Copyright Notice

These slides are distributed under the Creative Commons License.

<u>DeepLearning.Al</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.Al</u> as the source of the slides.

For the rest of the details of the license, see https://creativecommons.org/licenses/by-sa/2.0/legalcode

Setting up your ML application

Train/dev/test sets

Applied ML is a highly iterative process

Idea # layers # hidden units learning rates activation functions Experiment Code

NLP, Vision, Speech, Structural dorta Ads Search Security legistic

Train/dev/test sets

Mismatched train/test distribution

Corts

Training set: Dev/test sets: Cat pictures from Cat pictures from users using your app webpages tran / der

tran / der

Thomas / der

Not having a test set might be okay. (Only dev set.)

Setting up your ML application

Bias/Variance

Bias and Variance

Bias and Variance

Train set error:)

Dev set error

Heran : 10%

Cat classification

Optul (Boyes) error : 1/8 to 15.1. Blurg

High bias and high variance

Setting up your ML application

Basic "recipe" for machine learning

Basic recipe for machine learning

nertwork (les set putornone architectus send varione

Analizzando l'errore sul set di addestramento e sul set di sviluppo, è possibile identificare se il modello ha bias elevato (underfitting) o varianza elevata (overfitting) e adottare strategie mirate per migliorarlo.

Bias Elevato (Underfitting)
Se il modello non si adatta bene ai dati di addestramento:

Aumentare la complessità della rete (più livelli o unità nascoste)
Addestrare più a lungo
Utilizzare algoritmi di ottimizzazione avanzati
Provare diverse architetture di rete

Varianza Elevata (Overfitting)
Se il modello si adatta bene al training set
ma non generalizza:

Aumentare i dati di addestramento Applicare la regolarizzazione Provare un'architettura più adatta

deeplearning.ai

Regularizing your neural network

Regularization

Riassunto sulla Regolarizzazione in Regressione Logistica e Reti Neurali

La regolarizzazione è una tecnica utilizzata per prevenire l'overfitting nei modelli di machine learning, migliorando la generalizzazione su nuovi dati.

Regolarizzazione in Regressione Logistica

- L2 (Ridge Regression o Penalità L2): aggiunge un termine w2\lambda ||w||^2w2 alla funzione di costo, penalizzando pesi elevati.
- L1 (Lasso Regression o Penalità L1): aggiunge un termine w1\lambda ||w||_1w1, che può portare alla sparsità (eliminazione di alcune feature).

Regolarizzazione in Reti Neurali

- L2 Regularization (Weight Decay): penalizza pesi grandi per evitare modelli troppo complessi.
- Dropout: disattiva casualmente neuroni durante il training per evitare dipendenze eccessive tra unità.
- Batch Normalization: normalizza gli input nei livelli nascosti per rendere l'allenamento più stabile.
- uso della regolarizzazione aiuta a bilanciare bias e varianza, migliorando le prestazioni del modello su dati nuovi.

Logistic regression

$$\min_{w,b} J(w,b)$$

$$\lim_{w,b} J(w,b)$$

$$\lim_{w,b} J(w,b) = \lim_{n \to \infty} J(x_{0}, y_{0}) + \lim_{n \to \infty} ||x_{0}||^{2} + \lim_{n \to \infty} J(x_{0}, y_{0}) + \lim_{n \to \infty} ||x_{0}||^{2} + \lim_{n \to \infty} J(x_{0}, y_{0}) + \lim_{n \to \infty} ||x_{0}||^{2} + \lim_{n \to \infty} J(x_{0}, y_{0}) + \lim_{n \to \infty} J$$

Neural network

Regolarizzazione e la Riduzione della Varianza

La regolarizzazione aiuta a prevenire l'overfitting riducendo la varianza del modello. L'overfitting si verifica quando il modello è troppo complesso e si adatta troppo ai dati di training, catturando anche il rumore.

Perché la regolarizzazione aiuta?

