ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ «ТРИДЭФ»

3D ПРИНТЕР 3DEF VORON 2.4 РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

СОДЕРЖАНИЕ

	ВВЕДЕНИЕ	3
1.	НАЗНАЧЕНИЕ И ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ	4
2.	КОНСТРУКТИВНОЕ ИСПОЛНЕНИЕ И ПРИНЦИП РАБОТЫ	6
3.	КОМПЛЕКТ ПОСТАВКИ	7
4.	УКАЗАНИЕ МЕР БЕЗОПАСНОСТИ	8
5.	МОНТАЖ	9
6.	РЕКОМЕНДАЦИИ ПРИ ПОДГОТОВКЕ УСТРОЙСТВА К РАБОТЕ	10
7.	ПРАВИЛА ЭКСПЛУАТАЦИИ И ТЕХНИЧЕСКОГО ОБСЛУЖИВАНИЯ	11
8.	ПРАВИЛА ХРАНЕНИЯ, ТРАНСПОРТИРОВАНИЯ И УТИЛИЗАЦИИ	12
9.	ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА	13
10.	ЮРИДИЧЕСКИЙ АДРЕС ИЗГОТОВИТЕЛЯ И ПРОДАВЦА	14

ВВЕДЕНИЕ

Настоящее руководство по эксплуатации предназначено для ознакомления с принципом работы, основными правилами эксплуатации и обслуживания 3D принтера 3Def Voron 2.4.

Перед началом работы внимательно ознакомьтесь с данным руководством.

При проектировании, конструировании и изготовлении изделия использовалось современное производственное оборудование. Качество данного изделия обеспечивается применением системы постоянного контроля, с использованием совершенных методов и соблюдением требований по безопасности.

Эксплуатация изделия в соответствии с инструкциями, содержащимися в данном руководстве, обеспечит надежную и безопасную работу изделия.

1 НАЗНАЧЕНИЕ И ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 3D-принтер используется для создания объектов путём послойного нанесения материала по цифровой модели.

Он применяется в прототипировании, производстве, медицине, образовании и искусстве для изготовления сложных и точных деталей.

1.2 Основные технические характеристики представлены в таблице 1.

Таблица 1

Наименование показателя	Значение показателя
Габаритные размеры:	
- высота	от 575 до 855 мм
- ширина	от 485 до 712 мм
- глубина	от 485 до 707 мм
Macca	от 25 до 40 кг
Размер печатной области	300х300; 350х350; 400х400; 500х450 мм
Высота печатной области	280; 330; 380; 480 мм
Технология печати	FDM (послойное выкладывание разогретого
	пластика)
Количество печатающих головок	1 шт.
Количество сопел на одну головку	1 шт.
Материал печати	Пластиковый пруток
Поддерживаемые типы материалов	ABS, ABS-CF, ABS-GF, PETG, PLA, PVA, SBS,
	TPU, Полиамид (нейлон)
Кинематика	CoreXY
Точность печати	0,05 мм
Тип термокамеры	Закрытая
Тип подогрева термокамеры	Полуактивная (Nevermore)
Толщина подогреваемого стола	6 мм
Материал подогреваемого стола	Термоотпущенный алюминий
Мощность нагревателя стола	700 B _T
Напряжение питания нагревателя стола	220B
Максимальная температура стола	120 °C
Защита от перегрева	Термопредохранитель
	Программное ограничение
Материал печатной поверхности	Стальная пластина с покрытием РЕІ
Тип экструдера	Direct (механизм подачи установлен прямо на
	печатающей головке)
Хотэнд	Клон Bambulab X1
Максимальная температура хотэнда	330 °C
Возможность замены сопла	Да
Термобарьер	Биметалл
Тип нагревательного элемента	Керамический нагреватель
Мощность нагревательного элемента	40BT
Напряжение нагревательного элемента	24B
Максимальная объёмная производительность	22 мм ³ /с на пластике ABS при температуре 265
печатающей головки	°С и соплом диаметром 0,4 мм
Способ подключения печатающей головки	CAN интерфейс
Мотор печатающей головки	Круглый NEMA 14

