

Grundbegriffe der Informatik Tutorium 33

Lukas Bach, lukas.bach@student.kit.edu | 19.01.2017

Gliederung

Lukas Bach, lukas.bach@student.kit.edu

Repräsentation von Graphen

Repräsentation von Graphen

Zwei-Erreichbarkeit

Adjazenzlisten

Adjazenzlisten

Erreichbarkeit

Erreichbarkeit

2 Erreichbarkeit

Zwei-Erreichbarkeit

Erreichbarkeit

Algorithmus

Algorithmus

Komplexitätstheorie

Komplexitätstheorie

O-Notation

Repräsentation von Graphen

Lukas Bach, lukas.bach@student.kit.edu

Repräsentation von Graphen

Wie stellen wir Graphen da?

Adjazenzlisten

Erreichbarkeit

Zwei-Erreichbarkeit

Erreichbarkeit

Algorithmus

A B D

Anschaulich ja, aber wie können wir Graphen z.B. mit Java realisieren?

Komplexitätstheorie

Objektorientierte Repräsentation von Graphen


```
Lukas Bach, lu-
kas.bach@student.kit.edu
```

```
Repräsentation von Graphen
```

```
Adjazenzlisten
```

```
Erreichbarkeit
```

Zwei-Erreichbarkeit

Erreichbarkeit

Algorithmus

Komplexitätstheorie

O-Notation

```
class Vertex {
   String name; //Genauer Inhalt interessiert uns nicht
class Edge {
   Vertex start;
   Vertex end;
class Graph {
   Vertex[] vertices;
  Edge[] edges;
```

Klassenmodell?

Objektorientierte Repräsentation von Graphen

Lukas Bach, lukas.bach@student.kit.edu

Repräsentation von Graphen

Adjazenzlisten

Erreichbarkeit

Zwei-Erreichbarkeit

Erreichbarkeit

Algorithmus

Komplexitätstheorie

- + Intuitiv
- Es lassen sich nur schwer Algorithmen hierfür entwerfen (z.B. gilt $(x,y) \in E$?)

Repräsentation mit Adjazenzlisten

Lukas Bach, lukas.bach@student.kit.edu

```
Jeder Knoten speichert seine Nachbarn:
von Graphen
                class Vertex {
Adjazenzlisten
                   String name; //Genauer Inhalt interessiert uns nicht
                   Vertex[] neighbours; //Alle Nachbarknoten
Zwei-Erreichbarkeit
                class Graph {
Erreichbarkeit
                   Vertex[] vertices;
Algorithmus
                   Edge[] edges;
Komplexitätstheorie }
```

Repräsentation mit Adjazenzlisten

Lukas Bach, lukas.bach@student.kit.edu

Repräsentatio von Graphen

Adjazenzlisten

Erreichbarkeit

Zwei-Erreichbarkeit

Erreichbarkeit

Algorithmus

Komplexitätstheorie

- + Speicherplatzeffizient bei wenigen Kanten im Vergleich zur Knotenanzahl ($|E| << |V|^2$)
- + Flexibel mit verketteten Listen statt Arrays (Leichtes Hinzufügen und Entfernen)

Repräsentation mit Adjazenzmatrix

Lukas Bach, lukas.bach@student.kit.edu

von Graphen

Adjazenzlisten

Erreichbarkeit

Zwei-Erreichbarkeit

Erreichbarkeit

Algorithmus

Komplexitätstheorie

- Was ist eine Adjazenzmatrix?
- Zu allen Paaren (i,j) mit $i,j \in V$ wird gespeichert, ob $(i,j) \in E$ gilt
- Zweidimensionales Array

```
class Graph { boolean[][] edges; //Größe |V| \times |V| }
```

Repräsentation mit Adjazenzmatrix

Lukas Bach, lukas.bach@student.kit.edu

Repräsentation von Graphen

Adjazenzlisten

Erreichbarkeit

Zwei-Erreichbarkeit

Erreichbarkeit

Algorithmus

Komplexitätstheorie

- + Speicherplatzeffizient bei annähernd maximaler Anzahl von Kanten $(|E| \approx |V|^2)$
- + Algorithmen aus linearer Algebra können verwendet werden (Matrizenrechnung)
- nicht flexibel

Lukas Bach, lukas.bach@student.kit.edu

Repräsentation

Aufgabe

Gebe alle Adjazenlisten und die Adjazenzmatrix für diesen Graphen an:

von Graphen

Adjazenzlisten

Erreichbarkeit

Zwei-Erreichbarkeit

Erreichbarkeit

Algorithmus

Komplexitätstheorie

Repräsentation von zweistelligen Relationen durch Matrizen

Wir können jede endliche zweistellige Relation durch eine Matrix darstellen!

