

Doc. No.:

S1-IF-ASD-PL-0007

Issue:

12

07.03.2014

Date: Page

1 of 85

Project:

Sentinel-1 SAR Instrument

Document Title:

SAR Space Packet Protocol Data Unit

DRL-No.:

IF-6

	Name	Date	Signature
Prepared by:	M. Gottwald	7.3.2014	MHULL
Approved by:			<i>V</i>
Electrical Engineeri	だ ng: U. Schönfeldt	7.3.14	W. Sudd
SES Engineeri	ng: S.Idler	7.3.19	W. Flack
System Engineeri	n go F. Rostan	10.314	Selut
Product Assurance:	G. Danzer C. Valk	10.03, 2014	
Project Management:	M. v. Alberti	£5. 3. 14	

The copyright in this document is the property of Astrium SAS/Ltd/GmbH and the contents may not be reproduced or revealed to third parties without prior permission of that company in writing.

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 2 of 85

Change Record

Issue	Date	Section	Description of Change
draft 1	04.04.2008	All	
1	27.05.2008	all	completely revised issue for PDR
2	07.05.2009	general	Column included for all parameters to indicate if parameter is constant or variable during the data take
		general	corrected for Typos
		1.3.1	section number introduced
		1.3.2	new section defining the parameter description scheme
		Table 3.1-2	Definition of PID and PCAT
		Table 3.2-3	"Test Mode" parameter included at octet offset 21
		Table 3.2-5 Table 3.2-6	UTC corrected to GPS time, Pointing Status Word included
		Table 3.2-7	S/C Ancillary Data Time Stamp Format included
		Table 3.2-8	Placeholder included for pointing status description
		3.2.1.1 3.2.1.2	details included
		3.2.2.1 3.2.2.2 3.2.2.6	details included
		3.2.2.3	Max. number of ECCs corrected to 48
		0	Description of Test Mode Configuration included
		3.2.2.5	Clarification about Rx Cannel ID and polarisation included
		3.2.3.1	section reworked
		3.2.3.2	section reworked
		3.2.5	Section and subsections updated with information available up to now (see change bars in the document): • parameter descriptions detailed • parameter resolutions added • parameter dependencies added
		3.3	Section and subsections revised (see change bars in the document) • Description of Data Output Format Types amended (Format Types A,B,C,D)
		4	Section and subsections reworked (see change bars in the document): • subsection "General" included with common information for overall section 4 • "Data Blocks" in the User Data Fields renamed into "Data Sections"
•	05.00.000		to not mix up this term with "BAQ Data Block"
3	25.08.2009	all	revised and updated for SAR CDR (for changes see change bars in the document)
4	25.01.2010	Table 2.4-1	Length of Packet Secondary Header changed to 62 octets
		3.2 Table 3.2-1	Section updated with additional "Radar Sample Count" service field and changed length of Packet Secondary Header to 62 octets

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 3 of 85

	1		
		3.2.3	AI-SY-109 response for SAR CDR
		3.2.3.1	AI-OP-93 response for SAR CDR
		3.2.2.3	AI-SY-26-1 (partly) response for SAR CDR AI-OP-16 (partly) response for SAR CDR
		3.2.4.2	AI-OP-94 response for SAR CDR
		3.2.5.3	AI-IF-106 response for SAR CDR
		3.2.5.13.2.3	AI-OP-108 response for SAR CDR
		3.2.5	overall section revised, including
			AI-SY-23 response for SAR CDR
			AI-OP-110 response for SAR CDR
			AI-OP-16 response for SAR CDR
		3.2.5.6	sections revised
		3.2.5.7	
		3.2.5.8	
		3.2.5.9	
		3.2.5.14.1	section revised
		3.2.5.14.4	section revised
		3.2.6	new section introduced with service field "Radar Sample Count" including the parameter "Number of Quads" (was formerly part of the User Data Field and has been removed there)
		3.3	section revised, including AI-SY-26-1 (partly) response for SAR CDR AI-SY-113 response for CDR
		4	section completely revised and complemented with Decoding algorithms, including AI-OP-95 response for SAR CDR
		5	new section with annexes attached
5	15.09.2010	general	editorial changes and improvements
J	10.00.2010	2.3	Reference [IRD-07] changed to S1-TN-ASD-0046 "Description of Instrument Radar Database"
			Reference [IRD-08] for Decompression
		Table 3.2-1	PDL range of values corrected (SYS CDR AI-PL-67) Comment about Sequence Count revised
		3.2.2.3	Revision of ECC No. vs. Modes, RFC mode defined as a single mode (SAR CDR2 Al-OP-19-1) (SYS CDR Al-PL-36 #4)
		0	Section revised. Dependency between Test Mode and ECC No. added
		3.2.3	(SYS CDR AI-PL-108) Table 3.2-8 Definition of Pointing Status added (SYS CDR AI-PL-36 #3)
			Table 3.2-6 Dummy parameter removed since already defined in Table 3.2-5
		3.2.3.1	Description Field revised
		3.2.4.1	Description of Space Packet Count revised, information added for anomaly condition
		3.2.4.2	PRI Gap corrected to 13 PRIs (SYS CDR AI-PL-110)

