LISTA DE EXERCÍCIOS

2-4_Estimação

1. O Instituto de Nutrição da América Central e Panamá fez um estudo intensivo de resultados de dietas publicados em revistas científicas. Uma dieta aplicada a 15 pessoas produziu os seguintes níveis de colesterol (em mg/l): 204, 108, 140, 152, 158, 129, 175, 146, 157, 174, 192, 194, 144, 152 e 135. Obtenha o intervalo de confiança, ao nível de 95%, para o verdadeiro teor médio de colesterol.

(142,75; 171,92)

2. A Testosterona é uma droga que tem sido ministrada a atletas com a intenção de aumentar a massa muscular. Um estudo foi conduzido com 22 atletas, onde 11 receberam uma determinada dose da droga, durante um período de seis semanas, e os outros 11 receberam um placebo. Ao final desse período foi medida a largura do músculo (em mm, determinados por raio X). Encontre o intervalo de confiança a 95% para a média de cada população e para a diferença entre as médias.

Indivíduos	1	2	3	4	5	6	7	8	9	10	11
Placebo	3,7	5,2	4,0	4,7	4,3	3,9	4,2	4,9	5,1	4,1	4,0
Droga	13,1	16,5	15,3	15,7	14,1	15.0	15,5	16,1	15,8	14,3	15.2

3. Com interesse de avaliar a largura interna de um entalhe usinado em um pistão, coletou-se uma amostra aleatória de 12 pistões que indicou \overline{x} = 12,258 mm e s²=0,0015. Construa um intervalo de 95% de confiança para a largura média do entalhe.

(12,233; 12,283)

4. O peso de garrafas de vidro apresenta variância conhecida igual a 900g2. Uma amostra aleatória de 20 unidades indica $\bar{x} = 508 \,\mathrm{g}$. Construa um intervalo com 90% de confiança para o peso média dessas garrafas.

(496,97; 519,03)

5. Em um processo químico, a viscosidade do produto resultante segue o modelo normal. A partir da amostra apresentada a seguir, defina o intervalo de confiança, ao nível de 95%, para a viscosidade média.

35,2	36,7	37,5	38,2	38,7	39,5
36,3	37,3	37,8	38,3	39,3	40,1

(37,01; 38,81)

6. Uma máquina é usada para encher pacotes de leite. O volume segue aproximadamente o modelo normal. Uma amostra de 16 potes indicou:

1021	1016	1012	1011	1014	1018	1022	1027
1008	1015	1013	1013	1017	1019	1007	1003

- a) construa um intervalo de 99% para a média;
- b) construa um intervalo de 95% para a média.

a) (1010,29; 1019,21) b) (1011,53; 1017,97)

7. Considere os dados do exercício 2.5. Construa um intervalo de 90% para a variância da viscosidade. Depois converta esse intervalo apresentando-o em termos de desvio padrão.

variância \Rightarrow (1,12; 4,82) desvio padrão \Rightarrow (1,06; 2,20)

8. Considere os dados do exercício 2.6. Construa um intervalo de 90% para o desvio padrão do volume dos pacotes de leite.

variância \Rightarrow (21,96; 75,61) desvio padrão \Rightarrow (4,69; 8,70)

9. Ainda em relação ao exercício 2.6, imagine que há uma segunda máquina de enchimento para a qual uma amostra de 16 pacotes indicou:

1011	1015	1017	1015	1021	1021	1010	1007
1022	1018	1016	1015	1020	1022	1025	1030

Construa um intervalo de 95% para a diferença entre as duas médias das máquinas. Baseado nos resultado desses cálculos você concluiria que as duas máquinas fornecem mesmo volume médio?

(-7,36; 1,23)

10. Um engenheiro de desenvolvimento de um fabricante de pneus está investigando a vida do pneu em relação a um novo componente de borracha. Ele fabricou 40 pneus e testou-os até o fim da vida em um teste na estrada. A média e o desvio padrão da amostra são 61.492 km e 6.085 km, respectivamente. O engenheiro acredita que a vida média desse novo pneu está em excesso em relação a 60.000 km. Obtenha o intervalo de confiança, ao nível de 95%, para a vida média do pneu e conclua a respeito da suposição do engenheiro.

