Zajszűrő módszerek

Távérzékelt felvételek elemzése Frank Krisztina

Zaj

- képpont intenzitások nemkívánatos változása
- ok:
 - o kamera érzékelőjét érintő elektronikus zaj
- következmény:
 - o "szemcsés" kép
- különböző fajta zajok, pl:
 - Gauss
 - Poisson
 - Johnson-Nyquist
 - o só-bors

Gauss zaj

• Tulajdonságok:

- additív
 - hozzáadódik a pixel eredeti értékéhez
- o normál (Gauss) eloszlású
- minden pixelre függetlenül kerül
- valóságos zajok többsége ilyen

• Szűrés:

- Gauss szűrő
- átlagoló szűrő

Gauss szűrő

- kép konvolválása Gauss függvénnyel
 - $\circ h(x,y) = f(x,y) * G(x,y)$
- gyakorlatban:
 - szűrőmaszk alkalmazása
 - súlyokat a normál eloszlás adja
 - közelebbi pixelek ->nagyobb súly
 - o a o szabályozza a szűrő méretét
 - o elmossa az éleket

Gauss szűrő - példa

eredeti

3X3

 σ = 3

5X5

Poisson zaj

- Tulajdonságok:
 - Gauss zajhoz hasonló
 - o additív
 - Poisson eloszlású
- Szűrés:
 - átlagoló szűrővel

Átlagoló szűrő

- simitó szűrő
- nem negatív súlyok, összegük = 1
- pixel értékét az adott nxn-es környezet alapján számolja ki
- környezetben lévő pixelek intenzitását átlagolja

$$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \quad \frac{1}{6} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 0 \end{bmatrix} \quad \frac{1}{8} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 4 & 1 \\ 0 & 1 & 0 \end{bmatrix} \quad \frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

Átlagoló szűrő - példa

3 x 3

10 X 10

Só-bors zaj

- véletlenszerű fekete ill. fehér pixelek a képen
- nem additív
- képinformáció vesztés
- szűrés:
 - o medián szűrő

Medián szűrő

 minden pixelre kiszámítja az adott környezetben lévő pixelek mediánját

hatása:

- kis méretű kiugró értékeket eltünteti
- megtartja az éleket
- nem csökkenti a kontrasztot
- lekerekíti a sarkokat

Medián szűrő - példa

Frekvencia tartománybeli szűrés

- egy kép tekinthető, mint 2D-s szignál
- transzformálás frekvencia tartományba:
 - Diszkrét Fourier transzf. (DFT)
 - Gyors Fourier transzf. (FFT)
 - az eredmény ua., csak az FFT gyorsabb
- előnye:
 - konvolúció a képtartományban = szorzás a frekvencia térben
 - alacsonyabb műveletigény -> gyorsabb

FFT példa

Ideális aluláteresztő szűrő

- átviteli függvény $H(u, v) = \left\{\frac{1, \text{ha } r \leq r_o}{0, \text{különben}}\right\}$
- $r = (u^2 + v^2)^{1/2}$ euklideszi távolságfüggvény
- adott frekvenciapár origótól való távolsága
- átengedi az r_o sugarú kör belsejébe eső alacsonyfrekvenciás összetevőket
- magasabb frekvenciájúakat teljesen kiszűri

Project terv

- Fejlesztői környezet:
 - Qt + OpenCV
- Verziókezelő
 - o SVN
- Mérföldkövek:

március 27	a problémák matematikai alapjainak feldolgozása
április 10	3 képtartománybeli szűrő elkészítése
április 17	aluláteresztő szűrő elkészítése
árpilis 22	tesztelés
árpilis 31	GUI elkészítése

Köszönöm a figyelmet!