Algebra 2R

a voyage into the unknown

koteczek

 \sim

Spis rzeczy niezbyt mądrych

1.1	ównań algebraicznych Rozwiązywanie układów równań	4 4 6
Ciała sko 2.1	ończone i pierwiastki z jedności Algebraiczne domknięcie ciała	10 11
3.1 3.2	oste, pierwiastki z jedności Ciała proste	13
	zenia ciał Wymiar przestrzeni liniowej	17 17

Wykład: 1: Teoria równań algebraicznych

Przez R, S będziemy oznaczać pierścienie przemienne z $1 \neq 0$, natomiast K, L będziemy rezerwować dla oznaczeń ciał.

1.1 Rozwiązywanie układów równań

Rozważmy funkcje $f_1,...,f_m \in R[X_1,...,X_n]$. Dla wygody będziemy oznaczać krotki przez \overline{X} , czyli $R[X_1,...,X_n] = R[\overline{X}]$. Pojawia się problem: czy istnieje rozszerzenie pierścieni z jednością $R \subseteq S$ takie, że układ $U: f_1(\overline{X}) = ... = f_m(\overline{X}) = 0$ ma rozwiązanie w pierścieniu S?

Fakt 1.1. $\overline{a} = (a_1, ..., a_n) \subseteq S$, gdzie S jest rozszerzeniem pierścienia R, jest rozwiązaniem układu równań $U \iff g(\overline{a}) = 0$ dla każdego wielomianu $g \in (f_1, ..., f_m) \triangleleft R[X]$.

Dowód:

 \iff Implikacja jest dość trywialna, jeśli każdy wielomian z ($f_1,...,f_m$), czyli wytworzony za pomocą sumy i produktu wielomianów $f_1,...,f_m$ zeruje się na \bar{a} , to musi zerować się też na każdym z tych wielomianów

⇒ Rozważamy dwa przypadki:

1.
$$(f_1, ..., f_m) \ni b \neq 0 i b \in R$$
.

To znaczy w $(f_1,...,f_m)$ mamy pewien niezerowy wyraz wolny. Wtedy mamy wielomian $g \in (f_1,...,f_m)$ taki, że $g(\overline{a}) \neq 0$. Ale przecież g jest kombinacką wielomianów $f_1,...,f_m$, która na \overline{a} przyjmują wartość 0. W takim razie dostajemy układ sprzeczny i przypadek jest do odrzucenia.

2.
$$(f_1, ..., f_m) \cap R = \{0\}$$
. (nie ma wyrazów wolnych różnych od 0)

Teraz wiemy, że układ U jest niesprzeczny, a więc możemy skonstruować pierścień z 1 S będący rozszerzeniem R $[S \supseteq R]$ oraz rozwiązanie $\overline{a} \subseteq S$ spełniające nasz układ równań.

Niech S = $R[\overline{X}]/(f_1,...,f_m)$ i rozważmy

$$j:R[\overline{X}]\to S=R[\overline{X}]/(f_1,...,f_m)$$

nazywane przekształceniem ilorazowym. Po pierwsze, zauważmy, że j $\$ R jest 1 – 1, bo

$$ker(j \upharpoonright R) = ker(j) \cap R = (f_1, ..., f_m) \cap R = \{0\}$$

i dlatego

$$j \upharpoonright R : R \xrightarrow{\cong} j[R] \subseteq S.$$

Z uwagi na ten izomorfizm, będziemy utożsamiać R, j[R]. W takim razie, S jest rozszerzeniem pierścienia R. Czyli mamy rozszerzenie pierścienia R.

Niech

$$\bar{a} = (a_1, ..., a_m) = (j(X_1), ..., j(X_n)) \subseteq S,$$

czyli jako potencjalne rozwiązanie rozważamy zbiór obrazów wielomianów stopnia 1 przez wcześniej zdefiniowaną funkcję $j:R[\overline{X}]\to S$. Tak zdefiniowane \overline{a} jest rozwiązaniem układu U w pierścieniu S, bo dla funkcji wielomianowej (czyli zapisywalnej jako wielomian) $\hat{f_i}\in (f_1,...,f_m)$ mamy

$$\hat{f}_i(\bar{a}) = \hat{f}_i(j(X_1), ..., j(X_m)) = j(\hat{f}_i(X_1, ..., X_m)) = j(f_i) = 0.$$

TUTAJ TRZEBA POUZASADNIAĆ KILKA RÓWNOŚCI, ALE MOŻE NIE BĘDĘ TEGO RO-BIŁA NA AISD

Uwaga 1.2. Skonstruowane powyżej rozwiązanie a układu U ma następującą własność uniwersalności:

(\clubsuit) Jeżeli S' \supseteq R jest rozszerzeniem pierścienia z 1 i \overline{a}' = $(a'_1,...,a'_m) \subseteq S$ jest rozwiązaniem U w S', to istnieje jedyny homomorfizm

$$h:R[\overline{a}] \to R[\overline{a}']$$

taki, że h \upharpoonright R jest identycznością na R i h(\overline{a}) = \overline{a}' . Wszystkie rozwiązania układów są homomorficzne.

Tutaj R[\overline{a}] \subseteq S jest podpierścieniem generowanym przez R \cup { \overline{a} }, czyli zbiór:

$$R[\overline{a}] = \{f(\overline{a}) : f(\overline{X}) \in R[\overline{X}]\} \subseteq S$$

Dowód: Niech I = $\{g \in R[\overline{X}] : g(\overline{a}') = 0\} \subseteq S'$. Oczywiście mamy, że I \triangleleft R $[\overline{X}]$, a więc

$$(f_1, ..., f_m) \subseteq I$$
.

