Introduction to Nonlinear Programming

Dr. Debjani Chakraborty
Department of Mathematics
I.I.T. Kharagpur

Introduction

A general NLP is represented as

$$\begin{aligned} & \textit{Minimize } f(X) \\ & \textit{Subject to } g_i(X) \leq 0, i = 1, 2 \cdots m \\ & h_j(X) = 0, j = 1, 2 \cdots l \\ & X^L \leq X \leq X^U \end{aligned}$$

Where, $X = (x_1, x_2 \cdots x_n)^T$ is column vector of n real-valued design variables. And X^L and X^U represent explicit lower and upper bounds on the design variables

Example

Let us take a simple example

Minimize
$$\sqrt{(x-14)^2 + (y-15)^2}$$

Subject to $(x-8)^2 + (y-9)^2 \le 49$
 $2 \le x \le 13$
 $x + y \le 24$
 $x, y \ge 0$.

Graph

10 12 14 16 18

Note: the optimal solution is not at a corner point. It is where the contour first hits the feasible region

0

Unconstrained problem

$Minimize x^2 + 2x + 8$

Optimality Criteria

- In finding optimal solution, two questions generally must be addressed:
 - Static Question. How can one determine whether a given point x* is the optimal solution?
 - 2. Dynamic Question. If x* is not the optimal point, then how does one go about finding a solution that is optimal?

What is a Function?

Monotonic and unimodal functions
 Monotonic:

for any two points x_1 and x_2 , where $x_1 \le x_2$ if $f(x_1) \le f(x_2)$ (monotonically increasing) if $f(x_1) \ge f(x_2)$ (monotonically decreasing)

Unimodal:

f(x) in unimodal on the interval $a \le x$ $\le b$ if and only if it is monotic on either of the single optimal point x^* in the interval

Unimodality is an extremely important functional property used in optimization.

A monotonic increasing function

A monotonic decreasing function

An unimodal function

Figure 2.7. Local and global optima.

Basic Philosophy for solving NLP

To produce a sequence of improved approximations to the optimum according to the following scheme

- I. Start with an initial trial point X_i
- 2. Find a suitable direction S_i
- 3. Find an appropriate step length λ_i
- 4. Obtain a new approximation

$$X_{i+1} = X_i + \lambda_i S_i$$

5. Test whether X_{i+1} is optimum

Issues to be addressed

- Nature of the functions : convex/concave
- Modality
- Gradient of functions involved
- Optima are not restricted to extreme points
- Distinguish between local and global optimum
- If the feasible region is disconnected or combination of discrete spaces

Issues to be addressed

- Different starting point leads to different solution
- Difficult to find the feasible starting point
- It is not possible to identify whether the model is infeasible / unbounded
- There are numerous algorithm to solve NLP
- How will you know the function is convex or concave in the region of interest
- You need to know how to use the available different solver

Problem Formulations & Graphical Solution

Dr. Debjani Chakraborty Department of Mathematics I.I.T. Kharagpur

Issues to be addressed

- Nature of the functions : <u>convex/concave</u>
- Modality
- Gradient of functions involved
- Optima are not restricted to extreme points
- Distinguish between <u>local and global</u> <u>optimum</u>
- If the feasible region is disconnected or combination of discrete spaces

Issues to be addressed

- Different starting point leads to different solution
- Difficult to find the feasible starting point
- It is not possible to identify whether the model is infeasible / unbounded
- There are numerous algorithm to solve NLP
- How will you know the function is convex or concave in the region of interest
- You need to know how to use the available different solver

Concave Upward or Convex downward or Convex

$$f(x) = x^2$$

Concave Downward or Convex Upward or Concave

$$f(x) = -x^2$$

Convex and Concave Function

• The function f is a convex function if

$$f(\lambda x' + (1 - \lambda)x'')$$

$$\leq \lambda f(x') + (1 - \lambda)f(x'')$$

The function f is a concave function if

$$f(\lambda x' + (1 - \lambda)x'')$$

$$\geq \lambda f(x') + (1 - \lambda)f(x'')$$

Important Fact

Minimization of a Convex Function over Convex Sets any local minimum is a global minimum.

Maximization of a Concave Function over Convex Sets any local maximum is a global maximum.

Local Optimality

A function of one variable is said to have a relative or local minimum at $x = x^*$ if $f(x^*) \le f(x^* + h)$ for all sufficiently small positive and negative value of h.

A function of one variable is said to have a relative or local maximum at $x = x^*$ if $f(x^*) \ge f(x^* + h)$ for all sufficiently small positive and negative value of h.

Global Optimality

A function of one variable is said to have a global minimum at $x = x^*$ if $f(x^*) \le f(x)$ for all x in the domain of the function.

A function of one variable is said to have a global maximum at $x = x^*$ if $f(x^*) \ge f(x)$ for all x in the domain of the function.

