Q-13 Prove Fermat's Little Theorem and use It to compute a p-1 mod pi for given value a = 7, $\rho = 13$

Anawer: Statement: Fenmat's Little theonem state that If pisa prime number and a is any integers not divisible by A then, ap-1=11 modo.Pin Proof: Let ca oberan integen such that ged (a,P)=1 and p is prime consider the settle

All the elements of s are idistinct modulo pland and just a nearmange 09 21,2, -- 1P-1/ modulo P. 50, a, 2a,3a ···· (p-1)a = 1,2,3···· (p-1) mod on, ap-1 (p-1)! = (p-1)! mod P

citizanas, Karania

Since (P-1) lis not divisible by P. we can cancellit stopmen of Esse ap-1 =1mod P. q. p=13 Example: Let, a=7, inde | april = 7/3-1 = 7/2 mod 13 compute 7^{2} mod 13 (using successive aquaning 3^{2}) 7^{4} = $(7^{4})^{2}$ mod 13 = 100 mod 13 = 9 778=(79) modi3=81 mod 13=3 ->712=78, 24 mod 13 = 3.9 mod 13 = 1 We bilfied 17 12 1 mod 13. Use in Cryptography (RSA) Fermat's Little theorem ensures that if e.d = 1 mod p.(n) then **P** mod nor This property is used in RSA daypton to recover the original message often eneryption.

Sensure reonnect decryption

Suged in key generation.

Q-2: Fulen Tuotient Function - compute p(n) for n=35, 45, 100; Prove that if a and name co-prime, than $\alpha^{p(n)} = 1 \mod n$ Answers Eulen's Totient Function (p(n) is the numbers of integers less than on equal to n that are co-prime to n their grad with mis 1 Formula: If n has a prime function factorization n= pk, Pekz, de Po $p(n) = n_{i}(A - \frac{1}{P_{10}}) \cdot (1 = \frac{1}{P_{2}}) \cdot (1 - \frac{1}{P_{2}})$ Escample .0 Ed frames done plaite 1) p(45) = 45 = 3 x 5 (Prime factor) Q(45) = 45 (1-3) (17) 11) p (35): prime factor = 5x7 $\phi(36) = (P-1)(9-1)$ = (5-1)(7-1)

11) P(100) =100=2775 15 (100)=100(1+量)(11番)。(11)の 40x both 1 = Congr. Theorem: If and name co-prome then ap(n) = 1 mod no reference orthe This is known as Eulers Theorem, which generalized Fernmat's Little Theorem. Proof: Let a and n be such that gcd(a,n)=1 Let the set of integers less than n and co-prime to n be. R={n, n2 -- pan} multiply each element by a modulo n, s={an, anz -- - arm} mod n since multiplication by a is a bisection the product of the two sets is the same modulo no ap(n), n1. n2. -.. np(n) = n, n2 ... np(n) mod n cancelling both sides : (68)

 $a^{(p(n)} \equiv 1 \mod n$

CS CamScanner

```
Q-3: Chinese Remainden Theorem (CRT).
    Answers Griven system, milicip
      n \equiv 2 \mod 3 \times | \alpha = 2
n \equiv 3 \mod 4
n \equiv 1 \mod 5
Step-1: Find individual modulo,
      m_1 = \frac{60}{30} = 20 to the formors to m_2 = \frac{60}{9} = 115 m_3 = \frac{60}{9} = 115
             ·M3 = 160 = 12 6 bin she simos
   step-2. Find modulan invense
        Find mily monima on 120 panie
      m, xm1 = 1 mod mil bolosses
    com, 20. mil 7,7 mod 3 en oupe bis
  and, \chi m_2 = 1 \mod 4
   and, m_3 \times m_3 = 1 \mod 9

\Rightarrow 12 \times 3 = 1 \mod 5 : m_3 = 3
```

Step-3: CRT-Formula ._1 $x = a_1 m_1 m_1^{-1} + a_2 m_2 m_2 + a_3 m_3 m_3$ =2×20×2+3×55×3+1×12×3 1:2 = 251 mod 60 on, x = 11 mod 60; Q-40 Find Whether 561 is a canniched

numbers by checking its divisibility, and Fenmal's test. Answers Step-1: checking 9 f 561 is

composite and squane-free.

