MATH 217 - LINEAR ALGEBRA HOMEWORK 11, SOLUTIONS

Part A (10 points)

Solve the following problems from the book:

Section 7.2: 12.

Solution. The characteristic polynomial is

$$\det \begin{bmatrix} 2-x & -2 & 0 & 0 \\ 1 & -1-x & 0 & 0 \\ 0 & 0 & 3-x & -4 \\ 0 & 0 & 2 & -3-x \end{bmatrix} = (x^2-x)(x^2-1) = x(x-1)^2(x+1).$$

Thus eigenvalues are 0 with algebraic multiplicity 1, 1 with algebraic multiplicity 2, and -1 with algebraic multiplicity 1.

Section 7.3: 20.

Solution. The characteristic polynomial is $\chi_A(x) = (x-1)((x-1)^2 - 1) = x(x-1)(x-2)$. Eigenvalues are 0, 1, and 2.

Eigenspaces are

•
$$E_0 = \ker(A) = \operatorname{Span}\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$
). A basis of E_0 : $\left\{ \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \right\}$.

•
$$E_1 = \ker\begin{pmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \end{pmatrix} = \operatorname{Span}\begin{pmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \end{pmatrix}$$
. A basis of E_1 : $\{\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \}$.
• $E_2 = \ker\begin{pmatrix} \begin{bmatrix} -1 & 0 & 1 \\ 1 & -1 & 1 \\ 1 & 0 & -1 \end{bmatrix} \end{pmatrix} = \operatorname{Span}\begin{pmatrix} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \end{pmatrix}$. A basis of E_2 : $\{\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \}$.

•
$$E_2 = \ker\begin{pmatrix} \begin{bmatrix} -1 & 0 & 1 \\ 1 & -1 & 1 \\ 1 & 0 & -1 \end{bmatrix} \end{pmatrix} = \operatorname{Span}\begin{pmatrix} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \end{pmatrix}$$
. A basis of E_2 : $\left\{ \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \right\}$.

Diagonalizing A:

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ -1 & 0 & 1 \end{bmatrix}^{-1}.$$

1

Section 7.3: 24.

Solution. For example, we can choose a matrix A to be $\begin{bmatrix} 0 & 2 \\ 0.5 & 2 \end{bmatrix}$.

A "complete" way to think about this is by problem 1c of part B below, $A = S \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} S^{-1}$. Any invertible matrix A with the first column is a nonzero vector in Span($\begin{bmatrix} 2 \\ 1 \end{bmatrix}$) will work.

Section 7.3: 36.

Solution. The first matrix has characteristic polynomial is $x^2 - 3x - 5$ while the second matrix has characteristic polynomial $x^2 - 4x - 5$. Since similar matrices have the same characteristic polynomial, the two given matrix are not similar.

Section 7.5: 14.

Solution. The matrix S will have a form $\begin{bmatrix} \vec{w} & \vec{v} \end{bmatrix}$ where $\vec{v} + i\vec{w}$ is an eigenvector of the matrix (Theorem 7.5.3 textbook or Problem 1d part B below). Thus we want to find a complex eigenvector of the matrix/ For this, the characteristic polynomial is $x^2 + 1$, and thus has two root i and -i. The eigenspace

$$E_i = \ker\begin{pmatrix} 1 - i & -2 \\ 1 & -1 - i \end{pmatrix} = \operatorname{Span}\begin{pmatrix} 2 \\ 1 - i \end{pmatrix}$$
.

Therefore we can choose $S = \begin{bmatrix} 0 & 2 \\ -1 & 1 \end{bmatrix}$.

Section 8.1: 24.

