

Schletter, Inc.		15° Tilt w/o Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2

Module Tilt = 15° Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
$g_{MIN} =$	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load,
$$P_g =$$
 30.00 psf Sloped Roof Snow Load, $P_s =$ 22.68 psf (ASCE 7-05, Eq. 7-2) $I_s =$ 1.00 $C_s =$ 1.00 $C_e =$ 0.90 $C_t =$ 1.20

2.3 Wind Loads

Design Wind Speed, V =	120 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 22.61$ psf Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Cf+ _{TOP}	=	1.000	
Cf+ BOTTOM	=	1.000 1.600 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.300	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-1.780 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.000	applied away from the darrace.

2.4 Seismic Loads - N/A

$S_S = S_{DS} = S_1 = S_1 = S_1$	0.00	$R = 1.25$ $C_S = 0$ $\rho = 1.3$	ASCE 7, Section 12.8.1.3: A maximum S_s of 1.5 may be used to calculate the base shear, C_s , of structures under five stories and with a period, T ,
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S $_{ds}$ of 1.0 was used
$T_a =$	0.00	$C_{d} = 1.25$	to calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.8W 1.2D + 1.6W + 0.5S 0.9D + 1.6W M 1.54D + 1.3E + 0.2S R 0.56D + 1.3E R 1.54D + 1.25E + 0.2S O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

```
\begin{array}{c} 1.0 \text{D} + 1.0 \text{S} \\ 1.0 \text{D} + 1.0 \text{W} \\ 1.0 \text{D} + 0.75 \text{L} + 0.75 \text{W} + 0.75 \text{S} \\ 0.6 \text{D} + 1.0 \text{W} & \text{(ASCE 7, Eq 2.4.1-1 through 2.4.1-8) \& (ASCE 7, Section 12.4.3.2)} \\ 1.238 \text{D} + 0.875 \text{E} & \text{0} \\ 1.1785 \text{D} + 0.65625 \text{E} + 0.75 \text{S} & \text{0} \\ 0.362 \text{D} + 0.875 \text{E} & \text{0} \end{array}
```

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	<u>Location</u>			
M4	Outer			
M8	Inner			
M12	Outer			

[™] Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u> Front</u>	<u>Rear</u>
Tensile Load =	<u> 1937.15</u>	<u>6511.33</u> k
Compressive Load =	<u>5035.69</u>	<u>5218.74</u> k
Lateral Load =	<u>8.47</u>	2335.42 k
Moment (Weak Axis) =	0.02	<u>0.01</u> k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (3) #5 rebar. Compressive Strength = 2500 psi Yield Strength = 60000 psi Overturning Check $M_O = 162988.5 \text{ in-lbs}$ Resisting Force Required = 2469.52 lbs A minimum 132in long x 37in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 4115.87 lbs to resist overturning. Minimum Width = <u>37 in</u> in Weight Provided = 7376.88 lbs Sliding 561.34 lbs Force = Friction = Use a 132in long x 37in wide x 18in tall 0.4 ballast foundation to resist sliding. Weight Required = 1403.34 lbs Friction is OK. Resisting Weight = 7376.88 lbs Additional Weight Required = 0 lbs Cohesion Sliding Force = 561.34 lbs Cohesion = 130 psf Use a 132in long x 37in wide x 18in tall 33.92 ft² Area = ballast foundation. Cohesion is OK. Resisting = 3688.44 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs Lateral Bearing Pressure = 200 psf/ft Required Depth = 0.00 ft Shear key is not required. 2500 psi $f'_c =$

Bearing Pressure

Length =

8 in

 $\frac{\text{Ballast Width}}{37 \text{ in}} \frac{38 \text{ in}}{39 \text{ in}} \frac{39 \text{ in}}{40 \text{ in}}$ $P_{\text{ftg}} = (145 \text{ pcf})(11 \text{ ft})(1.5 \text{ ft})(3.08 \text{ ft}) = \frac{7377 \text{ lbs}}{7576 \text{ lbs}} \frac{7776 \text{ lbs}}{7776 \text{ lbs}} \frac{7975 \text{ lbs}}{7975 \text{ lbs}}$

ASD LC		1.0D -	+ 1.0S			1.0D +	+ 1.0W		1	.0D + 0.75L +	0.75W + 0.75	S		0.6D+	- 1.0W	
Width	37 in	38 in	39 in	40 in	37 in	38 in	39 in	40 in	37 in	38 in	39 in	40 in	37 in	38 in	39 in	40 in
FA	1594 lbs	1594 lbs	1594 lbs	1594 lbs	2014 lbs	2014 lbs	2014 lbs	2014 lbs	2586 lbs	2586 lbs	2586 lbs	2586 lbs	-926 lbs	-926 lbs	-926 lbs	-926 lbs
F _B	1649 lbs	1649 lbs	1649 lbs	1649 lbs	2087 lbs	2087 lbs	2087 lbs	2087 lbs	2679 lbs	2679 lbs	2679 lbs	2679 lbs	-3125 lbs	-3125 lbs	-3125 lbs	-3125 lbs
F _V	138 lbs	138 lbs	138 lbs	138 lbs	986 lbs	986 lbs	986 lbs	986 lbs	833 lbs	833 lbs	833 lbs	833 lbs	-1123 lbs	-1123 lbs	-1123 lbs	-1123 lbs
P _{total}	10619 lbs	10819 lbs	11018 lbs	11217 lbs	11478 lbs	11677 lbs	11877 lbs	12076 lbs	12642 lbs	12842 lbs	13041 lbs	13241 lbs	375 lbs	495 lbs	615 lbs	734 lbs
M	3873 lbs-ft	3873 lbs-ft	3873 lbs-ft	3873 lbs-ft	6101 lbs-ft	6101 lbs-ft	6101 lbs-ft	6101 lbs-ft	7189 lbs-ft	7189 lbs-ft	7189 lbs-ft	7189 lbs-ft	1518 lbs-ft	1518 lbs-ft	1518 lbs-ft	1518 lbs-ft
е	0.36 ft	0.36 ft	0.35 ft	0.35 ft	0.53 ft	0.52 ft	0.51 ft	0.51 ft	0.57 ft	0.56 ft	0.55 ft	0.54 ft	4.04 ft	3.07 ft	2.47 ft	2.07 ft
L/6	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft									
f _{min}	250.8 psf	249.9 psf	249.1 psf	248.3 psf	240.3 psf	239.7 psf	239.1 psf	238.6 psf	257.1 psf	256.1 psf	255.1 psf	254.2 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	375.4 psf	371.2 psf	367.3 psf	363.5 psf	436.5 psf	430.8 psf	425.3 psf	420.1 psf	488.4 psf	481.2 psf	474.5 psf	468.1 psf	55.7 psf	42.8 psf	41.6 psf	42.8 psf

Maximum Bearing Pressure = 488 psf Allowable Bearing Pressure = 1500 psf Use a 132in long x 37in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Weak Side Design

Overturning Check

 $M_O = 1338.0 \text{ ft-lbs}$

Resisting Force Required = 867.89 lbs

S.F. = 1.67

Weight Required = 1446.48 lbs

Minimum Width = 37 in in

Weight Provided = 7376.88 lbs

A minimum 132in long x 37in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1.238D + 0.875E			1.1785D + 0.65625E + 0.75S			0.362D + 0.875E			
Width		37 in		37 in			37 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer	
F_Y	224 lbs	599 lbs	224 lbs	874 lbs	2639 lbs	874 lbs	65 lbs	175 lbs	65 lbs	
F _V	1 lbs	0 lbs	1 lbs	3 lbs	0 lbs	3 lbs	0 lbs	0 lbs	0 lbs	
P _{total}	9356 lbs	7377 lbs	9356 lbs	9568 lbs	7377 lbs	9568 lbs	2736 lbs	7377 lbs	2736 lbs	
М	3 lbs-ft	0 lbs-ft	3 lbs-ft	10 lbs-ft	0 lbs-ft	10 lbs-ft	0 lbs-ft	0 lbs-ft	0 lbs-ft	
е	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	
L/6	0.51 ft	0.51 ft	0.51 ft	0.51 ft	0.51 ft	0.51 ft	0.51 ft	0.51 ft	0.51 ft	
f _{min}	275.7 psf	217.5 psf	275.7 psf	281.5 psf	217.5 psf	281.5 psf	80.6 psf	217.5 psf	80.6 psf	
f _{max}	276.0 psf	217.5 psf	276.0 psf	282.6 psf	217.5 psf	282.6 psf	80.7 psf	217.5 psf	80.7 psf	

Maximum Bearing Pressure = 283 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 37in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 37in wide x 18in tall ballast foundation and fiber reinforcing with (3) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut Maximum Axial Load = M12 Bolt Capacity = Strut Bearing Capacity =	3.874 k 12.808 k 7.421 k	Rear Strut Maximum Axial Load = 4.559 k M12 Bolt Capacity = 12.808 k Strut Bearing Capacity = 7.421 k
Utilization =	<u>52%</u>	Utilization = 61%
<u>Diagonal Strut</u> Maximum Axial Load = M12 Bolt Shear Capacity =	1.694 k 12.808 k	Bolt and bearing capacities are accounting for double shear.
Strut Bearing Capacity =	7.421 k	(ASCE 8-02, Eq. 5.3.4-1)
Utilization =	<u>23%</u>	
0 0		

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

Mean Height, $h_{sx} =$ 36.30 in

Allowable Story Drift for All

Other Structures, $\Delta = \{$ 0.020 h_{sx} 0.726 in

Max Drift, $\Delta_{MAX} =$ 0.025 in

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_{b} = 111 \text{ in}$$

$$J = 0.432$$

$$307.078$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$\phi F_{L} = \phi b[Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2)}}]$$

Weak Axis:

3.4.14

$$L_{b} = 111$$

$$J = 0.432$$

$$195.283$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$\phi F_{1} = \phi b[Bc-1.6Dc*\sqrt{(Lk)}]$$

$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$

$$\phi F_{L} = 28.8$$

3.4.16

$$b/t = 32.195$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

 $\phi F_L = 27.6 \text{ ksi}$

3.4.16

b/t = 37.0588

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 23.1 \text{ ksi}$$

3.4.16.1

$$Rb/t =$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

Not Used

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 37.0588

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr-mDbr^*h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

h/t = 32.195

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

Compression

3.4.9

$$b/t = 32.195$$

S1 = 12.21 (See 3.4.16 above for formula)

$$\phi F_L = \phi c [Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

$$b/t = 37.0588$$

$$S1 = 12.21$$

$$S2 = 32.70$$

$$\varphi F_L = (\varphi ck2^* \sqrt{(BpE)})/(1.6b/t)$$

$$\phi F_L = 21.9 \text{ ksi}$$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^T$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 21.94 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$P_{max} = 41.32 \text{ kips}$$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis: 3.4.14

$$L_b = 88.9 \text{ in}$$
 $J = 1.08$
 152.913

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$φF_L = φb[Bc-1.6Dc*√((LbSc)/(Cb*√(lyJ)/2))]$$

 $φF_L = 29.4 \text{ ksi}$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$1.6Dp$$
 S2 = 46.7

$$S2 = 46.7$$

 $\phi F_L = \phi b[Bp-1.6Dp*b/t]$

$$\phi F_L = 31.6 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 88.9$$
 $J = 1.08$
 161.829

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

29.2

$$\phi F_L = \phi b[Bc-1.6Dc^* \sqrt{((LbSc)/(Cb^* \sqrt{(lyJ)/2}))}]$$

3.4.16

$$b/t = 7.4$$

 $\phi F_L =$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Used
$$Rb/t = 18.1$$

$$S1 - \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{\theta_b}\right)^2$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = C_t$$

S2 = 141.0

$$\phi F_L = \phi b[Bt-Dt^*\sqrt{(Rb/t)}]$$

$$\phi F_L = 31.1 \text{ ksi}$$

3.4.18

h/t = 7.4

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 73.8$$

$$\varphi F_L = 1.3\varphi y Fcy$$

$$\begin{array}{rll} \phi F_L St = & 29.4 \text{ ksi} \\ \text{lx} = & 984962 \text{ mm}^4 \\ & 2.366 \text{ in}^4 \\ \text{y} = & 43.717 \text{ mm} \\ \text{Sx} = & 1.375 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 3.363 \text{ k-ft} \end{array}$$

43.2 ksi

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 16.2

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40$$

$$Cc = 40$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 33.3 \text{ ksi}$$

$$\begin{array}{cccc} \phi F_L W k = & 33.3 \text{ ksi} \\ ly = & 923544 \text{ mm}^4 \\ & 2.219 \text{ in}^4 \\ x = & 40 \text{ mm} \\ Sy = & 1.409 \text{ in}^3 \\ M_{max} W k = & 3.904 \text{ k-ft} \end{array}$$

Compression

 $\phi F_L =$

3.4.9

$$b/t = 16.2$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 31.6 \text{ ksi}$$

$$b/t = 7.4$$

 $S1 = 12.21$
 $S2 = 32.70$
 $\phi F_L = \phi y F c y$
 $\phi F_L = 33.3 \text{ ks}$

33.3 ksi

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3

$$\phi F_L = \phi c[Bt-Dt^* \sqrt{(Rb/t)}]$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

1.88 in²

58.55 kips

 $P_{max} =$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

Strong Axis:

3.4.14

$$L_{b} = 24.8 \text{ in}$$

$$J = 0.942$$

$$38.7028$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$(C_c)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc\text{*}\sqrt{((LbSc)/(Cb\text{*}\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 31.4 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 24.8$$
 $J = 0.942$
 38.7028

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2))}]}$$

$$\phi F_{L} = 31.4$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

38.9 ksi

3.4.18

 $\phi F_L =$

3.4.16.1

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$
 $lx = 279836 \text{ mm}^4$
 0.672 in^4
 $y = 27.5 \text{ mm}$

$$Sx = 0.621 \text{ in}^3$$

 $M_{max}St = 1.460 \text{ k-ft}$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t =

24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.2 \text{ ksi}$$

$$\phi F_L Wk = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$x = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

$$M_{max}Wk = 1.460 \text{ k-ft}$$

SCHLETTER

Compression

3.4.7
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc - Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$
3.4.9
$$b/t = 24.5$$

$$S1 = 12.21 \text{ (See 3.4.16 above for formula)}$$

$$S2 = 32.70 \text{ (See 3.4.16 above for formula)}$$

$$\varphi F_L = \varphi c[Bp - 1.6Dp^*b/t]$$

$$\varphi F_L = 24.5$$

$$S1 = 12.21$$

$$S2 = 32.70$$

$$\varphi F_L = \varphi c[Bp - 1.6Dp^*b/t]$$

$$\varphi F_L = \varphi c[Bp - 1.6Dp^*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 28.03 \text{ ksi}$
 $\phi F_L = 663.99 \text{ mm}^2$
1.03 in²
 $\phi F_L = 28.85 \text{ kips}$

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

 $Strut = \underline{55x55}$

Strong Axis: 3.4.14	Weak Axis: 3.4.14
$L_b = 86.60 \text{ in}$	$L_{b} = 86.6$
J = 0.942 135.148	J = 0.942 135.148
$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$	$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$
S1 = 0.51461	S1 = 0.51461
$S2 = \left(\frac{C_c}{1.6}\right)^2$	$S2 = \left(\frac{C_c}{1.6}\right)^2$
S2 = 1701.56	S2 = 1701.56
$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)}}]$	$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}$
$\phi F_L = 29.6 \text{ ksi}$	$\varphi F_L = 29.6$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

S1 = 1.1
 $S2 = C_t$
S2 = 141.0
 $\phi F_L = 1.17 \phi y Fcy$
 $\phi F_L = 38.9 \text{ ksi}$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$\varphi F_L St =$ 28.2 ksi

$$lx = 279836 \text{ mm}^4$$

 0.672 in^4
 $y = 27.5 \text{ mm}$
 $Sx = 0.621 \text{ in}^3$

$$M_{max}St = 1.460 \text{ k-ft}$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$ly = 279836 \text{ mm}^4$

 $\phi F_L W k =$

$$y = 279836 \text{ mm}^3$$

 0.672 in^4
 $x = 27.5 \text{ mm}$

28.2 ksi

$$Sy = 0.621 \text{ in}^3$$

$$M_{max}Wk = 1.460 \text{ k-ft}$$

Compression

3.4.7

$$\begin{array}{ll} \lambda = & 2.00335 \\ r = & 0.81 \text{ in} \\ S1^* = & \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ S2^* = & \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ \phi cc = & 0.86047 \\ \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ \phi F_L = & 7.50396 \text{ ksi} \end{array}$$

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$\phi F_L = \phi c [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 7.72 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 48.30 \text{ in}$$
 $J = 0.942$
 75.3767

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\varphi F_L =$$

Weak Axis:

3.4.14

$$L_b = 48.3$$
 $J = 0.942$
 75.3767

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_{L} = 30.6$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used
$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1N/A for Weak Direction

3.4.18 h/t =24.5 S1 = mDbrS1 = 36.9 0.65 m = $C_0 =$ 27.5 Cc = 27.5 k_1Bbr mDbrS2 = 77.3 $\phi F_L = 1.3 \phi y F c y$ 43.2 ksi $\phi F_L =$ $\phi F_1 St =$ 28.2 ksi

 $lx = 279836 \text{ mm}^4$

 0.672 in^4

0.621 in³

1.460 k-ft

27.5 mm

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 28.2 \text{ ksi}$$

$$\psi = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$x = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

$$M_{max}W k = 1.460 \text{ k-ft}$$

Compression

 $M_{max}St =$

y =

Sx =

3.4.7 $\lambda = 1.11734$ r = 0.81 in $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$ $S1^* = 0.33515$ $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$ $S2^* = 1.23671$ $\varphi cc = 0.76536$ $\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$ $\varphi F_L = 18.9268$ ksi

$\phi F_{L} = 18.9268 \text{ ksi}$ 3.4.9 b/t =24.5 12.21 (See 3.4.16 above for formula) S1 = 32.70 (See 3.4.16 above for formula) $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ $\phi F_L =$ 28.2 ksi b/t =24.5 S1 = 12.21 32.70 S2 = $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ $\phi F_L =$ 28.2 ksi

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 18.93 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 19.48 \text{ kips}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc.

: HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:___

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1				4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M14	Υ	-8.366	-8.366	0	0
3	M15	Υ	-8.366	-8.366	0	0
4	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M14	Υ	-4.45	-4.45	0	0
3	M15	Υ	-4.45	-4.45	0	0
4	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3 : Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-61.093	-61.093	0	0
2	M14	Υ	-61.093	-61.093	0	0
3	M15	Υ	-61.093	-61.093	0	0
4	M16	Υ	-61 093	-61 093	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-63.051	-63.051	0	0
2	M14	V	-63.051	-63.051	0	0
3	M15	V	-100.882	-100.882	0	0
4	M16	V	-100.882	-100.882	0	0

Member Distributed Loads (BLC 5 : Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	У	145.018	145.018	0	0
2	M14	V	112.231	112.231	0	0
3	M15	V	63.051	63.051	0	0
4	M16	V	63 051	63 051	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	. B	Fa	В	Fa	В	Fa	. B	Fa	В	. Fa
1	LRFD 1.2D + 1.6S + 0.8W	Yes	Υ		1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1.6														
3	LRFD 0.9D + 1.6W	Yes	Υ		2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E				1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Load Combinations (Continued)

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	Yes	Υ		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Υ		2	.6					5	1												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	442.163	2	1223.79	2	.899	1	.004	1	Ö	1	Ó	1
2		min	-569.679	3	-1538.197	3	.034	15	0	15	0	1	0	1
3	N7	max	.028	9	1309.401	1	222	15	0	15	0	1	0	1
4		min	146	2	-442.612	3	-6.512	1	014	1	0	1	0	1
5	N15	max	.022	9	3873.604	1	0	11	0	11	0	1	0	1
6		min	-1.785	2	-1490.112	3	0	10	0	10	0	1	0	1
7	N16	max	1629.547	2	4014.415	1	0	3	0	3	0	1	0	1
8		min	-1796.478	3	-5008.713	3	0	2	0	1	0	1	0	1
9	N23	max	.028	9	1309.401	1	6.512	1	.014	1	0	1	0	1
10		min	146	2	-442.612	3	.222	15	0	15	0	1	0	1
11	N24	max	442.163	2	1223.79	2	034	15	0	15	0	1	0	1
12		min	-569.679	3	-1538.197	3	899	1	004	1	0	1	0	1
13	Totals:	max	2511.796	2	12935.09	1	0	11						
14		min	-2936.869	3	-10460.441	3	0	10						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	70.928	1	534.841	1	-4.106	15	0	3	.168	1	0	1
2			min	2.335	15	-786.641	3	-125.575	1	016	2	.006	15	0	3
3		2	max	70.928	1	374.199	1	-3.155	15	0	3	.054	1	.689	3
4			min	2.335	15	-553.487	3	-96.422	1	016	2	.002	15	467	1
5		3	max	70.928	1	213.557	1	-2.205	15	0	3	0	3	1.138	3
6			min	2.335	15	-320.333	3	-67.269	1	016	2	03	1	769	1
7		4	max	70.928	1	52.915	1	-1.254	15	0	3	002	12	1.347	3
8			min	2.335	15	-87.179	3	-38.116	1	016	2	084	1	906	1
9		5	max	70.928	1	145.975	3	304	15	0	3	003	12	1.317	3
10			min	2.335	15	-107.727	1	-8.963	1	016	2	108	1	878	1
11		6	max	70.928	1	379.129	3	20.19	1	0	3	003	15	1.047	3
12			min	2.335	15	-268.369	1	046	3	016	2	102	1	685	1
13		7	max	70.928	1	612.283	3	49.343	1	0	3	002	15	.538	3
14			min	2.335	15	-429.011	1	.961	12	016	2	067	1	326	1
15		8	max	70.928	1	845.438	3	78.495	1	0	3	.001	2	.197	1
16			min	2.335	15	-589.653	1	1.912	12	016	2	003	3	212	3
17		9	max	70.928	1	1078.592	3	107.648	1	0	3	.095	1	.886	1
18			min	2.335	15	-750.295	1	2.862	12	016	2	0	12	-1.2	3
19		10	max	70.928	1	1311.746	3	136.801	1	0	3	.22	1	1.739	1
20			min	2.335	15	-910.936	1	3.812	12	016	2	.004	12	-2.429	3
21		11	max	70.928	1	750.295	1	-2.862	12	.016	2	.095	1	.886	1
22			min	2.335	15	-1078.592	3	-107.648	1	0	3	0	12	-1.2	3
23		12	max	70.928	1	589.653	1	-1.912	12	.016	2	.001	2	.197	1
24			min	2.335	15	-845.438	3	-78.495	1	0	3	003	3	212	3
25		13	max	70.928	1	429.011	1	961	12	.016	2	002	15	.538	3
26			min	2.335	15	-612.283	3	-49.343	1	0	3	067	1	326	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	. LC	z-z Mome	. LC
27		14	max	70.928	1	268.369	1	.046	3	.016	2	003	15	1.047	3
28			min	2.335	15	-379.129	3	-20.19	1	0	3	102	1	685	1
29		15	max	70.928	1_	107.727	1	8.963	1	.016	2	003	12	1.317	3
30			min	2.335	15	-145.975	3	.304	15	0	3	108	1	878	1
31		16	max	70.928	1	87.179	3	38.116	1	.016	2	002	12	1.347	3
32			min	2.335	15	-52.915	1	1.254	15	0	3	084	1	906	1
33		17	max	70.928	1_	320.333	3	67.269	1	.016	2	0	3	1.138	3
34			min	2.335	15	-213.557	1	2.205	15	0	3	03	1	769	1
35		18	max	70.928	1	553.487	3	96.422	1	.016	2	.054	1	.689	3
36			min	2.335	15	-374.199	1	3.155	15	0	3	.002	15	467	1
37		19	max	70.928	1_	786.641	3	125.575	1	.016	2	.168	1	0	1
38			min	2.335	15	-534.841	1	4.106	15	0	3	.006	15	0	3
39	M14	1	max	34.692	1_	573.838	1	-4.241	15	.011	3	.194	1	0	1
40			min	1.143	15	-627.108	3	-129.718	1	013	1	.006	15	0	3
41		2	max	34.692	1	413.196	1	-3.29	15	.011	3	.075	1	.552	3
42			min	1.143	15	-447.871	3	-100.565	1	013	1	.003	15	507	1
43		3	max	34.692	1_	252.555	1	-2.34	15	.011	3	.002	3	.921	3
44			min	1.143	15	-268.633	3	-71.412	1	013	1	013	1	849	1
45		4	max	34.692	1	91.913	1	-1.389	15	.011	3	001	12	1.105	3
46			min	1.143	15	-89.395	3	-42.259	1	013	1	071	1	-1.026	1
47		5	max	34.692	1_	89.843	3	439	15	.011	3	003	12	1.104	3
48			min	1.143	15	-68.729	1	-13.106	1	013	1	1	1	-1.038	1
49		6	max	34.692	1_	269.08	3	16.046	1	.011	3	003	15	.92	3
50			min	1.143	15	-229.371	1	243	3	013	1	098	1	885	1
51		7	max	34.692	1	448.318	3	45.199	1	.011	3	002	15	.551	3
52			min	1.143	15	-390.013	1	.83	12	013	1	067	1	567	1
53		8	max	34.692	1	627.556	3	74.352	1	.011	3	0	10	001	15
54			min	1.143	15	-550.655	1	1.78	12	013	1	005	1	096	2
55		9	max	34.692	1	806.793	3	103.505	1	.011	3	.086	1	.565	1
56			min	1.143	15	-711.297	1	2.73	12	013	1	0	12	739	3
57		10	max	34.692	1	986.031	3	132.658	1	.011	3	.207	1	1.379	1
58			min	1.143	15	-871.939	1	3.681	12	013	1	.004	12	-1.66	3
59		11	max	34.692	1	711.297	1	-2.73	12	.013	1	.086	1	.565	1
60			min	1.143	15	-806.793	3	-103.505	1	011	3	0	12	739	3
61		12	max	34.692	1	550.655	1	-1.78	12	.013	1	0	10	001	15
62			min	1.143	15	-627.556	3	-74.352	1	011	3	005	1	096	2
63		13	max	34.692	1	390.013	1	83	12	.013	1	002	15	.551	3
64			min	1.143	15	-448.318	3	-45.199	1	011	3	067	1	567	1
65		14	max	34.692	1	229.371	1	.243	3	.013	1	003	15	.92	3
66			min	1.143	15	-269.08	3	-16.046	1	011	3	098	1	885	1
67		15	max		1_	68.729	1	13.106	1	.013	1	003	12	1.104	3
68			min	1.143	15	-89.843	3	.439	15	011	3	1	1	-1.038	1
69		16	max	34.692	1	89.395	3	42.259	1	.013	1	001	12	1.105	3
70			min	1.143	15	-91.913	1	1.389	15	011	3	071	1	-1.026	1
71		17	max	34.692	1_	268.633	3	71.412	1	.013	_1_	.002	3	.921	3
72			min	1.143	15	-252.555	1	2.34	15	011	3	013	1	849	1
73		18	max		1_	447.871	3	100.565	1	.013	1_	.075	1_	.552	3
74			min	1.143	15	-413.196	1	3.29	15	011	3	.003	15	507	1
75		19	max	34.692	1	627.108	3	129.718	1	.013	1	.194	1	0	1
76			min	1.143	15	-573.838	1_	4.241	15	011	3	.006	15	0	3
77	<u>M15</u>	1	max	-1.197	15	733.531	2	-4.24	15	.013	2	.194	1	0	2
78			min	-36.243	1	-354.52	3	-129.712		009	3	.006	15	0	3
79		2	max	-1.197	15	525.552	2	-3.289	15	.013	2	.075	1	.314	3
80			min	-36.243	1_	-256.156	3	-100.559		009	3	.002	15	647	2
81		3	max	-1.197	15	317.573	2	-2.339	15	.013	2	.002	3	.527	3
82			min	-36.243	1_	-157.792	3	-71.406	1_	009	3	013	1	-1.08	2
83		4	max	-1.197	15	109.595	2	-1.389	15	.013	2	001	12	.638	3

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]		z Shear[lb]	LC	Torque[k-ft]		y-y Mome	LC	z-z Mome	
84			min	-36.243	1	-59.428	3	-42.253	1	009	3	071	1	-1.3	2
85		5	max	-1.197	15	38.936	3	438	15	.013	2	003	12	.649	3
86			min	-36.243	1	-98.384	2	-13.1	1	009	3	1	1	-1.306	2
87		6	max	-1.197	15	137.3	3	16.052	1	.013	2	003	15	.558	3
88			min	-36.243	1	-306.363	2	165	3	009	3	098	1	-1.098	2
89		7	max	-1.197	15	235.664	3	45.205	1	.013	2	002	15	.366	3
90			min	-36.243	1	-514.341	2	.879	12	009	3	067	1	676	2
91		8	max	-1.197	15	334.028	3	74.358	1	.013	2	0	10	.074	3
92			min	-36.243	1	-722.32	2	1.829	12	009	3	005	1	056	1
93		9	max	-1.197	15	432.392	3	103.511	1	.013	2	.086	1	.809	2
94			min	-36.243	1	-930.299	2	2.779	12	009	3	0	12	32	3
95		10	max	-1.197	15	530.756	3	132.664	1	.013	2	.207	1	1.872	2
96			min	-36.243	1	-1138.278	2	3.73	12	009	3	.004	12	815	3
97		11	max	-1.197	15	930.299	2	-2.779	12	.009	3	.086	1	.809	2
98			min	-36.243	1	-432.392	3	-103.511	1	013	2	0	12	32	3
99		12	max	-1.197	15	722.32	2	-1.829	12	.009	3	0	10	.074	3
100			min	-36.243	1	-334.028	3	-74.358	1	013	2	005	1	056	1
101		13	max	-1.197	15	514.341	2	879	12	.009	3	002	15	.366	3
102			min	-36.243	1	-235.664	3	-45.205	1	013	2	067	1	676	2
103		14	max	-1.197	15	306.363	2	.165	3	.009	3	003	15	.558	3
104			min	-36.243	1	-137.3	3	-16.052	1	013	2	098	1	-1.098	2
105		15	max	-1.197	15	98.384	2	13.1	1	.009	3	003	12	.649	3
106			min	-36.243	1	-38.936	3	.438	15	013	2	1	1	-1.306	2
107		16	max	-1.197	15	59.428	3	42.253	1	.009	3	001	12	.638	3
108			min	-36.243	1	-109.595	2	1.389	15	013	2	071	1	-1.3	2
109		17	max	-1.197	15	157.792	3	71.406	1	.009	3	.002	3	.527	3
110			min	-36.243	1	-317.573	2	2.339	15	013	2	013	1	-1.08	2
111		18	max	-1.197	15	256.156	3	100.559	1	.009	3	.075	1	.314	3
112			min	-36.243	1	-525.552	2	3.289	15	013	2	.002	15	647	2
113		19	max	-1.197	15	354.52	3	129.712	1	.009	3	.194	1	0	2
114			min	-36.243	1	-733.531	2	4.24	15	013	2	.006	15	0	3
115	M16	1	max	-2.47	15	695.928	2	-4.11	15	.013	1	.169	1	0	2
116			min	-74.989	1	-325.856	3	-125.787	1	012	3	.006	15	0	3
117		2	max	-2.47	15	487.949	2	-3.16	15	.013	1	.055	1	.284	3
118			min	-74.989	1	-227.492	3	-96.634	1	012	3	.002	15	608	2
119		3	max	-2.47	15	279.97	2	-2.209	15	.013	1	0	3	.468	3
120			min	-74.989	1	-129.128	3	-67.481	1	012	3	029	1	-1.003	2
121		4	max	-2.47	15	71.991	2	-1.259	15	.013	1	002	12	.55	3
122			min	-74.989	1	-30.764	3	-38.328	1	012	3	084	1	-1.184	2
123		5	max	-2.47	15	67.6	3	308	15	.013	1	003	12	.531	3
124				-74.989	1	-135.987	2	-9.176	1	012	3	108		-1.151	2
125		6	max	-2.47	15		3	19.977	1	.013	1	003	15	.411	3
126		Ť	min		1	-343.966		.177	12	012	3	102	1	904	2
127		7	max	-2.47	15	264.328	3	49.13	1	.013	1	002	15	.19	3
128			min	-74.989	1	-551.945	2	1.127	12	012	3	067	1	444	2
129		8	max	-2.47	15	362.692	3	78.283	1	.013	1	0	10	.23	2
130			min	-74.989	1	-759.924	2	2.078	12	012	3	002	3	133	3
131		9	max	-2.47	15	461.056	3	107.436	1	.013	1	.094	1	1.118	2
132			min	-74.989	1	-967.902	2	3.028	12	012	3	.001	12	556	3
133		10	max	-2.47	15	559.42	3	136.589	1	.013	1	.219	1	2.22	2
134		10	min	-74.989	1	-1175.881	2	3.978	12	012	3	.005	12	-1.08	3
135		11	max	-2.47	15	967.902	2	-3.028	12	.012	3	.094	1	1.118	2
136			min	-74.989	1	-461.056	3	-107.436		013	1	.001	12	556	3
137		12	max	-74.969 -2.47	15	759.924	2	-2.078	12	.012	3	0	10	.23	2
138		14	min	-74.989	1	-362.692	3	-78.283	1	013	1	002	3	133	3
139		12	max	-74.969 -2.47	15	551.945	2	-10.203 -1.127	12	.012	3	002 002	15	<u>133 </u>	3
140		13		-2.47 -74.989	1	-264.328		-1.12 <i>1</i> -49.13	1		1	067	1		2
140			min	-14.909		-204.328	J	-49.13		013		007		444	Z

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]	LC	z Shear[lb]		Torque[k-ft]	LC	y-y Mome		z-z Mome	LC_
141		14	max	-2.47	15	343.966	2	177	12	.012	3	003	15	.411	3
142			min	-74.989	_1_	-165.964	3	-19.977	1	013	_1_	102	1_	904	2
143		15	max	-2.47	<u> 15</u>	135.987	2	9.176	1_	.012	3	003	12	.531	3
144			min	-74.989	1	-67.6	3	.308	15	013	1	108	1	-1.151	2
145		16	max	-2.47	15	30.764	3	38.328	1	.012	3	002	12	.55	3
146			min	-74.989	1	-71.991	2	1.259	15	013	1	084	1	-1.184	2
147		17	max	-2.47	15	129.128	3	67.481	1	.012	3	0	3	.468	3
148			min	-74.989	1	-279.97	2	2.209	15	013	1	029	1	-1.003	2
149		18	max	-2.47	15	227.492	3	96.634	1	.012	3	.055	1	.284	3
150			min	-74.989	1	-487.949	2	3.16	15	013	1	.002	15	608	2
151		19	max	-2.47	15	325.856	3	125.787	1	.012	3	.169	1	0	2
152			min	-74.989	1	-695.928	2	4.11	15	013	1	.006	15	0	3
153	M2	1		1176.816	1	2.281	4	1.012	1	0	3	0	3	0	1
154	1412		min	-1401.115	3	.537	15	.033	15	0	1	0	1	0	1
155		2		1177.144	1	2.266	4	1.012	1	0	3	0	1	0	15
156		_	min	-1400.869	3	.534	15	.033	15	0	1	0	15	0	4
157		3	max		1	2.251	4	1.012	1	0	3	0	1	0	15
158		3		-1400.622	3	.53	15	.033	15	0	1	0	15		4
		4	min											001	
159		4		1177.801	1	2.236	4	1.012	1	0	3	0	1_	0	15
160		_	min	-1400.376	3	.527	15	.033	15	0	1	0	15	002	4
161		5		1178.129	_1_	2.22	4	1.012	1	0	3	0	_1_	0	15
162			min	-1400.13	3_	.523	15	.033	15	0	1	0	15	002	4
163		6		1178.458	1_	2.205	4	1.012	1	0	3	.001	_1_	0	15
164			min	-1399.883	3	.519	15	.033	15	0	1	0	15	002	4
165		7	max	1178.786	_1_	2.19	4	1.012	1	0	3	.001	_1_	0	15
166			min	-1399.637	3	.516	15	.033	15	0	1	0	15	003	4
167		8	max		1	2.174	4	1.012	1	0	3	.002	1	0	15
168			min	-1399.391	3	.512	15	.033	15	0	1	0	15	003	4
169		9	max	1179.443	1	2.159	4	1.012	1	0	3	.002	1	0	15
170			min	-1399.144	3	.509	15	.033	15	0	1	0	15	004	4
171		10	max	1179.772	1	2.144	4	1.012	1	0	3	.002	1	001	15
172			min	-1398.898	3	.505	15	.033	15	0	1	0	15	004	4
173		11	max	1180.1	1	2.129	4	1.012	1	0	3	.002	1	001	15
174			min	-1398.652	3	.501	15	.033	15	0	1	0	15	005	4
175		12		1180.429	1	2.113	4	1.012	1	0	3	.002	1	001	15
176		12	min	-1398.405	3	.498	15	.033	15	0	1	0	15	005	4
177		13	max		1	2.098	4	1.012	1	0	3	.003	1	001	15
178		13	min	-1398.159	3	.494	15	.033	15	0	1	0	15	006	4
179		14		1181.085	_ <u></u>	2.083	4	1.012	1	0	3	.003	1	001	15
180		14	min	-1397.913	3	.491	15	.033	15	0	1	0	15	006	4
		15			<u> </u>					_		_			
181		15		1181.414	<u>ا</u>	2.068	4	1.012	1_	0	3	.003	1_	002	15
182		40	min	-1397.666	3	.487	15	.033	15	0	1	0	<u>15</u>	007	4
183		16		1181.742	1_	2.052	4	1.012	1	0	3	.003	1_	002	15
184		4-		-1397.42	3	.484	15	.033	15	0	1_	0	15	007	4
185		17		1182.071	1_	2.037	4	1.012	1_	0	3	.004	1_	002	15
186		4.0	min	-1397.174	3	.48	15	.033	15	0	1	0	15	008	4
187		18		1182.399	_1_	2.022	4	1.012	1	0	3	.004	_1_	002	15
188			min	-1396.927	3	.476	15	.033	15	0	1_	0	15	008	4
189		19		1182.728	_1_	2.007	4	1.012	1	0	3	.004	_1_	002	15
190			min	-1396.681	3	.473	15	.033	15	0	1	0	15	009	4
191	M3	1	max	417.956	2	8.078	4	.017	1	0	3	0	_1_	.009	4
192			min	-538.795	3	1.899	15	0	15	0	1	0	15	.002	15
193		2	max	417.786	2	7.306	4	.017	1	0	3	0	1	.005	2
194			min		3	1.718	15	0	15	0	1	0	15	0	12
195		3		417.616	2	6.533	4	.017	1	0	3	0	1	.003	2
196			min		3	1.536	15	0	15	0	1	0	15	0	3
197		4	1	417.445	2	5.761	4	.017	1	0	3	0	1	0	2
															

