ALGORITMOS DE APRENDIZAJE DE MÁQUINA APLICADOS A LA GENERACIÓN DE MODELOS PREDICTIVOS

Ing. José Navas Sú Escuela de Ingeniería en Computación

Agenda

1. Investigación

1. Investigación

1.1 Definición del Problema

PROBLEMA

Ausencia de modelos prácticos y herramientas automatizadas que ayuden a identificar de manera oportuna estudiantes que podrían requerir intervención preventiva por parte del Tec.

TecDigital

1.2 Tesis

Título de la Tesis

Modelo Predictivo de Exito Académico Aplicando Algoritmos de Aprendizaje de Máquina sobre Interacciones en el TecDigital

1.3 Alcance

ALCANCE DE LA TESIS

- Conjunto de datos: interacciones e historial académico
- O Algoritmos considerados: NN, SVM y Linear Regression
- El modelo predictivo permitirá proyectar éxito académico

1.4 Modelo de Datos

Extracción y Preproceso de los Datos

- Extracción de interacciones e historial académico de estudiantes 2016
- Filtrado de interacciones y cursos:
 - No estudiantes
 - o Cursos no finalizados: retiros, congelamiento, incompletos
 - Cursos que no aplican:
 no activos, no semestrales, no bachillerato o licenciatura continua
 - Eliminación de casos extremos
- Consolidación y categorización de interacciones
 (File Storage 49 %, dotLRN 39 %, Evaluation 8 %)

1.4 Modelo de Datos

Cuadro: Categorías empleadas por el módulo TAM

Id	Categoría	Interacciones	%
7	Documentos	5,533,101	48.80
11	dotLRN (core)	4,383,740	38.70
5	Evaluaciones	904,938	7.99
8	Noticias	192,486	1.70
12	Foros	164,735	1.45
14	Tareas	74,071	0.65
16	Calendario	28,581	0.25
10	GAAP (Activ. Aprend.)	20,174	0.18
1	Cuestionarios	14,511	0.13
15	Adjuntos	4,695	0.04
4	Asistencia	2,259	0.02
6	Preguntas Frecuentes	1,533	0.01
3	Encuestas	1,442	0.01
17	Mensajería SMS	292	0.00
2	Chat	8	0.00
9	Redes Sociales	8	0.00
13	Gener. Diseño Instrucc.	6	0.00

1.4 Modelo de Datos

Conjunto de Datos

- 204 variables (12 semanas × 17 categorías): [0..5000]
- \bigcirc Variable respuesta: [o-Aprobó, 1-Reprobó] (68 % ~ 32 %)
- O Cantidad de muestras: 84,808 (11,326,580 interacciones)
- Modelos a ajustar: 10 (semanas [1,2,3] hasta [1,2,3,...,12])
- \bigcirc Normalización: $\frac{X-minX}{maxX-minX}$

1.5 Diseño y Comparación de Algoritmos

PLATAFORMA COMPUTACIONAL

- O Cluster Kabré del CeNAT, infraestructura HPC
- Cuenta con 2 tipos de colas y nodos:
 - o 5 Cadejos: Intel Xeon E5530/8cores/16thread/32GBram/2 Tesla-C1060
 - o 20 Zarate: Intel Xeon Phi/64cores/256thread/96GBram
 - o 4 Tule: Intel Xeon E3-1225/4cores/4thread/16GBram/1 Tesla-K40
- Sistema de colas Torque, calendarizador Maui
- Módulos instalados en el cluster utilizados:
 - R y biblioteca glmnet para Regresión Logística
 - o Python y libsvm escrita en C y Python para Máquinas de Soporte Vectorial
 - o Python, Keras y TensorFlow para Redes Neuronales

1.6 Ajuste y Validación de Modelos Predictivos

Cuadro: Ajuste de modelos Seleccionados con Redes Neuronales

Se *	Do *	Ni *	Ne *	Ep *	Bs *	Exactitud
3	0.150	12	550	800	256	0.683438853715
4	0.050	5	350	2500	128	0.682772409197
5	0.075	15	550	2500	128	0.681772742419
6	0.075	12	350	2000	512	0.695434855048
7	0.075	12	350	2200	512	0.747417527491
8	0.075	5	450	2500	256	0.771439520163
9	0.075	5	350	2200	256	0.758413862046
10	0.050	5	250	1600	128	0.754748417194
11	0.150	9	450	2500	512	0.762745751416
12	0.150	12	550	1600	512	0.783405531494

