FIELD OF THE INVENTION

The present invention is related to nucleoside analogs for treating cancer, in particular dioxolane nucleoside analogs.

BACKGROUND OF THE INVENTION

Neoplastic diseases, characterized by the proliferation of cells not subject to the normal control of cell growth, are a major cause of death in humans. In the United States only, a total of over about 1 million new cancer cases occurred for the year of 1995 (CA, Cancer J. Clin.,

1995:45:8:30) cancer deaths in the United States for 1995

1995:45:8:30) cancer deaths in the United States for 1995 was more than about 500,000.

The usefulness of known cytotoxic agents is compromised by dose limiting toxicities such as myelosuppression as well as the resistance of treated tumors. In view of the proven effectiveness of chemotherapy in the treatment of responsive tumors, efforts have been undertaken to develop novel compounds with either an improved therapeutic index or with reduced cross-resistance.

Antimetabolites, such as nucleoside analogs, have been used in anticancer treatment regimens. Some of the more commonly used analogs include gemcitabine (dFdC),

5 5-fluorouracil (5-FU), cytosine arabinoside (Ara-C, cytarabine), 6-thioguanine (TG) and 6-mercaptopurine (MP). This class of compounds is generally toxic to adult tissues that retain a high rate of cell proliferation: bone marrow, intestinal mucosa, hair follicles and gonads.

5-FU is used most commonly in breast and gastrointestinal cancer patients. Major side effects associated with 5-FU administration include bone marrow and mucous membrane toxicities; and minor side effects include skin rashes, conjunctivitis and ataxia. Ara-C, used in the treatment of acute myelocytic leukemia, may cause myelosuppression and gastrointestinal toxicity. TG and MP, used primarily in leukemia patients and rarely in solid tumors, are associated with toxicities similar to that of Ara-C.

 β -D-ddC has been investigated by Scanlon et al. in circumvention of human tumor drug resistance (WO 91/07180). Human leukemia cells resistant to cisplatin have shown enhanced sensitivity to β -D-ddC. However,

 β -D-ddC has been linked to the development of peripheral neuropathy (Yarchoan, et al, Lancet, i:76, 1988) and therefore exhibits in vivo toxicity.

More recently, β -L-Dioxolane cytidine (troxacitabine) was reported to demonstrate anticancer activity (Grove et al. Cancer Research 55, 3008-3011, July 15 1995).

20

10

20

25

There is therefore a need for anticancer agents that are easy to synthesize and display an improved therapeutic index and efficacy against refractory tumors.

It is known that gemcitabine and cytarabine enter cancer

10 SUMMARY OF THE INVENTION

cells by nucleoside or nucleobase transporter proteins.

Mackey et al., supra; White et al. (1987). J. Clin.

Investig. 79, 380-387; Wiley et al. (1982); J. Clin.

Investig. 69, 479-489; and Gati et al. (1997), Blood 90,

346-353. Further, it has been reported that troxacitabine also enters cancer cells by way of nucleoside or nucleobase transporter proteins (NTs). [Grove et al., Cancer Research (56), p. 4187-91 (1996)] However, recent studies show that troxacitabine actually enters cancer cells predominately by the mechanism of passive diffusion, rather than by nucleoside transporters. Cytarabine may also enter cells by passive diffusion, but only during a high-dose therapy regimen.

Also, resistance of cancer cells to treatment by anticancer agents has been linked to a deficiency of nucleoside or nucleobase transporter proteins in the cancer cells. (Mackey et al. (1998), supra; Mackey et al. (1998b). Drug Resistance Updates 1, 310-324; Ullman et

15

5 al. (1988), *J. Biol. Chem.* <u>263</u>, 12391-12396; and references cited above.

Thus, in accordance with the invention, cancer treatments are provided in which the anticancer agents utilized enter cells by mechanisms other than through the use of nucleoside or nucleobase transporter proteins, particularly by passive diffusion. Transport through the cell membrane is facilitated by the presence of lipophilic structures. Thus, in accordance with the invention, entry of anticancer agents into cancer cells by passive diffusion is enhanced by providing the agents with lipophilic structures.

Further, in accordance with the invention, patients with

20 cancers resistant to agents that are transported by

nucleoside or nucleobase transporter proteins can be

treated with anticancer agents that enter the cells

predominately by passive diffusion.

25 Further, in accordance with the invention, patients with cancers resistant to agents that are transported by nucleoside or nucleobase transporter proteins can be treated with dosages of anticancer agents that increase the entry into the cells by passive diffusion.

In accordance with one aspect of the invention, there is 5 provided a method of treating a patient having a cancer which is resistant to gemcitabine, cytarabine, or both, by administering an anticancer agent that enters the cell predominately by a mechanism other than via nucleoside or nucleobase transporter proteins, particularly by passive 10 diffusion. In the context of the invention, predominately means that the agent enters the cell by the specified mechanism to a greater degree than any one of the other individual transport mechanisms does.

15

20

In accordance with another aspect of the invention, there is provided a method of treating a patient having a cancer in which the cancer cells are deficient in nucleoside or nucleobase transporter proteins by administering an anticancer agent that enters the cell predominately by a mechanism other than via nucleoside or nucleobase transporter proteins, particularly that enter the cells predominately by passive diffusion.

25

In accordance with another aspect of the invention, there is provided a method of treating a patient having a cancer which is resistant to gemcitabine, cytarabine, and/or troxacitabine, by administering to the patient an anticancer agent, for example, a gemcitabine, cytarabine 30 or troxacitabine derivative, that possesses a lipophilic structure to facilitate entry thereof into the cancer

20

5 cells, particularly by passive diffusion. In accordance with another aspect of the invention, there is provided a method of treating a patient having a cancer, which is resistant to troxacitabine because of poor uptake, by administering an anticancer agent, for example, a troxacitabine derivative, which has a greater

10 troxacitabine derivative, which has a greater lipophilicity than troxacitabine.

According to a further aspect of the invention, there is provided a method for treating a patient having a cancer that is resistant to gemcitabine and/or cytarabine comprising administering to said patient a dioxolane nucleoside compound of the following formula (I):

$$R_1O$$
 N_1
 N_2
 N_2
 N_3
 N_4
 N_2
 N_4
 N_4

wherein:

 R_1 is H; C_{1-24} alkyl; C_{2-24} alkenyl; C_{6-24} aryl; C_{6-24} -aryl- C_{1-24} -alkyl; C_{6-24} -aryl- C_{2-24} trityl; C_{5-20} heteroaromatic alkenyl; C_{3-20} non-aromatic ring optionally containing 1-3 25 heteroatoms selected from the group comprising O, N, or S; $-C(0)R_6$; $-C(0)OR_6$; $-C(0)NHR_6$; or an amino acid radical or a dipeptide or tripeptide chain or mimetic thereof, wherein the amino acid 30 radicals are selected from the group comprising Glu, Gly, Ala, Val, Leu, Ile, Pro, Phe, Tyr,

15

20

25

Trp, Ser, Thr, Cys, Met, Asn and Gln (the amino acid chain preferably contains at least one amino acid other than Gly), and which in each case is optionally terminated by -R₇;

R₁ can also be a P(O)(OR')₂ group wherein R' is in each case independently H, C_{1-24} alkyl, C_{2-24} alkenyl, C_{6-24} aryl, C_{7-18} arylmethyl, C_{2-18} acyloxymethyl, C_{3-8} alkoxycarbonyloxymethyl, or C_{3-8} S-acyl-2-thioethyl, saleginyl, t-butyl, phosphate or diphosphate;

 R_1 can also be monophosphate, diphosphate, triphosphate or mimetics thereof;

 R_2 is

 R_{5} R_{5} R_{5}

R₃ and R₄ are in each case independently H; C_{1-24} alkyl; $C_{2-24} \text{ alkenyl; } C_{6-24} \text{ aryl; } C_{6-24}\text{-aryl-}C_{1-24}\text{-alkyl; } C_{6-24}\text{-aryl-}C_{2-24}\text{-alkenyl; } C_{5-18} \text{ heteroaromatic ring;}$

10

15

20

25

 C_{3-20} non-aromatic ring optionally containing 1-3 heteroatoms selected from the group comprising O, N, or S; $-C(O)R_6$; $-C(O)OR_6$; $-C(O)NHR_6$ or an amino acid radical or a dipeptide or tripeptide chain or mimetics thereof, wherein the amino acids radicals are selected from the group comprising Glu, Gly, Ala, Val, Leu, Ile, Pro, Phe, Tyr, Trp, Ser, Thr, Cys, Met, Asn and Gln (the amino acid chain preferably contains at least one amino acid other than Gly), and which in each case is optionally terminated by $-R_7$;

 R_3 and R_4 together can also be =CH-N(C_{1-4} -alkyl)₂; R_6 is, in each case, H, C_{1-24} alkyl, C_{2-24} alkenyl, C_{0-24} alkyl- C_{6-24} aryl, C_{6-24} -aryl- C_{1-24} -alkyl; C_{6-24} -aryl- C_{2-24} -alkenyl; C_{0-24} alkyl- C_{5-20} heteroaromatic ring, C_{3-20} non-aromatic ring optionally containing 1-3 heteroatoms selected from the group comprising O, N or S;

 R_7 is, in each case, C_{1-24} alkyl, C_{2-24} alkenyl, C_{6-24} aryl, C_{6-24} -aryl- C_{1-24} -alkyl; C_{6-24} -aryl- C_{2-24} -alkenyl; C_{5-20} heteroaromatic ring, C_{3-20} non-aromatic ring optionally containing 1-3 heteroatoms selected from the group comprising O, N or S, $-C(0)R_6$ or $-C(0)OR_6$; and

X and Y are each independently Br, Cl, I, F, OH, OR_3 or NR_3R_4 and at least one of X and Y is NR_3R_4 ; or a pharmaceutically acceptable salt thereof.

20

25

30

According to a further aspect of the invention, there is provided a method for treating a patient having a cancer that is resistant to gemcitabine, cytarabine and/or troxacitabine comprising administering to the patient a compound according to formula (I) wherein at least one of R_1 , R_3 and R_4 is other than H, and if R_3 and R_4 are both H and R_1 is $-C(0)R_6$ or $-C(0)OR_6$, then R_6 is other than H.

According to a further aspect of the invention, there is provided a method of treating a patient with cancer, wherein the cancer cells are deficient in one or more nucleoside or nucleobase transporter proteins, comprising administering to the patient a compound according to formula (I). According to a further aspect of invention, there is provided a method for treating a cancer, wherein the patient with cancer cells nucleoside nucleobase deficient in or transporter proteins, comprising administering to the patient compound according to formula (I), wherein at least one of R_1 , R_3 and R_4 is other than H, and if R_3 and R_4 are both H and R_1 is $-C(0)R_6$ or $-C(0)OR_6$, then R_6 is other than H.

In accordance with another aspect of the invention, there is provided a method for treating a patient with cancer, comprising determining that a compound enters cancer cells predominately by passive diffusion, and administering the compound to the patient, wherein the compound is a

5 compound according to the formula (I). In accordance with another aspect of the invention, there is provided a method for treating a patient with cancer, comprising administering to the patient a compound which has been determined to enter cancer cells predominately by passive 10 diffusion, wherein the compound is in accordance with formula (I). In accordance with a further aspect of the invention, there is provided a method of treating a patient with cancer, comprising determining that a compound does not enter cancer cells predominately by 15 nucleoside or nucleobase transporter proteins, and administering the compound to the patient, wherein the compound is a compound according to the formula (I).

In accordance with an additional aspect of the invention
there are provided anticancer compounds having lipophilic
structures, wherein the compounds are of the following
formula (I'):

$$R_1O$$
 R_2
 O
 (I')

25

wherein:

R₁ is H; C_{1-24} alkyl; C_{2-24} alkenyl; C_{6-24} aryl; trityl; C_{6-24} -aryl- C_{1-24} -alkyl; C_{6-24} -aryl- C_{2-24} -alkenyl; C_{5-20} heteroaromatic ring; C_{3-20} non-aromatic ring optionally containing 1-3

Carl Train and the second train that the second card train that the second card train trai

125 .71

[#] 124

heteroatoms selected from the group comprising O, N, or S; $-C(0)R_6$; $-C(0)OR_6$; $-C(0)NHR_6$; or an amino acid radical or a dipeptide or tripeptide chain or mimetic thereof, wherein the amino acid radicals are selected from the group comprising Glu, Gly, Ala, Val, Leu, Ile, Pro, Phe, Tyr, Trp, Ser, Thr, Cys, Met, Asn and Gln (the amino acid chain preferably contains at least amino acid other than Gly), and which in each case is optionally terminated by $-R_7$;

 R_1 can also be a $P(O)(OR')_2$ group wherein R' is in each case independently H, C_{1-24} alkyl, C_{2-24} aryl, C_{7-18} arylmethyl, C_{2-18} alkenyl, C₆₋₂₄ acyloxymethyl, C_{3-8} alkoxycarbonyloxymethyl, or S-acyl-2-thioethyl, saleginyl, phosphate or diphosphate;

 R_1 also be monophosphate, diphosphate, triphosphate or mimetics thereof;

 R_2 is

$$NR_3R_4$$
 R_5

15

 R_3 and R_4 are in each case independently H; C_{1-24} alkyl; C_{2-24} alkenyl; C_{6-24} aryl; C_{6-24} -aryl- C_{1-24} -alkyl; C_{6-24} -aryl- C_{2-24} -alkenyl; C_{5-18} heteroaromatic ring; C_{3-20} non-aromatic ring optionally containing 1-3 heteroatoms selected from the group comprising O, N, or S; $-C(O)R_6$; $-C(O)OR_6$; $-C(O)NHR_6$ or an amino acid radical or a dipeptide or tripeptide chain or mimetics thereof, wherein the amino acids radicals are selected from the group comprising Glu, Gly, Ala, Val, Leu, Ile, Pro, Phe, Tyr, Trp, Ser, Thr, Cys, Met, Asn and Gln (the amino acid chain preferably contains at least one amino acid other than Gly), and which

20

thus, most first, hr. it

15 | 1 = 4

124

1,77

R₃ and R₄ together can also be =CH-N(C_{1-4} -alkyl)₂;
R₆ is, in each case, H, C_{1-24} alkyl, C_{2-24} alkenyl, C_{0-1}

group comprising O, N or S;

alkyl- C_{6-24} aryl, C_{6-24} -aryl- C_{1-24} -alkyl; C_{6-24} -aryl- C_{2-24} -alkenyl; C_{0-24} alkyl- C_{5-20} heteroaromatic ring, C_{3-20} non-aromatic ring optionally containing 1-3 heteroatoms selected from the

in each case is optionally terminated by $-R_7$;

```
13
 5
                is, in each case, C_{1-24} alkyl, C_{2-24} alkenyl, C_{6-24}
          R_7
                       C_{6-24}-aryl-C_{1-24}-alkyl; C_{6-24}-aryl-C_{2-24}-
                aryl,
                alkenyl;
                             C<sub>5-20</sub>
                                     heteroaromatic
                                                         ring,
                non-aromatic ring optionally containing
                                                                    1 - 3
                heteroatoms selected from the group comprising
10
                O, N or S, -C(0)R_6 or -C(0)OR_6; and
          X and Y are each independently Br, Cl, I, F, OH, OR3
                or NR_3R_4 and at least one of X and Y is NR_3R_4; or
          a pharmaceutically acceptable salt thereof.
          X and Y are each independently Br, Cl, I, F, OH, OR<sub>3</sub>
15
          or NR_3R_4 and at least one of X and Y is NR_3R_4; or
                a pharmaceutically acceptable salt thereof;
                with the proviso that at least one of R_1, R_3 and
                R_4 is
                C_{7-24} alkyl;
20
                C_{7-24} alkenyl;
                C_{6-24} aryl;
                C<sub>5-20</sub> heteroaromatic ring;
                C_{4-20} non-aromatic ring optionally containing 1-3
     heteroatoms selected from the group comprising O, N, or S;
25
                -C(O)R_6 in which R_6 is , C_{7-24} alkyl, C_{7-24} alkenyl,
```

 $-C(0)\,R_6 \; \text{in which} \; R_6 \; \text{is} \; , \; C_{7\text{-}24} \; \text{alkyl}, \; C_{7\text{-}24} \; \text{alkenyl}, \\ C_{0\text{-}24} \; \text{alkyl-} C_{6\text{-}24} \; \text{aryl}, \; C_{6\text{-}24}\text{-aryl-} C_{1\text{-}24}\text{-alkyl}; \; C_{6\text{-}24}\text{-aryl-} C_{2\text{-}24}\text{-alkyl}; \\ C_{0\text{-}24} \; \text{alkyl-} C_{5\text{-}20} \; \text{heteroaromatic} \; \text{ring}, \; C_{3\text{-}20} \\ \text{non-aromatic} \; \text{ring} \; \text{optionally} \; \text{containing} \; 1\text{--}3 \; \text{heteroatoms} \\ \text{selected from the group comprising O, N or S};$

30 -C(0)OR₆ in which R₆ is C_{7-24} alkyl, C_{7-24} alkenyl, C_{0-24} alkyl- C_{6-24} aryl, C_{6-24} -aryl- C_{1-24} -alkyl; C_{6-24} -aryl- C_{2-24} -

5 alkenyl; C_{0-24} alkyl- C_{5-20} heteroaromatic ring, C_{3-20} non-aromatic ring optionally containing 1-3 heteroatoms selected from the group comprising O, N or S; or

a dipeptide or tripeptide or mimetic thereof where the amino acid radicals are selected from the group comprising Glu, Gly, Ala, Val, Leu, Ile, Pro, Phe, Tyr, Trp, Ser, Thr, Cys, Met, Asn and Gln (and the amino acid chain preferably contains at least one amino acid other than Gly), and which is optionally terminated by $-R_7$.

In an embodiment of the present invention, the R₆ group is connected to the rest of the molecule at a tertiary or quaternary carbon. A tertiary carbon is defined as a carbon atom which has only one hydrogen atom directly attached to it. A quaternary carbon is defined as a carbon atom with no hydrogen atoms attached to it.

In an alternate embodiment of the present invention, the R_6 group is selected as to provide steric hindrance in the vicinity of the carbonyl group.

25

Upon further study of the specification and claims, further aspects and advantages of the invention will become apparent to those skilled in the art.

30 As mentioned above, recent studies have shown that troxacitabine, a L-nucleoside analog, enters cancer cells

predominately by passive diffusion, rather 5 than nucleoside or nucleobase transporter proteins. While this invention is not intended to be limited by any theoretical explanation, it is believed that this property of troxacitabine is at least in part attributed to the dioxolane structure. Further, due to its L-configuration, 10 troxacitabine is a poor substrate for deoxycytidine deaminase. (Grove et al. (1995), Cancer Res. 55, 3008-3011) Formula (I) encompasses compounds which are nucleoside analogs having a dioxolane structure and which 15 exhibit the L-configuration. In addition, formula (I) encompasses compounds which exhibit lipophilic structure. In the case of compounds encompassed by formula (I), the lipophilic structures are provided through modification of the hydroxymethyl structure of the 20 dioxolane sugar moiety and/or modification of amino groups of the base moiety.

In the compounds of formula (I), preferably at least one of R^1 , R^3 and R^4 provides a lipophilic structure. Thus, preferably at least one of R^1 , R^3 and R^4 is other than H and, if R^3 and R^4 are each H and R^1 is $C(0)R^6$, $C(0)OR^6$ or $C(0)NHR^6$ then R^6 is other than H.

 R^2 is preferably a cytosine base structure, as in the case of troxacitabine. In particular, R^2 is preferably

15 The following are examples of compounds in accordance with the invention:

COMPOUND #1

25

The first that the first that the

Ţ

100

30

COMPOUND #2

40

COMPOUND #3

45

HS NH 3 CI (4)

10 COMPOUND #5

COMPOUND #6

COMPOUND #7

20

H₃C SH O O O N N H 3
O C (8)

10

COMPOUND #9

15 COMPOUND #10

COMPOUND #11

20

COMPOUND #13

10

COMPOUND #14

15

COMPOUND #15

COMPOUND #17

COMPOUND #18

COMPOUND #19

COMPOUND #20

COMPOUND #22

15

NH₂ Chiral

COMPOUND #24

5

COMPOUND #25

15 COMPOUND #28

COMPOUND #30

10

15 COMPOUND #31

10

COMPOUND #33

COMPOUND #34

COMPOUND #36

15

10

5 The following compounds 38 to 281 are also compounds in accordance with the invention:

No. Name
38 4-AMINO-1-(2DIMETHOXYMETHOXYMETHYL[1,3]DIOXOLAN-4-YL)-1HPYRIMIDIN-2-ONE

39 4-AMINO-1-(2-DIETHOXYMETHOXYMETHYL-[1,3]DIOXOLAN-4-YL)-1H-PYRIMIDIN-2-ONE

40 4-AMINO-1-[2- · ([1,3]DIOXOLAN-2-YLOXYMETHYL)-[1,3]DIOXOLAN-4-YL]-1H-PYRIMIDIN-2-ONE

41 4-AMINO-1-[2-(TETRAHYDRO-PYRAN-2-YLOXYMETHYL)-[1,3]DIOXOLAN-4-YL]-1H-PYRIMIDIN-2-ONE

42 CARBONIC ACID 4-(4-AMINO-2-OXO-2H-PYRIMIDIN-1-YL)[1,3]DIOXOLAN-2-YLMETHYL ESTER PHENYLESTER

H₃C NH₂

NH₂Chiral

No.

Name

43 CARBONIC ACID 4-(2-0X0-4-PHENOXYCARBONYLAMINO-2H-PYRIMIDIN-1-YL)-[1,3]DIOXOLAN-2-YLMETHYL ESTER PHENYL ESTER Structure

Chiral

44 [1-(2-HYDROXYMETHYL-[1,3]DIOXOLAN-4-YL)-2-OXO-1,2-DIHYDRO-PYRIMIDIN-4-YL]-CARBAMIC ACID PHENYL ESTER

45 [1-(2-HYDROXYMETHYL[1,3]DIOXOLAN-4-YL)-2OXO-1,2-DIHYDROPYRIMIDIN-4-YL]CARBAMIC ACID ETHYL
ESTER

46 CARBONIC ACID 4-(4-AMINO-2-OXO-2H-PYRIMIDIN-1-YL)[1,3]DIOXOLAN-2-YLMETHYL ESTER ETHYLESTER

47 CARBONIC ACID 4-(4-ETHOXYCARBONYLAMINO-2-OXO-2H-PYRIMIDIN-1-YL)-[1,3]DIOXOLAN-2-YLMETHYL ESTER ETHYL ESTER

- 48 BUTYL-CARBAMIC ACID 4-(4-AMINO-2-OXO-2H-PYRIMIDIN-1-YL)-[1,3]DIOXOLAN-2-YLMETHYL ESTER
- 49 N-[1-(2-HYDROXYMETHYL-[1,3]DIOXOLAN-4-YL)-CYTOSYL]-2,2-DIMETHYL-PROPIONAMIDE
- 50 [1-(2-HYDROXYMETHYL-[1,3]DIOXOLAN-4-YL)-CYTOSYL]-CARBAMIC ACID BENZYL ESTER
- 51 4-(4-BENZYLOXYCARBONYLAMINOC YTOSYL)-[1,3]DIOXOLAN-2-YLMETHYL BENZYL CARBONATE
- 52 (2S,4S)-2-PHENYLACETOXYMETHYL-4-CYTOSIN-1'-YL-1,3-DIOXOLANE

Structure

Chiral

53 4-AMINO-1-(2-TRITYLOXYMETHYL-[1,3]DIOXOLAN-4-YL)-1H-PYRIMIDIN-2-ONE

54 4-AMINO-1-[2-(1-METHOXY-1-METHYL-ETHOXYMETHYL)-[1,3]DIOXOLAN-4-YL]-1H-PYRIMIDIN-2-ONE

55 OCTANOIC ACID [1-(2-HYDROXYMETHYL-[1,3]DIOXOLAN-4-YL)-2-OXO-1,2-DIHYDRO-PYRIMIDIN-4-YL]-AMIDE

56 4-AMINO-1-(2-BENZYLOXYMETHOXYMETHYL-[1,3]DIOXOLAN-4-YL)-1H-PYRIMIDIN-2-ONE

57 CARBONIC ACID 4-(4-AMINO-2-OXO-2H-PYRIMIDIN-1-YL)[1,3]DIOXOLAN-2-YLMETHYL ESTER BENZYLESTER

- 58 2,2-DIMETHYL-PROPIONIC
 ACID 4-(4-AMINO-2-OXO2H-PYRIMIDIN-1-YL)[1,3]DIOXOLAN-2YLMETHOXYMETHYL ESTER
- 59 [1-(2-HYDROXYMETHYL-[1,3]DIOXOLAN-4-YL)-2-OXO-1,2-DIHYDRO-PYRIMIDIN-4-YL]-CARBAMIC ACID BUTYL ESTER
- 60 (2S,4S)--2-HYDROXYMETHYL-4-N-[2''-(2'''-NITROPHENYL)-2''-METHYLPROPIONYL]-CYTOSINE-1'-YL-1,3-DIOXOLANE
- [1-(2-HYDROXYMETHYL-[1,3]DIOXOLAN-4-YL)-2-OXO-1,2-DIHYDRO-PYRIMIDIN-4-YL]-CARBAMIC ACID HEXYL ESTER
- 62 4-AMINO-1-[2-(2-METHOXY-ETHOXYMETHOXYMETHYL)-[1,3]DIOXOLAN-4-YL]-1H-PYRIMIDIN-2-ONE

Structure

- 63 CARBONIC ACID 4-[4-(4-METHOXY-PHENOXYCARBONYLAMINO)-2-OXO-2H-PYRIMIDIN-1-YL]-[1,3]DIOXOLAN-2-YLMETHYL ESTER 4-METHOXY-PHENYL ESTER
- 64 (2S,4S)-2-(2''-METHYL-HEXANOICOXYMETHYL)-4-(4'-NN-DIMETHYLAMINOMETHYLENE-CYTOSIN-1'-YL)-1,3-DIOXOLANE
- 65 (2S,4S)-2-(2''-ETHYLHEXANOICOXYMETHYL)-4(4'-N,NDIMETHYLAMINOMETHYLENECYTOSIN-1'-YL)-1,3DIOXOLANE
- 66 6-(Benzyl-tert-butoxycarbonyl-amino)-hexanoic acid 4-(4-amino-2-oxo-2H-pyrimidin-1-yl)[1,3]dioxolan-2-ylmethyl ester
- 67 CARBONIC ACID 4-(4AMINO-2-OXO-2HPYRIMIDIN-1-YL)[1,3]DIOXOLAN-2YLMETHYL ESTER
 ISOPROPYL ESTER
 TRIFLUOROACETATE SALT

Structure

No. Name
68 CARBONIC ACID 4-(4AMINO-2-OXO-2HPYRIMIDIN-1-YL)[1,3]DIOXOLAN-2YLMETHOXYMETHYL ESTER
ISOPROPYL ESTER
TRIFLUOROACETIC ACID
SALT

69 (2S,4S)-2-(2''METHYLPHENYLACETOXY)MET
HYL-4-CYTOSIN-1'-YL1,3-DIOXOLANE

70 (2S,4S)-2-(2''METHYLPHENYLACETOXY) MET
HYL-4-(4'-N,NDIMETHYLAMINOMETHYLENECYTOSIN-1'-YL)-1,3DIOXOLANE

71 [1-(2-HYDROXYMETHYL-[1,3]DIOXOLAN-4-YL)-2-OXO-1,2-DIHYDRO-PYRIMIDIN-4-YL]-CARBAMIC ACID PENTYL ESTER

72 (2S,4S)-2-(2''DIMETHYLHEXANOICOXYMETH
YL)-4-(4'-N,NDIMETHYLAMINOMETHYLENECYTOSIN-1'-YL)-1,3DIOXOLANE

CH₃

CH₃
N-CH₃

HO N O CH₃

No.

Name

- 73 [1-(2-HYDROXYMETHYL[1,3]DIOXOLAN-4-YL)-2OXO-1,2-DIHYDROPYRIMIDIN-4-YL]CARBAMIC ACID 4METHOXY-PHENYL ESTER
- 74 1-(2-ALLYLOXYMETHYL-[1,3]DIOXOLAN-4-YL)-4-AMINO-1H-PYRIMIDIN-2-ONE
- 75 4-AMINO-1-(2(S)-ETHOXYMETHYL-[1,3]DIOXOLAN-4(S)-YL)-1H-PYRIMIDIN-2-ONE
- 76 N-[1-(2(S)-D-RIBOSYLOXYMETHYL-[1,3]DIOXOLAN-4-YL)-2-OXO-1,2-DIHYDRO-PYRIMIDIN-4-YL]-ACETAMIDE
- 77 Benzyl-{5-[1-(2-hydroxymethyl[1,3]dioxolan-4-yl)-2-oxo-1,2-dihydropyrimidin-4ylcarbamoyl]-pentyl}carbamic acid tertbutyl ester

Structure

No.