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>LC</u>
198			min	-539.178	3	1.355	15	0	15	0	1	0	15	002	3
199		5	max	417.275	2	4.989	4	.017	1	0	3	0	1	0	15
200			min	-539.306	3	1.173	15	0	15	0	1	0	15	003	3
201		6	max	417.105	2	4.216	4	.017	1	0	3	0	1	001	15
202			min	-539.433	3	.992	15	0	15	0	1	0	15	004	4
203		7	max	416.934	2	3.444	4	.017	1	0	3	0	1	001	15
204			min	-539.561	3	.81	15	0	15	0	1	0	15	006	4
205		8	max	416.764	2	2.671	4	.017	1	0	3	0	1	002	15
206			min	-539.689	3	.629	15	0	15	0	1	0	15	007	4
207		9	max	416.594	2	1.899	4	.017	1	0	3	0	1	002	15
208			min	-539.817	3	.447	15	0	15	0	1	0	15	008	4
209		10	max	416.423	2	1.126	4	.017	1	0	3	0	1	002	15
210		10	min	-539.944	3	.265	15	0	15	0	1	0	15	009	4
211		11	max	416.253	2	.45	2	.017	1	0	3	0	1	002	15
212			min	-540.072	3	032	3	0	15	0	1	0	15	002	4
213		12	max		2	032	15	.017	1	0	3	0	1	002	15
214		12	min	-540.2	3	483	3	0	15	0	1	0	15	002	4
215		12				463	15	.017	1		3		1		15
		13	max	415.912	2					0	1	0		002	
216		4.4	min	-540.328	3	-1.191	4	0	15	0		0	15	009	4
217		14	max	415.742	2	461	15	.017	1	0	3	0	1	002	15
218		4.5	min	-540.456	3	-1.963	4	0	15	0	1	0	15	008	4
219		15	max	415.571	2	642	15	.017	1	0	3	0	1	002	15
220			min	-540.583	3_	-2.736	4	0	15	0	1	0	15	007	4
221		16	max	415.401	2	824	15	.017	1	0	3	0	1_	001	15
222			min	-540.711	3	-3.508	4	0	15	0	1	0	15	006	4
223		17	max	415.231	2	-1.006	15	.017	1	0	3	0	1_	001	15
224			min	-540.839	3	-4.281	4	0	15	0	1	0	15	004	4
225		18	max	415.06	2	-1.187	15	.017	1	0	3	0	1	0	15
226			min	-540.967	3	-5.053	4	0	15	0	1	0	15	002	4
227		19	max	414.89	2	-1.369	15	.017	1	0	3	0	1	0	1
228			min	-541.094	3	-5.825	4	0	15	0	1	0	15	0	1
229	M4	1	max	1306.335	1	0	1	223	15	0	1	0	1	0	1
230			min	-444.911	3	0	1	-6.787	1	0	1	0	10	0	1
231		2	max	1306.505	1	0	1	223	15	0	1	0	15	0	1
232			min	-444.784	3	0	1	-6.787	1	0	1	0	1	0	1
233		3	max		1	0	1	223	15	0	1	0	15	0	1
234			min	-444.656	3	0	1	-6.787	1	0	1	001	1	0	1
235		4	max		1	0	1	223	15	0	1	0	15	0	1
236			min	-444.528	3	0	1	-6.787	1	0	1	002	1	0	1
237		5		1307.016	1	0	1	223	15	0	1	0	15	0	1
238		T .	min		3	0	1	-6.787	1	0	1	003	1	0	1
239		6		1307.187	1	0	1	223	15	0	1	0	15	0	1
240			min	-444.273	3	0	1	-6.787	1	0	1	004	1	0	1
241		7		1307.357	<u> </u>	0	1	223	15	0	1	004	15	0	1
241			min		3	0	1	223 -6.787	1	0	1	005	1	0	1
242		8		1307.527	<u>ာ</u> 1		1	223	15		1	005	15		1
		0				0	1			0	1	_	1	0	1
244		0	min		3	0		-6.787	1_	0		005	15	0	_
245		9		1307.698	1	0	1	223	15	0	1	0		0	1
246		40		-443.889	3	0		-6.787	1_	0		006	1_	0	1
247		10		1307.868	1	0	1	223	15	0	1	0	15	0	1
248		4.4		-443.762	3	0	1	-6.787	1_	0	1	007	1_	0	1
249		11		1308.038	1_	0	1	223	15	0	1	0	15	0	1
250			min		3	0	1	-6.787	1	0	1	008	1	0	1
251		12		1308.209	1_	0	1	223	15	0	1	0	15	0	1
252			min		3	0	1	-6.787	1	0	1	008	1	0	1
253		13	max	1308.379		0	1	223	15	0	1	0	15	0	1
254			min	-443.378	3	0	1	-6.787	1	0	1	009	1	0	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
255		14	max	1308.549	1	0	1	223	15	0	1	0	15	0	1
256			min	-443.25	3	0	1	-6.787	1	0	1_	01	1	0	1
257		15	max		<u>1</u>	0	1	223	15	0	<u>1</u>	0	15	0	1
258			min	-443.123	3	0	1	-6.787	1	0	1	011	1	0	1
259		16	max	1308.89	_1_	0	1	223	15	0	_1_	0	15	0	1
260			min	-442.995	3	0	1	-6.787	1	0	1	012	1	0	1
261		17	max		_1_	0	1	223	15	0	_1_	0	15	0	1
262			min	-442.867	3	0	1	-6.787	1	0	1	012	1	0	1
263		18		1309.231	_1_	0	1	223	15	0	_1_	0	15	0	1
264			min	-442.739	3	0	1	-6.787	1	0	1_	013	1	0	1
265		19	max	1309.401	_1_	0	1	223	15	0	_1_	0	15	0	1
266			min	-442.612	3_	0	1	-6.787	1	0	_1_	014	1	0	1
267	<u>M6</u>	1		3763.968	_1_	2.965	2	0	1_	0	_1_	0	1_	0	1
268			min	-4559.244	3	119	3	0	1	0	1	0	1	0	1
269		2		3764.296	1_	2.953	2	0	1	0	1	0	1	0	3
270			min	-4558.998	3	128	3	0	1	0	1_	0	1	0	2
271		3		3764.625	1_	2.941	2	0	1	0	1	0	1	0	3
272			min	-4558.752	3	137	3	0	1	0	1_	0	1	001	2
273		4		3764.953	1_	2.929	2	0	1	0	_1_	0	1	0	3
274		_	min	-4558.505	3_	146	3	0	1	0	1_	0	1	002	2
275		5		3765.282	1_	2.917	2	0	1	0	1	0	1	0	3
276		_	min	-4558.259	3	155	3	0	1	0	1_	0	1	003	2
277		6	max		_1_	2.906	2	0	1_	0	_1_	0	1_	0	3
278			min	-4558.013	3	164	3	0	1	0	1	0	1	003	2
279		7		3765.938	_1_	2.894	2	0	1_	0	1_	0	1_	0	3
280			min	-4557.766	3	173	3	0	1	0	1	0	1	004	2
281		8	max	3766.267	_1_	2.882	2	0	1	0	_1_	0	1	0	3
282			min		3	182	3	0	1	0	1_	0	1	005	2
283		9	max	3766.595	_1_	2.87	2	0	1	0	1	0	1	0	3
284			min	-4557.274	3	191	3	0	1	0	1	0	1	005	2
285		10	max	3766.924	_1_	2.858	2	0	1	0	_1_	0	1	0	3
286			min	-4557.027	3	199	3	0	1	0	1	0	1	006	2
287		11		3767.252	_1_	2.846	2	0	1_	0	_1_	0	1	0	3
288			min	-4556.781	3	208	3	0	1	0	1	0	1	006	2
289		12		3767.581	_1_	2.834	2	0	1	0	1_	0	1_	0	3
290			min	-4556.535	3	217	3	0	1	0	1_	0	1	007	2
291		13		3767.909	1_	2.822	2	0	1	0	1	0	1	0	3
292			min	-4556.289	3	226	3	0	1	0	1_	0	1	008	2
293		14		3768.237	1_	2.81	2	0	1	0	_1_	0	1	0	3
294			min	-4556.042	3	235	3	0	1	0	1_	0	1	008	2
295		15		3768.566	_1_	2.799	2	0	1	0	_1_	0	1	0	3
296			min		3	244	3	0	1	0	1	0	1	009	2
297		16		3768.894	_1_	2.787	2	0	1	0		0	1	0	3
298			min		3_	253	3	0	1	0	1	0	1	01	2
299		17		3769.223	1_	2.775	2	0	1	0	1	0	1	0	3
300		10	min	-4555.303	3	262	3	0	1	0	1	0	1	01	2
301		18		3769.551	_1_	2.763	2	0	1	0	_1_	0	1	0	3
302			min	-4555.057	3_	271	3	0	1	0	1	0	1	011	2
303		19		3769.88	1_	2.751	2	0	1	0	1	0	1	0	3
304			min	-4554.811	3	28	3	0	1	0	1	0	1	011	2
305	M7	1		1561.693	2	8.115	4	0	1	0	1	0	1	.011	2
306			min	-1692.079	3	1.904	15	0	1	0	1	0	1	0	3
307		2		1561.523	2	7.342	4	0	1	0		0	1	.009	2
308			min	-1692.207	3_	1.723	15	0	1	0	1	0	1	002	3
309		3		1561.353	2	6.57	4	0	1	0	1	0	1	.006	2
310			min	-1692.335	3	1.541	15	0	1	0	1	0	1	004	3
311		4	max	1561.182	2	5.798	4	0	_ 1_	0	_1_	0	1	.004	2

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
312			min	-1692.463	3	1.36	15	0	1	0	1	0	1	005	3
313		5	max	1561.012	2	5.025	4	0	1	0	1	0	1	.002	2
314			min	-1692.59	3	1.178	15	0	1	0	1	0	1	006	3
315		6	max	1560.842	2	4.253	4	0	1	0	1	0	1	0	2
316			min	-1692.718	3	.996	15	0	1	0	1	0	1	007	3
317		7	max	1560.671	2	3.48	4	0	1	0	1	0	1	001	15
318			min	-1692.846	3	.815	15	0	1	0	1	0	1	007	3
319		8	max	1560.501	2	2.708	4	0	1	0	1	0	1	002	15
320			min	-1692.974	3	.564	12	0	1	0	1	0	1	008	3
321		9	max	1560.33	2	2.103	2	0	1	0	1	0	1	002	15
322			min	-1693.101	3	.263	12	0	1	0	1	0	1	008	4
323		10	max	1560.16	2	1.502	2	0	1	0	1	0	1	002	15
324			min	-1693.229	3	105	3	0	1	0	1	0	1	009	4
325		11	max	1559.99	2	.9	2	0	1	0	1	0	1	002	15
326			min	-1693.357	3	556	3	0	1	0	1	0	1	009	4
327		12	max	1559.819	2	.298	2	0	1	0	1	0	1	002	15
328			min	-1693.485	3	-1.008	3	0	1	0	1	0	1	009	4
329		13	max	1559.649	2	275	15	0	1	0	1	0	1	002	15
330			min	-1693.613	3	-1.459	3	0	1	0	1	0	1	009	4
331		14	max	1559.479	2	456	15	0	1	0	1	0	1	002	15
332			min	-1693.74	3	-1.927	4	0	1	0	1	0	1	008	4
333		15	max	1559.308	2	638	15	0	1	0	1	0	1	002	15
334			min	-1693.868	3	-2.699	4	0	1	0	1	0	1	007	4
335		16	max	1559.138	2	819	15	0	1	0	1	0	1	001	15
336			min	-1693.996	3	-3.472	4	0	1	0	1	0	1	006	4
337		17	max	1558.968	2	-1.001	15	0	1	0	1	0	1	0	15
338			min	-1694.124	3	-4.244	4	0	1	0	1	0	1	004	4
339		18	max	1558.797	2	-1.182	15	0	1	0	1	0	1	0	15
340			min	-1694.251	3	-5.016	4	0	1	0	1	0	1	002	4
341		19	max	1558.627	2	-1.364	15	0	1	0	1	0	1	0	1
342			min	-1694.379	3	-5.789	4	0	1	0	1	0	1	0	1
343	M8	1	max	3870.537	1	0	1	0	1	0	1	0	1	0	1
344			min	-1492.411	3	0	1	0	1	0	1	0	1	0	1
345		2	max	3870.708	1	0	1	0	1	0	1	0	1	0	1
346			min	-1492.284	3	0	1	0	1	0	1	0	1	0	1
347		3	max	3870.878	1	0	1	0	1	0	1	0	1	0	1
348			min	-1492.156	3	0	1	0	1	0	1	0	1	0	1
349		4	max	3871.048	1	0	1	0	1	0	1	0	1	0	1
350			min	-1492.028	3	0	1	0	1	0	1	0	1	0	1
351		5	max	3871.219	1	0	1	0	1	0	1	0	1	0	1
352			min	-1491.9	3	0	1	0	1	0	1	0	1	0	1
353		6	max	3871.389	1	0	1	0	1	0	1	0	1	0	1
354			min	-1491.773	3	0	1	0	1	0	1	0	1	0	1
355		7	max	3871.56	1	0	1	0	1	0	1	0	1	0	1
356			min	-1491.645	3	0	1	0	1	0	1	0	1	0	1
357		8	max	3871.73	1_	0	1	0	1	0	1	0	1	0	1
358			min	-1491.517	3	0	1	0	1	0	1	0	1	0	1
359		9	max	3871.9	1_	0	1	0	1	0	1	0	1	0	1
360			min		3	0	1	0	1	0	1	0	1	0	1
361		10	max	3872.071	1	0	1	0	1	0	1	0	1	0	1
362			min	-1491.261	3	0	1	0	1	0	1	0	1	0	1
363		11	max	3872.241	1	0	1	0	1	0	1	0	1	0	1
364			min		3	0	1	0	1	0	1	0	1	0	1
365		12	max	3872.411	1	0	1	0	1	0	1	0	1	0	1
366			min		3	0	1	0	1	0	1	0	1	0	1
367		13	max	3872.582	1	0	1	0	1	0	1	0	1	0	1
368			min	-1490.878	3	0	1	0	1	0	1	0	1	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
369		14	max	3872.752	1_	0	1	0	1	0	1	0	1	0	1
370			_	-1490.75	3	0	1	0	1	0	1	0	1	0	1
371		15		3872.922	_1_	0	1	0	1	0	_1_	0	1	0	1
372			min		3_	0	1	0	1	0	1_	0	1	0	1
373		16		3873.093	1	0	1	0	1	0	1	0	1	0	1
374		47		-1490.495	3	0	1	0	1	0	1	0	1	0	1
375		17		3873.263	<u>1</u> 3	0	1	0	1	0	1	0	1	0	1
376 377		18		3873.433	<u>ာ</u> 1	0	1	0	1	0	1	0	1	0	1
378		10		-1490.239	3	0	1	0	1	0	1	0	1	0	1
379		19		3873.604		0	1	0	1	0	1	0	1	0	1
380		13	min		3	0	1	0	1	0	1	0	1	0	1
381	M10	1		1176.816	1	2.281	4	033	15	0	1	0	1	0	1
382		•	min	-1401.115	3	.537	15	-1.012	1	0	3	0	3	0	1
383		2	max	1177.144	1	2.266	4	033	15	0	1	0	15	0	15
384			min	-1400.869	3	.534	15	-1.012	1	0	3	0	1	0	4
385		3	max	1177.473	1	2.251	4	033	15	0	1	0	15	0	15
386			min	-1400.622	3	.53	15	-1.012	1	0	3	0	1	001	4
387		4	max	1177.801	_1_	2.236	4	033	15	0	1	0	15	0	15
388			min		3	.527	15	-1.012	1	0	3	0	1	002	4
389		5		1178.129	_1_	2.22	4	033	15	0	_1_	0	15	0	15
390			_	-1400.13	3_	.523	15	-1.012	1_	0	3	0	1_	002	4
391		6		1178.458	_1_	2.205	4	033	15	0	1	0	15	0	15
392		_	min	-1399.883	3	.519	15	-1.012	1_	0	3	001	1	002	4
393		7		1178.786	1	2.19	4	033	15	0	1_	0	15	0	15
394		0	min	-1399.637	3	.516	15	-1.012	1_	0	3	001	1	003	4
395		8		1179.115 -1399.391	1	2.174 .512	<u>4</u> 15	033	<u>15</u>	0	<u>1</u>	002	<u>15</u>	003	15
396 397		9	min	1179.443	<u>3</u> 1	2.159	4	-1.012 033	15	0	<u> </u>	<u>002</u> 0	15	003 0	15
398		9		-1399.144	3	.509	15	-1.012	1	0	3	002	1	004	4
399		10		1179.772		2.144	4	033	15	0	1	0	15	004	15
400		10	min	-1398.898	3	.505	15	-1.012	1	0	3	002	1	004	4
401		11	max		1	2.129	4	033	15	0	1	0	15	001	15
402			min	-1398.652	3	.501	15	-1.012	1	0	3	002	1	005	4
403		12	max	1180.429	1	2.113	4	033	15	0	1	0	15	001	15
404			min	-1398.405	3	.498	15	-1.012	1	0	3	002	1	005	4
405		13	max	1180.757	1	2.098	4	033	15	0	1	0	15	001	15
406			min	-1398.159	3	.494	15	-1.012	1	0	3	003	1	006	4
407		14		1181.085	_1_	2.083	4	033	15	0	1	0	15	001	15
408				-1397.913	3	.491	15	-1.012	1	0	3	003	1	006	4
409		15		1181.414	_1_	2.068	4	033	15	0	1_	0	15	002	15
410			_	-1397.666	3_	.487	15	-1.012	1_	0	3	003	1	007	4
411		16		1181.742	1_	2.052	4	033	15	0	1	0	15	002	15
412		47		-1397.42	3	.484	15	-1.012	1_	0	3	003	1	007	4
413		17		1182.071 -1397.174	<u>1</u> 3	2.037	4 15	033	<u>15</u>	0	3	004	1 <u>5</u>	002	15
414		10				.48		<u>-1.012</u>	_					008	4
415		18		1182.399 -1396.927	<u>1</u> 3	2.022 .476	4 15	033 -1.012	<u>15</u>	0	<u>1</u> 3	004	1 <u>5</u>	002 008	15
417		19		1182.728	<u> </u>	2.007	4	033	15	0	1	0	15	002	15
418		13		-1396.681	3	.473	15	-1.012	1	0	3	004	1	002	4
419	M11	1		417.956	2	8.078	4	0	15	0	1	0	15	.009	4
420				-538.795	3	1.899	15	017	1	0	3	0	1	.002	15
421		2	_	417.786	2	7.306	4	0	15	0	1	0	15	.005	2
422				-538.922	3	1.718	15	017	1	0	3	0	1	0	12
423		3	max		2	6.533	4	0	15	0	1	0	15	.003	2
424			min		3	1.536	15	017	1	0	3	0	1	0	3
425		4	max	417.445	2	5.761	4	0	15	0	1	0	15	0	2

