Practice Test, Unit 6 Assessment

Group 1

Find all unique nth roots for the following complex numbers. Write your final answers in standard form with exact values.

- (A) Cubic Roots of -27i
- (B) Sixth roots of -i

Group 2

Given

1)
$$x \in (0, \frac{\pi}{2})$$
, $y \in \left(\frac{\pi}{2}, \pi\right)$ and $\tan x = \frac{3}{4}$, $\sec y = -\frac{13}{12}$

2)
$$\vec{u} = \cos x \vec{i} + \sin x \vec{j}$$
 and $\vec{v} = \cos y \vec{i} + \sin y \vec{j}$

3)
$$\overrightarrow{w} = -\overrightarrow{i} - \overrightarrow{j}$$

- (A) Find the component form of vector \vec{u} and \vec{v}
- (B) directional angles of vector \vec{u} and \vec{v}
- (C) Show that $\cos \varphi = \vec{u} \cdot \vec{v}$ if φ is the angle between vector \vec{u} and \vec{v} .
- (D) Let $\vec{w} = a\vec{u} + b\vec{v}$, find real numbers a and b?

Group 3

Given $x \in [0, \pi)$,

- (A) Solve $\sin 2x = \cos^2 x$
- (B) from (A), Assume the possible 2 solutions of the equation are α and β ($\alpha < \beta$).

Let $\, \alpha \,$ be the directional angle of a unit vector $\, \bar{a} \,$ and $\, \beta \,$ be the directional angle of another unit vector $\, \bar{b} \,$. Find the component forms both vector $\, \bar{a} \,$ and vector $\, \bar{b} \,$.

(C) if
$$\vec{s}=3\vec{i}+2\vec{j}$$
 , and $\vec{s}=\mathrm{Proj}_{\vec{a}}\vec{s}+\overrightarrow{n_a}$, find $\overrightarrow{n_a}$

- (D) Continue from (C), if $\vec{s} = \text{Proj}_{\vec{b}} \vec{s} + \overrightarrow{n_b}$,find $\overrightarrow{n_b}$
- (E) Let ϕ be the angle between $\stackrel{\longrightarrow}{n_a}$ and $\stackrel{\longrightarrow}{n_b}$, find ϕ

Group 4

(A) let \vec{u} and \vec{v} be two vectors with non-zero magnitudes. If the angle between \vec{u} and \vec{v} is θ , show

that
$$\cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \cdot \|\vec{v}\|}$$

(B) Use mathematical induction to prove DeMoivre Theorem

(C) Let
$$z_1=r_1(\cos\theta_1+i\sin\theta_1)$$
, $z_2=r_2(\cos\theta_2+i\sin\theta_2)$, Show that
$$z_1z_2=r_1r_2(\cos(\theta_1+\theta_2)+i\sin(\theta_1+\theta_2))$$
 and

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} (\cos(\theta_1 - \theta_2) + i\sin(\theta_1 - \theta_2))$$

Group 5

Let z_i (i=1,2,3,4,5) be the 5th roots of 1 and $\overrightarrow{a_i}=\mathrm{Re}(z_i)\overrightarrow{i}+\mathrm{Im}(z_i)\overrightarrow{j}$ where $\mathrm{Re}(z)$ is the real part of the complex number z and $\mathrm{Im}(z)$ is the imaginary part of the complex number z.

- (A) Locate z_i on the complex plane.
- (B) Find the angle between $\overline{a_1}$ and $\overline{a_2}$
- (C) Let vector $\overrightarrow{m}=\overrightarrow{a_3}-\overrightarrow{a_1}$ and $\overrightarrow{n}=\overrightarrow{a_4}-\overrightarrow{a_2}$, find the angle between vector \overrightarrow{m} and \overrightarrow{n}

Group 6

Solve the following triangles

(A)
$$m\angle A = 35^{\circ}$$
, b = 15, a = 12

(B)
$$a = 12, b = 9, c = 6$$

(C)
$$m \angle A = 45^{\circ}$$
, $b = 4$, $c = 6$

Group 7

Given $\vec{u} = 4\vec{i} + 3\vec{j}$, where $\vec{i} = <1,0>$ and $\vec{j} = <0,1>$

(a) Rotate the \vec{i} and \vec{j} about the origin counter clockwise 30° where \vec{i}_1 and \vec{j}_1 are the transformed images of \vec{i} and \vec{j} after the rotation respectively.

(b) if
$$\vec{u} = \alpha \vec{i_1} + \beta \vec{j_1}$$
, find (α, β)

Practice Test, Unit 6 Assessment

Group 8

Given $f(x) = x^5 + x^4 + x^3 - x^2 - 2$, if x = i is a zero of f(x),

- (a) find all other zeros for f(x)
- (b) Write all zeros into its trigonometric forms.
- (d) Graph all zeros on a complex plane.
- (e) Let $\mathcal{Z}_1, \mathcal{Z}_2, \mathcal{Z}_3, \mathcal{Z}_4, \mathcal{Z}_5$ be all the zeros.

 θ_i , i = 1, 2, 3, 4, 5 are the arguments for each zero, if

$$\theta_{\rm l} < \theta_{\rm 2} < ... < \theta_{\rm 5}$$
 , evaluate $z_{\rm l} + {z_{\rm 2}}^2 + {z_{\rm 3}}^3 + {z_{\rm 4}}^4 + {z_{\rm 5}}^5$

Group 9

<u>Aerodynamics</u>

A plane flies 500 km with a bearing of 316° from Naples to Elgin, the same plane than set a course 750 miles to Canton. If the bearing of Naples from Canton is N 86° E. Find the bearing of Elgin from Canton?

Forest Fire

Two watch towers spotted the same forest fire with bearings N 42° E (from tower A) and N 45° W (from tower B). If two watch towers are 12 miles apart, and the bearing of tower A from tower B is S 75° W. If the rescue center C is 7miles away from tower B and the bearing of center C from tower B is S 38° W

Find the bearing a helicopter pilot should set from center C to the fire. If the average speed of the helicopter is 40 mph, how long in time would it take the helicopter to reach the fire?

Height of a Tree

A tree is on a hillside of slope 28° (from horizontal). 75 feet downhill from where the tree is, the angle of elevation at the top of the tree is 45° . Find the height of the tree.

Camp Fire

In a camp site 3 tents(A, B and C) set up in the following fashion: tent C is 30 yards away from tent A and 40 yards away from tent B. From Tent A, Tent C is in the direction with bearing $N25^{\circ}E$ and from Tent B, Tent C is the direction with bearing $N45^{\circ}W$. If the location of the campfire is equidistant from all 3 tents, how far

away is the campfire from each tent?(round to the tenth yard)

Cannon ball

A cannon ball was fired at an angle θ (measured from the horizon) with an initial velocity of \mathcal{V}_0 . We know that the trajectory of the flying cannon ball is a parabola. Let the location where the cannon ball was fired be the origin, the x and y coordinates of the cannon ball can be

modeled as
$$\left(v_0t\cos\theta,v_0t\sin\theta-\frac{1}{2}gt^2\right)$$
 where t is the

time in second when the cannon was flying and g is the acceleration caused by gravity. Use the model to

(a) Show that the flying time for a cannon ball is $\,T\,$,

and
$$T = \frac{2v_0 \sin \theta}{g}$$

- (b) Show that for a given initial velocity, the maximum horizontal distance a cannon ball can travel may occur when the cannon ball was fired at 45°
- (c) Write the function of the trajectory of the cannon ball, y = f(x). Show that

$$f(x) = (\tan \theta)x - \left(\frac{g \sec^2 \theta}{2v_0^2}\right)x^2$$