組別:第二組成員: H24051184 統計110 馬靖宇 H24089030 統計111 翁瑋廷 H24089014 統計111 許祐誠

1. Brief introduction of the problem

南極洲的企鵝,由於全球暖化使其走向滅絕。我們透過本次資料科學導論報告,深入的研究這些瀕臨滅絕的各種不同的企鵝, 利用「帕爾默群島(南極洲)企鵝數據」,觀察三種不同企鵝的各項數據,透過各種機器學習演算法以及不同的訓練、測試資料切割方式,找出哪些演算法在訓練資料較少時,依舊有好的分類企鵝結果。

2. Data description and preprocessing

資料來自<u>Kaggle</u>網站,此資料有七種特徵,三種類別型(species、island、sex),四種連續型(culmen length&de pth、flipper length、body mass),共343筆資料。刪除任一欄位有NA的整筆資料,另外第338筆的sex = ".",也將該筆刪除。一共刪除10筆,資料剩下333筆,做後續的分析。

3. Insights discovered from the data

a.

企鵝種類數量以Adelie最多,Gentoo次之,Chinstrap最少;性別的數量、種類對性別的 數量、島嶼對性別的數量都相當平均

b.

體重和flipper_length的分配較為右偏,鳥嘴長度的分配有一點雙峰的感覺

c.

Gentoo的體重較重、culmen_depth較厚且flipper_length較長;Adelie的culmen_length較短

d.

從散佈圖中可以看出在兩兩不同特徵下,可以將三種企鵝大致區分開來(在分群上能有所幫助),性別則較無法區分

4. Methodology details

a. 模型建置

i. Decision tree:

想比較不同的criterion, information gain 和 gini index, 在分類資料上的差別。 並指定 random state 固定住模型。

第一個模型超參數:random state = 2

第二個模型超參數: random state = 2, criterion = "entropy"

ii. Random forest:

根據Decision tree 的結果,使用不同的criterion 並沒有對分類結果有差別。所以我rand om forest的criterion參數只用entropy。max_feature代表隨機森林內單顆決策樹使用特徵的最大數量。max_samples代表隨機森林內單顆決策樹所使用的訓練資料數。如果max_sample是介於0,1之間的浮點數,單顆決策樹所使用的訓練資料數為max_sample * 訓練資料總數。

第一個模型超參數:criterion="entropy", random_state = 100, max_samples = 0.7, max_f eatures = 3

iii. BaggingClassifier:

調整的重要參數有n_estimators最大迭代次數、max_samples抽取訓練每個基本估計量的樣本數、max_features訓練每個基本估計量的要素數量,參數值使用以下所有的組合進行比較: n_estimators = [8,12,16]; max_samples = [0.5,0.6,0.7,0.8]; max_features = [0.5,0.6,0.7,0.8]

iv. GaussianNB:

沒有重要參數,所以僅以GaussianNB()進行資料訓練和預測

v. GradientBoostingClassifier:

調整的重要參數有 n_e stimators最大迭代次數、learning_rate權重縮減係、 max_d epth樹的最大深度,參數值使用以下所有的組合進行比較: n_e stimators = [8,12,16];learning_rate = [0.6,0.7,0.8,1]; max_d epth = [2,3,4]

vi. HistGradientBoostingClassifier:

調整的重要參數有max_iter算法收斂的最大迭代次數、learning_rate權重縮減係數、max_depth樹的最大深度,參數值使用以下所有的組合進行比較:

 $max_iter = [8,12,16]$; $learning_rate = [0.6,0.7,0.8,1]$; $max_depth = [2,3,4]$

vii. Knn

在使用KNN演算法,我們僅調整n_neighbors,而我們將利用gridsearchcv來選擇適合的n值,範圍為 [1,2,3,4,5,6]

viii. svm

使用svm的模型,調整的參數為kernel,kernel有兩種,一個為'linear',另一個為'rbf',以此兩種方式進行比較

ix. logistic regressiom

調整的重要參數有收斂最大跌帶次數max iter=10、正則化係數的倒數c=1

- **5.** Evaluation and Results(Evaluation metrics, Train/Test settings, Baselines. Experimental Results. Insights derived from the results.)
 - a. 分類指標
 - i. TP · TN · FP · FN

