

FIG. 1

	1	CT	ATG	GCI	CTI	AGC	CAA	AAC	CAA	.GCC	AAC	TTT	TCC	CAAA	\GG <i>P</i>	TTC	GTC	GTO	ATO	TAE	TGG
	-32													K						I	W
	60	GTA	CTA	TTC	ATT	GCT	TGT	GCT	'ATA	ACI	TCA	ACI	GAZ	AGCI	'AGT	CTA	ACC	AAA	TGC	CAA	CAG
5	-13	V	L	F	I	Α	С	A	I	T	S	Т	E	Α	s	L	Т	ĸ	С	Q	Q
														-1	+1	-					
	120	CTC	CAG	GCC	TCG	GCT	'AAC	AGT	'GGT	'CTG	ATA	GGI	'AC'I	TAT	GTA	CCA	CAA	TGC	'AA	AGAA	ACG
	8	L	Q	Α	s	Α	N	s	G	L	I	G	T	Y	V	P	Q	С	K	E	T
	180	GGA	GAG	TTC	GAA	GAA	AAA	CAA	TGC	TGG	GGA	TCG	ACI	GGT	'TAC	TG1	TGG	TGI	GTO	GAT	GAA
10	28	G	E	F	E	E	K	Q	С	W	G	s	T	G	Y	C	W	С	v	D	E
	240	GAT	GGA	AAA	GAG	ATT	CTA	GGA	ACC	AAG	ATC	CGT	'GGA	TCT	'CCG	GAT	TGC	AGC	CGC	'AGA	AAA
	48	D	G	K	E	I	L	G	T	K	I	R	G	S	P	D	C	s	R	R	K
	300	GCC	GCG'	TTA	ACA	CTT	TGC	CAG	ATG	ATG	CAA	GCC	ATC	ATT	GTT	'AAT	GTC	CCT	GGI	'TGG	TGT
	68	A	A	L	T	L	С	Q	M	M	Q	Α	I	I	Ù	N	V	P	G	W	C
15	360	GGC																			
	88	G	P	P	S	С	K	A	D	G	S	F	D	E	V	Q	С	C	A	S	N
	420	GGA																AGA	CAA	CAG	GGA
	108	G	E	C	Y	С	V	D	K	K	G	K	E	L	E	G	T	R	Q	Q	.G
20	480	AGG(,		
20	128	R	P	Т	С	Е	R	н	L	S	E	С	E	Ε	A	R	I	K	A	H	S
	540	220		amm.		~~~															
	540 .148	AAC													-						
	.148	N	5	L	R	V	E	M	F.	٧	Р	E	C	L	E	D	G.	S	Y	N	P
	600	CITE A	73.71	TICO	maa.				~~~		-				-						
	168	GTA		C																	
25	100	V	Q	C	W	P	s	T	G	Y	Ċ	W	C	V	ט	E	G	G	V	K	V
25														•							
	660	CCA	ىلىڭگ	דרירי	ייי עב:	ביתים.	י מיבי) מ	արգու.	יתממ			יייי	ייטים	א מיד <i>י</i>	ית תרי	יתתת	~ ~ ~	7 (Jun-	~ ~ ~	י ת תרי	Nam
	188	P													GAA.	MAA	CAC	AGI	GAA	CAA	AGI
		· -	3	ی	ע	٧	K	Ľ	K	ĸ	F	_	99								
	720	GGC:	ראכי	بتبليا	רכשי	ርውጥ	CGA	ימממ	ממד	מידים	ממר			ידעע	מממ	ייטידע	י מידים	יממב	יממד	րդուր/ -	стс
30		AAT																			
	840																		····	J. 1711	2.0

FIG.2

thyroglobulin domains with demonstrated CPI activity

human invariant chain	LTKCQ-	LTKCQEEVSHIPAVHPGSFRPKC-DENGNYLPLQCYGSIGYCWCVFPNGTEVPNTRSR-GHHN-CSES
rat invariant chain (192-258)	KVLTKCQ-	KVLTKCQEEVSHIPDVHPGAFRPKV-DENGNYMPLQCHGSTGYCWCVFPNGTEVPHTKSR-GRHN-CSEP
chum salmon egg inh. HVPII	GIFHLKTPCE-	HVPIDGIFHLKTPCELARDAATHGPIGGFIPTC-DYNGQYTPEQCWGSTGYCWCVNSSGQKLPGTDTPPGSASNC
equistatin cDNA DOMAIN I	SLTKCQ-	SLTKCQQLQASANSGLIGTYVPQC-KETGEFEEKQCWGSTGYCWCVDEDGKEILGTKIR-GSPD-CSRRK
equistatin purified domain I	SLSKCQ-	SLSKCQQLQASANSGLIGAYVPQC-KETGEFEEKQCWGSTGYCWCVDEDGKEILGTKIR-GSPD-CSRRK
(protein sequence variants)	н	V