^{*} Se=Semana, Do=Dropout, Ni=Niveles Ocultos, Ne=Neuronas, Ep=Epocas, Bs=Tamaño de Batch

1.6 Ajuste y Validación de Modelos Predictivos

Cuadro: Calidad de Exactitud en Modelos Seleccionados

Semana	F_1 -Score	Precisión	Recuperación
3	0.022633744856	0.733333333333	0.011494252874
4	0.015117830146	1.000000000000	0.007616487455
5	0.021248339973	0.8888888889	0.010752688172
6	0.241322314052	0.577075098814	0.152560083595
7	0.579643473267	0.644501278772	0.526645768025
8	0.562060889935	0.639147802929	0.501567398119
9	0.744905855043	0.877811550152	0.646953405018
10	0.575575575576	0.552353506244	0.600835945664
11	0.632786885246	0.663230240557	0.605015673981
12	0.645948945616	0.688757396452	0.608150470219

1.6 Ajuste y Validación de Modelos Predictivos

MÉTRICA F_1 -SCORE

$$P = \frac{V^+}{V^+ + F^+}$$
, (precisión)

Fracción de estudiantes identificados correctamente como reprobados de todos los identificados como reprobados por el modelo.

$$R = \frac{V^+}{V^+ + F^-}$$
, (recuperación)

Fracción de estudiantes identificados correctamente como reprobados del total real de reprobados.

$$F_1 = \frac{2PR}{P+R}$$

Balance entre precisión y recuperación. Si la precisión, o la recuperación, o ambas, son muy bajas, F_1 será bajo. Se escoge los modelos con valores para F_1 mayores.

```
nn_keras.torque
    #PBS -N nn_keras
    ## merge standard error and output
    #PBS -i oe
    ## direct streams to our logfile
    #PBS -o nn_keras-$PBS_ARRAYID-$PBS_JOBID.log
   #PBS -q phi-n6h96
    #PBS -l nodes=1:ppn=32
    #PBS -1 walltime=96:00:00
10
    DIR=~/torque-scripts/keras/nn
11
12
13
    source ~/.bashrc
14
15
    cd $DIR
16
    module load intelpython/2.7
    python nn1.py $PBS_ARRAYID
20
```

```
data_path = '/home/jnavas/torque-scripts/keras/nn/data/'
idx = int(sys.argy[1])
dropout = dropouts[runs[idx][2]]
hidden_layers = layers[runs[idx][1]]
hidden_neurons = neurons[runs[idx][0]]
model = create_model(dropout, hidden_layers, hidden_neurons)
```

```
nn1.py
36
    dropouts
                [0.05,0.1,0.15]
    layers =
                [5,10,15,20]
    neurons
                [250,300,350,500]
    runs =
        [0,0,0],[0,0,1],[0,0,2],
        [0,1,0],[0,1,1],[0,1,2],
        [0,2,0],[0,2,1],[0,2,2],
44
        [0,3,0],[0,3,1],[0,3,2],
        [1,0,0],[1,0,1],[1,0,2],
        [1,1,0],[1,1,1],[1,1,2],
        [1,2,0],[1,2,1],[1,2,2],
        [1,3,0],[1,3,1],[1,3,2],
        [2,0,0],[2,0,1],[2,0,2],
        [2,1,0],[2,1,1],[2,1,2],
        [2,2,0],[2,2,1],[2,2,2],
        [2,3,0],[2,3,1],[2,3,2],
        [3,0,0],[3,0,1],[3,0,2],
54
        [3,1,0],[3,1,1],[3,1,2],
        [3,2,0],[3,2,1],[3,2,2],
        [3,3,0],[3,3,1],[3,3,2]
```

¡Muchas Gracias!