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 4 of 85

3.2.5.4 Section revised 3.2.5.5 Note about Calibration switches removed, since no longer used to switch power levels in SAR user data. 3.2.5.6 Sections about Tx pulse parameters decoding revised 3.2.5.7 3.2.5.8 3.2.5.11 SWST description revised (SYS CDR AI-PL-36 #5) 3.2.5.11 SWST description revised (SYS CDR AI-PL-36 #5) 3.2.5.13.2.4 Dependencies clarified between BAQ Mode and Signal and Cal Tyl 3.2.5.13.2.5 Applicable Range corrected to 0 1023 3.2.5.14.1 Cal Mode description revised 3.2.5.14.2 Parameter Description field revised 3.2.5.14.3 Dependencies clarified between BAQ Mode and Signal and Cal Tyl 3.2.5.14.4 Parameter Description field revised 3.2.5.14.3 Section revised, filler octet marked as n/a (SYS CDR AI-PL-112) 3.2.6 Section revised, filler octet marked as n/a (SYS CDR AI-PL-112) 4.3, 4.4 Sections revised for: • Reconstruction Examples (SYS CDR AI-PL-36 #2) • Fig. 4-4 updated with "Simple" and "Nominal" Reconstruction a Revision Revised with "Simple" Reconstruction and Revision Parameter Section revised, introduction of tables for: • "Simple" Reconstruction of compressed SAR data samples omputed with "Simple" Reconstruction Signal for revised, introduction of tables for: • "Simple" Reconstruction of compressed SAR data samples omputed in the Space Packet on the acquisition timing of calibration signal forms of SES SSB & SAS SSB data in header corrected new section for the acquisition timing of calibration signal forms of SES SSB & SAS SSB data in header corrected society in the Space Packet on the section Beam Address and Signal Type and Signal Type and Signal Type and Signal Si				(SYS CDR AI-PL-111)
3.2.5.5 Note about Calibration switches removed, since no longer used to switch power levels in SAR user data. 3.2.5.6 Sections about Tx pulse parameters decoding revised 3.2.5.7 3.2.5.8 SWST description revised (SYS CDR AI-PL-36 #5) 3.2.5.12 SWVL description revised 3.2.5.13.2.4 Dependencies clarified between BAQ Mode and Signal and Cal Tyl 3.2.5.13.2.5 Applicable Range corrected to 0 1023 3.2.5.14.1 Cal Mode description revised 3.2.5.14.2 Parameter Description field revised 3.2.5.14.3 Dependencies clarified between BAQ Mode and Signal and Cal Tyl 3.2.6 Section revised, filler octet marked as n/a (SYS CDR AI-PL-112) 4.3, 4.4 Sections revised for: • Reconstruction laws for "Simple" and "Nominal" Reconstruction a Reconstruction laws for "Simple" and "Nominal" Reconstruction • Threshold Index part of QE channel (SYS CDR AI-PL-107) 5 Section revised, introduction of tables for: • "Simple" Reconstruction of compressed SAR data samples • computation of number of complex samples in the Space Packet • new section for the acquisition timing of calibration signal format of SES SSB & SAS SSB data in header corrected Position in header has changed for: • "Ix Pulse Number SSS & SAS SSB data in header corrected Position in header has changed for: • "Ix Pulse Number • Signal Type • Cal Type 12.12.2011 S.2.5.14 Error Flag included in octet 37 S.2.5.1 New section with description of Error Flag (section numbers for "BA Mode" and "BAQ Blook Length" changed to 3.2.5.2 and 3.2.5.3 (2.5.1.4 Sapplicable for all signal hypes section with description of Error Flag (section numbers for "BA Mode" and "BAQ Blook Length" changed to 3.2.5.2 and 3.2.5.3 (2.5.1.4 Sapplicable range of Tx Pulse No. corrected to "0. 31" 3.2.5.1.4 applicable range of Tx Pulse No. corrected to "0. 31" 3.2.5.1.3.1 size of code corrected to 2 bits 3.2.4.1 SPCT description field updated to include action response C6-2 from the stable st			3254	
3.2.5.7 3.2.5.8 3.2.5.11 SWST description revised (SYS CDR AI-PL-36 #5) 3.2.5.12 SWL description revised 3.2.5.13.2.4 Dependencies clarified between BAQ Mode and Signal and Cal Tyl 3.2.5.13.2.5 Applicable Range corrected to 0 1023 3.2.5.14.1 Cal Mode description field revised 3.2.5.14.2 Parameter Description field revised 3.2.5.14.3 Dependencies clarified between BAQ Mode and Signal and Cal Tyl 3.2.6 Section revised, filler octet marked as n/a (SYS CDR AI-PL-112) Sections revised for: Peconstruction as for "Simple" and "Nominal" Reconstruction a Reconstruction Examples (SYS CDR AI-PL-36 #2) Fig. 4-4 updated with "Simple" Reconstruction a Reconstruction a Reconstruction for DE channel (SYS CDR AI-PL-107) Section revised, introduction of tables for: Simple" Reconstruction of compressed SAR data samples computation of number of complex samples in the Space Packet new section for the acquisition timing of calibration signal format of SES SSB & SAS SSB data in header corrected Position in header has changed for: Signal Type Signal Type Signal Type Signal Type Signal Type Cal Type Table 3.2-14 A.2.5.12 Applicability of SWL corrected to: "SWL is applicable for all signal types" Table 3.2-14 A.2.5.1 Applicable range of Tx Pulse No. 4, 5 and 8. Table 4.3-1 Albie 4.3-1 Albie 4.3-1 Albie 4.3-1 Applicable range of Tx Pulse No. corrected to "0 11" A.2.5.14.2 Applicable range of Tx Pulse No. corrected to "0 31" A.2.5.13.1.2 Applicable range of Tx Pulse No. corrected to "0 31" A.2.5.13.1.2 Applicable range of Tx Pulse No. corrected to "0 31" A.2.5.13.1.2 Applicable range of Tx Pulse No. corrected to "0 31" A.2.5.13.1.2 Applicable range of Tx Pulse No. corrected to "0 31" A.2.5.13.1.2 Applicable range of Tx Pulse No. corrected to "0 31" A.2.5.13.1.2 Applicable range of Tx Pulse No. corrected to "0 31" A.2.5.13.1.2 Applicable range of Tx Pulse No. corrected to "0 31" A.2.5.13.1.2 Applicable range of Tx Pulse No. corrected to "0 31" A.2.5.13.1.2 Applicable range of Tx Pulse No. corrected to "0 31"				Note about Calibration switches removed, since no longer used to
3.2.5.11 SWST description revised (SYS CDR AI-PL-36 #5) 3.2.5.12 SWL description revised 3.2.5.13.2.4 Dependencies clarified between BAQ Mode and Signal and Cal Tyr 3.2.5.13.2.5 Applicable Range corrected to 0 1023 3.2.5.14.2 Parameter Description field revised 3.2.5.14.3 Dependencies clarified between BAQ Mode and Signal and Cal Tyr 3.2.6 Section revised, filler octet marked as n/a (SYS CDR AI-PL-112) 4.3, 4.4 Sections revised for: • Reconstruction laws for "Simple" and "Nominal" Reconstruction a Reconstruction Examples (SYS CDR AI-PL-36 #2) • Fig. 4-4 updated with "Simple" Reconstruction a Reconstruction Examples (SYS CDR AI-PL-36 #2) • Fig. 4-4 updated with "Simple" Reconstruction a Reconstruction of Complex samples in the Space Packet • new section for the acquisition timing of calibration signal format of SES SSB & SAS SSB data in header corrected Position in header has changed for: 3.2.5.13.2.1 Space Position in header has changed for: 3.2.5.14.2 SAS Test Flag • Signal Type • Cal Type 3.2.5.1 applicability of SWL corrected to: "SWL is applicable for all signal types" Table 3.2-14 Error Flag included in octet 37 12.12.2011 3.2.3 information with description of Error Flag (section numbers for "BA Mode" and "BAQ Block Length" changed to 3.2.5.2 and 3.2.5.3 applicability of SWL corrected for "Echo" data information about reference frames added for S/C attitude quaternic and S/C angular rates 3.2.5.14.2 applicability values corrected for filter No. 4, 5 and 8. Table 4.3-1 clarification of parameter N added in subtitle of table 3.2.5.13.12 size of code corrected to 2 bits 3.2.5.1.1 SPCT description field updated to include action response C6-2 for			3.2.5.7	Sections about Tx pulse parameters decoding revised
3.2.5.12 SWL description revised 3.2.5.13.2.4 Dependencies clarified between BAQ Mode and Signal and Cal Tyl 3.2.5.13.2.5 Applicable Range corrected to 0 1023 3.2.5.14.1 Cal Mode description revised 3.2.5.14.2 Parameter Description field revised 3.2.5.14.3 Dependencies clarified between BAQ Mode and Signal and Cal Tyl 3.2.6 Section revised, filler octet marked as n/a (SYS CDR Al-PL-112) 4.3, 4.4 Sections revised for: • Reconstruction laws for "Simple" and "Nominal" Reconstruction a Reconstruction Examples (SYS CDR Al-PL-36 #2) • Fig. 4-4 updated with "Simple" Reconstruction • Threshold Index part of QE channel (SYS CDR Al-PL-107) 5 Section revised, introduction of tables for: • "Simple" Reconstruction of compressed SAR data samples • computation of number of complex samples in the Space Packet • new section for the acquisition timing of calibration signal format of SES SSB & SAS SSB data in header corrected Position in header has changed for: 9. SaS Test Flag 9.2.5.13.2.4 Elevation Beam Address • SAS Test Flag 9.2.5.14.3 Table 3.2-16 Table 3.2-16 Table 3.2-17 Tables 3.2-17 Tables 3.2-14 Signal Type • Cal Type Table 3.2-14 Servor Flag included in octet 37 9.2.5.1 New section with description of Error Flag (section numbers for "BA Mode" and "BAQ Block Length" changed to 3.2.5.2 and 3.2.5.3) 12.12.2011 3.2.3 information about reference frames added for S/C attitude quaternic and S/C angular rates 3.2.5.4 filter length values corrected for filter No. 4, 5 and 8. Table 4.3-1 clarification of parameter N added in subtitle of table 3.2.5.14.2 applicable range of Tx Pulse No. corrected to "0 31" 3.2.5.13.12 size of code corrected to 2 bits 3.2.5.1 SPCT description field updated to include action response C6-2 for				CMCT description revised (CVC CDD ALDI 20 #5)
3.2.5.13.2.4 Dependencies clarified between BAQ Mode and Signal and Cal Tyr 3.2.5.13.2.5 Applicable Range corrected to 0 1023 3.2.5.14.1 Cal Mode description revised 3.2.5.14.2 Parameter Description revised 3.2.5.14.3 Dependencies clarified between BAQ Mode and Signal and Cal Tyr 3.2.6 Section revised, filler octet marked as n/a (SYS CDR AI-PL-112) 4.3, 4.4 Sections revised for: • Reconstruction laws for "Simple" and "Nominal" Reconstruction a Reconstruction laws for "Simple" Reconstruction a Reconstruction and Reconstruction of Compressed SAR data samples • computation of number of compressed SAR data samples • cample and sample of the sample				
3.2.5.13.2.5 Applicable Range corrected to 0 1023 3.2.5.14.1 Cal Mode description revised 3.2.5.14.2 Parameter Description field revised 3.2.5.14.3 Dependencies clarified between BAQ Mode and Signal and Cal Tyres and Section revised for: - Reconstruction laws for "Simple" and "Nominal" Reconstruction a Reconstruction laws for "Simple" and "Nominal" Reconstruction a Reconstruction Examples (SYS CDR AI-PL-136 #2) - Fig. 4-4 updated with "Simple" Reconstruction - Threshold Index part of QE channel (SYS CDR AI-PL-107) 5 Section revised, introduction of tables for: - "Simple" Reconstruction of compressed SAR data samples - computation of number of complex samples in the Space Packet - new section for the acquisition timing of calibration signal format of SES SSB & SAS SSB data in header corrected Position in header has changed for: - SAS Test Flag - Tx Pulse Number - Signal Type - Cal Type - Table 3.2-14 Error Flag included in octet 37 - New section with description of Error Flag (section numbers for "BA Mode" and "BAQ Block Length" changed to 3.2.5.2 and 3.2.5.3) - 3.2.5.1 New section with description of Error Flag (section numbers for "BA Mode" and "BAQ Block Length" changed to 3.2.5.2 and 3.2.5.3) - 3.2.5.4 filter length values corrected for filter No. 4, 5 and 8 Table 4.3-1 clarification of parameter N added in subtitle of table - 3.2.5.14.2 applicable range of Tx Pulse No. corrected to "0 31" - 3.2.5.14.2 applicable range of Tx Pulse No. corrected to "0 31" - 3.2.5.14.2 size of code corrected to 2 bits - 3.2.4.1 SPCT description field updated to include action response C6-2 for				
3.2.5.14.1 Cal Mode description revised 3.2.5.14.2 Parameter Description field revised 3.2.5.14.3 Dependencies clarified between BAQ Mode and Signal and Cal Tyl 3.2.6 Section revised, filler octet marked as n/a (SYS CDR AI-PL-112) 4.3, 4.4 Sections revised for: Reconstruction laws for "Simple" and "Nominal" Reconstruction a Reconstruction laws for "Simple" Reconstruction a Reconstruction Examples (SYS CDR AI-PL-36 #2) Fig. 4-4 updated with "Simple" Reconstruction Threshold Index part of QE channel (SYS CDR AI-PL-107) Section revised, introduction of tables for: "Simple" Reconstruction of compressed SAR data samples computation of number of complex samples in the Space Packet new section for the acquisition timing of calibration signal format of SES SSB & SAS SSB data in header corrected position in header has changed for: Elevation Beam Address 3.2.5.14.2 SAS Test Flag Tx Pulse Number Signal Type Cal Type Cal Type Table 3.2-14 Error Flag included in octet 37 3.2.5.1 New section with description of Error Flag (section numbers for "BA Mode" and "BAQ Block Length" changed to 3.2.5.2 and 3.2.5.3) dependencies added for "Echo" data information about reference frames added for S/C attitude quaternic and S/C angular rates 3.2.5.4 filter length values corrected for filter No. 4, 5 and 8. Calification of parameter N added in subtitle of table 3.2.5.14.2 applicable range of Tx Pulse No. corrected to "0 31" 3.2.5.1 SPCT description field updated to include action response C6-2 for				
3.2.5.14.2 Parameter Description field revised 3.2.5.14.3 Dependencies clarified between BAQ Mode and Signal and Cal Tyr 3.2.6 Section revised, filler octet marked as n/a (SYS CDR AI-PL-112) 4.3, 4.4 Sections revised for: • Reconstruction Examples (SYS CDR AI-PL-36 #2) • Fig. 4-4 updated with "Simple" and "Nominal" Reconstruction a Reconstruction Examples (SYS CDR AI-PL-36 #2) • Fig. 4-4 updated with "Simple" Reconstruction • Threshold Index part of QE channel (SYS CDR AI-PL-107) 5 Section revised, introduction of tables for: • "Simple" Reconstruction of compressed SAR data samples • computation of number of complex samples in the Space Packet • new section for the acquisition timing of calibration signal format of SES SSB & SAS SSB data in header corrected 7 Section Ferror Flag • SAS Test Flag • Table 3.2-16 • Table 3.2-17 • Table 3.2-18 3.2.5.12 • Signal Type • Cal Type Table 3.2-14 Fror Flag included in octet 37 3.2.5.1 New section with description of Error Flag (section numbers for "BA Mode" and "BAQ Block Length" changed to 3.2.5.2 and 3.2.5.3) 3.2.5.2 dependencies added for "Echo" data 3.2.5.3 12.12.2011 3.2.5.4 12.12.2011 3.2.5.4 Filter length values corrected for filter No. 4, 5 and 8. Table 4.3-1 Calrification of parameter N added in subtitle of table 3.2.5.14.2 applicable range of Tx Pulse No. corrected to "0 31" 3.2.5.14.3 SPCT description field updated to include action response C6-2 for				Applicable Range corrected to 0 1023
3.2.5.14.3 Dependencies clarified between BAQ Mode and Signal and Cal Tyr. 3.2.6 Section revised, filler octet marked as n/a (SYS CDR AI-PL-112) 4.3, 4.4 Sections revised for: • Reconstruction laws for "Simple" and "Nominal" Reconstruction a Reconstruction laws for "Simple" and "Nominal" Reconstruction a Reconstruction and Reconstruction of QE channel (SYS CDR AI-PL-107) 5 Section revised, introduction of tables for: • "Simple" Reconstruction of parameter N added in subtitle of table 3.2.5.14.2 applicable range of Tx Pulse No. corrected to "0 31" 3.2.5.14.1 SPCT description field updated to include action response C6-2 for			3.2.5.14.1	Cal Mode description revised
3.2.6 Section revised, filler octet marked as n/a (SYS CDR AI-PL-112) 4.3, 4.4 Sections revised for: • Reconstruction laws for "Simple" and "Nominal" Reconstruction a Reconstruction laws for "Simple" Reconstruction a Reconstruction a Reconstruction • Threshold Index part of QE channel (SYS CDR AI-PL-107) 5 Section revised, introduction of tables for: • "Simple" Reconstruction of compressed SAR data samples • computation of number of complex samples in the Space Packet • new section for the acquisition timing of calibration signal format of SES SSB & SAS SSB data in header corrected Position in header has changed for: • Elevation Beam Address • SAS Test Flag 3.2.5.14.2 • SAS Test Flag 3.2.5.12 applicability of SWL corrected to: "SWL is applicable for all signal types" Table 3.2-14 Error Flag included in octet 37 12.12.2011 Section with description of Error Flag (section numbers for "BA Mode" and "BAQ Block Length" changed to 3.2.5.2 and 3.2.5.3) 12.12.2011 3.2.3 information about reference frames added for S/C attitude quaternic and S/C angular rates 3.2.5.14.2 applicable range of Tx Pulse No. corrected to "0 31" 3.2.5.13.1.2 size of code corrected to 2 bits 3.2.4.1 SPCT description field updated to include action response C6-2 fro			3.2.5.14.2	Parameter Description field revised
4.3, 4.4 Sections revised for: Reconstruction laws for "Simple" and "Nominal" Reconstruction a Reconstruction Examples (SYS CDR AI-PL-36 #2) Fig. 4-4 updated with "Simple" Reconstruction a Reconstruction e. Threshold Index part of QE channel (SYS CDR AI-PL-107) Section revised, introduction of tables for: "Simple" Reconstruction of compressed SAR data samples e. computation of number of complex samples in the Space Packet e. new section for the acquisition timing of calibration signal format of SES SSB & SAS SSB data in header corrected Position in header has changed for: Selevation Beam Address SAS Test Flag Table 3.2-14 Signal Type Cal Type Table 3.2-15 Alexa 3.2-14 Serior Flag included in octet 37 3.2-15 New section with description of Error Flag (section numbers for "BA Mode" and "BAQ Block Length" changed to 3.2-5.2 and 3.2-5.3) Table 4.3-1 Clarification of parameter N added in subtitle of table 3.2-5.14.2 applicable range of Tx Pulse No. corrected to "0 31" 3.2-5.13.1.2 Section Examples (SYS CDR AI-PL-36 #2) Fig. 4-4 updated with "Simple" Reconstruction and section field updated to include action response C6-2 fro			3.2.5.14.3	Dependencies clarified between BAQ Mode and Signal and Cal Types
Reconstruction laws for "Simple" and "Nominal" Reconstruction a Reconstruction Examples (SYS CDR AI-PL-36 #2) Fig. 4-4 updated with "Simple" Reconstruction or Threshold Index part of QE channel (SYS CDR AI-PL-107) Section revised, introduction of tables for:			3.2.6	Section revised, filler octet marked as n/a (SYS CDR AI-PL-112)
Reconstruction Examples (SÝS CDR AI-PL-36 #2) Fig. 4-4 updated with "Simple" Reconstruction Threshold Index part of QE channel (SYS CDR AI-PL-107) Section revised, introduction of tables for: "Simple" Reconstruction of compressed SAR data samples computation of number of complex samples in the Space Packet new section for the acquisition timing of calibration signal format of SES SSB & SAS SSB data in header corrected Position in header has changed for: 32.5.14.2 3.2.5.14.2 3.2.5.14.3 Table 3.2-16 Table 3.2-17 Table 3.2-18 3.2.5.12 Provided in cotet 37 Table 3.2-14 Section revised, introduction of tables for: Elevation Beam Address SAS Test Flag Table 3.2-18 3.2.5.12 applicability of SWL corrected to: "SWL is applicable for all signal types" Table 3.2-14 Error Flag included in octet 37 New section with description of Error Flag (section numbers for "BA Mode" and "BAQ Block Length" changed to 3.2.5.2 and 3.2.5.3) 3.2.5.2 dependencies added for "Echo" data information about reference frames added for S/C attitude quaternic and S/C angular rates 3.2.5.4 filter length values corrected for filter No. 4, 5 and 8. clarification of parameter N added in subtitle of table 3.2.5.14.2 applicable range of Tx Pulse No. corrected to "0 31" 3.2.5.11 SPCT description field updated to include action response C6-2 fro			4.3, 4.4	Sections revised for:
• Threshold Index part of QE channel (SYS CDR AI-PL-107) 5 Section revised, introduction of tables for: • "Simple" Reconstruction of compressed SAR data samples • computation of number of complex samples in the Space Packet • new section for the acquisition timing of calibration signal 6 31.03.2011 3.2.5.13.1.3 format of SES SSB & SAS SSB data in header corrected 9.2.5.13.2.4 Position in header has changed for: • SAS Test Flag • SAS Test Flag • Tx Pulse Number • Signal Type • Cal Type 12.12.2011 3.2.5.1 12.12.2011 3.2.5.1 12.12.2011 3.2.3 information about reference frames added for S/C attitude quaternic and S/C angular rates 3.2.5.14.2 applicable range of Tx Pulse No. corrected to "0 31" 3.2.5.13.1.2 size of code corrected to 2 bits 3.2.5.1 size of code corrected to 2 bits 3.2.5.1 size of code corrected to 2 bits 3.2.5.1 size of code corrected to include action response C6-2 from the size of code corrected to 2 bits				Reconstruction laws for "Simple" and "Nominal" Reconstruction and Reconstruction Examples (SYS CDR AI-PL-36 #2)
Section revised, introduction of tables for: "Simple" Reconstruction of compressed SAR data samples computation of number of complex samples in the Space Packet new section for the acquisition timing of calibration signal 3.2.5.13.1.3 3.2.5.13.2.3 3.2.5.13.2.4 3.2.5.14.2 3.2.5.14.2 3.2.5.14.3 Table 3.2-16 Table 3.2-17 Table 3.2-18 3.2.5.12 Table 3.2-14 Error Flag included in octet 37 3.2.5.1 New section with description of Error Flag (section numbers for "BA Mode" and "BAQ Block Length" changed to 3.2.5.2 and 3.2.5.3) 12.12.2011 12.12.2011 12.12.2011 12.12.2011 Section revised, introduction of compressed SAR data samples computation of number of complex samples in the Space Packet new section for the acquisition signal in header corrected Packet new section in header has changed for: Elevation Beam Address Signal Type Cal Type Cal Type Cal Type Cal Type Cal Type Cal Type Table 3.2-14 Error Flag included in octet 37 3.2.5.1 New section with description of Error Flag (section numbers for "BA Mode" and "BAQ Block Length" changed to 3.2.5.2 and 3.2.5.3) 3.2.5.2 dependencies added for "Echo" data information about reference frames added for S/C attitude quaternic and S/C angular rates 3.2.5.4 filter length values corrected for filter No. 4, 5 and 8. Table 4.3-1 clarification of parameter N added in subtitle of table 3.2.5.14.2 applicable range of Tx Pulse No. corrected to "0 31" 3.2.5.13.1.2 size of code corrected to 2 bits 3.2.4.1 SPCT description field updated to include action response C6-2 from				Fig. 4-4 updated with "Simple" Reconstruction
"Simple" Reconstruction of compressed SAR data samples computation of number of complex samples in the Space Packet new section for the acquisition timing of calibration signal 3.2.5.13.1.3 3.2.5.13.2.3 3.2.5.13.2.4 3.2.5.14.2 3.2.5.14.2 3.2.5.14.3 Table 3.2-16 Table 3.2-17 Table 3.2-18 3.2.5.12 Table 3.2-18 3.2.5.1 Table 3.2-14 Table 3.2-15 Table 3.2-15 Table 3.2-16 Table 3.2-16 Table 3.2-17 Table 3.2-17 Table 3.2-18 3.2.5.1 Table 3.2-14 Table 3.2-15 Table 3.2-15 Table 3.2-16 Table 3.2-16 Table 3.2-17 Table 3.2-17 Table 3.2-18 Table 3.2-14 Table 3.2-15 Table 3.2-15 Table 3.2-16 Table 3.2-16 Table 3.2-17 Table 3.2-17 Table 3.2-17 Table 3.2-18 Table 3.2-14 Table 3.2-14 Table 3.2-15 Table 3.2-15 Table 3.2-16 Table 3.2-16 Table 3.2-17 Table 3.2-17 Table 3.2-17 Table 3.2-14 Table 3.2-14 Table 3.2-15 Table 3.2-14 Table 3.2-15 Table 3.2-14 Table 3.2-15 Table 3.2-14 Table 3.2-15 Table 3.2-14 Table 3.2-14 Table 3.2-15 Table 3.2-14 Table 3.2-14 Table 3.2-15 Table 3.2-14 Table 3.2-16 Table 3.2-17 Table 3.2-18 Table 3.2-				Threshold Index part of QE channel (SYS CDR AI-PL-107)
* computation of number of complex samples in the Space Packet * new section for the acquisition timing of calibration signal 31.03.2011 32.5.13.1.3 32.5.13.2.4 32.5.13.2.4 32.5.14.2 32.5.14.3 Table 3.2-16 Table 3.2-17 Table 3.2-18 32.5.12 32.5.12 applicability of SWL corrected to: "SWL is applicable for all signal types" Table 3.2-14 Error Flag included in octet 37 32.5.1 New section with description of Error Flag (section numbers for "BA Mode" and "BAQ Block Length" changed to 3.2.5.2 and 3.2.5.3) 32.5.2 dependencies added for "Echo" data information about reference frames added for S/C attitude quaternic and S/C angular rates 3.2.5.1.2 information of number of complex samples in the Space Packet enew section for the acquisition timing of calibration signal formation in header has changed for: Elevation Beam Address Signal Type Signal Type Cal Type Cal Type Table 3.2-14 Error Flag included in octet 37 New section with description of Error Flag (section numbers for "BA Mode" and "BAQ Block Length" changed to 3.2.5.2 and 3.2.5.3) 3.2.5.1 12.12.2011 12.12.2011 3.2.3 information about reference frames added for S/C attitude quaternic and S/C angular rates 3.2.5.4 filter length values corrected for filter No. 4, 5 and 8. Table 4.3-1 clarification of parameter N added in subtitle of table 3.2.5.14.2 applicable range of Tx Pulse No. corrected to "0 31" 3.2.5.13.1.2 size of code corrected to 2 bits 3.2.4.1 SPCT description field updated to include action response C6-2 fro			5	Section revised, introduction of tables for:
• new section for the acquisition timing of calibration signal 31.03.2011 32.5.13.1.3 3.2.5.13.2.3 3.2.5.13.2.4 3.2.5.14.2 3.2.5.14.3 Table 3.2-16 Table 3.2-17 Table 3.2-18 32.5.12 applicability of SWL corrected to: "SWL is applicable for all signal types" Table 3.2-14 Error Flag included in octet 37 3.2.5.1 New section with description of Error Flag (section numbers for "BA Mode" and "BAQ Block Length" changed to 3.2.5.2 and 3.2.5.3) 3.2.5.2 dependencies added for "Echo" data information about reference frames added for S/C attitude quaternic and S/C angular rates 3.2.5.14.2 applicable range of Tx Pulse No. corrected to "0 31" 3.2.5.13.1.2 size of code corrected to 2 bits SPCT description field updated to include action response C6-2 from the acquisition timing of calibration signal format of SES SSB & SAS SSB data in header corrected for: action in header has changed for: Elevation Beam Address SAS Test Flag Tx Pulse Number Signal Type Cal Type Cal Type Cal Type Table 3.2-14 Error Flag included in octet 37 3.2.5.1 New section with description of Error Flag (section numbers for "BA Mode" and "BAQ Block Length" changed to 3.2.5.2 and 3.2.5.3) dependencies added for "Echo" data information about reference frames added for S/C attitude quaternic and S/C angular rates 3.2.5.4 filter length values corrected for filter No. 4, 5 and 8. Table 4.3-1 clarification of parameter N added in subtitle of table 3.2.5.14.2 3.2.5.13.1.2 size of code corrected to 2 bits SPCT description field updated to include action response C6-2 from the position of the provided in subtitle of table include action response C6-2 from the position field updated to include action response C6-2 from the position in header has changed for: Elevation Beam Address SAS SSB & SAS SSB & SAS SSB data in header corrected for: Elevation Beam Address SCAS Test Flag Tx Pulse Number Signal Type Signa				"Simple" Reconstruction of compressed SAR data samples
format of SES SSB & SAS SSB data in header corrected 3.2.5.13.2.3				
3.2.5.13.2.3 3.2.5.13.2.4 3.2.5.14.2 3.2.5.14.3 Table 3.2-16 Table 3.2-17 Table 3.2-18 3.2.5.12 3.2.5.14 3.2.5.12 3.2.5.14 3.2.5.12 3.2.5.1 Applicability of SWL corrected to: "SWL is applicable for all signal types" Table 3.2-14 Error Flag included in octet 37 3.2.5.1 New section with description of Error Flag (section numbers for "BA Mode" and "BAQ Block Length" changed to 3.2.5.2 and 3.2.5.3) 3.2.5.2 dependencies added for "Echo" data 12.12.2011 3.2.5.4 Filter length values corrected for filter No. 4, 5 and 8. Table 4.3-1 Clarification of parameter N added in subtitle of table 3.2.5.14.2 applicable range of Tx Pulse No. corrected to "0 31" 3.2.5.1 SPCT description field updated to include action response C6-2 from the componence of the corrected to 2 bits 3.2.4.1 SPCT description field updated to include action response C6-2 from the corrected for filter No. 4, 5 and 8. SPCT description field updated to include action response C6-2 from the corrected to 2 bits				new section for the acquisition timing of calibration signal
3.2.5.13.2.4 3.2.5.14.2 3.2.5.14.3 Table 3.2-16 Table 3.2-17 Table 3.2-18 3.2.5.12 applicability of SWL corrected to: "SWL is applicable for all signal types" Table 3.2-14 Error Flag included in octet 37 3.2.5.1 New section with description of Error Flag (section numbers for "BA Mode" and "BAQ Block Length" changed to 3.2.5.2 and 3.2.5.3) 3.2.5.2 dependencies added for "Echo" data information about reference frames added for S/C attitude quaternic and S/C angular rates 3.2.5.4 filter length values corrected for filter No. 4, 5 and 8. Table 4.3-1 clarification of parameter N added in subtitle of table 3.2.5.14.2 applicable range of Tx Pulse No. corrected to "0 31" 3.2.5.13.1.2 size of code corrected to 2 bits SPCT description field updated to include action response C6-2 from the control of the control	6	31.03.2011		
3.2.5.14.2 3.2.5.14.3 Table 3.2-16 Table 3.2-17 Table 3.2-18 3.2.5.12 applicability of SWL corrected to: "SWL is applicable for all signal types" Table 3.2-14 applicability of SWL corrected to: "SWL is applicable for all signal types" Table 3.2-14 Amode" and "BAQ Block Length" changed to 3.2.5.2 and 3.2.5.3) 3.2.5.2 dependencies added for "Echo" data information about reference frames added for S/C attitude quaternicated and S/C angular rates 3.2.5.4 filter length values corrected for filter No. 4, 5 and 8. Table 4.3-1 clarification of parameter N added in subtitle of table 3.2.5.14.2 applicable range of Tx Pulse No. corrected to "0 31" 3.2.5.13.1.2 size of code corrected to 2 bits SPCT description field updated to include action response C6-2 from the content of the content of the corrected for section response C6-2 from the content of the				-
3.2.5.14.3 Table 3.2-16 Table 3.2-17 Table 3.2-18 3.2.5.12 applicability of SWL corrected to: "SWL is applicable for all signal types" Table 3.2-14 Error Flag included in octet 37 3.2.5.1 New section with description of Error Flag (section numbers for "BA Mode" and "BAQ Block Length" changed to 3.2.5.2 and 3.2.5.3) 3.2.5.2 dependencies added for "Echo" data information about reference frames added for S/C attitude quaternic and S/C angular rates 3.2.5.4 filter length values corrected for filter No. 4, 5 and 8. Table 4.3-1 clarification of parameter N added in subtitle of table 3.2.5.14.2 applicable range of Tx Pulse No. corrected to "0 31" 3.2.5.13.1.2 size of code corrected to 2 bits SPCT description field updated to include action response C6-2 from the control of the contr				
Table 3.2-16 Table 3.2-17 Table 3.2-18 3.2.5.12 applicability of SWL corrected to: "SWL is applicable for all signal types" Table 3.2-14 Error Flag included in octet 37 3.2.5.1 New section with description of Error Flag (section numbers for "BA Mode" and "BAQ Block Length" changed to 3.2.5.2 and 3.2.5.3) 3.2.5.2 dependencies added for "Echo" data information about reference frames added for S/C attitude quaternic and S/C angular rates 3.2.5.4 filter length values corrected for filter No. 4, 5 and 8. Table 4.3-1 clarification of parameter N added in subtitle of table 3.2.5.14.2 applicable range of Tx Pulse No. corrected to "0 31" 3.2.5.13.1.2 size of code corrected to 2 bits 3.2.4.1 SPCT description field updated to include action response C6-2 from				
Table 3.2-17 Table 3.2-18 3.2.5.12 applicability of SWL corrected to: "SWL is applicable for all signal types" Table 3.2-14 Error Flag included in octet 37 3.2.5.1 New section with description of Error Flag (section numbers for "BA Mode" and "BAQ Block Length" changed to 3.2.5.2 and 3.2.5.3) 3.2.5.2 dependencies added for "Echo" data information about reference frames added for S/C attitude quaternic and S/C angular rates 3.2.5.4 filter length values corrected for filter No. 4, 5 and 8. Table 4.3-1 clarification of parameter N added in subtitle of table 3.2.5.14.2 applicable range of Tx Pulse No. corrected to "0 31" 3.2.5.13.1.2 size of code corrected to 2 bits 3.2.4.1 SPCT description field updated to include action response C6-2 from				
Table 3.2-18 3.2.5.12 applicability of SWL corrected to: "SWL is applicable for all signal types" Table 3.2-14 Error Flag included in octet 37 3.2.5.1 New section with description of Error Flag (section numbers for "BA Mode" and "BAQ Block Length" changed to 3.2.5.2 and 3.2.5.3) 3.2.5.2 dependencies added for "Echo" data 12.12.2011 3.2.3 information about reference frames added for S/C attitude quaternic and S/C angular rates 3.2.5.4 filter length values corrected for filter No. 4, 5 and 8. Table 4.3-1 clarification of parameter N added in subtitle of table 3.2.5.14.2 applicable range of Tx Pulse No. corrected to "0 31" 3.2.5.13.1.2 size of code corrected to 2 bits 3.2.4.1 SPCT description field updated to include action response C6-2 from				
Table 3.2-14 Error Flag included in octet 37 3.2.5.1 New section with description of Error Flag (section numbers for "BA Mode" and "BAQ Block Length" changed to 3.2.5.2 and 3.2.5.3) 3.2.5.2 dependencies added for "Echo" data 12.12.2011 3.2.3 information about reference frames added for S/C attitude quaternic and S/C angular rates 3.2.5.4 filter length values corrected for filter No. 4, 5 and 8. Table 4.3-1 clarification of parameter N added in subtitle of table 3.2.5.14.2 applicable range of Tx Pulse No. corrected to "0 31" 3.2.5.13.1.2 size of code corrected to 2 bits 3.2.4.1 SPCT description field updated to include action response C6-2 from			Table 3.2-18	• Cal Type
3.2.5.1 New section with description of Error Flag (section numbers for "BA Mode" and "BAQ Block Length" changed to 3.2.5.2 and 3.2.5.3) 3.2.5.2 dependencies added for "Echo" data 3.2.3 information about reference frames added for S/C attitude quaternic and S/C angular rates 3.2.5.4 filter length values corrected for filter No. 4, 5 and 8. Table 4.3-1 clarification of parameter N added in subtitle of table 3.2.5.14.2 applicable range of Tx Pulse No. corrected to "0 31" 3.2.5.13.1.2 size of code corrected to 2 bits 3.2.4.1 SPCT description field updated to include action response C6-2 from			3.2.5.12	applicability of SWL corrected to: "SWL is applicable for all signal types"
Mode" and "BAQ Block Length" changed to 3.2.5.2 and 3.2.5.3) 3.2.5.2 dependencies added for "Echo" data 3.2.3 information about reference frames added for S/C attitude quaternic and S/C angular rates 3.2.5.4 filter length values corrected for filter No. 4, 5 and 8. Table 4.3-1 clarification of parameter N added in subtitle of table 3.2.5.14.2 applicable range of Tx Pulse No. corrected to "0 31" 3.2.5.13.1.2 size of code corrected to 2 bits 3.2.4.1 SPCT description field updated to include action response C6-2 from			Table 3.2-14	Error Flag included in octet 37
7 12.12.2011 3.2.3 information about reference frames added for S/C attitude quaternic and S/C angular rates 3.2.5.4 filter length values corrected for filter No. 4, 5 and 8. Table 4.3-1 clarification of parameter N added in subtitle of table 3.2.5.14.2 applicable range of Tx Pulse No. corrected to "0 31" 3.2.5.13.1.2 size of code corrected to 2 bits 3.2.4.1 SPCT description field updated to include action response C6-2 from			3.2.5.1	New section with description of Error Flag (section numbers for "BAQ Mode" and "BAQ Block Length" changed to 3.2.5.2 and 3.2.5.3)
and S/C angular rates 3.2.5.4 filter length values corrected for filter No. 4, 5 and 8. Table 4.3-1 clarification of parameter N added in subtitle of table 3.2.5.14.2 applicable range of Tx Pulse No. corrected to "0 31" 3.2.5.13.1.2 size of code corrected to 2 bits 3.2.4.1 SPCT description field updated to include action response C6-2 from			3.2.5.2	dependencies added for "Echo" data
Table 4.3-1 clarification of parameter N added in subtitle of table 3.2.5.14.2 applicable range of Tx Pulse No. corrected to "0 31" 3.2.5.13.1.2 size of code corrected to 2 bits 3.2.4.1 SPCT description field updated to include action response C6-2 from	7	12.12.2011	3.2.3	information about reference frames added for S/C attitude quaternions and S/C angular rates
3.2.5.14.2 applicable range of Tx Pulse No. corrected to "0 31" 3.2.5.13.1.2 size of code corrected to 2 bits 3.2.4.1 SPCT description field updated to include action response C6-2 from			3.2.5.4	filter length values corrected for filter No. 4, 5 and 8.
3.2.5.13.1.2 size of code corrected to 2 bits 3.2.4.1 SPCT description field updated to include action response C6-2 from			Table 4.3-1	clarification of parameter N added in subtitle of table
3.2.5.13.1.2 size of code corrected to 2 bits 3.2.4.1 SPCT description field updated to include action response C6-2 from			3.2.5.14.2	·
3.2.4.1 SPCT description field updated to include action response C6-2 from				
555				
3.2.4.2 PRICT description field: example deleted about suppressed packet			3.2.4.1	
2.2.4.2 PDICT description fields example deleted about expressed market			1 3 7 4 1	

