Sorting Networks

Vukašin Ranković Veljko Milutinović Sašo Tomažič Anton Kos

Laboratory of Information Technologies Faculty of Electrical Engineering University of Ljubljana

Sorting

- Sorting is a critical operation in computer systems.
 - In numerous application domains, sorting is an indispensable part of applications with or without the knowledge of users.
- Sorting algorithms have been extensively investigated during the entire era of computer science.
- The exponential increase in data volumes drives the search for efficient, faster, and parallelized sorting algorithms.
- Algorithms that previously were impractical or inadequate have re-emerged with the development of new technologies.

Comparison-based sorting algorithms

- Comparison-based sorting algorithms are classified into three groups based on the time order of the execution of comparison operations
 - sequential sorting algorithms consecutively execute the comparison operations;
 - parallel sorting algorithms simultaneously execute several comparison operations
 - network sorting algorithms are parallel algorithms; they exhibit the property in which the sequence of comparison operations is identical for all possible input data.
- A particular sorting algorithm can have
 - one or more versions
 - belonging to one or more of the above groups.

Most popular sorting algorithms

A Leve with rec	Sorting time – O(x) notation		
Algorithm	Average	Best	Worst
Insertion sort	N^2	N	N^2
Selection sort	N^2	N^2	N^2
Bubble sort	N^2	N	N^2
Shell sort	$N \cdot (\log_2 N)^2$	N	$N \cdot (\log_2 N)^2$
Quicksort	$N \cdot \log_2 N$	$N \cdot \log_2 N$	N^2
Merge sort	$N \cdot \log_2 N$	$N \cdot \log_2 N$	$N \cdot \log_2 N$
Heap sort	$N \cdot \log_2 N$	$N \cdot \log_2 N$	$N \cdot \log_2 N$
Binary tree sort	$N \cdot \log_2 N$	N	$N \cdot \log_2 N$

Average sorting times

Sorting Networks

- Sorting networks are:
 - a subset of comparison networks
 - abstract machines that are solely constructed of wires and comparators
- The wires that interconnect comparators must form a directed acyclic graph!

Sorting Network Properties

- A sorting network can be characterized by
 - its size, denoted as C
 - its depth, denoted as D.
- The **size** of a sorting network is defined by the total number of comparators in the network.
- The *depth* of the sorting network is defined as the maximum number of comparators along any valid path from any input to any output.
- For example, the sorting network in the previous slide has a size of 5 and a depth of 3.

Example - Odd-Even Merge Sorting

$$C_{merge}(N) = \frac{N \cdot \log_2 N \cdot (\log_2 N - 1)}{4} + N - 1$$
$$D_{merge}(N) = \frac{\log_2 N \cdot (\log_2 N + 1)}{2}$$

Operation Example

Odd-even merge sorting network

Comparison of Network Sorting Alg.

Sorting network	Depth	Size
Bubble	2N - 3	$\frac{N(N-1)}{2}$
Odd-even	N	$\frac{N(N-1)}{2}$
Bitonic	$\frac{\log_2 N \cdot (\log_2 N + 1)}{2}$	$\frac{N \cdot \log_2 N \cdot (\log_2 N + 1)}{4}$
Odd-even merge	$\frac{\log_2 N \cdot (\log_2 N + 1)}{2}$	$\frac{N \cdot \log_2 N \cdot (\log_2 N - 1)}{4} + N - 1$
Pairwise	$\frac{\log_2 N \cdot (\log_2 N + 1)}{2}$	$\frac{N \cdot \log_2 N \cdot (\log_2 N - 1)}{4} + N - 1$

Experimental Results

Speedup for different array size *N*. We use a 16-bit fixed point number format. The curves show the ratio between the sorting time of sequential heap sorting on the host CPU and odd-even merge network sorting on the MAX2 card.

Experimental Results

Speedup (deducting the loopback transmission times) for different array size *N* using a 16-bit fixed point number format. The curves show the ratio between the sorting time of sequential heap sorting on the host CPU and odd-even merge network sorting on the FPGA.

Sorting Speedup

■ Between 7 and 12

- depending on numer format (numer of bits)
- comparing network sorting to the fastest sequential sorting algorithm
- sorting times includ communication delays between the PC and Mexeler

■ Between **100** and **160**

- depending on numer format (numer of bits)
- comparing network sorting to the fastest sequential sorting algorithm
- considering only the sorting time inside the FPGA

Conclusion

- Nearly forgotten algorithms, which were previously impossible or impractical to implement, can re-emerge with advances in technology that enable their use (DataFlow computers).
- Sorting networks and their implementation on DataFlow computers are a natural match.
- We achieved the speedups of:
 - > 10 (considering the communication times) and
 - > 100 (considering only the sorting time inside the FPGA)