VE320 – Summer 2021

Introduction to Semiconductor Devices

Instructor: Yaping Dan (但亚平) yaping.dan@sjtu.edu.cn

Chapter 11 Metal-Oxide-Semiconductor Field Effect Transistors: More Concepts

Outline

Nonideal Effects:

11.1 Channel length modulation

- 11.3 Subthreshold conduction
- 11.4 Velocity Saturation
- 11.5 Short Channel Effect

11.1 Channel length modulation

$$I'_{D} = \frac{k'_{n}}{2} \cdot \frac{W}{L} \cdot \left[(V_{GS} - V_{T})^{2} (1 + \lambda V_{DS}) \right]$$

11.1 Channel length modulation

$$I_{D} = \begin{cases} 0 & V_{GS} - V_{T} < 0 \\ \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L} (V_{GS} - V_{T})^{2} & 0 \leq V_{GS} - V_{T} < V_{DS} \\ \mu_{n} C_{ox} \frac{W}{L} [(V_{GS} - V_{T}) V_{DS} - \frac{1}{2} V_{DS}^{2}] & V_{GS} - V_{T} \geq V_{DS} \end{cases}$$

$$I_{D} = \begin{cases} 0 & V_{GS} - V_{T} < 0\\ \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L} (V_{GS} - V_{T})^{2} (1 + \lambda V_{DS}) & 0 \le V_{GS} - V_{T} < V_{DS}\\ \mu_{n} C_{ox} \frac{W}{L} [(V_{GS} - V_{T}) V_{DS} - \frac{1}{2} V_{DS}^{2}] & V_{GS} - V_{T} \ge V_{DS} \end{cases}$$

Check your understanding

Problem Example 1

Consider an n-channel silicon MOSFET. The parameters are $k'_n = 75 \mu \text{A/V}^2$, W/L = 10, and $V_T = 0.35 \text{ V}$. The applied drain-to-source voltage is $V_{DS} = 1.5 \text{ V}$. (a) For $V_{GS} = 0.8 \text{ V}$, find (i) the ideal drain current, (ii) the drain current if $\lambda = 0.02 \text{ V}^{-1}$, and (iii) the output resistance for $\lambda = 0.02 \text{ V}^{-1}$. (b) Repeat part (a) for $V_{GS} = 1.25 \text{ V}$.

Outline

Nonideal Effects:

11.1 Channel length modulation

- 11.3 Subthreshold conduction
- 11.4 Velocity Saturation
- 11.5 Short Channel Effect

$$I_{d} = \begin{cases} 0 & V_{gs} - V_{T} < 0\\ \frac{1}{2} k_{n} (V_{gs} - V_{T})^{2} (1 + \lambda V_{ds}) & 0 \le V_{gs} - V_{T} < V_{ds}\\ k_{n} [(V_{gs} - V_{T}) V_{ds} - \frac{1}{2} V_{ds}^{2}] & V_{gs} - V_{T} \ge V_{ds} \end{cases}$$

$$I_{d} = \begin{cases} 0 & V_{gs} - V_{T} < 0\\ \frac{1}{2}k_{n}(V_{gs} - V_{T})^{2}(1 + \lambda V_{ds}) & 0 \le V_{gs} - V_{T} < V_{ds}\\ k_{n}[(V_{gs} - V_{T})V_{ds} - \frac{1}{2}V_{ds}^{2}] & V_{gs} - V_{T} \ge V_{ds} \end{cases}$$

transconductance

$$g_n = \frac{dI_d}{dV_g} = k_n (V_{gs} - V_T)(1 + \lambda V_{ds}) = \frac{2I_d}{(V_{gs} - V_T)}$$

$$g_m = k_n (V_{gs} - V_T)(1 + \lambda V_{ds})$$

$$I_{d} = \begin{cases} 0 & V_{gs} - V_{T} < 0\\ \frac{1}{2} k_{n} (V_{gs} - V_{T})^{2} (1 + \lambda V_{ds}) & 0 \le V_{gs} - V_{T} < V_{ds}\\ k_{n} [(V_{gs} - V_{T}) V_{ds} - \frac{1}{2} V_{ds}^{2}] & V_{gs} - V_{T} \ge V_{ds} \end{cases}$$