Name

78 6-(Benzyl-tert-butoxycarbònyl-amino)-hexanoic acid 4-{4-[6-(benzyl-tert-butoxycarbonyl-amino)-hexanoylamino]-2-oxo-2H-pyrimidin-1-yl}-[1,3]dioxolan-2-ylmethyl ester

- 79 2,2,2-TRICHLOROACETIMIDIC ACID 4-(4AMINO-2-OXO-2HPYRIMIDIN-1-YL)[1,3]DIOXOLAN-2YLMETHYL ESTER
- 80 PENTANEDIOIC ACID 4-[4-(4-METHOXYCARBONYL-BUTYRYLAMINO)-2-OXO-2#H!-PYRIMIDIN-1-YL]-[1,3]DIOXOLAN-2-YLMETHYL ESTER METHYL ESTER
- 81 4-[1-(2-HYDROXYMETHYL-[1,3]DIOXOLAN-4-YL)-2-OXO-1,2-DIHYDRO-PYRIMIDIN-4-YLCARBAMOYL]-BUTYRIC ACID METHYL ESTER
- 82 PENTANEDIOIC ACID 4-(4-AMINO-2-OXO-2#H!-PYRIMIDIN-1-YL)-[1,3]DIOXOLAN-2-YLMETHYL ESTER METHYL ESTER

Structure

83 6-Benzylamino-hexanoic acid 4-(4-amino-2-oxo-2H-pyrimidin-1-yl)[1,3]dioxolan-2-ylmethyl ester bis trifluoroacetate salt

ylmethyl ester

4-AMINO-1-[2-(3,4-DIHYDROXY-5-HYDROXYMETHYL-TETRAHYDROFURAN-2-YLOXYMETHYL)-[1,3]DIOXOLAN-4-YL]-1HPYIMIDIN-2-ONE,TRIFLUOROACETIC ACIDSALT

86 (2S,4S)-2-(2"-METHYL-HEXANOICOXYMETHYL)-4-CYTOSIN-1'-YL-1,3-DIOXOLANE HYDROCHLORIDE

87 (2S,4S)-2-(2",6"DIMETHYLBENZOYLOXYMETHY
L)-4-(4'-N,NDIMETHYLAMINOMETHLYENECYTOSIN-1'-YL)-1,3DIOXOLANE

No. Name

88 1-[2-(4-NITROPHENOXYCARBONYLOXYMETHY
L)-[1,3]DIOXOLAN-4-YL]2-OXO-1,2-DIHYDROPYRIMIDIN-4-YLAMMONIUM; CHLORIDE

Structure

Chiral

NH; CI

89 1-(2-HYDROXYMETHYL-[1,3]DIOXOLAN-4-YL)-4-(3-CINNAMYL)-1H-PYRIMIDIN-2-ONE TRIFLUORO-ACETATE SALT

90 4-AMINO-1-[2-(3-CINNAMYLOXYMETHYL)-[1,3]DIOXOLAN-4-YL]-1H-PYRIMIDIN-2-ONE TRIFLUOROACETATE SALT

91 4-AMINO-1-[2-(1-ETHOXY-ETHOXYMETHYL)[1,3]DIOXOLAN-4-YL]-1H-PYRIMIDIN-2-ONE

92 4-AMINO-1-[2-(1-CYCLOHEXYLOXY-ETHOXYMETHYL)-[1,3]DIOXOLAN-4-YL]-1H-PYRIMIDIN-2-ONE F OH NH2 Chiral

$$H_3C \longrightarrow CH_3$$

No. Name
93 1-(2'(S)-ETHOXYMETHYL[1,3]DIOXOLAN-4'(S)YL)-4-ETHYLAMINO-1HPYRIMIDIN-2-ONE

Structure

Chiral

94 [1-(2-Hydroxymethyl-[1,3]dioxolan-4-yl)-2oxo-1,2-dihydropyrimidin-4-yl]carbamic acid 2isopropyl-5-methylcyclohexyl ester HO NO NO CH₃

95 Carbonic acid 4-(4amino-2-oxo-2#H!pyrimidin-1-yl)[1,3]dioxolan-2ylmethyl ester 2isopropyl-5-methylcyclohexyl ester

H₃C CH₃

96 2-METHYL-HEXANOIC ACID [1-(2-HYDROXYMETHYL-[1,3]DIOXOLAN-4-YL)-2-OXO-1,2-DIHYDRO-PYRIMIDIN-4-YL]-AMIDE

Chiral CH₃

97 4-AMINO-1-[2-(1-BUTOXY-ETHOXYMETHYL)[1,3]DIOXOLAN-4-YL]-1HPYRIMIDIN-2-ONE

$$H_3C$$
 CH_3
 N
 N
 N
 N
 N
 N
 N

No. (2S, 4S) 4-AMINO-1-(2-98 BENZYLOXYMETHYL-[1,3] DIOXOLAN-4-YL)-1H-PYRIMIDIN-2-ONE

99 2-ETHYL-HEXANOIC ACID [1-(2-HYDROXYMETHYL-[1,3] DIOXOLAN-4-YL)-2-OXO-1,2-DIHYDRO-PYRIMIDIN-4-YL]-AMIDE

100 2,4,6-Triisopropylbenzoic acid 4-(4amino-2-oxo-2Hpyrimidin-1-yl)-[1,3]dioxolan-2ylmethyl ester

101 ADAMANTANE-1-CARBOXYLIC ACID 4-(4-BENZYLOXYCARBONYLAMINO-2-OXO-2H-PYRIMIDIN-1-YL) - [1, 3] DIOXOLAN-2-YLMETHYL ESTER

102 ADAMANTANE-1-CARBOXYLIC ACID 4-{4-[(ADAMANTANE-1-CARBONYL)-AMINO]-2-OXO-2H-PYRIMIDIN-1-YL}-[1,3]DIOXOLAN-2-YLMETHYL ESTER

1,25 Part Nate 4, [(71 14 ij ŧξ 125 laz þ L.Fi ısk No. Name

103 CARBONIC ACID 4-[4-(4-CHLORO-PHENOXYCARBONYLAMINO) -2-OXO-2H-PYRIMIDIN-1-YL]-[1,3]DIOXOLAN-2-YLMETHYL ESTER 4-CHLORO-PHENYL ESTER

- 104 [1-(2-HYDROXYMETHYL-[1,3] DIOXOLAN-4-YL)-2-OXO-1, 2-DIHYDRO-PYRIMIDIN-4-YL]-CARBAMIC ACID 4-CHLORO-PHENYL ESTER TRIFLUOROACETATE SALT
- 105 CARBONIC ACID 4-(4-AMINO-2-OXO-2H-PYRIMIDIN-1-YL) -[1,3]DIOXOLAN-2-YLMETHYL ESTER 4-CHLORO-PHENYL ESTER TRIFLUOROACETATE SALT
- 106 (2S, 4S) -2-(2''-METHYLPHENYLACETOXY) MET HYL-4-(CYTOSIN-1'-YL)-1,3-DIOXOLANE HYDROCHLORIDE
- 107 2,2-DIMETHYLHEXANOIC ACID 4-(4-AMINO-2-OXO-2H-PYRIMIDIN-1-YL)-1,3-DIOXOLAN-2-YLMETHYL ESTER HYDROCHLORIDE

No. Name 108 1-BENZYL-3-[1-(2-

HYDROXYMETHYL-[1,3] DIOXOLAN-4-YL)-2-OXO-1,2-DIHYDRO-

PYRIMIDIN-4-YL]-UREA

109 BENZYL-CARBAMIC ACID 4-[4-(3-BENZYL-UREIDO)-2-OXO-2#H!-PYRIMIDIN-1-YL]-[1,3]DIOXOLAN-2-

YLMETHYL ESTER

110 ADAMANTANE-1-CARBOXYLIC ACID 4-(4-AMINO-2-OXO-2H-PYRIMIDIN-1-YL)-[1,3]DIOXOLAN-2-YLMETHYL ESTER

111 5-(BENZYL-TERT-BUTOXYCARBONYL-AMINO) -PENTANOIC ACID 4-(4-AMINO-2-OXO-2H-PYRIMIDIN-1-YL) -[1,3]DIOXOLAN-2-YLMETHYL ESTER

112 CARBONIC ACID 4(S)-(4'-AMINO-2'-OXO-2H-PYRIMIDIN-1'-YL)-[1,3] DIOXOLAN-2(S)-YLMETHYL ESTER 4-(5",6"-DIMETHOXY-1"-OXO-INDAN-2"-YLIDENEMETHYL) -2,6-DIMETHYL-PHENYL ESTER

Structure

Chiral

Name 113 4-AMINO-1-[2-(1-METHOXY-CYCLOHEXYLOXYMETHYL) -[1,3]DIOXOLAN-4-YL]-1H-PYRIMIDIN-2-ONE

114 5-(BENZYL-TERT-BUTOXYCARBONYL-AMINO) -PENTANOIC ACID 4-{4-[5-(BENZYL-TERT-BUTOXYCARBONYL-AMINO) -PENTANOYLAMINO] -2-OXO-2H!PYRIMIDIN-1-YL}-

> [1,3]DIOXOLAN-2-YLMETHYL ESTER

115 BENZYL-{4-[1-(2-HYDROXYMETHYL-[1,3] DIOXOLAN-4-YL)-2-OXO-1,2-DIHYDRO-PYRIMIDIN-4-YLCARBAMOYL]-BUTYL}-CARBAMIC ACID TERT!-BUTYL ESTER

116 CARBONIC ACID 4-(4-BENZYLOXYCARBONYLAMINO-2-OXO-2H-PYRIMIDIN-1-YL) - [1, 3] DIOXOLAN-2-YLMETHYL ESTER 4-METHOXY-PHENYL ESTER

 $117 \quad 4-AMINO-1-\{2-[1-(1,1-$ DIMETHYL-PROPOXY) -ETHOXYMETHYL] -[1,3] DIOXOLAN-4-YL $\}$ -1H-PYRIMIDIN-2-ONE

Name

118 CARBONIC ACID 4-(4-AMINO-2-OXO-2H-PYRIMIDIN-1-YL)[1,3]DIOXOLAN-2-YLMETHYL ESTER 4-METHOXY-PHENYL ESTER

Structure

H₃C

Chiral

NH₂

119 HEXYL-CARBAMIC ACID 4[4-(3-HEXYL-UREIDO)-2OXO-2#H!-PYRIMIDIN-1YL]-[1,3]DIOXOLAN-2YLMETHYL ESTER

HC Chira

120 1-HEXYL-3-[1-(2-HYDROXYMETHYL-[1,3]DIOXOLAN-4-YL)-2-OXO-1,2-DIHYDRO-PYRIMIDIN-4-YL]-UREA HO Chiral

121 HEXYL-CARBAMIC ACID 4-(4-AMINO-2-OXO-2H-PYRIMIDIN-1-YL)-[1,3]DIOXOLAN-2-YLMETHYL ESTER

122 CARBONIC ACID 4-(4-BENZYLOXYCARBONYLAMINO-2-OXO-2H-PYRIMIDIN-1-YL)-[1,3]DIOXOLAN-2-YLMETHYL ESTER HEXYL ESTER

Name

123 4-AMINO-1-{2-[BIS-(4-METHOXY-PHENYL)-PHENYL-METHOXYMETHYL]-[1,3]DIOXOLAN-4-YL}-1H-PYRIMIDIN-2-ONE 124 {1-[2-(4-ISOPROPYL-PHENYLCARBAMOYLOXYMETHYL)-[1,3]DIOXOLAN-4-YL]-2-OXO-1,2-DIHYDRO-PYRIMIDIN-4-YL}-CARBAMIC ACID BENZYLESTER

125 Benzyl-{5-[1-(2-hydroxymethyl[1,3]dioxolan-4-yl)-2-oxo-1,2-dihydropyrimidin-4ylcarbamoyl]-5-methylhexyl}-carbamic acid
tert-butyl ester

OH N N H₃C N N H₃C O

126 CARBONIC ACID 4-(4-AMINO-2-OXO-2H-PYRIMIDIN-1-YL)[1,3]DIOXOLAN-2-YLMETHYL ESTER HEXYLESTER

H₃C

127 (4-ISOPROPYL-PHENYL) CARBAMIC ACID 4-(4AMINO-2-OXO-2HPYRIMIDIN-1-YL) [1,3]DIOXOLAN-2YLMETHYL ESTER

Name

128 4-AMINO-1-[5-(2-METHYL-4-OXO-4#H!-BENZO[1,3]DIOXIN-2-YLOXYMETHYL)-TETRAHYDRO-FURAN-2-YL]-1#H!-PYRIMIDIN-2-ONE; COMPOUND WITH TRIFLUORO-ACETIC ACID

129 (2S,4S)-2-(1''ADMANTANEACETOXY) METHYL
-4-(4'-N,NDIMETHYLAMINOMETHYLENECYTOSIN-1'-YL)-1,3DIOXOLANE

130 (2S,4S)-2-(2''DIPHENYLACETOXYMETHYL)4-(4'-N,NDIMETHYLAMINOMETHYLENECYTOSIN-1'-YL)-1,3DIOXOLANE

131 (2S,4S)-2-(BENZYLOXYCARBONYL-L-VALINOXYMETHYL)-4-(4'-N,N-DIMETHYLAMINOMETHYLENE-CYTOSIN-1'-YL)-1,3-DIOXOLANE

132 6-(Benzyl-tert-butoxycarbonyl-amino)-2,2-dimethyl-hexanoic acid 4-[4-(dimethylamino-methyleneamino)-2-oxo-2H-pyrimidin-1-yl]-[1,3]dioxolan-2-ylmethyl ester

Structure

CH₃

CH₃

No. Name

- 133 2,2-Dimethyl-propionic acid 4-[4(dimethylaminomethyleneamino)-2-oxo2H-pyrimidin-1-yl][1,3]dioxolan-2ylmethyl ester
- 134 4-AMINO-1-{2-[(4-METHOXY-PHENYL)-DIPHENYL-METHOXYMETHYL]-[1,3]DIOXOLAN-4-YL}-1H-PYRIMIDIN-2-ONE
- 135 DIHEXYLCARBAMIC ACID
 4(S)-(4'-AMINO-2'-OXO2H-PYRIMIDIN-1'-YL)[1,3]DIOXOLAN-2(S)YLMETHYL ESTER
- 136 4-(BENZO[1,3]DITHIOL-2-YLAMINO)-1-(2-HYDROXYMETHYL-[1,3]DIOXOLAN-4-YL)-1H!PYRIMIDIN-2-ONE
- 137 DECYL-CARBAMIC ACID 4-(4-AMINO-2-OXO-2H-PYRIMIDIN-1-YL)-[1,3]DIOXOLAN-2-YLMETHYL ESTER

Name

138 4-AMINO-1-[2-(BENZO[1,3]DITHIOL-2-YLOXYMETHYL)-[1,3]DIOXOLAN-4-YL]-1H-PYRIMIDIN-2-ONE Structure

139 4-AMINO-1-[2-(DIMETHOXY-PHENYL-METHOXYMETHYL)-[1,3]DIOXOLAN-4-YL]-1H-PYRIMIDIN-2-ONE

140 BENZYL-METHYL-CARBAMIC
ACID 4-(4-AMINO-2-OXO-2H-PYRIMIDIN-1-YL)[1,3]DIOXOLAN-2YLMETHYL ESTER

141 4-AMINO-1-[2-(1,1-DIMETHOXY-PENTYLOXYMETHYL)-[1,3]DIOXOLAN-4-YL]-1H-PYRIMIDIN-2-ONE

142 (2S,4S)-2-(2''DIMETHYLPHENYLACETOXY)M
ETHYL-4-(4'-N,NDIMETHYLAMINOMETHYLENECYTOSIN-1,-YL)-1,3DIOXOLANE

Name

143 (2S,4S)-2-(4''-N,N-DIMETHYLAMINOPHENYLACET OXY) METHYL-4-(4'-N,N-DIMETHYLAMINOMETHYLENE-CYTOSIN-1'-YL)-1,3-DIOXOLANE

Structure

CH₃

CH₃

CH₃

144 4-(9-PHENYL-9#H!
XANTHEN-9-YLAMINO)-1
[2-(9-PHENYL-9#H!
XANTHEN-9-YLOXYMETHYL)
[1,3]DIOXOLAN-4-YL]
1#H!-PYRIMIDIN-2-ONE

145 1-(2-HYDROXYMETHYL-[1,3]DIOXOLAN-4-YL)-4-(9-PHENYL-9#H!-XANTHEN-9-YLAMINO)-1#H!-PYRIMIDIN-2-ONE HONN

146 4-AMINO-1-[2-(9-PHENYL-9#H!-XANTHEN-9-YLOXYMETHYL)[1,3]DIOXOLAN-4-YL]1#H!-PYRIMIDIN-2-ONE

O N NH₂

147 THIOCARBONIC ACID O[4(S)-(4'-AMINO-2'-OXO2H-PYRIMIDIN-1'-YL)[1,3]DIOXOLAN-2(S)YLMETHYL] ESTER OPHENYL ESTER

Chiral S NH₂

Name

- 148 Acetic acid 6-acetoxy5-acetoxymethyl-2-[4(4benzyloxycarbonylamino2-oxo-2H-pyrimidin-1yl)-[1,3]dioxolan-2ylmethoxy]-2-methyltetrahydro[1,3]dioxolo[4,5b]pyran-7-yl ester
- 149 6-(Benzyl-tert-butoxycarbonyl-amino)-2-methyl-hexanoic acid 4-[4-(dimethylamino-methyleneamino)-2-oxo-2H-pyrimidin-1-yl]-[1,3]dioxolan-2-ylmethyl ester
- 150 CARBONIC ACID HEXYL
 ESTER 4-(4HEXYLOXYCARBONYLAMINO2-OXO-2H-PYRIMIDIN-1YL)-[1,3]DIOXOLAN-2YLMETHYL ESTER
- 151 Acetic acid 6-acetoxy5-acetoxymethyl-2-[4(4-amino-2-oxo-2Hpyrimidin-1-yl)[1,3]dioxolan-2ylmethoxy]-2-methyltetrahydro[1,3]dioxolo[4,5b]pyran-7-yl ester
- 152 4-[(BENZOTRIAZOL-1-YLMETHYL)-AMINO]-1-(2-HYDROXYMETHYL-[1,3]DIOXOLAN-4-YL)-1H-PYRIMIDIN-2-ONE

No. Name

- 153 BENZOIC ACID 4-(4-BENZYLOXYCARBONYLAMINO-2-OXO-2H-PYRIMIDIN-1-YL)-[1,3]DIOXOLAN-2-YLMETHYL ESTER
- 154 4-AMINO-1-[2-(1-BENZYLOXY-1-METHYL-ETHOXYMETHYL)-[1,3]DIOXOLAN-4-YL]-1H-PYRIMIDIN-2-ONE
- 155 (2S,4S)-2-[2''-(2'''NITROPHENYL)-2"METHYLPROPIONYLOXYMETHY
 L]-4-CYTOSIN-1'-YL-1,3DIOXOLANE
- 156 (2S,4S)-2-(N,N-DIMETHYL-L-VALINYLOXYMETHYL)-4-CYTOSIN-1'-YL-1,3-DIOXOLANE
- 157 (2S,4S)-(3"-DIPHENYL-2"-METHYLPROPIOXYMETHYL)-4-CYTOSIN-1'-YL-1,3-DIOXOLANE

No. Name

158 Benzyl-{5-[1-(2-hydroxymethyl-[1,3]dioxolan-4-yl)-2-oxo-1,2-dihydro-pyrimidin-4-ylcarbamoyl]-hexyl}-carbamic acid tert-butyl ester

159 CARBONIC ACID 4-[4-(4-CHLORO-BUTOXYCARBONYLAMINO)-2-OXO-2H-PYRIMIDIN-1-YL]-[1,3]DIOXOLAN-2-YLMETHYL ESTER 4-CHLORO-BUTYL ESTER

160 [1-(2-HYDROXYMETHYL-[1,3]DIOXOLAN-4-YL)-2-OXO-1,2-DIHYDRO-PYRIMIDIN-4-YL]-CARBAMIC ACID 4-CHLORO-BUTYL ESTER

161 2,6-Dimethyl-benzoic acid 4-(4-amino-2-oxo-2H-pyrimidin-1-yl)[1,3]dioxolan-2-ylmethyl ester

162 1-[2-(2,6-DIMETHYL-BENZOYLOXYMETHYL)[1,3]DIOXOLAN-4-YL]-2OXO-1,2-DIHYDRO-PYRIMIDIN-4-YL-AMMONIUM; CHLORIDE

Structure

OH

N

N

N

H₃C

CH₃

CH₃

Chira CL Chira

HO Chiral

HC ON NH2

Chiral CI

No. Name

163 BENZOIC ACID 4-(4-AMINO-2-OXO-2H-PYRIMIDIN-1-YL)[1,3]DIOXOLAN-2-YLMETHYL ESTER

164 CARBONIC ACID 4-(4AMINO-2-OXO-2HPYRIMIDIN-1-YL)[1,3]DIOXOLAN-2YLMETHYL ESTER 3DIMETHYLAMINO-PROPYL
ESTER TRIFLUORO-ACETIC
ACID SALT

165 N-{[1-(2-HYDROXYMETHYL-[1,3]DIOXOLAN-4-YL)-2-OXO-1,2-DIHYDRO-PYRIMIDIN-4-YLAMINO]-METHYL}-BENZAMIDE

166 5-(Benzyl-tert-butoxycarbonyl-amino)-2,2-dimethyl-5-oxo-pentanoic acid 4-[4-(dimethylamino-methyleneamino)-2-oxo-2H-pyrimidin-1-yl]-[1,3]dioxolan-2-ylmethyl ester

167 [1-(2-HYDROXYMETHYL[1,3]DIOXOLAN-4-YL)-2OXO-1,2-DIHYDROPYRIMIDIN-4-YL]CARBAMIC ACID 2BENZENESULFONYL-ETHYL
ESTER

Name

168 N-[1-(2-HYDROXYMETHYL[1,3]DIOXOLAN-4-YL)-2OXO-1,2-DIHYDROPYRIMIDIN-4-YL]-4NITROBENZENESULFONAMIDE

169 [1-(2-HYDROXYMETHYL[1,3]DIOXOLAN-4-YL)-2OXO-1,2-DIHYDROPYRIMIDIN-4-YL]CARBAMIC ACID 4DIMETHYLAMINO-BUTYL
ESTER TRIFLUOROACETIC
ACID SALT

HO Chiral N CH₃

170 4-AMINO-1-[2-(DIETHOXY-PHENYL-METHOXYMETHYL)[1,3]DIOXOLAN-4-YL]-1H-PYRIMIDIN-2-ONE

171 (S,S) 4-(DI-PROP-2'-YNYL-AMINO)-1-(2"-HYDROXYMETHYL-[1,3]DIOXOLAN-4"-YL)-1H-PYRIMIDIN-2-ONE

172 1-(2-HYDROXYMETHYL-[1,3]DIOXOLAN-4-YL)-4-(PHENYLAMINOMETHYL-AMINO)-1H-PYRIMIDIN-2-ONE

No. Name 173 (S,S)-4-AMINO-1-(2'-

> PROP-2'-YNYLOXYMETHYL-[1,3]DIOXOLAN-4'-YL)-

1H-PYRIMIDIN-2-ONE

174 4-METHOXY-BENZOIC ACID

4-[4-(4-METHOXY-BENZOYLAMINO) -2-OXO-2H-

PYRIMIDIN-1-YL]-

[1,3]DIOXOLAN-2-

YLMETHYL ESTER

175 N-[1-(2-HYDROXYMETHYL-[1,3] DIOXOLAN-4-YL)-2-OXO-1,2-DIHYDRO-PYRIMIDIN-4-YL]-4-

METHOXY-BENZAMIDE

176 4-METHOXY-BENZOIC ACID 4-(4-AMINO-2-OXO-2H-

PYRIMIDIN-1-YL) -

[1,3]DIOXOLAN-2-YLMETHYL ESTER

177 4-AMINO-1-(2-TRIMETHOXYMETHOXYMETHYL -[1,3]DIOXOLAN-4-YL)-1H-PYRIMIDIN-2-ONE

Structure

Chiral

Chiral

No. Name
178 (S,S)-4-AMINO-1-(2'ETHOXYMETHYL[1,3]DIOXOLAN-4'-YL)1H-PYRIMIDIN-2-ONE

Structure

Chiral

179 (S,S)-1-(2'ALLYLOXYMETHYL[1,3]DIOXOLAN-4'-YL)-4AMINO-1H-PYRIMIDIN-2ONE

H₂C Chiral

180 (S,S)-1-(2'-ETHOXYMETHYL-[1,3]DIOXOLAN-4'-YL)-4-ETHYLAMINO-1H-PYRIMIDIN-2-ONE H₃C Chiral

181 CARBONIC ACID 4-NITRO-BENZYL ESTER 4-[4-(4-NITRO-BENZYLOXYCARBONYLAMINO)-2-OXO-2H-PYRIMIDIN-1-YL]-[1,3]DIOXOLAN-2-YLMETHYL ESTER

Chiral Chiral

182 [1-(2-HYDROXYMETHYL-[1,3]DIOXOLAN-4-YL)-2-OXO-1,2-DIHYDRO-PYRIMIDIN-4-YL]-CARBAMIC ACID 4-NITRO-BENZYL ESTER HO Chiral

No. Name
183 CARBONIC ACID 4-(4AMINO-2-OXO-2HPYRIMIDIN-1-YL)[1,3]DIOXOLAN-2YLMETHYL ESTER 4-NITROBENZYL ESTER

HYDROCHLORIDE SALT

184 3,4,6-TRI-O-BENZOYL1,2-O-(1-(4-AMINO-2OXO-2H-PYRIMIDIN-1-YL)[1,3]DIOXOLAN-2YLMETHYLOXY)-BENZYL)D-GLUCOPYRANOSe

185 4-AMINO-1-{2-[TRIS-(4-METHOXY-PHENYL)-METHOXYMETHYL]-[1,3]DIOXOLAN-4-YL}-1H-PYRIMIDIN-2-ONE H₃C

CH₃

NH₂Chi

186 3,5-DI-TERT-BUTYL-BENZOIC ACID 4-(4-AMINO-2-OXO-2H-PYRIMIDIN-1-YL)-[1,3]DIOXOLAN-2-YLMETHYL ESTER

187 3,4-DICHLORO-BENZOIC
ACID 4-(4-AMINO-2-OXO-2H-PYRIMIDIN-1-YL)[1,3]DIOXOLAN-2-YL
METHYL ESTER

Name

188 N-[1-(2-HYDROXYMETHYL-[1,3]DIOXOLAN-4-YL)-2-OXO-1,2-DIHYDRO-PYRIMIDIN-4-YL]-2,4-DINITRO-BENZENESULFONAMIDE Structure

No. No. No. No. No. No.

189 4-TRIFLUOROMETHYL-BENZOIC ACID 4-(4-AMINO-2-OXO-2H-PYRIMIDIN-1-YL)-[1,3]DIOXOLAN-2-YL METHYL ESTER 190 2-FLUORO-BENZOIC ACID 4-(4-AMINO-2-OXO-2H-PYRIMIDIN-1-YL)-[1,3]DIOXOLAN-2-YL METHYL ESTER NH₂Chiral

191 4-HEXYL-BENZOIC ACID 4-(4-AMINO-2-OXO-2H-PYRIMIDIN-1-YL)-[1,3]DIOXOLAN-2-YL METHYL ESTER CH₃

192 6-TERT!BUTOXYCARBONYLAMINOHEXANOIC ACID 4-[4-(6TERTBUTOXYCARBONYLAMINOHEXANOYLAMINO)-2-OXO2H-PYRIMIDIN-1-YL][1,3]DIOXOLAN-2-YL
METHYL ESTER

Name

193 {5-[1-(2-HYDROXYMETHYL[1,3]DIOXOLAN-4-YL)-2OXO-1,2-DIHYDROPYRIMIDIN-4YLCARBAMOYL]-PENTYL}CARBAMIC ACID TERTBUTYL ESTER

- 194 6-TERT!BUTOXYCARBONYLAMINOHEXANOIC ACID 4-(4AMINO-2-OXO-2HPYRIMIDIN-1-YL)[1,3]DIOXOLAN-2YLMETHYL ESTER
- 195 4-AMINO-1-{2-[DIMETHOXY-(4-METHOXY-PHENYL)-METHOXYMETHYL]-[1,3]DIOXOLAN-4-YL}-1#H!-PYRIMIDIN-2-ONE
- 196 8-PHENYL-OCTANOIC ACID
 4-[2-OXO-4-(8-PHENYLOCTANOYLAMINO)-2ḤPYRIMIDIN-1-YL][1,3]DIOXOLAN-2-YL
 METHYL ESTER
- 197 8-PHENYL-OCTANOIC ACID
 [1-(2-HYDROXYMETHYL[1,3]DIOXOLAN-4-YL)-2OXO-1,2-DIHYDROPYRIMIDIN-4-YL]-AMIDE

Name

198 8-PHENYL-OCTANOIC ACID
4-(4-AMINO-2-OXO-2HPYRIMIDIN-1-YL)[1,3]DIOXOLAN-2-YL
METHYL ESTER

Structure

199 4-Amino-1-(2triethoxymethoxymethyl-[1,3]dioxolan-4-yl)-1Hpyrimidin-2-one

200 4-AMINO-1-[2-(DIMETHOXY-#P!-TOLYL-METHOXYMETHYL)-[1,3]DIOXOLAN-4-YL]-1#H!-PYRIMIDIN-2-ONE

201 3-[4-(4-AMINO-2-OXO-2H-PYRIMIDIN-1-YL)[1,3]DIOXOLAN-2-YL
METHOXY]-ACRYLIC ACID
ETHYL ESTER

202 ACETIC ACID 4-{1-[2-(4-ACETOXY-BENZYLOXYCARBONYLOXYMETHYL)-[1,3]DIOXOLAN-4-YL]-2-OXO-1,2-DIHYDRO-PYRIMIDIN-4-YLCARBAMOYLOXYMETHYL}-PHENYL ESTER

Name 203 ACETIC ACID 4-[1-(2-HYDROXYMETHYL-[1,3] DIOXOLAN-4-YL)-2-OXO-1,2-DIHYDRO-PYRIMIDIN-4-YLCARBAMOYLOXYMETHYL] -PHENYL ESTER

204 4-NITRO-BENZOIC ACID 4-(4-AMINO-2-OXO-2H-PYRIMIDIN-1-YL) -[1,3]DIOXOLAN-2-YL METHYL ESTER

205 DITHIOCARBONIC ACID O-[4-(4-AMINO-2-OXO-2H-PYRIMIDIN-1-YL) -[1,3]DIOXOLAN-2-YL METHYL] ESTER S-PHENYL ESTER

206 2-CHLORO-BENZOIC ACID 4-(4-AMINO-2-OXO-2#H!-PYRIMIDIN-1-YL)-[1,3] DIOXOLAN-2-YL METHYL ESTER

207 7-ISOPROPYL-2,4A-DIMETHYL-1,2,3,4,4A,4B,5,6,10,10 A-DECAHYDRO-PHENANTHRENE-2-CARBOXYLIC ACID [1-(2-HYDROXYMETHYL-[1,3] DIOXOLAN-4-YL)-2-OXO-1,2-DIHYDRO-PYRIMIDIN-4-YL]-AMIDE