Solution. The characteristic polynomial is $\xi_A(x) = -x \det \begin{bmatrix} -x & 1 & 0 \\ 1 & -x & 0 \\ 0 & 0 & -x \end{bmatrix}$

1 det
$$\begin{bmatrix} 0 & -x & 1 \\ 0 & 1 & -x \\ 1 & 0 & 0 \end{bmatrix} = x^2(x^2 - 1) - (x^2 - 1) = (x - 1)^2(x + 1)^2$$
. Eigenspaces

$$E_1 = \operatorname{Span}(\vec{e_1} + \vec{e_4}, \vec{e_2} + \vec{e_3}),$$

and

$$E_{-1} = \operatorname{Span}(\vec{e}_1 - \vec{e}_4, \vec{e}_2 - \vec{e}_3).$$

 E_1 has an orthonormal basis $(\frac{1}{\sqrt{2}}(\vec{e}_1 + \vec{e}_4), \frac{1}{\sqrt{2}}(\vec{e}_2 + \vec{e}_3))$ and E_{-1} has an orthonormal basis $(\frac{1}{\sqrt{2}}(\vec{e}_1 - \vec{e}_4), \frac{1}{\sqrt{2}}(\vec{e}_2 - \vec{e}_3))$. Thus $(\frac{1}{\sqrt{2}}(\vec{e}_1 + \vec{e}_4), \frac{1}{\sqrt{2}}(\vec{e}_2 + \vec{e}_3), \frac{1}{\sqrt{2}}(\vec{e}_1 - \vec{e}_4), \frac{1}{\sqrt{2}}(\vec{e}_2 - \vec{e}_3)$ is an orthonormal basis for A.

Part B (25 points)

Problem 1. (Classifying non-diagonalizable 2×2 matrices.) Let $A \in \mathbb{R}^{2 \times 2}$ be a 2×2 matrix.

¹We work over \mathbb{R} throughout this problem. So "eigenvalue" means real eigenvalue, "diagonalizable" means diagonalizable over \mathbb{R} , and "similar" means similar over \mathbb{R} .

- (a) Suppose that A has eigenvalue 0 but is not diagonalizable. Prove that 2 im(A) = E_0 , and conclude from this that $A^2 = 0$.
- (b) Let $\lambda \in \mathbb{R}$ and suppose that A has eigenvalue λ but is not diagonalizable. Prove that we have $(A \lambda I_2)^2 = 0$, and deduce from this that $A\vec{v} \lambda \vec{v} \in E_{\lambda}$ for every $\vec{v} \in \mathbb{R}^2$.

[Hint: apply part (a) to the matrix $A - \lambda I_2$.]

- (c) Prove that if A has eigenvalue λ but is not diagonalizable, then A is similar to $\begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix}$. [Hint: consider the basis $\mathcal{B} = (A\vec{v} \lambda \vec{v}, \vec{v})$ where $\vec{v} \notin E_{\lambda}$.]
- (d) Prove that if A does not have any real eigenvalues, then A is similar to a matrix of the form λQ where Q is an orthogonal matrix and $\lambda > 0$.

Solution.

- (a) Since A has an eigenvalue 0, A is not invertible. On the other hand, as A is not diagonalizable, the only eigenvalue of A is 0 and A is not the zero matrix. Therefore, $\operatorname{im}(A)$ has 1 dimension. For every nonzero vector \vec{v} in $\operatorname{im}(A)$, the vector Av is in $\operatorname{im}(A)$, thus a multiple of v. Hence v must be an eigenvector. Combining with 0 is the only eigenvalue, it follows that $\operatorname{im}(A) = E_0$. Hence, $A^2\vec{x} = A(A\vec{x}) = 0$ for every $x \in \mathbb{R}^2$. By picking x to be \vec{e}_1 and \vec{e}_2 , we obtain that A^2 is the zero matrix.
- (b) We first prove the following claim:

Claim: A is diagonalizable with eigenvalue λ_1, λ_2 (not necessarily to be different) if and only if $A - \lambda I_2$ is diagonalizable with eigenvalues $\lambda_1 - \lambda, \lambda_2 - \lambda$.

Proof of Claim: A is diagonalizable with eigenvalue λ_1, λ_2 iff there exists an invertible matrix S such that $A = S \begin{bmatrix} \lambda_1 \vec{e}_1 & \lambda_2 \vec{e}_2 \end{bmatrix} S^{-1}$. This is equivalent with

$$A - \lambda I_2 = S \begin{bmatrix} \lambda_1 \vec{e}_1 & \lambda_2 \vec{e}_2 \end{bmatrix} S^{-1} - S \begin{bmatrix} \lambda \vec{e}_1 & \lambda \vec{e}_2 \end{bmatrix} S^{-1} = S \begin{bmatrix} \lambda_1 - \lambda & 0 \\ 0 & \lambda_2 - \lambda \end{bmatrix} S^{-1}.$$

Thus the claim follows.

