Introduction to Linear Regression

Rebecca C. Steorts, Duke University

STA 325, Chapter 3 ISL

Today

- Using data frames for statistical purposes
- Manipulation of data into more convenient forms
- Introduction to linear models and the model space

So You've Got A Data Frame

What can we do with it?

- ▶ Plot it: examine multiple variables and distributions
- ► Test it: compare groups of individuals to each other
- ▶ Check it: does it conform to what we'd like for our needs?

Test Case: Birth weight data

Included in R already:

##

Mean

:0.3915

```
library(MASS)
data(birthwt)
summary(birthwt)
```

```
##
         low
                                             lwt
                            age
##
    Min.
            :0.0000
                      Min.
                              :14.00
                                        Min.
                                               : 80.0
                                                         Min.
    1st Qu.:0.0000
                      1st Qu.:19.00
                                        1st Qu.:110.0
                                                         1st Qu
##
##
    Median :0.0000
                      Median :23.00
                                        Median :121.0
                                                         Media
```

Mean :0.3122 Mean :23.24 Mean :129.8 Mean ## 3rd Qu.:1.0000 3rd Qu.:26.00 3rd Qu.:140.0 3rd Qu ## Max. :1.0000 Max. :45.00 Max. :250.0 Max.

##	Max.	:1.0000	Max.	:45.00	Max.	:250.0	Max.
##	sr	noke	I	otl		ht	
##	Min.	:0.0000	Min.	:0.0000	Min.	:0.0000	O Mir
##	1st Qı	1.:0.0000	1st Qı	1.:0.0000	1st Q	u.:0.0000	00 1st
##	Media	n :0.0000	Mediar	n :0.0000	Media	n :0.0000	00 Med

:0.1958

Mean

:0.06349

__Mea

Mean

From R help

Go to R help for more info, because someone documented this (thanks, someone!)

help(birthwt)

Make it readable!

```
colnames(birthwt)
    [1] "low"
               "age"
                       "lwt" "race" "smoke" "ptl"
##
                                                         "ht."
##
    [9] "ftv" "bwt"
colnames(birthwt) <- c("birthwt.below.2500", "mother.age",</pre>
                       "mother.weight", "race",
                       "mother.smokes", "previous.prem.labor",
                       "hypertension", "uterine.irr",
                       "physician.visits", "birthwt.grams")
```

Making the factors more descriptive

```
birthwt$race <-
  factor(c("white", "black", "other")[birthwt$race])
birthwt$mother.smokes <-
  factor(c("No", "Yes")[birthwt$mother.smokes + 1])
birthwt$uterine.irr <-
  factor(c("No", "Yes")[birthwt$uterine.irr + 1])
birthwt$hypertension <-
  factor(c("No", "Yes")[birthwt$hypertension + 1])</pre>
```

Make it readable, again!

summary(birthwt)

```
birthwt.below.2500
                        mother.age
                                      mother.weight
                                                          race
    Min.
           .0.0000
                       Min.
                              .14 00
                                      Min. : 80.0
                                                       black:26
    1st Qu.:0.0000
                       1st Qu.:19.00
                                      1st Qu.:110.0
                                                       other:67
    Median :0.0000
                      Median :23.00
                                      Median :121.0
                                                       white:96
          :0.3122
                      Mean :23.24
                                              :129.8
   Mean
                                      Mean
    3rd Qu.:1.0000
                       3rd Qu.:26.00
                                       3rd Qu.:140.0
    Max.
          :1.0000
                       Max.
                              :45.00
                                       Max.
                                              :250.0
   mother.smokes previous.prem.labor hypertension uterine.irr
   No :115
                  Min.
                         :0.0000
                                      No :177
                                                   No :161
##
   Yes: 74
                  1st Qu.:0.0000
                                      Yes: 12
                                                   Yes: 28
                  Median :0.0000
##
##
                  Mean
                         :0.1958
##
                  3rd Qu.:0.0000
##
                  Max.
                         :3.0000
    physician.visits birthwt.grams
##
    Min.
           :0.0000
                     Min.
                            : 709
    1st Qu.:0.0000
                   1st Qu.:2414
   Median :0.0000
                    Median:2977
    Mean
           :0.7937
                            :2945
                     Mean
    3rd Qu.:1.0000
                     3rd Qu.:3487
    Max.
           :6.0000
                     Max.
                            :4990
```

```
plot (birthwt$race, echo=FALSE)
## Warning in plot.window(xlim, ylim, log = log, ...): "echo" is
## graphical parameter
## Warning in axis(if (horiz) 2 else 1, at = at.1, labels = name
## axis.lty, : "echo" is not a graphical parameter
## Warning in title(main = main, sub = sub, xlab = xlab, ylab =
## "echo" is not a graphical parameter
## Warning in axis(if (horiz) 1 else 2, cex.axis = cex.axis, ...
## not a graphical parameter
title (main = "Count of Mother's Race in
       Springfield MA, 1986")
```