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]		z Shear[lb]	LC	Torque[k-ft]		y-y Mome	LC	z-z Mome	<u>LC</u>
426			min	-539.178	3	1.355	15	017	1	0	3	0	1	002	3
427		5	max	417.275	2	4.989	4	0	15	0	1	0	15	0	15
428			min	-539.306	3	1.173	15	017	1	0	3	0	1	003	3
429		6	max	417.105	2	4.216	4	0	15	0	1	0	15	001	15
430			min	-539.433	3	.992	15	017	1	0	3	0	1	004	4
431		7	max	416.934	2	3.444	4	0	15	0	1	0	15	001	15
432			min	-539.561	3	.81	15	017	1	0	3	0	1	006	4
433		8	max	416.764	2	2.671	4	0	15	0	1	0	15	002	15
434			min	-539.689	3	.629	15	017	1	0	3	0	1	007	4
435		9	max	416.594	2	1.899	4	0	15	0	1	0	15	002	15
436			min	-539.817	3	.447	15	017	1	0	3	0	1	008	4
437		10	max	416.423	2	1.126	4	0	15	0	1	0	15	002	15
438			min	-539.944	3	.265	15	017	1	0	3	0	1	009	4
439		11	max	416.253	2	.45	2	0	15	0	1	0	15	002	15
440			min	-540.072	3	032	3	017	1	0	3	0	1	009	4
441		12	max	416.082	2	098	15	0	15	0	1	0	15	002	15
442			min	-540.2	3	483	3	017	1	0	3	0	1	009	4
443		13	max	415.912	2	279	15	0	15	0	1	0	15	002	15
444			min		3	-1.191	4	017	1	0	3	0	1	009	4
445		14	max	415.742	2	461	15	0	15	0	1	0	15	002	15
446			min	-540.456	3	-1.963	4	017	1	0	3	0	1	008	4
447		15	max		2	642	15	0	15	0	1	0	15	002	15
448			min	-540.583	3	-2.736	4	017	1	0	3	0	1	007	4
449		16	max		2	824	15	0	15	0	1	0	15	001	15
450			min	-540.711	3	-3.508	4	017	1	0	3	0	1	006	4
451		17	max		2	-1.006	15	0	15	0	1	0	15	001	15
452			min	-540.839	3	-4.281	4	017	1	0	3	0	1	004	4
453		18	max	415.06	2	-1.187	15	0	15	0	1	0	15	0	15
454			min	-540.967	3	-5.053	4	017	1	0	3	0	1	002	4
455		19	max	414.89	2	-1.369	15	0	15	0	1	0	15	0	1
456			min	-541.094	3	-5.825	4	017	1	0	3	0	1	0	1
457	M12	1		1306.335	1	0	1	6.787	1	0	1	0	10	0	1
458			min	-444.911	3	0	1	.223	15	0	1	0	1	0	1
459		2		1306.505	1	0	1	6.787	1	0	1	0	1	0	1
460			min	-444.784	3	0	1	.223	15	0	1	0	15	0	1
461		3		1306.676	1	0	1	6.787	1	0	1	.001	1	0	1
462			min	-444.656	3	0	1	.223	15	0	1	0	15	0	1
463		4		1306.846	1	0	1	6.787	1	0	1	.002	1	0	1
464			min	-444.528	3	0	1	.223	15	0	1	0	15	0	1
465		5		1307.016	1	0	1	6.787	1	0	1	.003	1	0	1
466				-444.4		0	1	.223	15		1	0	15	0	1
467		6		1307.187	1	0	1	6.787	1	0	1	.004	1	0	1
468			min		3	0	1	.223	15	0	1	0	15	0	1
469		7		1307.357	1	0	1	6.787	1	0	1	.005	1	0	1
470			min	-444.145	3	0	1	.223	15	0	1	0	15	0	1
471		8		1307.527	1	0	1	6.787	1	0	1	.005	1	0	1
472			min		3	0	1	.223	15	0	1	0	15	0	1
473		9		1307.698	1	0	1	6.787	1	0	1	.006	1	0	1
474		Ť		-443.889	3	0	1	.223	15	0	1	0	15	0	1
475		10		1307.868	1	0	1	6.787	1	0	1	.007	1	0	1
476			min		3	0	1	.223	15	0	1	0	15	0	1
477		11		1308.038	1	0	1	6.787	1	0	1	.008	1	0	1
478			min		3	0	1	.223	15	0	1	0	15	0	1
479		12		1308.209	_ <u></u>	0	1	6.787	1	0	1	.008	1	0	1
480		14	min	-443.506	3	0	1	.223	15	0	1	.008	15	0	1
481		13		1308.379	_ <u></u>	0	1	6.787	1	0	1	.009	1	0	1
482		13		-443.378	3	0	1	.223	15	0	1	0	15	0	1
402			1111111	-440.010	J	U		.223	ΙÜ	U		U	IU	U	

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec	I	Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC		LC	z-z Mome	LC
483		14	max		_1_	0	1	6.787	1	0	_1_	.01	_1_	0	1
484			min	-443.25	3	0	1	.223	15	0	1_	0	15	0	1
485		15	max	1308.72	_1_	0	1	6.787	1	0	_1_	.011	_1_	0	1
486			min	-443.123	3	0	1	.223	15	0	1	0	15	0	1
487		16	max	1308.89	_1_	0	1_	6.787	1	0	_1_	.012	_1_	0	1
488			min	-442.995	3	0	1	.223	15	0	1_	0	15	0	1
489		17	max		_1_	0	1_	6.787	1	0	_1_	.012	_1_	0	1
490			min	-442.867	3	0	1	.223	15	0	_1_	0	15	0	1
491		18	max	1309.231	_1_	0	1	6.787	1	0	1	.013	1	0	1
492			min	-442.739	3	0	1	.223	15	0	1	0	15	0	1
493		19	max	1309.401	1	0	1	6.787	1	0	1	.014	1	0	1
494			min	-442.612	3	0	1	.223	15	0	1	0	15	0	1
495	M1	1	max	125.578	1	786.619	3	-2.335	15	0	1	.168	1	0	3
496			min	4.106	15	-533.625	1	-70.867	1	0	3	.006	15	016	2
497		2	max	125.949	1	785.582	3	-2.335	15	0	1	.131	1	.267	1
498			min	4.217	15	-535.009	1	-70.867	1	0	3	.004	15	414	3
499		3	max	321.81	3	608.177	1	-2.302	15	0	3	.094	1	.536	1
500			min	-195.055	2	-583.208	3	-70.029	1	0	1	.003	15	812	3
501		4	max		3	606.793	1	-2.302	15	0	3	.057	1	.215	1
502			min	-194.685	2	-584.246	3	-70.029	1	0	1	.002	15	504	3
503		5	max	322.367	3	605.409	1	-2.302	15	0	3	.02	1	004	15
504			min	-194.314	2	-585.283	3	-70.029	1	0	1	0	15	195	3
505		6	max	322.645	3	604.026	1	-2.302	15	0	3	0	15	.114	3
506			min	-193.943	2	-586.321	3	-70.029	1	0	1	017	1	435	2
507		7	max	322.923	3	602.642	1	-2.302	15	0	3	002	15	.423	3
508			min	-193.572	2	-587.359	3	-70.029	1	0	1	054	1	742	1
509		8	max	323.201	3	601.259	1	-2.302	15	0	3	003	15	.734	3
510			min	-193.202	2	-588.397	3	-70.029	1	0	1	091	1	-1.06	1
511		9	max		3	52.512	2	-3.445	15	0	9	.055	1	.855	3
512		3	min	-143.236	2	.42	15	-104.743	1	0	3	.002	15	-1.208	1
513		10	max	331.127	3	51.128	2	-3.445	15	0	9	0	15	.835	3
514		10	min	-142.865	2	.002	15	-104.743	1	0	3	0	1	-1.222	1
515		11	max	331.405	3	49.745	2	-3.445	15	0	9	002	15	.814	3
516			min	-142.494	2	-1.72	4	-104.743	1	0	3	056	1	-1.248	2
517		12	max	338.975	3	393.951	3	-2.248	15	0	2	.09	1	.711	3
518		12	min	-92.499	2	-684.201	2	-68.52	1	0	3	.003	15	-1.106	2
519		13	max	339.253	3	392.913	3	-2.248	15	0	2	.054	1	.503	3
520		13	min	-92.128	2	-685.585	2	-68.52	1	0	3	.002	15	745	1
521		14				391.875	3	-2.248	15	0	2	.002	1	.296	3
522		14	max min	-91.757	<u>3</u>	-686.969	2	-68.52	1	0	3	.016	15	398	1
		15				390.837			_						_
523		10	max		3		3	-2.248	15	0	2	0	<u>15</u>	.089	3
524		16	min		2	-688.352	2	-68.52	15	0	2	018 002	<u>1</u> 15	049 .344	2
525		10	max		3	389.8	3	-2.248		0					
526		17	min		2	-689.736	2	-68.52	1_	0	3	054	1_	117	3
527		17		340.366	3	388.762	3	-2.248	15	0	2	003	<u>15</u>	.708	2
528		40	min		2	-691.12	2	-68.52	1_	0	3	091	1_	322	3
529		18	max		<u>15</u>	697.729	2	-2.47	15	0	3	004	<u>15</u>	.356	2
530		10	min	-126.155	1_	-324.863	3	<u>-75.048</u>	1_	0	2	13	1_	159	3
531		19	max	-4.11	15	696.345	2	-2.47	15	0	3	006	15	.012	3
532			min		1_	-325.901	3	-75.048	1	0	2	169	1_	013	1
533	<u>M5</u>	1		273.596	1_	2623.428	3	0	1	0		0	1	.032	2
534			min	7.625	12	-1815.062	1	0	1_	0	<u>1</u>	0	1_	001	3
535		2	max		1_	2622.39	3	0	1	0	_1_	0	1_	.988	1
536			min		12	-1816.445	1	0	1	0	1	0	1_	-1.385	3
537		3		1029.525	3	1827.483	1	0	1	0	1	0	1_	1.903	1
538				-675.268	2	-1843.481	3	0	1	0	1_	0	1_	-2.715	3
539		4	max	1029.803	3	1826.099	1	0	1	0	1	0	_1_	.939	1

Model Name

Schletter, Inc. HCV

: HCV er :

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

E 40	Member	Sec	!	Axial[lb]		y Shear[lb]		_	LC	_	-	_	LC	z-z Mome	LC
540		_	min	-674.897	2	-1844.518	3	0	1	0	1_	0	1	-1.742	3
541		5		1030.081	3	1824.716	1	0	1	0	1	0	1	.019	9
542		_	min	-674.526	2	-1845.556	3	0	1	0	1_	0	1	769	3
543		6		1030.359	3	1823.332	1	0	1	0	1	0	1	.205	3
544		7	min	-674.156	2	-1846.594	3	0	_	0	1_	0	1	<u>-1.016</u>	2
545				1030.638	3_	1821.948 -1847.631	1	0	1	0	1	0	1	1.18	3
546		0	min	-673.785	2		3	0	1	0	1_4	0	1	-1.948	1
547		8		1030.916	3_	1820.565	1	0	1	0	1	0	1	2.155	3
548			min	-673.414	2	-1848.669	3	0	1	0	1	0	1	-2.909	1
549		9		1042.112	3_	176.099	2	0	1	0	1	0	1	2.478	3
550		40	min	-569.26	2	.417	15	0	-	0	1	0	1	-3.296	1
551		10	max		3	174.715	2	0	1	0	1	0	1	2.404	3
552		4.4	min	-568.889	2	0	15	0	1_	0	1_	0	1	-3.344	1
553		11		1042.668	3	173.332	2	0	1	0	1_	0	1	2.329	3
554		40	min	-568.518	2	-1.628	4	0	1	0	1	0	1	-3.427	2
555		12	max	1054.02	3	1223.629	3	0	1	0	1	0	1	2.045	3
556		40	min	-464.423	2	-2090.378	2	0	1	0	1_	0	1	-3.069	2
557		13		1054.298	3	1222.591	3	0	1	0	1	0	1	1.4	3
558		4.4	min	-464.052	2	-2091.761	2	0	1	0	1_	0	1	-1. <u>966</u>	1
559		14		1054.576	3	1221.554	3	0	1	0	1	0	1	.755	3
560		4.5	min	-463.681	2	-2093.145	2	0	1	0	1_	0	1	907	1
561		15		1054.854	3	1220.516	3	0	1	0	1	0	1	.244	2
562		40	min	-463.311	2	-2094.529	2	0	1_	0	1_	0	1	003	13
563		16		1055.132	3_	1219.478	3	0	1	0	1	0	1	1.349	2
564		4-7	min	-462.94	2	-2095.912	2	0	1_	0	1_	0	1	533	3
565		17	max	1055.41	3_	1218.441	3	0	1	0	1	0	1	2.455	2
566			min	-462.569	2	-2097.296	2	0	1_	0	1_	0	1	-1.176	3
567		18	max	-8.142	12	2355.396	2	0	1	0	1	0	1	1.266	2
568			min	-273.553	1_	-1118.032	3	0	1_	0	1_	0	1	615	3
569		19	max	-7.956	12	2354.012	2	0	1	0	1	0	1	.026	1
570	1.40		min	-273.182	1_	-1119.07	3	0	1	0	1	0	1_	025	3
571	<u>M9</u>	1	max	125.578	_1_	786.619	3	70.867	1	0	3	006	15	0	3
572			min	4.106	<u> 15</u>	-533.625	1	2.335	15	0	1	168	1_	016	2
573		2	max	125.949	_1_	785.582	3	70.867	1	0	3	004	15	.267	1
574			min	4.217	<u>15</u>	-535.009	1	2.335	15	0	1_	131	1	414	3
575		3	max	321.81	3_	608.177	1	70.029	1	0	1	003	15	.536	1
576			min	-195.055	2	-583.208	3	2.302	15	0	3	094	1	812	3
577		4	max	322.088	3_	606.793	1	70.029	1	0	1	002	15	.215	1
578		_	min	-194.685	2	-584.246	3	2.302	15	0	3	057	1	504	3
579		5	max	322.367	3	605.409	1	70.029	1	0	1	0	15	004	15
580				-194.314		-585.283		2.302	15	0	3	02	1	195	3
581		6		322.645	3_	604.026	1	70.029	1	0	1	.017	1	.114	3
582		-		-193.943	2	-586.321	3	2.302	15	0	3	0	15	435	2
583		7		322.923	3	602.642	1	70.029	1	0	1	.054	1	.423	3
584		_		-193.572	2	-587.359	3	2.302	15	0	3	.002	15	742	1
585		8		323.201	3_	601.259	1	70.029	1	0	1	.091	1	.734	3
586					2	-588.397	3	2.302	15	0	3	.003	15	-1.06	1
587		9		330.849	3	52.512	2	104.743	1	0	3	002	15	.855	3
588		40			2	.42	15	3.445	15	0	9	055	1	-1.208	1
589		10		331.127	3	51.128	2	104.743	1	0	3	0	1	.835	3
590		4.4			2	.002	15	3.445	15	0	9	0	15	-1.222	1
591		11		331.405	3	49.745	2	104.743	1	0	3	.056	1	.814	3
592		40		-142.494	2	-1.72	4	3.445	15	0	9	.002	15	-1.248	2
593		12		338.975	3	393.951	3	68.52	1	0	3	003	15	.711	3
594		40	min	-92.499	2	-684.201	2	2.248	15	0	2	09	1	<u>-1.106</u>	2
595		13	max		3	392.913	3	68.52	1	0	3	002	15	.503	3
596			min	-92.128	2	-685.585	2	2.248	15	0	2	054	1	745	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
597		14	max	339.531	3	391.875	3	68.52	1	0	3	0	15	.296	3
598			min	-91.757	2	-686.969	2	2.248	15	0	2	018	1	398	1
599		15	max	339.81	3	390.837	3	68.52	1	0	3	.018	1	.089	3
600			min	-91.386	2	-688.352	2	2.248	15	0	2	0	15	049	1
601		16	max	340.088	3	389.8	3	68.52	1	0	3	.054	1	.344	2
602			min	-91.016	2	-689.736	2	2.248	15	0	2	.002	15	117	3
603		17	max	340.366	3	388.762	3	68.52	1	0	3	.091	1	.708	2
604			min	-90.645	2	-691.12	2	2.248	15	0	2	.003	15	322	3
605		18	max	-4.222	15	697.729	2	75.048	1	0	2	.13	1	.356	2
606			min	-126.155	1	-324.863	3	2.47	15	0	3	.004	15	159	3
607		19	max	-4.11	15	696.345	2	75.048	1	0	2	.169	1	.012	3
608			min	-125.785	1	-325.901	3	2.47	15	0	3	.006	15	013	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC		LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	0	1	.129	2	.006	3	1.039e-2	2	NC	1_	NC	1
2			min	0	15	03	3	003	2	-2.311e-3	3	NC	1	NC	1
3		2	max	0	1	.263	3	.024	1	1.184e-2	2	NC	5	NC	2
4			min	0	15	052	1	0	10	-2.377e-3	3	757.593	3	9738.951	1
5		3	max	0	1	.5	3	.056	1	1.329e-2	2	NC	5	NC	2
6			min	0	15	191	1	.002	15	-2.443e-3	3	418.857	3	4025.417	1
7		4	max	0	1	.643	3	.084	1	1.475e-2	2	NC	5	NC	3
8			min	0	15	266	1	.003	15	-2.509e-3	3	329.719	3	2678.077	1
9		5	max	0	1	.675	3	.098	1	1.62e-2	2	NC	5	NC	3
10			min	0	15	267	1	.003	15	-2.575e-3	3	314.743	3	2290.768	1
11		6	max	0	1	.598	3	.094	1	1.765e-2	2	NC	5	NC	3
12			min	0	15	196	1	.003	15	-2.64e-3	3	353.132	3	2383.998	1
13		7	max	0	1	.436	3	.073	1	1.911e-2	2	NC	5	NC	3
14			min	0	15	068	1	0	10	-2.706e-3	3	476.511	3	3062.173	1
15		8	max	0	1	.229	3	.042	1	2.056e-2	2	NC	2	NC	2
16			min	0	15	.002	15	003	10	-2.772e-3	3	854.756	3	5406.859	1
17		9	max	0	1	.24	2	.018	3	2.201e-2	2	NC	4	NC	1
18			min	0	15	.005	15	006	10	-2.838e-3	3	2011.508	2	NC	1
19		10	max	0	1	.295	2	.018	3	2.347e-2	2	NC	3	NC	1
20			min	0	1	042	3	011	2	-2.904e-3	3	1337.132	2	NC	1
21		11	max	0	15	.24	2	.018	3	2.201e-2	2	NC	4	NC	1
22			min	0	1	.005	15	006	10	-2.838e-3	3	2011.508	2	NC	1
23		12	max	0	15	.229	3	.042	1	2.056e-2	2	NC	2	NC	2
24			min	0	1	.002	15	003	10	-2.772e-3	3	854.756	3	5406.859	1
25		13	max	0	15	.436	3	.073	1	1.911e-2	2	NC	5	NC	3
26			min	0	1	068	1	0	10	-2.706e-3	3	476.511	3	3062.173	1
27		14	max	0	15	.598	3	.094	1	1.765e-2	2	NC	5	NC	3
28			min	0	1	196	1	.003	15	-2.64e-3	3	353.132	3	2383.998	1
29		15	max	0	15	.675	3	.098	1	1.62e-2	2	NC	5	NC	3
30			min	0	1	267	1	.003	15	-2.575e-3	3	314.743	3	2290.768	1
31		16	max	0	15	.643	3	.084	1	1.475e-2	2	NC	5	NC	3
32			min	0	1	266	1	.003	15	-2.509e-3	3	329.719	3	2678.077	1
33		17	max	0	15	.5	3	.056	1	1.329e-2	2	NC	5	NC	2
34			min	0	1	191	1	.002	15	-2.443e-3	3	418.857	3	4025.417	1
35		18	max	0	15	.263	3	.024	1	1.184e-2	2	NC	5	NC	2
36			min	0	1	052	1	0	10	-2.377e-3	3	757.593	3	9738.951	1
37		19	max	0	15	.129	2	.006	3	1.039e-2	2	NC	1	NC	1
38			min	0	1	03	3	003	2	-2.311e-3	3	NC	1	NC	1
39	M14	1	max	0	1	.254	3	.005	3	6.11e-3	1	NC	1	NC	1
40			min	0	15	398	1	002	2	-4.556e-3	3	NC	1	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC	(n) L/v Ratio	LC	(n) L/z Ratio	LC
41		2	max	0	1	.558	3	.016	1 7.286e-3	1	NC	5	NC	1
42			min	0	15	71	1	0		3	710.064	1	NC	1
43		3	max	0	1	.816	3	.045	1 8.463e-3	1	NC	5	NC	2
44			min	0	15	982	1	.001	10 -6.458e-3	3	380.182	1	5081.625	1
45		4	max	0	1	.998	3	.071	1 9.639e-3	1	NC	15	NC	3
46			min	0	15	-1.183	1	.002	15 -7.41e-3	3	282.74	1	3156.03	1
47		5	max	0	1	1.089	3	.086	1 1.081e-2	1	NC	15	NC	3
48			min	0	15	-1.299	1	.003	15 -8.361e-3	3	246.247	1	2599.434	1
49		6	max	0	1	1.088	3	.085	1 1.199e-2	1	NC	15	NC	3
50			min	0	15	-1.33	1	.003	15 -9.313e-3	3	238.194	1	2640.352	1
51		7	max	0	1	1.012	3	.068	1 1.317e-2	1	NC	15	NC	2
52			min	0	15	-1.287	1	0	10 -1.026e-2	3	249.591	1	3332.058	1
53		8	max	0	1	.891	3	.039	1 1.434e-2	1	NC	15	NC	2
54			min	0	15	-1.198	1	002	10 -1.122e-2	3	277.314	1	5790.048	1
55		9	max	0	1	.771	3	.016	3 1.552e-2	1	NC	15	NC	1
56			min	0	15	-1.103	1	005		3	314.544	1	NC	1
57		10	max	0	1	.715	3	.016	3 1.67e-2	1_	NC	5	NC	1
58			min	0	1	-1.057	1	01		3	336.591	1	NC	1
59		11	max	0	15	.771	3	.016	3 1.552e-2	1_	NC	15	NC	1
60			min	0	1	-1.103	1	005		3	314.544	1	NC	1
61		12	max	0	15	.891	3	.039	1 1.434e-2	1_	NC	<u> 15</u>	NC	2
62			min	0	1	<u>-1.198</u>	1	002		3	277.314	1_	5790.048	
63		13	max	0	15	1.012	3	.068	1 1.317e-2	1_	NC	15	NC	2
64			min	0	1	-1.287	1	0		3	249.591	1_	3332.058	
65		14	max	0	15	1.088	3	.085	1 1.199e-2	1_	NC	15	NC	3
66			min	0	1	-1.33	1	.003		3	238.194	1	2640.352	1
67		15	max	0	15	1.089	3	.086	1 1.081e-2	1_	NC	<u> 15</u>	NC	3
68			min	0	1	-1.299	1	.003		3	246.247	1_	2599.434	
69		16	max	0	15	.998	3	.071	1 9.639e-3	1_	NC	15	NC	3
70			min	0	1	-1.183	1	.002		3	282.74	1_	3156.03	1
71		17	max	0	15	.816	3	.045	1 8.463e-3	1_	NC	5_	NC	2
72			min	0	1	982	1	.001		3	380.182	1_	5081.625	1
73		18	max	0	15	.558	3	.016	1 7.286e-3	1_	NC	5	NC	1
74			min	0	1	71	1	0		3	710.064	1_	NC	1
75		19	max	0	15	.254	3	.005	3 6.11e-3	1_	NC	1	NC	1
76			min	0	1	398	1	002		3	NC	1_	NC	1
77	<u>M15</u>	1	max	0	15	.26	3	.005		3	NC	1	NC	1
78			min	0	1	397	1	002		2	NC	_1_	NC	1
79		2	max	0	15	.463	3	.016		3	NC	5	NC	1
80			min	0	1	769	2	0	10 -7.47e-3	2	596.647	2	NC	1
81		3	max	0	15	.639	3	.045		3_	NC	5_	NC 5005,050	2
82			min	0	1	<u>-1.088</u>	2	.002		2	321.081	2	5065.253	
83		4	max	0	15	.773	3	.072		3_	NC	<u>15</u>	NC 04.47.075	3
84			min	0	1	<u>-1.319</u>	2	.002		2	240.862	2	3147.375	_
85		5_	max	0	15	.853	3	.087		3_	NC	<u>15</u>	NC	3
86			min	0	1	<u>-1.442</u>	2	.003		2	212.542	2	2592.307	
87		6	max	0	15	.88	3	.085		3_	NC 200 550	<u>15</u>	NC COOR OUT	3
88		_	min	0	1	<u>-1.456</u>	2	.003		2	209.559	2	2632.015	
89		7	max	0	15	.861	3	.068		3_	NC OOF O74	<u>15</u>	NC 0047.000	2
90			min	0	1	-1.381	2	.001		2	225.674	2	3317.666	
91		8	max	0	15	.812	3	.04		3	NC OCO OCO	<u>15</u>	NC 5744 500	2
92			min	0	1	-1.25	2	002		2	260.283	2	5744.508	
93		9	max	0	15	.757	3	.015		3	NC 200 22C	<u>15</u>	NC NC	1
94		40	min	0	1	<u>-1.117</u>	2	005	10 -1.591e-2	2	308.236	2	NC NC	1
95		10	max	0	1	.73	3	.015		3	NC	5	NC NC	1
96		4.4	min	0	1	-1.056	1	01		2	336.867	1_	NC NC	1
97		11	max	0	1	.757	3	.015	3 1.035e-2	3	NC	15	NC	1_

