Lecture08

Saturday, October 16, 2021 4:16 PM

Lecture08

Linear Algebra

Samira Hossein Ghorban s.hosseinghorban@ipm.ir

Fall, 2021

(Department of CE)

Lecture #8

1 / 18

Chapter 2

Linear Spaces

The heart of linear algebra

(Department of CE)

Lecture #8

Review: Basis for a linear space

Definition

Let V be a linear space and $S \subseteq V$. The set S is a basis for V if

- $V \neq \operatorname{span}(T)$ for all $T \subsetneq S$.
 - Trivially, a basis for a linear space is a linear independent set.
 - A basis is a "minimal" spanning set for the linear space, in the sense that it has no "redundant" vector. At the same time, it is a "maximal" linearly independent set, in the sense that putting up a new vector makes it linearly dependent.
 - A linear space may have more than one basis.

(Department of CE)

Lecture #8

3 / 18

Review: Finite basis for a linear space

Theorem

If $\underline{V} = span(\{v_1, \ldots, v_n\})$, then there is a subset of $\{v_1, \ldots, v_n\}$ which is a basis for V.

Theorem

Suppose that $V = span(\{v_1, \dots, v_{\underline{n}}\})$. Then each independent set of V has at most n elements.

(Department of CE

Lecture #8

Review: Dimension

Theorem

If $\{v_1, \ldots, v_m\}$ and $\{w_1, \ldots, w_n\}$ are both bases for a linear space V, then m = n.

Definition

Suppose that V has a finite basis. Then $\operatorname{\mathbf{dimension}}$ of V denoted by $\dim V$ is the number of elements of any basis of V.

- Example. Assume the linear space $P_2(x) = \{a_2x^2 + a_1x + a_0 \mid a_i \in \mathbb{R} \text{ for all } 0 \le i \le 2\}.$
 - The sets $\{1, x, x^2\}$ is a basis for $P_2(x)$.
 - ② $\dim(P_2(x)) = 3$.

(Department of CE)

Lecture #8

5 / 18

$\begin{cases} 8: \left\{ \frac{3}{2}, \frac{1}{2}, \frac{1}{2} \right\} \\ p(x) = \frac{3}{2} \frac{1}{2} \\ p(x) = \frac{3}{2} \frac{1}{2} \\ p(x) = \frac{1}{2} \frac{1}{2} \\ p(x) = \frac{1}{2} \frac{1}{2} \\ p(x) = \frac{1}{2} \frac{1}{2}$

Review: Coordinates

Now suppose V is a finite-dimensional linear space and that $B = \{v_1, \cdots, v_n\}$ is an ordered basis for V. Given $\underline{\underline{v}} \in \underline{\underline{V}}$, there is a

unique n-tuple $c = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}$ of scalars such that $v = \sum_{i=1}^n c_i v_i$. The vector

c is called the coordinate vector of v relative to the ordered basis B and denoted by v_B .

Theorem

Let v be a linear space. Suppose that $B = \{v_1, \ldots, v_n\}$ and $B' = \{v'_1, \ldots, v'_n\}$ are two bases of V. Then $[v]_B = P[v]_{B'}$ where the columns of P are the coordinates of the vectors v'_1, \ldots, v'_n in the basis B.

 $\begin{bmatrix} v \\ e \end{bmatrix} = \begin{bmatrix} \\ \\ A \end{bmatrix} \begin{bmatrix} v \\ e \end{bmatrix}$ $\begin{bmatrix} v \\ R \end{bmatrix}$ $\begin{bmatrix} v \\ r \\ r \end{bmatrix}$

(Department of CE)

Lecture #8

Row Reduced Form R

$$A = \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \\ 1 & 2 & -1 & 0 & 1 & 0 \\ -1 & -1 & 2 & -3 & 1 & 0 \\ 1 & 1 & -2 & 0 & 0 & 2 \\ 0 & 0 & 0 & 3 & 1 & -2 \end{bmatrix}$$

$$\mathbf{R} = \begin{bmatrix} \mathbf{1} & 0 & -3 & 0 & 0 & 4 \\ 0 & \mathbf{1} & 1 & 0 & 0 & -2 \\ 0 & 0 & 0 & \mathbf{1} & 0 & -2/3 \\ 0 & 0 & 0 & 0 & \mathbf{1} & 0 \end{bmatrix}$$

$$\mathbf{R}, \mathbf{R}, \mathbf{R}, \mathbf{R}, \mathbf{R}, \mathbf{R}, \mathbf{R}$$

