Aufgaben zur Asynchronmaschine:

EMA Klausur: 07.07.04

- 4. Ein im Dreieck geschalteter Asynchronmotor wird am 400-V-Netz betrieben und besitzt folgende Werte: P_1 = 5300W, P_{rbg} = 75W, P_{Cu2} = P_{Fe} , $\cos \varphi_1$ = 0,91, R_1 = 1,4 Ω , n = 2945min⁻¹.
 - Wie groß ist der Wirkungsgrad des Motors?
- 5. Eine im Dreieck geschaltete Asynchronmaschine entnimmt dem 220-V-Netz einen Strom $I_{1N} = 3A$. Bei einer Drehzahl von $n_N = 1465 \text{min}^{-1}$ besitzt sie einen Leistungsfaktor von $\cos \varphi_{1N} = 0,875$.
 - Wie groß sind bei einem Ständerwiderstand von R_1 = 3Ω die Stromwärmeverluste im Läufer?
- 6. Eine Asynchronmaschine wird mit einer Umrichterfrequenz $f_1 = 75$ Hz betrieben. Die Drehzahl des Motors beträgt n = 2175min⁻¹. Berechnen Sie die Frequenz des Läufer-stromes.

EMA Klausur: 24.09.03

- 5. Eine Asynchronmaschine besitzt bei $s_N = 0.05$ ein Nennmoment $M_N = 42.35$ Nm. Der Kippschlupf beträgt $s_K = 0.23$.
 - Dem Schleifringläufer mit $R_2' = 1,2\Omega$ werden Zusatzwiderstände $R_2'_{zus} = 1,8\Omega$ vorgeschaltet.
 - Wie groß ist dann das Anlaufmoment M_A ?
- 6. Beim Kurzschlussversuch einer Asynchronmaschine ($U_{1N} = 400V$) in Sternschaltung und beim Bemessungsstrom $I_{1N} = 12,5A$ werden gemessen: $U_{1k} = 62,5V$, $P_{1k} = 800W$. Welchen Wert haben der tatsächliche Kurzschlussstrom I_{1k} und der Leistungsfaktor $\cos \varphi_{1k}$? Zeichnen Sie das Zeigerbild von Strangspannung und Strangstrom. Welcher Punkt der Ortskurve liegt am Ende des Stromzeigers und durch welche Werte von Drehzahl und Schlupf ist er charakterisiert?
- 7. Wie groß ist die zum Läufer übertragene Luftspaltleistung P_L einer Asynchronma- schine in Sternschaltung mit folgenden Daten:

$$U_1 = 400 \text{V}, f_1 = 50 \text{Hz}, \cos \varphi_1 = 0.9, P_{\text{Fe}} = 115 \text{W}, P = 3 \text{kW}, R_1 = 1.46 \Omega, \eta = 0.96$$
?

EMA Klausur: 14.07.04

- 4. Eine im Dreieck geschaltete Asynchronmaschine entnimmt dem 400-V-Netz einen Strom $I_{1N} = 15$ A. Bei einer Drehzahl von $n_{\rm N} = 1470 {\rm min}^{-1}$ besitzt sie einen Leistungsfaktor von $\cos \varphi = 0,866$. Die Ummagnetisierungsverluste betragen $P_{\rm Fe} = 500$ W. Wie groß sind bei einem Ständerwiderstand von $R_1 = 3\Omega$ die Stromwärmeverluste im Läufer?
- 5. Für eine im Dreieck an das 400-V-Netz geschaltete Asynchronmaschine mit Schleifringläufer beträgt das Verhältnis von Kippmoment zu Nennmoment $M_{\rm K}/M_{\rm N}=2,8$. Weiterhin sind bekannt: $I_{\rm 1N}=14\,{\rm A},\cos\varphi_{\rm 1N}=0,86,n_{\rm N}=950\,{\rm min}^{-1}$ und $\eta_{\rm N}=0,855$. Wie groß ist das Anlaufmoment $M_{\rm A}$?
- 6. Ein 6-poliger Asynchronmotor hat bei einer Drehzahl von n = 960 min⁻¹ Stromwärmeverluste im Läufer von P_{Cu2} = 92W.
 Wie groß ist der Wert des inneren Momentes M?

