Resumo de Curvas e Superfícies

Sumário

Aula 2

Aula 2

Definição 1 Uma curva parametrizada em \mathbb{R}^n é uma aplicação $\gamma: I \to \mathbb{R}^n$ sendo $I \subset \mathbb{R}$ aberto.

Definição 2 O conjunto imagem de γ , $\gamma(I) \subset \mathbb{R}^n$ é dito o **traço** de γ .

Definição 3 (Vetor tangente) Seja $\gamma: I \to \mathbb{R}^n$ com $\gamma(t) = (\gamma_1(t), \dots, \gamma_n(t))$ com $\gamma_i(y)$ diferenciáveis $\forall i, i = 1 \dots n, o \ vetor$

$$\gamma'(t) = (\gamma_1'(t), \dots, \gamma_n'(t))$$

 \acute{e} chamado **vetor tangente de** γ em t

Definição 4 (Curvas regulares) Seja $\gamma(t): I \to \mathbb{R}^n$ uma curva parametrizada diferenciável. Diz-se que γ é regular, quando $\gamma'(t) \neq 0$, $\forall t \in I$.

Definição 5 (Reta tangente) Seja γ uma curva regular, então a **reta tangente** de γ no ponto $t_0 \in I$ é aquela que contém o ponto $\gamma(t)$ e é paralela ao vetor $\gamma'(t)$, ou seja

$$r(\lambda) = \gamma(t_0) + \lambda \gamma'(t_0)$$

Definição 6 (Comprimento de arco) O comprimento de arco de α , de $\alpha(a)$ até $\alpha(b)$ definido por $L_a^b(\alpha)$ é

$$L_a^b(\alpha) = \int_a^b \|\alpha'(t)\| dt$$

Definição 7 Se $\gamma:(a,b)\to\mathbb{R}^n$ é uma c.p.¹, sua **velocidade no ponto** $\gamma(t)$ é $\|\gamma'(t)\|$, e a curva é dita com **velocidade unitária** se $\|\gamma'(t)\|=1$, $\forall t\in(a,b)$ e é parametrizada por comprimento de arco.

Teorema 1 Toda curva regular pode ser reparametrizada por comprimento de arco.

 $^{^{1}}$ curva parametrizada