Лекция 4. Непрерывные с.в., часть 1

2 марта 2021 г.

1 Непрерывные случайные величины

Определение непрерывных с.в.

В случае с дискретными величинами:

$$\Pr[a \le X \le b] = \sum_{x:a \le x \le b} p_X(x)$$

Но если X может принимать любые вещественные значения из этого интервала? Тогда нам нужна функция, которая показывает, сколько вероятностной массы лежит на каждом элементарном отрезке.

$$\Pr[a \le X \le b] = \int_a^b f_X(x) dx \tag{1}$$

Определение: Случайная величина называется непрерывной, если для нее существует такая функция $f_X(x)$, что для любых $a,b \in \mathbb{R}$ (где $a \leq b$) верно (1).

 $f_X(x)$ — плотность вероятности с.в. X:

$$\Pr(a \le X \le a + \varepsilon) \approx f_X(a) \cdot \varepsilon$$

Плотность вероятности — аналог функции вероятностей для непрерывных с.в.:

- $p_X(x) \geq 0$
- $\bullet \ \sum_{x} p_X(x) = 1$

То же самое

- $f_X(x) \ge 0$
- $\bullet \int_{-\infty}^{+\infty} p_X(x) = 1$

NB:

$$\Pr(X = a) = \Pr(a \le X \le a) = \int_a^a f_X(x)dx = 0$$

Поэтому:

$$\Pr(a \leq X \leq b) = \Pr(X = a) + \Pr(X = b) + \Pr(a < X < b) = \Pr(a < X < b)$$

NB: Мы ушли от понятия событий, но у нас по-прежнему есть какая-то Ω , на которой и задана с.в. X. Просто нам сейчас проще быть чисто в терминах с.в.

NB: Переопредилим дискретные с.в. как с.в., для которых есть функция вероятностей, то есть число возможныъх значений которых счетно.

NB: Вы уже могли догадаться, что с.в. могут быть и смешанные, но про это позже. Пример: равномерное распределение

Обобщение: частично равномерное распределение

$$\int_{-\infty}^{+\infty} \int_{X} f(x) dx = 1 - \int_{\alpha}^{\beta} \int_{X} f(x) dx = c(\beta - \alpha) \Rightarrow c = \frac{1}{\beta - \alpha}$$

i sui moment
$$X = \sum_{x} x^{i} p_{x}(x)$$

2 Матожидание

Для дискретных величин:

$$E(X) = \sum_{x} x p_X(x)$$

Для непрерывных: заменяем сумму на интеграл, а функцию вероятностей на плотность вероятности

$$E(X) = \int_{-\infty}^{+\infty} x f_X(x) dx$$

Важно: интеграл должен сходиться абсолютно *Интерпретация:* центр масс вероятностной массы

Свойства матожидания

- $X \ge 0 \Rightarrow E[X] > 0$
- $X \in [a, b] \Rightarrow E[X] \in [a, b]$
- Матожидание функции от с.в.:

$$E(g(X)) = \int_{-\infty}^{+\infty} g(x) f_X(x) dx$$

• Пример

$$E(X^2) = \int_{-\infty}^{+\infty} x^2 f_X(x) dx$$

• Линейность: E(aX + b) = aE(X) + b

3 Дисперсия

Как и для дискретных:

$$Var(X) = E((X - \mu)^2) = \int_{-\infty}^{+\infty} (x - \mu)^2 f_X(x) dx$$

среднеквадратичное отклонение:

$$\sigma_X = \sqrt{\operatorname{Var}(X)}$$

Свойства — те же:

- $Var(aX + b) = a^2 Var(X)$
- $Var(X) = E(X^2) (E(X))^2$

4 Моменты стандартных распределений

NB: i-й момент распределения — $\int_{-\infty}^{+\infty} x^i f_X(x) dx$ (для дискретных с.в — сумма)

Равномерное распределение

 $X \sim U(a, b)$

Матожидание:

$$E[X] = \int_{-\infty}^{+\infty} x f_X(x) dx = \int_a^b x \frac{1}{b-a} dx = \frac{a+b}{2}.$$

Дисперсия:

$$E[X^{2}] = \int_{-\infty}^{+\infty} x^{2} f_{X}(x) dx = \int_{a}^{b} x^{2} \frac{1}{b-a} dx$$

$$= \frac{b^{3} - a^{3}}{3(b-a)} = \frac{b^{2} + ab + a^{2}}{3}$$

$$Var(X) = E[X^{2}] - (E[X])^{2} = \frac{4b^{2} + 4ab + 4a^{2} - 3b^{2} - 6ab - 3a^{2}}{12} = \frac{(b-a)^{2}}{12}.$$

Экспоненциальное распределение

Говорим, что X следует экспоненциальному распределению $\mathrm{Exp}(\lambda)$ с параметром λ , если

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0\\ 0, & x < 0 \end{cases}$$

NB: Это аналог геометрического распределения с параметром $p=\lambda$.

