

Betriebssysteme Systemprogrammierung

Prof. Dr. Rainer Werthebach

Studiengang Informatik

Hochschule Aalen - Technik und Wirtschaft

Kapitel 1 Einführung Stand 01.03.2024

Gliederung – Vorlesung

1. Einführung

- 1.1 Komponenten einer Rechenanlage
- 1.2 Was ist ein Betriebssystem
- 1.3 Das Schichtenmodell
- 1.4 Schnittstellen und virtuelle Maschine
- 1.5 Die Geschichte von Betriebssystemen

2. Prozesse

- 2.1 Prozesszustände
- 2.2 Scheduling
- 2.3 Synchronisation
- 2.4 Kommunikation

3. Speicherverwaltung

- 3.1 Speicherbelegungsstrategien
- 3.2 virtueller Speicher
- 3.3 Seitenverwaltung
- 3.4 Segmentierung
- 3.5 Cache

4. Dateiverwaltung

- 4.1 Dateisysteme
- 4.2 Dateiattribute
- 4.3 Dateifunktionen
- 4.4 Dateiorganisation
- 5. Ein- und Ausgabeverwaltung
 - 5.1 Das Schichtenmodell
 - 5.2 Gerätemodelle
 - 5.3 Treiberprogrammierung

6. Netzwerkdienste

- 6.1 Der Netzwerkanschluss
- 6.2 Kommunikation im Netz
- 6.3 Dateisysteme im Netz
- 6.4 Sicherheitsmechanismen

Gliederung - Übung

- allgemein
- 1. Einführung, Linux als Beispielbetriebssystem
- 2. Benutzer, Gruppen, Rechte, Links, Ein-/Ausgabeumlenkung
- 3. Pipes, einige Kommandos, Editoren
- Shellprogrammierung
- 4. Shell Skripte, Variablen, Subshell, Benutzereingaben, here-Document, for-Anweisung
- 5. case-, test-, if-Anweisungen, Funktionen, Steuerkommandos
- 6. Das tree Skript ein ausführliches Beispiel
- <u>Systemprogrammierung</u>
- 7. Prozesse, Signale
- 8. Makefiles, fork, wait, exit, daemons, zombies
- 9. Pipes, Threads, Mutexe, Semaphore, Shared Memory

1.1 Komponenten einer Rechenanlage

Prozessor

CPU: Central Processing Unit

ALU: Arithmetisch Logische Einheit +, -, *, /, and, or, not, <<, >>, ...)

Speicher
RAM
Hauptspeicher
Main Memory
Kernspeicher

Externer Speicher

(Haupt-) Speicher

- organisiert in Zeilen und Spalten
- enthält Speicherwörter

warum 2ⁿ?

Warum wird **0,1** genutzt: leicht zu implementieren

- 1 ... Spannung, Strom, Ladung, S
- 0 ... keine Spannung, kein Strom, keine Ladung, S magnetisiert

Kernspeicherprinzip

Speicherkondensator

Kommunikation Prozessor/Speicher

Von-Neumann Architektur

Programm + Daten liegen im gleichen Speicher

Programm in Maschinensprache

Konstanten
initialisierte Variablen
nicht initialisierte Variablen

1.2 Was ist ein Betriebssystem?

A: Historisch gesehen enthält ein BS alle Programme, die nötig sind, einen Rechner für verschiedene Aufgaben zu betreiben.

vgl.

Heizungssteuerungssysteme auf Mikrokontrollern brauchen kein BS. Es werden Maschinenprogramme direkt für eine Aufgabe entworfen, die die Hardware steuern.

B: Das BS ist die Software, die für den Betrieb eines Rechners anwendungsunabhängig notwendig ist.

Ressourcenverwalter

C: Ein BS ist die Gesamtheit aller Programme, die die Benutzung von Betriebsmitteln steuern und verwalten.

Betriebsmittel (Ressourcen) sind:

- Prozessor
- Speicher
- E/A-Geräte, z.B. Tastatur, Monitor, Drucker
- logisch: Dateien, Programme

D: <u>Schnittstelle</u> zwischen Mensch und Maschine (<u>virtuelle Maschine</u>)

Der Programmierer nutzt:

write (dateinummer, textadresse, bytezahl);

anstatt ???

1.3 Das Schichtenmodell

Einfaches Schichtenmodell

Benutzer benutzt Benutzerprogramm benutzt Betriebssystem benutzt Maschinenhardware

Schalenmodell

1.4 Schnittstellen und virtuelle Maschine

1.5 Die Geschichte von Betriebssystemen

Betriebssystem + Rechnerarchitektur → Generationen

<u>0. Generation (1940 - 1950):</u> Röhren und Steckbretter

- kein Betriebssystem
- Programme in Maschinensprache (Prozessorbefehle)
- Kabel umstecken auf Steckbrettern
- keine Programmiersprachen

1. Generation (1950 - 1960): Lochkarten, Stapelsystem, Transistoren

Kodierung von bis zu 80 Zeichen

Berufe: Operator

Wartungspersonal

Computerarchitekt

Programmierer

- Programmierer stanzt Programm auf Lochkarte.
 Programmiersprachen: Assembler, Fortran, Cobol.
- Operator übernimmt Stapel, liest¹⁾ Programm ein, lässt berechnen²⁾, gibt Ausdruck an Programmierer zurück.
- 1) auf "billigem" Computer
- ²⁾ auf eigentlichem Computer

2. und 3. Generation (1960 - 1975): integrierte Schaltkreise ICs

Multiprogramming, Spooling, Timesharing

IBM 360 → wissenschaftliche Datenverarbeitung → kommerzielle Datenverarbeitung

Betriebssystem: Millionen Zeilen aus Assemblercode

Multiprogramming

Spooling (Simultaneous peripheral operations online)

Jobs (Lochkartenstapel) werden direkt, wenn sie abgegeben werden auf Festplatte geladen. BS kann nun neuen Job schneller beginnen.

Timesharing

Neue Variante des Multiprogramming.

Jeder Benutzer hat sein eigenes Terminal (Bildschirm, Tastatur direkt zum Computer). Die Rechenzeit wird in Stücke (Zeitscheiben) aufgeteilt. Jeder Benutzer erhält der Reihe nach eine Zeitscheibe, in der er die CPU nutzen darf.

4. Generation (1975 - 2006): PCs und Computernetze

PCs mit den Betriebssystemen MS-DOS, MS-Windows, UNIX/LINUX

PCs preisgünstig

DOS: single user BS

Windows: multitasking BS (task = Aufgabe)

Unix: multitasking/multiuser BS

Computernetze: - Kommunikation

- Steigerung der Rechenleistung

5. Generation (2006 – heute): PDAs, Smartphones, Tablet-PCs Embedded Systems

Palm OS, iOS, Android Windows Embedded, Windows Mobile, Embedded Linux Java?

