Feuille d'exercices 1

- Chapitre 1 : Intégration de Riemann. -

DEFINITION ET PROPRIETES DE l'INTEGRALE DE RIEMANN

Exercice 1 —

Dire, en le justifiant, si les affirmations suivantes sont vraies ou fausses.

- 1. Une fonction en escalier est une fonction continue par morceaux.
- 2. La fonction $\begin{bmatrix}]0,1] & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \frac{1}{x} \end{bmatrix}$ se prolonge en une fonction continue par morceaux sur [0,1].
- 3. La fonction $x \longmapsto \begin{cases} \frac{\sin x x}{x^3} & \text{si } x \in]0,1] \\ \frac{1}{2} & \text{si } x = 0 \end{cases}$ est continue par morceaux sur [0,1].
- 4. La fonction $x \longmapsto \begin{cases} \frac{\sin x}{x} & \text{si } x \in [-1,0[\cup]0,1] \\ 0 & \text{si } x = 0 \end{cases}$ est continue par morceaux sur [0,1].
- 5. La fonction $x \mapsto x |x|$ est continue par morceaux sur tout segment.
- 6. Une fonction définie sur [0,1] est continue si et seulement si elle est uniformément continue.
- 7. Pour $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} , l'ensemble des fonctions continues par morceaux définies sur [0,1] et à valeurs dans \mathbb{K} est un \mathbb{K} -espace vectoriel.
- 8. Pour $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} , l'ensemble des fonctions continues par morceaux définies sur [0,1] et à valeurs dans \mathbb{K} est stable par produit.
- 9. L'ensemble des fonctions continues par morceaux définies sur [0,1] et à valeurs dans \mathbb{R} est stable par prise de la valeur absolue.
- 10. Pour toutes fonctions en escalier $f,g:[0,1]\longrightarrow \mathbb{R},$ $\int_{[0,1]}fg=\int_{[0,1]}f\times\int_{[0,1]}g.$
- 11. Si $f:[0,1] \longrightarrow \mathbb{R}$ est continue par morceaux, alors f est bornée.

EXERCICE 2 — Calculer l'intégrale $\int_0^5 \lfloor x \rfloor dx$.

Exercice 3 —

Montrer que la fonction $x \mapsto \sin\left(\frac{\pi}{2}\lfloor x^2\rfloor\right)$ est en escalier sur [0,2] et calculer son intégrale.

Exercice 4 —

Soit f une fonction continue par morceaux sur [a,b] à valeurs réelles, où a < b. Montrer que pour tout $\varepsilon > 0$, il existe φ et ψ deux fonctions en escalier sur [a,b] telles que pour tout $x \in [a,b]$, $\phi(x) \le f(x) \le \psi(x)$ et $\sup_{x \in [a,b]} |\psi(x) - \phi(x)| \le \varepsilon$.

Exercice 5 (Première formule de la moyenne) —

Soit $f:[a,b] \longrightarrow \mathbb{R}$ continue et soit $g:[a,b] \longrightarrow \mathbb{R}$ continue par morceaux à valeurs positives.

Prouver l'existence de
$$c \in [a,b]$$
 tel que $\int_a^b f(t)g(t) \ dt = f(c) \int_a^b g(t) \ dt$.

EXERCICE 6 (DEUXIÈME FORMULE DE LA MOYENNE) —

Soient $f, g: [a, b] \longrightarrow \mathbb{R}$ continues par morceaux avec f positive et décroissante.

Prouver l'existence de $c \in [a,b]$ tel que $\int_a^b f(t)g(t)\ dt = f(a^+)\int_a^c g(t)\ dt$, où $f(a^+)$ désigne la limite à droite de $f(a^+)$ en a. (Indication : on pourra introduire la fonction $G: x \longmapsto \int_{-\infty}^{x} g(t) dt$ et commencer par le cas où f est supposée en escalier.)

Exercice 7 —

Soient a < b deux réels.

- 1. Soit $f:[a,b] \longrightarrow \mathbb{R}$ continue telle que $\int_a^b f = 0$. Montrer que f s'annule au moins une fois sur [a,b].
- 2. Le résultat est-il encore vrai si l'on suppose seulement f à valeurs dans \mathbb{C} ?
- 3. Le résultat est-il encore vrai si l'on suppose seulement f continue par morceaux?

