Relación de ejercicios 4.2

1. Utilice el símbolo \sum para expresar las siguientes sumas. Tenga en cuenta que en los últimos apartados, se indica cual debe ser el primer valor del índice.

a)
$$\frac{6}{2-1} + \frac{8}{3-1} + \frac{10}{4-1} + \dots + \frac{22}{10-1}$$

b)
$$1^{10} + 2^9 + 3^8 + \dots + 10^1$$

c)
$$1+3+5+\cdots+(2n-1)=\sum_{k=1}^{n}$$

d)
$$\frac{n}{n+1} + \frac{n}{n+2} + \dots + \frac{n}{n+n} = \sum_{k=3}^{n} \frac{n}{n+1} + \dots + \frac{n}{n+n} = \dots + \frac{n}{n+n} = \sum_{k=3}^{n} \frac{n}{n+1} + \dots + \frac{n}{n+n} = \sum_{k=3}^{n} \frac{n}{n+1} + \dots + \frac{n}{n+n} = \sum_{k=3}^{n} \frac{n}{n+1} + \dots + \frac{n}{n+n} = \sum_{k=3}^{n} \frac{n}{n+n} = \sum$$

Solución

a)
$$\sum_{n=2}^{10} \frac{2n+2}{n-1}$$
 b) $\sum_{n=1}^{10} n^{11-n}$

b)
$$\sum_{n=1}^{10} n^{11-n}$$

c)
$$\sum_{k=1}^{n} 2k - 1$$

c)
$$\sum_{k=1}^{n} 2k - 1$$
 d) $\sum_{k=3}^{n+2} \frac{n}{n+k-2}$

2. Sume las siguientes series simplificando la sucesión de sumas parciales.

a)
$$\sum_{n=2}^{\infty} \frac{1}{2n(n^2 - 1)}$$

b)
$$\sum_{n=1}^{\infty} \log \left(\frac{(n+1)^2}{n(n+2)} \right)$$

Solución

a)
$$\sum_{n=2}^{\infty} \frac{1}{2n(n^2 - 1)} = \sum_{n=2}^{\infty} \frac{-1/2}{n} + \frac{1/4}{n+1} + \frac{1/4}{n-1}$$

$$\lim S_n = \lim \frac{1}{8} + \frac{1/4}{n} - \frac{1/2}{n} + \frac{1/4}{n+1} = \boxed{\frac{1}{8}}$$

b)
$$\sum_{n=1}^{\infty} \ln \frac{(n+1)^2}{n(n+2)} = \sum_{n=1}^{\infty} \ln(n+1) + \ln(n+1) - \ln(n) - \ln(n+2)$$

$$\lim S_n = \lim \ln 2 + \ln \frac{n+1}{n+2} = \boxed{\ln 2}$$

3. Determine si las siguientes series son geométricas y súmelas, cuando sea posible.

a)
$$\sum_{n=1}^{\infty} \frac{2}{3^n}$$
 b) $\sum_{n=1}^{\infty} \frac{2}{n^3}$ c) $\sum_{n=0}^{\infty} (-2)^n \frac{3^{2n}}{9^{2n-1}}$ d) $\sum_{n=2}^{\infty} \frac{(-3)^{n-1}}{e^{n+1}}$

Solución

$$a) \ \sum_{n=1}^{\infty} \frac{2}{3^n} = \sum_{n=1}^{\infty} 2\left(\frac{1}{3}\right)^n \quad \longrightarrow \quad \text{serie geométrica de razón } 1/3.$$

Otra forma de probar que es una serie geométrica sería comprobando que el cociente a_{n+1}/a_n es constante (razón):

$$|r| = \left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{2/3^{n+1}}{2/3^n} \right| = \left| \frac{1}{3} \right| < 1 \longrightarrow \text{convergente}$$

