exercícios Elon grosso

Lucas Alves lucaderiva8x@gmail.com

December 2024

1 Chapter

- 1. Dados os conjuntos A e B, seja X um conjunto com as seguintes propriedades:
- a) $A \subset X \in B \subset X$,
- b) Se $A \subset Y$ e $B \subset Y$ então $X \subset Y$.

Prove que $X = A \cup B$.

Prova: \Rightarrow) Se $A \subset X$ e $B \subset X$, então obviamente $A \cup B \subset X$. \Leftarrow) Como $A \subset A \cup B$ e $B \subset A \cup B$ pela propriedade 2 temos que $X \subset A \cup B$. Pela propriedade antisimetrica dos conjuntos concluimos que $A \cup B = X$.

2. Enuncie e demostre um resultado análogo ao anterior, caracterizando $A \cap B$.

Solução:

- a) $X \subset A \in X \subset B$.
- b) Se $Y \subset A$ e $Y \subset A$ então $Y \subset X$.

Prove que $X = A \cap B$.

- \Rightarrow) obviamente que $X \subset A \cap B$.
- \Leftarrow) Temos que $A \cap B \subset A$ e $A \cap B \subset B$ portanto pelo propriedade b) temos que $A \cap B \subset X$ pela propriedade antisimetrica dos conjuntos, concluimos que $A \cap B = X$.
- 3. Sejam $A,B\subset E$. Prove que $A\cap B=\emptyset\iff A\subset B^c$. Prove também que $A\cup B=E\iff A^c\subset B$.

Solução: 1) Se $A \cap B = \emptyset \iff \forall x \in A$ temos que $x \notin B \iff x \in B^c$, $\forall x \in A$, logo $A \subset B^c$.

2) $A \cup B = E \iff A^c \subset B$, note que $A \cap B = \emptyset$, então pela primeira parte $A \subset B^c$, agora como $B \cup B^c = E \Rightarrow \forall x \in B^c \Rightarrow x \notin B \Rightarrow x \in A$ pois $A \cup B = E$ pela propriedade antisimetrica dos conjuntos $A = B^c$.

4.Dados $A, B \subset E$, prove que $A \subset B \iff A \cap B^c = \emptyset$.

Solução: \Rightarrow)Se $A \cap B^c \neq \emptyset$ então $\exists x \in A \cap B^c \iff x \in A, x \in B^c$, como $A \subset B \Rightarrow x \in B$ e concluimos que $x \in B \cap B^c \neq \emptyset$, uma contradição. \Leftarrow) Se $A \cap B^c = \emptyset$ pelo exercício 3, temos que $A \subset B$.

5. Dê exemplos de conjuntos A,B e C tais que $(A \cup B) \cap C \neq A \cup (B \cap C)$. Solução: Tome A,B,C conjuntos não vazios tais que $A \subset B$ e $B \cap C = \emptyset$ $(A \cup B) \cap C = \emptyset$ e $A \cup (B \cap C) = A \neq \emptyset$.

6. Se $A, X \subset E$ são tais que $A \cap X = \emptyset$ e $A \cup X = E$, prove que $X = A^c$.

Solução: Pelo primeira parte do exercício 3, temos que $X \subset A^c$, já pela segunda parte temos que $A^c \subset X$, pela propriedade de antisimetria dos conjuntos concluimos que $X = A^c$.

7. Se $A \subset B$, então $B \cap (A \cup C) = (B \cap C) \cup A$ para todo conjunto C. Por outro lado, se existir C de modo que a igualdade acima seja satisfeita, então $A \subset B$.

Solução: Se $A \not\subset B$ então $\exists x \in A$ tal que $x \not\in B$, portanto $x \not\in B \cap (A \cup C)$ pois $x \in A \cup C$, por outro lado $x \in (B \cap C) \cup A$, pois $x \in A$, uma contradição com a hipotese do exercício dos conjunto serem iguais.

8. Prove que $A = B \iff (A \cap B^c) \cup (A^c \cap B) = \emptyset$.

Solução: \Rightarrow)Se $A = B \iff A^c = B^c$ então $(A \cap B^c) \cup (A^c \cap B) = (A \cap A^c) \cup (B^c \cap B) = \emptyset \cap \emptyset = \emptyset$.

 \Leftarrow) Se $(A \cap B^c) \cup (A^c \cap B) = \emptyset \Rightarrow (A \cap B^c) = \emptyset$ pelo exercício 3, temos que $B \subset A$ e igualmente temos $(A^c \cap B) = \emptyset$ que pelo mesmo exercício $A \subset B$, pela propriedade anti-símétrica dos conjuntos A = B.

9. Prove que $(A - B) \cup (B - A) = (A \cup B) - (A \cap B)$.

Solução: \Rightarrow) Se $x \in (A - B) \cup (B - A) \iff x \in (A - B)$ ou $x \in (B - A)$, sem perda de generalidada suponha a primeira hipotese, então $x \in A \Rightarrow x \notin B$ portanto $x \in A \cup B$, mas $x \notin A \cap B$ e concluimos que $x \in (A \cup B) - (A \cap B)$, então $(A - B) \cup (B - A) \subset (A \cup B) - (A \cap B)$.

 \Leftarrow) Se $x \in (A \cup B) - (A \cap B) \iff x \in (A \cup B)$ e $x \notin (A \cap B)$ portanto x pertence exclusivamente a A ou a B, suponha que $x \in A$, então $x \in A - B$ e portanto pertence a união $(A \cup B) - (A \cap B)$, portanto $(A \cup B) - (A \cap B) \subset (A - B) \cup (B - A)$.

Pela propriedade antisimétrica dos conjuntos $(A-B) \cup (B-A) = (A \cup B) - (A \cap B)$.

10. Seja $A\triangle B=(A-B)\cup(B-A)$. Prove que $A\triangle B=A\triangle C\Rightarrow B=C$.

Examine a validez de um resultado análogo com \cap, \cup ou x em vez de \triangle .

Solução: Primeiramente observe que $A\triangle B$ é o conjunto dos pontos que pertecem exclusivamente a apenas um dos conjuntos A ou B.

Suponha por absurdo que $B \neq C$, então sem perda de generalidade suponha que $\exists x \in B$ tal que $x \notin C$.

1 caso) Se $x \in A$, então $x \notin A \triangle B$, pois x não é exclusivo de nenhum dos dois conjuntos, mas então por $x \notin C$ teriamos que x seria exclusivo de A e portanto $x \in A \triangle C$.

2 caso) Se $x \notin A$ então x é exclusivo de B e portanto $x \in A \triangle B$, mas por outro lado $x \notin C$, ou seja x não é exclusivo nem de A nem de C e portanto $x \notin A \triangle C$. Em qualquer um desses dois casos $A \triangle B \neq A \triangle C$, então concluímos que B = C.

A validez de $A \cap B = A \cap C \Rightarrow B = C$ está afirmação é falsa, basta tomar quaisquer dois conjuntos B, C com $B \neq C$ tal que $A = B \cap C$ e ainda teremos $A \cap B = A \cap C$.

Exemplo númerico. $B = \{1, 2, 3, 5, 6\}$ e $C = \{1, 2, 3, 10, 11\}$ com $A = \{1, 2, 3\}$

A validez do caso $A \cup B = A \cup C \Rightarrow B = C$ Essa afirmação é falsa, basta tomar um conjunto A não-vazio, e dois subconjuntos $B, C \subset A$ tais que $B \neq C$ é ainda teremos $A \cup B = A = A \cup C$.

Validez de $A \times B = A \times C \Rightarrow B = C$

Note que se B = C então $\exists x \in (B - C)$ (ou ao contrario), tal que $\forall a \in A \Rightarrow (a, x) \notin A \times C$, portanto $A \times B \neq A \times C$, uma contradição com a hipótese inicial.

- 11. Prove as seguintes afirmações.
- a) $(A \cup B) \times C = (A \times C) \cup (B \times C)$.
- b) $(A \cap B) \times C = (A \times C) \cap (B \times C)$.
- c) $(A B) \times C = (A \times C) (B \times C)$.
- d) $A \subset A', B \subset B' \Rightarrow A \times B \subset A' \times B'$.

Solução: a)

- $\Rightarrow) \text{Se } (x,y) \in (A \cup B) \times C \Rightarrow x \in A \cup B \text{ e } y \in C, \text{ então } x \in A \text{ ou } x \in B \text{ suponha que } x \in A \Rightarrow (x,y) \in A \times C \Rightarrow (x,y) \in (A \times C) \cup (B \times C), \text{ logo } (A \cup B) \times C \subset (A \times C) \cup (B \times C).$
- \Leftarrow) Se $(x,y) \in (A \times C) \cup (B \times C) \Rightarrow (x,y) \in A \times C$ ou $(x,y) \in B \times C$, suponha a primeira, então $x \in A$ e $y \in C$ portanto $x \in A \cup B$ e obviamente $(x,y) \in (A \cup B) \times C$, como a escolha do (x,y) foi arbitraria, concluimos que $(A \times C) \cup (B \times C) \subset (A \cup B) \times C$, pela propriedade antisimétrica dos conjuntos podemos afirmar $(A \cup B) \times C = (A \times C) \cup (B \times C)$.

