Skupina A

Příklad 1. Určete, zda je v rovině z bodu [22,31] viditelná strana AC neprůhledného rovnostranného trojúhelníku ABC, kde A = [0,0] a B = [4,1].

Řešení. Bod C dostame jako obraz bodu B v rotaci o šedesát stupňů kolem bodu A. Protože A = [0,0], souřadnice bodu B odpovídají souřadnicím vektoru $\overrightarrow{AB} = B - A = (4,1)$, v uvažované rotaci pak je

$$\overrightarrow{AC} = \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 1 \end{pmatrix} = (2 - \frac{\sqrt{3}}{2}, 2\sqrt{3} + \frac{1}{2}),$$

což jsou i souřadnice bodu C.

Viditelnost strany AB pak můžeme posuzovat buď podle znaménka vhodného determinantu (označme X = [22, 31]), například:

$$\left| \frac{\overrightarrow{XA}}{\overrightarrow{XC}} \right| = \left| \begin{array}{cc} -22 & -31 \\ -23 - \frac{\sqrt{3}}{2} & 2\sqrt{3} - 31, 5 \end{array} \right| < 0,$$

vektory \overrightarrow{XA} a \overrightarrow{XC} tedy svírají (v tomto pořadí) úhel větší než 180°, což znamená, že bod X leží "napravo" od přímky AC (orientované ve směru \overrightarrow{AC}), stranu AC tedy není "přes trojúhelník" vidět. Viditelnost umíme rozhodnout i podle znaménka jiných determinantů obsahující souřadnice některé dvojice vektorů $\overrightarrow{XA}, \overrightarrow{XC}, \overrightarrow{AC}$, či vektorů k nim opačným. Stačí mít na paměti, že daný determinant je kladný, právě když v kladném smyslu (proti směru hodinových ručiček) orientovaný úhel mezi prvním a druhým vektorem je menší než 180°.

Alternativně můžeme posuzovat viditelnost strany AC podle velikosti směrnice přímky AC a AX. Protože A = [0,0], tak stranu AC bude vidět právě když směrnice přímky AC bude menší než směrnice přímky AX. Je však $\frac{2\sqrt{3}+\frac{1}{2}}{2-\frac{\sqrt{3}}{2}} > \frac{31}{22}$ (pro odvození nerovnosti bez kalkulačky stačí použít faktu $1,5 < \sqrt{3} < 2$), tedy strana AC není vidět.

Příklad 2. Z balíčku 20 karet očíslovaných čísly 1 až 20 vytáhnu postupně čtyři karty. Jaká je pravděpodobnost, že čísla na vytažených kartách budou seřazena podle pořadí vytažení od nejmenšího k největšímu?

Řešení. Každá pořadí každé čtveřice má stejnou pravděpobnost, že bude vytaženo. Daná čtveřice má právě 4! = 24 pořadí, celkem je tedy 1/24 čtveřic (s pořadím), které vyhovují zadání. Hledaná pravděpodobnost je tedy 1/24. Úvah vedoucích ke správnému řešení je mnoho. Jednoduše lze spočítat i celkový počet vyhovujících pořadí čtyř prvků. Vyhovující pořadí je dáno čtveřicí prvků, které v daném pořadí vyskytují, tedy $\binom{20}{4}$, všech pořadí vytažených čtveřic (tedy všech elementárních jevů) je $20 \cdot 19 \cdot 18 \cdot 17$. Celkem je tedy hledaná pravděpodobnost

$$\frac{\binom{20}{4}}{20 \cdot 19 \cdot 18 \cdot 17} = \frac{1}{4!} = \frac{1}{24}.$$

Příklad 3. Určete počet surjektivních zobrazení f množiny $\{1, 2, 3, 4, 5, 6\}$ na množinu $\{1, 2, 3\}$ takových, že f(1) > f(2).

