Universidad de la República - Facultad de Ingeniería - IMERL: Matemática Discreta 2, semipresencial

SEGUNDO PARCIAL - 30 DE NOVIEMBRE DE 2017. DURACIÓN: 4 HORAS

Para cada pregunta o ejercicio, deben presentar claramente el razonamiento y cálculos realizados para obtener su respuesta final. Si una implicancia es válida debido a algún teorema, proposición o propiedad, deben especificarlo (nombre del teorema, lema, etc.) Presentar una respuesta final a la pregunta sin justificación carece de validez.

Ejercicio 1.

- a. Probar que 2 es raíz primitiva módulo 19.
- **b**. Sea p es primo y g una raíz primitiva módulo p. Si m es el orden de g en $U(p^2)$, probar que $p-1\mid m$.
- c. Hallar una raíz primitiva módulo $19^2 = 361$.
- **d**. Probar que si x es un entero impar y p es un primo impar, entonces que $x^m \equiv 1 \pmod{2p^2} \Leftrightarrow x^m \equiv 1 \pmod{p^2}$.
- e. Hallar una raíz primitiva módulo 722.

Ejercicio 2. Sea G = U(241) y $H = \{h \in G, \text{ tal que } o(h) \mid 24\}.$

- **a.** Probar que si $x \notin H$ y $x^2 \in H$ entonces $o(x) \in \{16, 48\}$.
- **b.** Probar que #H = 24 (sugerencia: 241 es primo).
- c. Probar que $H = \langle \overline{2} \rangle$ y listar los elementos de H.
- **d**. Probar, utilizando lo anterior, que $o(\overline{11}) = 48$.
- e. Sabiendo que $10^5 \equiv 2^{20} \pmod{241}$, hallar $o(\overline{10})$.
- f. Hallar (justificando) una raíz primitiva módulo 241 (puede quedar expresada como producto de potencias).
- g. Para utilizar el método Diffie Hellman de intercambio de 5 clave, Ana y Bruno eligen g una raìz primitiva módulo 241. Si Ana elige el exponente a=50 y Bob elige el exponente b=56, probar que la clave fijada es k=15 o k=225.

Ejercicio 3. Sea G un grupo y H < G. Consideramos en G la relación de equivalencia $g \sim k \Leftrightarrow gk^{-1} \in H$ (NO es necesario verificar que es relación de equivalencia).

- a. Probar que si C es una clase de equivalencia, entonces #C = |H|.
- **b.** Probar que si $F: G \to A$ es un homomorfismo de grupos y $H = \ker(F)$ entonces para $g, k \in G$ se tiene que $g \sim k \Leftrightarrow F(g) = F(k)$.
- c. Enunciar y demostrar el Teorema de órdenes para homomorfismos de grupos.
- **d**. Probar que si $F: G \to A$ es un homomorfismo sobreyectivo entre grupos finitos, entonces $a^{|G|} = e_A$ para todo $a \in A$.

Universidad de la República - Facultad de Ingeniería - IMERL Matemática Discreta 2

SEGUNDO PARCIAL - 29 DE JUNIO DE 2017. DURACIÓN: 3 HORAS

El parcial es sin material y sin calculadora.

Ejercicio 1. Sea $g \in G$ tal que o(g) = n

- a. Probar que para todo $m \in \mathbb{Z}$ se cumple $g^m = e \iff n \mid m$.
- **b**. Probar que $g^a = g^b \iff a \equiv b \pmod{n}$.
- **c.** Probar que $|\langle g \rangle| = n$.
- d. Usar el Teorema de Lagrange para probar que si G es finito, entonces $n \mid |G|$.

Solución.

- a. (\Rightarrow) Si $g^m = e$, dividiendo m entre n tenemos que m = nq + r con $0 \le r < n$. Por lo tanto $e = g^m = g^{nq+r} = (g^n)^q g^r = e^q g^r = g^r$. En otras palabras $g^r = e$, pero n es el menor entero positivo que cumple $g^n = e$, y como $0 \le r < n$ debe ser r = 0. Luego, m = nq y $n \mid m$.
 - (\Leftarrow) Si m = nq, entonces $g^m = g^n q = (g^n)^q = e^q = e$.
- **b.** $g^a = g^b \Leftrightarrow g^{a-b} = e \stackrel{\text{(a)}}{\iff} n \mid a b \Leftrightarrow a \equiv b \pmod{n}$.
- **c.** Por la parte anterior $\langle g \rangle = \{g^k : k \in \mathbb{Z}\} = \{g^0, g^1, \dots, g^{n-1}\}$, donde los elementos g^0, g^1, \dots, g^{n-1} son todos distintos. Concluimos que $|\langle g \rangle| = n$.
- **d**. Como $\langle g \rangle$ es un subgrupo de G, el Teorema de Lagrange implica que $n = |\langle g \rangle| \mid |G|$.

Ejercicio 2.

- a. Probar que 11 es una raiz primitiva módulo 71.
- b. Aldo y Beatriz eligen p=71 y g=11 para intercambiar claves utilizando el método de Diffie y Hellman. Beatriz elige m=7 y Aldo le envía el número $g^n\equiv 61\pmod{71}$. ¿Cuál es la clave que acuerdan?

Solución.

- a. Como 71 es primo $\varphi(71) = 70 = 2 \cdot 5 \cdot 7$. Entonces alcanza probar que $11^{10} \not\equiv 1 \pmod{71}$, que $11^{14} \not\equiv 1 \pmod{71}$, y que $11^{35} \not\equiv 1 \pmod{71}$. En efecto calculamos $11^2 \equiv 50$, $11^4 \equiv 50^2 \equiv 15$, $11^8 \equiv 15^2 \equiv 12$, $11^{16} \equiv 12^2 \equiv 2$, $11^{32} \equiv 2^2 \equiv 4$. Ahora $11^{10} \equiv 11^8 \cdot 11^2 \equiv 32 \not\equiv 1$, $11^{14} \equiv 11^{10} \cdot 11^4 \equiv 54 \not\equiv 1$, y $11^{35} \equiv 11^{32} \cdot 11^2 \cdot 11 \equiv 70 \not\equiv 1$.
- **b.** La clave que acuerdan es $g^{nm} = (g^n)^m \equiv 61^7 \pmod{71}$. Calculamos $61^2 \equiv 29$, $61^4 \equiv 29^2 \equiv 60$, y tenemos $61^7 \equiv 61 \cdot 61^2 \cdot 61^4 \equiv 60 \cdot 10 \cdot 29 \equiv 66 \pmod{71}$.