Z twierdzenia o faktoryzacji wie

Homomorfizm $\phi: R[\overline{X}] \to R[\overline{a}']$ określamy wzorem

$$\phi(w) = w(\overline{a}),$$

a homomorfizm j jest jak wyżej odwzorowaniem ilorazowym. Widzimy, że

$$I = \ker(\phi)$$

$$ker(j) = (f_1, ..., f_m).$$

Z twierdzenia o homomorfizmie pierścieni dostajemy jedyny homomorfizm

$$h: R[X]/(f_1,...,f_m) \rightarrow R[\overline{a}]$$

taki, że h(\overline{a}) = \overline{a}' .

Uwaga 1.3. *Jeśli* I =
$$(f_1, ..., f_m)$$
, to h : R[\overline{a}] $\xrightarrow{\cong}_{R}$ [\overline{a}'].

Wtedy mamy $\ker \phi = \ker j$, czyli $\ker (h \circ j) = \ker \phi = \ker j$, no a z tego wynika, że $\ker h$ jest trywialne, czyli h jest apimorfizmem (1-1). Z drugiej strony, $\operatorname{Im} \phi = \operatorname{Im}(h \circ j)$, a ϕ jest epimorfizmem ("na"), więc również h musi być "na".

Załóżmy, że S \supseteq R jest rozszerzeniem pierścienia oraz $\overline{a} \in S^n$. Wtedy:

1. ideał a nad R definiujemy jako

$$I(\overline{a}/R) = \{q \in R[\overline{X}] : q(\overline{a}) = 0\}$$

2. a nazywamy rozwiązaniem ogólnym układu U, jeśli ideał

$$I(\overline{a}/R) = (f_1, ..., f_m).$$

Uwaga 1.4. W sytuacji jak z definicji wyżej, gdy U jest układem niesprzecznym, wtedy \overline{a} jest rozwiązaniem ogólnym układu $U \iff$ zachodzi warunek (\clubsuit).

Dowód: Ćwiczenia.

1.2 Rozszerzanie ciał

Dla K \subseteq L ciał i \overline{a} \subseteq L definiujemy ideał \overline{a} nad K jako:

$$I(\overline{a}/L) := \{f(X_1, ..., X_n) \in K[\overline{X}] : f(\overline{a}) = 0\},\$$

to znaczy generujemy ideał w wielomianach nad K zawierający wszystkie wielomiany (niekoniecznie tylko jednej zmiennej) zerujące się w ā.

Przykład:

Dla K = \mathbb{Q} , L = \mathbb{R} , n = 1, $a_1 = \sqrt{2}$ mamy

$$I(\sqrt{2}/\mathbb{Q}) = \{f(x^2 - 2) : f \in \mathbb{Q}[X]\} = (x^2 - 2) \triangleleft \mathbb{Q}[X]$$

Dalej, definiujemy

$$K[\overline{a}] := \{f(\overline{a}) : f \in K[X]\}$$

czyli **podpierścień** L **generowany przez** K \cup { \overline{a} } oraz K(\overline{a}), **czyli podciało** L generowane przez K \cup { \overline{a} }:

$$K(\overline{a}) := \{f(\overline{a}) : f \in K(X_1, ..., X_n) | f(\overline{a}) \text{ dobrze określone} \}.$$

Tutaj $K(X_1, ..., X_n)$ to *ciało ułamków pierścienia* $K[\overline{a}]$ w ciele L (czyli najmniejsze ciało, że pierścień może być w nim zanurzony). Czasami oznaczamy to przez $K[\overline{a}]_0$.

Uwaga 1.5. Niech $K \subseteq L_1$, $K \subseteq L_2$ będą ciałami. Wybieramy $\overline{a}_1 \in L_1$ i $\overline{a}_2 \in L_2$, $|\overline{a}_1| = |\overline{a}_2| = n$. Wtedy następujące warunki są równoważne:

- 1. istnieje izomorfizm $\phi : K[\overline{a}_1] \to K[\overline{a}_2]$ taki, że $\phi \upharpoonright K = id_K$ oraz $\phi(\overline{a}_1) = \overline{a}_2$.
- 2. $I(\bar{a}_1/K) = I(\bar{a}_2/K)$.

Dowód:

$$1 \implies 2$$

Implikacja jest jasna, bo dla $g(\overline{X}) \in K[\overline{X}]$, bo $g(\overline{a}_1) = 0$ w $K[\overline{a}_1] \iff g(f(\overline{a}_1)) = 0$, a $f(\overline{a}_1) = \overline{a}_2$.

Zwróćmy uwagę na odwzorowanie ewaluacji a

$$\phi_{\overline{a}_1}: K[\overline{X}] \xrightarrow{"na"} K[a_1]$$

zadane wzorem

$$\phi(w(\overline{X})) = w(\overline{a}_1).$$

Mamy

$$\ker(\phi_{\overline{a}_1}) = I(\overline{a}_1/K).$$

Tak samo dla \overline{a}_2 możemy określić analogicznie odwzorowanie ewaluacyjne $\phi_{\overline{a}_2}: K[\overline{X}] \to K[\overline{a}_2]$. Wtedy

$$I(\overline{a}_2/K) = \ker(\phi_{\overline{a}_2}),$$

ale ponieważ $I(\overline{a}_1/K) = I(\overline{a}_2/K)$, to $\ker(\phi_{\overline{a}_1}) = \ker(\phi_{\overline{a}_2})$. Oznaczmy $I = I(\overline{a}_1/K) = I(\overline{a}_2/K)$. Widzimy, że $\phi_{\overline{a}_i} \upharpoonright K = \operatorname{id}_k$.

Niech f = $f_2f_1^{-1}$: $K[\overline{a}_1] \rightarrow K[\overline{a}_2]$ jest funkcją spełniającą warunki punktu 1.

MOŻE TUTAJ ŁADNIE SPRAWDZIĆ ŻE NAPRAWDĘ JEST TO DOBRZE SPEŁNIAJĄCA WARUNKI FUNKCJA?