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 5 of 85

			between IWS and EWS subswath transitions. Baseline approach is to generate packets for all PRIs between subswath transitions.
8	23.08.2012	3.2.2.3	ECC No. for Notch Modes added
		3.2.5.4	SAR swath Wave 1 (WV1) applicable with Filter No.1 (not Filter 3)
		3.2.5.13.2.4	Cal Type 7 modified to "EPDN Cal Iso" (Isolation Measurement)
		3.2.5.14.3	Signal Type 15 modified to "EPDN Cal Iso" (Isolation Measurement)
		3.2.5.14.4	typo "TCPSF" corrected to "TXPSF"
		3.2.5.14.5	
		5.3	Footnote added for clarification of Cal Window timing
9	14.02.2013	3.2.2.3	EWS Mode moved to ECC No.32
			ECC No. for Azimuth Notch S6 Mode corrected to "24"
			ECC No.s for Contingency Modes corrected to "25-31"
		3.2.3 , 3.2.3.1	Inclusion of Antenna & TGU Temperature HKs in sub-commutated Ancillary Data field
		3.2.5.14.1	"PCC512" corrected to "RF672"
		3.2.4.2	Note added about 2 PRI delay of ECC program execution
		4.3	Computation of "SValue" for BAQ simple reconstruction adapted wrt. 5.2.1. Examples no.2 and no.3 adapted.
		4.4	Computation of "SValue" for FDBAQ simple reconstruction adapted wrt. 5.2.1. Example no.3 adapted.
		5.2.1	Simple Reconstruction Parameter Values A, B changed
		5.4	Temperature Calibration values for EFE and TGU
10	01.03.2013	3.2.1.2	Interpretation of OBT Fine Time improved, addition of 0.5 lsb to code improves datation accuracy by about 7.63us
		3.2.2.3	Stripmap 6 Mode added (table entry has gone lost in issue 9)
		3.2.5.13.2.4	"EPDN Cal Iso" replaced by "TxH Cal Iso" in CalType = 7
		3.2.5.14.3	"EPDN Cal Iso" replaced by "TxH Cal Iso" in Signal Type = 15
11	10.07.2013	3.2.3	Clarification added about updating scheme of temperature HK values in the sub-commutated Ancillary Data field
12	07.03.2014	3.2.2.3	ECC Code interpretation actualised
		4.4	criteria for application of Simple Reconstruction Method after Huffman decoding modified for FDBAQ BRC=1, BRC=3, BRC=4
		5.2.1	Table 5.2-1 Simple Reconstruction Parameter Values A, B: values modified and applicable THIDX range reduced for BRC=1;3;4
		5.2.2	Table 5.2-2 Normalised Reconstruction Level: values modified
		5.4.2	EFE temperature calibration indicated as "not defined" for HK raw values 0, 1, 2, 3.

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 6 of 85

Table of Contents

1	INTRO	RODUCTION	
	1.1	Scope	
	1.2	Overview	
	1.3	Conventions and Definitions	
	1.3.1	Sequencing and Numbering of Parameters	9
	1.3.2	The second secon	
	1.4	Abbreviations	
2	DOC	UMENTS	
	2.1	Parent Documents	
	2.2	Normative Reference Documents	
	2.3	Informative Reference Documents	
	2.4	Standards	
3	SAR	SPACE PACKET FORMAT	
	3.1	Packet Primary Header	
	3.2	Packet Secondary Header	
	3.2.1	Datation Service	15
	3.2.	2.1.1 Coarse Time	16
	3.2.	2.1.2 Fine Time	16
	3.2.2	· · · · · · · · · · · · · · · · · · ·	
	3.2.	2.2.1 Sync Marker	17
	3.2.	2.2.2 Data Take ID	
	3.2.	2.2.3 ECC Number	
	3.2.	2.2.4 Test Mode	
	3.2.	2.2.5 RX Channel ID	22
	3.2.	2.2.6 Instrument Configuration ID	
	3.2.3	Sub-commutated Ancillary Data Service	22
	3.2.	2.3.1 Sub-commutated Ancillary Data Word Index	
	3.2.	2.3.2 Sub-commutated Ancillary Data Word	
	3.2.4	Counters Service	29
	3.2.	2.4.1 Space Packet Count	30
	3.2.	2.4.2 Mode PRI Count	31
	3.2.5	Radar Configuration Support Service	
	3.2.	2.5.1 Error Flag	33
	3.2.	2.5.2 BAQ Mode	33
	3.2.	2.5.3 BAQ Block Length	
	3.2.	2.5.4 Range Decimation	35
	3.2.	2.5.5 Rx Gain	36
	3.2.	2.5.6 Tx Pulse Ramp Rate	37
	3.2.	2.5.7 Tx Pulse Start Frequency	38
	3.2.	2.5.8 Tx Pulse Length	39
	3.2.	2.5.9 Rank	40
	3.2.	2.5.10 Pulse Repetition Interval	40

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 7 of 85

	3.2.5	.11 Samr	oling Window Start Time	41
	3.2.5		oling Window Length	
	3.2.5		SSB Data Field	
	3.2	2.5.13.1 SAS	S SSB Data Field – Imaging/Noise	43
			Polarisation	
	;	3.2.5.13.1.2	Temperature Compensation	46
	;	3.2.5.13.1.3	Elevation Beam Address	46
	;	3.2.5.13.1.4	Azimuth Beam Address	47
	3.2	2.5.13.2 SAS	S SSB Data - Calibration	47
	;	3.2.5.13.2.1	Polarisation	47
	;	3.2.5.13.2.2	Temperature Compensation	47
	;	3.2.5.13.2.3	SAS Test Mode	48
	;	3.2.5.13.2.4	Cal Type	49
	;	3.2.5.13.2.5	Calibration Beam Address	49
	3.2.5	.14 SES	SSB Data Field	50
	3.2	2.5.14.1 Cali	ibration Mode	50
	3.2		Pulse Number	
	3.2	2.5.14.3 Sigi	nal Type	52
	3.2	2.5.14.4 Swa	ap Flag	53
	3.2		ath Number	
	3.2.6	Radar Sam	ple Count Service	54
	3.3 L		ld	
	3.3.1		Field Length	
	3.3.2		Format Types	
	3.3.2		rmat Type A "Bypass"	
	3.3.2		rmat Type B "Decimation Only"	
	3.3.2		rmat Type C "Decimation + BAQ"	
	3.3.2		rmat Type D "Decimation + FDBAQ"	
	3.3.3		Organisation	
4			DECODING	
	4.1.1		sed for Decoding	
	4.1.2	•	Decoding	
		•	Oata Format Type A and B ("Bypass" or "Decimation Only")	
			Data Format Type C ("Decimation + BAQ")	
_			Data Format Type D ("Decimation + FDBAQ")	
5				
			es for Computation of Number of Samples after Decimation	
		•	nstruction Tables	
	5.2.1		mple Reconstruction Method	
	5.2.2		Normal Reconstruction Method	
	5.2.2		sed Reconstruction Levels (NRL)	
	5.2.2	J	Factors (SF)	
			gnal Acqusition Timing Temperature Calibration	
	5.4 E	re and IGU	remperature Campration	83

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 8 of 85

5.4.1	TGU Temperature Calibration	83
5.4.2	EFE Temperature Calibration	84

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 9 of 85

1 Introduction

1.1 Scope

This document gives a comprehensive description of the Sentinel-1 Space Packet on packet layer level. It describes the structure of the packets, provides the data formats and decoding algorithms for user data decoding and gives a detailed description of the annotated SAR ancillary header data.

Electrical, mechanical or transmit channel coding characteristics are not part of this document. These can be found in the electrical ICDs.

1.2 Overview

For packetized transmission of SAR data from the Instrument to the S/C platform the Space Packet Protocol Standard [SD 01] is applied.

Each Space Packet generated by the Instrument contains the complete SAR data acquired in one PRI. The standard limits the maximum packet size to (65536+6) octets but, due to decimation and BAQ compression of SAR data in nominal operation the packet size will stay well below this limit.

The format of the Space Packet is described in section 3. In each packet a SAR ancillary data field is included. The ancillary data provide the information how to interprete, decode and process the SAR radar data in the packet. In addition, they provide information about Instrument status and configuration at the moment of data acquisition (digitizing). General approach here is to provide appropriate information for ground to support SAR image decoding and processing.

In section 4 the decoding algorithms are described to retrieve the SAR radar data from the packets to finally get the usual complex radar data representation suitable to be fed into a ground image processor.

Typically, the acquired SAR data in a PRI is a radar echo received as a backscattered response of a radar pulse transmitted some few PRIs before. But also other data are generated by the Instrument like calibration, noise or test data.

1.3 Conventions and Definitions

1.3.1 Sequencing and Numbering of Parameters

The Space Packet data format is described as a sequence of octets.

The start position of a parameter or a data word within the sequence is defined by the "Octet Offset" and the "Bit Offset" within the octet. The "Octet Offset" refers to the beginning of the overall Space Packet.

The N-BIT FIELD of a parameter or data word within the sequence may not be aligned to octet boundaries and may have a size exceeding one octet.

The first bit of a N-BIT FIELD is defined to be "Bit 0" of the parameter or data word, the following bit is defined to be "Bit 1" and so on up to "Bit N-1" (see Fig. 1-1).

For the interpretation of the binary code in the N-BIT FIELD the first bit ("Bit 0") is the most significant bit (msb), the last bit ("Bit N-1") is the least significant bit (lsb).

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 10 of 85

Fig. 1-1: Bit Numbering Convention

1.3.2 Parameter Field Descriptions

The packet parameters are described with the key words shown in Table 1.3-1:

Key Word	Key Word Description
Description:	This field provides a brief description of the parameter
Performance:	This field defines the performance of the parameter, i.e. whether it has a "variable" or "constant" value during the data take. If "variable" is indicated this means the parameter may be "variable" but does not have to be.
Short Name:	This field defines the parameter name
Code Name:	This field defines the parameter code name (identified by the subscript "code") which designates the uncalibrated parameter code.
Code Properties:	This field describes the parameter code in terms of: • Start Position • End Posiiton • Code Size • Data Type • Applicable Range of Code
Interpretation:	This field provides the interpretation of the parameter value in terms of its significance and calibration to its physical value.
Dependencies:	This field describes the dependencies of the parameter with other parameters of the packet header in order to:
	 show relations with other header parameters which have to be consistent extract additional information by combining with other parameters

Table 1.3-1: Definition of Parameter Field Description

1.4 Abbreviations

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 11 of 85

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 12 of 85

2 Documents

2.1 Parent Documents

[PD 01] S1-RS-TASI-CS-0001 SAR Instrument Requirements Specification

2.2 Normative Reference Documents

[NRD 01] S1-RS-ASD-PL-0002 SES Requirements Specification

[NRD 02] S1-IF-TASI-SC-0002 Instrument to Spacecraft I/F Requirements (IF-8)

2.3 Informative Reference Documents

[IRD 01]	S1-DD-ASD-PL-0001	SAR Instrument Technical Description
[IRD 02]	S1-IF-ASU-PL-0006	SES Interface Control Document, Annex D
[IRD 03]	S1-DD-ASU-PL-0003	SES Internal Commanding Document
[IRD 04]	S1-MA-SSE-TX-0023	TxM Users Manual
[IRD 05]	S1-DD-ASU-PL-0019	ICE TCM Design Description
[IRD 06]	S1-DD-ASU-PL-0024	ICE Receive Module Design Description
[IRD 07]	S1-TN-ASD-PL-0046	Description of the Instrument Radar Database
[IRD 08]	S1-TN-ASU-PL-0023	SAR Data Decompression for S1

2.4 Standards

[SD 01]	CCSDS 133.0-B-1	Space Packet Protocol
[SD 02]	CCSDS 301.0-B-3	Time Code Formats

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 13 of 85

3 SAR Space Packet Format

The overall Sentinel-1 SAR Space Packet format is shown in Table 2.4-1 and has a total length which is a **multiple of 4 octets**. The format is detailed in the following subsections 3.1 to 3.3.

	Space Packet							
	Packet Primary Header Packet Data Field							
Packet Identification			cation	Packet Sequence Packet Control Data			Packet Secondary Header	User Data Field
Version Number	Packet Type	Secondary Header Flag	Application Process Identifier	Sequence Flags	Packet Sequence Count	Length Header		
3 bits	1 bit	1 bit	11bits	2 bits	14 bits	16 bits	62 octets	variable length
	6 octets ≤ 65534 octets							
	Length = Multiple of 4 Octets							

Table 2.4-1: Overall Space Packet Format

3.1 Packet Primary Header

The Packet Primary Header format is shown in Table 3.1-1 with the parameters described in Table 3.1-2.

Table 3.1-1: Format of Packet Primary Header

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 14 of 85

Parameter Lea		Length	Value	Comment
Packet Version Number	er	3 bits	000 _{BIN} ¹	
Packet Type		1 bit	0 _{BIN}	
Secondary Header Fla	ıg	1 bit	1 _{BIN}	Secondary Header is present
Application Process	PID	7 bis	100 0001 _{BIN} (65 _{DEC})	Process ID
Identifier PCAT		4 bits	1100 _{BIN} (12 _{DEC})	Packet Category
Sequence Flags		2 bits	11 _{BIN}	user data are unsegmented
Packet Sequence Count		14 bits	actual count of space packet (modulo 16384)	 starts with "0" at start of measurement counts all packets output by the Instrument to the platform is an ambiguous count, that wraps to "0" after "16383"
Packet Data Length		16 bits	61 to 65533	number of octets in packet data field -1

Table 3.1-2: Primary Packet Header Values

3.2 Packet Secondary Header

The Packet Secondary Header has a length of $LEN_{SH}=62$ octets. Following the standard [SD 01] it contains a Time Code Field and an Ancillary Data Field.

The Packet Secondary Header provides the information of a number of Services as shown in Table 3.2-1. Each Service field occupies an integer number of octets.

_

¹ "BIN" denotes binary representation of the value

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 15 of 85

Time Code Field	Datation Service					
	Fixed Ancillary Data Service					
a Field	Sub-commutation Ancillary Data Service					
Ancillary Data	Counters Service					
Ancilla	Radar Configuration Support Service					
	Radar Sample Count Service					

Table 3.2-1: Packet Secondary Header and its Services Fields

3.2.1 Datation Service

The Datation Service provides the time stamp for the packet datation. The time stamp value is a sample of the local instrument time at a specific event within the PRI where the packet data has been acquired.

The Datation Service field consists of 6 octets as shown in Table 3.2-2.

Octet Offset		bit							
	bit 0	bit 1	bit 2	bit 3	bit 4	bit 5	bit 6	bit 7	
6									
7		Coarse Time							
8									
9									
10				Eino	Timo				
11				Fine	ııııe				

Table 3.2-2: Datation Service Field

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 16 of 85

3.2.1.1 Coarse Time

Description:		The Coarse Time represents the time stamp of the Space Packet in units of integer seconds.						
	Nominal time bas	se is GPS time.						
Performance:	variable value du	ring the data take						
Short Name:	TCOAR							
Code Name:	$TCOAR_{code}$	$TCOAR_{code}$						
Code Properties	Start Position:	End Position:	Size of Code	Data Type	Applicable Range of Code:			
	Octet 6, bit 0	Octet 9, bit 7	32 bit	unsign.integer	0 2 ³² -1			
Interpretation:	$TCOAR = TCOAR_{code}$ [s]							
Dependencies:	only incremented	on availability of	platform PPS					

3.2.1.2 Fine Time

0.2.1.2 11110 111						
Description:	The Fine Time re	presents the sub	second time stam	np of the Space F	Packet	
Performance:	variable value du	ring the data take	•			
Short Name:	TFINE					
Code Name:	$TFINE_{code}$					
Code Properties	Start Position:	Start Position: End Position: Size of Code Data Type Applicable Range of Code:				
	Octet 10, bit 0	Octet 11, bit 7	16 bit	unsigned int.	0	2 ¹⁶ -1
Interpretation:	TFINE = (TFINE	$E_{code} + 0.5) \cdot 2^{-16}$	[s]			
Dependencies:	Note, that <i>TFINE</i> sampled with PR	F rate. Hence, du and observed <i>TFI</i>	$_{e}$ are registered (e to time samplin	latched) times from	TFINE	ordware clocks and G _{code} transition to "0" may ce packet indicates a

3.2.2 Fixed Ancillary Data Field

The Fixed Auxiliary Data Service consists of 14 octets as shown in Table 3.2-3. The data in this service remains invariant for the duration of the data-take.

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 17 of 85

Octet Offset		bit								
	bit 0	bit 0 bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7								
12										
13				Syno	Markar					
14				Sync I	warker					
15										
16										
17	Data Take ID									
18		Data Take ID								
19										
20				ECC N	umber					
21	n/a	n/a Test Mode Rx Channel ID								
22										
23			Inetru	ıment Co	nfigurati	ion ID				
24			1115110	inient Co	migurati	טו ווטו				
25										

Table 3.2-3: Fixed Auxiliary Data Service Field

3.2.2.1 Sync Marker

O.Z.Z. Oynom	1	NOT						
Description:	The Sync Market	The Sync Marker represents a bit pattern to support (re-)synchronisation of packet data on Space						
	Packet layer leve	el (e.g. in case of	corruptions or dis	ruptions in a cor	itinuous stream of Space			
	Packets)							
Performance:	constant value d	uring the mission						
Short Name:	SYNC	SYNC						
Code Name:	$SYNC_{code}$	$SYNC_{code}$						
Code Properties	Start Position:	End Position:	Size of Code	Data Type	Applicable Range of Code:			
	Octet 12, bit 0	Octet 15, bit 7	32 bit	unsigned int.	one static bit pattern			
Interpretation:	$SYNC = 352E F853_{HEX}$							
Dependencies:	none							

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 18 of 85

3.2.2.2 Data Take ID

Description:	take from the pla Packets of the da	The Data Take ID is supposed to support ground operations to track the E2E life cycle of a data take from the planning, commanding up to the downlinking and reception of the related Space Packets of the data take. The Data Take ID will be uplinked as part of the "Perform Measurement" and "Perform Test" TC. Selection of the Data Take ID is under ground control.						
Performance:		constant value during the data take						
Short Name:	DTID	DTID						
Code Name:	$DTID_{code}$	$DTID_{code}$						
Code Properties	Start Position:	End Position:	Size of Code	Data Type	Applicable Range of Code:			
	Octet 16, bit 0	Octet 19, bit 7	32 bit	unsigned int.	0 2 ³² -1			
Interpretation:	TBD by ESA/ESOC							
Dependencies:	none		·	·				

3.2.2.3 ECC Number

Description:	The ECC Number	er identifies the se	lected Measurem	nent, Test or RF	Chara	acterisation mode
Performance:	constant value di	uring the data take	Э			
Short Name:	ECC					
Code Name:	ECC_{code}					
Code Properties	Start Position:	Start Position: End Position: Size of Code Data Type Applicable Range of Code:				
	Octet 20, bit 0	Octet 20, bit 7	8 bit	enumeration	0	47
Interpretation:	see Table 3.2-4:	see Table 3.2-4: ECC Code Interpretation				
Dependencies:	ECC Code interp Database.	retation may char	nge if ECC progra	ams will be modif	fied ir	n the SES Radar

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 19 of 85

ECC _{code}	Measurement Mode	Comment
0	contingency	reserved for ground testing or mode upgrading
1	Stripmap 1	
2	Stripmap 2	
3	Stripmap 3	
4	Stripmap 4	
5	Stripmap 5-N	Used for Stripmap 5 imaging on northern hemisphere
6	Stripmap 6	
7	contingency	reserved for ground testing or mode upgrading
8	Interferometric Wide Swath	
9	Wave Mode	Leapfrog mode using alternating vignettes at different incidence angles
10	Stripmap 5-S	Used for Stripmap 5 imaging on southern hemisphere
11	Stripmap 1 w/o interl.Cal	
12	Stripmap 2 w/o interl.Cal	
13	Stripmap 3 w/o interl.Cal	
14	Stripmap 4 w/o interl.Cal	
15	RFC mode	RFcharacterisation mode based on PCC sequences (RF672 for EFEs and PCC 32 for TAs)
16	- Test Mode Oper	There are two Test Mode variants which use the same ECC
	- Test Mode Bypass	program. The Test Mode variant is defined by the parameter TSTMOD in 0
17	Elevation Notch S3	Elevation Notch in centre of S3 swath
18	Azimuth Notch S1	
19	Azimuth Notch S2	
20	Azimuth Notch S3	
21	Azimuth Notch S4	
22	Azimuth Notch S5-N	Used for Az. Notch Mode in Stripmap 5 on northern hemisphere
23	Azimuth Notch S5-S	Used for Az. Notch Mode in Stripmap 5 on southern hemisphere
24	Azimuth Notch S6	
25	Stripmap 5-N w/o interl.Cal	
26	Stripmap 5-S w/o interl.Cal	
27	Stripmap 6 w/o interl.Cal	
28-30	contingency	reserved for ground testing or mode upgrading
31	Elevation Notch S3 w/o interl.Cal	
32	Extra Wide Swath	
33	Azimuth Notch S1 w/o interl.Cal	
34	Azimuth Notch S3 w/o interl.Cal	
35	Azimuth Notch S6 w/o interl.Cal	
36	contingency	reserved for ground testing or mode upgrading
37	Noise Characterisation S1	
38	Noise Characterisation S2	
39	Noise Characterisation S3	
40	Noise Characterisation S4	

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 20 of 85

41	Noise Characterisation S5-N	
42	Noise Characterisation S5-S	
43	Noise Characterisation S6	
44	Noise Characterisation EWS	
45	Noise Characterisation IWS	
46	Noise Characterisation Wave	
47	contingency	reserved for ground testing or mode upgrading

Table 3.2-4: ECC Code Interpretation

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 21 of 85

3.2.2.4 Test Mode

Description:	The Test Mode p	arameter indicate	s whether	the spa	ace packet is ger	nerated by a Test mode or a					
	Measurement mode. In case of a Test mode the parameter indicates the configuration of the terms.										
	performed.										
Performance:	constant value d	uring the data take	е								
Short Name:	TSTMOD										
Code Name:	$TSTMOD_{code}$										
Code Properties	Start Position:	End Position:	Size of C	ode	Data Type	Applicable Range of Code					
	Octet 21, bit 1	Octet 21, bit 3	3 bit		enumeration	see "Interpretation" field					
nterpretation:						1					
	TSTMOD _{code} (binary)	Interpretation		Desc	cription						
	000	Default		in ca	•	rement Mode (i.e. no Test					
	001 to 011	n/a		n/a							
	100	contingency use ground testing o		 Test Mode configuration: Data via ADC RxM digital processing (DDC, DFD, DCD) fully operational DCD compression as per BAQ Mode 							
	101	contingency use ground testing o		• Da • Rx	Mode configurat ta via ADC M digital process passed	ion: sing (DDC, DFD, DCD) fully					
	110	Test Mode "Ope	r"	 Test Mode configuration: Digital Test Pattern Stimuli input to DDC RxM digital processing (DDC, DFD, DCD) fully operational DCD compression as per BAQ Mode ¹ 							
	111	Test Mode "Bypa	ass"	Test Mode configuration: • Digital Test Pattern Stimuli input to DDC • RxM digital processing (DDC, DFD, DCD) fully bypassed							

_

¹ Compression may be active or bypassed in Test Mode "Oper", i.e. it will be active in case of PRIs with "non-calibration" signal types (echo or noise) and bypassed in case of PRIs with "calibration" signal types.

