NORMA TÉCNICA COLOMBIANA

NTC 3833

2002-03-11

DIMENSIONAMIENTO, CONSTRUCCIÓN, MONTAJE Y EVALUACIÓN DE LOS SISTEMAS PARA LA EVACUACIÓN DE LOS PRODUCTOS DE LA COMBUSTIÓN GENERADOS POR LOS ARTEFACTOS QUE FUNCIONAN CON GAS

E: SIZING, CONSTRUCTION, INSTALLATION AND EVALUATION OF VENTING SYSTEMS FOR COMBUSTION PRODUCTS GENERATED BY GAS APPLIANCES

CORRESPONDENCIA:

DESCRIPTORES: evacuación de productos de combustión; artefacto de gas;

instalación de artefactos de gas.

I.C.S.: 91.140.40

Editada por el Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC) Apartado 14237 Bogotá, D.C. - Tel. 6078888 - Fax 2221435

PRÓLOGO

El Instituto Colombiano de Normas Técnicas y Certificación, **ICONTEC**, es el organismo nacional de normalización, según el Decreto 2269 de 1993.

ICONTEC es una entidad de carácter privado, sin ánimo de lucro, cuya Misión es fundamental para brindar soporte y desarrollo al productor y protección al consumidor. Colabora con el sector gubernamental y apoya al sector privado del país, para lograr ventajas competitivas en los mercados interno y externo.

La representación de todos los sectores involucrados en el proceso de Normalización Técnica está garantizada por los Comités Técnicos y el período de Consulta Pública, este último caracterizado por la participación del público en general.

La NTC 3833 (Primera actualización) fue ratificada por el Consejo Directivo del 2002-03-11.

Esta norma está sujeta a ser actualizada permanentemente con el objeto de que responda en todo momento a las necesidades y exigencias actuales.

A continuación se relacionan las empresas que colaboraron en el estudio de esta norma a través de su participación en el Comité Técnico 382101 Aparatos domésticos y equipos industriales que utilizan gas.

ACOGAS
ALUMINA
CHALLENGER
CONFEDEGAS
EMPRESAS PÚBLICAS DE MEDELLÍN

GAS NATURAL GRUPO REDES (TEXNO)

ICP

INCELT

INDUSEL

INDUSTRIAS CIMSA
INDUSTRIAS HACEB
INDUSTRIAS SUPERIOR
MABE COLOMBIA

PAVCO

PAVCO SUDELEC

SUPERINTENDENCIA DE INDUSTRIA Y

COMERCIO

TALLERES MONTAÑO

Además de las anteriores, en Consulta Pública el Proyecto se puso a consideración de las siguientes empresas:

AFOMDIGAS ECOPETROL GASES DEL CARIBE ICASA

LLANOGAS S.A. E.S.P.

MINISTERIO DE MINAS Y ENERGÍA SUPERINTENDENCIA DE SERVICIOS PÚBLICOS

SURTIGAS S.A. E.S.P.

UNIVERSIDAD DE LOS ANDES

ICONTEC cuenta con un Centro de Información que pone a disposición de los interesados normas internacionales, regionales y nacionales.

DIRECCIÓN DE NORMALIZACIÓN

DIMENSIONAMIENTO, CONSTRUCCIÓN, MONTAJE Y EVALUACIÓN DE LOS SISTEMAS PARA LA EVACUACIÓN DE LOS PRODUCTOS DE LA COMBUSTIÓN GENERADOS POR LOS ARTEFACTOS QUE FUNCIONAN CON GAS

1. OBJETO

La presente norma se aplica al dimensionamiento, construcción, montaje y evaluación de los requisitos básicos de funcionamiento de sistemas colectivos e individuales para la evacuación hacia la atmósfera exterior de los productos de combustión generados por los artefactos Tipo B1, Tipo B2 o Tipo C, que funcionan con gas en aplicaciones de uso doméstico y comercial, instalados en recintos interiores.

El tipo de clasificación a que corresponde un artefacto de gas, de acuerdo con el método que se emplee para la evacuación de los productos de combustión, lo debe determinar directamente su fabricante, con base en las especificaciones de construcción y funcionamiento que establezcan las normas técnicas particulares aplicables a ese tipo de artefactos. Tal característica la debe destacar claramente el fabricante en el manual de instrucciones de uso e instalación del respectivo artefacto de gas.

La instalación de los artefactos clasificados como Tipo A, deben cumplir los requisitos establecidos en el numeral 3 de la presente NTC.

No se cubren las actividades de dimensionamiento, construcción, montaje y evaluación para artefactos de tipo industrial.

2. **DEFINICIONES**

Además de las definiciones existentes en las normas referenciadas en el numeral 9 se deben aplicar las siguientes:

- **2.1** Accesorios de acople: elementos tales como codos y tes "T" de interconexión, necesarios para conformar los sistemas de evacuación.
- **2.2** Artefactos de gas de calor bajo: artefactos tales como cocinas, hornos y calderas en los cuales las temperaturas de cocción, fusión o calefacción no exceda de 315 °C. Este concepto no se aplica a los productos de la combustión generados por este tipo de artefactos.
- **2.3** Artefactos de gas de calor medio: artefactos de gas en los cuales la temperatura de cocción, fusión o calefacción excede de 315 °C. Este tipo de artefacto normalmente se encuentran destinados para aplicaciones de uso comercial.

- **2.4** Artefactos de gas de combustión asistida: artefactos de gas del Tipo B.2, equipados con un dispositivo mecánico integral que sirve para inducir una corriente de tiro, bajo presión estática no positiva, en la cámara de combustión o intercambiador de calor del artefacto, con el objeto de evacuar los productos de la combustión del gas.
- **2.5** Artefactos de gas del Tipo A: artefacto que de acuerdo con lo determinado por el fabricante con base en las especificaciones de construcción y funcionamiento, no requieren ser acoplados a sistemas de evacuación de productos de la combustión.
- **2.6** Artefactos de gas del Tipo B.1: artefactos dotados de disipadores de tiro revertido o cortatiros, diseñados para acoplar a sistemas de evacuación que operen por tiro natural bajo presión estática no positiva.
- **2.7** Artefactos de gas del Tipo B.2: artefactos diseñados para acoplar a sistemas mecánicos de evacuación que operen por tiro mecánico inducido (bajo presión estática no positiva) o forzado (bajo presión estática positiva).
- **2.8** Artefactos de gas del Tipo C: artefactos con circuitos de combustión sellados al ambiente interior o de cámara hermética, diseñados para ser conectados directamente con la atmósfera exterior mediante sistemas de admisión de aire y tubo de escape de flujo balanceado.
- **2.9** Conector: elemento de conexión que sirve para acoplar los artefactos a las chimeneas, cuando así se requiera. Los conectores a su vez pueden ser múltiples o individuales.
- **2.10** Conector de evacuación directa a través de fachada: conector de evacuación individual que comunica el artefacto de gas con el exterior, atravesando una de las paredes, muros o ventanas de la edificación.
- **2.11** Chimenea: elemento vertical que sirve para evacuar hacia la atmósfera exterior los productos de la combustión generados por los artefactos de gas. Los productos de la combustión son transportados desde el artefacto a través de conectores hacia dicha chimenea.
- **2.11.1** Chimenea colectiva: chimenea que sirve para la evacuación de los productos de combustión de dos (2) o más artefactos instalados en una o varias plantas de un mismo edificio.
- **2.11.2** Chimenea individual: chimenea que sirve para la evacuación de los productos de combustión de un solo artefacto.
- **2.12** Defecto de tiro: presión de tiro insuficiente en un sistema de evacuación, que hace que ésta sea incorrecta y que parte de los productos de la combustión invadan el recinto donde se encuentre ubicado el artefacto (véase el numeral 3.20)
- **2.13** Deflector (sombrerete): dispositivo que se acopla al extremo superior o terminal de una chimenea y que sirve para mantener unas condiciones adecuadas de tiro en el sistema de evacuación bajo los efectos del viento, y evitar que entren al sistema de evacuación: lluvia, granizo o cualquier material extraño.
- **2.14** Diámetro potencial/área potencial: mínimo diámetro nominal o área seccional interior que requiere un conector o una chimenea, para mantener una corriente de tiro continuo hacia la atmósfera exterior de los productos de combustión generados por los artefactos de gas del Tipo B.1 dotados de disipadores de tiro revertido o corta-tiros, o del Tipo B.2 que operen por tiro mecánico inducido. El diámetro nominal o área seccional interior mínimo permisible se determina a partir de la potencia nominal de cada artefacto.

- **2.15** Evacuación: acción de remover hacia la atmósfera exterior los productos de combustión generados por los artefactos de gas para uso doméstico y comercial instalados en recintos interiores.
- **2.16** Extractores y campanas de ventilación: dispositivos mecánicos que sirven para la evacuación de gases, vapores, remoción o circulación de polvo, residuos sólidos en suspensión y humos o sus combinaciones en instalaciones de tipo doméstico y comercial.
- **2.17** Materiales combustibles: materiales fabricados o recubiertos de madera, papel, conglomerado, fibras vegetales, o cualquier otro material que se pueda inflamar y hacer combustión. Tales materiales se consideran combustibles aunque sean tratados con agentes retardantes de ignición o a prueba de incendio.
- **2.18** Materiales no combustibles: materiales que no se pueden inflamar ni hacer combustión.
- **2.19** MEC: potencia nominal de uno o más artefactos de gas de combustión asistida.
- **2.19.1** MEC mín: potencia nominal mínima de uno o más artefactos de gas de combustión asistida.
- 2.19.2 MEC máx: potencia nominal máxima de uno o más artefactos de gas de combustión asistida.
- **2.19.3** MEC + MEC: máxima potencia nominal, agregada o conjunta, de dos o más artefactos de gas de combustión asistida, acoplados a un mismo sistema colectivo para la evacuación de los productos de la combustión del gas.
- **2.19.4** MEC + NAT: máxima potencia nominal, agregada o conjunta, de uno o más artefactos de gas de combustión asistida y uno o más artefactos de gas del Tipo B.1 dotados de disipadores de tiro revertido, acoplados a un mismo sistema colectivo para la evacuación de los productos de la combustión del gas.
- **2.20** NA: indica que el esquema propuesto para un sistema de evacuación no es aplicable para el tipo de instalación considerada, debido a restricciones de carácter físico o geométrico.
- **2.21** NAT: máxima potencia de un artefacto de gas del Tipo B.1 dotado de disipador de tiro revertido o corta-tiros.

Nota. A los artefactos de gas del Tipo B1, no se les designa una potencia instalada mínima.

- **2.22** NAT + NAT: máxima potencia nominal, agregada o conjunta, de dos o más artefactos de gas del Tipo B.1 acoplados a un mismo sistema colectivo para la evacuación de los productos de la combustión del gas.
- **2.23** NR: indica que el esquema propuesto para un sistema de evacuación no es recomendable para el tipo de instalación considerada, debido al riesgo potencial que se generen condensados o que se presurice el sistema de evacuación y exista revoco.
- **2.24** Revoco: efecto por el cual parte de los productos de la combustión invaden el local dónde se encuentra ubicado el artefacto. Este fenómeno puede ser puntual o continuo.

- **2.25** Sistema de evacuación: arreglo de conector, chimenea y sombrerete que se extiende desde el punto de recolección de los productos de la combustión de un artefacto de gas hasta la atmósfera exterior, con el propósito de desalojar los productos de la combustión generados por los artefactos de gas instalados en recintos interiores.
- **2.26** Sistemas de evacuación de tiro mecánico: sistemas de evacuación diseñados para remover los productos de la combustión del gas con la intervención de un elemento mecánico. Estos sistemas pueden ser de tiro inducido o de tiro forzado.
- **2.27** Sistema de evacuación de tiro inducido: sistema de evacuación de tiro mecánico que emplea un ventilador, extractor, turbina u otro medio mecánico para inducir una corriente de tiro bajo presión estática no positiva.
- **2.28** Sistema de evacuación de tiro forzado: sistema de evacuación de tiro mecánico que emplea un ventilador, extractor, turbina u otro medio mecánico para forzar una corriente de tiro bajo presión estática positiva.
- **2.29** Sistema de evacuación de tiro natural: sistema de evacuación diseñado para remover los productos de la combustión del gas bajo presión estática no positiva, generada espontáneamente por la diferencia de temperatura entre los productos de la combustión del gas y la atmósfera exterior.
- **2.30** Sistema de evacuación directa a través de fachada: sistema de evacuación individual que une al artefacto de gas con el exterior, atravesando una de las paredes, muros o ventanas de la edificación.
- **2.31** Tiro: flujo de gases, vapores, humos o aire a través de un sistema de evacuación, causado por una diferencia de presiones.
- **2.32** Tiro mecánico: Flujo de gases, vapores, humos o aire a través de un sistema de evacuación desarrollado por un ventilador, extractor, turbina u otro medio mecánico.
- **2.33** Tiro natural: Flujo de gases, vapores, humos o aire a través de un sistema de evacuación desarrollado por la diferencia de temperatura entre los productos de la combustión (calientes) y la atmósfera exterior.
- **2.34** Ventilación: acción de introducir aire hacia un recinto interior, para suplir las necesidades adicionales de aire de combustión, renovación y dilución de los artefactos de gas instalados en el recinto, en caso que la infiltración natural del aire no sea suficiente para este propósito. El aire abastecido por los sistemas de ventilación debe provenir directamente de la atmósfera exterior (véase la NTC 3631).

3. REQUISITOS PARA LA INSTALACIÓN DE ARTEFACTOS TIPO A

En el caso que uno o varios artefactos del Tipo A sean instalados en un mismo recinto interior confinado (o sin ventilación), según los criterios establecidos en la NTC 3631, en forma tal que la potencia nominal agregada o conjunta de dichos artefactos exceda 207 W por cada m³ de espacio disponible dentro del recinto, uno o más de tales artefactos deben ser conectados a sistemas que evacuen los productos de la combustión al exterior hasta que la potencia de los artefactos Tipo A restantes no conectados a los sistemas de evacuación, no exceda los 207 W por m³ de espacio disponible dentro del recinto.

Nota. Si dicho recinto interior se encuentra comunicado en forma directa con uno o más recintos interiores adyacentes mediante aberturas permanentes de circulación peatonal o de tamaño comparable, que no se puedan cerrar (tales como corredores y pasadizos sin puertas), el espacio disponible dentro de estos recintos adyacentes puede computarse en los cálculos para la verificación de este requisito (véase la NTC 3631).

Adicionalmente, la concentración media de monóxido de carbono en el ambiente donde están instalados los artefactos, medidos según el método establecido en el numeral 5, no debe ser superior a 50 ppm.

