

CS5340 Uncertainty Modeling in Al

Asst. Prof. Harold Soh

Dept of Computer Science

National University of Singapore

Preliminaries

Introduction

CS5340 :: Harold Soh

CS5340 in a nutshell

CS5340 is about how to "represent" and "reason" with uncertainty in a computer.

Representation: The *language* is probability and probabilistic graphical models (PGM).

The language is used to model problems.

Reasoning: We use learning and inference algorithms to answer questions.

e.g., Belief-propagation/sumproduct, MCMC, and variational Bayes

Probabilistic Graphical Modeling

Key Ideas:

- Represent the world as a collection of random variables $X_1, ..., X_N$ with joint distribution $p(X_1, ..., X_N)$.
- Learn the distribution from data.
- Perform "inference" (compute conditional distributions $p(X_i \mid X_1 = x_1, ..., X_N = x_N)$).

What does all this mean precisely?

Learning Outcomes

Students should be able to:

- 1. Describe uncertain quantities with random variables and joint probabilities.
- Explain the basic rules of probability sum, product, Bayes', independence and expectation rules.
- 3. Use the common probabilities distributions Bernoulli, categorical, univariate and multivariate normal distributions.
- 4. Explain the use of conjugate distributions.

Acknowledgements

- A lot of slides and content of this lecture are adopted from:
- 1. Simon Prince, "Computer Vision: Models, Learning, and Inference", Chapter 1 and 2.
- 2. Daphne Koller and Nir Friedman, "Probabilistic graphical models", Chapter 2.
- 3. Christopher Bishop, "Pattern Recognition and Machine Learning", Chapter 2.
- 4. MIT Course: Mathematics for CS Readings, Chapter 14 and 18.
- 5. Dr. Lee Gim Hee's CS5340 slides.

The Basics

Events, Outcomes, and Probability

CS5340 :: Harold Soh

Problem: You're not feeling well...

- You're not feeling well and go to the doctor.
- You take a blood test.
- Test comes back <u>positive</u> for rare, fatal disease.
- Should you:
 - A. Skip CS5340 and start planning your funeral?
 - B. Not worry. Be Happy.
 - C. Take the test again (and again) until it comes back negative.
 - D. Ask for more information.

Problem: You're not feeling well...

- You're not feeling well and go to the doctor.
- You take a blood test.
- Test comes back **positive** for *rare*, *fatal* disease.
 - Disease affects 0.1% of the population.
 - Test correctly identifies 99% of the people who have the disease.
 - If you do not have the disease, test may come back positive 2% of the time.

What to do now?

Depends how much you believe whether you have the disease.

What do we **mean** when we say:

- "the probability that I have the rare fatal disease is 90%"
- "the probability of getting an even number when rolling a die is $\frac{1}{2}$ "

Probability Space

- A probability space (Ω, E, P) models a process consisting of outcomes that occur randomly.
- Consists of three parts:
 - Outcome or sample space Ω
 - Event space *E*
 - Probability function $P: E \rightarrow [0,1]$

Outcome and Event Spaces

• Outcome space is an agreed upon space of possible outcomes, denoted by Ω .

Example: Outcomes of a dice roll, $\Omega = \{1,2,3,4,5,6\}$.

• Event space $E \subseteq 2^{\Omega}$ is a subset of the power set of Ω , it is the set of measurable events to which we assign probabilities.

Example: The event space on whether a dice roll is odd or even, $E = \{\emptyset, \{1,3,5\}, \{2,4,6\}, \Omega\}.$

Outcome and Event Spaces

- Event space must satisfy three basic properties:
 - 1. It contains the empty event \emptyset , and the trivial event Ω .
 - 2. It is closed under union, i.e. if $\alpha, \beta \in E$, then so is $\alpha \cup \beta$.
 - 3. It is closed under complement, i.e. if $\alpha \in E$, then so is $\Omega \alpha$.

Outcome Space Ω

(disease, positive)

(disease, negative)

(no disease, positive)

(no disease, negative)

Outcome Space Ω

(disease, positive)

(disease, negative)

(no disease, positive)

(no disease, negative)

Example Event Spaces:

Test is positive or negative

Event Space *E*

Disease or no disease

Event Space *E*

(disease, positive), (disease, negative)} {(no disease, positive), (no disease, negative)}

Outcome Space Ω

(disease, positive)

(disease, negative)

(no disease, positive)

(no disease, negative)

Example Event Spaces:

Event Space E

{(disease, positive)}

{(disease, negative)}

{(no disease, positive)}

{(no disease, negative)}

Question: This event space is incomplete. What other events are missing?

