

**IN THE UNITED STATES DISTRICT COURT
FOR THE EASTERN DISTRICT OF TEXAS
MARSHALL DIVISION**

SEAGEN INC.,)
)
)
Plaintiff,)
) Case No. 2:20-cv-00337-JRG
v.)
)
DAIICHI SANKYO CO., LTD.,)
)
)
Defendant,)
)
ASTRAZENECA PHARMACEUTICALS LP,)
AND ASTRAZENECA UK LTD.,)
)
Intervenor-Defendants.)

DEFENDANTS' NOTICE PURSUANT TO 35 U.S.C. § 282

Pursuant to 35 U.S.C. § 282, Defendant Daiichi Sankyo Company, Limited (“Daiichi Sankyo Japan”) and Intervenor-Defendants AstraZeneca Pharmaceuticals LP and AstraZeneca UK Ltd. (“AstraZeneca”) (collectively, “Defendants”), hereby identify the following materials that may be relied upon to invalidate U.S. Patent No. 10,808,039 (“the ’039 patent”) and/or show the state of the art relative to the asserted patent.

Defendants have already provided notice to Plaintiff Seagen Inc. (“Seagen”) of the identity of certain publications, patents, and persons within the ambit of 35 U.S.C. § 282, through the pleadings and correspondence in this case, including but not limited to, invalidity contentions; expert witness reports; deposition testimony provided by party and non-party witnesses; exhibits introduced at deposition taken by the parties; Defendants’ response to interrogatories, request for admission, and requests for production; documents produced in the litigation; Defendants’ disclosures under Rule 26; Defendants’ motion for summary judgment of anticipation; the parties’

motions *in limine* and motions to strike briefing; the materials disclosed in Defendants' trial exhibit list; and/or the joint pre-trial order. Defendants expressly incorporate herein by reference all of the publications, patents, patent applications, and specifications of persons within the ambit of 35 U.S.C. § 282 previously cited in these pleadings, testimony, correspondence, and other materials. To the extent not listed above, Defendants also incorporate by reference all art listed on the face of the '039 patent or identified in the prosecution history of that patent.

Defendants may also rely on the patentees/authors of the patents and publications listed below. Pursuant to the statutory provisions of 35 U.S.C. § 282, Defendants further refer to the list of identified patents, publications, materials, and persons below. The inclusion of the references listed below in this notice should not be construed as a representation that Defendants will use every one of the references in its presentation of evidence at trial. Nor should it be understood or taken as implied that reliance upon all of these materials is necessary to Defendants' defenses. Additionally, Defendants reserve the right to amend and/or supplement this notice to add items to this statement that were inadvertently omitted.

A. Patents, Patent Applications, and File Histories

Exhibit No.	Patent / Application No.	Production No.
DX-0073	U.S. Patent Application Publication No. 2016/0303254	DSC_ENHERTU_00015719 DSC_ENHERTU_00015835
DX-0156	U.S. Patent No. 11,116,847	DSC_ENHERTU_00390746 DSC_ENHERTU_00390859
DX-0144	U.S. Patent No. 8,871,720	DSC_ENHERTU_00390259 DSC_ENHERTU_00390347
DX-0153	U.S. Patent Application Publication No. 2017/0247412	DSC_ENHERTU_00390478 DSC_ENHERTU_00390713
DX-0209	United States Patent No. 8,592,576	DSC_ENHERTU_00391536 DSC_ENHERTU_00391574
DX-0238	United States Patent No. 4,981,979	DSC_ENHERTU_00395244 DSC_ENHERTU_00395260

DX-0240	United States Patent No. 5,525,338	DSC_ENHERTU_00395271 DSC_ENHERTU_00395284
DX-0239	United States Patent No. 5,024,834	DSC_ENHERTU_00395261 DSC_ENHERTU_00395270
DX-0071	Excerpt from File History of U.S. Patent Application No. 12/016,978	DSC_ENHERTU_00015710 DSC_ENHERTU_00015714
DX-0208	Excerpt from File History of U.S. Patent Application No. 12/016,978	DSC_ENHERTU_00391528 DSC_ENHERTU_00391535

B. Publications

Exhibit No.	Publication	Production No.
DX-0109	Y. Ogitani et al., <i>DS-8201a, A Novel HER2-Targeting ADC with a Novel DNA Topoisomerase I Inhibitor, Demonstrates a Promising Antitumor Efficacy with Differentiation from T-DM1</i> , 22 CLIN. CANCER RES. 5097 (2016)	DSC_ENHERTU_00025303 DSC_ENHERTU_00025315
DX-0110	Y. Ogitani et al., <i>Bystander Killing Effect of DS-8201a, a Novel Anti-Human Epidermal Growth Factor Receptor 2 Antibody-Drug Conjugate, in Tumors with Human Epidermal Growth Factor Receptor 2 Heterogeneity</i> , 107 CANCER SCI. 1039 (2016)	DSC_ENHERTU_00025316 DSC_ENHERTU_00025326
DX-0111	Y. Abe et al., <i>Development of New ADC Technology with Topoisomerase I Inhibitor</i> , in Antibody Engineering & Therapeutics 2015 (San Diego, CA)	DSC_ENHERTU_00025327 DSC_ENHERTU_00025327
DX-0078	J. Lambert & C. Morris, <i>Antibody-Drug Conjugates (ADCs) for Personalized Treatment of Solid Tumors: A Review</i> , 34 ADV. THER. 1015 (2017),	DSC_ENHERTU_00015910 DSC_ENHERTU_00015930
DX-0077	A. Beck et al., <i>Strategies and Challenges for the Next Generation of Antibody-Drug Conjugates</i> , 16 NAT. REV. DRUG DISCOV. 315 (2017),	DSC_ENHERTU_00015887 DSC_ENHERTU_00015909
DX-0082	J. McCombs & S. Owen, <i>Antibody Drug Conjugates: Design and Selection of Linker, Payload and Conjugation Chemistry</i> , 17(2) AAPS J. 339 (2015),	DSC_ENHERTU_00016046 DSC_ENHERTU_00016058
DX-0166	J. Tong et al., <i>An Insight into FDA Approved Antibody-Drug Conjugates for Cancer Therapy</i> , 26 Molecules 5847 (2021)	DSC_ENHERTU_00390993 DSC_ENHERTU_00391015

