- 8.2.1. Introducció
- 8.2.2. Concepte d'àcid i de base: teoria d'Arrhenius i teoria de Brønsted-Lowry
- 8.2.3. Teoria de Lewis
- 8.2.4. Força d'àcids i de bases. Escala de pKa
- 8.2.5. Àcids polipròtics
- 8.2.6. Autoionització de l'aigua No es farà a classe
- 8.2.7. Concepte de pH. Escala de pH No es farà a classe
- 8.2.8. Relació entre Ka i Kb
- 8.2.9. Àcids i bases febles. Grau de dissociació (o ionització) No és farà a classe

8.2 Equilibris de transferència de protons

• 8.2.2. Concepte d'àcid i base

XVIII A. Lavoissier (O) XIX Davy (HCI, H)

Teoria d'Arrhenius (1887)

ÀCID: Substància que, en solució aquosa, allibera H+

$$HCI \rightarrow H^+ (aq) + CI^- (aq)$$

Svante August Arrhenius (1859-1927)

BASE: Substància que, en solució aquosa, allibera OH-

NaOH
$$\rightarrow$$
 Na⁺ (aq) + OH⁻ (aq)

Neutralització: Reacció entre el protó i l'ió hidroxil (anió hidròxid) per donar aigua:

$$H^+$$
 (aq) + OH^- (aq) \rightarrow H_2O

• 8.2.2. Concepte d'àcid i base

Teoria d'Arrhenius (1887)

Limitacions:

* El H+ no existeix lliure en solució

 H_3O^+

* Substàncies amb propietats bàsiques que no contenen ions hidroxil (p.ex.: Na₂CO₃)

$$NH_3 + H_2O \qquad \leftrightarrows \qquad NH_4^+ + HO^-$$

* Es limita a solucions aquoses p.ex.: NH₃ líquid

8.2 Equilibris de transferència de protons

• 8.2.2. Concepte d'àcid i base

Teoria de Brønsted-Lowry (1923)

ÀCID: Substancia que en solució cedeix H+

$$HA (acid) + H_2O (base) = A^- (base) + H_3O^+ (acid)$$

BASE: Substancia que en solució accepta H+

B (base) +
$$H_2O$$
 (àcid) \leftrightarrows HB⁺ (àcid) + OH⁻ (base)

Parell àcid-base conjugada 1 Parell àcid-base conjugada 2

• 8.2.2. Concepte d'àcid i base

Teoria de Brønsted-Lowry (1923)

Sempre que una substancia es comporta com a àcid (cedeix H+) hi ha una altra que es comporta com a base (accepta H+).

Quan un àcid perd H⁺ es converteix en la seva "<u>base conjugada</u>" i quan una base accepta H⁺ es converteix en el seu "<u>àcid conjugat</u>".

8.2 Equilibris de transferència de protons

• 8.2.2. Concepte d'àcid i base

L'aigua actua com a àcid (cedeix un protó):

L'aigua actua com a base (accepta un protó):

• 8.2.3. Teoria de Lewis

Teoria de Lewis (1923)

ÀCID: Substància que conté al menys un àtom capaç d'acceptar un parell d'electrons i formar un enllaç covalent coordinat.

BASE: Substància que conte al menys un àtom capaç d'aportar un parell d'electrons per a formar un enllaç covalent coordinat.

Acid Base

Àcids de Lewis:

- lons o compostos amb àtoms deficitaris en electrons (no compleixen la regla de l'octet). ex. Al³⁺, H⁺, BF₃, ZnCl₂
- 2. lons o compostos amb àtoms que poden expandir l'octet (tenen orbitals d lliures). Ex. PCl₃, Al(OH)₃, Al(OH)₄-

Compostos amb dobles enllaços entre àtoms amb electronegativitats diferents. Ex. O=C=O

$$H\ddot{\circ}:_{-} + \ddot{\circ} = C = \ddot{\circ}: \longrightarrow \begin{bmatrix} H\ddot{\circ} - C & \ddots & \ddots \\ \ddot{\circ} & \ddots & \ddots & \ddots \end{bmatrix}_{-}$$

Àcid Base

Bases de Lewis:

- Anions amb parells electronics no compartits. Ex. F⁻, OH⁻, CN⁻
- 2. Molècules neutres amb àtoms que disposen de parells

8.2 Equilibris de transferència de protons

Exercici 8.10. Digueu quines de les següents afirmacions són certes. Justifiqueu la vostra resposta:

- a)Totes les bases de Lewis són també bases de Brønsted-Lowry
- b)Segons la definició de Lewis, una base és un donador de parells electrònics
- c)Tots els àcids de Lewis contenen hidrògens
- d)Segons la teoria de Brønsted-Lowry l'aigua és pot comportar com a àcid i com a base
- e)La reacció entre el trifluorur de bor (BF₃) i l'amoníac (NH₃) es pot classificar com una reacció àcid-base segons la teoria de Brønsted-Lowry.
- f)La parella HBF₄, BF₄⁻ es pot considerar una parella àcid base conjugada.

