Seri bahan kuliah Algeo #19

Nilai Eigen dan Vektor Eigen (Bagian 2)

Bahan kuliah IF2123 Aljabar Linier dan Geometri

Oleh: Rinaldi Munir

Program Studi Teknik Informatika STEI-ITB

Versi update 2022

Sumber:

Howard Anton & Chris Rores, *Elementary Linear Algebra*, 10th Edition

Nilai Eigen dan Matriks Balikan

- **Teorema**: Sebuah matriks persegi A berukuran n x n memiliki balikan (*invers*) jika dan hanya jika $\lambda = 0$ <u>bukan</u> nilai eigen dari matriks A.
- Jika A memiliki balikan, maka det(A) ≠ 0.

Contoh 5. Dari contoh 2,matriks $A = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}$ memiliki nilai eigen $\lambda = 3$ dan $\lambda = -1$. Tidak ada nilai eigen yang nol, sehingga A memiliki balikan.

Dapat diperiksa bahwa det(A) = $(3)(-1) - (8)(0) = -3 \neq 0$, sehingga A memiliki balikan, yaitu

$$A^{-1} = \frac{1}{\det(A)} \begin{bmatrix} -1 & 0 \\ -8 & 3 \end{bmatrix} = \frac{1}{-3} \begin{bmatrix} -1 & 0 \\ -8 & 3 \end{bmatrix} = \begin{bmatrix} 1/3 & 0 \\ 8/3 & -1 \end{bmatrix}$$

Contoh 6. Matriks A = $\begin{bmatrix} 10 & 0 & 2 \\ 0 & 10 & 4 \\ 2 & 4 & 2 \end{bmatrix}$ memliki nilai eigen λ = 12, λ = 10 dan λ = 0

(silakan diperiksa!). Karena terdapat nilai eigen $\lambda = 0$, maka matriks A tidak memiliki balikan. Dapat diperiksa bahwa det(A) = 0.

Pernyataan yang ekivalen

THEOREM 5.1.6 Equivalent Statements

If A is an $n \times n$ matrix, then the following statements are equivalent.

- (a) A is invertible.
- (b) Ax = 0 has only the trivial solution.
- (c) The reduced row echelon form of A is I_n.
- (d) A is expressible as a product of elementary matrices.
- (e) $A\mathbf{x} = \mathbf{b}$ is consistent for every $n \times 1$ matrix b.
- (f) $A\mathbf{x} = \mathbf{b}$ has exactly one solution for every $n \times 1$ matrix b.
- (g) det(A) ≠ 0.
- (h) The column vectors of A are linearly independent.
- (i) The row vectors of A are linearly independent.
- (j) The column vectors of A span Rⁿ.

- (k) The row vectors of A span \mathbb{R}^n .
- The column vectors of A form a basis for Rⁿ.
- (m) The row vectors of A form a basis for \mathbb{R}^n .
- (n) A has rank n.
- (o) A has nullity ().
- (p) The orthogonal complement of the null space of A is Rⁿ.
- (q) The orthogonal complement of the row space of A is {0}.
- (r) The range of T_A is \mathbb{R}^n .
- (s) T_A is one-to-one.
- (t) $\lambda = 0$ is not an eigenvalue of A.

Diagonalisasi

 Matriks diagonal adalah matriks yang semua elemen di atas dan di bawah diagonal utama adalah nol.

Contoh 1:

$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{bmatrix} , \begin{bmatrix} -3 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• **Definisi**. Sebuah matriks persegi A dikatakan dapat **didiagonalisasi** jika ia mirip dengan matriks diagonal, yaitu terdapat matriks P sedemikian sehingga P⁻¹AP adalah matriks diagonal. Dalam hal ini dikatakan P mendiagonalisasi matriks A.

 P adalah matriks yang kolom-kolomnya adalah basis ruang eigen dari matriks A, yaitu:

$$P = (p_1 | p_2 | ... | p_n)$$

Misalkan D adalah matriks diagonal, maka

$$A = PDP^{-1} \rightarrow D = P^{-1}AP$$

 Matriks A memiliki kemiripan dengan D, salah satunya memiliki determinan yang sama, yaitu

$$D = P^{-1}AP$$

$$det(D) = det(P^{-1}AP)$$

$$= det(P^{-1})det(A)det(P)$$

$$= \frac{1}{det(P)} det(A)det(P)$$

$$= det(A)$$

• Beberapa sifat kemiripan lainnya pada A dan D adalah memiliki *rank*, *nullity*, *trace*, persamaan karakteristik, dan nilai-nilai eigen yang sama.

Table 1 Similarity Invariants

Property	Description					
Determinant	A and $P^{-1}AP$ have the same determinant.					
Invertibility	A is invertible if and only if $P^{-1}AP$ is invertible.					
Rank	A and $P^{-1}AP$ have the same rank.					
Nullity	A and $P^{-1}AP$ have the same nullity.					
Trace	A and $P^{-1}AP$ have the same trace.					
Characteristic polynomial	A and $P^{-1}AP$ have the same characteristic polynomial.					
Eigenvalues	A and $P^{-1}AP$ have the same eigenvalues.					
Eigenspace dimension	If λ is an eigenvalue of A and hence of $P^{-1}AP$, then the eigenspace of A corresponding to λ and the eigenspace of $P^{-1}AP$ corresponding to λ have the same dimension.					

