ECE 371 Materials and Devices

12/05/19 - Lecture 26 Ch. 10 – Basic MOSFET Operation

General Information

- Homework #8 due today.
- Solutions to homework #8 will be posted later today.
- Example final exam posted.
- Review session Friday 12/6 at 3:30 pm in CHTM 103. I will record the session and post on the website.
- Final Exam (Tuesday 12/10, 12:30pm-2:30pm, cumulative but focused on ch. 7,8,10)
 - Two hours long
 - Two sheets of notes (8.5 inch x 11 inch, front and back). Closed book.
 - 4-5 problems mostly covering Ch. 7, 8, 10
 - Several multiple choice and short answer questions covering the whole course
- Reading for next time: review ©

FET Modes of Operation

- <u>nMOS</u> (n-channel on p-substrate)
 - V_T < 0 → **depletion mode (on at V_G = 0)**. Need to apply a negative bias to turn the channel "off".
 - $V_T > 0$ → enhancment mode (off at $V_G = 0$). Need to apply a positive bias to turn the channel "on".
- pMOS (p-channel on n-substrate)
 - V_T < 0 → enhancement mode (off at V_G = 0). Need to apply a negative bias to turn the channel "on".
 - $V_T > 0$ → depletion mode (on at $V_G = 0$). Need to apply a positive bias to turn the channel "off".
- Whether a device is enhancement mode or depletion mode depends upon the inherent surface band bending, which depends upon the doping, ϕ_{ms} , and the oxide thickness, charge, and dielectric constant

n-Channel MOSFETs

Figure 10.34 | Cross section and circuit symbol for an n-channel enhancement mode MOSFET.

Figure 10.35 | Cross section and circuit symbol for an n-channel depletion mode MOSFET.

- Flow of charge is within the inversion layer (channel) adjacent to the oxidesemiconductor interface
- Inversion layer of electrons "connects" source (S) and drain (D)
- Electrons flow from source to drain
- Current flows from drain to source
- Drain and gate biased positive with respect to source
- Enhancement mode (E-mode) requires positive gate voltage to induce the channel
- Depletion mode (D-mode) has inversion channel at zero gate bias

p-Channel MOSFETs

Figure 10.36 | Cross section and circuit symbol for (a) a p-channel enhancement mode MOSFET and (b) a p-channel depletion mode MOSFET.

- Holes flow from the source to the drain
- Current flows from the source to the drain
- Inversion layer of holes "connects" source and drain
- Drain and gate biased negative with respect to source
- V_T negative for E-mode and positive for D-mode

MOSFET: Basic Operation

Figure 10.37 | The n-channel enhancement mode MOSFET (a) with an applied gate voltage $V_{GS} < V_T$ and (b) with an applied gate voltage $V_{GS} > V_T$.

- For $V_{GS} < V_T$ and V_{DS} small, there is no inversion channel
- Drain-to-substrate pn junction is always reverse biased. Reverse current contributes negligible amount to I_D
- For $V_{GS} > V_T$ and V_{DS} positive, current flows from the drain to the source (nMOS)
- Basic MOSFET operation is the modulation of the channel transconductance by the gate voltage ($V_G o g_d o I_D$)

Increasing V_{GS} for Small V_{DS}

Figure 10.38 | I_D versus V_{DS} characteristics for small values of V_{DS} at three V_{GS} voltages.

- Gate voltage modulates the charge density and transconductance in the channel
- For V_{GS} < V_T, no current flows in nchannel E-mode FET
- For $V_{GS} > V_T$, current flows
- Larger V_{GS} gives larger slope of I_D
 vs. V_{DS} curve
- Small V_{DS} usually implies operation in the linear region

Increasing V_{DS} for a Given V_{GS}

- As V_{DS} increases, the voltage across the drain side of the oxide becomes closer to the drain voltage, so the charge density and g_d are reduced near the drain
- Channel thickness is reduced near the drain
- The I_D vs. V_{DS} curve begins to rollover

Increasing V_{DS} for a Given V_{GS}

$$V_{DS(sat)} = V_{GS} - V_T$$

- As V_{DS} increases more, the voltage drop across the oxide on the drain side is lowered to the point of V_T and there is no inversion charge at the edge of the drain
- This point is called the "pinch off" or "saturation" point
- Beyond V_{DS(sat)}, the pinch off moves closer to the source and a space charge region is left under the gate near the drain
- The I_D vs. V_{DS} curve saturates
- Electrons reach the end of the inversion layer and are injected into the depletion layer where the built-in E-field sweeps them toward the drain

I_D vs. V_{DS} for Various V_{GS} (n-Channel)

Figure 10.40 | Family of I_D versus V_{DS} curves for an n-channel enhancement mode MOSFET.

Figure 10.42 | Family of I_D versus V_{DS} curves for an n-channel depletion mode MOSFET.

Linear region for $0 \le V_{DS} \le V_{DS(sat)}$

$$I_D = \frac{W\mu_n C_{ox}}{2L} [2(V_{GS} - V_T)V_{DS} - V_{DS}^2]$$

Saturation region for $V_{DS} \ge V_{DS(sat)}$

$$I_D = \frac{W\mu_n C_{ox}}{2L} (V_{GS} - V_T)^2$$

p-Channel MOSFET I_D vs. V_{DS}

Figure 10.49 | Cross section and bias configuration for a p-channel enhancement mode MOSFET.

- Drain voltage negative with respect to the source
- Gate voltage negative with respect to the source

•
$$V_{SD(sat)} = V_{SG} + V_{T}$$

 V_T is negative for E-mode and positive for D-mode

Linear region for $0 \le V_{SD} \le V_{SD(sat)}$

$$I_D = \frac{W\mu_p C_{ox}}{2L} [2(V_{SG} - V_T)V_{SD} - V_{SD}^2]$$

Saturation region for $V_{SD} \ge V_{SD(sat)}$

$$I_D = \frac{W\mu_p C_{ox}}{2L} (V_{SG} - V_T)^2$$