Discrete Math Problem Set 8

Will Krzastek

April 4th, 2024

1. Including the instructor, there are 32 people in our class. Prove that two of these people were born on the same day of the month.

Proof. Let P := "The set of 32 people in our class" where |P| = 32.

Let $B := \{1, 2, ... 31\}$ where B is every possible birthdate. Recall, the largest month in the year has 31 days, so |B| = 31.

Now, we know that |P| > |B|.

Let $f: P \to B$ where $f(P_i) :=$ "the birthdate B_i of P_i ".

By the *Pigeonhole Principle*, we know that $(\forall f : P \to B)$ f is not injective. So by definition, there exists $P_i, P_j \in P$ such that $P_i \neq P_j \land f(P_i) = f(P_j)$.

Therefore, 2 people in our class were born on the same day of the month.

2. As of the $28^{\rm th}$ of March 2024, there are over 8.1 billion people living on Earth. A person's heart will beat no more than 7×10^9 times over their lifespan. Show that there are two currently-living people on Earth whose hearts have beat the same amount of times.

Proof. Let $E := \{1, 2, \dots 8.1 \times 10^9\}$ where E is the amount of people living on Earth. Observe, $|E| = 8.1 \times 10^9$.

Let $H := \{1, 2, ..., 7 \times 10^9\}$ where H is the amount of heartbeats possible in a person's life. Observe, $|H| = 7 \times 10^9$.

Now, we know that |E| > |H|.

Let $g: E \to H$ where $g(E_i) :=$ "the amount of heartbeats H_j in the life of E_i ". By the *Pigeonhole Principle*, we know that $(\forall g: E \to H)g$ is not injective. So by definition, there exists $E_i, E_j \in E$ such that $E_i \neq E_j \land g(E_i) = g(E_j)$.

Therefore, there are two people currently living on Earth whose hearts have beat the same amount of times.

3. Let $n \in \mathbb{N}_+$ and consider $A \subseteq \mathbb{N}$ such that |A| = n + 1. Prove that there exist $x, y \in A$ with $x \neq y$ such that $n \mid x - y$.

Proof. Let $A := \{a_1, a_2, \dots a_{n+1}\}$ where |A| = n+1 and $A \subseteq \mathbb{N}$.

Let $R := \{0, 1, \dots n-1\}$ where R is the set of possible remainders of any number n divides. Observe, |R| = n.

Now, we know that |A| > |R|.

Now, let $f: A \to R$ where $f(A_i) :=$ "the remainder R_j of A_i divided by n".

By the *Pigeonhole Principle*, we know that $(\forall f : A \to R)f$ is not injective. So by definition, there exists $A_i, A_j \in A$ such that $A_i \neq A_j \land f(A_i) = f(A_j)$.

Now, let $x := A_i$ and let $y := A_j$. So, we know that $x \neq y$ and the remainder of $n \mid x$ equals the remainder of $n \mid y$. We can then say x = kn + r and y = mn + r where $k, m \in \mathbb{N}$ and r = r. By arithmetic, we see that x - y = (k - m)n. Since $k, m \in \mathbb{N}$, we know $n \mid x - y$.

Therefore, there exist $x, y \in A$ where $x \neq y \land n \mid x - y$.

4. Consider $S := \{3, 4, 7, 8, 9, 10, 12, 15, 18, 19, 27, 28\}$ and $X \subseteq S$ with $|X| \ge 9$. Show that there exists *three* distinct elements $x_1, x_2, x_3 \in X$ such that $x_1 + x_2 + x_3 = 40$.

Proof. Consider $S := \{3, 4, 7, 8, 9, 10, 12, 15, 18, 19, 27, 28\}$. Observe, |S| = 12. Let $X \subseteq S$ and $|X| \ge 9$. We want to prove that there must exist $x_1, x_2, x_3 \in X$ such that $x_1 + x_2 + x_3 = 40$ and $x_1 \ne x_2 \ne x_3$.

Now, observe that there are 4 distinct sets of elements of S that sum to 40:

$$\{3, 10, 27\}$$

 $\{4, 8, 28\}$
 $\{7, 15, 18\}$
 $\{9, 12, 19\}$

Now, let P be defined as the set of all 4 of the above sets where:

$$P := \{\{3, 10, 27\}, \{4, 8, 28\}, \{7, 15, 18\}, \{9, 12, 19\}\}. \tag{1}$$

Observe, |P| = 4. To show that there always exist x_1, x_2, x_3 where $x_1 + x_2 + x_3 = 40$, we simply need to prove an element of P always exists.

