Imperial College London

[E1.14 (Maths 2) 2013]

B.ENG. AND M.ENG. EXAMINATIONS 2013

PART I: MATHEMATICS 2 (ELECTRICAL ENGINEERING)

Date Friday 31st May 2013 10.00 - 12.00

DO NOT OPEN THIS PAPER UNTIL THE INVIGILATOR TELLS YOU TO.

Answer Question 1 and THREE of the remaining five questions.

Answer Section A and Section B in different answerbooks.

Question 1 carries twice the marks of each of the other questions.

CALCULATORS MAY **NOT** BE USED.

A mathematical formulae sheet is provided.

[Before starting, please make sure that the paper is complete; there should be 4 pages, with a total of SIX questions. Ask the invigilator for a replacement if your copy is faulty.]

- 1. (i) Find x such that the vectors $\mathbf{a} = (1, 1, 1)$ and $\mathbf{b} = (x, 2, 3)$ are perpendicular.
 - (ii) Let $A = \{x \in \mathbb{R} | -2 < x \le 2\}$ $B = \{q \in \mathbb{Z} | q^2 < 10\}$

Determine $A \cap B$ and $A \cup B$.

- (iii) Determine for which fixed $b \in \mathbb{R}$ the following propositions are true:
 - (a) $\exists x \in \mathbb{R} \land x^2 + x + b = 0$
 - (b) $\exists x \in \mathbb{C} \land x^2 + x + b = 0$
- (iv) Let $A = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$ and $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

Determine the matrix B such that AB = I

(v) Construct the truth table for

$$(P \oplus Q) \land (P \lor Q)$$

(vi) Show that $f(x,y) = xe^{xy}$ satisfies the equation

$$\frac{\partial f}{\partial x} + \frac{\partial^2 f}{\partial y^2} - (x^2 + y)f = e^{xy}$$

- (vii) Suppose function f(x) is even and periodic with period 2π . Show that its Fourier series contains cos-terms only.
- (viii) Determine t such that the point P = (1, 2, t) belongs to the plane through the points A = (1, 0, 0), B = (0, 1, 0) and C = (0, 0, 1).
 - (ix) Determine the Taylor expansion to second order (without remainder term) about the point $(x_0, y_0) = (1, 0)$ of the function

$$f(x,y) = \ln(x^2 + y)$$

(x) Calculate the angle between the vector $\boldsymbol{c}=(1,1,0)$ and the vector normal to the two vectors

$$a = (1, -1, 0)$$

$$b = (0, -1, 1).$$

SECTION B

- 2. (i) Let $A = \{1, 2, 3, 4\}$ and $B = \{3, 4, 5\}$. Determine the sets $A \cap B$, B - A, $A \cup B$ and P(B).
 - (ii) Write down the truth tables for $P \Rightarrow Q$ and $P \wedge Q$.
 - (iii) Determine the truth value of the following propositions:
 - (a) $(\forall x > 0 \land \forall y < 0) \Rightarrow xy < 0$
 - (b) $(\exists f: A \mapsto B \mid f \text{ is injective }) \land (|A| > |B|).$
 - (iv) Use proof by induction to show that

$$\sum_{k=0}^{n} 3^k = \frac{3^{n+1} - 1}{2}, \quad \forall n \in \mathbb{N}.$$

- 3. Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ given by $f(x,y) = x^2y y \frac{1}{2}y^2$.
 - (i) Find all stationary points.
 - (ii) Classify all the stationary points.
 - (iii) Sketch a contour plot of the function. (Neatness is essential)
- 4. (i) Let f and g be differentiable functions on \mathbb{R} . Show that

$$u(x,t) = f(x - vt) + g(x + vt),$$

where $v \in \mathbb{R}$ is a constant, solves the wave equation

$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 u}{\partial t^2}$$

(ii) Show that the function

$$f(x, y, t) = \frac{1}{t}e^{-\frac{x^2 + y^2}{4t}}$$

solves the heat equation

$$\frac{\partial f}{\partial t} = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

(iii) Show that

$$(\sin x \sin y - x^2) \frac{dy}{dx} - (2xy + \cos x \cos y) = 0$$

is exact and derive an implicit expression for y as a function of x.

