EE230-02 RFIC II Fall 2018

Lecture 14: Oscillators 3

Prof. Sang-Soo Lee sang-soo.lee@sjsu.edu ENG-259

Midterm Exam

- Oct. 16, Tuesday 4:30 PM
- One-page Aid sheet on Front side only allowed
- Bring a copy of your Aid sheet
 - Write your name and submit it for extra 5 points
- Bring your Calculator

How Can a Circuit Present a Negative Input Resistance?

The negative resistance varies with frequency.

Connection of Lossy Inductor to Negative-Resistance Circuit

Connect an inductor to the negative-resistance port to create a resonant tank

$$R_S = \frac{g_m}{C_1 C_2 \omega^2}$$

$$\omega_{osc} = \frac{1}{\sqrt{L_1 \frac{C_1 C_2}{C_1 + C_2}}}$$

Tuned Oscillator

Negative-feedback oscillatory system using "LC-tuned" amplifier stages

Can this circuit oscillate if its input and output are shorted?

At very low frequencies, L_1 dominates the load and

$$\frac{V_{out}}{V_{in}} \approx -g_m L_1 s$$

 $|V_{out}/V_{in}|$ is very small and $\angle(V_{out}/V_{in})$ remains around -90°

At the resonance frequency

$$\frac{V_{out}}{V_{in}} = -g_m R_p$$

The phase shift from the input to the output is thus equal to -180°

At very high frequencies

$$\frac{V_{out}}{V_{in}} \approx -g_m \frac{1}{C_1 s}$$

|V_{out}/V_{in}| diminishes ∠(V_{out}/V_{in}) approaches -270°

Cascade of Two Tuned Amplifiers in Feedback Loop

A unique attribute of inductive loads

- Peak voltages above the supply
- The growth of V_X and V_Y ceases when M_1 and M_2 enter the triode region

Cross-Coupled Oscillator

Left circuit suffers from poorly-defined bias currents.

Middle circuit is more robust and can be viewed as an inductively-loaded differential pair with positive feedback.

$$V_{XY} pprox rac{4}{\pi} I_{SS} R_p$$

One-Port View of Cross-Coupled Oscillator

$$I_X = -g_{m1}V_1 = g_{m2}V_2$$

$$I_X = -g_{m1}V_1 = g_{m2}V_2$$
 \longrightarrow $\frac{V_X}{I_X} = -\left(\frac{1}{g_{m1}} + \frac{1}{g_{m2}}\right)$

For
$$g_{m1}$$
 = g_{m2} = g_m $\frac{V_X}{I_X} = -\frac{2}{g_m}$

For $g_{m1} = g_{m2} = g_m$ $\frac{V_X}{I_X} = -\frac{2}{g_m}$ For oscillation to occur, the negative resistance must cancel the loss of the tank:

$$\frac{2}{a_m} \leq 2R_p \quad \Longrightarrow \quad g_m R_p \geq 1$$

Voltage-Controlled Oscillators: Characteristic

$$\omega_{out} = K_{VCO} V_{cont} + \omega_0$$

- The frequency varies from ω_1 to ω_2 (the required tuning range) as the control voltage, V_{cont} , goes from V_1 to V_2
- The slope, K_{VCO}, is called the "gain" or "sensitivity" of the VCO and expressed in rad/s/V.

VCO Using MOS Varactors

- Since it is difficult to vary the inductance electronically, we vary the capacitance by means of a varactor.
- MOS varactors are more commonly used than pn junctions, especially in low-voltage design.

- First, the varactors are stressed for part of the period if V_{cont} is near ground and V_X (or V_Y) rises significantly above V_{DD} .
- \triangleright Second, only about half of C_{max} C_{min} is utilized in the tuning.

Varactors

Varactor is a voltage-dependent capacitor.

Two important attributes of varactor design become critical in oscillator design

- >The capacitance range i.e. ratio of maximum to minimum capacitance that varactor can provide.
- > The quality factor of the varactor.