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r					LC
98			min	0	15	-1.117	2	005	10 -1.591e-2	2	308.236	2	NC	1
99		12	max	0	1	.812	3	.04	1 9.542e-3	3	NC	15	NC	2
100			min	0	15	-1.25	2	002	10 -1.47e-2	2	260.283	2	5744.508	
101		13	max	0	1	.861	3	.068	1 8.733e-3	3	NC	<u>15</u>	NC	2
102		4.4	min	0	15	<u>-1.381</u>	2	.001	10 -1.35e-2	2	225.674	2	3317.666	1
103		14	max	0	1	.88	3	.085	1 7.923e-3	3	NC 200 550	<u>15</u>	NC 2000 045	3
104		4.5	min	0	15	<u>-1.456</u>	2	.003	15 -1.229e-2	2	209.559	2	2632.015	1
105		15	max	0	1	.853	3	.087	1 7.114e-3	3	NC 040.540	15	NC 2500,007	3
106		40	min	0	15	-1.442	2	.003	15 -1.109e-2	2	212.542	2	2592.307	1
107		16	max	0	1	.773	3	.072	1 6.305e-3	3	NC	<u>15</u>	NC 04.47.075	3
108		47	min	0	15	-1.319	2	.002	15 -9.881e-3	2	240.862	2	3147.375	1
109		17	max	0	1	.639	3	.045	1 5.495e-3	3_	NC 004 004	5	NC FOOT OFF	2
110		40	min	0	15	<u>-1.088</u>	2	.002	15 -8.675e-3	2	321.081	2	5065.253	
111		18	max	0	1	.463	3	.016	1 4.686e-3	3_	NC 500.047	5_	NC NC	1
112		40	min	0	15	769	2	0	10 -7.47e-3	2	596.647	2	NC NC	1
113		19	max	0	1	.26	3	.005	3 3.876e-3	3	NC	1	NC NC	1
114	MAC	4	min	0	15	397	1	002	2 -6.264e-3	2	NC NC	1_	NC NC	1
115	M16	1_	max	0	15	.119	1	.004	3 6.864e-3	3_	NC	1	NC NC	1
116			min	0	1	087	3	002	2 -9.152e-3	1_	NC NC	1_	NC NC	1
117		2	max	0	15	.016	3	.024	1 7.974e-3	3	NC 040,000	5_	NC 0700.00	2
118		_	min	0	1	129	2	0	10 -1.032e-2	1_	919.966	2	9783.22	1
119		3	max	0	15	.095	3	.056	1 9.084e-3	3	NC F40.550	5	NC	2
120		4	min	0	1	32	2	.002	15 -1.149e-2	1_	512.556	2	4029.537	1
121		4	max	0	15	.136	3	.084	1 1.019e-2	3_	NC 400,000	5_	NC	3
122		-	min	0	1	43	2	.003	15 -1.266e-2	1_	409.329	2	2674.737	1
123		5	max	0	15	.132	3	.098	1 1.13e-2	3	NC 400.044	5	NC	3
124			min	0	1	441	2	.003	15 -1.383e-2	1_	400.841	2	2282.764	1
125		6	max	0	15	.084	3	.095	1 1.241e-2	3	NC 470.007	5_	NC	3
126		-	min	0	1	358	2	.003	15 -1.5e-2	1_	472.007	2	2368.339	
127		7	max	0	15	.003	12	.074	1 1.352e-2	3	NC 740,000	5_	NC 2004 057	3
128		0	min	0	1	2	2	.002	10 -1.617e-2	1	710.362	2	3024.857	1
129		8	max	0	15	.03	1	.043	1 1.463e-2	3	NC	3	NC FOCO COO	2
130			min	0	1	095	3	001	10 -1.734e-2	1_	1865.829	2	5260.903	
131		9	max	0	15	.191	1	.013	3 1.574e-2	3	NC	4	NC NC	1
132		40	min	0	1	18	3	004	10 -1.85e-2	1_	2386.258	3	NC NC	1
133		10	max	0	1	.263	1	.013	3 1.685e-2	3	NC	5	NC NC	1
134		44	min	0	1	218	3	009	2 -1.967e-2	1_	1540.818	1_	NC NC	1
135		11	max	0	1	.191	1	.013	3 1.574e-2	3	NC	4	NC NC	1
136		40	min	0	15	18	3	004	10 -1.85e-2	1_	2386.258	3	NC NC	1
137		12	max	0	1	.03	1	.043	1 1.463e-2	3	NC 4005 000	3	NC FOCO COO	2
138		40	min	0	15	095	3	001	10 -1.734e-2				5260.903	
139		13	max	0	1	.003	12	.074	1 1.352e-2	3	NC 740,000	5	NC 2004 057	3
140		4.4	min	0	15	2	2	.002	10 -1.617e-2	1	710.362	2	3024.857	1
141		14	max	0	1	.084	3	.095	1 1.241e-2	3	NC	5	NC	3
142		4.5	min	0	15	<u>358</u>	2	.003	15 -1.5e-2	1	472.007	2	2368.339	
143		15	max	0	1	.132	3	.098	1 1.13e-2	3	NC	5	NC	3
144		40	min	0	15	441	2	.003	15 -1.383e-2	1	400.841	2	2282.764	
145		16	max	0	1	.136	3	.084	1 1.019e-2	3	NC	5	NC	3
146		47	min	0	15	43	2	.003	15 -1.266e-2	1	409.329	2	2674.737	1
147		17	max	0	1	.095	3	.056	1 9.084e-3	3	NC F12 FF6	5	NC 4020 F27	2
148		40	min	0	15	32	2	.002	15 -1.149e-2	1	512.556	2	4029.537	1
149		18	max	0	1	.016	3	.024	1 7.974e-3	3	NC 040,000	5	NC 0702.00	2
150		40	min	0	15	129	2	0	10 -1.032e-2	1_	919.966	2	9783.22	1
151		19	max	0	1	.119	1	.004	3 6.864e-3	3	NC NC	1_	NC NC	1
152	MO	4	min	0	15	087	3	002	2 -9.152e-3	1_	NC NC	1_	NC NC	1
153	<u>M2</u>	1	max	.005	1	.004	2	.005	1 -4.52e-6	<u>15</u>	NC NC	1_	NC	2
154			min	006	3	007	3	0	15 -1.376e-4	1_	NC	1_	8779.136	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	ember	Sec		x [in]	LC	y [in]	LC	z [in]						(n) L/z Ratio	
155		2	max	.005	1	.003	2	.005	1	-4.189e-6	<u>15</u>	NC	1	NC	2
156			min	006	3	007	3	0		-1.275e-4	1_	NC NC	1_	9573.724	1
157		3	max	.005	1	.003	2	.005	1	-3.858e-6		NC NC	1	NC	1
158		4	min	006	3	007	3	0		-1.174e-4	1_	NC NC	1_	NC NC	1
159		4	max	.005	1	.002	2	.004	1	-3.527e-6	<u>15</u>	NC NC	1_	NC	1
160		_	min	005	3	007	3	0	15	-1.073e-4	1_	NC NC	1_	NC NC	1
161		5	max	.004	1	.002	2	.004	1	-3.197e-6		NC NC	1	NC NC	1
162			min	005	3	006	3	0		-9.721e-5	1_	NC NC	1_	NC NC	1
163		6	max	.004	1	.001	2	.003	1	-2.866e-6	<u>15</u>	NC NC	1	NC	1
164		7	min	005	3	006	3	0		-8.713e-5	1 =	NC NC	1	NC NC	1
165		7	max	.004	1	.001	2	.003	1	-2.535e-6	<u>15</u>	NC NC		NC NC	1
166		0	min	<u>004</u>	3	006	3	0	15	-7.704e-5	1_	NC NC	<u>1</u> 1	NC NC	1
167		8	max	.003	3	0 005	2	.002	1	-2.204e-6			1		
168		0	min	004			3	0	15	-6.696e-5	1_	NC NC		NC NC	1
169		9	max	.003	3	0 005	2	.002	15	-1.873e-6	<u>15</u>	NC NC	1	NC NC	1
170		10	min	<u>004</u>		005	3	.002		-5.687e-5	1_	NC NC	1	NC NC	•
171 172		10	max	.003	3	005	2		15	-1.542e-6	<u>15</u>		1	NC NC	1
		11	min	003 .002	1	005	2	0		-4.679e-5 -1.211e-6	1_	NC NC	1		
173		11	max		3			.001	1		<u>15</u>		1	NC NC	1
174		12	min	003	1	004	3	0		-3.671e-5	15	NC NC	1	NC NC	1
175		12	max	.002	3	0	3	.001	1	-8.801e-7 -2.662e-5	<u>15</u>	NC NC	1	NC NC	1
176 177		13	min	003 .002	1	004 0	15	<u> </u>	1 <u>5</u>	-2.662e-5 -5.492e-7	<u>1</u> 15	NC NC	1	NC NC	1
178		13	max min	002	3	003	3	0	15	-3.492e-7	1	NC NC	1	NC NC	1
179		14		.002	1	<u>003</u> 0	15	0	1	-1.654e-5 -2.183e-7	•	NC NC	1	NC NC	1
180		14	max min	002	3	003	3	0	15	-6.452e-6	<u>15</u> 1	NC NC	1	NC NC	1
181		15		.001	1	<u>003</u> 0	15	0	1	3.633e-6	1	NC	1	NC	1
182		13	max	001	3	002	3	0		-3.287e-7	3	NC NC	1	NC NC	1
183		16	max	<u>001</u> 0	1	<u>002</u> 0	15	0	1	1.372e-5	<u> </u>	NC	1	NC	1
184		10	min	001	3	002	3	0	15	3.039e-7	12	NC NC	1	NC	1
185		17	max	001 0	1	<u>002</u> 0	15	0	1	2.38e-5	1	NC	1	NC	1
186		- 17	min	0	3	001	3	0	15	7.745e-7	15	NC	1	NC	1
187		18	max	0	1	0	15	0	1	3.389e-5	1	NC	1	NC	1
188		10	min	0	3	0	3	0	15	1.105e-6	15	NC	1	NC	1
189		19	max	0	1	0	1	0	1	4.397e-5	1	NC	1	NC	1
190		13	min	0	1	0	1	0	1	1.436e-6	15	NC	1	NC	1
	M3	1	max	0	1	0	1	0	1	-4.471e-7	15	NC	-	NC	1
192	VIO		min	0	1	0	1	0	1	-1.368e-5	1	NC	1	NC	1
193		2	max	0	3	0	15	0	1	3.725e-6	1	NC	1	NC	1
194			min	0	2	001	4	0		1.227e-7	15	NC	1	NC	1
195		3	max	0	3	0	15	0	1	2.113e-5	1	NC	1	NC	1
196			min	0	2	003	4	0	15	6.924e-7	15	NC	1	NC	1
197		4	max	0	3	001	15	0	1	3.853e-5	1	NC	1	NC	1
198			min	0	2	005	4	0		1.262e-6		NC	1	NC	1
199		5	max	.001	3	002	15	0	1	5.593e-5	1	NC	1	NC	1
200			min	0	2	007	4	0	15	1.832e-6	15	NC	1	NC	1
201		6	max	.001	3	002	15	.001	1	7.333e-5	1	NC	1	NC	1
202			min	001	2	009	4	0		2.402e-6		NC	1	NC	1
203		7	max	.002	3	002	15	.001	1	9.073e-5	1	NC	1	NC	1
204			min	001	2	01	4	0	+	2.971e-6		9289.431	4	NC	1
205		8	max	.002	3	003	15	.002	1	1.081e-4	1	NC	1	NC	1
206			min	001	2	011	4	0	15	3.541e-6		8280.337	4	NC	1
207		9	max	.002	3	003	15	.002	1	1.255e-4	1	NC	1	NC	1
208			min	002	2	012	4	0	15	4.111e-6		7677.314	4	NC	1
209		10	max	.002	3	003	15	.002	1	1.429e-4	1	NC	2	NC	1
210			min	002	2	013	4	0	15	4.681e-6			4	NC	1
211		11	max	.003	3	003	15	.003	1	1.603e-4	1	NC	2	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio	LC		
212			min	002	2	013	4	0	15	5.251e-6	15	7322.368	4	NC	1
213		12	max	.003	3	003	15	.003	1	1.777e-4	1_	NC	1	NC	1
214			min	002	2	013	4	0	15	5.82e-6	15	7523.187	4	NC	1
215		13	max	.003	3	003	15	.003	1	1.951e-4	1	NC	1	NC	1
216			min	002	2	012	4	0	15	6.39e-6	15	8019.446	4	NC	1
217		14	max	.003	3	002	15	.003	1	2.125e-4	1	NC	1	NC	1
218			min	003	2	011	4	0	15	6.96e-6		8923.752	4	NC	1
219		15	max	.004	3	002	15	.004	1	2.299e-4	1	NC	1	NC	1
220		10	min	003	2	009	4	0	15	7.53e-6	15	NC	1	NC	1
221		16	max	.003	3	003	15	.004	1	2.474e-4	1	NC	1	NC	1
222		10	min	003	2	002	1	<u>.004</u> 0	15	8.099e-6	15	NC NC	1	NC	1
		47								2.648e-4			•		
223		17	max	.004	3	001	15	.004	1		1_	NC	1	NC NC	1
224		1.0	min	003	2	006	1	0	15	8.669e-6	<u>15</u>	NC	1_	NC	1
225		18	max	.004	3	0	15	.005	1	2.822e-4	_1_	NC	1_	NC	1
226			min	003	2	005	1	0	15	9.239e-6	15	NC	1_	NC	1
227		19	max	.005	3	0	15	.005	1	2.996e-4	_1_	NC	_1_	NC	1
228			min	004	2	003	1	0	15	9.809e-6	<u> 15</u>	NC	1_	NC	1
229	M4	1	max	.003	1	.003	2	0	15	-1.358e-7	12	NC	1	NC	2
230			min	001	3	005	3	005	1	-8.021e-6	1	NC	1	4743.841	1
231		2	max	.003	1	.003	2	0	15	-1.358e-7	12	NC	1	NC	2
232			min	001	3	004	3	005	1	-8.021e-6	1	NC	1	5166.833	1
233		3	max	.003	1	.003	2	0	15	-1.358e-7	12	NC	1	NC	2
234			min	0	3	004	3	004	1	-8.021e-6	1	NC	1	5669.804	1
235		4	max	.003	1	.002	2	0	15	-1.358e-7	12	NC	1	NC	2
236		•	min	0	3	004	3	004	1	-8.021e-6	1	NC	1	6273.614	1
237		5	max	.002	1	.002	2	<u>.00+</u>	15		12	NC	1	NC	2
238		1	min	0	3	004	3	004	1	-8.021e-6	1	NC	1	7006.608	
		6			1		2					NC	1	NC	
239		6	max	.002		.002		0	15	-1.358e-7	12				2
240		-	min	0	3	003	3	003	1_	-8.021e-6	1_	NC NC	1_	7908.095	
241		7	max	.002	1	.002	2	0		-1.358e-7	12	NC	1_	NC	2
242			min	0	3	003	3	003	1	-8.021e-6	1_	NC	1_	9033.877	1
243		8	max	.002	1	.002	2	0	15	-1.358e-7	12	NC	_1_	NC	1
244			min	0	3	003	3	002	1	-8.021e-6	<u>1</u>	NC	1_	NC	1
245		9	max	.002	1	.002	2	0	15	-1.358e-7	12	NC	1_	NC	1
246			min	0	3	003	3	002	1	-8.021e-6	1_	NC	1	NC	1
247		10	max	.002	1	.001	2	0	15	-1.358e-7	12	NC	1_	NC	1
248			min	0	3	002	3	002	1	-8.021e-6	1_	NC	1	NC	1
249		11	max	.001	1	.001	2	0	15	-1.358e-7	12	NC	1	NC	1
250			min	0	3	002	3	001	1	-8.021e-6	1	NC	1	NC	1
251		12	max	.001	1	.001	2	0	15	-1.358e-7	12	NC	1	NC	1
252			min		3	002	3	001		-8.021e-6		NC	1	NC	1
253		13	max	.001	1	0	2	0		-1.358e-7		NC	1	NC	1
254		1.0	min	0	3	002	3	0	1	-8.021e-6	1	NC	1	NC	1
255		14	max	0	1	0	2	0	15	-0.021e-0		NC	1	NC	1
256		14	min	0	3	001	3	0	1	-8.021e-6	1	NC	1	NC	1
257		15		0	1	<u>001</u> 0	2	0	15	-1.358e-7	12	NC	1	NC	1
		15	max								-				
258		40	min	0	3	001	3	0	1	-8.021e-6	1_	NC NC	1_	NC NC	1
259		16	max	0	1	0	2	0	15	-1.358e-7	12	NC	1	NC	1
260		1	min	0	3	0	3	0	1	-8.021e-6	1_	NC	1_	NC	1
261		17	max	0	1	0	2	0		-1.358e-7	<u>12</u>	NC	_1_	NC	1
262			min	0	3	0	3	0	1	-8.021e-6	1_	NC	1_	NC	1
263		18	max	0	1	0	2	0	15	-1.358e-7	12	NC	_1_	NC	1
264			min	0	3	0	3	0	1	-8.021e-6	1	NC	1	NC	1
265		19	max	0	1	0	1	0	1	-1.358e-7	12	NC	1	NC	1
266			min	0	1	0	1	0	1	-8.021e-6	1	NC	1	NC	1
267	M6	1	max	.017	1	.016	2	0	1	0	1	NC	4	NC	1
268			min	021	3	023	3	0	1	0	1	2066.386	3	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio L		LC
269		2	max	.016	1	.014	2	0	1	0	_1_	NC 4		1
270			min	02	3	022	3	0	1	0	_1_	2190.325		1
271		3	max	.015	1	.013	2	0	1	0	_1_	NC 4		1
272			min	019	3	021	3	0	1	0	1	2330.041		1
273		4	max	.014	1	.012	2	0	1	0	_1_	NC 4		1
274			min	017	3	019	3	0	1	0	1_	2488.703		1
275		5	max	.013	1	.01	2	0	1	0	_1_	NC 4		1
276			min	016	3	018	3	0	1	0	1	2670.388		1
277		6	max	.013	1	.009	2	0	1	0	1_	NC 1		1
278			min	015	3	017	3	0	1	0	1	2880.425	NC NC	1
279		7	max	.012	1	.008	2	0	1	0	1	NC 1	NC	1
280			min	014	3	015	3	0	1	0	1	3125.921		1
281		8	max	.011	1	.007	2	0	1	0	1	NC 1		1
282			min	013	3	014	3	0	1	0	1	3416.569	NC NC	1
283		9	max	.01	1	.006	2	0	1	0	1	NC 1	NC	1
284			min	012	3	013	3	0	1	0	1	3765.939	NC NC	1
285		10	max	.009	1	.005	2	0	1	0	1	NC 1	NC	1
286			min	01	3	011	3	0	1	0	1	4193.633		1
287		11	max	.008	1	.004	2	0	1	0	1	NC 1		1
288			min	009	3	01	3	0	1	0	1	4729.058		1
289		12	max	.007	1	.003	2	0	1	0	1	NC 1		1
290			min	008	3	009	3	0	1	0	1	5418.42		1
291		13	max	.006	1	.002	2	0	1	0	1	NC 1		1
292			min	007	3	008	3	0	1	Ö	1	6338.738		1
293		14	max	.005	1	.002	2	0	1	0	1	NC 1		1
294			min	006	3	006	3	0	1	0	1	7628.645		1
295		15	max	.004	1	.001	2	0	1	0	1	NC 1		1
296		10	min	005	3	005	3	0	1	0	1	9565.411		1
297		16	max	.003	1	0	2	0	1	0	1	NC 1		1
298		10	min	003	3	004	3	0	1	0	1	NC 1		1
299		17	max	.002	1	- <u>004</u> 0	2	0	1	0	1	NC 1		1
300		17	min	002	3	002	3	0	1	0	1	NC 1		1
301		18		<u>002</u> 0	1	<u>002</u> 0	2	0	1	0	1	NC 1		1
302		10	max	001	3	001	3	0	1	0	1	NC 1		1
		10	min						-		1			1
303		19	max	0	1	0	1	0	1	0	1	NC 1		1
304	N 4-7	4	min	0		0	•	0	•	0		110	110	•
305	<u>M7</u>	1_	max	0	1	0	1	0	1	0	1	NC 1		1
306			min	0	1	0	1	0	1	0	1_	NC 1		1
307		2	max	0	3	0	2	0	1	0	1	NC 1		1
308		_	min	0	2	002	3	0	1	0	1_	NC 1	110	1
309		3	max	.002	3	0	15	0	1	0	1	NC 1	NC NC	1
310			min	002	2	005	3	0	1	0	1_	NC 1		1
311		4	max	.002	3	001	15	0	1	0	1	NC 1		1
312			min	002	2	007	3	0	1	0	1_	NC 1		1
313		5	max	.003	3	002	15	0	1	0	_1_	NC 1	.,,	1
314			min	003	2	008	3	0	1	0	<u>1</u>	NC 1	110	1
315		6	max	.004	3	002	15	0	1	0	1	NC 1		1
316			min	004	2	01	3	0	1	0	1_	9313.885		1
317		7	max	.005	3	002	15	0	1	0	1	NC 1		1
318			min	005	2	011	3	0	1	0	1	8287.928		1
319		8	max	.006	3	003	15	0	1	0	1	NC 1		1
320			min	005	2	012	3	0	1	0	1	7676.02		1
321		9	max	.007	3	003	15	0	1	0	1	NC 1		1
322			min	006	2	013	3	0	1	0	1	7352.581		1
323		10	max	.007	3	003	15	0	1	0	1	NC 1	NC	1
324			min	007	2	013	4	0	1	0	1	7260.604	NC NC	1
325		11	max	.008	3	003	15	0	1	0	1	NC 1	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

