

EEC1509 - Machine Learning Lesson #4 - Linear Regression One Variable

Ivanovitch Silva August, 2018

- One variable
- Multiples variables
- We discuss the application of linear regression to housing price prediction
- Present the notion of a cost function
- Introduce the gradient descent method for learning.
- Refresher on linear algebra concepts.

Regression

5 kilograms

200 kilograms

1.5 kilograms

????


```
import pandas as pd
   from sklearn import linear model
   import matplotlib.pyplot as plt
  #read data
  df = pd.read fwf('brain body.txt')
  X = df[['Brain']]
  y = df[['Body']]
11 #train model on data
  model = linear model.LinearRegression()
  model.fit(X, y)
14
15 #visualize results
16 plt.scatter(X.values, y.values)
17 plt.plot(X.values, model.predict(X), color='red')
18 plt.xlabel('Brain weight (kg)')
19 plt.ylabel('Body weight (kg)')
20
21 plt.show()
```

(<)(>

Linear Regression - Housing Price

Linear Regression with One Variable

Notation:

- m number of training examples
- X's input variable/features
- y's output variable/ target variable

$$X^{(1)} = 31770$$
 $y^{(1)} = 215000$
 $X^{(2)} = 11622$ $y^{(2)} = 105000$
 $X^{(3)} = 14267$ $y^{(3)} = 172000$

 $(X^{(i)},y^{(i)}) = i^{th}$ training example

	X	У	
	Lot Area	SalePrice	
m = 1465	31770	215000	
	11622	105000	
	14267	172000	
	11160	244000	
	13830	189900	

Model Representation (linear reg. one variable)

How do we represent h?

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Cost Function

"minimize the error"

Cost Function (Linear Reg. One Var.)

m = 1465

Hypothesis $h_{\theta}(x) = \theta_0 + \theta_1 x$

 θ_i = parameters

How to choose θ_i ?

Training Set

X

 Lot Area
 SalePrice

 31770
 215000

 11622
 105000

 14267
 172000

 11160
 244000

 13830
 189900

Cost Function Intuition #01 (linear reg. One var)

Cost Function (square error function)

Training Set (m instances)

	Lot Area	SalePrice	
x ⁽¹⁾	31770	215000	y ⁽¹⁾
$x^{(2)}$	11622	105000	y ⁽²⁾
$x^{(3)}$	14267	172000	y (3)
x ⁽⁴⁾	11160	244000	y ⁽⁴⁾
x ⁽⁵⁾	13830	189900	y ⁽⁵⁾

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left[h_{\theta}(x^{(i)}) - y^{(i)} \right]^2$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Idea:

- choose θ_0 , θ_1 so that $h_{\theta}(x)$ is close to y for our training examples $(x^{(i)}, y^{(i)})$
- minimize (θ_0, θ_1)

Cost Function[step #01] - Select the feature x

Cost Function[step #01] - Select the feature x_1

```
1 train[['Garage Area', 'Gr Liv Area', 'Overall Cond', 'Lot Area', 'SalePrice']].corr()
```

	Garage Area	Gr Liv Area	Overall Cond	Lot Area	SalePrice
Garage Area	1.000000	0.473506	-0.145705	0.213122	0.625335
Gr Liv Area	0.473506	1.000000	-0.134157	0.248676	0.706364
Overall Cond	-0.145705	-0.134157	1.000000	-0.042415	-0.108979
Lot Area	0.213122	0.248676	-0.042415	1.000000	0.267714
SalePrice	0.625335	0.706364	-0.108979	0.267714	1.000000

Cost Function Intuition #01 $(\theta_0 = 0)$

$$\hat{y} = h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$\hat{y} = h_{\theta}(x) = \theta_1 x$$

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left[\theta_1 x^{(i)} - y^{(i)} \right]^2$$

A1: 227

Cost Function Intuition #02 (linear reg. One var)

Cost Function Intuition #02 $(\theta_0 \text{ and } \theta_1 \text{ are defined})$

$$\hat{y} = h_{ heta}(x) = heta_0 + heta_1 x$$

$$J(heta_0, heta_1) = rac{1}{2m} \sum_{i=1}^m \left[h_ heta(x^{(i)}) - y^{(i)})
ight]^2$$

Gradient Descent (linear reg. One var)