Output Impedance

$$\frac{1}{r_{on}} = \frac{dI_d}{dV_{ds}} = \lambda k_n (V_{gs} - V_T)^2 = \frac{\lambda I_d}{1 + \lambda V_{ds}}$$

$$g_m = k_n (V_{gs} - V_T)(1 + \lambda V_{ds})$$

How the knowledge used by engineers and scientists

Diameter-Dependent Electron Mobility of InAs Nanowires

Alexandra C. Ford, †,‡,§,|| Johnny C. Ho,†,‡,§,|| Yu-Lun Chueh,†,‡,§,|| Yu-Chih Tseng,‡ Zhiyong Fan,‡,§,|| Jing Guo, Jeffrey Bokor,‡,§ and Ali Javey*,‡,§,||

Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley, California 94720, Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, Berkeley Sensor and Actuator Center, University of California at Berkeley, Berkeley, California 94720, and Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida 32611

NANO LETTERS

2009 Vol. 9, No. 1 360-365

How the knowledge used by engineers and scientists

How the knowledge used by engineers and scientists

We next assess the field-effect electron mobility of InAs NW FETs by using the low-bias ($V_{\rm DS}=0.1~{\rm V}$) transconductance

$$g_{\rm m} = \frac{\mathrm{d}I_{\rm DS}}{\mathrm{d}V_{\rm GS}}\Big|_{V_{\rm DS}}$$

and the analytical expression

$$\mu_{\rm n} = g_{\rm m} \frac{L^2}{C_{\rm ox}} \frac{1}{V_{\rm DS}}$$

MOSFETs. The field-effect and effective mobilities are, however, deduced from the I-V characteristics by using different analytical models. Specifically, the effective mobility is deduced from the drain conductance

$$g_{\rm D} = \frac{\mathrm{d}I_{\rm DS}}{\mathrm{d}V_{\rm DS}}\Big|_{V_{\rm GS}}$$

with

$$\mu_{\text{n,eff}} = g_{\text{D}} \frac{L^2}{C_{\text{ox}}} \frac{1}{(V_{\text{GS}} - V_{\text{t}})}$$

Check your understanding

Problem example 2

The transconductance of an n-channel MOSFET is found to be $g_m = \partial I_D/\partial V_{GS} = 1.25$ mA/V when measured at $V_{DS} = 50$ mV. The threshold voltage is $V_T = 0.3$ V. (a) Determine the conductance parameter K_n . (b) What is the current at $V_{GS} = 0.8$ V and $V_{DS} = 50$ mV? (c) Determine the current at $V_{GS} = 0.8$ V and $V_{DS} = 1.5$ V.

Outline

Nonideal Effects:

11.1 Channel length modulation

- 11.3 Subthreshold conduction
- 11.4 Velocity Saturation
- 11.5 Short Channel Effect

11.3 Subthreshold conduction

11.3 Subthreshold conduction

Subthreshold Conduction (Leakage Current)

- The transition from the ON state to the OFF state is gradual. This can be seen more clearly when I_D is plotted on a logarithmic scale:
- In the subthreshold $(V_{GS} < V_{\tau})$ region,

$$I_D \propto \exp\left(\frac{qV_{GS}}{nkT}\right)$$

This is essentially the channelsource pn junction current. (Some electrons diffuse from the source into the channel, if this pn junction is forward biased.)

