Data Structure - LLDs - (1 Week) <u>List of data structures</u>

	Lists	
		<u>Design Linked List</u>
		<u>Design Skiplist</u>
	Stacks	
		Implement Stack using Queues
		<u>Design a Stack With Increment Operation</u>
		<u>LRU Cache</u>
		<u>Min Stack</u>
		<u>Max Stack</u>
		<u>Dinner Plate Stacks</u>
		Implement Queue using Stacks
	Queue	
		<u>Design Circular Queue</u>
	Hashta	
		<u>Design HashMap</u>
		<u>Design HashSet</u>
	BST	
		Binary Search Tree Iterator
		Serialize and Deserialize BST
		ack Tree
		<u>Find Median from Data Stream</u>
		<u>Count of Range Sum</u>
	Heaps	
		<u>Design Twitter</u>
		Kth Largest Element in a Stream
	Fibona	cci Heaps
		Fibonacci Heaps
	Disjoin	
_		Review of two popular approaches, Disjoint Sets and DFS
ш		PrefixTree, suffixTree)
		Implement Trie (Prefix Tree)
_		Add and Search Word - Data structure design
Ш		al Trees/Segment Tree
		Lazy Dynamic Segment Tree - A general template
_		A Recursive approach to Segment Trees, Range Sum Queries & Lazy Propagation
Ш		Tree Data Structures(Graphs)
		Serialize and Deserialize N-ary Tree
	ч	Encode N-ary Tree to Binary Tree
		Algorithms - Analysis Time and Space - (3 Weeks)
	Sorting	•
		Selection Sort - Merge Sorted Array
		Bubble Sort - <u>Sort Colors</u>
		Insertion Sort - Insertion Sort List
		Merge Sort - <u>Sort an Array</u>

		Quick Sort
		□ Kth Largest Element in an Array
		□ K Closest Points to Origin Counting Sort Polative Sort Array
		Counting Sort - Relative Sort Array Tree sort - Convert Sorted List to Binary Search Tree
		Bucket Sort - <u>Top K Frequent Elements</u> Radix Sort - <u>Maximum Gap</u>
		Topological sort - Covered in Graphs
	_	Topological soft Covered in Graphs
	Divide	-and-Conquer - 2 Days
		The maximum-subarray problem - <u>Maximum Subarray</u>
		Strassen's algorithm for matrix multiplication - <u>Divide and Conquer Set 5</u>
		(Strassen's Matrix Multiplication)
		The substitution method for solving recurrences
		The recursion-tree method for solving recurrences
	u	The master method for solving recurrences
	Dynam	ic Programming - 2 Days
		Rod cutting - Integer Break
		<u>Dynamic Programming for the confused : Rod cutting problem</u>
		Matrix-chain multiplication - <u>Burst Balloons</u>
		Elements of dynamic programming
		Longest common subsequence - <u>Longest Common Subsequence</u>
		Optimal binary search trees
		Unique Binary Search Trees
		Unique Binary Search Trees II
_	Crood	Algorithms 2 Days
		An activity selection problem. Minimum Number of Arroys to Burst Palloons
		An activity-selection problem - <u>Minimum Number of Arrows to Burst Balloons</u> Elements of the greedy strategy
		Huffman codes - Construct Huffman Tree, Google Onsite Software Enginee
	_	Huffman Coding Algorithm, Minimum Cost Tree From Leaf Values
	П	Matroids and greedy methods - <u>Matroid intersection in simple words</u>
		A task-scheduling problem as a matroid - <u>Task Scheduler</u>
	_	Transit Self-cauting prosteril as a matricial rask self-cauter
	Graph	Algorithms - 6 Days
	•	ode Pattern 1 DFS + BFS == 25% of the problems
		N-ary Tree Preorder Traversal
		N-ary Tree Postorder Traversal
		N-ary Tree Level Order Traversal
		BFS
		■ Binary Tree Level Order Traversal
		☐ Binary Tree Level Order Traversal II
		□ <u>Web Crawler Multithreaded</u>
		□ <u>Web Crawler</u>
		□ Cut Off Trees for Golf Event
		□ Course Schedule
		DFS

	_	Binary Tree Postorder Traversal
		Binary Tree Preorder Traversal
		Binary Tree Inorder Traversal
		<u>Is Graph Bipartite?</u>
		Remove Invalid Parentheses
		Construct Binary Tree from Preorder and Inorder Traversal
	Topolo	gical Sort - <u>Topological Sort</u>
		ly Connected Components - SCC - Course Schedule, Facebook Minimu
	_	r of people to spread a message, Airbnb Cover all vertices with the
		umber of vertices, Critical Connections in a Network
		ım spanning Tree - Prim's Algorithm
		Cheapest Flights Within K Stops
		Minimum Height Trees
		Number of Operations to Make Network Connected
		Connecting Cities With Minimum Cost
П		st Path Algos -
_		Bellman-Ford - <u>Network Delay Time</u> ,
	_	https://leetcode.com/problems/get-watched-videos-by-your-friends/
	П	Dijkstra's algorithm
	_	Reachable Nodes In Subdivided Graph
		□ Shortest Path Visiting All Nodes
	П	Floyd-Warshall
	_	Find the City With the Smallest Number of Neighbors at a
		Threshold Distance
		□ Evaluate Division
	_	☐ All-pairs shortest paths - Johnson's algorithm for sparse graphs
		GeeksforGeeks
		□ Johnson's algorithm
		The Ford-Fulkerson method
	_	☐ Google Onsite Network flow for the matrix with given row
		and column sums
		☐ Ford-Fulkerson Algorithm for Maximum Flow Problem
Numbe	r-Thoo	retic Algorithms - 2 Days
		ninese remainder theorem - Check If It Is a Good Array
		est common divisor
_		Greatest Common Divisor of Strings
		X of a Kind in a Deck of Cards
		Google OA Summer Intern 2020 Greatest Common Divisor
		s of an element
_		
		Pow(x, n) Sort Integers by The Power Value
П		Sort Integers by The Power Value
		A public-key cryptosystem
		Keys and Rooms Shortest Path to Get All Keys
_		Shortest Path to Get All Keys
_	_	r factorization
		Largest Component Size by Common Factor Minimum Factorization
		WILLIAM FACION/AUDI

