AI6104 - MATHEMATICS FOR AI

TUTORIAL 3 - CHAIN RULE, DIRECTIONAL DERIVATIVES

Problem 1

Use the Chain Rule to calculate dz/dt for the following functions

(a)
$$z = f(x, y) = 4x^2 + 3y^2$$
, $x = x(t) = \sin t$, $y = y(t) = \cos t$.

(b)
$$z = f(x, y) = \sqrt{x^2 - y^2}, x = x(t) = e^{2t}, y = y(t) = e^{-t}.$$

(c)
$$z = f(x,y) = x^2 - 3xy + 2y^2$$
, $x = x(t) = 3\sin 2t$, $y = y(t) = 4\cos 2t$.

Problem 2

Use the Chain Rule to calculate $\partial z/\partial u$ and $\partial z/\partial v$ for the following functions

(a)
$$z = f(x, y) = 3x^2 - 2xy + y^2$$
, $x = x(u, v) = 3u + 2v$, $y = y(u, v) = 4u - v$.

(b)
$$z = f(x, y) = \frac{x}{y}, x = x(u, v) = 2\cos u, y = y(u, v) = 3\sin v.$$

Problem 3

Write down the equation of tangent plane to each of the following surfaces at given points

(a)
$$z = x^2 + y^2$$
 at point $(1, 2, 5)$

(b)
$$x^2 + y^2 + z^2 = 169$$
 at point $(3, 4, 12)$

(c)
$$z = y + \ln \frac{x}{z}$$
 at point $(1, 1, 1)$

Problem 4

Find the gradient $\nabla f(x,y)$ of each of the following functions

(a)
$$f(x,y) = x^2 - xy + 3y^2$$

(b)
$$f(x,y) = \sin 3x \cos 3y$$

(c)
$$f(x,y) = \frac{x^2 - 3y^2}{2x + y}$$

Problem 5

Suppose the function z = f(x, y) is differentiable at \mathbf{x} , and \mathbf{u} is a unit vector. Show that $D_{\mathbf{u}}f(\mathbf{x})$ is maximized when \mathbf{u} has the same direction as $\nabla f(\mathbf{x})$ and minimized when \mathbf{u} has the opposite direction as $\nabla f(\mathbf{x})$. Calculate the maximum and minimum value of $D_{\mathbf{u}}f(\mathbf{x})$.

Problem 6

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function differentiable at $\mathbf{a} \in \mathbb{R}^n$. Let k and l be constants. \mathbf{u} and \mathbf{v} are unit vectors. Prove that $D_{k\mathbf{u}+l\mathbf{v}}f(\mathbf{a}) = kD_{\mathbf{u}}f(\mathbf{a}) + lD_{\mathbf{v}}f(\mathbf{a})$.