

NATIONAL SENIOR CERTIFICATE EXAMINATION NOVEMBER 2022

MATHEMATICS: PAPER II

MARKING GUIDELINES

Time: 3 hours 150 marks

These marking guidelines are prepared for use by examiners and sub-examiners, all of whom are required to attend a standardisation meeting to ensure that the guidelines are consistently interpreted and applied in the marking of candidates' scripts.

The IEB will not enter into any discussions or correspondence about any marking guidelines. It is acknowledged that there may be different views about some matters of emphasis or detail in the guidelines. It is also recognised that, without the benefit of attendance at a standardisation meeting, there may be different interpretations of the application of the marking guidelines.

NOTE:

- If a candidate answers a question more than once, only mark the FIRST attempt.
- Consistent Accuracy applies in all aspects of the marking memorandum.

SECTION A

QUESTION 1

(a)(1)	Lower Quartile: 5,8 mm	Q ₁ =5,8 mm
	Upper Quartile: 6,0 mm	Q3=6,0 mm
	IQR = 6.0 - 5.8	IQR = 0,2 mm
	= 0,2 mm	
(a)(2)	P_{50} : 50% × 400 = 200 th	5,9 mm
	$P_{50} = 5.9 \text{ mm}$	
(a)(3)	100 ×100%	25% defective
	$\frac{1}{400} \times 100\%$	
	= 25% defective	
(b)(1)	Negatively skewed.	Negatively skewed
(b)(2)	25% lies between Q ₁ and the median (2 to 5)	False
	and 25% lies between Q₃ and endpoint. Hence	
	statement is false.	
(b)(3)	$Q_3 + 1.5 \times IQR = 6 + 1.5 \times 4 = 12$	6
	The learner is not an outlier.	4
		12 and not an outlier

(a)	$\tan \theta = -\frac{1}{3}$	$\tan\theta = -\frac{1}{3}$
	$\theta = 18.4^{\circ}$	$\theta = 18,4^{\circ}$
(b)	$m_{AB} = -\frac{1}{3}$	$m_{AB} = -\frac{1}{3}$
	$y = -\frac{1}{3}x + c$ sub.(-3;10)	$10 = -\frac{1}{3}\left(-\frac{3}{1}\right) + c$
	$10 = -\frac{1}{3}\left(-\frac{3}{1}\right) + c$	$y = -\frac{1}{3}x + 9$
	c=9	
	$y = -\frac{1}{3}x + 9$	
	Alternate:	1
	$m_{AB} = -\frac{1}{3}$	$m_{AB} = -\frac{1}{3}$
	$y-y_1=m(x-x_1)$	$y-y_1=m(x-x_1)$
	$y-10=-\frac{1}{3}(x+3)$	$y-10=-\frac{1}{3}(x+3)$
(c)	$m_{AD}=3$	$m_{AD}=3$
	y = 3x + c sub. $(-3;10)$	10 = 3(-3) + c
	10 = 3(-3) + c	y=3x+19
	c=19	
	y = 3x + 19	
	Alternate:	
	$m_{AD} = 3$	m _ 2
	$y - y_1 = m(x - x_1)$	$m_{AD} = 3$
	y-10=3(x+3)	$y-y_1 = m(x-x_1)$ y-10 = 3(x+3)

(d)(1)	For D(x,y): $3x+19=-\frac{1}{3}x-1$	D(x;y):
	$\frac{10}{3}x = -20$	$3x+19=-\frac{1}{3}x-1$
	x = -6	$ \begin{array}{c} x = -6 \\ \vdots y = 1 \end{array} $
	$\therefore y = 1$	Sub.in: their values
	D(-6;1) and $A(-3;10)$	$\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$
	Length AD = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	Length AD = $3\sqrt{10}$
	Length AD = $\sqrt{90}$ = $3\sqrt{10}$	
	≈ 9,5 units	
(d)(2)	Eq. of line BC is given as $x = 6$	sub. $x = 6$ in
	For B(x,y) sub. $x = 6$ in $y = -\frac{1}{3}x + 9$	$y = -\frac{1}{3}x + 9$
	$\therefore y = 7$	∴ y = 7
	∴B(6;7)	-
		$AB = 3\sqrt{10}$
	Using distance formula: length AB = $\sqrt{90}$ = $3\sqrt{10}$	$AD = 3\sqrt{10}$
	Length AD = $3\sqrt{10}$ from (d)	Conclusion
	∴ ∆ABD is isosceles	

