```
In [7]:
            H
               pwd
     Out[7]: 'C:\\Users\\anshu'
In [10]:
               cd C:/Users/anshu/Desktop/UNCC Courses/Data Science/datasets/
               C:\Users\anshu\Desktop\UNCC Courses\Data Science\datasets
In [11]:
               import pandas as pd
               import numpy as np
               import seaborn as sns
               import matplotlib.pyplot as plt
               %matplotlib inline
               import math
               titanic = pd.read_csv("titanic.csv")
In [12]:
               titanic.head()
    Out[12]:
                                                                              Parents/Children
                                                             Siblings/Spouses
                   Survived Pclass
                                          Name
                                                   Sex Age
                                                                                                 Fare
                                                                      Aboard
                                                                                      Aboard
                                       Mr. Owen
                0
                         0
                                                                           1
                                                  male 22.0
                                                                                            0
                                                                                               7.2500
                                 3
                                    Harris Braund
                                       Mrs. John
                                         Bradley
                                       (Florence
                1
                         1
                                                 female 38.0
                                                                           1
                                                                                            0 71.2833
                                          Briggs
                                         Thayer)
                                          Cum...
                                      Miss. Laina
                2
                         1
                                 3
                                                                           0
                                                 female 26.0
                                                                                               7.9250
                                       Heikkinen
                                    Mrs. Jacques
                                      Heath (Lily
                3
                         1
                                                                           1
                                 1
                                                 female 35.0
                                                                                            0 53.1000
                                       May Peel)
                                         Futrelle
                                      Mr. William
                         0
                                 3
                                                                           0
                                                  male
                                                        35.0
                                                                                               8.0500
                                      Henry Allen
```

print("# of passengers in the dataset:"+str(len(titanic.index)))

of passengers in the dataset:887

Analysis of Dataset

In [13]:

In [14]: ▶ sns.countplot(x="Survived", data=titanic)

Out[14]: <matplotlib.axes._subplots.AxesSubplot at 0x27983495eb8>

In [15]: sns.countplot(x="Pclass", data=titanic)

Out[15]: <matplotlib.axes._subplots.AxesSubplot at 0x279847a2e48>

In [16]: ▶ sns.countplot(x="Sex",data= titanic)

Out[16]: <matplotlib.axes._subplots.AxesSubplot at 0x279848175f8>

In [17]: ▶ sns.countplot(x="Survived", hue="Sex", data = titanic)

Out[17]: <matplotlib.axes._subplots.AxesSubplot at 0x2798486c668>


```
In [18]: ► sns.countplot(x="Survived", hue="Pclass",data=titanic)
```

Out[18]: <matplotlib.axes._subplots.AxesSubplot at 0x279848ba6d8>


```
In [19]: ► titanic["Age"].plot.hist()
```

Out[19]: <matplotlib.axes._subplots.AxesSubplot at 0x2798491bbe0>

Data Cleaning

In [20]: ▶ titanic.isnull()

Out[20]:

	Survived	Pclass	Name	Sex	Age	Siblings/Spouses Aboard	Parents/Children Aboard	Fare
0	False	False	False	False	False	False	False	False
1	False	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False	False
3	False	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False	False
5	False	False	False	False	False	False	False	False
6	False	False	False	False	False	False	False	False
7	False	False	False	False	False	False	False	False
8	False	False	False	False	False	False	False	False
9	False	False	False	False	False	False	False	False
10	False	False	False	False	False	False	False	False
11	False	False	False	False	False	False	False	False
12	False	False	False	False	False	False	False	False
13	False	False	False	False	False	False	False	False
14	False	False	False	False	False	False	False	False
15	False	False	False	False	False	False	False	False
16	False	False	False	False	False	False	False	False
17	False	False	False	False	False	False	False	False
18	False	False	False	False	False	False	False	False
19	False	False	False	False	False	False	False	False
20	False	False	False	False	False	False	False	False
21	False	False	False	False	False	False	False	False
22	False	False	False	False	False	False	False	False
23	False	False	False	False	False	False	False	False
24	False	False	False	False	False	False	False	False
25	False	False	False	False	False	False	False	False
26	False	False	False	False	False	False	False	False
27	False	False	False	False	False	False	False	False
28	False	False	False	False	False	False	False	False
29	False	False	False	False	False	False	False	False
857	False	False	False	False	False	False	False	False
858	False	False	False	False	False	False	False	False