Back to the problem, by Claim, the matrix $A - \lambda I_2$ has eigenvalue 0 but is not diagonalizable. Hence, by part (a), $(A - \lambda I)^2 = 0$. Therefore, for every $\vec{v} \in \mathbb{R}^2$,

$$(A - \lambda I_2)(A\vec{v} - \lambda \vec{v}) = (A - \lambda I_2)^2 \vec{v} = 0.$$

This implies that $A\vec{v} - \lambda \vec{v} \in \ker(A - \lambda I_2) = E_{\lambda}$.

(c) Consider $\mathcal{B} = (A\vec{v} - \lambda\vec{v}, \vec{v})$, where $\vec{v} \notin E_{\lambda}$. We note that $A\vec{v} - \lambda\vec{v} \neq 0$ and belongs to E_{λ} by part (b), while \vec{v} is a nonzero vector not in E_{λ} . Therefore they are not multiple of each other, equivalently, they are linearly independent. Thus \mathcal{B} is a basis of \mathbb{R}^2 . By part (b), $A(A\vec{v} - \lambda\vec{v}) = \lambda(A\vec{v} - \lambda\vec{v})$. It follows that $[A(A\vec{v} - \lambda\vec{v})]_{\mathcal{B}} = \begin{bmatrix} \lambda \\ 0 \end{bmatrix}$. On the other hand, $[A\vec{v}]_{\mathcal{B}} = \begin{bmatrix} 1 \\ \lambda \end{bmatrix}$. Therefore,

$$[T_A]_{\mathcal{B}} = \begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix},$$

where T_A is the linear map with A as its standard matrix. Now the claim follows as $A = [T_A]_{\mathcal{E}}$ is similar to $[T_A]_{\mathcal{B}}$.

²Recall that for each $\lambda \in \mathbb{R}$, $E_{\lambda} = \{\vec{v} \in \mathbb{R}^2 : A\vec{v} = \lambda \vec{v}\}$.

(d) Let p(x) be the characteristic polynomial of A. Suppose that a+bi is a root of p. Then $p(a-bi)=\overline{p(a+bi)}=0$, where the first equality follows from the fact that all coefficients of p are real. Thus, if A does not have real eigenvalue, we can assume that A has two distinct complex eigenvalues a+bi and a-bi.

Suppose $A(\vec{v} + i\vec{w}) = (a + bi)(\vec{v} + i\vec{w})$, so also $A(\vec{v} - i\vec{w}) = (a - bi)(\vec{v} - i\vec{w})$. Then, diagonalizing A over \mathbb{C} , we have

$$\begin{bmatrix} | & | & | \\ \vec{v} + i\vec{w} & \vec{v} - i\vec{w} \end{bmatrix}^{-1} A \begin{bmatrix} | & | & | \\ \vec{v} + i\vec{w} & \vec{v} - i\vec{w} \end{bmatrix} = \begin{bmatrix} a + bi \\ a - bi \end{bmatrix},$$

Multiply both sides by $\begin{bmatrix} i & -i \\ 1 & 1 \end{bmatrix}$ (on left) and $\begin{bmatrix} i & -i \\ 1 & 1 \end{bmatrix}^{-1}$ (on right), we get

$$\begin{bmatrix} i & -i \\ 1 & 1 \end{bmatrix} \begin{bmatrix} i & | & | & | \\ \vec{v} + i\vec{w} & \vec{v} - i\vec{w} \end{bmatrix}^{-1} A \begin{bmatrix} | & | & | & | \\ \vec{v} + i\vec{w} & \vec{v} - i\vec{w} \end{bmatrix} \begin{bmatrix} i & -i \\ 1 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}.$$

By direct computation we have $\begin{bmatrix} \vec{v} + i\vec{w} & \vec{v} - i\vec{w} \end{bmatrix} \begin{bmatrix} i & -i \\ 1 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} \vec{w} & \vec{v} \end{bmatrix}$, so

$$\begin{bmatrix} \vec{w} & \vec{v} \end{bmatrix}^{-1} A \begin{bmatrix} \vec{w} & \vec{v} \end{bmatrix} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}.$$

The claim now follows from the fact that $\frac{1}{\sqrt{a^2+b^2}}\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$ is an orthogonal matrix.