Count of Mother's Race in Springfield MA, 1986

Mother's Ages in Springfield MA, 1986

Birth Weight by Mother's Age in Springfield MA, 1986

Let's fit some models to the data pertaining to our outcome(s) of interest.

plot (birthwt\$mother.smokes, birthwt\$birthwt.grams, main="l

Tough to tell! Simple two-sample t-test:

```
t.test (birthwt$birthwt.grams[birthwt$mother.smokes == "Yes
birthwt$birthwt.grams[birthwt$mother.smokes == "No"
```

```
##
##
   Welch Two Sample t-test
##
## data: birthwt$birthwt.grams[birthwt$mother.smokes == ""
## t = -2.7299, df = 170.1, p-value = 0.007003
## alternative hypothesis: true difference in means is not
## 95 percent confidence interval:
## -488.97860 -78.57486
## sample estimates:
## mean of x mean of y
## 2771.919 3055.696
```

Does this difference match the linear model?

```
linear.model.1 <- lm (birthwt.grams ~ mother.smokes, data=
linear.model.1
##
## Call:
## lm(formula = birthwt.grams ~ mother.smokes, data = birtl
##
## Coefficients:
        (Intercept) mother.smokesYes
##
             3055.7
##
                               -283.8
```

Does this difference match the linear model?

```
##
## Call:
## lm(formula = birthwt.grams ~ mother.smokes, data = birth
##
## Residuals:
## Min 1Q Median 3Q Max
```

```
## Min 1Q Median 3Q Max
## -2062.9 -475.9 34.3 545.1 1934.3
##
```

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3055.70 66.93 45.653 < 2e-16 **</pre>

Does this difference match the linear model?

```
linear.model.2 <- lm (birthwt.grams ~ mother.age, data=bir
linear.model.2
##
## Call:
## lm(formula = birthwt.grams ~ mother.age, data = birthwt)
##
## Coefficients:
## (Intercept) mother.age
      2655.74
##
                     12.43
```

##

summary(linear.model.2)

```
## Call:
## lm(formula = birthwt.grams ~ mother.age, data = birthwt)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2294.78 -517.63 10.51 530.80 1774.92
##
```

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2655.74 238.86 11.12 <2e-16 ***

mother.age 12.43 10.02 1.24 0.216

mother.age 12.43 10.02 1.24 0.216 ## ---## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.3

##
Residual standard error: 728.2 on 187 degrees of freedo

Diagnostics: R tries to make it as easy as possible (but no easier). Try in R proper:

plot(linear.model.2)

Detecting Outliers

These are the default diagnostic plots for the analysis. Note that our oldest mother and her heaviest child are greatly skewing this analysis as we suspected.

```
birthwt.noout <- birthwt[birthwt$mother.age <= 40,]
linear.model.3 <- lm (birthwt.grams ~ mother.age, data=bir-
linear.model.3</pre>
```

Detecting Outliers

summary(linear.model.3)

```
##
## Call:
## lm(formula = birthwt.grams ~ mother.age, data = birthwt
##
## Residuals:
       Min
             1Q Median
                                3Q
                                       Max
##
## -2245.89 -511.24 26.45 540.09 1655.48
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 2833.273 244.954 11.57 <2e-16 ***
## mother.age 4.344 10.349 0.42 0.675
## ---
```

Residual standard error: 717 2 on 186 degrees of freedom

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.3

##

Add in smoking behavior:

```
linear.model.3a <- lm (birthwt.grams ~ + mother.smokes + mother.smother.smother.smother.smother.smother.smother.smother.smother.smother.smother.smother.smother.smother.smother.smother.smother.smother.smother.smother.smother.smother.smother.smother.smother.smother.smother.smother.smother.smother.smother.smother.smother.smother.smother.smother.smother.smother.smother.smother.smother.smother.smother.smother.smother.smother.smother.smother.smother.smother.smother.smother.smother.smother.smother.smother.smother.smother.smother.smother.smother.smother.smother.smother.smother.smother.smother.smother.smother.smother.smother.smother.smothe
   summary(linear.model.3a)
```

```
## Call:
## lm(formula = birthwt.grams ~ +mother.smokes + mother.age
##
```

```
## Residuals:
               1Q Median
      Min
                               3Q
                                      Max
##
```

```
## -2081.22 -459.82 43.56 548.22 1551.51
```

```
##
## Coefficients:
```

```
##
                  Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2954.582
                             246.280 11.997 <2e-16 **
```

mother.age 3.621 10.208 0.355 0.7232

plot(linear.model.3a)

Add in smoking behavior:

```
linear.model.3b <- lm (birthwt.grams ~ mother.age + mother
summary(linear.model.3b)</pre>
```

```
##
## Call:
```

lm(formula = birthwt.grams ~ mother.age + mother.smokes
data = birthwt.noout)

```
## data = birthwt.noout)
##
```

```
##
## Residuals:
## Min 1Q Median 3Q Max
```

```
## -2343.52 -413.66 39.91 480.36 1379.90
##
## Coefficients:
```

## Coefficients:					
##	Estimate	Std.	Error	t v	alue
## (Intercent)	3017 352	26	35 606	11	360

(Intercept) 3017.352 265.606 11.360 ## mother.age -8.168 10.276 -0.798

plot(linear.model.3b)

Everything Must Go (In)

Let's do a kitchen sink model on this new data set:

```
linear.model.4 <- lm (birthwt.grams ~ ., data=birthwt.noou
linear.model.4
##
## Call:
## lm(formula = birthwt.grams ~ ., data = birthwt.noout)
##
## Coeffici
##
                                                          the
```

ients:		
(Intercept)	birthwt.below.2500	mot
2260 5162	1116 2022	

##

-163360.5163 -1116.3933 mother.weight raceother race 1.9317 68.8145 24

previous.prem.labor

mother.smokesYes

-157.704195.9825 uterine.irrYes physician.visits -0.3519-340.0918

##

##

26 / 36

-18!

hypertens:

Everything Must Go (In), Except What Must Not

Whoops! One of those variables was birthwt.below.2500 which is a function of the outcome.

```
linear.model.4a <- lm (birthwt.grams ~ . - birthwt.below.2
summary(linear.model.4a)
```

```
##
## Call:
```

```
## lm(formula = birthwt.grams ~ . - birthwt.below.2500, da
##
```

##	‡ Residuals:				
##	Min	1Q	Median	3Q	Max
##	-1761.10	-454.81	46.43	459.78	1394.13

```
##
## Coefficients:
```

Estimate Std. Error t value Pr(>|t|) ##

(Intercept) 2545.584 323.204 7.876 3.21e-13 9.909 -1.222 0.223243 ## mother.age -12.111

Everything Must Go (In), Except What Must Not

Whoops! One of those variables was birthwt.below.2500 which is a function of the outcome.

plot(linear.model.4a)

Maybe a linear increase in birth weight is less important than if it's below a threshold like 2500 grams (5.5 pounds). Let's fit a generalized linear model instead:

```
glm.0 <- glm (birthwt.below.2500 ~ . - birthwt.grams, data-
plot(glm.0)</pre>
```


Change this:

The default value is a Gaussian model (a standard linear model).

```
glm.1 <- glm (birthwt.below.2500 ~ . - birthwt.grams, data</pre>
```

mother.age
mother.weight

raceother

racewhite

```
summary(glm.1)
##
## Call:
## glm(formula = birthwt.below.2500 ~ . - birthwt.grams, fa
##
      data = birthwt.noout)
##
## Deviance Residuals:
      Min
                1Q
                    Median
                                  3Q
                                          Max
##
## -1.8938 -0.8222 -0.5363 0.9848 2.2069
##
## Coefficients:
                       Estimate Std. Error z value Pr(>|z
##
## (Intercept)
                       1.721830 1.258897 1.368 0.1714
```

-1 269006

-0.027537 0.037718 -0.730 0.4653

0.4619

-2 407

-0.015474 0.006919 -2.237 0.0253

0 527180

-0.395505 0.537685 -0.736

plot(glm.1)

Let's take a subset of this data to do predictions.

```
summary (linear.model.half)
```

```
##
```

Call:

lm(formula = birthwt.grams ~ . - birthwt.below.2500, da

Residuals:

##

##

##

mother.age ## mother.weight

raceother

racewhite

mother smokesYes

Min 1Q Median

-1705.17 -303.11 26.48 427.18 1261.57

Coefficients:

(Intercept)

2514.891

Estimate Std. Error t value Pr(>|t|)

-217 218

7.052

14.935 0.472 0.6380 2.683 2.885 0.930 0.3550

154 521

113.948 224.519 0.508 0.61313 466.219 204.967 2.275 0.02548

3Q

Max

-1 406

450.245 5.586 2.81e-0

0 146344

birthwt.predict <- predict (linear.model.half)
cor (birthwt.in\$birthwt.grams, birthwt.predict)</pre>

[1] 0.508442

plot (birthwt.in\$birthwt.grams, birthwt.predict)

birthwt.predict.out <- predict (linear.model.half, birthwt
cor (birthwt.out\$birthwt.grams, birthwt.predict.out)</pre>

[1] 0.3749431

plot (birthwt.out\$birthwt.grams, birthwt.predict.out)