Типоразмер вентилятора охлаждения хотэнда	4010
Напряжение вентилятора охлаждения	24B
хотэнда	
Типоразмер вентилятора охлаждения	Улитка 5015
печатаемых деталей	
Напряжение вентилятора охлаждения	24B
печатаемых деталей	
Тип подшипников вентилятора холаждения	Dual Ball Bearing
печатаемых деталей	
Автоматическое выравнивание стола	Да
Погрешность выравнивания	Меньше 0,01
Автоматическое построение карты	Да
неровностей стола	
Способ автоматического выравнивания стола	Штатный механизм Klipper
Автоматическое настройка резонансных	Да
частот (Input Shaping)	
Датчик для измерения частот	ADXL345
Автоматическое выключение после	Да
окончания печати	
Тип датчика стола	Датчик на вихревых токах
Название датчика	Cartographer Probe
Погрешность датчика	Меньше 0,01
Профиль рамы принтера	Высокоточный профиль Misumi 2020
Ремни	Высококачественные ремни Gates
Рельсы	Стальные рельсы с высокой точностью и
	износостойкостью
Материал печатных деталей	ABS
CAN плата	Mellow Fly SB2040V3
Основная плата	Fly D8 PRO
Драйвера	TMC2209
Дисплей	7 дюймов FullHD
Цифровая камера	1920x1080 USB камера с аппаратной
	кодировкой потока
Блок питания	MeanWeal 24B 200 BT
	MeanWeal 5B 35 BT
Хост-компьютер	Orange Pi 3B 2Gb оперативной памяти, microSD
	карта на 32Gb в комплекте

2 КОНСТРУКТИВНОЕ ИСПОЛНЕНИЕ И ПРИНЦИП РАБОТЫ

Принтер Voron 2.4 — это высокотехнологичный настольный 3D-принтер, созданный сообществом энтузиастов для достижения максимальной точности и надежности печати. Принтер имеет модульную конструкцию, что позволяет легко настраивать и модернизировать его компоненты. Ниже приведено описание основных конструктивных элементов:

2.1 Основная рама

Материал: Алюминиевые профили

Конструкция: Рама выполнена в форме прямоугольного каркаса, обеспечивающего жесткость и устойчивость всей системы

2.2 Оси перемещения

Ось X (поперечная): Отвечает за движение экструдера влево и вправо. Оснащена направляющей рельсой для обеспечения параллельности и минимизации люфта.

Ось Y (продольная): Контролирует движение печатающей головки вперед и назад. Использует аналогичные направляющие рельсы.

Ось Z (вертикальная): Отвечает за подъем и опускание портала. Оснащается четырьмя рельсами и зубчатыми ремнями.

2.3 Печатающая головка

Тип экструдера: Прямой привод (Direct Drive), что обеспечивает точный контроль подачи пластика.

Нагреватель экструдера: Экструдер с нагревателем мощностью $40\mathrm{Bt}$ и возможностью нагрева до $330~^{\circ}\mathrm{C}$.

Вентиляторы охлаждения:

Один вентилятор охлаждения печатной детали типа 5015 улитка с двойным подшипником.

Один вентилятор охлаждения нагревателя типа 4010 с двойным подшипником.

2.4 Принцип работы

3D-принтер 3Def Voron 2.4 работает на основе технологии послойного наплавления материала (Fused Filament Fabrication, FFF). Это означает, что объект создается путем последовательного нанесения слоев расплавленного пластика (или другого материала) в соответствии с заданной трехмерной моделью. Рассмотрим основные этапы и принципы работы принтера:

2.4.1. Подготовка модели к печати

Модель создается в САД-программе или загружается из готовых библиотек.

Модель сохраняется в формате STL, STEP или других поддерживаемых форматах.

Файл модели загружается в программу слайсера OrcaSlicer.

Слайсер разбивает модель на тонкие горизонтальные слои и генерирует команды G-code, которые содержат инструкции для принтера, такие как:

- Перемещение осей.
- Управление температурой.
- Подача филамента.
- Скорость печати.