Problem 2. ("Spectral theorem" for skew-symmetric matrices.) Let A be an $n \times n$ matrix such that $A^{\top} = -A$. Write T_A for the linear map induced by A, so $T_A : \mathbb{R}^n \to \mathbb{R}^n$ is defined by $T_A(\vec{x}) = A\vec{x}$ for all $\vec{x} \in \mathbb{R}^n$.

- (a) Prove that $\ker(A) = \operatorname{im}(A)^{\perp}$, and if n is odd then $\ker(A) \neq \{\vec{0}\}$.
- (b) Prove that for every $\vec{v} \in \mathbb{R}^n$, $(A\vec{v}) \cdot \vec{v} = 0$.
- (c) Prove that if \vec{v} is an eigenvector of A, then $\vec{v} \in \ker(A)$.
- (d) Let $T : \operatorname{im}(A) \to \operatorname{im}(A)$ be the restriction of T_A to $\operatorname{im}(A)$, i.e., the linear transformation from $\operatorname{im}(A)$ to $\operatorname{im}(A)$ defined by $T(x) = A\vec{x}$ for every $\vec{x} \in \operatorname{im}(A)$. Prove that T is invertible.
- (e) Prove that the dimension of im(A) is even.
- (f) Prove that A^2 is symmetric. Thus, by the Spectral Theorem, A^2 is diagonalizable, and in particular every eigenvalue of A^2 is real. Prove that every eigenvalue of A^2 is non-positive. [Hint: if $A^2\vec{v} = \lambda\vec{v}$ with $\vec{v} \neq \vec{0}$, compute $\lambda\vec{v} \cdot \vec{v}$.]
- (g) Prove that if $\vec{v} \neq 0$ and $A^2\vec{v} = -\lambda \vec{v}$ for some $\lambda > 0$, then $(\vec{v}, A\vec{v})$ is linearly independent and $A\vec{v}$ is also an eigenvector of A^2 with eigenvalue $-\lambda$.
- (h) Prove that if $\vec{v} \neq 0$ and $A^2\vec{v} = -\lambda \vec{v}$ for some $\lambda > 0$, then $T_A[V] = V$ and $T_A[V^{\perp} \cap \operatorname{im}(A)] \subseteq V^{\perp} \cap \operatorname{im}(A)$, where $V = \operatorname{Span}(\vec{v}, A\vec{v})$.

³Recall from the *More Joy of Sets* handout that for any function $f: X \to Y$ and subset $V \subseteq X$, we define $f[V] = \{f(x) : x \in V\}$.

(i) Suppose now that n=3 and that A is nonzero (and skew-symmetric). Prove that there is an orthonormal basis \mathcal{U} of \mathbb{R}^3 and a scalar $\lambda > 0$ such that

$$[T_A]_{\mathcal{U}} = \begin{bmatrix} 0 & \sqrt{\lambda} & 0 \\ -\sqrt{\lambda} & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

(j) (Recreational.) Prove that the previous part holds for any n, in the following sense: for every skew-symmetric matrix $A \in \mathbb{R}^{n \times n}$, there is an orthonormal basis \mathcal{U} of \mathbb{R}^n such that $[T_A]_{\mathcal{U}}$ is a block-diagonal matrix whose diagonal blocks are either zero or have the form $\begin{bmatrix} 0 & \sqrt{\lambda} \\ -\sqrt{\lambda} & 0 \end{bmatrix}$ for some $\lambda > 0$.

Solution.

- (a) We have that $\ker(A) = \operatorname{im}(A^T)^{\perp} = \operatorname{im}(-A)^{\perp} = \operatorname{im}(A)^{\perp}$. For the second claim, when n is odd then $\det(A) = \det(A^T) = \det(-A) = (-1)^n \det(A) = -\det(A)$. Hence $\det(A) = 0$, and A is not invertible. Thus $\ker(A) \neq \{\vec{0}\}$.
- (b) For every $\vec{v} \in \mathbb{R}^n$,

$$\vec{v} \cdot (A\vec{v}) = \vec{v}^T A \vec{v} = -\vec{v}^T A^T \vec{v} = -(A\vec{v}) \cdot \vec{v} = -\vec{v} \cdot (A\vec{v}).$$

It follows that $(A\vec{v}) \cdot \vec{v} = \vec{v} \cdot (A\vec{v}) = 0$.

