ВВЕДЕНИЕ

В настоящее время новейшим направлением разработки изделий является трехмерное моделирование деталей и сборок. 3D-системы позволяют смоделировать изделие до создания чертежей или опытных образцов. Основным документом в этом случае является компьютерная модель, по которой разрабатывается конструкторская и технологическая документация.

Модели передаются в системы инженерных расчетов, предназначенные для анализа изделий на функциональность, прочность, долговечность, устойчивость к вибрации, управляемость, безопасность, ремонтопригодность, технологичность и т. д. По 3D-моделям можно вычислить массово-инерционные характеристики, объем и другие важные физические параметры проектируемых деталей.

Еще одно достоинство 3D-моделей заключается в том, что их можно передавать в системы подготовки производства, которые автоматически создают программы для станков с ЧПУ.

Серьезное преимущество 3D-моделирования заключается в ассоциативности: объекты на чертеже детали связаны с объектами ее модели, объекты на чертеже автоматически обновляются при изменении модели.

Цель работы: приобрести навыки работы по созданию трехмерных моделей в среде САПР КОМПАС-3D.

Задачи: изучить основные элементы интерфейса трехмерного моделирования в КОМПАС-3D. Изучить методы создания трехмерных моделей. Изучить приемы твердотельного моделирования. Освоить основные приемы редактирования моделей. Изучить состав и принципы работы с библиотекой 3D.

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Трехмерное моделирование

В КОМПАС-3D возможно создание двух типов моделей: деталь и сборка.

Деталь — тип модели, предназначенный для представления изделий, изготавливаемых без применения сборочных операций. Создается и хранится в документе «деталь», расширение файла — m3d.

Сборка — тип модели, предназначенный для представления изделий, изготавливаемых с применением сборочных операций. Создается и хранится в документе «сборка», расширение файла — a3d.

Трехмерная модель детали в КОМПАС-3D состоит из **объектов**. Объекты подразделяются на:

- геометрические,
- элементы оформления,
- объекты «измерение».

К геометрическим объектам относятся: тела, поверхности, кривые, точки, эскизы, объекты вспомогательной геометрии. К элементам оформления относятся размеры, условное обозначение резьбы, линии-выноски, обозначения шероховатости, базы, позиции, допуски формы и расположения. Объектами «измерение» являются: расстояние и угол, длина ребра, площадь.

Объекты модели создаются и редактируются путем выполнения **операций**. При создании и редактировании объекта возможно формирование ассоциативной связи его с другим объектом. **Ассоциативная связь** — это однонаправленная зависимость расположения или геометрии одного объекта от расположения или геометрии другого объекта. Зависимый объект считается **производным**, а объект, от которого производный объект зависит — **исходным** по отношению к производному.

Модели в целом, а также отдельным ее частям (телам, компонентам) можно назначить параметры для расчета МЦХ — материал и плотность материала, а также задать **свойства** — данные об изделии.

Геометрические объекты состоят из **примитивов**. Примитивами являются: вершина, ребро, грань.

Вершина — примитив, представляющий собой точку либо окончание ребра. Частным случаем вершины является ребро нулевой длины (например, вершина конуса).

Ребро — примитив, представляющий собой участок кривой либо граничной линии грани, ограниченный вершинами и не содержащий внутри себя других вершин. В частных случаях ребро может не ограничиваться вершинами (замкнутые ребра).

Грань — примитив, представляющий собой часть поверхности либо

поверхность, ограниченную ребрами и не содержащую внутри себя других ребер.

Тело — объект модели, имеющий некоторый объем и соотнесенный с каким-либо материалом. Тело не имеет самостоятельного файлового представления.

Тело, как правило, представляет собой совокупность граней, ребер и вершин. Грани тела образуют замкнутую поверхность.

Особый вид тел — **листовые тела**. Они предназначены для моделирования деталей, полученных из листового материала с помощью операций гибки.

Поверхность — геометрический объект, представленный связной совокупностью граней или одной гранью.

Эскиз — объект трехмерного моделирования, созданный на плоскости или плоской грани средствами чертежно-графического редактора.

Эскизы используются в некоторых операциях. Например, эскиз может задавать форму сечения тела, полученного операцией выдавливания, контур ребра жесткости и т.п.

Требования к эскизу определяются операцией, в которой он используется.

Объектами вспомогательной геометрии являются:

- системы координат,
- координатные и вспомогательные плоскости,
- координатные и вспомогательные оси,
- контрольные точки,
- присоединительные точки.

Основные элементы интерфейса КОМПАС-3D

Список **наборов Инструментальных панелей** и **Главное меню** зависят от типа создаваемого документа. Рассмотрим основные элементы интерфейса системы КОМПАС-3D для документа **Деталь**.

