MBA em IA e Big Data

Curso 01 - Linguagens e Ferramentas para Inteligência Artificial e Big Data (Python e SQL)

SQL - Data Definition Language no Sistema Oracle

Jose Fernando Rodrigues Junior ICMC-USP São Carlos

Objetivo: apresentar os comandos SQL usados para a definição da base de dados

SQL - Structured Query Language

- Linguagem declarativa expressa o que se quer, mas não como será a execução
- IBM década de 70
- "Padrão" de mercado
 - Ansi/ISO
 - simplicidade
 - grande poder de consulta

Data Definition Language (DDL)

Subconjunto do SQL para definição de esquemas: CREATE, DROP, ALTER

- CREATE, DROP, ALTER
- Elementos fundamentais da linguagem, aplicados a:
 - DATABASE
 - USER
 - ROLE
 - SCHEMA
 - TABLESPACE
 - TABLE
 - INDEX
 - FUNCTION
 - SEQUENCE
 - TRIGGER
 - VIEW
- Todos os elementos podem ser criados (CREATE), corrigidos (ALTER) e removidos (DROP)

Comandos DDL

CREATE TABLE - criar uma tabela, definir colunas e restrições

```
CREATE TABLE tabela (
  atrib1 tipo [<restrições da coluna 1>],
  atrib2 tipo [<restrições da coluna 2>],
  ....
  atribn tipo [<restrições da coluna n>],
  <restrições da tabela>
);
```


CREATE TABLE

- Principais restrições de colunas
 - NOT NULL
 - DEFAULT valor

```
CREATE TABLE tabela (

atrib1 tipo [(tamanho)] [NOT NULL | DEFAULT valor],

atrib2 tipo [(tamanho)] [NOT NULL | DEFAULT valor],

...
```


CREATE TABLE

- Restrições de tabela
 - PRIMARY KEY (<atributos chave primária>)
 - UNIQUE (<atributos chave candidata>)
 - FOREIGN KEY (<atributos chave estrangeira> REFERENCES tabelaRef [(<chave primária>)]

[<ações>]

- <ações>
 - ON DELETE | ON UPDATE

CASCADE | SET NULL

SET DEFAULT

Em SQL padrão apenas; Oracle não suporta "ON UPDATE"

SQL – Alguns tipos de dados

- INTEGER | SMALLINT DOUBLE | PRECISION | FLOAT | REAL
- DECIMAL [(precision, scale)]
 - precision número total de dígitos
 - scale número de dígitos depois do ponto
- NUMBER (precisão, escala)
- CHAR (n) tamanho fixo n caracteres
- VARCHAR (n) tamanho variável
 - máximo de n caracteres
- BLOB Binary Large Object
- CLOB Character Large Object
- DATE | TIME | TIMESTAMP

tipo numérico ORACLE

ORACLE: VARCHAR2

SQL – Alguns tipos de dados do "padrão" SQL

	int10	int6	int1	char(n)	blob	XML
Oracle 11	NUMBER(10)	NUMBER(6)	NUMBER(1)	VARCHAR2(n)	BLOB	XMLType
MS SQL Server 2005	NUMERIC(10)	NUMERIC(6)	TINYINT	VARCHAR(n)	IMAGE	XML
Sybase system 10	NUMERIC(10)	NUMERIC(6)	NUMERIC(1)	VARCHAR(n)	IMAGE	
MS Access (Jet)	Long Int or Double	Single	Byte	TEXT(n)	LONGBINARY	
TERADATA	INTEGER	DECIMAL(6)	DECIMAL(1)	VARCHAR(n)	VARBYTE(20480)	
DB2	INTEGER	DECIMAL(6)	DECIMAL(1)	VARCHAR(n)	VARCHAR(255)	
RDB	INTEGER	DECIMAL(6)	DECIMAL(1)	VARCHAR(n)	LONG VARCHAR	
INFORMIX	INTEGER	DECIMAL(6)	DECIMAL(1)	VARCHAR(n)	BYTE	
RedBrick	integer	int	int	char(n)	char(1024)	
INGRES	INTEGER	INTEGER	INTEGER	VARCHAR(n)	VARCHAR(1500)	

