Applied Deep Learning

Nitish Bhardwaj

Overview of Session-1:

- Evolution of Al
- Introduction to Deep Learning
- Industrial Use-case

Evolution of Artificial Intelligence

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

Evolution of Artificial Intelligence

1950

0.000040% -

0.000020% -

1930

1940

human's"

1960

that matched or exceeded

1970

-Arthur Clarke and Steve Kubrik

1980

1990

2000

ARTIFICIAL INTELLIGENCE TIMELINE

Applied Artificial Intelligence

Al vs Machine learning vs Deep learning

AI (technique to enable machine to mimic humans) is super-set of ML

ML (program machines to learn and improve with experience) and ML is the super-set of DL.

DL (achieve great power and flexibility by learning to represent the data as nested hierarchy of concepts, i.e, more depth features with multiple processing layers, hence "deep").

Why is everyone talking about **Deep Learning**?

• DL is working really well (with awesome *accuracy numbers*) to solve some big problems like Image classification, Face Recognition, Recommendation system, Sentiment Analysis and a lot more.

And it's easier to implement in "10 lines of code"

Why is everyone talking about **Deep Learning?**

- These problems are solved in 90s, aren't they?? Then why Deep Learning? Because accuracy matters a lot and really a lot.
- DL has transformed the industry by solving these *already solved problems* with *great accuracy numbers*.
 - o For example, <u>detection of hand-written digits</u>, accuracy on test data
 - **88**% (<u>LeCun et al. 1998</u>) to
 - **99.7**% (<u>Ciresan et al. CVPR 2012</u>).
- DL has also brought solutions to <u>many unsolved problems</u>.
- Open-source + Academic Industry collaboration + Fight for Accuracy

Introduction to Deep Learning

Deep Learning

Based on Concept on Artificial Neural Networks

 "The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones. If we draw a graph showing how these concepts are built on top of each other, the graph is deep, with many layers. For this reason, we call this approach to AI deep learning." - Ian GoodFellow

Deep Neural Networks

Dataset

Inputs		Output	
x 1	x2	х3	у
1.4	2.7	1.9	0
3.8	3.4	3.2	0
6.4	2.8	1.7	1
4.1	0.1	0.2	0

PROBLEM SOLVING IN 7 STEPS

Classification Problem Data Preparation

- 1. Problem Statement
- 2. Data Preparation
- 3. Choosing a model, y=f(x)
- 4. Training
- 5. Evaluation / Validation
- 6. Hyperparameter tuning
- 7. Prediction/**Testing**

Problem Solving:

	Inputs		Output
x 1	x2	х3	у
1.4	2.7	1.9	0
3.8	3.4	3.2	0
6.4	2.8	1.7	1
4.1	0.1	0.2	0

Weights and Biases in Neural network

A dataset

Fields		class
1.4 2.7	1.9	0
3.8 3.4	3.2	0
6.4 2.8	1.7	1
4.1 0.1	0.2	0
etc		

Training the neural network

Fields		class	
1.4 2.7	1.9	0	
3.8 3.4	3.2	0	
6.4 2.8	1.7	1	
4.1 0.1	0.2	0	
etc			

Fields			class
1.4	2.7	1.9	0
3.8	3.4	3.2	0
6.4	2.8	1.7	1
4.1	0.1	0.2	0
etc	• • •		

Initialise with random weights and bias

Fields		class
1.4 2.7	1.9	0
3.8 3.4	3.2	0
6.4 2.8	1.7	1
4.1 0.1	0.2	0
etc		

Present a Training Pattern

Fields			class
1.4	2.7	1.9	0
3.8	3.4	3.2	0
6.4	2.8	1.7	1
4.1	0.1	0.2	0
etc	• • •		

Feed it through the output

Fields		class
1.4 2.7	1.9	0
3.8 3.4	3.2	0
6.4 2.8	1.7	1
4.1 0.1	0.2	0
etc		

Compare with target output

Fields	class	
1.4 2.7	1.9	0
3.8 3.4	3.2	0
6.4 2.8	1.7	1
4.1 0.1	0.2	0
etc		

Adjust weights based on error

Fields		class
1.4 2.7	1.9	0
3.8 3.4	3.2	0
6.4 2.8	1.7	1
4.1 0.1	0.2	0
etc		

Present a Training Pattern

Fiel	lds		class
1.4	2.7	1.9	0
3.8	3.4	3.2	0
6.4	2.8	1.7	1
4.1	0.1	0.2	0
etc.	• •		

Feed it through the output

Fields			class
1.4	2.7	1.9	0
3.8	3.4	3.2	0
6.4	2.8	1.7	1
4.1	0.1	0.2	0
etc	• • •		

Compare with target output

Fie	class		
1.4	2.7	1.9	0
3.8	3.4	3.2	0
6.4	2.8	1.7	1
4.1	0.1	0.2	0
etc	• • •		

Adjust weights based on error

Fields	class	
1.4 2.7	1.9	0
3.8 3.4	3.2	0
6.4 2.8	1.7	1
4.1 0.1	0.2	0
etc		

And so on

Repeat this thousands, maybe millions of times — each time taking a random training instance, and making slight weight adjustments

Algorithms for weight adjustment are designed to make changes that will reduce the error

Business use-cases

Deep learning with Images: Computer Vision

- Classification
- Detection
- Segmentation
 - Generation
- And Lot more

Deep Learning with Text: Natural Language Processing

Search Autocorrect and Autocomplete

Language Translation

- Text Classification
- Chatbots
- Voice Assistants
- Social Media Analytics
- Advertisements
- Summarization
- And lot more

Deep Learning with Number data:

Stock Market Prediction

	Date	Open	High	Low	Last	Close	Total Trade Quantity	Turnover (Lacs)
0	2018-10-08	208.00	222.25	206.85	216.00	215.15	4642146.0	10062.83
1	2018-10-05	217.00	218.60	205.90	210.25	209.20	3519515.0	7407.06
2	2018-10-04	223.50	227.80	216.15	217.25	218.20	1728786.0	3815.79
3	2018-10-03	230.00	237.50	225.75	226.45	227.60	1708590.0	3960.27
4	2018-10-01	234.55	234.60	221.05	230.30	230.90	1534749.0	3486.05

- House Price Prediction
- Recommendation system
- Disease Identification
- Medical Reporting
- And lot more

Complex Deep Learning

Image Captioning

"man in black shirt is playing quitar."

"construction worker in orange safety vest is working on road."

"two young girls are playing with lego toy."

"boy is doing backflip on wakeboard."

Images

Text

Overview of Session:

- AI/ML/DL
- Applications of CV, NLP

Let's code...

The Jupyter Notebook is a web-based interactive computing platform that allows users to author data- and code-driven narratives that combine live code, equations, narrative text, visualizations, interactive dashboards and other media.

https://www.youtube.com/watch?v=inN8seMm7UI

https://colab.research.google.com/

Google Colaboratory

References

- Steps of Machine Learning: https://www.youtube.com/watch?v=nKW8Ndu7Mjw
- Tensorflow Playground : https://playground.tensorflow.org/
- Google Colab: https://www.youtube.com/watch?v=inN8seMm7Ul

Thank you!

