

<u>Homework 2: Statistical Models,</u> <u>Estimation, and Confidence</u>

课程 > Unit 2 Foundation of Inference > Intervals

3. Application of Delta Method on

> Gamma Variables

3. Application of Delta Method on Gamma Variables

The **Gamma distribution Gamma** (α, β) with paramters $\alpha > 0$, and $\beta > 0$ is defined by the density

$$f_{lpha,eta}\left(x
ight)=rac{eta^{lpha}}{\Gamma\left(lpha
ight)}x^{lpha-1}e^{-eta x},\quad ext{for all}x\geq0.$$

The Γ function is defined by

$$\Gamma \left(s
ight) =\int_{0}^{\infty }x^{s-1}e^{-x}dx.$$

As usual, the constant $rac{eta^{lpha}}{\Gamma(lpha)}$ is a normalization constant that gives $\int_0^{\infty}f_{lpha,eta}\left(x
ight)dx=1.$

In this problem, let X_1,\ldots,X_n be i.i.d. Gamma variables with

$$\beta = \frac{1}{\alpha} \text{for some } \alpha > 0.$$

That is, $X_1,\ldots,X_n\sim \mathrm{Gamma}\left(lpha,rac{1}{lpha}
ight)$ random variables for some lpha>0. The pdf for X_i is therefore

$$f_{lpha}\left(x
ight)=rac{1}{\Gamma\left(lpha
ight)lpha^{lpha}}x^{lpha-1}e^{-x/lpha},\quad ext{for all }x\geq0.$$

(a)

1/1 point (graded)

What is the limit, in probability, of the sample average \overline{X}_n of the sample in terms of lpha?

$$\overline{X}_n \xrightarrow[n \to \infty]{\mathbf{P}}$$
 alpha^2 $\qquad \qquad \checkmark$ Answer: alpha^2

STANDARD NOTATION

Solution:

By the weak law of large numbers

$$\overline{X}_n \xrightarrow[n \to \infty]{\mathbf{P}} \mathbb{E}\left[X_i\right].$$

In general, the expectation for a Gamma variable with parameters lpha,eta is $\dfrac{lpha}{eta}$, since

$$egin{aligned} \int_0^\infty x f_{lpha,eta}\left(x
ight) dx &=& rac{eta^lpha}{\Gamma\left(lpha
ight)} \int_0^\infty x^lpha e^{-eta x} \ &=& rac{eta^lpha}{\Gamma\left(lpha
ight)} \left(rac{x^lpha e^{-eta x}}{-eta}igg|_0^\infty - \int_0^\infty \left(lpha x^{lpha-1}
ight) \left(rac{e^{-eta x}}{-eta}
ight) dx
ight) &=& rac{lpha}{eta}. \end{aligned}$$

Hence, for $X_i \sim \operatorname{Gamma}\left(\alpha, \frac{1}{lpha}\right)$, we have

你已经尝试了1次(总共可以尝试3次)

• Answers are displayed within the problem

(b)

1/1 point (graded)

Use the result from the previous problem to give a consistent estimator $\hat{\pmb{lpha}}$ of \pmb{lpha} in terms of $\overline{\pmb{X}}_{\pmb{n}}$.

(Enter barX_n for $\overline{m{X}}_{m{n}}$)

$$\hat{a} =$$
 sqrt(barX_n) \checkmark Answer: sqrt(barX_n)

Solution:

From the previous problem, we know that $\overline{X}_n \xrightarrow{n \to \infty} \alpha^2$. By the continuous mapping theorem, $\hat{\alpha} = \sqrt{\overline{X}_n} \xrightarrow{n \to \infty} \sqrt{\alpha^2} = \alpha$ since $\alpha > 0$

提交

你已经尝试了1次(总共可以尝试3次)

• Answers are displayed within the problem

(c)

3/3 points (graded)

For the Delta method to apply, at what value of x does y need to be continuously differentiable? (Your answer should be in terms of x.)

$$x = \begin{bmatrix} \text{alpha^2} \end{bmatrix}$$
 \checkmark Answer: alpha^2

What distribution does $\sqrt{n}\hat{\alpha}$ converge to as $n \to \infty$?

- Gamma distribution
- Normal distribution
- None of the above

What is its asymptotic variance of $\hat{\alpha}$?

$$\mathsf{Var}\left(\sqrt{n}\hat{\alpha}\right) = \mathsf{Var}\left(\sqrt{n}\left(\hat{\alpha} - \alpha\right)\right) =$$
 alpha/4 $\frac{\alpha}{4}$

STANDARD NOTATION

Solution:

The Delta method would give

$$\sqrt{n}\left(\hat{lpha}-lpha
ight)=\sqrt{n}\left(\sqrt{\overline{X}_n}-lpha
ight)rac{n o\infty}{d} \mathcal{N}\left(0,\left(g'\left(\mathbb{E}\left[X_i
ight]
ight)
ight)^2\!\mathsf{Var}\left(X_i
ight)
ight)=\mathcal{N}\left(0,\left(g'\left(lpha^2
ight)
ight)^2\!\mathsf{Var}\left(X
ight)
ight) \qquad where g\left(x
ight)=\sqrt{x}$$

if g is continuously differentiable at α^2 . Indeed, since $g'(x) = \frac{1}{2\sqrt{x}}$ exists and is continuous for all x > 0, g' is continuously differentiable at any α^2 value. Hence, the Delta method does apply.

