Derivatives of Eigenvalues

Let's assume we work in an \mathbb{R} vector space with a non-degenerate symmetric bilinear pairing $\langle \cdot, \cdot \rangle$, and a differential operator d satisfying the usual Leinbiz's rule. We will use A to denote linear operator/matrix in a basis $A = (a_{ij})$ and \mathbf{w} for a vector $w = (w_i)$.

If we have $\langle \mathbf{v}, \mathbf{v} \rangle = 1$ (\mathbf{v} has unit norm), then $d\langle \mathbf{v}, \mathbf{v} \rangle = 2\langle \mathbf{v}, d\mathbf{v} \rangle = 0$ follows. Then the eigenvalue equation (assuming L diagonalizable) gives us

$$\lambda \mathbf{v} = \mathsf{L}\mathbf{v}$$

$$d(\lambda \mathbf{v}) = d(\mathsf{L}\mathbf{v})$$

$$d\lambda \mathbf{v} + \lambda d\mathbf{v} = d\mathsf{L}\mathbf{v} + \mathsf{L}d\mathbf{v}$$

$$\langle \mathbf{v}, d\lambda \mathbf{v} \rangle + \langle \mathbf{v}, \lambda d\mathbf{v} \rangle = \langle \mathbf{v}, d\mathsf{L}\mathbf{v} \rangle + \langle \mathbf{v}, \mathsf{L}d\mathbf{v} \rangle$$

$$d\lambda \langle \mathbf{v}, \mathbf{v} \rangle + \lambda \langle \mathbf{v}, d\mathbf{v} \rangle = \langle \mathbf{v}, d\mathsf{L}\mathbf{v} \rangle + \langle \mathbf{v}, \mathsf{L}d\mathbf{v} \rangle$$

$$d\lambda = \langle \mathbf{v}, d\mathsf{L}\mathbf{v} \rangle + \langle \mathbf{v}, \mathsf{L}d\mathbf{v} \rangle$$

Now if the operator L is self-adjoint (matrix is symmetric since we are over \mathbb{R}), we have

$$d\lambda = \langle \mathbf{v}, d \mathsf{L} \mathbf{v} \rangle + \langle \mathsf{L} \mathbf{v}, d \mathbf{v} \rangle$$

$$= \langle \mathbf{v}, d \mathsf{L} \mathbf{v} \rangle + \langle \lambda \mathbf{v}, d \mathbf{v} \rangle = \langle \mathbf{v}, d \mathsf{L} \mathbf{v} \rangle + \lambda \langle \mathbf{v}, d \mathbf{v} \rangle$$

$$= \langle \mathbf{v}, d \mathsf{L} \mathbf{v} \rangle$$

Written is usual matrix multiplication notation, this is just $d\lambda = \mathbf{v}^T d\mathbf{L}\mathbf{v}$.

We can make our lives slightly messier by talking about the generalized eigenvalue equation

$$\lambda M \mathbf{v} = L \mathbf{v}$$

In this case, if we assume the condition $\langle \mathbf{v}, \mathsf{M}\mathbf{v} \rangle = 1$, then we have $d\langle \mathbf{v}, \mathsf{M}\mathbf{v} \rangle = \langle d\mathbf{v}, \mathsf{M}\mathbf{v} \rangle + \langle \mathbf{v}, d\mathsf{M}\mathbf{v} \rangle + \langle \mathbf{v}, d\mathsf{M}\mathbf{v} \rangle = 0$. Then

$$d(\lambda \mathsf{M}\mathbf{v}) = d(\mathsf{L}\mathbf{v})$$

$$d\lambda \mathsf{M}\mathbf{v} + \lambda d\mathsf{M}\mathbf{v} + \lambda \mathsf{M}d\mathbf{v} = d\mathsf{L}\mathbf{v} + \mathsf{L}d\mathbf{v}$$

$$\langle \mathbf{v}, d\lambda \mathsf{M}\mathbf{v} \rangle + \langle \mathbf{v}, \lambda d\mathsf{M}\mathbf{v} \rangle + \langle \mathbf{v}, \lambda \mathsf{M}d\mathbf{v} \rangle = \langle \mathbf{v}, d\mathsf{L}\mathbf{v} \rangle + \langle \mathbf{v}, \mathsf{L}d\mathbf{v} \rangle$$

$$d\lambda \langle \mathbf{v}, \mathsf{M}\mathbf{v} \rangle - \lambda \langle d\mathbf{v}, \mathsf{M}\mathbf{v} \rangle = \langle \mathbf{v}, d\mathsf{L}\mathbf{v} \rangle + \langle \mathbf{v}, \mathsf{L}d\mathbf{v} \rangle$$

$$d\lambda = \langle \mathbf{v}, d\mathsf{L}\mathbf{v} \rangle + \langle \mathbf{v}, \mathsf{L}d\mathbf{v} \rangle + \lambda \langle d\mathbf{v}, \mathsf{M}\mathbf{v} \rangle$$

If we again assume L to be self-adjoint, we get

$$d\lambda = \langle \mathbf{v}, d \mathsf{L} \mathbf{v} \rangle + \langle \mathsf{L} \mathbf{v}, d \mathbf{v} \rangle + \lambda \langle d \mathbf{v}, \mathsf{M} \mathbf{v} \rangle$$
$$= \langle \mathbf{v}, d \mathsf{L} \mathbf{v} \rangle + 2\lambda \langle d \mathbf{v}, \mathsf{M} \mathbf{v} \rangle$$

Or in matrix form $d\lambda = \mathbf{v}^T d\mathbf{L}\mathbf{v} + 2\lambda (d\mathbf{v})^T \mathbf{M}\mathbf{v}$.

This result is rather unsatisfactory given that $d\mathbf{v}$ appears on the right hand side. But if we further assume that M is self-adjoint, then the eigenvector norm condition reduces to $2\langle d\mathbf{v}, M\mathbf{v} \rangle + \langle \mathbf{v}, dM\mathbf{v} \rangle = 0$. This gives $d\lambda = \mathbf{v}^T d\mathbf{L}\mathbf{v} - \lambda v^T dM\mathbf{v}$.