 Ω

Probability Distributions

- A probability distribution P over (Ω, E) is a mapping from events in E to real values that satisfies the following conditions, i.e. axioms of probability:
 - 1. Non-negativity, i.e. $P(\alpha) \ge 0$, $\forall \alpha \in E$.
 - 2. Probability of all outcomes sums to 1, i.e. $P(\Omega) = 1$.
 - 3. Mutually disjoint events: If $\alpha, \beta \in E$ and $\alpha \cap \beta = \emptyset$, then $P(\alpha \cup \beta) = P(\alpha) + P(\beta)$.

CS5340 :: Harold Soh

Random Variables

- A random variable, denoted as *X* (upper case), is the formal machinery for discussing attributes and their values in different outcomes.
- More formally, it is a function $X: \Omega \to S$ that maps a set of possible **outcomes** Ω to a space S
 - S usually a subset of \mathbb{R} , but can be other sets.

Random Variables: 2 Coin Flips

- Independent, Unbiased Coin Flips
- Possible outcomes $\Omega = \{HH, HT, TH, TT\}$
- Random variable to indicate either both heads or both tails

$$X(\omega) = \begin{cases} 1 & \text{if HH or TT} \\ 0 & \text{otherwise} \end{cases}$$

Indicator Random Variables

• Example: 3 independent, unbiased coin flips.

 $\Omega = \{ HHH, TTT, HHT, HTH, HTT, THH, THT, TTH \}$

$$X(\omega) = \begin{cases} 1 & \text{if HHH or TTT} \\ 0 & \text{otherwise} \end{cases}$$

Exercise: Can you come up with a random variable which represents the *number* of heads? How does it relate to the event space?

Indicator Random Variables

- Indicator random variable maps every <u>outcome</u> to either 0 or 1.
- For example: whether you have the disease

$$\Omega = \{(d, \oplus), (\neg d, \oplus), (d, \ominus), (\neg d, \ominus)\}$$

$$X(\omega) = \begin{cases} 1 \text{ if } (d, \oplus) \\ 1 \text{ if } (d, \ominus) \\ 0 \text{ if } (\neg d, \oplus) \\ 0 \text{ if } (\neg d, \ominus) \end{cases}$$

Random Variables

- The set of values that a random variable X can take is denoted as Val(X).
- A lower case letter, e.g. x, is a generic value of a random variable X, a.k.a. realization of the random variable.
 - E.g.: for an indicator random variable, x = 1 or x = 0
- The value of a random variable Val(X) can be:
 - > Discrete, i.e. takes values from a predefined set, or
 - >Continuous, i.e. take values that are real numbers.

Random Variables

Examples:

Random variables with discrete values

- Rolling a six-faced die: $Val(X) = \{1, 2, ..., 6\}$
- Weather conditions: $Val(X) = \{\text{"rain", "cloud", "snow", "sun", "wind"}\}$
- Number of people on the next train: $Val(X) = \mathbb{Z}_{\geq 0}$

Continuous random variables

- Time taken to finish an exam: Val(X) = [1,2] hours
- Height of a tree: $Val(X) = \mathbb{R}_{>0}$
- Ambient Temperature: $Val(X) = \mathbb{R}$

Probabilities & Random Variables

- Interested in the probability of random variables taking on certain values.
 - E.g. the probability of:
 - all heads/tails given 3 independent coin flips
 - the number new COVID-19 patients will be 0
- P(x) is often used as a shorthand notation for P(X = x).
 - Recall: x is a generic value of a random variable X
- We use the notation x^i to represent a specific value of X.

