Fodor's Lemma in Lean

Or, I formalized some nice facts about club sets

Theofanis Chatzidiamantis Christoforidis

January 2024

Let o be a limit ordinal and $C \subseteq o$ a set.

Definition

ightharpoonup C is called **unbounded** in o if $\sup(C \cap o) = o$.

Let o be a limit ordinal and $C \subseteq o$ a set.

Definition

- ightharpoonup C is called **unbounded** in o if $\sup(C \cap o) = o$.
- ightharpoonup C is called **closed** in o if for every $\alpha < o$, if $C \cap \alpha \neq \emptyset$, then $\sup(C \cap \alpha) \in C$.

Let o be a limit ordinal and $C \subseteq o$ a set.

Definition

- ightharpoonup C is called **unbounded** in o if $\sup(C \cap o) = o$.
- ▶ C is called **closed** in o if for every $\alpha < o$, if $C \cap \alpha \neq \emptyset$, then $\sup(C \cap \alpha) \in C$.
- C is called club in o if it is closed and unbounded in o.

Let o be a limit ordinal and $C \subseteq o$ a set.

Definition

- ightharpoonup C is called **unbounded** in o if $\sup(C \cap o) = o$.
- ▶ C is called **closed** in o if for every $\alpha < o$, if $C \cap \alpha \neq \emptyset$, then $\sup(C \cap \alpha) \in C$.
- C is called **club** in o if it is closed and unbounded in o.

Remark

Equivalently, C is unbounded in o if for every $\alpha < o$, there is a $\beta \in C$ such that $\alpha < \beta$ and $\beta < o$.

Definition

Let o be a limit ordinal and $S \subseteq o$ a set. S is called **stationary** in o if for every club set $C \subseteq o$, $S \cap C \neq \emptyset$.

Definition

Let o be a limit ordinal and $S \subseteq o$ a set. S is called **stationary** in o if for every club set $C \subseteq o$, $S \cap C \neq \emptyset$.

Definition

Let $f: C \to D$ be a function, where C and D are sets of ordinals. f is callted **regressive** if for every $0 < \alpha \in C$, $f(\alpha) < \alpha$.

Definition

Let κ be a cardinal.

The **cofinality** $cof(\kappa)$ of κ is the smallest possible cardinality of an unbounded set in κ

Definition

Let κ be a cardinal.

- ▶ The **cofinality** $cof(\kappa)$ of κ is the smallest possible cardinality of an unbounded set in κ
- A cardinal is **regular** if $cot(\kappa) = \kappa$

Definition

Let κ be a cardinal.

- ▶ The **cofinality** $cof(\kappa)$ of κ is the smallest possible cardinality of an unbounded set in κ
- A cardinal is **regular** if $cof(\kappa) = \kappa$

Remark

Cofinality generalizes to ordinals and this is what Lean actually does.

The Theorem

Our goal is to prove the following:

Theorem (Fodor's Lemma)

Let κ be an uncountable regular cardinal, $S \subseteq \kappa$ a stationary set and let $f: S \to \kappa$ be a regressive function. Then there is an ordinal $\theta < \kappa$ such that $f^{-1}(\{\theta\})$ is stationary in κ .

The Theorem

Our goal is to prove the following:

Theorem (Fodor's Lemma)

Let κ be an uncountable regular cardinal, $S \subseteq \kappa$ a stationary set and let $f: S \to \kappa$ be a regressive function. Then there is an ordinal $\theta < \kappa$ such that $f^{-1}(\{\theta\})$ is stationary in κ .

In other words, a regressive function on a stationary set is constant on some stationary subset of its domain.

In set theory, everyting is a set, including cardinals and ordinals.
This is not true in the type-theoretic framework we are working with.

- In set theory, everyting is a set, including cardinals and ordinals.
 This is not true in the type-theoretic framework we are working with.
- With this in mind, our main objects of study here are of type Set Ordinal.

- In set theory, everyting is a set, including cardinals and ordinals.
 This is not true in the type-theoretic framework we are working with.
- With this in mind, our main objects of study here are of type Set Ordinal.
- This makes sense: An ordinal contains every ordinal strictly smaller than itself.

In Lean, for C: Set Ordinal and o: Ordinal, we define:

▶ strict_Ordinal_res C o := $\{c \in C | c < o\}$, corresponding to $C \cap o$.

