Pr: Ayoub Aissaoui

Niveau: 3APIC

## **Exercice 1**

1. Calculer:

$$A=\sqrt{36}$$

$$=\sqrt{36}$$
 ;;  $B=(2\sqrt{2})$ 

;; 
$$B = (2\sqrt{2})^2$$
 ;;  $C = \sqrt{32} \times \sqrt{2}$ 

2. Simplifier les expressions suivantes :

$$E = \sqrt{8} - 4\sqrt{18} + 3\sqrt{32}$$
 ;;  $F = 2\sqrt{12} + 3\sqrt{27} - 6\sqrt{3}$ 

- 3. Éliminer le radical du dénominateur des fractions sui-  $\frac{1}{3}$ vantes:  $\frac{3}{\sqrt{11}}$  et  $\frac{7}{3-\sqrt{5}}$
- 4. Écrire sous forme d'une seule puissance avec a un réel non nul :  $\frac{a^3 \times a}{(a^5)^{-2}}$
- 5. Donner l'écriture scientifique :  $0,000004 \times 10^5 \times 200$
- 6. Développer et simplifier les expressions suivantes :

$$A = (x+5)^2$$

$$B = (2x+7)(2x-7)$$

7. Factoriser l'expression suivante :  $C = 4x^2 - 9$ 

## **Exercice 2**

- 1. (a) Comparer:  $3\sqrt{5}$  et  $2\sqrt{7}$ 
  - (b) Déduire la comparaison des nombres :

$$\frac{1}{3+3\sqrt{5}}$$
 et  $\frac{1}{3+2\sqrt{7}}$ 

2. Soient a et b deux nombres réels tel que :

$$3 < a < 8$$
 et  $-5 < b < -2$ .

Encadrer a + b,  $a^2$ , a - 3b et ab

3. Soit z un nombre réel tel que :  $-1 < \frac{-3z+1}{4} < 1$ 

Montrer que : 
$$-1 < z < \frac{5}{3}$$

## **Exercice 3**

Dans la figure ci-dessous : ABC un triangle tels que :AB = 6, AC = 7,5 et BC = 9 et E un point de [AB] tel que : AE = 2La parallèle à (BC) qui passe par E coupe AC en F.



- 1. Montrer que : AF = 2, 5 et EF = 3
- 2. Soit G un point de [BC] tel que BH=6.
  - (a) Comparer les deux rapports :  $\frac{BE}{BA}$  et  $\frac{BH}{BC}$
  - (b) Déduire que :  $(EH) \parallel (AC)$

## **Exercice 4**

Dans la figure ci-dessous : ABC un triangle tels que  $AC = \sqrt{3}$ ,  $AB = \sqrt{6} \text{ et } BC = 3$ 



- 1. Montrer que le triangle ABC est rectangle en A.
- 2. Calculer  $\cos(\widehat{A}B\widehat{C})$ ,  $\sin(\widehat{A}B\widehat{C})$  et  $\tan(\widehat{A}B\widehat{C})$
- 3. Soit H le projeté orthogonal de A sur (BC)
  - (a) En utilisant l'un des rapports trigonométriques, montrer que : $AH = \sqrt{2}$
  - (b) En utilisant le théorème de Pythagore, calculer
- 4. Soit x la mesure d'un angle aigu tel que :  $\cos(x) = \frac{\sqrt{3}}{2}$ Calculer sin(x) et tan(x)
- 5. Simplifier l'expression suivante :

$$F = 3\sin^2(25^\circ) - 3 + 3\sin^2(65^\circ)$$