Feature Selection

Topics Covered

- Importance of Feature Selection
- Filter Methods
- Wrapper Methods
- Embedded Methods
- Difference between Filter and Wrapper methods
- Feature selection examples

What is Feature Selection?

- Feature selection means selecting and retaining only the most important features in the model.
- Feature selection is different from feature extraction.
- Extraction: create a new feature from the existing features.
 - Example: PCA technique to reduce the dimensionality and eliminate redundancy
- Selection: choosing a subset of the original pool of features.

Feature selection

- Given a set of potential features, select some of them and discard the rest.
- Feature selection is applied either to prevent redundancy and/or irrelevancy existing in the features or just to get a limited number of features to prevent from overfitting.

User ID	Gender	Age	EstimatedSalary	Purchased
15624510	Male	19	19000	0
15810944	Male	35	20000	0
15668575	Female	26	43000	1
15603246	Female	27	57000	0
15804002	Male	19	76000	1

feature extraction feature selection

When should we apply feature extraction and selection?

Feature extraction:

- Feature extraction is always needed for ML models.
- We wouldn't need any feature extraction in deep learning neural networks (our algorithm can perform feature extraction by itself).

Feature selection:

- Apply feature selection when there is a redundancy or irrelevancy in dataset, since these affect the model accuracy or simply add noise.
- Feature selection may be performed only to reduce the number of features, in order to favor computing feasibility.

Why Feature Selection is important?

1. Reduces the complexity of a model	6. Better visualization
2. Makes it easier to interpret	7. Reduces training time: It enables the machine learning algorithm to train faster
3. Data reduction	8. Reduces over-fitting
4. Less storage	9. Improves accuracy of the model, if the right subset is chosen
5. Fewest possible assumptions (Occam's razor)	10. Reduce the dimension

Feature Selection Methods

• Feature selection methods can be grouped into three categories:

Filter Methods

- Used as a preprocessing step.
- Selection of features is independent of any machine learning algorithms.
- Features are selected based on their scores in various statistical tests for their correlation with the outcome variable.

Wrapper Methods

- A wrapper evaluates a specific model sequentially using different subsets of features to get the best subset.
- They are highly costly and have a high chance of overfitting, but also a high chance of success, on the other hand.

Wrapper Methods

• These methods are usually computationally very expensive.

- Examples of wrapper methods are
 - Forward feature selection
 - Backward feature elimination
 - Recursive feature elimination etc.

Forward Selection

- Forward selection
 - Starts with no feature in the model.
 - In each iteration, we keep adding the feature which best improves our model till an addition of a new variable does not improve the performance of the model.

Backward Elimination

- Backward elimination
 - We start with all the features
 - Removes the least significant feature at each iteration which improves the performance of the model.
 - We repeat this until no improvement is observed on removal of features.

Recursive Feature elimination

• It is a greedy optimization algorithm which aims to find the best performing feature subset.

• It repeatedly creates models and keeps aside the best or the worst performing feature at each iteration.

• It constructs the next model with the left features until all the features are exhausted.

It then ranks the features based on the order of their elimination.

Embedded Methods

- Embedded methods combine the qualities of filter and wrapper methods.
- It's implemented by algorithms that have their own built-in feature selection methods.

Selecting the best subset

Feature selection using scikit-learn

1. Dropping features which have low variance

2. Univariate feature selection

3. Model based feature selection

4. Feature selection using pipeline

Feature selection using scikit-learn

- 1. Dropping features which have low variance
 - 1. Dropping features with zero variance
 - 2. Dropping features with variance below the threshold variance

1. Dropping features with zero variance

 Variance threshold option drops two features with zero variance.

• Default variance threshold is zero.

VarianceThreshold()

VarianceThreshold(threshold=0.0)

offer	Age	online payment	items
1	35	0	5
1	26	0	4
1	41	0	9
1	34	0	10
1	38	0	3

Two features have zero variance

Dropping features with Zero variance

offer	Age	online payment	items	
1	35	0	5	
1	26	0	4	
1	41	0	9	
1	34	0	10	
1	38	0	3	

Dropping features with low variance (less than threshold)

```
In [56]: # Importing the dataset
dataset = pd.read_csv('data-2.csv')
dataset
```

Out[56]:

	referred	repeat	Age	Promoted	items
0	1	0	35	1	5
1	0	0	26	0	4
2	1	0	41	1	9
3	1	1	34	0	10
4	1	0	38	1	3
5	1	0	40	0	7

referred and repeat have low variance

Dropping features with low variance (less than threshold)

• If we want to drop a feature which contains only 0's 80% of the time or only 1s 80% of the time.

