Функции на много променливи

1. Пространството \mathbb{R}^n

Ще считаме, че е зададена (правоъгълна) Декартова координатна система.

1.1. Дефиниция (точка в \mathbb{R}^n)

Всяка наредена "п"-орка реални числа.

1.2. Дефиниция (разстояние в \mathbb{R}^n)

$$\rho(x,y) = \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2}$$

1.3. Дефиниция ("п"-мерно Евклидово пространство)

Съвкупността от всички точки в "пмерното пространство с горното разстояние.

1.4. Дефиниция (U(x,r) - кълбо с център точката x и радиус r)

Съвкупността от всички точки y в \mathbb{R}^n такива, че $\rho(x,y) < r$.

1.5. Дефиниция (сферична ϵ -околност на точката x: $U(x, \epsilon)$), т.е.

$$U(x,\epsilon) = \{y = (y_1, ...y_n) : \sum_{i=1}^{n} (y_i - x_i)^2 < \epsilon^2 \}$$

Бележка 1.

 $3a \mathbb{R}^1: U(x,\epsilon) = (x - \epsilon, x + \epsilon).$

1.6. Дефиниция (паралелепипед (със страни, успоредни на координатните оси))

$$P(x; \delta_1, \delta_2, ..., \delta_n) = \{ y = (y_1, ..., y_n) : |y_i - x_i| < \delta_i, i = 1, 2, ..., n \}$$

Бележка 2.

Дефиницията за сферична околност е координатно независима, а за паралелепипед - координатно зависима. В сила е следната (удобна) лема.

Лема. (за еквивалентност на сферична околност и паралелепипед)

Всяка сферична околност съдържа паралелепипед и всеки паралелепипед съдържа сферична околност.

1.7. Дефиниция (редица в \mathbb{R}^n)

Изображение: $m \longmapsto x^{(m)}$, където $m \in \mathbb{N}$ и $x^{(m)} \in \mathbb{R}^n$.

1.8. Дефиниция (граница на редица в \mathbb{R}^n)

$$\lim_{m \to \infty} x^{(m)} = x, \quad \text{ako} \quad \lim_{m \to \infty} \rho\left(x^{(m)}, x\right) = 0.$$

Лесно се вижда, че

$$\lim_{m \to \infty} x^{(m)} = x,$$

ако $\forall \epsilon > 0, \exists m_{\epsilon}$ такова, че $\forall m > m_{\epsilon}$ е изпълнено $x^{(m)} \in U(x, \epsilon)$.

От горната лема следва, че

$$\lim_{m \to \infty} x^{(m)} = x,$$

ако $\forall P(x; \delta_1, \delta_2, ..., \delta_n), \exists m_{\epsilon}$ такова, че $\forall m > m_{\epsilon}$ е изпълнено $x^{(m)} \in P(x; \delta_1, \delta_2, ..., \delta_n)$.

Теорема.

$$\lim_{m \to \infty} x^{(m)} = x \iff \lim_{m \to \infty} x_i^{(m)} = x_i, \ i = 1, 2, ..., n.$$

Доказателство.

Необходимост.

Нека $\lim_{m\to\infty} x^{(m)} = 0$ и $\epsilon > 0$. Тогава $\exists m_{\epsilon}$ такова, че $\forall m > m_{\epsilon}$ е изпълнено $x^{(m)} \in P(x;\epsilon)$, т.е. $\forall m > m_{\epsilon}$ е в сила $\left|x_i^{(m)} - x_i\right| < \epsilon$. Следователно, $\lim_{m\to\infty} x_i^{(m)} = x_i, \ i=1,2,...,n$.

 $\square ocmam$ σ чносm.