4. ESPECIFICACIONES PARA DIMENSIONAMIENTO, CONSTRUCCIÓN Y MONTAJE (INSTALACIÓN) DE SISTEMAS DE EVACUACIÓN

Los sistemas de evacuación de productos de la combustión pueden diseñarse de acuerdo con las directrices prescritas en los numerales 4.1 ó 4.2, siendo preferible el uso de la metodología especificada en el numeral 4.1; cualquiera que sea el método seleccionado deben cumplirse la totalidad de las prescripciones allí indicadas y debe efectuarse la verificación de su funcionamiento de acuerdo con lo prescrito en el numeral 5. En general durante el diseño de los sistemas de evacuación de productos de la combustión deben observarse los siguientes requisitos:

- a) Los recintos interiores del edificio donde se instalen los artefactos de gas deben ventilarse adecuadamente, en forma proporcional a la potencia nominal agregada o conjunta de todos los artefactos de gas instalados dentro de cada recinto, de conformidad con las especificaciones y requisitos que se establecen en la NTC 3631, con todo el aire de combustión, renovación y dilución proviniendo directamente de la atmósfera exterior.
- b) Los sistemas de evacuación deben construirse de materiales no combustibles ni quebradizos, con una resistencia al fuego igual o superior a 2 h ⁽¹⁾, y deben tener superficies interiores lisas o esmaltadas.
- c) Los sistemas de evacuación preferentemente tendrán una sección inferior de geometría circular. Sin embargo, podrán ser de geometría rectangular o cuadrada, siempre y cuando el área seccional interior sea equivalente al de uno circular incrementado en un 10 %; Para el caso de los sistemas rectangulares, la relación entre el lado mayor y el lado menor debe ser menor o igual a 1,5.
- d) Ninguna parte o componente de un sistema para la evacuación de los productos de combustión de gas debe extenderse o pasar a través de un sistema de ventilación y mucho menos desfogar en él.

_

Se recomienda consultar la Norma NFPA 251 (Methods of Fire Tests of Building Construction and Materials) para este fin.

4.1 CHIMENEAS DE DESCARGA A LA ATMÓSFERA EXTERIOR PARA ARTEFACTOS DE GAS DEL TIPO B.1 Y PARA ARTEFACTOS DE GAS DEL TIPO B.2, QUE OPERAN POR TIRO MECÁNICO INDUCIDO

4.1.1 Chimeneas

- 4.1.1.1 Dimensionamiento. Los sistemas aquí considerados son de aplicación exclusiva de instalaciones domésticas y comerciales; el dimensionamiento de los sistemas para la evacuación de los productos de la combustión debe realizarse teniendo en cuenta la potencia nominal del artefacto y las características de construcción y diseño del mismo, observando las indicaciones que de modo particular prescriban los fabricantes de los artefactos, así como los fabricantes de los accesorios, conectores y chimeneas, en sus respectivos manuales de instrucciones.
 - a) Dimensionamiento de sistemas de evacuación para los artefactos de gas del Tipo B.1 y Tipo B.2, que operen por tiro mecánico inducido. El dimensionamiento de sistemas de evacuación de los productos de combustión de los artefactos de gas del Tipo B.1, que operan por tiro natural, y de los artefactos de gas del Tipo B.2, los cuales operan por tiro mecánico inducido, debe cumplir como mínimo con lo establecido en el Anexo A, y Figuras A.1, A.2 ó A.3 según sea aplicable.
 - b) Dimensionamiento de sistemas de evacuación para los artefactos de gas del Tipo B.2, que operen por tiro mecánico forzado, y del Tipo C. Las dimensiones e instalación de los sistemas de evacuación para los artefactos de gas del Tipo B.2 que operen por tiro mecánico forzado y para los del Tipo C (de cámara estanca), deben estar de conformidad con las instrucciones del fabricante del artefacto de gas y del fabricante de los accesorios, conectores y chimeneas.
 - c) Dimensionamiento de sistemas de evacuación para artefactos de gas instalados en una planta o nivel de un edificio. Las dimensiones de los sistemas de evacuación de los productos de la combustión de uno o más artefactos de gas de Tipo B.1, que operan por tiro natural, o del Tipo B.2 que operen por tiro mecánico inducido, o combinación de estos, instalados en una misma planta de un edificio, deben dimensionarse de conformidad con lo establecido en el Anexo A, Tablas y Figuras A.5, A6 o A.7, según corresponda.
 - d) Dimensionamiento de sistemas de evacuación para artefactos de gas instalados en más de una planta o nivel de un edificio. Los sistemas colectivos para la evacuación de los productos de combustión de varios artefactos de gas del Tipo B.1 o del Tipo B.2, que operan por tiro mecánico inducido, instalados en más de una planta o nivel de un mismo edificio, deben configurarse mediante el empleo de sistemas, cuyas dimensiones deben estar de conformidad con las siguientes especificaciones:
 - 1) Sistemas de construcción metálica. Se puede utilizar un sistema colectivo único para la evacuación de los productos de combustión de varios artefactos de gas del Tipo B.1, que operan por tiro natural, y del Tipo B.2, que operen bajo tiro mecánico inducido o de una combinación de ambos, instalados en más de una planta o nivel de un mismo edificio, siempre y cuando las dimensiones e instalación de dicho sistema colectivo estén de conformidad con lo dispuesto en las Tablas A.5.1 y A.5.2, del Anexo A y los reguisitos de instalación y espaciamiento cumplan los siguientes requisitos:

- 1) La elevación total (H) de cada segmento del sistema colectivo debe ser la distancia vertical efectiva comprendida entre el borde superior del collarín o acople de inserción instalado a mayor altura en el piso o nivel del edificio que corresponde a ese segmento de la chimenea colectiva y el eje longitudinal horizontal del conector que corresponde al siguiente artefacto de gas acoplado al sistema inmediatamente hacia arriba (véase la Figura 1).
- 2) Las dimensiones de los conectores en cada segmento del sistema colectivo deben determinarse de acuerdo con lo indicado en el numeral 4.1.2. En ningún caso puede haber reducción de diámetro, respecto al diámetro del collarín del artefacto a gas.
- 3) Las dimensiones de los tramos verticales de cada segmento del sistema colectivo se deben determinar a partir de la elevación total (H) del segmento y de la potencia total acumulada o conjunta de todos los artefactos de gas cuyos productos de la combustión deban fluir a través de ese segmento de la chimenea colectiva; es decir, la potencia total acumulada de los distintos artefactos acoplados al sistema de la chimenea colectiva del trazado del sistema, más la potencia nominal agregada o conjunta de todos los artefactos de gas acoplados al sistema en cada uno de los segmentos inferiores (véase la Figura 2).

El tamaño del conector depende de: la potencia nominal en el tramo o segmento, la elevación inferior disponible (R), la elevación total del segmento (H).

El tamaño de la chimenea común depende de: la potencia total acumulada que entra al segmento de la chimenea común, la elevación total (H), que la chimenea común sea vertical sin cambios de dirección.

Figura 1. Parámetros de diseño para cada segmento de un sistema colectivo de evacuación a varios niveles

Figura 2. Sistema colectivo de evacuación a varios niveles

- 2) Sistemas de construcción en mampostería. Las chimeneas colectivas de mampostería y los conectores metálicos empleados en la configuración del sistema deben estar de conformidad con lo establecido en las Tablas A.2 y A.8 del Anexo A, según sea aplicable, y deben satisfacer los siguientes requisitos de construcción y espaciamiento (véanse las Figuras No. 1 y 2):
 - La elevación total (H) de cada segmento del sistema colectivo debe ser la distancia vertical efectiva comprendida entre el borde superior del collarín o acople de inserción del disipador del tiro revertido del artefacto de gas instalado a mayor altura en el piso o nivel del edificio que corresponde a ese segmento de la chimenea colectiva y el eje longitudinal horizontal del conector que corresponde al siguiente artefacto de gas acoplado al sistema inmediatamente hacia arriba (véase la Figura 1).

- 2) Las dimensiones de los conectores en cada segmento del sistema colectivo deben determinarse de acuerdo con lo indicado en el numeral 4.1.2.
- Las dimensiones de los tramos verticales de cada segmento del sistema colectivo se deben determinar a partir de la elevación total (H) del segmento y de la potencia total acumulada o conjunta de todos los artefactos de gas cuyos productos de la combustión deban fluir a través de ese segmento de la chimenea colectiva; es decir, la potencia total acumulada conjunta de los distintos artefactos acoplados al sistema de la chimenea colectiva del trazado del sistema, más la potencia nominal agregada o conjunta de todos los artefactos de gas acoplados al sistema en cada uno de los segmentos inferiores (véase la Figura 2).

Nota. Como método de diseño rápido de una chimenea colectiva en mampostería para la evacuación de los productos de combustión de varios artefactos a gas del Tipo B1 instalados en más de una planta o nivel de un mismo edificio, puede emplearse la configuración que se ilustra en la Figura 3, siempre y cuando las dimensiones del sistema estén de conformidad con lo establecido en la Tabla A8. En estos casos sólo se pueden conectar máximo dos artefactos del Tipo B1 en cada piso o nivel del edificio; los conectores no deben incluir cambios de dirección mayores de 45°; una vez dentro de la chimenea colectiva cada conector debe extenderse en sentido perfectamente vertical en una longitud mínima de 1 m; la chimenea colectiva debe tener una abertura inferior de ventilación permanente, provista de celosía, con un área libre mínima de 200 cm²; y el extremo terminal de la chimenea colectiva debe extenderse 1,8 m como mínimo por encima del techo o cubierta del edificio. Si existen muros circundantes, el extremo terminal de la chimenea colectiva debe extenderse, como mínimo, 40 cm por encima de un plano imaginario trazado 45° a partir del extremo superior del muro circundante de mayor altura. Véase la Figura 4.

Figura 3. Método alterno para la configuración de chimeneas colectivas de mampostería para la evacuación de los productos de combustión de artefactos de gas del Tipo B.1, instalados en más de una planta o nivel de un edificio (véase la Tabla A.8)

Figura 4. Extensión del extremo terminal de la chimenea colectiva por encima de un plano imaginario trazado 45° a partir del extremo superior del muro circundante de mayor altura

- 4.1.1.2 Construcción. La construcción y ensamble de los sistemas de evacuación de productos de la combustión de acuerdo con el material en que se encuentren fabricados deben cumplir los siguientes requisitos:
 - a) Chimeneas metálicas. Las chimeneas metálicas deben construirse y ensamblarse de conformidad con lo establecido en la NTC 3567.
 - b) Chimeneas de prefabricados en asbesto-cemento y fibra de vidrio. Los componentes prefabricados que se utilicen para conformar sistemas de evacuación de los productos de combustión del gas, se deben ensamblar de acuerdo con las instrucciones de su fabricante.
 - c) Chimeneas en mampostería. Las chimeneas en mampostería se deben construir de conformidad con lo establecido en el Código Colombiano de Construcciones Sismorresistentes.
- 4.1.1.3 Montaje. En la instalación de los sistemas de evacuación de los productos de la combustión para evacuación por tiro natural o inducido de los productos de la combustión del gas deben tenerse en cuenta los siguientes criterios:
 - a) Los sistemas de evacuación de los productos de la combustión para evacuación por tiro natural o inducido de los productos de la combustión del gas no deben terminar bajo aleros o parapetos de las edificaciones donde están instalados.
 - b) Los sistemas de evacuación de los productos de la combustión deben garantizar la hermeticidad del sistema.

- c) En general la instalación de los sistemas de evacuación de los productos de la combustión se debe realizar de acuerdo con las instrucciones de su fabricante y se deben extender en sentido vertical. Todas las partes y componentes de un sistema de evacuación deben soportarse de acuerdo con el tipo de diseño y peso del material empleado. Los componentes prefabricados deben soportarse y espaciarse de conformidad con las instrucciones de su fabricante.
- d) Las chimeneas se deben instalar de acuerdo con las siguientes especificaciones, teniendo en cuenta si su uso final corresponde a instalaciones domésticas o comerciales. Únicamente pueden terminar sobre fachada los sistemas de evacuación que cumplan los requisitos establecidos en el numeral 4.2.
 - Chimeneas colectivas para conectar artefactos de uso doméstico. Las chimeneas colectivas para conectar artefactos de uso doméstico se deben extender:
 - Como mínimo 1,8 m por encima del acople de inserción o collarín del conector instalado al sistema de evacuación ubicado a mayor altura, en el caso de chimeneas de mampostería.
 - Como mínimo 1,0 m por encima del punto donde crucen el techo o la cubierta de la edificación, en el caso de chimeneas metálicas o de asbesto cemento.
 - Como mínimo 60 cm por encima de cualquier parte o componente de la edificación comprendida dentro de un radio de 3,0 m a su alrededor. (Véase la Figura 5), en el caso de chimeneas metálicas o de asbesto cemento.

Nota. Cuando por las condiciones particulares de la edificación no sea posible cumplir con este último requisito, la chimenea debe sobresalir mínimo 1 m por encima del punto dónde cruce el techo o la cubierta de la edificación y cumplir adicionalmente los siguientes requisitos:

- * Que la descarga se realice en un punto donde no sea posible la acumulación de los productos de la combustión.
- * Que la concentración media de monóxido de carbono, en el recinto donde se encuentran instalados los artefactos medido según lo establecido en el numeral 5.1 no debe ser superior a 50 ppm.
- * Que existan las distancias especificadas en el literal f del numeral 4.2.1
- 2) Chimeneas colectivas para conectar artefactos de uso comercial. Las chimeneas colectivas para conectar artefactos de uso comercial se deben extender:
 - Mínimo 3,0 m por encima de cualquier parte o componente de la edificación comprendida dentro de un radio de 7,5 m a su alrededor.
 - Mínimo 3,7 m por encima del punto de inserción del collarín del conector instalado a mayor altura descontando la altura del extremo terminal

- A. Terminales con paredes, parapetos o caballetes, o ambos ubicados dentro de un radio de 3,0 m a la redonda con respecto a la chimenea. (La chimenea debe sobresalir por lo menos 1 m por encima del punto más alto donde cruce techos o entejados y/o mínimo 60 cm de cualquier parapeto, pared, o caballete ubicado dentro de un radio de 3,0 m a la redonda)
- B. Terminales ubicados a más de 3,0 m a la redonda con respecto a paredes, parapetos, o caballetes, o ambos (La chimenea debe sobresalir por lo menos 1 m por encima del punto donde cruce techos o entejados)

Figura 5. Localización típica de los extremos terminales de las chimeneas metálicas de pared sencilla y de las chimeneas para los artefactos de gas del Tipo B.1 y del Tipo B.2 que operen por tiro mecánico inducido

e) Tanto las chimeneas metálicas de uso doméstico como de uso comercial se deben instalar conservando las distancias mínimas de espaciamiento que se especifican en la Tabla 1, con respecto a materiales combustibles. Sin embargo, estas distancias mínimas se pueden reducir cuando el material combustible adyacente se proteja contra la radiación de calor proveniente de los accesorios, conectores y chimenea metálicos, conforme se indica en la Tabla 2.

