A Q-Theory of Inequality

Matthieu Gomez & Émilien Gouin-Bonenfant July 31, 2020

Interest Rate and Pareto Inequality

► Recent rise in top wealth inequality: "fattening" of the right tail

► Classical view: tail of the wealth distribution increases with *r* Wold and Whittle (1957) ...Piketty and Zucman (2015)

Our Paper

- 1. We argue that low r can increase top wealth inequality
 - ▶ While low *r* decreases the growth rate of existing fortunes...
 - ► ...it *increases* the growth rate of new fortunes

Our Paper

2. Sufficient statistic to quantify the effect of r on the Pareto tail

- ► Agents start as entrepreneurs with concentrated portfolio
 - → Transition to rentiers as firms mature
- ► Sufficient statistic depends on equity payout yield + leverage of firms owned by entrepreneurs *reaching the top*

Our Paper

- 3. We measure the sufficient statistic in the data
 - ► We collect new data on the wealth trajectory of top entrepreneurs
 - \blacktriangleright A 5% decline in r can explain 3/4 of the rise in top wealth inequality

Stylized Model

Environment

- \blacktriangleright Continuum of infinitely-lived agents. Population grows at rate η
- ▶ New agents are born "entrepreneurs" and endowed with a tree
- ► Trees require investment by "rentiers" to grow
- Eventually, trees blossom and entrepreneurs become rentiers themselves

Environment

- ► Trees have initial size of one
 - ... requires continuous flow of investment i
 - ... grows at rate g
 - ... blossoms with hazard rate δ , giving a one-time dividend equal to its size
- ightharpoonup Formally, the instantaneous cash-flow dD_t is given by

$$\mathrm{d} D_t = egin{cases} -i e^{gt} \, \mathrm{d} t & ext{conditional on growing} \ e^{gt} & ext{if blossoms} \ 0 & ext{afterwards.} \end{cases}$$

7

Market Value of a Tree

- ▶ Denote *r* the interest rate
- ▶ Denote *q* the market-to-book ratio of the tree:

$$r = \underbrace{-\frac{i}{q} + g}_{\text{return conditional on growing}} + \delta \underbrace{\left(\frac{1}{q} - 1\right)}_{\text{return conditional on blossoming}}$$

Market Value of a Tree

- ▶ Denote *r* the interest rate
- ▶ Denote *q* the market-to-book ratio of the tree:

$$r = \underbrace{-\frac{i}{q} + g}_{\text{return conditional on growing}} + \delta \underbrace{\left(\frac{1}{q} - 1\right)}_{\text{return conditional on blossoming}}$$

- \Rightarrow A decline in r has two effects:
 - 1. lowers the ex-ante return (left-hand side)
 - 2. changes the distribution of ex-post returns (right-hand side)

Wealth Accumulation

- ► Life-cycle
 - 1. Agent starts as an entrepreneur: invests in their tree until it blossoms
 - 2. Agent then becomes a rentier: invests in a diversified portfolio of trees
- \blacktriangleright Agents have log-utility with subjective discount factor ρ
- ► The law of motion of individual wealth is

$$\frac{\mathrm{d}W_t}{W_t} = \begin{cases} \left(-\frac{i}{q} + g - \rho\right) \mathrm{d}t & \text{when entrepreneurs} \\ \frac{1}{q} - 1 & \text{when tree blossoms} \\ \left(r - \rho\right) \mathrm{d}t & \text{when rentiers} \end{cases}$$

9

Realized wealth path of an agent with a tree blossoming after 15 years

While lower r decreases the growth rate of rentiers...

...it increases the growth rate of successful entrepreneurs

Pareto Inequality

▶ **Def:** A distribution has a Pareto tail if $\mathbb{P}(W > w) \sim Cw^{-\frac{1}{\theta}}$ as $w \to +\infty$ θ measures the thickness of the tail

Pareto Inequality

- ▶ **Def:** A distribution has a Pareto tail if $\mathbb{P}(W > w) \sim Cw^{-\frac{1}{\theta}}$ as $w \to +\infty$ θ measures the thickness of the tail
- **Prop**: Pareto inequality θ is given by:

$$\theta = \max\left(\frac{-\frac{1}{q} + g - \rho}{\eta + \delta}, \frac{r - \rho}{\eta}\right)$$

Sufficient Statistic

General Model

- ightharpoonup Agents are born "entrepreneurs" with a firm of size K_0
- \blacktriangleright Firms have aK technology with convex adjustment costs i(g)
- ▶ TFP $a \in \{a_1, \ldots, a_s\}$ follows a Markov Chain with transition matrix \mathcal{T}
- lacktriangle At rate δ , entrepreneurs disinvest in their firms and become rentiers

Firm Problem

▶ Firm growth g is optimally chosen to maximum firm's value $V_s(K)$:

$$rV_s(K) = \max_{q} \left\{ (a_s - i(g))K + V'_s(K)gK + (\mathcal{T}V)_s(K) \right\}$$

▶ Homogeneity gives $V_s(K) = q_sK$:

$$i'(g_s) = q_s$$

$$r = \frac{a_s - i(g_s)}{q_s} + g_s + \frac{(\mathcal{T}q)_s}{q_s}$$

Book Wealth

- ▶ Define book wealth of an entrepreneur: $B_t = W_t/q_s$
- ► Evolution of book wealth:

$$\frac{dB_t}{B_t} = \underbrace{\left(\frac{a_s - i(g_s)}{q_s} + g_s - \rho\right)}_{\mu_s} dt$$