Exhibit No.	Publication	Production No.
DX-0186	<i>ADC Drugs with New Targets Clinical Pipeline Review</i> , Biopharma PEG, https://www.biochempeg.com/article/202.html	DSC_ENHERTU_00391277 DSC_ENHERTU_00391284
DX-0064	T. Nakada et al., <i>The Latest Research and Development into the Antibody-Drug Conjugate, [fam-] Trastuzumab Deruxtecan (DS-8201a), for HER2 Cancer Therapy</i> , 67 Chem. Pharm. Bull. 173 (2019)	DSC_ENHERTU_00011871 DSC_ENHERTU_00011883
DX-0204	L. Gauzy-Lazo et al., Advances in Antibody-Drug Conjugate Design: Current Clinical Landscape and Future Innovations, 25 SLAS Discovery 843 (2020)	DSC_ENHERTU_00391475 DSC_ENHERTU_00391500
DX-0084	B. Nolting, <i>Linker Technologies for Antibody-Drug Conjugates</i> , 1045 Antibody-Drug Conjugates 71 (2013)	DSC_ENHERTU_00016088 DSC_ENHERTU_00016117
DX-0083	D. Leung et al., <i>Antibody Conjugates-Recent Advances and Future Innovations</i> , 9 Antibodies 2 (2020)	DSC_ENHERTU_00016061 DSC_ENHERTU_00016087
DX-0088	J. Lambert, <i>Design Factors Important for Antibody-Drug Conjugate (ADC) Payloads</i> , 71 Drug Discoveries 31 (2019)	DSC_ENHERTU_00016180 DSC_ENHERTU_00016205
DX-0072	R. Kolakowski et al., <i>The Methyleno Alkoxy Carbamate Self-Immulative Unit: Utilization for the Targeted Delivery of Alcohol-Containing Payloads with Antibody-Drug Conjugates</i> , 55 Angew. Chem. Int. Ed. 7948 (2016)	DSC_ENHERTU_00015715 DSC_ENHERTU_00015718
DX-0087	J. Lambert, <i>Drug-Conjugated Monoclonal Antibodies for the Treatment of Cancer</i> , 5 Current Opinion Pharmacology 543 (2005)	DSC_ENHERTU_00016173 DSC_ENHERTU_00016179
DX-0093	M. Dorywalska et al., <i>Molecular Basis of Valine-Citrulline-PABC Linker Instability in Site-Specific ADCs and Its Mitigation by Linker Design</i> , 15 Molecular Cancer Therapeutics 958 (2016)	DSC_ENHERTU_00016237 DSC_ENHERTU_00016250
DX-0094	Y. Anami, <i>Glutamic Acid-Valine-Citrulline Linkers Ensure Stability and Efficacy of Antibody-Drug Conjugates in Mice</i> , 9 Nature Communications 2512 (2018)	DSC_ENHERTU_00016251 DSC_ENHERTU_00016259
DX-0104	N. Caculitan et al., <i>Cathepsin B is Dispensable for Cellular Processing of Cathepsin B-Cleavable Antibody-Drug Conjugates</i> , 77 Cancer Research 7027 (2017)	DSC_ENHERTU_00016368 DSC_ENHERTU_00016379
DX-0095	M. Ritchie et al., <i>Implications of Receptor-Mediated Endocytosis and Intracellular Trafficking Dynamics in the Development of Antibody Drug Conjugates</i> , 5 Landes Bioscience mAbs 13 (2013)	DSC_ENHERTU_00016260 DSC_ENHERTU_00016268