Tabla 1. Requisitos de espaciamiento con respecto a materiales combustibles ²

Tipos de artefactos de gas para uso doméstico y comercial	Distancias mínimas entre los conectores, accesorios y chimeneas metálicos de pared sencilla y los materiales combustibles
Artefactos de gas del Tipo B.1, que dispongan de disipadores de tiro revertido o corta-tiros.	230 mm
Otros artefactos de gas del Tipo B.1 para uso doméstico.	305 mm
Incineradores de gas de uso doméstico.	460 mm
Artefactos de gas para uso doméstico, diferentes a los anteriores.	460 mm
Artefactos de gas de calor bajo del Tipo B.2, que operen por tiro mecánico inducido.	150 mm
Artefactos de gas de calor bajo, diferentes de los anteriores.	460 mm
Artefactos de gas de calor medio	920 mm

Tabla 2. Reducción de los requisitos de espaciamiento con respecto a materiales combustibles mediante el empleo de métodos especiales de protección térmica. Las distancias mínimas están dadas en mm

Tipo de protección aplicada al material combustible, que cubre todas las	Cua	ndo la	distan		ima ha		teriales a sea:	comb	ustible	s sin
superficies de éste, comprendidas dentro	92	20	46	60	30	05	23	30	1	50
de la distancia mínima que especifica la Tabla 1 para el espaciamiento de los	La	distan	cia mín		cia ma uede r		s con pi se	rotecci	ón térn	nica
conectores, accesorios y chimeneas con respecto a los materiales combustibles sin protección térmica.	Col 1	Col 2	Col 1	Col 2	Col 1	Col 2	Col 1	Col 2	Col 1	Col 2
Recubrimiento de mampostería de 90 mm de espesor, sin espacio intersticial de aire circulante.		610		305		230		150		130
Recubrimiento aislante de material no combustible de 12 mm de espesor sobre capas de fibra de vidrio o fibra de algodón mineralizado de 25 mm de espesor.	610	460	305	230	230	150	150	130	100	75
Láminas de acero de 0,6 mm de espesor sobre capas de fibra de vidrio o algodón mineralizado de 25 mm de espesor, reforzadas con alambre y espacio intersticial de aire circulante.	460	305	230	150	150	100	130	75	75	75
Recubrimiento de mampostería de 90 mm de espesor con espacio intersticial de aire circulante.		305		150		150		150		150
Láminas de acero de 0,6 mm de espesor con espacio intersticial de aire circulante.	460	305	230	150	150	100	130	75	75	50
Recubrimiento aislante de material no combustible de 12 mm de espesor y espacio intersticial de aire circulante.	460	305	230	150	150	100	130	75	75	75
Láminas de acero de 0,6 mm de espesor con espacio intersticial de aire circulante, sobre láminas de acero de 0,6 mm de espesor con espacio intersticial de aire circulante.	460	305	230	150	150	100	130	75	75	75
Capas de fibra de vidrio o de algodón mineralizado de 25 mm de espesor, comprimidas entre dos láminas de acero de 0,6 mm de espesor y espacio intersticial de aire circulante.	460	305	230	150	150	100	130	75	75	75

Continúa...

15

_

Estos requisitos de espaciamiento se aplican en tanto los fabricantes de los artefactos de gas y de los sistemas de evacuación no especifiquen unos requisitos de espaciamiento diferentes. De ser así, se aplican las distancias mínimas que determinen los respectivos fabricantes.

Notas aplicables a la Tabla 2.

- En la columna 1 se presentan las distancias mínimas entre los tramos horizontales de los conectores y los accesorios a los materiales combustibles adyacentes.
- 2) En la columna 2 se presentan las distancias mínimas entre las chimeneas y los materiales combustibles adyacentes.
- 3) Los espacios intersticiales de aire circulante deben tener una holgura mínima de 25 mm.
- 4) Las capas de algodón mineralizado deben tener una densidad mínima de 128 kg/m³ y un punto de fusión de 316 °C como mínimo.
- 5) El recubrimiento aislante de material no combustible debe tener una conductividad térmica de 0,144 W/m-K o menos.
- 6) Las distancias mínimas reducidas deben medirse desde la superficie exterior del material combustible hasta el punto más cercano sobre la superficie de los accesorios, conectores o chimeneas metálicos de pared sencilla para la evacuación de los productos de la combustión de gas.
- 7) Los recubrimientos de protección no deben interferir con el suministro de aire de combustión al artefacto.
- 8) Cuando el recubrimiento de protección lleve un espacio intersticial de aire, deben dejarse aberturas de ventilación hacia dicho espacio, en tal forma que se permita la libre circulación de aire (véase la Figura 6).

Figura 6. Métodos especiales de protección térmica para la reducción de los requisitos de espaciamiento con respecto a materiales combustibles

f) Las chimeneas en mampostería se deben instalar cumpliendo los siguientes criterios:

- Deben poseer acabado liso, que resista la corrosión, erosión, ablandamiento, agrietamiento o fisura, de acuerdo con la temperatura de los artefactos conectados al sistema, para ello se pueden recubrir interiormente de arcillas resistentes al fuego, baldosas refractarias u otros revestimientos adecuados sin que esto disminuya su sección interior.
- 2) Antes de acoplar el conector de un artefacto de gas a una chimenea, ésta debe examinarse para comprobar que se encuentra despejada y libre de cualquier obstrucción, y debe limpiarse previamente si con anterioridad se utilizó para evacuar los productos de combustión de hogares o artefactos que consumen combustibles sólidos o líquidos.
- Las chimeneas deben disponer de cenicero o sumidero en su extremo inferior, con una abertura de inspección y remoción de escombros provista de una compuerta de cierre hermético, instalada a una distancia no mayor de 30 cm del fondo de la chimenea. Dichas aberturas de inspección y remoción de escombros deben revisarse en forma periódica para comprobar que permanecen herméticas bajo condiciones normales de operación.

4.1.2 CONECTORES PARA ARTEFACTOS DE GAS DEL TIPO B.1 Y PARA ARTEFACTOS DE GAS DEL TIPO B.2 QUE OPEREN POR TIRO MECÁNICO INDUCIDO

Los artefactos de gas para uso doméstico y comercial del Tipo B1 que operan por tiro natural, y del Tipo B.2, que operan por tiro mecánico inducido, deben acoplarse mediante conectores a las chimeneas colectivas dispuestas para la evacuación de los productos de la combustión, excepto en los casos en que se emplean sistemas individuales los cuales se tratan en el numeral 4.2.

4.1.2.1 Construcción. Los conectores metálicos para la evacuación por tiro natural de los productos de combustión generados por los artefactos de gas del Tipo B.1 de uso doméstico y comercial, y del Tipo B.2, que operen por tiro mecánico inducido, se deben construir y ensamblar de conformidad con lo dispuesto en la NTC 3567.

4.1.2.2 Instalación

- a) Aislamiento. Los conectores metálicos para los artefactos de gas del Tipo B.1, que operan por tiro natural, y para los del Tipo B.2, que operan por tiro mecánico inducido, cuyos productos de combustión alcancen temperaturas superiores a 538 °C, medidos en la boca de entrada del respectivo conector, deben recubrirse externamente con un aislamiento térmico, de manera que se logre una temperatura de 40 °C por encima de la temperatura ambiente. Esta medición debe realizarse sobre la superficie del aislamiento del conector, accesorio o chimenea.
- b) Acople a otros conectores. Los conectores múltiples o individuales para los artefactos de gas del Tipo B1, que operan por tiro natural, y para los del Tipo B.2, que operen por tiro mecánico inducido, no deben acoplarse a conectores múltiples o chimeneas que sirvan para la evacuación de los productos de combustión de un artefacto que consuma combustibles sólidos o líquidos.

Igualmente, los conectores múltiples o individuales para los artefactos de gas del Tipo B1, que operan por tiro natural, y para los del Tipo B2, que operan por tiro mecánico inducido, no deben acoplarse a ninguna parte o componente de un sistema de evacuación que opere bajo presión estática positiva, tales como los de tiro mecánico forzado o los circuitos de combustión de cámara hermética.

- c) Conectores en una misma planta de la edificación. Cuando dos o más conectores simples se acoplen a un mismo conector múltiple o chimenea en una misma planta a nivel de una edificación, el conector de menor tamaño debe acoplarse a la mayor altura disponible dentro del recinto de conformidad con los requisitos de espaciamiento previsto con respecto a materiales combustibles.
- d) Distanciamiento a materiales combustibles. Los conectores para los artefactos de gas del Tipo B.1, que operan por tiro natural, y del Tipo B.2, que operen por tiro mecánico inducido, deben instalarse conservando las distancias mínimas de espaciamiento con respecto a materiales combustibles, especificadas para los accesorios, conectores o chimeneas metálicos en la Tabla 1. Sin embargo, estas distancias mínimas podrán reducirse cuando el material combustible adyacente se proteja en forma adecuada contra la radiación de calor, según lo establecido en la Tabla 2.

e) Trazado

- Cambios de dirección y pendiente. Los conectores para los artefactos de gas del Tipo B.1, que operan por tiro natural, y del Tipo B.2 que operen por tiro mecánico inducido, deben instalarse evitando cambios de dirección o cualquier tipo de características constructivas que puedan afectar el flujo de los productos de combustión bajo presión estática no positiva. Así mismo, tales conectores deben instalarse sin depresiones ni declives, con una pendiente continua ascendente mínimo del 3 %.
- Acople a chimeneas. Los conectores acoplados a chimeneas metálicas o de mampostería deben penetrar estas últimas por encima de su fondo o extremo inferior, con el fin de evitar obstrucciones futuras debidas a la acumulación de escombros o de hollín. Cuando se requiera, los conectores podrán conectarse a las chimeneas mediante boquillas o acoples de inserción que faciliten su desmonte. En estos casos, los conectores deben ajustarse firmemente a las boquillas o acoples de inserción, en tal forma que se prevenga cualquier posibilidad de desprendimiento accidental o involuntario. También deben tomarse precauciones para evitar que los conectores penetren las chimeneas al punto de obstruir el espacio libre comprendido entre ellos y las paredes opuestas de las chimeneas.
- 3) Paso a través de techos, pisos y paredes. Los conectores para los artefactos de gas del Tipo B.1, que operan por tiro natural, o del Tipo B.2, que operen por tiro mecánico inducido, no deben atravesar techo, pisos cortafuegos o muros corta-fuegos.

Los conectores metálicos de pared sencilla para los artefactos de gas del Tipo B.1, que operan por tiro natural, o del Tipo B.2, que operen por tiro mecánico inducido, no deben atravesar paredes construidas de materiales combustibles, a no ser que la pared se proteja contra la radiación de calor en el cruce mediante aislamiento cuyas dimensiones no sean inferiores a 10 cm adicionales al diámetro nominal del conector, si el artefacto es de

Tipo B.1 y dispone de disipadores de tiro revertido o corta-tiros. Si el conector se extiende mínimo 1,8 m desde el collarín del artefacto de gas hasta la boquilla de aislamiento, el diámetro efectivo de la boquilla podrá ser tan sólo 5 cm mayor que el diámetro nominal del conector.

Los conectores para los artefactos de gas de calor medio del Tipo B2 que operen por tiro mecánico inducido no deben atravesar paredes construidas de materiales combustibles.

Nota. Como método alterno de protección, con el fin de evitar el uso de la boquilla de aislamiento, el material combustible alrededor del conector podrá removerse una distancia que permita satisfacer los requisitos de espaciamiento previstos con respecto a este tipo de materiales. Cualquier material que se utilice para rellenar esta abertura necesariamente debe ser de tipo incombustible.

4.1.2.3 Soportes para conectores. Los conectores deben tener los soportes adecuados para el tipo de diseño y peso de los materiales empleados en su construcción, para conservar las distancias mínimas de espaciamiento con respecto a materiales combustibles, prevenir daños físicos, impedir la separación de las juntas de acople y evitar que los artefactos de gas les sirvan como elementos de apoyo.

4.1.2.4 Dimensionamiento

a) Diámetros

- 1) Las dimensiones de los conectores para los artefactos de gas del Tipo B.1, que operan por tiro natural, dotados de disipadores de tiro revertido o corta-tiros y para los artefactos de gas del Tipo B.2, que operen por tiro mecánico inducido, deben estar de conformidad con lo dispuesto en el Anexo A.
- 2) Las dimensiones y construcción del conector principal para un artefacto de gas del Tipo B.1 que disponga de más de un corta-tiros o disipador de tiro revertido, deben estar de conformidad con las instrucciones del fabricante del artefacto.

Nota. Como método de verificación rápida se puede considerar que el área efectiva del conector principal debe ser equivalente al área agregada o conjunta de todas las secciones de los collarines de que disponga el artefacto.

3) Cuando dos o más artefactos de gas de Tipo B.1, que operen por tiro natural, del Tipo B.2 que operen por tiro mecánico inducido, o ambos, se acoplen a la chimenea, cada conector debe tener sus propias dimensiones en forma independiente para la potencia nominal del respectivo artefacto de gas, de conformidad con lo dispuesto en el Anexo A. Cada segmento del sistema colectivo, instalado en más de una planta, debe determinarse a partir de la elevación interior disponible (R), la elevación total del segmento (H) y de la potencia nominal de los distintos artefactos de gas acoplados al sistema en ese segmento de la chimenea colectiva. Los conectores nunca deben tener un área seccional interior menor a la de los collarines de los artefactos a los cuales estén acoplados (véase la Figura 2)

Nota. Como método alterno, aplicable únicamente para el caso en que todos los artefactos de gas acoplados a la chimenea colectiva sean del Tipo B.1 y dispongan de disipadores de tiro revertido o cortatiros, el área efectiva de cada conector debe ser equivalente al área seccional interior del collarín del respectivo artefacto de gas.

4) Cuando dos o más artefactos de gas del Tipo B.1, o del Tipo B.2 que operen por tiro mecánico inducido, estén acoplados a un mismo conector múltiple o común, el conector múltiple debe instalarse a la mayor altura disponible dentro del recinto de conformidad con los requisitos de espaciamiento previstos con respecto a materiales combustibles, y sus dimensiones deben estar de conformidad con lo dispuesto en el Anexo A.

Nota. Como método alterno, aplicable únicamente para el caso en que todos los artefactos de gas sean del Tipo B.1 y dispongan de disipadores de tiro revertido o corta tiros, el área del conector múltiple y de todos los accesorios de acople que lo conformen, debe ser como mínimo equivalente al área seccional interior del collarín de mayor tamaño, más el 50 % de las áreas seccionales interiores de los collarines acoplados al mismo conector múltiple.

- 5) Cuando el tamaño de un conector se incremente para contrarrestar limitaciones de instalación y obtener una capacidad de tiro acorde con la potencia nominal del artefacto, dicho incremento de tamaño debe hacerse mediante el empleo de una divergente para el acople del conector al collarín del artefacto (véase la NTC 3567).
- b) Longitud total de los conectores. Los conectores para los artefactos de gas del Tipo B.1 y del Tipo B.2 que operen por tiro mecánico inducido, deben ser lo más corto posible. Para este fin, los artefactos de gas deben ubicarse tan cerca de las chimeneas como sea posible.

El tramo horizontal de un conector individual acoplado a un artefacto de gas del Tipo B.1, no debe exceder el 75 % del recorrido vertical o altura del tramo de la chimenea (H) ubicado por encima del nivel del conector. Se exceptúan de esta limitación constructiva los sistemas de evacuación para artefactos de gas del Tipo B.1, que estén de conformidad con lo establecido en el Anexo A.

4.1.2.5 Mantenimiento. La extensión completa de los conectores para artefactos de gas del Tipo B.1 o del Tipo B.2 que operen por tiro mecánico inducido, debe quedar fácilmente accesibles para fines de revisión, reposición y limpieza.

4.1.3 EXTREMOS TERMINALES

Las chimeneas para artefactos de uso doméstico y comercial se deben dotar de deflectores (sombreretes) los cuales deben cumplir con lo dispuesto en la NTC 3567.

4.2 SISTEMA DE EVACUACIÓN DIRECTA A TRAVÉS DE FACHADA

Todos los artefactos de gas, clasificados como Tipo B.1, que operan por tiro natural, se deben conectar de preferencia a un sistema de chimenea como el descrito en el numeral 4.1, en caso de no ser posible, se debe utilizar un sistema de evacuación directa a través de fachada.

