

Лекция 11 Data Mining в реальных системах

Ксения Стройкова

5 декабря 2016

План занятия

Работа с признаками

Алгоритмы машинного обучения

Особенности реальных систем

Что дальше

Работа с признаками

Конструирование признаков

Лог посещения пользователями Интернет-сайтов

```
1432068600.002494
46.148.52.217
22B695259
22/159/5/0/0/6/1/1.000000/16.0
2579437
http://vk.com/ivan_se
http://vk.com/friends?act=find
1152*864
1137*747
1432068601241
Поиск друзей
```

Преобразование признаков

- Дискретизация
- Проекции
 - PCA
 - Random projections
- Заполнение отсутствующих значений
- Удаление шума
- ▶ Преобразование категориальных классов в бинарные
 - One-vs-rest
 - ▶ One-vs-one
 - Error correcting output codes

Отбор признаков

Как "нерелевантные", так и "релевантные" признаки могут быть вредными

- 1. Независимо от алгоритма обучения: backward elimination, forward selection
 - mutual information
 - коэффициент корреляции
 - линейная модель
 - генетические алгоритмы
- 2. С использованием алгоритма обучения (кросс-валидация, hold-out)

Отбор признаков (продолжение)

Алгоритмы машинного обучения

Первое правило машинного обучения

Если нет необходимости, не использовать машинное обучение

Второе правило машинного обучения 1

LEARNING =

REPRESENTATION + EVALUATION + OPTIMIZATION

¹A Few Useful Things to Know about Machine Learning

- ▶ Определить наборы данных train, development, test
- ▶ Убедиться, что данные из одного и того же распределения
- ▶ Определить простую (одночисленную) метрику оценки алгоритма

Classifier	Presicion	Recall
А	95%	90%
В	98%	85%

Classifier	Presicion	Recall	F1 score
Α	95%	90%	92.4%
В	98%	85%	91.0%

- Много итераций
- ▶ Определить условия для улучшения алгоритма
- ▶ Контролировать соответствие условий, быстро корректировать

- ▶ Интуиция подводит в многомерных пространствах
- ▶ Больше данных лучше, чем сложный алгоритм
- ▶ Обучайте много моделей

Все модели имеют недостатки²

Подход	Что хорошо	Что плохо	
bayesian	хорошо работает на ма-	трудно обосновать	
learning	леньких данных	априорные распрделе-	
		ния, вычислительно	
		сложные	
градиентный	вычислительно эффек-	подбор параметров для	
спуск	тивен, оптимизируем	сходимости, переобуче-	
	что нужно	ние	
kernel	натуральное выраже-	подбор ядра, медлен-	
	ние схожести через	ный	
	ядро		
деревья ре-	быстрый и автоматизи-	крайне нестабильный	
шений	рованный		
boosting	хорошее качество	выбор алгоритма,	
		предположение o weak	
		learner нарушается	

²All Models of Learning have Flaws

8 худших алгоритмов³

- Linear regression
- ► Traditional decision trees
- ► Linear discriminant analysis
- K-means clustering
- ► Neural networks
- Maximum Likelihood estimation
- ▶ Density estimation in high dimensions
- Naive Bayes

³The 8 worst predictive modeling techniques

Отбор модели занимает очень много времени⁴

(также, как и работа с признаками)

⁴Three Things About Data Science You Won't Find In the Books

Особенности реальных систем

Пример обучения модели в задаче классификации

Особенности реальной системы

- ▶ Очень грязные данные
- Простые модели
- ▶ Проверка качества на всех этапах
- ▶ Мониторинг и логирование

Что дальше

Изучение Data Mining

- 1. Data Mining II, Hadoop, Инфопоиск
- 2. Kaggle
- 3. Литература и статьи
 - ► Техблог Twitter
 - Техблог Netflix
 - ► Texблог Spotify
 - Reddit προ MachineLearning
 - ▶ Подкаст про машинное обучение
 - DataViz

Junior Data Scientist: необходимые навыки

- 1. Все базовые модели и алгоритмы
- 2. Знание языка высокого уровня и соответствующие научные библиотеки (R, python, Matlab)
- 3. Базовые структуры данных и алгоритмы (сортировки, деревья, хэш таблицы и графы)
- 4. Опыт обработки больших объемов данных точно будет плюсом
- 5. Умение разбираться с научной литературой

Вопросы

