Pontificia Universidad Católica de Chile Facultad de Matemáticas Departamento de Estadística

Primer Semestre 2011

Curso : Probabilidad y Estadística

Sigla : EYP1113

Pauta : I2

Profesor : Ricardo Aravena (Sec. 1 y 3), Lorena Correa (Sec. 4) y Ricardo Olea (Sec. 2) Ayudantes : Tamara Fernandez Aguilar, Felipe Fuentes Astudillo y Claudia Reyes Vizcarra.

Problema 1

Desde antes del atentado a las Torres Gemelas de Nueva York, la CIA le ha seguido los pasos a Osama bin Laden. Después del atentado del 9-11, la CIA puso en marcha un operativo de inteligencia con el objetivo final de "capturar" al líder de al-Qaeda. La figura que se presenta a continuación marca los lugares donde hay certeza que Osama ha estado desde el 2001 y se destaca la ubicación de Abbottabad, lugar donde fue muerto hace unos días.

Un estadístico de la CIA, tomó la información y ajustó una distribución de probabilidad con el objetivo de cuantificar la chance que Osama se encontrara en una zona determinada. La función de densidad propuesta es:

$$f_{X,Y}(x,y) = \left(\frac{1}{b}\right)^{q+r-1} \frac{\Gamma(q+r)}{\Gamma(q) \left[\Gamma(r)\right]^2} x^{q-1} \left[(b-x)y\right]^{r-1} \nu^r e^{-\nu y},$$

con $0 \le x \le b$, $y \ge 0$, b = 200, r = 2, q = 4 y $\nu = 0.05$.

- (a) [3.0 Ptos] Determine las funciones de densidad marginal f_X y f_Y del modelo propuesto el estadístico. ¿Reconoce algún modelo conocido? ¿Cuál fue el supuesto que utilizó en su propuesta?
- (b) [3.0 Ptos] Calcule la probabilidad (según el modelo propuesto) que Osama realmente se encontrase en una área en torno al cuadrante donde finalmente fue muerto. (Ver Gráfico 2) (Volumen generado sobre los 9 cuadrantes)

Solución

(a) Alternativa 1

Tenemos que

$$f_{X,Y}(x,y) = \left(\frac{1}{b}\right)^{q+r-1} \frac{\Gamma(q+r)}{\Gamma(q) [\Gamma(r)]^2} x^{q-1} [(b-x)y]^{r-1} \nu^r e^{-\nu y}$$

$$= \frac{\Gamma(q+r)}{\Gamma(q) \Gamma(r)} \frac{x^{q-1} (b-x)^{r-1}}{b^{q+r-1}} \times \frac{\nu^r}{\Gamma(r)} y^{r-1} e^{-\nu y}$$

$$= \underbrace{\frac{1}{B(q,r)} \frac{x^{q-1} (b-x)^{r-1}}{b^{q+r-1}}}_{\text{Beta}(q,r)} \times \underbrace{\frac{\nu^r}{\Gamma(r)} y^{r-1} e^{-\nu y}}_{\text{Gamma}(r,\nu)}$$

Por lo tanto, el estadísticos asumió independencia [1.0 Ptos] entre las coordenadas X e Y, con densidades marginales Beta y Gamma respectivamente:

$$f_X(x) = \frac{\Gamma(q+r)}{\Gamma(q)} \frac{x^{q-1} (b-x)^{r-1}}{b^{q+r-1}}, \quad 0 \le x \le b$$
 [1.0 Ptos]

у

$$f_Y(y) = \frac{\nu^r}{\Gamma(r)} y^{r-1} e^{-\nu y}, \quad 0 \le y \quad [1.0 \text{ Ptos}]$$

