Time Complexity of Algorithms

Time Complexity

- □ Total amount of time an algorithm requires to complete
- Simplest case: constant time complexity
 - algorithm takes same amount of time, no matter the input size

```
int sumFirstTwo(int arr[], int n) //n=currSize
{
  return arr[0]+arr[1]; // always 1+ and 1 ret
}
```

Constant Time Complexity

another constant time complexity example: int sumFirst10(int arr[], int n) int sum=0; // 1 init for(int i=0; i<10; i++)// 1 init, 10 <, 10 ++ sum+=arr[i]; // always 1 += (done 10 times) return sum; // 1 ret \neg total units of work: 1 + 1 + 10 + 10 + 10 + 1 = 33 still constant !!!!

Linear Time Complexity

another constant time complexity example:
int sumAll(int arr[], int n)

```
int sum=0; // 1 init
for(int i=0; i<n; i++)// 1 init, n <, n ++
    sum+=arr[i]; // always 1 += (done n times)
return sum; // 1 ret
}</pre>
```

- \neg total units of work: 1 + 1 + n + n + n + 1 = 3n + 3
 - NOT constant, but is linear in n (size of input)

Quadratic Time Complexity

```
int sumDist(int arr[], int n)
    int sum=0; // 1 init
    for(int i=0; i<n; i++)// 1 init, n <, n ++
       for(int j=0; j<n; j++)// (1 init, n <, n ++) n times
        sum = sum + abs(arr[i]-arr[j]); //(1+=, 1-, 1+) n<sup>2</sup> times
    return sum; //1 ret
\neg total: 1 + (1+n+n) + (n+n<sup>2</sup>+ n<sup>2</sup>) + (n<sup>2</sup> + n<sup>2</sup> + n<sup>2</sup>) + 1
- ... = 5n^2 + 3n + 3
 NOT linear or constant, but quadratic in n
```

Which Complexity is best?

- □ Which of these run times (time complexities) is shortest?
 - $-2n^2 + 1024n + 6872$
 - $-4n^2 4n + 5$
 - □ 9000n +987654
- □ answer: it depends on n!!!!
 - consider n=500, 520, 540 , 4097, 4107, 4117
 - remember, n could be an array size!

Which Complexity is best?

n	9000n+987654	4n2-4n+5	2n2+1024n+6872
520	5,667,654	1,079,525	1,080,152
521	5,676,654	1,083,685	1,083,258
522	5,685,654	1,087,855	1,086,368
			•••
4107	37,950,654	67,453,373	37,947,338
4108	37,959,654	67,486,229	37,964,792

Asymptotic Complexity

- Turns out that, in practice, the following two are essentially equivalent:
 - $\neg 2n^2 + 1024n + 6872$
 - $-4n^2 4n + 5$
- □ Why? because we model them with big-O, i.e. O(f(n)):
 - □ $g(n) \in O(f(n))$ i.e. g(n) is in big-O of f(n) iff:
 - □ for constants c and n₀:
 - $\neg \forall n>n_o, g(n) < cf(n)$

Asymptotic Complexity ...

- Turns out that, in practice, the following two are equivalent:
 - $\neg 2n^2 + 1024n + 6872$, which is $O(n^2)$
 - \neg 4n² 4n + 5, which is also O(n²)
- Which means that both increase in run time at a rate of no more than cn²
- □ 9000n +987654 is O(n), technically also O(n²)
- □ O(n) is better than O(n²), provided the bound is tight

Which Complexity is best?

- □ Which of these run times (time complexities) is shortest?
 - $-2n^2 + 1024n + 6872 \dots O(n^2)$
 - $\neg 4n^2 4n + 5$... $O(n^2)$
 - 9000n +987654 ... O(n)

- For large n (bigger program inputs)
 - 9000n + 987654 is the best!

Asymptotic Complexity ... Some common run times plotted:

Asymptotic Complexity Matters!

Consider a dual core 2.5GhZ CPU (5GhZ "total")

n	log n	n log n	n ²
10	3.32	33.2	100
2*10 ⁻⁹ sec	6*10 ⁻¹⁰ sec	6*10 ⁻⁹ sec	2*10 ⁻⁸ sec
102	6.64	666.4	10000
2*10 ⁻⁸ sec	1.2*10 ⁻⁹ sec	13*10 ⁻⁸ sec	2*10 ⁻⁶ sec
10 ³	9.96	9960	100000
2*10-7 sec	2*10 ⁻⁹ sec	19*10 ⁻⁷ sec	2*10-4 sec
104	13.28	132800	108
2*10-6 sec	2.6*10 ⁻⁹ sec	27*10-6 sec	2*10 ⁻² sec
109	29.8	29.8*10 ⁹	1018
2 sec	6*10 ⁻⁹ sec	60 sec	2315 days!

> 6 years!!!!

```
int sumDist(int arr[], int n)
  int sum=0; // O(1)
  for(int i=0; i<n; i++)// O(n)
    for(int j=0; j<n; j++)// O(n), done O(n) times
     sum = sum + abs(arr[i]-arr[j]); //O(1), done O(n<sup>2</sup>)times
  return sum; //O(1) ret
```

- \neg total: O(1) + O(n) + O(n²) + O(n²) + O(1)
- $\neg \dots = O(n^2)$ // note abuse of = in notation, should really be \in

```
int maxDist(int arr[], int n)
    int big=0; // O(1)
    for(int i=0; i<n; i++)// O(n)
       for(int j=0; j<n; j++)// O(n), done O(n) times
        if (abs(arr[i]-arr[j]) > big) //O(1), done O(n<sup>2</sup>) times
          big = abs(arr[i]-arr[j]); //O(1), done O(n<sup>2</sup>)times
    return big; //O(1) ret
\neg total: O(1) + O(n) + O(n^2) + O(n^2) + O(n^2) + O(n^2) + O(1)
\Box ... = O(n^2)
```

```
int sumDist(int arr[], int n)
    int sum=0;
    for(int i=0; i<n; i++)
      for(int j=0; j<i; j++)
       sum = sum + abs(arr[i]-arr[j]);
    return sum;
\neg total: O(1) + O(n) + O(n^2) + O(n^2) + O(1)
□ O(n²)
```

```
int binSearch(int target, int arr[], int n)
  { // note: we assume target is in arr
    int left=0, right=n-1, middle=n/2;
    while (arr[middle]!=target) {
      if (arr[middle] > target) right=middle-1;
      else left = middle+1; //cut out left half
      middle= (left+right)/2;//cut out right half
    return middle;
\neg \text{ total: } O(1) + O(\log n) = O(\log n)
```

```
int binSearch(int target, int arr[], int n)
 { // note: we assume target is in arr
   int left=0, right=n-1, middle=n/2;
   while (arr[middle]!=target) {
     if (arr[middle] > target) right=middle-1;
     else left = middle+1; //cut out left half
     middle= (left+right)/2;//cut out right half
   return middle;
\neg O(log<sub>2</sub>n)
```

Other Asymptotic Complexity

- \neg g(n) \in O(f(n)) represents an "upper bound"
- □ $g(n) \in \Omega(f(n))$ represents a "lower bound"
 - □ for constants c and n₀:
 - $\neg \forall n>n_o, g(n) > cf(n)$
- □ g(n) ∈ Θ(f(n)) represents a "tight bound"
 - □ g(n) ∈ O(f(n)) and g(n) ∈ Ω(f(n))
 - not always possible to find this!