Health Insurance Marketplace Data

In this exerice, I am doing some exploratory analysis (4 tasks) on the health insurance marketplace data. The *Health Insurance Marketplace Public Use Files* contain data on health and dental plans offered to individuals and small businesses through the US Health Insurance Marketplace. This data was originally prepared and released by the <u>Centers for Medicare & Medicaid Services (CMS) (https://www.cms.gov/)</u>. Please read the CMS Disclaimer-User Agreement before using this data. Also, please refer to <u>Centers for Medicare & Medicaid Services (https://www.cms.gov/cciio/resources/data-resources/marketplace-puf)</u> (CMS) for data dictionaries of the fields in the data tables.

The data was published in Kaggle by US Department of Health and Human Services. There were some pre-processing steps done to the original data to facilitate analytics. In this exercise, we will use the version sourced from Kaggle. For your convenience, you only need to use the rate.csv.tiny.zip file.

```
In [1]: # Loading all necessary libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

# Configure visualisations
%matplotlib inline
```

Task 1 - Data Loading and Auditing

```
In [2]: ?pd.read_xml
In [3]: # loading the data, doing an initial exploration of the data, and prir
#
df = pd.read_csv('rate.csv.tiny.zip')
df
```

Out[3]:

	BusinessYear	StateCode	IssuerId	SourceName	VersionNum	ImportDate	IssuerId2
0	2015	AZ	98971	HIOS	7	2014-12-10 11:54:40	98971
1	2015	FL	16842	HIOS	6	2015-05-20 14:11:45	16842
2	2014	LA	19636	HIOS	8	2014-01-21 08:29:49	19636
3	2015	ОН	28162	SERFF	4	2014-09-11 12:10:19	28162
4	2016	IN	33380	HIOS	3	2015-08-26 09:56:12	33380
3173606	2014	GA	50988	HIOS	5	2013-09-12 11:27:35	50988
3173607	2015	WV	31274	SERFF	10	2015-01-22	31274

In [4]: df.describe()

Out[4]:

	BusinessYear	IssuerId	VersionNum	IssuerId2	IndividualRate	IndividualTobac
count	3.173611e+06	3.173611e+06	3.173611e+06	3.173611e+06	3.173611e+06	1.2332
mean	2.015034e+03	5.249007e+04	6.863875e+00	5.249007e+04	4.127613e+03	5.4396
std	7.942372e-01	2.640836e+04	3.857042e+00	2.640836e+04	6.146090e+04	2.9539
min	2.014000e+03	1.004600e+04	1.000000e+00	1.004600e+04	0.000000e+00	5.9400
25%	2.014000e+03	3.021900e+04	4.000000e+00	3.021900e+04	2.929000e+01	3.3926
50%	2.015000e+03	4.953200e+04	6.000000e+00	4.953200e+04	2.914900e+02	4.6347
75%	2.016000e+03	7.652600e+04	9.000000e+00	7.652600e+04	4.790000e+02	6.8488
max	2.016000e+03	9.996900e+04	2.400000e+01	9.996900e+04	9.999990e+05	6.4989

