Divisibilidad

Sea $a, b \in \mathbb{Z}$ $a, b \neq 0$ decimos que a divide a b si existe un numero entero c tal que $b = a \cdot c$ y se representa por $\frac{a}{b}$

También se dice que:

- b es divisible por a
- b es múltiplo de a
- a es un factor de b
- a es divisor de b

Ejemplo:

Determine si es verdadero o falso y justifique • 3 divide a 15? 3|15

- Verdadero porque $\exists 5 \in \mathbb{Z}$ tal que $15 = 3 \cdot 5$
- 6 es divisor de 100? 6|100 Falso porque $\neg \exists c \in \mathbb{Z}$ tal que $100 = 6 \cdot c$
- 8 es divisible por 3? 3|8 Falso porque $\neg \exists c \in \mathbb{Z}$ tal que $8 = 3 \cdot c$
- 7 es factor de 63? 7|63 Verdadero porque $\exists 9 \in \mathbb{Z}$ tal que $63 = 7 \cdot 9$ • 2 divide a 1000? 2|1000
- Verdadero porque $\exists 500 \in \mathbb{Z}$ tal que $1000 = 2 \cdot 500$ • 500 es divisor de 12? 500|12
- Falso porque $\neg \exists c \in \mathbb{Z}$ tal que $12 = 500 \cdot c$ Enteros divisibilidad y multiplicidad

1. Escriba todos los divisores de 100:

- $\{1, 2, 3, 4, 5, 10, 20, 25, 50, 100\}$ 2. Escriba los 10 primeros múltiplos de 4:
- $\{0, 4, 8, 12, 16, 20, 24, 28, 32, 36\}$ 3. Determine si 6|120, 120|6, 3|12, 12|3
 - $V:6|120 \Longrightarrow 120 = 6 \cdot 20$ $F: 120|6 \Longrightarrow 6 = 120 \cdot c \wedge c \notin \mathbb{Z}$

 $V: 3|12 \implies 12 = 3 \cdot 4$

 $F: 12|3 \implies 3 = 12 \cdot c \wedge c \notin \mathbb{Z}$

• Un divisor de un entero n siempre es menor o igual que n. Ademas 1

Observe:

es divisor de cualquier entero n pues $n=n\cdot 1$ $100 = 1 \cdot 100 = 2 \cdot 50 = 4 \cdot 25 = 5 \cdot 20 = 10 \cdot 10$

• Un múltiplo de un entero
$$n$$
 siempre es mayor o igual que n y son de

la forma $n, 2n, 3n, \dots$ o también $\dots, -3n, -2n, -n$

Teoremas Teorema: Es una afirmación verdadera que debe ser probada por

Sean $a, b, c \in \mathbb{Z}$ se cumple que:

 $H: a|b \wedge a|c$

 $0 = 0 \cdot n$

• $a|b \wedge a|c \Longrightarrow a|(b+c)$

T: a|(b+c) osea $\exists n \in \mathbb{Z} \Longrightarrow b+c=a\cdot n$ Supongamos que $a|b \wedge a|c$

Es decir, $\exists k \in \mathbb{Z} \land b = ak$ y también $\exists m \in \mathbb{Z} \land c = am$

Sumando estas igualdades termino a termino obtenemos

b + c = ak + am= a(k+m)

medio de una demostración matemática

Como $k \in \mathbb{Z} \land m \in \mathbb{Z}$ entonces $k+m \in \mathbb{Z}$. Sea n=k+m. Luego: $b+c=an; n\in \mathbb{Z}$

 $an; n \in \mathbb{Z}$

• $a|b \wedge b|c \Longrightarrow a|c$ $H:a|b\wedge b|c$

a|bc

|a|(b+c)• $a|b \Longrightarrow a|bc$ H:a|b

> Multiplicamos por cbc = akc

Supongamos que a|b. Es decir, $\exists k \in \mathbb{Z} \land b = ak$

 $T: a|bc \text{ osea } \exists n \in \mathbb{Z} \land bc = an$

$$H: a|b \wedge b|c$$
 $T: a|c \text{ osea } \exists n \in \mathbb{Z} \wedge c = an$

Remplazamos b = ax en c = by tenemos que c = (ax)y = a(xy)

Como $k \in \mathbb{Z} \land c \in \mathbb{Z} \Longrightarrow kc \in \mathbb{Z}$ llamamos n = kc. Luego bc =

= a(kc)

Supongamos que $a|b \wedge b|c$ Es decir $\exists x, y \in \mathbb{Z} \land b = ax \land c = by$

Como $x, y \in \mathbb{Z} \Longrightarrow xy \in \mathbb{Z}$ llamamos n = xyLuego $c = an; n \in \mathbb{Z}$

a|c**Corolarios**

Corolario: Es una afirmación que es consecuencia de un teorema

• $\forall a, b, c \in \mathbb{Z} \land a | b \land a | c \Longrightarrow a | (bm + cn) \land m, n \in \mathbb{Z}$

entero m

obtiene a|(bm+cn)

Supongamos que $a|b \wedge a|c$

Por la parte 2 del teorema anterior tenemos que a|bm para cualquier

Por la parte 2 del teorema anterior tenemos que a|cn para cualquier

Luego como $a|bm \wedge a|cn$ por la parte 1 del teorema anterior se