Como el primer término es 2/3, entonces su suma es

$$\sum_{n=1}^{\infty} \frac{2}{3^n} = \frac{2/3}{1 - 1/3} = 1$$

b) La serie $\sum_{n=1}^{\infty} \frac{2}{n^3}$ no es geométrica pues a_{n+1}/a_n no es constante:

$$\frac{a_{n+1}}{a_n} = \frac{2/(n+1)^3}{2/n^3} = \frac{n^3}{(n+1)^3}$$

 $c) \; \sum_{n=0}^{\infty} (-2)^n \frac{3^{2n}}{9^{2n-1}}$ es una serie geométrica de razón r=-2/9

$$|r| = \left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{-2}{9} \right| < 1 \longrightarrow \text{convergente}$$

y cuyo primer término es 9. Por lo tanto, su suma es

$$\sum_{n=0}^{\infty} (-2)^n \frac{3^{2n}}{9^{2n-1}} = \frac{9}{1 - (-2/9)} = \frac{81}{11}$$

d) La serie $\sum_{n=2}^{\infty}\frac{(-3)^{n-1}}{\mathrm{e}^{n+1}}$ es geométrica pero no converge porque la razón, en módulo, es mayor que 1:

$$|r| = \left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{-3}{e} \right| > 1 \longrightarrow \text{divergente}$$

4. Determine cuáles de las siguientes series son aritmético-geométricas y sume las que sean convergentes siguiendo el método descrito en los apuntes.

$$a) \quad \sum_{n=0}^{\infty} \frac{2n-1}{3^n}$$

b)
$$\sum_{n=2}^{\infty} (2n-1)e^n$$

Solución

$$a) \sum_{n=0}^{\infty} \frac{2n-1}{3^n} = \sum_{n=0}^{\infty} (2n-1) \left(\frac{1}{3}\right)^n \text{ es una serie aritmético-geométrica}$$
 que converge pues $\left|\frac{1}{3}\right| < 1$, y calculamos su suma así:

$$S_{n} = -1 + \frac{1}{3} + \frac{3}{3^{2}} + \frac{5}{3^{3}} + \dots + \frac{2n-1}{3^{n}}$$

$$\frac{1}{3}S_{n} = \frac{-1}{3} + \frac{1}{3^{2}} + \frac{3}{3^{3}} + \dots + \frac{2n-3}{3^{n}} + \frac{2n-1}{3^{n+1}}$$

$$\frac{2}{3}S_{n} = -1 + \frac{2}{3} + \frac{2}{3^{2}} + \frac{2}{3^{3}} + \dots + \frac{2}{3^{n}} - \frac{2n-1}{3^{n+1}}$$

$$\frac{1}{3}S_{n} = \frac{-1}{3} + \frac{2}{3^{2}} + \frac{2}{3^{3}} + \dots + \frac{2}{3^{n}} + \frac{2}{3^{n+1}} - \frac{2n-1}{3^{n+2}}$$

$$\frac{4}{9}S_{n} = -1 + \frac{3}{3} + 0 + 0 + \dots + 0 - \frac{2n+1}{3^{n+1}} + \frac{2n-1}{3^{n+2}}$$

Y así obtenemos una expresión de $S_n = \frac{9}{4} \left(-\frac{2n+1}{3^{n+1}} + \frac{2n-1}{3^{n+2}} \right)$ que nos permite calcular su límite:

$$\sum_{n=0}^{\infty} \frac{2n-1}{3^n} = \lim S_n = \lim \frac{9}{4} \left(-\frac{2n+1}{3^{n+1}} + \frac{2n-1}{3^{n+2}} \right) = 0$$

b) $\sum_{n=2}^{\infty} (2n-1)e^n$ es aritmético-geométrica pero diverge pues |e| > 1.

5. Estudie el carácter de las siguientes series:

$$a) \sum_{n=1}^{\infty} \frac{1 + \cos^2 n}{n^3}$$

b)
$$\sum_{n=1}^{\infty} \frac{1 + \sin^2 n}{n}$$
 c) $\sum_{n=0}^{\infty} \frac{3n}{5 - 2n}$

$$c) \sum_{n=0}^{\infty} \frac{3n}{5-2n}$$

d)
$$\sum_{n=0}^{\infty} \left(5 \left(\frac{1}{2} \right)^n + \frac{3n}{5-2n} \right)$$
 e) $\sum_{n=1}^{\infty} \frac{3^n n!}{n^n}$ f) $\sum_{n=1}^{10} \frac{1}{n}$

