

CHAPTER 11: Modern Computer Systems

The Architecture of Computer Hardware, Systems Software & Networking: An Information Technology Approach

4th Edition, Irv Englander John Wiley and Sons ©2010

Objectives

- Links all pieces covered in chapters 6-10 together
 - CPUs, Memory (Main and Cache), Buses, I/O Modules, I/O Devices (Peripherals)
 - Machine cycle, Pipelining, DMA data transfer,
 Programmed I/O, Interrupts
- How all these pieces fit together to achieve synergy?

Basic Personal Computer System

Mainframe Computer System

Major PC System Components

Typical Desktop PC

Basic CPU-Memory-I/O Pathway*

Source: From *PCI Local Bus Specification Production* Version 2, Copyright © 1993, by PCI Special Interest Group, pg. 9. Reprinted by permission.

Bus

- Connect CPU and Memory
- I/O peripherals: on same bus as CPU/memory or separate bus
- Physical packaging commonly called backplane
 - Also called system bus or external bus
 - Example of a broadcast bus

Modern Personal Computer

Motherboard

 Printed circuit board that holds CPU and related components including backplane

Bus Hierarchy

- Processor bus: on-chip
- Cache bus (backside bus)
- Memory bus (front-side bus)
 - connects the memory subsystem and processor
- Backplane bus
 - Connects I/O to the CPU and memory
 - Connects all peripheral cards and connectors
 - Examples: PCI-Express, PCI

PCI Bus Connections

Source: Copyright © PCI Pin List/PCI Special Interest Group, 1999.

I/O Bus Architecture

- Consists of an I/O device, I/O device controller, system bus, and a device driver
- Device driver
 - Software that controls the I/O devices
- Common interface buses
 - USB Universal Serial Bus
 - SCSI Small Computer System Interface
 - SATA Serial Advanced Technology Attachment
 - IEEE 1394 Firewire

USB

- Multipoint bus
- Hubs provide multiple connection points for I/O devices
- Supports up to 127 devices
- USB-2 data transfer rate up to 480 Mbits per second

SCSI Bus

- ANSI standard but multiple variations
- Really an I/O bus rather than simple interface
 - Supports multiple devices from a single SCSI port

USB and FireWire (IEEE 1394)

- Both serial, multipoint bus specifications
- Add/remove devices w/o powering down
- Packet protocol for isochronous data transfer
 - Isochronous: delivery at regular time intervals
 - Guarantee specified throughput

USB vs. FireWire

- USB-2: high-speed data transfer
 - 480Mbits/sec
- USB-3: proposed standard
 - Data transfer up to 4.8 Gbits per second
- FireWire: high-speed data transfer, i.e., full motion video with sound
 - 400 Mbits/sec to 3.2 Gbits/sec

Typical FireWire Configuration

- Network-like characteristics
- Device controllers independent

Channel Architecture

- Used in IBM mainframe computers
- Channel subsystem
 - Separate I/O processor that serves as a CPU for I/O operations
 - Channel control words
 - Programs that transfer data between memory and an I/O device using DMA
- Subchannels
 - Connected to a control unit module through one or more channel paths
 - Similar role to a device controller

I/O Channel Architecture

Clusters

- Multi-computer systems
- Loosely-coupled computers
- Each system has its own CPU, memory, and I/O facilities
- Each system is known as a node of the cluster
- Two ways to configure
 - Shared-nothing model
 - Shared-disk model

Advantages of Clusters

- Increased computing power by combining the power of individual computer systems
 - Inherently scalable
 - Cheaper than using a single large computer
 - Used for high performance computing systems
- Fault-tolerance
 - Failure in one node does not bring down the entire system
 - Failover processing by failed node is switched to other nodes
- High Availability
- Load Balancing
 - can be attained either through software and/or through geographically distributed location of nodes

Shared-Nothing Model

- High speed link between nodes
- No sharing of resources
- Partitioning of work through division of data
- Advantage
 - Reduced communication between nodes
- Disadvantage
 - Can result in inefficient division of work

Shared-Disk Model

- High speed link between nodes
- Disk drives are shared between nodes
- Advantage
 - Better load balancing
- Disadvantage
 - Complex software required for transactional processing (lock, commit phases)

Cluster Models

Beowulf Clusters

- Simple and highly configurable
- Low cost
- Networked
 - Computers connected to one another by a private Ethernet network
 - Connection to an external network is through a single gateway computer
- Configuration
 - COTS Commodity-off-the-shelf components such as inexpensive computers
 - Blade components computers mounted on a motherboard that are plugged into connectors on a rack
 - Either shared-disk or shared-nothing model

Blade and Rack of Beowulf Cluster

High Performance Computing

- Also called supercomputing
- Clusters of power machines or larger Beowulf blade clusters
 - Well suited for problems that can be broken into subtasks
- Grid computing
 - Supercomputer performance through distributing CPU processing to the spare CPU cycles of personal computers connected to a network