Instructors: Erik Demaine, Jason Ku, and Justin Solomon

Problem Set 2

Problem Set 2

Name: Akshay Raman Collaborators: None

Problem 2-1.

(a)
$$T(n) = 4T(\frac{n}{2}) + O(n)$$

Recursion Tree:

Drawing the recursion tree, there are 4^i nodes at level i, each doing at most $n/2^i$ work. So the total work at level i is $4^i \frac{n}{2^i}$. Summing over the entire tree we get,

$$T(n) = \sum_{i=0}^{\log_2 n} 4^i \frac{cn}{2^i}$$

$$= cn \sum_{i=0}^{\log_2 n} 2^i$$

$$= cn (2^{\log_2 n + 1} - 1)$$

$$= cn (2n - 1)$$

$$= O(n^2)$$

Since $\Theta(1)$ work is done at each leaf, and there are n^2 leaves, the total work is $\Omega(n^2)$. Therefore, the running time is $\Theta(n^2)$.

Master Theorem: For the recurrence above: a = 4, b = 2, f(n) = O(n)

$$n^{\log_b a} = n^{\log_2 4} = n^2$$

Since $f(n) = O(n^{2-\epsilon})$, where $\epsilon = 1$, from case 1 of the master theorem we get,

$$T(n) = \Theta(n^{\log_b a}) = \Theta(n^2)$$

(b)
$$T(n) = 3T\left(\frac{n}{\sqrt{2}}\right) + O(n^4)$$

Recursion Tree:

Drawing the recursion tree, there are 3^i nodes at level i, each doing at most $cn^4/4^i$ work. So the total work at level i is $3^i\frac{cn^4}{4^i}$. Summing over the entire tree we get,

$$T(n) = \sum_{i=0}^{2\log n} 3^{i} \frac{cn^{4}}{4^{i}}$$

$$= cn^{4} \sum_{i=0}^{2\log n} (3/4)^{i}$$

$$< cn^{4} \sum_{i=0}^{\infty} (3/4)^{i}$$

$$< cn^{4} \sum_{i=0}^{\infty} (3/4)^{i}$$

$$< 4cn^{4}$$

$$= O(n^{4})$$

The worst case running time is $T(n) = O(n^4)$. Also, $\Theta(1)$ work is done at each leaf, and there are $3^{2 \log n}$ leaves, the total work is at least $\Omega(3^{2 \log n})$.

Master Theorem: For the recurrence above: a = 3, $b = \sqrt{2}$, $f(n) = O(n^4)$

$$n^{\log_b a} = n^{2\log_2 3}$$

Since $f(n) = \Omega(n^{2\log_2 3+\epsilon})$, where $\epsilon > 0$, and $\frac{3}{4}n^4 < cn^4$ for any $\frac{3}{4} < c < 1$, from case 3 of the master theorem we get,

$$T(n) = \Theta(f(n)) = \Theta(n^4)$$

(c)
$$T(n) = 2T\left(\frac{n}{2}\right) + 5n\log n$$

Recursion Tree:

Drawing the recursion tree, there are 2^i nodes at level i, each doing $5\frac{n}{2^i}\log\frac{n}{2^i}$ work. So the total work at level i is $2^i(5\frac{n}{2^i}\log\frac{n}{2^i})$. Summing over the entire tree we get,

$$T(n) = \sum_{i=0}^{\log n} 2^i \left(5 \frac{n}{2^i} \log \frac{n}{2^i}\right)$$

$$= \sum_{i=0}^{\log n} 5n(\log n - i)$$

$$= 5n \sum_{j=0}^{\log n} j$$

$$= 5n \log n(\log n - 1)/2$$

$$= \Theta(n \log^2 n)$$

The running time of the algorithm is $T(n) = \Theta(n \log^2 n)$.

Master Theorem: For the recurrence above: $a=2, \quad b=2, \quad f(n)=5n\log n$

$$n^{\log_b a} = n^{2\log_2 2} = n$$

Since $f(n) = \Theta(n^1 \log^1 n)$, from case 2 of the master theorem we get,

$$T(n) = \Theta(n \log^2 n)$$

(d)
$$T(n) = T(n-2) + \Theta(n)$$

Guess that the solution is $T(n) = O(n^2)$. We choose a function g(n) from the family of functions above. A good candidate is $g(n) = cn^2$.

We have to prove using induction that for appropriate constants c and d,

$$P(i) := T(n) \le cn^2$$

Base Case: $T(1) = 1 \le c1^2$. This base case is true when,

$$c \ge 1 \tag{1}$$

Inductive Step: Assume P(m) is true, $\forall m < n$. Then,

$$T(n) = T(n-2) + \Theta(n)$$

$$\leq c(n-2)^2 + \Theta(n)$$

$$\leq cn^2 - 4cn + 4c + \Theta(n)$$
(2)

 $T(n) = cn^2$, when $\Theta(n) = 4cn - 4c$. Therefore, there exists a value c such that P(n) is true. So it follows by induction that P(n) is true $\forall n$.

Problem 2-2.

- (a)
- **(b)**
- **(c)**

Problem 2-3.

Problem 2-4.

Problem 2-5.

- (a)
- **(b)**
- (c) Submit your implementation to $\mbox{alg.mit.edu.}$