• 8.2.4. Força d'àcids i bases. Escala de pKa

Fortalesa d'un àcid: major o menor tendència a cedir protons

$$HA + H_2O \leftrightarrows A^- + H_3O^+$$

$$K_a = \frac{[A^-][H_3O^+]}{[HA]}$$
 $pK_a = -log K_a$

K_a = Constant d'acidesa o de dissociació àcida o d'ionització de l'àcid

Major fortalesa d'un àcid 📑 K_a més gran (pK_a més petit)

Cas extrem \rightarrow àcid fort \Longrightarrow $K_a \rightarrow \infty$

8.2 Equilibris de transferència de protons

• 8.2.4. Força d'àcids i bases. Escala de pKa

Fortalesa d'una base: major o menor tendència a acceptar protons

$$B + H_2O \leftrightarrows HB^+ + OH^-$$

$$K_b = \frac{[BH^+][OH^-]}{[B]} \qquad pK_b = -\log K_b$$

 $K_{\rm b}$ = Constant de basicitat o de dissociació bàsica o d'ionització de la base

Major fortalesa d'una base \longrightarrow K_b més gran (p K_b més petit)

• 8.2.4. Força d'àcids i bases. Escala de pKa

	Acid, HA	Base, A-
Ácido más fuerte	$ \begin{array}{c} \text{HClO}_4 \\ \text{HCl} \\ \text{H_2SO}_4 \\ \text{HNO}_3 \\ \end{array} \left. \begin{array}{c} \text{Acidos fuertes.} \\ \text{100 \% disociados} \\ \text{en solución} \\ \text{acuosa.} \end{array} \right. $	$ \begin{array}{c} \text{CIO}_4^- \\ \text{CI}^- \\ \text{HSO}_4^- \\ \text{NO}_3^- \\ \end{array} \right\} \begin{array}{c} \text{Bases muy d\'ebiles.} \\ \text{Tendencia despreciable a ser protonadas en soluci\'on} \\ \text{nadas en soluci\'on} \\ \text{acuosa.} \end{array} $
	$ \begin{array}{c} \text{HSO}_4^- \\ \text{H}_3\text{PO}_4 \\ \text{HNO}_2 \\ \text{HF} \\ \text{CH}_3\text{CO}_2\text{H} \\ \text{H}_2\text{CO}_3 \\ \text{H}_5 \\ \text{NH}_4^+ \\ \text{HCN} \\ \text{HCO}_3^- \end{array} \right\} \begin{array}{c} \text{\'Acidos d\'ebiles.} \\ \text{En soluci\'on existen} \\ \text{como una mezcla de} \\ \text{HA, A'y H}_3\text{O'}^+. \end{array} $	$ \begin{array}{c} SO_4^{2-}\\ H_2PO_4^{-}\\ NO_2^{-}\\ F^{-}\\ CH_3CO_2^{-}\\ HCO_3^{-}\\ HS^{-}\\ NH_3\\ CN^{-}\\ CO_3^{2-} \end{array} \right\} \begin{array}{c} \text{Bases d\'ebiles.}\\ \text{Tendencia moderada a ser protonadas en soluci\'on acuosa.} \end{array} $
Ácido más débil	$ \begin{array}{ll} H_2O \\ NH_3 \\ OH^- \\ H_2 \end{array} \hspace{0.5cm} \begin{array}{ll} \text{\'Acidos muy d\'ebiles.} \\ \text{Tendencia a disociarse despreciable.} \end{array} $	OHT NH2 O2 100 % protonadas en solución acuosa. Base más fuerte