(a)(1)	x+6=41	x + 6 = 41
	x = 35	x = 35
(a)(2)	{25;38;41;44;48}	{25;38;41;44;48}
	Using a calculator: SD = 7,8	SD = 7,8
(a)(3)	Mean = 39,2	Mean = 39,2
	SD Range: $31,4 \le x \le 47$	$31,4 \leq x \leq 47$
	∴3 scores	3 scores
(b)(1)	Negative	Negative
(b)(2)	S = -1,8(10) + 22,7	S = -1.8(10) + 22.7
	S = 4,7	S = 4,7
	Either 4 or 5 calls	
(b)(3)	S = -1,8(3) + 22,7	S = 17,3
	S = 17.3 if modelled on the regression equation.	weaker
	However, given that S=8 when temp is 3°C	
	Therefore, correlation will still be negative but weaker.	
	Allamata	
	Alternate:	
	The correlation will increase slightly less (less negative).	

(a)	Period: 120°	Period: 120°
(b)	$y = \cos(x - 30^{\circ})$ $y = \cos(180^{\circ} - 30^{\circ})$ $y = -\frac{\sqrt{3}}{2}$ Range = $\left[-\frac{\sqrt{3}}{2}; 1\right]$	$\left[-\frac{\sqrt{3}}{2};1\right]$
(c)	2 1 C A 45 90 B 186 180	
(c)	$\sin 3x = \cos(x - 30^{\circ})$ at Points A and B	See graph
(d)	$cos(x-30^\circ) > sin3x$ for:	
	$0^{\circ} \le x \le 120^{\circ}$	

(a)	$\hat{C}_2 = x \ (\angle \text{ in same seg.})$ $\hat{D}_3 = x \ (\text{isosceles } \Delta)$	$\hat{C}_2 = x$ (\angle in same seg.) $\therefore \hat{D}_3 = x$
(b)(1)	$\hat{C}_1 + \hat{D}_2 = 180^\circ - 94^\circ (\text{int. } \angle s \text{ of } \Delta)$ $\hat{C}_1 = \hat{D}_2 (\text{CO and OD are radii})$ $ (\text{Angles opp. Equal sides})$ $\therefore \hat{D}_2 = \frac{180^\circ - 94^\circ}{2}$ $\therefore \hat{D}_2 = 43^\circ$	$\hat{C}_1 + \hat{D}_2 = 180^{\circ} - 94^{\circ}$ $\therefore \hat{D}_2 = 43^{\circ}$
(b)(2)	$ \hat{O}_2 = 360^\circ - 94^\circ \ (\angle s \text{ around a point}) $ $ \hat{O}_2 = 266^\circ $ $ \hat{B}_1 + \hat{B}_2 = \frac{266^\circ}{2} \ (\angle \text{ at centre}) $ $ \hat{B}_1 + \hat{B}_2 = 133^\circ $	$\hat{O}_2 = 266^{\circ}$ $\hat{B}_1 + \hat{B}_2 = \frac{266^{\circ}}{2}$ (\angle at centre) $\hat{B}_1 + \hat{B}_2 = 133^{\circ}$
(b)(3)	$2x+133^{\circ} = 180^{\circ}$ (int ∠s of Δ) $x = 23\frac{1}{2}^{\circ}$	$2x+133^{\circ} = 180^{\circ}$ (int \angle s of Δ) $x = 23\frac{1}{2}^{\circ}$

(a)	$\hat{C}_1 = 90^{\circ}$ (\angle in semi-circle)	$\hat{C}_1 = 90^{\circ}$ (\angle in semi-circle)
(b)	$\hat{D} = 180^{\circ} - 38^{\circ}$ (opp. \angle s of cyclic quad) $\hat{D} = 142^{\circ}$	$\hat{D} = 142^{\circ}$ (opp. \angle s of cyclic quad)
(c)	$\hat{E}_1 = 180^\circ - (38^\circ + 90^\circ) (int. \angle s \text{ of } \Delta)$ $\hat{E}_1 = 52^\circ$ $\hat{B} = 180^\circ - 52^\circ \text{ (opp. } \angle s \text{ of cyclic quad)}$ $\hat{B} = 128^\circ$	$\hat{E}_1 = 52^{\circ}$ $\hat{B} = 128^{\circ}$ (opp. \angle s of cyclic quad)
(d)	AF = FC (line from centre perp. to chord) ∴ AF = 4 BC = 5 (given) ∴ BF = 3 units (Pythagoras)	AF = 4 (line from centre perp. to chord) ∴ BF = 3 units