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 22 of 85

3.2.2.5 RX Channel ID

Description:		ed relation. There	•	•	data. Rx polarisation is and Rx ntifies the Rx polarisation of the								
Performance:	constant value di	onstant value during the data take											
Short Name:	RXCHID	XCHID											
Code Name:	$RXCHID_{code}$	$XCHID_{code}$											
Code Properties	Start Position:	tart Position: End Position: Size of Code Data Type Applicable Range of Code:											
	Octet 21, bit 4	Octet 21, bit 7	4 bit	boolean	0 or 1								
Interpretation:	$RXCHID = \begin{cases} Rx \\ Rx \end{cases}$	$RXCHID = \begin{cases} RxV - Pol Channel & for RXCHID_{code} = 0 \\ RxH - Pol Channel & for RXCHID_{code} = 1 \end{cases}$											
Dependencies:		ne information of tarisation of the ac			risation Field" (3.2.5.13.1.1) the								

3.2.2.6 Instrument Configuration ID

Description:	The Instrument C	Configuration ID is	intended to supp	oort ground oper	rations. It identifies in the								
	Space Packets the	ne onboard config	uration of the Ins	trument under v	which the Instrument has								
	operated and ger	nerated the data t	ake. Knowledge	of the configurat	ion is a prerequisite for ground								
	processing of the	data take raw da	ıta.										
	The Instrument of	onfiguration ID is	a patchable Insti	rument paramete	er and is under control of								
	ground operation	round operations. It has to be patched together with an Instrument configuration change. An											
	Instrument config	nstrument configuration change is mainly induced by a change of the onboard Radar Data Base											
	(RDB), e.g. chan	RDB), e.g. change of beam tables, ECC programs, etc											
Performance:	constant value di	uring the data take	е										
Short Name:	ICID												
Code Name:	ICID _{code}												
Code Properties	Start Position:	End Position:	Size of Code	Data Type	Applicable Range of Code:								
	Octet 22, bit 0	Octet 25, bit 7	32 bit	TBD	TBD								
Interpretation:													
	TBD by ESA/ES0	OC											
Dependencies:	none												

3.2.3 Sub-commutated Ancillary Data Service

This service provides Spacecraft Ancillary Data in terms of S/C PVT and S/C Attitude Data periodically

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 23 of 85

received from the platform.

The S/C ancillary data are defined in Table 3.2-5, Table 3.2-6 and Table 3.2-9.

The update rate of the data is up to 1Hz which is much lower than the PRF rate of Space Packet generation. Hence, it is decided to sub-commutate the data in the Space Packet Secondary Header in portions of 16bit data words. For identification of the sub-commutated data words a 16bit word index is referenced to each word which is defined in Table 3.2-5, Table 3.2-6 and Table 3.2-9.

PARAMETE	ERS		Word Index
16 bit Dummy	/ Data	1	0
PVT ANCILLARY DATA (orga	nised	d in 16 bit words)	
			1
X- axis position ECEF in IEEE-754 double		64 bit float	2
precision format (metres)		04 bit iloat	3
			4
			5
Y- axis position ECEF in IEEE-754 double		64 bit float	6
precision format (metres)		04 bit iloat	7
			8
			9
Z- axis position ECEF in IEEE-754 double		64 bit float	10
precision format (metres)		04 bit noat	11
			12
X- velocity ECEF in IEEE-754 single		32 bit float	13
precision format (metres/sec)		oz bit noat	14
Y- velocity ECEF in IEEE-754 single		32 bit float	15
precision format (metres/sec)		oz bit noat	16
Z- velocity ECEF in IEEE-754 single		32 bit float	17
precision format (metres/sec)		JZ Dit Hoat	18
		Unsigned 16 bit integer	19
POD Solution Data Stamp in CCSDS CUC format (64-bit) - GPS Time	2	Unsigned 16 bit integer	20
(see Table 3.2-7)	3	Unsigned 16 bit integer	21
, in the second	4	Unsigned 16 bit integer	22

Table 3.2-5: S/C PVT Ancillary Data Table

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 24 of 85

S/C ATTITUDE ANCILLARY DATA	(organised in 16 bit words)	Word Index
Q0 Attitude Quaternion	32 bit float	23
Qu Attitude Quaternion	32 bit iloat	24
Q1 Attitude Quaternion	32 bit float	25
Q17tttttade Quatermon	oz bit nodt	26
Q2 Attitude Quaternion	32 bit float	27
Q27 tititade Quaterriion	oz sit nodt	28
Q3 Attitude Quaternion	32 bit float	29
Qo / Illitado Qualorriion	oz ak node	30
S/C ωx angular rate [rad/sec]	32 bit float	31
or o with any and rate fraction	oz ak node	32
S/C ωy angular rate [rad/sec]	32 bit float	33
or o wy arrigarar rato (racross)	oz ak node	34
S/C ωz angular rate [rad/sec]	32 bit float	35
o/o wz drigalar rato [rad/oco]	oz sit nodt	36
D. J. T	1 Unsigned 16 bit integer	37
Data Time Stamp in CCSDS CUC format (64-bit) - GPS Time	2 Unsigned 16 bit integer	38
(see Table 3.2-7)	3 Unsigned 16 bit integer	39
	4 Unsigned 16 bit integer	40
Pointing Status	16 bit	41

Table 3.2-6: S/C Attitude Ancillary Data Table

The <u>reference frames</u> for the S/C Attitude Quaternions and the S/C angular rates as given in [NRD 02] are as follows:

- the S/C Attitude Quaternions represent the S/C attitude wrt. the Orbital Reference Frame which, in NPM/OCM, is the Zero-Doppler Reference Frame. Q0 is the real component and Q1, Q2, Q3 are the vector components of the Attitude Quaternion.
- the S/C inertial angular rate vector is measured in the Body Fixed Reference Frame.

bit→	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
data for word index 37	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	2 ³¹	2 ³⁰	2 ²⁹	2 ²⁸	2 ²⁷	2 ²⁶	2 ²⁵	2 ²⁴
data for word index 38	2 ²³	2 ²²	2 ²¹	2 ²⁰	2 ¹⁹	2 ¹⁸	2 ¹⁷	2 ¹⁶	2 ¹⁵	2 ¹⁴	2 ¹³	2 ¹²	2 ¹¹	2 ¹⁰	2 ⁹	2 ⁸
data for word index 39	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰	2 -1	2 -2	2 -3	2-4	2 ⁻⁵	2 -6	2 ⁻⁷	2-8
data for word index 40	2 -9	2 ⁻¹⁰	2 ⁻¹¹	2 ⁻¹²	2 ⁻¹³	2 ⁻¹⁴	2 ⁻¹⁵	2 ⁻¹⁶	2 ⁻¹⁷	2 ⁻¹⁸	2 ⁻¹⁹	2 ⁻²⁰	2 ⁻²¹	2 ⁻²²	2 ⁻²³	2 ⁻²⁴

Table 3.2-7: S/C Ancillary Data GPS Time Stamp Format (in units of seconds)

	msb															Isb
bit→	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
data for word index 41			AO	CS OF	P Mod	е					n/a			RE	PE	YE

Table 3.2-8: Pointing Status Format

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 25 of 85

with

Parameter	Description	Value
AOCS OP Mode	AOCS Operational Mode	0: no mode
		5: NPM (Normal Pointing Mode)
		6: OCM (Orbit Control Mode)
		other values are not applicable
RE	Roll Error Status	0: roll axis is fine pointed
		1: roll axis is degraded
PE	Pitch Error Status	0: pitch axis is fine pointed
		1: pitch axis is degraded
YE	Yaw Error Status	0: yaw axis is fine pointed
		1: yaw axis is degraded

ANTENNA & TGU TEM (organised in			Word Index
Temperature Upd	atre S	Status (16bit)	42
Tile 1 EFE H Temperature (8bit)	7	Tile 1 EFE V Temperature (8bit)	43
Tile 1 Active TA Temp. (8bit)	7	File 2 EFE H Temperature (8bit)	44
Tile 2 EFE V Temperature (8bit)		Tile 2 Active TA Temp. (8bit)	45
Tile 3 EFE H Temperature (8bit)	-	Tile 3 EFE V Temperature (8bit)	46
Tile 3 Active TA Temp. (8bit)	٦	File 4 EFE H Temperature (8bit)	47
Tile 4 EFE V Temperature (8bit)		Tile 4 Active TA Temp. (8bit)	48
Tile 5 EFE H Temperature (8bit)	-	Tile 5 EFE V Temperature (8bit)	49
Tile 5 Active TA Temp. (8bit)	٦	File 6 EFE H Temperature (8bit)	50
Tile 6 EFE V Temperature (8bit)		Tile 6 Active TA Temp. (8bit)	51
Tile 7 EFE H Temperature (8bit)	-	Tile 7 EFE V Temperature (8bit)	52
Tile 7 Active TA Temp. (8bit)	٦	File 8 EFE H Temperature (8bit)	53
Tile 8 EFE V Temperature (8bit)		Tile 8 Active TA Temp. (8bit)	54
Tile 9 EFE H Temperature (8bit)	-	Tile 9 EFE V Temperature (8bit)	55
Tile 9 Active TA Temp. (8bit)	Т	ïle 10 EFE H Temperature (8bit)	56
Tile 10 EFE V Temperature (8bit)		Tile 10 Active TA Temp. (8bit)	57
Tile 11 EFE H Temperature (8bit)	Т	ile 11 EFE V Temperature (8bit)	58
Tile 11 Active TA Temp. (8bit)	Т	ïle 12 EFE H Temperature (8bit)	59
Tile 12 EFE V Temperature (8bit)		Tile 12 Active TA Temp. (8bit)	60
Tile 13 EFE H Temperature (8bit)	Т	ile 13 EFE V Temperature (8bit)	61
Tile 13 Active TA Temp. (8bit)	Т	ïle 14 EFE H Temperature (8bit)	62
Tile 14 EFE V Temperature (8bit)		Tile 14 Active TA Temp. (8bit)	63
n/a		TGU Temperature (7bit)	64

Table 3.2-9: Antenna and TGU Temperature HK Data Table

The Tile EFE H / V temperature is the average temperature of the EFE TRMs of a Tile assigned to the

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 26 of 85

corresponding polarisation H or V. The EFE and the TA temperatures are represented by a 8 bit code.

The TGU Temperature is a 7bit code value shown in Table 3.2-10.

The conversion of the code values to engineering values is described in the Annex 5.4 for EFE/TA and TGU temperatures.

Table 3.2-10: TGU Temperature Format

The temperature HKs are acquired at different times throughout the operation. In detail, in a 16s period the SES acquires sequentially the temperature HKs of 14 Tiles and the temperature HK of the TGU, approximately, one HK value per second.

Temperature HK acquisition and the updating of their corresponding values in the Ancillary Data field of the SAR header cannot be performed synchronously by the SES. Updating of the Ancillary Data in the SAR header is coupled to the reception of an Attitude Data set from the platform (received with 1 Hz rate). Whereas, acquisition of Temperature HKs is coupled to a SES internal acquisition cycle.

Therefore, depending on the actual timing between these two events, it may happen that a temperature HK value just acquired is a little bit too late for insertion into the actual update of the Ancillary Data (in this case the HK Update Status in Table 3.2-11 will indicate no update). The temperature HK will then be updated during the next update event (triggered by reception of the next Attitude Data set).

On the other hand, it may happen that two temperature HK values will be updated at the same time during an update of the Ancillary Data.

In any case, during a 16s interval all Tile 'n' and TGU temperature HKs will be updated in the SAR headers. The Temperature HK Update Status in Table 3.2-11 identifies the temperature HK values (of Tile 'n' or TGU) which have been acquired and updated in the latest update of the Ancillary Data.

	msb	msb														Isb
bit→	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
data for word index 42	n/a	TGU	Tile	Tile	Tile	Tile	Tile	Tile 6	Tile	Tile 8	Tile	Tile 10	Tile	Tile	Tile	Tile

Table 3.2-11: Temperature HK Update Status

Update Status bit value	Description
0	HK not updated
1	HK of relevant Tile 'n' or TGU updated

Table 3.2-12 shows the Service field of the Sub-commutation Service providing the Data Word Index and the corresponding Data Word.

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 27 of 85

Octet Offset		bit											
		I		I				I					
	bit 0	bit 1	bit 2	bit 3	bit 4	bit 5	bit 6	bit 7					
26		Sub-	commuta	ated Anc	illary Dat	ta Word I	ndex						
27		٥.	.b	4a4ad A	ma!llam.	Data Wa							
28		51	ıb-comm	nutated A	ıncıllary	Data Wo	ra						

Table 3.2-12: Sub-commutation Ancillary Data Service Field

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 28 of 85

Description:	The Sub-commu	tated Ancillary Da	ta Word Index is	a rotating index v	which	n identifies the actual			
	16bit data word (see Table 3.2-5 a	nd Table 3.2-6 ar	nd Table 3.2-9) ir	the	sub-commutation frame			
	of the Service fie	of the Service field.							
	A combined PVT	/Attitude/Tempera	ature HK data set	consists of 64 da	ata w	vords which are			
		•				from 1 to 64 with one			
		· ·	· ·	· ·		to 64) is assigned in the			
	packet header w	hich identifies the	significance of the	e data word.					
	_	consistent set o		-					
		_	-			levant data set, i.e. 1 to			
				-	erat	ure HK data (note also,			
	that PVT and At	titude data sets	have their own ti	me stamps).					
	A word index val	ue equal "0" will ir	ndicate invalidity o	of the inserted da	ıta w	ord. A new PVT/Attitude			
	data set is receiv	ed from the platfo	orm each second.	During the short	time	e of downloading of a new			
	data set to RxM t	the insertion of the	e old data into the	header stops ar	nd th	e word index as well as			
	the data word are	e set to value "0".	This indicates that	at there are no P	VT/A	ttitude/Temperature data			
						leted, insertion into packet			
	headers restarts	with the new PVT	/Attitude/Tempera	ature data at inde	ex=1				
Performance:	variable value du	ring the data take	}						
Short Name:	ADWIDX								
Code Name:	$ADWIDX_{code}$								
Code Properties	Start Position:	End Position:	Size of Code	Data Type	Ар	plicable Range of Code:			
				•		phoable range of Gode.			
	Octet 26, bit 0	Octet 26, bit 7	8 bit	unsigned int.	0	64			
Interpretation:	Octet 26, bit 0	Octet 26, bit 7	8 bit		0	 			
Interpretation:		Octet 26, bit 7 $WIDX_{code} \ \ \text{identifi}$		unsigned int.	<u> </u>	64			
Interpretation:	ADWIDX = AD	$WIDX_{code}$ identifi	ies the index of a	unsigned int. 16 bit word of the	e cor	64			
Interpretation:	ADWIDX = AD	$WIDX_{code}$ identifi	ies the index of a	unsigned int. 16 bit word of the	e cor	64 mbined			
Interpretation:	ADWIDX = AD PVT/Attitude/Ten 3.2-9).	$W\!I\!D\!X_{code}$ identifingerature Ancillar	ies the index of a y Data (see indice	unsigned int. 16 bit word of the es in Table 3.2-5	e cor , Ta	64 mbined			
Interpretation:	$ADWIDX = AD$ PVT/Attitude/Ten 3.2-9). $ADWIDX_{code} =$	$W\!I\!D\!X_{code}$ identifingerature Ancillar	ies the index of a y Data (see indice Data are available	unsigned int. 16 bit word of the es in Table 3.2-5 in the beginning	e cor , Ta or d	64 mbined ble 3.2-6 and Table luring the data take.			
Interpretation:	$ADWIDX = AD$ PVT/Attitude/Ten 3.2-9). $ADWIDX_{code} = ADWIDX_{code} = ADWIDX_{code} = ADWIDX_{code}$	$WIDX_{code}$ identifingerature Ancillar 0 if no Ancillary E	ies the index of a y Data (see indice Data are available from 1 to 64 if Ar	unsigned int. 16 bit word of the es in Table 3.2-5 in the beginning acillary Data are	e cor , Ta or d	64 mbined ble 3.2-6 and Table luring the data take.			

suspended service (no reception of Ancillary Data from platform).

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 29 of 85

3.2.3.2 Sub-commutated Ancillary Data Word

<u> </u>	minatatoa 7 moi		-							
Description:	The Sub-commu	The Sub-commutated Ancillary Data Word is a 16bit data word of the S/C Ancillary Data set (see								
	Table 3.2-5, Tab	Table 3.2-5 , Table 3.2-6 and Table 3.2-9) identified by ADWIDX .								
Performance:	variable value du	ring the data take								
Short Name:	ADW									
Code Name:	ADW_{code}	ADW_{code}								
Code Properties	Start Position: End Position: Size of Code Data Type Applicable Range of									
	Octet 27, bit 0	Octet 28, bit 7	16 bit	variable	variable					
Interpretation:	The interpretation	n of ADW depends	s on the value of	$ADWIDX_{code}$.						
	The format and p	hysical units of th	e ADW values ca	n be referenced	in Table 3.2-5 , Table 3.2-6 or					
	Table 3.2-9 by in	$dex ADWIDX_{code}$.								
Dependencies:	Values of ADWII	DX_{code} and ADW_{code}	are in fixed rela	tion.						

3.2.4 Counters Service

The Counters Service provides two counters, the Space Packet Count and the PRI Count as shown in Table 3.2-13.

Octet Offset	bit										
	bit 0	bit 1	bit 2	bit 3	bit 4	bit 5	bit 6	bit 7			
29											
30											
31		Space Packet Count									
32											
33											
34				PRI C	count						
35				PRIC	ount						
36											

Table 3.2-13: Counters Service Field

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 30 of 85

3.2.4.1 Space Packet Count

Description:

In nominal operation, the Space Packet Count represents the actual count of Space Packets output by the Instrument from the beginning of the data take. It will be a continuous count and supports simple checking for completeness of the number of Space Packets to be expected by nominal SAR Measurement Mode execution.

Exception:

In anomaly cases that result from a failure to generate a SAR Data space packet caused by

- RxM FIFO overflow caused by a data rate exceeding 640 Mbps
- or Packet length overflow
- or both

the counter will increment but not be transmitted because the output of failed Space Packets will be suppressed by the SAR Instrument during the recovery. In such an anomaly case, the Space Packet Count observed by the user in the received packets will not be continuous.

In this case the number of missing counts of the $\underline{\text{Mode PRI Count}}$ (see 3.2.4.2) indicates the exact number of Space Packets lost during the anomaly condition 1 .

The Instrument autonomously resumes nominal operation after the failure conditions.

Anomaly Detection:

An anomaly has occured if SPCT increments >1 between adjacent packets k-1 and k.

The number N of lost packets during the anomaly is:

$$N = PRICT_k - PRICT_{k-1} - 1 \text{ with}$$

 $PRICT_k$: the first packet after the anomaly $PRICT_{k-1}$: the last packet before the anomaly

Performance:	variable value du	variable value during the data take								
Short Name:	SPCT									
Code Name:	$SPCT_{code}$	$SPCT_{code}$								
Code Properties	Start Position:	End Position:	Size of Code	Data Type	Applicable Range of Code:					
	Octet 29, bit 0	Octet 32, bit 7	32 bit	unsigned int.	0 2 ³² -1					
Interpretation:	$SPCT = SPCT_{code}$ $SPCT_{code}$ is a property starts when $SPCT_{code}$ wraps to	gressive count indition ith value "0" at the	•	•	ed Space Packet. ke.					
Dependencies:	none									

¹ The number of missing counts in the Space Packet Count may be ambiguous due to the complexity of the internal recovery process. Therefore, the number of missing Mode PRI counts shall be used as a precise indicator of missing packets.

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 31 of 85

3.2.4.2 Mode PRI Count

3.2.4.2 Mode P	RI Count								
Description:	The PRI Count re	epresents the ac	tual cou	nt of PRIs	generate	d by the	Instrumer	nt from the	;
	beginning of the	data take (ECC	executio	n).					
	In the series of d	own-linked spac	e packe	ts the PRI	Count ma	ay appea	ar as a bro	ken coun	t between
	downlinked pack	downlinked packets. Such a broken PRI Count is an indicator that space packet generation has							
	been suppressed	been suppressed in the Instrument for a number of PRIs.							
	During nominal of	peration suppre	ssion of	space pac	ket gene	ration is	a commor	n means o	luring a
	data take to avoi	data take to avoid generation of useless packets which would otherwise burden data storage and							
	downlink budgets	S.							
	Examples for sup	opression of use	ess pac	kets are e	.g. during	PRIs:			
	• for warmup or	stabilisation							
	to fade out any noise measure	_	als from	travelling ⁻	Tx pulses	and the	ir echoes I	pefore pe	rforming a
	Example:			, ,				T	
	SPCT	s	s+1	s+2	s+3	s+4	s+5	s+6	
	PRICT	р	p+1	p+2	p+16	p+17	p+18	p+19	
	Between Space	Packets (s+2) ar	nd (s+3)	there is a	gap of 13	PRIs fo	r which no	Space P	ackets
	have been record	ded.							
	Each SAR mode	•		•		•			
	execution. This r			-	-	-		_	ning (i.e.
	the first PRI in th			y will have	assigne	d the Mo	de PRI Co	ount = 2).	
Performance:	variable value du	iring the data tak	e						
Short Name:	PRICT								
Code Name:	$PRICT_{code}$								
Code Properties	Start Position:	End Position:	Size	of Code	Data Ty	/pe	Applicab	le Range	of Code:
	Octet 33, bit 0	Octet 36, bit 7	32 bit		unsigne	ed int.	0 2 ³² -1		
Interpretation:									
	PRICT = PRICT	T_{code}							
	$PRICT_{code}$ is a co	unt incremented	bv "1" fo	or each PR	RI of the d	lata take	. It mav be	a broker	count in
	the stream of rec								
	PRICT _{code} wraps	•							
	In the first genera	ated space pack	et of the	data take	$PRICT_{code}$	_e starts v	with a value	e >0 since	e TxM
	gain stabilisation	and optional Fro	ontend w	varm-up ta	ke place	in the ve	ery beginni	ng of EC	2
	execution for a n	umber of PRIs w	ith supp	ression of	space pa	acket ge	neration.		
Dependencies:	PRICT _{code} of the								
	depends on ECC				-			-	
	flagged in the sp	ace packet ailio	iai c u ua	ııa, su, iile	I KICI cod	le UliSEL	valu c Call I	iot ne hie	uici c u.
l	i .								

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 32 of 85

3.2.5 Radar Configuration Support Service

The Radar Configuration Support Service provides the reporting of the radar configuration parameters that are applicable to the associated measurement data (i.e. the User Data) contained in the packet.

The Radar Configuration Support Service consists of the fields shown in Table 3.2-14.

Octet Offset				bi	it				
	bit 0	bit 1	bit 2	bit 3	bit 4	bit 5	bit 6	bit 7	
37	Error Flag	n	/a		E	BAQ Mod	e		
38			В	AQ Bloc	k Lengtl	<u>1</u>			
39				n/					
40			R	ange De	cimation	<u>1</u>			
41				Rx G	ain				
42				Tx Ram	n Rate				
43				- A IXIII	ip itate				
44		Ty Puleo Start Fraguency							
45		Tx Pulse Start Frequency							
46		Tx Pulse Length							
47									
48				ı					
49		n/a				Rank			
50									
51				PF	રા				
52									
53									
54				SW	ST				
55									
56					_				
57				SV	VL				
58									
59									
60			S	AS SSB	Message	9			
61									
62									
63			S	ES SSB	Message	9			
64									

Table 3.2-14: Radar Configuration Support Service Field

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 33 of 85

3.2.5.1 Error Flag

3.2.3.1 EIIOI I	9									
Description:	The Error Flag in	The Error Flag indicates a parity error in the SES SSB message received by the RxM for the								
	current packet.	current packet.								
Performance:	should be always	s "0". Value "1" inc	licates a non-nor	minal situation.						
Short Name:	ERRFLG									
Code Name:	$ERRFLG_{code}$									
Code Properties	Start Position:	End Position:	Size of Code	Data Type	Applicable Range of Code:					
	Octet 37, bit 0	Octet 37, bit 0	1 bit	boolean	0,1					
Interpretation:	In case of ERRF	$ERRFLG_{code} = \begin{cases} 0 & \text{for nominal condition} \\ 1 & \text{for SES - SSB message parity error} \end{cases}$ In case of $ERRFLG_{code} = 1$ the actual packet contents is inconsistent and the packet shall be discarded (not to be used for SAR image generation).								
Dependencies:	None		<u> </u>	,						

3 2.5.2 BAQ Mode

3.2.5.2 BAQ M	oae											
Description:	The BA	AQ Mode i	ndicates th	ne mode	e of operation of t	he F	DBAQ comp	ression.				
Performance:		variable value during the data take (different values between signal types "Echo", Noise" and "Calibration" but constant value within each signal type)										
Short Name:	BAQM	BAQMOD										
Code Name:	BAQM	$BAQMOD_{code}$										
Code Properties	Start F	Position:	End Pos	ition:	Size of Code	Dat	а Туре	Applicable Range of 0	Code:			
	Octet 3	37, bit 3	Octet 37,	bit 7	5 bit	enu	ımeration	0 31				
Interpretation:												
		BAQM	IOD code		BAQMOD		Comment					
		()	E	SYPASS MODE							
		1 t	o 2		-		not applicable			not applicable		
		(3	В	AQ 3-BIT MODE	-BIT MODE No EC						
		4	4	B	AQ 4-BIT MODE		No EC					
		ţ	5	B	AQ 5-BIT MODE		No EC					
		6 to	11		-		not applicable					
		1	2	F	DBAQ Mode 0		nominal F					
		1	3	F	DBAQ Mode 1		FDBAQ wi selection the	th first alternative rate nresholds				
		1	4	F	FDBAQ Mode 2			th second alternative ion thresholds				
		15 t	o 31		-		not applica	ıble				
Dependencies:	Follow	ing depen	dencies ex	ist with	respect to SIGTY	P_{code}	:					
	• Calib	oration dat	a (SIGTYP	_{code} >7,	all $\mathit{CALTYP}_\mathit{code}$) ar	e on	ly with BAQN	$MOD_{code} = 0$				
	• Nois	e data (SI	$GTYP_{code} =$	1) are o	only with BAQMOL	code	=0 or 3 or 4	or 5				
	• For I	Echo data	(SIGTYP cod	_{de} =0) a	$\parallel BAQMOD_{code}$ are	e allo	wed					

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 34 of 85

3.2.5.3 BAQ Block Length

Description:	The BAQ Block Length is the number of complex radar samples per BAQ block. The BAQ block represents a data block for which the quantisation is adapted according to the block statistics.								
Performance:	constant value d	uring the data tak	е						
Short Name:	BAQBL	BAQBL							
Code Name:	$BAQBL_{code}$	$BAQBL_{code}$							
Code Properties	Start Position:	End Position:	Size of Code	Data Type	Applicable Range of Code:				
	Octet 38, bit 0	Octet 38, bit 7	8 bit	unsigned int.	31				
Interpretation:	$BAQBL = 8 \cdot \left(BAQBL_{code} + 1\right)$ Only one operational value $BAQBL$ =256 is applicable for Sentinel-1 operation.								
Dependencies:	none								

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 35 of 85

3.2.5.4 Range Decimation

3.2.5.4 Range	Decimation									
Description:	The Range Dec	cimation indicat	es the use	d LowPass	s filter and dow	/n-sampling ra	tio for decimation			
	of the radar dat	a in the sampli	ng window	according	to the needed	mode bandwi	dth. The resulting			
	Sampling Frequency	Sampling Frequency after decimation applies to that of the SAR user data in the Space Packet.								
Performance:	variable value of each swath)	variable value during the data take (different values between swathes but constant value within each swath)								
Short Name:	RGDEC	RGDEC								
Code Name:	$RGDEC_{code}$									
Code Properties	Start Position:	End Positio	n: Size	of Code	Data Type	Applicabl	e Range of Code:			
	Octet 40, bit 0	Octet 40, bit	7 8 bit		enumeration	0 11				
Interpretation:	$RGDEC_{code}$ is e	quivalent to the	selected I	Filter No.		·				
	RGDEC _{code} (Filter No.)	Decimation Filter Bandwidth [MHz]	Decimat Ratio L/M	Freq after I	mpling uency f_{dec} Decimation [MHz]	Filter Length N_F [Samples]	SAR Swath			
	0	100.00	$\frac{3}{4}$	f _{dec} =	$= \frac{3}{4} \cdot 4 \cdot f_{ref}$	28	Full Bandwidth			
	1	87.71	$\frac{2}{3}$	f_{dec} =	$=\frac{2}{3}\cdot 4\cdot f_{ref}$	28	S1, WV1			
	2	n/a	n/a		n/a	n/a	n/a			
	3	74.25	$\frac{5}{9}$	$f_{dec} =$	$= \frac{5}{9} \cdot 4 \cdot f_{ref}$	32	S2			
	4	59.44	$\frac{4}{9}$	f_{dec} =	$= \frac{4}{9} \cdot 4 \cdot f_{ref}$ $= \frac{3}{8} \cdot 4 \cdot f_{ref}$	40	S3			
	5	50.62	$\frac{3}{8}$	f _{dec} =	$=\frac{3}{8}\cdot 4\cdot f_{ref}$	48	S4			
	6	44.89	$\frac{1}{3}$	f_{dec} =	$= \frac{1}{3} \cdot 4 \cdot f_{ref}$	52	S5			
	7	22.2	$\frac{1}{6}$	f_{dec} =	$= \frac{1}{6} \cdot 4 \cdot f_{ref}$ $= \frac{3}{7} \cdot 4 \cdot f_{ref}$	92	EW1			
	8	56.59	$\frac{3}{7}$			36	IW1			
	9	42.86	$\frac{5}{16}$	$f_{dec} =$	$\frac{5}{16} \cdot 4 \cdot f_{ref}$	68	S6, IW3			
	10	15.1	$\frac{3}{26}$	$f_{dec} =$	$\frac{\frac{5}{16} \cdot 4 \cdot f_{ref}}{\frac{3}{26} \cdot 4 \cdot f_{ref}}$ $\frac{\frac{4}{11} \cdot 4 \cdot f_{ref}}{\frac{4}{11} \cdot 4 \cdot f_{ref}}$	120	EW2, EW3, EW4, EW5			
	11	48.35	$\frac{4}{11}$	$f_{dec} =$	$=\frac{4}{11}\cdot 4\cdot f_{ref}$	44	IW2, WV2			
	with $f_{ref} = 37.5$	53472224 [MH:	z].							
	Note: Filter Len	gth N_F is give	n for a san	npling frequ	uency of $4 \cdot f_{ro}$	ef				
Dependencies:	the selected de number of com				of complex sa	amples after de	ecimation (i.e. the			

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 36 of 85

3.2.5.5 Rx Gain

Description:	The Rx Gain indicates the applied value of the commandable Rx attenuation in the receiver channel of the SES.							
Performance:	variable value du each swath)	variable value during the data take (different values between swathes but constant value within each swath)						
Short Name:	RXG	RXG						
Code Name:	RXG_{code}							
Code Properties	Start Position: End Position: Size of Code Data Type Applicable Range					plicable Range of Code:		
	Octet 41, bit 0	Octet 41, bit 7	8 bit	unsigned int.	0	63		
Interpretation:	$RXG = -0.5 \cdot RXG_{code} \text{ [dB]}$ $RXG \text{ values in the range from 0 to -31.5dB.}$							
Dependencies:	none							

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 37 of 85

3.2.5.6 Tx Pulse Ramp Rate

Description:	The Tx Pulse Ra	mp Rate indicates	s the linear FM ra	te at which the fr	eque	ency changes over the				
	pulse duration.				-					
	The parameter va	alue refers to the	Tx pulse transmit	ted in the PRI wl	nen t	the SAR echo data of this				
	Space Packet ha	ve been sampled	. Hence, due to the	ne travel time fro	m Tx	c pulse transmission to its				
	echo reception th	nis parameter doe	s not describe the	e originating Tx p	ulse	of the SAR echo data of				
	this packet. The	number of PRIs o	ccuring from Tx p	ulse transmissio	n to	echo reception is defined				
	by parameter "Rank" (see 3.2.5.9). Hence, the Tx pulse parameter fitting to the (transmit)									
			· ·	t can be found ir	the	packet generated "Rank"				
	,	stant PRI assume	•							
Performance:	variable value du each swath)	variable value during the data take (different values between swathes but constant value within each swath)								
Short Name:	TXPRR									
Code Name:	$TXPRR_{code}$									
Code Properties	Start Position:	End Position:	Size of Code	Data Type	Ар	plicable Range of Code:				
	Octet 42, bit 0	Octet 43, bit 7	16 bit	code	0	65535				
Interpretation:	$TXPRR_{code}[1:15]$ $TXPRR_{code}[0] = 0$ $TXPRR_{code}[0] = 1$ $S = \begin{cases} 0 & \text{for } P = 1 \\ 1 & \text{for } P = 1 \end{cases}$ The signed ramp	0 for transmitted I for for for for transmitted I for for for for for transmitted I for	PRR _{code}) denotes Down-Chirp ed Up-Chirp expressed in term then:	the magnitude of	of the	e ramp rate TXPRR .				
Dependencies:	none									

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 38 of 85

3.2.5.7 Tx Pulse Start Frequency

Description:	The Tx Pulse Sta	art Frequency indi	cates the start fre	equency of the p	oulse.				
	The parameter va	alue refers to the	Tx pulse transmit	ted in the PRI w	hen the SAR echo data of this				
	Space Packet ha	ve been sampled	. Hence, due to t	ne travel time fro	om Tx pulse transmission to its				
	echo reception this parameter does not describe the originating Tx pulse of the SAR echo data of								
	this packet. The number of PRIs occuring from Tx pulse transmission to echo reception is defined								
	by parameter "Ra	ank" (see 3.2.5.9)	. Hence, the Tx p	ulse parameter	fitting to the (transmit)				
	properties of the	SAR echo data in	the actual packe	et can be found i	in the packet generated "Rank"				
	PRIs earlier (constant PRI assumed).								
Performance:	variable value du each swath)	ring the data take	e (different values	between swath	es but constant value within				
Short Name:	TXPSF								
Code Name:	$TXPSF_{code}$								
Code Properties	Start Position:	End Position:	Size of Code	Data Type	Applicable Range of Code:				
	Octet 44, bit 0	Octet 45, bit 7	16 bit	code	-22527 +22527				
	$TXPSF_{code}[0] = 1$ The sign of the sig	$TXPSF_{code}[0] \text{ (bit 0 of } TXPSF_{code}) \text{ denotes the polarity of } TXPSF$ $TXPSF_{code}[1:15] \text{ (bit 1 } 15 \text{ of } TXPSF_{code}) \text{ denotes the magnitude of } TXPSF$ $TXPSF_{code}[0] = 0 \text{ for negative start frequency}$ $TXPSF_{code}[0] = 1 \text{ for positive frequency}$ $The sign of the start frequency be expressed in terms of the polarity } P = TXPSF_{code}[0]:$ $S = \begin{cases} 0 & \text{for } P = 1 \\ 1 & \text{for } P = 0 \end{cases}$ $The start frequency TXPSF includes an additive term contributing from the ramp rate } TXPRR.$ $With this, TXPSF \text{ is defined:}$ $TXPSF = \frac{TXPRR}{4 \cdot f_{ref}} + (-1)^S \cdot TXPSF_{code}[1:15] \cdot \frac{f_{ref}}{2^{14}} \text{ in [MHz]}$							
Dependencies:	none								

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 39 of 85

3.2.5.8 Tx Pulse Length

Description:	The Tx Pi	lse I e	ngth indicates the	transmit duration	of the Tx nulse						
Description.						on the	SAR echo data of this				
	-			-			ulse transmission to its				
	-					-					
	echo reception this parameter does not describe the originating Tx pulse of the SAR echo data of										
	-	this packet. The number of PRIs occurring from Tx pulse transmission to echo reception is defined by parameter "Rank" (see 3.2.5.9). Hence, the Tx pulse parameter fitting to the (transmit)									
			,	•	•	•	,				
					et can be lound in	і ше ра	cket generated "Rank"				
Daufaumanaa		PRIs earlier (constant PRI assumed).									
Performance:		variable value during the data take (different values between swathes but constant value within each swath)									
0. 4.1		11)									
Short Name:	TXPL										
Code Name:	$TXPL_{code}$			·							
Code Properties	Start Pos	ition:	End Position:	Size of Code	Data Type	Appli	cable Range of Code:				
	Octet 46,	bit 0	Octet 48, bit 7	24 bit	unsigned int.	128	4223				
Interpretations	TVDI in	aite of t	time:		•						
interpretation:	TXPL in units of time:										
Interpretation:				27.52.472224.5							
interpretation:				= 37.53472224 [MHz]						
interpretation:	$TXPL = \frac{7}{2}$	$\frac{XPL_{co}}{f_{ref}}$	$rac{de}{}$ [us] with f_{ref} =			on the c	compling fraguency at				
interpretation:	$TXPL = \frac{T}{T}$ According	$\frac{TXPL_{co.}}{f_{ref}}$ ly, TXP	$\frac{de}{dt}$ [us] with f_{ref} = t^2 can be expressed.	ed in units of sar	nples depending	on the s	sampling frequency at				
interpretation:	$TXPL = \frac{T}{T}$ According	$\frac{TXPL_{co.}}{f_{ref}}$ ly, TXP	$rac{de}{}$ [us] with f_{ref} =	ed in units of sar	nples depending	on the s	sampling frequency at				
interpretation:	$TXPL = \frac{T}{T}$ According	$\frac{TXPL_{co.}}{f_{ref}}$ ly, TXP	$\frac{de}{dt}$ [us] with f_{ref} = t^2 can be expressed.	ed in units of sar	nples depending nstrument RxM:		sampling frequency at				
interpretation:	$TXPL = \frac{T}{T}$ According the difference	$\frac{TXPL_{co}}{f_{ref}}$ lly, $\frac{TXF}{TXF}$ nt stag	$\frac{de}{dt}$ [us] with f_{ref} = t^2L can be expressed the digital properties of the digital properties t^2L	ed in units of sar rocessing in the l	nples depending nstrument RxM:	er of Tx					
merpretation:	$TXPL = \frac{T}{T}$ According the difference Stage	TXPL _{co} f _{ref} ly, TXF nt stag num ADC	$\frac{de}{dt}$ [us] with f_{ref} = $\frac{de}{dt}$ [us] with f_{ref} = $\frac{dt}{dt}$ can be expressed as of the digital properties of the digital properties $\frac{dt}{dt}$ and $\frac{dt}{dt}$ coutput $\frac{dt}{dt}$ ber of complex Tx ples (I/Q pairs) at	ed in units of sar rocessing in the litty se samples at	nples depending nstrument RxM:	er of Tx					
interpretation:	$TXPL = \frac{T}{T}$ According the difference Stage	rxPL _{co} f _{ref} ly, TXF nt stag num ADC num sam DDC num	$\frac{de}{dt}$ [us] with f_{ref} = $\frac{de}{dt}$ [us] with f_{ref} = $\frac{dt}{dt}$ and be expressed as of the digital properties of the digital properties (local part) and the content of the complex of t	ed in units of sar rocessing in the lity se samples at Pulse output of	nples depending nstrument RxM:	er of Tx code	Samples				
interpretation:	$TXPL = \frac{7}{2}$ According the difference of th	rxPL _{co} f _{ref} ly, TXF nt stag num ADC num sam DDC num sam	$\frac{de}{dt}$ [us] with f_{ref} = $\frac{de}{dt}$ [us] with f_{ref} = $\frac{dt}{dt}$ and be expressed as of the digital properties of the digital properties and $\frac{dt}{dt}$ and $\frac{dt}{dt}$ are the context $\frac{dt}{dt}$ and $\frac{dt}{dt}$ are the conte	ed in units of sar rocessing in the litty se samples at Pulse output of pulse er the	nples depending nstrument RxM:	er of Tx $code$ $code$ $code$ $code$	Samples f_{dec} after				
Interpretation:	TXPL = 7 According the difference of the differ	rxPL _{co} f _{ref} ly, TXF nt stag num ADC num sam DDC num sam deci	$\frac{de}{dt}$ [us] with f_{ref} = $\frac{de}{dt}$ [us] with f_{ref} = $\frac{dt}{dt}$ and be expressed as of the digital properties of the digital proper	ed in units of sar rocessing in the litty se samples at a Pulse output of a pulse ter the tice Packet)	nples depending nstrument RxM:	er of Tx $code$ $code$ $code$ $code$	Samples f_{dec} after				
Interpretation:	TXPL = 7 According the difference of the differ	rxPL _{co} f _{ref} ly, TXF nt stag num ADC num sam DDC num sam deci	$\frac{de}{de}$ [us] with f_{ref} = $\frac{de}{de}$ = $\frac{de}{de}$ [us] with f_{ref} = $\frac{de}{de}$ = $\frac{de}{de$	ed in units of sar rocessing in the litty se samples at a Pulse output of a pulse ter the tice Packet)	nples depending nstrument RxM:	er of Tx $code$ $code$ $code$ $code$	Samples f_{dec} after				

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 40 of 85

3.2.5.9 Rank

Description:	The Rank indicates the number of PRIs between Tx pulse transmission and the reception of the corresponding echo from the swath of interest. The parameter value refers to the PRI value of the present space packet.							
Performance:	variable value du each swath)	ring the data take	e (different values	between swathe	es but constant value within			
Short Name:	RANK							
Code Name:	$RANK_{code}$							
Code Properties	Start Position:	End Position:	Size of Code	Data Type	Applicable Range of Code:			
	Octet 49, bit 3	Octet 49, bit 7	5 bit	unsigned int.	0 31			
Interpretation:	$RANK = RANK_{code}$							
Dependencies:	Rank depends of	n PRI and on the	distance to the in	naged swath.				

