

Aula 06: Arquitetura de Computadores – Memória externa

Prof. Hugo Puertas de Araújo hugo.puertas@ufabc.edu.br Sala: 509-2 (5º andar / Torre 2)

Objetivos de aprendizagem

- Compreender as propriedades-chave dos discos magnéticos.
- Entender as questões envolvidas no acesso ao disco magnético.
- Explicar o conceito de RAID e descrever seus vários níveis.
- Comparar os drives de discos rígidos com os de disco sólido.
- Compreender as diferenças entre as mídias de armazenamento de disco óptico.
- Apresentar a tecnologia de armazenamento da fita magnética.

Disco magnético

- Um disco é um prato circular construído de material não magnético, chamado de substrato, coberto por um material magnetizável.
- Tradicionalmente, o substrato tem sido alumínio ou um material de liga de alumínio.
- Mais recentemente, foram introduzidos substratos de vidro.

Disco magnético

- O substrato de vidro apresenta diversos benefícios, incluindo os seguintes:
 - Melhoria na uniformidade da superfície do filme magnético, aumentando a confiabilidade do disco.
 - * Redução significativa nos defeitos gerais da superfície, ajudando a diminuir os erros de leitura-gravação.
 - Capacidade de aceitar alturas de voo mais baixas (descritas mais adiante).
 - Melhor rigidez, para reduzir a dinâmica do disco.
 - Maior capacidade de suportar choque e danos.

Leitura magnética e mecanismos de gravação

Os dados são gravados e, mais tarde, recuperados do disco por meio de uma bobina condutora, denominada de cabeça:

Leitura magnética e mecanismos de gravação

Os dados são gravados e, mais tarde, recuperados do disco por meio de uma bobina condutora, denominada de cabeça:

E.: Qual é o tipo de acesso que se faz ao disco rígido? Explique.

Leitura magnética e mecanismos de gravação

- Os sistemas de disco rígido modernos exigem uma cabeça de leitura separada.
- A cabeça de leitura consiste em um sensor magnetorresistivo (MR) parcialmente blindado.
- O material MR tem uma resistência elétrica que depende da direção da magnetização do meio que se move por baixo dele.
- Passando uma corrente pelo sensor MR, as mudanças de resistência são detectadas como sinais de tensão.
- O projeto do MR permite uma operação em frequência mais alta.

- A cabeça é um dispositivo relativamente pequeno, capaz de ler e gravar em uma parte do prato girando por baixo dela.
- Isso sugere a organização dos dados no prato em um conjunto concêntrico de anéis, chamados de trilhas.
- Cada trilha tem a mesma largura da cabeça.
- Existem milhares de trilhas por superfície.

A figura a seguir representa esse layout de dados. As trilhas adjacentes são separadas por lacunas (gaps) intertrilhas.

E.: Um bit próximo do centro de um disco em rotação passa por um ponto fixo (como uma cabeça de leitura-gravação) mais lentamente do que um bit na extremidade. Por quê? Como resolver?

Comparação de métodos de layout de disco:

Velocidade angular constante

Gravação em múltiplas zonas

Comparação de métodos de layout de disco:

Gravação em múltiplas zonas

Características físicas dos sistemas de disco:

Movimento da cabeça	Pratos		
Cabeça fixa (uma por trilha)	Único prato		
Cabeça móvel (uma por superfície)	Múltiplos pratos		
Mecanismo da cabeça	Portabilidade do disco		
Contato (disquete)	Disco não removível		
Lacuna fixa	Disco removível		
Lacuna aerodinâmica (Winchester)			
Faces			
Única face			
Dupla face			

- Em um disco com cabeça fixa, existe uma cabeça de leituragravação por trilha.
- Em um disco com cabeça móvel, há somente uma cabeça de leitura-gravação.
- Novamente, a cabeça é montada em um braço.
- Um disco não removível é permanentemente montado no drive de disco.
- Um disco removível pode ser removido e substituído por outro disco.

