Spotify Recommender Sys

DS300.M11

Team 5
Dương Văn Bình
Hà Như Chiến

Instructors: Huỳnh Ngọc Tín Huỳnh Văn Tín

Content

- 1. Data
- 2. Methodology
- 3. Experiments and Results

Problem and methodology explanation

Recommend tracks based on users' historical listened tracks.

- 1. Content-based method
 - Track names -> similarity score -> recommendation
 - Acoustic features -> similarity score -> recommendation
- 2. Model-based method
 - Track names + artist names + acoustic features -> label prediction (like or dislike a non-listened track)

1. Data

- Collected from Spotify.
- Full dataset: 1781 rows (tracks)
- Users' dataset (3 users) (real users' listening tracks):
 - Content-based method -> <u>recommend songs by similarity score</u>:
 - user 1: 13 tracks
 - user 2: 32 tracks
 - user 3: 20 tracks
 - Model-based method -> <u>predict songs that user will whether like or not</u>:
 - user 1: 69 tracks 40 artists
 - user 2: 126 tracks 91 artists
 - user 3: 90 tracks 73 artists

Features

21 features

- Editorial features: date_added, artists, track_name, id, uri, track_href, analysis_url.
- Acoustic features: popularity, danceability, energy, key, loudness, mode, speechiness, acousticness, instrumentalness, liveness, valence, tempo, duration_ms, time_signature.

	date_added	artists	track_n	ame			id			uri				tra	ck_href		analysis_u	rl popularity
0	2021-05- 22T14:47:34Z	Pháo and KAIZ		Hon (AIZ emix	4SUk1Z	TtA6OC120	0afxrpRZ	spotify:trac	k:4SUk1ZTtA6O0	C120afxrpRZ	https://	api.spotify.co	m/v1/tracks	s/4SUk1ZT	tA6OC http	os://api.spot	ify.com/v1/aud analysis/4SUI	
1	2021-04- 30T05:59:48Z	Sơn Tùng M- TP	Muộn Mà		5fFLotK	S1286huYl	MQHqz7	spotify:trac	k:5fFLotKS1286h	uYIMQHqz7	https	://api.spotify.	com/v1/trac	ks/5fFLotK	S1286 htt	os://api.spot	ify.com/v1/aud analysis/5fFl	
2	2020-12- 21T06:08:18Z	Sơn Tùng M- TP	Chúng Của h		17iGUek	w5nFt5mlR	JcUm3R	spotify:track	::17iGUekw5nFt5i	mIRJcUm3R	https:	//api.spotify.c	com/v1/trac	ks/17iGUel	xw5nFt htt	os://api.spot	ify.com/v1/aud analysis/17iG	
3	2021-07- 17T01:33:53Z	Da LAB	Thức (Giấc	1MiJk3d	XC5jzhvLF	P0dUM7	spotify:trac	k:1MiJk3dXC5jzh	vLFP0dUM7	https	://api.spotify.	com/v1/trac	ks/1MiJk3d	XC5jz htt	os://api.spot	ify.com/v1/aud analysis/1Mi.	
4	2021-08- 20T21:07:31Z	W/N and Duongg and Nau and titie	310	073 1	EmMFSI	LRVkOszCa	a4ul9z0F	spotify:track	1EmMFSLRVkOs	szCa4ul9z0F	https://aj	pi.spotify.com	n/v1/tracks/	1EmMFSLI	RVkOs htt		ify.com/v1/aud analysis/1EmN	
		danceat	oility e	energy	key 1	loudness	mode s	peechiness	acousticness	instrumen	talness	liveness	valence	tempo	duration_m	s time_s	ignature	
			0.845	0.733	9	-4.581	1	0.0566	0.0265	C	0.010900	0.0630	0.280	128.016	18383	2	4	
			0.888	0.418	0	-9.812	1	0.0573	0.6650	C	0.000000	0.1110	0.531	127.073	27590	6	4	
			0.569	0.660	2	-5.268	1	0.0358	0.0675	C	0.000000	0.2020	0.497	155.907	30153	8	4	
			0.660	0.578	9	-8.591	1	0.0306	0.4500	(0.000089	0.1030	0.190	127.092	26902	1	4	
			0.663	0.344	0	-14.025	1	0.0495	0.9220	C	0.002980	0.0916	0.469	135.904	24000	0	4	

2. Methodology

- Content-based method
- Model-based method

Preprocessing -> track_name

- 1. Lowercase
- 2. Remove punctuation
- 3. Remove duplicate white space
- 4. Number to words
- 5. Normalize diacritics

Feature extraction

- 1. Morpheme-based vs Phrase-base tokenization
- 2. Padding (max length = 17)
- 3. Embedding vector: word2vecVN 400 dims

track name 2 Phút Hơn - KAI7 Remix Muôn Rồi Mà Sao Còn Chúng Ta Của Hiện Tai Thức Giấc 31073

Acoustic features: Popularity, Danceability, Energy, Key, Loudness,

Mode, Speechiness, Acousticness,

Instrumentalness, Liveness, Valence, Tempo,

Duration_ms, Time_signature

[47, 0.531, 0.65, 4, -7.764, 0, 0.0809, 0.923, 0.782, 0.151, 0.386, 137.853, 262164, 3]