• Discrete: Probability mass function, P(x)

$$\sum_{i=1}^K P(X=x^i)=1$$

$$0 \le P(X = x^i) \le 1, \ \forall i = 1, ... K$$
$$K = |Val(X)|$$

$$Val(X) = \{1,2,3,4,5,6\}$$

• For continuous distributions, we have a problem:

$$P(X = x^i) = 0, \ \forall \ x^i \in Val(X)$$

• Continuous: Probability density function is a function (denoted by a lower case p) p(x): $\mathbb{R} \to \mathbb{R}_{\geq 0}$.

$$\int_{Val(X)} p(x)dx = 1 \qquad p(X = x^i) \ge 0, \quad \forall \ x^i \in Val(X)$$

P(X) is the cumulative function of X:

$$P(X \le a) = \int_{-\infty}^{a} p(x) dx$$
$$P(a \le X \le b) = \int_{-\infty}^{b} p(x) dx$$

Images Source: "Computer Vision: Models, Learning, and Inference", Simon Prince

Back to our Wheel

- What is pdf p(x) if we want uniform?
- Remember: the area under the curve must equal 1

$$\int_{-\infty}^{+\infty} p(x) \, dx = 1$$

$$\int_{-\infty}^{+\infty} p(x) \, dx = \int_{0}^{l} p(x) \, dx$$

$$= \int_0^l c \, dx$$
$$= cl = 1$$

So, we have
$$c = \frac{1}{l}$$

In this course, we abuse notation by denoting both the probability mass function and probability density function as the lower case p(x)

We silently note the property differences in P(x) when X is discrete or continuous.

Probability: Joint Probability

- Consider all combination of events of two random variables X and Y.
- Some combinations of outcomes are more likely than others.

Probability: Joint Probability

- This is captured in the joint probability distribution p(x, y).
- Read as "probability of X and Y".
- Can be more than two random variables, i.e. p(a, b, c, ...).

We can now have:

$$p(x,y) = P(X = x \text{ and } Y = y)$$

Basic Operations

Marginalization, Conditioning, Bayes Rule and Expectations

CS5340 :: Harold Soh

Probability: Joint Probability

- Consider all combination of events of two random variables X and Y.
- Some combinations of outcomes are more likely than others.

Probability: Joint Probability

- This is captured in the joint probability distribution p(x, y).
- Read as "probability of X and Y".
- Can be more than two random variables, i.e. p(a, b, c, ...).

Summary: Sum and Product Rules

• Sum rule:

$$p(x) = \int p(x,y) \, dy$$
$$p(x) = \sum_{y} p(x,y)$$

Product/Chain rule:

$$p(x,y) = p(x|y)p(y)$$

- Recover probability distribution of any variable in a joint distribution by integrating (or summing) over all other variables.
- Also known as the "sum rule" of probability.

Continuous:

$$p(x) = \int p(x, y) dy$$
$$p(y) = \int p(x, y) dx$$

- Recover probability distribution of any variable in a joint distribution by integrating (or summing) over all other variables.
- Also known as the "sum rule" of probability.

Discrete:

$$p(x) = \sum_{y} p(x, y)$$

$$p(y) = \sum_{x} p(x, y)$$

- Recover probability distribution of any variable in a joint distribution by integrating (or summing) over all other variables.
- Also known as the "sum rule" of probability.

Discrete-continuous:

$$p(x) = \sum_{y} p(x, y)$$
$$p(y) = \int p(x, y) dx$$

Works in higher dimensions too!

Example:

$$p(x,y) = \sum_{w} \int p(w,x,y,z) dz$$

- $p(x|Y = y^*)$: "probability of X given Y = y^* ".
- Relative propensity of the random variable X to take different outcomes given that the random variable Y is fixed to value y^* .

- Conditional probability can be extracted from joint probability.
- Extract appropriate slice and normalize (so that the area is 1):

$$P(x|Y = y^*) = \frac{p(x, Y = y^*)}{\int p(x, Y = y^*) dx} = \frac{p(x, Y = y^*)}{p(Y = y^*)}$$

$$P(x|Y = y^*) = \frac{p(x, Y = y^*)}{\int p(x, Y = y^*) dx} = \frac{p(x, Y = y^*)}{p(Y = y^*)}$$

Usually written in compact form:

$$p(x|y) = \frac{p(x,y)}{p(y)}$$

Which can be re-arranged to give:

$$p(x,y) = p(x|y)p(y)$$
 known as "chain rule" or "product rule" of probabilit

known as "chain rule" of probability.

What is the probability I have the disease given the test is positive?

$$p(x,y) = p(x|y)p(y)$$

Works for higher dimensions too!