EMA Klausur: 19.02.04

- 4. Ein Drehstromasynchronmotor hat bei einer Speisefrequenz von f_1 = 500Hz folgende Daten: s_K = 0,24; n_N = 1464min⁻¹; P = 0,64kW.
 - a) Geben Sie die Polpaarzahl des Motors an (Begründung).
 - b) Berechnen Sie das Anlaufmoment.
- 5. Für eine Drehstromasynchronmaschine an einem 500-V-Netz in Dreieckschaltung ist die Kupferverlustleistung P_{Cu1} des Ständers zu berechnen. Bekannt sind: s = 0,05; $I_1 = 28,87$ A; $\eta = 0,909$; $\cos \varphi_1 = 0,88$; $P_{\text{Fe}} = P_{\text{rbg}} = 200$ W.
- 6. Die Ständerstromortskurve einer Asynchronmaschine in Sternschaltung ergibt die in der Skizze ersichtlichen Angaben (Länge I_{1N} nicht maßstabsgerecht!). Zusätzlich wurde die Nennkurzschlussspannung mit $U_{1kN}=35$ V bei $R_k=6\Omega$ gemessen. Wie groß ist der Wert der Wirkleistung P_{1N} , die die Maschine aufnimmt?

EMA Klausur: 06.05.02

- 3. Ein Drehstromasynchronmotor hat bei einer Bemessungsleistung von P_N = 10kW folgende weiteren Kennwerte: f_1 = 100Hz, n_N = 5800min⁻¹, P_L = 10,6kW. Welcher Wert ergibt sich für das Reibmoment $M_{\rm rbg}$?
- 4. Berechnen Sie für einen 8-poligen Schleifringläufer den Kippschlupf s_K , wenn folgende weitere Daten bekannt sind:

$$s_N = 0.05$$
, $P_N = 10$ kW, $M_K = 348.5$ Nm, $f_1 = 50$ Hz.

EMA Klausur: 05.03.03

3. Ein Drehstromasynchronmotor, der im Stern geschaltet ist, besitzt folgende Daten:

$$U_{\rm 1N} = 400 \, \text{V}, f_1 = 50 \, \text{Hz}, n_{\rm N} = 985 \, \text{min}^{-1}, P_{\rm 1N} = 3 \, \text{kW}, P_{\rm rbg} = 75 \, \text{W}, \cos \varphi_{\rm 1N} = 0.9, R_1 = 1.1 \, \Omega, P_{\rm Fe} = P_{\rm Cu2}.$$

Wie groß ist der Wirkungsgrad η ?

4. Für eine im Dreieck an das 380-V-Netz geschaltete Asynchronmaschine mit Schleifringläufer beträgt das Verhältnis von Kippmoment zu Nennmoment $M_{\rm K}/M_{\rm N}=2,8$. Weiterhin sind bekannt: $I_{\rm 1N}=14\,{\rm A},\cos\varphi_{\rm 1N}=0,86,n_{\rm N}=950\,{\rm min}^{-1}$ und $\eta_{\rm N}=0,855$. Wie groß ist das Anlaufmoment $M_{\rm A}$, wenn der Kippschlupf $s_{\rm K}=0,27$ beträgt?

EMA Klausur: 18.01.00

- 7. Eine im Dreieck geschaltete Asynchronmaschine entnimmt dem 220-V-Netz einen Strom von $I_{1N} = 3A$. Bei einer Drehzahl von $n_N = 1465 \text{min}^{-1}$ besitzt sie einen Leistungsfaktor von $\cos \varphi$ $_{1N} = 0,875$.
 - Wie groß sind bei einem Ständerwiderstand von R_1 = 3 Ω die Stromwärmeverluste im Läufer, wenn die Ummagnetisierungsverluste P_{Fe} = 27W betragen?
- 8. Wie groß ist das innere Drehmoment $\,M_{_{\rm i}}\,$ einer Asynchronmaschine in Sternschaltung, wenn folgende Daten bekannt sind:

$$U_1 = 400 \text{V}, f_1 = 60 \text{Hz}, \cos \varphi_1 = 0.88, P = 5.4 \text{kW}, R_1 = 1.5 \Omega, \eta = 0.9, p = 2?$$

9. Für eine im Dreieck an das 380-V-Netz geschaltete Asynchronmaschine mit Schleif-ringläufer beträgt das Verhältnis von Kippmoment zu Nennmoment $M_{\rm K}/M_{\rm N}=2,8$.

