KF Lektion 2.1 opgaver

Opgave KF 2.1.1

Brug Cauchy-Hadamard til at finde konvergensradius ${\cal R}$ for følgende Taylorrækker:

$$(\mathbf{A}) \sum_{n=0}^{\infty} z^n \qquad R = 1$$

(B)
$$\sum_{n=0}^{\infty} \frac{n(n-1)}{2^n} (z+i)^{2n}$$
 $R = \sqrt{2}$

Opgave KF 2.1.2

Find Laurentrækken for f(z) udviklet i z_0 med konvergens området $0 < |z - z_0| < R$ og bestem R:

(A)
$$f(z) = \frac{1}{z^4 - z^5}, z_0 = 0$$
 $R = 1$

(B)
$$f(z) = z \cos(1/z), z_0 = 0$$

(C)
$$f(z)=\frac{\cos z}{(z-\pi)^4},$$
 $z_0=\pi$ $0<|z-\pi|<\infty$ Hint: Erstat $z \bmod w+\pi$.

(D)
$$f(z) = \frac{z^2 - 4}{z - 1}, z_0 = 1$$

(D) $f(z)=\frac{z^2-4}{z-1}, z_0=1$ Hint: Erstat z således at nævner bliver et monomium.

Opgave KF 2.1.3

Find alle Laurentrækker med centrum i z_0 og bestem konvergensområder for

$$f(z) = \frac{1}{1 - z^3}, \quad z_0 = 0$$