PERSISTENT RELATIVE HOMOLOGY FOR TOPOLOGICAL DATA ANALYSIS

Christian Lentz

April 17, 2024

TOPOLOGY

Topology is concerned with certain *qualitative properties* of spaces/objects that are invariant (do not change) under certain types of *continuous transformations* (functions).

3

SIMPLICIAL COMPLEXES

 Study a complicated structure by breaking it into "simple pieces" called simplices.

Definition

A **simplicial complex** is a subspace $K \subseteq \mathbb{R}^n$ such that

- 1. if $\sigma \in K$ and $\tau \subset \sigma$ then $\tau \in K$.
- 2. if $\sigma, \tau \in K$ then $\sigma \cap \tau$ is empty or a subsimplex of both.
 - Graphs/networks, topological spaces, point cloud data, etc.

CHAIN VECTOR SPACES

Definition

Define $C_n(K)$ to be the \mathbb{Z}_2 vector space whose basis is the set of n-simplices in K.

- A linear combination of n-simplices is an n-chain.
- For example, $C_2(K)$ is spanned by the following basis of 2-simplices:

5

BOUNDARY OPERATORS

Definition

Define the (alternating) **boundary operator** as a linear transformation $\partial_n : C_n(K) \to C_{n-1}(K)$ given by

$$[v_0v_1\ldots v_n]\mapsto \sum_{j=0}^n (-1)^j[v_0v_1\ldots \hat{v_j}\ldots v_n].$$

• Map an n-simplex to an (n-1)-chain which is its boundary.

- Every function has a
 - Kernel: All inputs that map to zero.
 - Image: All outputs.
- Elements in the kernel of a boundary operator are called cycles, and elements in the image are boundaries.

What is ∂_1 for the following simplicial complex K?

- Recall $\partial_1: C_1(K) \to C_0(K)$
- $C_1(K) = \{[ab], [ac], [bc], [cd], [ce], [de]\}$
- $C_0(K) = \{a, b, c, d, e\}$

What is ∂_1 for the following simplicial complex K?

• We have $\partial_1([v_0v_1]) = [\hat{v_0}v_1] - [v_0\hat{v_1}]$, now fill out each column of the matrix!

$$\begin{bmatrix} ab \end{bmatrix} \begin{bmatrix} ac \end{bmatrix} \begin{bmatrix} bc \end{bmatrix} \begin{bmatrix} cd \end{bmatrix} \begin{bmatrix} ce \end{bmatrix} \begin{bmatrix} de \end{bmatrix}$$

$$\partial_1 = \begin{matrix} c \\ d \\ e \end{matrix}$$

8

What is ∂_1 for the following simplicial complex K?

• We have $\partial_1([v_0v_1]) = [\hat{v_0}v_1] - [v_0\hat{v_1}]$, now fill out each column of the matrix!

$$\begin{bmatrix} ab \end{bmatrix} \quad \begin{bmatrix} ac \end{bmatrix} \quad \begin{bmatrix} bc \end{bmatrix} \quad \begin{bmatrix} cd \end{bmatrix} \quad \begin{bmatrix} ce \end{bmatrix} \quad \begin{bmatrix} de \end{bmatrix}$$

$$\frac{a}{b} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$\frac{d}{d} \begin{pmatrix} e \end{pmatrix}$$

9

What is ∂_1 for the following simplicial complex K?

$$[ab] \quad [ac] \quad [bc] \quad [cd] \quad [ce] \quad [de]$$

$$a \begin{pmatrix} -1 & -1 \\ 1 \\ & 1 \\ & e \end{pmatrix}$$

$$\partial_1 = c \begin{pmatrix} d \\ d \\ e \end{pmatrix}$$

What is ∂_1 for the following simplicial complex K?

$$\begin{bmatrix} ab \end{bmatrix} & [ac] & [bc] & [cd] & [ce] & [de] \\ a & -1 & -1 & & & \\ b & 1 & & -1 & & & \\ \partial_1 = c & & 1 & 1 & & & \\ d & & & & & \\ e & & & & & & \end{bmatrix}$$

What is ∂_1 for the following simplicial complex K?

$$\begin{bmatrix} ab \end{bmatrix} & [ac] & [bc] & [cd] & [ce] & [de] \\ a & -1 & -1 & & & \\ b & 1 & & -1 & & & \\ \partial_1 = c & & 1 & 1 & -1 & -1 & \\ d & & & & 1 & & \\ e & & & & & 1 & & \end{bmatrix}$$

What is ∂_1 for the following simplicial complex K?

