DATA:	/	/	/	

3ª Lista de Exercícios

Cônicas

Questão 1. Em cada um dos seguintes itens, determine a equação reduzida da parábola a partir dos elementos dados:

- a) Um ponto da diretriz é (4,7), vértice na origem e o eixo focal é Ox.
- b) Diretriz d: x 1 = 0, eixo focal I: y + 2 = 0 e o ponto L(-3,2) é uma das extremidades do seu latus rectum.
- c) V(1,2), eixo focal paralelo ao eixo Ox e P(-7, -6) é ponto da parábola.
- d) Extremidades do latus rectum L(-2,1) e R(6,1).
- e) Eixo focal I: x + 4 = 0, diretriz d: y = 3 e foco sobre a reta r: y = -x 5.
- f) Diretriz d: y + 2 = 0 e V(-1,2)

Questão 2. Determine as coordenadas do vértice, do foco, as equações da diretriz e do eixo focal e o comprimento do latus rectum de cada uma das seguintes parábola:

a)
$$(y-2)^2 = -4(x+1)$$

c)
$$v^2 - 8v - 16v + 32 = 0$$

b)
$$x^2 - 6x - 12x + 33 = 0$$

a)
$$(y-2)^2 = -4(x+1)$$

b) $x^2 - 6x - 12y + 33 = 0$
c) $y^2 - 8y - 16y + 32 = 0$
d) $4x^2 - 48y - 20x - 71 = 0$

Questão 3. Um cometa se desloca numa órbita parabólica tendo o Sol como foco. Quando o cometa está a 4 x 10⁴ km do Sol, a reta que os une forma um ângulo de 60° com o eixo da órbita. Determine a menor distância que o cometa estará do Sol.

Questão 4. Considere a função f: R \rightarrow R. O conjunto A = {(x, f(x)); x \in D(f)} é chamado gráfico da função f. Mostre que se $f(x) = ax^2 + bx + c$, $a \ne 0$, então A é uma parábola. Determine as coordenadas do vértice dessa parábola e a equação do seu eixo focal.

Questão 5. Um ponto P(x,y) desloca-se de modo que a soma de suas distâncias aos pontos A(3,2) e B(3,6) é igual a 8. Qual é a curva descrita pelo ponto P e, em seguida, determine sua equação reduzida.

Questão 6. Em cada um dos seguintes itens, determine a equação reduzida da elipse a partir dos elementos dados:

- a) Focos $F_1(3,8)$ e $F_2(3,2)$ e comprimento do eixo maior igual a 10.
- b) Vértices A₁(5,-1) e A₂(-3,-1) e excentricidade $e = \frac{3}{4}$.
- c) Centro C(1,2), um dos focos é F(6,2) e P(4,6) é um ponto da elipse.
- d) Eixo focal paralelo ao eixo Ox, um dos focos é F(-4,3) e uma das extremidades do eixo menor é o ponto B(0,0).
- e) Focos F₁(7,1) e F₂(-5,1) e comprimento do latus rectum é $\frac{64}{5}$.
- f) Vértice A₁(3,4) e extremidades do eixo menor B₁(5,1) e B₂(1,1).

Questão 7. Determine as coordenadas dos vértices, dos focos, das extremidades do eixo menor, as equações do eixo focal e do eixo normal, a excentricidade e o comprimento do latus rectum de cada uma das seguintes elipses:

a)
$$16x^2 + 9y^2 - 32x - 36y - 92 = 0$$

b)
$$25x^2 + 9y^2 - 54y - 144 = 0$$

Questão 8. Determine as coordenadas dos focos e a equação reduzida da cônica abaixo.

Questão 9. Em cada um dos seguintes itens, determine a equação reduzida da hipérbole a partir dos elementos dados:

- a) Focos $F_1(-1,3)$ e $F_2(-7,3)$ e comprimento do eixo transverso igual a 4.
- b) Focos F₁(-1,2) e F₂(-11,2) e comprimento do eixo não transverso é igual a 8.
- c) Vértices $A_1(5,4)$ e $A_2(1,4)$ e comprimento do latus rectum igual a 5.
- d) Eixo normal l': y = -3, um dos focos é F(-3,0) e excentricidade e = 1,5.
- e) Centro (2,1), um dos focos é F(2,-4) e um dos vértices A(2,4).
- f) Assíntotas r: 4x + y 11 = 0 e s: 4x y 13 = 0 e um dos vértices A(3,1).