	Survived	Pclass	Name	Sex	Age	Siblings/Spouses Aboard	Parents/Children Aboard	Fare
859	False	False	False	False	False	False	False	False
860	False	False	False	False	False	False	False	False
861	False	False	False	False	False	False	False	False
862	False	False	False	False	False	False	False	False
863	False	False	False	False	False	False	False	False
864	False	False	False	False	False	False	False	False
865	False	False	False	False	False	False	False	False
866	False	False	False	False	False	False	False	False
867	False	False	False	False	False	False	False	False
868	False	False	False	False	False	False	False	False
869	False	False	False	False	False	False	False	False
870	False	False	False	False	False	False	False	False
871	False	False	False	False	False	False	False	False
872	False	False	False	False	False	False	False	False
873	False	False	False	False	False	False	False	False
874	False	False	False	False	False	False	False	False
875	False	False	False	False	False	False	False	False
876	False	False	False	False	False	False	False	False
877	False	False	False	False	False	False	False	False
878	False	False	False	False	False	False	False	False
879	False	False	False	False	False	False	False	False
880	False	False	False	False	False	False	False	False
881	False	False	False	False	False	False	False	False
882	False	False	False	False	False	False	False	False
883	False	False	False	False	False	False	False	False
884	False	False	False	False	False	False	False	False
885	False	False	False	False	False	False	False	False
886	False	False	False	False	False	False	False	False

887 rows × 8 columns

```
★ titanic.isnull().sum()

In [21]:
    Out[21]: Survived
                                          0
                                          0
              Pclass
              Name
                                          0
                                          0
              Sex
                                          0
              Age
              Siblings/Spouses Aboard
                                          0
              Parents/Children Aboard
                                          0
              Fare
                                          0
              dtype: int64
```

In [22]:

#plotting a heat map just to show the other way of finding the null value
sns.heatmap(titanic.isnull(),yticklabels=False)

Out[22]: <matplotlib.axes._subplots.AxesSubplot at 0x27984a04f28>


```
In [23]:  #checking the box plot to see the outliers
sns.boxplot(x="Pclass", y="Age", data=titanic)
```

Out[23]: <matplotlib.axes._subplots.AxesSubplot at 0x27984a99da0>


```
In [24]: 

#if nan present in dataset, then simply droping it
titanic.dropna(inplace=True)
```

Out[25]:

	female	male
0	0	1
1	1	0
2	1	0
3	1	0
4	0	1

```
In [26]: #droping the female column as we can interpret the above data using only the
Sex = pd.get_dummies(titanic['Sex'],drop_first = True)
Sex.head()
```

Out[26]:

	male
0	1
1	0
2	0
3	0
4	1

In [27]: Pclass = pd.get_dummies(titanic['Pclass'],drop_first = True)
 Pclass.head()

Out[27]:

3 0 0

4 0 1

Out[28]:

	Survived	Pclass	Name	Sex	Age	Siblings/Spouses Aboard	Parents/Children Aboard	Fare	2	3
0	0	3	Mr. Owen Harris Braund	male	22.0	1	0	7.2500	0	1
1	1	1	Mrs. John Bradley (Florence Briggs Thayer) Cum	female	38.0	1	0	71.2833	0	С
2	1	3	Miss. Laina Heikkinen	female	26.0	0	0	7.9250	0	1
3	1	1	Mrs. Jacques Heath (Lily May Peel) Futrelle	female	35.0	1	0	53.1000	0	С
4	0	3	Mr. William Henry Allen	male	35.0	0	0	8.0500	0	1

```
In [29]: #renaming the dummies column
titanic.rename(columns={2:"2nd Class",3:"3rd Class"},inplace=True)
```

In [30]: ▶ titanic.head()

Out[30]:

	Survived	Pclass	Name	Sex	Age	Siblings/Spouses Aboard	Parents/Children Aboard	Fare	2n Clas
0	0	3	Mr. Owen Harris Braund	male	22.0	1	0	7.2500	
1	1	1	Mrs. John Bradley (Florence Briggs Thayer) Cum	female	38.0	1	0	71.2833	
2	1	3	Miss. Laina Heikkinen	female	26.0	0	0	7.9250	
3	1	1	Mrs. Jacques Heath (Lily May Peel) Futrelle	female	35.0	1	0	53.1000	
4	0	3	Mr. William Henry Allen	male	35.0	0	0	8.0500	

Out[31]:

	Survived	Age	Siblings/Spouses Aboard	Parents/Children Aboard	Fare	2nd Class	3rd Class	male	
0	0	22.0	1	0	7.2500	0	1	1	
1	1	38.0	1	0	71.2833	0	0	0	
2	1	26.0	0	0	7.9250	0	1	0	
3	1	35.0	1	0	53.1000	0	0	0	
4	0	35.0	0	0	8.0500	0	1	1	

```
In [32]: #To check the details of the dataset and its impact on the model
#Before this, install pandas_profiling from anaconda cmd using "pip install pandas_profiling
pandas_profiling.ProfileReport(titanic)
```

Out[32]:

Overview

Dataset info

Number of variables 8
Number of observations 887
Total Missing (%) 0.0%
Total size in memory 44.2 KiB
Average record size in memory Variables types

Numeric 4 Categorical 0 Boolean 4

Training and Testing my Dataset

```
In [37]:
             logmodel = LogisticRegression()
             logmodel.fit(X train,Y train)
             C:\Users\anshu\Anaconda3\lib\site-packages\sklearn\linear_model\logistic.p
             y:433: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Sp
             ecify a solver to silence this warning.
               FutureWarning)
   Out[37]: LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=Tru
                       intercept_scaling=1, max_iter=100, multi_class='warn',
                       n_jobs=None, penalty='12', random_state=None, solver='warn',
                       tol=0.0001, verbose=0, warm start=False)
In [38]:
             #predicting the model
             predictions = logmodel.predict(X test)
In [39]:
             #Calculating the accuracy and classification Report
             from sklearn.metrics import classification report
             classification_report(Y_test,predictions)
   Out[39]:
                            precision
                                         recall f1-score
                                                             support\n\n
                                                                                   0
             0.82
                       0.86
                                                                     0.71
                                                                               0.64
                                 0.84
                                            175\n
                                                             1
             0.67
                         92\n\n
                                  micro avg
                                                   0.79
                                                             0.79
                                                                       0.79
                                                                                  267\n
             macro avg
                             0.77
                                       0.75
                                                  0.76
                                                             267\nweighted avg
                                                                                     0.78
                                  267\n'
             0.79
                       0.78
          #printing confusion matrix
In [40]:
             from sklearn.metrics import confusion matrix
             confusion matrix (Y test,predictions)
   Out[40]: array([[151,
                           24],
                    [ 33,
                           59]], dtype=int64)
In [41]:
             #Accuracy for the precition Model
             from sklearn.metrics import accuracy score
             accuracy_score(Y_test,predictions)
```

Out[41]: 0.7865168539325843

Optimization terminated successfully.

Current function value: 0.491351

Iterations 6

Out[42]:

Logit Regression Results

Dep. Variable:	Survived	No. Observations:	620
Model:	Logit	Df Residuals:	613
Method:	MLE	Df Model:	6
Date:	Mon, 24 Jun 2019	Pseudo R-squ.:	0.2713
Time:	19:52:33	Log-Likelihood:	-304.64
converged:	True	LL-Null:	-418.06
		LLR p-value:	3.591e-46

coef std err P>|z| [0.025 0.975] Z 0.006 0.402 -0.007 Age 0.0050 0.838 0.017 Siblings/Spouses Aboard -0.2774 0.113 -2.451 0.014 -0.499 -0.056 Parents/Children Aboard -0.1823 0.133 -1.371 0.170 -0.443 0.078 0.0197 0.004 5.328 0.000 0.012 0.027 **Fare** 2nd Class 0.8162 0.257 3.170 0.002 0.312 1.321 3rd Class 0.1987 0.212 0.939 0.348 -0.216 0.614

