Part 1: Exploring Sizing Tradeoffs Using SA

1) We want to design a simple current mirror with the following specs.

Parameter	
Input Current	10μΑ
Output Current	20μΑ
% Change in Current for $\Delta V_{out} = 1V$	<10%
Current direction (source/sink)	Sink

Answer the following:

2) The % Change in current translates to a spec on the $\lambda = 1/V_A$ of the device. How much is the required λ ?

$$I_{D} = \frac{\kappa}{2} V_{OV}^{2} (1 + \gamma V_{DS}) = \frac{\kappa}{2} V_{OV}^{2} (1 + \gamma V_{OUT})$$

$$\Delta I_{D} = \frac{\kappa}{2} V_{OV}^{2} \gamma \Delta V_{OUT}$$

$$\frac{\Delta I_D}{I_D} = \frac{\gamma \Delta V_{OUT}}{1 + \gamma V_{OUT}} \approx \gamma \Delta V_{OUT} \rightarrow \gamma = 0.1$$

- Sinking current means which device type? NMOS or PMOS? NMOS.
- 4) The higher the g_m/I_D (the lower the V^*) the higher the headroom (the available swing), but the larger the area. Examine this trade-off using SA as shown below. Report L and W vs Vstar.

Figure 1 setup of SA

Figure 2 plot w & I vs v*

Figure 3 plot idmis vs vstar

• In my design I choose idmis = 2%, as shown in figure $V^* = 126.2113 mV$.

Figure 4 get w & I at V*

- as shown in figure I get $W=10.3025\mu m$ $L=1.5035\mu m$.
- we can't previous design trade-offs exploration sweeps using a standard SPICE simulator, i.e., sweep Vstar at a constant, because γ has some dependence on L and Vstar so if vstar change we should change L to make γ const, but this cannot happen in simulator.

Part 2: Current Mirror Simulation

1. Design and OP (Operating Point) Analysis

Figure 5 schematic

- $V_{DS2} \approx V_{DS3} \approx V^* + 50mV \approx 126.2113m + 50m = 176.2113mV$.
- $RB \approx \frac{\text{VDS2}}{I_B} \approx \frac{176.2113m}{10u} \approx 17.6 \, K\Omega$ (range)
- 2) Perform DC sweep (not parametric sweep) for RB. Choose a reasonable sweep range given the rough value computed in the previous step. **Report** V_{DS3} vs R_B . **Choose** R_B to satisfy the 50mV saturation margin requirement. Is the selected R_B value larger or smaller than the rough analytical value? Why?

 R_B value larger than the rough analytical value, because in the analytical results we ignored the body effect which causes Vth to be smaller than simulation and V_{GS} affected by Vth.

Figure 6 get value of RB

Figure 7 DC operating point

4)Do all transistors operate in saturation? Yes

2. DC Sweep (I_{out} vs VOUT)

Figure 8 plot iout vs vout of two current mirrors

- ullet As shown from previous analysis that wide sense current mirror is more stable (constant current value) with voltage variations despite simple current mirror which changed with V_{OUT} variations, in the simple mirror the current increase when $V_{OUT}(V_{DS})$ increases and exceed $2*I_B$ because V_{DS} isn't the same in M0 and M1 but in the second circuit they are the same that's why the current saturate.
- Because at this specific point, V_{DS} of the two mirror mosfets are the same so there won't be any mismatch error the mirroring will be more accurate as V_{DS} is the same and V_{GS} is the same.

Figure 9 compliance from the plot

ullet as shown in figure compliance voltage of simple CM is approximately 105 mV and for wide swing CM is approximately 276.244 mV .

Figure 10 iout at vout equal 0.5 & 1.5

$$percentage\ change = \left(\frac{22.1361 - 20.0897}{20}\right) * 100 = 10\%$$

The Change in Current for $\Delta Vout = 1V < 10\%$ from part 1.

Figure 11 plot error of iout

•The wide-swing current mirror has better efficiency than the simple current mirror so the error in the wide-swing is less than the simple current mirror and the simple current mirror has lower Rout, and error of wide swing almost equal zero because the above 2 transistors make V_{DS} in the 2 transistors the same and have high output impedance.

Figure 12 plot rout

- Rout of wide sense CM is more than that of simple CM because output of wide sense CM is cascaded which give high impedance while simple CM is only a single transistor, so its output impedance not boosted.
- •yes, because V_{OUT} is the V_{DS} of the output mosfet so as V_{OUT} changes V_{DS} changes so the transistor either go deeper into saturation or towards the edge of saturation which will change the value of ro.

Hand analysis:

$$R_{OUT_{Simple}} = r_{o1} = \frac{1}{gds1} = \frac{1}{1.974\mu} = 506.5K\Omega$$

$$R_{OUT_{Wide}} = \, r_{o5}(1 + (gm5 + gmb5)r_{o3}) = 31.9 M\Omega$$

	Simulator	Analytical
Simple CM	506.485ΚΩ	506.5ΚΩ
Wide swing CM	31.849ΜΩ	31.9ΜΩ

3. Mismatch

Figure 13 DC operating point at vmis1

Figure 14 percentage error from simulation for wide swing

$$\Delta I = G_M \, \Delta V = gm \, \Delta V = \frac{2 \, I_D * \Delta V}{V^*}$$

$$\frac{AI}{I} = \frac{2 \Delta V}{V^*} = \frac{2 * V_{MIS}}{V^*} * 100 = 2\%$$

	Simulator	Analytical
Percentage error wide swing	1.894%	2%
Percentage error simple	1.956%	2%

Figure 15 DC operating point at vmis2

Figure 16 result of error

$$\frac{AI}{I} = G_M \ \Delta V = \frac{gm5}{(1 + (gm5 + gmb5)r_{o3})} * \frac{V_{MIS2}}{I} * 100 = 0.03\%$$

	Simulator	Analytical
Percentage error	0.01%	0.03%

5-In simple mirror because the mismatch affects V_{GS} (strong volt), and I change directly but in the second cascode wide swing mirror the mismatch affects V_{DS} (the weakest volt).

6-For the mirror we should make it larger to increase the area and the mismatch decrease.