Stelle die Kleiner-Gleich-Relation auf der Menge {0, 1, 2, 3} dar!

Lukas Bach, lukas.bach@student.kit.edu

von Graphen

Adjazenzlisten

Erreichbarkeit

Zwei-Erreichbarkeit

Algorithmus

Erreichbarkeit

Aufgabe

$$R_{\leq} = egin{pmatrix} 1 & 1 & 1 & 1 \ 0 & 1 & 1 & 1 \ 0 & 0 & 1 & 1 \ 0 & 0 & 0 & 1 \end{pmatrix}$$

Komplexitätstheorie

Wege-Problem

Lukas Bach, lukas.bach@student.kit.edu

Repräsentation von Graphen

Adjazenzlisten

Erreichbarkeit

Zwei-Erreichbarkeit

Erreichbarkeit

Algorithmus

Komplexitätstheorie

O-Notation

Algorithmisches Problem

Intuitiv: Gibt es einen Weg von i nach j?

Wege-Problem

Gegeben einem Graphen G = (V, E). Ist für $i, j \in V$ auch $(i, j) \in E^*$?

Ziel

- Gegeben: Adjazenzmatrix
- Gesucht: Zugehörige Wegematrix, für die gilt:

$$W_{ij} = \begin{cases} 1 & \text{, falls ein Weg von i nach j existiert} \\ 0 & \text{, sonst} \end{cases}$$

Einschub Matrizen

Lukas Bach, lukas.bach@student.kit.edu

Repräsentation von Graphen

Was wisst ihr zu folgenden Begriffen?

Adjazenzlisten

Matrizenmultiplikation

Erreichbarkeit

Matrizenaddition

Zwei-Erreichbarkeit

Potenzieren

Erreichbarkeit

Einheitsmatrix

Algorithmus

Nullmatrix

Komplexitätstheorie

Quadrierte Adjazenzmatrix

Lukas Bach, lukas.bach@student.kit.edu

Repräsentation von Graphen

Aufgabe

Adjazenzlisten

Quadriere die Adjazenzmatrix von vorhin: $A = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$

Erreichbarkeit

Zwei-Erreichbarkeit

Ergebnis

Erreichbarkeit

 $A^2 = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 2 \end{pmatrix}$

Algorithmus

Komplexitätstheorie

Lukas Bach, lukas.bach@student.kit.edu

Repräsentatio von Graphen

Adjazenzlisten

Erreichbarkeit

Zwei-Erreichbarkeit

Erreichharkeit

Algorithmus

Komplexitätstheorie

O-Notation

Aufgabe

Bilde und quadriere die Adjazenzmatrix des veränderten Graphen:

$$A' = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \text{ und } A'^2 = \begin{pmatrix} 0 & 2 & 1 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

Lukas Bach, lukas.bach@student.kit.edu

Repräsentatio von Graphen

Adjazenzlisten

Erreichbarkeit

Zwei-Erreichbarkeit

Erreichbarkeit

Algorithmus

Komplexitätstheorie

O-Notation

Aufgabe

Was fällt euch auf? Wann steht in $A^{\prime 2}$ eine 1, wann eine 2 und was bedeutet das für unseren Graphen?

Tipp:
$$c_{11} = a_{11} \cdot b_{11} + a_{12} \cdot b_{21} + a_{13} \cdot b_{31}$$

Lukas Bach, lukas.bach@student.kit.edu

Lösung

von Graphen

In der i-ten Zeile und j-ten Spalte von A^2 steht die Anzahl der Wege von i nach j der Länge zwei.

Adjazenzlisten

 $\rightarrow (A^2)_{ij}$ = Anzahl der Pfade von i nach j der Länge zwei.

