

Informatics 134

Software User Interfaces
Spring 2021

Mark S. Baldwin baldwinm@ics.uci.edu 5/25/2021

Agenda

1. Upcoming

2. User Interfaces For Tomorrow's Devices

3. References

Upcoming

Upcoming

- This week: Looking to the future
- Keep working on A4 (DUE 6/8 6/10 (changed today))
- Keep working on T3 (DUE 6/3, Final Presentations Start 6/01)

Devices _____

User Interfaces For Tomorrow's

Wearables
Augmented Reality
Virtual Reality

Augmented Reality
Virtual Reality

Wearables

What is a Wearable?

Augmented Reality

Virtual Reality

Wearables

What is a Wearable?

Smartwatch/Activity tracker

Smart glasses

Smart clothing and jewelry

Tattoos/patches/ingestibles

Medical devices

Wearables

What to do with all the data?

How do we access?

How do we control?

Wearables What to do without a desktop or mobile display? How do we access? How do we control? Advantages? Limitations? On-device display Haptic feedback Speech synthesis On-body display

Wearables

What to do without a desktop or mobile display?

How do we access?

How do we control?

Control

On-device interactions (tap, swipe, physical buttons)

Voice

Gestures

•••

Wearables

What to do without a desktop or mobile display?

How do we access?

How do we control?

Control

On-device interactions (tap, swipe,

physical buttons)

Voice

Gestures

Passive activity

Wearables

What to do without a desktop or mobile display?

How do we access?

How do we control?

Passive activity with biosensors

Calorimetric (chemical,thermal)

Potentiometric (chemical, electrical)

Optical (physical)

Piezo-electric (force)

Building an interaction model for wearables

Signal Processing (amplify, average, filter)

Training and Classification

Least squares

Knearest neighbors(kNN)

Hidden Markov

Artificial neural networks (ANN)

Fit and Mapping (e.g., gesture taxonomy)

Similarities?, Anything missing?

Standard Interaction Model

- Event-driven programming
- Abstractions
- **Toolkits**

We are at a confluence between novel forms of interaction and the tools required to support them.

From Research to Product

Myo gesture band

From Research to Product

- Myo gesture band
- Google glass
- Microsoft Hololens

From Research to Product

Project Jacquard

Abilities to pair gestures to actions:

- Brush in/up
- Brush out/down
- · Double tap
- Cover

Interactive programmability

Perhaps not expressive enough for a body full of sensors

Moving away from display-based user interfaces to body-based user interfaces expands the opportunity for user-driven toolkits.

- Toolkits must recognize and support the unique qualities of every individual
- Toolkits must help bridge the gulfs of execution and evaluation

A user-driven toolkit

What are some of the challenges you faced while building your toolkit?

A user-driven toolkit

What are some of the challenges you faced while building your toolkit?

Design?

Abstraction?

Composability?

Debugging and problem solving?

A user-driven toolkit

How can we reduce these obstacles?

Declarative, expressive grammars

Vega-lite

A user-driven toolkit

How can we reduce these obstacles?

- Declarative, expressive grammars
- Programming By Demonstration

SUGILITE

A user-driven toolkit

How can we reduce these obstacles?

- Declarative, expressive grammars
- Programming By Demonstration
- Visual programming

Scratch

sourc

A user-driven toolkit

To wrap, remember (and bring this with you as you work on A4):

We navigate the confluence by building on existing innovations and leaning on the values of user-centered design.

References

References i

- Dementyev, A. and Paradiso, J. A. (2014).
 Wristflex: Low-power gesture input with wrist-worn pressure sensors.
 In Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology, UIST '14, page 161–166, New York, NY, USA. Association for Computing Machinery.
- Li, T. J.-J., Azaria, A., and Myers, B. A. (2017).

 Sugilite: creating multimodal smartphone automation by demonstration.

 In Proceedings of the 2017 CHI conference on human factors in computing systems, pages 6038–6049.
- Xiao, R., Cao, T., Guo, N., Zhuo, J., Zhang, Y., and Harrison, C. (2018).
 Lumiwatch: On-arm projected graphics and touch input.
 In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pages 1–11.