$11a_{176} \ (K11a_{176})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{54} + 2u^{53} + \dots - u + 1 \rangle$$

 $I_2^u = \langle u - 1 \rangle$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 55 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{54} + 2u^{53} + \dots - u + 1 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{4} + u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{11} + 4u^{9} - 4u^{7} - 2u^{5} + 3u^{3} \\ -u^{11} + 5u^{9} - 8u^{7} + 3u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{5} - 2u^{3} + u \\ u^{7} - 3u^{5} + 2u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{12} - 5u^{10} + 9u^{8} - 6u^{6} + u^{2} + 1 \\ u^{14} - 6u^{12} + 13u^{10} - 10u^{8} - 2u^{6} + 4u^{4} + u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{30} - 13u^{28} + \dots + 2u^{2} + 1 \\ u^{32} - 14u^{30} + \dots - 20u^{8} + 2u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 2u^{53} + u^{52} + \dots - u + 2 \\ 2u^{53} + 2u^{52} + \dots - u + 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 2u^{53} + u^{52} + \dots - u + 2 \\ 2u^{53} + 2u^{52} + \dots - u + 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^{53} + 96u^{51} + \cdots + 12u 10$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_6	$u^{54} - 2u^{53} + \dots - u + 1$
c_2	$u^{54} + 24u^{53} + \dots - u + 1$
c_3	$u^{54} + 3u^{53} + \dots + 13u + 5$
c_4,c_8,c_9	$u^{54} - 2u^{53} + \dots + u + 1$
c_5, c_7	$u^{54} - 20u^{52} + \dots - 23u + 1$
c_{10}	$u^{54} + 12u^{53} + \dots + 297u + 23$
c_{11}	$u^{54} - 3u^{53} + \dots + 11u + 5$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_6	$y^{54} - 24y^{53} + \dots + y + 1$
c_2	$y^{54} + 12y^{53} + \dots - 11y + 1$
c_3	$y^{54} + 3y^{53} + \dots - 269y + 25$
c_4, c_8, c_9	$y^{54} - 48y^{53} + \dots + y + 1$
c_5, c_7	$y^{54} - 40y^{53} + \dots - 207y + 1$
c_{10}	$y^{54} + 8y^{53} + \dots + 11749y + 529$
c_{11}	$y^{54} + 3y^{53} + \dots + 1139y + 25$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.963853 + 0.239721I	1.70219 - 6.38060I	-2.45012 + 6.07310I
u = 0.963853 - 0.239721I	1.70219 + 6.38060I	-2.45012 - 6.07310I
u = -0.915784 + 0.228115I	3.41733 + 1.25909I	0.259004 - 1.112987I
u = -0.915784 - 0.228115I	3.41733 - 1.25909I	0.259004 + 1.112987I
u = -0.789465 + 0.267366I	3.26830 - 1.40826I	-0.268768 - 0.442670I
u = -0.789465 - 0.267366I	3.26830 + 1.40826I	-0.268768 + 0.442670I
u = 0.758491 + 0.308061I	1.40844 + 6.51845I	-3.38857 - 4.08750I
u = 0.758491 - 0.308061I	1.40844 - 6.51845I	-3.38857 + 4.08750I
u = 0.256667 + 0.732348I	3.15875 - 10.41640I	-0.77334 + 8.79469I
u = 0.256667 - 0.732348I	3.15875 + 10.41640I	-0.77334 - 8.79469I
u = -0.243755 + 0.728305I	5.12841 + 5.22917I	2.37428 - 4.44764I
u = -0.243755 - 0.728305I	5.12841 - 5.22917I	2.37428 + 4.44764I
u = -0.206060 + 0.723757I	5.62286 + 2.45822I	3.43259 - 3.89075I
u = -0.206060 - 0.723757I	5.62286 - 2.45822I	3.43259 + 3.89075I
u = 0.185877 + 0.724088I	4.07878 + 2.66694I	1.14279 - 1.40015I
u = 0.185877 - 0.724088I	4.07878 - 2.66694I	1.14279 + 1.40015I
u = 0.248073 + 0.690816I	0.11288 - 3.24680I	-3.97449 + 4.31964I
u = 0.248073 - 0.690816I	0.11288 + 3.24680I	-3.97449 - 4.31964I
u = 1.275390 + 0.130366I	-2.32233 - 0.58829I	0
u = 1.275390 - 0.130366I	-2.32233 + 0.58829I	0
u = -1.301090 + 0.201573I	-3.00640 + 4.83893I	0
u = -1.301090 - 0.201573I	-3.00640 - 4.83893I	0
u = -0.335824 + 0.569569I	-2.75425 + 5.16303I	-6.62576 - 8.31738I
u = -0.335824 - 0.569569I	-2.75425 - 5.16303I	-6.62576 + 8.31738I
u = -0.388647 + 0.474801I	-3.08098 - 1.83888I	-8.29710 + 0.16550I
u = -0.388647 - 0.474801I	-3.08098 + 1.83888I	-8.29710 - 0.16550I
u = 1.389140 + 0.067526I	-3.09355 + 0.76124I	0
u = 1.389140 - 0.067526I	-3.09355 - 0.76124I	0
u = -1.367000 + 0.288368I	-0.833592 + 0.995204I	0
u = -1.367000 - 0.288368I	-0.833592 - 0.995204I	0

