In [1]:

```
from sklearn.preprocessing import StandardScaler
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split

from lazypredict.Supervised import LazyClassifier

import warnings
warnings.filterwarnings('ignore')
```

/Users/rahulraj/opt/anaconda3/envs/env/lib/python3.8/site-packages/skl earn/utils/deprecation.py:143: FutureWarning: The sklearn.utils.testin g module is deprecated in version 0.22 and will be removed in version 0.24. The corresponding classes / functions should instead be imported from sklearn.utils. Anything that cannot be imported from sklearn.utils is now part of the private API.

warnings.warn(message, FutureWarning)

In []:

In [2]:

```
data = pd.read_csv("credit-card-data.csv")

#data = pd.read_csv("breast-cancer-data.csv")
```

In [3]:

data.head(5)

Out[3]:

	Time	V1	V2	V 3	V 4	V 5	V6	V 7	V 8	V9	 V21	V22	V23	V2 4
0	0	-1.36	-0.07	2.54	1.38	-0.34	0.46	0.24	0.10	0.36	 -0.02	0.28	-0.11	0.07
1	0	1.19	0.27	0.17	0.45	0.06	-0.08	-0.08	0.09	-0.26	 -0.23	-0.64	0.10	-0.34
2	1	-1.36	-1.34	1.77	0.38	-0.50	1.80	0.79	0.25	-1.51	 0.25	0.77	0.91	-0.69
3	1	-0.97	-0.19	1.79	-0.86	-0.01	1.25	0.24	0.38	-1.39	 -0.11	0.01	-0.19	-1.18
4	2	-1.16	0.88	1.55	0.40	-0.41	0.10	0.59	-0.27	0.82	 -0.01	0.80	-0.14	0.14

5 rows × 31 columns

In [4]:

data.shape

Out[4]:

(5000, 31)

```
In [5]:
data284 = pd.read csv('credit-card-284k-data.csv')
In [6]:
data284.shape
Out[6]:
(284807, 31)
In [7]:
data.isnull().sum()
Out[7]:
           0
Time
V1
           0
V2
           0
V3
           0
V4
           0
V5
           0
V6
           0
V7
V8
           0
           0
V9
V10
           0
V11
           0
           0
V12
           0
V13
           0
V14
V15
           0
V16
           0
V17
           0
           0
V18
V19
           0
V20
           0
V21
           0
V22
           0
V23
           0
           0
V24
V25
           0
V26
           0
V27
           0
V28
Amount
Class
dtype: int64
In [ ]:
data.head(2)
In [ ]:
```

```
In [ ]:
#data.isnull().sum()
train , output = 100 , 100
80 , 80 ..training .... xtrain ,ytrain
20 , 20 ... test ...xtest , ytest
1 to 80 ...
In [ ]:
In [8]:
train = data.iloc[:,:-1]
output = data.iloc[:,30]
scaler = StandardScaler()
xtrain, xtest, ytrain, ytest = train_test_split(train, output, test_size=0.2, random_state
xtrain_scaled = scaler.fit_transform(xtrain)
xtest scaled = scaler.transform(xtest)
In [ ]:
In [9]:
print(len(xtrain) , len(xtest) , len(ytrain) , len(ytest) )
4000 1000 4000 1000
```

```
In [ ]:
xtrain

In [ ]:

In [ ]:

train.head(2)

In [ ]:

#test.head(2)

In [10]:

clf = LazyClassifier(verbose=0,ignore_warnings=True, custom_metric=None)

In [11]:

models,predictions = clf.fit(xtrain_scaled, xtest_scaled, ytrain, ytest)
```

100% 29/29 [00:07<00:00, 3.97it/s]

In [12]:

predictions

Out[12]:

	Accuracy	Balanced Accuracy	ROC AUC	F1 Score	Time Taken
Model					
AdaBoostClassifier	1.00	1.00	None	1.00	0.98
LinearDiscriminantAnalysis	1.00	1.00	None	1.00	0.10
XGBClassifier	1.00	1.00	None	1.00	0.32
SVC	1.00	1.00	None	1.00	0.09
SGDClassifier	1.00	1.00	None	1.00	0.05
RidgeClassifierCV	1.00	1.00	None	1.00	0.06
RidgeClassifier	1.00	1.00	None	1.00	0.05
RandomForestClassifier	1.00	1.00	None	1.00	0.80
QuadraticDiscriminantAnalysis	1.00	1.00	None	1.00	0.06
PassiveAggressiveClassifier	1.00	1.00	None	1.00	0.04
LogisticRegression	1.00	1.00	None	1.00	0.08
BaggingClassifier	1.00	1.00	None	1.00	0.21
LinearSVC	1.00	1.00	None	1.00	0.08
LabelSpreading	1.00	1.00	None	1.00	1.60
LabelPropagation	1.00	1.00	None	1.00	0.86
KNeighborsClassifier	1.00	1.00	None	1.00	0.41
ExtraTreesClassifier	1.00	1.00	None	1.00	0.34
ExtraTreeClassifier	1.00	1.00	None	1.00	0.05
CalibratedClassifierCV	1.00	1.00	None	1.00	0.18
BernoulliNB	1.00	1.00	None	1.00	0.04
LGBMClassifier	1.00	1.00	None	1.00	0.54
NearestCentroid	1.00	1.00	None	1.00	0.03
DummyClassifier	1.00	1.00	None	1.00	0.07
Perceptron	1.00	1.00	None	1.00	0.05
DecisionTreeClassifier	1.00	1.00	None	1.00	0.10
GaussianNB	1.00	1.00	None	1.00	0.04

```
In [ ]:
```

