

MAT-1910 : Mathématiques de l'ingénieur II Examen 1 $\left(33\frac{1}{3}\%\right)$ Vendredi le 10 février 2017 de 18h30 à 20h20

Section A : Robert Guénette Section B : Hugo Chapdelaine Section C : Alexandre Girouard

Identification

Prénom:	Nom :
N° de dossier	SECTION:

Résultats

Question:	1	2	3	4	5	Total
Points:	20	20	20	20	20	100
Note :						

Directives

- Veuillez désactiver la sonnerie de vos appareils électroniques et les ranger hors de portée.
- Vous avez droit à un aide-mémoire manuscrit d'une feuille $8^{"}\frac{1}{2}$ par $11^{"}$ recto-verso.
- Sauf avis contraire, vous devez rédiger des solutions complètes et justifiées.
- Sauf avis contraire, vous devez donner des réponses exactes, et par conséquent vous ne pouvez pas approximer les quantités qui interviennent dans vos calculs.
- Vérifiez que le questionnaire comporte 5 questions réparties sur 10 pages.
- Vous avez droit à une calculatrice autorisée par la faculté des sciences et génie.

Évaluation des qualités

Qualités
1.1.1 Compréhension des notions mathématiques : questions 1 et 2
1.1.2 Capacité à résoudre des problèmes mathématiques : questions 3 et 4
1 1 3 Capacité à interpréter et à utiliser la terminologie appropriée : question 5

Question 1 (20 points)

(6) (a) Représenter graphiquement le domaine d'intégration parcouru par la somme des deux intégrales doubles suivante :

$$\int_0^1 \int_0^1 x \sin\left(\frac{4y^3}{3} + y\right) dy dx + \int_1^{\sqrt{5}} \int_{\frac{1}{2}\sqrt{x^2 - 1}}^1 x \sin\left(\frac{4y^3}{3} + y\right) dy dx. \tag{1}$$

- (8) (b) Réécrire la somme (1) comme une seule intégrale double itérée.
- (6) (c) Évaluer l'intégrale double trouvée en (b).

Question 2 (20 points)

On considère la région D dans le demi-plan $x \ge 0$ située à l'intérieur du cercle d'équation $x^2 + y^2 = 1$ et délimitée par la courbe polaire $r = 2\cos(2\theta)$.

- (6) (a) Calculer les coordonnées polaires des deux points d'intersection P_1 et P_2 du cercle avec la courbe polaire.
- (14) (b) Calculer l'aire de la région D, c'est-à-dire la région ombragée ci-contre.

Question 3 (20 points)

Un solide homogène S de densité égale à 1 est obtenu en perçant dans un cône tronqué de surface latérale $z=5-2\sqrt{x^2+y^2},\ z\in[1,3]$ un trou cylindrique de même axe et de rayon 1.

(6) (a) Écrire l'intégrale triple itérée suivant l'ordre $dzdrd\theta$ en coordonnées cylindriques pour calculer le moment d'inertie par rapport à l'axe z (Ne pas évaluer)

$$J_z = \iiint_S x^2 + y^2 \ dV.$$

- (6) (b) Écrire l'intégrale triple itérée suivant l'ordre $drdzd\theta$ en coordonnées cylindriques pour calculer J_z . (Ne pas évaluer)
- (8) (c) Évaluer le moment d'inertie J_z du solide S.

Question 4 (20 points)

On considère un solide S qui est délimité par les surfaces décrites en coordonnées sphériques par les équations suivantes :

$$\rho = 2\cos(\phi), \quad \phi = \pi/2, \quad \rho = 2.$$

- (6) (a) Décrire les surfaces qui délimitent le solide.
- (8) (b) Écrire son volume sous la forme d'une intégrale itérée en coordonnées sphériques.
- (6) (c) Calculer ce volume.

Question 5 (20 points)

Pour chacune des questions suivantes, encercler la bonne réponse.

- 1. L'intégrale de la fonction définie par f(x,y,z)=xy+xz+yz sur une boule de rayon 1 centrée à l'origine est :
 - (a) 0,
 - (b) 1,
 - (c) 3,
 - (d) 3π .
- 2. En coordonnées sphériques, l'équation $\phi = \pi/4$ décrit
 - (a) un cercle,
 - (b) un cône,
 - (c) un plan,
 - (d) un cylindre,
 - (e) aucune de ces réponses.
- 3. En coordonnées cylindrique, l'équation $\theta=\pi/2$ décrit
 - (a) un cercle,
 - (b) un cône,
 - (c) un cylindre,
 - (d) aucune de ces réponses.
- 4. L'intégrale $\int_{-1}^{4} \int_{y+1}^{5} e^{x^2} dxdy$ est
 - (a) impossible à évaluer car la fonction e^{x^2} n'admet pas de primitive élémentaire,
 - (b) égale à $\frac{1}{2}(e^{25}-1)$,
 - (c) égale à -2,
 - (d) égale à 2,
 - (e) aucune de ces réponses.
- 5. Le point de coordonnées cartésiennes (1,1,1) est représenté en coordonnées sphériques par
 - (a) $\rho = \sqrt{3}$, $\phi = \arctan(\sqrt{2})$, $\theta = \pi/2$,
 - (b) $\rho = \sqrt{3}$, $\phi = \arctan(\sqrt{2})$, $\theta = \pi/4$,
 - (c) $\rho = 3$, $\phi = \arctan(\sqrt{2})$, $\theta = \pi/4$,
 - (d) $\rho = \sqrt{3}$, $\phi = \pi/6$, $\theta = \pi/4$.