Figura 7. Comparativo descarga chimenea y descarga a través de fachada

4.2.1 CONSIDERACIONES GENERALES PARA LA EVACUACIÓN DIRECTA A TRAVÉS DE FACHADA

El conector para la evacuación directa a través de fachada debe cumplir con los siguientes requisitos:

- a) Ser metálico, internamente liso, rígido, resistente a la corrosión y capaz de soportar temperaturas de trabajo hasta de 250 °C. Adicionalmente debe estar fabricado de acuerdo con los requisitos establecidos en la NTC 3567.
- b) Se debe verificar que el diámetro interno mínimo del conector, en función de la potencia nominal del artefacto, sea por lo menos el que se encuentra especificado en la Tabla 3. En este aspecto solo se aceptan los conectores cuya sección transversal sea circular.

La sección del conector, en toda su longitud, no debe ser menor de la correspondiente a la salida del artefacto.

Tabla 3. Diámetro interior mínimo del conector de evacuación directa a través de fachada para artefactos a gas del Tipo B.1 calculado para condiciones a nivel del mar

Potencia nominal del artefacto	Diámetro interior mínimo del conector de evacuación a nivel del mar
P ≤ 11,5 kW	90 mm
11,6 kW ≤ P ≤ 17,5 kW	110 mm
17,6 kW ≤ P ≤ 24,0 kW	125 mm
24,1 kW ≤ P ≤ 31,5 kW	139 mm
31,5 kW ≤ P	175 mm

Para calcular el diámetro interior mínimo necesario en las instalaciones realizadas a cualquier otra altura sobre el nivel del mar se debe corregir el diámetro de acuerdo con lo planteado en la siguiente ecuación:

$$\mathbf{f}_2 = \mathbf{f}_1 * \sqrt{\frac{P_1}{P_2}}$$

Donde:

 diámetro del conector de evacuación (el subíndice 1 indica condiciones a nivel del mar y el subíndice 2 condiciones de trabajo).

P = es la presión atmosférica (el subíndice 1 indica condiciones a nivel del mar y el subíndice 2 condiciones de trabajo).

- c) Las uniones entre el collarín del artefacto y el conector, así como las que existan entre los diferentes tramos y accesorios de éste deben realizarse mediante un sistema que asegure la hermeticidad de las mismas.
- d) El conector debe mantener una pendiente positiva mayor o igual al 3 % en todos sus tramos.
- e) El conector debe disponer, en su extremo, de un deflector que cumpla lo establecido en la NTC 3567 para descargas a fachada.
- f) El extremo del conector (excluyendo al deflector) debe estar separado al menos, 10 cm del muro que ha atravesado y cumplir con los distanciamientos establecidos en la Figura 8.
- g) La descarga no se debe realizar a recintos cerrados.
- h) El sistema de evacuación debe dimensionarse de tal manera que se cumpla el siguiente requisito: Partiendo de la puntuación detallada que aparece en el Anexo B, asignada para cada accesorio o tramo que, desde el diseño, pueda formar parte del sistema de evacuación, la suma total de los puntos de los elementos utilizados en su configuración real presente un valor positivo mayor o igual a 1.

i) Siempre que se instale un artefacto de gas del Tipo A, del Tipo B.1 que operan por tiro natural o del Tipo B.2, que opere por tiro forzado inducido, tras su puesta en marcha, se debe verificar su funcionamiento como se indica en el numeral 5.

Figura 8. Distancias que deben conservar los extremos terminales de los sistemas de evacuación para artefactos del Tipo B.1 que operen por tiro natural, del Tipo B2 que operan por tiro mecánico inducido o del Tipo C que operan por flujo balanceado con respecto a ventanas, puertas y aberturas de ventilación

4.2.2 Condiciones de dimensionamiento para la evacuación directa a través de fachada

Dependiendo de la longitud del conector vertical (h) indicado en la Figura 9 conectado al collarín del artefacto se presentan dos casos, a saber:

Figura 9. Medidas necesarias para evaluación del diseño de descarga a fachada

4.2.2.1 h es menor de 10 cm. Se debe garantizar que la capacidad de succión del conector es superior a la de la potencia nominal del artefacto.

Se debe realizar el cálculo del diámetro del elemento de conexión para la evacuación de los productos de la combustión y se debe verificar de acuerdo con el numeral 5.

$$C_s = \frac{1}{1+c_1} *PCI* r*V* \frac{p f^2}{4}$$

$$V = \sqrt{\frac{\frac{2 gH}{64 \mathbf{u} L}}{\mathbf{f}^2} + \sum_{k=1}^{\infty} \frac{1}{k+1}} \left[\frac{T}{T_o} - 1 \right]$$

Donde:

C_s = Capacidad de succión del conector expresada en kW.

C₁ = Relación estequiométrica aire-combustible.

pci Poder calorífico inferior del combustible

 ρ = Densidad de los productos de la combustión en el conector expresada en kg/m^3 .

V = Velocidad de los productos de la combustión en el conector, expresada en m/s.

Viscosidad cinemática de los productos de la combustión.

 $\sum K + 1 =$ Sumatoria de pérdidas por aditamentos.

φ = diámetro del conector, expresado en m.

T = Temperatura media de los productos de la combustión en el conector, expresada en °C.

T_o = Temperatura ambiente, expresada en °C.

 $g = Gravedad, expresada en m/s^2.$

H = Ganancia de cota disponible, expresada en m.

L = Longitud lineal total del conector, expresada en m.

4.2.2.2 h es mayor o igual a 10 cm. Se debe garantizar que la capacidad de succión del sistema es superior a la de la potencia nominal del artefacto. Para ello se debe realizar el siguiente procedimiento:

a) Corregir el diámetro del conector de acuerdo con la siguiente ecuación:

$$\mathbf{f}_2 = \mathbf{f}_1 \sqrt{\frac{P_1}{P_2}}$$

Donde:

 ϕ_1 = Diámetro de acuerdo con la Tabla 3.

 ϕ_2 = Diámetro corregido.

 P_1 = Presión atmosférica a nivel del mar.

P₂ = Presión atmosférica en el sitio de la instalación.

b) Corregir la cabeza de succión de acuerdo con la siguiente fórmula:

$$H_{2} = H_1 * \frac{P_1}{P_2} * F_s$$

Donde:

 H_2 = Ganancia en cota corregida.

 H_1 = Ganancia en cota a nivel del mar.

 P_1 = Presión atmosférica a nivel del mar.

 P_2 = Presión atmosférica en el sitio de la instalación.

Fs = Factor de seguridad.

- c) Se califica el dimensionamiento del diseño acuerdo con los criterios establecidos en el Anexo B.
- d) Se debe verificar el funcionamiento de acuerdo con el numeral 5.

4.2.3 MÉTODO ALTERNO DE DIMENSIONAMIENTO PARA LA EVACUACIÓN DIRECTA A TRAVÉS DE FACHADA

Adicionalmente es factible realizar el dimensionamiento del sistema de descarga a fachada con la metodología planteada en el Anexo A.1.

5. VERIFICACIONES QUE SE DEBEN REALIZAR A UN ARTEFACTO INSTALADO

Una vez instalado el(los) artefacto(s) y tras su puesta en marcha en las condiciones de funcionamiento descritas a continuación, se deben efectuar las siguientes operaciones para comprobar el correcto funcionamiento del sistema de evacuación de los productos de la combustión:

- **5.1** Ajustar la presión de suministro al(los) artefacto(s) instalado dentro del recinto, de manera que coincida con la presión normal de ensayo especificada por el fabricante.
- **5.2** Reglar y ajustar el(los) artefacto(s) instalados dentro del recinto, de acuerdo con las condiciones establecidas por el fabricante.
- **5.3** Encender el(los) artefacto(s) y ubicarlo(s) en la posición de máxima potencia durante mínimo 5 min. El(los) artefacto(s) debe(n) continuar en funcionamiento continuo a su máxima potencia hasta concluir el ensayo.
- **5.4** Se deben cerrar todas las puertas y ventanas del recinto donde se encuentra instalado el artefacto, esto no incluye las ventilaciones permanentes que cumplan lo establecido en la NTC 3631.
- **5.5** Encender todos los artefactos a gas que se encuentren en el recinto, en su posición de máxima potencia y dejarlos encendidos por tiempo de mínimo 5 min, para permitir el calentamiento del sistema de evacuación, antes de iniciar las verificaciones.
- **5.6** Verificar la ausencia de revoco y hermeticidad del sistema de evacuación de los productos de la combustión, mediante cualquiera de las siguientes metodologías o una combinación de las mismas, según sea aplicable.
- **5.6.1** Con la ayuda de un espejo cromado o un tubo detector de corriente de aire, verificar que no se presenta revoco, y que el sistema es completamente hermético, para esto se debe ubicar el espejo o el detector de corriente de aire en la unión del collarín con el sistema de evacuación.
- **5.6.2** Con la ayuda de un analizador de gases, establecer la cantidad de CO corregido (libre de aire y vapor de agua), que se encuentra en el ambiente.

6. REQUISITOS GENERALES DE LOCALIZACIÓN PARA LOS EXTREMOS TERMINALES

La ubicación de los extremos terminales de los sistemas de evacuación de los productos de la combustión debe realizarse de acuerdo con el tipo y la potencia del artefacto al que se encuentre instalado de acuerdo con los siguientes criterios.

- **6.1** Extremos terminales conectados a artefactos Tipo B.1, que operan por tiro natural o de artefactos de gas del Tipo B.2, que operen por tiro mecánico inducido.
- **6.1.1** El extremo terminal del sistema de evacuación de los productos de la combustión de un artefacto del Tipo B.1, que opere por tiro natural, o un artefacto del Tipo B.2, que opere por tiro mecánico inducido, debe terminar como mínimo a 90 cm por encima de cualquier bocatoma para la aspiración forzada de aire localizada dentro de un radio de 3 m.

Nota 1. Este requisito no se debe aplicar a las entradas de aire para la combustión de artefactos Tipo C.

6.1.2 El extremo terminal del sistema de evacuación de los productos de la combustión de un artefacto del Tipo B.1, que opere por tiro natural, o un artefacto del Tipo B.2, que opere por tiro mecánico inducido, debe instalarse cumpliendo como mínimo las siguientes distancias:

Lugares de referencia	Distancia mínima al extremo terminal
Ventanas ubicadas en la parte superior del terminal	1,2 m
Ventanas ubicadas en la parte inferior del terminal	0,3 m
Puertas ubicadas en las partes laterales del terminal	1,2 m
Al piso del recinto	0,3 m

Nota. El punto más bajo del extremo terminal de un sistema de evacuación para artefactos del Tipo B.2 que opere bajo tiro mecánico forzado, debe localizarse cuando menos 0, 30 m por encima del nivel del suelo (véase la Figura 8).

- **6.2** Extremos terminales conectados a artefactos Tipo C.
- **6.2.1** Extremos terminales conectados a artefactos de gas del Tipo C con potencia nominal inferior a 3 kW. El extremo terminal de un artefacto Tipo C con potencia nominal de 3 kW o inferior debe ser localizado al menos a 15 cm de cualquier entrada de aire al recinto
- **6.2.2** Extremos terminales conectados a artefactos de gas del Tipo C con potencia superior a 3 kW e inferior o igual a 14,7 kW. El extremo terminal de un artefacto Tipo C con potencia nominal superior a 3 kW e inferior o igual a 14,7 kW debe ser localizado al menos a 23 cm de cualquier abertura entrada de aire al recinto
- **6.2.3** Extremos terminales conectados a artefactos de gas del Tipo C con potencia superior a 14,7 kW. El extremo terminal de un artefacto Tipo C con potencia nominal superior a 14,7 kW debe ser localizado al menos a 0,3 m de cualquier entrada de aire al recinto
- **6.2.4** Los extremos terminales conectados a artefactos de gas del Tipo C deben localizarse por lo menos 0, 3 m por encima del nivel del suelo (véase la Figura 8).

Nota. Cuando los extremos terminales de los sistemas de evacuación de tiro mecánico forzado descarguen sobre andenes, pasajes públicos o vías peatonales, deben ubicarse mínimo a 2,1 m sobre el nivel del suelo.

6.3 Según sea aplicable, los extremos terminales de los sistemas de evacuación que operen por tiro natural o por tiro mecánico inducido, diseñados de acuerdo con lo establecido en el Anexo A.1, deben extenderse por encima de los techos o cubiertas de la edificación, de conformidad con lo dispuesto en los numerales: 4.1.1.3, literal a); 4.1.1.3, literal d), subnumeral 1; 4.1.1.3, literal d), subnumeral 2; 4.1.1.3, literal f), y 4.1.2.2, literal e, subnumeral 3) de esta norma según sea aplicable.

6.4 LIMITACIONES DE DISEÑO

Los sistemas de evacuación diseñados para desalojar los productos de combustión de los artefactos de gas para uso doméstico y comercial, mediante tiro natural o mecánico inducido, no deben emplearse en forma simultánea para la evacuación temporal o permanente de los productos de combustión generados por artefactos que consuman combustibles sólidos o líquidos.

7. NORMAS QUE DEBEN CONSULTARSE

Las siguientes normas contienen disposiciones que, mediante su referencia dentro de este texto se constituyen en disposiciones de esta norma. En el momento de la publicación eran válidas las ediciones indicadas. Todas las normas están sujetas a actualización; los participantes en acuerdos basados en esta norma, deben investigar la posibilidad de aplicar la última versión de las normas mencionadas a continuación:

NTC 2505: 2001, Instalaciones para suministro de gas destinadas a usos residenciales y comerciales.

NTC 2832-1: 2001, Gasodomésticos para la cocción de alimentos. Requisitos de seguridad.

NTC 3527: 1997, Definiciones y reglas comunes aplicables al ensayo de artefactos para uso doméstico y comercial que emplean gases combustibles.

NTC 3631: 1994, Artefactos de gas. Ventilación de recintos interiores donde se instalan artefactos que emplean gases combustibles para usos domésticos, comerciales e industriales.

NTC 3632: 1994, Gasodomésticos. Instalación de gasodomésticos para cocción de alimentos.

NTC 3643: 1994, Gasodomésticos. Especificaciones para la instalación de gasodomésticos para la producción instantánea de agua caliente para uso doméstico. Calentadores de paso continuo.

NTC 3531: 1999, Artefactos domésticos que emplean gases combustibles para la producción instantánea de agua caliente para uso doméstico. Calentadores de paso continuo.

NTC 3567: 1993, Mecánica. Ductos metálicos para la evacuación por tiro natural de los productos de la combustión del gas (G.L.P. o gas natural).