- Para a maioria dos discos, a cobertura magnetizável é aplicada nos dois lados do prato, quando o disco é chamado de dupla face.
- Alguns sistemas de disco mais baratos utilizam discos de única face.
- Alguns drives de disco acomodam diversos pratos empilhados verticalmente, com uma fração de polegada de distância um do outro.
- O conjunto de todas as trilhas na mesma posição relativa na placa é conhecido como um cilindro.

- Disquete é um prato pequeno e flexível, sendo o tipo mais barato de disco.
- Os detalhes reais da operação de E/S de disco dependem do sistema de computação, do sistema operacional e da natureza do canal de E/S e hardware do controlador de disco.
- Diagrama de temporização geral da transferência de E/S de disco:

- Em um sistema de cabeça móvel, o tempo gasto para posicionar a cabeça na trilha é conhecido como **tempo de busca** (seek time).
- O tempo gasto até que o início do setor alcance a direção da cabeça é conhecido como atraso rotacional ou latência rotacional.
- A soma do tempo de busca, se houver, com o atraso rotacional é igual ao tempo de acesso, que é o tempo gasto para o posicionamento para leitura ou gravação.

- Quando a cabeça está na posição, a operação de leitura ou gravação é, então, realizada enquanto o setor se move sob a cabeça.
- Essa é a parte de transferência de dados da operação; o tempo necessário para a transferência é o tempo de transferência.
- O tempo de busca consiste em dois componentes:
 - i. o tempo de partida inicial e
 - ii. o tempo gasto para atravessar as trilhas que precisam ser cruzadas quando o braço de acesso estiver com a velocidade necessária.

O tempo de transferência de ou para o disco depende da velocidade de rotação do disco no seguinte padrão:

$$T = \frac{b}{rN}$$

T = tempo de transferência b = número de bytes a serem transferidos N = número de bytes em uma trilha

r = velocidade de rotação, em rotações por segundo

O tempo médio total de leitura ou gravação T_{total} pode ser expresso como:

$$T_{total} = T_s + \frac{1}{2r} + \frac{b}{rN}$$

Ts é o tempo médio de busca

RAID

- RAID: Redundant Array of Independent Disks
- Felizmente, a indústria acordou sobre um esquema padronizado para o projeto de banco de dados para múltiplos discos, conhecido como RAID.
- O esquema RAID consiste em sete níveis, 2 de zero a seis.

RAID

- Esses níveis não implicam um relacionamento hierárquico, mas designam diferentes arquiteturas de projeto, que compartilham três características comuns:
 - i. RAID é um conjunto de drives de discos físicos, vistos pelo sistema operacional como um único drive lógico.
 - ii. Os dados são distribuídos pelos discos físicos de um array em um esquema conhecido como striping (distribuição de dados).
 - iii. A capacidade de disco redundante é usada para armazenar informações de paridade, o que garante a facilidade de recuperação dos dados no caso de uma falha de disco.

RAID

- Os detalhes da segunda e terceira características diferem para os níveis distintos de RAID.
- O RAID 0 e o RAID 1 não aceitam a terceira característica.

Categoria	Nível	Descrição	Discos exigidos	Disponibilidade de dados	Grande capacidade de transferência de dados de E/S	Pequena taxa de solicitação de E/S
Striping	0	Não redundante	N	Inferior a um único disco	Muito alta	Muito alta tanto para leitura como para gravação
Espelhamento	1	Espelhado	2N	Mais alta que a RAID 2, 3, 4 ou 5; inferior ao RAID 6	Mais alta que o disco rígido para leitura; similar a um único disco para gravação	Até o dobro de um único disco para leitura; similar a um disco único para gravação
Acesso paralelo	Redundante via código de Hamming	N + m	Mais alta que um único disco; comparável ao RAID 3, 4 ou 5	Mais alta de todas as alternativas listadas	Aproximadamente o dobro de um único disco	
	Paridade intercalada por bit	N + 1	Mais alta que um único disco; comparável ao RAID 2, 4 ou 5	Mais alta de todas as alternativas listadas	Aproximadamente o dobro de um único disco	
Acesso independente 5	Paridade intercalada por bloco	N + 1	Mais alta que um único disco; comparável ao RAID 2, 3 ou 5	Similar ao RAID O para leitura; significativamente menor que um único disco para gravação	Similar ao RAID 0 para leitura; significativamente inferior a um único disco para gravação	
	Paridade distribuída intercalada por bloco	N + 1	Mais alta que um único disco; comparável ao RAID 2, 3 ou 4	Similar ao RAID 0 para leitura; inferior a um único disco para gravação	Similar ao RAID 0 para leitura; geralmente inferior a um único disco para gravação	
	Paridade dupla distribuída intercalada por bloco	N + 2	Mais alta de todas as alternativas listadas	Similar ao RAID 0 para leitura; inferior ao RAID 5 para gravação	Similar ao RAID 0 para leitura; significativamente inferior ao RAID 5 para gravação	