Ejercicio 3. Alicia y Beto quieren comunicarse con el método ElGamal. A tales efectos eligen un primo p y una raíz primitiva g módulo p. Alicia elige un entero a como su clave privada y calcula $h \equiv g^a \pmod{p}$ como su clave pública. Beto quiere enviar un mensaje $m \in \mathbb{Z}_p$ a Alicia.

- a. Describir el algoritmo de cifrado E que debe usar Beto.
- **b**. Describir la función de descifrado D que debe usar Alicia.
- c. Demostrar que D(E(m)) = m para todo $m \in \mathbb{Z}_p$.

Solución.

- a. Beto elige un entero b secreto (utilizable una única vez) y calcula $r \equiv g^b \pmod{p}$ y $c \equiv h^b \cdot m \pmod{p}$, obteniendo E(m) = (r, c).
- **b**. Ana calcula $D(r,c) = c \cdot r^{-a} \pmod{p}$
- $\mathbf{c}. \ D(E(m)) \equiv D(g^b, h^b \cdot m) \equiv (h^b \cdot m) \cdot (g^b)^{-a} \equiv (g^a)^b \cdot m \cdot g^{-ab} \equiv m \cdot (g^{ab} \cdot g^{-ab}) \equiv m \pmod{p}$

Ejercicio 4. Consideramos el grupo dihedral D_3 .

- a. Describir todos los elementos de D_3 indicando su orden.
- b. Sean $u, v \in D_3$ dos elementos distintos de orden 2. Probar que uv tiene orden 3.
- c. Consideramos la función $f: D_3 \to D_3$ dada por $f(x) = x^2$. ¿Es f un homomorfismo?
- **d**. Describir todos los homomorfismos $h: \mathbb{Z}_6 \to D_3$.

Solución.

- a. $D_3 = \{e, r, r^2, s, sr, sr^2\}$ donde r y r^2 son rotaciones y tienen orden 3, mientras que s, sr y sr^2 son simetrías axiales y tienen orden 2.
- b. Como u y v tienen orden 2 son simetrías axiales. Entonces uv es un movimiento directo, debiendo ser 1, r, o r^2 . Pero $u \neq v$ implica que $uv \neq e$. Entonces uv es una rotación, luego tiene orden 3.
- **c**. No es un homomorfismo, por ejemplo si u y v son como en la parte anterior f(u) = e y f(v) = e, pero $f(uv) = (uv)^2 \neq e$.
- d. Como \mathbb{Z}_6 es cíclico generado por $\overline{1}$ de orden 6, cualquier homomorfismo es de la forma $h(\overline{n}) = g^n$ para algún $g \in D_3$ con $o(g) \mid 6$. Pero esto último vale para cualquier $g \in D_3$, entonces hay 6 homomorfismos $h : \mathbb{Z}_6 \to D_3$, uno para cada posible g.

Bonus. Determinar geométricamente el punto P+Q en la siguiente curva elíptica:

Universidad de la República - Facultad de Ingeniería - IMERL Matemática Discreta 2, semipresencial

Solución cuarta prueba (segundo parcial) - 1 de diciembre de 2016.

Ejercicio 1. (15 puntos) (Ejercicio 1 del segundo parcial del curso semipresencial de 2015)

- a. Probar que 2 es raíz primitiva módulo 53.
- **b.** Hallar todos los $x \in \mathbb{Z}$ tales que $x^{19} \equiv 32 \pmod{53}$.
- c. Archibaldo y Baldomero quieren pactar una clave común empleando el protocolo Diffie-Hellman. Para ésto fijan el primo p=53 y la raíz primitiva g=2. Archibaldo selecciona el número m=28 y le remite el número 49 a Baldomero. Éste selecciona el número n=5. ¿Cuál es la clave común k que acordaron Archibaldo y Baldomero?

Solución Ejercicio 1:

a. Observemos primero que $52=2^2\cdot 13$. Por lo tanto, si queremos probar que 2 es raíz primitva módulo 53, debemos probar que $2^{\frac{52}{p}}\not\equiv 1 \pmod{53}$, para todo p primo, con p|52. O sea debemos calcular 2^4 y 2^{26} .

n	$2^n \pmod{53}$
0	1 (mód 53)
1	$2 \pmod{53}$
2	$4 \pmod{53}$
3	8 (mód 53)
4	$16 \mod 53$
5	$32 \pmod{53}$
6	11 (mód 53)
7	$22 \pmod{53}$
8	44 (mód 53)
9	$35 \pmod{53}$
10	$17 \pmod{53}$
11	$34 \pmod{53}$
12	15 (mód 53)
13	$30 \pmod{53}$
14	7 (mód 53)
15	$14 \pmod{53}$
:	:

Luego $2^{26}=2^{13}\times 2^{13}\equiv 900\pmod{53}\equiv -1\pmod{53}.$ Entonces 2 es raíz primitiva módulo 53.

