

Minterms or Maxterms from Truth Table

- From the truth table Minterms or Maxterms are found and accordingly the SSOP or SPOS are formed.
- Using the SSOP or SPOS, the digital circuits are formed.

Α	В	С	Х
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Minterm and SSOP from Truth Table

- From the truth table Minterms or Maxterms are found and accordingly the SSOP or SPOS are formed.
- Using the SSOP or SPOS, the digital circuits are formed.

		Х	Minterms	Product Terms
0	0	1	m _o	ĀĒĒ
0	1	1	m ₁	ĀĒC
1	0	1	m ₂	ĀBĒ
1	1	0	m ₃	ĀBC
0	0	0	m ₄	ABC
0	1	1	m ₅	A BC
1	0	0	m ₆	ABC
1	1	1	m ₇	ABC
	0 1 1	0 1 1 1 0 1 1 0 0 0 0 1	0 1 1 1 0 1 1 1 0 0 0 0 0 0	0 1 1 m ₁ 1 0 1 m ₂ 1 1 0 m ₃ 0 0 0 m ₄ 0 1 1 m ₅ 1 0 0 m ₆

Minterm and SSOP from Truth Table

- Check the 1s in the output (X) variable.
- Corresponding product terms will be there in SSOP.

Α	В	С	Х	Minterms	Product Terms
0	0	0	(1)	m _o	Ā Ē Ē 🗸
0	0	1	(1)	m ₁	Ā Ē C 🗸
0	1	0	(1)	m ₂	Ā B Ū ✓
0	1	1	0	m ₃	ABC X
1	0	0	0	m ₄	A B C X
1	0	1	(1)	m ₅	A B C
1	1	0	0	m ₆	ABC X
1	1	1	(1)	m ₇	AIBIC 🗸

 $f(A,B,C) = \overline{A} | \overline{B} | \overline{C} + \overline{A} | \overline{B} | C + \overline{A} | \overline{B} | \overline{C} + A | \overline{B} | C + A | \overline{B} | C$

Maxterm and SPOS from Truth Table

- From the truth table Maxterms are found and accordingly the SPOS are formed.
- Using the SSOP or SPOS, the digital circuits are formed.

Α	В	С	х	Maxterms	Sum Terms
0	0	0	1	m _o	A + B + C
0	0	1	1	m ₁	$A + B + \overline{C}$
0	1	0	1	m ₂	$A + \overline{B} + C$
0	1	1	0	m ₃	$A + \overline{B} + \overline{C}$
1	0	0	0	m ₄	$\overline{A} + B + C$
1	0	1	1	m ₅	$\overline{A} + B + \overline{C}$
1	1	0	0	m ₆	$\overline{A} + \overline{B} + C$
1	1	1	1	m ₇	$\overline{A} + \overline{B} + \overline{C}$

Maxterm and SPOS from Truth Table

- Check the 1s in the output (X) variable.
- Corresponding product terms will be there in SPOS.

Α	В	С	Х	Minterms	Product Terms
0	0	0	1	M _o	A +B+C X
0	0	1	1	M ₁	$A + B + \overline{C}$ X
0	1	0	1	M ₂	$A + \overline{B} + C$ X
0	1	1	0	M ₃	$A + \overline{B} + \overline{C}$
1	0	0	O	M ₄	Ā+B+C ✓
1	0	1	1	M ₅	$\overline{A} + B + \overline{C}$ X
1	1	0	0	M ₆	$\overline{A} + \overline{B} + C$
1	1	1	1	M ₇	$\overline{A} + \overline{B} + \overline{C}$ X
	•			00-0	2002

 $f(A,B,C) = (A + \overline{B} + \overline{C}) \Box (\overline{A} + B + C) \Box (\overline{A} + \overline{B} + C)$

Maxterm and SPOS from Truth Table

- From the truth table Minterms or Maxterms are found and accordingly the SSOP or SPOS are formed.
- Using the SSOP or SPOS, the digital circuits are formed.

Α	В	С	Х	Maxterms	Sum Terms
0	0	0	1	m _o	A + B + C
0	0	1	1	m ₁	$A + B + \overline{C}$
0	1	0	1	m ₂	$A + \overline{B} + C$
0	1	1	0	m ₃	$A + \overline{B} + \overline{C}$
1	0	0	(0)	m ₄	$\overline{A} + B + C$
1	0	1	1	m ₅	$\overline{A} + B + \overline{C}$
1	1	0	(0)	m ₆	$\overline{A} + \overline{B} + C$
1	1	1	1	m ₇	$\overline{A} + \overline{B} + \overline{C}$

K-Map

Karnaugh Map (K-Map)

- Karnaugh Mapping is used to minimize the number of logic gates that are required in a digital circuit.
- This will replace Boolean reduction when the circuit is large.
- Write the Boolean equation in a SOP form first and then place each term on a map.