Questão 10. Determine as coordenadas dos vértices, dos focos, das extremidades do eixo conjugado, as equações do eixo focal e do eixo normal, a excentricidade e o comprimento do latus rectum de cada uma das seguintes hipérboles:

a)
$$16x^2 - 9y^2 - 64x - 80 = 0$$

b)
$$4y^2 - 9x^2 + 8y - 32 = 0$$

Questão 11. O eixo focal de uma hipérbole é paralelo ao eixo Ox e suas assíntotas são as retas 2x + y - 3 = 0 e 2x - y - 1 = 0. Determinar a equação da hipérbole, sabendo que ela passa pelo ponto (4,6).

Questão 12. Dizemos que duas hipérboles são **conjugadas** se o eixo transverso de cada uma delas coincide com o eixo conjugado da outra. Dada a hipérbole H: $\frac{(y-1)^2}{9} - \frac{(x+3)^2}{16} = 1$, determine as coordenadas dos focos da hipérbole conjugada de H, bem como sua equação geral.

Questão 13. Uma hipérbole é **eqüilátera** quando o comprimento do seu eixo transverso é igual ao comprimento do seu eixo conjugado. Sabendo que os focos de uma hipérbole eqüilátera coincidem com as extremidades do eixo menor da elipse $\frac{(x+1)^2}{36} + \frac{(y-2)^2}{16} = 1$, determine a equação reduzida da hipérbole.

Questão 14. O vértice de uma parábola coincide com o centro da hipérbole H: $2x^2 - 7y^2 - 4x + 14y - 19 = 0$ e sua diretriz coincide com o eixo focal da elipse E: $\frac{(x-1)^2}{4} + (y+2)^2 = 1$. Determine a equação reduzida dessa parábola.

Questão 15. Os focos de uma elipse coincidem com os vértices da hipérbole H: $16x^2 - 9y^2 - 64x - 18y + 199 = 0$. Sabendo-se que a excentricidade da elipse é igual a 1/3, determine sua equação reduzida.

RESPOSTAS

Q1. a)
$$y^2 = -16x$$

a)
$$y^2 = -16x$$

b) $(y + 2)^2 = -8(x + 1)$
d) $(x - 2)^2 = -8(y - 3)$
e) $(x + 4)^2 = -8(y - 1)$

c)
$$(y-2)^2 = -8(x-1)$$

d)
$$(x-2)^2 = -8(y-3)^2$$

f)
$$(x + 1)^2 = 16(y + 2)$$

- a) Vértice V(-1,2), Foco (-2,2), eixo focal: y = 2, diretriz: x = 0, latus rectum = 4 Q2.

 - b) Vértice V(3,2), Foco (3,5), eixo focal: x = 3, diretriz: y = -1, latus rectum = 12 c) Vértice V(1,4), Foco (5,4), eixo focal: y = 4, diretriz: x = -3, latus rectum = 16
 - d) Vértice $V\left(\frac{5}{2}, -2\right)$, Foco $\left(\frac{5}{2}, 1\right)$, eixo focal: 2x 5 = 0, diretriz y = -5, latus rectum = 12
- **Q3.** A distância é igual a 10⁴ km.

