Dynamické programování

Programovací technika pro řešení takových optimalizačních úloh, kde úloha se dá rozložit na menší podúlohy, z jejichž optimálních řešení se skládá optimální řešení celé původní úlohy.

Slouží k tvorbě časově efektivních algoritmů, zpravidla za cenu jistého zvýšení paměťových nároků - čas i paměť polynomiální (nahradí backtracking s exponenciální časovou složitostí).

Princip:

Rozklad úlohy na menší podúlohy stejného charakteru, z jejichž řešení se sestaví řešení původní úlohy – podobné jako u techniky "Rozděl a panuj".

Na rozdíl od techniky "Rozděl a panuj" nemusejí být podúlohy navzájem nezávislé → širší možnosti použití.

Typické úlohy:

1. najít nejlepší způsob, jak lze něco udělat

a) buď nám stačí optimální dosažitelná hodnota
 (např. délka nejdelší posloupnosti, nejmenší možný počet)

b) nebo

- nejprve určíme optimální dosažitelnou hodnotu
- při jejím výpočtu si evidujeme, jak jsme ji získali
 (viz ukládání předchůdců při hledání nejkratší cesty v grafu)
- nakonec "zpětným chodem" zrekonstruujeme cestu k výsledku

Příklad:

- nejdelší rostoucí vybraná podposloupnost

2. určit počet způsobů, jak lze něco udělat

- postupujeme podobně jako v 1a)
- místo porovnávání dílčích hodnot je budeme sčítat

Příklad:

 počet různých cest z vrcholu A do vrcholu B v orientovaném acyklickém grafu Postup řešení – dvě možnosti:

1. shora dolů

rekurzivní rozklad problému shora, do pomocného pole si přitom průběžně ukládáme všechny již jednou spočítané hodnoty, aby se nepočítaly opakovaně znovu, až budou opět potřeba ("chytrá rekurze", "memoizace")

2. zdola nahoru

postupujeme naopak iteračně zdola od elementárních úloh ke složitějším, výsledky řešení všech podúloh si ukládáme (zpravidla do pole) pro další použití při řešení složitějších podúloh

Příklad: Fibonacciho čísla (bylo již dříve)

Paměťové nároky:

Oproti primitivnímu rekurzivnímu řešení potřebujeme paměť navíc pro uložení výsledků všech dílčích podúloh

– při iteračním postupu zdola dokonce často i těch, které nakonec ani nebudeme potřebovat (ale předem nevíme, které dílčí výsledky později potřebovat budeme a které ne, takže si počítáme a ukládáme systematicky všechny).

Tyto dodatečné paměťové nároky mohou být velikosti O(N), velmi často bývají $O(N^2)$ – tedy dvourozměrné pole. V každém případě jsou polynomiální.

Časová efektivita:

Díky ukládání výsledků všech menších podúloh máme zajištěno, že se žádná podúloha nebude počítat opakovaně vícekrát – může se jen vícekrát použít její výsledek uložený již jednou v poli. Proto nemusejí být podúlohy na sobě navzájem nezávislé a přesto je zaručena polynomiální časová složitost výpočtu.

```
Počet provedených operací =

počet řešených podúloh

(počet prvků pole určeného pro uložení všech dílčích výsledků)

x náročnost řešení každé jednotlivé podúlohy

(s využitím toho, že už známe výsledky podúloh menších)
```

Příklad: N^2 (počítaných hodnot) x N (výpočet každé z nich) = N^3 → časová složitost O(N^3)

Příklady využití dynamického programování

Fibonacciho čísla (již známe)

Určení *N*-tého Fibonacciho čísla rekurzivní funkcí
– chybně použitý princip "Rozděl a panuj", vznikající podúlohy byly závislé → exponenciální časová složitost

X

Určení *N*-tého Fibonacciho čísla rekurzivní funkcí doplněnou polem pro ukládání již spočítaných hodnot, takže každá hodnota se počítá jen jednou → lineární časová složitost

Určení *N*-tého Fibonacciho čísla postupným počítáním zdola v cyklu – nic se nepočítá opakovaně vícekrát → lineární časová složitost

Trojúhelník z čísel

N řádků, obsahují postupně 1, 2, 3, ..., N čísel – zadán na vstupu

Příklad pro N = 5:

Úkol: nalézt cestu z horního vrcholu na základnu s maximálním součtem čísel, smí se jít vždy jen šikmo směrem dolů.

