

Assignment Project Exam Help

https://eduassistpro.github.

Add WeChat edu_assist_prediction of New South W

10. LINEAR PROGRAMMING

Linear Programming problems - Example 1

Problem:

SSigniment Project Exam Help

- https://eduassistpro.github.
- Your task: to find a combination of quantities of foo
 - the total number of calcries in all of the chosen f assist_property of the last assist_property of the total number of calcries in all of the chosen f assist_property of the total number of calcries in all of the chosen f assist_property of the total number of calcries in all of the chosen f assist as a configuration of the chosen f assist as a configuration of the chosen f as a configuration of • the total intake of each vitamin V_i
 - daily intake of w_i milligrams for all $1 \le j \le 13$;
 - the price of all food per day is as low as possible.

Linear Programming problems - Example 1 cont.

- To obtain the corresponding constraints let us assume that we take x_i grams of each food source f_i for $1 \le i \le n$. Then:
 - the total number of calories must satisfy

Assignment Projecto Exam Help

https://eduassistpro.github.

- an implicit assumption is that all the quanti Andrew echat edu_assist_prediction assist_prediction and the summary of the summ
- Our goal is to minimise the objective function which is the total cost

$$y = \sum_{i=1}^{n} x_i p_i.$$

• Note that all constraints and the objective function, are linear.

Linear Programming problems - Example 2

Problem:

• Assume now that you are politician and you want to make certain promises to the electorate which will ensure that your party will win in Signment Project Exam Help

• a certain number of bridges, each 3 billion a piece;

• You https://eduassistpro.github.

suburban votes and 9% of rural votes:

- each rural airport you promise brings you no
- Aburdan vole And 6% forget verous assist_production and production of the control 3% of suburban votes and no rural votes.
- In order to win, you have to get at least 51% of each of the city, suburban and rural votes.
- You wish to win the election by cleverly making a promise that **appears** that it will blow as small hole in the budget as possible, i.e., that the total cost of your promises is as low as possible.

Linear Programming problems - Example 2

- We can let the number of bridges to be built be x_h , number of airports x_a and the number of swimming pools x_n .
- We now see that the problem amounts to minimising the objective

SSISCOMENTIPO JUCKET LE FOLLOWING CONSTRINTS PE

0.51 (securing majority of city votes) $0.05x_{b}$ $+0.12x_{p}$

0.0

https://eduassistpro.github.

- However, there is the significant difference wit assist property significant difference wit assist property significant difference wit assist property significant difference with the control of the c
 - you cannot promise to build 1.56 bridges, 2. swimming pools!
- The second example is an example of an **Integer Linear** Programming problem, which requires all the solutions to be integers.
- Such problems are MUCH harder to solve than the "plain" Linear Programming problems whose solutions can be real numbers.

Linear Programming problems

• In the standard form the *objective* to be maximised is given by

Assignment Profeet Exam Help

https://eduassistpro.github.

Add WeChat edu_assist_pr

- Let the boldface **x** represent a (column) vector, $\mathbf{x} = \langle x_1 \dots x_n \rangle^{\mathsf{T}}$.
- To get a more compact representation of linear programs we introduce a partial ordering on vectors $\mathbf{x} \in \mathbf{R}^n$ by $\mathbf{x} \leq \mathbf{y}$ if and only if the corresponding inequalities hold coordinate-wise, i.e., if and only if $x_j \leq y_j$ for all $1 \leq j \leq n$.

Linear Programming

As Letting 1 - (1) Pand is the Repair of the pand is t

- https://eduassistpro.github.
- Thus A d d y a A d y a A d d y a A d d y a A d d y a A d d y a A d d y a
- This is the usual form which is accepted by most standard LP solvers.

Linear Programming

• The value of the objective for any value of the variables which makes the constraints satisfied is called a *feasible solution* of the LP problem.

As Equality constraints of the property $\sum_{i=1}^{n} a_{ij} t_i = b$ can be replaced by two that all constraints are inequalities.

- In ge does vari https://eduassistpro.github.
 Ho vari
- This poses no problem, because each occurrence o variable x_i call be implaced by the expression U_assistants evaluation of the constraints evaluation of the constraint evaluation of the constraints evaluation of the constraints evaluation of the constraints evaluation of the constraint eval
- If $\mathbf{x} = (x_1, \dots, x_n)$ is a vector, we let $|\mathbf{x}| = |x_1|, \dots, |x_n|$ problems are naturally translated into constraints of the form $|A\mathbf{x}| \leq \mathbf{b}$. This also poses no problem because we can replace such constraints with two linear constraints: $A\mathbf{x} \leq \mathbf{b}$ and $-A\mathbf{x} \leq \mathbf{b}$ because $|x| \leq y$ if and only if $x \leq y$ and $-x \leq y$.