Experiment on 3 types of vector

- Track name -> Morpheme-based tokenization -> ... -> similarity score -> recommendations
- Track name -> Phrase-based tokenization -> ... -> similarity score -> recommendations
- Acoustic features -> similarity score -> recommendations

Similarity metrics:

Pearson:

$$sim(A, B) = \cos \varphi = \frac{A \cdot B}{|A| \cdot |B|},$$

Cosine:

$$sim(A,B) = \frac{\sum_{i=1}^{N} (A_i - \bar{A})(B_i - \bar{B})}{\sqrt{\sum_{i=1}^{N} (A_i - \bar{A})^2} \sqrt{\sum_{i=1}^{N} (B_i - \bar{B})^2}},$$

Preprocessing

- Text Preprocessing for artists and track name features:
- 2. Vectorize artists and track name using word2vec:
- 3. Concatenate artists and track name vectors and other features:

Preprocessing

- 1. Text Preprocessing for artists and track_name features:
 - a. Remove punctuations
 - b. Tokenize word level using pyvi
 - c. Lowercase

```
'jaykii',
'thu_minh',
'sơn_tùng mtp',
'lam truong and minh_tuyết',
'bằng_kiều',
'vũ and kimmese',
'sơn_tùng mtp',
'đen',
'nguyễn_thẳng',
```

```
'chút nắng mùa_đông',
'nếu mình gần nhau',
'tình và đời',
'cho em một ngày',
'ai buồn giơ tay',
'duyên_phận',
'ghé thăm',
'tình như lá bay xa 2',
'một ngày_mùa đông',
'đi về nhà',
```

Preprocessing

2. Vectorize artists and track_name using Word2Vec:

Preprocessing

2. Vectorize artists and track name using word2vec:

Training word2vec model using gensim library:

- Input: artists or track_name
- Output: 1D vector (150,)

Preprocessing

2. Vectorize artists and track_name using word2vec:

Training word2vec model using gensim library:

```
# Lấy các từ có mối liên hệ gần nhất với 1 từ dựa trên khoảng cách model.most_similar('bằng_kiều')

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:2: Depr

[('biết', 0.40126025676727295),
    ('quên', 0.3944198489189148),
    ('xuân', 0.3931529223918915),
    ('remix', 0.3836166262626648),
    ('feat', 0.3824108839035034),
    ('1', 0.3732698857784271),
    ('6', 0.3725129961967468),
    ('lofi', 0.3669878840446472),
    ('một_mình', 0.3653390407562256),
    ('nếu', 0.3575843870639801)]
```

Preprocessing

3. Concatenate artists and track_name vectors and other features:

Models:

- 1. Logistic Regression
- 2. SVM
- 3. LightGBM
- 4. Boosting Decision Tree

Models:

1. Logistic Regression

Sử dụng hàm Sigmoid

$$f(x) = b0 + b1x,$$

$$y(f(x)) = \frac{1}{1 + e^{-f(x)}}$$

Models:

2. SVM

Sử dụng Decision Boundary -> Phân tách 2 miền dữ liệu.

Models:

3. LightGBM

LightGBM mở rộng cây quyết định theo hướng leaf-wise.

Models:

4. Boosting Decision Tree

- Sử dụng AdaBoostClassifier và DecisionTreeClassifier đến từ sklearn.
 - 1.Khởi tạo trọng số cho các điểm dữ liệu: weight = 1/(số điểm dữ liêu).
- 2. Xây dựng cây quyết định cho từng feature.
- 3.Tính mức độ quan trọng của các cây quyết định dựa trên kết quả phân loại.
- 4. Cập nhật trọng số ở bước 1(và chuẩn hóa trọng số).
- 5.Lặp lại các bước trên(số lần lặp = số estimators).
- 6.Sử dụng rừng cây quyết định với độ quan trọng của chúng để đưa ra dự đoán phân loại.

Evaluation:

Metrics

- Human evaluation
- Accuracy
- F1-score

Metrics

- Human evaluation

3. Experiments and Results

Content-based method

- Human evaluation rate:

	Morpheme-based tokenization	Phrase-based tokenization	Acoustic features
User 1	6/10	7/10	8/10
User 2	5/10	8/10	8/10
User 3	8/10	7/10	9/10

3. Experiments and Results

Model-based method

- Human evaluation rate:

	SVM	Logistic regression	Boosting decision tree	LightGBM
User 1	7/10	7/10	8/10	9/10
User 2	7/10	8/10	8/10	8/10
User 3	5/10	6/10	7/10	7/10

Evaluation: 10-folds training result

	_	istic ession	S\	/M	Light	GBM	Boosting Decision Tree		
	f1	acc	f1	acc	f1	acc	f1	acc	
User 1	0.66	0.82	0.09	0.68	1.0	1.0	0.95	0.97	
User 2	0.16	0.69	0.17	0.66	0.95	0.97	0.88	0.93	
User 3	0.12	0.65	0.00	0.69	0.32	0.74	0.27	0.6	

3. Recommendation Operation Interface:

Thank you