Нейросети для работы с последовательностями Ph@DS

1. Постановка задачи

Пусть имеется некоторая последовательность векторов x_1, x_2, \dots, x_t .

Задача: По входной посл-ти получить некоторый вектор, содержащий информацию о подаваемой последовательности.

Bход: x_1, x_2, \ldots, x_t , где x_i — вектор размера d'.

Bыход: вектор e размера d.

Вектор e кодирует информацию об $x_1, x_2, ..., x_t$.

d —гиперпараметр.

Conv1d

На вход приходит некоторая посл-ть из векторов $\{x_1, x_2, \dots, x_t\}$.

Каждый объект представляется вектором его признаков. Запишем объекты в матрицу X размера (t,d'),

где X_i — i -ая строка матрицы X.

В отличие от картинок в матрице X соседние по горизонтали числа не упорядочены, однако соседние по вертикали — упорядочены.

Например:

• У временных рядов есть упорядоченность по времени, но нет упорядоченности внутри признаков одного элемента ряда.

Поэтому для X не совсем правильно делать 2D-Conv. Для таких X применяется 1D свёртка.

1D-Conv очень похож на 2D-Conv, но фильтр двигается теперь только по одной размерности.

1D-Conv очень похож на 2D-Conv, но фильтр двигается теперь только по одной размерности.

Фильтр применяется к $[X_1, X_2]$, считается скалярное произведение фильтра и подматрицы X.

1D-Conv очень похож на 2D-Conv, но фильтр двигается теперь только по одной размерности.

Фильтр применяется к $[X_2, X_3]$.

1D-Conv очень похож на 2D-Conv, но фильтр двигается теперь только по одной размерности.

Фильтр применяется к $[X_3, X_4]$.

1D-Conv очень похож на 2D-Conv, но фильтр двигается теперь только по одной размерности.

Фильтр применяется к $[X_4, X_5]$. В итоге получаем вектор.

Пусть вход — матрица X размера $t \times d'$.

В случае временных рядов t — кол-во элементов в последовательности, d' — размер вектора.

Тогда фильтр F имеет размер $K \times d'$, где K — гиперпараметр.

K обычно равен 3, 4, 5.

Алгоритм 1D свёртки:

- Фильтр скользит по первой размерности входа.
- Считается скалярное произведение текущей части и фильтра.
- Полученное значение записывается в одну ячейку выхода.

Выход — вектор размерности t-K+1

Формула 1D-свёртки:
$$(A*F)_i = \sum\limits_{j=1}^K \sum\limits_{r=1}^M F_{jr} \cdot A_{i+j-1,r} + b$$

Мотивация:

Как и для картинок смотрим на набор соседних элементов и пытаемся найти в них паттерны.

Для временных рядов это объекты из окрестности момента времени t.

2. Много фильтров

Как и для 2D свёртки, применяем несколько фильтров одного размера.

Карта — матрица из векторов, полученных от разных фильтров. Полученная матрица обладает тем же свойством.

У нее одна ось имеет порядок, другая - нет К такой матрице можно и далее применить 1D свёртку.

2. Фильтры разных размеров

Можем применять свёртки разных размеров.

Обычно это делается так:

Для каждого размера фильтра:

- 1. Применяется свёртка
- с фильтром этого размера.
- 2. К полученной карте применяется pooling.

Получается вектор длины равной кол-ву фильтров

в свёртке.

3. Все такие векторы мисh от свёрток разного размера конкатенируются или складываются.

2. Используемые техники

Аналогично 2D-Conv, применяются:

- Padding
- Stride
- Свёртка с K=1.

Аналог 2D свёртки 1x1.

• Все остальное, что применяется для Conv 2D.

1D-Pooling скользит окном размера (1, k) по карте и считает максимум. k — гиперпараметр.

Интерпретация:

1D-Pooling скользит окном размера (1,k) по карте и считает максимум. k — гиперпараметр.

Интерпретация:

1D-Pooling скользит окном размера (1, k) по карте и считает максимум. k — гиперпараметр.

Интерпретация:

1D-Pooling скользит окном размера (1, k) по карте и считает максимум. k — гиперпараметр.

Интерпретация:

1D-Pooling скользит окном размера (1, k) по карте и считает максимум. k — гиперпараметр.

Интерпретация:

1D-Pooling скользит окном размера (1, k) по карте и считает максимум. k — гиперпараметр.

