A new topological index to elucidate apolar hydrocarbons

Francisco Torrens

Institut Universitari de Ciència Molecular, Universitat de València, Dr. Moliner 50, E-46100 Burjassot (València), Spain (E-mail: Francisco.Torrens@uv.es)

Received 11 January 2001; accepted 29 May 2001

Key words: colinearity, correlation model, dipole moment, hydrocarbon, molecular charge distribution, molecular symmetry, multivariable nonlinear regression, polar character, topological charge-transfer index, variance

Summary

A new topological charge-transfer index is applied to elucidate the polar character of hydrocarbons. The dipole moments calculated by algebraic and vector semisums of charge-transfer indices are defined in this work. The combination of the charge-transfer indices allows the estimation of the molecular dipole moments. The ability of the indices for the description of the molecular charge distribution is established by comparing them with the dipole moment of a heterogeneous set of 57 polar and 53 apolar hydrocarbons. Linear and nonlinear correlation models are obtained. The new charge-transfer index, μ_{vec} , elucidates whether hydrocarbons are apolar, and improves the multivariable nonlinear regression equation for the dipole moment. When comparing with previous results, smaller superpositions of the corresponding pairs G_k , J_k are observed in our fits. This diminishes the risk of colinearity.

Introduction

A close relationship often exists between the molecular structures of organic compounds and many of their physical, chemical or biological properties [1–6]. A great deal of these relationships have been investigated using the topological descriptors of molecular structures [7]. Particularly interesting are those indices derived from the *distance matrix* in both topological and topographic forms [8]. These forms were studied comparatively by Mihalić et al. [9]. The constitutional or structural formula of a chemical compound may be viewed as an *structural graph*, where the *vertices* represent atoms and the *edges* represent the covalent bonds. Graph theory [10–12] is a well-established branch of discrete mathematics and may be applied to chemical problems [13–16].

Two of the matrices that characterize uniquely molecular graphs are the *adjacency matrix* and the *distance matrix*. It was shown [17–19] that when the molecular graph represents the carbon skeleton of a conjugated hydrocarbon, the eigenvalues of the adjacency matrix are identical to those of the Hückel matrix, so that there exists a complete equivalence

between the two treatments: graph-theoretical and quantum-chemical in the Hückel molecular orbital approximation.

Topological indices [20–21] need not be unique; they should merely reflect the molecular topology and should allow correlations with the structure. In the past, topological indices, namely charge-transfer indices, C_{ii} , have been used to evaluate the charge transfers between pairs of atoms, and therefore the global charge transfer in the molecule. However, the reproduction of vanishing dipole moments for molecules with appropriate symmetry elements is far from trivial. In the next section, the charge-transfer indices are revised. Following that, a new charge-transfer index, μ_{vec} , is presented. Next, the results for the dipole moment of a mixed set of 57 polar and 53 apolar hydrocarbons, as well as their edge component parts are presented and discussed. Index μ_{vec} is proposed to elucidate whether hydrocarbons are apolar. Linear and nonlinear correlation models have been carried out for the molecular dipoles. The last section summarizes my conclusions.

Table 1. Values of the G_k and J_k charge-transfer indices up to the fifth order for a set of polar hydrocarbons

