Bungee Jump Problem with Runge-Kutta Method

2016039034 박준형 2018021794 염태은

CONTENTS

- About Runge-Kutta Method
 - Introduction
 - 4th-order Runge-Kutta Method
- Bungee-Jump Problem
 - Matlab Code
 - Numerical Solution & Analytical Solution
 - Graph & Error

Introduction

Fig. 1. Approximation by a rectangle

$$y_{n+1} = y_n + hf(x_n, y_n)$$

Fig. 2. Approximation by a trapezoid

$$y_{n+1} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_n + h, y_n + hf(x_n, y_n))]$$

Introduction

$$y_{i+1} \simeq y_i + f(t_i, y_i) h + rac{1}{2!} f'(t_i, y_i) h^2 + rac{1}{3!} f''(t_i, y_i) h^3 + rac{1}{4!} f'''(t_i, y_i) h^3$$

$$\int_a^b f(x) \, dx \approx \int_a^b P(x) \, dx = \frac{b-a}{6} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right] \quad \text{: Simpson's Rule}$$

$$\int_{t_n}^{t_n+h} f\left(t,\varphi(t)\right) dt \approx \frac{h}{6} \left[f\left(t_n,\varphi(t_n)\right) + 4f\left(t_n + \frac{h}{2},\varphi(t_n + \frac{h}{2})\right) + f\left(t_n + h,\varphi(t_n + h)\right) \right]$$

.

Runge-Kutta Method

$$k_1=f(t_i,y_i)$$

$$k_2=f(t_i+rac{1}{2}h,y_i+rac{1}{2}k_1h)$$

$$k_3=f(t_i+rac{1}{2}h,y_i+rac{1}{2}k_2h)$$

$$k_4=f(t_i+h,y_i+k_3h)$$

$$y_{i+1} = y_i + rac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)h$$

Bungee-Jump Problem

```
x = \text{position } (m),

v = \text{downward vertical velocity } (m/s),

t = \text{time } (s),

g = \text{the acceleration due to gravity } (\approx 9.81 \text{ m/s}^2),

c_d = \text{a lumped drag coefficient } (kg/m),

m = \text{the jumper's mass } (kg)
```

$$\frac{\mathrm{d}x}{\mathrm{d}t} = v \quad , \quad \frac{\mathrm{d}v}{\mathrm{d}t} = g - \frac{\mathrm{c_d}}{m}v^2$$

$$x = 0 \ (m)$$
, $v = 0 \ (m/s)$,
 $t = 0 \ (s)$ to $t = 10 \ (s)$, $h = 2$,
 $g \simeq 9.81 \ m/s^2$, $c_d = 0.25 \ (kg/m)$, $m = 68.1 \ (kg)$

Analytical Solution

$$v(t) = \sqrt{\frac{gm}{c_d}} \tanh \left(\sqrt{\frac{gc_d}{m}} t \right)$$

$$x(t) = \frac{m}{c_d} \ln \left[\cosh \left(\sqrt{\frac{gc_d}{m}} t \right) \right]$$

Matlab Code

```
h=2;
                                                             % step size
 2
          t = 0:h:10;
         v = zeros(1,length(t));
 3
 4
          x = zeros(1, length(t));
 5
                                                             % dv/dt function
          F v = @(t,x,v) 9.81-(0.25/68.1)*v^2;
 6
          F_x = @(t,x,v) v;
 7
                                                             % dx/dt function
 8
 9
         for i=1:(length(t)-1)
                                                             % calculation loop
10
11
              %For dv/dt function
12
              k 1 = F v(t(i), x(i), v(i));
              k = F v(t(i)+0.5*h,x(i)+0.5*h*k 1,v(i)+0.5*h*k 1);
13
14
              k = F v(t(i)+0.5*h,x(i)+0.5*h*k 2,v(i)+0.5*h*k 2);
15
              k = F v((t(i)+h),(x(i)+k = 3*h),(v(i)+k = 3*h));
16
17
              % For dx/dt function
18
              kk 1 = F x(t(i),x(i),v(i));
19
              kk_2 = F_x(t(i)+0.5*h,x(i)+0.5*h*kk_1,v(i)+0.5*h*k_1);
20
              kk 3 = F \times (t(i)+0.5*h, \times(i)+0.5*h*kk 2, v(i)+0.5*h*k 2);
21
              kk 4 = F \times ((t(i)+h),(x(i)+kk 3*h),(v(i)+k 3*h));
22
23
              % main equation
24
              v(i+1) = v(i) + (1/6)*(k_1+2*k_2+2*k_3+k_4)*h;
25
              x(i+1) = x(i) + (1/6)*(kk 1+2*kk 2+2*kk 3+kk 4)*h;
26
27
          end
```

