

Виды углов

Внешний угол

Медиана, биссектриса, высота

Биссектриса угла — делит угол пополам.

Медиана — это отрезок, соединяющий вершину угла с серединой противоположной стороны.

Высота — это перпендикуляр, проведенный из вершины угла к противоположной стороне.

CH — высота AE — биссектриса BK — медиана

Признаки равенства треугольников

1. По 2-ум сторонам и углу между ними.

Если
$$egin{cases} AB=A_1B_1\ AC=A_1C_1\ \angle A=\angle A_1\
ightarrow \triangle ABC=\triangle A_1B_1C_1 \end{cases}$$

2. По стороне и 2-ум углам, прилегающим к ней.

Если
$$egin{cases} AC = A_1C_1 \ \angle A = \angle A_1 \ \angle C = \angle C_1 \
ightarrow \wedge ABC = \wedge A_1B_1C_1 \end{cases}$$

3. По 3-ем сторонам.

Если
$$egin{cases} AB=A_1B_1\ BC=B_1C_1\ AC=A_1C_1\
ightarrow \triangle ABC=\triangle A_1B_1C_1 \end{cases}$$

Равнобедренный треугольник

Равнобедренный треугольник — это треугольник, у которого две стороны равны.

Свойства равнобедренного треугольника:

- В равнобедренном треугольнике углы при основании равны;
- 2. В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.

Параллельные прямые

Признаки параллельных прямых:

- 1. Если накрест лежащие углы равны, то прямые параллельны.
- 2. Если соответственные углы равны, то прямые параллельны.
- 3. Если сумма односторонних углов равна 180 градусов, то прямые параллельны.

Свойства параллельных прямых — это признаки, в обратную сторону:

- 1. Если прямые параллельны, то накрест лежащие углы равны.
- 2. Если прямые параллельны, то соответственные углы равны.
- 3. Если прямые параллельны, то суммы односторонних углов равны 180 градусов.

Сумма углов в любом треугольнике равна 180 градусам!

Прямоугольный треугольник

Прямоугольный треугольник — это треугольник, один из углов которого прямой.

Сторона, противоположная прямому углу, называется гипотенузой прямоугольного треугольника.

Стороны, прилежащие к прямому углу, называются катетами.

Свойства прямоугольного треугольника:

- 1. Сумма острых углов прямоугольного треугольника равна 90° .
- 2. Катет, противолежащий углу в 30°, равен половине гипотенузы.

И обратно, если в треугольнике катет вдвое меньше гипотенузы, то напротив него лежит угол в 30° .

Прямоугольный треугольник

Теорема Пифагора

Квадрат гипотенузы равен сумме квадратов катетов.

$$c^2 = a^2 + b^2$$
, где a, b — катеты, c — гипотенуза.

Обратная теорема:

если равенство верное, то треугольник прямоугольный.

Медиана, проведенная к гипотенузе, равна ее половине.

Тригонометрия в прямоугольном треугольнике

Рассмотрим прямоугольный треугольник. Для каждого из острых углов найдем прилежащий к нему катет и противолежащий.

Синус угла — отношение противолежащего катета к гипотенузе.

$$sin lpha = rac{ \Gamma
m poru Bo
m ne xa mu ar u}{ \Gamma
m u no tehy 3a}$$

Косинус угла — отношение прилежащего катета к гипотенузе.

$$cos lpha = rac{\Pi$$
рилежащий катет гипотенуза

Тангенс угла — отношение противолежащего катета к прилежащему (или отношение синуса к косинусу).

$$tglpha = rac{\Pi ext{poтиволежащий катет}}{\Pi ext{puлежащий катет}}$$

Котангенс угла — отношение прилежащего катета к противолежащему (или отношение косинуса к синусу).

$$ctglpha = rac{\Pi$$
рилежащий катет Π ротиволежащий катет

Основное тригонометрическое тождество:

 $\sin^2\alpha + \cos^2\alpha = 1$

Некоторые значения тригонометрических функций:

		-		-					
α	градусы	0°	30°	45°	60°	90°	180°	270°	360°
8	$\sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0
(cos α	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0	1
	tg α	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	_	0	_	0

Признаки равенства прямоугольных треугольников

Nº1	Признак	Назначение	Иллюстрация	
1	По катету и прилежащему острому углу	Если катет и прилежащий к нему острый угол одного прямоугольного треугольника равны соответствующим элементам другого		
2	По гипотенузе и катету	Если гипотенуза и один катет одного прямоугольного треугольника равны гипотенузе и соответствующему катету другого		
3	По двум катетам	Если оба катета одного прямоугольного треугольника равны катетам другого	<u>.</u>	
4	По гипотенузе и острому углу	Если гипотенуза и острый угол одного прямоугольного треугольника равны гипотенузе и острому углу другого прямоугольного треугольника		