$$e) \quad \sum_{n=1}^{\infty} \frac{3^n n!}{n^n}$$

f)
$$\sum_{n=1}^{10} \frac{1}{n}$$

g)
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{n} \log \frac{2n}{n-1}$$
 h) $\sum_{n=1}^{\infty} \frac{n! + \ln n}{5n + 2^n}$ i) $\sum_{n=1}^{\infty} \sin \frac{1}{n}$

$$h) \quad \sum_{n=1}^{\infty} \frac{n! + \ln n}{5n + 2^n}$$

i)
$$\sum_{n=1}^{\infty} \operatorname{sen} \frac{1}{n}$$

j)
$$\sum_{n=1}^{\infty} (-1)^n \operatorname{sen} \frac{1}{n}$$
 k)
$$\sum_{n=3}^{\infty} (-1)^n \frac{n}{\log n}$$
 l)
$$\sum_{n=1}^{\infty} \frac{\log n}{\sqrt{n}}$$

$$k) \sum_{n=3}^{\infty} (-1)^n \frac{n}{\log r}$$

1)
$$\sum_{n=1}^{\infty} \frac{\log n}{\sqrt{n}}$$

Solución

- a) $\sum_{n=1}^{\infty} \frac{1+\cos^2 n}{n^3}$ es convergente por el criterio de comparación estándar, ya que $0 \le \frac{1 + \cos^2 n}{n^3} \le \frac{2}{n^3}$ y además $\sum_{n=1}^{\infty} \frac{2}{n^3}$ es conver-
- b) $\sum_{n=0}^{\infty} \frac{1+\sin^2 n}{n}$ es divergente por el criterio de comparación estándar, pues $0 \le \frac{1}{n} \le \frac{1 + \operatorname{sen}^2 n}{n}$ y además $\sum_{n=1}^{\infty} \frac{1}{n}$ es divergente.
- c) $\sum_{n=0}^{\infty} \frac{3n}{5-2n}$ es divergente por la condición necesaria.
- d) La serie es divergente porque
 - $\sum_{n=0}^{\infty} 5\left(\frac{1}{2}\right)^n$ es convergente (serie geométrica de razón $\frac{1}{2} < 1$)

pero

- $\sum_{n=0}^{\infty} \frac{3n}{5-2n}$ es divergente (condición necesaria).
- e) $\sum_{n=1}^{\infty} \frac{3^n n!}{n^n}$ es divergente por el criterio del cociente.
- f) $\sum_{n=1}^{\infty} \frac{1}{n}$ no es una serie. Es una suma finita.
- g) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n} \log \frac{2n}{n-1}$ es convergente.

- $h) \sum_{n=1}^{\infty} \frac{n! + \ln n}{5n + 2^n} \text{ es divergente por el criterio de comparación por paso al límite pues } \sum \frac{n! + \ln n}{5n + 2^n} \equiv \sum \frac{n!}{2^n} \text{ y la serie } \sum \frac{n!}{2^n} \text{ es divergente por la condición necesaria.}$
- i) $\sum_{n=1}^{\infty} \operatorname{sen} \frac{1}{n}$ es divergente.
- $j) \sum_{n=1}^{\infty} (-1)^n \operatorname{sen} \frac{1}{n}$ es convergente.
- k) $\sum_{n=1}^{\infty} (-1)^n \frac{n}{\log n}$ es divergente.
- l) $\sum_{n=1}^{\infty} \frac{\log n}{\sqrt{n}}$ es divergente por el criterio de comparación:
 - $\frac{1}{\sqrt{n}} \le \frac{\log n}{\sqrt{n}} \text{ si } n \ge 3$
 - $\sum \frac{1}{\sqrt{n}}$ es divergente (p-serie con $p \le 1$)

6. Estudie el carácter de la serie $\sum_{n=1}^{\infty} \frac{(n!)^a}{(3n)!}$ en función del parámetro $a \in \mathbb{R}$.

Solución

Aplicando el criterio del cociente

$$\lim \frac{a_{n+1}}{a_n} = \lim \frac{(n+1)^a}{(3n+1)(3n+2)(3n+3)} = \begin{cases} 0 & \text{si } a < 3\\ \frac{1}{27} & \text{si } a = 3\\ \infty & \text{si } a > 3 \end{cases}$$

y, por tanto, $\sum_{n=1}^{\infty} \frac{(n!)^a}{(3n)!}$ es convergente si $a \leq 3$ y divergente si a > 3.

