

Departamento de Matemáticas 1º Bachillerato

Parcial 1^a evaluación

Nombre:	Fecha:			
Tiempo: 50 minutos	Tipo· 1			

Esta prueba tiene 6 ejercicios. La puntuación máxima es de 11. La nota final de la prueba será la parte proporcional de la puntuación obtenida sobre la puntuación máxima.

Ejercicio:	1	2	3	4	5	6	Total
Puntos:	2	1	2	2	1	3	11

1. Dados los siguientes conjuntos A, B y C, represéntalos en la recta real. A continuación, calcula $A \cup B$, $A \cap B$ y $A \cap B \cap C$, y expresa los resultados en forma de Intervalos. Encuentra, si existe, el supremo y el ínfimo de cada uno de los conjuntos anteriores

(a)
$$A = \{x \in \mathbb{R} | -2 \le x \land x \le 5\},\ B = (-\infty, -1) \cup (1, \infty) y$$

 $C = \{x \in \mathbb{R} | |x - 2| \le 3\}$ (2 puntos)

Solución:
$$A \cup B = (-\infty, \infty)$$

 $A \cap B = [-2, -1) \cup (1, 5]$
 $A \cap B \cap C = (1, 5]$

2. Usando la definición y las propiedades de los números combinatorios, resolver las ecuaciones:

(a)
$$\binom{x}{x-2} = 10$$
 (1 punto) Solución: $\{5\}$

3. Calcula, sin hacer todo el desarrollo, el coeficiente del término asociado a:

(a)
$$P(x) = \left(3x^2 + \frac{1}{x}\right)^7$$
 y parte literal $\frac{1}{x^4}$ (2 puntos)

Solución: 21

4. Efectúa:

(a)
$$\frac{\sqrt{3}}{\sqrt{3}-\sqrt{2}} - \frac{\sqrt{3}}{\sqrt{3}+\sqrt{2}}$$
 (1 punto) Solución: $2\sqrt{6} \rightarrow 2\sqrt{6}$

(b)
$$\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}} - \frac{\sqrt{7}+\sqrt{5}}{\sqrt{7}-\sqrt{5}}$$

(1 punto)

Solución:
$$\frac{-12-2\sqrt{35}+\left(-\sqrt{7}+\sqrt{5}\right)^2}{2} \to -2\sqrt{35}$$

5. Calcula el valor de k para que:

(a) El resto de dividir
$$P(x) = x^{25} - kx + 3k - 4$$
 entre $x + 1$ sea 11 (1 punto)

Solución: 4

6. Halla el m.c.d. y el m.c.m. de los polinomios:

(a)
$$A(x) = x^5 - 6x^3 + 2x^2 + 9x - 6y$$

 $B(x) = x^5 + 3x^4 - 3x^3 - 13x^2 + 12$ (3 puntos)

Solución: Descomposición :
$$((x-1)^2(x+2)(x^2-3)y(x-1)(x+2)^2(x^2-3))$$

 $x^4+x^3-5x^2-3x+6=(x-1)(x+2)(x^2-3)$ $MCDy$
 $x^6+2x^5-6x^4-10x^3+13x^2+12x-12=(x-1)^2(x+2)^2(x^2-3)$ MCM