HW₂

1 Using the fact that $\mathcal{B}_{\mathbb{R}}$ is generated by the open intervals, show that:

$$\mathcal{B}_{\mathbb{R}} = \mathcal{M}(\{[a,\infty) : a \text{ rational } \})$$

Proof. It suffices to show both that $\mathcal{B}_{\mathbb{R}}$ contains $[a, \infty)$ for each $a \in \mathbb{Q}$, and that every open interval (x, y) is in $\mathcal{M}(\{[a, \infty) : a \text{ rational }\})$. The former is obvious since $[a, \infty) = (infty, a)^c$ for each $a \in \mathbb{Q}$.

For the latter, suppose (x, y) is an arbitrary open interval. Pick $(x_n), (y_n) \subset \mathbb{Q}$ with $x_n \searrow x$ and $y_n \nearrow y$. Then $(x, y) = \bigcup_n (x_n, y_n)$.

- **2** Problem 1/Page 24. A *ring* is a nonempty family of sets closed under finite unions and differences. A ring that is closed under countable unions is called a σ -ring.
- a. Rings (resp. σ -rings) are closed under finite (resp. countable) intersections.
- b. If \mathcal{R} is a ring (resp. σ -ring) , then R is an algebra (resp. σ -algebra) iff $X \in \mathcal{R}$.
 - c. If \mathcal{R} is a σ -ring, then $\{E \subset X : E \in \mathcal{R} \text{ or } E^c \in \mathcal{R}\}$ is a σ -algebra.
 - d. If \mathcal{R} is a σ -ring, then $\{E \subset X : E \cap F \in \mathcal{R} \text{ for all } F \in \mathcal{R}\}$ is a σ -algebra.

Proof. For (a), let \mathcal{R} be a ring, and $U, V \in \mathcal{R}$. Let $W = U \cup V$. Then $U \cap V = W \setminus ((W \setminus U) \cup (W \setminus V))$. This is just one of De Morgan's laws in the restricted universe W. A similar argument works for σ -rings with W the countable union of the sets involved.

- For (b), let \mathcal{R} be a ring (resp. σ -ring). Suppose $X \in \mathcal{A}$. Since (a) has been verified, we need only check that R contains complements. This is true since $E^c = X \setminus E$ for any set E. Conversely, suppose \mathcal{R} is an algebra (resp. σ -algebra). Then \mathcal{R} is nonempty, so there exists $E \in \mathcal{R}$. Thus, $X = E \cup E^c \in \mathcal{R}$.
- For (c), let $\mathcal{M} = \{E \subset X : E \in \mathcal{R} \text{ or } E^c \in \mathcal{R}\}$. Since \mathcal{R} is nonempty, so is \mathcal{M} . It is also clear that \mathcal{M} is closed under complements. For closure under countable unions, let $(E_n) \subset \mathcal{M}$. Then $(E_n) = (A_n) \cup (B_n)$ for sequences $(A_n), (B_n)$ such that each $A_n \in \mathcal{R}$ and each $B_n^c \in \mathcal{R}$. Let $A = \bigcup A_n \in mathcal \mathcal{R}$ and $B = \bigcap B_n^c \in \mathcal{R}$. Then $\bigcup_n E_n = \bigcup_n A_n \cup \bigcup B_n = A \cup B^c = (A^c \cap B)^c = (B \setminus A)^c \in \mathcal{M}$.
- For (d), let $\mathcal{M} = \{E \subset X : E \cap F \in \mathcal{R} \text{ for all } F \in \mathcal{R}\}$. Since \mathcal{R} is nonempty, there exists $E \in \mathcal{R}$. Hence $\emptyset = E \setminus E \in \mathcal{R}$. Then it follows from the definition of \mathcal{M} that $\emptyset \in \mathcal{M}$. In particular, \mathcal{M} is nonempty. To see that \mathcal{M} is closed under complements, suppose $E \in \mathcal{M}$. Let $F \in \mathcal{R}$. Then $E^c \cap F = F \setminus E \in \mathcal{R}$. Hence, $E^c \in \mathcal{M}$. For closure under countable unions, let $(E_n) \subset \mathcal{M}$. Let $F \in mathcal R$. Then $\bigcup_n (E_n) \cap F = \bigcup_n (E_n \cap F) \in \mathcal{R}$. Hence, $\bigcup_n E_n \in \mathcal{M}$. \square

3 Problem 5/Page 24. $\mathcal{M}(\mathcal{E})$ is the union of the σ -algebras generated by \mathcal{F} as \mathcal{F} ranges over all countable subsets of \mathcal{E} .

Proof. Let

$$\mathcal{H} = {\mathcal{M}(\mathcal{F}) : \mathcal{F} \subset \mathcal{E} \text{ and } \mathcal{F} \text{ is countable}},$$

and $\mathcal{U} = \bigcup \mathcal{H}$.

