Capturing Dependency of Data using Graphical Models

Song Liu (song.liu@bristol.ac.uk)

Objectives

- Understand equivalence of conditional independence of R.Vs and factorizations of their probability distribution over a graph.
- •Simple undirected graphical models:
 - •Gaussian Markov Network
 - Logistic Model

Dependency in Dataset: A Unit Score Example

Example: Scores of Units

•Imagine a table of unit scores.

Name	SPS	Math	Python	Mach. Learn.
Song	80	70	50	60
Harry	50	40	70	80
Ron	50	50		45
Hermione	90	100		100
•••	•••			•••

Dependency of Datasets and Its Graphical Representation

- •Scores of units are dependent!
 - •Student with **high** Math, Python score is likely to receive **high** SPS score.
 - Vice versa.
- •A graphical representation:

Example: Image Segmentation

- •The probability of one pixel being labelled as "Cow" is correlated with adjacent pixels.
 - •A pixel is more likely to be a Cow pixel if surrounding pixels are all Cow pixels

Jamie Shotton et. al. IJCV 2009

Independence and Conditional Independence of R.Vs

Problem Formulation

•Given a dataset $\{x_i\}_{i=1}^n$,

$$\bullet \mathbf{x}_i = \left[x_i^{(1)}, x_i^{(2)} \dots x_i^{(d)} \right] \in \mathbb{R}^d$$

- • x_i is a vector of a student i's scores. •e.g., $x^{(1)}$ is SPS, $x^{(2)}$ is Math...
- •What does $p\!\left(x^{(1)}, x^{(2)} \ldots x^{(d)}\right)$ look like?

Note, here we do not distinguish the lower case x, an assignment of a random variable, and upper case X, a random variable.

Independence of R.V.s

- •Let's look at how independence between R.V.s are **expressed in probability:**
- •R.V. *X* is **independent** of *Y*:
 - $X \perp Y$
 - $\bullet \Leftrightarrow p(X,Y) = p(X)p(Y)$
 - Factorization
 - • $\Leftrightarrow p(X|Y) = p(X) \Leftrightarrow p(Y|X) = p(Y)$
 - •No Information flows between *X* and *Y*.

Notice the independence can be expressed via factorization and information flow.

Example: Likelihood with Independent Datapoints:

- •Likelihood over the dataset
 - •Factorizes into product over each x_i

$$\bullet p(x_1, x_2, \dots x_n; \theta) = \prod_{i=1}^n p(x_i; \theta)$$

- •We can do so as $x_1 \dots x_n$ are independent.
- •Maximum Likelihood Estimation

$$\operatorname{-max}_{\theta} \prod_{i=1}^{n} p(x_i; \theta)$$

•Lab sheet 4.1

We can do the factorization of the likelihood function because of the independence of X!!!

Conditional Independence of R.V.s

- •R.V. X is independent of Y given Z
 - $X \perp Y | Z$
 - $\bullet \Leftrightarrow p(X,Y|Z) = p(X|Z)p(Y|Z)$
 - $\bullet \Leftrightarrow p(X,Y,Z) \propto g_1(X,Z) \cdot g_2(Y,Z)$
 - Factorization
 - $\bullet \Leftrightarrow p(X|Y,Z) = p(X|Z)$
 - •Information flow: *Y* does not give any additional info which changes the prob. of *X* given *Z*.
 - $\bullet \Leftrightarrow p(Y|X,Z) = p(Y|Z)$

Z is called conditioning random variable.

What are g_1 and g_2 ? They are just two functions, does not have to be probability, does not have to be in any specific form. **Their existence guarantees** the conditional independence.

g function is called factor

(Conditional) Independence and Information Flow

- •(Conditional) Independence tells how information **flows** between R.V.s
 - • $X \perp Y \Leftrightarrow$ no information flows inbetween X and Y.
 - • $X \perp Y | Z \Leftrightarrow$ information flows between X and Y via Z.

The analogy is like relationship between people.

X and Y are independent: they do not talk to each other.

X and Y are conditional indepdent, they talk to each other via a middle man.

Because in many machine learning tasks, (conditional) independence are **valuable prior knowledge**, you may want to specify (conditional) independence of R.Vs in your dataset.

Imagining listing all the (conditional) independence in a very long document...

Representing Conditional Independence by Graph

- •Given a graph $G = \langle E, V \rangle$, and three random variables $X, Y, Z \subseteq V$
 - •if X and Y are completely "**blocked**" by Z, we say $X \perp Y | Z$ is represented by G.

Blocked, means there is no path linking X and Y

Graph is a powerful tool to encode/visualize (conditional) indepedence.

Representing Prob. Distribution Factorization by Graph

- •Factorizing a probability dist. greatly reduces complexity of modelling and computation of a probability dist.
 - •Think about that Maximum Likelihood example you did in Lab!

The motivation of factorizing a probability dist.

