Métodos Numéricos e Computacionais MTM224

Lista 4: Método Ponto Fixo

- 1. Através de manipulação algébrica mostre que o ponto fixo x^* das funções g(x) abaixo é solução da equação f(x)=0, onde $f(x)=x^4+2x^2-x-3$.
 - a. $g_1(x) = (3 + x 2x^2)^{\frac{1}{4}}$.
 - b. $g_2(x) = \sqrt{\frac{x+3-x^4}{2}}$.
 - c. $g_3(x) = \left(\frac{x+3}{x^2+2}\right)^{\frac{1}{2}}$.
 - d. $g_4(x) = \frac{3x^4 + 2x^2 + 3}{4x^3 + 4x 1}$.
- 2. a. Utilize o método de ponto fixo para determinar a solução de $x^3 x 1 = 0$, com uma precisão de $|x_n x_{n-1}| < 10^{-2}$.(Obs.:i) Isole a solução em um intervalo de comprimento igual a 1.)
 - b. Estime o número de iterações teóricas necessárias, a partir da expressão $|x_n x^*| \le k^n \max\{x_0 a, b x_0\}$, para atingir uma precisão de 10^{-2} . Compare o número de iterações teóricas com as obtidas no item anterior. (Obs.: k é a constante positiva limitante da derivada da função iteração do método.)
- 3. a. Verifique que a função recursiva $x_{n+1} = g(x_n)$, com $g(x) = 2^{-x}$ converge para um único ponto fixo no intervalo [1/3, 1].
 - b. Encontre o ponto fixo da g(x) no intervalo [½, 1] com uma precisão de $|x_n x_{n-1}| < 10^{-4}$.
 - c. Compare o número de iterações teóricas com o número de iterações do item (b.).
- 4. Para cada uma das seguintes equações, determine um intervalo no qual o método de ponto fixo convirja. Justifique sua resposta. Estime o

número de iterações teóricas necessárias para atingir uma aproximação de 10^{-5} .(Obs.: Verifique sua resposta com um graficador de funções!)

- a.) $x = (e^x/3)^{1/2}$, b.) $x = 5^{-x}$, c.) $x = \frac{5}{x^2} + 2$, d.) $x = \cos(x)$.