Spell correction & edit distance

What's the problem with this image?

Spelling Correction

Cambodian acress allegedly gets possessed while playing a ghost in a movie

Any spelling error in the above sentence?

Spelling Correction

Cambodian acress allegedly gets possessed while playing a ghost in a movie

Any spelling error in the above sentence?

Which are some close words to 'acress'?

Spelling Correction

Cambodian acress allegedly gets possessed while playing a ghost in a movie

Any spelling error in the above sentence?

Which are some close words to 'acress'?

- actress
- acres
- ...

Types of spelling errors

Non-word spelling error detection

- Any word not in a dictionary is an error
- Examples: acress → actress

Real word spelling errors

- The erroneous word is itself present in a dictionary.
- Typographical: three → there
- Cognitive Errors (homophones): piece → peace

Edit Distance

Isolated word error correction

- Pick the one that is closest to 'acress'
- How to define 'closest'?
- Need a distance metric
- The simplest metric: edit distance

The minimum edit distance between two strings

The minimum number of editing operations

- Insertion
- Deletion
- Substitution

Minimum Edit Distance

Н		0	Ν	D	А	
Н	Υ	\supset	Ν	D	А	1

Н	0		Ν	D	А	
Н	Υ	\subset	Ζ	D	А	1

Minimum Edit Distance

Н	0		Ν	D	А	
Н	Υ	U	Ν	D	А	1

If each operation cost = 1, Distance = 3. (Levenshtein Distance)

Minimum Edit Distance

Н	0		Ν	D	А	
Н	Υ	U	Ν	D	А	T

■ If each operation cost = 1, Distance = 3. (Levenshtein Distance)

If substitution cost = 2, Distance = 4. (Alternate version)

Finding minimum edit distance: The simplest strategy

Process all characters one by one starting from either from left or right sides of both strings.

Algorithm

m: Length of X (first string)

n: Length of Y (second string)

eD(i, j): edit distance between X[1..i] and Y[1..i], the first i characters of X and the first j characters of Y.

- If last characters of two strings are same, ignore last characters and recur for m-1 and n-1.
- Else:
 - Delete: Recur for m-1 and n
 - Insert: Recur for m and n-1
 - Substitute: Recur for m-1 and n-1

Finding minimum edit distance: The simplest strategy

Worst case recursion tree when m = 3, n = 3. Worst case example str1="abc" str2="xyz"

https://www.geeksforgeeks.org/edit-distance-dp-5/

Finding minimum edit distance: Dynamic Programming

- \blacksquare A tabular computation of D(n,m)
- Solving problems by combining solutions to
- subproblems Bottom-up
 - **Solution** Compute D(i, j) for small i, j
 - Compute larger D(i, j) based on previously computed smaller values
 - Compute D(i, j) for all i and j till you get to D(n, m)

Dynamic Programming Algorithm

Initialization

```
D(i,0) = i
D(0,j) = j
```

Recurrence Relation:

For each
$$i = 1...M$$

For each $j = 1...N$

$$D(i,j) = \min \begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \\ D(i-1,j-1) + 2; & \text{if } X(i) \neq Y(j) \\ 0; & \text{if } X(i) = Y(j) \end{cases}$$
Termination:

2;
$$\begin{cases} if X(i) \neq Y(j) \\ if X(i) = Y(j) \end{cases}$$

Termination:

The Edit Distance Table

N	9									
0	8									
Ι	7									
Т	6									
N	5									
Е	4									
Т	3									
N	2									
Ι	1									
#	0	1	2	3	4	5	6	7	8	9
	#	Е	Χ	Е	С	U	Т	I	0	N

$$D(i,j) = \min \begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \\ D(i-1,j-1) + \end{cases} \begin{cases} 2; & \text{if } S_1(i) \neq S_2(j) \\ 0; & \text{if } S_1(i) = S_2(j) \end{cases}$$

The Edit Distance Table

N	9									
0	8									
I	7									
Т	6									
N	5									
Е	4	3	4							
Т	3	4	5							
N	2	3	4							
Ι	1	2	3							
#	0	1	2	3	4	5	6	7	8	9
	#	Е	Χ	Е	С	U	Т	I	0	N

$$D(i,j) = \min \begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \\ D(i-1,j-1) + \end{cases} \begin{cases} 2; & \text{if } S_1(i) \neq S_2(j) \\ 0; & \text{if } S_1(i) = S_2(j) \end{cases}$$