Řešení. Od počtu všech surjektivních zobrazení šestiprvkové množiny na tříprvkovou (těch je $3^6 - \binom{3}{2}(2^6 - 2) - 3$) odečteme ta, pro která je f(1) = f(2) (těch je právě tolik, kolik je surjektivních zobrazení pětiprvkové množiny na tříprvkovou, prvky 1 a 2 totiž můžeme považovat za jeden; celkem $3^5 - \binom{3}{2}(2^5 - 2) - 3$). Ve zbylých zobrazení je vzhledem k symetrii stejně těch, ve kterých je f(1) > f(2) jako těch, pro která je f(2) > f(1). Obou typů je tedy právě polovina získaného počtu. Celkem máme

$$\frac{1}{2} \left[\left(3^6 - \binom{3}{2} (2^6 - 2) - 3 \right) - \left(3^5 - \binom{3}{2} (2^5 - 2) - 3 \right) \right] = 195$$

zobrazení splňující podmínky zadání.

Skupina B

Příklad 1. Určete, zda je v rovině z bodu [20,41] viditelná strana AC neprůhledného rovnostranného trojúhelníku ABC, $kde\ A = [0,0]$ a B = [6,1].

Řešení. $C=[3-\frac{\sqrt{3}}{2},3\sqrt{3}+\frac{1}{2}]$, porovnáním směrnic přímek AX a AC pak

$$\frac{3\sqrt{3} + \frac{1}{2}}{3 - \frac{\sqrt{3}}{2}} > 2, 5 > \frac{41}{20}.$$

(k odhadu stačí použít faktu $1, 7 < \sqrt{3} < 1, 8$)

Stranu není vidět.

Příklad 2. Z cifer 1, 2, 3, 4, 5 je náhodně sestaveno pěticiferné číslo. Jaká je pravděpodobnost, že v něm budou cify 1, 2, 3 seřazené zleva podle velikosti (ne nutně za sebou).

Řešení. Všechna pěticiferná čísla tvořená nějakým pořadím cifer 1, 2, 3, 4, 5, můžeme rozdělit do šestic takových, že se v dané šestici čísla liší pouze pořadím číslic 1, 2 a 3. V každé šestici je tedy právě jedno vyhovující pořadí. Celková pravděpodobnost je tedy 1/6.

Lze spočítat i vyčíslením celkového počtu vyhovujících čísel $\binom{5}{3} \cdot 2$). Hledaná pravděpodobnost je pak podílem počtu vyhovujích případů a počtu všech případů (všech daných pěticiferných čísel; těch je 5!):

$$\frac{\binom{5}{3} \cdot 2}{5!} = \frac{1}{3!} = \frac{1}{6}.$$

Příklad 3. Určete počet surjektivních zobrazení f množiny $\{1, 2, 3, 4, 5\}$ na množinu $\{1, 2, 3\}$ takových, že f(3) < f(4).

Řešení. $\frac{1}{2} \left[\left(3^5 - \binom{3}{2} (2^5 - 2) - 3 \right) - \left(3^4 - \binom{3}{2} (2^4 - 2) - 3 \right) \right] = 57.$

Skupina C

Příklad 1. Určete, zda je v rovině z bodu [20,31] viditelná strana AC neprůhledného rovnostranného trojúhelníku ABC, kde A = [0,0] a B = [4,-1].

Řešení. $C = [2 + \frac{\sqrt{3}}{2}, 2\sqrt{3} - \frac{1}{2}],$

$$\frac{2\sqrt{3} - \frac{1}{2}}{2 + \frac{\sqrt{3}}{2}} > \frac{31}{20}.$$

Strana není vidět.

Příklad 2. Mezi šesti (různými) čísly taženými v loterii byla i čísla 2, 10, 20 a 42. Jaká je pravděpodobnost, že číslo 42 bylo ze jmenovaných vytažené jako první.

 $\check{\mathbf{R}}$ ešení. 1/4.

Příklad 3. Určete počet surjektivních zobrazení f množiny $\{1,2,3,4,5,6\}$ na množinu $\{1,2,3\}$ takových, že $f(1) \neq f(2)$ nebo $f(6) \neq f(2)$.

Řešení. Od počtu všech surjektivních zobrazení odečteme počet surjektivních zobrazení nesplňujících podmínku, tedy takových, že f(1) = f(2) = f(6) (a těch je tolik, co surjektivních zobrazení čtyřprvkové množiny na trojprvkovou). $\left(3^6 - \binom{3}{2}(2^6 - 2) - 3\right) - \left(3^4 - \binom{3}{2}(2^4 - 2) - 3\right) = 504$.