3.2.5.10 Pulse Repetition Interval

	topotition into i							
Description:	The PRI indicate	The PRI indicates the interval between transmission of Tx pulses.						
Performance:	variable value during the data take (different values between swathes but constant value within each swath)							
Short Name:	PRI							
Code Name:	PRI _{code}							
Code Properties	Start Position:	Start Position: End Position: Size of Code Data Type Applicable Range of Code:						
	Octet 50, bit 0	Octet 52, bit 7	24 bit	unsigned int.	0	2 ²⁴ -1		
Interpretation:	$PRI = \frac{PRI_{code}}{f_{ref}}$ [us] with $f_{ref} = 37.53472224$ [MHz]							
Dependencies:	none							

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 41 of 85

3.2.5.11 Sampling Window Start Time

Descriptio-n:	The Sampling Window Start Time defines the start time of the sampling window within the PRI for								
	non-calibration s	non-calibration signals.							
Performance:	variable value du each swath)	variable value during the data take (different values between swathes and varying vaues within each swath)							
Short Name:	SWST								
Code Name:	$SWST_{code}$								
Code Properties	Start Position:	End Position:	Size of Code	Data Type	Applicable Range of Code:				
	Octet 53, bit 0	ctet 53, bit 0 Octet 55, bit 7 24 bit unsigned int. 0 2 ²⁴ -1							
Interpretation:	SWST in units of t	ima:							

Interpretation:

SWST in units of time:

$$SWST = \frac{SWST_{code}}{f_{ref}} \ \ [\text{us}] \ \text{with} \ \ f_{ref} = 37.53472224 \ \ [\text{MHz}]$$

The significance of SWST and SWL is shown in following sketch:

The part of the acquired (commanded) sampling window which is processed and captured in the Space Packet is shown in following sketch:

The Decimation Filter suppresses the FIR filter transients in the acquired sampling window. The captured data in the Space Packet correspond to the data sampled Δt_{suppr} after the start of the acquired sampling window.

$$\Delta t_{suppr} = \frac{320}{8 \cdot f_{ref}}$$
 and $N3_{Rx}$ as given in 3.2.5.12

SWST is not applicable for calibration signals ($SIGTYP_{code} > 7$).

The acquisition timing for calibration signals is shown in the Annex section 5.3.

Dependencies: none

Dependencies:

none

Sentinel-1 SAR Space Packet Protocol Data Unit

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 42 of 85

3.2.5.12 Sampling Window Length

Description:	The Samp	oling W	indow Length defi	nes the	duration	of the acquired s	sampling window within the			
	PRI for no	on-calib	ration signals.							
Performance:	variable v each swa		ıring the data take	(differe	ent values	between swathe	es and varying vaues within			
Short Name:	SWL									
Code Name:	SWL_{code}	SWL_{code}								
Code Properties	Start Pos	ition:	End Position:	Size o	f Code	Data Type	Applicable Range of Code			
	Octet 56, bit 0 Octet 58, bit 7 24 b			24 bit		unsigned int.	0 2 ²⁴ -1			
nterpretation:	SWL in un	its of ti	me:							
	$SWL = \frac{S}{I}$	$\frac{WL_{code}}{f_{ref}}$	[us] with $f_{ref} = 3$	7.53472	2224 [MH	z] (see also fig	ures in 3.2.5.11)			
	According	gly, <i>SWI</i>	can be expresse	d in uni	ts of samp	oles depending o	on the sampling frequency at			
	the differe	ent stag	es of the digital pr	rocessir	ng in the Ir	nstrument RxM:				
	Stage		Applicability			Number o	of Rx Samples			
	1		oer of real ADC les at output of AD	OC .	$N1_{Rx} = 8 \cdot SWL_{code}$					
	2		per of complex sar airs) at output of [$N2_{Rx} = 4 \cdot SWL_{code}$					
	3	(I/Q p	per of complex sar airs) after decima n the Space Packe	tion	$N3_{Rx} = 2 \cdot \left(L \cdot \operatorname{int} \left[\frac{B}{M} \right] + D + 1 \right)$					
		deper	number of samples nds not only on SV so on the selected	٧L			d according to 3.2.5.4			
			s related paramete	ers:			FilterOutputOffset –17			
			DEC_{code}		with <i>Filte</i>	erOutputOffset a	ccording to Table 5.1-2			
		LMFilte	erOutputOffset		with <i>D</i> as	s a function of ($C = B - M \cdot \inf \left[\frac{B}{M} \right]$			
							function of <i>C</i> in Table 5.1-1			
			ole for all Signal Ty				section 5.3.			

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 43 of 85

3.2.5.13 SAS SSB Data Field

The SAS SSB Data field indicates the actual configuration of the SAS. The content of the SAS SSB Data field will have one of two possible interpretations depending on whether the Instrument is performing an Imaging/Noise operation or a Calibration operation. This is indicated by the value of a Flag in the SAS SSB data field (see Table 3.2-15).

Table 3.2-15: SAS SSB Data Field

Description:	The Flag in the SAS SSB message indicates both, the type of the message and the related operation (imaging/noise or calibration) commanded to the SAS.								
Performance:	variable value du	ring the data take	•						
Short Name:	SSBFLAG								
Code Name:	$SSBFLAG_{code}$								
Code Properties	Start Position:	End Position:	Size of Code	Data Type	Applicable Range of Code:				
	Octet 59, bit 0	Octet 59, bit 0	1 bit	boolean	0 or 1				
Interpretation:	$SSBFLAG = \begin{cases} In \end{cases}$	$SSBFLAG = \begin{cases} Imaging or Noise Operation & for SSBFLAG_{code} = 0 \\ Calibration Operation & for SSBFLAG_{code} = 1 \end{cases}$							
Dependencies:	none								

3.2.5.13.1 SAS SSB Data Field - Imaging/Noise

In case of the Flag="0" the content of the SAS SSB data field is to be interpreted for an Imaging/Noise operation as shown in Table 3.2-16.

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 44 of 85

Octet Offset				bit				
		ı	ı	ı	1		ı	1
	bit 0	bit 1	bit 2	bit 3	bit 4	bit 5	bit 6	bit 7
59	SSBFLAG		Dalavia eti e :		T	C		10
	= 0	l	Polarisatio	1	Temp	Comp	n.	/a
60	Elevat	tion Bea	am Address	<u> </u>	n	/a	<	
61			Azimuth	Beam A	Address			>

Table 3.2-16: SAS SSB Data (Imaging/Noise)

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 45 of 85

3.2.5.13.1.1 Polarisation

Description:	The Polari	The Polarisation defines the configuration of the polarisation.									
Performance:	constant v	alue d	uring the	data tak	е						
Short Name:	POL										
Code Name:	POL_{code}	POL_{code}									
Code Properties	Start Position: End Position:			ition:	Size of C	ode	Data Type	Ар	plicable Ranç	ge of Code:	
	Octet 59, b	oit 1	Octet 59	, bit 3	3 bit		enumeration	0	7		
Interpretation:											
		D	OI.	Pola	risation		Not				
		POL _{code} Tx Rx			Note	es					
			0	Н	-	Tx O	nly, Horizontal				
			1	Н	Н	RxH	is co-polar				
			2	Н	V	RxV	is cross-polar				
			3	Н	V+H	RxH	is co-polar, RxV	is cr	oss-polar	_	
			4	V	-		nly, Vertical				
			5	V	Н		is cross-polar			_	
			6	V	V	RxV is co-polar RxH is cross-polar, RxV is co-polar					
			7	V	V+H	RxH	is cross-polar, F	XV IS	co-polar		
	Note:			(DOI	0	nor.	7) (1)	1 D	WGHID (0.0.0	5 \ 11.	
	in the Dua						=7) the parame	ter <i>R.</i>	XCHID (3.2.2.)	o) tne	
	indicates t	ile KX	polarisatio	טוו טו נוופ	actual Sp	ace Fa	icket.				
Dependencies:	There are	followi	ing depen	dencies							
•			0 1								
					POL code	,	RXCHID				
				Ī	0		n/a				
					1		1				
					2		0				
					3		0 or 1				
					4		n/a				
					5		1				
				_	6		0				
ı					7		0 or 1				
	1										

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 46 of 85

3.2.5.13.1.2 Temperature Compensation

B	-: - ·	The Temperature Compensation indicates the activity of temperature compensation in the SAS.								
Description:	The Temperatur	re Compensation i	ndicates the activ	ity of temperature	e compensation in	n the SAS.				
Performance:	variable value d	uring the data take	е							
Short Name:	TCMP									
Code Name:	$TCMP_{code}$									
Code Properties	Start Position:	End Position:	Size of Code	Data Type	Applicable Ran	nge of Code:				
	Octet 59, bit 4	Octet 59, bit 5	2 bit	enumeration	0 3					
Interpretation:		•	•	•						
		TCMP _{code}	TO	CMP Description	ı					
		0	•	ompensation Anto						
		1	•	ompensation Antompensation Antompensation						
		2	•	ompensation Anto						
		3	Temperature Compensation Antenna FE: ON Temperature Compensation Antenna TA: ON							
		•			_					
Dependencies:	none									

3.2.5.13.1.3 Elevation Beam Address

Description:	The Elevation Beam Address addresses the beam excitation coefficients in elevation selected in actual PRI.							
Performance:	variable value du	variable value during the data take for other modes than Stripmap						
Short Name:	EBADR	EBADR						
Code Name:	$EBADR_{code}$	$EBADR_{code}$						
Code Properties	Start Position:	Start Position: End Position: Size of Code Data Type Applicable Range of Code:						
	Octet 60, bit 0	Octet 60, bit 3	4 bit	unsigned int.	0	15		
Interpretation:	$EBADR = EBADR_{code}$ identifies one of 16 available Elevation beams that is applied in actual PRI for the SAR imaging of the actual mode swath.							
Dependencies:	none							

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 47 of 85

3.2.5.13.1.4 Azimuth Beam Address

Description:	The Azimuth Bea	The Azimuth Beam Address addresses the beam excitation coefficients in azimuth selected in actual PRI.							
Performance:	variable value du	variable value during the data take for other modes than Stripmap and Wave							
Short Name:	ABADR	4BADR							
Code Name:	$ABADR_{code}$	$ABADR_{code}$							
Code Properties	Start Position:	End Position:	Size of Code	Data Type	App	licable Range of Code:			
	Octet 60, bit 6	Octet 61, bit 7	10 bit	unsigned int.	0	1023			
Interpretation:		$ABADR = ABADR_{code}$ identifies one of 1024 available Azimuth beams that is applied in actual PRI for the SAR imaging of the actual mode swath.							
Dependencies:	none								

3.2.5.13.2 SAS SSB Data - Calibration

In case of the Flag="1" the content of the SAS SSB data field is to be interpreted for a Calibration operation as shown in Table 3.2-17.

Octet Offset		bit									
	bit 0	bit 1	bit 2	bit 3	bit 4	bit 5	bit 6	bit 7			
59	SSBFLAG	SSBFLAG Polarisation Temp Comp n/a									
	= 1	•	Olarisatic	711	remp	Comp	11/	a			
60	SASTest	SASTest Cal Type n/a <									
61			Calibra	tion Bea	m Addre	ess		>			

Table 3.2-17: SAS SSB Data (Calibration)

3.2.5.13.2.1 Polarisation

See section 3.2.5.13.1.1

3.2.5.13.2.2 Temperature Compensation

See section 3.2.5.13.1.2

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 48 of 85

3.2.5.13.2.3 SAS Test Mode

Description:	Antenna Fronter during calibration								
Performance:	constant value d	uring the data to	ake						
Short Name:	SASTM								
Code Name:	$SASTM_{code}$	$SASTM_{code}$							
Code Properties	Start Position:	End Position	Size of Cod	de Data Ty	/pe	Applicable Range of Code:			
	Octet 60, bit 0	Octet 60, bit 0	1 bit	boolear	1	0 or 1			
Interpretation:	$SASTM = \begin{cases} SA \\ norr \end{cases}$	$SASTM = \begin{cases} SAS \text{ Test Mode active} & \text{for } SASTM_{code} = 0\\ \text{normal calibration mode} & \text{for } SASTM_{code} = 1 \end{cases}$							
Dependencies:									
	SASTM _{code}	SSBFLAG _{code}	CALMOD code	SIGTYP _{cod}		Comment			
	0	1	don't care ≥8 SAS Test Mode active						
	1 1 all applicable ≥8 normal calibration								

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 49 of 85

3.2.5.13.2.4 Cal Type

Description:	The Ca	l Type de	finas th	e type of a	nnlied internal (calibration operation	on in actual PRI. There are		
Description.		* -		• •		-			
				•	ons which are ci	naracterised by th	e different routings of the cal		
Denfermen		hrough th							
Performance:	variable	value di	iring the	e data take	!				
Short Name:	CALTYF	CALTYP							
Code Name:	CALTYF	code							
Code Properties	Start P	osition:	End F	osition:	Size of Code	Data Type	Applicable Range of Code:		
	Octet 6	0, bit 1), bit 1 Octet 60, bit 3		3 bit	enumeration	0 7		
Interpretation:									
		CALT	YP _{code}	CALTYP	Description	•	Notes		
		0		٦	Tx Cal				
		1		F	Rx Cal				
		2		EF	DN Cal				
		3		Т	A Cal				
		4		AF	DN Cal				
		5 tc	6		-	not applicable			
		7		TxH	l Cal Iso	Tx Cal Isolation	at Tx-Polarisation H		
		·		·					
Dependencies:		CALTYP is part of the parameter $SIGTYP$ (see 3.2.5.14.3) and is identical with the values for $SIGTYP > 7$.							
	Calibrat	tion data	(CALTY	P _{code} >7) a	re only with BAQ	$QMOD_{code} = 0$			
L	1	Calibration data ($CALTYP_{code} > 7$) are only with $BAQMOD_{code} = 0$							

3.2.5.13.2.5 Calibration Beam Address

Description:		The Calibration Beam Address addresses the beam excitation coefficients for a calibration							
	operation selecte	operation selected in actual PRI.							
Performance:	variable value du	variable value during the data take							
Short Name:	CBADR	CBADR							
Code Name:	$CBADR_{code}$	$CBADR_{code}$							
Code Properties	Start Position:	End Position:	Size of Code	Data Type	Applicable Range of Code:				
	Octet 60, bit 6	Octet 61, bit 7	10 bit	unsigned int.	0 1023				
Interpretation:	CBADR = CBADR	code identifies one	of 1024 available	Calibration bear	ms, that is applied in actual				
	PRI for standard	calibration or as p	part of RF charact	terisation by mea	ans of PCC coded calibration				
	beam sequences	.							
	a cam coquonoc	beam sequences.							
Dependencies:	none								

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 50 of 85

3.2.5.14 SES SSB Data Field

The SES SSB data field indicates the actual SES configuration. The SES SSB data field is shown in Table 3.2-18.

Octet Offset		Bit Offset									
	bit 0	bit 0 bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7									
62	Cal N	Node	n/a		Tx P	ulse Nur	nber				
63		Signal Type n/a Swap									
64		Swath Number									

Table 3.2-18: SES SSB Data Field

3.2.5.14.1 Calibration Mode

Description:		The Calibration Mode is information which is only relevant in case of a calibration operation. It indicates the type of PCC sequence applied for the actual calibration operation.							
Performance:		constant value during the data take							
Short Name:	CALMOD	CALMOD							
Code Name:	$CALMOD_{code}$	$CALMOD_{code}$							
Code Properties	Start Position:	Start Position: End Position: Size of Code Data Type Applicable Range of C							
	Octet 62, bit 0	Octet 62, bit 1	2 bit	enume	ration	0 3			
Interpretation:									
	CALMOD code	CALMO	D Description	Comment					
	0		ernal Calibration b	ased	supports monitoring of Phase/Gain drift in Imaging Modes				
	1	·				or Replica extraction and tion in Imaging Modes			
	2		Characterisation b	ased	used for characterisation of Tile Amplifiers in RFC Mode				
	3		Characterisation b	ased		or characterisation of Tile RMs in RFC Mode			
Dependencies:	$CALMOD_{code} = 0$	and 1 applies for i	nternal calibratior	within \$	SAR mea	asurement modes based on a			
	PCC2 sequence								
	$CALMOD_{code} = 2$	and 3 applies for	dedicated RFC m	ode (EC	CC_{code} =1	5).			
	Don't care <i>CALM</i> 3.2.5.14.3).	IOD in case of SSE	$BFLAG_{code}$ =0 (see	3.2.5.13	3.1) and £	SIGTYP _{code} <2 (see			

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 51 of 85

3.2.5.14.2 Tx Pulse Number

Description:		mber defines the	address of the Tx	Pulse selected i	in the Chirp Generator of the				
	SES.								
	The parameter va	The parameter value refers to the Tx pulse transmitted in the PRI when the SAR echo data of this							
	Space Packet ha	Space Packet have been sampled. Hence, due to the travel time from Tx pulse transmission to its							
	echo reception th	nis parameter doe	s not describe the	e originating Tx p	oulse of the SAR echo data of				
	this packet. The	number of PRIs o	ccuring from Tx p	ulse transmissio	n to echo reception is defined				
	by parameter "Ra	by parameter "Rank" (see 3.2.5.9). Hence, the Tx pulse parameter fitting to the (transmit)							
	properties of the	properties of the SAR echo data in the actual packet can be found in the packet generated "Rank"							
	PRIs earlier (con	PRIs earlier (constant PRI assumed).							
Performance:	variable value du each swath)	variable value during the data take (different values between swathes but constant value within each swath)							
Short Name:	TXPNO								
Code Name:	$TXPNO_{code}$								
Code Properties	Start Position:	End Position:	Size of Code	Data Type	Applicable Range of Code:				
	Octet 62, bit 3	Octet 62, bit 7	5 bit	unsigned int.	0 31				
Interpretation:	TXPNO = TXPNO	$TXPNO = TXPNO_{code}$ identifies the Tx pulse applied in actual PRI.							
Dependencies:	The related Tx po	ulse parameters a	re given in 3.2.5.	6, 3.2.5.7 and 3.2	2.5.8.				

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 52 of 85

3.2.5.14.3 Signal Type

Description:	The S	The Signal Type defines the kind of signal acquired in the actual PRI (e.g. echo, noise, calibration).							ıtion
Performance:	variab	ole value du	ıring 1	the data take					
Short Name:	SIGTY	SIGTYP							
Code Name:	SIGTY	P_{code}							
Code Properties	Start	Position:	End	l Position:	Size of Coo	le	Data Type	Applicable Range of C	ode:
	Octet	63, bit 0	Oct	Octet 63, bit 3 4 bit			enumeration	0 15	
Interpretation:									
		SIGTYP _{code} SIGTYP Description Notes					otes		
		0		Ec	ho	Radar echo signal (nominal SAR i		nominal SAR imaging)	
		1		No	Noise Noise measurement			t	
		2 to 7			- 1		t applicable		
		8		Tx	Tx Cal				
		9		Rx	Cal				
		10		EPDI	V Cal				
		11		TA	Cal				
		12		APDI	V Cal				
		13 to 1	4			no	t applicable		
		15		TxH C	al Iso	Tx	Cal Isolation at	Tx-Polarisation H	
Dependencies:	SIGTY	SIGTYP for SIGTYP _{code} >7 corresponds to CALTYP (see 3.2.5.13.2.4).							
	Calibr	ration data	(SIGT	TYP _{code} >7) are	e only with B	4QM	$IOD_{code} = 0$		
	Noise	data (SIGT	YP_{coo}	$_{le}$ =1) are only	y with <i>BAQM</i> o	OD_{co}	$_{ode}$ =0 or 3 or 4 or	5	

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 53 of 85

3.2.5.14.4 Swap Flag

Description:	The transiton of the Swap Flag indicates the event of potential updating of dynamic swath parameters.									
Performance:	variable value during the data take (see notes in below)									
Short Name:	SWAP									
Code Name:	$SWAP_{code}$									
Code Properties	Start Position:	Start Position: End Position: Size of Code Data Type Applicable Range of Code:								
	Octet 63, bit 7	Octet 63, bit 7	1 bit	boolean	0 or 1					
Interpretation:	of one or more of **TXPNO** **TXPL** **TXPSF* **TXPRR* **RGDEC* **SWL* **SWST* **PRI* **RANK* The update occur Note 1: The SWAL* mechanism, how Note 2: The Instructual measurem change values in Note 3: The above	rs at the PRI that P flag indicates upever, the updated ument implement ent mode design a swath along the e parameters will des in EW, IW ar	indicates the transplant of parameter need ation allows updath has been optimised at a take. also change due and Wave . These	usition of SWAP. eters by the imple not to change valuing of all above sed, so that only	e potential updating of values the altitude round the orbit: emented Instrument update alues. parameters. However, the SWST and SWL are planned to set between subswathes in icated by transitions of the					
Dependencies:	none									

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 54 of 85

3.2.5.14.5 Swath Number

Description:	The Swath Numb	The Swath Number indicates the swath in use in the actual PRI.								
Performance:	variable value du	ring the data take	•							
Short Name:	SWATH									
Code Name:	$SWATH_{code}$									
Code Properties	Start Position:	Start Position: End Position: Size of Code Data Type Applicable Range of Code:								
	Octet 64, bit 0	Octet 64, bit 7	8 bit	unsigned int.	0 127					
Interpretation:	 TXPNO TXPL TXPSF TXPRR RGDEC SWL SWST 		es an ensemble d	of swath specific	radar parameters:					
Dependencies:	 PRI RANK RXGAIN EBADR 									

3.2.6 Radar Sample Count Service

Table 3.2-19: Radar Sample Count Service Field

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 55 of 85

Description:	A Quad is define	d as a quadrupel	of sample values	s, namely:					
	1 I-Part ever	sample value							
	• 1 I-part odd	sample value							
	1 Q-Part even	1 Q-Part even sample value							
	• 1 Q-part odd	1 Q-part odd sample value							
	A complex radar	A complex radar sample is composed of one I-part and one Q-part sample value, respectively.							
	Consequently, the number of overall complex radar samples in the packet can be expressed as								
	the doubled value of the Number of Quads.								
Performance:	variable value during the data take								
Short Name:	NQ								
Code Name:	NQ_{code}								
Code Properties	Start Position:	End Position:	Size of Code	Data Type	App	olicable Range of Code:			
	Octet 65, bit 0	Octet 66, bit 7	16 bit	unsigned int.	0	52378 ¹			
Interpretation:									
	$NQ = NQ_{code}$								
	The number NSA	MP of complex ra	ıdar samples can	be expressed as	NSA	$AMP = 2 \cdot NQ$			
Dependencies:	none								

 $^{^1}$ The upper limit of the applicable range is based on a min. FDBAQ bitrate of 2.5. This leads to the max. possible number of samples $\mathit{NSAMP}_{\mathrm{max}} \cong (65534-62)octets \cdot 8bit / (2 \cdot 2.5bit) \cong 104755$ and with this $\mathit{NQ}_{\mathrm{max}} \cong 52378$

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 56 of 85

3.3 User Data Field

3.3.1 User Data Field Length

The User Data Field may have a variable length LEN_{UD} from PRI to PRI. The total length LEN_{SP} of the Space Packet is always a multiple of 4 octets.

