STAT 525

Chapter 6 Multiple Regression

Dr. Qifan Song

The Data and Model

- ullet Still have single response variable Y
- Now have multiple explanatory variables
- Examples:
 - Blood Pressure vs Age, Weight, Diet, Fitness Level
 - Traffic Count vs Time, Location, Population, Month
- ullet Goal: There is a total amount of variation in Y (SSTO). We want to explain as much of this variation as possible using a linear model and our explanatory variables

$$Y_i = \beta_0 + \beta_1 X_{i1} + \dots + \beta_{p-1} X_{i,p-1} + \varepsilon_i$$

• Have p-1 predictors $\longrightarrow p$ coefficients

First Order Model with Two Predictors

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \varepsilon_i; \quad i = 1, ..., n$$

- ullet eta_0 is the intercept and eta_1 and eta_2 are the regression coefficients
- Meaning of regression coefficients
 - $-\beta_1$ describes change in <u>mean response</u> per unit increase in X_1 when X_2 is held constant
 - $-\beta_2$ describes change in <u>mean response</u> per unit increase in X_2 when X_1 is held constant
- Variables X_1 and X_2 are **additive**. Value of X_1 does not affect the change due to X_2 . There is no **interaction**.
- The response surface is a plane.

Additive Response Surface

$$\hat{Y}_i = -2.79 + 2.14X_{i1} + 1.21X_{i2}$$

Interaction Model

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i1} X_{i2} + \varepsilon_i$$

- Meaning of parameters:
 - Change in X_1 when $X_2 = x_2$

$$\Delta E[Y] = \{\beta_0 + \beta_1(X_1 + 1) + \beta_2 x_2 + \beta_3(X_1 + 1)x_2\}$$
$$-\{\beta_0 + \beta_1 X_1 + \beta_2 x_2 + \beta_3 X_1 x_2\}$$
$$= \beta_1 + \beta_3 x_2$$

- Change in X_2 when $X_1 = x_1$

$$\Delta E[Y] = \beta_2 + \beta_3 x_1$$

• Rate of change due to one variable affected by the other

Interaction Response Surface

$$\hat{Y}_i = 1.5 + 3.2X_{i1} + 1.2X_{i2} - .75X_{i1}X_{i2}$$

Qualitative Predictors

 $Y_i=\beta_0+\beta_1X_{i1}+\beta_2X_{i2}+\beta_3X_{i1}X_{i2}+\varepsilon_i$ where Y is a senior student's GPA, X_1 is the SAT score.

- Let $X_2 = 1$ if case from Purdue, and $X_2 = 0$ if from IU
- Meaning of parameters:
 - Case from Purdue $(X_2 = 1)$:

$$E[Y] = \beta_0 + \beta_1 X_1 + \beta_2 1 + \beta_3 X_1(1)$$

= $(\beta_0 + \beta_2) + (\beta_1 + \beta_3) X_1$

- Case from other location $(X_2 = 0)$

$$E[Y] = \beta_0 + \beta_1 X_1 + \beta_2 0 + \beta_3 X_1(0) = \beta_0 + \beta_1 X_1$$

- Have <u>two</u> regression lines
 - $-\beta_2$ quantify the difference between intercepts
 - $-\beta_3$ quantify the difference between slops

Polynomial Regression and Transformations

Polynomial regression:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + \varepsilon_i$$

= $\beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \varepsilon_i$

where $X_{i2} = X_i^2$.