TP(True Positive) 為預測是1,真實是1的結果; FP(False Positive) 為預測是1,真實是0的結果; TN(True Negative) 為預測是0,真實是0的結果; FN(False Negative) 為預測是0,真實是1的結果。

ii. accuracy

代表正確分類的機率, accuracy = TP + TN / all test data

iii. precision

代表預測是1,真實是1的機率,precision = TP/TP+FP

iv. recall

代表真實是1,預測是1的機率,recall = TP/TP+FN

v. f1-score

代表precision 和 recall 的調和平均數,f1-score = 2×Precision×Recall / Precision + Recal

vi. weighted

將各類別的precision、recall、fl-score直接平均

vii. macro

將各類別的precision、recall、fl-score依照support佔訓練資料比例加權平均

- b. 訓練和測試資料切割方式:
- i. train : test = 3 : 1

將index的0,4,8…、1,5,9…、2,6,10….設為訓練資料, index的3,7,11...設為測試資料。

ii. train: test = 2:1

將index的0,3,6…和1,4,7…設為訓練資料, index的2,5,8…設為測試資料。

iii. train: test = 1:1

將index的0,2,4…..設為訓練資料, index的1,3,5...設為測試資料。

iv. train: test = 1:3

將index的3,7,11...設為訓練資料, index的0,4,8…、1,5,9…、2,6,10…..設為測試資料。

 \mathbf{v} . train: test = 1:9

將index的9 19 29............設為訓練資料,其餘index設為測試資料。

vi. 只取10筆資料訓練

將index的34 66 98 等10筆資料設為訓練資料,其餘index設為測試資料。

- c. 模型結果
- i. Decision tree
 - 1. train: test = 3:1 (兩個模型結果相同)

	precision	recall	f1-score	support
Adelie	1	1	1	35
Chinstrap	0.9444	1	0.9714	17
Gentoo	1	0.9667	0.9831	30
accuracy			0.9878	82
macro avg	0.9815	0.9889	0.9848	82
weighted a	0.9885	0.9878	0.9879	82

2. train: test = 2:1 (模型0、1)

	precision	recall	f1-score	support
Adelie	0.9787	0.9787	0.9787	47
Chinstrap	0.9565	0.9565	0.9565	23
Gentoo	1	1	1	41
accuracy			0.982	111
macro avg	0.9784	0.9784	0.9784	111
weighted a	0.982	0.982	0.982	111

				_
Adelie -		0	0	- 40
True label Chinstrap -	1	22	0	- 30 - 20
Gentoo -	0	0	41	- 10
'	Adelie	Chinstrap Predicted label	Gentoo	0

	precision	recall	f1-score	support
Adelie	0.9792	1	0.9895	47
Chinstrap	1	0.9565	0.9778	23
Gentoo	1	1	1	41
accuracy			0.991	111
macro avg	0.9931	0.9855	0.9891	111
weighted a	0.9912	0.991	0.9909	111

3. train: test = 1:1(模型0、1)

	precision	recall	f1-score	support
Adelie	0.9857	0.9583	0.9718	72
Chinstrap	0.9444	1	0.9714	34
Gentoo	0.9836	0.9836	0.9836	61
accuracy			0.976	167
macro avg	0.9713	0.9806	0.9756	167
weighted a	0.9765	0.976	0.9761	167

	precision	recall	f1-score	support
Adelie	0.9718	0.9583	0.965	72
Chinstrap	1	1	1	34
Gentoo	0.9516	0.9672	0.9593	61
accuracy			0.9701	167
macro avg	0.9745	0.9752	0.9748	167
weighted a	0.9702	0.9701	0.9701	167

4. train: test = 1:3 (兩個模型結果相同)

	precision	recall	f1-score	support
Adelie	0.9346	0.9009	0.9174	111
Chinstrap	1	0.902	0.9485	51
Gentoo	0.8571	0.9438	0.8984	89
accuracy			0.9163	251
macro avg	0.9306	0.9156	0.9214	251
weighted a	0.9204	0.9163	0.917	251

5. train: test = 1:9 (兩個模型結果相同)

	precision	recall	f1-score	support
Adelie	0.8699	0.9621	0.9137	132
Chinstrap	0.791	0.8689	0.8281	61
Gentoo	0.9659	0.787	0.8673	108
accuracy			0.8804	301
macro avg	0.8756	0.8727	0.8697	301
weighted a	0.8884	0.8804	0.8797	301

6. 只取10筆資料訓練(兩個模型結果相同)

Adelie -	67	72	3	- 100 - 80
Ture label Chinstrap -	31	27	8	- 60 - 40
Gentoo -	0	1	114	- 20
	Adelie	Chinstrap Predicted label	Gentoo	□ □ 0

	precision	recall	f1-score	support
Adelie	0.6837	0.4718	0.5583	142
Chinstrap	0.27	0.4091	0.3253	66
Gentoo	0.912	0.9913	0.95	115
accuracy			0.644	323
macro avg	0.6219	0.6241	0.6112	323
weighted a	0.6804	0.644	0.6502	323