Erreichbarkeit

Aufgabe

Zwei-Erreichbarkeit

Habt ihr Ideen, wie man herausfindet, zwischen welchen Knoten Pfade der Länge *n* existieren?

Erreichbarkeit

Lösung

Algorithmus

Betrachte A^n !

Komplexitätstheorie

Zwei-Erreichbarkeit

Lukas Bach, lukas.bach@student.kit.edu

von Graphen

Eigentlich interessiert uns nur, ob ein Pfad der Länge zwei existiert und nicht wie viele...

Adjazenzlisten

Definition Signum-Funktion

Erreichbarkeit

$$sgn:\mathbb{R}
ightarrow \mathbb{R}$$

Zwei-Erreichbarkeit

$$\int 1$$
, falls $x > 0$

Erreichbarkeit

$$x \mapsto \begin{cases} 1 & \text{, falls } x > 0 \\ 0 & \text{, falls } x = 0 \\ -1 & \text{, falls } x < 0 \end{cases}$$

Algorithmus

$$-1$$
 , falls $x < 0$

 $_{ ext{Komplexitätstheorie}} sgn(A^2)$ liefert uns die Zwei-Erreichbarkeitsmatrix

Lukas Bach, lukas.bach@student.kit.edu

Repräsentation von Graphen

Aufgabe

Adjazenzlisten

Gebe A^0 , A^2 und die Wegematrix W an!

Erreichbarkeit

Zwei-Erreichbarkeit

$$A^0 = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Erreichbarkeit

Algorithmus

Komplexitätstheorie

Erreichbarkeit

Lukas Bach, lukas.bach@student.kit.edu

Repräsentatio von Graphen

Adjazenzlisten

Für Pfade beliebiger Länge erhalten wir:

Erreichbarkeit

$$W = sgn(A^{0} + A^{1} + A^{2} + A^{3} + ...) = sgn(\sum_{i=0}^{\infty} A^{i})$$

Zwei-Erreichbarke

Wir können nicht unendlich lange addieren... Ist das ein Problem?

Erreichbarkeit

Algorithmus

Komplexitätstheorie

Erreichbarkeit- unendlich addieren?

Lukas Bach, lukas.bach@student.kit.edu

Repräsentation von Graphen

Adjazenzlisten

Erreichharkeit

Zwei-Erreichbarkeit

Erreichbarkeit

Algorithmus

Komplexitätstheorie

O-Notation

Wenn ein Pfad p der Länge $\geq n := |V|$ zwischen $i \neq j$ existiert, muss mindestens ein Knoten doppelt vorgekommen sein! Der Pfad p enthält also einen Zyklus, den wir raus kürzen können.

Ergebnis

Wenn ein Pfad p der Länge $\geq n := |V|$ zwischen $i \neq j$ existiert, existiert auch ein Pfad p' der Länge < n.

Für Pfade beliebiger Länge erhalten wir:

 $W = sgn(A^0 + A^1 + A^2 + A^3 + ...) = sgn(\sum_{i=0}^{\infty} A^i) = sgn(\sum_{i=0}^{n-1} A^i)$

Komplexitätstheorie

Lukas Bach, lukas.bach@student.kit.edu

von Graphen

Adjazenzlisten

Erreichbarkei

Zwei-Erreichbarkeit

Erreichbarkeit

Algorithmus

Komplexitätstheorie

O-Notation

Wichtige Komplexitätsmaße:

- Speicherplatzbedarf
- Rechen- bzw. Laufzeit

Unterscheidung in

- Best Case (oft uninteressant)
- Average Case (schwierig zu finden, deswegen selten angegeben)
- Worst Case (meistens angegeben)

Ignorieren konstanter Faktoren

Lukas Bach, lukas.bach@student.kit.edu

Repräsentation von Graphen

Definition

Adjazenzlisten

Seien $g, f : \mathbb{N}_0 \to \mathbb{R}_0^+$ Funktionen. Dann wächst g asymptotisch genauso schnell wie f genau dann, wenn gilt:

Erreichbarke

 $\exists c, c' \in \mathbb{R}_+ : \exists n_0 \in \mathbb{N}_0 : \forall n \geq n_0 : c \cdot f(n) \leq g(n) \leq c' \cdot f(n)$

Zwei-Erreichbarkeit

Notation

Erreichbarkeit

 $f \asymp g$ oder $f(n) \asymp g(n)$ (äsymptotisch gleich")