В верхней части окна программы располагается Главное меню, которое служит для вызова команд. Главное меню состоит из следующих страниц меню: Файл, Правка, Выделить, Вид, Эскиз, Моделирование, Оформление, Диагностика, Управление, Настройка, Приложения, Окно и Справка.

Панель Быстрого доступа

Панель быстрого доступа содержит кнопки для вызова команд управления масштабом отображения модели в окне документа,

команды управления отображением позволяют устанавливать различные варианты отображения: \bigotimes Каркас

Невидимые линии тонкие

🌘 Полутоновое

При выполнении различных операций добавляются кнопки подтверждения и завершения операции.

Инструментальные панели набора «Твердотельное моделирование»

команды стандартных операций с файлами: создание, открытие и сохранение документов, вывод на печать расположены на панели Системная

команды, сгруппированные на панели Эскиз предназначены для построения геометрических объектов: отрезков, окружностей, дуг, эллипсов и др.

команды панели **Элементы тела** предназначены для создания трехмерных твердотельных элементов модели

команды панели Элементы каркаса содержат команды построения пространственных геометрических объектов: спиралей, плавных кривых, ломаных линий, вспомогательных точек.

команды панели **Массив, копирование** служат для создания копий объектов, которые были бы определенным образом упорядочены, создания групп объектов (массивов).

команды панели **Вспомогательные объекты** служат для построения вспомогательных плоскостей для создания эскизов, осей и др.

команды панели **Размеры** служат для простановки размеров различных типов: линейные, диаметральные, угловые и т.п.

панель Обозначения содержит команды, позволяющие создавать условное обозначение резьбы, проставлять линии-выноски, шероховатость поверхностей и др.

команды панели **Диагностика** предназначены для измерения геометрических характеристик модели (длина ребер, площадь граней, МЦХ и т.д.).

команды панели **Чертеж** позволяют создавать ассоциативные чертежи по трехмерной модели детали

Дерево модели

Дерево модели — это графическое представление набора объектов, составляющих модель. Дерево построения по умолчанию располагается в левой части программного окна. В окне Дерева отображается наименование детали, плоскости, символ начала координат, оси и последовательность построения модели: созданные оси и плоскости, эскизы, операции.

Методы создания трехмерных моделей

В системе КОМПАС-3D трехмерную модель можно построить с использованием различных технологий и методик. Их совместное использование позволяет решать самые разнообразные конструкторские задачи.

- **1. Твердотельное моделирование** это построение трехмерной твердотельной модели последовательным выполнением операций объединения, вычитания и пересечения над простыми объемными элементами (призмы, цилиндры, пирамиды и т.д.), из которых состоит большинство механических деталей.
- **2. Моделирование поверхностей -** это создание отдельные участки поверхности изделия, а затем их плавное сопряжение друг с другом. В результате образуется единая сложная поверхность.

- **3.** Гибридное моделирование это сочетание твердотельного и поверхностного моделирования.
- **4. Создание сплайновых поверхностей** это поверхности свободной формы. Грани твердых тел или поверхностей преобразовывают в сплайновую поверхность. При этом на грань автоматически накладывается сетка изопараметрических кривых. Поверхности обладают свойством локальной деформации.

- **5. Прямое вариационное моделирование.** Технология вариационного прямого моделирования позволяет модифицировать любую, в том числе импортированную из другой CAD-системы, трехмерную модель без истории создания.
- **6.** Моделирование листовых деталей моделирования деталей, изготавливаемые методом гибки из стального листа с помощью специальных команд для работы с листовыми деталями.

Твердотельное моделирование

Для создания объемных элементов используется перемещение плоских фигур в пространстве. Перемещаясь, фигуры ограничивают часть пространства и определяют форму элемента. Эта плоская фигура называется эскизом, а само перемещение - операцией.

Эскиз может располагаться на одной из стандартных плоскостей проекций, на плоской грани уже созданного элемента или на созданной вспомогательной плоскости. Эскиз изображается средствами модуля плоского черчения и состоит из отдельных геометрических примитивов (отрезков, дуг, окружностей и др.).В системе КОМПАС-3D имеются разнообразные операции (элементы) для построения объемных элементов, базовыми из которых являются: операции выдавливания, операции вращения, по траектории, операция по сечениям. Для базовых операций, добавляющих материал к твердотельной модели, существующих аналогичные операции, удаляющие материал (Таблица 1).

Таблица 1

		TWOTHI
Операция	Выдавить	Вырезать
Выдавливания		
Вращения		
По траектории		
По сечениям		

Для выполнения многих команд требуется указание или выделение объектов. При выделении и указании вершин, ребер, осей и плоскостей в окне детали происходит динамический поиск объектов: при прохождении курсором над объектом этот объект подсвечивается и курсор меняет свой внешний вид (таблица 2).

Вид курсора	Выбор объекта
+*	вершина
+,	ребро
+,,	ось
†a	грань
+	плоскость

ПРАКТИЧЕСКАЯ ЧАСТЬ 1. СОЗДАНИЕ ТВЕРДОТЕЛЬНЫХ МОДЕЛЕЙ РАЗЛИЧНЫМИ ВАРИАНТАМИ ФОРМООБРАЗОВАНИЯ

- 1. Для создания детали в **Главном меню** выберите **Файл** Создать. В окне **Новый документ** укажите тип создаваемого документа **Деталь**.
- 2. Создание начальной ориентации и задание свойств модели:
- 2.1. На панели **Быстрого доступа** нажмите кнопку списка справа от кнопки **Ориентация** и укажите вариант **Изометрия.**

Выбор начальной ориентации модели не влияет на ход ее построения и ее свойства, но от этого будет зависеть ее стандартная ориентация.

- 2.2. Щелкните правой клавишей мыши в Дереве построения на наименование Деталь (Тел-0) и из контекстного меню выберите команду Свойства модели. На Панели параметров в поле Обозначение (Базовая часть) введите Л.001.000, в поле Наименование введите Основание, заполните поле Материал: нажмите кнопку Выбрать материал из списка. Выберите материал Сталь 40Х ГОСТ 4543-2016, выберите Цвет детали Серый, Оптические свойства: общий цвет: 80%, диффузия 80%, зеркальность 80%, блеск 20%, прозрачность 0%, излучение 80%. Нажмите кнопку Создать объект.
- 3. Создание основания детали:

Основание — первый формообразующий элемент детали. В качестве основания можно использовать любой из элементов: выдавливания, вращения, кинематический или по сечениям. За основание детали чаще всего принимают тот ее элемент, к которому удобнее добавлять все прочие элементы. Часто такой подход повторяет технологический процесс изготовления детали.

Построение основания начинается с создания его плоского эскиза. Для построения эскиза основания выбирают одну из стандартных плоскостей проекций.

3.1. В **Дереве модели** раскройте «ветвь» **Начало координат** (щелкните на значок **:**) и укажите **Плоскость XY**.

Выбор начальной плоскости для построения эскиза влияет на положение детали при выборе стандартных ориентаций.

- 3.2. Нажмите кнопку [4] Создать эскиз на панели Быстрого доступа.
- Система перейдет в режим двухмерных построений. Плоскость XУ станет параллельной экрану. Эскиз создается по определенным правилам: контур в эскизе должен быть создан стилем линий **Основная** и должен быть замкнутым (не должен пересекаться).
- 3.3. Постройте **Прямоугольник** (стиль Основная) по центру (начало координат) и вершине высотой 50 мм, шириной 100 мм.
- 3.4. Вновь нажмите кнопку 🕒 Эскиз: система вернется в режим трехмерных построений.
 - 3.5. На панели Элементы тела нажмите кнопку 🗗 Элемент выдавливания.

Элемент выдавливания – выдавливание эскиза в указанном направлении (по умолчанию перпендикулярно плоскости эскиза)

На экране появится фантом трехмерного элемента — временное изображение, показывающее текущее состояние создаваемого объекта.

- 3.6. На панели Параметров настройте параметры операции создания элемента: в поле Расстояние введите 30. Рядом с полем нажмите кнопку → Сменить направление. В поле Угол введите значение 0. Нажмите кнопку ✓ Создать объект. В Дереве построения появится строчка Элемент выдавливания:1.
 - 3.7. Редактирование операций:

Чтобы изменить параметры любой операции можно отредактировать ее.

В Дереве модели щелкните **правой** клавишей мыши на строчку **Элемент выдавливания 1** и выберите из контекстного меню команду **Редактировать.** Поменяйте расстояние выдавливания на 20. Нажмите кнопку **Создать объект** (рис. 1).

- 3.8. Сохранение документа: сохраните документ в папке своей учебной группы (имя файла автоматически заполнено данными из свойств модели).
- 4. Создание элемента выдавливания:
- 4.1. Направьте курсор на верхнюю грань параллелепипеда, и когда курсор примет вид +р, щелкните мышью, после чего нажмите кнопку Эскиз. Постройте Окружность с координатами центра (30, 0) и радиусом 15 мм.
- 4.2. На панели **Элементы тела** нажмите кнопку **Элемент выдавливания.** На **Панели Параметров** выберите следующие опции: в поле **Расстояние** установите
- 35, включите опцию построение тонкой стенки: , в поле **Толщина** 1 введите 0, в поле **Толщина 2** введите 4. Нажмите кнопку **Создать объект**.
 - 4.3. Редактирование эскизов:

Чтобы изменить значение размера или отредактировать контур можно отредактировать изображение в любом созданном эскизе.

В Дереве модели щелкните **правой** клавишей мыши на строчку **Эскиз 2** и выберите из контекстного меню команду **Редактировать.** Поменяйте радиус окружности на 10 мм. Нажмите кнопку **Создать объект.** Нажмите кнопку **Эскиз** для выхода из режима редактирования эскиза и автоматической регенерации модели.