Uwaga. Niech $I \triangleleft K[\overline{X}]$ noetherowskiego pierścienia $K[\overline{X}]$. Niech $I = (f_1, ..., f_m)$ dla pewnych $f_i \in K[\overline{X}]$. Wtedy istnieje rozszerzenie pierścienia $S \supseteq K$ oraz $\overline{a} \subseteq S$ - rozwiązanie ogólne układu $f_1(\overline{X}) = ... = f_m(\overline{X}) = 0$ takie, że $I(\overline{a}/K) = I$.

Dowód: Uwaga 1.4.

Twierdzenie 1.6. Niech $I \triangleleft K[\overline{X}]$. Wtedy istnieje ciało $L \supseteq K$ oraz $\overline{a} = (a_1, ..., a_n) \subseteq L$ takie, że $f(\overline{a}) = 0$ dla każdego $f \in I$.

Dowód: Niech $I \subseteq M \triangleleft K[\overline{X}]$ będzie ideałem maksymalnym. Niech $L = K[\overline{X}]/M$ i określmy przekształcenie ilorazowe

$$j: K[\overline{X}]/M \rightarrow L = K[\overline{X}]/M.$$

Ponieważ $M \cap K = \{0\}$ (bo inaczej w ideale byłby wielomian odwracalny), to $j \upharpoonright K : K \to L$ jest funkcją 1-1, czyli

$$j \upharpoonright K : K \xrightarrow{1-1} j[K] \subseteq L.$$

Możemy utożsamić K z j[K], czyli K \subseteq L. Niech \overline{a} = (a₁,...,a_n) takie, że dla każdego i \in [n]

$$\mathsf{a}_i = \mathsf{j}(\mathsf{X}_i) \in \mathsf{L}.$$

Wtedy $g(\overline{a}) = 0$ dla każdego $g(\overline{X}) \in M \supseteq I$ (bo inaczej mielibyśmy wyrazy wolne).

Wniosek 1.7. Niech $f \in K[X]$ stopnia > 0. Wtedy istnieje ciało $L \supseteq K$ rozszerzające ciało K takie, że K ma pierwiastek K ciele K.

Przykłady:

1. Rozpatrzmy ciało K = \mathbb{Q} i f(X) = X – 2. Wtedy I = (f) $\triangleleft \mathbb{Q}[X]$ jest ideałem maksymalnym, bo jest on pierwszy (w tym wypadku nierozkładalny). Równanie f = 0 ma rozwiązanie ogólne w pierścieniu ilorazowym

$$\mathbb{Q}[X]/I \cong \mathbb{Q}.$$

Czyli nie zawsze musimy rozszerzać ciało do czegoś nowego.

2. $\mathbb{C} = \mathbb{R}[i] = \mathbb{R}(i) = \mathbb{R}[z]$ dla każdego $z \in \mathbb{C} \setminus \mathbb{R}$, co jest na liście zadań.

Załóżmy, że K \subseteq L₁, K \subseteq L₂ są rozszerzeniami ciała. Wtedy mówimy, że L₁ **jest izomorficzne z** L₂ **nad** K [L₁ \cong _K L₂] \iff istnieje izomorfizm f : L₁ \rightarrow L₂ taki, że f \upharpoonright K = id_K.

Fakt 1.8.

- 1. Załóżmy, że $f(X) \in K[X]$ jest nierozkładalny. Niech $L_1 = K(a_1)$, $L_2 = K(a_2)$ i $f(a_i) = 0$ w L_i . Wtedy $L_1 \cong_K L_2$.
- 2. Ogółniej: załóżmy, że $\phi: K_1 \to K_2$ jest izomorfizmem i $f_1 \in K_1[X], f_2 \in K_2[X], \phi(f_1) = f_2, f_i$ jest nierozkładalne. Dodatkowo załóżmy, że $L_1 = K_1(a_1)$ i $L_2 = K_2(a_2)$, gdzie $f_i(a_i) = 0$ w L_i . Wtedy istnieje izomorfizm $\phi \in \psi: L_1 \to L_2$ taki, że $\psi(a_1) = a_2$.

Dowód:

- 1. $I(a_1/K) = I(a_2/K)$, stąd na mocy 1.5 mamy $K(a_1) \cong_K K(a_2)$. Po dowodzie przypadku 2. możemy uzasadniać, że jest to szczególny przypadek tego ogólniejszego stwierdzenia właśnie.
 - 2. Zacznijmy od rozrysowania tej sytuacji:

Izomorfizm $\phi: K_1[X] \xrightarrow{\cong}_{K_2} [X]$ indukuje nam przekształcenie

$$\mathsf{K}_1[\mathsf{X}]/(\mathsf{f}_1) \xrightarrow{\cong} \mathsf{K}_2[\mathsf{X}]/(\mathsf{f}_2),$$

bo $\phi(f_1) = f_2$. Wiemy, że f_i jest nierozkładalne, czyli

$$I(a_i/K_i) = (f_i) \triangleleft K_i[X]$$

jest ideałem maksymalnym. Mamy

$$L_i = K_i(a_i) = K_i[a_i] \cong K[X]/I(a_i/K_i).$$

Wykład: 2: Ciała skończone i pierwiastki z jedności

Ciało L \supseteq K nazywamy **ciałem rozkładu nad** K wielomianu f \in K[X], gdy spełnione są warunki:

- 1. f rozkłada się w pierścieniu L[X] na czynniki liniowe (stopnia 1)
- 2. Ciało L jest rozszerzeniem ciała K o elementy $a_1, ..., a_n$, gdzie $a_1, ..., a_n$ to wszystkie pierwiastki f w L.

Przykład: Jeżeli deg(f) = 0, to nie istnieje ciało rozkładu f.

