Redes de Computadores

Aula 08 - Prática 2 — Parte 2 Endereçamento IP

Prof. MSc. Luis Gonzaga de Paulo

Agenda

- -Endereçamento IP (v4 e v6)
- Administração de endereços
- Obtenção e atribuição de endereços
 - Modo manual
 - Modo automático
 - Endereços públicos e privados
- DHCP
- -NAT

Introdução

- Identificação única dos ativos da rede
- Identificação das interfaces de rede
- Premissa para as funções de encaminhamento

Endereçamento nas camadas do TCP/IP

IPv4 - Pacote

Versão	Comp. cabeçalho	DSCP	Comprimento Total (em Bytes)			
Identificação			Flags	Offset de Fragmento		
Tempo	Tempo de Vida Protocolo Checksum do Cabeçalho			Checksum do Cabeçalho		
Endereço IP de Origem						
Endereço IP de Destino						
Opções (se Existentes)						
Dados						

Notação decimal pontuada

- Dotted-decimal notation
- São utilizados quatro números decimais, de valor entre 0 e 255, separados por pontos.
- Cada número corresponde à representação decimal de um dos 4 bytes do endereço IP.
- Exemplo:

11000000 10101001 00100011 00000111

192.169.35.7

Classes de endereços IP

Classes de endereços IP

- Nos primórdios da era IP o espaço de endereçamento estava dividido em classes.
- Atualmente o endereçamento utilizado não é baseado em classes, sendo expresso na forma:
 - Endereço / n, onde n representa o número de bits do endereço para o host, reservando os demais para o endereço de rede ou sub-rede.
- Comparando com o modelo de classes, tem-se:
 - Classe A: endereço / 8;
 - Classe B: endereço / 16;
 - Classe C:endereço / 24.

Faixas de endereços X classes

CLASSE	FAIXA DE ENDEREÇOS
A (ou /8)	0.0.0.0 até 127.255.255
B (ou /16)	128.0.0.0 até 191.255.255.255
C (ou /24)	192.0.0.0 até 223.255.255
D	224.0.0.0 até 239.255.255.
E	240.0.0.0 até 247.255.255.255

Endereços IP especiais

00000000.00000000.00000000.00000000Host atual 00000000.00000000 Host na rede atual nnnnnnn.nnnnnnn 11111111.111111111.111111111.11111111 Broadcast (limitado) 00000000.00000000 Rede atual nnnnnnn.nnnnnnn 11111111.11111111 Broadcast para a rede atual nnnnnnn.nnnnnnn 01111111 Loopback ou Local Host

10 / 35 AULA 08 – Prática 02 REDES DE COMPUTADORES

Sub-redes

- No interval de endereços de uma dada rede, a parte reservada para a identificação de hosts pode ser dividida;
- Nesse caso reservam-se alguns bits desse endereço para a identificação de sub-redes que compõem a rede principal;
- O sub-endereçamento permite a criação de mais níveis, definindo assim uma nova hierarquia no endereçamento, e estabelecendo então as sub-redes.

Sub-redes

2 NÍVEIS – REDE + HOST

3 NÍVEIS – REDE + SUB-REDE + HOST

Sub-redes

- A utilização de sub-endereçamento AUMENTA a eficiência no uso dos intervalos para o endereçamento;
- O uso de sub-redes favorece o processo de roteamento, diminuindo o tráfego e as colisões e aumentando o controle e a eficiência da rede;
- A restrição de faixas de endereço para acesso e tráfego ajuda na segurança da rede;
- Todas as sub-redes são identificadas externamente como uma única rede.

Máscara de sub-rede

Equivale a um número binário de 32 bits que, após uma operação lógica E (AND) com o endereço IP do host da sub-rede, determina o endereço da sub-rede.