- Standard Form: maximize $\mathbf{c}^{\mathsf{T}}\mathbf{x}$ subject to $A\mathbf{x} \leq \mathbf{b}$ and $\mathbf{x} \geq \mathbf{0}$.
- Any vector \mathbf{x} which satisfies the two constraints is called a *feasible* solution, regardless of what the corresponding objective value $\mathbf{c}^{\mathsf{T}}\mathbf{x}$ might

Assignment-Project Exam-Help

maximize

$$z(x_1, x_2, x_3) = 3x_1 + x_2 + 2x_3 (3)$$

 subj

https://eduassistpro.gethub.

• How large can the value of the objective du_assist_2x3 poper, without violating the constraints?

• If we add inequalities (4) and (5), we get

$$3x_1 + 3x_2 + 8x_3 \le 54 \tag{8}$$

• Since all variables are constrained to be non-negative, we are assured that

$$3x_1 + x_2 + 2x_3 \le 3x_1 + 3x_2 + 8x_3 \le 54$$

- Thu https://eduassistpro.github.
- Can $y_1, y_2, y_3 \ge 0$ to be used to for a linear combination o

Add Weight at 5edu_assist_property
$$y_3(4x_1 + x_2 + 2x_3) \le 36y_3$$

 \bullet Then, summing up all these inequalities and factoring, we get

 $x_1(y_1 + 2y_2 + 4y_3) + x_2(y_1 + 2y_2 + y_3) + x_3(3y_1 + 5y_2 + 2y_3) \le 30y_1 + 24y_2 + 36y_3$

maximize: $z(x_1, x_2, x_3) = 3x_1 + x_2 + 2x_3$ (3) with constraints: $x_1 + x_2 + 3x_3 \le 30$ (4)

Assignment Project $2x_1 + 5x_2 \le 24$ $2x_2 + 5x_3 \le 24$ $2x_3 \ge 0$ $2x_1 + 2x_2 + 5x_3 \le 24$ $2x_2 + 5x_3 \le 24$ $2x_3 \ge 0$ $2x_1 + 2x_2 + 5x_3 \le 24$ $2x_2 + 5x_3 \le 24$ $2x_3 \ge 0$

• So w

$$_{\bullet}^{x_1(y_1+2y_2)}$$
https://eduassistpro.github $_{y_1,y_2}^{y_2}$

and y_3 so that:

Add WeChat+edu_assist_pr

then

$$3x_3 + x_2 + 2x_3 \le x_1(y_1 + 2y_2 + 4y_3) + x_2(y_1 + 2y_2 + y_3) + x_3(3y_1 + 5y_2 + 2y_3)$$

Combining this with (9) we get:

$$30y_1 + 24y_2 + 36y_3 \ge 3x_1 + x_2 + 2x_3 = z(x_1, x_2, x_3)$$

• Consequently, in order to find as tight upper bound for our objective $z(x_1, x_2, x_3)$ of the problem P:

Assignment
$$\Pr_{2x_1+2x_2+5x_3 \le 24}^{\text{maximize:}} \underbrace{Project}_{2x_1+2x_2+5x_3 \le 24}^{\text{maximize:}} \underbrace{Help}_{(5)}^{(3)}$$

we https://eduassistpro.github.

minimise: $z^*(y_1, y_2, y_3) = 30$ (10)

with color WeChat edu_assist_pr

$$y_1 y_2 y_3 \ge y_1, y_2, y_3 \ge 0 (14)$$

then $z^*(y_1, y_2, y_3) = 30y_1 + 24y_2 + 36y_3 \ge 3x_1 + x_2 + 2x_3 = z(x_1, x_2, x_3)$ will be a tight upper bound for $z(x_1, x_2, x_3)$

• The new problem P^* is called the *dual problem* for the problem P.