G-code передается на принтер через сетевое подключение (Wi-Fi/Ethernet).

2.4.2. Процесс печати

2.4.2.1. Нагрев

Нагреватель экструдера нагревается до температуры, необходимой для плавления выбранного материала (например, PLA — 200°C, PETG — 240°C, ABS — 250°C).

Стол нагревается до рабочей температуры (например, 60°C для PLA, 100°C для ABS) для улучшения адгезии первого слоя.

2.4.2.2. Калибровка

Автоматическое выравнивание стола производится с помощью датчика Cartographer Probe, который сканирует поверхность стола для определения его плоскостности. На основе данных сканирования система корректирует высоту сопла относительно стола для обеспечения равномерного первого слоя.

Экструдер подает пластик в нагреватель экструдера с помощью моторов и шестерней, установленных в печатающей головке. Пластик плавится и выдавливается через сопло.

2.4.2.3. Построение слоёв

Принтер перемещает печатающую головку по осям X, Y и Z, создавая первый слой на столе. После завершения первого слоя принтер поднимается по оси Z на высоту следующего слоя и продолжает процесс. Каждый последующий слой точно накладывается на предыдущий, формируя трехмерный объект.

2.4.2.4. Охлаждение

Встроенные вентиляторы охлаждают только что напечатанные участки для предотвращения деформации. Температура стола и горячего конца поддерживается на уровне, необходимом для текущего материала.

2.4.3. Завершение печати

После завершения печати нагреватель экструдера и стол автоматически начинают охлаждаться. Принтер может выполнить дополнительные действия, такие как перемещение печатающей головы в "парковочную" позицию.

2.4.4. Извлечение детали

После полного остывания стола деталь аккуратно отделяется от поверхности. Если используется текстолит или PEI, деталь можно снять руками или с помощью шпателя.

3 КОМПЛЕКТ ПОСТАВКИ

- 3.1 В комплект поставки входят:
 - -3 D принтер 3Def Voron 2.4 -1 к-т.;
 - Паспорт 1 экз.;
 - Руководство по эксплуатации 1 экз.

4 УКАЗАНИЕ МЕР БЕЗОПАСНОСТИ

- 4.1 При проектировании и изготовлении изделия было сделано все необходимое, чтобы гарантировать соответствие нормам техники безопасности. Безопасность обеспечивается на этапе проектирования.
- 4.2 К работе с изделием допускаются лица, изучившие настоящее РЭ и прошедшие инструктаж по технике безопасности в соответствии с действующими на предприятии инструкциями.
- 4.3 Работы по техническому обслуживанию изделия, эксплуатации и устранению неисправностей должны производиться в соответствии и с соблюдением данного руководства.
- 4.4 Изделие необходимо применять в строгом соответствии с его назначением в части рабочих параметров, сред, условий эксплуатации, характеристик надежности и безопасности.
- 4.5 Изделие должно быть размещено в местах, доступных для удобного и безопасного его обслуживания и ремонта.
- 4.6 Ремонт должен осуществлять обученный персонал соответствующей квалификации по ремонтной документации с соблюдением требований охраны труда и технике безопасности.
 - 4.7 Проверяйте оборудование на возникновение внешних видимых повреждений.
- 4.8 Перед подключением оборудования обязательно сравните реальные параметры сети с техническими данными на типовой табличке (защита, напряжение, частота). При имеющихся сомнениях обратитесь к специалисту.
- 4.9 Электробезопасность данного оборудования будет обеспечена только в том случае, если оно будет подключено системой защитных проводов, соответствующих всем предписаниям. Очень важно, чтобы это основополагающее условие безопасности было выполнено, проверено и в случае имеющихся сомнений при установке было перепроверено специалистом. Производитель не несет ответственности, если повреждения возникли из-за неверного (не соответствующего) или поврежденного защитного провода
- 4.10 В случае использования удлиняющего кабеля обращайте обязательно внимание, соответствует ли он мощности и напряжению, указанным на типовой табличке (при несоблюдении возникает опасность воспламенения)

