KU LEUVEN

An expressive dissimilarity measure for relational clustering using neighbourhood trees

Sebastijan Dumančić, Hendrik Blockeel

DTAI, CS Department, KU Leuven

ECML PKDD 2017, Journal track

1 – Outline 2/28

- Overture
- 2 How do we do it now?
- 3 An expressive dissimilarity for relational data
- Experiments and results
- Summary

Machine learning with a powerful knowledge representation language

• usually based on first-order logic

Common representation for:

- vectors
- graphs
- sequences
- ...

... with a unifying reasoning and learning engine

a)

person(bob, 25, m, msc)
person(emity, 27, f, msc)
organization(kuleuven, private, academic)
organization(microsoft, private, industry)
friends(emity, bob)
works for(bob, kuleuven, professor, 2000)
works-for(emity, microsoft, engineer, 2300)

person			
PName	Age	Gender	Education
bob emily	25 27	m f	msc msc

0:	organization		
<u>OName</u>	OrgType	Area	
kuleuven microsoft	private private	academic industry	

works for

b)

a)

person(bob,25,m,msc)
person(emily,27,f,msc)
organization(kuleuven,private,academic)
organization(microsoft,private,industry)
friends(bob,emily)
friends(emily,bob)
works_for(bob,kuleuven,professor,2000)
works_for(emily,microsoft,engineer,2300)

b)				
D)	person			
	PName	Age	Gender	Education
	bob	25	m	msc
	emily	27	f	msc

organization		
OName	OrgType	Area
kuleuven	private	academic
microsoft	private	industry

works_for

KU LEUVEN

2 – Outline 12/28

- Overture
- 2 How do we do it now?
- 3 An expressive dissimilarity for relational data
- Experiments and results
- Summary

Hybrid similarities	Graph kernels	Relational similarities
incorporate link information into attribute-based similarity	structural similarities of graphs	comparing logical constructs
measure the similarity of connected vertices	random walks, propagation of information	logical formulas in common, matching terms

Hybrid similarities

Graph kernels

Relational similarities

incorporate link information into attribute-based similarity structural similarities of graphs

comparing logical constructs

connected vertices

measure the similarity of random walks, propagation of information

logical formulas in common, matching terms

Impose a fixed bias

- Overture
- 2 How do we do it now?
- 3 An expressive dissimilarity for relational data
- Experiments and results
- Summary

A similarity measure for relational data should:

- incorporate multiple views of similarity
- be easily adaptable
- take attributes and relationships into account
- insensitive to neighbourhood size
- be efficient

Neighbourhood trees summarize the neighbourhood of an instance/example

Data

Neighbourhood tree

Neighbourhood trees summarize the neighbourhood of an instance/example

Data

Neighbourhood tree

Similarity of instances = similarity of their neighbourhood trees

Decompose NTs into semantic parts

Decompose NTs into semantic parts

similarity = linear combination of similarities of individual semantic parts

$$(w_1, w_2, w_3, s_4, w_5)$$

3 - Comparing semantic parts

Decompose NT in multisets of:

- attribute
- edge labels
- vertex identities

per level and vertex type

Multiset of edge labels (level 1): { (Advised,2), (Advised,2), (TaughtBy,2) }

Compare two multisets, A and B with χ^2 distance

$$\chi^{2}(A,B) = \sum_{x \in A \cup B} \frac{(f_{A}(x) - f_{B}(x))^{2}}{f_{A}(x) + f_{B}(x)}$$

Many of the existing similarities are a special case:

- hybrid similarities
- relational similarities

... or they can be defined over neighbourhood trees (graph kernels) with different biases:

• makes it easier to compare the imposed biases

Many of the existing similarities are a special case:

- hybrid similarities
- relational similarities

... or they can be defined over neighbourhood trees (graph kernels) with different biases:

• makes it easier to compare the imposed biases

Additionally: effective - linear in the number of unique elements in a multiset

- Overture
- 2 How do we do it now?
- 3 An expressive dissimilarity for relational data
- Experiments and results
- Summary

Datasets:

- IMDB
- UWCSE
- Mutagenesis
- WebKB
- TerroristAttacks

Questions:

- Quality of the obtained clustering?
- Are different views really necessary?
- Can we learn the bias from data?
- Can we learn the bias from labels?

- combined with spectral and hierarchical clustering
- a wide range of existing similarity measures
- performance measure: ARI/Accuracy

Takeaway message: incorporating multiple biases consistently performs well

Takeaway message: relational data requires multiple views of similarity in order to find informative clusters

Recent with $w_i = 0.2$ vs. AASC + Recent

AASC - given multiple similarity matrices, find an optimal combination for clustering

barely any benefit

Huang, Chuang, Chen: Affinity Aggregation for Spectral Clustering

Similarity measure in combination with a kNN (parameters optimised with CV)

Takeaway message: when labels are provided, ReCeNT outperforms the competing similarities

- Overture
- 2 How do we do it now?
- 3 An expressive dissimilarity for relational data
- Experiments and results
- Summary

A similarity measure for relational data that:

- is versatile (meta-similarity)
- easily adaptable
- efficient
- generalization of many existing structured/relational sims
- works well across many different tasks

A similarity measure for relational data that:

- is versatile (meta-similarity)
- easily adaptable
- efficient
- generalization of many existing structured/relational sims
- works well across many different tasks

Code: https://dtai.cs.kuleuven.be/software/recent

- S. Dumancic, H. Blockeel: *Clustering-Based Unsupervised Relational Representation Learning with an Explicit Distributed Representation*, IJCAI '17
- S. Dumancic, H. Blockeel: Demystifying Relational Latent Representations, ILP '17