Propane 3 0.5000 0.0000 <th>Hydrocarbon</th> <th>N</th> <th>G_1</th> <th>G_2</th> <th>G_3</th> <th>G_4</th> <th>G_5</th> <th>J_1</th> <th>J_2</th> <th>J_3</th> <th>J_4</th> <th>J_5</th>	Hydrocarbon	N	G_1	G_2	G_3	G_4	G_5	J_1	J_2	J_3	J_4	J_5
Proproper 3 1.000 2.000 0.000 <t< td=""><td>Propane</td><td>3</td><td>0.5000</td><td>0.0000</td><td>0.0000</td><td>0.0000</td><td>0.0000</td><td>0.2500</td><td>0.0000</td><td>0.0000</td><td>0.0000</td><td>0.0000</td></t<>	Propane	3	0.5000	0.0000	0.0000	0.0000	0.0000	0.2500	0.0000	0.0000	0.0000	0.0000
Cyclepropene 3 2.000 0.000	Propene	3	0.7500	1.0000	0.0000	0.0000	0.0000	0.3750	0.5000	0.0000	0.0000	0.0000
Butane (g ⁺) 4 0.5000 0.2222 0.0000 0.0000 0.0001 0.0000 0.00	Propyne	3	1.0000	2.0000	0.0000	0.0000	0.0000	0.5000	1.0000	0.0000	0.0000	0.0000
s-cis-1,3-butadiene 4 0.5000 1.5556 0.0000 0.0000 0.0000 0.1667 0.6667 0.000 0.0000 0.0000 Cyclobutene 4 0.75000 2.0000 0.00	Cyclopropene	3	2.0000	0.0000	0.0000	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000
Cyclobatene 4 0.5000 2.0000 0.0000<	Butane (g ⁺)	4	0.5000	0.2222	0.0000	0.0000	0.0000	0.1667	0.0741	0.0000	0.0000	0.0000
1-buene 4 7.500 1.1111 2.500 0.000 0.000 0.200 0.000 <th< td=""><td>s-cis- 1,3-butadiene</td><td>4</td><td>0.5000</td><td>1.5556</td><td>0.0000</td><td>0.0000</td><td>0.0000</td><td>0.1667</td><td>0.5185</td><td>0.0000</td><td>0.0000</td><td>0.0000</td></th<>	s-cis- 1,3-butadiene	4	0.5000	1.5556	0.0000	0.0000	0.0000	0.1667	0.5185	0.0000	0.0000	0.0000
1-butyne 4 1.0000 2.2222 0.5000 0.0000 0.0000 0.1404 0.033 0.0000 0.0000 1.2-butalizine 4 1.2500 1.3333 0.5000 0.0000	Cyclobutene	4	0.5000	2.0000	0.0000	0.0000	0.0000	0.1667	0.6667	0.0000	0.0000	0.0000
1.2-butadiene 4 1.2500 1.3333 0.2500 0.0000 0.0000 0.4000 0.00	1-butene	4	0.7500	1.1111	0.2500	0.0000	0.0000	0.2500	0.3704	0.0833	0.0000	0.0000
2-methylpropane 4 1.5000 0.0000 0.	1-butyne	4	1.0000	2.2222	0.5000	0.0000	0.0000	0.3333	0.7407	0.1667	0.0000	0.0000
2-methylpropene 4 2.0000 2.0000 0.0000 0.0000 0.6667 0.6070 0.0000 0.0000 Pentane 5 0.5000 2.2222 1.250 0.0000 0.0000 0.1250 0.0556 0.0313 0.0000 0.0000 Cyclopentadiene 5 0.5000 3.5000 0.0000 0.0000 0.1250 0.6250 0.0000 0.0000 1.3-pentadiene 5 0.5000 2.2778 0.1875 0.111 0.000 0.1550 0.0000 0.0000 1.3-pentadiene 5 1.0000 2.5222 0.6250 0.2200 0.5556 0.1560 0.0000 0.0000 2-methyl-1,3-butadiene 5 1.5000 2.6667 0.2500 0.0000 0.4375 0.6667 0.0520 0.0000 2-methyl-1,3-butadiene 6 0.5000 2.2222 0.5000 0.0000 0.0000 0.4444 0.1000 0.0000 1,3-cyclohexariene 6 0.5000 2.2222 0.5000 0.000	1,2-butadiene	4	1.2500	1.3333	0.2500	0.0000	0.0000	0.4167	0.4444	0.0833	0.0000	0.0000
Pentaner 5 0.5000 0.2222 0.1250 0.0000 0.0000 0.1250 0.0550 0.0000 0.0000 Cyclopentendeinee 5 0.5000 2.5000 0.0000 0.0000 0.0000 0.1250 0.6250 0.0000 0.0000 1.3-cyclopentadiene 5 0.5000 2.7778 0.1875 0.1111 0.0000 0.1250 0.8750 0.0000 0.0000 1-pentyne 5 0.5000 2.2222 0.6250 0.2500 0.2500 0.5556 0.1563 0.0000 1-pentyne 5 1.0000 2.2222 0.6200 0.0000 0.2500 0.1889 0.0625 0.0556 0.0000 2-methyl-Laybratidare 5 1.5000 2.4644 0.0000	2-methylpropane	4	1.5000	0.0000	0.0000	0.0000	0.0000	0.5000	0.0000	0.0000	0.0000	0.0000
Cyclopentene 5 0.5000 2.5000 0.0000 0.0000 0.0000 0.1250 0.6250 0.0000 0.0000 1.3-cyclopentadiene 5 0.5000 3.5000 0.0000 0.0000 0.0000 0.1250 0.8750 0.0000 0.0000 Trans-1.3-pentadiene 5 0.7000 2.2222 0.6250 0.2222 0.0000 0.2500 0.5565 0.0500 1.3-pentadiyne 5 1.5000 0.5556 0.2500 0.2222 0.0000 0.0000 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0000 0	2-methylpropene	4	2.0000	2.0000	0.0000	0.0000	0.0000	0.6667	0.6667	0.0000	0.0000	0.0000
1.3-cyclopentadiene 5 0.5000 3.5000 0.0000 0.0000 0.1250 0.8750 0.0000 0.0000 Trans-1,3-pentadiene 5 0.7500 2.2778 0.1875 0.1111 0.0000 0.1875 0.6944 0.0469 0.0208 0.0000 1-pentyne 5 1.0000 2.5250 0.2222 0.0000 0.2500 0.2556 0.1656 0.0000 0.0000 2-methylbutane 5 1.0000 0.2444 0.000 0.0000 0.0000 0.0111 0.0000 0.0000 2-methyl-1,3-butadiene 6 0.5000 2.2222 0.5000 0.0000 0.0000 0.4044 0.0000 0.0000 Cyclobexene 6 0.5000 2.2222 0.5000 0.0000 0.0000 0.0000 0.4044 0.1000 0.0000 1-bexyne 6 0.5000 2.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Pentane	5	0.5000	0.2222	0.1250	0.0000	0.0000	0.1250	0.0556	0.0313	0.0000	0.0000
1.3-eyclopentadiene 5 0.5000 3.5000 0.0000 0.0000 0.1250 0.8750 0.0000 0.0000 Trans-1-3-pentadiene 5 0.7500 2.2778 0.1875 0.1111 0.0000 0.1855 0.6944 0.0409 0.0000 1-pentyne 5 1.0000 2.2722 0.6250 0.2222 0.0000 0.2500 0.1556 0.1563 0.0000 2-methylbutane 5 1.0000 0.4444 0.000 0.0000 0.0000 0.1111 0.000 0.0000 2-methyl-1,3-butadiene 6 0.5000 2.2222 0.000 0.000 0.000 0.1000 0.4044 0.000 0.000 cis-1,3-5-hexatriene 6 0.5000 2.2022 0.6250 0.000 0.000 0.000 0.4000 0.4000 0.000 0.000 0.4000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Cyclopentene	5	0.5000	2.5000	0.0000	0.0000	0.0000	0.1250	0.6250	0.0000	0.0000	0.0000
Trans-1.3-pentadiene 5 0.7500 2.7778 0.1875 0.111 0.000 0.1875 0.0469 0.0278 0.000 1-pentyne 5 1.0000 2.2222 0.6250 0.2222 0.0000 0.2505 0.1563 0.0556 0.0000 1.3-pentadiyne 5 1.0000 5.5556 0.2202 0.0000 0.0000 0.1111 0.0002 0.0000 2-methylbutane 5 1.7500 0.4444 0.0000 0.0000 0.0000 0.4375 0.6667 0.0025 0.0000 2-methyl-1,3-butadiene 6 0.5000 2.2222 0.5000 0.0000 0.0000 0.6667 0.0625 0.0000 2-yclohexane 6 0.5000 2.2222 0.5000 0.0000 0.0000 0.6667 0.020 0.0000 1,3-seyclohexadiene 6 1.0000 2.2222 0.6250 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000<	• •	5	0.5000	3.5000	0.0000	0.0000	0.0000	0.1250	0.8750	0.0000	0.0000	0.0000
1-pentyne 5 1.000 2.2222 0.0220 0.2220 0.000 0.2500 1.3580 0.0556 0.000 1,3-pentadiyne 5 1.0000 5.5556 0.2500 0.2222 0.0000 1.3889 0.0625 0.0556 0.0000 2-methylbutane 5 1.5000 0.4444 0.0000 0.0000 0.0000 0.6667 0.0005 0.0000	• •	5	0.7500	2.7778	0.1875	0.1111	0.0000	0.1875	0.6944	0.0469	0.0278	0.0000
1.3-pentadiyne 5 1.0000 5.5556 0.2500 0.2222 0.0000 0.2500 0.3889 0.0625 0.0500 0.0000 2-methylbutane 5 1.5000 0.4444 0.0000 0.0000 0.3750 0.111 0.0000 0.0000 2-methyl-1,3-butadiene 6 0.5000 2.2222 0.2500 0.0000 0.0000 0.4444 0.000 0.0000 Cyclobexene 6 0.5000 3.3333 0.1250 0.0020 0.1000 0.4444 0.1000 0.0000 L3,5-cyclobexadiene 6 0.5000 3.3333 0.0000 0.0000 0.0000 0.4444 0.1000 0.0000 1-bexyne 6 0.0000 2.6267 1.500 0.000 0.0000 0.4444 0.1000 0.0000 1-bexyne 6 0.5000 2.6667 1.500 0.000 0.0000 0.5333 0.7593 0.000 0.000 1,3-5-polatriene 7 0.5000 4.5556 0.5067 0												
2-methylbutane 5 1.5000 0.4444 0.0000 0.0000 0.3750 0.111 0.0000 0.0000 2-methyl-1,3-butadiene 5 1.7500 2.6667 0.2500 0.0000 0.0000 0.4375 0.6667 0.0000 0.0000 Cyclohexene 6 0.5000 2.2222 0.5000 0.0000 0.0000 0.1000 0.4444 0.1000 0.0000 1,3-cyclohexadiene 6 0.5000 2.2222 0.6020 0.0000 0.0000 0.1000 0.6667 0.0250 0.0001 1-hexyne 6 1.0000 2.2222 0.6607 1.000 0.0000 0.0000 0.4444 0.1250 0.0000 0.0000 1-hexyne 6 2.5000 2.26667 1.5000 0.0000 0.0000 0.0000 0.3333 0.3000 0.0000 Norbornadiene 7 0.5000 2.5556 0.0000 0.0000 0.0833 0.7593 0.0000 0.0000 1,3,5-eylahetatriene 7	* *											
2-methyl-1,3-butadiene 5 1.7500 2.6667 0.2500 0.0000 0.0000 0.4375 0.6667 0.002 0.0000 Cyclohexene 6 0.5000 2.2222 0.5000 0.0000 0.0000 0.4444 0.1000 0.0000 0.0000 cis-1,3,5-hexatriene 6 0.5000 4.0000 0.5000 0.0000 0.0000 0.1000 0.6667 0.0250 0.0000 1-hexyne 6 0.5000 2.2222 0.6250 0.2000 0.1000 0.4444 0.1250 0.0000 0.0000 3,3-dimethyl-1-butyne 6 0.5000 2.6550 0.5000 0.0000 0.0000 0.5333 0.000 0.0000 1,3,5-eycloheptatriene 7 0.5000 4.5556 0.5000 0.0000 0.0000 0.0333 0.7593 0.0000 0.0000 1,3,5-heptatriene 7 0.5000 9.1111 0.2500 0.5047 0.1111 0.1667 0.5133 0.0202 0.0000 0.0233 0.1211	•											
Cyclohexene 6 0.5000 2.2222 0.5000 0.0000 0.0000 0.1000 0.4444 0.1000 0.0000<	•											
cis-1,3,5-hexatriene 6 0.5000 3.3333 0.1250 0.0622 0.0000 0.1000 0.6667 0.0250 0.0000 1,3-cyclohexadiene 6 0.5000 4.0000 0.5000 0.0000 0.1000 0.8000 0.1000 0.0000 1-hexyne 6 1.0000 2.2222 0.6250 0.3022 0.1250 0.2000 0.4444 0.1250 0.000 0.0000 Norbornadiene 7 0.5000 2.6667 1.5000 0.0000 0.0000 0.0833 0.7593 0.0000 0.0000 1,3,5-cycloheptatriene 7 0.5000 5.5556 0.5000 0.0000 0.0833 0.9259 0.0833 0.0000 0.0000 1,3,5-heptatriene 7 0.5000 5.5556 0.1000 0.0111 0.1667 1.5185 0.0417 0.0844 0.0185 Toluene 7 1.2500 6.6667 0.5000 0.2222 0.0000 0.2883 1.1111 0.0823 0.0319 0.0412 0.0429 <td>•</td> <td></td>	•											
1,3-cyclohexadiene 6 0.5000 4.0000 0.5000 0.0000 0.1000 0.1000 0.1000 0.0000 1-hexyne 6 1.0000 2.2222 0.6250 0.3022 0.1250 0.2000 0.4444 0.1250 0.0000 0.0000 3,3-dimethyl-1-butyne 6 2.5000 2.6667 1.5000 0.0000 0.0000 0.5000 0.5333 0.3000 0.0000 1,3,5-cycloheptatriene 7 0.5000 5.5556 0.5000 0.0000 0.0000 0.0833 0.9259 0.0333 0.0000 0.0000 1,3,5-heptatriene 7 0.5000 5.5556 0.5000 0.5067 0.1111 0.1667 1.5185 0.0412 0.0422 0.010 1,3,5-heptatriyne 7 1.2500 6.6667 0.5000 0.2222 0.000 0.2083 1.1111 0.0333 0.0370 0.000 Styrine 8 1.0000 6.8389 0.4375 0.213 0.1250 0.1412 0.0250 0.0303 </td <td>•</td> <td></td>	•											
1-hexyne 6 1.0000 2.2222 0.6250 0.3022 0.1250 0.2000 0.4444 0.1250 0.0004 0.0000 3,3-dimethyl-1-butyne 6 2.5000 2.6667 1.5000 0.0000 0.0000 0.5000 0.5333 0.3000 0.0000 Norbornadiene 7 0.5000 4.5556 0.5000 0.0000 0.0833 0.7593 0.0000 0.0000 1,3,5-heptatriene 7 0.7500 4.5556 0.1875 0.2533 0.0833 0.1250 0.0417 0.000 0.000 1,3,5-heptatriyne 7 1.0000 9.1111 0.2500 0.5067 0.1111 0.1667 1.5185 0.0417 0.0844 0.0185 Toluene 7 1.2500 6.6667 0.5000 0.2222 0.000 0.2883 1.1111 0.0833 0.0302 0.000 Styrene 8 1.2500 6.8778 0.8125 0.4133 0.1252 0.1786 0.9881 0.1611 0.0529 0.01												
3dimethyl-1-butyne 6 2.5000 2.6667 1.5000 0.0000 0.0000 0.5300 0.5303 0.3000 0.0000 0.0000 Norbornadiene 7 0.5000 4.5556 0.0000 0.0000 0.0833 0.7593 0.0000 0.0000 1,3,5-heptatriene 7 0.7500 4.5556 0.5007 0.2533 0.0833 0.9259 0.0333 0.0000 0.0000 1,3,5-heptatriene 7 0.7500 4.5556 0.5007 0.1111 0.1667 1.5185 0.0417 0.0844 0.0133 1,3,5-heptatriyne 7 1.0000 9.1111 0.2500 0.5067 0.1111 0.1667 1.5185 0.0417 0.0844 0.0185 Toluene 7 1.2500 6.6667 0.5000 0.2222 0.0000 0.2883 1.1111 0.0833 0.0305 0.0000 Styrene 8 1.2500 6.7778 0.8125 1.4133 0.1285 1.146 0.0525 0.0305 0.0000 <	•											
Norbornadiene 7 0.5000 4.5556 0.0000 0.0000 0.0833 0.7593 0.0000 0.0000 1,3,5-cycloheptatriene 7 0.5000 5.5556 0.5000 0.0000 0.0833 0.9259 0.0833 0.0000 0.0000 1,3,5-heptatriene 7 0.7500 4.5556 0.1875 0.2533 0.0833 0.1250 0.0313 0.0422 0.0131 1,3,5-heptatriyne 7 1.0000 9.1111 0.2500 0.5067 0.1111 0.1667 5.1885 0.0000 Styrene 8 1.0000 6.8889 0.4375 0.2133 0.0625 0.1489 0.0412 0.0000 Styrene 8 1.2500 6.8789 0.4375 0.2133 0.0625 0.1489 0.0625 0.0000 Styrene 8 1.2500 6.8778 0.8122 1.0000 0.2444 0.000 0.2857 1.1746 0.1629 0.0359 0.0000 m-xylene 8 2.5000 8.0000 <td>•</td> <td></td>	•											
