ACMG-ClinVar Markdown File

 $James\ Diao$

October 25, 2016

Working Directory: /Users/jamesdiao/Documents/Kohane_Lab/2016-paper-ACMG-penetrance

Steps

- 1. Download, Transform, and Load Data
- 2. Plot Summary Statistics Across Populations
- 3. Compute Penetrance Estimates

Download, Transform, and Load Data

1. Scrape ACMG gene panel from ClinVar

http://www.ncbi.nlm.nih.gov/clinvar/docs/acmg/

Processed Table from ACMG Website 64 x 4 (selected rows):

Disease_Name	Disease_MIM	${\rm Gene_Name}$	${\rm Gene_MIM}$
Adenomatous polyposis coli	175100	APC	611731
Breast-ovarian cancer, familial 1	604370	BRCA1	113705
Brugada syndrome 1	601144	SCN5A	600163
Dilated cardiomyopathy 1A	115200	LMNA	150330
Familial hypercholesterolemia	143890	APOB	107730
Familial hypertrophic cardiomyopathy 1	192600	MYH7	160760
Retinoblastoma	180200	RB1	614041

ACMG-56 Genes:

##	[1]	APC	MYH11	ACTA2	MYLK	TMEM43	DSP	PKP2	DSG2
##	[9]	DSC2	BRCA1	BRCA2	SCN5A	RYR2	LMNA	MYBPC3	COL3A1
##	[17]	GLA	APOB	LDLR	MYH7	TPM1	PRKAG2	TNNI3	MYL3
##	[25]	MYL2	ACTC1	RET	PCSK9	TNNT2	TP53	TGFBR1	TGFBR2
##	[33]	SMAD3	KCNQ1	KCNH2	MLH1	MSH2	MSH6	PMS2	RYR1
##	[41]	CACNA1S	FBN1	MEN1	MUTYH	NF2	SDHD	SDHAF2	SDHC
##	[49]	SDHB	STK11	PTEN	RB1	TSC1	TSC2	VHL	WT1

2. Download ClinVar VCF

ftp://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh37/clinvar.vcf.gz

ClinVar is the central repository for variant interpretations. Relevant information from the VCF includes:

- (a) CLNSIG = "Variant Clinical Significance, 0 Uncertain, 1 Not provided, 2 Benign, 3 Likely benign, 4
- Likely pathogenic, 5 Pathogenic, 6 Drug response, 7 Histocompatibility, 255 Other"
- (b) CLNDBN = "Variant disease name"
- (c) CLNDSDBID = "Variant disease database ID"
- (d) INTERP = Pathogenicity (likely pathogenic or pathogenic; CLNSIG = 4 or 5)
- ## Processed ClinVar data frame 117420×14 (selected rows and columns):

VAR_ID	CHROM	POS	ID	REF	ALT	CLNSIG
$1_955597_G_T$	1	955597	rs115173026	G	${ m T}$	2
$1_{955619}GC$	1	955619	rs201073369	G	\mathbf{C}	255
$1_957605_G_A$	1	957605	$\mathrm{rs}756623659$	G	A	5

Table continues below

CLNDBN	CLNDSDBID	INTERP
not_specified not_specified Congenital_myasthenic_syndrome	CN169374 CN169374 C0751882:ORPHA590	FALSE FALSE TRUE

3. Download 1000 Genomes VCFs and collect ACMG-56 regions (via tabix)

 $\label{lem:condition} $$ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/ALL.[chrom].phase3_[version].20130502.genotypes.vcf.gz Downloaded 1000 Genomes VCFs are saved in: /Users/jamesdiao/Documents/Kohane_Lab/2016-paper-ACMG-penetrance/1000G/$