Example:

$$p(w, x, y, z) = p(w, x, y|z)p(z)$$

$$= p(w, x|y, z)p(y|z)p(z)$$

$$= p(w|x, y, z)p(x|y, z)p(y|z)p(z)$$

Summary: Sum and Product Rules

• Sum rule:

$$p(x) = \int p(x, y) dy$$
$$p(x) = \sum_{y} p(x, y)$$

Product/Chain rule:

$$p(x,y) = p(x|y)p(y)$$

Probability: Bayes' Rule

- Formulated by Reverend Thomas
 Bayes in 1763 in "An Essay towards solving a Problem in the Doctrine of Chances"
- Further developed by Laplace and Jeffreys
- "[Bayes Theorem] is to the theory of probability what the Pythagorean theorem is to geometry"

Sir Harold Jeffreys

Thomas Bayes

Probability: Bayes' Rule

Recall:

$$p(x,y) = p(x|y)p(y)$$

$$p(x,y) = p(y|x)p(x)$$

• Eliminating p(x, y), we get:

$$p(y|x)p(x) = p(x|y)p(y)$$

Thomas Bayes

• Rearranging:

$$p(y|x) = \frac{p(x|y)p(y)}{p(x)} = \frac{p(x|y)p(y)}{\int p(x,y)dy} = \frac{p(x|y)p(y)}{\int p(x|y)p(y)dy}$$

Probability: Bayes' Rule

Terminology:

Likelihood – propensity for observing a certain value of X given a certain value of Y

Prior – what we know about *Y* before seeing *X*

$$p(y|x) = \frac{p(x|y)p(y)}{\int p(x|y)p(y)dy}$$

Posterior – what we know about *Y* after observing *X*

Evidence –a constant to ensure that the left hand side is a valid distribution

Problem: You're sick!

- You're not feeling well and go to the doctor.
- You take a blood test.
- Test comes back <u>positive</u> for rare, fatal disease.
 - Disease affects 0.1% of the population.
 - Test correctly identifies 99% of the people who have the disease.
 - If you do not have the disease, test may come back positive 2% of the time.

$$p(d|\oplus) = \frac{p(\oplus|d)p(d)}{p(\oplus)}$$
$$= \frac{p(\oplus|d)p(d)}{p(\oplus|d)p(d) + p(\oplus|\neg d)p(\neg d)}$$

Problem: You're sick!

- Test comes back <u>positive</u> for rare, fatal disease.
 - Disease affects 0.1% of the population.
 - Test correctly identifies 99% of the people who have the disease.
 - If you do not have the disease, test may come back positive 2% of the time.

$$p(d|\oplus) = \frac{p(\oplus|d)p(d)}{p(\oplus)}$$

$$= \frac{p(\oplus|d)p(d)}{p(\oplus|d)p(d) + p(\oplus|\neg d)p(\neg d)}$$

$$= \frac{0.99 \times 0.001}{0.99 \times 0.001 + 0.02 \times 0.999} = 0.047 < 5\%$$

Probability: Independence

- The independence of *X* and *Y* means that every conditional distribution is the same.
- The value of Y tells us nothing about X and viceversa.

$$p(x|y) = p(x)$$

$$p(y|x) = p(y)$$

•.4

Probability: Independence

• The independence of *X* and *Y* means that every conditional distribution is the same.

• The value of Y tells us nothing about X and viceversa. p(x,y)

$$p(x|y) = p(x)$$

$$p(y|x) = p(y)$$

Probability: Independence

 When variables are independent, the joint factorizes into a product of the marginals:

$$p(x,y) = p(x|y)p(y)$$
$$= p(x)p(y)$$

Probability: Expectation

• The expected or average value of some function f[x] taking into account the distribution of X.

Definition:

$$E[f[x]] = \sum_{x} f[x]p(x)$$
$$E[f[x]] = \int_{x} f[x]p(x)dx$$

Probability: Rules of Expectation

• Rule 1: Expected value of a constant is the constant.

$$E[\kappa] = \kappa$$

• Rule 2: Expected value of constant times function is constant times expected value of function.

$$E[\kappa f[x]] = \kappa E[f[x]]$$

Probability: Rules of Expectation

• Rule 3: Expectation of sum of functions is sum of expectation of functions.

$$E[f[x] + g[x]] = E[f[x]] + E[g[x]]$$

Rule 4: Expectation of product of functions in variables
 X and Y is product of expectations of functions if X and
 Y are independent.

$$E[f[x]g[y]] = E[f[x]]E[g[y]],$$

if X and Y are independent

Probability Problems

Dastardly Decoys and Two Envelopes

CS5340 :: Harold Soh

Problem 1: Dastardly Decoys

Problem 1: Solution

Adapted from "Math for CS", Lehman, Leighton and Meyer

CS5340 :: Harold Soh

66

Monty-Hall Problem in Disguise

2 Envelopes Game

• Team 1:

- Pick 2 different numbers between 0 and 10.
- Write each number on a piece of paper each.
- Turn the papers face down.

