Лабораторная работа №3.2.4 Свободные колебания в электрическом контуре

Маллаев Руслан 09 сентября 2021 г. **Цель работы:** Исследование свободных колебаний в электрическом контуре.

Приборы, используемые в работе: Генератор импульсов, электронное реле, магазин сопротивлений, магазин емкостей, катушка индуктивности, электронный осциллограф, универсальный измерительный мост.

Теория

Свободные колебания

Рассмотрим электрический контур, состоящий из последовательно соединённых конденстора C, катушки индуктивности L и резистора R. Обозначим разность потенциалов на конденсаторе U_C , а ток, текущий в контуре, через I. Второе првило Кирхгофа:

$$L\frac{d^2I}{dt^2} + R\frac{dI}{dt} + \frac{I}{C} = 0. ag{1}$$

Вводя обозначения $\gamma = \frac{R}{2L}, \, \omega_0^2 = \frac{1}{LC}, \,$ получим уравнение

$$\ddot{I} + 2\gamma \dot{I} + \omega_0^2 I = 0. \tag{2}$$

Его решение в общем виде:

$$I = -\frac{U_0}{L\kappa} e^{-\gamma t} \operatorname{sh}(\kappa t), \tag{3}$$

где $\kappa = \sqrt{\gamma^2 - \omega_0^2}$, $U_0 = U_C$ – начальное напряжение на конденсаторе.

Затухающие колебания

В случае, когда $\gamma < \omega_0$, имеем $\kappa = i\omega$, где $\omega = \sqrt{\omega_0^2 - \gamma^2}$ – частоты свободных (собственных) колебаний. Тогда ток

$$I = -\frac{U_0}{L\omega}e^{-\gamma t}\sin(\omega t) \tag{4}$$

затухает и имеет колебательный характер. Величина γ определяет затухание колебаний: $\gamma=\frac{1}{\tau},$ где τ – время затухание амплитуды в e раз.

Формулы для наряжение на кондесаторе и тока в цепи можно переписать иначе:

$$U_C = U_0 \frac{\omega_0}{\omega} e^{-\gamma t} \cos(\omega t - \theta),$$

$$I = -\frac{U_0}{L} e^{-\gamma t} \cos(\omega t - \theta).$$
(5)

Апериодические колебания

В случае $\gamma > \omega_0$, формулы для тока и напряжения на конденсаторе имеют следующий вид:

$$I = -\frac{U_0}{L\kappa} e^{-\gamma t} \operatorname{sh}(\kappa t),$$

$$U_C = U_0 e^{-\gamma t} \left(\frac{\gamma}{\kappa} \operatorname{sh}(\kappa t) + \operatorname{ch}(\kappa t) \right).$$

Процесс в этом случае не является колебательным, его называют апериодическим. Режим, соответствующий $\gamma = \omega_0$, называются *критическим*. В этом случае предельный переход $\omega \to 0$ в (5) даст

$$I = -\frac{U_0}{L}te^{-\gamma t},$$

$$U_C = U_0 e^{-\gamma t} (1 + \gamma t).$$

Сопротивление в этом случае

$$R_{\rm \kappa p} = 2\sqrt{\frac{L}{C}} \tag{6}$$

называется *критическим сопротивлением* контура. *Добротность* контура по определению

$$Q = 2\pi \frac{W}{\Delta W},$$

где W — запасённая энергия, ΔW — потери за период. Тогда

$$Q = 2\pi \frac{CU_0^2/2 \cdot e^{-2\gamma t}}{CU_0^2/2 \cdot (e^{-2\gamma t} - e^{-2\gamma (T+t)})} = \frac{\pi}{\gamma T} = \frac{1}{R} \sqrt{\frac{L}{C}}.$$

Логарифмическим декрементом затухания называются число

$$\Theta = \ln \frac{U_k}{U_{k+1}} = \ln e^{\gamma T} = \gamma T$$

ИЛИ

$$\Theta = \frac{1}{n} \ln \frac{U_k}{U_{k+n}}.$$

Установка

Рис. 1: Схема установки

На рисунке приведена схема для исследования свободных колебаний в контуре, содержащем постоянную индуктивность L и переменные ёмкость C и сопротивление R. Колебания наблюдаются на экране осциллографа.