5. (i) A periodic function of period 4 is defined by

$$f(x) = 4 - x^2 \quad \text{for } -2 \le x \le 2$$
 and
$$f(x+4) = f(x)$$

Sketch the function over three periods.

- (ii) Find the Fourier expansion of f(x).
- (iii) Use the result in (ii) to derive the formula

$$\frac{\pi^2}{12} = 1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \cdots$$

6. Let

$$M = \left(\begin{array}{rrr} -2 & 2 & 1 \\ 2 & 1 & 2 \\ 1 & 2 & 6 \end{array}\right) .$$

- (i) Write down the characteristic equation for M and show that the eigenvalues are equal to $\lambda = 1, -3, 7$.
- (ii) Find the eigenvectors corresponding to $\lambda = 1, -3, 7$.
- (iii) Express the vector $\boldsymbol{a}=\begin{pmatrix}0\\5\\-2\end{pmatrix}$ in terms of the eigenvectors found in (ii) and use this to compute $M\boldsymbol{a}$.

END OF PAPER

	EXAMINATION QUESTIONS/SOLUTIONS 2012-13	Course EE 1
		Part 2
Question 1	TOPIC General	Marks & seen/unseen
Parts	a 1 b ⇔ a · b = o ⇒ x + 2 + 3 = o ⇒ x = - 5	7 9
(;;)	Note B = }-3,-2,-1,0,1,2,3}, hence	Tr Tree-control of the control of
	$A \cap B = \{-1, 0, 1, 2\}$ $A \cup B = \{-3, 3, -2 \le x \le 2\}$	9
(eiii)	the me need a real x that satisfy $x^2 + x + b = 0$, which can only be done if the roots are real, i.e. $D = +1 = 4b \ge 0$ $\Rightarrow b \le \frac{1}{4}$ (b) Since C L R and since the polynomial adways have either	Seen Shuriar
	this proposition is true forall values of $S \in \mathbb{R}$.	2
(iv)	$B = A^{-1}$, $det A = 1$, $A^{-1} = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}$	4
	Setter's initials Checker's Initials	Page numbe

į

10

	EXAMINATION QUESTIONS/SOLUTIONS 2012-13	Course EF1
		Part 2
Question 1	TOPIC General	Marks & seen/unseen
Parts (V)	7 Q P B Q P V Q (P & G) A (P V Q) T T F T T T F T T T T F F F F F 2 f = e^xy + xye^xy = e^xy + yf	A STATE OF THE PROPERTY OF THE
(41)	$\frac{\partial^2 f}{\partial y} = x^2 e^{xy} = x^2 f$ $\frac{\partial}{\partial x} f + \frac{\partial^2 f}{\partial y} = x^2 f + y f + e^{xy} \cdot OK$	1 6 4 A
(vii)	General form $f(x) = \frac{a_0}{2} + \frac{2}{2} (a_n (a_n x + b_n siln nx))$ where 2π $a_n = \frac{1}{\pi} \int f(x) exps nx dx$ $b_n = \frac{1}{\pi} \int f(x) siln nx dx$ Since periods: $= \frac{1}{2\pi} \int f(x) siln nx dx$ where $f(x) = \frac{1}{2\pi} \int f(x) expl nx dx$ where $f(x) = \frac{1}{2\pi} \int f(x) expl nx dx$ where $f(x) = \frac{1}{2\pi} \int f(x) expl nx dx$ where $f(x) = \frac{1}{2\pi} \int f(x) expl nx dx$ where $f(x) = \frac{1}{2\pi} \int f(x) expl nx dx$ where $f(x) = \frac{1}{2\pi} \int f(x) expl nx dx$ where $f(x) = \frac{1}{2\pi} \int f(x) expl nx dx$ $f(x) = \frac{1}{2\pi} \int f(x) expl nx dx$ $f(x) = \frac{1}{2\pi} \int f(x) expl nx dx$ where $f(x) = \frac{1}{2\pi} \int f(x) expl nx dx$ $f(x) = \frac{1}{2\pi} \int $	75 30
	= 0	4
	Setter's initials Checker s/initials	Page number S 2

