AMENDMENT TO THE CLAIMS

1. (Previously Amended) A compound of the formula (I)

in which

A is an aromatic heteromonocyclic ring,

where the heterocycles are 5- or 6-membered rings and comprise up to 4 heteroatoms selected from the group consisting of N, O and S, where not more than one of the heteroatoms is an oxygen or sulfur atom,

and A may be substituted by radicals R11, R12 and/or R13,

where

R¹¹, R¹² and R¹³ at each occurrence are selected independently of one another from the group consisting of hydrogen chlorine, bromine, iodine, fluorine, CN, CF₃, OCF₃, NO₂, OH, O-C₁-C₄-alkyl, O-phenyl, O-C₁-C₄-alkylen-phenyl, phenyl, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, NH₂, NH(C₁-C₄-alkyl) and N(C₁-C₄-alkyl)₂,

-2-

R³ and R⁴ are selected independently of one another from the group consisting of hydrogen, chlorine, bromine, iodine, fluorine, CN, CF₃, OCF₃, NO₅, OH, O-C₁-C₄-alkyl, O-phenyl, O-C₁-C₄-alkylen-phenyl, phenyl, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, NH₂, NH(C₁-C₄-alkyl) and N(C₁-C₄-alkyl)₂₃, or

R3 and R4 are connected to give -CH=CH-CH=CH-, -(CH2)4- or -(CH2)3-,

R5 is a radical (W)-(X)-(Y)-Z, where

W is selected from the group consisting of NR54, NR54-(C1-C4-alkylen) and a bond,

X is selected from the group consisting of CO, CO-O, SO_2 , NR^{54} , NR^{54} -CO, NR^{54} -SO₂, CO-NR⁵⁸ and a bond,

Y is C1-C6-alkylen, C2-C6-alkenylen, C2-C6-alkynylen, or a bond,

Z is selected from the group consisting of hydrogen, E, O-R⁵², NR⁵¹R⁵², S-R⁵², where

E is an unsaturated, saturated or partially unsaturated mono-, bi- or tricyclic ring having a maximum of 14 carbon atoms and 0 to 5 nitrogen atoms, 0 to 2 oxygen atoms and/or 0 to 2 sulfur atoms, said ring may comprise up to two oxo groups, and may be substituted by radicals R⁵⁵, R⁵⁶, R⁵⁷, and/or up to three radicals R⁵³.

R^{S1} at each occurrence is independently selected from the group consisting of hydrogen, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, phenyl and C₁-C₁-alkylen-phenyl, where the phenyl ring may be substituted by up to two radicals R^{S3},

 R^{SZ} at each occurrence is independently selected from the group consisting of hydrogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkynyl, C_2 - C_6 -alkynyl, C_2 - C_6 -alkynyl, C_3 - C_6

R⁵³ at each occurrence is independently selected from the group consisting of hydrogen chlorine, bromine, iodine, fluorine, CN, CF₃, OCF₃, NO₂, OH, O-C₁-C₄-alkyl, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, NH₂, NH_(C)-C₄-alkyl) and N(C₁-C₄-alkyl)₂,

R⁵⁴ at each occurrence is independently selected from the group consisting of hydrogen, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, phenyl and C₁-C₁-alkylen-phenyl, where the phenyl ring may be substituted by up to two radicals R³⁹,

R^{SS} at each occurrence is independently selected from the group consisting of hydrogen, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, phenyl, C₁-C₆-alkylen-phenyl, where the ring may be substituted by up to two radicals R⁶⁰, and OH, O-C₁-C₆-alkyl, O-phenyl, O-C₁-C₆-alkylen-phenyl, NH₂, NH(C₁-C₆-alkyl) and N(C₁-C₆-alkyl)₂,

R56 is a group Q1-Q2-Q3, where

 $Q^{1} \text{ is selected from the group consisting of a bond, } C_{1}\text{-}C_{1}\text{-}alkylen, } C_{2}\text{-}C_{1}\text{-}alkynlen, } C_{2}\text{-}C_{1}\text{-}alkynlen, } C_{1}\text{-}C_{1}\text{-}alkylen, } N(C_{1}\text{-}C_{1}\text{-}alkylen, } C_{1}\text{-}C_{1}\text{-}alkylen, } NH, NH, N(C_{1}\text{-}C_{1}\text{-}alkylen, } C_{1}\text{-}C_{1}\text{-}alkylen, } NH-C_{1}\text{-}C_{1}\text{-}alkylen, } O, C_{1}\text{-}C_{1}\text{-}alkylen, } CO-NH, CO-N(C_{1}\text{-}C_{1}\text{-}alkyl), NH-CO, } N(C_{1}\text{-}C_{1}\text{-}alkyl), CO, CO, SO_{2}, SO, S, O, SO_{2}\text{-}NH, SO_{2}\text{-}N(C_{1}\text{-}C_{1}\text{-}alkyl), NH-SO_{2}, N(C_{1}\text{-}C_{2}\text{-}alkyl), } NH-CO-N(C_{1}\text{-}C_{2}\text{-}alkyl), NH-CO-N(C_{1}\text{-}C_{3}\text{-}alkyl), NH-CO-N(C_{1}\text{-}C_{4}\text{-}alkyl), NH-CO-N(C_{1}\text{-}alkyl), NH-CO-N($