- Let us now repeat the whole procedure with P^* in place of P, i.e., let us find the dual program $(P^*)^*$ of P^* .
- We are now looking for $z_1, z_2, z_3 \ge 0$ to multiply inequalities (11)-(13)

Assignment $\Pr_{z_2(y_1+y_2)} = \Pr_{z_2(y_1+y_2)} =$

- $y_1(z_1+z)$ https://eduassistpro.github.
 - If we choose multipliers z_1, z_2, z_3 so that

 $4z_1 + z_2 + 2z_3 \le \tag{18}$

we will have:

$$y_1(z_1 + z_2 + 3z_3) + y_2(2z_1 + 2z_2 + 5z_3) + y_3(4z_1 + z_1 + 2z_3) \le 30y_1 + 24y_2 + 36y_3$$

• Combining this with (15) we get

$$3z_1 + z_2 + 2z_3 \le 30y_1 + 24y_2 + 36y_3$$

• Consequently, finding the dual program $(P^*)^*$ of P^* amounts to maximising the objective $3z_1 + z_2 + 2z_3$ subject to the constraints

Assignment Projects Exam Help

• But n starting program P. Thus, the dual program $(P^*)^*$ for program P^* is

just P itself, i.e., $(P^*)^* = P$.

. So, AddsigNoechat.edu_assist_pro much, because it only reduced a maximisation pr hard minimisation problem.

• It is now useful to remember how we proved that the Ford - Fulkerson Max Flow algorithm in fact produces a maximal flow, by showing that it terminates only when we reach the capacity of a **minimal cut**.

Linear Programming - primal/dual problem forms

ullet The original, primal Linear Program P and its dual Linear Program can be easily described in the most general case:

Assignment Project Exam Help

subject to the constraints

$$z(\mathbf{x}) = \sum_{i=1}^{n} c_i x_i, \quad \mathbf{E}_{i} \mathbf{x}_i \mathbf{x}_i \quad \mathbf{E}_{i} \mathbf{x}_i$$

https://eduassistpro.github.

Add Wechat edu_assist_pr

$$y_1,\ldots,y_m\geq 0,$$

or, in matrix form,

P: maximize $z(\mathbf{x}) = \mathbf{c}^{\mathsf{T}}\mathbf{x}$, subject to the constraints $A\mathbf{x} \leq \mathbf{b}$ and $\mathbf{x} \geq 0$; $P^*:$ minimize $z^*(\mathbf{y}) = \mathbf{b}^{\mathsf{T}}\mathbf{y}$, subject to the constraints $A^{\mathsf{T}}\mathbf{y} \geq \mathbf{c}$ and $\mathbf{y} \geq 0$.

Weak Duality Theorem

• Recall that any vector \mathbf{x} which satisfies the two constraints, $A\mathbf{x} \leq \mathbf{b}$ and $\mathbf{x} \geq 0$ is called a *feasible solution*, regardless of what the corresponding objective value $\mathbf{c}^{\mathsf{T}}\mathbf{x}$ might be.

Assignment Cash Description for Pand Help

 $\underset{\text{we ca}}{\textbf{Pro}} \textbf{https://eduassistpro.github.} \\ \underset{P \text{ to obtain}}{\textbf{eduassistpro.github.}} \\ \textbf{pro} \textbf{pro$

$$z(x)$$
 $A_{j=1}^{n}$ $d \le \sum_{j=1}^{n} \left(\sum_{i=1}^{m} C_{ij} y_{i} \right)$ at_{i} edu_assis t_{i} z^{*} (properties)

- Thus, the value of (the objective of P^* for) any feasible solution of P^* is an upper bound for the set of all values of (the objective of P for) all feasible solutions of P, and
- \bullet every feasible solution of P is a lower bound for the set of feasible solutions for $P^{\,*}.$

Assignment Project Exam Help https://eduassistpro.github.

- Thus, if we find a feasible solution for P which is equal to a feasible solution to P*, such solution must be the maxi objective of P and the minimal feasible calculated and procedure to find an optimal solution of the procedure to find an optimal solution of the procedure to find a feasible calculated and procedure to find a feasible solution of the procedure to find a feasible solution for P which is equal to a feasible solution for P which is equ
- If we use a search procedure to find an optimal solution of the when to stop: when such a value is also a feasible solution.
- This is why the most commonly used LP solving method, the SIMPLEX method, produces optimal solution for P, because it stops at a value of the primal objective which is also a value of the dual objective.
- See the Lecture Notes for the details and an example of how the SIMPLEX algorithm runs.

Assignment Project Exam Help

```
Five siste is playin ttps://eduassistpro.github.lelen, th
```

Add WeChat edu_assist_pr