Assignment 5

Measure the effective rigidity of the structure model on pages 7-9 of the lecture notes. After finding enough loading-displacement pairs, process the data to find the experimental value of rigidity k (F = ku).

The set-up is located in Puumiehenkuja 5L (Konemiehentie side of the building). The hall is open during the office hours (9-12 and 13-16) on Wed 23.10.2024. Place a mass on the loading tray and record the reading of the displacement transducer. Gather enough loading-displacement data for finding the rigidity reliably.

Solution

Table below shows the loading-displacement pairs (F,u) given by the experiment. Displacement of the loading point is obtained as the mean value u of displacements u_1 and u_2 given by transducers. In the rigidity estimation, one assumes that displacement and loading are related by F = ku, experiment gives a sample of that (with possibly random error due to various sources), and the task is to find the k for the best fit of data.

m	u_1	u_2	F	и
kg	mm	mm	N	mm
0	0	0	0	0
1.824	0.505	0.491	17.89	0.498
3.672	1.034	1.006	26.02	1.020
4.668	1.312	1.277	45.79	1.294
7.171	3.40	2.021	1.967	1.994

To find the best fit of the form F = ku one may use, e.g., the least-squares method which gives the value of k as the minimizer of function

$$\Pi(k) = \frac{1}{2} \sum (ku_i - F_i)^2,$$

where the sum is over all the measured value pairs. The method looks for a k which gives as good as possible overall match to the data. At the minimum point, derivative of $\prod(k)$ with respect to k vanishes, so

$$\frac{d\prod(k)}{dk} = \sum u_i(ku_i - F_i) = 0$$

or when solved for rigidity

$$k = \frac{\sum u_i F_i}{\sum u_i u_i} \ .$$

Finally, substituting the values in the table

$$k \approx 35 \frac{\text{N}}{\text{mm}}$$
.