Propozycja punktowania rozwiązań zadań

Uwaga1.

Łącznie uczeń może zdobyć 25 punktów.

Do etapu wojewódzkiego zakwalifikowani będą uczniowie, którzy w etapie rejonowym uzyskają co najmniej 80% punktów możliwych do zdobycia (co najmniej 20 punktów).

Uwaga2.

Za każde poprawne rozwiązanie inne niż przewidziane w propozycji punktowania rozwiązań zadań przyznajemy **maksymalną** liczbę punktów.

ROZWIĄZANIA ZADAŃ ZAMKNIĘTYCH

Nr zadania	1.	2.
Maks. liczba punktów	1 pkt	1 pkt
Odpowiedź poprawna	С	D

Zadanie 3. (2 *pkt*)

Dany jest ułamek $\frac{a}{b}$, gdzie a oraz b są liczbami rzeczywistymi i $b \neq 0$ oraz $b \neq -a$.

Do mianownika tego ułamka dodano liczbę a. Jaką liczbę należy teraz dodać do licznika, aby otrzymać ułamek równy danemu?

Uczeń:

- zapisuje zależność wynikającą z treści zadania,
- wyznacza szukany składnik.

$$1. \ \frac{a}{b} = \frac{a+x}{b+a}$$

2.

$$ab + a^2 = ab + bx$$

$$bx = a^2$$

$$x = \frac{a^2}{b}$$

Odp. Do licznika należy dodać liczbę $x = \frac{a^2}{b}$.

Zadanie 4. (3 *pkt*)

Średnia arytmetyczna miar kątów wewnętrznych wielokąta wypukłego wynosi 160°. Ile boków ma ten wielokąt? Uzasadnij odpowiedź.

Uczeń:	
 zapisuje wzór na sumę kątów wewnętrznych wielokąta, 	1 p
układa równanie stosując definicję średniej arytmetycznej,	1 p
rozwiązuje równanie i podaje odpowiedź.	1 p

- 1. suma kątów wewnętrznych n-kąta wynosi $(n-2)\cdot 180^{\circ}$,
- 2. z własności średniej arytmetycznej: $\frac{(n-2)\cdot 180^{\circ}}{n} = 160^{\circ}$

$$(n-2)\cdot 180 = 160n$$

$$3. \quad 180n - 160n = 360$$
$$20n = 360$$

$$n = 18$$

Odp. Szukanym wielokątem jest osiemnastokąt.

Zadanie 5. (4 pkt)

W prostokątnym układzie współrzędnych na płaszczyźnie zaznaczono punkty: A(-2,4), B(-3,2), C(-2,0), D(0,-1), E(2,0), F(3,2), G(2,4), H(0,5). Sprawdź, czy ośmiokąt ABCDEFGH jest foremny i podaj argumenty uzasadniające odpowiedź.

Uczeń:	
rysuje w układzie współrzędnych ośmiokąt <i>ABCDEFGH</i>	1 p
 uzasadnia, że ośmiokąt ma boki równej długości 	1 p
 uzasadnia, że kąty wewnętrzne ośmiokąta nie są równe, 	1 p
 zapisuje wniosek – ośmiokąt nie jest foremny. 	1 p

1. rysunek:

2. wszystkie boki ośmiokąta mają tę samą długość – są przekątnymi prostokątów o wymiarach 1[j] na 2[j],

3. kąty wewnętrzne ośmiokąta ABCDEFGH nie są równe, ponieważ trójkąt ABS nie jest równoramienny (|BS| = 3, $|AS| = 2\sqrt{2}$), a zatem ma różne kąty przy podstawie.

<u>wniosek:</u> ośmiokąt *ABCDEFGH* nie jest foremny, ponieważ ma boki równej długości, ale jego kąty wewnętrzne nie są równe.

Zadanie 6. (4 pkt.)

Znajdź wszystkie liczby całkowite spełniające równanie: $\frac{|x|}{x} \cdot (x-1) = -1$.

Uczeń:	
ustala, jakie dwa przypadki należy rozpatrzyć rozwiązując dane równanie	1 p
wykazuje, że równanie nie ma rozwiązania w pierwszym przypadku,	1 p
wykazuje, że równanie nie ma rozwiązania w drugim przypadku,	1 p
 zapisuje wniosek – równanie nie ma pierwiastków. 	1 p

Aby iloczyn dwóch liczb całkowitych był równy (-1) musi zachodzić:

1.
$$\begin{cases} x - 1 = 1 \\ \frac{|x|}{x} = -1 \\ x \in C \end{cases}$$
 lub
$$2. \begin{cases} x - 1 = -1 \\ \frac{|x|}{x} = 1 \\ x \in C \end{cases}$$

<u>W 1. przypadku</u> układ równań nie ma rozwiązań w zbiorze liczb całkowitych, bo pierwsze równanie spełnia tylko liczba 2, ale nie spełnia ona drugiego równania $\left(\frac{|2|}{2} \neq -1\right)$.

<u>W 2. przypadku</u> układ równań nie ma rozwiązań w zbiorze liczb całkowitych, bo pierwsze równanie spełnia tylko liczba 0, ale nie może być ona pierwiastkiem drugiego równania (nie można dzielić przez zero).

Wniosek: Żadna liczba całkowita nie spełnia danego równania.

Zadanie 7. (*5 pkt*)

W trójkącie ostrokątnym *ABC* wysokość *CD* dzieli podstawę *AB* w stosunku 2:1. Prosta *m* przechodzi przez środek podstawy *AB* i jest równoległa do wysokości *CD*. Oblicz stosunek długości odcinków, na jakie prosta *m* dzieli ramię *AC* trójkąta *ABC*.

Uczeń:	
analizuje treść zadania, wykonuje rysunek,	1 p
• zapisuje zależności pomiędzy odcinkami w podstawie AB,	1 p
 zauważa i uzasadnia podobieństwo trójkątów, 	1 p
zapisuje odpowiednią proporcję,	1 p
• wyznacza wartość ilorazu $\frac{x}{y}$.	1 p

Uwaga:

Uczeń, który nie uzasadni podobieństwa trójkątów może otrzymać **maksymalnie 2 punkty** za rozwiązanie zadania.

1. analiza treści zadania, rysunek

2. zapisanie zależności pomiędzy odcinkami w podstawie AB,

3. $\triangle ADC \cong \triangle AEF$ (kk) - mają wspólny kąt przy wierzchołku A i po jednym kącie prostym

$$4. \quad \frac{y}{x+y} = \frac{1,5a}{2a}$$

$$2ay = 1,5ax + 1,5ay$$

5.
$$0.5y = 1.5x$$

$$\frac{y}{x} = \frac{3}{1}$$

<u>Odp.</u> Prosta m dzieli ramię AC trójkąta ABC na dwa odcinki x i y takie, że: x:y=1:3.

4

Zadanie 8. (5 *pkt*)

Dany jest okrąg o środku w punkcie O. Z punktu S leżącego na tym okręgu narysowano drugi okrąg o środku S, otrzymując w ten sposób okręgi wewnętrznie styczne – punkt styczności oznaczono A. Z punktu styczności wykreślono cięciwę AB większego okręgu (nie będącą średnicą), która przecięła mniejszy okrąg w punkcie M. Uzasadnij, że odcinki AM i BM mają równe długości.

Uczeń:	
analizuje treść zadania i wykonuje rysunek,	1 p
zauważa, że punkt O należy do odcinka SA	1 p
stosuje twierdzenie o kącie wpisanym opartym na średnicy,	1 p
uzasadnia, że trójkąt ABS jest równoramienny	1 p
zapisuje poprawny wniosek – w trójkącie równoramiennym odcinek	1 p
prostopadły do podstawy jest wysokością trójkąta i dzieli podstawę na dwie	
równe części.	

1. rysunek

- 2. okręgi są wewnętrznie styczne, więc: SA średnica okręgu o środku O i SA promień okręgu o środku S
- 3. $|\angle SMA| = 90^{\circ}$ kąt wpisany oparty na średnicy, odcinek SM jest prostopadły do odcinka AM
- 4. SA, SB promienie okręgu o środku S, zatem $\triangle ASB$ równoramienny
- 5. SM wysokość trójkąta równoramiennego ASB, dzieli podstawę na równe części

<u>wniosek</u> – w trójkącie równoramiennym ASB odcinek SM prostopadły do podstawy AB jest wysokością tego trójkąta i dzieli podstawę AB na dwie równe części, czyli |AM| = |BM|.