Asteroid KNN

Annika Lin

2023-04-13

```
df <- read.csv("~/Documents/Georgetown/Spring23/Statistical Learning & Data Science/Proj</pre>
ect/NASA-asteroid-Classification-master/final/nasa.csv")
df <- df[ , !(names(df) %in% c("X"))]</pre>
df <- df[-695,]
library(caret)
## Loading required package: ggplot2
## Loading required package: lattice
# function to normalize data
normalize <- function(x) {</pre>
  return ((x - min(x)) / (max(x) - min(x))) }
arr.norm <- apply(df[,-21], 2, normalize)</pre>
arr.norm <- data.frame(arr.norm, df$Hazardous)</pre>
```

(3.b) Fit kNN using 5-fold CV over a grid of values between 1 and 21 for the number of neighbors k,

colnames(arr.norm)[colnames(arr.norm) == "df.Hazardous"] ="Hazardous"

using set.seed(1). How many neighbors are used in the final model?

```
\# 5-fold CV to choose k
set.seed(1)
arr.norm$Hazardous <- as.factor(arr.norm$Hazardous)</pre>
fit.knn <- train(Hazardous ~ .,</pre>
 method = "knn",
 tuneGrid = expand.grid(k = 1:21),
  trControl = trainControl(method="cv", number=5, savePredictions = TRUE, classProbs = T
 metric = "Accuracy",
 data = arr.norm)
fit.knn
```

```
## k-Nearest Neighbors
##
## 3078 samples
##
    20 predictor
##
     2 classes: 'False', 'True'
##
## No pre-processing
## Resampling: Cross-Validated (5 fold)
  Summary of sample sizes: 2462, 2463, 2463, 2462, 2462
  Resampling results across tuning parameters:
##
##
    k
        Accuracy
                   Kappa
##
     1 0.8645222 0.4227282
##
     2 0.8534785 0.3734312
##
     3 0.8804429 0.4254110
##
     4 0.8749203 0.3926299
##
     5 0.8814180 0.4071912
     6 0.8778418 0.3926183
##
##
     7 0.8801167 0.3847148
##
     8 0.8797931 0.3796854
##
     9 0.8775209 0.3589633
##
    10 0.8804466 0.3685311
##
    11 0.8801193 0.3552413
##
    12 0.8804440 0.3575683
##
    13 0.8797936 0.3410263
##
    14 0.8797936 0.3371958
    15 0.8801177 0.3317969
##
##
    16 0.8762200 0.3033070
##
    17 0.8788180 0.3181018
##
    18 0.8781718 0.3167519
##
    19 0.8794684 0.3145760
##
    20 0.8768699 0.2957819
##
    21 0.8791442 0.3117543
##
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was k = 5.
```

5 neighbors are used in the final model.

(3.c) Which are the 10 most important variables using kNN? Is there any overlap with the variables you

selected using the lasso penalized logistic regression?

```
imp2 <- varImp(fit.knn)$importance</pre>
imp2 <- imp2[order(imp2$True, decreasing=T)[1:10],]</pre>
imp2
```

```
##
                                       False
                                                  True
                                   100.00000 100.00000
## Absolute.Magnitude
## Est.Dia.in.KM.min.
                                   100.00000 100.00000
## Est.Dia.in.KM.max.
                                   100.00000 100.00000
## Est.Dia.in.KM.range
                                   100.00000 100.00000
## Orbit.Uncertainity
                                    93.70653 93.70653
## Minimum.Orbit.Intersection
                                    76.29926 76.29926
## Relative. Velocity.in. KM.per.sec 58.85243 58.85243
## Perihelion.Distance
                                    58.33520 58.33520
## Eccentricity
                                    53.13038 53.13038
## Close.Approach.Date
                                    26.30449 26.30449
```

```
# colnames(imp2)[1] <- "Importance"</pre>
# imp2[-2]
# intersect(rownames(imp2), sel.names)
```

(3.d) Provide the cross-validated ROC curve and its AUC.

```
library(ROCR)
pihatcv.knn <- fit.knn$pred[fit.knn$pred$k == 13,]</pre>
pred <- prediction(pihatcv.knn$True, pihatcv.knn$obs)</pre>
perf <- performance(pred, "tpr", "fpr")</pre>
plot(perf)
```



```
# Area under ROC curve (AUC) = concordance index
auc.perf = performance(pred, "auc")
knn_auc <- auc.perf@y.values
knn_auc
```

```
## [[1]]
## [1] 0.900462
```

```
plot(fit.knn$results[,1], 1-fit.knn$results[,2], type="1",
xlab="k, number of neighbors", ylab="error rate")
```



```
#The predictions based on the selected k are:
pihat.fin <- predict(fit.knn, type="prob")</pre>
tail(pihat.fin)
```

```
##
        False True
## 3073
             1
                   0
## 3074
             1
## 3075
## 3076
                   0
## 3077
             1
                   0
## 3078
```

```
yhat.fin <- predict(fit.knn)</pre>
tail(yhat.fin)
```

```
## [1] False False False False False
## Levels: False True
```

```
table(yhat.fin, df$Hazardous)
```

```
##
## yhat.fin False True
## False 2591 197
## True 53 237
```

```
tail(fit.knn$pred)
```

```
##
          pred
                 obs
                          False
                                      True rowIndex k Resample
## 64633 False False 1.0000000 0.00000000
                                               3057 21
                                                           Fold5
## 64634 False False 0.9047619 0.09523810
                                               3061 21
                                                           Fold5
## 64635 False False 1.0000000 0.00000000
                                               3062 21
                                                           Fold5
## 64636 False False 0.9523810 0.04761905
                                               3069 21
                                                           Fold5
## 64637 False False 1.0000000 0.00000000
                                               3077 21
                                                           Fold5
## 64638 False False 1.0000000 0.00000000
                                               3078 21
                                                           Fold5
```

```
plot(varImp(fit.knn), main="kNN variable importance")
```

kNN variable importance


```
varImp(fit.knn)
```

```
## ROC curve variable importance
##
##
                                    Importance
## Est.Dia.in.KM.range
                                      100.0000
                                      100.0000
## Est.Dia.in.KM.max.
## Est.Dia.in.KM.min.
                                      100.0000
## Absolute.Magnitude
                                      100.0000
## Orbit.Uncertainity
                                       93.7065
## Minimum.Orbit.Intersection
                                       76.2993
## Relative. Velocity.in. KM.per.sec
                                       58.8524
## Perihelion.Distance
                                       58.3352
## Eccentricity
                                       53.1304
## Close.Approach.Date
                                       26.3045
## Aphelion.Dist
                                       21.3395
## Jupiter.Tisserand.Invariant
                                       12.2465
## Miss.Dist.in.KM
                                       10.0205
## Mean.Anomaly
                                       10.0178
## Orbital.Period
                                        7.0710
## Mean.Motion
                                        7.0710
## Semi.Major.Axis
                                        7.0710
## Inclination
                                        3.4734
## Perihelion.Arg
                                        0.9156
## Asc.Node.Longitude
                                        0.0000
```

```
plot(fit.knn$results[,1:2], type="l")
```

