## Systems and Transforms with Applications in Optics

Athanasios Papoulis

Professor of Electrical Engineering Polytechnic Institute of Brooklyn

Table 1-1 Fourier transform theorems

| $f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{i\omega t} d\omega$ | $F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t} dt$               |
|---------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| f(at)                                                                           | $\frac{1}{ a } F\left(\frac{\omega}{a}\right)$                            |
| f*(t)                                                                           | $F^*(-\omega)$                                                            |
| $\overline{F(t)}$                                                               | $2\pi f(-\omega)$                                                         |
| $f(t-t_o)$                                                                      | $F(\omega)e^{-jt_0\omega}$                                                |
| $f(t)e^{i\omega_o t}$                                                           | $F(\omega - \omega_o)$                                                    |
| $f(t) \cos \omega_o t$                                                          | $\frac{1}{2}\left[F(\omega+\omega_o)+F(\omega-\omega_o)\right]$           |
| $f(t) \sin \omega_o t$                                                          | $\frac{j}{2}\left[F(\omega+\omega_o)-F(\omega-\omega_o)\right]$           |
| $rac{d^n f(t)}{dt^n}$                                                          | $(j\omega)^n F(\omega)$                                                   |
| $(-jt)^n f(t)$                                                                  | $\frac{d^n F(\omega)}{d\omega^n}$                                         |
| $m_n = \int_{-\infty}^{\infty} t^n f(t) dt$                                     | $F(\omega) = \sum_{n=0}^{\infty} \frac{m_n}{n!} (-j\omega)^n$             |
| $\int_{-\infty}^{\infty} f_1(\tau) f_2(t-\tau) d\tau$                           | $F_{1}(\omega)F_{2}(\omega)$                                              |
| $\int_{-\infty}^{\infty} f(t+\tau)f^*(\tau) d\tau$                              | $ F(\omega) ^2$                                                           |
| $\int_{-\infty}^{\infty}  f(t) ^2 dt = \frac{1}{2}$                             | $\frac{1}{2\pi}\int_{-\infty}^{\infty} F(\omega) ^2d\omega$               |
| $\frac{1}{f(t)+j\hat{f}(t)}$                                                    | $2F(\omega)U(\omega)$                                                     |
| $\hat{f}(t)$                                                                    | $-j \operatorname{sgn} \omega F(\omega)$                                  |
| $\sum_{n=-\infty}^{\infty} f(t+nT) = \frac{1}{T}$                               | $\sum_{n=-\infty}^{\infty} F\left(\frac{2\pi n}{T}\right) e^{j2\pi nt/T}$ |

Table 1-2 Examples of Fourier transforms

| $f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{j\omega t} d\omega$ | $F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t} dt$                                             |
|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                           | $ \begin{array}{c c} 2 \sin aw \\ \hline                                   $                            |
| -a 0 $a$ $t$                                                                    | $ \begin{array}{c c} a & 4 \sin^2(a\omega/2) \\ \hline a\omega^2 & \\ 0 & 2\pi/a & \omega \end{array} $ |
| $e^{-\alpha t }$ $0$ $t$                                                        | $\frac{2\alpha}{\alpha^2 + \omega^2}$                                                                   |
| $e^{-\alpha t^2}$                                                               | $ \sqrt{\frac{\pi}{a}} e^{-\omega^2/4a} $ $ \omega $                                                    |
| $\frac{1+\cos \omega_o t}{-\pi/\omega_o  0  \pi/\omega_o  t}$                   | 0 200                                                                                                   |
| $O \longrightarrow_{t}$                                                         | $\frac{2}{\sqrt{1-\omega^2}}$                                                                           |
| $\int_{0}^{J_{1}(t)} \frac{J_{1}(t)}{2t}$                                       | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                   |

Table 1-2 Examples of Fourier transforms (continued)

| $f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{j\omega t} d\omega$ | $F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-i\omega t} dt$                                                                                                                                                                                                                    |
|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $e^{-\alpha t}U(t)$                                                             | $\frac{1}{lpha+j\omega}$                                                                                                                                                                                                                                                       |
| $rac{j}{\pi t}$                                                                | 1 sgn ω  1 O ω  -1                                                                                                                                                                                                                                                             |
| $t^{\alpha}U(t)$ $\alpha > -1$                                                  | $\frac{\Gamma(\alpha+1)}{ \omega ^{\alpha+1}} e^{\pm \frac{j\pi(\alpha+1)}{2}} - \text{if } \omega > 0 + \text{if } \omega < 0$                                                                                                                                                |
| $t^n e^{-\alpha t} U(t) \qquad \alpha > 0$                                      | $\frac{n!}{(\alpha+j\omega)^{n+1}}$                                                                                                                                                                                                                                            |
| $J_n(t)$                                                                        | $\begin{cases} \frac{2 \cos (n \arcsin \omega)}{\sqrt{1 - \omega^2}} & n \text{ even }  \omega  < 1\\ \frac{-2j \sin (n \arcsin \omega)}{\sqrt{1 - \omega^2}} & n \text{ odd }  \omega  < 1\\ 0 &  \omega  > 1 \end{cases}$                                                    |
| $\frac{J_n(t)}{t^n}$                                                            | $\begin{vmatrix} 2(1-\omega^2)^{n-\frac{1}{2}} \\ 1\cdot 3\cdot 5\cdot \cdot \cdot \cdot (2n-1) \\ 0 &  \omega  > 1 \end{vmatrix}$                                                                                                                                             |
| ejat²                                                                           | $\sqrt{\frac{\pi}{\alpha}} e^{j\pi/4} e^{-j\omega^2/4\alpha}$                                                                                                                                                                                                                  |
| $\cos \alpha t^2$                                                               | $\sqrt{rac{\pi}{lpha}}\cos\left(rac{\omega^2}{4lpha}-rac{\pi}{4} ight) \ -\sqrt{rac{\pi}{lpha}}\sin\left(rac{\omega^2}{4lpha}-rac{\pi}{4} ight)$                                                                                                                         |
| $\sin \alpha t^2$                                                               | $-\sqrt{\frac{\pi}{lpha}}\sin\left(rac{\omega^2}{4lpha}-rac{\pi}{4} ight)$                                                                                                                                                                                                   |
| $e^{i\alpha t^2}$ $0 < t < T$                                                   | $ \sqrt{\frac{\pi}{2\alpha}} e^{-j\omega^2/4\alpha} \left[ \mathbf{F} \left( \sqrt{\alpha} T - \frac{\omega}{2\sqrt{\alpha}} \right) + \mathbf{F} \left( \frac{\omega}{2\sqrt{\alpha}} \right) \right] $ $ + \mathbf{F} \left( \frac{\omega}{2\sqrt{\alpha}} \right) \right] $ |
| 0 otherwise                                                                     | $\mathbf{F}(x) = \sqrt{\frac{2}{\pi}} \int_0^x e^{iy^2} dy$                                                                                                                                                                                                                    |