Aggiunge un termine alla funzione di costo che penalizza i pesi troppo grandi, forzando il modello a mantenere valori più piccoli e quindi meno flessibili. Questo riduce la capacità del modello di adattarsi eccessivamente ai dati di training, migliorando la generalizzazione sui nuovi dati.

Regolarizzazione L2 (Norma di Frobenius)

L2 penalizza i pesi elevati aggiungendo il termine ||W||² alla funzione di costo. Se è molto grande:

- I pesi WWW saranno molto piccoli riduce l'effetto di molte unità nascoste.
- La rete neurale diventa più semplice, simile a una regressione logistica con più livelli.
- Il modello diventa meno capace di creare limiti decisionali complessi, riducendo l'overfitting.

Effetto su una rete con attivazion

- Se W è piccolo, all
- Regularizing your divents più simile a una rete lineare, quindi meno complessa e meno incline a sovradimensionare i dati. Con z piccolo, ta Conclusione:

si comporta come una versione semplificata, riducendo la varianza e migliorando la generalizzazione. Tuttavia, non deve essere troppo grande, altrimenti il modello diventa schia di soffrire di underfitting ella regolarizzazione L2, esistono altre tecniche come dropout, che verranno esplorete successivamente. Aumentando . la rete troppo semp

Nel deep learning,

deeplearning.ai

Why regularization reduces overfitting

How does regularization prevent overfitting?

How does regularization prevent overfitting?

Regularizing your neural network

Dropout regularization

Dropout regularization

Implementing dropout ("Inverted dropout")

Illustre with layer
$$l=3$$
. teep-pn $b=\frac{0.8}{2}$

$$\Rightarrow \overline{[0.2]}$$

$$\Rightarrow \overline{[0.3]} = np. \, \text{random. \, rand}(a.3. \, \text{shape [0.3]}, \, a.3. \, \text{shape [1.3]}) < \text{keep-pn b}$$

$$a.3 = np. \, \text{multiply }(a.3, d.3) \qquad \text{#f } a.3 \, \text{#f} = d.3.$$

$$\Rightarrow \overline{[0.2]} = \frac{1}{2} \text{ feep-pn b} = \frac{1}{2} \text{ for almultiply }(a.3, d.3) = \frac{1}{2} \text{ for al$$

Making predictions at test time

/= keap-pols

Regularizing your neural network

Understanding dropout

Why does drop-out work?

Intuition: Can't rely on any one feature, so have to spread out weights. Shrink weights.

Regularizing your neural network

Other regularization methods

Data augmentation

Setting up your optimization problem

Normalizing inputs

Normalizing training sets

Why normalize inputs?

Setting up your optimization problem

Vanishing/exploding gradients

Single neuron example

Setting up your optimization problem

Numerical approximation of gradients

Checking your derivative computation

Checking your derivative computation

Setting up your optimization problem

Gradient Checking

Gradient check for a neural network

Take $W^{[1]}, b^{[1]}, ..., W^{[L]}, b^{[L]}$ and reshape into a big vector θ . $\mathcal{J}(\omega^{CD}, b^{CD}, \omega^{CD}, b^{CD})^2 \mathcal{J}(\theta)$

Take $dW^{[1]}$, $db^{[1]}$, ..., $dW^{[L]}$, $db^{[L]}$ and reshape into a big vector $d\theta$.

Is do the gradet of J(0)?

Gradient checking (Grad check)

for each
$$\bar{c}$$
:

 $\Rightarrow \underline{Mogpar}[\bar{c}] = \underline{J(0_{1},0_{2},...,0_{1}+\epsilon_{1},...)} - \underline{J(0_{1},0_{2},...,0_{1}-\epsilon_{1},...)}$
 $\Rightarrow \underline{Mogpar}[\bar{c}] = \underline{JJ}$
 $& \underline{Mocili = 3J}$
 $& \underline{Mocili = 3J}$

Setting up your optimization problem

Gradient Checking implementation notes

Gradient checking implementation notes

- Don't use in training – only to debug

- If algorithm fails grad check, look at components to try to identify bug.

- Remember regularization.

- Doesn't work with dropout.

- Run at random initialization; perhaps again after some training.