Тема. Повторення. Розв'язування текстових задач

<u>Мета.</u> Вдосконалювати вміння розв'язувати текстові задачі за допомогою систем рівнянь

Повторюємо

- Що буде розв'язком системи рівнянь з двома змінними?
- Які способи розв'язування систем рівнянь називають аналітичними?
- Що означає графічно розв'язати систему рівнянь?
- В яких випадках доцільно використовувати графічний метод?
- Як розв'язати задачу за допомогою системи рівнянь?
- Математичною моделлю є переклад певної інформації з повсякденної мови математичною.
- Є три універсальних способи для розв'язання систем: метод підстановки, метод додавання, графічний метод.
- У задачах, де фігурують фізичні величини (наприклад час, швидкість, відстань, тощо), потрібно дотримуватись однакових одиниць вимірювання.

Розв'язування задач

Задача 1

Басейн наповнюють дві труби. Якщо відкрити обидві труби одночасно, то весь басейн заповниться за 6 годин. Якщо спочатку наповнювати басейн через першу трубу протягом 5 годин, а потім відкрити одночасно обидві труби на 2 години, то буде заповнено ²/₃ басейну. За скільки годин можна наповнити басейн через кожну трубу?

Розв'язання

Так як немає об'єму басейну, то візьмемо його за 1. Необхідно знайти час, за який наповнять басейн перша та друга труба окремо. Візьмемо цей час для першої труби за х год, а для другої за у год.

Складемо математичну модель задачі у вигляді таблиці:

	За 1 годину	Час на весь басейн, год
Перша труба	$\frac{1}{x}$	x
Друга труба	$\frac{1}{y}$	у

Складемо систему рівнянь:

$$\begin{cases} 6\left(\frac{1}{x} + \frac{1}{y}\right) = 1\\ \frac{5}{x} + 2\left(\frac{1}{x} + \frac{1}{y}\right) = \frac{2}{3} \end{cases}$$

Розкриємо в обох рівняннях дужки та зведемо подібні доданки в другому рівнянні:

$$\begin{cases} \frac{6}{x} + \frac{6}{y} = 1\\ \frac{7}{x} + \frac{2}{y} = \frac{2}{3} \end{cases}$$

Зробимо заміну:

$$\frac{1}{x} = u; \frac{1}{y} = v$$

$$\begin{cases} 6u + 6v = 1\\ 7u + 2v = \frac{2}{3} \end{cases}$$

Домножимо друге рівняння на 3, щоб зробити однакові коефіцієнти перед v:

$$\begin{cases} 6u + 6v = 1\\ 21u + 6v = 2 \end{cases}$$

Віднімемо від другого рівняння перше, отримаємо:

$$15u = 1$$

$$u=\frac{1}{15}$$

Підставимо отриманий розв'язок в рівність $7u + 2v = \frac{2}{3}$

$$\frac{7}{15} + 2v = \frac{2}{3}$$

$$2v = \frac{2}{3} - \frac{7}{15}$$

$$2v = \frac{3}{15}$$

$$v=\frac{1}{10}$$

Зробимо зворотню заміну:

$$\begin{cases} \frac{1}{x} = \frac{1}{15} \\ \frac{1}{y} = \frac{1}{10} \end{cases}$$

Отримали корені:

$$\begin{cases} x = 15 \\ y = 10 \end{cases}$$

Відповідь: 15 год для першої труби, 10 год для другої.

Задача 2

Катер проходить 48 кілометрів проти течії річки та 30 кілометрів за течією річки за три години, а 15 кілометрів за течією — на одну годину швидше, ніж 36 кілометрів проти течії. Знайдіть власну швидкість катера та швидкість течії.

Розв'язок

Позначимо через $x \kappa_M / rod$ власну швидкість катера, а через $y \kappa_M / rod$ — швидкість течії. Тоді швидкість катера за течією дорівнюватиме $(x + y) \kappa_M / rod$, в той час як швидкість проти течії дорівнює $(x - y) \kappa_M / rod$.

3 першої частини умови отримуємо наступне рівняння:

 $\frac{48}{x-y} + \frac{30}{x+y} = 3$, де перший доданок — це час, витрачений на проходження 48 кілометрів проти течії, другий доданок — це час, витрачений на проходження 30 кілометрів за течією, і в сумі це триває 3 години.

За аналогією до першого рівняння друга частина умови записується за допомогою рівняння:

$$\frac{15}{x+y} + 1 = \frac{36}{x-y}.$$

Ці два рівняння утворюють систему рівнянь:

$$\begin{cases} \frac{48}{x-y} + \frac{30}{x+y} = 3, \\ \frac{15}{x+y} + 1 = \frac{36}{x-y}; \end{cases}$$

Цю систему можна розв'язувати за допомогою методу підстановки, однак методом додавання буде легше і швидше. Для цього домножимо обидві частини другого рівняння на мінус два та додамо перше рівняння до другого. Після скорочення подібних отримаємо наступну систему:

$$\begin{cases} \frac{48}{x-y} + \frac{30}{x+y} = 3, \\ \frac{120}{x-y} = 5; \end{cases}$$

Отримавши з другої системи x-y=24 та підставивши це у перше рівняння, отримаємо наступну систему:

$$\begin{cases} \frac{48}{24} + \frac{30}{x+y} = 3 \\ x - y = 24 \end{cases} = > \begin{cases} \frac{30}{x+y} = 1 \\ x - y = 24 \end{cases} = > \begin{cases} x + y = 30 \\ 2x = 54 \end{cases}$$

3 останньої системи випливає, що

$$x = 27, y = 3.$$

Отже, швидкість катера $27\frac{\kappa M}{\varepsilon o \partial}$, а швидкість течії $3\frac{\kappa M}{\varepsilon o \partial}$.

Поміркуйте

Коли в життєвих умовах може знадобитись скласти та розв'язати систему рівнянь?

Домашне завдання

Повторити правила перетворення графіків функцій

Джерело

Всеукраїнська школа онлайн