No. Name

208 DODECANOIC ACID [1-(2-HYDROXYMETHYL-[1,3]DIOXOLAN-4-YL)-2-OXO-1,2-DIHYDRO-PYRIMIDIN-4-YL]-AMIDE

209 BIPHENYL-2-CARBOXYLIC
ACID 4-(4-AMINO-2-OXO-2#H!-PYRIMIDIN-1-YL)[1,3]DIOXOLAN-2-YL
METHYL ESTER

210 4-PENTYLBICYCLO[2.2.2]OCTANE-1CARBOXYLIC ACID [1-(2HYDROXYMETHYL[1,3]DIOXOLAN-4-YL)-2OXO-1,2-DIHYDROPYRIMIDIN-4-YL]-AMIDE

211 4-PENTYLBICYCLO[2.2.2]OCTANE-1CARBOXYLIC ACID 4-(4AMINO-2-OXO-2HPYRIMIDIN-1-YL)[1,3]DIOXOLAN-2-YL
METHYL ESTER

212 2,2-DIMETHYL-PROPIONIC
ACID 4-(1-{2-[4-(2,2-DIMETHYL-PROPIONYLOXY)-BENZYLOXYCARBONYLOXYMETHYL]-[1,3]DIOXOLAN-4-YL}-2-OXO-1,2-DIHYDRO-PYRIMIDIN-4-YLCARBAMOYLOXYMETHYL)-PHENYL ESTER

No. Name

213 2,2-DIMETHYL-PROPIONIC
ACID 4-[1-(2HYDROXYMETHYL[1,3]DIOXOLAN-4-YL)-2OXO-1,2-DIHYDROPYRIMIDIN-4YLCARBAMOYLOXYMETHYL]PHENYL ESTER

215 (3-PHENYL-PROPYL)CARBAMIC ACID 4-(4AMINO-2-OXO-2HPYRIMIDIN-1-YL)[1,3]DIOXOLAN-2-YL
METHYL ESTER

216 Octadec-9-enoic acid
[1-(2-hydroxymethyl[1,3]dioxolan-4-yl)-2oxo-1,2-dihydropyrimidin-4-yl]-amide

217 OCTADECA-9,12-DIENOIC
ACID [1-(2HYDROXYMETHYL[1,3]DIOXOLAN-4-YL)-2OXO-1,2-DIHYDROPYRIMIDIN-4-YL]-AMIDE

Structure

CH, Chiral

Name 218 2,2-DIETHYL-HEXANOIC ACID 4-(4-AMINO-2-OXO-2H-PYRIMIDIN-1-YL)-[1,3]DIOXOLAN-2-YL METHYL ESTER

219 OCTADEC-9-ENOIC ACID [1-(2-HYDROXYMETHYL-[1,3] DIOXOLAN-4-YL)-2-OXO-1,2-DIHYDRO-PYRIMIDIN-4-YL]-AMIDE

220 BIPHENYL-2-CARBOXYLIC ACID 4-(4-AMINO-2-OXO-2H-PYRIMIDIN-1-YL) -[1,3]DIOXOLAN-2-YL METHYL ESTER

221 N, N-Dibutyl-N'-[1-(2hydroxymethyl-[1,3]dioxolan-4-yl)-2oxo-1,2-dihydropyrimidin-4-yl]formamidine

222 N'-[1-(2-HYDROXYMETHYL-[1,3]DIOXOLAN-4-YL)-2-OXO-1,2-DIHYDRO-PYRIMIDIN-4-YL]-N, N-DIMETHYL-FORMAMIDINE

Structure

Chiral

Name

- 223 1-PHENYL-CYCLOPROPANECARBOXYLIC ACID 4-(4-AMINO-2-OXO-2H-PYRIMIDIN-1-YL) -[1,3]DIOXOLAN-2-YL METHYL ESTER
- 224 2-METHYL-2-(2-NITRO-PHENYL) - PROPIONIC ACID 4-(4-AMINO-2-OXO-2H-PYRIMIDIN-1-YL)-[1,3]DIOXOLAN-2-YLMETHYL ESTER HYDROCHLORIDE SALT
- 225 1-PHENYL-CYCLOHEXANECARBOXYLIC ACID [1-(2-HYDROXYMETHYL-[1,3] DIOXOLAN-4-YL)-2-OXO-1,2-DIHYDRO-PYRIMIDIN-4-YL]-AMIDE
- 226 1-PHENYL-CYCLOHEXANECARBOXYLIC ACID 4-(4-AMINO-2-OXO-2H-PYRIMIDIN-1-YL) -[1,3]DIOXOLAN-2-YL METHYL ESTER
- 227 2,2-DIMETHYL-8-PHENYL-OCTANOIC ACID [1-(2-HYDROXYMETHYL-[1,3] DIOXOLAN-4-YL)-2-OXO-1,2-DIHYDRO-PYRIMIDIN-4-YL]-AMIDE

228 N'-[1-(2-HYDROXYMETHYL-[1,3]DIOXOLAN-4-YL)-2-OXO-1,2-DIHYDRO-PYRIMIDIN-4-YL]-N,N-DIMETHYL-ACETAMIDINE

Name

229 1-PHENYLCYCLOPENTANECARBOXYLIC
ACID [1-(2HYDROXYMETHYL[1,3]DIOXOLAN-4-YL)-2OXO-1,2-DIHYDROPYRIMIDIN-4-YL]-AMIDE

230 N'-[1-(2-HYDROXYMETHYL-[1,3]DIOXOLAN-4-YL)-2-OXO-1,2-DIHYDRO-PYRIMIDIN-4-YL]-N,N-DIISOPROPYL-FORMAMIDINE

231 HEXAHYDRO-2,5-METHANO-PENTALENE-3A-CARBOXYLIC ACID [1-(2-HYDROXYMETHYL-[1,3]DIOXOLAN-4-YL)-2-OXO-1,2-DIHYDRO-PYRIMIDIN-4-YL]-AMIDE

232 HEXAHYDRO-2,5-METHANO-PENTALENE-3A-CARBOXYLIC ACID 4-(4-AMINO-2-OXO-2H-PYRIMIDIN-1-YL)-[1,3]DIOXOLAN-2-YL METHYL ESTER

Name

233 2,2-DIETHYL-8-PHENYLOCTANOIC ACID 4-(4AMINO-2-OXO-2HPYRIMIDIN-1-YL)[1,3]DIOXOLAN-2-YL
METHYL ESTER

234 5-(2,5-DIMETHYL-PHENOXY)-2,2-DIMETHYL-PENTANOIC ACID [1-(2-HYDROXYMETHYL-[1,3]DIOXOLAN-4-YL)-2-OXO-1,2-DIHYDRO-PYRIMIDIN-4-YL]-AMIDE

235 1,2,2,3-TETRAMETHYLCYCLOPENTANECARBOXYLIC
ACID [1-(2HYDROXYMETHYL[1,3]DIOXOLAN-4-YL)-2OXO-1,2-DIHYDROPYRIMIDIN-4-YL]-AMIDE

236 4-(1-BENZYL-PYRROLIDIN-2-YLIDENEAMINO)-1-(2-HYDROXYMETHYL-[1,3]DIOXOLAN-4-YL)-1H-PYRIMIDIN-2-ONE

237 4-AMINO-1-{2-[4-(2,5-DIMETHYL-PHENOXY)-1,1-DIMETHYL-BUTOXYMETHYL][1,3]DIOXOLAN-4-YL}-1H-PYRIMIDIN-2-ONE

Name

- 238 2,2-DIMETHYL-8-PHENYLOCTANOIC ACID 4-(4AMINO-2-OXO-2HPYRIMIDIN-1-YL)[1,3]DIOXOLAN-2-YL
 METHYL ESTER
- 239 4-PENTYLCYCLOHEXANECARBOXYLIC
 ACID [1-(2HYDROXYMETHYL[1,3]DIOXOLAN-4-YL)-2OXO-1,2-DIHYDROPYRIMIDIN-4-YL]-AMIDE
- 240 4-PENTYLCYCLOHEXANECARBOXYLIC
 ACID 4-(4-AMINO-2-OXO-2H-PYRIMIDIN-1-YL)[1,3]DIOXOLAN-2-YL
 METHYL ESTER
- 241 N-[1-(2-HYDROXYMETHYL-[1,3]DIOXOLAN-4-YL)-2-OXO-1,2-DIHYDRO-PYRIMIDIN-4-YL]-2,2-DIPHENYL-ACETAMIDE
- 242 N-[1-(2-HYDROXYMETHYL-[1,3]DIOXOLAN-4-YL)-2-OXO-1,2-DIHYDRO-PYRIMIDIN-4-YL]-2-(4-ISOBUTYL-PHENYL)-PROPIONAMIDE

Name 243 2-(4-ISOBUTYL-PHENYL)-PROPIONIC ACID 4-(4-AMINO-2-OXO-2H-PYRIMIDIN-1-YL)-[1,3]DIOXOLAN-2-YL

METHYL ESTER

244 DIPHENYL-CARBAMIC ACID 4-[4-(DIMETHYLAMINO-METHYLENEAMINO) -2-OXO-2H-PYRIMIDIN-1-YL]-[1,3]DIOXOLAN-2-YL METHYL ESTER

245 2-METHYL-8-PHENYL-OCTANOIC ACID 4-(4-AMINO-2-OXO-2H-PYRIMIDIN-1-YL) -[1,3]DIOXOLAN-2-YL METHYL ESTER

246 DIPHENYL-CARBAMIC ACID 4-(4-AMINO-2-OXO-2H-PYRIMIDIN-1-YL) -[1,3]DIOXOLAN-2-YL METHYL ESTER

247 2-Methyl-8-phenyloctanoic acid [1-(2hydroxymethyl-[1,3]dioxolan-4-yl)-2oxo-1,2-dihydropyrimidin-4-yl]-amide

Structure

Chiral

Name

248 4-PENTYLBICYCLO[2.2.2]OCTANE-1CARBOXYLIC ACID 4-(4AMINO-2-OXO-2HPYRIMIDIN-1-YL)[1,3]DIOXOLAN-2YLMETHYL
ESTER;HYDROCHLORIDE
SALT

- 249 #N!-[1-(2-HYDROXYMETHYL-[1,3]DIOXOLAN-4-YL)-2-OXO-1,2-DIHYDRO-PYRIMIDIN-4-YL]-3-METHYL-2-PHENYL-BUTYRAMIDE
- 250 [1-(2-HYDROXYMETHYL-[1,3]DIOXOLAN-4-YL)-2-OXO-1,2-DIHYDRO-PYRIMIDIN-4-YL]-CARBAMIC ACID 4-PENTYL-PHENYL ESTER
- 251 Adamantane-1-carboxylic acid 4-(4-amino-2-oxo-2H-pyrimidin-1-yl)[1,3]dioxolan-2-yl methyl ester
- 252 4-HEXYL-BENZOIC ACID 4-(4-AMINO-2-OXO-2H-PYRIMIDIN-1-YL)-[1,3]DIOXOLAN-2-YL METHYL ESTER; HYDROCHLORIDE SALT

No. Name

253 2-OXO-1-[2-(1-PHENYL-CYCLOHEXANECARBONYLOXYM ETHYL)-[1,3]DIOXOLAN-4-YL]-1,2-DIHYDRO-PYRIMIDIN-4-YL-AMMONIUM; CHLORIDE

254 {1-[1-(2-HYDROXYMETHYL-[1,3]DIOXOLAN-4-YL)-2-OXO-1,2-DIHYDRO-PYRIMIDIN-4-YL CARBAMOYL]-3-METHYL-BUTYL}-CARBAMIC ACID BENZYL ESTER

255 [4-(4-AMINO-2-OXO-2H-PYRIMIDIN-1-YL)[1,3]DIOXOLAN-2-YL
METHOXY]PHOSPHONO-ACETATE BIS-AMMONIUM SALT

256 2-tert-Butyl-8-phenyloctanoic acid 4-(4amino-2-oxo-2Hpyrimidin-1-yl)[1,3]dioxolan-2-yl
methyl ester

257 2-AMINO-4-METHYLPENTANOIC ACID [1-(2HYDROXYMETHYL[1,3]DIOXOLAN-4-YL)-2OXO-1,2-DIHYDROPYRIMIDIN-4-YL]-AMIDE

Structure

HO CH₃

258 BENZOIC ACID 4-(4-ACETYLAMINO-2-OXO-2H-PYRIMIDIN-1-YL)-[1,3]DIOXOLAN-2-YL METHYL ESTER

Name

259 BENZOIC ACID 4-(4-ACETYLAMINO-2-OXO-2H-PYRIMIDIN-1-YL)-[1,3]DIOXOLAN-2-YL METHYL ESTER

260 1-{2-[2-(4-ISOBUTYL-PHENYL)-PHENYL)-PROPIONYLOXYMETHYL]-[1,3]DIOXOLAN-4-YL}-2-OXO-1,2-DIHYDRO-PYRIMIDIN-4-YL-AMMONIUM; CHLORIDE

261 8-Phenyl-octanoic acid
4-(4-amino-2-oxo-2Hpyrimidin-1-yl)[1,3]dioxolan-2-yl
methyl ester
hydrochloride

ан

262 3-METHYL-2-PHENYL-BUTYRIC ACID 4-(4-AMINO-2-OXO-2H-PYRIMIDIN-1-YL)-[1,3]DIOXOLAN-2-YLMETHYL ESTER

No. Name

263 (1-{1-[1-(2HYDROXYMETHYL[1,3]DIOXOLAN-4-YL)-2OXO-1,2-DIHYDROPYRIMIDIN-4YLCARBAMOYL]-3-METHYLBUTYLCARBAMOYL}-ETHYL)CARBAMIC ACID TERTBUTYL ESTER

264 2-OXO-1-[2-(4-PENTYL-CYCLOHEXANECARBONYLOXYM ETHYL)-[1,3]DIOXOLAN-4-YL]-1,2-DIHYDRO-PYRIMIDIN-4-YL-AMMONIUM CHLORIDE

265 2-(2-AMINO-PROPIONYLAMINO)-4-METHYL-PENTANOIC ACID [1-(2-HYDROXYMETHYL-[1,3]DIOXOLAN-4-YL)-2-OXO-1,2-DIHYDRO-PYRIMIDIN-4-YL]-AMIDE, BIS TRIFLUOROACETIC ACID SALT

266 2-ETHYL-8-PHENYLOCTANOIC ACID 4-(4AMINO-2-OXO-2HPYRIMIDIN-1-YL)[1,3]DIOXOLAN-2YLMETHYL ESTER

267 [1-(1-{1-[1-(2-HYDROXYMETHYL-[1,3]DIOXOLAN-4-YL)-2-OXO-1,2-DIHYDRO-PYRIMIDIN-4-YLCARBAMOYL]-3-METHYL-BUTYLCARBAMOYL}-ETHYLCARBAMOYL)-3-METHYL-BUTYL]-CARBAMIC ACID BENZYL ESTER Structure

CH₃

H₃C CĒhiral

F OH N O CH₃ Chiral NH₂ OH OCH₃ F OH

HC OH Chiral

No.

Name 268 2-METHYL-8-PHENYL-OCTANOIC ACID 4-(4-AMINO-2-OXO-2H-PYRIMIDIN-1-YL) -[1,3] DIOXOLAN-2-YLMETHYL ESTER HYDROCHLORIDE

269 2,2-DIMETHYL-8-PHENYL-OCTANOIC ACID 4-(4-AMINO-2-OXO-2H-PYRIMIDIN-1-YL) -[1,3]DIOXOLAN-2-YLMETHYL ESTER HYDROCHLORIDE

270 BIS-(4-OCTYL-PHENYL)-CARBAMIC ACID 4-(4-AMINO-2-OXO-2H-PYRIMIDIN-1-YL) -[1,3]DIOXOLAN-2-YLMETHYL ESTER

272 2-AMINO-4-METHYL-PENTANOIC ACID (1-{1-[1-(2-HYDROXYMETHYL-[1,3] DIOXOLAN-4-YL)-2-OXO-1,2-DIHYDRO-PYRIMIDIN-4-YL CARBAMOYL]-3-METHYL-BUTYLCARBAMOYL } - ETHYL) -AMIDE

275 ISOBUTYRIC ACID 4-(4-AMINO-2-OXO-2H-PYRIMIDIN-1-YL) -[1,3]DIOXOLAN-2-YL METHYL ESTER

Structure ан

Chiral

No. Name

276 6-METHYL-HEPTANOIC ACID
4-[4-(6-METHYLHEPTANOYLAMINO)-2-OXO2H-PYRIMIDIN-1-YL][1,3]DIOXOLAN-2-YL
METHYL ESTER

277 6-METHYL-HEPTANOIC ACID
[1-(2-HYDROXYMETHYL[1,3]DIOXOLAN-4-YL)-2OXO-1,2-DIHYDROPYRIMIDIN-4-YL]-AMIDE

278 3-METHYL-BUTYRIC ACID 4-(4-AMINO-2-OXO-2H-PYRIMIDIN-1-YL)-[1,3]DIOXOLAN-2-YL METHYL ESTER

279 2,2-DIMETHYL-PROPIONIC
ACID 4-(4-AMINO-2-OXO-2H-PYRIMIDIN-1-YL)[1,3]DIOXOLAN-2-YL
METHYL ESTER

280 2-Amino-N-[1-(2hydroxymethyl-[1,3]dioxolan-4-yl)-2oxo-1,2-dihydropyrimidin-4-yl]-3methyl-butyramide; trifluoroacetic acid salt

281 7-ISOPROPYL-2,4A-DIMETHYL1,2,3,4,4A,4B,5,6,10,10
A-DECAHYDRO-PHENANTHRENE-2-CARBOXYLIC ACID [1-(2-HYDROXYMETHYL-[1,3]DIOXOLAN-4-YL)-2-OXO-1,2-DIHYDRO-PYRIMIDIN-4-YL]-ESTER

Structure

The following are examples of additional compounds in accordance with the invention:

5

[1-(2-Hydroxymethyl-[1,3]dioxolan-4-yl)-2-oxo-1,2-dihydro-pyrimidin-4-yl]-carbamic acid butyl ester

[1-(2-Hydroxymethyl-[1,3]dioxolan-4-yl)-2-oxo-1,2-dihydro-pyrimidin-4-yl]-carbamic acid pentyl ester

[1-(2-Hydroxymethyl-[1,3]dioxolan-4-yl)-2-oxo-1,2-dihydro-pyrimidin-4-yl]-carbamic acid hexyl ester

Hexanoic acid [1-(2-hydroxymethyl-[1,3]dioxolan-4-yl)-2-oxo-1,2-dihydro-pyrimidin-4-yl]-amide

15

Heptanoic acid [1-(2-hydroxymethyl-[1,3]dioxolan-4-yl)-2-oxo-1,2-dihydro-pyrimidin-4-yl]-amide

5 Octanoic acid [1-(2-hydroxymethyl-[1,3]dioxolan-4-yl)-2-oxo-1,2-dihydro-pyrimidin-4-yl]-amide

[1-(2-Hydroxymethyl-[1,3]dioxolan-4-yl)-2-oxo-1,2-dihydro-10 pyrimidin-4-yl]-carbamic acid 3-dimethylamino-propyl ester

[1-(2-Hydroxymethyl-[1,3]dioxolan-4-yl)-2-oxo-1,2-dihydro-pyrimidin-4-yl]-carbamic acid 4-dimethylamino-butyl ester

15 [1-(2-Hydroxymethyl-[1,3]dioxolan-4-yl)-2-oxo-1,2-dihydropyrimidin-4-yl]-carbamic acid 5-dimethylamino-pentyl ester

5 5-Dimethylamino-pentanoic acid [1-(2-hydroxymethyl[1,3]dioxolan-4-yl)-2-oxo-1,2-dihydro-pyrimidin-4-yl]amide

6-Dimethylamino-hexanoic acid [1-(2-hydroxymethyl[1,3]dioxolan-4-yl)-2-oxo-1,2-dihydro-pyrimidin-4-yl]-

10 amide

7-Dimethylamino-heptanoic acid [1-(2-hydroxymethyl[1,3]dioxolan-4-yl)-2-oxo-1,2-dihydro-pyrimidin-4-yl]amide

Acetic acid 4-(4-amino-2-oxo-2H-pyrimidin-1-yl)[1,3]dioxolan-2-ylmethoxymethyl ester

Butyric acid 4-(4-amino-2-oxo-2H-pyrimidin-1-yl)-[1,3]dioxolan-2-ylmethoxymethyl ester

Carbonic acid 1-[4-(4-amino-2-oxo-2H-pyrimidin-1-y1)[1,3]dioxolan-2-ylmethoxy]-ethyl ester ethyl ester

Carbonic acid 4-(4-amino-2-oxo-2H-pyrimidin-1-yl)-[1,3]dioxolan-2-ylmethoxymethyl ester isopropyl ester

10 (2S, 4S) N-[1-(2-Hydroxymethyl-[1,3]dioxolan-4-yl)-2-oxo-1,2-dihydro-pyrimidin-4-yl]-2-piperidin-4-yl-acetamide trifluoroacetate salt

(2S, 4S) Piperidin-4-yl-acetic acid 4-(4-amino-2-oxo-2H
pyrimidin-1-yl)-[1,3]dioxolan-2-ylmethyl ester

trifluoroacetate salt

(2S, 4S) 2-Amino-3-methyl-butyric acid 4-(4-amino-2-oxo-2H-pyrimidin-1-yl)-[1,3]dioxolan-2-ylmethyl ester

20 trifluoroacetate salt

(2S, 4S) 2-Amino-N-[1-(2-hydroxymethyl-[1,3]dioxolan-4-yl)-2-oxo-1,2-dihydro-pyrimidin-4-yl]-3-methyl-butyramide trifluoroacetate salt

25

(2S, 4S) 4-Amino-1-[2-(tetrahydro-pyran-2-yloxymethyl)[1,3]dioxolan-4-yl]-1H-pyrimidin-2-one

Additional exemplary compounds are illustrated below:

10 Further examples are:

15

20

The compounds of formula (I) have a cis geometrical

25 configuration. Moreover, the compounds of formula (I)

exhibit the ''unnatural'' nucleoside configuration, that

is they are L-enantiomers. Preferably, the compounds of

formula (I) are provided substantially free of the

corresponding D-enantiomers, that is to say no more than

30 about 5% w/w of the corresponding D-nucleoside, preferably

no more than about 2% w/w, in particular less than about

1% w/w is present.

The compounds formula (I) include compounds in which the hydrogen of the 2-hydroxymethyl group and/or one or both of the hydrogens of a base amino group(s) is replaced by alkyl, alkenyl, aryl, a heteroaromatic group or a nonaromatic ring group, or are replaced by -C(0)R⁶ or -

- 5 C(0)OR⁶ groups in which R⁶ is alkyl, alkenyl, aryl optionally substituted by alkyl, a heteroaromatic group optionally substituted by alkyl, or a nonaromatic ring group.
- 10 With regard to the compounds of formula (I), unless otherwise specified, any alkyl or alkenyl moiety present advantageously contains up to 24 carbon atoms, particularly 4 to 18 carbon atoms. Any aryl moiety present preferably contains 6 to 24 carbon atoms, for example, phenyl, napthyl, and biphenyl groups.
 - In the compounds of formula (I), R^1 , R^3 and/or R^4 can also exhibit an amino acid radical or an amino acid chain. Unless specified otherwise, the term "amino acid" used
- herein includes naturally-occurring amino acids as well as non natural analogs as those commonly used by those skilled in the art of chemical synthesis and peptide chemistry. A list of non natural amino acids may be found in "The Peptides", vol. 5, 1983, Academic Press, Chapter 6
- by D.C. Roberts and F. Vellaccio. Example of naturally
 occurring amino acid includes alanine (Ala), arginine
 (Arg), asparagine (Asn), aspartic acid (Asp), cysteine
 (Cys), glutamine (Gln), glutamic acid (Glu), glycine
 (Gly), histidine (His), isoleucine (Ile), leucine (Leu),
- 30 lysine (Lys), methionine (Met), phenylalanine (Phe),
 ornithine (Orn), proline (Pro), serine (Ser), threonine
 (Thr), tryptophan (Trp), tyrosine (Tyr), and valine (Val).

5 Preferably, the amino acid radical or amino acid chain exhibits at least one amino acid radical selected from Ala, Glu, Val, Leu, Ile, Pro, Phe, Tyr or Typ.

By the term "amino acid residue" and "amino acid chain residue" is meant an amino acid or amino acid chain preferably lacking the carboxy terminal hydroxyl group. For example, the amino acid residue of serine is preferably:

Pharmaceutically acceptable salts of the compounds of formula (I)include those derived from pharmaceutically acceptable inorganic and organic acids and bases.

Examples of suitable acids include hydrochloric,

hydrobromic, sulphuric, nitric, perchloric, fumaric,
maleic, phosphoric, glycollic, lactic, salicylic,
succinic, toleune-p-sulphonic, tartaric, acetic, citric,
methanesulphonic, formic, benzoic, malonic,
naphthalene-2-sulphonic and benzenesulphonic acids. Other

25 acids such as oxalic, while not in themselves pharmaceutically acceptable, may be useful as intermediates in obtaining the compounds of the invention and their pharmaceutically acceptable acid addition salts.

20

25

30

Salts derived from appropriate bases include alkali metal (e.g. sodium), alkaline earth metal (e.g. magnesium), ammonium and NR_4+ (where R is C_{1-4} alkyl) salts.

The compounds of the invention either themselves possess anticancer activity and/or are metabolizable to such compounds.

By the term "amino acid chain" is meant two or more, prererably 2 to 6, amino acid residues covalently bound via a peptide or thiopeptide bond.

The alkyl groups, including alkylene structures, can be straight chain or branched. In addition, within the alkyl or alkylene groups, one or more CH_2 can be replaced, in each case independently, by -O-, -CO-, -S-, -SO₂-, -NH-, - $N(C_{1-4}-alkyl)$ -, $-N(C_{6-10}-aryl)$ -, -CS-, -C=NH-, or - $N(C_{0-0}-C_{1-4}-alkyl)$ -, in manner in which O atoms are not directly bonded to one another. In addition, one or more - CH_2 CH_2 - can be replaced, in each case independently, by -CH-CH- or -C-C-C-C-. Further, alkyl and alkenyl groups can be optionally substituted by halogen, e.g., Cl and F.

Aryl can be unsubstituted or optionally substituted by one or more of NO_2 , C_{1-8} -alkyl, C_{1-8} -alkoxy, -COOH, -CO-O- C_{1-8} -alkyl and halo (e.g. Cl and F) groups.

- The non-aromatic C_{3-20} groups, which optionally contain 1-3 heteroatoms, are unsubstituted or optionally substituted by one or more of C_{1-8} -alkyl, C_{1-8} -alkoxy, OH, C_{1-8} -hydroxyalkyl, and $-CO-O-C_{1-8}$ -alkyl groups.
- By the term "heteroaromatic" is meant an unsaturated ring structure containing 5 to 10 ring atoms wherein 1 to 3 ring atoms are each selected from N, O and S. Examples of heteroaromatic groups include but are not limited to: furyl, thiophenyl, pyrrolyl, imidazolyl, pyrazoyl,
- oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, pyridyl, pyrimidinyl, triazolyl, tetrazolyl, oxadrazolyl, thiadiazolyl, thiopyranyl, pyrazinyl, benzofuryl, benzothiophenyl, indolyl, benzimidazolyl, benzopyrazolyl, benzoxazolyl, benzisoxazolyl, benzothiozolyl,
- 20 benzisothiazolyl, benzoxadiazolyl, quinolinyl, isoquinolinyl, carbazolyl, acridinyl, cinnolinyl and quinazolinyl.
- Nonaromatic ring groups preferably contain 3-20 ring atoms
 in which 1-3 ring atoms are in each case selected from N,
 o and S. Preferred nonaromatic ring groups include
 cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl,
 piperazinyl, piperidinyl, morpholinyl, thiomorpholinyl,
 pyrrolidinyl, adamantyl or quinuclidinyl.

- 5 The compounds of formula (I) include ester compounds. Such esters can be obtained by, for example, esterification of the 2-hydroxymethyl groups with a fatty Typically fatty acids contain 4-22 carbon atoms. Examples of ester compounds of formula (I) 10 compounds in which at least one of R_1 , R_3 or R_4 is acetyl, propionyl, butyryl, valeryl, caprioic, caprylic, capric, lauric, myristic, palmitic, stearic, oleic, linoleic, or linolenic.
- There is thus provided as a further aspect of the invention, methods for treating solid tumors. A further aspect of the invention, is a method of treating liver cancer or metastasis thereof, lung cancer, renal cancer, colon cancer, pancreatic cancer, uterine cancer, ovarian cancer, breast cancer, bladder cancer, melanoma and lymphoma.

Compounds of the invention can be tested for use against cancers using any of a variety of art-recognized in vitro

25 models [e.g., inhibition of proliferation of cell lines such as tumor cell lines, as described herein and, for example, in Bowlin et al. (1998). Proc. Am. Assn. for Cancer Res. 39, #4147] or animal models [e.g., leukemic (Gourdeau et al. (2000). Cancer Chemotherapy and Pharmacology) or solid tumor (Grove et al. (1997). Cancer Res. 57: 3008-3011; Kadhim et al. (1997). Cancer Res. 57:

20

25

5 4803-4810; Rabbani et al. (1998). Cancer Res. 58: 3461; Weitman et al. (2000). Clinical Cancer Res. 6: 1574-1578)] xenograft animal models. See, also, USP 5,817,667. Clinical tests of safety (absence of toxicity) and efficacy are carried out and evaluated using conventional testing methods.

Nucleosides can enter cells by any of a variety of mechanisms. As used herein, the term "nucleoside" means a nucleoside, nucleoside analog, modified nucleoside, or the like, for example any of the nucleoside "prodrugs" described above. Mechanisms of nucleoside uptake include, e.q., uptake by nucleoside or nucleobase transporter proteins (NT), including sodium-independent, bidirectional equilibrative transporters such as, e.g., the es or ei transporters; by sodium-dependent, inwardly directed concentrative transporters such as, e.g., cit, cib, cif, csq, and cs; by nucleobase transporters; or by passive diffusion. For a discussion of the properties of some NTs, see, e.g., Mackey et al. (1981). Cancer Research 58, 4349-4357 and Mackey et al. (1998). Drug Resistance Updates 1, 310-324, which are incorporated in their entirety by reference herein.

