LÍNULEG ALGEBRA A

Lausnir á skilaverkefni 10

(Lausnir á dæmum 1, 2, 3, 4 og 5 af vikublaði 12)

13. nóvember 2015

Dæmi 1. (Úr lokaprófi 2014) Setjum $\mathbf{A} = \begin{bmatrix} 3 & 2 \\ 6 & -1 \end{bmatrix}$

- (i) Finnið eigingildi fylkisins **A**.
- (ii) Finnið grunn fyrir sérhvert af eiginrúmum fylkisins A.
- (iii) Gerið grein fyrir að fylkið A sé hornalínugeranlegt.
- (iv) Finnið rauntölur a og b sem uppfylla skilyrðið

$$\mathbf{A}^{103} \begin{bmatrix} 2 \\ -2 \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix}$$

LAUSN. (i) $\operatorname{Det}(\mathbf{A} - t\mathbf{I}) = \operatorname{Det}\begin{bmatrix} 3-t & 2 \\ 6 & -1-t \end{bmatrix} = (3-t)(-1-t)-12 = (t-5)(t+3)$ svo að eigingildi fylkisins \mathbf{A} eru tölurnar -3 og 5.

(ii) Eiginrúm eigingildisins -3 er hlutrúmið Null $\begin{pmatrix} 6 & 2 \\ 6 & 2 \end{pmatrix} = \operatorname{Span} \begin{pmatrix} 1 \\ -3 \end{pmatrix}$, sem hefur grunninn $\left\{ \begin{bmatrix} 1 \\ -3 \end{bmatrix} \right\}$.

Eiginrúm eigingildisins 5 er hlutrúmið Null $\begin{pmatrix} \begin{bmatrix} -2 & 2 \\ 6 & -6 \end{bmatrix} \end{pmatrix} = \operatorname{Span} \begin{pmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \end{pmatrix}$, sem hefur grunninn $\left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$.

- (iii) Eiginvigrarnir $\begin{bmatrix} 1 \\ -3 \end{bmatrix}$ og $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ mynda grunn fyrir \mathbb{R}^2 svo að \mathbf{A} er hornalínugeranlegt.
- (iv) Tökum eftir að $\begin{bmatrix}2\\-2\end{bmatrix}=\begin{bmatrix}1\\-3\end{bmatrix}+\begin{bmatrix}1\\1\end{bmatrix}. \text{ Af því leiðir að }$

$$\mathbf{A}^{103} \begin{bmatrix} 2 \\ -2 \end{bmatrix} = \mathbf{A}^{103} \begin{bmatrix} 1 \\ -3 \end{bmatrix} + \mathbf{A}^{103} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = (-3)^{103} \begin{bmatrix} 1 \\ -3 \end{bmatrix} + 5^{103} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -3^{103} + 5^{103} \\ 3^{104} + 5^{103} \end{bmatrix}.$$

Við fáum þar með $a = 5^{103} - 3^{103}$ og $b = 5^{103} + 3^{104}$.

Dæmi 2. Sýnið fyrst að fylkin

$$\mathbf{A} = \begin{bmatrix} -1 & 4 & 2 \\ -1 & 3 & 1 \\ -1 & 2 & 2 \end{bmatrix} \qquad \text{og} \qquad \mathbf{B} = \begin{bmatrix} 0 & 3 & 1 \\ -1 & 3 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

hafi sömu kennimargliðu og gerið síðan grein fyrir að annað þeirra sé hornalínugeranlegt en hitt ekki.

Lausn. Við eftirlátum lesendum að ganga úr skugga um að

$$P_{\mathbf{A}}(t) = P_{\mathbf{B}}(t) = -(t-2)(t-1)^2.$$

Við sjáum að algebruleg margfeldni eigingildisins 2 er einn en algebruleg margfeldni eigingildisins 1 er tveir.

