Solutions: Series 7

1. Implementation of the CEV model in Python

a) We define the discrete variational problem as: find $u_N \in V_{N+1}$ such that

$$\begin{cases} \left(\frac{\partial u_N}{\partial t}(t,\cdot), v_N\right) + a_{\rho,\mu}^{\text{CEV}}(u_N(t,\cdot), v_N) &= 0 \quad \forall v_N \in V_{N+1}, \\ u_N(0,\cdot) &= u_{N,0}, \end{cases}$$

where $u_{N,0}$ is the L^2 projection of g on V_{N+1} (or the piecewise linear interpolant when g is continuous). Introduce the mass and stiffness matrices

$$\mathbf{M}_{i,j}^{\text{CEV}} \coloneqq (b_{j-1}, b_{i-1})_{\mu} ,$$

$$\mathbf{A}_{i,j}^{\text{CEV}} := a_{\rho,\mu}^{\text{CEV}}(b_{j-1}, b_{i-1})_{\mu}$$

Then, the variational problem is equivalent to the differential equation system

$$\begin{cases} \mathbf{M}^{\text{CEV}} \frac{d}{dt} \underline{u_N} + \mathbf{A}^{\text{CEV}} \underline{u_N} &= 0\\ \underline{u_N}(0) &= \underline{u_N}_0 \end{cases}$$

where $\underline{u_N}(t)$ (resp. $\underline{u_{N_0}}$) is the column vector of coefficients of $u_N(t,\cdot)$ (resp. $u_{N,0}$) in the basis $\{b_i\}_{0\leq i\leq N}$. For the time discretization, we approximate the vector $\underline{u_N}(t_m)$ by the vector \underline{u}^m defined by

$$\underline{u}^0 = \underline{u}_{N_0},$$

$$\mathbf{B}_{\vartheta}\underline{u}^{m+1} = \mathbf{C}_{\vartheta}\underline{u}^m,$$

where

$$\mathbf{B}_{\vartheta} = \mathbf{M}^{\text{CEV}} + k \vartheta \mathbf{A}^{\text{CEV}}, \quad \mathbf{B}_{\vartheta} = \mathbf{M}^{\text{CEV}} - k(1 - \vartheta) \mathbf{A}^{\text{CEV}}.$$

b) We split the integral to be evaluated into two integrals over (x_{i-1}, x_i) and (x_i, x_{i+1}) and apply Gaussian quadrature on these intervals, when the integrand has its support on (x_{i-1}, x_{i+1}) and we apply Gaussian quadrature on (x_{i-1}, x_i) , when the integrand has its support on (x_{i-1}, x_i) . By following this strategy we obtain

$$(\beta b'_{i}, b_{i}) = \frac{1}{2} (\beta (x_{i-1} + p_{1}) w_{1} + \beta (x_{i-1} + p_{2}) w_{2})$$
$$- \frac{1}{2} (\beta (x_{i} + p_{1}) w_{2} + \beta (x_{i} + p_{2}) w_{1}) ,$$

for i = 1, 2, ..., N and

$$\left(\beta b_{0}^{\prime},b_{0}\right)=-\frac{1}{2}\left(\beta\left(p_{1}\right)w_{2}+\beta\left(p_{2}\right)w_{1}\right).$$

Also, for i = 0, 1, ..., N - 1,

$$(\beta b'_{i}, b_{i+1}) = -\frac{1}{2} (\beta (x_{i} + p_{1}) w_{1} + \beta (x_{i} + p_{2}) w_{2})$$

$$(\beta b'_{i+1}, b_i) = \frac{1}{2} (\beta (x_i + p_1) w_2 + \beta (x_i + p_2) w_1).$$

Finally,

$$(\gamma b_i, b_i) = \frac{h}{2} \left(\gamma (x_{i-1} + p_1) w_1^2 + \gamma (x_{i-1} + p_2) w_2^2 \right)$$

+
$$\frac{h}{2} \left(\gamma (x_i + p_1) w_2^2 + \gamma (x_i + p_2) w_1^2 \right)$$

for i = 1, 2, ..., N and

$$(\gamma b_0, b_0) = \frac{h}{2} \left(\gamma (p_1) w_2^2 + \gamma (p_2) w_1^2 \right)$$
$$(\gamma b_i, b_{i+1}) = (\gamma b_{i+1}, b_i) = \frac{h}{12} \left(\gamma (x_i + p_1) + \gamma (x_i + p_2) \right).$$

For the programming part, see the solution code.

- c) See the solution code.
- d) See the solution code.

2. FEM for American put in a BS market

a) First, we directly have $u_R \in \mathcal{K}_{0,R}$ since $v_R \geq \tilde{g}$. It remains to show that for all $v \in \mathcal{K}_{0,R}$, there holds, for all $t \in (0,T]$ (for t=0, the next inequality is satisfied as an equality by the initial condition)

$$\langle \partial_t u_R(t,\cdot), v - u_R(t,\cdot) \rangle + a^{\mathrm{BS}}(u_R(t,\cdot), v - u_R(t,\cdot)) \ge -a^{\mathrm{BS}}(\tilde{g}, v - u_R(t,\cdot)).$$

From now on, we fix t > 0 and (abusively) write u_R instead of $u_R(t, \cdot)$ for conciseness. The previous inequality reads equivalently

$$\langle \partial_t v_R, v - u_R \rangle + a^{BS}(v_R, v - u_R) \ge 0$$
,

where we used that $\partial_t \tilde{g} = 0$ and $u_R + \tilde{g} = v_R$. This is, in turn, equivalent to

$$\langle \partial_t v_R, v \rangle + a^{BS}(v_R, v) \ge \langle \partial_t v_R, u_R \rangle + a^{BS}(v_R, u_R).$$
 (1)

