Excellent! Let's now go in-depth into CTQ (Card Transaction Qualifiers) — the counterpart to TTQ — which plays a vital role in EMV contactless transactions.

What is CTQ?

• **Tag**: 9F6C

Length: 2 bytes (16 bits)

• Format: Binary

Direction: Card → Terminal

• **Purpose**: Tells the terminal what the **card supports or requires**, in response to the terminal's capabilities (TTQ).

You can think of CTQ as the card's response to the terminal's TTQ:

"Given what you (terminal) can do, here's how I want the transaction to proceed."

When is CTQ used?

- During GET PROCESSING OPTIONS (GPO):
 - o Terminal sends TTQ inside PDOL (Processing Data Object List).
 - o Card responds with AIP and CTQ.
 - Terminal uses CTQ + AIP to:
 - Determine contactless mode (EMV or magstripe)
 - Determine CVM path
 - Decide online/offline flow
 - Set up the correct processing path.

CTQ Bit Structure (2 Bytes = 16 Bits)

Let's break down CTQ byte-by-byte.

Byte 1 – Contactless Mode & CVM

Bit Meaning

- 8 EMV contactless supported
- 7 Magstripe mode supported
- 6 Online PIN supported
- 5 Signature supported
- 4 No CVM supported
- 3 CDCVM supported (Consumer Device CVM)
- 2 Online cryptogram supported if no CVM
- 1 EMV mode supported if no CVM

These bits help terminal choose:

- Contactless mode: EMV vs magstripe
- CVM path: PIN, signature, no CVM, CDCVM
- Whether online-only with no CVM is allowed

Byte 2 – Card Risk Control / Transaction Types

Bit Meaning

- 8 Online cryptogram required (regardless of CVM result)
- 7 Contact chip fallback allowed
- 6 Issuer script processing supported
- 5 Mobile device transaction (tap to phone)
- 4 Deferred authorization allowed
- 3 Reserved
- 2 Reserved
- 1 Reserved
- Note: Some bits are scheme-specific (e.g., Mastercard vs Visa), and not all cards use all bits.

Example CTQ Breakdown

Let's say:

makefile

CopyEdit

CTQ = E0 90

 \downarrow \downarrow

11100000 10010000

Byte 1: E0 = 11100000

- Bit 8: ✓ EMV contactless supported
- Bit 7: ✓ Magstripe supported
- Bit 6: ✓ Online PIN supported
- Bit 5–1: X No support for other CVMs

Byte 2: 90 = 10010000

- Bit 8: Online cryptogram required
- Bit 5: Mobile device transaction
- Bit 7–6, 4–1: X Not supported

Meaning:

- Card supports both EMV and magstripe contactless.
- Requires online cryptogram (i.e., must go online).
- Transaction was likely initiated via a mobile wallet.
- Only online PIN allowed; no signature or no-CVM.

CTQ vs TTQ Summary Table

Feature TTQ (Terminal) CTQ (Card)

Who sends it? Terminal Card

Feature	TTQ (Terminal)	CTQ (Card)
Format	Tag 9F66 – 4 bytes	Tag 9F6C – 2 bytes
Sent during	GPO (in PDOL)	GPO response
Purpose	Terminal's capabilities	Card's supported modes based on TTQ
Influences	What the terminal asks for	What the card <i>allows</i>
Helps decide	Mode, CVM, flow path	Final mode, CVM, online/offline

How TTQ & CTQ Work Together

Terminal says via TTQ:

"I support EMV mode, magstripe fallback, online and offline PIN, and no CVM."

Card replies via CTQ:

"Great, I allow EMV mode, but I only support online PIN and I require online cryptogram."

▼ The final transaction will:

- Use EMV mode
- Require online PIN entry
- Force online authorization

CTQ & AIP Together

Along with CTQ, the **AIP (Application Interchange Profile)** — Tag 82 — is also returned in the GPO response and indicates:

- Card supports SDA/DDA/CDA
- Card supports offline data auth
- Card supports offline risk management
- Card supports issuer authentication

So:

• CTQ + AIP + TTQ = final decision matrix for contactless EMV.

CTQ in Logs

In transaction logs, you'll often see:

objectivec

CopyEdit

9F66 (TTQ): E0 20 C0 00

9F6C (CTQ): E0 90

Then the log might say:

yaml

CopyEdit

→ Mode: EMV

→ CVM: Online PIN

→ Online Authorization Required: Yes

That comes directly from interpreting TTQ/CTQ combo.

What Happens If CTQ & TTQ Don't Align?

- If CTQ doesn't support EMV mode, but TTQ asks for it → card may fallback to magstripe.
- If CTQ requires online, but terminal can't go online → transaction declined.
- If **no matching CVM method**, card may decline or fallback to No CVM.

Summary

Key Point	Details
Tag	9F6C
Length	2 bytes
Direction	Card → Terminal
Used in	GPO response
Works with	TTQ, AIP

Key Point Details

Determines Final mode (EMV/Magstripe), CVM, Online requirement

Common CVMs in CTQ Online PIN, Signature, No CVM, CDCVM

Risk control Online required, fallback allowed, deferred auth supported