Scikit-Learn + Feature-Engineering

Estimator-Api, Pipelines etc.

"There's the joke that 80 percent of data science is cleaning the data and 20 percent is complaining about cleaning the data"

Anthony Goldbloom

Feature Engineering

"More data beats clever algorithms, but better data beats more data."

-Peter Norvig

Kategoriale Features

Onehot-Encoding für lineare Modelle

Country	country_NL	country_BR	country_US
NL	1	0	0
BR	0	1	0
US	0	0	1

- Label-Encoding f
 ür xgboost und co
- Feature Hashing
- Fehlende Daten sind ein Problem

TF-IDF

- Term Frequency verringert Bias zugunsten langer Dokumente
- Inverse Document Frequency verringert den Bias zugunsten häufiger Tokens
- Multipliziert trennt es ganz gut wichtige von unwichtigen Tokens

Kategorie/Wort-Embeddings

- Verwandt mit Dimensionsreduktion / Autoencodern
- Word2vec
- GloVe

Polynomiales Encoding

- Abbilden von Interaktionen zwischen kategorialen Variablen
- Lineare Modelle können XOR nicht lernen, wenn die Interaktion nicht über die Features abgebildet wird

Aus einer Spalte kann man oft mehrere machen (Expansion encoding)

- Gegeben eine Spalte mit Datum
 - Wochentag
 - Feiertag
 - Quartal
 - Urlaubssaison
- Useragent
 - Ist ein Mobilgerät
 - Operating System
 - OS ist aktuell
 - Etc..

Aus mehreren Spalten eine machen (Consolidation encoding)

- Unterschiedliche kategoriale Features auf eines Mappen
- Stemming
- Spellchecking
- Bezeichnungsnormalisierungen
- Kaputte Abkürzungen

Numerische Features

- Sind generell einfacher
- Fehlende Daten sind einfacher zu behandeln (mean, median, etc)

Typische Verfahren

- Einfach Runden oft ist zu genau bloß Rauschen
- Gerundete Variablen kategorial behandeln
- Man kann auch den Logarithmus davor berechnen oder den Logarithmus vom Logarithmus, und dann nochmal runden:)
- Binning, beispielsweise für den Preis, wenn man Angebote kategorisieren möchte und ein lineares Modell hat

Skalieren

- Floating Point hat mehr Auflösung um 0
- Standard (Z) Scaling: mean 0, std 1
- MinMax Scaling $x_s = \frac{(x x_{min})}{(x_{max} x_{min})}$
- Log Scaling

Interaktionen

- Addition / Subtraktion / Multiplikation / Division
- Hinterher Feature Selection
- Manchmal helfen sehr seltsam aussehende Berechnungen

Statistische Features

- Anzahl NaN / Nullen / negativer Werte
- Oft fügt man einer numerischen Spalte einfach noch mean, median, std hinzu vielleicht auch noch min, max
- Anzahl Spaces, Tabs, Newlines, Punkte

Scikit-Learn

Scikit-learn API

- BaseEstimator
 - get_params
 - set_params
- Transformer
 - fit_transform
- fit
- predict

Pipelines

- Bündeln eine Liste von Transformern, die fit und transform implementieren müssen
- Kann am Schluss einen Estimator haben, der nur fit implementieren muss
- Kann das Ergebnis von Transformern cachen

Feature Union

- Kombiniert eine Liste von Transformern horizontal
- Kann mit Pipeline zusammen verwendet werden, um komplexe Modelle zu bauen

Gridsearch

- Benutzt get_param und set_param, um über ein Parameter-Grid zu iterieren
- Fitted am Schluss den besten Estimator