Wasserstein Generative Adversarial Networks

Цыпин Артем Андреевич ВМК МГУ

2018/05/24

Содержание

- 1 Постановка задачи
- 2 GAN
- **3 WGAN**

Постановка задачи

Одной из задач в обучении без учителя является восстановление вероятностного распределения.

Зачастую восстанавливают плотность распределения, определяя параметрическое семейство плотностей и максимизируя логарифм правдоподобия.

$$\max_{\theta \in \mathbb{R}^d} \frac{1}{m} \sum_{i=1}^m \log P_{\theta}(x^{(i)})$$

Проблемы в традиционном подходе

Если предположить, что реальное распределение на данных \mathbb{P}_r имеет плотность, а \mathbb{P}_{θ} – распределение, отвечающее плотности P_{θ} , то эта задача сводится к минимизации KL-дивергенции между двумя распределениями.

$$\min_{\mathbb{P}_{\theta}} \mathit{KL}(\mathbb{P}_r || \mathbb{P}_{\theta})$$

В пространствах высокой размерности маловероятно, что носитель реального распределения данных имеет не пустое пересечение с множеством значений, принимаемых моделью. Это ведет к тому, что KL-дивергенция может быть не определенной (или бесконечной).

Решение проблемы

Для решения описанной проблемы в модель можно добавлять шум (ухудшает качество).

Гораздо удобнее определить некую случайную величину Z с фиксированным распределением p(z) и подавать её на вход параметризованной функции g_{θ} , которая будет генерировать примеры из распределения \mathbb{P}_{θ} .

Такой подход используется в VAE и GAN моделях.

GAN

Итак, пусть \mathcal{X} – компакт в метрическом пространстве (например пространство изображений $[0,1]^d$), а x – случайная величина определенная на \mathcal{X} .

Пусть задана функция $D: \mathcal{X} \to (0,1)$, называемая дискриминатором. Она принимает на вход объект из \mathcal{X} и возвращает вероятность того, что объект из \mathbb{P}_r .

Пусть также задана функция $G: \mathcal{Z} \times \mathbb{R}^d o \mathcal{X}$, называемая генератором, которая параметризована $\theta \in \mathbb{R}^d$. Она принимает на вход случайную величину Z и возвращает объект из \mathcal{X} .

Обучение GAN

Будем обучать GAN итеративно.

На каждой итерации сначала обучим дискриминатор отличать настоящие объекты от сгенерированных:

$$D_k = \arg\max_{D} \mathbb{E}_{x \sim p(x)} \log D(x_i) + \mathbb{E}_{z \sim p(z)} \log \left(1 - D(G_{k-1}(z_i))\right)$$

А затем обучим генератор «обманывать» дискриминатор:

$$G_k = \underset{G}{\operatorname{arg\,max}} \mathbb{E}_{z \sim p(z)} \log D_k(G(z))$$

Равновесие Нэша

Задачу обучения GAN можно переформулировать следующим образом:

$$\min_{G} \max_{D} L(D,G) = \mathbb{E}_{x \sim p(x)} \log D(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D(G(z)))$$

Процесс сходится, когда $D(x) = \frac{1}{2}$ для любого x. Точка равновесия называется равновесием Нэша.

Проблемы при обучении GAN

- Нужно выдерживать баланс между обучением генератора и дискриминатора.
- Обучение не устойчиво и сильно зависит от архитектуры нейросетей для D и G.
- Коллапс моды.
- Отсутсвие функции потерь, значение которой коррелирует с качеством.

Расстояние между распределениями

Посмотрим на проблему восстановления распределения с другой стороны и попробуем минимизировать расстояние между \mathbb{P}_r и \mathbb{P}_{θ} .

Последовательность распределений $(\mathbb{P}_t)_{t\in\mathbb{N}}$ сходится тогда и только тогда, когда существует распределение \mathbb{P}_{∞} , такое что $\rho(\mathbb{P}_t,\mathbb{P}_{\infty})$ стремится к нулю.

Понятно, что сходимость распределений сильно зависит от функции ho, определяющей расстояние между распределениями.

