

Improving the Rectangle Attack on GIFT-64

Yincen Chen, Nana Zhang, Xuanyu Liang, Ling Song, Qianqian Yang, and Zhuohui Feng

Jinan University
IIE, Chinese Academy of Sciences

August 14, 2023 SAC 2023

1. Preliminaries

- *G*IFT-64
- The rectangle attack

2. Improving the Rectangle Attack on GIFT-64

- Key guessing strategy
- The dedicated model

3. Result and extensions

4. Summary

1. Preliminaries

- *G*IFT-64
- The rectangle attack

2. Improving the Rectangle Attack on GIFT-64

- Key guessing strategy
- The dedicated model

3. Result and extensions

4. Summary

Preliminaries\GIFT-64

GIFT is a lightwight bit-wise block cipher with Substitution-Permutation-Network, which Banik et al. proposed at CHES' 2017.

Fig. One round encryption of GIFT-64

Preliminaries\GIFT-64

> Bit Permutation, diffuse 4 bits in each cell to 4 cells in the next round.

$$P[i] = \left\{4 \lfloor \frac{i}{16} \rfloor + 16 \left(3 \lfloor \frac{i \mod 16}{4} \rfloor + (i \mod 4) \mod 4\right) + (i \mod 4)\right\} \mod 64.$$

> Key Schedule, rotation only, reused in 5 rounds.

$$k_7 || k_6 \dots || k_1 || k_0 (16 \ bits * 8) \leftarrow K (128 \ bits)$$

Subkey update

$$k_7 || k_6 || \dots || k_1 || k_0 \leftarrow k_1 \gg 2 || k_0 \gg 12 || \dots || k_3 || k_2$$

1. Preliminaries

- GIFT-64
- The rectangle attack

2. Improving the Rectangle Attack on GIFT-64

- Key guessing strategy
- The dedicated model
- 3. Result and extensions
- 4. Summary

Preliminaries \ The rectangle attack

> The Differential attack [Biham et al. in 1991]: find $\Delta P \rightarrow \Delta C$ with high probability P (Hard to find long trails).

$$P = P_r\{C \oplus C' = \Delta C | P \oplus P' = \Delta P\}$$

Preliminaries \ The rectangle attack

- > The Boomerang attack [Wagner in 1999]:
 - Treat cipher E as $E_0 \circ E_1$, calculate the probability (p and q) and connect them.
- ◆ Adaptive chosen plaintext/ciphertext attack.

$$\begin{cases} \alpha \to \beta & with probability \mathbf{p} \\ \gamma \to \delta & with probability \mathbf{q} \end{cases}$$

$$P_{boomerang} = p^2 q^2$$

Fig. Boomerang attack

Preliminaries \ The rectangle attack

Boomerang attack

[Kelsey et al. in 2000] (choose plaintext/ciphertext)

Rectangle attack

[Biham et al. in 2001] (choose plaintext/ciphertext)

$$\hat{p} = \sqrt{\sum_{i} P_r^2(\alpha \to \beta_i)}$$

$$\hat{q} = \sqrt{\sum_{j} P_r^2(\gamma_i \to \delta)}$$

$$P_{rectangle} = \mathbf{2}^{-n} \hat{p}^2 \hat{q}^2$$

- ♦Steps:
 - Choose plaintext $P_1 \oplus P_2 = P_3 \oplus P_4 = \alpha$. $P_1, P_2, P_3, P_4 \xrightarrow{E_k} C_1, C_2, C_3, C_4.$
 - If $C_1 \oplus C_3 = C_2 \oplus C_4 = \delta$, right quartet $\{(P_1, C_1), (P_2, C_2), (P_3, C_3), (P_4, C_4)\}.$

Preliminaries \The rectangle attack

 Song et al. proposed the most efficient and generic rectangle key recovery algorithm at ASIACRYPT 2022

Fig. Outline of rectangle key recovery attack

1. Preliminaries

- GIFT-64
- The rectangle attack

2. Improving the Rectangle Attack on GIFT-64

- Key guessing strategy
- The dedicated model
- 3. Result and extensions
- 4. Summary