In [43]:

##droping 3rd class and parent/children column as its p value is quite high.
titanic.drop(["3rd Class"],axis=1,inplace=True)

0.213 -10.738 0.000 -2.703 -1.869

male -2.2861

In [45]: ▶ titanic.head()

Out[45]:

	Survived	Age	Siblings/Spouses Aboard	Fare	2nd Class	male
0	0	22.0	1	7.2500	0	1
1	1	38.0	1	71.2833	0	0
2	1	26.0	0	7.9250	0	0
3	1	35.0	1	53.1000	0	0
4	0	35.0	0	8.0500	0	1

Optimization terminated successfully.

Current function value: 0.484274

Iterations 6

C:\Users\anshu\Anaconda3\lib\site-packages\sklearn\linear_model\logistic.p
y:433: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Sp
ecify a solver to silence this warning.
 FutureWarning)

Out[46]:

Logit Regression Results

Dep. Variable:	Survived	No. Observations:	620
Model:	Logit	Df Residuals:	615
Method:	MLE	Df Model:	4
Date:	Mon, 24 Jun 2019	Pseudo R-squ.:	0.2752
Time:	19:52:33	Log-Likelihood:	-300.25
converged:	True	LL-Null:	-414.26
		LLR p-value:	3.509e-48

	coef	std err	z	P> z	[0.025	0.975]
Age	0.0070	0.005	1.304	0.192	-0.004	0.018
Siblings/Spouses Aboard	-0.2529	0.099	-2.550	0.011	-0.447	-0.059
Fare	0.0159	0.003	5.167	0.000	0.010	0.022
2nd Class	0.7580	0.232	3.274	0.001	0.304	1.212
male	-2.2508	0.202	-11.152	0.000	-2.646	-1.855

```
In [48]: National Nationa
```

y:433: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.

FutureWarning)

Out[48]: 0.7940074906367042

In [49]: N logit=sm.Logit(Y_train,X_train)#find p-value for variables
logit.fit().summary()

Optimization terminated successfully.

Current function value: 0.493736

Iterations 6

Out[49]:

Logit Regression Results

Dep. Variable: Survived No. Observations: 620 Model: **Df Residuals:** Logit 616 Method: MLE Df Model: 3 Date: Mon, 24 Jun 2019 Pseudo R-squ.: 0.2611 19:52:33 Log-Likelihood: -306.12 Time: converged: LL-Null: -414.26 True **LLR p-value:** 1.270e-46

coef std err P>|z| [0.025 0.975] Siblings/Spouses Aboard -0.2413 0.095 -2.537 0.011 -0.428 -0.055 0.0181 0.003 6.119 0.000 0.012 0.024 Fare 2nd Class 0.8905 0.217 4.104 0.000 0.465 1.316 0.162 -12.597 0.000 -2.358 -1.723 male -2.0406

In [58]: ▶ predictions = logmodel.predict(X_test)

```
In [60]:
             from sklearn.metrics import classification report
             classification report(Y test,predictions)
   Out[60]:
                            precision
                                          recall f1-score
                                                             support\n\n
                                                                                    0
             0.82
                       0.86
                                 0.84
                                             166\n
                                                                     0.74
                                                                               0.69
             0.72
                        101\n\n
                                  micro avg
                                                   0.79
                                                             0.79
                                                                       0.79
                                                                                   267\n
                                                             267\nweighted avg
                             0.78
                                        0.77
                                                                                     0.79
             macro avg
                                                  0.78
             0.79
                       0.79
                                   267\n'
In [61]:
             from sklearn.metrics import confusion matrix
             confusion matrix(Y test,predictions)
   Out[61]: array([[142,
                           70]], dtype=int64)
                    [ 31,
In [62]:
             from sklearn.ensemble import RandomForestClassifier
             model = RandomForestClassifier()
In [63]:
             model.fit(X train,Y train)
             C:\Users\anshu\Anaconda3\lib\site-packages\sklearn\ensemble\forest.py:246:
             FutureWarning: The default value of n estimators will change from 10 in ver
             sion 0.20 to 100 in 0.22.
               "10 in version 0.20 to 100 in 0.22.", FutureWarning)
   Out[63]: RandomForestClassifier(bootstrap=True, class weight=None, criterion='gini',
                         max depth=None, max features='auto', max leaf nodes=None,
                         min impurity decrease=0.0, min impurity split=None,
                         min_samples_leaf=1, min_samples_split=2,
                         min weight fraction leaf=0.0, n estimators=10, n jobs=None,
                         oob score=False, random state=None, verbose=0,
                         warm start=False)
             from sklearn.metrics import roc curve
In [64]:
             from sklearn.metrics import roc auc score
             probs = model.predict proba(X test)
In [67]:
             auc = roc auc score(Y test,probs)
             print('AUC: %.2f' % auc)
             AUC: 0.78
             fpr,tpr,threshold = roc curve(Y test, probs)
In [69]:
In [70]:
          M
             def plot roc curve(fpr, tpr):
                 plt.plot(fpr, tpr, color='orange', label='ROC')
                 plt.plot([0, 1], [0, 1], color='darkblue', linestyle='--')
                 plt.xlabel('False Positive Rate')
                 plt.ylabel('True Positive Rate')
                 plt.title('Receiver Operating Characteristic (ROC) Curve')
                 plt.legend()
                 plt.show()
```


