7. 폴리시 그레디언트(Policy Gradient)

김호철

Contents

1	소개 1.1 예제				
2	유한 차분 폴리시 그레디언트(Finite Difference Policy Gradient)				
3	몬테카를로 폴리시 그레디언트 3.1 Likelihood ratios(우도비)				
4	액터-크리틱 그레디언트 4.1 어드밴티지 평션 크리틱(Advantage Function Critic)				

1 소개

- 정책(Policy) 기반 강화학습
 - 지금까지는 파라메터 θ (가중치)를 사용하여 가치함수(Value Function) 또는 액션함수 (Action-Function)를 근사(approximate)하였다.

$$\begin{aligned} V_{\theta}(s) &\approx V_{\pi}(s) \\ Q_{\theta}(s,a) &\approx Q_{\pi}(s,a) \end{aligned} \tag{1}$$

- 정책은 가치함수로부터 직접 생성된다.(예를 들어 ϵ -탐욕 사용)
- 이제는 정책(Policy)을 직접 파라메터화 한다.

$$\pi_{\theta}(s, a) = P[a|s, \theta] \tag{2}$$

- 다시 모델-프리(model-free) 강화학습에 집중
- 딥살사에서는 인공신경망이 큐함수를 근사 했지만, 정책 기반 강화학습에서는 인공신경 망이 정책을 근사
- 그러므로, 인공신경망의 입력은 상태가 되고, 출력은 각 액션을 할 확률이 된다.

- 또한 딥살사에서는 출력층의 활성화 함수가 선형함수(입력 그대로 출력)였다면, 정책 신경망은 소프트맥스(출력의 합이 1이 되는 활성화 함수)를 사용한다.
- 강화학습에서 매우 Hot한 분야

• 가치(Value)기반과 정책(Policy)기반 강화학습

가치기반: 가치함수를 학습하고, 암 묵적으로 ϵ -탐욕 정책 사용

정책기반: 가치함수 없이 바로 정책 을 학습

액터-크리틱: 가치함수, 정책 모두

학습

• 정책 기반 강화학습의 장단점

- 장점:

- * 속성들의 수렴이 더 좋다.
- * 고차원이나 연속적인 액션 공간(예:0~1사이의 실수)에 효율적
- * 가치 기반은 결정적(deterministic) 정책들만 학습했으나, 정책 기반은 확률적(stochastic)정책의 학습이 가능

- 단점 :

- * 일반적으로 글로벌 최적화보다 로컬 최적화에 수렴하기 쉽다.
- * 정책을 평가하는 것은 비효율적이거나 분산이 클 수 있다.

1.1 예제

• 예제 1 : 가위바위보

- 한 가지만 내는 결정적(deterministic) 정책은 곧 상대에게 수가 읽혀 패하게 된다.
- ¹₃의 확률(stochastic)로 랜덤의 정책이 최적의 정책이다.
- 내시 균형(Nash equilibrium)

• 예제 2 : 그리드월드

- 에이전트는 위쪽 5가지 상태 어디에서나 시작할 수 있으며, 해골에 가면 죽고 달러로 가는 것이 목표다.
- 회색 상태는 구분할 수 없어서 하나의 정책으로 학습된다.

\rightarrow	←	\	←	←
2		\$		

- 결정적 정책으로 학습한 경우에 흰색 상태는 각자 최적의 정책으로 학습되지만,
- 회색 상태들의 경우 한쪽으로만 학습되어 갇힐 수 있다.

- **확률적 정책**의 최적 학습은 회색 상태들은 50%확률로 양방향으로 가는 것이다.
- 이 정책은 갇히지 않고 목표점에 도달할 수 있게 학습된다.

1.2 정책 검색

• 정책 목적 함수들

- 정책 $\pi_{\theta}(s,a)$ 는 액션이 취해질 확률을 출력하는 함수이다.
- 목표는 주어진 파라메터 θ 들이 있는 정책 $\pi_{\theta}(s,a)$ 에서 최고의 θ 를 찾는 것이다.
- 이 파라메터 들을 업데이트하려면 기준이 필요한데, TD(0)에서 TD 에러를 사용한 것처럼, 폴리시 글디언트에서는 **목적 함수(Objective Function)**라는 것을 정의
- 이 정책을 따랐을 때 보상(Reward)의 합이 가장 많은 것이 좋은 정책이다.
- **에피소딕 환경**(항상 동일한 상태에서 시작하는 게임)에서는 **시작 상태의 가치함수(start value)**를 최대로 하고자 하는 것이 목표가 된다.