Матожидание:

$$E[X] = \int_0^{+\infty} x \lambda e^{-\lambda x} dx = -\int_0^{+\infty} x de^{-\lambda x} = -xe^{-\lambda x} \Big|_0^{+\infty} + \int_0^{+\infty} e^{-\lambda x} dx$$
$$= 0 - \frac{1}{\lambda} \Big|_0^{+\infty} = \frac{1}{\lambda}.$$

Дисперсия (два раза интегрируем по частям):

$$E[X] = \int_0^{+\infty} x^2 \lambda e^{-\lambda x} dx = \frac{2}{\lambda} \cdot \operatorname{Var}(X) \qquad \qquad = \frac{2}{\lambda^2} - \frac{1}{\lambda^2} = \frac{1}{\lambda^2}.$$

Довольно хорошо сконцентрирована, так как вероятность хвоста экспоненциально падает:

$$\Pr(X \ge a) = \int_{a}^{+\infty} \lambda e^{-\lambda x} dx = e^{-\lambda a}.$$

5 Функция распределения

 $F_X(x) = \Pr(X \le x) - \phi y$ нкция распределения с.в. X (как дискретной, так и непрерывной).

Как считать:

$$F_X(x) = \int_{-\infty}^x f_X(t)dt$$

Легко заметить: $F'_{X}(x) = f_{X}(x)$

Пример: равномерное распределение.

Функцию распределения можно считать и для дискретной случайной величины:

Свойства функции распределения:

$$Pr[X \leq \alpha] = Pr[X \leq \alpha - \delta] + Pr[x \in [\alpha - \delta, \alpha]$$

70

• Неубывающая

•
$$\lim_{x\to+\infty} F_X(x) = 1$$

•
$$\lim_{x \to -\infty} F_X(x) = 0$$

6 Нормальное распределение (распределение Гаусса)

Очень важная штука:

- Важна в центральной предельной теореме
- Часто на практике неизвестные распределения приближаются нормальным

Стандартное нормальное: $X \sim N(0,1) \leftrightarrow f_X(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$

Откуда берется коэффициент нормализации $\frac{1}{\sqrt{2\pi}}$? Из интеграла Гаусса

$$\int_{-\infty}^{+\infty} e^{-x^2} dx = \sqrt{\pi}$$

Свойства N(0,1):

$$E[X] = \int_{-\infty}^{+\infty} x \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx = 0,$$

так как это интеграл нечетной функции, которая в бесконечности очень маленькая.

$$\begin{aligned} \operatorname{Var}(X) &= E[X^2] = \int_{-\infty}^{+\infty} x^2 \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx = \int_{-\infty}^{+\infty} x \frac{1}{\sqrt{2\pi}} e^{-x^2/2} d\frac{x^2}{2} \\ &= -\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} x \frac{1}{\sqrt{2\pi}} e^{-x^2/2} de^{-x^2/2} \\ &= -\frac{1}{\sqrt{2\pi}} x e^{-x^2/2} \bigg|_{-\infty}^{+\infty} + \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-x^2/2} dx \\ &= 0 + \frac{\sqrt{2\pi}}{\sqrt{2\pi}} = 1. \end{aligned}$$

В записи N(0,1) нолик как раз обозначает матожидание, а единица — дисперсию Обобщенное нормальное распределение: $X \sim N(\mu, \sigma^2) \Leftrightarrow f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$

- ullet μ новое матожидание, насколько мы сдвигаем ось симметрии X.
- \bullet σ новая дисперсия, насколько мы растягиваем распределение от оси симметрии.

Чем меньше σ (срежнеквадратичное отклонение), тем больше распределение сжато вокруг оси симметрии

Полезное свойство нормальной случайной величины: если $X \sim N(\mu, \sigma^2)$ и при этом Y = aX + b, то Y тоже имеет нормальное распределение. Это мы докажем позже, но пока давайте посмотрим, какому именно распределению.

- E(Y) должно равняться $E(aX+b)=aE(X)+b=a\mu+b$
- ullet Var(Y) должна равняться $\mathrm{Var}(aX+b)=a^2\,\mathrm{Var}(X)=a^2\sigma^2$

Значит, $Y \sim N(a\mu + b, a^2\sigma^2)$.