Для периодического возбуждения колебаний в контуре используется генератор импульсов Γ 5-54. С выхода генератора по коаксиальному кабелю импульсы поступают на колебательный контур через электронное реле, смонтированное в отдельном блоке (или на выходе генератора). Реле содержит тиристор D и ограничительный резистор R_1 .

Импульсы заряжают конденсатор C. После каждого импульса генератор отключается от колебательного контура, и в контуре возникают свободные затухающие колебания. Входное сопротивление осциллографа велико ($\approx 1~{\rm MOm}$), так что его влиянием на контур можно пренебречь. Для получения устойчивой картины затухающих колебаний используется режим ждущей развёртки с синхронизацией внешними импульсами, поступающими с выхода «синхроимпульсы» генератора.

Ход работы

Прежде всего измерим индуктивность L и сопротивление катушки R_L в зависимости от частоты

ν , Гц	L , м Γ н	R_L , Om
50	146.1	11.71
1000	140.2	-0.72
5000	142.0	-33.6

Таблица 1: Некоторые параметры катушки индуктивности

В итоге мы получаем, что $L = (143.0 \pm 1.6)$ мГн.

Измерение периодов свободных колебаний

Установим на магазине сопротивлений R=0 Ом и C=0,02 мкФ. Подобрав частоту развертки получим изображение наших колебаний на осциллографе. Из этого убедимся, что частота повторений, которую мы установили на генераторе ($\nu_0=100~\Gamma$ ц) будет равна частоте повторения импульсов.

Рис. 2: Колебания в контуре

Теперь изменяя ёмкость в диапазоне 0,02-0,9 мк Φ проведем измерения периодов свободных колебаний и сравним их с теоретическими данными по формуле

$$T = 2\pi\sqrt{LC}$$

С, нФ	t, мс	σ_t , MC	N периодов	T_{exp} , MC	T_{theor} , MC	σ_T , MC
20	9.6	0.2	28.0	0.34	0.33	0.01
25	9.6	0.2	25.0	0.38	0.37	0.01
30	9.6	0.2	23.0	0.42	0.41	0.01
40	9.6	0.2	20.0	0.48	0.47	0.01
50	9.6	0.2	18.0	0.53	0.53	0.01
60	9.6	0.2	17.0	0.56	0.58	0.01
70	9.6	0.2	15.0	0.64	0.63	0.01
90	9.6	0.2	13.0	0.74	0.71	0.02
150	9.6	0.2	10.0	0.96	0.92	0.02
200	9.6	0.2	9.0	1.07	1.06	0.02
300	9.6	0.2	7.0	1.37	1.30	0.03
400	9.6	0.2	6.0	1.6	1.50	0.03
500	9.6	0.2	5.5	1.75	1.67	0.04
700	9.6	0.2	5.0	1.92	1.98	0.04
900	9.6	0.2	4.5	2.13	2.25	0.04

Построим график, чтобы оценить сходство эксперимента с теорией.

Рис. 3: Зависимость T_{exp} от T_{theor}

По графику видно, что эксперимент согласуется с теорией.

Измерение критического сопротивления и декремента затухания

Для начала рассчитаем емкость, при которой частота собственных колебаний контура будет равна $\nu_0=5$ к Γ ц.

$$C = \frac{1}{4\pi^2 \nu_0^2 L} \approx 5 \mathrm{H} \Phi$$

И для значений L и C рассчитаем R_{crit}

$$R_{crit} = 2\pi \sqrt{\frac{L}{C}} \approx 12,6$$
кОм

Для этих значений L и C рассчитаем декремент затухания для каждого сопротивления из интервала $(0,1-0,3)R_{crit}$. Из этих данных по формуле

$$\theta = \frac{1}{n} \cdot \ln \frac{U_k}{U_{k+n}}$$

находим θ и запишем все в таблицу.

