<u>JPEG</u>

Verlustbehafteter Komprimierungs algorithmus für digitale Bilder

1. Transformation RGB -> Luminanz/Chrominanz (Keine Kompression)

Auge ist empfindicher auf Helligkeitsunterschiede als auf Farbunterschiede, daher werden Farbinformationen komprimiert.

RGB wird in YCbCr umgewandelt (verlustfreie Vorbereitung)

Y: Luminanz (Graustufenintenstitat), Cb: Chrominanz (Blauanteil), Cr: Chrominanz (Rotanteil)

2. Downsampling der beiden Chrominanz-Komponenten (Verlustbehaftete Kompression)

Mehrere Pixel in der Chrominanz-Ebene werden zusammengefasst. (verlustbehaftete Komprimierung)

Schema-Notation: (J:a:b), J: Breite in Pixel, a: Anzahl Pixel auf 1. Zeile, b: Anzahl Pixel auf 2. Zeile

Kompressionsrate: Resultierende Pixel (über alle Ebenen)

4:2:0

ixel (OBEL ATIE COCIETY)

2 * 2 Pixel (Cb+Cr) 1 * 8 Pixel (Y)

(Cb+Cr+Y)

4:2:2

3. Pixel-Gruppierung in 8x8 Blöcke (Keine Kompression)

4. Diskrete Kosinus Transformation (DCT) (Verlustlose Kompression)

Das gesante Bildwird in 8x8 Bläcke (64 Pixel) aufgeteilt, wobei jeder Pixel einen Wert von O(Schwarz) - 255 (Weiss) hat, welcher die Helligkeit repräsentiert

Grosse regelmassige Flachen

→ niedriger Frequenzanteil

Feine Details und genaue Auflösung

-> hoher Frequenzanteil

{ {	1024, 5	12,	Ο,	0,	0,	Ο,	Ο,	0},	
{	Ο,	Ο,	0,	Ο,	0,	Ο,	Ο,	0},	
{	Ο,	Ο,	Ο,	0,	0,	Ο,	Ο,	0},	
{	Ο,	Ο,	Ο,	Ο,	Ο,	Ο,	Ο,	0},	
{	Ο,	Ο,	0,	Ο,	Ο,	Ο,	Ο,	0},	
{	Ο,	Ο,	Ο,	0,	0,	Ο,	Ο,	0},	
{	Ο,	Ο,	Ο,	0,	0,	Ο,	Ο,	0},	
{	Ο,	Ο,	0,	Ο,	0,	0,	0,	0}}	

Frequenzmatrix (oberste zwei Zeilen)									d #
768,	0,	0,	0,	0,	0,	0},		#3	
0,	0,	0,	0,	0,	0,	0),			
512,	0,	0,	0,	0,	0,	0},		#2	
0,	0,	0,	0,	0,	0,	0),			
0,	0,	0,	0,	0,	0,	0},		#6	
0,	0,	0,	0,	0,	0,	0),			
-512,	0,	0,	0,	0,	0,	0},		#5	
	768, 0, 512, 0, 0,	768, 0, 0, 0, 512, 0, 0, 0, 0, 0,	768, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	768, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	768, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	768, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	zmatrix (oberste zwei Zeiler 768, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	768, 0, 0, 0, 0, 0, 0, 0}, 0, 0, 0, 0, 0, 0, 0, 0, 512, 0},	768, 0, 0, 0, 0, 0, 0, 0}, #3 0, 0, 0, 0, 0, 0, 0}, 512, 0, 0, 0, 0, 0, 0}, 0, 0, 0, 0, 0, 0, 0}, 0, 0, 0, 0, 0, 0, 0}, 60, 0, 0, 0, 0, 0, 0},

			1101101 1109 111011							
Bild #1	Bild #2	Bild #3	Bild #4	Bild #5	Bild #6					
dunkler	heller	mehr	weniger	Gradient	Gradient					
		Kontrast	Kontrast	dunkel-hell	vertikal					
	_									

- DC-Wert, bestimmt die Helligkeit des gesamten Blocks O = Schwarz, 2040 = Weiss Alles im Hinus-Bereich ist Schwarz. Je höher desto heller, je tiefer desto dunkler.
- AC Wert, Je höher desto mehr Kontrast, je tieler desto weniger Kontrast.
 Im Minus-Bereich ist DCT Muster invertiert. (Bei O ist Muster nicht sichtbar)
- 1 DCT Muster an Position wie Position des betrachteten Werts vergleichen.

103 121 120

5. Quantisierung (Verlustbehaftete Kompression)

Originale Koeffizienten werden durch Wert in Quantisierungstabelle geteilt und auf ganze Zahlen gerundet.

→ unwichlige DCT-Koeffiziente gehen verloren.

2.B. 1260 (QOO): 16 = 78.75 ≈ 79

{ 0, 0, 0, 0, 0, 0, 0, 0}, ...

-3 (Q70): 72 = -0.04 ≈ O

	Ori	gina	ıle K	oef	fizie	nter	ı (F)	
Q	_0	_1	-2	_3	-4	-5	-6	<u>"-7</u>	
٥.	1260	-1	-12	-5	2	-2	-3	1	
1_	-23	-18	-6	-3	-3	0	0	-1	
2_	-11	-9	-2	2	0	-1	-1	0	
2 - 3 -	-7	-2	0	2	1	0	0	0	
4_	-1	-1	2	2	0	-1	1	1	
5 -	2	0	2	0	-1	2	1	-1	
6 .	-1	0	0	-2	-1	2	1	-1	
3.	-3	2	-4	-2	2	1	-1	0	
Quantisierungstabelle (Q _{vu})									
	16	11	10	16	24	40	51	61	
	12	12	14	19	26	58	60	55	
	14	13	16	24	40	57	69	56	
	14	17	22	29	51	87	80	62	
	18	22	37	56	68	109	103	77	

Quantisierte Koeffizienten
$F'_{vu} = round(F_{vu}/Q_{vu})$

79	0	-1	0	0	0	0	0
-2	-1	0	0	0	0	0	0
-1	-1	0	0	0	0	0	0
-1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

6. Entropy-Coding (Verlustlose Kompression)

Verlustlose Komprimierung mit Run-Length-Coding (RLE) und Huffmanncodierung

79	0	/- 1	7 0	0	0	0	(
-2	-1	0	0	0	0	0	(
	1	0	0	0	0	0	(
1	0	0	0	0	0	0	(
0	0	0	0	0	0	0	(
0	0	0	0	0	0	0	(
0	0	0	0	0	0	0	(
0	0	0	0	0	0	0	(

24 Bit / Pixel

Originalbild mit True Color Auflösung.

1.5 - 2.0 Bit / Pixel (Kompressionsfaktor 12 ... 16) Normalerweise nicht vom Original unterscheidbar.

Genügt den höchsten professionellen Anforderungen.

0.75 - 1.5 Bit / Pixel (Kompressionsfaktor 16 \dots 32) Exzellente Qualität.

Genügt den meisten Anforderungen.

0.5 - 0.75 Bit / Pixel (Kompressionsfactor 32 ... 48) Gute bis sehr gute Qualität.

Genügend für viele Anwendungen.

0.25 - 0.5 Bit / Pixel (Kompressionsfaktor 48 ... 96) Bescheidene bis gute Qualität.

Genügend für gewisse Anwendungen.