N_1 | Série statistique

Lors d'un relevé de mesures effectué sur un caractère quantitatif des individus d'une population,

l'ensemble des données collectées constitue une série statistique : c'est une liste de nombres que l'on appelle généralement en statistique des **valeurs**.

- Une série statistique à caractère quantitatif est dite ordonnée après que les valeurs collectées ont été rangées dans l'ordre croissant (ou décroissant).
- L'étendue désigne l'écart entre la plus grande et la plus petite des valeurs prises par le caractère.
- L'effectif total désigne le nombre de valeurs présents dans la série statistique.

D Modalités

Les différentes valeurs possibles pour un caractère s'appellent les modalités du caractère.

• Si le nombre p de modalités, notées x_1, x_2, \dots, x_p rangées dans l'ordre croissant, est <u>petit</u>, on repésente une série statistique par un **tableau d'effectifs** :

Modalités du caractère	x_1	x_2	•••	x_p
Nombre de valeurs par modalité (effectif)	n_1	n_2	• • •	n_p

L'étendue de cette série statistique vaut : x_p-x_1 . Cette série statistique possède n_1 valeurs toutes égales à x_1 et n_p valeurs toutes égales à x_p . L'effectif total vaut : $n_1+n_2+\cdots+n_p$

ullet Si le nombre p de modalités est grand, on remplace la première ligne par des intervalles de modalités appelés classe de valeurs. On choisit généralement le centre de la classe pour représenter celle-ci :

Classe de modalités du caractère	$[a_1;a_2[$	$[a_2;a_3[$	•••	$[a_p;a_{p+1}]$
Centre de classe	$c_1=\frac{a_1+a_2}{2}$	$c_2=\frac{a_2+a_3}{2}$	•••	$c_p = rac{a_p + a_{p+1}}{2}$
Nombre de valeurs par classe (effectif)	n_1	n_2	•••	n_p

L'étendue de cette série statistique vaut : a_p-a_1 . Cette série statistique possède n_1 valeurs comprises entre a_1 et a_2 et n_p valeurs comprises entre a_p et a_{p+1} . L'effectif total vaut : $n_1+n_2+\cdots+n_p$

- On a demandé aux élèves d'une classe de seconde de donner leur taille en *cm*. Voici leur réponse : **156** ,
 - $158 \ , \ 156$

 - a) Dresser un tableau d'effectifs de cette série statistique.
 - d) Déterminer l'étendue et l'effectif total de cette série statistique.
- On a demandé aux élèves d'une classe de seconde de donner le nombre d'enfant dans leur fatrie. Voici leur réponse : 1 , 1 , 1 , 2 , 2 , 2 , 2 , 3 , 2 , 4 , 2 , 3 , 2 , 2 , 2 , 1 , 1 , 1 , 4 , 2 , 1 , 1 , 2 , 3 , 3 , 3 ,
 - 2,2,4,2,3,2,1,4,1,2
 - a) Dresser un tableau d'effectifs de cette série statistique.
 - d) Déterminer l'étendue et l'effectif total de cette série statistique.
- On lance un dé à six faces plusieurs fois. Voici le numéro des faces obtenues : 1, 1, 3, 3, 4, 4, 2, 3, 2, 4, 5, 2, 6, 6, 6, 6, 6, 6, 1, 2, 4, 5, 4
 - a) Dresser un tableau d'effectifs de cette série statistique.
 - d) Déterminer l'étendue et l'effectif total de cette série statistique.
- Voici des températures relevées à six heures du matin au mois de janvier : -1, 2; 2; -2, 1; 1, 9; 0, 3; -0, 3; -2, 7; -2, 1; -0, 6; -1, 7; -2, 1; 0, 2; 0, 4; -2, 8; -0, 1; -0, 8
 - a) Dresser un tableau d'effectifs de cette série statistique.
 - d) Déterminer l'étendue et l'effectif total de cette série statistique.

N₂ Fréquence d'apparition

D Définition

On considère une série statistique comportant p modalités (ou p classes) d'effectifs n_1, \dots, n_p et d'effectif total $N=n_1+n_2+\dots+n_p$. La **fréquence d'apparition** de la modalité (ou de la classe) correspond à la proportion d'individus dont le caractère est égal à cette modalité (ou appartenant à cette classe). Ainsi, pour tout entier i compris entre 1 et $p: f_i = \frac{n_i}{N}$ et $f_1 + f_2 + \dots + f_p = 1$

Le tableau ci-contre indique la répartition du nombre d'enfasnts de moins de 25 ans dans les familles des Bouches-du-Rhône en 1999 et 2009.

- Construire un tableau avec les fréquence d'apparition en pourcentages (arrondir au dixième)
- Construire un diagramme en barres comparatif de 1999 et 2009.

Nombre de famille avec	2009	1999
Aucun enfant	244 918	220 109
1 enfant	131 271	124 597
2 enfants	109 776	102 135
3 enfants	35 907	35 708
4 enfants et plus	13 311	14 564
Total	535 183	497 113

N₃ Médiane

D Définition

Dans une série statistique ordonnée : une **médiane** partage les valeurs prises par le caractère en deux groupes de même effectif (soit 50% de l'effectif total).

La médiane correspond donc à la plus petite valeur prise par le caractère telle qu' $\frac{1}{2}$ des valeurs lui soient inférieures ou égales.

On a demandé à un groupe d'élèves de donner leur âge. Les réponses sont rassemblées ci-contre.

16; 15; 15; 16; 17; 16; 18; 18; 16; 17; 17; 15; 16; 17; 16; 17; 18; 16; 15; 18; 17

Déterminer la médiane (<u>effectif total impair</u>) en ordonnant la série statistique.

On a demandé à un groupe d'élèves de donner leur âge. Les réponses sont rassemblées ci-contre.

16; 15; 15; 16; 17; 16; 18; 18; 16; 17; 17; 15; 16; 17; 16; 17; 18; 16; 15; 18; 17

Déterminer la médiane (<u>effectif total pair</u>) en ordonnant la série statistique.

Les résultats d'un contrôle de vitesse dans une agglomération (vitesse limitée à $50 \ km/h$) sont consignés dans le tableau ci-contre.

Déterminer la médiane en construisant un tableau avec les fréquences d'apparition en pourcentages et les **fréquences cumulées** croissantes d'apparition en pourcentages.

Le tableau ci-contre indique la pointure d'un groupe d'élèves

4 Déterminer la médiane en construisant le polygone des **fréquences cumulées croissantes** d'apparition en pourcentages.

Vitesse en km/h	Effectif
[20; 50[104
[50; 70[54
[70; 80[13
[80; 90[7
[90; 100[5
[100; 130[2

Pointure	Effectif
35	78
36	82
37	43
38	21
39	17
40	5

N₄ Quartiles

D Définition

Le **premier quartile** d'une série statistique numérique est la plus petite valeur prise par le caractère telle qu'<u>au moins</u> 25% des valeurs lui soient inférieures ou égales. Le **troisième quartile** d'une série statistique numérique est la plus petite valeur prise par le caractère telle qu'<u>au moins</u> 75% des valeurs lui soient inférieures ou égales.

La médiane correspondrait au deuxième quartile soit a plus petite valeur prise par le caractère telle qu'au moins 50% des valeurs lui soient inférieures ou égales.

Le tableau ci-contre indique la répartition du nombre d'enfants de moins de 25 ans dans les familles des Bouches-du-Rhône en 1999 et 2009.

Déterminer la médiane, le premier et troisième quartiles en construisant un tableau avec les fréquences d'apparition en pourcentages et les **fréquences cumulées croissantes** d'apparition en pourcentages.

Le tableau ci-contre indique la répartition du nombre d'enfants de moins de 25 ans dans les familles des Bouches-du-Rhône en 1999 et 2009.

Déterminer la médiane, le premier et troisième quartiles en construisant le polygone des **fréquences cumulées croissantes** d'apparition en pourcentages.

Le tableau ci-contre indique la répartition du nombre d'enfants de moins de 25 ans dans les familles des Bouches-du-Rhône en 1999 et 2009.

Déterminer la médiane, le premier et troisième quartiles en construisant un tableau avec les fréquences d'apparition en pourcentages et les **fréquences cumulées croissantes** d'apparition en pourcentages.

Le tableau ci-contre indique la répartition du nombre d'enfants de moins de 25 ans dans les familles des Bouches-du-Rhône en 1999 et 2009.

Déterminer la médiane, le premier et troisième quartiles en construisant le polygone des **fréquences cumulées croissantes** d'apparition en pourcentages.

Nombre de famille avec	2009	1999
Aucun enfant	244 918	220 109
1 enfant	131 271	124 597
2 enfants	109 776	102 135
3 enfants	35 907	35 708
4 enfants et plus	13 311	14 564
Total	535 183	497 113

Nombre de famille avec	2009	1999
Aucun enfant	244 918	220 109
1 enfant	131 271	124 597
2 enfants	109 776	102 135
3 enfants	35 907	35 708
4 enfants et plus	13 311	14 564
Total	535 183	497 113

Nombre de famille avec	2009	1999
Aucun enfant	244 918	220 109
1 enfant	131 271	124 597
2 enfants	109 776	102 135
3 enfants	35 907	35 708
4 enfants et plus	13 311	14 564
Total	535 183	497 113

Nombre de famille avec	2009	1999
Aucun enfant	244 918	220 109
1 enfant	131 271	124 597
2 enfants	109 776	102 135
3 enfants	35 907	35 708
4 enfants et plus	13 311	14 564
Total	535 183	497 113

N₅ Moyenne

D Définition

La **moyenne** d'une série statistique se note $\overline{\boldsymbol{x}}$ et vaut :

$$ullet \ \overline{x} = rac{n_1 imes x_1 + n_2 imes x_2 + \cdots + n_p imes x_p}{n_1 + n_2 + \cdots + n_p}$$

où x_1, x_2, \cdots, x_p désignent les p modalités et n_1, n_2, \cdots, n_p désignent les effectifs correspondants.

$$ullet \ \overline{x} = rac{n_1 imes c_1 + n_2 imes c_2 + \cdots + n_p imes c_p}{n_1 + n_2 + \cdots + n_p}$$

où c_1, c_2, \dots, c_p désignent les centres des p classes de modalités et n_1, n_2, \dots, n_p désignent les effectifs correspondants.

D Fréquences

La **moyenne** d'une série statistique se note $\overline{\boldsymbol{x}}$ et vaut :

- $\overline{x}=f_1\times x_1+f_2\times x_2+\cdots+f_p\times x_p$ où x_1,x_2,\cdots,x_p désignent les p modalités et f_1,f_2,\cdots,f_p désignent les fréquences d'apparition correspondantes.
- $\overline{x}=f_1\times c_1+f_2\times c_2+\cdots+f_p\times c_p$ où c_1,c_2,\cdots,c_p désignent les centres des p classes de modalités et f_1,f_2,\cdots,f_p désignent les fréquences d'apparition correspondantes.