 LEN_{SP} is composed of following contributions:

$$LEN_{SP} = LEN_{PH} + LEN_{SH} + LEN_{UD}$$

with

 LEN_{SP} : Total Length of Space Packet

LEN PH: Length of Primary Header (6 octets)

 LEN_{SH} : Length of Secondary Header (62 octets)

 LEN_UD : Variable Length of User Data Field

With the parameter "Packet Data Length" (PDL) in the Packet Primary Header (see Table 3.1-1) LEN_{UD} can be expressed as:

$$LEN_{UD} = PDL - LEN_{SH} + 1$$

Since $LEN_{PH} + LEN_{SH} = 68$ octets is a multiple of 4 octets, LEN_{UD} also has to be a multiple of 4 octets to ensure that the total Space Packet length LEN_{SP} is a multiple of 4 octets.

3.3.2 User Data Format Types

The User Data Field contains one of four different format types of digitized data. The different format types are the result of applying or bypassing specific digital processing functions in the Instrument digital Rx chain.

For each format type the ADC and SAR Packetisation functions are always active. They cannot be bypassed. The term "digital processing functions" hereafter refers only to those functions that can be controlled for bypassing.

Table 3.3-1 gives an overview of the possible data format types for the different types of acquired SAR data.

Table 3.3-2 lists the criteria for identification of the data format types in the User Data Field.

The detailed data formats together with the decoding algorithms are described in section 4.

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 57 of 85

		Data Format Types				
		Α	В	С	D	
		Bypass Data	Decimation Only	Decimation + BAQ	Decimation + FDBAQ (including EC)	
	SAR Echo Data			Х	Х	Format Type D will be the nominal option
User Data	SAR Calibration Data		X			Calibration Data only in Format Type B
	SAR Noise Data		Х	Х	х	For noise data different format options may be applicable
	Test Mode Data	Х	Х	Х	Х	For test mode data all format options may be applicable

Table 3.3-1: SAR Data versus Data Format Type

Data Format Type	$ \begin{array}{c c} BAQMOD_{code} & TSTMOD_{code} \\ \hline (3.2.5.1) & (0) \end{array} $		Comment			
Α	A 0 5;7		only in Test Mode			
В	0	0;4;6	$TSTMOD_{code}$ = 0 indicates measurement mode operation			
С	3;4;5	0;4;6	$TSTMOD_{code}$ = 0 indicates measurement mode operation			
D	12;13;14	0;4;6	$TSTMOD_{code}$ = 0 indicates measurement mode operation			

Table 3.3-2: Data Format Type Identification

3.3.2.1 Data Format Type A "Bypass"

This format type refers to digitized data with all digital processing functions in the Rx chain bypassed (see Fig. 3-1). Typically, this format type is output in Test Mode for test and debugging purposes.

Fig. 3-1: Active Functions for Bypass applied

3.3.2.2 Data Format Type B "Decimation Only"

This format type refers to digitized data with digital downconversion and decimation function applied (see Fig. 3-2). The data are digitally downconverted to baseband, low pass filtered and down-sampled accordingly. Typically, this format type is output during the acquisisiton of calibration data.

Fig. 3-2: Active Functions for "Decimation only" applied

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 58 of 85

3.3.2.3 Data Format Type C "Decimation + BAQ"

This format type refers to digitized data with all digital processing functions applied except the Entropy Coder (see Fig. 3-3). This format type is not foreseen for typical nominal operation. It offers a fix BAQ quantisation (not FDBAQ) with a fixed number of bits (according to *BAQMOD*) and without using the Entropy Coding and hence, without the impact of a VBR (variable bit rate).

Fig. 3-3: Active Functions for "Decimation + BAQ" applied

3.3.2.4 Data Format Type D "Decimation + FDBAQ"

This format type refers to digitized data with all digital processing functions active (see Fig. 3-4). The FDBAQ introduces a VBR compression. This format type is nominally used to output radar echo data.

Fig. 3-4: Active Functions for "Decimation + FDBAQ" applied

3.3.3 User Data Organisation

The user data are originating from a number of ADC samples per PRI which are digitally processed in the Instrument SES Rx chain in 4 data channels. Consequently, the user data are organised in the Space Packet User Data Field as 4 individual data sections.

The data channels/sections are defined in Table 4-1:

Channel Description Comment /Section ΙE In-Phase Components originating from Decimation Filter even output I-parts of Even samples 0, 2, 4, 6 ... ' Samples 10 I-parts of Odd In-Phase Components originating from Decimation Filter odd output Samples samples 1, 3, 5, 7 ... QΕ Q-parts of Even Quadrature Components originating from Decimation Filter even Samples output samples 0, 2, 4, 6 ... QO Q-parts of Odd Quadrature Components originating from Decimation Filter odd output Samples samples 1, 3, 5, 7 ...

Table 3.3-3: SAR Data Channel Definition

_

¹ The terminology "even" and "odd" samples originates from the Hardware counting scheme of the Decimation Filter which starts with the sample count=0 per PRI. So, e.g. the (demultiplexed) counts 0, 2,4,6, represent the "even" samples or "even" channel and the (demultiplexed) counts 1,3,5, the "odd" samples or "odd" channel. In section 4, for reasons of description, the sample enumeration is always starting with sample or code number=1 for each channel.

S1-IF-ASD-PL-0007 Doc. No.:

12 Issue:

07.03.2014 Date: 59 of 85 Page

The data sections are aligned to an integer number of 16 bit words. The sections may have different sizes in case of FDBAQ and BAQ compression applied. E.g. in these cases some sections include extra control information which are not contained in other sections. In addition, the FDBAQ compression function provides a variable bit rate in each of the 4 data channels which leads to variable data volumes.

However, the number of SAR data samples in each data section will be the same.

The number of complex samples in the packet (sampled at the output of the Decimation Filter) is recorded as a 16bit parameter value NQ (Number of Quads) which is part of the Radar Samples Count Service (section 3.2.6). The number of complex radar samples in the packets is expressed in terms of so-called "Quads" where a Quad is defined as:

1 Quad = 1 IE sample + 1 IO sample + 1 QE sample + 1 QO sample.

Consequently, the total number of complex radar samples equals 2*NQ (see also section 3.2.6).

Table 3.3-4 shows the overview of the sequence of the packetized data sections in the User Data Field.

IE channel Data (data section may be padded with filler bits to complete last 16 bit word) **IO Channel Data** (data section may be padded with filler bits to complete last 16 bit word) **QE Channel Data** (data section may be padded with filler bits to complete last 16 bit word) **QO Channel Data** (data section may be padded with filler bits to complete last 16 bit word) Filler (2 filler octets may be padded to make overall Space Packet length a multiple of 4 octets)

Table 3.3-4: Overview of Packetisation in User Data Field

Each of the four data sections (IE, IO, QE, QO) contains NQ code elements which are packed as a number of 16bit words.

In case the NQ code elements of a section do not end at a 16 bit word boundary, filler bits will be padded in the section up to the next word boundary.

For specific data format types specific sections also contain interleaved control information needed for the decoding process. The details for this are described in the decoding section 4.

Finally, the total number of octets in the User Data Field must be divisible by 4. In case the cumulated number of 16bit words in the four data sections would become an odd number two filler octets will be attached at the end of the User Data Field to make its length a multiple of 4 octets.

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 60 of 85

4 User Data Field Decoding

4.1 General

4.1.1 Notations used for Decoding

NRL	Normalised Reconstruction Level
SF	Sigma Factor
THIDX	Threshold Index
BRC	Bit Rate Code
H_{Code}	Huffman Code (Sign + Huffman coded Magnitude)
M _{Code}	Magnitude Code
M _{Value}	Magnitude Value
S_{Code}	Sample Code
S_{Value}	Sample Value
NQ	Number of Quads
NB	Number of BAQ Blocks
NW	Number of (16bit) Words
Sign	Sign
b	BAQ Block Index
k	Number of Quantisation Levels for Quantisation of Magnitude

4.1.2 Principle of Decoding

The principle of decoding a compressed radar sample (I- or Q-component) is shown in Fig. 4-1.

For "Bypass" or "Decimation Only" user data (format types A and B) a specific radar sample value reconstruction is not needed since the magnitude code ($M_{\it Code}$) of the sample is identical with the magnitude value ($M_{\it Value}$).

Fig. 4-1: Principle of Decoding of Compression Code

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 61 of 85

4.2 Decoding of Data Format Type A and B ("Bypass" or "Decimation Only")

The Data Format Type A and B is described in Table 4.2-1.

IE SCode 1	IE SCode 2	IE SCode 3				 IE SCode NQ	Dummies
10 bits	10 bits	10 bits				 10 bits	Filler Bits
	Word 1 (16bit)		 Word 2 (16bit)	 		 Word NW	(16bit)
					•		
IO SCode 1	IO SCode 2	IO SCode 3				 IO SCode NQ	Dummies
10 bits	10 bits	10 bits				 10 bits	Filler Bits
	Word 1 (16bit)		 Word 2 (16bit)	 		 Word NW	(16bit)
			•		•		
QE SCode 1	QE SCode 2	QE SCode 3				 QE SCode NQ	Dummies
10 bits	10 bits	10 bits				 10 bits	Filler Bits
	Word 1 (16bit)		 Word 2 (16bit)	 		 Word NW	(16bit)
					<u>'</u>		
QO SCode 1	QO SCode 2	QO SCode 3				 QO SCode NQ	Dummies
10 bits	10 bits	10 bits				 10 bits	Filler Bits

Table 4.2-1: Packetisation for Data Format Type A and B

The number NW of 16bit words in each channel is the same and is given by:

$$NW = ceil \left[\frac{10}{16} \cdot NQ \right]$$

The 10bit sample code (SCode) consists of 1 bit sign followed by 9 bit Magnitude Code (MCode).

The reconstruction of a sample value in each of the IE, IO, QE, QO channels is:

$$S_{Value} = (-1)^{Sign} \cdot M_{Code}$$
.

Example:

SCode(binary) = 10 1011 1100 bin

SCode w/o sign = MCode = 188

Sign =1

SValue = -188

Sample Alignment:

The sequence of the complex samples in the PRI rangeline will be obtained by arranging the sample values of the 4 channels (IE,IO,QE,QO) in the following way:

$$complex _S_{Value}(2 \cdot j - 1) = \begin{bmatrix} IE _S_{Value}(j); QE _S_{Value}(j) \end{bmatrix}$$

$$complex _S_{Value}(2 \cdot j) = \begin{bmatrix} IO _S_{Value}(j); QO _S_{Value}(j) \end{bmatrix}$$

$$for \ j = 1,2,3...NQ$$

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 62 of 85

4.3 Decoding of Data Format Type C ("Decimation + BAQ")

The Data Format Type C is similar to that of as described in section 4.2. However, the SCodes are shorter due to BAQ compression.

In addition, within the channel data sections, the BAQ encoded data are organised in BAQ blocks. Each BAQ block has an 8-bit Threshold Index associated with it that is included in the QE channel data.

The arrangement of the format type C data is shown in Table 4.3-1.

The number NB of BAQ Blocks is

$$NB = ceil \left[\frac{2 \cdot NQ}{256} \right]$$

The number NW of 16bit words in the IE, IO and QO channels is:

$$NW_{IE,IO,QO} = \begin{cases} ceil \left[\frac{3 \cdot NQ}{16} \right] & \text{for 3bit BAQ} \\ ceil \left[\frac{4 \cdot NQ}{16} \right] & \text{for 4bit BAQ} \\ ceil \left[\frac{5 \cdot NQ}{16} \right] & \text{for 5bit BAQ} \end{cases}$$

The number NW of 16bit words in the QE channel is different from that of the other channels since it includes the 8bit Threshold Index value for each BAQ block:

$$NW_{QE} = \begin{cases} ceil \left[\frac{3 \cdot NQ + 8 \cdot NB}{16} \right] & \text{for 3bit BAQ} \\ ceil \left[\frac{4 \cdot NQ + 8 \cdot NB}{16} \right] & \text{for 4bit BAQ} \\ ceil \left[\frac{5 \cdot NQ + 8 \cdot NB}{16} \right] & \text{for 5bit BAQ} \end{cases}$$

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 63 of 85

Table 4.3-1: Packetisation of Format Type C User Data Field (for N bit BAQ with N∈[3; 4; 5])

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 64 of 85

The proposed decoding scheme of the User Data Field of a Space Packet is shown in Fig. 4-2 with the SCode extraction shown in Fig. 4-3 and sample value reconstruction shown in Fig. 4-4.

Fig. 4-2: Proposed Decoding of Data Format Type C

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 65 of 85

Fig. 4-3: SCode Extraction per BAQ Block b

Each of the NB BAQ blocks contains 128 SCodes except the last BAQ block which contains $NQ-128\cdot(NB-1)$ SCodes.

Fig. 4-4: Sample Value Reconstruction from SCode

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 66 of 85

The sample value reconstruction in Fig. 4-4 is performed either as a Simple Reconstruction or a Nominal Reconstruction depending on the value the Threshold Index *THIDX* of the BAQ block *b*.

The detailed sample reconstruction law for all BAQ modes is defined as follows:

$$S_{Value} = \begin{cases} \text{for 3bit BAQ} & \text{Simple Reconstruction for } THIDX(b) \leq 3 : \begin{cases} (-1)^{Sign} \cdot M_{Code} & \text{for } M_{Code} < 3 \\ (-1)^{Sign} \cdot A_{3THIDX} & \text{for } M_{Code} = 3 \end{cases} \\ \text{Normal Reconstruction for } THIDX(b) > 3 : (-1)^{Sign} \cdot NRL_{BAQMOD=3,M_{Code}} \cdot SF_{THIDX(b)} \end{cases} \\ S_{Value} = \begin{cases} \text{for 4bit BAQ} & \text{Simple Reconstruction for } THIDX(b) \leq 5 : \begin{cases} (-1)^{Sign} \cdot M_{Code} & \text{for } M_{Code} < 7 \\ (-1)^{Sign} \cdot A4_{THIDX} & \text{for } M_{Code} = 7 \end{cases} \\ \text{Normal Reconstruction for } THIDX(b) > 5 : (-1)^{Sign} \cdot NRL_{BAQMOD=4,M_{Code}} \cdot SF_{THIDX(b)} \end{cases} \\ \text{for 5bit BAQ} & \text{Simple Reconstruction for } THIDX(b) \leq 10 : \begin{cases} (-1)^{Sign} \cdot M_{Code} & \text{for } M_{Code} < 15 \\ (-1)^{Sign} \cdot A5_{THIDX} & \text{for } M_{Code} = 15 \end{cases} \\ \text{Normal Reconstruction for } THIDX(b) > 10 : (-1)^{Sign} \cdot NRL_{BAQMOD=5,M_{Code}} \cdot SF_{THIDX(b)} \end{cases}$$

The values $A3_{THIDX}$, $A4_{THIDX}$ and $A5_{THIDX}$ depend on the value THIDX and are defined in the Annex section 5.2.1.

The values NRL and SF are to be addressed in the corresponding tables in the Annex section 5.2.2.

Example 1 (normal reconstruction):

3bit BAQ (BAQMOD=3)

THIDX=130

SCode = 6

SCode(binary) = 110 bin

Sign =1

MCode=2

NRL=1.344

SF=100.58

 $S_{Value} = (-1)^1 \cdot 1.344 \cdot 100.58 = -135.1795$

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 67 of 85

Example 2 (simple reconstruction):

5bit BAQ (BAQMOD=5)

THIDX=9

SCode = 27

SCode (binary) = 11011 bin

Sign =1

MCode=11

 $S_{Value} = (-1)^1 \cdot 11 = -11$

Example 3 (simple reconstruction):

5bit BAQ (BAQMOD=5)

THIDX=9

SCode = 15

SCode (binary) = 01111 bin

Sign =0

MCode=15

 $S_{Value} = (+1)^0 \cdot A5_{THIDX=9} = 16.3800$

Sample Alignment:

The sequence of the complex samples in the PRI rangeline will be obtained by arranging the sample values of the 4 channels (IE, IO, QE, QO) in the following way:

$$complex _S_{Value}(2 \cdot j - 1) = \begin{bmatrix} IE _S_{Value}(j); QE _S_{Value}(j) \end{bmatrix}$$

$$complex _S_{Value}(2 \cdot j) = \begin{bmatrix} IO _S_{Value}(j); QO _S_{Value}(j) \end{bmatrix}$$

$$for \ j = 1,2,3...NQ$$

4.4 Decoding of Data Format Type D ("Decimation + FDBAQ")

The data of format type D is also structured in BAQ blocks as described in section 4.3.

However, the format type D data is Huffman encoded which introduces a non-predictable variable length HCode in each BAQ block.

The arrangement of the format type D data is shown in Table 4.4-1. Values for HCode lengths and numbers NW are given with "question marks" in the table because they are not predicitable and have to be determined during the Huffman decoding process (see Fig. 4-6, Fig. 4-7, Fig. 4-8, Fig. 4-9, Fig. 4-10, Fig. 4-11).

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 68 of 85

Table 4.4-1: Packetisation of Format Type D User Data Field

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 69 of 85

The proposed decoding scheme of the User Data Field of a Space Packet is shown in Fig. 4-5 with the HCode decoding shown in Fig. 4-6 and with the applicable Huffman decoding trees in Fig. 4-7 to Fig. 4-11.

Fig. 4-5: Proposed Decoding of Data Format Type D

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 70 of 85

Fig. 4-6: Huffman Decoding of BAQ Block b

Each of the NB BAQ blocks contains 128 HCodes except the last BAQ block which contains $NQ-128\cdot(NB-1)$ HCodes.

The Huffman binary decoding trees are shown for the five applicable values of BRC in Fig. 4-7 to Fig. 4-11.

The relevant MCode can be recovered by stepping through each bit of the HCode (without sign) and following the same bit pattern in the top-down binary Huffman decoding tree accordingly until the relevant MCode is being deteced.

The detection of a MCode indicates the end of a HCode pattern. The next bit then indicates the sign bit of the next following HCode pattern, etc

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 71 of 85

Fig. 4-7: Huffman Decoding for BRC=0, (k=4)

Fig. 4-8: Huffman Decoding for BRC=1, (k=5)

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 72 of 85

Fig. 4-9: Huffman Decoding for BRC=2, (k=7)

Fig. 4-10: Huffman Decoding for BRC=3, (k=10)

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 73 of 85

Fig. 4-11: Huffman Decoding for BRC=4 (k=16)

The sample reconstruction from SCode (Sign and MCode) follows the similar flow as shown in Fig. 4-4 of section 4.3.

The detailed sample reconstruction law for each bitrate of the FDBAQ mode (indicated by the *BRC* value) is defined as follows:

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 74 of 85

$$\begin{cases} \text{for BRC(b)} = 0 \\ \text{Normal Reconstruction for } THIDX(b) \leq 3 : \begin{cases} (-1)^{Sign} \cdot M_{Code} & \text{for } M_{Code} < 3 \\ (-1)^{Sign} \cdot B0_{THIDX} & \text{for } M_{Code} = 3 \end{cases} \\ \text{Normal Reconstruction for } THIDX(b) > 3 : (-1)^{Sign} \cdot NRL_{BRC(b)=0,M_{Code}} \cdot SF_{THIDX(b)} \end{cases} \end{cases}$$

$$\begin{cases} \text{for BRC(b)} = 1 \\ \text{Simple Reconstruction for } THIDX(b) \leq 3 : \begin{cases} (-1)^{Sign} \cdot M_{Code} & \text{for } M_{Code} < 4 \\ (-1)^{Sign} \cdot B1_{THIDX} & \text{for } M_{Code} = 4 \end{cases} \end{cases}$$

$$\begin{cases} \text{Normal Reconstruction for } THIDX(b) \geq 3 : \begin{cases} (-1)^{Sign} \cdot M_{Code} & \text{for } M_{Code} < 4 \\ (-1)^{Sign} \cdot NRL_{BRC(b)=1,M_{Code}} \cdot SF_{THIDX(b)} \end{cases} \end{cases}$$

$$\begin{cases} \text{Simple Reconstruction for } THIDX(b) \geq 5 : \begin{cases} (-1)^{Sign} \cdot M_{Code} & \text{for } M_{Code} < 6 \\ (-1)^{Sign} \cdot B2_{THIDX} & \text{for } M_{Code} < 6 \end{cases} \end{cases}$$

$$\begin{cases} \text{Normal Reconstruction for } THIDX(b) \geq 5 : (-1)^{Sign} \cdot NRL_{BRC(b)=2,M_{Code}} \cdot SF_{THIDX(b)} \end{cases}$$

$$\begin{cases} \text{Simple Reconstruction for } THIDX(b) \geq 6 : \begin{cases} (-1)^{Sign} \cdot M_{Code} & \text{for } M_{Code} < 9 \\ (-1)^{Sign} \cdot B3_{THIDX} & \text{for } M_{Code} = 9 \end{cases} \end{cases}$$

$$\begin{cases} \text{Normal Reconstruction for } THIDX(b) \geq 6 : \begin{cases} (-1)^{Sign} \cdot M_{Code} & \text{for } M_{Code} < 9 \\ (-1)^{Sign} \cdot NRL_{BRC(b)=3,M_{Code}} \cdot SF_{THIDX(b)} \end{cases}$$

$$\begin{cases} \text{Simple Reconstruction for } THIDX(b) \geq 8 : \begin{cases} (-1)^{Sign} \cdot M_{Code} & \text{for } M_{Code} < 15 \\ (-1)^{Sign} \cdot B4_{THIDX} & \text{for } M_{Code} = 15 \end{cases}$$

$$\begin{cases} \text{Normal Reconstruction for } THIDX(b) \geq 8 : (-1)^{Sign} \cdot NRL_{BRC(b)=4,M_{Code}} \cdot SF_{THIDX(b)} \end{cases}$$

The values $B0_{THIDX}$, $B1_{THIDX}$, $B2_{THIDX}$, $B3_{THIDX}$ and $B4_{THIDX}$ depend on the value THIDX and are defined in the Annex, section 5.2.1.

