The HD74LS90 contains four master-slave flip-flops and additional gating to provide a divide-by-two counter and three-stage binary counter for divide-by-five. This device has a gated zero reset and also has gated set-to-nine inputs for use in BCD nine's complement applications. To use this maximum count length of this counter the B input is connected to the $\Omega_{\rm A}$ output. The input count pulses are applied to input A and the outputs are descrived in the appropriate function table. A symmetrical divide-by-ten count can be obtained from HD74LS90 counter by connecting the $\Omega_{\rm D}$ output to the A input and applying the input count to the B input which gives a divide-by-ten square wave at output $\Omega_{\rm A}$.

PIN ARRANGEMENT

■BLOCK DIAGRAM

MADSOLUTE MAXIMUM RATINGS

Item	1	Symbol	Ratings	Unit
Supply volta	ge	Vcc	7.0 V	
nput voltage R Inputs A, B Inputs	v	7.0	v	
Input voltage		Vin	5.5	v
Operating temperature	erature range	Topr	-20~+75	c
Storage temper			-65~+150	°C

FUNCTION TABLE

Reset/Count Function Table

	Reset	Inputs]		Out	puts			
R0(1)	Ro(2)	R9(1)	R9(2)	Qυ	Qc	Qв	QA		
Н	Н	L	×	L	L	L	L		
Н	Н	×	L	L	L	L	L		
×	×	Н	Н	Н	L	L	Н		
×	L	×	L		Со	unt	•		
L	×	L	×	Count					
L	×	×	L	Count					
×	L	L	×		Со	unt			

BCD Count Sequence(Notes1) Bi-Quinary Count Sequence(Notes2)

<u> </u>		Out	puts	
Count	Qυ	Qc	Qв	$\mathbf{Q}_{\mathbf{A}}$
0	L	L	L	L
1	L	L	L	Н
2	L	L	Н	L
3	L	L	Н	Н
4	L	Н	L	L
5	L	Н	L	Н
6	L	Н	Н	L
7	L	Н	Н	Н
8	Н	L	L	L
9	Н	L	L	Н

	Qut	puts	
QΑ	Qυ	Qс	Qв
L	L	L	L
L	L	L	Н
L	L	Н	L
L	L	Н	Н
L	Н	L	L
Н	L	L	L
Н	L	L	Н
Н	L	Н	L
Н	L	Н	Н
Н	Н	L	L
	L L L L H H	QA QD L L L L L L L L L H H L H L H L H L H L H L	QA Qb Qc L L L L L L L L H L H L H L L H L L H L H H L H H L H

- Notes) 1. Output QA is connected to input B for BCD count.
 - 2. Output QD is connected to input A for Bi-quinary count.
 - 3. H; high level, L; low level, X; irrelevant.

ERECOMMENDED OPERATING CONDITIONS

Ite	m	Symbol	min	typ	max	Unit	
Count A input			0		32	MHz	
frequency	B input	Symbol fcount tw	0	_	16	MITIZ	
Pulse width	A input	t _{sc}	15			ns	
	B input		30	_	_		
	Reset inputs		15	-	-		
Setup time	-	teu	25	_	-	ns	

TIMING DEFINITION

ELECTRICAL CHARACTERISTICS ($Ta = -20 \sim +75^{\circ}C$)

	Item	Symbol	Test Conditions				typ*	max	Unit
T . 1.		ViH				2.0	_	_	V
Input volta	age	VIL					-	0.8	v
		Vон	$V_{CC}=4.75V$	$V_{IH}=2V, \ V_{IL}=0.8V, I_{I}$	$o_H = -400 \mu A$	2.7	_	_	V
Output vo	ltage	.,	$V_{CC} = 4.75 \text{V}, V_{IH} = 2 \text{V}, V_{IL} = 0.8 \text{V}$ $I_{OL} = 4 \text{mA}^{\bullet \bullet}$		_		0.4	v	
		Vol	VCC = 4.75 V,	$Io L = 8 \text{mA}^{\bullet \bullet}$		-	_	0.5	\ \ \
	Any Reset					-	-	-0.4	
	A input	IIL	$V_{CC} = 5.25 \text{ V},$	$V_l = 0.4 \text{V}$		_	_	-2.4	mA
	B input					-	-	-3.2	
T	Any Reset					_	_	20	
Input current	A input	Iн	$V_{CC}=5.25V$	$V_I = 2.7 \text{V}$		_	-	40	μA
	B input			$V_{cc} = 5.25 \text{V}, V_i = 2.7 \text{V}$		_	_	80	
	Any Reset			$V_I = 7 \text{ V}$		-	_	0.1	
	A input	Iı	$V_{CC} = 5.25 \text{V}$	$V_I = 5.5 \text{V}$		_	_	0.2	mA
	B input			V/-5.5V		_	_	0.4	
Short-cir	cuit output current	los	$V_{CC} = 5.25 \text{V}$			- 20	_	-100	mА
Supply cu	rrent * * *	Icc	$V_{CC} = 5.25 \text{V}$				9	15	mA
Input clam	np voltage	Vik	Vcc = 4.75V	$I_{IN} = -18 \text{mA}$			-	-1.5	V