Exercice 8 —

Soient a < b deux réels.

- 1. Soit f continue sur [a,b] à valeurs positives telle que $\int_{[a,b]} f = 0$. Montrer que f est identiquement nulle sur [a,b].
- 2. Le résultat est-il encore vrai si f n'est pas supposée à valeurs positives?

Déterminer toutes les applications continues $f:[0,1] \longrightarrow [0,1]$ telles que $\int_0^1 f(x) dx = \int_0^1 f(x)^2 dx$.

Exercice 10 —

Soit I un segment.

- 1. Montrer que l'application $\|.\|_{\infty,I}: f \longmapsto \sup_{\tau} |f|$ est une norme sur l'ensemble des fonctions continues par morceaux sur I à valeurs dans \mathbb{C} .
- 2. Calculer $||f||_{\infty, [-1,1]}$ pour $f: x \longmapsto x^3 x + 1$.
- 3. Calculer $||f||_{\infty, [-\pi, \pi]}$ pour $f: x \longmapsto \sin(x)e^{3ix}$.
- 4. A-t-on $||fg||_{\infty,I} = ||f||_{\infty,I} ||g||_{\infty,I}$ pour toutes fonctions continues $f,g:I \longrightarrow \mathbb{R}$?
- 5. Montrer que l'application

est une norme, où $\mathscr{C}(I,\mathbb{C})$ désigne l'ensemble des fonctions continues sur I à valeurs dans \mathbb{C} .

- 6. Les normes $\|.\|_{\infty,I}$ et $\|.\|_{1,I}$ sont-elles équivalentes sur $\mathscr{C}(I,\mathbb{C})$?
- 7. $\mathscr{C}(I,\mathbb{C})$ est-il un \mathbb{C} -espace vectoriel de dimension finie?
- 8. L'application $f \mapsto \int_{I} |f|$ est-elle une norme sur l'ensemble des fonctions continues par morceaux sur I?

EXERCICE 11 — Soit $f:[0,1] \longrightarrow \mathbb{R}$ continue. Montrer que $\int_{[0,1]} |f| = \Big| \int_{[0,1]} f \Big|$ si et seulement si f est de signe constant sur [0,1]. Que peut-on dire de $f:[0,1]\longrightarrow \mathbb{C}$ telle que $\int_{[0,1]}|f|=\Big|\int_{[0,1]}f\Big|$?

EXERCICE 12 — Soit $f:[0,1] \longrightarrow \mathbb{R}$ continue telle que $\int_0^1 f(x) \ dx = 0$.

Démontrer que $\int_0^1 f^2(t) dt \le -\min_{[0,1]} f \times \max_{[0,1]} f.$

Exercice 13 —

Soient I = [0, 1] et $f: I \longrightarrow I$ continue par morceaux. Etablir

$$\int_I f^2 \le \int_I f \le \sqrt{\int_I f^2}.$$

Exercice 14 —

Soient a < b deux réels et soit $f: [a,b] \longrightarrow \mathbb{R}_+^*$ continue par morceaux. Etablir

$$\int_{[a,b]} f \times \int_{[a,b]} \frac{1}{f} \ge (b-a)^2.$$

Exercice 15 —

Soit $f:[0,1] \longrightarrow \mathbb{R}$ continue. Montrer que si $\int_{[0,1]} f = \frac{1}{2}$, alors f a un point fixe.

Exercice 16 —

EXERCICE 16 — Soit $f:[a,b] \longrightarrow \mathbb{C}$ continue avec $a \leq b$ deux réels. Démontrer que $\lim_{n \to +\infty} \left(\int_{[a,b]} |f|^n \right)^{\frac{1}{n}} = \sup_{[a,b]} |f|$.

Exercice 17 —

Soit F l'ensemble des fonctions de classe \mathscr{C}^1 sur [0,1] vérifiant f(0)=0 et f(1)=1. Déterminer $\inf_{f\in F}\int_{[0,1]}|f'-f|$.