Оптимизационная задача

Хотим оптимизировать параметр θ , исходя из некоторой функции потерь:

$$\theta \mapsto \rho(\mathbb{P}_{\theta}, \mathbb{P}_r)$$

Это эквивалентно условию, что \mathbb{P}_{θ} непрерывно зависит от параметра θ , то есть если $\theta_n \to \theta$, то $\mathbb{P}_{\theta_n} \to \mathbb{P}_{\theta}$.

Различные расстояния

• Kullback-Leibler (KL) дивергенция

$$\mathit{KL}(\mathbb{P}_r || \mathbb{P}_g) = \int \log \left(\frac{P_r(x)}{P_g(x)} \right) P_r(x) d\mu(x)$$

• Jensen-Shannon (JS) дивергенция

$$JS(\mathbb{P}_r, \mathbb{P}_g) = KL(\mathbb{P}_r || \mathbb{P}_m) + KL(\mathbb{P}_g || \mathbb{P}_m)$$

где
$$\mathbb{P}_m = (\mathbb{P}_r + \mathbb{P}_g)/2$$

Earth-Mover (EM) или Wasserstein-1 расстояние

$$W(\mathbb{P}_r, \mathbb{P}_g) = \inf_{\gamma \in \Pi(\mathbb{P}_r, \mathbb{P}_g)} \mathbb{E}_{(x, y) \sim \gamma} [\|x - y\|]$$
 (1)

Теорема 1

Theorem

Пусть \mathbb{P}_r – распределение на \mathcal{X} . Пусть Z – случайная величина определенная на другом пространстве \mathcal{Z} . Пусть $g: \mathcal{Z} \times \mathbb{R}^d \to \mathcal{X}$ – функция, обозначаемая $g_{\theta}(z)$ с z в качестве первого аргумента и θ в качестве второго. Пусть \mathbb{P}_{θ} – распределение $g_{\theta}(Z)$. Тогда,

- lacktriang Если g непрерывна по θ , то и $W(\mathbb{P}_r,\mathbb{P}_{\theta})$ непрерывно по θ .
- **2** Если g локально Липшицева и удовлетворяет предположению о регулярности, то $W(\mathbb{P}_r, \mathbb{P}_{\theta})$ везде непрерывна, и дифференцируема почти всюду.
- \odot Пункты 1-2 не выполняются для Jensen-Shannon дивергенции $JS(\mathbb{P}_r,\mathbb{P}_{\theta})$ и для KL дивергенции.

Теорема 2

Theorem

Пусть \mathbb{P} – распределение в \mathcal{X} и $(\mathbb{P}_n)_{n\in\mathbb{N}}$ – последовательность распределений на \mathcal{X} . Тогда,

- Следующие утверждения эквивалентны
 - $\delta(\mathbb{P}_n,\mathbb{P}) \to 0$ где δ расстояние полной вариации (total variation).
 - $JS(\mathbb{P}_n,\mathbb{P}) \to 0$ где JS Jensen-Shannon дивергенция.
- 2 Следующие утверждения эквивалентны
 - $W(\mathbb{P}_n,\mathbb{P}) \to 0$.
 - $\mathbb{P}_n \xrightarrow{\mathcal{D}} \mathbb{P}$ где $\xrightarrow{\mathcal{D}}$ обозначает сходимость по распределению для случайных величин.
- $lacksymbol{3}$ Из $\mathit{KL}(\mathbb{P}_n \| \mathbb{P}) o 0$ или $\mathit{KL}(\mathbb{P} \| \mathbb{P}_n) o 0$ следует пункт (1).
- Из пункта (1) следует пункт (2).

Расстояние Вассерштейна

В силу того, что в классическом определении расстояние Вассерштейна сложно подсчитать, введем для него альтернативное определение.

$$W(\mathbb{P}_r, \mathbb{P}_{\theta}) = \sup_{\|f\|_{L} \le 1} \mathbb{E}_{x \sim \mathbb{P}_r}[f(x)] - \mathbb{E}_{x \sim \mathbb{P}_{\theta}}[f(x)]$$

Изменение класса функций на К-Липшицивые оставляет оценку расстояния Вассерштейна одинаковым с точностью до мультипликативной константы.