In [5]: # what are the columns in rate.csv? df.columns

In [6]: # what are the variable types of columns in rate.csv? df.dtypes

Out[6]:	BusinessYear	int64
	StateCode	object
	IssuerId	int64
	SourceName	object
	VersionNum	int64
	ImportDate	object
	IssuerId2	int64
	FederalTIN	object
	RateEffectiveDate	object
	RateExpirationDate	object
	PlanId	object
	RatingAreaId	object
	Tobacco	object
	Age	object
	IndividualRate	float64
	IndividualTobaccoRate	float64
	Couple	float64
	PrimarySubscriberAndOneDependent	float64
	PrimarySubscriberAndTwoDependents	float64
	PrimarySubscriberAndThreeOrMoreDependents	float64
	CoupleAndOneDependent	float64
	CoupleAndTwoDependents	float64
	CoupleAndThreeOrMoreDependents	float64
	RowNumber	int64
	dtype: object	

```
In [7]: df.StateCode.value_counts()
Out[7]: StateCode
         FL
                426205
         SC
                391130
         ΜI
                255256
                252354
         WI
         0H
                221386
         TX
                214921
         IN
                169086
         PA
                118543
         GΑ
                118214
         IL
                107704
         NC
                 91914
         ΑZ
                 87739
         V۸
                 81258
         AL
                 49003
         0K
                 46320
         NJ
                 43438
         LA
                 43226
         TΑ
                 42809
         WV
                 40674
         ΤN
                 39158
         Μ0
                 37251
         MT
                 37114
         KS
                 28477
         ND
                 26210
         AR
                 21417
         UT
                 21323
         ΑK
                 21086
         NE
                 20213
```

Name: count, dtype: int64

18834

18348

17421

17161

11529

10705

9417

7893

4504

4019

351

SD

ME

ID

0R

WY

MS

NM

NV

NH

DE

ΗI

Extracting the following columns from the data, as we will only look into these columns for further tasks.

- BusinessYear: Year for which plan provides coverage to enrollees.
- StateCode: Two-character state abbreviation indicating the state where the plan is offered.
- IssuerId: Five-digit numeric code that identifies the issuer organization in the Health Insurance Oversight System (HIOS).
- PlanId: Fourteen-character alpha-numeric code that identifies an insurance plan within HIOS.
- Age: Categorical indicator of whether a subscriber's age is used to determine rate eligibility for the insurance plan.

- IndividualRate: Dollar value for the insurance premium cost applicable to a nontobacco user for the insurance plan in a rating area, or to a general subscriber if there is no tobacco preference.
- IndividualTobaccoRate: Dollar value for the insurance premium cost applicable to a tobacco user for the insurance plan in a rating area.

```
In [8]: # extract columns of interest
    rate = df[['BusinessYear', 'StateCode', 'IssuerId','PlanId','Age','Inc
    rate.head()
```

Out[8]:

	BusinessYear	StateCode	IssuerId	PlanId	Age	IndividualRate	IndividualTobacco
0	2015	AZ	98971	98971AZ0020006	25	418.16	43
1	2015	FL	16842	16842FL0120044	42	271.34	32
2	2014	LA	19636	19636LA0220005	56	609.05	74
3	2015	ОН	28162	28162OH0200010	34	34.11	
4	2016	IN	33380	33380IN0020005	59	465.52	69

In [9]: # extract data from the year of interest
rate = rate[rate.BusinessYear == 2014]

check the shape of the extracted dataframe
rate.shape

Out[9]: (949129, 7)

In [10]: # check some statistics about the variables (columns in the dataframe)
 rate.describe()

Out[10]:

	BusinessYear	IssuerId	IndividualRate	IndividualTobaccoRate
count	949129.0	949129.000000	949129.000000	409076.000000
mean	2014.0	50942.830008	13021.135433	560.377404
std	0.0	26054.313142	111880.168965	335.069784
min	2014.0	10191.000000	0.000000	59.400000
25%	2014.0	30045.000000	32.150000	341.480000
50%	2014.0	49193.000000	296.610000	475.960000
75%	2014.0	71268.000000	480.830000	696.250000
max	2014.0	99969.000000	999999.000000	6498.950000

Auditing the data column IndividualRate.

Distribution of IndividualRate values is shown using boxplot and histogram.

```
In [11]: #df['IndividualRate'].describe()
    rate['IndividualRate'].hist(bins=50)
```

Out[11]: <Axes: >


```
In [12]: rate.boxplot(column = 'IndividualRate')
```

Out[12]: <Axes: >

In [13]: rate[rate['IndividualRate'] < 10000].boxplot(column = 'IndividualRate')
Out[13]: <Axes: >

In [14]: rate[rate['IndividualRate'] < 2000].hist(column = 'IndividualRate', bi
Out[14]: array([[<Axes: title={'center': 'IndividualRate'}>]], dtype=object)

IndividualRate

0

Task 2 - Carrier/Issuer and Plans Diversity Across Different States

In this subtask, I investigate the number of carriers and available plan options in different states. To do this, I have calculated some statistics on the number of unique issuers as well as the number of unique plans in different states.