	EXAMINATION QUESTONS/SOLU	TIONS 2012-13	EE	
Question	TOPIC General		Marks seen/u	& unseen
(Viii)	$P = (1,2,t)$ $A = (1,0,0)$, $B = (0,1,0)$, $C = 0$ want AP to be perpend a normal D to the D Chose $D = AB \times AC$ determined that $D = 0$: $D = D = D = 0$ $D = D = 0$	d'averto ave. (ave.) = (2) 1,1)	Geen silvi	2
	Setter initials Checker's initials		Page 1	number S 3

	EXAMINATION QUESTIONS/SOLUTIONS 2012-13	Course EE1 Part2
Question	TOPIC General	Marks & seen/unseen
Parts	$f(x,y) = \ln(x^{2} + y) , (x_{0}, y_{0}) = (1, 0)$ $\partial_{x} f = \frac{2x}{x^{2} + y} \rightarrow \partial_{x} f_{(1,0)} = 2$ $\partial_{y} f = \frac{1}{x^{2} + y} \rightarrow \partial_{y} f_{(1,0)} = 1$ $\partial_{x}^{2} f = \frac{2(x^{2} + y) - 2x \cdot 2x}{(x^{2} + y^{2})^{2}} \rightarrow \partial_{x}^{2} f_{(1,0)} = -2$ $\partial_{y}^{2} f = -\frac{1}{(x^{2} + y)^{2}} \rightarrow \partial_{y}^{2} f_{(1,0)} = -1$ $\partial_{xy}^{2} f = \frac{-2x}{(x^{2} + y)^{2}} \rightarrow \partial_{xy}^{2} f_{(1,0)} = -2$ $Touglor expan:$ $f(x,y) = f(x_{0},y_{0}) + \partial_{x} f(x - x_{0}) + \partial_{y} f(y - y_{0})$ $+ \frac{1}{2} [\partial_{x}^{2} f(x - x_{0})^{2} + 2\partial_{xy}^{2} f(x - x_{0})(y - y_{0})$ $+ \partial_{y}^{2} f(y - y_{0})^{2}]$ $= 0 + 2(x - 1) + y + \frac{1}{2} [-2(x - 1)^{2}$ $+ 2(-2)(x - 1) y - y^{2}]$	See shewifar
	$= (x-1) [3-4y-x]+y(1-\frac{1}{2}) $ $= (x-1) [3-4y-x]+y(1-\frac{1}{2}y)$	2
	Setter's micials Checker's initials	Page number S 4

	EXAMINATION QUESTIONS/SOLUTIONS 2012-13	EF 1 Ref 2
Question 7	TOPIC General	Marks & seen/unse
Parts (X')	The normal to the plane given by the vectors \underline{Q} and \underline{G} is given by $\underline{Q} \times \underline{G} = \begin{bmatrix} \underline{Q} & \underline{Q} & \underline{Q} & \underline{Q} \\ \underline{Q} & \underline{Q} & \underline{Q} & \underline{Q} \\ \underline{Q} & \underline{Q} & \underline{Q} & \underline{Q} \end{bmatrix}$ $= (-1, -1, -1) \text{ or normal } \underline{M} = (1, 1, 1)$ $= (-1, -1, -1) \text{ or normal } \underline{M} = (1, 1, 1)$ $= areas \left(\frac{\underline{C} \cdot \underline{M}}{ \underline{C} \underline{M} } \right)$ $= areas \left(\frac{2}{ \underline{C} \underline{M} } \right) = areas \left(\frac{2}{ \underline{G} } \right)$ $= areas \left(\frac{2}{ \underline{C} \underline{M} } \right) = areas \left(\frac{2}{ \underline{G} } \right)$ $= areas \left(\frac{2}{ \underline{C} \underline{M} } \right) = areas \left(\frac{2}{ \underline{G} } \right)$ $= areas \left(\frac{2}{ \underline{G} \underline{M} } \right) = areas \left(\frac{2}{ \underline{G} } \right)$ $= areas \left(\frac{2}{ \underline{G} \underline{M} } \right) = areas \left(\frac{2}{ \underline{G} } \right)$ $= areas \left(\frac{2}{ \underline{G} \underline{M} } \right) = areas \left(\frac{2}{ \underline{G} } \right)$ $= areas \left(\frac{2}{ \underline{G} \underline{M} } \right) = areas \left(\frac{2}{ \underline{G} } \right)$	CHICAGO WAR CAGO WAR
		60
	Setter's initials Checker's initials	Page numi

