Bayesian Linear Regression

– US air pollution data

庄亮亮

目录

1.	Bayesian inference for linear regression	2
	1.1 Frequentist approach	3
	1.2 Bayesian Regression with INLA	4
2.	Prediction	9
	2.1 The prediction in lm	9
	2.2 The prediction in INLA	10
3.	Model selection and checking	11
	3.1 DIC	11
	3.2 Posterior Predictive Checking	12
	3.4 Bayesian residual plots	16
4.	Robust Linear regression with t-distribution	17
5.	Analysis of Variance	18
6.	Ridge regression	21
7.	Linear regression with autoregressive errors	24
#d	evtools::install_github("julianfaraway/brinla") #可能要翻	墙
li	brary(INLA)	
li	brary(brinla)	

```
library(ggplot2)
library(GGally)
library(tidyr)
library(MASS)
library(nlme)
```

1. Bayesian inference for linear regression

空气污染数据:调查美国 41 个城市污染的决定因素。以 S02 作为因变量,其他六个变量作为潜在解释变量。

在这些潜在解释变量中,有两个与人类生态相关(pop,manuf),另外四个与气候相关(negtemp,wind,precip,days)。变量 negtemp 表示年平均气温的负值。在这里使用负值是因为所有的变量都是这样的,高的值表示一个不太事宜的环境。

表 1: usair 数据

	SO2	negtemp	manuf	pop	wind	precip	days
Phoenix	10	-70.3	213	582	6.0	7.05	36
Little Rock	13	-61.0	91	132	8.2	48.52	100
San Francisco	12	-56.7	453	716	8.7	20.66	67
Denver	17	-51.9	454	515	9.0	12.95	86
Hartford	56	-49.1	412	158	9.0	43.37	127
Wilmington	36	-54.0	80	80	9.0	40.25	114

```
pairs.chart <- ggpairs(usair[,-1],
    lower = list(continuous = "cor"),</pre>
```

```
upper = list(continuous = "points", combo = "dot")) +
ggplot2::theme(axis.text = element_text(size = 6))
pairs.chart
```


Manuf 与 Pop 高度相关:r=0.955; 我们在模型中只需保留一个。

1.1 Frequentist approach

表 2: 拟合情况汇总

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	135.7714	50.0610	2.7121	0.0103

	Estimate	Std. Error	t value	Pr(> t)
negtemp	1.7714	0.6366	2.7824	0.0086
manuf	0.0256	0.0046	5.5544	0.0000
wind	-3.7379	1.9444	-1.9224	0.0627
precip	0.6259	0.3885	1.6111	0.1161
days	-0.0571	0.1748	-0.3265	0.7460

结果表明, negtemp 和 manuf 是重要的解释变量, 而 wind,precip 和 days 不是。

• 标准残差

```
round(summary(usair.lm1)$sigma, 4)
```

[1] 15.79

1.2 Bayesian Regression with INLA

默认情况下:

$$\beta_j \sim N(0, 10^6), \quad j = 0, \dots, p$$

$$\log(\tau) \sim \log \text{Gamma}(1, 10^{-5})$$

```
knitr::kable(round(usair.inla1$summary.fixed, 4),
caption = '固定效应信息',
align='c')
```

表 3: 固定效应信息

	mean	sd	0.025quant	0.5quant	0.975quant	mode	kld
(Intercept)	135.4904	49.8882	36.9784	135.4963	233.8821	135.5120	0
negtemp	1.7690	0.6347	0.5157	1.7690	3.0209	1.7692	0
manuf	0.0256	0.0046	0.0165	0.0256	0.0346	0.0256	0
wind	-3.7230	1.9357	-7.5432	-3.7234	0.0964	-3.7241	0
precip	0.6249	0.3874	-0.1401	0.6249	1.3890	0.6249	0
days	-0.0567	0.1743	-0.4007	-0.0567	0.2872	-0.0567	0

```
knitr::kable(round(usair.inla1$summary.hyperpar, 4),
caption = '超参数信息',
align='c')
```

