FSAIN

Otros modelos de Machine Learning I

João F. Serrajordia R. de Mello

Presentación

João Fernando Serrajordia Rocha de Mello – (Juka)

Trayectoria profesional

Modelado de crédito en grandes bancos Telecom Desarrollo de modelos / Validación de modelos Docencia en ciencia de datos Consultoria en ciencia de datos *Outsourcing* ejecutivo

Académico

BACHILLER EN ESTADÍSTICA

MASTER EN ESTADÍSTICA

Va a necesitar de...

Preparativos

- Abrir R
- Importar las bibliotecas
- Planilla electrónica
- Algo para hacer sus anotaciones

Problemas de predictivos y de clasificación

¿Cuál es la eficacia de una vacuna?

¿El cliente pagará el préstamo?

¿Cuánto petróleo tiene el pozo?

¿El cliente va a comprar mi producto?

¿Qué está haciendo la persona?

¿Cuán ecológico es ese vehículo?

CRISP-DM

Fuente: https://www.the-modeling-agency.com/crisp-dm.pdf

¿Cómo es eso?

Dibujo de cosecha (o cohorte)

Ejemplo de dibujo de muestreo para modelo predictivo

Dibujo del modelo

Clasificación de los algoritmos

Supervisados

- Regresión
- GLM
- GLMM
- Support vector machines
- Naive Bayes
- K-nearest neighbors
- Redes Neurales
- Decision Trees

No Supervisados

- K-Means
- Métodos jerárquicos
- Mezcla Gaussiana
- DBScan
- Mini-Batch-K-Means

¡Estamos aquí!

Clasificación de los algoritmos

Respuesta continua

- Regresión
- GLM
- GLMM
- Support vector machines
- K-nearest neighbors
- Redes Neurales
- Regression Trees

Respuesta discreta

- Regresión logística
- Clasification trees
- Redes Neurales
- GLM
- GLMM

¡Estamos aquí!

Clasificación de los algoritmos

Métodos Machinelárnicoestadísticos

- Árboles de decisión
- Bagging
- Boosting
- K-NN
- Redes Neurales
- Support vector machines

¡Estamos aquí!

Reflexiones sobre la base de datos

Población

- ~ 2.200 personas
- ~ 1.300 pasajeros
- Más de 1.500 muertos

Muestra

- 891 personas
- 549 no sobrevivientes
- 342 sobrevivientes

Objetivos del algoritmo

- Clasificar de la mejor forma posible la variable respuesta
 - ... A través de segmentaciones
 - ... Usando las variables explicativas
- Obtener insights
 - ... De las relaciones entre la variable respuesta y las explicativas
 - ... Explorar interacciones

OMML1_script01-Primeiro_contato_com_arvores.R

El árbol de decisión es:

Una secuencia de segmentaciones binarias Que pretende homogeneidad de la variable respuesta

De los 891, podemos segmentarlos en:

577 hombres (65%) de los cuales

109 sobrevivieron (19%)

468 no sobrevivieron

314 mujeres (35%) de las cuales

233 sobrevivieron (74%)

81 no sobrevivieron

De los 891, podemos segmentarlos en:

577 hombres que por su vez segmentamos en:

24 niños (< 6,5 años) de los cuales

16 sobrevivieron (67%)

8 no sobrevivieron

533 adultos (>=6,5 años) de los cuales

93 sobrevivieron (17%)

553 no sobrevivieron

Definiciones de impureza

- Gini
- Entropia de Shannon

¿Cómo el árbol encuentra el mejor quiebre? Con una métrica de 'impureza'

Índice de Gini

$$I_g(p) = 1 - \sum_{i=1}^{J} p_i^2$$

- Impureza máxima con distribución uniforme
- Impureza mínima en la concentración total

Entropia

$$H = -\sum_{i=1}^{J} p_i \log_2(p_i)$$

Ganancia de información:

$$GI(T,a) = H(T) - H(T|a)$$

- Impureza máxima con distribución uniforme
- Impureza mínima en la concentración total

Algoritmo básico

- 1. Para cada variable, buscar la mejor regla binaria
- 2. Elegir aplicar mejor segmentación entre todas las variables
- 3. Recursivamente, para cada hoja, repetir los pasos 1 y 2 hasta que una regla de parada sea alcanzada

Implementación web interactiva:

https://rawgit.com/longhowlam/titanicTree/master/tree.html

Hiperparámetros

Son parámetros que controlan el algoritmo como:

- 1. Número mínimo de observaciones por hoja
- 2. Profundidad máxima
- 3. CP Costo de complejidad

Costo de complejidad

Cross validation (validación cruzada)

La estrategia más simple es dividir la base en entrenamiento y prueba. Desarrollamos el modelo en la base de entrenamiento y evaluamos en la base de prueba.

