Algoritmizace

Třídění

THE CLASSIC WORK NEWLY UPDATED AND REVISED

The Art of Computer Programming

VOLUME 3 Sorting and Searching Second Edition

DONALD E. KNUTH

Vnitřní třídění

<u>Vstup</u>: pole a s prvky, které lze porovnávat <u>Výstup</u>: pole a s prvky uspořádanými vzestupně <u>Bublinkové třídění BubbleSort</u>

- projdi pole a porovnej dvojice sousedních prvků
- v případě potřeby dvojici vyměň
- po dosažení konce seznamu začni znovu od začátku
- po i-té iteraci (i = 1, 2, ..., n-1) je i posledních prvků na svých místech, není je již tedy třeba porovnávat
- po *n*-1 iteracích (n=len(a)) výpočet končí


```
for i in range(n-1,0,-1): #n-1≥i≥1
  for j in range(i): #0≤j≤i-1
   if a[j] > a[j+1]:
      a[j], a[j+1] = a[j+1], a[j]
```



```
for i in range(n-1,0,-1): #n-1≥i≥1
  for j in range(i): #0≤j≤i-1
  if a[j] > a[j+1]:
    a[j], a[j+1] = a[j+1], a[j]
```



```
for i in range(n-1,0,-1): #n-1≥i≥1
  for j in range(i): #0≤j≤i-1
  if a[j] > a[j+1]:
    a[j], a[j+1] = a[j+1], a[j]
```



```
for i in range(n-1,0,-1): #n-1≥i≥1
  for j in range(i): #0≤j≤i-1
  if a[j] > a[j+1]:
    a[j], a[j+1] = a[j+1], a[j]
```



```
for i in range(n-1,0,-1): #n-1≥i≥1
  for j in range(i): #0≤j≤i-1
   if a[j] > a[j+1]:
    a[j], a[j+1] = a[j+1], a[j]
```



```
for i in range(n-1,0,-1): #n-1≥i≥1
  for j in range(i): #0≤j≤i-1
   if a[j] > a[j+1]:
    a[j], a[j+1] = a[j+1], a[j]
```



```
for i in range(n-1,0,-1): #n-1≥i≥1
  for j in range(i): #0≤j≤i-1
   if a[j] > a[j+1]:
      a[j], a[j+1] = a[j+1], a[j]
```



```
for i in range(n-1,0,-1): #n-1≥i≥1
  for j in range(i): #0≤j≤i-1
   if a[j] > a[j+1]:
      a[j], a[j+1] = a[j+1], a[j]
```



```
for i in range(n-1,0,-1): #n-1≥i≥1
  for j in range(i): #0≤j≤i-1
   if a[j] > a[j+1]:
      a[j], a[j+1] = a[j+1], a[j]
```



```
for i in range(n-1,0,-1): #n-1≥i≥1
  for j in range(i): #0≤j≤i-1
   if a[j] > a[j+1]:
    a[j], a[j+1] = a[j+1], a[j]
```



```
for i in range(n-1,0,-1): #n-1≥i≥1
  for j in range(i): #0≤j≤i-1
   if a[j] > a[j+1]:
    a[j], a[j+1] = a[j+1], a[j]
```



```
for i in range(n-1,0,-1): #n-1≥i≥1
  for j in range(i): #0≤j≤i-1
   if a[j] > a[j+1]:
    a[j], a[j+1] = a[j+1], a[j]
```



```
for i in range(n-1,0,-1): #n-1≥i≥1
  for j in range(i): #0≤j≤i-1
   if a[j] > a[j+1]:
    a[j], a[j+1] = a[j+1], a[j]
```



```
for i in range(n-1,0,-1): #n-1≥i≥1
  for j in range(i): #0≤j≤i-1
   if a[j] > a[j+1]:
      a[j], a[j+1] = a[j+1], a[j]
```



```
for i in range(n-1,0,-1): #n-1≥i≥1
  for j in range(i): #0≤j≤i-1
   if a[j] > a[j+1]:
    a[j], a[j+1] = a[j+1], a[j]
```



```
for i in range(n-1,0,-1): #n-1≥i≥1
  for j in range(i): #0≤j≤i-1
  if a[j] > a[j+1]:
    a[j], a[j+1] = a[j+1], a[j]
```



```
for i in range(n-1,0,-1): #n-1≥i≥1
  for j in range(i): #0≤j≤i-1
   if a[j] > a[j+1]:
      a[j], a[j+1] = a[j+1], a[j]
```



```
for i in range(n-1,0,-1): #n-1≥i≥1
  for j in range(i): #0≤j≤i-1
   if a[j] > a[j+1]:
      a[j], a[j+1] = a[j+1], a[j]
```

