CS 446/ECE 449: Machine Learning

A. G. Schwing

University of Illinois at Urbana-Champaign, 2020

L27: Autoregressive Methods (RNNs/LSTMs/GRUs)

Goals of this lecture

- Getting to know Recurrent Neural Nets (RNNs)
- Getting to know Long short term memory (LSTM)
- Getting to know Gated recurrent unit (GRU)
- Getting to know Graph convolutional nets (GCNs)
- Seeing how to apply them

Reading Material

- Goodfellow et al.; Deep Learning; Chapter 10
- Papers cited on the slides

Pixel Recurrent Neural Networks

Recap: Our models so far

Discriminative

$$p(\mathbf{y}|x)$$

Generative

What's missing?

More flexibility regarding inputs and outputs:

- Sequences of inputs
- Sequences of outputs

Length of sequences may vary

one to one one to many many to one many to many many to many

Recurrent Neural Nets (RNNs)

input depends on previous output

$$h^{(t)} = f(h^{(t-1)}, x^{(t)}, \mathbf{w})$$

Applications:

- Natural language processing
- Speech recognition
- Image processing
- Video processing

Important concept: Parameter sharing

$$h^{(t)} = f(h^{(t-1)}, x^{(t)}, \mathbf{w})$$

 $y^{(t)} = g(h^{(t)})$

unfolded/unrolled network performs identical operations easier to understand

General structure for recurrence:

Mathematical description in general:

$$egin{array}{ll} h^{(t)} &= f(h^{(t-1)}, x^{(t)}, \, m{w}) \ y^{(t)} &= g(h^{(t)}) \end{array}$$

Note that *f* and *g* are independent of time

What are f and g?

Any differentiable function can be used

Useful functions:

- Original recurrent nets
- LSTM nets
- GRU nets

Original recurrent nets (Elman network):

(Jordan network is slightly different)

Generally:

Specifically:

$$h^{(t)} = f(h^{(t-1)}, x^{(t)}, \mathbf{w})$$

$$h^{(t)} = \sigma_h(W_{hx}x^{(t)} + W_{hh}h^{(t-1)} + W_{hb})$$

$$y^{(t)} = g(h^{(t)})$$

$$y^{(t)} = \sigma_y(W_{yh}h^{(t)} + W_{yb})$$

What is σ_h and σ_y ?

Activation functions: tanh, sigmoid

Affine transformations and point-wise non-linearity

What are the problems?

Problems with classical recurrent neural nets:

- Vanishing gradients
- Long term dependency

Long short term memory (LSTM)

- Particular functional relation
- Shown to better capture long-term dependencies
- Shown to address the vanishing gradient problem

Generally:

$$h^{(t)} = f(h^{(t-1)}, x^{(t)}, \mathbf{w})$$

 $y^{(t)} = g(h^{(t)})$

Specifically: (\circ denotes Hadamard product; σ is activation function)

$$i^{(t)} = \sigma_i(W_{ix}x^{(t)} + W_{ih}h^{(t-1)} + w_{bi})$$
 Input gate $f^{(t)} = \sigma_f(W_{fx}x^{(t)} + W_{fh}h^{(t-1)} + w_{bf})$ Forget gate $o^{(t)} = \sigma_o(W_{ox}x^{(t)} + W_{oh}h^{(t-1)} + w_{bo})$ Output/Exposure gate $\tilde{c}^{(t)} = \sigma_c(W_{cx}x^{(t)} + W_{ch}h^{(t-1)} + w_{bc})$ New memory cell $c^{(t)} = f^{(t)} \circ c^{(t-1)} + i^{(t)} \circ \tilde{c}^{(t)}$ Final memory cell $h^{(t)} = o^{(t)} \circ \sigma_h(c^{(t)})$

Equations:

$$\begin{array}{lll} i^{(t)} &=& \sigma_i(W_{ix}x^{(t)}+W_{ih}h^{(t-1)}+w_{bi}) & \text{Input gate} \\ f^{(t)} &=& \sigma_f(W_{fx}x^{(t)}+W_{fh}h^{(t-1)}+w_{bf}) & \text{Forget gate} \\ o^{(t)} &=& \sigma_o(W_{ox}x^{(t)}+W_{oh}h^{(t-1)}+w_{bo}) & \text{Output/Exposure gate} \\ \tilde{c}^{(t)} &=& \sigma_c(W_{cx}x^{(t)}+W_{ch}h^{(t-1)}+w_{bc}) & \text{New memory cell} \\ c^{(t)} &=& f^{(t)}\circ c^{(t-1)}+i^{(t)}\circ \tilde{c}^{(t)} & \text{Final memory cell} \\ h^{(t)} &=& o^{(t)}\circ \sigma_h(c^{(t)}) & \end{array}$$

Intuition:

- $i^{(t)}$: Does $x^{(t)}$ matter?
- $f^{(t)}$: Should $c^{(t-1)}$ be forgotten?
- $o^{(t)}$: How much $c^{(t)}$ should be exposed?

