Yuanpeng Zhang

(929)363-9041 • yuanpenz@alumni.cmu.edu • linkedin.com/in/yuanpeng-zhang • yuanpenguin.github.io

EDUCATION

Carnegie Mellon University

Master of Science in Electrical and Computer Engineering

Jan 2025

Graduate Level Coursework: Advanced Analog and Digital Integrated Circuit Design, Board-Level RF Systems for IoT, Machine Learning, Design, Integration, and Tapeout of IoT Systems

Binghamton University, State University of New York

Bachelor of Science in Computer Engineering

May 2023

Graduate Level Coursework: Digital Signal Processing, Embedded Systems Design, Systems on a Chip Design

TECHNICAL SKILLS

Advanced:

C, Python, MATLAB, Cadence Virtuoso, Microsoft Office Suite, LT-Spice, Oscilloscopes

Intermediate:

Ansys HFSS, Linux, Bash, FPGA, UXM 5G Callbox, Soldering, SystemVerilog, GitHub

Basic:

Assembly, Tcl, Q#, Arduino, VHDL, Solid Edge, Xilinx Vivado, Vitis, Verilog-A, CAD Modeling

WORK EXPERIENCE

Baseband/RF Cellular Hardware Intern, Apple

Jun 2024 – Aug 2024

- Performed hands-on hardware bring-up of baseband and RF boards in standalone and PCle configurations
- Performed 5G phone call simulations using a UXM 5G callbox with patterns that reflect 5G communication protocols used in various worldwide regions
- Developed Python scripts to automate current and power measurements of 5G signal bands for a cellular chipset using an ADC and sampling resistors
- Diagnosed high-risk current draws and power nets using FFT analysis in MATLAB and provided results for cross-functional teams to drive improvements for future iterations

Graduate Research Assistant, Analog Circuit Design, Carnegie Mellon University

Sep 2023 – May 2024

- Collaborated in a team of 6 in Prof. Rick Carley's FLOCI lab to create a nano-particle interferometer in the TSMC 28nm process, spearheading research on future memory technologies
- Led the development for the design and layout of a low impedance pseudo-differential output driver using Cadence Virtuoso, reducing area by 60% and passing all post-layout specifications
- Designed and simulated Q factor optimized RF inductors using Ansys HFSS for further use in the development and testing of RF integrated systems

ACADEMIC AND PERSONAL PROJECTS

5V to 3.3V LDO Project, Personal Project

Mar 2025 – Aug 2025

- Designed and laid out an LDO integrating a voltage reference and error amplifier in the Cadence 45nm GPDK capable of providing low stable power for other electronic devices
- Created a bandgap reference to output a stable bias voltage independent of temperature with hand calculations and iteration and a high gain low power OTA using gm/ld design
- Successfully completed layout and passed all specifications with performance comparable to Texas Instrument's LM3940

Mixed-Signal DAC-ADC Pixel Image Sensor Chip Project, Carnegie Mellon University

Aug 2024 – Dec 2024

- Taped out a 3x5 pixel image sensor chip for IoT systems applications in the TSMC 65nm process
- Designed a current steering DAC and a pulse-counting ADC to process incoming digital signals using gm/ld design and hand analysis, meeting all post-layout specifications
- Successfully completed layout of the chip with minimized parasitics and mismatch and conducted full-chip integration using the Cadence Innovus digital-on-top integration flow

Graduate Research Assistant, Al and Machine Learning, Carnegie Mellon University

Oct 2024 - Dec 2024

- Collaborated with Prof. David Allstot to prove Prof. Ronald Rohrer's automated network research in the 60's is a
 precursor to modern neural networks and backpropagation algorithms
- Applied circuit theory, adjoint network analysis, and sensitivity analysis to derive error gradients for backpropagation