Visualizing results (e.g., using barchart) and communicating my findings, e.g.,

- · Which state has the largest/least number of health insurance issuers or plans?
- Use Google search (or any other information resource you prefer) to investigate whether
 this is related the population size of the state, e.g. whether there are more plans for
 where there are larger populations?

Task 2.1

Which state has the largest/least number of health insurance issuers or plans?

```
In [15]: #states = rate.groupby('StateCode')['IssuerId']
    states = rate.groupby('StateCode').agg(issuers = ('IssuerId', 'nunique'
    print(states)
```

StateCode	issuers	plans
AK	8	86
AL	9	92
AR	10	144
AZ	21	396
DE	9	64
FL	24	415
GA	16	185
IA	11	214
ID	8	149
IL	17	222
IN	11	316
KS	9	105
LA	12	170
ME	6	67
MI	25	350
MO	14	131
MS	6	51
MT	8	108
NC	8	114
ND	9	115
NE	10	156
NH	4	28
NJ	13	167
NM	6	65
ОН	21	478
0K	12	188
PA	25	394
SC	11	124
SD	8	78
TN	8	129
TX	27	284
UT	12	122
VA	18	243
WI	22	497
WV	6	60
WY	6	58

```
In [16]: states.dtypes
```

Out[16]: issuers int64 plans int64

dtype: object

In [18]: states = states.reset_index()
 states

Out[18]:

	StateCode	issuers	plans
0	AK	8	86
1	AL	9	92
2	AR	10	144
3	AZ	21	396
4	DE	9	64
5	FL	24	415
6	GA	16	185
7	IA	11	214
8	ID	8	149
9	IL	17	222
10	IN	11	316
11	KS	9	105
12	LA	12	170
13	ME	6	67
14	MI	25	350
15	МО	14	131
16	MS	6	51
17	MT	8	108
18	NC	8	114
19	ND	9	115
20	NE	10	156
21	NH	4	28
22	NJ	13	167
23	NM	6	65
24	ОН	21	478
25	OK	12	188
26	PA	25	394
27	SC	11	124
28	SD	8	78
29	TN	8	129
30	TX	27	284
31	UT	12	122
32	VA	18	243
33	WI	22	497
34	WV	6	60
35	WY	6	58

```
In [19]: # sort the dataframe by number of issuer and number of plans
states.sort_values(by=['issuers','plans'])
```

Out[19]:

	StateCode	issuers	plans
21	NH	4	28
16	MS	6	51
35	WY	6	58
34	WV	6	60
23	NM	6	65
13	ME	6	67
28	SD	8	78
0	AK	8	86
17	MT	8	108
18	NC	8	114
29	TN	8	129
8	ID	8	149
4	DE	9	64
1	AL	9	92
11	KS	9	105
19	ND	9	115
2	AR	10	144
20	NE	10	156
27	SC	11	124
7	IA	11	214
10	IN	11	316
31	UT	12	122
12	LA	12	170
25	OK	12	188
22	NJ	13	167
15	МО	14	131
6	GA	16	185
9	IL	17	222
32	VA	18	243
3	AZ	21	396
24	ОН	21	478
33	WI	22	497
5	FL	24	415
14	MI	25	350
26	PA	25	394
30	TX	27	284

```
states1 = rate.groupby(['StateCode','IssuerId'])['PlanId']
In [20]:
         states1.count()
Out[20]: StateCode
                    IssuerId
         ΑK
                     21989
                                    40
                     38344
                                 2506
                     38536
                                   115
                     42507
                                    74
                     45858
                                   122
         WY
                     37378
                                   108
                     38921
                                   69
                     47731
                                   145
                     53189
                                  876
                     83964
                                   210
```