- b) \Rightarrow) Se $(x, y) \in (A \cap B) \times C \Rightarrow x \in A \cap B$ e $y \in C$, então $x \in A$ e $x \in B \Rightarrow (x, y) \in A \times C$ e $(x, y) \in B \times C$ concluimos que $(x, y) \in (A \times C) \cap (B \times C)$, como (x, y) foi escolhido arbitrariamente temos que $(A \cap B) \times C \subset (A \times C) \cap (B \times C)$
- $\Leftarrow) \text{ Se } (x,y) \in (A \times C) \cap (B \times C) \Rightarrow (x,y) \in A \times C \text{ e } (x,y) \in B \times C \Rightarrow x \in A \text{ e } x \in B \text{ e obviamente } x \in A \cap B, \text{ como } y \in C \Rightarrow (x,y) \in (A \cap B) \times C, \text{ como } (x,y) \text{ foi escolhido arbitrariamente, concluimos que } (A \times C) \cap (B \times C) \subset (A \cap B) \times C.$ Pela propriedade antisimétrica dos conjuntos podemos afirmar $(A \cap B) \times C = (A \times C) \cap (B \times C).$
- c) Se $(x,y) \in (A-B) \times C \Rightarrow x \in A, x \notin B$ e $y \in C \Rightarrow (x,y) \in A \times C$ e $(x,y) \notin B \times C \Rightarrow (x,y) \in (A \times C) (B \times C)$ e portanto $(A-B) \times C \subset (A \times C) (B \times C)$.
- Se $(x,y) \in (A \times C) (B \times C) \Rightarrow (x,y) \in A \times C$ e $(x,y) \notin B \times C$, por $y \in C \Rightarrow x \notin B$ e x é exclusivo de A, então $(x,y) \in (A-B) \times C$. A escolha de (x,y) foi arbitraria, então concluimos que $(A \times C) (B \times C) \subset (A-B) \times C$, pela propriedade antisimétrica dos conjuntos podemos afirmar que $(A-B) \times C = (A \times C) (B \times C)$.
- d) Se $(x,y) \in A \times B \Rightarrow x \in A$ e $y \in B \Rightarrow x \in A'$ e $y \in B'$ então $(x,y) \in A' \times B'$, como (x,y) foi escolhido arbitrariamente, concluimos que $A \subset A', B \subset B' \Rightarrow A \times B \subset A' \times B'$.
- 12. Dada a função $f:A\to B$: a) Prove que se tem $f(X-Y)\supset f(X)-f(Y)$ sejam quais forem os subconjuntos X e Y de A.
- b) Mostre que se f for injetiva então f(X Y) = f(X) f(Y) para quaisquer X, Y contidos em A.
- Solução: a) Se $y \in f(X) f(Y) \Rightarrow y \in f(X)$ and $y \notin f(Y)$, isto significa que $\exists x \in X$ tal que f(x) = y por outro lado $\exists x \in Y$ tal que f(x) = y, então $x \in X Y$ (Caso $x \notin X Y \Rightarrow x \in Y \Rightarrow y \in f(Y)$). Então $y = f(x) \in f(X Y)$, como y foi escolhido arbitrariamente, concluimos que $f(X Y) \supset f(X) f(Y)$.
- b) Seja f injetiva, por a) já provamos que $f(X-Y)\supset f(X)-f(Y)$, basta provar a outra inclusão.
- Suponha que $f(X-Y) \not\subset f(X) f(Y)$, então $\exists y \in f(X-Y)$ tal que $y \not\in f(X) f(Y)$, isto significa que existe um $x \in X Y$ com f(x) = y, em particular $y = f(x) \in f(X)$, como $y \not\in f(X) f(Y)$ significa que y não é exclusivo de f(X), portanto $\exists x' \in Y$ tal que f(x') = y, note que $x \neq x'$, pois como $x \in X Y \Rightarrow x \not\in Y$, e concluimos que f não é injetiva, um absurdo com a hipótese de f ser injetiva, então temos que $f(X Y) \subset f(X) f(Y)$.

Pela propriedade antisimétrica dos conjuntos, podemos afirmarq que f(X-Y) = f(X) - f(Y).

13. Mostre que a função $f:A\to B$ é injetiva $\iff f(A-X)=f(A)-f(X)$ para todo $X\in A.$ Solução: \Rightarrow) Note que $A \in A$, por f ser injetiva podemos concluir direto pelo exercicio 13b) que f(A - X) = f(A) - f(X).

14. Dada a função $f: A \to B$, prove que:

- a) $f^{-1}(f(X)) \supset X$ para todo $X \subset A$.
- b) f é injetiva $\iff f^{-1}(f(X)) = X$ para todo $X \subset A$.

Solução: a) $\forall x \in X, \exists y \in B \text{ t.q(tal que)} f(x) = y \Rightarrow x \in f^{-1}(y) \subset f^{-1}(f(X))$ é concluimos que $X \subset f^{-1}(f(X))$.

b) Por a) já sabemos que $f^{-1}(f(X)) \supset X$ para todo $X \subset A$, vamos mostrar a outra inclusão.

Suponha que $f^{-1}(f(X)) \not\subset X \Rightarrow x' \in f^{-1}(f(X))$ e $x' \not\in X$, que é imagem por f^{-1} de algum $y \in f(X)$, como $y \in f(X) \Rightarrow \exists x \in X$ t.q f(x) = y.

Com isso afirmamos que f não é injetiva, com efeito, temos que $x' = f^{-1}(y) \Rightarrow f(x') = f(f^{-1}(y)) = y$, além disso $x' \notin X \Rightarrow x' \neq x$, como f(x) = y, chegamos a conclusão que $\exists x, x' \in A, x \neq x'$ e f(x) = f(x'), um absurdo, pois por hipótese f é injetiva, portanto $f^{-1}(f(X)) \subset X$.

Pela propriedade antisimétrica dos conjuntos concluimos que estes conjuntos são iguais.

- 15. Dada $f: A \to B$, prove:
- a) Para todo $Z \subset B$ tem-se $f(f^{-1}(Z)) \subset Z$.
- b) f é sobrejetiva $\iff f(f^{-1}(Z)) = Z$.

Solução: a) $\forall y \in \mathbb{Z}$, temos duas possibilidades.

- 1) Ou $\{f^{-1}(y)\}=\emptyset$, neste caso $f(f^{-1}(y))=\emptyset\subset Z$
- 2) Ou $\{f^{-1}(y)\}=\{x\}$ tem apenas um elemento, portanto teremos que $f(f^{-1}(y))=f(x)=y\in Z$.

Concluimos que $\forall y \in Z$ sempre temos $f(f^{-1}(y)) \in Z \Rightarrow f(f^{-1}(Z)) \subset Z$.

Outra resolução de a) Se $y \in f(f^{-1}(Z)) \Rightarrow \exists x \in f^{-1}(Z)$ t.q f(x) = y, como $x \in f^{-1}(Z) \Rightarrow y' \in Z$ t.q $f^{-1}(y') = x$, portanto teremos que $y' = f(f^{-1}(y')) = f(x) = y \Rightarrow y' = y$ então $y \in Z$, como a escolha de $y \in f(f^{-1}(Z))$ foi arbitraria, temos que $f(f^{-1}(Z)) \subset Z$.

b) Por a) já provamos que $f(f^{-1}(Z)) \subset Z$, vamos provar a outra inclusão. Se f é sobrejetiva, então $\forall y \in Z, \exists x \in A \text{ t.q } f(x) = y \in Z \text{ em particular } x = f^{-1}(y) \Rightarrow y \in f(f^{-1}(Z)),$ como $y \in Z$ foi escolhido arbitrariamente, temos a inclusão $Z \subset f(f^{-1}(Z))$.

Pela propriedade antisimétrica dos conjuntos concluimos que estes conjuntos são iguais.

- 16. Dada uma familia de conjuntos $(A_{\lambda})_{{\lambda}\in L}$, seja X um conjunto com seguintes propriedades.
- 1) para todo $\lambda \in L$, tem-se $X \supset A_{\lambda}$.
- 2) Se $Y \supset A_{\lambda}$ para todo $\lambda \in L$, então $Y \supset X$.

Prove que, nestas condições, tem-se $X = \bigcup_{\lambda \in L} A_{\lambda}$.

Solução: Por 1) temos que $X \supset \bigcup_{\lambda \in L} A_{\lambda}$.

A união $\bigcup_{\lambda \in L} A_{\lambda} \supset A_{\lambda}, \forall \lambda \in L \text{ por 2}) \bigcup_{\lambda \in L} A_{\lambda} \supset X$.

Pela propriedade antisimétrica dos conjuntos concluimos que estes conjuntos são iguais.

17. Enuncie e demostre um resultado análogo ao anterior, caracterizando $\bigcap_{\lambda \in L} A_{\lambda}$.

Solução: 1) para todo $\lambda \in L$, tem-se $X \subset A_{\lambda}$.

2) Se $Y \subset A_{\lambda}$ para todo $\lambda \in L$, então $Y \subset X$.

Por 1) temos que $X \subset \bigcap_{\lambda \in L} A_{\lambda}$

Temos que a interseção $\bigcap_{\lambda \in L} A_{\lambda} \subset A_{\lambda}, \forall \lambda \in L, \text{ por } 2) \bigcap_{\lambda \in L} A_{\lambda} \subset X.$

Pela propriedade antisimétrica dos conjuntos concluimos que estes conjuntos são iguais.

18. Seja $f: \mathcal{P}(A) \to \mathcal{P}(A)$ uma função tal que $X \subset Y \Rightarrow f(Y) \subset f(X)$ e f(f(X)) = X.

Prove que $f(\bigcup X_{\lambda}) = \bigcap f(X_{\lambda})$ e $f(\bigcap X_{\lambda}) = \bigcup f(X_{\lambda})$. [Aqui X, Y e cada X_{λ} são subconjuntos de A].

Solução: 1) Sabemos do último parágrafo pg 18 que $f(\bigcap X_{\lambda}) \subset \bigcap f(X_{\lambda})$

2) Obviamente $\bigcap f(X_{\lambda}) \subset \bigcup f(X_{\lambda})$

Então temos que $\bigcap_{\lambda \in L} X_{\lambda} \subset \bigcup_{\lambda \in L} X_{\lambda} \Rightarrow f(\bigcup_{\lambda \in L} X_{\lambda}) \subset f(\bigcap_{\lambda \in L} X_{\lambda})$ pela propriedade de f, por 1) e 2) $\Rightarrow f(\bigcup_{\lambda \in L} X_{\lambda}) \subset f(\bigcap_{\lambda \in L} X_{\lambda}) \subset \bigcap f(X_{\lambda}) \subset \bigcup f(X_{\lambda})$, nas pela pg 18 $f(\bigcup_{\lambda \in L} X_{\lambda}) = \bigcup f(X_{\lambda})$, portanto esses quatro conjuntos são iguais, e temos as igualdades pedidas.

