Learning Objectives Exam 2

Chapter	4: Students should be able to:
	Convert between viewing dipoles as point charges to generalized dipole vectors and back
	Calculate the dipole moment of simple charge distributions
	Describe similarities and differences between conductors and dielectrics
	Predict whether a particular polarization would yield bound surface and/or volume charge densities
	Explain the physical origin of bound charge at micro and macroscopic levels
	Explain what happens to a dielectric placed in an electric field
	Explain the difference between free and bound charges and identify which is which in a problem
	Sketch the direction of $\vec{\mathbf{D}}$, $\vec{\mathbf{P}}$, and $\vec{\mathbf{E}}$ for simple problems involving dielectrics
	Determine appropriate boundary conditions fo $\vec{\mathbf{D}}$ given free charge or a linear dielectric
	Articulate the difference between linear and nonlinear dielectrics
	Calculate $\vec{\mathbf{E}}$, and $\vec{\mathbf{P}}$ given a dielectric constant and free charge distribution of nice symmetry
Chapter	5: Students should be able to:
	Utilize the Lorentz force law and right-hand rule
	Calculate current density given the current $\mathcal I$ and know the respective units
	Explain in words what the charge continuity equation means
	Calculate the current \mathcal{I} , K , and J in terms of particle velocity or in terms of each other
	Describe the trajectory of a charged particle in a given magnetic field
	Sketch the direction of the magnetic field about a current distribution and explain why any components or dependencies are zero
	Explain why the magnetic force does no work
	State when the Biot-Savart Law applies
	Compare similarities and differences between Biot-Savart and Coulomb's Law
	Choose when to use Biot-Savart versus Ampere's Law to calculate B fields
	Use Biot-Savart to calculate B fields in simple cases
	Draw appropriate Amperian loops for cases where symmetry allows and solve for the B field in that fashion
	Make comparisions between $\vec{\bf E}$ and $\vec{\bf B}$ in Maxwell's equations
	Explain why the potential $\vec{\mathbf{A}}$ is a vector for magnetostatics but a scalar for electrostatics
	Recognize when it is useful to use the vector potential in solving problems
	Interpret the third and fourth Maxwell's equations for electrostatics (divergence and curl of B) and use them to describe magnetostatics
Computa	ation: Students should be able to:
	Create simple line plots showing relationships between 2 or 3 variables
	Visualize functions of 2 independent variables using imshow or contour plots
	Label plot axes correctly and with descriptive titles
	Use Sympy for basic integration or differentiation tasks