In [21]: # above task can also be done by:
 states2 = rate.groupby(['StateCode','IssuerId']).agg(total = ('PlanId'
 states2

Out [21]:

total

Name: PlanId, Length: 450, dtype: int64

StateCode	IssuerId	
AK	21989	40
	38344	2506
	38536	115
	42507	74
	45858	122
WY	37378	108
	38921	69
	47731	145
	53189	876
	83964	210

450 rows × 1 columns

```
In [22]: states3 = rate.groupby('IssuerId').agg(total = ('PlanId','count'))
states3
```

Out [22]:

IssuerId	
10191	2654
10204	153
10207	305
11083	1515
11103	388
99663	813
99708	868
99734	53
99787	6172
99969	4294

total

450 rows × 1 columns

Task 2.2

Whether there are more plans for states with larger populations? [Hint: you might find the data in 'nst-est2016-01.xlsx', which contains the population by state for the year of 2016, to be useful. I provided a reformatted version, the original version can be found here (https://www2.census.gov/programs-surveys/popest/tables/2010-2016/state/totals/).]

In [23]: # reading population data

population_df = pd.read_excel('nst-est2016-01.xlsx', sheet_name='NST01
population_df.sample(10)

/Users/ujjwalkatyal/anaconda3/lib/python3.11/site-packages/openpyxl/worksheet/_read_only.py:79: UserWarning: Unknown extension is not su pported and will be removed

for idx, row in parser.parse():

Out [23]:

	State	2010	2011	2012	2013	2014	2015	2016
20	MD	5788584	5843603	5889651	5931129	5967295	5994983	6016447
17	KY	4348662	4369354	4384799	4400477	4413057	4424611	4436974
27	NE	1830051	1842283	1855725	1868559	1881145	1893765	1907116
23	MN	5311147	5348562	5380285	5418521	5453109	5482435	5519952
38	PA	12712343	12744293	12771854	12781338	12790565	12791904	12784227
51	PR	3721525	3678732	3634488	3593077	3534874	3473181	3411307
26	MT	990641	997821	1005196	1014314	1022867	1032073	1042520
2	AZ	6408312	6467163	6549634	6624617	6719993	6817565	6931071
49	WI	5690263	5709640	5726177	5742854	5758377	5767891	5778708
50	WY	564513	567725	576765	582684	583642	586555	585501

```
In [24]: # extract the data of interest

population_df = population_df[['State',2014]]
population_df.columns = ['State','Population']
population_df
```

Out[24]:

	State	Population
0	AL	4843214
1	AK	736705
2	AZ	6719993
3	AR	2966912
4	CA	38680810
5	СО	5349648
6	СТ	3591873
7	DE	934948
8	DC	659005
9	FL	19888741
10	GA	10087231
11	HI	1416349
12	ID	1633532
13	IL	12867544
14	IN	6595233
15	IA	3108030
16	KS	2899360
17	KY	4413057
18	LA	4647880
19	ME	1330719
20	MD	5967295
21	MA	6749911
22	MI	9915767
23	MN	5453109
24	MS	2992400
25	МО	6060930
26	MT	1022867
27	NE	1881145
28	NV	2833013
29	NH	1328743
30	NJ	8925001
31	NM	2083024
32	NY	19718515
33	NC	9934399
34	ND	739904
35	ОН	11594408
36	OK	3877499

	State	Population
37	OR	3968371
38	PA	12790565
39	RI	1054480
40	SC	4828430
41	SD	852561
42	TN	6544663
43	TX	26944751
44	UT	2941836
45	VT	626984
46	VA	8317372
47	WA	7054196
48	WV	1848514
49	WI	5758377
50	WY	583642
51	PR	3534874