Нека $\lim_{m\to\infty} x_i^{(m)} = x_i, \quad i=1,2,...,n$ и $P(x;\epsilon_1,...,\epsilon_n)$. Тогава $\forall \epsilon_i > 0$ $\exists m_i = m_i(\epsilon_i)$ такова, че $\forall m > m_i$ е в сила $\left|x_i^{(m)} - x_i\right| < \epsilon_i$. Нека $m_0 = \max\{m_1,...,m_n\}$. Тогава $\forall m > m_0$ е изпълнено $x^{(m)} \in P(x;\epsilon_1,...,\epsilon_n)$, т.е. $\lim_{m\to\infty} x^{(m)} = x$.

1.9. Дефиниция (ограничено множество)

Множеството $X \subset \mathbb{R}^n$ е ограничено, ако съществува куб P(O:a) с център в началото на координатната система такъв, че $X \subset P(O:a)$. Или множеството $X \subset \mathbb{R}^n$ е ограничено, ако съществува кълбо U(O:a) такова, че $X \subset U(O:a)$.

1.10. Дефиниция (ограничена редица)

Редицата $x^{(m)}$; m=1,2,... е ограничена, ако множеството $x^{(m)}$; m=1,2,... е ограничено. Очевидно, ако $x^{(m)}$; m=1,2,... е сходяща, то тя е ограничена.

Теорема.(Болцано-Вайерщрас)

От всяка ограничена редица може да се избере сходяща подредица.

1.11. Дефиниция $(\lim_{m\to\infty} x^{(m)} = \infty)$

$$\lim_{m\to\infty} x^{(m)} = \infty$$
 ako $\lim_{m\to\infty} \rho\left(x^{(m)},O\right) = \infty$, където $O = O(0,...,0)$.

Теорема.(Болцано-Вайерщрас)

Теорема.

$$\lim_{m \to \infty} x^{(m)} = \infty \quad \Leftrightarrow \quad \exists i \quad \text{такова, че} \quad \lim_{m \to \infty} x_i^{(m)} = \infty.$$

Доказателство.

Очевидно.

1.12. Дефиниция (вътрешна точка)

Точката $x \in X$ е вътрешна за множеството X, ако съществува $\epsilon > 0$ такова, че $U(x:\epsilon) \subset X$.

1.13. Дефиниция (отворено множество)

Множество на което всяка точка е вътрешна.

Лема

Всяка ϵ -околност $U(x:\epsilon)$ е отворено множество.

1.14. Дефиниция (околност на точка)

Всяко отворено множество, съдържащо точката.

1.15. Дефиниция (прободена околност)

Всяка околност на точката без точката.

1.16. Дефиниция (гранична точка)

 $x \in \mathbb{R}^n$ е гранична за множеството X, ако всяка нейна околност съдържа точки, принадлежащи на X и точки, непринадлежащи на X.

1.17. Дефиниция (граница на множество - ∂X)

Съвкупността от всички гранични точки.

1.18. Дефиниция (околност на ∞ - $U(\infty, \epsilon)$)

$$U(\infty, \epsilon) = \{x : \rho(x, O) > \frac{1}{\epsilon}\}$$

Бележка 3.

За разлика от \mathbb{R}^1 , в \mathbb{R}^n , $n \geq 2$ безкрайността е винаги положителна.

2. Граница на функции на две променливи

Нека множеството $D \in \mathbb{R}^2$ и $f: D \to \mathbb{R}$.

2.1. Дефиниция (Граница на функция на две променливи)

Казваме, че

$$\lim_{(x,y)\to(x_0,y_0)}f(x,y)=A,\quad \text{ako}\quad$$

а)Хайне

за всяка редица $(x_n, y_n) \to (x_0, y_0)$ е изпълнено $f(x_n, y_n) \to A$.

ь)Коши

за всяка околност V(A) съществува околност $U(x_0, y_0)$ такава, че за всяко $(x, y) \in U(x_0, y_0)$ е изпълнено $f(x, y) \in V(A)$.

Дефиницията по Коши може да се запише и така:

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = A \quad \Leftrightarrow \quad \forall \epsilon > 0 \ \exists \delta > 0 \ \forall (x,y), |(x,y)-(x_0,y_0)| < \delta: |f(x,y)-A| < \epsilon.$$

Бележка 4.

