AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

- 1.) (original) A polymer system comprising:
 - A.) an anionic polymer selected from the group consisting of
 - (i) anionic polymers comprising;
 - a.) a first moiety derived from monoethylenically unsaturated C₃C₈ monomers comprising at least one carboxylic acid group,
 salts of such monomers, and mixtures thereof; and
 - b.) a second moiety selected from the group consisting of:
 - moieties derived from modified unsaturated monomers having the formulae R - Y - L and R - Z wherein:
 - i.) R is selected from the group consisting of C(X)H=C(R¹)- wherein R¹ is H, or C₁-C₄ alkyl; and
 X is H, CO₂H, or CO₂R₂ wherein R₂ is hydrogen, alkali metals, alkaline earth metals, ammonium and amine bases, saturated C₁-C₂₀ alkyl, C₆-C₁₂ aryl, and C₇-C₂₀ alkylaryl;
 - ii.) Y is selected from the group consisting of -CH₂-, -CO₂-, -OCO-, and -CON(R^a)-, -CH₂OCO-;
 wherein R^a is H or C₁-C₄ alkyl;
 - iii.) L is selected from the group consisting of hydrogen, alkali metals, alkaline earth metals, ammonium and amine bases, saturated C₁-C₂₀ alkyl, C₆-C₁₂ aryl, and C₇-C₂₀ alkylaryl; and
 - iv.) Z is selected from the group consisting of C₆-C₁₂ aryl and C₇-C₁₂ arylalkyl; and
 - (2) moieties having the formula J-G-D wherein:

Page 2 of 10

- i.) J is selected from the group consisting of C(X)H=C(R₁)- wherein R₁ is H, or C₁-C₄ alkyl;
 X is H, CO₂H, or CO₂R₂ wherein R₂ is hydrogen, alkali metals, alkaline earth metals, ammonium and amine bases, saturated C₂-C₂₀ alkyl, C₆-C₁₂ aryl, C₇-C₂₀ alkylaryl;
- ii.) G is selected from the group consisting of C₁-C₄ alkyl, -O-, -CH₂O-, -CO₂-.
- iii.) D is selected from the group consisting of
 - -CH₂CH(OH)CH₂O(R³O)_dR₄;
 - -CH₂CH[O(R³O)_dR⁴]CH₂OH;
 - -CH₂CH(OH)CH₂NR⁵(R³O)_dR⁴;
 - -CH₂CH[NR⁵(R³O)_dR⁴]CH₂OH, and mixtures thereof; wherein

 R^3 is selected from the group consisting of ethylene, 1,2-propylene, 1,3-propylene, 1,2-butylene, 1,4-butylene, and mixtures thereof; R^4 is a capping unit selected from the group consisting of H, C_1 - C_4 alkyl, C_6 - C_{12} aryl and C_7 - C_{20} alkylaryl;

 R^5 is selected from the group consisting of H, C_1 - C_4 alkyl C_6 - C_{12} aryl and C_7 - C_{20} alkylaryl; and

subscript index d is an integer from 1 to 100.

(ii) graft co-polymers comprising a first moiety derived from monoethylenically unsaturated C₃-C₈ monomers comprising at least one carboxylic acid group, salts of such monomers, and mixtures thereof, said first moieties being grafted onto a C₁-C₄ carbon polyalkylene oxide,

and mixtures thereof; and

- B.) a modified polyamine polymer selected from the group consisting of
 - (i) modified polyamines having the formulae

$$V_{(n+1)}W_mY_nZ$$
 or $V_{(n-k+1)}W_mY_nY_kZ$
Page 3 of 10

wherein m is an integer from 0 to about 400; n is an integer from 0 to about 400; k is less than or equal to n wherein

a.) V units are terminal units having the formula:

b.) W units are backbone units having the formula:

c.) Y and Y' units are branching units having the formula:

d.) Z units are terminal units having the formula:

wherein:

R units are selected from the group consisting of C_2 - C_{12} alkylene, C_4 - C_{12} alkenylene, C_3 - C_{12} hydroxyalkylene, C_4 - C_{12} dihydroxy-alkylene, C_8 - C_{12} dialkylarylene, $-(R^1O)_xR^1$ -, $-(R^1O)_xR^5(OR^1)_x$ -, $-(CH_2CH(OR^2)CH_2O)_z$ - $-(R^1O)_yR^1(OCH_2CH(OR^2)CH_2)_w$ -, $-C(O)(R^4)_xC(O)$ -, $-CH_2CH(OR^2)CH_2$ -, and mixtures thereof; wherein

R¹ is C₂-C₃ alkylene and mixtures thereof;
R² is hydrogen, -(R¹O)_xB, and mixtures thereof;
wherein at least one B is selected from the group consisting of (CH₂)_q-SO₃M, -(CH₂)_pCO₂M, -(CH₂)_q(CHSO₃M)CH₂SO₃M, (CH₂)_q-(CHSO₂M)CH₂SO₃M, -(CH₂)_pPO₃M, -PO₃M, and
mixtures thereof, and any remaining B moieties are selected from
the group consisting of hydrogen, C₁-C₆ alkyl, -(CH₂)_q-SO₃M, (CH₂)_pCO₂M, -(CH₂)_q(CHSO₃M)CH₂SO₃M, -(CH₂)_q-

Page 4 of 10

(CHSO₂M)CH₂SO₃M, -(CH₂)_pPO₃M, -PO₃M, and mixtures thereof;

R⁴ is C₁-C₁₂ alkylene, C₄-C₁₂ alkenylene, C₈-C₁₂ arylalkylene, Č₆-C₁₀ arylene, and mixtures thereof;

R⁵ is C₁-C₁₂ alkylene, C₃-C₁₂ hydroxy-alkylene, C₄-C₁₂ dihydroxyalkylene, C₈-C₁₂ dialkylarylene, -C(O)-,
C(O)NHR⁶NHC(O)-, -R¹(OR¹)-, -C(O)(R⁴),C(O)-,
CH₂CH(OH)CH₂-, -CH₂CH(OH)CH₂O(R¹O)_yR¹
OCH₂CH(OH)CH₂-, and mixtures thereof;

R⁶ is C₂-C₁₂ alkylene or C₆-C₁₂ arylene;

X is a water soluble anion; provided at least one backbone nitrogen is quaternized or oxidized

E units are selected from the group consisting of hydrogen, C_1 - C_{22} alkely, C_3 - C_{22} alkely, C_7 - C_{22} arylalky, C_2 - C_{22} hydroxyalky, - $(CH_2)_pCO_2M$, - $(CH_2)_qSO_3M$, - $(CH_2)_qCO_2M$, - $(CH_2)_pPO_3M$, - $(R^1O)_xB$, - $C(O)R^3$, and mixtures thereof; provided that when any E unit of a nitrogen is a hydrogen, said nitrogen is not also an N-oxide;

R¹ is C₂-C₃ alkylene and mixtures thereof;
R³ is C₁-C₁₈ alkyl, C₇-C₁₂ arylalkyl, C₇-C₁₂ alkyl substituted aryl,
C₆-C₁₂ aryl, and mixtures thereof;
at least one B is selected from the group consisting of -(CH₂)_q-SO₃M, -(CH₂)_pCO₂M, -(CH₂)_q(CHSO₃M)CH₂SO₃M, -(CH₂)_q(CHSO₂M)CH₂SO₃M, -(CH₂)_pPO₃M, -PO₃M, and mixtures thereof, and any remaining B moieties are selected from the group consisting of hydrogen, C₁-C₆ alkyl, -(CH₂)_q-SO₃M, (CH₂)_pCO₂M, -(CH₂)_q(CHSO₃M)CH₂SO₃M, -(CH₂)_q(CHSO₂M)CH₂SO₃M, -(CH₂)_pPO₃M, -PO₃M, and mixtures thereof;

M is hydrogen or a water soluble cation in sufficient amount to satisfy charge balance; and wherein the values for the following indices are as follows: subscript index p is an integer from 1 to 6; subscript index q is an integer from 0 to 6; subscript index r has the value of 0 or 1; subscript index w has the value 0 or 1; subscript index x is an integer from 1 to 100; subscript index y is an integer from 0 to 100; and subscript index z has the value 0 or 1.

