```
In [9]:
```

```
import pandas as pd
import numpy as np

from statsmodels.tsa.statespace.sarimax import SARIMAX
from statsmodels.tsa.seasonal import seasonal_decompose
from pmdarima import auto_arima

import warnings
from statsmodels.tools.sm_exceptions import ConvergenceWarning, ModelWarning
warnings.simplefilter('ignore', ConvergenceWarning)
warnings.simplefilter('ignore', ModelWarning)
warnings.simplefilter('ignore')

from sklearn.metrics import mean_squared_error, mean_absolute_percentage_error
```

In [3]:

```
df = pd.read_csv('airline_passengers.csv', sep=',', index_col='Month', parse_dates=True)
df
```

Out[3]:

rnousanus o
Passengers

Month	
1949-01-01	112
1949-02-01	118
1949-03-01	132
1949-04-01	129
1949-05-01	121
•••	
1960-08-01	606
1960-09-01	508
1960-10-01	461
1960-11-01	390
1960-12-01	432

144 rows × 1 columns

In [4]:

```
sDecomp = seasonal_decompose(df, model='mul')
sDecomp.plot()
```

Out[4]:

In [5]:

```
auto_arima(df, seasonal = True, m = 12, trace = True).summary()
```

```
Performing stepwise search to minimize aic
ARIMA(2,1,2)(1,1,1)[12]
                                     : AIC=1020.048, Time=0.86 sec
ARIMA(0,1,0)(0,1,0)[12]
                                     : AIC=1031.508, Time=0.01 sec
ARIMA(1,1,0)(1,1,0)[12]
                                     : AIC=1020.393, Time=0.06 sec
                                     : AIC=1021.003, Time=0.12 sec
ARIMA(0,1,1)(0,1,1)[12]
ARIMA(2,1,2)(0,1,1)[12]
                                     : AIC=1019.935, Time=0.48 sec
ARIMA(2,1,2)(0,1,0)[12]
                                     : AIC=1019.290, Time=0.15 sec
ARIMA(2,1,2)(1,1,0)[12]
                                     : AIC=1019.546, Time=0.50 sec
ARIMA(1,1,2)(0,1,0)[12]
                                     : AIC=1024.160, Time=0.07 sec
                                     : AIC=1017.847, Time=0.17 sec
ARIMA(2,1,1)(0,1,0)[12]
                                     : AIC=1017.914, Time=0.39 sec
ARIMA(2,1,1)(1,1,0)[12]
                                     : AIC=1018.359, Time=0.40 sec
ARIMA(2,1,1)(0,1,1)[12]
                                     : AIC=1018.248, Time=0.91 sec
ARIMA(2,1,1)(1,1,1)[12]
                                     : AIC=1022.393, Time=0.04 sec
ARIMA(1,1,1)(0,1,0)[12]
                                     : AIC=1022.393, Time=0.04 sec
ARIMA(2,1,0)(0,1,0)[12]
                                     : AIC=1019.084, Time=0.16 sec
ARIMA(3,1,1)(0,1,0)[12]
                                     : AIC=1020.393, Time=0.03 sec
ARIMA(1,1,0)(0,1,0)[12]
                                     : AIC=1023.666, Time=0.05 sec
ARIMA(3,1,0)(0,1,0)[12]
ARIMA(3,1,2)(0,1,0)[12]
                                     : AIC=1021.083, Time=0.26 sec
ARIMA(2,1,1)(0,1,0)[12] intercept
                                     : AIC=inf, Time=0.36 sec
```

Best model: ARIMA(2,1,1)(0,1,0)[12]Total fit time: 5.072 seconds

Out[5]:

SARIMAX Results

Dep.	Variable:				у	No.	Observa	tions:	144
	Model:	SARI	MAX(2, 1	, 1)x(0, ⁻	1, [], 12)	L	.og Likel	ihood	-504.923
	Date:		Tue,	12 Apr 2	2022			AIC	1017.847
	Time:			07:5	3:04			BIC	1029.348
	Sample:				0			HQIC	1022.520
				-	144				
Covarian	се Туре:				opg				
	coef	std err	z	P> z	[0.0])25	0.975]		
ar.L1	0.5960	0.085	6.987	0.000	0.4	129	0.763		
ar.L2	0.2143	0.091	2.343	0.019	0.0	035	0.394		
ma.L1	-0.9819	0.038	-25.601	0.000	-1.0	057	-0.907		

 sigma2
 129.3114
 14.556
 8.884
 0.000
 100.782
 157.841

 Ljung-Box (L1) (Q): 0.00
 Jarque-Bera (JB): 7.68

 Prob(Q): 0.98
 Prob(JB): 0.02

 Heteroskedasticity (H): 2.33
 Skew: -0.01

 Prob(H) (two-sided): 0.01
 Kurtosis: 4.19

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

```
In [6]:
```

```
train = df.iloc[:-12]
test = df.iloc[-12:]
len(test)
```

Out[6]:

12

construct the model

```
In [7]:
```

```
model = SARIMAX(train, order = (2, 1, 1), seasonal_order=(0,1,0,12))
results = model.fit()
results
```

Out[7]:

<statsmodels.tsa.statespace.sarimax.SARIMAXResultsWrapper at 0x1561a66bca0>

In [12]:

```
start = len(train)
end = start + len(test) - 1
predictions = results.predict(start = start, end = end, dynamic=False, typ='levels').ren
ame('SARIMA(2,1,1)(0,1,0,12)')
ax = predictions.plot()
train.plot(ax=ax)
test.plot(ax=ax)
mean_absolute_percentage_error(test, predictions)
```

Out[12]:

0.04431755007749067

skipping typ

In [14]:

```
start = len(train)
end = start + len(test) - 1
predictions = results.predict(start = start, end = end, dynamic=False).rename('SARIMA(2,
1,1)(0,1,0,12)')
ax = predictions.plot()
train.plot(ax=ax)
test.plot(ax=ax)
mean_absolute_percentage_error(test, predictions)
```

Out[14]:

0.04431755007749067

CO_2 data

```
In [46]:
```

```
df = pd.read_csv('co2_mm_mlo.csv', sep=',', parse_dates=True)
df['date'] = df.apply(lambda x : pd.to_datetime(str(int(x['year'])) + '-' + str(int(x['m onth']))), axis = 1)
df.drop(['year', 'month'], inplace=True, axis = 1)
df.set_index('date', inplace = True)
dfN = df['interpolated']
dfN
```

Out[46]:

```
date
1958-03-01
               315.71
               317.45
1958-04-01
1958-05-01
               317.50
1958-06-01
               317.10
1958-07-01
               315.86
                . . .
2018-07-01
               408.71
2018-08-01
               406.99
2018-09-01
               405.51
2018-10-01
               406.00
2018-11-01
               408.02
Name: interpolated, Length: 729, dtype: float64
```

In [47]:

```
sDecomp = seasonal_decompose(dfN, model='mul')
sDecomp.plot()
```

Out[47]:

```
interpolated

400

350
```


In [50]:

```
auto_arima(dfN, seasonal = True, m = 1, trace = True).summary()
```

Performing stepwise search to minimize aic

: AIC=1440.918, Time=0.39 sec ARIMA(2,1,2)(0,0,0)[0] intercept ARIMA(0,1,0)(0,0,0)[0] intercept : AIC=2369.532, Time=0.02 sec : AIC=1880.794, Time=0.07 sec ARIMA(1,1,0)(0,0,0)[0] intercept : AIC=1935.623, Time=0.09 sec ARIMA(0,1,1)(0,0,0)[0] intercept : AIC=2375.248, Time=0.01 sec ARIMA(0,1,0)(0,0,0)[0]: AIC=1715.503, Time=0.14 sec ARIMA(1,1,2)(0,0,0)[0] intercept : AIC=1440.128, Time=0.26 sec ARIMA(2,1,1)(0,0,0)[0] intercept : AIC=1785.006, Time=0.11 sec ARIMA(1,1,1)(0,0,0)[0] intercept : AIC=1684.115, Time=0.10 sec ARIMA(2,1,0)(0,0,0)[0] intercept : AIC=1441.136, Time=0.53 sec ARIMA(3,1,1)(0,0,0)[0] intercept : AIC=1608.681, Time=0.11 sec ARIMA(3,1,0)(0,0,0)[0] intercept ARIMA(3,1,2)(0,0,0)[0] intercept : AIC=1442.505, Time=0.75 sec ARIMA(2,1,1)(0,0,0)[0]: AIC=1532.865, Time=0.08 sec

Best model: ARIMA(2,1,1)(0,0,0)[0] intercept Total fit time: 2.660 seconds

Out[50]:

SARIMAX Results

Dep. Variable:			у	No. Observations:			729
N	Model:	SARIMA	X(2, 1, 1)	Lo	g Likelih	ood	-715.064
	Date:	Tue, 12 A	Apr 2022			AIC	1440.128
	Time:		08:15:40			BIC	1463.079
Sa	Sample:		0		н	IQIC	1448.984
			- 729				
Covariance	Туре:		opg				
	coef	std err	-	D√l∍l	[0.025	0 975	3 1
	COCI	Stu en			[0.023	0.97	"
intercept	0.0395	0.003	11.810	0.000	0.033	0.04	6

```
ar.L1 1.5468
                  0.022 70.815 0.000 1.504 1.590
   ar.L2 -0.8502
                 0.023 -36.917 0.000 -0.895 -0.805
  ma.L1 -0.9012
                 0.018 -49.926 0.000 -0.937 -0.866
 sigma2 0.4158
                  0.021 19.426 0.000 0.374 0.458
   Ljung-Box (L1) (Q): 0.82 Jarque-Bera (JB): 34.52
            Prob(Q): 0.36
                                  Prob(JB):
                                             0.00
Heteroskedasticity (H): 1.23
                                             0.48
                                     Skew:
  Prob(H) (two-sided): 0.11
                                  Kurtosis: 3.44
```

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

In [52]:

```
train = dfN.iloc[:-12]
test = dfN.iloc[-12:]
len(test)
```

Out[52]:

12

In [55]:

```
model = SARIMAX(train, order = (2, 1, 1), seasonal_order=(0,0,0,12))
results = model.fit()
results
```

Out[55]:

<statsmodels.tsa.statespace.sarimax.SARIMAXResultsWrapper at 0x15673ebe6d0>

In [58]:

```
start = len(train)
end = start + len(test) - 1
predictions = results.predict(start = start, end = end, dynamic=False, typ='levels').ren
ame('SARIMA(2,1,1)(0,0,0,12)')
ax = predictions.plot()
#train.plot(ax=ax)
test.plot(ax=ax, name)
mean_absolute_percentage_error(test, predictions)
```

Out[58]:

0.003790623958247233

predict into the luture

```
In []:

start = len(train)
end = start + len(test) - 1
predictions = results.predict(start = start, end = end, dynamic=False, typ='levels').ren
ame('SARIMA(2,1,1)(0,1,0,12)')
ax = predictions.plot()
train.plot(ax=ax)
test.plot(ax=ax)
mean_absolute_percentage_error(test, predictions)
```