• Then the variance of the feature would be 0.8 * (1-0.8) = 0.16

VarianceThreshold(threshold=0.16)

VarianceThreshold(threshold=(0.8 * (1-0.8)))

Two features referred and repeat have low variance. Either only 1s or 0s for 80% of the time is dropped

2. Univariate feature selection

- The Iris Dataset contains four features
 - (length and width of sepals and petals) of 50 samples of three species of Iris (Iris setosa, Iris virginica and Iris versicolor).
 - These measures were used to create a linear discriminant model to classify the species.

Length of petals: 1.4

Length of sepals: 5.1

Width of sepals: 3.5

Iris Setosa:

Width of petals: 0.2

Iris Versicolor Iris Se

Iris Setosa

Iris Virginica

5.1,3.5,1.4,0.2,Iris-setosa

Univariate Feature Selection

Out[9]: (150, 3)

```
Original dataset
In [7]: from sklearn.feature_selection import SelectKBest
         from sklearn.feature_selection import chi2
                                                                       contains 4
         from sklearn.datasets import load_iris
                                                                       predictors
                                                                       Iris features:
In [8]: iris = load_iris()
                                                                       Length of sepals
         X, y = iris.data, iris.target
                                                                       Width of sepals
         X.shape
                                                                       Length of petals
Out[8]: (150, 4)
                                                                       Width of petals
                                                                       Best 3 predictors
In [9]: #Select 3 best features
                                                                       are retained based
         X_select = SelectKBest(chi2, k=3).fit_transform(X, y)
         X select.shape
                                                                       on chi-square
```

value

Model Based Feature Selection

```
Estimate feature
In [62]: from sklearn.ensemble import RandomForestClassifier
          from sklearn.datasets import load_iris
                                                                      importance using
          from sklearn.feature selection import SelectFromModel
                                                                      RandomForest
          iris = load iris()
                                                                      model to select
         X, y = iris.data, iris.target
                                                                     features.
         X.shape
Out[62]: (150, 4)
In [64]: | clf = RandomForestClassifier(n_estimators=10)
                                                                     n estimators – number
                                                                      of decision trees in the
          clf = clf.fit(X, y)
                                                                     forest.
          clf.feature_importances_
Out[64]: array([0.24504133, 0.04692402, 0.39381251, 0.31422214])
          model = SelectFromModel(clf, prefit = True)
```

```
In [64]: clf = RandomForestClassifier(n_estimators=10)
    clf = clf.fit(X, y)
    clf.feature_importances_

Out[64]: array([0.24504133, 0.04692402, 0.39381251, 0.31422214])
    model = SelectFromModel(clf, prefit = True)
```

SelectFromModel()

- Threshold value mean of all the features. (0.2450+0.0469+0.3938+0.31422/4) =
 0.25
- Features whose importance is greater or equal to 0.25 are kept while the others are discarded.

```
In [65]: model = SelectFromModel(clf, prefit = True)
    X_new = model.transform(X)
    X_new.shape
```

Out[65]: (150, 2)

Out of 4 only 2 features have been retained

```
In [17]: X
Out[17]: array([[5.1, 3.5, 1.4, 0.2],
                [4.9, 3., 1.4, 0.2],
                [4.7, 3.2, 1.3, 0.2],
                [4.6, 3.1, 1.5, 0.2],
                [5., 3.6, 1.4, 0.2],
                [5.4, 3.9, 1.7, 0.4],
                [4.6, 3.4, 1.4, 0.3],
                [5., 3.4, 1.5, 0.2],
                [4.4, 2.9, 1.4, 0.2],
                [4.9, 3.1, 1.5, 0.1],
                [5.4, 3.7, 1.5, 0.2],
                [4.8, 3.4, 1.6, 0.2],
                [4.8, 3., 1.4, 0.1],
                [4.3, 3., 1.1, 0.1],
                [5.8, 4., 1.2, 0.2],
                [5.7, 4.4, 1.5, 0.4],
                [5.4, 3.9, 1.3, 0.4],
                [5.1, 3.5, 1.4, 0.3],
```

```
In [18]: X_new
Out[18]: array([[1.4, 0.2],
                  [1.4, 0.2],
                  [1.3, 0.2],
                  [1.5, 0.2],
                 [1.4, 0.2],
                 [1.7, 0.4],
                  [1.4, 0.3],
                 [1.5, 0.2],
                  [1.4, 0.2],
                 [1.5, 0.1],
                 [1.5, 0.2],
                  [1.6, 0.2],
                  [1.4, 0.1],
                 [1.1, 0.1],
                 [1.2, 0.2],
                  [1.5, 0.4],
                  [1.3, 0.4],
```

Feature Selection Using Pipeline

Pipeline process:

- 1. First features are selected
- 2. Model is built using selected features

Thank you