

#### PROYECTO FIN DE CARRERA INGENIERÍA INFORMÁTICA



Departamento de Ingeniería Electrónica, de Sistemas Informáticos y Automática

Departamento de Tecnología de Información

**HUELVA**, **DICIEMBRE** 2012

# WiFiSimExtension

Planificación, optimización y despliegue de redes inalámbricas

#### **AUTORES:**

Francisco Rodríguez Carrasco Carlos Parreño Bonaño

#### **TUTORES**:

Francisco Alfredo Márquez Hernández Tomás de J. Mateo Sanguino



#### INDICE



- 1. INTRODUCCIÓN
- 2. ESTADO DEL ARTE
- 3. DESCRIPCIÓN DEL SISTEMA
- 4. EXPERIMENTACIÓN Y ANÁLISIS DE RESULTADOS
- 5. CONCLUSIONES Y AMPLIACIONES FUTURAS



#### RESUMEN



- \* Redes inalámbricas están a la orden del día
- Instaladas en entorno doméstico, oficinas, campus...

| VENTAJAS WiFi     | INCONVENIENTES WiFi                                       |
|-------------------|-----------------------------------------------------------|
| BAJO COSTE        | FACILIDAD DE INSTRUSIÓN                                   |
| FÁCIL INSTALACIÓN | MAYOR TASA DE ERROR DE BIT (BER)                          |
| GRAN MOVILIDAD    | DISMINUCIÓN CALIDAD DE SEÑAL<br>DEBIDO A LA DISTANCIA     |
| ALCANCE DE LA RED | DISMINUCIÓN CALIDAD DE SEÑAL POR ATENUACIÓN DE OBSTÁCULOS |
| COMODIDAD USUARIO |                                                           |

- ❖ Estudio: Problemática colocación de puntos de acceso en redes WiFi Estándar IEEE 802.11
- Objetivo: Planificación, optimización y el despliegue de diseños WiFi







- Simulador WiFi del estándar IEEE 802.11
- Autor: César Serrano López
- Utilizada en clase de Redes en la Universidad de Huelva

- Integrado misma interfaz
- Modular e independiente
- Comunicación entre módulos
- Interfaz gráfica
- **❖** Best Solution





#### **OBJETIVOS FUNCIONALES**

- Mejorar WiFiSim
- Solventar problemas de diseño WiFi
- Interfaz que cubra toda la funcionalidad de los CU
- Enfoque académico





# OBJETIVOS PROFESIONALES Y DE TRABAJO EN EQUIPO

- Correcta recolección de requisitos
- Meetings semanales
- Organización y coordinación del grupo
- Satisfacción cliente
- Entrega temprana





#### Diagrama de Gantt







# **WiFiSim**

❖ Simulador de redes inalámbricas basado en el estándar IEEE (802.11, 802.11a, 802.11b, 802.11g)







# WiFiSim

| Configuration View coverage Node 0                                                                                                                              |                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Energy emitted by node: 200.0 mW  RTS Threshold(bytes) 0  Distr. for inter time constant  Mean for int. time: 0  Distr. for lenght constant  Mean for lenght: 2 | Rate(Mb/s) Sensitivity(dBm)  54.0 -70.0  48.0 -72.0  36.0 -76.0  24.0 -79.0  18.0 -82.0  12.0 -86.0  9.0 -89.0  Save |

| up nodes Set obs   | tacles      |   |          |                            |                          |          |                             |    |
|--------------------|-------------|---|----------|----------------------------|--------------------------|----------|-----------------------------|----|
| List of materials: | Save        |   | Node 0   | reinforced concrete wa     | II ▼ Node 1              | <b>V</b> | Set<br>Remove               |    |
| Material           | Attenuation |   | Device A | Dist. between Dev.A and Ob | Obstacle                 | Device B | View graphic                | Ţ  |
| Partition wall     | 3.0         | _ | Node 0   | 3                          | Viga                     | Node 1   | click here for view graphic | _  |
| Window             | 4.0         |   | Node 0   | 5                          | reinforced concrete wall | Node 1   | click here for view graphic | _= |
| Roof               | 7.0         |   |          |                            |                          |          |                             | -  |
| Viga               | 10.0        |   |          |                            |                          |          |                             |    |
| Plants and trees   | 5.0         |   |          |                            |                          |          |                             | -1 |
| reinforced concr   | 90.0        |   |          |                            |                          |          |                             | -  |
|                    |             |   |          |                            |                          |          |                             | 4  |
|                    |             | - |          |                            |                          |          |                             |    |
| ,                  |             |   | 1        |                            |                          |          | _                           |    |





