

Support Vector Machines in R: a benchmark study

David Meyer

June 26, 2003

Overview

- 1. Support Vector Machines
- 2. libsvm
- 3. The R interface
- 4. Benchmark results
- 5. The EUNITE competition

We are given training data:

$$\{(\mathbf{x}_i, y_i)\}_1^l, \mathbf{x}_i, y_i \in \mathbb{R}^n$$

Suppose the data can be explained by a linear model.

Goal: find a fitting hyperplane $\langle \mathbf{w}, \mathbf{x} \rangle + b = 0$

The distance from the hyperplane to a border is:

$$rac{1}{||\mathbf{w}||}$$

Thus, the margin is given by:

$$\frac{2}{\|\mathbf{w}\|}$$

Goal:

Maximize margin such it will contain all points with errors smaller than an ϵ to be specified.

SV ε-Regression

Formally:

$$\min_{\mathbf{w},b} \frac{\|\mathbf{w}\|^2}{2}$$

under constraints:

$$y_i - \langle \mathbf{w}, \mathbf{x}_i \rangle - b \leq \epsilon$$

 $\langle \mathbf{w}, \mathbf{x}_i \rangle + b - y_i \leq \epsilon$

Handling outliers:

Allow points to be "outside" the margin by using weighths ξ_i :

$$y_{i} - \langle \mathbf{w}, \mathbf{x}_{i} \rangle - b \leq \epsilon + \xi_{i}$$
$$\langle \mathbf{w}, \mathbf{x}_{i} \rangle + b - y_{i} \leq \epsilon + \xi_{i}^{*}$$
$$\xi_{i}, \xi_{i}^{*} \geq 0, i = 1, \dots, l$$

but introduce penalty weight C:

$$\min_{\mathbf{w},b,\xi,\xi^*} \frac{\|\mathbf{w}\|^2}{2} + C \sum_{i=1}^{l} (\xi_i + \xi_i^*)$$

Handling non-linearity:

Map the input data x_i into a (possibly higher dimensional) *feature* space:

$$\mathbf{x}_i \mapsto \phi(\mathbf{x}_i)$$

Thus, the complete optimization problem becomes:

$$\min_{\mathbf{w},b,\xi,\xi^*} \frac{\|\mathbf{w}\|^2}{2} + C \sum_{i=1}^{l} (\xi_i + \xi_i^*)$$

s.t.
$$y_i - \langle \mathbf{w}, \phi(\mathbf{x}_i) \rangle - b \leq \epsilon + \xi_i$$

 $\langle \mathbf{w}, \phi(\mathbf{x}_i) \rangle + b - y_i \leq \epsilon + \xi_i^*$
 $\xi_i, \xi_i^* \geq 0, i = 1, \dots, l$

SV ε-Regression

The Kernel trick:

Find solution using Lagrangian method in the dual form:

$$\min_{\alpha,\alpha*} \quad \frac{1}{2} \sum_{i, j=1}^{l} (\alpha_i - \alpha_i^*)(\alpha_j - \alpha_j^*) \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle$$

$$+ \epsilon \sum_{i=1}^{l} (\alpha_i + \alpha_i^*) + \sum_{i=1}^{l} y_i (\alpha_i + \alpha_i^*)$$
s.t.
$$\sum_{i=1}^{l} (\alpha_i - \alpha_i^*) = 0$$

$$0 \le \alpha_i, \alpha_i^* \le C, \ i = 1, \dots, l$$

The inner product $K(\mathbf{x}_i, \mathbf{x}_j) = \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle$ is called a *Kernel*.

Kernels:

For certain functions ϕ , the inner product can be computed by $K(\mathbf{x}_i, \mathbf{x}_j)$ without explicitly knowing $\phi(\cdot)$.

Some popular kernels:

$$\begin{array}{ll} \text{Polynomial} & \left(\gamma\langle\mathbf{x}_i,\mathbf{x}_j\rangle+\beta\right)^d \\ \text{Radial Basis Function} & \exp\left(-\gamma\|\mathbf{x}_i-\mathbf{x}_j\|^2\right) \\ \text{Sigmoid} & \tanh\left(\gamma\langle\mathbf{x}_i,\mathbf{x}_j\rangle+\beta\right) \end{array}$$

We do have to specify (in addition to C and ϵ) the hyperparameters d, γ , and β : this usually requires tuning.

SV *∈*-Regression

Predicting:

The approximate function is simply:

$$f(x) = \sum_{i=1}^{l} (-\alpha_i + \alpha_i^*) K(x_i, x) + b$$

...a weighted sum (i.e., superposition) of kernel functions.

