

Advanced Policy-Based methods. TRPO, PPO

Резяпкин Вячеслав

23.07.2019

Tinkoff.ru

Два типа алгоритмов оптимизации

1. Line search

- 1. Выбрать направление шага (антиградиент, например)
- 2. Выбрать длину шага (learning rate)

2. Trust region

- 1. Выбрать окрестность для поиска
- 2. Выбрать точку в окрестности

Trust region methods

Идея:

- Аппроксимировать исходную сложную функцию f(x) (нейронную сеть) более простой $m(x) \cong f(x)$
- Найти минимум простой приближающей функции m(x) в области, где она хорошо приближает f(x)

Trust region methods

• В качестве m(x) часто выбирается разложение функции в ряд Тейлора до второго порядка

$$f(x) \cong m(x) = f(x_k) + (x - x_k)\nabla f(x_k) + \frac{1}{2}(x - x_k)\nabla^2 f(x_k)(x - x_k)$$

Почему? Потому что задача оптимизации квадратичных функций хорошо изучена

• В качестве trust region используется Δ -окрестность точки x_k

$$||x-x_k||<\Delta$$

Алгоритм:

Повторять

- 1. решить $x_{k+1} = \underset{||x-x_k|| < \Delta}{\operatorname{argmin}} m(x)$
- 2. изменить ∆ при необходимости

Trust region methods

Если гессиан $\mathbf{H} = \nabla^2 \mathbf{f}(\mathbf{x_k})$ положительно определенный, то это хорошо, ведь:

- Задача выпуклая

Есть аналитическое решение
$$\mathbf{x}^* = x_k - \mathbf{H}^{-1} \nabla f(x_k)$$
 $m(x) = f(x_k) + (x - x_k) \nabla f(x_k) + \frac{1}{2} (x - x_k) \mathbf{H}(x - x_k)$ $\nabla m(x) = \nabla f(x_k) + \mathbf{H}(x - x_k) = 0$ $\mathbf{x}^* = x_k - \mathbf{H}^{-1} \nabla f(x_k)$

Иначе задача невыпуклая, но существуют эффективные методы, основанные на градиентном спуске

Policy gradients

$$J(\theta) = \mathbb{E}_{\tau \sim \pi_{\theta}}[R(\tau)] = \mathbb{E}_{s_0 \sim p_0}[V(s_0)] \rightarrow max$$

Собираем траектории и оцениваем градиент

Обучение модели:

- 1. Сэмплирование траекторий
- 2. Обновление параметров

$$\theta_{k+1} = \theta_k + \alpha \nabla_{\theta} J(\theta)$$

$$abla J(heta) = \mathbb{E}_{\, au\sim\,\pi_{ heta}} \sum_t r_t * \sum_t au \log \pi(s_t, a_t)$$
 $= \mathbb{E}_{\, au\sim\,\pi_{ heta}} \sum_{t=1}^T au \log \pi(s_t, a_t) * \sum_{t'=t}^T r_t$

Определение Q-функции

 $= \mathbb{E}_{\, au\sim\,\pi_{ heta}} \sum_t ext{ } Q(s_t, a_t) * au \log \pi(s_t, a_t) =$

бейзлайн

 $\mathbb{E}_{\, au\sim\,\pi_{ heta}} \sum_t ext{ } Q(s_t, a_t) - V(s_t) * au \log \pi(s_t, a_t) =$

Определение Advantage

 $\mathbb{E}_{\, au\sim\,\pi_{ heta}} \sum_t ext{ } A(s_t, a_t) * au \log \pi(s_t, a_t)$

Policy gradients. Baseline

$$\mathbb{E}_{\tau \sim \pi_{\theta}} \sum_{t} Q(s_{t}, a_{t}) * \nabla \log \pi(s_{t}, a_{t}) =$$

$$\mathbb{E}_{\tau \sim \pi_{\theta}} \sum_{t} (Q(s_{t}, a_{t}) - V(s_{t})) * \nabla \log \pi(s_{t}, a_{t})$$