Algorithmus **Bemerkung**

 \approx ist eine Äquivalenzrelation

Komplexitätstheorie

Theta

Lukas Bach, lukas.bach@student.kit.edu

Repräsentation von Graphen

Adjazenzlisten

Definition

 $\Theta(f) = \{g | g \asymp f\}$ Erreichbarkeit

Zwei-Erreichbarkeit

Satz

Erreichbarkeit

 $\forall a, b \in \mathbb{R}_+ : \Theta(a \cdot f) = \Theta(b \cdot f)$

Algorithmus

Komplexitätstheorie

Obere und untere Schranke

Lukas Bach, lukas.bach@student.kit.edu

Repräsentation von Graphen

Adjazenzlisten

Erreichbarkeit

Zwei-Erreichbarkeit

Erreichbarkeit

Algorithmus

Komplexitätstheorie

O-Notation

Obere Schranke (Worst-Case Approximation)

$$O(f) = \{g | \exists c \in \mathbb{R}_+ : \exists n_0 \in \mathbb{N}_0 : \forall n \ge n_0 : g(n) \le c \cdot f(n)\}$$

Untere Schranke (Best-Case Approximation)

$$\Omega(f) = \{g | \exists c \in \mathbb{R}_+ : \exists n_0 \in \mathbb{N}_0 : \forall n \ge n_0 : g(n) \ge c \cdot f(n)\}$$

Notation

- ullet $g
 ightharpoonup {\it of} f$ falls $g \in {\it O}(f)$ bzw. g wächst asymptotisch höchstens so schnell wie f
- g > f falls $g \in \Omega(f)$ bzw. g wächst asymptotisch mindestens so schnell wie f

Bemerkung

Es gilt $\Theta(f) = O(f) \cap \Omega(f)$

Lukas Bach, lukas.bach@student.kit.edu

Repräsentation von Graphen

Lemma

 $log_a n \in \Theta(log_b n)$

Adjazenzlisten

Beispiel

Erreichbarkeit

 $log_2 n \in \Theta(log_8 n)$

Zwei-Erreichbarkeit

Beweis

$$\frac{1}{3}log_2n = \frac{1}{log_28}log_2n = \frac{log_2n}{log_28} = log_8n \le log_2n$$

Erreichbarkeit Algorithmus

Komplexitätstheorie

Lukas Bach, lukas.bach@student.kit.edu

Repräsentation von Graphen

Aufgabe

Lösung

Adjazenzlisten

 $\text{Gilt } \textit{log}_2(\textit{n}^{20}) \in \Theta(\textit{logn})$

Erreichbarkeit

Ja, denn $log_2(n^{20}) = 20 \cdot log_2 n$

Zwei-Erreichbarkeit

ZWEI-LITEIGIDAIREI

Algorithmus

Komplexitätstheorie

Lukas Bach, lukas.bach@student.kit.edu

Repräsentation von Graphen

Adjazenzlisten

Probeklausur

Erreichbarkeit

Zwei-Erreichbarkeit

Erreichbarkeit

Algorithmus

Komplexitätstheorie

Informationen

Lukas Bach, lukas.bach@student.kit.edu

Repräsentation von Graphen

Adjazenzlisten

Erreichbarkeit

Zwei-Erreichbarkeit

Erreichbarkeit

Algorithmus

Komplexitätstheori

O-Notation

Zum Tutorium

- Lukas Bach
- Tutorienfolien auf:
 - http:

//gbi.lukasbach.com

- Tutorium findet statt:
 - Donnerstags, 14:00 15:30
 - 50.34 Informatikbau, -107

Mehr Material

- Ehemalige GBI Webseite:
 - http://gbi.ira.uka.de
 - Altklausuren!

Zur Veranstaltung

- Grundbegriffe der Informatik
- Klausurtermin:
 - **o** 06.03.2017, 11:00
 - Zwei Stunden
 Bearbeitungszeit
 - 6 ECTS für Informatiker und Informationswirte, 4 ECTS für Mathematiker und Physiker

Zum Übungsschein

- Übungsblatt jede Woche
- Ab 50% insgesamt hat man den Übungsschein
- Keine Voraussetzung für die Klausur, aber für das Modul