

智能信息技术教育中心

The Education Center of Intelligence Information Technologies

人工智能基础

机器学习

耿阳李敖 2022年3月

内容概要

> 机器学习基础回顾

> K-近邻算法

> 基础回归算法

〉总结

内容概要

> 机器学习基础回顾

> K-近邻算法

> 基础回归算法

〉总结

前提回顾

数据时代与数据驱动

数据的功能

数据的形式与来源

数据与机器学习之间的关系

机器学习在人工智能中扮演的角色

机器学习的概念与动机

机器学习的本质

≈ 基于数据学习一个映射函数

机器学习分类

▶有监督学习

- 显式学习方法
- 数据具有明确的输出标记

训练 → 输出

> 强化学习

- 基于报酬的学习
- 机器学习到如何在特定环境进行行为和决策

有监督学习框架

输入□

$$f_{\theta}(x) = y$$

训练数据: $\{(x^1, \hat{y}^1), (x^2, \hat{y}^2), ..., (x^N, \hat{y}^N)\}$

测试数据: $\{x^{N+1}, x^{N+2}, ..., x^{N+M}\}$

有监督学习的两个基本任务

分类

有监督学习四个要素

标注数据

学习模型

损失函数

优化算法

回归

- 对于给定的输入x,应该输出怎样的y
- 怎样构建x与y之间的关系
- 如何度量模型输出与目标输出之间的误差
- 根据误差怎样更新模型使其获得更好的预测

有监督学习挑战

Manifold of known classes

经验风险	期望风险	泛化能力	解决方法
经验风险小	期望风险大	过拟合	1. 增加数据量 2. 损失函数中添加正则项
经验风险大	期望风险大	欠拟合	1. 增加特征类型 2. 提升模型复杂度
经验风险小	期望风险小	理想算法	-

回归任务

◆ 绝对值误差: $MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - f(x_i)|$

◆ 平均绝对百分比误差:
$$MAPE = \frac{1}{n} \sum_{i=1}^{n} \left| \frac{y_i - f(x_i)}{y_i} \right|$$

回归任务

◆ 皮尔逊相关系数: $PCC = \frac{\sum_{i=1}^{n} (y_i - \bar{y}_i) \left(f(x_i) - \overline{f(x_i)} \right)}{\sqrt{\sum_{i=1}^{n} (y_i - \bar{y}_i)^2 \sum_{i=1}^{n} \left(f(x_i) - \overline{f(x_i)} \right)^2}}$

分类任务

◆ 错误率 (error rate) :
$$ER = \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\{y_i \neq f(x_i)\}$$

◆ 精度 (accuracy) :
$$Acc = \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\{y_i = f(x_i) = 1 - ER \}$$

分类任务

按照每个类别来看可以得到"混淆矩阵":

真实类别	预测类别			
具	正例	反例		
正例	True Positive (真正例)	False Negative (假反例)		
反例	False Positive (假正例)	True Negative (真反例)		

- ♦ 査准率 (Precision) : $P = \frac{TP}{TP + FP}$
- ♦ 查全率/召回率 (Recall) : $R = \frac{TP}{TP + FN}$

分类任务

◆ F1度量:

$$F1 = \frac{2 \times P \times R}{P + R}$$

← P与R的调和平均数

◆ PR曲线:

- ◆ 可通过比较P-R曲线下的面积;
- ◆ 利用平衡点 (即P=R时的取值);

新的内容

内容概要

〉机器学习基础回顾

> K-近邻算法

> 基础回归算法

〉总结

问题引入

如图所示,平面上的点可以分成两类,新来的点应该属于哪一类呢?

