

<u>Course</u> > <u>Final exam (1 week)</u> > <u>Final Exam</u> > Problem 4

Problem 4

4. (1)

3/3 points (graded)

Mark the following statements as true or false.

The EM algorithm monotonically increases the likelihood of the data with each iteration. In other words, the likelihood after iteration i+1 is greater than or equal to the likelihood after iteration i, for all i.

is greater than or equal to the likelihood after iteration i , for all i .
True
False
✓
Depending on the initialization, the likelihood of the data the algorithm converges to may be different.
True
False
✓
We are estimating a mixture model with K components. During random initialization, p_1 was assigned to be zero. p_1 could become non-zero as the algorithm iterates.
True

False

Solution:

The M-step chooses the parameter values that maximize the likelihood. Therefore, the previous iteration cannot have parameters of a greater likelihood than the current iteration.

The initial values provide a "starting point" for the algorithm, different initializations lead to different results.

The expected value after the E-step will be zero, therefore p_1 is recomputed in the M-step to be a sum of zeros.

Submit

You have used 1 of 3 attempts

• Answers are displayed within the problem

4. (2)

1/1 point (graded)

Consider a 1-dim Gaussian mixture model with two components. We set the mixture with $\mu_1=1$, $\mu_2=1$, $\sigma_1=0.5$, $\sigma_2=0.5$. The mixing proportions are set differently for the two components: $p_1=0.01$ and $p_2=0.99$. Is it the case that $\mu_1=\mu_2$ and $\sigma_1=\sigma_2$ after running the EM algorithm regardless of the data?

Will $p_1=0.01$ and $p_2=0.99$ also hold at convergence? (There is no answer box for this question.)

Solution:

Yes

Initially, it will be 99 times more likely that the points come from cluster 2 as opposed to cluster 1. However, the μ and σ that maximize the probability of the clusters generating the given points are the same.

$$p\left(cluster1|examplei
ight) = rac{0.01x}{0.01x + 0.99x} \ p\left(cluster2|examplei
ight) = rac{0.99x}{0.01x + 0.99x}$$
 Since all $p\left(cluster1|examplei
ight) * 0.99 = p\left(clusterz|examplei
ight)$ for all $i, p_1 * 99 = p_2$. This holds by induction.

Submit

You have used 2 of 3 attempts

1 Answers are displayed within the problem

Error and Bug Reports/Technical Issues

Show Discussion

Topic: Final exam (1 week):Final Exam / Problem 4