- b. Como $32=2^5$ la ecuación a resolver se transforma en: $x^{19}\equiv 2^5 \pmod{53}$. Por otro lado, como 2 es raíz primitva módulo 53, entonces para todo $x\in\mathbb{Z}$ existe $0\le t(x)\le 52$ tal que $x=2^{t(x)}$. Luego la ecuación a resolver se transforma en: $2^{t(x)^{19}}\equiv 2^5 \pmod{53}$. Nuevamente como 2 es raíz primitiva, la ecuación anterior es equivalente a: $19\cdot t(x)\equiv 5\pmod{52}$. Esto último a su vez es equivalente a $t(x)\equiv 3\pmod{52}$. Luego $x=2^3\pmod{53}$, o sea $x=8+53\cdot z$, con $z\in\mathbb{Z}$.
- c. Archibaldo toma m=28 y le envía $2^{28}\equiv 49\pmod{53}$ a Baldomero. Éste toma m=5 y le envía $49^5\pmod{53}$ a Archibaldo. O sea, $49^5\equiv (-4)^5\pmod{53}=-2^{10}\pmod{53}\equiv -17\pmod{53}$ (mód 53) $\equiv 36\pmod{53}$. O sea que la clave común acrodada es k=36.

Ejercicio 2. (20 puntos)

- a. Calcular el número de raíces primitivas en U(29).
- b. Encontrar todas las raíces primitivas de U(29). (Sugerencia: Calcular 2^n (mód 29), para todo $0 \le n \le 14$, para facilitar los cálculos posteriores.)
- c. Ordenar en forma creciente las raíces primitivas halladas en el ítem anterior: $r_1 \leq r_2 \leq r_3 \leq r_4 \leq r_5 \leq \dots$ Luego escribir la secuencia: $r_1r_50r_9r_3r_1r_7$. Finalmente traducir usando la numeración de los símbolos:

I	A I	В	С	D	Е	F	G	Н	Ι	J	K	L	М	N	Ñ	0	Р	Q	R	S	Т	U	٧	W	Х	Y	Z	_
() [1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27

d. Utilizando el método de Vigenère **decodificar** el siguiente texto, usando la palabra clave hallada en el ítem anterior:

$OZ_LPTSOKMS_BUCBRSNCG$

Solución Ejercicio 2:

- a. El número de raíces primitvas en U(n) (si hay) es $\varphi(\varphi(n))$, siendo φ la función de Euler. En este caso $\varphi(29)=28$, pues 29 es primo. Luego $\varphi(28)=\varphi(4\times7)=\varphi(4)\cdot\varphi(7)=2\cdot6=12$. Entonces el número de raíces primitvas en U(29) es 12.
- **b.** Para encontrar todas las raíces primitivas calculamos los valores sugeridos en la letra del ejercicio, en la siguiente tabla:

n	$2^n \pmod{29}$
0	1 (mód 29)
1	$2 \pmod{29}$
2	4 (mód 29)
3	$8~ m m\acute{o}d29$
4	16 (mód 29)
5	$3~\mathrm{m\'od}29$
6	6 (mód 29)
7	12 (mód 29)
8	24 (mód 29)
9	$19 \text{ m}\acute{ ext{o}}d29$
10	9 (mód 29)
11	$18 \mod 29$
12	$7 \pmod{29}$
13	$14 \text{ m}\acute{ ext{o}} ext{d}29$
14	$-1 \pmod{29}$
:	:
•	•

Luego se concluyen varias cosas de la tabla anterior:

- Por un lado $2^{14} \not\equiv 1 \pmod{29}$ y también se verifica: $2^4 \not\equiv 1 \pmod{29}$. Entonces o(2) = 28, concluyendo que 2 es raíz primitiva en U(29).
- Como 2 es raíz primitiva, entonces 2^s (mód 29) es raíz primitiva para todo $s \in \mathbb{N}$ tal que mcd(s, 28) = 1. Entonces las que están marcadas en "negrita" en la tabla son también raíces primitivas. Así que tenemos hasta ahora las siguientes raíces primitivas: 2, 3, 8, 14, 18 y 19.

- Por último puede observarse que -2, -3, -8, -14, -18 y -19 son raíces primitivas de U(29). O sea, 27, 26, 21, 15, 11 y 10 son raíces primitivas de U(29). Sugerimos tres caminos para probar la última afirmación.
 - Completar la tabla anterior hasta n = 28.
 - Probar teóricamente que si a es raíz primitva en U(29) entonces (-a) también.
 - Hacer las cuentas a mano en cada caso.
- c. Por lo tanto las raíces primitivas, ordenadas en forma creciente son:

$$2 \le 3 \le 8 \le 10 \le 11 \le 14 \le 15 \le 18 \le 19 \le 21 \le 26 \le 27.$$

La palabra clave es: CLASICO (sería CLÁSICO).

d. Por último decodificando el mensaje oculto

$OZ_LPTSOKMS_BUCBRSNCG$

utilizando Vigenère, obtenemos el mensaje:

$NO_TIREN_MAS_GARRAFAS$

Ejercicio 3. (10 puntos) Describir el "Método de Fermat" de ataque al RSA, y demostrar la validez del algoritmo planteado.

Solución Ejercicio 3

Ver los apuntes de Teórico, Capítulo 5, ítem 5.3.4, Método de Fermat de ataque al RSA.

Segundo Parcial - 29 de junio de 2016.

Primera parte: Múltiple Opción

Ejercicio 1. Austria y Bielorusia quieren acordar una clave común utilizando el protocolo Diffie-Hellman. Para ello toman el primo p=499 y g=7 raíz primitiva módulo p. Austria elije el número m=394 y le envía el número 489 a Bielorusia. Bielorusia elije el número n=18. ¿Cuál es la clave k común que acordaron Austria y Bielorusia?