19. Dadas as famílias $(A_{\lambda})_{\lambda \in L}$ e $(B_{\mu})_{\mu \in M}$, forme duas famílias com índices em $L \times M$ considerando os conjuntos:

$$(A_{\lambda} \cup B_{\mu})_{(\lambda,\mu) \in L \times M} \in (A_{\lambda} \cap B_{\mu})_{(\lambda,\mu) \in L \times M}$$

Prove que se tem

$$(\bigcup_{\lambda \in L} A_{\lambda}) \cap (\bigcup_{\mu \in M} B_{\mu}) = \bigcup_{(\lambda, \mu) \in L \times M} (A_{\lambda} \cap B_{\mu}),$$

$$(\bigcap_{\lambda \in L} A_{\lambda}) \cup (\bigcap_{\mu \in M} B_{\mu}) = \bigcap_{(\lambda, \mu) \in L \times M} (A_{\lambda} \cup B_{\mu})$$

Solução: Vamos chamar A e B as uniões das familías A_{λ} e B_{μ} , respectivamente.

1) \Rightarrow)Se $x \in A \cap B \Rightarrow x \in A_{\lambda}$ para algum λ e $x \in B\mu$ para algum μ , portanto $x \in A_{\lambda} \cup B\mu \Rightarrow x \in \bigcup_{(\lambda,\mu)\in L\times M} (A_{\lambda} \cap B_{\mu})$, como x foi escolhido arbitrariamente podemos afirmar $A \cap B \subset \bigcup_{(\lambda,\mu)\in L\times M} (A_{\lambda} \cap B_{\mu})$.

 \Leftarrow) Se $x \in \bigcup_{(\lambda,\mu) \in L \times M} (A_{\lambda} \cap B_{\mu}) \Rightarrow x \in (A_{\lambda} \cup B\mu)$ para algum $\lambda \in L$ e para algum $\mu \in M \Rightarrow x \in E$ então $x \in A \cap B$, como x foi escolhido arbitrariamente, podemos afirmar $\bigcup_{(\lambda,\mu) \in L \times M} (A_{\lambda} \cap B_{\mu}) \subset A \cap B$.

Pela propriedade antisimétrica dos conjuntos concluimos que estes conjuntos são iguais.

2) \Rightarrow) Agora chamemos A' e B' as interseções das famílias. Se $x \in A' \cup B' \Rightarrow x \in A'$ ou $x \in B'$, vamos supor o primeiro caso, então $x \in A_{\lambda}, \forall \lambda \in L \Rightarrow x \in A_{\lambda} \cup B_{\mu}, \forall (\lambda, \mu) \in L \times M \Rightarrow x \in \bigcap_{(\lambda, \mu) \in L \times M} (A_{\lambda} \cup B_{\mu})$, como x foi escolhido arbitrariamente concluimos que $A' \cup B' \subset \bigcap_{(\lambda, \mu) \in L \times M} (A_{\lambda} \cup B_{\mu})$.

Suponha $x \in \bigcap_{(\lambda,\mu)\in L\times M}(A_\lambda \cup B_\mu)$, afirmo que $x \in A_\lambda, \forall \lambda \in L$ ou $x \in B_\mu, \forall \mu \in M$. Com efeito se $\exists \lambda, \mu \in L, M$ respectivamente t.q $x \notin A_\lambda$ e $x \notin B_\mu \Rightarrow x \notin_\lambda \cup B_\mu \Rightarrow x \notin \bigcap_{(\lambda,\mu)\in L\times M}(A_\lambda \cup B_\mu)$, uma contradição, então suponha que $x \in A_\lambda, \forall \lambda \in L \Rightarrow x \in A' \Rightarrow x \in A' \cup B'$, pela escolha arbitraria de x, podemos afirmar: $\bigcap_{(\lambda,\mu)\in L\times M}(A_\lambda \cup B_\mu) \subset A' \cup B'$.

Pela propriedade antisimétrica dos conjuntos concluimos que estes conjuntos são iguais.

20. Seja $(A_{ij})_{(i,j)\in N\times N}$ uma família de conjuntos com índicies em $N\times N$. Prove, ou disprove por contra-exemplo, a igualdade:

$$\bigcup_{i=1}^{\infty} \left(\bigcap_{i=1}^{\infty} A_{ij}\right) = \bigcap_{i=1}^{\infty} \left(\bigcup_{i=1}^{\infty} A_{ij}\right).$$

Solução: 1) se $x \in \bigcup_{j=1}^{\infty} (\bigcap_{i=1}^{\infty} A_{ij}) \Rightarrow x \in \bigcap_{i=1}^{\infty} A_{ij}$ para algum $j' \in N$, isto é $x \in A_{ij}, \forall i \in N$ e j' fixo, logo $x \in \bigcup_{j=1}^{\infty} A_{ij}$, pois quando $j = j' \Rightarrow A_{ij} = A_{ij'}$ e para esse j' fixo $x \in A_{ij}$.

Note que $\forall i \in N$ temos que $x \in \bigcup_{j=1}^{\infty} A_{ij} \Rightarrow x \in \bigcap_{j=1}^{\infty} (\bigcup_{i=1}^{\infty} A_{ij})$, pela escolha arbitraria de x, podemos afirmar que: $\bigcup_{j=1}^{\infty} (\bigcap_{i=1}^{\infty} A_{ij}) \subset \bigcap_{j=1}^{\infty} (\bigcup_{i=1}^{\infty} A_{ij})$.

2) $\forall x \in \bigcap_{j=1}^{\infty} (\bigcup_{i=1}^{\infty} A_{ij}) \Rightarrow x \in \bigcup_{i=1}^{\infty} A_{ij}, \forall i \in \mathbb{N},$ então vai existir $j_i \in \mathbb{N}$ para cada i tal que $x \in A_{ij_i}$.

Aqui que ocorre o problema, pois pode occorer o seguinte, $j_i \neq j_{i'}$ para $i \neq i'$, então fixando por exemplo j_i teriamos que $x \notin \bigcap_{i=1}^{\infty} A_{ij}$, pois $x \notin A_{i'j_i}$ e nessa situação.

$$\bigcap_{i=1}^{\infty} (\bigcup_{i=1}^{\infty} A_{ij}) \not\subset \bigcup_{i=1}^{\infty} (\bigcap_{i=1}^{\infty} A_{ij}).$$

Portanto a inclusão nesta situação e com maior razão a igualdade não é satisfeita.

21. Dados os conjuntos A,B,Cestabeleça uma bijeção, entre $\mathcal{F}(A\times B,C)$ e $\mathcal{F}(A,\mathcal{F}(B,C)).$

Solução:

Definimos a função:

$$\begin{aligned} H: \mathcal{F}(A, \mathcal{F}(B, C)) &\to \mathcal{F}(A \times B, C) \\ g: A &\to \mathcal{F}(B, C) &\to f: A \times B \to C \end{aligned}$$

Onde:

$$g(a) = g_a : B \to C$$
$$b \to g(a, b)$$

Onde colocamos $H(g) = f \in \mathcal{F}(A \times B, C)$ t.q $g_a(b) = f(a, b)$.

1) H é sobrejetiva, pois para cada $f \in \mathcal{F}(A \times B, C), \exists g \in \mathcal{F}(A, \mathcal{F}(B, C))$ t.q $g_a(b) = f(a, b), \forall a \in A$ e $\forall b \in B$. Se não estiver convencido, você pode construir tal função!

2) H é injetiva, pois se $g_a = g_a' \forall a \in A$ então $g_a(b) = g_a'(b) \forall b \in B$ portanto g = g'. Como H é injetiva e sobrejetiva, então ela é uma bijeção como pedido pelo exercício.

2 Chapter

1. Prove que, na presença dos axiomas P_1 e P_2 , o axioma (A) abaixo é equivalente a P_3 .

Para todo subconjunto não-vazio $A \subset N$, tem-se $A - s(A) \neq \emptyset$.

Solução: Vamos provar primeiro que $P_3 \Rightarrow (A)$.

1) Suponha por absurdo que exista um subconjunto $A\subset N$ não-vazio que satisfaça $A-s(A)=\emptyset$, então vamos definir $B=\{n\in N|n\not\in A\}$ i.e os naturais que não podem estar em tal conjunto para que a igualdade seja satisfeita. Então obviamente $1\in B$, caso contrario 1 teria sucessor, uma contradição (O Elon construi os naturais com o 1 sendo o primeiro elemento), suponha $n\in B$, então se $n+1\in A\Rightarrow n\in A$, o que contradiz a definição de B, pelo axioma $P_3\Rightarrow B=N$ e portanto $A=\emptyset$ um absurdo, pois A é por hipótese não vazio.

2) Vamos provar que $(A) \Rightarrow P_3$.

Seja $X\subset N$ t.
q $1\in X$ e, para todo $n\in X\Rightarrow s(n)\in X$ queremos mostrar qu
eX=N

Suponha que $X \neq N$, então $N-X \neq \emptyset$, pelo axioma $(A) \Rightarrow (N-X) - s(N-X) \neq \emptyset \Rightarrow \exists nN$ que não é sucessor de nenhum dos elementos de N-X, além disso obviamente $n \notin X$, portanto ele não é sucessor de nenhum elemento de X a única conclusão é que n não é sucessor de nenhum natural $\Rightarrow n=1$, uma contradição, pois $1 \in X$, por hipótese.

Conclusão: Tanto P_3 e (A) são equivalentes.

2. Dados os números naturais a,b, prove que existe um número natural m tal que ma>b.

Solução: 1) Se a > b tomando $m = 1 \Rightarrow am = 1 \cdot a = a > b$.

- 2) Se a = b, então por $a > 0 \Rightarrow 2a = a + a > a = b$.
- 3) Suponha $a,b \in N$ t.q a < b, seja $A = \{n \in N | \exists m \Rightarrow am > b\}$, então $1 \in A$, pois tomando $m = b + 1 \Rightarrow m \cdot m = m = b + 1 > b$.