- (c) Suppose \vec{v} is a μ -eigenvector of A. Then $Av = \mu \vec{v}$. By part (b), $\mu \vec{v} \cdot \vec{v} = (A\vec{v}) \cdot \vec{v} = 0$. Since $\vec{v} \neq \vec{0}$, we must have $\mu = 0$. Therefore $v \in E_0 = \ker(A)$.
- (d) We first note that T is well-defined as for every $\vec{x} \in \operatorname{im}(A)$, $T(\vec{x}) = A\vec{x} \in \operatorname{im}(A)$. To prove T is invertible, we let $\vec{x} \in \ker(T) \subset \operatorname{im}(A)$. Then $A\vec{x} = 0$, which implies that $\vec{x} \in \ker(A)$. Hence, $\vec{x} \in \ker(A) \cap \operatorname{im}(A)$. By part (a), $\vec{x} = \vec{0}$. Therefore, $\ker(T) = \{\vec{0}\}$. Since $\operatorname{im}(A)$ has finite dimension, T is invertible.
- (e) Suppose, for the sake of contradiction, that $\operatorname{im}(A)$ has odd dimension. Then T has an eigenvector. But eigenvector of T is also an eigenvector of A. By part (c), the eigenvalue associated to this eigenvector is 0. This contradicts to the invertibility of T by part (d). Therefore $\operatorname{im}(A)$ has an even dimension.
- (f) The claim A^2 is symmetric follows from $(A^2)^T = (A^T)^2 = (-A)^2 = A^2$. For the second claim, suppose that \vec{v} is a η -eigenvector for A^2 . Then

$$\eta \vec{v} \cdot \vec{v} = \vec{v}^T A^2 \vec{v} = -\vec{v}^T A^T A \vec{v} = -(A \vec{v}) \cdot (A \vec{v}).$$

As $\vec{v} \cdot \vec{v} > 0$ and $(A\vec{v}) \cdot (A\vec{v}) \ge 0$, it follows that $\eta \le 0$.

(g) We first show that $(\vec{v}, A\vec{v})$ is linearly independent. Indeed, let $c, d \in \mathbb{R}^2$ such that $c\vec{v} + dA\vec{v} = \vec{0}$. Apply A to both sides, we get $cA\vec{v} - d\lambda\vec{v} = \vec{0}$. We thus obtain

$$\lambda dc\vec{v} + \lambda d^2 A\vec{v} = \vec{0},$$

and

$$c^2 A \vec{v} - \lambda dc \vec{v} = \vec{0}.$$

Adding two equations, we obtain $(c^2 + \lambda d^2)A\vec{v} = \vec{0}$. Since $A^2\vec{v} \neq \vec{0}$, we must have $A\vec{v} \neq \vec{0}$. it follows that $c^2 + \lambda d^2 = 0$, which implies c = d = 0 as $\lambda > 0$ by assumption.

For the second claim, $A^2(A\vec{v}) = A(A^2\vec{v}) = A(-\lambda\vec{v}) = -\lambda A\vec{v}$.

(h) If we set $V = \operatorname{Span}(\vec{v}, A\vec{v})$ then $T_A[V] = \operatorname{Span}(A\vec{v}, A^2\vec{v}) = \operatorname{Span}(A\vec{v}, -\lambda\vec{v}) = V$. For the second claim, if $\vec{w} \in V^{\perp} \cap \operatorname{im}(A)$ then $\vec{w} \cdot \vec{v} = 0 = \vec{w} \cdot (A\vec{v})$. Thus

$$(A\vec{w}) \cdot \vec{v} = -\vec{w} \cdot (A\vec{v}) = 0,$$

and

$$(A\vec{w}) \cdot (A\vec{v}) = -\vec{w} \cdot (A^2\vec{v}) = 0.$$

This implies $A\vec{w} \in V^{\perp}$. Therefore $T_A[V^{\perp} \cap \operatorname{im}(A)] \subset V^{\perp} \cap \operatorname{im}(A)$.