Exhibit No.	Publication	Production No.
DX-0089	H. Tang et al., <i>The Analysis of Key Factors Related to ADCs Structural Design</i> , 10(373) Frontiers Pharmacology Art. (2019)	DSC_ENHERTU_00016206 DSC_ENHERTU_00016216
DX-0085	W. Widdison et al., <i>Factors Involved in the Design of Cytotoxic Payloads for Antibody-Drug Conjugates</i> , Antibody-Drug Conjugates and Immunotoxins 93 (2013)	DSC_ENHERTU_00016118 DSC_ENHERTU_00016140
DX-0160	H. Donaghy, <i>Effects of Antibody, Drug and Linker on the Preclinical and Clinical Toxicities of Antibody-Drug Conjugates</i> , 8 mAbs 659 (2016)	DSC_ENHERTU_00390929 DSC_ENHERTU_00390942
DX-0096	S. Yan et al., <i>Molecular Regulation of Human Cathepsin B: Implication in Pathologies</i> , 384 Biol. Chem. 845 (2003)	DSC_ENHERTU_00016269 DSC_ENHERTU_00016278
DX-0098	S. Gao et al., <i>Cathepsin G and Its Role in Inflammation and Autoimmune Diseases</i> , 33 Arch. Rheumatol. 498 (2018)	DSC_ENHERTU_00016303 DSC_ENHERTU_00016309
DX-0099	J. Reiser et al., <i>Specialized Roles for Cysteine Cathepsins in Health and Disease</i> , 120 J. Clin. Invest. 3421 (2010)	DSC_ENHERTU_00016310 DSC_ENHERTU_00016321
DX-0100	H. Ruan et al., <i>Targeting Cathepsin B for Cancer Therapies</i> , 56 Horiz. Cancer Res. 23 (2015)	DSC_ENHERTU_00016322 DSC_ENHERTU_00016333
DX-0097	E. Vidak et al., <i>Cysteine Cathepsins and Their Extracellular Roles: Shaping the Microenvironment</i> , 8 Cells 264 (2019)	DSC_ENHERTU_00016279 DSC_ENHERTU_00016302
DX-0101	Y. Kato et al., <i>Acidic Extracellular Microenvironment and Cancer</i> , 13 Cancer Cell Int. 89 (2013)	DSC_ENHERTU_00016339 DSC_ENHERTU_00016346
DX-0102	S. Kumari et al., <i>New Insight on the Role of Plasminogen Receptor in Cancer Progression</i> , 8 Cancer Growth & Metastasis 35 (2015)	DSC_ENHERTU_00016347 DSC_ENHERTU_00016354
DX-0103	Y. Cantres-Rosario et al., <i>HIV Infection Induces Extracellular Cathepsin B Uptake and Damage to Neurons</i> , 9 Scientific Reports (2019)	DSC_ENHERTU_00016355 DSC_ENHERTU_00016367
DX-0196	Solid Tumor, NIH National Cancer Institute, https://www.cancer.gov/publications/dictionaries/cancer-terms/def/solid-tumor	DSC_ENHERTU_00391404 DSC_ENHERTU_00391404
DX-0189	Definition of blood cancer, Cancer.gov, https://www.cancer.gov/publications/dictionaries/cancer-terms/def/blood-cancer	DSC_ENHERTU_00391315 DSC_ENHERTU_00391315
DX-0151	A. Dean et al., <i>Targeting Cancer with Antibody-Drug Conjugates: Promises and Challenges</i> , 13(1) mAbs (2021)	DSC_ENHERTU_00390449 DSC_ENHERTU_00390472

Exhibit No.	Publication	Production No.
DX-0183	J. Masters et al., <i>Clinical Toxicity of Antibody Drug Conjugates: A Meta-Analysis of Payloads</i> , 36 Invest New Drugs 121 (2018)	DSC_ENHERTU_00391231 DSC_ENHERTU_00391245
DX-0143	S. Chuprakov et al., <i>Tandem-Cleavage Linkers Improve the In Vivo Stability and Tolerability of Antibody-Drug Conjugates</i> , 32 Bioconjugate Chem. 746 (2021)	DSC_ENHERTU_00390250 DSC_ENHERTU_00390258
DX-0171	O. Trédan et al., <i>Drug Resistance and the Solid Tumor Microenvironment</i> , 99 J. Nat'l Cancer Inst. 1441 (2007)	DSC_ENHERTU_00391073 DSC_ENHERTU_00391086
DX-0188	K. Fenn et al., <i>Sacituzumab Govitecan: Antibody-Drug Conjugate in Triple Negative Breast Cancer and Other Solid Tumors</i> , 55 Drugs Today 575 (2019)	DSC_ENHERTU_00391301 DSC_ENHERTU_00391314
DX-0148	S. Kaur et al., <i>Bioanalytical Assay Strategies for the Development of Antibody-Drug Conjugate Biotherapeutics</i> , 5 Bioanalysis 201 (2013)	DSC_ENHERTU_00390405 DSC_ENHERTU_00390430
DX-0203	O. Saad et al., <i>Bioanalytical Approaches for Characterizing Catabolism of Antibody-Drug Conjugates</i> , 7(13) Bioanalysis 1583 (2015)	DSC_ENHERTU_00391453 DSC_ENHERTU_00391474
DX-0150	D. Su et al., <i>Linker Design Impacts Antibody-Drug Conjugate Pharmacokinetics and Efficacy via Modulating the Stability and Payload Release Efficiency</i> , 12 Frontiers in Pharmacology (2021)	DSC_ENHERTU_00390441 DSC_ENHERTU_00390448
DX-0213	G. Dubowchik et al., <i>Cathepsin B-Sensitive Dipeptide Prodrugs. 2. Models of Anticancer Drugs Paclitaxel (Taxol®), Mitomycin C and Doxorubicin</i> , 8 Bioorganic Medicinal Chemistry Letters 3347 (1998)	DSC_ENHERTU_00391625 DSC_ENHERTU_00391630
DX-0215	G. Dubowchik et al., <i>Cathepsin B-Sensitive Dipeptide Prodrugs. 1. A Model Study of Structural Requirements for Efficient Release of Doxorubicin</i> , 8 Bioorganic Medicinal Chemistry Letters 3341 (1998)	DSC_ENHERTU_00391635 DSC_ENHERTU_00391640
DX-0164	S. Doronina et al., <i>Development of Potent Monoclonal Antibody Auristatin Conjugates for Cancer Therapy</i> , 21 Nature Biotechnology 778 (2003)	DSC_ENHERTU_00390971 DSC_ENHERTU_00390978
DX-0140	S. Jordans et al., <i>Monitoring Compartment-Specific Substrate Cleavage by Cathepsins B, K, L, and S at Physiological pH and Redox Conditions</i> , 10 BMC Biochemistry 23 (2009)	DSC_ENHERTU_00390223 DSC_ENHERTU_00390237
DX-0145	T. Kaillunki et al., <i>Cancer-Associated Lysosomal Changes: Friends or Foes?</i> , 32 Oncogene 1995 (2013)	DSC_ENHERTU_00390348 DSC_ENHERTU_00390357

Exhibit No.	Publication	Production No.
DX-0185	M. Barok et al., <i>Trastuzumab Emtansine: Mechanisms of Action and Drug Resistance</i> , 16 Breast Cancer Research 209 (2014)	DSC_ENHERTU_00391253 DSC_ENHERTU_00391264
DX-0155	Y. Tai et al., <i>Novel Anti-B-Cell Maturation Antigen Antibody-Drug Conjugate (GSK2857916) Selectively Induces Killing of Multiple Myeloma</i> , 123 Blood 3128 (2014)	DSC_ENHERTU_00390735 DSC_ENHERTU_00390745
DX-0074	R. Singh et al., <i>A New Triglycyl Peptide Linker for Antibody-Drug Conjugates (ADCs) with Improved Targeted Killing of Cancer Cells</i> , 15 Mol. Cancer Ther. 1311 (2016)	DSC_ENHERTU_00015845 DSC_ENHERTU_00015855
DX-0207	B. Gorovits et al., <i>Bioanalysis of Antibody-Drug Conjugates: American Association of Pharmaceutical Scientists Antibody-Drug Conjugate Working Group Position Paper</i> , 5 Bioanalysis 997 (2013)	DSC_ENHERTU_00391518 DSC_ENHERTU_00391527
DX-0175	J. Atzrodt et al., <i>Synthesis of Radiolabelled Compounds for Clinical Studies</i> , Drug Discovery and Evaluation: Methods in Clinical Pharmacology 807 (2020)	DSC_ENHERTU_00391128 DSC_ENHERTU_00391146
DX-0158	V. Kostova et al., <i>The Chemistry Behind ADCs</i> , 14 Pharmaceuticals 442 (2021)	DSC_ENHERTU_00390866 DSC_ENHERTU_00390911
DX-0070	J. Lambert et al., <i>Ado-trastuzumab Emtansine (T-DM1): An Antibody-Drug Conjugate (ADC) for HER2-Positive Breast Cancer</i> , 57 J. Med. Chem. 6949 (2014)	DSC_ENHERTU_00015694 DSC_ENHERTU_00015709
DX-0179	C. Liu et al., <i>Eradication of Large Colon Tumor Xenografts by Targeted Delivery of Maytansinoids</i> , 93 Proc. Natl. Acad. Sci. 8618 (1996)	DSC_ENHERTU_00391178 DSC_ENHERTU_00391183
DX-0205	R. Chari et al., <i>Immunoconjugates Containing Novel Maytansinoids: Promising Anticancer Drugs</i> , 52 Cancer Research 127 (1992)	DSC_ENHERTU_00391501 DSC_ENHERTU_00391507
DX-0079	V. Goldmacher et al., <i>Immunotoxins and Antibody-Drug Conjugates for Cancer Treatment</i> , Biomedical Aspects of Drug Targeting 291 (2002)	DSC_ENHERTU_00015931 DSC_ENHERTU_00015949
DX-0176	G. Phillips et al., <i>Targeting HER2-Positive Breast Cancer with Trastuzumab-DM1, an Antibody-Cytotoxic Drug Conjugate</i> , 68 Cancer Res. 9280 (2008)	DSC_ENHERTU_00391147 DSC_ENHERTU_00391158
DX-0202	J. Cassady et al., <i>Recent Developments in the Maytansinoid Antitumor Agents</i> , 52 Chem. Pharm. Bull. (2004)	DSC_ENHERTU_00391427 DSC_ENHERTU_00391452

Exhibit No.	Publication	Production No.
DX-0069	A. Tolcher, <i>Antibody Drug Conjugates: Lessons from 20 Years of Clinical Experience</i> , 27(12) Ann. Oncol. 2168 (2016)	DSC_ENHERTU_00015689 DSC_ENHERTU_00015693
DX-0182	J. Wright et al., <i>Summary of Results with Triethylene Thiophosphoramide</i> , 68 Annals. N.Y. Acad. Sci. 937 (1958)	DSC_ENHERTU_00391201 DSC_ENHERTU_00391230
DX-0174	G. Vassal et al., <i>Dose-Dependent Neurotoxicity of High-Dose Busulfan in Children: A Clinical and Pharmacological Study</i> , 50 Cancer Research 6203 (1990)	DSC_ENHERTU_00391122 DSC_ENHERTU_00391127
DX-0193	A. Reese et al., <i>Treatment of Retinoblastoma by Radiation and Triethylenemelamine</i> , 53 A.M.A. Archives of Ophthalmology 505 (1954)	DSC_ENHERTU_00391349 DSC_ENHERTU_00391361
DX-0187	A. Pardee et al., <i>Cancer Therapy with β-Lapachone</i> , 2(3) Current Cancer Drug Targets 227 (2002)	DSC_ENHERTU_00391285 DSC_ENHERTU_00391300
DX-0192	National Cancer Institute, CHOP regimen, https://www.cancer.gov/publications/dictionaries/cancer-terms/def/chop-regimen	DSC_ENHERTU_00391348 DSC_ENHERTU_00391348
DX-0198	FOLFOX, NIH National Cancer Institute, https://www.cancer.gov/about-cancer/treatment/drugs/folfox	DSC_ENHERTU_00391417 DSC_ENHERTU_00391417
DX-0138	C. Chitambar, <i>Gallium Nitrate Revisited</i> , 30(2) Seminars in Oncology (2003)	DSC_ENHERTU_00390207 DSC_ENHERTU_00390211
DX-0130	L. Hansen et al., <i>Altretamine</i> , 25 Annals of Pharmacotherapy 146 (1991)	DSC_ENHERTU_00390140 DSC_ENHERTU_00390146
DX-0178	M. Wall et al., <i>The Effects of Some Steroidal Alkylating Agents on Experimental Animal Mammary Tumor and Leukemia Systems</i> , J. Med. Chem., 12:810 (1969)	DSC_ENHERTU_00391169 DSC_ENHERTU_00391177
DX-0201	<i>Paclitaxel Albumin-stabilized Nanoparticle Formulation</i> , National Cancer Institute, https://www.cancer.gov/about-cancer/treatment/drugs/nanoparticlepaclitaxel	DSC_ENHERTU_00391425 DSC_ENHERTU_00391426
DX-0142	M. Studer et al., <i>Influence of a Peptide Linker on Biodistribution and Metabolism of Antibody-Conjugated Benzyl-EDTA. Comparison of Enzymatic Digestion in Vitro and in Vivo</i> , 3 Bioconjugate Chem. 424 (1992)	DSC_ENHERTU_00390244 DSC_ENHERTU_00390249
DX-0177	R. Duncan et al., <i>Anticancer agents coupled to N-(2-hydroxypropyl)methacrylamide copolymers. II. Evaluation of daunomycin conjugates in vivo against L1210 leukaemia</i> , 57 Br. J. Cancer 147 (1988)	DSC_ENHERTU_00391159 DSC_ENHERTU_00391168

Exhibit No.	Publication	Production No.
DX-0214	G. Dubowchik et al., <i>Doxorubicin Immunoconjugates Containing Bivalent, Lysosomally-Cleavable Dipeptide Linkages</i> , 12 Bioorganic Medicinal Chemistry Letters 1529 (2002)	DSC_ENHERTU_00391631 DSC_ENHERTU_00391634
DX-0090	M. Akaiwa et al., <i>Antibody-Drug Conjugate Payloads; Study of Auristatin Derivatives</i> , 68(3) Chem. Pharm. Bull. 201 (2020)	DSC_ENHERTU_00016217 DSC_ENHERTU_00016227
DX-0068	N. Joubert et al., <i>Antibody-Drug Conjugates: The Last Decade</i> , 13(9) Pharmaceuticals 245 (2020)	DSC_ENHERTU_00015637 DSC_ENHERTU_00015667
DX-0091	K. Norsworthy et al., <i>FDA Approval Summary: Mylotarg for Treatment of Patients with Relapsed or Refractory CD33-Positive Acute Myeloid Leukemia</i> , 23 Oncologist 1103 (2018)	DSC_ENHERTU_00016228 DSC_ENHERTU_00016233
DX-0092	R. Chari, <i>Expanding the Reach of Antibody-Drug Conjugates</i> , 7 ACS Medicinal Chemistry Letters 974 (2016)	DSC_ENHERTU_00016234 DSC_ENHERTU_00016236
DX-0199	P. Carl et al., <i>Communications to the Editor: A Novel Connector Linkage Applicable in Prodrug Design</i> , 24 J. Med. Chem. 479 (1981)	DSC_ENHERTU_00391418 DSC_ENHERTU_00391419
DX-0157	B. Teicher et al., <i>Nitrobenzyl Halides and Carbamates as Prototype Bioreductive Alkylating Agents</i> , 23 J. Med. Chem. 955 (1980)	DSC_ENHERTU_00390860 DSC_ENHERTU_00390865
DX-0163	B. Toki et al., <i>Protease-Mediated Fragmentation of p-Amidobenzyl Ethers: A New Strategy for the Activation of Anticancer Prodrugs</i> , 67 J. Organic Chem. 1866 (2002)	DSC_ENHERTU_00390962 DSC_ENHERTU_00390970
DX-0131	<i>R. Chari et al., Enhancement of the Selectivity and Antitumor Efficacy of a CC-1065 Analogue through Immunoconjugate Formation</i> , 55 Cancer Research 4079 (1995)	DSC_ENHERTU_00390147 DSC_ENHERTU_00390153
DX-0168	<i>S. Doronina et al., Enhanced Activity of Monomethylauristatin F Through Monoclonal Antibody Delivery: Effects of Linker Technology on Efficacy and Toxicity</i> , 17 Bioconjugate Chem. 114 (2006)	DSC_ENHERTU_00391036 DSC_ENHERTU_00391056
DX-0133	<i>M. Hay et al., A 2-Nitroimidazole Carbamate Prodrug of 5-Amino-1-(Chloromethyl)-3-[(5,6,7-Trimethoxyindol-2-yl)carbonyl]-1,2-Dihydro-3H-Benz[e]indole (Amino-seco-cbi-tmi) for use with ADEPT and GDEPT</i> , 9 Bioorganic & Medicinal Chemistry Letters 2237 (1999)	DSC_ENHERTU_00390159 DSC_ENHERTU_00390164
DX-0200	<i>M. Rodrigues et al., Synthesis and β-lactamase-mediated activation of a cephalosporin-taxol prodrug</i> , 2 Chemistry & Biology 223 (1995)	DSC_ENHERTU_00391420 DSC_ENHERTU_00391424

