Name	Period
Partner	Date

The Iodine Clock Reaction

Prelab Questions

1) Why is it important to use two separate graduated cylinders in this lab?

Procedure

- 1) Put on your safety goggles and proper clothing. Obey all safety rules for this lab.
- 2) The two solutions for this experiment are A: 0.0094M KIO₃, B: 0.0038M NaHSO₃ in starch.
- 3) Thoroughly wash all the glassware you use today with soap and water and then rinse it with distilled water. Contaminated glassware will ruin these reactions.
- 4) Prepare two graduated cylinders labeled A and B. Use these exclusively for the solutions they are labeled for and you will not have to wash them between reactions.
- 5) Label two beakers for stock solutions of A and B.
- 6) Label one beaker for running all of your reactions in. This needs to be washed between reactions and rinsed with distilled water.
- 7) Get the stock solutions from the stock bottles. Fill the graduated cylinders with the two liquids according to the chart below.
- 8) Pour solution B into your reaction beaker and set it on a white sheet of paper. Then add solutions A to the same beaker. Stir this exactly ten times. Start timing the reaction from the second the liquids meet until it changes color. Record this time in the data table.
- 9) Repeat for each of the four reaction mixes.

Part I

Mixture	Solution A	Solution B
1	20.0 mL	20.0 mL
2	$15.0 \text{ mL} + 5.0 \text{ mL DI H}_2\text{O}$	20.0 mL
3	$10.0 \text{ mL} + 10.0 \text{ mL DI H}_2\text{O}$	20.0 mL
4	$5.0 \text{ mL} + 15.0 \text{ mL DI H}_2\text{O}$	20.0 mL

Data Tables

Mixture	Reaction Time (Seconds)
1	
2	
3	
4	

Post Lab Questions

1) Using $C_1V_1=C_2V_2$ calculate the concentrations, after dilution, of the solutions used.

Mixture	IO ₃ ⁻ Concentration	Reaction Time (Seconds)
1		
2		
3		
4		

2)	Using the data from question 1 prepare and attach a graph to this paper. It is a g	graph of
	concentration of iodate ion versus reaction time.	

3)	Starch is	used in	this reactio	n as an indicator.	What does	it ir	ndicate the	e presence of
----	-----------	---------	--------------	--------------------	-----------	-------	-------------	---------------

4)	Why must	you be so	careful ab	out rinsing	with	distilled	water in	this	lab?
----	----------	-----------	------------	-------------	------	-----------	----------	------	------

6) Suggest some ways to speed up this reaction

⁵⁾ Why does increasing the concentration of a solution speed up a reaction?