In-Class Problems Week 8, Mon.

Problem 1.

For each of the binary relations below, state whether it is a strict partial order, a weak partial order, an equivalence relation, or none of these. If it is a partial order, state whether it is a linear order. If it is none, indicate which of the axioms for partial-order and equivalence relations it violates.

- (a) The superset relation \supseteq on the power set pow $\{1, 2, 3, 4, 5\}$.
- (b) The relation between any two nonnegative integers a and b such that $a \equiv b \pmod{8}$.
- (c) The relation between propositional formulas G and H such that [G IMPLIES H] is valid.
- (d) The relation between propositional formulas G and H such that [G IFF H] is valid.
- (e) The relation 'beats' on Rock, Paper, and Scissors (for those who don't know the game Rock, Paper, Scissors, Rock beats Scissors, Scissors beats Paper, and Paper beats Rock).
- **(f)** The empty relation on the set of real numbers.
- (g) The identity relation on the set of integers.
- (h) The divisibility relation on the integers, \mathbb{Z} .

Problem 2.

The proper subset relation, \subset , defines a strict partial order on the subsets of [1..6], that is, on

- (a) What is the size of a maximal chain in this partial order? Describe one.
- (b) Describe the largest antichain you can find in this partial order.
- (c) What are the maximal and minimal elements? Are they maximum and minimum?
- (d) Answer the previous part for the \subset partial order on the set pow $[1..6] \emptyset$.

Let S be a sequence of n different numbers. A subsequence of S is a sequence that can be obtained by deleting elements of S.

For example, if

$$S = (6,4), 7,9,1,2,5,3,8$$

Then 647 and 7253 are both subsequences of S (for readability, we have dropped the parentheses and commas in sequences, so 647 abbreviates (6, 4, 7), for example).

An increasing subsequence of S is a subsequence of whose successive elements get larger. For example, 1238 is an increasing subsequence of S. Decreasing subsequences are defined similarly; 641 is a decreasing subsequence of S.

2015, Eric Lehman, F Tom Leighton, Albert R Meyer, This work is available under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 license

(a) List all the maximum-length increasing subsequences of S, and all the maximum-length decreasing subsequences.

Now let A be the set of numbers in S. (So A is the integers [1..9] for the example above.) There are two straightforward linear orders for A. The first is numerical order where A is ordered by the < relation. The second is to order the elements by which comes first in S; call this order $<_S$. So for the example above, we would have

$$6 <_S 4 <_S 7 <_S 9 <_S 1 <_S 2 <_S 5 <_S 3 <_S 8$$

Let \prec be the product relation of the linear orders \prec_s and \prec . That is, \prec is defined by the rule

$$a \prec a' ::= a \prec a' \text{ AND } a \prec_S a'.$$

So \prec is a partial order on A Section 9.9 in the course textbook).

- (b) Draw a diagram of the partial order, \prec , on A. What are the maximal and minimal elements?
- (c) Explain the connection between increasing and decreasing subsequences of S, and chains and anti-
- (d) Prove that every sequence, S, of length n has an increasing subsequence of length greater than \sqrt{n} or a decreasing subsequence of length at least \sqrt{n} .

Problem 4.

For any total function $f: A \to B$ define a relation \equiv_f by the rule:

$$a \equiv_f a'$$
 iff $f(a) = f(a')$. $a \equiv_f 0$

- (a) Observe (and sketch a proof) that \equiv_f is an equivalence relation on A. (b) Prove that every equivalence relation, R, on a set, A, is equal to \equiv_f for the function $f:A \to \text{pow}(A)$ defined as $f(a) ::= \{a' \in A \mid a R a'\}$ That is, f(a) = R(A)

$$f(a) ::= \{a' \in A \mid a \ R \ a'\}.$$

That is, f(a) = R(a).

MIT OpenCourseWare https://ocw.mit.edu

6.042J / 18.062J Mathematics for Computer Science Spring 2015

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.