CREATE TABLE

```
CREATE TABLE tabela (
 atrib1 tipo [(tamanho)] [NOT NULL | DEFAULT valor],
 atrib2 tipo [(tamanho)] [NOT NULL | DEFAULT valor],
   . . .
  [CONSTRAINT nome da restrição] PRIMARY KEY (<atributos chave primária>),
  [CONSTRAINT nome da restrição] UNIQUE (< atributos chave candidata>),
 [CONSTRAINT nome da restrição] FOREIGN KEY (<atributos chave estrangeira>)
  REFERENCES tabelaRef [(<chave primária>)] [ON DELETE CASCADE | SET NULL]
  [ON UPDATE CASCADE | SET NULL]
```

```
Aluno = { Nome, Nusp, Idade, DataNasc}

Professor = { Nome, NFunc, Idade, Titulação}

Disciplina = {Sigla, Nome, NCred, Professor, Livro}

Turma = {Sigla, Numero, NAlunos}

Matrícula = {Sigla, Numero, Aluno, Ano, Nota}
```

```
CREATE TABLE ALUNO (
    NOME VARCHAR2(30) NOT NULL,
    NUSP NUMBER NOT NULL,
    IDADE NUMBER(3),
    DATANASC DATE,

CONSTRAINT PK_ALUNO PRIMARY KEY (NUSP),
    CONSTRAINT UN_NOME UNIQUE(NOME)
);
```

```
CREATE TABLE PROFESSOR (
   NOME VARCHAR2(30) NOT NULL UNIQUE,
   NFUNC NUMBER NOT NULL PRIMARY KEY,
   IDADE NUMBER(3),
   TITULACAO CHAR(10) NOT NULL,

CONSTRAINT CH_TIT CHECK (TITULACAO IN ('MESTRE', 'DOUTOR', 'TITULAR'))
);
```

```
Aluno = {Nome, Nusp, Idade, DataNasc}

Professor = {Nome, NFunc, Idade, Titulação}

Disciplina = {Sigla, Nome, NCred, Professor, Livro}

Turma = {Sigla, Numero, NAlunos}

Matrícula = {Sigla, Numero, Aluno, Ano, Nota}
```

```
CREATE TABLE DISCIPLINA (
  SIGLA CHAR(6) NOT NULL,
  NOME VARCHAR2(30) NOT NULL,
  NCRED NUMBER NOT NULL,
  PROFESSOR NUMBER,
  LIVRO VARCHAR2(30),
   CONSTRAINT PK_DISCIPLINA PRIMARY KEY (SIGLA),
   CONSTRAINT FK_DISCIPLINA FOREIGN KEY (PROFESSOR) REFERENCES
PROFESSOR(NFUNC) ON DELETE SET NULL,
  CONSTRAINT NCREDITOS CHECK (NCRED > 0)
```

```
Aluno = {Nome, Nusp, Idade, DataNasc}

Professor = {Nome, NFunc, Idade, Titulação}

Disciplina = {Sigla, Nome, NCred, Professor, Livro}

Turma = {Sigla, Numero, NAlunos}

Matrícula = {Sigla, Numero, Aluno, Ano, Nota}
```

```
CREATE TABLE TURMA (
SIGLA CHAR(6) NOT NULL,
NUMERO NUMBER NOT NULL,
NALUNOS NUMBER NOT NULL
CHECK(NAlunos <= 70),
CONSTRAINT PK_TURMA PRIMARY KEY (SIGLA, NUMERO),
CONSTRAINT FK_TD FOREIGN KEY (SIGLA) REFERENCES DISCIPLINA(SIGLA)
ON DELETE CASCADE
);
```

```
Aluno = {Nome, Nusp, Idade, DataNasc}

Professor = {Nome, NFunc, Idade, Titulação}

Disciplina = {Sigla, Nome, NCred, Professor, Livro}

Turma = {Sigla, Numero, NAlunos}

Matrícula = {Sigla, Numero, Aluno, Ano, Nota}
```

```
CREATE TABLE MATRICULA (
  SIGLA CHAR(6) NOT NULL,
   NUMERO NUMBER NOT NULL,
  ALUNO NUMBER NOT NULL,
  ANO NUMBER(4) NOT NULL,
   NOTA FLOAT,
  CONSTRAINT PK_MAT PRIMARY KEY (SIGLA, NUMERO, ALUNO, ANO),
  CONSTRAINT FK_MT FOREIGN KEY (SIGLA, NUMERO)
     REFERENCES TURMA(SIGLA, NUMERO)
     ON DELETE CASCADE,
  CONSTRAINT FK_MA FOREIGN KEY (ALUNO) REFERENCES ALUNO(NUSP)
     ON DELETE CASCADE
```


