## Semaine du 03/01 au 07/01

## 1 Cours

### **Topologie**

On admet que toutes les définitions et les résultats du cours restent inchangés si une norme est remplacée par une norme équivalente.

- **Topologie d'un espace vectoriel normé** Boules ouvertes, boules fermées, sphères. Ouverts, fermés, voisinages. Une réunion quelconque d'ouverts est un ouvert. Une intersection quelconque de fermés est un fermé. Une intersection **finie** d'ouverts est un ouvert. Une réunion **finie** de fermés est un fermé. Caractérisation séquentielle des fermés. Intérieur, adhérence, frontière. Caractérisation séquentielle de l'adhérence. Densité. Caractérisation séquentielle de la densité. Topologie relative : ouvert, fermé, voisinage relatifs à une partie.
- **Limite d'une application** Définition. Caractérisation séquentielle de la limite. Opérations algébriques. Composition. Limite d'une application à valeurs dans un produit d'espaces vectoriels normés.
- **Continuité** Définition. Caractérisation séquentielle de la continuité. Opérations algébriques. Composition. Continuité d'une application à valeurs dans un produit d'espaces vectoriels normés. Continuité uniforme. Continuité uniforme. Applications lipschitziennes. La «lipschitzianité» implique la continuité uniforme qui implique la continuité.
- Continuité des applications linéaires, multilinéaires, polynomiales Notation  $\mathcal{L}_c(E, F)$ : ensemble des applications linéaires continues de E dans F. Caractérisation de la continuité pour les applications linéaires :  $f \in \mathcal{L}(E, F)$  est continue si et seulement si  $\exists C \in \mathbb{R}_+$ ,  $\forall x \in E$ ,  $\|f(x)\|_F \leq C\|x\|_E$ . Si E est de dimension finie,  $\mathcal{L}_c(E, F) = \mathcal{L}(E, F)$ . Toute application multilinéaire sur un produit d'espaces vectoriels normés de dimensions finies est continue. Toute application polynomiale est continue.
- Continuité et topologie Caractérisation de la continuité par les images réciproques des ouverts et des fermés. Deux applications continues coïncidant sur une partie dense sont égales.

#### 2 Méthodes à maîtriser

- Pour montrer qu'une partie est fermé, on peut :
  - utiliser la définition (raisonner en termes de boules);
  - la décrire comme une intersection de fermés;
  - la décrire comme une réunion finie de fermés;
  - la décrire comme une image réciproque de fermé par une application continue ;
  - utiliser la caractérisation séquentielle.
- Pour montrer qu'une partie est ouverte, on peut :
  - utiliser la définition (raisonner en termes de boules);
  - la décrire comme une réunion d'ouverts;
  - la décrire comme une intersection finie d'ouverts;
  - la décrire comme une image réciproque d'ouvert par une application continue;
  - montrer que son complémentaire est fermé (cf. point précédent).
- Pour montrer qu'une application est continue, on peut :
  - utiliser les résultats sur les opérations algébriques et la composition de fonctions continues ;
  - si l'application est linéaire, utiliser la caractérisation de la continuité pour de telles applications ;
  - si l'application est linéaire et que son espace de départ est de dimension finie, il n'y a rien à faire ;
  - identifier une application multilinéaire ou polynomiale.
- Utiliser la densité pour montrer que deux applications continues sont égales (notamment la densité de  $GL_n(\mathbb{K})$  dans  $\mathcal{M}_n(\mathbb{K})$  et la densité de  $\mathbb{Q}$  dans  $\mathbb{R}$ ).
- Montrer qu'une partie est dense : utiliser la définition ou la caractérisation séquentielle.
- Savoir montrer quelques résultats classiques de topologie matricielle :
  - $GL_n(\mathbb{K})$  est dense dans  $\mathcal{M}_n(\mathbb{K})$ ;
  - $GL_n(\mathbb{K})$  est une partie ouverte de  $\mathcal{M}_n(\mathbb{K})$ ;
  - $O_n(\mathbb{R})$  et  $SO_n(\mathbb{R})$  sont des parties fermées et bornées de  $\mathcal{M}_n(\mathbb{R})$ .

# 3 Questions de cours

Matrices inversibles Montrer que  $\mathrm{GL}_n(\mathbb{K})$  est un ouvert dense de  $\mathcal{M}_n(\mathbb{K})$ .

**Groupe orthogonal** Montrer que  $O_n(\mathbb{R})$  et  $SO_n(\mathbb{R})$  sont des parties fermées et bornées de  $\mathcal{M}_n(\mathbb{R})$ .

**Banque CCP** Exercices 34, 35, 36, 37, 38, 41, 44, 45, 54.



Bonnes fêtes et bonnes vacances.