SEMINAR săptămâna 4: Exemple de spații vectoriale. Vectori liniar dependenți și liniar dependenți. Sisteme de generatori

0.1 SARCINI

- De citit din cartea scrisă cu dl. Dăianu:
- $\S1, 2, 5, 6$ din capitolul 2 şi mai ales exercițiile 1,3,4,5 strecurate în text (pag. 50-54, 57-62)
- exercițiile rezolvate 1,2,3,4 (pag. 69-70)
- de lucrat exercițiile: 4,5,9,16 (pag. 76-78)
- De rezolvat exercițiile propuse mai jos.
- În fine, rezolvați și încărcați pe CV exercițiul pe care îl aveți lăsat temă pe CV.

0.2 EXERCIŢII PROPUSE

- 1. Studiați dacă vectorii $v_1 = (1, 2, 3), v_2 = (4, 5, 6)$ sunt liniar independenți în \mathbb{R}^3 . Formează ei sistem de generatori în \mathbb{R}^3 ?
- **2.** Studiați dacă vectorii $v_1 = (1, 2)$, $v_2 = (3, 4)$ și $v_3 = (5, 6)$ sunt liniar independenți în \mathbb{R}^2 . Formează ei sistem de generatori pentru \mathbb{R}^2 ?
- 3. Studiaţi dacă vectorii $v_1 = 2X 4$, $v_2 = X^2 4$ şi $v_3 = X^2 X 2$ sunt liniar independenţi în $\mathbb{R}_2[X]$. Formează ei sistem de generatori pentru $\mathbb{R}_2[X]$? Dar în $\mathbb{R}_3[X]$?
- 4. Arătați că mulțimea $M = \left\{ \left(\begin{array}{cc} a-b & 0 \\ a+b & 7a-9b \end{array} \right) \ \middle| \ a,b \in \mathbb{R} \right\}$, împreună cu operațiile de adunare și înmulțire cu scalari reali a matricelor din $\mathbb{R}^{2\times 2}$, formează un spațiu vectorial peste \mathbb{R} .
- 5. Dați exemplu de 3 vectori liniar independenți în $\mathbb{R}^{2\times 2}/_{\mathbb{R}}$.
- **6.** Studiați dacă vectorii $v_1 = (1, i)$ și $v_2 = (i, -1)$ sunt liniar independeți în spațiul vectorial \mathbb{C}^2/\mathbb{C} . Dar în spațiul vectorial \mathbb{C}^2/\mathbb{R} ?
- 7. Fie $V/_K$ un spaţiu vectorial şi $v_1, v_2, \ldots, v_n \in V$. Demonstraţi că mulţimea $S = \{\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n \mid \alpha_1, \alpha_1, \ldots, \alpha_n \in K\}$ împreună cu operaţiile induse de pe V este spaţiu vectorial.
- 8. Pe mulţimea $V = \mathbb{R} \times \mathbb{Z}$ definim operaţia internă de adunare pe componente, $(x_1, k_1) + (x_2, k_2) = (x_1 + x_2, k_1 + k_2)$ şi înmulţirea cu scalari din \mathbb{R} definită prin:

- $\alpha \cdot (x,k) = (\alpha \cdot x,0)$. Arătați că axiomele SV1 SV7 din definiția spațiului vectorial sunt verificate, dar axioma SV8 nu.
- 9. Demonstrați că vectorii v_1 și v_2 și $v_3 = \alpha_1 v_1 + \alpha_2 v_2$ formează sistem de generatori pentru un spațiu vectorial V dacă și numai dacă v_1 și v_2 este sistem de generatori pentru V.
- 10. Demonstrați că vectorii $v_1 + 2v_2$ și $v_2 + 2v_1$ sunt liniar independenți într-un spațiu vectorial V dacă și numai dacă vectorii v_1 și v_2 sunt liniar independeți în V.
- **11.** Demonstrați că dacă $\theta_V \in \{v_1, v_2, \dots, v_n\} \subset V$, atunci vectorii v_1, v_2, \dots, v_n sunt liniar dependenți în V.