Busca em Profundidade em Grafos Direcionados

Busca em Largura

```
BuscaLargura(Grafo G, vértice S)
 s.visitado = 1;
 Cria fila vazia F;
 ENFILEIRA (F,s);
 Enquanto F.tamanho > 0 faça
   u = DESENFILEIRA(F);
  Para todo vértice v € N+ (u) faça
    Se v.visitado==0 então
      v.visitado = 1;
      v.predecessor = u;
      ENFILEIRA (F,s);
```

Busca em Profundidade

Dado um grafo GDesmarcar os vértices
Definir uma pilha QDefinir uma raiz $s \in V$ P(G,s)


```
P(Grafo G, vértice V)

marcar V

colocar V na pilha Q

para W \in \mathbb{N}^+(V)

visitar (V, W)

se W não é marcado, então P(W)

retirar V de Q
```

$$1/2$$
 $2 \in N^{+}(1)$ $N^{+}(3) = \{2, 1\}$
 $N^{+}(2) = \emptyset$

Percurso em Largura

<u>(1</u>	(3)	
2 (4	6
		8

Vértices	1	2	3	4	5	6	7	8
Visitado	1	1	1	1	1	7	1	1
Predecessor	3	1	_	1	3	_	6	7

Percurso em Profundidade

Vértices	1	2	3	4	5	6	7	8
Visitado	Į	1	1	1	7	1	1	1
Predecessor	3	1	-	2	4	_	6	7


```
P(Grafo G, vértice v)

marcar v

colocar v na pilha Q

para w \in N^+ (v)

visitar (v, w)

se w não é marcado, então P(w)

retirar v de Q
```

Vértices	S	a	b	С	d	е	f	g	h	i
Visitado	1	1	1	1	1	1	1	1	1	1
Predecessor	_	5	C	α	C	d	8	5	_	h
P(E)	1	2	4	3	5	6	8	<u></u>	9	10
P(S)	8	5	1	4	3	2	6	7	10	9

Considere a visita a aresta (v,w)

Caso 1. v é alcançado antes de w na busca

1.1 − Se w estava desmarcado antes da visita, então (v,w) é aresta da árvore (floresta) de profundidade (floresta) de profundidade

1.2 - Se w estava marcado antes da visita, então (v,w) é aresta de avanço

Considere a visita a aresta (v,w)

Caso 2. w é alcançado antes de v na busca

2.1 − Se $w \in Q$ no momento da visita, então (v,w) denomina-se aresta de retorno

2.2 - Se $w \notin Q$ no momento da visita, então (v,w) é denominada aresta de cruzamento

Dado um grafo G

Desmarcar os vértices

Definir uma pilha Q

Definir uma raiz $s \in V$ P(G,s)

```
P(Grafo G, vértice v)

marcar v

colocar v na pilha Q

para w \in N^+(v)

visitar (v, w)

se w não é marcado, então P(w)

retirar v de Q
```


Digrafo


```
S
```

```
S
```

```
P(Grafo G, vértice v)

marcar v

colocar v na pilha Q

para w \in N^+ (v)

visitar (v, w)

se w não é marcado, então P(w)

retirar v de Q
```

Q


```
P(Grafo G, vértice v)

marcar v

colocar v na pilha Q

para w \in N^+(v)

visitar (v, w)

se w não é marcado, então P(w)

retirar v de Q
```


$$A(s) = \{a, g, b\}$$
 $A(a) = \{c\}$
 $A(b) = \{c\}$
 $A(c) = \{b, d\}$
 $A(d) = \{a, e\}$
 $A(e) = \{c\}$
 $A(f) = \{e, g\}$
 $A(g) = \{f\}$
 $A(h) = \{i, d\}$
 $A(i) = \{ \}$

b é removido da pilha

e é removido da pilha

Considere a aresta (v,w). Se $w \in Q$ no momento da visita, então (v,w) denomina-se **aresta de retorno**

d é removido da pilha

c é removido da pilha

a é removido da pilha

Considere a aresta (v,w). Se $w \notin Q$ no momento da visita, então (v,w) é denominada aresta de cruzamento

f é removido da pilha

g é removido da pilha

Considere a aresta (*v*,*w*). Se *w* estava marcado antes da visita, então (*v*,*w*) é **aresta de avanço** (*s* é ancestral de *b*)

s é removido da pilha

i é removido da pilha

Considere a aresta (v,w). Se $w \notin Q$ no momento da visita, então (v,w) é denominada **aresta de cruzamento**

h é removido da pilha

Aresta da árvore ---→ Aresta de avanço Aresta de retorno Aresta de cruzamento

Digrafo

Floresta de Profundidade

Outro Exemplo:

Digrafo

Outro Exemplo:

Digrafo

Árvore de Profundidade

Assim como para grafos simples, a ordem de entrada e saída dos vértices na pilha Q são importantes para algumas aplicações.

Assim sendo, para cada vértice v define-se profundidade de entrada de v, PE(v), e profundidade de saída de v, PS(v), respectivamente, como sendo o número de ordem que v foi incluído e excluído da pilha Q.

V	S	а	b	С	d	е	f	g	h	i
PE(v)	1	2	4	3	5	6	8	7	9	10
PS(v)	10	5	1	4	3	2	6	9	8	7

V	S	а	b	С	d	е	f	g	h	i
PE(v)	1	2								
PS(v)										

V	S	а	b	С	d	е	f	g	h	i
PE(v)	1	2		3						
PS(v)										

V	S	а	b	С	d	е	f	g	h	i
PE(v)	1	2	4	3						
PS(v)										

V	S	а	b	С	d	е	f	g	h	i
PE(v)	1	2	4	3						
PS(v)			1							

3 c f h
·e

V	S	а	b	С	d	е	f	g	h	i
PE(v)	1	2	4	3	5					
PS(v)			1							

2 a	. g
3 c 4 b 5 d	f h
1 6 e	i

V	S	а	b	С	d	е	f	g	h	i
PE(v)	1	2	4	3	5	6				
PS(v)			1							

3 c f h i

V	S	а	b	С	d	е	f	g	h	ij
PE(v)	1	2	4	3	5	6				
PS(v)			1			2				

Para o exemplo anterior, temos:

41,1343

3 c f h)
6 e 2	

V	S	а	b	С	d	е	f	g	h	.—
PE(v)	1	2	4	3	5	6				
PS(v)			1		3	2				

3 c 4 f h
1

V	S	а	b	С	d	е	f	g	h	i
PE(v)	1	2	4	3	5	6				
PS(v)			1	4	3	2				

V	S	а	b	С	d	е	f	g	h	i
PE(v)	1	2	4	3	5	6	8	7	9	10
PS(v)	10	5	1	4	3	2	6	9	8	7

Observa-se que a sequência dos vértices v de um digrafo D em ordem crescente de PE(v) corresponde a um caminhamento pré-ordem na árvore de profundidade produzida pela busca correspondente.

Os valores de entrada e saída podem ser utilizados para classificar as arestas de um digrafo através de uma busca em profundidade com o seguinte lema:

Lema: Considere D(V,E) um digrafo de raiz s, (v,w) uma aresta de D, e B um percurso em profundidade com s a raiz da busca, então:

- 1. (v,w) é aresta da árvore ou avanço se e somente se PE(v) < PE(w)
- 2. (v,w) é aresta de retorno se e somente se PE(v) > PE(w) e PS(v) < PS(w)
- 3. (v,w) é aresta de cruzamento se e somente se PE(v) > PE(w) e PS(v) > PS(w)