Задачи по линейна алгебра

Задача 1. Намерете тригонометричния вид на комплексното число $\frac{(\sqrt{3}-i)^{15}}{(1+i)^8}$.

Задача 2. Решете уравнението $z^4 = \frac{1-i}{1+i\sqrt{3}}$.

Задача 3. * Нека $x \in (0; 2\pi)$. Докажете, че:

a)
$$\cos x + \cos 2x + \ldots + \cos nx = \frac{\sin \frac{nx}{2} \cos \frac{(n+1)x}{2}}{\sin \frac{x}{2}}$$
;

b)
$$\sin x + \sin 2x + \ldots + \sin nx = \frac{\sin \frac{nx}{2} \sin \frac{(n+1)x}{2}}{\sin \frac{x}{2}}$$
.

Задача 4. Решете системата:

$$\begin{cases} 2x_1 + 3x_2 - 5x_3 + x_4 = 2 \\ 2x_1 + 3x_2 - x_3 + 3x_4 = 8 \\ 6x_1 + 9x_2 - 7x_3 + 7x_4 = 18 \\ 4x_1 + 6x_2 - 12x_3 + x_4 = 1 \end{cases}$$

Задача 5. Решете системата в зависимост от стойностите на параметъра λ :

$$\begin{cases} x + y - 2z &= 1\\ 2x + y - (\lambda + 4)z &= 3\\ 3x + (1 - \lambda)y - 6z &= 2\lambda + 7 \end{cases}$$

Задача 6. За кои стойности на λ и μ системата

$$\begin{cases} 4x_1 + 3x_2 + 3x_3 - 2x_4 & = \lambda \\ -x_1 - x_2 - x_3 + x_4 & = 2 \\ -19x_1 - 19x_2 - 20x_3 + (11 + \mu)x_4 & = 6 - 2\lambda \\ 4x_1 + 7x_2 + 8x_3 + x_4 & = 2 \end{cases}$$

е несъвместима?

Задача 7. Да се провери, че следните множества образуват линейни пространства над \mathbb{R} относно обичайните операции:

a)
$$U = \{(x, y, z) \in \mathbb{R} \mid x - y = y - 2z = 0\},\$$

b)
$$V = \{ \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \mid a_{12} = a_{21}, \ a_{13} = a_{31}, \ a_{23} = a_{32} \};$$

cst) безкрайните редици, които са аритметични прогресии.

Задача 8. За кои $\lambda \in \mathbb{R}$, векторът $b=(2,\lambda,5,5)$ е линейна комбинация на векторите $a_1=(1,2,3,4),\ a_2=(7,14,20,27)$ и $a_3=(5,10,16,19)$?

Задача 9. Да се намери ранга на системата вектори $v_1 = (1-a,1,1,1)$, $v_2 = (1,1-a,-1,-1)$, $v_3 = (1,-1,1-a,-1)$ и $v_4 = (1,-1,-1,1-a)$ в зависимост от стойностите на параметъра a.

Задача 10. * Намерете ранга на множеството вектори от \mathbb{R}^n , където b е параметър:

$$v_1 = (b+1, b, b, \dots, b)$$

$$v_2 = (b, b + \frac{1}{2}, b, \dots, b)$$

$$v_3 = (b, b, b + \frac{1}{3}, \dots, b)$$

$$v_n = (b, b, b, \dots, b + \frac{1}{n})$$

Задача 11. Векторите $a_1=(3,1,-4)$, $a_2=(2,5,6)$ и $a_3=(1,4,8)$ образуват ли базис на линейното пространство \mathbb{R}^3 ?

Задача 12. Допълнете до базис на \mathbb{R}^4 множеството $v_1 = (1, 2, -1, 3), v_2 = (-1, -2, 1, 1).$

Задача 13. Намерете размерността и фундаментална система решения на хомогенната система

$$\begin{cases} x_1 + x_2 - 2x_3 + x_4 = 0 \\ 2x_1 - x_2 + x_3 + x_4 = 0 \\ 3x_1 - x_3 + 2x_4 = 0 \end{cases}$$

Задача 14. Докажете, че $a_1=(1,2,3),\ a_2=(2,5,7),\ a_3=(3,7,11)$ образуват базис на \mathbb{R}^3 и намерете координатите на (1,1,1) спрямо този базис.

Задача 15. Нека $U = \mathbf{l}(v_1, v_2, v_3)$, където $v_1 = (1, 1, -3, 1)$, $v_2 = (2, -1, 0, -1)$, $v_3 = (1, -1, 1, -1)$. Представате U като множеството от решения на хомогенна система.