4.2.2 (5.7). ИНТЕРФЕРОМЕТР ЖАМЕНА

ДОПОЛНИТЕЛЬНОЕ ОПИСАНИЕ

14 марта 2016 г.

В работе используются: интерферометр Жамена, газовая кювета, осветитель, зрительная труба, сильфон, баллон с углекислым газом, манометр, краны светофильтр.

Экспериментальная установка. В нашем интерферометре (рис. 1) свет от лампы накаливания Π проходит коллиматорный объектив, поворотную призму и слегка расходящимся пучком падает на пластинку P_1 под углом 45° к ней. Пластины P_1 и P_2 закреплены на панели, ниже которой имеются два установочных винта, позволяющих в небольших пределах поворачивать зеркала. При этом пластина P_1 может поворачиваться вокруг горизонтальной оси (изменение ширины полос), а пластина P_2 — вокруг вертикальной оси (изменение положения полос).

Между пластинами на пути лучей I и II расположена кювета длины l, состоящая из двух одинаковых камер, закрытых с торцов плоскопараллельными стеклянными пластинками.

В одну из камер вводится исследуемый газ, а вторая заполнена воздухом при атмосферном давлении. При этом разность хода Δ , вызванная разностью показателей преломления газов δn приводит к сдвигу интерференционных полос:

Рис. 1. Экспериментальная установка

$$\Delta = \delta n \cdot l. \tag{1}$$

Сдвиг на одну полосу соответствует дополнительной разности хода $\Delta = \lambda$. Определив число полос m, на которое сместилась картина, можно рассчитать

$$\delta n = \frac{\Delta}{l} = m\frac{\lambda}{l}.\tag{2}$$

На пути лучей I и II расположен компенсатор Жамена, состоящий из двух одинаковых плоскопараллельных стеклянных пластинок J_1 и J_2 (рис. 1). Если обе пластинки установлены под одинаковым углом к лучам, то и оптическая длина пути в них для обоих лучей оказывается одинаковой. Поворот одной из пластинок вокруг горизонтальной оси вызывает увеличение или уменьшение оптической длины пути соответствующего луча. Это позволяет скомпенсировать разность хода, возникающую в камерах. Для точного отсчёта угла поворота одна из пластинок снабжена рычагом, конец которого смещается при помощи микрометрического винта В. Пластинки компенсатора ставятся под углом 45° к горизонтали, что позволяет использовать линейную экстраполяцию при измерениях. Смещение полос можно наблюдать через зрительную трубу Т.

Интерферометр Жамена можно применять для измерения небольших изменений показателей преломления жидкостей или газов, а также для определения примесей различных газов в воздухе (например, для измерения концентрации рудничного газа в шахте).

Показатель преломления n исследуемого газа определяется путём сравнения с воздухом при атмосферном давлении:

$$n = n_{\text{возд}} + \frac{\Delta}{l}.\tag{3}$$

Для определения величины Δ компенсатор следует прокалибровать.

Юстировка интерферометра. Перед началом работы камеру кюветы продувают воздухом, чтобы удалить из неё остатки углекислого газа.

Включают осветитель и с помощью экрана проверяют ход лучей I и II между зеркалами P_1 и P_2 : оба луча должны проходить через камеры кюветы и пластинки компенсатора, установленные параллельно друг другу, и падать на пластину P_2 . На выходе из пластины P_2 должны быть видны три пятна (рис. 1): крайние соответствуют лучам 1 и 4, среднее — лучам 2 и 3.

Для получения интерференционных полос в поле зрения трубы необходимо, чтобы ребро двугранного угла, образованного плоскостями пластин P_1 и P_2 , было приблизительно горизонтальным. К такому расположению можно прийти путём вращения пластины P_2 относительно вертикальной оси. Следует иметь в виду, что используемые в интерферометрах в качестве зеркал стеклянные пластины не всегда оказываются достаточно хорошо изготовленными. Это приводит к некоторым особенностям в расположении интерференционных полос. В частности, полосы могут оказаться несколько наклонёнными к горизонтали, и этот наклон полос не удаётся устранить поворотом пластинки P_1 вокруг горизонтальной оси.

Далее установочным винтом пластинки P_1 регулируют ширину полос.

Калибровка компенсатора. Отъюстировав интерферометр, с помощью установочного винта пластинки P_2 совмещают нулевую полосу с перекрестием нитей в окуляре зрительной трубы.

Замечают нулевое деление микрометрического винта компенсатора. Вращая винт компенсатора, последовательно совмещают с перекрестием первую, вторую и т.д. полосы и записывают отсчёты. Градуировку следует проводить, выделяя узкий интервал длин волн, для чего на пути лучей из осветителя устанавливается светофильтр. Результаты изображаются на градуировочном графике z=f(m), где z — отсчёт по шкале компенсатора. График позволит определять разность хода лучей в интерферометре по шкале компенсатора.

Газовая система. Установка, представленная на рис. 2, позволяет заполнять одну камеру кюветы воздухом при различных давлениях, а вторую — углекислым газом или воздухом при атмосферном давлении.