Alternativa 2

Tenemos que

$$\begin{split} f_X(x) &= \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dy \\ &= \int_{0}^{\infty} \left(\frac{1}{b}\right)^{q+r-1} \frac{\Gamma(q+r)}{\Gamma(q) \left[\Gamma(r)\right]^2} \, x^{q-1} \left[(b-x) \, y\right]^{r-1} \nu^r \, e^{-\nu \, y} \, dy \\ &= \left(\frac{1}{b}\right)^{q+r-1} \frac{\Gamma(q+r)}{\Gamma(q) \, \Gamma(r)} \, x^{q-1} \left[(b-x)\right]^{r-1} \int_{0}^{\infty} \frac{\nu^r}{\Gamma(r)} \, y^{r-1} \, e^{-\nu \, r} \, dy \\ &= \left(\frac{1}{b}\right)^{q+r-1} \frac{\Gamma(q+r)}{\Gamma(q) \, \Gamma(r)} \, x^{q-1} \, (b-x)^{r-1} \cdot 1, \quad \text{por integrar una densidad Gamma}(r,\nu) \text{ en todo su soporte} \\ &= \left(\frac{1}{b}\right)^{q+r-1} \frac{\Gamma(q+r)}{\Gamma(q) \, \Gamma(r)} \, x^{q-1} \, [(b-x)]^{r-1}, \quad 0 \leq x \leq b \quad \textbf{[1.0 Ptos]} \end{split}$$

Es decir, $X \sim \text{Beta}(q, r)$.

Por otra parte

$$\begin{split} f_Y(y) &= \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dx \\ &= \int_{0}^{b} \left(\frac{1}{b}\right)^{q+r-1} \, \frac{\Gamma(q+r)}{\Gamma(q) \, \left[\Gamma(r)\right]^2} \, x^{q-1} \, [(b-x) \, y]^{r-1} \, \nu^r \, e^{-\nu \, y} \, dx \\ &= \frac{\nu^r}{\Gamma(r)} \, y^{r-1} \, e^{-\nu \, r} \, \int_{0}^{b} \left(\frac{1}{b}\right)^{q+r-1} \, \frac{\Gamma(q+r)}{\Gamma(q) \, \Gamma(r)} \, x^{q-1} \, [(b-x)]^{r-1} \, dx \\ &= \frac{\nu^r}{\Gamma(r)} \, y^{r-1} \, e^{-\nu \, r} \cdot 1, \quad \text{por integrar una densidad Beta}(q,r) \, \text{en todo su soporte} \\ &= \frac{\nu^r}{\Gamma(r)} \, y^{r-1} \, e^{-\nu \, r}, \quad 0 \leq y \quad \textbf{[1.0 Ptos]} \end{split}$$

Es decir, $Y \sim \text{Gamma}(k, \nu)$.

Como

$$f_{X,Y}(x,y) = f_X(x) \cdot f_Y(y)$$

El estadísticos asumió independencia [1.0 Ptos] entre las coordenadas X e Y.

(b) Se pide

$$P(120 \le X \le 150, \ 30 \le Y \le 60) = \int_{120}^{150} \int_{30}^{60} f_{X,Y}(x,y) \, dy \, dx$$

$$= \int_{120}^{150} \int_{30}^{60} f_{X}(x) \cdot f_{Y}(y) \, dy \, dx, \quad \text{por independencia} \quad \textbf{[0.5 Ptos]}$$

$$= \int_{120}^{150} f_{X}(x) \left[\int_{30}^{60} f_{Y}(y) \, dy \right] \, dx$$

$$= \int_{120}^{150} f_{X}(x) \left[F_{Y}(60) - F_{Y}(30) \right] \, dx$$

$$= \left[F_{Y}(60) - F_{Y}(30) \right] \int_{120}^{150} f_{X}(x) \, dx$$

$$= \left[F_{Y}(60) - F_{Y}(30) \right] \cdot \left[F_{X}(150) - F_{X}(120) \right] \quad \textbf{[0.5 Ptos]}$$

Donde

$$F_Y(y) = 1 - \sum_{k=0}^{2-1} \frac{(\nu y)^k e^{-\nu y}}{k!}$$

$$= 1 - e^{-\nu y} - (\nu y) e^{-\nu y}$$

$$= 1 - e^{-0.05 y} - (0.05 y) e^{-0.05 y}$$
 [0.5 Ptos]

