

Introductions

This dataset contains an airline passenger satisfaction survey.
 It was created by observing the passengers from past flights of an airline company.
 It consists of factors that are supposed to affect the passengers' satisfaction during the journey.
 Most of them are personal information (eg. gender, age), flight information (eg. gate location, arrival delay) and ratings appointed by the passengers for flights services (eg. food, wi-fi).

WORK FLOW PLAN

Data Description

- From Kaggle
- 129880 rows × 24 columns

Feature	Description			
Gender	Gender of the passengers (Female, Male)			
Customer Type	The customer type (Loyal customer, disloyal customer)			
Age	The actual age of the passengers			
Type of Travel	(Personal Travel, Business Travel)			
Class	(Business, Eco, Eco Plus)			
Cleanliness	Satisfaction level of Cleanliness			
Gate location	Satisfaction level of Gate location			
Food and drink	Satisfaction level of Food and drink			
Seat comfort	Satisfaction level of Seat comfort			
Satisfaction	Airline satisfaction level (Satisfaction, neutral or dissatisfaction)			

EDA:

The bar chart shows class imbalance

EDA:

The relationship between the customer type shows whether is satisfied with the services or not

Baseline Model:

 This is the confusion matrix of the baseline model, which was created Using Dummy Classifier. The accuracy of the baseline model is: 0.56

Table showing all confusion matrix values of the models:

Model	Accuracy	Recall	Precision	F1 - Score
KNN	0.93	0.89	0.96	0.92
Logistic Regression	0.87	0.84	0.87	0.85
Gaussian Naive Bayes	0.86	0.82	0.86	0.84
Random Forests	0.963	0.94	0.98	0.96
AdaBoost	0.95	0.94	0.96	0.95
XGBoost	0.9659	0.95	0.97	0.96
Bagging	0.9655	0.94	0.98	0.96
Voting	0.9654	0.94	0.98	0.96
Stacking	0.964	0.94	0.98	0.96

ROC Curves:

AUC of **Dummy** model: **0.5** AUC of KNN model: 0.97

AUC of **LogReg** model: **0.9945**

AUC of Random forest model: 0.924

AUC of AdaBoost model: 0.993

AUC of **XGBoost** model: 0.99547

AUC of **Voting** model: **0.9944**

AUC of **Bagging** model: 0.9945

AUC of **Stacking** model: 0.9954

AUC of Gaussian Naive model: 0.922

Best Model for our Project : (XGboost)

- XGboost Accuracy = 0.96
- XGboost F1 Score = 0.96