(ii) modified polyamines having formula (I):

Page 5 of 10

- a.) R is C₆-C₂₀ linear or branched alkylene, and mixtures thereof;
- b.) X is an anion present in sufficient amount to provide electronic neutrality;
- c.) n and subscript index n have equal values and are integers from 0 to
 4;
- d.) R1 is a capped polyalkyleneoxy unit having formula:

$$-(R^2O)_x-R^3$$

wherein R² is C₂-C₄ linear or branched alkylene, and mixtures thereof; subscript index x has a value from about 1 to about 50; at least one R³ moiety is an anionic capping unit, with the remaining R³ moieties being selected from the group comprising hydrogen, C₁-C₂₂ alkylenearyl, an anionic capping unit, a neutral capping unit, and mixtures thereof;

e.) at least one Q moiety, is a hydrophobic quaternizing unit selected from the group comprising C₇-C₃₀ substituted or unsubstituted alkylenearyl, and mixtures thereof, any remaining Q moieties are selected from the group comprising lone pairs of electrons on the unreacted nitrogens, hydrogen, C₁-C₃₀ substituted or unsubstituted linear or branched alkyl, or C₃-C₃₀ substituted or unsubstituted cycloalkyl, and mixtures thereof;

and mixtures thereof.

2.) (original) The polymer system of Claim 1 wherein said modified polyamine polymer is selected from the group consisting of polymers having the following formulae:

$$[CH_{2}CH_{2}O]_{15}H \quad [CH_{2}CH_{2}O]_{15}H \quad [CH_{2}CH_{2}O]_{15}H$$

$$| \qquad \qquad | \qquad \qquad | \qquad \qquad | \qquad \qquad |$$

$$| \qquad \qquad | \qquad \qquad | \qquad \qquad | \qquad \qquad |$$

$$| \qquad \qquad | \qquad \qquad | \qquad \qquad |$$

$$| \qquad |$$

$$| \qquad \qquad |$$

$$| \qquad$$

$$H(OCH_2CH_2O)_{20}SO_3^{\Theta} \qquad (CH_2CH_2O)_{20}H \qquad (CH_2CH_2O)_{20}H \\ + (OCH_2CH_2O)_{20} = N^+ \qquad N^+ (CH_2CH_2O)_{20}H \\ \times N^+ (CH_2CH_2O)_{20}H \\$$

$$[CH_{2}CH_{2}O]_{20}H$$

$$H[OCH_{2}CH_{2}]_{20}-N$$

$$[CH_{2}CH_{2}O]_{20}H$$

$$N-[CH_{2}CH_{2}O]_{20}H$$

$$H[OCH_{2}CH_{2}]_{20}$$

$$N-[CH_{2}CH_{2}O]_{20}H$$

$$H[OCH_{2}CH_{2}]_{20}$$

$$N-[CH_{2}CH_{2}O]_{20}H$$

$$H[OCH_{2}CH_{2}]_{20}$$

$$N-[CH_{2}CH_{2}O]_{20}H$$

$$H[OCH_{2}CH_{2}]_{20}$$

$$N-[CH_{2}CH_{2}O]_{20}H$$

$$H[OCH_{2}CH_{2}O]_{20}H$$

$$H[OCH_{2}CH_{2}O]_{20}H$$

Page 7 of 10

and mixtures thereof.

- 3.) (original) A cleaning composition comprising the polymer system of Claim 1
- 4.) (cancelled)