Obs.: N = número de discos de dados; m proporcional a log N.

■ RAID 0 (não redundante):

- O RAID nível 0 não é um membro verdadeiro da família RAID, pois não inclui redundância para melhorar o desempenho.
- Para o RAID 0, os dados do usuário e do sistema são distribuídos por todos os discos no array.
- Os dados são distribuídos pelos discos disponíveis.
- O disco lógico é dividido em strips (faixas).
- Um conjunto de strips logicamente consecutivos, que mapeia exatamente um strip em cada membro do array, é conhecido como um stripe.

Mapeamento de dados para um array RAID nível 0:

■ RAID 1 (espelhado):

- Existem diversos aspectos positivos da organização RAID 1:
 - i. Uma solicitação de leitura pode ser atendida por qualquer um dos dois discos que contenha os dados solicitados, aquele que exigir o mínimo de tempo de busca mais latência rotacional.
 - ii. Uma solicitação de gravação requer que os dois strips correspondentes sejam atualizados, mas isso pode ser feito em paralelo.
 - iii. A recuperação de uma falha é simples. Quando um drive falha, os dados ainda podem ser acessados pelo segundo drive.

- A principal desvantagem do RAID 1 é o custo; ele requer o dobro de espaço em disco que a capacidade lógica do disco a que ele dá suporte.
- Em um ambiente orientado à transação, o RAID 1 pode alcançar altas taxas de solicitação de E/S se a maior parte das solicitações for para leituras.
- Nessa situação, o desempenho do RAID 1 pode alcançar o dobro daquele do RAID 0.
- O RAID 1 também pode oferecer melhor desempenho em relação ao RAID 0.

■ RAID 2 (redundante por meio do Código de Hamming):

- Com o RAID 2, um código de correção de erro é calculado para os bits correspondentes em cada disco de dados.
- Os bits do código são armazenados nas posições dos bits correspondentes nos vários discos de paridade.
- Costuma-se usar um código de Hamming, que é capaz de corrigir erros de único bit e detectar erros duplos de bits.
- Embora o RAID 2 exija menos discos que o RAID 1, ele é bem mais caro.

■ RAID 3 (paridade intercalada por bit):

- O RAID 3 é organizado de uma forma semelhante ao RAID 2.
- A diferença é que o RAID 3 exige apenas um único disco redundante, não importa o tamanho do array de discos.
- O RAID 3 emprega o acesso paralelo, com dados distribuídos em pequenos strips.
- Em vez de um código de correção de erro, um bit de paridade simples é calculado para o conjunto de bits individuais na mesma posição em todos os discos de dados.

■ RAID 4 (paridade em nível de bloco):

- Com o RAID 4, um strip de paridade bit a bit é calculado por meio dos strips correspondentes em cada disco de dados.
- Os bits de paridade são armazenados no strip correspondente no disco de paridade.
- O RAID 4 envolve uma penalidade de gravação quando uma solicitação de gravação de E/S de pequeno tamanho é realizada.
- Toda vez que ocorre uma gravação, o software de gerenciamento do array deve atualizar não apenas os dados do usuário, mas também os bits de paridade correspondentes.