Let $\mathcal{F} \subset \mathcal{E}$ be countable. Then $\mathcal{M}(\mathcal{F}) \subset \mathcal{M}(\mathcal{E})$). Hence, $\mathcal{U} \subset \mathcal{M}(\mathcal{E})$). For the reverse inclusion, it suffices to show that \mathcal{U} is a σ -algebra, for then \mathcal{U} is a σ -algebra containing (\mathcal{E}) , hence containing $\mathcal{M}(\mathcal{E})$.

To see that \mathcal{U} is a σ -algebra, first note that $(\emptyset) \in \mathcal{H}$, so \mathcal{U} is nonempty. To see that \mathcal{U} is closed under taking complements, let $E \in \mathcal{U}$. Then $E \in \mathcal{M}(\mathcal{F})$ for some countable $\mathcal{F} \subset \mathcal{E}$, so $E^c \in \mathcal{M}(\mathcal{F}) \subset \mathcal{U}$.

For closure under countable union, let $(U_n) \subset \mathcal{U}$. Then each $U_n \in \mathcal{M}(\mathcal{F}_n)$ for some countable $\mathcal{F}_n \subset \mathcal{E}$. Let $(F_{nm})_m$ be an enumeration of \mathcal{F}_n , and Then $U_n =$

4 Show that every σ -algebra has either finite or uncountable many elements.

Proof. Suppose that $\mathcal{M} \subset \mathcal{P}(X)$ is an infinite σ -algebra.

Case 1: suppose that every linearly inclusion-ordered subsets of \mathcal{M} is finite. Let $L_1 \subset \mathcal{M}$ be a maximal chain. It is easy to see that card $L_1 \geq 2$.

Inductively assume we are given disjoint finite chains $\mathcal{L}_1, \dots \mathcal{L}_n \subset \mathcal{M}$ with $\operatorname{card}(\mathcal{L}_i) \geq 2$ for all i. Let $\mathcal{N} = \mathcal{M} \setminus \bigcup_i \mathcal{L}_i$. Let $E \in \mathcal{M} \setminus$

Let $\mathcal{M}_1 = \mathcal{M} \setminus \{X\}$ and $E_1 = X$. Inductively, assume we have an infinite set $\mathcal{M}_n \subset \mathcal{M}$ and a sequence of disjoint sets $(E_k)_{k=1}^n \subset X$. Pick a chain $\mathcal{L}_n \subset \mathcal{M}_n$ that is maximal among chains in \mathcal{M}_n . Let L_n be the maximal element of \mathcal{L}_n . Since \mathcal{M}_n is infinite, there exists $E_n \in \mathcal{M}_n \setminus (\mathcal{L}_n \cup \{\emptyset, X\})$.

Since L is maximal in \mathcal{L}_n , $E \cup L = X$. Hence, $E^c \subset L^c$. Hence, the set $\mathcal{M}_2 := \{M \in \mathcal{M} \setminus \{\emptyset\} : M \cap L^c = \emptyset\}$ is nonempty. Let \mathcal{L}_2 be maximal chain in \mathcal{M}_2 . The cardinality of \mathcal{L}_2 must be finite, for otherwise L_2 could be extended to a maximal linearly ordered subset of \mathcal{M} , contradicting the construction of \mathcal{L} .

Let L_2 be the maximal element of \mathcal{L} . Since \mathcal{M} is infinite, there exists $E_2 \in \mathcal{M} \setminus (\mathcal{L} \cup \mathcal{L}_2 \cup \{\emptyset, X\})$. Since L_2 is maximal in \mathcal{L}_2 , $E_2 \cap$

For each
$$n$$
, let $F_n = E_n \setminus \left(\bigcup_{k=1}^{n-1} E_k\right)$.

5 Let $(\Omega_i, \mathcal{M}_i)$ be measure spaces for $j \in [n]$. Show that

$$\mathcal{E} = \left\{ \prod_{j=1}^{n} E_j : E_j \in \mathcal{M}_j \forall j \right\}$$

is an elementary system.

Proof. Since $\emptyset \in \mathcal{M}_j$ for all j, we have $\emptyset = \prod_{j=1}^n \emptyset \in \mathcal{E}$. Now suppose $E, F \in \mathcal{E}$. Then $E = \prod_j E_j$ and $F = \prod_j F_j$ for $E_j, F_j \in \mathcal{M}_j$ for all j. Hence $E \cap F = \prod_j (E_j \cap F_j) \in \mathcal{E}$. Lastly, we need to check that E^c is the finite union of disjoint elements of \mathcal{E} . Let

$$\mathcal{U} = \{ \prod U_j : U_j \in \{E_j, E_j^c\} \}$$

. Note that $\mathcal U$ is a partition of $\prod_j \Omega_j$, and $\mathcal U \subset \mathcal E$.. Hence $E^c = \bigcup (\mathcal U \setminus E)$ is a finite union of disjoint elements of $\mathcal E$.