In Lean, for C: Set Ordinal and o: Ordinal, we define:

- ▶ strict_Ordinal_res C o := $\{c \in C | c < o\}$, corresponding to $C \cap o$.
- ▶ Ordinal_res C o := $\{c \in C | c \le o\}$

In Lean, for C: Set Ordinal and o: Ordinal, we define:

- ▶ strict_Ordinal_res C o := $\{c \in C | c < o\}$, corresponding to $C \cap o$.
- ▶ Ordinal_res C o := $\{c \in C | c \le o\}$

"strict" is the correct notion, but Ordinal_res has nicer properties and we use it whenever they are equal (i.e., when $o \notin C$)

To prove Fodor's Lemma we need one last definition:

To prove Fodor's Lemma we need one last definition:

Definition

Let κ be a cardinal and let $(C_{\alpha})_{\alpha < \kappa}$ be a sequence of subsets of κ . The **diagonal intersection** of $(C_{\alpha})_{\alpha < \kappa}$ is defined to be

$$\Delta_{\alpha < \kappa} C_{\alpha} := \{ \beta < \kappa \mid \beta \in C_{\theta} \ \forall \theta < \beta \}$$

First we prove that for $(C_{\alpha})_{\alpha<\kappa}$ a sequence of club sets, $\Delta_{\alpha<\kappa}C_{\alpha}$ is club

First we prove that for $(C_{\alpha})_{\alpha<\kappa}$ a sequence of club sets, $\Delta_{\alpha<\kappa}C_{\alpha}$ is club (This is about 95% of the lines of code).

- First we prove that for $(C_{\alpha})_{\alpha<\kappa}$ a sequence of club sets, $\Delta_{\alpha<\kappa}C_{\alpha}$ is club (This is about 95% of the lines of code).
- Assume that no $f^{-1}(\theta)$ is stationary.

- First we prove that for $(C_{\alpha})_{\alpha<\kappa}$ a sequence of club sets, $\Delta_{\alpha<\kappa}C_{\alpha}$ is club (This is about 95% of the lines of code).
- Assume that no $f^{-1}(\theta)$ is stationary.
- Then for each $o < \kappa$, choose a club set that does not intersect its preimage.
- Take the diagonal intersection of the sequence you just created. this is club and thus intersects S.

- First we prove that for $(C_{\alpha})_{\alpha<\kappa}$ a sequence of club sets, $\Delta_{\alpha<\kappa}C_{\alpha}$ is club (This is about 95% of the lines of code).
- Assume that no $f^{-1}(\theta)$ is stationary.
- Then for each $o < \kappa$, choose a club set that does not intersect its preimage.
- Take the diagonal intersection of the sequence you just created. this is club and thus intersects S.
- Use the definition of Δ to prove that f is not regressive, contradiction.

General Structure:

Basic properties of supremums + Definitions + regularity of κ The intersection of two club sets is club induction The intersection of less than κ club sets is club The diagonal intersection of κ club sets is club Fodor's Lemma

Proving Closedness:

This came down to manipulating supremums.

Proving Closedness:

This came down to manipulating supremums.

All their basic properties are in mathlib, but I formalized some of my own for the previously defined restrictions.

Proving Unboundedness:

For each of the main theorems about club sets, we construct a "good" increasing sequence $\mathbb{N} \to Ordinal$ recursively.

Proving Unboundedness:

For each of the main theorems about club sets, we construct a "good" increasing sequence $\mathbb{N} \to \textit{Ordinal}$ recursively.

We then use our closedness assumptions to prove that its limit is in our intersection.

These arguments use both closedness and unboundedness assumptions.

On Cofinality

Why is it useful to work with sequences of length ω ?

On Cofinality

Why is it useful to work with sequences of length ω ?

If κ is uncountable and regular, the limit of such an ascending sequence will always be less than κ by regularity of κ , since $\mathbb N$ is countable.

On Cofinality

Why is it useful to work with sequences of length ω ?

If κ is uncountable and regular, the limit of such an ascending sequence will always be less than κ by regularity of κ , since $\mathbb N$ is countable.

With this in mind, a very easy generalisation for the properties of club sets is apparent:

Remark

We can replace our uncountable regular cardinal with any ordinal o satisfying $cof(o) > \aleph_0$.