User-facing ML or LTR is everywhere

Senior Machine Learning Programmer at Proxet / Giphy

Goal

Take a popular service and review Machine Learning use-cases.

(A)	An amazon.com			TAKE TOUR GUII	DES BLOG LOGIN
Alexa An amazon.com company		SOLUTIONS ▼ TOOLS ▼	PRICING	START YOUR FREE TRIAL	
1	Google.com	17:33	18.39	0.30%	1,300,441
2	Youtube.com	19:40	10.57	13.40%	988,820
3	Tmall.com	7:01	3.86	1.00%	6,212
4	Qq.com	3:46	3.91	3.10%	262,198
5	Baidu.com	5:16	5.00	6.80%	101,279
6	Sohu.com	3:40	4.57	2.10%	25,945
7	Facebook.com	18:22	8.76	8.80%	2,181,031
8	Taobao.com	4:19	3.47	4.10%	24,826
9	360.cn	3:15	4.15	0.40%	14,998
10	Jd.com	3:31	4.36	1.60%	8,481

Figure 1: Top websites according to Alex.com

Youtube - Home Page after 1 search query

Youtube - Autocomplete

Youtube - Search

Youtube - Comments

Classification of Machine Learning Problems [Part 1]

- Learning Problems
- Hybrid Learning Problems
- Statistical Inference
- Learning Techniques

Classification of Machine Learning Problems [Part 2]

Figure 2: Types of Machine Learning Algorithms

Youtube Services

- [Personalized] Home Page Content Selection
- [Personalized] Global Search
- [Personalized] Channel Search
- [Personalized] Search Autocomplete
- [Personalized] Related Videos
- [Personalized] Playlists
- [Personalized] Trending
- [Personalized] Notifications
- [Personalized] Comments selection
- Copyright Violation
 - By Performer
 - By Music
 - By Text
 - Abusive speech
 - Violance
- [Personalized] ADs
- Security

Learning to Rank

LTR is everywhere, where we have a list of elements.

Approaches to Learning to Rank

- Pointwise (Regression/Classification)
- Pairwise (LambdaRank IR-SM, Lambda Rank)
- Listwise (Soft Rank, SmoothRank, AdaRank, ListNet, BoltzRank)

LTR-related procedures

- Candidate Generation
- Offline ranking
- Online ranking
- Data Collection
- Data debiasing
- A/B testing

What is LTR

Learning to rank or machine-learned ranking (MLR) is the application of machine learning, typically supervised, semi-supervised or reinforcement learning, in the construction of ranking models for information retrieval systems

- Candidate Generation
- Offline ranking
- Online ranking
- Data Collection
- Data debiasing
- A/B testing

Search Dataset - Click-Based

session_id	query	document_id	relevance
1	machine learning	1	0.0
1	machine learning	2	0.0
1	machine learning	3	0.0
1	machine learning	4	0.0
1	machine learning	5	1.0

Search Dataset - Click-Based

session_id	query	document_id	relevance	position
1	machine learning	1	0.0	1
1	machine learning	2	0.0	2
1	machine learning	3	0.0	3
1	machine learning	4	0.0	4
1	machine learning	5	1.0	5

Search Dataset - Human Relevance

session_id	query	document_id	relevance
1	machine learning	1	3.0
1	machine learning	2	2.0
1	machine learning	3	1.0
1	machine learning	4	4.0
1	machine learning	5	5.0

LTR evaluation

$$PairAccuracy = \sum_{i < j} [rel_i > rel_j]$$
 (1)

$$DCG_{p} = \sum_{i=1}^{p} \frac{rel_{i}}{\log_{2}(i+1)}$$

$$(2)$$

$$DCG_{p} = \sum_{i=1}^{p} \frac{2^{rel_{i}} - 1}{\log_{2}(i+1)}$$
 (3)

$$nDCG_{p} = \frac{DCG_{p}}{IDCG_{p}}$$
 (4)

$$MRR = \frac{1}{|Q|} \sum_{i=1}^{|Q|} \frac{1}{\mathsf{rank}_i}.$$
 (5)

