Appunti Elettrotecnica

1 Lezione del 25-09-24

1.1 Introduzione

Il corso di elettrotecnica riguarda lo studio dei circuiti elettrici e dei macchinari elettrici.

1.1.1 Analisi dei circuiti elettrici

Le leggi di Maxwell vanno a descrivere come si evolvono, nel tempo e nello spazio, i campi elettrici e magnetici. Purtroppo, le equazioni di Maxwell sono equazioni differenziali e legate fra di loro, ergo si possono spesso avere solo soluzioni numeriche. Esistono però casì particolari in cui si possono fare semplificazioni considerevoli.

Un **circuito elettrico** è formato da fili conduttori e **componenti circuitali**. All'interno di un circuito si va a descrivere un'onda elettrica:

$$\psi(s,t)$$

rappresentata come una funzione di spazio e tempo. Poniamo ad esempio la funzione, sulla sola posizione x:

$$\psi(x,t) = y \sin\left(\frac{2\pi}{\lambda}x - \frac{2\pi}{T}t\right)$$

Immaginiamo di prendere un punto x_0 sul circuito elettrico:

$$\psi(t) = y \sin\left(\frac{2\pi}{\lambda}x_0 - \frac{2\pi}{T}t\right)$$

Con $x_0 = 0$, annulliamo il primo termine. A questo punto abbiamo ottenuto una funzione in una sola variabile:

$$\psi(x_0, t) = y \sin\left(-\frac{2\pi}{T}t\right)$$

ovvero una sinusoide invertita che oscilla fra un massimo di y e un minimo di -y. Questo significa che, mettendoci sul punto $x_0 = 0$ del circuito elettrico, notiamo che il valore dell'onda elettrica varia nel tempo seguendo questa funzione sinousidale.

Possiamo fare il processo invrso: fissiamo il tempo t, e vediamo come varia l'onda elettrica su diverse posizioni x nel circuito. Abbiamo, simbolicamente:

$$\psi(x) = y \sin\left(\frac{2\pi}{\lambda}x - \frac{2\pi}{T}t_0\right)$$

da cui ricaviamo l'equazione in una sola variabile t:

$$\psi(x) = y \sin\left(\frac{2\pi}{\lambda}x\right)$$

ovvero una sinusoide che, come prima, oscilla fra un massimo di y e un minimo di -y.

Questo significa che, all'istante $t_0=0$ notiamo che il valore dell'onda elettrica varia sulla lunghezza del circuito seguendo ancora questa funzione sinousidale.

Possiamo provare a calcolare lunghezza d'onda e periodo di questa oscillazione: visto che il periodo del seno è 2π , abbiamo che nello spazio la lunghezza d'onda è λ e nel tempo il periodo è T.

Proviamo a calcolare λ : sappiamo che la lunghezza d'onda equivale alla velocità di propagazione sulla frequenza dell'oscillazione, ovvero:

$$\lambda = \frac{v}{f}$$

Posti i valori $3.00 \cdot 10^6 \text{ m/s}^2$ per v e 50 Hz per f (la frequenza della rete elettrica), abbiamo:

$$\lambda = \frac{3.00 \cdot 10^6 \; \text{m/s}^2}{50 \; \text{Hz}} = 6000 \; \text{km}$$

Questa lunghezza d'onda diventa rilevante in trasmissioni elettriche su larga scala. Possiamo fare considerazioni diverse se prendiamo in esempio le comunicazioni radio: lì si parla di frequenze f >> 50 Hz, nell'ordine dei megahertz o gigahertz.

L'elevata velocità della corrente ci permette di fare un'importante approssimazione e considerare **circuiti a parametri concetrati**. Quest'ipotesi, in inglese *lumped circuit*, ci permette di ignorare l'estensione fisica del circuito, e quindi le variazioni delle funzioni d'onda sulla variabille spazio s, concentradosi sulla variabile tempo t.

