Matemática IV Series

A. Ridolfi (PT), M. Saromé (JTP)

UNCUYO - FCAI

Ingeniería Mecánica

2019

1 / 15

Contenido

- Series numéricas
- Series de potencias
- Series de Taylor
- Series de Laurent
- Cálculo de residuos
- Bibliografía

Criterio de convergencia para series numéricas

Criterio del cociente Dada la serie $\sum_{n=0}^{\infty} a_n$, si existe $L = \lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|}$ entonces:

- Si L < 1 la serie converge absolutamente.
- Si L > 1 la serie diverge.
- Si L = 1 el criterio no decide.

Criterio de la raíz Dada la serie $\sum_{n=0}^{\infty} a_n$, si existe $L = \lim_{n \to \infty} \sqrt[n]{|a_n|}$ entonces:

- Si L < 1 la serie converge absolutamente.
- Si L > 1 la serie diverge.
- Si L = 1 el criterio no decide.

Serie de Potencias

Una serie de potencias centrada en $z_0 \in \mathbb{C}$ es una expresión de la forma

$$\sum_{n=0}^{\infty} a_n (z-z_0)^n$$

- La serie siempre converge cuando $z = z_0$
- Dando un valor a z, la s. de p. se convierte en una serie numérica.
- Se puede considerar la función:

$$S(z)=\sum_{n=0}^{\infty}a_n(z-z_0)^n$$
 con dominio: $D_S=\{w\in\mathbb{C}:\sum_{n=0}^{\infty}a_n(w-z_0)^n \ converge\}$

- Se dice que la s. de p. converge absolutamente en una región A si $\sum_{n=0}^{\infty} |a_n| |z-z_0|^n$ converge para cada $z \in A$.
- Se dice que la s. de p. converge uniformemente en una región A si, dado $\epsilon > 0$ existe $N \in \mathbb{N}$ tal que $|\rho_N(z)| = |S(z) = S_N(z)| < \epsilon$ para todo $N > N_0(\epsilon)$ y para todo $z \in A$. (N_0 no depende de z)

Teorema (Lema de Abel)

Si para $\rho \geq 0$ la sucesión $\{|a_n|\rho^n\}$ es acotada, entonces la serie de potencias $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ converge absolutamente para $|z-z_0| < \rho$ y uniformemente para $|z-z_0| \leq r < \rho$

Consecuencia: Existe un número $R \ge 0$ llamado radio de convergencia tal que la serie de potencia converge absolutamente en $B(z_0,R)$, llamdo disco de convergencia, uniformemente en $\overline{B}(z_0,r)$ cuando r < R y no converge fuera de $\overline{B}(z_0,R)$.

R = 0 cuando la serie sólo converge en z_0 .

 $R = +\infty$ cuando la serie converge para todo $z \in \mathbb{C}$.

El radio de convergencia se puede obtener como:

$$R := sup\{r \geq 0 : \sum_{n=0}^{\infty} |a_n| r^n < \infty\} = \frac{1}{lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|}}$$

Propiedades de las Series de Potencias

- $S'(z) = \sum_{n=1}^{\infty} na_n(z z_0)^{n-1}$ en $B(z_0, R)$
- Si R > 0, entonces S(z) es analítica en $B(z_0, R)$
- Si C es un contorno en $B(z_0, R)$ y g(z) es continua en C:

$$\int_C g(z)S(z)dz = \sum_{n=0}^\infty a_n \int_C g(z)(z-z_0)^n dz$$

en particular:

$$\int_{C} S(z) dz = \sum_{n=0}^{\infty} a_n \int_{C} (z - z_0)^n dz$$

• Producto de Cauchy: Si $S_1(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n$ y $S_2(z) = \sum_{n=0}^{\infty} b_n (z-z_0)^n$ convergen en $B(z_0, R)$ entonces

$$S_1(z)S_2(z) = \sum_{n=0}^{\infty} c_n(z-z_0)^n$$
, donde $c_n = \sum_{k=0}^{n} a_n b_{n-k}$

Serie de Taylor

Teorema

Sea f una función analítica en $B(z_0, R)$, entonces f admite representción en serie de potencias en $B(z_0, R)$:

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$
 para $|z - z_0| < R$.

donde

$$a_n = \frac{f(n)(z_0)}{n!}$$
 para $n = 0, 1, 2, ...$

Demostración:

Este es el desarrollo de f en serie de Taylor alrededor de z_0

$$f(z) = f(z_0) + \frac{f'(z_0)}{1!}(z - z_0) + \frac{f''(z_0)}{2!}(z - z_0)^2 + \dots$$

7 / 15

Ejemplos:

- $f(z) = e^z$; $z_0 = 0$
- $f(z) = sen(z); z_0 = 0$
- $f(z) = \frac{1}{1-z}$; $z_0 = 0$
- $f(z) = \frac{1}{z}$; $z_0 = 1$

Teorema (Unicidad de la Serie de Taylor)

Si una serie

$$\sum_{n=0}^{\infty} a_n (z-z_0)^n$$

converge a f(z) en todo punto interior a un círculo $|z-z_0| < R$, entonces es la serie de Taylor de f alrededor de z_0 (en potencias de $z-z_0$).

Serie de Laurent

Teorema

Sea f una función analítica en $A = \{z \in \mathbb{C} : R_1 < |z - z_0| < R_2\}$, y sea C cualquier entorno cerrado simple orientado positivamente, dentro del anillo A, rodeando z_0 . Entonces f(z) admite representación en serie:

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n}$$
 (1)

para $R_1 < |z - z_0| < R_2$ donde:

$$a_n = \frac{1}{2\pi i} \int_C \frac{f(z)}{(z-z_0)^{n+1}} dz$$
 $n = 0, 1, 2, ...$

$$b_n = \frac{1}{2\pi i} \int_C \frac{f(z)}{(z-z_0)^{-n+1}} dz$$
 $n = 1, 2, ...$

Desarrollando la serie:

$$f(z) = a_0 + a_1(z - z_0) + a_2(z - z_0)^2 + \dots + \frac{b_1}{(z - z_0)} + \frac{b_2}{(z - z_0)^2} + \dots$$

El desarrollo (1) de *f* se puede escribir como:

$$f(z) = \sum_{n=-\infty}^{\infty} c_n (z - z_0)^n$$
 (2)

donde

$$c_n = \frac{1}{2\pi i} \int_C \frac{f(z)}{(z-z_0)^{n+1}} dz$$
 $n = 0, \pm 1, \pm 2, ...$

Tanto a la serie (1) como a la (2) se la llaman Serie de Laurent

Observar!!
$$b_1 = c_{-1} = \frac{1}{2\pi i} \int_C f(z) dz \Rightarrow \int_C f(z) dz = (2\pi i) b_1$$

Ejemplos

Determina la región y encuentra los desarrollos en serie de las siguientes funciones alrededor de $z_0 = 0$

1
$$f(z) = e^{1/z}$$

$$f(z) = \frac{1}{z}$$

calcular
$$\int_C \frac{1}{z^n}$$
 para $n = 0, \pm 1, \pm 2, ...$

$$n = 0, \pm 1, \pm 2, ...$$

3
$$f(z) = \frac{-1}{(z-1)(z-2)} = \frac{1}{(z-1)} - \frac{1}{(z-2)}$$

Teorema (Unicidad de la Serie de Laurent)

Si una serie

$$\sum_{n=-\infty}^{\infty} c_n (z-z_0)^n = \sum_{n=0}^{\infty} a_n (z-z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z-z_0)^n}$$

converge a f(z) en todo punto del anillo $R_1 < |z - z_0| < R_2$, entonces es la serie de Laurent de f en potencias de $z-z_0$.

Residuos

 z_0 es un punto sigular aislado de f si f es analítica en el entorno reducido $0<|z-z_0|<\epsilon$

En este caso f tiene representación en serie de Laurent

$$f(z) = a_0 + a_1(z - z_0) + a_2(z - z_0)^2 + \dots + \frac{b_1}{(z - z_0)} + \frac{b_2}{(z - z_0)^2} + \dots$$

donde

$$\int_C f(z)dz = (2\pi i)b_1$$

 b_1 se llama residuo de f en el punto singular aislado z_0 y se denota

$$b_1 := \operatorname{Res}(f, z_0)$$

Ejemplo: Calcula $\int_C \frac{e^{-z}}{(z-1)^2} dz$ sobre el círculo |z|=2

Teorema (Teorema de los residuos)

Si C es un contorno cerrado simple orientado positivamente y la función f es analítica sobre y dentro de C excepto en un número finito de puntos singulares z_k , k=1,2,...,n interiores a C, entonces

$$\int_C f(z)dz = 2\pi i \sum_{k=1}^n Res(f, z_k)$$

Ejemplo: Calcula $\int_C \frac{5z-2}{z(z-1)} dz$ sobre el círculo |z|=2

Bibliografía

Churchill, Ruel V. y Brown, James W. Variable Compleja y Aplicaciones, 5ta Ed, McGrawHill, 1992.

GRACIAS POR SU ATENCIÓN!!