表 4: 超参数信息

	mean	sd	0.025quant	0.5quant	0.975quant	mode
Precision for the Gaussian observations	0.0042	0.001	0.0025	0.0042	0.0064	0.004

```
summary(usair.inla1)
```

```
##
## Call:
      c("inla(formula = usair.formula1, data = usair, control.compute =
      list(dic = TRUE, ", " cpo = TRUE))")
## Time used:
##
       Pre = 1.12, Running = 0.428, Post = 0.119, Total = 1.67
## Fixed effects:
                            {\tt sd} \ {\tt 0.025quant} \ {\tt 0.5quant} \ {\tt 0.975quant}
##
                  mean
                                                                   mode kld
## (Intercept) 135.490 49.888
                                                        233.882 135.512
                                   36.978 135.496
## negtemp
                 1.769 0.635
                                    0.516
                                              1.769
                                                          3.021
                                                                  1.769
                                                                           0
## manuf
                 0.026 0.005
                                    0.017 0.026
                                                          0.035
                                                                  0.026
                                                                           0
```

```
## wind
               -3.723 1.936
                                 -7.543
                                          -3.723
                                                      0.096 - 3.724
                                                                     0
## precip
                0.625 0.387
                                 -0.140
                                           0.625
                                                      1.389
                                                              0.625
                                                                     0
               -0.057 0.174
                                 -0.401
                                                      0.287 -0.057
## days
                                          -0.057
                                                                     0
##
## Model hyperparameters:
##
                                           mean
                                                   sd 0.025quant 0.5quant
## Precision for the Gaussian observations 0.004 0.001
                                                           0.003
                                                                    0.004
##
                                          0.975quant mode
## Precision for the Gaussian observations
                                               0.006 0.004
##
## Expected number of effective parameters(stdev): 6.00(0.001)
## Number of equivalent replicates : 6.84
##
## Deviance Information Criterion (DIC) ...... 350.76
## Deviance Information Criterion (DIC, saturated) ....: 51.32
## Effective number of parameters ...... 7.21
##
## Marginal log-Likelihood:
                            -208.73
## CPO and PIT are computed
##
## Posterior marginals for the linear predictor and
  the fitted values are computed
```

• 计算 σ 的后验估计值

默认情况下,inla 对象输出的是后验信息的精确参数 τ 。然而常常我们对后验均值 σ 感兴趣。

bri.hyperpar.summary 用于生成超参数 σ 的汇总统计信息。

```
knitr::kable(round(bri.hyperpar.summary(usair.inla1), 4),
caption = '超参数信息',
align='c')
```

表 5: 超参数信息

	mean	sd	q0.025	q0.5	q0.975	mode
SD for the Gaussian observations	15.67	1.865	12.53	15.49	19.84	15.14

• 绘制 σ 的后验密度

使用函数 bri.hyperpar.plot。

bri.hyperpar.plot(usair.inla1)

