POS Tagging

(materials mostly from Jurafsky & Martin(2009))

Parts of Speech

- Perhaps starting with Aristotle in the West (384–322 BCE), there was the idea of having parts of speech
 - a.k.a lexical categories, word classes, "tags", POS
- It comes from Dionysius Thrax of Alexandria (c. 100 BCE) the idea that is still with us that there are 8 parts of speech

Parts of Speech

- But actually his 8 aren't exactly the ones we are taught today
 - Thrax: noun, verb, article, adverb, preposition, conjunction, participle, pronoun
 - School grammar: noun, verb, adjective, adverb, preposition, conjunction, pronoun, interjection

Open vs. Closed classes

- Open vs. Closed classes
 - Closed:
 - determiners: a, an, the
 - pronouns: *she, he, I*
 - prepositions: on, under, over, near, by, ...
 - Why "closed"?
 - Open:
 - Nouns, Verbs, Adjectives, Adverbs.

Penn Tagsets

ŢAG	DESCRIPTION	EXAMPLE	
CC	conjunction, coordinat ing	and, or, but	
CD	cardinal number	five, three, 13%	
DT	determiner	the, a, these	
EX	existential there	there were six boys	
FW	foreign word	mais	
IN	conjunction, subordin ating or preposition	of, on, before, unless	
JJ	adjective	nice, easy	
JJR	adjective, comparative	nicer, easier	
JJS	adjective, superlative	nicest, easiest	

LS	list item marker		
MD	verb, modal auxillary	may, should	
NN	noun, singular or mass tiger, chair, laughter		
NNS	noun, plural	tigers, chairs, insects	
NNP	noun, proper singular	Germany, God, Alice	
NNPS	noun, proper plural	we met two <u>Christmase</u> <u>s</u> ago	
PDT	predeterminer	both his children	
POS	possessive ending	's	
PRP	pronoun, personal me, you, it		
PRP\$	pronoun, possessive	my, your, our	

RB	adverb extremely, loudly,	
RBR	adverb, comparative better	
RBS	adverb, superlative best	
RP	adverb, particle	about, off, up
SYM	symbol	%
ТО	infinitival to	what to do?
UH	interjection	oh, oops, gosh

4	Var.		y.	
3	F		ER	
5			SIT	
30		398	2	
. 0	Di -	u == 0	Y &	

VB	verb, base form think	
VBZ	verb, 3rd person singul ar present	she <u>thinks</u>
VBP	verb, non-3rd person s ingular present	I <u>think</u>
VBD	verb, past tense	they thought
VBN	verb, past participle	a <u>sunken</u> ship
VBG	verb, gerund or presen t participle	thinking is fun
WDT	<i>wh</i> -determiner	which, whatever, which ever
WP	wh-pronoun, personal	what, who, whom
WP\$	wh-pronoun, possessiv whose, whosever	
WRB	<i>wh</i> -adverb	where, when

•	punctuation mark, sentence closer	.;?*
,	punctuation mark, com ma	,
•	punctuation mark, colon	•
(contextual separator, left paren	(
)	contextual separator, rig ht paren)

POS Tagging

- Words often have more than one POS: back
 - The <u>back</u> door = JJ
 - On my <u>back</u> = NN
 - Win the voters back = RB
 - Promised to back the bill = VB
- The POS tagging problem is to determine the POS tag for a particular instance of a word.

POS Tagging

- Input: Plays well with others
- Ambiguity: NNS/VBZ UH/JJ/NN/RB IN NNS
- Output: Plays/VBZ well/RB with/IN others/NNS
- Uses:
 - Text-to-speech (how do we pronounce "lead"?)
 - Can write regexps like (Det) Adj* N+ over the output for phrases, etc.
 - As input to or to speed up a full parser
 - If you know the tag, you can back off to it in other tasks

POS tagging performance

- How many tags are correct? (Tag accuracy)
 - About 97% currently
 - But baseline is already 90%
 - Baseline is performance of stupidest possible method
 - Tag every word with its most frequent tag
 - Tag unknown words as nouns
 - Partly easy because
 - Many words are unambiguous
 - You get points for them (the, a, etc.) and for punctuation marks!

Deciding on the correct part of speech can be difficult even for people

Mrs/NNP Shaefer/NNP never/RB got/VBD around/RP to/TO joining/VBG

All/DT we/PRP gotta/VBN do/VB is/VBZ go/VB around/IN the/DT corner/NN

Chateau/NNP Petrus/NNP costs/VBZ around/RB 250/CD

How difficult is POS tagging?

- About 11% of the word types in the Brown corpus are ambiguous with regard to part of speech
- But they tend to be very common words. E.g., that
 - I know that he is honest = IN
 - Yes, that play was nice = DT
 - You can't go *that* far = RB
- 40% of the word tokens are ambiguous

Sources of information

- What are the main sources of information for POS tagging?
 - Knowledge of neighboring words
 - Bill saw that man yesterday
 - NNP NN DT NN NN
 - VB VB(D) IN VB NN
 - Knowledge of word probabilities
 - man is rarely used as a verb....
- The latter proves the most useful, but the former also helps

More and Better Features → Feature- Seature based tagger

Can do surprisingly well just looking at a word by itself:

• Word the: the \rightarrow DT

Lowercased word | Importantly: importantly → RB

Prefixes unfathomable: un- → JJ

• Suffixes Importantly: $-ly \rightarrow RB$

Capitalization Meridian: CAP → NNP

• Word shapes 35-year: d-x \rightarrow JJ

Then build a maxent (or whatever) model to predict tag

Maxent P(t|w): 93.7% overall / 82.6% unknown

Overview: POS Tagging Accuracies

Rough accuracies:

Most freq tag: ~90% / ~50%

- Trigram HMM: ~95% / ~55%

– Maxent P(t|w):93.7% / 82.6%

- TnT (HMM++): 96.2% / 86.0%

MEMM tagger: 96.9% / 86.9%

Bidirectional dependencies: 97.2% / 90.0%

Upper bound: ~98% (human agreement)

How to improve supervised results?

Build better features!

RB

```
PRP VBD IN RB IN PRP VBD . They left as soon as he arrived .
```

We could fix this with a feature that looked at the next word

JJ

```
NNP NNS VBD VBN .
Intrinsic flaws remained undetected .
```

We could fix this by linking capitalized words to their lowercase versions

Tagging Without Sequence Information

Model	Features	Token	Unknown	Sentence
Baseline	56,805	93.69%	82.61%	26.74%
3Words	239,767	96.57%	86.78%	48.27%

Using words only in a straight classifier works as well as a basic (HMM or discriminative) sequence model!!

POS Tagging with NLTK

1. Tokenization

- From nltk.tokenize import word_tokenize
- text="Intelligence obtained in recent weeks found that an al Qaeda affiliate was perfecting techniques for hiding explosives in batteries and battery compartments of electronic devices, according to a US official"
- tokens=nltk.word_tokenize(text)

2. POS Tagging

– tagged=nltk.pos_tag(tokens)

Exercise

- From the example sentence 'text', find all the nouns.
 - Use for-loop
 - Use POS_tagger