I. Polynomial Rings and Ideals

1. Preliminaries

Theorem 1.1. Algebraic Closure of a Field —————

Proposition 1.2.

Let $S = K[\vec{x}]$ and let

$$S_i = \{ p \in S : \deg(p) = i, p \text{ is homogeneous} \}, \quad \forall i \in \mathbb{N} \cup \{0\}.$$

Then

as a vector space.

Proposition 1.3. Alternative Definition of $\langle F \rangle$

For any $F \subseteq K[\vec{x}]$

$$\langle F \rangle =$$

Proposition 1.4. Characterization of Homogeneous Ideals —

Let $S = K[\vec{x}]$ and let $I \subseteq S$ be an ideal. The following are equivalent.

- (a) *I* is homogeneous.
- (b)
- (c)

Proposition 1.5. Operations on Ideals -

Let $I, J \subseteq K[\vec{x}]$ be ideals. Which are ideals?

- (a) $\{f+g: f \in I, g \in J\}$.
- (b) $I \cap J$.
- (c) $\{fg : f \in I, g \in J\}.$
- (d) $\{f \in S : fJ \subseteq I\}$.

Proposition 1.6.

Let *I*, *J* be ideals of $K[\vec{x}]$. Then

$$IJ I \cap J$$
.

Proposition 1.7.

Let *I* be an ideal. Then \sqrt{I} is

Proposition 1.8.

For all ideal I, $\sqrt{\sqrt{I}} =$

II. Algebraic Geometry

1. Introduction

Lemma 2.1. Let $I = \langle F \rangle$. Then $V(F) =$		
$\frac{\text{Let } I - \langle I \rangle, \text{ Intent } V(I) - \frac{1}{2}}{2}$		
	2. Schemes	
L		
Lemma 2.2. Let <i>I</i> be an ideal. Then		
	V(I) =	
Lemma 0.2		
Every radical ideal of a variety is		
Lemma 2.4.		
Given $F \subseteq K[\vec{x}]$,	$\sqrt{\left\langle F ight angle }\ \ I\left(V(F) ight) .$	
Consequently, $\langle F \rangle$	$\bigvee \langle \Gamma \rangle = I \left(V \left(\Gamma \right) \right)$.	
Theorem 2.5. Nullstellensatz Suppose K is algebraically closed. The	n for any $F \subseteq K[\vec{x}]$,	
	I(V(F)) =	
Theorem 2.6.		
There is a bijection		
	ideals of $K[\vec{x}] \leftrightarrow$	
	3. Monomial Ideals	
Proposition 2.7. Characterization of Mc	nomial Ideals —	
Let $I \subseteq K[\vec{x}]$ be an ideal. The following		
(a) I is a monomial ideal.		
(b)		
4010mary 2.7.11.		
Let <i>I</i> be a monomial ideal and let $M \subseteq$	I be a set of monomials. Then	
$\langle M \rangle = I \Leftarrow$	\Rightarrow	
Theorem 2.8. Dickson's Lemma		

Let $S \subseteq \mathbb{N}^n$. Then

Corollary 2.8.1.

Let I be a monomial ideal and let M be a generating set of monomials. Then

Proposition 2.9.

Every monomial ideal *I*

Proposition 2.10.

Every ascending chain $(I_n)_{n=1}^{\infty}$ of monomial ideals

4. Operations on Monomial Ideals

Proposition 2.11.

Let I, J be monomial ideals. Then $I \cap J$ is monomial and

$$I \cap J =$$

Proposition 2.12.

Let I, J be monomial ideals. Then I: J is monomial with

$$I: J =$$

and

$$I:\langle v\rangle =$$

Proposition 2.13.

Let $I \subseteq S$ be an ideal. Then

I is prime \iff

Proposition 2.14.

Let *I* be a squarefree monomial ideal. Then *I* is

Corollary 2.14.1. —

Let *I* be a monomial ideal. Then

I is radical \iff

Theorem 2.15.

Let *I* be monomial. Then

$$\sqrt{I} =$$

where \sqrt{u} is obtained by re-writing every nonzero exponent of u to 1.

5. Grobner Bases

Proposition 2.16.

Let < be a monomial order on \mathbb{N}^n . Then < can be extended to a partial order \le such that

(a)

(b)

Theorem 2.17. Macaulay (1927)

Let $I \subseteq S = K[\vec{x}]$ be an ideal. Then

Corollary 2.17.1. -

If *I* is a homogeneous ideal, then

$$S/I =$$

is and

$$\dim (S/I)_k =$$

Corollary 2.17.2. -

If *I* is a homogeneous ideal, then

$$H(S/I, t) =$$

Theorem 2.18.

An ideal *I* has only

initial ideals.

Theorem 2.19. Hilbert Basis

Every ideal $I \subseteq K[\vec{x}]$ is

. Precisely, if $g_1, \ldots, g_m \in K[\vec{x}]$ form a Grobner basis of I, then

Corollary 2.19.1.

Let

$$I_1 \subseteq I_2 \subseteq \cdots$$

be an ascending chain of ideals in S. Then

6. Division Algorithm

Theorem 2.20. Division Algorithm for Multivariate Polynomials

Let $f \in S = K[\vec{x}]$ and let $g_1, \dots, g_m \in S$ be nonzero. The division algorithm produces polynomials $q_1, \dots, q_m, r \in S$ such that

- (a)
- (b)
- (c)

Theorem 2.21.

Fix a monomial order. Suppose $\{g_1, \dots, g_m\}$ is a Grobner basis for a monomial ideal I. Then every $f \in S$ has

Corollary 2.21.1. Algorithm for Ideal Membership -

Let $\{g_1, \ldots, g_m\}$ be a Grobner basis for a monomial ideal I and let $f \in S$. Then

$$f \in I \iff$$

7. Buchberger's Algorithm for Finding a Grobner Basis

Algorithm 2.1. Buchberger's Algorithm -

```
INPUT: monomial ideal I and a generating set F=\{f_1,\dots,f_k\} 01. for : 02. 03. for : 04. 05. if : 06. 07. 08.
```

Proposition 2.22.

Buchberger's algorithm terminates in time.

Theorem 2.23. -

Fix a monomial order and let $I = \langle g_1, \dots, g_m \rangle$ with each $g_i \neq 0$. The following are equivalent.

- (a) $\{g_1, \ldots, g_m\}$ is a Grobner basis for I.
- (b)

Lemma 2.24. —

Suppose gcd(in(f), in(g)) = 1. Then S(f, g)

Theorem 2.25. Hochster-Eagen

 $D_r(m, n)$ is radical.

8. Reduced Grobner Bases

Theorem 2.26.

Let *I* be an ideal and fix a monomial order. Then