Universidad de Granada	Fundamentos Físicos y Tecnológicos D.G.I.I.A.D.E		Examen de Teoría 5 de Enero de 2020
Apellidos:			Firma:
Nombre:	DNI:	Grupo:	

- Indica en cada hoja tu nombre, el número de página y el número de páginas totales que entregas.
- Lee detenidamente los enunciados antes de contestar.
- No es obligatorio hacer los ejercicios en el orden en el que están planteados.
- 1. Una espira rectangular de ancho a y longitud b (a<b) está localizada cerca de un alambre largo que lleva una corriente I. La distancia entre el alambre y el lado más cercano de la espira es c. El alambre es paralelo al lado largo de la espira.
 - a) Deduce razonadamente la expresión del campo magnético creado por la corriente en el alambre.
 - b) Determina el flujo magnético total a través de la espira debido a la corriente en el alambre.
 - c) Supón que movemos la espira muy lejos del alambre. ¿Qué le ocurre al flujo magnético? Justifica razonadamente tu respuesta.

(1 punto)

- 2. En el circuito de la figura 1:
 - a) Calcula y dibuja los equivalentes Thevenin y Norton del circuito visto desde los puntos A y B si R=1kΩ, I₁=1mA, V₁=2V, V₂=4V y V₃=6V. Para calcular V_{th} usa el camino sombreado y los nombres de los nudos asignados en la figura. (1.5 puntos).
 - b) Dibuja ahora el circuito resultante de colocar un diodo de tensión umbral (V_{γ} =0.7V) entre los puntos A y B para que conduzca. ¿Cuál sería la potencia disipada por el diodo? (**0.5 puntos**)
 - c) Calcula la potencia de las fuentes I_1 y V_1 del circuito justificando si son consumidas o suministradas. (0.75 puntos)

 $\begin{array}{c}
R \\
V_1 \circ V_2
\end{array}$

Figura 1: Circuito para el problema 2

- Figura 2: Circuito para el problema 3
- Para el circuito de la figura 2 calcular el punto de polarización (V_{GS}, V_{DS}, I_D) y la potencia consumida por el transistor si:
 - a) $v_1(t) = (\sin(10^5 t + \frac{\pi}{4}) 5)V$.
 - b) $V_1 = -3V$.

Datos: V_2 =-6V, V_T =2V, R=5,6k Ω , k=2 $10^{-3} \frac{A}{V^2}$. (1.5 puntos)

- 4. En el circuito de la figura 3(a), $R_1=10\Omega$, $R_2=1k\Omega$ y L=1mH.
 - a) Calcula la función de transferencia, su módulo y su argumento. (1 punto)
 - b) ¿Cuáles serían las potencias media e instantánea en la bobina si la entrada fuera $v_i(t) = 4 \sin(10^5 t + \frac{\pi}{4})V$? (0.75 puntos)

Figura 3: Circuito (a) y diagramas de Bode ((b) y (c)) para el problema 4

- c) Explica el significado de los diagramas de Bode de las figuras 3(b) y 3(c). ¿Existe alguna frecuencia para la que la salida sea cien veces más pequeña que la entrada? (0.5 puntos)
- 5. En el circuito de la figura 4 V₁=5V. Suponiendo que las señales de entrada V_a, V_b, y V_c tomen únicamente los valores de 0 a 5V, determina razonadamente el estado de polarización de cada uno de los transistores y el valor de la señal de salida V_s para las siguientes combinaciones de entradas (1 0 0) y (1 1 0). ¿Cómo se llama la tecnología utilizada? ¿Qué ventajas y qué inconvenientes tiene el uso de esta tecnología frente al resto de las basadas en NMOS? (1 puntos)

Figura 4: Circuito para el problema 5

6. Determina razonadamente el valor de V_i en el circuito de la figura 5 teniendo en cuenta que I_1 =1mA, V_o =5V, R_1 =1k Ω , R_2 =2k Ω , R_3 =3k Ω , C=1nF, $V_{CC}=15V$ y $-V_{CC}=-15V$. ¿Cuál es el valor de la intensidad de corriente que sale del amplificador? Justifica tu respuesta. (1.5 puntos)

Figura 5: Circuito para el problema 6