Table des matières

1	Analyse descriptive des series chronologiques	2
1	Notations	2
2	Modèles de décomposition déterministes	2
3	Ajustement de la tendance 3.1 Ajustement linéaire	3 3 4
4	Lissage par moyenne mobile	4
5	Décomposition d'une série chronologique	4
Η	Modèle linéaire gaussien simple	5
1	Différents rappels	5
2	Définition du modèle	5
3	Intervalle de confiance	6
4	Tests dans le modèle linéaire gaussien 4.1 Test significatif du lien linéaire	7 7 8
5	Prévision d'une valeur 5.1 Intervalle de confiance pour l'espérance de Y_0	9 9
6	Test par comparaison de modèles 6.1 Test du caractère significatif de la liaison linéaire	10 10
II	I ANOVA 1	10
1	Données et modèle 1.1 Données	11 11 11
2	Test de l'effet du facteur 2.1 Introduction des hyposthèses	11 11 12
3	Comparaison multiple	12
4	Estimation des paramètres	13

Première partie

Analyse descriptive des séries chronologiques

1 Notations

❖ Définition: Série chronologique

Suite finie de données quantitatives indexée par le temps.

Si on considère une série chronologique de longueur n:

- $t_1,...,t_n$ désigne les n instants successifs d'observation
- y_i sera la valeur mesure à l'instant t_i (en considérant les dates d'observations équidistantes).

2 Modèles de décomposition déterministes

Deux modèles sont étudiés :

- 1. Le modèle additif
- 2. Le modèle multiplicatif

 $combinant\ chacun:$

- 1. Une tendance f_i
- 2. Une composante saisonnière s_i
- 3. Une composante résiduelle e_i

🔩 Définition: Modèle additif

Le modèle additif prédit une étiquette sous la forme suivante :

$$y_i = f_i + s_i + e_i, i = 1..n$$

avec:

$$\sum_{j=1}^{p} s_j = 0 \text{ et } \sum_{i=1}^{n} e_i = 0$$

Où p désigne une période.

On utilise ce modèle quand, en reliant minima et maxima, on obtient deux droites parallèles.

❖ Définition: Modèle additif

Le modèle multiplicatif prédit une étiquette sous la forme suivante :

$$y_i = f_i(1+s_i)(1+e_i), i = 1..n$$

avec:

$$\sum_{j=1}^{p} s_j = 0 \text{ et } \sum_{i=1}^{n} e_i = 0$$

Où p désigne une période

On utilise ce modèle quand, en reliant minima et maxima, on obtient une sorte de cône.

3 Ajustement de la tendance

3.1 Ajustement linéaire

■ Formule: Méthode des moindres carrés

Elle vient de la recherche des paramètres $a,b\in\mathbb{R}$ minimisant la fonctionnelle suivante :

$$\sum_{i=1}^{n} (y_i - (at_i + b))^2$$

ce qui nous donne :

$$\hat{a} = \frac{\sum_{i=1}^{n} (y_i - \bar{y})(t_i - \bar{t})}{\sum_{i=1}^{n} (t_i - \bar{t})^2}$$

$$\hat{b} = \bar{y} - \hat{a}\bar{t}$$

I Formule: Méthode des deux points

Cette méthode consiste à choisir arbitrairement deux points par lesquels on fait passer une droite.

La réalisation de cette méthode se fait en général en prenant deux sous-suites, et en prenant les points médians de chaque sous-série.

Cette méthode s'avère efficace en présence de points aberrants, chose que la méthode des moindres carrés ne prend pas en compte.

I Propriété: Appréciation des régression linéaire

Un moyen de qualifier la qualité de la regression linéaire est d'utiliser le coefficiet de corrélation linéaire, noté r, et défini par :

$$r = \frac{\text{cov}(y, t)}{\sigma_y \sigma_t}$$

En effet, en réécrivant l'expression, on peut montrer que :

$$r^2 = \frac{\text{Variance expliqu\'ee}}{\text{Variance totale}}$$

3.2 Ajustement polynomial

1 Formule: Polynôme des moindres carrés

On minimise la même fonction que précédemment, mais en cherchant cette fois non plus a et b d'une régression linéaire mais $a_i,\ i=0,..,d$ d'un polynôme de degré d. En notant :

$$Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \text{ et } T = \begin{pmatrix} 1 & t_1 & \cdots & t_1^d \\ \vdots & \vdots & \ddots & \vdots \\ 1 & t_n & \cdots & t_n^d \end{pmatrix}$$

