Rational Points on Conics and Pythagorean Triples.

Recall the Pythagorean theorem which is that in a right triangle with legs of length a and b and hypotenuse of length c

$$a^2 + b^2 = c^2. (1)$$

It is interesting to find examples of right triangles where all the sides have integer lengths.

Definition 1. A *Pythagorean triples* is an triple of positive integers (a, b, c) with $a^2 + b^2 = c^2$.

Probably the best known Pythagorean triple is (3,4,5). Here are some other examples:

$$(5, 12, 13), (7, 24, 25), (8, 15, 17), (65, 72, 97), (203, 394, 445)$$

Our current goal is to find all such triples.

We first divide equation (1) by c^2 to get

$$\left(\frac{a}{c}\right)^2 + \left(\frac{b}{c}\right) = 1.$$

Then the numbers

$$x = \frac{a}{c}$$
 $y = \frac{b}{c}$

are rational numbers. Thus (x, y) is a **rational points** on the circle $x^2 + y^2 = 1$. We will start our search for all Pythagorean triples by finding all rational points on $x^2 + y^2 = 1$.

Begin with any rational point on the circle. Psychologically the most natural is (x, y) = (1, 0). We now look at lines through this point with rational slope and show that such line intersect the circle in one other points and this point has rational coordinates. A vector with slope m is

$$\begin{bmatrix} 1 \\ m \end{bmatrix}$$
.

Thus the vector point equation of a line through (1,0) with slope m is

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} 1 \\ m \end{bmatrix}$$

or in parametric form

$$x = 1 + t$$
$$y = mt.$$

Using these equations in $x^2 + y^2 = 1$ gives

$$(1+t)^2 + (mt)^2 = 1.$$

The values of t that make this equation true correspond to the points on the line through (1,0) with slope m that are on the circle $x^2 + y^2 = 1$. This equation for t simplifies to

$$t((m^2+1)t+2) = 0.$$

which has solutions

$$t = 0,$$
 $t = \frac{-2}{m^2 + 1}.$

That t=0 is a solution does not surprise us, as t=0 corresponds to the point (1,0) with we know to be on the circle $x^2+y^2=1$. Using $t=-2/(m^2+1)$ in our formulas for x and y gives

$$x = 1 + t = \frac{m^2 - 1}{m^2 + 1}, \qquad y = mt = \frac{-2m}{m^2 + 1}.$$

If m is a rational number, then it is not hard to see these are both rational and therefore (x, y) is a rational point on $x^2 + y^2 = 1$. The converse also holds.

Proposition 2. Let m be any rational number, then the point (x, y) with

$$x = \frac{m^2 - 1}{m^2 + 1}, \qquad y = \frac{-2m}{m^2 + 1} \tag{2}$$

is a rational point on $x^2 + y^2 = 1$. Conversely if (x, y) is a rational point on $x^2 + y^2 = 1$ then either (x, y) = (1, 0), or there is some rational rational number m such that x are y are given by the above formulas.

Problem 1. Prove this. *Hint:* All that remains to be one is to show that if $(x,y) \neq (1,0)$ is a rational point on the circle, then there is a rational number m such that x and y are given by the desired formulas. Recall that the geometric meaning of m is the slope of the line through (1,0) and (x,y). This slope (see Figure 1) is

$$m = \frac{y}{x - 1}.$$

Now show that using this value of m in (2) gives x and y. This is not quite as easy as one would like, as we have to use that $x^2 + y^2 = 1$ to simplify. To

start

$$m^{2} + 1 = \left(\frac{y}{x-1}\right)^{2} + 1$$

$$= \frac{y^{2} + (x-1)^{2}}{(x-1)^{2}}$$

$$= \frac{y^{2} + x^{2} - 2x + 1}{(x-1)^{2}}$$

$$= \frac{1 - 2x + 1}{(x-1)^{2}}$$

$$= \frac{2(1-x)}{(x-1)^{2}}$$

$$= \frac{2}{1-x}.$$
(as $y^{2} + x^{2} = 1$)

Do a similar calculation to show

$$m^2 - 1 = \frac{2x}{1 - x}$$
.

Using these it should not be hard to verify that

$$\frac{m^2 - 1}{m^2 + 1} = x$$
, and $\frac{-2m}{m^2 + 1} = y$

hold. Use this to finish the proof.

FIGURE 1. If $(x,y) \neq (1,0)$ is a rational point on $x^2 + y^2 = 1$ then line through (1,0) and (x,y) has slope $m = \frac{y}{x-1}$, which is a rational number.

Example 3. We we use the same circle of ideas to find all the rational points on the curve, C, defined by

$$x^2 - 5xy + 2y^2 = -1.$$

FIGURE 2. The hyperbola, C, defined by $x^2-5xy+2y^2=-1$, the lines L(1) and L(-2) through the rational point (1,2) of C with slopes 1 and -2. The the points (x(1),y(1)) and (x(-2),y(-2)) where these lines intersect C are also shown. These points are also rational points on C.