# **WiFiSim**







# **WiFiSim**

| VENTAJAS WiFiSim               | INCONVENIENTES WiFiSim                      |
|--------------------------------|---------------------------------------------|
| MIDE COBERTURA DE DISPOSITIVOS | PROCESO DE CONFIGURACIÓN LENTO Y<br>TEDIOSO |
| DISTRIBUCIÓN TRIDIMENSIONAL    | CREACIÓN DE UN ENTORNO NO VISUAL            |
| ESTUDIO DEL ALGORITMO CSMA/CA  | POCA INTERACTIVIDAD CON EL USUARIO          |
| DETECTA PROBLEMA NODO OCULTO   |                                             |





# **WiTuners**

Servicio de software online para el despliegue profesional de redes inalámbricas a gran escala







# **WiTuners**

Modulo1: Planificación de despliegue avanzado.

Modulo2: Audición y optimización del rendimiento en

tiempo real.

| VENTAJAS WiFiSim                                    | INCONVENIENTES WiFiSim                                            |
|-----------------------------------------------------|-------------------------------------------------------------------|
| DISEÑO Y DESPLIEGUE WiFi                            |                                                                   |
| GESTIÓN DE RIESGOS                                  | HERRAMIENTA DE PAGO                                               |
| DISEÑO DE EDIFICIOS DE VARIAS<br>PLANTAS            | CLIENTE DEBE CEÑIRSE AL NÚMERO DE<br>DISPOSITIVOS QUE LA SOLUCIÓN |
| SUMINISTRO DE UN INFORME CON LA SULUCIÓN DEL DISEÑO |                                                                   |





#### **WiFiSimExtension**

- Suplir desventajas de WiFiSim:
  - ✓ Agilizar el proceso de configuración
  - ✓ Ampliar la funcionalidad de WiFiSim
  - ✓ Configuración de un entorno visual
- \* Diseño arquitectónico de un edificio
- Interfaz dinámica, interactiva, atractiva y con amplia funcionalidad.
- Planificación, optimización y despliegue WiFi
- Suplir desventajas de WiTuners:
  - ✓ Software libre y con ámbito académico
  - ✓ Posibilidad de ajuste económico al cliente





#### **INTERFAZ**







#### **INTERFAZ**

| FLOOR PANEL OPTIONS Obstacles: |                               |  |  |  |
|--------------------------------|-------------------------------|--|--|--|
| Add Obstacle                   | Add Obstacle Partition Wall/3 |  |  |  |
|                                | Line                          |  |  |  |
| Add Node                       | Blue ▼                        |  |  |  |
| Add AP                         | Line Width 1 ▼                |  |  |  |
|                                |                               |  |  |  |

| FLOOR PANEL PROPERTIES |                |  |  |  |
|------------------------|----------------|--|--|--|
| 1st Floor              | •              |  |  |  |
| 1/100                  | P: 32          |  |  |  |
| 3.0 M                  | Z: 94.0        |  |  |  |
|                        | $\overline{}$  |  |  |  |
| STAND E                | BY             |  |  |  |
|                        | 1/100<br>3.0 M |  |  |  |

| ELEMENT LIST OPTI | ONS |
|-------------------|-----|
| Edit element      |     |
| Delete element    |     |
|                   |     |

| ELEMENT PROPERTIES |                  |  |
|--------------------|------------------|--|
| Name :             | Partition_Wall_0 |  |
| Point P1:          | 232, 107, 0      |  |
| Point P2:          | 232, 107, 0      |  |
| Atenuation :       | 3                |  |
|                    |                  |  |
|                    |                  |  |





#### ELEMENTOS DE LA INTERFAZ

#### Node:

Posición(x,y,z)

Potencia



#### AP:

Posición, (x,y,z)

Potencia



AP\_0

#### Obstacle:

- 1. Nombre
- 2. Punto Origen(x, y, z)
- 3. Punto Final(x, y, z)
- 4. Tipo
- 5. Atenuación
- 6. Forma
- 7. Color
- 8. Ancho