An = b 2,A1 + ... + 1 A = b C(A)

(Department of CE

Lecture #8

7/18

The column space of A

Lemma

Let $A \in M_{mn}(\mathbb{R})$, then $\underline{\dim C(A)} = \underline{\dim C(R)}$.

$$EA = R$$

 $dr C(A) = dre(EA)$

(Department of CE)

Lecture #8

The column space of A

Lemma

Let $A \in M_{mn}(\mathbb{R})$, then dim $C(A) = \dim C(R)$.

Lemma

Let $P \in M_m(\mathbb{R})$ is invertible and $A \in M_{mn}(\mathbb{R})$, then $\dim \underline{C(A)} = \dim C(PA)$.

(Department of CE)

Lecture #8

8/18

The column space of A

Lemma

Let $P \in M_m(\mathbb{R})$ is invertible and $A \in M_{mn}(\mathbb{R})$, then $\dim(C(A)) = \dim(C(PA))$.

Sketch of the proof: Let $(\dim(C(\Lambda)) = r)$ and denote the *i*-th

column of A by A_i . Without loss of generality, assume that the first r columns of A are independent. We have

$$PA = P \left[A_1 \cdots A_n \right] = \left[PA_1 \cdots PA_n \right]$$

We show that the first r columns of B are independent. Consider

$$c_1 P A_1 + \dots + c_n P A_r = 0$$

$$P(c_1 A_1 + \dots + c_n A_r) = 0$$

$$\Rightarrow c_1 = \dots = c_r = 0.$$

(Department of CE)

Lecture #8

9 / 18

What about column spaces of A?

- For invertible $P \in M_m(\mathbb{R})$, $A \in M_{mn}(\mathbb{R})$ and PA, the column spaces of A and PA might not be the same.
- Example.

$$\begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{1} & \mathbf{I} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$$

 $\frac{\sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_$

$$\underbrace{\begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}}_{B} = \underbrace{\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}}_{P} \underbrace{\begin{bmatrix} \mathbf{l} & \mathbf{l} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}}_{A}$$

$$C(A) = \operatorname{span}\left(\left\{\begin{bmatrix}1\\0\end{bmatrix}\right\}\right), \qquad C(PA) = \operatorname{span}\left(\left\{\begin{bmatrix}0\\1\end{bmatrix}\right\}\right)$$

Thus $C(\Lambda) \neq C(P\Lambda)$.

(dhc(A) & dhc(PA)) \(\frac{1}{2} \) \(\frac{1} \) \(\frac{1}{2} P([] Sij) 30 IdiAij 50 → d=.. =d="

The row spaces of Aمَالِدُ : AE Man IR) : سِنَالِد

Lemma

Let $P \in M_m(\mathbb{R})$ is invertible and $A \in M_{mn}(\mathbb{R})$, then the row spaces of A and PA are the same.

Sketch of the proof:

$$B = \mathbf{PA} = \begin{bmatrix} p_{11} & \cdots & p_{1m} \\ \vdots & \ddots & \vdots \\ p_{m1} & \cdots & p_{mm} \end{bmatrix} \begin{bmatrix} \mathbf{A_1} \\ \vdots \\ \mathbf{A_m} \end{bmatrix} = \begin{bmatrix} p_{11}A_1 + \cdots + p_{1m}A_m \\ \vdots \\ p_{m1}A_1 + \cdots + p_{mm}A_m \end{bmatrix}$$

Agerous = 8pm (29:18: + ... + 2:18-) 15:5-1 5 5pm (181) -> 18m)

Deture #8

Lecture #8

A = PB = [9" - 91] [81

A aproces you die by

O (=) defice = Their

The row space and the column space

Theorem

Let $A \in M_{mn}(\mathbb{R})$, then the dimension of row space and dimension of column space are the same.

din (Roje vice) = din (Rivinia) = oversity de (Averice) sali. (Ada dies)

A E Mmn (IR)

The row space and the column space

Theorem

Let $A \in M_{mn}(\mathbb{R})$, then the dimension of row space and dimension of column space are the same.