equistatin cDNA DOMAIN III equistatin purified domain II equistatin purified domain III equistatin cDNA DOMAIN II (protein sequence variants) (protein sequence variants) thyroglobulin domains with demonstrated aspartic protease inhibitor activity (either domain II or III) AALTICQ--MMQAIIVNVPGWCGPPSC-KADGSFDEVQCCASNG----ECYCVDKKGKELEGTRQK-GRP-SCERHL AALTICQ--MMQAIIVNVPGWCGPPSC-KADGSFDEVQCCASNG----ECYCVDKKGKELEGTRQQ-GRP-TCERHL SPCEEARLQAHSNSLRVGMFVPQC-LEDGSYNPVQCWPSTG--SECEEARIKAHSNSLRVEMFVPEC-LEDGSYNPVQCWPSTG----YCWCVDEGGVKVPGSDVRFKRP-TC --YCWCVDEGGVKVPGSDVRFKRP-TC

thyroglobulin domains with unknown protease inhibitor activity

bull frog saxiphilin(178-226)	human epithelial glycoprot (75-146)	mouse nidogen (824-892)
KCLKERQVALGGDEKVLGRFVPQC-DEKGNYEPQQFHGSTGYSWCVNAIGEEIAGTKTPPGKIPAC	human epithelial glycoprot (75-146) GSKLGRRAKPEGALQNNDGLYDPDC-DESGLFKAKQCNG-TSMCWCVNTAGVRRTDKDTEITCSERVRTY	EHILGAAGGADAQRPTLQGMFVPQC-DEYGHYVPTQCHHSTGYCWCVDRDGRELEGSRTPPGMRPPCLST

2 2 2004

Bovine thyroglobulin (1143-1215) Human testican (305-381) Mouse entactin (844-923) Human IGF-binding protein-3 Thyroglobulin 1.6 (664-707) Thyroglobulin 1.5 (597-639) Thyroglobulin 1.2 (97-141) Thyroglobulin 1.1 (29-73) KTRCQLEREHILGAAGGADAQRPTLQGMFVPQC-DEYGHYVPTQCHHSTG----YCWCVDRDGRELEGSRTPPGMRPPCLSTVAP QKPGGLPCQNEMNRIGKLSKGKSLLGAFIPRC-NEEGYYKATQCHGSTG----QCWCVDKYGNELAGSRKQ-GAV-SCEEEQET YGPCRREMEDTLNHLKFLNVLSPRGVHIPNC-DKKGFYKKKQCRPSKGRKRGFCWCVDKYGQPLPGYTTKGKEDVHCYSMQSK QCPSLCEVLQSGVPSRRTSPGYSPACRAEDGGFSPVQCDPAQG----SCWCVLGSGEEVPGTRVA-GSQPACESP FVPAC-TSEGHFLPVQCFN--S----ECYCVDAEGQAIPGTRSAIGKPKKC FVPSC-TTEGSYEDVQCF-S-G----ECWCVNSWGKELPGSRVRDGQP-RC YLPQC-QDSGDYAPVQCDVQHV----QCWCVDAEGMEVYGTRQL-GRPKRC YVPQC-AEDGSFQTVQCQNDGR----SCWCVGANGSEVLGSRQP-GRPVAC

consensus

--P-C----G-----QC--

-CWCV---G-----//-----C

Figure 3

Figure 5

Nematodes by Transformation with a Nucleic Acid ...
Inventor(s): Jongsma, et al
Serial No: 09/445,480 ; Page 6 of 13

Fecundity of thrips adults on diet with equistatin (day 2)

FIG. 7

Nematodes by Transformation with a Nucleic Acid ...
Inventor(s): Jongsma, et al
Serial No: 09/445,480_; Page 9 of 13

FIG. 10

BEST AVAILABLE COPY

FIG.11

FIG. 12