1,3,5-cycloheptatriene 7 0.5000 5.5556 0.5000 0.0000 0.0030 0.9259 0.0833 0.0000 0.0000 1,3,5-heptatriene 7 0.7500 4.5556 0.1875 0.2533 0.0833 0.1250 0.7593 0.0313 0.0422 0.0139 1,3,5-heptatriyne 7 1.0000 9.1111 0.2500 0.5067 0.1111 0.1667 1.5185 0.0417 0.0844 0.0185 Toluene 7 1.2500 6.6667 0.5000 0.2222 0.0000 0.2083 1.111 0.0833 0.0370 0.0000 Styrene 8 1.0000 6.8889 0.4375 0.2133 0.0625 0.1429 0.9841 0.0625 0.0305 0.0009 Ethylbenzene 8 1.2500 6.7778 0.8125 0.4133 0.1250 0.1786 0.9831 0.1161 0.0590 0.0179 o-xylene 8 2.0000 8.2222 1.0000 0.4444 0.0000 0.2857 1	• •											
1,3,5-heptatriene 7 0.7500 4.5556 0.1875 0.2533 0.0833 0.1250 0.7593 0.0412 0.0422 0.0139 1,3,5-heptatriyne 7 1.0000 9.1111 0.2500 0.5067 0.1111 0.1667 1.5185 0.0417 0.0844 0.0185 Toluene 7 1.2500 6.6667 0.5000 0.2222 0.0000 0.2083 1.111 0.0833 0.0370 0.0000 Styrene 8 1.0000 6.8889 0.4375 0.2133 0.0625 0.1429 0.9841 0.0625 0.0005 0.0008 Ethylbenzene 8 1.2500 6.7778 0.8125 0.4133 0.1250 0.1786 0.9683 0.1161 0.0590 0.0179 o-xylene 8 2.0000 8.2222 1.0000 0.4444 0.0000 0.2857 1.1429 0.1607 0.0635 0.0000 n.3,5,7-nonatetraene 9 0.7500 8.1111 0.1875 0.333 0.0831 0.08												
13,5-heptatriyne 7 1.0000 9.1111 0.2500 0.5067 0.1111 0.1667 1.5185 0.0417 0.0844 0.0185 Toluene 7 1.2500 6.6667 0.5000 0.2222 0.0000 0.2083 1.111 0.0833 0.0370 0.0000 Styrene 8 1.0000 6.8889 0.4375 0.2133 0.0625 0.1429 0.9841 0.0625 0.0305 0.0009 Ethylbenzene 8 1.2500 6.7778 0.8125 0.4133 0.1250 0.1786 0.9683 0.1161 0.0590 0.0179 o-xylene 8 2.0000 8.2222 1.0000 0.4444 0.000 0.2857 1.1746 0.1429 0.0635 0.0000 m-xylene 8 2.5000 8.0000 1.1250 0.4444 0.0000 0.3571 1.1429 0.1607 0.0035 0.0000 1,3,5,7-nonatetraene 9 0.0500 8.1111 0.1875 0.5378 0.0833 0.0750	• •											
Toluene 7 1.2500 6.6667 0.5000 0.2222 0.0000 0.2083 1.111 0.0833 0.0370 0.0000 Styrene 8 1.0000 6.8889 0.4375 0.2133 0.0625 0.1429 0.9841 0.0625 0.0305 0.0089 Ethylbenzene 8 1.2500 6.7778 0.8125 0.4133 0.1250 0.1786 0.9683 0.1161 0.0590 0.0179 o-xylene 8 2.0000 8.2222 1.0000 0.4444 0.0000 0.2857 1.1746 0.1429 0.0635 0.0000 m-xylene 8 2.5000 8.0000 1.1250 0.4444 0.0000 0.3571 1.1429 0.1607 0.0635 0.0000 1,3,5,7-nonatetraene 9 1.0000 12.6667 0.2500 0.7911 0.1111 0.1253 0.0313 0.0989 0.0139 1,3,5,7,9-undecapentaene 11 1.07500 16.2222 0.2500 1.0756 0.111 0.1000 1.	*											
Styrene 8 1.0000 6.8889 0.4375 0.2133 0.0625 0.1429 0.9841 0.0625 0.3035 0.0089 Ethylbenzene 8 1.2500 6.7778 0.8125 0.4133 0.1250 0.1786 0.9683 0.1161 0.0590 0.0179 o-xylene 8 2.0000 8.2222 1.0000 0.4444 0.000 0.2857 1.1746 0.1429 0.0635 0.0000 m-xylene 8 2.5000 8.0000 1.1250 0.4444 0.0000 0.3571 1.1429 0.1607 0.0635 0.0000 1,3,5,7-nonatetragne 9 1.0000 12.6667 0.2500 0.7911 0.1111 0.1250 1.5833 0.0313 0.0931 1,3,5,7,9-undecapentagne 11 0.0750 8.1111 0.1875 0.5378 0.0833 0.0750 0.8111 0.0187 0.0131 1-methylnapthalene 11 1.0000 16.2222 0.2500 1.0756 0.1111 0.1000 1.62222												
Ethylbenzene 8 1.2500 6.7778 0.8125 0.4133 0.1250 0.1786 0.9683 0.1161 0.0590 0.0179 o-xylene 8 2.0000 8.2222 1.0000 0.4444 0.0000 0.2857 1.1746 0.1429 0.0635 0.0000 m-xylene 8 2.5000 8.0000 1.1250 0.4444 0.0000 0.3571 1.1429 0.1607 0.0635 0.0000 1,3,5,7-nonatetraene 9 0.7500 6.3333 0.1875 0.3956 0.0833 0.0938 0.7917 0.0234 0.0494 0.0104 1,3,5,7-nonatetrayne 9 1.0000 12.6667 0.2500 0.7911 0.1111 0.1250 1.5833 0.0313 0.0989 0.0139 1,3,5,7,9-undecapentayne 11 0.0750 8.1111 0.1875 0.5378 0.0833 0.0750 0.8111 0.0108 0.0933 0.0083 1,-methylnapthalene 11 1.7500 12.2222 1.6875 0.9822 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>												
o-xylene 8 2.0000 8.2222 1.0000 0.4444 0.0000 0.2857 1.1746 0.1429 0.0635 0.0000 m-xylene 8 2.5000 8.0000 1.1250 0.4444 0.0000 0.3571 1.1429 0.1607 0.0635 0.0000 1,3,5,7-nonatetraene 9 0.7500 6.3333 0.1875 0.3956 0.0833 0.0938 0.7917 0.0234 0.0494 0.0104 1,3,5,7-nonatetrayne 9 1.0000 8.1111 0.1875 0.5378 0.0833 0.0750 0.8111 0.1875 0.5378 0.0833 0.0750 0.8111 0.0187 0.0234 0.0494 0.0149 1,3,5,7,9-undecapentayne 11 0.0750 8.1111 0.1875 0.5378 0.0833 0.0750 0.8111 0.0187 0.0538 0.0083 1,3,5,7,9-undecapentayne 11 1.0000 16.2222 0.2500 1.0756 0.1111 0.1000 1.6222 0.0250 0.1111 1-methylnapthalene </td <td>•</td> <td></td>	•											
m-xylene 8 2.5000 8.0000 1.1250 0.4444 0.0000 0.3571 1.1429 0.1607 0.0635 0.0000 1,3,5,7-nonatetraene 9 0.7500 6.3333 0.1875 0.3956 0.0833 0.0938 0.7917 0.0234 0.0494 0.0104 1,3,5,7-nonatetrayne 9 1.0000 12.6667 0.2500 0.7911 0.1111 0.1250 1.5833 0.0313 0.0989 0.0139 1,3,5,7,9-undecapentaene 11 0.7500 8.1111 0.1875 0.5378 0.0833 0.0750 0.8111 0.0187 0.083 1,3,5,7,9-undecapentayne 11 1.0000 16.2222 0.2500 1.0756 0.1111 0.1000 1.6222 0.0250 0.1111 0.1000 1.6222 0.0250 0.1111 1.0100 1.6222 0.0250 0.1150 0.0111 0.1000 1.6222 0.0250 0.1250 0.1750 0.1750 0.1750 0.2150 0.1750 0.1500 0.0251 0.0000 0.1744<	Ethylbenzene	8				0.4133	0.1250		0.9683		0.0590	
1,3,5,7-nonatetraene 9 0.7500 6.3333 0.1875 0.3956 0.0833 0.0938 0.7917 0.0234 0.0494 0.0104 1,3,5,7-nonatetrayne 9 1.0000 12.6667 0.2500 0.7911 0.1111 0.1250 1.5833 0.0313 0.0989 0.0139 1,3,5,7,9-undecapentaene 11 0.7500 8.1111 0.1875 0.5378 0.0833 0.0750 0.8111 0.0187 0.0538 0.0083 1,3,5,7,9-undecapentayne 11 1.0000 16.2222 0.2500 1.0756 0.1111 0.1000 1.62222 0.0250 0.0111 0.1000 1.62222 0.0250 0.1111 0.1000 1.62222 0.0250 0.1111 0.1000 1.62222 0.0250 0.1111 0.1000 1.62222 0.0250 0.1111 0.1000 1.62222 0.0250 0.1150 0.0115 0.0115 0.0115 0.0175 0.0175 1.2202 0.1688 0.0912 0.0175 0.1500 0.1500 0.0175 0.1301	o-xylene	8	2.0000	8.2222	1.0000		0.0000	0.2857		0.1429	0.0635	
1,3,5,7-nonatetrayne 9 1.0000 12.6667 0.2500 0.7911 0.1111 0.1250 1.5833 0.0313 0.0989 0.0139 1,3,5,7,9-undecapentaene 11 0.7500 8.1111 0.1875 0.5378 0.0833 0.0750 0.8111 0.0187 0.0538 0.0083 1,3,5,7,9-undecapentayne 11 1.0000 16.2222 0.2500 1.0756 0.1111 0.1000 1.6222 0.0250 0.1011 1-methylnapthalene 11 1.7500 12.2222 1.6875 0.9822 0.1250 0.1750 1.2222 0.1688 0.0982 0.0125 2-methylnapthalene 11 2.2500 12.0000 1.5000 0.9911 0.1736 0.2250 1.2000 0.1500 0.0912 Biphenyl 12 1.0000 12.4444 0.8750 0.4889 0.2778 0.0909 1.1313 0.0795 0.0444 0.0253 Acenaphthylene 12 1.5000 14.0556 1.4306 0.7356 0.0000 0.1818 1.2323 0.1894 0.0921 0.0000 Acenaphthene	<i>m</i> -xylene	8	2.5000	8.0000	1.1250	0.4444	0.0000	0.3571	1.1429	0.1607	0.0635	0.0000
1,3,5,7,9-undecapentaene 11 0.7500 8.1111 0.1875 0.5378 0.0833 0.0750 0.8111 0.0187 0.0083 1,3,5,7,9-undecapentayne 11 1.0000 16.2222 0.2500 1.0756 0.111 0.1000 1.6222 0.0250 0.0111 1-methylnapthalene 11 1.7500 12.2222 1.6875 0.9822 0.1250 0.1750 1.2222 0.1688 0.0982 0.0125 2-methylnapthalene 11 2.2500 12.0000 1.5000 0.9911 0.1736 0.2250 1.2000 0.1500 0.0912 Biphenyl 12 1.0000 12.4444 0.8750 0.4889 0.2778 0.0909 1.1313 0.0795 0.0444 0.0253 Acenaphthylene 12 1.5000 14.0556 1.4306 0.7356 0.0000 0.1818 1.2378 0.1301 0.0669 0.0000 Acenaphthene 12 2.0000 13.5556 2.0833 1.0133 0.0000 0.1818 1.2323 0.1894 0.0921 0.0000 1,3,5,7,9,11-tridecahexaene 13 </td <td>1,3,5,7-nonatetraene</td> <td>9</td> <td>0.7500</td> <td>6.3333</td> <td>0.1875</td> <td>0.3956</td> <td>0.0833</td> <td>0.0938</td> <td>0.7917</td> <td>0.0234</td> <td>0.0494</td> <td>0.0104</td>	1,3,5,7-nonatetraene	9	0.7500	6.3333	0.1875	0.3956	0.0833	0.0938	0.7917	0.0234	0.0494	0.0104
1,3,5,7,9-undecapentayne 11 1,0000 16.2222 0.2500 1,0756 0.1111 0.1000 1,6222 0.0250 0.1076 0.0111 1-methylnapthalene 11 1,7500 12.2222 1,6875 0,9822 0,1250 0,1750 1,2222 0,1688 0,0982 0,0125 2-methylnapthalene 11 2,2500 12,0000 1,5000 0,9911 0,1736 0,2250 1,2000 0,1500 0,0174 Biphenyl 12 1,0000 12,4444 0,8750 0,4889 0,2778 0,0090 1,1313 0,0795 0,0444 0,0253 Acenaphthylene 12 1,5000 14,0556 1,4306 0,7356 0,0000 0,1364 1,2778 0,1301 0,0669 0,0000 Acenaphthene 12 2,0000 13,5556 2,0833 1,0133 0,0000 0,1818 1,2323 0,1894 0,0921 0,0000 1,3,5,7,9,11-tridecahexane 13 0,7500 9,8889 0,1875 0,6800 0,083	1,3,5,7-nonatetrayne	9	1.0000	12.6667	0.2500	0.7911	0.1111	0.1250	1.5833	0.0313	0.0989	0.0139
1-methylnapthalene 11 1.7500 12.2222 1.6875 0.9822 0.1250 0.1750 1.2222 0.1688 0.0982 0.0125 2-methylnapthalene 12 2.2500 12.0000 1.5000 0.9911 0.1736 0.2250 1.2000 0.1500 0.0911 0.0174 Biphenyl 12 1.0000 12.4444 0.8750 0.4889 0.2778 0.0909 1.1313 0.0795 0.0444 0.0253 Acenaphthylene 12 1.5000 14.0556 1.4306 0.7356 0.0000 0.1364 1.2778 0.1301 0.0669 0.0000 Acenaphthene 12 2.0000 13.5556 2.0833 1.0133 0.0002 0.1818 1.2323 0.1894 0.0921 0.0000 1,3,5,7,9,11-tridecahexaene 13 0.7500 9.8889 0.1875 0.6800 0.0833 0.0625 0.8241 0.0156 0.0567 0.0069	1,3,5,7,9-undecapentaene	11	0.7500	8.1111	0.1875	0.5378	0.0833	0.0750	0.8111	0.0187	0.0538	0.0083
2-methylnapthalene 11 2.2500 12.0000 1.5000 0.9911 0.1736 0.2250 1.2000 0.1500 0.0991 0.0174 Biphenyl 12 1.0000 12.4444 0.8750 0.4889 0.2778 0.0909 1.1313 0.0795 0.0444 0.0253 Acenaphthylene 12 1.5000 14.0556 1.4306 0.7356 0.0000 0.1364 1.2778 0.1301 0.0669 0.0000 Acenaphthene 12 2.0000 13.5556 2.0833 1.0133 0.0000 0.1818 1.2323 0.1894 0.0921 0.0000 1,3,5,7,9,11-tridecahexaene 13 0.7500 9.8889 0.1875 0.6800 0.0833 0.0625 0.8241 0.0156 0.0567 0.0069	1,3,5,7,9-undecapentayne	11	1.0000	16.2222	0.2500	1.0756	0.1111	0.1000	1.6222	0.0250	0.1076	0.0111
Biphenyl 12 1.0000 12.4444 0.8750 0.4889 0.2778 0.0909 1.1313 0.0795 0.0444 0.0253 Acenaphthylene 12 1.5000 14.0556 1.4306 0.7356 0.0000 0.1364 1.2778 0.1301 0.0669 0.0000 Acenaphthene 12 2.0000 13.5556 2.0833 1.0133 0.0000 0.1818 1.2323 0.1894 0.0921 0.0000 1,3,5,7,9,11-tridecahexaene 13 0.7500 9.8889 0.1875 0.6800 0.0833 0.0625 0.8241 0.0156 0.0567 0.0069	1-methylnapthalene	11	1.7500		1.6875	0.9822	0.1250	0.1750	1.2222	0.1688	0.0982	0.0125
Acenaphthylene 12 1.5000 14.0556 1.4306 0.7356 0.0000 0.1364 1.2778 0.1301 0.0669 0.0000 Acenaphthene 12 2.0000 13.5556 2.0833 1.0133 0.0000 0.1818 1.2323 0.1894 0.0921 0.0000 1,3,5,7,9,11-tridecahexaene 13 0.7500 9.8889 0.1875 0.6800 0.0833 0.0625 0.8241 0.0156 0.0567 0.0069	2-methylnapthalene	11	2.2500	12.0000	1.5000	0.9911	0.1736	0.2250	1.2000	0.1500	0.0991	0.0174
Acenaphtene 12 2.0000 13.5556 2.0833 1.0133 0.0000 0.1818 1.2323 0.1894 0.0921 0.0000 1,3,5,7,9,11-tridecahexaene 13 0.7500 9.8889 0.1875 0.6800 0.0833 0.0625 0.8241 0.0156 0.0567 0.0069	Biphenyl	12	1.0000	12.4444	0.8750	0.4889	0.2778	0.0909	1.1313	0.0795	0.0444	0.0253
1,3,5,7,9,11-tridecahexaene 13 0.7500 9.8889 0.1875 0.6800 0.0833 0.0625 0.8241 0.0156 0.0567 0.0069	Acenaphthylene	12	1.5000	14.0556	1.4306	0.7356	0.0000	0.1364	1.2778	0.1301	0.0669	0.0000
1,3,5,7,9,11-tridecahexaene 13 0.7500 9.8889 0.1875 0.6800 0.0833 0.0625 0.8241 0.0156 0.0567 0.0069	Acenaphthene	12	2.0000		2.0833	1.0133		0.1818			0.0921	0.0000
	•											
	1,3,5,7,9,11-tridecahexayne	13	1.0000	19.7778		1.3600	0.1111		1.6481			0.0093