У

$$F_X(x) = \int_0^x \frac{1}{B(q,r)} \frac{u^{q-1} (b-u)^{r-1}}{b^{q+r-1}} du$$

$$= \int_0^x \frac{1}{B(4,2)} \frac{u^{4-1} (b-u)^{2-1}}{b^{4+2-1}} du$$

$$= \frac{1}{B(4,2)} \frac{1}{b^5} \int_0^x u^3 (b-u) du \quad [\textbf{0.5 Ptos}]$$

$$= \frac{1}{B(4,2)} \frac{1}{b^5} \int_0^x (b u^3 - u^4) du$$

$$= \frac{1}{B(4,2)} \frac{1}{b^5} \left(\frac{b x^4}{4} - \frac{x^5}{5} \right)$$

$$= \frac{20}{200^5} \left(\frac{200 x^4}{4} - \frac{x^5}{5} \right)$$

$$= \frac{20}{200^5} \left(50 x^4 - \frac{x^5}{5} \right) \quad [\textbf{0.5 Ptos}]$$

Por lo tanto,

$$P(120 \le X \le 150, \ 30 \le Y \le 60) = [0.8008517 - 0.4421746] \cdot [0.6328125 - 0.3369600]$$

= 0.1061155 [0.5 Ptos]

+ 1 Punto Base

Problema 2

La distancia X que un cartero recorre diariamente en bicicleta en su zona asignada para repartir correspondencia, se comporta aleatoriamente según una distribución de probabilidad Log-Normal. Registros históricos muestran que en promedio el cartero recorre 40 kilómetros diariamente con un coeficiente de variación igual a $35\,\%$, pero recientemente esta saliendo de una enfermedad y su cuerpo le permite pedalear solo 45 kilómetros al día con mucho esfuerzo. Suponga que al finalizar la jornada todas las bicicletas son revisadas y mantenidas en perfecto estado, por lo cual la probabilidad que la bicicleta falle y el cartero no cumpla su recorrido por esta razón es despreciable.

- (a) [2.0 Ptos] ¿Cuál es la probabilidad que en un día cualquiera el cartero no logre cumplir con la entrega de toda la correspondencia debido a su estado de salud? (Notar que el cartero esta aún convaleciente)
- (b) [2.0 Ptos] Según los registros históricos, ¿cuantos kilómetros debería pedalear a los más el 80 % de las veces?
- (c) [2.0 Ptos] Si el cartero trabaja de lunes a sábado, ¿cuál es la probabilidad que en una semana normal el cartero logre al menos una jornada perfecta? (Asuma independencia entre días y que el cartero aún esta convaleciente)

Solución

See X: distancia que debe recorrer disrismento X Nognormal con
$$M=40$$
 Kius y $S=0.35$

(**x) entonias log X N N ($\lambda=3.631$; $\xi=0.34$)

 $\lambda=\log 40-\frac{1}{2}0.34^2=3.631$
 $\Sigma=\log 40-\frac{1}{2}0.34^2=3.631$
 $\Sigma=\log 40-\frac{1}{2}0.34^2=0.34$

O,5

e) $P(X>45)=1-P(X\leq 45)$ Towardo log Si debe recorrer = 1-P($\log X\leq \log 45$) there did Normal +dr45 Kiu, po poda' = 1-P($S\leq \log 45$), recurplezando Cumplir.

= 1-P($S\leq 0.56$) de tabla = 1-P($S\leq 0.56$) de tabla = 1-O,7123 = 0.2877 || Prob de Tournellir No cumplir

D) Non piden Xos tal que $P(X\leq X_{08})=0.8$ O,5

 $P(\log X\leq \log X_{08})=0.8$ estendarizando

O,5 $P(S\leq \log X_{08}-\lambda)=0.8$ de tabla

 $\log X_{08}-\lambda=0.842$ (Aprox)

O,5 $\log X_{08}=\lambda+5$ x0842 reempleza = 3.63+0.34 x0842 = 3.9163

Tourando exp $\Rightarrow X_{0.8}=50.2$ Kius $p_{0.5}$

P2
C) Sea 4: n° de diás con formada "perfecta"

(as decir, lla distancia recorrida \le 45 kd)

Por lanto, P(X \(\pma \) 45) = 0, 7123 (de (a))

Así, pera una permana dada

Y N Bin (n = 6; p = 0,7123) (0,5)

Nos piden

P(Y > 1) = 1 - P(Y = 0) (0,5)

= 1 - (6) 0,7123 \(\pma \) 0,28776

= 1 - 0,00057

(0,5)

Prob de tener una permana con al meno una formada perfecta.