4.4. Скругление ребер: на панели Элементы тела нажмите кнопку Скругление. На панели Параметров в поле Радиус введите 2 и щелкните мышью в любом месте плоскости, к которой «приклеен» элемент выдавливания (верхняя грань параллелепипеда, выбранная плоскость будет выделена штриховой линией). Нажмите кнопку Создать объект. Скругление будет выполнено по всем ребрам, ограничивающим эту плоскость (рис. 3.)

4.5. Создание ребра жесткости

Ребро жёсткости — это элемент детали, который нужен для повышения механических характеристик Рёбра жёсткости позволяют уменьшить сечения отдельных элементов детали, снизить напряжения в местах сопряжения стенок различного сечения, повысить устойчивость и прочность конструкций.

На панели Элементы тела нажмите кнопку — Ребро жесткости . На панели Параметров нажмите кнопку — Создать эскиз. Выберите плоскость ZX. На панели Быстрого доступа нажмите кнопку — (стрелку) и выберите Привязка к элементам модели. Для привязки можно использовать объекты модели, представляющие собой точки (вершины, начала координат и т.п.) или кривые (ребра, пространственные кривые, оси и т.п.). В результате выполнения привязки в эскизе формируется вспомогательная проекция объекта, выбранного для привязки, а создаваемый геометрический объект параметрически связывается с проекцией.

Постройте отрезок согласно рисунку 2. Нажмите кнопку — Эскиз. Включите опцию Симметричная — На панели Параметров в поле Толщина введите 3. Нажмите кнопку Создать объект.

Для создания ребра жесткости в модели требуется построить эскиз, определяющий форму внешнего края ребра. Ребро строится от линии в эскизе к телу. В результате формируется тонкая стенка, ограниченная с одной стороны линией эскиза, а с остальных сторон — гранями тела.

Puc. 2.

4.6. Определение массы детали и координаты центра тяжести: на **панели Диагностика** выберите команду МЦХ модели. В диалоговом окне **Информация**

появятся все необходимые параметры (рис. 3). Проверьте их совпадение.

Рис. 3.

4.7. Сохраните документ под именем файла **Деталь 1_Л.001.000** Закройте документ.

ВНИМАТЕЛЬНО сохраняйте документы, на данном этапе выполнения работы у вас должны быть сохранены 2 модели: основание (рис. 1) и деталь 1 (рис. 2).

5. Создание элемента вращения:

Элемент вращения - вращение эскиза (сечения) вокруг оси в одну или обе стороны на заданный угол.

- 5.1.Откройте документ **Основание_Л.001.000.m3d.**
- 5.2. В **Дереве модели** укажите **Плоскость ХҮ**. Нажмите кнопку **Ш Эскиз**. Постройте **Окружность** с координатами центра (30, 0) и радиусом 7 мм.
- 5.3. Постройте вертикальный отрезок (стиль **Осевая**), проходящий через **Начало** координат произвольной длины.
- 5.4. На панели **Элементы тела** нажмите кнопку **П Элемент вращения** (кнопка расположена в группе команд создания элементов). На **панели Параметров** выберите опцию: **Угол** 180. Нажмите кнопку **Создать объект**.
- 5.5.Скругление всех ребер: на панели **Элементы тела** нажмите кнопку **Скругление**. На **панели Параметров** в поле **Радиус** введите 4, щелкните мышью на трех видимых гранях параллелепипеда, затем, используя кнопку **Повернуть**

панели **Быстрого доступа**, переверните модель так, чтобы были видны следующие три грани и щелкните по ним мышью. Нажмите кнопку **Создать объект** (рис.4.).

Puc. 4

- 5.6. Определите массу детали и координат ее центра тяжести (на **панели Диагностика** выберите команду **МЦХ модели**). Если все построено верно, то масса созданной детали, составит 884 г.
- 5.7. Сохраните документ под именем файла **Деталь 2_Л.001.000** Закройте документ.
- 6. Создание элемента по траектории

Элемент по траектории - перемещение эскиза вдоль направляющей.

Эскиз (окружность)