Weiterhin sind bekannt: $I_{\rm 1N}=14\,{\rm A},\cos\varphi_{\rm 1N}=0.86, n_{\rm N}=950\,{\rm min}^{-1}$ und $\eta_{\rm N}=0.855$. Wie groß ist das Anlaufmoment $M_{\rm A}$?

EMA Klausur: 04.07.00

- 6. Ein Drehstromasynchronmotor hat bei einer Bemessungsleistung von P_N = 10kW folgende weiteren Kennwerte: f_1 = 100Hz, n_N = 5800min⁻¹, P_L = 10,6kW. Welcher Wert ergibt sich für das Reibmoment M_{rbq} ?
- 7. Ein vierpoliger Drehstromasynchronmotor hat bei f_1 = 50Hz ein Kippmoment M_K = 150Nm. Der Wert des Schlupfes beträgt s = 0,03. Wie groß sind die Werte des Anlaufmomentes M_A und der Drehzahl n, wenn der Kippschlupf s_K = 0,25 beträgt?

EMA Klausur: 17.01.01

- 6. Ein 6-poliger Asynchronmotor hat bei einer Drehzahl von $n = 960 \text{ min}^{-1}$ Stromwärmeverluste im Läufer von $P_{\text{Cu}2} = 92\text{W}$. Wie groß ist der Wert des inneren Momentes M_i ?
- 7. Welchen Wert haben die Kupferverluste P_{Cu1} im Ständer einer Asynchronmaschine, die folgende Daten aufweist: $P_{\text{N}} = 3\text{kW}$, $\eta_{\text{N}} = 0.9$, $U_{1\text{N}} = 380\text{V}$, $\cos\phi_{1\text{N}} = 0.92$, $R_{1} = 1.1\Omega$?
- 8. Für eine im Dreieck an das 380-V-Netz geschaltete Asynchronmaschine mit Schleifringläufer beträgt das Verhältnis von Kippmoment zu Nennmoment $M_{\rm K}/M_{\rm N}=2,8$. Weiterhin sind bekannt: $I_{\rm 1N}=14$ A, $\cos\phi_{\rm 1N}=0,8682$, $s_{\rm K}=0,27$, $n_{\rm N}=950$ min⁻¹ und $\eta=0,85$. Wie groß ist das Anlaufmoment $M_{\rm A}$ des Motors?
- 9. Eine 4-polige Asynchronmaschine mit Schleifringläufer hat folgende Daten: $M_{\rm N} = 44 {\rm Nm}$, $M_{\rm K} = 123,2 {\rm Nm}$, $n_{\rm N} = 1425 {\rm min}^{-1}$. Welchen Wert hat der Kippschlupf?

EMA Klausur: 14.01.02

- 1. Ein Drehstromasynchronmotor hat bei $f_1 = 100$ Hz folgende Daten:
 - $s_K = 0.24$, $n_N = 1464 \text{min}^{-1}$, P = 6.4 kW.
 - a) Geben Sie die Polpaarzahl des Motors an (mit Begründung).
 - b) Berechnen Sie das Anlaufmoment.
- 2. Eine Asynchronmaschine besitzt bei einer Drehzahl von $n_{\rm N}$ =2940min⁻¹ und $f_{\rm 1}$ = 50Hz eine Bemessungsleistung von $P_{\rm N}$ =5kW. Die Stromwärmeverlusteverluste des Ständers betragen $P_{\rm Cu1}$ = 210W. Die Ummagnetisierungsverluste sind mit $P_{\rm Fe}$ = 150W und der Wirkungsgrad mit η =0,85 gegeben.

Berechnen Sie die Stromwärmeverluste P_{Cu2} des Läufers, das innere Moment M_{r} und das Reibmoment M_{rbg} .

3. Welchen Wert hat der Leistungsfaktor $\cos \varphi_{1N}$ eines Asynchronmotors bei nebenstehender Ortskurve?

EMA Klausur: 03.07.02

7. Ein vierpoliger Asynchronmotor mit Schleifringläufer hat bei einer Bemessungsdreh-zahl von n = 1446 min⁻¹ eine Leistung an der Welle von P = 22kW. Die Reibungsver-luste betragen P_{rbg} = 250W.

Welchen Wert hat der Läuferwiderstand R_2 , wenn der Läuferstrom I_2 = 46A beträgt?