• Team 2:

- Objective is to pick the larger number.
- Pick one of the pieces of paper.
- Have a peek at the number.
- Decide: do you keep this number or switch?
- Question: Can Team 2 win more than 50% of the time?

2 Envelopes Game

• Team 1:

- Pick 2 different numbers between 0 and 10.
- Write each number on a piece of paper each.
- Turn the papers face down.

• Team 2:

- Objective is to pick the larger number.
- Pick one of the pieces of paper.
- Have a peek at the number.
- Decide: do you keep this number or switch?
- Question: Can Team 2 win more than 50% of the time? Yes! But How and Why? Tutorial Next Week!

Probability Distributions

Basic distributions and Conjugacy

CS5340 :: Harold Soh

Probability Distributions

- We have seen the definitions of random variables, probability, and rules for manipulating probabilities.
- Question: "How do we assign the values of $p(X = x^i)$?"

"Parametric" Probability Distributions

Q: "How do we assign the probability values?"

A: Use parametric probability distributions defined over some fixed set of parameters.

Example:

Fitting a Normal distribution to the heights of a population:

$$p(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Parameters: mean $\mu = 64$, variance $\sigma^2 = 4$ are learned from data.

Image source: http://www.drcruzan.com/ProbStat Distributions.html

Common Probability Distributions

• The choice of distribution depends on the type/domain of data to be modeled.

Data Type	Domain	Distribution
univariate, discrete,	$x \in \{0, 1\}$	Bernoulli
binary		
univariate, discrete,	$x \in \{1, 2, \dots, K\}$	categorical
multi-valued		
univariate, continuous,	$x \in \mathbb{R}$	univariate normal
unbounded		
univariate, continuous,	$x \in [0, 1]$	beta
bounded		
multivariate, continuous,	$\mathbf{x} \in \mathbb{R}^K$	multivariate normal
unbounded		
multivariate, continuous,	$\mathbf{x} = [x_1, x_2, \dots, x_K]^T$	Dirichlet
bounded, sums to one	$x_k \in [0,1], \sum_{k=1}^K x_k = 1$	
bivariate, continuous,	$\mathbf{x} = [x_1, x_2]$	normal-scaled
x_1 unbounded,	$x_1 \in \mathbb{R}$	inverse gamma
x_2 bounded below	$x_2 \in \mathbb{R}^+$	
multivariate vector \mathbf{x} and matrix \mathbf{X} ,	$\mathbf{x} \in \mathbb{R}^K$	normal
\mathbf{x} unbounded,	$\mathbf{X} \in \mathbb{R}^{K imes K}$	inverse Wishart
${f X}$ square, positive definite	$\mathbf{z}^T \mathbf{X} \mathbf{z} > 0 \forall \ \mathbf{z} \in \mathbb{R}^K$	

Problem: Infectious Agent

- Patient Zero is loose!
- When he comes into contact with someone, the chance he infects them is:
 - $p(Infected upon Contact) = \lambda = 1/5$
- You know he came into contact with n=20 people.
- You want to model the number of people Patient Zero infected.
- Which probability distribution applies to this scenario?
 Assume each contact is independent.
 - Common probability distributions and their applications
 - https://en.wikipedia.org/wiki/Probability_distribution#Common_p robability_distributions_and_their_applications

Bernoulli Distribution

- Binary random variable X, i.e. $x \in \{0,1\}$
- A single parameter $\lambda \in [0,1]$.

$$p(X = 0 | \lambda) = 1 - \lambda$$

 $p(X = 1 | \lambda) = \lambda$

Jacob Bernoulli

Or

$$p(x) = \lambda^{x} (1 - \lambda)^{1-x},$$
$$p(x) = \operatorname{Bern}_{x}[\lambda]$$

Example:

X is the outcome of flipping a coin, X = 1 or represents 'heads', and X = 0 represents 'tails'.