Factorize 561: 561 = 3 XII XIX Since 861 has three prime factors and no nepeated prime factors it is composite and square-free.

step-2: Fermat's Little Theorem test.

For a number n to be a canmichael number, it must satisfy the condition. an-1 = 1 mod n

for every integer a co-prime ton. Test with some value a coprime to 361. fon a=2, compute 2568 mod 561.

4444

For a = 3, compute 3,560 mod 561 For a = 4, compute 9,560 mod 561 All these computation show:

10560 = 1 mod 567

This means Bol passes Fermats lest for these bases.

50, 561 is a caromichael number.

Q-5: Find a Generator (primitive Root)
of the multiplicative Genoup modulo 17.

Answers : Step-18 the multiplicative group
modulo 17 denoted as: 1 box 1

This group contains all integers from 1 to 16 that are co-prime to 17. Since 17 is a prime number . So, all numbers from 1 to 16 automatically co-prime to 14.

Size of the gnoup is whole!

Step-2: A number g is a primitive Root modulo 17 if the powers of g generate all elements of Ziz that is gain 1937...glb mod 17.

So, all numbers from 1 to 16 without nepeating before g16=3. Step-3 we check power of 3 module 17 -3 mod 17 = 3 11 312 mod 17 = 4 3 mod 17 = 19 313 mod 17 = 12 33 mod x=10 314 mod 17 = 2 34 mod 17=13 315 mod 17 = 6 36 mod 17 = 15 316 mod 17 = 1 37 mod 17=11 so, the number 38 mod 17 = 16 | So the number 3 13. the primitive 39 mod 17=14. Root modulo 17 310 mod 17 =8 mbh . Villalutonr 311 mod 17=7 Q-6° Solve the Disenete Loganithm Problem Answers Find ne such that, 32 = 13 (mod 17) letistry successive power's of 3 mod 17 32 mod Z 27=10mod 17 87=13 mod 17 243=3 mod 17

we get n=4000 17 (1) June 1093 (13) = 14 mod 17. 100 et deine

Q=7: Role of discrete logarithm Diffieltellman key enchange 2

Answers The discrete logarithm problem is the mathmetical foundation of the Diffie - Hellman key enchange

In this method ?

> two osens agree on a prime

pand a primitive moot g

Fach usen selects a private key (
say a, b) and computes their public key

as A=ga mod p and B=gb mod P.

They enchange public keys and compos

the shaned seanet

usen 1: 5=Ba mod P

use p2: S=Ab mod P

Both values are equal s=gab mod P

7 the secupity depends on the difficulty

of solving!

Griven gip, ga mod P => find a This is the discrete logarithm problem, which is computationally hand, making the key enchange secur e Advantage: the discrete logarithm ensures that even if an attackers sees the public values , the can't easily computethe private key on the shaned secret imaking the system safe for secure communication, Q-8: compane of substitution, Than's position and play fair eighers. Answer: Than sposition Cipheral Play Aspect substitution cipher 1. Energiption pains 1. Replace each letter 1. Reannanges the Energyption withanother of lettens using positionsof mechanism letten. lettens a 5x8 gaid. 2.26! (very large) 2. Depends on 2.5x5 matning of space length of key letters (based on (factorial) Keywond) 3. Vulnanable (3. Less vulnemable 3. Hand (diagnaph Frequency letten frequencis (frequencies, Analysis frequency needed) pnesenved) changed)