8. Für eine im Dreieck an das 400-V-Netz geschaltete Asynchronmaschine mit Schleif-ringläufer beträgt das Verhältnis von Kippmoment zu Nennmoment $M_{\rm K}/M_{\rm N}$ =2,8. Weiterhin sind bekannt: $I_{\rm 1N}$ =14A, $\cos\phi$ _{1N} = 0,8248, $s_{\rm K}$ = 0,27, $n_{\rm N}$ = 950 min⁻¹ und η = 0,85.

Wie groß ist das Anlaufmoment M_A des Motors?

6. Eine Asynchronmaschine in Sternschaltung hat folgende Daten:

 $U_{1N} = 400V$, $I_{1N} = 5A$, $R_1 = 1,2\Omega$, $P_{Fe} = 60W$.

- a) Welchen Wert hat der Leistungsfaktor $\cos \varphi_{1N}$, wenn die Luftspaltleistung $P_{L} = 3,05$ kW beträgt?
- b) Welcher Wert ergibt sich für den Leistungsfaktor bei Dreieckschaltung?

EMA Klausur: 02.07.03

4. Von einem Asynchronmotor in Dreieckschaltung sind bekannt:

 $U_{1N} = 400 \text{V}$, $I_{1N} = 8 \text{A}$, $\cos \varphi_{1N} = 0.87$, $R_{\text{Cu1}} = 2.2 \Omega$, $P_{\text{Fe}} = 100 \text{W}$, $\eta_{\text{N}} = 0.89$, $s_{\text{N}} = 0.03$. Welchen Wert haben die Reibungsverluste P_{rbg} ?

- 5. Eine Asynchronmaschine weist ein Kippmoment $M_{\rm K}$ = 18Nm auf und hat ein Anlaufmoment von $M_{\rm A}=10{\rm Nm}.$
 - a) Wie groß ist der Kippschlupf $s_{\rm K}$?
 - b) Berechnen Sie das Nennmoment $\,M_{_{
 m N}}$, das die Maschine bei einem Schlupf von $s_{
 m N}$ = 0,02 erreicht.
- 6. Von einer 2-poligen Asynchronmaschine, die mit f_1 = 50Hz betrieben wird, sind folgende Werte bekannt:

 $P_{1N} = 5.7$ kW, $M_{\text{rbg}} = 0.85$ Nm, $P_{N} = 5$ kW, $P_{\text{Fe}} = 150$ W, $P_{\text{Cu1}} = 180$ W. Welchen Wert hat die Bemessungsdrehzahl n_{N} ?

EMA Klausur: 18.01.99

3. Berechnen Sie den Wirkungsgrad η einer Asynchronmaschine in Sternschaltung, wenn folgende Größen bekannt sind:

 $f_1 = 50$ Hz, p = 4, $I_1 = 6$ A, $P_{Fe} = 140$ W, $M_i = 57,3$ Nm, $R_1 = 1,5\Omega$, P = 4,2kW.

- 4. a) Berechnen Sie für einen 4-poligen Schleifringläufer das Anlaufmoment. P = 22kW, $s_K = 0,24$, $s_N = 0,04$, $f_1 = 50$ Hz.
 - b) Kann der Motor unter Last anlaufen?
- 5. Für die Konstruktion der Stromortskurve einer Asynchronmaschine am 400-V-Netz in Sternschaltung wurden folgende Daten gemessen bzw. berechnet:

Leerlaufversuch: $I_0 = 2.5A$, $P_0 = 211W$

Kurzschlußversuch (schon auf Bemessungsspannung umgerechnet):

$$I_{\rm k} = 22 {\rm A}, \ \varphi_{\rm k} = 49^{\circ}.$$

Für Punkt P_{∞} wurden berechnet:

$$I_{\infty} = 25A$$
, $\cos \varphi_{\infty} = 0.288$.

Zeichnen Sie die Ortskurve für den Ständerstrom I_1 (Strommaßstab: 1A = 0,5cm).

EMA Klausur: 04.07.01

1. Berechnen Sie den Wirkungsgrad des Asynchronmotors in Dreieckschaltung, wenn folgende Daten bekannt sind: $P_L = 6 \text{kW}$, $I_{1N} = 11 \text{A}$, s = 0.05, $P_{\text{rbg}} = 100 \text{W}$, $U_{1N} = 400 \text{V}$

- 2. Bestimmen Sie die von einem Asynchronmotor abgegebene Leistung, wenn folgende Werte gegeben sind: M = 40 Nm, s = 0.04, $f_2 = 4$ Hz (Frequenz des Läuferstromes), p = 5.
- 3. Eine 4-polige Asynchronmaschine hat bei $f_1 = 50$ Hz eine Drehzahl von $n_N = 1455$ min⁻¹. Weiterhin sind bekannt: $M_{\rm rbg} = 3$ Nm, $M_{\rm K} = 105$ Nm und $P_{\rm L} = 5$ kW. Wie groß ist der Wert des Kippschlupfes $s_{\rm K}$?