Methods (tests) for determining the mechanism(s) by which

a nucleoside enters a cell are conventional in the art.

Some such methods are described, e.g., in Gourdeau et al.

25

- 5 (2000). "Troxacitabine has an Unusual Pattern of Cellular Uptake and Metabolism that Results in Differential Chemosensitivity to Cytosine-Containing Nucleosides in Solid-Tumor and Leukemic Cell Lines" (submitted for publication and attached hereto as an appendix) and
- 10 Paterson et al. (1991) "Plasma membrane transport of nucleosides, nucleobases and nucleotides: an overview," in Imai & Nakazawa, eds., Role of adenosine and adenosine nucleotides in the biological system, Elsevier Science Publishers, which are incorporated in their entirety by reference herein. Typical methods include, for example:
 - 1) NT inhibitor studies: measuring the ability of a nucleoside of interest to inhibit proliferation of cells, e.g., cancer (malignant) cells, or measuring the uptake of a labeled nucleoside of interest into a cell, wherein the nucleoside is administered to the cell in the presence or
 - absence of one or more inhibitors of nucleoside transporters. Such inhibitors include, e.g., NBMPR (nitrobenzylmercaptopurine), which is specific for the es transporter; dipyridamole, which is specific for the es and the ei NTs; and dilazep, which is specific for the NTs
- encoded by the genes hCNT1 and hCNT2, respectively.

 Reduction of activity or of uptake of a nucleoside of interest by an inhibitor of a particular NT implicates that NT in the mechanism of entry of the nucleoside into
- 30 the cell; whereas the absence of such a reduction suggests

- 5 that the NT is not involved. Methods to perform such assays are conventional and are disclosed, e.g., in Mackey et al., supra and in Examples 1-4.
- 2) Competition studies: measuring the kinetics of uptake

 10 of a labeled nucleoside which is known to be transported

 by a particular NT in the presence or absence of a large

 molar excess (e.g., about a 100 to 1000-fold excess) of an

 unlabeled nucleoside of interest. If the nucleoside of

 interest competes with the labeled nucleoside for the NT,

 15 thereby reducing or abolishing the amount of uptake of the

 labeled nucleoside, this implicates that NT in the

 mechanism of uptake of the nucleoside of interest. By

 contrast, the lack of such competition suggests that the

 NT is not involved in the uptake of the nucleoside of

 20 interest. See, e.g., Example 31 (hCNT3 experiment). Cell

 proliferation studies such as those described above can
- 20 interest. See, e.g., Example 31 (hCNT3 experiment). Cell proliferation studies such as those described above can also be studied by comparable competition assays.

3) Competition with uridine: measuring the kinetics of

- uptake of a labeled nucleoside of interest in the presence of a large molar excess (e.g., about 100 to 1000-fold) of unlabeled uridine. Uridine is generally regarded as a "universal permeant," which can be taken up by cells by all of the reported human NTs. If a large excess of uridine does not inhibit the uptake of a nucleoside of
- 30 interest, this indicates that the nucleoside is not

diffusion.

- 5 transported by at least any of the currently known nuceoside transporters and, therefore, this is consistent with entry into the cell by passive diffusion.
- 4) Competition with the nucleoside of interest, itself: measuring the kinetics of uptake of a labeled nucleoside 10 of interest in the presence or absence of a large molar excess (e.g., about 100 to 1000-fold) of that nucleoside, itself, in unlabeled form. Reduction of the amount of labeled nucleoside taken up by a cell when excess 15 unlabeled nucleoside is present suggests that a molecule with affinity for the nucleoside (e.g., a nucleoside transporter) participates in the uptake mechanism. By contrast, unchanged or increased transport of the labeled nucleoside indicates that the mechanism of uptake is by passive diffusion. See, e.g., Example 30 (HeLa cells; DU 20 145 cells), which demonstrates that uptake of $^3\mathrm{H-}$ troxacitabine is not inhibited by a large excess of unlabeled troxacitabine, indicating that the mechanism of uptake of troxacitabine in these cells is passive

Any of the preceding tests can be carried out with any of a variety of cells which express a defined number of well-characterized nucleoside or nucleobase transporters. In addition to cell lines which naturally express defined

- numbers of NTs, mutant cell lines have been isolated which are deficient in one or more NTs, and/or one or more NTs can be introduced into a cell by conventional genetic recombinant methods. Genes encoding many NTs have been cloned (see, e.g., Griffiths et al. (1997) Nat. Med. 3:
- 10 89-93; Crawford et al. (1998) J. Biol. Chem. 273: 5288-5293; Griffiths et al. (1997) Biochem. J. 328: 739-743; Ritzel et al. (1997) Am. J. Physiol. 272: C707-C714; Wang et al. (1997) Am. J. Physiol 273: F1058-F1065) or can be cloned by conventional methods; and methods of subcloning
- these genes into appropriate expression vectors are conventional. See, e.g., Sambrook, J. et al. (1989).

 Molecular Cloning, a Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY for methods of cloning, subcloning, and expressing genes. A
- 20 typical example of a panel of cell lines expressing different combinations of NTs is disclosed, e.g., in Mackey et al., supra.
- 5) Studies with artificial membranes, e.g., reconstituted proteoliposomes comprising known NTs: measuring the kinetics of uptake of a labeled nuceoside of interest, e.g., in the presence or absence of inhibitors. See, e.g., Mackey et al., supra.

20

25

5 It will be further appreciated that the amount of a compound of the invention required for use in treatment will vary not only with the particular compound selected but also with the route of administration, the nature of the condition being treated and the age and condition of the patient and will be ultimately at the discretion of the attendant physician or veterinarian.

In a preferred dosage regimen (regime, schedule), the of compound а nucleoside analog the invention) is administered to a patient at least daily for a period of about 2 to 10 consecutive days, preferably for about 3 to 7, more preferably for about 4 to 6, most preferably for about 5 days. This treatment is repeated, for example, every 2 to 5 weeks, preferably ever 3 to 4 weeks, particularly about every 4 weeks.

The amount of nucleoside analog to be administered using the above dosage regimen can be determined by conventional, routine procedures, e.g., administering increasing amounts of the compound in order to determine the maximum tolerated dose.

For troxacitabine administration to a patient having a solid tumor, a preferred dosage range is about 1.2 to about 1.8 mg/m²/day, more preferably about 1.5 mg/m²/day. Sufficient time is allowed for the patient to recover from

- 5 this treatment (e.g., for the patient to recover an adequate white blood count to withstand another round of therapy). Generally the time for recovery is about 2-5 weeks. After the recovery period, another round of daily doses is administered as above. A compound of the 10 invention is preferably administered daily as described above about every 2 to 5 weeks, more preferably about every 3 to 4 or every 3 to 5 weeks. This dosage regimen can be repeated as necessary.
- 15 troxacitabine administration to a patient leukemia, higher amounts of the drug can be tolerated. preferred dosage range for troxacitabine for indication is about 3 to about 8 mg/m²/day, preferably about to about 8 $mg/m^2/day$, and most preferably about 8 $mq/m^2/day$. For treatment of leukemia, only one cycle of 20 administration is generally required, although additional cycles can be administered, provided that the drug does not reach toxic levels.
- Optimal dosages for any of the nucleoside analogs of the invention can be determined without undue experimentation.

 Using the daily dosage regimen (schedule) described above, one of skill in the art can routinely determine, using conventional methods, the maximum tolerable dosage for any of the nucleosides described herein. Optimal dosages will vary, of course, with parameters such as age, weight and

20

25

5 physical condition of the patient, nature and stage of the disease, stability and formulation of the compound, route of administration, or the like. In general, because nucleosides modified with lipophilic substituents undergo more efficient passive diffusion through cell membranes 10 troxicitabine, the dosages than does used for nucleoside analogs can be lower than those for troxacitabine, for example, 10 to 100 fold lower.

Compounds of the invention can be administered, using the dosage regimens and dosage amounts discussed above, to any patient having cancer who would benefit from the treatment. For example, the patient to be treated can exhibit cancer cells that are resistant to one or more of other, commonly administered, anticancer drugs, e.g., gemcitabine or ara-C (cytarabine). In another aspect, the malignant cells are deficient in nucleoside membrane transport via nucleoside or nucleobase transporter proteins, e.g., they lack or comprise mutant forms of known nucleoside transporters such as, for example, es, ei, cit, cib, cif, csg, and cs. another aspect, the drug (compound) enters the cancer cell predominantly (e.g., at least about 50%) by passive diffusion.

While it is possible that, for use in therapy, a compound of the invention may be administered as the raw chemical

25

30

thereof.

5 it is preferable to present the active ingredient as a pharmaceutical formulation.

The invention thus further provides a pharmaceutical composition comprising a compound of formula (I) or a

pharmaceutically acceptable salt thereof together with one or more pharmaceutically acceptable carriers therefor and, optionally, other therapeutic and/or prophylactic ingredients. The carrier(s) must be 'acceptable' in the sense of being compatible with the other ingredients of the formulation and not deleterious to the recipient

Pharmaceutical formulations include those suitable for oral, rectal, nasal, topical (including buccal and sub-lingual), vaginal or parenteral (including intramuscular, sub-cutaneous and intravenous) administration or in a form suitable for administration by inhalation or insufflation. The formulations may, where appropriate, be conveniently presented in discrete dosage units and may be prepared by any of the methods well known in the art of pharmacy. All methods include the step of bringing into association the active compound with liquid carriers or finely divided solid carriers or both and then, if necessary, shaping the product into the desired formulation.

5 Pharmaceutical formulations suitable for oral administration may conveniently be presented as discrete units such as capsules, cachets or tablets each containing a predetermined amount of the active ingredient; as a powder or granules; as a solution, a suspension or as an 10 emulsion. The active ingredient may also be presented as a bolus, electuary or paste. Tablets and capsules for oral administration may contain conventional excipients such as binding agents, fillers, lubricants, disintegrants, or wetting agents. The tablets may be coated according to methods well known in the art. Oral liquid preparations may be in the form of, for example, aqueous or oily suspensions, solutions, emulsions, syrups or elixirs, or may be presented as a dry product for reconstitution with water or other suitable vehicle before use. 20 preparations may contain conventional additives such as suspending agents, emulsiying agents, non-aqueous vehicles (which may include edible oils), or preservatives.

The compounds according to the invention may also be

25 formulated for parenteral administration (e.g. by
injection, for example bolus injection or continuous
infusion) and may be presented in unit dose form in
ampoules, pre-filled syringes, small volume infusion or in
multi-dose containers with an added preservative. The

30 compositions may take such forms as suspensions,
solutions, or emulsions in oily or aqueous vehicles, and
may contain formulatory agents such as suspending,

stabilizing and/or dispersing agents. Alternatively, the active ingredient may be in powder form, obtained by aseptic isolation of sterile solid or by lyophilization from solution, for constitution with a suitable vehicle, e.g. sterile, pyrogen-free water, before use.

10

15

20

25

For topical administration to the epidermis the compounds according to the invention may be formulated as ointments, creams or lotions, or as a transdermal patch. Ointments and creams may, for example, be formulated with an aqueous or oily base with the addition of suitable thickening and/or gelling agents. Lotions may be formulated with an aqueous or oily base and will in general also contain one or more emulsifying agents, stabilising agents, dispersing agents, suspending agents, thickening agents, or coloring agents.

Formulations suitable for topical administration in the mouth include lozenges comprising active ingredient in a flavored base, usually sucrose and acacia or tragacanth; pastilles comprising the active ingredient in an inert base such as gelatin and glycerin or sucrose and acacia; and mouthwashes comprising the active ingredient in a

30 Pharmaceutical formulations suitable for rectal administration wherein the carrier is a solid are most

suitable liquid carrier.

20

25

30

5 preferably presented as unit dose suppositories. Suitable carriers include cocoa butter and other materials commonly used in the art, and the suppositories may be conveniently formed by admixture of the active compound with the softened or melted carrier(s) followed by chilling and shaping in moulds.

Formulations suitable for vaginal administration may be presented as pessaries, tampons, creams, gels, pastes, foams or sprays containing in addition to the active ingredient such carriers as are known in the art to be appropriate.

For intra-nasal administration the compounds of the invention may be used as a liquid spray or dispersible powder or in the form of drops.

Drops may be formulated with an aqueous or non-aqueous base also comprising one more more dispersing agents, solubilising agents or suspending agents. Liquid sprays are conveniently delivered from presurrised packs.

For administration by inhalation the compounds according to the invention are conveniently delivered from an insufflator, nebuliser or a pressurised pack or other convenient means of delivering an aerosol spray.

Pressurised packs may comprise a suitable propellant such

as dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas. In the case of a presurrised aerosol the dosage unit may be determined by providing a valve to deliver a metered amount.

10

15

Alternatively, for administration by inhalation or insufflation, the compounds according to the invention may take the form of a dry powder composition, for example a powder mix of the compound and a suitable powder base such as lactose or starch. The powder composition may be presented in unit dosage form in, for example, capsules or cartridges or e.g. gelatin or blister packs from which the powder may be administered with the aid of an inhalator or insufflator.

20

30

When desired the above described formulations adapted to give sustained release of the active ingredient may be employed.

The pharmaceutical compositions according to the invention may also contain other active ingredients such as antimicrobial agents, or preservatives.

The compounds of the invention may also be used in combination with each other and/or with other therapeutic

5 agents. In particular the compounds of the invention may be employed together with known anticancer agents.

The invention thus provides, in a further aspect, a combination comprising a compound of formula (I) or a

10 physiologically acceptable salt thereof together with another therapeutically active agent, in particular an anticancer agent.

The combinations referred to above may conveniently be

15 presented for use in the form of a pharmaceutical
formulation and thus pharmaceutical formulations
comprising a combination as defined above together with a
pharmaceutically acceptable carrier therefor comprise a
further aspect of the invention.

20 Suitable therapeutic agents for use in such combinations include:

- 1) Alkylating agents such as:
 - 2-haloalkylamines (e.g. melphalan and chlorambucil),
 - 2-haloalkylsulfides,
 - N-alkyl-N-nitrosoureas (e.g. carmustine, lomustine or
 - semustine),
- aryltriazines (e.g. decarbazine),
 - mitomycins (e.g. mitomycin C),

- methylhydrazines (e.g. procarbazine),
 - bifunctional alkylating agents (e.g. mechlorethamine),
 - carbinolamines (e.g. sibiromycin),
 - streptozotocins and chlorozotocins,
- phosphoramide mustards (e.g. cyclophosphamide),
 - urethane and hydantoin mustards,
 - busulfan,
 - oncovin;
 - 2) Antimetabolites such as:
- mercaptopurines (e.g. 6-thioguanine and 6-[methylthio]purine),
 - nucleoside (e.g. β -L-dioxolane cytidine),
 - azapyrimidines and pyrimidines,
 - hydroxyureas,
- 5-fluorouracil,
 - folic acid antagonists (e.g. amethopterin),
 - cytarabines,
 - prednisones,
 - diglycoaldehydes,
- methotrexate, and
 - cytosine rabinoside;
 - 3) Intercalators such as:
 - bleomycins and related glycoproteins,

The state of the s

- anthracylines (e.g. doxorubicin, daunorubicin, epirubicin, esorubicin, idarubicin, aclacinomycin A),
 - acridines (e.g. m-AMSA),
 - hycanthones,
- ellipticines (e.g. 9-hydroxyellipticine),
 - actinomycins (e.g. actinocin),
 - anthraquinones (e.g. 1,4-bis[(aminoalkyl)-
 - amino]-9,10-anthracenediones),
 - anthracene derivatives (e.g. pseudourea and bisanthrene),
 - phleomycins,
 - aureolic acids (e.g. mithramycin and olivomycin),
 and
 - Camptothecins (e.g. topotecan);

20

15

- 4) Mitotic inhibitors such as:
 - dimeric catharanthus alkaloids
 - vincristine, vinblastine and vindesine),
- colchicine derivatives (e.g. trimethylcolchicinic acid)
 - epipodophyllotoxins and podophylotoxins
 - etoposide and teniposide),
 - maytansinoids (e.g. maytansine and colubrinol),

- terpenes (e.g. helenalin, tripdiolide and taxol),
 - steroids (e.g. 4ß-hyroxywithanolide E),
 - quassiniods (e.g. bruceantin),
 - pipobroman, and
 - methylglyoxals (e.g.
 methylglyoxalbis-(thiosemicarbazone);
 - 5) Hormones(e.g. estrogens, androgens, tamoxifen, nafoxidine, progesterone, glucocorticoids, mitotane, prolactin);

15

10

- 6) Immunostimulants such as:
 - human interferons, cytokines, levamisole and tilorane;
- 20 7) Monoclonal and polyclonal antibodies;
 - 8) Radiosensitizing and radioprotecting compounds such as:
 - metronidazole and misonidazole;
 - 9) Other miscellaneous cytotoxic agents such as:
- camptothecins,
 - quinolinequinones,
 - streptonigrin and isopropylidene azastreptonigrin),
 - cisplatin, cisrhodium and related platinum series complexes,

- 5 • tricothecenes (e.g. trichodermol or vermicarin A), and
 - cephalotoxines (e.g. harringtonine);
 - 10) Enzymes, such as
- 10 L-asparaginase;
 - 11) Drug-resistance reversal compounds such as P-glycoprotein inhibitors, for example Verapamil, cyclosporin-c, and fujimycin;
 - 12) Cytotoxic cells such as lymphokine activated killer -cells or T-cells;
 - 13)Other Immunostimulants such as interleukin factors or antigens;
 - 14) Polynucleotides of sence or antisensing nature;
 - 15) Polynucleotides capable of forming triple helices with
- 20 DNA or RNA;
 - 16) Polyethers;
 - 17) Distamycin and analogs;
 - 18) Taxanes such as taxol and taxotere; and
- 25 toxicities such as granulocyte macrophage colony stimulating factor (GM-CSF) and granulocyte colony stimulating factor (G-CSF).

19) Agents that are protective against drug induced

The above list of possible therapeutic agents is not 30 intended to limit this invention in any way.

5 The individual components of such combinations may be administered either sequentially or simultaneously in separate or combined pharmaceutical formulations.

When a compound of formula (I), or a pharmaceutically

10 acceptable salt thereof is used in combination with a

second therapeutic agent the dose of each compound may be
either the same as or differ from that when the compound
is used alone. Appropriate doses will be readily
appreciated by those skilled in the art.

15

20

25

30

The compounds of formula (I) and their pharmaceutically acceptable salts may be prepared by any method known in the art for the preparation of compounds of analogous structure, for example as described in international application No PCT/CA92/00211 published under No Wo 92/20669 which is herein incorporated by reference.

Certain intermediates useful in the synthesis of the compounds of the present invention can be synthesized as generally described in J.Med.Chem. 1994, 37, 1501-1507, Lyttle et al.

It will be appreciated by those skilled in the art that for certain of the methods the desired stereochemistry of the compounds of formula (I) may be obtained either by commencing with an optically pure starting material or by resolving the racemic mixture at any convenient stage in

15

5 the synthesis. In the case of all the processes the optically pure desired product may be obtained by resolution of the end product of each reaction.

It is also possible to resolve the final compound using chiral HPLC (high pressure liquid chromatography) as it is well known in the art.

Brief Description of the Drawings

Various other features and attendant advantages of the present invention will be more fully appreciated as the same becomes better understood when considered in conjunction with the accompanying figures, wherein:

Fig. 1 Comparative uptake of 30 μ M [3 H]-troxacitabine in CEM (Panel A) and CEM/ARAC8C (Panel B) cells. [3 H]-Uridine uptake in either the presence or absence of the hENT1 inhibitor, NBMPR or 5 mM non-radioactive uridine was included for comparison as a control substrate. Each data point represents the mean (\pm standard deviation) of three determinations.

25

20

Fig. 2 Comparative uptake of 10 μ M [³H]troxacitabine (0-240 min) (Panel B) and 10 μ M [³H]D-uridine (0-6 min) (Panel A) in the presence (♠) or absence (□) of the hENT1 inhibitor, 100 nM NBMPR, in DU145 cells. Each data point

5 represents the mean (\pm standard deviation) of three determinations.

106

Fig. 3 Comparative uptake of 10 μ M [3 H]troxacitabine and 10 μМ [3H]D-uridine in HeLa cells. Α. Uptake of $[^{3}H]$ troxacitabine ($[^{0}]$) and $[^{3}H]$ D-uridine ($[^{0}]$) in the presence 10 of the hENT1 inhibitor, 100 nM NBMPR using a scale of 0-1500 pmol/106 cells. B.Uptake of [3H]troxacitabine either in the absence (\square) or presence of 100 nM NBMPR (\blacktriangle), 100 μ M dilazep (\blacktriangledown), 1 mM non-radioactive troxacitabine (\spadesuit) or 20 μM dipyridamole (•), using an expanded scale of 0-15 15 $pmol/10^6$ cells. Each data point represents the mean (± standard deviation) of three determinations.

 μ M [³H]D-uridine in HeLa cells transiently transfected with recombinant pcDNA3 containing either the coding sequence for: (A) hCNT1 or (B) hCNT2. Transport assays were conducted in the presence of the equilibrative transport inhibitor, 100 μ M dilazep and either in the presence (\Box) or absence (\triangle) of with the empty vector control plasmid (∇).sodium, and compared to HeLa cells transiently

Fig. 4 Comparative uptake of 10 μ M [3 H]troxacitabine and 10

transfected with the empty vector control plasmic (▼).

Without further elaboration, it is believed that one skilled in the art can, using the preceding description,

30 utilize the present invention to its fullest extent. The

5 following preferred specific embodiments are, therefore,
to be construed as merely illustrative, and not limitative
of the remainder of the disclosure in any way whatsoever.
In the foregoing and in the following examples, all
temperatures are set forth uncorrected in degrees Celsius;
10 and, unless otherwise indicated, all parts and percentages
are by weight.

107

The entire disclosures of all applications, patents and publications, cited above and below, including provisional applications Serial Nos. 60,239,885 (filed October 13, 2000) and 60/288,424 (filed May 4, 2001), are hereby incorporated by reference.

20

15

EXAMPLE 1

Preparation of 2-(prolyloxymethyl)-4-cytosin-1''-yl-1,3-dioxolane hydrochloride (1, 1a, and 1b)

STEP 1

Preparation of 4-Acetoxy-2-(O-Benzoyloxymethyl)-dioxolane

10

15

20

5

A mixture of Benzyl-1,2-Dihydroxy Butyrate (116 mg; 0.97 mmol), Benzoyloxybenzaldehyde (159mg; 0.97 mmol) and ρ-toluene sulfonic acid (9mg; 0.047 mmol) in dry benzene (25ml) under argon is heated at reflux for 4 h. Solvent is then removed under reduced pressure and the remaining solid is worked-up by washing with 5% sodium bicarbonate. A purification of the crude material by chromatography on silica gel gives the expected benzyl ester. The resulting compound is dissolved in ethanol

- 5 (25ml) and treated with Pd/C (excess) under hydrogen atmosphere overnight. Filtration of the catalyst and evaporation of the solvent affords the expected deprotected acid.
- Lead acetate (146mg; 0.34mmol) and pyridine (0.03ml, 0.33mmol) are added to a solution of the crude solid (90mg; 0.33mmol) in dry tetrahydrofuran (THF) (25ml) under argon atmosphere. The mixture is stirred for 4 h under argon and the solid is removed by filtration. The crude material is washed with ethyl acetate(EtOAc) and purified by chromatography on silica gel. This affords the pure dioxolane derivative.

STEP 2

20 Preparation of 1-[2-benzoyloxy methyl-1,3-dioxolan-4-yl] cytosine.

A mixture of N⁴-acetylcytosine (124mg; 0.75mmol), dry hexamethyl disilazane (20ml) and ammonium sulfate (2-3mg; catalyst) is refluxed for 5 h. under an argon atmosphere. The clear solution is cooled to room temperature and the solvent evaporated under reduced pressure. The resulting

- 5 residue is dissolved in dry dichloromethane (15ml). A solution of the dioxolane derivative obtained in step 1 (102mg; 0.55mmol) in dry dichloromethane (10ml) and iodotrimethyl silane (0.076ml; 0,54mmol) is added to the silylated cytosine. The resulting mixture is stirred for
- 10 4 h. and worked-up by treating the solution with a 5% solution of sodium bicarbonate. The solvent of the resulting organic layer is evaporated under reduced pressure. The crude material is purified by chromatography on silica gel to give the expected nucleoside derivative.

STEP 3

1-[2-hydroxymethyl-1,3-dioxolan-4-yl] N-

- [(dimethylamino)methylene] cytosine (268 mg; 1mmol) is dissolved in dichloromethane (10 ml). To this solution is added dicyclohexylcarbodiimide (206 mg; 1 mmol); 4- (dimethylamino)-pyridine (12 mg; 0.1 mmol); and Bocproline (215 mg; 1mmol) at 0°C. The reaction is stirred at this temperature overnight. Insoluble is filtered off and the solvent is evaporated to dryness. The solid is redissolved in dry ether (15 ml) and the solution is bubbled with HCl gas at 0°C for ten minutes. The reaction is kept at room temperature for 2 h.. The white
- 30 precipitate is filtered and dried.

sap

Preparation of 2-(isoleucinyloxymethyl)-4-cytosin-1''-yl-1,3-dioxolan hydrochloride salt (2, 2a, and 2b)

10

15

The above compound is synthesized according to the procedure described in example 1 except that proline is replaced by isoleucine.

5 **EXAMPLE 3**

Preparation of 2-(leucinyloxymethyl)-4-cytosin-1''-yl-1,3-dioxolane hydrochloride salt (3, 3a, and 3b)

10

20

The above compound is synthesized according to the procedure described in example 1 except that proline is replaced by leucine.

15 **EXAMPLE 4**

Preparation of 2-(cysteinyloxymethyl)-4-cytosin-1''-yl-1,3-dioxolane hydrochloride salt (4, 4a, and 4b)

HS
$$NH_3^+$$
 $(4a)$ $CI^ (4b)$

35

5 The above compound is synthesized according to the procedure described in example 1 except that proline is replaced by cysteine.

EXAMPLE 5

Preparation of 2-(prolylglycinyloxymethyl)-4-cytosin-1''yl-1,3-dioxolane hydrochloride salt (5, 5a, and 5b)

The compound is synthesized according to the procedure described in example 1 except that proline is replaced by prolylglycine.

15

Preparation of 2-(prolylprolynyloxymethyl)-4-cytosin-1''-yl-1,3-dioxolane hydrochloride salt (6, 6a, and 6b)

$$CI \stackrel{\sim}{\longrightarrow} H_2 \stackrel{\sim}{\longrightarrow} M \stackrel{\sim}{\longrightarrow} M$$

The above compound is synthesized according to the procedure described in example 1 except that proline is replaced by prolylproline.

15

Preparation of 2-(prolylleucinyloxymethyl)-4-cytosin-1''-yl-1,3-dioxolane hydrochloride salt (7 7a, and 7b)

The above compound is synthesized according to the procedure described in example 1 except that proline is replaced by prolylleucine.

Preparation of 2-(1'-methylthio-2'-0-methyl-3'glycerolphosphonate)-4-cytosin-1''-yl-1,3-dioxolane (88a, and 8b)

10

5

Step 1

Preparation of 1-methylthio-2-O-methyl-3
glycerolphosphonate

CH₂SCH₃

20 **CHOCH₃**

To an ice-cold mixture of Phosphorus oxychloride (445 mg; 2.9 mmol) and hexanes (5 ml) is added dropwise triethyl amine (295.35 mg; 2.9 mmol) in hexanes (5 ml). To this mixture is added dropwise a solution of dried 1-methylthio-2-O-methyl 3-glycerol (98 mg; 1.9 mmol) in toluene (100 ml) at 0-5°C over a period of 1.5 h, and then the mixture is stirred at room temperature overnight.

Water is added to the mixture and the organic layer is

Step 2

Preparation of 2-(1'-methylthio-2'-O-methyl-3'glycerolphosphonate) - 4-cytosin-1''-yl-1,3-dioxolane (8'8a, and 8b)

evaporated to give the desired product.

The phosphonate prepared in the first step (242 mg; 0.39 mmol) is dissolved in pyridine (10 ml). To this solution is added the dioxolane monophosphate morpholidate (198 mg; 0.31 mmol) and the mixture is stirred at room temperature for three days. Solvent is evaporated and the residue was purified by ion exchange column.

15

EXAMPLE 9

Preparation of 4-cytosin-1''-yl-1,3-dioxolane-2-(tetrahydropyranylmethyl) ether (9 9a, and 9b)

A mixture of cytosine nucleoside (684 mg; 1.9 mmol), 3,4-dihydro-2H-pyran (336 mg; 4 mmol), and p-toluene sulfonic acid (38 mg; 0.19 mmol) in dichloromethane (20 ml) is stirred for 3 h. Solvent is removed under reduced pressure and the residue is purified by chromatography.

15

Preparation of 4-cytosin-1''-yl-1,3-dioxolane-2-(tetrahydrofuranylmethyl) ether (10 10a, and 10b)

$$(10)$$

$$O \longrightarrow N \longrightarrow NH_{2}$$

The above compound is synthesized according to the procedure described in example 9 except that 3,4-dihydro-2H-pyran is replaced by Ph_2CHCO_2 -2-tetrahydrofuranyl.

EXAMPLE 11

Procedure: EDC (407 mg, 2.12 mmol, 1.0eq) and DMAP (27 mg, 0.21mmol, 0.1eq) were added to a suspension of the

5 nucleoside (451 mg, 2.12 mmol, 1.0eq) and the acid (486 mg, 2.12mmol, 1.0eq) in DMF (10 mL) and the clear mixture stirred over night at room temperature. All solvent was evaporated to dryness and residue purified by chromatography (from 100% ethyl acetate to 15% methanol in ethyl acetate) 385 mg of ester was recovered.

EXAMPLE 12

Procedure: EDC (407 mg, 2.12 mmol, 1.0eq) and DMAP (27 mg, 0.21mmol, 0.1eq) were added to a suspention of the nucleoside (451 mg, 2.12 mmol, 1.0eq) and the acid (486 mg, 2.12mmol, 1.0eq) in DMF (10 mL) and the clear mixture stirred over night at room temperature. All solvent was evaporated to dryness and residue purified by chromatography (from 100% ethyl acetate to 15% methanol in ethyl acetate) 85 mg of amide was recovered.