Table 1 continued.

Hydrocarbon	N	G_1	G_2	G_3	G_4	G_5	J_1	J_2	J_3	J_4	<i>J</i> ₅
Fluorene	13	2.0000	14.8333	2.2639	0.6733	0.3267	0.1667	1.2361	0.1887	0.0561	0.0272
Cis-stilbene	14	1.5000	14.0000	0.8750	0.5689	0.2083	0.1154	1.0769	0.0673	0.0438	0.0160
9,10-dihydroanthracene	14	3.0000	15.5556	2.2500	1.4578	0.1389	0.2308	1.1966	0.1731	0.1121	0.0107
1,3,5,7,9,11,13-pentadecaheptaene	15	0.7500	11.6667	0.1875	0.8222	0.0833	0.0536	0.8333	0.0134	0.0587	0.0060
1,3,5,7,9,11,13-pentadecaheptayne	15	1.0000	23.3333	0.2500	1.6444	0.1111	0.0714	1.6667	0.0179	0.1175	0.0079
Benzo[a]anthracene	18	2.5000	21.5556	2.7500	2.0889	0.5694	0.1471	1.2680	0.1618	0.1229	0.0335
Benzo[a]pyrene	20	2.5000	25.1111	3.8750	2.4978	0.6111	0.1316	1.3216	0.2039	0.1315	0.0322
Benzo[b]fluoranthene	20	2.7500	23.6111	3.4722	2.3806	1.0456	0.1447	1.2427	0.1827	0.1253	0.0550
Benzo[k]fluoranthene	20	3.5000	24.1667	3.6181	2.2022	0.9975	0.1842	1.2719	0.1904	0.1159	0.0525
Corannulene	20	3.5000	25.7222	5.3056	2.7428	0.7217	0.1842	1.3538	0.2792	0.1444	0.0380
Indeno[1,2,3-cd]pyrene	22	3.2500	27.1667	4.2222	3.1317	1.2158	0.1548	1.2937	0.2011	0.1491	0.0579
Benzo[ghi]perylene	22	3.5000	28.0000	5.4375	3.8400	1.1458	0.1667	1.3333	0.2589	0.1829	0.0546