"物以类聚,人以群分;欲知其人,先观其友"——古语

k近邻(k-Nearest Neighbor, kNN)学习是一种最直观的监督学习方法

算法工作原理

● 投票法:选择这k个样本中出现最多的类别标记作为预测结果。

● 平均法:将这k个样本的实值输出标记的平均值作为预测结果。

- K=1,最近邻算法:把与测试对象 x_T 最近的训练对象的类别赋给 x_T
- K>1, "多数表决": K个最接近的对象中出现频率最高的类别赋给 x_T

- □ k近邻分类器中的k是一个重要参数,当k取不同值时,分类 结果会有显著不同。
- □ 另一方面,若采用不同的距离计算方式,则找出的"近邻" 可能有显著差别,从而也会导致分类结果有显著不同

K近邻算法中的K的影响

测试样本错误率

K近邻算法中的K的影响

- ◆ K值的选取是影响K近邻算法效果的主要因素。
- ◆ 不能使用K个近邻与查询对象的距离平方和来评估:此时总是倾向于选择K=1,K=1时算法易受噪声点和离群点的影响。
- ◆ K较小,容易被噪声影响,整体模型变得复杂,容易发生过 拟合。
- ◆ K较大,近邻中出现很多其他类的点,容易发生错误,整体模型变得简单。
- ◆ 一般情况下,将K取一个较小的数值,而后使用交叉验证的 方式来选取最优的K值。

K近邻算法中的距离度量

- ♦ 欧氏距离 (Euclidean distance) : $D(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{i} (x_i y_i)^2}$
- ◆ 一般距离定义: 对于任意实函数 D(x,y), 其满足
 - ◆ 非负性: D(x,y) ≥ 0
 - ◆ 同一性: $D(\mathbf{x}, \mathbf{y}) = 0 \iff \mathbf{x} = \mathbf{y}$
 - ◆ 对称性: $D(\mathbf{x}, \mathbf{y}) = D(\mathbf{y}, \mathbf{x})$
 - ◆ 三角不等式: $D(\mathbf{x}, \mathbf{y}) \leq D(\mathbf{x}, \mathbf{z}) + D(\mathbf{z}, \mathbf{y})$

K近邻算法中的距离度量

• d维空间中的 Minkowski 距离 $(L_p$ 距离) :

$$L_p(\mathbf{x}, \mathbf{y}) = \left[\sum_{i=1}^d |x_i - y_i|^p\right]^{1/p}$$

- ♦ L_1 距离: 曼哈顿距离 (Manhattan distance)
- $lacktriangleright L_2$ 距离: **欧式距离(Euclidean distance)**
- ♦ L_{∞} 距离: 契比雪夫距离 (Chebyshev distance)

$$L_{\infty}(\mathbf{x}, \mathbf{y}) = \max_{i} |x_i - y_i|$$

K近邻算法中的距离度量

◆ *L*₁ 距离: 曼哈顿距离

◆ *L*₂ 距离: 欧式距离

◆ L_∞ 距离: 契比雪夫距离

K近邻算法中的距离度量的影响

K近邻算法中的距离度量的影响

K近邻算法中的距离度量的影响

K近邻算法中的距离度量

◆ 马氏距离 (Mahalanobis distances) :

$$D(\mathbf{x}, \mathbf{y}) = \sqrt{(\mathbf{x} - \mathbf{y})^T \mathbf{\Sigma}^{-1} (\mathbf{x} - \mathbf{y})}$$

- ◆ 依赖数据整体分布
- ◆ 与度量无关,进一步,对任意线性变换具有不变性

K近邻算法中的距离度量

◆ 余弦相似度 (cosine similarity) :

similarity =
$$cos(\theta) = \frac{A \cdot B}{\|A\| \|B\|}$$

◆ 与数据尺度无关,映射到球面上度量夹角

◆ 编辑距离 (Levenshtein Edit Distance)

$$\operatorname{lev}(a,b) = egin{cases} |a| & ext{if } |b| = 0, \ |b| & ext{if } |a| = 0, \ |\operatorname{lev}ig(\operatorname{tail}(a), \operatorname{tail}(b)ig) & ext{if } a[0] = b[0] \ 1 + \min egin{cases} \operatorname{lev}ig(\operatorname{tail}(a), big) \ \operatorname{lev}ig(\operatorname{tail}(b)ig) & ext{otherwise}, \ |\operatorname{lev}ig(\operatorname{tail}(a), \operatorname{tail}(b)ig) & ext{otherwise}, \end{cases}$$

	H	Y	U	N	D	Α	1	
	0	1	2	3	4	5	6	7
Н	1	0	1	2	3	4	5	6
0	2	1	1	2	3	4	5	6
N	3	2	2	2	2	3	4	5
D	4	3	3	3	3	2	3	4
Α	5	4	4	4	4	3	2	3