Contoh 7: Misalkan $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$. Tentukan matriks P yang mendiagonalisasi A.

Jawaban:

maka

Sudah dihitung ruang eigennya dari Latihan 2 (lihat materi Nilai Eigen dan Vektor Eigen bagian 1):

$$E(4) = \{ \mathbf{x} = t \begin{bmatrix} 1 \\ 1 \end{bmatrix}, t \in \mathbf{R} \} \text{ dan } E(-2) = \{ \mathbf{x} = t \begin{bmatrix} 1 \\ -1 \end{bmatrix}, t \in \mathbf{R} \}$$

$$P = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \xrightarrow{1} \rightarrow P^{-1} = \frac{1}{(-1)-1} \begin{bmatrix} -1 \\ -1 \end{bmatrix} = \frac{1}{-2} \begin{bmatrix} -1 \\ -1 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{bmatrix}$$

Untuk memeriksa apakah P mendiagonalisasi A, maka hitunglah bahwa

$$D = P^{-1}AP$$

$$= \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & -1/2 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & -1/2 \end{bmatrix} \begin{bmatrix} 4 & -2 \\ 4 & 2 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 0 & -2 \end{bmatrix}$$

Contoh 8: Tentukan matriks P yang mendiagonalisasi
$$A = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$$

<u>Jawaban</u>:

Persamaan karakteristik matriks A adalah

$$(\lambda - 1)(\lambda - 2)^2 = 0 \rightarrow \lambda_1 = 1 \operatorname{dan} \lambda_2 = 2$$
Untuk $\lambda = 2 \rightarrow E(2) = \{ \mathbf{x} = r \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} + s \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, r \operatorname{dan} s \in \mathbf{R} \}$
Untuk $\lambda = 1 \rightarrow E(1) = \{ \mathbf{x} = t \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}, t \in \mathbf{R} \}$
Maka $P = \begin{bmatrix} -1 & 0 & -2 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} \rightarrow P^{-1} = \begin{bmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \\ -1 & 1 & -1 \end{bmatrix}$

Untuk memastikan bahwa P mendiagonalisasi A, periksa bahwa

$$D = P^{-1}AP$$

$$= \begin{bmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \\ -1 & 1 & -1 \end{bmatrix} \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix} \begin{bmatrix} -1 & 0 & -2 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

adalah matriks diagonal.

Contoh 9: Tentukan matriks P yang mendiagonalisasi A =
$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ -3 & 5 & 2 \end{bmatrix}$$

<u>Jawaban</u>:

Persamaan karakteristik matriks A adalah

$$(\lambda - 1)(\lambda - 2)(\lambda - 2) = 0 \rightarrow \lambda_1 = 1 \text{ dan } \lambda_2 = 2$$
Untuk $\lambda = 1 \rightarrow E(1) = \{ \mathbf{x} = t \begin{bmatrix} 1/8 \\ -1/8 \end{bmatrix}, t \in \mathbf{R} \}$
Untuk $\lambda = 2 \rightarrow E(2) = \{ \mathbf{x} = s \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, s \in \mathbf{R} \}$

Oleh karena A adalah matriks 3 x 3 sedangkan hanya ada dua vektor basis di dalam kedua ruang eigen, maka tidak terdapat matriks P sehingga A <u>tidak</u> dapat didiagonalisasi.

Kegunaan matriks diagonal: menghitung perpangkatan matriks.

Contoh: Berapakah A³?

$$A^{3} = (PDP^{-1})^{3}$$

$$= (PDP^{-1})(PDP^{-1})(PDP^{-1})$$

$$= PD(P^{-1}P)D(P^{-1}P)DP^{-1}$$

$$= P^{-1}P = I$$

$$= PDIDIDP^{-1}$$

$$= PDDDP^{-1}$$

$$= PD^{3}P^{-1}$$

Menghitung D³ sangat mudah, misalkan dari Contoh 7, matriks diagonal D yang mirip dengan matriks $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$ sudah dihitung, yaitu $D = \begin{bmatrix} 4 & 0 \\ 0 & -2 \end{bmatrix}$. Maka,

$$D^{3} = \begin{bmatrix} 4 & 0 \\ 0 & -2 \end{bmatrix}^{3} = \begin{bmatrix} 4^{3} & 0 \\ 0 & (-2)^{3} \end{bmatrix} = \begin{bmatrix} 64 & 0 \\ 0 & -8 \end{bmatrix}$$

maka

$$A^{3} = PD^{3}P^{-1}$$

$$= \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 64 & 0 \\ 0 & -8 \end{bmatrix} \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & -1/2 \end{bmatrix}$$

$$= \begin{bmatrix} 64 & -8 \\ 64 & 8 \end{bmatrix} \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & -1/2 \end{bmatrix}$$

$$= \begin{bmatrix} 28 & 36 \\ 36 & 28 \end{bmatrix}$$

Latihan (dari soal kuis 2019)

Diberikan matriks A sebagai berikut:

$$A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 3 & 0 & 1 \end{bmatrix}$$

- a). Tentukan semua nilai eigen dari matriks A
- b). Tentukan semua vektor eigen dari A dan basis dari ruang eigen
- c). Apakah A dapat didiagonalsasi? Jika YA, tentukan matriks diagonal dari A, lalu hitunglah A⁵ dengan bantuan matriks diagonal tsb.