Download report: region and successes: 56 x 6 (selected rows):

gene	name	chrom	start	end	downloaded
APC	NM_001127511	5	1.12e + 08	112181936	TRUE
MYH11	NM_001040113	16	15796991	15950887	TRUE
ACTA2	$NM_001141945$	10	90694830	90751154	TRUE
MYLK	$NM_{001321309}$	3	123331142	123603149	TRUE
TMEM43	NM_{024334}	3	14166439	14185180	TRUE

File saved as download_output.txt in Temp_Files

4. Access 1000 Genomes Phase 3 Populations Map

This will allow us to assign genotypes from the 1000 Genomes VCF to ancestral groups. From: ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/integrated_call_samples_v3.20130502. ALL.panel

Phase 3 Populations Map Table: 2504 x 4 (selected rows)

sample	pop	super_pop	gender
NA19144	YRI	AFR	male
NA19726	MXL	AMR	male
NA19762	MXL	AMR	$_{\mathrm{male}}$
HG00631	CHS	EAS	male
HG00766	CDX	EAS	female
NA20510	TSI	EUR	male
HG03636	PJL	SAS	$_{\mathrm{male}}$
HG02786	PJL	SAS	male
NA21088	GIH	SAS	female
HG03937	BEB	SAS	female

Population Distribution

5. Import and Process 1000 Genomes VCFs

- (a) Unnest the data frames to 1 row per variant_ID key (CHROM_POSITION_REF_ALT).
- (b) Remove all insertions, deletions, CNV, etc, and keep only missense variants (1 REF, 1 ALT)
- (c) For 1000 Genomes: convert genomes to allele counts. For example: (0|1) becomes 1, (1|1) becomes 2. Multiple alleles are unnested into multiple counts. For example: (0|2) becomes 0 for the first allele (no 1s) and 1 for the second allele (one 2).

Processed 1000 Genomes VCFs: 139335 x 2516 (selected rows and columns):

GENE	AF_1000G	VAR_ID	CHROM	POS	ID	REF	ALT
APC	0.0001997	5_112043211_A_G	5	1.12e+08	rs554351451	A	G
APC	0.0001997	5_112043231_G_A	5	1.12e + 08	rs575784409	G	A
APC	0.005391	$5_112043234_C_T$	5	1.12e + 08	rs115658307	\mathbf{C}	${ m T}$
APC	0.0001997	$5_112043252_GA$	5	1.12e + 08	rs558562104	G	A
APC	0.008786	$5_112043263_C_T$	5	1.12e+08	rs138386816	\mathbf{C}	${ m T}$

Table continues below

HG00096	HG00097	HG00099	HG00100	HG00101	HG00102
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0

6. Import and Process ExAC VCFs

- (a) Unnest the data frames to 1 row per variant_ID key (CHROM_POSITION_REF_ALT).
- (b) Remove all insertions, deletions, CNV, etc, and keep only missense variants (1 REF, 1 ALT)
- (c) Collect superpopulation-level allele frequencies: African = AFR, Latino = AMR, European (Finnish + Non-Finnish) = EUR, East.Asian = EAS, South.Asian = SAS.

Processed ExAC VCFs: 58873 x 45 (selected rows and columns):

GENE	AF_EXAC	AF_EXAC_AFR	AF_EXAC_AMR	AF_EXAC_EAS	AF_EXAC_EUR
APC	8.13e-05	0	0	0	0
APC	8.131e-05	0	0	0	0
APC	0.1112	0.07979	0.1022	0	0.1063
APC	8.131e-05	0	0	0	0
APC	8.134e-05	0	0	0	0

Table continues below

AF_EXAC_SAS	VAR_ID	CHROM	POS	ID	REF	ALT
0.0001313	5_112043365_G_C	5	1.12e + 08		G	С
0.0001313	5_112043382_A_G	5	1.12e + 08	•	A	G
0.1185	$5_112043384_T_G$	5	1.12e + 08	rs78429131	${ m T}$	G
0.0001313	$5_112043392_C_T$	5	1.12e + 08		\mathbf{C}	${ m T}$
0.0001313	5_112043412_C_G	5	1.12e + 08		$^{\mathrm{C}}$	G

