Topics in Statistical Theory — Summary

Lucas Riedstra

December 8, 2020

Contents

1	Bas	sic concepts	2
	1.1	Parametric vs nonparametric models	2
	1.2	Estimating an arbitrary distribution function	2
	1.3	Order statistics and quantiles	5
	1.4	Concentration inequalities	7
2	Kernel density estimation		
	2.1	The univariate kernel density estimator	
	2.2	Bounds on variance and bias	14
	2.3	Bounds on the integrated variance and bias	16
	2.4	Bandwidth selection	17
		2.4.1 Least squares cross validation	17
		2.4.2 Lepski	18
	2.5	Choice of kernel	18
	2.6	Multivariate density estimation	18
3	Nonparametric regression 1		
	3.1	Fixed and random design	19
	3.2	Local polynomial estimators	19
	3.3	Splines	23
		3.3.1 Cubic splines	23
		3.3.2 Natural cubic smoothing splines	24
		3.3.3 Choice of smoothing parameter	24
4	Mir	nimax lower bounds	2 6
	4.1	Reduction to testing	26
	4.2	Divergences	
	4.3	Le Cam's two point lemma	
	4.4	Assouad's lemma	
	4.5	The data processing inequality	

1 Basic concepts

1.1 Parametric vs nonparametric models

Definition 1.1. A statistical model is a family of possible data-generating mechanisms. If the parameter space Θ is finite-dimensional, we speak of a parametric model.

A model is called well-specified if there is a $\vartheta_0 \in \Theta$ for which the data was generated from the distribution with parameter ϑ_0 , and otherwise it is called misspecified.

Recap 1.2. Let (Y_n) be a sequence of random vectors and Y a random vector.

- 1. We say that (Y_n) converges almost surely to Y, notation $Y_n \stackrel{\text{a.s.}}{\to} Y$, if $\mathbb{P}(Y_n \to Y) = 1$.
- 2. We say that (Y_n) converges in probability to Y, notation $Y_n \stackrel{P}{\to} Y$, if for every $\varepsilon > 0$ we have $\mathbb{P}(\|Y_n Y\| > \varepsilon) \to 0$.
- 3. We say that (Y_n) converges in distribution to Y, notation $Y_n \stackrel{\mathrm{d}}{\to} Y$, if $\mathbb{P}(Y_n \leq y) \to \mathbb{P}(Y \leq y)$ for all y where the distribution function of Y is continuous.

This is equivalent to the condition that $\mathbb{E}[f(Y_n)] \to \mathbb{E}[f(Y)]$ for all bounded Lipschitz functions f.

It is known that $Y_n \stackrel{\text{a.s.}}{\to} Y \implies Y_n \stackrel{\text{p}}{\to} Y \implies Y_n \stackrel{\text{d}}{\to} Y.$

If (Y_n) is a sequence of random vectors and (a_n) is a positive sequence, then we write $Y_n = O_p(a_n)$ if, for all $\varepsilon > 0$, there exists C > 0 such that for sufficiently large n we have

$$\mathbb{P}\bigg(\frac{\|Y_n\|}{a_n} > C\bigg) < \varepsilon.$$

We write $Y_n = o_n(a_n)$ if $Y_n/a_n \stackrel{p}{\to} 0$.

In a well-specified parametric model, the maximum likelihood estimator (MLE) $\hat{\vartheta}_n$ typically satisfies $\hat{\vartheta}_n - \vartheta_0 \in O_p(n^{-1/2})$. On the other hand, if the model is misspecified, any inference can give very misleading results. To circumvent this problem, we consider nonparametric models, which make much weaker assumptions. Such infinite-dimensional models are much less vulnerable to model misspecification, however we will typically pay a price in terms of a slower convergence rate than in well-specified parametric models.

Example 1.3. Examples of nonparametric models include:

- 1. Assume $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} F$ for some unknown distribution function F.
- 2. Assume $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} f$ for some unknown density f belonging to a smoothness class.
- 3. Assume $Y_i = m(x_i) + \varepsilon_i$ (i = 1, ..., n), where the x_i are known, m is unknown and belongs to some smoothness class, and the ε_i are i.i.d. with $\mathbb{E}(\varepsilon_i) = 0$ and $\operatorname{Var}(\varepsilon_i) = \sigma^2$.

1.2 Estimating an arbitrary distribution function

Definition 1.4. Let \mathcal{F} denote the class of all distribution functions on \mathbb{R} and suppose $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} F \in \mathcal{F}$. The *empirical distribution function* $\hat{F_n}$ of X_1, \ldots, X_n is defined as

$$\hat{F}_n(x) := \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{X_i \le x\}}.$$

Recap 1.5. The strong law of large numbers tells us that if (Y_n) are i.i.d. with finite mean μ , then $\bar{Y} := \frac{1}{n} \sum_{i=1}^{n} Y_i \stackrel{\text{a.s.}}{\to} \mu$.

Note that the strong law of large numbers immediately implies that $\hat{F}_n(x)$ converges almost surely to F(x) as $n \to \infty$ for all fixed $x \in \mathbb{R}$. However, the following stronger result states that this convergence holds uniformly in x:

Theorem 1.6 (Glivenko-Cantelli). Let $X_1, X_2, \ldots \stackrel{\text{iid}}{\sim} F$. Then we have

$$\sup_{x \in \mathbb{R}} \left| \hat{F}_n(x) - F(x) \right| \stackrel{\text{a.s.}}{\to} 0.$$

The main idea of the proof is to "control" \hat{F}_n in a finite number of points x_1, \ldots, x_k , and then deduce what happens between those points using the fact that distributions are increasing and right-continuous. On Wikipedia, a simplified proof can be found assuming that F is continuous, which still encapsulates the main idea. For the general proof, we need the following fact about quantile functions:

Recap 1.7. For any distribution function F, its quantile function is defined as

$$F^{-1} \colon (0,1] \to \mathbb{R} \cup \{\infty\} \colon p \mapsto \inf \{x \in \mathbb{R} \mid F(x) \ge p\}.$$

Note that since F is right-continuous and non-decreasing, the infimum is well-defined and may be replaced by a minimum, and therefore we always have $F(F^{-1}(p)) \ge p$.

When necessary, we also define $F^{-1}(0) := \sup \{x \in \mathbb{R} \mid F(x) = 0\}.$

Proof. Let $\varepsilon > 0$ and choose k such that $\frac{1}{k} \leq \varepsilon$. Now set $x_0 := -\infty$ and $x_i := F^{-1}(\frac{i}{k})$. Then we have

$$F(x_{i-1}) - F(x_{i-1}) \le \frac{i}{k} - \frac{i-1}{k} = \frac{1}{k} \le \varepsilon$$

for all i. Define $X = \{x_1, \dots, x_k, x_1 -, \dots, x_k -\}$ (we abuse notation here) and

$$\Omega_{n,\varepsilon} := \left\{ \max_{x \in X} \sup_{m \ge n} \left| \hat{F}_m(x) - F(x) \right| \le \varepsilon \right\}.$$

By a union bound and the strong law of large numbers we have

$$\mathbb{P}_F(\Omega_{n,\varepsilon}^{\complement}) \leq \sum_{x \in X} \mathbb{P}(\sup_{m \geq n} \left| \hat{F}_m(x) - F(x) \right| > \varepsilon) \to 0,$$

since $\hat{F}_m(x)$ and $\hat{F}_m(x-)$ are the sample averages of the random variables $\mathbb{1}_{X \leq x}$ and $\mathbb{1}_{X < x}$ and therefore converge almost surely to their means F(x) and F(x-).

Now, fixing $x \in [x_{i-1}, x_i)$ we have for any $n \in \mathbb{N}$, $m \ge n$

$$\hat{F}_{m}(x) - F(x) \leq \hat{F}_{m}(x_{i}-) - F(x_{i-1}) \leq \hat{F}_{m}(x_{i}-) - F(x_{i}-) + F(x_{i}-) - F(x_{i-1})
\leq \max_{x \in X} \sup_{m \geq n} \left| \hat{F}_{m}(x) - F(x) \right| + \varepsilon,$$

and analogously $F(x) - \hat{F}_n(x) \le \max_{x \in X} \sup_{m \ge n} \left| \hat{F}_m(x) - F(x) \right| + \varepsilon$.

Therefore, we have

$$\mathbb{P}_F \left(\sup_{m > n} \sup_{x \in \mathbb{R}} \left| \hat{F}_m(x) - F(x) \right| > 2\varepsilon \right) \leq \mathbb{P}_F \left(\max_{x \in X} \sup_{m > n} \left| \hat{F}_m(x) - F(x) \right| > \varepsilon \right) = \mathbb{P}(\Omega_{n,\varepsilon}^{\complement}) \to 0.$$

Noting that ε was arbitrary, we conclude

$$\mathbb{P}_{F}\left(\sup_{x\in\mathbb{R}}\left|\hat{F}_{n}(x)-F(x)\right|\to0\right) = \mathbb{P}_{F}\left(\forall L\in\mathbb{N}\ \exists n\in\mathbb{N}\ \forall m\geq n: \sup_{x\in\mathbb{R}}\left|\hat{F}_{n}(x)-F(x)\right|\leq\frac{1}{L}\right) \\
= \mathbb{P}_{F}\left(\bigcap_{L=1}^{\infty}\bigcup_{n=1}^{\infty}\bigcap_{m=n}^{\infty}\left\{\sup_{x\in\mathbb{R}}\left|\hat{F}_{n}(x)-F(x)\right|\leq\frac{1}{L}\right\}\right) \\
= \lim_{L\to\infty}\lim_{n\to\infty}\mathbb{P}_{F}\left(\sup_{m\geq n}\sup_{x\in\mathbb{R}}\left|\hat{F}_{m}(x)-F(x)\right|\leq\frac{1}{L}\right) = 1.$$

Theorem 1.8 (Dvoretzky-Kiefer-Wolfowitz). Under the conditions of theorem 1.6, for every $\varepsilon > 0$ it holds that

$$\mathbb{P}_F\bigg(\sup_{x\in\mathbb{R}}\Big|\hat{F}_n(x) - F(x)\Big| > \varepsilon\bigg) \le 2e^{-2n\varepsilon^2},$$

and this is a tight bound.

We will not prover this theorem, however, we will explore a few consequences. One of these consequences is the following:

Corollary 1.9 (Uniform Glivenko-Cantelli theorem). Under the conditions of theorem 1.6, for every $\varepsilon > 0$, it holds that

$$\sup_{F \in \mathcal{F}} \mathbb{P}_F \left(\sup_{m \ge n} \sup_{x \in \mathbb{R}} \left| \hat{F}_m(x) - F(x) \right| > \varepsilon \right) \to 0 \quad \text{as } n \to \infty.$$

Proof. By a union bound, the DKW inequality, and convergence of the geometric series we have

$$\sup_{F \in \mathcal{F}} \mathbb{P}_F \left(\sup_{m \ge n} \sup_{x \in \mathbb{R}} \left| \hat{F}_m(x) - F(x) \right| > \varepsilon \right) \le \sup_{F \in \mathcal{F}} \sum_{m=n} \mathbb{P}_F \left(\sup_{x \in \mathbb{R}} \left| \hat{F}_n(x) - F(x) \right| > \varepsilon \right)$$

$$\le 2 \sum_{m=n}^{\infty} e^{-2m\varepsilon^2},$$

which converges to 0 as it is the tail of a converging sum.

Consequence 1.10. For another consequence, we consider the problem of finding a confidence band for F. Given $\alpha \in (0,1)$, set $\varepsilon_n := \sqrt{-\frac{1}{2n} \log(\alpha/2)}$. Then the DKW inequality tells us that

$$\mathbb{P}_F\left(\sup_{x\in\mathbb{R}}\left|\hat{F}_n(x) - F(x)\right| > \varepsilon_n\right) \le \alpha,$$

or equivalently, that

$$\mathbb{P}_F\Big(\hat{F}_n(x) - \varepsilon_n \le F(x) \le \hat{F}_n(x) + \varepsilon_n \text{ for all } x \in \mathbb{R}\Big) \ge 1 - \alpha.$$

Discussion 1.11. Let $U_1, \ldots, U_n \stackrel{\text{iid}}{\sim} U(0,1)$ with empirical distribution function \hat{G}_n , and let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} F$. Then, we have

$$\hat{G}_n(F(x)) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{U_i \le F(x)\}} \stackrel{\mathrm{d}}{=} \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{X_i \le x\}} = \hat{F}_n(x),$$

where $\stackrel{\mathrm{d}}{=}$ means equality in distribution. It follows that

$$\sup_{x \in \mathbb{R}} \left| \hat{F}_n(x) - F(x) \right| \stackrel{\mathrm{d}}{=} \sup_{x \in \mathbb{R}} \left| \hat{G}_n(F(x)) - F(x) \right| \le \sup_{t \in [0,1]} \left| \hat{G}_n(t) - t \right|,$$

with equality if F is continuous. We conclude that if F is continuous, the distribution of $\sup_{x \in \mathbb{R}} \left| \hat{F}_n(x) - F(x) \right|$ does not depend on F, and that continuous functions give a "worst-case" scenario for $\sup_{x \in \mathbb{R}} \left| \hat{F}_n(x) - F(x) \right|$.

Discussion 1.12. Other generalisations of theorem 1.6 include Uniform Laws of Large Numbers. Let X, X_1, \ldots, X_n be i.i.d. on a measurable space $(\mathcal{X}, \mathcal{A})$, and \mathcal{G} a class of measurable functions on \mathcal{X} . We say that \mathcal{G} satisfies a ULLN if

$$\sup_{g \in \mathcal{G}} \left| \frac{1}{n} \sum_{i=1}^{n} g(X_i) - \mathbb{E}[g(X)] \right| \stackrel{\text{a.s.}}{\to} 0.$$

In theorem 1.6, we showed that $\mathcal{G} = \{\mathbb{1}_{\{\cdot \leq x\}} \mid x \in \mathbb{R}\}$ satisfies a ULLN.

Recap 1.13. We recall the central limit theorem: if X_1, \ldots, X_n are i.i.d. random variables with mean μ and variance $\sigma^2 < \infty$, then $\sqrt{n}(\bar{X}_n - \mu) \stackrel{d}{\to} N(0, \sigma^2)$.