K近邻算法特点

- ◆ k近邻学习没有显式的训练过程,属于"懒惰学习"。此类学习技术在训练阶段仅仅是把样本保存起来,训练时间 开销为零,待收到测试样本后再进行处理。
- ◆ 存储所有训练样本,存储开销大
- ◆ 需要搜索K近邻,计算开销大

K近邻算法加速

◆ 降低样本维度:选择法,PCA

$$\mathcal{O}(dnK) \Longrightarrow \mathcal{O}(rnK)$$

K近邻算法加速

◆ 降低样本维度:选择法,PCA

$$\mathcal{O}(dnK) \Longrightarrow \mathcal{O}(rnK)$$

◆ 并行加速计算:分布式,GPU

$$\mathcal{O}(dnK) \Longrightarrow \mathcal{O}\left(\frac{dnK}{L}\right)$$

K近邻算法加速

◆ 降低样本维度:选择法、PCA $\mathcal{O}(dnK) \Rightarrow \mathcal{O}(rnK)$

- ◆ 并行加速计算:分布式, GPU $O(dnK) \Rightarrow O\left(\frac{dnK}{L}\right)$
- ◆ 建立索引结构: KD树, Quad树 $\mathcal{O}(dnK) \Rightarrow \mathcal{O}(d \log n K)$

$$\mathcal{O}(dnK) \Longrightarrow \mathcal{O}(d\log nK)$$

K近邻算法加速

◆ KD树构建

$$\begin{cases}
(2,3), (5,4), \\
(9,6), (4,7), \\
(8,1), (7,2)
\end{cases}$$

K近邻算法加速

◆ KD树构建

$$\begin{cases}
(2,3), (5,4), \\
(9,6), (4,7), \\
(8,1), (7,2)
\end{cases}$$

◆ 近邻搜索

搜索以 (2.1,3.1)为中心的最近邻

K近邻算法加速

◆ KD树构建

$$\begin{cases}
(2,3), (5,4), \\
(9,6), (4,7), \\
(8,1), (7,2)
\end{cases}$$

◆ 近邻搜索

K近邻算法加速

◆ KD树构建

$$\begin{cases}
(2,3), (5,4), \\
(9,6), (4,7), \\
(8,1), (7,2)
\end{cases}$$

◆ 近邻搜索

K近邻算法加速

◆ KD树构建

$$\begin{cases}
(2,3), (5,4), \\
(9,6), (4,7), \\
(8,1), (7,2)
\end{cases}$$

◆ 近邻搜索

K近邻算法加速

◆ KD树构建

$$\begin{cases}
(2,3), (5,4), \\
(9,6), (4,7), \\
(8,1), (7,2)
\end{cases}$$

◆ 近邻搜索

K近邻算法加速

◆ KD树构建

$$\begin{cases}
(2,3), (5,4), \\
(9,6), (4,7), \\
(8,1), (7,2)
\end{cases}$$

◆ 近邻搜索

内容概要

〉机器学习基础回顾

> K-近邻算法

> 基础回归算法

〉总结

回归分析起源

◆ 父母与子女身高

$$y = 33.73(英寸) + 0.516x$$

y: 子女平均身高

x:父母平均身高

- 父母平均身高每增加一个单位, 其成年子女平均身高只增加0.516个单位, 它反映了这种"衰退 (regression)"效应("回归"到正常人平均身高)。
- 虽然*x*和y之间并不总是具有"衰退"(回归)关系,但是"线性回归"这一名称就保留了下来了。

英国著名生物学家兼 统计学家高尔顿 Sir Francis Galton (1822-1911)

模型抽象

- 给出任意一对父母平均身高,则可根据上述方程,计算得到其子女平均身高
- 从父母平均身高来**预测**其子女平均身高
- 如何求取上述线性方程(预测方程)的参数?