Всъщност околност на точката А по-горе е всеки отворен интервал, съдържащ точката.

Бележка 5.

Функцията може изобщо да не е дефинирана в точката (x_0, y_0) .

Теорема.

Горните две дефиниции са еквивалентни.

Доказателство:

Аналогично на доказателството при функции на една променлива.

Удобно правило.

Дефиницията на Коши е удобна за доказване, че съществува дадена граница, а на Хайне, че не съществува.

Пример 1.

Да се докаже, че

$$\lim_{(x,y)\to(0,0)} \frac{x^3 - y^3}{x^2 + y^2} = 0.$$

Решение.

Ще използваме дефиницията на Коши.

Нека $\epsilon > 0$. Имаме

$$\left| \frac{x^3 - y^3}{x^2 + y^2} \right| = \frac{|x - y|(x^2 + y^2 + xy)}{x^2 + y^2} \le 2|x - y|.$$

Тогава ако U е такава околност (квадратна) на точката (0,0), че $x<\frac{\epsilon}{4}$ и $y<\frac{\epsilon}{4}$ е изпълнено

$$\left|\frac{x^3-y^3}{x^2+y^2}\right|<\epsilon, \quad \text{ i.e. } \lim_{(x,y)\to(0,0)}\frac{x^3-y^3}{x^2+y^2}=0.$$

Пример 2.

Да се докаже, че

$$f(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$$
 няма граница в $(0, 0)$.

Решение.

Ще използваме дефиницията на Хайне, т.е. ще дефинираме две различни редици, клонящи към (0,0) за които границите на функцията са различни.

Наистина, нека $(x_n,y_n)=\left(\frac{1}{n},\frac{1}{n}\right)$. Тогава $(x_n,y_n)\to (0,0)$ и $f(x_n,y_n)=0$, т.е. $f(x_n,y_n)\to 0$. Сега, нека $(x_n,y_n)=\left(\frac{2}{n},\frac{1}{n}\right)$. Тогава, също $(x_n,y_n)\to (0,0)$ и $f(x_n,y_n)=\frac{3}{5}$, т.е. $f(x_n,y_n)\to \frac{3}{5}$.

Пример 3.

$$f(x, y) = \begin{cases} \frac{x^2y}{x^4 + y^2} & \text{sa } x^2 + y^2 > 0\\ 0 & \text{sa } x = y = 0. \end{cases}$$

Да разгледаме произволна права g, която минава през началото на координатната система, т.е. нека $g: x = \alpha t, y = \beta t$. За такива прави е изпълнено

$$f(\alpha t, \beta t) = \frac{\alpha^2 \beta t}{\alpha^4 t^2 + \beta^2} \to 0$$
 при $t \to 0$.

Сега да разгледаме кривата с уравнение $y=x^2$. За нея имаме $f(x,x^2)=1/2$ и следователно границата по параболата $y=x^2$ е равна на 1/2. Или, от съществуването на границата по всяко направление, не следва, че съществува границата въобще.

2.2. Дефиниция (повторни граници)

$$\lim_{x \to x_0} \lim_{y \to y_0} f(x, y) = A \quad \text{if} \quad \lim_{y \to y_0} \lim_{x \to x_0} f(x, y) = A.$$

Първо се смята вътрешната граница като функцията се разглежда като функция на една променлива, т.е. при $\lim_{x\to x_0}\lim_{y\to y_0}f(x,y)$ считаме, че x е константа и разглеждаме f(x,y) като функция на една променлива y. После се смята външната граница.

