

Escola Politécnica de Pernambuco Especialização em Ciência de Dados e Analytics

Estatística Computacional

Aula 2.1 – Testes de Hipóteses e ANOVA – PARTE II

Prof. Dr. Rodrigo Lins Rodrigues

rodrigolins.rodrigues@ufrpe.br

 Todos os testes de hipóteses que vimos até agora trataram de no máximo duas variáveis;

 A análise de variância, ou ANOVA, é utilizada para comparar médias de três ou mais variáveis;

 É muito utilizada para identificar diferenças entre grupos;

 É empregada em situações que buscam identificar a eficácia de determinados tratamentos;

• É baseada no teste F.

 Compara o quanto os grupos diferem entre si em relação à quantidade de variabilidade dentro de cada grupo;

Neste caso a hipótese formulada:

$$H_0$$
: $\mu_1 = \mu_2 ... \mu_n$
 H_1 :: pelo menos duas médias diferentes

 De forma genérica os dados para uma análise de ANOVA são:

Amostras ou Grupos							
1	2	•••	k				
y_{11}	y_{12}	•••	y_{1k}				
y_{21}	y_{22}	•••	y_{2k}				
•••	• • •	•••	•••				
y_{n1}	y_{n2}	•••	y_{nk}				

- Etapas para análise de variância (ANOVA)
 - 1. Verifique as condições de análise de variância utilizando os dados coletados de cada uma das *k* populações;
 - 2. Estabeleça as hipóteses:

$$H_o$$
: $\mu_1 = \mu_2 ... \mu_n$
 H_1 :: pelo menos duas médias diferentes

- 3. Colete dados de k amostras aleatórias, uma de cada população.
- 4. Realize o *teste-F* para os dados do passo 3 e encontre o *p-valor*.
- 5. Se o p-valor for inferior a 0,05 conclui-se que pelo menos duas das médias populacionais são diferentes (H₁).

Exemplo:

- ✓ Uma amostra de 32 produtos foi coletada para analisar a qualidade do mel de três fornecedores;
- ✓ Uma das medidas de qualidade do mel é a porcentagem de sacarose que normalmente varia de 0,25 a 6,5%;
- ✓ A tabela a seguir apresenta a porcentagem de sacarose para a amostra coletada de cada um dos três fornecedores;
- ✓É necessário verificar se há diferenças significativas entre os três fornecedores.

Exemplo:

Fornecedor I	Fornecedor II	Fornecedor III
0,33	1,54	1,47
0,79	1,11	1,69
1,24	0,97	1,55
1,75	2,57	2,04
0,94	2,94	2,67
2,42	3,44	3,07
1,97	3,02	3,33
0,87	3,55	4,01
0,33	2,04	1,52
0,79	1,67	2,03
1,24		
3,12		

 Passo 1: Primeiramente verifica-se os pressupostos de normalidade para cada grupo;

		1	Tests of Nor	mality		1000	- 199
	Fornecedor	Kolmogorov-Smirnov ³			Shapiro-Wilk		
		Statistic	df	Sig.	Statistic	df	Sig.
2	1,00	,202	12	,189	,915	12	,246
	2,00	,155	10	,200	,929	10	,438
	3,00	,232	10	,137	,883	10	,142

• Passo 2: Formulando a hipótese:

 H_0 : $\mu_1 = \mu_2 ... \mu_n$

H₁:: pelo menos duas médias diferentes

- Passo 3: Fixar o nível de significância em 5%;
- **Passo 4:** Realizar o calculo da estatística F_{cal} ;

$$F_{cal} = 4,676$$

• Passo 5: Verificar o valor na tabela F:

$$F_t = F_{2,29(5\%)} = 3,33$$

• **Passo 6:** Como o valor calculado é maior do que o valor tabelado $(F_{cal} > F_t)$, a hipótese nula é rejeitada.

Agora é com vocês!

- Qual o objetivo em utilizar ANOVA?
- Qual a diferença entre ANOVA e teste T;
- Como é formulada a hipótese para um teste de ANOVA?

Exemplo:

- ✓ Quero comparar técnicas de extração de atributos para a classificação de imagens de peixes;
- ✓ Desejo verificar se existe diferença significativa entre as três técnicas, de acordo com os valores de desempenho de cada uma delas;

Solução:

- 1. Verifica as condições de análise de variância;
- 2. Estabelece as hipóteses:

$$H_0$$
: $\mu_1 = \mu_2 ... \mu_n$
 H_1 :: pelo menos duas médias diferentes

- Colete dados de k amostras aleatórias, uma de cada população.
- Realize o teste-F para os dados do passo 3 e encontre o pvalor.
- Se o p-valor for inferior a 0,05 conclui-se que pelo menos duas das médias populacionais são diferentes (H₁).

Solução:

```
# Ler os dados de um arquivo (interagindo com o usuÃ;rio)
dados <- read.table(file.choose(),header=TRUE)

# Mostra boxplots das técnicas, lado a lado, em relação ao desempenho
boxplot(dados$desempenho ~ dados$tecnica)

# Mostra boxplots das classes, lado a lado, em relação ao desempenho
boxplot(dados$desempenho ~ dados$classe)</pre>
```


Solução:

```
dados.anova <- aov(dados$desempenho ~ dados$tecnica + dados$classe)

# Mostra a tabela ANOVA
summary(dados.anova)</pre>
```

```
Df Sum Sq Mean Sq F value Pr(>F)
dados$tecnica 2 578.4 289.19 18.562
dados$classe 6 464.5 77.41 4.969
Residuals 12 187.0 15.58
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Dúvidas

Contatos:

- ✓ Email: rodrigo.linsrodrigues@ufrpe.br
- ✓ Facebook: /rodrigomuribec