Compact implementations of pairings

Anthony Van Herrewege

Lejla Batina & Miroslav Knezevic Prof. Dr. Ir. I. Verbauwhede & Prof. Dr. Ir. B. Preneel

22 May 2009

- 1 Problem
- 2 Pairings
- 3 Implementation
- 4 Results

Symmetric cryptography

- Pro:
 - High security per bit
 - Very fast implementations
- Contra:
 - How to establish the key?

Asymmetric cryptography

- Pro:
 - No key establishment necessary
 - Central location with everyone's key
- Contra:
 - Need for certificate authorities, . . .

Identity-based cryptography

- Pro:
 - Public key deduced from ID
 - No need for certificates
- Contra:
 - How to issue new keys, ...?
- Extra's:
 - Non-interactive key establishment
 - Date-stamped encryption

What?

- Mathematical construction discovered in the 40's
- Allow implementation of ID-based cryptography
- Strength based on discrete logarithm problem

How?

Several available pairings:

Weil, Tate,
$$\eta_T$$
, Ate, . . .

Pairings

Tate pairing:

$$\hat{e}(P,Q) : E(\mathbb{F}_q)[l] \times E(\mathbb{F}_q)[l] \mapsto \mu_l$$
$$\mu_l \in \mathbb{F}_{q^k}^*$$

Mapping needs to be:

- Bilinear: $\hat{e}(P_1 + P_2, Q) = \hat{e}(P_1, Q) \cdot \hat{e}(P_2, Q)$
- Non-degenerate: $\hat{e}(P, P) \neq 1$
- Well defined

How?

Calculate using optimized version of Miller's algorithm:

Pairings 000

```
Require: l \in \mathbb{Z}; t = \lfloor \log_2(l) \rfloor; P, Q \in E(\mathbb{F}_{2^m})[l]
Ensure: F = \hat{e}(P,Q) \in \mu_l
   F \leftarrow 1
   V \leftarrow P
   for i = t - 1 to 0 do
       F \leftarrow F^2 \cdot G_{V,V}(\phi(Q))
        V \leftarrow 2 \cdot V
       if l_i = 1 and i \neq 0 then
            F \leftarrow F \cdot G_{V,P}(\phi(Q))
            V \leftarrow V + P
        end if
   end for
   return F
```

Restrictions

Avoid the use of flip-flops and muxes:

Cell	Area $\left[\frac{\text{gate}}{\text{bit}}\right]$
D flip-flop (reset)	6
D flip-flop (no reset)	5.5
D latch	4.25
3 input MUX	4
2 input XOR	3.75
2 input MUX	2.25
2 input NAND	1
NOT	0.75

MALU - Addition & Reduction in \mathbb{F}_{2^m}

$$R = (T+B \pmod{P_{\mathsf{in}}})_{0:m-2} \ll 1$$

$$mod_{\mathsf{u}} = (T+B \pmod{P_{\mathsf{in}}})_{m-1}$$

MALU - Addition & Reduction in \mathbb{F}_{2^m}

Optimized MALU needs $\Delta = m - (\text{Hamm}(P) - 1)$ less XOR's:

\mathbb{F}_{2^m} Multiplication & Addition

\mathbb{F}_{2^m} Multiplication & Addition

No FSM needed, simple logic:

\mathbb{F}_{2^m} Multiplication & Addition

Speed up calculation through daisy-chaining MALU's:

Controller for Miller's algorithm

Memory design

Starting design:

$$\bar{t} = O\left(\frac{n^2}{3}\right)$$
 $\bar{w} = O\left(\frac{n^3}{3}\right)$

Memory design

Final design:

$$\overline{t} = O\left(\frac{n}{4}\right)$$
 $\overline{w} = O\left(n\right)$

Optimizations

- Remove reset from registers $\left(-0.5 \frac{\text{gate}}{\text{hit}}\right)$
- Implement clock gating:

Runtime

- FSM with 553 states
- Total n° of clockcycles c for one pairing:

$$c = 21681 + 4322 + 2998 \cdot \left\lceil \frac{m}{d} \right\rceil.$$

Results

Synthesis

Area [gates] _		Power @ 10 kHz $[nW]$			
		Dynamic		Leakage	
28 876 27 596 27 751 27 713	96% 96% 96%	512 395 94 59	77% 18% 12%	117 107 109 102	92% 94% 88% 94%
	27 596 27 751	27 596 96% 27 751 96% 27 713 96%	28 876 512 27 596 96% 395 27 751 96% 94 27 713 96% 59	188 876 512 17 596 96% 395 77% 17 751 96% 94 18% 17 713 96% 59 12%	88876 512 117 17596 96% 395 77% 107 17751 96% 94 18% 109 17713 96% 59 12% 102

Synthesis - Continued

Component	Орр. [gates]
MALU	458	1.7%
$\mathbb{F}_{2}m$ core		
Logic	783	2.8%
Registers	962	3.5%
Controller		
Logic	13044	47%
Registers	12487	45%
Total	27 734	100%

Comparison

	This	Beuchat	
	1 MALU	2 MALUs	et al.
Field	$\mathbb{F}_{2^{163}}$	$\mathbb{F}_{2^{163}}$	$\mathbb{F}_{3^{97}}$
Pairing	Tate	Tate	η_T
Security [bit]	652	652	922
Technology $[\mu m]$	0.13	0.13	0.18
Area [gates]	27430	28155	193765
f [MHz]	10.3	5.44	200
Calc. time $[\mu s]$	$50 \cdot 10^3$	$50 \cdot 10^3$	46.7
Power $[mW]$	$98.3 \cdot 10^{-3}$	$48.6 \cdot 10^{-3}$	672
Efficiency $\left[\frac{nJ}{\text{bit}}\right]$	7.54	3.73	34.0

Results

Conclussion

Results 0000•0

Results 00000

Results

The end

Questions?