

Enigma da Esfinge

A Grande Esfinge tem um enigma para você. Você recebe um grafo com N vértices. Os vértices são numerados de 0 a N-1. Há M arestas no grafo, numeradas de 0 a M-1. Cada aresta conecta um par de vértices distintos e é bidirecional. Especificamente, para cada j de 0 a M-1 (inclusive) a aresta j conecta os vértices X[j] e Y[j]. Há no máximo uma aresta conectando qualquer par de vértices. Dois vértices são chamados de **adjacentes** se estiverem conectados por uma aresta.

Uma sequência de vértices v_0, v_1, \ldots, v_k (para $k \geq 0$) é chamada de **caminho** se cada dois vértices consecutivos v_l e v_{l+1} (para cada l tal que $0 \leq l < k$) são adjacentes. Dizemos que um caminho v_0, v_1, \ldots, v_k **conecta** os vértices v_0 e v_k . No grafo fornecido a você, cada par de vértices está conectado por algum caminho.

Existem N+1 cores, numeradas de 0 a N. A cor N é especial e é chamada de **cor da Esfinge**. Cada vértice recebe uma cor. Especificamente, o vértice i ($0 \le i < N$) tem cor C[i]. Vários vértices podem ter a mesma cor, e pode haver cores não atribuídas a nenhum vértice. Nenhum vértice tem a cor da Esfinge, isto é, $0 \le C[i] < N$ ($0 \le i < N$).

Um caminho v_0, v_1, \ldots, v_k (para $k \geq 0$) é chamado de **monocromático** se todos os seus vértices têm a mesma cor, ou seja, $C[v_l] = C[v_{l+1}]$ (para cada l tal que $0 \leq l < k$). Além disso, dizemos que os vértices p e q ($0 \leq p < N$, $0 \leq q < N$) estão na mesma **componente monocromática** se e somente se eles estiverem conectados por um caminho monocromático.

Você conhece os vértices e arestas, mas você não sabe qual cor cada vértice tem. Você quer descobrir as cores dos vértices, realizando **experimentos de recoloração**.

Em um experimento de recoloração, você pode recolorir arbitrariamente muitos vértices. Especificamente, para realizar um experimento de recoloração você primeiro escolhe um vetor E de tamanho N, onde para cada i ($0 \le i < N$), E[i] está entre -1 e N inclusive. Então, a cor de cada vértice i se torna S[i], onde o valor de S[i] é:

- ullet C[i], ou seja, a cor original de i , se E[i]=-1 , ou
- E[i], caso contrário.

Observe que isso significa que você pode usar a cor da Esfinge na sua recoloração.

Finalmente, a Grande Esfinge anuncia o número de componentes monocromáticas no grafo, depois de definir a cor de cada vértice i para S[i] ($0 \le i < N$). A nova coloração é aplicada apenas

para este experimento de recoloração específico, então **as cores de todos os vértices retornam** às originais após o término do experimento.

Sua tarefa é identificar as cores dos vértices no grafo realizando no máximo $2\,750$ experimentos de recoloração. Você também pode receber uma pontuação parcial se você determinar corretamente para cada par de vértices adjacentes, se eles têm a mesma cor.

Detalhes de implementação

Você deve implementar o seguinte procedimento.

```
std::vector<int> find_colours(int N,
std::vector<int> Y)
```

- *N*: o número de vértices no grafo.
- X, Y: vetores de tamanho M descrevendo as arestas.
- Este procedimento deve retornar um vetor G de tamanho N, representando as cores dos vértices no grafo.
- Este procedimento é chamado exatamente uma vez para cada caso de teste.

O procedimento acima pode fazer chamadas para o seguinte procedimento para realizar experimentos de recoloração:

```
int perform_experiment(std::vector<int> E)
```

- E: um vetor de tamanho N especificando como os vértices devem ser recoloridos.
- ullet Este procedimento retorna o número de componentes monocromáticas depois de recolorir os vértices de acordo com E.
- Este procedimento pode ser chamado no máximo 2750 vezes.

O corretor **não é adaptativo**, ou seja, as cores dos vértices são fixadas antes que uma chamada para find_colours seja feita.