Procedure: TFA (3 mL) was added to a dichloromethane solution (7 mL) of BOC protected compound (124 mg, 0.28 mmol) and stirred for 2 hours. All solvent was evaporated to dryness. The crude was redissolved in minimal amount of methanol (0.5 mL) and slowly added to ether (10 mL) with strong agitation. The supernatant was removed and the solid dried under vacuum. 125 mg was isolated.

15

20

10

1H NMR (400 MHz, DMSO-d6): 8.50 (br s, 1H), 8.25 (br s,
2H), 7.80 (d, J=7.5Hz, 1H), 6.23 (d, J=4.0Hz, 1H), 6.01
(d, J=8.0Hz, 1H), 5.19 (t, J=3.0Hz, 1H), 4.35-4.25 (m,
3H), 4.16 (m, 1H), 3.25 (d, J=13.5Hz, 2H), 2.88 (q,
J=11.0Hz, 2H), 2.36 (d, J=7.0Hz, 2H), 1.95 (m, 1H), 1.81
(d, J=13.0Hz, 2H), 1.33 (q, J=10.0Hz, 2H).

EXAMPLE 14

Procedure: TFA (3 mL) was added to a dichloromethane solution (7 mL) of BOC protected compound (81 mg, 0.19 mmol) and stirred for 2 hours. All solvent was evaporated to dryness. The crude was redissolved in minimal amount of methanol (0.5 mL) and slowly added to ether (10 mL) with strong agitation. The supernatant was removed and the solid dried under vacuum. 54 mg was isolated.

1H NMR (400 MHz, DMSO-d6): 10.92 (s, 1H), 8.50 (br s, 1H),
8.38 (d, J=7.5Hz, 1H), 8.15 (br s, 1H), 7.22 (d, J=7.5Hz,
20 1H), 6.15 (m, 1H), 5.00 (s, 1H), 4.17 (d, J=4.5Hz, 2H),
3.71 (s, 2H), 3.24 (d, J=12.0Hz, 2H), 2.89 (q, J=8.5Hz,
2H), 2.39 (d, J=7.0Hz, 2H), 2.00 (br s, 1H), 1.79 (d,
J=14.0Hz, 2H), 1.34 (q, 12.0Hz, 2H).

Procedure: EDC (512 mg, 2.67 mmol, 1.0eq) and DMAP (34 mg, 0.27 mmol, 0.1eq) were added to a suspention of the nucleoside (568 mg, 2.67 mmol, 1.0eq) and the acid (565 mg, 2.67 mmol, 1.0eq) in DMF (10 mL) and the clear mixture stirred over night at room temperature. All solvent was evaporated to dryness and residue purified by chromatography (from 100% ethyl acetate to 15% methanol in ethyl acetate) 355 mg of ester was recovered.

EXAMPLE 16

Procedure: EDC (512 mg, 2.67 mmol, 1.0eq) and DMAP (34 mg, 0.27 mmol, 0.1eq) were added to a suspention of the nucleoside (568 mg, 2.67 mmol, 1.0eq) and the acid (565

5 mg, 2.67 mmol, 1.0eq) in DMF (10 mL) and the clear mixture stirred over night at room temperature. All solvent was evaporated to dryness and residue purified by chromatography (from 100% ethyl acetate to 15% methanol in ethyl acetate) 355 mg of ester was recovered.

EXAMPLE 17

Procedure: EDC (512 mg, 2.67 mmol, 1.0eq) and DMAP (34 mg, 0.27 mmol, 0.1eq) were added to a suspention of the nucleoside (568 mg, 2.67 mmol, 1.0eq) and the acid (565 mg, 2.67 mmol, 1.0eq) in DMF (10 mL) and the clear mixture stirred over night at room temperature. All solvent was evaporated to dryness and residue purified by chromatography (from 100% ethyl acetate to 15% methanol in ethyl acetate) 102 mg of amide was recovered.

15

20

Procedure: TFA (3 mL) was added to a dichloromethane solution (7 mL) of BOC protected compound (127 mg, 0.31 mmol) and stirred for 2 hours. All solvent was evaporated to dryness. The crude was redissolved in minimal amount of methanol (0.5 mL) and slowly added to ether (10 mL) with strong agitation. The supernatant was removed and the solid dried under vacuum. 111 mg was isolated.

1H NMR (400 MHz, DMSO-d6): 8.40 (br s, 2H), 8.15 (br s,
1H), 7.75 (d, J=7.5Hz, 1H), 6.27 (d, J=4.0Hz, 1H), 6.00
(d, J=7.5Hz, 1H), 5.23 (t, J=3.5Hz, 1H), 4.49 (qd,
J=12.0Hz, J=3.0Hz, 2H), 4.29 (d, J=10.0Hz, 1H), 4.19 (m,
1H), 4.04 (s, 1H), 2.14 (m, 1H), 0.95 (D, J=7.0Hz, 6H).

EXAMPLE 19

10

15

Procedure: TFA (3 mL) was added to a dichloromethane solution (7 mL) of BOC protected compound (100 mg, 0.24 mmol) and stirred for 2 hours. All solvent was evaporated to dryness. The crude was redissolved in minimal amount of methanol (0.5 mL) and slowly added to ether (10 mL) with strong agitation. The supernatant was removed and the solid dried under vacuum. 54 mg was isolated.

1H NMR (400 MHz, DMSO-d6): 8.48 (d, J=7.5Hz, 1H), 8.25 (br
20 s, 3H), 7.17 (d, J=7.5Hz, 1H), 6.16 (d, J=4.0Hz, 1H), 5.29
(m, 1H), 5.03 (t, J=2.5Hz, 1H), 4.25-4.15 (m, 2H), 3.90
(s, 1H), 3.72 (s, 2H), 2.18 (m, 1H), 0.95 (m, 6H).

15

EXAMPLE 20

Procedure: Paratoluene sulfonic acid (82mg, 0.43 mmol, 1.0eq.) was added to asolution of BCH-4556 (92mg, 0.43mmol, 1.0eq.) in DMF (1mL) and 3,4-dihydropyran (3mL). The reaction was stirred for 16 hours and potassium carbonate (119mg, 0.86mmol, 2.0eq.) added and stirred for 1 hour. The solid was filtered off and the solvent evaporated to dryness. The crude was purified by flash using a gradient of 5 to 10% methanol in dichloromethane. 100mg of desired compound was isolated.

1H NMR (400 MHz, DMSO-d6): 7.79 (t, J=8.0hz, 1H), 7.18 (br
20 d, J=20.0hz, 2H), 6.20 (m, 1H), 5.71 (d, J=7.0hz, 1H),
5.09 (m, 1H), 4.68 (m, 1H), 4.09 (m, 2H), 3.86 (m, 1H),
3.80-3.65 (m, 2H), 3.48 (m, 1H), 1.80-1.60 (m, 2H), 1.601.45 (m, 4H).

EXAMPLE 21

Preparation of Cis-L-2-[2''-cyanoethyl methoxy- L-phenylalaninylphosphoroamidyloxymethyl-4-(cytosin-1'-yl)]-1,3-dioxolane

10

15

20

25

30

Procedure: Dry BCH 4556(dimethylaminomethylene derivative, 0.1 g, 0.373 mmol) was dissolved in dry DMA (2 ml) under nitrogen and cooled in an ice bath. Diisopropylethylamine(0.2 ml) and 2, cyanoethyl-N, Ndiisopropylchlorophosphoramidite (0.17 ml, 1.12 mmol) were added in respective order. After 1 hour ¹Tetrazole (0.1 g, 1.49 mmmol) was added and after 10 minutes dry methanol (0.05 ml) was introduced. The reaction mixture was allowed to warm to room temperature over 2 hours. phenylalanine methyl ester (hydrochloride, 0.39 g, 2.18 mmol) and iodine (0.19 g, 0.746 mmol) were added in respective order. Combined mixture was allowed to stir for 2 hours and excess iodine was quenched with saturated sodium thiosulphate solution. It was evaporated to dryness and the residue was extracted with dichloromethane, washed with brine and dried over an hydrous MgSO4. After evaporation the crude product was purified on a flash silica gel column which was eluted with a mixture of dichloromethane and methanol (ratio

10:1). Tare of the title compound was 0.072 g.

 1 H-NMR (400 MHz, CDCl₃): δ:7.95(1H, d); 6.7(1H, dd); 6.2(1H, dd); 5.01(1H,s); 4.9-2.5 (m, 14H) ppm.

Appearance oil

10 Ref. Abraham, T.W.; Wagner, C.R. Nucleosides &

Nucleotides, 13(9), 1891-1903 (1994)

got goth goth rough from worth if it goth the state of th

20

5 EXAMPLE 22

Preparation of Cis-L-2-methoxy-L-phenylalaninylphosphoroamidyloxymethyl-4-(cytosin-1'-yl)]-1,3-dioxolane

Ammonium salt

Ref Abraham, T.W.; Wagner, C.R. Nucleosides & Nucleotides, 13(9), 1891-1903 (1994)

Appearance Foam

Procedure: Dry Cis-L-2-[2''-cyanoethyl methoxy- L-phenylalaninylphosphoroamidyloxymethyl-4-(cytosin-1'-yl)]-1,3-dioxolane (0.072g, 0.128 mmol) was dissolved in dry methanol (9.7 ml) and mixed with a saturated solution of ammonia in dry methanol (5.8 ml). Combined mixture was allowed to stir for 1 hour. Solvent was evaporated and the crude product was purified ona silica gel column which was eluted with a mixture of dichloromethane and methanol (ratio 2:1). Tare of the title compound was 0.031g.

5 ¹H NMR(400 MHz, CD₃OD) δ: 8.15(1H,d); 7.2(5H,m); 6.25(1H,t); 6.05(1H,d); 5.08(1H,s); 4.05(5H,m); 3.55(3H,s); 3.0(2H,qq) ppm.

UV: λ_{max} (MeOH) 272 nm.

10

MS: m/e 453.2

Preparation of Cis-1-Cyclosaligenyl-2-oxymethyl-[(4-cytosin-1'-yl)-1,3-dioxolane]-phosphate diastereomers

10

15

20

Procedure: Dry BCH 4556(dimethylaminomethylene derivative, 0.05g, 0.1865 mmol) was dissolved in dry DMF (2 ml) and dry THF (1 ml). It was cooled to -40° C in an argon atmosphere. Freshly activated powdered molecular sieves (0.05g) were added. Cyclic saligenylchloroposphanes (0.071g, 0.373 mmol) was dissolved in dry THF (0.5 ml) and introduced over 30 minutes. Combined mixture was stirred at -40° C for another half an hour. Tert-Butylhydroproxide (3 M solution in 2,2,4-trimethylpentane, 0.125 ml) was added. After stirring for half an hour, the reaction mixture was allowed to wam to room temperature. The solvent was evaporated and the crude product was extracted with ethyl acetate. It was purified on a silica gel column using a

5 mixture of ethyl acetate and methanol (ratio 5:2).

Further purification and the separation of diastereomers

was carried on reverse phase HPLC.

¹H NMR(400MHZ, DMSO-D6)δ: 8.25(1H,d); 7.4(5H,m);

6.15(1H,t); 5.75(1H,d), 5.5(2H,m); 5.2(1H,s); 4.2(4H,m)

ppm.

UV: λ_{max} (MeCN) 277nm

15 MS: m/e 381

Ref Meier, C.; Knispel, T.; Appearance Foam Marquez, V.E.; Siddiqui, M.A.; De Clercq, E.; Balzarini, J. J. Med. Chem. 1999, 42, 1615-1624.

EXAMPLE 24

Preparation of Cis-L-2-methoxy-Ltryptophanyllphosphoroamidyloxymethyl-4-(cytosin-1'-yl)]1,3-dioxolane Ammonium salt

Procedure: Dry BCH 4556 (dimethylaminomethylene derivative, 0.16 q, 0.597 mmol) was dissolved in dry DMA (3.2 ml) under nitrogen and cooled in an ice bath. Diisopropylethylamine(0.32 ml) and 2, cyanoethyl-N, Ndiisopropylchlorophosphoramidite (0.27 ml, 1.79 mmol) were 10 added in respective order. After 1 hour ¹Tetrazole (0.16 q, 2.38 mmmol) was added and after 10 minutes dry methanol (0.08 ml) was introduced. The reaction mixture was allowed to warm to room temperature over 2 hours. Ltryptophan methyl ester (hydrochloride, 0.74 g, 3.5 mmol) 15 and iodine (0.32 g, 1.2 mmol) were added in respective Combined mixture was allowed to stir for 2 hours and excess iodine was quenched with saturated sodium thiosulphate solution. It was evaporated to dryness and the residue was extracted with dichloromethane, washed 20 with brine and dried over an hydrous MgSO4. After evaporation the crude product was purified on a flash silica gel column which was eluted with a mixture of

25

30

The product was dissolved in dry methanol (15 ml) and mixed with a saturated solution of ammonia in dry methanol (9.3 ml). Combined mixture was allowed to stir for 1 hour. Solvent was evaporated and the crude product was purified on a silica gel column which was eluted with a

dichloromethane and methanol (ratio 5:1).

5 mixture of dichloromethane and methanol (ratio 2:1). Tare of the title compound was 0.016 g.

¹H NMR(400 MHz, CD₃OD)δ: 8.1(1H,d); 7.2(5H,m); 6.2(1H,t); 5.95(1H,d); 5.05(1H,s); 4.1(5H,m); 3.35(5H,m) ppm.

10

15

EXAMPLE 25

<u>Preparation of (2S,4S)-2-[bis(S-pivaloy1-2-thioethyl)phosphono]-4-cytosin-1'-yl-1.3-dioxolane</u>

Procedure: Dry BCH 4556 (dimethylaminomethylene derivative, 0.095 g, 0.354 mmol) was mixed with bis-(S-pivaloy1-2-thioethyl)-N,N-diisipropylphosphoramidite (0.18 g, 0.5 mmol, prepared following the procedure described in P.R.No.27-25) and dissolved in dry dichloromethane (15 ml). ¹H-tetrazole (0.075 g, 1.06 mmol) was added and the

- 5 combined solution was stirred under nitrogen atmosphere at room temperature for 1 hour. It was cooled to -40°C and treated with tert-butylhydroproxide (3 M solution in 2,2,4-trimethylpentane, 0.25 ml). Reaction mixture was allowed to warm up to room temperature during overnight.
- 10 Solvent was evaporated and the residue was purified on a silica gel column using a mixture of ethyl acetate and methanol (ratio 40:1). Tare of the title product 0.055 g.

¹H NMR(400 MHz, CDCl₃) δ: 7.8(1H, d); 6.3(1H, t); 5.95(1H, d); 4.18(8H, m); 3.15(4H, m); 1.2(18H, s) ppm.

 31 P NMR(16 MHz, CDCl₃) δ : -0.13

UV : λ_{max} (MeCN) 271nm

MS : m/e 582.4

10 <u>Typical procedure for the reaction with alkyl(or aryl)</u> chloroformate

BCH-4556 (1 mmole) and phenyl chloroformate (1 mmole) were stirred for 24 hours in 10 mL of pyridine. Pyridine was then evaporated, the residue was dissolved in 10 mL of water and extracted with dichloromethane. The organic phase is dried on sodium sulfate evaporated and the residue is chromatographed on silica gel eliuuting firdt with 50/50 ethyl acetate/hexane, then ethyl acetate and

5 finally with 10% MeOH/dichloromethane. The three compounds were isolated separately. The final products can be further purified using reverse phase preparative HPLC.

the tent

The second secon

Example 27

The following are additional synthesis reaction schemes.

 $n = 3, 4, 5; X = CH_2; R = CH_3$

n = 3, 4, 5; X = O; R = CH₃

 $n = 3, 4, 5; X = CH_2; R = N(CH_3)_2$

 $n = 3, 4, 5; X = 0; R = N(CH_3)_2$

Prodrug

HO ROCOCI, pyridine
$$R = alkyl$$
, phenyl

20

25

EXAMPLE 28

Preparation of [1-(2-Hydroxymethyl-[1,3]dioxolan-4-yl)cysosyl]carbamic acid benzyl ester

10

Procedure:

Benzylchloroformate (0.80 mL, 5.6 mmol) was added dropwise to a 0°C solution of BCH-4556 (955 mg, 4.48 mmol) and DMAP (657 mg, 5.38 mmol) in dimethylformamide and pyridine and stirred at room temperature for The was concentrated in vacuo. reaction mixture The oil obtained was partitioned between water (20mL) and dichloromethane (30mL). Aqueous layer was extracted with DCM. Organic layers were combined, dried over MqSO4, filtered and concentrated to a yellow gum. The crude residue was purified by silica gel biotage (40S) (100 % DCM to 10 % MeOH: 90 % DCM) to give 837 mg (54 % yield) of [1-(2-Hydroxymethyl-[1,3]dioxolan-4-yl)cysosyl]carbamic acid benzyl ester as a white powder, M.F. $C_{16}H_{17}N_3O_6$, M.W. 347.33.

¹H NMR (400 MHz, CDCl₃), δ ppm: 8.44 (d, 1H, J = 7.4Hz), 30 7.39-7.37 (m, 5H), 7.25 (m, 1H), 6.18 (d, 1H, J = 3.9Hz), 5.21 (s, 2H), 5.13-5.12 (m, 1H), 4.34 (d, 1H, J = 10.1Hz), 4.25 (dd, 1H, J = 5.2, 10.1Hz), 4.01-3.97 (m, 2H). MS: ES⁺ 348.4 (M+1), ES⁻ 346.3 (M-1).

15

20

25

Preparation of [1{2-(trans-4-pentylcyclohexylcarboxy) oxy-methyl-[1,3]dioxolan-4-yl}cysosyl]carbamic acid benzyl ester

Procedure:

EDCI (1.66g, 8.64 mmol) was added to a 0°C solution of [1-(2-Hydroxymethyl-[1,3]dioxolan-4-yl)cysosyl]carbamic acid benzyl ester (2.5 g, 7.20 mmol), DMAP (1.05 g, 8.64 mmol) and trans-4-pentylcyclohexylcarboxylic acid (1.71g, 8.64 mmol) in dichloromethane and stirred at room temperature for 18h. The reaction was washed with HCl, saturated NaHCO3 and brine. Organic layer was separated, dried over MgSO4, filtered and concentrated in vacuo. The crude residue was purified by silica gel biotage (40M) (100 % DCM to 3 % MeOH: 97 % DCM) to give 3.92 g (100 % yield) of [1{2-(trans-4-pentylcyclohexylcarboxy) oxymethyl-1,3]dioxolan-4-yl}cysosyl]carbamic acid benzyl ester as a white powder, M.F. C28H37N3O7, M.W. 527.62.

¹H NMR (400 MHz, CDCl₃), δ ppm: 8.15 (d, 1H, J = 7.4Hz), 7.39-7.31 (m, 5H), 7.30 (d, 1H, J = 7.4Hz), 6.19 (d, 1H, J = 4.1Hz), 5.24-5.22 (m, 3H), 4.55 (dd, 1H, J = 3.3, 12.7Hz), 4.32-4.22 (m, 3H), 2.31-2.23 (m, 1H), 1.99-1.91 (m, 2H), 1.85-1.80 (m, 2H), 1.49-1.37 (m, 1H), 1.31-1.16 (m, 10H), 0.98-0.86 (m, 5H).

15

20

25

EXAMPLE 30

Preparation of trans-4-Pentylcyclohexylcarboxylic acid 4-cytosyl-[1,3]dioxolan-2-ylmethyl ester

Procedure:

[1{2-(trans-4-pentylcyclohexylcarboxy)oxymethyl-[1,3]dioxolan-4-yl}cysosyl]carbamic acid benzyl (3.8q, 7.20 mmol) and Pd/C 10% (600 mg) were suspended in ethanol and EtOAc. The reaction was treated three times with a vacuum-nitrogen sequence and left under nitrogen. It was then submitted to a vacuum-hydrogen sequence and the reaction stirred under hydrogen for 3 reaction was filtered on a celite pad and washed with EtOH and the solution concentrated in vacuo. The crude solid was purified by silica gel biotage (40M) to give 2.44 g (86 % yield) of trans-4-pentylcyclohexylcarboxylic acid 4cytosyl-[1,3]dioxolan-2-ylmethyl ester as a white powder, $M.F. C_{20}H_{31}N_3O_5$, M.W. 393.49.

¹H NMR (400 MHz, CD₃OD), δ ppm: 7.85 (d, 1H, J = 7.5Hz), 6.23 (dd, 1H, J = 1.9, 5.3Hz), 5.90 (d, 1H, J = 7.5Hz), 5.21 (t, 1H, J = 2.7Hz), 4.43 (dd, 1H, J = 2.7, 12.7Hz), 4.29 (dd, 1H, J = 2.6, 12.7Hz), 4.25-4.17 (m, 2H), 2.29-2.22 (m, 1H), 1.95-1.89 (m, 2H), 1.83-1.80 (m, 2H), 1.44-1.19 (m, 11H), 0.99-0.88 (m, 5H).

5 EXAMPLE 31

Preparation of trans-4-Pentylcyclohexylcarboxylic acid 4-cytosyl-[1,3]dioxolan-2-ylmethyl ester hydrochloride salt

10 (264)

Procedure:

A 1M ether solution of HCl was added to a 0°C solution of trans-4-pentylcyclohexylcarboxylic acid 4-cytosyl-1,3]dioxolan-2-ylmethyl ester in a 1:1 mixture of MeOH and DCM and the reaction strirred at room temperature for 1.5h. Solvent was then removed in vacuo to give 99% yield of trans-4-pentylcyclohexylcarboxylic acid 4-cytosyl-1,3]dioxolan-2-ylmethyl ester hydrochloride salt as a white powder, M.F. $C_{20}H_{31}N_{3}O_{5}$ HCl, M.W. 429.95.

20

15

¹H NMR (400 MHz, CD₃OD), δ ppm: 8.13 (d, 1H, J = 7.8Hz), 6.26 (dd, 1H, J = 1.5, 5.5Hz), 6.11 (d, 1H, J = 7.8Hz), 5.24 (t, 1H, J = 2.8Hz), 4.47 (dd, 1H, J = 2.8, 12.6Hz), 4.40 (dd, 1H, J = 1.2, 10.3), 4.31 (dd, 1H, J = 2.8, 12.6Hz), 12.6Hz), 4.22 (dd, 1H, J = 5.5, 10.3Hz), 2.31-2.25 (s, 1H), 1.96-1.91 (m, 2H), 1.85-1.82 (m, 2H), 1.42-1.19 (m, 11H), 0.96-0.88 (m, 5H).

15

20

25

30

1.35

:.[] :.[]

4, [

....

ij

125

...

[]

445

EXAMPLE 32

Preparation of Octadecen-9-enoic[1-(2-hydroxymethyl-[1,3]dioxolan-4-yl)-2-oxo-1,2-dihydro-pyrimidin-4-yl]-amide

Procedure:

The starting material (BCH-4556, 86,3 mg, 0,405 mmole) is dissolved in DMF. Diisopropylethyl amine is then added (0,486 mmole, 1,2 eq) followed by the acid (0,521 mmole, 1,3 eq.). CH_2Cl_2 is then added to put everything in solution. HATU (168 mg, 0,446 mmole, 1,1 eq) is then added and the solution is stirred for 2 days. A saturated aqueous solution of NaHCO3 is then added and extracted with CH_2Cl_2 . The organic phase is evaporated and the residue is purified by Biotage with a Flash 12S column using 2% MeOH in CH_2Cl_2 followed by 4% MeOH in CH_2Cl_2 . The desired fractions are recovered and evaporated to afford 39% of the desired compound.

¹H NMR (400 MHz, CDCl₃) δ 8,98 (s, 1H), 8,46 (d, 1H, J=7,6 Hz), 7,42 (d, 1H, J=7,6 Hz), 6,18 (dd, 1H, J=5,2 and 1,4 Hz), 5,36 (m, 2H), 5,11 (t, 1H, J=1,8 Hz), 4,31 (dd, 1H, J=10,2 and 1,3 Hz), 4,23 (m, 1H), 3,86 (s, 2H), 3,02 (s, 1H), 2,44 (t, 2H, J=7,6 Hz), 1,94 (m, 4H), 1,64 (m, 2H),

1,43 (m, 20H), 0,86 (t, 3H, J=6,9 Hz).

Preparation of Carbonic acid 4-(2-oxo-4-phenoxycarbonylamino-2H-pyrimidin-1-yl)-[1,3]dioxolan-2-ylmethyl ester phenyl ester

Procedure:

The starting material (BCH-4556, 105 mg, 0,493 mmole) is 15 dissolved in 2 mL of pyridine and cooled to 0 °C. chloroformate (68 μ L, 0,542 mmole, 1,1 eq.) is added and the reaction mixture is warmed to room temperature and stirred overnight. The solvent is then evaporated and water is added. The aqueous phase is extracted with 20 methylene chloride. The organic extracts are dried over Na₂SO4 and evaporated. The residue is purified by Biotage with 50/50 AcOEt/Hexane then AcOEt followed by 10% MeOH/CH₂Cl₂. The fractions contaning the fastest eluting 25 spots are evaporated and repurified with preparative HPLC (C18 Deltapak 30×300 mm, 15% to 70% CH₃CN in water).

¹H nmr (400 MHz, CDCl₃) δ 8,31 (d, 1H, J=7,6 Hz), 7,39 (m, 4H), 7,26 (m, 3H), 7,16 (m, 4H), 6,31 (d, 1H, J=4,4 Hz), 5,32 (t, 1H, J=2,3 Hz), 4,69 (dd, 1H, J=12,6 and 2,6 Hz), 4,52 (dd, 1H, J=12,6 and 2,0 Hz), 4,38 (d, 1H, J=10,2 Hz), 4,30 (m, 1H).

35

15

20

EXAMPLE 34

3,5-Di-tert.-butyl-benzoic acid 4-(4-amino-2-oxo-2H-pyrimidin-1-yl)-[1,3]dioxolan-2-ylmethyl ester

Procedure: The nucleoside (495 mg, 2.32 mmol, 1.0eq), 3,5-di-tButylbenzoic acid (545 mg, 2.32 mmol, 1.0eq), DMAP (30 mg, 0.23 mmol, 0.1eq) and EDC (445 mg, 2.32 mmol, 1.0eq) were mixed in DMF and stirred at room temperature. The solvent was mostly evaporated and the crude diluted in dichloromethane. The organic layer was washed twice with water, brine, dried over magnesium sulfate, filtered and evaporated to dryness. The desired compound was isolated by flash chromatography using a gradient of 3%-10% methanol in dichloromethane. 281 mg was obtained.

1H NMR (400MHz, DMSO-d6): 7.76 (s, 2H), 7.70 (s, 1H), 7.49
25 (d, J=7.5Hz, 1H), 7.18 (br d, J=24.2Hz, 2H), 6.23 (m, 1H),
5.46 (d, J=7.5Hz, 1H), 5.26 (t, J=3.3Hz, 1H), 4.55 (m,
2H), 4.15-4.05 (m, 2H), 1.28 (m, 18H).

EXAMPLE 35

30

Preparation of 2-Benzyl-benzoic acid 4-(4-amino-2-oxo-2H-pyrimidin-1-yl)-[1,3]dioxolan-2-ylmethyl ester

(220)

35

25

30

35

Procedure: The nucleoside (444 mg, 2.10 mmol, 1.0eq), alphaphenyl-o-toluic acid (445 mg, 2.10 mmol, 1.0eq), DMAP (27 mg, 0.21 mmol, 0.1eq) and EDC (400 mg, 2.10 mmol, 1.0eq) were mixed in DMF and stirred at room temperature.

The solvent was mostly evaporated and the crude diluted in dichloromethane. The organic layer was washed twice with water, brine, dried over magnesium sulfate, filtered and evaporated to dryness. The desired compound was isolated by flash chromatography using a gradient of 3%-10% methanol in dichloromethane.

1H NMR (400MHz, DMSO-d6): 7.77 (m, 1H), 7.56-7.48 (m, 2H),
7.38-7.31 (m, 2H), 7.24-7.08 (m, 7H), 6.23 (m, 1H), 5.44
(d, J=7.5Hz, 1H), 5.19 (t, J=3.0Hz, 1H), 4.47 (m, 2H),
4.27 (m, 2H), 4.11 (m, 2H).

EXAMPLE 36

PREPARATION OF 4-HEXYL-BENZOIC ACID 4-(4-METHYLAMINO-2-OXO-2H-PYRIMIDIN-1-YL)-[1,3]DIOXOLAN-2-YLMETHYL ESTER

Procedure:

Acid chloride (64&L, 0.29mmol, leq.) was added to the mixture of the Cbz-protected BCH-4556 (101mg, 0.29mmol) in CH_2Cl_2 with TEA (0.12mL, 0.87mmol, 3eq.). Reaction mixture was stirred at room temperature for 2 days. Solvent was evaporated. Purification was done by flash chromatography using MeOH/ CH_2Cl_2 5% to give the desired compound plus some impurities.

EXAMPLE 37

Preparation of 4-HEXYL-BENZOIC ACID 4-(4-AMINO-2-OXO-2H-15 PYRIMIDIN-1-YL)-[1,3]DIOXOLAN-2-YLMETHYL ESTER

20 Procedure:

The protected compound (194mg, 0.29mmol) was dissolved in ethanol at 50°C , then purged with nitrogen. Pd/C was added, then the solution was put under H₂ atmosphere and stirred at 50°C . The solution was filtered and concentrated to give a foamy white solid. Purification by flash chromatography using MeOH/CH₂Cl₂ 3%.

1H NMR (400MHz; DMSO): 7.87 (d, 1H, J=8.2Hz); 7.60 (d, 1H, J=7.4Hz); 7.37 (d, 1H, J=8.2Hz); 6.27 (t, 1H, J=3.7Hz);
30 5.64 (d, 1H, J=7.5Hz); 4.68-4.53 (m, 2H); 4.15 (d, 2H, J=3.9Hz); 2.67 (t, 2H, J=7.5Hz); 1.61-1.58 (m, 2H); 1.28 (m,6H) and 0.87-0.84 (m, 3H).ppm.