Расстояние Вассерштейна

Итак, для нахождения функции f_w , играющей роль дискриминатора (критика), предлагается решить следующую задачу.

$$\max_{w \in \mathcal{W}} \mathbb{E}_{x \sim \mathbb{P}_r}[f_w(x)] - \mathbb{E}_{z \sim p(z)}[f_w(g_\theta(z))]$$

Если функция-генератор удовлетворяет предположению о регулярности, то решение существует и выполнено следующее равенство.

$$abla_{ heta}W(\mathbb{P}_r,\mathbb{P}_{ heta}) = -\mathbb{E}_{z\sim p(z)}[
abla_{ heta}f(g_{ heta}(z))]$$

→ロト → □ ト → 重ト → 重 → りへ○

Обучение критика

Будем обучать критика аналогично дискриминатору в модели GAN. Пусть есть нейросеть с параметрами $w \in \mathcal{W}$, где \mathcal{W} – компакт.

Этот факт позволяет утверждать, что f_w является K-Липшицевой.

Для того, чтобы выполнить условие компактности будем «обрезать» веса до некоторого значения $\mathcal{W} = [-0.01, 0.01]^I$.

Алгоритм

Require: α , learning rate. c, параметр клиппинга. m, размер батча. n_{critic} , количество итераций критика на одну итерацию генератора, w_0 , начальные параметры критика. θ_0 , начальные параметры генератора.

while θ не сошлось:

for $t = 0, ..., n_{critic}$:

- 1: Сэмплируем $x^{(i)}_{i=1}^m \sim \mathbb{P}_r$ батч из реальных данных. 2: Сэмплируем $z^{(i)}_{i=1}^m \sim p(z)$ батч случайных величин.

3:
$$g_w \leftarrow \nabla_w \left[\frac{1}{m} \sum_{i=1}^m f_w(x^{(i)}) - \frac{1}{m} \sum_{i=1}^m f_w(g_\theta(z^{(i)})) \right]$$

4:
$$w \leftarrow w + \alpha \cdot \mathsf{RMSProp}(w, g_w)$$

5:
$$w \leftarrow \text{clip}(w, -c, c)$$

end for

- 6: Сэмплируем $\{z^{(i)}\}_{i=1}^m \sim p(z)$ батч случайных величин.
- 7: $g_{\theta} \leftarrow -\nabla_{\theta} \frac{1}{m} \sum_{i=1}^{m} f_{w}(g_{\theta}(z^{(i)}))$
- 8: $\theta \leftarrow \theta \alpha \cdot \mathsf{RMSProp}(\theta, g_{\theta})$

Корреляция функции потерь с качеством

Сравнение WGAN и GAN

Функция, оптимизируемая при обучении дискриминатора:

$$L(D, g_{\theta}) = \mathbb{E}_{x \sim \mathbb{P}_r}[\log D(x)] + \mathbb{E}_{x \sim \mathbb{P}_{\theta}}[\log(1 - D(x))]$$

Эта функция является нижней оценкой следующей функции расстояния между распределениями:

$$2JS(\mathbb{P}_r,\mathbb{P}_{\theta})-2\log 2$$

При этом значение функции потерь дискриминатора никак не коррелирует с качеством.

Сравнение WGAN и GAN

Тот факт, что критик в модели WGAN тренируется до оптимальности позволяет избежать сразу нескольких недостатков модели GAN:

- Не нужно соблюдать баланс между обучением критика и генератора.
- Не нужно аккуратно настраивать архитектуру генератора и критика.
- Коллапса моды удается избежать.

Пример

Рис.: Алгоритмы с DCGAN генератором. Слева: WGAN. Справа: обычный GAN.

Рис.: Генератор без батч-нормализации с постоянным количеством фильтров. Слева: WGAN. Справа: обычный GAN. .

Предположение регулярности и ссылки

Пусть $g: \mathcal{Z} \times \mathbb{R}^d \to \mathcal{X}$ – локально Липшицева. Будем говорить, что $g_{\theta}(z)$ удовлетворяет предположению о регулярности для некоего распределения \mathcal{Z} , если существует Липшицева константа $L(\theta,z)$, такая что:

$$\mathbb{E}_{z\sim p}[L(\theta,z)]<+\infty$$

Ссылки:

https://arxiv.org/pdf/1701.07875.pdf

https://habr.com/post/352794/