In [25]: # merge two dataframes to compare population and issuers/plans

states_df = states.merge(population_df, left_on = 'StateCode', right_o states_df.head()

Out[25]:

	StateCode	issuers	plans	State	Population
0	AK	8	86	AK	736705
1	AL	9	92	AL	4843214
2	AR	10	144	AR	2966912
3	AZ	21	396	AZ	6719993
4	DE	9	64	DE	934948

```
In [26]: # Plot along the number of issuers and population side by side

fig = plt.figure() # Create matplotlib figure

ax = fig.add_subplot(111) # Create matplotlib axes, 111 means 1x1 grid ax2 = ax.twinx() # Create another axes that shares the same x-axis as

width = 0.4 # define the width of the bar

states_df.issuers.plot(kind='bar', color='red', ax=ax, width=width, postates_df.Population.plot(kind='bar', color='blue', ax=ax2, width=width)

ax.set_xticklabels(states_df.State)
ax.set_ylabel('Number of Issuers')
ax.legend(loc = 'upper left')
ax2.set_ylabel('Population')
ax2.legend(loc = 'upper right')
plt.title('Number of issuers v.s. Population')
plt.show()
```



```
In [27]: # Plot along the number of plans and population side by side

fig = plt.figure() # Create matplotlib figure

ax = fig.add_subplot(111) # Create matplotlib axes, 111 means 1x1 grid ax2 = ax.twinx() # Create another axes that shares the same x-axis as

width = 0.4 # define the width of the bar

states_df.plans.plot(kind='bar', color='yellow', ax=ax, width=width, plants, states_df.Population.plot(kind='bar', color='blue', ax=ax2, width=width, plants, set_xticklabels(states_df.State)
ax.set_xticklabels(states_df.State)
ax.set_ylabel('Number of Plans')
ax.legend(loc = 'upper left')
ax2.set_ylabel('Population')
ax2.legend(loc = 'upper right')
plt.title('Number of plans v.s. Population')
plt.show()
```


Task 3: Carrier/Issuer and Plans Availability of Nonsmoker vs. Smoker Across Different States

- How many issuers offer plans to non-smokers vs. smokers across different states? And,
- How about the number of available plans for non-smokers vs. smokers across different states?
- Do all states provided plans for tobacco users?

Note that non-smokers are paying on the IndividualRate, while smokers/tobacco users will need to pay the IndividualTobaccoRate. [Hint: Therefore, a plan is available to a non-smoker only if the IndividualRate has an entry (not NaN, nor an invalid entry). Similarly, a plan is available to a smoker only if the IndividualTobaccoRate is valid. So we'll have to see how many plans contain valid values in each case.]

Task 3.1

How many issuers offer plans to non-smokers vs. smokers across different states?

In [28]: rate.IndividualTobaccoRate.isna().sum()

Out[28]: 540053

In [29]: rate['Smoker'] = rate['IndividualTobaccoRate'].apply(lambda x: True if rate['Smoker'].value_counts()

Out[29]: Smoker

False 540053 True 409076

Name: count, dtype: int64

In [30]: rate.IndividualRate.isna().sum()

Out[30]: 0

In [31]: # assuming the plan is not available for non-smokers if individual rat

rate['Non-smoker'] = rate['IndividualRate'].apply(lambda x: True if x<
rate['Non-smoker'].value_counts()</pre>

Out[31]: Non-smoker

True 935424 False 13705

Name: count, dtype: int64

In [32]: rate.head()

Out[32]:

	BusinessYear	StateCode	IssuerId	PlanId	Age	IndividualRate	IndividualTobacco
2	2014	LA	19636	19636LA0220005	56	609.05	7
7	2014	IN	50816	50816IN0110050	52	646.50	9
9	2014	FL	30115	30115FL0050001	59	33.47	
21	2014	SC	49532	49532SC0380009	37	297.64	3
24	2014	IN	85320	85320IN0010060	31	384.82	4

