EV Charging Trends and Predictions

INFO 511 Fall 2024 Final Project

Team: ChilePeppers

Derek Rice
Shreya Kolte
Pouya Jalali Khalilabadi

Introduction & motivation

Focus Area:

- Electric Vehicle (EV) Charging Efficiency.
- Interest in exploring charging patterns and user behaviors.
- Building predictive models for charging efficiency.

Research Questions:

- How do vehicle model, user type, and starting state of charge influence the cost and duration of EV charging sessions at public stations?
- Exploring energy consumption and charging behaviors
- Building predictive models for charging efficiency

Hypotheses:

- Vehicle Models: Larger batteries → Longer charging times, higher costs.
- **User Profiles**: Regular users → Lower costs per session.
- State of Charge: Lower starting levels → More expensive sessions.

Electric Vehicle Dataset Overview

Source: Electric Vehicle Charging Patterns

The EV Charging Dataset comprised:

- A total of 20 variables (columns) and 1320 data points (rows)
- Each column was a charging factor studied
- Each row was a charging event

```
✓ ev charging.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1320 entries, 0 to 1319
Data columns (total 20 columns):
     Column
                                               Non-Null Count Dtype
     User ID
                                               1320 non-null
                                                               object
     Vehicle Model
                                               1320 non-null
                                                               object
     Battery Capacity (kWh)
                                                               float64
                                               1320 non-null
     Charging Station ID
                                               1320 non-null
                                                               obiect
     Charging Station Location
                                                               object
                                               1320 non-null
     Charging Start Time
                                                               object
                                               1320 non-null
     Charging End Time
                                                               object
                                               1320 non-null
     Energy Consumed (kWh)
                                               1254 non-null
                                                              float64
     Charging Duration (hours)
                                               1320 non-null
                                                               float64
     Charging Rate (kW)
                                               1254 non-null
                                                               float64
    Charging Cost (USD)
                                               1320 non-null
                                                               float64
 11 Time of Day
                                               1320 non-null
                                                              object
 12 Day of Week
                                               1320 non-null
                                                               obiect
 13 State of Charge (Start %)
                                               1320 non-null
                                                              float64
 14 State of Charge (End %)
                                               1320 non-null
                                                              float64
 15 Distance Driven (since last charge) (km) 1254 non-null
                                                              float64
 16 Temperature (°C)
                                                               float64
                                               1320 non-null
 17 Vehicle Age (years)
                                               1320 non-null
                                                               float64
 18 Charger Type
                                               1320 non-null
                                                               obiect
 19 User Type
                                               1320 non-null
                                                               object
dtypes: float64(10), object(10)
memory usage: 206.4+ KB
```

EV charging dataset info() summary. The dataset included two data types, object and float64. One-hot-encoding was employed to include object data types in the predictive model building effort.

Exploratory Data Analysis

Modeling

Dep. Variable:	le: Charging Cost (USD) R-squared:			а	.041		
Model:	OLS			0.021			
Method:		F-statistic:		2.035			
Date:	Sun. 15 Dec 2024			0.00277			
Time:	14:12:32			-4271.4			
No. Observations:	1131	AIC:		8591.			
Df Residuals:	1107	BIC:		8712.			
Df Model:							
Covariance Type:	nonrobust						
		coef	std err		P> t	[0.025	0.975]
const	27.1726	2.102	12.930	0.000	23.049	31.296	
State of Charge (E	-0.0405	0.019	-2.123	0.034	-0.078	-0.003	
Temperature (°C)	0.0467	0.022	2.145	0.032	0.004	0.089	
Vehicle Model_Chev	0.7493	1.027	0.730	0.466	-1.265	2.764	
Vehicle Model_Hyun	2.6782	1.027	2.607	0.009	0.662	4.694	
Vehicle Model_Niss	2.6001	1.013	2.568	0.010	0.613	4.587	
Vehicle Model_Tesl	1.0828	0.998	1.085	0.278	-0.875	3.041	
Charging Station L	-1.8020	1.031	-1.749	0.081	-3.824	0.220	
Charging Station L	-0.6514	1.012	-0.644	0.520	-2.637	1.334	
Charging Station L	-1.2522	1.040	-1.205	0.229	-3.292	0.788	

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Output is truncated. View as a scrollable element or open in a text editor. Adjust cell output settings...

Multivariable Regression Analysis (R2 adjusted = 2.1%)

```
Fitting 5 folds for each of 25 candidates, totalling 125 fits

===== RBF Kernel: Model Summary =====

Best Hyperparameters: {'C': 0.1, 'gamma': 'scale', 'kernel': 'rbf'}

Performance Metrics:
Mean Squared Error (MSE): 126.26

R² Score: -0.03

Adjusted R² Score: -0.19

Best Estimator:

SVR(C=0.1)
```

Support Vector Machine (SVM) kernel = RBF with R² adjusted = -.19

```
Fitting 5 folds for each of 32 candidates, totalling 160 fits

===== Kernel = Poly: Model Summary =====

Best Hyperparameters:
{'C': 0.1, 'degree': 2, 'gamma': 'scale', 'kernel': 'poly'}

Performance Metrics:
Mean Squared Error (MSE): 125.40
R² Score: -0.02
Adjusted R² Score: -0.18

Best Estimator:

SVR(C=0.1, degree=2, kernel='poly')
```

Support Vector Machine (SVM) kernel = Polynomial with R^2 adjusted = -.18

Results & Discussion

Key Findings:

• Exploratory Data Analysis: Battery capacity was consistent across models; energy consumption followed a normal distribution. No clear visual trends for charging cost vs. time of day or location.

• Statistical Analysis (ANOVA): Vehicle model and charger type significantly influenced charging costs (p < 0.05). Charging location had no significant impact. Higher temperatures slightly increased costs (linear regression p < 0.05).

• **Predictive Modeling:** Regression and SVM models performed poorly, explaining only ~2% of the variance (R²-adjusted ~0.021).

Conclusions & Future Works

Conclusions

- The analysis identified statistically significant relationships between vehicle model, charger type, and charging cost, as well as a linear relationship between charging temperature and cost. However, multivariable regression and SVM models struggled to explain variance, with adjusted R-squared values below 5%.
- Graphical and statistical reviews provided insights into the dataset's structure but highlighted limitations in predicting charging costs due to potential multicollinearity, noise, or missing key factors.

Future Works

- Explore more advanced machine learning models, such as random forests or neural networks, to better capture
 nonlinear relationships and interactions in the dataset.
- Incorporate additional data points, such as user demographics or environmental factors, to improve the model's explanatory power.
- Investigate potential data cleaning and preprocessing enhancements, including feature engineering and addressing outliers, to reduce noise and improve prediction accuracy.