CatBoost Training

Listing 1: Train CatBoost LTR with YetiRankPairwise loss

```
import catboost
cb pool train = catboost.Pool(
    [[0.0], [0.0], [0.0], [1.0]],
    label = [0.0, 0.0, 0.0, 1.0],
   group id = [1, 1, 1, 1]
cb_pool_eval = catboost.Pool(
    [[0.0], [0.0], [0.0], [2.0]],
    label = [0.0, 0.0, 0.0, 1.0],
    group id = [1, 1, 1, 1]
params = {
    "loss_function": "YetiRankPairwise",
    "custom metric": ["NDCG"]
cb_model_ltr = catboost.CatBoost(params=params)
cb_model_ltr.fit(cb_pool_train, eval_set=cb_pool_eval)
```

LTR training protocols

- 1. split by query
- 2. backtesting

Clicks vs Explicit feedback

- 1. Explicit feedback is not vulnerable to spam.
- 2. Explicit feedback can be outdated.
- 3. Explicit feedback has biases, which you can control with a user's manual.
- 4. Explicit feedback has fewer contradictions, but almost all the time, the size of a dataset is much smaller..
- 5. You must mimic query distribution in your dataset.
- 6. When you start a new product, you don't have enough clicks.
- 7. Explicit feedback is expensive, and you have to update the test questions very often.

Search Dataset - Feature Space

- 1. $f_1(document_id)$ knows about document modalities
- 2. $f_2(session_id)$ knows about user id, location, previous actions
- 3. $f_3(query)$
- 4. $f_4(query, document_id)$
- 5. $f_5(query, session_i d)$
- 6. $f_6(session_id, document_id)$

Search Dataset - Feature Examples

- 1. textual similarity (BM25, BM25 + Stemming, vector-space models)
- 2. document-level CTR from search logs
- 3. document-level CTR from recommendations logs
- 4. different counter aggregations
- 5. Word2Vec on clicks (StartSpace implementation)
- 6. 'PageRank'
- 7. fraud detection
- 8. OCR + textual similarity
- 9. speach recongntion + textual similarity

The gradient boosting with YetiRankPairwise loss function gives the best results. Neural Nets are not as good, but you can build a lot of great features with Siamese neural networks. You can get ideas from Question-Answering models. Pinterest uses a simple Convolutional Neural Net, but they haven't tried the CatBoost with YetiRankPairwise loss.

Search Dataset - Data Colection

You need at least two table:

- 1. Requests and Responses (timestamp, query, document_id, position, response_id, location, user_id, device_id, session_id)
- 2. Actions (timestamp, response_id, action_id, document_id)

You can use Column-oriented database and a queue like kafka to collect the logs. Also, you can duplicate the data on S3.

Personalization

- you can train different models for different regions or encode a location in your features
- you can have different search algorithm for different user buckets
- user-based personalization kills caching
- you can cache heavy features from the head of your search log

Search vs Recommentations

- almost identical approach is applicable for Recommendation
 Systems, but the document id plays the role of a query.
- you should reuse document-level features
- you can recompute the same feature, but on different datasets
- recommentations are almost identical to search, but for relatively small collections you can use a heavy artillery, because you can store predictions in a relatively small matrix
- you can use top search predictions to generate recommendations

LTR for every product

Task	Query	Document	Personalizable	A/B test Target
Search	Query String	Document Id	+	CTR/MRR
Recommentations	Document Id	Document Id	+	CTR/MRR
Home Page Documents	DateTime	Document Id	+	CTR/MRR
Home Page Queries	DateTime	Query String	+	CTR/MRR
Search Autocomplete	Query String	Query String	+	CTR/MRR
Ranking Comments	Document Id	Comment + Metadata	+	Likes 25

Materials

- 1. Search Quality Rating Guidelines
- 2. Introduction to Information Retrieval
- 3. Information Retrieval: Implementing and Evaluating Search Engines
- 4. Demystifying Core Ranking in Pinterest Image Search
- 5. Catboost usage example.
- 6. StarSpace
- 7. Personalized Trending Search Suggestions
- 8. Winning The Transfer Learning Track of Yahoo!'s Learning To Rank Challenge with YetiRank
- 9. On NDCG Consistency of Listwise Ranking Methods
- 10. GeoTrend: Spatial Trending Queries on Real-time Microblogs
- 11. Finding Trending Local Topics in Search Queries
- 12. Challenges in building large-scale information retrieval systems: invited talk
- 13. SIMD-Based Decoding of Posting Lists