Comandos DDL

- ALTER TABLE incluir/alterar/remover definições de colunas e restrições
 ALTER TABLE tabela <ação>;
 - <ação>:
 - ADD novoAtrib tipo [<restrições de coluna>]
 - ADD [CONSTRAINT nome] <restrição de tabela>
 - DROP COLUMN atributo [CASCADE | RESTRICT]
 - DROP CONSTRAINT nome
 - ALTER atributo DROP DEFAULT;
 - ALTER atributo SET DEFAULT <valor>;

ALTER TABLE

ADD novoAtrib tipo [<restrições de coluna>]

- DROP COLUMN atributo [CASCADE | RESTRICT]
 - -CASCADE todas as visões e restrições (*constraints*) que referenciam o atributo são removidas automaticamente (dados referenciados são mantidos)
 - -RESTRICT atributo só é removido se não houver nenhuma visão ou restrição que o referencie

```
Aluno = {Nome, Nusp, Idade, DataNasc}

Professor = {Nome, NFunc, Idade, Titulação}

Disciplina = {Sigla, Nome, NCred, Professor, Livro}

Turma = {Sigla, Numero, NAlunos}

Matrícula = {Sigla, Numero, Aluno, Ano, Nota}
```

alter table Aluno add CidadeOrigem varchar(30) default 'Sao Carlos';

alter table Turma drop COLUMN Numero; /*restrict*/

Turma = {<u>Sigla, Numero</u>, NAlunos}

Matrícula = {<u>Sigla, Numero, Aluno, Ano</u>, Nota}

alter table Turma drop COLUMN Numero cascade constraints;

Turma = {Sigla, NAlunos}

Matrícula = {<u>Sigla</u>, <u>Numero</u>, Aluno, Ano, Nota}

```
Aluno = {Nome, Nusp, Idade, DataNasc}

Professor = {Nome, NFunc, Idade, Titulação}

Disciplina = {Sigla, Nome, NCred, Professor, Livro}

Turma = {Sigla, Numero, NAlunos}

Matrícula = {Sigla, Numero, Aluno, Ano, Nota}
```

alter table Matricula add constraint nota check (nota > 0);

alter table Disciplina drop constraint NCREDITOS;

alter table Aluno modify (CidadeOrigem default 'Sanca');

Comandos DDL

DROP TABLE - exclui uma tabela da base de dados

DROP TABLE tabela [CASCADE | RESTRICT];

- CASCADE: todas as visões e restrições que referenciam a tabela são removidas automaticamente (dados referenciados são mantidos)
- RESTRICT: a tabela é removida somente se não for referenciada em nenhuma restrição ou visão


```
Aluno = {Nome, Nusp, Idade, DataNasc}

Professor = {Nome, NFunc, Idade, Titulação}

Disciplina = {Sigla, Nome, NCred, Professor, Livro}

Turma = {Sigla, Numero, NAlunos}

Matrícula = {Sigla, Numero, Aluno, Ano, Nota}
```

drop table Turma; /* restrict */

Turma = {<u>Sigla, Numero</u>, NAlunos}

Matrícula = {<u>Sigla, Numero, Aluno, Ano</u>, Nota}

drop table Turma cascade constraints;

Matrícula = {<u>Sigla, Numero, Aluno, Ano</u>, Nota}

Usando o Sistema Oracle para praticar

WIBA IA BIG DATA

Opção 1

- + instalar o software SQLDeveloper
- + pedir instruções via e-mail ao tutor para conexão remota no servidor da USP
- → Conexão via SQLDeveloper

Opção 2

- + baixar o software Oracle Express Edition e o SQLDeveloper
- + conectar no servidor localhost
- → Oracle Express Edition

Opção 3

- + usar o Oracle via cloud
- → Passo a passo para criar um database Oracle na nuvem

Opção 4

- instalar o SGBD open-source PostgreSQL
- + adaptar o SQL visto para o SQL do PostgreSQL
 - -> pouças alterações, na verdade