+(1,0) base

Problema 3

Un empresa de "Transfer" sirve en el aeropuerto SCL tiene espacio para cuatro pasajeros en sus vehículos para los traslados Santiago-Aeropuerto. Históricamente un 20% de las reservas finalmente no se formalizan, por esta razón la compañía acepta hasta seis reservas por vehículo.

(a) [3.0 Ptos] Si se hacen seis reservas (independientes), ¿cuál sería la probabilidad que por lo menos un pasajero no tenga espacio en el vehículo y la empresa tenga que ofrecer una solución emergencia?

Suponga (ahora) que la función de probabilidad del número de reservas por vehículo es la siguiente:

Número de Reservaciones	3	4	5	6
Frecuencia Histórica	10 %	20%	30%	40%

(b) [3.0 Ptos] Determine la función de probabilidad del número de pasajeros en un viaje cualquiera.

Solución

(a) Alternativa 1

Sea X la variable aleatoria que registra el número de pasajeros que formalizan la reserva. Por la independencia de la reservas, tenemos que

$$X \sim \text{Binomial}(n = 6; p = 0.8)$$
 [1.0 Ptos]

Se pide

$$P(X \ge 5) = P(X = 5) + P(X = 6)$$
 [1.0 Ptos]
= $\binom{6}{5} 0.8^5 (1 - 0.8)^{6-5} + \binom{6}{6} 0.8^6 (1 - 0.8)^{6-6}$ [0.5 Ptos]
= $0.393216 + 0.262144$
= 0.65536 [0.5 Ptos]

Alternativa 2

Sea Y la variable aleatoria que registra el número de pasajeros que NO formalizan la reserva. Por la independencia de la reservas, tenemos que

$$Y \sim \text{Binomial}(n = 6; p = 0.2)$$
 [1.0 Ptos]

Se pide

$$\begin{split} P(Y \leq 1) &= P(Y = 0) + P(Y = 1) \quad \textbf{[1.0 Ptos]} \\ &= \binom{6}{0} 0.2^0 (1 - 0.2)^{6 - 0} + \binom{6}{1} 0.2^1 (1 - 0.2)^{6 - 1} \quad \textbf{[0.5 Ptos]} \\ &= 0.262144 + 0.393216 \\ &= 0.65536 \quad \textbf{[0.5 Ptos]} \end{split}$$

(b) Sea N la variable aleatoria que representa al número de pasajeros en un viaje cualquiera y R el número de reservas.

