DOCKER ENGINE SERVICES IN ANDROID OS

(2.69) USAMA BIN MASOOD (CS-071)

(2.60) JASIM AHMED (CS-044)

(2.60) **MUHAMMAD HUMMAD** (CS-055)

(2.60) AMRAT KUMAR (CS-069)

Introduction

- In 2008 Linux Containers introduced
- DotCloud released Docker as open source project
- Application Capsulization
- 1000's on a host in a LXC
- less resource and more lightweight

(THE RESEARCH AND IMPLEMENTATION OF CLOUD COMPUTING PLATFORM BASED ON DOCKER, DI LIU1, LIBIN ZHAO1)

Project Review

BUILD

RUN

HIGH PERFORMANCE COMPUTING CENTER

Project Distribution

Android as a container

Debian as virtual Machine

Build Docker via Android ADB

Build Docker alongside Android Kernel

HIGH PERFORMANCE COMPUTING CENTER

Android as a container

ANDROID BUILD & HARVEST

- Creating build environment
 - Choosing source code to compile.
- Setting up linux environment
- Downloading the source
 - Source Code is managed by git repository. For downloading it we need repo tool.
- Downloading android source tree
- Preparing the build
 - Setting up environment and target to build.
- Build the code
- Run it

DOCKER CONTAINERS AND BASE IMAGES

- BASE IMAGE TAKE SERVICES FROM DOCKER ENGINE
- DOCKER FILE CONTAIN ALL THE DEPENDENCIES
- BASE IMAGE IS BUILD FROM FROM DOCKER FILE
- OVER BASE IMAGE CONTAINERS WORKS AS OUR APPLCATION
- EVERY CONTAINER CAN ACT AS SEPARATE INSTANCE OF THE APPLICATION

BUILDING ANDROID BASE IMAGE FOR APPLICATION

Containers

- Web Service
- Web Page
- Emulator
- Apache Web Server
- AWS Beanstalk
- Ghost
- Artifactory
- ElasticSearch
- Odoo
- RabbitMQ

Debian as virtual Machine

Initializing

- Purpose
 - Motivation
 - Merits
 - De-merits
- Creating Environment
 - Pre-requisites
 - System Apps
 - Pre-cautions

Debian
VNC
Android
Mobile Device

Installation

- Importing VNC
- Installation of Debian over emulator
 - Linux Deploy
 - Limbo PC Emulator
 - Linux Installer
 - Linux Virtual Image

Build Docker via ADB

ADB

- (NDK) Native Development Kit
- ADB Shell
- Developer access
- Root Access

Building Dependencies

- Collecting Tarballs
- Resolving tree Dependencies
- Creating Environment Variables
- Unpack
- Configure
- Configure failed
- Edit Script
- Re-configure
- Make
- Make failed
- Change Make Script
- Make succeed/failed

Build Docker alongside

Android Kernel

ANDROID KERNEL BUILDING ALONG SIDE DOCKER ENGINE

- WHAT IS THE DIFFERENCE BETWEEN ANDROID KERNEL AND LINUX KERNEL?
 - BOTH ARE ALMOST SAME.
 - ANDROID APPLICATION USES THE RESOURCES OF LINUX KERNEL.
- WHAT IS LXC AND LIBCONTAINER?

ANDROID ARCHITECTURE

The second secon

4

BUILD OF LINUX ENVIRONMENT

LINUX KERNEL BUILDING

- BUILDING ENVIRONMENT
- UNPACKING THE LINUX PACKAGES
- GAINING ACCESS TO THE CHROOT ENVIRONMENT
- INSTALLING THE SYSTEM SOFTWARE
- RESOLVE DEPENDENCIES IN REVERSE ORDER
- SOLVING SYSTEM PROBLEMS
- BUILD THE KERNEL WITH ITS NECESSARY REQUIREMENTS
- TESTING OF THE LINUX KERNEL

第

4 2

UNPACKING DOCKER ENGINE INTO THE LINUX KERNEL ENVIRONMENT

- Buildtime dependencies
- Runtime dependencies
- Resolving passive dependencies

BUILDING ANDROID KERNEL IN THE ENVIRONMENT CREATED

- Building android kernel
- Enabling the necessary configuration for docker engine.
- Testing the kernel

Docker Engine Native Libraries

Linux Kernel

THANK YOU