	EXAMINATION QUESTIONS/SOLUTIONS 2012-13	Course EE1
		Part 2
Question 2	TOPIC Discrete Mails	Marks & seen/unseen
Parts (i)	ANB = 33.4) (1)	7
	3-A= 351 (1)	1
	AUB = {1,2,3,4,5}	15
	P(B) = } d, 131.143, 15}, 13,45, 13,51,	
	1451, 13, 4511 2	5
	1 lini	24
(iii)	P Q P > Q	- 6
(2)	T T T T	
r 4	FFTFT	10
	FIFIRT	. 3
		1/4
	So (a) is true shice 4x>0x by co	1
,	is true when x is positive and y is	J's
5	negative in which care ty is negati	e
	and therefore xy co true. (3)	Q.
	P Q PAG) (6) is false when	2_
	TIT T liff is injective f	rum A to
(2)	TFF IAI & 181. Hence	
	E E E	
	3f: ANB f is implective	
/	and IAI> 181 true at the	
	Same time (3)	J &
	Setter's initials . Checker's Initials	Dana samula
117	fort.	Page number S6

EXAMINATION QUESTIONS/SOLUTIONS 2012-13 | Course Should really (but allow) stort with n=1 (but allow) since $n \in M$ in φ . EF1 Part 2 Question TOPIC Discrete Malls 1 Marks & seen/unseen Parts For K = 0 we have Left hand wide = 1 (iU) and Right hand side = 3-1 = 1 $3^{n+1}-1+23^{n+1}=3^{n+1}(1+2)-1$ 20 Setter's inizials Page number \$7

	EXAMINATION QUESTIONS/SOLUTIONS 2012-13	3 Course
		EE1
Question		Part 2
3	TOPIC Partial Denvatives	Marks & seen/unseen
Parts (i)	Stanfirmary Portrike $\frac{\partial f}{\partial x} = 2xy = 0 (d)$ $\frac{\partial f}{\partial y} = x^2 - 1 - y = 0 (b)$	
	from (a) $x = 0$ or $y = 0$ If $x = 0$ then $(4) \Rightarrow y = -1$ If $y = 0$ then $(6) \Rightarrow x = \pm 1$	
(i i)	I.e. three stationary points (0,-1), (1,0) and (-1,0)	miles 2
	$\partial_{x}^{2}f = 2y$, $\partial_{y}^{2}f = -1$, $\partial_{xy}^{2}f = 2x$ $\Delta = \partial_{x}^{2}f \partial_{y}^{2}f - [\partial_{xy}^{2}f]^{2} = -2y - 4x^{2}$	550
(Point $\partial_x^2 f$ $\partial_y^2 f$ Δ classifications	5
	Style	5
	Setter's initials Checker's initials	Page number

	EXAMINATION QUESTIONS/SOLUTIONS 2012-	EE1
0		Parti
Question 4	TOPIC Diff. Eq.	Marks &
Parts (i)	u(x,t) = f(x-v+) + g(x+v+)	seen/unseer
+	$\partial_X u = f'(x - v + 1) + g'(x + v + 1)$	
	$\partial_x^2 u = f''(x - v +) + g''(x + v +)$	
	2+ u = - v f'(x-v+) + v g'(x+v+)	
	02 u = vf"(x-vt)+v2g"(x+vt)	73
	hence	
	12 22 u= f(x-v+)+g"(x+v+)	I'a
	= 2 x f	2 5
(ii)	f(x,y,t) = te = x2+y2	
	0+f=[-+++(x2+y2)]e-x2+y2	
	= [- + x2+y2] f	
6	$2xf = \frac{1}{t}(-\frac{2x}{4t})e^{-\frac{x^2+y^2}{4t}} = -\frac{x}{2t}f$	
0	$f^{2} f = -\frac{1}{2t} f + (\frac{x}{2t})^{2} f$	
	$=\left(-\frac{1}{2+} + \frac{x^2}{2 k x^2}\right) f$	
5	Checker's initials	Page number S/O

		€€
Question	TORIC CO 4/ 4 4 -	Part
4 Parts	TOPIC Differential Equation	Marks & seen/unse
(ii)	By symmetry 22 f = [- 1 + 42] f	(4)
conf.	22 f = 1-1 + 4 7 9	ji
$\langle \cdot \cdot \rangle$		2
	Therefore	3
	(2,2+2,2) f= (- + + x2+y2) f	O.
4	= 2+ f	() (-
		- V 3
111111111111111111111111111111111111111		
1 1		
	Setter's initials. Checker's initials.	

