Integers & Division (Lecture – 1)

Dr. Nirnay Ghosh

Integers and Division

- **Number theory** is a branch of mathematics that explores integers and their properties.
 - Has many applications within computer science including:
 - Storage and organization of data
 - Cryptology
 - Error correcting codes
 - Random numbers generators
- **Integers**: The set of **integers** consists of zero (0), the positive natural numbers (1, 2, 3, ...), and their additive inverses (the negative **integers**, i.e., -1, -2, -3, ...).
 - Z: integers {..., -2,-1, 0, 1, 2, ...}
 - **Z**⁺: positive integers {1, 2, ...}
 - **Z**⁻: negative integers {-1, -2,...}

Division

- **Definition:** Assume two integers a and b, such that $a \neq 0$ (a is not equal 0). We say that a divides b if there is an integer c such that b = ac. If a divides b we say that a is a factor of b and that b is multiple of a.
 - We denote a divides b as $a \mid b$.
 - We write $a \nmid b$ when a does not divide b.

• <u>Theorem 1</u>:

Let a, b, and c be integers, where $a \neq 0$. Then

- (i) if $a \mid b$ and $a \mid c$, then $a \mid (b + c)$;
- (ii) if $a \mid b$, then $a \mid bc$ for all integers c;
- (iii) if $a \mid b$ and $b \mid c$, then $a \mid c$.

• Corollary 1:

If a, b, and c are integers, where $a \neq 0$, such that $a \mid b$ and $a \mid c$, then $a \mid mb + nc$ whenever m and n are integers.

The Division Algorithm

THE DIVISION ALGORITHM Let a be an integer and d a positive integer. Then there are unique integers q and r, with $0 \le r < d$, such that a = dq + r.

• Definition

In the equality given in the division algorithm, d is called the divisor, a is called the dividend, q is called the quotient, and r is called the remainder. This notation is used to express the quotient and remainder:

$$q = a \operatorname{div} d$$
, $r = a \operatorname{mod} d$.

Primes & Fundamental Theorem of Arithmetic

- **<u>Definition</u>**: A positive integer *p* that greater than 1 and that is divisible only by 1 and by itself (*p*) is called **a prime**. A positive integer that is greater than 1 and is not prime is called *composite*.
 - Example: 2, 3, 5, 7,
- <u>Fundamental Theorem of Arithmetic</u>: Every positive integer greater than 1 can be expressed as prime or as the product of two or more primes where the prime factors are written in order of non-decreasing size.
 - Examples: $100 = 2*2*5*5 = 2^25^2$, 641 = 641, $999 = 3*3*3*37 = 3^337$, $1024 = 2*2*2*2*2*2*2*2*2*2 = 2^{10}$
- Process of finding out factors of the product: **factorization**020

Primes and Composites

- How to determine whether the number is a prime or a composite?
- Theorem-2: If n is a composite integer, then n has a prime divisor less than or equal to \sqrt{n} .
- Example: Find the prime factorization of 7007.
 - $\sqrt{7007}$ ~ 83. So if we do not find any prime number till 83 which divides 7007, then it has no factors.
 - Starting with 2, none of the prime factors 2, 3, 5 divides 7007. However, 7 divides 7007, with 7007/7 = 1001.
 - $\sqrt{1001}$ ~ 31. So we have to check primes till 31 to determine if 1001 can be factorized.
 - None of 2, 3, 5 divides 1001. Again 7 divides 1001, as 1001/7 = 143.
 - $\sqrt{143}$ ~ 12. So we have to check primes till 12. None of 2, 3, 5, 7 divides 143. However, 11 divides 143, with 143/11 = 13.
 - In this way, we continue to find the prime factors of $7007 = 7*7*11*13 = 7^2*11*13$.

The Infinitude of Primes

- It has long been known that there are infinitely many primes. This means that whenever p_1, p_2, \ldots, p_n are the n smallest primes, we know there is a larger prime not listed.
- **Theorem**: There are infinitely many primes.
 - Proof given by Euclid in his famous mathematics text, *The Elements*.
- Mersenne Prime:
 - The largest Mersenne prime known (again as of early 2011) is $2^{43,112,609} 1$, a number with nearly 13 million decimal digits, which was shown to be prime in 2008.
 - Great Internet Mersenne Prime Search (GIMPS), is devoted to the search for new Mersenne primes.