326		Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio			LC
328	326			min	008	2	013		0	1	_	1	7384.478	3	NC	1
329			12	max					0		0	1		1_		1
330												•				
331			13													
333												_		•		-
333			14													
334			45													
336			15													
336			4.0					-								
338			16													-
18			17									_		_		•
339			17													
3440			10									•		•		-
341			10													•
342			10								_	_				-
343 M8			13													
344		M8	1			_								•		
345		IVIO														1
346			2											1		1
347						-										-
348			3							1		1		1		1
349										1		1		1		1
350			4			1			0	1	0	1		1		1
SS1						3			0	1	0	1		1		1
353			5			1	.009		0	1	0	1	NC	1	NC	1
354	352			min	003	3	011	3	0	1	0	1	NC	1	NC	1
355	353		6	max	.007	1	.008	2	0	1	0	1	NC	1	NC	1
356	354			min	003	3	01	3	0	1	0	1	NC	1	NC	1
357			7	max	.006	-			0	1		1_		1_		1
358				min								1		1_		•
359			8	max					0	1	0	1		1_		1
360				min					0	•		•		1_		1
361			9													
362											_	_				-
363 11 max .004 1 .005 2 0 1 0 1 NC 1 NC 1 364 min 002 3 006 3 0 1 0 1 NC 1 NC 1 365 12 max .004 1 .005 2 0 1 0 1 NC <			10													
364						_										
365 12 max .004 1 .005 2 0 1 0 1 NC 1 NC 1 366 min 001 3 006 3 0 1 0 1 NC 1 NC 1 367 13 max .003 1 .004 2 0 1 0 1 NC 1 NC 1 368 min 001 3 005 3 0 1 0 1 NC 1 NC 1 369 14 max .003 1 .003 2 0 1 0 1 NC 1 NC 1 370 min 0 3 004 3 0 1 0 1 NC 1 NC 1 371 15 max .002 1 .003 2 0 1 0 1 NC 1			11											_1_		1
366			40								_			1_		1
367 13 max .003 1 .004 2 0 1 0 1 NC 1 NC 1 368 min 001 3 005 3 0 1 0 1 NC 1 NC 1 369 14 max .003 1 .003 2 0 1 0 1 NC 1 NC 1 370 min 0 3 004 3 0 1 0 1 NC 1 NC 1 371 15 max .002 1 .003 2 0 1 0 1 NC 1 NC 1 372 min 0 3 003 3 0 1 0 1 NC 1 NC 1 373 16 max .002 1 .002 0 1 0 1	365		12					2								
368 min 001 3 005 3 0 1 0 1 NC 1 NC 1 369 14 max .003 1 .003 2 0 1 0 1 NC 1 NC 1 370 min 0 3 004 3 0 1 0 1 NC 1 NC 1 371 15 max .002 1 .003 2 0 1 0 1 NC 1 NC 1 372 min 0 3 003 3 0 1 0 1 NC 1 NC 1 373 16 max .002 1 .002 2 0 1 0 1 NC 1 NC 1 374 min 0 3 002 3 0 1 0 1 <td></td> <td></td> <td>40</td> <td></td>			40													
369 14 max .003 1 .003 2 0 1 0 1 NC 1 NC 1 370 min 0 3 004 3 0 1 0 1 NC 1 NC 1 371 15 max .002 1 .003 2 0 1 0 1 NC 1 NC 1 372 min 0 3 003 3 0 1 0 1 NC 1 NC 1 373 16 max .002 1 .002 2 0 1 0 1 NC 1 NC 1 374 min 0 3 002 3 0 1 0 1 NC 1 NC 1 375 17 max .001 1 .001 2 0 1 0 1 NC 1			13													
370 min 0 3 004 3 0 1 0 1 NC 1 NC 1 371 15 max .002 1 .003 2 0 1 0 1 NC 1 NC 1 372 min 0 3 003 3 0 1 0 1 NC 1 NC 1 373 16 max .002 1 .002 2 0 1 0 1 NC 1 NC 1 374 min 0 3 002 3 0 1 0 1 NC 1 NC 1 375 17 max .001 1 .001 2 0 1 0 1 NC 1 NC 1 376 min 0 3 002 3 0 1 0 1			1.1									•		•		
371 15 max .002 1 .003 2 0 1 0 1 NC 1 NC 1 372 min 0 3 003 3 0 1 0 1 NC 1 NC 1 373 16 max .002 1 .002 2 0 1 0 1 NC 1 NC 1 374 min 0 3 002 3 0 1 0 1 NC 1 NC 1 375 17 max .001 1 .001 2 0 1 0 1 NC 1 NC 1 376 min 0 3 002 3 0 1 0 1 NC 1 NC 1 377 18 max 0 1 0 2 0 1 0			14			_										
372 min 0 3 003 3 0 1 0 1 NC 1 NC 1 373 16 max .002 1 .002 2 0 1 0 1 NC 1 NC 1 374 min 0 3 002 3 0 1 0 1 NC 1 NC 1 375 17 max .001 1 .001 2 0 1 0 1 NC 1 NC 1 376 min 0 3 002 3 0 1 0 1 NC 1 NC 1 377 18 max 0 1 0 2 0 1 0 1 NC 1 NC 1 378 min 0 3 0 3 0 1 0 1 <t></t>			15									_		_		-
373 16 max .002 1 .002 2 0 1 0 1 NC 1 NC 1 374 min 0 3 002 3 0 1 0 1 NC 1 NC 1 375 17 max .001 1 .001 2 0 1 0 1 NC 1 NC 1 376 min 0 3 002 3 0 1 0 1 NC 1 NC 1 377 18 max 0 1 0 2 0 1 0 1 NC 1 NC 1 378 min 0 3 0 3 0 1 0 1 NC 1 NC 1 380 min 0 1 0 1 0 1 NC 1 NC			13													
374 min 0 3 002 3 0 1 0 1 NC 1 NC 1 375 17 max .001 1 .001 2 0 1 0 1 NC 1 NC 1 376 min 0 3 002 3 0 1 0 1 NC 1 NC 1 377 18 max 0 1 0 2 0 1 0 1 NC 1 NC 1 378 min 0 3 0 3 0 1 0 1 NC 1 NC 1 379 19 max 0 1 0 1 0 1 NC 1 NC 1 380 min 0 1 0 1 0 1 NC 1 NC 1			16													
375 17 max .001 1 .001 2 0 1 0 1 NC 1 NC 1 376 min 0 3 002 3 0 1 0 1 NC 1 NC 1 377 18 max 0 1 0 2 0 1 0 1 NC 1 NC 1 378 min 0 3 0 3 0 1 0 1 NC 1 NC 1 379 19 max 0 1 0 1 0 1 NC 1 NC 1 380 min 0 1 0 1 0 1 0 1 NC 1 NC 1 381 M10 1 max .005 1 .004 2 0 15 1.376e-4 1 <			10													
376 min 0 3 002 3 0 1 0 1 NC 1 NC 1 377 18 max 0 1 0 2 0 1 0 1 NC 1 NC 1 378 min 0 3 0 3 0 1 0 1 NC 1 NC 1 379 19 max 0 1 0 1 0 1 NC 1 NC 1 380 min 0 1 0 1 0 1 0 1 NC 1 NC 1 381 M10 1 max .005 1 .004 2 0 15 1.376e-4 1 NC 1 NC 2			17		_					•						•
377 18 max 0 1 0 2 0 1 0 1 NC 1 378 min 0 3 0 3 0 1 0 1 NC 1 379 19 max 0 1 0 1 0 1 0 1 NC 1 380 min 0 1 0 1 0 1 NC 1 NC 1 381 M10 1 max .005 1 .004 2 0 15 1.376e-4 1 NC 1 NC 2			11/			-										_
378 min 0 3 0 1 0 1 NC 1 NC 1 379 19 max 0 1 0 1 0 1 NC 1 NC 1 380 min 0 1 0 1 0 1 NC 1 NC 1 381 M10 1 max .005 1 .004 2 0 15 1.376e-4 1 NC 1 NC 2			18									_		_		•
379 19 max 0 1 0 1 0 1 NC 1 NC 1 380 min 0 1 0 1 0 1 NC 1 NC 1 381 M10 1 max .005 1 .004 2 0 15 1.376e-4 1 NC 1 NC 2			'0	_												
380 min 0 1 0 1 0 1 NC 1 NC 1 381 M10 1 max .005 1 .004 2 0 15 1.376e-4 1 NC 1 NC 2			19									•		•		-
381 M10 1 max .005 1 .004 2 0 15 1.376e-4 1 NC 1 NC 2			'			_										_
		M10	1		•	1				15		1		1		
	382			min	006	3	007	3	005		4.52e-6	15	NC	1	8779.136	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