Dividing by σ yields

$$\frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma} \stackrel{\mathrm{d}}{\to} N(0, 1),$$

and multiplying both sides by n and writing $V_i = \sum_{j=1}^i X_j$ we obtain

$$\frac{V_i - \mathbb{E}V_i}{\sqrt{\operatorname{Var}(V_i)}} \stackrel{\mathrm{d}}{\to} N(0, 1).$$

Discussion 1.14. Another extension starts with the observation that $\sqrt{n} \Big(\hat{F}_n(x) - F(x) \Big) \stackrel{\text{d}}{\to} N(0, \sigma^2)$, where

$$\sigma^2 = \text{Var}(\mathbb{1}_{\{X \le x\}}) = \mathbb{E}[\mathbb{1}_{X \le x}^2] - \mathbb{E}[\mathbb{1}_{X \le x}]^2 = F(x) - F(x)^2 = F(x)(1 - F(x)).$$

This can be strengthened by considering $\left(\sqrt{n}(\hat{F}_n(x) - F(x)) : x \in \mathbb{R}\right)$ as a stochastic process.

1.3 Order statistics and quantiles

Recap 1.15. If $U \sim U(0,1)$ and $X \sim F$, then for any $x \in \mathbb{R}$ we have

$$\mathbb{P}(F^{-1}(U) \le x) = \mathbb{P}(U \le F(x)) = F(x) = \mathbb{P}(X \le x).$$

This can be written simply as $F^{-1}(U) \stackrel{d}{=} X$.

Definition 1.16. Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} F \in \mathcal{F}$. The *order statistics* are the ordered samples $X_{(1)} \leq \cdots \leq X_{(n)}$ (where the original order is preserved in case of a tie).

The order statistics of the uniform distribution can be computed explicitly:

Proposition 1.17. Let $U_1, \ldots, U_n \stackrel{\text{iid}}{\sim} U(0,1)$, let $Y_1, \ldots, Y_{n+1} \stackrel{\text{iid}}{\sim} \operatorname{Exp}(1)$, and write $S_j := \sum_{i=1}^j Y_j$ $(j=1,\ldots,n+1)$. Then

$$U_{(j)} \stackrel{\mathrm{d}}{=} \frac{S_j}{S_{n+1}} \sim \mathrm{Beta}(j, n-j+1) \quad for \ j=1,\dots,n.$$

Proof. See example sheet 1, question 1.

Definition 1.18. Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} F$. Then the sample quantile function is defined as

$$\hat{F}_n^{-1}(p) = \inf \left\{ x \in \mathbb{R} \mid \hat{F}_n(x) \ge p \right\}.$$

Note that the sample quantile function is the quantile function of the empirical distribution function.

Proposition 1.19. It holds that $\hat{F}_n^{-1}(p) = X_{(\lceil np \rceil)}$.

Proof. By definition, $\hat{F}_n^{-1}(p)$ is the smallest value of x for which $\hat{F}(x)$ is larger than p. Note that

$$\hat{F}(x) \geq p \iff \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{\{X_i \leq x\}} \geq p \iff \sum_{i=1}^{n} \mathbb{1}_{\{X_i \leq x\}} \geq np \iff \sum_{i=1}^{n} \mathbb{1}_{\{X_i \leq x\}} \geq \lceil np \rceil.$$

The smallest value of x for which this occurs is the smallest value of x such that exactly $\lceil np \rceil$ of the variables X_1, \ldots, X_n satisfy $X_i \leq x$. We conclude that $\hat{F}_n^{-1}(p) = X_{(\lceil np \rceil)}$.

For example, this proposition tells us that $\hat{F}_n^{-1}(1/2) = X_{(\lceil n/2 \rceil)}$, the median of the data. We now explore the distribution of $X_{(\lceil np \rceil)}$.

Recap 1.20. We recall two theorems. The first is *Slutsky's theorem*:

Theorem 1.21. Let (Y_n) and (Z_n) be sequences of random vectors with $Y_n \stackrel{d}{\to} Y$ and $Z_n \stackrel{p}{\to} c$ for some constant c. If g is a continuous real-valued function, then $g(Y_n, Z_n) \stackrel{d}{\to} g(Y, c)$.

The second is the delta method:

Theorem 1.22. Let (Y_n) be a sequence of random vectors such that $\sqrt{n}(Y_n - \mu) \stackrel{d}{\to} Z$. If $g \colon \mathbb{R}^d \to \mathbb{R}$ is differentiable at μ , then

$$\sqrt{n}(g(Y_n) - g(\mu)) \stackrel{\mathrm{d}}{\to} g'(\mu)Z.$$

Lemma 1.23. If $U_1, \ldots, U_n \stackrel{\text{iid}}{\sim} U(0,1)$ and $p \in (0,1)$, then $\sqrt{n} (U_{\lceil np \rceil} - p) \stackrel{\text{d}}{\rightarrow} N(0, p(1-p))$.

Proof. Let $Y_1, \ldots, Y_{n+1} \stackrel{\text{iid}}{\sim} \operatorname{Exp}(1)$, $V_n \coloneqq \sum_{i=1}^{\lceil np \rceil} Y_i$ and $W_n \coloneqq \sum_{i=\lceil np \rceil+1}^{n+1} Y_i$. Then V_n and W_n are independent, and we have seen that $U_{\lceil np \rceil} \sim \frac{V_n}{V_n + W_n}$.

Noting that $\mathbb{E}V_n = \operatorname{Var}(V_n) = \lceil np \rceil$ we find

$$\sqrt{n} \left(\frac{V_n}{n} - p \right) = \frac{\sqrt{\lceil np \rceil}}{\sqrt{n}} \left(\frac{V_n - \lceil np \rceil}{\sqrt{\lceil np \rceil}} \right) + \frac{\lceil np \rceil - np}{\sqrt{n}}$$
$$= \frac{\sqrt{\lceil np \rceil}}{\sqrt{n}} \left(\frac{V_n - \mathbb{E}V_n}{\sqrt{\operatorname{Var}(V_n)}} \right) + \frac{\lceil np \rceil - np}{\sqrt{n}}.$$

Now, by the central limit theorem, the term between brackets converges to a standard N(0,1) distribution. The term $\sqrt{\lceil np \rceil}/\sqrt{n}$ converges to \sqrt{p} and the term $(\lceil np \rceil - np)/\sqrt{n}$ converges to 0, so by Slutsky's lemma, we find

$$\sqrt{n}\left(\frac{V_n}{n} - p\right) \stackrel{\mathrm{d}}{\to} \sqrt{p}N(0, 1) = N(0, p).$$

Letting q := 1 - p, an analogous calculation shows that $\sqrt{n} \left(\frac{W_n}{n} - q \right) \to N(0, q)$.

Now we define $g:(0,\infty)^2\to (0,\infty)$ by $g(x,y)\coloneqq x/(x+y)$, which is differentiable at (p,q) with derivative

$$\nabla g(x,y) = \begin{bmatrix} y/(x+y)^2 \\ -x/(x+y)^2 \end{bmatrix} \implies \nabla g(p,q) = \begin{bmatrix} q \\ -p \end{bmatrix}.$$

Note that the distribution of (V_n, W_n) is an $N(0, \binom{p \ 0}{0 \ q})$ distribution. By the delta method we find

$$\begin{split} \sqrt{n} \left(U_{\lceil np \rceil} - p \right) & \stackrel{\mathrm{d}}{=} \sqrt{n} \left(g \left(\frac{V_n}{n}, \frac{W_n}{n} \right) - g(p, q) \right) \\ & \stackrel{\mathrm{d}}{\to} \nabla g(p, q)^\top \cdot N \left(0, \begin{pmatrix} p & 0 \\ 0 & q \end{pmatrix} \right) \\ & \stackrel{\mathrm{d}}{=} N \left(0, \nabla g(p, q)^\top \begin{pmatrix} p & 0 \\ 0 & q \end{pmatrix} \nabla g(p, q) \right) \\ & \stackrel{\mathrm{d}}{=} N(0, pq), \end{split}$$

since
$$\nabla g(p,q)^{\top} \begin{pmatrix} p & 0 \\ 0 & q \end{pmatrix} \nabla g(p,q) = q^2 p + p^2 q = pq(p+q) = pq.$$

We now relate what we know about the uniform distribution to the quantile function:

Theorem 1.24. Let $p \in (0,1)$ and let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} F$. Suppose that F is differentiable at $\xi_p := F^{-1}(p)$ with derivative $f(\xi_p)$. Then

$$\sqrt{n}(X_{(\lceil np \rceil)} - \xi_p) \stackrel{\mathrm{d}}{\to} N\left(0, \frac{p(1-p)}{f(\xi_p)^2}\right).$$

Proof. Let $U_1, \ldots, U_n \stackrel{\text{iid}}{\sim} U(0,1)$, then we know that $F^{-1}(U_i) \stackrel{\text{d}}{=} X_i$ and thus $F^{-1}(U_{(\lceil np \rceil)}) \stackrel{\text{d}}{=} X_{(\lceil np \rceil)}$. Applying the delta method with $g = F^{-1}$, together with the previous theorem yields

$$\sqrt{n}(X_{(\lceil np \rceil)} - \xi_p) = \sqrt{n}(F^{-1}(U_{(\lceil np \rceil)}) - F^{-1}(p)) \stackrel{d}{\to} (F^{-1})'(p) \cdot N(0, p(1-p)).$$

Noting that $(F^{-1})'(p) = \frac{1}{f(\xi_p)}$ yields the result.

1.4 Concentration inequalities

We turn our attention to concentration inequalities, with a focus on finite-sample results (instead of results that only hold for $n \to \infty$).

Definition 1.25. A random variable X with mean 0 is called *sub-Gaussian* with parameter σ^2 if

$$M_X(t) = \mathbb{E}(e^{tX}) \le e^{t^2\sigma^2/2}$$

for every $t \in \mathbb{R}$.

Remark. Note that equality holds when $X \sim N(0, \sigma^2)$, since the MGF of an $N(\mu, \sigma^2)$ distribution is given by $t \mapsto \exp(\mu t + \sigma^2 t^2/2)$. content...

Recap 1.26. Recall the *tail bound formula* for the expectation: if X is a nonnegative random variable, then

$$\mathbb{E}[X] = \int_0^\infty \mathbb{P}(X > x) \, \mathrm{d}x.$$

Furthermore, recall that the gamma function is defined for $z \in (0, \infty)$ by

$$\Gamma(z) = \int_0^\infty x^{z-1} e^{-x} \, \mathrm{d}x$$

and satisfies $\Gamma(n) = (n-1)!$ for all $n \in \mathbb{N}$.

Finally, recall the following inequality: for all $a, b \in \mathbb{R}$ and $p \geq 1$

$$(a+b)^p \le 2^{p-1}(a^p + b^p).$$

This follows from the convexity of the function $x \mapsto x^p$.

Discussion 1.27 (Chernoff bounding). Let X be any random variable, then by Markov's inequality, then we have for all t > 0 that

$$\mathbb{P}(X \ge x) = \mathbb{P}(e^{tX} \ge e^{tx}) \le e^{-tx} \mathbb{E}[e^{tX}] = e^{-tx} M_X(t).$$

Since the left-hand side is independent of t, we can minimise over all t and obtain

$$\mathbb{P}(X \ge x) \le \inf_{t>0} e^{-tx} M_X(t),$$

which often gives better results than the "standard" Markov bound. This technique is called *Chernoff* bounding, and is very useful if bounds on $M_X(t)$ are known.

Proposition 1.28. We consider some characterisations of sub-Gaussianity:

(a) Let X be sub-Gaussian with parameter σ^2 . Then

$$\max \left\{ \mathbb{P}(X \ge x), \mathbb{P}(X \le -x) \right\} \le e^{-x^2/(2\sigma^2)} \quad \text{for every } x \ge 0. \tag{1}$$

(b) Let X be a random variable which satisfies $\mathbb{E}(X) = 0$ and eq. (1). Then for every $q \in \mathbb{N}$ it holds that

$$\mathbb{E}(X^{2q}) \le 2 \cdot q! (2\sigma^2)^q \le q! (2\sigma)^{2q}.$$

(c) If X is a random variable with $\mathbb{E}(X) = 0$ and $\mathbb{E}(X^{2q}) \leq q!C^{2q}$ for all $q \in \mathbb{N}$, then X is sub-Gaussian with parameter $4C^2$.

Proof. (a) We first consider $\mathbb{P}(X \geq x)$. By a Chernoff bound, we have

$$\mathbb{P}(X \ge x) \le \inf_{t \in \mathbb{R}} e^{-tx + t^2 \sigma^2/2} = e^{-x^2/(2\sigma^2)},$$

since the infimum of $t^2\sigma^2/2 - tx$ is attained at $t = x/\sigma^2$.

For $\mathbb{P}(X \leq -x) = \mathbb{P}(-X \geq x)$ we can use the fact that -X is also sub-Gaussian with parameter σ^2 .

(b) By the previous part, we have $\mathbb{P}(|X| \geq x) \leq 2e^{-x^2/(2\sigma^2)}$. Some calculations give

$$\mathbb{E}(X^{2q}) = \int_0^\infty \mathbb{P}(X^{2q} \ge x) \, \mathrm{d}x = \int_0^\infty \mathbb{P}(|X| \ge x^{1/(2q)})$$
$$= 2q \int_0^\infty x^{2q-1} \mathbb{P}(|X| \ge x) \, \mathrm{d}x$$
$$\le 4q \int_0^\infty x^{2q-1} e^{-x^2/(2\sigma^2)} \, \mathrm{d}x.$$

Now set $t = x^2/2\sigma^2$, so that $x = \sigma(2t)^{1/2}$ and thus $dx = \sigma(2t)^{-1/2} dt$. Plugging that in we get

$$\mathbb{E}(X^{2q}) \le 4q \int_0^\infty (\sigma(2t)^{1/2})^{2q-1} e^{-t} \sigma(2t)^{-1/2} dt = 2^{q+1} q \sigma^{2q} \int_0^\infty t^{q-1} e^{-t} dt$$
$$= 2^{q+1} q \sigma^{2q} \Gamma(q) = 2 \cdot q! (2\sigma)^q.$$

(c) Note that $x \mapsto e^{-tx}$ is convex for every $t \in \mathbb{R}$, so $\mathbb{E}(e^{-tX}) \geq e^{-t\mathbb{E}(X)} = e^0 = 1$ by Jensen's inequality. Let X' denote an independent copy of X: then X - X' has a symmetric distribution, so all its odd moments vanish. Therefore we find

$$\begin{split} \mathbb{E}[e^{tX}] &\leq \mathbb{E}[e^{-tX'}] \mathbb{E}[e^{tX}] = \mathbb{E}[e^{t(X-X')}] = \mathbb{E}\sum_{q=0}^{\infty} \left[\frac{t^q(X-X')^q}{q!}\right] \\ &\stackrel{\star}{=} \sum_{q=0}^{\infty} \frac{t^{2q} \mathbb{E}[(X-X')^{2q}]}{(2q)!} \leq \sum_{q=0}^{\infty} \frac{2^{2q-1} t^{2q} \left(\mathbb{E}[X^{2q}] + \mathbb{E}[(X')^{2q}]\right)}{(2q)!} \\ &\leq \sum_{q=0}^{\infty} \frac{2^{2q-1} t^{2q} 2q! C^{2q}}{(2q)!} = \sum_{q=0}^{\infty} \frac{(2tC)^{2q} q!}{(2q)!} = \sum_{q=0}^{\infty} \frac{(2tC)^{2q}}{\prod_{j=1}^{q} (q+j)} \\ &\leq \sum_{q=0}^{\infty} \frac{(2tC)^{2q}}{\prod_{j=1}^{q} (2j)} = \sum_{q=1}^{\infty} \frac{(2t^2C^2)^q}{q!} = e^{2t^2C^2}. \end{split}$$

Here, \star follows from Fubini's theorem and the fact that the odd moments of X-X' vanish. This shows that X is sub-Gaussian with parameter $4C^2$.