Exhibit No.	Publication	Production No.
DX-0139	D. Storm et al., <i>Effect of Small Changes in Orientation on Reaction Rate</i> , 94 J. Amer. Chem. Soc. 5815 (1972)	DSC_ENHERTU_00390212 DSC_ENHERTU_00390222
DX-0170	K. Amsberry et al., <i>The Lactonization of 2'-Hydroxyhydrocinnamic Acid Amides: A Potential Prodrug for Amines</i> , 55 J. Org. Chem. 5867 (1990)	DSC_ENHERTU_00391062 DSC_ENHERTU_00391072
DX-0152	W. Kingsbury et al., <i>A Novel Peptide Delivery System Involving Peptidase Activated Prodrugs as Antimicrobial Agents. Synthesis and Biological Activity of Peptidyl Derivatives of 5-Fluorouracil</i> , 26 J. Med. Chem. 1447 (1984)	DSC_ENHERTU_00390473 DSC_ENHERTU_00390477
DX-0219	W. Widdison et al., <i>Development of Anilino-Maytansinoid ADCs that Efficiently Release Cytotoxic Metabolites in Cancer Cells and Induce High Levels of Bystander Killing</i> , 26 Bioconjugate Chemistry 2261 (2015)	DSC_ENHERTU_00391673 DSC_ENHERTU_00391690
DX-0141	Y. Ueda et al., <i>Novel, Water-Soluble Phosphate Derivatives of 2'-Ethoxy Carbonylpaclitaxel as Potential Prodrugs of Paclitaxel: Synthesis and Antitumor Evaluation</i> , 5(3) Bioorganic & Medicinal Chemistry Letters 247 (1995)	DSC_ENHERTU_00390238 DSC_ENHERTU_00390243
DX-0137	P. Senter et al., <i>The Role of Rat Serum Carboxylesterase in the Activation of Paclitaxel and Camptothecin Prodrugs</i> , 56 Cancer Research 1471 (1996)	DSC_ENHERTU_00390202 DSC_ENHERTU_00390206
DX-0128	P. Burke et al., <i>Development of Novel Quaternary Ammonium Linkers for Antibody-Drug Conjugates</i> , 15(5) Molecular Cancer Therapeutics 938 (2016)	DSC_ENHERTU_00390124 DSC_ENHERTU_00390132
DX-0149	H. Xie et al., <i>Pharmacokinetics and Biodistribution of the Antitumor Immunoconjugate, Cantuzumab Mertansine (huC242-DM1), and Its Two Components in Mice</i> , 308(3) J. Pharmacology & Experimental Therapeutics 1073 (2004)	DSC_ENHERTU_00390431 DSC_ENHERTU_00390440
DX-0135	S. Jeffrey et al., <i>A Potent Anti-CD70 Antibody-Drug Conjugate Combining a Dimeric Pyrrolobenzodiazepine Drug with Site-Specific Conjugation Technology</i> , 24 Bioconjugate Chemistry 1256 (2013)	DSC_ENHERTU_00390187 DSC_ENHERTU_00390194
DX-0132	A. Tibergien et al., <i>Design and Synthesis of Tesirine, A Clinical Antibody-Drug Conjugate Pyrrolobenzodiazepine Dimer Payload</i> , 7 ACS Medicinal Chemistry Letters 983 (2016)	DSC_ENHERTU_00390154 DSC_ENHERTU_00390158