Table 1-1 Transforms of singularity functions



Table 1-1 Hankel transform theorems

$$f(r) = \int_0^\infty w \bar{f}(w) J_o(rw) dw \stackrel{h}{\leftrightarrow} \bar{f}(w) = \int_0^\infty r f(r) J_o(wr) dr$$

$$f(\sqrt{x^2 + y^2}) \Leftrightarrow 2\pi \bar{f}(\sqrt{u^2 + v^2})$$

$$\bar{f}(r) \qquad \qquad f(w)$$

$$f(\alpha r) \qquad \qquad \frac{1}{\alpha^2} \bar{f}\left(\frac{w}{\alpha}\right)$$

$$f''(r) + \frac{1}{r} f'(r) \qquad \qquad -w^2 \bar{f}(w)$$

$$f_1(r) ** f_2(r) \qquad \qquad 2\pi \bar{f}_1(w) \bar{f}_2(w)$$

$$\int_0^\infty r |f(r)|^2 dr = \int_0^\infty w |\bar{f}(w)|^2 dw$$

$$m_n = \int_0^\infty r^n f(r) dr \qquad \qquad \bar{f}(w) = \sum_{n=0}^\infty \frac{(-1)^n m_{2n+1}}{(n!)^2 2^{2n}} w^{2n}$$

$$\int_{-\infty}^\infty f(\sqrt{x^2 + y^2}) dy \leftrightarrow 2\pi \bar{f}(u)$$

$$\int_0^\infty r f(r) e^{-i\omega r} dr = R_1(\omega) + j X_1(\omega)$$

$$\bar{f}(w) = \frac{2}{\pi} \int_0^{\pi/2} R_1(w \cos \theta) d\theta \qquad R_1(w) = w \int_0^{\pi/2} \bar{f}'(w \cos \theta) d\theta + \bar{f}(0)$$

Table 1-2 Examples of Hankel transforms

| $f(r) = \int_0^\infty w \bar{f}(w) J_o(rw) \ dw \stackrel{h}{\leftrightarrow} \bar{f}(w) = \int_0^\infty r f(r) J_o(wr) \ dr$ |                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| $\frac{1}{r}$                                                                                                                 | $\frac{1}{w}$                                                                                                         |
| $\delta(r-a)$                                                                                                                 | $aJ_o(aw)$                                                                                                            |
| $e^{-a\tau^2}$                                                                                                                | $\frac{1}{2a} e^{-w^2/4a}$                                                                                            |
| e jar²                                                                                                                        | $\frac{j}{2a} e^{-jw^2/4a}$                                                                                           |
| $e^{-ar}$                                                                                                                     | $\frac{a}{\sqrt{(a^2+w^2)^3}}$                                                                                        |
| $\frac{e^{-ar}}{r}$                                                                                                           | $\frac{1}{\sqrt{a^2+w^2}}$                                                                                            |
| $\frac{\sin ar}{r}$                                                                                                           | $\begin{cases} \frac{1}{\sqrt{w^2 - a^2}} & w > a \\ 0 & w < a \end{cases}$                                           |
| $\frac{{J}_n(r)}{r^n}$                                                                                                        | $\begin{cases} \frac{(1-w^2)^{n-1}}{2^{n-1}(n-1)!} & w < 1\\ 0 & w > 1 \end{cases}$                                   |
| $ \begin{array}{ccc} 1 & 0 < r < a \\ 0 & r > a \end{array} $                                                                 | $\frac{aJ_1(aw)}{w}$                                                                                                  |
| $ \begin{cases} J_o(br) & 0 < r < a \\ 0 & r > a \end{cases} $                                                                | $\frac{abJ_1(ab)J_o(aw) - awJ_o(ab)J_1(aw)}{b^2 - w^2}$                                                               |
| $J_{o}^{2}(ar)$                                                                                                               | $\begin{cases} \frac{2}{\pi w \sqrt{4a^2 - w^2}} & w < 2a \\ 0 & w > 2a \end{cases}$                                  |
| $rac{{J}_{o}(ar){J}_{1}(ar)}{r}$                                                                                             | $\begin{cases} \frac{1}{a\pi} \cos^{-1} \frac{w}{2a} & w < 2a \\ 0 & w > 2a \end{cases}$                              |
| $2\pi  \frac{J_1{}^2(ar)}{r^2}$                                                                                               | $\begin{cases} 2 \cos^{-1} \frac{w}{2a} - \frac{w}{a} \sqrt{1 - \frac{w^2}{4a^2}} & w < 2a \\ 0 & w > 2a \end{cases}$ |