ORTHOGONALITE

Exercice 18 (Problème des moments) — Soit $f:[0,1] \longrightarrow \mathbb{R}$ une fonction continue.

- 1. Soit $n \in \mathbb{N}$. On suppose que pour tout $k \in [0, n]$, $\int_0^1 x^k f(x) dx = 0$. Montrer que f possède au moins n + 1zéros sur [0, 1].
- 2. On suppose que pour tout $k \in \mathbb{N}$, $\int_0^1 x^k f(x) dx = 0$. Montrer que f est identiquement nulle. (Indication: on pourra utiliser le théorème de Weierstrass suivant d'approximation uniforme des fonctions continues sur un segment par des fonctions polynômiales.)

Théorème : Pour toute fonction continue g sur [0,1], il existe une suite $(P_n)_n$ de polynômes telle que $\lim_{n \to +\infty} \sup_{t \in [0,1]} |g(t) - P_n(t)| = 0.$

Exercice 19 (Méthode de Gauss) —

Soit $n \ge 1$ et soit L_n le $n^{\text{ième}}$ polynôme dérivé de $(X^2 - 1)^n$.

- 1. Montrer que : $\forall P \in \mathbb{R}_{n-1}[X], \quad \int_{-1}^{1} P(x)L_n(x) \ dx = 0.$
- 2. Montrer que L_n admet n racines simples dans] -1,1[que l'on notera $x_1,...,x_n.$
- 3. Montrer qu'il existe $\alpha_1, ..., \alpha_n \in \mathbb{R}$ tels que pour tout $P \in \mathbb{R}_{2n-1}[X], \int_{-1}^1 P(x) dx = \sum_{k=1}^n \alpha_k P(x_k).$

Exercice 20 —

Soit $u:[0,1] \longrightarrow \mathbb{R}$ continue. On note $\mathscr{C}^{\infty}([0,1],\mathbb{R})$ l'ensemble des fonctions de classe \mathscr{C}^{∞} sur [0,1] à valeurs réelles.

- 1. On suppose que pour tout $v \in \mathscr{C}^{\infty}([0,1],\mathbb{R}), \int_{[0,1]} uv = 0$. Montrer que u est identiquement nulle.
- 2. On suppose que pour tout $v \in \mathscr{C}^{\infty}([0,1],\mathbb{R})$ tel que $\int_{[0,1]} v = 0$, $\int_{[0,1]} uv = 0$. Montrer que u est constante.

AUTOUR DES SOMMES DE RIEMANN

Exercice 21 —

Montrer que les suites suivantes convergent et déterminer leurs limites :

1.
$$u_n = \frac{1}{n^3} \sum_{k=1}^n k^2 \sin(\frac{k\pi}{n})$$

2.
$$u_n = \frac{1}{n^2} \sum_{k=1}^n k \sqrt[n]{e^{-k}}$$

3.
$$u_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}$$

4.
$$u_n = \sum_{k=n+1}^{2n} \frac{n}{k^2}$$

5.
$$u_n = \frac{1}{n^2} \left(\prod_{k=1}^n (n^2 + k^2) \right)^{\frac{1}{n}}$$

6.
$$u_n = \frac{1}{n} \left(\prod_{p=1}^n (n+p) \right)^{\frac{1}{n}}$$

7.
$$u_n = \frac{\sum_{k=0}^{n-1} \frac{2n^2 + kn}{n^2 + (n+k)^2}}{\sum_{k=0}^{n-1} \sqrt{1 - \frac{k}{n}}}$$

8.
$$u_n = \frac{1}{n^{\frac{3}{2}}} \sum_{k=1}^n E(\sqrt{k}).$$

Exercice 22 —

Montrer que la suite $(u_n)_{n\in\mathbb{N}^*}$ définie par \forall $n\in\mathbb{N}^*, u_n=\frac{1}{\sqrt{n^2+8n}}+\frac{1}{\sqrt{n^2+16n}}+\frac{1}{\sqrt{n^2+24n}}+\cdots+\frac{1}{\sqrt{n^2+24n}}$ converge et déterminer sa limite.

