Econometric Softwares: Stata

Jérémy Do Nascimento Miguel

Class 4 Spring 2024

Session 4: Outline

- Basics of visualizations in Stata
- Formatting techniques
- Types of graphs
- Combining and exporting graphs

Basics I

Common graph types:

- Scatter plots
- Line graphs
- Bar charts
- Fitted Lines
- Maps
- many more

Basic principles

- Distinctive colors ("warm" vs "cold" colors, e.g., red vs blue)
- Clean labels on axis

Basics II

- Scaled to make patterns visible
- Texts are readable but not too large
- Explanatory notes: should be readable alone

Personal preferences:

- Background should be white
- Modify font
- Specified graph settings in global

Basics

Most graphs are twoway plots: variables for y-axis and x-axis should be specified

- twoway (plottype yvar xvar, plotoptions),
- legend (setting)
- xlabel (numlist, xlabelsettings)
- ylabel (numlist, ylabelsettings)
- xtitle ("text", xtitlesettings)
- ytitle ("text", ytitlesettings)
- title ("text", titlesettings)
- subtitle ("text", subtitlesettings)
- scale (#)
- xsize (#) ysize
- scheme()

check out the help file

Basic twoway plot twoway (scatter price mpg)

Changing colors twoway (scatter price mpg, mcolor(red))

Colors in Stata

Changing marker shape

twoway (scatter price mpg, mcolor(red) msymbol(diamond))

Marker shapes in Stata

Changing axis titles

twoway (scatter price mpg, mcolor(red) msymbol(diamond)), xlabel(0(10)40, labsize(*0.9)) ylabel(0(2500)15000, labsize(*0.9))

Plot by groups - overlaying plots

twoway (scatter price mpg, mcolor(red) msymbol(diamond)), xlabel(0(10)40, labsize(*0.9)) ylabel(0(2500)15000, labsize(*0.9)) xtitle("Mileage", size(*1.1)) ytitle("Price in USD", size(*1.1))

Formatting legend

twoway (scatter price mpg if foreign==1, mcolor(red)) (scatter price mpg if foreign==0, mcolor(blue)), xlabel(0(10)40, labsize(*0.9)) ylabel(0(2500)15000, labsize(*0.9)) xtitle("Mileage", size(*1)) ytitle("Price in USD", size(*1))

Adding linear fitted line

twoway (scatter price mpg if foreign==1, mcolor(red)) (scatter price mpg if foreign==0, mcolor(blue)), legend(order(1 "Foreign" 2 "Domestic") pos(8) ring(0) rows(2)) xlabel(0(10)40, labsize(*0.9)) ylabel(0(2500)15000, labsize(*0.9)) xtitle("Mileage", size(*1)) ytitle("Price in USD", size(*1))

Adding linear fitted line

twoway (scatter price mpg, mcolor(red)) (lfit price mpg), legend(order(1 "Observed" 2 "Fitted line")) xlabel(0(10)40, labsize(*0.9)) ylabel(0(2500)15000, labsize(*0.9)) xtitle("Mileage", size(*1)) ytitle("Price in USD", size(*1))

Adding linear fitted line with CI

twoway (scatter price mpg, mcolor(red)) (lfit price mpg, lcolor(blue) lpattern(dash) lwidth(*1.5)), legend(order(1 "Observed" 2 "Fitted line")) xlabel(0(10)40, labsize(*0.9)) ylabel(0(2500)15000, labsize(*0.9)) xtitle("Mileage", size(*1)) ytitle("Price in USD", size(*1))

Adding linear fitted line with CI

twoway (scatter price mpg, mcolor(red)) (lfitci price mpg, clcolor(blue) clpattern(dash) fcolor(blue%10) alwidth(none)), legend(order(1 "Observed" 3 "Fitted line")) xlabel(0(10)40, labsize(*0.9)) ylabel(0(2500)15000, labsize(*0.9)) xtitle("Mileage", size(*1.1)) ytitle("Price in USD", size(*1.1))

Adding local polynomial fit with CI

twoway (scatter price mpg, mcolor(red)) (lpolyci price mpg, bwidth(2) clcolor(blue) clpattern(dash) fcolor(blue%10) alwidth(none)), legend(order(1 "Observed" 3 "Local polynomial fit")) xlabel(0(10)40, labsize(*0.9)) ylabel(0(2500)15000, labsize(*0.9)) xtitle("Mileage", size(*1)) ytitle("Price in USD", size(*1))

Adding title/subtitle and notes

twoway (scatter price mpg, mcolor(red)) (lpolyci price mpg, bwidth(2) clcolor(blue) clpattern(dash) fcolor(bluelegend(order(1 "Observed" 3 "Local polynomial fit")) xlabel(0(10)40, labsize(*0.9)) ylabel(0(2500)15000, labsize(*0.9)) xtitle("Mileage", size(*1)) ytitle("Price in USD", size(*1)) title("Relationship between price and mileage of cars", size(*0.9)) notes("Source: author's elaboration based on Stata system data on automobiles.", size(*0.9))

Other cool packages

You can go beyond the Stata basic graphics and have a look at some user-based packages. Few I like you can find through ssc install or online:

- scatterfit
- catcibar
- A lot more on Asjad Naqvi website

Change font: LMRoman10-Regular

- 1. Download font here https://www.fontsquirrel.com/fonts/Latin-Modern-Roman
- 2. Convert the .odf file to .ttf
- 3. Install it in the font folder
- 4. Change fonts in your dofile graph set window fontface "LMRoman10-Regular"

Change scheme: see scheme pack

Settings I am using

I used to define global with all my graph settings:

```
*Graph option
global plotregion plotregion(margin(b=0 t=2) color(white) fcolor(white)
lcolor(white) icolor(white) ifcolor(white) ilcolor(white))
global graphregion graphregion(margin(l=0 r=4 b=-2 t=-1) color(white) fcolor(white) lcolor(white) icolor(white) ifcolor(white) ilcolor(white))
global blabel blabel(bar, format(%4.3f))
global ylabel ylabel(, nogrid ang(hor) labsize(small))
global scheme scheme(white_tableau)
```

Exercise 4.1

- 1. Open the datafile hh.dta. This data is a household-level expenditure survey data and contains basic information on household demographics, consumption and poverty.
- 2. Generate a scatter plot with log per capita consumption on y-axis and area of land owned on x-axis.
- 3. Restrict your sample in the graph to land area above 0 and below 200.
- 4. Format axis labels, axis titles, colors (depending on your preferences) and sizes of text if necessary.
- 5. Add local polynomial fit with confidence intervals to you scatter plot. Keep the same sample restriction as in your scatter plot. Use bandwidth of 7 in the options.
- 6. Format colors and line of polynomial fit so that it is distinctive from scatter plot.
- 7. Format legends so that it is clear what is plotted in the graph.
- 8. Add title explaining what this graph is about and source of data as a note. Econometric

Bar Charts

There are two ways you can generate bar charts in Stata:

- 1. graph bar yvars, over(groupvar)
- 2. twoway (bar xvar yvar)

For horizontal bar charts: graph hbar yvars, over(groupvar)

Bar charts: graph bar graph bar price, over(rep78) ytitle("Mean price in USD") ylabel(0(2000)8000)

Bar charts: twoway bar

- bys rep78: egen meanpricerep78 = mean(price)
- twoway (bar meanpricerep78 rep78, barwidth(0.8)), xtitle("Repair record 1978") ytitle("Mean price in USD") ylabel(0(2000)8000)

Bar charts: graph hbar graph hbar price, over(rep78) ytitle("Mean price in USD") ylabel(0(2000)8000)

Distribution plots: histogram histogram mpg, normal

Distribution plots: kernel density kdensity mpg

Distribution plots: kernel density by groups twoway (kdensity mpg if foreign==1) (kdensity mpg if foreign==0), legend(order(1

"Foreign" 2 "Domestic")) xtitle("Mileage (mpg)") ytitle("Kernel density")

Connected Lines

- bys headroom: egen meanpricehead = mean(price)
- twoway (connected meanpricehead headroom), ytitle("Mean price in USD") ylabel(0(2000)8000)

Time series plot

- sysuse tsline2, clear
- tsset day
- twoway (tsline calories), xtitle("")

Coefficient plot: coefplot

Sometimes we want to plot our estimated coefficients with its confidence intervals

- Command to use: coefplot
- To install (if not yet installed): ssc install coefplot
- A lof of examples here

Coefficient plots: coefplot

- regress price mpg trunk length weight turn displacement
- coefplot, drop(cons) xline(0)

Coefficient plots: coefplot

- regress price mpg trunk length weight turn displacement if foreign==1
- est store foreign1 ← store your estimation results
- regress price mpg trunk length weight turn displacement if foreign==0
- est store foreign0
- coefplot (foreign1, label("Foreign")) (foreign0, label("Domestic")), drop(cons) xline(0)

Combining graph

To combine graph:

- 1. Run the code that generates your graphs: save them in disk using saving() option or give name using name() option
- 2. To combine: graph combine plotname1 plotname2, cols(2) rows(1)
- 3. Number of columns and rows in a combined graph is specified using options cols(#) and rows(#)
- 4. You can rescale content of your all plots in a combined graph using options altshrink (shrinks text, line width in all plots) or iscale() to rescale the content

Exporting graph

To export graphs:

- 1. Run the code that generates your graphs
- 2. To export the graph that is displayed in graph editor window: graph export filename, as(formatname) replace
- 3. Or you can directly use the name of graph you want to export (if you have given the name): graph export filename, as(formatname) name(plotname) replace
- 4. Supported vector formats to export: ps (PostScript), eps (Encapsulated PostScript), pdf, svg (Scalable Vector Graphics) ...
- 5. Supported bitmap formats to export: png, jpg, tif, gif ...

Exercise 4.2

- 1. Generate a bar graph showing poverty rate and extreme poverty by urban/rural location (hint: use command graph bar)
- 2. Generate a kernel density plot depicting density of employment ratio (empratio) by poor and non-poor households (using poor variable). Format line colors, line patterns and legends so that it is clear what is depicted in the graph.
- 3. Add titles/notes to both graphs, combine them (pay attention to scales!) and export them as a single figure (with two plots horizontally placed).
- 4. Run a regression of poverty dummy (poor) on following variables (independent variables) hhsize, nchild, nmigrant, empratio, land, urban, hhh female.
- 5. Plot all coefficients (excluding constant term) using coefplot.