$$R_{\Sigma} = R_L + R$$

R, кОм	U_1 , дел	σ_{U_1} , дел	U_{1+n} , дел	$\sigma_{U_{1+n}}$, дел	n	θ	σ_{θ}	R_{Σ} , кОм
1.06	11.5	0.5	3.0	0.5	3	0.67	0.12	1.07
1.16	11.5	0.5	6.0	0.5	2	0.65	0.06	1.17
1.26	11.5	0.5	2.5	0.5	3	0.76	0.15	1.27
1.46	11.5	0.5	5.0	0.5	2	0.83	0.09	1.46
1.56	11.5	0.5	2.0	0.5	3	0.87	0.22	1.56
1.76	11.5	0.5	4.0	0.5	2	1.06	0.14	1.76
2.06	11.5	0.5	3.0	0.5	2	1.34	0.23	2.07
2.66	11.5	0.5	2.0	0.5	2	1.75	0.44	2.67

Для расчета R_{crit} построим график $1/\theta^2=f(1/R_\Sigma^2)$. Приняв обозначение $1/\theta^2=Y$ и $1/R_\Sigma^2=X$, можно показать, что $R_{crit}=2\pi\sqrt{\Delta Y/\Delta X}$.

Рис. 4: Зависимость $1/\theta^2$ от $1/R_\Sigma^2$

А также выведем все коэффициенты, полученные при построении графика.

		Estimate	Standard Error	t-Statistic	P-Value
ĺ	1	0.006	0.149	0.040	0.969
Ì	X	2.859	0.282	10.138	0.000

Из вышепредставленных коэффициентов получаем, $R_{crit}=(10.62\pm1.05)$ кОм, что достаточно близко к теоретически рассчитанному значению. Еще можно вычислить R_{crit} , подводя график к данному виду:

и фиксируя значение сопротивления: $R_{crit}=12.5~{\rm kOm}.$

Свободные колебания на фазовой плоскости

Рассмотрим свободные колебания на фазовой плоскости, для этого подключим место соединения катушки индуктивности и магазина сопротивлений к выходу X и включим на осциллографе канал X-Y. В итоге мы получаем картинку на экране как на рисунке ниже.

Рис. 5: Фазовая диаграмма для свободных колебаний

Для фазовой диаграммы для двух значений посчитаем так же декремент затухания

R, кОм	U_k , дел	U_n , дел	n	k	θ	σ_{θ}
1.00	3.0	20.0	5	2	0.63	0.11
1.26	2.0	5.0	3	2	0.91	0.24
1.56	4.0	10.5	4	3	0.97	0.13
2.00	2.5	10.0	3	2	1.39	0.28
2.50	1.5	8.0	3	2	1.67	0.56

Видим, что декремент затухания подсчитанный в предыдущей секции совпадает с декрементом затухания, полученным из фазовой диаграммы.

Добротность свободных колебаний в контуре

Добротность можно найти по формуле

$$Q = \frac{\pi}{\theta}$$

Найдем ее для $R_{max}=1$ к Ом и для $R_{min}=2.6$ к Ом из графика и фазовой диаграммы. Итоговые результаты запишем в таблицу.

Так же добротность можно найти и из теоретических соображений по формуле

$$Q = \frac{1}{R} \sqrt{\frac{L}{C}}$$

Результаты так же занесем в таблицу, и в итоге мы получаем эту таблицу со всеми данными из данного эксперимента, по которой мы можем сравнить все полученные значения

	L_{coil} , м Γ н	R_{crit} , кОм			Q		
	L'coil, MI H	Teop.	Подбор	Граф.	Teop.	Граф.	Спираль
R_{max}	143.0 ± 1.6	12.6	12.6 12.5	10.62 ± 1.05	5.35	4.83 ± 0.74	4.99 ± 0.87
R_{min}	140.0 ± 1.0			10.62 ± 1.05	2.01	1.80 ± 0.45	1.88 ± 0.63

Таблица 2: Итоговые результаты эксперимента

Вывод

Как видно из таблицы 2, наилучший способ измерения добротности — с помощью графика, потому что получаются наиболее близкие значения с меньшими погрешностями. Так же из графика видно, что R_{crit} лучше измеряется при более высоком сопротивлении в контуре.