Representing Prob. Distribution Factorization by Graph

- •Writing the factorization of a probability distribution of many factors can be cumbersome.
- •Can we also use graph to help??

"P(X,Y) = P(X)P(Y)"

" $P(X,Y,Z) \propto g_1(X,Z)g_2(Y,Z)$ "

Representing Prob. Distribution Factorization by Graph

- •Given a graph $G = \langle E, V \rangle$,
- •We say p(X) factorizes over G:
- •If $p(X) \propto \prod_{c \in C} g_c(X^{(c)})$
 - •where C is set of all **cliques** in G.
 - •Clique: fully connected subgraph.
 - • g_c is a function defined on $X^{(c)}$, which is the subset of X restricted on c.

Like what we saw before, g_c is a function that can be in any form.

g is called "factor"

Equivalency between Factorization and Conditional Independence over G

- Using graph represent a factorization of a probability distribution
- Using graph represent a list of conditional independence
- Remarkably, these two seemingly irrelevant notions are equivalent!

Equivalency between Factorization and Conditional Independence over G

- •If p factorizes over G, p satisfies all conditional independence represented by G.
- •If p satisfies all conditional independence represented by G, then p factorizes over G.

What does that mean

Equivalency between Factorization and Conditional Independence over G

- Verify this on Scores of Units example!
 - •Live demonstration.

Example

p(Ma, SPS, Py, ML) $\propto g_1(Ma, SPS) \cdot g_2(Py, ML, SPS).$

 $\begin{aligned} \text{Hint:} \ X \perp Y | Z &\Leftrightarrow p(X,Y,Z) \propto g_1(X,Z) \cdot g_2(Y,Z) \\ X \perp Y, W | Z &\Rightarrow X \perp Y | Z \end{aligned}$

Markov Network

•A probability distribution p(X) which uses undirected graph representing its conditional independence, is called an **undirected graphical** model, or a Markov network.

The definition of Markov network.

Gaussian Markov Network

•Multivariate Gaussian distribution:

•
$$x \in R^d$$
, $x \sim N(\mathbf{0}, \mathbf{\Sigma})$

• $p(x) \propto \exp\left[-\frac{x(\mathbf{\Sigma})^{-1}x^{\mathsf{T}}}{2}\right] \text{ Let } \mathbf{0} = (\mathbf{\Sigma})^{-1}$.

 $\propto \exp\left[-\frac{\sum_{u,v} \Theta^{(u,v)}x^{(u)} x^{(v)}}{2}\right]$
 $\propto \lim_{u,v;\Theta^{(u,v)}\neq 0} \exp\left(-\Theta^{(u,v)}x^{(u)} x^{(v)}\right)$

aBa^T = \sum_ij B_ij ai aj

You can factorize the joint Gaussian using the pairwise factors

Gaussian Markov Network

- $\bullet p(\mathbf{x}) \propto \prod_{u,v;\Theta^{(u,v)} \neq 0} g_{u,v} (\mathbf{x}^{(u)}, \mathbf{x}^{(v)})$
- •p(x) factorizes over G!
 - ullet G defined by the adjacency matrix

$$A^{(u,v)} = \begin{cases} 0, \Theta^{(u,v)} = 0 \\ 1, \Theta^{(u,v)} \neq 0 \end{cases}$$

- G must be an undirected graph (why?)
- • \Leftrightarrow satisfies the conditional independence encoded in G.

This pairwise factorization implies the distribution factorizes over a G whose edges are defined by the structure of Theta

Gaussian Markov Network

- •Knowing a graph *G* that encodes all conditional independence of your dataset, I can use its adjacency matrix *G* to construct **Θ**!
 - Use sparsity of the adjacency matrix
 - NOT its actual values!
 - **O** must be positive definite!!

Theta must be positive definite!!

We are using graph to construct our probabilistic model, hence the name, graphical model!!

Theta must be positive definite!!

Quiz

- •Suppose graph *G* encodes all cond. indep. in your probability dist. *G* contains **three edges, five nodes.** How many **non-zero elements** are there in **Θ**, the parameter to your Gaussian Markov Net?
- •A.3
- •B.8
- •c.6 https://bit.ly/2uIFZUu
- •D.10
- •E.11

Constructing Likelihood

- **•PC:** If (x_0, x) are drawn from a joint Gaussian $p(x_0, x)$, show log likelihood $\log p(x_0|x)$ has the form:
 - • $-(x_0 \sum_i \beta_i x_i)^2/b$, where $\beta_i \neq 0$ iff (X_0, X_i) is an edge in the Markov network structure of p.
 - How does it help us select good features in least squares fitting?

Gaussian Markov Network

- •Not knowing G encodes all cond. independence of p(x). Given dataset D, we can fit a sparse $\widehat{\Theta}$.
 - •Using MLE: $\widehat{\mathbf{\Theta}} = \underset{\mathbf{\Theta}}{\operatorname{argmax}} \log p(D; \mathbf{\Theta})$
 - •The sparsity of $\widehat{\mathbf{\Theta}}$ gives a graphical representation of p(x)!
 - •Such representation reveals how random variables "interacts" with each other!