Exercice 23 —

Montrer que la suite $(u_n)_{n\in\mathbb{N}^*}$ définie par $\forall n\in\mathbb{N}^*, u_n=\sum_{k=1}^{2n}\frac{k}{n^2+k^2}$ converge et déterminer sa limite.

Montrer que la suite $(u_n)_{n\in\mathbb{N}^*}$ définie par $\forall n\in\mathbb{N}^*, u_n=\sum_{k=1}^n\frac{1}{\sqrt{n+k}\sqrt{n+k+1}}$ converge et déterminer sa limite.

EXERCICE 25 — Montrer que la suite $(u_n)_{n\in\mathbb{N}^*}$ définie par $\forall n\in\mathbb{N}^*, u_n=\sum_{k=1}^n\sin\left(\frac{k}{n}\right)\sin\left(\frac{k}{n^2}\right)$ converge et déterminer sa limite.

Exercice 26 —

Soit $x \in \mathbb{R}$.

Montrer que la suite $(u_n)_{n\in\mathbb{N}^*}$ définie par $\forall n\in\mathbb{N}^*, u_n=\sum_{k=1}^n\frac{n}{n^2+k^2x^2}$ converge et déterminer sa limite.

EXERCICE 27 — Montrer que la suite $(u_n)_{n\in\mathbb{N}^*}$ définie par \forall $n\in\mathbb{N}^*, u_n=\prod_{k=1}^n\left(1+\frac{\sqrt{k(n-k)}}{n^2}\right)$ converge et déterminer sa limite.

Soit f continue sur [0,1]. Montrer que la suite $(u_n)_{n\in\mathbb{N}^*}$ définie par $u_n=\frac{1}{n}\sum_{k=0}^n(-1)^kf\left(\frac{k}{n}\right)$ est convergente et déterminer sa limite.

Exercice 29 (Intégrale de Poisson.) —

Soit $a \in \mathbb{R} \setminus \{-1, 1\}$. Montrer en utilisant les sommes de Riemann :

$$\int_0^{\pi} \ln(a^2 - 2a\cos(x) + 1)dx = \begin{cases} 2\pi \ln|a| & \text{si } |a| > 1\\ 0 & \text{si } |a| < 1. \end{cases}$$

Exercice 30 (Inégalité de Jensen) —

Soit $f:[0,1] \longrightarrow \mathbb{R}$ une fonction continue et soit $\varphi:\mathbb{R} \longrightarrow \mathbb{R}$ une fonction convexe (on rappelle que cela signifie que $\forall x, y \in \mathbb{R}, \forall t \in [0, 1], \quad \varphi(tx + (1 - t)y) \le t\varphi(x) + (1 - t)\varphi(y)$.

1. Montrer que pour tout $n \in \mathbb{N}^*$, pour tous $x_1, ..., x_n \in \mathbb{R}$ et pour tous $\alpha_1, ..., \alpha_n \in \mathbb{R}^+$ tels que $\sum_{i=1}^n \alpha_i = 1$, on a l'inégalité

$$\varphi\left(\sum_{i=1}^{n} \alpha_i x_i\right) \le \sum_{i=1}^{n} \alpha_i \varphi(x_i).$$

2. Donner une preuve s'appuyant sur les sommes de Riemann de l'inégalité suivante :

$$\varphi\Big(\int_0^1 f(x) \ dx\Big) \le \int_0^1 \varphi \circ f(x) \ dx.$$

(Indication: On pourra admettre (ou bien le démontrer si on ne l'a jamais fait) que φ est une fonction qui est en particulier continue).

Exercice 31 —

Montrer que la suite $(u_n)_{n\in\mathbb{N}^*}$ définie par $u_n = \sum_{n=1}^{n-1} \frac{1}{\sqrt{n^2 - p^2}}$ est convergente et déterminer sa limite. (<u>Indication</u>:

on pourra commencer par montrer l'encadrement $\int_{\frac{p-1}{n}}^{\frac{\nu}{n}} \frac{dx}{\sqrt{1-x^2}} \le \frac{1}{\sqrt{n^2-p^2}} \le \int_{\frac{p}{n}}^{\frac{p+1}{n}} \frac{dx}{\sqrt{1-x^2}}$ en prenant le soin de noter pour quelles valeurs de p et n il est valable.

