13 주차 Shift Register

컴퓨터공학실험

20190067 윤병현

20190067 이승형

20221620 지현종

- 1 Shift Register
- 2 Ring Counter
- 3 Asynchronous(Ripple) Up/Down Counter
- 4 Synchronous Up/Down Counter
- **5 Johnson Counter**

Part 1 Shift Register

Shift Register

Register: 여러 비트의 데이터를 저장하는 논리 회로

*Flip-Flop 은 하나의 비트를 저장하므로, 여러 개의 Flip-Flop 을 조합하여 구성

N 개의 비트를 저장하는 Register 를 N-bit Register 라고 부름

Shift Register: 저장된 데이터를 한 비트씩 전송할 수 있는 Register

주로 D Flip-Flop 으로 구현

* 하나의 Flip-Flop 의 Output 이 다음 Flip-Flop 의 Input 과 연결되어 한 비트씩 옆으로 이동하게끔 구성

Serial & Parallel In/Out

직렬 입력 (Serial In): 한 개의 선을 이용하여 한 번에 단일 비트에 대한 정보를 차례로 입력 받음 직렬 출력 (Serial Out): 한 개의 선을 이용하여 한 번에 단일 비트에 대한 정보를 차례로 출력함

병렬 입력 (Parallel In): 여러 개의 선을 이용하여 한 번에 다중 비트에 대한 정보를 입력 받음 병렬 출력 (Parallel Out): 여러 개의 선을 이용하여 한 번에 다중 비트에 대한 정보를 출력함

- 병렬 입력은 Register 의 초기 상태를 setting 하는 데 사용될 수 있다.
- 병렬 출력은 Register 의 현재 상태를 확인하는 데 사용될 수 있다.

SISO Shift Register

SIPO Shift Register

PISO Shift Register

PIPO Shift Register

Part 2 Ring Counter

Ring Counter

of States in Ring Counter

N 개의 Flip-Flop 을 사용하는 Counter 에서 사용할 수 있는 상태의 개수: 개

Ring Counter 에서 사용하는 상태의 개수 : N 개

* 비효율적인 상태공간, 특정 명령을 선택적으로 수행하는 디지털 회로에 사용될 수 있다.

Part 3 Asynchronous(Ripple) Up/Down Counter

Asynchronous Up Counter

Ck 펄스 입력에 따라 Q0-Q3 증가

Asynchronous Up Counter

Asynchronous Down Counter

 Ck
 펄스 입력에 따라 Q0-Q3

 감소

Up/Down Counter 차이

Part 4 Synchronous Up/Down Counter

Synchronous Up Counter

Synchronous Down Counter

Up/Down(Bidirectional) Counter

Part 5 Johnson Counter

Clock pulse	Q0	Q1	Q2	Q3	
1	1	0	0	0	
2	1	1	0	0	
3	1	1	1	0	
4	1	1	1	1	
5	0	1	1	1	
6	0	0	1	1	
7	0	0	0	1	
8	0	0	0	0	

Q ₀	Qı	Q ₂	Q₃
1	0	0	0
0	1	0	0
0	0	1	0
0	0	0	1

Truth table of ring counter

Truth table of johnson counter

Modulo 6 Johnson Counter

Modulo 6 Counter 여기표

	현재 상태			차기 상태		F	lip-Flop 입력	 력
Q2	Q1	Qo	Q2	Q1	Qo	D2	D1	Do
0	0	0	1	0	0	1	0	0
1	0	0	1	1	0	1	1	0
1	1	0	1	1	1	1	1	1
1	1	1	0	1	1	0	1	1
0	1	1	0	0	1	0	0	1
0	0	1	0	0	0	0	0	0

Q1Q0 Q2	00	01	11	10
0	1	0	0	X
1	1	Х	0	1

$$D_2 = Q_0'$$

Q1Q0 Q2	00	01	11	10
0	0	0	1	X
1	0	Х	1	1

$$D_0 = Q_1$$

Q1Q0 Q2	00	01	11	10
0	0	0	0	X
1	1	Х	1	1

$$D_1 = Q_2$$

출처 및 팀원 별 기여도

출처

Design of all-optical Johnson counter using SOA-MZI at 100 Gb/s, Nivedita Nair, Sanmukh Kaur, Hardeep Singh

https://www.tutorialspoint.com/digital_circuits/digital_circuits_shift_registers.htm

https://www.electronicshub.org/ring-counters-johnson-ring-counter/

https://www.allaboutcircuits.com/textbook/digital/chpt-12/ring-counters/

https://learnabout-electronics.org/Digital/dig56.php

https://www.geeksforgeeks.org/n-bit-johnson-counter-in-digital-logic/

기여도

20190067 윤병현 33.4%

20190067 이승형 33.3%

20221620 지현종 33.3%

감사합니다