	Ácido	Base Conjugada	<i>K</i> _a (25 °C)
4	HClO ₄	C10 ₄	Muy grande
	HI, HBr, HCl	I-, Br-, Cl-	Muy grande
	H_2SO_4	HSO ₄	Muy grande
	HNO ₃	NO_3^-	Muy grande
	H ₃ O ⁺	H ₂ O	55′55
	HIO ₃	10-	$1'7 \cdot 10^{-1}$
	H_2SO_3	HSO ₃	$1'5 \cdot 10^{-2}$
	HSO ₄	SO ₄ ²⁻	$1'3 \cdot 10^{-2}$
	HClO ₂	C10 ₂	$1'0 \cdot 10^{-2}$
	H ₃ PO ₄	$H_2PO_4^-$	$7'6 \cdot 10^{-3}$
	HNO ₂	NO ₂	$4'3 \cdot 10^{-4}$
	HF	F ⁻	$3'5 \cdot 10^{-4}$
	нсоон	HCOO-	$1'8 \cdot 10^{-4}$
	C ₆ H ₅ COOH	C ₆ H ₅ COO ⁻	$6'5 \cdot 10^{-5}$
	СН3 СООН	CH ₃ COO ⁻	1'8 · 10-5
	H_2CO_3	HCO ₃	$4'3 \cdot 10^{-7}$
	HSO ₃	SO ₃ ²⁻	$1'0 \cdot 10^{-7}$
	H ₂ S	HS ⁻	$9'1 \cdot 10^{-8}$
	$H_2PO_4^-$	HPO ₄ ²⁻	$6'2 \cdot 10^{-8}$
	HClO	C10-	$3'0 \cdot 10^{-8}$
	HBrO	BrO ⁻	$2'0 \cdot 10^{-9}$
	NH_4^+	NH ₃	$5'6 \cdot 10^{-10}$
	HCN	CN-	$4'9 \cdot 10^{-10}$
	HCO ₃	CO ₃ ²⁻	$5'6 \cdot 10^{-11}$
	HIO	IO-	$2'3 \cdot 10^{-11}$
	HPO ₄ ²⁻	PO ₄ ³⁻	$2'2 \cdot 10^{-13}$
	HS-	S ²⁻	$1'1 \cdot 10^{-13}$
	H ₂ O	OH-	$1'8 \cdot 10^{-16}$

Efecte anivellador de l'aigua

• 8.2.4. Força d'àcids i bases. Escala de pKa

Exercici 8.11. Ordeneu de més a menys fort els àcids següents:		
Àcid	рК _а	
HCIO	7,53	
C ₂ H ₅ COOH	4,87	

3,2

8.2 Equilibris de transferència de protons

• 8.2.5. Àcids polipròtics

HF

$$H_3A + H_2O \leftrightarrows H_2A^- + H_3O^+$$

 $H_2A^- + H_2O \leftrightarrows HA^{-2} + H_3O^+$
 $HA^{-2} + H_2O \leftrightarrows A^{-3} + H_3O^+$

Àcid	Equilibri d'ionització	рКа
Sulfhídric	$H_2S+H_2O \leftrightarrows HS^-+H_3O^+$	7,00
	HS ⁻ + H ₂ O	19,0
Carbònic	$H_2CO_3 + H_2O \leftrightarrows HCO_3^- + H_3O^+$	6,36
	HCO ₃ -+ H ₂ O ≒ CO ₃ -2 + H ₃ O+	10,33
Fosfòric	$H_3PO_4 + H_2O \leftrightarrows H_2PO_4^- + H_3O^+$	2,15
	$H_2PO_4^- + H_2O \leftrightarrows HPO_4^{-2} + H_3O^+$	7,20
	$HPO_4^{2-} + H_2O = PO_4^{-3} + H_3O^+$	12,38
Sulfurós	$H_2SO_3 + H_2O \leftrightarrows HSO_3^- + H_3O^+$	1,89
	HSO ₃ -+ H ₂ O ≒ SO ₃ -2 + H ₃ O+	7,21
Sulfúric	$H_2SO_4 + H_2O \leftrightarrows HSO_4 - + H_3O$	<<0
	$HSO_4^- + H_2O \leftrightarrows SO_4^{-2} + H_3O^+$	1,96

• 8.2.5. Àcids polipròtics

Exercici 8.12. Els dos pK_a de l'àcid cròmic tenen un valor de 6,5 i 0,75 respectivament. Escriviu els dos equilibris de transferència de protons de l'àcid cròmic i associeu-los al pK_a corresponent.