▶ The effect of r on the growth rate of book wealth is

$$\partial_r \mu_s = \underbrace{\frac{a_s - i(g_s)}{q_s}}_{\text{payout yield}} \underbrace{\left|\partial_r \log q_s\right|}_{\text{duration}} + \underbrace{\left(1 - \frac{i'(g_s)}{q_s}\right) \partial_r g_s}_{=0}.$$

Pareto Inequality

► We characterize analytically the effect of *r* on Pareto inequality

$$\frac{\partial_{r}\theta}{\theta} = \mathbb{E}\left[\frac{\partial_{r}\mu_{s}}{\mu_{s}}\middle| \text{reaching the top}\right]$$

Pareto Inequality

▶ We characterize analytically the effect of *r* on Pareto inequality

$$\frac{\partial_r \theta}{\theta} = \mathbb{E}\left[\frac{\partial_r \mu_s}{\mu_s}\middle| \text{reaching the top}
ight]$$

► We obtain a sufficient statistic:

$$\frac{\partial_r \theta}{\theta} = \mathbb{E}\left[\frac{\text{payout yield} \times \text{duration}}{\text{growth rate}}\Big|_{\text{reaching the top}}\right]$$

17

Leverage

We extend the model to consider firms with leverage

- ▶ Lower r has two distinct effects on μ_s :
 - 1. Increases valuation, which reduces dilution
 - 2. Increases the cash-flow of equity-holders at the expense of debt-holders
- ► Sufficient statistic becomes:

$$\frac{\partial_{\rm r}\theta}{\theta} = \mathbb{E}\left[\frac{\rm equity\;payout\;yield\times duration-debt\text{-}to\text{-}equity}{\rm growth\;rate}\middle|_{\rm reaching\;the\;top}\right]$$

Empirics

Estimating the Sufficient Statistic

- 1. Collect data on the wealth trajectory of the top 50 entrepreneurs
 - (i) Equity payout yield (CRSP post-IPO, SEC-1 pre-IPO)
 - (ii) Debt-to-equity
 - (iii) Growth rate
- 2. Estimate the sufficient statistic as

$$\frac{\widehat{\partial_r \theta}}{\theta} = \frac{1}{N} \sum_{i=1}^{N} \frac{\text{equity payout yield}_i \times \text{duration} - \text{debt-to-equity}_i}{\text{growth rate}_i}.$$

Case of Zuckerberg

Example of Mark Zuckerberg

Table 1: Capitalization Table for Facebook

	Founding Date	Angel Round	Series A	 IPO
Founders	100%	90%	72%	 28%
Employees	0%	0%	5%	 32%
Outside Investors	0%	10%	23%	 40%

- (i) Equity payout yield \approx -11%
- (ii) Debt-to-Equity \approx 5% (virtually no debt)
- (iii) Growth Rate of Wealth \approx 108% (0.1 million to 41 billions in 12 years)

Results

▶ We collect data on the top 50 U.S. entrepreneurs

	Average	Percentiles				
		Min	p25	p50	p75	Max
Equity Payout Yield	-2.2%	- 16%	-4.9%	0.1%	0.8%	3.7%
Debt to Equity	39%	3%	19%	39%	39%	194%
Growth Rate	30%	15%	20%	22%	32%	108%

► We consider an average duration of 30 years (Gormsen-Lazarus, 2019)

▶ We collect data on the top 50 U.S. entrepreneurs

	Average	Percentiles				
		Min	p25	p50	p75	Max
Equity Payout Yield	-2.2%	- 16%	-4.9%	0.1%	0.8%	3.7%
Debt to Equity	39%	3%	19%	39%	39%	194%
Growth Rate	30%	15%	20%	22%	32%	108%

- ▶ We consider an average duration of 30 years (Gormsen-Lazarus, 2019)
- \Rightarrow Putting everything together, we obtain

$$\widehat{\frac{\partial_r \theta}{\theta}} = -3.6$$

Decline of r and Rise in Pareto Inequality

- ▶ Discount rates have decreased by \approx 5% since 1980s
- ► This can explain a decline in Pareto inequality by:

$$\frac{\widehat{\partial_r \theta}}{\theta} \times \Delta r = -3.6 \times -5\% \approx 18\%$$

► This accounts for 3/4 of the rise in Pareto inequality since 1980s

Transition Dynamics

Interest Rate Path

Growth rate of wealth in the top 1%.

Decomposition

$$\frac{\overline{w}_{\overline{T}_2,2} - \overline{w}_{\overline{T}_1,1}}{\overline{w}_{\overline{T}_1,1}} = \underbrace{\frac{\overline{w}_{\overline{T}_1,2} - \overline{w}_{\overline{T}_1,1}}{\overline{w}_{\overline{T}_1,1}}}_{\text{Within}} + \underbrace{S_E \frac{\overline{w}_{E,2} - q_2}{\overline{w}_{\overline{T}_1,1}} + S_X \frac{q_2 - \overline{w}_{X,2}}{\overline{w}_{\overline{T}_1,1}}}_{\text{Displacement}} + \underbrace{\eta^{q_2 - \frac{\overline{w}_{\overline{T}_1,1}}{\overline{w}_{\overline{T}_1,1}}}_{\text{Population Growth}}$$

- $ightharpoonup T_t$ set of people in the top 1% at time t
- ► E: set of people that enter the top percentile
- ► X: set of people that exit the top percentile
- $ightharpoonup q_2$: wealth of the last person in the top percentile

Growth rate of wealth in the top 1%.

Conclusion

- ► We overturn a classical result: lower *r* can increase Pareto inequality
- ▶ 5% decline in discount rates \rightarrow 3/4 of the rise in Pareto inequality
- ► Magnitude depends on characteristics of the economy

 Esp. high in the U.S. due to scalable firms + developed financial markets