GRAFOS E OTIMIZAÇÃO DCE770 - Heurísticas e Metaheurísticas

Atualizado em: 5 de outubro de 2022

Departamento de Ciência da Computação

GRAFOS

Problemas de otimização em redes são definidos sob grafos

- O Uma estrutura de dados especial
- O Representação de uma rede
- Talvez seja a estrutura mais útil em toda a Ciência da Computação

Um grafo G é definido como G = (V, E)

- $\bigcirc V = \{v_1, v_2, \dots, v_n\}$ é o conjunto de vértices
- $E = \{e_1, e_2, \dots, e_m\}$ $e_i = (u, v) \mid u, v \in V$

2

DIREÇÃO

Um grafo pode ser direcionado ou não-direcionado

CAMINHOS E CICLOS

Caminho $C = \langle c, e, d, c \rangle$

ADJACÊNCIA E GRAU

FECHO TRANSITIVO

Direto e inverso

FONTE E SUMIDOURO

GRAFO COMPLETO

8

GRAFO COM PESOS

GRAFO CONEXO

GRAFO DESCONECTADO E COMPONENTES CONEXAS

ÁRVORE GERADORA (MÍNIMA)

GRAFO BIPARTIDO

PROPRIEDADES ADICIONAIS

Diversas destas propriedades serão utilizadas no decorrer deste curso

Grafos são uma das estruturas mais importantes em Ciência da Computação, tendo aplicações em uma infinidade de áreas

- Redes
- Biologia
- Eletrônica
- Pesquisa Operacional
- ... ► Link

Interessados em um pouco mais de propriedades de grafos podem acessar o seguinte link Link

Apesar deste curso ser sobre heurísticas, é muito importante conhecermos conceitos de otimização

- Otimização linear
- Otimização inteira

O objetivo da otimização linear é resolver modelos matemáticos lineares

- Sistema de equações lineares
- O Uma (ou mais) funções objetivo
- Conjunto de restrições
- O Variáveis no domínio dos reais (\mathbb{R})

Deve-se atribuir um valor para cada uma das variáveis do problema de tal forma que

A função objetivo seja minimizada (ou maximizada)

PROGRAMAÇÃO LINEAR

$$\begin{array}{rl} \min & 2x + y \\ & x + y & \leq 6 \\ & x - y & \geq 4 \\ & x & \geq 0 \\ & y & \geq 0 \end{array}$$

O principal uso de modelos de programação linear é para otimizar (encontrar o mínimo ou o máximo) de algo

- Maximizar o lucro
- Minimizar as perdas
- Minimizar o tempo gasto
- Minimizar número de funcionários
- Maximizar o número de produtos produzidos
- Minimizar gasto de combustível
- O ...

Modelos de otimização linear normalmente tentam representar um problema de mundo real através de um sistema de equações

A função objetivo representa aquilo que você quer otimizar

Minimizar ou maximizar

As variáveis representam a tomada de decisão

- Vou utilizar esta rota ou aquela?
- Quantos produtos deste tipo eu vou produzir?

As restrições representam as limitações existentes

- Qual é o número máximo de horas por dia que estes funcionários podem trabalhar?
- Quantos metros cúbicos de madeira eu tenho para produzir estes móveis?
- O Quantos caminhões eu possuo para fazer entregas?

$$\begin{array}{rl} \min & 2x + y \\ & x + y & \leq 6 \\ & x - y & \geq 4 \\ & x & \geq 0 \\ & y & \geq 0 \end{array}$$

Função objetivo Restrições

```
\begin{array}{rll} \text{min} & 2\mathbf{x} + \mathbf{y} \\ & \mathbf{x} + \mathbf{y} & \leq 6 \\ & \mathbf{x} - \mathbf{y} & \geq 4 \\ & \mathbf{x} & \geq 0 \\ & \mathbf{y} & \geq 0 \end{array}
```

Direção da função objetivo Função objetivo Restrições Variáveis (em negrito) Restrições de domínio das variáveis

$$x + y \le 6$$

$$x - y \ge 4$$

Soluções viáveis

O espaço azul representa o conjunto de soluções viáveis de nosso problema

- Soluções ótimas
- Soluções sub-ótimas

Solução ótima está em um vértice

 Encontro de duas ou mais restrições

$$min 2x + y$$

X	у	resultado
0	0	0
0	6	6
5	1	11
4	0	8