$$H_2CrO_4 + H_2O \implies HCrO_4^- + H_3O^+ pK_a = 0.75$$

$$HCrO_4^- + H_2O \implies CrO_4^{2-} + H_3O^+$$
 $pK_a = 6.5$

8.2 Equilibris de transferència de protons

• 8.2.6. Autoionització de l'aigua

Variación de K_w con la temperatura

$$0 °C \longrightarrow K_w = 1'13 \cdot 10^{-15}$$

$$10 °C \longrightarrow K_w = 2'92 \cdot 10^{-15}$$

$$25 °C \longrightarrow K_w = 1'00 \cdot 10^{-14}$$

$$45 °C \longrightarrow K_w = 4'02 \cdot 10^{-14}$$

$$60 °C \longrightarrow K_w = 9'61 \cdot 10^{-14}$$

$$K_w = [H_3O^+][OH^-]$$

$$A 25 °C$$

$$[H_3O^+] = [OH^-] = 1,0.10^{-7} M$$

$$K_w = 1,0.10^{-7} \times 1,0.10^{-7} = 1,0.10^{-14}$$

Al cós humà (37 °C): $[H_3O^+] = [OH^-] = 1,6.10^{-7} M$

• 8.2.6. Autoionització de l'aigua

Exercici 8.13. Determineu la concentració d'ions hidròxid d'una solució aquosa que té una concentració d'ions hidroni de 10⁻⁴ M·

$$K_w = [H_3O^+][OH^-]$$

$$K_w = [OH^-] \times 1,0.10^{-4} = 1,0.10^{-14}$$

$$[OH^{-}] = 10^{-10} M$$

8.2 Equilibris de transferència de protons

• 8.2.7. Concepte de pH. Escala de pH

 $pK_w = pH + pOH = 14$

• 8.2.7. Concepte de pH. Escala de pH a 25 °C

8.2 Equilibris de transferència de protons

• 8.2.7. Concepte de pH. Escala de pH

Exercici 8.14. Determineu el pH d'una solució que té una $[H_3O^+] = 2,1\cdot 10^{-4} \,\mathrm{M}.$

$$pH = -log[H_3O^+] = -log(2,1\cdot10^{-4}) = 3,68$$

Exercici 8.15. Determineu el pH d'una solució que té una $[OH^-] = 4,10^{-4} \, M.$

• 8.2.8. Relació entre Ka i Kb

$$B + H_{2}O \leftrightarrows BH^{+} + OH^{-} \qquad K_{b} = \frac{[BH^{+}][OH^{-}]}{[B]}$$

$$BH^{+} + H_{2}O \leftrightarrows B + H_{3}O^{+} \qquad K_{a} = \frac{[B][H_{3}O^{+}]}{[BH^{+}]}$$

$$K_{a}K_{b} = \frac{[B][H_{3}O^{+}][OH^{-}][BH^{+}]}{[BH^{+}]} = [H_{3}O^{+}][OH^{-}]$$

$$[H_{3}O^{+}][OH^{-}] = K_{w} = 1,0.10^{-14} \qquad a 25 °C$$

$$K_{a}K_{b} = K_{w}$$

$$\rho K_{a} + \rho K_{b} = \rho K_{w} = 14$$

8.2 Equilibris de transferència de protons

• 8.2.8. Relació entre Ka i Kb

Exercici 8.16. Determineu la constant de basicitat de l'amoníac si sabem que la constant d'acidesa de l'ió amoni (NH_4^+) és $K_a = 5,7.10^{-10}$.

$$\begin{aligned} \text{NH}_4^+ &+ \text{H}_2\text{O} \iff \text{NH}_3 + \text{H}_3\text{O}^+ &\quad \text{K}_a = \frac{[\text{NH}_3][\text{H}_3\text{O}^+]}{[\text{NH}_4^+]} \\ \text{NH}_3^- &+ \text{H}_2\text{O} \iff \text{NH}_4^+ + \text{HO}^- &\quad \text{K}_b = \frac{[\text{NH}_4^+][\text{HO}^-]}{[\text{NH}_3]} \\ 2 \text{H}_2\text{O} \iff \text{H}_3\text{O}^+ + \text{HO}^- &\quad \text{K}_w = [\text{H}_3\text{O}^+][\text{HO}^-] \\ &\quad \text{K}_w = [\text{H}_3\text{O}^+][\text{HO}^-] \\ &\quad \text{pK}_a = -\log \left(5,7 \cdot 10^{-10}\right) = 9,24 \\ &\quad \text{pK}_b = 14 \cdot -9,24 = 4,76 \\ &\quad \text{K}_b = 10^{-4,76} = 1,74.10^{-5} \end{aligned}$$

