ANTIPROTON-PROTON RESONANT LIKE CHANNELS IN $J/\psi \to \gamma p \bar{p}$ DECAYS*

B. LOISEAU

LPNHE; Groupe Théorie, Université P. & M. Curie, 4 Pl. Jussieu, F-75252 Paris, France

S. WYCECH

Soltan Institute for Nuclear Studies, PL - 00681 Warszawa, Poland

The BES collaboration has recently observed a strong enhancement close to the proton-antiproton, $p\bar{p}$ threshold in the J/ψ decays into $\gamma p\bar{p}$. Such a structure can be explained by a traditional nucleon-antinucleon, $N\bar{N}$, model. The near threshold $^{11}S_0$ bound state and/or the well-established $^{13}P_0$ resonant state found in this $N\bar{N}$ interaction can adequately describe the BES data.

Keywords: $p\bar{p}$ quasi-bound states; traditional $N\bar{N}$ model; radiative J/ψ decays.

1. Introduction

Existence of near threshold bound states or resonances in nucleon-antinucleon, $N\bar{N}$, interaction is a challenging matter ¹. Low-energy scattering could indicate the presence of such structures by determining the scattering lengths for $^{2I+1,2S+1}L_J$ states. Here I denotes the isospin (0 or 1), S the spin (0 or 1), L the angular momentum and J the total angular momentum. An alternative is to use formation experiments. At the Beijing electron-positron collider, the BES collaboration has observed a resonant-like behavior in the $p\bar{p}$ invariant mass spectrum from radiative $J/\psi \to \gamma p\bar{p}$ decays ². The present work studies the physics of slow $p\bar{p}$ pairs produced in J/ψ decays, using J^{PC} conservation, P being the parity and C the charge conjugation. Here we rely on the Paris $N\bar{N}$ potential model.

2. Close to Threshold Proton-Antiproton Final State Model

2.1. The low-energy nucleon-antinucleon interaction

The Paris $N\bar{N}$ interaction is built up from a state dependent optical potential. The long range, r>1 fm, real part is obtained by G-parity transformation of the

^{*}Invited talk at the $10^{\rm th}$ International Symposium on Meson-Nucleon Physics and the Structure of the Nucleon (MENU 2004), Beijing, China, August 29 - September 4, 2004 - LPNHE 2004-12 † Unité de Recherche des Universités Paris 6 et Paris 7, associé au CNRS

Paris NN potential, the two-pion exchange of which is calculated via dispersion relations from pion-nucleon scattering data. The short ranges, r < 1 fm, real part and absorptive part, with a form suggested by calculation of $N\bar{N}$ annihilation into two mesons or resonances, are both determined through fit to the $\bar{N}N$ data. In the different versions, the short range parameters are readjusted by fitting to new data. The Paris 82 potential³, fitted to pre-LEAR (CERN) data, mainly elastic $\bar{p}p$ (isospin 1 + isospin 0) data, has a $\chi^2/{\rm data}$ of 2.8 for 915 data. The Paris 94 potential⁴ uses LEAR data, in particular $\bar{p}p \to \bar{n}n$ (I=1-I=0) data, and has a $\chi^2/{\rm data}$ of 2.46 for 3295 data. In the Paris 99 version⁵, more recent LEAR data, in particular for $\bar{p}p \to \bar{n}n$, were used leading to a $\chi^2/{\rm data}$ of 2.95 for 3814 data. The Paris 04 model⁶ is constrained by fitting to the 1999 data plus the scattering lengths extracted from antiprotonic hydrogen and deuterium data⁷ and to the total $\bar{n}p$ cross-section⁸. It has $\chi^2/{\rm data} = 3.19$ for 3934 data.

2.2. Allowed slow $p\bar{p}$ final states

The J^{PC} conservation ($J^{PC}=1^{--}$ for J/ψ) limits the number of slow $p\bar{p}$ final states. These correspond to pairs of small $M_{p\bar{p}}-2m_p$ with $M_{p\bar{p}}$ being the invariant $p\bar{p}$ mass and m_p the proton mass. The allowed states are listed in Table 1. Some two-particle analogues 10 are listed in the second column. The last column indicates the relative angular momentum between γ or π and the $p\bar{p}$ pair h. The BES experiment angular distribution favors a pseudoscalar 1S_0 or a scalar 3P_0 h final state.

decay mode	analogue	$J^{PC}[\gamma \text{ or } \pi]$	$J^{PC}[p\bar{p}]$	$h(par{p})$	relative ℓ
$\gamma p \bar{p}(^1S_0)$	$\gamma\eta(1444)$	1	0-+	pseudoscalar	1
$\gamma p \bar{p}(^3P_0)$	$\gamma f_0(1710)$	1	0++	scalar	0
$\gamma p \bar{p}(^3P_1)$	$\gamma f_1(1285)$	1	1++	pseudovector	0

Table 1. The slow $p\bar{p}$ pairs states permitted in the radiative $J/\psi \to \gamma p\bar{p}$.

2.3. Specific final-state interaction model

The transition amplitude from a channel i to a channel f, in a multichannel system at low energy described by a S-wave K matrix, can be written as $T_{if} = A_{if}(1+iq_fA_{ff})^{-1}$. Here A_{if} is a transition length, A_{ff} the scattering length in the channel f and q_f the momentum in this channel f. The f channel scattering amplitude can also be expressed as $T_{ff} = A_{ff}(1+iq_fA_{ff})^{-1}$. For a P wave close to threshold, $A_{ff} = A_{ff}^P q_f^2$ and $A_{if} = A_{if}^P q_f$ where A_{ff}^P is the scattering volume. Up to terms in q_f^2 one has $T_{if} = (A_{if}/A_{ff})T_{ff} = CT_{ff}/q_f^L = Ct_L$. The quantity $C = A_{if}q_f^L/A_{ff}$ represents the unknown formation amplitude and $|t_L|^2 = |T_{ff}/q_f^L|^2$ is the final state interaction factor in a given $p\bar{p}$ partial wave. In terms of the phase shifts δ_L and inelasticities η_L of a given $N\bar{N}$ interaction one has $t_L = (\eta_L e^{2i\delta_L} - 1)/(2iq_f^{2L+1})$. The function C is parametrized by $|C(x)|^2 = q_f(c_0 + c_1x)$ where $x = M_{p\bar{p}} - 2m_p$ and $q_f = [x(m_p + x/4)]^{1/2}$.

3. Results and Conclusions

The final state interaction factors $|t_L|^2$ for the 1S_0 and 3P_0 states and for the different versions of the Paris $N\bar{N}$ are compared to the BES data ² in Figs. 1 and 2. The c_0 and c_1 parameters are determined by requiring $|T_{if}|^2$ of Paris 04 to be close to the events distribution as given in Fig. 3 of Ref. 2 at x = 7 MeV and x = 66.2 MeV. For ${}^{1}S_{0}$, $c_{0} = 1.18599$, $c_{1} = 0.00299$ and for ${}^{3}P_{0}$, $c_{0} = 2.5206$, $c_1 = 0.0269$. As seen in Fig. 1, the data is well reproduced by the Paris 04 $N\bar{N}$ interaction. This interaction has a $^{11}S_0$ bound state located at x = -4.8 MeV and with a width Γ of 52.5 MeV. Paris 99 has also a bound state at x=-69 MeV with $\Gamma = 46$ MeV. There are no bound states for Paris 94 or Paris 82. All Paris models have a $^{13}P_0$ resonance of mass \sim 1876 MeV and $\Gamma\sim$ 10 MeV. They all reproduce the near threshold BES enhancement as seen in Fig. 2.

In conclusion, the near threshold $p\bar{p}$ enhancement seen in BES collaboration² can find a natural explanation from a traditional model of $\bar{p}p$ interaction. The $^{11}S_0$ bound state⁶ needs confirmation. The well established $^{13}P_0$ resonance originates from the strong attraction of the one-pion exchange 11. Each of these states gives a reasonable representation of the BES radiative $J/\psi \rightarrow \gamma p\bar{p}$ decay data. They correspond to the S or P wave Breit Wigner resonance functions considered by BES collaboration in their fit to the data².

Fig. 1. The ${}^{1}S_{0}$ final state factor compared to BES data²

Fig. 2. The 3P_0 final state factor compared to BES data²

References

- 1. E. Klempt, F. Bradamante, A. Martin, J.-M. Richard, "Antinucleon-nucleon interaction at low energy: scattering and protonium", *Physics Reports* **368**, 119 (2002).
- 2. J.Z. Bai et al., BES collaboration, "Observation of a near-threshold enhancement in the $p\bar{p}$ mass spectrum from radiative $J/\psi \to \gamma p\bar{p}$ decays", Phys. Rev. Letters **91**, 022001 (2003).
- 3. J. Côté, M. Lacombe, B. Loiseau, B. Moussallam, R. Vinh Mau, "On the nucleon-antinucleon optical potential", *Phys. Rev. Lett.* **48**, 1319 (1982).
- 4. M. Pignone, M. Lacombe, B. Loiseau, R. Vinh Mau, "Paris $N\bar{N}$ potential and recent proton-antiproton low energy data", *Phys. Rev.* C50, 2710 (1994).
- 5. B. El-Bennich, M. Lacombe, B. Loiseau, R. Vinh Mau, "Refining the inner core of the Paris $N\bar{N}$ potential", *Phys. Rev.* **C59**, 2313 (1999).
- 6. M. Lacombe, B. Loiseau, R. Vinh Mau, S. Wycech, "The Paris $N\bar{N}$ potential constrained by recent $\bar{n}p$ total cross section and antiprotonic atom data", in preparation.
- 7. M. Augsburger et al., "Measurements of the strong interaction parameters in antiprotonic hydrogen and probable evidence for an interface with inner bremsstrahlung", Nucl. Phys. A658, 149 (1999); D. Gotta et al., "Balmer α transitions in antiprotonic hydrogen and deuterium", Nucl. Phys. A660, 283 (1999).
- 8. F. Iazzi et al., "Antineutron-proton total cross-section from 50 to 400 MeV/c", *Phys. Lett.* **B475**, 378 (2000).
- 9. S. Eidelman et al. (Particle data group), "Review of Particle Physics", *Phys. Lett.* **B592**, 1 (2004).
- 10. H. Pilkuhn, The Interaction of Hadron, chapter 8, North Holland P.C., 1967.
- 11. B.S. Zou, H.C. Chiang, "One-pion-exchange final-state interaction and $p\bar{p}$ near threshold enhancement in $J/\psi \to \gamma p\bar{p}$ decays", *Phys. Rev.* **D69**, 034004 (2004).