

The Double-Double Ramification Cycle Intersection theory on the moduli space of curves

Dylan Toh supervised by Dhruv Ranganathan and Ajith U. Kumaran

Cambridge Summer Research Festival October 14, 2024

Overview

Algebraic geometry: the study of spaces defined by polynomial eqns.

- 1. Intersection theory.
- 2. $\overline{\mathcal{M}}_{g,n}$, the moduli space of curves.
- varieties = spaces.curves = 1-dim spaces= Riemann surfaces.

- 3. Intersection theory revisited.
- 4. The double-double ramification cycle.

Ultimately, compute intersection numbers:

$$\int_{\overline{\mathcal{M}}_{g,n}} \lambda_{g-1} \mathsf{DDR}_g(A,B) \prod_i \psi_i^{\alpha_i} = \dots$$

Intersection Theory

Bézout's Theorem (1779):

Pairing: curves \times curves $\xrightarrow{\text{intersection}} \mathbb{Z}$ is multiplicative.

Intersection Theory

Problems:

- 1. Less intersections
- 2. Tangencies
- 3. Parallel asymptotes4. Self-intersections

Solutions:

- 2. Count multiplicities
- 3 $\mathbb{C}^2 \xrightarrow{\text{compactify}} \mathbb{CP}^2$
- 4. Allow "deformations":

$$\left[\bigwedge \right] = \left[\swarrow \right] = \left[\swarrow \right]$$

Bézout on
$$\mathbb{P}^2$$
: (curves/ \sim) \times (curves/ \sim) $\xrightarrow{\cap$ -pairing} \mathbb{Z} .

Int. theory: **product structure** on (subvarieties/rational equivalence).

The Moduli Space of Curves

 $\overline{\mathcal{M}}_{g,n} = \text{moduli (param.)}$ space of smooth/nodal stable curves of genus g with n marked points.

- Concept: Riemann (1857). dim = 3g 3 + n.
- Existence: Deligne-Mumford (1969).

Int. Theory

Moduli Space of Curves

Int Theory II

DDR Cycle

Moduli Spaces: A Toy Model

Problems:

- 1. Automorphisms
- 2. Some limits do not exist

What is the collection of all triangles?

Reference for explicitly building ${\mathcal T}$

Moduli space of triangles: $\mathcal{T} \approx 2$ -dimensional algebraic stack.

Intersection Theory on Moduli Spaces: A Toy Model

Enumerative problem \longleftrightarrow intersection theory on moduli space:

Bézout: $\#(\deg 2 \cap \deg 4) = 8$. Why do we only see 1 solution?

- 1. C_2 -symmetry
- 2. Nonphysical solns: $[x:y:z] = [1:-3.82:-3.95], [0:1:-1]_{mult. 2}$

Int. Theory

Reference for Bézout on ${\mathcal T}$

Source: WolframAlpha

Enumerative Geometry: Intersection Theory on $\overline{\mathcal{M}}_{g,n}$

Enumerating triangles \longleftrightarrow intersection theory on \mathcal{T} .

Enumerating curves \longleftrightarrow intersection theory on $\overline{\mathcal{M}}_{g,n}$.

E.g. "How many rational cubics on \mathbb{P}^2 pass through 8 given points?"

Intersection Numbers: Measuring the Shape of Varieties

Given a variety X (e.g. \mathbb{P}^n), how do we study its subvarieties Y?

- 1. Identify natural subvarieties (e.g. hyperplanes $H \subset \mathbb{P}^n$).
- 2. Understand $Y \cap$ (these subvarieties), up to rational equivalence.

If dim Y = k, $Y \cap (k \text{ codim-1 subvarieties}) = intersection number:$

$$\int_{X} [Y] \cdot [Z_1] \cdot \ldots \cdot [Z_k] = \#(Y \cap Z_1 \cap \cdots \cap Z_k)$$

 $\alpha \mapsto \int_X \alpha \cdot \prod_i [Z_i]$ is a "test function": (subvarieties/ \sim) $\to \mathbb{Z}$..

Two Examples: Intersection Numbers on \mathbb{P}^n and $\mathbb{P}^n \times \mathbb{P}^m$

 $X = \mathbb{P}^n$, $Y \subset X$ of dimension k:

$$\deg Y = \int_{\mathbb{P}^n} [Y] \cdot [H]^k$$

 $\deg Y$ (and $\dim Y$) determines $[Y]_{rat-equiv}$.

$$X = \mathbb{P}^n \times \mathbb{P}^m$$
, $Y \subset X$ of dimension k : for each $a = 0, 1, \dots, k$,

$$\deg_{a,k-a} Y = \int_{\mathbb{D}^n \times \mathbb{D}^m} [Y] \cdot [H_1]^a \cdot [H_2]^{k-a}$$

where $[H_1] = [\text{hyperplane} \times \mathbb{P}^m]$ and $[H_2] = [\mathbb{P}^n \times \text{hyperplane}]$.

E.g. k = 3: $(\deg_{0,3} Y, \deg_{1,2} Y, \deg_{2,1} Y, \deg_{3,0} Y)$ determines [Y].

Int. Theory

Moduli Space of Curves

Int. Theory II

DDR Cycle

Intersection Numbers on $\overline{\mathcal{M}}_{g,n}$

What are the natural classes on $X = \overline{\mathcal{M}}_{g,n}$?

Each $Y \subset \overline{\mathcal{M}}_{g,n}$ may be "tested against" **psi classes** ψ_1, \ldots, ψ_n :

$$\int_{\overline{\mathcal{M}}_{g,n}} [Y] \cdot \psi_1^{e_1} \dots \psi_n^{e_n}$$

- Each ψ_i is codim-1.
- Defined by imposing local constraints on tangent vector fields.

These intersection numbers do not uniquely determine [Y]; even so, along with other classes, they "detect a lot of its shape".

Int. Theory

The Double-Double Ramification Cycle

DDR cycle = locus of curves in $\overline{\mathcal{M}}_{g,n}$ that:

- admit a map to \mathbb{P}^2 of a given degree;
- has given tangency orders to axes at marked points.

Why is it interesting?

- 1. Relates to PDEs.
- 2. Downstream enumerative applications.
- 3. The **DR cycle** (curves $C \xrightarrow{d:1} \mathbb{P}^1$ with given zeros/poles) was well-studied (Janda-Pandharipande-Pixton-Zvonkine, 2016).

The Shape of the DDR Cycle

My project: compute several DDR intersection numbers using elementary arguments.

Explicit result for g = 1, $a_0 = b_0 = 0$:

$$\int_{\overline{\mathcal{M}}_{1,n+1}} \mathsf{DDR}_1 \psi_0^{n-1} = \frac{1}{24} \left(\sum_{i < j} (\mathsf{a}_i \mathsf{b}_j - \mathsf{a}_j \mathsf{b}_i)^2 - \sum_i \mathsf{gcd}(\mathsf{a}_i, \mathsf{b}_i) \right)$$

Key tool: intersection theory of toric blowups.

(Holmes-Molcho-Pandharipande-Pixton-Schmitt, 2024) Describes how to compute the DDR cycle, via the **logarithmic DR cycle**.

Int. Theory

Moduli Space of Curves

Int. Theory

DDR Cycle

Acknowledgements

Supervisor: Dhruv Ranganathan, Ajith Urundolil Kumaran

Summer Research in Mathematics (SRIM) scheme

Funding: Trinity College Summer Studentship Scheme