

Software Development Project

Final Presentation

Wei-Chan Hsu, Torsten Jandt, Ramesh Kumar, Danning Wang July 10, 2017

Introduction

Basic Navigation Test

- Environment: Workspaces, waypoints and obstacles.
- Task specification: Sequence of poses.

Challenges

- **Perception:** Accessing and processing sensor data.
- **Mapping:** Building map of the environment.
- Localization: Pose inside map.
- Path planning: Determine sequence of poses between waypoints.
- Motion control: Execution of path.

KUKA youBot

The youBot is a mobile manipulator designed for education and research purposes. It comes with fully open interfaces and API.

- Omnidirectional, four-wheeled
- 5-DOF manipulator with a two-finger gripper
- On-board PC with CPU, 2GB memory, 32GB SSD drive
- Sensors: vision sensors, rangefinders

Robot Operating System (ROS) I

Set of software and libraries.

- Node: A process using ROS.
- Topic: Message queue, used for communication between nodes.

• **Service**: Offers synchronous service calls.

Robot Operating System (ROS) II

Actionlib

- Provides client interface to send requests to server
- Client and server communicate with messages:
 - Goal
 - Feedback
 - Result

Approach

Approach

- Divide problem into smaller parts.
- Each part is defined by
 - It's function and
 - Interface
- Parts are replaceable.
- Try to use as many available components from ROS as possible.

Software Modules

Realization

Realization

Simulation

Simulation

- Simple Two Dimensional Robot (STDR) simulator
- Tasks performed:
 - Map Building
 - Localization

Map building I

- Gmapping is used to build 2D occupancy grid map
- Uses laser sensors to build the map
- Map Server
 - Provides map saver utility, to save generated map in files(yaml and pgm)
 - Offers map data as a ROS Service

Map building II

Localization I

- Adaptive Monto Carlo Localization(AMCL) is used to localize the robot
- Uses particle filter to track the pose of robot
- Problems:
 - AMCL could not find laser data on /scan topic
 - AMCL node crushes after some time
- Solutions:
 - Remap /scan_front and /scan_rear to /scan topic
 - Because of transformations provided by STDR simulator

Realization

KUKA youBot

youBot Driver

- Driver for the KUKA youBot robot
- youBot API represents robot system as a combination of sub-systems
- Contain three main classes
 - youBot Manipulator
 - youBot Base
 - youBot Joint
- Uses ROS wrapper for translation to ROS

Map building III

Problems

Messy Map

Solutions

- Because of different translations in simulation and real world
- Configuration of laser scanners in simulator is upside down

Map building IV

Map building V

Map building VI

Navigation I

- Planners: global, local
- Costmaps: global, local
- Local planner: dwa_local_planner
 - Given: plan, costmap, odom
 - Generates costs of transversing through map grids
 - Output: Velocity command
- Output: Velocity command (cmd_vel)

Navigation II

- Problem
 - Differential drive motion
- Solution
 - dwa_local_planner

Path executor

Path executor reads a set of user inputs and convert them to move_base_msgs.

- Class: Position, Pose, Environment, Workspace, PathExecutor
- Functions:
 - Reads user inputs
 - Reads workspace from file
 - Converts workspace to move_base_msgs
 - Clears cost map
 - Sends goal message

Class Diagram

Sequence Diagram

Results

Launch Files

RQT Graph

Conclusions

Conclusions

- Navigation was analyzed and applied to youBot.
- The task contains mapping, localization, path planning, motion execution.
- Mapping was realized using gmapping, which requires laser scans and correct transforms.
- Localization was achieved using AMCL, which relies on a map, laser scans, transforms, and initial pose.
- DWA local planner was employed for path-planning.
- A node was created as a path executor that requests user input.
- The robot was able to navigate around the lab by user input of a series of workspace.

Future Work

- User interface can be improved.
- The parameters can be retuned to improve the performace of robot.