$$J_1(\theta) = V^{\pi_{\theta}}(s_1) = \mathbb{E}_{\pi_{\theta}}[v_1] \tag{3}$$

 연속적 환경에서는 평균 가치(average value)를 사용하기도 하고, (평균 가치 = 어떤 상태가 발생한 확률 × 그 상태의 가치함수)

$$J_{av}v(\theta) = \sum_{s} d^{\pi_{\theta}}(s)V^{\pi_{\theta}}(s)$$
(4)

- **연속적 환경**에서는 시간 단계별 평균 보상(average reward per time-step)을 사용할 수도 있다.(시간 단계별 평균 보상=각 타임 스텝마다 받는 보상의 기대값)

$$J_{av}R(\theta) = \sum_{s} d^{\pi_{\theta}}(s) \sum_{a} \pi_{\theta}(s, a) R_{s}^{a}$$
 (5)

 $-d^{\pi_{\theta}}(s)$ 고정 분포(stationary distribution) : 마르코프 체인에서 정책 π_{θ} 를 따랐을 때 에이전트가 그 상태에 머무를 확률

• 정책 최적화

- 정책 기반 강화학습은 최적화 문제이다.
- 목적함수 $I(\theta)$ 를 최대화 하는 θ 를 찾는 문제 (θ) 가 정책을 결정)
- 많은 최적화 방법이 있지만, 기울기 하강법(gradient descent)에 중점을 두고, 다양한 확장이 가능하다.
- 이 파라메터 들을 업데이트하려면 기준이 필요한데, TD(0)에서 TD 에러를 사용한 것처럼, 폴리시 글디언트에서는 **목적 함수(Objective Function)**라는 것을 정의
- 이 정책을 따랐을 때 보상(Reward)의 합이 가장 많은 것이 좋은 정책이다.

2 유한 차분 폴리시 그레디언트(Finite Difference Policy Gradient)

- 폴리시 그레디언트(Policy Gradient)
 - $J(\theta)$ 를 정책 목적 함수(policy objective function)라고 정의
 - 폴리시 그레디언트 알고리즘은 파라메터 θ 에 대하여 $J(\theta)$ 의 값을 가장 급격하게 변하는 방향(오름차순)으로 α (학습률)만큼 업데이트 해주는 방법

$$\Delta \theta = \alpha \nabla_{\theta} I(\theta) \tag{6}$$

- 여기서 $\nabla_{\theta}I(\theta)$ 는 **폴리시 그레디언트**이다. 즉, 각 θ 로 편미분 한 기울기 벡터이다.

$$\nabla_{\theta} J(\theta) = \begin{pmatrix} \frac{\partial J(\theta)}{\partial \theta_1} \\ \vdots \\ \frac{\partial J(\theta)}{\partial \theta_n} \end{pmatrix}$$
 (7)

- 그리고 α는 스텝-크기(학습률)이다.

• 유한 차분으로 기울기 계산하기

- $-\pi_{\theta}(s,a)$ 의 정책 기울기를 평가 하기 위해
- 각 차원(dimension) $k \in [1, n]$ 마다,
 - * k번째 차원에서 작은 ϵ 만큼 θ 를 조정하여, θ 에 대한 목적함수의 k번째 편도함수를 추정

$$\frac{\partial J(\theta)}{\partial \theta_k} \approx \frac{J(\theta + \epsilon u_k) - J(\theta)}{\epsilon} \tag{8}$$

- * 여기서 u_k 는 k번째는 1이고, 다른 곳에는 0이 되는 단위 벡터
- n차원의 정책 기울기를 계산하기 위해 n번의 평가가 필요
- 간단하고, 잡음이 있고, 비효율적이지만 가끔 효과적이다.
- 정책이 미분 가능하지 않아도 가능하고, 임의(arbitrary)의 정책에도 작동한다.
- 최근에는 잘 사용되지 않는다.

3 몬테카를로 폴리시 그레디언트

- 3.1 Likelihood ratios(우도비)
 - 스코어 함수(Score Function)
 - 해석적(analytically)으로 정책 기울기를 계산
 - 정책 π_{θ} 는 0이 아니고, 미분 가능(differentiable)하면, 기울기는 $\nabla_{\theta}\pi_{\theta}(s,a)$ 이다.