Q4. Vértice
$$V\left(-\frac{b}{2a}, -\frac{\Delta}{4a}\right)$$
, eixo focal: $x = -\frac{b}{2a}$

Q5. Elipse,
$$\frac{(y-4)^2}{16} + \frac{(x-3)^2}{12} = 1$$

Q6. a)
$$\frac{(x-3)^2}{16} + \frac{(y-5)^2}{25} = 1$$
 b) $\frac{(x-1)^2}{16} + \frac{(y+1)^2}{7} = 1$ c) $\frac{(x-1)^2}{45} + \frac{(y-2)^2}{20} = 1$

b)
$$\frac{(x-1)^2}{16} + \frac{(y+1)^2}{7} = 1$$

c)
$$\frac{(x-1)^2}{45} + \frac{(y-2)^2}{20} = 1$$

d)
$$\frac{x^2}{25} + \frac{(y-3)^2}{9} = 1$$

e)
$$\frac{(x-1)^2}{100} + \frac{(y-1)^2}{64} = 1$$
 f) $\frac{(x-3)^2}{4} + \frac{(y-1)^2}{9} = 1$

f)
$$\frac{(x-3)^2}{4} + \frac{(y-1)^2}{9} = 1$$

- a) Centro: V(1,2), Vértices: A₁(1,6) e A₂(1,-2), Focos: F₁(1,2+ $\sqrt{7}$) e F₂(1,2+ $\sqrt{7}$), Q7. eixo focal: x = 1, eixo normal: y = 2, latus rectum = $\frac{9}{2}$, excentricidade: $e = \frac{\sqrt{7}}{4}$.
 - b) Centro: V(0,3), Vértices: A₁(0,8) e A₂(0,-2), Focos: F₁(0,7) e F₂(0,-1), eixo focal: x = 0, eixo normal: y = 3, latus rectum = $\frac{18}{5}$, excentricidade: $e = \frac{4}{5}$.

Q8.
$$F_1(2,1+\sqrt{5})$$
, $F_2(2,1-\sqrt{5})$, $\frac{(x-2)^2}{4} + \frac{(y-1)^2}{9} = 1$

Q9. a)
$$\frac{(x+4)^2}{4} - \frac{(y-3)^2}{5} = 1$$
 b) $\frac{(x+6)^2}{25} - \frac{(y-2)^2}{16} = 1$

b)
$$\frac{(x+6)^2}{25} - \frac{(y-2)^2}{16} = 1$$

c)
$$\frac{(x-3)^2}{4} - \frac{(y-4)^2}{5} = 1$$

d)
$$\frac{(y+3)^2}{4} - \frac{(x+3)^2}{5} = \frac{1}{5}$$

e)
$$\frac{(x-2)^2}{36} - \frac{(y-4)^2}{36} = 1$$

d)
$$\frac{(y+3)^2}{4} - \frac{(x+3)^2}{5} = 1$$
 e) $\frac{(x-2)^2}{36} - \frac{(y-4)^2}{36} = 1$ f) $\frac{(y+1)^2}{4} - \frac{(x-3)^2}{\frac{1}{4}} = 1$

- **Q10.** a) Centro: V(2,0), Vértices: A₁(-1,0) e A₂(5,0), Focos: F₁(5,0) e F₂(7,0), eixo focal: y = 0, eixo normal: x = 2, latus rectum = $\frac{32}{3}$, excentricidade: $e = \frac{5}{3}$, assíntotas: h₁: 4x + 3y 8 = 0 e h₂: 4x 3y 8 = 0.
 - b) Centro: V(0,-1), Vértices: A₁(0,-4) e A₂(0,2), Focos: F₁ $\left(0,-1-\sqrt{13}\right)$ e F₂ $\left(0,-1+\sqrt{13}\right)$, eixo focal: x = 0, eixo normal: y = -1, latus rectum = $\frac{8}{3}$, excentricidade: $e = \frac{\sqrt{13}}{3}$, assíntotas: h₁: 3x + 2y + 2 = 0 e h₂: 3x 2y 2 = 0.

Q11.
$$\frac{(x-1)^2}{\frac{11}{4}} - \frac{(y-1)^2}{11} = 1$$

Q12.
$$F_1(-8,1)$$
, $F_2(2,1)$, $9x^2 - 16y^2 + 54x + 32y - 79 = 0$

Q13.
$$\frac{(y-2)^2}{8} - \frac{(x+1)^2}{8} = 1$$

Q14.
$$(x-1)^2 = 12(y-1)$$

Q15.
$$\frac{(x-2)^2}{128} + \frac{(y+1)^2}{144} = 1$$