Suponha que $n \in A$, queremos provar que $n+1 \in A$, note que por $n \in A$, temos um m t.q mn > b, então $m(n+1) > mn > b \Rightarrow n+1 \in A$, pelo axioma P_3 de Peano concluimos que A = N, como a escolha de a, b, foi arbitraria, a propriedade do enunciado, vale para quaisquer a, b naturais.

3. Seja a un número natural. Se um conjunto X é tal que $a \in X$ e, além disso, $n \in X \Rightarrow n+1 \in X$ então X contém todos os números naturais $\geq a$.

Solução: Seja $A = \{n \in X | a+n \in X\}$, vamos provar que A = N.

- 1) $1 \in A$, pois $a \in X \Rightarrow a+1 \in X \Rightarrow 1 \in A$, pela definição de A.
- 2) Suponha que $n \in A$, vamos mostrar que $n+1 \in A$, por $n \in A \Rightarrow a+n \in X \Rightarrow (a+n)+1 \in X$ pela propriedade associativa da soma nos naturais $\Rightarrow a+(n+1)=(a+n)+1 \in X \Rightarrow n+1 \in A$, pelo terceiro axioma de Peano, temos a conclusão A=N.

- 3)Se m > a, então $\exists nN$ t.q $s^n(a) = m \Rightarrow a+n = m$, como $a+n \in X$ pelo exposto acima, podemos afirmar que $m \in X$, como m foi um natural maior que a, arbitrario, concluimos que X, contem todos os naturais $\geq a$.
- 4. Resolva todas as afirmações não demostradas do capítulo.
- 5. Um elemento $a \in N$ chama-se antecessor de $b \in N$ quando se tem a < b, mas não existe um $c \in N$ tal que a < c < b. Prove que, exceto 1, todo número natural possui um antecessor.

Suponha que $b \in N$, com $b \neq 1$, não tivesse sucessor, então podemos construir a sequência com infinitos elementos $c_1 < c_2 < \ldots, c_n < \cdots < b$ e portanto o conjunto desses termos seria infinito, contradizendo o teorema 5(b), portanto b possui um antecessor, como $b \in (N-1)$ foi escolhido arbitrariamente, concluimos que todo natural maior que 1 possui antecessor.

6.Use indução para demostrar os seguintes fatos:

- 1) $2(1+2+\cdots+n) = n(n+1);$
- 2) $1+3+5+\cdots+(2n+1)=(n+1)^2$;
- 3) $(a-1)(1+a+\cdots+a^n)=a^{n+1}-1$, seja quais forem $a, n \in N$;
- d) $n \ge 4 \Rightarrow n! > 2^n$.

Solução:

1) Seja $A = \{n \in N \mid 2(1+2+\cdots+n) = n(n+1)\}$, então obviamente $1 \in A$, pois 2(1) = 2 = 2(1+1).

Suponha que $n \in A$, vamos provar que $(n+1) \in A$, temos que $2(1+2+\cdots+n+(n+1))=2(1+2+\cdots+n)+2(n+1)=n(n+1)+2(n+1)=(n+1)(n+2)=(n+1)((n+1)+1)$, portanto $(n+1) \in A$, pelo terceiro Axioma de Peano concluimos que A=N.

 $2)B = \{n \in N \mid 1+3+5+\cdots+(2n+1) = (n+1)^2\}, \text{ pois } 1 \in B, \text{ pois } 1+(2(1)+1)=4=(1+1)^2.$

Suponha que $n \in B$, então vamos provar que $(n+1) \in B$, temos que a soma $1+3+\cdots+(2n+1)+(2(n+1)+1)=(n+1)^2+2(n+1)+1$, usando o produto notavel dos termos n+1 e 1, ficamos que $(n+1)^2+2(n+1)+1=((n+1)+1)^2$ então podemos afirmar que $(n+1) \in B$, pelo axioma P_3 de Peano B=N.

c) Fixe um $a \in N$, e defina o conjunto $C = \{n \in N \mid (a-1)(1+a+\cdots+a^n) = a^{n+1}-1\}, 1 \in C$, pois $(a-1)(1+a) = a^2-1 = a^{1+1}-1$.

Suponha que $n \in C$ vamos mostrar que $(n+1) \in C$, temos que $(a-1)(1+a+\cdots+a^n+a^{n+1}=(a-1)(1+a+\cdots+a^n)+(a-1)a^{n+1}$, pela hipótese de indução podemos reescrever a primeira soma como $a^{n+1}-1$, para obter $a^{n+1}-1+(a-1)a^{n+1}=a^{n+1}=a^{(n+1)+1}-1 \Rightarrow (n+1) \in C$, pelo axioma $P_3 \Rightarrow C = N$.

Como a é um inteiro que foi escolhido arbitrariamente, concluimos que $\forall a,n\in N,$ vale o enunciado.

d) Seja $D=\{n\in N\mid n!>2^n\},$ primeiro $4\in D,$ pois $4!=4\cdot 3\cdot 2\cdot 1=24>16=2^4.$

Suponha que $n \in D$, vamos provar que $(n+1) \in D$, temos que $(n+1)! = (n+1) \cdot n!$, pela hipótese de induzação sobre n, temos que $(n+1)n! > (n+1) \cdot 2^n$, como $n+1 > n \ge 4 > 2 \Rightarrow (n+1) \cdot 2^n > 2^{n+1}$, então $(n+1)! > 2^{n+1} \Rightarrow n+1 \in D$, pelo exercício 3 deste capitulo $D = N - \{1, 2, 3\}$.

Nota: Para um argumento totalmente válido é necessario mostrar que para $n \in \{1,2,3\} \Rightarrow n! > 2^n$ não é verdade.

7. Use o segundo Princípio da Indução para demonstrar a unicidade da decomposição de un número natural em fatores primos.

Solução: Seja X o conjunto dos naturais com apenas uma decomposição em fatores primos(a menos de permutação).

Suponha que n natural t.q $\forall m < n \Rightarrow m \in X$, queremos mostrar que $n \in X$. Seja a decomposição em fatores primos de n i.e $n = p_1^{r_1}p_2^{r_2}\dots,p_i^{r_i},\dots p_k^{r_k}$ e uma outra decomposição do mesmo número $n = q_1^{s_1}q_2^{s_2}\dots,q_j^{s_j},\dots,q_l^{s_l}$, então ficamos com $p_1^{r_1}p_2^{r_2}\dots,p_i^{r_i},\dots p_k^{r_k}=q_1^{s_1}q_2^{s_2}\dots,q_j^{s_j},\dots,q_l^{s_l}$, como $p_i \mid n$ para qualquer $i \in \{1,2,\dots,k\}$, então $\exists n'N \Rightarrow p_i \cdot n' = n$, além disso todos os q_j são primos então um deles é igual a p_i , o que nos permite escrever $n' = p_1^{r_1}p_2^{r_2}\dots,p_i^{r_{i-1}},\dots p_k^{r_k}=q_1^{s_1}q_2^{s_2}\dots,p_i^{s_{i-1}},\dots,q_l^{s_l}$, como n' < n pela hipótese de indução ele tem decomposição em fatores primos única, o que garante que algum p_i e igual a algum q_j e que $r_i = s_j$ multiplicando ambos por p_i concluimos que n tem apenas uma decomposição em fatores primos.

Pelo Segundo Princípio de Indução, podemos afirmar que X = N.

8. Seja X um conjunto com n elementos. Use indução para provar que o conjunto das bijeções (ou permutações) $f: X \to X$ tem n! elementos.

Notação: $|\{f: X \to X\}|$ cardinalidade do conjunto das bijeções de $I_n \to I_n$.

Solução: Seja $A = \{n \in N \mid |\{f : X \to X\}| = n!\}$ Obviamente $1 \in A$, pois se $X = \{x\}$, então f(x) = x sempre.

Suponha que $n \in A$, vamos provar que $n+1 \in A$, como X é finito eu posso enumerar ele, isto é eu posso escrever $X = \{x_1, x_2, \ldots, x_n\}$ sem qualquer ordem especifica, apenas uma enumeração de X, agora, tome $f_1: X \to X \subset \{f: X \to X\}$ o conjunto de todas as funções que fixam $f(x_1) = x_1$ e variam as outras variaveis, pela hipótese de indução esse conjunto tem n! elementos.

Agora tome $f_2: X \to X \subset \{f: X \to X\}$, onde essas funções fixam $f(x_1) = x_2$ e variam o resto, pela mesmo hipótese de indução, esse conjunto tem n! elementos. Ao todo teremos n+1, conjuntos desse tipo com $f(x_1) = x_i$, pra $i \in \{1, 2, \ldots, i, \ldots, n\}$, cada $f_i: X \to X$ é um conjunto disjunto dois a dois, pois as funções f são bijeções, que diferem na imagem de x_1 , além disso qualquer bijeção possivel de f, está em algum $f_i: X \to X$, basta olhar a imagem de x_i , e qual é a variação

das outras variaveis.

Concluimos que $f: X \to X = \bigcup_{i=1}^{n+1} f_i: X \to X$, pelo corolario do teorema 6 $f: X \to X$ tem $n! + n! + \dots + n! = (n+1)n! = (n+1)!$ elementos, como queriamos e $n+1 \in A$.

Por Peano A = N.

- 9. Sejam X e Y conjuntos finitos.
- a) Prove que $card(X \cup Y) + card(X \cap Y) = card(X) + card(Y)$.
- b) Qual seria a formula correspondente para três conjuntos?
- c) Generalize.

Solução: Há quatro possibilidades.

