Sentiment Analysis of IMDB Reviews using SVM & Naïve Bayes Based on ICRTC-2015 Research Paper

By:

Name: Pragya Tripathi

Enrolment No: 00596303122

Department: Information Technology (IT-E)

TABLE OF CONTENT

- 1. Problem Statement
- 2. Objective
- 3. Proposed Methodology
- 4. Dataset Description
- 5. Data Cleaning and Preprocessing
- 6. Model Building
- 7. Evaluation Metrics
- 8. Results & Comparison
- 9. Potential Improvements
- 10. References

Problem Statement

- With the rapid growth of user-generated content on the internet, especially reviews on platforms like IMDB, there is a need to automatically identify whether a review expresses a positive or negative sentiment.
- Manually analyzing such massive data is impractical, and inaccurate classification can affect business decisions and customer perception.
- This project aims to evaluate and compare the performance of Naive Bayes and Support Vector Machine (SVM) algorithms for classifying movie reviews into positive or negative sentiments.

Project Objective

- To implement machine learning techniques for classifying movie reviews into **positive** or **negative** categories.
- To evaluate and compare the effectiveness of Support Vector Machine (SVM) and Naïve Bayes
 (NB) classifiers.
- To replicate and analyze the methodology of the ICRTC-2015 paper titled "Classification of Sentimental Reviews Using Machine Learning Techniques".
- To determine the best-performing model based on evaluation metrics such as **accuracy**, **precision**, **recall**, and **F1-score**.

Proposed Methodology

Figure 1: Sentiment Classification Workflow

Source: Tripathy, A., Agrawal, A., & Rath, S. K. (2015). Classification of Sentimental Reviews Using Machine Learning Techniques.

Dataset Description

Name: IMDB Movie Review Dataset

Source: Kaggle / Stanford Large Movie Review Dataset

Total Samples: 50,000 reviews

•25,000 labeled **positive**

•25,000 labeled **negative**

Type: Binary classification dataset (balanced)

Data Preprocessing

1. Text Cleaning:

- •Convert to lowercase
- •Remove punctuation, special characters, and whitespace
- •Remove stopwords (e.g., "the", "and"), html tags, urls
- **2. Tokenization:** Split text into individual words.
- 3. Stemming: Reduce words to their root form (e.g., "running" → "run") using a stemmer like Porter
- 4. Feature Extraction:
 - •Count Vectorizer: Converts text to a sparse matrix based on word frequency.
 - •TF-IDF Vectorization: Balances word frequency with importance across documents.

Model Building

Two different machine learning algorithms implemented are as follows:

Naive Bayes

- A probabilistic classifier based on Bayes' Theorem. Assumes independence among features and works well with textual data. It's efficient and requires less training data.
- For a given textual review 'd' and for a class 'c' (positive, negative), the conditional probability for each class given a review is P(c|d). According to Bayes theorem this quantity can be computed using the following equation:

$$P(c \mid d) = \frac{P(d \mid c) * P(c)}{P(d)}$$

Model Building

Support Vector Machine

• A non-probabilistic binary classifier that finds the optimal hyperplane to separate data points. It's powerful for high-dimensional data like text.

Let $c_j \in \{1,-1\}$ be the class (positive, negative) for a document d_j , the equation for \overrightarrow{w} is given by

$$\overrightarrow{w} = \sum_{j} \alpha_{j} c_{j} \overrightarrow{d}_{j}, \alpha_{j} \geq 0$$

Evaluation Metrics

Used train_test_split to split the dataset into training and testing sets (70-30 split) and evaluated the models on accuracy, precision, recall, and F1-score.

- Accuracy: Correct predictions / Total predictions.
- **Precision:** TP / (TP + FP) Correct positive predictions.
- **Recall:** TP / (TP + FN) Ability to find all positive instances.
- **F1 Score:** Harmonic mean of Precision and Recall.
- Confusion Matrix: Visualizes TP, FP, TN, FN for deeper insight.

Result and Findings

Section 1: Summary of Evaluation Metrics

Naïve Bayes

• Accuracy: 86%

• F1 Score: 86%

SVM

• Accuracy: 89%

• F1 Score: 89%

Both models performed well on binary classification task.

SVM slightly outperformed Naïve Bayes in all key metrics.

	Precision	Recall	F1-Score
Positive	0.86	0.87	0.86
Negative	0.87	0.85	0.86
Accuracy	0.86		

Figure 2: Evaluation Metrics Result after Implementation for Naïve Bayes

The performance evaluation parameters obtained for Naive Bayes classifier is shown in table 4.

Table 4: Evaluation parameters for Naive Bayes classifier

	Precision	Recall	F-Measure
Negative	0.80	0.89	0.84
Positive	0.87	0.77	0.82

Maximum accuracy achieved after the cross validation analysis of Naive Bayes classifier is **0.8953**.

Figure 3: Evaluation Metrics Result in Research Paper for Naïve Bayes

	Precision	Recall	F1-Score
Positive	0.9	0.88	0.89
Negative	0.89	0.9	0.89
Accuracy	0.89		

Figure 4: Evaluation Metrics Result after Implementation for SVM

Table 6: Evaluation parameters for Support Vector Machine classifier

	Precision	Recall	F-Measure
Negative	0.87	0.89	0.88
Positive	0.89	0.86	0.88

Maximum accuracy achieved after the cross validation analysis of Support Vector Machine classifier is 0.9406.

Figure 5: Evaluation Metrics Result in Research Paper for SVM

Section 2: Confusion Matrix Visual

Figure 6: Confusion Matrix for NB

Figure 7: Confusion Matrix for SVM

Section 3: Comparative Analysis

• The results align with the research trends—SVM generally performs better than Naïve Bayes.

Algorithm	Pang & Lee (2002)	Read (2005)	Research Paper (2015)	My Results
Naïve Bayes	86.40%	78.90%	89.50%	86%
SVM	86.10%	81.50%	94%	89%

Figure 8: Final Comparative Analysis Table

POTENTIAL IMPROVEMENTS

- **Model Evaluation Approach:** The accuracy could be further improved by conducting 10-fold cross-validation instead of relying on a single train-test split. This would provide a more reliable estimate of the model's performance across different data partitions.
- Enhanced Data Preprocessing: Further refinement of the data preprocessing steps, including advanced cleaning techniques, could potentially lead to better model performance.

REFERENCES

- A. Tripathy, A. Agrawal, and S. K. Rath, "Classification of sentimental reviews using machine learning techniques," in *International Conference on Recent Trends in Computing (ICRTC)*, 2015, pp. 1–6.
- https://drive.google.com/file/d/1bTHWDqZ4zA7rkKHafvPFY1G7WZFvmeHz/view?usp=drive_link (Implementation Colab Notebook)
- https://www.geeksforgeeks.org/introduction-to-support-vector-machines-sym/
- https://www.geeksforgeeks.org/naive-bayes-classifiers/

THANK YOU!!