Binomial Distribution

- Discrete random variable X, i.e. $x \in \{0,1,2,...,n\}$
- Two parameters $n \in \{0,1,2,...\}$, $\lambda \in [0,1]$.

$$p(x) = \binom{n}{x} \lambda^{x} (1 - \lambda)^{n - x},$$
$$p(x) = \operatorname{Bin}_{x}[n, \lambda]$$

Jacob Bernoulli

Example:

X is the number of heads when flipping a coin 10 times.

Images source: "https://en.wikipedia.org/wiki/Binomial_distribution", Wikipedia

Categorical Distribution

- Discrete variables X that take on 1-of-K possible mutually exclusive states, e.g. a K-faced die.
- x is represented by a K-dimensional vector \mathbf{e}_k in which one of the elements $x_k = 1$, and $\sum_{k=1}^K x_k = 1$.
- e.g. K = 5, and $\mathbf{x} = \mathbf{e}_3 = [0,0,1,0,0]^T$.
- K parameters $\lambda = [\lambda_1, ..., \lambda_K]^T$, where $\lambda_k \geq 0$, $\sum_k \lambda_k = 1$.

$$p(X = \mathbf{e}_k \mid \lambda) = \lambda_k$$

 \bigcap r

$$p(\mathbf{x}) = \prod_{k=1}^{K} \lambda_k^{x_k} = \lambda_k,$$

$$p(\mathbf{x}) = \operatorname{Cat}_{\mathbf{x}}[\lambda]$$

Univariate Normal Distribution

- Also known as the Gaussian distribution.
- Univariate normal distribution describes single continuous variable X, i.e. $x \in \mathbb{R}$.
- Two parameters $\mu \in \mathbb{R}$ (mean) and $\sigma^2 > 0$ (variance).

Carl Friedrich Gauss

$$p(X = a \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp{-\frac{(a-\mu)^2}{2\sigma^2}}, \ a \in \mathbb{R}$$

Or

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp{-\frac{(x-\mu)^2}{2\sigma^2}}$$
$$p(x) = \text{Norm}_x[\mu, \sigma^2]$$

Multivariate Normal Distribution

- Multivariate normal distribution describes a Ddimensional continuous variable X, i.e. $x \in \mathbb{R}^D$.
- *D*-dimensional mean $\mu \in \mathbb{R}^D$, and $D \times D$ symmetrical positive definite covariance matrix $\Sigma \in \mathbb{R}^{D \times D}_+$.

$$p(X = a \mid \mu, \Sigma) = \frac{1}{(2\pi)^{D/2} |\Sigma|^{1/2}} \exp\{-0.5(a - \mu)^T \Sigma^{-1}(a - \mu)\}, \ a \in \mathbb{R}^D$$

Or

$$p(x) = \frac{1}{(2\pi)^{D/2} |\mathbf{\Sigma}|^{1/2}} \exp\{-0.5(x - \mu)^T \mathbf{\Sigma}^{-1} (x - \mu)\}$$

$$p(\mathbf{x}) = \operatorname{Norm}_{\mathbf{x}}[\boldsymbol{\mu}, \boldsymbol{\Sigma}]$$

Types of Covariance

 Covariance matrix has three forms: spherical, diagonal and full.

Problem: Infectious Agent

- Patient Zero is loose!
- When he comes into contact with someone, the chance he infects them is: $p(\text{Infected upon Contact}) = \lambda = 1/5$ where did this number come from?
- You know he came into contact with n=20 people.
- You want to model the number of people Patient Zero infected.
- Which probability distribution applies to this scenario?
 Assume each contact is independent.
 - Common probability distributions and their applications
 - https://en.wikipedia.org/wiki/Probability_distribution#Common_p robability_distributions_and_their_applications

Learning with Bayes' Rule

Likelihood – propensity for observing the data given a certain parameter θ

Prior – what we know about θ before seeing D

$$p(\theta|D) = \frac{p(D|\theta)p(\theta)}{\int p(D|\theta)p(\theta)d\theta}$$

Posterior – what we know about θ after observing the data D

Conjugate Distributions

- Conjugate distributions can be used to model the parameters of probability distributions.
- Product of a probability distribution and it's conjugate has the same form as the conjugate times a constant.
- Parameters of conjugate distributions are known as hyperparameters because they control the parameter distributions.
- List of conjugate distributions: https://en.wikipedia.org/wiki/Conjugate_prior