For any function f of class C^2 and for all $\varphi \in H_0^1(G)$, we can write (using the usual integration by parts):

$$\langle \partial_t f, \varphi \rangle + a^{\mathrm{BS}}(f, \varphi) = \int_G \left(\partial_t f - \mathcal{A}^{\mathrm{BS}} f + rf \right) \varphi.$$

We can apply this argument in Eq. (1), since v_R is of class C^2 while both v and u_R are in $H_0^1(G)$. After this transformation, the inequality we have to show becomes

$$\int_{G} v \left(\partial_{t} v_{R} - \mathcal{A}^{BS} v_{R} + r v_{R} \right) \ge \int_{G} u_{R} \left(\partial_{t} v_{R} - \mathcal{A}^{BS} v_{R} + r v_{R} \right) .$$

This indeed holds since, on the one hand $v \ge 0$ and by the first equation of the Partial Differential Inequality,

$$\left(\partial_t v_R - \mathcal{A}^{\mathrm{BS}} v_R + r v_R\right) \ge 0$$

and on the other hand, by the third equation,

$$u_R \left(\partial_t v_R - \mathcal{A}^{BS} v_R + r v_R \right) = 0.$$

b) Let

$$V_N = \left\{ u \in C^0(G) \mid u(\pm R) = 0 \text{ and } \forall i \in \{0, \dots, N\}, \ u_{|s \in (x_i, x_{i+1})} \text{ is a linear function} \right\},$$

and let b_i be the element of V_N defined by

$$b_i(x_j) = \delta_{i,j} .$$

Furthermore, let ${\bf M}$ and ${\bf A}^{\rm BS}$ be the mass and stiffness matrices defined by

$$\mathbf{M}_{i,j} = \int_{C} b_i(x)b_j(x) dx, \quad \mathbf{A}_{i,j}^{\mathrm{BS}} = a^{\mathrm{BS}}(b_j, b_i).$$

These matrices were calculated in exercise 2 of the previous exercise sheet. The variational inequality can then be written using the space $W_N := \mathcal{K}_{0,R} \cap V_N$: find $u_N \in W_N$ such that, for all $w_N \in W_N$,

$$\begin{cases} \langle \partial_t u_N, w_N - u_N \rangle + a^{\mathrm{BS}}(u_N, w_N - u_N) & \geq -a^{\mathrm{BS}}(\tilde{g}, w_N - u_N), \\ u_N(0) & = 0. \end{cases}$$

In matrix form, this reads

$$(\underline{w}_N - \underline{u}_N)^T \mathbf{M} \, \underline{\dot{u}}_N + (\underline{w}_N - \underline{u}_N) \mathbf{A}^{\mathrm{BS}} \underline{u}_N \ge (\underline{w}_N - \underline{u}_N)^T \underline{G},$$

where \underline{u}_N and \underline{w}_N are the column vectors of coefficients of u_N and w_N in the basis $\{b_i\}_{1\leq i\leq N}$, \underline{u}_N is the time derivative of \underline{u}_N , and \underline{G} is the column vector whose components are given by

$$\underline{G}_i = -a^{\mathrm{BS}}(\tilde{g}, b_i)$$
.

Next, we define approximations \underline{u}_N^m of the vectors $\underline{u}_N(t_m)$. Using the approximation (recall that we want to derive a backward scheme)

$$\underline{\dot{u}}_N(t_{m+1}) \approx \frac{\underline{u}_N(t_{m+1}) - \underline{u}_N(t_m)}{k},$$

we obtain the following iterative scheme

$$(\underline{w}_N - \underline{u}_N^{m+1})^T \mathbf{M} \frac{\underline{u}_N^{m+1} - \underline{u}_N^m}{k} + (\underline{w}_N - \underline{u}_N^{m+1}) \mathbf{A}^{\mathrm{BS}} \underline{u}_N^{m+1} \ge (\underline{w}_N - \underline{u}_N^{m+1})^T \underline{G}.$$

Hence, we have to find, for each $m \geq 0$, the vector $\underline{u}_N^{m+1} \in \mathbb{R}_{\geq 0}^N$ such that, for all $\underline{w}_N \in \mathbb{R}_{\geq 0}^N$,

$$(\underline{w}_N - \underline{u}_N^{m+1})^T (\mathbf{M} + k\mathbf{A}^{\mathrm{BS}}) \underline{u}_N^{m+1} \ge (\underline{w}_N - \underline{u}_N^{m+1})^T (k\underline{G} + \mathbf{M}\underline{u}_N^m),$$

where $\underline{u}_N^0=0$. By setting $\mathbf{B}=\mathbf{M}+k\mathbf{A}^{\mathrm{BS}}, \ \underline{F}^m=k\underline{G}+\mathbf{M}\underline{u}_N^m$ and applying Lemma 5.3.1 we observe that this is equivalent to finding $\underline{u}_N^{m+1}\in\mathbb{R}^N$ for $m=0,\ldots,M-1$ such that

$$\mathbf{B}\underline{u}_{N}^{m+1} \geq \underline{F}^{m},$$

$$\underline{u}_{N}^{m+1} \geq \underline{0},$$

$$(\underline{u}_{N}^{m+1})^{\top} (\mathbf{B}\underline{u}_{N}^{m+1} - \underline{F}^{m}) = 0.$$
(2)

- c) See the solution code.
- d) See the solution code. You shall observe that the American option value is greater than the European option value.