EXAMPLE 38

35

25

PREPARATION OF 7-ISOPROPYL-2,4A-DIMETHYL-1,2,3,4,4A,4B,5,6,10,10A-DECAHYDRO-PHENANTHRENE-25 CARBOXYLIC ACID [1-(2-HYDROXYMETHYL-[1,3]DIOXOLAN-4-YL)-2-OXO-1,2-DIHYDRO-PYRIMIDIN-4-YL]-AMIDE or ESTER

10 Procedure:

EDC (90mg, 0.47mmol) was added to a solution of the acid (143mg, 0.47mmol) and the alcohol (101mg, 0.47mmol) in DMF followed by the addition of DMAP(6mg, 0.047mmol, 0.1eq.). Reaction mixture was stirred at room temperature overnight. Reaction mixture was poured into brine, extracted with EtOAc, combined extracts were washed with NaHCO₃ sat. solution, dried and concentrated to give a yellow oil.

20 Purification by flash chromatography using MeOH/EtOAc 10% to give two compounds.

Compound 1: amide (207)

15

5 Compound 2: ester (281)

H NMR $(400 \text{MHz}; \text{CDCl}_3): 7.67 \text{ (d, 1H, J=7.5Hz)}; 6.19 \text{ (dd, 1H, J=2.8 and } 4.5 \text{Hz}); 5.71 \text{ (t, 1H, J=7.5Hz)}; 5.36 \text{ (d, 1H, J=3.1Hz)}; 5.18 \text{ (dd, 1H, J=2.1 and } 4.7 \text{Hz}); 4.48-4.09 \text{ (2m, 3H)} and 2.24-0.83 \text{ (multiplets abietic part; similar to abietic acid) ppm}$

EXAMPLE 39

10

15

PREPARATION OF 4-PENTYL-BICYCLO[2.2.2]OCTANE-1-CARBOXYLIC
ACID [1-(2-HYDROXYMETHYL-[1,3]DIOXOLAN-4-YL)-2-OXO-1,2DIHYDRO-PYRIMIDIN-4-YL]-AMIDE or ESTER

Procedure:

EDC (95mg, 0.50mmol) was added to a solution of the acid
(112mg, 0.50mmol) and the alcohol (106mg, 0.50mmol) in DMF
(0.5mL) followed by the addition of DMAP (6mg, 0.050mmol,
0.1eq.). Reaction mixture was stirred at room temperature
overnight. Reaction mixture was poured into brine,
extracted with EtOAc, combined extracts were washed with
NaHCO₃ sat. solution, dried and concentrated to give a
yellow oil.

Purification by flash chromatography using MeOH/EtOAc 10% to give two compounds.

25

5 Compound 1: amide (210)

1H NMR (400MHz; CDCl₃): 8.34 (d, 1H, J=7.6Hz); 7.36 (d, 1H, J= 7.6Hz); 6.11 (dd, 1H, J=5.1 and 1.3Hz); 5.06 (t, 1H, J=1.8Hz); 4.28-4.16 (m, 2H); 3.91 (d, 1H, J=1.6Hz); 1.74-10 1.70 (m, 6H); 1.38-1.25 (m, 6H); 1.21 0.98 (m, 8H); 0.81 (t, 3H, J=7.0Hz)ppm

Compound 2: ester (211)

15 H NMR (400MHz; CDCl₃): 7.64 (d, 1H, J=7.4Hz); 6.22 (dd, 1H, J= 2.8 and 4.3Hz); 5.77 (d, 1H, J=7.5Hz); 5.15 (t, 1H, J=3.5Hz); 4.41 (dd, 2H, J= 3.7 and 12.2Hz); 4.23-4.17 (m, 1H); 1.78-1.74 (m, 6H); 1.39-1.25 (m, 6H); 1.21 1.05 (m, 8H); 0.86 (t, 3H, J=7.3Hz)ppm

EXAMPLE 40

HEXAHYDRO-2,5-METHANO-PENTALENE-3A-CARBOXYLIC ACID [1-(2-HYDROXYMETHYL-[1,3]DIOXOLAN-4-YL)-2-OXO-1,2-DIHYDRO-PYRIMIDIN-4-YL]-AMIDE or ESTER

EDC (128mg, 0.67mmol) was added to a solution of the acid (111mg, 0.67mmol) and the alcohol (142mg, 0.67mmol) in DMF followed by the addition of DMAP (8mg, 0.067mmol, 0.1eq.).

Reaction mixture was stirred at room temperature overnight. Reaction mixture was poured into brine, extracted with EtOAc, combined extracts were washed with NaHCO₃ sat. solution, dried and concentrated to give a yellow oil.

15

Purification by flash chromatography using MeOH/EtOAc 5% to give two compounds.

Compound 1: amide (231)

20

25

1H NMR (400MHz; CDCl₃): 8.46 (d, 1H, J=7.5Hz); 7.98 (bs,
1H); 7.40 (d, 1H, J= 7.5Hz); 6.19 (d, 1H, J=4.9Hz); 5.12
(s, 1H); 4.33-4.21 (m, 2H); 3.98 (s, 2H); 3.28 (bs, 1H);
2.74 (t, 1H, J=6.7Hz); 2.37 (s, 1H); 2.16 (s, 2H); 2.042.01 (m, 2H); 1.86-1.82 (m, 4H) and 1.70-1.62 (m, 4H)ppm

Compound 2: ester (232)

H NMR $(400MHz; CDCl_3): 7.74$ (d, 1H, J=7.4Hz); 6.25 (t, 1H, J= 3.8Hz); 5.72 (d, 1H, J=7.4Hz); 5.23 (t, 1H, J=3.6Hz);

30 4.55-4.29 (m, 2H); 4.24 (d, 2H, J=3.7Hz); 2.72-2.71 (m, 1H); 2.33 (m, 2H); 2.11-2.08 (m, 2H); 1.85-1.82 (m, 4H) and 1.68-1.61 (m, 4H)ppm

EXAMPLE 41

Preparation of 8-Phenyl-octanoic acid 4-[2-oxo-4-(8-phenyl-octanoylamino)-2H-pyrimidin-1-yl]-[1,3]dioxolan-2-ylmethyl ester

25

154

Procedure:

5

4-Amino-1-(2-hydroxymethyl-[1,3]dioxolan-4-yl)-1H
pyrimidin-2-one (0.23 mmol) was treated with 8-phenyloctanoic acid (0.23 mmol), EDCI (0.35 mmol) and DMAP
(catalytic amount) in DMF for 14 hours. The solution was
neutralized with NaHCO3 sat. and extracted with AcOEt. The
combined organic layers were dried over sodium sulfate,
filtered and concentrated in vacuum. The residue was
purified by bond elute (2% MeOH/CH2Cl2 to 10% MeOH/CH2Cl2)
to afford 8-Phenyl-octanoic acid 4-[2-oxo-4-(8-phenyloctanoylamino)-2H-pyrimidin-1-yl]-[1,3]dioxolan-2-ylmethyl

HNMR (CDCl₃) 8.70 (s, 1H), 8.15 (d, J= 7.5 Hz, 1H), 7.50 (d, J= 7.4 Hz, 1H), 7.30-7.17 (m, 10H), 6.22 (d, J= 4.7 Hz, 1H), 5.24 (t, J= 2.6 Hz, 1H), 4.58 (dd, J= 12.6, 2.8 Hz, 1H), 4.32-4.25 (m, 3H), 2.63-2.59 (m, 4H), 2.48-2.36 (m, 4H), 1.80-1.60 (m, 8H), 1.45-1.25 (m, 12H).

EXAMPLE 42

ester.

8-Phenyl-octanoic acid [1-(2-hydroxymethyl-[1,3]dioxolan-30 4-yl)-2-oxo-1,2-dihydro-pyrimidin-4-yl]-amide

4-Amino-1-(2-hydroxymethyl-[1,3]dioxolan-4-yl)-1Hpyrimidin-2-one (0.23 mmol) was treated with 8-Phenyloctanoic acid (0.23 mmol), EDCI (0.35 mmol) and DMAP

(catalytic amount) in DMF for 14 hours. The solution was neutralized with NaHCO3 sat. and extracted with AcOEt.
The combined organic layers were dried over sodium sulfate, filtered and concentrated in vacuum. The residue was purified by bond elute (2% MeOH/CH2Cl2 to 10%

MeOH/CH2Cl2) to produce 8-Phenyl-octanoic acid [1-(2-hydroxymethyl-[1,3]dioxolan-4-yl)-2-oxo-1,2-dihydro-

HNMR (CDCl₃) 8.62 (s, 1H), 8.49 (d, J= 7.5 Hz, 1H), 7.45

20 (d, J= 7.5 Hz, 1H), 7.30-7.27 (m, 2H), 7.20-7.17 (m, 3H),

6.20 (d, J= 4.5 Hz, 1H), 5.14 (s, 1H), 4.33-4.26 (m, 2H),

3.98 (s, 2H), 2.60 (t, J= 7.6 Hz, 2H), 2.45 (t, J= 7.5 Hz,

2H), 1.68-1.60 (m, 4H), 1.40-1.30 (m, 6H).

25 EXAMPLE 43

30

pyrimidin-4-yl]-amide.

8-Phenyl-octanoic acid 4-(4-amino-2-oxo-2H-pyrimidin-1-yl)-[1,3]dioxolan-2-ylmethyl ester

Procedure:

35 4-Amino-1-(2-hydroxymethyl-[1,3]dioxolan-4-yl)-1H-pyrimidin-2-one (0.23 mmol) was treated with 8-phenyl-

25

30

- octanoic acid (0.23 mmol), EDCI (0.35 mmol) and DMAP (catalytic amount) in DMF for 14 hours. The solution was neutralized with NaHCO3 sat. (20 mL) and extracted with AcOEt. The combined organic layers were dried over sodium sulfate, filtered and concentrated in vacuum. The residue was purified by bond elute (2% MeOH/CH2Cl2 to 10% MeOH/CH2Cl2) to afford 0.015g (16%) of 8-phenyl-octanoic acid 4-(4-amino-2-oxo-2H-pyrimidin-1-yl)-[1,3]dioxolan-2-ylmethyl ester.
- 15 HNMR (CDCl₃) 9.4 (s, 1H), 7.71 (d, J= 7.5 Hz, 1H), 7.51-7.06 (m, 5H), 6.26 (dd, J= 5, 2 Hz, 1H), 5.78 (d, J= 7.5 Hz, 1H), 5.19 (t, J= 3.2 Hz, 1H), 4.48 (dd, J= 12.3, 3.3 Hz, 1H), 4.39-4.07 (m, 3H), 2.61 (t, J= 7.2 Hz, 2H), 2.36 (t, J= 7.4 Hz, 2H), 1.77-1.50 (m, 4H), 1.49-1.06 (m, 6H).

EXAMPLE 44

(6-Iodo-hexyl)-benzene

Procedure:

In a solution of 6-phenyl-hexan-1-ol (5.54 mmol) in toluene (0.2 M) was added in order PPh₃ (12.1 mmol), imidazole (24.9 mmol) and I_2 (11.6 mmol). The solution was mixed to reflux for 1.5 h and was cooled to room

5 temperature. The solution was dissolved in Et₂O and washed with H₂O and brine. The organic layer was dried over sodium sulfate, filtered and concentrated in vacuum. The residue was purified by biotage (100% pentane to 5% Et₂O/pentane) to produce (6-iodo-hexyl)-benzene.

10

HNMR (CDCl₃) 7.68-7.14 (m, 5H), 3.18 (t, J= 7 Hz, 2H), 2.61 (t, J= 7.6 Hz, 2H), 1.86-1.79 (m, 2H), 1.67-1.60 (m, 2H), 1.46-1.33 (m, 4H).

15 EXAMPLE 45

2,2-Dimethyl-8-phenyl-octanoic acid methyl ester

Procedure:

20

25

30

To a solution of i-Pr₂Net (2.12 mmol) in THF (0.2 M) was added a solution of 1.4 M n-BuLi in hexane (2.12 mmol) at The mixture was stirred at 0°C for 30 minutes and cooled to -78°C for addition of isobutyric acid methyl ester (2.12 mmol). Then, the solution was stirred at -78°C for 1 hour and (6-Iodo-hexyl)-benzene (1.92 mmol) dissolved in THF was added slowly. This mixture was stirred 1 hour at -78°C and 3 hours at room temperature. The solution was dissolved in Et₂O and washed with NH₄Cl sat. and brine. The organic layer was dried over sodium sulfate, filtered and concentrated in vacuum. The residue was purified by bond elute (3% Et20/pentane) to afford 0.45q (90%) of 2,2-dimethyl-8-phenyl-octanoic acid methyl ester.

5 HNMR (CDCl₃) 7.29-7.25 (m, 2H), 7.18-7.15 (m, 3H), 3.64 (s, 3H), 3.48 (q, J= 7 Hz, 2H), 2.58 (t, J= 7.6 Hz, 2H), 1.59-1.47 (m, 2H), 1.32-1.25 (m, 2H), 1.20-1.14 (m, 10H).

EXAMPLE 46

10

2,2-Dimethyl-8-phenyl-octanoic acid

15

20

25

35

Procedure:

2,2-Dimethyl-8-phenyl-octanoic acid methyl ester (1.7 mmol) was dissolved in a MeOH, THF, H_2O solution (10:5:2). LiOH monohydrate was added and the solution was stirred and refluxed for 7 hours. The mixture was diluted with AcOEt and extracted with a solution of saturated NaHCO3. The aqueous layers was combined, acidified with HCl 1 N and extracted with AcOEt. The organic layer was dried over sodium sulfate, filtered and concentrated in vacuum to afford 2,2-dimethyl-8-phenyl-octanoic acid.

HNMR (CDCl₃) 7.23-7.18 (m, 2H), 7.12-7.08 (m, 3H), 2.52 (t, J=7.9 Hz, 2H), 1.55-1.43 (m, 4H), 1.26-1.18 (m, 6H), 1.11 30 (s, 6H).

EXAMPLE 47

2,2-Dimethyl-8-phenyl-octanoic acid 4-(4-benzyloxycarbonylamino-2-oxo-2H-pyrimidin-1-yl)[1,3]dioxolan-2-ylmethyl ester

5

10

15

20

25

[1-(2-Hydroxymethyl-[1,3]dioxolan-4-yl)-2-oxo-1,2-dihydro-pyrimidin-4-yl]-carbamic acid benzyl ester (0.058 mmol) was treated with 2,2-dimethyl-8-phenyl-octanoic acid (0.058 mmol), EDCI (0.087 mmol) and DMAP (catalytic amount) in DMF. The solution was diluted in AcOEt and washed with NaHCO3 sat. and brine. The organic layer was dried over sodium sulfate, filtered and concentrated in vacuum. The residue was purified by bond elute (5% MeOH/CH2Cl2) to afford 2,2-Dimethyl-8-phenyl-octanoic acid 4-(4-benzyloxycarbonylamino-2-oxo-2H-pyrimidin-1-yl)-[1,3]dioxolan-2-ylmethyl ester.

HNMR (MeOD) 8.20 (d, J= 7.5 Hz, 1H), 7.44-7.34 (m, 5H), 7.27-7.10 (m, 7H), 6.19 (t, J= 3.6 Hz, 1H), 5.27 (t, J= 3.2 Hz, 1H), 5.23 (s, 2H), 4.70-4.47 (m, 2H), 4.31-4.23 (m, 2H), 2.62-2.54 (m, 2H), 1.63-1.49 (m, 4H), 1.39-1.15 (m, 12H).

EXAMPLE 48

2,2-Dimethyl-8-phenyl-octanoic acid 4-(4-amino-2-oxo-2H-pyrimidin-1-yl)-[1,3]dioxolan-2-ylmethyl ester

5

2,2-Dimethyl-8-phenyl-octanoic acid 4-(4-

[1,3]dioxolan-2-ylmethyl ester.

benzyloxycarbonylamino-2-oxo-2H-pyrimidin-1-yl)[1,3]dioxolan-2-ylmethyl ester (0.048 mmol) was dissolved
in MeOH. 10% Pd/C (30% w/w) was added and the solution
was mixed under H₂. The solution was filtered on celite
and concentrated in vacuum. The residue was purified by
bond elute (5% MeOH/CH₂Cl₂) to afford of 2,2-dimethyl-8phenyl-octanoic acid 4-(4-amino-2-oxo-2H-pyrimidin-1-yl)-

HNMR (MeOD) 7.76 (d, J= 7.5 Hz, 1H), 7.24-7.20 (m, 2H),

7.14-7.11 (m, 3H), 6.20 (dd, J= 4.5, 2.9 Hz, 1H), 5.91 (d,

J= 7.5 Hz, 1H), 5.18 (t, J= 3.4 Hz, 1H), 4.46 (dd, J=

12.4, 3.5 Hz, 1H), 4.24 (dd, J= 12.4, 3.2 Hz, 1H), 4.14

(t, J= 2.5 Hz, 2H), 2.56 (t, J= 7.6 Hz, 2H), 1.56-1.48 (m,

4H), 1.28-1.22 (m, 6H), 1.17 (s, 3H), 1.16 (s, 3H).

EXAMPLE 49

25

{1-[2-(tert-Butyl-dimethyl-silanyloxymethyl)-[1,3]dioxolan-4-yl]-2-oxo-1,2-dihydro-pyrimidin-4-yl}-30 carbamic acid 2-benzenesulfonyl-ethyl ester

5

10

15

20

25

30

To a solution of triphosgene and 2-benzenesulfonyl-ethanol in CH_2Cl_2 was added pyridine at 0°C. This solution was mixed at 0°C added to a solution of 4-amino-1-[2-(tert-butyl-dimethyl-silanyloxymethyl)-[1,3]dioxolan-4-yl]-1H-pyrimidin-2-one and pyridine in CH_2Cl_2 . The resulting solution was mixed and diluted in CH_2Cl_2 . The mixture was washed with water and the organic layer was dried over sodium sulfate, filtered and concentrated in vacuo. The residue was purified by bond elute (3% $MeOH/CH_2Cl_2$) to afford $\{1-[2-(tert-butyl-dimethyl-silanyloxymethyl)-[1,3]dioxolan-4-yl]-2-oxo-1,2-dihydro-pyrimidin-4-yl\}-carbamic acid 2-benzenesulfonyl-ethyl ester.$

HNMR (CDCl₃) 8.36 (d, J= 7.2 Hz, 1H), 7.84-7.80 (m, 2H), 7.62-7.45 (m, 4H), 6.98 (s, 1H), 6.10 (dd, J= 4.7, 1.9 Hz, 1H), 4.94 (t, J= 1.9 Hz, 1H), 4.43 (t, J= 5.4 Hz, 2H), 4.16-4.08 (m, 2H), 3.93-3.84 (m, 2H), 3.46-3.42 (m, 2H), 0.82 (s, 9H), 0.02 (s, 3H), 0.00 (s, 3H).

EXAMPLE 50

[1-(2-Hydroxymethyl-[1,3]dioxolan-4-yl)-2-oxo-1,2-dihydro-pyrimidin-4-yl]-carbamic acid 2-benzenesulfonyl-ethylester

1==}

20

25

Procedure:

{1-[2-(tert-Butyl-dimethyl-silanyloxymethyl)-

[1,3]dioxolan-4-yl]-2-oxo-1,2-dihydro-pyrimidin-4-yl}carbamic acid 2-benzenesulfonyl-ethyl ester (0.087mmol)
was dissolved in a solution of AcOH, THF, H2O (3:1:1) and
was mixed. The mixture was dissolved in AcOEt and washed
with H2O, brine. The organic layer was dried over sodium
sulfate, filtered and concentrated in vacuo. The residue
was purified by bond elute (5% MeOH/CH2Cl2) to afford [1(2-Hydroxymethyl-[1,3]dioxolan-4-yl)-2-oxo-1,2-dihydropyrimidin-4-yl]-carbamic acid 2-benzenesulfonyl-ethyl
ester.

HNMR (CDCl₃) 8.45 (d, J= 7.5 Hz, 1H), 7.93-7.90 (m, 2H), 7.70-7.65 (m, 2H), 7.59-7.55 (m, 2H), 7.08 (s, 1H), 6.17 (dd, J= 5.1, 1.2 Hz, 1H), 5.12 (t, J= 1.6 Hz, 1H), 4.53 (d, J= 5.9 Hz, 2H), 4.33 (dd, J= 10.6, 1.3 Hz, 1H), 4.23 (dd, J= 10.2, 5.1 Hz, 1H), 3.97 (s, 2H), 3.54-3.51 (m, 2H), 2.6 (s, 1H).

EXAMPLE 51

30

5-(Benzyl-tert-butoxycarbonyl-amino)-2,2-dimethyl-5-oxopentanoic acid

15

20

A) 4-Benzylcarbamoyl-2,2-dimethyl-butyric acid

10 Procedure:

To a solution of 3,3-dimethyl-dihydro-pyran-2,6-dione (1.76 mmole) in diethyl ether at 0° C was added benzyl amine (1.76 mmole) dropwise. As soon as addition was made, solid started to separate. The mixture was stirred at 0° C for 15 minutes. It was diluted with ether. The solution was washed with 0.1 N HCl, and with saturated sodium chloride solution and dried over sodium sulfate. The crude product obtained after removing the solvent was passed through a bond-elute (eluents: CH_2Cl_2 , 2 and 4 % MeOH in CH_2Cl_2) yielding 4-benzylcarbamoyl-2,2-dimethyl-butyric acid (57%).

- 5 HNMR (δ, CD_3OD) : 7.23-7.32 (5H, m), 4.34 (2H, s), 2.21-2.26 (2H, m), 1.83-1.87 (2H, m), 1.18 (6H, s).
 - B) 5-(B nzyl-tert-butoxycarbonyl-amino)-2,2-dimethyl-5oxo-pentanoic acid

Procedure:

a solution of 4-benzylcarbamoyl-2,2-dimethyl-butyric 15 acid (0.09 mmole) in THF at -78° C was added NaHMDS in THF (1M) dropwise. It was stirred at -78° C for 15 minutes. Di-(0.1 mmole) in THF was added. It tert-butyl dicarbonate was stirred at this temperature for 15 minutes. Saturated NH4Cl solution was added and the mixture was allowed to 20 come to room temperature. It was acidified with dil. HCl and extracted with ethyl acetate. The extract was washed with saturated sodium chloride solution and dried over sodium sulfate. The solvent was removed and the residue was passed through a bond-elute (eluents: CH_2Cl_2 and 5% 25 in CH_2Cl_2) yielding 5-(benzyl-tert-butoxycarbonylamino)-2,2-dimethyl-5-oxo-pentanoic acid (39%).

HNMR $(\delta, CDCl_3)$: 7.22-7.31 (5H, m), 4.87 (2H, s), 2.91-2.95 (2H, m), 1.93-1.97 (2H, m), 1.40 (9H, s), 1.24 (6H, s).

EXAMPLE 52

5-(Benzyl-tert-butoxycarbonyl-amino)-2,2-dimethyl-5-oxopentanoic acid 4-[4-(dimethylamino-methyleneamino)-2-oxo-2H-pyrimidin-1-yl]-[1,3]dioxolan-2-ylmethyl ester

5

20

To a solution of N'-[1-(2-hydroxymethyl-[1,3]dioxolan-4-yl)-2-oxo-1,2-dihydro-pyrimidin-4-yl]-N,N-dimethyl-

formamidine (0.034 mmole), 5-(benzyl-tert-butoxycarbonyl-amino)-2,2-dimethyl-5-oxo-pentanoic acid (0.034 mmole) and DMAP in CH₂Cl₂ at 0°C was added EDCI (0.078 mmole) in CH₂Cl₂ dropwise. The mixture was stirred at 0°C for 0.5 hr and then at room temperature for 18 hrs. It was diluted with CH₂Cl₂, washed with water and saturated sodium chloride solution. The solution was dried over sodium sulfate and the solvent was evaporated. The pure ester was obtained after flash chromatography over bond-elute (eluents: CH₂Cl₂, 2 and 4 % MeOH in CH₂Cl₂) in 44% yield.

HNMR (δ, CD_3OD) : 8.67 (1H, s), 7.97 (1H, d, J = 7.2 Hz), 7.16-7.30 (5H, m), 6.20 (1H, d, J = 7.2 Hz), 6.17 (1H, t, J = 3.7 Hz), 5.25 (1H, dd, J = 2.9, 3.4 Hz), 4.83 (2H, fine split signal), 4.57 (1H, dd, J = 3.5, 12.6 Hz), 4.27 (1H, dd, J = 2.9, 12.5 Hz), 4.21 (2H, d, J = 3.7 Hz), 3.21, 3.13 (3H each, fine split singlets), 2.86-2.92 (2H, m), 1.89-1.93 (2H, m), 1.36 (9H, s), 1.24, 1.22 (3H each, s).

5 EXAMPLE 53

6-(Benzyl-tert-butoxycarbonyl-amino)-2,2-dimethyl-hexanoic acid and 6-(benzyl-tert-butoxycarbonyl-amino)-2-methylhexanoic acid

R = H: Pr_365

R = Me: Pr_366

R = Me : Pr_367

R = H

 $R = Me : Pr_368$

 $R = Me : Pr_369$

R = H

R = Me : Pr_370 R = H

R = Me : Pr_371

R = H

coupling with BCH-4556

R = Me : Compound 132

R = H: Compound 149

A) 3-Methyl-oxepan-2-one

5

A solution of oxepan-2-one (4.54 mmole) in THF cooled to -10 65°C was treated with LiHMDS (1M). The mixture was stirred at -65°C. Methyl iodide (8.03 mmole) was added. temperature was raised slowly to -15°C. Saturated NH₄Cl solution was added. The mixture was extracted with diethyl ether. The solution was dried over sodium sulfate and the 15 solvent was evaporated. The crude was passed through a bond-elute (eluent: pentane-ether mixture - 1:1) yielding 3-methyl-oxepan-2-one contaminated with small amount of 3,3-dimethyl-oxepan-2-one (about 13% from NMR) (around 52 왕). 20

HNMR $(\delta, CDCl_3)$: 4.20-4.34 (2H, m), 2.71-2.76 (1H, m), 1.93-2.01 (2H, m), 1.52-1.76 (4H, m), 1.23 (3H, d, J = 6.7 Hz)

25

B) 3,3-Dimethyl-oxepan-2-one

30

Procedure:

5 A solution of 3-methyl-oxepan-2-one (containing 13% of 3,3-dimethyl-oxepan-2-one) in THF at -65°C was treated with LiHMDS (1M) dropwise. The mixture was stirred at -65°C and methyl iodide (28.6 mmole) was added. The temperature was slowly raised to 5°C. It was stirred at 5°C and saturated 10 NH₄Cl solution was added. The mixture was extracted with diethyl ether. The extracts were dried over sodium sulfate and the solvent was removed. The crude on passing through a bond-elute (eluent: pentane-ether-1:1) gave pure 3,3-dimethyl-oxepan-2-one (approx. 26%).

15

HNMR (δ, CDCl₃): 4.24-4.27 (2H, m), 1.71-1.79 (4H, m), 1.55-1.58 (2H, m), 1.25 (6H, s).

C) 6-Hydroxy-2,2-dimethyl-hexanoic acid methyl ester

20

Procedure:

Methanolic HCl was prepared by adding acetyl chloride to dry MeOH slowly. 3,3-Dimethyl-oxepan-2-one (0.7 mmole) was treated with this solution. The mixture was stirred at room temperature. The solvent was removed. The residue was dissolved in diethyl ether. The solution was washed with NaHCO₃ solution and saturated sodium chloride solution and dried over sodium sulfate. The solvent was removed. The crude product was pure enough for the next step.

D) 2,2-Dimethyl-6-oxo-hexanoic acid methyl ester

35

25

30

Procedure:

5

10

A mixture of 6-hydroxy-2,2-dimethyl-hexanoic acid methyl ester, molecular sieves $4A^{\circ}$ and PCC in CH_2Cl_2 was stirred at 0°C for 1 hr. It was diluted with diethyl ether and filtered through a bed of silica gel. The solvent was removed from the filtrate. The crude aldehyde thus obtained was pure enough for the next step.

15 E) 6-Benzylamino-2,2-dimethyl-hexanoic acid methyl ester

Procedure:

A mixture of benzyl amine (0.38 mmole) and methyl orthoformate (7.3 mmole) was stirred at room temperature for 5 minutes. This solution was added to crude 2,2-dimethyl-6-oxo-hexanoic acid methyl ester (0.33 mmole). It was stirred for 6 hrs. and evaporated to dryness. The residue was dissolved in MeOH and the solution was cooled

to 0° C. Sodium borohydride was added in portions and the mixture was stirred. MeOH was removed and the residue was taken up in ethyl acetate. The solution was washed with saturated sodium chloride solution, dried and evaporated. The crude was passed through a bond-elute (eluents: CH₂Cl₂, and 1 and 2% MeOH in CH₂Cl₂) yielding pure 6-benzylamino-2,2-dimethyl-hexanoic acid methyl ester (13% in three steps)

15

20

5 HNMR $(\delta, CDCl_3)$: 7.24-7.33 (5H, m), 3.78 (2H, s), 3.64 (3H, s), 2.61 (2H, t, J = 7.2 Hz), 1.45-1.53 (4H, m), 1.21-1.26 (2H, m), 1.15 (6H, s).

F) 6-(Benzyl-tert-butoxycarbonyl-amino)-2,2-dimethylhexanoic acid methyl ester

Procedure:

To a solution of 6-benzylamino-2,2-dimethyl-hexanoic acid methyl ester (0.09 mmole)in CH_2Cl_2 (3 ml) at 0° C was added di-tert-butyl dicarbonate (0.14 mmole) in CH_2Cl_2 . The mixture was stirred at room temperature for 2 hrs. It was evaporated to dryness and passed through a bond-elute yielding pure 6-(benzyl-tert-butoxycarbonyl-amino)-2,2-dimethyl-hexanoic acid methyl ester (85%).

HNMR $(\delta, CDCl_3)$: 7.21-7.33 (5H, m), 4.39-4.42 (2H, two broad signals), 3.63 (3H, s), 3.10-3.19 (2H, broad signal), 1.43-1.48 (13H, two broad signals), 1.13 (8H, broad singlet).