бейзлайн

$$\mathbb{E}_{\tau \sim \pi_{\theta}} \sum_{t} V(s_{t}) * \nabla \log \pi(s_{t}, a_{t}) =$$

$$\sum_{t} \mathbb{E}_{s_{t} \sim p, \pi_{\theta}} \mathbb{E}_{a_{t} \sim \pi_{\theta}(s_{t})} V(s_{t}) * \nabla \log \pi(s_{t}, a_{t}) =$$

$$\sum_{t} \mathbb{E}_{s_{t} \sim p, \pi_{\theta}} V(s_{t}) \mathbb{E}_{a_{t} \sim \pi_{\theta}(s_{t})} \nabla \log \pi(s_{t}, a_{t}) =$$

$$\sum_{t} \mathbb{E}_{s_{t} \sim p, \pi_{\theta}} V(s_{t}) \nabla \mathbb{E}_{a_{t} \sim \pi_{\theta}(s_{t})} \pi(s_{t}, a_{t}) =$$

$$\sum_{t} \mathbb{E}_{s_{t} \sim p, \pi_{\theta}} V(s_{t}) \nabla \mathbb{E}_{a_{t} \sim \pi_{\theta}(s_{t})} \pi(s_{t}, a_{t}) =$$

$$\sum_{t} \mathbb{E}_{s_{t} \sim p, \pi_{\theta}} V(s_{t}) \nabla \mathbb{E}_{a_{t} \sim \pi_{\theta}(s_{t})} \pi(s_{t}, a_{t}) =$$

Можно доказать равенство – связь оценок двух разных политик:

$$J(\tilde{\pi}) = J(\pi_{old}) + \mathbb{E}_{\tau \sim \tilde{\pi}} \left[\sum_{t} A_{\pi_{old}}(s_t, a_t) \right]$$

Ожидаемая награда с новой политикой

Ожидаемая награда со старой политикой

Траектории сэмплируются новой политикой

Оценка Advantage функции по старой политике

Доказывать не будем, но убедимся, что оно выполняется при равенстве политик

$$A(s,a) = Q(s,a) - V(s)$$

$$\mathbb{E}_{a \sim \pi_{\theta}(s)} A(s,a) = \mathbb{E}_{a \sim \pi_{\theta}(s)} [Q(s,a) - V(s)] =$$

$$\mathbb{E}_{a \sim \pi_{\theta}(s)} [Q(s,a)] - V(s) = V(s) - V(s) = 0$$

Можно доказать равенство – связь оценок двух разных политик:

$$J(\tilde{\pi}) = J(\pi_{old}) + \mathbb{E}_{\tau \sim \tilde{\pi}} \left[\sum_{t} A_{\pi_{old}}(s_t, a_t) \right]$$

Ожидаемая награда с новой политикой

Ожидаемая награда со старой попитикой

Траектории сэмплируются новой политикой

Оценка Advantage функции по старой политике

Как это максимизировать?

Мат.ожидание берется по траекториям новой политики, которых у нас еще нет.

Зато есть старые траектории. Можно ли как-то оценить эту функцию на старых траекториях?

Предыдущее неравенство можно переписать как:

$$J(\tilde{\pi}) = J(\pi_{old}) + \sum_{s} \rho_{\tilde{\pi}}(s) \sum_{a} \tilde{\pi}(a|s) A_{\pi}(s,a)$$

Discounted visitation frequency

$$\rho_{\pi}(s) = P(s_0 = s) + \gamma P(s_1 = s) + \gamma^2 P + \cdots$$

$$J(\tilde{\pi}) = J(\pi_{old}) + \sum_{s} \rho_{\tilde{\pi}}^{1}(s) \sum_{a} \tilde{\pi}(a|s) A_{\pi}(s, a)$$

Discounted visitation frequency

$$\rho_{\pi}(s) = P(s_0 = s) + \gamma P(s_1 = s) + \gamma^2 P + \cdots$$

importance sampling
$$E_{x \sim p(x)}[f(x)] = \int p(x)f(x)dx$$

$$= \int \frac{q(x)}{q(x)}p(x)f(x)dx$$

$$= \int q(x)\frac{p(x)}{q(x)}f(x)dx$$

$$= E_{x \sim q(x)}\left[\frac{p(x)}{q(x)}f(x)\right]$$

$$\mathbf{2} \quad \mathbb{E}_{a \sim \pi_{new}(s)} A_{\pi_{old}}(s, a) = \mathbb{E}_{a \sim \pi_{old}(s)} \frac{\pi_{new}(s)}{\pi_{old}(s)} A_{\pi_{old}}(s, a)$$

$$J(\tilde{\pi}) = J(\pi_{old}) + \sum_{s} \rho_{\tilde{\pi}}(s) \sum_{a} \tilde{\pi}(a|s) A_{\pi}(s, a)$$

$$L(\tilde{\pi}) = J(\pi_{old}) + \sum_{s} \rho_{\pi}(s) \sum_{a} \tilde{\pi}(a|s) A_{\pi}(s, a)$$