Reiknum fyrst út rúmfræðilega margfeldni eigingildisins 1 fyrir fylkið ${\bf A}$. Einfaldir útreikningar sýna að fylkið

$$\mathbf{A} - \mathbf{I} = \begin{bmatrix} -2 & 4 & 2 \\ -1 & 2 & 1 \\ -1 & 2 & 1 \end{bmatrix}$$

er línujafngilt fylkinu $\begin{bmatrix} 1 & -2 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ og út frá því sjáum við að Rank $(\mathbf{A} - \mathbf{I}) = 1$ og

þar með fæst:

(Rúmfræðileg margfeldni eigingildisins 1 fyrir fylkið $\bf A)= {\rm Dim}({\rm Null}({\bf A}-{\bf I}))=3-{\rm Rank}({\bf A}-{\bf I})=3-1=2.$ Þar með er fylkið $\bf A$ hornalínugeranlegt samkvæmt setningu 21.1.6.

Reiknum nú út rúmfræðilega margfeldni eigingildisins 1 fyrir fylkið ${\bf B}$. Einfaldir útreikningar sýna að fylkið

$$\mathbf{B} - \mathbf{I} = \begin{bmatrix} -1 & 3 & 1 \\ -1 & 2 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

er línujafngilt fylkinu $\begin{bmatrix} 1 & 3 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \ \text{og út frá því sjáum við að} \ \text{Rank}(\mathbf{B}-\mathbf{I})=2 \ \text{og}$

bar með fæst:

(Rúmfræðileg margfeldni eigingildisins 1 fyrir fylkið \mathbf{B}) = Dim(Null($\mathbf{B} - \mathbf{I}$)) = $3 - \mathrm{Rank}(\mathbf{B} - \mathbf{I})$ = 3 - 2 = 1. Þar með er fylkið \mathbf{B} ekki hornalínugeranlegt samkvæmt setningu 21.1.6.

Dæmi. 3. [Úr prófi vorið 2003] Segið til um hvort fylkið

$$A = \left[\begin{array}{cc} 5 & 1 \\ 0 & 5 \end{array} \right]$$

er hornalínugeranlegt.

LAUSN. Fylkið er hornalínugeranlegt þá og því aðeins hægt sé að finna grunn fyrir \mathbb{R}^2 þar sem vigarnir eru eiginvigrar fylkisins.

Kennimargliða fylkisins **A** er

$$P_{\mathbf{A}}(t) = \operatorname{Det}(\mathbf{A} - tI) = \operatorname{Det}\begin{bmatrix} 5 - t & 1\\ 0 & 5 - t \end{bmatrix} = (5 - t)^2$$

og kenniafnan $P_{\mathbf{A}}(t)=0$ hefur bara lausnina t=5, sem er þá eina eigingildi fylkisins $\mathbf{A}.$

Eiginrúm eigingildisins er núllrúm fylkisins $\mathbf{A} - 5\mathbf{I} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, en það er greinilega spannað af vigrinum $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$. Þar með er ljóst að ekki er unnt að finna tvo línulega óháða eiginvigra fylkisins \mathbf{A} . Fylkið er því ekki hornalínugeranlegt.

ATHUGASEMD. Rúmfræðileg margfeldni eigingildisins 5 er einn, en algebruleg margfeldni þess er tveir.

Dæmi 4. Gerið grein fyrir að fylkið

$$\mathbf{A} = \begin{bmatrix} 1 & -4 & 2 \\ -4 & 16 & 5 \\ 0 & 0 & -3 \end{bmatrix}.$$

sé hornalínugeranlegt. Finnið síðan andhverfanlegt fylki \mathbf{P} sem hefur þann eiginleika að $\mathbf{P}^{-1}\mathbf{AP}$ er hornalínufylki.

