Exercices d'électromagnétisme

Martin Andrieux

Physique sur un lac

Les eaux d'un lac (de masse volumique μ) s'abaissent d'une hauteur $h=1\,\mathrm{m}.$ Calculer la variation Δg qu'enregistre un gravimètre placé :

- Sur des pilotis, au milieu du lac, juste au dessus de la surface (avant qu'il ne baisse),
- à bord d'une barque ancrée au milieu du lac.

La rayon terrestre est $R=6400\,\mathrm{km}$, et le champ de pesanteur à l'altitude du lac est $g=9.8\,\mathrm{m\,s^{-2}}$

$$\Delta q = -2\pi G \mu h = -0.42 \times 10^{-6} \,\mathrm{m \, s^{-2}}$$

$$\Delta g' = \Delta g + \frac{2gh}{R} = 2.64 \times 10^{-6} \,\mathrm{m\,s^{-2}}$$

Cosmogonie du système solaire

Selon l'hypothèse de Laplace, le système solaire aurait été, à un moment de son évolution, constitué d'un tore fluide homogène de masse volumique \mathfrak{mu} et d'axe (D), animé d'un mouvement de rotation uniforme de vitesse angulaire ω autour de (D).

- a) On note \overrightarrow{h} le champ de gravitation, V le potetiel dont dérive \overrightarrow{h} , et G la constante de gravitation universelle. Quelle et l'équation locale vérifiée par V?
- b) On note $\vec{\alpha}$ le champ (massique) des forces d'inerties d'entraı̂nement dans le référentiel lié au fluide, et U l potentiel dont dérice $\vec{\alpha}$. Calculer le laplacien ΔU .
- c) On admet que la stabilité du système exige que, en tout point de la surface du tore, le champ total $\overrightarrow{h} + \overrightarrow{a}$ soit dirigé vers l'intérieur de celui-ci. Montrer que ω est nécessairement inférieur à une valeur que l'on calculera en fonction de G et μ .

Répartition surfacique de dipôles sur un disque

Un disque de centre O et de rayon R porte, répartis uniformément sur sa surface, des dipôles électriques dont les moments dipolaires lui sont orthogonaux. Soit $\mu = \frac{dp}{dS}$ la densité surfacique de moment dipolaire. Calculer le champ et le potentiel en tout point de l'axe de révolution Oz du disque (plusieures méthodes sont possibles). Que deviennent ces résultats pour $z \gg R$?

$$V(z) = \frac{\mu}{2\varepsilon_0} \left(\frac{z}{|z|} - \frac{z}{\sqrt{z^2 + R^2}} \right)$$

$$E(z) = \frac{\mu R^2}{2\epsilon_0} (r^2 + R^2)^{-\frac{3}{2}}$$

Expérience de Nichols

Un métal contient par unité de volume lorsqu'il est immobile \mathfrak{n}_0 ions positifs de charge e et \mathfrak{n}_0 électrons libres de charge -e et de masse \mathfrak{m} . Un long cylindre de ce métal, de rayon \mathfrak{a} , est mis en rotation autour de son axe de révolution Oz avec la vitesse angulaire constante ω . À l'équilibre, les ions et les électrons sont entraînés à la vitesse de rotation ω , et n'ont donc pas de mouvement par rapport au métal. À l'équilibre,

il apparaît une densité volumique de charge $\rho(r)$ dans le cylindre, ainsi qu'une densité surfacique σ à la surface de celui-ci. En coordonnées cylindriques, on a pour un champ radial : div $\overrightarrow{E} = \frac{1}{r} \frac{d(rE_r)}{dr}$.

- \bullet Calculer le champ électrique dans le métal, et en déduire la différence de potentiel U entre l'axe du cylindre et sa périphérie.
- \bullet En déduire la densité $\mathfrak{n}(r)$ des électrons libres dans le volume du métal, et le charge surfacique σ .

$$U=\frac{m\omega^2\alpha^2}{2e}$$

$$n(r) = n_0 - \frac{2m\epsilon_0\omega^2}{e^2}$$

$$\sigma = -\frac{m\varepsilon_0\omega^2\alpha}{e}$$

Association de condensateurs et bilan d'énergie

On étudie le système représenté ci-contre, où tous les condensateurs ont même capacité C. Quelle est la charge de chacun d'entre eux?

On introduit un quatrième condensateur de capacité C entre A et B. Il a été au préalable chargé sous la tension U positive et son armature chargée positivement est placé du côté de A. Quelles sont les nouvelles charges de chaque condensateur à l'équilibre?

Faire un bilan d'énergie entre l'état initial de la question précedente et l'état final.

$$2q_1 = 2q_2 = q_3 = 2\frac{CU}{3}$$

$$q_1' = q_2' = \frac{CU}{4}$$
 et $q_3' = q_4' = 3\frac{CU}{4}$

L'énergie électrostatique diminue de $\frac{5CU^2}{24}$, et les pertes par effet Joule valent $\frac{CU^2}{24}$