Table 2. Values of the G_k and J_k charge-transfer indices up to the fifth order for a set of apolar hydrocarbons

Hydrocarbon	N	G_1	G_2	G_3	G_4	G_5	J_1	J_2	J_3	J_4	J_5
Methane	1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Ethane	2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Ethene	2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Ethyne	2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Cyclopropane	3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Propane	3	0.5000	0.0000	0.0000	0.0000	0.0000	0.2500	0.0000	0.0000	0.0000	0.0000
Alene	3	1.0000	0.0000	0.0000	0.0000	0.0000	0.5000	0.0000	0.0000	0.0000	0.0000
Butane (t)	4	0.5000	0.2222	0.0000	0.0000	0.0000	0.1667	0.0741	0.0000	0.0000	0.0000
s-trans-1,3-butadiene	4	0.5000	1.5556	0.0000	0.0000	0.0000	0.1667	0.5185	0.0000	0.0000	0.0000
1,3-butadiyne	4	0.5000	3.3333	0.0000	0.0000	0.0000	0.1667	1.1111	0.0000	0.0000	0.0000
Pentane	5	0.5000	0.2222	0.1250	0.0000	0.0000	0.1250	0.0556	0.0313	0.0000	0.0000
2,2-dimethylpropane	5	3.0000	0.0000	0.0000	0.0000	0.0000	0.7500	0.0000	0.0000	0.0000	0.0000
Cyclohexane	6	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Benzene	6	0.0000	5.3333	0.0000	0.0000	0.0000	0.0000	1.0667	0.0000	0.0000	0.0000
Hexane	6	0.5000	0.2222	0.1250	0.0800	0.0000	0.1000	0.0444	0.0250	0.0160	0.0000
trans-1,3,5-hexatriene	6	0.5000	3.3333	0.1250	0.0622	0.0000	0.1000	0.6667	0.0250	0.0124	0.0000
1,3,5-hexatriyne	6	0.5000	6.8889	0.1250	0.2044	0.0000	0.1000	1.3778	0.0250	0.0409	0.0000
Heptane	7	0.5000	0.2222	0.1250	0.0800	0.0556	0.0833	0.0370	0.0208	0.0133	0.0093
Octane	8	0.5000	0.2222	0.1250	0.0800	0.0556	0.0714	0.0317	0.0179	0.0114	0.0079
1,3,5,7-octatetraene	8	0.5000	5.1111	0.1250	0.2044	0.0556	0.0714	0.7302	0.0179	0.0292	0.0079
1,3,5,7-octatetrayne	8	0.5000	10.4444	0.1250	0.4889	0.0556	0.0714	1.4921	0.0179	0.0698	0.0079
<i>p</i> -xylene	8	2.5000	8.0000	0.8750	0.5244	0.0000	0.3571	1.1429	0.1250	0.0749	0.0000
Nonane	9	0.5000	0.2222	0.1250	0.0800	0.0556	0.0625	0.0278	0.0156	0.0100	0.0069
Mesitylene	9	3.7500	9.3333	1.8750	0.6667	0.0000	0.4688	1.1667	0.2344	0.0833	0.0000
Decane	10	0.5000	0.2222	0.1250	0.0800	0.0556	0.0556	0.0247	0.0139	0.0089	0.0062
1,3,5,7,9-decapentaene	10	0.5000	6.8889	0.1250	0.3467	0.0556	0.0556	0.7654	0.0139	0.0385	0.0062
1,3,5,7,9-decapentayne	10	0.5000	14.0000	0.1250	0.7733	0.0556	0.0556	1.5556	0.0139	0.0859	0.0062
Naphtalene	10	1.0000	10.6667	1.0000	0.5689	0.0000	0.1111	1.1852	0.1111	0.0632	0.0000
Undecane	11	0.5000	0.2222	0.1250	0.0800	0.0556	0.0500	0.0222	0.0125	0.0080	0.0056
Dodecane	12	0.5000	0.2222	0.1250	0.0800	0.0556	0.0455	0.0202	0.0114	0.0073	0.0051

Table 2 continued.

Hydrocarbon	N	G_1	G_2	G_3	G_4	G_5	J_1	J_2	J_3	J_4	J_5
1,3,5,7,9,11-dodecahexaene	12	0.5000	8.6667	0.1250	0.4889	0.0556	0.0455	0.7879	0.0114	0.0444	0.0051
1,3,5,7,9,11-dodecahexayne	12	0.5000	17.5556	0.1250	1.0578	0.0556	0.0455	1.5960	0.0114	0.0962	0.0051
Biphenyl-coplanar	12	1.0000	12.4444	0.8750	0.4889	0.2778	0.0909	1.1313	0.0795	0.0444	0.0253
Tridecane	13	0.5000	0.2222	0.1250	0.0800	0.0556	0.0417	0.0185	0.0104	0.0067	0.0046
Tretradecane	14	0.5000	0.2222	0.1250	0.0800	0.0556	0.0385	0.0171	0.0096	0.0062	0.0043
1,3,5,7,9,11,13-tetradecaheptaene	14	0.5000	10.4444	0.1250	0.6311	0.0556	0.0385	0.8034	0.0096	0.0485	0.0043
1,3,5,7,9,11,13-tetradecaheptayne	14	0.5000	21.1111	0.1250	1.3422	0.0556	0.0385	1.6239	0.0096	0.1032	0.0043
trans-stilbene	14	1.5000	14.0000	0.8750	0.5689	0.2083	0.1154	1.0769	0.0673	0.0438	0.0160
Phenanthrene	14	1.5000	16.2222	2.0000	1.3600	0.2639	0.1154	1.2479	0.1538	0.1046	0.0203
Anthracene	14	2.0000	16.0000	1.7500	1.2978	0.2500	0.1538	1.2308	0.1346	0.0998	0.0192
Pentadecane	15	0.5000	0.2222	0.1250	0.0800	0.0556	0.0357	0.0159	0.0089	0.0057	0.0040
Hexadecane	16	0.5000	0.2222	0.1250	0.0800	0.0556	0.0333	0.0148	0.0083	0.0053	0.0037
1,3,5,7,9,11,13,15-Hexadecaoctaene	16	0.5000	12.2222	0.1250	0.7733	0.0556	0.0333	0.8148	0.0083	0.0516	0.0037
1,3,5,7,9,11,13,15-Hexadecaoctayne	16	0.5000	24.6667	0.1250	1.6267	0.0556	0.0333	1.6444	0.0083	0.1084	0.0037
Fluoranthene	16	1.5000	19.6111	2.2500	1.2417	0.2600	0.1000	1.3074	0.1500	0.0828	0.0173
Pyrene	16	2.0000	19.5556	2.8750	1.9111	0.1389	0.1333	1.3037	0.1917	0.1274	0.0093
Chrysene	18	2.0000	21.5556	2.7500	2.0711	0.5278	0.1176	1.2680	0.1618	0.1218	0.0310
Corannulene-planar	20	3.5000	25.7222	5.3056	2.7428	0.7217	0.1842	1.3538	0.2792	0.1444	0.0380
Bibenzo[ah]anthracene	22	3.0000	26.6667	3.3750	2.5956	0.7222	0.1429	1.2698	0.1607	0.1236	0.0344
Coronene	24	3.2500	27.4444	6.1875	4.4489	1.1250	0.1413	1.1932	0.2690	0.1934	0.0489
Fullerene-60	60	1.5000	106.1111	18.6528	16.9661	5.3217	0.0254	1.7985	0.3161	0.2876	0.0902
Fullerene-70	70	3.0000	120.3333	25.0000	20.6922	7.6275	0.0435	1.7440	0.3623	0.2999	0.1105
Fullerene-82	82	4.0000	137.1667	34.1250	23.7511	11.1136	0.0494	1.6934	0.4213	0.2932	0.1372

Topological charge-transfer indices

The two most important matrices that delineate the labelled chemical graph are the *adjacency* $(\overline{\overline{A}})$ [22–24] and the *distance* $(\overline{\overline{D}})$ *matrices*, wherein $D_{ij} = l_{ij}$ if i = j, '0' otherwise; l_{ij} is the shortest edge count between vertices i and j [25]. $\overline{\overline{A}}$ is the adjacency matrix where $A_{ij} = 1$ if vertices i and j are adjacent, '0' otherwise.

The role of charge transfer in pharmacology was reviewed by Shifrin [26]. However, none of the more widely used indicators describe in an explicit manner the *charge distribution* in the molecule, although Kier and Hall developed an atomic value of χ capable of representing the number of valence electrons on the carbon atom [6]. The $\overline{\overline{D}}^*$ matrix is the matrix whose elements are the squares of the reciprocal distances D_{ij}^{-2} . $\overline{\overline{D}}^*$ may be considered as the distance matrix of a class of specially weighted graphs in which weights between vertices mimic the Coulomb law between the sites in the corresponding structure. Now, the interme-

diate matrix $\overline{\overline{M}}$ is defined as the matrix product of $\overline{\overline{A}}$ by $\overline{\overline{D}}^*: \overline{\overline{M}} = \overline{\overline{A}} \times \overline{\overline{D}}^*$

Notice that the product of two symmetric matrices, such as and $\overline{\overline{A}}$, $\overline{\overline{D}}^*$ does not necessarily result in a symmetric matrix, as occurs in $\overline{\overline{M}}$.