- 미분 정의 리마인드

$$\frac{d\log x}{dx} = \frac{1}{x}$$

$$\frac{dx}{x} = d\log x$$
(9)

- Likelihood ratios는 일종의 트릭으로 다음을 따른다.

$$\nabla_{\theta} \pi_{\theta}(s, a) = \pi_{\theta}(s, a) \frac{\nabla_{\theta} \pi_{\theta}(s, a)}{\pi_{\theta}(s, a)}$$

$$= \pi_{\theta}(s, a) \nabla_{\theta} \log \pi_{\theta}(s, a)$$
(10)

- 스코어 함수은 $\nabla_{\theta} \log \pi_{\theta}(s, a)$ 이다.

• 소프트맥스 정책(Softmax Policy)

- 실행 예제로 소프트맥스 정책을 사용
- 특성(feature)들의 선형 결합을 사용하는 가중치 액션들 : $\phi(s,a)^{\mathsf{T}}\theta$
- − 액션의 확률은 지수화된 가중치에 정비례(∞)한다.

$$\pi_{\theta}(s, a) \propto e^{\phi(s, a)^{\mathsf{T}}\theta}$$
 (11)

- 스코어 함수는,

$$\nabla_{\theta} \log \pi_{\theta}(s, a) = \phi(s, a) - \mathbb{E}_{\pi_{\theta}}[\phi(s, \cdot)] \tag{12}$$

• 가우시안 정책(Gaussian Policy)

- 연속적인 액션 공간에서는 가우시안 정책이 자연스럽다.
- 평균은 상태 특성들의 선형 결합이다.: $\mu(s) = \phi(s)^{\mathsf{T}}\theta$
- 분산은 고정으로 σ^2 이거나 파라메터화 될 수도 있다.
- 정책은 가우시안이다. $a \sim N(\mu(s), \sigma^2)$
- 스코어 함수는,

$$\nabla_{\theta} \log \pi_{\theta}(s, a) = \frac{(a - \mu(s))\phi(s)}{\sigma^2}$$
 (13)

3.2 폴리시 그레디언트 정리

• 워-스텝 MDP들

- 원-스텝 MDP : 상태 $(s\sim d(s))$ 에서 시작해서, 한 스텝 후에 보상 $(r=\mathcal{R}_{s,a})$ 을 받고 종료하는 MDP
- 폴리시 그레디언트를 구하기 위해 우도비(Likelihood ratios)를 사용. $J(\theta)$ 는 폴리시 목 적함수

$$J(\theta) = \mathbb{E}_{\pi_{\theta}}[r]$$

$$= \sum_{s \in S} d(s) \sum_{a \in A} \pi_{\theta}(s, a) \mathcal{R}_{s, a}$$

$$\nabla_{\theta} J(\theta) = \sum_{s \in S} d(s) \sum_{a \in A} \pi_{\theta}(s, a) \nabla_{\theta} \log \pi_{\theta}(s, a) \mathcal{R}_{s, a}$$

$$= \mathbb{E}_{\pi_{\theta}}[\nabla_{\theta} \log \pi_{\theta}(s, a) r]$$
(14)

- 기대값의 정의는 (확률 × 받을값)
- $-\sum_{s\in S}d(s)\sum_{a\in A}\pi_{\theta}(s,a)$ 는 에이전트가 어떤 상태 s에서 행동 a를 선택할 확률을 의미
- Likelihood ratios를 한 이유는, 그렇게 하지 않고 미분을 하면 π_{θ} 가 사라져 expectation(\mathbb{E}) 을 취할 수가 없다
- expectation으로 묶어서 그 안을 샘플링하게 되어야 강화학습이 된다.
- 따라서 expectiation을 취하기 위해서 Likelihood ratios 트릭을 사용한 것이다.

• 폴리시 그레디언트 정리

- 폴리시 그레디언트 정리는 다중 스텝 MDP에 대해서도 likelihood ratio 접근을 일반화 시켜준다.
- 순간 보상 r을 장기(long-term) value $Q^{\pi}(s,a)$ (오라클이 준 함수)로 대체 한다.
- 폴리시 그레디언트 정리는 시작 상태 목표, 평균 보상 및 평균 값(value) 목표에 적용된다.