(a)	RTP: Area $\triangle PQR = \frac{1}{2}pq \sin \hat{R}$	sketch $\sin \hat{R} = \frac{y}{x}$
	Determine: y-coordinate of Q	<i>r</i> .
	$\sin \hat{R} = \frac{y}{r}$	$y = p \sin \hat{R}$
	$y = r \sin \hat{R}$	Sub values in:
		$\Delta PQR = \frac{1}{2} base \times height$
	$y = p \sin \hat{R}$	
	Area $\triangle PQR = \frac{1}{2}base \times height$	
	$=\frac{1}{2}q(p\sin\hat{R})$	
	$=\frac{1}{2}pq\sin\hat{R}$	
(b)	Area $\triangle DBC = \frac{1}{2} \times 8 \times 8 \times \sin 60^{\circ}$ (equilateral \triangle)	sin60°
	=16√3	3×(15×8)
	Area of Prism = $3 \times (15 \times 8) + 2 \times (16\sqrt{3})$	16√3
	= 415,4 units	= 415,4

SECTION B

(a)	$1-2\sin^2 x = -\frac{1}{7}$ for $[x \in -180^\circ; 90^\circ]$	$\cos 2x = -\frac{1}{7}$
	$\cos 2x = -\frac{1}{7}$	Ref. angle: 98,2°
	Ref. angle: 98,2°	$2x = \pm 98, 2^{\circ} + k360^{\circ} (k \in \mathbb{Z})$
	$2x = \pm 98,2^{\circ} + k360^{\circ} (k \in \mathbb{Z})$	$x = \pm 49,1^{\circ} + k180^{\circ} (k \in Z)$
	$x = \pm 49,1^{\circ} + k180^{\circ} (k \in \mathbb{Z})$	<i>x</i> ∈ {−49,1°;49,1°;−130,9°}
	<i>x</i> ∈ {−49,1°; 49,1°; −130,9°}	
	Alternate:	<u> </u>
	$1-2\sin^2 x = -\frac{1}{7}$ for $[x \in -180^\circ; 90^\circ]$	$\sin x = \pm \sqrt{\frac{4}{7}}$
	$\sin x = \pm \sqrt{\frac{4}{7}}$, hence	Ref. angle: x = ±49,1° + k180° (k ∈ Z)
	V 7	$x = \pm 49,1^{\circ} + k360^{\circ} (k \in \mathbb{Z})$
	$x = \pm 49,1^{\circ} + k180^{\circ} \text{ (k } \in \mathbb{Z}\text{) or }$	<i>x</i> ∈ {−49,1°;49,1°;−130,9°}
	$x = \pm 49,1^{\circ} + k360^{\circ} \ (k \in \mathbb{Z})$	
	<i>x</i> ∈ {−49,1°; 49,1°; −130,9°}	
(b)	$= (-\cos\theta)(-\sin^3\theta) - (-\tan\theta)(\cos\theta)(\cos^3\theta)$	−sin³ __ θ
	$= \cos \theta . \sin^3 \theta + \left(\frac{\sin \theta}{\cos \theta}\right) (\cos \theta) (\cos^3 \theta)$	$-\tan\theta$ $\cos^3\theta$
	$=\cos\theta.\sin^3\theta+\sin\theta.\cos^3\theta$	$\left(\frac{\sin\theta}{\cos\theta}\right)$
	$= \sin\theta\cos\theta \Big(\sin^2\theta + \cos^2\theta\Big)$	(cosθ)
	$= \sin\theta\cos\theta(1)$	$= \sin\theta\cos\theta$
	$= \sin\theta\cos\theta$	