The charge-transfer matrix \overline{C} is defined as $\overline{C} = \overline{\overline{M}} - \overline{\overline{M}}^T$, where $\overline{\overline{M}}^T$ is the transpose of $\overline{\overline{M}}$ [27]. By agreement, the main-diagonal entries of $\overline{\overline{M}}$ remain the same. Thus, $C_{ij} = M_{ij} - M_{ji}$ ($i \neq j$) and $C_{ii} = M_{ii}$. Notice that the C_{ij} descriptors are graph invariants, i.e., they do not depend on the numerical order of the vertices in the molecular graph. For example, in butane (C₁-C₂-C₃-C₄), C₁₂ = -C₃₄ = -0.25 and C₂₃ = 0. At this point, several facts should be emphasized. For $i \neq j$, the C_{ij} terms represent a measure of the intramolecular net charge transferred from atom j to i. Thus, if C_{ij} is negative, atom i will transfer net charge to j. The optimal topological picture of these descriptors would be a digraph. This implied charge distribution spectrum is surprisingly

similar to the real charge distribution in the molecule $C_1^{\delta-}-C_2^{\delta+}-C_3^{\delta+}-C_4^{\delta-}$. It is evident, that the *algebraic* sum of the

It is evident, that the *algebraic* sum of the C_{ij} terms, for i > j, will be null in the case of symmetric compounds, and it implies that this sum would be proportional to the dipole moment of the molecule. In fact, all the symmetric hydrocarbons, including those that are cyclic and aromatic, show virtually null dipole moments. For instance, in benzene $[C_1(C_6)-C_2-C_3-C_4-C_5-C_6(C_1)]$, $C_{12} = C_{23} = C_{34} = C_{45} = C_{56} = 0$ and $C_{13} = -C_{24} = C_{35} = -C_{46} = -0.889$ characterize its aromaticity. However, asymmetric molecules show nonzero dipole moments. In this case, i.e., for asymmetric hydrocarbons, it is obvious that the algebraic sum of the C_{ij} terms, for i > j, is not null. However, this sum would be dependent, in the case of branched molecules, on the numerical order of the different vertices.

Gálvez et al. defined the *topological charge-transfer indices* G_k as the sum, in absolute value, of the C_{ij} terms defined for the vertices i, j placed at a topological distance D_{ij} equal to k:

$$G_k = \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} |C_{ij}| \delta(k, D_{ij}), \tag{1}$$

where N is the number of vertices in the graph, D_{ij} are the entries of the \overline{D} matrix, and δ is the Kronecker δ , being $\delta = 1$ for i = j and $\delta = 0$ otherwise [27]. They defined k as the *index order* of G, being this order ka fixed value for the topological distance between vertices i and j. Thus, G_k represents the sum of all the C_{ij} terms, for every pair of vertices i and j at topological distance k. These G_k descriptors evaluate the total charge transfer between pairs of atoms placed at a topological distance k. Therefore, for a linear molecule there would exist N-1 values of G_k . The G_k topological charge-transfer indices describe the global charge distribution inside the molecule through the evaluation of the intramolecular charge transfer between pairs of atoms placed at 1–2 (G_1) , 1–3 (G_2) , etc. Notice that the G_k descriptors are graph invariants.

Furthermore, Gálvez et al. also introduced other topological charge-transfer index, J_k , as

$$J_k = \frac{G_k}{N - 1}. (2)$$

This index represents the mean value of the charge transfer for each edge, since the number of edges for acyclic compounds is N-1. Notice that the J_k descriptors are graph invariants.

The G_k and J_k indices were applied to the calculation of the molecular dipole moment of hydrocarbons, the boiling temperature of hydrocarbons and alcohols, the vaporization enthalpy of alkanes [27], the activity of analgesic, antiviral, bronchodilator, antifungal, antihyperlipoproteinemic, hypoglycemic [28] and βblocker [29] and antineoplastic drugs, quinolones, fluoroquinolones, flavonoids [30], the capacity and separation factors in chromatographic chiral separations of hydantoins, aromatic α -amino acids and arylamides [31], the resonance energy of hydrocarbons, the naphthalene bond lengths, the vibrational frequencies for C-C double bonds, the log IC_{50} of the D_2 dopamine receptor and the σ receptor of piperidines, the sedative character of chiral barbiturates [32], and the aqueous solubility of organic compounds.

Algebraic and vector semisum charge-transfer indices

Gálvez *et al.* suggested that the molecular dipole moment is related to the algebraic semisum of the C_{ij} indices [27]. Therefore, the *algebraic semisum charge-transfer index* μ_{alg} is defined as

$$\mu_{\text{alg}} = \frac{1}{2} \sum_{i=1}^{N-1} \sum_{i=i+1}^{N} A_{ij} C_{ij} = \frac{1}{2} \sum_{e=1}^{M} C^{e},$$
 (3)

where C^e is the C_{ij} index for vertices i and j connected by edge e. The sum extends for all pairs of adjacent vertices (i.e., for all the M edges) in the molecular graph. Therefore, μ_{alg} represents the dipole moment calculated by algebraic semisum of C^e .

An edge-to-edge partition analysis of μ suggests that each edge dipole moment μ^e connecting vertices i and j, can be evaluated from the corresponding edge C^e index as

$$\mu^e = \frac{1}{2}C^e$$
.

Each edge dipole can be associated with a vector $\overline{\mu}^e$ in space. This vector has magnitude μ^e , lies in the edge e connecting vertices i and j, and its direction is from j to i. The molecular dipole moment vector $\overline{\mu}$ results the vector sum of the edge dipole moments as

$$\overline{\mu} = \sum_{e=1}^{M} \overline{\mu}^e = \frac{1}{2} \sum_{e=1}^{M} \overline{C}^e$$

summed for all the M edges in the molecular graph.

The vector semisum charge-transfer index μ_{vec} is defined as the norm of $\overline{\mu}$:

$$\mu_{\text{vec}} = N(\overline{\mu}) = (\mu_1^2 + \mu_2^2 + \mu_3^2)^{1/2}.$$
 (4)

Table 3. Molecular dipole moment values, μ (D), of polar hydrocarbons with charge-transfer indices

Hydrocarbon	Fit ^a	Algebraic semisum	Vector semisum	Experiment ^b
Propane	0.071	0.000	0.204	0.083
Propene	0.401	0.125	0.301	0.360
Propyne	0.731	0.250	0.378	0.750
Cyclopropene	0.394	1.000	1.288	0.455
Butane (g ⁺)	0.036	0.000	0.282	0.091 ^c
s-cis-1,3-butadiene	0.222	0.000	0.259	0.031 ^d
Cyclobutene	0.284	0.250	0.358	0.130
1-butene	0.383	0.125	0.166	0.340
1-butyne	0.760	0.250	0.318	0.800
1,2-butadiene	0.456	0.125	0.301	0.401
2-methylpropane	0.089	0.250	0.342	0.132
2-methylpropene	0.410	0.500	0.250	0.503
Pentane (tt)	0.064	0.000	0.205	0.087 ^c
Pentane (g ⁻ t)	0.064	0.000	0.190	0.063 ^c
Pentane (g ⁻ g ⁻)	0.064	0.000	0.205	0.060^{c}
Pentane $(g^-g'^+)$	0.064	0.000	0.342	0.123 ^c
Cyclopentene	0.150	0.250	0.330	0.955
1,3-cyclopentadiene	0.221	0.250	0.233	0.416
Trans-1,3-pentadiene	0.439	0.125	0.300	0.680
1-pentyne	0.821	0.250	0.386	0.810
1,3-pentadiyne	0.830	0.250	0.377	0.022 ^e
2-methylbutane	0.022	0.250	0.270	0.130
2-methyl-1,3-butadiene	0.336	0.375	0.353	0.380
Cyclohexene	0.261	0.250	0.298	0.610
Cis-1,3,5-hexatriene	0.198	0.000	0.022	0.010^{d}
1,3-cyclohexadiene	0.315	0.250	0.321	0.440
1-hexyne	0.724	0.250	0.319	0.830
3,3-dimetyl-1-butyne	0.716	0.500	0.385	0.660
Norbornadiene	-0.049	0.000	0.251	0.117^{f}
1,3,5-cycloheptatriene	0.156	0.250	0.171	0.250
1,3,5-heptatriene	0.361	0.125	0.299	0.355g
1,3,5-heptatriyne	0.732	0.250	0.377	0.024 ^e
Toluene	0.426	0.125	0.366	0.370
Styrene	0.223	0.000	0.164	0.095 ^h
Ethylbenzene	0.611	0.125	0.310	0.590
o-xylene	0.644	1.000	0.628	0.620
<i>m</i> -xylene	0.658	1.000	0.355	0.370
1,3,5,7-nonatetraene	0.300	0.125	0.301	0.423 ^g
1,3,5,7-nonatetrayne	0.639	0.250	0.377	0.023 ^e
1,3,5,7,9-undecapentaene	0.246	0.125	0.293	0.422^{g}
1,3,5,7,9-undecapentayne	0.548	0.250	0.377	0.023 ^e
1-methylnaphtalene	0.902	0.375	0.362	0.280
2-methylnaphtalene	0.830	0.375	0.367	0.440
Biphenyl-perpendicular	-0.024	0.500	0.001	0.002^{g}
Biphenyl-twisted	-0.024	0.500	0.001	0.002^{g}
Acenaphthylene	0.285	0.500	0.038	0.342 ^g
Acenaphthene	0.784	0.750	0.400	0.810
1,3,5,7,9,11-tridecahexaene	0.195	0.125	0.299	0.470 ^g
1,3,5,7,9,11-tridecahexayne	0.458	0.250	0.377	0.023 ^e

Table 3 continued.

Hydrocarbon	Fit ^a	Algebraic semisum	Vector semisum	Experiment ^b
Fluorene	0.138	0.500	0.287	0.280
cis-stilbene	-0.268	0.250	0.026	0.080^{i}
9,10-dihydroanthracene	0.914	0.500	0.133	0.400
1,3,5,7,9,11,13-pentadecaheptaene	0.146	0.125	0.269	0.452^{g}
1,3,5,7,9,11,13-pentadecaheptayne	0.368	0.250	0.377	0.023^{e}
Benzo[a]anthracene	1.026	0.750	0.026	0.045^{g}
Benzo[a]pyrene	1.241	1.000	0.020	0.037^{g}
Benzo[b]fluoranthene	1.132	0.625	0.162	0.300^{g}
Benzo[k]fluoranthene	0.754	0.750	0.092	0.120^{g}
Corannulene-bowl	1.565	1.250	0.567	2.799 ^g
Corannulene-fullerene	1.565	1.250	0.896	5.352 ^g
Indeno[1,2,3-cd]pyrene	1.685	0.875	0.142	0.466^{g}
Benzo[ghi]perylene	2.678	1.250	0.268	0.064 ^g

^aCalculations carried out with the method of *Gálvez* et al. (Equation 5).