Exercice 32 —

Soit f de classe \mathscr{C}^1 sur [a,b] où $a \leq b$ sont deux réels.

Montrer que la suite de terme général $u_n := n \left(\frac{b-a}{n} \sum_{k=1}^n f(a+k\frac{b-a}{n}) - \int_a^b f(t) \ dt \right)$ converge et déterminer sa limite.

<u>Application</u>: Trouver un développement asymptotique, à la précision $\frac{1}{n}$ de $\sum_{k=1}^{n} \frac{n}{n^2 + k^2}$ lorsque n tend vers $+\infty$.

THEOREME FONDAMENTAL DE L'ANALYSE

Exercice 33 —

Soient $a \leq b$ deux réels et soit $f:[a,b] \longrightarrow \mathbb{R}$ de classe \mathscr{C}^1 telle que f(a)=0.

Démontrer l'inégalité : $\int_{[a,b]} f^2 \le \frac{(b-a)^2}{2} \int_{[a,b]} f'^2.$

Exercice 34 —

Soit $f:[0,1] \longrightarrow \mathbb{R}$ continue par morceaux. Montrer que la suite $\left(n\int_{[0,\frac{1}{2}]}f\right)$ converge et déterminer sa limite.

EXERCICE 35 — Calculer pour tout $a \in \mathbb{R}$ l'intégrale $I(a) := \int_0^1 \min(x, a) dx$.

Exercice 36 (Inégalité de Young) —

Soit $f: \mathbb{R}_+ \longrightarrow \mathbb{R}_+$ continue strictement croissante telle que f(0) = 0 et $\lim_{x \to +\infty} f(x) = +\infty$.

- 1. Justifier que f est bijective, de bijection réciproque f^{-1} continue et strictement croissante.
- 2. Montrer que pour tout $a \geq 0$,

$$af(a) = \int_0^a f(t)dt + \int_0^{f(a)} f^{-1}(t)dt.$$

3. Montrer que pour tout $(a,b) \in (\mathbb{R}_+)^2$,

$$ab \le \int_0^a f(t)dt + \int_0^b f^{-1}(t)dt.$$

5

4. Que fournit l'inégalité précédente avec $f:t\longmapsto t^{p-1},\, p>1$?

Exercice 37 —

Soient a < b deux réels. Montrer que pour tout $\epsilon > 0$ et toute fonction $f: [a, b] \longrightarrow \mathbb{R}$ de classe \mathscr{C}^1 , on a

$$\sup_{[a,b]}f^2 \leq \big(\frac{1}{b-a} + \frac{1}{\epsilon}\big)\int_{[a,b]}f^2 + \epsilon\int_{[a,b]}f'^2.$$

Exercice 38 —

EXERCICE 38 — Soit f continue sur [0,1]. Montrer que la suite de terme général $u_n := \frac{1}{n} \sum_{k=0}^{n-1} (n-k) \int_{\frac{k}{n}}^{\frac{k+1}{n}} f(x) dx$ converge et déterminer sa limite.

Exercice 39 -

Soit $f:[0,1[\longrightarrow \mathbb{R} \text{ continue par morceaux sur tout segment et soit } a \in]0,1[$.

On pose, pour tout $x \in]0,1[, F(x) := \int_{-x}^{x} f(t) dt.$

- 1. Justifier que F est bien définie sur]0,1[.
- 2. Montrer que si f est continue en $c \in]0,1[$, alors F est dérivable en c et F'(c)=f(c).
- 3. Montrer que si f est discontinue en $c \in [0,1[$, alors F admet quand même des dérivées à gauche et à droite en c à préciser.
- 4. Conclure que F est continue sur]0,1[et dérivable aux points de continuité de f.
- 5. Exemple: Représenter $x \mapsto \int_0^x (-1)^{\lfloor t \rfloor} (t \lfloor t \rfloor) dt$ sur [0, 5].

INTEGRATION PAR PARTIES

Exercice 40 —

Soit $a \in \mathbb{R}$ et soit $n \in \mathbb{N}$.

Calculer l'intégrale $I_n := \int_{a}^{1} x^n e^{ax} dx$.