Anexo A

Notas aplicables a las dimensiones de los sistemas de evacuación para un solo artefacto de gas. Tablas A.1, A.2, Y A.3

- **A.1.1** Estas tablas no deben emplearse para dimensionar los sistemas de evacuación del numeral 4.2 de esta norma.
- **A.1.2** Si el tamaño del sistema de evacuación determinado a partir de las tablas es menor que el collarín o acople de inserción del disipador de tiro revertido del artefacto de gas, el sistema de evacuación debe ser del mismo tamaño del collarín o acople de inserción del disipador de tiro revertido del artefacto.
- **A.1.3** El valor de cero (0) en la cota de longitud lateral (L) se aplica exclusivamente a chimeneas verticales rectos (sin cambios de dirección) que se ajusten en forma directa sobre el collarín o acople de inserción del disipador de tiro revertido de un artefacto de gas.
- **A.1.4** Los sistemas de evacuación configurados con cero longitud lateral, con base en las Tablas A.1 y A.3, no deben tener ningún cambio de dirección. Para los sistemas de evacuación configurados con longitudes laterales, las Tablas A.1, A.2 y A.3 tienen previsto de antemano el empleo de dos cambios de dirección a 90° (codos). Cada cambio de dirección adicional a 90°, o equivalente a 90°, implica una reducción del 10 % en la capacidad de evacuación indicada en las tablas:
 - a) Un cambio de dirección adicional a 90°: la máxima capacidad de evacuación del sistema debe ser la indicada en las tablas, multiplicada por 0,9.
 - b) Dos cambios de dirección adicional a 90°: la máxima capacidad de evacuación del sistema debe ser la indicada en las tablas, multiplicada por 0,8.
 - c) Así sucesivamente por cada cambio de dirección adicional a 90°.
 - d) Dos (2) cambios de dirección a 45° (semi-codo) son equivalentes a un (1) cambio de dirección a 90°.
- **A.1.5** Para determinar la máxima capacidad de evacuación de un sistema instalado a altitudes superiores a 600 m sobre el nivel del mar, se debe emplear la potencia nominal del artefacto. Para determinar la mínima capacidad de un sistema de evacuación para un artefacto de gas de combustión asistida, instalada a altitudes superiores a 600 m sobre el nivel del mar, se debe utilizar la potencia real (es decir, ajustada por elevación), media a 15 °C y la presión atmosférica de la localidad.
- **A1.6** Para los artefactos de gas de combustión asistida que tengan designada más de una potencia nominal, la capacidad mínima de evacuación indicada en las tablas (MEC mín) debe ser mayor que la potencia nominal inferior designada para el artefacto, y la capacidad máxima de evacuación indicada en las tablas (MEC máx) debe ser mayor que la potencia nominal superior designada para el artefacto.

- **A1.7** Los números seguidos de asterisco (*) en la Tabla A.2 y la Tabla A.3 indican la posibilidad de que se genere una condensación continua de los vapores de agua que contienen los productos de la combustión del gas, dependiendo de la localidad. En estos casos, se debe consultar al distribuidor de gas y al fabricante del artefacto para mayor información.
- **A1.8** Si la chimenea es de mayor diámetro que el conector, el diámetro del conector debe emplearse para determinar la capacidad máxima de evacuación del tramo del sistema. El área de la chimenea no debe tener más de siete (7) veces el área seccional interior del collarín o acople de inserción del disipador de tiro revertido del artefacto de gas.
- **A1.9** El diámetro de los conectores no debe exceder el diámetro del collarín o acople de inserción del disipador de tiro revertido del artefacto en más de dos (2) dimensiones normalizadas (por ejemplo, 152 mm excede a 76 mm en dos dimensiones normalizadas).
- **A1.10** Los valores indicados en las tablas podrán interpolarse para determinar valores intermedios. Sin embargo, debido a la relación exponencial entre los mismos, no se recomienda el empleo de extrapolación lineal para determinar valores por fuera de los límites dimensiónales de las tablas.

A2. NOTAS APLICABLES A LAS DIMENSIONES DE LOS SISTEMAS DE EVACUACIÓN COLECTIVOS. TABLAS A.5, A.6 A.7 Y A.8:

A2.1 Estas tablas no deben emplearse para las dimensiones de sistemas de evacuación que dispongan de los registros de corte a que se refiere el numeral 8 de esta norma.

Figura A.1. La Tabla A.1 se utiliza para dimensionar los accesorios, conectores y chimeneas, metálicos, de pared sencilla, acoplados a un solo artefacto de gas del Tipo B.1 o del Tipo B.2 que opere por tiro mecánico inducido

Tabla A.1. Chimeneas, accesorios y conectores, metálicos, de pared sencilla acoplados a un solo artefacto de gas del Tipo B.1 (por tiro natural) o del Tipo B.2 que operen por tiro mecánico inducido

Notas:

- 1) Los valores de estas tablas no son interpolables ni extrapolables.
- 2) En caso de requerir cálculos de valores que no se encuentren en estas tablas debe realizarse con la Fórmula de Kinkell. Véase el Anexo E para mayor información.

Н	L								D	iáme	ro no	mina	l D (n	nm)								
			76			102			127			152			178			203			229	
m	m								Pote	ncia t	otal ir	nstala	ada e	n MJ/l	า							
		ME	С	NAT	MEC		NAT	MEC		NAT	MEC		NAT	MEC		NAT	MEC		NAT	MEC		NAT
		Min	Máx	Máx	Min	Máx	Máx	Min	Máx	Máx	Min	Máx	Máx	Min	Máx	Máx	Min	Máx	Máx	Min	Máx	Máx
1,8	0,0	0	82	49	0	160	91	0	265	149	0	396	216	0	553	301	0	736	390	0	946	496
	0,6	14	54	38	19	102	71	28	166	111	34	245	166	46	339	229	56	448	301	66	573	390
	1,2	22	52	36	32	99	68	41	161	109	53	239	161	70	333	223	83	442	294	98	566	382
	1,8	26	49	34	38	96	64	50	157	106	62	235	157	82	327	216	98	436	288	116	559	373
2,4	0,0	0	89	53	0	174	99	0	291	164	0	438	248	0	615	338	0	823	438	0	1061	567
	0,6	13	60	42	17	115	79	26	188	127	30	277	190	44	385	261	53	510	340	63	653	441
	1,5	24	56	40	34	109	75	44	180	121	56	269	183	74	376	250	88	499	330	104	640	429
	2,4	30	52	37	41	103	70	54	173	115	68	261	174	89	366	239	104	488	320	123	629	418
3,0	0,0	0	93	56	0	185	106	0	311	175	0	472	269	0	666	364	0	894	475	0	1156	617
	0,6	13	64	44	18	124	85	24	205	136	27	305	206	42	424	288	51	562	375	60	722	482
	1,5	24	60	42	34	119	81	43	197	131	55	295	198	72	414	277	85	551	365	100	708	471
	3,0	32	54	38	43	110	74	57	186	121	71	282	185	93	397	258	110	532	348	129	687	451
4,6	0,0	0	99	61	0	202	118	0	345	197	0	530	301	0	755	411	0	1023	554	0	1333	720
	0,6	12	73	51	16	143	98	21	238	158	23	358	237	40	501	333	47	668	437	56	860	574
	1,5	23	69	47	32	137	92	41	231	150	52	348	229	68	488	317	80	654	425	95	844	558
	3,0	31	62	43	42	128	87	54	217	142	68	332	219	89	470	304	104	633	407	122	820	535
	4,6	37	56	39	51	118	80	64	206	135	80	318	209	103	453	290	121	612	394	141	797	518

Continúa...

Tabla A.1 (Continuación)

Н	L								D	iáme	tro no	mina	l D (n	nm)								
			76			102			127			152			178			203			229	
m	m								Pote	ncia	otal i	nstal	ada e	n MJ/l	1							
		ME	С	NAT	MEC		NAT	MEC		NAT	MEC		NAT	MEC		NAT	MEC		NAT	MEC		NAT
		Mín	Máx	Máx	Mín	Máx	Máx	Mín	Máx	Máx	Mín	Máx	Máx	Mín	Máx	Máx	Mín	Máx	Máx	Mín	Máx	Máx
6,1	0,0	0	102	64	0	213	126	0	368	213	0	570	324	0	819	454	0	1115	607	0	1460	793
	0,6	11	79	54	15	157	106	19	264	175	21	398	263	35	560	365	43	750	496	53	967	646
	1,5	22	75	51	31	151	101	40	255	169	50	387	254	65	548	356	77	735	485	91	952	632
	3,0	30	68	46	40	140	94	53	242	158	65	370	241	85	526	339	100	712	467	118	925	608
	4,6	36	61	42	49	131	89	62	229	150	77	356	229	99	507	325	117	690	451	136	900	588
	6,1	51	55	37	58	122	82	73	217	141	89	340	217	113	490	311	132	669	433	153	876	567
9,1	0,0	0	106	68	0	225	135	0	395	232	0	619	355	0	900	501	0	1238	686	0	1633	902
	0,6	9	85	59	14	175	118	15	299	195	19	456	295	28	647	416	35	871	564	44	1131	739
	1,5	22	81	57	30	169	114	38	290	186	47	444	288	61	633	406	73	856	553	87	1113	726
	3,0	28	74	53	39	158	108	51	276	180	62	427	275	81	612	391	96	831	535	113	1085	705
	4,6	35	68	NR	46	149	101	60	263	172	74	410	263	95	591	377	111	807	517	131	1057	684
	6,1	59	61	NR	56	139	95	70	250	162	84	395	250	108	572	362	126	784	499	147	1031	663
	9,1	NR	NR	NR	77	119	NR	93	226	NR	110	365	231	138	535	339	157	741	468	180	980	627
15,2	0,0	0	107	71	0	228	141	0	419	245	0	668	383	0	983	547	0	1368	747	0	1825	1004
	0,6	8	91	64	12	193	129	15	338	217	16	524	331	23	754	470	27	1029	649	35	1346	858
	1,5	21	87	NR	28	187	126	37	329	211	45	514	325	58	741	462	69	1013	638	81	1328	842
	3,0	27	80	NR	37	177	120	47	315	200	59	497	314	77	718	449	91	986	621	107	1298	816
	4,6	62	74	NR	44	167	NR	57	303	190	70	480	304	90	698	436	106	961	603	123	1269	788
	6,1	NR	NR	NR	53	157	NR	66	290	178	80	464	293	102	677	423	119	937	587	138	1241	762
	9,1	NR	NR	NR	73	138	NR	89	264	NR	104	433	273	130	638	397	149	890	551	170	1187	707

Continúa...

Tabla A.1 (Continuación)

Н	L								Di	ámet	ro no	mina	I D (m	ım)								
			76			102			127		152		178				203		229			
m	m								Pote	ncia to	otal ir	stala	ada ei	n MJ/ł	1							
		ME	С	NAT	MEC		NAT	MEC		NAT	MEC		NAT	MEC		NAT	MEC		NAT	MEC		NAT
		Mín Máx		Máx	Mín	Máx	Máx	Mín	Máx	Máx	Mín	Máx	Máx	Mín	Máx	Máx	Mín	Máx	Máx	Mín	Máx	Máx
30,5	0,0	NR	NR	NR	0	230	NR	0	429	NR	0	702	422	0	1052	591	0	1489	812	0	2013	1097
	0,6	NR	NR	NR	11	205	NR	13	373	NR	14	597	396	19	877	538	22	1219	739	26	1621	986
	1,5	NR	NR	NR	27	199	NR	35	366	NR	42	588	389	55	865	532	63	1204	730	75	1603	977
	3,0	NR	NR	NR	35	192	NR	45	353	NR	56	572	381	72	845	520	84	1180	716	99	1574	960
	4,6	NR	NR	NR	42	184	NR	53	339	NR	65	557	372	84	825	509	98	1155	703	115	1546	944
	6,1	NR	NR	NR	50	175	NR	62	328	NR	75	541	363	95	805	497	111	1132	689	129	1517	928
	9,1	NR	NR	NR	NR	NR	NR	82	306	NR	97	510	NR	121	766	474	138	1086	662	157	1463	896
	15,2	NR	NR	NR	NR	NR	NR	NR	NR	NR	155	452	NR	190	687	427	208	996	607	229	1359	830

Tabla A.1 (Continuación)

Continúa...

Н	L								Dián	netro i	nomin	al D (ı	mm)												
			254			305			356			406			457			506		559			610		
m	m										Р	otenci	ia tota	l insta	lada eı	n MJ/h	1								
		MEC		NAT	MEC		NAT	MEC		NAT	MEC		NAT	MEC		NAT	MEC		NAT	MEC		NAT	MEC		NAT
		Mín	Máx	Máx	Mín	Máx	Máx	Mín	Máx	Máx	Mín	Máx	Máx	Mín	Máx	Máx	Mín	Máx	Máx	Mín	Máx	Máx	Mín	Máx	Máx
1,8	0,0	0	1183	601	0	1736	897	0	2392	1234	0	3147	1614	2	4011	2068	0	4981	2564	0	6053	3112	0	7230	3714
	0,6	79	712	480	109	1036	686	146	1420	939	188	1866	1234	237	2374	1561	101	2935	1952	380	3563	2342	449	4252	2817
	1,2	116	705	470	155	1029	675	202	1412	928	255	1858	1224	317	2365	1556	411	2927	1936	495	3556	2337	586	4245	2806
	1,8	135	697	459	180	1020	665	231	1403	918	291	1850	1213	360	2358	1551	461	2919	1920	552	3548	2332	652	4238	2796
2,4	0,0	0	1330	696	0	1960	1023	0	2713	1393	0	3586	1836	0	4572	2342	0	5684	2901	0	6916	3545	0	8270	4231
	0,6	75	812	543	103	1186	786	137	1628	1076	177	2142	1414	224	2726	1794	293	3372	2226	355	4096	2701	423	4889	3218
	1,5	121	800	531	162	1171	773	210	1612	1066	265	2124	1403	328	2704	1778	420	3355	2205	502	4076	2685	593	4866	3207
	2,4	145	787	517	190	1157	760	244	1597	1055	305	2110	1393	373	2693	1762	475	3337	2184	567	4062	2669	665	4855	3197

Continúa...

Tabla A.1 (Continuación)

Н	L								Dián	netro	nomin	al D (ı	mm)												
			254			305			356			406			457			506			559			610	
m	m										Р	otenci	a tota	l insta	lada er	n MJ/h	1								
		MEC		NAT	MEC		NAT	MEC		NAT	MEC		NAT	MEC		NAT	MEC		NAT	MEC		NAT	MEC		NAT
		Mín	Máx	Máx	Mín	Máx	Máx	Mín	Máx	Máx	Mín	Máx	Máx	Mín	Máx	Máx	Mín	Máx	Máx	Mín	Máx	Máx	Mín	Máx	Máx
3,0	0,0	0	1453	760	0	2148	1118	0	2981	1530	0	3948	2031	0	5045	2585	0	6283	3218	0	7653	3914	0	9160	4273
	0,6	72	899	591	98	1312	897	131	1807	1192	170	2380	1561	213	3026	1994	279	3752	2469	337	4560	2996	399	5437	3577
	1,5	118	885	577	157	1297	875	203	1789	1166	256	2361	1541	317	3006	1974	403	3731	2446	483	4538	2973	570	5415	3557
	3,0	150	862	554	197	1270	839	251	1761	1139	314	2331	1509	384	2973	1941	484	3697	2406	576	4503	2933	676	5380	3524
4,6	0,0	0	1684	886	0	2511	1308	0	3506	1815	0	4667	2395	0	5991	3060	0	7490	3819	0	9142	4653	0	10965	5592
	0,6	66	1075	712	91	1577	1039	120	2176	1424	155	2869	1867	196	3658	2384	252	4541	2954	306	5520	3598	365	6595	4305
	1,5	111	1058	696	148	1557	1020	192	2153	1400	242	2844	1844	299	3632	2358	375	4514	2930	449	5491	3571	529	6565	4280
	3,0	142	1031	670	187	1526	988	239	2120	1360	299	2805	1806	365	3589	2314	456	4467	2890	538	5443	3527	632	6515	4240
	4,6	164	1005	644	213	1496	955	271	2085	1319	336	2767	1767	406	3548	2268	505	4423	2849	595	5397	3482	702	6466	4199
6,1	0,0	0	1853	981	0	2782	1424	0	3905	2005	0	5220	2659	0	6727	3429	0	8428	4284	0	10324	5254	0	12400	6330
	0,6	62	1213	797	85	1787	1161	113	2472	1604	147	3268	2110	185	4173	2712	232	5187	3376	284	6312	4125	339	7548	4959
	1,5	107	1195	779	142	1766	1138	184	2448	1580	231	3240	2087	285	4142	2684	356	5154	3349	425	6278	4094	501	7511	4919
	3,0	137	1166	749	181	1731	1103	232	2408	1540	288	3196	2047	352	4094		436	5101	3302	516	6221	4041	605	7452	4853
	4,6	158	1137	726	206	1698	1074	262	2369	1503	323	3153	2015	392	4046	2601	484	5050	3260	571	6166	4004	666	7393	4827
	6,1	176	1110	702	229	1665	1045	288	2332	1467	353	3110	1984	426	4000	2564	522	4998	3218	617	6111	3967	727	7336	4801
9,1	0,0	0	2086	1118	0	3169	1635	0	4486	2289	0	6040	3081	0	7829	3978	0	9855	5012	0	12115	6172	0	14610	7449
	0,6	57	1425	913	78	2114	1382	103	2939	1899	134	3900	2511	168	4995	3218	210	6225	4020	254	7590	4906	301	9091	5908
	1,5	101	1405	898	134	2090	1360	173	2911	1873	217	3868	2479	266	4969	3186	329	6186	3991	394	7549	4876	463	9046	5858
	3,0	132	1373	875	173	2051	1323	221	2866	1828	273	3816	2427	333	4903	3134	407	6123	3945	481	7480	4826	564	8973	5772
	4,6	151	1342	851	197	2013	1287	250	2821	1785	308	3767	2374	373	4847	3081	455	6060	3898	535	7413	4776	622	8902	5688
	6,1	169	1311	827	218	1976	1250	274	2778	1741	337	3717	2321	405	4792	3028	493	5999	3851	578	7347	4727	674	8831	5602
	9,1	206	1254	786	260	1906	1192	322	2696	1672	389	3622	2247	464	4687	2938	570	5881	3761	670	7219	4616	780	8693	5513

Continua...