Distribution	Domain	Parameters modeled by
Bernoulli	$x \in \{0, 1\}$	beta
categorical	$x \in \{1, 2, \dots, K\}$	Dirichlet
univariate normal	$x \in \mathbb{R}$	normal inverse gamma
multivariate normal	$\mathbf{x} \in \mathbb{R}^k$	normal inverse Wishart

Importance of Conjugate Distributions

Learning the parameters θ of a parametric probability distribution:

Recall the Bayes' Rule:

1. Choose prior that is conjugate to likelihood

$$p(\theta|D) = \frac{p(D|\theta)p(\theta)}{\int p(D|\theta)p(\theta)d\theta}$$

 The posterior will have same form as conjugate prior distribution, i.e. closedform.

Problem: Infectious Agent

- Patient Zero is loose!
- You want to model the uncertainty over the binomial/Bernoulli parameter $\lambda = p(\text{Infected upon Contact})$
- What is the conjugate distribution for λ ? Assume each contact is *independent*.
 - Conjugate Distributions:
 https://en.wikipedia.org/wiki/Conjugate prior

Conjugate Distribution: Beta Distribution

- Conjugate distribution of Bernoulli distribution.
- Defined over parameter of the Bernoulli distribution $\lambda \in [0,1]$.

$$p(\lambda) = \frac{\Gamma[\alpha + \beta]}{\Gamma[\alpha]\Gamma[\beta]} \lambda^{\alpha - 1} (1 - \lambda)^{\beta - 1}$$
$$p(\lambda) = \text{Beta}_{\lambda}[\alpha, \beta]$$

Conjugate Distribution: Beta Distribution

$$p(\lambda) = \frac{\Gamma[\alpha + \beta]}{\Gamma[\alpha]\Gamma[\beta]} \lambda^{\alpha - 1} (1 - \lambda)^{\beta - 1}$$
$$= \frac{1}{B(\alpha, \beta)} \lambda^{\alpha - 1} (1 - \lambda)^{\beta - 1}$$
$$p(\lambda) = \text{Beta}_{\lambda}[\alpha, \beta]$$

Gamma Function:

$$\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt, \quad z \in \mathbb{C}$$

$$\Gamma(n) = (n-1)!, \quad n \in \mathbb{Z}_{>0}$$

$$B(\alpha, \beta) = \frac{\Gamma[\alpha] \Gamma[\beta]}{\Gamma[\alpha + \beta]}$$

$$= \int_{t=0}^1 t^{\alpha - 1} (1 - t)^{\beta - 1}$$

• Two hyperparameters $\alpha, \beta > 0$.

Tutorial: Beta-Binomial

 Show that the Beta distribution is conjugate to the Binomial distribution.

Bernoulli

$$p(x) = \lambda^{x} (1 - \lambda)^{1 - x},$$
$$p(x) = \operatorname{Bern}_{x}[\lambda]$$

Beta

$$p(\lambda) = \frac{\Gamma[\alpha + \beta]}{\Gamma[\alpha]\Gamma[\beta]} \lambda^{\alpha - 1} (1 - \lambda)^{\beta - 1}$$
$$= \frac{1}{B(\alpha, \beta)} \lambda^{\alpha - 1} (1 - \lambda)^{\beta - 1}$$
$$p(\lambda) = \text{Beta}_{\lambda}[\alpha, \beta]$$

Binomial

$$p(x) = \binom{n}{x} \lambda^{x} (1 - \lambda)^{n - x},$$
$$p(x) = \operatorname{Bin}_{x}[n, \lambda]$$

Also:

$$B(\alpha, \beta) = \frac{\Gamma[\alpha]\Gamma[\beta]}{\Gamma[\alpha + \beta]}$$
$$= \int_{t=0}^{1} t^{\alpha - 1} (1 - t)^{\beta - 1}$$

Learning Outcomes

Students should be able to:

- 1. Describe uncertain quantities with random variables and joint probabilities.
- Explain the basic rules of probability sum, product, Bayes', independence and expectation rules.
- 3. Use the common probabilities distributions Bernoulli, categorical, univariate and multivariate normal distributions.
- 4. Explain the use of conjugate distributions.

CS5340 in a nutshell

CS5340 is about how to "represent" and "reason" with uncertainty in a computer.

Representation: The *language* is probability and probabilistic graphical models (PGM).

The language is used to model problems.