Escample Transformation; Substitution eiphen: Suppose we use a caesan ciphen (Shirt by 3): H +K, E > H, L > 0, L > 0, 0 P R Ciphentent: 'KHOOR' Thansposition Ciphen? Using a simple penmutation (nevense the tent): 495(1 5-4555) MUNI plaintent: HELLO Revensed: OLLEH 1 Alorumol dipherotent: "OLLEH" playfaire ciphere! (01-300) = (00) Lets assume the ky = "MONARCHY" Break ! HELLO' into 5×5) MIONIAT diagraph "HE" (LX" 10" matrix 1 14/7/ FGC FOK Energypt Using playfain nules: HE>CF 1× → 130/ MA, CON EXULTS POUL (STEUNS) TO DIAM, Son the eighern tent = 'crowpm' 35 mm (32 (Circl) (9)) (-1) 11 - 02 hom 63 -

Q-9: Affine ciphen Energyption and Deenyption.

Deciog prior															
Answers:															
	D	E	P	T	0	F	I	C.	Total	M	13	15	T	U	
	3	4	15	19	14	5	8	2	19	12	1	18	19	20	
	X	C	F	2	A	Ħ	M	5	2	Q	N	0	2	E	
= 4 = = = = = = = = = = = = = = = = = =	23	2	5	25	0	7	22	18	25	16	13	20	25	4	

plain Tenet -> Dept of Ict, mostu.

Formula:

$$E(n) = (an + b) \mod 26$$

[Key 1(a, b) = (5.8)

For
$$(B) = \{(5\times3) + 8\} \mod 26$$

= 23(X)
For (F)

For
$$(F)$$
 $E(E) = ((5x4)+8) \mod 26 = 2(c)$

For (P)
$$E(P) = \{(5 \times 15) + 8\} \mod 26$$

$$= 83 \mod 26 = 5(F)$$

For T

$$E(T) = \{(5+10) + 8\} \mod 26$$

 $= 103 \mod 26$
 $= 26(2)$
For O
 $E(0) = \{(5 \times 14) + 8\} \mod 26$
 $= 0(A)$
 $E(F) = \{(5 \times 5) + 8\} \mod 26$
 $= (7) = (7 \times 8) + 81 \times 100 \mod 26$
 $= (8 \times 2) + 8 \times 100 \mod 26$
For M
 $E(M) = \{(5 \times 12) + 68 \times 100 \mod 26\}$
 $= 16(Q)$

Fon B E(B) = { (5×1)+8} mod 26 = 13 (N)

Fon S E(S)={(BX18)+8}mod 26 = 20 (0) (10/1/20); (0)

E(v) =((3×20)+8) mod 26 = 4(E) ((xc)).

so, the Eneryptical ciphentent ="XCFZAHWSZANUZE"

Deenyption

1. Deeny plion function of Assine D(y) =a -1 (y-b) mod 26 ciphen to find the a-1 Let a-1 = x oro, ox mod 26 = 1 on, 5x21 mod 26=1

CS CamScanner

So,
$$a^{-1} = 21$$
.

For x

$$D(x) = 21 \cdot (23 - 8) \mod 26$$

$$= 3(0)$$

$$D(e) = 21 \cdot (2 - 8) \mod 26$$

$$= -21 + 26 = 4(E)$$

$$D(F) = 21 \cdot (5 - 8) \mod 26$$

$$= -11 + 26 = 18(P)$$

$$D(E) = 21 \cdot (25 - 8) \mod 26$$

$$= 10(F)$$

$$D(E) = 21 \cdot (4 - 8) \mod 26$$

$$= 0(14)$$

$$D(H) = 21 \cdot (7 - 8) \mod 26$$

$$= 5(P)$$

$$D(W) = 21 \cdot (22 - 8) \mod 26$$

$$= 8(F)$$

$$D(W) = 21 \cdot (22 - 8) \mod 26$$

$$= 8(F)$$

$$D(W) = 21 \cdot (22 - 8) \mod 26$$

$$= 8(F)$$

$$D(W) = 21 \cdot (22 - 8) \mod 26$$

$$= 8(F)$$

$$= 8(F)$$