Metamorphic grade: The relative T and P conditions under which metamorphic rocks form.

Prograde metamorphism: increase of T and/or P increases on a body of rock.

As metamorphic grade increase, new minerals form

Low-grade metamorphism: 200 to about 300 °C and relatively low P.

Characterized by an abundance of hydrous minerals:

- Clay Minerals (hydrous Al-phyllosilicates)
- Serpentine (Mg₃Si₂O₅(OH)₄)
- Chlorite (Mg,Fe,Al)₆ (Si,Al)₄O₁₀(OH)₈

High-grade metamorphism: T > 320 °C and relatively high P.

With higher T and P – less hydrous minerals, loss of H_2O , more common non-hydrous minerals.

Minerals of higher grade metamorphic rocks:

<u>Muscovite</u> – hydrous, eventually disappears at the highest grade of metamorphism

<u>Biotite</u> – hydrous, stable to high grades of metamorphism.

Pyroxene, Garnet- non hydrous minerals.

Retrograde metamorphism: Mineralogical adjustment of relatively high-grade metamorphic rocks to temperatures lower than those of their initial metamorphism

Mechanism: uplift and cooling of a rock

Retrograde metamorphism much less common than prograde metamorphism.

Should we get back the original pre-metamorphic rocks? Generally, No

Reasons:

- Chemical reactions much slow with decreasing T.
- During prograde metamorphism, fluids (H₂O and CO₂) are driven off, which are necessary to form the hydrous minerals of low-grade rocks.
- More rapid chemical reactions in presence of fluids, they are not available to speed up reactions during retrograde metamorphism.

Metamorphic facies: Groups of minerals (mineral assemblages) that are stable over a range of P and T.

Represents unique sets of mineral assemblages that form under the same P and T conditions in various kinds of rocks.

Provide information about the metamorphic history of a rock.

The high-P/T type
metamorphic facies —
Prehnite-Pumpellyite
facies to blueschist facies
to eclogite facies

Representing a low geothermal gradient caused by a cooling - subduction of cold oceanic crust and sediments.

Intermediate-P/T type metamorphic facies - change from greenschist facies to amphibolite facies to granulite facies.

Representing an intermediate geothermal gradient caused by crustal thickening.

The low-P/T type metamorphic facies series - occurs in an arc -high geothermal gradient, resulting in change from greenschist facies to amphibolite to granulite facies.

Types of metamorphism

1. Contact metamorphism

Results from high T associated with the igneous intrusion.

Metamorphism is restricted to a small zone surrounding the intrusion - metamorphic or contact aureole.

Few mm to several 100s mts wide zone.

The rock produced - fine-grained, no foliation, called a hornfels.

2. Regional metamorphism

Affects large volumes (regions) of rock.

Deformation under differential compressional stress conditions.

Results in metamorphic rocks that are strongly foliated - slates, schists, and gneisses.

Wide range of T (generally 200 to 800 °C) and P (2 to 10 kbar or 5 to 35 km depth, sometimes more)

Regional Metamorphism

 The differential stress results from tectonic forces in areas like continental collision zones.

In the cores of fold/thrust mountain belts or in eroded mountain ranges.

Folding of rocks and thickening of the crust - pushing rocks to deeper levels -

higher T and pressures.

Regional metamorphism terranes. Alps. Convergence of lithosphere plates

Regional metamorphism terranes. Himalayas. Convergence of lithosphere plates

Before Deformation

After Deformation

Regional metamorphism results in forming strongly foliated metamorphic rocks, such as slates, schists, and gneisses.

Porphyroblastic texture

Porphyroblasts (porphyry, plus Greek blastos, to grow):

Relatively large single crystals formed by metamorphic growth in a more fine-grained matrix.

Porphyroblasts - valuable source of information on tectonic & metamorphic evolution.

Key in determination of pressure-temperature-deformation-time (P-T-D-t) paths.

Pre-tectonic	Inter-tectonic	Syn-tectonic	Post-tectonic	
P <d<sub>1</d<sub>	D _n <p<d<sub>n+1</p<d<sub>	D _n ⊃ P	D _n <p< th=""><th></th></p<>	
	2	e 1 2 2	g	Deformation does not cause
	d		h	Deformation causes folding of
- Presence of strain shadows common - Deflection of Se around porphyroblasts - Distinction between pre-, inter- and syn-tectonic porphyroblasts is only possible if inclusions are present			No strain shadows No deflection of Se around porphyroblasts	

Porphyroblastic texture

3. Burial Metamorphism

Due to burial of sedimentary rocks under overlying sediments.

Increase in P and T (> 300 °C) due to depths – several kms

Absence of differential stress – reduced presence of deformation structures.

New minerals grow – mainly zeolites (hydrous aluminosilicate).

Grades into regional metamorphism as T and P increase.

Burial Metamorphism

Increasing P & T

No directed stress

Copyright 1999 John Wiley and Sons, Inc. All rights hisserved.

4. Shock Metamorphism (Impact Metamorphism)

Due to impact of meteorite with the Earth.

Ultrahigh P.

Produce minerals that are only stable at very high pressure –

e.g. SiO₂ polymorphs coesite and stishovite.

Textures - shock lamellae in mineral grains, shatter cones.

Shock lamellae in a quartz grain.

Shatter cone.

5. Cataclastic (dynamic) Metamorphism

Due to mechanical deformation.

Two bodies of rock slide past one another along a fault zone.

Generation of heat and shearing.

Crushing of rock.

Cataclasite – brittle deformation

At greater depths, directed shear forces result in reduction of grain size.

Mylonites, a sheared finer grained rock formed. Due to ductile deformation.

Metamorphic rocks according to protolith composition

Pelitic rock (shale, mudstomne) – Al rich clay minerals.

Al rich metamorphic minerals form - micas, chlorite, garnet, kyanite, sillimanite

& andalusite form.

Metamorphic rocks according to protolith composition

Mafic protolith – basalt, gabbro – Mg, Fe rich, low Si Metamorphis minerals formed – biotite, hornblede, plagioclase.

Basalt

Amphibolite with plagioclase (white) and hornblende (black)

Garnet amphibolite sample with plagioclase (white), hornblende (black) and garnet (red).