 $Issuers_for_NonSmokers \quad Issuers_for_Smokers \quad Issuers_for_both$

Out[33]:

	Issuers_tor_Non5mokers	issuers_tor_Smokers	Issuers_for_both
StateCode			
AK	8	1	1
AL	9	2	2
AR	10	2	2
AZ	21	8	8
DE	9	3	3
FL	24	11	11
GA	16	5	5
IA	11	4	4
ID	8	4	4
IL	17	8	8
IN	11	4	4
KS	9	4	4
LA	12	5	5
ME	6	1	1
MI	25	10	10
МО	14	4	4
MS	6	2	2
МТ	8	3	3
NC	8	2	2
ND	9	3	3
NE	10	4	4
NH	4	1	1
NJ	13	0	0
NM	6	2	2
ОН	21	11	11
ок	12	5	5
PA	25	14	14
sc	11	4	4
SD	8	3	3
TN	8	4	4
TX	27	11	11
UT	12	5	5
VA	18	6	6
WI	22	11	11
wv	6	1	1

Issuers_for_NonSmokers Issuers_for_Smokers Issuers_for_both

StateCode			
WY	6	2	2

```
In [34]: # Plot along the number of plans and population side by side

fig = plt.figure() # Create matplotlib figure

ax = fig.add_subplot(111) # Create matplotlib axes, 111 means 1x1 grid ax2 = ax.twinx() # Create another axes that shares the same x-axis as

width = 0.4 # define the width of the bar

agg_result.Issuers_for_NonSmokers.plot(kind='bar', color='orange', ax=agg_result.Issuers_for_Smokers.plot(kind='bar', color='blue', ax=ax2,

ax.set_xticklabels(agg_result.index)
ax.set_ylabel('Issuers for Non-smokers')
ax.legend(loc = 'upper left')
ax2.set_ylabel('Issuers for Smokers')
ax2.legend(loc = 'upper right')
plt.title('Number of issuers for smoker and nonsmoker plans')
plt.show()
```


Task 3.2

How many available plans for non-smokers vs. smokers across different states?

Out[35]:

	Plans_for_NonSmokers	Plans_for_Smokers	Plans_for_both
StateCode			
AK	83	24	24
AL	92	17	17
AR	144	60	60
AZ	395	172	172
DE	64	32	32
FL	415	267	267
GA	185	80	80
IA	214	105	105
ID	147	101	101
IL	222	167	167
IN	316	248	248
KS	104	70	70
LA	170	101	101
ME	67	30	30
МІ	350	70	70
МО	131	51	51
MS	51	34	34
МТ	106	43	43
NC	114	65	65
ND	114	33	33
NE	155	88	88
NH	28	11	11
NJ	167	0	0
NM	65	31	31
ОН	478	248	248
ок	187	59	59
PA	394	263	263
sc	124	64	64
SD	77	35	35
TN	129	92	92
TX	284	132	132
UT	122	93	93
VA	243	108	108
WI	497	293	293
wv	60	17	17

Plans_for_NonSmokers Plans_for_Smokers Plans_for_both

StateCode			
WY	56	30	30

```
In [36]: # Plot along the number of plans and population side by side

fig = plt.figure() # Create matplotlib figure

ax = fig.add_subplot(111) # Create matplotlib axes, 111 means 1x1 grid ax2 = ax.twinx() # Create another axes that shares the same x-axis as

width = 0.4 # define the width of the bar

agg_result.Plans_for_NonSmokers.plot(kind='bar', color='orange', ax=ax agg_result.Plans_for_Smokers.plot(kind='bar', color='blue', ax=ax2, wi)

ax.set_xticklabels(agg_result.index)
ax.set_ylabel('Plans for Non-smokers')
ax.legend(loc = 'upper left')
ax2.set_ylabel('Plans for Smokers')
ax2.legend(loc = 'upper right')
plt.title('Number of plans for smokers and nonsmokers')
plt.show()
```


Task 3.3Do all states provide plans for tobacco users?

