

ESTATÍSTICA

- CORRELAÇÃO LINEAR -

Profa. Claudia Turik de Oliveira

<u>Objetivo</u>

Estudar a relação entre duas variáveis quantitativas.

Exemplos:

- Idade e altura de crianças;
- Tempo de prática de esportes e ritmo cardíaco;
- Tempo de estudo e nota na prova;
- Taxa de desemprego e taxa de criminalidade;
- Expectativa de vida e taxa de analfabetismo.

Diagrama de Dispersão

É a representação gráfica para duas variáveis quantitativas.

Nota da prova e tempo de estudo

X : tempo de estudo (em horas)

Y : nota da prova

Pares de observações para cada estudante:

Estudante	Tempo (X)	Nota (Y)
1	3,0	4,5
2	7,0	6,5
3	2,0	3,7
4	1,5	4,0
5	12,0	9,3

X : tempo de estudo (em horas)

Y : nota da prova

X : tempo de estudo (em horas)

Y: nota da prova

Tempo(X)	Nota(Y)		
3,0	4,5		
7,0	6 , 5		
2,0	3,7		
1,5	4,0		
12,0	9,3		

Diagrama de Dispersão

É uma medida que avalia o quanto a "nuvem de pontos" no diagrama de dispersão aproxima-se de uma reta.

Propriedade: $-1 \le r \le 1$

Casos particulares:

r = 1 ⇒ correlação linear positiva e perfeita

r = -1 ⇒ correlação linear negativa e perfeita

r = 0 ⇒ inexistência de correlação linear

r = 1, correlação linear positiva e perfeita

r = -1, correlação linear negativa e perfeita

$r \approx 0$, ausência de correlação linear

 $r \cong 1$

r ≅ - 1

Criminalidade e Analfabetismo

Considere duas variáveis observadas em 50 estados:

Y: taxa de criminalidade

X: taxa de analfabetismo

r = 0,702

Conforme aumenta a taxa de analfabetismo (X), a taxa de criminalidade (Y) tende a aumentar também.

Expectativa de vida e Analfabetismo

Considere duas variáveis observadas em 50 estados:

Y: expectativa de vida

X: taxa de analfabetismo

$$r = -0.59$$

Conforme aumenta a taxa de analfabetismo (X), a expectativa de vida (Y) tende a diminuir.

Coeficiente de Pearson

O Coeficiente de Correlação Linear de Pearson é dado por:

$$r_{xy} = \frac{s_{xy}}{s_x s_y}$$

Sendo:

$$S_{xy} = \frac{\sum [(x - \overline{x})(y - \overline{y})]}{n - 1}$$

Covariância

$$s_x = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

Desvio-padrão de X

$$s_y = \sqrt{\frac{\sum (y - \bar{y})^2}{n - 1}}$$

Desvio-padrão de Y

Exemplo 1:

Tempo (X)	Nota (Y)		
3,0	4,5		
7,0	6,5		
2,0	3,7		
1,5	4,0		
12,0	9,3		
25,5	28,0		

1) Calcular as médias:

$$\bar{X} = 5,1$$

$$\bar{Y} = 5.6$$

2) Calcular os desvios-padrão:

$$S_x = 4,42$$

$$S_y = 2,34$$

3) Calcular a covariância

Tempo (X)	Nota (Y)	(X - X)	(Y - Y)	(X - X) (Y - Y)
3,0	4,5	-2,1	-1,1	2,31
7,0	6,5	1,9	0,9	1,71
2,0	3,7	-3,1	-1,9	5,89
1,5	4,0	-3,6	-1,6	5,76
12,0	9,3	6,9	3,7	25,53
25,5	28,0	0	0	41,2
$\bar{X} = 51$	$\overline{\mathbf{V}} = 56$			

$$S_{xy} = \frac{2,31 + ... + 25,53}{4} = \frac{41,2}{4} = 10,3$$

4) Calcular o Coeficiente de Pearson:

$$r_{xy} = \frac{s_{xy}}{s_x s_y} = \frac{10,3}{4,42 * 2,34} = 0,9959$$

Correlação e Causalidade

- Quando duas variáveis são correlacionadas, é possível predizer valores de uma delas com base no conhecimento da outra.
- Isso leva frequentemente à conclusão errônea de que uma variável é causa da outra.
- Entretanto, o fato de haver um relacionamento matemático entre duas variáveis nada nos diz quanto a causa e efeito.

Correlação e Causalidade

 Há três explicações possíveis para a obtenção de uma correlação:

- 1. Existe uma relação de causa e efeito;
- Ambas as variáveis se acham relacionadas com uma terceira;
- 3. A correlação é devida ao acaso.