^{*} V_{CC}=5V, Ta=25°C

ESWITCHING CHARACTERISTICS ($V_{cc}=5V$, $T_a=25^{\circ}C$)

Item	Symbol	Inputs	Outputs	Test Conditions	min	typ	max	Unit
Maximum count frequency		A	Q۸	·	32	42	-	MHz
Maximum count frequency	fmax	В	Qв		16	-	_	МП
	tplh	A				10	16	ns
	tPHL	^	Q _A		_	12	18	
	tPLH	В	QD		_	32	48	
	tPHL] В	QD .			34	50	ns
	tplh	В	Qв	$C_L = 15 \mathrm{pF},$ $R_L = 2 \mathrm{k} \Omega$	-	10	16	ns
Propagation delay time	tphL				_	14	21	
	tplh	В	Qc		_	21	32	
	tPHL.	_ B	Q €	AL — ZKW		23	35	ns
	tрLн	В	Q _D		- 21		32	
	tPHL		d D ∫		-	23	35	ns
	ter u	Set-to-0	QA~QD		-	26	40	ns
		Set-to-9	QA, QD		-	20	30	
	tphL	Set-10-9	Qв, Qc		-	26	40	ns

^{**} Q_A output is tested at specified I_{OL} plus the limit value of I_{IL} for the B input. This permits driving the B input while maintaining full fan out capability.

^{***} I_{CC} is measured with all outputs open, both R_o inputs grounded following momentary connection to 4.5V, and all other inputs grounded.

TESTING METHOD

	*.	From input		lnp	uts			∷ Oüt	puts	
	Item	to output	A	В	Ro	R9	QA	Qв	Qc	Qυ
		A→Q	IN	to QA	GND	GND	Out	Out	Out	Out
RL Load circuit 1	fmax	B→Q	4.5V	IN	GND	GND	_	Out	Out	Out
∡⋈∫ЫЫЫ		A→Q _A	IN	to QA	GND	GND	Out		_	_
# C1		A→Qn	IN	to QA	GND	GND	-	-	_	Out
Same as Load Circuit 1.		B→QB	4.5V	IN ·	GND	GND	_	Out		-
Same as Load Circuit 1.	tplh	B→Qc	4.5V	IN	GND	GND	-	-	Out	-
Same as Load Circuit 1.	tphl	B→QD	4.5V	IN	GND	GND	-	-	-	Ou
Same as Load Circuit 1.		R8→Q	IN*	to QA	IN	GND	Out	Out	Out	Ou
		R³≛Q	IN*	to QA	GND	IN	Out	Out	Out	Ou

*; For initialized

HL≦6ns,

pacitance.

(Measure at fa-2)

tern (Measure at face)

IFEL (Measure at taxe)

,≤5ns, *PRR*=1MHz,

 $t_{TLH} = t_{THL} \le 2.5 \text{ ns.}$ I outputs are low.

Testing Table P.G. Zout = 50Ω Ses

Notes) 1. Input pulse; $t_{TLH} \le 15$ ns. t_{TLH}

- C_L includes probe and jig community
 All diodes are 1S2074 .

Waveform-2 tPHL(Ro→Q)

Notes) 1. $t_{TLH} \le 15 \text{ ns}, t_{THL} \le 5 \text{ ns}.$

Notes) 1. Input pulse; $t_{TLH} \le 15 \text{ ns}$, t_{THH} duty cycle=50% and: for f_{max}

2. In is reference bit time when a

(2) HITACHI

QA,QD

^{**;} Measured with each input and unused inputs at 4.5V.

PACKAGING INFORMATIONS

T-90-20

Factory orders for circuits described in this databook should include a three-part type number as explained in the following example.

■Plastic DIP

●14 Pin

●16 Pin

●20 Pin

●24 Pin

PACKAGING INFORMATIONS

■Cerdip

●14 Pin

●16 Pin

●20 Pin

●24 Pin

