

H3D Foundation and Ersilia Present

Bringing data science and AI/ML tools to infectious disease research

Session 3: Skills session

Event Sponsors

CS&S

Code for Science & Society

Evolution of DMPK

Nature Reviews | Drug Discovery

 Era of pharmacodynamic-based drug discovery led to multiple drug f 1950s – 1980s Pharmacodynamic drug discovery

1990s
High throughput DMPK driven
by revolution in analytical tools
and robotics

2000s
Assay refinement for IVIVC +
QSAR + mechanistic models

Modern era
High throughput DMPK +
Modelling and Simulation +
AI/ML-based predictions for
compound design etc

AI/ML and Mechanistic tools in DMPK

AI/ML tools

Mechanistic (PK/PD, PBPK) tools

ADMETLab

- Regression models LogS, LogD, Caco-2, VD
- Classification models HIA, BBB, Pgp-inhibitor/substrate, CYP-inhibitor/substrate

ADMETLab skills workshop

• We will now evaluate the ADMET properties of a series of clinically used drugs to demonstrate the process

Quinine
Chloroquine
Amodiaquine
Desethylamodiaquine
Artemether
Lumefantrine
Amlodipine
Nifedipine
Ritonavir

Solubility and Log D

Caco-2 vs HIA

Clearance and unbound clearance

• Unbound clearance and its use for compound ranking

	CL	Fu	CLu
Quinine	3.3	18.49%	17.9
Chloroquine	5.8	25.79%	22.6
Amodiaquine	7.5	1.42%	529.5
Desethylamodiaquine	5.4	7.63%	70.7
Artemether	15.9	3.64%	436.3
Lumefantrine	5.6	0.67%	832.5
Amlodipine	6.9	42.93%	16.1
Nifedipine	10.1	19.50%	51.6
Ritonavir	6.4	0.74%	867.2

VD, half-life and dose

Nifedipine Vd_u 19.5 L/kg CLu 175 ml/min/kg t_{1/2} 1.8h Dose: 10 mg x 3 times a day

$$t_{1/2} = \frac{ln2 * Vd}{CL}$$

Amlodipine Vd_u 228 L/kg CLu 85 ml/min/kg t_{1/2} 40h Dose: 10 mg once a day

Dose prediction on MMVSola

- The impact of ADME/PK on the clinical efficacy of a compound can be described using mathematical equations allowing human dose prediction from in vitro data.
- Let's explore this using ADME/PK data of a hypothetical compound.
- Navigate to https://www.mmvsola.org/

Dose prediction on MMVSola

- Navigate to https://www.mmvsola.org/
- Load the data saved under your project folder

MMVSola dose prediction

Predicted Plasma Exposure & Parasite Dynamics (WT0=55kg)

Dose: 62mg --- Clearance Method: Human Hepatocytes with IVIV correction Plasma conc. — Parasites (in-vitro prediction)

Predicted Plasma Exposure & Parasite Dynamics (WT0=55kg Dose: 525mg --- Clearance Method: Human Hepatocytes with IVIV correction

Predicted Plasma Exposure & Parasite Dynamics (WT0=55kg Dose: 313mg --- Clearance Method: Human Hepatocytes with IVIV correction

Heps CL_{int}: 1 µl/min/e6 cells

NF54: 20 nM

Predicted dose: 62 mg

Heps CL_{int}: 5 µl/min/e6 cells

NF54: 20 nM

Predicted dose: 525 mg

Heps CL_{int}: 1 µl/min/e6 cells

NF54: 100 nM

Predicted dose: 313 mg

ADME/PK and Dose

- The unbound Area Under the Curve (AUC_u) is one of the key measures of how much compound is in circulation
- For an oral drug;

$$AUC_u = F_{abs} . F_{gut} . \frac{Dose}{CL_{int,u}}$$

$$Dose = F_{abs} . F_{gut} . \frac{AUC_u}{CL_{int,u}}$$

- Increasing clearance increases the dose since more compound is required to achieve a similar AUC
- With an increase in IC_{50} and increase in exposure levels is required resulting in an increased dose.