 σ 有略微右偏的后验分布。

• 改变先验

假设 $\beta_0 \sim N(100,100)$, $\beta_{negtemp} \sim N(2,1)$ 和 $\beta_{wind} \sim N(3,1)$ 。 如果想假设 τ 服从对数正态分布 (对数 τ 服从正态分布),可以使用选项 control.family 来指定。

```
usair.inla2 <- inla(usair.formula1, data = usair, control.compute = list(dic = TRUE, cp
    control.fixed = list(mean.intercept = 100, prec.intercept = 10^(-2),
        mean = list(negtemp = 2, wind = -3, default =0), prec = 1),
    control.family = list(hyper = list(prec = list(prior="gaussian", param =c(0,1)))))
summary(usair.inla2)
##
## Call:
##
      c("inla(formula = usair.formula1, data = usair, control.compute =
      list(dic = TRUE, ", " cpo = TRUE), control.family = list(hyper =
##
      list(prec = list(prior = \gaussian\", ", " param = c(0, 1))),
##
##
      control.fixed = list(mean.intercept = 100, ", " prec.intercept =
      10^{(-2)}, mean = list(negtemp = 2, wind = -3, ", " default = 0), prec =
##
      1))")
##
## Time used:
       Pre = 0.616, Running = 0.475, Post = 0.12, Total = 1.21
##
## Fixed effects:
##
                          sd 0.025quant 0.5quant 0.975quant
                                                               mode kld
                  mean
## (Intercept) 102.395 9.562
                                 83.615 102.397
                                                    121.149 102.401
                                                                      0
## negtemp
                 1.384 0.212
                                  0.966
                                          1.385
                                                      1.801
                                                              1.385
## manuf
                0.025 0.004
                                  0.018
                                         0.025
                                                      0.033
                                                              0.025
                                                                      0
## wind
               -2.952 0.803
                                -4.529 -2.952
                                                   -1.376 -2.952
                                                                      0
## precip
                0.441 0.246
                                -0.045
                                          0.441
                                                     0.925
                                                              0.442
                                                                      0
## days
                 0.041 0.090
                                           0.040
                                                      0.218
                                 -0.136
                                                              0.040
                                                                      0
##
## Model hyperparameters:
##
                                                    sd 0.025quant 0.5quant
                                            mean
                                                                     0.005
## Precision for the Gaussian observations 0.005 0.001
                                                            0.003
##
                                           0.975quant mode
## Precision for the Gaussian observations
                                                0.008 0.005
## Expected number of effective parameters(stdev): 4.33(0.074)
## Number of equivalent replicates : 9.48
```

2. PREDICTION 9

2. Prediction

2.1 The prediction in lm

```
# new observations
new.data <- data.frame(
   negtemp = c(-50, -60, -40),
   manuf = c(150, 100, 400),
   pop = c(200, 100, 300),
   wind = c(6, 7, 8),
   precip = c(10, 30, 20),
   days = c(20, 100, 40))
knitr::kable(head(new.data))</pre>
```

negtemp	manuf	pop	wind	precip	days
-50	150	200	6	10	20
-60	100	100	7	30	100
-40	400	300	8	20	40

2. PREDICTION 10

```
predict(usair.lm1, new.data, se.fit = TRUE)
## $fit
## 1 2
## 33.73 18.95 55.48
##
## $se.fit
## 1
             2
## 14.937 5.329 17.639
##
## $df
## [1] 35
##
## $residual.scale
## [1] 15.79
   输出: 预测向量 (\$fit)、预测均值的标准误差向量 (\$se.fit)、残
```

输出: 预测向量(\\$fit)、预测均值的标准误差向量(\\$se.fit)、残差的自由度(\\$df)和残差标准差(\$residual.scale)。

2.2 The prediction in INLA

在 INLA 中,与 lm 的函数预测不同。预测可以作为模型拟合的一部分。由于预测和拟合一个有缺失数据的模型是一样的,我们需要设置响应变量 "y[i]=NA"表示我们想要预测的值。

```
usair.combined <- rbind(usair, data.frame(SO2 = c(NA, NA, NA), new.data))
knitr::kable(tail(usair.combined))</pre>
```

	SO2	negtemp	manuf	pop	wind	precip	days
Seattle	29	-51.1	379	531	9.4	38.79	164
Charleston	31	-55.2	35	71	6.5	40.75	148
Milwaukee	16	-45.7	569	717	11.8	29.07	123
1	NA	-50.0	150	200	6.0	10.00	20
2	NA	-60.0	100	100	7.0	30.00	100
3	NA	-40.0	400	300	8.0	20.00	40

```
## [1] NA NA NA 1 1 1
usair.inla1.pred <- inla(usair.formula1, data = usair.combined, control.predictor = lis
knitr::kable(usair.inla1.pred$summary.fitted.values[(nrow(usair)+1):nrow(usair.combined
caption = '拟合情况', align='c')</pre>
```