Интерпретация:

2. 1D-GlobalPooling layer

1D-GlobalPooling считает максимум (сумму, среднее) по размерности последовательности.

2. 1D-GlobalPooling layer

1D-GlobalPooling считает максимум (сумму, среднее) по размерности последовательности.

2. 1D-GlobalPooling layer

1D-GlobalPooling считает максимум (сумму, среднее) по размерности последовательности.

2. Итоги

Плюсы:

2. Итоги

Плюсы:

- о Позволяет кодировать информацию о последовательности
- о Поиск паттернов в последовательности

Минусы:

2. Итоги

Плюсы:

- о Позволяет кодировать информацию о последовательности
- Поиск паттернов в последовательности

Минусы:

- о Ограниченность контекста
- \circ Количество параметров: d(d'K+1) линейно растет с увеличением размера окна

Хотелось бы научиться кодировать последовательности неограниченной длины

Recurrent Neural Networks

RNN

1. Vanila RNN

2. LSTM

3. GRU

4. Bi-RNN и Deep RNN

Пусть имеется некоторая последовательность.

Например, последовательность из эмбеддингов слов. Задача: По входной посл-ти получить некоторый вектор, содержащий информацию о подаваемой последовательности.

Bход: x_1, x_2, \dots, x_t , где x_i — вектор размера d'.

Bыход: вектор e размера d.

Вектор e кодирует информацию об x_1, x_2, \ldots, x_t .

d —гиперпараметр.

Recurrent Neural Network — слой, умеющий обрабатывать последовательности.

Здесь x_t — входной элемент во время t. h_t — скрытое состояние во время t. W_h, W_x — обучаемые веса (матрицы).

$$h_t = \tanh(h_{t-1}W_h + x_t W_x)$$

Recurrent Neural Network — слой, умеющий обрабатывать последовательности.

Здесь x_t — входной элемент во время t. h_t — скрытое состояние во время t. W_h, W_x — обучаемые веса (матрицы).

 $h_t = \tanh(h_{t-1}W_h + x_t W_x)$

RNN на шаге t

- Хранит скрытое состояние h_{t-1} с предыдущего шага
- Получает на вход новый элемент x_t
- Обновляет скрытое состояние, получая h_t некоторое знание обо всех уже считанных элементах посл-ти. Используя это знание можно делать предсказания.

Recurrent Neural Network — слой, умеющий обрабатывать последовательности.

Здесь x_t — входной элемент во время t. h_t — скрытое состояние во время t. W_h, W_x — обучаемые веса (матрицы).

 $h_t = \tanh(h_{t-1}W_h + x_t W_x)$

RNN на шаге t

- Хранит скрытое состояние h_{t-1} с предыдущего шага
- Получает на вход новый элемент x_t
- Обновляет скрытое состояние, получая h_t некоторое знание обо всех уже считанных элементах посл-ти. Используя это знание можно делать предсказания.

Важно: Веса W_h , W_x одни и те же для всех ячеек.

Посмотрим на одну ячейку RNN более детально.

$$h_t = \tanh(h_{t-1}W_h + x_t W_x)$$

Ячейка применяется к первому элементу входной посл-ти. Получаем новое скрытое состояние системы.

Далее ячейка применяется к новому элементу посл-ти. Получается следующее скрытое состояние.

Далее ячейка применяется к новому элементу посл-ти. Получается следующее скрытое состояние.

Как решать задачи с помощью RNN?

Как решать задачи с помощью RNN?

1. Предсказать таргет последовательности из последнего состояния. Например, предсказание следующего элемента последовательности.

Рассмотрим последнее состояние h_t , полученное после обработки последнего x_t .

 h_t хранит информацию о всей посл-ти \Rightarrow по h_t можно предсказать таргет всей пос-ти.

Как решать задачи с помощью RNN?

1. Предсказать таргет последовательности из последнего состояния. Например, предсказание следующего элемента последовательности.

Рассмотрим последнее состояние h_t , полученное после обработки последнего x_t . h_t хранит информацию о всей посл-ти \Rightarrow по h_t можно предсказать таргет всей пос-ти.

2. Сделать предсказание для каждого элемента последовательности.

Например, задача part-of-speech tagging.

Рассмотрим все скрытые состояния, полученные на разных этапах.

Каждое h_t хранит информацию о x_1, x_2, \dots, x_t .

Из состояния h_t можно сделать предсказание для x_t или посл-ти x_1, x_2, \ldots, x_t .

Как решать задачи с помощью RNN?