觀察訓練、測試資料三比一、二比一和一比一的模型結果,可以發現各類別的僅有不超過五筆資料分錯。所有分類指標都還能保持在0.9以上。而訓練、測試資料一比三、一比九的模型結果逐漸變差,分類指標數值逐漸下降。只取10筆資料的模型結果相當差,準確率僅有0.644,其他分類指標也表現很差,因此決策樹模型並不適合此情況。

ii. Random forest

1. train : test = 3 : 1

	precision	recall	f1-score	support
Adelie	0.9722	1	0.9859	35
Chinstrap	1	1	1	17
Gentoo	1	0.9667	0.9831	30
accuracy			0.9878	82
macro avg	0.9907	0.9889	0.9897	82
weighted a	0.9881	0.9878	0.9878	82

2. train: test = 2:1

Adelie -	47	0	0	- 40
Para Chinstrap -	1	22	0	- 30 - 20
Gentoo -	0	0	41	- 10
L	Adelie	Chinstrap Predicted label	Gentoo	ш.

	precision	recall	f1-score	support
Adelie	0.9792	1	0.9895	47
Chinstrap	1	0.9565	0.9778	23
Gentoo	1	1	1	41
accuracy			0.991	111
macro avg	0.9931	0.9855	0.9891	111
weighted a	0.9912	0.991	0.9909	111

3. train: test = 1:1

	precision	recall	f1-score	support
Adelie	0.9863	1	0.9931	72
Chinstrap	1	1	1	34
Gentoo	1	0.9836	0.9917	61
accuracy			0.994	167
macro avg	0.9954	0.9945	0.9949	167
weighted a	0.9941	0.994	0.994	167

4. train: test = 1:3

	precision	recall	f1-score	support
Adelie	0.9821	0.991	0.9865	111
Chinstrap	0.9796	0.9412	0.96	51
Gentoo	0.9889	1	0.9944	89
accuracy			0.9841	251
macro avg	0.9835	0.9774	0.9803	251
weighted a	0.984	0.9841	0.9839	251

5. train: test = 1:9

	precision	recall	f1-score	support
Adelie	0.963	0.9848	0.9738	132
Chinstrap	0.9655	0.918	0.9412	61
Gentoo	1	1	1	108
accuracy			0.9767	301
macro avg	0.9762	0.9676	0.9717	301
weighted a	0.9768	0.9767	0.9766	301

6. 只取10筆資料訓練

	precision	recall	f1-score	support
Adelie	0.8599	0.9507	0.903	142
Chinstrap	0.898	0.6667	0.7652	66
Gentoo	0.9829	1	0.9914	115
accuracy			0.9102	323
macro avg	0.9136	0.8725	0.8865	323
weighted a	0.9115	0.9102	0.9063	323

7. 小結:

觀察訓練、測試資料三比一、二比一、一比一、一比三和一比九的模型結果,可以發現各類別的僅有不超過五筆資料分錯。所有分類指標都還能保持在0.9以上。 只取10筆資料的模型結果也還不錯,準確率仍有0.9102, Adelie和Gentoo的其他分 類指標也表現不錯。僅有真實是Chrinstrap的企鵝比較容易被預測成Adelie企鵝。隨機森林模型相較於決策樹模型適合此情況。

iii. BaggingClassifier

1. train : test = 3 : 1

2. train: test = 2:1

3. train : test = 1 : 1

4. train: test = 1:3

5. train: test = 1:9

6. 只取10筆資料訓練

7. 小結:

在這六種比例的訓練資料下,都能有不錯的表現,三種企鵝的precision、recall和fl-score幾乎都能大於0.90,在train取其中十筆的情況下,accuracy仍可以高達0.95,只有8隻原本是屬於Adelie的企鵝和7隻原本是屬於Chinstrap的企鵝被判錯,所以BaggingClassifier非常適合用來訓練和預測企鵝的種類。

iv. GaussianNB

1. train : test = 3 : 1

2. train: test = 2:1

3. train : test = 1 : 1

4. train: test = 1:3

5. train : test = 1 : 9

6. 只取10筆資料訓練

7. 小結:

GaussianNB與其他演算法相較之下表現最差,其中又以train: test = 1:9的表現最差,accuracy只有0.60,與其他訓練比例相比,多了許多原本是屬於Gentoo的企鵝被判錯,其表現比train只取其中十筆的結果還差,主要是因為在train: test = 1:9所訓練的資料,在GaussianNB模型中較無法正確預估其他隻企鵝的種類。

v. GradientBoostingClassifier

1. train : test = 3 : 1

2. train: test = 2:1

3. train : test = 1 : 1

4. train : test = 1 : 3

5. train : test = 1 : 9

6. 只取10筆資料訓練

GradientBoostingClassifier只有在train只取其中十筆的情況下表現較差,accuracy降至 0.84,有19隻原本是屬於Adelie的企鵝和34隻原本是屬於Chinstrap的企鵝被判錯,但只有訓練十筆資料能有這樣的結果已經算很不錯了。

