Concours commun Mines-Ponts

SECONDE EPREUVE. FILIERE MP

I. Préliminaires

1) L'application $t: M \mapsto {}^tM$ est un endomorphisme de $\mathcal{M}_n(\mathbb{R})$ et le polynôme $X^2-1=(X-1)(X+1)$ est annulateur de t. Comme les polynômes X-1 et X+1 sont premiers entre eux, le théorème de décomposition des noyaux fournit $\mathcal{M}_n(\mathbb{R}) = \operatorname{Ker}(t-\operatorname{Id}_{\mathcal{M}_n(\mathbb{R})}) \oplus \operatorname{Ker}(t+\operatorname{Id}_{\mathcal{M}_n(\mathbb{R})})$ ou encore

$$\mathcal{M}_n(\mathbb{R}) = \mathcal{S}_n(\mathbb{R}) \oplus \mathcal{A}_n(\mathbb{R}).$$

2) Soient $M = (\mathfrak{m}_{k,l})_{1 \leq k,l \leq n} \in \mathcal{M}_n(\mathbb{R})$ puis $(\mathfrak{i},\mathfrak{j}) \in [\![1,n]\!]^2$.

$$ME_{i,j} = \sum_{1 \le k,l \le n} m_{k,l} E_{k,l} E_{i,j} = \sum_{1 \le k,l \le n} \delta_{l,i} m_{k,l} E_{k,j} = \sum_{k=1}^n m_{k,i} E_{k,j},$$

et donc

$$\mathrm{tr}(\mathsf{ME}_{\mathfrak{i},\mathfrak{j}}) = \sum_{k=1}^n \mathfrak{m}_{k,\mathfrak{i}} \mathrm{tr}(\mathsf{E}_{k,\mathfrak{j}}) = \sum_{k=1}^n \delta_{k,\mathfrak{j}} \mathfrak{m}_{k,\mathfrak{i}} = \mathfrak{m}_{\mathfrak{j},\mathfrak{i}}.$$

$$\forall M \in \mathcal{M}_n(\mathbb{R}); \ \forall (i,j) \in [\![1,n]\!]^2, \ \mathrm{tr}(ME_{i,j}) = m_{j,i}.$$

 $\textbf{3)} \ \mathrm{Soit} \ M \in \mathcal{M}_n(\mathbb{R}) \ \mathrm{telle} \ \mathrm{que} \ \forall T \in \mathcal{A}_n(\mathbb{R}), \ \mathrm{tr}(MT) = 0. \ \mathrm{En} \ \mathrm{particulier}, \ \mathrm{pour} \ (\mathfrak{i},\mathfrak{j}) \in [\![1,n]\!]^2 \ \mathrm{tel} \ \mathrm{que} \ \mathfrak{i} \neq \mathfrak{j}, \ \mathrm{puisque} \ \mathsf{E}_{\mathfrak{i},\mathfrak{j}} - \mathsf{E}_{\mathfrak{j},\mathfrak{i}} \in \mathcal{A}_n(\mathbb{R}),$

$$0 = \operatorname{tr}(M(E_{i,i} - E_{i,i})) = \operatorname{tr}(ME_{i,i}) - \operatorname{tr}(ME_{i,i}) = m_{i,i} - m_{i,i}.$$

Ainsi, pour $i \neq j$, $m_{j,i} = m_{i,j}$ et donc $M \in \mathcal{S}_n(\mathbb{R})$.

$$\forall M \in \mathcal{M}_n(\mathbb{R}), \; ((\forall T \in \mathcal{A}_n(\mathbb{R}), \; \mathrm{tr}(MT) = 0) \Rightarrow M \in \mathcal{S}_n(\mathbb{R})).$$

4) Soit $T \in \mathcal{A}_n(\mathbb{R})$. L'application t est un endomorphisme de l'espace $\mathcal{M}_n(\mathbb{R})$ qui est de dimension finie sur \mathbb{R} et donc t est continue sur $\mathcal{M}_n(\mathbb{R})$. On en déduit que

$${}^{t}e^{T} = {}^{t}\left(I + \sum_{p=1}^{+\infty} \frac{T^{p}}{p!}\right) = I + \sum_{p=1}^{+\infty} \frac{({}^{t}T)^{p}}{p!} = I + \sum_{p=1}^{+\infty} \frac{(-T)^{p}}{p!} = e^{-T} = (e^{T})^{-1}.$$