Out[50]:

		Survived	Siblings/Spouses Aboard	Fare	2nd Class	male
_	0	0.000000	0.135379	0.981501	0.0	0.135379
	1	0.014026	0.014026	0.999803	0.0	0.000000
	2	0.125190	0.000000	0.992133	0.0	0.000000
	3	0.018826	0.018826	0.999646	0.0	0.000000
	4	0.000000	0.000000	0.992372	0.0	0.123276


```
In [72]: #just trying different methods ( this one is for clustering and finding out t
   plt.figure(figsize=(10, 7))
   plt.title("Dendrograms")
   dend = shc.dendrogram(shc.linkage(data_scaled, method='ward'))
   plt.axhline(y=3, color='r', linestyle='--')
```

Out[72]: <matplotlib.lines.Line2D at 0x27987378780>


```
In [73]: #if taking 2 clusters suggested bt dendogram above
    from sklearn.cluster import AgglomerativeClustering
    cluster = AgglomerativeClustering(n_clusters=2, affinity='euclidean', linkage
    cluster.fit_predict(data_scaled)
```

```
1,
                                         1, 1, 1, 1, 1, 1, 1,
           1, 1, 1, 1, 1, 1, 1, 1, 1,
                                       1,
                                         1,
                                           1, 1, 1, 1,
           1, 1, 1, 1, 1, 1, 1,
           1, 1, 1, 1, 1,
                     1, 1,
                        1, 1, 1, 1, 1, 1, 1,
                                       1,
                                         1,
                                           1, 1, 1, 1,
                                       1,
                                         1, 1, 1, 1, 1,
           1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
           1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
                                      1,
                                         1, 1, 1, 1, 1,
                        1, 1, 1, 1, 1,
                     1,
                       1,
                                   1,
                                     1,
                                       1,
                                           1, 1, 1,
                                         1,
           1,
                                         1, 1, 1, 1, 1, 1, 1,
           1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
                                       1,
                                         1,
                                           1, 1, 1, 1,
           1, 1, 1, 1, 0,
                                       1,
                     0, 1, 1, 1, 1, 0, 1, 1,
                                       1,
                                         1, 1, 1, 1, 1,
                        1, 1, 1, 1, 1,
                                   1,
                                     1,
                                           1, 1, 1, 1,
           1, 1, 1, 1, 1, 1, 1,
                                       1,
           1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
                                       1,
                                         1,
                                           1, 1, 1, 1,
           1, 1, 1, 1, 1, 1, 1,
                                       1,
                     1,
                        1, 1, 1, 1, 1, 1,
                                         1, 1, 1, 1, 1,
                       1,
                                     1,
                                       1,
                       1,
                        1, 1, 1, 1, 1, 1,
                                     1,
                                       1,
                                          1, 1, 1, 1,
           1, 1,
                  1, 1,
                      1, 1, 1, 1, 1, 1, 1,
                                     1,
                                       1,
                                         1,
                                           1, 1, 1, 1,
           1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
                                         1, 0, 1, 1, 1, 1, 1,
                                       1,
                     1,
                       1, 1, 1, 1, 1, 1, 1,
                                     1,
                                         1,
                                           1, 1, 1, 1,
                        1, 1, 1, 1, 1, 1, 1,
                                       1,
                     1, 1,
                                         1,
                                          1, 1, 1, 1, 1, 1,
           1, 1, 1, 1, 1, 1, 1,
           1, 1, 1, 1,
                  1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
                                       1,
                                         1,
                                           1, 1, 1, 1,
           1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
                                       1,
                                         1, 1, 1, 1, 1, 1, 1,
                       1, 1, 1, 1, 1, 1, 1,
                                           1, 1, 1, 1,
                     1,
                                     1,
                                       1,
                                         1,
           1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
                                         1, 1, 1, 1, 1, 1, 1,
                                       0,
           1, 1, 1, 1, 1,
                                       1,
           1, 1, 1, 1, 1, 1, 1,
                        1, 1, 1, 1, 0, 1, 1,
                                       1,
                                         1, 1, 1, 1, 1,
           1, 1, 1, 1, 1, 1, 1,
                        1, 1, 1, 1, 1, 1,
                     1,
                       1,
                                     1,
                                       1,
                                         1,
                                           1, 1, 1, 1,
           1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
                                         1, 1, 1, 1, 1, 1, 1,
           1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
                                       1,
                                         1,
                                           1, 1, 1, 1,
           1, 1, 1, 1, 1,
           1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1,
                  0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
                                         1, 1, 1, 1, 1, 1, 1,
           1, 1, 1, 1, 1, 1], dtype=int64)
```

