MAT 312 HW 6 Carl Liu

1.

- i) No because there is no inverse for 0.
- ii) Let $a,b \in G$. Since both are complex we have $a=x+iy\neq 0$ and $b=d+iz\neq 0$ for real numbers x,y,d,z Then a*b=xd+idy+izx-yz=(xd-yz)+i(dy+zx) which is complex and non zero. Thus G has closure. We also have identity element 1 as for $a=x+iy\in G$, 1*a=x*1+i*1*y=x+iy as required. Let $a\in G$. Then a=x+iy for real x,y. Since $x+iy\neq 0$, we have $\frac{1}{x+iy}=(x/(x^2+y^2))-i(y/(x^2+y^2))\in G$ and (x+iy)/(x+iy)=1. So the inverse is in G as required. Now suppose $a,b,c\in G$. Then (ab)c=a(bc) by property of complex numbers. Thus we conclude that it is a group
- iii) Let $a, b \in G$. Then a * b is also an integer which is not zero since neither a, b are zero. So $a * b \in G$ making it closed. There is the identity element 1 + 0i = 1 and also for every $a \in G$, we have $1/a \in G$ since $a \neq 0$ and a/a = 1. So there are inverse elements. (ab)c = a(bc) by properties of integers.
- iv) Not all functions have an inverse. Consider a(1) = 1, a(2) = 1, a(3) = 1. By definition of a function, we cannot have a function b(1) = 1, 2, 3. and thus there is no inverse. Thus G not a group
- v) Let $x, y \in G$. Then $x = a + b\sqrt{2}, y = c + d\sqrt{2}$ for integers a, b, c, d. Then $x + y = (a + c) + (b + d)\sqrt{2}$ so $x + y \in G$. Thus G has closure. It has the identity element $0 + 0\sqrt{2} = 0 \in G$ since $x \in G$ and $0 + x = 0 + a + b\sqrt{2} = x$. It has the inverse element $-x = -a + -b\sqrt{2} \in G$ where $x x = a + b\sqrt{2} a + -b\sqrt{2} = 0$. Also $z = e + f\sqrt{2}$ and the rest is defined as above, we have $(x + y) + z = a + b\sqrt{2} + c + d\sqrt{2} + e + f\sqrt{2} = (a + c + e) + (b + d + f)\sqrt{2} = a + (b + c)$ as required.
- vi) Let $A, B \in G$ then we have

$$AB = \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & d & e \\ 0 & 1 & f \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & d+a & e+af+b \\ 0 & 1 & f+c \\ 0 & 0 & 1 \end{pmatrix}$$

thus $AB \in G$. We have

$$I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

is in G and is the identity element as IA = A. We also have inverse of A being

$$\begin{pmatrix} 1 & -a & ca - b \\ 0 & 1 & -c \\ 0 & 0 & 1 \end{pmatrix}$$

which can be seen from the AB composition above. Associativity is obvious due to the associativity of matrix multiplication.

- vii) Yes because it is essentially the set of integers under addition except with a factor.
- viii) Let $x, y \in G$. Then x * y = x + y + 2 which is real and is thus in G There is also the identity element -2 since (-2) * b = -2 + b + 2 = b. We also have for a, the inverse, (-a-4) as (-a-4) * a = -a-4+a+2 = -2 which is the identity element. Now we have (x * y) * z = (x + y + 2) * z = x + y + 2 + z + 2 = x + y + z + 4 and x * (y * z) = x * (y + z + 2) = x + y + z + 2 + 2 = x + y + z + 4. Therefore we have associativity. Thus G is indeed a group.

2.

First we see that for any $a \in G$, we have $aa^{-1} = e = a^2$. Then we have $a^{-1}aa^{-1} = a^{-1}aa \to a^{-1} = a$. Also let $a, b \in G$, a group. Then we have $(ab)^{-1} = e(ab)^{-1} = b^{-1}a^{-1}ab(ab)^{-1} = e(ab)^{-1} = b^{-1}a^{-1}$.

Let $a, b \in G$. Then $ab = a^{-1}b^{-1} = (ba)^{-1} = ba$. The last equality comes from $(ba)^2 = e$ and what we showed above. Thus we are done.

3.

Let $a, b \in A_n$. Since $A_n \subseteq S(n)$ and S(n) is a group, suppose $h, k \in A_n$. Then $k^{-1} \in A_n$ because $1 = sgn(k) = sgn(k^{-1})$ thus k^{-1} is even. The composition hk^{-1} will then have sign $sgn(hk^{-1}) = sgn(h)sgn(k^{-1}) = 1*1 = 1$ as required. Thus we can conclude that A_n is indeed a group. Now consider the odd permutations F_n . This does not form a group because for $h, k \in F_n$ we have sgn(hk) = sgn(h)sgn(k) = (-1)(-1) = 1 which is even and is thus not in F_n meaning closure is not satisfied.

4.

- a) Suppose xy = yx. Since $x, y \in G$ where G is a group there are inverses $xyx^{-1} = yxx^{-1} \to xyx^{-1} = y$ then $xyx^{-1}y^{-1} = yy^{-1} = e$. Thus [x, y] = e as required. Suppose [x, y] = e. Then $xyx^{-1}y^{-1} = e \to xyx^{-1}y^{-1}y = y \to xyx^{-1} = y \to xyx^{-1}x = yx \to xy = yx$ as required.
- b) we have $x^{-1} = (15432)$ and $y^{-1} = (59876)$. That means the commutator is

[x, y] = (12345)(56789)(15432)(59876) = (165) **5.**

- a) consider an axis which goes through one of the vertices and makes the tetrahedron symmetric about that axis. Then a rotation ρ of $2\pi/3$ around this axis preserves. Since there are 4 vertices, we can have 4 such rotations that preserves. Lets name them $\rho_1, \rho_2, \rho_3, \rho_4$ corresponding to rotations about their respective axis. There are also F which are π rotations about an axis that goes through the midpoint of an edge and goes through the midpoint of a perpendicular edge, we will name them F_1, F_2, F_3 for the three edge pairs. Any combination of these rotations preserve and we also have the properties $\rho_k^3 = e, F_k^2 = e$. Then we have the rotations $e, F_1, F_2, F_3, \rho_1, \rho_1^2, \rho_2, \rho_2^2, \rho_3, \rho_3^2, \rho_4, \rho_4^2$ which is 12 elements in R.
- c) We can map each rotation to a permutation of S(4). Since F_k for any k can be considered a disjoint cycle of $(x_1, x_2)(x_3, x_4)$ where $x_k \in \{1, 2, 3, 4\}$, we thus have $sgn(F_k) = sgn((x_1, x_2))sgn((x_3, x_4)) = (-1)(-1) = 1$ making F_k even. ρ_k can be considered as a cycle (x_1, x_2, x_3) since it is rotating 3 points about an axis. Since $sgn((x_1, x_2, x_3)) = (-1)^{length((x_1, x_2, x_3))-1} = 1$ and is even. Since the composition of even permutations are even, we thus conclude that all the rotations are therefore in A_4 and since both have 12 distinct elements, we have a bijection. Therefore R can now also be considered a group as A_4 is a group.
- b) R is a group follows from A_4 being a group.