Combo 16

July 3, 2024

1 Enunciado

Dado un predicado $P:D_P\subseteq\omega\times\Sigma^*\to\omega$, describa qué tipo de objeto es y qué propiedades debe tener el macro:

[IF P(V1, W1) GOTO A1]

2 Resolución

Dado un predicado $P: D_P \subseteq \omega \times \Sigma^* \to \omega$, usaremos

[IF
$$P(V1, W1)$$
 GOTO A1]

para denotar un macro M el cual cumpla las siguientes propiedades. Cabe destacar que no siempre existira dicho macro, es decir solo para ciertos predicados $P:D_P\subseteq\omega\times\Sigma^*\to\omega$ habra un tal macro.

- (1) Las variables oficiales de M son V1, W1
- (2) A1 es el único label oficial de M
- (3) Si reemplazamos:
 - (a) las variables oficiales de M (i.e. V1, W1) por variables concretas

$$N\overline{k_1}, P\overline{j_1}$$

(elegidas libremente, es decir los números k_1, j_1 son cualesquiera)

- (b) el label oficial A1 por el label concreto $L\bar{k}$ (elegido libremente, es decir k es cualquier elemento de \mathbf{N})
- (c) las variables auxiliares de M por variables concretas (distintas de a dos) y NO pertenecientes a la lista $N\overline{k_1}, P\overline{j_1}$
- (d) los labels auxiliares de M por labels concretos (distintos de a dos) y ninguno igual a $\mathbf{L}\bar{k}$

Entonces la palabra asi obtenida es un programa de \mathcal{S}^{Σ} (por lo tanto, el TIPO de objeto es PALABRA), salvo por la ley de los GOTO respecto de $L\bar{k}$, que denotaremos con

[IF
$$P(N\overline{k_1}, P\overline{j_1})$$
 GOTO $L\overline{k}$]

el cual debe tener la siguiente propiedad:

- Si hacemos correr [IF $P(N\overline{k_1}, P\overline{j_1})$ GOTO $L\overline{k}$] partiendo de un estado e que le asigne a las variables $N\overline{k_1}, P\overline{j_1}$ valores x_1, α_1 , entonces independientemente de los valores que les asigne e al resto de las variables (incluidas las que fueron a reemplazar a las variables auxiliares de M) se dará que
 - i. si $(x_1, \alpha_1) \notin D_P$, entonces [IF $P(N\overline{k_1}, P\overline{j_1})$ GOTO $L\overline{k}$] no se detiene
 - ii. si $(x_1, \alpha_1) \in D_P$ y $P(x_1, \alpha_1) = 1$, entonces luego de una cantidad finita de pasos, $[\text{IF }P(N\overline{k_1}, P\overline{j_1}) \text{ GOTO } L\overline{k}]$ direcciona al label $L\overline{k}$ quedando en un estado e' el cual solo puede diferir de e en los valores que le asigna a las variables que fueron a reemplazar a las variables auxiliares de M. Al resto de las variables, incluidas $N\overline{k_1}, P\overline{j_1}$ no las modifica
 - iii. si $(x_1, \alpha_1) \in D_P$ y $P(x_1, \alpha_1) = 0$, entonces luego de una cantidad finita de pasos, [IF $P(N\overline{k_1}, P\overline{j_1})$ GOTO $L\overline{k}$] se detiene (i.e. intenta realizar la siguiente a su última instrucción) quedando en un estado e' el cual solo puede diferir de e en los valores que le asigna a las variables que fueron a reemplazar a las variables auxiliares de M. Al resto de las variables, incluidas $N\overline{k_1}, P\overline{j_1}$ no las modifica