Name :				•••••
Roll No. :		• • • • • • • • • • • • • • • • • • • •		
Invigilato	or's S	lgnature:		
				M-4/EC-401(EI)/2010
		201 NALOG INTEGRA	.=	CIRCUITS
				Full Marks: 70
Time Allo	ottea	: 3 Hours		
	Th	e figures in the margir	ı indica	te full marks.
Candid	ates (are required to give the as far as j		vers in their own words able.
		GROUP (Multiple Choice T		uestions)
1. Cho			atives	for any ten of the $10 \times 1 = 10$
i)	An	ideal Op-Amp has CM	IRR and	d slew rate respectively
	a)	infinity and infinity	b)	zero and infinity
	c)	zero and zero	d)	infinity and zero.
ii)	Ast	able multivibrator use	es	
	a)	positive trigger		
	b)	negative trigger		
in die	c)	both positive & nega	ative tri	ggers simultaneously
	d)	no trigger at all.		
4000				[Trees areas

iii)	In an Op-Amp integrator circuit					
	a)	a highly resistive feedback path is used				
	b)	a capacitive feedback path is used				
	c)	no feedback is at all used				
	d)	none of these.				

- iv) Integrator is also called
 - a) low-pass filter
- b) high-pass filter
- c) band-pass filter
- d) band-gap filter.
- v) The centre frequency of a band-pass filter is always equal to the
 - a) bandwidth
 - b) geometric average of the cut-off frequency
 - c) bandwidth divided by 2
 - d) 2 dB frequency.
- vi) In case of monostable operation using 555 timer, the formula for the pulse width is given as
 - a) W = 1.1 RC
- b) W = 0.693 (RC)
- c) W = i/0.693 (RC)
- d) W = 1.1/RC
- vii) The Wien-bridge oscillator is useful
 - a) at low frequency
- b) at high frequency
- c) with LC tank circuit
- d) at small input signal.
- viii) Schmitt trigger is a comparator using
 - a) negative feedback
- b) positive feedback
- c) both (a) & (b)
- d) none of these.

ix)	What is standard value of the resistor used in the feedback path of an Op-Amp based buffer circuit?						
	a)	10 kΩ	b)	100 kΩ			
	c)	1 ΜΩ	d)	none of these.			
x)	An Op-Amp cannot be used to implement						
	a)	monostable multivibra	ator				
1.54	b)	bistable multivibrator	T				
	c)	astable multivibrator	**************************************				
	d)	frequency doubler.		and All Colors			
xi)	An	instrumentation amplifi	er is	an improvement over			
. • · · · · · · · · · · · · · · · · · ·	a)	inverting amplifier	b)	non-inverting amplifier			
	c)	differential amplifier	d)	voltage follower.			
xii)		= 1.5 V, the digital out		output voltage of 2 V. If at the end of conversion			
	a)	0001 1100	b)	0010 0011			
	c)	0110 0000	d)	1100 0000			
xiii)		ond order active filte 1.414 is a	r w	ith damping coefficient			
	a)	low-pass filter	b)	high-pass filter			
	c)	Butterworth filter	d)	Bessel filter.			
xiv)	dv) Which one is not an A/D converter circuit?						
	a) Successive approximation type						
	b)	Weighted register type					
	c)	Dual slope type					
	d)	Flash type.					
)6		3		[Turn over			

- xv) According to Barkhausen criteria in order to sustain the oscillations
 - a) loop gain of the circuit must be negligible
 - b) loop gain of the circuit must be equal to unity
 - c) the phase shift around the circuit must be 180 degree
 - d) none of these.

GROUP - B (Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- 2. Define the following terms for an Operational Amplifier:
 - a) Input offset voltage
 - b) Input offset current
 - c) Slew rate
 - d) CMRR
 - e) Input resistance.
- 3. Find V_0 for the following circuit:

- 4. Draw the circuit of a subtractor using two Op-Amps and explain it.
- 5. Draw and explain a circuit that can be used to detect peak value of the non-sinusoidal waveforms.
- 6. What is the drawback of log amplifier? How to overcome the drawbacks?

GROUP - C

(Long Answer Type Questions)

Answer any three of the following.

 $3 \times 15 = 45$

- a) Design a first order high-pass Butterworth filter at a cut-off frequency of 1 kHz with a pass band gain of 2.
 Derive the necessary working formula.
 - b) Derive the slew rate equation for an Op-Amp.
 - c) Design a differentiator to differentiate an input signal that varies in frequency from 10 Hz to about 1 kHz.

If a sine wave of 1 V peak a Hz is applied to the differentiator, what will be the output voltage?

(4+2)+3+(3+3)

- 8. a) Draw and explain the working of Triangular wave generator using Op-Amp.
 - b) Draw the circuit diagram of Antilog Amplifier and explain its operation.
 - c) Explain how the operation of square rooting can be carried out using a multiplier IC. 5+5+5

[Turn over

- 9. a) Describe the principle of a R-2R ladder type digital to analog converter.
 - b) Using LM 317, design an adjustable voltage regulator to satisfy the following specifications:

Output voltage $V_0 = 5$ to 12 V

Output current $I_0 = 1 \text{ A}$

In the astable multivibrator, $R_A = 2.2 \text{ k}\Omega$, $R_B = 3.9 \text{ k}\Omega$ and $C = 0.1 \mu\text{F}$.

Determine the positive pulse width t_c , negative pulse width t_d , free running frequency f_0 and % duty cycle.

7 + 4 + 4

10. Explain the operation of an inverting Schmitt trigger circuit. For the inverting Schmitt trigger circuit shown in the figure, calculate R_2 if $R_1 = 100$ k Ω and hysteresis voltage width = 4 V.

Assume saturation voltages to be + 14 V to - 14 V.

11. Write short notes on any three of the following:

 3×5

- a) IC 555
- b) Instrumentation Amplifier
- c) Sample and Hold circuit
- d) Full-wave precision rectifier
- e) Voltage to current converter.