Reg. No.:

Name:

Continuous Assessment Test (CAT-2) - October 2024

Programme	:	B.Tech(CPS)	Semester	1:	Fall 24 - 25
Course	1.	Control Systems	Code	:	BEEE303L
	1	Control Systems	Class Nbr	: F1+TF1	CH2024250101910
Faculty		: Dr.Nithya Venkatesan	Slot	-	
Time		: 90 Minutes	Max. Marks	:	50

Answer All the Questions

Q.No.	Question Description	Mark		
(a)	Find the overall gain of a closed loop negative feedback system having a forward path gain of			
	$G(S) = \frac{2}{(S+5)}$ and a feedback path gain of 0.5?	2		
1(b)	Determine the value of K such that the roots of characteristic equation $s^3+10s^2+18s+K$, which lies to the left of the line at $s=-1$.	3		
2.	For the unity feedback system with a transfer function given by, $G(S) = \frac{K}{(S+1)^3(S+4)}$	10		
4	a) Find the range of K for Stability.b) Find the frequency of oscillation when the system is marginally stable.			
3.	For the unity feedback system,			
	K(S+2)			
	S(S+1)(S+3)(S+4)	15		
	Find the following breakaway, asymptotes, and the range of gain that will make the system			
	marginally stable. Plot the rough root locus.			
4	The open loop transfer function of a unity feedback system is given by, $\frac{Y(S)}{U(S)} = \frac{5}{S(1 + 0.4 \text{ S})(1 + 3\text{ S})}$			
	$\overline{U(S)}$ $S(1 + 0.4 S)(1 + 3S)$	20		
	Sketch the bode plot and determine the gain and phase cross-over frequencies. Also, find the gain			
	margin and phase margin so that the system remains stable.			