ISÉN Lille janvier 2016'

\mathcal{M} aths $\mathcal{C}i\mathbf{R}^2$

Consignes

- Cette épreuve de 2 h contient 3 × 3 questions équipondérées pouvant être traitées dans n'importe quel ordre.
- Calculatrice **permise** mais peu utile...
- Rédigez clairement en **explicitant** vos raisonnements et énonçant les résultats utilisés.
- N'oubliez pas que le but de l'exercice est de faire étalage de ce que vous avez compris ce semestre.
- Exprimez-vous donc en utilisant le langage et vocabulaire approprié, et surtout amusez-vous bien!
- 1. Considérons l'hélice conique \mathcal{H} paramétrée par $\mathbf{r}(t) = (e^t \cos t, e^t \sin t, e^t)$ pour $t \ge 0$.
 - a) Vérifier que \mathcal{H} est bien située à la surface d'un cône dont vous préciserez l'équation cartésienne.
 - b) Calculer l'angle entre la direction tangente à \mathcal{H} en un point donné et la verticale et vérifier que celui-ci ne dépend pas du point choisi.
 - c) Exprimer en fonction de t l'abscisse curviligne sur cette courbe calculée à partir de (0,0,0).
- 2. Soit $f: \mathbf{R}^2 \to \mathbf{R}$ définie par $f(x,y) = e^{-x^2 y^2}$.
 - a) Montrer que f est de classe C^2 et spécifier son DL_2 en (0,1).
 - b) Déterminer et classifier les points critiques de f. Quelles sont les valeurs extrêmes prises par celle-ci sur le disque

$$\mathcal{D}_R: x^2 + y^2 \leqslant R^2$$
?

- c) Évaluer explicitement $\iint_{\mathcal{D}_R} f \, dA$ et regarder ce qui se passe lorsque $R \to \infty$.
- 3. a) Dans la mémoire d'un droïde astromécanicien on découvre le schéma suivant représentant :
 - la sphère S centrée en (0,0,0) de rayon R>0;
 - la sphère \mathcal{T} centrée en (a, b, c) de rayon 0 < r < R;
 - le cercle \mathcal{C} d'intersection de \mathcal{S} et de \mathcal{T} .

Donner des équations cartésiennes pour \mathcal{S} et \mathcal{T} ainsi que pour le plan \mathcal{P} contenant \mathcal{C} .

- b) Déterminer le centre et le rayon ρ de \mathcal{C} en fonction de R, r et $d := \sqrt{a^2 + b^2 + c^2}$, puis expliquer comment faire pour obtenir une paramétrisation de \mathcal{C} .
- c) Soit \mathcal{E} le solide formé des points situés à l'intérieur de \mathcal{S} mais à l'extérieur de \mathcal{T} . Évaluer $\operatorname{vol}(\mathcal{E})$ à l'aide d'une intégrale triple en fonction de R et ρ (vous pouvez supposer que a=b=0 pour simplifier la représentation).