7. Merge ClinVar with 1000 Genomes and ExAC (keep pathogenic variants)

Breakdown of ClinVar Variants

Subset_ClinVar	Number_of_Variants
Total ClinVar	117420
LP/P-ClinVar	33633
LP/P-ClinVar & ACMG	6971
LP/P-ClinVar & ACMG & ExAC	964
LP/P-ClinVar & ACMG & 1000	147
Genomes	

Breakdown of ACMG-1000 Genomes Variants

Subset_1000_Genomes	Number_of_Variants
Total 1000_Genomes & ACMG	139335
1000_Genomes & ACMG & ClinVar	4339
1000_Genomes & ACMG &	147
LP/P-ClinVar	

Breakdown of ACMG-ExAC Variants

Subset_ExAC	Number_of_Variants
Total ExAC & ACMG	58873
ExAC & ACMG & ClinVar	9347
ExAC & ACMG & LP/P-ClinVar	964

8. Compare with ClinVar browser query results

clinvar_query.txt contains all results matched by the search query: "(APC[GENE] OR MYH11[GENE]... OR WT1[GENE]) AND (clinsig_pathogenic[prop] OR clinsig_likely_pathogenic[prop])" from the ClinVar website. The exact query is saved in /Temp_Files/query_input.txt This presents another way of collecting data from ClinVar.

Intermediate step: convert hg38 locations to hg19 using the Batch Coordinate Conversion tool (liftOver) from UCSC Genome Browser Utilities.

ClinVar Query Results Table (substitutions only): 6714 x 13 (selected rows/columns)

VAR_ID	Gene(s)	Condition(s)	Frequency
X_100652891_C_G	GLA	Fabry disease	GMAF:0.00050(G)
11_47374186_C_G	MYBPC3	Primary familial hypertrophic cardiomyopathy	GMAF:0.00020(G)
11_47355233_C_G	MYBPC3	Familial hypertrophic cardiomyopathy 4	GMAF:0.00020(G)
11_47364162_C_G	MYBPC3	Familial hypertrophic cardiomyopathy 4	GMAF:0.00020(G)
$14_23886482_G_C$	MYH7	not specified	GMAF:0.00020(C)
14_23893148_C_G	MYH7	Primary dilated cardiomyopathy	GO-ESP:0.00046(G)
$1_17355075_A_T$	SDHB	Gastrointestinal stromal tumor	GMAF:0.00120(T)
$1_17380507_G_C$	SDHB	Cowden syndrome 2	GO-ESP:0.01323(C)

Breakdown of ClinVar Query Results Table:

Subset	Number_of_Variants
Initial Count	12525
Filter Substitutions (N>N')	6732
Filter Coupling/Bad-Locations	6714
In ClinVar VCF	508
In LP/P-ClinVar VCF	504
In LP/P-ClinVar VCF & ACMG & ExAC	48
In LP/P-ClinVar VCF & ACMG & 1000	9
Genomes	
In LP/P-ClinVar VCF & ACMG & ExAC	8
& 1000 Genomes	

Plot Summary Statistics Across Populations

1. Gene distribution of ClinVar Pathogenic Variants

Gene distribution of ClinVar Pathogenic Variants

2. Overall Non-Reference Sites

For 1000 Genomes

Each individual has n non-reference sites, which can be found by counting. The mean number is computed for each population.

Ex: the genotype of 3 variants in 3 people looks like this:

##			HG00097	HG00099	HG00100
##	Variant	1	0	2	1
##	Variant	2	0	0	1
##	Variant	3	0	0	1

Count the number of non-reference sites per individual:

```
## HG00097 HG00099 HG00100
##
         0
## Mean = 1.33
```


Note: the error bars denote standard deviation, not standard error.

For ExAC

The mean number of non-reference sites is E(V), where $V = \sum_{i=1}^{n} v_i$ is the number of non-reference sites at all variant positions v_1 through v_n .