Ainsi, e^{T} est inversible d'inverse e^{T} et donc e^{T} est une matrice orthogonale.

$$\forall T \in \mathcal{A}_n(\mathbb{R}), \ e^T \in \mathcal{O}_n(\mathbb{R}).$$

5) Soit $M \in \mathcal{M}_n(\mathbb{R})$. On sait que la norme subordonnée $\| \cdot \|$ est sous-multiplicative. Pour $s \in \mathbb{R}^*$, on a donc

$$\begin{split} \frac{1}{s^2} \|e^{sM} - I - sM\| &= \frac{1}{s^2} \left\| \sum_{p=2}^{+\infty} \frac{s^p}{p!} M^p \right\| \\ &\leq \frac{1}{s^2} \sum_{p=2}^{+\infty} \frac{|s|^p}{p!} \|M\|^p = \frac{1}{s^2} (\|e^{|s|\|M\|} - 1 - |s|\|M\|). \end{split}$$

Cette dernière expression tend vers $\frac{\|\mathbf{M}\|^2}{2}$ et est en particulier bornée sur un voisinage de 0.

 $\mathrm{Ainsi},\, \frac{1}{s^2}(e^{sM}-I-sM)\underset{s\to 0}{=} O(1) \,\, \mathrm{ou} \,\, \mathrm{encore} \,\, e^{sM}\underset{s\to 0}{=} \,\, I+sM+O(s^2).$

$$\forall M \in \mathcal{M}_n(\mathbb{R}), \ e^{sM} \underset{s \to 0}{=} I + sM + O(s^2).$$

6) Soit $j \in [0,n]$. L'application de $\mathcal{M}_n(\mathbb{R})$ dans \mathbb{R}^{n^2} qui à une matrice M associe le n^2 -uplet de ses coefficients est continue sur $\mathcal{M}_n(\mathbb{R})$ car linéaire et l'application qui à $(m_{1,1},\ldots,m_{n,n})$ associe $\alpha_j(M)$ est continue car polynomiale en les $m_{i,j}$. On en déduit que

$$\forall j \in [\![0,n]\!], \ l\text{`application } M \mapsto \alpha_j(M) \ \mathrm{est \ continue \ sur} \ \mathcal{M}_n(\mathbb{R}).$$

7) Soit $M \in \mathcal{M}_n(\mathbb{R})$. Pour $s \in \mathbb{R}$, posons $f(s) = \det(I + sM)$. f est un polynôme en s et en particulier

$$f(s) \underset{s \to 0}{=} f(0) + sf'(0) + O(s^2) = 1 + sf'(0) + O(s^2).$$

Maintenant, on sait que si $A = (a_{i,j})_{1 \leq i,j \leq n}$ où les $a_{i,j}$ sont des fonctions dérivables sur un intervalle I de \mathbb{R} , alors la fonction $x \mapsto \det(A(x))$ est dérivable sur I et

$$(\det(A))' = \sum_{i=1}^n \det(C_1, \dots, C_i', \dots, C_n),$$

où les C_i sont les colonnes de A. Redémontrons-le. det A est dérivable sur I en tant que combinaison linéaire de produits de fonctions dérivables sur I et

$$\begin{split} (\det\! A)' &= \left(\sum_{\sigma \in S_n} \epsilon(\sigma) \alpha_{\sigma(1),1} \ldots \alpha_{\sigma(n),n}\right)' = \sum_{\sigma \in S_n} \epsilon(\sigma) \sum_{i=1}^n \alpha_{\sigma(1),1} \ldots \alpha_{\sigma(i),i}' \ldots \alpha_{\sigma(n),n} \\ &= \sum_{i=1}^n \left(\sum_{\sigma \in S_n} \epsilon(\sigma) \alpha_{\sigma(1),1} \ldots \alpha_{\sigma(i),i}' \ldots \alpha_{\sigma(n),n}\right) = \sum_{i=1}^n \det(C_1,\ldots,C_i',\ldots,C_n). \end{split}$$