Řešení:

Postup řešení

- 1. Neefektivní:
- uložit všechna čísla do pole \rightarrow paměť $O(N^2)$
- backtrackingem postupně zkoušet všechny cesty → čas O(2^N)

- 2. Dynamické programování:
- načíst a uložit vždy jen jeden řádek čísel, spočítat a uložit maximální součet čísel na cestě vedoucí do každého z nich → paměť O(N)
 některé z těchto údajů se ve výsledku neuplatní, ale ještě nevíme které, tak počítáme a ukládáme všechny!
- další řádek spočítat vždy z předchozího, každé číslo má jen dva možné předchůdce a součty maximálních cest do nich vedoucích máme uloženy
- výsledkem je maximální spočítaná hodnota v posledním řádku
- počítáme tedy řádově № čísel, každé určíme v konstantním čase
 → časová složitost O(№)

3. Nalezení cesty:

- předchozí řešení určilo pouze hodnotu cesty s maximálním součtem čísel, neznáme zatím ale cestu samotnou
- pokud chceme určit i průběh cesty, musíme si do pole ukládat všechna čísla a s každým také informaci, zda jsme do něj přišli z předchozího řádku zleva nebo zprava → paměť O(N²) opět platí:

některé z těchto údajů se ve výsledku neuplatní, ale ještě nevíme které, tak počítáme a ukládáme všechny!

- průběh cesty poté snadno zrekonstruujeme "zpětným chodem"
 zdola nahoru (jdeme po předchůdcích, podobně jako při určování nejkratší cesty při procházení do šířky)
- časová složitost zůstává O(N²)

- 4. Jiný postup dynamickým programováním zespodu:
- čteme řádky čísel postupně zdola, pro každé z čísel můžeme spočítat a uložit maximální součet čísel na cestě vedoucí z tohoto čísla až dolů

některé z těchto údajů se opět ve výsledku neuplatní, ale ještě nevíme které, tak počítáme a ukládáme všechny!

- řádek spočítáme vždy z řádku následujícího pod ním, každé číslo má jen dva možné následníky a součty maximálních cest z nich vedoucích máme uloženy
- výsledkem je spočítaná hodnota v prvním řádku
- počítáme tedy řádově N^2 čísel, každé určíme v konstantním čase
- \rightarrow opět časová složitost $O(N^2)$
- lze opět doplnit nalezení cesty

Arpád (počet různých cest minimální délky)

- ve městě je pravoúhlá síť ulic velikosti *N x M*, dvojce sousedních ulic mají stejné vzájemné vzdálenosti (jednotkové)
- některé křižovatky jsou rozkopané a proto neprůjezdné (seznam zadán na vstupu)
- Arpád bydlí na křižovatce [1, 1], jezdí do práce na křižovatku [N, M]
- Arpád jezdí na poslední chvíli, takže musí jet po trase minimální délky (což je délka M+N-2)
- úkol: určit, kolik různých cest má Arpád na výběr

Řešení:

```
označme T[i, j] počet různých cest z křižovatky [1, 1] na [i, j] hledáme T[N, M] základní pozorování: platí vztah T[i, j] = T[i-1, j] + T[i, j-1] (ještě ošetřit okraje a rozkopané křižovatky! – ale to je snadné)
```

- 1. primitivní řešení rekurzí voláme rekurzivní funkci R(N, M), který implementuje výše uvedený vztah
- → opakovaná volání funkce R se stejnými parametry, exponenciální časová složitost