(i) By part (a), A is not invertible. By part (e) and the assumption A is not the zero matrix, $\operatorname{im}(A)$ has two dimension, and thus $\operatorname{ker}(A)$ has 1 dimension. The matrix A^2 is symmetric. A^2 must have a different eigenvalue from 0, follows from part (d). Let $\lambda > 0$ such that $-\lambda$ is an eigenvalue of A^2 (part f). By part (g), $(-\lambda)$ -eigenspace of A^2 must have at least two dimensions, and hence have exactly two dimension. Since A^2 is orthogonally diagonalizable, the $(-\lambda)$ -eigenspace of A^2 is othogonal to $\operatorname{ker}(A)$ (the 0-eigenspace). Thus $(-\lambda)$ -eigenspace of A^2 is a subspace of $\operatorname{im}(A)$, having the same dimension as $\operatorname{dim}(\operatorname{im}(A))$, hence conincides with $\operatorname{im}(A)$.

Pick a nonzero $\vec{v} \in \text{im}(A)$. Then by part (g), $(\vec{v}_1, \vec{v}_2) = (\frac{\vec{v}}{\|\vec{v}\|}, -\frac{A\vec{v}}{\|A\vec{v}\|})$ is an orthonormal basis of im(A). Pick \vec{v}_3 to be a unit vector in ker(A). Then $\mathcal{B} = (\vec{v}_1, \vec{v}_2, \vec{v}_3)$ is an orthonormal basis of \mathbb{R}^3 . With respect to this basis, we must have And,

$$[T_A]_{\mathcal{B}} = \begin{bmatrix} 0 & \lambda_1 & 0 \\ \lambda_2 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix},$$

for some $\lambda_1, \lambda_2 \in \mathbb{R}$. To complete the proof, we prove that $\lambda_1 = \sqrt{\lambda}$ and $\lambda_2 = -\sqrt{\lambda}$. For this we note that $A\vec{v}_1 = \lambda_2\vec{v}_2$, $A\vec{v}_2 = \lambda_1\vec{v}_1$, and $A^2\vec{v}_1 = -\lambda\vec{v}_1$. Therefore $\lambda_1\lambda_2 = -\lambda$. On the other hand, let $S = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \vec{v}_3 \end{bmatrix}$. Then S is orthogonal, and thus $[T_A]_{\mathcal{B}} = S^TAS$ is skew symmetric. This implies $\lambda_1 = -\lambda_2$. As λ_2 must be negative, we must have $\lambda_1 = \sqrt{\lambda}$ and $\lambda_2 = -\sqrt{\lambda}$. Alternatively (thanks to Yuanjun), we have that

$$A\vec{v}_{1} = \frac{A\vec{v}}{\|\vec{v}\|} = \frac{A\vec{v}}{\sqrt{\frac{-1}{\lambda}\vec{v} \cdot (A^{2}\vec{v})}} = \frac{A\vec{v}}{\sqrt{\frac{1}{\lambda}\vec{v}^{T}A^{T}A\vec{v}}} = \sqrt{\lambda} \frac{A\vec{v}}{\|A\vec{v}\|} = -\sqrt{\lambda}\vec{v}_{2}.$$

And similarly $A\vec{v}_2 = \sqrt{\lambda}\vec{v}_1$.

In conclusion,

$$[T_A]_{\mathcal{B}} = \begin{bmatrix} 0 & \sqrt{\lambda} & 0 \\ -\sqrt{\lambda} & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

- (j) (Sketch) First we apply Spectral theorem to A^2 to obtain that there exist $\lambda_1, \lambda_2, \ldots, \lambda_k > 0$ such that $\lambda_1, \lambda_2, \ldots, \lambda_k$ and possibly $\lambda_0 = 0$ are eigenvalue of A^2 . Moreover $E_{\lambda_i}^{(A^2)}$ (the superscript indicates the eigenspace for A^2) is orthogonal to $E_{\lambda_j}^{(A^2)}$ if $i \neq j$. For each $i = 1, \ldots, k$ we are going to choose a "good" orthogonal basis for $E_{\lambda_i}^{(A^2)}$. The procedure is as follows
 - First pick a nonzero $\vec{v}_1 \in E_{\lambda_i}^{(A^2)}$, by part (b) and (g), $A\vec{v}_1 E_{\lambda_i}^{(A^2)}$ and is orthogonal to \vec{v}_1 .
 - If $\operatorname{Span}(\vec{v}_1, A\vec{v}_1) \neq E_{\lambda_i}^{(A^2)}$, then pick $\vec{v}_2 \in E_{\lambda_i}^{(A^2)} \cap \operatorname{Span}(\vec{v}_1, A\vec{v}_1)^{\perp}$. By part (b), (g), and (h), $A\vec{v}_2 \in E_{\lambda_i}^{(A^2)}$ and $(\vec{v}_1, A\vec{v}_1, \vec{v}_2, A\vec{v}_2)$ is orthogonal.