$$\Theta_N = \{0, 1, 2, 3, 4\}$$
 y $\Theta_R = \{3, 4, 5, 6\}$

Se pide

$$P(N = n)$$

Si X representa al número de reservas formalizadas, entonces

$$X \mid R = r \sim \text{Binomial}(n = r; p = 0.8)$$

Luego

$$P(N=0) = P(X=0 \mid R=3) P(R=3) + P(X=0 \mid R=4) P(R=4) + P(X=0 \mid R=5) P(R=5) + P(X=0 \mid R=6) P(R=6) \\ = 0.008000 \cdot 0.1 + 0.001600 \cdot 0.2 + 0.000320 \cdot 0.3 + 0.000064 \cdot 0.4 \\ = 0.0012416 \quad \textbf{[0.5 Ptos]} \\ P(N=1) = P(X=1 \mid R=3) P(R=3) + P(X=1 \mid R=4) P(R=4) + P(X=1 \mid R=5) P(R=5) + P(X=1 \mid R=6) P(R=6) \\ = 0.096000 \cdot 0.1 + 0.025600 \cdot 0.2 + 0.006400 \cdot 0.3 + 0.001536 \cdot 0.4 \\ = 0.0172544 \quad \textbf{[0.5 Ptos]} \\ P(N=2) = P(X=2 \mid R=3) P(R=3) + P(X=2 \mid R=4) P(R=4) + P(X=2 \mid R=5) P(R=5) + P(X=2 \mid R=6) P(R=6) \\ = 0.38400 \cdot 0.1 + 0.15360 \cdot 0.2 + 0.05120 \cdot 0.3 + 0.01536 \cdot 0.4 \\ = 0.090624 \quad \textbf{[0.5 Ptos]} \\ P(N=3) = P(X=3 \mid R=3) P(R=3) + P(X=3 \mid R=4) P(R=4) + P(X=3 \mid R=5) P(R=5) + P(X=3 \mid R=6) P(R=6) \\ = 0.51200 \cdot 0.1 + 0.40960 \cdot 0.2 + 0.20480 \cdot 0.3 + 0.08192 \cdot 0.4 \\ = 0.227328 \quad \textbf{[0.5 Ptos]} \\ P(N=4) = P(X \ge 4 \mid R=3) P(R=3) + P(X \ge 4 \mid R=4) P(R=4) + P(X \ge 4 \mid R=5) P(R=5) + P(X \ge 4 \mid R=6) P(R=6) \\ = 0.00000 \cdot 0.1 + 0.40960 \cdot 0.2 + 0.73728 \cdot 0.3 + 0.90112 \cdot 0.4 \\ = 0.663552 \quad \textbf{[1.0 Ptos]}$$

+ 1 Punto Base

Problema 4

Sea Y una variable aleatoria con función de densidad dada por:

$$f_Y(y) = \frac{1}{\sigma} \phi \left(\frac{y - \mu}{\sigma} \right),$$

con
$$\phi(z) = \frac{\exp(z)}{[1 + \exp(z)]^2}$$
, $-\infty < y < \infty$, $\sigma > 0$ y $-\infty < \mu < \infty$.

Defina una nueva variable aleatoria $X = \exp(Y)$.

- (a) [3.0 Ptos] Determine la función de densidad y la función de distribución de probabilidad acumulada de la variable aleatoria X.
- (b) [3.0 Ptos] Obtenga la moda y la mediana de X.

Solución

(a) Tenemos que

$$X = g(Y) = \exp(Y) \Rightarrow Y = g^{-1}(X) = \ln X$$

Esto implica que

$$\Theta_Y = \mathbb{R} \Rightarrow \Theta_X = \mathbb{R}_0^+$$

Como $g(\cdot)$ es invertible, entonces

$$f_X(x) = f_Y[g^{-1}(x)] \left| \frac{d}{dx} g^{-1}(x) \right|$$

$$= \frac{1}{\sigma} \phi \left(\frac{\ln x - \mu}{\sigma} \right) \frac{1}{|x|}$$

$$= \frac{1}{x \sigma} \phi \left(\frac{\ln x - \mu}{\sigma} \right), \quad [\textbf{0.5 Ptos.}] \quad x \ge 0 \quad [\textbf{0.5 Ptos.}]$$

$$\operatorname{con} \, \sigma > 0, \, -\infty < \mu < \infty \, \operatorname{y} \, \phi(z) = \frac{\exp(z)}{[1 + \exp(z)]^2}.$$

Tenemos que

$$F_X(x) = \int_{-\infty}^x f_X(u) \, du = \int_0^x \frac{1}{u \, \sigma} \, \phi\left(\frac{\ln u - \mu}{\sigma}\right) \, du = \int_{-\infty}^{\frac{\ln x - \mu}{\sigma}} \phi\left(z\right) \, dz \quad \text{[0.5 Ptos.]}$$

$$= \int_{-\infty}^{\frac{\ln x - \mu}{\sigma}} \frac{\exp(z)}{[1 + \exp(z)]^2} \, dz = \frac{\exp(z)}{[1 + \exp(z)]} \Big|_{-\infty}^{\frac{\ln x - \mu}{\sigma}} \quad \text{[0.5 Ptos.]}$$

$$= \frac{\exp\left(\frac{\ln x - \mu}{\sigma}\right)}{\left[1 + \exp\left(\frac{\ln x - \mu}{\sigma}\right)\right]}, \quad \text{[0.5 Ptos.]} \quad 0 < x < \infty \quad \text{[0.5 Ptos.]}$$

(b) La moda en el caso continuo corresponde al valor en que se maximiza la función de densidad.