정리(Theorem)

어떤 미분 가능한 정책이 $\pi_{\theta}(s,a)$

폴리시 목적 함수가 $J=J_1,J_{avR},$ 또는 $\frac{1}{1-\gamma}J_{avV}$ 이면 폴리시 그레디언트는,

 $\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(s, a) Q^{\pi_{\theta}}(s, a)]$

• 몬테카를로 폴리시 그레디언트(REINFORCE)

- 통계적(stochastic) 기울기 상승(ascent)으로 파라메터를 업데이트
- 폴리시 그레디언트 정리를 이용
- $-Q^{\pi_{\theta}}(s_t,a_t)$ 에 편향되지 않게 샘플링된 리턴 v_t 를 사용

$$\Delta \theta_t = \alpha \nabla_\theta \log \pi_\theta(s_t, a_t) v_t \tag{15}$$

```
function REINFORCE \theta를 임의의 값으로 초기화 각 에피소드 (\{s_1,a_1,r_2,\ldots,s_{T-1},a_{T-1},r_T\}\sim\pi_{\theta})에서 수행 t가 1에서 T-1까지 수행 \theta \leftarrow \theta + \alpha \nabla_{\theta} \log \pi_{\theta}(s_t,a_t)v_t return \theta end function
```

4 액터-크리틱 그레디언트

- 크리틱으로 분산 줄이기
 - 몬테카를로 폴리시 그레디언트는 여전히 분산이 높다.
 - 액션-가치함수를 추정하기 위해 **크리틱**을 사용한다.

$$Q_{w}(s,a) \approx Q^{\pi_{\theta}}(s,a) \tag{16}$$

- 액터-크리틱 알고리즘은 2개의 파라메터를 가진다.
 - * **크리틱**: 액션-가치 함수 파라메터 w를 업데이트 한다.
 - * 액터: 크리틱이 제안한 방향으로 정책(policy) 파라메터 θ 를 업데이트 한다.
- 액터-크리틱 알고리즘은 폴리시 그레디언트 근사를 따른다.

$$\nabla \theta_{J}(\theta) \approx \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(s, a) \ Q_{w}(s, a)]$$

$$\Delta \theta = \alpha \nabla_{\theta} \log \pi_{\theta}(s, a) Q_{w}(s, a)$$
(17)

- 크리틱을 위한 **액션-가치함수의 추정**은 MC 정책평가, TD 학습, TD(λ)나 최소 제곱 에러로도 가능하다.
- 액션-가치 액터-크리틱(Action-Value Actor-Critic)
 - 액션-가치를 사용하는 크리틱 기반의 단순한 액터-크리틱 알고리즘
 - 선형(linear) 가치 함수 근사를 사용 : $Q_w(s,a) = \phi(s,a)^{\mathsf{T}} w$
 - * **크리틱**: 선형 TD(0)로 w 업데이트
 - * 액터: 폴리시 그레디언트로 θ 업데이트

```
function QAC s, \theta 초기화 정책에서 액션을 샘플링 a \sim \pi_{\theta} 각 스텝마다 수행 보상 \mathbf{r} (r = \mathcal{R}^a_s)과 트랜지션 \mathbf{s}'(s' \sim \mathcal{P}^a_s)를 샘플링 다음 정책에서 다음 액션을 샘플링 : a' \sim \pi_{\theta}(s', a')) \delta = r + \gamma Q_w(s', a') - Q_w(s, a) \theta = \theta + \alpha \nabla_{\theta} \log \pi_{\theta}(s, a) Q_w(s, a)) w \leftarrow w + \beta \delta \phi(s, a) a \leftarrow a', s \leftarrow s' end function
```

4.1 어드밴티지 평션 크리틱(Advantage Function Critic)

- 베이스라인(Baseline)을 사용하여 분산 줄이기
 - 폴리시 그레디언트에서 베이스라인 함수 B(s)를 빼 준다.