On note maintenant C_1,\ldots,C_n les colonnes de M et on note $(e_i)_{1\leq i\leq n}$ la base canonique de $\mathcal{M}_{n,1}(\mathbb{R})$. Pour $s\in\mathbb{R}$, on a alors $f(s)=\det(e_i+sC_i)_{1\leq i\leq n}$ et donc

$$f'(0)=\sum_{i=1}^n \det(e_1,\ldots,C_i,\ldots,e_n)=\sum_{i=1}^n m_{i,i}=\operatorname{tr}(M).$$

On a montré que

$$\forall M \in \mathcal{M}_n(\mathbb{R}), \; \det(I+sM) \underset{s \to 0}{=} 1 + s \; \mathrm{tr}(M) + O(s^2).$$

Ensuite, si on ajoute à chaque coefficient de la matrice I+sM une expression dominée par s^2 quand s tend vers 0, les termes de degrés 0 et 1 du développement précédent ne sont pas modifiés et donc

$$\forall M \in \mathcal{M}_n(\mathbb{R}), \; \det(I+sM+O(s^2)) \underset{s \to 0}{=} 1 + s \; \mathrm{tr}(M) + O(s^2).$$

8) Soit $M \in \mathcal{M}_n(\mathbb{R}) \setminus \mathcal{GL}_n(\mathbb{R})$. Notons $(\lambda_1, \ldots, \lambda_n)$ la famille des valeurs propres de M dans \mathbb{C} . Il existe alors T matrice triangulaire supérieure complexe dont les coefficients diagonaux sont les λ_i et P matrice inversible à coefficients dans \mathbb{C} telles que $M = PTP^{-1}$. Soient $D = \operatorname{diag}(d_i)_{1 \le i \le n} \in \mathcal{D}_n(\mathbb{C})$ puis $N = PDP^{-1}$. Pour tout réel s, on a

$$\det(M+sN) = \det(T+sD) = \prod_{i=1}^n (\lambda_i + sd_i).$$

On suppose alors avoir numéroté les λ_i de sorte que les k premiers sont des réels strictement positifs, les l suivants sont des réels strictement négatifs, les m suivants sont nuls et les 2p derniers sont non réels et 2 à 2 conjugués (M étant à coefficients réels), les entiers k, l et p pouvant être nuls et l'entier m étant au moins égal à 1 (puisque M n'est pas inversible).

On prend alors pour D la matrice $D_0=\operatorname{diag}(1,\ldots,1,-1,\ldots,-1,(-1)^1,1,\ldots,1,0,\ldots,0)$ où on a écrit tout d'abord k fois le 1, l fois le -1 puis $(-1)^1$ puis m-1 fois le 1 et enfin 2p fois le 0. On pose aussi $N_0=PD_0P^{-1}$.

Dans le produit $\prod_{i=1}^{n} (\lambda_i + sd_i)$, les k premières parenthèses sont strictement positives sur $]0, +\infty[$, le signe du produit des l

facteurs suivants sur $]0,+\infty[$ est $(-1)^k$ et comme le k+l+1-ème facteur est $(-1)^k s$, le produit des facteurs $n^o k+1,\ldots,k+l+1$ est strictement positif sur $]0,+\infty[$. On trouve ensuite s^{m-1} qui est strictement positif sur $]0,+\infty$ et en fin le produit des modules de complexes non réels qui est un réel strictement positif.

Pour ce choix de
$$N_0$$
, on $a: \forall s>0$, $\det(M+sN_0)=\prod_{i=1}^n(\lambda_i+sd_i)>0$.

9) Dans tous les cas, on a fourni une matrice N_0 diagonalisable dans $\mathbb C$ car semblable dans $\mathbb C$ à une matrice diagonale. Si maintenant, M est diagonalisable dans $\mathbb R$, on peut choisir P réelle de sorte que N_0 est semblable dans $\mathbb R$ à une matrice diagonale et donc est diagonalisable (dans $\mathbb R$).

