LATEX Cheat Sheet

Ziyi Wang Columbia Biostatistics Computing Club

Text Editing

Just typing normal text will place what you type directly into the document. The text starts indented automatically.

Manually typing in a space in your code will create a new indented paragraph. Using the "newline" command will create a new paragraph that is not indented. You can manually remove an indent with the "noindent" command.

You can also write text to appear in sepatermined by the second bracketed value after rate columns. The number of columns is determined by the second bracketed value after rate columns.

1 Section 1

- 1.1 Subsection 1
- 1.1.1 Subsubsection 1
- 2 Section 2

Section 1

Subsection 1

Subsubsection 1

Section 2

The design of the text can be changed on the fly. You can create **bold text**, *italic text*, SMALL CAPS TEXT, *slanted text*, typewriter text, and times new roman text. The text size can also be change as tiny, small, normal, and increasingly larger sizes: large, large, large, large, large.

1. The first item in the c	lefault numbered li	st	
(a) First lettered iter	m		
i. First roman	numeral item		
ii. Second roma	n numeral item		
(b) Second lettered i	tem		
2. The second item in th	e default numbere	d list	
3. The third item in the	default numbered	list	
☐ First thought		• Third thought	
• Second thought		■ Fourth thought	
1. How many positive in	tegers less than 10	0 have a remainder of 3 upon divi	sion by 7?
a) 10	b) 11	c) 12	
d) 13	e) 14		
Question 1. Your question	n.		
Problem 4. Your problem			
Solution (15). Your solut	ion		

Math Mode and Equations

Some useful LATEX math operations include:

1.
$$X^{10}y$$

10.
$$\sqrt{x}$$
 and $\sqrt[3]{x}$

20.
$$X \sim N(\mu, \sigma^2)$$

2.
$$X_{10}$$

11.
$$\sum_{i=0}^{n}$$

21.
$$\pi \approx 3.14$$

3.
$$X_{10}^{10}$$

12.
$$\int_{x=0}^{1} f(x) \partial x$$

22.
$$\sin(x)$$
 and $\cos(x)$

4.
$$f'(x)$$

13.
$$<,>,\geq,\leq,\neq,\pm,$$
:

23.
$$X \cdot Y$$

5.
$$X \to Y \Rightarrow Z$$

14.
$$\binom{n}{k}$$

16. ∞

24.
$$\left(\frac{x}{2}\right)\Big|_{0}^{1}$$

6.
$$Pr(A \cup B \mid C \cap D)$$

15.
$$\overline{X}$$
 and \overline{X}

7.
$$\left(\left(\left(\left(\right)\right)\right)\right)$$

17.
$$|X-2|$$

8.
$$\frac{x+7}{2x-5}$$

$$18. \ y = mx + b$$

$$9. \ \frac{x+7}{2x-5}$$

19.
$$\hat{X}$$

Detexify: For drawing symbols: https://detexify.kirelabs.org/classify.html For all Greek symbols: http://web.ift.uib.no/Teori/KURS/WRK/TeX/symALL.html

Macros

Similar to SAS, a LATEX macro will allow you to create your own commands to allow short-hand access to commands you will use a lot. Some useful macros have already been written in the "mymacros.sty" file under "PROJECT." These commands are then loaded in using the "library(mymacros)" command. Observe the differences in the following two codes which yield the same output:

$$Pr\left(\mathbf{A} \cup \overline{\mathbf{B}}\right) = Pr\left(\overline{\mathbf{A}} \cap \mathbf{B}\right)$$

$$Pr\left(\mathbf{A} \cup \overline{\mathbf{B}}\right) = Pr\left(\overline{\mathbf{A}} \cap \mathbf{B}\right)$$

