Lecture 19: Parallel Gaussian Channels

- Parallel Gaussian channel
- Water-filling

Christmas gift shopping list

Item	Unit Price	Quantity	
	\$2	?	
	\$10	?	
	\$5	?	
	\$329	?	
		Budget: \$500	

Budget allocation problem

- ullet total budget: w, money allocated for nth item: w_n , unit price for nth item: p_n , can buy w_n/p_n items
- ullet Goal: buy as many gift as possible, but also want to diversify. Diminishing return on the number of items bought $\log(1+w_n/p_n)$
- budget allocation problem

$$\max_{w_n} \quad \sum_{n=1}^N \log(1+w_n/p_n)$$
 subject to
$$\sum_{n=1}^N w_n = W$$

$$w_n \geq 0$$

Optimal solution: water-filling

- $w_n = (\nu p_n)^+$, $(x)^+ = x$ if $x \ge 0$, 0 otherwise
- ν determined by budget constraint: $\sum_{n=1}^{N} (\nu p_n)^+ = w$

Parallel Gaussian channels

 Channel capacity of parallel Gaussian channel can be formulated into a similar problem

FIGURE 9.3. Parallel Gaussian channels.

Where are parallel channels?

everywhere:

- OFDM (orthogonal frequency-division multiplexing), parallel channels formed in frequency domain
- MIMO (multiple-input-multiple-output) multiple antenna system
- DSL (or discrete multi-tone systems)

Parallel independent channels

• k independent channels

•
$$Y_i = X_i + Z_i$$
, $i = 1, 2, ..., k$, $Z_i \sim \mathcal{N}(0, N_i)$

- total power constraint $E \sum_{i=1}^{k} X_i^2 \leq P$
- goal: distribute power among various channels to maximize the total capacity

Channel capacity

channel capacity of parallel Gaussian channel

$$C = \max_{f(x_1, \dots, x_k): \sum EX_i^2 \le P} I(X_1, \dots, X_k; Y_1, \dots, Y_k)$$
$$= \frac{1}{2} \log \left(1 + \frac{P_i}{N_i} \right)$$

power allocation problem

$$\max_{P_i} \quad \sum_{i=1}^k \log(1 + P_i/N_i)$$
 subject to $\sum_{i=1}^k P_i = P$ $P_i \geq 0$

Water-filling solution

Channels with colored Gaussian noise

- what if noise in different channels are correlated
- a model for channels with memory
- let K_z be noise covariance matrix
- let K_x be input covariance matrix
- power constraint: $\sum_i EX_i^2 \leq P$, equivalently $\operatorname{tr}(K_x) \leq P$

Channels capacity

channel capacity is proportional to

$$\frac{1}{2}\log[(2\pi e)^n|K_x + K_z|]$$

• input covariance optimization problem

$$\max_{K_x} \quad \frac{1}{2} \log[(2\pi e)^n |K_x + K_z|]$$
 subject to
$$\operatorname{tr}(K_x) = P$$

$$K_x \succeq 0$$

- \bullet solution: $K_x = U \Lambda U^\top$, where U = eigenvector of K_z , and $\Lambda =$ diagonal matrix
- $\lambda_i = (\nu \lambda_{z,i})^+$, $\lambda_{z,i}$: eigenvalues of K_z
- ν found from: $\sum_{i=1}^{k} (\nu \lambda_{z,i})^+ = P$

Continuous case

$$C = \int_{-\pi}^{\pi} \frac{1}{2} \log \left(1 + \frac{(\nu - N(f))^{+}}{N(f)} \right) df$$
, $\int (\nu - N(f))^{+} df = P$

Summary

Water filling:

- allocate power in parallel Gaussian channels
- optimal power allocation achieve power capacity
- allocate more power in less noisy channels
- very noisy channels are abandoned