一元线性回归

标注数据

$$\{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\}$$

一元线性回归

标注数据

$$\{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\}$$

学习模型

$$y = ax + b$$

一元线性回归

标注数据

$$\{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\}\$$

学习模型

$$y = ax + b$$

直观动机

找一条直线是的训练集中所有 的点都距其"很近"

一元线性回归

损失函数

$$L(a,b) = \frac{1}{N} \sum_{i=1}^{N} (ax_i + b - y_i)^2$$

$$= \frac{1}{N} \sum_{i=1}^{N} a^2 x_i^2 + 2abx_i - 2ax_i y_i + b^2 - 2by_i + y_i^2$$

$$= \frac{1}{N} \left(a^2 \sum_{i=1}^{N} x_i^2 + 2ab \sum_{i=1}^{N} x_i - 2a \sum_{i=1}^{N} x_i y_i + Nb^2 - 2b \sum_{i=1}^{N} y_i + \sum_{i=1}^{N} y_i^2 \right)$$

$$= \frac{1}{N} (a^2 C_1 + 2ab C_2 - 2aC_3 + Nb^2 - 2bC_4 + C_5)$$

一元线性回归

损失函数

$$L(a,b) = \frac{1}{N}(a^2C_1 + 2abC_2 - 2aC_3 + b^2N - 2bC_4 + C_5)$$

优化算法

$$\frac{\partial}{\partial a}L(a,b) = \frac{1}{N}(2aC_1 + 2bC_2 - 2C_3) = 0$$

$$\frac{\partial}{\partial b}L(a,b) = \frac{1}{N}(2aC_2 + 2bN - 2C_4) = 0$$

$$\begin{cases} aC_1 + bC_2 = C_3 \\ aC_2 + bN = C_4 \end{cases}$$

$$C_1 = \sum_{i=1}^N x_i^2$$

$$C_2 = \sum_{i=1}^N x_i$$

$$C_3 = \sum_{i=1}^N x_i y_i$$

$$C_4 = \sum_{i=1}^N y_i$$

$$C_5 = \sum_{i=1}^N y_i^2$$

 $a^* = \frac{C_2 C_4 - N C_3}{C_2^2 - N C_1}$ $b^* = \frac{C_2 C_3 - C_1 C_4}{C_2^2 - N C_1}$

一元线性回归

优化算法

$$L(a,b) = \frac{1}{N}(a^2C_1 + 2abC_2 - 2aC_3 + b^2N - 2bC_4 + C_5)$$

梯度下降法

$$L(a,b) = L(a_0,b_0) + \frac{\partial L}{\partial a_0}(a - a_0) + \frac{\partial L}{\partial b_0}(b - b_0) + \sigma\left(\sqrt{(a - a_0)^2 + (b - b_0)^2}\right)$$

$$V_{(a_0,b_0)} = \left(\frac{\partial L}{\partial a_0}, \frac{\partial L}{\partial b_0}\right)$$

在 (a_0,b_0) 的一个小的局部区域内,沿着 $-V_{(a_0,b_0)}$ (负梯度方向)移动一定会使得函数值下降

一元线性回归

一元线性回归

一元线性回归

一元线性回归

一元线性回归

一元线性回归

一元线性回归

一元线性回归

一元线性回归

多元线性回归

面积 (feet²)	卧室数目 (个)	层数 (个)	房子的年 龄(年)	房价 (\$1000)
2104	5	2	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178
• • •	• • •	• • •	•••	•••

面积 (feet²)	卧室个数	层数	房子年龄	价格 (\$1000)
1500	3	2	30	Ś

多元线性回归

标注数据

$$\{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_N, y_N)\}\$$

X_1

学习模型

$$y = a^{1}x^{1} + a^{2}x^{2} + \cdots + a^{D}x^{D} + b = \mathbf{a}^{T}\mathbf{x} + b$$

$$\mathbf{a} = (a^1, a^2, ..., a^D)^T \in \mathbb{R}^D$$
 $\mathbf{x} = (x^1, x^2, ..., x^D)^T \in \mathbb{R}^D$

损失函数

$$L(\mathbf{a}, b) = \sum_{i=1}^{N} (\mathbf{a}^{T} \mathbf{x}_{i} + b - y_{i})^{2}$$