This curve is a hyperbola, see figure 2. We start by finding one rational point. In this we note (x, y) = (1, 2) is on the curve. The parametric form of a line through (1, 2) with slope m is

$$x = 1 + t, \qquad y = 2 + mt.$$

Plug these into $x^2 - 5xy + 2y^2 + 1 = 0$ and group by powers of t.

$$x^{2} - 5xy + 2y^{2} + 1 = (1+t)^{2} - 5(1+t)(2+mt) + 2(2+mt)^{2} + 1$$
$$= (2m^{2} - 5m + 1)t^{2} + (3m - 8)t$$
$$= t [(2m^{2} - 5m + 1)t + (3m - 8)]$$
$$= 0.$$

Solving for t gives t = 0 (corresponding to the point (1,2)) and

$$t = \frac{-3m + 8}{2m^2 - 5m + 1}$$

Plugging this back into x = 1 + t and y = 2 + mt gives

$$x = x(m) = 1 + \frac{-3m + 8}{2m^2 - 5m + 1} = \frac{2m^2 - 8m + 9}{2m^2 - 5m + 1}$$

$$y = y(m) = 2 + mt = 2 + m\frac{-3m + 8}{2m^2 - 5m + 1} = \frac{m^2 - 2m + 2}{2m^2 - 5m + 1}$$

One solution will be t=0 (why?). Use the other solution in x=1+t and y=2+mt to get rational points on C. This is all of them, but you do not have to prove that.

Problem 2. Using this same circle of ideas to find all the rational points on the curve, C, defined by

$$x^2 - 5xy + 2y^2 = -1.$$

Hint: Start by finding one rational point. In this case check that (x, y) = (1, 2) is on the curve. The parametric form of a line through (1, 2) with slope m is

$$x = 1 + t,$$
 $y = 2 + mt.$

Plug these into $x^2 - 5xy + 2y^2 = -1$ and solve for t in terms of m. One solution will be t = 0 (why?). Use the other solution in x = 1 + t and y = 2 + mt to get rational points on C. This is all of them, but you do not have to prove that.

More generally we can look for all the rational points on a curve, C, defined by

$$f(x,y) = 0$$

where f(x, y) is a quadratic polynomial

$$f(x,y) = c_{20}x^2 + c_{11}xy + c_{02}y^2 + c_{10}x + c_{01}y + c_{00}$$

and all the coefficients, c_{ij} are integers¹ We assume there is at least one rational point, (x_0, y_0) , on C, that is a rational point with $f(x_0, y_0) = 0$. Motivated by what we did to find the rational points on the unit circle we let

$$x = x_0 + t$$
, and $y = y_0 + tm$

and substitute this into f(x,y)=0 and group by powers of t and use $f(x_0,y_0)=0$

$$f(x,y) = c_{20}(x_0 + t)^2 + c_{11}(x_0 + t)(y_0 + mt) + c_{02}(y_0 + mt)^2$$

$$+ c_{10}(x_0 + t) + c_{01}(y_0 + mt) + c_{00}$$

$$= (c_{02}m^2 + c_{11}m + c_{20})t^2$$

$$+ (2c_{20}x_0 + c_{11}(mx_0 + y_0) + 2c_{02}my_0 + c_{10} + c_{01}m)t$$

$$+ f(x_0, y_0)$$

$$= t[(c_{02}m^2 + c_{11}m + c_{20})t$$

$$+ 2c_{20}x_0 + c_{11}(mx_0 + y_0) + 2c_{02}my_0 + c_{10} + c_{01}m]$$

$$= 0$$

¹It is enough to assume the coefficients are rational numbers. For by multiplying the equation f(x,y) = 0 by the least common denominator of the coefficients we get an equation defining C with integer coefficients.

Solving for t gives t = 0 (corresponding to the points (x_0, y_0)) and

$$t = \frac{-\left[2c_{20}x_0 + c_{11}(mx_0 + y_0) + 2c_{02}my_0 + c_{10} + c_{01}m\right]}{c_{02}m^2 + c_{11}m + c_{20}}$$

which is rational whenever m is rational. Using this value of t back in our formulas $x = x_0 + t$ and $y = y_0 + mt$ gives (after some unpleasant algebra)

$$x = x(m) = \frac{c_{02}x_0m^2 - (2c_{02}y_0 + c_{01})m - (c_{20}x_0 + c_{11}y_0 + c_{10})}{c_{02}m^2 + c_{11}m + c_{20}}$$
$$y = y(m) = \frac{-(c_{11}x_0 + c_{02}y_0 + c_{01})m^2 - (2c_{20}x_0 + c_{10})m + c_{20}y_0}{c_{02}m^2 + c_{11}m + c_{20}}$$

1. Some problems related to pythagorean truples

Problem 3. If a, b, and c are positive integers with $a^2 + b^2 = c^2$ show that gcd(a, b, c) = 1 if and only if gcd(a, b) = 1.

Definition 4. A *fundamental Pythagorean triple* is triple with of positive integers a, b, c with $a^2 + b^2 = c^2$ and gcd(a, b, c) = 1.

Problem 4. Let a, b, and c be a Pythagorean triple. Show that there is a primitive Pythagorean α , β , and γ and a positive integer k such that $a = k\alpha$, $b = k\beta$, and $c = k\gamma$. *Hint:* $k = \gcd(a, b, c)$.

Problem 5. If a, b, and c are a fundamental Pythagorean triple then show that exactly two of a, b, and c are odd and that c is always odd.

We have seen that for positive integers p and q with q < p that

$$a = 2pq$$
$$b = p^2 - q^2$$
$$c = p^2 + q^2$$

is a Pythagorean triple.

Problem 6. With this notation show that a, b, and c is a fundamental Pythagorean triple if and only if gcd(p,q) = 1.

Problem 7. Put the last several problems together to give a method to

- (a) Make a list of all fundamental Pythagorean triples.
- (b) Make a list of all Pythagorean triples.

In looking in books for problems I came across the following two problems that I had not seem before and which look like fun.

Problem 8. Show that in any Pythagorean triple a, b, and c that at least one of the numbers a, b, or c is divisible by 5.

Problem 9. Find all fundamental Pythagorean triangles where the area is twice the perimeter. \Box