• 8.2.9. Àcids i bases febles. Grau de dissociació

$$K_a = \frac{[A^-][H_3O^+]}{[HA]}$$

$$K_a = \frac{C_0 \alpha C_0 \alpha}{C_0 (1 - \alpha)} = C_0 \frac{\alpha^2}{(1 - \alpha)}$$

8.2 Equilibris de transferència de protons

• 8.2.9. Àcids i bases febles. Grau de dissociació

Exercici 8.17. Determineu el grau de dissociació de l'àcid fòrmic (pK $_a$ = 3,74) en una solució 0,1 M i en una 10⁻⁴ M. Compara el pH d'aquestes dues solucions.

H-COOH + $H_2O \implies H-COO^- + H_3O^+$ pK_a = 3,74

$$K_a = \frac{C_0 \alpha C_0 \alpha}{C_0 (1 - \alpha)} = C_0 \frac{\alpha^2}{(1 - \alpha)} = 1.82.10^{-4}$$

C ₀	α	C _{eq}	рН
0,1	0,042	0,0042	2,38
0,0001	0,714	0,0000714	4,15

Exercici 1. Setena prova. Curs 2009-2010.

- 1) Contesta a les questions de tipus test encerclant la resposta que creguis convenient. Les condicions són les que segueixen:
 - Cada pregunta mal contestada en resta 1/3 del seu valor.
 - La puntuació total d'aquesta pregunta no pot ser negativa.
 - El corrector es reserva el dret d'interpretacions si una pregunta està marcada de manera ambigua.
- En la següent reacció, quina de les espècies llistades a continuació actua com a base de Brønsted-Lowry?

$$HC_2O_4^-(aq) + H_2O(1) = H_3O_+(aq) + C_2O_4^{2-}(aq)$$

- a) HC₂O₄-
- b) H₂O
- c) H₃O⁺
- d) Cap de les anteriors
- En la següent reacció, quina de les espècies llistades a continuació actua com a àcid de Lewis?

$$Zn^{2+}(aq) + 4 OH^{-}(aq) \leftrightarrows [Zn(OH)_4]^{2-}$$

b) OH

c) [Zn(OH)₄]²⁻

d) Cap de les anteriors

8.2 Equilibris de transferència de protons

Exercici 1. Setena prova. Curs 2009-2010.

Per a la següent reacció, quina de les parelles següents és un parell àcid-base conjugada?

$$HC_2O_4^-(aq) + H_2O(1) \leftrightarrows H_3O^+(aq) + C_2O_4^{2-}(aq)$$

- a) HC₂O₄⁻/ H₂O
- b) HC₂O₄ and H₃O⁺

c) H₂O / C₂O₄² d) HC₂O₄-/ C₂O₄

- Quina de les següents reaccions correspon a la hidròlisis del catió amoni en solució aquosa?
 - a) $NH_4^+(aq) + OH^-(aq) \rightleftharpoons NH_3(aq) + H_2O(I)$
 - (aq) $+ H_2O(I) \Rightarrow NH_3(aq) + H_3O^+(aq)$
 - c) NH_4^+ (aq) + $H_2O(I) \implies NH_5^{2+}$ (aq) + OH^- (aq)
 - d) NH_4^+ (aq) $\implies NH_2^+$ (aq) + H_2 (g)

Exercici 1. Setena prova. Curs 2009-2010.

- La magnitud de la constant d'autoionització de l'aigua (Kw = 1,0.10⁻¹⁴) indica que:
 - a) l'aigua s'autoionitza molt lentament
 - b) l'aigua s'autoionitza molt ràpidament
 - c) aigua s'autoionitza només en una molt petita proporció
 - d) l'aigua s'autoionitza de forma gairebé completa
- Perquè és necessari considerar les propietats àcid-base de l'aigua quan es determina el pH en solucions molt diluïdes d'àcids forts?
 - a) La constant de dissociació de l'aigua és més gran en solucions diluïdes que en concentrades.
 - b) Els àcids no es dissocien completament en solucions diluïdes
 - c) La quantitat d'ió hidroni produït per la dissociació de l'aigua és significant comparada amb la produïda per l'àcid
 - d) La base conjugada de l'àcid fort reacciona amb el ió hidròxid produït en la dissociació de l'aigua.