MIPS Reference Data

1

CORE INSTRUCTION	ON SE	Т			OPCODE
		FOR-			/ FUNCT
NAME, MNEMO		MAT	, ,	(1)	(Hex)
Add	add	R	R[rd] = R[rs] + R[rt]		0 / 20 _{hex}
Add Immediate	addi	I	R[rt] = R[rs] + SignExtImm	(1,2)	8 _{hex}
Add Imm. Unsigned	addiu	I	R[rt] = R[rs] + SignExtImm	(2)	9 _{hex}
Add Unsigned	addu	R	R[rd] = R[rs] + R[rt]		0 / 21 _{hex}
And	and	R	R[rd] = R[rs] & R[rt]		0 / 24 _{hex}
And Immediate	andi	I	R[rt] = R[rs] & ZeroExtImm (3)		c_{hex}
Branch On Equal	beq	I	if(R[rs]==R[rt]) PC=PC+4+BranchAddr	(4)	4 _{hex}
Branch On Not Equal	bne	I	if(R[rs]!=R[rt]) PC=PC+4+BranchAddr	(4)	5 _{hex}
Jump	j	J	PC=JumpAddr	(5)	2 _{hex}
Jump And Link	jal	J	R[31]=PC+8;PC=JumpAddr	(5)	3 _{hex}
Jump Register	jr	R	PC=R[rs]		0 / 08 _{hex}
Load Byte Unsigned	lbu	I	R[rt]={24'b0,M[R[rs] +SignExtImm](7:0)}	(2)	24 _{hex}
Load Halfword Unsigned	lhu	I	R[rt]={16'b0,M[R[rs] +SignExtImm](15:0)}	(2)	25 _{hex}
Load Linked	11	I	R[rt] = M[R[rs] + SignExtImm]	(2,7)	30_{hex}
Load Upper Imm.	lui	I	$R[rt] = \{imm, 16'b0\}$		f_{hex}
Load Word	lw	I	R[rt] = M[R[rs] + SignExtImm]	(2)	
Nor	nor	R	$R[rd] = \sim (R[rs] \mid R[rt])$		0 / 27 _{hex}
Or	or	R	$R[rd] = R[rs] \mid R[rt]$		0 / 25 _{hex}
Or Immediate	ori	I	$R[rt] = R[rs] \mid ZeroExtImm$	(3)	
Set Less Than	slt	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0		0 / 2a _{hex}
Set Less Than Imm.	slti	I	R[rt] = (R[rs] < SignExtImm)? 1	: 0 (2)	a _{hex}
Set Less Than Imm. Unsigned	sltiu	I	R[rt] = (R[rs] < SignExtImm) ? 1:0	(2,6)	b_{hex}
Set Less Than Unsig.	sltu	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0	(6)	0 / 2b _{hex}
Shift Left Logical	sll	R	$R[rd] = R[rt] \ll shamt$		0 / 00 _{hex}
Shift Right Logical	srl	R	R[rd] = R[rt] >>> shamt		0 / 02 _{hex}
Store Byte	sb	I	M[R[rs]+SignExtImm](7:0) = R[rt](7:0)	(2)	$28_{ m hex}$
Store Conditional	sc	I	M[R[rs]+SignExtImm] = R[rt]; $R[rt] = (atomic) ? 1 : 0$	(2,7)	38 _{hex}
Store Halfword	sh	I	M[R[rs]+SignExtImm](15:0) = R[rt](15:0)	(2)	29_{hex}
Store Word	sw	I	M[R[rs]+SignExtImm] = R[rt]	(2)	
Subtract	sub	R	R[rd] = R[rs] - R[rt]	(1)	0 / 22 _{hex}
Subtract Unsigned	subu	R	R[rd] = R[rs] - R[rt]		0 / 23 _{hex}
	(2) Sig	gnExt	se overflow exception Imm = { 16{immediate[15]}, imm Imm = { 16{1b'0}, immediate }	ediate	}
	(4) Br	anchA	$addr = \{ 14\{immediate[15]\}, immediate[15]\} \}$	ediate,	2'b0 }
			dr = { PC+4[31:28], address, 2'l)

(7) Atomic test&set pair; $R[\pi] = 1$ if pair atomic, 0 if not atomic BASIC INSTRUCTION FORMATS

R	opco	de	rs			rt		rd	shamt	funct	
	31	26	25	21	20	16	15	11	10	6 5	0
I	opco	ode	rs			rt			immedia	te	
	31	26	25	21	20	16	15				0
J	opco	ode					a	ddress			
	31	26	25								0

(6) Operands considered unsigned numbers (vs. 2's comp.)