#### 3.2.1. DIAGRAMAS DE CASOS DE USO

#### FUNCIONALIDAD DEL SISTEMA































# 3.4.1.IMPLEMENTACION: EJEMPLO EXPORTACIÓN







# 3.4.1.IMPLEMENTACION: EJEMPLO EXPORTACIÓN







# 3.4.1.IMPLEMENTACION: EJEMPLO EXPORTACIÓN

| Object         | X position | Y position | Z position | Configuration |   |
|----------------|------------|------------|------------|---------------|---|
| Access point 0 | 571        | 124        | 94         | Click here    | - |
| Node 0         | 361        | 57         | 32         | Click here    | = |
| Node 1         | 107        | 139        | 32         | Click here    |   |
| Node 2         | 351        | 260        | 32         | Click here    |   |
|                | 0          | 0          | 0          |               |   |

| Device A | Dist. between Dev.A an | . Obstacle         | Device B       | View graphic             |   |
|----------|------------------------|--------------------|----------------|--------------------------|---|
| Node 0   | 4.954                  | Ext:Partition wall | Access point 0 | click here for view grap | - |
| Node 1   | 4.712                  | Ext:Partition wall | Node 0         | click here for view grap | = |
| Node 1   | 2.849                  | Ext:Partition wall | Node 0         | click here for view grap |   |
| Node 2   | 1.676                  | Ext:Partition wall | Node 0         | click here for view grap |   |
| Node 2   | 3.553                  | Ext:Partition wall | Node 0         | click here for view grap |   |
| Node 1   | 12.609                 | Ext:Partition wall | Access point 0 | click here for view grap |   |
| Node 1   | 4.490                  | Ext:Partition wall | Access point 0 | click here for view grap |   |
| Node 1   | 2.723                  | Ext:Partition wall | Access point 0 | click here for view grap | - |
| Node 1   | 5.568                  | Ext:Partition wall | Node 2         | click here for view grap |   |
| Node 1   | 2.994                  | Ext:Partition wall | Node 2         | click here for view grap |   |
| Node 2   | 2.705                  | Ext:Partition wall | Access point 0 | click here for view grap |   |
| Node 2   | 5.911                  | Ext:Partition wall | Access point 0 | click here for view grap |   |





# 3.4.1.IMPLEMENTACION: EJEMPLO IMPORTACIÓN

| Object         | X position | Y position | Z position | Configuration |   |
|----------------|------------|------------|------------|---------------|---|
| Access point 0 | 20         | 20         | 0          | Click here    | _ |
| Node 0         | 685        | 315        | 0          | Click here    |   |
|                | 0          | 0          | 0          |               |   |

| Device A       | Dist. between Dev.A an | Obstacle       | Device B | View graphic             |
|----------------|------------------------|----------------|----------|--------------------------|
| Access point 0 | 3                      | Partition wall | Node 0   | click here for view grap |
| Access point 0 | 6                      | Partition wall | Node 0   | click here for view grap |
| Access point 0 | 9                      | Partition wall | Node 0   | click here for view grap |
| Access point 0 | 12                     | Partition wall | Node 0   | click here for view grap |
| Access point 0 | 15                     | Partition wall | Node 0   | click here for view grap |
| Access point 0 | 18                     | Partition wall | Node 0   | click here for view grap |
|                |                        |                |          |                          |





# 3.4.1.IMPLEMENTACION: EJEMPLO IMPORTACIÓN







#### DISEÑO "BEST SOLUTION"







#### DISEÑO "BEST SOLUTION"







#### DISEÑO "BEST SOLUTION"

- ¿Cómo dividimos el plano en diferentes zonas?
- ¿Cómo colocamos los APs?
- ¿Cuántos APs harían falta?
- ¿Qué tendremos en cuenta para calcular las posiciones?
- ¿De qué manera medimos la cobertura e intensidad?
- ....





#### DISEÑO "BEST SOLUTION"

Identificar Límites







#### DISEÑO "BEST SOLUTION"

#### Determinación de Zonas Válidas







#### DISEÑO "BEST SOLUTION"

Determinación de Zonas Válidas para APs



verde= Accesible. rojo= AccesibleAP. blanco= NO Accesible.





#### DISEÑO "BEST SOLUTION"

Determinación de Zonas Válidas para APs







#### DISEÑO "BEST SOLUTION"

#### Determinación de Zonas Válidas para APs









#### DISEÑO "BEST SOLUTION"

#### Determinación de Bondad de Solución

#### Se tiene en cuenta:

- Cobertura
- Intensidad

#### Dependen de:

- Tipo tecnología IEEE 802.11
- Distancia entre zonas
- Atenuación debido a los obstáculos en el camino





### DISEÑO "BEST SOLUTION"

#### Algoritmo Genético

- Algoritmo Estacionario.
- Tamaño Población:

(nº casillas/tamaño cromosoma)\*K.

nº casillas:

tamaño cromosoma:

K:

nº zonas accesibles APs.

nº Aps indicados.

factor constante=3.