Si de plus, M est symétrique réelle, on peut choisir P orthogonale réelle. Mais alors, N_0 est orthogonalement semblable à une matrice diagonale réelle et donc symétrique réelle.

II. Démonstration de l'inégalité (1)

10) Soit $(A,B) \in \mathcal{S}_n(\mathbb{R})$. Si A et B commutent, d'après le théorème spectral et le résultat admis P_1 , il existe une matrice $P \in \mathcal{O}_n(\mathbb{R})$ telle que $P^{-1}AP = \operatorname{diag}(\mathfrak{a}_k)_{1 \leq k \leq n} = D$ et $P^{-1}BP$ soit une matrice diagonale D'. Les coefficients diagonaux de D' sont les valeurs propres de B apparaissant dans un ordre peut-être différent de celui de l'énoncé . Il existe donc σ une permutation de [1,n] telle que $D' = \operatorname{diag}(\mathfrak{b}_{\sigma(k)})_{1 \leq k \leq n}$. Mais alors

$$\det(A+B) = \det(P(D+D')P^{-1}) = \det(D+D') = \prod_{k=1}^n (a_k + b_{\sigma(k)}).$$

- 11) Pour chaque $M \in \mathcal{O}_n(\mathbb{R})$, on a ||A|| = 1 et donc $\mathcal{O}_n(\mathbb{R})$ est une partie bornée de $\mathcal{M}_n(\mathbb{R})$.
 - L'application $M \mapsto ({}^tM, M)$ est continue sur $\mathcal{M}_n(\mathbb{R})$ car linéaire sur un espace de dimension finie et l'application $(M,N) \mapsto MN$ est continue sur $(\mathcal{M}_n(\mathbb{R}))^2$ car bilinéaire sur un espace de dimension finie. On en déduit que l'application $\phi: M \mapsto {}^tMM$ est continue sur $\mathcal{M}_n(\mathbb{R})$ en tant que composée d'applications continues. Mais alors, $\mathcal{O}_n(\mathbb{R}) = \phi^{-1}(\{I\})$ est une partie fermée de $\mathcal{M}_n(\mathbb{R})$ en tant qu'image réciproque du fermé $\{I\}$ par l'application continue ϕ .

Finalement, $\mathcal{O}_n(\mathbb{R})$ est une partie fermée et bornée de $\mathcal{M}_n(\mathbb{R})$ qui est de dimension finie sur \mathbb{R} . Le théorème de BOREL-LEBESGUE permet alors d'affirmer que

$$\mathcal{O}_{\mathfrak{n}}(\mathbb{R})$$
 est une partie compacte de $\mathcal{M}_{\mathfrak{n}}(\mathbb{R})$.

12) Soit $M \in \mathcal{M}_n(\mathbb{R})$. L'application $f_1: U \mapsto UM$ est continue sur $\mathcal{M}_n(\mathbb{R})$ car linéaire. Il en est de même de l'application $f_2: U \mapsto M^tU$. Mais alors l'application $f: U \mapsto UM^tU$ est continue sur $\mathcal{M}_n(\mathbb{R})$ car $f = f_2 \circ f_1$.

Mais alors $\mathcal{O}_n(M) = f(\mathcal{O}_n(\mathbb{R}))$ est l'image continue d'un compact de $\mathcal{M}_n(\mathbb{R})$ et est donc un compact de $\mathcal{M}_n(\mathbb{R})$.