Therefore, μ_{vec} represents the molecular dipole moment calculated by vector semisum of edge \overline{C}^e .

For example, in symmetric butane (t) C_1 - C_2 - C_3 - C_4 , $\overline{\mu}_{12}^1=(-0.139,\ -0.116,\ -0.011),\ \overline{\mu}_{23}^2=(0,\ 0,\ 0)$ and $\overline{\mu}_{34}^3=(0.139,\ 0.116,\ 0.011).$ Therefore, $\overline{\mu}=(0,0,0)$ and $\mu_{vec}=0$. However, in asymmetric 2-methylbutane [C_1 - C_2 (C_3)- C_4 - C_5], $\overline{\mu}_{12}^1=(-0.029,\ -0.335,\ -0.139),\ \overline{\mu}_{23}^2=(-0.133,\ 0.005,\ 0.338), \overline{\mu}_{24}^3=(0.173,\ 0.056,\ -0.007)$ and $\overline{\mu}_{45}^4=(0.024,\ 0.171,\ 0.055)$. Therefore, $\overline{\mu}=(0.035,\ -0.103,\ 0.247)$ and $\mu_{vec}=0.270$.

Calculation results and discussion

Polar hydrocarbons

The G_k and J_k values, up to the fifth order for a set of 57 polar hydrocarbons, are listed in Table 1, together with the number of carbon atoms, N. The G_1 term is clearly related to the degree of branching, although many repeated values may be observed (0.5 for linear alkanes, 1.5 for alkanes containing tertiary carbons, higher values for more branched alkanes, etc.). The G_2 term is related to the number of unsaturations in the hydrocarbon. For big hydrocarbons, the dominant G_k index is G_2 .

Gálvez *et al.* [27] selected a group of 30 heterogeneous hydrocarbons (24 polar hydrocarbons included in Table 1, and 6 apolar ones included in Table 2) to correlate the molecular dipole moment with the topological charge-transfer indices G_k and J_k . They fitted the following linear regression equation:

$$\mu = -0.037 - 0.179G_1 - 0.134G_2 + 1.365G_4 +0.789J_1 + 0.820J_2 + 2.421J_3, n = 30, r = 0.941, SD = 0.107, F = 28.0, p < 0.001.$$
(5)

The dipole moment for all the polar hydrocarbons in Table 1 have been calculated with this fit (Equation 5). The results are shown in the second column of Table 3. Despite the good results obtained with the method of Gálvez *et al.* for polar hydrocarbons, a negative dipole moment is predicted for 3 molecules: norbornadiene, biphenyl (both perpendicular and twisted conformers) and *cis*-stilbene.

The μ_{alg} results for the polar and apolar hydrocarbons obtained by Equation 3 are shown in the third column of Tables 3 and 4, respectively. Although the negative dipole moment is corrected for the 3 molecules with negative fit in Table 3, the value is strongly overestimated now for 2 of them: biphenyl and *cis*-stilbene.

^bReferences 36 and 37.

^cCalculations carried out with the Gaussian-2 composite ab initio method taken from Reference 38.

^dCalculations carried out with the CAS-SCF method taken from Ref. 39.

eCalculations carried out with the POLAR method.

^fCalculations carried out with the CAS-SCF method taken from Reference 40.

^gCalculations carried out with the MOPAC-AM1 program.

^hCalculations carried out with the CASPT2 method [41].

ⁱCalculations carried out with the CASPT2 method [42].

Table 4. Molecular dipole moment values, μ (D), of apolar hydrocarbons with charge-transfer indices a

Hydrocarbon	Fit ^b	Algebraic semisum	Experiment ^c
Methane	-0.037	0.000	0.000
Ethane	-0.037	0.000	0.000
Ethene	-0.037	0.000	0.000
Ethyne	-0.037	0.000	0.000
Cyclopropane	-0.037	0.000	0.000
Propane	0.071	0.000	0.000
Alene	0.179	0.000	0.000
Butane (t)	0.036	0.000	0.000^{d}
s-trans-1,3-butadiene	0.222	0.000	0.000
1,3-butadiyne	0.469	0.000	0.000
Pentane	0.064	0.000	0.000
2,2-dimethylpropane	0.018	0.750	0.000
Cyclohexane	-0.037	0.000	0.000
Benzene	0.123	0.000	0.000
Hexane	0.129	0.000	0.000
Trans-1,3,5-hexatriene	0.198	0.000	0.000^{e}
1,3,5-hexatriyne	0.499	0.000	0.000
Heptane	0.099	0.000	0.000
Octane	0.079	0.000	0.000
1,3,5,7-octatetraene	0.166	0.000	0.000
1,3,5,7-octatetrayne	0.464	0.000	0.000
<i>p</i> -xylene	0.681	1.000	0.000
Nonane	0.063	0.000	0.000
Mesitylene	0.845	0.875	0.000
Decane	0.051	0.000	0.000
1,3,5,7,9-decapentaene	0.129	0.000	0.000
1,3,5,7,9-decapentayne	0.406	0.000	0.000
Naphthalene	0.460	0.000	0.000
Undecane	0.041	0.000	0.000
Dodecane	0.033	0.000	0.000
1,3,5,7,9,11-dodecahexaene	0.089	0.000	0.000
1,3,5,7,9,11-dodecahexayne	0.337	0.000	0.000
Biphenyl-coplanar	-0.024	0.500	0.000^{f}
Tridecane	0.026	0.000	0.000
Tetradecane	0.021	0.000	0.000
1,3,5,7,9,11,13-tetradecaheptaene	0.048	0.000	0.000
1,3,5,7,9,11,13-tetradecaheptayne	0.262	0.000	0.000
trans-stilbene	-0.268	0.250	0.000^{g}
Phenanthrene	0.864	0.500	0.000
Anthracene	0.689	0.250	0.000
Pentadecane	0.016	0.000	0.000
Hexadecane	0.012	0.000	0.000
1,3,5,7,9,11,13,15-hexadecaoctaene	0.006	0.000	0.000
1,3,5,7,9,11,13,15-hexadecaoctayne	0.183	0.000	0.000
Fluoranthene	0.276	0.250	0.000

Table 4 continued.

Hydrocarbon	Fit ^b	Algebraic semisum	Experiment ^c
Pyrene	1.231	0.000	0.000
Chrysene	1.068	0.500	0.000^{f}
Corannulene-planar	1.565	1.250	0.000^{f}
Dibenzo[ah]anthracene	0.939	0.750	0.000^{f}
Coronene	3.518	0.125	0.000
Fullerene-60	10.895	0.000	0.000
Fullerene-70	13.888	0.250	0.000
Fullerene-82	15.734	0.250	0.000^{h}

^aThe vector semisum is 0.000 for all entries.

The μ_{vec} dipole moments obtained by Equation 4 are shown in the fourth column of Table 3 for polar hydrocarbons. The overestimations for biphenyl and *cis*-stilbene are corrected now.

Apolar hydrocarbons

The G_k and J_k values for a set of 53 apolar hydrocarbons, are listed in Table 2. The dipole moment for all the apolar hydrocarbons in Table 2 have been calculated (Equation 5) and reported in Table 4. Notice that a small negative or positive dipole moment is predicted for all the molecules. Therefore, the reproduction of vanishing dipole moments for molecules with appropriate symmetry elements is far from trivial for pure topological (nongeometric) methods.

As may be observed, the algebraic semisum method (Equation 3) corrects the dipole moment for all the apolar molecules in Table 4 except 2,2-dimethylpropane, *p*-xylene, mesitylene, biphenyl-coplanar, *trans*-stilbene, phenanthrene, anthracene, fluoranthene, crysene, corannulene-planar, dibenzo[*a*, *h*] anthracene, coronene, fullerene-70 and fullerene-82. However, the vector semisum method (Equation 4) correctly predicts a dipole of 0.000D for all the apolar molecules.

Some reference calculations of the dipole moments of molecules presenting several conformations are either carried out with the MOPAC-AM1 [33] and POLAR programs [34] or taken from the literature. Both Equation (5) and the algebraic semisum

method (Equation 3) cannot elucidate torsional isomers, viz., butane (g^+ and t), pentane (tt, g^-t , g^-g^- and $g^-g'^+$), biphenyl (perpendicular, twisted and coplanar) and corannulene (bowl, *fullerene* and planar), as seen in Tables 3 and 4. However, this differentiation is achieved with the vector semisum method (Equation 4).

Linear and nonlinear correlation models

The molecular dipole moment and the charge-transfer indices G_k and J_k for all the hydrocarbons in Tables 3 and 4 have been correlated. The best linear regression results:

$$\mu = -0.0000330 - 0.112G_5 + 0.295J_1 +3.41J_3 - 0.755J_4, n = 115, r = 0.419, SD = 0.548, F = 5.9.$$
 (6)

The correlation of Equation 6 is worse than that of Equation 5. The correponding interpretation is that the set of hydrocarbons selected in Equation 5 are apolar or have low dipole moment as far as 0.8D, whereas the hydrocarbon set in Equation 6 can have higher dipoles up to 5.4D. For Equation 6, the mean absolute percentage error (MAPE) is 101.74% and the approximation error variance (AEV) is 0.8250. All other models with greater MAPE and AEV have been discarded. The presence of charge-transfer indices such as G_5 , J_1 , J_3 and J_4 is representative of charge-transfer processes and clearly conditions the polar character of the correlated compounds. The best nonlinear model for the

^bCalculations carried out with the method of *Gálvez* et al. (Equation 5).

^cRef. 36 and 37.

^dCalculations carried out with the Gaussian-2 composite *ab initio* method taken from Ref. 38

eCalculations carried out with the CAS-SCF method taken from Ref. 39.

^fCalculations carried out with the MOPAC-AM1 program.

gCalculations carried out with the CASPT2 method [42].

^hCalculatons carried out with the POLAR program.

dipole moment results:

$$\mu = 0.233 + 1.16z_{12} - 0.484z_{11}z_{12},$$

$$z_{11} = -1.04 + 6.32J_{1},$$

$$z_{12} = -0.203 + 15.0J_{1}J_{3},$$

$$MAPE = 102.55\%, AEV = 0.8028$$
(7)

and AEV decreases 3%.