Algorithm - Idea

 $\begin{array}{ccc} \text{Have some function J}(\theta_0,\!\theta_1) \\ \text{Want} & & \min_{\theta_0,\!\theta_1} \text{J}(\theta_0,\!\theta_1) \\ & & \theta_0,\!\theta_1 \end{array}$

Start with some θ_0, θ_1 Keep changing θ_0, θ_1 to reduce $J(\theta_0, \theta_1)$ until we hopefully end up at a minimum

$$\theta_j = \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$

}

a - learning rate

$$\theta_j = \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$

Correct update

$$aux_0 = \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$
$$aux_1 = \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_0 = aux_0$$
$$\theta_1 = aux_1$$

Incorrect update

$$aux_0 = \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$\theta_0 = aux_0$$

$$aux_1 = \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_1 = aux_1$$

$$aux_0 = \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left[h_{\theta}(x^{(i)}) - y^{(i)} \right]$$

$$aux_1 = \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left[h_{\theta}(x^{(i)}) - y^{(i)} \right] x^{(i)}$$

$$\theta_0 = aux_0$$

$$\theta_1 = aux_1$$

}

Learning rate tradeoff

Gradient Descent Pitfalls

Hypothesis

$$\hat{y} = h_{\theta}(x) = \theta_0 + \theta_1 x$$

Gr Liv Area	SalePrice
2480	205000
1829	237000
2673	249000
1005	133500
1768	224900 to plot.ly »

$$hypothesis = \begin{bmatrix} 1 & 2480 \\ 1 & 1829 \\ 1 & 2679 \\ 1 & 1005 \\ 1 & 1768 \end{bmatrix} \times \begin{bmatrix} \theta_0 \\ \theta_1 \end{bmatrix} = \begin{bmatrix} 2480 \ \theta_1 + \theta_0 \\ 1829 \ \theta_1 + \theta_0 \\ 2679 \ \theta_1 + \theta_0 \\ 1005 \ \theta_1 + \theta_0 \\ 1768 \ \theta_1 + \theta_0 \end{bmatrix}$$

$$\times \begin{bmatrix} \theta_0 \\ \theta_1 \end{bmatrix} = \begin{bmatrix} 2480 \ \theta_1 + \theta_0 \\ 1829 \ \theta_1 + \theta_0 \\ 2679 \ \theta_1 + \theta_0 \\ 1005 \ \theta_1 + \theta_0 \\ 1768 \ \theta_1 + \theta_0 \end{bmatrix}$$

def cost_function(X, y, theta):
 return np.sum(np.square(np.matmul(X, theta) - y)) / (2 * len(y))

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left[h_{\theta}(x^{(i)}) - y^{(i)} \right]^2$$

Gr Liv Area	SalePrice
2480	205000
1829	237000
2673	249000
1005	133500
1768	224900 Export to plot.ly »

$$J(\theta_0, \theta_1) = \frac{1}{2 \times 5} \sum \left(\begin{bmatrix} 2480 \ \theta_1 + \theta_0 \\ 1829 \ \theta_1 + \theta_0 \\ 2679 \ \theta_1 + \theta_0 \\ 1005 \ \theta_1 + \theta_0 \\ 1768 \ \theta_1 + \theta_0 \end{bmatrix} - \begin{bmatrix} 205000 \\ 237000 \\ 249000 \\ 133500 \\ 224900 \end{bmatrix} \right)^2$$


```
def gradient_descent(X, y, alpha, iterations, theta):
    m = len(y)
    all_thetas = [theta]

for i in range(iterations):
    t0 = theta[0] - (alpha / m) * np.sum(np.dot(X, theta) - y)
    t1 = theta[1] - (alpha / m) * np.sum((np.dot(X, theta) - y) * X[:,1])
    theta = np.array([t0, t1])
    all_thetas.append([t0,t1])

return theta, np.array(all thetas)
```

- Involves calculations over the full training set X at each gradient step
- It uses the whole batch of training data at every step.
- This is why the algorithm called Batch Gradient
 Descent

$$aux_0 = \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left[h_{\theta}(x^{(i)}) - y^{(i)} \right]$$

$$aux_1 = \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left[h_{\theta}(x^{(i)}) - y^{(i)} \right] x^{(i)}$$

$$\theta_0 = aux_0$$

$$\theta_1 = aux_1$$

>