Indicar cuál de las opciones es correcta:

A.
$$k = 331$$
.

B.
$$k = 77$$
.

C.
$$k = 80$$
.

D.
$$k = 64$$
.

Solución:

Tenemos que calcular $489^{18} \pmod{499} \equiv (-10)^{18} \pmod{499} \equiv ((-10)^3)^6 \pmod{499} \equiv (-1000)^6 \pmod{499} \equiv (-2)^6 \pmod{499} \equiv \frac{64}{99} \pmod{499} \pmod{499} \pmod{499} \pmod{499}$

Ejercicio 2. Sean n=209 y e=7. Para los datos anteriores sea función de descifrado $D: \mathbb{Z}_n \to \mathbb{Z}_n$ definida por el protocolo RSA. Indicar cuál de las opciones es correcta:

A.
$$D(y) = y^{103} \pmod{n}$$
.

C.
$$D(y) = y^{119} \pmod{n}$$
.

B.
$$D(y) = y^{30} \pmod{n}$$
.

D.
$$D(y) = y^{163} \pmod{n}$$
.

Solución:

La función de descifrado es $D(y) = y^d \pmod{n}$ donde d es tal que $d \equiv e^{-1} \pmod{\varphi(n)}$. La factorización de n es $209 = 11 \cdot 19$, por lo que $\varphi(11 \cdot 19) = 10 \cdot 18 = 180$. Utilizando el algoritmo extendido de Euclides obtenemos $d \equiv 103 \pmod{180}$.

Segunda parte: Desarrollo

Ejercicio 3.

a. Sea (G, *) un grupo finito y H un subgrupo de G. Definimos la siguiente relación en G:

$$g \sim g' \Leftrightarrow g * (g')^{-1} \in H.$$

Probar que la relación definida es una relación de equivalencia.

- b. Sean G, K grupos finitos y $f: G \to K$ un homomorfismo de grupos. Probar que $\mathrm{Ker}(f)$ es un subgrupo de G.
- c. Probar el teorema de órdenes para grupos:

Sean G y K dos grupos finitos y $f:G\to K$ un homomorfismo de grupos. Entonces

$$|G| = |\operatorname{Ker}(f)| |\operatorname{Im}(f)|.$$

Solución: Ver la segunda demostración del Teorema de Ordenes de las notas, Teorema 3.9.8.

Ejercicio 4.

- a. Sean G un grupo finito, $g \in G$ y $n \in \mathbb{N}$, probar que o $(g^n) = \frac{o(g)}{\text{mcd}(o(g),n)}$. Solución: Ver Proposición 3.7.8 parte 7 de las notas.
- **b.** Probar que 2 es raíz primitiva módulo 101 y hallar un elemento de U(101) con orden 10. **Solución:** Para ver que 2 es r.p. módulo 101, alcanza con ver $2^{50} \not\equiv 1 \pmod{101}$ y $2^{20} \not\equiv 1 \pmod{101}$, ya que $\varphi(101) = 100 = 2^25$ y 100/2 = 50, 100/5 = 20. Entonces $2^{20} = (2^{10})^2 \equiv (1024)^2 \pmod{101} \equiv 14^2 \pmod{101} \equiv 196 \pmod{101} \equiv 95 \pmod{101} \not\equiv 1 \pmod{101}$. También $2^{50} = (2^{20})^2 \cdot 2^{10} \equiv (95)^2 \cdot 14 \pmod{101} \equiv (-6)^2 \cdot 14 \pmod{101} \equiv 36 \cdot 14 \pmod{101} \equiv 504 \pmod{101} \equiv -1 \pmod{101}$. Con es probamos que 2 es r.p. módulo 101.

Para hallar un elemento de orden 10 utilizamos la parte anterior y el hecho que que el orden de 2 es 100. Utilizamos n=10 y obtenemos

$$o\left(2^{10}\right) = \frac{o(2)}{\gcd(o(2), 10)} = \frac{100}{\gcd(100, 10)} = \frac{100}{10} = 10.$$

Por lo tanto o(14) = 10.

Ejercicio 5. Sean los grupos $G = \mathbb{Z}_{100}$ y K = U(101).

a. Probar que los grupos G y K son isomorfos.

Solución: Dado que $\bar{1}$ es generador de G y tiene orden 100 que es el orden de 2 en K, el morfismo $f: G \to K$ dado por $f(\bar{n}) = 2^n \pmod{101}$ es un morfismo bien definido. Es fácil ver que es inyectivo ya que f(n) = 1 si y solo si $2^n \equiv 1 \pmod{101}$, o sea si $n \equiv 0 \pmod{100}$. Como G y K tienen igual orden entonces es biyectivo y por lo tanto es un isomorfismo.

b. Describir todos los isomorfismos entre G y K.

Solución: En la parte anterior podemos cambiar f por f_k donde $f_k(n) = 2^{kn}$ (mód 101) y k otro elemento de orden 100 de \mathbb{Z}_{100} . El nuevo f_k es isomorfismo de igual manera que antes. Por el ejercicio anterior vemos que los k que cumplen que son generadores de \mathbb{Z}_{100} son los que cumplen $\operatorname{mcd}(k, 100) = 1$. Y por lo tanto obtuvimos todos los isomorfismos entre G y K.

Universidad de la República - Facultad de Ingeniería - IMERL: Matemática Discreta 2, semipresencial

Primer parcial - 3 de diciembre de 2015. Duración: 3 horas

N° de parcial	Cédula	Apellido y nombre

Ejercicio 1.

- a. Probar que 2 es raíz primitiva módulo 53.
- **b**. Hallar todos los $x \in \mathbb{Z}$ tales que $x^{19} \equiv 32 \pmod{53}$.
- c. Archibaldo y Baldomero quieren pactar una clave común empleando el protocolo Diffie-Hellman. Para ésto fijan el primo 53 y la raíz primitiva g=2. Archibaldo selecciona el número m=28 y le remite el número 49 a Baldomero. Baldomero selecciona el número n=5. ¿Cuál es la clave k común que acordaron Archibaldo y Baldomero?

Ejercicio 2.

a. Sea (G, *) un grupo finito y H un subgrupo de G. Definimos la siguiente relación en G:

$$g \sim g' \Leftrightarrow g * (g')^{-1} \in H.$$

Probar que la relación definida es una relación de equivalencia.

- b. Sean G, K grupos finitos y $f: G \to K$ un homomorfismo de grupos. Probar que $\mathrm{Ker}(f)$ es un subgrupo de G.
- c. Probar el teorema de órdenes para grupos:

Sean G y K dos grupos finitos y $f: G \to K$ un homomorfismo de grupos. Entonces

$$|G| = |\operatorname{Ker}(f)||\operatorname{Im}(f)|.$$

Ejercicio 3.