At each variant site, the probability of having at least 1 non-reference allele is $P(v_i) = P(v_{i,a} \cup v_{i,b})$, where a and b indicate the 1st and 2nd allele at each site.

If the two alleles are independent, $P(v_{i,a} \cup v_{i,b}) = 1 - (1 - P(v_{i,a}))(1 - P(v_{i,b})) = 1 - (1 - AF(v_i))^2$

If all variants are independent, $E(V) = \sum_{i=1}^{n} 1 - (1 - AF(v_i))^2$ for any set of allele frequencies.

Note: this is not true in some rare cases, e.g., when multiple variants share the same position.

Since we have the allele frequencies for each superpopulation, we can estimate E(V) for each superpopulation.

Ex: the allele frequencies of 3 variants across the 5 superpopulations looks like this:

##			AF_EXAC_AFR	AF_EXAC_AMR	AF_EXAC_EAS	AF_EXAC_EUR	AF_EXAC_SAS
##	Variant	1	0.1	0.2	0.0	0.0	0.3
##	Variant	2	0.2	0.0	0.3	0.0	0.1
##	Variant	3	0.0	0.0	0.1	0.1	0.2

The probability of having at least 1 non-reference site at each variant - (0|1) (1|0) or (1|1) is given by $1 - (1 - AF)^2$. Note that this is approximately 2 * AF when AF is small:

##	AF_EXAC_AFR	AF_EXAC_AMR	AF_EXAC_EAS	AF_EXAC_EUR	AF_EXAC_SAS
## Variant 1	0.19	0.36	0.00	0.00	0.51
## Variant 2	0.36	0.00	0.51	0.00	0.19
## Variant 3	0.00	0.00	0.19	0.19	0.36

By linearity of expectation, the expected (mean) number of non-reference sites is $\sum E(V_i) = \sum (columns)$.

3. Pathogenic Non-Reference Sites

For 1000 Genomes and ExAC

This is the same procedure as above, but performed only on the subset of variants that are pathogenic.

4. Fraction of 1000 Genomes Individuals with Pathogenic Sites

For 1000 Genomes

We can count up the fraction of individuals with 1+ non-reference site(s) in each population. This is the fraction of individuals who would receive a positive genetic test result in at least 1 of the ACMG-56 genes.

Ex: the genotype of 3 variants in 3 people looks like this:

##			HG00097	HG00099	HG00100
##	${\tt Variant}$	1	0	2	1
##	${\tt Variant}$	2	0	0	1
##	${\tt Variant}$	3	0	0	1

Count each individual as having a non-reference site (1) or having only reference sites (0):

```
## HG00097 HG00099 HG00100
## 0 1 1
## Mean = 0.667
```


For ExAC

The probability of having at least 1 non-reference site is P(X), where X indicates a non-reference site at any variant position v_1 through v_n .

Recall that $P(v_i) = P(v_{i,a} \cup v_{i,b}) = 1 - (1 - AF(v))^2$ when alleles are independent.

If all alleles are independent, $P(X) = P(\bigcup_{i=1}^n v_i) = 1 - \prod_{i=1}^n (1 - AF(v_i))^2$

Ex: the allele frequencies of 3 variants across the 5 superpopulations looks like this:

##	AF_EXAC_AFR	AF_EXAC_AMR	AF_EXAC_EAS	AF_EXAC_EUR	AF_EXAC_SAS
## Variant 1	0.1	0.2	0.0	0.0	0.3
## Variant 2	0.2	0.0	0.3	0.0	0.1
## Variant 3	0.0	0.0	0.1	0.1	0.2

The probability of having at least 1 non-reference site at each variant - (0|1) (1|0) or (1|1) is given by $1 - (1 - AF)^2$. Note that this is approximately 2 * AF when AF is small:

##	AF_EXAC_AFR	AF_EXAC_AMR	AF_EXAC_EAS	AF_EXAC_EUR	AF_EXAC_SAS
## Variant 1	0.19	0.36	0.00	0.00	0.51
## Variant 2	0.36	0.00	0.51	0.00	0.19
## Variant 3	0.00	0.00	0.19	0.19	0.36

The expected (mean) number of non-reference sites is given by $1 - \prod (1 - AF)^2$.

5. Test Statistics

F-statistic/T-statistic: probability that the different groups are sampled from distributions with the same mean. These plots are from 4(a) - 1000 Genomes Fraction with 1+ Non-Reference Site, but can be replicated for plots 2(ab) and 3(ab) as well.

6. Ethnic Breakdown of 1000 Genomes Pathogenic Variants

Sketchy: Ethnic Breakdown of 1000 Genomes Pathogenic Vari

Proportion of Variants across 1000 Genomes Cohort

Sketchy: Ethnic Breakdown of ExAC Pathogenic Variants

Penetrance Estimates

1. Import Literature Search Disease Prevalence Data

```
Disease Inverse.P1 Inverse.P2 Inverse.Prevalence Region
## 5 SCN5A Brugada syndrome
                                  10000
                                              2000
                                                                  4472 World
##
                                              URL
## 5 http://www.ncbi.nlm.nih.gov/pubmed/17038146
##
                                    journal year sample.size first.author
## 5 Pacing and Clinical Electrophysiology 2006
                                                        <NA> Antzelevitch
##
     subset citations date.accessed
                                                                  issue
       <NA>
                         19-07-2016 refers to other (uncited) studies
## 5
                   11
```

2. Manually curated disease keywords from CLNDBN

```
##
    [1] adenomatous
                                         aneurysm
##
    [3] arrhythmogenic; dreifuss
                                         breast; ovarian
##
    [5] brugada; gardner
                                         tachycardia
    [7] dilated
##
                                         ehler
   [9] fabry
##
                                         hypercholesterolemia
## [11] hypertrophic
                                         medullary
  [13] noncompaction
                                         Fraumeni
   [15] Loeys; Dietz
                                         QT
## [17] lynch; endometrial
                                         hyperthermia
                                         neoplasia; men2a
## [19] Marfan
## [21] MYH; colon
                                         neurofibromatosis
## [23] paraganglioma; pheochromocytoma peutz; jeghers
## [25] pilomatrixoma
                                         Cowden; PTEN; hamartoma; Merkel
## [27] retinoblastoma
                                         tuberous
## [29] Hippel; Lindau
                                         Wilms
```

3. Aggregate allele frequencies of all variants associated with each disease - AF(disease)

We define AF(disease) as the probability of having at least 1 variant associated with the disease. This can be computed in two ways: (a) By direct counting, from genotype data in 1000 Genomes. (b) AF(disease) = $1 - \prod_{variant} (1 - AF_{variant})$, from population data in ExAC. This assumes independence between variants.

4. Comparisons of AF(disease) by dataset or method

Correlation Table:

```
## COUNT_1000G CALC_1000G CALC_EXAC
## COUNT_1000G 1.0000000 0.9999898 0.9897085
## CALC_1000G 0.9999898 1.0000000 0.9898656
## CALC_EXAC 0.9897085 0.9898656 1.0000000
```


Index

The median AF(disease) ratio between counting and calculation is: 1.001. The median AF(disease) ratio between ExAC and 1000 Genomes is: 6.302.

Index

5. Penetrance as a function of allelic heterogeneity: $P(V|D) = 0.001,\,0.02,\,0.5$

1000 Genomes Penetrance Estimates as a function of P(V|D)

ExAC Penetrance Estimates as a function of P(V|D)

6. Penetrance as a function of prevalence (when a range is presented)

Range of prevalence estimates

Penetrance Range Estimates for Prevalence Ranges, P(V|D) = 0.1

Penetrance Range Estimates for Prevalence Ranges, P(V|D) = 1

->