充填密度が、導電性フェルト状材6の内側部分6 b の充填密度よりも大きくなるように構成され、外側部分6 a と内側部分6 b とが加温により融着するように構成されている。又、弾性体13が、導電性を備えたものである。

【特許請求の範囲】

【請求項1】 一方の面に酸素極(2)を備えかつ他方 の面に燃料極(3)を備えた板状固体電解質層(1) と、前記酸素極(2)に臨む側と前記燃料極(3)に臨 む側のいずれか一方側に酸素含有ガス流路(s)又は燃 料ガス流路(f)を形成すべく配置されかつ導電性を備 えたガス流路構成部(4)とから固体電解質型燃料電池 のセル (C) が構成され、そのセル (C) の複数個が、 - 燃料ガス流路 (f) 又は酸素含有ガス流路 (s) を形成 すべく互いに間隔を隔てて上下方向に並置されるととも 10 に、前記セル(C),(C)間に、隣合う前記セル (C), (C) 同士を導電状態に接続する状態で、気体 の通流を許容する形状に形成された導電性フェルト状材 (6) が配置されている固体電解質型燃料電池であっ

前記導電性フェルト状材(6)の前記セル(C)に隣接 する一対の外側部分 (6 a), (6 a) を、前記セル (C) に押圧する弾性体(13)が、前記導電性フェル ト状材(6)に収納されている固体電解質型燃料電池。

【請求項2】 前記導電性フェルト状材(6)の前記外 側部分 (6 a) の充填密度が、前記導電性フェルト状材 (6) の内側部分(6b)の充填密度よりも大きくなる ように構成され、前記外側部分(6 a)と前記内側部分 (6b) とが加温により融着するように構成されている 固体電解質型燃料電池。

【請求項3】 前記弾性体(13)が、導電性を備えた ものである請求項1又は2に記載の固体電解質型燃料電

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、一方の面に酸素極を備 えかつ他方の面に燃料極を備えた板状固体電解質層と、 前記酸素極に臨む側と前記燃料極に臨む側のいずれか一 方側に酸素含有ガス流路又は燃料ガス流路を形成すべく 配置されかつ導電性を備えたガス流路構成部とから固体 電解質型燃料電池のセルが構成され、そのセルの複数個 が、燃料ガス流路又は酸素含有ガス流路を形成すべく互 いに間隔を隔てて上下方向に並置されるとともに、前記 セル間に、隣合う前記セル同士を導電状態に接続する状 盤で、気体の通流を許容する形状に形成された導電性フ ェルト状材が配置されている固体電解質型燃料電池に関 する。

[0002]

【従来の技術】従来、固体電解質型燃料電池のセルC は、例えば、図6及び図7に示すように、一方の面に酸 素種2を備えかつ他方の面に燃料種3を備えた板状電解 質層1の酸素極2を臨む側に、酸素含有ガス流路sを形 成すべく導電性を備えたガス流路構成部4を配置して構 成していた。又、前述の如く構成されたセルCの複数個

下方向に並置するとともに、セルC、C間に気体の通流 を許容する形状に形成された導電性フェルト状材6を配 置し、導電性フェルト状材6の一対の外側部分6a,6 aと隣接セルC、Cとを夫々接触させることにより、隣 合うセルC、C同士を導電性フェルト状材6を介して導 電状態に接続し、もって、上下方向に並置した複数個の セルCを電気的に直列接続して固体電解質型燃料電池を 構成していた。ところで、従来は、導電性フェルト状材 6を、全体にわたり均質(フェルト状材の充填密度が全 体にわたり均一)状態に構成していた。

[0003]

