Masters MHACS & SDAD Module 5 : Algorithmique & Programmation TP 1

Objectif:

Le langage de programmation utilisé pour les TPs d'algorithmique et programmation est le langage Java. Le but de ce premier TP est d'écrire en langage Java des programmes classiques.

Exercice 1. Ecrire un programme Java servant à calculer la valeur absolue d'un nombre réel x à partir de la définition de la valeur absolue. La valeur absolue du nombre réel x est le nombre réel |x|:|x|=x, si x>=0 |x|=-x si x<0.

Spécifications de l'algorithme :

```
lire(x);

si x>=0 alors écrire('|x| =', x)

sinon écrire('|x| =', -x)

fsi
```

Exercice 2.

- 1. Écrivez un algorithme qui calcule la somme des n premiers nombres entiers positifs. L'algorithme demandera à l'utilisateur d'entrer la valeur de n.
- 2. Écrivez un algorithme qui calcule la somme des n premiers nombres entiers positifs paires. L'algorithme demandera à l'utilisateur d'entrer la valeur de n.

Exercice 3.

1. Écrivez un programme java qui calcule la somme **S** suivante :

```
S = 1^2 + 2^2 + 3^2 + ... + (n-1)^2 + n^2.
```

Le programme demandera à l'utilisateur d'entrer la valeur de ${\bf n}$.

2. Écrivez un programme java qui calcule le factoriel de **n**:

```
n ! = 1 \times 2 \times 3 \times ... \times (n-1) \times n.
```

Le programme demandera à l'utilisateur d'entrer la valeur de **n**.

Exercice 4. On souhaite écrire un programme de calcul du pgcd de deux entiers non nuls, en Java à partir de l'algorithme de la méthode d'Euclide. Voici une spécification de l'algorithme de calcul du PGCD de deux nombres (entiers strictement positifs) a et b, selon cette méthode :

```
var a,b,r : entiers
Début

    Ecrire("donner les valeurs de a et b : ")
    Lire(a,b)
    TantQue b>0 faire

        r ← a%b /* a%b :reste de la division de a par b */
        a ← b
        b ← r
    FinTanQue
    Ecrire(a)
Fin
```

Exercice 5. On souhaite écrire un programme Java de résolution réelle de l'équation du second degré.

Spécifications de l'algorithme :

```
Algorithme Equation
                                         Sinon
                                                 début
 var A, B, C : Réels/*coefs*/
                                         D \leftarrow B<sup>2</sup> -4*A*C;
 var X1 , X2 :Réels /*solutions*/
                                         Si D < 0 alors
 var D : Réels /*delta*/
                                               écrire (pas de solution)
Début
                                         Sinon
  lire (A, B, C);
                                         Si D = 0 alors
  Si A=0 alors début
                                            X1 \leftarrow -B/(2*A);
    Si B = 0 alors
                                            écrire(X1)
      Si C = 0 alors
                                         Sinon
          écrire (R est solution)
                                              X1 \leftarrow (-B+sqrt(D))/(2*A);
      Sinon
                                              X2 \leftarrow (-B-sqrt(D))/(2*A);
          écrire (pas de solution)
                                              écrire(X1 , X2 )
      Fsi
                                            Fsi
    Sinon
                                           Fsi
       X1 \leftarrow C/B;
                                          fin
        écrire (X1)
                                         Fsi
    Fsi
                                         FinEquation
  fin
```

Ecrire un programme qui permet de déterminer si deux entiers n et m sont amis ou non. Les coefficients A, B et C doivent être saisis par l'utilisateur. Discuter selon les valeurs A, B et C.

Exercice 6. (Bonus)

- 1. Un nombre entier p (différent de 1) est dit premier si ses seuls diviseurs positifs sont 1 et p. Ecrivez un programme qui effectue la lecture d'un entier p et détermine si cet entier est premier ou non.
- 2. Deux nombres entiers n et m sont qualifiés d'amis, si la somme des diviseurs de n est égale à m et la somme des diviseurs de m est égale à n. On ne compte pas comme diviseur le nombre lui même et 1.

```
Exemple : les nombres 48 et 75 sont deux nombres amis puisque
Les diviseurs de 48 sont : 2, 3, 4, 6, 8, 12, 16, 24 et
    2 + 3 + 4 + 6 + 8 + 12 + 16 + 24 = 75.
Les diviseurs de 75 sont : 3, 5, 15, 25 et 3 + 5 + 15 + 25 = 48.
```

Ecrire un programme qui permet de déterminer si deux entiers n et m sont amis ou non.