Machine Learning for Economic Analysis Problem Set 2

Jonas Lieber*

Due: 11:59pm Wed, Feb 7, 2023

Problem 1. Gradient Descent

- 1. Write a function that has the following inputs
 - (a) a function $f: \mathbb{R}^p \to \mathbb{R}$ to minimize,
 - (b) a starting point $x^0 \in \mathbb{R}^p$,
 - (c) the gradient $\nabla f: \mathbb{R}^p \to \mathbb{R}^p$ of f, defined as $(\nabla f(x))_j = \frac{\partial}{\partial x_j} f(x)$,
 - (d) a function s that depends on f, the gradient evaluated at the current data point $\nabla f(x^k)$, the iteration index k, the current point x^k and a tuning parameter $\gamma \in (0,1)$ and returns a stepsize between 0 and 1,
 - (e) $a \varepsilon > 0$ that will be used for the stopping criterion and does the following iteration $while(\|\nabla f(x^k)\|_2 > \varepsilon)$ $sz = s(f(\cdot), \nabla f(x^k), k, x^k, \gamma)$ $x^{k+1} = x^k sz\nabla f(x^k)$
- 2. write the following functions for computing the stepsize
 - (a) $s(f(\cdot), \nabla f(x^k), k, x^k, \gamma) = \gamma$, i.e. a constant step size (use $\gamma = 0.01$ as default),
 - (b) $s(f(\cdot), \nabla f(x^k), k, x^k, \gamma) = 1/k$, i.e. a stepsize that decreases with the number of iterations,
 - (c) backtracking line search as seen in class with parameter γ (use $\gamma=0.9$ as default).
- 3. Consider the function

$$f(x) = 2x^4 - 9x^3 + 4x^2 + 11x + 3.$$

- (a) Plot f in the interval [-2,4].
- (b) Is the function convex in that interval? (no proof is needed, just look at the plot)
- (c) For a starting point $x^0 = -2$, $\varepsilon = 0.001$, use gradient descent to minimize this function using all three methods. Compare the speed at which they converge (in terms of number of iterations and time).

^{*}Department of Economics, Yale University. jonas.lieber@yale.edu

- (d) For a starting point $x^0 = 1$, $\varepsilon = 0.001$, use gradient descent to minimize this function using all three methods. Compare the speed at which they converge (in terms of number of iterations and time).
- (e) Does the starting point matter?

Problem 2. Convexity of OLS¹

1. For any fixed $x \in \mathbb{R}^p$ and $y \in \mathbb{R}$, we consider the function $g_{x,y} : \mathbb{R}^p \to \mathbb{R}$ defined by

$$g_{x,y}(\beta) = y - \sum_{j=1}^{p} x_i \beta_j.$$

Show that for any $\lambda \in [0,1]$ and any $\beta^1, \beta^2 \in \mathbb{R}^p$,

$$g_{x,y}(\lambda \beta^1 + (1-\lambda)\beta^2) = \lambda g_{x,y}(\beta^1) + (1-\lambda)g(x,y)(\beta^2).$$

Does this imply that $g_{x,y}$ is convex according to the definition from class?

2. Show that the function $h: \mathbb{R} \to \mathbb{R}$ defined by

$$h(z) = z^2$$

is convex using the definition from class.

3. For any fixed $x \in \mathbb{R}^p$ and $y \in \mathbb{R}$, we consider the function $g_{x,y} : \mathbb{R}^p \to \mathbb{R}$ defined by

$$q_{x,y}(\beta) = h(g_{x,y}(\beta))$$

is convex. Hint: Use the linearity of $g_{x,y}$ and the convexity of h.

4. For any two convex functions $r: \mathbb{R}^p \to \mathbb{R}$ and $s: \mathbb{R}^p \to \mathbb{R}$, show that the sum, i.e. the function $t: \mathbb{R}^p \to \mathbb{R}$ defined by

$$t(w) = r(w) + s(w)$$

is convex.

5. Use the previous result in an induction to show that for any finite number of convex functions $(v_i : \mathbb{R}^p \to \mathbb{R})_{i=1,\dots,n}$, the sum, defined by

$$v(z) = \sum_{i=1}^{n} v_i(z)$$

is convex.

¹This problem is long, but only because I have split it up into small steps.

6. Conclude that for any given $((x_i, y_i))_{i=1,...,n}$ where $x_i \in \mathbb{R}^p$ and $y_i \in \mathbb{R}$ for all i, the OLS objective function $f: \mathbb{R}^p \to \mathbb{R}$ defined by

$$f(\beta) = \sum_{i=1}^{n} \left(y_i - \sum_{j=1}^{p} x_{i,j} \beta_j \right)^2$$

is convex.

7. For the case of solving the OLS problem, please discuss why it is useful for optimization when an objective is convex. Hint: Consider part 3 of problem 1.

Problem 3. Quickfire

- 1. Why is optimization relevant for Machine Learning?
- 2. Consider the model

$$Y = f(X) + U$$

where U is independent of X. Suppose the variance of U is $\sigma > 0$. For a regression problem where we care about the Mean Squared Error, would you prefer the dataset $((X_i, f(X_i)))_{i=1,...,n}$ over $((X_i, Y_i))_{i=1,...,n}$? Why (not)?

- 3. A norm is a function $f: \mathbb{R}^p \to \mathbb{R}$ such that
 - (a) $f(x) \ge 0$ for all $x \in \mathbb{R}^d$,
 - (b) f(x) = 0 if and only if $x = 0 \in \mathbb{R}^p$,
 - (c) for all $x \in \mathbb{R}^p$ and $a \in \mathbb{R}$, f(ax) = af(x),
 - (d) for all $x, y \in \mathbb{R}^p$, $f(x+y) \le f(x) + f(y)$.

Show that any norm is convex using the definition from class. Which properties of a norm did you use?

4. In class, we have looked at minimization problems. Show that maximization problem can be written as a minimization problem.

Problem 4. graduate students only

- 1. Show that the feasible set in a convex problem is convex.
- 2. Show that any local optimum in a convex problem is a global optimum. Hint: Suppose it wasn't the global optimum and then use the previous result.

²Hints: 1) What would the bias-variance trade-off be for the dataset $((X_i, f(X_i)))_{i=1,\dots,n}$? 2) What is the optimal solution to a regression problem?