Lösungen zur Asynchronmaschine:

EMA Klausur: 07.07.04

Aufgabe 4:
$$I_{1Str} = 4,85 \, \text{A}$$
 , $P_{Cu1} = 98,9 \, \text{W}$, $s = 0,0183$, $P = (P_1 - P_{Cu1}) \frac{1-s}{1+s} - P_{rbg} = 4939 \, \text{W}$ $\eta = 0,9318$

Aufgabe 5:
$$s = 0.023, P_{Cu1} = 27W, P_1 = 1kW, P_{Cu2} = 22.7W$$

Aufgabe 6:
$$p = 2$$
, $n_1 = 2250 \text{min}^{-1}$, $s = 0.333$, $f_2 = 2.5 \text{Hz}$

EMA Klausur: 24.09.03

Aufgabe 5:
$$s_{KZ} = 0,575, M_K = 102Nm, M_A = 88,2Nm$$

Aufgabe 6:
$$l_{1k} = 80A$$
, $\cos \varphi_{1k} = 0.5912$, Zeigerbild (U_{1k} , l_{1k} , φ_{1k}), P_k ($n = 0$, $s = 1$)

Aufgabe 7:
$$I_{1Str} = 5A$$
, $P_{1} = 3125W$, $P_{Cu1} = 110W$, $P_{L} = 2900W$

EMA Klausur: 14.07.04

Aufgabe 4:
$$P_1 = \sqrt{3}U_{\rm LN}I_{\rm LN}\cos\varphi_{\rm N} = 9000{\rm W}, \quad P_{\rm Cu\,I} = 3I_{\rm Str\,I}^2R_1 = 675{\rm W}$$
,
$$s = \frac{{\rm n_1 \cdot n_N}}{{\rm n_1}} = 0{,}02$$

$$P_{\rm Cu\,2} = sP_{\rm L} = s(P_1 - P_{\rm Cu\,I}) = 156{,}5{\rm W}$$

Aufgabe 5:
$$P_1 = 8342\text{W}$$
; $P = 7132\text{W}$; $s_K = 0.27$; $M_N = 71.69\text{Nm}$; $M_K = 200.7\text{Nm}$; $M_A = 101\text{Nm}$

Aufgabe 6:
$$s = 0.04$$
; $P_1 = 2300$ W; $M_i = 21.96$ Nm

EMA Klausur: 19.02.04

Aufgabe 4: a)
$$p = 20$$
 b) $M_N = 4,17$ Nm, $s_N = 0,024$, $M_K = 21,06$ Nm, $M_A = 9,56$ Nm

Aufgabe 5:
$$P_1 = 22 \text{kW}, P_L = 21,26 \text{kW}, P_{Cu1} = 0,54 \text{kW}$$

Aufgabe 6:
$$I_{1k} = 30A$$
, $\cos \varphi_{1N} = 0.866$, $Z_k = 10\Omega$, $I_{1N} = 2.02A$; $U_{1N} = 300V$; $P_1 = 1.57kW$

EMA Klausur: 06.03.02

Aufgabe 3:
$$s_N = 0.03$$
, $P_{Cu2} = 353$ W, $P_{rbg} = 247$ W, $M_{rbg} = 0.406$ Nm

Aufgabe 4:
$$s_K = 0.25$$
, mit $M_N = 134$ Nm, $n_N = 712.5$ min⁻¹

EMA Klausur: 05.03.03

Aufgabe 3:
$$s = 0.015$$
, $I_{\rm 1N} = 4.8$ A, $P_{\rm Cu1} = 76.4$ W, $P_{\rm Cu2} = \frac{s(P_{\rm 1N} - P_{\rm Cu1})}{1+s} = 43.2$ W oder $P_{\rm L} = 2880.4$ W, $P = P_{\rm 1N} - \sum P_{\rm V} = 2762$ W, $\eta = P/P_{\rm 1N} = 0.92$