(59.606; 63.378)

11. Um agrônomo realizou um levantamento para estudar o desenvolvimento de duas espécies de árvores, a Bracatinga e a Canafístula. Para esta finalidade foram coletadas duas amostras de tamanhos igual a 10 árvores. Os resultados para altura, em metros, estão descritos abaixo para as duas amostras:

Bracatinga	6,5	6,9	6,9	8,6	8,7	8,2	10,0	10,3	13,4	14,4
Canafístula	9,3	10,1	11,4	15,2	17,2	14,8	15,9	20,6	21,9	23,8

Para verificar a hipótese de que as alturas das duas espécies são diferentes, o agrônomo adotou o seguinte critério. Construir os intervalos com 95% de confiança, para cada uma das espécies. Se os intervalos se sobrepõem (se interceptam) concluir que não há diferenças significativas entre as duas alturas medias, caso contrário, concluir que há diferenças entre as mesmas. Baseado neste critério qual a conclusão do agrônomo?

Bracatinga \to (7,46; 11,32) Canafístula \to (12,47; 19,57)

12. Na fabricação de semicondutores o ataque químico por via úmida é frequentemente usado para remover silicone da parte posterior das pastilhas antes da metalização. A taxa de ataque é uma característica importante nesse processo e é sabido que ela segue uma distribuição normal. Duas soluções diferentes para ataque químico são comparadas, usando duas amostras aleatórias de pastilhas. As taxas observadas de ataque (10-3 polegadas/min) são dadas a seguir:

Solução 1	9,9	9,4	9,3	9,6	10,2	10,6	10,3	10,0	10,3	10,1
Solução 2	10,2	10,6	10,7	10,4	10,5	10,0	10,7	10,4	10,3	-

Os dados justificam a afirmação de que a taxa média de ataque seja a mesma para as duas soluções? Considere que ambas as populações têm variâncias iguais, construa o intervalo de confiança, ao nível de 95%, para a diferença entre as médias e conclua.

(0,117; 0,788)

13. Considere os dados do exercício 2.10. Construa um intervalo de 90% para a variância da vida do pneu. Depois converta esse intervalo apresentando-o em termos de desvio padrão.

variância ⇒ (26.461.477; 56.199.253) desvio padrão ⇒ (5.144; 7.497)

14. Uma amostra aleatória de 250 dispositivos eletrônicos apresentou 27 unidades defeituosas. Estime a fração de não conformes e construa um intervalo de 95% de confiança para o verdadeiro valor da fração de não conformes.

(0,0695; 0,1465)

15. O fornecimento de leite, em litros, em uma Cooperativa de Pelotas, no mês de dezembro de 1979, referente a 180 pequenos produtores, foi o seguinte:

Nú m	Produçã o										
01	150	31	265	61	285	91	285	121	450	151	380
02	140	32	140	62	380	92	290	122	354	152	400
03	400	33	320	63	170	93	500	123	420	153	140
04	250	34	290	64	164	94	500	124	140	154	290
05	200	35	100	65	380	95	350	125	470	155	264
06	400	36	300	66	420	96	500	126	280	156	175
07	400	37	450	67	194	97	140	127	100	157	285
08	400	38	150	68	444	98	194	128	450	158	260
09	450	39	240	69	300	99	300	129	230	159	430
10	285	40	194	70	240	100	300	130	450	160	270
11	500	41	274	71	470	101	400	131	300	161	374
12	280	42	400	72	100	102	250	132	400	162	400
13	150	43	200	73	380	103	500	133	290	163	192
14	350	44	350	74	474	104	300	134	284	164	310
15	194	45	100	75	400	105	230	135	300	165	450
16	450	46	500	76	343	106	194	136	420	166	480
17	200	47	120	77	350	107	330	137	150	167	300
18	474	48	234	78	404	108	250	138	435	168	344
19	170	49	400	79	474	109	284	139	270	169	284
20	284	50	400	80	340	110	434	140	400	170	260
21	280	51	250	81	194	111	194	141	290	171	400
22	100	52	474	82	400	112	238	142	410	172	450
23	254	53	220	83	320	113	285	143	284	173	250
24	285	54	380	84	474	114	160	144	264	174	160
25	100	55	450	85	200	115	320	145	290	175	450
26	334	56	400	86	400	116	400	146	270	176	340
27	194	57	380	87	404	117	140	147	194	177	400
28	270	58	150	88	285	118	300	148	290	178	500
29	380	59	400	89	410	119	180	149	285	179	435
30	400	60	240	90	265	120	400	150	260	180	300