Exercice 41 —

Calculer les intégrales suivantes.

$$\int_{1}^{2} x \ln x \, dx, \qquad \int_{0}^{1} \operatorname{Arctan}(x) \, dx, \qquad \int_{-\frac{1}{2}}^{1} x \operatorname{Arcsin}(x) \, dx,$$

$$\int_{-1}^{1} (x+2)e^{x-1} \, dx, \qquad \int_{-\pi}^{\pi} x \sin(x)e^{2x} \, dx, \qquad \int_{0}^{1} (x^{2}+1) \operatorname{sh}(x) \, dx.$$

EXERCICE 42 — Pour $a \in \mathbb{R}^+$ et $n \in \mathbb{N}$ on pose $I(a,n) = \int_0^1 x^a (1-x)^n dx$.

- 1. Trouver une relation entre I(a+1,n) et I(a,n).
- 2. Calculer I(a, n) I(a, n + 1).
- 3. En déduire une expression de I(a, n+1) en fonction de I(a, n) puis donner une expression de I(a, n).

EXERCICE 43 (INTÉGRALES DE WALLIS.) — $\int_{1}^{\frac{\pi}{2}} \cos^{n}(t) dt$.

- 1. Montrer que $W_n = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^n(t) dt$.
- 2. Montrer que $W_{n+2} = \frac{n+1}{n+2}W_n$ puis en déduire une expression de W_{2p} et W_{2p+1} pour tout $p \in \mathbb{N}$.
- 3. Après avoir calculé nW_nW_{n+1} pour tout $n\in\mathbb{N}$ et montré que $W_n\sim W_{n+1}$ lorsque n tend vers $+\infty$, proposer un équivalent de W_n lorsque n tend vers $+\infty$.

6

Exercice 44 (Formule de Taylor avec reste intégral) — Soit $n \in \mathbb{N}$ et soit f de classe \mathscr{C}^{n+1} sur [a, b].

1. Montrer que
$$f(b) = \sum_{k=0}^{n} f^{(k)}(a) \frac{(b-a)^k}{k!} + \int_a^b \frac{(b-t)^n}{n!} f^{(n+1)}(t) dt$$
.

2. Applications:

- Montrer que
$$\forall x \in \mathbb{R}_+^*, \forall n \in \mathbb{N}, e^x > \sum_{k=0}^n \frac{x^k}{k!}$$
.

- Montrer que
$$\lim_{n\to+\infty} \sum_{k=1}^n \frac{(-1)^{k-1}}{k} = \ln 2$$
.

- EXERCICE 45 (LEMME DE LEBESGUE) 1. Soit f de classe \mathscr{C}^1 sur [a,b]. Montrer que $\lim_{n\to+\infty}\int_a^b e^{inx}f(x)dx=0$.
 - 2. Montrer que le résultat précédent est encore vrai en supposant seulement f continue par morceaux sur [a,b]. (Indication : on pourra commencer par montrer le résultat pour les fonctions en escalier puis on utilisera un argument de densité.)

Exercice 46 (Méthode des trapèzes) — Soit f de classe \mathscr{C}^2 sur [a,b]. Montrer que

$$\Big| \int_a^b f(t) dt - \frac{b-a}{2} (f(a) + f(b)) \Big| \le \frac{(b-a)^3}{12} \sup_{[a,b]} |f''|.$$

EXERCICE 47 (INÉGALITÉ DE VAN DER CORPUT) —

Soit φ de classe \mathscr{C}^2 sur [a,b] telle que φ' est monotone et $m:=\min_{[a,b]}\varphi'>0$. Montrer que pour tout $\lambda>0$,

$$\left| \int_{a}^{b} e^{i\lambda\varphi(t)} dt \right| \leq \frac{2}{m\lambda}.$$

Exercice 48 (Inégalité de Hardy) — Soit $f:[0,1] \longrightarrow \mathbb{R}$ continue et soit

$$F: [0,1] \longrightarrow \mathbb{R}$$

$$x \longmapsto \begin{cases} \frac{1}{x} \int_0^x f(t)dt & \text{si } x \neq 0 \\ f(0) & \text{si } x = 0. \end{cases}$$

Montrer que $\int_0^1 F^2(x) dx \le 4 \int_0^1 f^2(x) dx$.