1884		Member	Sec	1 1	x [in]	LC	y [in]	LC	z [in]						(n) L/z Ratio	
386	383		2	max	.005	1	.003	2	0	15	1.275e-4	1	NC	1	NC	2
1886														•		
388			3													
388			4											-		_
1889			4			-										_
1990			_							•						_
391			5													_
1992			6											•		
1939			О													-
1994			7											_		_
395												_				_
396			0													
9			0													_
398														•		_
399			9			-										_
400			10							•						-
401			10													_
402			11											•		
403																-
404			12											_		•
406			12									_				_
406			12													
407			13													
408			11											-		_
409			14			-										_
Hard Min 001 3 002 3 0 1 -3.633e-6 1 NC 1 NC 1			15													-
411			13													_
Hard			16									•		•		
413			10			-										-
Heat			17									•				_
18 max 0			17									-				_
416			18													
417 19 max 0 1 0 1 -1.436e-6 15 NC 1 NC 1 418 min 0 1 0 1 0 1 -4.397e-5 1 NC 1 NC 1 419 M11 1 max 0 1 0 1 0 1 0.3739e-5 1 NC			10													_
418 min 0 1 0 1 0 1 -4.397e-5 1 NC 1 NC 1 419 M11 1 max 0 1 0 1 0 1 1.368e-5 1 NC 1 NC 1 420 min 0 1 0 1 0 1 4.471e-7 15 NC 1 NC 1 421 2 max 0 3 0 15 0 15 -1.227e-7 15 NC 1 NC 1 422 min 0 2 -001 4 0 1 -3.755e-6 1 NC 1 NC 1 423 3 max 0 3 0 15 0 15 -6.924e-7 15 NC 1 NC 1 424 min 0 2 -003 4 0 1 </td <td></td> <td></td> <td>10</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td>•</td> <td></td> <td>_</td>			10									•		•		_
419 M11 1 max 0 1 0 1 1.368e-5 1 NC 1 NC 1 420 min 0 1 0 1 0.1 1.368e-5 1 NC 1 NC 1 421 min 0 3 0 15 0 15-1.227e-7 15 NC 1 NC 1 422 min 0 2 001 4 0 1 -3.725e-6 1 NC			13					-		•						_
420 min 0 1 0 1 4.471e-7 15 NC 1 NC 1 421 2 max 0 3 0 15 0 15 -1.227e-7 15 NC 1 NC 1 422 min 0 2 001 4 0 1 -3.725e-6 1 NC 1 NC 1 423 3 max 0 3 0 15 0 15 -6.924e-7 15 NC 1 NC 1 424 min 0 2 003 4 0 1 -2.113e-5 1 NC 1 NC 1 425 4 max 0 3 001 15 0 15 -1.262e-6 15 NC 1 NC 1 426 min 0 2 005 4 0 1 -3.853e-5 1<		M11	1			-										-
421 2 max 0 3 0 15 0 15 -1.227e-7 15 NC 1 NC 1 422 min 0 2 001 4 0 1 -3.725e-6 1 NC 1 NC 1 423 3 max 0 3 0 15 0 15 -6.924e-7 15 NC 1 NC 1 424 min 0 2 003 4 0 1 -2.113e-5 1 NC 1 NC 1 425 4 max 0 3 001 15 0 15 -1.262e-6 15 NC 1 NC 1 426 min 0 2 005 4 0 1 -3.853e-5 1 NC 1 NC 1 427 5 max .001 3 002 15 0<		17111					-		-							_
422 min 0 2 001 4 0 1 -3.725e-6 1 NC 1 NC 1 423 3 max 0 3 0 15 0 15 -6.924e-7 15 NC 1 NC 1 424 min 0 2 003 4 0 1 -2.113e-5 1 NC 1 NC 1 425 4 max 0 3 001 15 0 15 -1.262e-6 15 NC 1 NC 1 426 min 0 2 005 4 0 1 -3.853e-5 1 NC 1 NC 1 427 5 max .001 3 002 15 0 15 -1.832e-6 15 NC 1 NC 1 428 nin 0 2 007 4 0 1 -5.593e-5 1 NC 1 NC			2											•		
423 3 max 0 3 0 15 0 15 -6.924e-7 15 NC 1 NC 1 424 min 0 2 003 4 0 1 -2.113e-5 1 NC 1 NC 1 425 4 max 0 3 001 15 0 15 -1.262e-6 15 NC 1 NC 1 426 min 0 2 005 4 0 1 -3.853e-5 1 NC 1 NC 1 427 5 max .001 3 002 15 0 15 -1.832e-6 15 NC 1 NC 1 428 min 0 2 007 4 0 1 -5.593e-5 1 NC 1 NC 1 429 6 max .001 3 002 15																-
424 min 0 2 003 4 0 1 -2.113e-5 1 NC 1 NC 1 425 4 max 0 3 001 15 0 15 -1.262e-6 15 NC 1 NC 1 426 min 0 2 005 4 0 1 -3.853e-5 1 NC 1 NC 1 427 5 max .001 3 002 15 0 15 -1.832e-6 15 NC 1 NC 1 428 min 0 2 007 4 0 1 -5.593e-5 1 NC 1 NC 1 429 6 max .001 3 002 15 0 15 -2.402e-6 15 NC 1 NC 1 430 min 001 2 001 1 -7.333e			3													_
425 4 max 0 3 001 15 0 15 -1.262e-6 15 NC 1 NC 1 426 min 0 2 005 4 0 1 -3.853e-5 1 NC 1 NC 1 427 5 max .001 3 002 15 0 15 -1.832e-6 15 NC 1 NC 1 428 min 0 2 007 4 0 1 -5.593e-5 1 NC 1 NC 1 429 6 max .001 3 002 15 0 15 -2.402e-6 15 NC 1 NC 1 430 min 001 2 009 4 001 1 -7.333e-5 1 NC 1 NC 1 431 7 max .002 3 002																
426 min 0 2 005 4 0 1 -3.853e-5 1 NC 1 NC 1 427 5 max .001 3 002 15 0 15 -1.832e-6 15 NC 1 NC 1 428 min 0 2 007 4 0 1 -5.593e-5 1 NC 1 NC 1 429 6 max .001 3 002 15 0 15 -2.402e-6 15 NC 1 NC 1 430 min 001 2 009 4 001 1 -7.333e-5 1 NC 1 NC 1 431 7 max .002 3 002 15 -2.971e-6 15 NC 1 NC 1 432 min 001 2 01 4 001 1			4						0	15				1		
427 5 max .001 3 002 15 0 15 -1.832e-6 15 NC 1 NC 1 428 min 0 2 007 4 0 1 -5.593e-5 1 NC 1 NC 1 429 6 max .001 3 002 15 0 15 -2.402e-6 15 NC 1 NC 1 430 min 001 2 009 4 001 1 -7.333e-5 1 NC 1 NC 1 431 7 max .002 3 002 15 0 15 -2.971e-6 15 NC 1 NC 1 432 min 001 2 01 4 001 1 -9.073e-5 1 9289.431 4 NC 1 433 8 max .002 3 003 </td <td></td>																
428 min 0 2 007 4 0 1 -5.593e-5 1 NC 1 NC 1 429 6 max .001 3 002 15 0 15 -2.402e-6 15 NC 1 NC 1 430 min 001 2 009 4 001 1 -7.333e-5 1 NC 1 NC 1 431 7 max .002 3 002 15 0 15 -2.971e-6 15 NC 1 NC 1 432 min 001 2 01 4 001 1 -9.073e-5 1 9289.431 4 NC 1 433 8 max .002 3 003 15 0 15 -3.541e-6 15 NC 1 NC 1 434 min 001 2 011 4<			5							15				1		1
429 6 max .001 3 002 15 0 15 -2.402e-6 15 NC 1 NC 1 430 min 001 2 009 4 001 1 -7.333e-5 1 NC 1 NC 1 431 7 max .002 3 002 15 0 15 -2.971e-6 15 NC 1 NC 1 432 min 001 2 01 4 001 1 -9.073e-5 1 9289.431 4 NC 1 433 8 max .002 3 003 15 0 15 -3.541e-6 15 NC 1 NC 1 434 min 001 2 011 4 002 1 -1.081e-4 1 8280.337 4 NC 1 435 9 max .002 3 003 15 0 15 -4.111e-6 15 NC 1 NC <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td>1</td></td<>														1		1
430 min 001 2 009 4 001 1 -7.333e-5 1 NC 1 NC 1 431 7 max .002 3 002 15 0 15 -2.971e-6 15 NC 1 NC 1 432 min 001 2 01 4 001 1 -9.073e-5 1 9289.431 4 NC 1 433 8 max .002 3 003 15 0 15 -3.541e-6 15 NC 1 NC 1 434 min 001 2 011 4 002 1 -1.081e-4 1 8280.337 4 NC 1 435 9 max .002 3 003 15 0 15 -4.111e-6 15 NC 1 NC 1 436 min 002 2 012			6		.001				0	15				1		1
431 7 max .002 3 002 15 0 15 -2.971e-6 15 NC 1 NC 1 432 min 001 2 01 4 001 1 -9.073e-5 1 9289.431 4 NC 1 433 8 max .002 3 003 15 0 15 -3.541e-6 15 NC 1 NC 1 434 min 001 2 011 4 002 1 -1.081e-4 1 8280.337 4 NC 1 435 9 max .002 3 003 15 0 15 -4.111e-6 15 NC 1 NC 1 436 min 002 2 012 4 002 1 -1.255e-4 1 7677.314 4 NC 1 438 min 002 2 013									001		-7.333e-5	1		1		
432 min 001 2 01 4 001 1 -9.073e-5 1 9289.431 4 NC 1 433 8 max .002 3 003 15 0 15 -3.541e-6 15 NC 1 NC 1 434 min 001 2 011 4 002 1 -1.081e-4 1 8280.337 4 NC 1 435 9 max .002 3 003 15 0 15 -4.111e-6 15 NC 1 NC 1 436 min 002 2 012 4 002 1 -1.255e-4 1 7677.314 4 NC 1 437 10 max .002 3 003 15 0 15 -4.681e-6 15 NC 2 NC 1 438 min 002 2 01			7		.002	3	002	15		15			NC	1	NC	1
433 8 max .002 3 003 15 0 15 -3.541e-6 15 NC 1 NC 1 434 min 001 2 011 4 002 1 -1.081e-4 1 8280.337 4 NC 1 435 9 max .002 3 003 15 0 15 -4.111e-6 15 NC 1 NC 1 436 min 002 2 012 4 002 1 -1.255e-4 1 7677.314 4 NC 1 437 10 max .002 3 003 15 0 15 -4.681e-6 15 NC 2 NC 1 438 min 002 2 013 4 002 1 -1.429e-4 1 7373.192 4 NC 1														4		1
434 min 001 2 011 4 002 1 -1.081e-4 1 8280.337 4 NC 1 435 9 max .002 3 003 15 0 15 -4.111e-6 15 NC 1 NC 1 436 min 002 2 012 4 002 1 -1.255e-4 1 7677.314 4 NC 1 437 10 max .002 3 003 15 0 15 -4.681e-6 15 NC 2 NC 1 438 min 002 2 013 4 002 1 -1.429e-4 1 7373.192 4 NC 1			8			3	003	15		15			NC	1	NC	1
435 9 max .002 3 003 15 0 15 -4.111e-6 15 NC 1 NC 1 436 min 002 2 012 4 002 1 -1.255e-4 1 7677.314 4 NC 1 437 10 max .002 3 003 15 0 15 -4.681e-6 15 NC 2 NC 1 438 min 002 2 013 4 002 1 -1.429e-4 1 7373.192 4 NC 1									002					4		
436 min 002 2 012 4 002 1 -1.255e-4 1 7677.314 4 NC 1 437 10 max .002 3 003 15 0 15 -4.681e-6 15 NC 2 NC 1 438 min 002 2 013 4 002 1 -1.429e-4 1 7373.192 4 NC 1			9							15						1
437 10 max .002 3 003 15 0 15 -4.681e-6 15 NC 2 NC 1 438 min 002 2 013 4 002 1 -1.429e-4 1 7373.192 4 NC 1									002	1				4		1
438 min002 2013 4002 1 -1.429e-4 1 7373.192 4 NC 1			10							15				2		1
									002							1
439 11 111dx .003 3 003 15 0 15 -3.251e-6 15 NC 2 NC 1	439		11	max	.003	3	003	15	0	15	-5.251e-6		NC	2	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC		LC		LC
440			min	002	2	013	4	003	1	-1.603e-4	1	7322.368	4	NC	1
441		12	max	.003	3	003	15	0	15	-5.82e-6	15	NC	_1_	NC	1
442			min	002	2	013	4	003	1	-1.777e-4	1_	7523.187	4	NC	1
443		13	max	.003	3	003	15	0	15	-6.39e-6	15	NC	_1_	NC	1
444			min	002	2	012	4	003	1	-1.951e-4	1_	8019.446	4_	NC	1
445		14	max	.003	3	002	15	0	15	-6.96e-6	<u>15</u>	NC	1	NC NC	1
446		45	min	003	2	011	4	003	1	-2.125e-4	1_	8923.752	4	NC NC	1
447		15	max	.004	3	002	15	0	15	-7.53e-6	<u>15</u>	NC NC	1_	NC NC	1
448		4.0	min	003	2	009	4	004	1	-2.299e-4	1_	NC NC	1_	NC NC	1
449		16	max	.004 003	3	002 008	15	0 004	15	-8.099e-6	<u>15</u>	NC NC	<u>1</u> 1	NC NC	1
450 451		17	min		3		15	004 0	15	-2.474e-4	1_	NC NC	1	NC NC	1
451		17	max	.004 003	2	001 006	1	004	1	-8.669e-6 -2.648e-4	<u>15</u>	NC NC	1	NC NC	1
452		18		.003	3	<u>006</u> 0	15	004 0	15	-9.239e-6	1_	NC NC	1	NC NC	1
454		10	max min	003	2	005	1	005	1	-9.239e-6 -2.822e-4	<u>15</u> 1	NC NC	1	NC NC	1
455		19	max	.005	3	<u>005</u> 0	15	<u>005</u> 0	15	-9.809e-6	15	NC	1	NC	1
456		13	min	004	2	003	1	005	1	-2.996e-4	1	NC	1	NC	1
457	M12	1	max	.003	1	.003	2	.005	1	8.021e-6	1	NC	1	NC	2
458	10112	•	min	001	3	005	3	0	15	1.358e-7	12	NC	1	4743.841	1
459		2	max	.003	1	.003	2	.005	1	8.021e-6	1	NC	1	NC	2
460			min	001	3	004	3	0	15	1.358e-7	12	NC	1	5166.833	1
461		3	max	.003	1	.003	2	.004	1	8.021e-6	1	NC	1	NC	2
462			min	0	3	004	3	0	15	1.358e-7	12	NC	1	5669.804	1
463		4	max	.003	1	.002	2	.004	1	8.021e-6	1	NC	1	NC	2
464			min	0	3	004	3	0	15	1.358e-7	12	NC	1	6273.614	1
465		5	max	.002	1	.002	2	.004	1	8.021e-6	1	NC	1	NC	2
466			min	0	3	004	3	0	15	1.358e-7	12	NC	1	7006.608	1
467		6	max	.002	1	.002	2	.003	1	8.021e-6	1	NC	1	NC	2
468			min	0	3	003	3	0	15	1.358e-7	12	NC	1	7908.095	1
469		7	max	.002	1	.002	2	.003	1	8.021e-6	1_	NC	1_	NC	2
470			min	0	3	003	3	0	15	1.358e-7	12	NC	1	9033.877	1
471		8	max	.002	1	.002	2	.002	1	8.021e-6	1_	NC	_1_	NC	1
472			min	0	3	003	3	0	15	1.358e-7	12	NC	1_	NC	1
473		9	max	.002	1	.002	2	.002	1	8.021e-6	_1_	NC	_1_	NC	1
474			min	0	3	003	3	0	15	1.358e-7	12	NC	_1_	NC	1
475		10	max	.002	1	.001	2	.002	1	8.021e-6	_1_	NC	_1_	NC	1
476			min	0	3	002	3	0	15	1.358e-7	12	NC	1_	NC	1
477		11	max	.001	1	.001	2	.001	1	8.021e-6	1_	NC	1_	NC NC	1
478		40	min	0	3	002	3	0	15	1.358e-7	12	NC	_1_	NC NC	1
479		12	max	.001	1	.001	2	.001	1	8.021e-6	1	NC NC	1_	NC NC	1
480		40	min	0	3	002	3	0		1.358e-7			1	NC NC	1
481		13	max	.001	3	0	2	0	1	8.021e-6	1	NC NC	1	NC NC	1
482		1.1	min	0	1	002	2	0	15		12	NC NC	<u>1</u> 1	NC NC	1
483		14	max	0	3	0	3	0 0	1	8.021e-6 1.358e-7	12	NC NC	1	NC NC	1
484 485		15	min max	0	1	001 0	2	0	1 <u>5</u>	8.021e-6	<u>12</u> 1	NC NC	1	NC NC	1
486		15	min	0	3	001	3	0	15	1.358e-7	12	NC	1	NC	1
487		16	max	0	1	0	2	0	1	8.021e-6	1	NC	1	NC	1
488		10	min	0	3	0	3	0	15		12	NC	1	NC	1
489		17		0	1	0	2	0	1	8.021e-6	1	NC	1	NC	1
490		17	max min	0	3	0	3	0	15	1.358e-7	12	NC NC	1	NC NC	1
491		18	max	0	1	0	2	0	1	8.021e-6	1	NC	1	NC	1
492		10	min	0	3	0	3	0	15	1.358e-7	12	NC	1	NC	1
493		19	max	0	1	0	1	0	1	8.021e-6	1	NC	1	NC	1
494			min	0	1	0	1	0	1	1.358e-7	12	NC	1	NC	1
495	M1	1	max	.006	3	.129	2	0	1	1.497e-2	1	NC	1	NC	1
496			min	003	2	03	3	0	15	-2.466e-2	3	NC	1	NC	1
											_				

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]			LC	(n) L/y Ratio L	_C ((n) L/z Rati	o LC
497		2	max	.006	3	.063	2	0	15	7.299e-3	1	NC -	4	NC	1
498			min	003	2	015	3	004	1	-1.22e-2	3	1750.347	2	NC	1
499		3	max	.006	3	.009	3	0	15	3.808e-5	10	NC	5	NC	1
500			min	003	2	008	2	005	1	-1.22e-4	3	843.995	2	NC	1
501		4	max	.006	3	.047	3	0	15	4.746e-3	1		5	NC	1
502			min	003	2	087	2	005	1	-4.784e-3	3		2	NC	1
503		5	max	.006	3	.096	3	0	15	9.578e-3	1		15	NC	1
504			min	003	2	17	2	004	1	-9.445e-3			2	NC	1
505		6	max	.005	3	.149	3	0	15	1.441e-2	<u> </u>		15	NC	1
		0			2	251	2	001	1	-1.411e-2			2	NC NC	1
506		7	min	003						1.411e-2	3				-
507		7	max	.005	3	.199	3	0	1	1.924e-2	1		15	NC NC	1
508			min	003	2	323	2	0	12	-1.877e-2			2	NC NC	1
509		8	max	.005	3	.241	3	0	1	2.407e-2	_1_		15	NC	1
510			min	002	2	38	1	0	15	-2.343e-2	3		1	NC	1
511		9	max	.005	3	.269	3	0	15	2.662e-2	_1_		15	NC_	1
512			min	002	2	417	1	0	1	-2.37e-2	3		1	NC	1
513		10	max	.005	3	.279	3	0	1	2.769e-2	2	8248.81	15	NC	1
514			min	002	2	429	1	0	15	-2.105e-2	3	206.941	1	NC	1
515		11	max	.005	3	.272	3	0	1	2.976e-2	2	8427.171 1	15	NC	1
516			min	002	2	416	1	0	15	-1.84e-2	3		1	NC	1
517		12	max	.005	3	.249	3	0	15	2.873e-2	2		15	NC	1
518		<u> </u>	min	002	2	379	1	0	1	-1.557e-2	3		1	NC	1
519		13	max	.005	3	.212	3	0	15	2.303e-2	2		15	NC	1
520		13	min	002	2	32	1	0	1	-1.247e-2	3		1	NC	1
		11						•	1					NC NC	1
521		14	max	.005	2	.164	3	.001		1.734e-2 -9.365e-3	2		15		1
522		4.5	min	002	_	246	1	0	15		3	0.0.00=	1	NC NC	
523		15	max	.004	3	.111	3	.003	1	1.164e-2	2		15	NC_	1
524			min	002	2	164	1	0	15	-6.26e-3	3_		1	NC	1
525		16	max	.004	3	.056	3	.005	1	5.939e-3	2		5	NC	1
526			min	002	2	082	1	0	15	-3.156e-3	3	00000	1	NC	1
527		17	max	.004	3	.003	3	.005	1	4.184e-4	_1_		5	NC_	1
528			min	002	2	005	2	0	15	-5.096e-5	3	918.754	1	NC	1
529		18	max	.004	3	.06	1	.004	1	1.012e-2	2	NC .	4	NC	1
530			min	002	2	043	3	0	15	-4.291e-3	3	1939.834	1	NC	1
531		19	max	.004	3	.119	1	0	15	2.037e-2	2		1	NC	1
532			min	002	2	087	3	0	1	-8.703e-3	3		1	NC	1
533	M5	1	max	.018	3	.295	2	0	1	0	1		1	NC	1
534	1410		min	011	2	042	3	0	1	0	1		1	NC	1
535		2	max	.018	3	.145	2	0	1	0	1		5	NC	1
536			min	012	2	021	3	0	1	0	1		2	NC	1
537		3		.012	3	.027	3	0	1	0	1		5	NC NC	1
		3	max					_		_					
538		-	min	012	2	023	2	0	1	0	1		2	NC NC	1
539		4	max	.018	3	.127	3	0	1	0			15	NC_	1
540			min	011	2	224	2	0	1	0	1_		2	NC	1
541		5	max	.017	3	.261	3	0	1_	0	_1_		15	NC	1
542			min	011	2	441	2	0	1	0	_1_		2	NC_	1
543		6	max	.017	3	.41	3	0	1	0	_1_	5494.434 1	15	NC	1
544			min	011	2	656	2	0	1	0	1	121.653	2	NC	1
545		7	max	.016	3	.555	3	0	1	0	1		15	NC	1
546			min	011	2	851	1	0	1	0	1		2	NC	1
547		8	max	.016	3	.677	3	0	1	0	1		15	NC	1
548		Ť	min	01	2	-1.009	1	0	1	0	1		1	NC	1
549		9	max	.016	3	.755	3	0	1	0	1		15	NC	1
550			min	01	2	-1.109	1	0	1	0	1		1	NC NC	1
		10							1	_	1				1
551		10	max	.015	3	.784	3	0	1	0			15	NC NC	
552		4.4	min	01	2	<u>-1.142</u>	1	0		0	1	00.00=	1	NC NC	1
553		11	max	.015	3	.764	3	0	1	0	<u>1</u>	3709.425 1	15	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