Matlab Code

```
28
         %improved Euler Method
29
         v_E = zeros(1,length(t));
30
         x_E = zeros(1,length(t));
31
32
         for i=1:(length(t)-1)
                                                           % calculation loop
33
34
             v_{E}(i+1) = v_{E}(i) + (1/2)*(F_{v}(t(i),x_{E}(i),v_{E}(i)) + F_{v}(t(i+1),x_{E}(i)+F_{x}(t(i),x_{E}(i),v_{E}(i))*h,v_{E}(i)+F_{v}(t(i),x_{E}(i),v_{E}(i))*h))*h;
35
             x_E(i+1) = x_E(i) + (1/2)*(F_x(t(i),x_E(i),v_E(i))+F_x(t(i+1),x_E(i)+F_x(t(i),x_E(i),v_E(i))*h,v_E(i)+F_v(t(i),x_E(i),v_E(i))*h))*h;
36
37
38
          end
39
         %plot(t,x,'o-')
40
41
         V = sqrt(9.81*68.1/0.25)*tanh(sqrt(9.81*0.25/68.1)*t); % 시간 속도 그래표 식
42
         X = 68.1/0.25*log(cosh(sqrt(9.81*0.25/68.1)*t));
                                                                % 시간 위치 그래프 식
43
         plot(t,v,'b');
44
         hold on;
45
          plot(t,v E,'m');
46
         hold on:
47
         plot(t, V, 'k');
48
         legend({'Runge-Kutta','Improved-Euler','analytic'},'Location','southeast')
49
50
         % 시간 위치
51
          plot(t,x,'b');
52
53
         hold on:
         plot(t,x E,'m');
54
         hold on:
55
56
         plot(t,X,'k');
         legend({'Runge-Kutta','Improved-Euler','analytic'},'Location','southeast')
57
```

Result_velocity

t	$v_{analytic}$	v_{RK4}	$v_{Improved.Euler}$
0	0	0	0
2	18.7291888456973	18.7255538969182	18.2068414096916
4	33.1118250352482	33.0994736464891	32.0112996015369
6	42.0762270564987	42.0547480252525	40.7274572790186
8	46.9574951289851	46.9344762262423	45.7403931632060
10	49.4213669186913	49.4027393473134	48.5024210593411

Graph_velocity

Result_position

t	X _{analytic}	x_{RK4}	X _{Improved.Euler}
0	0	0	0
2	19.1662861446833	19.1656057986059	19.6200000000000
4	71.9303659297974	71.9311162115826	73.2198423339379
6	147.946179735052	147.952142086551	149.338775588558
8	237.510440116875	237.510389811099	238.235086795536
10	334.178167247408	334.162579770609	333.974760297244

Graph_position

Graph_position

Error same step size

Error: analytic sol – numerical sol

t	Imporved Euler's method	Runge – Kutta method
X	0.918945859350210	0.0186275713779480
V	0.203406950163412	0.0155874767983732

4th order Runge-Kutta Method is more accurate

Error_v_different step size

Step Size	Number of Steps	$oldsymbol{v_{analytic}}$ - $oldsymbol{v_{Improved.Euler}}$	$v_{analytic}$ - v_{RK4}
2	5	0.918945859350210	0.0186275713779480
2/10	50	0.00529396853441000	1.17660835741162e-06
2/100	500	5.06429714590695e-05	1.12542863917042e-10
2/1000	5000	5.04235423193222e-07	7.10542735760100e-15

Improved Euler Method : $O(h^2)$, 4th Runge — Kutta Method : $O(h^4)$

Error_x_different step size

Step Size	Number of Steps	$x_{analytic}$ - $x_{Improved.Euler}$	$x_{analytic}$ - x_{RK4}
2	5	0.203406950163412	0.0155874767983732
2/10	50	0.00440631136120828	3.46563643915943e-06
2/100	500	4.26764880785413e-05	3.63002072845120e-10
2/1000	5000	4.25090888711566e-07	3.41060513164848e-13

Improved Euler Method : $O(h^2)$, 4th Runge – Kutta Method : $O(h^4)$