Wniosek 2.1. Załóżmy, że $f \in K[X]$ jest wielomianem stopnia > 0. Wtedy

- 1. istnieje L: ciało rozkładu f nad K,
- 2. to ciało jest jedyne z dokładnością do izomorfizmy nad K.

Dowód:

1. Dowód przez indukcje względem stopnia f

Jako przypadek bazowy rozważmy f takie, że deg(f) = 1. Wtedy L = K i wszystko wniosek jest spełniony.

Załóżmy teraz, że stopień wielomianu f jest > 1 i tez zachodzi dla wszystkich wielomianów stopnia < deg(f) i wszystkich ciał K'. Teraz z 1.7 wiemy, że istnieje rozszerzenie ciała L \supseteq K takie, że f ma pierwiastek w L. Nazwijmy ten pierwiastek a $_0$ i niech

$$K' = K(a_0).$$

Ponieważ K'[X] wielomian f ma pierwiastek a_0 , to możemy zapisać

$$f = (x - a_0)f_1$$

dla pewnego $f_1 \in K'[X]$ i deg (f_1) < deg(f). Z założenia indukcyjnego dla f_a istnieje L' = $K'(a_1,...,a_r)$ - ciało rozkładu wielomianu f_1 nad K'. Wtedy

$$L = K(a_0, ..., a_r)$$

jest ciałem rozkładu f nad K.

2. Udowodnimy wersję ogólniejszą:

(**) Jeśli $\phi: K_1 \xrightarrow{\cong} K_2$ jest izomorfizmem nad ciałem i $f_i \in K_i[X]$ jest wielomianem stopnia > 0, $\phi(f_1) = f_2$, to wtedy istnieje $\psi: L_1 \xrightarrow{\cong} L_2$ izomorfizm nad ciałami rozkładu f_i w K_i rozszerzający izomorfizm ϕ (to znaczy $\phi \subseteq \psi$).

Wykorzystamy indukcję po deg(f). W przypadku bazowym mamy deg(f) = 1, czyli $L_1 = K_1, L_2 = K_2$ i $\phi = \psi$.

Teraz niech deg(f) > 1 i załóżmy, że dla wszystkich ciał K' oraz wielomianów stopnia < deg(f) jest to prawdą. Niech

$$f_i = f_i' \cdot g_i$$

gdzie $f_i', g_i \in K_i[X]$ i g_i jest wielomianem nierozkładalnym w K. Wiemy już, że istnieje $a_i \in L_i$ będące pierwiastkiem wielomianu g_i .

Z faktu 1.8:(2), wiemy, że istnieje wtedy izomorfizm

$$\psi_0: \mathsf{K}_1(\mathsf{a}_1) \stackrel{\cong}{\longrightarrow} \mathsf{K}_2(\mathsf{a}_2)$$

taki, że $\psi_0(a_1) = a_2 i \phi \subseteq \psi_0$.

Z założenia wiemy, że L_i to ciało rozkładu f_i' nad K_i . W takim razie z założenia indukcyjnego istnieje izomorfizm

 $\psi_1: \mathsf{L}_1 \xrightarrow{\cong} \mathsf{L}_2$

taki, że $\psi \subseteq \psi_0$ i to już jest koniec.

Wniosek 2.2. Jeśli $f_1 \in K_1[X]$ i $f_2 \in K_2[X]$ są nierozkładalnymi wielomianami, $\phi : K_1 \xrightarrow{\cong} K_2$ izomorfizmem i $\phi(f_1) = f_2$, a L_1 , L_2 to ciała rozkładu f_1 , f_2 odpowiednio nad K_1 i K_2 , $a_i \in L_i$ to pierwiastek f_i , to wtedy istnieje $\psi : L_1 \xrightarrow{\cong} L_2$ takie, że $\psi(a_1) = a_2$.

Dowód: Wynika z dowodu stwierdzenia 🐃.

2.1 Algebraiczne domknięcie ciała

Ciało L jest **algebraicznie domknięte** \iff dla każdego $f \in L[X]$ o stopniu > 0 istnieje pierwiastek f w L. To znaczy każdy wielomian rozkłada się na czynniki liniowe nad L.

Przykład:

- $\hookrightarrow \mathbb{C}$ jest algebraicznie domknięte.
- $\hookrightarrow \mathbb{R}$ nie jest algebraicznie domknięte, gdyż x^2+1 nie ma pierwiastka rzeczywistego.
- $\hookrightarrow \mathbb{Q}[i]$ nie jest algebraicznie domknięte, bo x^2 2 nie ma pierwiastka.

Twierdzenie 2.3. Każde ciało K zawiera się w pewnym ciele algebraicznie domkniętym.

Dowód:

Jak mamy wielomian nad ciałem, to istnieje rozszerzenie ciała do tego wielomianu. I dalej leci kombinatoryka.

Lemat: Dla każdego ciała K istnieje L \supseteq K takie, że (\forall f \in K[X]) stopnia > 0, f ma pierwiastek w L.

Rozważmy dobry porządek na zbiorze wielomianów z K[X] stopnia > 0

$$\{f \in K[X] : deg(f) > 0\} = \{f_{\alpha} : \alpha < \kappa\}.$$

Tutaj α , κ to liczby porządkowe, niekoniecznie skończone. Skonstruujmy rosnący ciąg rozszerzeń ciał $\{K_{\alpha}: \alpha < \kappa\}$ taki, że

- $\hookrightarrow \mathsf{K} \subseteq \mathsf{K}_\alpha \subseteq \mathsf{K}_\beta \text{ dla } \alpha \triangleleft \beta \triangleleft \kappa$
- \hookrightarrow f $_{\alpha}$ ma pierwiastek w K $_{\alpha+1}$.

Dowód przez indukcję pozaskończoną. Dla $K_0 = K$.