Tenemos que

$$\phi(z)' = \frac{e^z}{[1+e^z]^2} - \frac{2 e^z e^z}{[1+e^z]^3}$$

$$= \frac{e^z}{[1+e^z]^2} \frac{[1-e^z]}{[1+e^z]}$$

$$= \phi(z) \frac{[1-e^z]}{[1+e^z]} \quad [0.5 \text{ Ptos.}]$$
(1)

Luego,

$$\frac{d}{dx}f_X(x) = \frac{1}{\sigma} \left\{ -\frac{1}{x^2} \phi \left(\frac{\ln x - \mu}{\sigma} \right) + \frac{1}{x} \phi' \left(\frac{\ln x - \mu}{\sigma} \right) \frac{1}{x\sigma} \right\}
= \frac{1}{(x\sigma)^2} \left\{ \phi' \left(\frac{\ln y - \mu}{\sigma} \right) - \sigma \phi \left(\frac{\ln x - \mu}{\sigma} \right) \right\}, \quad \text{por (1)} \quad [\textbf{0.5 Ptos.}]
= \frac{1}{(x\sigma)^2} \phi \left(\frac{\ln x - \mu}{\sigma} \right) \left\{ \left[\frac{1 - \exp\left(\frac{\ln y - \mu}{\sigma} \right)}{1 + \exp\left(\frac{\ln x - \mu}{\sigma} \right)} \right] - \sigma \right\}
= \frac{\phi \left(\frac{\ln x - \mu}{\sigma} \right) \left[(1 - \sigma) - (1 + \sigma) \exp\left(\frac{\ln x - \mu}{\sigma} \right) \right]}{(x\sigma)^2 \left[1 + \exp\left(\frac{\ln x - \mu}{\sigma} \right) \right]} \quad [\textbf{0.5 Ptos.}]$$
(2)

Igualando (2) a cero se tiene que

$$\exp\left(\frac{\ln x - \mu}{\sigma}\right) = \frac{1 - \sigma}{1 + \sigma} \Rightarrow x = \exp(\mu) \left(\frac{1 - \sigma}{1 + \sigma}\right)^{\sigma} \quad \text{[0.5 Ptos.]}$$

Por lo tanto, la moda de la distribución de X es igual a $\exp(\mu)$ $\left(\frac{1-\sigma}{1+\sigma}\right)^{\sigma}$.

Sea x_{med} la mediana de la distribución de X, la cual cumple con que

$$F_X(x_{\text{med}}) = 1/2$$
 [0.5 Ptos.]

Esto implica que

$$\frac{\exp\left(\frac{\ln x_{\text{med}} - \mu}{\sigma}\right)}{\left[1 + \exp\left(\frac{\ln x_{\text{med}} - \mu}{\sigma}\right)\right]} = \frac{1}{2} \Rightarrow \exp\left(\frac{\ln x_{\text{med}} - \mu}{\sigma}\right) = 1$$