### DISEÑO "BEST SOLUTION"

Algoritmo Genético

Codificación Cromosoma.







### DISEÑO "BEST SOLUTION"

#### Algoritmo Genético

generarPobInicial()
evaluarPoblacion() <-- fitness 1 y 2
hasta mejorSol sea durante 500 it o no le demos a parar
hacer
Selección de Padres()
cruce()
mutación()
Reemplazo()
Fin</pre>





### DISEÑO "BEST SOLUTION"

Algoritmo Genético

Generar Población Inicial.

Hasta i=tamaño población hacer
Hasta j=tamaño cromosoma hacer
//crear individuos válidos (Sin que se repitan)
Random(1,nºcasillas accesibles)
Fin
Fin





### DISEÑO "BEST SOLUTION"

#### Algoritmo Genético

Determinación de Fitness 1 y 2.



Fitness 1: Cobertura.

Fitness 2: Intensidad.





### DISEÑO "BEST SOLUTION"

Algoritmo Genético
Selección de Padres.

- Escoge aleatoriamente k individuos. (k estará entre 5% y el 15% de la población, y el usuario podrá indicarlo en la interfaz configurations).
- Dentro de los candidatos a ser padres, seleccionará el mejor de ellos.





#### DISEÑO "BEST SOLUTION"

#### Algoritmo Genético

Cruce de Individuos. Siempre se cruzan.



Operador de cruce basado en un punto





### DISEÑO "BEST SOLUTION"

#### Algoritmo Genético

Mutación. Disruptiva o no disruptiva.

- Disruptiva:
  - Probabilidad de mutación de 0.02 (2%).
  - Saltos aleatorios dentro del tamaño de zonas.
- No Disruptiva:
  - Probabilidad de mutación de 0.10 (10%).
  - Saltos dentro de un intervalo para que no sean tan grandes.





### DISEÑO "BEST SOLUTION"

#### Algoritmo Genético

Remplazo. Dos tipos:

#### Por padres:

Se evalúan los dos hijos obtenidos y los dos padres y en la población se quedarán los dos mejores.

#### - Por torneo:

Se realizará un torneo con el tamaño establecido, es decir, con el mismo tamaño que en la selección de padres, pero en esta ocasión competirán con los hijos obtenidos y el sistema se quedará con los dos mejores.





- Tipo de tecnología empleada (cualquiera del estándar IEEE 802.11).
- Tamaño y dimensión del plano del edificio concreto.
- Parámetros del algoritmo genético:
  - Semilla. (Usadas para los casos aleatorios).
  - Nº APs.
  - Tipo de mutación.
  - Tipo de remplazo.
  - Tamaño del torneo.
  - AP Positions.





### CAPA FÍSICA:

- Plano: Torreumbría 1 Planta

- Semilla: Sem1

- Nº Aps: 3

- Tipo Mutación: Disruptiva.

- Tipo Remplazo: Por padres.

- Tamaño del torneo: 5%.

- APs Positions: At the walls.

- Tecnología empleada: 802.11 b.





FLOOR PANEL



**ELEMENT LIST** 

F1: Contour 0

F1: Contour 1

#### CAPA FÍSICA:

- Plano: Torreumbría 1 Planta

- Semilla: Sem1

- Nº Aps: 3

- Tipo Mutación: Disruptiva.

- Tipo Remplazo: Por padres.

- Tamaño del torneo: 5%.

- APs Positions: At the walls.

- Tecnología empleada: 802.11 a.







#### Nº APs:

- Plano: Codos Y Muñones

- Semilla: Sem1

- Nº Aps: 2

- Tipo Mutación: Disruptiva.

- Tipo Remplazo: Por padres.

- Tamaño del torneo: 5%.

- APs Positions: At the walls.

- Tecnología empleada:

802.11.







#### Nº APs:

- Plano: Codos Y Muñones

- Semilla: Sem1

- Nº Aps: 3

- Tipo Mutación: Disruptiva.

- Tipo Remplazo: Por padres.

- Tamaño del torneo: 5%.

- APs Positions: At the walls.

- Tecnología empleada:

802.11.







#### Posición APs:

- Plano: Reloj Arena.

- Semilla: Sem1

- Nº Aps: 2

- Tipo Mutación: Disruptiva.

- Tipo Remplazo: Por padres.

- Tamaño del torneo: 5%.

