基礎コンピュータ工学 第2章 情報の表現 (パート 1 : ビット)

https://github.com/tctsigemura/TecTextBook

本スライドの入手:

基礎コンピュータ工学第2章 情報の表現 (バー

情報の表現

コンピュータの内部で情報が表現されるか. どのような回路で扱うことができるか.

コンピュータは電気で動くので情報も電気で表現する必要がある.

情報の表現 = (人:音声,文字,絵,... コンピュータ:電圧,電流)

基礎コンピュータ工学第2章 情報の表現(バー

電気を用いた情報の表現(おおかみ情報)

電気の「ON/OFF」を用いて情報を表現する.

 ランプ
 意 味

 OFF
 おおかみは来ていない

 ON
 おおかみが来た!!

基礎コンピュータ工学第2章 情報の表現(パー

ビット

前例のような「二つのどちらか」を表す情報が「情報の最小単位」になる。情報の最小単位のことを「**ビット (bit)**」と呼ぶ。

on/off のどちらか → 情報の最小単位(ビット)

ビットの値は「ON/OFF」ではなく,「1/0」で書く.

 $\left(\begin{array}{ccc}\mathsf{ON} & : & 1\\\mathsf{OFF} & : & 0\end{array}\right)$

「おおかみが来た情報」をビットで表現する.

ビット値	· ·
0 (off)	おおかみは来ていない
1 (on)	おおかみが来た!!

基礎コンピュータ工学第2章 情報の表現(パー

4/1

より複雑な情報の表現(拡張おおかみ情報)

複雑な情報は複数のランプ (ビット) の組み合わせで表現する.

 ビット値
 意味

 00
 おおかみはきていない(平気)

 01
 おおかみが1頭来た(戦う)

10 おおかみが 2 頭来た (?) 11 おおかみがたくさん来た (逃げる)

基礎コンピュータ工学第2章 情報の表現(バー

ビットの組合せと表現できる情報

拡張おおかみ情報は2ビットで4種類の情報を表現した。一般にはnビットで2ⁿ種類の情報を表現できる。

ビット数	ビットの組合せ	組合せ数
1	0 1	$2^1 (= 2)$ $2^2 (= 4)$
2	00 01 10 11	$2^2 (= 4)$
3	000 001 010 011	
	100 101 110 111	$2^3 (= 8)$
n		2 ⁿ

「拡張おおかみ情報」のように、ビットの組合せに意味を持たせることで 様々な情報を表現できる.

ビットの組合せの意味を表にして定義する.

基礎コンピュータ工学第2章 情報の表現(バー

6/1

ビット, ニブル, バイト

「ビット」は情報の最小単位

「ビット」は小さすぎるので「4ビット」,「8ビット」まとめたものもある.

名前		組合せの数
ビット (bit)	1	$2^1 = 2$
ニブル(nibble)	4	$2^4 = 16$
ビット (bit) ニブル (nibble) バイト (byte)	8	$2^8 = 256$

スマホの容量:32GB, 64GB, 128GB (「B」は**バイト**の意味) USBメモリの容量:32GB, 64GB, 128GB (「B」は**バイト**の意味) 通信速度制限:7GB を超えると制限される(「B」は**バイト**の意味)

通信速度:通常は 100Mbps (「b」は**ビット**の意味) 通信速度:制限されると 128kbps (「b」は**ビット**の意味)

参考: bps:【bits per second / ビット毎秒】

基礎コンピュータ工学第2章 情報の表現 (バー

7/10

数値の表現

これまで、ビットの組合せの意味決める。(表などにする) ビットの組合せの意味を**ルールで決める**場合もある。 コンピュータの内部では数値は**2進数**で表現する。

10 進数

- 0~9の10種類の数字だけを使用する数値の表現方法.
- 一桁毎に 10 倍の重みを持つ

2 進数

- 0, 1の2種類の数字だけを使用する数値の表現方法.
- 一桁毎に2倍の重みを持つ
- 0, 1の2種類の数字をビットの0, 1と対応付けしやすい.
- nビット(桁)の2進数で0~2ⁿ−1までの値を表現できる。

基礎コンピュータ工学第2章 情報の表現(バー

4ビットの2進数

b;	3	b_2	b_1	b ₀	意味
0	1	0	0	0	0
0	1	0	0	1	1
0		0	1	0	2
0	1	0	1	1	3
0		1	0	0	4
0		1	0	1	5
0	1	1	1	0	6
0		1	1	1	7
1		0	0	0	8
1		0	0	1	9
1		0	1	0	10
1		0	1	1	11
1		1	0	0	12
1		1	0	1	13
1		1	1	0	14
1		1	1	1	15

基礎コンピュータ工学第2章 情報の表現 (バー

宿題

宿島

- 1) 言葉の確認 (ビット、ニブル、バイト)
- 2) n ビットの組合せの数 3 ビットで表現できる情報の種類は何種類か? 3 2 種類の情報表現するためには何ビット必要か?
- 3) 0₁₀ (0000₂) ~ 15₁₀ (1111₂) の範囲を 2 進数で数を数える練習をしなさい. (小学校の1年生が10まで数える練習をするように)

基礎コンピュータ工学第2章 情報の表現 (バー

10/1