- a. Sea $f:G\to K$ un homomorfismo de grupos y $g\in G$ un elemento de orden o(g) finito. Probar que $o(f(g))\mid o(g)$.
- **b.** Para los pares de grupos G y K, determinar si existen homomorfismos no triviales $f: G \to K$. Si existen encontrarlos todos, de lo contrario justificar por qué no existen.
 - i) $G = \mathbb{Z}_6$ el grupo de enteros módulo 6 y $K = S_3$ el grupo de permutaciones de 3 elementos.
 - ii) $G=S_6$ el grupo de permutaciones de 6 elementos y $K=\mathbb{Z}_7$ el grupo de enteros módulo 7
- c. Sean $G = D_{12}$ el grupo dihedral y $K = S_3 \times U(8)$ el producto cartesiano de los grupos S_3 (permutaciones de 3 elementos) y U(8) ¿Son isomorfos estos grupos? De serlo, dar un isomorfismo entre ellos, de lo contrario justificar por qué no lo son.

Segundo parcial - 4 de julio de 2014. Duración: 3 horas y media

N° de parcial	Cédula	Apellido y nombre	Salón

A	В	С	D	Ε	F	G	Н	Ι	J	K	L	М	N	Ñ	0	P	Q	R	S	Т	U	V	W	Х	Y	Z	_
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27

Ejercicio 1.

- **a.** Sea $n \in \mathbb{Z}^+$, y g un entero coprimo con n. Probar que si a es el orden de \overline{g} en $U(n^2)$ y b es el orden de \overline{g} en U(n), entonces $b \mid a$.
- **b**. Sea p = 19.
 - i) Probar que 10 es raíz primitiva módulo p.
 - ii) ¿Es 10 raíz primitiva módulo p^2 ? Pueden utilizar los siguientes datos: $10^5 \equiv 3 \pmod{p^2}$ y $3p^2 = 1083$.
 - iii) Para cada $k \in \mathbb{Z}^+$ hallar una raíz primitiva módulo $2p^k$.

Ejercicio 2.

- a. Si $f: G \to K$ es un homomorfismo de grupos probar que $o(f(g)) \mid o(g)$ para todo $g \in G$.
- **b**. En cada parte, hallar todos los homomorfismos $f: G \to K$ justificando debidamente.
 - i) $G = S_4$ con la composición como operación y $K = \mathbb{Z}_{35}$ con la suma de clases como operación.
 - ii) $G = \mathbb{Z}_{15}$ y $K = \mathbb{Z}_{6}$, ambos grupos con la suma de clases como operación.

Ejercicio 3. Sea G un grupo y $g \in G$ de orden finito. Probar que:

- **a.** Si $k \in \mathbb{Z}^+$, entonces $o(g^k) = \frac{o(g)}{\operatorname{mcd}(o(g), k)}$.
- **b.** Si $H = \langle g \rangle$, entonces existen $\varphi(o(g))$ elementos en H que generan H.

Ejercicio 4.

- a. Ana y Bruno quieren acordar una clave común usando el protocolo Diffie-Hellman. Para ello eligen el primo p=1009 y la raíz primitiva g=11. Ana elige el número m=260 le envía a Bruno el número 1005. Bruno elige el entero n=8. ¿Cuál es la clave k común que acordaron Ana y Bruno?.
- b. Ahora Ana quiere comunicarse con Bruno través de un sistema Vigenere donde la palabra clave consiste de 3 letras de la siguiente manera: se toma la clave k común acordada en la parte anterior y se la escribe en base 28:

$$k = L_2 28^2 + L_1 28 + L_0.$$

Luego la clave común resulta de sustituir en $L_2L_1L_0$ por sus respectivas letras (por ejemplo si $k = 25 \cdot 28^2 + 0 \cdot 28 + 2$ entonces la clave común será YAC).

- i) Calcular la clave k como $L_2L_1L_0$.
- ii) Usando la clave anterior descifrar el siguiente mensaje: WUFAGHFCWÑKZBXHEÑ_DXMUG.

Ejercicio 5. Enunciar y demostrar el Teorema de Lagrange para grupos.

Solución segundo parcial

Ejercicio 1 (18 pts).

- a) Probar que 2 es raíz primitiva módulo 101.
- b) Alicia y Bernardo eligen $p=101,\,g=27$ para intercambiar claves en Diffie-Hellman.
 - i. Bernardo elige m=3 y Alicia le envía el número $g^n=22 \mod(101)$. ¿Cuál es la clave K que acuerdan?
 - ii. ¿Qué número (n) eligió Alicia?
- c) Se utiliza el método César afín para encriptar siendo la función de encriptado $E: \mathbb{Z}_{28} \to \mathbb{Z}_{28}$, donde E(x) = cx + e, con K = e28 + c escrito en base 28.
 - i. Hallar la función de desencriptar $D: \mathbb{Z}_{28} \to \mathbb{Z}_{28}$ explícitamente
 - ii. Desencriptar GBZWFÑRJGDSFUB.

Solución Ejercicio 1

a. Alcanza con ver, por el Ejercicio 1, parte C, del Práctico 8, que $2^{100/p} \not\equiv 1 \pmod{101}$ para todo primo p que divide a 100. En efecto

$$\begin{array}{l} 2^{100/5} = 2^{20} = (2^{10})^2 \equiv 14^2 \equiv 95 \pmod{101} \\ 2^{100/2} = 2^{50} = (2^{10})^5 \equiv 14^5 = (14^2)^2 \cdot 14 \equiv (-6)^2 \cdot 14 \equiv 100 \pmod{101}. \end{array}$$

Luego 2 es una raíz primitiva módulo 101.

b.i. La clave que acuerdan al utilizar Diffie-Hellman es $g^{nm} = (g^n)^m = 22^3 = 43 \pmod{101}$.

b.ii. Como $g = 27 = 2^7 \pmod{101}$ entonces $g^2 = 2^{14} = 27 \cdot 27 = 22 \pmod{101}$. Luego como $g^n = 22 \pmod{101}$, entonces

$$2^{7n} \equiv 2^{14} \pmod{101}$$
.