表 8: 拟合情况

usair.link <- c(rep(NA, nrow(usair)), rep(1, nrow(new.data)))

	mean	sd	0.025quant	0.5quant	0.975quant	mode
fitted.Predictor.42	33.65	14.88	4.316	33.66	63.00	33.66
fitted.Predictor.43	18.93	5.31	8.461	18.93	29.40	18.93
${\it fitted.} {\it Predictor.} 44$	55.41	17.58	20.753	55.41	90.07	55.41

3. Model selection and checking

3.1 DIC

• AIC

```
usair.step <- stepAIC(usair.lm1, trace = FALSE)
usair.step$anova

## Stepwise Model Path
## Analysis of Deviance Table
##
## Initial Model:
## S02 ~ negtemp + manuf + wind + precip + days
##</pre>
```

```
\# Final multiple regression model
```

```
usair.formula2 <- SO2 ~ negtemp + manuf + wind + precip
usair.lm2 <- lm(usair.formula2, data = usair)
knitr::kable(round(coef(summary(usair.lm2)), 4))</pre>
```

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	123.1183	31.2907	3.935	0.0004
negtemp	1.6114	0.4014	4.015	0.0003
manuf	0.0255	0.0045	5.615	0.0000
wind	-3.6302	1.8923	-1.918	0.0630
precip	0.5242	0.2294	2.285	0.0283

• DIC

在贝叶斯分析中,DIC 是 AIC 的推广,是最常用的贝叶斯模型比较方法之一,定义为拟合优度度量和模型复杂度度量的总和

```
usair.inla3 <- inla(usair.formula2, data = usair, control.compute = list(dic = TRUE, cp
c(usair.inla1$dic$dic, usair.inla3$dic$dic)
```

[1] 350.8 348.7

最佳模型: 所有子集回归中最小的 DIC。

3.2 Posterior Predictive Checking

在贝叶斯分析中,模型评估通常是

- 1. 基于后验预测检查;
- 2. 留一交叉验证预测检查。

3.2.1 基于后验预测检查

后验预测 p 值可以通过 R 函数 INLA .pmarginal 得到

```
usair.inla3.pred <- inla(usair.formula2, data = usair, control.predictor = list(link =
post.predicted.pval <- vector(mode = "numeric", length = nrow(usair))
for(i in (1:nrow(usair))) {
   post.predicted.pval[i] <- inla.pmarginal(q=usair$S02[i],
        marginal = usair.inla3.pred$marginals.fitted.values[[i]])
}
hist(post.predicted.pval, main="", breaks = 10, xlab="Posterior predictive p-value")</pre>
```


很多后验预测 p 值都接近于 0 或 1。然而,解释后验预测 p 值的一个**缺点**是,即使数据来自真实的模型,它们也不能具有均匀分布。因此,后验预测 p 值的图并不令人满意,我们希望使用其他模型评估方法进一步检验该模型。

3.2.2 留一交叉验证预测检查

评价模型的优劣的两个量:

1. conditional predictive ordinate (CPO)

$$CPO_i = p\left(y_i \mid y_{-i}\right)$$

2. probability integral transform (PIT)

$$PIT_i = p\left(y_i^* \le y_i \mid \mathbf{y}_{-i}\right)$$

在 INLA 中有针对潜在问题的内部检查,这些问题出现在usair.inla3\$cpo\$failure 中。它是一个向量,每个观测值都包含 0或 1。当值为 1 时,表示 CPO 或 PIT 的估计对于相应的观测是不可靠的。在我们的例子中,我们可以通过以下方法检查是否存在故障:

```
sum(usair.inla3$cpo$failure)
```

