Learning Distributions Generated by One-Layer ReLU Networks

Shanshan Wu, Alex Dimakis, Sujay Sanghavi

University of Texas at Austin

[Background]

- A popular generative model these days is passing a standard Gaussian distribution thru a Neural Net.
- Consider a one-layer ReLU generative model with parameters $W \in \mathbb{R}^{d \times k}$, $b \in \mathbb{R}^d$:

• Given i.i.d. samples of x, parameters can be learned by training a GAN or VAE, but no guarantees are known.

[Problem Formulation]

 $z \sim N(0, I_{k \times k})$

Given n i.i.d. samples $x_1, x_2, ... x_n \sim \text{ReLU}(Wz + b)$

Can we estimate W, b?

Note: This is an unsupervised learning problem. We only observe x (the variable z is hidden from us).

[Identifiability]

• Is $W \in \mathbb{R}^{k \times d}$ identifiable from the distribution ReLU(Wz + b)? Only WW^T can be possibly identified.

Fact:
$$W_1W_1^T = W_2W_2^T$$

distr of ReLU($W_1z + b$) = distr of ReLU($W_2z + b$)

• Is $b \in \mathbb{R}^d$ identifiable from the distribution ReLU(Wz + b)?

Yes, but if b is negative, estimate b needs $\Omega(\exp(\|b\|_{\infty}^2))$ samples.

Assumption: b is non-negative.

[Our Algorithm]

Overview The (i, j)-th entry of WW^T is:

 $\langle W(i,:), W(j,:) \rangle = ||W(i,:)||_2 ||W(j,:)||_2 \cos \theta_{ij}$ Our algorithm:

Step 1

Step 2

The *i*-th and *j*-th coordinate $x(i) \sim \text{ReLU}(W(i,:)z + b(i))$ Goal: estimate $\theta_{ij} \coloneqq \text{angle b/t}$ $x(j) \sim \text{ReLU}(W(j,:)z + b(j))$ Goal: estimate $\theta_{ij} \coloneqq \text{angle b/t}$ W(i,:) & W(j,:) Fact: $\mathbb{P}_x[x(i) > b(i) \& x(j) \ge b(j)] = \frac{\pi - \theta_{ij}}{2\pi}$ $b(i), b(j) \ge 0$ $\mathbb{P}_z[W(i,:)z > 0 \& W(j,:)z > 0]$

Given $\hat{b}(i)$, $\hat{b}(j)$ from Step 1:

$$\hat{b}(i) \approx b(i), \ \hat{b}(j) \approx b(j) \Longrightarrow \mathbb{P}_{x}[x(i) > \hat{b}(i) \& x(j) \ge \hat{b}(j)] \approx \frac{\pi - \theta_{ij}}{2\pi}$$

[Sample Complexity]

Parameter Estimation:

[Main Theorem] Assuming $b^* \in \mathbb{R}^d$ is non-negative, then our algo takes $\tilde{O}(\frac{1}{\epsilon^2}\ln(\frac{d}{\delta}))$ samples $\sim \text{ReLU}(W^*z + b^*)$ and its output satisfies w.p. at least $1 - \delta$,

$$\|\widehat{W}\widehat{W}^T - W^*W^{*T}\|_F \le \epsilon \|W^*\|_F^2, \ \|\widehat{b} - b^*\|_2 \le \epsilon \|W^*\|_F$$

Our algorithm Lower bound $\tilde{O}(\frac{1}{\epsilon^2}\ln(\frac{d}{\delta})) \qquad \Omega(\frac{1}{\epsilon^2})$

Our algorithm is optimal

• Total Variation Distance: TV(D, ReLU($W^*z + b^*$)) $\leq \epsilon$

This gap comes from:
1) Param est → TV distance
2) Lower bound is not tight

PDF of x(i) [Experiments]

Figure 1. Empirical performance of our algorithm w.r.t. three parameters: number of samples n, dimension d, and condition number κ . Every point is the mean and standard deviation over 10 runs.

[Code] https://github.com/wushanshan/densityEstimation

[Open Problems]

- What if b^* has negative values?
- Two-layer generative model?
- Noisy samples?.....

See our paper for more discussions.