CALCUL DE PRIMITIVES ET INTEGRALES

Exercice 49 —

Calculer

$$\int \frac{1}{(x^2+1)^2} dx, \qquad \int \frac{x^2}{(x^2+1)^2} dx, \qquad \int \frac{x^4+1}{x^2+1} dx,
\int \frac{2}{3+e^x} dx, \qquad \int \frac{\ln x}{x} dx, \qquad \int \frac{dx}{x \ln x},
\int_{-1}^{1} \sqrt{1-x^2} dx, \qquad \int_{\frac{1}{2}} \frac{\ln x}{1+x^2} dx, \qquad \int \operatorname{ch}(x) \cos(x) dx.$$

Exercice 50 —

Soit $x \in \mathbb{R}$.

Trouver une relation de récurrence sur les $I_n := \int_0^x \frac{1}{(t^2+1)^n} dt$ où $n \in \mathbb{N}^*$.

Exercice 51 —

Calculer

$$\int \frac{1}{x-i} dx, \qquad \int \frac{3x+2}{x^2+x+1} dx, \qquad \int \frac{x}{2x^2-6x+4} dx,
\int \frac{x}{(x^2+x+1)^3} dx, \qquad \int \frac{1}{x^n-1} dx \text{ où } n \in \mathbb{N}^*.$$

EXERCICE 52 — Calculer à l'aide d'un changement de variables $\int_{\frac{1}{2}}^{2} \left(1 + \frac{1}{x^2}\right) \operatorname{Arctan}(x) dx$ et $\int_{0}^{\pi} \frac{x}{1 + \sin(x)} dx$.

Exercice 53 —

Calculer

$$\int \cos^{3}(x) \sin^{2}(x) dx, \qquad \int_{-\frac{\pi}{2}}^{\frac{\pi}{4}} \sin^{5}(x) \cos^{11}(x) dx, \qquad \int \sin^{2}(x) \cos^{4}(x) dx,
\int \cosh^{3}(x) \sinh^{4}(x) dx, \qquad \int_{0}^{\frac{\pi}{2}} \frac{\cos(x)}{(1 + \cos(x))(1 + \sin(x))} dx, \qquad \int \frac{dx}{\sin(x)},
\int \frac{\cos^{3}(x)}{2 + 3\sin(x)} dx, \qquad \int \frac{dx}{-2 + \cos(x)}, \qquad \int \frac{dx}{\cosh(x)}.$$

Exercice 54 —

Calculer

$$\int \frac{1}{1 - \sqrt{x + 2}} \, dx, \qquad \int_0^{\frac{1}{2}} \frac{dx}{(1 - x^2)\sqrt{1 - x^2}}, \qquad \int \frac{1}{x\sqrt{x^2 + 2x - 2}} \, dx, \qquad \int \frac{x}{x^2 + x + 1} \, dx.$$

EXEMPLES DE FONCTIONS DEFINIES PAR UNE INTEGRALE

EXERCICE 55 —

Déterminer les ensembles de définition, de dérivabilité de $f: x \longmapsto \int_{\sqrt{x}}^{x^2+1} \frac{t}{e^t} dt$ et calculer f'.

Exercice 56 — Etudier les variations de la fonction $f: x \longmapsto \int_x^{2x} \frac{dt}{\ln(t)}$ ainsi que son comportement aux bornes du domaine de définition.

EXERCICE 57 — On considère la fonction $f: x \longmapsto \int_x^{2x} \frac{t^2}{t^2 + (\sin(t))^2} dt$.

- 1. Déterminer l'ensemble de définition de f.
- 2. Montrer que f est prolongeable par continuité en 0 en une fonction que l'on notera encore f.
- 3. Montrer que f est de classe \mathscr{C}^1 sur \mathbb{R} et donner l'expression de sa dérivée.

Exercice 58 —

Déterminer l'ensemble des fonctions continues $f: \mathbb{R} \longrightarrow \mathbb{R}$ telles que $\forall x \in \mathbb{R}, f(x) = \int_0^x f(t) dt$.