Now, observe $f: X \to P$ such that $f(x_i) := p_i$ where $x_i \in X$ and $p_i \in P$.

By the Pigeonhole Principle, we know there exists $p \in P$ such that $|\{x \in X \mid f(x) = p\}| \ge \lfloor \frac{9-1}{4} \rfloor + 1 = \lceil \frac{9}{4} \rceil$.

We know that $\lceil \frac{9}{4} \rceil = 3$ by the definition of the ceiling function.

So, |p|=3. Because $p \in P$, we then know that 3 distinct elements exist such that $x_1+x_2+x_3=40 \land x_1 \neq x_2 \neq x_3$.

- 5. Recall that $\binom{n}{0} = \binom{n}{n} = 1$ for all $n, k \in \mathbb{N}$ when $k \leq n$.
 - (a) Show $\binom{n}{k} = \binom{n}{n-k}$ for all $n, k \in \mathbb{N}$ where $k \leq n$.

Proof. Assume $n, k \in \mathbb{N}$ and $k \leq n$.

Let
$$A := \{ z \mid z \subseteq n \land |z| = k \}.$$

Let
$$B := \{ z \mid z \subseteq n \land |z| = n - k \}.$$

To show that |A| = |B|, we will prove the existence of a bijection from $A \to B$.

To do that, we will first show that there exists $f:A\to B$ where f is injective.

To do that, let $f(a) := n \setminus a$.

Assume f(x) = f(y). This means that $n \setminus x = n \setminus y$.

Towards a contradiction, suppose $x \neq y$. This means that there exists an element $b \in x$ where $b \notin y$. Because $x \subseteq n$, $b \in n$ by definition. Because $b \in n$ and $b \notin y$, $b \in n \setminus y$. We know that $n \setminus y = n \setminus x$, so $b \in n \setminus x$. This means that $b \notin x$. However, we assumed $b \in x \notin x$.

Therefore, x = y, so f is injective.

Now, we will show that there exists $g: B \to A$ where g is injective.

To do that, let $g(b) := n \setminus b$.

Assume g(x) = g(y). This means that $n \setminus x = n \setminus y$.

Towards a contradiction, suppose $x \neq y$. This means that there exists an element $b \in x$ where $b \notin y$. Because $x \subseteq n$, $b \in n$ by definition. Because $b \in n$ and $b \notin y$, $b \in n \setminus y$. We know that $n \setminus y = n \setminus x$, so $b \in n \setminus x$. This means that $b \notin x$. However, we assumed $b \in x \notin x$.

Therefore, x = y, so g is injective.

Thus, there exist $f: A \to B$ and $g: B \to A$ where both are injective.

Therefore, by the Cantor-Schroder-Bernstein Theorem, we know there exists a bijection from $A \to B$.

Therefore, |A| = |B|.

By definition, we then know $\binom{n}{k} = \binom{n}{n-k}$.

(b) Show $\binom{n+1}{k+1} = \binom{n}{k+1} + \binom{n}{k}$ for all $n, k \in \mathbb{N}$ where $k \leq n$.

Proof. Assume $n, k \in \mathbb{N}$ and $k \leq n$.

Let
$$A := \{ z \mid z \subseteq n + 1 \land |z| = k + 1 \}.$$

Let
$$B := \{ z \mid z \subseteq n \land |z| = (k \lor k+1) \}.$$

To show that |A| = |B|, we will show the existence of a bijection from $A \to B$.

Observe, $f:A\to B$ where f(a):=a if $n\notin a$, and $f(a):=a\setminus n$ if $n\in a$. First, we will show that f is injective.

Assume f(x) = f(y) where $x, y \in A$.

Look at the case where |f(x)| = k + 1. This also means that f(y) = k + 1. Suppose towards a contradiction that $n \in x$. This means that $f(x) = x \setminus n$, so |f(x)| = k. However, we know $|f(x)| = k + 1 \xi$. Thus, $n \notin x$. So, f(x) = x and f(y) = y. We know f(x) = f(y), so x = y.

Now, look at the case where |f(x)| = k. Assume towards a contradiction that $n \notin x$. This means |f(x)| = k+1 as we showed in the first case. However, we assumed $|f(x)| = k \xi$. Therefore, we know $n \in x, y$. So, $f(x) = x \setminus n$ and $f(y) = y \setminus n$. Since we know $x \setminus n = y \setminus n$ and $n \in x, y$, we then know x = y.