Luego, usando que 2 es raíz primitiva módulo 101 por la parte anterior y usando el Ejercicio 6 del Práctico 8 (Logartimo Discreto), de este parcial, se tiene que $7n \equiv 14 \pmod{100}$. O sea que n=2 es solución.

c.
$$K = 43 = 28 \cdot 1 + 15$$
. Por lo que $e = 1$ y $c = 15$.

c.i. Sabemos que D(x) = c'(x - e) (mód 28) donde c' es el inverso de c módulo 28. Luego como c = 15, se puede probar que c' = 15 (pues

 $15 \cdot 15 = 225 = 1 \pmod{28}$). Y como e = 1, entonces $D(x) = 15(x-1) \pmod{28}$.

c.ii. La desencriptación de $GBZWF\tilde{N}RJGDSFUB$ es SALVÉ DISCRETA.

Ejercicio 2 (15 pts).

- a) Sea H es un subgrupo no nulo de \mathbb{Z} .
 - i. Probar que si $a \in H$ entonces $na \in H$ para todo entero n.
 - ii. Sea $x = \min\{a > 0 : a \in H\}$. Probar que $H = x\mathbb{Z} = \{xn : n \in \mathbb{Z}\}$.
- b) Sean $x, y \in \mathbb{Z}$. Probar que $x\mathbb{Z} \cap y\mathbb{Z} = mcm(x, y)\mathbb{Z}$.
- c) Concluir, usando las partes anteriores, que si H y H' son dos subgrupos no nulos de \mathbb{Z} entonces $H \cap H' \neq 0$.
- d) Dados $x, y \in \mathbb{Z}$ probar que el grupo generado por x e y es $\langle x, y \rangle = \text{mcd}(x, y)\mathbb{Z}$.

Solución Ejercicio 2

a.i. Como H es un subgrupo de \mathbb{Z} y $a \in H$, entonces $\langle a \rangle \subset H$. Pero $\langle a \rangle = \{na \mid n \in \mathbb{Z}\} = \{\underbrace{a + a + \cdots + a}_{n-veces} \mid n \in \mathbb{Z}^+\} \cup \{0\} \cup \{\underbrace{(-a) + (-a) + \cdots + (-a)}_{(-n)-veces} \mid n \in \mathbb{Z}^-\}, \text{ y por tanto } na \in H \text{ para todo entero } n.$

a.ii. Sea $a \in H$. Como x > 0, se puede hacer la división entera de a por x y obtener

$$a = qx + r \text{ con } q, r \text{ enteros, y } 0 \le r < x.$$

La parte anterior aplicada a $x \in H$ implica $qx \in H$. Como a también está en H, entonces

$$r = a - qx \in H$$
.

Y dado que x es el mínimo elemento positivo de H, r debe ser necesariamente 0. O sea que a=qx. Luego $H=\{nx:n\in\mathbb{Z}\}$.

b. La igualdad de conjuntos se sigue de las siguientes equivalencias inmediatas

$$z \in x\mathbb{Z} \cap y\mathbb{Z} \iff x,y|z \iff mcm(x,y)|z \iff z \in mcm(x,y)\mathbb{Z}.$$

- **c.** Usando 2)a) se puede afirmar que como H es no nulo entonces existe x > 0 tal que $H = \langle x \rangle$. Lo mismo se puede decir para H', es decir al ser no nulo hay un y > 0 tal que $H' = \langle y \rangle$. Y ahora usando 2)b) se tiene que $H \cap H' = mcm(x,y)\mathbb{Z} \neq 0$.
- **d.** La igualdad de conjuntos se sigue de las siguientes equivalencias inmediatas

 $z \in \langle x, y \rangle \iff z = ax + by \text{ con } a, b \in \mathbb{Z} \iff mcd(x, y) | z \iff z \in mcd(x, y) \mathbb{Z}.$

Ejercicio 3 (15 pts).

- a) Sea r una raíz primitiva módulo p, con p primo. Probar que $r^a \equiv r^b \mod(p)$ si y solamente si $a \equiv b \mod(p-1)$.
- b) Probar que 2 es raíz primitiva módulo 37.
- c) Calcular $\log_2 17$.
- d) Resolver $13^{5z} \equiv 17 \mod(37)$.

Solución Ejercicio 3

 $\mathbf{a.}(\Longrightarrow)$ Sean

$$a = q_1(p-1) + s_1 \text{ con } q_1, s_1 \text{ enteros, y } 0 \le s_1 < p-1$$

 $b = q_2(p-1) + s_2 \text{ con } q_2, s_2 \text{ enteros, y } 0 \le s_2 < p-1$

las respectivas divisones enteras de a y b entre p-1. Luego

$$r^{a} = r^{q_{1}(p-1)+s_{1}} = (r^{p-1})^{q_{1}} \cdot r^{s_{1}} \equiv r^{s_{1}} \pmod{p}$$

$$r^{b} = r^{q_{2}(p-1)+s_{2}} = (r^{p-1})^{q_{2}} \cdot r^{s_{2}} \equiv r^{s_{2}} \pmod{p}$$

y como $r^a \equiv r^b \pmod{p}$, entonces $r^{s_1} \equiv r^{s_2} \pmod{p}$. Luego $r^{s_1-s_2} \equiv 1 \pmod{p}$, y por lo tanto $o(r)|s_1-s_2$. Como r es una raíz primitva, entonces o(r) = p-1. Y como $0 \le s_1, s_2 < p-1$ entonces $s_1 = s_2$.