- this is a linear model because it is a linear function of parameters β
- Transformations

$$Y_{i} = \frac{1}{\beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \varepsilon_{i}}$$

$$\iff \frac{1}{Y_{i}} = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \varepsilon_{i}$$

$$\log(Y_{i}) = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \varepsilon_{i}$$

- the last one is a linear model on the $log(Y_i)$ scale

General Linear Regression In Matrix Terms

After transformation and re-organization, a linear model ("linear" w.r.t. unknown coefficient, not to actual predictors) is obtained

$$Y_i = \beta_0 + \beta_1 X_{i1} + \dots + \beta_{p-1} X_{i,p-1} + \varepsilon_i$$

As an array

$$\begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix} = \begin{bmatrix} 1 & X_{11} & X_{12} & \cdots & X_{1 p-1} \\ 1 & X_{21} & X_{22} & \cdots & X_{2 p-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & X_{n1} & X_{n2} & \cdots & X_{n p-1} \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \vdots \\ \beta_{p-1} \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix}$$

• In matrix notation

$$Y = X\beta + \varepsilon$$

Distributional assumptions:

$$\varepsilon \sim N(0, \sigma^2 I) \longrightarrow \mathbf{Y} \sim N(\mathbf{X}\boldsymbol{\beta}, \sigma^2 I)$$

Estimation of Regression Coefficients

- Least squares estimates
 - find b to minimize (Y Xb)'(Y Xb)

$$-b = (X'X)^{-1}X'Y$$

• Fitted values define a (hyper)plane

$$-\hat{Y} = X(X'X)^{-1}X'Y = HY$$

- HY forms a response surface
- Residuals

$$-e = Y - \hat{Y} = (I - H)Y$$

The Distribution of Residuals

- $e = Y \hat{Y} = (I H)Y$
 - I H is symmetric and idempotent
- Expected value $E(\mathbf{e}) = \mathbf{0}$
- Covariance Matrix

$$\sigma^2(e) = \sigma^2(I - H)(I - H)'$$

= $\sigma^2(I - H)$

- $Var(e_i) = \sigma^2(1 h_{ii})$ where $h_{ii} = \mathbf{X}_i'(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}_i$
- Residuals are usually correlated, i.e., $cov(e_i, e_j) = -\sigma^2 h_{ij}, i \neq j$
- Will use this information to look for outliers

Estimation of σ^2

- Similar approach as before
- Estimate it from e, since e has nothing to do with β_i 's.
- Now p model parameters

$$s^{2} = \frac{e'e}{n-p}$$

$$= \frac{(Y - Xb)'(Y - Xb)}{n-p}$$

$$= \frac{SSE}{n-p}$$
= MSE

ANOVA TABLE

Source of				
Variation	df	SS	MS	F Value
Regression (Model)	p-1	SSR	MSR=SSR/(p-1)	MSR/MSE
Error	n-p	SSE	MSE=SSE/(n-p)	
Total	n-1	SSTO		

- ullet F Test: Tests if the predictors *collectively* help explain the variation in Y
 - $H_0: \beta_1 = \beta_2 = \ldots = \beta_{p-1} = 0$
 - H_a : at least one $\beta_k \neq 0$, $1 \leq k \leq p-1$
 - $-F^* = \frac{SSR/(p-1)}{SSE/(n-p)} \stackrel{H_0}{\sim} F(p-1, n-p)$
 - Reject H_0 if $F^* > F(1 \alpha, p 1, n p)$
- No conclusions possible regarding individual predictors

Testing Individual Predictor

t-Test

- Have already shown that $\mathbf{b} \sim N\left(\boldsymbol{\beta}, \sigma^2(\mathbf{X}'\mathbf{X})^{-1}\right)$
 - This implies $b_k \sim N(\beta_k, \sigma^2(b_k))$
- Perform t test
 - $-H_0$: $\beta_k = 0$ vs H_a : $\beta_k \neq 0$
 - $-\frac{b_k-\beta_k}{s(b_k)}\sim t_{n-p}$ so $t^*=\frac{b_k}{s(b_k)}\sim t_{n-p}$ under H_0
 - Reject H_0 if $|t^*| > t(1-\alpha/2, n-p)$
- ullet Confidence interval for eta_k

$$-b_k \pm t(1-\alpha/2, n-p)s\{b_k\}$$

General Linear Test

- H_0 : $\beta_k = 0$ vs H_a : $\beta_k \neq 0$
 - Full Model:

$$Y_i = \beta_0 + \sum_{j=1}^{p-1} \beta_j X_{ji} + \varepsilon_i$$

- Reduced Model:

$$Y_{i} = \beta_{0} + \sum_{j=1}^{k-1} \beta_{j} X_{ji} + \sum_{j=k+1}^{p-1} \beta_{j} X_{ji} + \varepsilon_{i}$$

$$-F^* = \frac{(SSE(R) - SSE(F))/1}{SSE(F)/(n-p)}$$

- Reject H_0 if $F^* > F(1 - \alpha, 1, n - p)$

Equivalence of t-Test and General Linear Test

- Can show that $F^* = (t^*)^2$
 - both tests result in the same conclusion
- Both tests investigate significance of a predictor given the other variables are already in the model
 - i.e. significance of the variable which is fitted last

Coefficient of Multiple Determination

ullet Coefficient of Determination \mathbb{R}^2 describes proportionate reduction in total variation associated with the **full set** of X variables

$$R^2 = \frac{SSR}{SSTO} = 1 - \frac{SSE}{SSTO}$$
, $0 \le R^2 \le 1$

- ullet R^2 usually increases with the increasing p
 - Adjusted ${\cal R}_a^2$ attempts to account for p

$$R_a^2 = 1 - \frac{SSE/(n-p)}{SSTO/(n-1)}$$
, $0 \le R_a^2 \le 1$

The adustment is often insufficient

Example: Purdue Computer Science Students

- Computer Science majors at Purdue have a large drop-out rate
- Goal: Find predictors of success (defined as high GPA)
- Predictors must be available at time of entry into program.
 These are:
 - GPA: grade points average after three semesters
 - HSM: high-school math grades
 - HSS: high-school science grades
 - HSE: high-school english grades
 - SATM: SAT Math
 - SATV: SAT Verbal
- Data available on n = 224 students

Now investigate the model: GPA = HSM HSS HSE

```
options nocenter linesize=72;
goptions colors=('none');

data a1;
   infile 'U:\.www\datasets525\csdata.dat';
   input id gpa hsm hss hse satm satv;

proc reg data=a1;
   model gpa=hsm hss hse;
run;
```

Analysis of Variance

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	3	27.71233	9.23744	18.86	<.0001
Error	220	107.75046	0.48977		
Corrected Total	223	135.46279			
Root MSE	().69984 R	l-Square	0.2046	
Dependent Mean	2	2.63522 A	dj R-Sq	0.1937	
Coeff Var	26	3.55711			

Parameter Estimates

		Parameter	Standard		
Variable	DF	Estimate	Error	t Value	Pr > t
Intercept	1	0.58988	0.29424	2.00	0.0462
hsm	1	0.16857	0.03549	4.75	<.0001
hss	1	0.03432	0.03756	0.91	0.3619
hse	1	0.04510	0.03870	1.17	0.2451

Estimation of Mean Response $E(Y_h)$

- ullet We are interested in predictors ${f X}_h$
 - Can show $\hat{Y}_h \sim N\left(\mathbf{X}_h'\boldsymbol{\beta}, \sigma^2\mathbf{X}_h'(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}_h\right)$
- ullet Individual CI for \mathbf{X}_h

$$-\hat{Y}_h \pm t(1-\alpha/2,n-p)s\{\hat{Y}_h\}$$

ullet Bonferroni CI for g vectors \mathbf{X}_h

$$-\hat{Y}_h \pm t(1-\alpha/(2g), n-p)s\{\hat{Y}_h\}$$

 Working-Hotelling confidence band for the whole regression line

$$-\hat{Y}_h \pm \sqrt{pF(1-\alpha,p,n-p)} s\{\hat{Y}_h\}$$

ullet Be careful to be only in range of X's

Predict New Observation

- $Y_{h(new)} = E(Y_h) + \varepsilon$ - $s^2(pred) = s^2(\hat{Y}_h) + \text{MSE}$ - $\hat{Y}_h + \varepsilon \sim N\left(\mathbf{X}_h'\boldsymbol{\beta}, \sigma^2(1 + \mathbf{X}_h'(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}_h)\right)$
- Individual CI of $Y_{h(new)}$