G) 6-(Benzyl-tert-butoxycarbonyl-amino)-2,2-dimethyl-30 hexanoic acid

and the state of t

To a solution of 6-(benzyl-tert-butoxycarbonyl-amino)-2,2-dimethyl-hexanoic acid methyl ester (0.06 mmole) in THF and MeOH (2:1) was added LiOH.H₂O (0.26 mmole) in H₂O. The mixture was refluxed for 7 hrs and stirred at room temperature for 16 hrs. It was evaporated to dryness. The residue was taken up in water and acidified with 0.1 N HCl. It was extracted with ethyl acetate. The extract was washed with saturated sodium chloride solution, dried over sodium sulfate and evaporated. The crude was passed through a bond-elute (eluents: CH₂Cl₂ and 5 % acetone in CH₂Cl₂) yielding pure 6-(benzyl-tert-butoxycarbonyl-amino)-hexanoic acid (12 mg; 57%).

HNMR $(\delta, CDCl_3)$: 7.22-7.33 (5H, m), 4.40-4.43 (2H, broad signal), 3.12-3.20 (2H, broad signal), 1.43-1.48 (13H, two broad signals), 1.21-1.25 (2H, m), 1.16 (6H, s).

EXAMPLE 54

25

10

15

6-(Benzyl-tert-butoxycarbonyl-amino)-2,2-dimethyl-hexanoic acid 4-[4-(dimethylamino-methyleneamino)-2-oxo-2H-pyrimidin-1-yl]-[1,3]dioxolan-2-ylmethyl ester

30

Procedure:

To a mixture of N'-[1-(2-hydroxymethyl-[1,3]dioxolan-4-5 yl) -2-oxo-1,2-dihydro-pyrimidin-4-yl] -N,N-dimethylformamidine (0.03 mmole), 6-(benzyl-tert-butoxycarbonylamino)-2,2-dimethyl-hexanoic acid (0.03 mmole) and DMAP (0.3 mg) in dichloromethane (0.3 ml) at 0 $^{\circ}$ C was added EDCI (0.063 mmole) in dichloromethane dropwise. It was stirred 10 for 30 minutes at this temperature and at room temperature for 18 hrs. The mixture was diluted with dichloromethane, washed with water and saturated sodium chloride solution. The solution was dried over sodium sulfate and evaporated. through bond-elute crude passed а 15 The product was and 2% MeOH in dichloromethane, (eluents: dichloromethane) yielding the ester (28 % yield)

HNMR(δ , CD₃OD) : 8.69 (1H, s), 7.96 (1H, d, J = 7.3 Hz), 7.19-7.32 (5H, m), 6.19-6.23 (2H, m), 5.23 (1H, t, J = 3.2 Hz), 4.49 (1H, dd, J = 3.4, 12.5 Hz), 4.39 (2H, s), 4.22-4.28 (3H, m), 3.22, 3.14 (3H each, s), 1.29-1.47 (15 H, three broad signals), 1.17, 1.16 (3H each, s).

25 **EXAMPLE 55**

The state of the s

171

355

ļ.

123

20

6-(Benzyl-tert-butoxycarbonyl-amino)-2-methyl-hexanoic acid

The procedure to obtain this compound is similar to procedures described in previous examples.

10 EXAMPLE 56

6-(Benzyl-tert-butoxycarbonyl-amino)-2-methyl-hexanoic acid 4-[4-(dimethylamino-methyleneamino)-2-oxo-2H-pyrimidin-1-yl]-[1,3]dioxolan-2-ylmethyl ester

Procedure:

To a solution of N'-[1-(2-hydroxymethyl-[1,3]dioxolan-4-yl)-2-oxo-1,2-dihydro-pyrimidin-4-yl]-N,N-dimethyl-formamidine (0.036 mmole), 6-(benzyl-tert-butoxycarbonyl-amino)-2-methyl-hexanoic acid (0.036 mmole) and DMAP (0.4 mg) in dichloromethane at 0 °C was added EDCI (0.078 mmole) in dichloromethane dropwise. The mixture was stirred at 0 °C for 30 minutes and then at room temperature for 2.5 hrs. It was diluted with dichloromethane (50 ml), washed with water and saturated sodium chloride solution. The solution was dried over sodium sulfate and evaporated. The crude was passed through a bond-elute (eluents : CH_2Cl_2 , 1 and 2 % MeOH in CH_2Cl_2) and the pure ester was obtained in 62% yield.

15

20

25

30

5 HNMR (δ, CD_3OD) : 8.68 (1H, s), 8.02 (1H, two doublets, J = 7.3 Hz), 7.20-7.32 (5H, multiplets), 6.17-6.25 (2H, m), 5.23-5.25 (1H, broad signal), 4.52 (1H, two dd, J = 2.4, 12.1 Hz), 4.39- 4.40 (total 2H, broad signals), 4.20-4.31 (3H, m), 3.21, 3.12 (3H each, s), 2.46 (1H, q, J = 7.0 Hz), 1.20-1.67 (15H, multiplets), 1.12, 1.11 (total 3H, two doublets, J = 7.0 Hz).

EXAMPLE 57

15 6-(Benzyl-tert-butoxycarbonyl-amino)-hexanoic acid

20 Procedure

25

Steps 1 and 2 were carried out as described in N. Mourier, M. Camplo, G. S. Della Bruna, F. Pellacini, D. Ungheri, J.-C. Chermann and J.-L. Kraus, <u>Nucleosides</u>, <u>Nucleotides</u>

<u>& Nucleic Acids</u>, <u>19</u> (7), 1057-91 (2000), step 3 was substituted by a Jones oxidation as described in R. N. Rej, J. N. Glushka, W. Chew and A. S. Perlin, <u>Carbohydrate</u>

Research, 189 (1989), 135-148.

EXAMPLE 58

30 6-(Benzyl-tert-butoxycarbonyl-amino)-hexanoic acid 4-(4-amino-2-oxo-2H-pyrimidin-1-yl)-[1,3]dioxolan-2-ylmethyl ester

30

Procedure:

A mixture of 4-amino-1-(2-hydroxymethyl-[1,3]dioxolan-4-yl)-1H-pyrimidin-2-one (0.11 mmole), 6-(benzyl-tert-butoxycarbonyl-amino)-hexanoic acid (0.11 mmole), EDCI (0,156 mmole) and DMAP (3 mg) in DMF was stirred at room temperature for 16 hrs. DMF was removed in vacuum. The residue was taken up in ethyl acetate, washed with water and saturated sodium chloride solution. The solution was dried over sodium sulphate and evaporated. The pure ester was obtained by chromatography over bond-elute (eluents: CH₂Cl₂, 2 and 4% MeOH in CH₂Cl₂) (17 mg, 31% yield).

HNMR $(\delta, CDCl_3)$: 7.78 (1H, broad signal), 7.23-7.34 (5 H, m), 6.28-6.29 (2H, broad signal), 5.70-5.87 (1H, broad signal), 5.21 (1H, broad signal), 4.21-4.48 (6H, two multiplets), 3.20 (2H, broad signal), 2.35 (2H, t, J = 7.7)

25 Hz), 1.45-1.65 (13H, m), 1.26-1.38 (2H, m).

EXAMPLE 59

5-(Benzyl-tert-butoxycarbonyl-amino)-pentanoic acid 4-(4-amino-2-oxo-2H-pyrimidin-1-yl)-[1,3]dioxolan-2-ylmethyl ester

Procedure:

5

4-Amino-1-2-hydroxymethyl-[1,3]dioxolan-4-yl)-1Hpyrimidin-2-one (0.06 mmol) was treated 5-(Benzyl-tertbutoxycarbonyl-amino)-pentanoic acid (0.07 mmol) 10 (Nucleosides, nucleotides & nucleic acids, 2000, 19 (7), 1057-1091), EDCI (0.09 mmol) and DMAP (catalytic amount) in DMF for 14 hours. The solution was neutralized with NaHCO3 sat. and extracted with AcOEt. The combined organics layers was dried over sodium sulfate, filtered 15 and concentrated in vacuo. The residue was purified by bond elute (2% MeOH/CH $_2$ Cl $_2$ to 10% MeOH/CH $_2$ Cl $_2$) to afford 36% of 5-(Benzyl-tert-butoxycarbonyl-amino)-pentanoic acid 4-(4-amino-2-oxo-2H-pyrimidin-1-yl)-[1,3]dioxolan-2-ylmethyl 20 ester.

HNMR (CDCl₃) 7.86 (d, J= 6.4 Hz, 1H), 7.34-7.19 (m, 5H), 6.28 (broad s, 2H), 6.00 (d, J= 6.9 Hz, 1H), 5.07 (s, 2H), 4.50-4.31 (m, 3H), 4.28-4.15 (m, 3H), 3.18-3.08 (m, 2H), 2.17-2.16 (m, 2H), 1.60-1.40 (m, 13H).

EXAMPLE 60

2,2-Dimethylpropionic acid 4-(1-{2-[4-(2,2-dimethylpropionyloxy)benzyloxy carbonyloxymethyl]
[1,3]dioxolan-4-yl}-2-oxo-1,2-dihydropyrimidin-4-ylcarbamoyloxymethyl)-phenyl ester (212)

5

10

15

20

2,2-Dimethylproprionyloxybenzylchloroformate mmol) was added dropwise to a 0°C solution of BCH-4556 (1.30 mmol) and DMAP (1.56 mmol) in dimethylformamide and stirred at room temperature for 18h. The pyridine reaction mixture was concentrated in vacuo. The oil partitioned between NH₄Cl_{sat}/water and obtained was dichloromethane. Aqueous layer was extracted with DCM. Organic layers were combined, dried over MgSO4, filtered and concentrated to a yellow gum. The crude residue was purified by silica gel biotage (40S) (40 % EtOAc: 60% hexanes to 80 % EtOAc: 20 % hexanes) to give 1 % yield of acid 4(1-{2-[4-(2,2-2,2-Dimethylpropionic dimethylpropionyloxy) benzyloxycarbonyloxymethyl] -[1,3]dioxolan-4-yl}-2-oxo-1,2-dihydropyrimidin-4ylcarbamoyloxymethyl)-phenyl ester (212)white as powder.

¹H NMR (400 MHz, CDCl₃), δ ppm: 8.16 (d, 1H, J = 7.5Hz), 25 7.42-7.38 (m, 4H), 7.23 (d, 1H, J = 7.5Hz), 7.09-7.06 (m, 4H), 6.22-6.21 (m, 1H), 5.24-5.22 (m, 1H), 5.21 (s, 2H), 5.18 (s, 2H), 4.60 (dd, 1H, J = 2.6, 12.6Hz), 4.41 (dd, 1H, J = 2.4, 12.6Hz), 4.30-4.21 (m, 2H), 1.36 (s, 9H), 1.34 (s, 9H).

30 EXAMPLE 61

Acetic acid 4-(1-{2-[4-(Acetyloxy)benzyloxycarbonyl oxymethyl]-[1,3]dioxolan-4-yl} 2-oxo-1,2-dihydropyrimidin-4-ylcarbamoyloxymethyl)-phenyl ester (202)

5

10

15

20

25

30

Acetyloxybenzylchloroformate (1.14 mmole, 1,2 eq.) was added dropwise to a 0°C solution of BCH-4556 (0,952 (1, 14)and DMAP mmole, 1,2 eq.) 1 eq.) dimethylformamide pyridine and stirred at and room temperature for 18h. The reaction mixture was concentrated obtained was partitioned oil between in vacuo. The saturated NH₄Cl and dichloromethane. Aqueous layer Organic extracted with dichloromethane. layers combined, dried over MgSO4, filtered and concentrated to a yellow gum. The crude residue was purified by silica gel biotage (40S) (50% EtOAc: 50% hexanes to 100% EtOAc) to give 20,2 mg (4% yield) of the desired product.

¹H NMR (400 MHz, CDCl₃), δ ppm: 8,14 (dd 1H, J = 7,5 and 5,2 Hz), 7,64 (s 1H), 7,40 (m 4H), 7,24 (m 1H), 7,10 (m 4H), 6,20 (t 1H, J = 5,0 Hz), 5,19 (m 5H), 4,58 (m 2H), 2,30 (s 3H), 2,28 (s 3H).

Example 62 - Cell Proliferation Assays/ NT Inhibitor Studies

The chemosensitivity of suspension cells lines (e.g., CEM or CEM-derivatives) is assessed using the CellTiter 96% proliferation assay. Cells are seeded in 96-well plates (8 replicates) in three separate experiments and exposed to graded concentrations (e.g., 0.001-100 μ M) of a nucleoside of interest (e.g., cytarabine, gemcitabine or troxacitabine), for 48 h. Chemosensitivity is expressed as 50% (EC50) of the dose response curve determined, e.g., using GraphPad Prism 2.01 (GraphPad Software, San Diego,

15.

20

25

30

35

5 CA). Adherent cell lines (e.g., DU145 or DU145^R) are seeded (~10⁵ cells) in triplicate dishes, 24 h before drug exposure. Growth inhibition is determined by trypsinization and counting cells electronically.

In this example, troxacitabine is shown to enter cells by a mechanism other than via the NT, es (defective in CEM/ARA89C), or via the four other NTs which are not present in CEM cells, ei, cit, cif, and cib (See, e.g., Ullman (1989). Advances in Experimental Medicine & Biology 253B: 415-20). This is consistent with entry into the cells by passive diffusion. The ability of troxacitabine to inhibit cell proliferation of CEM and CEM-derivative lines was directly compared to other cytosinecontaining nucleoside analogs, gemcitabine and cytarabine, in a cell proliferation assay (See Table 1). The growth of CEM cells was inhibited by all three nucleoside analogs, troxacitabine was 16 and 8-fold less toxic cytarabine and gemcitabine, respectively. The presence of the es transport inhibitor, NBMPR, significantly increased resistance of CEM cells to gemcitabine and cytarabine but not to troxacitabine. CEM cells are reported to exhibit Therefore, this example suggests that that primarily es. uptake of troxacitabine is less dependent on the presence of a functional hENT1 transporter (es) cells than cytarabine or gemcitabine. In addition, there was a much lower level of resistance observed for the nucleoside-transport deficient CEM/ARAC8C cells exposed to troxacitabine (8-fold) compared to cytarabine (1150-fold) gemcitabine (431-fold), further implying transport of troxacitabine (by es NT). Taken together, the data suggested that troxacitabine has a different uptake mechanism than cytarabine and gemcitabine. This again is consistent with entry into the cells by passive diffusion.

15

20

5 Table 1. Comparative chemosensitivities of CEM and CEMderivative cell lines to troxacitabine, gemcitabine and cytarabine.

> Cultures were exposed to graded concentrations (0.001of cytarabine, gemcitabine or troxacitabine Chemosensitivity was measured using the for 48 h. Promega CellTiter 96 cell proliferation assay and expressed as 50% of the dose response curve (EC $_{50}$). The effect of the es transport inhibitor, NBMPR (100 the EC₅₀ values of CEM cells exposed cytarabine, gemcitabine or troxacitabine was also Each value represents the average determined. standard deviation) of three separate experiments (each experiment had 8 replicates).

Cell line	Cytarabine		Gemcitabine		Troxacitabine
			· ·		
CEM	0.01	<u>+</u>	0.02	<u>+</u>	0.16 <u>+</u> 0.012
	0.002		.0004		
CEM + NBMPR	0.05	<u>+</u>	0.07	<u>+</u>	0.21 ± 0.019
	0.006		0.018		
CEM/ARAC8C	11.50	<u>+</u>	8.63	<u>+</u>	1.18 <u>+</u> 0.315
	2.654		0.881		
CEM/dCK	>50		>50	_	>100

EXAMPLE 63 - Cellular Uptake Assays.

Measurements of nucleoside uptake are performed by conventional methods, as described, e.g., in Rabbani et al. (1998) Cancer Res. 58: 3461; Weitman et al. (2000). Clinical Cancer Res., 6:1574-1578; or Grove et al. (1996). Cancer Res., 56: 4187-4191. Briefly, for adherent cells, uptake assays are conducted at room temperature under zero-trans conditions in either sodium-containing transport buffer (20 mM Tris/HCl, 3 mM K2HPO4, 1 mM MgCl2.6H2O, 2 mM CaCl2, 5 mM glucose and 130 mM NaCl, pH 7.4, 300 ± 15 mOsm) or sodium-free transport buffer with NaCl replaced by N-methyl-D-glucamine. Cells are washed twice with the appropriate transport buffer and then

- either processed immediately, or in some experiments, incubated with transport inhibitors, NBMPR (100 mM), dipyridamole (20 $\mu \rm M)$ or dilazep (100 $\mu \rm M)$ during the second wash at room temperature for 15 min before the uptake assay. Precisely timed intervals are initiated by adding
- transport buffer containing [3H]troxacitabine or [3H]uridine and terminated by immersion in ice-cold transport buffer. After the plates are drained, the cells are lysed with 5% Triton X-100 and mixed with Ecolite scintillation fluid to measure the cell-associated
- radioactivity (Beckman LS 6500 scintillation counter; Beckman-Coulter Canada, Mississauga, ON). Uptake at the zero time-point is determined by treating cells for 10 min at 4°C with transport buffer containing 100 μ M dilazep, then adding the radioactive nucleoside for 2 s before
- reaction termination as described above. Uptake assays for suspension cells are conducted in microfuge tubes and permeant fluxes are terminated using the `inhibitor-oil\ stop method; dilazep is used at a final concentration of 200 μ M. Uptake at the zero time-point is determined by
- adding cells to cold transport buffer containing radiolabeled permeant and dilazep, and immediate centrifugation. Cell pellets are lysed and cell-associated radioactivity measured.
- 30 EXAMPLE 64 NT Inhibitor Studies/ Competition with an excess of the nucleoside of interest, itself, in non-radioactive form
- CEM cells: CEM cells contain primarily one type of nucleoside transport activity (es), and the functionality of this transporter (hENT1) was first demonstrated by the uptake of the physiological substrate, uridine (Fig.1A), using methods as described in Example 29. The transport of [3H]uridine was inhibited in the presence either of the hENT1 inhibitor, NBMPR, or excess non-radioactive uridine.

 [3H]troxacitabine was taken up to a lesser degree over the 6-min time course in CEM and in CEM/ARAC8C cells (Fig. 1B).

5 Lack of [3H]uridine uptake in the latter cell line demonstrated the absence of functional hENT1 transporters. The data suggest that troxacitabine uptake in CEM cells is not mediated by es activity and is consistent with it being taken up by passive diffusion.

10

15

20

DU145 cells: presence of functional The es-mediated transport (hENT1) in DU145 cells was first demonstrated in a cellular uptake assay with 10 μM [3H]uridine, as a control in the presence and absence of the substrate In the presence of inhibitor, NBMPR. NBMPR, ['H] uridine uptake over a 6-min time course was inhibited by 2A). contrast, (Fig. In low levels [3H] troxacitabine were taken up and uptake was not affected by the presence of NBMPR (Fig. 2B). The results are consistent with the uptake of troxacitabine observed in CEM cells and provide further evidence that troxacitabine is a very poor substrate for hENT1, and probably enters the cell by passive diffusion.

[3H] Troxacitabine and [3H] uridine cellular 25 HeLa cells: uptake by hENT2 (ei NT) in HeLa cells. In the presence of the hENT1 inhibitor, NBMPR, the functionality of hENT2 was first demonstrated in a cellular uptake assay with 10 µM [3H] uridine (Fig. 3A). A high total uptake of uridine was 30 observed over a long time course of 240 min of about 1200 pmol/10⁶ cells. In an expanded scale over the same time period, low levels of [3H]troxacitabine were taken up with a total uptake of about 10 pmol/10 cells, 120-fold lower than uridine (Fig 3B). In the presence of nucleoside transport inhibitors, NBMPR, dilazep, and dipyridamole or excess non-35 radioactive troxacitabine, no substantial inhibition of troxacitabine uptake was observed. Taken together, the results demonstrate that compared to uridine, troxacitabine is a very poor substrate for hENT2. Furthermore, the fact 40 that an excess of unlabeled troxacitabine failed to inhibit the uptake of the labeled troxacitabine indicates that

15

40

5 troxacitabine is not mediated by a nucleoside transporter, i.e., that it enters the cells by passive diffusion.

DU145 cells: This experiment is designed to show whether [³H]L-troxacitabine (10µM) is taken up by DU145 cells and if the rate of uptake is affected by the addition of high concentrations (1 mM) of non-radioactive troxacitabine. The results show that the uptake of [³H]L-troxacitabine is very slow during both short (0-30s) and prolonged exposures (0-4 h). The addition of non-radioactive troxacitabine has no significant effect on the uptake of [³H]L-troxacitabine, an indication that uptake in these cells is not mediated by a NT, but instead is taken up by passive diffusion.

EXAMPLE 65 - Uptake by hCNT1, hCNT2 and hCNT3

20 [3H]Troxacitabine and [3H]uridine uptake by recombinant hCNT1 and hCNT2 in transient-transfection assays in HeLa cells:

Expression plasmids encoding recombinant hCNT1 and hCNT2 are prepared using conventional methods. Genes encoding 25 the hCNT1 and hCNT2 transporter proteins are subcloned from the plasmids pMHK2 (Ritzel et al. (1997). Am. J. Physiology 272: C707-C714) and pMH15 (Ritzel et al. (1998). Mol Membr Biol. 15: 203-11) into the mammalian expression vector, 30 pcDNA3, to produce pcDNA3-hCNT1 (Graham et al. Nucleosides Nucleotides Nucleic Acids 19: 415-434) The expression vectors are pcDNA3-hCNT2. separately into actively proliferating HeLa introduced See, e.g., following conventional methods. Fang (1996). Biochemical Journal 317: 457-65. 35

Recombinant hCNT1 and hCNT2 were separately introduced into HeLa cells by transient transfection of pcDNA3 plasmids containing the coding sequences of the relevant nucleoside transporter protein. After transfection, functionality of

each transporter was demonstrated by comparing the uptake of 10 µM [3H]uridine in the presence of the equilibrative transporter (hENT1, hENT2) inhibitor, 100 µM dilazep, to cells transfected with the empty vector pcDNA3 control plasmid (Fig. 4). Uptake of 10 µM [3H] troxacitabine was not mediated either by hCNT1 or by hCNT2. 10

uptake by cib-activity (hCNT3) Troxacitabine in differentiated HL-60 cells:

The ability of a high concentration (100-fold) of nonradioactive troxacitabine to inhibit the uptake [3H] uridine by hCNT3 was examined in a differentiated HL-60 model system [Ritzel et al. (2000), supra]. Under these conditions, troxacitabine had no effect on uridine uptake and suggested that troxacitabine was not substrate of hCNT3. 20

The examination of troxacitabine uptake in several cell lines has shown that uptake is not mediated by any of the characterized equilibrative (hENT1, hENT2) or dependent (hCNT1, hCNT2, hCNT3) nucleoside transporters. The low uptake observed for troxacitabine is consistent with a diffusion model.

25

Table of IC50 Values (μM) for Controls Exposition of 24hr to drug, wash, incubated for another 48hr (total of 72hr assay)

(3H-Thymidine Incorporation Assay)

10

IC50 in μM (3H-TdR incorporation at

72hr)

Compound	H-460 24h	MCF-7 24h	SF-268 24h	CCRF-CEM 24h	CEM/dCK- 24h	Factor*
Gemcitabine	0.0084	0.0090	0,0030	0.0035	51	14 571
	0.0140	0.0048	0,0110	0.0064	51	7 969
	0.0420	ND	0,0094	0.0034	30	8 824
	0.0083	0.0019	0,0077	0.0086	41	4 767
	0,0066	0.0083	0,0073	0.0092	30	3 260
	0.0100	0.0024	0,0110	0.0048	77	16 041
	0.0110	0.0049	0,0100	0.0094	85	9 043
	0,0160	0,0093	0,0130	0,0100	86	8 600
	0,0094	0,0100	0,0140	0,0086	80	9 302
	0,0097	0,0086	0,0100	0,0092	>100	10 870
	0,0110	0,0056	0,0091	0,0100	91	9 100
	0,0110	0,0060	0,0094	0,0092	93	10 109
	0,0110	0,0087	0,0090	0,0084	92	10 952
	0,0130	0,0120	0,0081	0,0120	>100	>8 333
	0,0041	0,0087	0,0045	0,0028	41	14 643
	0,0079	0,0059	0,0075	0,0079	87	11 013
	0,0055	0,0031	0,0045	0,0200	61	3 050
	0,0110	0,0100	0,0083	ND	88	ND
	0,0100	0,0094	0,0100	0,0061	66	10 820
	0,0091	0,0029	0,0037	0,0051	34	6 667
	0,0074	0,0051	0,0089	0,0090	40	4 444
	0,0091	0,0068	0,0078	0,0096	48	5 000
	0,0100	0,0089	0,0086	0,0100	72	7 200
	0,0110	0,0034	0,0100	0,0099	36	3 636
	0,0083	0,0041	0,0029	0,0073	>100	>13700
Average	0,011±0,007	0,0068±0,002 8	0,0086±0,0027	0,0084±0,0035	66±24	8618±3614

	***		100			
Cytosine	0.0140	0.0088	0.140	0.0024	21	8 750
Arabinoside	0.0190	0.0220	0.450	0.0034	24	7 059
	0.0500	ND	0.470	0.0030	23	7 667
	0.0100	0.0098	0.077	0.0028	18	6 428
	0.0130	0.0100	0.320	0.0037	19	5 135
	0.0130	0.0140	0.033	0.0032	29	8 906
	0.0160	0.0160	0.300	0.0049	27	5 510
	0,0360	0.0170	0,300	0,0068	32	4 706
-	0,0078	0,0200	ND	0,0280	>100	6 250
ł	0,0990	0,1000	2,100	0,0370	>100	2 700
	0,1500	0,1500	1,900	0,0350	>100	2 857
İ	0,1200	0,1700	0,890	0,0410	>100	2 439
ľ	0,0990	0,1000	3,600	0,0250	>100	4 000
	0,1400	0,1500	1,200	0,0470	>100	>2 128
	0,0350	0,0960	0,120	0,0089	>100	>11 236
	0,0160	0,1100	1,600	0,0590	>100	1 695
	0,0540	0,0340	0,930	0,0084	>100	>11 905
	0,1100	0,1000	2,600	ND	>100	ND ND
		0,1000	1,100	0,0100	41	4 100
	0,0750				41	
,	0,0160	0,0095	0,770	0,0056		7 321
1	0,0200	0,0210	0,660	0,0094 0,0092	40 78	4 255 8 478
	0,0160	0,0270	0,920			
1	0,0780	0,0520	0,720	0,0100	59	5 900
1	0,0370	0,0120	0,490	0,0071	40	5 634
1	0,0250	0,0310	0,110	0,0053	75	14150
Average	0,052±0,045	0,061±0,052	0,94±0,89	0,016±0,017	62±35	5872±2783
BCH-4556	0,040 (72h)	0,066 (72h)	0,096 (72h)	0,076 (24h)	>100 (24h)	>1315
	0.130	0.005	0.27	0.045	56	1 244
	0.140	0.140	0.33	0.040	>100	2 500
	0.049	ND	0.43	0.091	>100	1 099
	0.110	0.140	0.17	0.073	>100	1 370
	0.086	0.180	0.24	0.065	>100	1 538
	0.150	0.190	0.68	0.120	>100	833
	0.110	0.200	0.33	0.099	>100	1 010
	0,170	0,160	0,41	0,080	>100	1 250
'	0,100	0,420	ND	0,028	>100	3 571
	0,140	0,160	0,40	0,100	>100	1 000
	0,180	0,340	0,74	0,096	>100	1 041
	0,140	0,015	0,15	0,100	>100	1 000
	0,110	0,310	0,71	0,083	>100	1 200
	0,160	0,280	0,49	0,130	>100	>769
	0,100	0,150	0,49	0,013	>100	>7 692
			0,63	0,013	>100	>1 587
1	0,140	0,210	0,63 0,51	0,083	>100	>4 762
	0,078 0,150	0,097 0,220	0,66	ND	>100	ND ND
			0,59	0,072	>100	>1 389
1	0,160	0,140			>100	>1 163
	0,110	0,150	0,47	0,086	>100	>1 163 >1 695
	0,130	0,220	0,66	0,059		
	0,110	0,170	0,38	0,100	>100	>1 000
	0,130	0,220	0,53	0,074	>100	>1 351
	0,100	0,043	0,36	0,087	>100	>1 150
1	0,180	0,031	0,11	0,0053	>100	>1 136
	0,12±0,03	0,18±0,10	0,44±0,18	0,078±0,028	>100	1792±1584
27	0,0053 (72h)	0,0073 (72h)	0,023 (72h)	nd	nd	nd

1504
, 122
44
1
1
1,0
: 6
52
52
==
1,9
1 1 2
**

			18/			
275	0,0012 (72h)	0,0044 (72h)	0,013 (72h)	0.0056	51.6	9,214
				_		
276	0.025 (72h)	0.0017 (72h)	0,018 (72h)	0.028	26.8	957
277	0.20 0.29	0.013 0.016	0.21 0.19	0.049 0.100	>100 >100	2 040 >1 000
278	0.002 4 (72h) 0,079	0.023 (72h) 0,038	0,013 (72h) 0,093	0,028 0,028	71,2 91	2543 3250
279	0,073 (72h) 0,58	0,021 (72h) 0,24	0,044 (72h) 0,39	0,026 0,083	48,2 >100	1854 >1205
280	1.9	3.1	18	1.9	>100	>53
38	0.34	1	0.90	0.11	>100	909
39	0.16 0.12	0.38 0.12	0.32 0.39	0.047 0.062	>100 >100	2 128 1 667

			188			
40	0.32	0.070	0.90	0.089	>100	1,123
41	40	91	>100	21	>100	5
42	0.010 0.007	0.014 0.005	0.022 0.026	0.0022 0.0023	82 >100	37 272 43 378
43	0.010	0.0041	0.029	<0,0001	>100	1,000,000
44	0.37	0.97	0.89	0.077	>100	1,300
45	3.2	2.7	9	1.6	>100	63
46	0.086	0.16	0.56	0.060	>100	1,667
47	1.8	2.4	38	2.9	>100	34

1027
ĮĮ.
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7.
14
1000 H. B. H. H. H.
ij
ŧ
===
52
į, į
azi