vi. HistGradientBoostingClassifier

1. train : test = 3 : 1

2. train: test = 2:1

3. train : test = 1 : 1

4. train : test = 1 : 3

HistGradientBoostingClassifier從train: test = 3:1到train: test = 1:3都能預估得很好, 三種企鵝的precision、recall和f1-score幾乎都能大於0.90,但在train: test = 1:9和train 只取其中十筆時,預測的效果極差,不論原本是屬於哪種企鵝,都會被判成是Ad elie,所以HistGradientBoostingClassifier需要較多筆的訓練資料,才能在訓練和預測 企鵝的種類上有不錯的表現。

vii. knn

1.train: test = 2:1

2.train: test = 3:1

3.train: test = 1:1

0 -	72	0						
abe					precision	recall	f1-score	support
predicted label 1		34	0	Adelie Chinstrap	1.00	1.00	1.00	72 34
_				Gentoo	1.00	1.00	1.00	61
2 -			61	accuracy	1.00	1.00	1.00	167 167
•	0	1 true label	2	macro avg weighted avg	1.00	1.00	1.00	167

4.train: test = 1:3

0 -	104	0						
apel					precision	recall	f1-score	suppor
predicted label 1		51		Adelie	1.00	0.94	0.97	11
p.e				Chinstrap	0.88	1.00	0.94	5
- 2	0	0	89	Gentoo	1.00	1.00	1.00	8
				accuracy			0.97	25
			,	macro avg	0.96	0.98	0.97	25
	0	1 true label	2	weighted avg	0.98	0.97	0.97	25

5.train: test = 1:9

6.只取10筆資料訓練

7.小結

KNN演算法再所有的資料分割的表現上基本上都非常優秀,但再將訓練資料與測試資料為1:9時,由於訓練資料筆數少,因此表現會稍稍的欠佳,會有五隻企鵝的種類被判定錯誤,而當只取10筆訓練資料時,會有14隻企鵝被判定錯誤,預測效果稍稍的較差了些。

viii. svm(kernal = 'linear')

2.train: test = 3:1

4.train : test = 1:3

Gentoo accuracy

macro avg weighted avg

1.00

1 00

1.00

1.00

167

167

167

5.train: test = 1:9

6.只取10筆資料訓練

ix. svm(kernal = 'rbf')

1.train: test = 2:1

6.抽10筆為訓練資料

SVM演算法再Kernal為'linear'與'rbf'在train: test = $2:1 \times 3:1 \times 1:1 \times 1:3$ 大致上皆表現良好,不過在train: test = 1:9皆會有5隻企鵝被分錯種類,而當我們抽取10筆訓練資料時,會有比較多的企鵝被分錯,而其中linear相較於rbf會是一個較好的kernal。

x.logistic regression

4.train: test = 1:3

5.train: test = 1:9

6.抽10筆為訓練資料

7..小結

losgistic regression 模型,在train: test = 2:1、3:1、1:1、1:3大致上皆表現良好,而在train: test = 1:9會有約5隻企鵝被分類錯誤,而當只抽10筆為訓練資料時,更會有約23隻企鵝被分類錯誤,由於用較少訓練資料,因此其表現相較於其他分割方法差了許多。

(5) Conclusions and novelty

- 在畫出敘述統計量的圖表後,我們對於資料的型態有更進一步的了解,讓我們能夠 在後續的資料分析上,更能夠知道資料在哪些模型與演算法上,可能將會有比較好 的結果。
- 在試過多種模型後,我們發現大多數的模型在訓練、測試資料3:1、2:1、1:1、1:3 時,都能有不錯的表現,只有GaussianNB的表現較差。
- HistGradientBoostingClassifier在train、test切割成3:1和train只取其中十筆時,不論原本是屬於哪種企鵝,都會被判成是Adelie,所以此演算法需要較多筆的訓練資料,才能有不錯的表現。
- Random forest、BaggingClassifier和KNN在只取10筆資料訓練時,accuracy都還能高於 0.9,所以這些演算法較適合用來訓練小筆的資料。

- 而在大部分模型,train和test切割成3:1,訓練資料分類結果最佳。
- (6) The contribution of each team member
 - 馬靖宇:資料描述和前處理,敘述統計量做圖,測試、訓練資料切割,模型指標, 決策樹、隨機森林模型建置與結果。
 - 2. 翁瑋廷: 統計量做圖與解釋,BaggingClassifier模型建構與結果分析、GaussianNB模型 建構與結果分析、GradientBoostingClassifier模型建構與結果分析、HistGradientBoostingC lassifier模型建構與結果分析
 - 3. 許祐誠: k-nearest neighbors模型建構與結果分析、svm(kernal = linear 、 rbf)模型建構與結果分析、logistic regression 模型建構與結果分析。