$[\implies]$. C is compact, therefore every open cover $\{U\}_{\alpha\in I}$ has a finite subcover $\{U\}_{\alpha\in I'}$. Let $T=\bigcup_{\alpha\in I'}U_{\alpha}$. By definition of a subcover, $C\subset T$. If $\{U\}_{\alpha\in I}$ is closed under union of pairs, then $T\in\{U\}_{\alpha\in I}$.

[\Leftarrow] Consider the contrapositive case. If a set C is not compact, then there is at least one open cover that is closed under unions without a set T such that $C \subset T$.

Now, consider $C=\mathbb{R}^+$, the positive real numbers, and the cover $U=\{n\in\mathbb{Z}^+:(0,n)\}$. U is closed under unions because given any $n,m\in\mathbb{Z}^+,(0,n)\cup(0,m)=(0,\max\{n,m\})$ and $\max\{n,m\}\in\mathbb{Z}^+$.

Assume there is a set $T\in U$ s.t. $C\subset T$. As $T\in U, T=(0,M)$ for some $M\in \mathbb{Z}^+$. However, consider the number $b=M+\frac{1}{3}\in \mathbb{R}^+$. Clearly, $b\notin T$. Thus, there cannot be a set T in this cover where $C\subset T$.