- 1) Se Se algum dos dois for vazio a igualdade é obvia.
- 2)Se $X \cap Y\emptyset$ Pelo teorema 6, temos que $card(X \cup Y) = card(X) + card(Y)$.
- 3) Se X=Y, então $card(X\cup Y)+cad(X\cap Y)=2cad(X)=cad(X)+cad(X)=cad(X)+cad(X)$
- 4) os dois são não vazios e um é subconjunto próprio do outro. Suponha que $Y \subseteq X$, então $X \cup Y = X \Rightarrow cad(X \cup Y) = cad(X)$ por outro lado $X \cap Y = Y \Rightarrow cad(X \cap U) = cad(Y)$, juntando as duas informações, temos que $card(X \cup Y) + card(X \cap Y) = card(X) + card(Y)$;

Qualquer uma das 4 possibilidades temos a igualdade do exercício.

b) Seja X, Y, Z conjuntos finitos.

Temos que $cad(X \cup Y \cup Z) = cad((X \cup Y) \cup Z)$ pelo parte a) $cad((X \cup Y) \cup Z) = cad(X \cup Y) + cad(Z) - cad((X \cup Y) \cap Z) \Rightarrow cad((X \cup Y) \cup Z) + cad((X \cup Y) \cap Z) = cad(X \cup Y) + cad(Z)$, novamente por a) podemos decompor a união de $X \cup Y$ i.e $card(X \cup Y) = card(X) + card(Y) - card(X \cap Y)$ portanto $cad((X \cup Y) \cup Z) + cad((X \cup Y) \cap Z) + card(X \cap Y) = card(X) + card(Y) + cad(Z)$.

- c) Seja X_1, X_2, \ldots, X_n conjuntos finitos, uma formula para a generalização é: $card(\cup_{i=1}^n X_i) + card((\cup_{i=1}^{n-1} X_i) \cap X_n) + card((\cup_{i=1}^{n-2} X_i) \cap X_{n-1}) + \cdots + card((\cup_{i=1}^{j-1} X_i) \cap X_j) + \cdots + card(X_1 \cap X_2) = \sum_{i=1}^n card(X_i).$
- 10. Dado um conjunto finito X, prove que a função $f: X \to X$ é injetiva se, somente se é sobrejetiva (e portanto uma bijeção).

Solução: \Rightarrow) Seja $X = \{x_1, x_2, \dots, x_n\}$ um conjunto finito, se f é injetiva, então f(X) tem n elementos, pois dados $x \neq y \Rightarrow f(x) \neq f(y)$, pela injetividade de f, como X tem n elementos, concluimos que cada $x_j \in X$ é imagem de algum $x_i \in X$, logo f é sobrejetiva.

 \Leftarrow) se f é sobrejetiva, então todo x_j é imagem de algum $x_j \in X$., pois se $x_i \neq x_i'$ elementos de X tais que $f(x_i) = f(x_i') \Rightarrow f(X)$ tem no máximo n-1 elementos contradizendo a sobrejetividade de f, portanto f é injetiva.

11. Formule matematicamente e demostre o seguinte fato (conhecido como o "Princípio das Gavetas"). Se m < n, então, de qualquer modo como se guardem n objetos em m gavetas, haverá sempre uma gaveta, pelo menos, que conterá mais de um objeto.

Formulação matemática: Seja X e Y conjuntos finitos com n,m, elementos respectivamente t.q m < n. Se $f: X \to Y$ é sobrejetiva, então f não é injetiva. Prova: Se f é injetiva, então ela será uma bijeção, pois por hipótese f é sobrejetiva.

- 1) por hipótese m < n.
- 2) Pela injetividade de f e pelo corolario 1 do teorema capítulo $2 \Rightarrow n \leq m$ por 1) e 2) concluimos pela tricotomia que m=n, um absurdo, portanto f não pode ser injetiva, em particular $\exists \ x,y \in X, x \neq y \Rightarrow f(x) = f(y)$.
- 12. Seja X um conjunto com n elementos. Determine o número de funções injetivas $f:I_p\to X.$

Solução: Esse problema é equivalente ao problema de calcular de quantas formas distintas podemos escolher p elementos diferentes de um conjunto X com n elementos, pela análise combinatoria podemos usar a formula do coeficiente binomial que é $C(n,p) = \frac{n!}{(n-p)!p!}$, se p < n, caso $p = n \Rightarrow$ o conjunto das funções é o mesmo das funções bijetivas.

- 13. Quantos conjuntos com p
 elementos possui um subconjunto X, sabendo que X, tem n elementos.
 Solução: Veja exercicio 12.
- 14. Prove que se A tem n elementos, então $\mathcal{P}(A)$ tem 2^n elementos.

Solução: Seja
$$X = \{n \in N \mid card(A) = n \Rightarrow \mathcal{P}(A) = 2^n\}$$
.
1) $1 \in A$, pois se $A = \{x\} \Rightarrow \mathcal{P}(A) = \{\emptyset, \{x\}\} \Rightarrow \mathcal{P}(A) = 2 = 2^1$.

2) Suponha que $n \in X$, vamos mostrar que por indução que $n+1 \in X$. Definimos a função:

$$F: \mathcal{P}(A - \{x\}) \times \{\emptyset, \{x\}\} \to \mathcal{P}(A).$$

$$F(A', B) = \begin{cases} A', & \text{if } B \neq \emptyset \\ A' \cup \{x\}, & \text{se } B = \emptyset \end{cases}$$

Onde $A' \subset A$ e $B \subset \{\emptyset, \{x\}\}$ A função F é injetiva e sobrejetiva, portanto uma bijeção.

2.1) É sobrejetiva, pois $\forall A' \subset A \Rightarrow x \in A$ ou $x \notin A''$, no primeiro caso, basta tomar $A'' = A' - \{x\} \subset A - \{x\} \Rightarrow A'' \in \mathcal{P}(A - \{x\})$, seja $B'' = \emptyset \Rightarrow F(A'', B'') = A'' \cup \{x\} = (A' - \{x\}) \cup \{x\} = A'$. Se $x \in A'$, tomando $B' = \{x\} \Rightarrow F(A', B') = A'$.

- 2.2) Ela é injetiva pois $(A',B') \neq (A'',B'')$ subconjuntos de $\mathcal{P}(A-\{x\}) \times \{\emptyset,\{x\}\},$ há duas possibilidades:
- 1) $A' \neq A''$ se $B' \neq \emptyset \Rightarrow F(A', B') = A' \neq A'' = F(A'', B'')$ por outro lado se $B' = \emptyset \Rightarrow F(A', B') = A' \cup \{x\} \neq A'' \cup \{x\} = F(A'', B'')$, reelembre x não pertence a nenhum desses subconjuntos da primeira coordenada dessa função, portanto deve existir um outro ponto diferente de x, contindo em um, mas não no outro.
- 2) Se $B' \neq B''$, então a imagem de um deles conterá o x e o outro não, concluimos que F é injetiva.

Por 1) e 2) acima F é uma bijeção, por indução sabemos que $card(\mathcal{P}(A-\{x\}))=2^n$ e obviamente $card(\{\emptyset,\{x\}\})=2$, pelo teorema 10 do capítulo 2, temos que $card(\mathcal{P}(A-\{x\})\times\{\emptyset,\{x\}\})=2^n\cdot 2=2^{n+1}\Rightarrow n+1\in X$, pelo terceiro axioma de Peano concluimos que X=N.

15. Defina uma função sobrejetiva $f: N \to N$, tal que $\forall n \in N$, o conjunto $f^{-1}(n)$ seja infinito.

Solução:

- 1) Pelo Teorema 10 do capítulo 2, $N \times N$ é infinito e enumerável, pelo corolário do Teorema 7 do mesmo capítulo existe uma bijeção $h: N \to N \times N$.
- 2) definindo:

$$g: N \times N \to N \\ g(m,n) = m \quad \forall \ m,n \in N$$

Obviamente g é sobrejetiva.

- 3) por h ser uma bijeção e g ser sobrejetiva $\Rightarrow f = g \circ h : N \to N$ também é sobrejetiva, temos que $f^{-1} = (g \circ h)^{-1} = h^{-1} \circ g^{-1}$, então $\forall n \in N$ temos $f^{-1}(n) = (h^{-1} \circ g^{-1})(n) = h^{-1}((g^{-1}(n)), \text{ onde } g^{-1}(n) \text{ é um conjunto infinito, pela construção de } g$, pela injetividade de $h \Rightarrow h^{-1}((g^{-1}(n)))$ é um conjunto infinito, portanto $f^{-1}(n)$ é infinito $\forall n \in N$, como queriamos.
- 16. Prove que se X é infinito enumerável, o conjunto das partes finitas de X também é (infinito) enumerável.

Solução: Primeiramente X é enumerável, então tome qualquer enumeração de X, isto é = $\{x_1,\ x_2,\ \dots,\ x_n,\ \dots\}$

Vamos definir $\mathcal{PF}(X) = \{X' \subset X \mid X' \text{ \'e finito}\}$ e a função:

$$G: \mathcal{PF}(X) \to N$$

Onde dado $X' \in \mathcal{PF}(X) \Rightarrow X' = \{x_{n_1}, x_{n_2}, \ldots, x_{n_m}\}$, (suponha que ordenamos X' com índices em ordem crescente e definimos $G(X') = p_{n_1} \cdot p_{n_2} \dots p_{n_m}$, onde p_i é o i – ésimo número primo.

Afirmarmos que G é injetiva, pois dados $X', X'' \in \mathcal{PF}(X), X' \neq X''$ existe pelo menos um $x_i \in X'$ que não pertence a X'' ou vice-versa $\Rightarrow G(X') = n$ e G(n') tem decomposição em fatores primos distintas, portanto são números diferentes pelo teorema fundamental da aritmética.

Pelo corolário 1 do teorema 8 do capítulo 2, $\mathcal{PF}(X)$ é enumerável, como queríamos.

17. Seja $f:X\to X$ uma função. Um subconjunto $Y\subset X$ chama-se estável relativamente a f quando $f(Y)\subset Y$. Prove que um conjunto X é finito se, e somente se, existe uma função $f:X\to X$ que só admite os subconjuntos estáveis \emptyset e X.