[1] 0

因此,在 usair.inla3 中不存在 CPOs 和 PITs 的计算问题。

PITs 的分布接近均匀分布,表明模型对数据的拟合较为合理。值得注意的是,PITs 直方图比对应的后验预测直方图更接近均匀分布。

• Compare LPML for the full model and reduce model

如果我们把所有 CPO 值的乘积看作一个"伪边际似然",这就给出了一个交叉验证的拟合度度量。Geisser 和 Eddy(1979) 提出的对数拟边际似然 (LPML):

$$LPML = \log \left\{ \prod_{i=1}^{n} p(y_i \mid \mathbf{y}_{-i}) \right\} = \sum_{i=1}^{n} \log p(y_i \mid \mathbf{y}_{-i}) = \sum_{i=1}^{n} \log \text{CPO}_i$$

```
LPML1 <- sum(log(usair.inla1$cpo$cpo))
LPML3 <- sum(log(usair.inla3$cpo$cpo))
c(LPML1, LPML3)</pre>
```

[1] -177.4 -176.1

简化模型的 LPML 比完整模型的 LPML 大,这表明简化模型是首选的。

• CPOs 的逐点比较

CPO 值表明模型拟合较好,参考线以上的点的优势意味着对简化模型的偏好。这与我们之前使用 DIC 和 LPML 标准的研究结果一致。

3.4 Bayesian residual plots

使用 bri.lmresid.plot 生成贝叶斯残差图:

贝叶斯残差一般都在零附近呈现随机模式。但我们发现观测数 31 似乎 是一个离群值,其贝叶斯残差高达 59.6927。

4. Robust Linear regression with t-distribution

在 INLA 中,通过指定 family="T"来实现。

	mean	sd	0.025quant	0.5quant	0.975quant	mode	kld
(Intercept)	118.4034	26.0576	67.4027	118.2333	170.3176	117.9043	0
negtemp	1.4297	0.3447	0.7729	1.4216	2.1329	1.4051	0
manuf	0.0267	0.0036	0.0192	0.0268	0.0335	0.0270	0
wind	-4.0148	1.5948	-7.1428	-4.0229	-0.8415	-4.0363	0
precip	0.4257	0.1909	0.0682	0.4186	0.8223	0.4038	0

表 10: 固定效应情况

knitr::kable(round(usair.inla4\$summary.hyperpar, 4),
caption = '
超参数情况', align='c')

表 11: 超参数情况

	mean	sd	0.025quant	0.5quant	0.975quant	mode
precision for the student-t observations	0.0053	0.0016	0.003	0.0051	0.0092	0.004
degrees of freedom for student-t	10.9806	8.7815	3.567	8.3861	34.1006	5.609

5. Analysis of Variance

下面的例子,我们将只关注**固定效应**的方差分析模型。关于随机效应模型,将在第 5 章详细介绍。

来自一项研究可待因和针灸对男性患者术后牙痛的影响的实验 (Kutner 等, 2004 年)。

该研究采用随机区组设计,在一个因子结构中出现两个治疗因素。两种治疗因素都有两个层次。

反应变量缓解是疼痛缓解评分 (分数越高,患者缓解程度越好)。根据对疼痛耐受性的评估,32 名受试者被分配到8个区块,每个区块4名受试者。

```
# PainRelief data
data(painrelief, package = "brinla")

painrelief$PainLevel <- as.factor(painrelief$PainLevel)
painrelief$Codeine <- as.factor(painrelief$Codeine)
painrelief$Acupuncture <- as.factor(painrelief$Acupuncture)

knitr::kable(head(painrelief),
caption = 'painrelief数据', align='c')
```