Функция распределения $X \sim N(0,1)$ обозначается буквой Φ :

$$\Phi(x) = F_X(x) = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$$

Так как интеграл неберущийся, ее значения считаются с помощью таблиц.

Как работать с такими таблицами. Пусть мы хотим посчитать вероятность того, что $X \sim N(0,1)$ не больше, чем 2.39. Находим строчку 2.3, столбец 0.09, смотрим на число в их пересечении, добавляем к нему 0.5. Если хотим посчитать $\Pr(X \le -2.39)$, то вычитаем это число из 0.5.

Как пользоваться таблицей, если $X \sim N(\mu, \sigma^2)$? И пусть мы хотим найти вероятность $\Pr(X \in [a,b])$. Для этого Давайте рассмотрим $Y = \frac{X-\mu}{\sigma}$. Заметим, что $Y \sim N(0,1)$. Теперь запишем интересующее нас событие следующим образом

Таблица 1: Таблица для вычисления функции распределения стандартного нормального распределения N(0,1). В i-й строке и j-ом столбце число равно $\int_0^{0.1i+0.01j} f_X(x) dx$

11010	распределения		(0, 1). B v H elper		te if j om erosione		J_0		$JX(x)\alpha x$	
	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.0000	0.0040	0.0080	0.0120	0.0160	0.0199	0.0239	0.0279	0.0319	0.0359
0.1	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
0.2	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141
0.3	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517
0.4	0.1554	0.1591	0.1628	0.1664	0.1700	0.1736	0.1772	0.1808	0.1844	0.1879
0.5	0.1915	0.1950	0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	0.2190	0.2224
0.6	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	0.2549
0.7	0.2580	0.2611	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2823	0.2852
0.8	0.2881	0.2910	0.2939	0.2967	0.2995	0.3023	0.3051	0.3078	0.3106	0.3133
0.9	0.3159	0.3186	0.3212	0.3238	0.3264	0.3289	0.3315	0.3340	0.3365	0.3389
1.0	0.3413	0.3438	0.3461	0.3485	0.3508	0.3531	0.3554	0.3577	0.3599	0.3621
1.1	0.3643	0.3665	0.3686	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830
1.2	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3980	0.3997	0.4015
1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177
1.4	0.4192	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319
1.5	0.4332	0.4345	0.4357	0.4370	0.4382	0.4394	0.4406	0.4418	0.4429	0.4441
1.6	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545
1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.4633
1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0.4699	0.4706
1.9	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.4750	0.4756	0.4761	0.4767
2.0	0.4772	0.4778	0.4783	0.4788	0.4793	0.4798	0.4803	0.4808	0.4812	0.4817
2.1	0.4821	0.4826	0.4830	0.4834	0.4838	0.4842	0.4846	0.4850	0.4854	0.4857
2.2	0.4861	0.4864	0.4868	0.4871	0.4875	0.4878	0.4881	0.4884	0.4887	0.4890
2.3	0.4893	0.4896	0.4898	0.4901	0.4904	0.4906	0.4909	0.4911	0.4913	0.4916
2.4	0.4918	0.4920	0.4922	0.4925	0.4927	0.4929	0.4931	0.4932	0.4934	0.4936
2.5	0.4938	0.4940	0.4941	0.4943	0.4945	0.4946	0.4948	0.4949	0.4951	0.4952
2.6	0.4953	0.4955	0.4956	0.4957	0.4959	0.4960	0.4961	0.4962	0.4963	0.4964
2.7	0.4965	0.4966	0.4967	0.4968	0.4969	0.4970	0.4971	0.4972	0.4973	0.4974
2.8	0.4974	0.4975	0.4976	0.4977	0.4977	0.4978	0.4979	0.4979	0.4980	0.4981
2.9	0.4981	0.4982	0.4982	0.4983	0.4984	0.4984	0.4985	0.4985	0.4986	0.4986
3.0	0.4987	0.4987	0.4987	0.4988	0.4988	0.4989	0.4989	0.4989	0.4990	0.4990

$$a \le X \qquad \qquad \le b$$

$$a - \mu \le X - \mu \qquad \qquad \le b - \mu$$

$$\frac{a - \mu}{\sigma} \le \frac{X - \mu}{\sigma} \qquad \qquad \le \frac{b - \mu}{\sigma}$$

То есть искомая вероятность равна $\Pr(Y \in [\frac{a-\mu}{\sigma}, \frac{b-\mu}{\sigma}])$, а это уже вычисляется по таблице.