2
1
4
5
10


```
for i in range(n-1,0,-1): #n-1≥i≥1
  for j in range(i): #0≤j≤i-1
   if a[j] > a[j+1]:
    a[j], a[j+1] = a[j+1], a[j]
```

Bublinkové třídění BubbleSort

```
def bubbleSort(a):
  n = len(a)
   for i in range(n-1,0,-1): \# n-1 \ge i \ge 1
     # prvky a[i+1:n]
invariant
    # jsou již na svých místech
     for j in range(i): \# 0 \le j \le i-1
invariant \rightarrow # a[j] = max a[0..j] 0 \le j \le i
       if a[j] > a[j+1]:
          a[j], a[j+1] = a[j+1], a[j]
      \# a[i] = \max a[0..i]
```

 \bigstar Časová složitost $\Theta(n^2)$

① Zlepšení algoritmu bubbleSort

- jedna iterace převede maximální prvek na poslední místo mezi prvky, které jsou předmětem porovnání
- pokud poslední výměna byla mezi a[j] ↔ a[j+1],
 znamená to, že a[j+1] ≤ a[j+2] ≤ a[j+3] ≤ ...
- v další iteraci tedy netřeba porovávat a[i] pro i > j

Vylepšete algoritmus tak, aby každá iterace skončila na pozici poslední výměny v předchozím kroku. Změní to nějak časovou složitost v nejhorším případě?

Třídění výběrem SelectionSort

První krok

- najdi minimální prvek
- a vyměň s prvkem na pozici 0

Další krok

- mezi zbývajícími prvky najdi minimální
- a vyměň s prvkem na pozici 1

Obecný krok (pro i = 0, 1, ..., n-2)

- mezi a[i],...,a[n-1] najdi minimální prvek
- a vyměň s prvkem a[i]

Invariant cyklu

- na začátku každé iterace (pro i = 0, 1, ..., n-1) platí
- prvních i prvků tvoří setříděný úsek
- který obsahuje i minimálních prvků pole a

Třídění výběrem SelectionSort

```
def selectionSort(a):
    = len(a)
  for i in range(n-1):
    # a[i] vyměň s minimem z a[i:]
    minIndex, minHodnota = i, a[i]
    # dočasné minimum
    for j in range(i+1,n):
      if minHodnota > a[j]:
         minHodnota = a[j]
         minIndex = j
    a[i], a[minIndex] = a[minIndex], a[i]
```

Třídění výběrem – analýza

X Proti: Časová složitost $\Theta(n^2)$

Data malého rozsahu (desítky prvků)

• lepší nežli BubbleSort

✓ Pro:

- Jen n-1 výměn
- jen O(n) zápisů do pole a

Třídění vkládáním InsertionSort

Jako třídíme karty

- vezměte novou kartu z balíčku
- a postupným porovnáváním zprava doleva
- s již setříděnými kartami, které držíte v ruce

4 < 8

Příklad

4 < 7

* Příklad

Třídění vkládáním InsertionSort

```
def insertionSort(a):
     = len(a)
   for i in range(1, n):
   # vlož a[i] do setříděného a[:i]
       , j = a[i], i-1
      while j \ge 0 and a[j] \ge x:
         a[j+1] = a[j]
         j -= 1
      a[j] =
```

Invariant: na začátku i-té iterace (i = 1, 2, ..., n) je a[:i] setříděno

Třídění vkládáním – analýza

- \bigstar Časová složitost $\Theta(n^2)$
- ✔ Vhodné pro data malého rozsahu (desítky prvků)
 - lepší nežli BubbleSort

Srovnání s SelectionSort

- SelectionSort musí vždy projít zbývající prvky pro nalezení minima
- InsertionSort může stačit jen jediné porovnání
- výhodné pro částečně setříděné vstupy
- v průměrném případě provede cca polovinu porovnání ve srovnání se SelectionSort

