MLRF Lecture 03

J. Chazalon, LRDE/EPITA, 2019

Homography estimation Geometric validation

Lecture 03 part 06

So we want to recover H from keypoint matches

Recover the parameters of a perspective transform

From our matched points we want to estimate A that maps from x to x'

$$xH = x'$$

How many degrees of freedom?

>> 8 (
$$\underline{\text{not 9}}$$
 because $h_{22} = 1 \text{ OR } ||H|| = \sum h_{ij}^2 = 1$

w many degrees of freedom? >> 8 (<u>not 9</u> because $h_{22} = 1$ **OR** $||H|| = \sum h_{ij}^2 = 1$) $\begin{vmatrix} \widetilde{\mathbf{x}'} \\ \widetilde{\mathbf{y}'} \\ \widetilde{\mathbf{w}'} \end{vmatrix} = \begin{vmatrix} \mathbf{h}_{00} & \mathbf{h}_{01} & \mathbf{h}_{02} \\ \mathbf{h}_{10} & \mathbf{h}_{11} & \mathbf{h}_{12} \\ \mathbf{h}_{20} & \mathbf{h}_{21} & \mathbf{h}_{22} \end{vmatrix} \begin{vmatrix} \widetilde{\mathbf{x}} \\ \widetilde{\mathbf{y}} \\ \widetilde{\mathbf{w}} \end{vmatrix}$

How many knowns do we get with one match mH = n?

$$\begin{aligned} & n_x = (h_{00}^* m_x^{} + h_{01}^* m_y^{} + h_{02}^* m_w^{}) \, / \, (h_{20}^* m_x^{} + h_{21}^* m_y^{} + h_{22}^* m_w^{}) \\ & n_y^{} = (h_{10}^* m_x^{} + h_{11}^* m_y^{} + h_{12}^* m_w^{}) \, / \, (h_{20}^* m_x^{} + h_{21}^* m_y^{} + h_{22}^* m_w^{}) \end{aligned}$$

How many correspondences are needed?

Depends on the type of transform:

- How many for translation?
- For rotation?
- ...
- For general projective transform?

Reminded: we have 2 knowns for each match

How many correspondences are needed?

Transformation	Matrix	# DoF	Min. # of matches required			
translation	$\begin{bmatrix} \mathbf{I} & \mathbf{t} \end{bmatrix}_{2 \times 3}$	2	1			
rigid (Euclidean)	$\left[\begin{array}{c c}\mathbf{R}&\mathbf{t}\end{array}\right]_{2 imes3}$	3	2			
similarity	$\left[\begin{array}{c c} \mathbf{sR} & \mathbf{t} \end{array}\right]_{2\times3}$	4	2			
affine	$\left[\begin{array}{c} \mathbf{A} \end{array}\right]_{2\times3}$	6	3			
projective	$\begin{bmatrix} \tilde{\mathbf{H}} \end{bmatrix}_{3 \times 3}$	8	4			

6

Enforcing 8 DOF

Approach 1: set $h_{22} = 1$

$$x' = \frac{h_{00}x + h_{01}y + h_{02}}{h_{20}x + h_{21}y + 1}$$

$$y' = \frac{h_{10}x + h_{11}y + h_{12}}{h_{20}x + h_{21}y + 1}$$

Approach 2: Impose unit vector constraint

$$x' = \frac{h_{00}x + h_{01}y + h_{02}}{h_{20}x + h_{21}y + h_{22}}$$

$$y' = \frac{h_{10}x + h_{11}y + h_{12}}{h_{20}x + h_{21}y + h_{22}}$$

subject to the constraint

$$h_{00}^2 + h_{01}^2 + h_{02}^2 + \dots + h_{22}^2 = 1$$

Build an equation system to solve

Assuming $h_{22} = 1$ here:

$$x' = \frac{h_{00}x + h_{01}y + h_{02}}{h_{20}x + h_{21}y + 1}$$

Multiplying through by denominator:

$$(h_{20}x + h_{21}y + 1) x' = h_{00}x + h_{01}y + h_{02}$$

Rearrange:

$$h_{00}x + h_{01}y + h_{02} - h_{20}xx' + h_{21}yx' = x'$$

Same for y:

$$h_{10}x + h_{11}y + h_{12} - h_{20}xy' + h_{21}yy' = y'$$

Linear system with $h_{22} = 1$

				M				а		b	
x_0	y_0	1	0	0	0	$-x_0x_0'$	$-y_0x_0'$	$\lceil h_{00} \rceil$		$\begin{bmatrix} x'_0 \end{bmatrix}$	
0	0	0	x_0	y_0	1	$-x_0y_0'$	$-y_0y_0'$	h_{01}		y_0'	
x_1	y_1	1	0	0	0	$-x_1x_1'$	$-y_1x_1'$	h_{02}		x_1'	
0	0	0	x_1	y_1	1	$-x_1y_1'$	$-y_1y_1'$	h_{10}		y_1'	
x_2	y_2	1	0	0	0	$-x_2x_2'$	$-y_2x_2'$	h_{11}	=	x_2'	
0	0	0	x_2	y_2	1	$-x_2y_2'$	$-y_2y_2'$	h_{12}		y_2'	
x_3	y_3	1	0	0	0	$-x_3x_3'$	$-y_3x_3'$	h ₂₀		x_3'	
0	0	0	x_3	y_3	1	$-x_3y_3'$	$-y_3y_3'$	h_{21}		y_3'	
L	:	i		:	i	:	;]	$\lfloor h_{22} \rfloor$			

Use Linear Least Square to solve Ma = b

Still works if overdetermined: minimize squared error || b - M a ||²

$$|| b - M a ||^2 = (b - M a)^T (b - M a)$$

= $b^T b - a^T M^T b - b^T M a + a^T M^T M a$
= $b^T b - 2a^T M^T b + a^T M^T M a$

This is convex and minimized when gradient = 0. So we take the derivative wrt a and set = 0.

$$-M^{T}b + (M^{T}M)a = 0 \Leftrightarrow (M^{T}M)a = M^{T}b \Leftrightarrow a = (M^{T}M)^{-1}M^{T}b$$

Not always numerically stable though, and what if $h_{22} = 0$?

Build the equation system with ||H|| = 1

$$||H|| = 1$$
:

$$x' = \frac{h_{00}x + h_{01}y + h_{02}}{h_{20}x + h_{21}y + h_{22}}$$

Multiplying through by denominator:
$$(h_{20}x + h_{21}y + h_{22}) x' = h_{00}x + h_{01}y + h_{02}$$

Rearrange:

$$h_{00}x + h_{01}y + h_{02} - h_{20}xx' + h_{21}yx' - h_{22}x' = 0$$

Same for y:

$$h_{00}x + h_{01}y + h_{02} - h_{20}xy' + h_{21}yy' - h_{22}y' = 0$$

Linear system with ||H|| = 1

 $\begin{bmatrix} x_0 & y_0 & 1 & 0 & 0 & 0 & -x_0x'_0 & -y_0x'_0 - x'_0 \\ 0 & 0 & 0 & x_0 & y_0 & 1 & -x_0y'_0 & -y_0y'_0 - y'_0 \\ x_1 & y_1 & 1 & 0 & 0 & 0 & -x_1x'_1 & -y_1x'_1 - x'_1 \\ 0 & 0 & 0 & x_1 & y_1 & 1 & -x_1y'_1 & -y_1y'_1 - y'_1 \\ x_2 & y_2 & 1 & 0 & 0 & 0 & -x_2x'_2 & -y_2x'_2 - x'_2 \\ 0 & 0 & 0 & x_2 & y_2 & 1 & -x_2y'_2 & -y_2y'_2 - y'_2 \\ x_3 & y_3 & 1 & 0 & 0 & 0 & -x_3x'_3 & -y_3x'_3 - x'_3 \\ 0 & 0 & 0 & x_3 & y_3 & 1 & -x_3y'_3 & -y_3y'_3 - y'_3 \\ \vdots & \vdots \end{bmatrix} \begin{bmatrix} h_{00} \\ h_{01} \\ h_{02} \\ h_{10} \\ h_{11} \\ h_{12} \\ h_{20} \\ h_{21} \\ h_{22} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \vdots \end{bmatrix}$

M

Solve the system

Challenges:

- Overcomplete system
- Probably no exact solution because of noise

Solutions:

Use total least square with singular value decomposition (SVD)

[enough math here]

So: given enough matches, we get an <u>estimate</u> of H's parameters.