- APs Positions: At the walls.

- Tecnología empleada:

802.11.







#### Posición APs:

- Plano: Reloj Arena

- Semilla: Sem1

- Nº Aps: 2

- Tipo Mutación: Disruptiva.

- Tipo Remplazo: Por padres.

- Tamaño del torneo: 5%.

- APs Positions: At Anywhere.

- Tecnología empleada: 802.11.







### Tipo Mutación:

- Plano: Torreumbría una planta

- Semilla: Sem1

- Nº Aps: 3

- Tipo Mutación: Disruptiva.

- Tipo Remplazo: Por padres.

- Tamaño del torneo: 5%.

- APs Positions: At the walls.

- Tecnología empleada: 802.11.







### Tipo Mutación:

- Plano: Torreumbría una planta

- Semilla: Sem1

- Nº Aps: 3

- Tipo Mutación: No Disruptiva.

- Tipo Remplazo: Por padres.

- Tamaño del torneo: 5%.

- APs Positions: At the walls.

- Tecnología empleada: 802.11.







### Tipo Mutación:

- Plano: Torreumbría una planta

- Semilla: Sem1

- Nº Aps: 3

- Tipo Mutación: Disruptiva.

- Tipo Remplazo: Por padres.

- Tamaño del torneo: 5%.

- APs Positions: At the walls.

- Tecnología empleada: 802.11b.







### Tipo Mutación:

- Plano: Torreumbría una planta

- Semilla: Sem1

- Nº Aps: 3

- Tipo Mutación: No

Disruptiva.

- Tipo Remplazo: Por padres.

- Tamaño del torneo: 5%.

- APs Positions: At the walls.

- Tecnología empleada: 802.11b.







#### Tipo Reemplazo:

- Plano: Torreumbría una planta

- Semilla: Sem1

- Nº Aps: 3

- Tipo Mutación: Disruptiva.

- Tipo Remplazo: Por padres.

- Tamaño del torneo: 5%.

- APs Positions: At the walls.

- Tecnología empleada: 802.11a.







#### Tipo Reemplazo:

- Plano: Torreumbría una planta

- Semilla: Sem1

- Nº Aps: 3

- Tipo Mutación: Disruptiva.

- Tipo Remplazo: Por torneo.

- Tamaño del torneo: 5%.

- APs Positions: At the walls.

- Tecnología empleada: 802.11a.







#### Parámetros Decisivos:

- Tamaño y dimensión plano.
- Nº Aps.
- APs Positions.
- -Tecnología IEEE 802.11.

#### Parámetros a Ajustar:

- Tipo Mutación.
- Tipo Reemplazo.
- Tamaño Torneo.
- Semilla.





#### Estudio Real (Torreumbría):







#### Estudio Real (Torreumbría):







#### Estudio Real (Torreumbría):











#### Estudio Real (Torreumbría) Según nuestra aplicación:



Porcentaje de cobertura: 86%





#### Estudio Real (Torreumbría) Según nuestra aplicación:



Porcentaje de cobertura: 86%





#### Estudio Real (Torreumbría) Según nuestra aplicación:



Porcentaje de cobertura: 100%





#### Estudio Real (Torreumbría) Según nuestra aplicación:



Porcentaje de cobertura: 98%



### 5. CONCLUSIONES Y AMPLIACIONES FUTURAS



### **AMPLIACIONES FUTURAS**

- **❖ VISIÓN 3D DEL EDIFICIO**
- ❖ AÑADIR NUEVAS TECNOLOGIAS DE LA CAPA FÍSICA
- ❖ CREACIÓN DEL INFORME DEL DISEÑO
- **❖** ALGORITMO MULTI-OBJETIVO
- ❖ WiFi ANALYZER
- ❖ EDITAR PATRÓN DE RADIACIÓN DE ANTENA
- **❖** SUBPROCESO GRID



### 5. CONCLUSIONES Y AMPLIACIONES FUTURAS



### **CONCLUSIONES**

- Satisfacción personal por el trabajo realizado
- Satisfacción del "cliente"
- Experiencia en trabajo en equipo
- Optimización de diseños WiFi reales
- Aplicación con amplia funcionalidad, relacionada con los departamentos de Redes e IA
- Enfoque académico
- Línea de investigación abierta a raíz de este proyecto



### **RUEGOS Y PREGUNTAS**



# GRACIAS POR VUESTRA ATENCIÓN!

### WiFiSimExtension





### WiFiSimExtension

Planificación, optimización y despliegue de redes inalámbricas