Q2 is selected from the group consisting of C₁-C₄-alkylen, C₂-C₄-alkenylen, C₂-C₄-alkynylen, and a bond.

Q³ is a hydrogen or an unsaturated, saturated or partially unsaturated mono-, bi- or tricyclic ring having a maximum of 14 carbon atoms and 0 to 5 nitrogen atoms, 0 to 2 oxygen atoms and/or 0 to 2 sulfur atoms, which may comprise up to two oxo groups and may be substituted by the radicals R⁶³, R⁶⁴ and/or R⁶⁵.

-4-

R^{S7} at each occurrence is independently selected from the group consisting of hydrogen, C₁-C₆-alkyl, phenyl, C₁-C₁-alkylen-phenyl, COOH, CO-O-C₁-C₆-alkyl, CONH₂, CO-NH-C₁-C₆-alkyl, CONH₂, CO-NH-C₁-C₆-alkyl, CON-C₁-C₆-alkyl, CH₂-NH₂, CH₂-NH₂

 R^{SS} at each occurrence is independently selected from the group consisting of hydrogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkyn, C_2 - C_6 -alkyn, phenyl and C_1 - C_1 -alkylen-phenyl, where the phenyl ring may be substituted by up to two radicals R^{C_4} ,

R[∞], R[∞] and R[∞] at each occurrence are selected independently of one another from the group consisting of hydrogen, chlorine, bromine, iodine, fluorine, CN, CF₃, OCF₃, NO₃, OH, O-C₁-C₄alkyl, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, NH₂, NH(C₁-C₁-alkyl) and N(C₁-C₁-alkyl)₂,

R⁶⁵, R⁶⁴ and R⁶⁵ at each occurrence are selected independently of one another from the group consisting of hydrogen, chlorine, bromine, iodine, fluorine, CN, CF₃, OCF₃, NO₂, OH, O-C₁-C₄-alkyl, O-phenyl, O-C₁-C₄-alkylen-phenyl, phenyl, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, NH₂, NH(C₁-C₄-alkyl) and N(C₁-C₄-alkyl)₂.

provided that if W is a bond, then X is NR⁵⁴, NR⁵⁴-CO or NR⁵⁴-SO₂, or if W is a bond, then X and Y are a bond and Z is NR⁵⁴|E³⁰ or E, where E is an unsaturated, saturated or partially unsaturated mono-, bi- or tricyclic ring having a maximum of 14 carbon atoms and 1 to 5 nitrogen atoms, and 0 to 2 oxygen atoms and/or 0 to 2 sulfur atoms, which ring may comprise up to two oxo groups and may be substituted by radicals R⁵⁵, R⁵⁷, md/or up to three radicals R⁵⁵, and which ring is bound via a nitrogen_ring atom to the remainder of the molecule.

R6 and R7 are selected independently of one another from the group consisting of hydrogen, chlorine, bromine, iodine, fluorine, CN, CF3, OCF3, NO2, OH, O-C1-C1-alkyl, O-phenyl, O-C1-C1-alkylen-phenyl, phenyl, C2-C6-alkyl, C2-C6-alkyly, C3-C6-alkyly, NH2, NH(C1-C1-alkyl) and N(C1-C1-alkyl)2,

and their tautomeric forms, enantiomeric and diastereomeric forms thereof.

- (Previously Presented) The compound of claim 1, wherein A is an aromatic heteromonocyclic systems comprising 1 or 2 heteroatoms, where one of the 2 heteroatoms is nitrogen.
- 3. (Previously Presented) The compound of claim 1, wherein A is selected from the group consisting of pyrimidine, pyridazine, pyrazine, thiazole, imidazole, thiophene-and furan.
- (Cancelled).
- (Cancelled).
- 6. (Previously Amended) A compound of the formula (III),

in which

D is an aromatic heteromonocyclic ring,

where the heterocycles are 5- or 6-membered rings and comprise up to 4 heteroatoms selected from the group consisting of N, O and S,

and D may be substituted by radicals R21, R22 and/or R23,

G is an aromatic heteromonocyclic, aromatic or partially aromatic heterobicyclic ring,

where the heterocycles are 5- or 6-membered rings and comprise up to 4 heteroatoms selected from the group consisting of N, O and S, and up to 2 oxo groups and

G may be substituted by radicals R71, R72 and/or R73,

R²¹, R²², R²³, R⁷¹, R⁷² and R⁷³ at each occurrence are selected independently of one another from the group consisting of hydrogen, chlorine, bromine, iodine, fluorine, CN, CF₃, OCF₃, NO₃, OH, O-C₁-C₄-alkyl, O-phenyl, O-C₁-C₄-alkylen-phenyl, phenyl, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, NH₂, NH(C₁-C₄-alkyl) and N(C₁-C₄-alkyl)₂, morpholin-4-yl, pyrrolidin-1-yl, piperidin-1-yl, 4-piperazin-1-yl, 4-(C₁-C₄-alkyl)₂-piperazin-1-yl,

R³ and R³ at each occurrence are selected independently of one another from the group consisting of hydrogen, chlorine, bromine, iodine, fluorine, CN, CF₃, OCF₃, NO₂, OH, O-C₁-C₄-alkyl, O-phenyl, O-C₁-C₄-alkylen-phenyl, phenyl, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, NH₂, NH(C₁-C₄-alkyl) and N(C₁-C₄-alkyl)₂, or

R3 and R4 are connected to give -CH=CH-CH=CH-, -(CH2)4- or -(CH2)3-,

R5 is a radical (W)-(X)-(Y)-Z, where

W is selected from the group consisting of NR54, NR54-(C1-C4-alkylen) and a bond.

X is selected from the group consisting of CO, CO-O, SO2, NR54, NR54-CO, NR54-SO2, CO-NR58 and a bond,

Y is C1-C6-alkylen, C2-C6-alkenylen, C2-C6-alkynylen, or a bond,

Z is selected from the group consisting of hydrogen, E, O-R52, NR51R52, S-R52, where

E is an unsaturated, saturated or partially unsaturated mono-, bi- or tricyclic ring having a maximum of 14 carbon atoms and 0 to 5 nitrogen atoms, 0 to 2 oxygen atoms and/or 0 to 2 sulfur atoms,

which may comprise up to two oxo groups, and E may be substituted by radicals R⁸⁵, R⁸⁶, R⁸⁷ and/or up to three radicals R⁸³.

 R^{SI} at each occurrence is independently selected from the group consisting of hydrogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, phenyl and C_1 - C_1 -alkylen-phenyl, where the phenyl ring may be substituted by up to two radicals R^{SI} .

R^{S2} at each occurrence is independently selected from the group consisting of hydrogen, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, E and C₁-C₈-alkylen-E,

R⁵⁵ at each occurrence is independently selected from the group consisting of hydrogen, chlorine, bromine, iodine, fluorine, CN, CF₃, OCF₃, NO₂, OH, O-C₁-C₄-alkyl, C₁-C₆-alkyl, C₂-C₆-alkynyl, NH₂, NH(C₁-C₄-alkyl) and N(C₁-C₄-alkyl)₂,

 R^{54} at each occurrence is independently selected from the group consisting of hydrogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkyn, C_2 - C_6 -alkyn, phenyl and C_1 - C_4 -alkylen-phenyl, where the phenyl ring may be substituted by up to two radicals R^{59} ,

R^{SS} at each occurrence is independently selected from the group consisting of hydrogen, C₁-C₆-alkyl, C₂-C₆-alkynl, C₂-C₆-alkynl, phenyl, C₁-C₄-alkylen-phenyl, where the ring may be substituted by up to two radicals R⁶⁰, and OH, O-C₁-C₁-alkyl, O-phenyl, O-C₁-C₁-alkylen-phenyl, NH₂, NH(C₁-C₆-alkyl) and N(C₁-C₆-alkyl)₂,

 R^{56} is a group Q^1 - Q^2 - Q^3 , where

 Q^1 is selected from the group consisting of a bond, C_1 - C_1 -alkylen, C_2 - C_1 -alkynlen, C_2 - C_1 -alkynlen, C_2 - C_1 -alkynlen, C_1 - C_1 -alkylen, C_1 - C_1 - C_1 -alkylen, C_1 - C_1 -

O-CO-NH, O-CO-N(C_1 - C_1 -alkyl), NH-CO-O, N(C_1 - C_1 -alkyl)-CO-O, N(C_1 - C_1 -alkyl)-CO-N(C_1 - C_1 -alkyl), NH-CO-N(C_1 - C_1 -alkyl), N(C_1 - C_1 -alkyl)-CO-NH, and NH-CO-NH,

Q2 is selected from the group consisting of C₁-C₄-alkylen, C₂-C₄-alkenylen, C₂-C₄-alkynylen, and a bond

 Q^3 is a hydrogen or an unsaturated, saturated or partially unsaturated mono-, bi- or tricyclic ring having a maximum of 14 carbon atoms and 0 to 5 nitrogen atoms, 0 to 2 oxygen atoms and/or 0 to 2 sulfur atoms, which may comprise up to two oxo groups and may be substituted by the radicals R^{63} , R^{64} and/or R^{65} .

R⁵⁷ at each occurrence is independently selected from the group consisting of hydrogen, C₁-C₆-alkyl, phenyl, C₁-C₄-alkyl, COOH₂, CO-NH₂-C₇-alkyl, COOH₂, CO-NH₂-C₇-alkyl, COOH₂-C₇-alkyl, COOH₂-C₇-alkyl)₂, CO-C₁-C₇-alkyl, CH₂-NH₂, CH₂-NH₂-C₁-C₇-alkyl and CH₂-N(C₁-C₇-alkyl)₂,

 R^{88} at each occurrence is independently selected from the group consisting of hydrogen, C_1 - C_2 -alkyl, C_2 - C_3 -alkenyl, C_2 - C_6 -alkynyl, phenyl and C_1 - C_1 -alkylen-phenyl, where the phenyl ring may be substituted by up to two radicals R^{42} .

R²⁰, R²⁰ and R²² at each occurrence are selected independently of one another from the group consisting of hydrogen, chlorine, bromine, iodine, fluorine, CN, CF₃, OCF₃, NO₂, OH, O-C₁-C₄alkyl, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, NH₂, NH(C₁-C₁-alkyl) and N(C₁-C₄-alkyl)₂,

R⁶⁵, R⁶⁴ and R⁶⁵ at each occurrence are selected independently of one another from the group consisting of hydrogen, chlorine, bromine, iodine, fluorine, CN, CF₃, OCF₃, NO₂, OH, O-C₁-C₄-alkyl, O-phenyl, O-C₁-C₄-alkylen-phenyl, phenyl, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, NH₂, NH(C₁-C₄-alkyl) and N(C₁-C₄-alkyl)₂,

provided that if W is a bond, then X is NR^{st} , NR^{st} -CO or NR^{st} -SO₂, or if W is a bond, then X and Y are a bond and Z is $NR^{st}R^{s2}$ or E, where E is an unsaturated, saturated or partially unsaturated mono-, bi- or tricyclic ring having a maximum of 14 carbon atoms and 1 to 5 nitrogen atoms, and 0 to 2

oxygen atoms and/or 0 to 2 sulfur atoms, which ring may comprise up to two oxo groups and may be substituted by radicals \mathbb{R}^{25} , \mathbb{R}^{26} , \mathbb{R}^{57} and/or up to three radicals \mathbb{R}^{25} , and which ring is bound via a nitrogen ring atom to the remainder of the molecule,

and their tautomeric forms, enantiomeric and diastereomeric forms thereof.

- (Previously Presented) The compound of claim 6, wherein D is an aromatic heteromonocyclic system comprising 1 or 2 heteroatoms, where one of the 2 heteroatoms is nitrogen.
- (Previously Presented) The compound of claim 6, wherein D is selected from the group consisting of pyrimidine, pyridazine, pyridazine, pyrazine, thiazole, imidazole, thiophene and furan.
- 9. (Previously Presented) The compound of claim 6 wherein G is selected from the group consisting of thiophene, furan, pyrrole, pyrazole, isoxazole, pyridine, pyrimidine, quinoline, isoquinoline, tetrahydroisoquinoline, benzothiophene, benzofuran, indole, imidazole, thiazole, imidazothiazole, benzooxazine and quinoxaline.
- (Previously Presented) A pharmaceutical composition comprising a compound as claimed in claim 1 and a pharmaceutically acceptable carrier.

- 18. (Previously Presented) A pharmaceutical composition comprising a compound as claimed in claim 6 and a pharmaceutically acceptable carrier.
 - 19. -31 (Cancelled).
- 32. (New) The compound of claim 1, wherein Z is E, wherein E is a saturated monocyclic ring having a maximum of 8 carbons.
- 33. (New) The compound of claim 32, wherein E is a saturated monocyclic ring having a maximum of 6 carbons.