Dimensione uma amostra, com grau de precisão γ = 0,10, com a finalidade de obter o intervalo de confiança a 99% para a média da população. Utilize uma amostra preliminar de tamanho n_1 = 12.

16. Os dados apresentados a seguir referem-se ao peso ao nascer (em kg) de 140 bovinos da raça Ibagé.

Núm.	Peso								
01	18	29	13	57	23	85	26	113	23
02	25	30	19	58	31	86	30	114	23
03	16	31	10	59	25	87	28	115	25
04	10	32	17	60	25	88	27	116	28
05	15	33	12	61	30	89	27	117	28
06	17	34	24	62	30	90	26	118	27
07	20	35	26	63	26	91	30	119	21
08	30	36	18	64	31	92	25	120	23
09	33	37	21	65	30	93	25	121	25
10	34	38	20	66	31	94	25	122	27
11	17	39	20	67	21	95	30	123	24
12	33	40	23	68	25	96	25	124	25
13	34	41	28	69	27	97	25	125	20
14	28	42	20	70	32	98	28	126	24
15	30	43	26	71	11	99	26	127	26
16	25	44	22	72	13	100	30	128	26
17	22	45	18	73	12	101	24	129	21
18	40	46	18	74	15	102	30	130	20
19	23	47	25	75	15	103	25	131	20
20	23	48	23	76	19	104	22	132	28
21	17	49	23	77	11	105	10	133	20
22	36	50	30	78	23	106	16	134	26
23	25	51	26	79	21	107	10	135	22
24	17	52	25	80	33	108	19	136	19
25	36	53	27	81	32	109	10	137	18
26	36	54	23	82	22	110	13	138	21
27	25	55	30	83	25	111	29	139	23
28	20	56	23	84	30	112	23	140	22

a) Sorteie uma amostra de n=35 e determine o intervalo de confiança para μ ao nível de confiança de 0,99. Verifique se μ está incluída no intervalo.

$864,33 \Rightarrow 865$

18. Qual o tamanho da amostra necessário para estimar o tempo médio de atendimento de um serviço com 95% de confiança e precisão de 0,2 min? Uma amostra de 20 tempos foi coletada para estimar o desviopadrão S.

8	10	12	11	13	8	15	8	11	14
12	12	9	7	12	10	11	10	12	8

521,94 ⇒ 522 (faltam 502)

19. Em uma pesquisa eleitoral, 60 das 180 pessoas entrevistadas responderam que votariam no candidato da oposição. Essa amostra é suficiente para estimar a verdadeira proporção de eleitores desse candidato, com uma precisão de 0,04 e confiança 95%?

533,54 ⇒ 534 (faltam 354)

b) Dimensione uma amostra utilizando d = $0.10 \, \overline{x}$ e n_1 = 25, e determine uma estimativa da média do peso ao nascer dos bovinos por ponto e por intervalo, utilizando α = 0.05.

^{17.} Qual o tamanho da amostra necessário para estimar o tempo médio de atendimento de um serviço com desvio-padrão conhecido de σ =3 min com 95% de confiança e precisão de 0,2 min?