1. Предсказать таргет последовательности из последнего состояния. Например, предсказание следующего элемента последовательности.

Рассмотрим последнее состояние h_t , полученное после обработки последнего x_t . h_t хранит информацию о всей посл-ти \Rightarrow по h_t можно предсказать таргет всей пос-ти.

2. Сделать предсказание для каждого элемента последовательности.

Например, задача part-of-speech tagging.

Рассмотрим все скрытые состояния, полученные на разных этапах.

Каждое h_t хранит информацию о x_1, x_2, \dots, x_t .

Из состояния h_t можно сделать предсказание для x_t или посл-ти x_1, x_2, \ldots, x_t .

3. Предсказать таргет последовательности по всей посл-ти состояний.

Решаемые задачи аналогичны пункту 1.

Рассмотрим все скрытые состояния, полученные на разных этапах.

К посл-ти состояний применяется некоторая функция, например усреднение.

Из полученного можно предсказать таргет для всей посл-ти.

Как обучать?

$$h_t = \tanh(h_{t-1}W_h + x_t W_x)$$

Как обучать?

$$h_t = \tanh(h_{t-1}W_h + x_t W_x)$$

Посчитаем производные:

Как обучать?

$$h_t = \tanh(h_{t-1}W_h + x_t W_x)$$

Посчитаем производные:

$$\frac{\partial h_t}{\partial W_h} = \sum_{k=0}^t \frac{\partial h_t}{\partial h_k} \cdot \frac{\partial h_k}{\partial W_h} |_{h_{k-1}isconst}$$

Здесь $\frac{\partial h_k}{\partial W_h}|_{h_{k-1}isconst}$ — градиент посчитанный, считая, что h_{k-1} не зависит от W_h .

Как обучать?

$$h_t = \tanh(h_{t-1}W_h + x_t W_x)$$

Посчитаем производные:

$$\frac{\partial h_t}{\partial W_h} = \sum_{k=0}^t \frac{\partial h_t}{\partial h_k} \cdot \frac{\partial h_k}{\partial W_h} |_{h_{k-1}isconst}$$

$$\frac{\partial h_t}{\partial h_k} = \prod_{i=k+1}^{t} \frac{\partial h_i}{\partial h_{i-1}}$$

Здесь $\frac{\partial h_k}{\partial W_h}|_{h_{k-1}isconst}$ — градиент посчитанный, считая, что h_{k-1} не зависит от W_h .

Как обучать?

$$h_t = \tanh(h_{t-1}W_h + x_t W_x)$$

Посчитаем производные:

$$\frac{\partial h_t}{\partial W_h} = \sum_{k=0}^t \frac{\partial h_t}{\partial h_k} \cdot \frac{\partial h_k}{\partial W_h} |_{h_{k-1}isconst}$$

Проблемы:

$$\frac{\partial h_t}{\partial h_k} = \prod_{i=k+1}^{t} \frac{\partial h_i}{\partial h_{i-1}}$$

Как обучать?

$$h_t = \tanh(h_{t-1}W_h + x_t W_x)$$

Посчитаем производные:

$$\frac{\partial h_t}{\partial W_h} = \sum_{k=0}^t \frac{\partial h_t}{\partial h_k} \cdot \frac{\partial h_k}{\partial W_h} |_{h_{k-1}isconst}$$

$$\frac{\partial h_t}{\partial h_k} = \prod_{i=k+1}^{t} \frac{\partial h_i}{\partial h_{i-1}}$$

Проблемы:

Как обучать?

$$h_t = \tanh(h_{t-1}W_h + x_t W_x)$$

Посчитаем производные:

$$\frac{\partial h_t}{\partial W_h} = \sum_{k=0}^t \frac{\partial h_t}{\partial h_k} \cdot \frac{\partial h_k}{\partial W_h} |_{h_{k-1}isconst}$$

$$\frac{\partial h_t}{\partial h_k} = \prod_{i=k+1}^{3} \frac{\partial h_i}{\partial h_{i-1}}$$

Проблемы:

$$\frac{\partial h_i}{\partial h_{i-1}} = tanh'(h_{i-1}W_h + x_iW_x) \cdot W_h \Rightarrow \frac{\partial h_t}{\partial h_k} = \prod_{i=k+1}^t tanh'(h_{i-1}W_h + x_iW_x) \cdot W_h^{t-k}$$

1. Затухание градиентов.

Если норма матрицы W_h меньше 1, то $\partial h_t / \partial h_k$ может затухнуть. Тогда градиенты не будут доходить до далеких входных элементов.