Chih-Chen Lin's libsvm

- * Starting point: svm light (Joachims, 1998) and Pseudo code for SMO (Platt, 1998)
- * Motivation: bad performance of svm light on complex cases \Rightarrow development of bsvm
- Drawbacks of bsvm: very complex, uses third-party optimization solvers ⇒ simple, usable code: libsvm
- Meanwhile: several extensions and optimizations ⇒ very competitive
- Future development: increase usability ("black box")

Features

- * C and ν classification
- multiclass-classification
- * ϵ and ν regression
- novelty detection
- unbalanced data
- internal sparse data format
- many interfaces (C, Python, Java, Perl, R, MATLAB, ...)

Performance

- * libsvm won several competitions, e.g.:
 - EUNITE 2001 (competition on electricity load prediction)
 - IJCNN Challenge 2001 (two of three competitions)
- very good (fast) quadratic solver (decomposition method), high standard in numerical methods.

The R interface

- # libsvm is a C++ library with standard C interface
- R interface in package e1071 on CRAN
 (http://cran.R-project.org/)
- main functions:
 - training (returning an 'svm' object)
 - predicting
 - tuning (for hyperparameter selection)

Training

Training

```
R> library(e1071)
R > f <- function(x) log(x) + cos(x)
R > x < - seq(0.1, 5, by = 0.05)
R > y < -f(x) + rnorm(x, sd = 0.2)
R> print(svmmodel <- svm(x, y))</pre>
Call:
 svm.default(x = x, y = y)
Parameters:
   SVM-Type: eps-regression
 SVM-Kernel: radial
       cost: 1
      gamma: 1
    epsilon: 0.1
```

Training

Parameter Tuning

```
R> tunemodel <- tune.svm(x, y, gamma = 2^{-4:0}), cost = 2^{-2:2})
R> tunemodel
Parameter tuning of 'svm':
- sampling method: 10-fold cross validation
- best parameters:
 gamma cost
         16
     2.
- best performance: 0.05016086
R> plot(tunemodel)
```


Parameter Tuning

Parameter Tuning

libsvm under test

- No extensive benchmark study available comparing SVMs to many methods on many data sets
- Often only compared to other machine learning techniques (e.g., neural networks)
- * How do SVMs compare to 'traditional' methods (e.g., linear models)?
- * R offers a wide variety of methods, all accessible with a similar interface \Rightarrow easy to use in a benchmark study

Methods

9 regression methods:

Machine Learning Techniques: Neural Networks, Trees

Resample & Combine Methods: Bagged Trees, Random Forests, MART

Spline Models: MARS, BRUTO, Projection Pursuit

'Traditional' Methods: Linear Models

Data sets

Most data sets were taken from the UCI machine learning data base:

- # 12 data sets
- artifical and real data
- * small (167) to large (8192) data sets
- * Mix of binary, categorical, and metric input variables

Simulation Setup

- Generation of 100 training and 100 test sets (for real data, using 10 times 10-fold cross validation)
- Scaling of data
- * Tuning on 2/3 of training set, other 1/3 used for validation
- * Training on complete training set
- Performance measure computed on test set (Mean Squared Error)

Results

- Generally good performance of SVMs (almost always ranked in top 3)
- * However, only ranked first on two data sets
- Average rankings for dispersion
- Good performances by neural networks and random forests

World-wide competition on electricty load prediction (Eastern Slovakia)

Data: loads (every 30min) and temperatures for 2 years (1997 and 1998)

Task: predict maximum load for a whole month (January 1999)

Performance: Mean Average Prediction Error

$$\mathsf{MAPE\%} = 100 \times \sum_{t=1}^{T} \left| \frac{y_t - \widehat{y}_t}{y_t} \right|$$

Load Maxima for 1997 and 1998

Observed Data in January 1999

Data preparation:

- Maximum loads of seven past days
- Seven binary attributes for day of week
- One binary attribute for indicating a holiday
- One attribute for dayly average temperature

After some experiments, some information has been discarded:

- both holiday and temperature
- data in summer time (April–September)

Training:

- 1. Use January, 1998, as test set, rest as training set
- 2. Hyperparameters:
 - * use RBF kernel $(K(x_i, x_j) = \exp{-\gamma ||x_i x_j||^2})$
 - * use $\epsilon = 0.5$ (default)

Predicting:

- 1. Start with loads of last seven days of December, 1998
- 2. Remove first value, add predicted value for next day
- 3. Repeat until all values are predicted

True and Predicted Data for January 1999

Resources

```
* CRAN:
  http://cran.R-project.org/
# libsvm:
  http://www.csie.ntu.edu.tw/~cjlin/libsvm/
* EUNITE:
  http://neuron.tuke.sk/competition/
* Benchmarks:
  http://www.wu-wien.ac.at/am/Download/report78.pdf
 This talk & data sets:
  http://www.ci.tuwien.ac.at/~meyer/svm/
```