23. Le coefficient en x3 dans le développement en série de Mac - Laurin de

la fonction
$$\frac{1}{(1+x)^3}$$
 vaut :

- 1.-20 2.-10 3.-60 4.10 5.-1 (M. 82)24. Le coefficient du terme en x⁴ dans le développement en série de Mac-Laurin de la fonction x² e^x est:
- 3. 12 4. 3 5. 1/6 (B. 83) 2. 1/24 1: 1/2 25. Quelle est la meilleure majoration de la valeur absolue de l'erreur
 - commise en calculant arc tg 0,0! en se limitant au terme $\frac{x^2}{2!}$ f"(0) dans la formule de Mac - Laurin?
 - $1.\frac{10^{-6}}{3}$ $2.\frac{10^{-6}}{6}$ $3.\frac{10^{-10}}{6}$ $4.\frac{10^{-8}}{3}$ 5. aucune bonne réponse (M-75) 26. On donne la fonction $f: x \longmapsto \ln(x + \sqrt{1 + x^2})$. Calculer $f'(\sqrt{2})$
- $1.1 + \frac{\sqrt{6}}{2}$ $2\sqrt{3} \sqrt{2}$ $3.\sqrt{6} \sqrt{3} \sqrt{2} + 3$ $4.\sqrt{3}$ $5.\frac{\sqrt{3}}{2}$ (M.-84) x 27. Le coefficient du terme en x3 dans le développement en série de Mac-Laurin de la fonction définie par $f(x) = (1 + x)^{-3}$ est :
 - 5. -204. -603. 10 2. -1028. Le coefficient du terme en x3 dans le développement en série de Mac-Laurin de la fonction définie par $f(x) = e^{-2x}$ est :
 - 1. $\frac{4}{3}$ 2. 0 3. $-\frac{4}{3}$ 4. $-\frac{1}{6}$ 5. $\frac{1}{6}$
 - 29. Déterminer le développement en série de Mac-Laurin incorrect. Seuls les trois premiers termes non nuls ont été indiqués.

1.
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots$$
 4. $\ln (1 + x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \cdots$

1.
$$\cos x = 1 - \frac{1}{2!}$$
 4! 2 3

2.
$$e^x = 1 + x + \frac{x^2 + \dots}{2!} + \dots$$
5. $\frac{1}{(1+x)^3} = 1 + 3x + 6x^2 + \dots$
(M-85)

3.
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots$$
 www.ecoles-rdc.net