Name: NJ, dtype: int64

Task 4: Rates for non-smoker vs. smoker across different states

In this task, our focus is the cost/rates of insurance plans. Let us compare the average insurance rates of non-smokers vs. smokers in different states.

Visualize your results and communicate your findings, e.g., do non-smokers and smokers pay the same rate? If not, in general, what are the differences? Who pays higher rates?

In [38]: con = (rate.IndividualRate > 0) & (rate.IndividualRate < 999999) # rul
average_rates = rate[con].groupby('StateCode').agg(Avg_NonSmoker_rate
average_rates</pre>

Out[38]:

StateCode		
AK	683.664118	606.660287
AL	292.116689	380.041816
AR	187.881361	525.105899
AZ	382.443180	541.843427
DE	314.308516	532.064088
FL	273.067946	505.538469
GA	279.795165	582.243692
IA	354.051612	528.016333
ID	336.312451	521.410846
IL	393.393717	508.769218
IN	469.773866	762.608982
KS	285.873518	373.417336
LA	394.196412	538.564046
ME	382.643484	615.298151
MI	286.705275	540.092981
МО	161.409512	485.745286
MS	327.169414	559.800508
MT	265.990873	526.850403
NC	373.424935	476.402448
ND	337.518592	424.306743
NE	338.980641	500.738388
NH	304.444693	464.976016
NJ	431.422011	NaN
NM	261.869135	399.143226
ОН	415.881444	524.070148
OK	369.894600	417.382705
PA	358.728541	454.234349
sc	319.387994	513.742740
SD	440.347467	532.582193
TN	467.101196	401.589242
TX	259.457601	484.588645
UT	473.394081	344.416536
VA	418.213589	775.210769
WI	473.797134	598.512193
wv	204.914917	480.428901

StateCode

WY 456.480950 848.233723

```
In [39]: average_rates.plot.bar(
    rot=0,
    width=0.8,
    color=['orange','blue'],
    figsize=(12,6),
    title = "Average individual rate for non-smoker vs. smoker plans")
```


In [40]: # Comparing rates for plans available for both smokers and non-smokers
con = (rate.Smoker == True) & (rate['Non-smoker'] == True)
average_rates = rate[con].groupby('StateCode').agg(Avg_NonSmoker_rate
average_rates

Out[40]:

StateCode		
AK	564.793062	606.660287
AL	345.499875	380.041816
AR	437.761672	525.105899
AZ	455.798356	541.843427
DE	465.689726	532.064088
FL	417.501342	505.538469
GA	442.319483	582.243692
IA	387.171724	528.016333
ID	395.687430	521.410846
IL	457.991153	508.769218
IN	518.701204	762.608982
KS	315.411053	373.417336
LA	450.009079	538.564046
ME	474.318551	615.298151
MI	478.789978	540.092981
МО	395.106503	485.745286
MS	483.508317	559.800508
MT	390.864851	526.850403
NC	397.001899	476.402448
ND	366.814721	424.306743
NE	380.863588	500.738388
NH	357.521220	464.976016
NM	335.105853	399.143226
ОН	422.768607	524.070148
ОК	355.124087	417.382705
PA	402.001204	454.234349
SC	451.198090	513.742740
SD	481.386609	532.582193
TN	341.955235	401.589242
TX	384.854816	484.588645
UT	309.000808	344.416536
VA	648.146206	775.210769
WI	492.772596	598.512193
wv	431.887361	480.428901
WY	589.798519	848.233723

```
In [41]: average_rates.plot.bar(
    rot=0,
    width=0.8,
    color=['orange','blue'],
    figsize=(12,6),
    title = "Average individual rate for non-smoker vs. smoker plans")
```