- If $\operatorname{Span}(\vec{v}_1, A\vec{v}_1, \vec{v}_2, A\vec{v}_2)$ is not $E_{\lambda_i}^{(A^2)}$, the we pick $\vec{v}_3 \in E_{\lambda_i}^{(A^2)} \cap \operatorname{Span}(\vec{v}_1, A\vec{v}_1, \vec{v}_2, A\vec{v}_2)^{\perp}$. Continue this process until we absorb all $E_{\lambda_i}^{(A^2)}$. This process also shows that dimension of each $E_{\lambda_i}^{(A^2)}$ is even.
 The result of this process is that there exist nonzero vectors $\vec{v}_1, \dots, \vec{v}_m$ such that
- The result of this process is that there exist nonzero vectors $\vec{v}_1, \ldots, \vec{v}_m$ such that $E_{\lambda_i}^{(A^2)} = \operatorname{Span}(\vec{v}_1, A\vec{v}_1, \vec{v}_2, A\vec{v}_2, \ldots, \vec{v}_m, A\vec{v}_m)$ and $(\vec{v}_1, A\vec{v}_1, \vec{v}_2, A\vec{v}_2, \ldots, \vec{v}_m, A\vec{v}_m)$ is orthogonal.
- We pick a basis $\mathcal{B}_i = (\frac{\vec{v}_1}{\|\vec{v}_1\|}, -\frac{A\vec{v}_1}{\|A\vec{v}_1\|}, \frac{\vec{v}_2}{\|\vec{v}_2\|}, -\frac{A\vec{v}_2}{\|A\vec{v}_2\|}, \dots, \frac{\vec{v}_m}{\|\vec{v}_m\|}, -\frac{A\vec{v}_m}{\|A\vec{v}_m\|})$. This is an orthogonal basis of $E_{\lambda_i}^{(A^2)}$.

Do the same procedure for other eigenspace of A^2 , to obtain orthogonal bases $\mathcal{B}_1, \ldots, \mathcal{B}_k$ of eigenspaces. Note that $\ker(A) = \ker(A^2)$ (by part (d)). We let \mathcal{B}_0 be an orthogonal basis for $\ker(A)$. Since A^2 is orthogonally diagonalizable, the union $\mathcal{B} = \mathcal{B}_0 \cup \mathcal{B}_1 \cup \ldots \mathcal{B}_k$ is an orthogonal basis of \mathcal{R}^n . Now easily check that $[T_A]_{\mathcal{B}}$ is a block-diagonal matrix with

diagonal blocks are either zero or of the form $\begin{bmatrix} 0 & \sqrt{\lambda_i} \\ -\sqrt{\lambda_i} & 0 \end{bmatrix}$.

Problem 3. Let $(V, \langle \cdot, \cdot \rangle)$ be a finite dimensional inner product vector space, and let $T: V \to V$ be a linear transformation.

- (a) Prove that there is a unique transformation $T^*: V \to V$ such that $\langle T(x), y \rangle = \langle x, T^*(y) \rangle$ for all $x, y \in V$.
- (b) Prove that if $T = T^*$, then there is a basis \mathcal{B} of V such that $[T]_{\mathcal{B}}$ is symmetric.
- (c) Prove that if $T = T^*$, then T is orthogonally diagonalizable.

Solution.