$$-\hat{Y}_h \pm t(1-\alpha/2, n-p)s\{pred\}$$

ullet Bonferroni CI for g vectors \mathbf{X}_h

$$-\hat{Y}_h \pm t(1-\alpha/(2g), n-p)s\{pred\}$$

ullet Simultaneous Scheffé prediction limits for g vectors \mathbf{X}_h

$$-\hat{Y}_h \pm \sqrt{gF(1-\alpha,g,n-p)} s\{pred\}$$

Diagnostics

- Diagnostics play a key role in both the development and assessment of multiple regression models
- Most previous diagnostics carry over to multiple regression
- Given more than one predictor, must also consider relationship between predictors
- Specialized diagnostics discussed later in Chapters 9 and 10

Scatterplot Matrix

- Scatterplot matrix organizes all bivariate scatterplot, between Y and X_j as well as between X_j and X_k (j, k = 1, 2, ..., p-1), in a matrix.
 - Nature of bivariate relationships
 - Strength of bivariate relationships
 - Detection of outliers
 - Range spanned by X's
- Can be generated within SAS

```
proc sgscatter data=cs;
  matrix gpa hsm hss hse;
run;
```

Correlation Matrix

- Complementary summary
- Displays all numerical pairwise correlations
- Must be wary of
 - Nonlinear relationships
 - Outliers
 - Influential observations

Example: Purdue Computer Science Student

 Univaraite Descriptive Statistics (e.g., PROC MEANS or PROC UNIVARIATE): preliminary check for outliers/unusual observations.

```
proc means data=cs maxdec=2;
    var gpa hsm hss hse satm satv;
run;
```

Variable	N	The MEA Mean	NS Procedure Std Dev	e Minimum	Maximum
					Maximum
gpa	224	2.64	0.78	0.12	4.00
hsm	224	8.32	1.64	2.00	10.00
hss	224	8.09	1.70	3.00	10.00
hse	224	8.09	1.51	3.00	10.00
\mathtt{satm}	224	595.29	86.40	300.00	800.00
satv	224	504.55	92.61	285.00	760.00

• maxdec = 2 sets the number of decimal places in the output to 2.

```
proc univariate data=cs noprint;
    var gpa hsm hss hse satm satv;
    histogram gpa hsm hss hse satm satv /normal;
run;
```


Top Left: GPA Top Right: HSM Bottom Left: HSS Bottom Right: HSE

4.00	Т					•		•	ī				-			:					-		:		•
gpa	-	-	:	:				 		•	:	:	:		i ! !				:	:	:		!		İ
0.12			-										•								-				
									10				•	•	•	•	•			•	•	•	•	•	-
											-	-	•	•	•	-	•		•	-	•	•	•	•	•
											-		•	•	•	•	•	•		•	•	•	•	•	-
											-		•	•	-	-	•		•	-	-	•	•	-	-
· · - · - ·				١	hsm							-	•	•	•	-				-	•	•	•	•	-
											-			•		•						•	•	•	
										-		-	-	-					-		-	-			
-														-							-				
-	2										•										•				
						•	•	•	•								10				•	•	•	•	•
				•	-	•	•	•	•												•	•	•	•	-
					-	•	•	•	•										-	-	-	-	•	-	-
		-	-	•	-	•	•	•	•										•	-	-	-	-	-	-
					-								hs	s						-	-			-	
			_																		_	_		_	
			_		_			_													_	_		_	
	•			•		•	•	•										•			•	•	•		
	\vdash		•			_	_	_	-	3				_	_	-	-		•						10
							_	_				_	_		_	_									٠٠
· · ·				•	•	•	•	•	•			•	•	•	•	•	•								
				•	•	•	•	•	•		-		•	•	-	•	•								
			•	-	-	•	•	-	-		-	-	-	-	-	•	-				hs				
	-	•	•		-	•	•	-	-		-	-	-	-	-	-	-				118	•6			
													-	-											
			-			-		-		-				-	-			3							
•							-				-							J							

