Matrix Factorization for Recommendation Engines

Dan Becker April 1, 2015

Goals

 Conceptual Understanding of Latent Factor Models for Recommender Systems

II. High level understanding of Latent Factor Model implementation using FunkSVD algorithm

III. Ability to tune model performance

The Setup

Movie

	Α	В	С	D	
Alice	1	?	2	?	
Bob	?	2	3	4	
Charlie	3	?	1	5	
Dan	?	2	?	?	

The Problem With Item-Item Recommendations

I Like Surprising Endings

Violent movie recommendations

Movies (And Everything Else) Have Many Attributes

Movie Attributes

- Action
- Comedy
- Drama
- •
- Tom Hanks
- Brad Pitt
- Jeff Bridges
- ...
- Happy ending
- Sad Ending
- ...
- Movie length
- Subtitles
- ...

A Familiar Looking Model

```
Predicted rating =
                            B_0 + B_1* level of action
                                  + B<sub>2</sub> * level of comedy
                                  + B<sub>3</sub> * level of drama
                                  + B<sub>n</sub> * Tom Hanks
                                  + B<sub>n+1</sub> * Brad Pitt
                                  + B<sub>k</sub> * length
                                  + e
```

Singular Value Decomposition

SVD Doesn't Work With Missing Values

SO CLOSE
And yet so far away

Start By Simplifying the Problem

UV Decomposition

Evaluate Where we Can

Every Rating is Product of Two Vectors

We Can Optimize Matrices

We Can Optimize Matrices

$$\overline{R}_{ai} = \mu + ba + bi + ua + vi$$

$$e_{ai} = \overline{R}_{ai} - R_{ai}$$

SGD Update Rules for Mean Squared Error

Without Regularization $\Delta u_{af} = \lambda e_{ai} v_{if}$ $\Delta v_{if} = \lambda e_{ai} u_{af}$

$$\Delta u_{af} = \lambda (e_{ai}v_{if} - \gamma u_{af})$$

$$\Delta v_{if} = \lambda (e_{ai}u_{af} - \gamma v_{if})$$

FunkSVD Algorithm

```
Initialize U and V matrices
for each feature:
  while objective function improves:
    for each user:
        for each item that user has rated:
            predict rating
            calculate error
            update U element for that user-feature pair
            update V element for that item-feature pair
```

Hints on Metaparameters:

- Learning rate around 0.001
- Regularization factor around 0.01

Alternating Least Squares SVD

Initialize U and V

until convergence

Alternating Least
Squares
vs
Stochastic Gradient
Descent

ALS

SGD

Parallelizes Better Usually faster

Available in Spark/ MLlib

Anecdotes of better results