Направляющая

Стержень

- 6.1.Откройте документ Основание Л.001.000.m3d.
- 6.2. В **Дереве модели** укажите **Плоскость ХҮ**. Нажмите кнопку **В Эскиз**. Постройте **Окружность** с координатами центра (30, 0) и радиусом 8 мм. Выйдите из эскиза (нажмите кнопку **Эскиз**).
- 6.3. В **Дереве построения** укажите **Плоскость ZX**. Нажмите кнопку **Эскиз**. Постройте контур согласно рис. 5. Выйдите из эскиза (нажмите кнопку **Эскиз**).
- 6.4. На панели Элементы тела нажмите кнопку элемент по траектории. В блоке Движение сечения выберите опцию Ортогонально траектории. Выберите в Дереве построения объект сечения Эскиз:2. Затем выберите направляющую направьте курсор на построенный контур и, когда курсор примет вид +, щелкните мышью. Далее наведите курсор на дугу скругления и щелкните мышью. Аналогичным образом последовательно отметьте оставшиеся три участка направляющей. Нажмите кнопку Создать объект.
 - 6.5. Снятие фасок со всех ребер: на панели Элементы тела нажмите кнопку
- Фаска (команда расположена в группе скругление/фаска). На **панели Параметров** выберите способ построения **по стороне и углу**, в поле **Длина 1** введите 2, в поле **Угол** 45, щелкните мышью в любом месте верхней грани параллелепипеда. Нажмите кнопку **Создать объект** (рис.6.).
 - 6.6. Определите массу детали и координат ее центра тяжести. Масса созданной

детали составит 957,98 г.

6.7. Сохраните документ под именем файла **Деталь 3_Л.001.000** Закройте документ.

Puc. 5.

Puc.6.

7. Создание элемента по сечениям

Элемент по сечениям образуется путем соединения нескольких сечений произвольной формы и расположения.

- 7.1. Откройте документ **Основание Л.001.000.m3d.**
- 7.2. В **Дереве модели** укажите **Плоскость ХҮ**. Нажмите кнопку **Эскиз**. Постройте **Прямоугольник по центру и вершине** с центром в начале координат высотой 20 мм и шириной 50 мм. Выйдите из эскиза (нажмите кнопку Эскиз).
- 7.3. На панели Вспомогательные объекты нажмите кнопку Смещенная плоскость. В Дереве построения щелкните мышью на Плоскость ХУ. На панели Параметров в поле Расстояние введите значение 25. Направление смещения должно быть Прямое. Нажмите кнопку Создать объект. В Дереве построения появится строчка Смещенная плоскость:1 щелкните по ней мышью и вновь нажмите кнопку Создать объект.

Система создаст две плоскости равноудаленные на 25 мм.

7.4. Направьте курсор на первую от поверхности параллелепипеда смещенную плоскость и, когда курсор примет вид +, щелкните мышью.

Отмеченная плоскость выделится зеленым цветом с управляющими узелками, с помощью которых можно изменять длину, ширину и положение плоскости, однако заданное расстояние относительно соседних плоскостей будет неизменным.

Нажмите **Эскиз**. Постройте **Окружность** с центром в начале координат радиусом 8 мм. Выйдите из эскиза.

7.5. Щелкните мышью по второй смещенной плоскости и нажмите кнопку Эскиз.

Постройте Окружность с центром в начале координат радиусом 25 мм. Выйдите из эскиза.

7.6. На панели Элементы тела нажмите кнопку 🎒 Элемент по сечениям , В Дереве построения нажмите Эскиз:2, затем Эскиз:3, потом Эскиз:4.

Если нарушить последовательность выделения эскизов, то форма создаваемой поверхности будет иной. Указанные эскизы будут отражены в списке сечений на **Панели параметров**.

В настройках Начальное сечение и Конечное сечение установите тип соединения **По нормали**. Нажмите кнопку **Создать объект**.

7.7. Скругление верхней грани: на панели **Элементы тела** нажмите кнопку **Скругление**. На **панели Параметров** в поле **Радиус** введите 5. Направьте курсор на верхнюю круглую грань и, когда он примет вид $+_{\square}$, щелкните мышью. Нажмите кнопку **Создать объект** (рис. 7).

Puc. 7.

- 7.8. Скройте изображение смещенных плоскостей: щелкните на знак **Видимый** в строчке **Смещенная плоскость:1** в **Дереве построения**. Аналогичную процедуру повторите и для другой плоскости.
 - 7.9. Проверьте массу детали, она должна быть равной 1065,35г.
- 7.10. Сохраните документ под именем файла **Деталь 4_Л.001.000** Закройте документ.
- 8. Вырезание поверхности выдавливанием.
 - 8.1. Откройте документ **Основание_Л.001.000m3d.**
- 8.2. Выберите Плоскость XY и нажмите кнопку Эскиз. Постройте Прямоугольник по центру (в начале координат) и вершине высотой 40 мм и шириной 90 мм.
- 8.3. На панели Элементы тела нажмите кнопку Вырезать выдавливанием. На панели Параметров выберите следующие опции: Выдавливание способ: на расстоянии, в поле Расстояние установите значение 15, в поле Угол 45, смените направление уклона (рядом с полем Угол нажмите —). Нажмите кнопку Создать объект.
 - 8.4. Выполните фаску по двум длинам 1x1 мм на торцевой поверхности стенки (рис. 8).

Puc. 8.

- 8.5. Контроль правильности выполнения модели проведите по массе, которая равна 554,7 г.
- 8.6. Сохраните документ под именем файла **Деталь 5_Л.001.** Закройте документ. 9. Вырезание поверхности вращением.
 - 9.1. Откройте документ Основание_Л.001.m3d.
- 9.2. Выберите Π лоскость XY и нажмите кнопку Эскиз. Постройте Эллипс с центом в начале координат с длиной первой полуоси 35 мм, второй полуоси 15 мм, углом наклона 0° .

Постройте горизонтальную вспомогательную **Прямую**, проходящую через начало координат. Постройте горизонтальный **Отрезок** (стиль **Осевая**) от центра координат до пересечения с линией эллипса. Удалите нижнюю часть эллипса (до горизонтальной прямой). Выйдите из **Эскиза.**

9.3. На панели **Элементы тела** нажмите кнопку Вырезать вращением . На панели **Параметров** выберите следующие опции: **Тип построения** - сфероид, в поле **Угол** установите значение 180, смените направление вырезания, если это необходимо (рядом с полем **Угол** нажмите). Нажмите кнопку **Создать объект** (рис.9).

Puc. 9.

- 9.4. Контроль правильности выполнения модели провести по массе, которая равна 655,5 г.
- 9.5. Сохраните документ под именем файла **Деталь 6_Л.001.** Закройте документ. **10. Вырезание по траектории.**
 - 10.1. Откройте документ Основание_Л.001.m3d.
- 10.2. Нажмите кнопку **Цилиндрическая спираль** на панели **Элементы каркаса**. Выделите переднюю грань параллелепипеда (рис. 10). На **панели Параметров** установите следующие параметры построения спирали: **Способ построения** по

числу витков и шагу (n,t), **Количество витков** -26, **Шаг** — 2, нажмите кнопку **Сменить направление** рядом с полем **Шаг**, **Направление навивки**- Левое, в поле **Диаметр** введите значение 80, в поле **Размещение** введите координаты (0,0). Нажмите кнопку **Создать объект** (рис. 10.).

- 10.4. В Дереве построения нажмите на построенную Перпендикулярную плоскость и кнопку Эскиз. Постройте Прямоугольник по центру и вершине высотой 1 мм, шириной 40 мм. Направьте фантом прямоугольника в конец спирали и, как только сработает привязка Ближайшая точка, щелкните мышью. Отожмите кнопку Эскиз.
- 10.5. На панели Элементы тела нажмите кнопку Вырезать по траектории. На панели Параметров установите Движение сечения Ортогонально траектории. Направьте курсор на цилиндрическую спираль и, когда он примет вид +, щелкните мышью. Убедитесь, что в Сечении выбран Эскиз 3 (построенный прямоугольник) (рис. 11). Нажмите кнопку Создать объект.
 - 10.6. Скройте изображение вспомогательной плоскости и спирали () (рис.12.)

- 10.7. Контроль построения выполните по массе, которая равна 512 г.
- 10.8. Сохраните документ под именем файла Деталь 7_Л.001.000 Закройте документ.
- 11. Вырезание по сечениям.
 - 11.1. Откройте документ **Основание_Л.001.000.m3d.**
- 11.2. Направьте курсор на переднюю грань параллелепипеда, перпендикулярную оси X; когда курсор примет вид $+_{\square}$, щелкните мышью и нажмите кнопку **Эскиз**. Постройте эскиз согласно рис. 13. Выйдите из эскиза.
- 11.3. В дереве построения выберите **Плоскость XY** и нажмите кнопку Э**скиз**. Постройте эскиз согласно рис. 14. Выйдите из эскиза.

Puc. 13. Puc. 14.

- 11.4. На панели Элементы тела нажмите кнопку Вырезать по сечениям. Последовательно выделите в Дереве построения Эскиз 2 и Эскиз 3. На панели Параметров Способ построения элемента начальное сечение выберите По нормали. То же самое сделайте и для конечного сечения. Нажмите кнопку Создать объект (рис. 15.).
 - 11.5. Контроль построения осуществляется по массе, которая равна 672 г.
 - 11.6. Создания сечения поверхностью: на панели Элементы тела нажмите кнопку
- **П** Сечение поверхностью. В Дереве построения выберите Плоскость ZX, смените направление отсечения. Способ задания отображения Вручную, цвет сечения **Красный.** Нажмите кнопку Создать объект (рис. 16).

Puc. 15.

Puc. 16.

- 11.7. Исключите из расчета сечение поверхностью (скройте это элемент в Дереве построения).
 - 11.8.Сохраните документ под именем файла Деталь 8_Л.001. Закройте документ.
 - 2. СОЗДАНИЕ КОНСТРУКТИВНЫХ ЭЛЕМЕНТОВ С ПОМОЩЬЮ БИБЛИОТЕКИ СТАНДАРТНЫХ ИЗДЕЛИЙ. ЭЛЕМЕНТЫ РЕДАКТИРОВАНИЯ МОДЕЛИ
- 2.1. Создание конструктивного элемента с помощью библиотеки стандартных изделий.