多元线性回归

$$L(\mathbf{a}, b) = \sum_{i=1}^{N} (\mathbf{a}^{T} \mathbf{x}_{i} + b - y_{i})^{2}$$

$$\frac{\partial}{\partial \mathbf{a}} L(\mathbf{a}, b) = \sum_{i=1}^{N} 2(\mathbf{a}^T \mathbf{x}_i + b - y_i) \mathbf{x}_i = 2 \left(\sum_{i=1}^{N} \mathbf{x}_i \mathbf{a}^T \mathbf{x}_i + \mathbf{x}_i b - \mathbf{x}_i y_i \right)$$

$$\mathbf{X} = [\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N] \in \mathbb{R}^{D \times N}$$

$$\mathbf{y} = [y_1, y_2, \dots, y_N] \in \mathbb{R}^N$$

$$= 2(\mathbf{X}\mathbf{X}^T\mathbf{a} + \mathbf{X}(\mathbf{b} - \mathbf{y})) = 0$$

$$\mathbf{X}\mathbf{X}^T\mathbf{a} = \mathbf{X}(\mathbf{y} - \mathbf{b})$$

多元线性回归

$$\frac{\partial}{\partial b}L(\mathbf{a},b) = \sum_{i=1}^{N} 2(\mathbf{a}^{T}\mathbf{x}_{i} + b - y_{i}) = 0$$

$$D+1$$
个未知数, $D+1$ 个方程
$$\begin{cases} b = \frac{1}{N} \sum_{i=1}^{N} y_i - \mathbf{a}^T \mathbf{x}_i \\ \mathbf{X} \mathbf{X}^T \mathbf{a} = \mathbf{X} (\mathbf{y} - \mathbf{b}) \end{cases}$$

线性向量回归

标注数据

$$\{(\mathbf{x}_1, \mathbf{y}_1), (\mathbf{x}_2, \mathbf{y}_2), \dots, (\mathbf{x}_N, \mathbf{y}_N)\}\$$

学习模型

$$y = Ax + b$$

$$\mathbf{x} \in \mathbb{R}^D$$

$$\mathbf{v} \in \mathbb{R}^M$$

$$\mathbf{x} \in \mathbb{R}^D$$
 $\mathbf{y} \in \mathbb{R}^M$ $\mathbf{A} \in \mathbb{R}^{M \times D}$ $\mathbf{b} \in \mathbb{R}^M$

$$\mathbf{b} \in \mathbb{R}^M$$

损失函数

$$L(\mathbf{A}, \mathbf{b}) = \sum_{i=1}^{N} ||\mathbf{A}\mathbf{x}_i + \mathbf{b} - \mathbf{y}_i||^2$$

线性向量回归

优化算法

$$L(\mathbf{A}, \mathbf{b}) = \sum_{i=1}^{N} ||\mathbf{A}\mathbf{x}_{i} + \mathbf{b} - \mathbf{y}_{i}||^{2} = \sum_{i=1}^{N} ||\widetilde{\mathbf{A}}\widetilde{\mathbf{x}}_{i} - \mathbf{y}_{i}||^{2}$$

$$\widetilde{\mathbf{A}} = [\mathbf{A} \ \mathbf{b}] \in \mathbb{R}^{M \times (D+1)}$$

$$\tilde{\mathbf{x}} = [\mathbf{x} \ 1]^T \in \mathbb{R}^{D+1}$$

$$\widetilde{\mathbf{X}} = [\widetilde{\mathbf{x}}_1, \widetilde{\mathbf{x}}_2, \dots, \widetilde{\mathbf{x}}_N] \in \mathbb{R}^{(D+1) \times N}$$

$$\mathbf{Y} = [\mathbf{y}_1, \mathbf{y}_2, ..., \mathbf{y}_N] \in \mathbb{R}^{M \times N}$$

$$= \left\| \widetilde{\mathbf{A}}\widetilde{\mathbf{X}} - \mathbf{Y} \right\|_F^2$$

$$\widetilde{\mathbf{A}}^* = \mathbf{Y}\widetilde{\mathbf{X}}^T (\widetilde{\mathbf{X}}\widetilde{\mathbf{X}}^T)^{-1} = \mathbf{Y}\widetilde{\mathbf{X}}^\dagger$$

