20

21

1

2

- A complex single sideband zero IF down-converter frequency demodulator or frequency discriminator/comparator, comprising:
- means for receiving and splitting a local oscillator (LO) signal of frequency ω₀ to two
 components: the in-phase component and the quadrature component;
- means for receiving and splitting an input signal of carrier frequency ω_c to two
 components: the in-phase component and the quadrature component;
 - means for multiplying each one of the said in-phase and quadrature LO signal components with each one of the said in-phase and quadrature input signal
 - components, for generating a total of four different converted input signals;
 - means for combining (adding or subtracting) in two pairs the said four converted signals, producing two lower single sideband signals: the in-phase signal $I^-(t)$ and the quadrature signal $O^-(t)$;
 - means for delaying each of the said in-phase $I^-(t)$ and quadrature $Q^-(t)$ signals by substantially same time delay τ , providing respective delayed baseband signals $I^-(t-\tau)$ and $Q^-(t-\tau)$;
 - means for multiplying the said delayed signals with the said un-delayed signals, to generate two multiplication products $I^-(t-\tau)Q^-(t)$ and $I^-(t)Q^-(t-\tau)$;
 - means for combining (subtracting) the said two multiplication products, providing the demodulated baseband signal BB(t);
 - means for outputting the said demodulated baseband signal;
 - means for generating a local oscillator signal of frequency ω_0 , which is related to frequency ω_c and time delay τ by equation $(\omega_c \omega_0)\tau \cong n\pi$, where
- 23 $n = 0,\pm 1,\pm ,2,...$
- The frequency demodulator of Claim 1, wherein the input signal is frequency
 modulated by transmitted information, having the average frequency equal toω_c and the
 instantaneous frequency deviation proportional to the transmitted information.

12

13

14

15

16

17

18

1

2

1

2

3

1

- The frequency discriminator/comparator of Claim 1, wherein the input signal is a signal derived from a signal source having a dominant frequency ω_c , which is being compared with the LO frequency ω_0 .
 - The frequency demodulator or discriminator/comparator of Claim 1, wherein the multiplication operation is replaced with exclusive OR (XOR) logic function, and related signals are bi-level (digital) signals.
 - The frequency demodulator or discriminator/comparator of Claim 1, wherein the input signal and/or the LO signal is first scaled in frequency by division with an integer number in a frequency divider.
 - A complex single sideband zero IF down-converter frequency discriminator/comparator, comprising:
 - means for receiving and splitting a local oscillator (LO) signal of frequency ω_0 to two components: the in-phase component and the quadrature component;
 - means for receiving and splitting an input signal having a dominant frequency ω_c to two components: the in-phase component and the quadrature component;
 - means for multiplying each one of the said in-phase and quadrature LO signal components with each one of the said in-phase and quadrature input signal components, for generating a total of four different converted input signals;
 - means for combining (adding or subtracting) in two pairs the said four converted signals, producing two lower single sideband signals: the in-phase signal $I^-(t)$ and the quadrature signal $O^-(t)$;
 - means for delaying only one of the two said signals by time delay τ , providing one delayed base band signal. $I^-(t-\tau)$ or $O^-(t-\tau)$:
 - means for multiplying the said delayed signal with one of the said un-delayed signals, to generate one multiplication product, $I^-(t-\tau)Q^-(t)$ or $I^-(t)Q^-(t-\tau)$, providing the baseband signal BB(t);
 - means for outputting the said demodulated baseband signal;

1

2

1

3

- means for generating a local oscillator signal of frequency ω_0 , which is substantially equal to frequency ω_c .
 - The frequency discriminator/comparator of Claim 6, wherein the multiplication operation is replaced with exclusive OR (XOR) logic function, and related signals are bi-level (digital) signals.
 - The frequency discriminator/comparator of Claim 6, wherein the input signal and/or the LO signal is first scaled in frequency by division with an integer number in a frequency divider.
 - The frequency discriminator/comparator of Claim 1, wherein the said frequency discriminator (FD) is switched to a phase detector (PD).
 - The frequency discriminator/comparator of Claim 6, wherein the said FD is switched to a PD.