3

On obtient:

$$\theta^{MC} = \begin{pmatrix} a_0 \\ \vdots \\ a_d \end{pmatrix} = ({}^tTT)^{-1} \times {}^tTY$$

3.3 Ajustement non linéaire

On a deux cas:

- 1. Soit on se ramène à un ajustement linéaire via un changement de variable
- 2. Soit on cherche à déterminer les coefficients restants via une méthode à d points (d étant le nombre de paramètres à estimer), ou en minimisant le carré des erreurs (ce qui ne donne pas toujours une formule explicite).

4 Lissage par moyenne mobile

🔩 Définition: Moyenne mobile simple

On note MM(k) la série des moyennes mobiles d'ordre k de la série $(y_j)_{j=1...n}$, et on a :

— lorsque k est pair et vaut 2m:

$$MM(k)_j = \frac{y_{j-m+1}+\ldots+y_j+y_{j+1}+\ldots+y_{j+m}}{2m}$$

— lorsque k est impair et vaut 2m+1 :

$$MM(k)_j = \frac{y_{j-m} + \dots + y_j + y_{j+1} + \dots + y_{j+m}}{2m+1}$$

pour i = m + 1, ..., n - m.

🔥 Définition: Moyenne mobile centrée

La série notée MMC(k) uniquement pour k pair et définie par :

$$MMC(k)_j = \frac{MM(k)_{j-1} + MM(k)_j}{2}$$

i Propriété:

- La série MM(p) ou MMC(p) ne possède plus de composante saisonnière de période p.
- Une moyenne mobile atténue l'aplitude des fluctuations irrégulières d'une chronique.

5 Décomposition d'une série chronologique

1 Formule: Étapes de la décomposition

- 1. La désaisonnalisation
 - (a) Lissage par moyennes mobiles: on construit la série des moyennes mobiles d'ordre p, la saisonnalité (centrées si p pair).
 - (b) Constrution de la série des différences / quotients : observation série des moyennes mobiles ou obs /
 - (c) Calcul des coefficients saisonniers non centrés: moyennes des différences pour chaque saison
 - (d) Centrage des coefficients saisonniers : moyennes des p coefficients non centrés, puis on centre les coefficients saisonniers.
 - (e) Constrution de la série corrigée des variations saisonnières : observation composante saisonnière (selon, bien sûr, la saison) ou division.
- 2. La série lissée des prévisions
 - (a) Ajustement d'une tendance : regression linéaire (ou autre) sur la CVS
 - (b) Construction de la série lissée des prévisions : résultat de la régression + coefficient saisonnier. $= \hat{y}_i$ $(ou = \hat{f}_i(1 + \hat{s}_i))$

Deuxième partie

Modèle linéaire gaussien simple

1 Différents rappels

• Rappel : Différentes lois de probabilité

— Loi du χ^2 : On prend $Z_1,...,Z_n$ n variables aléatoires indépendantes et de même loi $\mathcal{N}(0,1)$. Alors $S_n = \sum_{k=1}^n Z_k^2$ suit une loi du chi-deux à n degrés de liberté, ce qu'on note $S_n \hookrightarrow \chi_n^2$.

$$\mathbb{E}(S_n) = n \text{ et } \mathbb{V}(S_n) = 2n.$$

Le théorème de Cochran nous dit que si X,Y et Z sont trois variables alétoires positives telles que Z=X+Y et que $Z\hookrightarrow\chi^2_n$ et $X\hookrightarrow\chi^2_p$ alors $Y\hookrightarrow\chi^2_{n-p}$ et on a indépendance entre X et Y.

- Dans la suite, les deux variables sont indépendantes
- Loi de Student : Si $U \hookrightarrow \mathcal{N}(0,1)$ et $V \hookrightarrow \chi_n^2$ alors $\frac{U}{\sqrt{\underline{V}}} \hookrightarrow T_n$
- Loi de Fisher : Si $U \hookrightarrow \chi_p^2$ et $V \hookrightarrow \chi_q^2$ alors $\frac{U/p}{V/q} \hookrightarrow F(p,q)$ Le carré d'une Student T_n est une loi de Fisher F(1,n).