OMML1 _script02-Algoritmo_avaliacao_overfitting

El árbol como un clasificador

El árbol como un clasificador

Probabilidad de evento de la hoja F:

$$P(S|F) = \frac{N_f^S}{N_f}$$

P(S|F) - probabilidad de éxito de la hoja F

 N_f^- es el número de individuos en la hoja F N_f^S - es el número de sobrevivientes en la hoja F

El árbol como un clasificador

Clasificación:

Clasificación estándar:

Sobreviviente: $P(S|F) \ge 50\% \implies C(F) = "Y"$

No sobrevivientes: $P(S|F) < 50\% \implies C(F) = "N"$

Valor	Valor Verdadero		
predicho	0	1	
0	484	96	
1	65	246	

Evaluación del modelo

• Exactitud:

Aciertos sobre intentos

Valor	Valor Verdadero		
predicho	0	1	
0	484	96	
1	65	246	

En el ejemplo:

$$\frac{484 + 246}{891} = 82\%$$

Árbol como diagnóstico

Sensitivo:
$$\frac{TP}{FN+TP} = \frac{246}{246+96} = 72\%$$

Especificidad: $_{T}$	$\frac{TN}{N+FP} =$	$=\frac{484}{484+65}$	= 72%

Valor	Valor Verdadero		
predicho	609-0	1	
0 - 3	484	96	
	65	246	

Valor	Valor Verdadero	
predicho	0	1
0	TN	FN
1	FP	TP

Diagnóstico y puntos de corte

Corte	TP	FP	TN	I FN	
0% - 11,1%	3	342	549	0	0
11,1% - 11,5%	3	39	525	24	3
11,5% - 35,8%	2	289	142	407	53
35,8% - 58,9%	2	246	65	484	96
58,9% - 66,7%	1	.77	17	532	165
66,7% - 94,7%	1	.61	9	540	181
94,7% - 100%		0	0	549	342

Exactitud	Especificidad :	1- Especificidad	Sensibilidad
38%	0%	100%	100%
41%	4%	96%	99%
78%	74%	26%	85%
82%	88%	12%	72%
80%	97%	3%	52%
79%	98%	2%	47%
62%	100%	0%	0%

Para cada punto de corte, tenemos una matriz de confusión. En el caso, tenemos 8 posibles matrices con el árbol entrenado.

Curva ROC

Corte	1- Especificidad	Sensibilidad
0% - 11,1%	100%	100%
11,1% - 11,5%	96%	99%
11,5% - 35,8%	26%	85%
35,8% - 58,9%	12%	72%
58,9% - 66,7%	3%	52%
66,7% - 94,7%	2%	47%
94,7% - 100%	0%	0%

La curva ROC es un gráfico de dispersión de 1-Especificidad en el eje X por Sensibilidad en el eje Y, obtenidos para cada posible punto de corte del clasificador.

OMML1 _script02-Algoritmo_avaliacao_overfitting

Poda del árbol (Prunning)

EXACTITUD

Base de entrenamiento: 95%

Base de validación: 40%

Base de entrenamiento: 70%

Base de validación: 60%

Base de entrenamiento: 65%

Base de validación: 64%

MUESTRA DE ENTRENAMINETO

MUESTRA DE VALIDACIÓN

Estrategias de cross validation

Elegir parámetros del modelo con una base de validación puede generar overfitting

Existen diversas técnicas de validación cruzada para evitar ese efecto. En este momento voy a mencionar una técnica clásica: dividir la base en Entrenamiento, Validación y Prueba

Muestra de entrenamiento

Muestra de validación

Muestra de prueba

Elimina de la muestra de entrenamiento Clasifica el elemento eliminado inicialmente Desarrolla el modelo con los demás

- Dividimos la base en k submuestras
- Para cada submuestra:
 - Eliminamos la submuestra como validación
 - Entrenamos el modelo con las observaciones restantes
 - Utilizamos este modelo para clasificar la submuestra eliminada
 - Evaluamos la métrica de desempeño del modelo
- Calculamos la media de las métricas de desempeño del modelo

K-fold

Típicamente, hacemos lo mismo para variaciones del modelo para optimizar hiperparámetros.

Post-prunning con crossvalidation

size of tree

R hace la poda del árbol realizando un k-fold para optimizar el CP (complexity path), un parámetro que sintetiza la complejidad del árbol. Eso es realizado con un k-fold.

OMML1 _script02-Algoritmo_avaliacao_overfitting

Conclusión

- Robustas, interpretables, flexibles
- Sin suposiciones probabilísticas
- Necesario cross-validation

Quanto mais aprendo, mais tenho certeza de que, o que sei, é apenas uma gota, diante do oceano do que ainda preciso aprender.

Cuánto más aprendo, más estoy seguro de que, lo que sé, es apenas una gota, frente al océano de lo que todavia preciso aprender.

Jose Ap Barcelos

FF PENSADOR

Algoritmos famosos Rodriguez Fantini 005.374.619-81 Vantage Control of the Control o

- CART
- CHAID
- ID3
- C4.5
- C5.0

Stack overflow interesante sobre eso.

https://stackoverflow.com/questions/9979461/different-decision-tree-algorithms-with-comparison-of-complexity-or-performance

