Digital Image Processing

Lecture #5 Ming-Sui (Amy) Lee

Announcement

The following schedule

02/17	Lecture 1	04/14	Lecture 8
02/24	Lecture 2	04/21	Proposal
03/03	Lecture 3	04/28	Lecture 9
03/10	Lecture 4	05/05	Lecture 10
03/17	Lecture 5	05/12	Lecture 11
03/24	Lecture 6	05/19	Demo
03/31	Lecture 7	05/26	Demo
04/07	Midterm	06/02	Final Package Due

Homework #2

Due: 11:59pm, Mar. 23, 2022

Image analysis and its applications

Noise removal Edge crispening

Edge detection Texture analysis

What is texture?

- What is texture?
 - No mathematical definition
 - Two dimensional arrays of variations
 - Semi-regular structured patterns of object
 - E.g. Surfaces such as sand, grass, wool, cloth, leaves, etc.

- Why texture analysis?
 - People started to be interested in late 50's and early 60's
 - Analyze aerial images / texture patches

Example (an aerial image)

(a) Aerial photo (b) Field (c) Residential area (d) Vegetation area

- Example
 - Texture Synthesis

- History of texture analysis
 - Fourier Spectral Methods
 - Edge Detection Methods
 - Autocorrelation Methods
 - Decorrelation Methods
 - Dependency Matrix Method

- Fourier Spectral Methods
 - Right direction but incomplete development
 - No continuous work for a long while
- Edge Detection Methods
 - Edge detection
 - Use edge density and orientation as texture features

- Autocorrelation Methods
 - Treat the texture pattern as a 2D random process, denoted as F(x,y)
 - Statistical approach

$$E\{F(x,y)F(x-\Delta x,y-\Delta y)\}$$

Wool

Raffia

12

- Decorrelation Methods
 - 2D whitening filter
 - Special type of decorrelation operator

$$\hat{W}(j,k) = F(j,k) \otimes H_W(j,k)$$

- Spatially decorrelated
 - Form histogram as its feature

- Dependency Matrix Method
 - Joint probability
 - Also called Co-occurrence method

$$P(a,b \mid j,k,\Delta j,\Delta k)$$

$$= \text{Prob}\{F(j,k) = a, F(j-\Delta j,k-\Delta k) = b, 0 \le a,b \le L-1\}$$

14

- History of texture analysis
 - Fourier Spectra methods
 - Edge Detection Methods
 - Autocorrelation Methods
 - Decorrelation Methods
 - Dependency Matrix Method
 - → Not successful!!

- Laws' Method
 - Micro-structure (Multi-channel) method
 - Emphasize the microstructure of the texture
 - Two steps
 - step 1: Convolution
 - step 2: Energy computation

Laws' Method

- //Step 1// Convolution $M_i(j,k) = F(j,k) \otimes H_i(j,k)$
 - Micro-structure impulse response arrays (a basis set)

$$H_i(j,k)$$

for 3x3 mask, i=1,2,3,...,9

for 5x5 mask, i=1,2,3,...,25

How to choose the mask size?

$$\frac{1}{36} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \\ \text{Laws 1} \end{bmatrix}$$

$$\frac{1}{12} \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix} \qquad \frac{1}{4} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix} \qquad \frac{1}{4} \begin{bmatrix} -1 & 2 & -1 \\ 0 & 0 & 0 \\ 1 & -2 & 1 \end{bmatrix}$$
Laws 4
$$\frac{1}{4} \begin{bmatrix} -1 & 2 & -1 \\ 0 & 0 & 0 \\ 1 & -2 & 1 \end{bmatrix}$$
Laws 6

$$\frac{1}{12} \begin{bmatrix} -1 & -2 & -1 \\ 2 & 4 & 2 \\ -1 & -2 & -1 \end{bmatrix} \qquad \frac{1}{4} \begin{bmatrix} -1 & 0 & 1 \\ 2 & 0 & -2 \\ -1 & 0 & 1 \end{bmatrix} \qquad \frac{1}{4} \begin{bmatrix} 1 & -2 & 1 \\ -2 & 4 & -2 \\ 1 & -2 & 1 \end{bmatrix}$$
Laws 7 Laws 8 Laws 9

$$\frac{1}{12} \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix}$$
Laws 2

$$\frac{1}{4} \begin{bmatrix}
1 & 0 & -1 \\
0 & 0 & 0 \\
-1 & 0 & 1
\end{bmatrix}$$
Laws 5

$$\frac{1}{4} \begin{bmatrix}
-1 & 0 & 1 \\
2 & 0 & -2 \\
-1 & 0 & 1
\end{bmatrix}$$
Laws 8

$$\frac{1}{36} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix} \qquad \frac{1}{12} \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix} \qquad \frac{1}{12} \begin{bmatrix} -1 & 2 & -1 \\ -2 & 4 & -2 \\ -1 & 2 & -1 \end{bmatrix}$$
Laws 1

$$\frac{1}{4} \begin{bmatrix}
-1 & 2 & -1 \\
0 & 0 & 0 \\
1 & -2 & 1
\end{bmatrix}$$
Laws 6

$$\frac{1}{4} \begin{bmatrix}
1 & -2 & 1 \\
-2 & 4 & -2 \\
1 & -2 & 1
\end{bmatrix}$$
Laws 9

