MA 101 - CALCULUS I PROBLEM SHEET: SEQUENCES

(1) Show that the following sequences converge by $\epsilon - K$ definition:

(i)
$$\lim_{n \to \infty} \frac{2n}{n + 4\sqrt{n}} = 2$$
 (ii) $\lim_{n \to \infty} \frac{10^7}{n} = 0$ (iii) $\lim_{n \to \infty} \frac{n^2 - 1}{2n^2 + 3} = \frac{1}{2}$ (iv) $\lim_{n \to \infty} \frac{3n + 1}{2n + 3} = \frac{3}{2}$

(ii)
$$\lim_{n \to \infty} \frac{10^7}{n} = 0$$

(iii)
$$\lim_{n \to \infty} \frac{n^2 - 1}{2n^2 + 3} = \frac{1}{2}$$

(iv)
$$\lim_{n \to \infty} \frac{3n+1}{2n+3} = \frac{3}{2}$$

(2) Show that the sequence $x_n = \frac{1}{\ln(n+1)}$ converges to 0 using the (ϵ, K) definition. Also find the constant $K(\epsilon)$ when $\epsilon = \frac{1}{2}$ and $\epsilon = \frac{1}{10}$.

(3) Discuss the convergence / divergence of the following sequences (0 < a < 1and b > 1).

(i)
$$x_n = \frac{n^2}{n+5}$$

$$(ii)x_n = \frac{n}{10^7}$$

(i)
$$x_n = \frac{n^2}{n+5}$$
 (ii) $x_n = \frac{n}{10^7}$ (iii) $x_n = \sqrt{n+1} - \sqrt{n}$

(iv)
$$x_n = \frac{(-1)^n}{n+1}$$

(v)
$$x_n = \frac{1 - 2n}{1 + 2n}$$

(iv)
$$x_n = \frac{(-1)^n}{n+1}$$
 (v) $x_n = \frac{1-2n}{1+2n}$ (vi) $x_n = \frac{1-5n^4}{n^4+8n^3}$

(vii)
$$x_n = \frac{\cos n}{n}$$
 (viii) $x_n = \frac{1}{3^n}$ (ix) $x_n = \frac{n^2}{e^n}$

(viii)
$$x_n = \frac{1}{3^n}$$

(ix)
$$x_n = \frac{n^2}{e^n}$$

(x)
$$x_n = a^n$$

(xi)
$$x_n = \frac{n!}{n^n}$$

(x)
$$x_n = a^n$$
 (xi) $x_n = \frac{n!}{n^n}$ (xii) $x_n = \frac{2^{3n}}{3^{2n}}$

(xiii)
$$x_n = \frac{n}{b^n}$$

(xiii)
$$x_n = \frac{n}{b^n}$$
 (xiv) $x_n = \frac{b^n}{n^2}$ (xv) $x_n = \frac{5^n}{n!}$

$$(xv) x_n = \frac{5^n}{n!}$$

(4) Show that each sequence is monotone and bounded. Then find the limit.

(i)
$$x_1 = 1$$
; $x_{n+1} = \frac{x_n + 1}{3}$ (ii) $x_1 = 2$; $x_{n+1} = \sqrt{2x_n + 1}$

(ii)
$$x_1 = 2$$
; $x_{n+1} = \sqrt{2x_n + 1}$

(5) Discuss whether the following sequences are Cauchy or not:

(i)
$$x_n = \frac{1}{n^2}$$

(i)
$$x_n = \frac{1}{n^2}$$
 (ii) $x_n = 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}$

(iii)
$$x_n = \ln n^2$$
 (iv) $x_n = \sqrt{n}$

(iv)
$$x_n = \sqrt{n}$$

1