Haldové třídění HeapSort

Datová struktura binární halda (binary heap)

Operace

- Přidej vložení nového prvku
- OdeberMin odebrání minimálního prvku
- lze provést v čase O(log *n*)
- n = počet prvků uložených v haldě

HeapSort

- z *n* zadaných prvků postav haldu : čas O(*n* log *n*)
- n-krát odeber minimum : čas $O(n \log n)$
- třídění v čase $O(n \log n)$

Graf

Graf

Graf je

- souvislý mezi každou dvojící vrcholů existuje cesta
- strom souvislý a neobsahuje kružnici

Kořenový strom

Vzdálenost vrcholů u a v

• délka nejkratší cesty mezi *u* a *v*

Výška stromu

délka nejdelší cesty z kořene do listu

Kořenový strom

i-tá hladina

• je tvořena vrcholy ve vzdálenosti *i* od kořene

Binární halda

je binární strom splňující následující podmínky:

- v každé hladině od první do předposlední je max # vrcholů
- poslední hladina se zaplňuje zleva
- hodnoty uložené ve vrcholech splňují podmínku haldového uspořádání

Pro každý vrchol platí, že hodnota v něm uložená je

- menší nebo rovna než hodnota v libovolném z jeho dětí (min-halda)
- větší nebo rovna než hodnota v libovolném z jeho dětí (max-halda)

◆□▶◆□▶◆■▶◆■▶ ■ めぬ@

Binární halda – vlastnosti

Mějme haldu výšky *h* o *n* vrcholech:

15

6

Pak platí

- pro $0 \le i \le h-1$ je na i-té hladině 2^i vrcholů
- na poslední hladině je alespoň 1 vrchol

Tedy
$$n \ge \sum_{i=0}^{h-1} 2^i + 1 = 2^h \implies h \le \log_2 n$$

Binární halda – vlastnosti

0	1	2	3	4	5	6	7	8	9
5	7	6	9	8	15	11	16	14	10

Binární halda – vlastnosti

0	1	2	3	4	5	6	7	8	9
5	7	6	9	8	15	11	16	14	10

0										
5	7	6	9	8	15	11	16	14	10	5

0	1	2	3	4	5	6	7	8	9	10
5	7	6	9	8	15	11	16	14	10	5

0										
5	7	6	9	5	15	11	16	14	10	8

0	1	2	3	4	5	6	7	8	9	10
5	7	6	9	5	15	11	16	14	10	8

0	1	2	3	4	5	6	7	8	9	10
5	5	6	9	7	15	11	16	14	10	8

0	1	2	3	4	5	6	7	8	9	10
5	5	6	9	7	15	11	16	14	10	8

0	1	2	3	4	5	6	7	8	9	10
5	5	6	9	7	15	11	16	14	10	8

0	1	2	3	4	5	6	7	8	9	10
	5	6	9	7	15	11	16	14	10	8

0	1	2	3	4	5	6	7	8	9	10
8	5	6	9	7	15	11	16	14	10	

0	1	2	3	4	5	6	7	8	9	10
8	5	6	9	7	15	11	16	14	10	

0	1	2	3	4	5	6	7	8	9	10
8	5	6	9	7	15	11	16	14	10	

0	1	2	3	4	5	6	7	8	9	10
5	8	6	9	7	15	11	16	14	10	

0	1	2	3	4	5	6	7	8	9	10
5	7	6	9	8	15	11	16	14	10	

0	1	2	3	4	5	6	7	8	9	10
5	7	6	9	8	15	11	16	14	10	

Haldové třídění

Vstup: pole a

- 1 Z prvků pole a vybuduj haldu
 - začni s triviální haldou obsahující jen a [0]
 - postupně vkládej a [1], a [2],... pomocí Přidej
 - v poli a je nyní uložena halda
- 2 Z haldy postupně odebírej minima
 - pomocí OdeberMin

Na Problém

• jak zajistíme třídění na místě (in situ)?

Problémy \(\)

2 V jazyce Python sestavte funkci

heapSort(a)

která setřídí prvky zadaného pole a vzestupně haldovým tříděním. Váš algoritmus byl měl třídit na místě, tj. může využívat jen konstantní pracovní paměť.