SEQUENCE LISTING

<110>	VENETSANAKOS, ELENI	
<120>	METHODS FOR TREATING CANCER USING PORIMIN AS A TARGET	-
<130>	26312.0002	
<160>	6	-
<170>	PatentIn version 3.1	-
<210>	1	
<211>	3338	
<212>	DNA	
<213>	HUMAN PORIMIN	
<400>	1	
cccago	ccgg ccccgccgcc ccggctgcgc acgcgacgcc ccctccaggc cccgctcctg	60
cgccct	attt ggtcattcgg ggggcaagcg gcgggagggg aaacgtgcgc ggccgaaggg	120
gaagcg	gage eggegeegge tgegeagagg ageegetete geegeegeea eeteggetgg	180
 gagece	acga ggctgccgca tcctgccctc ggaacaatgg gactcggcgc gcgaggtgct	240
tgggcc	gege tgeteetggg gaegetgeag gtgetagege tgetggggge egeceatgaa	300
agcgca	gcca tggcggagac tctccaacat gtgccttctg accatacaaa tgaaacttcc	360
aacagt	actg tgaaaccacc aacttcagtt gcctcagact ccagtaatac aacggtcacc	420
accato	aaac ctacagoggo atctaataca acaacaccag ggatggtoto aacaaatatg	480

540

600

660

acttctacca ccttaaagtc tacacccaaa acaacaagtg tttcacagaa cacatctcag

atatcaacat ccacaatgac cgtaacccac aatagttcag tgacatctgc tgcttcatca

gtaacaatca caacaactat gcattctgaa gcaaagaaag gatcaaaatt tgatactggg

agctttgttg	gtggtattgt	attaacgctg	ggagttttat	ctattcttta	cattggatgc	720
aaaatgtatt	actcaagaag	aggcattcgg	tatcgaacca	tagatgaaca	tgatgccatc	. 780
atttaaggaa	atccatggac	caaggatgga	atacagattg	atgctgccct	atcaattaat	840
tttggtttat	taatagttta	aaacaatatt	ctctttttga	aaatagtata	aacaggccat	900
gcatataatg	tacagtgtat	tacgtaaata	tgtaaagatt	cttcaaggta	acaagggttt	960
gggttttgaa	ataaacatct	ggatcttata	gaccgttcat	acaatggttt	tagcaagttc	1020
atagtaagac	aaacaagtcc	tatcttttt	tttttggctg	gggtggggc	attggtcaca	1080
tatgaccagt	aattgaaaga	cgtcatcact	gaaagacaga	atgccatctg	ggcatacaaa	1140
taagaagttt	gtcacagcac	tcaggatttt	gggtatcttt	tgtagctcac	ataaagaact	1200
tcagtgcttt	tcagagctgg	atatatctta	attactaatg	ccacacagaa	attatacaat	1260
caaactagat	ctgaagcata	atttaagaaa	aacatcaaca	ttttttgtgc	tttaaactgt	1320
agtagttggt	ctagaaacaa	aatactccaa	gaaaaagaaa	attttcaaat	aaaacccaaa	1380
ataatagctt	tgcttagccc	tgttagggat	ccattggagc	attaaggagc	acatattttt	1440
attaacttct	tttgagcttt	caatgttgat	gtaatttttg	ttctctgtgt	aatttaggta	1500
aactgcagtg	tttaacataa	taatgtttta	aagacttagt	tgtcagtatt	aaataatcct	1560
ggcattatag	ggaaaaaacc	tcctagaagt	tagattattt	gctactgtga	gaatattgtc	1620
accactggaa	gttactttag	ttcatttaat	tttaatttta	tattttgtga	atattttaag	1680
aactgtagag	ctgctttcaa	tatctagaaa	tttttaattg	agtgtaaaca	cacctaactt	1740
taagaaaaag	aaccgcttgt	atgattttca	aaagaacatt	tagaattcta	tagagtcaaa	1800
actatagcgt	aatgctgtgt	ttattaagcc	agggattgtg	ggacttcccc	caggcaacta	1860
aacctgcagg	atgaaaatgc	tatattttct	ttcatgcact	gtcgatatta	ctcagatttg	1920
gggaaatgac	atttttatac	taaaacaaac	accaaaatat	tttagaataa	attcttagaa	1980
agttttgaga	ggaatttta	gagaggacat	ttcctccttc	ctgatttgga	tattccctca	2040
aatccctcct	cttactccat	gctgaaggag	aagtactctc	agatgcatta	tgttaatgga	2100
gagaaaaagc	acagtattgt	agagacacca	atattagcta	atgtattttg	gagtgttttc	2160
cattttacag	tttatattcc	agcactcaaa	actcagggtc	aagttttaac	aaaagaggta	2220
tgtagtcaca	gtaaatacta	agatggcatt	tctatctcag	agggccaaag	tgaatcacac	2280
cagtttctga	aggtcctaaa	aatagctcag	atgtcctaat	gaacatgcac	ctacatttaa	2340
taggagtaca	ataaaactgt	tgtcagcttt	tgttttacag	agaacgctag	atattaagaa	2400

ttttgaaatg	gatcatttct	acttgctgtg	çattttaacc	aataatctga	tgaatataga	2460
aaaaaatgat	ccaaaatatg	gatatgattg	gatgtatgta	acacatacat	ggagtatgga	2520
ggaaattttc	tgaaaaatac	atttagatta	gtttagtttg	aaggagaggt	gggctgatgg	2580
ctgagttgta	tgttactaac	ttggccctga	ctggttgtgc	aaccattgct	tcatttcttt	2640
gcaaaatgta	gttaagatat	actttattct	aatgaaggcc	ttttaaattt	gtccactgca .	2700
ttcttggtat	ttcactactt	caagtcagtc	agaacttcgt	agaccgacct	gaagtttctt	2760
tttgaatact	tgtttcttta	gcactttgaa	gatagaaaaa	ccacttttta	agtactaagt	2820
catcatttgc	cttgaaagtt	tcctctgcat	tgggtttgaa	gtagtttagt	tatgtctttt	2880
tctctgtatg	taagtagtat	aatttgttac	tttcaaatac	ccgtactttg	aatgtaggtt	2940
tttttgttgt	tgttatctat	aaaaattgag	ggaaatggtt	atgcaaaaaa	atattttgct	3000
ttggaccata	tttcttaagc	ataaaaaaat	gctcagtttt	gcttgcattc	cttgagaatg	3060
tatttatctg	aagatcaaaa	caaacaatcc	agatgtataa	gtactaggca	gaagccaatț	3120
ttaaaatttc	cttgaataat	ccatgaaagg	aataattcaa	atacagataa	acagagttgg	3180
cagtatatta	tagtgataat	tttgtatttt	caamaaaaaa	aaagttaaac	tcttctttc	3240
tttttattat	aatgaccagc	ttttggtatt	tcattgttac	caagttctat	ttttagataa	3300
aattgttctc	cttctaaaaa	aaaaaaaaa	aaaaaaa			3338

<210> 2

<211> 1281

<212> DNA

<213> HUMAN PORIMIN

<400> 2
gcggagccgg cgccggctgc gcagaggagc cgctctcgcc gccgccacct cggctggag 60
cccacgaggc tgccgcatcc tgccctcgga acaatgggac tcggcgcgc aggtgcttgg 120
gccgcgctgc tcctggggac gctgcaggtg ctagcgctgc tgggggccgc ccatgaaagc 180
gcagccatgg cggcatctgc aaacatagag aattctgggc ttccacacaa ctccagtgct 240
aactcaacag agactctcca acatgtgcct tctgaccata caaatgaaac ttccaacagt 300
actgtgaaac caccaacttc agttgcctca gactccagta atacaacggt caccaccatg 360

aaacctacag	cggcatctaa	tacaacaaca	ccagggatgg	tctcaacaaa	tatgacttct	420
accaccttaa	agtctacacc	caaaacaaca	agtgtttcac	agaacacatc	tcagatatca	480
acatccacaa	tgaccgtaac	ccacaatagt	tcagtgacat	ctgctgcttc	atcagtaaca	540
atcacaacaa	ctatgcattc	tgaagcaaag	aaaggatcaa	aatttgatac	tgggagcttt	600
gttggtgğta	ttgtattaac	gctgggagtt	ttatctattc	tttacattgg	atgcaaaatg	660
tattactcaa	gaagaggcat	tcggtatcga	accatagatg	aacatgatgc	catcatttaa	720
ggaaatccat	ggaccaagga	tggaatacag	attgatgctg	ccctatcaat	taattttggt	780
ttattaatag	tttaaaacaa	tattctcttt	ttgaaaatag	tataaacagg	ccatgcatat	840
aatgtacagt	gtattacgta	aatatgtaaa	gattcttcaa	ggtaacaagg	gtttgggttt	900
tgaaataaac	atctggatct	tatagaccgt	tcatacaatg	gttttagcaa	gttcatagta	960
agacaaacaa	gtcctatctt	tttttttgg	ctggggtggg	ggcattggtc	acatatgacc	1020
agtaattgaa	agacgtcatc	actgaaagac	agaatgccat	ctgggcatac	aaataagaag	1080
tttgtcacag	cactcaggat	tttgggtatc	ttttgtagct	cacataaaga	acttcagtgc	1140
ttttcagagc	tggatatatc	ttaattacta	atgccacaca	gaaattatac	aatcaaacta	1200
gatctgaagc	ataatttaag	aaaaacatca	acattttttg	tgctttaaac	tgtagtagtt	1260
ggtctagaaa	caaaatactc	С		•		1281

<210> 3

<211> 189

<212> PRT

<213> HUMAN PORIMIN

<400> 3

Met Gly Leu Gly Ala Arg Gly Ala Trp Ala Ala Leu Leu Gly Thr 1 5 10 15

Leu Gl
n Val Leu Ala Leu Leu Gly Ala Ala His Glu Ser Ala Ala Met
 20 25 30

Ala Glu Thr Leu Gln His Val Pro Ser Asp His Thr Asn Glu Thr Ser 35 40 45

Asn Ser Thr Val Lys Pro Pro Thr Ser Val Ala Ser Asp Ser Ser Asn Thr Thr Val Thr Thr Met Lys Pro Thr Ala Ala Ser Asn Thr Thr Pro Gly Met Val Ser Thr Asn Met Thr Ser Thr Thr Leu Lys Ser Thr Pro Lys Thr Thr Ser Val Ser Gln Asn Thr Ser Gln Ile Ser Thr Ser 105 Thr Met Thr Val Thr His Asn Ser Ser Val Thr Ser Ala Ala Ser Ser 120 Val Thr Ile Thr Thr Met His Ser Glu Ala Lys Lys Gly Ser Lys 130 135 Phe Asp Thr Gly Ser Phe Val Gly Gly Ile Val Leu Thr Leu Gly Val 150 155 Leu Ser Ile Leu Tyr Ile Gly Cys Lys Met Tyr Tyr Ser Arg Arg Gly 165 170 -Ile Arg Tyr Arg Thr Ile Asp Glu His Asp Ala Ile Ile 180 <210> 4 <211> 208 <212> PRT <213> HUMAN PORIMIN <400> 4 Met Gly Leu Gly Ala Arg Gly Ala Trp Ala Ala Leu Leu Leu Gly Thr

Leu Gln Val Leu Ala Leu Leu Gly Ala Ala His Glu Ser Ala Ala Met 20 25 30

Ala Ala Ser Ala Asn Ile Glu Asn Ser Gly Leu Pro His Asn Ser Ser

35

40

45

Ala Asn Ser Thr Glu Thr Leu Gln His Val Pro Ser Asp His Thr Asn 55 Glu Thr Ser Asn Ser Thr Val Lys Pro Pro Thr Ser Val Ala Ser Asp Ser Ser Asn Thr Thr Val Thr Thr Met Lys Pro Thr Ala Ala Ser Asn Thr Thr Thr Pro Gly Met Val Ser Thr Asn Met Thr Ser Thr Thr Leu 105 Lys Ser Thr Pro Lys Thr Thr Ser Val Ser Gln Asn Thr Ser Gln Ile 120 Ser Thr Ser Thr Met Thr Val Thr His Asn Ser Ser Val Thr Ser Ala 135 Ala Ser Ser Val Thr Ile Thr Thr Met His Ser Glu Ala Lys Lys 150 155 Gly Ser Lys Phe Asp Thr Gly Ser Phe Val Gly Gly Ile Val Leu Thr 170 Leu Gly Val Leu Ser Ile Leu Tyr Ile Gly Cys Lys Met Tyr Tyr Ser 185 Arg Arg Gly Ile Arg Tyr Arg Thr Ile Asp Glu His Asp Ala Ile Ile 195 200 <210> 5 <211>. 118

<212> PRT

<213> Human Porimin

<400> 5

Met Ala Glu Thr Leu Gln His Val Pro Ser Asp His Thr Asn Glu Thr

Ser Asn Ser Thr Val Lys Pro Pro Thr Ser Val Ala Ser Asp Ser Ser Asn Thr Thr Val Thr Thr Met Lys Pro Thr Ala Ala Ser Asn Thr Thr 40 Thr Pro Gly Met Val Ser Thr Asn Met Thr Ser Thr Thr Leu Lys Ser 55 Thr Pro Lys Thr Thr Ser Val Ser Gln Asn Thr Ser Gln Ile Ser Thr Ser Thr Met Thr Val Thr His Asn Ser Ser Val Thr Ser Ala Ala Ser 90 . 85 Ser Val Thr Ile Thr Thr Met His Ser Glu Ala Lys Lys Gly Ser 105 100 Lys Phe Asp Thr Gly Ser 115 <210> 6 <211> 137 <212> PRT <213> Human Porimin <400> 6 Met Ala Ala Ser Ala Asn Ile Glu Asn Ser Gly Leu Pro His Asn Ser Ser Ala Asn Ser Thr Glu Thr Leu Gln His Val Pro Ser Asp His Thr Asn Glu Thr Ser Asn Ser Thr Val Lys Pro Pro Thr Ser Val Ala Ser 35 40 45

Asp Ser Ser Asn Thr Thr Val Thr Thr Met Lys Pro Thr Ala Ala Ser.

Asn 65	Thr	Thr	Thr	Pro	Gly 70	Met	Val	Ser	Thr	Asn 75	Met	Thr	Ser		Thr 80
Leu	Lys	Ser	Thr	Pro 85	Lys	Thr	Thr	Ser	Val 90	Ser	Gln	Asn	Thr	Ser 95	Gln
Ile	Ser	Thr	Ser 100	Thr	Met	Thr		Thr 105	His	Asn	Ser	Ser	Val 110	Thr	Ser
Ala	Ala	Ser 115	Ser	Val [.]	Thr	Ile	Thr 120	Thr	Thr	Met	His	Ser 125	Glu	Ala	Lys
Lys	Gly 130	Ser	Lys	Phe	-	Thr 135	Gly	Ser					•		