Definition

Let $A \in M_{mn}(\mathbb{R})$. The number of independent columns (or rows) is called the rank of A and denoted by rank(A).

12 / 18

The Rank Theorem

Theorem

Let $\Lambda \in M_{mn}(\mathbb{R})$, then

$$\underline{\dim C(A)} + \underline{\dim N(A)} = \underline{n}$$

NIA) = {xe e] An = 0} C R C(A) = {Ax | KE R? LL NIA) = n - din(IA)

Al = Γ of $(di-W \leqslant di-v = 0)$ of Circle = 0 of Circle =Fundamental Subspaces $C_{A} = C_{A} = C_{A} = C_{A}$ $C_{A} = Span \left(\left[\left[\left(\frac{1}{2} \right) \right] \right] + \left[\left(\frac{1}{2} \right) \right] + \left[\left(\frac{1}$

The Four Fundamental Subspaces

 $V = \sum_{j=1}^{n} c_{j} \cdot \gamma_{j}$

- The column space of A : C(A)
- \odot The nullspace of A

• The row space of A

- ATE Mom

• The left nullspace of
$$A: N(A^T)$$

$$A' = \begin{bmatrix} & & \\ & & \\ & & \end{bmatrix}$$

$$= c_1 \underbrace{AV_1}_{+ \cdots \to c_r} \underbrace{AV_r}_{+ \cdots \to c_r} \underbrace{AV_r}_{+$$

The rank Theorem

Suppose that $\underline{A} \in M_{mn}(\mathbb{R})$ and $\underline{\mathrm{rank}(A)} = \underline{r}$.

- $C(\Lambda)$ = column space of Λ ; dimension r.
- N(A) = nullspace of A; dimension n-r.
- $C(A^T)$ =row space of A; dimension r.
- $N(A^T)$ = left nullspace of A; dimension m-r.

di-c(A) + chi NIA) =0

$$\frac{d_{in} c(A^T)}{r} + d_{in} N(A^T) = m$$

Example

•
$$A = \begin{bmatrix} 1 & 3 & 3 & 2 \\ 2 & 6 & 9 & 7 \\ -1 & -3 & 3 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 & 3 & 2 \\ 2 & 6 & 9 & 7 \\ -1 & -3 & 3 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 & 3 & 2 \\ 2 & 6 & 9 & 7 \\ -1 & -3 & 3 & 4 \end{bmatrix}$$

• The Row Reduced matrix $R = \begin{bmatrix} 1 & 3 & 0 & -1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 + 2x_2 - x_4 \\ x_3 + x_4 \\ x_4 \end{bmatrix}$ $N(A^T) \subseteq 1R$ $\max(A) + dh - N(A^T) \le 3$

• $\operatorname{rank}(A) = r = \text{the number of pivot variables} = 2.$

$$A$$
- کے در لغیب $=$ 2 $\dim(C(A)) = r = 2$ $\dim(N(A)) = n - r = 4 - 2 = 2$ $\dim(C(A^T)) = r = 2$ $\dim(N(A^T)) = m - r = 3 - 2 = 1$

- Every row is a multiple of the first row, so the row space is one-dimensional.
- The columns are all multiples of the same column vector; the column space shares the dimension 1.
- We have

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 4 & 2 & 2 \\ 8 & 4 & 4 \\ -2 & -1 & -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 4 \\ -1 \end{bmatrix} \underbrace{\begin{bmatrix} 2 & 1 & 1 \end{bmatrix}}_{\mathbf{\gamma}^{\mathsf{T}}}$$

Matrices of Rank 1

Every matrix of rank 1 has the simple form $A = uv^T$, column times row.

$$N(A) \subseteq \mathbb{R}^{\frac{4}{2}}$$
 $rank(A) + din N(A) = 4$
 $N(AT) \subseteq \mathbb{R}^{\frac{3}{2}}$
 $rank(A) + din N(AT) = 3$
 $rank(A) + din N(AT) = 3$
 $din N(AT) = 4$
 $din N(AT) = 3 - 1 = 1$

NIA) = NIR)