【発明が解決しようとする課題】しかしながら、導電性 フェルト状材は延性が高いため、セル間に配置されて横 方向に押し延ばされると元の形状に完全に復帰しなくな り(すなわち、導電性フェルト状材の上下方向の厚さが 薄くなる)、導電性フェルト状材の外側部分を隣接セル に対して押圧する力が弱くなって、導電性フェルト状材 の外側部分と隣接セルとの接触面積が減少することによ り接触抵抗が増大し、その結果、隣合うセル間を導電状 態に接続する接続抵抗が大きなものとなり、ひいては、 燃料電池の内部抵抗が大きくなるという問題があった。 本発明は、かかる実情に鑑みてなされたものであり、そ の目的は、内部抵抗が低く性能が優れた固体電解質型燃 料電池を提供する点にある。

[0004]

【課題を解決するための手段】本発明による固体電解質 型燃料電池の第1の特徴構成は、前記導電性フェルト状 材の前記セルに隣接する一対の外側部分を、前記セルに 押圧する弾性体が、前記導電性フェルト状材に収納され ている点にある。第2の特徴構成は、前記導電性フェル ト状材の前記外側部分の充填密度が、前記導電性フェル ト状材の内側部分の充填密度よりも大きくなるように構 成され、前記外側部分と前記内側部分とが加温により融 着するように構成されている点にある。第3の特徴構成 は、前記弾性体が、導電性を備えたものである点にあ

[0005]

【作用】第1の特徴構成によれば、導電性フェルト状材 に収納されている弾性体が、導電性フェルト状材の外側 部分を隣接するセルに対して押圧するので、導電性フェ ルト状材の外側部分と隣接セルとの接触面積を常に大き く維持することができて接触抵抗を小さくすることがで き、その結果、隣合うセル間の接続抵抗を小さくするこ とができる。第2の特徴構成によれば、導電性フェルト 状材の外側部分と内側部分とを、外側部分の充填密度が 内側部分の允填密度よりも大きくなるように各別に構成 しながらも、燃料電池の運転状態での温度上昇による加 温により、外側部分と内側部分とが融着することによ り、外側部分と内側部分にわたる電流の通流が可能とな を、燃料ガス液路 f を形成すべく互いに間隔を隔てて上 50 る。そして、外側部分の充填密度を大きくすることによ

40

うセル間の接続抵抗を一層小さくすることができる。しかも、導電性フェルト状材を燃料ガス又は酸素含有ガスが通流するが、導電性フェルト状材の内側部分の充填密度を小さくすることにより通気性が良くなるので、導電性フェルト状材を通流する燃料ガス又は酸素含有ガスの10 圧力損失を小さくすることができる。第3の特徴構成によれば、導電性フェルト状材を降合うセル間の電気導通路とするに加えて、導電性フェルト状材に収納されている発性体をも電気導通路とすることができるので、尚一層、降合うセル間の接続抵抗を小さくすることができ

[0006]

【発明の効果】第1の特徴構成によれば、内部抵抗が低く性能が優れた固体電解質型燃料電池を提供し得るに至った。第2の特徴構成によれば、内部抵抗を一層低くできるようになった。しかも、導電性フェルト状材を通流する燃料ガス又は酸素含有ガスの圧力損失が小さいのでガス供給圧を低くすることができ、ひいては、酸素含有ガス(空気)を供給するファンの小型化、あるいは、燃料ガス供給源からより多くの燃料電池に燃料ガスを供給できるので発電効率の向上が図れるようになった。第3の特徴構成によれば、内部抵抗を尚一層低くできるようになった。

[0007]

【実施例】次に、図1ないし図4に基づいて実施例を説 30 明する。

【0008】図中、1は、一方の面に酸素極2を備えかつ他方の面に燃料極3を憶えた板状電解質層であり、これら、電解質層1、酸素極2、及び、燃料極3をもって、3層構造の起電部を構成してある。4は、酸素極2に確む側に酸素含有ガス流路 s を形成すべく配置されかつ導電性を備えたガス流路構成部であり、前記の電解質層1、酸素極2、及び、燃料極3からなる3層構造の起電部とガス流路構成部4とをもって、固体電解質型燃料電池のセルCを構成してある。