- 2. dynamické programování shora dolů voláme rekurzivní funkci R(N, M), který implementuje výše uvedený vztah a využívá dvojrozměrné pole T velikosti N x M již spočítaných hodnot
- → nejsou opakované výpočty, časová složitost v nejhorším případě O(N.M)
- 3. dynamické programování zdola nahoru po řádcích vyplňujeme dvojrozměrné pole T velikosti N x M známých hodnot podle výše uvedeného vztahu
- → nejsou opakované výpočty, časová složitost v každém případě O(N.M)

Nevýhoda postupu shora dolů: opakovaná volání rekurzivní funkce (režie na rekurzi nás něco stojí)

Výhoda postupu shora dolů: nepočítáme nepotřebné hodnoty, takže výpočet může být rychlejší, v případě na obrázku dole dokonce jen *O(N+M)*

čára na obrázku vyznačuje, kde jsou rozkopané křižovatky

Délka nejdelší rostoucí vybrané podposloupnosti

- 1. hladově
- lineární průchod s postupným prodlužováním → výsledek špatně!
- 2. primitivní řešení rekurzí
- zkouší všechny vybrané podposloupnosti → exponenciální složitost
- 3. dynamické programování (zdola)
- pole T[i] délka maximální rostoucí podposloupnosti vybrané
- z počátečního úseku A[1], A[2], ..., A[i] délky i a zakončené prvkem A[i]
- postupně počítáme T[1], T[2], ..., T[N]
- hledaným výsledkem je maximum z hodnot v poli T
- každý prvek T[i] určíme v čase O(N) na základě už známých hodnot uložených v poli T
- → celková časová složitost O(N²)

```
a = [8, 1, 2, 9, 3, 6, 7]
t = [1] * len(a)
max = 1
for i in range(1, len(a)):
    for j in range(i):
        if a[j] < a[i] and t[j] + 1 > t[i]:
            t[i] = t[j] + 1
    if t[i] > max:
        max = t[i]
print(max)
```

Rozšíření: určení prvků nejdelší rostoucí vybrané podposloupnosti

```
a = [8, 1, 2, 9, 3, 6, 7]
t = [1] * len(a) # hodnoty délek
p = [0]*len(a) # předchůdci
max = 1  # maximální délka
k = 0 # kde jsme získali maximální délku
for i in range (1, len(a)):
    for j in range(i):
       if a[j] < a[i] and t[j] + 1 > t[i]:
           t[i] = t[i] + 1
           p[i] = j
   if t[i] > max:
       max = t[i]
       k = i
```

```
print(max) # délka max. rostoucí vybrané podposloupnosti

print(k, end = ' ')
while p[k] != 0:
    k = p[k]
    print(k, end = ' ')
print()
# vypisuje ODZADU indexy všech prvků vybrané podposloupnosti
```

4. poznámkajde to i lépe – s časovou složitostí O(N.log N)

idea:

- definujeme hodnoty M[j] = minimální dosud známá hodnota posledního prvku vybrané rostoucí posloupnosti délky j
- přepočítáváme je postupně pro A[1], A[2], ..., A[N] (rozmyslete sami nebo viz cvičení)

Délka nejdelší společné vybrané podposloupnosti

jsou dány posloupnosti A[1..N], B[1..M]

T[*i, j*] – délka nejdelší společné podposlouposti vybrané z počátečních úseků A[1], A[2], ..., A[i] resp. B[1], B[2], ..., B[j] hledáme T[*N, M*]

```
platí: když i = 0 nebo j = 0, pak T[i, j] = 0
jinak když A[i] = B[j], pak T[i, j] = T[i-1, j-1] + 1
jinak T[i, j] = \max(T[i, j-1], T[i-1, j])
```

dynamické programování (zdola): tabulku T vyplňujeme po řádcích, každou hodnotu T[i, j] spočítáme v konstantním čase

→ celková časová složitost O(N.M)

poznámka: v případě postupu rekurzívně shora může být časová složitost algoritmu O(N) ... pokud jsou obě posloupnosti shodné