	EXAMINATION QUESTIONS/SOLUTIONS	S 2012-13 Course EE /
Question	TOPIC	Part.
Parts (iiicon)	Defermence ((x,y):	Marks & seen/unsee
	$\frac{\partial u}{\partial x} = P = -2xy - \cos x \cos y$	Î
	=> u = -x2y - shot cosy + giy)
	du = Q = shox shiy - x2	-
	=> u = - einx cosy -x2y + fix	> //
	ful= g (y) for ell x and y	3/8/
t	herefore	and i
4	f(x)=g(y) = constant = C	8
76	u(x, y) = - x 2 y - sin x cosy of a e general solution for y as he	c.
t'o	e general solution for y as fur of x is given implicitle	
اوکا	u(x,y) = constant or	
X	2y + sinx casy = constant	3
~		
		(20)
Setter's	Checker's initials	Page number

EXAMINATION QUESTIONS/SOLU	TIONS 2012-13 Course
Question	Brt2
3	Marks &
Parts (ii cont) $a_0 = 4 \int_0^2 dx - \int_0^2 x^2 dx = 8 - \left(\frac{x^2}{3}\right)_0^2 = 8$	seen/unseen
For n + 0 we have	
$\int_{-2}^{2} \cos \frac{n\pi x}{2} dx = 2 \int_{0}^{2} \cos \frac{n\pi x}{2} dx$	
$= 2 \frac{2}{n \pi} \int_{0}^{2} \int_{0}^{2} \ln \frac{n \pi x}{2} \int_{0}^{2} = \frac{4}{n \pi} \sin \left(\frac{1}{n \pi} \right) \sin \left(\frac{1}{n \pi} \right)$	2
and	(T) =0
12 x2 cas nox dx = 2 5 x2 cas 2	77 × ,
	1 1
=2 \[x^2\frac{2}{n\pi} \shu\frac{n\pi \times \gamma^2}{2} \] \[2\times \frac{2}{n\pi} \]	Sin 177 dx
= - 8 Jx 8in nith dx	· 3
$= -\frac{8}{n_{11}} \left\{ -x \frac{2}{n_{11}} \cos \frac{n_{11}x}{2} \right\}_{0}^{2} + \int_{1}^{2} \frac{2}{n_{11}} \cos \frac{n_{11}x}{2} dx$	nex de l
1 1 1 NIT COS 2 10 1 7 17 10	2 (2)
= 16 x cos n 17 1] from	= 6
0	
$= \frac{32}{n^2\pi^2} \cos(n\pi) = \frac{32}{n^2\pi^2} (-1)^n$	
and offen	77+1
$a_n = -\frac{1}{2} \frac{32}{n^2 r^2} (-1)^n = \frac{16}{n^2 \pi^2} (-1)^n = \frac{16}{n^2} (-$	5
So & 15 = 1 n+1	
ful= \frac{8}{3} + \frac{16}{172} \frac{7}{172} \frac{(-1)^{n+1}}{172} \cos(\frac{1}{2})	$(\frac{7\pi}{2}\times)$
Setter's initials Checke s initials	
V. C.	Page number

	LAMMINATION	QUESTIONS/SOLUTIONS 20	12-13 Course EF /
Question			Partz
2	TOPIC		Marks &
Parts (iii)	Form from	= 4 we get	seen/unsee
	4= 8 + 16 W	2 (1- 22 +	Deen man
	22 + =	$\frac{4.3-8}{3} \cdot \frac{\pi^2}{16} = \frac{4}{3} \cdot \frac{\pi^2}{16}$	3
	= 77		2
			- 11
			(20)
Sett	er's inizials		Addition in the same of the sa
	+///	Checker's intials	Page number