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.059975 + 0.594195I	1.20313 - 1.95407I	2.79385 + 4.45291I
u = 0.059975 - 0.594195I	1.20313 + 1.95407I	2.79385 - 4.45291I
u = -1.400510 + 0.118575I	-7.31911 + 1.48659I	0
u = -1.400510 - 0.118575I	-7.31911 - 1.48659I	0
u = 1.378690 + 0.289179I	0.59736 - 6.12710I	0
u = 1.378690 - 0.289179I	0.59736 + 6.12710I	0
u = -1.396360 + 0.208440I	-5.56771 + 4.07219I	0
u = -1.396360 - 0.208440I	-5.56771 - 4.07219I	0
u = -1.41551 + 0.07207I	-5.12761 - 5.61169I	0
u = -1.41551 - 0.07207I	-5.12761 + 5.61169I	0
u = 0.544247 + 0.205329I	-1.48527 - 0.15164I	-7.75648 + 0.91671I
u = 0.544247 - 0.205329I	-1.48527 + 0.15164I	-7.75648 - 0.91671I
u = 0.274528 + 0.511538I	-0.243608 - 1.371010I	-2.52596 + 5.06044I
u = 0.274528 - 0.511538I	-0.243608 + 1.371010I	-2.52596 - 5.06044I
u = -1.39901 + 0.27445I	-5.13575 + 6.76281I	0
u = -1.39901 - 0.27445I	-5.13575 - 6.76281I	0
u = 1.41497 + 0.18855I	-8.77151 - 0.63321I	0
u = 1.41497 - 0.18855I	-8.77151 + 0.63321I	0
u = 1.39845 + 0.29073I	-0.09729 - 8.92706I	0
u = 1.39845 - 0.29073I	-0.09729 + 8.92706I	0
u = 1.41558 + 0.21956I	-8.33472 - 8.06621I	0
u = 1.41558 - 0.21956I	-8.33472 + 8.06621I	0
u = -1.40491 + 0.29196I	-2.1336 + 14.1348I	0
u = -1.40491 - 0.29196I	-2.1336 - 14.1348I	0

II.
$$I_2^u = \langle u - 1 \rangle$$

(i) Arc colorings

$$a_4 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = -6

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2, c_4 c_5, c_6, c_7 c_8, c_9, c_{10}	u+1
c_3, c_{11}	u

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4 c_5, c_6, c_7 c_8, c_9, c_{10}	y-1
c_3,c_{11}	y

(vi) Complex Volumes and Cusp Shapes

	Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u =	1.00000	-1.64493	-6.00000

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_6	$(u+1)(u^{54}-2u^{53}+\cdots-u+1)$
c_2	$(u+1)(u^{54}+24u^{53}+\cdots-u+1)$
c_3	$u(u^{54} + 3u^{53} + \dots + 13u + 5)$
c_4, c_8, c_9	$(u+1)(u^{54}-2u^{53}+\cdots+u+1)$
c_5, c_7	$(u+1)(u^{54} - 20u^{52} + \dots - 23u + 1)$
c_{10}	$(u+1)(u^{54}+12u^{53}+\cdots+297u+23)$
c_{11}	$u(u^{54} - 3u^{53} + \dots + 11u + 5)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_6	$(y-1)(y^{54}-24y^{53}+\cdots+y+1)$
c_2	$(y-1)(y^{54}+12y^{53}+\cdots-11y+1)$
c_3	$y(y^{54} + 3y^{53} + \dots - 269y + 25)$
c_4, c_8, c_9	$(y-1)(y^{54} - 48y^{53} + \dots + y + 1)$
c_5, c_7	$(y-1)(y^{54}-40y^{53}+\cdots-207y+1)$
c_{10}	$(y-1)(y^{54} + 8y^{53} + \dots + 11749y + 529)$
c_{11}	$y(y^{54} + 3y^{53} + \dots + 1139y + 25)$