表 12: painrelief 数据

PainLevel	Codeine	Acupuncture	Relief
1	1	1	0.0
1	2	1	0.5
1	1	2	0.6
1	2	2	1.2
2	1	1	0.3
2	2	1	0.6

```
painrelief.inla <- inla(Relief ~ PainLevel + Codeine*Acupuncture, data = painrelief)
#summary(painrelief.inla)
knitr::kable(round(painrelief.inla$summary.fixed, 4))</pre>
```

	mean	sd	0.025quant	0.5quant	0.975quant	mode	kld
(Intercept)	0.0188	0.0702	-0.1202	0.0188	0.1577	0.0188	1e-04
PainLevel2	0.1500	0.0846	-0.0176	0.1500	0.3175	0.1500	1e-04
PainLevel3	0.3250	0.0846	0.1574	0.3250	0.4925	0.3250	1e-04
PainLevel4	0.3000	0.0846	0.1324	0.3000	0.4675	0.3000	1e-04
PainLevel5	0.6750	0.0846	0.5074	0.6750	0.8425	0.6750	1e-04
PainLevel6	0.9750	0.0846	0.8074	0.9750	1.1425	0.9750	1e-04
PainLevel7	1.0750	0.0846	0.9074	1.0750	1.2425	1.0750	1e-04

	mean	sd	$0.025 \mathrm{quant}$	0.5quant	0.975quant	mode	kld
PainLevel8	1.1500	0.0846	0.9824	1.1500	1.3175	1.1500	1e-04
Codeine2	0.4625	0.0598	0.3440	0.4625	0.5810	0.4625	1e-04
Acupuncture2	0.5750	0.0598	0.4565	0.5750	0.6935	0.5750	1e-04
Codeine2:Acupuncture2	0.1500	0.0846	-0.0176	0.1500	0.3175	0.1500	1e-04

治疗因素可待因和针灸的主要作用在贝叶斯意义上都是高度显著的。但 在 95% 可信水平上,两者之间的交互作用不显著,说明两者之间不存在交 互作用。

为了更好地理解影响的重要性,我们生成了不同疼痛水平的后验均值估计和 95% 可信水平的图。水平线是疼痛级别 1 的参考线,它被设置为 0。疼痛程度越高,受试者的疼痛缓解评分就越高 (疼痛程度 4 除外)。显然,疼痛程度是模型中需要考虑的一个显著的混杂因素。

```
p1 <- ggplot(est1, aes(x = x, y = Estimate)) + geom_point(size = 5) + geom_errorbar(aes
p1</pre>
```


6. Ridge regression

法国经济进口活动有关数据:因变量为进口 (import)、国内生产 (DOPROD)、股票形式 (stock) 和国内消费 (CONSUM)。

• 样本相关性

```
data(frencheconomy, package = "brinla")
head(frencheconomy)
```

```
YEAR IMPORT DOPROD STOCK CONSUM
##
## 1
           15.9
                149.3
                         4.2 108.1
      49
## 2
           16.4 161.2
                         4.1 114.8
      50
           19.0 171.5
## 3
      51
                         3.1 123.2
      52
           19.1 175.5
                         3.1 126.9
## 4
           18.8 180.8
## 5
      53
                         1.1 132.1
## 6
      54
           20.4 190.7
                         2.2 137.7
```

```
knitr::kable(round(cor(frencheconomy[,-1]),4), caption = '
frencheconomy数据', align='c')
```

表 14: frencheconomy 数据

	IMPORT	DOPROD	STOCK	CONSUM
IMPORT	1.0000	0.9842	0.2659	0.9848
DOPROD	0.9842	1.0000	0.2154	0.9989
STOCK	0.2659	0.2154	1.0000	0.2137
CONSUM	0.9848	0.9989	0.2137	1.0000

• 数据标准化

贝叶斯岭回归假设所有预测因子的系数元素 $(\beta_1, ..., \beta_p)$ 都是从一个标准正态密度中提取的。

fe.scaled <- cbind(frencheconomy[, 1:2], scale(frencheconomy[, c(-1,-2)]))</pre>

```
# set priors
n <- nrow(frencheconomy)

fe.scaled$beta1 <- rep(1,n)
fe.scaled$beta2 <- rep(2,n)
fe.scaled$beta3 <- rep(3,n)</pre>
```

