Math CS 5 HW 1

Zih-Yu Hsieh

October 3, 2025

Question 1. The following poset is a Heyting algebra: $\{\bot \le \mu \le \top\}$. Fill in tables for the Heyting algebra operations.

Proof. Given the basicrules of Heyting algebra (as an easier place of reference for myself):

- $\perp \leq x \leq T$ for all $x \in \mathcal{H}$.
- $x \le y \land z$ iff $x \le y$ and $x \le z$.
- $x \lor y \le z$ iff $x \le z$ and $y \le z$.
- $x \le y \to z \text{ iff } x \land y \le z.$

With these operations in mind, here are the tables for its Heyting Algebra Operations:

\wedge	T	μ	
Т	Т	μ	1
μ	μ	μ	1
T	T	T	T

V	Т	μ	\perp
Т	Т	Т	Т
μ	\vdash	μ	μ
Ī	Т	μ	Ţ

\rightarrow	Т	μ	Т
Т	Т	μ	1
μ	Т	Τ	1
\perp	Т	Τ	Т

Question 2. A notable absence in our list of logical connectives is negation. Luckily, we can define it in terms of existing connectives: $\neg A := A \to \bot$. Let $\mathcal{A} = \{P\}$. The "law of non-contradiction" is the proposition $\neg (P \land \neg P)$. A closely related "law" is the "law of excluded middle," which is the proposition $P \lor \neg P$.

- (a) Construct a proof tree of $\vdash \neg (P \land \neg P)$. (By definition, $(P \land (P \to \bot)) \to \bot$).
- (b) Prove that there does not exist a derivation of $\vdash P \lor \neq P$ (Tip: consider the Heyting algebra in the previous problem).

Proof.

(a) Let $\Gamma = \{P \land (P \to \bot)\}$ as a premise. We get the following proof tree:

Where the last \rightarrow -intro is also based on the premis (where we form $\Gamma, P \land (P \rightarrow \bot) \vdash \bot$). (Yeah I failed using the package, I'll try to learn it by the next time).

(b) Suppose the contrary that there exists a derivation of $\Gamma \vdash P \lor \neg P$ (given some premise Γ), if consider the Heyting algebra from the previous problem, define the model $\varphi : \mathcal{A} \to \mathcal{H}$ by $\varphi(P) = \bot$. Then, by Soundness Theorem, we derived:

$$[\![\Gamma]\!]_\varphi \leq [\![P \vee \neg P]\!]_\varphi = [\![P]\!]_\varphi \vee [\![P \to \bot]\!]_\varphi = [\![P]\!]_\varphi \vee ([\![P]\!]_\varphi \to [\![\bot]\!]_\varphi) = \bot \vee (\bot \to \bot)$$

Using the previous diagram, we get $\llbracket\Gamma\rrbracket_{\varphi} \leq \bot \lor \bot = \bot$, so $\llbracket\Gamma\rrbracket_{\varphi} = \bot$ based on the inequality. But this becomes an inconsistency (where the premise outputs false). So, this concludes that the derivation of $\Gamma \vdash P \lor \neg P$ doesn't exist.