To compute the asymptotic variance $\left(g'\left(lpha^2
ight)
ight)^2$ Var (X_i) , we need to compute $g'\left(lpha^2
ight)$ and Var (X_i) .

$$g'\left(lpha^2
ight) \; = \; rac{1}{2\sqrt{lpha^2}} \; = \; rac{1}{2lpha}$$

In general, the variance for a Gamma variable X with parameters lpha,eta is $rac{lpha}{eta^2}$, since

$$\begin{split} \mathbb{E}\left[X^2\right] &= \int_0^\infty x^2 f_{\alpha,\beta}\left(x\right) dx \ = \ \frac{\beta^\alpha}{\Gamma\left(\alpha\right)} \int_0^\infty x^{\alpha+1} e^{-\beta x} \\ &= \ \frac{\beta^\alpha}{\Gamma\left(\alpha\right)} \left(\frac{x^{\alpha+1} e^{-\beta x}}{-\beta} \Big|_0^\infty - \int_0^\infty \left(\left(\alpha+1\right) x^\alpha\right) \left(\frac{e^{-\beta x}}{-\beta}\right) dx \right) \\ &= \ \frac{\beta^\alpha}{\Gamma\left(\alpha\right)} \left(\frac{\alpha+1}{\beta} \int_0^\infty x^\alpha e^{-\beta x} dx \right) \\ &= \frac{\alpha+1}{\beta} (\mathbb{E}\left[X\right]) = \frac{\alpha+1}{\beta} \left(\frac{\alpha}{\beta}\right) \\ \mathsf{Var}\left(X\right) \ &= \ \mathbb{E}\left[X^2\right] - (\mathbb{E}\left[X\right])^2 \\ &= \ \frac{\alpha+1}{\beta} \left(\frac{\alpha}{\beta}\right) - \left(\frac{\alpha}{\beta}\right)^2 = \frac{\alpha}{\beta^2} \end{split}$$

In this problem, eta=1/lpha, hence

$$Var(X_i) = \alpha^3$$
.

Putting these together, the asymptotic variance is

$$\left(g'\left(lpha^2
ight)
ight)^2 \mathsf{Var}\left(X_i
ight) \ = \ rac{1}{4lpha^2} \left(lpha^3
ight) \ = \ rac{lpha}{4}.$$

提交

你已经尝试了1次(总共可以尝试3次)

• Answers are displayed within the problem

(d)

4.0/4.0 points (graded)

Using the previous part, find confidence intervals for α with asymptotic level 90% using both the "solving" and the "plug-in" methods. Use n=25, and $\overline{X}_n=4.5$.

(Enter your answers accurate to 2 decimal places. Use the Gaussian estimate $q_{0.05} pprox 1.6448$ for best results.)

$$\mathcal{I}_{\text{solve}} = \begin{bmatrix} 1.89506 \\ \text{Answer: 1.89,} \end{bmatrix}$$
 \checkmark Answer: 1.89, $\begin{bmatrix} 2.37459 \\ \text{Answer: 2.37} \end{bmatrix}$ \checkmark Answer: 1.88, $\begin{bmatrix} 2.1213 - 1.6648 * 0.7282/5 \\ \text{Answer: 1.88,} \end{bmatrix}$

STANDARD NOTATION

Solution:

Recall from the last part that

$$\sqrt{n}\left(\hat{lpha}-lpha
ight) \stackrel{n o\infty}{\longrightarrow} \; \mathcal{N}\left(0, au^2
ight) \qquad ext{where } au^2=rac{lpha}{4}$$

This implies

$$rac{\sqrt{n}}{ au}(\hat{lpha}-lpha) \qquad \qquad rac{n o\infty}{d.}$$

 $\mathcal{N}\left(0,1
ight) ext{where } au^2 = rac{lpha}{4}$

Therefore, following the usual procedure for confidence intervals, for large n, approximately

$$\mathbf{P}\left(\hat{lpha}-q_{0.05}rac{ au}{\sqrt{n}}$$

Plugging in the asymptotic variance $au=\sqrt{lpha}/2$ gives

$$\mathbf{P}\left(\hat{lpha}-q_{0.05}rac{\sqrt{lpha}}{2\sqrt{n}}$$

We now go through the three methods of solving for the confidence interval:

- 1. Conservative bound: Since $\sqrt{\alpha}$ is not bounded, the conservative bound method does not give a confidence interval.
- 2. Solving for α : we need to solve the following for α :

$$egin{array}{lll} |\hat{lpha}-lpha| &<& q_{0.05}rac{ au}{\sqrt{n}}=q_{0.05}rac{\sqrt{lpha}}{2\sqrt{n}} \ &\Longleftrightarrow& (\hat{lpha}-lpha)^2 &<& q_{0.05}^2rac{lpha}{4n} \ &\Longleftrightarrow& lpha^2-\left(2\hat{lpha}+rac{q_{0.05}^2}{4n}
ight)+\hat{lpha}^2 &=& 0 \end{array}$$

where $\hat{lpha}^2=\overline{X}_n=4.5$, and $q_{0.05}=1.6448$. Using the quadratic formula or software, we get the confidence interval

$$\mathcal{I}_{ ext{solve}} = [1.89, 2.37]$$

^{3.} Plug-in: Since $\hat{lpha}^2=\overline{X}_n=4.5$, the plug-in confidence interval is

$$egin{align} \mathcal{I}_{ ext{plug-in}} &=& \left[\hat{lpha} - q_{0.05} rac{\sqrt{\hat{lpha}}}{2\sqrt{n}}, \hat{lpha} + q_{0.05} rac{\sqrt{\hat{lpha}}}{2\sqrt{n}}
ight] \ &=& \left[1.88, 2.36
ight] \end{array}$$

提交

你已经尝试了2次(总共可以尝试3次)

• Answers are displayed within the problem

讨论

显示讨论

主题: Unit 2 Foundation of Inference:Homework 2: Statistical Models, Estimation, and Confidence Intervals / 3. Application of Delta Method on Gamma Variables