Delta-Sigma Conversion

•••

By Josh Morris

Dr. Saleh Sbenaty ET 4801 Project Report Fall 2017

Delta-Sigma Conversion

- 1. Oversampling Modulator
 - a. 1-Bit ADC
 - b. High Pass Filter
- 2. Digital/Decimation Filter
 - a. Low Pass Filter
 - b. Decimation Filter

First Order Delta-Sigma Modulator in the Frequency Domain

First-Order, Low-Pass Averaging Filter

Digital/Decimation Filter Input and Output

Beis AD24QS and DA24QS

- AD24QS
 - Cirrus Logic CS5361
 - Fifth-order, multi-bit modulator
 - 24 bit resolution stereo conversion
 - Low THD
 - 114 dB Dynamic Range
- DA24QS
 - Cirrus Logic CS4398
 - 24 bit resolution
 - Low THD
 - 120 dB Dynamic Range

Construction

Completion

Testing THD

$$THD = \frac{\sqrt{\sum_{n=2}^{\infty} V_{n_rms}^2}}{V_{fund_rms}}$$

Exponential Sine Sweep

After Applying Reverse Filter

Experimental Setup

Calculating Offsets

$$T = \left(\frac{2\pi M}{k-1} - \frac{\pi}{2}\right) \frac{\ln f_2/f_1}{2\pi f_1},$$

T = time in seconds of fundamental, M = Length of sine sweep (s), k = kth harmonic f1= start frequency of sweep, f2 = end frequency of sweep

$$\Delta n_k = \frac{T f_s \ln k}{\ln(f_2/f_1)}$$

nk = sample offset from fundamental, fs = sample rate (Paiva et al.)

Harmonic	Offset (sample)	Harmonic	Offset (sample)
2	7450.898974	16	29803.5959
3	11809.39547	17	30455.27269
4	14901.79795	18	31069.68992
5	17300.45166	19	31650.87875
6	19260.29444	20	32202.24961
7	20917.31791	21	32726.71338
8	22352.69692	22	33226.77447
9	23618.79094	23	33704.60314
10	24751.35063	24	34162.09239
11	25775.8755	25	34600.90332
12	26711.19342	26	35022.50147
13	27571.6025	27	35428.18641
14	28368.21688	28	35819.11586
15	29109.84713	29	36196.32561

Offcot

Offcot

THD

Sweep	Channel 1	Channel 2
1	0.001679225197	0.001901753808
2	0.001542641613	0.001506403164
3	0.002207576775	0.001602943836
AVG	0.001809814528	0.001670366936

Works Cited

Baker, Bonnie. "How delta-Sigma ADCs work, Part 1." Texas Instruments, Texas Instruments, 2011, www.ti.com.

Baker, Bonnie. "How delta-Sigma ADCs work, Part 2." Texas Instruments, Texas Instruments, 2011, www.ti.com.

Farina, Angelo. "Simultaneous measurement of impulse response and distortion with a swept-Sine technique." Dipartimento di Ingegneria Industriale, Università di Parma.

Horowitz, Paul, and Winfield Hill. The Art of Electronics. Cambridge: Cambridge U Press, 2016. Print.

Paiva, Rafel, et al. Reduced-Complexity modeling of high-Order nonlinear audio ... AES 45TH INTERNATIONAL CONFERENCE, 1 Mar. 2012,

Williams, David. "Understanding, Calculating, and Measuring Total Harmonic Distortion (THD)." All About Circuits, 20 Feb. 2017, www.allaboutcircuits.com/technical-articles/the-importance-of-total-harmonic-distortion/.