Пример 4. $f(x,y) = x \sin \frac{1}{y}, y \neq 0$

$$\lim_{y \to 0} \lim_{x \to 0} f(x, y) = \lim_{y \to 0} 0 = 0$$

В същото време границата $\lim_{x\to 0} \lim_{y\to 0} f(x,y)$ не съществува понеже $\lim_{y\to 0} f(x,y)$ не съществува при $x\neq 0$, но съществува границата $\lim_{(x,y)\to(0,0)} f(x,y)=0$ (докажете). Тоест, от съществуването на $\lim_{(x,y)\to(x_0,y_0)} f(x,y)$ не следва съществуването на повторните граници и обратно.

3. Граници при $(x,y) \to \infty$

Казваме, че $M \to \infty$, ако $\rho(M,O) = \sqrt{x^2 + y^2} \to \infty$. Лесно се вижда, че ако $M \to \infty$, то поне една от координатите трябва да клони към ∞ (покажете). Тогава, ако например $x \to \infty$, то често е удобно да се направи субституцията $x = \frac{1}{n}$.

Пример 5.

Да се пресметне границата

$$\lim_{(x,y)\to(\infty,3)} \left(1 + \frac{1}{x}\right)^{\frac{x^2}{x+y}}.$$

Решение.

Полагаме $x=\frac{1}{u}$. Тогава $(x,y)\to (\infty,3)$ е еквивалентно на $(u,y)\to (0,3)$ и следователно

$$\lim_{(x,y)\to(\infty,3)} \left(1 + \frac{1}{x}\right)^{\frac{x^2}{x+y}} = \lim_{(u,y)\to(0,3)} (1+u)^{\frac{1}{u(1+uy)}} = \lim_{(u,y)\to(0,3)} \left((1+u)^{\frac{1}{u}}\right)^{\frac{1}{1+uy}} = e.$$

Ако и двете променливи клонят към ∞ , често е удобно да се използва полярна смяна, т.е. $x = r\cos\varphi, y = r\sin\varphi$. Тогава при $(x,y) \to \infty$ имаме $r \to \infty$.

Пример 6.

$$\lim_{(x,y)\to\infty} \frac{x^2 - y^2}{x^4 + y^4} = 0$$

Правим полярна смяна.

$$\lim_{(x,y)\to\infty}\frac{x^2-y^2}{x^4+y^4}=\lim_{r\to\infty}\frac{\cos^2\varphi-\sin^2\varphi}{r^2(\cos^4\varphi+\sin^4\varphi)}\leq\lim_{r\to\infty}\frac{2}{r^2}=0$$

Горното неравенство е изпълнено понеже $\cos^4\varphi + \sin^4\varphi \ge \frac{1}{2}(\cos^2\varphi + \sin^2\varphi)^2$.

Бележка 6.

Полярната смяна често е удобна и при $(x,y) \to (0,0)$. Тогава $r \to 0$. При други точки трябва да се използва обобщена поляна смяна. Решете горните примери като използвате полярна смяна.

4. Непрекъснатост на f(x,y) в точката (x_0,y_0)

а)Хайне

Ако за всяка редица $(x_n, y_n) \to (x_0, y_0)$ е изпълнено $f(x_n, y_n) \to f(x_0, y_0)$.

b)Коши

Ако за всяка околност $V(f(x_0, y_0))$ съществува околност $U(x_0, y_0)$ такава, че за всяко $(x, y) \in U(x_0, y_0)$ е изпълнено $f(x, y) \in V(f(x_0, y_0))$.

Пример 7.

Функцията

$$f(x, y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{sa } x^2 + y^2 > 0\\ 0 & \text{sa } x = y = 0 \end{cases}$$

е прекъсната в (0,0), понеже не съществува $\lim_{(x,y)\to(0,0)} f(x,y)$ (докажете). В същото време, функцията е непрекъсната по всяка от променливите, т.е. от непрекъснатост по всяка променлива не следва непрекъснатост на функцията.

Пример 8.

Функцията

$$f(x, y) = \begin{cases} \frac{x^2y}{x^4 + y^2} & \text{sa } x^2 + y^2 > 0\\ 0 & \text{sa } x = y = 0 \end{cases}$$

е прекъсната в (0, 0). Защо?