Note that the proposition is not an "if and only if"-type theorem: suppose we start with a sub-Gaussian variable X with parameter σ^2 . Then by (b), we have $\mathbb{E}[X^{2q}] \leq q!(2\sigma)^{2q}$, and (c) then implies that X is sub-Gaussian with parameter $16\sigma^2$.

Theorem 1.29 (Hoeffding's inequality). Let X_1, \ldots, X_n be independent sub-Gaussian random variables, with X_i having parameter σ_i^2 . Then \bar{X} is sub-Gaussian with parameter $\bar{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n \sigma_i^2$. In particular, we have

$$\max \left\{ \mathbb{P}(\bar{X} \ge x), \mathbb{P}(\bar{X} \le -x) \right\} \le e^{-nx^2/(2\overline{\sigma^2})}.$$

Proof. For $t \in \mathbb{R}$, we have

$$\mathbb{E}[e^{t\bar{X}}] = \mathbb{E}[e^{(t/n)\sum_i X_i}] = \prod_{i=1}^n \mathbb{E}[e^{(t/n)X_i}] \le \prod_{i=1}^n e^{t^2\sigma_i^2/(2n^2)} = e^{t^2\overline{\sigma^2}/(2n)},$$

which shows \bar{X} is sub-Gaussian with parameter $\bar{\sigma}^2/n$. Applying part (a) of the previous proposition shows the second result.

Remark. A direct consequence of Hoeffding's inequality is that

$$\mathbb{P}(|\bar{X}| \ge x) \le 2e^{-nx^2/(2\overline{\sigma^2})}.$$

The inequality is often stated in this weaker way.

Lemma 1.30 (Hoeffding's lemma). Let X be a random variable with $\mathbb{E}X = 0$ that satisfies $a \leq X \leq b$. Then X is sub-Gaussian with parameter $(b-a)^2/4$.

Proof. See Example Sheet 1, question 2.

Corollary 1.31. Let X_1, \ldots, X_n be independent random variables where $\mathbb{E}[X_i] = \mu_i$ and $a_i \leq X_i \leq b_i$. Then we have

$$\mathbb{P}(\bar{X} - \bar{\mu} \ge x) \le \exp\left(-\frac{2n^2x^2}{\sum_{i=1}^{n}(b_i - a_i)^2}\right).$$

Proof. By Hoeffding's lemma, $X_i - \mu_i$ is sub-Gaussian with parameter $(b_i - a_i)^2/4$ for each i. The result now follows from theorem 1.29.

Example 1.32. Note that when X takes values in [a, b], its variance is at most $(b - a)^2$. However, when $\text{Var}(X_i) \ll (b_i - a_i)^2$, Hoeffding's inequality can be loose (for example, when $X_i \sim \text{Bern}(p_i)$ with p_i small). In such circumstances, Bennett's or Bernstein's inequality may give better results (example sheet 1, question 4).

Theorem 1.33 (Bennett's inequality). Let X_1, \ldots, X_n be independent random variables with $\mathbb{E}[X_i] = 0$, $\sigma_i^2 := \operatorname{Var}(X_i) < \infty$, and $X_i \le b$ for some b > 0. Define $S := \sum_{i=1}^n X_i$, $\nu := \overline{\sigma^2}$ and $\varphi : \mathbb{R} \to \mathbb{R}$ by $\varphi(u) := e^u - 1 - u = \sum_{k=2}^{\infty} \frac{u^k}{k!}$, then for every t > 0 we have

$$\log \mathbb{E}[e^{tS}] \le \frac{n\nu}{b^2} \varphi(bt).$$

Defining $h: (0,\infty) \to [0,\infty)$ by $h(u) := (1+u)\log(1+u) - u$, we have for every x > 0 that

$$\mathbb{P}(\bar{X} \ge x) \le \exp\left(-\frac{n\nu}{b^2}h\left(\frac{bx}{\nu}\right)\right).$$

Proof. Define $g: \mathbb{R} \to \mathbb{R}$ by

$$g(u) := \sum_{k=0}^{\infty} \frac{u^k}{(k+2)!} = \begin{cases} \frac{\varphi(u)}{u^2} & \text{if } u \neq 0, \\ \frac{1}{2} & \text{if } u = 0. \end{cases}$$

Then one can check that g is increasing on \mathbb{R} , so

$$e^{tX_i} - 1 - tX_i = t^2 X_i^2 g(tX_i) \le t^2 X_i^2 g(tb) = X_i^2 \frac{\varphi(bt)}{h^2},$$

and therefore

$$e^{tX_i} \le 1 + tX_i + X_i^2 \frac{\varphi(bt)}{b^2} \implies \mathbb{E}[e^{tX_i}] \le 1 + \mathbb{E}[X_i^2] \frac{\varphi(bt)}{t^2} = 1 + \sigma_i^2 \frac{\varphi(bt)}{b^2}.$$

Hence for t > 0 we have

$$\begin{split} \log \mathbb{E}[e^{tS}] &= \sum_{i=1}^n \log \mathbb{E}[e^{tX_i}] \leq n \cdot \frac{1}{n} \sum_{i=1}^n \log \left(1 + \sigma_i^2 \frac{\varphi(bt)}{b^2} \right) \\ &\stackrel{*}{\leq} n \log \left(1 + \frac{\nu \varphi(bt)}{b^2} \right) \stackrel{**}{\leq} \frac{n\nu}{b^2} \varphi(bt). \end{split}$$

Here, (*) follows from the fact that log is a concave function while (**) follows from the fact that $\log(1+u) \le u$ for all $u \ge 0$. This concludes the proof for the first part of the theorem.

Now, we apply the method of Chernoff bounding and find

$$\mathbb{P}(\bar{X} \ge x) = \mathbb{P}(S \ge nx) \le \inf_{t>0} e^{-ntx} \mathbb{E}[e^{tS}] \le \inf_{t>0} e^{-ntx + n\nu\varphi(bt)/b^2} = \exp\left(-\frac{n\nu}{b^2} h\left(\frac{bx}{\nu}\right)\right),$$

since once can check that the infimum is attained at $t = b^{-1} \log(1 + bx/\nu)$.

Definition 1.34. A random variable X with $\mathbb{E}X = 0$ is called *sub-Gamma in the right tail* with variance factor $\sigma^2 > 0$ and scale c > 0 if

$$\mathbb{E}[e^{tX}] \le \exp\left(\frac{\sigma^2 t^2}{2(1 - ct)}\right)$$

for all $t \in [0, 1/c)$.

Note that this definition looks like that of sub-Gaussianity, except that e^{tX} can explode as t approaches 1/c. We give some characteristics of sub-Gamma distributions:

Proposition 1.35. (a) Let X be sub-Gamma in the right tail with variance factor σ^2 and scale c. Then

$$\mathbb{P}(X \ge x) \le \exp\left(-\frac{x^2}{2(\sigma^2 + cx)}\right)$$

for all x > 0.

(b) Let X be a random variable with $\mathbb{E}X = 0$, $\mathbb{E}[X^2] \le \sigma^2$ and $\mathbb{E}[(X_+)^q] \le q!\sigma^2c^{q-2}/2$ for all $q \ge 3$. Then X is sub-Gamma in the right tail with variance factor σ^2 and scale parameter c.

Proof. (a) Again, we apply a Chernoff bound: we have

$$\mathbb{P}(X \ge x) \le \inf_{t \in [0, 1/c)} e^{-tx} \mathbb{E}[e^{tX}] \le \inf_{t \in [0, 1/c)} \exp\left(-tx + \frac{\sigma^2 t^2}{2(1 - ct)}\right)$$
$$\le \exp\left(-\frac{x^2}{2(\sigma^2 + cx)}\right),$$

where we have set $t = x/(\sigma^2 + cx) \in [0, 1/c)$ in the final step.

(b) Recall from the proof of Bennett's inequality that g is increasing and therefore for $u \leq 0$ we have $\varphi(u) = u^2 g(u) \leq u^2 g(0) = \frac{u^2}{2}$. Therefore, for every $u \in \mathbb{R}$ we have

$$\varphi(u) \le \frac{u^2}{2} + \sum_{q=3}^{\infty} \frac{(u_+)^q}{q!}.$$

We deduce that for $t \in [0, 1/c)$ we have (note $\log(x) \le x - 1$ for all x):

$$\log \mathbb{E}[e^{tX}] \le \mathbb{E}(e^{tX}) - 1 = \mathbb{E}[\varphi(tX)] \le \mathbb{E}\left[\frac{t^2X^2}{2} + \sum_{q=3}^{\infty} \frac{t^qX_+^q}{q!}\right].$$

By Fubini's theorem, since the infinite sum has only positive terms we may interchange sum and expectation to obtain

$$\mathbb{E}\bigg[\frac{t^2X^2}{2} + \sum_{q=3}^{\infty} \frac{t^qX_+^q}{q!}\bigg] = \frac{t^2\mathbb{E}[X^2]}{2} + \sum_{q=3}^{\infty} \frac{t^q\mathbb{E}[X_+^q]}{q!} \leq \frac{\sigma^2t^2}{2} \sum_{q=2}^{\infty} t^{q-2}c^{q-2} = \frac{\sigma^2t^2}{2(1-ct)}.$$

Following this proposition, we can prove Bernstein's inequality:

Theorem 1.36 (Bernstein's inequality). Let X_1, \ldots, X_n be independent random variables with $\mathbb{E}[X] = 0$, $\frac{1}{n} \sum_{i=1}^{n} \operatorname{Var}(X_i) \leq \sigma^2$ and $\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[(X_i)_+^q] \leq q! \sigma^2 c^{q-2}/2$ some $\sigma, c > 0$ and for all $q \geq 3$. Then $S := \sum_{i=1}^{n} X_i$ is sub-Gamma in the right tail with variance factor $n\sigma^2$ and scale parameter c. In particular we have

$$\mathbb{P}(\bar{X} \ge x) \le \exp\left(-\frac{nx^2}{2(\sigma^2 + cx)}\right),$$

for all x > 0.

Proof. We have by part (b) of the previous proposition

$$\log \mathbb{E}[e^{tS}] = \sum_{i=1}^n \log \mathbb{E}[e^{tX_i}] \le n \frac{\sigma^2 t^2}{2(1-ct)},$$

and the second claim follows from part (a) of the previous proposition:

$$\mathbb{P}(\bar{X} \ge x) = \mathbb{P}(S \ge nx) \le \exp\left(-\frac{nx^2}{2(\sigma^2 + cx)}\right).$$

2 Kernel density estimation

Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} f$, and suppose we wish to estimate the density function f. The oldest way to do this is with a histogram: we divide \mathbb{R} into equally sized intervals or *bins*, and let I_x denote the bin containing $x \in \mathbb{R}$.

Definition 2.1. The histogram density estimator \hat{f}_n^H with bin width b>0 is given by

$$\hat{f}_n^H(x) \coloneqq \frac{1}{nb} \sum_{i=1}^n \mathbb{1}_{X_i \in I_x}.$$

There are a few major drawbacks to using histograms: it is difficult to choose b and the positioning of bin edges, the theoretical performance is suboptimal (mostly due to their discontinuity) and graphical display in the multivariate case is difficult.

2.1 The univariate kernel density estimator

Definition 2.2. A Borel measurable function $K : \mathbb{R} \to \mathbb{R}$ is called a *kernel* if it satisfies $\int_{\mathbb{R}} K(x) dx = 1$. A *univariate kernel density estimator* of f with kernel K and *bandwidth* h > 0 is defined as

$$\hat{f}_n(x) := \frac{1}{nh} \sum_{i=1}^n K\left(\frac{x - X_i}{h}\right).$$

Defining $K_h(x) := \frac{1}{h}K(\frac{x}{h})$, we can rewrite this as

$$\hat{f}_n(x) := \frac{1}{n} \sum_{i=1}^n K_h(x - X_i).$$

Usually K is chosen to be non-negative (which ensures that K itself and \hat{f}_n are themselves density functions), and K is often chosen to be symmetric about 0. Generally, the choice of kernel K is much less important than the choice of bandwidth h.

If we consider $\hat{f}_n(x)$ as a point estimator of f(x), we typically wish to minimise the mean squared error

$$MSE(\hat{f}_n(x)) := \mathbb{E}\left[(\hat{f}_n(x) - f(x))^2\right].$$

Other possibilities include the mean absolute error which (unlike the MSE) is scale-invariant. However, the MSE has an appealing decomposition into variance and bias terms:

$$MSE(\hat{f}_n(x)) = Var(\hat{f}_n(x)) + Bias^2(\hat{f}_n(x)).$$

We can express the MSE in terms of convolutions:

Definition 2.3. Let $g_1, g_2 : \mathbb{R} \to \mathbb{R}$ be measurable. Then the *convolution* of g_1 and g_2 , denoted $g_1 * g_2$, is defined by

$$(g_1 * g_2)(x) \coloneqq \int_{\mathbb{R}} g_1(x-z)g(z) dz.$$

We can compute

Bias
$$\hat{f}_n(x) = \mathbb{E}[\hat{f}_n(x)] - f(x) = \mathbb{E}[K_h(x - X_1)] - f(x) = \int_{\mathbb{R}} K_h(x - z) f(z) dz$$

= $(K_h * f)(x) - f(x)$. (2)

Analogously, letting $\xi_i := K_h(x - X_i)$ (note that these are i.i.d. random variables), we have

$$\operatorname{Var} \hat{f}_n(x) = \frac{1}{n} \operatorname{Var}(\xi_1) = \frac{1}{n} \left(\mathbb{E}[\xi_1^2] - \mathbb{E}^2[\xi_1] \right) = \frac{1}{n} \left[(K_h^2 * f)(x) - (K_h * f)^2(x) \right]. \tag{3}$$

To assess performance of h and K, we want to assess the performance of \hat{f}_n as an estimation of f as a function. This gives the following definition:

Definition 2.4. We define the mean integrated squared error or MISE as

$$\mathrm{MISE}(\hat{f}_n) := \mathbb{E}\left(\int_{\mathbb{R}} \left(\hat{f}_n(x) - f(x)\right)^2 \mathrm{d}x\right) \stackrel{\star}{=} \int_{\mathbb{R}} \mathrm{MSE}(\hat{f}_n(x)) \, \mathrm{d}x,$$

where \star follows from Fubini's theorem since the integrand is nonnegative.

We now aim to find bounds on the bias and the variance of \hat{f}_n in order to choose h and K appropriately.

2.2 Bounds on variance and bias

Definition 2.5. For a kernel K, define $R(K) := \int_{\mathbb{R}} K^2(u) du$.

Proposition 2.6. Let \hat{f}_n be the kernel density estimator with kernel K and bandwidth h > 0 constructed from $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} f$. Then for any $x \in \mathbb{R}, h > 0, n \in \mathbb{N}$ we have

$$\operatorname{Var} \hat{f}_n(x) \le \frac{1}{nh} \|f\|_{\infty} R(K).$$

Proof. By eq. (3) we have

$$\operatorname{Var} \hat{f}_{n}(x) \leq \frac{1}{n} (K_{h}^{2} * f)(x) = \frac{1}{nh^{2}} \int_{\mathbb{R}} K^{2} \left(\frac{x - z}{h} \right) f(z) \, dz = \frac{1}{nh} \int_{\mathbb{R}} K^{2}(u) f(x - uh) \, du$$

$$\leq \frac{1}{nh} \|f\|_{\infty} \int_{\mathbb{R}} K^{2}(u) \, du = \frac{1}{nh} \|f\|_{\infty} R(K).$$
(4)

Obtaining a bound on the bias is not at all straightforward: we wil need to introduce conditions on both the density f and the kernel K.

Definition 2.7. Let $I \subseteq \mathbb{R}$ be an interval, fix $\beta, L > 0$, and let $m := \lceil \beta \rceil - 1$. A function $f : \mathbb{R} \to \mathbb{R}$ is said to belong to the *Hölder class* $\mathcal{H}(\beta, L)$ if f is m times differentiable on I and

$$\left|f^{(m)}(x)-f^{(m)}(y)\right| \leq L|x-y|^{\beta-m} \quad \text{for all } x,y \in I.$$

If I is unspecified, we let $I = \mathbb{R}$.

The densities in $\mathcal{H}(\beta, L)$ are denoted by

$$\mathcal{F}(\beta,L) \coloneqq \bigg\{ f \in \mathcal{H}(\beta,L) \mid f \geq 0 \text{ and } \int_{\mathbb{R}} f \, \mathrm{d}x = 1 \bigg\}.$$

Definition 2.8. Fix $\ell \in \mathbb{N}$. We say a kernel K is of order ℓ if $\int_{\mathbb{R}} x^j k(x) dx = 0$ for $j = 1, \dots, \ell - 1$.

Remark. Most kernels used in practice are of order 2. Note that a kernel of order ≥ 3 cannot be nonnegative, since we have $\int_{\mathbb{R}} x^2 K(x) dx = 0$. Therefore, the kernels are not themselves densities and the corresponding kernel density estimate is not guaranteed to be a density.

Proposition 2.9. Assume that $f \in \mathcal{F}(\beta, L)$ and that K is a kernel of order $\ell := \lceil \beta \rceil$, and furthermore assume that

$$\mu_{\beta}(K) := \int_{\mathbb{R}} |u|^{\beta} |K(u)| \, \mathrm{d}u < \infty.$$

Then the kernel density estimate with bandwidth h and kernel K based on $X_1, \ldots, X_n \sim f$ satisfies

$$\left| \operatorname{Bias} \hat{f}_n(x) \right| \le \frac{L}{(\ell-1)!} \mu_{\beta}(K) h^{\beta} \quad \text{for all } x \in \mathbb{R}, h > 0, n \in \mathbb{N}.$$

Proof. By eq. (2), we have

Bias
$$\hat{f}_n(x) = \frac{1}{h} \int_{\mathbb{R}} K\left(\frac{x-z}{h}\right) f(z) dz - f(x) = \int_{\mathbb{R}} K(u) (f(x-uh) - f(x)) dx$$

By applying Taylor's theorem with the Lagrange remainder we obtain, with $m = \lceil \beta \rceil - 1$, that

$$f(x - uh) - f(x) = \sum_{j=1}^{m-1} \frac{(-uh)^j}{j!} f^{(j)}(x) + \frac{(-uh)^m}{m!} f^{(m)}(x - \tau uh) \quad \text{for some } \tau \in [0, 1].$$

Since $\int_{\mathbb{R}} u^j K(u) du = 0$ for all $j \leq m$, plugging the sum into the integral will give 0. Therefore, we find

Bias
$$\hat{f}_n(x) = \frac{(-h)^m}{m!} \int_{\mathbb{R}} u^m K(u) f^{(m)}(x - \tau u h) du = \frac{(-h)^m}{m!} \int_{\mathbb{R}} u^m K(u) \left[f^{(m)}(x - \tau u h) - f^{(m)}(x) \right] du$$

where the last inequality follows again from the fact that K is of order m+1.

Now we use that $f \in \mathcal{F}(\beta, L)$, and conclude

$$\left|\operatorname{Bias} \hat{f}_n(x)\right| \leq \frac{Lh^m}{m!} \int_{\mathbb{R}} |u|^m |K(u)| |\tau u h|^{\beta - m} \, \mathrm{d}u \leq \frac{Lh^{\beta}}{m!} \int_{\mathbb{R}} |u|^{\beta} |K(u)| \, \mathrm{d}u = \frac{L}{(\ell - 1)!} \mu_{\beta}(K) h^{\beta},$$

which concludes the proof.

Combining propositions 2.6 and 2.9, we find that

$$MSE \,\hat{f}_n(x) \le \frac{1}{nh} R(K) \|f\|_{\infty} + \frac{L^2}{((\ell-1)!)^2} \mu_{\beta}^2(K) h^{2\beta}.$$

By minimising this w.r.t. h, we find that the optimal h is given by

$$h_n^* = \left(\frac{((\ell-1)!)^2 \|f\|_{\infty} R(K)}{2\beta L^2 \mu_{\beta}^2(K)}\right)^{1/(2\beta+1)} n^{-1/(2\beta+1)},$$

and the corresponding MSE is given by

$$MSE \hat{f}_n(x) \le \left(\frac{\|f\|_{\infty}^{2\beta} R(K)^{2\beta} L^2 \mu_{\beta}^2(K) \left[(2\beta)^{2\beta+1} + 1 \right]}{((\ell-1)!)^2 (2\beta)^{2\beta}} \right) n^{-2\beta/(2\beta+1)},$$

This $O(n^{-2\beta/(2\beta+1)})$ bound on the rate is slower than the O(1/n) rate found in parametric problems, but such a rate is only obtained when the assumed model is correct.

We can strengthen this as follows:

Theorem 2.10. Assume that K is a kernel of order $\ell := \lceil \beta \rceil$ and that $\mu_{\beta}(K)$ and R(K) are both finite. Fix $\alpha > 0$ and let $h = \alpha n^{-1/(2\beta+1)}$. Then there exists C > 0, independent of n, such that

$$\sup_{x \in \mathbb{R}} \sup_{f \in \mathcal{F}(\beta, L)} \text{MSE } \hat{f}_n(x) \le C n^{-2\beta/(2\beta+1)}.$$

Proof. We will show that the class $\mathcal{F}(\beta, L)$ is uniformly bounded in supremum norm. Let K^* be a bounded kernel of order ℓ (see example sheet TODO:), then by the previous proposition with h=1 we have by nonnegativity of f that

$$f(x) \leq \left| f(x) - \int_{-\infty}^{\infty} K^*(x - z) f(z) \, \mathrm{d}z \right| + \left| \int_{-\infty}^{\infty} K^*(x - z) f(z) \, \mathrm{d}z \right|.$$

$$\leq \left| \operatorname{Bias} \hat{f}_{n,K^*}(x) \right| + \|K^*\|_{\infty} \int_{-\infty}^{\infty} f(z) \, \mathrm{d}z$$

$$\leq \frac{L}{(\ell - 1)!} \mu_{\beta}(K^*) + \|K^*\|_{\infty},$$

and this bound is independent of f and x.

Now we have

$$MSE \hat{f}_n(x) \le \frac{R(K) \|f\|_{\infty}}{nh} + \frac{L^2}{((\ell-1)!)^2} \mu_{\beta}^2(K) h^{2\beta} \le C n^{-2\beta/(2\beta+1)}.$$

2.3 Bounds on the integrated variance and bias

To bound the MISE, we will give bounds on the integrated variance and bias.

Proposition 2.11. Let \hat{f}_n denote the kernel density estimate with bandwidth h and kernel K based on $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} P$ (where P is a distribution on \mathbb{R}). Then

$$\int_{-\infty}^{\infty} \operatorname{Var} \hat{f}_n(x) \, \mathrm{d}x = \frac{1}{nh} R(K).$$

Proof. We have by Fubini and eq. (4) that

$$\int_{-\infty}^{\infty} \operatorname{Var} \hat{f}_n(x) \, \mathrm{d}x \le \frac{1}{nh^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} K^2 \left(\frac{x-z}{h} \right) f(z) \, \mathrm{d}z \, \mathrm{d}x = \frac{1}{nh^2} \int_{-\infty}^{\infty} f(z) \int_{-\infty}^{\infty} K^2 \left(\frac{x-z}{h} \right) \, \mathrm{d}x \, \mathrm{d}z$$
$$= \frac{1}{nh} R(K) \int_{-\infty}^{\infty} f(z) \, \mathrm{d}z = \frac{1}{nh} R(K).$$

Recap 2.12. Let $[a,b] = I \subseteq \mathbb{R}$ be an interval, then $f: I \to \mathbb{R}$ is called absolutely continuous if, for every $\varepsilon > 0$, there exists $\delta > 0$ such that, whenever $(x_1, y_1), \ldots, (x_m, y_m)$ are disjoint subintervals of I with $\sum_{i=1}^{m} (y_i - x_i) < \delta$, we have $\sum_{i=1}^{m} |f(y_i) - f(x_i)| < \varepsilon$.

It is known that absolute continuity is equivalent to being differentiable Lebesgue almost everywhere with a so-called *weak derivative* f' that satisfies $f(x) = f(a) + \int_a^x f'(t) dt$ for all $x \in [a, b]$.

Recap 2.13. The generalised Minkowski inequality states that any Borel measurable function $g: \mathbb{R}^2 \to \mathbb{R}$ we have that

$$\int_{\mathbb{R}} \left(\int_{\mathbb{R}} g(u, x) \, \mathrm{d}u \right)^2 \mathrm{d}x \le \left(\int_{\mathbb{R}} \left(\int_{\mathbb{R}} g^2(u, x) \, \mathrm{d}x \right)^{1/2} \mathrm{d}u \right)^2.$$

To obtain bounds on the integrated squared bias, we will require smoothness conditions w.r.t. the $L^2(\mathbb{R})$ norm.

Definition 2.14. Fix $\beta, L > 0$ and let $m := \lceil \beta \rceil - 1$. The Nikolski class $\mathcal{N}(\beta, L)$ consists of functions $f : \mathbb{R} \to \mathbb{R}$ that are (m-1) times differentiable and for which $f^{(m-1)}$ is absolutely continuous with weak derivative $f^{(m)}$ satisfying

$$\left\{ \int_{-\infty}^{\infty} \left[f^{(m)}(x+t) - f^{(m)}(x) \right]^2 \mathrm{d}x \right\}^{1/2} \le L|t|^{\beta-m} \quad \text{for all } t \in \mathbb{R}.$$

The densities in $\mathcal{N}(\beta, L)$ are denoted by $\mathcal{F}_{\mathcal{N}}(\beta, L)$.

Proposition 2.15. Fix $\beta, L > 0$ and let K be a kernel of order $\ell := \lceil \beta \rceil$. Let \hat{f}_n denote the KDE with kernel K and bandwidth h based on $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} f \in \mathcal{F}_{\mathcal{N}}(\beta, L)$. Then we have

$$\int_{-\infty}^{\infty} \operatorname{Bias}^{2} \hat{f}_{n}(x) \, \mathrm{d}x \le \frac{L^{2}}{((\ell-1)!)^{2}} \mu_{\beta}^{2}(K) h^{2\beta}.$$

Proof. TODO: write this out (integration + taylor expansion + 2x minkowski).

Putting everything together, we obtain the following:

Theorem 2.16. Fix $\beta, L > 0$, and let K be a kernel of order $\ell = \lceil \beta \rceil$ with R(k) and $\mu_{\beta}(K)$ finite. Let \hat{f}_n be the KDE with kernel K and bandwidth h based on $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} f \in \mathcal{F}_{\mathcal{N}}(\beta, L)$. Then we have

MISE
$$\hat{f}_n \le \frac{R(K)}{nh} + \frac{L^2}{((\ell-1)!)^2} \mu_{\beta}^2(K) h^{2\beta}.$$

In particular, fixing $\alpha > 0$ and taking $h = \alpha n^{-1/(2\beta+1)}$, there exists C > 0 independent of n such that

$$\sup_{f \in \mathcal{F}_{\mathcal{N}}(\beta, L)} \text{MISE } \hat{f}_{n,h,K} \le C n^{-2\beta/(2\beta+1)}.$$

2.4 Bandwidth selection

The choice of bandwidth in the previous theorem is not practical since we have not specified α and β is typically unknown.

2.4.1 Least squares cross validation

One possible approach is *least squares cross validation*. For this, note that minimising the MISE is equivalent to minimising

$$\mathrm{MISE}(\hat{f}_n) - \int_{\mathbb{R}} f^2(x) \, \mathrm{d}x = \mathbb{E}\left[\int_{\mathbb{R}} \hat{f}_n^2(x) \, \mathrm{d}x\right] - 2\mathbb{E}\left[\int_{\mathbb{R}} \hat{f}_n(x) f(x) \, \mathrm{d}x\right],$$

and it can be checked that an unbiased estimator for the above is given by

LSCV(h) :=
$$\int_{\mathbb{R}} \hat{f}_n^2(x) dx - \frac{2}{n} \sum_{i=1}^n \hat{f}_{n,-i}(X_i),$$

where $\hat{f}_{n,-i}$ is the KDE based on all observations except X_i . We now choose h such that LSCV is minimised.

2.4.2 Lepski

TODO: write this subsection (TODO: understand this first)

2.5 Choice of kernel

To choose a kernel, we first fix the scale of the kernel by setting $\mu_2(K) = 1$. Now, by our bound on the MISE (theorem 2.16) it is reasonable to minimise R(K), where for simplicity we assume that K is a nonnegative second-order kernel. The solution is the Epanechnikov kernel

$$K_E(x) \coloneqq \frac{3}{4\sqrt{5}} \left(1 - \frac{x^2}{5} \right) \mathbb{1}_{|x| \le \sqrt{5}},$$

and the ratio $R(K_E)/R(K)$ is called the *efficiency* of a kernel K. We find that for different kernels, the efficiency is greater than 0.9, which shows that kernel shape does not affect efficiency greatly.

2.6 Multivariate density estimation

The general d-dimensional KDE is

$$\hat{f}_n(x) := \frac{1}{n\sqrt{\det H}} \sum_{i=1}^n K(H^{-1/2}(x - X_i)),$$

where H is a symmetric positive-definite bandwidth bandwidth matrix (often chosen to be diagonal or a multiple of I). If $H=h^2I$, it can be shown that, under an appropriate definition of a β smoothness class, we have an optimal bandwidth of order $n^{-1/(d+2\beta)}$, and with this choise, a MISE of order $n^{-2\beta/(d+2\beta)}$. This is called the "curse of dimensionality": the higher the dimension becomes, the harder nonparametric estimation gets.

3 Nonparametric regression

3.1 Fixed and random design

In fixed design, we assume we have data $x_1 \leq \cdots \leq x_n$ and the response variables satisfy

$$Y_i := m(x_i) + \sqrt{v(x_i)}\varepsilon_i,$$

where the ε_i are independent, mean-zero random variables with $Var(\varepsilon_i) = 1$. The function m is called the regression function, and the function v is the variance function. If v is constant, the model is called homoscedastic, else it is called heteroscedastic.

In random design, we assume we have i.i.d. data pairs (X_i, Y_i) with

$$Y_i = m(X_i) + \sqrt{v(X_i)}\varepsilon_i,$$

where the ε_i are again independent with $\mathbb{E}[\varepsilon_1|X_1] = 0$ and $\operatorname{Var}(\varepsilon_1|X_1) = 1$. The regression function is given by $m(x) = \mathbb{E}(Y_1|X_1 = x)$ and the variance function by $v(x) = \operatorname{Var}(Y_1|X_1 = x)$.

3.2 Local polynomial estimators

We will assume the fixed design setting.

Definition 3.1. Let K be a kernel, h > 0 a bandwidth and $p \in \mathbb{N}$. Then the local polynomial estimator of degree p with bandwidth h and kernel K, denoted $\hat{m}_n(\cdot; p) \equiv \hat{m}_n(\cdot; p, h, K)$, is constructed at $x \in \mathbb{R}$ by fitting a polynomial p to the data using weighted least squares, where the pair (x_i, Y_i) is assigned weight $K_h(x_i - x)$.

To write this in formulas, define $Q(u) := (1, u, \frac{u^2}{2}, \dots, \frac{u^p}{p!}) \in \mathbb{R}^{p+1}$ and $Q_h(\cdot) = Q(\cdot/h)$, we then have

$$\hat{m}_n(x;p) = \hat{\beta}_0$$
, where $\hat{\beta} \coloneqq \underset{\beta \in \mathbb{R}^{p+1}}{\operatorname{arg\,min}} \sum_{i=1}^n (Y_i - \beta^\top Q_h(x_i - x))^2 K_h(x_i - x)$.

In matrix-vector notation, writing

$$X \equiv X(x; p, h) := \begin{pmatrix} Q_h(x_1 - x)^\top \\ \vdots \\ Q_h(x_n - x)^\top \end{pmatrix} \in \mathbb{R}^{n \times (p+1)}, \quad Y := \begin{pmatrix} Y_1 \\ \vdots \\ Y_n \end{pmatrix} \in \mathbb{R}^n,$$

$$W \equiv W(x; h, K) := \operatorname{diag}(K_h(x_1 - x), \dots, K_h(x_n - x)) \in \mathbb{R}^{n \times n},$$

we have

$$\hat{\beta} = \underset{\beta \in \mathbb{R}^{p+1}}{\operatorname{arg\,min}} (Y - X\beta)^{\top} W (Y - X\beta).$$

By standard weighted least squares theory, we know that $\hat{\beta}$ must satisfy $X^{\top}WX\hat{\beta} = X^{\top}WY$.

Proposition 3.2. Suppose $X^{\top}WX$ is positive definite. Then we have

$$\hat{\beta} = (X^{\top}WX)^{-1}X^{\top}WY.$$

We will assume from here on that $X^{\top}WX$ is indeed positive definite. In this case, since the entries of W and X are functions of $x_i - x$, we can write the local polynomial estimator in the form

$$\hat{m}_n(x) = n^{-1} \sum_{i=1}^n w(x, x_i) Y_i.$$

(??) The set of weights $\{w(x, x_i)\}$ is called the *effective kernel* at x.

For p = 0 and p = 1, there exist explicit formulas for the local polynomial estimator of degree p.

Proposition 3.3 (Reproducing property). Let $\{w_p(x,x_i)\}$ denote the effective kernel of a local polynomial estimator of degree p based on data $(x_1,Y_1),\ldots,(x_n,Y_n)$, and let R denote a polynomial of degree at most p. If $X^\top WX$ is positive definite, then

$$\frac{1}{n} \sum_{i=1}^{n} w_p(x, x_i) R(x_i) = R(x).$$

Proof. See example sheet 2 question 3.

Before we can study the bias and variance of local polynomial estimators, we require the following lemma:

Lemma 3.4. Let K be a kernel that vanishes outside [-1,1], and suppose that $n^{-1}X^{\top}WX$ is positive definite with minimal eigenvalue $\lambda_0 \equiv \lambda_{0,n,x} > 0$. Then

(i)
$$\sup_{x \in [0,1]} \max_{i=1,\dots,n} \frac{1}{n} |w(x,x_i)| \le \frac{2\|K\|_{\infty}}{\lambda_0 nh};$$

(ii)
$$n^{-1} \sum_{i=1}^{n} |w(x, x_i)| \leq \frac{2\|K\|_{\infty}}{\lambda_0 nh} \cdot \sum_{i=1}^{n} \mathbb{1}_{|x_i - x| \leq h};$$

(iii)
$$w(x, x_i) = 0$$
 when $|x_i - x| > h$.

Proof. (i) Note that $n^{-1}w(x, x_i)$ is the (0, i) entry of the matrix $(X^\top WX)^{-1}X^\top W$, and it is therefore less than the norm of the *i*-th column of $(X^\top WX)^{-1}X^\top W$. For $x \in [0, 1]$ and $i = 1, \ldots, n$, we find

$$\frac{1}{n}|w(x,x_{i})| \leq \|(X^{\top}WX)^{-1}Q_{h}(x_{i}-x)K_{h}(x_{i}-x)\| \stackrel{\star}{\leq} \|K_{h}\|_{\infty} \|(X^{\top}WX)\|^{-1} \|Q_{h}(x_{i}-x)\| \mathbb{1}_{|x_{i}-x|\leq h} \\
= \frac{\|K\|_{\infty}}{h} \frac{1}{\lambda_{0}n} \|Q_{h}(x_{i}-x)\| \mathbb{1}_{|x_{i}-x|\leq h} \leq \frac{\|K\|_{\infty}}{\lambda_{0}nh} \|Q(1)\| = \frac{\|K\|_{\infty}}{\lambda_{0}nh} \left(\sum_{j=0}^{p} \frac{1}{(j!)^{2}}\right)^{1/2} \\
\leq \frac{\|K\|_{\infty}}{\lambda_{0}nh} e^{1/2} \leq \frac{2\|K\|_{\infty}}{\lambda_{0}nh}.$$

Here, the indicator function in \star appears because K vanishes outside [-1,1]. Since the upper bound is independent of both x and i, the claim is proven.

(ii) Similarly as before, we find

$$\frac{1}{n} \sum_{i=1}^{n} |w(x, x_i)| \le \frac{\|K\|_{\infty}}{\lambda_0 nh} \sum_{i=1}^{n} \|Q_h(x_i - x)\| \mathbb{1}_{|x_i - x| \le h} \le \frac{2\|K\|_{\infty}}{\lambda_0 nh} \sum_{i=1}^{n} \mathbb{1}_{|x_i - x| \le h}.$$

(iii) This follows immediately from inequality \star in the proof of (i).

Now, we can compute bounds on the variance and bias of our local polynomial estimator. For simplicity, we will assume $x_i = i/n$.

Proposition 3.5. Assume the model $Y_i = m(x_i) + v^{1/2} \varepsilon_i$ with $m \in \mathcal{H}(\beta, L)$ on [0, 1] and $\max_i v(x_i) \le \sigma_{\max}^2$. Let K be a kernel that vanishes outside [-1, 1], and suppose that λ_0 , the minimal eigenvalue of $n^{-1}X^\top WX$, is strictly positive. Then, for $p \ge \lceil \beta \rceil - 1 =: \beta_0$ and for each $x_0 \in [0, 1]$, $n \in \mathbb{N}$ and $h \ge 1/(2n)$, we have

$$\operatorname{Var} \hat{m}_n(x_0; p) \le \frac{16 \|K\|_{\infty}^2 \sigma_{\max}^2}{\lambda_0^2 n h}, \quad |\operatorname{Bias} \hat{m}_n(x_0; p)| \le \frac{8L \|K\|_{\infty}}{\lambda_0 \beta_0!} h^{\beta}.$$

Proof. Using the previous lemma, we obtain

$$\operatorname{Var} \hat{m}_{n}(x_{0}; p) = \operatorname{Var} \left(\frac{1}{n} \sum_{i=1}^{n} w(x_{0}, x_{i}) Y_{i} \right) = \frac{1}{n^{2}} \sum_{i=1}^{n} w(x_{0}, x_{i})^{2} \operatorname{Var}(Y_{i})$$

$$\leq \frac{\sigma_{\max}^{2}}{n^{2}} \sum_{i=1}^{n} w(x_{0}, x_{i})^{2} \leq \sigma_{\max}^{2} \left(\sup_{x \in [0, 1]} \max_{i} \frac{1}{n} |w(x, x_{i})| \right) \frac{1}{n} \sum_{i=1}^{n} |w(x_{0}, x_{i})|$$

$$\leq \frac{4 ||K||_{\infty}^{2} \sigma_{\max}^{2}}{\lambda_{0}^{2} n^{2} h^{2}} \sum_{i=1}^{n} \mathbb{1}_{|i/n - x_{0}| \leq h}.$$

Now, we have $|i/n - x_0| \le h \iff i \in [nx_0 - nh, nx_0 + nh]$, and there are at most 2nh + 1 integers in this interval. Recalling that $1 \le 2nh$ we obtain

$$\operatorname{Var} \hat{m}_n(x_0; p) \le \frac{4(2nh+1)\|K\|_{\infty} \sigma_{\max}^2}{\lambda_0^2 n^2 h^2} \le \frac{16\|K\|_{\infty} \sigma_{\max}^2}{\lambda_0^2 n h}.$$

For the bias, we will first use a Taylor expansion combined with the reproducing property proposition 3.3. Firstly, since $\frac{1}{n}\sum_{i=1}^{n}w(x_0,x_i)=1$ by this property, we have

Bias
$$\hat{m}_n(x_0; p) = \left(\frac{1}{n} \sum_{i=1}^n w(x_0, x_i) m(x_i)\right) - m(x_0) = \frac{1}{n} \sum_{i=1}^n w(x_0, x_i) \{m(x_i) - m(x_0)\}.$$

Now, we apply a Taylor expansion to write

$$m(x_i) - m(x_0) = P(x_i - x_0) + \frac{1}{\beta_0!} m^{(\beta_0)} (x_0 + \tau_i(x_i - x_0)) (x_i - x_0)^{\beta_0},$$

where P has degree at most $\beta_0 - 1 < p$ and a constant coefficient equal to 0, and $\tau_i \in [0, 1]$. By the reproducing property we have $n^{-1} \sum_{i=1}^n w(x_0, x_i) P(x_i - x_0) = P(0) = 0$, so we obtain

Bias
$$\hat{m}_n(x;p) = \frac{1}{n} w(x_0, x_i) \sum_{i=1}^n w(x_0, x_i) \frac{m^{(\beta_0)}(x_0 + \tau_i(x_i - x_0))}{\beta_0!} (x_i - x_0)^{\beta_0}$$

$$= \frac{1}{n} w(x_0, x_i) \sum_{i=1}^n w(x_0, x_i) \frac{m^{(\beta_0)}(x_0 + \tau_i(x_i - x_0)) - m^{(\beta_0)}(x_0)}{\beta_0!} (x_i - x_0)^{\beta_0},$$

where the last line follows again from the reproducing property. Now we apply the fact that $m \in \mathcal{H}(\beta, L)$ with the previous lemma and find

$$|\operatorname{Bias} \hat{m}_{n}(x;p)| \leq \frac{L}{n} \sum_{i=1}^{n} |w(x_{0}, x_{i})| \frac{|x_{i} - x_{0}|^{\beta}}{\beta_{0}!} = \frac{L}{n} \sum_{i=1}^{n} |w(x_{0}, x_{i})| \frac{|x_{i} - x_{0}|^{\beta}}{\beta_{0}!} \mathbb{1}_{|x_{i} - x| \leq h}$$

$$\leq \frac{Lh^{\beta}}{n\beta_{0}!} \sum_{i=1}^{n} |w(x_{0}, x_{i})| \leq \frac{8L\|K\|_{\infty}}{\lambda_{0}\beta_{0}!} h^{\beta}.$$

So again, we have a variance term of order 1/nh and a bias term of order h^{β} . However, both our bounds depend on λ_0 , which depends on both n and x.

Proposition 3.6. Suppose $x_i = i/n$ and that $K(u) \ge K_0 \mathbb{1}_{|u| \le \Delta}$ for some $K_0, \Delta > 0$. Then, for $n \ge 2$ and $h \le \frac{1}{4\Delta}$,

$$\inf_{x \in [0,1]} \lambda_{0,n,x} \ge K_0 \inf_{v \in S^p} \min \left\{ \int_0^{\Delta} (v^\top Q(u))^2 du, \int_{-\Delta}^0 (v^\top Q(u))^2 du \right\} - \frac{(4\Delta + 2)K_0 e^{\Delta^2}}{nh}.$$

21

Proof. Since $\lambda_{0,n,x} = \inf_{v \in S^p} v^\top \left(\frac{1}{n} X^\top W X\right) v$, we will try to bound this quantity from below. Let $u_i \coloneqq \frac{x_i - x}{h}$ for $i = 1, \dots, n$, so $u_1 \le \frac{x_1}{h} = \frac{1}{nh}$, and let $u_0 \coloneqq 0$. First, we assume $x < 1 - h\Delta$, so that $u_n > \frac{1 - (1 - h\Delta)}{h} = \Delta$. Then, for any $v \in S^p$, we have

$$v^{\top} \left(\frac{1}{n} X^{\top} W X \right) = \frac{1}{n} (X v)^{\top} W (X v) = \frac{1}{n} \sum_{i=1}^{n} (X v)_{i}^{2} W_{ii}$$
$$= \frac{1}{nh} \sum_{i=1}^{n} (v^{\top} Q(u_{i}))^{2} K(u_{i}) \ge \frac{K_{0}}{nh} \sum_{i=1}^{n} (v^{\top} Q(u_{i}))^{2} \mathbb{1}_{u_{i} \in [0, \Delta]}.$$

This is a Riemann sum (since $u_{i+1}-u_i=1/(nh)$) and we will try to approximate it by the corresponding integral $K_0 \int_0^{\Delta} (v^{\top} Q(u))^2 du$. To do this, note that we have for $u \in [0, \Delta]$ that

$$||Q(u)|| \le \left\{ \sum_{\ell=0}^{p} \frac{u^{2\ell}}{(\ell!)} \right\}^{1/2} \le \left(\sum_{\ell=0}^{\infty} \frac{u^{2\ell}}{\ell!} \right)^{1/2} \le e^{\Delta^2/2}.$$

Furthermore, for $a, b \ge 0$, it can be shown that

$$|b^{\ell} - a^{\ell}| \le \max(1, \ell/2)(b^{\ell-1} + a^{\ell-1})|b - a|,$$

and using this we obtain for $u, v \in [0, \Delta]$ that

$$\begin{aligned} \|Q(u) - Q(v)\| &\leq \left\{ \sum_{\ell=1}^{p} \frac{\max(1, \ell^{2}/4)(u^{\ell-1} + v^{\ell-1})^{2}(u - v)^{2}}{(\ell!)^{2}} \right\}^{1/2} \\ &\leq |u - v| \left\{ \sum_{\ell=1}^{p} \frac{\max(1, \ell^{2}/4)(2\Delta^{\ell-1})^{2}}{(\ell!)^{2}} \right\}^{1/2} \leq |u - v| \left\{ \sum_{\ell=1}^{p} \frac{\max(4, \ell^{2})\Delta^{2\ell-2}}{(\ell!)^{2}} \right\}^{1/2} \\ &\stackrel{\star}{\leq} 2|u - v| \left\{ \sum_{\ell=0}^{p-1} \frac{\Delta^{2\ell}}{(\ell!)^{2}} \right\}^{1/2} \leq 2|u - v| \left\{ \sum_{\ell=0}^{\infty} \frac{\Delta^{2\ell}}{\ell!} \right\}^{1/2} = 2e^{\Delta^{2}/2}|u - v|, \end{aligned}$$

where in \star we used that $\max(4, \ell^2) \leq 4\ell^2$.

Now we estimate the difference between the Riemann sum and the corresponding integral. Write $i_{-} := \min\{i : u_{i} > 0\} \text{ and } i_{+} := \min\{i \mid u_{i} > \Delta\}. \text{ Then }$

$$\frac{1}{nh} \sum_{i=1}^{n} (v^{\top} Q(u_i))^2 \mathbb{1}_{u_i \in [0,\Delta]} = \sum_{i=i_-}^{i_+-1} \int_{u_{i-1}}^{u_i} (v^{\top} Q(u_i))^2 du$$

$$\leq \sum_{i=i_-}^{i_+} \int_{\max(u_{i-1},0)}^{\min(u_i,\Delta)} (v^{\top} Q(u_i))^2 du + \frac{1}{nh} \sup_{u \in [0,\Delta]} (v^{\top} Q(u))^2.$$

(Note that the last integral, from u_{i-1} to Δ , is 0 since) Therefore we obtain

$$\left| \frac{1}{nh} \sum_{i=1}^{n} (v^{\top} Q(u_{i}))^{2} \mathbb{1}_{u_{i} \in [0,\Delta]} - \int_{0}^{\Delta} (v^{\top} Q(u))^{2} du \right| \\
\leq \left| \sum_{i=i_{-}}^{i_{+}} \int_{\max(u_{i-1},0)}^{\min(u_{i},\Delta)} (v^{\top} Q(u_{i}))^{2} - (v^{\top} Q(u))^{2} du \right| + \frac{1}{nh} \sup_{u \in [0,\Delta]} (v^{\top} Q(u))^{2}.$$
(5)

Now note that by Cauchy-Schwarz since ||v|| = 1 we have

$$\begin{aligned} \left| (v^{\top} Q(u_i))^2 - (v^{\top} Q(u))^2 \right| &= \left| (v^{\top} Q(u_i) + v^{\top} Q(u)) \right| \left| (v^{\top} Q(u_i) - v^{\top} Q(u)) \right| \\ &\leq (\|Q(u_i)\| + \|Q(u)\|) \|Q(u_i) - Q(u)\| \\ &\leq 2e^{\Delta^2/2} \cdot 2e^{\Delta^2/2} |u_i - u| = 4e^{\Delta^2} |u_i - u|, \end{aligned}$$

and therefore

$$(5) \le 4e^{\Delta^2} \sum_{i=i}^{i_+} \int_{\max(u_{i-1},0)}^{\min(u_i,\Delta)} (u_i - u) \, \mathrm{d}u + \frac{e^{\Delta^2}}{nh} \le \frac{(4\Delta + 1)e^{\Delta^2}}{nh},$$

which concludes the case $x < 1 - h\Delta$.

Suppose $x \ge 1 - h\Delta$, then we have $u_1 \le -\Delta$ and $u_n \ge 0$, and we can apply very similar arguments to reach the desired conclusion.

Now that we have bounds on the variance and bias, we can prove our uniform bound:

Theorem 3.7. Under the conditions of the previous two propositions, if we choose $h = \alpha n^{-1/(2\beta+1)}$ for some $\alpha > 0$, there exists $n_0 \in \mathbb{N}, C > 0$, depending only on $\beta, L, \alpha, K, \sigma_{\max}^2$, such that

$$\sup_{m \in \mathcal{H}(\beta, L)} \sup_{x_0 \in [0, 1]} \mathbb{E} \Big[\Big\{ \hat{m}_n(x_0; p) - m(x_0) \Big\}^2 \Big] \le C n^{-2\beta/(2\beta+1)}.$$

3.3 Splines

3.3.1 Cubic splines

Let $n \geq 3$ and $a \leq x_1 < \cdots < x_n \leq b$.

Definition 3.8. A function $g:[a,b]\to\mathbb{R}$ is called a *cubic spline* with *knots* x_1,\ldots,x_n if

- 1. g is a cubic polynomial on each interval $(a, x_1), (x_1, x_2), \ldots, (x_n, b)$;
- 2. $q \in C^2[a, b]$.

Furthermore, g is called *natural* if it is linear on $[a, x_1]$ and $[x_n, b]$, (i.e., g''(a) = g'''(b) = g'''(b) = g'''(b) = 0).

We often represent a natural cubic spline by the vectors $\mathbf{g} \in \mathbb{R}^n$ with $g_i = g(x_i)$, and $\mathbf{\gamma} \in \mathbb{R}^{n-2}$ with $\gamma_i = g''(x_i)$ (excluding γ_1 and γ_n). Writing $h_i \coloneqq x_{i+1} - x_i$ we have for $x \in [x_i, x_{i+1}]$ that

$$g(x) = \frac{(x - x_i)g_{i+1} - (x_{i+1} - x)g_i}{h_i} - \frac{1}{6}(x - x_i)(x_{i+1} - x)\left\{\left(1 + \frac{x - x_i}{h_i}\right)\gamma_{i+1} + \left(1 + \frac{x_{i+1} - x}{h_i}\gamma_i\right)\right\}.$$

Proposition 3.9. Given $g \in \mathbb{R}^n$, there exists a unique natural cubic spline g with knots at x_1, \ldots, x_n satisfying $g(x_i) = g_i$ for all i, and there exists $K \succeq 0$ (depending on x_1, \ldots, x_n) such that

$$\int_{a}^{b} g''(x)^{2} dx = \boldsymbol{g}^{\top} K \boldsymbol{g}.$$

We call g the natural cubic spline interpolant to \mathbf{g} at x_1, \ldots, x_n .

Definition 3.10. We define $S_2[a,b]$ as the set of real-valued functions on [a,b] with an absolutely continuous first derivative. For $f \in S_2[a,b]$, we define the roughness of f by $R(f) := \int_a^b f''(x)^2 dx$.

Proposition 3.11. For any $\mathbf{g} \in \mathbb{R}^n$, the natural cubic spline interpolant to \mathbf{g} at x_1, \ldots, x_n is the unique minimiser of R over all $g \in \mathcal{S}_2[a,b]$ that satisfy $g(x_i) = g_i$ for all i.

3.3.2 Natural cubic smoothing splines

Consider the nonparametric regression model $Y_i = g(x_i) + \sigma \varepsilon_i$, where $\mathbb{E}[\varepsilon_i] = 0$ and $\text{Var}[\varepsilon_i] = 1$. A way to estimate a nonparametric regression function is to balance data fidelity against roughness of the curve, which can be done by minimising

$$S_{\lambda}(g) := \sum_{i=1}^{n} (Y_i - g(x_i))^2 + \lambda R(g),$$

where $\lambda > 0$ is a regularisation parameter. For small λ , this is almost an exact fit to the data. For large λ , we are basically minimising |g''|, which means we will approximate the linear regression fit.

Theorem 3.12. For each $\lambda \in (0, \infty)$, there exists a unique minimiser \hat{g}_{λ} of S_{λ} over $S_2[a, b]$. It is the natural cubic spline with knots at x_1, \ldots, x_n and $\mathbf{g} = (I + \lambda K)^{-1} \mathbf{Y}$.

Proof. If g is not a natural cubic spline, we know that the natural cubic spline g^* which interpolates $g(x_1), \ldots, g(x_n)$ at x_1, \ldots, x_n has a strictly lower value of S_{λ} , so we know the minimiser must be a natural cubic spline.

If g is a natural cubic spline, then there exists $K \succeq 0$ such that

$$S_{\lambda}(g) = (\mathbf{Y} - \mathbf{g})^{\top} (\mathbf{Y} - \mathbf{g}) + \lambda \mathbf{g}^{\top} K \mathbf{g}$$

= $\mathbf{g}^{\top} (I + \lambda K) \mathbf{g} - 2 \mathbf{Y}^{\top} \mathbf{g} + \mathbf{Y}^{\top} \mathbf{Y},$

and by "completing the square" we write, for some Z independent of g,

$$S_{\lambda}(g) = (\mathbf{g} - (I + \lambda K)^{-1} \mathbf{Y})^{\top} (I + \lambda K) (\mathbf{g} - (I + \lambda K)^{-1} \mathbf{Y}) + Z$$

Since $I + \lambda K$ is positive definite it follows that $\mathbf{g} = (I + \lambda K)^{-1} \mathbf{Y}$ gives the minimiser.

The function \hat{g}_{λ} is called the *natural cubic smoothing spline* for data $(x_1, Y_1), \ldots, (x_n, Y_n)$ and smoothing parameter λ .

3.3.3 Choice of smoothing parameter

We are left with the question of how to choose the smoothing parameter λ . A standard method is to minimise the cross-validation score

$$CV(\lambda) := \frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{g}_{-i,\lambda}(x_i))^2,$$

where $\hat{g}_{-i,\lambda}$ is the natural cubic smoothing spline for all data points except (x_i, Y_i) . It seems like computing $CV(\lambda)$ requires the computation of n natural cubic smoothing splines, but it turns out that this is not the case:

Proposition 3.13. Write $A(\lambda) = (I + \lambda K)^{-1}$, then we have

$$CV(\lambda) = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{Y_i - \hat{g}_{\lambda}(x_i)}{1 - A_{ii}(\lambda)} \right)^2.$$

Proof. Example sheet 3.

In the above formula, we can consider the quantity $A_{ii}(\lambda)$ as the "leverage" of the *i*-th observation. In the *generalised cross-valudation* score, we give every observation equal leverage: it is defined as

$$GCV(\lambda) := \frac{1}{n} \sum_{i=1}^{n} \left(\frac{Y_i - \hat{g}_{\lambda}(x_i)}{1 - n^{-1} \operatorname{tr} A(\lambda)} \right)^2.$$

Regression splines There are many different types of splines and different directions to go in. For example, one disadvantage of natural cubic smoothing splines is that we have a "parameter" of dimension n to estimate (namely, the vector \mathbf{g}). We can also reduce the number of knots to ξ_1, \ldots, ξ_K and locate ξ_k at the $\left(\frac{k+1}{K+2}\right)$ -th sample quantile of x_1, \ldots, x_n . Splines of order p can then be expanded in the truncated power series basis

$$1, x, x^2, \dots, x^p, (x - \xi_1)_+^p, \dots, (x - \xi_K)_+^p$$

Therefore we can minimise the residual error over all polynomials in the span of this basis, which gives a parameter in \mathbb{R}^{p+1+K} to estimate using least squares. The solution is called a *regression spline*. Here, K playes the rolw of the smoothing parameter.

4 Minimax lower bounds

We seek lower bounds on the worst-case risk of any procedure, which provide a 'benchmark' against which we can measure the performance of a proposed method.

4.1 Reduction to testing

We will assume our parameter space (Θ, d) is a metric space or a semi-metric space (where we don't require that $d(\vartheta, \vartheta') = 0 \implies \vartheta = \vartheta'$). We denote our collections of distributions depending on our parameters by $\{P_{\vartheta} \mid \vartheta \in \Theta\}$, which are probability measures on some measurable space $(\mathcal{X}, \mathcal{A})$.

Now, we let (Ω, \mathcal{F}) be any measurable space with a collection of probability measures $\{\mathbb{P}_{\vartheta} \mid \vartheta \in \Theta\}$ and a measurable function $X \colon \Omega \to \mathcal{X}$ so that $X \sim P_{\vartheta}$ on $(\Omega, \mathcal{F}, \mathbb{P}_{\vartheta})$. Let $\hat{\Theta}$ denote the set of possible estimators for ϑ , i.e., all measurable functions $\mathcal{X} \to \Theta$.

Now, suppose we wish to estimate ϑ with a loss function of the form

$$L(\vartheta',\vartheta) = g(d(\vartheta',\vartheta))$$
 $g \text{ increasing, } \vartheta',\vartheta \in \Theta.$

We then define the minimax risk as

$$\mathcal{M} := \inf_{\hat{\vartheta} \in \hat{\Theta}} \sup_{\vartheta \in \Theta} \mathbb{E}_{\vartheta} L(\hat{\vartheta}(X), \vartheta),$$

i.e., the lowest worst-case estimated loss of any possible estimator $\hat{\vartheta}$.

Example 4.1. Suppose we are trying to estimate the mean of a normally distributed random variable with variance 1, and we have a sample (X_1, \ldots, X_n) . Then $\Theta = \mathbb{R}$ with the Euclidian distance, $(\mathcal{X}, \mathcal{A}) = (\mathbb{R}^n, \mathcal{B}\mathbb{R}^n)$, and $P_{\vartheta}(F) = \int_F f_{\vartheta}(x_1) \cdots f_{\vartheta}(x_n) d\lambda^n(x)$, where f_{ϑ} is the density function of a $N(\vartheta, 1)$ distribution.

Now, let $X_{\vartheta} \colon (\Omega, \mathcal{F}) \to (\mathbb{R}^n, \mathcal{B}\mathbb{R}^n)$ be a $N_n(\vartheta \mathbf{1}, I_n)$ distributed random variable. In this case, \mathbb{P}_{ϑ} is a probability measure on Ω such that $P_{\vartheta}(F) = \mathbb{P}_{\vartheta}(X \in F)$.

Let $\hat{\Theta}$ denote the set of all estimators of ϑ , which are functions $\mathbb{R}^n \to \mathbb{R}$. Our loss function could simply be $L(\vartheta',\vartheta) = |\vartheta' - \vartheta|$ or $L(\vartheta',\vartheta) = (\vartheta' - \vartheta)^2$.

For $M \in \mathbb{N}$, let $[M] := \{1, \dots, M\}$, and let $\hat{\mathcal{T}}$ denote the set of measurable functions $\mathcal{X} \to [M]$. Given any $\vartheta_1, \dots, \vartheta_M \in \Theta$ and $\hat{\vartheta} \in \hat{\Theta}$, we can define $T_{\hat{\vartheta}} \in \hat{\mathcal{T}}$ by

$$T_{\hat{\vartheta}}(x) \coloneqq \operatorname*{arg\,min}_{j \in [M]} d(\hat{\vartheta}(x), \vartheta_j),$$

where we pick the smallest j in case of a tie. Intuitively, we are simply approximating $\hat{\vartheta}$ by the closest ϑ_j . Now, we will lower-bound the minimax risk by an expression that only depends on estimators in $\hat{\mathcal{T}}$.

Writing $\eta = \frac{1}{2} \min_{jk} d(\vartheta_j, \vartheta_k)$, we can lower-bound the worst-case loss of any fixed estimator $\hat{\vartheta}$ by

$$\begin{split} \sup_{\vartheta \in \Theta} \mathbb{E}_{\vartheta} L(\hat{\vartheta}(X), \vartheta) &\geq \max_{j \in [M]} \mathbb{E}_{\vartheta_{j}} g(d(\hat{\vartheta}, \vartheta_{j})) \\ &= \max_{j \in [M]} \mathbb{E}_{\vartheta_{j}} \Big\{ g(d(\hat{\vartheta}, \vartheta_{j})) \mathbbm{1}_{T_{\hat{\vartheta}} \neq j} \Big\} \\ &\stackrel{\star}{\geq} g(\eta) \max_{j \in [M]} \mathbb{E}_{\vartheta_{j}} \mathbbm{1}_{T_{\hat{\vartheta}} \neq j} \\ &= g(\eta) \max_{j \in [M]} P_{\vartheta_{j}} (T_{\hat{\vartheta}} \neq j), \end{split}$$

where \star holds because if $T_{\hat{\vartheta}} \neq j$, then $d(\hat{\vartheta}(x), \vartheta_j) \geq \eta$.

We therefore have

$$\begin{split} \mathcal{M} &\geq g(\eta) \inf_{\hat{\vartheta} \in \hat{\Theta}} \max_{j \in [M]} P_{\vartheta_j}(T_{\hat{\vartheta}} \neq j) \geq g(\eta) \inf_{T \in \hat{\mathcal{T}}} \max_{j \in [M]} P_{\vartheta_j}(T \neq j) \\ &= g(\eta) \Bigg\{ 1 - \sup_{T \in \hat{\mathcal{T}}} \min_{j \in [M]} P_{\vartheta_j}(T = j) \Bigg\} \geq g(\eta) \Bigg\{ 1 - \sup_{T \in \hat{\mathcal{T}}} \frac{1}{M} \sum_{j=1}^M P_{\vartheta_j}(T = j) \Bigg\}. \end{split}$$

Therefore, we have now reduced the problem of lower-bounding \mathcal{M} to the problem of upper-bounding $\sup_{T \in \hat{T}} \frac{1}{M} \sum_{j=1}^{M} P_{\vartheta_j}(T=j)$, which is a testing problem. We repeat the main result:

$$\mathcal{M} \ge g(\eta) \left\{ 1 - \sup_{T \in \hat{\mathcal{T}}} \frac{1}{M} \sum_{j=1}^{M} P_{\vartheta_j}(T = j) \right\},\tag{6}$$

where $\eta = \frac{1}{2} \min_{jk} d(\vartheta_j, \vartheta_k)$.

4.2 Divergences

Definition 4.2. Let μ, ν be measures on $(\mathcal{X}, \mathcal{A})$. We say that μ is absolutely continuous w.r.t. ν , notation $\mu \ll \nu$, if

$$\nu(A) = 0 \implies \mu(A) = 0.$$

We say that μ, ν are mutually singular, notation $\mu \perp \nu$, if there exists $A \in \mathcal{A}$ such that $\mu(A) = 0$ and $\nu(A^{\complement}) = 0$.

Note that mutual singularity means that μ "lives on" A^{\complement} , while ν "lives on" A^{\square}

Theorem 4.3 (Lebesgue). If μ, ν are σ -finite measures on $(\mathcal{X}, \mathcal{A})$, then there exists measures μ_{ac} and μ_{sing} on $(\mathcal{X}, \mathcal{A})$ such that μ can be decomposed as $\mu = \mu_{ac} + \mu_{sing}$, where $\mu_{ac} \ll \nu$ and $\mu_{sing} \perp \nu$. Furthermore, this decomposition is unique.

Let $f:(0,\infty)\to\mathbb{R}$ be convex. Then for any y>0, the function $x\mapsto\frac{f(x)-f(y)}{x-y}$ is increasing on (y,∞) (this is easy to check). Furthermore, we have

$$\lim_{x\to\infty}\frac{f(x)-f(y)}{x-y}=\lim_{x\to\infty}\frac{f(x)}{x-y}-\lim_{x\to\infty}\frac{f(y)}{x-y}=\lim_{x\to\infty}\frac{f(x)}{x},$$

so in particular the limit is independent of y and we can define the maximal slope of f by

$$M_f := \lim_{x \to \infty} \frac{f(x)}{x} \in (-\infty, \infty].$$

We define $f(0) := \lim_{x \downarrow 0} f(x) \in (-\infty, \infty]$ (a convex function is continuous on an open interval, so this limit exists). In this case, we have

$$f(x+y) = f(x) + y \frac{f(x+y) - f(x)}{y} \le f(x) + yM_f \qquad \forall x, y \ge 0.$$

Definition 4.4. Given a convex function $f:(0,\infty)\to\mathbb{R}$ with f(1)=0, and probability measures P,Q on a measurable space $(\mathcal{X},\mathcal{A})$, we define the f-divergence

$$\operatorname{Div}_f(P,Q) := \int_{\mathcal{X}} f\left(\frac{\mathrm{d}P_{\mathrm{ac}}}{\mathrm{d}Q}\right) \mathrm{d}Q + P_{\mathrm{sing}}(\mathcal{X}) \cdot M_f.$$

By Jensen's inequality we have

$$\operatorname{Div}_{f}(P,Q) = \int_{\mathcal{X}} f\left(\frac{\mathrm{d}P_{\mathrm{ac}}}{\mathrm{d}Q}\right) \mathrm{d}Q + P_{\mathrm{sing}}(\mathcal{X}) \cdot M_{f} \ge f\left(\int_{\mathcal{X}} \frac{\mathrm{d}P_{\mathrm{ac}}}{\mathrm{d}Q} \, \mathrm{d}Q\right) + P_{\mathrm{sing}}(\mathcal{X}) \cdot M_{f}$$
$$= f(P_{\mathrm{ac}}(\mathcal{X})) + P_{\mathrm{sing}}(\mathcal{X}) \cdot M_{f} = f(P_{\mathrm{ac}}(\mathcal{X}) + P_{\mathrm{sing}}(\mathcal{X})) = f(P(\mathcal{X})) = f(1) = 0,$$

so f-divergences are nonnegative.

Example 4.5. 1. If $f(x) = x \log x$, then $M_f = \infty$. If $P \ll Q$ (i.e., $P_{\text{sing}} = 0$), then we have

$$\operatorname{Div}_{f}(P, Q) = \int_{\mathcal{X}} \frac{\mathrm{d}P}{\mathrm{d}Q} \log \left(\frac{\mathrm{d}P}{\mathrm{d}Q}\right) \mathrm{d}Q = \int_{\mathcal{X}} \log \left(\frac{\mathrm{d}P}{\mathrm{d}Q}\right) \mathrm{d}P,$$

and otherwise $\operatorname{Div}_f(P,Q) = 0$.

This divergence is known as the Kullbach-Leibler divergence from Q to P, denoted KL(P,Q).

If $P \ll Q$ and P and Q have densities p and q w.r.t. a measure μ , we have $\mathrm{KL}(P,Q) = \int_{\mathcal{X}} p \log \left(\frac{p}{q}\right) \mathrm{d}\mu$.

2. If $f(x) = x^2 - 1$, then $M_f = \infty$. If $P \ll Q$ we have

$$\operatorname{Div}_{f}(P,Q) = \int_{\mathcal{X}} \left(\frac{\mathrm{d}P}{\mathrm{d}Q}\right)^{2} \mathrm{d}Q - \int_{\mathcal{X}} \mathrm{d}Q = \int_{\mathcal{X}} \left(\frac{\mathrm{d}P}{\mathrm{d}Q}\right)^{2} \mathrm{d}Q - 1,$$

and otherwise $\mathrm{Div}_f(P,Q) = \infty$.

This divergence is known as the χ^2 divergence from Q to P, denoted $\chi^2(P,Q)$.

If $P \ll Q$ and P and Q have densities p and q w.r.t. a measure μ , we have $\chi^2(P,Q) = \int_{\mathcal{X}} \frac{p^2}{q} d\mu - 1$.

3. If $f(x) = (\sqrt{x} - 1)^2 = x + 1 - 2\sqrt{x}$ (note that this is convex since \sqrt{x} is concave), then $M_f = 1$ and therefore

$$\operatorname{Div}_f(P, Q) = \int_{\mathcal{X}} \left(\sqrt{\frac{\mathrm{d}P_{\mathrm{ac}}}{\mathrm{d}Q}} - 1 \right)^2 \mathrm{d}Q + P_{\mathrm{sing}}(\mathcal{X}) =: H^2(P, Q),$$

the squared Hellinger distance between P and Q.

If P and Q have densities p and q w.r.t. a σ -finite measure μ , then $H^2(P,Q) = \int_{\mathcal{X}} (\sqrt{p} - \sqrt{q})^2 d\mu$ (example sheet).

4. If $f(x) = \frac{|x-1|}{2}$, then $M_f = \frac{1}{2}$ and we have

$$\mathrm{Div}_f(P,Q) \stackrel{\mathbf{TODO:}}{=} \sup_{A \in \mathcal{A}} |P(A) - Q(A)| \eqqcolon \mathrm{TV}(P,Q),$$

the total variation divergence between P and Q.

All f-divergences are jointly convex: for all $\lambda \in [0,1]$ we have (see Example Sheet)

$$\text{Div}_f((1-\lambda)P_1 + \lambda P_2, (1-\lambda)Q_1 + \lambda Q_2) \le (1-\lambda)\text{Div}_f(P_1, Q_1) + \lambda \text{Div}_f(Q_1, Q_2)$$

4.3 Le Cam's two point lemma

Plugging M=1 into eq. (6) yields the trivial result $M \ge 0$. Surprisingly, when we plug in M=2, we obtain Le Cam's two point lemma, which can often provide optimal rates for estimating real-valued parameters (though not optimal constants).

Lemma 4.6. In the set-up of section 4.1, we have for any $\vartheta_1, \vartheta_2 \in \Theta$ that

$$\mathcal{M} \ge \frac{g(\eta)}{2} \{ 1 - \text{TV}(P_{\vartheta_1}, P_{\vartheta_2}) \}.$$

Proof. For $T \in \hat{\mathcal{T}}_2$, let $A := T^{-1}(\{1\})$, then we have by eq. (6)

$$\mathcal{M} \ge g(\eta) \left\{ 1 - \sup_{T \in \hat{T}_2} \frac{P_{\vartheta_1}(T=1) + P_{\vartheta_2}(T=2)}{2} \right\} = \frac{g(\eta)}{2} \left\{ 1 - \sup_{T \in \hat{T}_2} \left(P_{\vartheta_1}(T=1) - P_{\vartheta_2}(T=1) \right) \right\}$$

$$\ge \frac{g(\eta)}{2} \left\{ 1 - \text{TV}(P_{\vartheta_1}, P_{\vartheta_2}) \right\}.$$

Example 4.7. Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} N(\vartheta, 1)$ for some $\vartheta \in \mathbb{R}$. Let $\vartheta_1 = 0$ and $\vartheta_2 = cn^{-1/2}$ for some c > 0, and let $P_{\vartheta_j} := N(\vartheta_j, 1)$ for j = 1, 2. Then we have (where \star denotes equalities that will be proved on the example sheet):

$$\operatorname{TV}(P_{\vartheta_1}^{\times n}, P_{\vartheta_2}^{\times n}) \stackrel{\star}{\leq} \sqrt{\frac{\operatorname{KL}(P_0^{\times n}, P_{cn^{-1/2}}^{\times n})}{2}} \stackrel{\star}{=} \sqrt{\frac{n}{2} \operatorname{KL}(P_0, P_{cn^{-1/2}})} \stackrel{\star}{=} \frac{c}{2}.$$

Plugging this into Le Cam's two point lemma yields (using the squared error loss $L(x, y) = (x - y)^2$ that

$$\mathcal{M} = \inf_{\hat{\vartheta} \in \hat{\Theta}} \sup_{\vartheta \in \mathbb{R}} \mathbb{E}_{\vartheta} \left[(\hat{\vartheta}(X_1, \dots, X_n) - \vartheta)^2 \right] \ge \sup_{c > 0} \frac{c^2}{8n} \left(1 - \frac{c}{2} \right) = \frac{2}{27n}.$$

In this problem, it can be shown that $\mathcal{M} = 1/n$, so Le Cam's two point lemma does give the optimal rate, but it does not give the optimal constant.

Example 4.8. TODO: Understand remark 45 in lecture notes

4.4 Assouad's lemma

Lemma 4.9. Let $m \in \mathbb{N}$, $\Phi := \{0,1\}^m$ and $\{P_{\varphi} \mid \varphi \in \Phi\}$ a family of probability measures on $(\mathcal{X}, \mathcal{A})$. Write $\varphi \sim \varphi'$ when φ and φ' differ in precisely one coordinate and $\varphi \sim_j \varphi'$ when this coordinate is the i-th.

Suppose the loss function is of the form

$$L(\varphi',\varphi) = \sum_{j=1}^{m} L_j(\varphi',\varphi) = \sum_{j=1}^{m} g(d_j(\varphi',\varphi)),$$

where d_1, \ldots, d_m are semimetrics satisfying $d_j(\varphi', \varphi) \ge \alpha_j$ whenever $\varphi \sim_j \varphi'$, and where g is increasing and satisfies $g(x+y) \le A\{g(x)+g(y)\}$ for all $x,y \ge 0$ and some A > 0. Then

$$\inf_{\hat{\varphi} \in \hat{\Phi}} \max_{\varphi \in \Phi} \mathbb{E}_{\varphi} L(\hat{\varphi}, \varphi) \ge \frac{1}{2A} \left\{ 1 - \max_{\varphi \sim \varphi'} \mathrm{TV}(P_{\varphi}, P_{\varphi'}) \right\} \sum_{i=1}^{m} g(\alpha_{i}).$$

Proof. For any $\varphi \in \Phi, j \in [m]$, let $\varphi^{[j]}$ be the unique element of Φ with $\varphi \sim_j \varphi^{[j]}$. Letting $\hat{\Phi}$ denote the set of measurable functions from \mathcal{X} to Φ , we have

$$\max_{\varphi \in \Phi} \mathbb{E}_{\varphi} L(\hat{\varphi}, \varphi) \ge \frac{1}{2^m} \sum_{\varphi \in \Phi} \sum_{j=1}^m \mathbb{E}_{\varphi} L_j(\hat{\varphi}, \varphi) = \frac{1}{2^{m+1}} \sum_{j=1}^m \sum_{\varphi \in \Phi} \left\{ \mathbb{E}_{\varphi} L_j(\hat{\varphi}, \varphi) + \mathbb{E}_{\varphi^{[j]}} L_j(\hat{\varphi}, \varphi^{[j]}) \right\}, \tag{7}$$

where the last equality follows from the fact that in the sum we count every element of φ twice (so we must divide by 2). By the definition of L_j and the triangle inequality,

$$L_j(\hat{\varphi}, \varphi) + L_j(\hat{\varphi}, \varphi^{[j]}) \ge \frac{1}{A} g(d_j(\hat{\varphi}, \varphi) + d_j(\hat{\varphi}, \varphi^{[j]})) \ge \frac{1}{A} g(d_j(\varphi, \varphi^{[j]})) \ge \frac{g(\alpha_j)}{A}.$$

If we multiply and divide eq. (7) by $\sum_{j=1}^{m} L_j(\hat{\varphi}, \varphi) + L_j(\hat{\varphi}, \varphi^{[j]})$, we obtain, writing \mathcal{F} for the set of measurable functions from $\mathcal{X} \to [0, 1]$,

$$\max_{\varphi \in \Phi} \mathbb{E}_{\varphi} L(\hat{\varphi}, \varphi) \geq \left(\sum_{j=1}^{m} L_{j}(\hat{\varphi}, \varphi) + L_{j}(\hat{\varphi}, \varphi^{[j]}) \right) \frac{1}{2^{m+1}} \frac{\sum_{j=1}^{m} \sum_{\varphi \in \Phi} \left\{ \mathbb{E}_{\varphi} L_{j}(\hat{\varphi}, \varphi) + \mathbb{E}_{\varphi^{[j]}} L_{j}(\hat{\varphi}, \varphi^{[j]}) \right\}}{\sum_{j=1}^{m} L_{j}(\hat{\varphi}, \varphi) + L_{j}(\hat{\varphi}, \varphi^{[j]})}$$

$$\stackrel{??}{\geq} \frac{\sum_{j=1}^{m} g(\alpha_{j})}{2^{m+1} A} \sum_{\varphi \in \Phi} \inf_{f_{1}, f_{2} \in \mathcal{F}: f_{1} + f_{2} = 1} \left\{ \mathbb{E}_{\varphi}(f_{1}) + \mathbb{E}_{\varphi^{[j]}}(f_{2}) \right\}$$

$$= \frac{\sum_{j=1}^{m} g(\alpha_{j})}{2^{m+1} A} \sum_{\varphi \in \Phi} \left(1 - \sup_{f \in \mathcal{F}} \left\{ \mathbb{E}_{\varphi} f - \mathbb{E}_{\varphi^{[j]}} f \right\} \right)$$

$$\stackrel{\star}{\geq} \frac{1}{2A} \left\{ 1 - \max_{\varphi \sim \varphi'} \text{TV}(P_{\varphi}, P_{\varphi'}) \right\} \sum_{j=1}^{m} g(\alpha_{j}),$$

TODO: explain \star (related to the alternative expression for TV as the divergence of |x-1|/2).

Example 4.10. Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} N_d(\vartheta, \Sigma) =: P_{\vartheta}$ for some $\vartheta \in \mathbb{R}^d$, where $\Sigma = \text{diag}(\sigma_1^2, \ldots, \sigma_d^2)$. Fix c > 0, and for $\varphi \in \{0, 1\}^d$ define $\vartheta^{\varphi} \in \mathbb{R}^d$ by $\vartheta_j^{\varphi} = c\sigma_j n^{-1/2} \mathbb{1}_{\varphi_j = 1}$ for $j \in [d]$.

If we used the squared error loss $L(\vartheta,\vartheta') = \|\vartheta-\vartheta'\|_2^2$, then we have $d_j(\vartheta,\vartheta') = |\vartheta_j-\vartheta_j'|$, so $\alpha_j = c\sigma_j n^{-1/2}$ and $g(x) = x^2$, and $(x+y)^2 \leq 2(x^2+y^2)$ implies A=2.

Write $\hat{\Theta}$ for the set of measurable functions from $(\mathbb{R}^d)^{\times n}$ to \mathbb{R}^d , then Assouad's lemma tells us that, for any $\hat{\vartheta}(X_1,\ldots,X_n)=\hat{\vartheta}\in\Theta$,

$$\sup_{\vartheta \in \mathbb{R}^{d}} \mathbb{E}_{\vartheta} \left(\left\| \hat{\vartheta} - \vartheta \right\|^{2} \right) \geq \max_{\varphi \in \Phi} \mathbb{E}_{\vartheta^{\varphi}} \left(\left\| \hat{\vartheta} - \vartheta^{\varphi} \right\|^{2} \right)$$

$$\geq \frac{1}{4} \left\{ 1 - \max_{\varphi \sim \varphi'} \text{TV}(P_{\vartheta^{\varphi}}, P_{\vartheta^{\varphi'}}) \right\} \sum_{j=1}^{d} \frac{c^{2} \sigma_{j}^{2}}{n}$$

$$\stackrel{\star}{\geq} \frac{c^{2}}{4n} \left\{ 1 - \max_{\varphi \sim \varphi'} \sqrt{\frac{\text{KL}(P_{\vartheta^{\varphi}}^{\times n}, P_{\vartheta^{\varphi'}}^{\times n})}{2}} \right\} \sum_{j=1}^{d} \sigma^{2}$$

$$= \frac{c^{2}}{4n} \left(1 - \frac{c}{2} \right) \sum_{j=1}^{d} \sigma_{j}^{2},$$

and taking the supremum over all c > 0 on the right-hand side gives $\frac{4}{27n} \sum_{j=1}^{d} \sigma_j^2$. Here, \star follows from Pinsker's inequality (example sheet).

It can be shown that this is the optimal rate in terms of n and the σ_j , but again, 4/27 is not the optimal constant.

4.5 The data processing inequality

If $(\mathcal{X}, \mathcal{A}, \mu)$ is a measure space and $(\mathcal{Y}, \mathcal{B})$ a measurable space, and $g: \mathcal{X} \to \mathcal{Y}$ is measurable, we denote the pushforward measure by $\mu^g := \mu \circ g^{-1}$.

Lemma 4.11 (Data processing inequality). Let $(\mathcal{X}, \mathcal{A})$ and $(\mathcal{Y}, \mathcal{B})$ be measurable spaces, P, Q probability measures on \mathcal{X} , and $g: \mathcal{X} \to \mathcal{Y}$ measurable. Then for any f-divergence Div_f we have

$$\operatorname{Div}_f(P^g, Q^g) \le \operatorname{Div}_f(P, Q).$$

Proof. We decompose $P = P_{ac} + P_{sing}$ w.r.t. Q. We will show that $(P_{ac})^g \ll Q^g$ with Radon-Nikodym derivative γ , where

$$\gamma(y) := \mathbb{E}_Q \left(\frac{\mathrm{d}P_{\mathrm{ac}}}{\mathrm{d}Q} \mid g(X) = y \right).$$

To see this, let $B \in \mathcal{B}$, then

$$\begin{split} (P_{\mathrm{ac}})^g(B) &= P_{\mathrm{ac}}(g^{-1}(B)) = \int_{\mathcal{X}} \mathbbm{1}_{g^{-1}(B)} \frac{\mathrm{d}P_{\mathrm{ac}}}{\mathrm{d}Q} \, \mathrm{d}Q = \mathbbm{E}_Q \bigg[\mathbbm{E}_Q \bigg[\mathbbm{1}_{g^{-1}(B)}(X) \frac{\mathrm{d}P_{\mathrm{ac}}}{\mathrm{d}Q}(X) \mid g(X) \bigg] \bigg] \\ &\stackrel{\star}{=} \mathbbm{E}_Q \bigg[\mathbbm{1}_{g^{-1}(B)}(X) \mathbbm{E}_Q \bigg[\frac{\mathrm{d}P_{\mathrm{ac}}}{\mathrm{d}Q}(X) \mid g(X) \bigg] \bigg] \\ &= \int_{\mathcal{X}} \mathbbm{1}_{g^{-1}(B)} \cdot (\gamma \circ g) \, \mathrm{d}Q \stackrel{\star}{=} \int_{\mathcal{Y}} \mathbbm{1}_{B} \cdot \gamma \, \mathrm{d}Q^g = \int_{B} \gamma \, \mathrm{d}Q^g \,, \end{split}$$

where \star follows from the transformation theorem. This establishes the claim.

Now, writing $(P_{\text{sing}})^g = ((P_{\text{sing}})^g)_{\text{ac}} + ((P_{\text{sing}})^g)_{\text{sing}}$ (the Lebesgue decomposition w.r.t. Q^g), we have

$$P^g = (P_{ac})^g + (P_{sing})^g = (P_{ac})^g + ((P_{sing})^g)_{ac} + ((P_{sing})^g)_{sing},$$

and since $(P_{ac})^g \ll Q^g$, this gives the Lebesgue decomposition of P^g w.r.t. Q^g , namely $(P^g)_{ac} = (P_{ac})^g$ and $(P^g)_{sing} = ((P_{sing})^g)_{sing}$. We now obtain, using $f(x+y) \leq f(x) + M_f$, that

$$\operatorname{Div}_{f}(P^{g}, Q^{g}) = \int_{\mathcal{Y}} f\left(\frac{\operatorname{d}(P_{\operatorname{ac}})^{g}}{\operatorname{d}Q^{g}} + \frac{\operatorname{d}((P_{\operatorname{sing}})^{g})_{\operatorname{ac}}}{\operatorname{d}Q^{g}}\right) \operatorname{d}Q^{g} + ((P_{\operatorname{sing}})^{g})_{\operatorname{sing}}(\mathcal{Y}) \cdot M_{f}$$

$$\leq \int_{\mathcal{Y}} f\left(\frac{\operatorname{d}(P_{\operatorname{ac}})^{g}}{\operatorname{d}Q^{g}}\right) \operatorname{d}Q^{g} + (P_{\operatorname{sing}})^{g}(\mathcal{Y}) \cdot M_{f}$$

$$= \int_{\mathcal{Y}} f \circ \gamma \operatorname{d}Q^{g} + (P_{\operatorname{sing}})^{g}(\mathcal{Y}) \cdot M_{f}$$

$$= \int_{\mathcal{X}} f \circ \gamma \circ g \operatorname{d}Q + P_{\operatorname{sing}}(\mathcal{X}) \cdot M_{f}$$

$$= \mathbb{E}_{Q} \left[f\left(\mathbb{E}_{Q} \left[\frac{\operatorname{d}P_{\operatorname{ac}}}{\operatorname{d}Q}(X) \mid g(X)\right]\right) + P_{\operatorname{sing}}(\mathcal{X}) \cdot M_{f} \right]$$

$$\leq \mathbb{E}_{Q} \left[\mathbb{E}_{Q} \left\{ f\left(\frac{\operatorname{d}P_{\operatorname{ac}}}{\operatorname{d}Q}(X) \mid g(X)\right) \right\} + P_{\operatorname{sing}}(\mathcal{X}) \cdot M_{f} \right]$$

$$= \int_{\mathcal{X}} f\left(\frac{\operatorname{d}P_{\operatorname{ac}}}{\operatorname{d}Q}\right) \operatorname{d}Q + P_{\operatorname{sing}}(\mathcal{X}) \cdot M_{f} = \operatorname{Div}_{f}(P, Q),$$

where the last inequality follows from the conditional version of Jensen.