Skupina D

Příklad 1. Určete, zda je v rovině z bodu [19,21] viditelná strana AC neprůhledného rovnostranného trojúhelníku ABC, kde A=[0,0] a B=[4,-2].

Řešení. $C = [2 + \sqrt{3}, 2\sqrt{3} - 1], \frac{2\sqrt{3} - 1}{2 + \sqrt{3}} < \frac{21}{19}$. Strana je vidět.

Příklad 2. Mezi šesti (různými) čísly taženými v loterii byla i čísla 2, 10, 20 a 42. Jaká je pravděpodobnost, že čísla 2 a 10 byla tažena před čísly 20 a 42.

 $\check{\mathbf{R}}$ ešení. 1/6.

Příklad 3. Určete počet surjektivních zobrazení f množiny $\{1,2,3,4,5\}$ na množinu $\{1,2,3\}$ takových, že $f(1) \neq f(2)$ nebo $f(5) \neq f(2)$. Úvaha obdobná jako ve skupině C.

Řešení. $(3^5 - \binom{3}{2}(2^5 - 2) - 3) - 3! = 144.$

Skupina E

Příklad 1. Určete, zda je v rovině z bodu [-17, -18] viditelná strana AB neprůhledného rovnostranného trojúhelníku ABC, kde A = [0, 0] a C = [-4, 1].

Řešení. $B=[\frac{\sqrt{3}}{2}-2,2\sqrt{3}+\frac{1}{2}]$, porovnáním směrnic přímek AX a AB (X=[-17,-18]) máme

$$\frac{2\sqrt{3} + \frac{1}{2}}{\frac{\sqrt{3}}{2} - 2} < 0 < \frac{18}{17}.$$

Strana není vidět.

Příklad 2. Z balíčku 20 karet očíslovaných čísly 1 až 20 vytáhnu postupně čtyři karty. Jaká je pravděpodobnost, že největší číslo na vytažených kartách bude vytaženo jako poslední?

Řešení. 1/4. □

Příklad 3. Určete počet surjektivních zobrazení f množiny $\{1,2,3,4,5,6,7\}$ na množinu $\{1,2,3,4,5\}$ takových, že f(1) > f(2) > f(3). Pro každou z možných čtyř tříprvkových množin $\{f(1), f(2), f(3)\}$, kterých je $\binom{5}{3}$ (výběrem této množiny jsou vzhledem k nerovnostem již pevně dány obrazy prvků 1, 2, 3). Zbylé prvky 4, 5, 6, 7 se zobrazují libovolně, avšak tak, aby v množině $\{f(4), f(5), f(6), f(7)\}$ ležely ty dva prvky, které nejsou v $\{f(1), f(2), f(3)\}$. Celkem

Řešení. $\binom{5}{3}(5^4-2\cdot 4^4+3^4)$.

Skupina F

Příklad 1. Určete, zda je v rovině z bodu $[-11,-21]$ viditelná strana AB neprůhledného rovnostra trojúhelníku ABC , kde $A=[0,0]$ a $C=[-1,4]$. (Vrcholy trojúhelníka popisujeme v kladném smyslu	
Řešení . $B = [2\sqrt{3} - \frac{1}{2}, \frac{\sqrt{3}}{2} + 2], \frac{\frac{\sqrt{3}}{2} + 2}{2\sqrt{3} - \frac{1}{2}} < \frac{3}{2,5} < \frac{21}{11}$. Strana je vidět.	
Příklad 2. Z balíčku 20 karet očíslovaných čísly 1 až 20 vytáhnu postupně pět karet. Jaká je pravděpodo že největší číslo na vytažených kartách nebude vytaženo mezi posledními dvěma kartami?	obnost,
$\check{\mathbf{R}}$ ešení. $2/5$.	
Příklad 3. Určete počet surjektivních zobrazení f množiny $\{1,2,3,4,5,6\}$ na množinu $\{1,2,3,4\}$ tak že $f(1) > f(2) > f(3)$. Podobně jako ve skupině E .	cových,
Řešení. $4(4^3-3^3)$.	