$$\Rightarrow \left(\frac{\ln x_{\text{med}} - \mu}{\sigma}\right) = 0$$

$$\Rightarrow x_{\text{med}} = \exp(\mu) \quad [0.5 \text{ Ptos.}]$$

+ 1 Punto Base

Distribuciones

Distribución	Densidad de Probabilidad	Θ_X	Parámetros	Esperanza y Varianza
Binomial	$\binom{n}{x} p^x \left(1-p\right)^{n-x}$	$x=0,\ldots,n$	$n,\;p$	$\mu_X = n p$ $\sigma_X^2 = n p (1 - p)$
Geométrica	$p(1-p)^{x-1}$	$x = 1, 2, \dots$	p	$\mu_X = 1/p$ $\sigma_X^2 = (1-p)/p^2$
Binomial-Negativa	$\binom{x-1}{r-1} p^r (1-p)^{x-r}$	$x=r,r+1,\ldots$	$r,\ p$	$\mu_X = r/p$ $\sigma_X^2 = r (1 - p)/p^2$
Poisson	$\frac{\left(\nu\;t\right)^{x}\;e^{-\nu\;t}}{x!}$	$x = 0, 1, \dots$	ν	$\mu_X = \nu t$ $\sigma_X^2 = \nu t$
Exponencial	$_{ ue}^{- ux}$	$x \ge 0$	ν	$\begin{array}{l} \mu_X = 1/\nu \\ \sigma_X^2 = 1/\nu^2 \end{array}$
Gamma	$\frac{\nu^k}{\Gamma(k)} x^{k-1} e^{-\nu x}$	$x \ge 0$	$k,\ u$	$\mu_X = k/\nu$ $\sigma_X^2 = k/\nu^2$
Gamma Trasladada	$\frac{\nu^k}{\Gamma(k)} (x - \gamma)^{k-1} e^{-\nu (x - \gamma)}$	$x \geq \gamma$	$k,\ u,\ \gamma$	$\mu_X = k/\nu + \gamma$ $\sigma_X^2 = k/\nu^2$
Normal	$\frac{1}{\sqrt{2\pi}\sigma}\exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]$	$-\infty < x < \infty$	μ, σ	$\mu_X = \mu$ $\sigma_X^2 = \sigma^2$
Log-Normal	$\frac{1}{\sqrt{2\pi}(\zetax)}\exp\left[-\frac{1}{2}\left(\frac{\lnx-\lambda}{\zeta}\right)^2\right]$	$x \ge 0$	λ,ζ	$\mu_X = \exp\left(\lambda + \frac{1}{2}\zeta^2\right)$ $\sigma_X^2 = \mu_X^2 \left(e^{\zeta^2} - 1\right)$
Uniforme	$\frac{1}{(b-a)}$	$a \le x \le b$	$a,\ b$	$\mu_X = (a+b)/2$ $\sigma_X^2 = (b-a)^2/12$
Beta	$\frac{1}{B(q, r)} \frac{(x-a)^{q-1} (b-x)^{r-1}}{(b-a)^{q+r-1}}$	$a \le x \le b$	$q,\ r$	$\mu_X = a + \frac{q}{q+r} (b-a)$ $\sigma_X^2 = \frac{q r (b-a)^2}{(q+r)^2 (q+r+1)}$
Hipergeométrica	$\frac{\binom{m}{x}\binom{N-m}{n-x}}{\binom{N}{n}}$	$\max\{0, n+m-N\} \leq x \leq \min\{n, m\}$	$N,\ m,\ n$	$\mu_X = n \frac{m}{N}$ $\sigma_X^2 = \left(\frac{N-n}{N-1}\right) n \frac{m}{N} \left(1 - \frac{m}{N}\right)$

• Propiedades función $\Gamma(\cdot)$:

(1)
$$\Gamma(k) = \int_0^\infty u^{k-1} e^{-u} du;$$
 (2) $\Gamma(a+1) = a \Gamma(a);$

(3)
$$\Gamma(n+1) = n!$$
, si $n \in \mathbb{N}_0$; (4) $\Gamma(1/2) = \sqrt{\pi}$

■ Propiedades función $B(\cdot, \cdot)$:

(1)
$$B(q, r) = \int_0^1 x^{q-1} (1-x)^{r-1} dx;$$
 (2) $B(q, r) = \frac{\Gamma(q) \Gamma(r)}{\Gamma(q+r)}$

• Propiedad distribución Gamma:

Si
$$T \sim \text{Gamma}(k, \nu) \Rightarrow F_T(t) = 1 - \sum_{x=0}^{k-1} \frac{(\nu t)^x e^{-\nu t}}{x!}, \text{ si } k \in \mathbb{N}$$

Tabla Normal Estándar

Distribución	Normal	Estándar	
Distribucion	normai	Estandai	

C	1 0.00	0.01	0.00	0.02	0.04	0.05	0.06	0.07	0.00	0.09
S_p	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998