Out[74]: <matplotlib.collections.PathCollection at 0x27989079a90>


```
In [75]: #if changing no of clusters from 2 to 4
from sklearn.cluster import AgglomerativeClustering
    cluster = AgglomerativeClustering(n_clusters=4, affinity='euclidean', linkage
    cluster.fit_predict(data_scaled)
```

```
Out[75]: array([0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                0, 0, 0, 0, 3, 0, 0, 3, 0, 0, 0, 3, 0, 0,
                                                         0,
                                                           3, 0, 0, 0, 0, 0, 0,
                3, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 3, 0, 0, 3, 0, 0, 0, 0,
                3, 0, 0, 3,
                                 0, 0, 3, 3, 3, 0, 0, 3,
                                                         0,
                              0,
                                                           0, 0, 0, 0, 0,
                3, 3, 3, 0, 0, 3, 3, 0, 0, 0, 0, 0, 3, 0, 3, 0, 3, 0, 3,
                0, 3, 0, 0, 3,
                              3,
                                 0, 0, 0, 0, 3, 0, 0, 0,
                                                         0,
                                                           3, 0, 0, 3, 3,
                                                         0,
                0, 3, 3, 0, 0, 3, 0, 0, 0, 0, 3, 3, 0, 0,
                                                           0, 3, 3, 0,
                0, 0, 3, 3, 0, 0, 0, 3, 3, 0, 0, 0,
                                                         0, 0, 0, 0, 3, 0,
                              0,
                                    0,
                                       0, 0,
                                             0, 0,
                                                   3,
                                                               0,
                           3,
                                 0,
                                                      0,
                                                         3,
                                                            0,
                                                                 0, 0,
                0, 3, 0, 3, 3, 0, 0, 0, 0, 0, 0, 3, 0, 3,
                                                         3, 0, 0, 0, 0, 0,
                                                   0,
                3, 3, 3, 0, 3,
                              0,
                                 3, 3, 0, 0, 3, 3,
                                                      3,
                                                         0,
                                                           0, 0, 3, 3,
                3, 3, 0, 0, 0, 0, 0, 3, 0, 0, 0,
                                               0, 0, 0,
                                                           0, 0, 0, 0, 1,
                                                         0,
                0, 0, 0, 0, 0, 1,
                                 0, 0, 0, 0, 0, 2,
                                                   0,
                                                         3,
                                                           3, 3, 0, 0, 3,
                                    0, 3,
                                          0,
                                             0, 0,
                                 3,
                                                         1,
                                                               3,
                0, 0, 0, 3, 0, 0, 0, 3, 0, 0, 3, 3, 0, 0,
                                                         0, 0, 3, 0, 0, 0,
                     0.
                        3,
                              0,
                                 0, 0, 0, 0, 3, 3, 3, 0,
                                                         0,
                                                           0, 0, 3, 3, 0,
                           0,
                3, 3, 0, 0, 0, 0, 0, 0, 0, 3, 0, 3, 0, 0, 0, 0, 0, 0, 3, 0,
                0, 0, 3,
                              0, 3, 0, 3, 0, 0, 0,
                        3,
                           0,
                                                   3,
                                                      0,
                                                         0, 0, 0, 0, 0, 3,
                           0, 0,
                                    0, 3, 0, 3,
                                                   3,
                                                     3,