◆ Notation

$$\Delta Plaintext \xrightarrow{GS \& Bit \ permutation} \Delta Z_1 \xrightarrow{k_1 || k_0} \Delta X_2 \xrightarrow{GS} \Delta Y_2 \cdots \cdots$$

- Based on the 20-round rectangle distinguisher of GIFT-64 which proposed by Ji et al. in SAC 2020
- Extend 3 rounds forward and backward from the distinguisher

• The state: (backward i.e. E_b)

 ΔX : after subkey addition \Leftrightarrow before Sbox;

 ΔY : after **Sbox** \Leftrightarrow before **bit permutation**;

 ΔZ : after bit permutation \Leftrightarrow before subkey addition.

> The related-key rectangle key recovery attack on GIFT-64.

• Exhaustive search T_4

> Core idea:

Tradeoff the time complexity of each attack phase.

> Main question:

How to guess subkey bit and obtain the filtering bits?

> Basic rules:

- ◆ Guessing fewer, acquiring more
- ◆ Balance the time complexity of
 - partially encryption and decryption. (T_1)
 - pair generation (T_2)
 - quartet generation and processing (T_3)

- ◆ How to get filtering bits by guessing subkey bits?
- ightharpoonup Guessing m_b' (resp. m_f') subkey bits to obtain ightharpoonup filtering bits r_b' (resp. r_f')
 - Example:
 - 3 bit fix diff. (000?) 0 bit fix diff. (????) = get 3 filtering bits

> Advantage for time complexity: $2^2 \times 2^{-3} = 2^{-1}$

> More advantage with subkey reusing:

- Highlight green subkey bits can be used in round 1 and round 25
- Highlight cyan subkey bits can be used in round 2 and round 26
- Maximize $\frac{guessed\ subkey\ bits}{filtering\ bits} \Leftrightarrow \text{Maximize advantage}\ !!$

ΔZ_1	????	????	????	????	0000	0000	0000	0000	11??	????	????	????	????	11??	????	????
$k_1 k_0$	15 15	14 14	13 13	12 12	11 11	10 10	9 9	8 8	7 7	6 6	5 5	4 4	3 3	2 2	1 1	0 0
ΔZ_2	????	0000	?1??	0000	0000	0000	0000	0000	0001	0000	0000	0000	0000	0000	0000	?1??
$ k_{3} k_{2}$	15 15	14 14	13 13	12 12	11 11	10 10	9 9	8 8	7 7	6 6	5 5	4 4	3 3	2 2	1 1	0 0
ΔZ_{25}	??0?	??0?	??0?	??0?	???0	???0	???0	???0	0???	0???	0???	0???	?0??	?0??	?0??	?0??
$k_1 k_0$	11 7	10 6	9 5	8 4	7 3	6 2	5 1	4 0	3 15	2 14	1 13	0 12	15 11	14 10	13 9	12 8
ΔZ_{26}	????	????	????	????	????	????	????	????	????	????	????	????	????	????	????	????
$k_3 k_2$	11 7	10 6	9 5	8 4	7 3	6 2	5 1	4 0	3 15	2 14	1 13	0 12	15 11	14 10	13 9	12 8

Table. reused subkey bits

1. Preliminaries

- GIFT-64
- The rectangle attack

2. Improving the Rectangle Attack on GIFT-64

- Key guessing strategy
- The dedicated model
- 3. Result and extensions
- 4. Summary

Improving the Rectangle Attack on GIFT-64\The dedicated model

◆ Variables:

- All involved <u>subkey bits</u>;
- All difference of involved <u>state bits</u> (fixed or unknown).

♦ Constraints

- The relation between guessing subkey bits and fixed state bits;
- The relation between {guessed subkey bits, fixed state bits}
 and time complexity.
- ◆ Objective function
 - The most balanced time complexity.

1. Preliminaries

- GIFT-64
- The rectangle attack

2. Improving the Rectangle Attack on GIFT-64

- Key guessing strategy
- The dedicated model

3. Result and extensions

4. Summary

 \checkmark Guessing strategy in E_b : Guessing $m_b'=30$ subkey bits to obtain $r_b'=44$ filtering bits.