More Math Examples

$$\lim_{x \to \infty} f(x) = 0 \tag{1}$$

$$\lim_{x \to \infty} f(x) = 0$$

$$\frac{X - n\mu_x}{\sigma_x \sqrt{n}} = \frac{X - 12(16)}{1\sqrt{12}}$$
(2)

$$Z = \frac{\overline{x} - \mu_0}{\sigma/\sqrt{n}} \rightarrow \text{ If } |Z| > z_{1-\alpha/2}, \text{ reject } H_0$$

$$Pr\left(\lim_{n\to\infty}\overline{X}_n=\mu\right)=1$$
, so $\overline{X}_n\xrightarrow{a.s.}\mu$

$$var(U_1) = var(aY_1 + bY_2)
= var(aY_1) + var(bY_2) + 2cov(aY_1, bY_2)
= var(aY_1) + var(bY_2) + 0
= a^2 · var(Y_1) + b^2 · var(Y_2)
= var(Y_1) + var(Y_2)
= \sigma_1^2 + \sigma_2^2$$
... Y_1 and Y_2 uncorrelated
... $a = b = 1$

$$f_{XY}(x,y) = \begin{cases} xy/96, & 0 < x < 4, 1 < y < 5 \\ 0, & \text{elsewhere} \end{cases}$$

$$A^{T} = \begin{bmatrix} a_{11} & 0 & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{nn} \end{bmatrix}$$

$$M_{n \times 1} = \begin{pmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_n \end{pmatrix}$$

Tables and Figures

 ${\bf Tables\ Generator\ https://www.tablesgenerator.com/}$

Evaluation	Disease Status		
Evaluation	HIV^+	HIV-	
Minority	$n_{1,1}$	$n_{1,2}$	
Non-minority	$n_{2,1}$	$n_{2,2}$	

$ d_i $	f_i^+	f_i^-	Range	Rank
0.3	1	0	-	1
1.8	0	1	-	2
2.2	1	0	-	3
2.7	0	1	-	4
3.5	1	0	-	5
4.5	0	1	-	6
4.8	1	0	-	7

$ d_i $	f_i^+	f_i^-	Range	Rank
6.7	1	0	-	13
9.6	1	0	-	14
10.3	0	1	_	15
11.5	1	0	-	16
12.2	1	0	-	17
12.6	0	1	-	18
13.9	1	0	-	19

		Multiple Reg	ression Analy	vsis	
	Estimate	Std. Error	t-value	Pr(> t)	R^2
$oldsymbol{eta}_0$	10.117840	3.185028	3.177	0.00323	
Variable 1	-0.007408	0.019549	-0.0318	0.70586	0.8792
Variable 2	0.209211	0.077238	2.709	0.01026	
Variable 3	0.082309	0.077796	1.059	0.29727	
Variable 4	-0.366571	0.057473	-6.378	3.18e-07	

Table 1: Adolescent Cranial Perimeter Measurements (cm)

41.0	39.5	43.2	40.5	42.3	44.5	38.5	
42.5	40.3	46.3	45.6	44.2	40.1	43.5	
40.2	42.7	45.0	45.2	46.7	39.4	41.0	
39.0	39.6	43.0	42.8	47.9	46.5	40.2	

	EXPC		
DISEASE	Smoker (+)	Smoker (-)	
Cold	587	402	989
No Cold	2,743	2,578	5,321
	3,330	2,980	6,310

Figure 1: Logo for Overleaf.

Charts, Diagrams, and Decision Trees

The "tikz" library in LaTeX is one of the most versatile visualization packages. It is useful for creating diagrams and visual aids like those seen below:

More examples: http://www.texample.net/tikz/

Spiderweb Diagram (7 Dimensions, 7-Notch Scale, 3 Samples)

Displaying Code in LaTeX

```
# Filename: ProgrammingBasics.R
# ---Simple Calculations---
2 + 3
x <- 2
y <- 3
x + y
x * y
# ---Data Structures---
# Vectors
workshop \leftarrow c(1, 2, 1, 2, 1, 2, 1, 2)
print(workshop)
workshop
gender <- c("f", "f", "f", NA, "m", "m", "m", "m")</pre>
q1 <- c(1, 2, 2, 3, 4, 5, 5, 4)
q2 \leftarrow c(1, 1, 2, 1, 5, 4, 3, 5)
q3 \leftarrow c(5, 4, 4,NA, 2, 5, 4, 5)
q4 \leftarrow c(1, 1, 3, 3, 4, 5, 4, 5)
# Selecting Elements of Vectors
q1[5]
q1[c(5, 6, 7, 8)]
q1[5:8]
q1[gender == "m"]
mean( q1[ gender == "m" ], na.rm = TRUE)
```