DESARROLLO DE LA PRÁCTICA 6. TECNOLOGÍA Y ORGANIZACIÓN DE COMPUTADORES. IMPLEMENTACIÓN Y FUNCIONAMIENTO DE CONTADORES Y GENERADORES DE SECUENCIAS.

6.1.- Contador Síncrono de módulo 10:

Diseñe un contador síncrono descendente módulo 10 que genere la cuenta (en binario) 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 9, 8,

- a) Número de salidas del sistema (m). Como Z_{max} = 9)₁₀ = 1001)₂ se requiere un número m=4 de salidas $Z_3 Z_2 Z_1 Z_0$.
- b) Número de biestables del sistema (p). Como es de módulo 10, para implementar 10 estados se requieren p = 4 biestables con salidas $Q_3 Q_2 Q_1 Q_0$, procedentes de 4 biestables $D_3 D_2 D_1 D_0$ ó $T_3 T_2 T_1 T_0$
- c) Como el número de salidas (m) es igual que el número de biestables (p), m = p = 4, se puede simplificar mucho el diseño, pues, eligiendo adecuadamente los códigos de los estados, se puede hacer que $Z_i = Q_i$

La tabla de excitación del contador, sería pues:

$Q_3 Q_2 Q_1 Q_0$	$Q_3^+ Q_2^+ Q_1^+ Q_0^+$	$D_3 D_2 D_1 D_0$	$T_3T_2T_1T_0$
0 0 0 0	1 0 0 1	1 0 0 1	1 0 0 1
0 0 0 1	0 0 0 0	0 0 0 0	0 0 0 1
0 0 1 0	0 0 0 1	0 0 0 1	0 0 1 1
0 0 1 1	0 0 1 0	0 0 1 0	0001
0 1 0 0	0 0 1 1	0 0 1 1	0 1 1 1
0 1 0 1	0 1 0 0	0 1 0 0	0001
0 1 1 0	0 1 0 1	0 1 0 1	0 0 1 1
0 1 1 1	0 1 1 0	0 1 1 0	0001
1 0 0 0	0 1 1 1	0 1 1 1	1 1 1 1
1001	1000	1000	0001
1010			
1011			
1 1 0 0			
1 1 0 1			
1 1 1 0			
1 1 1 1			

$$D_i = Q_i^+$$

$$T_i = 0 \text{ si } Q_i = Q_i^+; T_i = 1 \text{ si } Q_i \neq Q_i^+$$

Y quedaría expresar D_3 D_2 D_1 D_0 ó T_3 T_2 T_1 T_0 como funciones de Q_3 Q_2 Q_1 Q_0 , minimizadas convenientemente.

6.2.- Generador de secuencia síncrono:

Diseñe un generador de secuencia o secuenciador síncrono que produzca, de forma cíclica (en binario) la siguiente secuencia de salidas: 0, 1, 3, 0, 2, 0, 1, 3, 0, 2

- a) Número de salidas del sistema (m). Como $Z_{max} = 3)_{10} = 11)_2$ se requiere un número m = 2 de salidas $Z_1 Z_0$.
- b) Número de biestables del sistema (p). Como es de módulo 5, para implementar 5 estados se requieren p = 3 biestables con salidas Q_2 Q_1 Q_0 , procedentes de 3 biestables D_2 D_1 D_0 ó T_2 T_1 T_0
- c) Como el número de salidas (m = 2) NO es igual que el número de biestables (p = 3), a priori, ya no se puede hacer un diseño en el que Z_i = Q_i

La tabla de excitación del generador, sería (suponiendo una codificación correlativa para los estados):

$Q_2 Q_1 Q_0$	$Q_2^+ Q_1^+ Q_0^+$	D ₂ D ₁ D ₀	$T_2 T_1 T_0$	$Z_1 Z_0$
0 0 0 0 0 1 0 1 0 0 1 1	0 0 1 0 1 0 0 1 1 1 0 0	0 0 1 0 1 0 0 1 1 1 0 0	0 0 1 0 1 1 0 0 1 1 1 1	0 0 0 1 1 1 0 0
1 0 0 1 0 1 1 1 0 1 1 1	0 0 0	0 0 0	1 0 0	1 0

$$D_i = Q_i^+$$

$$T_i = 0 \text{ si } Q_i = Q_i^+; T_i = 1 \text{ si } Q_i \neq Q_i^+$$

Y quedaría expresar D_2 D_1 D_0 ó T_2 T_1 T_0 y Z_1 Z_0 como funciones de Q_2 Q_1 Q_0 , minimizadas convenientemente.

El diseño sería como el de un contador ascendente de módulo 5 (al que se le han añadido las salidas $Z_1 Z_0$). La codificación de los 5 estados del Generador de Secuencias puede ser la que uno quiera ya que hay muchas combinaciones posibles de asignar los códigos de los 5 estados entre las 8 posibilidades de combinaciones de $Q_2 Q_1 Q_0$.

Por ejemplo, una asignación que permitiría hacer $Z_1 Z_0 = Q_1 Q_0$ podría ser:

$Q_2 Q_1 Q_0$	$Q_2^+ Q_1^+ Q_0^+$	D ₂ D ₁ D ₀	$T_2 T_1 T_0$	$Z_1 Z_0$
0 0 0	0 0 1	0 0 1	0 0 1	0 0
0 0 1	0 1 1	0 1 1	0 1 0	0 1
0 1 0	0 0 0	0 0 0	0 1 0	11
0 1 1	1 0 0	1 0 0	1 1 1	0 0
1 0 0	0 1 0	0 1 0	1 1 0	10
1 0 1				
1 1 0				
1 1 1				

Aunque, seguramente, las funciones D_2 D_1 D_0 ó T_2 T_1 T_0 serían más complicadas que en el caso anterior.