Définition du modèle

🔩 Définition: MLG

Dans le cadre du modèle linéaire gaussien simple, les données $x_1, ..., x_n$ ne sont pas des réalisations de variables aléatoires et on suppose que les données $y_1, ..., y_n$ sont les réalisations de n variables aléatoires $Y_1, ..., Y_n$ qui sont liées aux données $x_1, ..., x_n$ de la manière suivante :

$$\forall i \in \{1, ..., n\}, Y_i = \alpha x_i + \beta + \varepsilon_i$$

où $\alpha, \beta \in \mathbb{R}$ et où $\varepsilon_1, ..., \varepsilon_n$ sont n variables aléatoires indépendantes et même loi $\mathcal{N}(0, \sigma^2)$.

♦ Définition: des estimateurs

On définit trois estimateurs :

— un estimateur de α qu'on notera A et qui vaut :

$$A = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(Y_i - \bar{Y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

— un estimateur de β qu'on notera B :

$$B = \bar{Y} - A\bar{x}$$

(Ces deux estimateurs sont obtenus en minimisant la quantité $f(A,B) = \sum_{i=1}^{n} (Y_i - Ax_i - B)^2$)

— Un estimateur du paramètre σ^2 des ε_i qu'on note S^2 :

$$S^{2} = \frac{1}{n-2} \sum_{i=1}^{n} (Y_{i} - Ax_{i} - B)^{2}$$

Petite convention d'écriture :

$$d_x^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2$$

IProposition: Loi des différents estimateurs

Sous les hypothèses du modèle linéaire gaussien, A et B sont des estimateurs sans biais et convergents en probabilité des paramètres α et β , et on a :

$$A \hookrightarrow \mathcal{N}\left(\alpha, \frac{\sigma^2}{nd_x^2}\right)$$

$$B \hookrightarrow \mathcal{N}\left(\beta, \frac{\sigma^2(d_x^2 + \bar{x}^2)}{nd_x^2}\right)$$

Sous les mêmes hypothèses, S^2 est un estimateur sans biais de σ^2 et on a :

$$\frac{(n-2)S^2}{\sigma^2} \hookrightarrow \chi^2_{n-2}$$

Enfin, on a S^2 indépendant de A, B et \bar{Y} .

3 Intervalle de confiance

1 Proposition: Variables aléatoires pour les intervalles

Pour construire les intervalles de confiance, étant donné qu'on ne connaît pas σ^2 , on a utiliser son estimateur S et "studentiser" les variables. En effet, vu que S^2 est indépendant de A et B, et vu les lois que chacun d'entre eux suit, cela est tout à fait réalisable! Ainsi, sous les hypothèses du modèle linéaire Gaussien :

$$\frac{(A-\alpha)\sqrt{nd_x^2}}{S} \hookrightarrow T_{n-2} \text{ et } \frac{(B-\beta)\sqrt{nd_x^2}}{S\sqrt{d_x^2 + \bar{x}^2}} \hookrightarrow T_{n-2}$$

(Pour retrouver ces estimateurs, il suffit de centrer et réduire A et B, puis de réutiliser la méthode de construction d'une Student)

Pour S^2 , on utilise directement le fait qu'elle suive une loi du chi-deu à n-2 degrés de liberté.

I Formule: Intervalles de confiance de α , β et σ^2

$$IC_{1-\delta}(\alpha) = \left[a \pm \frac{st_{n-2,\delta/2}}{\sqrt{nd_x^2}} \right]$$

$$IC_{1-\delta}(\beta) = \left[b \pm st_{n-2,\delta/2} \frac{\sqrt{\overline{x}^2 + d_x^2}}{\sqrt{nd_x^2}} \right]$$

$$IC_{1-\delta}(\sigma^2) = \left[\frac{(n-2)s^2}{k_{1-\delta/2}}; \frac{(n-2)s^2}{k_{\delta/2}} \right]$$

4 Tests dans le modèle linéaire gaussien

On prend toujours comme hypothèse le modèle linéaire gaussien.