(a)	$(x+3)^2 + (y-4)^2 = 25$	$(x+3)^2 + (y-4)^2 = 25$
	C(-3;4) $r=5$	Completing the square
		C(-3;4)
		<i>r</i> = 5
(b)	For points A and B: sub. $x = 2y - 21$	
	into eq of circle	$(2y-21)^2 + y^2 +$
	$(2y-21)^2 + y^2 + 6(2y-21) - 8y = 0$	6(2y-21)-8y=0
	$4y^2 - 84y + 441 + y^2 + 12y - 126 - 8y = 0$	$y^2 - 16y + 63 = 0$
	$5y^2 - 80y + 315 = 0$	y = 7 or y = 9
	$y^2 - 16y + 63 = 0$	B(-7;7)
	(y-7)(y-9)=0	A(-3;9)
	y = 7 or y = 9	
	$\therefore B(x;7)$	
	∴B(-7;7)	
	A(x,9) sub into equations	
	∴ A (-3;9)	

IEB Copyright © 2022

(c)(1)	For D: let $y = 0$	D(-6;0)
(0)(1)	$x^2 + 6x = 0$	D(-0,0)
	x + 6x = 0 $x(x+6) = 0$	(0 0)
	x = 0 or $x = -6$	Midpt AD $\left(-\frac{9}{2}, \frac{9}{2}\right)$
	∴ D(−6;0)	(2 2)
	and A(-3;9) from (b)	
	Midpt AD $\left(\frac{-3-6}{2}; \frac{9+0}{2}\right)$	
	Midpt AD $\left(-\frac{9}{2}; \frac{9}{2}\right)$	
(c)(2)	Test for collinearity: If CB passes through the midpoint, then $m_{CB} = m_{CP}$	3
		$m_{CB} = -\frac{3}{4}$
	Using: B $\left(-7;7\right)$ and Centre $\left(-3;4\right)$	9 .
	$m_{CB} = \frac{4-7}{-3+7}$	$m_{CP} = \frac{\frac{9}{2} - 4}{-\frac{9}{2} + 3}$
		$\frac{m_{CP}}{-9} - \frac{9}{3} + 3$
	$m_{CB} = -\frac{3}{4}$	2
	0	$m_{CB} \neq m_{CP}$
	$\frac{9}{2}-4$	Conclusion
	$m_{CP} = \frac{\frac{9}{2} - 4}{-\frac{9}{2} + 3}$	
	2 10	
	$m_{CP} = -\frac{1}{3}$ therefore, not collinear since:	
	$m_{CB} \neq m_{CP}$	
	Alternate:	Straight line equation to test
	Determine the equation of the straight-line BC:	2
	Using: $B(-7;7)$ and $Centre(-3;4)$	$m_{CB} = -\frac{3}{4}$
	$m_{CB} = \frac{4-7}{-3+7}$	4
		7
	$m_{CB} = -\frac{3}{4}$	$c = \frac{7}{4}$
	$y = -\frac{3}{4}x + c$ sub. pt B(-7;7) or C(-3;4)	9
	$y = -\frac{1}{4}x + C$ Sub. pt $B(-1,1)$ of $C(-3,4)$	$LHS = \frac{9}{2}$
	$c = \frac{7}{4}$	Conclusion
	$y = -\frac{3}{4}x + \frac{7}{4}$	
	Sub. Midpt AD $\left(-\frac{9}{2}; \frac{9}{2}\right)$ to test if AD lies on CD	
	LHS = $\frac{9}{2}$ and RHS = $\frac{41}{8}$	
	LHS≠RHS therefore CB does not pass through	
	the midpoint of line AD.	

Circle (1): $(x+3)^2 + (y-4)^2 = 25$ (d) Centre (2): (3;-4) Circle (2): $(x-3)^2 + (y+4)^2 = 25$ Distance between centres Centre (1): (-3;4)=10 units Centre (2): (3;-4) Sum of radii: 5 + 5 Distance between centres: $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ = 10 units =10 units circles intersect/touch Sum of radii: 5 + 5 = 10 units The student is correct that the circles touch at a point since the distance between the centres is equal to the sum of the radii.

In ∆DCF:

$$DC = DF = 1.2 \text{ m}$$

Using cosine rule:

$$CF^2 = (1,2)^2 + (1,2)^2 - 2(1,2)(1,2)\cos 42^\circ$$

 $CF^2 = 0.7397 \, m$

$$CF = 0.86 \, m$$

In
$$\triangle ADF$$
: $(AF)^2 = (2,2)^2 + (1,2)^2$ (pythag)

$$AF = 2.506$$

AF=AC

In

$$\Delta ACF: \cos F \hat{A} C = \frac{(2,506)^2 + (2,506)^2 - (0,86)^2}{2(2,506)(2,506)}$$

 $\cos \hat{A}C = 0.9411...$

Alternate:

In ΔDCF :

$$DC = DF = 1.2 \text{ m}$$

$$\therefore D\hat{C}F = \frac{180^{\circ} - 42^{\circ}}{2} \quad (\angle s \text{ opp = sides})$$

$$\frac{\mathsf{CF}}{\sin 42^{\circ}} = \frac{1,2}{\sin 69^{\circ}}$$

 $CF = 0.86 \, m$

In
$$\triangle ADF$$
: $(AF)^2 = (2,2)^2 + (1,2)^2$ (pythag)

$$AF = 2,506$$

AF=AC

In

$$\Delta ACF: \;\; cosF\,\hat{A}\,C = \frac{(2,506)^2 + (2,506)^2 - (0,86)^2}{2(2,506)(2,506)}$$

$$\cos \hat{A} C = 0.9411...$$

$$CF^2 = (1,2)^2 + (1,2)^2 -$$

$$2(1,2)(1,2)\cos 42^{\circ}$$

$$CF = 0.86$$

$$(AF)^2 = (2,2)^2 + (1,2)^2$$

(pythag)

$$AF = 2,506$$

$$\frac{(2,506)^2 + (2,506)^2 - (0,86)^2}{2(2,506)(2,506)}$$

$$DC = DF = 1.2 \text{ m}$$

$$\therefore D\hat{C}F = \frac{180^{\circ} - 42^{\circ}}{2} \quad (\angle s \text{ opp = sides})$$

$$\frac{CF}{\sin 42^{\circ}} = \frac{1,2}{\sin 69^{\circ}}$$

$$CF = 0.86$$

$$(AF)^2 = (2,2)^2 + (1,2)^2$$

(pythag)

$$AF = 2.506$$

$$\frac{(2,506)^2 + (2,506)^2 - (0,86)^2}{2(2,506)(2,506)}$$

(a)	$1+\sin 2x+\sin^2 x-\cos^2 x$	(2sin x cos x)
	$1+2\sin x.\cos x+\cos 2x$	$(\cos^2 x - \sin^2 x)$
	$= \frac{1 + (2\sin x \cos x) + \sin^2 x - \cos^2 x}{1 + (2\sin x \cos x) + \sin^2 x - \cos^2 x}$	
	$1+2\sin x\cos x+(\cos^2 x-\sin^2 x)$	numerator: $\sin^2 x + \cos^2 x$
	$-\frac{\sin^2 x + \cos^2 x + 2\sin x \cos x + \sin^2 x - \cos^2 x}{2\sin^2 x + \cos^2 x + \sin^2 x - \cos^2 x}$	simplify $2\sin^2 x + 2\sin x \cos x$
	$-\frac{1}{\cos^2 x + \sin^2 x + 2\sin x \cos x + \cos^2 x - \sin^2 x}$	$= \frac{2\sin^2 x + 2\sin x \cos x}{2\cos^2 x + 2\sin x \cos x}$
	$= \frac{2\sin^2 x + 2\sin x \cos x}{1 + 2\sin x \cos x}$	factorise
	$2\cos^2 x + 2\sin x \cos x$	$2\sin x(\sin x + \cos x)$
	$=\frac{2\sin x(\sin x + \cos x)}{2}$	$=\frac{1}{2\cos x(\cos x + \sin x)}$
	$2\cos x(\cos x + \sin x)$,
	= tan <i>x</i> = RHS	
(b)	Not valid for: $2\cos x(\cos x + \sin x) = 0$ $2\cos x = 0$ or $\cos x + \sin x = 0$ For: $\cos x = 0$ and $\tan x$ undefined: $\therefore x = \pm 90^{\circ} + k360^{\circ}$ ($k \in \mathbb{Z}$) Alternate: $x = 90^{\circ} + k180^{\circ}$ ($k \in \mathbb{Z}$) or $\sin x = -\cos x$ $\frac{\sin x}{\cos x} = -1$ $\tan x = -1$ $x = -45^{\circ} + k180^{\circ}$ ($k \in \mathbb{Z}$)	$1+2\sin x\cos x+\cos 2x=0$ $\cos x=0 \text{ and } \tan x \text{ is undefined } \cos x+\sin x=0$ $k\in \mathbb{Z}$ General solutions
	For tan: $x = 90^{\circ} + k180^{\circ}$ $(k \in \mathbb{Z})$	