Reasoning: We use learning and inference algorithms to answer questions.

e.g., Belief-propagation/sumproduct, MCMC, and variational Bayes

Appendix

More Conjugate Distributions

CS5340 :: Harold Soh

Dirichlet Distribution

Conjugate distribution of categorical distribution.

• Defined over K parameters of Categorical distribution, $\lambda_k \in [0,1]$, where $\sum_k \lambda_k = 1$.

$$p(\lambda_1, \dots, \lambda_K) = \frac{\Gamma[\sum_{k=1}^K \alpha_k]}{\prod_{k=1}^K \Gamma[\alpha_k]} \prod_{k=1}^K \lambda_k^{\alpha_k - 1},$$
$$p(\lambda_1, \dots, \lambda_K) = \text{Dir}_{\lambda_1 \dots K} [\alpha_1, \dots \alpha_K]$$

Peter Gustav Lejeune Dirichlet (1805-1859)

Dirichlet Distribution

$$p(\lambda_1, \dots, \lambda_K) = \frac{\Gamma[\sum_{k=1}^K \alpha_k]}{\prod_{k=1}^K \Gamma[\alpha_k]} \prod_{k=1}^K \lambda_k^{\alpha_k - 1},$$
$$p(\lambda_1, \dots, \lambda_K) = \text{Dir}_{\lambda_1 \dots K} [\alpha_1, \dots \alpha_K]$$

• K hyperparameters $\alpha_k > 0$.

Normal Inverse Gamma Distribution

- Conjugate distribution of univariate normal distribution.
- Defined on parameters $\mu, \sigma^2 > 0$ of univariate normal distribution.

$$p(\mu, \sigma^{2}) = \frac{\sqrt{\gamma}}{\sigma\sqrt{2\pi}} \frac{\beta^{\alpha}}{\Gamma[\alpha]} \left(\frac{1}{\sigma^{2}}\right)^{\alpha+1} \exp\left[-\frac{2\beta + \gamma(\delta - \mu)^{2}}{2\sigma^{2}}\right]$$
$$p(\mu, \sigma^{2}) = \text{NormInvGam}_{\mu, \sigma^{2}}[\alpha, \beta, \gamma, \delta]$$

Images Source: "Computer Vision: Models, Learning, and Inference", Simon Prince

Normal Inverse Gamma Distribution

$$p(\mu, \sigma^2) = \frac{\sqrt{\gamma}}{\sigma\sqrt{2\pi}} \frac{\beta^{\alpha}}{\Gamma[\alpha]} \left(\frac{1}{\sigma^2}\right)^{\alpha+1} \exp\left[-\frac{2\beta + \gamma(\delta - \mu)^2}{2\sigma^2}\right]$$
$$p(\mu, \sigma^2) = \text{NormInvGam}_{\mu, \sigma^2}[\alpha, \beta, \gamma, \delta]$$

• Four hyperparameters α , β , $\gamma > 0$ and $\delta \in \mathbb{R}$.

Normal Inverse Wishart

- Conjugate distribution of multivariate normal distribution.
- Defined on parameters μ , Σ of multivariate normal distribution.

John Wishart (1898-1956)

$$p(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{\gamma^{D/2} |\boldsymbol{\Psi}|^{\alpha/2} \exp[-0.5 \left(\text{Tr} \left[\boldsymbol{\Psi} \boldsymbol{\Sigma}^{-1} \right] + \gamma (\boldsymbol{\mu} - \boldsymbol{\delta})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{\mu} - \boldsymbol{\delta}) \right)]}{2^{\alpha D/2} (2\pi)^{D/2} |\boldsymbol{\Sigma}|^{(\alpha + D + 2)/2} \Gamma_D[\alpha/2]}$$

$$p(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \text{NorIWis}_{\boldsymbol{\mu}, \boldsymbol{\Sigma}}[\alpha, \boldsymbol{\Psi}, \gamma, \boldsymbol{\delta}]$$

• Four hyperparameters: a positive scalar α , a positive definite matrix $\Psi \in \mathbb{R}^{D \times D}_+$, a positive scalar γ , and a vector $\delta \in \mathbb{R}^D$.

Multivariate gamma function:

$$\Gamma_D[a] = \pi^{a(a-1)/4} \prod_{j=1}^a \Gamma[a + (1-j)/2]$$

Normal Inverse Wishart

Samples from Normal Inverse Wishart:

