EE609 Radiating Systems PROJECT REPORT

Problem Statement: Design and Simulate a half wave dipole antenna operating at a resonant frequency of 6.6 GHz. Calculate the appropriate length, radius and gap length.

Submitted By

Ponnala Varun Kumar Reddy	Roll No. 22D0540
Ankit Bhakar	Roll No. 23M1077
Malathi Paladugu	Roll No. 23M1068
Shruthi Akkala	Roll No. 23M1074

Antenna Geometry

Operating Frequency – 6.6 GHz Length of Antenna – 21.67 mm Feed Gap poles - 0.1083 mm Radius of Antenna - 0.04545 mm Material of Antenna - PEC

Resonant Frequency

[1 + Group. No*0.4] GHz 1+14*0.4 = 6.6GHz

Wave length

 $\lambda = c/f$ $\lambda = 3x10^8 / 6.6x10^9 cm$ $\lambda = 45.45 mm$

Length of Antenna (L= $\lambda/2$)

In practical we can consider it smaller than that to eliminate the imaginary part of Radiation resistance

143/f(MHz)= 21.67 mm

Dipole Radius(R)

 $\lambda/1000 = 0.045$ mm

Feed Gap(g)

L/200 = 0.108mm

Matching Impedance (Z0)

73ohm

Element	Shape	X mm	Y mm	Z mm	Pos(x,y,z) mm	Radius(mm)	Axis	Material
Dipole	Cylinder	0	0	21.67	(0, 0, -10.83)	0.04545	Z-axis	PEC
Feed Gap	Cylinder	0	0	0.1083	(0,0,-0.0541)	0.04545	Z-axis	Vaccum
Excitation	Rectangular Sheet	Lumped port, Impedance-75 ohm				YZ-plane	-	
Radiation Boundary	Вох	40	40	40	(-20,-20,-20)	-	-	Air

Plot results

1. S11(dB) Vs Freq(GHz)

3. 3D radiation pattern

4. E-plane and H-plane radiation pattern

E-PLANE – pi- 0 deg H-PLANE – pi- 90 deg

dB(rETotal)
Setup1 : LastAdaptive
Freq='6.6GHz' Phi='0deg'

H PLANE

-180

150

-150

HFSSDesign1

Ansys 2023 R2 STUDENT

dB(rETotal)
Setup1 : LastAdaptive
Freq='6.6GHz' Phi='90deg'

5. Gain(dB) vs Frequency

6. Directivity(dB) vs Freq