Example: Gene Expression Data

Time stamp	Gene1	Gene2	Gene3	Gene4
t1	.1	.2	.5	.2
t2	.5	.4	.7	.8
t3	.5	.5		.45
t4	.9	.2		.01
	•••	•••	•••	

Exponential Family Distribution

 Gaussian Markov network belongs to a wider family of distributions, which are defined using a generic form:

•
$$p(x; \theta) := \frac{\exp(\langle \theta, f(x) \rangle)}{Z(\theta)}$$

 $\phi(x; \theta) \coloneqq \frac{D(x; \theta)}{D(x)}$ • f(x) is a feature transform on x.

•
$$Z(\theta) := \int \exp(\langle \theta, f(x) \rangle) dx$$

•PC: show when f is 2^{nd} degree poly. transform with pairwise terms, $p(x; \theta)$ is a multivariate Gaussian distribution.

Conditional Markov Network

- •In many tasks, the conditional distribution is the key interest.
 - •p(Y|X) measures the randomness on Y given X and help us make a prediction.
 - •Both regression and classification requires a **conditional** model.
- •How to factorize a conditional distribution over *G*?

Conditional Markov Network

•We say a conditional probability distribution P(Y|X) factorizes over G whose nodes $V = X \cup Y$, if

•
$$p(Y|X) = \frac{1}{N(X)} \prod_{c \in C} g_c(Z)$$
, $Z \subseteq X \cup Y$

- • $N(X) := \int \prod_{c \in C} g_c(Z) \, dY$
- Normalizing constant:
 - •It normalizes the distribution to 1 over the domain of the random variable (*Y*).

Conditional Markov Network

•PC: show $Z \nsubseteq X$ •p(Y|X) does not include factors on conditioning variable X!

Logistic Regression

- •The way of constructing a conditional P.D. gives us a simple classification tool: Logistic Regression.
- Consider a simple Markov Net

Y is the variable for class labels, that can be either positive +1 or negative -1 as we saw before.

Logistic Model

Using the factorization rule above,

$$\bullet p(Y|X) = \frac{1}{N(X)} \prod_i g_i(Y, X^{(i)})$$

•
$$N(X) = \sum_{c \in \{-1,1\}} \prod_i g_i(Y, X^{(i)})$$

Logistic Model

- •Let us construct a model of p(Y|X)!•By setting $g_i(Y=y,X_i=x^{(i)};\beta_i) \coloneqq \exp(\beta_i \cdot yx^{(i)})$

$$g_{i}(Y = y, X_{i} = x^{(i)}; \beta_{i}) := \exp(\beta_{i} \cdot yx^{(i)})$$

$$\bullet p(y|\mathbf{x}; \beta) = \frac{1}{N(X)} \exp(\sum_{i} \beta^{(i)} \cdot yx^{(i)})$$

$$= \frac{1}{N(X)} \exp(\langle \boldsymbol{\beta}, \boldsymbol{x} \rangle y).$$

$$\bullet N(X; \beta) = \sum_{y \in \{1, -1\}} \exp(\langle \boldsymbol{\beta}, \boldsymbol{x} \rangle y)$$

•
$$N(X; \beta) = \sum_{y \in \{1,-1\}} \exp(\langle \beta, x \rangle y)$$

This is another example, of graphical modelling. We have a graph, which encodes the conditional independence. We then create a probabilistic model based on that graph.

We replaced the integral by sum in the normalizing term, which is required by a discrete variable Y

Logistic Regression

- •Logistic model:
- • $p(y|x; \boldsymbol{\beta}) = \frac{1}{N(X)} \exp(\langle \boldsymbol{\beta}, \boldsymbol{x} \rangle y)$ • $N(x) = \exp(\langle \boldsymbol{\beta}, \boldsymbol{x} \rangle) + \exp(-\langle \boldsymbol{\beta}, \boldsymbol{x} \rangle)$
- $oldsymbol{\cdot eta}$ can be fitted using MLE.
 - $\bullet \widehat{\boldsymbol{\beta}} = \arg \max_{\boldsymbol{\beta}} \sum_{i=1}^{n} \log p(y_i | \boldsymbol{x}_i; \boldsymbol{\beta})$
 - •The process of fitting $m{\beta}$ using MLE is called Logistic Regression.
 - sklearn.linear model.LogisticRegression

Conclusion

- •Markov network uses a graph to represent its conditional independencies.
 - •It visualizes interactions of R.V.s in a P.D.
- •Two examples of Markov network
 - •Gaussian Markov network factorizes over the graph defined by its **inverse covariance**.
 - •Logistic model is a conditional P.D. model factorizes over a classification network.

Quiz

•Which of the following is positive definite?