MTH1102D Calcul II

Chapitre 10, section 2: Les intégrales de surface

Exemple 4: flux à travers un cylindre

Exemple 4: flux à travers un cylindre

Calculer le flux du champ vectoriel $\vec{F}(x, y, z) = xz\vec{i} + yz\vec{j} + z^2\vec{k}$ à travers la partie S du cylindre $x^2 + y^2 = 4$ comprise entre les plans z = 0 et z = 2. La surface S est orientée au point (0,2,1) par le vecteur normal $\vec{n} = \vec{i}$.

> L'équation cylindrique du cylindre est r=2, donc on a

$$x = r\cos(\theta) = 2\cos(\theta)$$

 $y = r\sin(\theta) = 2\sin(\theta)$

$$y = r \sin(\theta) = 2 \sin(\theta)$$

$$z = z$$

Exemple 4 : flux à travers un cylindre

Calculer le flux du champ vectoriel $\vec{F}(x,y,z) = xz\vec{i} + yz\vec{j} + z^2\vec{k}$ à travers la partie S du cylindre $x^2 + y^2 = 4$ comprise entre les plans z = 0 et z = 2. La surface S est orientée au point (0,2,1) par le vecteur normal $\vec{n} = \vec{j}$.

S est paramétrée par

$$\vec{R}(\theta,z) = 2\cos\theta\,\vec{i} + 2\sin\theta\,\vec{j} + z\vec{k}$$
 avec $0 \le \theta \le 2\pi$, $0 \le z \le 2$.

On calcule

$$\vec{R}_{\theta} = -2\sin\theta \, \vec{i} + 2\cos\theta \, \vec{j} + 0\vec{k}$$

$$\vec{R}_{z} = 0\vec{i} + 0\vec{j} + \vec{k}$$

$$\vec{R}_{\theta} \times \vec{R}_{z} = 2\cos\theta \, \vec{i} + 2\sin\theta \, \vec{j}$$

• En (0,2,1), $\theta=\pi/2$, z=1 et $\vec{R}_{\theta}\times\vec{R}_{z}=2\vec{j}$, qui donne l'orientation correcte de S.

Exemple 4 : flux à travers un cylindre

Calculer le flux du champ vectoriel $\vec{F}(x,y,z) = xz\vec{i} + yz\vec{j} + z^2\vec{k}$ à travers la partie S du cylindre $x^2 + y^2 = 4$ comprise entre les plans z = 0 et z = 2. La surface S est orientée au point (0,2,1) par le vecteur normal $\vec{n} = \vec{j}$.

On a

$$\vec{R}_{\theta} \times \vec{R}_{z} = 2\cos\theta \, \vec{i} + 2\sin\theta \, \vec{j}$$

$$\vec{F}(\vec{R}(\theta, z)) = 2z\cos\theta \, \vec{i} + 2z\sin\theta \, \vec{j} + z^{2}\vec{k}$$

$$\vec{F}(\vec{R}(\theta, z)) \cdot \left(\vec{R}_{\theta} \times \vec{R}_{z}\right) = 4z\cos^{2}\theta + 4z\sin^{2}\theta$$

$$= 4z.$$

Exemple 4 : flux à travers un cylindre

Calculer le flux du champ vectoriel $\vec{F}(x,y,z) = xz\vec{i} + yz\vec{j} + z^2\vec{k}$ à travers la partie S du cylindre $x^2 + y^2 = 4$ comprise entre les plans z = 0 et z = 2. La surface S est orientée au point (0,2,1) par le vecteur normal $\vec{n} = \vec{j}$.

Le flux est

$$\iint_{S} \vec{F} \cdot d\vec{S} = \iint_{D} \vec{F}(\vec{R}(\theta, z)) \cdot (\vec{R}_{\theta} \times \vec{R}_{z}) dA$$
$$= \int_{0}^{2\pi} \int_{0}^{2} 4z \, dz d\theta$$
$$= 16\pi.$$

Résumé

• Calcul du flux d'un champ vectoriel à travers une surface.