Построение канавок, проточек, отверстий и других стандартных и типовых конструктивных элементов выполняется при помощи Библиотеки Стандартных

изделий.

- 1.Откройте **Деталь** 1 **Л.001.000**.
- 2. Определение места расположения отверстия: укажите на верхнюю грань параллеленипеда и нажмите кнопку **Эскиз**. Постройте **Вспомогательные параллельные прямые** и **Точку** их пересечения согласно рис. 17. Выйдите из эскиза.
- 3. Выполните команду Приложения Стандартные изделия Вставить элемент. Откройте вкладку Конструктивные элементы. В Дереве библиотеки раскройте ветви Отверстия Отверстия цилиндрические Отверстия резьбовые. Выполните двойной щелчок мыши на элементе Резьбовое цилиндрическое отверстие с фаской глухое.
- 4. Выберите начальную плоскость верхняя грань параллелепипеда, затем укажите на созданную точку. Нажмите кнопку **Создать объект.**
- 5. В области свойств выполните двойной щелчок мыши в поле **Диаметр резьбы**. В списке выбора типоразмеров и параметров выберите диаметр резьбы 6 мм, шаг резьбы 0,5 мм, глубину отверстия 10 мм, глубину резьбы 8 мм. Нажмите **Применить**. Закройте **Библиотеку стандартных изделий**.
- 2.2. Элементы редактирования модели.

При работе с моделью может потребоваться создание копий объектов (операций, компонентов, точек, поверхностей и т.д.), которые были бы определенным образом упорядочены — образовывали прямоугольную сетку с заданными параметрами или были симметричны относительно плоскости и т.п. Для создания в модели упорядоченных групп одинаковых объектов можно воспользоваться командами построения массивов.

Создание прямоугольного массива элементов: на панели **Массив, копирование** нажмите кнопку Массив по сетке. В **Дереве построения** выберите созданное отверстие M6X0,5. На панели Параметров выделите поле Направляющий объект, укажите **Ось У** в **Дереве построения**, количество элементов 2, Шаг 30 мм. Выделите поле Направляющий объект в разделе Направление 2, нажмите кнопку **Вторая ось** на **Панели Параметров.** Укажите **Ось X**, задайте **количество элементов** 2, **Шаг** 80 мм. Нажмите кнопку **Создать объект** (рис. 18.). Сохраните документ.

Puc. 17.

Puc. 18.

3. СОЗДАНИЕ ТРЕХМЕРНОЙ МОДЕЛИ ВАЛА СОГЛАСНО ЧЕРТЕЖУ С ИСПОЛЬЗОВАНИЕМ БИБЛИОТЕКИ КОНСТРУКТИВНЫХ И ТЕХНОЛОГИЧЕСКИХ ЭЛЕМЕНТОВ

Рис. 19. Чертеж вала

3.1. Создание новой детали

Для создания детали в Главном меню выберите Файл - Создать. В окне Новый документ укажите тип создаваемого документа Деталь. На панели Быстрого доступа нажмите кнопку списка справа от кнопки — Ориентация и укажите вариант Изометрия. Щелкните правой клавишей мыши в Дереве построения на наименование Деталь (Тел-0) и из контекстного меню выберите команду Свойства модели. На Панели параметров в поле Обозначение (Базовая часть) введите Р.001.002, в поле Наименование введите Вал, заполните поле Материал: нажмите кнопку Выбрать материал из списка. Выберите материал Сталь 45 ГОСТ 1050-2013, выберите Цвет детали Серый.

3.2. Построение ступеней вала способом выдавливания

При создании трехмерных твердотельных моделей валов, осей, штоков и т.п. (деталей вращения) возможно применение способа построения вращением эскиза ступеней детали вращения вокруг оси.

В Дереве модели раскройте «ветвь» Начало координат и укажите Плоскость ZX. Нажмите кнопку Создать эскиз на панели Быстрого доступа. Постройте окружность с центром в начале координат диаметром 34 мм. На панели Элементы тела нажмите кнопку Элемент выдавливания. На панели Параметров настройте параметры операции создания элемента: в поле Расстояние введите 76. Рядом с полем нажмите кнопку Сменить направление. В поле Угол введите

значение 0. Нажмите кнопку 🗸 Создать объект (рис. 20). Направьте курсор на правый торец ступени вала, u когда курсор примет вид $^{+}$, щелкните мышью, после чего нажмите кнопку 🕒 Эскиз. Постройте Окружность с центром в начале координат и диаметром 35 мм. На панели Элементы тела нажмите кнопку Элемент выдавливания. На Панели Параметров в поле Расстояние установите 49. Нажмите кнопку Создать объект. Постройте необходимые ступени вала согласно чертежу (рис. 19) и рисунку 20.