Ainsi, l'application $C \mapsto \det(A + C)$ est continue sur le compact $\mathcal{O}_n(B)$ à valeurs dans \mathbb{R} , cette application admet un maximum sur $\mathcal{O}_n(\mathbb{R})$ ou encore

$$\exists B_0 \in \mathcal{O}_{\mathfrak{n}}(B)/\det(A+B_0) = \max_{C \in \mathcal{O}_{\mathfrak{n}}(B)} \{\det(A+C)\}.$$

II.1 $A + B_0$ inversible

13) Quand s tend vers 0, d'après 5),

$$A + e^{sT}B_0e^{-sT} = A + (I + sT + O(s^2))B_0(I - sT + O(s^2)) = A + B_0 + s(TB_0 - B_0T) + O(s^2).$$

Mais alors, d'après 7),

$$\begin{split} \det(A + e^{sT}B_0e^{-sT}) &= \det(A + B_0 + s(TB_0 - B_0T) + O(s^2)) = \det(A + B_0)\det(I + s(TB_0 - B_0T)(A + B_0)^{-1} + O(s^2)) \\ &= \det(A + B_0)(1 + s\mathrm{tr}\left((TB_0 - B_0T)(A + B_0)^{-1}\right) + O(s^2). \end{split}$$

$$\det(A + e^{sT}B_0e^{-sT}) \underset{s \to 0}{=} \det(A + B_0)(1 + s\mathrm{tr}\left((TB_0 - B_0T)(A + B_0)^{-1}\right) + O(s^2).$$

14) Soit $s \in \mathbb{R}$. La matrice sT est anti-symétrique et donc, d'après 4), la matrice e^{sT} est une matrice orthogonale. Mais alors, la matrice B_0 étant dans $\mathcal{O}_n(B)$, il en est de même de la matrice $e^{sT}B_0e^{-sT}$. Par définition de B_0 , on a

$$\psi_T(s) = \det(A + e^{s\mathsf{T}}B_0e^{-s\mathsf{T}}) \leq \det(A + B_0) = \psi_T(0).$$

$$\forall s \in \mathbb{R}, \ \psi_{\mathsf{T}}(s) \leq \psi_{\mathsf{T}}(0).$$

15) Quand s tend vers 0,

$$\psi_T(s) - \psi_T(0) = s \, \det(A + B_0) \mathrm{tr} \left((TB_0 - B_0 T) (A + B_0)^{-1} \right) + O(s^2).$$

Cette expression étant de signe constant, on doit avoir $\det(A+B_0)\mathrm{tr}\left((TB_0-B_0T)(A+B_0)^{-1}\right)=0$ et donc $\mathrm{tr}\left((TB_0-B_0T)(A+B_0)^{-1}\right)=0$ puisque $\det(A+B_0)\neq 0$. Par linéarité de la trace et puisque pour toutes matrices M et N, $\mathrm{tr}(MN)=\mathrm{tr}(NM)$, on en déduit que

$$\operatorname{tr}(TB_0(A+B_0)^{-1}) = \operatorname{tr}(B_0T(A+B_0)^{-1}) = \operatorname{tr}(T(A+B_0)^{-1})B_0).$$

$$\boxed{\forall T \in \mathcal{A}_n(\mathbb{R}), \; \operatorname{tr}(TB_0(A+B_0)^{-1}) = \operatorname{tr}(T(A+B_0)^{-1}B_0).}$$

16) La matrice B_0 est orthogonalement semblable à la matrice B et est donc symétrique réelle. Il en est de même de la matrice $(A+B_0)^{-1}$.

La matrice $M = B_0(A + B_0)^{-1} - (A + B_0)^{-1}B_0$ vérifie donc $\forall T \in \mathcal{A}_n(\mathbb{R})$, $\operatorname{tr}(MT) = 0$. D'après la question 3), on a $M \in \mathcal{S}_n(\mathbb{R})$. Mais d'autre part, ${}^tM = (A + B_0)^{-1}B_0 - B_0(A + B_0)^{-1} = -M$ et $M \in \mathcal{A}_n(\mathbb{R})$. Finalement, $M \in \mathcal{S}_n(\mathbb{R}) \cap \mathcal{A}_n(\mathbb{R}) = \{0\}$ (d'après 1)) et donc $B_0(A + B_0)^{-1} = (A + B_0)^{-1}B_0$.

En multipliant les deux membres de l'égalité précédente par $A+B_0$ à gauche et à droite, on obtient $(A+B_0)B_0=B_0(A+B_0)$ et donc $AB_0=B_0A$.

Les matrices
$$A$$
 et B_0 commutent.