Załóżmy, że $\alpha < \kappa$ i mamy $\{K_{\beta} : \beta < \alpha\}$ spełniają warunki powyżej. Niech $K' = \bigcup_{\beta < \alpha} K_{\beta}$. Musimy pokazać, że K' jest ciałem.

1. α to liczba graniczna. Definiujemy K' = $\bigcup_{\beta < \alpha} K_{\beta}$ jako zbiór.

Musimy określić działania w K'. Niech x, y \in K', wtedy istnieje β < α takie, że x, y \in K $_{\beta}$. Czyli x + y \in K $_{\beta}$ \subseteq K' i xy \in K $_{\beta}$ \subseteq K'. W takim razie K' jest rozszerzeniem ciała K $_{\beta}$.

Teraz definiujemy $K_{\alpha} = K'$ i otrzymujemy pożądane rozszerzenie ciała.

2.
$$\alpha = \beta + 1$$
 to następnik, wtedy K' = K $_{\beta}$.

Wielomian f_{α} jest wielomianem nad $K\subseteq K'$. Z wniosku 1.7 wiemy, że istnieje rozszerzenie $K_{\alpha}\supseteq K$ takie, że f_{α} ma pierwiastek w K_{α} .

L definiujemy jako sumę po wyżej udowodnionej konstrukcji:

$$L = \bigcup_{\alpha < \kappa} K_{\alpha}$$

i to ciało spełnia nasz lemat.

Wracamy teraz do dowodu twierdzenia 2.3 i niech (L_n , $n < \omega$) będzie rosnącym ciągiem ciał takim, że

$$\hookrightarrow L_0 = K$$

 $\hookrightarrow L_{n+1} \supseteq L_n$, gdzie L_{n+1} dane jest przez lemat, to znaczy ($\forall \ f \in L_n[X]$) f ma pierwiastek w L_{n+1} .

Niech

$$L_{\infty} = \bigcup_{n < \omega} L_n \supseteq K.$$

Jest to ciało, ponieważ suma rosnącego ciągu ciał jest ciałem. Dalej mamy, że jest to ciało algebraicznie domknięte, gdy dowolny $f \in L_{\infty}[X]$ ma stopień skończony > 0, czyli istnieje n takie, że $f \in L_n[X]$. A więc f ma wszystkie pierwiastki w $L_{n+1} \subseteq L_{\infty}$.

Wykład: 3: Ciała proste, pierwiastki z jedności

3.1 Ciała proste

Uwaga 3.0. *Załóżmy, że mamy ciała* $K \subseteq L$. *Wtedy*

- \hookrightarrow char(K) = char(L)
- \hookrightarrow 0_K = 0_L oraz 1_K = 1_L
- \hookrightarrow K* = K\{0} < L* = L\{0} oraz dla x \in K -x w K jest równe -x w L.

K jest ciałem prostym wtedy i tylko wtedy, gdy K nie zawierza żadnego właściwego podciała.

Przykład:

- $\hookrightarrow \mathbb{Q}$, gdzie char(\mathbb{Q}) = 0 to ciało proste nieskończone.
- \hookrightarrow Ciałem prostym skończonym jest na przykład \mathbb{Z}_p dla liczby pierwszej p, wtedy char(\mathbb{Z}_p) = p.

Uwaga 3.1.

- 1. Każde ciało zawiera jedyne podciało proste
- 2. Z dokładnościa do $\cong \mathbb{Q}$, \mathbb{Z}_p to wszystkie ciała proste.

Przykład: Załóżmy, że K jest skończone. Wtedy K* też jest skończone rzędu $|K^*| = n < \infty$. Później dowiemy się, że $|K| = p^k$, a więc $|K^*| = p^k - 1$. Wiemy, że dla każdego $x \in K^*$ zachodzi $x^n = 1$.

3.2 Pierwiastki z jedności

Niech R będzie pierścieniem przemiennym z $1 \neq 0$. Mamy następujące definicje:

- 1. $a \in R$ jest **pierwiastkiem z** 1 stopnia $n > 0 \iff a^n = 1$
- 2. $\mu_n(R) = \{a \in R : a^n = 1\}$ jest grupą pierwiastków z 1 stopnia n
- 3. $\mu(R) = \{a \in R : (\exists n) a^n = 1\} = \bigcup_{n>0} \mu_n(R) \text{ jest } \mathbf{grupq} \text{ } \mathbf{pierwiastków} \text{ } \mathbf{z} \text{ } 1$
- 4. a jest **pierwiastkiem pierwotnym** [primitive root] stopnia n z $1 \iff a \in \mu_n(R)$ oraz dla każdego k < n a $\notin \mu_k(R)$.

Uwaga 3.2.

- 1. $\mu_n(R) \triangleleft R^*$ jest grupą jednostek pierścienia
- $2.\mu$ (R) ⊲ R*
- 3. $\mu(R)$ jest torsyjną grupą abelową (każdy element jest pierwiastkiem z 1).

Przykłady

- 1. $\mu(\mathbb{C}) = \bigcup_{n>0} \mu_n(\mathbb{C}) \lneq (\{z \in \mathbb{C} : |z| = 1\}, \cdot) < \mathbb{C}^* = C \setminus \{0\} \text{ jest nieskończona.}$
- 2. $\mu(\mathbb{C}) \cong (\mathbb{Q}, +)/(\mathbb{Z}, +)$, bo $f: \mathbb{Q} \xrightarrow{\text{"na"}} \mu(\mathbb{C})$ taki, że $f(w) = \cos(w2\pi) + i\sin(w2\pi)$ ma jądro $\ker(f) = \mathbb{Z}$.
- 3. $\mu(\mathbb{R}) = \{\pm 1\}$
- 4. $\mu_n(K) = \{zera \ wielomianu \ x^n 1\}$. Ten wielomian będziemy oznaczali $w_n(x) = x^n 1$.

Uwaqa 3.3.