 \widetilde{X}^{\dagger} 为 \widetilde{X} 的伪逆 (Moore-Penrose**逆**)

一元多项式回归

标注数据

$$\{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\}$$

学习模型

$$y = \sum_{r=1}^{R} a_r x^r + b = \sum_{r=0}^{R} a_r x^r$$

直观动机

找一条R阶多项式曲线使得的训练集中所有的点都距其"很近"

-元多项式回归

损失函数

$$L(a_{1}, a_{2}, ..., a_{R}) = \sum_{i=1}^{N} \left(\sum_{r=0}^{R} a_{r} x_{i}^{r} - y_{i} \right)^{2}$$

$$= \sum_{i=1}^{N} (\mathbf{a}^{T} \mathbf{x} - y_{i})^{2}$$

$$\mathbf{a} = [a_{0}, a_{1}, ..., a_{R}]^{T} \in \mathbb{R}^{R+1}$$

$$\mathbf{x} = [x^{0}, x^{1}, ..., x^{R}]^{T} \in \mathbb{R}^{R+1}$$

$$\mathbf{a} = [a_0, a_1, ..., a_R]^T \in \mathbb{R}^{R+1}$$

 $\mathbf{x} = [x^0, x^1, ..., x^R]^T \in \mathbb{R}^{R+1}$

多元线性回归,解之

多元多项式回归

标注数据

$$\{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_N, y_N)\}\$$

学习模型

$$y = \sum_{d=1}^{D} \sum_{r=0}^{R} a_{dr} x_{d}^{r}$$

多元多项式回归

损失函数

多元线性回归,解之

$$L(a_1, a_2, \dots, a_R) = \sum_{i=1}^{N} \left(\sum_{d=1}^{D} \sum_{r=0}^{R} a_{dr} x_{id}^r - y_i \right)^2 = \sum_{i=1}^{N} (\mathbf{a}^T \mathbf{x} - y_i)^2$$

$$\mathbf{a} = [a_{10}, a_{11}, \dots, a_{1R}, a_{20}, \dots, a_{D0}, a_{D1}, \dots, a_{DR}]^T \in \mathbb{R}^{D \times (R+1)}$$

$$\mathbf{x} = \begin{bmatrix} x_1^0, x_1^1, \dots, x_1^R, x_2^0, \dots, x_D^0, x_D^1, \dots, x_D^R \end{bmatrix}^T \in \mathbb{R}^{D \times (R+1)}$$

多项式向量回归

标注数据

 $\{(\mathbf{x}_1, \mathbf{y}_1), (\mathbf{x}_2, \mathbf{y}_2), \dots, (\mathbf{x}_N, \mathbf{y}_N)\}\$

学习模型

损失函数

损失函数

带正则项的线性回归

$$L(\mathbf{a}) = \sum_{i=1}^{N} (\mathbf{a}\mathbf{x}_i - y_i)^2$$

过拟合问题

带正则项的线性回归

LASSO

$$L(\mathbf{a}) = \sum_{i=1}^{N} (\mathbf{a}\mathbf{x}_{i} - y_{i})^{2} + \lambda \|\mathbf{a}\|_{2}^{2}$$

Ridge Regression

$$L(\mathbf{a}) = \sum_{i=1}^{N} (\mathbf{a}\mathbf{x}_{i} - y_{i})^{2} + \lambda ||\mathbf{a}||_{1}$$

Elastic Net

$$L(\mathbf{a}) = \sum_{i=1}^{N} (\mathbf{a}\mathbf{x}_i - y_i)^2 + \lambda_1 ||\mathbf{a}||_1 + \lambda_2 ||\mathbf{a}||_2^2$$

内容概要

〉机器学习基础回顾

> K-近邻算法

> 基础回归算法

〉总结

总结

1. K近邻算法

- ✓ 基本思想及步骤
- ✓ 参数K的影响
- ✓ 不同距离度量及其作用
- ✓ K近邻算法的加速: KD树

2. 基础回归算法

- ✓ 一元线性回归:思想、求解方法
- ✓ 多元,向量线性回归
- ✓ 一元多项式回归、多元多项式回归
- ✓ 带正则项的线性回归及其几何意义