(a)	Prove: $\frac{CF}{FG} = \frac{GE}{EA}$ $\frac{CF}{FG} = \frac{CD}{DA} \text{(line } \text{ one side of } \Delta \text{) ;DF//AG}$ $\frac{CD}{DA} = \frac{GE}{EA} \text{(line } \text{ one side of } \Delta \text{) ;ED} GC$	$\frac{CF}{FG} = \frac{CD}{DA}$ (line one side of Δ) reason $\frac{CD}{DA} = \frac{GE}{EA}$
	$\therefore \frac{CF}{FG} = \frac{GE}{EA}$	(line \parallel one side of Δ) $\therefore \frac{CF}{FG} = \frac{GE}{EA}$
(b)	$\frac{CF}{FG} = \frac{2}{1} \text{(given)}$ $\therefore \frac{GE}{EA} = \frac{2}{1}$ but, $EA = \frac{1}{3}GA$ $\frac{EG}{\frac{1}{3}GA} = \frac{2}{1}$ $\therefore GE = \frac{2}{3}GA$	$\frac{GE}{EA} = \frac{2}{1}$ $\frac{EG}{\frac{1}{3}GA} = \frac{2}{1}$ $\therefore GE:GA = 2:3$
(c)	∴ GE:GA = 2:3 $GE = \frac{2}{3}GA \text{ (proven)}$ $GE = \frac{2}{3}(\frac{1}{2}AB) \text{ (G is the midpoint)}$ $GE = \frac{1}{3}AB$ ∴ DF = $\frac{1}{3}AB \text{ (DF = EG)}$ ∴ DF:AB = 1:3	$GE = \frac{2}{3}GA \text{ (proven)}$ $GE = \frac{2}{3}\left(\frac{1}{2}AB\right)$ (G is the midpoint) $DF = EG$ $\therefore DF:AB = 1:3$

(a)	Prove: ΔFEB is similar to ΔFGC	$\hat{E}_2 = \hat{G}_1$ (given)
	In ΔFEB and ΔFGC	۸ ۸
	$\hat{E}_2 = \hat{G}_1$ (given 90°)	$\hat{B}_1 = \hat{C}_2$ (tan-chord th)
	$\hat{B}_1 = \hat{C}_2$ (tan-chord th)	∴ ΔFEB /// ΔFGC
	∴ ΔFEB /// ΔFGC (∠;∠;∠)	(∠;∠;∠)
(b)	Prove: $FG^2 = FE \times FD$	
	In ΔFDC and ΔFGB	$\hat{C}_1 = \hat{B}_2$ (tan-chord th)
	$\hat{D}_2 = \hat{G}_2$ (given)	reason
	$\hat{C}_1 = \hat{B}_2$ (tan-chord th)	∴ ΔFDC /// ΔFGB
	∴ ΔFDC /// ΔFGB (∠;∠;∠)	(∠;∠;∠)
	$\frac{FD}{FG} = \frac{DC}{GB} = \frac{FC}{FB} \text{(similar } \Delta \text{s)}$	$\frac{FD}{AB} = \frac{DC}{AB} = \frac{FC}{AB}$ (similar Δ s)
		FG GB FB ` ´
	From (a): $\frac{FE}{FG} = \frac{EB}{GC} = \frac{FB}{FC}$	$\frac{FE}{FG} = \frac{EB}{GC} = \frac{FB}{FC}$
	$\frac{FD}{FG} = \frac{FG}{FE}$	$\frac{FD}{FG} = \frac{FG}{FE}$
	$\therefore FG^2 = FE \times FD$	$\therefore FG^2 = FE \times FD$

(a) Given: $2\cos 2\alpha + \sin 2\alpha = R\cos(2\alpha - \beta)$

 $RHS = R(\sin 2\alpha \sin \beta + \cos 2\alpha \cos \beta)$

 $= R \sin 2\alpha \sin \beta + R \cos 2\alpha \cos \beta$

 $\therefore 2\cos 2\alpha + \sin 2\alpha = R\cos 2\alpha \cos \beta + R\sin 2\alpha \sin \beta$

 $2\cos 2\alpha = R\cos 2\alpha \cos \beta$

 $\therefore R\cos\beta = 2$

and,

 $\sin 2\alpha = R \sin 2\alpha \sin \beta$

 $\therefore R \sin \beta = 1$

Square and Add:

 $R^2 \cos^2 \beta = 4$ and $R^2 \sin^2 \beta = 1$

 $R^2 \left(\cos^2 \beta + \sin^2 \beta\right) = 5$

 $R^2 = 5$

 $R = \sqrt{5}$ since R > 0

Solve for either: $R \sin \beta = 1$ and $R \cos \beta = 2$

 $\sin \beta = \frac{1}{\sqrt{5}}$

 $\therefore \beta = 26,6^{\circ}$

Alternate:

Given: $2\cos 2\alpha + \sin 2\alpha = R\cos(2\alpha - \beta)$

RHS=R($\sin 2\alpha \sin \beta + \cos 2\alpha \cos \beta$)

 $= R \sin 2\alpha \sin \beta + R \cos 2\alpha \cos \beta$

 $\therefore 2\cos 2\alpha + \sin 2\alpha = R\cos 2\alpha \cos \beta + R\sin 2\alpha \sin \beta$

 $2\cos 2\alpha = R\cos 2\alpha \cos \beta$

 $\therefore R\cos\beta = 2$

and,

 $\sin 2\alpha = R \sin 2\alpha \sin \beta$

 $\therefore R \sin \beta = 1$

 $\therefore \tan \beta = \frac{1}{2}$

 $\beta = 26.6^{\circ}$

 $\therefore R = \frac{2}{\cos 26.6^{\circ}} = 2,237 \approx 2,2$

 $R(\sin 2\alpha \sin \beta + \cos 2\alpha \cos \beta)$

 $R\cos\beta = 2$

 $R \sin \beta = 1$

 $R^2(\cos^2\beta + \sin^2\beta) = 5$

 $R = \sqrt{5}$

 $\sin \beta = \frac{1}{\sqrt{5}}$

 $\beta = 26,6^{\circ}$

 $R(\sin 2\alpha \sin \beta + \cos 2\alpha \cos \beta)$

 $R\cos\beta = 2$

 $R \sin \beta = 1$

 $\therefore \tan \beta = \frac{1}{2}$

 β = 26,6°

 $\therefore R = \frac{2}{\cos 26,6^{\circ}} = 2,237 \approx 2,2$

 $4\cos^2\alpha + \sin 2\alpha$

 $= 2(\cos 2\alpha + 1) + \sin 2\alpha$

 $=2\cos 2\alpha + \sin 2\alpha + 2$

Hence maximum is $\sqrt{5} + 2$

(b)

Alternate: Given: $2\cos 2\alpha + \sin 2\alpha = \operatorname{Rcos}(2\alpha - \beta)$ $\frac{2}{R}\cos 2\alpha + \frac{1}{R}\sin 2\alpha = \cos(2\alpha - \beta)$ $x^{2} + y^{2} = r^{2}$ $\therefore 2^{2} + 1^{2} = R^{2}$ $R = \sqrt{5}$ $2\cos 2\alpha + \sin 2\alpha = R\cos 2\alpha \cos \beta + R\sin 2\alpha \sin \beta$ $\sin 2\alpha = R\sin 2\alpha \sin \beta$ $1 = \sqrt{5}\sin \beta$ $\sin \beta = \frac{1}{\sqrt{5}}$ $\therefore \beta = 26,6^{\circ}$

Total: 150 marks

 $=2\cos 2\alpha + \sin 2\alpha + 2$

maximum is $\sqrt{5} + 2$