## Aligning new-sequencing reads by BWA

Heng Li

Broad Institute

4 Feburary 2010

### Outline

- Short-read alignment
  - Overview of read alignment
  - Short-read aligners

- BWA: Burrows-Wheeler Aligner
  - Overview of BWA
  - Running BWA

### Outline

- Short-read alignment
  - Overview of read alignment
  - Short-read aligners
- BWA: Burrows-Wheeler Aligner
  - Overview of BWA
  - Running BWA

# Overview of read alignment

- Alignment and de novo assembly are the first steps once read sequences are obtained.
- The task: to align sequencing reads against a known reference sequence for variation discovery (SNPs, indels and CNVs), ChIP-seq or RNA-seq.
- Difficulties: efficiency and ambiguity caused by repeats and sequencing errors.
- Aligners for long reads (>200bp): BLAT, SSAHA2 and BWA-SW.

# There are many short-read aligners...

- Bfast
- BioScope
- Bowtie
- BWA
- CLC bio
- CloudBurst
- Eland/Eland2
- GenomeMapper
- GnuMap
- Karma

- MAQ
- MOM
- Mosaik
- MrFAST/MrsFAST
- NovoAlign
- PASS
- PerM
- RazerS
- RMAP
- SSAHA2

- Segemehl
- SeqMap
- SHRiMP
- Slider/SliderII
- SOAP/SOAP2
- Srprism
- Stampy
- vmatch
- ZOOM
- .....

# There are many short-read aligners...

- Bfast
- BioScope
- Bowtie
- BWA
- CLC bio
- CloudBurst
- Eland/Eland2
- GenomeMapper
- GnuMap
- Karma

- MAQ
- MOM
- Mosaik
- MrFAST/MrsFAST
- NovoAlign
- PASS
- PerM
- RazerS
- RMAP
- SSAHA2

- Segemehl
- SeqMap
- SHRiMP
- Slider/SliderII
- SOAP/SOAP2
- Srprism
- Stampy
- vmatch
- ZOOM
- .....

# The speed varies...

#### CPU time (method1)



by Bala et al.

# The memory varies...

#### Memory (method 1)



by Bala et al.

# The accuracy varies...



by Bala et al.

# Alignment strategy and SNP calling





| 231 241 251 261 271 281 291 301 311 321                                                                       |     |
|---------------------------------------------------------------------------------------------------------------|-----|
| TATGCTATTCAGTTCTAAATATAGAAATTGAAACAGCTGTGTTTAGTGCCTTTGTTCA******ACCCCCTTGCAACAACCTTGAGAACCCCAGGGAATTTGTCAATGT | CA  |
|                                                                                                               |     |
|                                                                                                               | ,,  |
| G                                                                                                             | ,,  |
|                                                                                                               | •   |
|                                                                                                               | "   |
| T. TA. A.AG*****                                                                                              | "   |
| A.AG*****                                                                                                     | ï   |
| a,ag*****                                                                                                     | ,,  |
| ,,,,,,,,, AG*****                                                                                             |     |
| C                                                                                                             | ٠.  |
| ***************************************                                                                       | • • |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                        | • • |
| ******CA ,,                                                                                                   | ,,  |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                        | ,,  |
| A                                                                                                             | • • |
| *****                                                                                                         | • • |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                       |     |
| ******                                                                                                        |     |
| ***************************************                                                                       | •   |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                        | ,,  |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                       | •   |
|                                                                                                               | •   |
|                                                                                                               | ,,  |
| AU                                                                                                            |     |
| *****                                                                                                         |     |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                       |     |
| ······································                                                                        |     |
| A                                                                                                             |     |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                       |     |
|                                                                                                               |     |

10 / 17

- There are many aligners and they vary a lot in performance.
- Aligners also vary in accuracy.
- Alignment accuracy is likely to affect the identification of structural variations (SVs), depending on algorithms though.
- In SNP calling, effective pair-end mapping and gapped alignment are essential to high SNP accuracy.

- There are many aligners and they vary a lot in performance.
- Aligners also vary in accuracy.
- Alignment accuracy is likely to affect the identification of structural variations (SVs), depending on algorithms though.
- In SNP calling, effective pair-end mapping and gapped alignment are essential to high SNP accuracy.

- There are many aligners and they vary a lot in performance.
- Aligners also vary in accuracy.
- Alignment accuracy is likely to affect the identification of structural variations (SVs), depending on algorithms though.
- In SNP calling, effective pair-end mapping and gapped alignment are essential to high SNP accuracy.

- There are many aligners and they vary a lot in performance.
- Aligners also vary in accuracy.
- Alignment accuracy is likely to affect the identification of structural variations (SVs), depending on algorithms though.
- In SNP calling, effective pair-end mapping and gapped alignment are essential to high SNP accuracy.

- There are many aligners and they vary a lot in performance.
- Aligners also vary in accuracy.
- Alignment accuracy is likely to affect the identification of structural variations (SVs), depending on algorithms though.
- In SNP calling, effective pair-end mapping and gapped alignment are essential to high SNP accuracy.

### Outline

- Short-read alignment
  - Overview of read alignment
  - Short-read aligners

- BWA: Burrows-Wheeler Aligner
  - Overview of BWA
  - Running BWA

# Overview of the BWA algorithm

- Based on FM-index (Burrows-Wheeler Transform plus auxillary data structures) which enables fast exact matching.
- Short-read algorithm: alter the read sequence such that it matches the reference exactly.
- Long-read algorithm (BWA-SW): sample reference subsequences and perform Smith-Waterman alignment between the subsequences and the read.
- Work for Illumina and SOLiD single-end (SE) and paired-end (PE) reads; new component BWA-SW for 454/Sanger SE reads.

# Key features

- Fast and moderate memory footprint (<4GB)
- SAM output by default
- Gapped alignment for both SE and PE reads
- Effective pairing to achieve high alignment accuracy; suboptimal hits considered in pairing.
- Non-unique read is placed randomly with a mapping quality 0; all hits can be outputted in a concise format.
- Guarantee to find k-difference in the seed (first 32bp by default).
- The default configuration works for most typical input.
  - Automatically adjust parameters based on read lengths and error rates.
  - Estimate the insert size distribution on the fly.



# Running BWA

- Input: ref.fa, read1.fq.gz, read2.fq.gz and long-read.fq.gz
- Step 1: Index the genome (~3 CPU hours for the human genome):
   bwa index -a bwtsw ref.fa
- Step 2a: Generate alignments in the suffix array coordinate:
   bwa aln ref.fa read1.fq.gz > read1.sai
   bwa aln ref.fa read2.fq.gz > read2.sai
   Apply option -q15 if the quality is poor at the 3'-end of reads.
- Step 3a: Generate alignments in the SAM format:
   bwa sampe ref.fa read?.sai read?.fq.gz > aln.sam
- Step 4a: Get multiple hits:
   bwa samse -n 100 ref.fa read1.sai read1.fq.gz
- Step 2b: Use BWA-SW for long reads:
   bwa bwasw ref.fa long-read.fq.gz > aln-long.sam

# The Sequence Alignment/Map format

```
coor
                      12345678901234
                                       5678901234567890123456789012345
               ref
                      AGCATGTTAGATAA**GATAGCTGTGCTAGTAGGCAGTCAGCGCCAT
Paired-end
             r001+
                            TTAGATAAAGGATA*CTG
               r002+
                           aaaΔGΔΤΔΔ*GGΔΤΔ
               r003+
                         ecctaAGCTAA
                                        ATAGCT.
                                                             TCAGC
               r004+
Multipart
               r003-
                                               ttagct TAGGC
               r001-
                                                              CAGCGCCAT
               @SQ SN:ref LN:45
Ins & padding
                                                     39 TTAGATAAAGGATACTA
                             7 30 8M2I4M1D3M
                                                37
 Soft clipping
               r002
                             9 30 3S6M1P1I4M *
                                                      Ø AAAAGATAAGGATA
               r003 0 ref
                             9 30 5H6M
                                                      0 AGCTAA
     Splicing
               r004
                      0 ref 16 30 6M14N5M
                                                      0 ATAGCTTCAGC
                     16 ref 29 30 6H5M
                                                                     NM:i:0
Hard clipping
               r003
                                                      0 TAGGC
               r001
                     83 ref 37 30 9M
                                                 7 -39 CAGCGCCAT
               ref
                    7 T 1 .
                               |ref 12 T 3 ...
                                                       ref 17 T 3 ...
               ref
                    8 T 1 .
                                ref 13 A 3 ...
                                                       ref 18 A 3 .-1G..
               ref 9 A 3 ...
                                ref 14 A 2 .+2AG.+1G.
                                                       ref 19 G 2 *.
               ref 10 G 3 ...
                                ref 15 G 2 ...
                                                       ref 20 C 2 ...
               ref 11 A 3 ..C
                                ref 16 A 3 ...
```

# Acknowledgement

- Richard Durbin and the Durbin research group
- All BWA users