© 2014 by Elsevier, Inc. All rights reserved. From Patterson and Hennessy, Computer Organization and Design, 5th ed.

ARITHMETIC CORE INS	ARITHMETIC CORE INSTRUCTION SET							
	FOR-		/ FMT /FT / FUNCT					
	MAT		(Hex)					
Branch On FP True bolt	FI	if(FPcond)PC=PC+4+BranchAddr (4)	11/8/1/					
Branch On FP False bolf	FI	if(!FPcond)PC=PC+4+BranchAddr(4)	11/8/0/					
Divide div	R	Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt]	0//-1a					
Divide Unsigned divu	R	Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt] (6)	0///1b					
FP Add Single add.s	FR	F[fd] = F[fs] + F[ft]	11/10//0					
FP Add	FR	$\{F[fd],F[fd+1]\} = \{F[fs],F[fs+1]\} +$	11/11//0					
Double add.d	FK	{F[ft],F[ft+1]}	11/11//0					
FP Compare Single c.x.s*	FR	FPcond = (F[fs] op F[ft]) ? 1 : 0	11/10//y					
FP Compare	FR	$FPcond = (\{F[fs], F[fs+1]\} op$	11/11//y					
Double		$\{F[ft],F[ft+1]\}\)?1:0$	11/11//					
		==, <, or <=) (y is 32, 3c, or 3e)						
FP Divide Single div.s	FR	F[fd] = F[fs] / F[ft]	11/10//3					
FP Divide	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} /$	11/11//3					
Double	ED	{F[ft],F[ft+1]}	11/10/ /2					
FP Multiply Single mul.s	FR	F[fd] = F[fs] * F[ft]	11/10//2					
FP Multiply mul.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} *$	11/11//2					
Double ED Colored Circle	ED	{F[ft],F[ft+1]}	11/10//1					
FP Subtract Single sub.s	FR	F[fd]=F[fs] - F[ft]	11/10//1					
FP Subtract Double sub.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} - {F[ft],F[ft+1]}$	11/11//1					
Load FP Single lwc1	Ι	F[rt]=M[R[rs]+SignExtImm] (2)	31//					
Load FP Single Twen	1	F[rt]=M[R[rs]+SignExtImm]; (2)						
Double ldc1	I	F[rt+1]=M[R[rs]+SignExtImm+4]	35//					
Move From Hi mfhi	R	R[rd] = Hi	0 ///10					
Move From Lo mflo	R	R[rd] = Lo	0 ///12					
Move From Control mfc0	R	R[rd] = CR[rs]	10 /0//0					
Multiply mult	R	$\{Hi,Lo\} = R[rs] * R[rt]$	0///18					
Multiply Unsigned multu	R	$\{Hi,Lo\} = R[rs] * R[rt] $ (6)						
Shift Right Arith. sra	R	R[rd] = R[rt] >> shamt	0//-3					
Store FP Single swc1	I	M[R[rs]+SignExtImm] = F[rt] (2)						
Store FP		M[R[rs]+SignExtImm] = F[rt]; (2)						
Double sdc1	I	M[R[rs]+SignExtImm+4] = F[rt+1]	3d//					

FLOATING-POINT INSTRUCTION FORMATS

FR	op	code	fn	nt	f	t		fs	fd	funct	
	31	26	25	21	20	16	15	11	10 6	5	0
FI	op	code	fr	nt	f	ì			immediat	e	
	31	26	25	21	20	16	15				0

PSEUDOINSTRUCTION SET

•	-0201101110011011011		
	NAME	MNEMONIC	OPERATION
	Branch Less Than	blt	if(R[rs] < R[rt]) PC = Label
	Branch Greater Than	bgt	if(R[rs]>R[rt]) PC = Label
	Branch Less Than or Equal	ble	$if(R[rs] \le R[rt]) PC = Label$
	Branch Greater Than or Equal	bge	$if(R[rs] \ge R[rt]) PC = Label$
	Load Immediate	li	R[rd] = immediate
	Move	move	R[rd] = R[rs]