- Laws' Method
 - Micro-structure impulse response arrays
 - Generated by the tensor product of the 1D horizontal and vertical masks

$$L_3 = \frac{1}{6}[1 \ 2 \ 1]$$

$$E_3 = \frac{1}{2}[-1 \ 0 \ 1]$$

$$L_3 = \frac{1}{6}[1 \ 2 \ 1]$$
 $E_3 = \frac{1}{2}[-1 \ 0 \ 1]$ $S_3 = \frac{1}{2}[1 \ -2 \ 1]$

Local averaging

Edge detector

Spot detector (1st-order gradient) (2nd-order gradient)

■ E.g.
$$L_3^T \otimes E_3 = \frac{1}{6} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \otimes \frac{1}{2} \begin{bmatrix} -1 & 0 & 1 \end{bmatrix} = \frac{1}{12} \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$
 Laws 2 ¹⁸

Laws' Method

- Micro-structure impulse response arrays
 - 1979 → 1984,1986 mathematical analysis of Laws' filters
 - **Examine the frequency response of** L_3 , E_3 , and S_3

$$L_3 = \frac{1}{6} \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$$

$$Kroneckor Delta$$

$$h[n] = \frac{1}{6} \left(\delta[n-1] + 2\delta[n] + \delta[n+1] \right) \quad \delta[n] = \begin{cases} 1 & n=0 \\ 0 & otherwise \end{cases}$$

$$H(\omega) = \frac{1}{6} \left(e^{-j\omega} + 2 + e^{j\omega} \right) = \frac{2}{6} (1 + \cos \omega)$$

→ Low-pass filter

- Laws' Method
 - Micro-structure impulse response arrays
 - **Examine the frequency response of** L_3 , E_3 , and S_3

$$E_3 = \frac{1}{2}[-1 \ 0 \ 1]$$
 $h[n] = \frac{1}{2}(-\delta[n-1] + \delta[n+1])$

$$H(\omega) = (-e^{-j\omega} + e^{j\omega}) = 2j\sin\omega$$
 \rightarrow Bandpass filter

$$S_3 = \frac{1}{2} \begin{bmatrix} 1 & -2 & 1 \end{bmatrix} h[n] = \frac{1}{2} \left(\delta[n-1] - 2\delta[n] + \delta[n+1] \right)$$

$$H(\omega) = \frac{1}{2} \left(e^{-j\omega} - 2 + e^{j\omega} \right) = \cos \omega - 1 \rightarrow \text{High-pass filter}$$

- Laws' Method
 - Micro-structure impulse response arrays
 - **Examine the frequency response of** L_3 , E_3 , and S_3

Example

original image

- Laws' Method
 - //Step 2// Energy Computation $T_i(j,k)$
 - Extract features over a window that has a few cycles of the repetitive texture
 - How to choose the window size?
 - Global/local energy computation
 - 9 energy features correspond to the energy in the 9 subbands. We use the energy distribution in these 9 subbands to differentiate different texture types
 - Features
 - Mean, standard deviation, energy, smoothness etc.

- Laws' Method
 - //Step 2// Energy Computation

- Notes for Laws' method
 - How to choose the mask size? $H_i(j,k)$
 - Fixed subband structure vsDynamic subband structure
 - How to choose the window size for energy computation?
 - For texture analysis, window size is usually set to be 13x13 or 15x15

- Texture classification/segmentation
 - Given 9 feature sets, T_1 , T_2 , T_3 , \cdots T_9 How do we do texture classification?
 - Two cases
 - Each input is homogeneous
 - Single input consists of more than one texture
 - Two approaches
 - Supervised texture classification
 - Un-supervised texture classification

- Texture classification
 - Supervised texture classification
 - For each given texture type

- Texture space → 9 dimensional
- Given texture XUse nearest neighbor classification rule

- Texture classification
 - Feature space dimension reduction
 - Not considering all 9 features equally
 - More important feature
 - More discriminating power
 - Weighted more
 - Less important feature
 - Weighted less
 - Taken out from the feature set

- Texture classification
 - Un-supervised texture classification
 - For several texture patches

- K-means algorithm
 - The famous tool to handle unsupervised classification problem

- K-means algorithm
 - K=3

- Good classification
 - Inter-clustering →
 - Intra-clustering →

- K-means algorithm
 - Two issues
 - How to choose k?
 depends on the inter-cluster and intra-cluster statistical analysis
 OR by the problem set-up (domain knowledge)
 - Given k, how to do the clustering?
 - // Initialization //
 - Select k vectors as the initial centroids
 - Do the following iterations
 - // step1 // Form k clusters using the NN rule
 - // step2 // re-compute the centroid of each cluster

K-means algorithm demo

Texture classification

- Two criteria
 - If pixels belong to the same type of texture, their associated feature vectors are close to each other in the feature space
 - Pixels belong to the same texture type should be close to each other in the space domain
- What is a good segmentation result?
 - Regions of a segment should be homogeneous w.r.t. some properties (i.e. feature vectors are close to each other in the feature space)
 - Region interior should be simple and without many holes
 - Boundaries of each segment should be simple, not ragged