

Optional BYPASS specification

- \square BYPASS = location [*f f [+ dd]]
- ☐ Lost flow diverted to *location*
- □ Location specified using INPUT
 - ff specifies fraction of lost flow to be diverted
 - dd specifies time in hours to reach diverted location

DAMS

- □ 3 Methods of specifying S-Q:
 - Specify Storage-Discharge table
 - □ via 'sq' file or hardwired in 'vec' file
 - Specify Storage Constants, A & B
 - \square S = aQ^b
 - Specify max Storage and Discharge
 - □ Linear relationship $S = (S_{max}/Q_{max}) Q$

Specifying the Initial Condition

- ☐ 2 Methods
 - Specify volume before full (VBF) E.G. VBF = 10000 {ML}
 - Specify a Storage-Elevation table and an initial level.

E.G. IL = 23.4 DataFile = data.els FSL = 25.0

Specified Release Flows

- DAM ROUTE FDL=220 datafile=hume.els IL=HUME REL=hd_outflow.g file=hume.sq
- Notes
 - ☐ IL=HUME, HUME value set in ini file
 - □ REL= Hd_outflow.g is the flow release file
 - □ FDL Full Dam Level above which hume.sq applies
 - ☐ Hume.els is the elevation/area/storage file

Release Flows to maintain a specified level (for Design only)

- Use OPERATE DAM command
 - ☐ Place immediately after DAM command
- Example:
- OPERATE DAM H= 190.2 Q = 300 T = 2
 - ☐ H is the Target Level (m)
 - □ Q is the maximum release flow rate (m3/s)
 - ☐ T is the time in hours it takes to release Q

Matching/ARMA Correction

- Implementing Matching:
 - Put asterisk '*' after Gauging Station name in the Gauging Station section of vector file or
 - Set Matching=<StationName> in the ini file
- Implementing ARMA Correction
 - Set URBS_ARMA=TRUE
 - Put 2 asterisks '**' after Gauging station name in the Gauging Station section of vector file
 - Needs 5 days prior data

Hume Dam

• Type: Concrete gravity dam with four earth embankments

• Commissioned: 1936

 Purpose: Flood mitigation, hydropower, irrigation and water supply

• Catchment Area: 15,300 km²

• FSL: 192.0 m AHD

• Full Supply Volume: 3,036,500 ML

 Outlet Structures: 29 vertical undershot gated concrete overflow spillways

Dartmouth Dam

• Type: Rock-fill embankment dam

• Commissioned: 1979

 Purpose: Irrigation, hydro-electric power and water supply

• Catchment Area: 3,600 km²

• FSL: 486.0 m AHD

• Full Supply Volume: 3,856 ,000 ML

• Outlet Structures: Uncontrolled

chute spillway

Exercise

- □ Use the ControlCentre to explore the built demonstration UM-URBS Model
 - 3 events
 - Event 1 Jan 1974
 - Event 7 Feb 2011
 - □ Event 9 Mar 2012
 - 1 event per Team
 - ☐ Change parameters; loss routing etc
 - Discussion

Flood Forecasting systems – Examples - Gold Coast

- Used for small catchments Nerang largest about 500 sq kms with uncontrolled dam
- Initially ControlCentre/WaterRide/MapInfomanual operation
- Automated using In-House developed DSS
 - Refer paper by Mirfenderesk et al found at:
 http://www.floodplainconference.com/papers2015/Hamid%20Mirfenderesk%20Full%20paper%20for%20FMA%202015.pdf
 - □ Incorporates Real time GPU 2D Modelling
 - Uses open source software tools e.g. Python
 - Outputs: flood surfaces, extent and animations,
 flooded roads, Real time and forecast rainfall analysis
 all in Google Earth format
 - National Winner 2015 Banksia Smart Technology Award

Example ControlCentre for Flood Forecasting - MW

- ☐ Since superseded using FEWS
- □ Yarra Catchment
 - Consists of 11 linked sub-models
- Uses Mosaic Database to manage network data
- □ Forecast rainfall manually added
- □ Forecast Model

URBS - FEWS Integration

- ☐ FEWS manages all data and results
- ☐ FEWS uses XML files for I/O
- □ PreAdapater available to :
 - Convert xml file into URBS .r and .g files
 - Prepare the batch file to run the model
 ModelAdapter.bat
- □ URBS uses .CSV file for main output
- □ PostAdapter available to convert URBS .csv file to FEWS xml file

URBS - FEWS Integration

- □ Installation features:
 - Generally FEWS manages rating curves relies on URBS to estimate flows only
 - URBS does not do controlled Dam releases – separate module and/or within FEWS
 - Calibration generally done using URBS ControlCentre – calibrated models used by FEWS. CC and FEWS models need to be consistent.