[0009] ガス流路構成部4の両側線部には、対向する酸素極2の両側線部に連結させる帯状突起4aを一体形成してあり、これら帯状突起4aにより酸素含有ガス流路sの減路方向視においてセルCの周部全体を酸素含有ガス流路sとは仕切られた燃料ガス流路fとするようにしてある。

【0010】ガス流路構成部4は、酸素含有ガス流路s を仕切り形成するものであるとともに、酸素含有ガス流 ねており、酸素含有ガス流路 s には、ガス流路構成部4と酸素極2とを部分的に連結する帯状導電体5の複数を酸素含有ガス流路 s の流路方向に沿う平行姿勢で分散配置してあり、これら帯状導電体5により、ガス流路構成部4と酸素極2とを複数箇所で連結することで、酸素極2とガス流路構成部4との間の電流通路を面積的に大きく確保するようにしてある。

【0011】帯状導電体5には、酸素含有ガス流路s中の酸化雰囲気に対する耐性を確保する観点からLaMn O』のフェルト状材を適用してある。又、内部の酸素含有ガス流路sと周部の燃料ガス流路fとの両方に臨むガス流路構成部4には、酸素含有ガスによる酸化雰囲気に対する耐性と燃料ガスによる夏元雰囲気に対する耐性との両方を確保し、かつ、セル端子として高い導電性を必要とする観点からLaCrO』を適用してある。

【0012】上述の如く構成されたセルCの複数個を、セルCの酸素含有ガス流路 s 入口側端部に、枠材7を配置し、セルCの酸素含有ガス流路 s 出口側端部に、枠材8を配置して燃料ガス流路 f を形成すべく互いに前配所定間隔を隔てて上下方向に並置するとともに、セルC、C間に、隣合うセルC、C同士を導電状態に接続する状態で、気体の通流を許容する形状に形成された導電性フェルト状材6を配置してあり、もって、隣合うセルC、C同士を導電性フェルト状材6を介して導電状態に接続して、上下方向に並置した複数個のセルCを電気的に直列接続して固体電解質型燃料電池を構成してある。

【0013】枠材7側には酸素含有ガス供給路S1を形成するガス流路形成材9を、枠材8側には酸素含有ガス排出路S2を形成するガス流路形成材10を夫々配置し、セルCの燃料ガス流路f入口側端部には燃料ガス供給路F1を形成するガス流路形成材11を、セルCの燃料ガス流路f出口側端部には燃料ガス排出路F2を形成するガス流路形成材12を夫々配置し、もって、セルCの複数個を集積した固体電解質型燃料電池において、酸素含有ガス供給路S1、酸素含有ガス排出路S2、燃料ガス供給路F1、及び、燃料ガス排出路F2夫々を仕切り形成してある。

【0014】次に、導電性フェルト状材6の構成について説明する。導電性フェルト状材6におけるセルCのガス流路構成部4と燃料極3とに隣接する一対の外側部分6a,6aの充填密度を、例えば1.5g/cm³以上として、導電性フェルト状材6の内側部分6bの充填密度(例えば1.0g/cm³以下)よりも大きくなるように構成し、かつ、前配一対の外側部分6a,6a夫々を隣接するセルCのガス流路構成部4と燃料極3とに押圧する弾性体13の複数個を、導電性フェルト状材6に分散して収納してある。

【0015】導電性フェルト状材6の外側部分6aと内 側部分6bとを、外側部分6aの充填密度が内側部分6 るが、燃料電池の運転状態での温度上昇による加温によ り、外側部分6aと内側部分6bとが融着することによ り、外側部分6 a と内側部分6 b にわたる電流の通流が 可能となる。そして、外側部分6 aの充填密度を大きく することにより、外側部分6aが押圧されても縮みにく くなって、導電性フェルト状材6に収納されている弾性 体13が、外側部分6a、6a夫々を隣接するセルCの ガス流路構成部4と燃料極3とに対して強く押圧するこ とができることとなり、導電性フェルト状材6の外側部 分6 a とガス流路構成部4及び導電性フェルト状材の外 側部分6 a と燃料極3との接触抵抗が小さくなり、その 結果、隣合うセルC、C間の接続抵抗が小さくなる。し かも、導電性フェルト状材6を燃料ガスが通流するが、 道重性フェルト状材6の内側部分6bの充填密度を小さ くすることにより通気性が良くなるので、導電性フェル ト状材6を通流する燃料ガスの圧力損失が小さくなる。