EXAMPLE 5 Power of a Matrix

Use 3 to find A^{13} , where

$$A = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$$

Solution We showed in Example 1 that the matrix A is diagonalized by

$$P = \begin{bmatrix} -1 & 0 & -2 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

and that

$$D = P^{-1}AP = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Thus, it follows from 3 that

$$A^{13} = PD^{13}P^{-1} = \begin{bmatrix} -1 & 0 & -2 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2^{13} & 0 & 0 \\ 0 & 2^{13} & 0 \\ 0 & 0 & 1^{13} \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \\ -1 & 0 & -1 \end{bmatrix}$$
$$= \begin{bmatrix} -8190 & 0 & -16382 \\ 8191 & 8192 & 8191 \\ 8191 & 0 & 16383 \end{bmatrix}$$

Aplikasi Nilai Eigen dan Vektor Eigen di dalam *Analytic Hierarchy Process* (AHP)

Bahan tambahan IF2123 Aljabar Geometri

Program Studi Informatika ITB

Sumber:

1. Unknown, Analytic Hierarchy Process (What is AHP)

• AHP: metode yang digunakan dalam analisis pengambilan keputusan.

AHP: metode untuk menurunkan skala rasio dari perbandingan antar kriteria

Skala rasio diturunkan dari prinsip vektor Eigen

Indeks kekonsistenan diturunkan dari prinsip nilai Eigen

$$\mathbf{A}\mathbf{x}=\lambda\mathbf{x}$$
 eigenvector eigenvalue

Contoh: Ada tiga buah yang akan dipilih oleh Joko untuk dibawa piknik: pisang, apel, cherry. Buah mana yang akan dipilih?

Tahap 1: Pairwise comparison

Catatan: Jika ada n pilihan, maka diperlukan sebanyak n(n-1)/2 perbandingan

Tahap 2: Pembentukan matriks perbandingan

Rule:

 Jika nilai yang diberikan terletak di kiri angka 1, maka kita meletakkan nilai aktual tersebut di dalam matriks.

• Jika nilai yang diberikan terletak di kanan angka 1, maka kita meletakkan nilai kebalikannya di dalam matriks.

Rule:

Jika nilai yang diberikan terletak **di kiri** angka 1, maka kita meletakkan **nilai aktual** tersebut di dalam matriks.

Jika nilai yang diberikan terletak **di kanan** angka 1, maka kita meletakkan **nilai kebalikannya** di dalam matriks.

apple banana cherry

$$A = \begin{array}{c} apple \\ A = banana \\ cherry \end{array} \begin{bmatrix} 1 & \frac{1}{3} & 5 \\ & 1 & 7 \\ & & 1 \end{bmatrix}$$

apple banana cherry

$$A = banana \begin{cases} 1 & \frac{1}{3} & 5 \\ 3 & 1 & 7 \\ \frac{1}{5} & \frac{1}{7} & 1 \end{cases}$$

Tahap 3: Menentukan vektor prioritas (Menghitung nilai eigen dan vektor eigen)

$$A\mathbf{x} = \lambda \mathbf{x}$$

$$\begin{bmatrix} 1 & 1/3 & 5 \\ 3 & 1 & 7 \\ 1/5 & 1/7 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \lambda \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
 det $(\lambda I - A) = 0$

Setelah dilakukan perhitungan, diperoleh:

1. Nilai eigen $\lambda_{\text{max}} = 3.0649$

2. Vektor eigen
$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3.87828 \\ 9.02462 \\ 1 \end{bmatrix} = \begin{bmatrix} 0.2790 \\ 0.6491 \\ 0.0719 \end{bmatrix}^*$$
 Appel = 27,9% Cherry = 7,1%

^{*)} Diperoleh dengan menormalisasi vektor eigen, yaitu membagi setiap komponen dengan nilai totalnya

Tahap 4: Menentukan Indeks Konsistensi dan Rasio Konsistensi

Indeks konsistensi:
$$CI = \frac{\lambda_{\text{max}} - n}{n - 1} = \frac{3.0967 - 3}{2} = 0.0484$$

Table 1 Random Consistency Index (**M**)

n	1	2	3 4	l 5	6	7	8	9	10
RI	0	0	0.580).9 1.	12 1.2	4 1.3	2 1.4	1 1.4	5 1.49

Rasio konsistensi:
$$CR = \frac{CI}{RI} = \frac{0.0484}{0.58} = 0.083 = 8,3\%$$
 (acceptable)

Jika $CR \le 10\%$, maka inkonsistensi dapat diterima. Jika CR > 10%, maka kita perlu merevisi penilaian subyektif (*pairwise comparison*)

TAMAT