Euler's Method

Aiden Rosenberg

October 2022 A.D

Problem 1

1. (a) Given the differential equation $\frac{dy}{dx} = x + 2$ and y(0) = 3. Find an approximation for y(1) by using Euler's Method with two equal steps.

Table 1:
$$\Delta x = 0.5$$

x	$\mid y \mid$	$\frac{dy}{dx}$	Δy
0	3	3	1.5
0.5	4.5	5	2.25
1	6.25	7.25	3.625

$$y(1) \approx 6.25$$

(b)
$$\int \frac{dy}{dx} dx = \int x + 2 dx$$

$$y = \frac{x^2}{2} + 2x + C \Big|_{(0,3)} \Longrightarrow C = 3$$

$$y = \frac{x^2}{2} + 2x + 3 \Big|_{x=1} = 5.5$$

(c) The difference between the estimate and the exact value is $\frac{1}{4}$; to increase accuracy smaller steps can be used.

x	2.0	2.5	3.0
f'(x)	0.4	0.6	0.8
f(x)	5		

2. Suppose a continuous function f and its derivative f' have the values given in the following table. Given that f(2) = 5, use Euler's Method with two steps of size $\Delta x = 0.5$ to approximate the value of f(3).

Table 2: $\Delta x = 0.5$

x	$\mid y \mid$	$\frac{dy}{dx}$	Δy
2	5	0.4	0.2
2.5	5.2	0.6	0.3
3	5.5		

(a)

(b)

$$f(3) \approx 5.5$$

3. Given the differential equation $\frac{dy}{dx} = \frac{1}{x+2}$ and y(0) = 1. Find an approximation for y(1) by using Euler's Method with two steps $\Delta x = 0.5$.

Table 3: $\Delta x = 0.5$

x	$\mid y \mid$	$\frac{dy}{dx}$	Δy
0	1	0.5	0.25
0.5	1.25	0.4	0.2
1	1.45		

(a)

(b)

$$y(1) \approx 1.45$$

- 4. Given the differential equation $\frac{dy}{dx} = x + y$ and y(1) = 3. Find an approximation for y(2) by using Euler's Method with two steps $\Delta x = 0.5$.
 - (a)

(b)

$$y(2) \approx 8.25$$

Table 4:
$$\Delta x = 0.5$$

5. The curve passing through (2,0) satisfies the differential equation $\frac{dy}{dx} = 4x + y$. Find an approximation to y(3) using Euler's Method with two equal steps.

Table 5:
$$\Delta x = 0.5$$

(a)

(b)

$$y(3) \approx 11$$

6. Suppose a continuous function f and its derivative f' have the values given in the following table. Use Euler's Method with two equal steps to approximate the value of f(4.4).

$$\begin{array}{c|ccccc} x & 4 & 4.2 & 4.4 \\ \hline f'(x) & -0.5 & -0.3 & -0.1 \\ \hline f(x) & 2 & & & \\ \end{array}$$

Table 6:
$$\Delta x = 0.2$$

(a)

(b)

$$y(4.4) \approx 1.84$$

7. The table gives selected values for the derivative of a function f on the interval $-2 \le x \le 2$. If f(-2) = 3 and Euler's Method with a step-size of 1.5 is used to approximate f(1), what is the resulting approximation?

x	f'(x)
-2	-0.8
-1.5	-0.5
-1	-0.2
-0.5	0.4
0	0.9
0.5	1.6
1	2.2
1.5	3
2	3.7

Table 7: $\Delta x = 1.5$

(a)

(b)

$$f(1) \approx 2.4$$

8. Let y = f(x) be the particular solution to the differential equation $\frac{dy}{dx} = x + 2y$ with the initial condition f(0) = 1. Use Euler's Method, starting at x = 0 with two steps of equal size to approximate f(-0.6).

Table 8:
$$\Delta x = 1.5$$

(a)

$$f(-0.6) \approx 0.25$$