1.2 Grandezze

Si usano le seguenti grandezze:

1.2.1 Intensità di corrente

Definizione 1.1: Corrente elettrica

Si indica con I la corrente elettrica, misurata in Ampere (A), e definita come la variazione di carica:

$$I = \frac{dq}{dt}$$

Si prende come positivo il verso in cui si muovono i portatori di carica positive, anche se sappiamo nella stragrande maggioranza dei casi i portatori di carica essere negativi, e quindi il movimento vero e proprio degli elettroni in direzione opposta.

Notiamo che se un segmento di circuito da A a B si ha una corrente I_{AB} , vale:

$$I_{AB} = -I_{BA}$$

1.2.2 Differenza di potenziale

Definizione 1.2: Differenza di potenziale

Si indica con V la differenza di potenziale o *tensione*, misurata in Volt (V), e definita come il lavoro necessario a spostare una carica elementare positiva da un punto A ad un punto B sulla carica:

$$V_{AB}(t) = \frac{L_{AB}(t)}{q(t)}$$

Il segno del potenziale è definito come *positivo* quando si deve vincere il campo magnetico per spingere la carica, ergo il campo elettrico svolge lavoro *negativo* sulla carica. Come prima, su segmenti di circuito da *A* a *B* vale:

$$V_{AB} = -V_{BA}$$

1.2.3 Nota sul dipolo elettrico

I componenti circuitali, presi a sé, vengono detti **dipoli elettrici**, dal fatto che hanno 2 poli. Di un dipolo elettrico si può misurare la differenza di potenziale ai capi e la corrente che vi scorre attraverso.

Quando si parla di tensione, o si parla di differenze di potenziale, o si assume un riferimento (lo zero del potenziale). Non possiamo sapere a priori se il potenziale al capo di un dipolo è maggiore del potenziale all'altro capo: bisogna prima scegliere una direzione e poi vedere se il segno ricavato è concorde o meno con la nostra scelta.

Lo stesso vale per la corrente. I riferimenti concordi al verso della corrente si dicono **associati**, quelli discordi si dicono **non associati**.

1.2.4 Potenza elettrica

Definizione 1.3: Potenza elettrica

Si indica con P la potenza elettrica, misurata in Watt (W) e definita come il prodotto:

$$P = IV$$

fra corrente e tensione.

Anche la potenza ha un segno, che in questo caso si riferisce a potenza *erogata* o *dissipata*. La potenza calcolata sui riferimenti associati positiva è dissipata, quella negativa è erogata. Viceversa, la potenza calcolata sui riferimenti non associati positiva è erogata, quella negativa è dissipata.

1.2.5 Energia

Definizione 1.4: Energia

Si indica con W (non Watt!) l'energia, misurata in Joule (J), o in Kilowatt/ora (KW/h), e definita come l'integrale sul tempo della potenza:

$$W = \int_{-\infty}^{t} P \, dt$$

1.3 Leggi di Kirchoff

Iniziamo col dare dei nomi a particolari punti del circuito elettrico: i punti di incontro di più fili prendono il nome di **nodi**, e i fili che collegano i dipoli ai nodi prendono il nome di **rami**. Da questo abbiamo che nei nodi si incontrano 3 o più rami.

Da qui possiamo definire la legge:

Teorema 1.1: Prima legge di Kirchoff

La somma algebrica delle correnti dei rami tagliati da una linea chiusa è uguale a 0. In particolare, la somma algebrica delle correnti entranti e uscenti da un nodo è uguale a 0.

Definiamo quindi il concetto di **maglia**: una maglia è un percorso chiuso di nodi e rami, ovvero un sottoinsieme di rami tali per cui spostandosi da un nodo all'altro si percorre ogni ramo una sola volta. Sulle maglie si ha:

Teorema 1.2: Seconda legge di Kirchoff

La somma algebrica delle cadute di potenziale lungo una maglia è uguale a 0.