New Hire Forecast

Modeling the CDM Team with Python

Multiple Linear Regression (MLR)

Simple Linear Regression
$$y = mx + b$$

Multiple Linear Regression

$$y = m_1x_1 + m_2x_2 + \cdots + m_nx_n + b$$

MLR Model

- Each red dot is a calculated" ÿ
- Point approximations vary up to
 +/-
- Aside from individual points, the model variance also trends with the data
 - Can calculate and graph this but that's not our goal here
- Many purposes
 - In this context, we use it for a theoretical weighted maximum

Projecting into the future: MLR and LR 68% confidence interval (σ =1)

- Key Data
 - Intersection at
 - 68% Upper Bound at
 - 68% Lower bound at
- " Bootstrapped Confidence Interval
 - Non-analytical method of computing the confidence interval https://en.wikipedia.org/wiki/Bootstrapping (statistics)
 - Embedded within the Seaborn library https://seaborn.pydata.org/generated/seaborn.regplot.html

Projecting into the future: MLR and LR 95% confidence interval (σ =2)

Key Data

- Intersection at
- 95% Upper Bound at
- 95% Lower bound at

Another view: Random Normal Probability Distribution @

Random Normal Probability Distribution for Completed Stories

Key Data

- Center (mean) at
- 68% Upper Bound at
- 68% Lower bound at
- 95% Upper Bound at
- 95% Lower bound at

Central Limit Theorem (CLT)

 As explained by the CLT, the bootstrapped confidence interval is approximately symmetric around the point of interest; thus it is not out-of-the-question to model it as a representation of the actual mean and standard deviation https://en.wikipedia.org/wiki/Central limit theorem

Calendar View

- Key Data
 - Intersection:
 - 68% upper boundary:
 - 95% lower boundary:
 - 95% upper boundary:

2020

-JANUARY-	-FEBRUARY-	-MARCH-
-APRIL-	-MAY-	-JUNE-
-JULY-	-AUGUST-	-SEPTEMBER-
-JULY- -OCTOBER-	-AUGUSTNOVEMBER-	-SEPTEMBER-

Disclaimers

- The real world is more complicated
 - Business changes
 - Worker efficiency
 - Actual maximum

Next steps

Thank you for listening ©