17) La matrice B_0 est semblable à la matrice B par construction. Ses valeurs propres sont donc les b_k , $1 \le k \le n$. Puisque A et B_0 commutent et sont symétriques, d'après la question 10), il existe σ une permutation de $[\![1,n]\!]$ telle que

$$\det(A+B_0) = \prod_{k=1}^n (\alpha_k + b_{\sigma(k)}). \text{ Comme } B \in \mathcal{O}_{\pi}(B), \text{ par definition de } B_0, \text{ on a } \det(A+B) \leq \det(A+B_0) \text{ et donc il existe}$$

 σ une permutation de $[\![1,n]\!]$ telle que $\det(A+B) \leq \prod_{k=1}^n (\alpha_k + b_{\sigma(k)}).$ On a montré que

$$\det(A+B) \leq \max_{\sigma \in \sigma_n} \Bigg\{ \prod_{k=1}^n (\alpha_k + b_{\sigma(k)}) \Bigg\}.$$

II.2 $A + B_0$ singulière

18) La matrice $M=A+B_0$ est symétrique réelle et non inversible. D'après les questions 8) et 9), il existe une matrice symétrique N_0 telle que $\forall s>0$, $\det(M+sN_0)>0$.

Pour $k \in \mathbb{N}^*$, posons $N_k = B_0 + \frac{1}{k} N_0$. La suite $(N_k)_{k \in \mathbb{N}^*}$ est une suite de matrices symétriques qui converge vers B_0 . Ensuite, pour chaque $k \in \mathbb{N}^*$, il existe d'après 12) une matrice $B_k \in \mathcal{O}_n(N_k)$ telle que $\det(A + B_k) = \max_{C \in \mathcal{O}_n(N_k)} \{\det(A + C)\}$ (la matrice N_k jouant le rôle de la matrice B et la matrice B_k celui de la matrice B_0 de II.1).

Par définition de B_k,

$$\det(A + B_k) \ge \det(A + N_k) > 0,$$

de sorte que la matrice $A+B_k$ est inversible. La question 16) montre que B_k commute avec A.

19) Pour chaque $k \in \mathbb{N}^*$, il existe $U_k \in \mathcal{O}_n(\mathbb{R})$ telle que $B_k = U_k N_k U_k^{-1}$. La suite $(U_k)_{k \in \mathbb{N}^*}$ est une suite du compact $\mathcal{O}_n(\mathbb{R})$ et on peut en extraire une sous-suite $(U_{\phi(k)})_{k \in \mathbb{N}^*}$ convergeant vers un certain élément U de $\mathcal{O}_n(\mathbb{R})$. La suite $(N_{\phi(k)})_{k \in \mathbb{N}^*}$, extraite de la suite $(N_k)_{k \in \mathbb{N}^*}$, tend vers la matrice B_0 et donc la suite $(B_{\phi(k)})_{k \in \mathbb{N}^*}$ tend vers la matrice symétrique $B' = UB_0U^{-1}$. Le spectre de B' est le spectre de B_0 et donc aussi celui de B à savoir (b_1, \ldots, b_n) .

 $\text{Maintenant, pour chaque } k \in \mathbb{N}^*, \text{ on a } AB_{\phi(k)} = B_{\phi(k)}A \text{ et quand } k \text{ tend vers } +\infty, \text{ on obtient } AB' = B'A. \text{ D'après 10}),$

il existe σ permutation de $[\![1,n]\!]$ telle que $\det(A+B')=\prod_{k=1}^n(\alpha_k+b_{\sigma(k)}).$

Enfin, pour chaque $k \in \mathbb{N}^*$, on a $\det(A+B) \le \det(A+B_0) = 0 < \det(A+B_{\phi(k)})$ et quand k tend vers $+\infty$, on obtient par continuité du déterminant

$$\det(A+B) \leq \det(A+B') = \prod_{k=1}^n (\alpha_k + b_{\sigma(k)}),$$

ce qui démontre l'inégalité (1) dans le cas où $A + B_0$ est singulière.

