

EINFÜHRUNG IN DIE TECHNISCHE INFORMATIK

TUTORIUM 25.11.2016

BESPRECHUNG

Blatt 5

WIEDERHOLUNG

Vorlesung & Für Blatt 6

SCHALTWERKE VS SCHALTNETZE

- > Schaltnetze: Ausgabe hängt lediglich von den Werten der Eingangsvariablen zum gleichen Zeitpunkt ab
- ➤ Schaltwerke: Ausgabe hängt (unter Umständen) von vorherigen Werten ab. Bsp.: Zähler

WIEDERHOLUNG: AUTOMATEN

- ➤ Ein Automat ist ein spezieller Graph
- ➤ Ein endlicher Automat ist (in der ETI) definiert durch:

$$A = (X, Y, Z, \delta, \omega, z_0)$$

- ➤ Ein endliches Eingabealphabet
- ➤ Ein endliches Ausgabealphabet
- ➤ Eine endliche Zustandsmenge
- ➤ Einer Übergangsfunktion
- ➤ Einer Ausgabefunktion
- ➤ Einem Startzustand

BEISPIEL: ENDLICHER AUTOMAT

 $\begin{array}{c} a \\ \hline 1 \\ \hline b \\ \hline 2 \\ \hline a \\ \end{array}$

- > Startzustand: 1
- ➤ Beim lesen von a Wechsel in Zustand 3, beim lesen von b Wechsel in Zustand 2

WIEDERHOLUNG: AUTOMATENTYPEN

- ➤ Mealy-Automat: Ausgabewert hängt vom aktuellen Zustand und Eingangsbelegung ab
- ➤ Moore-Automat: Ausgabewert hängt nur vom aktuellen Zustand ab
- ➤ Medwedev-Automat: Ausgabewert ist direkt Zustand (Identitätsfunktion)

WIEDERHOLUNG: SCHALTWERKSSYNTHESE

- ➤ Festlegung der Eingangs- und Ausgangsvektoren sowie des Anfangszustandes
- ➤ Aufstellen eines ersten Zustandsgraphen
- ➤ Schrittweise Zustandsreduktion durch Zusammenfassen äquivalenter Zustände
- Ermittlung der erforderlichen Anzahl an Speichergliedern und Codierung der Zustände
- ➤ Aufstellen der Zustandsübergangstabelle
- ➤ Bestimmung der Übergangsfunktion
- Bestimmung der Ausgangsfunktion
- ➤ Minimierung & Darstellung des Schaltwerks in einem Schaltplan

- ➤ Ziel: Synchroner Zähler der die Folge 0 1 2 3 0 1 2 3 endlos wiederholt
- Eingangsvektor: Takt, sonst nichts nötig
- ➤ Ausgangsvektor: Binärcodiert die Zahlen 0-3 —> 2 Ausgänge nötig

- ➤ 4 Zustände: Daher 2 FlipFlops (JK)
- > Zustand 0: 00, Zustand 1: 01, Zustand 2: 10, Zustand 3: 11
- ➤ Zustandsübergangstabelle inklusive Ansteuerung für FlipFlops

#	Q_1	Q_0	Q_1+	Q_0+	J_0	$\mid K_0 \mid$	J_1	K_1
0	0	0	0	1	1	*	0	*
1	0	$\mid 1 \mid$	1	0	*	$egin{array}{c c} * \ 1 \ * \ \end{array}$	1	*
2	1	$\mid 0 \mid$	1	1	1	*	*	0
3	$ \mid 1 \mid$	$\mid 1 \mid$	0	0	*	$\mid 1 \mid$	*	$\mid 1 \mid$

Minimierung der Ansteuerungsfunktionen der JK-FF

$$JK_0$$
 Q_0
 Q_0
 Q_1
 Q_1
 Q_1
 Q_1
 Q_1
 Q_2
 Q_3
 Q_4
 Q_5
 Q_6
 Q_7
 Q_8
 Q_8

➤ Bestimmung der DMF: JK0: 1, JK1: Q_0

➤ Schaltplan (inklusive Hexadezimalanzeige):

ÜBUNGSAUFGABE

- ➤ Entwerfen Sie ein Schaltplan für eine synchrone Schaltung, die die Ziffernfolge 1 4 0 2 ausgibt
- ➤ Geben Sie dazu die Zustandsübergangstabelle, sowie die Ansteuerungsfunktionen an

ÜBUNGSAUFGABE - LÖSUNG

- ➤ Grundüberlegung: Nur Takt als Eingabe, da synchrone endlose Folge
- ➤ 4 Zustände —> 2 FlipFlops (JK) —> Ausgabe muss codiert werden: 0 -> 1, 1->4, 2->0, 3->2

ÜBUNGSAUFGABE - LÖSUNG

➤ Zustandsübergangstabelle:

#	Q_1	Q_0	Q_1+								
0	0	0	0	1	0	*	1	*	0	0	1
1	0	$\mid 1 \mid$	1	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	1	*	*	1	1	0	0
2	1	$\mid 0 \mid$	1		*	0	_	*	0	0	0
3	1	$\mid 1 \mid$	0	0	*	$\mid 1$	*	1	0	1	0

➤ Minimierung: (Y0 analog zu Y2 und Y1), DMF bilden wie immer

ÜBUNGSAUFGABE – LÖSUNG

