2.7.4

Claim: Suppose G is a finite group. Let N be a normal subgroup of G and A an arbitrary subgroup.

$$|AN| = \frac{|A||N|}{|A \cap N|}.$$

Proof: We know that $AN/N \cong A/(A \cap N)$, so that $|AN/N| = |A/(A \cap N)|$. So we have |AN/N| = |AN|/|N| and $|A/(A \cap N)| = |A|/|A \cap N|$ by Lagrange's Theorem.

As a result,

$$|AN|/|N| = |A|/|A \cap N| \Rightarrow |AN| = \frac{|A||N|}{|A \cap N|} \blacksquare$$

2.7.6

(a) Claim: Aut(G) is a group.

Proof: Since Aut is an isomorphism, $|G| = |\operatorname{Aut}(G)|$, so as G is not empty, $\operatorname{Aut}(G)$ is not empty. Associativity is guaranteed since G is a group. And again, since $\operatorname{Aut}(G) = G$, identity and inverses exist in $\operatorname{Aut}(G)$.

Thus, we can conclude that Aut(G) is also a group.

(b) Claim: If map $c_g: G \to G$ defined by $c_g(x) = gxg^{-1}$ is an element of $\operatorname{Aut}(G), c: g \mapsto c_g$ is a homomorphism from G to $\operatorname{Aut}(G)$.

Proof: Take 2 arbitrary $g_1, g_2 \in G$, $c(g_1)c(g_2) = gg_1g^{-1}gg_2g^{-1} = gg_1g_2g^{-1} = c(g_1g_2)$.

So $c: g \mapsto c_q$ is a homomorphism from G to $\operatorname{Aut}(G)$.

(c) Claim: Ker(c) = Z(G).

Proof: Ker(c) = $\{g \in G, c = id_G\} = \{g \in G, \forall x \in G, gxg^{-1} = x\} = \{g \in G, \forall x \in G, gx = xg\} = Z(G) \blacksquare$

(d) Claim: $Int(G) \cong G/Z(G)$.

Proof: According to First Isomorphism Theorem, $G/\text{Ker}(c) \cong \text{Int}(G)$. So we have $\text{Int}(G) \cong G/Z(G)$ by the conclusion of last question that Ker(c) = Z(G).

2.7.7

Claim: $D_4/C_4 \cong C_2$.

Proof: We can establish map $\varphi: D_4 \to C_2$ by maps all element in C_4 to e_{C_2} and the rest to $e_{C_2}^{-1}$ so we know it is surjective. Take $d_1, d_2 \in D_4$, $\varphi(d_1d_2) = \varphi(d_1)(d_2)$ can be easily verified by listing multiplication table. So φ is a surjective homomorphism. Since C_4 is a normal group containing identity e, C_4 is the kernel of quotient map.

As a result, we can conclude that $D_4/C_4 \cong C_2$ by the First Isomorphism Theorem.

2.7.11

Claim: If G/Z(G) is cyclic, then G is abelian.

Proof: Take $G/Z(G) = \langle zG \rangle$. Then for each coset xZ, there exists some $i \in \mathbb{Z}$ that $xZ = (gZ)^i = g^iZ$.

Then take $x, y \in G$ and denote $x = g^i z, y = g^j z_0$. So we have $xy = g^i z g^j z_0 = g^{i+j} z z_0 = g^j g^i z z_0 = g^j z_0 g^i z = yx$.

As a result, we proved that G is abelian.