【0016】燃料ガス流路f内に配置することから、導電性フェルト状材6は、燃料ガスによる還元雰囲気に対する耐性を確保するため、Niのフェルト状材を適用してあり、弾性体13は、アルミナ繊維あるいはシリカ・アルミナ繊維等のセラミックスの繊維を弾性を付加する状態にフェルト状に加工したものを適用してある。

【0017】 [別実施例] 次に別実施例を列記する

[0018] ① 図5に示すように、弾性体13として 金属のコイル状材の複数個を、導電性フェルト状材6に 互いに平行姿勢で分散して収納するようにしても良い。

【0019】② 上記実施例で、酸素含有ガス液路 s に配置してある帯状導電体 5 を、帯状導電体 5 のガス流路構成部 4 と酸素極 2 とに隣接する一対の外側部分の充填密度を、帯状導電体 5 の内側部分の充填密度よりも大きくなるように構成し、かつ、前記一対の外側部分夫々を隣接するガス流路構成部 4 と酸素極 2 とに押圧する弾性体を、帯状導電体 5 に収納しても良い。

【0020】③ 一方の面に酸素極2を備えかつ他方の面に燃料極3を備えた板状電解質層1の燃料極3に臨む側に、燃料ガス液路fを形成すべく導電性を備えたガス流路構成部4を配置して固体電解質型燃料電池のセルCを構成し、このように構成されたセルCの複数個を、酸素含有ガス流路sを形成すべく互いに所定間隔を隔てて上下方向に並置するとともに、セルC, C間に、舞合う 40

セルC, C同士を導電状態に接続する状態で、気体の通 流を許容する形状に形成された導電性フェルト状材6を 配置し、もって、降合うセルC, C同士を導電性フェルト 状材6を介して導電状態に接続して、上下方向に並置 した複数個のセルCを電気的に直列接続して固体電解質 型燃料電池を構成しても良い。この場合、燃料ガス液路 fに配置してガス流路構成部4と燃料極3とを部分的に 連結する帯状導電体5は、還元雰囲気中での耐性が優れ たもの(例えば、Niのフェルト状材6には酸化雰囲気中 での耐性が優れたもの(例えば、LaMnO3中しな での耐性が優れたもの(例えば、LaMnO3中し での耐性が優れたもの(例えば、LaMnO3中し でのまして、アルミナ繊維等のセラミックスの繊維を弾性を付加する状態にフェルト状に加工し たものを適用するのが好ましい。

【0021】尚、特許請求の範囲の項に図面との対照を 便利にするために符号を記すが、該記入により本発明は 添付図面の構成に限定されるものではない。

【図面の簡単な説明】

- 【図1】固体電解質型燃料電池の正面断面図
 - 【図2】固体電解質型燃料電池の側面断面図
 - 【図3】図1におけるA-A矢視図
 - 【図4】 固体電解質型燃料電池の要部の一部破断斜視図
 - 【図5】別実施例を示す固体電解質型燃料電池の要部の一部破断斜視図

【図6】従来の固体電解質型燃料電池の正面断面図 【図7】従来の固体電解質型燃料電池の側面断面図 【符号の説明】

- 1 板状固体電解質層
- 2 酸素極
 - 3 燃料極
 - 4 ガス流路構成部
 - 6 導電性フェルト状材
 - 6 a 外側部分
 - 6 b 内側部分
 - 13 弾性体
 - f 燃料ガス流路
 - s 酸素含有ガス流路
 - C セル

[図1]

(図5)