2. Взрыв градиентов.

Если норма матрицы W_h больше 1, то $\partial h_t / \partial h_k$ может улететь в бесконечность.

Тогда после этого и веса улетят в бесконечность.

Последствия

1. Затухание градиентов.

Сеть не будет улавливать дальние зависимости между элементами посл-ти. Так как градиент $\partial h_t / \partial h_k$ маленький,

то он не вносит вклад в обновление весов модели.

В итоге сеть не сможет выучить, что нужно смотреть далеко назад.

Последствия

1. Затухание градиентов.

Сеть не будет улавливать дальние зависимости между элементами посл-ти. Так как градиент $\partial h_t / \partial h_k$ маленький,

то он не вносит вклад в обновление весов модели.

В итоге сеть не сможет выучить, что нужно смотреть далеко назад.

2. Взрыв градиентов. Сеть прекратит учиться.

Взрыв градиентов.

Решение:

Взрыв градиентов.

Решение: Gradient clipping

$$\parallel G \parallel > threshold \Rightarrow G = \frac{threshold \cdot G}{\parallel G \parallel}$$

threshold — гиперпараметр.

Уменьшаем threshold пока взрыв градиентов не прекратится.

Затухание градиентов: Идея

Как выглядела одна ячейка ранее?

Затухание градиентов: Идея Добавим skip-connection.

Тогда градиенты не будут затухать.

Затухание градиентов: Идея

Добавим skip-connection.

Тогда градиенты не будут затухать.

Однако такая сеть менее полезна.

Ранее сеть могла что-то занулить или прибавить много новой информации. Сейчас же такое сделать очень сложно.

Затухание градиентов: Идея Пусть *update* — преобразование, применяемое к предыдущему состоянию и текущему входу.

Затухание градиентов: Идея

Затухание градиентов: Идея

Затухание градиентов: Идея

Затухание градиентов: Идея

В *update* решаем, что добавить из новой информации.

В forget решаем, что забыть и что сохранить из предыдущего состояния.

RNN

1. Vanila RNN

2. LSTM

3. GRU

4. Bi-RNN и Deep RNN

Long Short Term Memory

LSTM имеет уже 2 скрытых состояния:

- cell state (приватное состояние)
- output state (публичное состояние)

Cell state — внутреннее состояние системы.

Output state — состояние, возвращаемое на выходе.

Long Short Term Memory

LSTM имеет уже 2 скрытых состояния:

- cell state (приватное состояние)
- output state (публичное состояние)

Cell state — внутреннее состояние системы.

Output state — состояние, возвращаемое на выходе.

LSTM содержит в себе 4 блока:

- Update
- Forget gate
- Input gate
- Output gate

Forget gate

Решаем какую информацию из предыдущего cell state \mathcal{C}_{t-1} удалить и какую сохранить.

 f_t — вектор-маска из чисел от 0 до 1.

 \mathcal{C}_{t-1} потом поэлементно домножается на вектор-маску.

Так оставляем только нужную информацию из \mathcal{C}_{t-1} .

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

Input gate + Update

Input gate решает какую новую информацию добавить от текущего элемента.

 i_t — вектор-маска из чисел от 0 до 1, показывает какую информацию взять. Update gate вычисляет новую информацию.

 \mathcal{C}_t — новая информация, полученная из h_{t-1} и x_t .

 \mathcal{C}_t поэлементно домножается на вектор-маску i_t и прибавляется к \mathcal{C}_{t-1} .

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

Обновляем cell state.

Фильтруем старое состояние \mathcal{C}_{t-1} и добавляем к нему новую информацию.

Фильтрация: C_{t-1} домножается на вектор-маску f_t .

Добавление информации: вектор новой информации \mathcal{C}_t домножается на вектор-маску i_t и прибавляется к \mathcal{C}_{t-1} .

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

Output gate

Output gate решает какую часть \mathcal{C}_t сделать публичным состоянием h_t и выдать наружу, а какую нет.

 o_t — вектор-маска из чисел от 0 до 1 для фильтрации \mathcal{C}_t . $\tanh(\mathcal{C}_t)$ домножается на вектор-маску o_t и полученное становится новым h_t .

То есть в качестве h_t берется некоторая часть \mathcal{C}_t .

