ML4Science

Week 5

What we did

- implemented PINN with parallel branching
- gathered final setups and results (see branch "combination")
- started writing the report (introduction, physics background, data and models and methods)

Last week recap: our model fails on slowly evolving functions

approximation

Unbalanced data result in unstable quality of our model

Boundary investigation for physics parameters

We train a basic model on a single "normal "simulation and then make predictions for the rest of data

We measure the range of physics parameters, in which model doesn't fail

Criterion: R2 score for a simulation > 0.99

Results: Gamma =
$$(1.7 \pm 0.2)e-13$$

Contains small portion of values in the training set

$$nH = (10 \pm 8)e-8$$

Contains most of values in the training set

Proposed modifications of the training pipeline

- 1. **Re-sampling idea:** let's balance the low frequency of "ood" simulations by sampling them with a higher probability during training
- Scaling: sensitivity of the model comes from Gamma value, which is small compared to concentration and timesteps values
- Parallel model configuration: let's process timesteps and physics parameters by separate branches

Before modifications

R2-score of best simulation: 0.99

R2-score of worst simulation: -15411534

After modifications

R2-score of best simulation: 0.98224294

R2-score of worst simulation: -587.18427

Model is able to adapt for slowly evolving functions

Distributions of R2 scores for different configurations

Plan for next week

- finish writing the report
- finalize project