- 이는 기대값의 변화없이 분산을 줄일 수 있다.

$$\mathbb{E}_{\pi_{\theta}}[\nabla_{\theta} \log \pi_{\theta}(s, a)B(s)] = \sum_{s \in S} d(s) \sum_{a \in A} \pi_{\theta}(s, a) \nabla_{\theta} \log \pi_{\theta}(s, a)B(s)$$

$$= \sum_{s \in S} d^{\pi_{\theta}}(s) \sum_{a \in A} \nabla_{\theta} \pi_{\theta}(s, a)B(s)$$

$$= \sum_{s \in S} d^{\pi_{\theta}}B(s) \nabla_{\theta} \sum_{a \in A} \pi_{\theta}(s, a)$$

$$= 0$$
(18)

- 상태 가치 함수는 좋은 베이스라인이 된다. : $B(s) = V^{\pi_{\theta}}(s)$
- 그래서 어드밴티지 평선 $A^{\pi_{\theta}}(s,a)$ 을 사용하여 폴리시 그레디언트를 다시 구성하면,

$$A^{\pi_{\theta}}(s, a) = Q^{\pi_{\theta}}(s, a) - V^{\pi_{\theta}}(s)$$

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(s, a) A^{\pi_{\theta}}(s, a)]$$
(19)

• 어드밴티지 평션으로 추정하기

- 폴리시 그레디언트는 분산을 크게 줄인다.
- 그래서 크리틱은 어드밴티지 평션으로 추정하는 것이 좋다.
- $-V^{\pi_{\theta}}(s)$ 와 $Q^{\pi_{\theta}}(s,a)$ 의 추정을 위해, 2개의 평션 근사와 2개의 파라메터 벡터를 사용한다.

$$V_v(s) \approx V^{\pi_{\theta}}(s)$$

$$Q_w(s, a) \approx Q^{\pi_{\theta}}(s, a)$$

$$A(s, a) \approx Q_w(s, a) - V_v(s)$$
(20)

- 그리고 두 가치 함수를 TD-러닝 같은 방법으로 모두 업데이트 한다.
- 액터-크리틱은 폴리시 학습에 사용되는 가중치 (θ) 와, q를 학습하기 위한 가중치(w)가 필요했는데,
- 어드밴티지 평션을 위해서는 v(상태-가치)를 학습하기 위한 가중치(v)가 추가적으로 필요하다.

• 어드밴티지 평션으로 추정 개선

- 트루 가치 함수(true value function, 오라클이 만들어준 완전한 평션) $V^{\pi_{\theta}}(s)$ 로 가정하면, TD 에러 $\delta^{\pi_{\theta}}$ 는,

$$\delta^{\pi_{\theta}} = r + \gamma V^{\pi_{\theta}}(s') - V^{\pi_{\theta}}(s) \tag{21}$$

- 이 TD 에러는 어드밴티지 평션 $(A^{\pi_{\theta}}(s,a))$ 의 편향되지 않은 추정이 된다.

$$E_{\pi_{\theta}}[^{\pi_{\theta}}|s,a] = \mathbb{E}_{\pi_{\theta}}[r + \gamma V^{\pi_{\theta}}(s')|s,a] - V^{\pi_{\theta}}(s)$$

$$= Q^{\pi_{\theta}}(s,a) - V^{\pi_{\theta}}(s)$$

$$= A^{\pi_{\theta}}(s,a)$$
(22)

 $-\delta^{\pi_{\theta}}$ 의 기대값이 $A^{\pi_{\theta}}(s,a)$ 라는 것은 $\delta^{\pi_{\theta}}$ 를 많이 수행하면 결국 $A^{\pi_{\theta}}(s,a)$ 에 수렴한다는 것이고,

- 이것은 TD 에러가 어드밴티지 평션의 샘플(어떤 분포의 샘플이라는 것)이 된다는 것이다. 그러므로, policy gradient를 계산하기 위해 TD 에러를 사용하면 된다.

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(s, a) \delta^{\pi_{\theta}} \right] \tag{23}$$

- 실제에서는 트루 가치 함수 $V^{\pi_{\theta}}(s)$ 대신, TD 에러 근사를 그냥 사용하면 된다.

$$\delta_v = r + \gamma V_v(s') - V_v(s) \tag{24}$$

- 결론은 크리틱을 근사하기 위해 두개(A=Q-V)를 학습하였으나, Q학습이 필요 없어지고, V만 학습하면 된다.
- 그래서 어드밴티지 평션 자리에 TD 에러를 사용하면 된다.