III. Une permutation qui réalise le maximum

- 20) Montrons le résultat par récurrence.
- Pour n=2, on doit simplement vérifier que $(a_1+b_1)(a_2+b_2) \leq (a_1+b_2)(a_2+b_1)$. Or,

$$(a_1 + b_2)(a_2 + b_1) - (a_1 + b_1)(a_2 + b_2) = a_1b_1 + a_2b_2 - a_1b_2 - a_2b_1 = (a_2 - a_1)(b_2 - b_1) > 0,$$

ce qui démontre le résultat quand n = 2.

• Soit n > 2. Supposons acquise la propriété $\pi(n-1)$. Soit $\sigma \in \sigma_n$.

Cas 1. Supposons que $\sigma(n) = 1$. Pour $i \in [1, n-1]$, on a donc $\sigma(i) \in [2, n]$. Pour $i \in [1, n-1]$, posons $\tau(i) = \sigma(i) - 1$. Les $\tau(i)$, $1 \le i \le n-1$, sont deux à deux distincts et éléments de [1, n-1]. τ est donc une injection de l'ensemble fini [1, n-1] dans lui-même et par suite une permutation de [1, n-1]. On peut alors poser $b_i' = b_{i+1}$ pour $i \in [1, n-1]$ en déduit que

$$\begin{split} \prod_{k=1}^n (a_k + b_{\sigma(k)}) &= (a_n + b_1) \prod_{k=1}^{n-1} (a_k + b_{\tau(k)+1}) = (a_n + b_1) \prod_{k=1}^{n-1} (a_k + b'_{\tau(k)}) \\ &\leq (a_n + b_1) \prod_{k=1}^{n-1} (a_k + b'_{(n-1)-k+1}) \text{ (par hypothèse de récurrence et puisque } a_n + b_1 > 0) \\ &= (a_n + b_1) \prod_{k=1}^{n-1} (a_k + b'_{n-k}) = (a_n + b_1) \prod_{k=1}^{n-1} (a_k + b_{n-k+1}) = \prod_{k=1}^n (a_k + b_{n-k+1}). \end{split}$$

Cas 2. Sinon $\sigma(n)$ est un certain j élément de [2,n] et d'autre part, il existe un $i \in [1,n-1]$ tel que $\sigma(i)=1$. Notons τ la transposition qui échange j et 1 et posons $\sigma'=\tau\circ\sigma$. σ' est une permutation de [1,n] telle que $\sigma'(n)=1$ et d'après le cas 1, on a

$$\prod_{k=1}^n(\alpha_k+b_{\sigma'(k)})\leq \prod_{k=1}^n(\alpha_k+b_{n-k+1}).$$

Maintenant,

$$\begin{split} \prod_{k=1}^{n} (a_k + b_{\sigma(k)}) &= (a_i + b_1)(a_n + b_j) \prod_{k \neq i, k \neq n} (a_k + b_{\sigma(k)}) = (a_i + b_1)(a_n + b_j) \prod_{k \neq i, k \neq n} (a_k + b_{\sigma'(k)}) \\ &\leq (a_i + b_j)(a_n + b_1) \prod_{k \neq i, k \neq n} (a_k + b_{\sigma'(k)}) \; (\text{d'après le cas } n = 2 \; \text{et puisque les } a_k + b_{\sigma'(k)} \; \text{sont } > 0) \\ &= (a_i + b_{\sigma'(i)})(a_n + b_{\sigma'(n)}) \prod_{k \neq i, k \neq n} (a_k + b_{\sigma'(k)}) = \prod_{k=1}^{n} (a_k + b_{\sigma'(k)}) \\ &\leq \prod_{k=1}^{n} (a_k + b_{n-k+1}) \; (\text{d'après le cas } 1). \end{split}$$

Le résultat est démontré par récurrence.

$$\mathrm{Pour} \ \mathrm{toute} \ \mathrm{permutation} \ \sigma \ \mathrm{de} \ [\![1,n]\!], \ \prod_{k=1}^n (a_k + b_{\sigma(k)}) \leq \prod_{k=1}^n (a_k + b_{n-k+1}).$$