Background info

- The point spread function (PSF) can be represented as a convolution between an airy disk function and a two dimensional gaussian
- The easiest way to obtain this convolution is to take the Fourier transform of each, then multiply, and finally take the inverse

Airy Disk

The intensity of the airy patter can be given as a function of the angle of observation relative to the aperture

$$I(heta) = I_0 igg(rac{2J_1(x)}{x}igg)^2$$

where $x=rac{\pi q}{\lambda N}$

$$\lambda = ext{wavelength}$$
 $q = ext{distance from aperture}$ $N = ext{f number}$

Fourier Transform of Airy Disk

The Fourier transform of the airy disk function can be represented as the optical transfer function, defined as

$$OTF(
ho') = rac{2}{\pi}igg[\cos^{-1}(
ho') -
ho'\sqrt{1-
ho'^2}igg]$$

Where

$$ho' =
ho/c$$
 $ho_c = rac{1}{\lambda N}$

Image Stabilization

Our point spread function must also take into account the jitter of the centroids of the spots (the fact that they shift over time).

If we represent our gaussian as

$$g(x) = rac{1}{\sqrt{2\pi\sigma^2}} \mathrm{exp}\left[-rac{1}{2}(x-\mu)^2/\sigma^2
ight]$$

Then the fourier transform is another gaussian

$$G(x) = rac{1}{2\sigma^3\sqrt{2\pi}} \mathrm{exp} \left[-rac{\pi^2 x^2}{1/2\sigma^2}
ight]$$

For now, we shall remain in the Fourier space and take the inverse transform at a more convenient time.

Final PSF

$$PSF(\lambda, N, k_x, k_y, \sigma_x, \sigma_y) = G(x) \cdot OTF(\rho')$$

Note:

$$ho = \sqrt{k_x^2 + k_y^2}$$

Calculating response of subpixels

Definitions

f(x,y) = PSF with (x,y) being offset from spot center

s(x,y) = sub pixel sensitivity map with x,y relative to bottom left of pixel

If the center of a spot is at (x_0, y_0) , the response of pixel (p, q) is given by:

$$egin{aligned} r_{p,q} &= \int_{x=0}^1 \, dx \int_{y=0}^1 \, dy \, f(p+x-x_0,q+y-y_0) \, s(x,y) \ &= \sum_{i=0}^{N_x-1} \sum_{j=0}^{N_y-1} \, S_{j+iN_y} \int_{x=0}^1 \, dx \int_{y=0}^1 \, dy \, f(p+i\Delta x+x-x_0,q+j\Delta y+y-y_0) \, s(x,y) \end{aligned}$$

if $F(k_x, k_y)$ is the Fourier transform of f(x, y)

$$f(x,y) = \int_{-\infty}^{\infty} dk_x \int_{-\infty}^{\infty} dk_y \ F(k_x,k_y) \ e^{2\pi i (x k_x + y k_y)}$$

We can plug this into $r_{p,q}$ as shown:

$$r_{p,q} = \sum_{nx=0}^{N_x-1} \sum_{ny=0}^{N_y-1} S_{j+iN_y} \ I_{p,q,n_x,n_y}$$

Where

$$egin{aligned} x &= p + n_x \Delta x + rac{\Delta x}{2} - x_0 \ y &= p + n_y \Delta y + rac{\Delta y}{2} - y_0 \ I_{p,q,n_x,n_y} &= \int_0^{\Delta x} dx \int_0^{\Delta y} dy \, f(p + i \Delta x + x - x_0, q + j \Delta y + y - y_0) \ &= \int_0^{\Delta x} dx \int_0^{\Delta y} dy \int_{-\infty}^{\infty} dk_x \int_{-\infty}^{\infty} dk_y \, F(k_x,k_y) \, e^{2\pi i (x k_x + y k_y)} \end{aligned}$$

We can separate

$$egin{aligned} \int_{-\Delta x/2}^{\Delta x/2} dx\, e^{2\pi i k_x x} &= rac{\sin(\pi \Delta x k_x)}{\pi k_x} \ \int_{-\Delta y/2}^{\Delta y/2} dy\, e^{2\pi i k_y y} &= rac{\sin(\pi \Delta y k_y)}{\pi k_y} \end{aligned}$$

Because we are numerically calculating these integrals, we can pick some large enough K_x and K_y because the integral will converge

$$I(x,y) = \int_{-K_x}^{K_x} dk_x \, \int_{-K_x}^{K_y} dk_y \, F(k_x,k_y) \, rac{\sin(\pi \Delta x k_x) \sin(\pi \Delta y k_y)}{\pi^2 k_x k_y} \, e^{2\pi i (x k_x + y k_y)}$$

The imaginary part of this function integrates to zero, and the real part is the same in all four quadrants, thus we can do the following

$$I(x,y) = \int_0^{K_x} dk_x \, \int_0^{K_y} dk_y \, F(k_x,k_y) \, rac{\sin(\pi \Delta x k_x) \sin(\pi \Delta y k_y)}{\pi^2 k_x k_y} \cos(2\pi k_x x) \cos(2\pi k_y y)$$

We can approximate this integral using the midpoint rule and breaking the regions into ν_x and ν_y parts.

$$\Delta k_x = rac{K_x}{
u_x} \quad \ \Delta k_y = rac{K_y}{
u_y}$$

When approximating the integral, we will have a double summation with m and n is running indices such that

$$k_x(m) = \left(m + \frac{1}{2}\right) \frac{K_x}{
u_x}$$
 $k_y(n) = \left(n + \frac{1}{2}\right) \frac{K_y}{
u_y}$ $I(x,y) = 4 \frac{K_x K_y}{
u_x
u_y} \sum_{m=0}^{
u_x - 1} \sum_{n=0}^{
u_y - 1} F[k_x(m), k_y(n)] \frac{\sin(\pi \Delta x k_x) \sin(\pi \Delta y k_y)}{\pi^2 (m + \frac{1}{2})(n + \frac{1}{2})}$ $\cos\left[2\pi (m + 1/2) \frac{K_x}{
u_x} x\right] \cos\left[2\pi (n + 1/2) \frac{K_y}{
u_y} y\right]$

We can separate this rather long expression into

$$\psi_{m,n} = F[k_x(m),k_y(n)] rac{\sin(\pi\Delta x k_x)\sin(\pi\Delta y k_y)}{\pi^2(m+rac{1}{2})(n+rac{1}{2})}$$

For ease of use we also should discretize x and y.

$$egin{aligned} x_k &= k \Delta x & y_l &= l \Delta y \ \Delta x &= rac{1}{2K_x} & \Delta y &= rac{1}{2K_y} \ x_k &= rac{k}{2K_x} & y_l &= rac{l}{K_y} \end{aligned}$$

Now we have

$$I_{k,l} = I(x_k,y_l) = 4\sum_{m=0}^{
u_x-1}\sum_{n=0}^{
u_y-1}\psi_{m,n}\cosigg[\pi(m+1/2)rac{k}{
u_x}igg]\cosigg[\pi(n+1/2)rac{l}{
u_y}igg]$$

Which is exactly in the form of a DCT-II and 2-D REDF10 transform described by FFTW.