L – локальная аппроксимация J

$$L(\tilde{\pi}) = J(\pi_{old}) + \sum_{s} \rho_{\pi}(s) \sum_{a} \tilde{\pi}(a|s) A_{\pi}(s,a)$$

L – локальная аппроксимация J в доверительной области параметров

Trust region $\pi_{\theta'}(s|a) \text{ does not change dramatically.}$

$$J(\tilde{\pi}) = J(\pi_{old}) + \sum_{s} \rho_{\tilde{\pi}}(s) \sum_{a} \tilde{\pi}(a|s) A_{\pi}(s,a)$$

Trust Region trick:

If
$$E_s \Big[KL(\pi \mid\mid \tilde{\pi}) \Big]$$
 is small,

$$J(\tilde{\pi}) \approx J(\pi) + \sum_{s} \rho_{\pi}(s) \sum_{a} \tilde{\pi}(a|s) A_{\pi}(s,a)$$

Дивергенция Кульбака-Лейблера:

$$D_{KL}(p||q) = \int_{X} p(x) \log \frac{p(x)}{q(x)} dx$$

$$J(\pi_{old}) = L(\pi_{old})$$
 $\nabla J \Big|_{\pi = \pi_{old}} = \nabla L \Big|_{\pi = \pi_{old}}$ дз

$$L(\tilde{\pi}) = J(\pi_{old}) + \sum_{s} \rho_{\pi}(s) \sum_{a} \tilde{\pi}(a|s) A_{\pi}(s,a)$$

Можно показать, что выполняется неравенство

Дивергенция Кульбака-Лейблера:

$$D_{KL}(p||q) = \int_{X} p(x) \log \frac{p(x)}{q(x)} dx$$

$$J(\tilde{\pi}) \ge L(\tilde{\pi}) - CD_{KL}^{\max}(\pi, \tilde{\pi})$$

$$C = \frac{4\gamma}{(1-\gamma)^2} \max_{s,a} |A(s,a)|$$

$$J(\pi_{old}) = L(\pi_{old})$$
 $abla J \Big|_{\pi=\pi_{old}} =
abla L \Big|_{\pi=\pi_{old}}$ дз

Это означает, что максимизируя правую часть неравенства, мы автоматически максимизируем левую часть

$$L(\tilde{\pi}) = J(\pi_{old}) + \sum_{s} \rho_{\pi}(s) \sum_{a} \tilde{\pi}(a|s) A_{\pi}(s,a)$$

$$J(\tilde{\pi}) \ge L(\tilde{\pi}) - CD_{KL}^{\max}(\pi, \tilde{\pi})$$

Гарантированное улучшение политики:

$$\pi = \arg\max_{\tilde{\pi}} \left[L(\tilde{\pi}) - CD_{KL}^{\max}(\pi, \tilde{\pi}) \right]$$

На практике используется средняя дивергенция вместо максимальной

$$\max_{\theta} imize L(\theta) - C.\overline{D_{KL}}(\theta_{old}, \theta)$$

Trust region оптимизационная задача:

Приближение L приближение KL
$$\max_{\theta} ze\ g\ .\ (\theta-\theta_{old}) - \frac{c}{2}(\theta-\theta_{old})^T F(\theta-\theta_{old})$$
 where, $g=\frac{\partial}{\partial \theta} L(\theta)|_{\theta=\theta_{old}}$,
$$F=\frac{\partial^2}{\partial^2 \theta} \overline{D_{KL}}(\theta_{old},\theta)|_{\theta=\theta_{old}}$$

Где член первого порядка ряда Тейлора у дивергенции и нулевого порядка у обоих членов?

$$\begin{aligned} & \max_{\theta} ize \ g \ . \ (\theta - \theta_{old}) - \frac{c}{2} (\theta - \theta_{old})^T F(\theta - \theta_{old}) \\ & \text{where, } g = \frac{\partial}{\partial \theta} L(\theta)|_{\theta = \theta_{old}}, \qquad F = \frac{\partial^2}{\partial^2 \theta} \overline{D_{KL}}(\theta_{old}, \theta)|_{\theta = \theta_{old}} \end{aligned}$$

Решение

$$\theta - \theta_{old} = \frac{1}{c}F^{-1}g$$

Не хочется обращать гессиан Воспользуемся тем, что мы хотим посчитать произведение $F^{-1}g$ Оно равняется решению уравнения Fx=g Эффективно решается с помощью метода сопряженных градиентов

Как выбирать С?