(\iff) Si $a \equiv b \pmod{p-1}$ entonces $a \neq b$ dejan el mismo resto al dividirse por p-1. Luego razonando como en el directo se obtiene $r^a \equiv r^b \pmod{p}$.

b. Al igual que en el Ejercicio 1, para ver que 2 es raíz primitiva módulo 37, como $\phi(37)=36=2^2\cdot 3^2$, alcanza con ver que $2^{36/2}$ y $2^{36/3}$ no son congruentes con 1 módulo 37. Pero

$$\begin{array}{l} 2^{36/2} = 2^{18} = (2^5)^3 \cdot 2^3 \equiv (-5)^3 \cdot 8 \equiv 36 \pmod{37} \\ 2^{36/3} = 2^{12} = (2^5)^2 \cdot 2^2 \equiv (-5)^2 \cdot 4 \equiv 26 \pmod{37} \end{array}$$

y por tanto 2 es raíz primitiva módulo 37.

- c. Como $2^7=128\equiv 17\pmod{37}$ entonces $\log_2 17=7.$
- **d.** Como $2^{11} = 2048 \equiv 13 \pmod{37}$ entonces

$$(2^{11})^{5z} \equiv 2^7 \pmod{37}.$$

Luego, usando que 2 es raíz primitiva módulo 37 y 3)a), se tiene que $55z \equiv 7 \pmod{36}$. Luego z=25.

Ejercicio 4 (12 pts).

- a) Enunciar el test de primalidad de Lucas.
- b) Demostrarlo.

Solución Ejercicio 4

Fue dado en ambos Teóricos. Ver en el Texto *The Mathematics of Ciphers - Number Theory and RSA Cryptography*, S. C. Coutinho, pág. 151.

Universidad de la República Facultad de Ingeniería Instituto de Matemática y Estadística Matemática Discreta 2 Curso 2012

4 de Julio de 2012.

SEGUNDO PARCIAL DE MATEMÁTICA DISCRETA 2

	Г] [
Nombre		C.I		No. de prueba

Duración: 4 horas. Sin material y sin calculadora.

Es necesario mostrar la resolución de los ejercicios y el procedimiento para llegar a la respuesta. Presentar únicamente la respuesta final carece de valor.

Ejercicio 1. (18 puntos) Sea
$$H = \left\{ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} : a = \pm 1, b \in \mathbb{Z} \right\}.$$

- A. Probar que H es un subgrupo abeliano de $GL_2(\mathbb{R})$ (las matrices 2×2 invertibles con entradas reales). Aclaración: no es necesario probar que $GL_2(\mathbb{R})$ es un grupo.
- B. Hallar el orden de $g=\left(\begin{array}{cc} a & b \\ 0 & a \end{array}\right)\in H,$ discutiendo según a y b.
- C. Sean (G_1,\cdot) y $(G_2,*)$ dos grupos con neutros e_1 y e_2 respectivamente. Probar que un homomorfismo $\varphi:G_1\to G_2$ es inyectivo si y sólo si $\ker(\varphi)=\{e_1\}.$
- D. Sea $\varphi: H \to Z_2 \times \mathbb{Z}$ tal que

$$\varphi\left(\left(\begin{array}{cc}a&b\\0&a\end{array}\right)\right)=\begin{cases}(\overline{0},\,b)&\text{si }a=1\\(\overline{1},-b)&\text{si }a=-1\end{cases}.$$

Probar que φ es un homomorfismo. (La operación en $\mathbb{Z}_2 \times \mathbb{Z}$ es coordenada a coordenada). ¿Es φ un isomorfismo?

Ejercicio 2. (10 puntos)

- A. Enunciar el Teorema de órdenes para homomorfismos de grupos.
- B. Sea G un grupo con 35 elementos. Dar todos los homomorfismos posibles $\varphi: \mathbb{Z}_{33} \to G$.
- C. Sea G un grupo tal que |G|=34. Probar que si un homomorfismo $\varphi:G\to\mathbb{Z}_{17}$ no es trivial, entonces su núcleo (ker φ) tiene dos elementos.

Ejercicio 3. (15 puntos) Sea (G, *) un grupo y $x, y \in G$ tales que x * y = y * x.

Para cada una de las siguientes afirmaciones, decidir si es verdadera o falsa y justificar la respuesta. En caso de ser verdadera dar una prueba, y en caso de ser falsa dar un contraejemplo (decidir si la afirmación es verdadera o falsa sin ninguna justificación carece de valor).

- A. Si o(x) y o(y) son finites, entonces o(x * y) es finite.
- B. Si o(x) y o(y) son finites, entonces o(x * y) = mcm(o(x), o(y)).
- C. Si mcd(o(x), o(y)) = 1 entonces o(x * y) = o(x)o(y).

Ejercicio 4. (17 puntos)

- A. Probar que en U(71) el orden de $\overline{2}$ es 35.
- B. Hallar una raíz primitiva módulo 71.
- C. Alicia y Bruno utilizan el método de Diffie-Helmann de intercambio de clave, utilizando el primo p=71 y una raíz primitiva módulo 71. Alicia elige m=5 y Bruno elige n=10. Si Alicia le manda a Bruno x=3, ¿cuál es la clave común?
- D. ¿Es posible que con los datos de la parte C. Alicia y Bruno hayan elegido la raíz primitiva obtenida en la parte B?

SEGUNDO PARCIAL DE MATEMÁTICA DISCRETA 2

Nombre

Duración: 3:30 horas. Sin material y sin calculadora.

Es necesario mostrar la resolución de los ejercicios, presentar únicamente la respuesta final carece de valor.

Ejercicio 1.

- A. Enuncie (y NO demuestre) el Teorema de Lagrange.
- **B.** Probar que si G es un grupo finito y $g \in G$ entonces $o(g) \mid |G|$.

(Obs. No se puede utilizar que $g^{|G|} = e$ ya que esto es consecuencia de lo que se pide probar; a menos que lo prueben de forma independiente).