Therefore, f is injective.

Now, we will show that f is surjective.

Let $b \in B$. $|b| = k + 1 \lor k$ by the definition of B.

First, look at the case |b| = k + 1.

We know that $b \subseteq A$ and |b| = k + 1. Therefore, we also know $b \in A$. Because |b| = k + 1, we know f(b) = b as we showed in the injective proof. Therefore, there exists an input in A for every $b \in B$ where |b| = k + 1. Now look at the case |b| = k.

We know that $b \subseteq A$ and |b| = k. Because |b| = k, we know $n \in b$. So, $b \cup n \in A$ and $f(b) = b \setminus n$. Therefore, there exists an input in A for every $b \in B$ where |b| = k.

Therefore, f is surjective.

Because we proved f is injective and surjective, we know f is bijective. So, |A| = |B|.

We know that $|A| = \binom{n+1}{k+1}$. We can define |B| as $|C \cup D|$ where C := $\{z \mid z \subseteq n \land |z| = k\}$ and $D := \{z \mid z \subseteq n \land |z| = k+1\}$. Observe, $|C \cap D| = 0$ because C and D do not contain any of the same elements. Thus, $|C \cup D| = |C| + |D|$. We can define |C| as $\binom{n}{k+1}$ and |D| as $\binom{n}{k}$. Therefore, $|B| = \binom{n}{k+1} + \binom{n}{k}$. We know |A| = |B|, so $\binom{n+1}{k+1} = \binom{n}{k+1} + \binom{n}{k}$.

6. Prove that $|\mathbb{P}(X)| = 2^{|X|}$.

Proof. Let X be a set. We will prove $|\mathbb{P}(X)| = 2^{|X|}$ this by induction on $|X| \in \mathbb{N}$.

Basis step:

Observe, |X| = 0, so $X := \emptyset$. Therefore, $\mathbb{P}(X) = \{\emptyset\}$, so $|\mathbb{P}(X)| = 1$. We also know $2^{|\emptyset|} = 2^0 = 1$.

Therefore, $|\mathbb{P}(\varnothing)| = 2^{|\varnothing|}$.

Inductive step:

Let $k \in \mathbb{N}$. Let k := |X|. Assume $|\mathbb{P}(X)| = 2^{|X|}$ as our inductive hypothesis.

Now, let m be a set such that $m \notin X$. Let Y also be a set. Let $Y := X \cup m$. Now, observe that |Y| = k + 1 because we just added one element to X. Now, we want to show that $|\mathbb{P}(Y)| = 2^{|Y|}$.

Now, let's define a set S that is every subset of Y that contains m.

 $S:=\{s\mid (\forall x\in \mathbb{P}(X))(s=x\cup m)\}$. Now, we see that $\mathbb{P}(Y)=\mathbb{P}(X)\cup S$, because S is just every subset of Y that contains m, and $\mathbb{P}(X)$ is all the subsets of Y that do not. Because they do not share any elements, we can say $|\mathbb{P}(Y)|=|\mathbb{P}(X)|+|S|$. We want to show that $|\mathbb{P}(X)|=|S|$. To do so, let's define a function $f:\mathbb{P}(X)\to S$ where $f(x)=x\cup m$. We will show that f is bijective. First, let's show f is injective. Let $x_1,x_2\in\mathbb{P}(X)$. Assume $f(x_1)=f(x_2)$. This means that $x_1\cup m=x_2\cup m$. Since $m\notin\mathbb{P}(X)$, we know $a\notin x_1,x_2$. So, we know $x_1=x_2$.

Now, we will show f is surjective. Let $s \in S$. By the definition of S, $\exists x \in \mathbb{P}(X)$ where $s = x \cup m$. So, every element of S has an input value. Therefore f is surjective.

So, f is bijective, and $|\mathbb{P}(X)| = |S|$.

So, we can represent $|\mathbb{P}(X)| + |S|$ as $2 \cdot |\mathbb{P}(X)|$. This means that $|\mathbb{P}(Y)| = 2 \cdot \mathbb{P}(X)$. By the *Inductive hypothesis*, we know $2 \cdot |\mathbb{P}(X)| = 2 \cdot 2^{|X|}$.

Observe, $2^{|Y|} = 2^{|X|+1} = 2 \cdot 2^{|X|}$.

Therefore, $|\mathbb{P}(Y)| = 2^{|Y|}$.

Therefore, by mathematical induction, we know $|\mathbb{P}(X)| = 2^{|X|}$.