Puc. 20

3.3. Создание фасок

На панели Элементы тела нажмите кнопку 🎦 Фаска (команда расположена в группе скругление/фаска). На панели Параметров выберите способ построения по стороне и углу, в поле Длина 1 введите 2, в поле Угол 45, укажите ребро согласно рисунку 21. Нажмите кнопку Создать объект.

Puc. 21 Нажмите кнопку 🍮 Фаска. в поле Длина 1 введите 1,6, в поле Угол 45, укажите

ребро согласно рисунку 22. Нажмите кнопку Создать объект.

Puc. 22.

3.4. Создание шпоночных пазов

Выполните команду **Приложения - Стандартные изделия - Вставить элемент.**Откройте вкладку **Конструктивные элементы.** В **Дереве библиотеки** раскройте ветвь **Шпоночные пазы**, выберите шпоночный паз ГОСТ 24071-97 наружный. Укажите цилиндрическую поверхность диаметром 34 мм, укажите торцевую поверхность (левый торец детали), на **панели Параметров** в поле **Расстояние** введите 28 (это расстояние от торца детали до шпоночного паза), в поле угол поворота введите 90. Нажмите кнопку **Создать объект**. Нажмите **Применить**. Размеры шпоночного паза были подобраны системой согласно диаметру ступени вала. Выберите шпоночный паз ГОСТ 23360-78 наружный. Укажите цилиндрическую поверхность диаметром 42 мм, укажите торцевую поверхность (правый торец ступени вала диаметром 42), на **панели Параметров** в поле **Расстояние** введите 5 (это расстояние от торца детали до шпоночного паза), в поле угол поворота введите 270. Нажмите кнопку **Создать объект**. Нажмите **Применить**.

Puc. 23.

3.5. Создание канавок для выхода шлифовального круга

В Дереве библиотеки раскройте ветвь Канавки: Канавки для выхода шлифовального круга ГОСТ 8820-69: Канавки для круглого шлифования. Выберите канавку для наружного шлифования по цилиндру исполнение 1, выберите наружное круглое ребро 1 (рис. 24). Нажмите кнопку Создать объект. Нажмите Применить. выберите наружное круглое ребро 2 (рис. 24). Нажмите кнопку Создать объект. Нажмите Применить.

Puc. 24.

3.6. Создание наружной резьбы и проточки для выхода резьбы

На панели Обозначение нажмите кнопку Условное изображение резьбы. Выделите ступень вала диаметром 27 мм. На панели Параметров выберите Стандарт: Метрическая резьба с мелким шагом ГОСТ 24705-2004. Шаг резьбы 1,5 мм, длина 40 мм. Нажмите кнопку Создать объект. Выполните команду Приложения - Стандартные изделия - Вставить элемент. Откройте вкладку Конструктивные элементы. В Дереве библиотеки раскройте ветвь Проточки для выхода резьбы: Проточки для метрической резьбы: Проточка наружная ГОСТ 27148-86. Выберите наружное круглое ребро (место расположения проточки). Нажмите кнопку Создать объект. Нажмите Применить. Закройте библиотеку. 3.7. Контроль построения выполните по массе, которая равна 2291 г.

Puc. 25

- 4). СОЗДАЙТЕ МОДЕЛИ КОМПЛЕКТУЮЩИХ ОРИГИНАЛЬНЫХ ДЕТАЛЕЙ УЗЛА ИНДИВИДУАЛЬНОГО ЗАДАНИЯ. МОДЕЛИ В ОТЧЕТЕ ДОЛЖНЫ БЫТЬ ПРЕДСТАВЛЕНЫ В ВИДЕ РИСУНКА ЛЮБОГО ФОРМАТА С ДЕРЕВОМ МОДЕЛИ.
- 5). ПОДГОТОВЬТЕ ОТВЕТЫ НА КОНТРОЛЬНЫЕ ВОПРОСЫ.
- 6). СДЕЛАЙТЕ ВЫВОДЫ ПО ЛАБОРАТОРНОЙ РАБОТЕ.

Вопросы для самоконтроля и подготовке к защите лабораторной работы

- 1. Какие типы моделей можно создавать в системе КОМПАС-3D?
- 2. Опишите наименование и назначение инструментальных панелей набора твердотельное моделирование.
 - 3. Перечислить этапы создания модели.
- 4. Какие способы создания модели существуют? Какой способ создания модели является оптимальным?
 - 5. Перечислить варианты формообразования модели вы при выдавливании?
 - 6. Перечислить варианты формообразования модели при вырезании?
 - 7. Какие конструктивные и технологические элементы деталей возможно создать при помощи библиотеки КОМПАС-3D?
 - 8. Как определить центр тяжести и массу модели детали?
 - 9. Как выполнить сечение модели плоскостью или по эскизу?
- 10. Какое изображение принимает курсор при выделении грани, плоскости, ребра, вершины, оси при создании модели?
 - 11. Опишите назначение Дерева построения модели