- C. Probar que 2 es raíz primitiva módulo 29 y hallar $s \in \{0, 1, \dots, 27\}$ tal que $9 \equiv 2^s \pmod{29}$.
- **D.** Hallar todos los $x \in \mathbb{Z}$ que verifican $x^{18} \equiv 9 \pmod{29}$.

Ejercicio 2

- A. Enuncie (y NO demuestre) el Primer Teorema de Isomorfismo.
- **B.** Probar que $\frac{(\mathbb{R}^*, \cdot)}{\{1, -1\}} \simeq (\mathbb{R}, +)$.

 $((\mathbb{R}^*,\cdot) \text{ es el grupo } \mathbb{R}-\{0\}=\mathbb{R}\setminus\{0\} \text{ con el producto usual } y\ (\mathbb{R},+) \text{ son los reales con la suma usual.})$

- C. Sean p y q primos distintos.
 - i) Probar que si $\overline{z} \in \mathbb{Z}_{p^2}$ es tal que $o(\overline{z}) = p$ entonces $z \equiv kp \pmod{p^2}$ para algún $k \in \mathbb{Z}$.

(Recordar que la estructura de grupo de \mathbb{Z}_{p^2} es con la suma de clases, y no con el producto).

- ii) Probar que $H = \langle \overline{p} \rangle$ es el único subgrupo de \mathbb{Z}_{p^2} de orden p.
- iii) Si $\psi: \mathbb{Z}_{p^2} \to \mathbb{Z}_{pq}$ es un homomorfismo no trivial, hallar $\ker(\psi)$.

Ejercicio 3

- **A.** Sea $\psi: G_1 \to G_2$ un homomorfismo, probar que $o(\psi(g)) \mid o(g)$ para todo $g \in G_1$.
- **B.** Sea S_n el grupo de permutaciones de n elementos. Probar que si $\psi: S_n \to G$ es un homomorfismo que verifica $\psi(\tau) = e_G$ para toda **trasposición** $\tau \in S_n$, entonces ψ es el homomorfismo trivial (es decir, $\psi(\sigma) = e_G$, $\forall \sigma \in S_n$).
- C. Probar que si G es un grupo de orden impar entonces no existen homomorfismos $\psi: S_n \to G$ no triviales. (Sugerencia: utilizar las partes anteriores).
- **D.** Hallar todos los homomorfismos no triviales $\psi: S_3 \to \mathbb{Z}_4$.

SEGUNDO PARCIAL DE MATEMÁTICA DISCRETA II

Nombre	C.I	No. de prueba

Duración: 4 horas.

Ejercicio 1.

- **A.** Sea $G = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{Z} \text{ y } ad bc = 1 \right\}$. Probar que G con la multiplicación de matrices es un grupo.
- **B.** Fijamos $n \in \mathbb{N}$ y $K = \left\{ \begin{pmatrix} \bar{a} & \bar{b} \\ \bar{c} & \bar{d} \end{pmatrix} : \bar{a}, \bar{b}, \bar{c}, \bar{d} \in \mathbb{Z}_n \text{ y } ad bc \equiv 1 \mod n \right\}$ con la multiplicación de matrices. Sea $\varphi : G \to K$ el homomorfismo dado por $\varphi \left(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \right) = \begin{pmatrix} \bar{a} & \bar{b} \\ \bar{c} & \bar{d} \end{pmatrix}$.

Hallar $\ker \varphi$, el núcleo de φ . (NOTA: no es necesario probar que K es un grupo ni que φ es un homomorfismo)

C. Enuncie el Primer Teorema de isomorfismos para grupos.

Ejercicio 2. Sea G un grupo finito y H un subgrupo de G.

- **A.** Definimos en G la siguiente relación: si $x,y \in G, x \sim y \Leftrightarrow xy^{-1} \in H$. Probar que \sim es una relación de equivalencia en G.
- **B.** Enunciar y probar el Teorema de Lagrange para grupos finitos.
- **C.** Sea K otro grupo finito y $\varphi: G \to K$ un homomorfismo. Probar que si $g \in G$ es tal que $\operatorname{mcd}(o(g), |K|) = 1$, entonces $g \in \ker(\varphi)$.

Ejercicio 3.

- **A.** Sea G un grupo y $g, h \in G$ tales que gh = hg y mcd(o(g), o(h)) = 1. Probar que o(gh) = o(g)o(h).
- **B.** Sea G = U(31). Calcular o(5) y o(29) y concluir que 21 es raíz primitiva módulo 31.
- C. Con Fulano fijamos el primo p=31 y g=21 para el intercambio de clave con el método de Diffie-Hellman. Nosotros elegimos m=14 y Fulano nos envía x=7. Calcular la clave común k.

Ejercicio 4. En este ejercicio se puede utilizar que si $\sigma \in S_n$ entonces $\sigma(a_1, \dots, a_k)\sigma^{-1} = (\sigma(a_1), \dots, \sigma(a_k))$ (fue probado en el práctico 6). Sea $n \geq 5$ y $a, b, c, d, e \in \{1, 2, 3, \dots, n\}$ cinco números distintos.

- **A.** (i) Hallar σ_1 y σ_2 en S_n tales que: σ_1 y σ_2 son 3-ciclos, $\sigma_1(a) = b$, $\sigma_2(d) = a$ y $\sigma_2\sigma_1 = (ab)(cd)$.
 - (ii) Probar que si N es un subgrupo de A_n que contiene a todos los 3-ciclos, entonces $N = A_n$.
- **B.** Sea N tal que $N \subset A_5$, $N \triangleleft S_5$ y $\sigma = (a b c) \in N$. Probar que $N = A_5$.
- **C.** (i) Hallar $\tau \in S_n$ tal que $(a b c d e)\tau = (a d b)$.
 - (ii) Hallar $\gamma \in S_n$ tal que $(ab)(cd)\gamma = (abe)$.
- **D.** Probar que si $\{e\} \neq N \subset A_5$ y $N \triangleleft S_5$, entonces $N = A_5$. (Sugerencia: Probar que necesariamente N contiene un 3-ciclo).