- Karnaugh Mapping
 - 1. SOP-Based (BE should be in SSOP form)
- 2. POS-Based (BE should be in SPOS form)

Karnaugh Map (K-Map)

- The map is made up of a table of every possible SOP using the number of variables that are being used.
 - 2-variable function: 2×2 map
 - 3-variable function: 4×2 map
 - · 4-variable function: 4×4 map
 - 5-variable function: 2×(4×4) map
 - 6-variable function: 4×(4×4) map
 - 7-variable function: K-Map is not used

K-Map SOP Minimization

Logic Simplification With Karnaugh Maps

- The logic simplification examples that we have done so far could have been performed with Boolean algebra about as quickly.
- Real world logic simplification problems call for larger Karnaugh maps so that we may do serious work.
- We will work some contrived examples in this section, leaving most of the real world applications for the Combinatorial Logic chapter.
- By contrived, we mean examples which illustrate techniques.
- This approach will develop the tools we need to transition to the more complex applications in the Combinatorial Logic chapter.

Karnaugh Map Representation of BE

 The K-Map could be represented either with SSOP i.e. either with Minterms (m_n).

$$\begin{split} f(A,B,C) &= A\overline{B}C + \overline{A}BC + A\overline{B}\overline{C} + ABC \\ f(A,B,C) &= m_3 + m_4 + m_5 + m_7 = \sum m(3,4,5,7) \end{split}$$

 \bullet The K-Map could be represented either with SPOS i.e. with Maxterms $(M_n).$

$$f(A,B,C) = (A + \overline{B} + C) (\overline{A} + B + C) (A + \overline{B} + \overline{C}) (A + B + C)$$

$$f(A,B,C) = M_2 + M_4 + M_3 + M_0 = \sum_{i} m(0,2,3,4)$$

Karnaugh Map Representation

- The K-Map is represented by cells which represent each product term or min term in a SSOP.
- Total cells is given by
- The 2-variable K-Map has: $N_{Cell} = 2^2 = 4$
- The 3-variable K-Map has: $N_{Cell} = 2^3 = 8$
- The 4-variable K-Map has: $N_{Cell} = 2^4 = 16$
- The 5-variable K-Map has: $N_{\text{Cell}} = 2^5 = 32$
- The 6-variable K-Map has: $N_{\text{Cetl}} = 2^6 = 64$

2 Variables Karnaugh Map: Grouping

If $X = \overline{A}\overline{B} + A\overline{B}$ then put an X in both of these cells

В Ā 1 A 1

From Boolean reduction we know that $\overline{A}\ \overline{B} + A\ \overline{B} = \overline{B}$

From the Karnaugh map we can circle adjacent cell and find that $X = \overline{B}$

3 Variables Karnaugh Map (cont'd) $f(A,B,C) = \overline{AB}C + \overline{AB}C + \overline{AB}C + \overline{AB}C$ Gray Code 0 1 One simplification $\overline{A}\overline{B}$ 00 could be $\overline{A}B$ 01 $X = \overline{A} \; \overline{B} + A \; \overline{B}$ 11 $A\,B$ 10 $A\,\overline{B}$

3 Variables Karnaugh Map (cont'd)

 $f(A,B,C) = \overline{AB}C + \overline{AB}C + \overline{AB}C + \overline{AB}C$

3 Variables Karnaugh Map (cont'd)

 $f(A,B,C) = \overline{AB}C + \overline{AB}C + \overline{AB}C + \overline{AB}C$

Gray Code The Best $\overline{A}\,\overline{B}$ 00 simplification would be 01 $\overline{A}\,B$ $X = \overline{B}$ 11 AB10 $A\overline{B}$

3 Variables Karnaugh Map

 $f(A,B,C) = \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C$

Out= $\overline{A}\overline{B}$

3 Variables Karnaugh Map

 $f(A,B,C) = \overline{A} \overline{B} \overline{C} + \overline{A} \overline{B} C + \overline{A} B C + \overline{A} B \overline{C}$

 $Out = \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C + \overline{A}BC + \overline{A}B\overline{C}$

Out = \overline{A}

On a 3 Variables Karnaugh Map

- One cell requires 3 Variables
- Two adjacent cells require 2 variables
- Four adjacent cells require 1 variable
- Eight adjacent cells is a 1

K-Map: Don't Care Conditions

- In some logic circuits certain input conditions never occur.
- Therefore, corresponding outputs never appear.
- In such cases outputs are not defined.
- Outputs either be HIGH or LOW.
- Such outputs conditions are represented as "Don't-Care" conditions in the Boolean Algebra.
- Output for the "Don't-Care" conditions in the Truth table and K-Map is represented as "x".
- In the minterms based BE the function with the "Don't-Care" conditions could be represented as follows:

$$f(A,B,C) = \sum m(0,1,2,4,8,10) + d(5,7)$$

The "Don't-Care" conditions are represented as d(5,7)

On a 4 Variables Karnaugh map

- One Cell requires 4 variables
- Two adjacent cells require 3 variables
- Four adjacent cells require 2 variables
- Eight adjacent cells require 1 variable
- Sixteen adjacent cells give a 1 or true