4.2 엘리지빌리티 트레이스(Eligibility Traces)

• 여러 시간 척도에서 크리틱

- 크리틱은 여러 시간 척도에서 많은 타겟으로부터 가치함수 $V_{\pi}(s)$ 를 예측하였음을 논의 하였다.
- MC에서 타겟은 리턴 v_t 이다.

$$\Delta \theta = \alpha (\mathbf{v}_t - V_\theta(s)) \phi(s) \tag{25}$$

- TD(0)에서 타겟은 TD 타겟 v_t 이다.

$$\Delta\theta = \alpha(\mathbf{r} + \gamma V(\mathbf{s}') - V_{\theta}(\mathbf{s}))\phi(\mathbf{s}) \tag{26}$$

- 전방 뷰(forward-view) $TD(\lambda)$ 에서 타겟은 λ 리턴 v_t^{λ} 이다

$$\Delta\theta = \alpha(\mathbf{v}_t^{\lambda} - V_{\theta}(s))\phi(s) \tag{27}$$

- 후방 뷰(backward-view) $TD(\lambda)$ 에서는 엘리지빌리티 트레이스를 사용한다.

$$\delta t = r_{t+1} + \gamma V(s_{t+1}) - V(s_t)$$

$$e_t = \gamma \lambda e_{t-1} + \phi(s_t)$$

$$\Delta \theta = \alpha \delta_t e_t$$
(28)

• 여러 시간 척도에서 액터

- 폴리시 그레디언트도 많은 시간 척도에서 추정 되어진다.

$$\Delta_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(s, a) A^{\pi_{\theta}}(s, a)]$$
 (29)

- MC 폴리시 그레디언트는 완료된 리턴으로부터 에러를 사용한다.

$$\Delta \theta = \alpha (\mathbf{v}_t - V_v(s_t)) \nabla_{\theta} \log \pi_{\theta}(s_t, a_t)$$
(30)

- 액터-크리틱 폴리시 그레디언트는 1-단계 TD 에러를 사용한다.

$$\Delta \theta = \alpha (r + \gamma V_{\tau}(s_{t+1}) - V_{\tau}(s_t)) \nabla_{\theta} \log \pi_{\theta}(s_t, a_t)$$
(31)

• 엘리지빌리티 트레이스가 있는 폴리시 그레디언트

- 전방 뷰 $TD(\lambda)$ 와 마찬가지로, 여러 시간척도(Time-Scale)에 혼합되어서도 가능하다.

$$\Delta \theta = \alpha (v_t^{\lambda} - V_v(s_t)) \nabla_{\theta} \log \pi_{\theta}(s_t, a_t)$$
(32)

- 여기에서 $v_t^{\lambda} V_v(s_t)$ 는 어드밴티지 평션의 편향된 추정(biased estimate)이다.
- 후방 뷰 TD(λ) 처럼 엘리지빌리티 트레이스들을 사용할 수도 있다.
 - * $\phi(s)$ 가 $\nabla_{\theta} \log \pi_{\theta}(s,a)$ 를 대체하여 $TD(\lambda)$ 와 동일해진다.

$$\delta = r_{t+1} + \gamma V_v(s_{t+1}) - V_v(s_t)$$

$$e_{t+1} = \lambda e_t + \nabla_{\theta} \log \pi_{\theta}(s, a)$$

$$\Delta \theta = \alpha \delta e_t$$
(33)

- 이 업데이트는 종료되지 않은 시퀀스(에피소드)에서 온라인으로 적용 가능하다.

• 폴리시 그레디언트 알고리즘 정리

$$abla_{ heta}J(heta) = \mathbb{E}_{\pi_{ heta}}[
abla_{ heta}\log\pi_{ heta}(s,a)v_{t}]$$
 REINFORCE
$$\mathbb{E}_{\pi_{ heta}}[
abla_{ heta}\log\pi_{ heta}(s,a)Q^{w}(s,a)] \quad Q \quad \text{액터-크리틱}$$

$$\mathbb{E}_{\pi_{ heta}}[
abla_{ heta}\log\pi_{ heta}(s,a)A^{w}(s,a)] \quad \text{어드밴티지 액터-크리틱}$$

$$\mathbb{E}_{\pi_{ heta}}[
abla_{ heta}\log\pi_{ heta}(s,a)\delta] \quad \text{TD 액터-크리틱}$$

$$\mathbb{E}_{\pi_{ heta}}[
abla_{ heta}\log\pi_{ heta}(s,a)\delta_{ heta}] \quad \text{TD}(\lambda)$$

- 모두 확률적 경사 상승(stochastic gradient ascent) 알고리즘을 사용한다.
- 크리틱 학습은 $Q^{\pi}(s,a), A^{\pi}(s,a), V^{\pi}(s)$ 중에 하나를 추정하기 위해, 폴리시 그레디언트 (MC나 TD 학습)을 사용한다.