머신러닝스터디 4th week 보조 자료

20180125 김성헌

summary

- ch.7 Application & Tip
 - Learning rate
 - cost 함수의 값을 관찰하고 합리적인 rate를 찾아라. 0.01 을 사용해보고 조금씩 조절해라.
 - data preprocessing
 - 특징 간 값 차이를 줄여라
 - normalization (Standardization)

1 x2	У	, /v ₁	4	
9000	Α (
-500	0 A		CALL	
-200	0 B		CAAL	
8000	В			
9000) с	6		

$$(x_j') = \frac{x_j - \mu_j}{\sigma_j}$$

X_std[:,0] = (X[:,0] - X[:,0].mean()) / X[:,0].std()

summary

- ch.7 Application & Tip
 - overfitting
 - 더 많은 학습데이터를 사용해라
 - 특징의 수를 줄여라.
 - Regularization

Learning and test data sets

Online learning 0

학습 파라메터 튜닝 해라

summary

(1958)

 $\sum w_i x_i + b$

MLP를 사용하면 XOR을 풀수 있지만 학습이 어려워... Minsky(1969)

hidden layer 1 hidden layer 2

Backpropagation으로 학습 할 수 있잖아... Hinton(1986)

A group of people shopping at an

Yep

그런데 layer가 너무 많으니까 학습이 잘 안되. 대신 SVM, RandomForest 등이 간단한 알고리즘으로 성능도 좋아.

Activation Functions

axon from a neuron

Yep

Deep API Learning*

Nope

Deep Nets은 성능이 정말 좋잖아 (2012~)

Data preprocessing 보충

- Normalization
 - 0~1 사이의 값으로 나타내는 척도법

$$x_{new} = \frac{x - x_{min}}{x_{max} - x_{min}}$$

Standardization

Regularization 보충

종류

· L1:
$$R(W) = \sum_k \sum_l |W_{k,l}|$$

• L2:
$$R(W) = \sum_{k} \sum_{l} W_{k,l}^2$$

• Elastic:
$$R(W) = \sum_k \sum_l \beta W_{k,l}^2 + |W_{k,l}|$$
 (L1과 L2의 혼합)

Andrew Ng 자료

0

$$J(heta) = rac{1}{2m} \sum_{i=1}^m \left(h_{ heta}(x^{(i)}) - y^{(i)}
ight)^2 + \lambda \sum_{i=1}^{100} heta_j^2$$

$$J(heta) = rac{1}{2m} \Biggl[\sum_{i=1}^m \left(h_{ heta}(x^{(i)}) - y^{(i)}
ight)^2 + \lambda \sum_{j=1}^n heta_j^2 \Biggr]$$

Gradient Descent

Repeat
$$j$$
 $\theta_0 \ge \text{regularite Pts}, by convention$

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right)^2 \chi_0^{(i)} - \theta$$

$$\theta_j := \theta_j - \alpha \left[\frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right)^2 \chi_j^{(i)} + \frac{\lambda}{m} \theta_j \right]$$

$$j = \chi_1, \dots, n$$

$$\frac{\partial}{\partial \theta_j} J(\theta)$$

$$\theta_j = \theta_j \left(1 - \alpha \frac{\lambda}{m} \right) - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) \chi_j^{(i)}$$

$$\xi_{j} = \frac{\partial}{\partial \theta_j} \left(1 - \alpha \frac{\lambda}{m} \right) - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) \chi_j^{(i)}$$

$$\xi_{j} = \frac{\partial}{\partial \theta_j} \left(1 - \alpha \frac{\lambda}{m} \right) - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) \chi_j^{(i)}$$

$$\xi_{j} = \frac{\partial}{\partial \theta_j} \left(1 - \alpha \frac{\lambda}{m} \right) - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) \chi_j^{(i)}$$

$$\xi_{j} = \frac{\partial}{\partial \theta_j} \left(1 - \alpha \frac{\lambda}{m} \right) - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) \chi_j^{(i)}$$

$$\xi_{j} = \frac{\partial}{\partial \theta_j} \left(1 - \alpha \frac{\lambda}{m} \right) - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) \chi_j^{(i)}$$

$$\xi_{j} = \frac{\partial}{\partial \theta_j} \left(1 - \alpha \frac{\lambda}{m} \right) - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) \chi_j^{(i)}$$

$$\xi_{j} = \frac{\partial}{\partial \theta_j} \left(1 - \alpha \frac{\lambda}{m} \right) - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) \chi_j^{(i)}$$

$$\xi_{j} = \frac{\partial}{\partial \theta_j} \left(1 - \alpha \frac{\lambda}{m} \right) - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) \chi_j^{(i)}$$

$$\xi_{j} = \frac{\partial}{\partial \theta_j} \left(1 - \alpha \frac{\lambda}{m} \right) - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) \chi_j^{(i)}$$

$$\xi_{j} = \frac{\partial}{\partial \theta_j} \left(1 - \alpha \frac{\lambda}{m} \right) - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) \chi_j^{(i)}$$

$$\xi_{j} = \frac{\partial}{\partial \theta_j} \left(1 - \alpha \frac{\lambda}{m} \right) - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) \chi_j^{(i)}$$

$$\xi_{j} = \frac{\partial}{\partial \theta_j} \left(1 - \alpha \frac{\lambda}{m} \right) - \alpha \frac{1}{m} \sum_{i=1}^m \left(1 - \alpha \frac{\lambda}{m} \right) \chi_j^{(i)}$$

$$\xi_{j} = \frac{\partial}{\partial \theta_j} \left(1 - \alpha \frac{\lambda}{m} \right) - \alpha \frac{1}{m} \sum_{i=1}^m \left(1 - \alpha \frac{\lambda}{m} \right) \chi_j^{(i)}$$

$$\xi_{j} = \frac{\partial}{\partial \theta_j} \left(1 - \alpha \frac{\lambda}{m} \right) + \alpha \frac{\partial}{\partial \theta_j} \left(1 - \alpha \frac{\lambda}{m} \right) \chi_j^{(i)}$$

$$\xi_{j} = \frac{\partial}{\partial \theta_j} \left(1 - \alpha \frac{\lambda}{m} \right) - \alpha \frac{\partial}{\partial \theta_j} \left(1 - \alpha \frac{\lambda}{m} \right) + \alpha \frac{\partial}{\partial \theta_j} \left(1 - \alpha \frac{\lambda}{m} \right) \chi_j^{(i)}$$

$$\xi_{j} = \frac{\partial}{\partial \theta_j} \left(1 - \alpha \frac{\lambda}{m} \right) + \alpha \frac{\partial}{\partial \theta_j} \left(1 - \alpha \frac{\lambda}{m} \right) + \alpha \frac{\partial}{\partial \theta_j} \left(1 - \alpha \frac{\lambda}{m} \right) +$$