Simplify using Karnaugh Map $Y = \overline{\overline{A} + B} + B \overline{C} + (\overline{\overline{A} + B})(C + D)$

 $Y = \overline{\overline{A}} \overline{B} + B \overline{C} + \overline{\overline{A}} \overline{B} (C + D)$

$$Y = A \overline{B} + B \overline{C} + \overline{A \overline{B} C} + \overline{A \overline{B} D}$$

$$Y = A \overline{B} + B \overline{C} + \overline{A \overline{B} C} A \overline{B} \overline{D}$$

$$Y = A \overline{B} + B \overline{C} + (\overline{A} + B + \overline{C}) (\overline{A} + B + \overline{D})$$

$$Y = A \overline{B} + B \overline{C} + \overline{A} + \overline{A} B + A \overline{D} + B + B \overline{D} + \overline{AC} + \overline{C} \overline{D}$$

$$SOP \text{ expression}$$

K-Map POS Minimization

K-Map with "Don't Care" Conditions (cont'd)

- "Don't Care" Conditions
 - Example:

Determine the minimal SOP using K-Map:

 $F(A, B, C, D) = \pi M(0,2,6,8,9,10) D(5,12,13,14,15)$ Answer:

 $F(A, B, C, D) = CD + B\overline{C} + \overline{A}D$

Quine-McCluskey Method

- A method used for minimization of Boolean functions.
- Developed by Willard V. Quine and extended by Edward J. McCluskey.
- McCluskey developed the first algorithm for designing combinational circuits - the willard van Orman Qu Quine-McCluskey logic minimization procedure as a doctoral student at MIT.

- CADIE PUDIICATIONS:

 Quine. Willard Van Orman (October 1952). "The Problem of Simplifying
 Truth Functions". The American Mathematical Monthly. 59 (8): 521531. doi: 10.2307/2308219 JSTOB 2300219.
 Quine. Willard Van Orman (November 1955). "A Way to Simplify Truth
 Functions". The American Mathematical Monthly. 62 (9): 627-631.
 doi: 10.2307/2307285, STOR 2307285.
 McCluskey, Ir., Edward L. (November 1956). "Mnimization of Boolean
 Functions". Bell System Technical Journal. 35 (6): 1417-1444.
 doi: 10.1002/j.1538-7305.1956.tb03835.x Retrieved 2014-08-24.

Quine-McCluskey Method						
$f(A,B,C) = \sum m(0, 1, 3, 7, 8, 9, 11, 15)$						
Vinterms						
Minterms	Designations	Binary	ABCD			
m _o	0	0000	ĀBCD			
m ₁	1	0001	ĀBCD			
m _o	3	0011	ĀBCD			
m ₁	7	0111	ĀBCD			
m _o	8	1000	ABCD			
m ₁	9	1001	ABCD			
m _o	11	1011	ABCD			
m ₁	15	1111	ABCD			

	-McCluskey Metho o make matched pairs be	
Group of 1s	Matched Pairs	ABCD
0 (No of 1s is 0)	0	0000
1 (No of 1s is 1)	1	0001
	8	1000
2 (No of 1s is 2)	3	0011
	9	1001
3 (No of 1s is 3)	7	0111
	11	1011
4 (No of 1s is 4)	15	1111

• Step 1:	Quine-McCluskey Method Step 1: Table 1							
Group	Minterms	ABCD	Matched Pairs	Variable				
0	0	0000	0, 1	0 0 0 X X 0 0 0				
1	1 8	0001~ 1000~	1, 3 1, 9 8, 9	00X1 X001 100X				
2	*34	0011 1001	3, 7 3, 11 9, 11	0 X 1 1 X 0 1 1 1 0 X 1				
3	7 11	0111 1011	7, 15 11, 15	X 1 1 1 1 X 1 1				
4	15	1111						

• Step 2: • Table 2	CHINE-MCCHISKEV METROD									
Groups	Matched Minterms	ABCD	Matched Pairs							
0	0, 1	000X X000	0,1; 8,9 0,8; 1,9	$X O O X \overline{BC}$						
1	1, 3 1, 9 8, 9	00X1 X001 100X	1,3; 9,11 1,9; 3,11	X 0 X 1 = X 0 X 1						
2	3, 7 3, 11 9, 11	0 X 1 1 X 0 1 1 1 0 X 1	3,7; 11,15 3,11; 7,15	XX11 XX11 ^{CD}						
3		X111 1X11								
4										

	· Step 3: · Table 3 Quine-McCluskey Method									
PI	Minterms		Minterms							
FI	Involved	0	1	3	7	8	9	11	15	
\overline{BC}	0, 1, 8, 9	X	Х			(X)	Х			
$\bar{\mathrm{B}}\mathrm{D}$	1, 3, 9, 11		Х	Х			Х	Х		
CD	3, 7, 11, 15			Х	X			Х	X	
			f=	BC+	CD					
	Solve it with									
K-Map and Check										
	it isiap and check									