- 1. Jeśli char(K) = 0, to $w_n(x) = x^n 1$ ma tylko pierwiastki jednokrotne w K [simple roots]
- 2. Jeśli char(K) = p > 0 i n = $p^l n_1$ takie, że $p \nmid n_1$, to wszystkie pierwiastki $w_n(x) = x^n 1$ mają krotność $p^l w$ K.

Dowód:

1. Niech a \in K takie, że $w_n(a) = 0$. Z twierdzenia Bezouta mamy, że

$$w_n(x) = x^n - 1 = x^n - a^n = (x - a)(x^{n-1} + ax^{n-2} + ... + a^{n-2}x + a^{n-1}) = (x - a)v_n(x),$$

gdzie
$$v_n(x) = x^{n-1} + ax^{n-2} + ... + a^{n-2}x + a^{n-1}$$
.

Z tego, że char(K) = 0 wynika, że $v_n(a)$ = $na^{n-1} \neq 0$, skąd wynika, że a jest jednokrotnym pierwiastkiem $w_n(x)$.

2. Jesteśmy w ciele K o char(K) = p. Niech n = $p^l n_1$. Rozważmy wielomian

$$w_n(X) = X^n - 1 = (X^{n_1})^{p^l} - 1^{p^l} = (X^n - 1)^{p^l} = w_{n_1}(X)^{p^l}.$$

Czyli $\mu_n(K) = \mu_{n_1}(K)$. Załóżmy, że a \in K to pierwiastek wielomianu $w_n(X)$. Wtedy a jest też pierwiastkiem wielomianu w_{n_1} w ciele K. Wtedy

$$w_{n_1}(X) = (X - a)v_{n_1}(X),$$

v_{n₁} jak w przypadku wyżej. Wówczas

$$v_{n_1}(a) = n_1 a^{n_1 - 1} \neq 0,$$

bo p \nmid n₁. Jeśli a jest 1-krotnym pierwiastkiem w_{n1}(X), to jest on p^l-krotnym pierwiastkiem w_n(X).

Twierdzenie 3.4. Niech $G < \mu(K)$ i G jest podgrupą skończoną o |G| = n. Wtedy

- 1. G = $\mu_n(K)$
- 2. G jest cykliczna
- *3. Jeśli* char(K) = p > 0, *to* p ∤ n.

Dowód

- 1. Jeśli |G| = n, to dla każdego $x \in G$ mamy $x^n = 1$. Z tego wynika, że $G \subseteq \mu_n(K)$, ale $|\mu_n(K)| \le n$, czyli $G = \mu_n(K)$.
- 2. Chcemy pokazać, że dla wielomianu $w_n(X)$ mamy n różnych pierwiastków. Wystarczy pokazać, że istnieje $x \in G$ taki, że ord(x) = n.

Załóżmy nie wprost, że dla każdego $x \in G$ ord(x) < n. Niech

$$k = max\{ord(x) : x \in G\}.$$

Niech $x_0 \in G$ takie, że ord $(x_0) = k$. Wtedy

$$(\forall y \in G) \text{ ord}(y) \mid k.$$

Gdyby tak nie było, to istniałby $y \in G$, ord(y) $\nmid k$. Czyli istnieje liczba pierwsza p taka, że l jest podzielne przez wyższą potęgę p niż k. To oznacza, że $l = p^{\alpha}l'$ i $k = p^{\beta}k'$, gdzie $p \nmid l'$ i $\alpha > \beta$.

Rozważmy y' = yl'. Skoro y ma rząd l, to ord $(y') = p^{\alpha}$, a dla $x'_0 = x_0^{p^{\beta}}$ mamy ord(x') = k'. Wobec tego ord $(x'_0y') = p^{\alpha} \cdot k'$, ale to jest większe od k i dostajemy sprzeczność.

3. Wiemy, że wszystkie pierwiastki $w_n = x^n - 1$ są jednokrotne, bo jest ich w tym przypadku dokładnie n (z poprzedniego punktu). Z uwagi 3.3, że jeśli $n = p^l n_1$, to pierwiastki wielomianu $w_n(x)$ mają krotność p^l . Ale w tym przypadku pierwiastki mają krotność jeden, czyli $p^l = 1$ i $n = 1 \cdot n_1$, gdzie $p \nmid n_1$.

Wniosek 3.5. *Jeśli* a $\in \mu_n(K)$ *jest pierwiastkiem pierwotnym z* 1 *stopnia* n > 1, *to* a *generuje* $\mu_n(K)$.

Dowód:

 $\mu_n(K) \supseteq \langle a \rangle = \mu_k(K)$ dla pewnego $k \in \mathbb{N}$. Ale ponieważ a było pierwiastkiem pierwotnym z 1, to musimy mieć n = k.

3.3 Ciała skończone

Twierdzenie 3.6. Niech K będzie ciałem skończonym. Wtedy

- 1. $char(K) = p \implies |K| = p^n dla pewnego n \in \mathbb{N}$
- 2. Dla każdego n > 0 istnieje dokładnie jedno ciało K takie, że $|K| = p^n z$ dokładnością do izomorfizmu. Ciało mocy p^n będziemy oznaczać $F(p^n)$.

Dowód:

1. Skoro char(K) = p, to $\mathbb{Z}_p \subseteq K$ jest najmniejszym podciałem prostym ciała K. W takim razie, K jest skończoną przestrzenią liniową nad \mathbb{Z}_p . Jeśli n = $\dim_{\mathbb{Z}_p}(K)$, to K jest izomorficzne z \mathbb{Z}_p^n , jako przestrzenie liniowe nad \mathbb{Z}_p . W takim razie $|K| = p^n$.

2.

