Somme de deux variables aléatoires 11.1

1^{re} définition 11.1.1

Définition 1.11.

Soient X et Y deux variables aléatoires associées à une même expérience d'univers fini Ω et a un

X+Y et aX sont deux variables aléatoires définies sur Ω qui prennent comme valeur pour un événement donné respectivement : la ______ des valeurs de X et Y et le _ de a par X.

Exemple 1.11.

On lance deux dés, l'un tétraédrique numéroté de 1 à 4 et l'autre cubique numéroté de 1 à 6. On appelle X et Y les variables aléatoires associées respectivement aux résultats du dé tétraédrique et du dé cubique.

- \bullet X + Y est la variable aléatoire qui prend les valeurs :
- \bullet 2X est la variable aléatoire qui prend les valeurs :

▶ Note 1.11.

On peut généraliser la somme à n variables aléatoires

Par exemple, lançons trois dés cubiques de couleurs différentes et notons X, Y et Z les résultats des dés de chaque couleur. On peut considérer la variable X + Y + Z qui prend les valeurs :

11.1.2 Linéarité de l'espérance et additivité de la variance

Propriétés.

Soient X et Y deux variables aléatoires d'un univers Ω et a un réel.

- Linéarité de l'espérance : $\mathbf{E}(X+Y) = \mathbf{E}(X) + \mathbf{E}(Y)$ et $\mathbf{E}(aX) = a\mathbf{E}(X)$.
 - ATTENTION! Si les variables X et Y sont indépendantes:
- Additivité de la variance : $\mathbf{V}(X+Y) = \mathbf{V}(X) + \mathbf{V}(Y)$ et $\mathbf{V}(aX) = a^2\mathbf{V}(X)$.

▶ Note 2.11.

On considérera l'indépendance des variables au sens intuitif du terme c'est à dire que le résultat de X n'influe pas sur le résultat de Y comme dans le lancement de deux dés.

Exemple 2.11.

Prendre l'exemple initial en calculant $\mathbf{E}(X+Y)$, $\mathbf{E}(2X)$, $\mathbf{V}(X+Y)$ et $\mathbf{V}(3X)$.

▶ Note 3.11.

On peut généraliser les résultats de l'espérance et de la variance à la somme de n variables.

11.2 Somme de variables identiques et indépendantes

11.2.1 Décomposition d'une variable aléatoire suivant une loi binomiale

Théorème 1.11.

Soient n variables aléatoires indépendantes X_1, X_2, \ldots, X_n suivant la même loi de Bernoulli $\mathcal{B}(p)$. La variable aléatoire $S_n = X_1 + X_2 + \ldots + X_n$ suit alors la loi binomiale $\mathcal{B}(n,p)$.

Exemple 3.11.

Soit X_i suivant une loi de Bernoulli $\mathcal{B}(0,13)$ pour $i \in [1; 10]$, alors $S_{10} = X_1 + X_2 + \ldots + X_{10}$ suit la loi binomiale $\mathcal{B}(10; 0,13)$.

Théorème 2.11.

Toute variable aléatoire X suivant la loi binomiale $\mathcal{B}(n,p)$ peut se décomposer en une somme de n variables indépendantes S_n .

 $S_n = X_1 + X_2 + \ldots + X_n$ où X_i avec $i \in [1; n]$ suit une même loi de Bernoulli $\mathscr{B}(p)$.

▶ Note 4.11.

Ce théorème permet de démontrer l'expression de l'espérance et de la variance d'une loi binomiale $\mathcal{B}(n,p)$.

En effet si X suit la loi binomiale $\mathcal{B}(n,p)$, on peut décomposer X en somme de n variables indépendantes suivant la loi de Bernoulli $\mathcal{B}(p)$ d'espérance p et de variance p(1-p).

11.2.2 Échantillon d'une variable aléatoire

Définition 2.11.

Soit une variable X suivant une loi de probabilité.

Une liste de variables indépendantes (X_1, X_2, \dots, X_n) suivant cette même loi est appelée échantillon de taille n associé à X

On pose $S_n = X_1 + X_2 + \ldots + X_n$ et $M_n = \frac{S_n}{n}$, on a alors:

$$\mathbf{E}(S_n) = n\mathbf{E}(X) \tag{11.1}$$

$$\mathbf{E}(M_n) = \mathbf{E}(X) \tag{11.2}$$

$$\mathbf{V}(S_n) = n\mathbf{V}(X) \tag{11.3}$$

$$\mathbf{V}(M_n) = \frac{\mathbf{V}(X)}{n} \tag{11.4}$$

Démonstration. Prouvons la 12.3.

▶ Note 5.11.

Plus la taille n de l'échantillon est grand plus la variance de M_n est petite donc plus la valeur de M_n se rapproche de l'espérance de X.

Exemple 4.11.

Soit X une variable aléatoire dont la loi de probabilité est donnée par le tableau suivant. On considère un échantillon (X_1, X_2, \dots, X_n) de la loi suivie par X et la variable aléatoire moyenne M_n :

x_i	-10	5	20
$\mathbf{P}(X=x_i)$	0,25	0,55	0, 2

Déterminons la taille de l'échantillon n à partir de laquelle la variance de M_n devient inférieure à 0,05.

11.3 Concentration et loi des grands nombres

11.3.1 Inégalité de Bienaymé-Tchebychev

Théorème 3.11.

Soit X une variable aléatoire d'espérance μ et de variance \mathbb{V} .

$$\forall \delta \in]0; +\infty[, \mathbf{P}(|X - \mu| \geqslant \delta) \leqslant \frac{\mathbb{V}}{\delta^2}$$

► Note 6.11.

La probabilité que X se trouve en dehors de l'intervalle $[\mu - \delta; \mu + \delta]$ est inférieure à $\frac{\mathbf{V}}{\delta^2}$. Cette inégalité conduit à la loi des grands nombres.

Exemple 5.11.

La taille moyenne d'une femme française est de 1,65 m et la variance est évaluée à 0,0025.

Majorons la proportion des femmes françaises dont la taille est inférieure ou égale à 1,55 ou supérieure ou égale à 1,75.

Soit T_F la variable aléatoire associée à la taille d'une femme française.

On a donc $\mu = 1,65$ et $\mathbb{V} = 0,0025$.

11.3.2 Application à un intervalle de rayon de k fois l'écart-type

Théorème 4.11.

Soit X une variable aléatoire d'espérance μ et d'écart-type σ .

$$\forall k \in \mathbb{N}^*, \mathbf{P}(|X - \mu| \geqslant k\sigma) \leqslant \frac{1}{k^2}$$

Exemple 6.11.

Sur une roue de loterie il y a 4 secteurs rouges sur 10.

On fait tourner 20 fois la roue en notant par X le nombre de fois où la roue tombe sur un secteur rouge.

La variable aléatoire X suit alors la loi binomiale $\mathcal{B}(20; 0, 4)$.

Majorons la probabilité que X soit en dehors de l'intervalle centrée en μ et de rayon 2σ .

11.3.3 Inégalité de concentration

Théorème 5.11.

Soient $(X_1, X_2, ..., X_n)$ un échantillon de n variables aléatoires d'espérance μ et de variance \mathbf{V} et M_n la variable aléatoire moyenne de cet échantillon.

$$\forall \delta \in]0; +\infty[, \mathbf{P}(|M_n - \mu| \geqslant \delta) \leqslant \frac{\mathbf{V}}{n\delta^2}$$

Exemple 7.11.

On prend un dé tétraédrique bien équilibré dont on a déterminé l'espérance $\mu=2,5$ et la variance $\mathbf{V}=1,25$.

Combien de lancers du dé tétraédrique doit-on faire pour s'assurer au seuil de 95 % que la moyenne des résultats des lancers est dans l'intervalle [2,45;2,55]?

11.3.4 Loi des grands nombres

Théorème 6.11.

Soit (X_1, X_2, \dots, X_n) un échantillon de n variables aléatoires d'espérance μ et M_n la variable aléatoire moyenne de cet échantillon.

$$\forall \delta \in]0; +\infty[, \lim_{n \to +\infty} \mathbf{P}(|M_n - \mu| \geqslant \delta) = 0$$

▶ Note 7.11.

Pour un δ donné aussi petit soit-il, la limite de la probabilité que M_n soit en dehors de l'intervalle $[\mu - \delta; \mu + \delta]$ est nulle.

Ce théorème montre de façon rigoureuse, que lors qu'on lance un grand nombre de fois une pièce de monnaie bien équilibrée, on a une chance sur deux en moyenne que la pièce tombe sur « pile » ou sur « face ».