In [13]:

```
df = pd.DataFrame(3 * np.random.rand(4), index=['a', 'b', 'c', 'd'],columns=['x'])
df.plot.pie(subplots=True)
```

Out[13]:

array([<AxesSubplot:ylabel='x'>], dtype=object)

In [14]:

```
print (pd.datetime.now())
```

2021-05-20 16:42:49.785555

In [15]:

```
print (pd.date_range('5/10/2021', periods=10))
```

```
DatetimeIndex(['2021-05-10', '2021-05-11', '2021-05-12', '2021-05-13', '2021-05-14', '2021-05-15', '2021-05-16', '2021-05-17', '2021-05-18', '2021-05-19'], dtype='datetime64[ns]', freq='D')
```

```
In [16]:
```

```
print (pd.bdate_range('5/10/2021', periods=15))
```

```
DatetimeIndex(['2021-05-10', '2021-05-11', '2021-05-12', '2021-05-13', '2021-05-14', '2021-05-17', '2021-05-18', '2021-05-19', '2021-05-20', '2021-05-21', '2021-05-24', '2021-05-25', '2021-05-26', '2021-05-27', '2021-05-28'], dtype='datetime64[ns]', freq='B')
```

In []:

In []:

```
2,3,4,5,6,7,100,120 ... 0-1
```

In [17]:

```
from sklearn.preprocessing import StandardScaler
import numpy as np
import seaborn as sns
import pandas as pd
from sklearn.model_selection import train_test_split
import numpy as np
from lazypredict.Supervised import LazyRegressor
```

In [19]:

```
df = pd.read_csv('house-price-data.csv')
```

In [20]:

```
df.head(2)
```

Out[20]:

	ld	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	Ut
0	1	60	RL	65.00	8450	Pave	NaN	Reg	Lvl	Α
1	2	20	RL	80.00	9600	Pave	NaN	Reg	Lvl	Α

2 rows × 81 columns

```
In [21]:
df['SaleCondition'].value_counts()
Out[21]:
Normal
           1198
            125
Partial
Abnorml
            101
Family
             20
Alloca
             12
AdjLand
              4
Name: SaleCondition, dtype: int64
In [ ]:
In [ ]:
```

In [22]:

```
df['LotFrontage'] = df['LotFrontage'].fillna(df['LotFrontage'].mean())
df.drop(['Alley'],axis=1,inplace=True)
df['BsmtCond'] = df['BsmtCond'].fillna(df['BsmtCond'].mode()[0])
df['BsmtQual'] = df['BsmtQual'].fillna(df['BsmtQual'].mode()[0])
df['FireplaceQu'] = df['FireplaceQu'].fillna(df['FireplaceQu'].mode()[0])
df['GarageType'] = df['GarageType'].fillna(df['GarageType'].mode()[0])
df.drop(['GarageYrBlt'],axis=1,inplace=True)
df['GarageFinish'] = df['GarageFinish'].fillna(df['GarageFinish'].mode()[0])
df['GarageQual'] = df['GarageQual'].fillna(df['GarageQual'].mode()[0])
df['GarageCond'] = df['GarageCond'].fillna(df['GarageCond'].mode()[0])
df.drop(['PoolQC','Fence','MiscFeature'],axis=1,inplace=True)
df.drop(['Id'],axis=1,inplace=True)
df['MasVnrType'] = df['MasVnrType'].fillna(df['MasVnrType'].mode()[0])
df['MasVnrArea'] = df['MasVnrArea'].fillna(df['MasVnrArea'].mode()[0])
df['BsmtExposure'] = df['BsmtExposure'].fillna(df['BsmtExposure'].mode()[0])
df['BsmtExposure'] = df['BsmtExposure'].fillna(df['BsmtExposure'].mode()[0])
df['BsmtExposure'] = df['BsmtExposure'].fillna(df['BsmtExposure'].mode()[0])
df['BsmtFinType1'] = df['BsmtFinType1'].fillna(df['BsmtFinType1'].mode()[0])
df.dropna(inplace=True)
sns.heatmap(df.isnull(),yticklabels=False,cbar=False,cmap='coolwarm')
```

Out[22]:

<AxesSubplot:>

In [23]:

```
numeric = list(df.dtypes[df.dtypes!='object'].index)
train = df[numeric]
```

In []:

```
train.head(5)
```

In [24]:

In [27]:

```
scaler = StandardScaler()
xtrain_scaled = scaler.fit_transform(xtrain)

xtest_scaled = scaler.transform(xtest)

clf = LazyRegressor(verbose=0,ignore_warnings=False, custom_metric=None)

models,predictions = clf.fit(xtrain_scaled, xtest_scaled, ytrain, ytest)
```

100% | 42/42 [00:09<00:00, 4.21it/s]

In [28]:

predictions

Out[28]:

	Adjusted R-Squared	R-Squared	RMSE	Time Taken
Model				
GradientBoostingRegressor	0.87	0.90	22757.70	0.50
XGBRegressor	0.87	0.90	22861.33	0.29
RandomForestRegressor	0.86	0.89	23882.74	2.16
LGBMRegressor	0.85	0.89	23985.34	0.24
HistGradientBoostingRegressor	0.85	0.89	24084.11	1.30
ExtraTreesRegressor	0.85	0.89	24373.57	0.95
BaggingRegressor	0.84	0.88	25468.82	0.16
HuberRegressor	0.84	0.88	25504.16	0.08
LassoLarsIC	0.83	0.88	25574.99	0.04
PassiveAggressiveRegressor	0.83	0.87	25740.43	0.12
PoissonRegressor	0.83	0.87	25791.42	0.05
Lars	0.82	0.87	26439.02	0.04
BayesianRidge	0.82	0.86	26752.53	0.03
LassoLars	0.82	0.86	26764.13	0.04
TransformedTargetRegressor	0.82	0.86	26794.09	0.02
LinearRegression	0.82	0.86	26794.09	0.03
RidgeCV	0.82	0.86	26804.48	0.07
Ridge	0.82	0.86	26837.43	0.06
Lasso	0.82	0.86	26839.52	0.04
LassoLarsCV	0.82	0.86	26871.64	0.10
LassoCV	0.82	0.86	26982.30	0.13
LarsCV	0.82	0.86	26987.85	0.09
SGDRegressor	0.81	0.86	27294.74	0.03
ElasticNet	0.81	0.86	27495.16	0.08
AdaBoostRegressor	0.80	0.85	27963.70	0.36
GammaRegressor	0.80	0.85	28042.93	0.02
TweedieRegressor	0.79	0.84	28972.53	0.04
GeneralizedLinearRegressor	0.79	0.84	28972.53	0.03
RANSACRegressor	0.78	0.83	29618.27	0.15
OrthogonalMatchingPursuitCV	0.77	0.82	30365.37	0.04
OrthogonalMatchingPursuit	0.74	0.81	31932.00	0.03
KNeighborsRegressor	0.66	0.74	36949.89	0.05
ExtraTreeRegressor	0.64	0.73	37582.75	0.03

RMSE Time Taken

Adjusted R-Squared R-Squared

Model

DecisionTreeRegressor	0.61	0.71	39055.91	0.08
ElasticNetCV	-0.13	0.15	66733.46	0.21
DummyRegressor	-0.33	-0.00	72477.31	0.07
NuSVR	-0.35	-0.01	73001.30	0.10
SVR	-0.40	-0.06	74466.37	0.21
GaussianProcessRegressor	-6.57	-4.71	173144.04	0.24
KernelRidge	-7.69	-5.54	185411.14	0.13
MLPRegressor	-8.51	-6.16	193966.50	1.49
LinearSVR	-8.61	-6.24	195001.70	0.03
In []:				
<pre>df['BsmtCond'].value_counts()</pre>				
In []:				
y = pd.get_dummies(df['BsmtCon	nd'])			
In []:				
df['BsmtCond'].head(5)				
In []:				
df['BsmtCond'].head(5)				
In []:				
y.head(5)				
In []:				
<pre>from sklearn.preprocessing imp</pre>	port LabelEn	coder		
In []:				
<pre>label = LabelEncoder()</pre>				
<pre>x = label.fit_transform(df['Ga')</pre>	arageOual'l)			
r idbol.lit_clamblolm(di[od	arageguar],			
In []:				
df['GarageQual'].value_counts	()			
In []:				
for i in x:				
print(i)				

```
In [ ]:
data = pd.get dummies(df['GarageQual'])
In [ ]:
data.head(2)
In [ ]:
In [ ]:
import numpy as np
import pandas as pd
from sklearn.model selection import train test split
from sklearn.ensemble import RandomForestClassifier
import seaborn as sns
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import MinMaxScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear model import LogisticRegression
from sklearn.metrics import classification report, confusion matrix
from sklearn.ensemble import AdaBoostClassifier
pd.set_option("display.max_rows", None, "display.max_columns", None)
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast node interactivity = "all"
import warnings
warnings.filterwarnings('ignore')
In [ ]:
In [ ]:
ada = AdaBoostClassifier(n_estimators=5, random_state=0)
In [ ]:
ada.fit(xtrain_scaled,ytrain)
In [ ]:
ada.score(xtest_scaled,ytest)
In [ ]:
In [ ]:
```