Greatest Common Divisor (GCD)

- **Definition** #1: Let a and b be integers, not both zero. The largest integer d such that $d \mid a$ and $d \mid b$ is called the *greatest* common divisor of a and b. The greatest common divisor of a and b is denoted by $\gcd(a, b)$.
- **<u>Definition #2</u>**: The integers *a* and *b* are *relatively prime* if their greatest common divisor is 1.
 - Example: integers 17 and 22 are relatively prime as gcd(17,22) = 1.
- **<u>Definition #3</u>**: The integers a_1, a_2, \ldots, a_n are pairwise relatively prime if $gcd(a_i, a_i) = 1$ whenever $1 \le i < j \le n$.
 - Example integers 10, 17, 21 are pairwise relatively prime as gcd (10, 17) = 1, gcd (17, 21) = 1, and gcd (10, 21) = 1.

Greatest Common Divisor (GCD)

- Finding gcd using prime factorization:
 - Suppose prime factorization of positive integers *a* and *b* are given as:

$$a = p_1^{a_1} p_2^{a_2} \cdots p_n^{a_n}, \ b = p_1^{b_1} p_2^{b_2} \cdots p_n^{b_n}$$

- where each exponent is a nonnegative integer, and where all primes occurring in the prime factorization of either *a* or *b* are included in both factorizations, with zero exponents if necessary.
- The gcd (a, b) is given by:

$$gcd(a, b) = p_1^{\min(a_1, b_1)} p_2^{\min(a_2, b_2)} \cdots p_n^{\min(a_n, b_n)}$$

Least Common Multiple (LCM)

- **<u>Definition</u>**: The *least common multiple* of the positive integers *a* and *b* is the smallest positive integer that is divisible by both *a* and *b*. The least common multiple of *a* and *b* is denoted by lcm(a, b).
- Finding lcm by prime factorization method:
 - Suppose that the prime factorizations of *a* and *b* are as before. Then the least common multiple of *a* and *b* is given by

$$lcm(a,b) = p_1^{\max(a_1,b_1)} p_2^{\max(a_2,b_2)} \cdots p_n^{\max(a_n,b_n)}$$

- Relationship between greatest common division and least common multiple:
- Theorem 3: Let a and b be positive integers. Then $ab = \gcd(a, b)$. $\operatorname{lcm}(a, b)$.

10

Euclid Algorithm for Finding GCDs

- Finding the greatest common divisor requires factorization
- Factorization can be cumbersome and time consuming since we need to find all factors of the two integers that can be very large
- A more efficient method for computing the gcd exists: **Euclid's Algorithm**
 - Successive divisions to reduce the problem of finding the greatest common divisor of two positive integers to the same problem with smaller integers, until one of the integers is zero.
- **Lemma:** Let a = bq + r, where a, b, q, and r are integers. Then gcd(a, b) = gcd(b, r).

ALGORITHM 1 The Euclidean Algorithm.

```
procedure gcd(a, b): positive integers)

x := a

y := b

while y \neq 0

r := x \mod y

x := y

y := r

return x\{gcd(a, b) \text{ is } x\}
```

GCDs as Linear Combinations

- GCD (*a*, *b*) can be expressed as a **linear combination** with integer coefficients of *a* and *b*.
 - For example, gcd(6, 14) = 2, and 2 = (-2)*6 + 1*14.
- **<u>BÉZOUT'S THEOREM</u>**: If a and b are positive integers, then there exist integers s and t such that gcd(a, b) = sa + tb.
- **<u>Definition</u>**: If a and b are positive integers, then integers s and t such that gcd(a, b) = sa + tb are called *Bézout coefficients* of a and b. Also, the equation gcd(a, b) = sa + tb is called *Bézout's identity*.
- General Method to find linear combination of two integers equal to their gcd:
 - Proceed by working backward through the divisions of the Euclidean algorithm
 - Requires a forward pass and a backward pass through the steps of the Euclidean algorithm