Minimum Edit with Backtrace

n	9	↓ 8	/ ←↓9	<u>√</u> ↓ 10	∠←↓ 11	∠←↓ 12	↓ 11	↓ 10	↓9	/8	
0	8	↓ 7	∠ ←↓8	∠ ←↓9	∠ ←↓ 10	∠ ←↓ 11	↓ 10	↓ 9	∠ 8	← 9	
i	7	↓ 6	∠ ←↓ 7	∠ ←↓8	∠ ←↓9	∠ ←↓ 10	↓9	✓ 8	← 9	← 10	
t	6	↓ 5	∠ ←↓6	∠←↓ 7	∠ ←↓8	∠ ←↓9	∠ 8	← 9	← 10	← ↓ 11	
n	5	↓ 4	∠ ←↓ 5	∠←↓ 6	∠←↓ 7	∠ ←↓ 8	<u>/</u> ←↓9	∠ ←↓ 10	∠←↓ 11	∠ ↓ 10	
e	4	∠ 3	← 4	√ ← 5	← 6	← 7	<i>←</i> ↓ 8	∠ ←↓9	∠ ←↓ 10	↓9	
t	3	∠ ←↓4	∠ ←↓ 5	∠←↓ 6	∠←↓ 7	∠←↓ 8	∠ 7	←↓ 8	∠←↓ 9	↓ 8	
n	2	∠ ←↓ 3	∠ ←↓4	<u>√</u> ←↓ 5	∠<↓ 6	∠←↓ 7	<u> </u>	↓ 7	∠←↓ 8	∠7	
i	1	∠←↓ 2	∠ ←↓ 3	∠ ←↓ 4	∠←↓ 5	∠←↓ 6	∠←↓ 7	∠ 6	← 7	← 8	
#	0	1	2	3	4	5	6	7	8	9	
	#	e	X	e	c	u	t	i	0	n	

Computing alignments:

- For some applications, will have to find out which are the positions where edit took place.
- That which parts of string1 is aligned to string 2
- This can be done using backtracking. i.e. at each cell, will keep a pointer that we come from either D(i-1,j) or D(i,j-1) or D(i-1,j-1).
- And at the end, trace back the path from upper right corner to read off the alignment.
- i.e. back trace from final right corner cell value till bottom left corner null character.
- This is shown in fig by shaded elements.

Adding Backtrace to Minimum Edit

```
Termination:
Base conditions:
         D(i,0) = i
                                                                                                                                             D(0,j) = j D(N,M) is distance
Recurrence Relation:
          For each i = 1...M
                                                                            For each j = 1...N
                                                                                                                D(i,j) = \min \begin{cases} D(i-1,j) + 1 & \text{deletion} \\ D(i,j-1) + 1 & \text{insertion} \\ D(i-1,j-1) + 2; & \text{if } X(i) \neq Y(j) & \text{substitution} \\ 0; & \text{if } X(i) = Y(j) \end{cases}
ptr(i,j) = \begin{cases} D(i-1,j) + 1 & \text{insertion} \\ D(i-1,j-1) + 2; & \text{if } X(i) \neq Y(j) \\ D(i-1,j-1) + 2; & \text{if } X(i) \neq Y(j) \end{cases}
0; & \text{the proof of the proof of th
```

The distance matrix

Every non-decreasing path from (0,0) to (M,N) corresponds to an alignment of two sequences.

An optimal alignment is composed of optimal sub-alignments.

Result of Backtrace

Performance

Time

O(nm)

Space

O(nm)

Backtrace

Performance

Time

O(nm)

Space

O(nm)

Backtrace

O(n+m)

Weighted Edit Distance

Why to add weights to the computation?

Some letters are more likely to be mistyped.

Confusion Matrix for Spelling Errors

sub[X, Y] = Substitution of X (in	incorrect) for Y (correct)
-----------------------------------	---------------------------	----------