(a) If V were \mathbb{R}^n and $\langle \cdot, \cdot \rangle$ the dot product, we could represent T by its standard matrix A so that for all $x, y \in \mathbb{R}^n$,

$$\langle T(x), y \rangle = Ax \cdot y = x^{\mathsf{T}} A^{\mathsf{T}} y = x \cdot A^{\mathsf{T}} y,$$

and thus T^* would be the linear map induced by A^{\top} . With this in mind, let us fix an orthonormal basis \mathcal{U} of V, so we have $\langle x,y\rangle=[x]_{\mathcal{U}}\cdot[y]_{\mathcal{U}}$ for all $x,y\in V$, and define T^* to be the linear map from V to V whose \mathcal{U} -matrix is $[T]_{\mathcal{U}}^{\top}$. Thus, formally, T^* is defined by the rule

$$T^*(y) = L_{\mathcal{U}}^{-1}([T]_{\mathcal{U}}^{\top}[y]_{\mathcal{U}})$$
 for all $y \in V$.

Note that this definition is independent of our choice of orthonormal basis \mathcal{U} of V, since if \mathcal{U}' is another orthonormal basis of V then the change-of-coordinates matrix $S = S_{\mathcal{U} \to \mathcal{U}'}$ is orthogonal, so $[T]_{\mathcal{U}'}^{\top} = \left(S[T]_{\mathcal{U}}S^{\top}\right)^{\top} = S[T]_{\mathcal{U}}^{\top}S^{\top}$, which implies

$$[T^*]_{\mathcal{U}} = [T]_{\mathcal{U}}^{\top}$$
 if and only if $[T^*]_{\mathcal{U}'} = [T]_{\mathcal{U}'}^{\top}$.

Then for all $x, y \in V$, we have

This establishes existence of T^* , and for uniqueness suppose $S:V\to V$ is another linear map satisfying $\langle T(x),y\rangle=\langle x,S(y)\rangle$ for all $x,y\in V$. Let $y\in V$ be arbitrary, and note that for all $x\in V$ we have

$$\langle x, S(y) - T^*(y) \rangle = \langle x, S(y) \rangle - \langle x, T^*(y) \rangle = \langle T(x), y \rangle - \langle T(x), y \rangle = 0.$$

In particular, $\langle S(y) - T^*(y), S(y) - T^*(y) \rangle = 0$, which implies $S(y) = T^*(y)$ by positive-definiteness of the inner product. This implies $S = T^*$, establishing uniqueness.

- (b) In part (a) we saw that $[T^*]_{\mathcal{U}} = [T]_{\mathcal{U}}^{\top}$ for any orthonormal basis \mathcal{U} of V. Thus if $T = T^*$, we have that $[T]_{\mathcal{U}}$ is symmetric for any orthonormal basis \mathcal{U} of V.
- (c) Suppose $T = T^*$, and fix an orthonormal basis $\mathcal{U} = (u_1, \ldots, u_n)$ of V. Then $[T]_{\mathcal{U}}$ is symmetric, hence orthogonally diagonalizable by the Spectral Theorem, so we can fix an orthogonal matrix $Q \in \mathbb{R}^{n \times n}$ such that $Q^{\top}[T]_{\mathcal{U}}Q$ is diagonal. For each $1 \leq i \leq n$, let $b_i = L_{\mathcal{U}}^{-1}(Q\vec{e_i})$, and let $\mathcal{B} = (b_1, \ldots, b_n)$, so $Q = S_{\mathcal{B} \to \mathcal{U}}$. Then

$$[T]_{\mathcal{B}} = S_{\mathcal{U} \to \mathcal{B}}[T]_{\mathcal{U}} S_{\mathcal{B} \to \mathcal{U}} = Q^{\top}[T]_{\mathcal{U}} Q,$$

so $[T]_{\mathcal{B}}$ is diagonal. Furthermore, since \mathcal{U} is orthonormal and $Q = S_{\mathcal{B} \to \mathcal{U}}$ is orthogonal,

$$\langle b_i, b_j \rangle = [b_i]_{\mathcal{U}} \cdot [b_j]_{\mathcal{U}} = Q[b_i]_{\mathcal{B}} \cdot Q[b_j]_{\mathcal{B}} = e_i^{\top} Q^{\top} Q e_j = \vec{e}_i \cdot \vec{e}_j = \delta_{ij}$$

for all $1 \leq i, j \leq n$, so \mathcal{B} is orthonormal and T is indeed orthogonally diagonalizable.