	□ <u>Bulb Switcher</u>	
_		
ч	String Matching	- 2 Day
	☐ The Rabin-Karp algorithm	
	☐ Implement strStr() ☐ Pipary String With Substrings Penrosenting 1 To N	
	□ Binary String With Substrings Representing 1 To N Shortest Palindrome	
	Shortest Palindrome	
	Find All Anagrams in a String	
	☐ String matching with finite automata	
	☐ The Knuth-Morris-Pratt algorithm	
	□ Shortest Palindrome	
	Rotate String NAP Algorithm for Pattern Securities	
	KMP Algorithm for Pattern Searching	
П	Approximation Algorithms	- 3 Days
_	☐ The vertex-cover problem	5 Days
	Binary Tree Cameras	
	□ Vertex Cover Problem-2	
	□ Vertex Cover Problem	
	☐ The traveling-salesman problem Find the Shortest Superstring	
	☐ The set-covering problem	
	□ Video Stitching	
	Set Intersection Size At Least Two	
	Non-overlapping Intervals	
	☐ Randomization and linear programming	
	☐ The subset-sum problem	
	Partition Equal Subset Sum	
	Partition to K Equal Sum Subsets	
	- Indiction to it Equal sam subsets	
	Randomized Algorithms	- 1 Day
	☐ Quick Sort	•
	☐ Min Cut Palindrome Partitioning II	
	Concepts Problems and Maths - (1 Week)	
	Matrix Operations	
_	Linear Programming	
	Polynomials - DFT, FFT	
	Computational Geometry	
	☐ Line-segment properties	
	 Determining whether any pair of segments intersects 	
	☐ Finding the convex hull - <u>Erect the Fence</u> , <u>The Skyline Problem</u>	
	☐ Finding the closest pair of points - K Closest Points to Origin	
	GCD and LCM	
	☐ X of a Kind in a Deck of Cards	
	☐ Greatest Common Divisor of Strings	
	□ Nth Magical Number	
	□ Ugly Number III	

☐ 2 Keys Keyboard

	Prime	Factorization and Divisors
		Largest Component Size by Common Factor
		2 Keys Keyboard
	Fibona	cci Numbers
		Length of Longest Fibonacci Subsequence
		Split Array into Fibonacci Sequence
		Find the Minimum Number of Fibonacci Numbers Whose Sum Is K
	Catala	n Numbers - <u>Unique Binary Search Trees</u>
	Modula	ar Arithmetic
	Euler 7	Totient Function
	nCr Co	mputations
	Set Th	eory
	Factor	ial
		<u>Last Substring in Lexicographical Order</u>
		<u>Snakes and Ladders</u>
		Factor Combinations
		Path With Maximum Minimum Value
		Number of Closed Islands
	Prime	numbers and Primality Tests
		<u>Prime Arrangements</u>
		K-th Smallest Prime Fraction
	Sieve A	Algorithms
		Count Primes
	Divisib	ility and Large Numbers
	Series	
	Numbe	er Digit
	Triang	les
		Triangle
		<u>Valid Triangle Number</u>
		Networks - (1 Week)
		<u>Leetcode</u>
		rk Topology, OSI Architecture
		P models
	TCP ar	
		ll, DNS, Domains, workgroups
	Protoc	ols i.e ICMP
		OS - (1 week)
		Operating System Tutorial
		<u>Shared Memory Systems</u>
_	CrI	
	Cache	45
Ц		nreading
		Producers-consumers problem
		Dining philosophers problem
		Cigarette smokers problem
	∟ i	Readers-writers problem

 Web Crawler Multithreaded Scheduling algorithms Deadlock Virtual Memory Mutex and semaphore Kernels Paging
Software Design Principles - (2 weeks)
<u>System Design Primer</u>
Start learning about Theory of Distributed Systems? Challenges with distributed systems Microservices Design Guide Microservices Design Guide
Cloud design patterns - Azure Architecture Center Design patterns for microservices Azure Blog and Updates
TO READ: Domain Driven Design (DDD) Bounded Context (BC) Polyglot Persistence (PP) Command and Query Responsibility Segregation (CQRS) Command Query Separation (CQS) Event-Sourcing (ES) CAP Theorem Eventual Consistency Twelve-Factor App COLID Principles Just some things to focus on. Load balancer API gateway
 Microservices - Scale Cube Concept, MVC - READ Database Sharding SQL vs NoSQL - Cassandra, Postgres, Hadoop, Data lake, other algorithms related to data lake, CAP Theorem
Leadership Principles - LPs - (1 Week) TO BE UPDATED
Resume and Miscellaneous #ADD WHATEVER YOU HAVE PUT IN RESUME
 Algos you have mentioned Project work and related references to read Achievements and information about it
REFERENCES ntroduction to Algorithms - Cormen

Leetcode