Logică pentru Informatică

Logica Propozițională

Examen - 19 Noiembrie 2021

Subiect pentru studentul: VARIANTA SUPLIMENTARA 5 Reguli:

- Cititi cu atenție subiectele.
- Subjectul este individual.
- Încadrați-vă în spațiul aferent fiecărei întrebări.
- Este recomandat să rezolvați subiectele pe o ciornă și abia apoi să redactati solutia finală.
- Este recomandat să aveți încă o copie o subiectului, pentru cazul în care faceți greșeli de redactare.
- Nu este permisă folosirea de foi suplimentare. Puteți folosi oricâte ciorne. Ciornele nu se predau. Evident, nu este permisă partajarea ciornelor.
- Este permisă consultarea bibliografiei.
- Nu este permisă comunicarea cu alte persoane pentru rezolvarea subiectelor. Nu este permisă partajarea ciornelor.
- Scanați cele 5 pagini A4 într-un singur document PDF de maxim 10MB.
- Înainte de a încărca soluția, verificați cu atenție calitatea scanării.
- În cazul în care calitatea scanării este slabă, rezultatul va reflecta doar ce se observă în scanare fără efort.
- Încărcați soluția în documentul Google Forms de la adresa:

https://forms.gle/nvovtDzq2b132vuG8.

- Soluțiile transmise prin orice alt canal de comunicare (e.g., Discord, email) nu sunt acceptate.
- Formularul nu permite încărcarea soluțiilor care nu sunt în format PDF sau au mai mult de 10MB.

1.	Traduceți următoarea propoziție în logica propozițională:	$\sqrt{2}$ este irațional
	sau nu învăt la logică doar dacă merg cu autobuzul.	

2. Arătați, folosind un raționament la nivel semantic, că următoarea formulă este satisfiabilă:

$$((r_1 \leftrightarrow r_1) \leftrightarrow (r \land p)).$$

3.	Arătați,	${\rm folosind}$	un	${\it raționament}$	la	nivel	semantic,	$c\breve{\mathbf{a}}$	$urm \breve{a}to area$	for-
	mulă est	e validă:								

$$((p \leftrightarrow r) \rightarrow (q \leftrightarrow q)).$$

4. Arătați, folosind un raționament la nivel semantic, că: pentru orice $\varphi_1, \varphi_2 \in \mathbb{LP},$

$$((\varphi_1 \vee \varphi_2) \vee (p \leftrightarrow \varphi_2)) \equiv (\neg \varphi_2 \to (p \to \varphi_1)).$$

5	Arătati	folosind	un	rationament	la.	nivel	semantic	că:
ο.	111000001,	TOTOSITIC	un	1 a di Oilani alli Cii	10	111 / ()1	bommer.	ca.

$$\{(\texttt{r} \leftrightarrow \texttt{q}), (\texttt{p} \lor (\texttt{p} \rightarrow \texttt{p}))\} \models (\neg \texttt{r} \rightarrow (\texttt{r} \leftrightarrow \texttt{q})).$$

6. Calculați o FNC a următoarei formule:

$$(\neg(r \to (r \lor p)) \lor r).$$

7	Găsiti	0	respingere	nentru	următoarea	multime	de	clauze.
١.	Gasiji	U	respingere	репии	urmawarea	marime	uc	Clauze.

$$\{(\neg p \vee \neg r_1), p, (\neg p \vee q \vee r_1), p, \neg q\}.$$

8. Găsiți o demonstrație formală pentru următoarea secvență:

$$\{(((q_3 \wedge q_4) \rightarrow p) \wedge (r \rightarrow p))\} \vdash (((q_3 \wedge q_4) \vee r) \rightarrow p).$$