

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Дальневосточный федеральный университет» (ДВФУ)

ШКОЛА ЕСТЕСТВЕННЫХ НАУК

Департамент информатики, математического и компьютерного моделирования

ОТЧЕТ

по лабораторной работе по дисциплине «Вычислительная математика»

Выполнил студент гр. Б9119-02.03.01сцт $\frac{\Pi \text{анченко H.K.}}{(\Phi \text{ИO})} \frac{}{(\text{nodnucb})}$ « $\underline{02}$ » июня $\underline{2022}$ г.

г. Владивосток 2022

Содержание

Введение	3
Метод окаймления	4

Введение

Отчёт по лабораторной работе на тему «Метод окаймления».

Метод окаймления

Изучить, понять и реализовать алгоритм метода оптимального исключения для решения СЛАУ, а также описать работу алгоритма и привести результаты.

Алгоритм

Введем обозначения:

$$U_n = (a_{1n}, ..., a_{n-1,n}), V_n = (a_{n1}, ..., a_{n,n-1})$$

Для размерности k:

$$a_{k} = a_{kk} - V_{k} A_{k-1}^{-1} U_{k}$$

$$Q_{k} = -\frac{V_{k} A_{k-1}^{-1}}{a_{k}}$$

$$P_{k-1} = A_{k-1}^{-1} - A_{k-1}^{-1} U_{k} Q_{k}$$

$$R_{k} = -\frac{A_{k-1}^{-1} U_{k}}{a_{k}}$$

$$A_{k}^{-1} = \begin{pmatrix} P_{k-1} & R_{k} \\ Q_{k} & \frac{1}{a_{k}} \end{pmatrix}$$

Тесты

Возьмем матрицу:

$$A = \begin{pmatrix} 16 & 2 & 0 & -2 \\ 4 & 20 & 1 & 0 \\ 2 & 0 & 10 & 0 \\ -4 & 0 & 4 & 32 \end{pmatrix}$$

Возьмем вектор:

$$b = \begin{pmatrix} 13 \\ 24 \\ 7 \\ 0 \end{pmatrix}$$

Результаты:

[0.68505222 1.03484008 0.56298956 0.01525783]