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

Все формулы

$$f_{t} = \sigma (W_{f} \cdot [h_{t-1}, x_{t}] + b_{f})$$

$$i_{t} = \sigma (W_{i} \cdot [h_{t-1}, x_{t}] + b_{i})$$

$$o_{t} = \sigma (W_{o} [h_{t-1}, x_{t}] + b_{o})$$

$$\tilde{C}_{t} = \tanh(W_{C} \cdot [h_{t-1}, x_{t}] + b_{C})$$

$$C_{t} = f_{t} * C_{t-1} + i_{t} * \tilde{C}_{t}$$

$$h_{t} = o_{t} * \tanh(C_{t})$$

Все формулы

$$f_t = \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right)$$

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$o_t = \sigma \left(W_o \left[h_{t-1}, x_t \right] + b_o \right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

$$h_t = o_t * \tanh(C_t)$$

Original version:

$$i_t = \sigma\left(W_i \cdot [h_{t-1}, x_t] \ + \ b_i\right)$$

$$o_t = \sigma\left(W_o \ [h_{t-1}, x_t] \ + \ b_o\right)$$
 or
$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] \ + \ b_C)$$

$$C_t = C_{t-1} + i_t * \tilde{C}_t$$

$$h_t = o_t * \tanh\left(C_t\right)$$

В оригинальной версии не было forget gate f_t позволяющего удалить некоторую информацию из предыдущего cell state \mathcal{C}_{t-1} .

Почему это решает проблему затухания градиентов?

Vanilla RNN

$$\begin{split} h_t &= tanh(h_{t-1}W_h + x_tW_x).\\ \frac{\partial h_i}{\partial h_{i-1}} &= tanh'(h_{i-1}W_h + x_iW_x) \cdot W_h \Rightarrow \frac{\partial h_t}{\partial h_k} = \prod_{i=k+1}^t tanh'(h_{i-1}W_h + x_iW_x) \cdot W_h^t \end{split}$$

Из-за W_h^{t-k} градиент может занулиться.

<u>B LSTM</u>

$$C_t = f_t \cdot C_{t-1} + i_t \cdot C_t.$$

Градиент $\frac{\partial C_t}{\partial C_{t-1}} = f_t + C_{t-1} \frac{\partial f_t}{\partial C_{t-1}} + C_t \frac{\partial i_t}{\partial C_{t-1}} + i_t \frac{\partial C_t}{\partial C_{t-1}}.$

Градиент состоит из четырех слагаемых, поэтому он редко близок к 0.

Градиент будет доходить до ранних входов.

⇒ Модель сможет уловить длинные зависимости при обучении и при тестировании сможет обладать долгой памятью и смотреть далеко назад.

RNN

1. Vanila RNN

2. LSTM

3. GRU

4. Bi-RNN и Deep RNN

3. GRU

Gated Recurrent Unit

• Похожа на LSTM.

Тоже имеет структуру из gates.

- Содержит только одно скрытое состояние.
- Является более легковесной версией LSTM.

3. GRU

Gated Recurrent Unit

- Update gate z_t контролирует какие части h_{t-1} должны измениться.
- Reset gate r_t находит какие части h_{t-1} должны быть использованы для подсчета вектора новой информации
- Вектор новой информации h_t использует текущий вход x_t и часть h_{t-1} , выбранную с помощью reset gate, для подсчета новой информации.
- Обновление h_t происходит при помощи аддитивной операции, тем самым помогая справиться с проблемой затухающего градиента.

3. LSTM vs GRU

- GRU более вычислительно эффективна и имеет меньше параметров.
- Если в датасете много данных,

то LSTM обычно показывает чуть более хороший результат.

• Если в датасете мало данных,

то GRU обычно показывает чуть более хороший результат.

• Нельзя точно сказать, что даст лучший результат.

Сейчас существует и множество других аналогов RNN

RNN

- 1. Vanila RNN
 - 2. LSTM
 - 3. GRU
- 4. Bi-RNN и Deep RNN

4. Bi-RNN

Bidirectional RNN позволяют собрать информацию с обоих концов посл-ти. Будем проходиться RNN по последовательности с двух концов, а потом сконкатенируем результат.

 $[\overset{
ightarrow}{h_t},\overset{
ightarrow}{h_t}]$ содержит информацию как о элементах левее x_t , так и правее x_t .

4. Многослойная RNN

Для улучшения качества RNN можно стакать друг на друга. Состояния первой RNN подаются на вход второй. Состояния второй RNN подаются на вход третьей. И так далее.

Каждая RNN внутри может быть как однонаправленной, так и двунаправленной.