5 МОНТАЖ

- 5.1 К работам по монтажу изделия допускаются лица, прошедшие инструктаж по технике безопасности и имеющие квалификационную группу по электробезопасности не ниже III для электроустановок до 1000 В.
- 5.2 Электроподключение должен осуществлять квалифицированный электротехнический персонал, в соответствии с проектной документацией.
- 5.3 При проведении работ по монтажу изделия должны быть соблюдены требования ГОСТ 12.2.007.0, а также «Правил технической эксплуатации электроустановок потребителей» и «Правил по охране труда при эксплуатации электроустановок».
- 5.4 Все работы, связанные с монтажом изделия, а также с профилактическим осмотром, должны производиться только на изделии, отключенной от питающей сети.

6 РЕКОМЕНДАЦИИ ПРИ ПОДГОТОВКЕ УСТРОЙСТВА К РАБОТЕ

6.1 РАСПАКОВКА

- 6.1.1 Прежде чем приступать к работам необходимо внимательно ознакомиться с настоящим руководством по эксплуатации.
- 6.1.2 Распаковка должна быть выполнена без повреждения оборудования, входящего в комплект поставки.
- 6.1.3 После распаковки необходимо произвести технический осмотр изделия: проверить комплектность и убедиться в отсутствии механических повреждений.

6.2 НАЧАЛО ЭКСПЛУАТАЦИИ

- 6.2.1 Изделие должно быть полностью смонтировано, установлено и подключено к электросистеме в следующем порядке:
- проверить целостность электрических элементов и монтажа устройств управления,
 смонтировать электрооборудование;
 - все узлы электрооборудования соединить с контуром заземления;
 - проверить отсутствие нарушений изоляции электропроводки;
 - подключить изделие кабелем к сети переменного тока;
- проверить работу всех выключателей, датчиков и других электрических устройств безопасности.

7 ПРАВИЛА ЭКСПЛУАТАЦИИ И ТЕХНИЧЕСКОГО ОБСЛУЖИВАНИЯ

Для обеспечения долговечности принтера, безопасности работы и высокого качества печати необходимо соблюдать ряд правил эксплуатации. Эти правила применимы как к 3Def Voron 2.4, так и к другим 3D-принтерам.

7.1 Подготовка к работе

7.1.1 Проверка состояния принтера

Убедитесь, что все механические компоненты (направляющие, ремни, винты) находятся в исправном состоянии.

Проверьте, что электроника (плата управления, драйверы, блок питания) подключена правильно и надежно.

Осмотрите сопло и горячий конец на наличие засоров или повреждений.

7.1.2 Выбор материала

Используйте только качественный пластик, подходящий для вашего принтера и задачи. Храните пластик в сухом месте, особенно если он гигроскопичен (например, PLA, PETG, Nylon). Перед печатью убедитесь, что пластик не имеет признаков влагонасыщения (хруст, пузырьки при плавлении).

7.1.3 Настройка параметров печати

Выберите правильные параметры слайсера (температура, скорость, высота слоя) для используемого материала.

Проверьте, что G-code соответствует модели и желаемому результату.

7.2 Безопасность при работе

7.2.1 Электробезопасность

Никогда не разбирайте или не модифицируйте электронные компоненты при включенном питании.

Используйте принтер только с блоком питания, рассчитанным на его мощность.

Убедитесь, что провода и разъемы не повреждены.

7.2.2 Защита от ожогов

Не прикасайтесь к горячему концу или нагревательному столу во время работы или сразу после выключения.

При необходимости работы с горячими элементами используйте термостойкие перчатки.

7.2.3 Пожарная безопасность

Размещайте принтер в хорошо проветриваемом помещении, вдали от легковоспламеняющихся материалов.

Не оставляйте принтер без присмотра на длительное время при работе с высокотемпературными материалами (например, ABS, Nylon).

Регулярно проверяйте состояние проводки и нагревательных элементов.

7.2.4 Вентиляция

При печати токсичных материалов (ABS, Nylon) используйте вытяжку или систему фильтрации воздуха для удаления паров и частиц.