REGISTER NAME, NUMBER, USE, CALL CONVENTION

NAME	NUMBER	USE	PRESERVED ACROSS A CALL?
\$zero	0	The Constant Value 0	N.A.
\$at	1	Assembler Temporary	No
\$v0-\$v1 2-3		Values for Function Results and Expression Evaluation	No
\$a0-\$a3	4-7	Arguments	No
\$t0-\$t7	8-15	Temporaries	No
\$s0-\$s7	16-23	Saved Temporaries	Yes
\$t8-\$t9	24-25	Temporaries	No
\$k0-\$k1	26-27	Reserved for OS Kernel	No
\$gp	28	Global Pointer	Yes
\$sp	29	Stack Pointer	Yes
\$fp	30	Frame Pointer	Yes
\$ra	31	Return Address	Yes

OBCOD	EC DACE	CONVER	SION A	ecii (CVMD	OI 6		(3)	
	(1) MIPS	(2) MIPS	SION, P			ASCII		Hexa-	ASCII
opcode	funct	funct	Binary	Deci-	deci-	Char-	Deci-	deci-	Char-
(31:26)	(5:0)	(5:0)	Dillary	mal	mal	acter	mal	mal	acter
(1)	sll	add.f	00 0000	0	0	NUL	64	40	(a)
(-)		sub.f	00 0001	1	1	SOH	65	41	Ă
j	srl	$\mathtt{mul}.f$	00 0010	2	2	STX	66	42	В
jal	sra	div.f	00 0011	3	3	ETX	67	43	C
beq	sllv	sqrt.f	00 0100	4	4	EOT	68	44	D
bne		abs. f	00 0101	5	5	ENQ	69	45	Е
blez	srlv	mov.f	00 0110	6	6	ACK	70	46	F
bgtz	srav	${\tt neg}.f$	00 0111	- 7 - 8	7 8	BEL	71	47	G H
addi addiu	jr jalr		00 1000	9	9	HT	73	48	I
slti	movz		00 1001	10	a	LF	74	4a	J
sltiu	movn		00 1010	11	b	VT	75	4b	ĸ
andi	syscall	round.w.f	00 1100	12	c	FF	76	4c	L
ori	break	trunc.w.f	00 1101	13	d	CR	77	4d	M
xori		ceil.w.f	00 1110	14	e	SO	78	4e	N
lui	sync	floor.w.f	00 1111	15	f	SI	79	4f	O
	mfhi		01 0000	16	10	DLE	80	50	P
(2)	mthi		01 0001	17	11	DC1	81	51	Q
	mflo	movz.f	01 0010	18	12	DC2	82	52	R
	mtlo	movn.f	01 0011	19	13	DC3	83	53	S
			01 0100	20	14	DC4	84	54	T
			01 0101 01 0110	21 22	15 16	NAK SYN	85	55 56	U V
			01 0110	23	17	ETB	86 87	57	w
	mult		01 1000	24	18	CAN	88	58	X
	multu		01 1000	25	19	EM	89	59	Y
	div		01 1010	26	1a	SUB	90	5a	ż
	divu		01 1011	27	1b	ESC	91	5b	ī
			01 1100	28	1c	FS	92	5c	_
			01 1101	29	1d	GS	93	5d]
			01 1110	30	1e	RS	94	5e	^
			01 1111	31	1f	US	95	5f	_
lb	add	cvt.s.f	10 0000	32	20	Space	96	60	-
lh	addu	cvt.d.f	10 0001	33	21	!	97	61	a
lwl	sub		10 0010	34	22	"	98	62	b
lw	subu		10 0011	35	23	#	99	63	С
lbu	and	$\operatorname{cvt.w.}\!f$	10 0100	36	24	\$	100	64	d
lhu	or		10 0101	37	25	%	101	65	e
lwr	xor		10 0110	38 39	26 27	&	102	66	f
sb	nor		10 0111	40	28	-	103	67	g h
sh			10 1000	41	29	(105	69	i
swl	slt		10 1010	42	2a	*	106	6a	j
SW	sltu		10 1011	43	2b	+	107	6b	k k
	_200		10 1100	44	2c	,	108	6c	1
			10 1101	45	2d	-	109	6d	m
swr			10 1110	46	2e		110	6e	n
cache			10 1111	47	2f	/	111	6f	0
11	tge	c.f.f	11 0000	48	30	0	112	70	p
lwc1	tgeu	c.un.f	11 0001	49	31	1	113	71	q
lwc2	tlt	c.eq.f	11 0010	50	32	2	114	72	r
pref	tltu	c.ueq.f	11 0011	51	33	3	115	73	S
	teq	c.olt.f	11 0100	52	34	4	116	74	t
ldc1		c.ult.f	11 0101 11 0110	53 54	35 36	5	117 118	75 76	u
ldc2	tne	c.ole.f	11 0110	54 55	36	6 7	118	76 77	v w
sc		c.ule.f	11 1000	56	38	8	120	78	X
sc swc1		c.si.j	11 1000	57	39	9	120	79	x y
swc1		c.seq.f	11 1010	58	3a	:	122	7a	z z
0,102		c.ngl.f	11 1011	59	3b		123	7b	{
		c.lt.f	11 1100	60	3c		124	7c	\rightarrow
sdcl		c.nge.f	11 1101	61	3d	=	125	7d	}
sdc2		c.le.f	11 1110	62	3e	>	126	7e	~
		c.ngt.f	11 1111	63	3f	?	127	7f	DEL
(1) opcod	de(31:26) =	= 0							