■ RAID 5 (paridade distribuída em nível de bloco):

- O RAID 5 é organizado de uma forma semelhante ao RAID 4.
- A diferença é que o RAID 5 distribui os strips de paridade por todos os discos.
- Uma alocação típica é um esquema round-robin.
- Para um array de n discos, o strip de paridade está em um disco diferente para os primeiros n stripes, e o padrão então se repete.
- A distribuição dos strips de paridade por todos os drives evita o potencial gargalo de E/S encontrado no RAID 4.

■ RAID 6 (redundância dupla):

- No esquema RAID 6, dois cálculos de paridade distintos são executados e armazenados em blocos separados em discos diferentes.
- De tal maneira, um array RAID 6 cujos dados do usuário exigem N discos consiste em N + 2 discos.
- A vantagem do RAID 6 é que ele oferece uma disponibilidade de dados extremamente alta.
- Três discos teriam que falhar dentro do intervalo de tempo médio para reparo para que os dados fossem perdidos.

Drives de estado sólido

- O termo estado sólido diz respeito ao circuito eletrônico construído com semicondutores.
- Um SSD é um dispositivo de memória feito com componentes de estado sólido que pode ser usado em substituição ao drive de disco rígido.
- Como o custo de SSDs com base em flash caiu e o desempenho e a densidade de bits aumentaram, os SSDs tornaram-se mais competitivos que os HDDs.

Drives de estado sólido

- Os SSDs têm as seguintes vantagens sobre os HDDs:
 - ❖ Aumenta significativamente o desempenho dos subsistemas de E/S.
 - Menos suscetível a choque físico e vibração.
 - Longa vida útil.
 - Baixo consumo de energia.
 - Capacidades de funcionamento mais silenciosas e resfriadas.
 - Menores tempos de acesso e taxas de latência.

Organização de SSD

Arquitetura de drive de estado sólido:

Organização de SSD

Arquitetura de drive de estado sólido:

E.: É possível utilizar o esquema RAID com SSD?

Organização de SSD

- Além da interface ao sistema hospedeiro, o SSD contém os seguintes componentes:
 - Controlador
 - Endereçamento
 - Buffer de dados/cache
 - Correção de erros
 - Componentes de memória flash

- CD-ROM
 - Operação do CD:

- CD-ROM
 - Formato de bloco do CD-ROM:

- Disco versátil digital (DVD)
 - * A maior capacidade do DVD deve-se a três diferenças dos CDs:
 - i. Os bits são acomodados mais de perto em um DVD.
 - ii. O DVD usa um laser com comprimento de onda mais curto e alcança um espaçamento de loop de 0,74 μ m e uma distância mínima entre os sulcos de 0,4 μ m.
 - iii. DVD emprega uma segunda camada de sulcos e pistas em cima da primeira camada.

- Discos ópticos de alta definição
 - Os discos ópticos de alta definição são projetados para armazenar vídeos de alta definição.
 - A densidade de bits mais alta é alcançada usando um laser com um comprimento de onda mais curto, na faixa do azul violeta.
 - Os sulcos de dados são menores em comparação com o DVD.
 - Dois formatos e tecnologias de disco concorrentes competiram inicialmente pela aceitação do mercado: HD DVD e Blu-ray DVD.

- Os sistemas de fita utilizam as mesmas técnicas de leitura e gravação que os sistemas de disco.
- O meio é uma fita de poliéster flexível coberta com material magnetizável.
- Os dados na fita são estruturados como uma série de trilhas paralelas no sentido do comprimento da fita.
- A maioria dos sistemas modernos usa a gravação serial, em que os dados são dispostos como uma sequência de bits ao longo de cada trilha, como é feito com os discos magnéticos.

- A técnica de gravação típica usada nas fitas seriais é conhecida como gravação em serpentina.
- Quando os dados estão sendo gravados, o primeiro conjunto de bits é gravado ao longo de toda a extensão da fita.
- Quando o final da fita é alcançado, as cabeças são reposicionadas para gravar uma nova trilha, e a fita é novamente gravada em sua extensão completa, desta vez na direção oposta.
- Esse processo continua, indo e voltando, até que a fita esteja cheia.

Leitura e gravação em serpentina:

Layout em bloco para sistema que lê-grava quatro trilhas simultaneamente:

