

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ

«Информатика и системы управления»

КАФЕДРА

«Программное обеспечение ЭВМ и информационные технологии»

Лабораторная работа № 18

Студент: Керимов А. Ш.

Группа: ИУ7-64Б

Преподаватель: Толпинская Н. Б.

Москва. 2020 г.

Цель работы — изучить рекурсивные способы организации программ на Prolog, методы формирования эффективных рекурсивных программ и порядок реализации таких программ.

Задание.

Ответить на вопросы:

• Что такое рекурсия? Как организуется хвостовая рекурсия в Prolog? Как организовать выход из рекурсии в Prolog?

Рекурсия – один из способов организации повторных вычислений. В логическом программировании – способ заставить систему многократно использовать одну и ту же процедуру. При этом из нее должен быть выход.

Организация хвостовой рекурсии:

- о Рекурсивный вызов единственен и расположен в конце тела правила.
- о До вычисления рекурсивного вызова не должно быть возможности сделать откат (т. е. точки отката отсутствуют). Этого можно добиться, например, с помощью предиката отсечения.

Использовать отдельное правило, в конце которого будет находиться предикат отсечения.

• Какое первое состояние резольвенты?

Вопрос

• В каком случае система запускает алгоритм унификации? Каково назначение использования алгоритма унификации? Каков результат работы алгоритма унификации?

Пролог выполняет унификацию в двух случаях: когда цель сопоставляется с заголовком предложения или когда используется знак равенства, который является инфиксным предикатом (предикатом, который расположен между своими аргументами, а не перед ними).

Алгоритм унификации необходим для попытки "увидеть одинаковость" – сопоставимость двух термов, может завершаться успехом или тупиковой ситуацией. Результат унификации – ответ «да» или «нет».

• В каких пределах программы переменные уникальны?

Именованные переменные уникальны в пределах одного предложения, анонимные уникальны все.

• Как применяется подстановка, полученная с помощью алгоритма унификации?

Подстановка применяется к подцелям резольвенты, путем конкретизации переменных.

• Как изменяется резольвента?

Резольвента - текущая цель, существующая на любой стадии вычислений. Резольвенты порождаются целью и каким-либо правилом или фактом, которые просматриваются последовательно сверху вниз. Если резольвента существует при наиболее общей унификации, она вычисляется. Если пустая резольвента с помощью такой стратегии не найдена, то ответ на вопрос отрицателен.

• В каких случаях запускается механизм отката?

Механизм отката запускается в 2 случаях:

- 1. Если алгоритм попал в тупиковую ситуацию.
- 2. Если резольвента не пуста и решение найдено, но в базе знание остались не отмеченные предложения.

Используя хвостовую рекурсию, разработать программу, позволяющую найти

- 1. n!,
- 2. п-е число Фибоначчи.

Убедиться в правильности результатов.

Для одного из вариантов **ВОПРОСА** и каждого задания составить таблицу, отражающую конкретный порядок работы системы:

Т.к. резольвента хранится в виде стека, то состояние резольвенты требуется отображать в столбик: вершина — сверху! Новый шаг надо начинать с нового состояния резольвенты!

Вопрос:....

No॒	Состояние	Для каких термов	Дальнейшие действия:
шага	резольвенты, и вывод: дальнейшие действия (почему?)	запускается алгоритм унификации: T1=T2 и каков результат (и подстановка)	прямой ход или откат (почему и к чему приводит?)
1			Комментарий, вывод
•••			

Практическая часть

Листинг 1. Факториал и Фибоначчи

```
predicates
  factorial(integer, integer)
  factorial rec(integer, integer, integer, integer)
  fib(integer, integer)
  fib rec(integer, integer, integer, integer)
  factorial (N, F) := factorial rec(N, F, 1, 1).
  factorial rec(N, F, N, F) :- !.
  factorial rec(N, F, N2, F2) :-
    Tmp N = N2 + 1,
    Tmp F = F2 * Tmp_N,
    factorial rec(N, F, Tmp N, Tmp F).
  fib(N, Res) :- fib rec(N, Res, 1, 1).
  fib_rec(1, Res, _, Res) :- !.
  fib rec(N, Res, \overline{N1}, N2) :-
    \overline{\text{Tmp}} N = N - 1,
    Tmp N2 = N1 + N2,
    fib rec (Tmp N, Res, N2, Tmp N2).
goal
  fib(3, Result).
```

Примеры целей

- **1.** factorial(3, Result).
 - Result=6
- **2.** fib(3, Result).
 - Result=5

Порядок работы системы для цели factorial(2, Result).

№ шага	Состояние резольвенты, и вывод: дальнейшие действия (почему?)	Для каких термов запускается алгоритм унификации: T1=T2 и каков результат (и подстановка)	Дальнейшие действия: прямой ход или откат (почему и к чему приводит?)
1	Цель заносится в резольвенту. factorial(2, Result). Запуск процесса редукции.	Попытка унификации: factorial(2, Result) = factorial(N, F) Pезультат: успех, подстановка: {N=2. Result=F}	Прямой ход Преобразование резольвенты: замена текущей цели на тело найденного с помощью унификации правила, применение полученной подстановки
2	factorial_rec(2, F, 1, 1) Выполнение процесса редукции.	Попытка унификации: factorial_rec(2, F, 1, 1) = factorial(N, F) Результат: неудача, различные имена главных функторов	Прямой ход, переход к следующему предложению
3	factorial_rec(2, F, 1, 1) Выполнение процесса редукции.	Попытка унификации: factorial_rec(2, F, 1, 1) = factorial_rec(N, F, N, F) Результат: неудача, различные константы	Прямой ход, переход к следующему предложению
4	factorial_rec(2, F, 1, 1) Выполнение процесса редукции.	Попытка унификации: factorial_rec(2, F, 1, 1) = factorial_rec(N, F, N2, F2) Результат: успех, подстановка: {N=2, N2=1, F2=1}	Прямой ход Преобразование резольвенты: замена текущей цели на тело найденного с помощью унификации правила, применение полученной подстановки
5	$Tmp_N = 1 + 1,$ $Tmp_F = 1 * Tmp_N,$	Попытка унификации: $Tmp_N = 1 + 1$	Прямой ход

	factorial_rec(2, F, Tmp_N, Tmp_F) Запуск алгоритма редукции для верхней подцели.	Результат: успех, подстановка: {Tmp_N=2}	
6	Tmp_F = 1 * 2, factorial_rec(2, F, 2, Tmp_F) Запуск алгоритма редукции для верхней подцели.	Попытка унификации: Tmp_F = 1 * 2 Результат: успех, подстановка: {Tmp_F=2}	Прямой ход
7	factorial_rec(2, F, 2, 2) Запуск алгоритма редукции для верхней подцели.	Попытка унификации: factorial_rec(2, F, 2, 2) = factorial(N, F) Результат: неудача, различные имена главных функторов	Прямой ход, переход к следующему предложению
8	factorial_rec(2, F, 2, 2) Выполнение процесса редукции.	Попытка унификации: factorial_rec(2, F, 2, 2) = factorial_rec(N, F, N, F) Результат: успех, подстановка: {N=2, F=2}	Прямой ход Преобразование резольвенты: замена текущей цели на тело найденного с помощью унификации правила, применение полученной подстановки
9	!. Выбор верхней подцели резольвенты, запуск редукции.	Выполнение отсечение	Завершение работы программы. Резольвента пуста. Result=2

Порядок работы системы для цели fib(2, Result).

$\mathcal{N}_{\underline{o}}$	Состояние резольвенты, и	Для каких термов запускается	Дальнейшие действия:
шага	вывод: дальнейшие	алгоритм унификации: Т1=Т2 и	прямой ход или откат
	действия (почему?)	каков результат (и подстановка)	(почему и к чему
			приводит?)
1	Цель заносится в	Попытка унификации:	
	резольвенту.	fib(2, Result) = factorial(N, F)	Прямой ход, переход к
	fib(2, Result).	Результат: неудача, различные	следующему предложению
	Запуск процесса редукции.	имена главных функторов	

2-3	fib(2, Result) Выполнение процесса редукции.	Аналогично предыдущему пункту для следующих 2ух термов	Прямой ход, переход к следующему предложению
4	fib(2, Result) Выполнение	Попытка унификации:	Прямой ход
	процесса редукции.	fib(2, Result) = fib(N, Res) Результат: успех, подстановка: {N=2, Result=Res}	Преобразование резольвенты: замена текущей цели на тело найденного с помощью унификации правила, применение полученной подстановки
5	fib_rec(2, Res, 1, 1)	Попытка унификации:	
	Выполнение процесса редукции.	fib_rec(2, Res, 1, 1) = factorial(N, F) Результат: неудача, различные	Прямой ход, переход к следующему предложению
		имена главных функторов	
6-8	fib_rec(2, Res, 1, 1) Выполнение процесса редукции.	Аналогично предыдущему пункту для следующих 3-х термов.	Прямой ход, переход к следующему предложению
9	fib_rec(2, Res, 1, 1)	Попытка унификации:	
	Выполнение процесса редукции.	fib_rec(2, Res, 1, 1) = fib_rec(1, Res, _, Res)	Прямой ход, переход к следующему предложению
	Результат: константы	Результат: неудача, различные константы	
10	fib_rec(2, Res, 1, 1) Выполнение процесса редукции.	Попытка унификации:	Прямой ход
		fib_rec(2, Res, 1, 1) = fib_rec(N, Res, N1, N2)	Преобразование резольвенты: замена текущей цели на тело найденного с помощью унификации правила, применение полученной подстановки
		Результат: успех, подстановка: {N=2, N1=1, N2=1}	
11	$Tmp_N = 2 - 1,$	Попытка унификации:	
	$Tmp_N2 = 1 + 1,$	$Tmp_N = 2 - 1$	
	fib_rec(Tmp_N, Res, 1, Tmp_N2)	Результат: успех, подстановка: {Tmp_N=1}	Прямой ход
	Запуск алгоритма редукции для верхней подцели.		

12	Tmp_N2 = 1 + 1, fib_rec(1, Res, 1, Tmp_N2) Запуск алгоритма редукции для верхней подцели.	Попытка унификации: $Tmp_N2 = 1 + 1 Pезультат:$ успех, подстановка: $\{Tmp_N2 = 2\}$	Прямой ход
13	fib_rec(1, Res, 1, 2) Запуск алгоритма редукции для верхней подцели.	Попытка унификации: fib_rec(1, Res, 1, 2) = factorial(N, F) Pезультат: неудача, различные имена главных функторов	Прямой ход, переход к следующему предложению
14-16	fib_rec(1, Res, 1, 2) Запуск алгоритма редукции для верхней подцели.	Аналогично предыдущему пункту для следующих 3-х термов.	Прямой ход, переход к следующему предложению
17	fib_rec(1, Res, 1, 2) Выполнение процесса редукции.	Попытка унификации: fib_rec(1, Res, 1, 2) = fib_rec(1, Res, _, Res) Pезультат: успех, подстановка: {Res=2}	Прямой ход Преобразование резольвенты: замена текущей цели на тело найденного с помощью унификации правила, применение полученной подстановки
18	!. Выбор верхней подцели резольвенты, запуск редукции.	Выполнение отсечение	Завершение работы программы. Резольвента пуста. Result=2