4.1 Test significatif du lien linéaire

♦ Définition: Statistique de ce test

On veut tester l'hypothèse

$$H_0 : \ll \alpha = 0 \gg$$

contre l'alternative

$$H_1 : \ll \alpha \neq 0 \gg$$

On a pour cela la statistique suivante :

$$\frac{(A-\alpha)\sqrt{nd_x^2}}{S} \sim T_{n-2}$$

On construit donc la statistique de test suivante :

$$Z = \frac{A\sqrt{nd_x^2}}{S} \underset{H_0}{\sim} T_{n-2}$$

qui sous H_1 ne suit plus la même loi.

1 Proposition: Zone de rejet et stratégie

On fixe un risque δ et on calcule $t_{n-2,\delta/2}$ tel que :

$$\mathbb{P}(|Z| < t_{n-2,\delta/2}) = 1 - \delta$$

La zone de rejet de H_0 au risque δ est alors de la forme $\{|Z|>t_{n-2,\delta/2}\}.$

On calcule une réalisation de Z :

$$z = \frac{a\sqrt{nd_x^2}}{s} = \frac{r}{\sqrt{1 - r^2}}\sqrt{n - 2}$$

et on décide ainsi

- si $|z| \le t_{n-2,\delta/2}$, on accepte H_0 au risque δ .
- si $|z| > t_{n-2,\delta/2}$, on rejette H_0 au risque δ .

4.2 Test d'un modèle linéaire spécifique

♦ Définition: Statistique de ce test

On veut tester l'hypothèse

$$H_0 : \ll \alpha = \alpha_0 \text{ et } \beta = \beta_0 \gg$$

contre l'alternative

$$H_1 : \ll \alpha \neq \alpha_0$$
 ou $\beta \neq \beta_0 \gg$

On a pour cela la statistique suivante :

$$\frac{\sum_{i=1}^{n} ((A-\alpha)x_i + (B-\beta))^2/2}{\sum_{i=1}^{n} (Y_i - Ax_i - B)^2/(n-2)} \sim F(2, n-2)$$

On construit donc la statistique de test suivante :

$$Z = \frac{\sum_{i=1}^{n} ((A - \alpha_0)x_i + (B - \beta_0))^2 / 2}{\sum_{i=1}^{n} (Y_i - Ax_i - B)^2 / (n - 2)} \underset{H_0}{\sim} F(2, n - 2)$$

qui sous H_1 ne suit plus la même loi.

IProposition: Zone de rejet et stratégie

On fixe un risque δ et on calcule $f_{2,n-2,\delta}$ tel que :

$$\mathbb{P}(Z < f_{2,n-2,\delta}) = 1 - \delta$$

La zone de rejet de H_0 au risque δ est alors de la forme $\{Z > f_{2,n-2,\delta}\}$.

On calcule une réalisation de Z :

$$z = \frac{n-2}{2} \frac{\sum_{i=1}^{n} ((a-\alpha_0)x_i + (b-\beta_0))^2}{\sum_{i=1}^{n} (y_i - ax_i - b)^2}$$
$$= \frac{n-2}{2} \frac{n(b-\beta_0)^2 + 2n\bar{x}(a-\alpha_0)(b-\beta_0) + (a-\alpha_0)^2 \sum_{i=1}^{n} x_i^2}{(\sum_{i=1}^{n} y_i^2 - n\bar{y}^2) - a^2 (\sum_{i=1}^{n} x_i^2 - n\bar{x}^2)}$$

et on décide ainsi :

- si $|z| \le f_{2,n-2,\delta}$, on accepte H_0 au risque δ .
- si $|z| > f_{2,n-2,\delta}$, on rejette H_0 au risque δ .

5 Prévision d'une valeur

On cherche ici à estimer une valeur inconnue y_0 à partir d'une donnée x_0 . On va associer à y_0 une variable aléatoire Y_0 définie par :

$$Y_0 = Ax_0 + B + \varepsilon_0$$

avec $\varepsilon_0 \sim \mathcal{N}(0, \sigma^2)$. On va également dire que y_0 est la réalisation d'une variable aléatoire \hat{Y}_0 définie par :

$$\hat{Y}_0 = Ax_0 + B$$

Ainsi, puisque $\mathbb{E}(Y_0) = \alpha x_0 + \beta = \mathbb{E}(Y_0)$, alors \hat{Y}_0 est un estimateur de $\mathbb{E}(Y_0)$. Par conséquent, \hat{y}_0 est à la fois une estimation de l'espérance de Y_0 et une prévision de y_0 .

5.1 Intervalle de confiance pour l'espérance de Y_0

⇔ Théorème:

Dans le cadre du MLG :

$$\frac{\hat{Y}_0 - \mathbb{E}(Y_0)}{S\sqrt{\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{nd_x^2}}} \sim T_{n-2}$$

1 Proposition:

A partir de ce résultat, on peut bâtir l'intervalle de confiance pour le paramètre inconnu $\mathbb{E}(Y_0) = \alpha x_0 + \beta$. Au niveau de confiance $(1 - \delta\%)$ cet intervalle a pour expression :

$$IC_{1-\delta}(\mathbb{E}(Y_0)) = \left[y_0 \pm t_{n-2,\delta/2} s \sqrt{\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{nd_x^2}} \right]$$

5.2 Intervalle de prévision pour une observation Y_0

⇒ Théorème:

Dans le cadre du MLG :

$$\frac{\hat{Y}_0 - Y_0}{S\sqrt{1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{nd_x^2}}} \sim T_{n-2}$$

1 Proposition:

A partir de ce résultat, on peut bâtir l'intervalle de confiance pour le paramètre inconnu $\mathbb{E}(Y_0) = \alpha x_0 + \beta$. Au niveau de confiance $(1 - \delta\%)$ cet intervalle a pour expression :

$$IC_{1-\delta}(Y_0) = \left[y_0 \pm t_{n-2,\delta/2} s \sqrt{1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{n d_x^2}} \right]$$

6 Test par comparaison de modèles

6.1 Test du caractère significatif de la liaison linéaire

On va tester deux modèles :

$$M_1$$
: $Y_i = \beta + \varepsilon_i$ (ε_i) iid de loi $\mathcal{N}(0, \sigma^2)$
 M_2 : $Y_i = \alpha x_i + \beta + \varepsilon_i$ (ε_i) iid de loi $\mathcal{N}(0, \sigma^2)$

On cherche donc à tester l'hypothèse nulle

$$H_0 : \ll \text{modèle } M_1 \gg$$

contre l'alternative

$$H_1 : \ll \text{modèle } M_2 \gg$$

⇒ Théorème:

Sous les hypothèse du MLG :

$$Z = \frac{\sum_{i=1}^{n} (\bar{Y} - Ax_i - B)^2 / 1}{\sum_{i=1}^{n} Y_i - Ax_i - B)^2 / (n-2)} \underset{H_0}{\sim} F(1, n-2)$$

Démonstration:

$$\sum_{i=1}^{n} (Y_i - \bar{Y})^2 = \sum_{i=1}^{n} (\bar{Y} - Ax_i - B)^2 + \sum_{i=1}^{n} (Y_i - Ax_i - B)^2$$

Or:

$$\frac{1}{\sigma^2} \sum_{i=1}^n (Y_i - Ax_i - B)^2 \sim \chi_{n-2}^2$$

$$\frac{1}{\sigma^2} \sum_{i=1}^{n} (Y_i - \bar{Y}) \underset{H_0}{\sim} \chi_{n-1}^2$$

D'après le théorème de Cochran, on a :

$$\frac{1}{\sigma^2} \sum_{i=1}^{n} (\bar{Y} - Ax_i - B)^2 \underset{H_0}{\sim} \chi_1^2$$

Avec indépendance entre les deux variables aléatoires.

${f i} Proposition$

On prend une réalisation de la variable aléatoire Z qu'on note z. La zone de rejet au risque δ est de la forme $\{Z > f_{1,n-2,\delta}\}$.

Ce test vient de l'analyse de la variance. On voit si, en passant du premier modèle au second, l'apport à la variance est significatif ou non. (Il suffit de regarder l'expression du numérateur et du dénominateur pour s'en convaincre!)

Troisième partie

ANOVA 1

But : tester l'égalité de p moyennes $(p \ge 2)$.

1 Données et modèle

1.1 Données

On cherche à étudier l'effet d'un facteur A, qu'on supposera à p niveaux, sur une variable quantitative Y. On suppose que le facteur A influe uniquement sur les moyennes sur les moyennes des distributions de chacun des p groupes et non sur leur variance.

Niveau du facteur A	A_1	A_2	 A_p
	y_{11}	y_{21}	 y_{p1}
	:	:	 :
	:	y_{2n_2}	 :
	:		 y_{pn_p}
	y_{1n_1}		
Effectifs	n_1	n_2	 n_p
Moyennes empiriques	\bar{y}_{1ullet}	\bar{y}_{2ullet}	 \bar{y}_{pullet}

1.2 Modèle

On fait les hypothèses suivantes :

- Pour tout $i \in \{1,...,p\}$ et pour tout $j \in \{1,...,n_i\}$, la donnée y_{ij} est la réalisation d'une variable aléatoire Y_{ij} de loi $\mathcal{N}(\mu_i, \sigma^2)$
- Les variables (Y_{ij}) sont globalement indépendantes.

ce qu'on résume par :

$$Y_{ij} = \mu_i + \varepsilon_{ij}, (\varepsilon_{ij}) \stackrel{iid}{\sim} \mathcal{N}(0, \sigma^2)$$

🔩 Définition: Dimension

Dans le contexte de l'ANOVA, on appelle dimension l'espace dans lequel vit l'espérance des variable aléatoires (Y_{ij}) . Cette dimension est égale à la différence entre :

- le nombre de paramètres d'espérance envisagés dans la modélisation
- et le nombre de contraintes d'identifiabilité nécessaires

Remarque : Ici, le modèle est de dimension p, car on a p paramètres (les μ_i) à estimer et aucune contrainte. On notera ce modèle (M_p) .

2 Test de l'effet du facteur

2.1 Introduction des hyposthèses

On veut tester l'absence d'effet du facteur sur les moyennes. On va donc tester l'hypothèse nulle :

$$H_0 : \ll \mu_1 = \dots = \mu_p \gg$$

contre l'alternative :

$$H_1 : \ll \exists (i,j) \text{ tel que } \mu_i \neq \mu_j \gg$$

Sous l'hypothèse H_0 , on a :

$$Y_{ij} = \mu + \varepsilon_{ij} \text{ avec } (\varepsilon_{ij}) \stackrel{iid}{\sim} \mathcal{N}(0, \sigma^2)$$

Ce modèle est de dimension 1, on le notera donc (M_1) .

Tester l'absence d'effet du facteur A sur Y, c'est tester :

$$H_0 : \ll \text{Modèle } (M_1) : Y_{ij} = \mu + \varepsilon_{ij} \gg$$

contre l'alternative :

$$H_1 : \ll \text{Modèle } (M_p) : \mu_i + \varepsilon_{ij} \gg$$

2.2Estimation des paramètres

1 Proposition: Dans le modèle complet (M_p)

Dans ce modèle, on doit estimer les (μ_i) et σ^2 :

- On estime μ_i (pour tout i=1,...,p) par $\hat{\mu}_i = \frac{1}{n_i} \sum_{j=1}^{n_i} Y_{ij} = \bar{Y}_{i\bullet}$

- On prédit pour tout (i,j), Y_{ij} par $\hat{Y}_{ij} = \hat{\mu}_i$ Les résidus (estimations des ε_{ij}) sont définis par les $\hat{\varepsilon}_{ij} = Y_{ij} \bar{Y}_{i\bullet}$ La somme des carrés résiduelle vaut $SCR(M_p) = \sum_{i=1}^p \sum_{j=1}^{n_i} (Y_{ij} \bar{Y}_{i\bullet})^2$ Enfin, on estime σ^2 par $S^2 = \frac{SCR(M_p)}{n-p}$

1 Proposition: Dans le modèle (M_1)

Dans ce modèle, on doit estimer μ et σ^2 :

- On estime μ par $\hat{\mu} = \frac{1}{n} \sum_{i=1}^{p} \sum_{j=1}^{n_i} Y_{ij} = \bar{Y}_{\bullet \bullet}$
- On prédit pour tout $(i,j), Y_{ij}$ par $\hat{Y} = \hat{\mu}$
- Les résidus (estimations des ε_{ij}) sont définis par les $\hat{\varepsilon}_{ij} = Y_{ij} \bar{Y}_{\bullet \bullet}$ La somme des carrés résiduelle vaut $SCR(M_1) = \sum_{i=1}^p \sum_{j=1}^{n_i} (Y_{ij} \bar{Y}_{\bullet \bullet})^2$
- Enfin, on estime σ^2 par $S^2 = \frac{SCR(M_1)}{n-1}$

IProposition: Statistique de test

Dans le cadre du modèle complet d'ANOVA 1, on a :

$$SCR(M_1) = \sum_{i=1}^{p} \sum_{j=1}^{n_i} (\underbrace{\hat{Y}_{ij}(M_p) - \hat{Y}_{ij}(M_1)}_{\bar{Y}_{i\bullet} - \bar{Y}_{\bullet\bullet}})^2 + SCR(M_p)$$

et $\frac{1}{\sigma^2}SCR(M_p) \sim \chi^2_{n-p}$. De plus, sous H_0 , $\frac{1}{\sigma^2}SCR(M_1) \underset{H_0}{\sim} \chi^2_{n-1}$. Donc :

$$Z = \frac{(SCR(M_1) - SCR(M_p))/(p-1)}{SCR(M_p)/(n-p)}$$

suit une loi de Fisher F(p-1, n-p) (sous l'hypothèse H_0).

La zone de rejet de H_0 au risque δ est de la forme $\{Z > f_{p-1,n-p,\delta}\}.$

On peut voir cette statistique de test comme le rapport de deux estimateurs de σ^2 : un qui est toujours bon, et l'autre seulement sous H_0 .

3 Comparaison multiple

♦ Définition: Contraste

Un contraste entre les paramètres $(\mu_i)_{i=1,\dots,p}$ est une combinaison linéaire des (μ_i) de la forme $\sum_{i=1}^p c_i \mu_i$ où les c_i sont des coefficients réels constants vérifiant la condition $\sum_{i=1}^{p} c_i = 0$.

Pour un contraste donné, nous allons tester l'hypothèse nulle

$$H_0 : \ll \psi = \sum_{i=1}^p c_i \mu_i = 0 \gg$$

contre l'alternative :

$$H_1 : \ll \psi \neq 0 \gg$$

Soit $\hat{\psi} = \sum_{i=1}^{p} c_i \hat{Y}_{i\bullet}$ l'estimateur sans biais du constraste $\sum_{i=1}^{p} c_i \mu_i$.

⇔ Théorème:

Dans le cadre du modèle complet d'ANOVA 1 :

$$Z = \frac{\sum_{i=1}^{p} c_i \bar{Y}_{i\bullet}}{\sqrt{\frac{SCR(M_p)}{n-p} \left(\sum_{i=1}^{p} \frac{c_i^2}{n_i}\right)}} \underset{H_0}{\sim} T_{n-p}$$

$\blacksquare Proposition:$

On construit un test sur cette statistique. La zone de rejet de H_0 au risque δ est alors de la forme :

$$\{|Z| > t_{n-p,\delta/2}\}$$

4 Estimation des paramètres

On va chercher à construire un intervalle de confiance pour chacun des μ_i :

⇔ Théorème:

Sous les hypothèses de normalité et d'indépendance des p échantillons, pour tout $i \in \{1,...,p\}$, $\bar{Y}_{i\bullet}$ est un estimateur sans biais du paramètre μ_i et :

$$\bar{Y}_{i\bullet} \sim \mathcal{N}\left(\mu_i, \frac{\sigma_i^2}{n_i}\right)$$

De plus, $S_i^2 = \frac{1}{n_i-1} \sum_{j=1}^{n_i} (Y_{ij} - \bar{Y}_{i\bullet})^2$ est un estimateur sans biais de σ_i^2 indépendant de $\bar{Y}_{\bullet \bullet}$ et on a :

$$\frac{(n_i-1)}{\sigma_i^2}S_i^2 \sim \chi_{n_i-1}^2$$

⇔ Corollaire:

Il est possible de bâtir des intervalles de confiance pour les paramètres $\mu_i,$ en prenant la statistique :

$$\frac{\sqrt{n_i}(\bar{Y}_{i\bullet} - \mu_i)}{S_i} \sim T_{n_i - 1}$$

On construit ainsi l'intervalle de confiance au niveau de confiance $(1-\delta)$ de μ_i :

$$IC_{(1-\delta)}(\mu_i) = \left[\bar{y}_{i\bullet} \pm \frac{s_i t_{n_i-1,\delta/2}}{\sqrt{n_i}}\right]$$