对于岭回归,参数的先验有一个共同的未知方差,要实现这一点,我们 必须使用副本,并改变数据集

```
# this is the prior for the precision of beta
param.beta = list(prec = list(param = c(1.0e-3, 1.0e-3)))

formula.ridge = IMPORT ~ f(beta1, DOPROD, model="iid", values = c(1,2,3), hyper = parafrencheconomy.ridge <- inla(formula.ridge, data=fe.scaled)
ridge.est <- rbind(frencheconomy.ridge$summary.fixed, frencheconomy.ridge$summary.rando</pre>
```

knitr::kable(round(ridge.est,4))

	mean	sd	$0.025 \mathrm{quant}$	0.5quant	0.975quant	mode	kld
(Intercept)	30.0778	0.5198	29.0449	30.0778	31.109	30.0778	0e+00
1	5.1131	5.4237	-6.7892	5.3431	15.668	5.6205	3e-04
2	0.7205	0.5451	-0.3618	0.7202	1.802	0.7199	0e + 00
3	6.9769	5.4265	-3.5327	6.7312	18.923	6.4159	3e-04

• Comparing with Standard Bayesian Linear regression

```
formula <- IMPORT ~ DOPROD + STOCK + CONSUM
frencheconomy.inla <- inla(formula, data = fe.scaled, control.fixed = list(prec = 1.0e-
knitr::kable(round(frencheconomy.inla$summary.fixed, 4))</pre>
```

	mean	sd	0.025quant	0.5quant	0.975quant	mode	kld
(Intercept)	30.0778	0.5729	28.9378	30.0778	31.216	30.0778	0
DOPROD	3.0052	10.9358	-18.5325	2.9662	24.743	2.8961	0
STOCK	0.7197	0.6037	-0.4819	0.7198	1.919	0.7199	0
CONSUM	9.1322	10.9315	-12.6218	9.1707	30.635	9.2416	0

• Comparing with Ridge regression frequentist approach

30.0778 4.9560 0.7176 7.1669

```
reg2 <- lm.ridge(IMPORT ~ DOPROD + STOCK + CONSUM, data = fe.scaled, lambda = seq(0, 1
reg2.final <- lm.ridge(IMPORT ~ DOPROD + STOCK + CONSUM, data = fe.scaled, lambda = re
reg2.final
## DOPROD STOCK CONSUM</pre>
```

7. Linear regression with autoregressive errors

时间序列数据:新西兰的失业数据包括青年 (15-19 岁) 和成人 (19 岁以上) 的季度失业率。

自 2008 年 6 月起,新西兰政府废除了《最低工资法》。在此,我们想研究在该法案废除之前和之后,成年人和年轻人失业率之间的关系。

```
# Read the data
data(nzunemploy, package = "brinla")
nzunemploy$time <- 1:nrow(nzunemploy)</pre>
```

绘制成人和青年的时间序列数据

```
#library(tidyr)
qplot(time, value, data = gather(nzunemploy[,c(2,3,5)], variable, value, -time), geom =
```


为了使系数更容易理解,我们将成人失业率集中在时间序列的平均值上。

```
# Centering predictor
nzunemploy$centeredadult = with(nzunemploy, adult - mean(adult))
```