Notice that the variance can be decreased if the fit is limited to a subset of similar hydrocarbons. For instance, for the polar hydrocarbons the best linear model for the dipole moment results:

$$\mu = 0.263 + 0.672G_3 - 2.16G_5 - 0.166J_2,$$

MAPE = 81.93%, AEV = 0.6098 (8)

and AEV decreases 26%. No tested nonlinear model outperforms these results. If μ_{vec} is included in the model of polar and apolar hydrocarbons, the best linear regression for μ results:

$$\mu = -0.146 - 0.0475G_5 + 1.67J_3 +1.67\mu_{\text{vec}}, \text{MAPE} = 97.02\%, \text{AEV} = 0.5718$$
 (9)

and AEV decreases 31%. The best nonlinear model for the dipole moment results:

$$\begin{split} \mu &= 0.233 - 0.0529z_{51} + 0.632z_{52}, \\ z_{51} &= -0.420 + 1.17\mu_{\text{vec}} + 2.33G_4\mu_{\text{vec}}, \\ z_{52} &= -0.152z_{41} + 1.13z_{42}, \\ z_{41} &= -0.365 + 25.9J_3\mu_{\text{vec}}, \\ z_{42} &= 0.101z_{31} + 0.942z_{32}, \\ z_{31} &= -0.775 + 4.85\mu_{\text{vec}}, \\ z_{32} &= 0.226z_{21} + 0.782z_{22}, \\ z_{21} &= 0.229z_{12} + 0.121z_{11}z_{12} - 0.163z_{11}^2 \\ &\quad + 0.178z_{12}^2, \\ z_{11} &= -1.42 + 1.79J_2, \\ z_{12} &= -0.365 + 25.9J_3\mu_{\text{vec}}, \\ z_{22} &= 0.666z_{13} - 1.38z_{13}z_{14} + 1.24z_{13}^2, \\ z_{13} &= -0.390 + 0.998\mu_{\text{vec}} + 1.46G_3\mu_{\text{vec}}, \\ z_{14} &= -0.420 + 1.17\mu_{\text{vec}} + 2.33G_4\mu_{\text{vec}}, \\ \text{MAPE} &= 47.32\%, \text{AEV} = 0.0768 \end{split}$$

and AEV decreases 91% . Due to the complexity of Equation (10), a Fortran program has been written to calculate μ . The program is available from the author at Internet (Francisco.Torrens@uv.es).

When comparing Equations (6–10) with (5), smaller superpositions of the corresponding G_k and J_k pairs are observed in Equations (6–10). This diminishes the risk of colinearity [35] in the fit given the close relationship between each pair G_k , J_k through Equation (2).

Conclusions

From the preceding discussion the following conclusions can be drawn.

- (1) The dipole moments calculated by algebraic and vector semisums of the charge-transfer indices are defined in this work. A new topological charge-transfer index, μ_{vec} , is applied to the calculation of dipole moments. The combination of the charge-transfer indices allows the estimation of the molecular dipole moments. μ_{vec} elucidates clearly whether a molecule is either polar or apolar.
- (2) The reproduction of vanishing dipole moments for molecules with appropriate symmetry elements is far from trivial for pure topological (nongeometric) methods (Equation 5).
- (3) Linear and nonlinear correlation models have been obtained for the molecular dipole moments of hydrocarbons. The new charge-transfer index, μ_{vec} , has improved the multivariable nonlinear regression equation for μ . The variance of the fit has decreased 31%. It has also diminished the risk of colinearity in the fit. (4) Even with the large number of fitted parameters, the predictions of this model are not of good quality. However, the objective of this work was to elucidate whether a molecule is apolar. Better fits for polar molecules are proposed in the literature.

An extension of the present study to heteroatoms would give an insight into a possible generality of these conclusions. Work is in progress to take into account the presence of heteroatoms in terms of valence charge-transfer indices. The electronegativity value of each heteroatom is introduced in the corresponding entry of the main diagonal of the adjacency matrix \overline{A} . The new method will be applied to the calculation of the dipole moment of isoelectronic series of aromatic molecules, and of homologous series of phenyl alcohols and 4-alkylanilines (percutaneous enhancers).

Acknowledgements

The author acknowledges financial support of the Dirección General de Enseñanza Superior of the Spanish MEC (Project PB97-1383).

References

- Balaban, A.T. (ed.), Chemical Applications of Graph Theory. Academic Press, London, 1976.
- Kier, L.B. and Hall, L.H., Molecular Connectivity in Chemistry and Drug Research. Academic Press, New York, NY, 1976.
- Randić, M., Krais, G.A. and Deonauv-Jerman-Blazic, B., Chemical Applications of Topology and Graph Theory. Elsevier, Amsterdam, 1983, p. 192.
- Trinajstić, N., Chemical Graph Theory. CRC, Boca Raton, FL, 1983.
- 5. Klopman, G., J. Am. Chem. Soc., 106 (1984) 7315-7321.
- Kier, L.B. and Hall, L.H., Molecular Connectivity in Structure-Activity Analysis. Research Studies, Letchworth, 1986, p. 69.
- Balaban, A.T., in Berthier, G., Dewar, M.J.S., Fischer, H., Fukui, K., Hartmann, H., Jaffé, H.H., Jortner, J., Kutzelnigg, W., Ruedenberg, K., Scrocco, E. and Zeil, W. (eds.), Steric Fit in Quantitative Structure-Activity Relations Lecture Notes in Chemistry, No. 15, Springer-Verlag, Berlin, 1980, Chapter 3.
- 8. Wiener, H., J. Am. Chem. Soc., 69 (1947) 17–20.
- Mihalić, Z., Nikolić, S. and Trinajstić, N., J. Chem. Inf. Comput. Sci., 32 (1992) 28–37.
- 10. Harary, F., Graph Theory. Addison-Wesley, Reading, 1969.
- Wilson, R., Introduction to Graph Theory. Academic Press, New York, NY 1972.
- Busacker R.G. and Saaty T.L., Finite Graphs and Networks. McGraw-Hill, New York, NY, 1965.
- Rouvray, D.H. and Balaban, A.T., in Wilson, R.J. and Beineke L.W. (eds.), Applications of Graph Theory, Academic Press, London, 1979.
- 14. Rouvray, D.H., RIC Rev., 4 (1971) 173-195.
- 15. Rouvray, D.H., Chem. Br., 10 (1974) 11-15.
- 16. Rouvray, D.H., J. Chem. Educ., 52 (1975) 768-773.
- 17. Ruedenberg, K., J. Chem. Phys., 22 (1954) 1878–1894.
- Rouvray, D.H., in Balaban, A.T. (ed.), Chemical Application of Graph Theory, Academic Press, London, 1972, Chapter 7.
- Graovac, A., Gutman, I. and Trinajstić, N., Topological Approach to the Chemistry of Conjugated Molecules. Lecture Notes in Chemistry, No. 4. Springer-Verlag, Berlin, 1976.
- 20. Rouvray, D.H., Am. Sci., 61 (1973) 729-735.
- 21. Rouvray, D.H., MATCH, 1 (1975) 125-134.
- 22. Randić, M., J. Am. Chem. Soc., 97 (1975) 6609-6615.

- Murray, W.J., Kier, L.B. and Hall, L.H., J. Pharm. Sci., 64 (1975) 1978–1981.
- 24. Balaban, A.T., J. Chem. Inf. Comput. Sci., 32 (1992) 23-28.
- 25. Hosoya, H., Bull. Chem. Soc. Jpn., 44 (1971) 2332–2339.
- Shifrin, S., in Cavallito C.J. (ed.), Structure-Activity Relationships. International Encyclopedia of Pharmacology and Therapeutics, Section 5, No. 1. Pergamon Press, Oxford, 1973, Chapter 4.
- Gálvez, J., García, R., Salabert, M.T. and Soler, R., J. Chem. Inf. Comput. Sci., 34 (1994) 520–525.
- 28. Gálvez, J., García-Doménech, R., de Julián-Ortiz, J.V. and Soler, R., J. Chem. Inf. Comput. Sci., 35 (1995) 272–284.
- Gálvez, J., García-Doménech, R., de Gregorio-Alapont, C., de Julián-Ortiz, J.V. and Popa, L., J. Mol. Graphics, 14 (1996) 272–276
- Ponce, A.M., Blanco, S.E., Molina, A.S., García-Domenech, R. and Gálvez, J., J. Chem. Inf. Comput. Sci., 40 (2000) 1039– 1045.
- De Julián-Ortiz, J.V., García-Doménech, R., Gálvez-Alvarez, J., Soler-Roca, R., García-March, F.J. and Antón-Fos, G.M., J. Chromatogr. A, 719 (1996) 37–44.
- De Julián-Ortiz, J.V., de Gregorio-Alapont, C., Ríos-Santamarina, I., García-Doménech, R. and Gálvez, J., J. Mol. Graphics Mod., 16 (1998) 14–18.
- Dewar, M.J.S., Zoebisch, E.G., Healy, E.F., Stewart, J.J.P., J. Am. Chem. Soc., 107 (1985) 3902–3909.
- 34. Torrens, F., Sánchez-Marín, J. and Nebot-Gil, I. J. Mol. Struct. (Theochem), 463 (1999) 27–39.
- 35. Hocking, R.R. Biometrics, 32 (1976) 1.
- McClellan, A.L., Tables of Experimental Dipole Moments. Freeman, San Francisco, 1963.
- Handbook of Tables of Organic Compounds Identification. CRC, Cleveland.
- Tasi, G. and Mizukami, F., J. Chem. Inf. Comput. Sci., 38 (1998) 632–638.
- Serrano-Andrés, L., Roos, B.O. and Merchán, M., Theor. Chim. Acta (Berlin), 87 (1994) 387–402.
- Roos, B.O., Merchán, M., McDiarmid, R. and Xing, X., J. Am. Chem. Soc., 116 (1994) 5927–5936.
- Molina, V., Smith, B.R., Merchán, M.A., Chem. Phys. Lett., 309 (1999), 486–494.
- Molina, V., Merchán, M. and Roos, B.O., Spectrochim. Acta, A55 (1999) 433–446.