7. Demuestre que la serie $\sum_{n=1}^{\infty} \frac{n^n}{3^n n!}$ es convergente y encuentre la suma parcial que aproxima su suma con un error menor que 10^{-3} .

Solución

Serie convergente aplicando el criterio del cociente:

$$\lim \frac{a_{n+1}}{a_n} = \dots = \frac{e}{3} < 1$$

Aproximación de la suma:

- La sucesión $\frac{a_{n+1}}{a_n} = \frac{(n+1)^n}{3n^n}$ es creciente.
- El error $S S_N < \frac{a_{N+1}}{1-r} = \frac{\frac{(N+1)^{N+1}}{3^{N+1}(N+1)!}}{1-\frac{e}{3}} < 10^{-3} \rightarrow N \ge 63$

por lo tanto, $\sum_{n=1}^{\infty}\frac{n^n}{3^nn!}\approx\sum_{n=1}^{63}\frac{n^n}{3^nn!}$ con un error menor que 10^{-3}

8. Demuestre que la serie $\sum_{n=1}^{\infty} \frac{(-1)^n \log n}{n}$ es convergente y encuentre la suma parcial que aproxima su suma con un error menor que 10^{-3} .

Solución

Serie convergente aplicando el criterio de Leibniz:

$$a_n = \frac{\log n}{n} \rightarrow a_n > 0 \text{ si } n > 1, \text{lím } a_n = 0, a_n \text{ es decreciente}$$

Aproximación de la suma:

$$|S_N - S| < |a_{N+1}| = \frac{\log(N+1)}{N+1} < 10^{-3} \rightarrow N \ge 9118$$

por tanto, $\sum_{n=1}^{\infty} \frac{(-1)^n \log n}{n} \approx \sum_{n=1}^{9118} \frac{(-1)^n \log n}{n}$ con error menor que 10^{-3}

9. El Criterio de la raíz establece:

Sea $\sum a_n$ una serie de términos positivos y sea $\ell = \lim \sqrt[n]{a_n}$

- $Si \ \ell < 1$ entonces la serie es convergente.
- $Si \ \ell > 1$ entonces la serie es divergente.

Si es posible, utilice el criterio de la raíz para determinar el carácter de las series

a)
$$\sum_{n=1}^{\infty} \frac{n^n}{(2n+1)^n}$$
 b) $\sum_{n=2}^{\infty} \frac{1}{n^2}$ c) $\sum_{n=3}^{\infty} \left(\frac{n^2+7}{n^2+2}\right)^{n^3}$ d) $\sum_{n=4}^{\infty} (-1)^n \frac{\log n}{n}$

Solución

- a) Convergente pues $\ell = 1/2 < 1$.
- b) El criterio no discrimina si es convergente o divergente pues $\ell=1$.
- c) Divergente pues $\ell = e^5 > 1$.
- d) No se puede aplicar el criterio porque la serie no es de términos positivos.

10. El Criterio de condensación establece:

 $Si \ a_n$ es una sucesión decreciente de términos positivos, entonces las series $\sum_{n=0}^{\infty} a_n y \sum_{n=0}^{\infty} 2^n a_{2n}$ tienen el mismo carácter.

Si es posible, utilice el criterio de condensación para determinar el carácter de las series

$$a) \quad \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}},$$

b)
$$\sum_{n=1}^{\infty} \frac{\log n}{n}$$

a)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$$
, b) $\sum_{n=1}^{\infty} \frac{\log n}{n}$, c) $\sum_{n=1}^{\infty} (-1)^n \frac{\log n}{n}$

Solución

- a) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ \rightarrow Se puede usar el criterio y la serie es divergente.
- b) $\sum_{n=1}^{\infty} \frac{\log n}{n} \rightarrow \text{Se puede usar el criterio y la serie es divergente.}$
- c) $\sum_{n} (-1)^n \frac{\log n}{n} \rightarrow \text{No se puede usar el criterio.}$