Tabla A1 (Final)

Н	L								Dián	netro	nomin	al D (ı	nm)												
			254			305			356			406			457			506			559			610	
m	m										Р	otenci	a tota	l insta	ılada er	n MJ/h	1								
		MEC		NAT	MEC		NAT	MEC		NAT	MEC		NAT	MEC		NAT	MEC		NAT	MEC		NAT	MEC		NAT
		Mín	Máx	Máx	Mín	Máx	Máx	Mín	Máx	Máx	Mín	Máx	Máx	Mín	Máx	Máx	Mín	Máx	Máx	Mín	Máx	Máx	Mín	Máx	Máx
15,2	0,0	0	2354	1261	0	3630	1925	0	5206	2690	0	7081	3629	0	9257	4706	0	11742	5945	0	14525	7322	0	17613	8894
	0,6	43	1709	1066	70	2565	1596	91	3597	2242	119	4805	2996	149	6187	3872	180	7743	4885	221	9474	6009	265	11382	7238
	1,5	95	1688	1051	124	2538	1577	159	3566	2218	202	4769	2968	247	6147	3839	299	7697	4850	355	9425	5965	416	11328	7193
	3,0	124	1653	1026	162	2496	1547	207	3515	2178	256	4710	2919	311	6080	3782	375	7622	4792	442	9343	5893	518	11238	7121
	4,6	143	1621	1000	187	2455	1516	234	3466	2138	289	4652	2871	348	6024	3729	418	7549	4759	491	9262	5851	572	11152	7079
	6,1	159	1588	975	206	2414	1486	257	3417	2096	317	4596	2822	381	5952	3673	457	7476	4726	534	9183	5809	618	11065	7037
	9,1	193	1526	924	245	2336	1423	303	3323	2015	366	4487	2776	435	5827	3620	521	7336	4664	609	9028	5744	709	10897	6967
30,5	0,0	0	2628	1382	0	4141	2163	0	6044	3112	0	8350	4273	0	11062	5592	0	14195	7069	0	17743	9074	0	21711	10867
	0,6	32	2084	1234	46	3194	1920	76	4550	2690	100	6155	3693	127	8009	4853	146	10104	6119	178	12453	7596	215	15049	9285
	1,5	87	2063	1223	113	3167	1902	143	4518	2670	181	6116	3666	219	7964	4817	258	10053	6087	309	12395	7556	360	14986	9238
	3,0	114	2029	1205	150	3124	1873	190	4464	2638	235	6053	3623	283	7890	4757	336	9967	6032	395	12300	7491	460	14882	9161
	4,6	133	1996	1186	172	3081	1843	217	4412	2605	266	5991	3579	321	7817	4696	378	9883	5977	441	12206	7424	514	14778	9084
	6,1	149	1963	1168	191	3039	1814	238	4361	2572	292	5928	3536	348	7745	4636	408	9800	5922	477	12114	7359	552	14676	9007
	9,1	179	1901	1130	227	2957	1755	280	4259	2506	337	5808	3447	399	7606	4515	471	9639	5812	542	11933	7227	625	14475	8853
	15,2	254	1781	1055	308	2803	1635	369	4068	2374	438	5580	3271	513	7339	4273	603	9328	5592	695	11584	6963	793	14089	8546

Figura A.2. La Tabla A.2 se utiliza para las dimensiones de chimeneas de mampostería con conectores metálicos de pared sencilla, acoplados a un solo artefacto de gas del Tipo B.1 o del Tipo B.2 que opere por tiro mecánico inducido

Tabla A2. Chimeneas de mampostería con conectores metálicos de pared sencilla, acopladas a un solo artefacto de gas del Tipo B.1 o del Tipo B.2 que operen por tiro mecánico inducido

Н	L												Diá	metro	nomi	inal D	(mm)											
			76			102			127			152			178			203			229			254			279	
m	m										,	ļ	Poten	cia tot	al ins	talada	en M	J/h					,					1
		MEC		NAT	MEC		NAT	MEC		NAT	MEC		NAT	MEC		NAT	MEC		NAT	MEC		NAT	MEC		NAT	MEC		NAT
		Mín	Máx	Máx	Mín	Máx	Máx	Mín	Máx	Máx	Mín	Máx	Máx	Mín	Máx	Máx	Mín	Máx	Máx	Mín	Máx	Máx	Mín	Máx	Máx	Mín	Máx	Máx
1,8	0,6	NR	NR	30	NR	NR	55	NR	NR	91	NR	NR	137	NR	NR	190	NR	NR	261	NR	NR	338	NR	NR	423	NR	NR	613
	1,5	NR	NR	*26	NR	NR	52	NR	NR	87	NR	NR	123	NR	NR	174	NR	NR	244	NR	NR	314	NR	NR	397	NR	NR	592
2,4	0,6	NR	NR	31	NR	NR	58	NR	NR	98	NR	NR	153	NR	NR	209	NR	NR	281	89	622	369	106	768	471	147	1080	687
	1,5	NR	NR	*27	NR	NR	55	NR	NR	93	NR	NR	141	NR	NR	193	NR	NR	261	NR	NR	346	157	750	446	212	1062	675
	2,4	NR	NR	*25	NR	NR	*51	NR	NR	88	NR	NR	134	NR	NR	185	NR	NR	252	NR	NR	336	183	733	433	244	1045	657
3,0	0,6	NR	NR	33	NR	NR	64	NR	NR	109	NR	NR	171	NR	NR	233	72	548	314	87	691	409	103	855	518	143	1207	764
	1,5	NR	NR	*30	NR	NR	60	NR	NR	101	NR	NR	156	NR	NR	215	NR	NR	292	131	673	385	154	835	492	207	1186	751
	3,0	NR	NR	*26	NR	NR	*53	NR	NR	92	NR	NR	147	NR	NR	202	NR	NR	277	164	644	366	192	804	468	253	1153	705
4,6	0,6	NR	NR	*37	NR	NR	71	NR	NR	120	NR	NR	189	56	501	264	68	647	355	81	822	465	97	1021	593	134	1452	887
	1,5	NR	NR	*37	NR	NR	65	NR	NR	113	NR	NR	173	NR	NR	244	104	627	330	124	801	439	147	998	562	196	1426	874
	3,0	NR	NR	*30	NR	NR	*58	NR	NR	102	NR	NR	161	NR	NR	228	133	596	312	156	767	416	183	962	598	242	1387	820
	4,6	NR	NR	NR	NR	NR	51	NR	NR	*94	NR	NR	149	NR	NR	212	NR	NR	296	180	736	396	209	928	512	273	1350	783
6,1	0,6	NR	NR	*40	NR	NR	78	NR	NR	131	NR	NR	212	54	551	289	64	715	396	77	915	518	92	1143	662	128	1633	1005
	1,5	NR	NR	*38	NR	NR	*72	NR	NR	122	NR	NR	194	84	531	268	100	694	369	119	892	488	140	1117	630	189	1607	984
	3,0	NR	NR	NR	NR	NR	*63	NR	NR	*113	NR	NR	181	NR	NR	250	129	662	350	151	856	464	176	1078	597	233	1564	927
	4,6	NR	*102	NR	NR	168	NR	NR	232	NR	NR	331	174	823	441	202	1041	571	265	1522	886							
	6,1	NR	*88	NR	NR	*156	NR	NR	217	NR	NR	312	196	791	419	226	1008	541	292	1483	851							
9,1	0,6	NR	NR	*43	NR	NR	*87	NR	NR	145	NR	NR	228	50	613	320	60	804	444	72	1039	589	85	1308	756	117	1892	1173
	1,5	NR	NR	NR	NR	NR	*80	NR	NR	*135	NR	NR	209	79	592	296	95	782	415	112	1015	555	132	1283	721	178	1863	1154
	3,0	NR	NR	NR	NR	NR	*71	NR	NR	*121	NR	NR	*194	NR	NR	277	121	748	394	142	978	528	167	1241	684	222	1816	1081
	4,6	NR	*113	NR	NR	*180	NR	NR	*256	NR	NR	372	165	942	502	191	1202	655	252	1771	1035							
	6,1	NR	*96	NR	NR	*168	NR	NR	*239	NR	NR	350	186	907	475	214	1164	625	279	1728	992							
	9,1	NR	NR	NR	NR	NR	NR	*198	NR	NR	*304	NR	NR	439	263	1092	586	336	1646	925								

Continúa ...

Tabla A.2 (Final)

Н	L												Dia	imetro	nom	inal D	(mm)											
	_		76			102			127			152			178			203			229			254			279	
m	m											I	oten	cia tota	al ins	talada	en M	J/h										
		MEC		NAT	MEC		NAT	MEC		NAT	MEC		NAT	MEC		NAT	MEC		NAT	MEC		NAT	MEC		NAT	MEC		NAT
		Mín	Máx	Máx	Mín	Máx	Máx	Mín	Máx	Máx	Mín	Máx	Máx	Mín	Máx	Máx	Mín	Máx	Máx	Mín	Máx	Máx	Mín	Máx	Máx	Mín	Máx	Máx
15,2	0,6	NR	NR	NR	NR	NR	*97	NR	NR	*170	NR	NR	*265	NR	NR	*370	54	886	503	64	1167	668	76	1491	857	104	2195	1311
	1,5	NR	NR	NR	NR	NR	NR	NR	NR	*159	NR	NR	*243	NR	NR	*341	88	864	470	103	1143	629	122	1463	817	164	2165	1292
	3,0	NR	NR	NR	NR	NR	NR	NR	NR	*146	NR	NR	*227	NR	NR	*321	NR	NR	*447	133	1105	598	155	1421	773	206	2116	1210
	4,6	NR	NR	NR	NR	NR	NR	NR	NR	*134	NR	NR	*210	NR	NR	*298	NR	NR	*422	154	1066	*569	179	1379	741	234	2069	1160
	6,1	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	*195	NR	NR	*279	NR	NR	*397	174	1031	*539	200	1339	706	260	2021	1108
	9,1	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	*345	NR	NR	*494	246	1262	*657	311	1933	1038
Área	potencial																											
mínim	na de la	0,	00774	1	0,	0122	6	0,	0180	6	0,	02452	2	0,	03226	6	0,	,0406	5	0	,05032	<u> </u>	0	,06129	9	0	,08516	3
Chime	enea (m²)																											
Área	potencial																											
	na de la	0,	03161	1	0,	0567	7	0,	0883	9	0,	1277	1	0,	1735	5	0,	,2271	0	0	,28710)	0	,35484	1	0	,51097	7
Chime	enea (m²)																											

Figura A.3. La Tabla A.3 se utiliza para las dimensiones de chimeneas y conectores de cemento-asbesto acoplados a un solo artefacto de gas del Tipo B.1.

Tabla A.3. Chimeneas y conectores de cemento asbesto acoplados a un solo artefacto de gas del Tipo B.1 (no aplicables a los artefactos de gas del Tipo B.2)

Н	L			Diámetro	nominal E) (mm)			
		76	102	127	152	178	203	254	305
m	m								
				Poten	cia total ir	nstalada (MJ/h)		
1,8	0,0	41	74	122	179	245	329	528	791
	0,6	33	58	99	149	205	274	438	654
	1,5	30	54	93	135	187	255	411	633
2,4	0,0	44	80	133	195	266	359	572	860
	0,6	34	64	108	162	222	300	476	717
	1,5	31	59	100	149	205	279	454	684
	3,0	*25	52	91	138	190	264	428	659
3,0	0,0	47	89	146	213	294	392	639	962
	0,6	37	71	117	177	246	328	533	802
	1,5	34	64	110	161	227	305	506	764
	3,0	*28	57	99	151	211	289	480	739
	4,6	NR	*49	89	137	196	272	456	703
4,6	0,0	52	96	159	235	329	443	722	1097
	0,6	41	76	129	196	274	369	601	913
	1,5	*37	71	116	179	253	343	570	870
	3,0	*32	*61	109	167	235	325	542	839
	4,6	NR	*53	*98	152	218	307	515	802
	6,1	NR	NR	*87	*139	206	288	492	766
6,1	0,0	*56	107	172	266	361	496	812	1256
	0,6	*44	84		222	302	414	676	1045
	1,5	*40	*78	130	203	279	384	644	997
	3,0	*34	*69	*121	188	260	364	602	960
	4,6	NR	*58	*110	172	241	344	580	918
	6,1	NR	NR	*96	*157	*226	323	554	878
9,1	0,0	*59	*114	193	291	405	558	926	1445
	0,6	*46	*89	*156	243	338	465	770	1203
	1,5	NR	*82	*145	222	312	433	732	1139
	3,0	NR	*72			289	409	692	1108
	4,6	NR	NR	*119		*272	386	659	1055
	6,1	NR	NR	*104		*253	363	629	1013
	9,1	NR	NR	NR	NR	*203	*311	570	939
15,2	0,0	NR	*127		*327	*467	622	1034	1635
	0,6	NR	*100	*180		*390	519	865	1361
	1,5	NR	NR	*168		*361	500	823	1298
	3,0	NR	NR	*154		*336	*481	770	1256
	4,6	NR	NR	NR	*211	*308	*429	744	1192
	6,1	NR	NR	NR	*195	*291	*405	*707	1139
	9,1	NR	NR	NR	NR	*234	*348	*638	1066

A2.2 La máxima longitud horizontal de un conector será de 18 mm por cada mm de diámetro potencial del conector, según lo indicado en la Tabla A.4.

Tabla A.4. Máxima longitud lateral de un conector en función de su diámetro potencial

Diámetro potencial del conector (mm)	Máxima longitud horizontal permisible (mm)
76	1 368
102	1 836
127	2 286
152	2 736
178	3 304
203	3 654
229	4 122
254	4 572
305	5 490
356	6 408
406	7 308
457	8 226
508	9 144
559	10 062
610	10 980

Estas longitudes horizontales máximas podrán ampliarse bajo las siguientes condiciones:

- a) La máxima capacidad de evacuación (MEC máx y NAT máx) indicada en las tablas debe reducirse en 10 % por cada múltiplo de la longitud horizontal máxima. Por ejemplo, un conector de 102 mm de diámetro potencial tiene una longitud horizontal máxima de 1 836 mm (102 mm x 18 mm = 1 836 mm). El conector podrá tener una longitud horizontal de hasta 3 672 mm (2 mm x 1 836 mm = 3 672 mm) si la máxima capacidad de evacuación indicada en las tablas se reduce en un 10 % y así sucesivamente.
- b) La mínima capacidad de evacuación (MEC mín) debe determinarse empleando la Tabla A.1 correspondiente a un sistema individual de evacuación. En este caso, para cada artefacto, el conector y la chimenea colectiva deben tratarse como un sistema individual de evacuación, suponiendo que no existen los restantes artefactos de gas acoplados al sistema.
- **A2.3** Los conectores múltiples o individuales deben extenderse hacia la chimenea colectiva a través de la ruta más corta posible.
- **A2.4** Si el conector es múltiple, las dimensiones del conector debe estar de acuerdo con las tablas que corresponden a la chimenea colectiva y la capacidad máxima de evacuación (MEC máx y NAT máx) indicada en dichas tablas debe reducirse en un 10 %. La longitud total del conector múltiple no debe exceder de 18 mm por cada mm del diámetro potencial así determinado.

- **A2.5** Cada cambio de dirección a 90° (codo) en el sistema colectivo implica una reducción del 10 % de la capacidad máxima de evacuación (MEC máx y NAT máx) indicada en las tablas para ese segmento del sistema colectivo. Dos cambios de dirección a 45° (semi-codos) equivalen a un cambio de dirección a 90°. La longitud horizontal máxima del sistema colectivo no debe exceder de 18 mm por cada mm de diámetro potencial del sistema colectivo.
- **A2.6** El diámetro potencial del sistema colectivo debe ser, como mínimo, igual al diámetro potencial del conector de mayor tamaño acoplado al sistema. Todos los segmentos del sistema colectivo podrán tener el mismo diámetro o área potencial determinando para el último segmento o extremo terminal del sistema colectivo.
- **A2.7** Las "tes" de interconexión deben ser del mismo diámetro potencial que el siguiente segmento del sistema colectivo
- **A2.8** Para las instalaciones a grandes altitudes, la máxima capacidad de evacuación (MEC máx y NAT máx) debe determinarse a partir de la potencia instalada medida al nivel del mar, y la mínima capacidad de evacuación (MEC mín) a partir de la potencia instalada real corregida por elevación.
- **A2.9** Para los sistemas colectivos de evacuación acoplados a dos o más artefactos de gas instalados en una misma planta de un edificio, la elevación total (H) se mide desde el collarín del artefacto instalado a mayor altura, hasta el extremo terminal del sistema colectivo. La elevación interior disponible (R) se mide desde el collarín de cada artefacto, hasta el eje longitudinal horizontal del conector del artefacto acoplado al sistema a mayor altura.
- **A2.10** Para los sistemas colectivos de evacuación a varios niveles, la elevación total (H) de cada segmento colectivo del sistema se mide desde el collarín del artefacto de gas acoplado al sistema a mayor altura dentro de ese segmento del sistema colectivo, hasta el eje longitudinal horizontal del conector que corresponde al siguiente artefacto de gas acoplado al sistema, inmediatamente hacia arriba, o hasta el extremo terminal del sistema colectivo si se trata del último segmento del sistema. La elevación interior disponible para cada artefacto se mide desde su respectivo collarín hasta el eje longitudinal horizontal del conector al cual esté acoplado (véase la Figura 6).

Figura A.4. Las Tablas A.5.2 y A.5.1 se utilizan para las dimensiones de las chimeneas y conectores metálicos de pared sencilla, respectivamente, acoplados a dos o más artefactos de gas del Tipo B.1 que operen por tiro natural o del Tipo B.2 que operen por tiro mecánico inducido, o de ambos.

Figura A.5. Ejemplo de un conector múltiple. La longitud "L" no debe exceder en más de 18 veces su respectivo diámetro interior nominal

Tabla A.5. Chimeneas y conectores metálicos de pared sencilla acoplados a dos o más artefactos de gas del Tipo B.1 y/o del Tipo B.2 que operen por tiro mecánico inducido Tabla A.5.1: Conectores

	1							рс	1 110	песа	nico ir						162								
	-			ı			ı						tro no	minal		m)							I		
	-		76			102			127			152			178			203			229			254	
	-	1				1		ı	1		Pote	ncia	total i	nstala	da en	MJ/h		1			1				
Н	R	MEC		NAT	MEC		NAT	MEC		NAT	MEC		NAT	MEC		NAT	MEC		NAT	MEC		NAT	MEC		NAT
m	m	Mín	Máx	Máx	Mín	Máx	Máx	Mín	Máx	Máx	Mín	Máx	Máx	Mín	Máx	Máx	Mín	Máx	Máx	Mín	Máx	Máx	Mín	Máx	Máx
1,8	0,3	23	39	27	37	70	49	49	112	76	61	173	110	81	237	150	97	312	195	115	397	250	135	492	305
	0,6	24	43	33	39	79	58	51	128	91	63	193	131	83	267	177	100	351	232	118	447	298	138	555	
	0,9	25	46	37	40	85	65	52	139	101	65	210	147	87	290	199	102	383	262	120	488	334	141	607	407
2,4	0,3	23	42	28	37	76	51	52	120	80	68	186	115	89	256	156	106	338	205	124	430	262	146	535	320
	0,6	24	46	34	38	84	60	54	135	95	70	206	136	91	284	185	109	376	243	128	479	310	149	595	378
	0,9	25	50	38	39	92	675	56	147	107	71	222	153	93	306	209	111	405	272	130	519	348	151	646	
3,0	0,3	23	45	30	36	82	53	52	130	82	69	199	119	94	271	162	112	360	211	132	460	271	154	572	331
	0,6	24	50	35	38	91	62	54	143	98	71	217	141	96	298	192	115	395	251	135	505	322	157	629	392
	0,9	25	53	39	39	97	71	55	154	110	73	232	158	99	320	216	117	424	283	138	543	361	160	677	440
4,6	0,3	22	53	32	35	94	56	50	150	88	68	232	127	93	314	172	116	410	226	141	520	288	171	643	351
	0,6	23	56	37	37	101	66	52	161	104	70	248	150	96	338	204	118	442	267	145	561	341	174	694	416
	0,9	25	58	42	38	108	75	54	172	117	72	262	169	98	358	230	121	470	302	148	596	385	176	739	468
6,1	0,3	22	57	33	35	104	59	49	166	92	65	260	132	91	352	180	113	460	236	138	582	301	167	718	366
	0,6	23	60	39	36	111	70	51	176	110	68	273	157	94	373	213	116	488	280	141	619	358	170	765	437
	0,9	24	63	44	37	116	78	53	186	122	70	286	177	96	391	241	119	513	317	145	652	404	173	806	492
9,1	0,3	21	65	35	33	119	62	47	191	98	63	304	141	88	413	192	109	540	251	132	685	322	159	846	
	0,6	22	68	41	35	124	74	50	200	116	65	315	167	90	430	227	111	564	298	136	716	380	164	886	463
	0,9	23	70	46	36	130	83	51	209	131	68	326	188	93	446	255	114	586	334	139	745	427	167	922	521
15,2	0,3	20	75	38	32	140	68	45	228	107	60	368	153	82	503	208	102	662	271	127	841	348	152	1038	425
	0,6	22	77	45	34	145	80	47	235	126	62	378	181	85	517	247	106	681	323	130	865	414	156		504
	0,9	23	79	51	35	149	91	49	242	141	64	386	205	88	530	277	109	697	362	133	888	465	159	1100	568
30,5	0,3	19	87	39	30	167	70	42	276	110	56	466	158	77	645	215	96	855	281	118	1095	360	142	1356	440
	0,6	20	88	46	32	170	83	44	282	130	58	472	188	79	653	255	99	867	333	121	1112	427	147	1378	521
	0,9	21	89	53	33	172	94	46	287	146	60	477	211	82	662	287	102	880	375	124	1128	480	150	1400	586

Tabla A5. Chimeneas y conectores metálicos de pared sencilla acoplados a dos o más artefactos de gas del Tipo B.1 y/o del Tipo B.2 que operen por tiro mecánico inducido Tabla A.5.2. Chimeneas colectivos

									Diáme	tro nor	nínal D	(mm)									
		102			127			152			178			203			229			254	
								F	otenci	al nomi	nal cor	nbinada	a (MJ/h)							
Н	MEC	MEC	NAT	MEC	MEC	NAT	MEC	MEC	NAT	MEC	MEC	NAT	MEC	MEC	NAT	MEC	MEC	NAT	MEC	MEC	NAT
m	MEC	NAT	NAT	MEC	NAT	NAT	MEC	NAT	NAT	MEC	NAT	NAT	MEC	NAT	NAT	MEC	NAT	NAT	MEC	NAT	NAT
1,8	97	85	69	148	122	109	215	170	155	326	262	211	426	331	274	577	458	353	709	549	433
2,4	107	95	77	164	136	120	236	188	172	358	290	235	468	367	306	635	506	399	781	609	491
3,0	116	102	83	178	149	131	256	205	188	387	315	255	503	398	332	685	551	427	844	662	522
4,6	132	118	96	206	173	152	299	241	217	451	371	295	587	468	385	794	646	491	975	773	596
6,1	143	130	108	227	193	169	331	269	242	501	416	327	655	526	427	888	726	552	1092	871	675
9,1	160	146	124	257	222	195	381	313	281	577	484	380	760	617	496	1033	852	638	1276	1029	781
15,2	176	161	141	294	257	226	444	372	327	676	577	446	901	745	580	1228	1031	744	1531	1253	907
30,5	185	172	NR	328	292	NR	516	444	NR	792	694	505	1081	921	659	1486	1282	844	1882	1585	1029

									I	Diámet	ro nom	ínal D	(mm)								
		305			356			406			457			508			559			610	
									Poten	cial no	minal c	ombin	ada (M	J/h)							
Н	MEC	MEC	NAT	MEC	MEC	NAT	MEC	MEC	NAT	MEC	MEC	NAT	MEC	MEC	NAT	MEC	MEC	NAT	MEC	MEC	NAT
m	MEC	NAT	NAT	MEC	NAT	NAT	MEC	NAT	NAT	MEC	NAT	NAT	MEC	NAT	NAT	MEC	NAT	NAT	MEC	NAT	NAT
1,8	950	734	589	1355	1045	860	1831	1410	1124	2377	1827	1419	2994	2300	1751	3680	2824	2078	4438	3404	2522
2,4	1049	816	688	1501	1164	962	2033	1573	1256	2645	2043	1593	3336	2573	1962	4104	3163	2321	4954	3815	2828
3,0	1135	887	751	1627	1266	1050	2208	1714	1372	2877	2229	1736	3634	2812	2142	4475	3458	2532	5405	4175	3081
4,6	1316	1040	870	1893	1488	1222	2574	2015	1593	3359	2621	2015	4248	3306	2490	5245	4075	2944	6347	4927	3587
6,1	1482	1177	966	2116	1675	1361	2872	2265	1783	3757	2952	2258	4798	3748	2785	5880	4592	3292	7121	5551	4009
9,1	1749	1400	1081	2504	1996	1609	3397	2699	2100	4428	3509	2659	5595	4424	3281	6899	5441	3883	8377	6591	4727
15,2	2135	1730	1350	3071	2476	1966	4182	3358	2564	5469	4377	3244	6929	5529	4009	8563	6814	4748	10379	8243	5776
30,5	2710	2248	1762	3937	3245	2585	5407	4433	3376	7121	5812	4273	9070	7371	5275	11269	9124	6246	13720	11077	7596

Figura A.6. Las Tablas A.6.1 y A.6.2 se utilizan para las dimensiones de chimeneas de mampostería con conectores metálicos de pared sencilla, respectivamente, acoplados a dos o más artefactos de gas del Tipo B.1 que funcionan por tiro natural o del Tipo B.2 que operan por tiro mecánico inducido o de ambos

Tabla A6. Chimeneas de mampostería con conectores metálicos de pared sencilla, acoplados a dos o más artefactos de gas del Tipo B.1 (por tiro natural) o del Tipo B.2, o de ambos, que operen por tiro mecánico inducido Tabla A6.1. Conectores

												Dián	netro n	omin	al D (ı	mm)									
	-		76			102			127			152			178			203			229			254	
	-										Po	otenci	a total	insta	lada e	en MJ/	h								
Н	R	ME	EC	NAT	M	EC	NAT	M	EC	NAT	М	EC	NAT	MI	EC	NAT	MI	EC	NAT	М	EC	NAT	MEC		NAT
m	m	Mín	Máx	Máx	Mín	Máx	Máx	Mín	Máx	Máx	Mín	Máx	Máx	Mín	Máx	Máx	Mín	Máx	Máx	Mín	Máx	Máx	Mín	Máx	Máx
1,8	0,3	25	35	22	41	65	42	55	112	71	69	205	107	92	289	149	110	390	212	131	505	267	153	632	337
	0,6	27	45	30	43	83	55	56	140	90	71	243	131	94	342	183	113	460	245	134	593	317	156	732	399
	0,9	28	52	36	44	97	64	58	164	102	73	276	151	96	389	214	115	518	285	136	668	368	159	839	463
2,4	0,3	25	41	23	41	76	43	58	123	73	75	225	111	99	321	156	119	437	222	141	569	282	165	720	353
	0,6	27	50	31	42	92	56	60	148	91	77	260	134	102	369	189	122	499	253	145	649	328	169	819	416
	0,9	28	55	36	44	102	65	62	168	103	79	284	153	104	404	217	126	545	291	147	709	378	172	895	477
3,0	0,3	25	44	23	40	84	44	58	137	75	78		114	107	342	161	127	468	228	150	614	292	174	780	367
	0,6	27	53		42	98	57	60	161	92	80	275	136	109	386	194		525	261	153	688	339	177	870	429
	0,9	28	58		43	111	66	61	179	106		300	156	112	419	221	133	570	296		744	386	180	942	488
4,6	0,3	25	51	24	40	98		57	162	78	76		120	106	405	173	132	539	242	161	694	313	194	869	396
	0,6	26	58		41	111	58	59	184	94	78		141	109	442	203	135	589	274	165		358	197	950	456
	0,9	27	62		43	121	68	60	199	108			161	111	473	227	138	630	308		802	403	200	1013	513
6,1	0,3	25	55		39	108	49	56	181	81	75		126	103	461	183	130	616	252	158	793	329	190	995	419
	0,6	26	61	33	41	120	59	58	200	96		353	146	107	493	210	 	659	285		849	373	194	1067	477
	0,9	27	66		42	130	69	60	215	110			166	110	520	234	136	697	318		898	418	197	1126	533
9,1	0,3	25	57	26	39	117	51	55	203	87	73		134	101	532	197	126	717	269		932	356	185	_	456
-	0,6	26	63		40	129	61	57	219	100	76		153	104	560	221	129	754	303	157	979	399	189	1235	511
45.0	0,9	27	68		42	138	70	59	233	113			172	107	585	246		787	334	160	1021	441	192	1287	564
15,2	0,3	24	54		38	122	54	54	221	94	71	427	151	97	614	225	121	842	310	148	1107	414	177	1407	534
	0,6	25	62		39	134	64	56	237	108	74	444	170	100	637	248		873	344	151	1145	457	181	1455	589
00.5	0,9	27	68		41	142	73	58	250	121	76		190	103	658	274	128	901	377	155		289	186	1499	645
30,5	0,3	24	49	_	37	114	53	52 54	219	97	69	452	164	93	675	250	115	957	352	141	1289	479	170	1676	629
	0,6	25	56		39	127	63	54	236	111	71	468	184	97	696	274	119	984	388	146	1322	524	174	1716	687
	0,9	26	62	37	40	137	72	56	250	124	73	483	204	99	716	301	122	1009	421	149	1353	570	178	1752	744

Tabla A.6.2. Chimeneas colectivas

							Área	interna	mínim	a de la	chimen	ea en i	metros	cuadra	dos (p	ulgadas	cuadra	adas)						
	(0,00774		C	,01226		(),01806		(0,02452		(),03226		(),04065		0	,05032		(),07290	
		12			19			28			38			50			63			78			113	
										Pote	ncial n	ominal	combi	nada (N	IJ/h)									
Н	MEC	MEC	NAT	MEC	MEC	NAT	MEC	MEC	NAT	MEC	MEC	NAT	MEC	MEC	NAT	MEC	MEC	NAT	MEC	MEC	NAT	MEC	MEC	NAT
m	MEC	NAT	NAT	MEC	NAT	NAT	MEC	NAT	NAT	MEC	NAT	NAT	MEC	NAT	NAT	MEC	NAT	NAT	MEC	NAT	NAT	MEC	NAT	NAT
1,8	NR	78	26	NR	126	49	NR	188	75	NR	271	109	NR	370	151	NR	483	198	NR	614	260	1098	900	NR
2,4	NR	84	30	NR	137	56	NR	204	87	NR	294	126	NR	405	172	NR	529	230	764	671	293	1207	989	430
3,0	NR	89	33	NR	146	59	NR	218	95	NR	315	138	NR	432	187	639	568	249	819	724	319	1294	1066	479
4,6	NR	NR	38	NR	160	71	NR	246	112	NR	352	160	552	493	224	720	645	299	922	824	385	1450	1220	576
6,1	NR	NR	43	NR	NR	79	NR	264	129	NR	388	181	596	536	256	783	705	343	1008	905	442	1596	1357	684
9,1	NR	NR	NR	NR	NR	NR	NR	285	145	NR	426	209	649	595	293	861	788	402	1120	1022	523	1796	1554	790
15,2	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	654	346	927	877	486	1229	1149	639	2010	1785	973
30,5	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	367	NR	NR	526	NR	NR	706	2166	2027	1116

Figura A7. Las Tablas A.7.1 y A.7.2 se utilizan para las dimensiones de chimeneas y conectores, de cementoasbesto, respectivamente, acoplados a dos o más artefactos de gas del Tipo B.1. Este ejemplo considera además dos cambios de dirección a 90 ° en la chimenea colectiva

- **A.2.11** El tamaño del conector acoplado a menor altura (el primer artefacto acoplado al sistema) y del segmento de la chimenea colectiva, debe determinarse empleando la Tabla A.1 correspondiente a un sistema individual de evacuación, suponiendo que no existen los restantes artefactos de gas acoplados al sistema.
- **A.2.12** El área potencial de la sección de mayor tamaño de una chimenea colectiva no debe exceder en más de siete (7) veces el área seccional interior del collarín del artefacto de menor potencia instalada acoplado al sistema colectivo de evacuación.
- **A.2.13** Para los artefactos de gas de combustión asistida que tengan designada más de una potencia instalada, la capacidad mínima de evacuación indicada en las tablas para las dimensiones de los conectores (MEC mín), debe ser mayor que la potencia instalada inferior designada para el artefacto, y la capacidad máxima de evacuación indicada en las tablas para las dimensiones de los conectores (MEC máx), debe ser mayor que la potencia instalada superior designada para el artefacto.
- **A.2.14** Los conectores nunca deben ser de menor tamaño que el collarín del artefacto al cual están acoplados. El diámetro potencial de los conectores no debe exceder el diámetro interior del collarín o acople de inserción del disipador de tiro revertido del artefacto por más de 2 dimensiones estándar.
- **A.2.15** Los valores indicados en las tablas podrán interpolarse para determinar valores intermedios. Sin embargo, debido a la relación exponencial entre ellos, no es recomendable el empleo de extrapolación lineal para determinar valores por fuera de los límites dimensiónales de las tablas.

Tabla A.7.1. Chimeneas y conectores de cemento asbesto acoplados a dos o más artefactos de gas del Tipo B.1 (no aplicables a los artefactos de gas del Tipo B.2)

			Diáme	tro no	minal	D (mr	1)
		76	102	127	152	178	203
Н	R						
		P	otenci	a nomi	inal to	tal (M.	J/h)
m	m						
	0,3	22	42	72	108	154	216
1,8	0,6	30	56	91	131	188	248
	0,9	36	64	103	155	215	290
	0,3	24	46	81	123	189	253
4,6	0,6	32	59	97	141	205	280
	0,9	37	68	108	164	228	314
	0,3	26	52	89	136	200	285
9,1	0,6	33	61	102	153	223	311
	0,9	38	72	113	173	245	339

Tabla A.7.2. Chimeneas colectivos

		Diá	metro	nomi	nal D	(mm)	
Н	102	127	152	178	203	254	305
		Poter	icia no	omina	l total	(MJ/l	ո)
m							
1,8	51	82	117	164	216	338	NR
2,4	58	94	135	185	247	385	533
3,0	62	100	143	200	264	417	591
4,6	75	121	177	241	322	506	728
6,1	84	136	196	274	359	580	833
9,1	NR	155	227	317	422	686	992
15,2	NR	NR	NR	380	517	855	1256

Tabla A.8. Método alterno para la determinación de dimensiones de chimeneas colectivas de mampostería para la evacuación de los productos de combustión de varios artefactos de gas del Tipo B.1 instalados en más de una planta o nivel de un edificio

Potencia nominal total ^(*) (MJ/h).	Área potencial (cm²) según el número de artefactos de gas acoplados al sistema en cada nivel		
	Uno	Dos	
400 o menos	400	562	
Más de 400 hasta 650	527	653	
Más de 650 hasta 840	560	686	
Más de 840 hasta 1 260	633	759	
Más de 1 260 hasta 1 675	691	817	
Más de 1 675 hasta 2 510	NR	909	
Más de 2 510 hasta 3 350	NR	1 100	
Más de 3 350	NR	NR	

Potencia nominal total agregada o conjunta de todos los artefactos a gas que descargan sus productos de combustión dentro de la chimenea colectiva.

Notas aplicables a la Tabla A.8:

- 1) Tan sólo se podrán conectar al sistema un máximo de dos artefactos de gas del Tipo B.1 en cada piso o nivel
- 2) Los conectores no deben incluir cambios de dirección en exceso de 45°.
- 3) Una vez dentro de la chimenea, cada conector debe extenderse en sentido perfectamente vertical en una longitud mínima de 1 m.
- 4) La chimenea colectiva debe tener una abertura inferior de ventilación permanente, provista de celosía, con un área libre de 200 cm².
- 5) El extremo terminal de la chimenea colectiva debe extenderse, como mínimo 1,8 m por encima del techo o cubierta del edificio. Si existen muros circundantes sobre el techo o cubierta, el extremo terminal de la chimenea colectiva debe extenderse, como mínimo, 40 cm por encima de un plano imaginario trazado 45 ° hacia abajo a partir del extremo superior del muro circundante.
- 6) La chimenea colectiva debe llevar en su extremo terminal un sombrerete del Tipo C, de conformidad con las especificaciones de la NTC 3567.
- 7) NR = No recomendable.

Anexo B Tabla de valoración de particularidades del conector de evacuación a nivel del mar

Aspecto	Puntos Unitarios	Cantidad	Puntos (-)	Puntos (+)	Valoración Global
* Ganancia de Cota:	+1,0**				
Componentes de conector:					
Codo Mayor que 45° y no superior a 90° (vertical - horizontal).	-2				
Codo no superior a 45° (vertical ascendente).	-1				
Codo Mayor que 45° y no superior a 90° (No vertical - No ascendente).	-2				
Codo no superior a 45° (No vertical - No ascendente).	-1				
Codo Mayor que 45° y no superior a 90° (horizontal - vertical).	-0.3				
Codo no superior a 45° (horizontal ascendente).	-0.1				
Por cada metro de longitud de los tramos rectos verticales u horizontales del conector.	-0.5				
Deflector de modelo aceptado.	-0.3				
	ТОТ	AL PUNTOS			

^{* =} Por cada 10 cm de cota total (H) ganada en el conector por cualquier concepto.

^{**} Este valor para altitudes diferentes a la del nivel del mar, se debe afectar por el siguiente factor[0,85 *(P2/P1)] donde P1: Presión atmosférica a nivel del mar y P2 Presión atmosférica en el sitio de la instalación.

Anexo C (Informativo)

Ejemplo de aplicación

EJEMPLO DE APLICACIÓN DE LA TABLA DE VALORACIÓN DE PARTICULARIDADES DEL CONECTOR DE EVACUACIÓN DIRECTA A TRAVÉS DE FACHADA

A título de orientación se incluye un ejemplo sobre la aplicación de la tabla a los conectores de evacuación directa a través de fachada.

Se asume una presión de 752 mbar de modo que los puntos unitarios por ganancia de cota se afectan por 0,85 (752 mbar/ 1 013,25 mbar)= 0,6

Punto unitario por ganancia de cota = valor tomado de la tabla por el factor r Punto unitario por ganancia de cota = 1 * 0.6 = 0.6

EJEMPLO.

Se quiere instalar un calentador de circuito abierto, de tiro natural, con una capacidad de 10 l/min. Diséñese el sistema de evacuación directa a través de fachada necesario.

Datos: El conector consta de un tramo recto vertical (TRV1) que une el collarín del artefacto con el codo, el propio codo, un tramo recto horizontal con pendiente positiva y finaliza con el deflector de modelo aceptado.

TRV1 = h = 22 cm de longitud libre

TR2 = 245 cm de longitud libre

H = 33 cm = ganancia total de cota, medida desde el collarín del artefacto hasta el punto de conexión del deflector.

Aplicando los valores de la tabla del Anexo B se obtiene:

	Puntos -	Puntos +	Valoración global
Ganancia de cota = H = 33 cm		+1,98	
33 cm \times (0,6 puntos/cada 10 cm) = 1,98			
Componentes del conector			
Deflector	-0,3		
Codo vertical - horizontal	-2		
Longitud tramos rectos del conector:	-1,34		
22 cm (TRV1) + 245 cm (TR2) = 267 cm			
267×(-0,5 puntos/cada 100 cm) = -1,34			
Total puntos	-3,64	+1,98	-1,66

El valor resultante (-1,66) no alcanza el valor mínimo requerido (+1); por lo tanto, el sistema de evacuación no se acepta.

Alternativa 1.

Analizando el resultado se observa que para alcanzar el valor requerido se necesita una puntuación adicional de -1,66 + 2,7 = +1,04 puntos. Esto representa una altura adicional de 45 cm.

Si fuera posible, se permite incrementar la pendiente del tramo recto horizontal de forma que la altura H pase de los 33 cm iniciales a una altura de (33 + 45) cm = 78 cm.

Si ahora se aplican, bajo esta situación, los valores de la tabla del Anexo B al conector resultante se obtienen:

	Puntos -	Puntos +	Valoración global
Ganancia de cota = H = 78 cm		+4,68	
78 cm \times (0,6 puntos/cada 10 cm) = 4,68			
Componentes del conector			
Deflector	-0,3		
Codo vertical - horizontal	-2		
Longitud tramos rectos del conector:	-1,34		
22 cm (TRV1) + 245 cm (TR2) = 267 cm			
267×(-0,5 puntos/cada 100 cm) = -1,34			
Total puntos	-3,64	+4,68	+1,04

El total de puntos es mayor que +1, por lo que el conector cumple esta condición; además, según la Tabla 3, debe tener un diámetro de 125 mm como mínimo.

En el evento de que no se pueda disponer de un tramo recto vertical libre (h = 10) con la longitud mínima especificada, se puede hacer uso del procedimiento del numeral 4.2.2, siempre que se tenga presente la potencia del artefacto al cual se le vaya a diseñar el sistema de evacuación. A continuación se muestran otras dos (2) alternativas:

Alternativa 2

De acuerdo con el procedimiento del numeral 4.2.2, se puede modificar la ubicación del artefacto hasta alcanzar una altura H de 0,6 m y una longitud L de 2 m, con un conector de diámetro igual a 6 pulgadas.

Alternativa 3

Si, por algún motivo de tipo constructivo, es necesario reducir cualquiera de estas longitudes se puede recurrir al procedimiento 4.2.2 y se halla que H=0.5 m; L=0.5 m con un diámetro incrementado de 6.5 pulgadas.

Anexo D

Caracterización del deflector

D.1 INTRODUCCIÓN

Un deflector con errores de fabricación aumenta las restricciones al paso de los gases de la combustión y, por tanto, da origen a problemas de revoco que solo pueden solucionarse aumentando la cota vertical (H) del conector de evacuación.

D.2 CARACTERIZACIÓN

Para caracterizar el funcionamiento del deflector se recurre al coeficiente de pérdidas (K), que consiste en un número adimensional de uso común en la mecánica de los fluidos y que proporciona una idea cuantificable acerca de la resistencia al flujo de los gases que presenta el deflector.

$$K = \frac{\Delta P}{\frac{1}{2} r n^{-2}}$$

donde ΔP es la caída de presión a través del deflector, ρ la densidad del aire y ν la velocidad del fluido dentro del conector. El valor que se obtiene de K corresponde al puntaje negativo que se usa para los deflectores en la tabla del Anexo B de esta norma.

D.3 CONCLUSIONES

Normalmente se acepta que K sea independiente de la magnitud de la velocidad de los gases que circulan por él; para ello, se suele calcular el número adimensional de Reynolds (N_{Re}) para estos gases, midiendo el valor del coeficiente de pérdidas para distintos valores de N_{Re} y cuyos resultados se grafican en una curva como sigue:

Valores de K obtenidos en los deflectores de modelo aceptado

Anexo E

Fórmula de Kinkell para el cálculo de sistemas de evacuación de los productos de la combustión en condiciones diferentes a las establecidas en los Anexos A.1

La fórmula simplificada corresponde a:

$$I = 4,65 \left(\frac{H}{R}\right)^{0.5} \left[A - 0.031U^{1.5} \left(H + 4L\right)\right]$$

Donde:

- I es el valor de la potencia nominal del artefacto a nivel del mar en M Btu/h
- A es el área de la sección transversal del sistema de evacuación en pulg²
- H es la altura entre el collarín del artefacto y la descarga del sistema de evacuación, expresado en pies
- R Total de la resistencia al flujo, cabeza de velocidad
- U Coeficiente de transferencia de calor, expresado en Btu/ h °F pie²
- L Longitud horizontal del conector lateral, expresada en pies