Давление воздуха в первой камере изменяется при помощи сильфона C и измеряется манометром M. Краны K_1 и K_2 соединяют камеру и манометр с атмосферой.

Рис. 3. Схема трёхходового крана ${\rm K}_0$

Если при атмосферном давлении (открытых кранах K_1 и K_2) установить шток сильфона приблизительно в среднее положение, то при закрытом кране K_1 можно, вращая шток, создать в первой камере как повышенное, так и пониженное давление. Манометр измеряет отклонение давления в камере от атмосферного в миллиметрах водяного столба.

Для заполнения второй камеры воздухом или углекислым газом при атмосферном давлении служит трёхходовой кран K_0 (рис. 3). В каждом из трёх рабочих положений этого крана сообщаются два патрубка, соседних с ручкой крана.

В положении 1 кран K_0 соединяет баллон с углекислым газом и балластный резервуар Б небольшого объёма ($\simeq 200~{\rm cm}^3$). При переводе крана в положение 2 газ, заполнивший балластный резервуар, перетекает во вторую камеру кюветы. После трёх—четырёх таких переключений углекислый газ практически полностью вытесняет воздух из камеры и остаётся там достаточно долго, несмотря на то, что камера сообщается с атмосферным воздухом через второй открытый конец. В положении 3 вторая камера соединяется с грушей Γ , с помощью которой можно промыть кювету воздухом.

Зависимость показателя преломления газа от давления и температуры. Молекулярная оптика устанавливает следующее простое соотношение между показателем преломления газа и его плотностью:

$$n = \sqrt{\varepsilon} = \sqrt{1 + 4\pi N\alpha} \approx 1 + 2\pi N\alpha,\tag{4}$$

где N — число молекул в единице объёма, α — поляризуемость молекулы — коэффициент пропорциональности между дипольным моментом \boldsymbol{p} молекулы и напряжённостью электрического поля \boldsymbol{E} ($\boldsymbol{p}=\alpha\boldsymbol{E}$), ε — диэлектрическая проницаемость. Принимая во внимание соотношение $P=Nk_{\rm B}T$, где P — давление в газе, $k_{\rm B}$ — постоянная Больцмана, получим

$$n - 1 = 2\pi\alpha \frac{P}{k_{\rm B}T}. (5)$$

Из 5 следует, что при постоянной температуре изменение показателя преломления Δn пропорционально изменению давления ΔP :

$$\delta n = \frac{2\pi\alpha}{k_{\rm B}T} \Delta P. \qquad ({\rm C}\Gamma{\rm C}) \tag{6}$$

Величина δn измеряется с помощью интерферометра Жамена, $\Delta P-c$ помощью манометра. Одновременное измерение этих величин (и температуры T) позволяет определить поляризуемость молекул воздуха и, следовательно, рассчитать по формуле (5) показатель преломления воздуха для любых значений P и T. Следует отметить, что воздух является смесью нескольких газов, поэтому под поляризуемостью молекул воздуха нужно понимать некоторую среднюю величину, определяемую соотношением

$$\alpha = \frac{1}{N} \sum_{i} \alpha_i N_i, \tag{7}$$

где α_i и N_i — поляризуемость и концентрация молекул различных газов, входящих в состав воздуха, N — общее число молекул в единице объёма.

Формула (5) позволяет установить связь показателя преломления газа n при температуре T и давлении P с показателем преломления n_0 при нормальных условиях ($T_0 = 273 \; \mathrm{K}, \; P_0 = 1 \; \mathrm{atm}$):

$$\frac{n_0 - 1}{n - 1} = \frac{T}{T_0} \frac{P_0}{P}. (8)$$

ЗАДАНИЕ

В работе предлагается отъюстировать интерферометр; прокалибровать компенсатор, используя светофильтр; исследовать смещение интерференционных полос а) при изменении давления воздуха в одной из камер б) при заполнении одной из камер углекислым газом при атмосферном давлении. По результатам измерений рассчитываются показатели преломления воздуха и углекислого газа при нормальных условиях и поляризуемость молекул воздуха.

I. Юстировка прибора

- Ознакомьтесь с устройством газовой системы (см. описание экспериментальной установки). Уровняйте давление в обеих камерах кюветы: первую соедините с атмосферой, открыв краны K₁ и K₂, а вторую (с открытым концом) продуйте с помощью груши Γ, чтобы удалить из неё остатки углекислого газа (кран K₀ в положении 3).
- 2. Убедитесь, что пластинки J_1 и J_2 компенсатора установлены параллельно друг другу (на глаз).
- 3. Включите осветитель и с помощью экрана (листа белой бумаги) убедитесь, что оба луча I и II проходят через входные окна кюветы и попадают на пластину P_2 . Световые пятна на второй пластине должны быть правильной круглой формы; если пятна имеют несимметричную форму, обратитесь за помощью к лаборанту.

Рассматривая глазом лучи, отражённые от пластины P_2 , убедитесь, что видны три пятна: ближе к камере расположено пятно 1 (слабое — луч отражается от внешних поверхностей пластин), дальше всех от камеры — пятно 4 (яркое, т.к. оба раза луч отражается от зеркальных поверхностей) и центральное пятно средней яркости, образованное наложением лучей 2 и 3.

Поочерёдно закрывая лучи I и II, убедитесь в том, что яркость среднего пятна меняется незначительно.

- 4. Установите зрительную трубу так, чтобы лучи 2 и 3 попали в объектив. Настройте окуляр зрительной трубы на чёткое видение измерительного креста.
- 5. Настройте интерференционную картину: для этого м е д л е н н о поворачивая пластину P_2 вокруг вертикальной оси с помощью установочного винта, добейтесь появления интерференционных полос в поле зрения трубы; убедитесь, что при этом наклон полос практически не изменяется. Ориентация полос в пространстве существенно зависит от качества (параллельности) пластин.

Установочным винтом пластинки P_1 установите ширину полос порядка 1/10 поля зрения.

Во всех дальнейших опытах установочные винты пластинок P_1 и P_2 трогать не следует.

II. Калибровка компенсатора

6. Установите начало отсчёта, совместив перекрестие окуляра с нулевой полосой с помощью винта компенсатора. Из-за дисперсии стекла чёткой нулевой полосы нет, но за нуль можно принять один из самых сильных максимумов.

Повторите настройку нуля несколько раз, вращая винт в одну сторону, чтобы исключить люфт.

7. Прокалибруйте компенсатор в единицах λ , выделив узкий интервал длин волн с помощью светофильтра. Для этого наденьте на оправу окуляра красный светофильтр и, последовательно совмещая первую, вторую, ... m-ую подвижные полосы с перекрестием, запишите соответствующие отсчёты z_m по микрометрическому винту компенсатора. При смещении на одну полосу разность хода меняется на длину волны.

При калибровке используйте все полосы, наблюдаемые в окуляре сверху и снизу от нулевой полосы (со светофильтром их больше двадцати).

8. Запишите длину кюветы l, указанную на установке, а также длину волны λ и полосу пропускания светофильтра, указанные на его оправе.

III. Зависимость δn от P для воздуха

- 9. Убедитесь, что давление воздуха в обеих камерах кюветы атмосферное (краны K_1 и K_2 открыты); установите шток сильфона приблизительно на середину его длины и отсоедините первую камеру от атмосферы, перекрыв кран K_1 .
- 10. Изменяя давление с помощью сильфона и совмещая нулевую полосу с перекрестием, снимите зависимость показаний компенсатора z от перепада давлений ΔP . Если давление «плывёт», фиксируйте величину ΔP сразу после совмещения перекрестия с нулевой полосой.

Давление следует изменять в обе стороны от атмосферного в пределах рабочей области манометра (± 1000 мм вод. ст.).

IV. Сравнение показателей преломления воздуха и углекислого газа при атмосферном давлении

- 11. Соедините первую камеру кюветы с атмосферой, открыв кран K_1 . Заполните углекислым газом камеру с открытым концом. Для этого 3–4 раза плавно, чтобы избежать резкого изменения температуры газа при расширении, переведите кран K_0 из положения 1 в положение 2.
- 12. Совместите нулевую полосу с перекрестием. Слишком малое смещение картины (< 25 полос для камеры длиной 10 см) означает, что камера заполнена смесью углекислого газа с воздухом. Если повторная прокачка камеры не помогает, обратитесь за помощью к лаборанту.

Снимите зависимость показаний компенсатора от времени, раз в минуту возвращая нулевую полосу к перекрестию, и оцените время установления равновесия. Если полосы не смещаются, значит система не подтекает.

Повторите измерения, стараясь заполнять кювету как можно более плавно.

- 13. Определите температуру T и давление P по показаниям лабораторного термометра и барометра.
- 14. Оцените на месте интервал δn , доступный для измерений, исходя из возможностей компенсатора: минимальная величина δn , доступная для измерений, определяется точностью компенсатора, максимальная диапазоном его работы.

V. Обработка результатов

- 1. Постройте калибровочный график $z_m = f(m)$ зависимость отсчёта по компенсатору от номера совмещённой полосы.
- 2. Постройте график $z = f(\Delta P)$ (от +1000 до -1000 мм $\mathrm{H_2O}$). Определите угол наклона прямой; с помощью калибровочного графика и формулы (2) перейдите от делений компенсатора Δz к величине δn ; рассчитайте сначала среднюю поляризуемость молекулы воздуха, используя формулу (6), а затем показатель преломления воздуха в условиях опыта по формуле (5).

Пересчитайте показатель преломления по формуле 8 к нормальным условиям и сравните результат с табличным.

- 3. Молекулу газа можно представить как металлический шарик в однородном электрическом поле. Оцените радиус молекулы азота по результатам измерений.
- 4. Рассчитайте показатель преломления n для углекислого газа в условиях опыта по формуле 3, взяв показатель преломления воздуха, рассчитанный по результатам эксперимента.

Пересчитайте n углекислого газа к нормальным условиям и сравните результат с табличным.

- 5. Оцените экспериментальные погрешности.
- 6. Оцените интервал Δn , доступный для измерений, исходя из возможностей компенсатора: минимальная величина Δn , доступная для измерений, определяется точностью компенсатора, максимальная диапазоном его работы.

14 марта-2016 г.