 \checkmark Guessing strategy in E_f :

Guessing $m_f'=18$ subkey bits to obtain $r_f'=28$ filtering bits combine with reused subkey bits.

Choose s = 2 and h = 20

$$\checkmark E_b$$
: $(m_b = 30, r_b = 44)$

•
$$m_b'=30$$
, $r_b'=44$, $r_b^*=0$

$$\checkmark E_f: (m_f = 64, r_f = 64)$$

•
$$m_f'=18$$
, $r_f'=28$, $r_f^*=36$

•
$$T_{total} = 2^{110.06} enc. \& 2^{115.8} m.a.$$

•
$$D_{total} = 2^{63.78}$$

•
$$M_{total} = 2^{64.36}$$

$$D = y \cdot r_b$$

$$T_0 = 4 \cdot D = 2^{63.78}$$

$$T_1 = 2^{m'_b + m'_f} \cdot 4 \cdot D = 2^{111.78}$$

$$T_2 = 2^{m'_b + m'_f} \cdot 2 \cdot D \cdot 2^{r_b^*} = 2^{110.78}$$

$$T_3 = 2^{m'_b + m'_f} \cdot D^2 \cdot 2^{2r_b^* + 2r_f^* - 2n} \cdot \epsilon = 2^{115.56} \cdot \epsilon$$

 $T_4 = 2^{m_b' + m_f' + k - m_b' - m_f' - h} = 2^{k - h} = 2^{108}$

$$D_{total} = 4 \cdot D = 2^{63.78}$$

$$M_{total} = M_0 + M_1 + M_c$$

$$= 4 \cdot D + 2 \cdot D \cdot 2^{r_b^*} + 2^{m_b^* + m_f^*}$$

$$= 2^{63.78} + 2^{62.78} + 2^{36}$$

$$\approx 2^{64.36}$$

> Strategy II

- $\checkmark E_b$:
 - guessing 26 subkey bits, obtain 39 filtering bits;
- $\checkmark E_f$:
 - guessing 22 subkey bits, obtian 34 filtering bits.
- $T_{total} = 2^{111.51} enc. \& 2^{115.78} m.a.$
- $D_{total} = 2^{63.78}$
- $M_{total} = 2^{67.8}$

> Attack on 23-round GIFT-128

- $\checkmark E_b$:
 - guessing 4 subkey bits, obtain 7 filtering bits;
- $\checkmark E_f$:
 - guessing O subkey bits, obtian O filtering bits.
- $T_{total} = 2^{123.1} enc. \& 2^{126.31} m.a.$
- $D_{total} = 2^{121.31}$
- $M_{total} = 2^{121.63}$

Method (related-key)	Time	Data	Memory	Online	
Differential	2 ^{123.23} enc.	2 ^{60.96}	2 ^{102.86}	2021 ToSC	
Rectangle	$2^{122.78} enc.$	2 ^{63.78}	2 ^{63.78}	2022 E.C.	
Rectangle	$2^{121.75}$ enc.	2 ^{62.715}	2 ^{62.715}	2022 Ins.C	
Rectangle	$2^{110.06} enc. \& 2^{115.8} m.a.$	2 ^{63.78}	2 ^{64.36}	This	
Rectangle	$2^{111.51}$ enc. & $2^{115.78}$ m.a.	$2^{63.78}$	2 ^{67.8}	This	

Table. Results of 26-round attack on GIFT-64

1. Preliminaries

- GIFT-64
- The rectangle attack

2. Improving the Rectangle Attack on GIFT-64

- Key guessing strategy
- The dedicated model

3. Result and extensions

4. Summary

Summary

- > The best attacks on GIFT-64 in terms of time complexity to date.
- > An initial application of the generic rectangle key recovery algorithm for the bit-wise block ciphers
- > The dedicated model of key recovery attack on GIFT-64.

Improving the Rectangle Attack on GIFT-64

Thank you!

Q & A