Lausn. Finnum eigingildi A. Kennimargliða fylkisins er

$$Det(A - \lambda I) = Det \begin{bmatrix} 1 - \lambda & -4 & 2 \\ -4 & 16 - \lambda & 5 \\ 0 & 0 & -3 - \lambda \end{bmatrix}$$

$$= (-3 - \lambda)Det \begin{bmatrix} 1 - \lambda & -4 \\ -4 & 16 - \lambda \end{bmatrix}$$
 (liðun eftir neðstu línu)
$$= (-3 - \lambda)((1 - \lambda)(16 - \lambda) - 16)$$

$$= (-3 - \lambda)(\lambda^2 - 17\lambda)$$

$$= (-3 - \lambda)(\lambda - 17)\lambda.$$

Eigingildin eru $\lambda_1=17,\,\lambda_2=-3$ og $\lambda_3=0$. Samkvæmt setningu 19.1.7 er fylkið hornalínugeranlegt þar sem það hefur þrjú innbyrðis ólík eigingildi. Finnum nú tilheyrandi eiginrúm.

Eiginrúmið sem tilheyrir eigingildinu 17 er núllrúm fylkisins

$$\begin{bmatrix} -16 & -4 & 2 \\ -4 & -1 & 5 \\ 0 & 0 & -20 \end{bmatrix}$$

en fljótséð er að vigurinn $\begin{bmatrix} 1\\ -4\\ 0 \end{bmatrix}$ spannar það.

Eiginrúmið sem tilheyrir eigingildinu 0 er núllrúm fylkisins ${\bf A}$ en fljótséð er að vigurinn $\begin{bmatrix} 4\\1\\0 \end{bmatrix}$ spannar það.

Eiginrúmið sem tilheyrir eigingildinu -3 er núllrúm fylkisins

$$\begin{bmatrix} 4 & -4 & 2 \\ -4 & 19 & 5 \\ 0 & 0 & 0 \end{bmatrix}$$

en fljótséð er að vigurinn $\begin{bmatrix} -29 \\ -14 \\ 30 \end{bmatrix}$ spannar það.

Setjum nú
$$\mathbf{P} = \begin{bmatrix} 1 & 4 & -29 \\ -4 & 1 & -14 \\ 0 & 0 & 30 \end{bmatrix}$$
 og fáum

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \begin{bmatrix} 17 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -3 \end{bmatrix}.$$

Dæmi 5.

(a) Er hlutmengið

$$S = \{ \mathbf{A} \in \mathbb{R}^{n \times k} ; \mathbf{A} \mathbf{A}^T = \mathbf{O} \}$$

hlutrúm í vigurrúminu $\mathbb{R}^{n \times k}$?

(b) Er hlutmengið

$$S = {\mathbf{A} \in \mathbb{R}^{n \times n} ; \operatorname{Det}(\mathbf{A} + k\mathbf{I}) = 0, \text{ fyrir } k = 1, 2, 3 \dots}$$

hlutrúm í vigurrúminu $\mathbb{R}^{n \times n}$?

(c) Látum C[-1,1] tákna vigurrúm allra samfelldra falla á bilinu [-1,1]. Er hlutmengið

$$S = \{ f \in C[-1, 1] ; f^{-1}[\{0\}] = \{0\} \}$$

hlutrúm í C[-1,1]?

LAUSN. (a) Tökum eitthvert fylki \mathbf{A} úr S og táknum línur þess $\mathbf{r}_1, \dots \mathbf{r}_n$. Þá hefur $n \times n$ fylkið $\mathbf{A}\mathbf{A}^T$ stökin $\|\mathbf{r}_1\|^2, \dots, \|\mathbf{r}_n\|^2$ á hornalínunni og þau eru öll núll vegna þess að $\mathbf{A}\mathbf{A}^T = \mathbf{O}$. Þar með er \mathbf{A} núllfylkið. Af þessu sést að $S = \{\mathbf{O}\}$ svo vissulega er S hlutrúm í vigurrúminu $\mathbb{R}^{n \times k}$.

- (b) Núllfylkið er ekki í S,svo að $S\,$ er ekki hlutrúm. (Reyndar er $\,S=\emptyset.)\,$
- (c) Núllfallið er ekki í $\,S\,$ svo að $\,S\,$ er ekki hlutrúm.