Total Sample Size	36	DF Total	35
Variables	4	DF Within Classes	33
Classes	3	DF Between Classes	2

Number of Observations Read	
Number of Observations Used	

Class Level Information						
method Variable Name Frequency Weight Proportion				Proportion	Prior Probability	
1	_1	12	12.0000	0.333333	0.333333	
2	_2	12	12.0000	0.333333	0.333333	
3	_3	12	12.0000	0.333333	0.333333	

Within Covariance Matrix Information				
Covariance method Matrix Rank		Natural Log of the Determinant of the Covariance Matrix		
1	4	-7.18668		
2	4	-5.46534		
3	4	-6.69193		
Pooled	4	-5.99054		

Test of Homogeneity of Within Covariance Matrices

Chi-Square	DF	Pr > ChiSq
12.473068	20	0.8988

Since the Chi-Square value is not significant at the 0.1 level, a pooled covariance matrix will be used in the discriminant function.

Reference: Morrison, D.F. (1976) Multivariate Statistical Methods p252.

Generalized Squared Distance to method				
From method 1 2				
1	0	3.22120	7.57314	
2	3.22120	0	1.00825	
3	7.57314	1.00825	0	

Linear Discriminant Function for method					
Variable	1	2	3		
Constant	-176.39568	-149.09948	-134.39073		
aroma	-7.14341	-4.84114	-4.08247		
flavor	38.16444	33.09210	30.34820		
texture	20.53717	17.90567	16.81500		
moisture	8.35042	8.86406	9.04667		

Classification Summary for Calibration Data: WORK.FISH Resubstitution Summary using Linear Discriminant Function

Number of Observations and Percent Classified into method					
From method	1	2	3	Total	
1	11	1	0	12	
	91.67	8.33	0.00	100.00	
2	3	6	3	12	
	25.00	50.00	25.00	100.00	
3	0	3	9	12	
	0.00	25.00	75.00	100.00	
Total	14	10	12	36	
	38.89	27.78	33.33	100.00	
Priors	0.33333	0.33333	0.33333		

Error Count Estimates for method						
	1 2 3 Tota					
Rate	0.0833	0.5000	0.2500	0.2778		
Priors	0.3333	0.3333	0.3333			

Class Level Information				
Class Levels Values				
method	3	123		

Number of Observations Read	
Number of Observations Used	36

Dependent Variable: aroma

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	2	1.05055556	0.52527778	1.29	0.2880
Error	33	13.40833333	0.40631313		
Corrected Total	35	14.45888889			

R-Square	Coeff Var	Root MSE	aroma Mean	
0.072658	12.24513	0.637427	5.205556	

Source	DF	Type I SS	Mean Square	F Value	Pr > F
method	2	1.05055556	0.52527778	1.29	0.2880

Source	DF	Type III SS	Mean Square	F Value	Pr > F
method	2	1.0505556	0.52527778	1.29	0.2880

Dependent Variable: aroma

Dependent Variable: flavor

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	2	4.60500000	2.30250000	9.38	0.0006
Error	33	8.10250000	0.24553030		
Corrected Total	35	12.70750000			

R-Square	Coeff Var	Root MSE	flavor Mean	
0.362384	9.423331	0.495510	5.258333	

Source	DF	Type I SS	Type I SS Mean Square		Pr > F
method	2	4.60500000	2.30250000	9.38	0.0006

Source	DF	Type III SS	Mean Square	F Value	Pr > F
method	2	4.60500000	2.30250000	9.38	0.0006

Dependent Variable: flavor

Dependent Variable: texture

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	2	2.38222222	1.19111111	3.39	0.0460
Error	33	11.60750000	0.35174242		
Corrected Total	35	13.98972222			

R-Square	Coeff Var	Root MSE	texture Mean	
0.170284	10.68076	0.593079	5.552778	

Source	DF	Type I SS	pe I SS Mean Square		Pr > F
method	2	2.38222222	1.19111111	3.39	0.0460

Source	DF	Type III SS	Mean Square	F Value	Pr > F
method	2	2.38222222	1.19111111	3.39	0.0460

Dependent Variable: texture

Dependent Variable: moisture

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	2	0.81055556	0.40527778	1.27	0.2954
Error	33	10.56583333	0.32017677		
Corrected Total	35	11.37638889			

R-Square	Coeff Var	Root MSE	moisture Mean
0.071249	9.382911	0.565842	6.030556

Source	DF	Type I SS	Mean Square	F Value	Pr > F
method	2	0.81055556	0.40527778	1.27	0.2954

Source	DF	Type III SS	Mean Square	F Value	Pr > F
method	2	0.81055556	0.40527778	1.27	0.2954

Dependent Variable: moisture

Multivariate Analysis of Variance

Characteristic Roots and Vectors of: E Inverse * H, where H = Type III SSCP Matrix for method E = Error SSCP Matrix

		Characteristic Vector V'EV=1			
Characteristic Root	Percent	aroma	flavor	texture	moisture
1.41653071	99.02	-0.19752392	0.49462537	0.23815929	-0.04480780
0.01408589	0.98	0.22778053	-0.00741780	-0.15730371	0.04466183
0.00000000	0.00	-0.08821606	0.02646143	-0.21887787	0.40240335
0.00000000	0.00	0.27595304	-0.25855059	0.18925158	0.00000000

Multivariate Analysis of Variance

MANOVATest Criteria and F Approximations for the Hypothesis of No Overall method Effect H = Type III SSCP Matrix for method E = Error SSCP Matrix

S=2 M=0.5 N=14						
Statistic	Value	F Value	Num DF	Den DF		

NOTE: F Statistic for Roy's Greatest Root is an upper bound.

NOTE: F Statistic for Wilks' Lambda is exact.

4.24

3.32

5.27

10.98

8

8

8

4

60

62

31

40.602

0.40806838

0.60007385

1.43061660

1.41653071

Wilks' Lambda

Pillai's Trace

Trace

Hotelling-Lawley

Roy's Greatest Root

Multivariate Analysis of Variance

MANOVATest Criteria and F
Approximations for the Hypothesis of
No Overall method Effect
H = Type III SSCP Matrix for method
E = Error SSCP Matrix

S=2 M=0.5 N=14

Statistic	Pr > F	
Wilks' Lambda	0.0004	
Pillai's Trace	0.0032	
Hotelling-Lawley Trace	0.0001	
Roy's Greatest Root	<.0001	
_		

NOTE:

F Statistic for Roy's Greatest Root is an upper bound.

NOTE: F Statistic for Wilks' Lambda is exact.