The values NRL and SF are to be addressed in the corresponding tables in the Annex section 5.2.2.

Example 1 (normal reconstruction):

BRC = 2, k=7

THIDX=239

HCode(binary) = 011 1110 bin

Sign = 0

HCode(binary) w/o Sign = 11 1110 bin

MCode=5

NRL=2.5084

SF=237.19

 $S_{Value} = (-1)^0 \cdot 2.5084 \cdot 237.19 = 594.96$

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 75 of 85

Example 2 (simple reconstruction):

BRC = 3, k=10

THIDX=3

HCode(binary) = 1 1111 1111 bin

Sign = 1

HCode(binary) w/o Sign = 1111 1111 bin

MCode=9

 $S_{Value} = (-1)^1 \cdot 9 = -9$

Example 3 (simple reconstruction):

BRC = 3, k=10

THIDX=5

HCode(binary) = 1 1111 1111 bin

Sign = 1

HCode(binary) w/o Sign = 1111 1111 bin

MCode=9

 $S_{Value} = (-1)^1 \cdot 9.4800 = -9.4800$

Sample Alignment:

The sequence of the complex samples in the PRI rangeline will be obtained by arranging the sample values of the 4 channels (IE, IO, QE, QO) in the following way:

$$complex _S_{Value}(2 \cdot j - 1) = \begin{bmatrix} IE _S_{Value}(j); QE _S_{Value}(j) \end{bmatrix}$$

$$complex _S_{Value}(2 \cdot j) = \begin{bmatrix} IO _S_{Value}(j); QO _S_{Value}(j) \end{bmatrix}$$

$$for \ j = 1,2,3...NQ$$

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 76 of 85

5 Annexes

5.1 Support Tables for Computation of Number of Samples after Decimation

There are two look-up-tables needed to compute the number of complex samples after the decimation (or in the Space Packet):

- Table of values "D" which will be addressed by values "C" (see 3.2.5.12) and the Filter No. (see 3.2.5.4).
- Table of values "FilterOutputOffset" which will be addressed by the Filter No.

The tables are shown in Table 5.1-1 and Table 5.1-2.

The Filter No. is equivalent to the header parameter " $RGDEC_{code}$ " (see 3.2.5.4).

			Values D												
							1	for Filt	ter No						
		0	1	2 ¹	3	4	5	6	7	8	9	10	11	12	16 ²
	0	1	1		1	0	0	0	0	0	0	0	0		
	1	1	1		1	1	1	0	0	1	0	0	1		
	2	2	2		2	1	1	1	0	1	1	0	1		
	3	3			2	2	1		0	2	1	0	1		
	4				3	2	2		0	2	1	0	2		
	5				3	3	2		1	3	2	0	2		
	6				4	3	3			3	2	0	3		
	7				4	4	3				2	1	3		
	8				5	4					2	1	3		
	9										3	1	4		
4.5	10										3	1	4		
S	11										3	1			
es	12										4	1			
Values	13										4	1			
8	14										4	1			
	15										5	1			
	16											2			
	17											2			
	18											2			
	19											2			
	20											2			
	21											2			
	22											2			
	23											2			
	24											3			
	25											3			

Table 5.1-1: Table of Values D

_

¹ not applicable

² not applicable

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014

Page 77 of 85

		Filter No.											
	0	1	2	3	4	5	6	7	8	9	10	11	12 16
Filter Output Offsets	87	87	n/a	88	90	92	93	103	89	97	110	91	n/a

Table 5.1-2: Table of Filter Output Offset Values

Note, that the filters and the corresponding values "Filter Output Offset" are configurable parameters in the SES Radar Database.

For information: The values "Filter Output Offset" depend on the length $\,N_F\,$ of each filter:

 $FilterOutputOffset = 80 + \frac{N_F}{4}$ (the value N_F for each filter is given in section 3.2.5.4)

5.2 Sample Reconstruction Tables

5.2.1 Table for Simple Reconstruction Method

For certain *THIDX* values simple reconstruction will be applied. The simple reconstruction is described as part of reconstruction laws in the sections 4.3 and 4.4. The simple reconstruction law needs additional parameters A or B which are defined for the relevant *THDIX* values of the different compression modes in the following Table 5.2-1.

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 78 of 85

	BAQ 3bit	BAQ 4bit	BAQ 5bit	BRC = 0	BRC = 1	BRC = 2	BRC = 3	BRC = 4
				(k = 4)	(k = 5)	(k = 7)	(k = 10)	(k = 16)
THIDX	А3	A4	A5	B0	B1	B2	В3	B4
	for M _{Code} =3	for M _{Code} =7	for M _{Code} =15	for M _{Code} =3	for M _{Code} =4	for M _{Code} =6	for M _{Code} =9	for M _{Code} =15
0	3.0000	7.0000	15.0000	3.0000	4.0000	6.0000	9.0000	15.0000
1	3.0000	7.0000	15.0000	3.0000	4.0000	6.0000	9.0000	15.0000
2	3.1200	7.0000	15.0000	3.1600	4.0800	6.0000	9.0000	15.0000
3	3.5500	7.1700	15.0000	3.5300	4.3700	6.1500	9.0000	15.0000
4	n/a	7.4000	15.0000	n/a	n/a	6.5000	9.3600	15.0000
5	n/a	7.7600	15.0000	n/a	n/a	6.8800	9.5000	15.0000
6	n/a	n/a	15.4400	n/a	n/a	n/a	10.1000	15.2200
7	n/a	n/a	15.5600	n/a	n/a	n/a	n/a	15.5000
8	n/a	n/a	16.1100	n/a	n/a	n/a	n/a	16.0500
9	n/a	n/a	16.3800	n/a	n/a	n/a	n/a	n/a
10	n/a	n/a	16.6500	n/a	n/a	n/a	n/a	n/a
11	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
12	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
13	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
14	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
15	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
16	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a

Table 5.2-1: Simple Reconstruction Parameter Values A, B

5.2.2 Tables for Normal Reconstruction Method

Compressed radar samples for which the Simple Reconstruction Scheme will not apply will be decompressed by the Normal Reconstruction Scheme. The Normal Reconstruction scheme needs values of the Normalized Reconstruction Levels (NRL) and the Sigma Factors (SF). These values are defined in the following subsections.

5.2.2.1 Normalised Reconstruction Levels (NRL)

The selected NRL values represent the reconstructed sample values normalised to standard deviation = 1. Up-scaling to the true standard deviation as measured in the SAR raw data will be performed with the Sigma Factors in Table 5.2-3.

The NRL table is listed in Table 5.2-2 and will be addressed by the Magnitude Code of the quantised radar sample and the BAQ mode (see 3.2.5.1)

• in case of BAQ compression :

indicated by BAQMOD_{Code} = 3 or 4 or 5 (indicating 3bit, 4bit or 5bit BAQ)

• in case of **FDBAQ compression** (indicated by BAQMOD_{Code}= 12 or 13 or 14):

by the BRC value which is part of the IE channel data of the User Data Field

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 79 of 85

		Normalised Reconstruction Levels (NRL)										
		BAQ		FDBAQ								
Magnitude Code (M _{code})	3-Bit	4-Bit	5-Bit	BRC = 0 (k = 4)	BRC = 1 (k = 5)	BRC = 2 (k = 7)	BRC = 3 (k = 10)	BRC = 4 (k = 16)				
0	0.2490	0.1290	0.0660	0.3637	0.3042	0.2305	0.1702	0.1130				
1	0.7681	0.3900	0.1985	1.0915	0.9127	0.6916	0.5107	0.3389				
2	1.3655	0.6601	0.3320	1.8208	1.5216	1.1528	0.8511	0.5649				
3	2.1864	0.9471	0.4677	2.6406	2.1313	1.6140	1.1916	0.7908				
4	n/a	1.2623	0.6061	n/a	2.8426	2.0754	1.5321	1.0167				
5	n/a	1.6261	0.7487	n/a	n/a	2.5369	1.8726	1.2428				
6	n/a	2.0793	0.8964	n/a	n/a	3.1191	2.2131	1.4687				
7	n/a	2.7467	1.0510	n/a	n/a	n/a	2.5536	1.6947				
8	n/a	n/a	1.2143	n/a	n/a	n/a	2.8942	1.9206				
9	n/a	n/a	1.3896	n/a	n/a	n/a	3.3744	2.1466				
10	n/a	n/a	1.5800	n/a	n/a	n/a	n/a	2.3725				
11	n/a	n/a	1.7914	n/a	n/a	n/a	n/a	2.5985				
12	n/a	n/a	2.0329	n/a	n/a	n/a	n/a	2.8244				
13	n/a	n/a	2.3234	n/a	n/a	n/a	n/a	3.0504				
14	n/a	n/a	2.6971	n/a	n/a	n/a	n/a	3.2764				
15	n/a	n/a	3.2692	n/a	n/a	n/a	n/a	3.6623				

Table 5.2-2: Normalised Reconstruction Levels

5.2.2.2 Sigma Factors (SF)

The Sigma Factors are used for up-scaling the sample values normalised to standard deviation = 1 to original power levels in the BAQ block. The Sigma Factors are listed in Table 5.2-3 and will be addressed by *THIDX* which is part of the QE channel data of the User Data Field.

Doc. No.: S1-IF-ASD-PL-0007

SF 232.18 233.43 234.69 235.94 237.19 238.45 239.70 240.95 242.21 243.46 244.71 245.97 247.22 248.47 249.73 250.98 252.23 253.49 254.74

Issue: 12

Date: 07.03.2014 Page 80 of 85

THIDX	SF	THIDX	SF	THIDX	SF	THIDX	SF	THIDX	SF	THIDX
0	0.00	47 48	29.45 30.08	94 95	58.91 59.53	141 142	114.37 115.62	188 189	173.27 174.53	235 236
2	1.25	49	30.06	95	60.16	143	116.87	190	174.53	237
3	1.25	50	31.33	96	60.79	143	118.13	190	177.03	238
4	2.51	51	31.96	98	61.41	145	119.38	191	177.03	239
5	3.13	52	32.59	99	62.04	146	120.63	193	179.54	240
6	3.76	53	33.21	100	62.98	147	121.89	193	180.79	241
7	4.39	54	33.84	101	64.24	148	123.14	195	182.05	242
8	5.01	55	34.47	102	65.49	149	124.39	196	183.30	243
9	5.64	56	35.09	103	66.74	150	125.65	197	184.55	244
10	6.27	57	35.72	104	68.00	151	126.90	198	185.81	245
11	6.89	58	36.35	105	69.25	152	128.15	199	187.06	246
12	7.52	59	36.97	106	70.50	153	129.41	200	188.31	247
13	8.15	60	37.60	107	71.76	154	130.66	201	189.57	248
14	8.77	61	38.23	108	73.01	155	131.91	202	190.82	249
15	9.40	62	38.85	109	74.26	156	133.17	203	192.07	250
16	10.03	63	39.48	110	75.52	157	134.42	204	193.33	251
17	10.65	64	40.11	111	76.77	158	135.67	205	194.58	252
18	11.28	65	40.73	112	78.02	159	136.93	206	195.83	253
19	11.91	66	41.36	113	79.28	160	138.18	207	197.09	254
20	12.53	67	41.99	114	80.53	161	139.43	208	198.34	255
21	13.16	68	42.61	115	81.78	162	140.69	209	199.59	
22	13.79	69	43.24	116	83.04	163	141.94	210	200.85	
23	14.41	70	43.87	117	84.29	164	143.19	211	202.10	
24	15.04	71	44.49	118	85.54	165	144.45	212	203.35	
25	15.67	72	45.12	119	86.80	166	145.70	213	204.61	
26	16.29	73	45.75	120	88.05	167	146.95	214	205.86	
27	16.92	74	46.37	121	89.30	168	148.21	215	207.11	
28	17.55	75	47.00	122	90.56	169	149.46	216	208.37	
29	18.17	76	47.63	123	91.81	170	150.71	217	209.62	
30	18.80	77	48.25	124	93.06	171	151.97	218	210.87	
31	19.43	78	48.88	125	94.32	172	153.22	219	212.13	
32	20.05	79	49.51	126	95.57	173	154.47	220	213.38	
33	20.68	80	50.13	127	96.82	174	155.73	221	214.63	
34	21.31	81	50.76	128	98.08	175	156.98	222	215.89	
35	21.93	82	51.39	129	99.33	176	158.23	223	217.14	
36	22.56	83	52.01	130	100.58	177	159.49	224	218.39	
37	23.19	84	52.64	131	101.84	178	160.74	225	219.65	
38	23.81	85	53.27	132	103.09	179	161.99	226	220.90	
39	24.44	86	53.89	133	104.34	180	163.25	227	222.15	
40	25.07	87	54.52	134	105.60	181	164.50	228	223.41	
41	25.69	88	55.15	135	106.85	182	165.75	229	224.66	
42	26.32	89	55.77	136	108.10	183	167.01	230	225.91	
43	26.95	90	56.40	137	109.35	184	168.26	231	227.17	
44	27.57	91	57.03	138	110.61	185	169.51	232	228.42	
45	28.20	92	57.65	139	111.86	186	170.77	233	229.67	
46	28.83	93	58.28	140	113.11	187	172.02	234	230.93	

Table 5.2-3: Sigma Factors

5.3 Calibration Signal Acqusition Timing

The timing for acquisition of calibration signals is based on a fixed timing depending only on the Tx pulse length TPL of the transmitted pulses selected in a data take. It does not depend on the commanded parameters SWST and SWL .

The timing is shown in Fig. 5-1.

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 81 of 85

Fig. 5-1: Timing of Calibration Signal Sampling Window (CWL) 1

In a calibration PRI the value CWL will be automatically selected by the Instrument to CWL = TPL + CWL Delta (in time units)

CWL_Delta is a Mission Parameter defined in the Instrument Radar Database [IRD 07].

$$\Delta t_{guard1} = t9 - t26$$

t9 and t26 are also Mission Parameters defined in the Instrument Radar Database [IRD 07].

With this it follows from Fig. 5-1:

$$\Delta t_{guard 2} = CWL - TPL - \Delta t_{guard 1} = CWL _Delta - t9 + t26$$

It can be seen that $\Delta t_{guard\,2}$ is always a fixed value as defined by Mission Parameters and independent of the Tx pulse length.

It has to be noted that the Tx pulse <u>signal</u> will not be sampled at its generation time in the TxM module since the Tx signal has to propopagate through the Instrument signal pathes (e.g. those of the antenna) before being received, digitized and processed in the RxM module. For this reason Δt_{guard2} is applied to cover this signal latency.

The number of captured calibration samples in the Space Packet can be expressed as

_

¹ the figure shows the timing of Tx Pulse generation and Rx Sampling without taking into consideration electronical roundtrip delays of the Tx pulse via SAS and SES. These may cause a different position of the Tx Pulse signal within the Space Packet than indicated in the figure. The Instrument timing is adjusted to compensate for these delays.

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 82 of 85

$$N_{Cal} = 2 \cdot \left(L \cdot \inf \left[\frac{B}{M} \right] + D + 1 \right)$$

with parameters L and M according to 3.2.5.4

with
$$B = 2 \cdot (TPL_{code} + CWL_Delta_{code}) - FilterOutputOffset - 17$$

with FilterOutputOffset according to Table 5.1-2

D is to be addressed as function of C in Table 5.1-1 with $C = B - M \cdot \inf \left[\frac{B}{M} \right]$

The Decimation Filter suppresses the FIR filter transients in the acquired sampling window. The captured data in the Space Packet correspond to the data sampled Δt_{suppr} after the start of the acquired sampling window.

$$\Delta t_{suppr} = \frac{320}{8 \cdot f_{ref}}$$
 in units of [us] with $f_{ref} = 37.53472224$ [MHz]

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 83 of 85

5.4 EFE and TGU Temperature Calibration

5.4.1 TGU Temperature Calibration

Code	TGU Temp. degC						
0	116.14	32	80.3	64	44.46	96	8.62
1	115.02	33	79.18	65	43.34	97	7.5
2	113.9	34	78.06	66	42.22	98	6.38
3	112.78	35	76.94	67	41.1	99	5.26
4	111.66	36	75.82	68	39.98	100	4.14
5	110.54	37	74.7	69	38.86	101	3.02
6	109.42	38	73.58	70	37.74	102	1.9
7	108.3	39	72.46	71	36.62	103	0.78
8	107.18	40	71.34	72	35.5	104	-0.34
9	106.06	41	70.22	73	34.38	105	-1.46
10	104.94	42	69.1	74	33.26	106	-2.58
11	103.82	43	67.98	75	32.14	107	-3.7
12	102.7	44	66.86	76	31.02	108	-4.82
13	101.58	45	65.74	77	29.9	109	-5.94
14	100.46	46	64.62	78	28.78	110	-7.06
15	99.34	47	63.5	79	27.66	111	-8.18
16	98.22	48	62.38	80	26.54	112	-9.3
17	97.1	49	61.26	81	25.42	113	-10.42
18	95.98	50	60.14	82	24.3	114	-11.54
19	94.86	51	59.02	83	23.18	115	-12.66
20	93.74	52	57.9	84	22.06	116	-13.78
21	92.62	53	56.78	85	20.94	117	-14.9
22	91.5	54	55.66	86	19.82	118	-16.02
23	90.38	55	54.54	87	18.7	119	-17.14
24	89.26	56	53.42	88	17.58	120	-18.26
25	88.14	57	52.3	89	16.46	121	-19.38
26	87.02	58	51.18	90	15.34	122	-20.5
27	85.9	59	50.06	91	14.22	123	-21.62
28	84.78	60	48.94	92	13.1	124	-22.74
29	83.66	61	47.82	93	11.98	125	-23.86
30	82.54	62	46.7	94	10.86	126	-24.98
31	81.42	63	45.58	95	9.74	127	-26.1

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 84 of 85

5.4.2 EFE Temperature Calibration

Code	EFE Temp. degC						
0	not defined	64	7	128	32	192	57.5
1	not defined	65	7.5	129	32.5	193	57.88
2	not defined	66	8	130	32.75	194	58.25
3	not defined	67	8.5	131	33.13	195	58.88
4	-51.38	68	9	132	33.5	196	59.25
5	-47.38	69	9.5	133	33.88	197	59.88
6	-44.38	70	9.88	134	34.13	198	60.25
7	-41.5	71	10.13	135	34.5	199	60.88
8	-38.75	72	10.5	136	34.88	200	61.25
9	-36.75	73	11	137	35.13	201	61.88
10	-34.88	74	11.5	138	35.5	202	62.25
11	-32.88	75	11.88	139	36	203	62.88
12	-31	76	12.13	140	36.5	204	63.25
13	-29.63	77	12.63	141	36.88	205	63.88
14	-28	78	13	142	37.13	206	64.25
15	-27	79	13.5	143	37.5	207	64.88
16	-25.5	80	14	144	37.88	208	65.25
17	-24.13	81	14.5	145	38.13	209	65.88
18	-23.13	82	14.88	146	38.5	210	66.5
19	-22	83	15.13	147	39	211	67.13
20	-21	84	15.5	148	39.5	212	67.75
21	-20	85	16	149	39.75	213	68.13
22	-19	86	16.5	150	40.13	214	68.88
23	-18.13	87	16.88	151	40.5	215	69.25
24	-17	88	17.13	152	40.88	216	69.88
25	-16	89	17.5	153	41.13	217	70.5
26	-15	90	17.88	154	41.75	218	71.13
27	-14.38	91	18.13	155	42.13	219	71.88
28	-13.88	92	18.5	156	42.5	220	72.25
29	-13	93	19	157	42.88	221	73
30	-12	94	19.5	158	43.13	222	73.75
31	-11.38	95	19.88	159	43.5	223	74.25
32	-10.88	96	20.13	160	43.88	224	74.88
33	-10	97	20.5	161	44.25	225	75.5
34	-9	98	21	162	44.75	226	76.25
35	-8.5	99	21.5	163	45.13	227	76.88
36	-8	100	21.88	164	45.5	228	77.5
37	-7	101	22.13	165	45.88	229	78.5
38	-6.5	102	22.5	166	46.25	230	79.13
39	-6	103	22.88	167	46.75	231	79.88
40	-5.38	104	23.13	168	47.13	232	80.5
41	-4.88	105	23.5	169	47.5	233	81.25
42	-4	106	24	170	47.88	234	82
43	-3.5	107	24.5	171	48.25	235	82.88
44	-3	108	24.5	172	48.75	236	83.63

Doc. No.: S1-IF-ASD-PL-0007

Issue: 12

Date: 07.03.2014 Page 85 of 85

45	-2.5	109	25	173	49.13	237	84.5
46	-2	110	25.5	174	49.5	238	85.5
47	-1.38	111	25.88	175	49.88	239	86.88
48	-1	112	26.13	176	50.25	240	87
49	-0.13	113	26.5	177	50.88	241	87.88
50	0.25	114	26.88	178	51.13	242	88.63
51	1	115	27.13	179	51.75	243	89.63
52	1.5	116	27.5	180	52.13	244	90.63
53	2	117	28	181	52.5	245	91.63
54	2.5	118	28.5	182	52.88	246	92.63
55	3	119	28.75	183	53.25	247	93.63
56	3.5	120	29.13	184	53.88	248	95
57	3.88	121	29.5	185	54.25	249	96
58	4.25	122	29.88	186	54.88	250	97
59	4.88	123	30.13	187	55.13	251	98.5
60	5.13	124	30.5	188	55.75	252	99.88
61	5.88	125	30.88	189	56.13	253	100.88
62	6.13	126	31.13	190	56.75	254	102
63	6.63	127	31.5	191	57.13	255	103.5