Exhibit No.	Publication	Production No.
DX-0194	A. Bharadwaj et al., <i>Plasmin and Plasminogen System in the Tumor Microenvironment: Implications for Cancer Diagnosis, Prognosis, and Therapy</i> , 13 Cancers 1838 (2021)	DSC_ENHERTU_00391362 DSC_ENHERTU_00391395
DX-0220	R. Lyon et al., <i>Reducing Hydrophobicity of Homogeneous Antibody-Drug Conjugates Improves Pharmacokinetics and Therapeutic Index</i> , 33 Nature Biotechnology 733 (2015)	DSC_ENHERTU_00391691 DSC_ENHERTU_00391694
DX-0216	K. Hamblett et al., <i>SLC46A3 Is Required to Transport Catabolites of Noncleavable Antibody Maytansine Conjugates from the Lysosome to the Cytoplasm</i> , 75 Cancer Research 5329 (2015)	DSC_ENHERTU_00391641 DSC_ENHERTU_00391653
DX-0169	J. Lambert, <i>Drug-Conjugated Antibodies for the Treatment of Cancer</i> , 76(2) British J. Clinical Pharmacology 248 (2012)	DSC_ENHERTU_00391047 DSC_ENHERTU_00391061
DX-0075	E. Kraynov et al., <i>Current Approaches for Absorption, Distribution, Metabolism, and Excretion Characterization of Antibody-Drug Conjugates: An Industry White Paper</i> , 44 Drug Metab. Dispos. 617 (2016)	DSC_ENHERTU_00015856 DSC_ENHERTU_00015862
DX-0136	A. Staudacher et al., <i>Antibody Drug Conjugates and Bystander Killing: Is Antigen-Dependent Internalisation Required?</i> 117 Brit. J. Cancer 1736 (2017)	DSC_ENHERTU_00390195 DSC_ENHERTU_00390201
DX-0195	J. Francisco et al., <i>cAC10-vcMMAE, an Anti-CD30-Monomethyl Auristatin E Conjugate with Potent and Selective Antitumor Activity</i> , 102(4) Blood 1458 (2003)	DSC_ENHERTU_00391396 DSC_ENHERTU_00391403
DX-0191	C. Fennelly et al., <i>Lysosomal Biology in Cancer</i> , 1594 Methods Mol. Biol. 293 (2017)	DSC_ENHERTU_00391332 DSC_ENHERTU_00391347
DX-0161	Y. Kovtun et al., <i>Antibody-Drug Conjugates Designed to Eradicate Tumors with Homogeneous and Heterogeneous Expression of the Target Antigen</i> , 66 Cancer Res. 3214 (2006)	DSC_ENHERTU_00390943 DSC_ENHERTU_00390951
DX-0197	M. Birrer et al., <i>Antibody-Drug Conjugate-Based Therapeutics: State of the Science</i> , 111(6) J. Natl. Cancer Inst. 538 (2019)	DSC_ENHERTU_00391405 DSC_ENHERTU_00391416
DX-0206	D. Goldenberg et al., <i>Antibody-Drug Conjugates Targeting TROP-2 and Incorporating SN-38: A Case Study of Anti-TROP-2 Sacituzumab Govitecan</i> , 11(6) mAbs 987 (2019)	DSC_ENHERTU_00391508 DSC_ENHERTU_00391517

Exhibit No.	Publication	Production No.
DX-0181	H. Erickson et al., <i>The Effect of Different Linkers on Target Cell Catabolism and Pharmacokinetics/Pharmacodynamics of Trastuzumab Maytansinoid Conjugates</i> , 11 Molecular Cancer Therapy 1133 (2012)	DSC_ENHERTU_00391190 DSC_ENHERTU_00391200
DX-0134	R. Chari, <i>Targeted Delivery of Chemotherapeutics: Tumor-Activated Prodrug Therapy</i> , 31 ADV. DRUG DELIVERY REV. 89 (1998)	DSC_ENHERTU_00390171 DSC_ENHERTU_00390186
DX-0154	W. Dokter et al., <i>Preclinical Profile of the HER2-Targeting ADC SYD983/SYD985: Introduction of a New Duocarmycin-Based Linker-Drug Platform</i> , 13 MOL. CANCER THER. (2014)	DSC_ENHERTU_00390714 DSC_ENHERTU_00390726
DX-0076	P. Carter & P. Senter, <i>Antibody-Drug Conjugates for Cancer Therapy</i> , 14 CANCER J. 154 (2008)	DSC_ENHERTU_00015871 DSC_ENHERTU_00015886
DX-0080	M. Chiu et al., <i>Antibody Structure and Function: The Basis for Engineering Therapeutics</i> , 8 Antibodies 55 (2019)	DSC_ENHERTU_00015950 DSC_ENHERTU_00016029
DX-0081	Y. Houzong, <i>Methods to Design and Synthesize Antibody-Drug Conjugates (ADCs)</i> , 17 Int. J. Mol. Sci. 194 (2016)	DSC_ENHERTU_00016030 DSC_ENHERTU_00016045
DX-0184	S. Fargion et al., <i>Heterogeneity of Cell Surface Antigen Expression of Human Small Cell Lung Cancer Detected by Monoclonal Antibodies</i> , 46 Cancer Research 2633 (1986)	DSC_ENHERTU_00391246 DSC_ENHERTU_00391252
DX-0086	R. Chari et al., <i>Antibody-Drug Conjugates: An Emerging Concept in Cancer Therapy</i> , 53 Angew. Chem. Int. Ed. 3796 (2014)	DSC_ENHERTU_00016141 DSC_ENHERTU_00016172
DX-0146	T. Stylianopoulos et al., <i>Reengineering the Physical Microenvironment of Tumors to Improve Drug Delivery and Efficacy: From Mathematical Modeling to Bench to Bedside</i> , 4(4) Trends in Cancer 292 (2018)	DSC_ENHERTU_00390358 DSC_ENHERTU_00390385
DX-0147	E. Cruz et al., <i>Monoclonal Antibody Therapy of Solid Tumors: Clinical Limitations and Novel Strategies to Enhance Treatment Efficacy</i> , 13 Biologics Targets & Therapy 33 (2019)	DSC_ENHERTU_00390386 DSC_ENHERTU_00390404
DX-0190	K. Poon et al., <i>Preclinical Safety Profile of Trastuzumab Emtansine (T-DM1): Mechanism of Action of its Cytotoxic Component Retained with Improved Tolerability</i> , 273 Toxicology & Applied Pharmacology 298 (2013)	DSC_ENHERTU_00391316 DSC_ENHERTU_00391331