Slope Factor (or Subthreshold Swing) S

S is defined to be the inverse slope of the $\log (I_D)$ vs. V_{GS} characteristic in the subthreshold region:

$$S = n \left(\frac{kT}{q}\right) \ln(10)$$

Units: Volts per decade

Note that **S** > 60 mV/dec at room temperature:

$$\left(\frac{kT}{q}\right)\ln(10) = 60\,\text{mV}$$

11.3 Subthreshold conduction

V_T Design Trade-Off

(Important consideration for digital-circuit applications)

■ Low V_T is desirable for high ON current

$$I_{DSAT} \propto (V_{DD} - V_T)^{\eta}$$
 1 < η < 2

where V_{DD} is the power-supply voltage

...but high V_T is needed for low OFF current

Outline

Nonideal Effects:

11.1 Channel length modulation

- 11.3 Subthreshold conduction
- 11.4 Velocity Saturation
- 11.5 Short Channel Effect

$$v_d \rightarrow v_{th}$$

- Electric field is heating up electrons
- Electrons transfer energy to lattice to reach thermal equilibrium

$$v_n = \frac{v_s}{\left[1 + \left(\frac{E_{\text{on}}}{E}\right)^2\right]^{1/2}}$$

$$v_p = \frac{v_s}{\left[1 + \left(\frac{E_{op}}{E}\right)^2\right]^{1/2}}$$

Probably a typo in textbook

$$v_d \rightarrow v_{th}$$

- Electric field is heating up electrons
- Electrons transfer energy to lattice to reach thermal equilibrium

$$E_{DS} = \frac{V_{DS}}{L}$$

As the transistor size scales down, the electric field intensity E increases.

$$E_{on} = \frac{V_{DSAT}}{L}$$

$$v_d \rightarrow v_{th}$$

As the transistor size scales down, the electric field intensity E increases.

- Electric field is heating up electrons
- Electrons transfer energy to lattice to reach thermal equilibrium

$$I_{DSAT} = \mu_n C_{ox} \frac{W}{L} \left(V_{GS} - VT - \frac{1}{2} V_{DS} \right) V_{DS}$$
$$= C_{ox} W \left(V_{GS} - VT - \frac{1}{2} V_{DSAT} \right) \frac{V_{DSAT}}{L} \mu_n$$

$$I_{DSAT} = WC_{ox} \left[V_{GS} - V_T - \frac{V_{DSAT}}{2} \right] v_{sat}$$
 where $V_{DSAT} = \frac{L}{\mu_n} v_{sat}$

Unified model

$$\begin{split} I_D &= 0 \ \text{ for } \ V_{GT} \leq 0 \\ I_D &= k' \frac{W}{L} \Big(V_{GT} V_{min} - \frac{V_{min}^2}{2} \Big) \qquad \text{ for } V_{GT} \geq 0 \\ \text{with } \ V_{min} &= \min(V_{GT}, V_{DS}, V_{DSAT}), \\ V_{GT} &= V_{GS} - V_T, \\ \text{and } \ V_T &= V_{T0} + \gamma (\sqrt{|-2\phi_F|} + V_{SB}| - \sqrt{|-2\phi_F|}) \end{split}$$

$$V_T = 0.7$$
, $V_{gs} = 1.2$ V, $V_{sat} = 1$ V

$$V_T = 0.7$$
, $V_{gs} = 1.2$ V, $V_{sat} = 1$ V

Start to pinch off

$$V_T = 0.7$$
, $V_{gs} = 1.2 \text{ V}$, $V_{sat} = 1 \text{ V}$

Start to pinch off

- NO pinch off
- Velocity saturation starts

$$V_T = 0.7$$
, $V_{gs} = 1.2 \text{ V}$, $V_{sat} = 1 \text{ V}$

Start to pinch off

- NO pinch off
- Velocity saturation starts

- Starts to pinch off
- Velocity saturation

Outline

Nonideal Effects:

11.1 Channel length modulation

- 11.3 Subthreshold conduction
- 11.4 Velocity Saturation
- 11.5 Short Channel Effect

11.5 Short Channel Effect

A long channel device

A short channel device

11.5 Short Channel Effect

Figure 11.16 | Threshold voltage versus channel length for various substrate dopings. (*From Yau* [26].)

Figure 11.17 | Threshold voltage versus channel length for two values of drain-to-source and body-to-source voltage. (*From Yang [25].*)