7.3 Процесс печати

7.3.1 Калибровка

Перед началом печати выполните автоматическое или ручное выравнивание стола.

Убедитесь, что первый слой ложится равномерно и хорошо прилипает к поверхности.

7.3.2 Мониторинг процесса

Регулярно проверяйте ход печати, особенно в начале работы, чтобы убедиться, что модель прилипает к столу.

Если возникают проблемы (например, засор сопла или отрыв модели), немедленно остановите печать.

7.3.3 Избегайте перегрузок

Не нагружайте принтер скоростью или температурой выше рекомендованных значений. Следите за состоянием охлаждающих вентиляторов.

7.4 Техническое обслуживание

7.4.1 Чистка принтера

После каждой печати очищайте стол от остатков пластика и клея.

Регулярно протирайте направляющие и другие движущиеся части для удаления пыли и грязи.

7.4.2 Смазка механизмов

Смазывайте направляющие специальной смазкой (например, силиконовой или тефлоновой) каждые 50–100 часов печати.

7.4.3 Проверка износа деталей

Регулярно осматривайте ремни, подшипники и сопла на предмет износа.

Заменяйте изношенные детали своевременно, чтобы избежать проблем.

7.4.4 Очистка сопла

При засорении сопла выполните процедуру холодной или горячей очистки. Используйте специальные инструменты (например, иглы для чистки сопла).

7.6 Заключение

Соблюдение правил эксплуатации 3D-принтера — это ключ к его длительному и бесперебойному функционированию. 3Def Voron 2.4 — это высокотехнологичный принтер, который требует внимательного отношения к настройке и обслуживанию. Следуя этим рекомендациям, вы сможете минимизировать риск поломок, повысить качество печати и обеспечить безопасность работы.

ПРАВИЛА ХРАНЕНИЯ, ТРАНСПОРТИРОВАНИЯ И УТИЛИЗАЦИИ

8.1 Консервация

8.1.1 Консервация изделия должна выполняться по ГОСТ 9.014.

8.2 Хранение

8

- 8.2.1 3D принтер следует хранить и транспортировать строго в вертикальном положении.
- 8.2.2 3D принтер должен храниться вдали в крытых складских помещениях при температуре от плюс 5°C до плюс 40°C и относительной влажности не более 80%.

8.3 Транспортировка

- 8.3.1 Транспортирование принтеров должно осуществляться только в крытых транспортных средствах. При транспортировании должна быть исключена возможность их перемещения внутри транспортной тары и самой тары внутри транспортных средств. Должна быть обеспечена сохранность тары от атмосферных осадков.
 - 8.3.2 Не допускать падения принтера и воздействия на него чрезмерных вибраций.

8.4 Утилизация

- 8.4.1 Материалы и изделия, примененные в конструкции изделия, в процессе утилизации не представляют опасности и утилизируются в соответствии с нормативными ведомственными документами, утвержденными в установленном порядке.
- 8.4.2 Изделие, отработавшее свой ресурс, должно передаваться на утилизацию в специализированные предприятия по переработке материалов.
- 8.4.3 Разборка изделий должна осуществляться с сортировкой материалов по типам и маркам.

8.4.4 Перед утилизацией:

- удалить с наружной поверхности грязь;
- разобрать изделие на отдельные детали для их переработки и вторичного использования.

7 ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА

- 9.1 Изготовитель гарантирует соответствие продукции требованиям технической документации при условии соблюдения потребителем правил транспортировки, хранения и монтажа.
 - 9.2 Гарантийный срок составляет 3 месяца.
 - 9.3 Средний срок службы не менее 3 лет.

10 ЮРИДИЧЕСКИЙ АДРЕС ИЗГОТОВИТЕЛЯ И ПРОДАВЦА

Изготовитель: ООО «ТРИДЭФ»

Юридический адрес: 109428, РОССИЯ, Москва, улица Михайлова, дом 30A, корпус 4, квартира 1012

Фактический адрес: 111141, РОССИЯ, Москва, улица Кусковская, дом 20А, помещение 505В

Телефон: +7 9671568349

E mail: sale@3def.ru