			189			
48	0,34 0,59	1,2 4,7	0,56 23	0,17 3,5	>100 >100	588 >29
49	4.5	8.8	7.1	0.57	>100	175
50	1.2	0.82	1.3	0.17	>100	588
51	0.92	0.57	0.96	0.024	47	4.059
51	0.83	0.57	0.86	0.024	47	1,958
52	0.0068	0.088	0.032	0.0012	0.48	400
53	8.9	10	10	2	37	19
54	0.17	0.50	0.70	0.12	65	542
55	0.029	0.0078	0.047	0.012	64	5,333

1,24
1.[]
14
====
Then, made that a second
ij
523
===
50
į,į
12

			190			
56	7	2	25	1.6	>100	63
57	0.0061	0.019	0.047	0.0048	32	6,667
58	0.012	0.016	0.13	0.014	38	2,714
59	1.4	0.19	0.69	0.54	>100	185
60	2,0 3,1	0,86 0,95	0,86 4,7	0,29 0,31	2,9 1,8	10 6
61	0.13 0.20 0.076	0.0770 0.0088 0.015	0.054 0.013 0.064	0.040 0.013 0.0074	>100 >100 >100	> 2 500 > 7 692 >13 513
62	0.89	1.7	4.3	0.35	>100	288
63	0.11	0.37	0.076	0.036	>100	2,778

122
:,,1
ı,[]
16-1
(,71
71
.[]
ŧ
s = h
122
17
Ţ
12

			191			
64	0.0017	0.0044	0.0071	0.0018	3.6	2,000
65	0.011	0.012	0.033	0.0039	26	6,667
66	<0,00010 0.00025	<0,0001 0.000074	<0,0001 0.0011	<0,00010 0.000009	3 >0.1	>28 000 11 627
67	0.082	ND .	0.40	0.18	>100	556
68	0.019	0.076	0.21	0.030	>100	3,333
69	0.045	0.028	0.050	0.0069	43	6,231
70	0.036	0.047	0.27	0.0088	30	3,409
71	0.31	0.13	0.81	0.18	>100	556

,
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1
1. 1
١٠٠]
1,5 1
1,7
15
15
: 3
1,7
177
F

			192			
72	0.018 0.027	0.015 0.017	0.130 0.075	0.0160 0.0062	23 23	1 450 3 710
70	0.07	0.00	0.000			-
73	0.27	0.26	0.030	0.10	99	990
74	5.2	1.4	4.4	0.33	1.3	4
75	>100	64.00	>100	>100	>100	1
76	>100	>100	>100	>100	>100	1
77	0.059	0.030	0.38	0.054	74	1,370
78	0.042	0.045	0.095	0.037	13	351
79	0.12	0.17	0.16	0.014	63	4,500

["]
. 1
1,[]
ı.[]
1
ijì
100 H H H H H H H H H H H H H H H H H H
22
::==
. 75
100
βĒ
125
10
Į,Į
,:44
150
==

			193			
80	1.8	0.67	3.5	0.46	>100	217
81	3.1	2.2	7.9	1.2	>100	83
82	0.17	0.12	0.30	0.053	>100	1,887
83	0.054	0.083	0.26	0.022	>100	4,545
84	0.014	0.0094	0.36	0.012	60	5,000
85	0.69	6.8	16	2.6	>100	38
86	0.0020	0.0019	0.013	0.0011	4	3,636
87	0,41 1,2 0,48	0,6 1,9 1,2	0,65 5,2 1,9	0,10 0,42 0,39	>100 >100 >100	>1 000 >238 >256

			194			
88	0.14	0.19	0.61	0.088	82	931
89	3.8	0.22	11	2.5	>100	40
90	95	61	>100	65	>100	1.5
91	0.63	1.8	5.5	2.8	>100	36
92	2.1	1.6	4.2	1.3	>100	77
93	0.04 74	>100 13.6	>100 >100	19 4.2	>100 >100	>5 >24
94	0.025 1 4	24 13	38 92	17 6	51 85	3 16
95	<0.0001 nd	0.15 0.10	0.61 0.25	0.240 0.057	30 86	123 1 503

1.1
:.[]
.()
4,]
14
125
Phone winds the first
:\$
123
1
==
1
12
22

			195			
96	0.0061 1.5	0.19 0.21	1.4 9.6	1.8 1.9	>100 >100	>56 >52
·						
97	N.D 22	5,0 4,0	56 25	9.2 5.9	>100 >100	>11 >19
98	nd 36 11	0.13 0.15 0.22	>100 2.2 2.3	35 . 22 61	>100 >100 >100	>3 >4 >3
99	N.D.	6.3	33.0	5	>100	>20
100	nd 0.030 0,044 nd	2.70 1.40 0,96 0,25	4.80 0.09 5,80 1,00	2.70 0.52 2,50 0,64	19 55 45 15	7 105 18 23
101	0.33	0.41	2.1	0.36	16	44
102	0.19	1.7	1.0	0.41	11	27
103	0.052	0.018	0.063	0.011	50	4,545

1,21
: []
ij
4, [
1,71
14
4.[]
Œ
in a p
129
6
701
1 = 2

			196			
104	0.27	0.47	0.47	0.21	>100	>476
105	0.080	0.068	0.071	0.033	79	2 393
106	0.014	0.037	0.095	0.010	46	4,600
107	0.0280 0.0094 0.0340 0,0200 0,0037 0,0084	0.012 0.019 0.030 0,013 0,023 0,035	0.220 0.078 0.034 0,068 0,071 0,260	0.0120 0.0056 0.0088 0,0200 0,0140 0,0210	37 30 83 82 59 20	3 100 5 428 9 432 4 100 4 214 952
108	1.8		3.8	3.4	>100	>29
109	2.6	31	4.8	1.0	>100	>100
110	0.0010	0.010	0.0049	0.0013	4.3	3 307
111	0.00013	0.00026	0.0021	0.00020	2.6	13000

231
444
120
Table and
43
1,71
1
100 to 10
ı,C)
; 3
sub
sat
3=1
1,0
131
3 12

			197			
112	0.011	0.016	0.0067	0.0058	0.057	10
113	0.24	0.48	1.1	0.060	>100	>1 667
114	0.066	0.017	0.041	0.016	8	500
115	0.38	0.15	0.62	0.20	>100	>500
116	1.4	0.11	2.5	0.38	>100	>263
117	0.46	0.46	0.68	0.18	89	494
118	0.022	0.077	0.16	0.028	>100	>3 571
119	17	27	94	56	96	~2

֓֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֓֓֓֓֞֞֞֓֓֓֓֓֓֓֓֓֓֓֓֓
ijij
7, 8
(7)
11,1
1, []
iš
==6
==5 -=5
ļ. zi
12
121
==

198							
120	>100	64	>100	>100	>100	1	
121	28	37	>100	17	>100	>6	
122	1.9	0.21	0.57	0.71	61	86	
123	1.0	1.4	2.0	0.87	15	17	
124	13	14	49	14	27	~2	
125	0.24	0.016	0.60	0.072	7	97	
126	0.0041	0.0020	0.0085	0.0016	- 13	8,125	
127	35.0 4,9	16 15	23 >100	15 22	>100 >100	>7 >4,5	

100
40
THE PARTY AND
ا
Fil
1,5
ij
==
= 2 # # # #
1=
Ļ
1
5.0

			199			
128	0.14	0.090	0.17	0.22	>100	>454
129	0.15	0.020	0.20	0.072	15	208
130	0.058	0.050	0.11	0.057	75	1,316
131	0.11	0.10	0.012	0.021	83	3,952
132	0.0021 0.0190 0,0130 0,0016	0.0011 0.0200 0,0130 0,0010	<0.0001 0.0180 0,0130 0,0045	<0.00010 0.00091 0,00370 <0.00010	8 >1 11 10	>80 000 >1 100 2 973 >100 000
133	0.021	0.10	0.016	0.027	31	1,148
134	12	11	3	7	20	3
135	0,15 9,00	0,23 11,0	0,25 ND	0,097 4,1	59 19	608 5

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1,51
4.[]
1,1
177
14
1325
than regit that that
jē
5 p t
122
100
1,7
12

200							
136	9	12	3	4	>100	>25	
137	6.00 0,35	17.0 5,1	18,4 16.0	5.0 6,5	84 53	17 8	
138	0.92	1.5	2.1	0.53	58	109	
139	0.81 0.51	1.4 1.7	1.3 1.7	0.40 0.42	>100 >100	>250 >250	
140	10	20	3	11	>100	>9	
141	0.034	0.066	0.040	0.019	69	3,632	
142	0.038	0.029	0.13	0.0072	46	6,389	
143	0.012	0.0037	0.14	0.0039	32.0	8,205	

121
: []
1.[]
1,4
171
125=
.[]
:=
ags
seb
Mary mans
[2]
sép

201							
144	3	5.2	1.9	0.71	78	110	
145	0.24	0.77	0.12	0.084	69	821	
146	0.78	1.2	0.028	0.13	50	385	
147	0.060	0.11	0.017	0.025	>100	>4 000	
148	36	6.30	9.90	6.3	24	4	
149	<0.0001 0.0028	0.00150 0.00039	<0.0001 0.0070	<0.00010 0.00012	2 >1,8	>19 000 >15 000	
150	0.96	1.6	1.3	0.13	90	692	
151	9.7	8.3	4.4	0.59	>100	>169	
	<u></u>				L	<u> </u>	

1,71
ı.Cl
144
171
Harte Balls Sall
-
:: 4=
4.[]
11
e se ju
300
1,7
127
ļsaķ

			202							
152	3.5	3.0	31.00	0.79	>100	>127				
153	46	39	59	0.21	>100	>476				
154	0.76	1.6	4.4	0.14	>100	>714				
155	1,6 0,093 0,43	3,7 0,060 0,76	5,9 0,97 1,7	0,10 0,15 0,54	>100 >100 >100	>1 000 > 667 > 185				
156	0.12	0.068	0.93	0.0070	81	11,571				
157	0.024	0.55	2.2	0.012	>100	>8 333				
158	0.63	0.040	3.7	0.094	58	617				
159	0.87	0.72	1.6	0.38	>100	>263				

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1,23
1,4
1,77
14
Harry Balls Rolls
i,[]
19
13
1,3
43
.,
100
==

			203			
160	0.92	0.36	1.2	0.36	>100	>278
162	8.4 6.4 9,2 2,9	9.4 3.9 5,7 3,6	1.1 7.0 12 17	2.2 2.8 3,3 4,1	>100 >100 >100 >100 >100	>44 >36 >30 >24
163	0.0092	0.033	0.025	0.0033	27	8,182
164	0.13	0.14	0.28	0.060	>100	1 667
165	3.4	10	16	1.8	>100	>56
166	0.0073 0.00 44 0,0180 0,0170	0.0012 0.0014 0,0090 0,0110	0.0046 0.0092 0,0580 0,0640	0.0001 0.0077 0,0047 0,0024	10 >1 10 >100	>90 000 >130 2 128 >41 667
167	0,160 0,062 0,230	0,20 0,12 0,30	0,64 0,12 0,54	0,073 0,031 0,110	10 >100 12	137 3 225 109
168	96 25 45	16 2,4 44	98 31 59	31 22 20	>100 >100 >100	>3 >4 >5

127
.[]
1.1
(71
170
::22
.[]
í
0==
[,]
e o b
1,11
====

204							
169	8.2	5.1	7.1	2.0	>100	>50	
170	0.63	0.49	1.0	0.21	>100	>476	
171	45	41	82	38	>100	>2.6	
172	0,014 0,015	0,019 0,036	0,0037 0,0210	0,0074 0,0085	2 5	270 588	
173	6.1	17	2.0	2.6	>100	>38	
174	11	21	38	9.0	>100	>11	
175	6.3	3.1	32	3.5	>100	>29	
176	0,040 0,043	0,094 0,032	0,057 0,032	0,014 0,011	38 68	2 714 6 182	

= = = = = = = = = = = = = = = = = = =
1.75
1.0
14
:===
The next state of the state of
; #
i sa k
:=
.,,
17

			205			
177	0.19	0.22	0.92	0.095	>100	>1 052
178	88	5.8	41	25	>100	>4
179	1.7	2.8	0.56	2.4	>100	>42
180	>100	65	49	>100	>100	>1
181	0.14	0.49	0.17	0.037	>100	>2700
182	0.13	0.22	0.21	0.047	>100	>2100
183	0.037	0.038	0.12	0.018	45	2,500
184	0.94	0.92	1.1	0.81	40	49

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	· Phint
	1
1, 5	1
4	1
1	1
12	
:=	
11 11 11 12 12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	
: 5	
	;
29	
*	:

			206			
185	0.059	0.064	0.054	0.066	17	258
186	<0.0001 <0.0001 0,0039	0,0300 0,0210 0,0062	0,0270 0,0017 0,0770	0,0087 0,0220 0,0049	>100 >100 >100 >100	>11 494 > 4 545 >20 408
187	0,0014 0,0011	0,0042 0,0051	0,0200 0,0080	0,0017 0,0016	4,1 0,66	2 412 413
188	0,097 0,068 0,120	3,0 3,8 4,9	0,46 2,40 2,40	0,79 1,50 1,10	>100 >100 >100	>127 > 67 > 91
189	0,00120 0,00068	0,0033 0,0037	0,0092 0,0016	0,0021 0,0010	2,8 1,3	1333 1 300
190	0,0061 0,0039	0,027 0,016	0,0400 0,0056	0,0084 0,0036	9,8	2 619 2 722
191	<1E-04 <1E-11 ND	<1E-04 <1E-11 ND	<1E-04 <1E-11 ND	<1E-04 <1E-11 1,6E-11	0,54 >1E-04 11	>5 400 >1E07 7,0E11
192	0.29	0.0016	0.40	0.0084	48	5,714

4.7
1,1,1
**#
Ţ
"Ļ
(# # # ,
:#
ine je
1.25
såp
1,71
123
1000

			207			
193	0.64	0.16	2.0	0.059	>100	>1 695
			·	-	•	
194	0.011	0.0040	0.041	0.0024	10	4 167
195	1.1	1.9	1.5	0.064	>100	>1 563
196	<1E-04 1.1E-08 ND	<1E-04 <1E-11 ND	<1E-04 2.5E-07 ND	<1E-04 <1E-11 1,2E-06	2,5 >1E-04 26	>25 000 >1E07 2,2E07
197	<1E-04 <1E-11 ND	<1E-04 <1E-11 ND	<1E-04 <1E-11 ND	<1E-04 <1E-11 ND	0,94 >1E-04 11	>9 400 >1E07 ND
198	<1E-04 1.4E-08 ND	<1E-04 1.2E-05 ND	<1E-04 1.0E-07 ND	<1E-04 1.1E-08 ND	2,1 >1E-04 17	>21 000 >10 000 ND
199	0.033	0.21	0.0078	0.0094	>100	>10 638
200	0.30	1.1	0.12	0.31	72	232

•

•			208			
201	47	18	7.3	14	>100	>7
201	17	10	7.3] '*	7100	''
				,		
	l					
202	<1E-04	<1E-04	<1E-04	<1E-04	0,1	>1 000
202		\IE-04		ND	1,1	ND
	2,1E-05	ND	1,2E-05	I ND	1,1	מאו
Į.	l i					
	1					
203	<1E-04	<1E-04	<1E-04	<1E-04	1,3	>13 000
203		ND	ND	3,3E-04	8,6	26 060
	ND	מא	IAD	3,32-04	0,0	20 000
						1
]					
204	0.015	0.0086	0.025	0.012	19	1 600
207	0.013	0.000	0.020	J	"	. 333
		4				
				•		
205	0.28	0.90	0.10	0.26	>100	>385
	55	0.00				
				Į.		
206	0.012	0.056	0.043	0.0090	80	8,889
	V.C.2	0.000				
		,				
					<u> </u>	
207	0.0061	0.0044	0.0023	0.0027	15	5,556
			ν.	ł		1
			1	1		
1						
				1		
						1
	<u></u>					ļ
208	<1E-04	<1E-04	<1E-04	<1E-04	1,42	>14 000
	0,0027	0,00063	0,0062	0,000052	11	211 538
ł] -,	-,		1		1
}						
	1		ĺ	1		
	1					
			1			
	1	ı	I		Ī	1

[2]	
122	
144	
*** 1	
Ç	
11,1	
11.00 H-18.	
12	
sæl	
100	
1=2	

209	0.31	1.3	0.59	ND	>100	ND
210	0.0026	0.0050	0.26	ND	>100	ND
211	≤0,0001 0,0000086 0,0000400	≤0,0001 0,000015 0,000030	≤0,0001 0,00016 0,00087	ND 0,000027 0,000053	0,71 >1 >0,1	<i>ND</i> >3 704 >1 887
212	0.00011	0.00059	0.018	ND	3.5	ND
213	≤0,0001	0.00027	0.012	ND	1.1	ND
214	9.4	9.4	89	ND	>100	ND
215	3.9	33	96	ND	>100	ND
216	0.00088	≤0,0001	0.018	ND	14	ND

122	a mile
H # # 4 B	"Link
	41114
· 4	
1	· ·
1	
Maria and series	
1	
:5	
9 2	į
95	
==	:
i,	
,	:
ļ	

			210			
217	≤0,0001	≤0,0001	0.00013	ND	1.2	ND
218	0.0091	0.052	0.081	ND	60	ND
219	≤0,0001	≤0,0001	0.00012	ND	2.1	ND
220	0.0034	0.029	0.042	0.0035	>100	>28 571
221	0.43	0.39	1.6	0.13	>100	>769
222	0.21	0.19	0.85	0.11	>100	>909
223	0.035	0.15	0.25	0.062	>100	>1 613
224	5.3	6.9	21	0.10	>100	>1 000

124
:[]
4.2)
4.4
171
1
1450
ţĮ
ij
126
100
1,13
Han. 444
125

			211			
225	11	11	43	0.88	>100	>113
226	0,00063 0,02600	0,0017 0,0330	0,035 0,016	0,00076 0,02100	28 >0,1	36 842 > 5
227	0.84	0.012	3.0	0.043	22	512
228	0.68	1.5	5.3	0.44	>100	>227
229	13 14	15 18	11 57	11 ND	>100 >100	> 9 ND
230	1.5	3.8	9.5	1.0	>100	>100
231	0.015	0.15	1.1	0.076	>100	>1 315
232	0,00053 0,00038	0,0096 0,0017	0,0190 0,0041	0,0037 0,0019	5,8 4,5	1 568 2 368

C D P. D B. D
The state of the s
100 H. St.
is szk
###############################
ļ=t

			212			
233	1,5 5,4 4,4	13 9,6 11	12 17 15	11 ND 9,7	18 18 22	1,7 ND 2
234	1.5	0.10	0.10	0.95	>100	.>105
235	1.6	1.1	0.38	1.2	61	51
236	3.7	8.6	0.12	5.1	>100	>20
237	0.0026	≤ 0.0001	0.088	0.0016	18	11,250
238	0.00045	≤0.0001	0.025	0.0025	59	23,600
239	0.0065	0.00033	0.19	0.0030	20	6667
240	≤0.0001	≤0.0001	≤0.0001	≤0.0001	2.5	≥25 000

			213			
241	0.047	0.17	14	1.4	≥100	≥74
242	0.25	0.0010	1.1	0.23	93	404
243	0.0011	0.00050	0.32	0.027	72	2,667
244	1.9	0.019	26	11	≥100	≥9
245	<1E-4	<1E-4	<1E-4	<1E-4	0.68	>6 800
246	47	1.4	28	25	>100	>4
247	0.13	0.00078	0.13	0.10	15	150
249.	8.6	0.78	8.4	3.9	>100	>25

*Resistance Factor = Ratio of dCK- on Wild-type CCRF-CEM

ND: Not Determined

NIH lines:

MCF-7: Human Breast Carcinoma H-460: Human Lung Carcinoma

SF-268: Human Central Nervous System Tumor

CCRF-CEM: T-cell Leukemia

Dck-: CCRF-CEM deoxycytidine kinase-deficient

Table 2 of IC50 Values (μM) for Pro-drugs of BCH-4556 Exposition of 24hr to drug, washed, and incubated for another 48hr (total of 72hr assay)

IC50 μM (MTT at 72hr) or WST-1 at 72hr)

IC50 μ M (MMT

ВСН	H-460	MCF-7	SF-268	CCRF-CEM	CEM/d	Resistance
]	24h	24h	24h	24h	CK-	Factor*
	2411	2-711	2711			
					24h	
Gemcitabine	0,012	0,0060	0,015	ND	>100	ND
	0,017	0,0092	0,064	0,0740	>100	>1 351
	0,086	0,2800	0,180	ND	>100	ND
	0,420	0,2600	0,220	0,0240	6,7	279
	0,046	0,0770	0,056	0,0250	19	760
	0,012	0,1100	0,048	0,0100	49	4 900
	0,086	0,0070	0,270	0,0071	34	4 789
	0,013	0,0150	0,082	0,0067	11	1 642
	0,014	0,0078	0,017	0,0088	56	6 364
	0,012	0,0120	0,840	0,0083	98	11 807
	0,070	0,1200	0,130	0,0051	65	12 745
	0,055	0,0270	0,023	0,0038	>10	>2 631
Average	0,072±0,1 26	0,078±0, 107	0,18±0,25	0,020±0,023	57±39	3987±3871
Cytosine	0,150	0,110	4,1	ND	>100	ND
Arabinoside	0,088	0,058	26	0,0820	>100	>1 220
	0,250	0,510	7,2	ND	>100	ND
(0)	0,780	0,920	73	0,0370	>100	>2 700
	0,130	0,210	39	0,0380	69	1 816
	0,063	0,830	16	0,0130	83	6 385
	0,180	0,054	42	0,0085	15	1 765
	0,081	0,056	15	0,0079	11	1 392
	0,066	0,050	1,9	0,0100	29	2 900
	0,073	0,061	ND	0,0100	69	6 900
	0,350	0,860	7,8	0,0094	91	9 680
	0,095	0,160	5,9	0,0078	>10	>1 282
Average	0,19±0,22	0,29±0,3 4	25±23	0,026±0,026	68±36	3135±2246
BCH-4556	0,35	0,12	16	ND	>100	ND
	0,78	0,63	17	0,44	>100	>227
	3,50	3,20	9,8	ND	>100	ND
	5,10	7,70	45	0,72	>100	>139
	1,70	1,30	15	0,79	>100	>126
	0,51	3,30	32	0,14	>100	>714
	1,30	0,53	28	0,21	>100	>476
	0,76	0,51	19	0,21	10	48
	ND	ND	ND	ND	ND	ND
	0,54	0,72	83	0,14	>100	>714
	2,30	1,60	16	0,16	>100	>625
	0,78	1,50	7,1	0,14	>10	>71
Average	1,6±1,6	2,0±2,4	29±23	0,38±0,28	>100	349±283

100
The state of the s
1,11
19 = 8
(,,)
1222
Harris mark Balls Co. H.
įē
a = j
:=:
17
10.00
ļs#

107 0,0 110 (HCl salt: 251) 0,0	0.27 0. 0.1300 0,0 00049 0,0 00060 0,2 0,21 0,0 2,70 1,0 3,30 0,0 0,86 11,70 1	25 3 018 1 120 0 240 7 17 0 30 9 97	,10 ,14 ,50 ,76 ,70	0.48 0.024 0,0034 0,0025 0,0040 0,09 0,28 0,20	1,3 7,1 9,4 1,3 32 80	382 2,042 2 840 2 350 14 114 400
110 (HCl salt: 251) 0,0 172	01300 0,0 00049 0,0 00060 0,2 0,21 0,2 2,70 1,3,30 0,0	018 1 120 0 240 7 17 0 30 9 97	,10 ,14 ,50	0,0034 0,0025 0,0040 0,09 0,28	1,3 7,1 9,4	382 2 840 2 350 14 114
110 0,0 (HCl salt: 251) 0,0	0,21 0,270 1,3,30 0,86 1,70 1	120 0 240 7 17 0 30 9 97	,14 ,50 ,76 ,70	0,0025 0,0040 0,09 0,28	7,1 9,4 1,3 32	2 840 2 350 14 114
2	2,70 1, 3,30 0, 0,86 1 1,70 1	30 9 97	,70	0,28	32	114
	1,70 1	A A				
1	1,80 2	,4 5	1,9 5,9 17	0,18 0,18 0,45	12 12 30	67 67 67
			1,7	0,0086 0,0790	26 14	3 023 177
0,	,0078 0,0	041 >	010 0,1 065	<i>ND</i> 0,0029 0,0710	1,1 >0,1 12	<i>ND</i> >34 169
			045 650	ND 0,010	7,7 >1	ND >100 43
0,	,0097 0,00)250 >	,01 0,1 ,22	<i>ND</i> 0,0018 0,0530	7,4 >0,1 >100	<i>ND</i> >56 >1 886
(HCl salt: 261) 0,	,0062 0,0	028 >	0054 0,1 ,73	<i>ND</i> 0,0083 0,1400	10 >0,1 23	<i>ND</i> >12 164

			21	<i>'</i>		
202	≤0,0001	0,0001	0,043	ND	0,05	ND
	0,021	0,0850	>0,1	0,014	>0,1	>7
		'	•		'	
				į.		
					İ	
203	0,120	0,010	0,72	ND	1,2	ND
	0,250	0,089	>1	0,010	>1	>100
	0,050	0,120	7,4	0,460	20	43
	0,000	0,.20	• , •	5,,,55		
		<u> </u>				
207	0,53	0,13	>1	0,074	>1	>14
	0,65	0,49	>1	0,190	>1	>5
	0,00	0,45	- 1	0,130	'	-3
		İ				
		l		-		
208	0,11	0,031	0,47	0,0590	25	424
200						
	0,20	0,066	2,20	0,0093	>1	>108
		,				
240	0.27	0.420	> 400	0.24	EA	204
210	0,37	0,130	≥100	0,24	51	204
	1,70	0,065	>100	0,46	>100	>217
	0,11	0,270	51	0,13	>100	>770
	0,22	0,110	>100	0,50	47	94
044	0.0050	0.00400	0.000	0.000000		- 0.53
211	0,0053	0,00100	0,038	0,0028000	>1	>357
(HCl salt: 248)	0,0030	0,00015	0,050	0,0350000	13	371
	0,0140	0,00770	0,034	0,0003300	>0,1	>303
	ND	0,00013	0,012	ND	8,70	ND
	<1e-6	<1e-6	0,029	<1e-6	1,50	>1500000
	0,0087	0,00130	0,034	0,0000023	0,44	>191 300
216	0.064	0.0094	0.40	0.34	31	91
•	0.00.	0.000	5			
		1				
		. 1				
				•		
				·		
217	0.011	0.0039	0.12	0.36	27	75
-''	0.511	0.0000	U. I.			
219	0,014	0,0037	0,18	0,018	51	2833
419					>1	
	0,058	0,0220	1,60	0,010	21	> 100
]					,	
				·		
223	4 70	47	4 5	0.42	>100	>833
223	1,70	1,7	15 47	0,12		
	0,78	2,1	47	0,13	>100	>769
	4,00	1,4	45	0,45	>100	>222
-)(-					ļ	
					,	
L	<u> </u>					

			21			
226	0,850	0,40	>1	0,0600	>1	> 17
	0,250	0,26	1,8	0,0410	>10	>244
	0,065	0,22	3,9	0,0011	15	13 636
	0,420	0,14	17	0,0260	35	1 346
	0,720	0,14	••	0,0200	"	1.043
232	0.0069	0.020	0.16	0.010	2.1	210
237	0,042	0,0011	3,3	0,0014	2,7	1 928
	5,200	0,0220	1,8	0,0100	22	2 200
	0,170	0,1700	2,7	0,0040	15	3 750
						<u> </u>
238	0,064	0,00460	5,7	0,0170	23	1 353
(HCl salt: 269)	0,046	0,00130	1,9	0,0050	10	2 000
	0,017	0,00020	5,6	0,0048	5,2	1 080
	0,062	0,01000	2,7	0,0014	28	20 000
		,				
200	0.40	0.0004		0.0045	20	4 4 4 4
239	0,49	0,0021	9,0	0,0045	20	4 444
	0,20	0,0031	4,9	0,0022	28	12 727
	0,20	0,6400	25	0,0110	17	1 545
240	<1e-6	<1e-6	0,053	<1e-6	1,70	>1 700 000
				0,000011	0,11	10 000
(HCl salt: 264)	0,0091	0,00045	0,016			
	0,0014	0,00068	0,031	0,000029	0,84	28 965
	0,0069	0,00190	0,028	0,000002	1,40	700 000
÷						
243	0,140	0,00640	14	0,0480	30	625
(HCl salt: 260)	0,038	0,00079	7,7	0,0081	21	2 593
(1101 3ait. 200)	0,038	0,12000	68	0,0400	51	1 275
	0,024	0,12000	00	0,0400	31 1	1 2/3
]				
245	0,00021	<1E-5	0,0440	<1E-5	2,2	>220 000
(HCl salt: 268)	0,00290	0,00300	0,0950	0,000021	3,4	161 904
(**************************************	0,00110	0,00013	0,0047	>1E-6	6,0	>6E6
	,,,,,,,,,,	",""	0,000		-,-	
247	0,39	0,00089	6,1	0,024	61	2 542
	0,54	0,30000	>10	0,140	49	350
]	0,46	0,01600	14	0,170	61	359
	-				1	
				!		
257	89	36 ;	>100	4,1	>100	>24
	42	21	>100	5,4	>100	>19
L		L	L	L	<u>L</u>	<u> </u>

10

			21	9		
262	0.90	16	>100	0.88	>100	>114
263	66 >100	73 12	>100 >100	19 14	>100 >100	>5 >7
265	>100	77	>100	30	>100	>3
266	0,00690 0,00053	0,0120 0,0013	1,00 0,42	0,00190 0,00067	21 26	11 050 37 143
267	93	34	>10	2.9	>10	>3

The preceding examples can be repeated with similar success by substituting the generically or specifically described reactants and/or operating conditions of this invention for those used in the preceding examples.

From the foregoing description, one skilled in the art can easily ascertain the essential characteristics of this invention and, without departing from the spirit and scope thereof, can make various changes and modifications of the invention to adapt it to various usages and conditions.