Istnienie:

Niech n > 0. Rozważmy

$$w_{p^{n}-1}(x) = x^{p^{n}-1} \in \mathbb{Z}_{p}[X].$$

Niech L $\supseteq \mathbb{Z}_p$ będzie ciałem rozkładu wielomianu w_{p^n-1} , a K = $\{0\} \cup \{$ pierwiastki $w_{p^n-1}\}$. Wtedy

$$|K| = 1 + p^n - 1 = p^n$$

czyli mamy potencjalne ciało rzędu pⁿ. Wystarczy więc pokazać, że K jest ciałem.

Niech f : L $\xrightarrow{1-1}$ L będzie funkcją Frobeniusa x \mapsto x^p. Teraz niech fⁿ = f \circ ... \circ f, fⁿ(x) = x^{pⁿ}. Jest to monomorfizm, bo składamy ze sobą n takich samych funkcji 1 – 1. Dla a \in L mamy

$$(a^{p^n-1}=1 \lor a=0) \iff a \in K.$$

Co więcej, $a^{p^n-1} = 1 \iff a^{p^n} = a \iff f^n(a) = a$, czyli $K = \{a \in L : f^n(a) = a\}$ jest zbiorem punktów stałych morfizmu f^n , czyli jest ciałem, czego dowód jest pozostawiony na ćwiczenia.

Jedyność K:

Ciało K stworzone jak wyżej jest ciałem rozkładu $w_{p^n-1}(x)$ nad \mathbb{Z}_p .

Załóżmy nie wprost, że K' to inne ciało mocy p^n . Bes straty ogólności $\mathbb{Z}_p\subseteq K'$. Niech $x\in K'$. wiemy, że x=0 lub $x^{p^n-1}=1$. W takim razie w_{p^n-1} rozkłada się nad K' na czynniki liniowe. Zatem K' jest również ciałem rozkładu w_{p^n-1} nad \mathbb{Z}_p .

Z wniosku 2.1.(2) mamy, że dwa ciała rozkładu nad jednym wielomianem są izomorficzne i K \cong K' nad \mathbb{Z}_p i mamy sprzeczność.

Wykład: 4: Rozszerzenia ciał

Definicja 4.1. *Niech* $K \subseteq L$ *będą ciałami i* $a \in L \setminus K$.

- \hookrightarrow Jeżeli a jest algebraiczny nad K, to istnieje $f \in K[X]$ stopnia > 0 i f(a) = 0
- \hookrightarrow a jest przestępny nad K [transcendental] \iff a nie jest algebraiczny.
- \hookrightarrow Rozszerzenie L \supseteq K jest algebraiczne \iff dla każdego a \in L a jest algebraiczny nad K.
- \hookrightarrow *Rozszerzenie jest przestępne* \iff *nie jest algebraiczne.*
- \hookrightarrow Niech a $\in \mathbb{C}$. Wtedy a jest algebraiczna, gdy a jest algebraiczna nad \mathbb{Q} .

Przykłady:

- 1. W \mathbb{C} na i jest pierwiastkiem algebraicznym wielomianu $x^2 + 1$, a $\sqrt[n]{d}$ jest pierwiastkiem $x^n d$.
- 2. Ciało $F(p^n)$ ma charakterystykę p i $F(p) \subseteq F(p^n)$ jest rozszerzeniem ciał, które jest algebraiczne. Dla dowolnego $a \in F(p^n)$ to jest ono pierwiastkiem wielomianu $X^{p^n} X$, czyli a jest algebraiczne nad F(p).
- 3. Pierwiastki przestępne to na przykład e, π , E^{π} , aczkolwiek nie jesteśmy pewni tego ostatniego [doczytać w S. Lang, Algebra].
- 4. Rozważamy K \subseteq L = K(X), czyli pierścień ułamków. Weźmy x \in K(X) przestępny nad K. Załóżmy, że istnieje wielomian f \in K[X] rózny od 0. I załóżmy, że 0 = $\hat{f}(X)$ to funkcja wielomianowa.

$$0 = \hat{f}(X) = f \neq 0$$

i jest to sprzeczność.

Uwaga 4.2. Niech a jak wyżej. Wtedy a jest algebraiczny nad $K \iff I(a/K) \neq \{0\}$ jako ideał K[X].

4.1 Wymiar przestrzeni liniowej

Niech K \subseteq L będzie rozszerzeniem ciała K. Wtedy L jest **przestrzenią liniową nad** K. Definiujemy stopień rozszerzenia [coś innego jak indeks przy grupach]

$$[L:K] := dim_K(L)$$

jako wymiar przestrzeni liniowej nad K.

Uwaga 4.3. Niech $a \in L \setminus K$. Następujące warunki są równoważne:

- 1. a jest algebraiczny nad K
- 2. K[a] = K(a), to znaczy K[a] jest ciałem (usuwanie niewymierności z mianownika)
- 3. [K(a) : K] = dim_K(a) < ∞

Dowód:

$$1 \implies 2$$

Wiemy, że K[X] jest euklidesowy (bo K to ciało), więc K[X] jest też PID.

Skoro a jest algebraiczny nad K, to istnieje $f \in K[X]$ takie, że f(a) = 0, a więc

$$0 \neq I(\overline{a}/K) \triangleleft K[X]$$

czyli I(a/K) jest maksymalnym ideałem głównym. Teraz, jeśli I ⊲ R jest ideałem maksymalnym pierścienia R, to R/I jest ciałem. Czyli

$$K[a] \cong K[X]/I(a/K)$$

jest ciałem.

$$2 \implies 3$$

Załóżmy, że a \neq 0. Wtedy a⁻¹ \in K[a], czyli istnieje wielomian f \in K[X] taki, że

$$f(x) = \sum_{i=1}^{n} b_i x^i, \quad b_n \neq 0$$

 $i a^{-1} = f(a)$. Wobec tego mamy

$$0 = f(a)a - 1 = b_n a^{n+1} + b_a a^2 + ... + b_0 a - 1,$$

stąd mamy, że

$$a^{n+1} = -\frac{1}{b_n}(b_{n-1}a^n + ... + b_0a - 1) \in Lin_K(1, a, ..., a^n)$$

jest w domknięciu liniowym (1, a, ..., aⁿ). Indukcyjnie można pokazać, że

$$(\forall m \geq 0) a^m \in Lin_K(1, a, ..., a^n),$$

czyli

$$K[a] = K(a) = Lin_K(1, a, ..., a^n),$$

co daje, że [K(a) : K] \leq n < ∞ .

