Оглавление

1	Іоверхности второго порядка	2
	.1 Поворот	2

Глава 1

Поверхности второго порядка

1.1 Поворот

Квадратичная форма от трёх переменных:

$$Q(x, y, z) = a_{11}x^{2} + 2a_{12}xy + 2a_{13}xz + a_{22}y^{2} + 2a_{23}yz + a_{33}z^{2}$$

$$Q(tx, ty, tz) = t^2 Q(x, y, z)$$

Ограничим действие квадратичной формы на трёхмерную сферу:

$$Q: S^2 \to \mathbb{R}, \quad S^2 = \{(x, y, z) \mid x^2 + y^2 + z^2 = 1\}$$

При этом мы ничего не теряем, так как можно разделить изначальную квадратичную сферу на $\sqrt{x^2+y^2+z^2}$ и получить новую

Отметим такую точку $M_0 \in S: Q(M_0) = \max Q(x,y,z)$

Почему $\exists \max \dot{Q}$?

Ответим уклончиво

Анекдот:

Лекция. Лектор рассказывает о внеземных цивилизациях. Возвращается, его спрашивают: "Ну как? Были вопросы" – "Были. Спрашивали, почему внеземные цивилизации не свяжутся с нами" – "И как ответил?" – "Уклончиво" – "Как уклончиво?" – "Послал на хуй"

Теорема 1 (Вейерштрасса). M – замкнутое (т. е. содержит все точки сгущения) ограниченное множество \mathbb{R}^n

$$f:M o\mathbb{R}$$
 – непрерывная функция $\implies \exists \max_{x\in M} f(x)$

Доказательство. Нужно расширить доказательство из матана

Через M_0 проведём новую ось OX

$$x = \sqrt{1 - y^2 - z^2}$$

$$Q(y,z) = a_{11}(1-y^2-z^2) + 2a_{12}y\sqrt{1-y^2-z^2} + \dots$$

y = z = 0 — точка максимума

$$f(y) - Q(y,0) = a_{11}(1 - y^2) + 2a_{12}y\sqrt{1 - y^2} + a_{22}y^2$$

То что z=0 – точка максимума означает, что:

$$f'(y)|_{y=0} = 0$$
 или $\not\exists$

Посчитаем производную:

$$f'(y) = -2a_{11}y + 2a_{22}y + 2a_{12}\sqrt{1 - y^2} + 2a_{12}y\frac{-y}{\sqrt{1 - y^2}}$$

Подставим y = 0:

$$f'(y)|_{y=0} = 2a_{12} = 0 \implies a_{12} = 0$$

Аналогично $a_{13}=0$ (проделываем то же самое, но для сферы)