

In their simplest form, steels are alloys of Iron (Fe) and Carbon (C). The Fe-C phase diagram is a fairly complex one, but we will only consider the steel and cast iron part of the diagram, up to around 7% Carbon.

Temperature (°C)

IMPORTANCE OF Fe-Fe₃C SYSTEM

- Of all binary alloy systems, the one that is possibly the most important is that for iron and carbon.
- Both steels and cast irons, primary structural materials in every technologically advanced culture, are essentially iron-carbon alloys.
- The focus of this lecture is to study the phase diagram for this system and the development of microstructures.
- The relationships between heat treatment, microstructure, and mechanical properties are based on the phase diagram of this system.

A FEW COMMENTS ABOUT Fe-Fe₃C

- I C is an interstitial impurity in Fe. It forms a solid solution with α , γ , δ phases of iron.
- Maximum solubility in BCC α-ferrite is limited (max.0.022 wt% at 727°C) BCC has relatively small interstitial positions.

Maximum solubility in FCC austenite is 2.14 wt% at 1147°C - FCC has larger interstitial positions

MECHANICAL PROPERTIES

Cementite is very hard and brittle - can strengthen steels.

 Mechanical properties also depend on the microstructure, that is, how ferrite and cementite

are mixed.

MAGNETIC PROPERTIES

 α -ferrite is magnetic below 768°C,

Austenite is non-magnetic.

IMPORTANT LINES AND REACTIONS

EQUILIBRIUM MICROSTRUCTURE

EUTECTOID

When alloy of eutectoid composition (0.76 wt % C) is cooled slowly it forms pearlite, a lamellar or layered structure of two phases: α -ferrite and cementite (Fe₃C)

Pearlite

The pearlite exists as grains, often termed "colonies"; within each colony the layers are oriented in the same direction, which varies from one colony to another.

Pearlite

The layers of alternating phases in pearlite are formed for the same reason as layered structure of eutectic structures: redistribution C atoms between ferrite (0.022 wt%) and cementite (6.7 wt%) by atomic diffusion.

Austenite grain

Mechanically, pearlite has properties intermediate to soft, ductile ferrite and hard, brittle cementite.

HYPOEUTECTOID

In α+γ region, the composition of α phase changes along MN, the composition of γ phase changes along MO...

HYPOEUTECTOID

Hypoeutectoid alloys contain proeutectoid ferrite (formed above the eutectoid temperature) plus the eutectoid pearlite that contain eutectoid ferrite and cementite.

Microstructure of a 0.38wt% steel. Courtesy Republic Steel Corp.

1100 $\gamma + Fe_3C$ **HYPEREUTECTOID** 900 Fe₃C Temperature (°C) 800 $\gamma + \text{Fe}_3\text{C}$ $\alpha + \nu$ 700 $\alpha + Fe_3C$ Pearlite In γ+Fe₃C region, the 600 Proeutectoid composition of Eutectoid Fe₃C Fe₃C cementite phase 500 remains constant, the

400

2.0

1.04

Composition (wt% C)

composition of γ phase

changes along PO...

HYPEREUTECTOID

Hypereutectoid alloys contain proeutectoid cementite (formed above the eutectoid temperature) plus pearlite that contain eutectoid ferrite and cementite.

Microstructure of a 1.4wt% steel. Courtesy U.S. Steel Corp.

CALCULATION OF PHASE AMOUNT

Application of the lever rule with tie line that extends from the eutectoid composition (0.75 wt% C) to α – (α + Fe₃C) boundary (0.022 wt% C) for hypoeutectoid alloys and to (α + Fe₃C) – Fe₃C boundary (6.7 wt% C) for hypereutectoid alloys.

Fraction of pearlite:

$$W_p = \frac{T}{T+U} = \frac{C_0' - 0.022}{0.76 - 0.022} = \frac{C_0' - 0.022}{0.74}$$

Fraction of proeutectoid α :

$$W_{a'} = \frac{U}{T+U} = \frac{0.76 - C_0'}{0.76 - 0.022} = \frac{0.76 - C_0'}{0.74}$$

Composition (wt% C)

CALCULATION OF PHASE AMOUNT

Application of the lever rule with tie line that extends from the eutectoid composition (0.75 wt% C) to α – (α + Fe₃C) boundary (0.022 wt% C) for hypoeutectoid alloys and to (α + Fe₃C) – Fe₃C boundary (6.7 wt% C) for hypereutectoid alloys.

Fraction of pearlite:

$$W_p = \frac{X}{V + X} = \frac{6.7 - C_1}{6.7 - 0.76} = \frac{6.7 - C_1}{5.94}$$

Fraction of proeutectoid cementite:

$$W_{Fe_3C'} = \frac{V}{V+X} = \frac{C_1' - 0.76}{6.70 - 0.76} = \frac{C_1' - 0.76}{5.94}$$

Composition (wt% C)

INFLUENCE OF ALLOYING ELEMENTS

- Addition of alloying elements affects the position of eutectoid with respect to temperature and to carbon concentration.
- The purpose of alloying: improve corrosion resistance, and/or render amenable to heat treatment.