Solução:

- \Rightarrow) Se X é finito, então podemos escrever X, tome uma função $f: X \to X$ se os únicos conjuntos estáveis de f forem \emptyset e X, acabou, caso contrário, existe $Y \subseteq X$ t.q $f(Y) \subset Y$, esse conjunto é obviamente finito, seja $y_1 \in Y$ e $y_1' \in X Y$, defina: $f_1(x) = x$, se $x \notin \{y_1, y_1'\}$ e $f(y_1) = y_1'$, $f(y_1') = y_1$ se f_1 tiver apenas \emptyset e X conjuntos estáveis, então acabou. Caso contrário, temos que $Y \{y_1\} \subset f(Y \{y_1\})$ repetindo o processo com $Y \{y_1\}$ chegamos numa função f_2 se ele satisfazer a propriedade pedida acabamos, caso contrário repita denovo, como o conjunto Y é finito, esse processo é finito, portanto chegaremos numa função que admita apenas \emptyset e X como conjuntos estáveis.
- \Leftarrow) Se X fosse infinito, suponha que $f: X \to X$ tem apenas \emptyset e X como conjuntos estáveis, em particular $f(x) \neq x$, $\forall x \in X$, pois caso contrario $\{x\}$ seria estável, uma contradição com a hipótese.

Seja $S = \{f^n(x) \in X \mid f^n(x) = f(f(...(f(x))...))\}$ conjuntos das n – ésimas interações de f sobre x.

Afirmamos que S é estável, pois $\forall y \in S \Rightarrow \exists n \in N$ t.q $f^n(x) = y$ e além disso temos que $f(y) = f(f^n(x)) = f^{n+1}(x) \Rightarrow f(S) \subset S$, como queiramos, é chegamos a uma contradição com a hipótese inicial.

18. Seja $f: X \to X$ uma função injetiva tal que $f(X) \neq X$. Tomando $x \in X - f(X)$, prove que os elementos $x, f(x), f(f(x)), \ldots$ são dois a dois distintos.

Solução: Note que se $x \in X - f(X) \Rightarrow f(x) \neq x$, caso contrário x estaria em X, como $f(x) \neq x$ pela injetividade de $f \Rightarrow f^2(x) = f(f(x)) \neq f(x)$, como $x \notin f(X) \Rightarrow f^2(x) \neq x$.

Seja $A = \{n \in N \mid f^n(x) \neq f^{n-1}(x) \neq \ldots \neq f(x) \neq x\}$. Já mostramos que que $1 \in A$, suponha que $n \in A$, vamos provar que $n+1 \in A$, temos que por $x \notin f(X) \Rightarrow x \neq f^n(x) \Rightarrow f(x) \neq f(f^n(x)) = f^{n+1}(x)$ pela injetividade de f, se $\exists m \in \{1, 2, \ldots, n\}$ t.q $f^{n+1}(x) = f^m(x) \Rightarrow f^n(x) = f^{m-1}(x)$, contradizendo a hipótese de indutividade, logo $n+1 \in A$, pelo terceiro axioma de Peano A = N

19. Seja X um conjunto infinito e Y um conjunto finito. Mostre que existe uma função sobrejetiva $f:X\to Y$ e uma função injetiva $g:Y\to X$. Solução: Se Y tem apenas um elemento, qualquer função $f: X \to Y$ é sobrejetiva e toda função $g: Y \to X$ é injetiva. Suponha que Y tenha n elementos com n>1, tome qualquer $X'\subset X$ com n-1 elementos seja $X=\{x_1,\ x_2,\ \ldots,\ x_{n-1}\}$ um enumeração qualquer de X' faça o mesmo com $Y=\{y_1,\ y_2,\ \ldots,\ y_n\}$. Defina:

$$f(x) = \begin{cases} f(x_i) = y_i \text{, se } x_i \in X' \\ f(x) = y_n \text{, se } x \in X - X' \end{cases}$$

 \mathbf{e}

$$g(y) = \begin{cases} g(y_i) = x_i \text{ , se } i < n \\ g(y_n) = x \text{ qualquer } x \in X - X' \end{cases}$$

f é claramente sobrejetva e g é obviamente injetiva.

20.(a) Seja X finito e Y enumerável, então $\mathcal{F}(X,Y)$ é enumerável.

(b) Para cada função $f:N\to N$ seja $A_f=\{n\in N\mid f(n)\neq 1\}$. Prove que o conjunto X das funções $f:N\to N$ tais que A_f é finito é um conjunto enumerável.

Solução:

1) No caso de |X|=m é |Y|=n forem finitos, então o conjunto $\mathcal{F}(X,Y)$ tem n^m elementos.

Para ver isso, pegue qualquer enumeração de X e Y note que uma função $f: X \to Y$, pode ser visto com base nas suas imagens ponto a ponto, isto é, existe uma bijeção entre $\mathcal{F}(X,Y)$ é o conjunto o produto cartesiano Y^m . Essa bijeção é dada por:

$$B: \mathcal{F}(X,Y) \to Y^m$$

 $B(f) = (f(x_1), f(x_2), \dots, f(x_m)) = (y_1, y_2, \dots, y_m)$

Essa função é claramente uma bijeção.

- 1.1) Se $f \neq g \Rightarrow \exists x_i \in x \text{ t.q } f(x_i) = g(x_i) \Rightarrow \text{a } i\text{-\'esima coordenada de } B(f) \text{ e} B(G)$ são diferentes, então são imagens diferetes, portanto B é injetiva.
- 1.2) B é sobrejetiva, para qualquer (y_1, y_2, \ldots, y_m) , basta definir a função $h: X \to Y$ t.q $h(x_i) = y_i \Rightarrow B(h) = (y_1, y_2, \ldots, y_m)$ como queriamos.
- 1.3) Pelo corolário 3 do Teorema 6 do cap 2, $|Y^m| = n^m$, pelo segundo parágrafo da seção 5 cap 2 $|\mathcal{F}(X,Y)|$

Vamos supor agora Y infinito enumerável, basta aplicar o mesmo princípio, pois a bijeção B pode ser provada por uma argumentação parecida com a de Y ser finito, mas ao invês de n-uplas, usamos sequências (onde a ordem dos termos importa!).

Precisamos provar apenas o fato de dado qualquer $m \in N \Rightarrow Y^m$ é enumerável Pois bem, Seja $A = \{m \in N \mid |Y^m| \text{ é enumerável}\}.$

- 1) $1 \in A$, pois $|Y^1| = |Y|$ é por hipótese Y é enumerável.
- 2) Suponha que $n \in A$, vamos provar que $n + 1 \in A$, para isso basta usar o

fato de que $Y^{n+1} = Y^n \times Y$, por hipótese de indução Y^n e Y são enumeráveis, pelo teorema 10 capítulo 2, esse produto é enumeravél, ou seja, $n+1 \in A$, pelo terceiro axioma de Peano A = N, como queríamos.

b) Use a mesma enumeração do exercício 16, com a diferença que se $A_f = \{n_1, n_2, \ldots, n_m\}$ t.q $f(n_i) \neq 1$, definimos $A = \{A_f \mid f : N \to N\}$ que cuja imagem difere de 1 em apenas finitos termos. Então

$$G: A \to N$$

$$G(f) = p_{n_1} p_{n_2} \dots p_{n_m}$$

onde p_{n_i} é o *i*-ésimo primo, por argumentos semelhanças mostramos que essa função injetiva é portanto A é enumerável.

21. Obtenha uma decomposição $N = X_1 \cup X_2 \cup \cdots \cup X_n \cup \ldots$ tal que os conjuntos $X_1, X_2, \ldots, X_n, \ldots$ são infinitos e dois a dois disjuntos.

Solução:

Defina para cada $i \in N$ o conjunto $X_i = \{n \in N \mid n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_i^{\alpha_i}\}$, onde cada p_i é o *i*-ésimo número primo e cada $\alpha_i \in N \cup \{0\}$.

Cada X_i é infinito enumerável, pois pode ser visto como o produto cartesiano dos $P_i = \{m \in N \mid m = p_i^{\alpha_i}\}$ as potências do *i*-ésimo número primo, portanto $X_i = P_1 \times P_2 \times \cdots \times P_i$ é um conjunto enumerável, para provar isso basta usar a última parte do exercício 20(a) do capítulo 2.

Então temos que cada X_i é enumerável, basta apenas mostrar que $\bigcup_{nN} X_i = N$, a incusão das uniões é obvia, pois é a união de subconjuntos de números naturais.

Para $N \subset \bigcup_{nN} X_i$, tome qualquer n natural, pelo teorema fundamental da aritmética n pode ser decomposto em um produto de números primos, isto é $n = p_{n_1}^{\alpha_{n_1}} p_{n_2}^{\alpha_{n_2}} \dots p_{n_k}^{\alpha_{n_2}}$, tome o maior primo primo $p_{n_i} \Rightarrow n \in \bigcup_{j=1}^{n_i} X_j \subset \bigcup_{nN} X_i \Rightarrow$. Como n foi escolhido arbitrariamente concluímos que $N \subset \bigcup_{nN} X_i$.

Pela propriedade antisimétrica dos conjuntos esses dois conjuntos são iguais.

22. Defina $f: N \times N \to N$, pondo f(n,1) = 2n-1 e $f(m+1,n) = 2^m(2n-1)$. Prove que f é uma bijeção.

Sobrejetividade: Se n é impar, então n+1 é par, portanto $n'=\frac{n+1}{2}$ é natural e podemos escrever $2n'-1=2(\frac{n+1}{2})-1=n$, a imagem desse n' é exatamente n isto é f(1,n')=2n'-1=n.

Suponha que n seja impar, então n=2m se m for impar, escrevemos m=2m'-1 como já visto na primeira parte, caso contrario podemos escrever $m=2m'\Rightarrow n=2^2m'$, se m' for impar, escrevemos m'=2m''-1 se não for, então temos que $m'=2m''\Rightarrow n=2^3m''$ e contiamos. Como n é finito, esse processo deve terminar, ficamos com $n=2^k(2n'-1)$ ou $n=2^k$, no primeiro caso teremos que a imagem $f(k-1,n')=2^k(2n'-1)=n$ no outro $f(k+1,1)=2^k(2\cdot 1-1)=2^k=n$, como n foi escolhido arbitratiamente, concluímos que todo nN é imagem de alguma elemento de $N\times N$.

