A FOUR – WAY TRAFFIC LIGHT CONTROLLER

Presented by: Venkata Sai Hari Krishna Maddi

TRAFFIC LIGHT CONTROLLER

- Usage of vehicles are increasing day by day, thereby traffic is becoming hectic especially at four way junctions.
- Generally, Round Robin Signalling method is used in these four way junctions but it has it has its own pros and corns.

> DISADVANTAGES OF ROUND ROBIN MODEL:

- Waiting time is more.
- Due to traffic gathering in waiting is also more, whole traffic in one direction may or may not be cleared in allotted allowed time.

PROJECT SPECIFICATIONS

- This project is implementation of four way traffic light controller with following specifications.
 - > Free Left
 - ➤ Need to avoid routine round robin method of allowing traffic
 - ➤ It should have an optimal delay in all directions
 - > The following are the signal representations.
 - ✓ **RED**: Stop
 - **✓ GREEN:** Allow
 - ✓ YELLOW: About to turn red

PIN DIAGRAM

PIN DESCRIPTION

PINS IN VECTOR VARIABLES	DESCRIPTION
north_sgnl_out[0], south_sgnl_out[0], east_sgnl_out[0], west_sgnl_out[0]	Straight RED Signals
north_sgnl_out[1], south_sgnl_out[1], east_sgnl_out[1], west_sgnl_out[1]	Right RED Signals
north_sgnl_out[2], south_sgnl_out[2], east_sgnl_out[2], west_sgnl_out[2]	YELLOW Signals
north_sgnl_out[3], south_sgnl_out[3], east_sgnl_out[3], west_sgnl_out[3]	Straight GREEN Signals
north_sgnl_out[4], south_sgnl_out[4], east_sgnl_out[4], west_sgnl_out[4]	Right GREEN Signals
north_sgnl_out[5], south_sgnl_out[5], east_sgnl_out[5], west_sgnl_out[5]	Left GREEN Signals
north_sgnl_out[6], south_sgnl_out[6], east_sgnl_out[6], west_sgnl_out[6]	Pedestrian RED Signals
north_sgnl_out[7], south_sgnl_out[7], east_sgnl_out[7], west_sgnl_out[7]	Pedestrian GREEN Signals

IDEA OF IMPLEMENTATION

Consider asserting time for signals:

> Right Green: 30sec

> Yellow: 10sec

Straight green is decreased to 150sec

Right green is decreased to 180sec

PROCEDURE:

- Allow North straight (60sec) in the same time allow North right(first 30 sec) + West Right(next 30sec), East Pedestrian(60sec)
- Assert North YELLOW(30sec)
- Allow South straight (60sec) in the same time allow South right(first 30 sec) + East Right(next 30sec), West Pedestrian(60sec)
- Assert South YELLOW(30sec)
- Allow East and West straight(60sec), North and South Pedestrian(60sec)
- Assert East and West YELLOW (10sec)

PICTORIAL REPRESENTATION

PICTORIAL REPRESENTATION

STATE DIAGRAM

TEST PLAN FOR TRAFFIC LIGHT CONTROLLER						
Inputs: rst_in clk_in		Intermediate Signals: Count_st count_rt count_yellow	Outputs: [7:0]north_sgnl_out [7:0]south_sgnl_out [7:0]east_sgnl_out [7:0]west_sgnl_out			
S.no	Scenarios	Test Case	Test Description	Expecatations as per Specification		
			initialise clock & reset	Resets the system		
1	1 Test 01	Test 01 Reset	Set rst_in = 0	Current state = reset state		
				count_st = 60 count_rt = 30 count_yellow = 0		
	2 Test 02 Allowing North straight right, East Pedistrian		initialise clock & reset	upto 30 time units: north_sgnl_out = 8'b0111_1000 south_sgnl_out = 8'b0110_0011 east_sgnl_out = 8'b1010_0011 west_sgnl_out = 8'b0110_0011		
2		Allowing North straight and	Reset system set rst_in = 0			
		right, Last i cuisti lan	Before a posedge clk_in, set rst_in = 1			
			initialise clock & reset	from 31 to 60 time units: north_sgnl_out = 8'b0110_1010 south_sgnl_out = 8'b0110_0011 east_sgnl_out = 8'b1010_0011 west_sgnl_out = 8'b0111_0001		
3 Test	Test 03	Allowing North straight, west right and East Pedistrian	Reset system set rst_in = 0			
		right and East I edistrian	Before a posedge clk_in, set rst_in = 1			
4	Test 04	Activation North yellow	initialise clock & reset	from 61 to 70 time units: north_sgnl_out = 8'b0110_0110 south_sgnl_out = 8'b0110_0011 east_sgnl_out = 8'b0110_0011 west_sgnl_out = 8'b0110_0011		
			Reset system set rst_in = 0			
			Before a posedge clk_in, set rst_in = 1			

^

\$

-

5	Test 05	Allowing South straight and right, West Pedistrian	initialise clock & reset Reset system set rst_in = 0 Before a posedge clk_in, set rst_in = 1	from 71 to 100 time units: north_sgnl_out = 8'b0110_0011 south_sgnl_out = 8'b0111_1000 east_sgnl_out = 8'b0110_0011 west_sgnl_out = 8'b1010_0011
6	Test 06	Allowing South straight, east right and west Pedistrian	Reset system set rst_in = 0 Before a posedge clk_in, set rst_in = 1	from 101 to 130 time units: north_sgnl_out = 8'b0110_0011 south_sgnl_out = 8'b0110_1010 east_sgnl_out = 8'b0111_0001 west_sgnl_out = 8'b1010_0011
7	Test 07	Activation South yellow	initialise clock & reset Reset system set rst_in = 0 Before a posedge clk_in, set rst_in = 1	from 131 to 140 time units: north_sgnl_out = 8'b0110_0011 south_sgnl_out = 8'b0110_0110 east_sgnl_out = 8'b0110_0011 west_sgnl_out = 8'b0110_0011
8	Test 08	Allowing East & West straight, North & South Pedistrian	initialise clock & reset Reset system set rst_in = 0 Before a posedge clk_in, set rst_in = 1	from 141 to 200 time units: north_sgnl_out = 8'b1010_0011 south_sgnl_out = 8'b1010_0011 east_sgnl_out = 8'b0110_1010 west_sgnl_out = 8'b0110_1010
9	Test 09	Activation of East & West Yellow	initialise clock & reset Reset system set rst_in = 0 Before a posedge clk_in, set rst_in = 1	from 200 to 210 time units: north_sgnl_out = 8'b1010_0011 south_sgnl_out = 8'b1010_0011 east_sgnl_out = 8'b0110_0110 west_sgnl_out = 8'b0110_0110

^

\$

-