Graphical Solution

Minimize
$$2x + 3y$$

Subject to $x^2 + y^2 = 1, x, y \ge 0$

$$f(x) = -3.605$$

Graphical Solution

Problem 2

Minimize
$$\frac{1}{2}x^{2} + y$$
Subject to $x - y \le 1$

$$x + y \le 1$$

$$x^{2} + y \le 1$$

$$x, y \ge 0$$

Classification based on:

- Constraints
- ➤ Nature of Design Variable
- Nature of Equations involved
- > Permissible Values of Design Variables
- > Randomness involved in Design Variables
- Separability of Functions
- Number of Objective Functions

Types of Optimization Problems

Dr. Debjani Chakraborty
Department of Mathematics
IIT Kharagpur

Classification can be based on:

- Constraints
- Nature of the design variables
- Physical structure of the problem
- Nature of the equations involved
- Permissible values of the design variables
- Deterministic nature of the variables
- Separability of the functions

Constraints

- ✓ Constrained optimization problem
- ✓ Unconstrained optimization problem

Nature of the design variables

- ✓ Static optimization problems
- ✓ Dynamic optimization problems

Physical structure of the problem

- ✓ Optimal control problems
- ✓ Non-optimal control problems

Nature of the equations involved

- ✓ Nonlinear programming problem
- ✓ Geometric programming problem
- ✓ Quadratic programming problem
- ✓ Linear programming problem

- Permissible values of the design variables
 - ✓ Integer programming problems
 - ✓ Real valued programming problems
- Deterministic nature of the variables
 - ✓ Stochastic programming problem
 - ✓ Deterministic programming problem

Separability of the functions

- ✓ Separable programming problems
- ✓ Non-separable programming problems

Number of the objective functions

- ✓ Single objective programming problem
- ✓ Multiobjective programming problem

Unconstrained General Optimization Problem

- ✓ **Objective:** Find minimum of F(x) where x is a vector of design variables
- ✓ We may know lower and upper bounds for optimum
- ✓ No constraints involved

Constrained General Optimization Problem

 \checkmark Objective: Find minimum of F(x) where x is a vector of design variables subject to a

set of constraints

✓ General format for Minimization problem:

Minimize F(x)

subject to $G_i(x) \geq 0$

$$x \ge 0$$
, $i = 1, ... n$

Quadratic Programming Problem

✓ A quadratic programming problem is a nonlinear programming problem with a quadratic objective function and linear constraints. It is usually formulated as follows:

$$F(\mathbf{X}) = c + q^{T} \mathbf{X} + \frac{1}{2} \mathbf{X}^{T} Q \mathbf{X}$$

$$= c + \sum_{i=1}^{n} q_{i} x_{i} + \sum_{i=1}^{n} \sum_{j=1}^{n} Q_{ij} x_{i} x_{j}$$

$$\sum_{i=1}^{n} a_{ij} x_{i} = b_{j}, \quad j = 1, 2, \dots, m$$

$$x_{i} \geq 0, \qquad i = 1, 2, \dots, n$$

subject to

where c, q_{i} , Q_{ij} , a_{ij} , and b_{j} are constants.

Minimize
$$2x_1^2 + 2x_2^2 - 2x_1x_2 - 4x_1 - 6x_2 + 8$$

Subject to $x_1 + x_2 \le 2$
 $x_1 + 5x_2 \le 5, -x_1 \le 0, -x_2 \le 0$

Integer Programming Problem

- ✓ If some or all of the design variables $x_1, x_2, ..., xn$ of an optimization problem are restricted to take on only integer (or discrete) values, the problem is called an *integer programming problem*.
- ✓ **General form:** $maximize\ c^Tx$ $subject\ to\ Ax \le b$ $x \ge 0, x \in \mathbb{Z}^n$

where c, b are vectors and A is a matrix whose all entries are integers.

Separable Programming Problem

 \checkmark A function f(x) is said to be **separable** if it can be expressed as the sum of n single variable functions, $f_1(x_1)$, $f_2(x_2)$,..., $f_n(x_n)$, that is,

$$f(\mathbf{X}) = \sum_{i=1}^{n} f_i x_i$$

✓ A *separable programming problem* is one in which the objective function and the constraints are separable.

Find **X** which minimizes $f(\mathbf{X}) = \sum_{i=1}^{n} f_i(x_i)$ subject to $g_j(\mathbf{X}) = \sum_{i=1}^{n} g_{ij}(x_i) \le b_j, \qquad j = 1, 2, \dots, m$

$$g_{j}(\mathbf{X}) = \sum_{i=1}^{n} g_{ij}(x_{i}) \le b_{j}, \qquad j = 1, 2, \dots, m$$

where b_i is constant

Example

Minimize
$$x_1^2 + x_2^2 + x_3^2$$

Subject to
$$x_1 + x_2 + x_3 \ge 15$$
, $x_1, x_2, x_3 \ge 0$

Example

Maximize $x_1 x_2 x_3$

Subject to
$$x_1 + x_2 + x_3 = 5$$
, $x_1, x_2, x_3 \ge 0$