

كلاس برنامه نويسي پايتون

موضوع:شبکه عصبی کانولوشن(CNN)

ارائه دهنده: مرجان مودت

انواع شبکه عصبی

- MLP •
- (Convolutional Neural Network) CNN
 - RNN •
 - GAN •
 - LSTM
 - و...

شبکه عصبی کانولوشن چیست؟

تفاوت شبکه عصبی کانولوشن و پرسپترون

Flattening of a 3×3 image matrix into a 9×1 vector

اجزای شبکه عصبی کانولوشن

سه نوع لایه اصلی دارد:

- 1) لايه كانولوشن
 - 2) لايه ادغام
- 3) لايه كاملا متصل

۱) لایه کانولوشن

کانال رنگی

سه هایپر پارامتر موثر بر خروجی

- Zero padding .3
 - Valid .1
 - Same .2
 - full .3

شکل ۱: گام ۲

تابع فعال ساز:

- Relu (1
- (دسته بندی)Softmax (2

:Softmax

این تابع جهت اسکیل خروجی به بازه صفر و یک استفاده می کنیم که از این طریق چگالی پیش بینی برای همه کلاس ها مدل مشخص میشه و مجموع این چگالی برای همه کلاس یک است.

Activation Functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU $\max(0.1x, x)$

tanh

tanh(x)

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ReLU

 $\max(0, x)$

ELU

$$\begin{array}{ll}
x & x \ge 0 \\
\alpha(e^x - 1) & x < 0
\end{array}$$

Sigmoid در لایه خروجی در حین انجام پیش بینی های باینری استفاده می شود. Softmax در لایه خروجی در حین انجام پیش بینی های چند کلاسه استفاده می شود.

ساختار سلسله مراتبی cnn

۲) لایه ادغام

3.0	3.0	3.0
3.0	3.0	3.0
3.0	2.0	3.0

3	3	2	1	0
0	0	1	3	1
3	1	2	2	3
2	0	0	2	2
2	0	0	0	1

۳) لایه کاملا متصل

تفاوت پارامتر و هایپرپارامتر

- پارامتر
- مقداردهی اولیه
 - به روزرسانی
 - هايپرپارامتر
- باید اضافه شود
 - تنظیم

ادامه هایپرپارامترها

- تعداد لایه های پنهان
 - Dropout •
 - نرخ یادگیری
 - Momentum •
- Epochs(تعداد دورها)
- Batch size (اندازه دسته ها)

- تعداد لایه های پنهان
- زیاد کردن لایه ها تا کمتر نشدن خطا تست
 - Dropout •
 - از ۲.۰ تا ۵.۰
 - زیاد شدن باعث کم شدن قدرت یادگیری
 - جلوگیری از بیش برازش(قدرت تعمیم)
 - نرخ یادگیری
 - کم: کند و همگرا
 - زیاد: سریع و نوسانی

Momentum •

- جلوگیری از نوسانات
 - ۵.۰ تا ۹.۰
 - Epochs(تعداد دورها)
- تعداد دفعاتی کل داده آموزشی به شبکه آموزش داده می شود.
 - افزایش تا جایی که دقت اعتبارسنجی شروع به کاهش کند.
 - Batch size (اندازه دسته ها)
 - داده ها به صورت دسته های چندتایی به شبکه داده شود.
 - پیش فرض ۳۲ اما ۶۴ و ۱۲۸ و ۲۵۶ و... امتحان کنید.

تابع بهینه ساز

تغییر وزن و نرخ یادگیریکاهش تلفات

Gradient Descent (1

Deciding the direction of descent

Stochastic Gradient Descent(2)

همگرایی در حداقل های جهانی با استفاده از SGD برای داده های غیر محدب

Adagrad(3

Adagrad برای برخورد با داده های پراکنده مناسب است.

Adadelta (4

از کاهش بینهایت نرخ یادگیری مراقبت می کند.

RMSprop(5

شبیه به آدادلتا

Adam(6

از تركيب Gradient Descent با Momentum و RMSprop استفاده مى كند ولى محاسبات پر هزينه است.

تابع بهینه ساز

تابع هزينه(loss)

- mean_square_error رگرسیون
- categorical_crossentropy طبقه بندی
 - Binary Cross-Entropy طبقه بندی

برنامه نویسی

- 1. پیش پردازش دیتاست(ارقام دست نویس)
 - 2. ساخت مدل
- 3. تنظیم هایپرپارامترها و مقداردهی پارامترها
 - 4. آموزش مدل
 - 5. تست مدل (دقت و خطا)