Restrições

- $2 \le N \le 250$
- $N-1 \le M \le \frac{N \cdot (N-1)}{2}$
- $0 \le X[j] < Y[j] < N$ para cada j tal que $0 \le j < M$.
- $X[j] \neq X[k]$ ou $Y[j] \neq Y[k]$ para cada j e k tais que $0 \leq j < k < M$.
- Cada par de vértices é conectado por algum caminho.
- $0 \le C[i] < N$ para cada i tal que $0 \le i < N$.

Subtarefas

Subtarefa	Pontuação	Restrições adicionais
1	3	N=2
2	7	$N \leq 50$
3	33	O grafo é um caminho: $M=N-1$ e os vértices j e $j+1$ são adjacentes ($0 \leq j < M$).
4	21	O grafo é completo: $M=\frac{N\cdot (N-1)}{2}$ e quaisquer dois vértices são adjacentes.
5	36	Sem restrições adicionais.

Em cada subtarefa, você pode obter uma pontuação parcial se o seu programa determinar corretamente para cada par de vértices adjacentes se eles têm a mesma cor.

Mais precisamente, você obtém a pontuação total de uma subtarefa se, em todos os seus casos de teste, o vetor G retornado por find_colours é exatamente o mesmo que o vetor C (ou seja G[i]=C[i] para todo i tal que $0\leq i < N$). Alternativamente, você ganha 50% da pontuação para uma subtarefa se as seguintes condições forem atendidas em todos os seus casos de teste:

- $0 \leq G[i] < N$ para cada i tal que $0 \leq i < N$;
- Para cada j tal que $0 \le j < M$:
 - $\circ \ \ G[X[j]] = G[Y[j]] \ \text{se e somente se} \ C[X[j]] = C[Y[j]].$

Exemplo

Considere a seguinte chamada.

Para este exemplo, suponha que as cores (ocultas) dos vértices são dadas por C=[2,0,0,0]. Este cenário é mostrado na figura a seguir. As cores também são representadas por números em etiquetas brancas fixadas em cada vértice.

O procedimento pode chamar perform_experiment da seguinte maneira.

```
perform_experiment([-1, -1, -1, -1])
```

Nesta chamada, nenhum vértice é recolorido, pois todos os vértices mantêm suas cores originais.

Considere o vértice 1 e o vértice 2. Ambos têm a cor 0 e o caminho 1,2 é um caminho monocromático. Como resultado, os vértices 1 e 2 estão na mesma componente monocromática.

Considere o vértice 1 e o vértice 3. Embora ambos tenham a cor 0, eles estão em diferentes componentes monocromáticas pois não há um caminho monocromático conectando-os.

No total, existem 3 componentes monocromáticas, com vértices $\{0\}$, $\{1,2\}$ e $\{3\}$. Portanto, esta chamada retorna 3.

Agora o procedimento pode chamar perform_experiment da seguinte maneira.

Nesta chamada, apenas o vértice 0 é recolorido para a cor 0, o que resulta na coloração mostrada na figura a seguir.

Esta chamada retorna 1, pois todos os vértices pertencem à mesma componente monocromática. Agora podemos deduzir que os vértices 1, 2 e 3 têm cor 0.

O procedimento pode então chamar perform_experiment da seguinte maneira.

Nesta chamada, o vértice 3 é recolorido para a cor 2, o que resulta na coloração mostrada na figura a seguir.

Esta chamada retorna 2, pois há 2 componentes monocromáticas, com vértices $\{0,3\}$ e $\{1,2\}$ respectivamente. Podemos deduzir que o vértice 0 tem cor 2.

O procedimento find_colours então retorna o vetor [2,0,0,0]. Como C=[2,0,0,0], a pontuação total é fornecida.

Observe que também há vários valores de retorno para os quais 50% da pontuação seria fornecida, por exemplo [1,2,2,2] ou [1,2,2,3].

Corretor Exemplo

Formato de entrada:

```
NM
C[0] C[1] ... C[N-1]
X[0] Y[0]
X[1] Y[1]
...
X[M-1] Y[M-1]
```

Formato de saída:

```
LQ
G[0] G[1] ... G[L-1]
```

Aqui, L é o tamanho do vetor G retornado por find_colours, e Q é o número de chamadas para perform_experiment .