How reliable is the estimate? (Least square output)

(Example on fitting 2 parameters)

Perfect data ⇒ Everything is fine but...

Is our data perfect?

How reliable is the estimate? (Least square output)

(Example on fitting 2 parameters)

Error based on squared residual

Very scared of being wrong, even for just one point

Very bad at handling outliers in data

Even worse

(Example on fitting 2 parameters)

Multiple structures can also skew the results.

The fit procedure **implicitly** assumes there is only one instance of the model in the data.

Overcoming Least Square limitations

We need a robust estimation.

Approach: view estimation as a two-stage process:

- 1. Classify data points as outliers or inliers
- 2. Fit model to inliers while ignoring outliers

Assumptions: outliers are random and will not agree

How? Try many models on subsets of the dataset and keep the best.

Several approaches: RANSAC, Hough transform, clustering...

RANSAC: RANdom SAmple Consensus

RANSAC: RANdom SAmple Consensus

M. A. Fishi Cartography". Comm. of the ACM 24: 381--395.

M. A. Fischler and R. C. Bolles (June 1981). "Random Sample Conserces: A Paradigm for Model Fitting with Applications to Image Analysis and Automated 22 Cartography". Comm. of the ACM 24: 381--395.

RANSAC ANdom SAmple Consensus

M. A. Fishi Cartography". Comm. of the ACM 24: 381--395.

RANSAC: RANdom SAmple Consensus

M. A. Fishi Cartography". Comm. of the ACM 24: 381--395.

RANSAC: RANdom SAmple Consensus

M. A. Fishile A.S. C. Bolles (June 1981). "Random Sample Conserted: A Paradigm for Model Fitting with Applications to Image Analysis and Automated 25 Cartography". Comm. of the ACM 24: 381--395.

RANSAC algorithm

Parameters: data, n: num. points required to fit model, k: max iterations, **d**: distance threshold to belong to fitted model, **m**: min. # inliers for early stop

```
bestfit = INF
While niter < \mathbf{k}:
       sample = draw n random points from data
       Fit model to sample ← using Least Square here
       inliers = data within distance d of model \leftarrow OpenCV uses retroprojection error, ie ||dstpoint - proj(srcpoint)||_2 < d
       if inliers > bestfit:
              Fit model to all inliers
              bestfit = fit
              bestmodel = model
              if inliers > m:
                      return model
```

$$\sum_{i} \left(x_{i}' - \frac{h_{00}x_{i} + h_{01}y_{i} + h_{02}}{h_{20}x_{i} + h_{21}y_{i} + h_{22}} \right)^{2} + \left(y_{i}' - \frac{h_{10}x_{i} + h_{11}y_{i} + h_{12}}{h_{20}x_{i} + h_{21}y_{i} + h_{22}} \right)^{2}$$

bestmodel = None

RANSAC algorithm

How to set the parameters?

Default values are usually fine in toolkits.

- **n**: num. points required to fit model
 - ⇒ set to minimum necessary (max 8)
- **k**: max iterations
 - ⇒ 2000 permits to be sure that at least 1 sample without outliers will be drawn with a probability > 99%
- d: distance threshold to belong to fitted model
 - ⇒ keep small but may depend on problem
- m: min. # inliers for early stop
 - \Rightarrow should be >> n, but you do not care to reach **k** anyway

RANSAC works well with extreme noise

RANSAC works well with extreme noise

Other approaches

Required to enable multiple instance detection.

Naive implementation:

- 1. When matching descriptors, accept more than 1 neighbor Recommended: use a background model to set a radius threshold
- Estimate all possible homographies, keeping track of the support points for each
- Run a clustering (or bin counting) algorithm in the parameter space of the homography to identify the best candidates