Jnioui Paul

2/2

2/2

2/2

2/2

2/2

-1/2

Note: 13/20 (score total: 13/20)

+180/1/60+

QCM THLR 2	
Nom et prénom, lisibles :	Identifiant (de haut en bas) : □0 □1 ■2 □3 □4 □5 □6 □7 □8 □9
INIOUI Paul	
plus restrictive (par exemple s'il est demandé si 0 est	•
Q.2 Pour toute expression rationnelle e , on a \emptyset + $e \equiv e + \emptyset \equiv \emptyset$.	 peut n'être inclus dans aucun langage dénoté par une expression rationnelle
X ■. faux □ vrai	
Q.3 Pour toutes expressions rationnelles e, f, g , on a $e(f+g) \equiv ef + eg$ et $(e+f)g \equiv eg + fg$.	 peut avoir une intersection non vide avec son complémentaire Q.8 Si e et f sont deux expressions rationnelles,
Y ™ vrai □ faux	quelle identité n'est pas nécessairement vérifiée?

0/2☐ faux vrai

 $(e+f)^* \equiv (e^*+f)^*.$

Q.5 Pour toutes expressions rationnelles e, f, on a $(ef)^*e \equiv e(ef)^*$.

Q.4 Pour toutes expressions rationnelles e, f, on a

□ vrai x faux

L'expression Perl '[a-zA-Z][a-zA-Z0-9_]*' n'engendre pas :

'exit_42' 'eval_expr' ☐ 'main' Q.7 Un langage quelconque

n'est pas nécessairement dénombrable

0/2

2/2

2/2

 \boxtimes $(ef)^* \equiv e(fe)^* f$ $\times \square$ $(ef)^* e \equiv e(fe)^*$

L'expression Perl ([-+]*[0-9A-F]+[-+/*])*[-+]*[0-9A-F]+' n'engendre pas:

(0+1+2+3+4+5+7+8+9) 'DEADBEEF' **(20+3)*3** '-+-1+-+-2'

Q.10 \triangle Soit A, L, M trois langages. Parmi les propositions suivantes, lesquelles sont suffisantes pour garantir L = M?

 \times $\{a\} \cdot L = \{a\} \cdot M$ \square AL = AM $\forall n > 1, L^n = M^n$

Aucune de ces réponses n'est correcte.

Fin de l'épreuve.