• 拟合一个具有独立误差的标准线性回归

```
formula1 <- youth ~ centeredadult*policy
nzunemploy.inla1 <- inla(formula1, data= nzunemploy)
# summary(nzunemploy.inla1)
round(nzunemploy.inla1$summary.fixed, 4)</pre>
```

```
##
                                        sd 0.025quant 0.5quant 0.975quant
                               mean
                                                                            mode
## (Intercept)
                             16.282 0.1534
                                               15.980
                                                        16.282
                                                                   16.584 16.282
## centeredadult
                                                1.386
                                                         1.533
                                                                    1.681 1.533
                              1.533 0.0750
## policyEqual
                              9.442 0.5258
                                                8.407
                                                        9.442
                                                                   10.475 9.442
## centeredadult:policyEqual 2.853 0.4616
                                                1.945
                                                         2.853
                                                                    3.761 2.853
                            kld
##
## (Intercept)
                               0
## centeredadult
                               0
## policyEqual
                               0
## centeredadult:policyEqual
```

```
# Plot the Bayesian residuals
par(mfrow=c(1,1))
nzunemploy.res1 <- bri.lmresid.plot(nzunemploy.inla1, type="o")</pre>
```


它们之间存在一定程度的自相关。

```
# Plot the autocorrelation and partial autocorrelation
par(mfrow = c(2,1))
acf(nzunemploy.res1$resid, main = "")
acf(nzunemploy.res1$resid, type = "partial", main="")
```


图上的虚线对应 95% 置信带。自相关函数的形式呈指数衰减,而偏自相关函数的形式在滞后 1 处有很高的峰值。这些表明 AR(1) 过程将适合于回归模型中的误差项。

• 拟合一个有 AR(1) 误差的线性回归

```
formula2 <- youth ~ centeredadult*policy + f(time, model = "ar1")
nzunemploy.inla2 <- inla(formula2, data = nzunemploy, control.family = list(hyper = list
# summary(nzunemploy.inla2)
knitr::kable(round(nzunemploy.inla2$summary.fixed, 4))</pre>
```

	mean	sd	0.025quant	0.5quant	0.975quant	mode	kld
(Intercept)	16.344	0.3029	15.768	16.334	16.975	16.322	5e-04
centeredadult	1.520	0.1354	1.246	1.521	1.785	1.524	1e-04
policyEqual	8.981	0.9724	6.876	9.036	10.746	9.117	8e-04
centered adult: policy Equal	2.516	0.6009	1.302	2.525	3.672	2.543	1e-04

knitr::kable(round(nzunemploy.inla2\$summary.hyperpar, 4))

	mean	sd	0.025quant	0.5quant	0.975quant	mode
Precision for time	0.4464	0.0859	0.293	0.4420	0.6282	0.4353
Rho for time	0.5128	0.0898	0.329	0.5151	0.6799	0.5163

注意,回归模型的精度 prec 固定在 $\tau = \exp(15)$

• 与频率派方法进行比对

```
#library(nlme)
nzunemploy.gls <- gls(youth ~ centeredadult*policy, correlation = corAR1(form=~1), data</pre>
summary(nzunemploy.gls)
## Generalized least squares fit by REML
    Model: youth ~ centeredadult * policy
##
##
    Data: nzunemploy
    AIC
          BIC logLik
##
     353 368.5 -170.5
##
##
## Correlation Structure: AR(1)
## Formula: ~1
## Parameter estimate(s):
     Phi
##
## 0.5012
##
## Coefficients:
##
                             Value Std.Error t-value p-value
## (Intercept)
                            16.329 0.2733 59.74
## centeredadult
                             1.522 0.1274 11.94
                                                           0
## policyEqual
                             9.083 0.8614 10.54
## centeredadult:policyEqual 2.545 0.5772 4.41
##
```

```
Correlation:
                             (Intr) cntrdd plcyEq
##
## centeredadult
                             -0.020
## policyEqual
                             -0.318 0.007
## centeredadult:policyEqual -0.067 -0.155 0.583
##
## Standardized residuals:
##
       Min
                Q1
                       Med
                                QЗ
                                       Max
## -2.8923 -0.5546 -0.0242 0.5545 2.2957
##
## Residual standard error: 1.505
## Degrees of freedom: 102 total; 98 residual
```

plot the fitted lines ggplot(nzunemploy, aes(centeredadult, youth)) + geom_point(aes(shape = factor(policy)),