CHAIN COMPLEXES

• A **chain complex** is a sequence of boundary operators where $\partial_{n-1}\partial_n = 0$, which means a boundary has no boundary.

- Notice: $\operatorname{Im}(\partial_{n+1}) \subseteq \operatorname{Ker}(\partial_n)$
- Every (n + 1)-boundary is also an n-cycle, but the converse is not always true.

14

HOMOLOGY GROUPS

- A **homology group** $H_n(K)$ describes all of the *n*-dimensional holes in the simplicial complex K.
- Deterrmine which cycles are not boundaries.

$$H_n(K) = \text{Ker}(\partial_{n-1})/\text{Im}(\partial_n)$$

= $cycles - boundaries$

WHAT IS PERSISTENT HOMOLOGY?

- Persistent homology (PH) is a tool in topological data analysis (TDA) used to study the shape of data.
- Apply homology to a sequence of nested topological spaces called a filtered topological space.
- Features which are born and die quickly are noise.
- Associate features of interest as topological holes.
- Important features persist throughout filtration.

Let ϵ_1 be a positive real number. Place a disk with a radius of ϵ_1 around each point.

Let ϵ_1 be a positive real number. Place a disk with a radius of ϵ_1 around each point.

This is a simplicial complex. Call it K_1 .

Now let $\epsilon_1 \leq \epsilon_2$ and repeat, with the rule that anytime k+1 points are pairwise within $2\epsilon_2$ of each other, form a k simplex:

Notice that $K_1 \subseteq K_2$. Also, there are now **connected components** in K_2 .

Now K_{ϵ_3} :

Notice that K_3 has one-dimensional features, called **loops**.

Finally, we have simplicial complex K_4 :

The scale parameter $\epsilon_1 \le \epsilon_2 \le \epsilon_3 \le \epsilon_4$ gives us the following filtration.

Notice that homological features (connected components, loops, etc) emerge. Some of them stay, and some of them are removed quickly! This method is called a **Vietoris-Rips complex**.

DEFINITIONS

Definition

A **finite filtration** on a simplicial complex K, denoted $F_{\bullet}K$, is given by $F_1K \subseteq F_2K \subseteq \cdots \subseteq F_NK$, where $F_NK = K$.

Definition

A simplicial complex K equipped with a filtration F is called a **filtered simplicial complex**.

Definition

Say that $\sigma \in K$ born at F_tK has a **filtration value** $b(\sigma) = t$. Thus, $F_tK = \{\sigma \in K : b(\sigma) \le t\}$.

QUOTIENT SPACES

Definition

Suppose topological spaces X and A such that $A \subseteq X$. Then the **quotient space** is defined as

$$X/A = (X \setminus A) \sqcup *$$

where * is a single point.

Example (The Infinite Bouquet¹)

¹Image from *Essential Topology* by Martin D. Crossley (2005).

RELATIVE CHAINS

• Suppose two simplicial complexes K and K_0 where $K_0 \subset K$.

Definition

The **relative chain vector space** is the quotient vector space $C_n(K, K_0) = C_n(K)/C_n(K_0)$, which describes the span of all **relative n-chains** in K/K_0 .

- $C_n(K, K_0)$ partitions a basis for $C_n(K)$ into cosets (or equivalence classes) of the form $c + C_n(K_0)$.
- Equivalence classes $\{[c]\}$ give a basis for all chains in $K K_0$.

- **Relative Homology** is the homology of K/K_0 .
- Cycles and boundaries look different in this setting.