X							-, -	•				Y	(co	rrect))	,		- \-		,						
	a	ь	c	d	e	f	g	h	i	j	k	1	m	n	0	p	q	r	S	t	u	v	w	х	У	Z
a	0	0	7	1	342	0	0	2	118	0	1	0	0	3	76	0	0	i	35	9	9	0	1	0	5	0
b	0	0	9	9	2	2	3	1	0	0	0	5	11	5	0	10	0	0	2	1	0	0	8	0	0	0
С	6	5	0	16	0	9	5	0	0	0	1	0	7	9	1	10	2	5	39	40	1	3	7	1	1	0
d	1	10	13	0	12	0	5	5	0	0	2	3	7	3	0	1	0	43	30	22	0	0	4	0	2	0
С	388	0	3	11	0	2	2	0	89	0	0	3	0	5	93	0	0	14	12	6	15	0	1	0	18	0
f	0	15	0	3	1	0	5	2	0	0	0	3	4	1	0	0	0	6	4	12	0	0	2	0	0	0
g	4	1	11	11	9	2	0	0	0	1	1	3	0	0	2	1	3	5	13	21	0	0	1	0	3	0
h	1	8	0	3	0	0	0	0	0	0	2	0	12	14	2	3	0	3	1	11	0	0	2	0	0	0
í	103	0	0	0	146	0	1	0	0	0	0	6	0	0	49	0	0	0	2	1	47	0	2	1	15	0
j	0	1	1	9	0	0	1	0	0	0	0	2	1	0	0	0	0	0	5	0	0	0	0	0	0	0
k	1	2	8	4	1	1	2	5	0	0	0	0	5	0	2	0	0	0	6	0	0	0	. 4	0	0	3
1	2	10	1	4	0	4	5	6	13	0	1	0	0	14	2	5	0	11	10	2	0	0	0	0	0	0
m	1	3	7	8	0	2	0	6	0	0	4	4	0	180	0	6	0	0	9	15	13	3	2	2	3	0
n	2	7	6	5	3	0	1	19	1	0	4	35	78	0	0	7	0	28	5	7	0	0	1	2	0	2
0	91	1	1	3	116	0	0	0	25	0	2	0	0	0	0	14	0	2	4	14	39	0	0	0	18	0
p	0	11	1	2	0	6	5	0	2	9	0	2	7	6	15	0	0	1	3	6	0	4	1	0	0	0
q	0	0	1	0	0	0	27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
r	0	14	0	30	12	2	2	8	2	0	5	8	4	20	1	14	0	0	12	22	4	0	0	1	0	0
s	11	8	27	33	35	4	0	1	0	1	0	27	0	6	l	7	0	14	0	15	0	0	5	3	20	1
t	3	4	9	42	7	5	19	5	0	1	0	14	9	5	5	6	0	11	37	0	0	2	19	0	7	6
u	20	0	0	0	44	0	0	0	64	0	0	0	0	2	43	0	0	4	0	0	0	0	2	0	8	0
v	0	0	7	0	0	3	0	0	0	0	0	1	0	0	1	0	0	0	8	3	0	0	0	0	0	0
w	2	2	1	0	1	0	0	2	0	0	1	0	0	0	0	7	0	6	3	3	1	0	0	0	0	0
х	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	0
У	0	0	2	0	15	0	1	7	15	0	0	0	2	0	6	1	0	7	36	8	5	0	0	1	0	0
z	0	0	0	7	0	0	0	0	0	0	0	7	5	0	0	0	0	2	21	3	0	0	0	0	3	0

Keyboard Design

Weighted Minimum Edit Distance

Initialization:

```
D(0,0) = 0

D(i,0) = D(i-1,0) + del[x(i)];  1 < i \le N

D(0,j) = D(0,j-1) + ins[y(j)];  1 < j \le M
```

Recurrence Relation:

$$D(i,j) = \min \begin{cases} D(i-1,j) + del[x(i)] \\ D(i,j-1) + ins[y(j)] \\ D(i-1,j-1) + sub[x(i),y(j)] \end{cases}$$

Termination:

```
D(N,M) is distance
```

How to modify the algorithm with transpose?

Transpose

- transpose(x,y) = (y,x)
- Also known as metathesis

Transfositioners most grantzib 1:62 A. Transpore (x,y) = (y, x) 10 10 Ly Asold Known Egy mpgathesisto ut and brist has proposed over the one so how to modify the algorithm with books Pose ? and speed are for mit coil distance > Transess is also common tooks / 1.8 0.5 inspeed of xy me write yx. 18 12 So Thow in crosent algorithm afast Soom. inspersion modeletion and Subsititution how we Loans Position power bridgesi + dal Ino Positions for two characters. > for transprision mit is spent for out [xi] = - y (i-1) in this read we can accomadate one cost. for CS Scanned with Oam Scalme inset, deleting and sub-

How to find dictionary entries with smallest edit distance

Naïve Method

Compute edit ditance from the query term to each dictionary term – an exhaustive search

Can be made efficient if we do it over a trie structure

How to find dictionary entries with smallest edit distance

- Generate all possible terms with an edit distance <=2 (deletion + transpose + substitution + insertion) from the query term and search them in the dictionary.
- For a word of length 9, alphabet of size 36, this will lead to 114,324 terms to search for

How to find dictionary entries with smallest edit distance

Symmetric Delete Spelling Correction

- Generate terms with an edit distance ≤ 2 (deletes) from each dictionary term (offline)
- Generate terms with an edit distance ≤ 2 (deletes) from the input terms and search in dictionary

Spelling correction:

Types of spelling errors: Non-word Errors

behaf → behalf

Non – word spelling errors

Non-word spelling error detection

- Any word not in a dictionary is an error
- The larger the dictionary the better

Non-word spelling error correction

- Generate candidates: real words that are similar to the error word
- Choose the best one:
 - Shortest weighted edit distance
 - Highest noisy channel probabliity

Real word spelling errors

For each word w, generate candidate set

- Find candidate words with similar pronunciations
- Find candidate words with similar spelling
- Include w in candidate set

Choosing best candidate

Noisy Channel