| T. Spaide, CY structures, Sphereal functors, & shifted symplectic structures 1/28/2017 W/L, Ketnerthon & P. Panditt<br>C.f., arXN:1701.07789                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Strictures on categories—  CY strictures  Motoration: $Y^d$ a smooth projective scheme, then $Porf(Y)$ has a sene fundor $S_Y = 200 \text{ Ky[d]}$ .  If $Y$ is (alchi-Yay then $S_Y \simeq [d]$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| More generally, let $y$ be a proper category.  Naive idea: $p(x) < y$ structure is an isomorphism $y = [d]$ . $y = [d]$ . $y = [d]$ .  (kindre only closed field)  with some non-degeneracy: for all $x, y \in ob y$ , the pairing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $Hom(x, Y) \otimes Hom(Y, x) \longrightarrow Hom(x, x) \longrightarrow HH.(y) \xrightarrow{\omega} k[-d]$ is non-degenerate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Def: A weak right CY structure on Y is an was above.  This is not sufficient for many applications, e.g., constructing TOFTs.  Def: A sight CY structure on Y is \widetilde{\pi}: HH(Y)_s, \rightarrow k[-d]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| such that the confusition HHa(y) -> HH.(y)s, \(\frac{1}{12}\) \(\kappa\) \(\lambda\) \(\lambda\) = HH.(y)s, \(\frac{1}{12}\) \(\kappa\) \(\kappa\) = \(\lambda\) \(\kappa\) = \(\lambda\) \(\kappa\) \ |
| Ex: 2) Y smooth proper CY, then perf (Y) has a CY structure.  a) [Ganatra]: Y compact symplectic manifold,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Filippet(Y) has a right. CY stricture.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Spherical Lindos:  Def: Say F: X-> y is a findor. Fix spherical if it has a right adjust F! and a left adjoint F* such that  Conelid > F!F) =: T is an equivalence, and  of: > F!FF* -> TF* is an equivalence.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Say y has a d-CY stricture, and F: # > y is spherical.  By general theory, F' = Sx F*Sy  12  2 blc y is CY-d.  TF * = Sx [d] F*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Fis ongetible with Cystocher of I iso T = Sze [-d] such that the glove                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |





| Thm: (Ponter-toën-Vaguie-Vezzozo): Say y has an n-shifted so                                                           | Inplectic Andre, and                                                  |
|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| X, >> Y have Lagrangian structures.                                                                                    |                                                                       |
| · ×2                                                                                                                   |                                                                       |
| Then, X x X 2 has an (n-2) shifted symplectic stud                                                                     |                                                                       |
| Ex: Let W be a closed oriented 3-manifold, and let $X$ splitting W into $W_+$ , $W$ with $\partial W_+ = \partial W_+$ | cW be a closed onesded 2-suffold, $L=X$ .                             |
| X is 9"2-Calebi-Yau" Cactually it's not, but I ansider                                                                 | of "overtohin stricter" on dened steels," reider is for a CY varety). |
| so Map (X, BG) has a O-shifted symple standar.                                                                         |                                                                       |
| And Maps (W±, BG) restrict Map (X, BG) have                                                                            | a Lag's stretue on them.                                              |
| " + # Loc (wx) x loc (x) " the Casson i                                                                                | mont of W.                                                            |
| Actually: take the algebraic intersection # of those; or instead, by PTVV: the product Localus x - Logalus has a       | (-1) -shifted syplectic strature                                      |
| Behrend 1 => ca take avirtual aunt of such things (using Behrend +                                                     | for + VFC)                                                            |
| Hope: we can attach sphane I fractors to gether in this way.                                                           | togetoply- whose toply-                                               |
| Rober II X has a (-1) shifted strature, then streets there is a qu                                                     | x51-150.   X -> [-1]                                                  |
| Parter:  ("quantize in direction of -1 strate, get a short of  Behrend function.").                                    | (should then give a symptotic obstruction flowery)                    |
| Of ("quartize is direction of -1 strate, get a short of                                                                | coplexes on interection; taken & get                                  |
| Behrend function".).                                                                                                   |                                                                       |
|                                                                                                                        |                                                                       |
|                                                                                                                        |                                                                       |
|                                                                                                                        |                                                                       |
|                                                                                                                        |                                                                       |