MOS Varactors

Regular MOS device:

Variation of gate capacitance with Vgs

Accumulation Mode MOS Varactor

C/V characteristics of varactor

- Accumulation-mode MOS varactor is obtained by placing an NMOS inside an nwell.
- ➤ The variation of capacitance with Vgs is monotonic.
- >The C/V characteristics scale well with scaling in technology.
- ➤ Unlike PN junction varactor this structure can operate with positive and negative bias so as to provide maximum tuning range.

Accumulation Mode MOS Varactor Operation

- >Vg < Vs
- > Depletion region is formed under gate oxide.
- Equivalent capacitance is the series combination of gate capacitance and depletion capacitance.

- > Vg > Vs
- > Formation of channel under gate oxide.

Oscillator Using Symmetric Inductor

Symmetric spiral inductors excited by differential waveforms exhibit a higher Q than their single-ended counterparts.

What is the minimum required transconductance of M_1 and M_2 to guarantee start-up?

$$g_{m1,2} \ge (630 \,\Omega)^{-1}$$

Tuning Range Limitations

If $C_{var} \ll C_1$, then

$$\omega_{osc} pprox rac{1}{\sqrt{L_1 C_1}} \left(1 - rac{C_{var}}{2C_1}
ight)$$

If the varactor capacitance varies from C_{var1} to C_{var2} , then the tuning range is given by

$$\Delta\omega_{osc} pprox rac{1}{\sqrt{L_1C_1}} rac{C_{var2} - C_{var1}}{2C_1}$$

Another limitation on C_{var2} - C_{var1} arises from the available control voltage range of the oscillator, V_{cont}

Effect of Varactor Q: Tank Consisting of Lossy Inductor and Capacitor

A lossy inductor and a lossy capacitor form a parallel tank. Determine the overall **Q** in terms of the quality factor of each.

$$Q_L = \frac{R_{p1}}{L_1 \omega}$$

$$Q_C = R_{p2} C_1 \omega$$

Merging R_{p1} and R_{p2} yields the overall Q:

$$Q_{tot} = \frac{R_{p1}R_{p2}}{R_{p1} + R_{p2}} \cdot \frac{1}{L_{1}\omega}$$

$$= \frac{1}{\frac{L_{1}\omega}{R_{p1}} + \frac{L_{1}\omega}{R_{p2}}}$$

$$= \frac{1}{\frac{L_{1}\omega}{R_{p1}} + \frac{1}{R_{p2}C_{1}\omega}} \cdot \qquad \qquad \qquad \qquad \qquad \frac{1}{Q_{tot}} = \frac{1}{Q_{L}} + \frac{1}{Q_{C}}$$

$$\frac{1}{Q_{tot}} = \frac{1}{Q_L} + \frac{1}{Q_C}$$

LC VCOs with Wide Tuning Range: VCOs with Continuous Tuning

We seek oscillator topologies that allow both positive and negative (average) voltages across the varactors, utilizing almost the entire range from C_{min} to C_{max} .

$$V_{GS1,2} = \sqrt{\frac{I_{DD}}{\mu_n C_{ox}(W/L)}} + V_{TH}$$

Select the transistor dimensions such that the CM level is approximately equal to $V_{DD}/2$. As V_{cont} varies from 0 to V_{DD} ,

the gate-source voltage of the varactors, $V_{GS,var}$ goes from $+V_{DD}/2$ to $-V_{DD}/2$,

Discrete Tuning

In applications where a substantially wider tuning range is necessary, "discrete tuning" may be added to the VCO so as to achieve a capacitance range well beyond C_{max}/C_{min} of varactors.

$$\omega_{min} = \frac{1}{\sqrt{L_1(C_1 + C_{max} + nC_u)}}$$

$$\omega_{max} = \frac{1}{\sqrt{L_1(C_1 + C_{min})}}$$