PRELIMINARY EXAM - Calculus March 27, 2006

Please show all your work and CLEARLY describe your calculations.

1. Find out whether or not the vector fields given below have a potential φ , and find φ if it exists.

(a)
$$V = (2xy^3)\mathbf{i} + (3x^2y^2 - 2yz)\mathbf{j} - y^2\mathbf{k}$$

(b)
$$V = (2x^2y)\mathbf{i} + (3x^2y^2 - 2yz^2)\mathbf{j} - 2y^2z\mathbf{k}$$

2. Show that if S is the surface bounding a volume V and f, g are scalar functions, then

$$\iint_{S} (f(\nabla g \cdot \mathbf{n}) - g(\nabla f \cdot \mathbf{n})) dS = \iiint_{V} (f\nabla^{2}g - g\nabla^{2}f) dV.$$

- 3. Evaluate $\iint_S x^2 y^2 dS$ over the total surface (including the top and bottom) of the cylinder $x^2 + y^2 = a^2$, z = 0, z = h.
- 4. Compute the center of mass of a circular cone with base radius a, and apex at the point $\mathbf{p} = x_0 \hat{\mathbf{i}} + z_0 \hat{\mathbf{k}}$ (see figure), where the mass density is $\rho(x, y, z) = z$.

5. Let $\mathbf{F} = e^{x^2}(1-y^2)\hat{\mathbf{i}} - e^{y^2}(1-x^2)\hat{\mathbf{j}}$, compute

$$\int_{-1}^{1} \int_{-1}^{1} \nabla \times \mathbf{F} \, dx \, dy.$$

6. Find all the critical points of the function $f(x,y) = (2x^2 + 3y^2)e^{-(x^2+y^2)}$ in the domain $-2 \le x, y \le 2$, and determine if they are relative maxima or minima.