- Unconstrained problem: $\max_{\theta} L(\theta) C.\overline{D_{KL}}(\theta_{old}, \theta)$
- Constrained problem: $\max_{\theta} L(\theta)$ subject to $C.\overline{D_{KL}}(\theta_{old},\theta) \leq \delta$
- δ is a hyper-parameter, remains fixed over whole learning process
- \bullet Solve constrained quadratic problem: compute $F^{-1}g$ and then rescale step to get correct KL
 - $\max_{\theta} p = g \cdot (\theta \theta_{old})$ subject to $\frac{1}{2}(\theta \theta_{old})^T F(\theta \theta_{old}) \le \delta$
 - Lagrangian: $\mathcal{L}(\theta, \lambda) = g$. $(\theta \theta_{old})^{T} \frac{\lambda}{2} [(\theta \theta_{old})^{T} F(\theta \theta_{old}) \delta]$
 - Differentiate wrt θ and get $\theta \theta_{old} = \frac{1}{\lambda} F^{-1} g$
 - We want $\frac{1}{2}s^TFs = \delta$
 - Given candidate step $s_{unscaled}$ rescale to $s = \sqrt{\frac{2\delta}{s_{unscaled}.(Fs_{unscaled})}} s_{unscaled}$

Linesearch

Из-за

- перехода от С к δ
- приближенных вычислений (сопряженные градиенты, Тейлор)
- семплирования вместо матожиданий
- ...

данный шаг может оказаться слишком большим

Проверим необходимые условия и, если они не выполняются, уменьшим длину, не меняя направления

$$\theta_{k+1} = \theta_k + \sqrt{\frac{2\delta}{g^T H^{-1} g}} H^{-1} g$$

$$\theta_{k+1} = \theta_k + \alpha^j \sqrt{\frac{2\delta}{g^T H^{-1} g}} H^{-1} g$$

ј – мин. целое при котором:

$$\mathcal{L}(\theta_k, \theta_{k+1}) > 0$$

$$\overline{D}_{KL}(\theta_{k+1} || \theta_k) \le \delta$$

Algorithm 1 Trust Region Policy Optimization

- 1: Input: initial policy parameters θ_0 , initial value function parameters ϕ_0
- 2: Hyperparameters: KL-divergence limit δ , backtracking coefficient α , maximum number of backtracking steps K
- 3: **for** k = 0, 1, 2, ... **do**
- 4: Collect set of trajectories $\mathcal{D}_k = \{\tau_i\}$ by running policy $\pi_k = \pi(\theta_k)$ in the environment.
- 5: Compute rewards-to-go \hat{R}_t .
- 6: Compute advantage estimates, \hat{A}_t (using any method of advantage estimation) based on the current value function V_{ϕ_k} .
- 7: Estimate policy gradient as

$$\hat{g}_k = \frac{1}{|\mathcal{D}_k|} \sum_{\tau \in \mathcal{D}_k} \sum_{t=0}^T |\nabla_{\theta} \log \pi_{\theta}(a_t|s_t)|_{\theta_k} \hat{A}_t.$$

8: Use the conjugate gradient algorithm to compute

$$\hat{x}_k \approx \hat{H}_k^{-1} \hat{g}_k,$$

where \hat{H}_k is the Hessian of the sample average KL-divergence.

9: Update the policy by backtracking line search with

$$\theta_{k+1} = \theta_k + \alpha^j \sqrt{\frac{2\delta}{\hat{x}_k^T \hat{H}_k \hat{x}_k}} \hat{x}_k,$$

where $j \in \{0, 1, 2, ...K\}$ is the smallest value which improves the sample loss and satisfies the sample KL-divergence constraint.

10: Fit value function by regression on mean-squared error:

$$\phi_{k+1} = \arg\min_{\phi} \frac{1}{|\mathcal{D}_k|T} \sum_{\tau \in \mathcal{D}_k} \sum_{t=0}^{T} \left(V_{\phi}(s_t) - \hat{R}_t \right)^2,$$

typically via some gradient descent algorithm.

Результаты

Результаты

	B. Rider	Breakout	Enduro	Pong	Q*bert	Seaquest	S. Invaders
Random Human (Mnih et al., 2013)	354 7456	1.2 31.0	0 368	$-20.4 \\ -3.0$	157 18900	110 28010	179 3690
Deep Q Learning (Mnih et al., 2013)	4092	168.0	470	20.0	1952	1705	581
UCC-I (Guo et al., 2014)	5702	380	741	21	20025	2995	692
TRPO - single path TRPO - vine	1425.2 859.5	10.8 34.2	534.6 430.8	20.9 20.9	1973.5 7732.5	1908.6 788.4	568.4 450.2

Адаптивное изменение параметра регуляризации

• Using several epochs of minibatch SGD, optimize the KL-penalized objective

$$L^{KLPEN}(\theta) = \hat{\mathbb{E}}_t \left[\frac{\pi_{\theta}(a_t \mid s_t)}{\pi_{\theta_{\text{old}}}(a_t \mid s_t)} \hat{A}_t - \beta \operatorname{KL}[\pi_{\theta_{\text{old}}}(\cdot \mid s_t), \pi_{\theta}(\cdot \mid s_t)] \right]$$

- Compute $d = \hat{\mathbb{E}}_t[\mathrm{KL}[\pi_{\theta_{\mathrm{old}}}(\cdot \mid s_t), \pi_{\theta}(\cdot \mid s_t)]]$
 - If $d < d_{\text{targ}}/1.5$, $\beta \leftarrow \beta/2$
 - If $d > d_{\text{targ}} \times 1.5$, $\beta \leftarrow \beta \times 2$

Proximal Policy Optimization(PPO)

По-прежнему будем максимизировать приближение L, но теперь проще

$$\underset{\theta}{\text{maximize}} \quad \hat{\mathbb{E}}_t \left[\frac{\pi_{\theta}(a_t|s_t)}{\pi_{\theta_{\text{old}}}(a_t|s_t)} \hat{A}_t \right]$$

$$\mathbf{r}_t(\theta) = \frac{\pi_{\theta}(a_t|s_t)}{\pi_{\theta_{\text{old}}}(a_t|s_t)}$$

Proximal Policy Optimization(PPO)

Будем ограничивать шаги в сторону улучшения политики

maximize
$$\hat{\mathbb{E}}_{t} \left[\frac{\pi_{\theta}(a_{t}|s_{t})}{\pi_{\theta_{\text{old}}}(a_{t}|s_{t})} \hat{A}_{t} \right] \qquad \qquad \mathbf{r}_{t}(\theta) = \frac{\pi_{\theta}(a_{t}|s_{t})}{\pi_{\theta_{\text{old}}}(a_{t}|s_{t})}$$
$$L^{CLIP}(\theta) = \hat{\mathbb{E}}_{t} \left[\min(r_{t}(\theta) \hat{A}_{t}, \text{clip}(r_{t}(\theta), 1 - \epsilon, 1 + \epsilon) \hat{A}_{t}) \right]$$

Результаты

algorithm	avg. normalized score
No clipping or penalty	-0.39
Clipping, $\epsilon = 0.1$	0.76
Clipping, $\epsilon = 0.2$	0.82
Clipping, $\epsilon = 0.3$	0.70
Adaptive KL $d_{\text{targ}} = 0.003$	0.68
Adaptive KL $d_{\text{targ}} = 0.01$	0.74
Adaptive KL $d_{\text{targ}} = 0.03$	0.71
Fixed KL, $\beta = 0.3$	0.62
Fixed KL, $\beta = 1$.	0.71
Fixed KL, $\beta = 3$.	0.72
Fixed KL, $\beta = 10$.	0.69

Table 1: Results from continuous control benchmark. Average normalized scores (over 21 runs of the algorithm, on 7 environments) for each algorithm / hyperparameter setting . β was initialized at 1.

TRPO PPO

- Works for smaller models
- Second-order optimization

- Works for big models
- First-order optimization