– Endereço do HOST:
11000001 10001000 11101111 10001001

- Máscara de sub-rede: 11111111 1111111 1111111 11000000

- Endereço de sub-rede: 11000001 10001000 11101111 10000000

Em decimal:

– Endereço do HOST: 193.88.239.137

– Máscara de sub-rede: 255.255.255.192

– Endereço de sub-rede: 193.88.239.128

Máscara de sub-rede

Bits no Endereço da Rede	Endereços Possíveis *	Máscara da Sub-rede
24	256	255.255.255.0
25	128	255.255.255.128
26	64	255.255.255.192
27	32	255.255.254
28	16	255.255.250
* O numero de hosts é sempre	duas unidades a menos, pois e	xclui o endereço de rede e o endereço de broadcast

^{15 / 35} AULA 08 – Prática 02 REDES DE COMPUTADORES

Máscara de sub-rede

- Assim como no endereçamento das redes, nas sub-redes o 1º endereço IP (todos os bits do host com valor zero) é um endereço reservado para indentificar a sub-rede.
- Da mesma forma, assim como no endereçamento das redes, nas subredes o último endereço IP (todos os bits do host com valor um) é um endereço reservado para endereço de broadcast da sub-rede.

Sub-redes: um exemplo

193.136.239.0 - Rede
192.136.239.32 – sub-rede
192.136.239.33 - 192.136.239.38
192.136.239.39 - broadcast

192.136.239.64 - sub-rede

192.136.239.65 - 192.136.239.80

192.136.239.81 - *broadcast*

193.136.239.128 - sub-rede

193.136.239.129 - 192.136.239.158

192.136.239.159 - *broadcast*

193.136.239.255 - *broadcast*

Sub-rede 192.136.239.32 / 28 6 hosts

Sub-rede 192.136.239.64 / 27 14 hosts

Sub-rede 192.136.239.128 / 26 30 hosts

Rede 192.136.239.0 / 24 254 hosts

Sub-redes: questões

No exemplo apresentado:

- -193.136.239.192 é um endereço de uma rede ou de um host?
- –193.136.239.127 é um endereço de um host ou um endereço de broadcast?

CIDR

- − Endereçamento hierárquico (~até a década de 1990):
 - Redução do espaço de endereçamento (solução = IPv6 ?);
 - Falta de endereços de classe B;
 - Crescimento das tabelas de roteamento (routing);
- Classless Inter-Domain Routing
 - Introduzido em 1993;
 - Flexibilidade na divisão dos endereços IP em redes separadas;
 - Uso mais eficiente para os endereços IP (escassos)
 - Está definido no RFC 1519.

CIDR

- Agregação de redes de classe C em sequência (super-netting)
 - Utilização mais eficiente do espaço de endereçamento;
 - Agregação de várias entradas das tabelas de routing;
 - As decisões de encaminhamento deixam de ser feitas com base em classes e passam a ser feitas com base na máscara de rede

CIDR

- 192.168.0.0 **/24** representa os 256 endereços IPv4:
 - de 192.168.0.0 até 192.168.0.255
 - 192.168.0.255 é o endereço de *broadcast*
- 192.168.0.0 **/22** representa os 1024 endereços IPv4:
 - de 192.168.0.0 até 192.168.3.255
 - 192.168.3.255 sendo o endereço de broadcast
- 2002:C0A8::/48 representa os endereços IPv6:
 - de 2002:C0A8:0:0:0:0:0:0 até 2002:C0A8:0:FFFF:FFFF:FFFF:FFFF;

Para o IPv4 usa-se também o endereço de rede seguido da máscara de sub-rede:

- -192.168.0.0 **/24** \rightarrow 192.168.0.0 **255.255.255.0**
- -192.168.0.0 **/22** \rightarrow 192.168.0.0 **255.255.252.0**

Resolução de endereços

- Os endereços IP são transformados em endereços físicos (MAC) com significado para a tecnologia da camada física;
- Em uma rede Ethernet, esse processo é realizado pelo protocolo ARP
 Address Resolution Protocol (RFC 826);
- O processo inverso é realizdo pelo protocol RARP Reverse Address Resolution Protocol(RFC 903).

Resolução de endereços

- Funcionamento básico do ARP:
 - Quando é necessário enviar um pacote para determinado endereço IP, é consultada a tabela de ARP do host para verificar se existe informação de mapeamento entre o IP destino e o seu respectivo endereço físico;
 - Se não existir o mapeamento, o protocolo ARP envia um broadcast para a rede solicitando o mapeamento;
 - O host com o endereço IP destino responde ao pedido ARP, indicando o seu endereço físico, atualizando também a tabela de ARP.