 $3 \implies 1$

 $[K(a):K] < \infty$, z czego wynika, że

$$\{1, a, ..., a^n, ..., \} = \{a^t : t \in \mathbb{N}\} \subseteq K(a)$$

jest zbiorem liniowo zależnym. Z liniowej zależności wiemy, że

$$(\exists \ n \in \mathbb{N})(\exists \ b_{n-1},...,b_0) \ a^n = b_{n-1}a^{n-1} + ... + b_1a + b_0.$$

Stad dla $f \in K[X]$ zadanego wzorem

$$f(x) = x^n + b_{n-1}x^{n-1} + ... + b_0$$

mamy f(a) = 0, zatem a jest algebraiczny nad K.

Niech $a \in L \supseteq K$ będzie algebraicznym pierwiastkiem nad K, $I(a/K) = \{w \in K[X] : w(a) = 0\} = (f)$, $f \ne 0$, $f \in K[X]$, f unormowany (czyli współczynnik przy wyrazie wiodącym jest 1?)

- ← f jest nazywany wielomianem minimalnym a nad K (wyznaczony jednoznacznie)

Przykład:

- 1. $\sqrt{2} \in \mathbb{R} \supseteq \mathbb{Q}$, wtedy f(x) = $x^2 2$ jest wielomianem minimalnym $\sqrt{2}$ nad \mathbb{Q} i stopień $\sqrt{2}$ nad \mathbb{Q} jest równy 2.
 - $2. \ \pi \in \mathbb{R}$ nie ma stopnia, bo π nie jest liczbą algebraiczną nad \mathbb{Q}
 - 3. $\sqrt[7]{7+\sqrt[3]{3}}$ $\sqrt[6]{6} \in \mathbb{R}$, czy jest to algebraiczne nad \mathbb{Q} ? Tak i ma stopień 126.

Uwaga 4.4. Załóżmy, że I(a/K) = (f) i f jest unormowany. Wówczas:

- 1. f jest unormowanym wielomianem minimalnego stopnia takim, że f(a) = 0
- 2. deg(f) = [K(a): K], czyli stopień tego wielomianu jest równy stopniu przestrzeni liniowej K(a) nad K.

Dowód:

Niech n = deg(f),

$$f(x) = x^n + \sum_{k \le n} b_k x^k$$

Z tego, \dot{z} e f(a) = 0 mamy, \dot{z} e

$$\mathsf{a}^\mathsf{n} = -\sum_{\mathsf{k} < \mathsf{n}} \mathsf{b}_\mathsf{k} \mathsf{x}^\mathsf{k} \in \mathsf{Lin}_\mathsf{K} (1, \mathsf{a}, ..., \mathsf{a}^{\mathsf{n}-1}) \subseteq \mathsf{L}.$$

Czyli K(a) = $\text{Lin}_K(1, a, ..., a^{n-1})$ i wystarczy zobaczyć, że $\{1, ..., a^{n-1}\}$ jest liniowo niezależny nad K, to znaczy jest bazą K(a) nad K. Jest, bo f jest minimalnego stopnia.

Fakt 4.5. Niech $K \subseteq L \subseteq M$ będą rozszerzeniami ciał. Wtedy

$$[M : K] = [M : L] \cdot [L : K]$$

Dowód:

Niech $\{e_i : i \in I\}$ będzie bazą L nad K, a $\{f_j : j \in J\}$ będzie bazą M nad L. Stąd |I| = [L : K] i |J| = [M : L].

Chcemy za pomocą tych dwóch zbiorków zrobić bazę M nad K. Rozważmy zbiór

$$X = \{e_i \cdot f_j \ : \ i \in I, j \in J\}.$$

Musimy pokazać, że

- 1. $|X| = |I| \cdot |J|$
- 2. X jest liniowo niezależny
- 3. X jest bazą M nad K

Te dwa ostatnie mówią, że X jest bazą.

1. Załóżmy, nie wprost, że dla i \neq i' i j \neq j' i $e_i f_i = e_{i'} f_{i'}$. Czyli

$$e_i f_i - e_{i'} f_{i'} = 0,$$

czyli f_i , $f_{i'}$ są liniowo zależne nad L, czyli mamy, że f_i = $f_{i'}$ i

$$0 = e_i f_j - e_{i'} f_j = (e_i - e_{i'}) f_j \implies e_i - e_{i'} = 0 \implies i = i'$$

2. Załóżmy nie wprost, że X nie jest lnz, czyli istnieją $k_{ij} \in K$ takie, że

$$\sum_{j \in J} \sum_{i \in I} k_{ij} e_i f_j = 0,$$

ale $\sum_{i} k_{i} j e_{i} = l_{j}$ są elementami L, czyli

$$\sum_{j \in J} l_j f_j = 0$$

więc $\mathbf{f}_{\mathbf{j}}$ są liniowo zależne, a przecież były bazowe, w takim razie

$$0 = l_j = \sum_{i \in I} k_{ij} e_i,$$

 $e_i \neq 0$, czyli $k_{ij} = 0$ i koniec.

3. X generuje M nad K, bo dla $m \in M$ mam

$$m = \sum l_j f_j = \sum \left(\sum a_{ij} e_i\right) f_j = \sum \sum a_{ij} e_i f_j = \sum \sum k_{ij} e_i f_j$$