- Uses PROC CORR to report correlation values;
- Use NOPROB statement to get rid of those p-values.

```
[1] proc corr data=a1;
  var hsm hss hse;
```

```
hsm hss hse
hsm 1.00 0.57 0.44
<.0001 <.0001
hss 0.57 1.00 0.57
<.0001 <.0001
hse 0.44 0.57 1.00
<.0001 <.0001
```

[2] proc corr data=a1 noprob;
 var satm satv;

```
      satm
      satv

      satm
      1.00
      0.46

      satv
      0.46
      1.00
```

[3] proc corr data=a1; var hsm hss hse satm satv; with gpa;

```
hsm hss hse
gpa 0.43 0.32 0.28
<.0001 <.0001 <.0001
```

gpa 0.25 0.11 0.0001 0.0873

Residual Plots

- Used for similar assessment of assumptions
 - Model is correct
 - Normality
 - Constant Variance
 - Independence
- Plot e vs \hat{Y} (overall)
- ullet Plot e vs X_j (with respect to X_j)
- Plot e vs missing variable (e.g., X_jX_k)

Tests

- ullet Univariate graphical summaries of e are still preferred
- NORMAL option in PROC UNIVARIATE test normality
- Modified Levene's and Breusch-Pagan for constant variance
- ullet Lack of fit test: need repeated observations where all X fixed at same levels

Lack of Fit Test

- Compare
 - (reduced) linear model

$$H_0: E(Y_i) = \beta_0 + \beta_1 X_{i1} + \dots + \beta_{p-1} X_{i,p-1}$$

– (full) model where Y has c means (i.e. c combinations of X_i)

$$H_a: E(Y_i) \neq \beta_0 + \beta_1 X_{i1} + \dots + \beta_{p-1} X_{i,p-1}$$

- $F^* = \frac{\{SSE(R) SSE(F)\}/\{(n-p) (n-c)\}}{SSE(F)/(n-c)} \sim F(c-p, n-c)$ under H_0
- Reject H_0 if $F^* > F(1-\alpha, c-p, n-c)$
- If reject H_0 , conclude that a more complex relationship between Y and X_1, \ldots, X_{p-1} is needed

Calculate SSE(F) in SAS

```
* Analysis of Variance - Full Model
proc glm;
    class x1 x2;
    model y=x1*x2;
run;
```

- ullet CLASS and MODEL specify that every combination of levels of X_1 and X_2 has their own mean
- Plug the SSE of this model into the lack of fit test

Example: Purdue Computer Science Student

- Investigate the model: GPA = HSM HSS HSE
 - PROC REG reports SSE(R) = 107.75046 with df(SSE) = 220.

```
proc glm data=a1;
    class hsm hss hse;
    model gpa=hsm*hss*hse;
run; quit;
```

Class Level Information

Class	Levels	Values
hsm	9	2 3 4 5 6 7 8 9 10
hss	8	3 4 5 6 7 8 9 10
hse	8	3 4 5 6 7 8 9 10

		Sum of			
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	99	85.0469697	0.8590603	2.11	<.0001
Error	124	50.4158191	0.4065792		
Corrected Total	223	135.4627888			

•
$$F^* = \frac{\{SSE(R) - SSE(F)\}/\{(n-p) - (n-c)\}}{SSE(F)/(n-c)} = \frac{\{107.75046 - 50.4158191\}/\{220 - 124\}}{50.4158191/124} = 1.4689 > 1.3688 = F_{96.124}^{-1}(0.95).$$

Chapter Review

- Data and Notation
- Model in Matrix Terms
- Parameter Estimation
- ANOVA F-test
- Estimation of Mean Responses
- Prediction of New Observations
- Diagnostics