IPv6 - Endereçamento

- −O IPv6 é especificado no RFC 2460;
- Características:
 - Espaço de endereçamento aumentado:
 - 296 vezes o espaço de endereçamento do IPv4
 - Cerca de 1018 endereços para cada habitante do planeta
 - Mais de 1500 endereços por m2 da superfície terrestre
 - Arquitetura de endereçamento definida pela RFC 2373
 - Simplificação do cabeçalho dos pacotes;
 - Suporte de cabeçalhos de extensão;
 - Capacidade de identificação de fluxos;
 - Suporte aos mecanismos de segurança;

IPv6 - Cabeçalho

Versão (Version)			Identificador de Fluxo (<i>Flow Label</i>)					
	Tamanho dos Dados (Payload Length)		Próximo Cabeçalho (Next Header)	Limite de Encaminhamento (Hop Limit)				
Endereço de Origem (<i>Source Address</i>)								
Endereço de Destino (<i>Destination Address</i>)								

Obtenção de endereços

- -Até 1998:
 - Atribuição de endereços IP oficiais feita sob coordenação da IANA –
 International Address Number Association (http://www.iana.org/);
- A partir de 1998: ICANN Internet Corporation for Assigned Names and Numbers (http://www.icann.org/):
 - Endereços (IPv4, IPv6)
 - Nomes (namespace, URLs, DNS)
 - Números de protocolos

Obtenção de endereços

- A ICANN repassa a atrubição de endereços à ASO Address Supporting Organization (http://www.aso.icann.org)
- A ASO repassa aos RIR Regional Internet Registries:
 - Ásia e Pacífico: APNIC (http://www.apnic.net)
 - América: ARIN (http://www.arin.net)
 - Europa: RIPE-NCC (http://www.ripe.net)

Obtenção de endereços

- -Os RIR tratam visam:
 - Utilização eficiente do espaço de endereçamento;
 - Agregação de rotas usando CIDR;
 - Serviços de registro de endereços.
- Os RIR associações de ISPs Internet Service Providers atuando como LIR - Local Internet Registries, entidades de registro local;
- No Brasil o controle de LIRs / ISPs é feito pela ANATEL, e pode ser acessado em:

http://sistemas.anatel.gov.br/stel/consultas/ListaPrestadorasLocalidade/tela.asp?pNumServico=045

Atribuição de endereços

- Configuração manual
 - Mais simples;
 - Não há necessidade de uso de servidores de atribuição de endereços;
 - Obriga a configuração manual de clientes e servidores;
 - Não é viável em redes de grande porte;
 - Restringe a mobilidade.

Atribuição de endereços

- Configuração automática: DHCP (Dynamic Host Configuration Protocol):
 - Definido na RFC 2131;
 - Obtenção de informação de configuração de clientes por meio da rede:
 - Endereço IP
 - Servidor de DNS
 - Gateway / router
 - Etc...
 - Baseado no BOOTP (Boot Protocol), utilizado para atribuição de endereços IP a hosts Diskless ou Thin Client.

30 / 35 AULA 08 – Prática 02 REDES DE COMPUTADORES

DHCP - Funcionamento

NAT - Network Address Translation

- Usado quando a atribuição de endereço IP formal é desnecessária:
 - Redes não ligadas à Internet
 - Hosts de intranets ligados à internet por router, proxy ou firewall;
- −O NAT (RFC 1918) reduziu o risco esgotamento de endereços do IPv4:
 - Redes inteiras usando um conjunto reduzido de endereços oficiais.

32 / 35 AULA 08 – Prática 02 REDES DE COMPUTADORES

Network Address Translation

Network Address Translation

- A RFC 1918 define três faixas de endereçamento privados que podem ser livremente utilizados em redes internas / NAT:
 - De 10.0.0.0 até 10.255.255.255 (Classe A − uma rede);
 - − De 172.16.0.0 até 172.31.255.255 (Classe B − 16 redes);
 - 192.168.0.0 até 192.168.255.255 (Classe C 256 redes)

34 / 35 AULA 08 – Prática 02 REDES DE COMPUTADORES

Resumo

- ☑Introdução
- ☑ Endereçamento IP
 - ☑ Classes de endereços IP
 - ☑ Sub-endereçamento e máscaras de sub-rede
 - ☑ Super-endereçamento e CIDR
 - ☑ Resolução de endereços IP
- ☑Obtenção e atribuição de endereços
 - ☑ Administração do espaço de endereçamento
 - ☑ Regional Internet Registries e Local Internet Registries
 - ☑ Configuração manual de host
 - ☑ Configuração automática de host (DHCP)
- ☑Network Address Translation