시스템 프로그래밍을 위한 C언어 MCU 프로그램을 위한 기초 지식들

- Numbers Representation -

현대자동차 입문교육 박대진 교수

Lecture Lessoned

- 16진수와 2진수 10진수간 변환을 자유롭게
- 바이트, 비트, 니블
- 2의 승수로 값을 어림짐작 하는 방법
- 2진수 더하기
- Overflow
- 음수표현하기
- 2의 보수
- 2의 보수를 쓰면 좋은 점
- Sign Extension
- Signed와 Unsigned의 차이

Hexadecimal Numbers

Hex Digit	Decimal Equivalent	Binary Equivalent
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
А	10	1010
В	11	1011
С	12	1100
D	13	1101
Е	14	1110
F	15	1111

Hexadecimal to Binary Conversion

- Hexadecimal to binary conversion:
 - Convert 4AF₁₆ (also written 0x4AF) to binary
 - 0100 1010 1111₂

- Hexadecimal to decimal conversion:
 - Convert 4AF₁₆ to decimal
 - $-16^2 \times 4 + 16^1 \times 10 + 16^0 \times 15 = 1199_{10}$

Bits, Bytes, Nibbles

Bits

Bytes & Nibbles

10010110 least most significant significant bit bit

> byte 10010110 nibble

Bytes

CEBF9AD7 most least significant significant byte byte

Large Powers of Two

- $2^{10} = 1 \text{ kilo}$ $\approx 1000 (1024)$
- $2^{20} = 1 \text{ mega } \approx 1 \text{ million } (1,048,576)$
- $2^{30} = 1$ giga ≈ 1 billion (1,073,741,824)
- 2⁴⁰ = 1 tera ≈ 1 trillion
- 2⁵⁰ = 1 peta ≈ 1 quadrillion
- $2^{60} = 1$ exa ≈ 1 quintillion

Estimating Powers of Two

• What is the value of 2²⁴?

$$2^4 \times 2^{20} \approx 16$$
 million

 How many values can a 32-bit variable represent?

$$2^2 \times 2^{30} \approx 4$$
 billion

Addition

Decimal

Binary

Addition Example

 Add the following 4-bit binary numbers

 Add the following 4-bit binary numbers

Overflow

- Digital systems operate on a fixed number of bits
- Overflow: when result is too big to fit in the available number of bits
- See previous example of 11 + 6

Signed Binary Numbers

- Sign/Magnitude Numbers
- Two's Complement Numbers

Sign/Magnitude Numbers

- 1 sign bit, N-1 magnitude bits
- Sign bit is the most significant (left-most) bit
 - Positive number: sign bit = 0
 - Negative number: sign bit = 1

Example, 4-bit sign/mag representations of ± 6:

Range of an N-bit sign/magnitude number:

$$[-(2^{N-1}-1), 2^{N-1}-1]$$

Sign/Magnitude Numbers

Problems:

Addition doesn't work, for example -6 + 6:

```
1110
+0110
10100 (wrong!)
```

Two representations of 0 (\pm 0):

1000

Two's Complement Numbers

- Don't have same problems as sign/magnitude numbers:
 - Addition works
 - Single representation for 0

"Taking the Two's Complement"

- **Method:**
 - Invert the bits
 - 2. Add 1
- **Example:** Flip the sign of $3_{10} = 0011_2$
 - 1100
 - 2. + 1

$$1101 = -3_{10}$$

Two's Complement Examples

- Take the two's complement of $6_{10} = 0110_2$
 - 1. 1001
 - 2. + 1 $1010_2 = -6_{10}$
- What is the decimal value of the two's complemen t number 1001₂?
 - 1. 0110
 - 2. + 1 $0111_2 = 7_{10}$, so $1001_2 = -7_{10}$

Two's Complement Addition

Add 6 + (-6) using two's complement numbers

Add -2 + 3 using two's complement numbers

Increasing Bit Width

- Extend number from N to M bits (M > N):
 - Sign-extension
 - Zero-extension

Sign-Extension

- Sign bit copied to msb's
- Number value is same

Example 1:

- 4-bit representation of 3 = 0011
- 8-bit sign-extended value: 00000011

Example 2:

- 4-bit representation of -5 = 1011
- 8-bit sign-extended value: 11111011

Zero-Extension

(ex. unsigned char → unsigned int)

- Zeros copied to msb's
- Value changes for negative numbers

Example 1:

4-bit value =

$$0011 = 3_{10}$$

- 8-bit zero-extended value: $00000011 = 3_{10}$

Example 2:

– 4-bit value =

$$1011 = -5_{10}$$

8-bit zero-extended value: 00001011 = 11₁₀

Number System Comparison

Number System	Range
Unsigned	[0, 2 ^N -1]
Sign/Magnitude	$[-(2^{N-1}-1), 2^{N-1}-1]$
Two's Complement	$[-2^{N-1}, 2^{N-1}-1]$

For example, 4-bit representation:

