Detecting Risk of Heart Disease

Precious Smith DSIR-22221E General Assembly Presented 5.14.21

Agenda

- 1. Background
- 2. Data Collection
- 3. Exploratory Data Analysis
- 4. Modeling
- 5. App Demo
- 6. Conclusions & Future Direction

Background

Heart Disease Stats

- Heart disease is the #1 cause of death.
- There are several types of heart disease but coronary artery disease is the most common.
- Symptoms include:
 - Chest pain or discomfort (angina)
 - Weakness, light-headedness, nausea, cold sweat
 - Pain or discomfort in arms or shoulders
 - Shortness of breath

Sources: <u>CDC</u>

655,000 deaths

1 in 4 deaths each year

\$219 billion

Cost of heart disease in the US, 2014-2015

47% of Americans

Key risk factors: hypertension, high cholesterol, smoking

Source: CDC-Million Hearts

Other Risk Factors

Source: CDC

Background

Prevention & Treatment

- Eat a healthy, balanced diet
- Live an active lifestyle
- Don't smoke
- Take medications as prescribed

ABCS of Heart Health

- Take aspirin as prescribed
- Control your **Blood** pressure
- Manage your Cholesterol
- Don't Smoke

Source: CDC-Million Hearts

How can we help?

Empower patients to initiate informed conversations with their physicians.

Educate patients on things they should be aware of and equip them with tools to make better decisions for themselves.

Problem Statement:

Can we predict whether someone is at risk of heart disease using a few key features, then create an app that informs users of their risk and provides them with test and discussion suggestions to take to their physicians?

Data Collection

National Health Interview Survey CDC, 2019

CDC - National Health Interview Survey

- 530+ features
- Nearly 32,000 observations
- A lot of nulls
- Target: Coronary Heart Disease
 - 94% No, 6% Yes

Source: <u>CDC</u>

Data Cleaning

- Dropped columns with excessive nulls
- Reclassified target column as binary (0=no, 1=yes)
- Changed data types for categorical data
- Created dummies
- Used SelectKBest to find top 10 predictive features
- My own selection of features
- Used SMOTE to create balanced classes

Source: <u>CDC</u>

Exploratory Data Analysis

What is the data telling us about America's health?

Where is the data from?

Heart Disease by Region			
Northeast	Midwest	South	West
6.2%	5.6%	6.5%	4.6%

What else is the data telling us?

	% of Respondents	% Who Also Have Heart Disease
Hypertension	36%	13%
High Cholesterol	29%	14%
Current Smoker	13%	9%
Diabetes	10%	18%

Modeling

Feature Selection & Balancing Classes

SelectKBest

Narrowed down features after dropping null columns and dummifying.

k=10

Hand-selected

Chose features based off research for what may have been good predictors of heart disease.

56 features

SMOTEN/NearMiss

Heart Disease: 94% no, 6% yes

SMOTEN: 50%, 45,072 observations

NearMiss: 50%, 2768 observations

Heart Disease Models & Scores

	Accuracy Score	Recall Score
SelectKBest, SMOTEN, Logistic Regression	.82	.83
SelectKBest, SMOTEN, Decision Tree	.84	.76
SelectKBest, SMOTEN, AdaBoost	.82	.83
SelectKBest, SMOTEN, Gradient Boost	.83	.81
SelectKBest, NearMiss, Logistic Regression	.83	.80
SelectKBest, NearMiss, Decision Tree	.78	.77
Hand-picked, SMOTEN, Logistic Regression	.95	.41
Hand-picked, SMOTEN, Decision Tree	.92	.35
Hand-picked, NearMiss, Logistic Regression	.39	.89
Hand-picked, NearMiss, Decision Tree	.51	.84

Final Heart Disease Model

- SelectKBest, k=10
- SMOTEN
- Logistic Regression
- Accuracy: .82
- Recall: .83

questions	feature_names	coefs	
no one on active duty	AFNOW_2.0	-0.171072	0
did not work last week	EMPWRKLSWK_A_2	0.724457	1
not on medicare	MEDICARE_A_3	-0.114547	2
one person in home over 65	OVER65FLG_A_1	0.319874	3
no income from railroad	INCSSRR_A_2.0	-0.328528	4
health insurance not mentioned	HIKIND02_A_2	-0.350059	5
no heart attack	MIEV_A_2	-3.383119	6
no angina	ANGEV_A_2	-2.461329	7
no high cholesterol	CHLEV_A_2	-0.722358	8
no hypertension	HYPEV_A_2	-1.047147	9

Diabetes Model

- SelectKBest, k=10
- SMOTEN
- Logistic Regression
 - o C=.01
- Accuracy: .82
- Recall: .81

	coefs	feature_names	questions
0	0.341789	EMPWRKLSWK_A_2	did not work last week
1	0.057768	MEDICARE_A_3	not on medicare
2	-0.493950	SHTPNUEV_A_2	no pneumonia shot
3	1.452884	DIABLAST_A_1	blood sugar test w/i last year
4	-1.207990	RX12M_A_2	no rx last 12 months
5	-0.139947	HIKIND02_A_2	health insurance not mentioned
6	-2.428958	PREDIB_A_2	no prediabetes
7	-0.331133	CHDEV_A_2	no heart disease
8	-0.580376	CHLEV_A_2	no high cholesterol
9	-0.802246	HYPEV_A_2	no hypertension

Heart Health Screening Tool

- 2 questionnaires
- 9 questions each
- At risk or not
- Suggestions for tests
- Conversation suggestions for physician

Conclusions & Future Direction

Conclusions

- We are able to build a model and an app that predicts whether someone is at risk of heart disease or diabetes with 82% accuracy.
- Minimized false negatives but false positives are still high.

- Medical data with test scores may improve model
- HIPAA laws make it difficult to access health data but data scientist with access may be able to create something better
- While app is informative, results may be too grim
- Don't want to scare people away

Future Direction

- Doctor's office waiting room
- Interactive version of a rack card
- Patient portal that can be submitted to nurse/doctor
- More information on the app instead of links leaving the app

Thank you!

- My instructors: Chuck, Varun & Grant
- My classmates, group mates, study partners

Questions?

Presentation template by <u>SlidesCarnival</u>