	EXAMINATION QUESTIONS/SOLUTIONS 2012-1	3 6
	2012-1	
		EF1
Question		Part 2
Parts	TOPIC Linear Algebra	Marks &
(i)	Charactery to equ: M- XII =0	seen/unseer
(, ,	-2-2 2 1 1	(1)
	2 1-2 2 =0	
	1 2 6-2	
	y - (2+x)(1-2)(6-2) +4+4 - (1-2) +4(2+x) -4(6-x) -	
	-(2+1)(1-2)(6-1)-9(1-1)=0	11/
	I.g. 1 = 1 or (2+1)(6-1)+9=0	172
1	カンータン (ラ21=0	
111		
10	Tactorizes	4, (9)
	$(7-7)(3+3) = \begin{cases} -7 \\ -3 \end{cases}$	3
(ii)	<i>r i i i i i i i i i i</i>	(x)
(11)	Eyenvectors	App.
13	=1 (0) $-2x+2y+7=x$ (3) $2x+y+3=x$	
	(i) x + 2+ 22 = y -> x = -2	
1	(3) x + 2y + 62 = 7	
	ence from ① -2x + 2y - x = x ⇒ y = 2x	-
2	o an eigenvector is $V_1 = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$	
	The state of the s	/
	=-3	
	-2x + 2y + 7 = -3x (a) $x + 2y + 7 = 0$	
1	2x+y+27 = -2y => (2a) 2x+fy+2+=0	>
	X+2y+67 =-37 (36) X+2y+97=0	y
Set	ter's initials Checker's initials	age number

1	EVALUE	
1	EXAMINATION QUESTIONS/SOLUTIONS 2012-13	
	7 3 0 LO TIONS 2012-1:	Course
	Question	EFI
		Part 2
	(iii) 101 = VI+4+1 = VC	Marks & seen/unseen
	Parts (iii) $ \underline{v} = \sqrt{1+4+1} = \sqrt{6}$ Cent. $ \underline{v}_{-3} = \sqrt{4+1} = \sqrt{5}$) o
	1 = V5	
	(iii) $ \underline{U} = \sqrt{1+4+1} = \sqrt{6}$ $\Rightarrow \underline{C} = \frac{1}{\sqrt{6}} \left(\frac{1}{2}\right)$ $ \underline{U}_{7} = \sqrt{1+4+25} = \sqrt{30}$ $= 2 = \frac{1}{\sqrt{5}} \left(\frac{1}{2}\right)$	1/
	201111	
	Expand = 3 = \(\frac{1}{5}\)	
	a = xe, +ye2+7e3	
	V = 0.0	>41
	$X = Q \cdot Q_1 = \sqrt{6}(10+2) = \frac{12}{\sqrt{6}}$	
	J = 8, 63 = T (-6)	
	VS VS 10	
	$7 = 9 \cdot 9$	In.
1	Ma 12 $\begin{pmatrix} 5 \\ -2 \end{pmatrix} = 2 \begin{pmatrix} 2 \\ -1 \end{pmatrix}$	M
1	$Ma = \frac{12}{\sqrt{6}} Me_1 - \frac{5}{\sqrt{5}} Me_2$	
	Vs = = 2	
	$=\frac{12}{10}e_1-\frac{5}{15}(-3)e_2$	
	15 -2	
	$= \frac{12}{\sqrt{6}} \frac{1}{\sqrt{6}} \left(\frac{1}{2} \right) + \frac{15}{\sqrt{5}} \frac{1}{\sqrt{5}} \left(\frac{2}{-1} \right)$	
	15 V5 (0))
	$= \begin{pmatrix} 2\\4\\-2 \end{pmatrix} + \begin{pmatrix} 6\\-3\\0 \end{pmatrix} = \begin{pmatrix} 8\\1\\-2 \end{pmatrix}$	(
	$\begin{pmatrix} 4 \\ -3 \end{pmatrix} = \begin{pmatrix} 5 \\ 1 \end{pmatrix}$	
	-2	
	J2 &	
	Setter's initiale Checker's hiriale 20	
	Page number	r
	520	1