Imperial College London

MATH 50006 Winter 2022

Department of Mathematics Lecturer: P.-F. Rodriguez

Tutorials Lead: Y. Shulzhenko

Assistants: R. Carini, J. McCarthy, S. Karwa, W. Turner

Exercise Sheet 7

1. Let $X = \{1, ..., N\}$ be a finite state space and consider the measure space (X, \mathcal{A}, m) , where $\mathcal{A} = 2^X$ is the discrete σ -algebra and $m = \sum_{i=1}^N \delta_i$ is the counting measure on (X, \mathcal{A}) .

- a) What can you say about the sigma-algebra $\mathcal{A} \otimes \mathcal{A}$ on $X \times X$? And about $m \otimes m$?
- b) Write down Fubini's Theorem for the specific case of a measurable function on the measure space $(X \times X, \mathcal{A} \otimes \mathcal{A}, m \otimes m)$.
- **2.** Consider the measure space $([0,1]^2, \mathcal{B}([0,1]^2), \lambda)$, where λ is the Lebesgue measure on $[0,1]^2$. Let $\alpha \in \mathbb{R}$. and, for all $(x,y) \in [0,1]^2$, let

$$f(x,y) = \begin{cases} \frac{1}{|x-y|^{\alpha}} & \text{if } x \neq y \\ 0 & \text{otherwise} \end{cases}$$

Compute $\int_{[0,1]\times[0,1]} f d\lambda$. For which values of α is f integrable?

3. Let $f(x,y)=e^{-xy}-2e^{-2xy}$, for $(x,y)\in [0,1]\times [1,+\infty)$. Show that the integrals $\int_{[0,1]}\int_{[1,+\infty)}f(x,y)\,d\lambda(y)\,d\lambda(x)$ and $\int_{[1,+\infty)}\int_{[0,1]}f(x,y)\,d\lambda(x)\,d\lambda(y)$ exist but do not coincide. Deduce therefrom that f is not integrable on $[0,1]\times [1,+\infty)$.

4. In the following let (X, A) be a fixed measurable space. Are the following statements true or false? Give a proof of provide a counter-example

- a) If μ and ν are two measures on (X, \mathcal{A}) such that $\mu \leq C\nu$ for some C > 0, then $\mu \ll \nu$. How about the converse?
- b) If μ and ν are two measures on (X, \mathcal{A}) , there always exists a measure ξ such that $\mu \ll \xi$ and $\nu \ll \xi$.
- c) If m is the counting measure on X, then every measure μ on (X, A) is absolutely continuous with respect to m.
- d) On $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, the measure $\mathbf{1}_{[0,1]}\lambda$ is absolutely continuous with respect to λ .
- e) On $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, the measure λ is absolutely continuous with respect to $\mathbf{1}_{[0,1]}\lambda$.
- **5.** For all $h \in \mathbb{R}$, let N(h,1) be the probability measure on $(\mathbb{R},\mathcal{B}(\mathbb{R}))$ given by

$$N(h,1)(A) = \int_A \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-h)^2}{2}} dx.$$

Show that the measures N(h,1) and N(0,1) are both absolutely continuous with respect to each other, and compute the corresponding densities.