                                                         0,
                                                              0,
                                 0,
                                               0,
                                                            2,
                                 0, 3, 0, 0, 0, 0, 3, 0,
                                                         0, 0, 0, 0, 3,
                     0,
                                             0, 3, 0,
                                                            0,
                              0,
                                 0, 0, 0, 0,
                                                      0,
                                                         0,
                                                               3, 0, 3,
                3, 2, 0, 3, 0, 3, 3, 0, 0, 0, 0, 0, 0, 3, 0, 0, 2, 3, 0, 0,
                                 0, 3, 0, 0, 0, 0, 3,
                0, 3, 0, 0, 3,
                              0,
                                                      3,
                                                         0,
                                                           0, 0, 0, 0, 0,
                0, 0, 3, 0, 0, 3, 0,
                                    0, 0, 0, 3,
                                               0, 3, 3,
                                                         0,
                                                           3, 3, 0, 0,
                3, 3, 3, 3, 0, 0,
                           0, 0,
                                 0,
                                                      3,
                                                         0,
                                                            3, 0, 0, 0,
                                                         3, 3, 0, 3, 0, 0,
                0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 3, 0, 3,
                1, 3, 0, 0, 3, 0, 3, 0, 0, 3, 0, 0,
                                                         3,
                                                           0, 3, 3, 0, 0,
                                                   0, 0,
                3, 0, 0, 0, 3, 0, 0, 3, 0, 3, 3, 0, 3,
                                                      0,
                                                           0, 0, 3, 0, 0,
                                                         1,
                              3,
                                 0, 3, 0, 3, 0, 3, 0, 0,
                                                           3, 0, 3, 0, 0,
                                                         0,
                     0, 3, 3, 3,
                                 0, 0, 0, 3,
                                             0, 2,
                                                   3, 3,
                                                         0,
                                                            0,
                                                              0, 0, 0,
                                 0, 0, 3, 0, 3, 3, 0,
                                                      0, 3, 0, 0, 0, 3, 0,
                0, 0, 0, 0,
                              0,
                                 3,
                                    3, 3, 0, 0, 3,
                                                         3,
                                                              0, 3, 0, 0,
                           0,
                                                   0,
                                                      0,
                                                            3,
                0, 0, 2, 3, 3, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3,
                                 3, 0, 0, 3, 0, 0, 3, 0,
                3, 3, 0, 0, 3,
                              3,
                                                         0, 0, 0, 3, 3, 3,
                                                         0,
                     3, 0, 3, 0, 0, 0, 0, 0, 3, 3, 0, 0,
                                                           0, 3, 0, 0, 0,
                0, 0, 3, 0, 3, 0, 0, 0, 0, 3, 1, 0, 3, 0, 3, 0, 3, 0, 3, 1, 0, 0,
                3, 0, 0, 0, 1, 0, 0, 3, 0, 0, 0, 0, 0, 0, 3, 3, 3, 0, 3, 3,
                3, 3, 0, 3, 3, 3, 0, 3, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0,
                0, 0, 3, 0, 0, 0, 3, 0, 3, 0, 3, 3, 0, 0, 3, 3, 3, 0, 0, 3, 3,
                3, 0, 3, 0, 0, 0, 3], dtype=int64)
```

Out[76]: <matplotlib.collections.PathCollection at 0x2798935b780>