⁽¹⁾ opcode(31:26) = 17_{ten} (11_{hex}); if fmt(25:21)== 16_{ten} (10_{hex}) f = s (single); if fmt(25:21)== 17_{ten} (11_{hex}) f = d (double)

IEEE 754 FLOATING-POINT STANDARD

3

 $(-1)^S \times (1 + Fraction) \times 2^{(Exponent - Bias)}$ where Single Precision Bias = 127, Double Precision Bias = 1023.

IEEE Single Precision and Double Precision Formats:

MAX ≠0 NaN S.P. MAX = 255, D.P. MAX = 2047

S		Exponent		Fraction	
31	30	23	22		0
S		Exponent		Fraction	75
63	62		52 51		

DATA ALIGNMENT

	Double Word								
	Wo	rd		Word					
Halfword		Half	word	Half	word	Halfword			
Byte Byte		Byte	Byte	Byte	e Byte Byte		Byte		

Value of three least significant bits of byte address (Big Endian)

EXCEPTION CONTROL REGISTERS: CAUSE AND STATUS

 1101	W CONTINUE HE	410	LIIO. CAU	J	- ~!	_	IAIOS			
В			Interrupt				Exception			
D			Mask				Code			
31		15		8		6		2		_
	100		Pending				U		Е	Ι
			Interrupt				M		L	Е
		15		8			4		1	0

BD = Branch Delay, UM = User Mode, EL = Exception Level, IE =Interrupt Enable **EXCEPTION CODES**

E	KCEPTIC	JN CC	DES			
	Number	Name	Cause of Exception	Number	Name	Cause of Exception
	0	Int	Interrupt (hardware)	9	Bp	Breakpoint Exception
	4	AdEL	EL Address Error Exception 10		RI	Reserved Instruction
	4	Auel	(load or instruction fetch)	10	KI	Exception
	5 1.40		AdES Address Error Exception 11		CpU	Coprocessor
		AuLS	(store)	11	СрО	Unimplemented
	6	IBE	Bus Error on	12	Ov	Arithmetic Overflow
	0	IDL	Instruction Fetch	12	OV	Exception
	7	DBE	Bus Error on	13	Tr	Trap
	_ ′	DBL	Load or Store	13	11	*
	8 Sys Syscall Exception		15	FPE	Floating Point Exception	

SIZE PREFIXES

	PREFIX	SYMBOL	SIZE	PREFIX	SYMBOL	SIZE	PREFIX	SYMBOL	SIZE	PREFIX	SYMBO
103	Kilo-	К	210	Kibi-	Ki	1015	Peta-	Р	250	Pebi-	Pi
106	Mega-	М	220	Mebi-	Mi	1018	Exa-	Е	260	Exbi-	Ei
10°	Giga-	G	230	Gibi-	Gi	1021	Zetta-	z	270	Zebi-	Zi
1012	Tera-	т	240	Tebi-	Ti	1024	Yotta-	Y	280	Yobi-	Yi