

# **Binary Search Trees**

SAMUEL GINN COLLEGE OF ENGINEERING

# Binary search trees

A binary search tree is a **binary tree** in which the **search property** holds on *every* node.



# **Binary search trees**

The search property must hold on every node in the tree.



A binary search tree



**NOT** a binary search tree!

# Binary search trees

A binary search tree imposes a **total order** on all its elements.



An inorder traversal: 10, 15, 20, 25, 30, 35, 40, 50, 60, 70







Begin at the root.

Use the search property (total order) of the nodes to guide the search downward in the tree.



#### Recursive

```
boolean search(n, target) {
   if (n == null)
      return false
   else {
      if (n.element == target)
          return true
      else if (n.element > target)
          return search(n.left, target)
      else
          return search(n.right, target)
   }
}
```

#### *Iterative*

```
boolean search(n, target) {
   found = false
   while (n != null) && (!found) {
      if (n.element == target)
            found = true
      else if (n.element > target)
            n = n.left
      else
            n = n.right
   }
   return found
}
```



| <u>target</u> | Number of comparisons |
|---------------|-----------------------|
| 60            | 1                     |
| 80            | 3                     |
| 57            | 4                     |
| 73            | 3                     |
| 59            | 4                     |

The number of comparisons to find a given value is equal to the depth of the node that contains it.

**Worst Case**: Searching for the value in the lowest leaf, in which case the entire **height of the tree** is traversed. (Or searching for a value not in the tree but < or > lowest leaf value.)





Searching a binary search tree is O(height)

\*\bigcup \tall and narrow

\*\log \text{N} short and wide

\( \bigcup \text{N} \)

Binary Search Trees • 9

# Adding values

# Adding values

Use the search algorithm to locate the physical insertion point. ← Exactly one!



New node will always be a new leaf.

Worst case: Inserting a new node as a child of the currently lowest leaf.

O(height)

# Adding values

Add the following values:

27

18

90

61



# Order of insertion and height

**Insert**: 10, 4, 2, 15, 12, 6, 8, 20



height is ~log N

**Insert**: 2, 4, 6, 8, 10, 12, 15, 20



height is N

# Self-check exercise

Insert: 10, 85, 15, 70, 20, 60, 30, 50, 65, 80, 90, 40, 5, 55



# **Removing values**

## Removing values

Use the search algorithm to locate the value to delete.



A worst case: Deleting the currently lowest leaf.

O(height)

Node to delete could be anywhere, not just a leaf.

The number of children that the node has determines how the value gets deleted from the tree.

(Hibbard deletion)

### Removing values

Case 0: The value to delete is in a leaf node.



Set the parent's pointer to this node to null.



**Case 1**: The value to delete is in a node with exactly **one non-empty subtree**.



Set the parent's pointer to this node to this node's child.



Case 2: The value to delete is in a node with two non-empty subtrees.



Don't delete this node! Find a **replacement** for this node's value and delete the node containing the replacement.

## Removing a value with zero children

Delete x by setting to null the parent node's reference to x.



Structural possibilities:





Example:





**Example:** 



Delete 80



# Removing a value with one child Delete x by replacing the parent node's reference to x with a reference to x's child. Structural possibilities: parent Example: Delete 55 **Example:** Delete 75

### Removing a value with two children

Replace the value in x, then delete the node that contained this replacement value.



# Example add and remove sequence Insert 27 Insert 18 Insert 90 Initial tree: (85) Delete 60 (Case 2) Delete 25 (Case 1) Delete 79 (Case 0) Binary Search Trees • 21

#### Balance

## Random adds

If values are added in random order, the tree should stay relatively flat.





Worst-case height is, of course, N but "average" or expected height is much better.

## Random removes

If values are removed in random order, the tree doesn't stay as well-structured.





# Shapes and height

height



Many tree algorithms are dependent to some extent on the tree's height.

#### best-case BST

full

complete



$$h(t) = \lfloor \log_2 n \rfloor + 1$$

worst-case BST



$$h(t) = n$$

balanced BST



$$h(t) = O(\log n)$$

## Self-balancing search trees

There are many different self-balancing search trees.

All SBSTs guarantee that the tree's height is  $O(log\ N)$  in the worst case, and that searching, inserting, and deleting have worst case time complexity  $O(log\ N)$ .

We will discuss:

#### **AVL Trees**



#### **Red-Black Trees**



and a special type ...



#### 2-4 Trees



and a generalization ...