Definition

A Relative n-Cycle is any n-chain $\alpha \in C_n(K)$ such that $\partial_n(\alpha) \in C_{n-1}(K_0)$. In words, any n-chain with a boundary in the subspace K_0 .

- **Relative Homology** is the homology of K/K_0 .
- Cycles and boundaries look different in this setting.

Definition

A Relative n-Cycle is any n-chain $\alpha \in C_n(K)$ such that $\partial_n(\alpha) \in C_{n-1}(K_0)$. In words, any n-chain with a boundary in the subspace K_0 .

Definition

A Relative n-Boundary is any relative n-cycle $\alpha = \partial_{n+1}(\beta) + \gamma$ for some $\beta \in C_{n+1}(K)$ and $\gamma \in C_n(K_0)$. In words, any n-cycle which differs from an absolute boundary by a chain in the subspace K_0 .

- **Relative Homology** is the homology of K/K_0 .
- Cycles and boundaries look different in this setting.

Definition

A Relative n-Cycle is any n-chain $\alpha \in C_n(K)$ such that $\partial_n(\alpha) \in C_{n-1}(K_0)$. In words, any n-chain with a boundary in the subspace K_0 .

Definition

A Relative n-Boundary is any relative n-cycle $\alpha = \partial_{n+1}(\beta) + \gamma$ for some $\beta \in C_{n+1}(K)$ and $\gamma \in C_n(K_0)$. In words, any n-cycle which differs from an absolute boundary by a chain in the subspace K_0 .

- **Relative Homology** is the homology of K/K_0 .
- Cycles and boundaries look different in this setting.

Definition

A Relative n-Cycle is any n-chain $\alpha \in C_n(K)$ such that $\partial_n(\alpha) \in C_{n-1}(K_0)$. In words, any n-chain with a boundary in the subspace K_0 .

Definition

A Relative n-Boundary is any relative n-cycle $\alpha = \partial_{n+1}(\beta) + \gamma$ for some $\beta \in C_{n+1}(K)$ and $\gamma \in C_n(K_0)$. In words, any n-cycle which differs from an absolute boundary by a chain in the subspace K_0 .

$$\partial_1(\alpha) = \partial_1(\partial_2(\beta)) + \partial_1(\gamma) = \partial_1(\gamma) \in C_0(K_0).$$

PERSISTENT RELATIVE HOMOLOGY

- Given $F_{\bullet}K$ and $G_{\bullet}K_0$.
- Persistent Relative Homology (PRH) is the homology of a filtered quotient space K/K_0 .
- Require that $G_t K_0 \subseteq F_t K$ for each time-step t.
- Do not require that $\sigma \in K$ satisfy $b_F(\sigma) = b_G(\sigma)$.

DEFINITION

• Assume D is the **block boundary matrix** of a chain complex, so D is square and $D^2 = 0$.

$$D = \begin{pmatrix} 0 & \partial_1 & & & \\ & 0 & \partial_2 & & & \\ & & \ddots & \ddots & \\ & & & 0 & \partial_N \\ & & & & 0 \end{pmatrix}$$

DEFINITION

• Assume D is the **block boundary matrix** of a chain complex, so D is square and $D^2 = 0$.

$$D = \begin{pmatrix} 0 & \partial_1 & & & \\ & 0 & \partial_2 & & & \\ & & \ddots & \ddots & \\ & & & 0 & \partial_N \\ & & & & 0 \end{pmatrix}$$

• Reduce D bottom to top and left to right. \mathcal{T}^{-1} records row operations, and \mathcal{S} records column operations.

$$\begin{pmatrix} D & I_n \\ I_m & 0 \end{pmatrix} \mapsto \begin{pmatrix} M & \mathcal{T}^{-1} \\ \mathcal{S} & 0 \end{pmatrix}$$

DEFINITION

• Assume D is the **block boundary matrix** of a chain complex, so D is square and $D^2 = 0$.

$$D = \begin{pmatrix} 0 & \partial_1 & & & \\ & 0 & \partial_2 & & & \\ & & \ddots & \ddots & \\ & & & 0 & \partial_N \\ & & & & 0 \end{pmatrix}$$

• Reduce D bottom to top and left to right. \mathcal{T}^{-1} records row operations, and \mathcal{S} records column operations.

$$\begin{pmatrix} D & I_n \\ I_m & 0 \end{pmatrix} \mapsto \begin{pmatrix} M & \mathcal{T}^{-1} \\ \mathcal{S} & 0 \end{pmatrix}$$

- A **U-Match Decomposition** is a tuple of matrices $(\mathcal{T}, M, D, \mathcal{S})$ which satisfy the following three conditions:
 - TM = DS
 - M is a matching matrix
 - ullet ${\mathcal T}$ and ${\mathcal S}$ are both upper triangular and invertible

U-MATCH DECOMPOSITION

- Persistence algorithms use matrix decomposition techniques.
- ullet ${\mathcal T}$ and ${\mathcal S}$ contain information about homology.

U-MATCH DECOMPOSITION

- Persistence algorithms use matrix decomposition techniques.
- ullet ${\mathcal T}$ and ${\mathcal S}$ contain information about homology.

 Ordering the rows and columns of D carefully allows us to compute persistent homology.

U-MATCH PROPERTIES

• Let TM = DS be a U-match decomposition, where D is the block boundary matrix of a chain complex.

U-MATCH PROPERTIES

Let \$\mathcal{T}M = DS\$ be a U-match decomposition, where \$D\$ is the block boundary matrix of a chain complex. Let \$r_\circ\$ and \$c_\circ\$ denote, respectively, the set of indices of nonzero rows and columns of the matching matrix \$M\$.

U-MATCH PROPERTIES

• Let $\mathcal{T}M = D\mathcal{S}$ be a U-match decomposition, where D is the block boundary matrix of a chain complex. Let r_{\bullet} and c_{\bullet} denote, respectively, the set of indices of **nonzero rows** and **columns** of the matching matrix M.

Lemma

The set of indices r_{\bullet} and c_{\bullet} are disjoint. Hence, $r_{\bullet} \subseteq \overline{c_{\bullet}}$.

Outline of proof.

- $TM = DS \Rightarrow S^{-1}TM = S^{-1}DS$.
- $(S^{-1}DS)^2 = S^{-1}D^2S = 0.$
- $(S^{-1}TM)^2 = 0$ implies that indices of nonzero rows and columns of $S^{-1}TM$ are disjoint.

U-MATCH PROPERTIES (CONTINUED)

• Let $\mathcal{T}M = D\mathcal{S}$ be a U-match decomposition, where D is the block boundary matrix of a chain complex. Let r_{\bullet} and c_{\bullet} denote, respectively, the set of indices of **nonzero rows** and **columns** of the matching matrix M.

Corollary

Columns of \mathcal{T} indexed by the set r_{\bullet} give a basis for Im(D), which are the boundaries.

Outline of Proof:

- $COL_j(\mathcal{T}M) = COL_j(DS) \Rightarrow COL_j(\mathcal{T}M) = D \cdot COL_j(S)$. So $COL_j(\mathcal{T}M)$ is the boundary of some column of S.
- Can write $COL_i(TM) = COL_i(T) \cdot M$ where i corresponds to nonzero row in M.

U-MATCH PROPERTIES (CONTINUED)

• Let $\mathcal{T}M = D\mathcal{S}$ be a U-match decomposition, where D is the block boundary matrix of a chain complex. Let r_{\bullet} and c_{\bullet} denote, respectively, the set of indices of **nonzero rows** and **columns** of the matching matrix M.

Corollary

Columns of S indexed by the set $\overline{c_{\bullet}}$ contain a basis for Ker(D), which are the cycles.

Outline of Proof:

- Assume $j \in \overline{c_{\bullet}}$.
- $D \cdot COL_j(S) = T \cdot COL_j(M) = T \cdot \vec{0} = \vec{0}$.

U-MATCH PROPERTIES (CONTINUED)

- U-Match allows us to compute matched bases for cycles and boundaries.
- This means a set of basis vectors for Im(D) is a subset of a set of basis vectors for Ker(D).
- How? Prove this by construction!
 - Construct a matrix J from the matrix S with the substitution

$$COL_{r_j}(S) \mapsto COL_{c_j}(TM).$$

- Columns of J contain a basis for both Im(D) and Ker(D).
 - $COL_{\overline{c_{\bullet}}}(J) = Ker(D)$
 - $COL_{r_{\bullet}}(J) = Im(D)$
- Recall that $r_{\bullet} \subseteq \overline{c_{\bullet}}$.

U-MATCH FOR PERSISTENCE

- Suppose a filtered simplicical complex F_•K.
- Construct the block boundary matrix where filtration value increases with row and column indices.
- This ordering is carried over to \mathcal{T} , \mathcal{S} and M:

$$c \in F_{\bullet}K \qquad c \in F_{\bullet}K$$

$$s \in F_{\bullet}K \qquad C \in F_{\bullet}K \qquad M \qquad$$

$$s \in F_{\bullet}K$$
 $c \in F_{\bullet}K$ $s \in F_{\bullet}K$ $s \in F_{\bullet}K$

A high-level overview:

A high-level overview:

1. Permute rows of block boundary matrix D to obtain a relative boundary matrix \mathcal{D} .

A high-level overview:

- 1. Permute rows of block boundary matrix D to obtain a relative boundary matrix \mathcal{D} .
- 2. Perform a U-Match on \mathcal{D} to get, $\mathcal{T}M=\mathcal{DS}$.

A high-level overview:

- 1. Permute rows of block boundary matrix D to obtain a relative boundary matrix \mathcal{D} .
- 2. Perform a U-Match on \mathcal{D} to get, $\mathcal{T}M = \mathcal{DS}$.
- 3. Permute columns of \mathcal{T} to obtain a matrix \mathcal{A} , and columns of \mathcal{S} to obtain a matrix \mathcal{B} .

A high-level overview:

- 1. Permute rows of block boundary matrix D to obtain a relative boundary matrix \mathcal{D} .
- 2. Perform a U-Match on \mathcal{D} to get, $\mathcal{T}M = \mathcal{DS}$.
- 3. Permute columns of \mathcal{T} to obtain a matrix \mathcal{A} , and columns of \mathcal{S} to obtain a matrix \mathcal{B} .
- 4. Perform a U-Match on $\mathcal{A}^{-1}\mathcal{B}$ to obtain $\mathscr{T}\mathcal{M}=(\mathcal{A}^{-1}\mathcal{B})\mathscr{S}$.

Result: One single matrix whose columns contain a filtered basis for the relative cycles and relative boundaries!

STEP 1: THE BOUNDARY MATRIX

- Suppose you have the boundary matrix of a filtered simplicial complex $F_{\bullet}K$, and you also have a filtered subcomplex $G_{\bullet}K_0$.
- Permute rows (top to bottom) to **respect** birth of simplices in $G_{\bullet}K_0$.

• Why?

STEP 1: THE BOUNDARY MATRIX

- Suppose you have the boundary matrix of a filtered simplicial complex F_•K, and you also have a filtered subcomplex G_•K₀.
- Permute rows (top to bottom) to **respect** birth of simplices in $G_{\bullet}K_0$.

• Why? Relative chains correspond to cosets $c + C_n(K_0)$, and U-Match reduces rows from bottom to top!

• The U-Match TM = DS has a few key differences since we use D rather than D.

$$c \in G_{\bullet}K_0$$
 $c \in F_{\bullet}K$ $c \in G_{\bullet}K_0$ $c \in G_{\bullet}K_0$ $c \in G_{\bullet}K_0$

$$s \in F_{\bullet}K \qquad c \in F_{\bullet}K$$

$$s \in G_{\bullet}K_{0} \left(\mathcal{D} \right) \qquad s \in F_{\bullet}K \left(\mathcal{S} \right)$$

Using this modified U-Match, we can prove the following:

Proposition

Suppose that $\mathcal{V}_{\mathcal{K}_0}$ is a vector space with dimension i spanning all chains in \mathcal{K}_0 . Then the first i columns of \mathcal{T} from the U-Match $\mathcal{T}M=\mathcal{DS}$ are a basis which spans $\mathcal{V}_{\mathcal{K}_0}$.

Lemma

Suppose a U-Match $TM = \mathcal{DS}$. Then

- (a) the columns of S contain a basis for the relative cycles denoted $RelKer(\mathcal{D})$.
- (b) the columns of $\mathcal T$ contain a basis for the relative boundaries denoted $\operatorname{RelIm}(\mathcal D).$

STEP 3: PERMUTE COLUMNS

- The previous results show that this method can compute relative homology. How do we turn this into persistent relative homology?
- Permute columns of $\mathcal T$ and $\mathcal S$ to **respect** the birth of relative features. Call these $\mathcal A$ and $\mathcal B$ respectively.

ONE MORE U-MATCH PROPERTY

- A is a square, invertible matrix of size $m \times m$.
- B is a (not necessarily square) matrix of size $m \times n$.
- F_{\bullet} is a filtration on a vector space \mathbb{K}^m such that $F_i\mathbb{K}^m$ describes the span of the first i columns of A.
- Similarly, define G_{\bullet} to be a filtration on the columns of B.
- If the columns of B do not span the columns of A, let $G_{n+1} = \mathbb{K}^m$ to ensure G_{\bullet} terminates.

ONE MORE U-MATCH PROPERTY

- A is a square, invertible matrix of size $m \times m$.
- B is a (not necessarily square) matrix of size $m \times n$.
- F_{\bullet} is a filtration on a vector space \mathbb{K}^m such that $F_i\mathbb{K}^m$ describes the span of the first i columns of A.
- Similarly, define G_{\bullet} to be a filtration on the columns of B.
- If the columns of B do not span the columns of A, let $G_{n+1} = \mathbb{K}^m$ to ensure G_{\bullet} terminates.

Lemma (Basis Matching)

Assume the above conditions hold. It follows that, given the U-Match $\mathcal{T}M=(A^{-1}B)\mathcal{S}$, then the columns of $A\mathcal{T}$ contain a basis for each F_i and G_j for $i,j\in\{1,...,m\}$.

Theorem

Theorem

Let K and K_0 be simplicial complexes equipped with finite filtrations $F_{\bullet}K$ and $G_{\bullet}K_0$, and suppose that for any filtration value t we have $G_tK_0 \subseteq F_tK$. Apply the following steps:

1. Construct relative boundary matrix \mathcal{D} .

Theorem

- 1. Construct relative boundary matrix \mathcal{D} .
- 2. Perform a U-Match decomposition TM = DS.

Theorem

- 1. Construct relative boundary matrix \mathcal{D} .
- 2. Perform a U-Match decomposition TM = DS.
- 3. Obtain $\mathcal A$ and $\mathcal B$ by permuting columns of $\mathcal T$ and $\mathcal S$.

Theorem

- 1. Construct relative boundary matrix \mathcal{D} .
- 2. Perform a U-Match decomposition TM = DS.
- 3. Obtain A and B by permuting columns of T and S.
- 4. Perform a U-Match Decomposition $\mathscr{TM} = (\mathcal{A}^{-1}\mathcal{B})\mathscr{S}$.

Theorem

Let K and K_0 be simplicial complexes equipped with finite filtrations $F_{\bullet}K$ and $G_{\bullet}K_0$, and suppose that for any filtration value t we have $G_tK_0 \subseteq F_tK$. Apply the following steps:

- 1. Construct relative boundary matrix \mathcal{D} .
- 2. Perform a U-Match decomposition TM = DS.
- 3. Obtain A and B by permuting columns of T and S.
- 4. Perform a U-Match Decomposition $\mathscr{TM} = (\mathcal{A}^{-1}\mathcal{B})\mathscr{S}$.

Suppose $\operatorname{RelIm}(\mathcal{D})$ has dimension i and $\operatorname{RelKer}(\mathcal{D})$ has dimension j at filtration value t.

Theorem

Let K and K_0 be simplicial complexes equipped with finite filtrations $F_{\bullet}K$ and $G_{\bullet}K_0$, and suppose that for any filtration value t we have $G_tK_0 \subseteq F_tK$. Apply the following steps:

- 1. Construct relative boundary matrix \mathcal{D} .
- 2. Perform a U-Match decomposition TM = DS.
- 3. Obtain $\mathcal A$ and $\mathcal B$ by permuting columns of $\mathcal T$ and $\mathcal S$.
- 4. Perform a U-Match Decomposition $\mathscr{TM} = (\mathcal{A}^{-1}\mathcal{B})\mathscr{S}$.

Suppose $\operatorname{RelIm}(\mathcal{D})$ has dimension i and $\operatorname{RelKer}(\mathcal{D})$ has dimension j at filtration value t. If the above steps are applied, then the set

$$COL_J(\mathcal{ATM}) \setminus COL_I(\mathcal{AT})$$

contains a basis for $H_n(F_tK, G_tK_0)$.

STABILITY

• What does it mean for a persistence algorithm to be stable?

STABILITY

• What does it mean for a persistence algorithm to be stable?

STABILITY

• What does it mean for a persistence algorithm to be stable?

 We showed that the U-Match PRH algorithm is stable using a few previously established results!

Macalester Col.

Lori Ziegelmeier Greg Henselman-Petrusek **PNNL**

Xintan Xia Macalester Col.

STEP 1: THE BOUNDARY MATRIX

- Assume that you start with distance matrices DK and DK_0 .
- Construct a VR complex from DK to obtain \mathcal{F} , a filtered list of simplices corresponding to $F_{\bullet}K$.
- Similarly construct \mathcal{G} from DK_0 .
 - Use scale parameter $\varepsilon_1 \leq \cdots \leq \varepsilon_N$ for DK and scale parameter $\delta_1 \leq \cdots \leq \delta_N$ for DK_0 .
 - Require that $\delta_t \leq \varepsilon_t$ for any $t \leq N$.
 - Thus, $G_t K_0 \subseteq F_t K$ for each $t \leq N$.
- Use $\mathcal F$ and $\mathcal G$ to construct relative boundary matrix $\mathcal D$. This is just a sorting algorithm!

STEP 3: PERMUTE COLUMNS

Do this with a sorting algorithm, using the following two algorithms as order operators.

Algorithm 1 Test Relative Cycle Birth

Require: A positive integer c which is a column index in M that corresponds to the column of S given by $\alpha = COL_c(S)$.

Ensure: Some $a \in [0, \infty)$ describing the birth of α as a relative cycle.

- 1: $m \leftarrow COL_c(M)$
- 2: $x \leftarrow b(m)$ in $G_{\bullet}K_0$
- 3: $y \leftarrow b(\alpha)$ in $F_{\bullet}K$
- 4: $a \leftarrow max(x, y)$

For step 1, note that $\mathcal{D}\alpha = \mathcal{D} \cdot COL_c(\mathcal{S}) = \mathcal{T} \cdot COL_c(M)$.

STEP 3: PERMUTE COLUMNS

Algorithm 2 Test Relative Boundary Birth

Require: A positive integer r which is a row index in M that corresponds to the column of \mathcal{T} given by $\alpha = COL_r(\mathcal{T})$.

Ensure: Some $a \in [0, \infty)$ describing the birth of α as a relative boundary.

- 1: $x \leftarrow b(\alpha)$ in $G_{\bullet}K_0$
- 2: $m_r \leftarrow ROW_r(M)$
- 3: **if** $r \in r_{\bullet}$ **then**
- 4: $c \leftarrow \text{index of nonzero entry in } m_r$
- 5: $m_c \leftarrow COL_c(M)$
- 6: $y \leftarrow b(m_c) \text{ in } F_{\bullet}K$
- 7: end if
- 8: if $r \in \overline{r_{\bullet}}$ then
- 9: $y \leftarrow \infty$
- 10: end if
- 11: $a \leftarrow min(x, y)$