Injetividade: Tome $(n, m), (n', m') \in N \times N$ distintos, então.

1) $n' \neq n'$ suponha que $n = 1 \Rightarrow f(1, m) = 2m + 1$ é impar por outro lado $f(n, m) = 2^{n'-1}(2m'-1)$ é par pois $n'-1 \geq 1 \Rightarrow f(n, m) \neq f(n', m')$.

Se ambos n, n' são diferentes de 1s suponha n < n', então $f(n,m) = 2^{n-1}(2m - 1)$

- 1) e $f(n'm') = 2^{n'-1}(2m'-1)$, tem fatoração em primos distintos, na fatoração de f(n,m) teremos um número menor de fatores primos que no primeiro, portanto são números distintos.
- 2) Se $m \neq m'$ novamente suponha que m = 1, então f(n,m) será par e f(n'm') será impar, ambos são m, m' são diferentes de 1 teremos que $f(n,m) = 2^{n-1}(2m-1)$ e $f(n',m') = 2^{n'-}(2m'-1)$ terão decomposição em fatores primos distintas, pois $2m-1 \neq 2m'-1$ portanto tem imagens distintas por f. Portanto f é injetiva e sobrejetiva, portanto uma bijeção, como queríamos.

23. Seja $X\subset N$ um conjunto infinito. Prove que existe uma única bijeção cresente $f:N\to X.$

Solução: 1) Vamos definir tal função por indução (ou recorrência).

Como $X \subset N \Rightarrow$ possui um menor elemento x_1 e colocamos $f(1) = x_1$. O conjunto $X - \{x_1\}$ é não-vazio, portanto possui um menor elemento x_2 , note que $x_1 < x_2$ e definimos $f(2) = x_2$, suponha que esteja definido $f(n) = x_n$, então o conjunto $X - \{x_1, x_2, \ldots, x_n\}$ é não vazio é possui um menor elemento x_{n+1} e definimos $f(n+1) = x_{n+1}$ e temos $f: X \to N$ definida;

2) f é claramente injetiva, pois $n \neq m$ (suponha que n < m), então $f(n) = x_n < x_m = f(m)$, pela enumeração de dada acima para X.

f é sobrejetiva, pois dado $x_n \in X \Rightarrow f(n) = x_n \forall n \in N$, pois X é infinito e enumerável(teorema e $X \subset N$).

Portanto f é uma bijeção e como visto em 2) ele é crescente, se $n < m \Rightarrow f(n) = x_n < x_m = f(m)$.

24. Prove que todo conjunto infinito se decompõe como reunião de uma infinidade enumerável de conjuntos infinitos, dois a dois disjuntos.

Solução: Suponha que X seja infinito.

- 1) Se X for enumerável, então tome qualquer enumração de X e decomponha X, pelos índices igual a solução do exercício 21, isto tome um x_n então decomponha n na sua fatoração prima, e defina $X_i == \{n \in N \mid n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_i^{\alpha_i}\}$ e pelo exercício 21 temos que $X = X_1 \cup X_2 \cup \dots \cup X_n \cup \dots$
- 2) Se X é não enumerável, denovo todo $X'\subset X$ infinito enumerável, decomponha ele igual a parte 1 deste exercício e além disse defina um outro conjunto $X_0=X-X'$, essa conjunto é infinito não-enumerável.

Vamos ter a união $X = X_0 \cup X_1 \cup X_2 \cup \cdots \cup X_n \cup \ldots$ que é uma união enumerável, de conjuntos infinitos, dois a dois disjuntos.

- 25) Seja A um conjunto. Dadas as funções $f, g: A \to N$ defina a soma $f+g: A \to N$ o produto $f \cdot g: X \to N$, e de o significa da afirmação $f \leq g$. Indicando como ξ_X a função caracterísca de um subconjunto $X \subset A$ prove:
- a) $\xi_{X\cap Y} = \xi_X \cdot \xi_Y$;
- b) $\xi_{X \cup Y} = \xi_X + \xi_Y \xi_{X \cap Y}$. Em particular $\xi_{X \cup Y} = \xi_X + \xi_Y \iff X \cap Y = \emptyset$;
- c) $X \subset Y \iff \xi_X \leq \xi_Y$;
- $d)\xi_{A-X} = 1 \xi_X.$

Solução:

Definições: 1) $(f+g)(x) = f(x) + g(x) \ \forall x \in A$;

- 2) $(f \cdot g)(x) = f(x) \cdot g(x)$ e finalmente;
- 3) $f \le g \iff f(x) \le g(x) \ \forall x \in A$.
- a) A função caracterísca indica quando um ponto está ou não em um conjunto $X\subset A,$ por exemplo se: $\xi_X:A=\{0,1\}$

$$\xi_X(x) = \begin{cases} 1 \text{ , se } x \in X; \\ 0 \text{ caso contrário.} \end{cases}$$

Então $\xi_{X \cap Y} = \xi_X \cdot \xi_Y \iff \xi_{X \cap Y}(x) = (\xi_X \cdot \xi_Y)(x).$

- 1) Se $x \in X \cap Y \Rightarrow x \in X$ e $x \in Y \Rightarrow \xi_X(x) = 1$ e $\xi_Y(x) = 1$, portanto $\xi_{X \cap Y}(x) = 1 = 1 \cdot 1 = \xi_X(x) \cdot \xi_Y(x)$.
- 2) Agora se $x \notin X \cap Y \iff x \notin X$ ou $x \notin Y$, então $\xi_X(x) = 0$ ou $\xi_Y(x) = 0$ em qualquer caso $(\xi_{X \cap Y})(x) = 0 = 0 \cdot 1 = 1 \cdot 0 = \xi_X(x) \cdot \xi_Y(x)$. Concluímos que $\xi_{X \cap Y} = \xi_X \cdot \xi_Y$.
- b) Se $x \in X \cup Y$ temos três possibilidades:
- 1) $x \in X Y \Rightarrow \xi_X(x) = 1$ e $\xi_Y(x) = 0$ e pelo exercício anterior temos que $\xi_{X \cap Y}(x) = \xi_X(x) \cdot \xi_Y(x) = 1 \cdot 0 = 0 \Rightarrow \xi_{X \cup Y}(x) = 1 = \xi_X(x) + \xi_Y(x) \xi_{X \cap Y}(x)$. 2) Se Y - X o argumento é igual a 1).
- 3) Se $x \in X \cap Y \Rightarrow \xi_X(x) = 1$ e $\xi_Y(x) = 1$, além disso $\xi_{X \cap Y}(x) = 1 \Rightarrow \xi_{X \cup Y}(x) = 1 = 1 + 1 1 = \xi_X(x) + \xi_Y(x) \xi_{X \cap Y}(x)$; Portanto $\xi_{X \cup Y} = \xi_X + \xi_Y \xi_{X \cap Y}$.
- c) Se $X \subset Y$, então $\forall x \in X \Rightarrow x \in Y$ e pela definição da função caracterísca $\Rightarrow \xi_X(x) = 1 = \xi_Y(x) \ \forall x \in X$, por outro lado se $y \in Y - X \Rightarrow$ $\xi_X(x) = 0 < 1 = \xi_Y(x)$, pela definição dada acima para a desilguadade temos que $\xi_X \leq \xi_Y$.
- d) Se $x \in A X$, então $x \notin X \Rightarrow \xi_{A-X}(x) = 1$ e $\xi_X(x) = 0 \Rightarrow \xi_{A-X}(x) = 1 = 1 0 = 1 \xi_X(x)$ agora se $x \in X \Rightarrow x \notin A X$ ou seja $\xi_{A-X}(x) = 0 = 1 1 = 1 \xi_X(x)$.

Como a escolha de $x \in A$ foi arbitraria, concluimos que as duas funções são iguais.

26. Prove que o conjunto das seqências crescentes de números reais $(n_1 < n_2 < n_3 < \dots)$ de números naturais não é enumerável.

Solução: Seja S o conjunto de todas as sequências crescentes de números naturais, vamos usar a diagonal de Cantor para chegar a um absurdo. Suponha que S seja enumerável, então é possível listar esse conjunto. Seja tal lista abaixo.

$$s_{1} = (x_{1,1}, x_{1,2}, \dots, x_{1,n}, \dots)$$

$$s_{2} = (x_{2,1}, x_{2,2}, \dots, x_{2,n}, \dots)$$

$$\vdots$$

$$s_{n} = (x_{n,1}, x_{n,2}, \dots, x_{n,n}, \dots)$$

Então vamos formar a sequência $(y_n)_{n\in N}$ indutivamente $y_1=x_{1,1}+1\Rightarrow y_1\neq x_{1,1}$, em seguinda definimos $y_2=max\{y_1+1,\ x_{2,2}+1\}\Rightarrow y_2\neq x_{2,2}$ e $y_1< y_2$, suponha que y_n esteja definido, então seja $y_{n+1}=max\{y_n,\ x_{n,n}\}\Rightarrow y_{n+1}\neq x_{n+1,n+1}$ e $y_n< y_{n+1}$ portanto temos a sequência definida indutivamente. Note que $(y_n)_{n\in N}$ é uma sequência crescente, além disse $(y_n)_{n\in N}$ não está na lista, pois n-ésimo termo da nossa sequência difere de s_n exatamente no n-ésimo dela, portanto são duas sequências diferentes, isto é $(y_n)_{n\in N}$ não está na lista, incluindo ela, podemos construir da mesma maneira outra sequência, ou seja, o conjunto S só pode ser não enumerável.

27. Sejam(N,s) e (N^\prime,s^\prime) dois pares formados, cada um
, por um conjunto e uma função.

Suponha que ambo cumpram os axiomas de Peano. Prove que existe uma única bijeção $f: N \to N'$ tal que f(1) = 1', f(s(n)) = s'(f(n)). Conclua que:

- a) $m < n \iff f(m) < f(n)$;
- b) f(m+n) = f(m) + f(n) e
- c) $f(m \cdot n) = f(m) \cdot f(n)$.

Solução: a) Vamos usar indução para mostrar que fixado qualquer m e se $n=m+p>m,\ p\in N\Rightarrow f(m)< f(n).$ Seja $A=\{p\in N\mid f(m)< f(m+p)=f(n)\}.$

 $1\in A,$ pois f(m+1)=f(s(m))=s'(f(m))=f(m)+1'>f(m) pois s' satisfaz os axiomas de Peano.

Suponha que $p \in A$, vamos provar que $p+1 \in A$ também, temos que $f(m+(p+1)) = f((m+p)+1) = f(s(m+p)) = s'(f(m+p)) = f(m+p)+1' > f(m+p) \Rightarrow f(m(p+1) > f(m+p))$, portanto $p+1 \in A \Rightarrow A = N$, como m foi escolhido arbitrariamente, podemos concluir que $m < n \Rightarrow f(m) < f(n)$.

Para a volta, basta usar indução, fixe um f(m) e defina $B = \{n \in N \mid f(n) > f(m) \Rightarrow n > m\}$, $1 \in B$, pois f(m) < f(m) + 1' = s'(f(m)) = f(s(m)) = f(m+1) e temos que $f(m) < f(m+1) \Rightarrow m < m+1$. Suponha que $n \in B$, vamos mostrar que $n+1 \in B$, para isso temos f(n+1) = f(m+1) f(s(n)) = s'(f(n)) = f(n) + 1' > f(n) > f(m), portanto $n+1 \in B$ é concluimos que B = N, como m foi escolhido arbitrariamente, essa desiguladde vale para qualquer m < n.

- b) Fixe $m \in N$ vamos mostrar por indução. Seja $C = \{n \in N \mid f(m+n) = f(m) + f(n)\}.$
- 1) $1 \in C$, pois f(m+1) = f(s(m)) = s'(f(m)) = f(m) + 1' = f(m) + f(1). 2) Suponha que $n \in N$ vamos mostrar que $n+1 \in C$, temos que f(m+(n+1)) = f((m+n)+1) = f(s(m+n)+1) = s'(f(m+n)) = f(m+n)+1' como $n \in C$ por indução temos que f(m+n)+1' = f(m)+f(n)+1' = f(m)+s'(f(n)) = f(m)+f(n+1), ou seja $n+1 \in C$ e pelo terceiro axioma de Peano C=N. Pela escolha arbitraria de m, a igualdade vale para quaisquer $m, n \in N$.
- c) Novamente fixe um $m \in N$ arbitrario, vamos mostrar por indução essa questão. Seja $D = \{n \in B \mid f(m \cdot n) = f(m) \cdot f(n)\}.$
- 1) $1 \in D$, pois $f(m \cdot 1) = f(m) = f(m) \cdot 1' = f(m) \cdot f(1)$.
- 2) Suponha que $n \in D$, vamos provar que $n+1 \in D$, temos que $f(m \cdot (n+1)) = f(m \cdot n + m \cdot 1)$ pela parte b) deste exercício, temos $f(m \cdot n + m \cdot 1) = f(m \cdot n) + f(m) \cdot f(1)$ pela hipótese de indução em n temos $f(m \cdot n) + f(m) \cdot f(1) = f(m) \cdot f(n) + f(m) = f(m)(f(n) + f(1))$ pela parte b) novamente $\Rightarrow f(m)(f(n) + f(1)) = f(m) \cdot f(n+1)$ e portanto $n+1 \in D$, pelo axioma P_3 D = N.

Como m foi escolhido arbitrariamente, temos a demostração da parte c).

28. Dada uma sequência de conjuntos $A_1, A_2, \ldots, A_n, \ldots$ considere os conjuntos

$$\limsup A_n = \bigcap_{n=1}^{\infty} (\bigcup_{i=n}^{\infty} A_i)$$
 e $\liminf A_n = \bigcup_{n=1}^{\infty} (\bigcap_{i=n}^{\infty} A_i)$

- a) Prove que lim sup A_n é o conjunto dos elementos que pertencem a A_n para uma infinidade de valores de n e que lim inf A_n é o conjunto dos elementos que pertencem a todos A_n salvo para um número finito de valores de n.
- b) Conclua que $\liminf A_n \subset \limsup A_n$.
- c) Mostre que se $A_n \subset A_{n+1}$, $\forall n$ então

$$\lim \inf A_n = \lim \sup A_n = \bigcup_{n=1}^{\infty} A_n$$

d) Por outro lado, se $A_n \supset A_{n+1}$ para todo n então

$$\lim\inf A_n = \lim\sup A_n = \bigcap_{n=1}^{\infty} A_n$$

- e) Dê exemplo de uma sequência (A_n) tal que $\limsup A_n \neq \liminf A_n$.
- f) Dê exemplos de uma sequência para a qual os dois limites coincidem, mas $A_m \not\subset A_n$ quaisquer que sejam m e n

Solução: a)

- 1) Se $x \in \limsup A_n \Rightarrow x \in \bigcup_{i=n}^{\infty} A_i$ para todo $n \in N$, como $x \in \bigcup_{i=1}^{\infty} A_i \Rightarrow x \in A_i$ para algum i natural, seja o menor índice i_1 que contém x, temos ainda que $x \in \bigcup_{i=i_1+1}^{\infty} A_i$, note que A_{i_1} não está nesse conjunto, portanto existe algum índice $i_2 \neq i_1$ contendo x, suponha que definimos o i_n índice, então $x \in \bigcup_{i=i_n+1}^{\infty} A_i$, portanto existe algum índice $i_{n+1} > i_n$ tal que $x \in A_{i_{n+1}}$, assim definimos indutivamente uma sequência de conjuntos $(A_{i_j})_{j \in N}$ de conjuntos distintos onde todos eles o ponto x, como queriamos mostrar.
- 2) Se $x \in \liminf A_n \Rightarrow x \in \bigcap_{i=n}^{\infty} A_i$ para algum $i \in N$, isto é $x \in A_j$ para todo $j \geq i$. Então pode acontecer de $x \notin A_k$ somente para um número finito de índices que são os índices menores que i.
- b) Se $x \in \liminf A_n \Rightarrow x \in \bigcap_{i=n}^{\infty} A_i$ para algum i e portanto x pertence a uma quantidade infinita de conjuntos $A_{i'}$, pelo que já foi provado no exercício a) temos que $x \in \limsup A_n$, e como x foi escolhido arbitrariamente, temos a inclusão $\liminf A_n \subset \limsup A_n$.
- c) 1)Suponha que $A_n \subset A_{n+1}$, $\forall n$, então $\bigcap_{i=n}^{\infty} A_i = A_n \Rightarrow \bigcup_{n=1}^{\infty} (\bigcap_{i=n}^{\infty} A_i) = \bigcup_{n=1}^{\infty} A_n$, isto é lim inf $A_n = \bigcup_{n=1}^{\infty} A_n$. 2)Note que se $A_n \subset A_{n+1}$ para todo n, então $\bigcup_{i=1}^{\infty} A_i \subset \bigcup_{i=2}^{\infty} A_i \subset \cdots \subset \bigcup_{i=n}^{\infty} A_i \subset \ldots$, e obviamente a interseção disso é $\bigcup_{i=1}^{\infty} A_i$, portanto concluimos que lim sup $A_n = \bigcap_{n=1}^{\infty} (\bigcup_{i=n}^{\infty} A_i) = \bigcup_{i=1}^{\infty} A_i = \lim\inf A_n$ como pedido.
- d)
 1) Se $A_n \supset A_{n+1}$, $\forall n$, então $\bigcup_{i=n}^{\infty} A_i = A_n$ portanto $\limsup A_n = \bigcap_{n=1}^{\infty} (\bigcup_{i=n}^{\infty} A_i) = \bigcap_{n=1}^{\infty} A_n$.
 2) Por outro lado $\bigcap_{i=1}^{\infty} A_i \supset \bigcap_{i=2}^{\infty} A_i \cdots \supset \bigcap_{i=n}^{\infty} A_i \supset \cdots \Rightarrow \bigcup_{n=1}^{\infty} (\bigcap_{i=n}^{\infty} A_i) = \bigcap_{n=1}^{\infty} A_n$ E concluímos que $\limsup A_n = \bigcap_{n=1}^{\infty} A_n = \liminf A_n$, como queriamos.
- e) Vamos definir a seguinte sequência de conjuntos $(A_n)_{nN}$.

Se n é impar coloque $A_n = N$

Se n é par, então coloque $A_n = P$, onde P é o conjunto de todos os números pares.

Então como lim sup A_n é o conjunto dos pontos que pertecem a uma quantidade infinita de conjuntos $A_n \Rightarrow \limsup A_n = N$, por outro lado lim inf $A_n = P$, ou seja, $\limsup A_n = N \neq P = \liminf A_n$.

f) Coloque $A_n = \{n\}, \ \forall n \in N$, então $\limsup A_n = \emptyset$, pois não há nenhum x que pertencem a uma infinidade de conjuntos A_n , por outro lado $\liminf A_n = \emptyset$ pelo fato que $\bigcap_{i=n}^{\infty} A_i = \emptyset, \ \forall n$, ou seja $\limsup A_n = \emptyset = \liminf A_n$ e além diso $A_n = \{n\} \neq \{m\} = A_m$ e com maior razão não estão contidos um no outro.

29. Dados os conjuntos A e B, suponha que existam funções injetivas $f:A\to B$ e $g:B\to A$. Prove que existe uma bijeção $h:A\to B$ (Teorema de Cantor-Bernstein-Schroder.)

Solução: Basta apenas observar que por $f \Rightarrow card(B) < card(A)$ e por $g \Rightarrow card(A) < card(b)$, pelo ultimo parágrago do capítulo 2, temos que card(A) = card(B) é por definição existe uma bijeção $h: A \rightarrow B$.