Exhibit No.	Publication	Production No.
DX-0172	J. Lambert, <i>Typical Antibody-Drug Conjugates</i> , 13 Antibody-Drug Conjugates 3 (2017)	DSC_ENHERTU_00391087 DSC_ENHERTU_00391117
DX-0167	J. Lambert & A. Berkenblit, <i>Antibody-Drug Conjugates for Cancer Treatment</i> , 69 Ann. Rev. Med. 191 (2018)	DSC_ENHERTU_00391016 DSC_ENHERTU_00391035
DX-0212	S. Ponziani et al., <i>Antibody-Drug Conjugates: The New Frontier of Chemotherapy</i> , 21 Int. J. Mol. Sci. 5510 (2020)	DSC_ENHERTU_00391599 DSC_ENHERTU_00391624
DX-0129	P. Senter et al., <i>The Discovery and Development of Brentuximab Vedotin for Use in Relapsed Hodgkin Lymphoma and Systemic Anaplastic Large Cell Lymphoma</i> , 30(7) Nature Biotechnology 631 (2012)	DSC_ENHERTU_00390133 DSC_ENHERTU_00390139
DX-0173	S. Doronina et al., <i>Novel Peptide Linkers for Highly Potent Antibody-Auristatin Conjugate</i> , 19 Bioconjugate Chem. 1960 (2008)	DSC_ENHERTU_00391118 DSC_ENHERTU_00391121
DX-0180	J. Bargh et al., <i>Sulfatase-Cleavable Linkers for Antibody-Drug Conjugates</i> , 11 Chem. Sci. 2375 (2020)	DSC_ENHERTU_00391184 DSC_ENHERTU_00391189
DX-0217	J. Peterson & C. Meares, <i>Enzymatic Cleavage of Peptide-Linked Radiolabels from Immunoconjugates</i> , 10(4) Bioconjugate Chem. 618 (1998)	DSC_ENHERTU_00391664 DSC_ENHERTU_00391668

C. Persons Upon Whom Defendants May Rely

All patentees, applicants, and authors of the patents and publications listed above.

Dated: March 4, 2022

Respectfully submitted,

/s/ Deron R. Dacus
(with permission by Jennifer P. Ainsworth)

Deron R. Dacus
State Bar No. 00790553
The Dacus Firm, P.C.
821 ESE Loop 323, Suite 430
Tyler, Texas, 75701
+1 (903) 705-1117
+1 (903) 581-2543 facsimile
ddacus@dacusfirm.com

J. Mark Mann
State Bar No. 12926150
mark@themannfirm.com
MANN | TINDEL | THOMPSON
300 West Main Street
Henderson, Texas 75652
(903) 657-8540
(903) 657-6003 (fax)

*Attorneys for Defendant Daiichi Sankyo Company,
Limited*

Of Counsel:

Preston K. Ratliff II
Ashley N. Mays-Williams
Paul Hastings LLP
200 Park Avenue
New York, NY 10166
(212) 318-6000

Jeffrey A. Pade
Paul Hastings LLP
2050 M Street NW
Washington, DC 20036
(202) 551-1700

*Attorneys for Defendant Daiichi Sankyo Company,
Limited*

/s/ Jennifer Parker Ainsworth

Jennifer Parker Ainsworth
Texas State Bar No. 00784720
WILSON, ROBERTSON & CORNELIUS, P.C.
909 ESE Loop 323, Suite 400
Tyler, Texas 75701
Phone: (903) 509-5000
Facsimile: (903) 509-5092

*Attorneys for Intervenor-Defendants AstraZeneca
Pharmaceuticals LP and AstraZeneca UK Ltd*

Of Counsel:

David I. Berl
Thomas S. Fletcher
Jessamyn Berniker
Jessica L. Pahl
Kathryn Kayali
Kevin Hoagland-Hanson
Angela X. Gao
WILLIAMS & CONNOLLY LLP
725 Twelfth Street, N.W.
Washington, DC 20005
Phone: (202) 434-5000
Facsimile: (202) 434-5029

*Attorneys for Intervenor-Defendants AstraZeneca
Pharmaceuticals LP and AstraZeneca UK Ltd*

CERTIFICATE OF SERVICE

I hereby certify that a true and correct copy of the foregoing document was filed electronically in compliance with L.R. CV-5 on March 4, 2022. As of this date, all counsel of record had consented to electronic service and are being served with a copy of this document through the Court's CM/ECF system under L.R. CV-5(a)(3)(A).

/s/ Jennifer P. Ainsworth
Jennifer P. Ainsworth