Aufgabe 4:
$$P_{1N} = 7924W$$
, $P = 6775W$, $M_N = 68,1Nm$, $M_N = 95,98Nm$

EMA Klausur: 18.01.00

Aufgabe 4: s = 0.023, $P_{\text{Cul}} = 27\text{W}$, $P_{\text{l}} = 1\text{kW}$, $P_{\text{Cu2}} = 22.07\text{W}$

Aufgabe 5: $I_{1Str} = 9,84A$, $P_{Cu1} = 436W$, $P_{1} = 6000W$, $P_{L} = 5564W$, $M_{i} = 29,5Nm$

Aufgabe 6: $s_{\rm K} = 0.27, M_{\rm N} = 68.1 {\rm Nm}, M_{\rm A} = 95.97 {\rm Nm},$

EMA Klausur: 04.07.00

Aufgabe 6: $P_{\text{rbq}} = P_{\text{L}}(1-s_{\text{N}}) - P_{\text{N}} = 247 \text{W bei } s_{\text{N}} = 0.03..., M_{\text{rbq}} = 0.41 \text{Nm},$

Aufgabe 7: $M_A = 70,59 \text{Nm}, n = 1455 \text{min}^{-1}$

EMA Klausur: 17.01.01

Aufgabe 6: $M_i = 21,96 \text{Nm}, P_i = 2300 \text{W} \text{ bei } s = 0,04$

Aufgabe 7: $P_{1N} = 3333W$ bei $I_{1N} = 5,5A$, $P_{Cu1} = 100W$

Aufgabe 8: $P_{1N} = 8kW$, $P_{N} = 6.8kW$, $M_{N} = 68.353Nm$, $M_{A} = 96.328W$

Aufgabe 9: $s_N = 0.05, s_K = 0.27$

EMA Klausur: 14.01.02

Aufgabe 4: a) p = 4

b) $M_N = 41,7$ Nm, $s_N = 0,024$, $M_K = 210,8$ Nm, $M_A = 95,68$ Nm

Aufgabe 5: $P_1 = 5.88 \text{kW}, P_L = 5.522 \text{kW}, s_N = 0.02, M_i = 17.59 \text{Nm}, M_{\text{rbg}} = 1.34 \text{Nm}$

Aufgabe 6: $\varphi_1 = 27.5^{\circ}, \cos \varphi = 0.887$

EMA Klausur: 03.07.02

Aufgabe 4: s = 0.036, $P_{Cu2} = 831$ W, $R_2 = 0.13\Omega$

Aufgabe 5: $P_{1N} = 8kW$, P = 6.8kW, $M_N = 68.4Nm$, $M_A = 96.3Nm$

Aufgabe 6: a) $\cos \varphi_{1N} = 0.9238$, b) $\cos \varphi_{1N} = 0.9064$

EMA Klausur: 02.07.03

Aufgabe 4: $I_{1NStr} = 4,62A, P_{Cu1} = 141W, P_{L} = 4581W,$

 $P_{1N} = 4822W$, $P_{N} = 4292W$, $P_{m} = 4444W$

 $P_{\rm rbg} = 152 \mathrm{W}$

Aufgabe 5: $s_K = 0.3, M_N = 2.39 \text{Nm}$

Aufgabe 6: $P_L = 5370 \text{W}, M_i = 17,1 \text{Nm}, M_N = 16,24 \text{Nm}, n_N = 2939 \text{min}^{-1}$

EMA Klausur: 18.01.99

Aufgabe 5: P_L = 4,5kW, P_1 = 4,802kW, P_{Cu1} = 162kW, η = 0,8746 (87,46%)

Aufgabe 6: a) $n_N = 1440 \text{min}^{-1}$, $M_N = 146 \text{Nm}$, $M_K = 450 \text{Nm}$, $M_A = 204 \text{Nm}$

b) ja, da $M_A > M_N$

Aufgabe7: $I_0 = 2.5 \text{A}, \cos \varphi_0 = P_0 / \sqrt{3} \cdot U_1 I_1 = 0.1218, \qquad \varphi_0 = 83^\circ$

$$\begin{array}{ll} \textit{I}_{\rm k} = 22{\rm A}, & \varphi_{\rm k} = 59^{\circ}\\ \textit{I}_{\infty} = 25{\rm A}, & \varphi_{\infty} = 73^{\circ}\\ \text{Konstruktion der Ortskurve (Kreis, 3 Punkte)} \end{array}$$