Equations:

$$i^{(t)} = \sigma_i(W_{ix}x^{(t)} + W_{ih}h^{(t-1)} + w_{bi})$$
 Input gate $f^{(t)} = \sigma_f(W_{fx}x^{(t)} + W_{fh}h^{(t-1)} + w_{bf})$ Forget gate $o^{(t)} = \sigma_o(W_{ox}x^{(t)} + W_{oh}h^{(t-1)} + w_{bo})$ Output/Exposure gate $\tilde{c}^{(t)} = \sigma_c(W_{cx}x^{(t)} + W_{ch}h^{(t-1)} + w_{bc})$ New memory cell $c^{(t)} = f^{(t)} \circ c^{(t-1)} + i^{(t)} \circ \tilde{c}^{(t)}$ Final memory cell $h^{(t)} = o^{(t)} \circ \sigma_h(c^{(t)})$

Input gate Forget gate New memory cell Final memory cell

Intuition:

Long short term memory (LSTM):

Can be interpreted as a block in a neural net

Gated recurrent unit (GRU):

- Performance similar to LSTM
- Fewer parameters compared to LSTM (no output gate)

Equations: (o denotes Hadamard product)

$$z^{(t)} = \sigma_z(W_{zx}x^{(t)} + W_{zh}h^{(t-1)} + w_{bz})$$
 Update gate $r^{(t)} = \sigma_r(W_{rx}x^{(t)} + W_{rh}h^{(t-1)} + w_{br})$ Reset gate $\tilde{h}^{(t)} = \sigma_h(W_{hx}x^{(t)} + W_{rwh}(r^{(t)} \circ h^{(t-1)}) + w_{bh})$ New memory cell $h^{(t)} = (1 - z^{(t)}) \circ \tilde{h}^{(t)} + z^{(t)} \circ h^{(t-1)}$ Hidden state

Can again be interpreted as a block in the computation graph

Equations: (o denotes Hadamard product)

$$z^{(t)} = \sigma_z(W_{zx}x^{(t)} + W_{zh}h^{(t-1)} + w_{bz})$$
 Update gate $r^{(t)} = \sigma_r(W_{rx}x^{(t)} + W_{rh}h^{(t-1)} + w_{br})$ Reset gate $\tilde{h}^{(t)} = \sigma_h(W_{hx}x^{(t)} + W_{rwh}(r^{(t)} \circ h^{(t-1)}) + w_{bh})$ New memory cell $h^{(t)} = (1 - z^{(t)}) \circ \tilde{h}^{(t)} + z^{(t)} \circ h^{(t-1)}$ Hidden state

Intuition:

- $r^{(t)}$: Include $h^{(t-1)}$ in new memory?
- $z^{(t)}$: How much $h^{(t-1)}$ in next state?

Recurrent nets generally:

Other variants:

- Bi-directional LSTMs [Schuster&Paliwal (1997), Graves&Schmidhuber (2005)]
- Continuous time RNNs

How do we learn the parameters in the network?

$$p(x_1,...,x_T) = \prod_{i=1}^T p(x_i|x_1,...x_{i-1})$$

Maximum likelihood specifies loss function

Training via gradient descent:

- How?
- What order?
- What information do we need to store?

Backpropagation through time (BPTT)

Pixel Recurrent Neural Networks

PixelRNN model (Autoregressive model):

Context

Multi-scale context

Generative models overview:

- Variational Auto-encoders (VAEs):
 - Pro: probabilistic graphical model interpretation
 - Con: slightly blurry examples
- Generative Adversarial Nets (GANs):
 - Pro: generate sharp images
 - Con: difficult to optimize (unstable)
- Autoregressive models (RNNs):
 - Pro: stable training & good likelihoods
 - Con: inefficient sampling & no low-dimensional codes

Very active research area

Graph Convolutional Neural Nets

Operation:

$$H^{(l+1)} = f(H^{(l)}, A)$$

- Representation: $H^{(l)}$; $H^{(0)} = X$
- Graph adjacency matrix: A
- Nonlinearity: $f(\cdot, \cdot)$

Graph Convolutional Neural Nets

Example:

$$H^{(l+1)} = \sigma(AH^{(l)}W^{(l)})$$

Note: more complex incarnations exist

Quiz:

- Describe the prediction process for an RNN?
- Describe the training process for RNNs?
- Contrast generative modeling techniques?
- Why graph convolutional nets?

Important topics of this lecture

- Getting to know RNNs and its variants
- Getting to know their use
- Contrasting RNNs to generative models
- Graph convolutional nets

Next up:

Reinforcement learning