555		Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC_
Secondary Seco	554			min	01	2	-1.109		0	1	0	1	82.55	1	NC	1
558	555		12	max	.015	3	.698	3	0	1	0	1	3992.554	15	NC	1
See	556			min	01	2	-1.007	1	0	1	0	1	89.197	1	NC	1
559	557		13	max	.014	3	.59	3	0	1	0	1	4544.826	15	NC	1
Secondary Seco	558			min	01	2	845	1	0	1	0	1	102.283	1	NC	1
Secondary	559		14	max	.014	3	.455	3	0	1	0	1	5495.126	15	NC	1
562	560			min	009	2	643	1	0	1	0	1	125.032	1	NC	1
Feb Feb	561		15	max	.014	3	.305	3	0	1	0	1	7141.802	15	NC	1
568	562			min	009	2	423	1	0	1	0	1	165.013	1	NC	1
The color of the	563		16	max	.013	3	.152	3	0	1	0	1		15	NC	1
Test				min	009				0	1	0	1	241.024		NC	1
The color of the	565		17	max	.013	3	.01	3	0	1	0	1	NC	5	NC	1
The color of the				min	009		016		0	1	0	1	408.073	1	NC	1
The color of the			18				.136		0	1	0	1		5	NC	1
The color of the					009	2		3	0	1	0	1	891.353	1	NC	1
570			19	max	.013	3	.263	1	0	1	0	1		1	NC	1
572				min	009	2	218	3	0	1	0	1	NC	1	NC	1
572		M9	1		.006	3	.129	2	0	15	2.466e-2	3	NC	1	NC	1
573				min			03		0	1			NC	1	NC	1
S74	573		2	max	.006	3	.063	2	.004	1		3	NC	4	NC	1
S75										15		1		2		1
576 min 003 2 008 2 0 15 -3.808e-5 10 843.995 2 NC 1 577 4 max .006 3 .047 3 .005 1 4.784e-3 3 NC 5 NC 1 578 min 006 3 .096 3 .004 1 9.445e-3 3 NC 15 NC 1 580 min 003 2 17 2 0 15 9.578e-3 1 384.989 2 NC 1 581 6 max .005 3 .149 3 .001 1 1.411e-2 3 NC 15 NC 1 582 min 005 3 .199 3 0 12 1.87e-2 3 NC 15 NC 1 583 7 max .005 3 .241 3			3			3		3	.005	1		3	NC	5	NC	1
577 4 max .006 3 .047 3 .005 1 4.784e-3 3 NC 5 NC 1 578 min 003 2 087 2 0 15 -4.746e-3 1 533.137 2 NC 1 579 5 max .006 3 .096 3 .004 1 9.478e-3 3 NC 15 NC 1 580 min 003 2 17 2 0 15 -9.578e-3 1 384.989 2 NC 1 581 6 max .005 3 .149 3 .001 1 1.41e-2 3 NC 15 NC 1 582 min 003 2 251 2 0 15 -1.441e-2 1 303.348 2 NC 1 584 min 005 3 .241 3 0 15 2.343e-2 </td <td></td> <td></td> <td></td> <td>min</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>15</td> <td></td> <td>10</td> <td>843.995</td> <td>2</td> <td>NC</td> <td>1</td>				min						15		10	843.995	2	NC	1
578 min 003 2 087 2 0 15 -4.746e-3 1 533.137 2 NC 1 579 5 max .006 3 .096 3 .004 1 9.445e-3 3 NC 15 NC 1 580 min 003 2 17 2 0 15 -9.578e-3 1 384.989 2 NC 1 581 6 max .005 3 .149 3 .001 1 1.411e-2 1 303.348 2 NC 1 582 min 003 2 251 2 0 15 -1.441e-2 1 303.348 2 NC 1 584 min 003 2 323 2 0 1 -1.924e-2 1 255.142 2 NC 1 585 8 max .005 3 .269			4						.005							1
579 5 max .006 3 .096 3 .004 1 9.445e-3 3 NC 15 NC 1 580 min 003 2 17 2 0 15 -9.578e-3 1 384.989 2 NC 1 581 6 max .005 3 .149 3 .001 1 .411e-2 3 NC 15 NC 1 582 min 003 2 251 2 0 15 -1.441e-2 1 303.348 2 NC 1 583 7 max .005 3 .241 3 0 12 1.877e-2 3 NC 15 NC 1 584 min 003 2 323 2 0 1 -1.924e-2 1 225.142 2 NC 1 585 8 max .005 3 .269 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>15</td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td>1</td>										15		1				1
580 min 003 2 17 2 0 15 -9.578e-3 1 384.989 2 NC 1 581 6 max .005 3 .149 3 .001 1 1.411e-2 3 NC 15 NC 1 582 min 003 2 251 2 0 15 -1.441e-2 1 303.348 2 NC 1 583 7 max .005 3 .199 3 0 12 1.877e-2 3 NC 15 NC 1 584 min 003 2 323 2 0 1 -1.924e-2 1 255.142 2 NC 1 585 8 max .005 3 .241 3 0 15 2.343e-2 3 9013.212 15 NC 1 587 9 max .005 3 .			5	max					.004			3				1
581 6 max .005 3 .149 3 .001 1 1.411e-2 3 NC 15 NC 1 582 min 003 2 251 2 0 15 -1.441e-2 1 303.348 2 NC 1 584 min 003 2 323 2 0 1 -1.924e-2 1 255.142 2 NC 1 585 8 max .005 3 .241 3 0 15 2.343e-2 3 9013.212 15 NC 1 586 min 002 2 38 1 0 1 -2.407e-2 1 226.607 1 NC 1 587 9 max .005 3 .269 3 0 1 2.37e-2 3 8427.364 15 NC 1 588 min 002 2 417				min					0	15		1	384.989	2	NC	1
582 min 003 2 251 2 0 15 -1.441e-2 1 303.348 2 NC 1 583 7 max .005 3 .199 3 0 12 1.877e-2 3 NC 15 NC 1 584 min 003 2 323 2 0 1 -1.924e-2 1 255.142 2 NC 1 585 8 max .005 3 .241 3 0 15 2.343e-2 3 9013.212 15 NC 1 586 min 002 2 38 1 0 1 2.240fe-2 1 226.607 1 NC 1 587 9 max .005 3 .269 3 0 1 2.37e-2 3 8427.364 15 NC 1 588 min 002 2 417			6	max	.005	3	.149	3	.001	1		3	NC	15	NC	1
583 7 max .005 3 .199 3 0 12 1.877e-2 3 NC 15 NC 1 584 min 003 2 323 2 0 1 -1.924e-2 1 255.142 2 NC 1 585 8 max .005 3 .241 3 0 15 2.343e-2 3 9013.212 15 NC 1 586 min 002 2 38 1 0 1 2.2407e-2 1 226.607 1 NC 1 587 9 max .005 3 .269 3 0 1 2.37e-2 3 8427.364 15 NC 1 588 min 002 2 417 1 0 15 2.2662e-2 1 211.46 1 NC 1 589 10 min 002 2 <th< td=""><td></td><td></td><td></td><td>min</td><td></td><td></td><td></td><td></td><td></td><td>15</td><td></td><td></td><td></td><td></td><td></td><td>1</td></th<>				min						15						1
584 min 003 2 323 2 0 1 -1.924e-2 1 255.142 2 NC 1 585 8 max .005 3 .241 3 0 15 2.343e-2 3 9013.212 15 NC 1 586 min 002 2 38 1 0 1 -2.407e-2 1 226.607 1 NC 1 587 9 max .005 3 .269 3 0 1 2.37e-2 3 8427.364 15 NC 1 588 min 002 2 417 1 0 15 -2.662e-2 1 211.46 1 NC 1 589 10 main 002 2 429 1 0 1 2.769e-2 2 206.941 1 NC 1 591 11 max .005 3			7	max	.005	3	.199	3	0	12		3		15	NC	1
586 min 002 2 38 1 0 1 -2.407e-2 1 226.607 1 NC 1 587 9 max .005 3 .269 3 0 1 2.37e-2 3 8427.364 15 NC 1 588 min 002 2 417 1 0 15 -2.662e-2 1 211.46 1 NC 1 589 10 max .005 3 .279 3 0 15 2.105e-2 3 8248.81 15 NC 1 590 min 002 2 429 1 0 1 -2.769e-2 2 206.941 1 NC 1 591 11 max .005 3 .272 3 0 15 1.84e-2 3 8427.171 15 NC 1 592 min 002 2 416				min					0	1		1	255.142		NC	1
586 min 002 2 38 1 0 1 -2.407e-2 1 226.607 1 NC 1 587 9 max .005 3 .269 3 0 1 2.37e-2 3 8427.364 15 NC 1 588 min 002 2 417 1 0 15 -2.662e-2 1 211.46 1 NC 1 589 10 max .005 3 .279 3 0 15 2.105e-2 3 8248.81 15 NC 1 590 min 002 2 429 1 0 1 -2.769e-2 2 206.941 1 NC 1 591 11 max .005 3 .272 3 0 15 1.84e-2 3 8427.171 15 NC 1 592 min 002 2 416	585		8	max	.005	3	.241	3	0	15	2.343e-2	3	9013.212	15	NC	1
587 9 max .005 3 .269 3 0 1 2.37e-2 3 8427.364 15 NC 1 588 min 002 2 417 1 0 15 -2.662e-2 1 211.46 1 NC 1 589 10 max .005 3 .279 3 0 15 2.105e-2 3 8248.81 15 NC 1 590 min 002 2 429 1 0 1 -2.769e-2 2 206.941 1 NC 1 591 11 max .005 3 .272 3 0 15 1.84e-2 3 8427.171 15 NC 1 592 min 002 2 416 1 0 1 -2.976e-2 2 211.806 1 NC 1 593 12 max .005 3				min			38		0	1		1		1	NC	1
588 min 002 2 417 1 0 15 -2.662e-2 1 211.46 1 NC 1 589 10 max .005 3 .279 3 0 15 2.105e-2 3 8248.81 15 NC 1 590 min 002 2 429 1 0 1 -2.769e-2 2 206.941 1 NC 1 591 11 max .005 3 .272 3 0 15 1.84e-2 3 8427.171 15 NC 1 592 min 002 2 416 1 0 1 -2.976e-2 2 211.806 1 NC 1 593 12 max .005 3 .249 3 0 1 1.557e-2 3 9012.802 15 NC 1 594 min 002 2 379			9		.005		.269	3	0	1		3		15		1
589 10 max .005 3 .279 3 0 15 2.105e-2 3 8248.81 15 NC 1 590 min 002 2 429 1 0 1 -2.769e-2 2 206.941 1 NC 1 591 11 max .005 3 .272 3 0 15 1.84e-2 3 8427.171 15 NC 1 592 min 002 2 416 1 0 1 -2.976e-2 2 211.806 1 NC 1 593 12 max .005 3 .249 3 0 1 1.557e-2 3 9012.802 15 NC 1 594 min 002 2 379 1 0 15 -2.873e-2 2 227.667 1 NC 1 595 13 max .005 3					002	2	417	1	0	15		1		1	NC	1
590 min 002 2 429 1 0 1 -2.769e-2 2 2 06.941 1 NC 1 591 11 max .005 3 .272 3 0 15 1.84e-2 3 8427.171 15 NC 1 592 min 002 2 416 1 0 1 -2.976e-2 2 211.806 1 NC 1 593 12 max .005 3 .249 3 0 1 1.557e-2 3 9012.802 15 NC 1 594 min 002 2 379 1 0 15 -2.873e-2 2 227.667 1 NC 1 595 13 max .005 3 .212 3 0 1 1.247e-2 3 NC 15 NC 1 596 min 002 2 32			10	max	.005	3		3	0	15		3		15	NC	1
591 11 max .005 3 .272 3 0 15 1.84e-2 3 8427.171 15 NC 1 592 min 002 2 416 1 0 1 -2.976e-2 2 211.806 1 NC 1 593 12 max .005 3 .249 3 0 1 1.557e-2 3 9012.802 15 NC 1 594 min 002 2 379 1 0 15 -2.873e-2 2 227.667 1 NC 1 595 13 max .005 3 .212 3 0 1 1.247e-2 3 NC 15 NC 1 596 min 002 2 32 1 0 15 -2.303e-2 2 258.344 1 NC 1 597 14 max .005 3				min			429		0						NC	1
592 min 002 2 416 1 0 1 -2.976e-2 2 211.806 1 NC 1 593 12 max .005 3 .249 3 0 1 1.557e-2 3 9012.802 15 NC 1 594 min 002 2 379 1 0 15 -2.873e-2 2 227.667 1 NC 1 595 13 max .005 3 .212 3 0 1 1.247e-2 3 NC 15 NC 1 596 min 002 2 32 1 0 15 -2.303e-2 2 258.344 1 NC 1 597 14 max .005 3 .164 3 0 15 9.365e-3 3 NC 15 NC 1 598 min 002 2 246 <			11		.005	3	.272	3	0	15		3		15	NC	1
593 12 max .005 3 .249 3 0 1 1.557e-2 3 9012.802 15 NC 1 594 min 002 2 379 1 0 15 -2.873e-2 2 227.667 1 NC 1 595 13 max .005 3 .212 3 0 1 1.247e-2 3 NC 15 NC 1 596 min 002 2 32 1 0 15 -2.303e-2 2 258.344 1 NC 1 597 14 max .005 3 .164 3 0 15 9.365e-3 3 NC 15 NC 1 598 min 002 2 246 1 001 1 -1.734e-2 2 310.692 1 NC 1 599 15 max .004 3 .111 3 0				min			416		0							1
594 min 002 2 379 1 0 15 -2.873e-2 2 227.667 1 NC 1 595 13 max .005 3 .212 3 0 1 1.247e-2 3 NC 15 NC 1 596 min 002 2 32 1 0 15 -2.303e-2 2 258.344 1 NC 1 597 14 max .005 3 .164 3 0 15 9.365e-3 3 NC 15 NC 1 598 min 002 2 246 1 001 1 -1.734e-2 2 310.692 1 NC 1 599 15 max .004 3 .111 3 0 15 6.26e-3 3 NC 15 NC 1 600 min 002 2 164 <td< td=""><td>593</td><td></td><td>12</td><td>max</td><td>.005</td><td>3</td><td>.249</td><td>3</td><td>0</td><td></td><td>1.557e-2</td><td>3</td><td></td><td>15</td><td>NC</td><td>1</td></td<>	593		12	max	.005	3	.249	3	0		1.557e-2	3		15	NC	1
595 13 max .005 3 .212 3 0 1 1.247e-2 3 NC 15 NC 1 596 min 002 2 32 1 0 15 -2.303e-2 2 258.344 1 NC 1 597 14 max .005 3 .164 3 0 15 9.365e-3 3 NC 15 NC 1 598 min 002 2 246 1 001 1 -1.734e-2 2 310.692 1 NC 1 599 15 max .004 3 .111 3 0 15 6.26e-3 3 NC 15 NC 1 600 min 002 2 164 1 003 1 -1.164e-2 2 400.52 1 NC 1 601 16 max .004 3 .056 3 0 15 3.156e	594			min	002	2	379	1	0	15	-2.873e-2	2	227.667	1	NC	1
597 14 max .005 3 .164 3 0 15 9.365e-3 3 NC 15 NC 1 598 min 002 2 246 1 001 1 -1.734e-2 2 310.692 1 NC 1 599 15 max .004 3 .111 3 0 15 6.26e-3 3 NC 15 NC 1 600 min 002 2 164 1 003 1 -1.164e-2 2 400.52 1 NC 1 601 16 max .004 3 .056 3 0 15 3.156e-3 3 NC 5 NC 1 602 min 002 2 082 1 005 1 -5.939e-3 2 566.163 1 NC 1			13			3		3	0			3		15		1
597 14 max .005 3 .164 3 0 15 9.365e-3 3 NC 15 NC 1 598 min 002 2 246 1 001 1 -1.734e-2 2 310.692 1 NC 1 599 15 max .004 3 .111 3 0 15 6.26e-3 3 NC 15 NC 1 600 min 002 2 164 1 003 1 -1.164e-2 2 400.52 1 NC 1 601 16 max .004 3 .056 3 0 15 3.156e-3 3 NC 5 NC 1 602 min 002 2 082 1 005 1 -5.939e-3 2 566.163 1 NC 1	596			min	002	2	32	1	0	15	-2.303e-2	2	258.344	1	NC	1
598 min 002 2 246 1 001 1 -1.734e-2 2 310.692 1 NC 1 599 15 max .004 3 .111 3 0 15 6.26e-3 3 NC 15 NC 1 600 min 002 2 164 1 003 1 -1.164e-2 2 400.52 1 NC 1 601 16 max .004 3 .056 3 0 15 3.156e-3 3 NC 5 NC 1 602 min 002 2 082 1 005 1 -5.939e-3 2 566.163 1 NC 1			14	max	.005	3	.164	3	0			3	NC	15	NC	1
599 15 max .004 3 .111 3 0 15 6.26e-3 3 NC 15 NC 1 600 min 002 2 164 1 003 1 -1.164e-2 2 400.52 1 NC 1 601 16 max .004 3 .056 3 0 15 3.156e-3 3 NC 5 NC 1 602 min 002 2 082 1 005 1 -5.939e-3 2 566.163 1 NC 1	598			min	002	2	246	1	001			2	310.692	1	NC	1
600 min 002 2 164 1 003 1 -1.164e-2 2 400.52 1 NC 1 601 16 max .004 3 .056 3 0 15 3.156e-3 3 NC 5 NC 1 602 min 002 2 082 1 005 1 -5.939e-3 2 566.163 1 NC 1			15					3		15		3		15		1
601									003							1
602 min002 2082 1005 1 -5.939e-3 2 566.163 1 NC 1			16					3		15				5		1
									005							1
	603		17	max	.004	3	.003	3	0	15	5.096e-5	3	NC	5	NC	1
604 min002 2005 2005 1 -4.184e-4 1 918.754 1 NC 1										-						
605 18 max .004 3 .06 1 0 15 4.291e-3 3 NC 4 NC 1			18							15		3		4		_
606 min002 2043 3004 1 -1.012e-2 2 1939.834 1 NC 1									004							
607			19							1				1		
									0	15		2		1		1

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1723.0	23.0	593.0	593.4	
Sum	1723 0	23.0	593.0	593 4	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247 75	0.967	1.00	1 000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)			
1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,i}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a)			
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

Company:	Schletter, Inc.	Date:	11/17/2015			
Engineer:	HCV	Page:	4/5			
Project:	Standard PVMax - Worst Case, 14-42 Inch Width					
Address:						
Phone:						
E-mail:						

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq.	. D-24)
--	---------

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cby} = \phi (A_1)$	$_{ m Vc}$ / $A_{ m Vco}$) $\Psi_{ m ed,V}$ $\Psi_{ m c}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / A vco) Ψed, v Ψc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\varPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

	u)	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$

Kcp	A _{Na} (In²)	A _{Na0} (In²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	Na0 (ID)	Na (ID)			
2.0	109.66	109.66	1.000	1.000	9755	9755			
4 (:-2)	A (:2)	177	177	177	A / /II- \	A / /II- \	,		
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)	
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1723	6071	0.28	Pass
Concrete breakout	1723	5710	0.30	Pass
Adhesive	1723	5365	0.32	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	593	3156	0.19	Pass (Governs)
T Concrete breakout y+	593	3934	0.15	Pass
T Concrete breakout x+	23	3018	0.01	Pass
Concrete breakout y+	23	8508	0.00	Pass
Concrete breakout x+	593	6875	0.09	Pass
Concrete breakout, combined	-	-	0.15	Pass
Pryout	593	12298	0.05	Pass
Interaction check Nu	a/φNn Vua/φVn	Combined Rat	o Permissible	Status
Sec. D.7.1 0.3	32 0.00	32.1 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	11/17/2015			
Engineer:	HCV	Page:	1/5			
Project:	Standard PVMax - Worst Case, 37-42 Inch Width					
Address:						
Phone:						
E-mail:						

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2 Load combination: not set

Seismic design: No Anchors subjected to sustained tension: No Apply entire shear load at front row: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015					
Engineer:	HCV	Page:	2/5					
Project:	Standard PVMax - Worst Case, 37	Standard PVMax - Worst Case, 37-42 Inch Width						
Address:								
Phone:								
E-mail:								

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 37	-42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2915.5	1524.0	0.0	1524.0
2	2915.5	1524.0	0.0	1524.0
Sum	5831.0	3048.0	0.0	3048.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 5831 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_N$	lc / A _{Nco}) Ψ _{ec,N} Ψ _{ea}	$_{I,N}\Psi_{c,N}\Psi_{cp,N}N_b$ (Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
408 24	324 00	1 000	1 000	1.00	1 000	12492	0.65	10231

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f _{short-term}	K _{sat}	τ _{k,cr} (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_N$	a / A_{Na0}) $\Psi_{\sf ed,Na}$ $\Psi_{\sf g}$	$_{ extstyle I,Na}arPsi_{ extstyle ec,Na}arPsi_{ extstyle p,Na} \Lambda$	I _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 37-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/d$	$_{a})^{0.2}\sqrt{d_{a}}\lambda\sqrt{f'_{c}}c_{a1}^{1.5}$	° (Eq. D-24)						
le (in)	da (in)	λ	f'_c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	12.00	15593			
$\phi V_{cbgx} = \phi (A$	Vc / Avco) Yec, v Ye	$_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	դ. D-22)				
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (Ib)
666.00	648.00	1.000	0.969	1.000	1.000	15593	0.70	10875

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d$	$_{a})^{0.2}\sqrt{d_{a}\lambda}\sqrt{f'_{c}c_{a1}}^{1.}$	⁵ (Eq. D-24)					
I _e (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	16.16	24369		
$\phi V_{cbx} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V} \Psi_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
872.64	1175.16	1.000	1.000	1.000	24369	0.70	25334

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \text{mi}$	n kcpNag; kcpN	$ c_{bg} = \phi \min k_{cp} $	(ANa/ANa0)Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arP$	Ψ _{p,Na} Na0 ; Kcp(A	Nc / A Nco) Ψ ec,N Ψ	$\mathscr{C}_{ed,N}\mathscr{V}_{cp,N}\mathscr{N}_{b}$	(Eq. D-30b)
<i>k</i> _{cp}	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\varPsi_{g,Na}$	$\Psi_{\sf ec,Na}$	$\varPsi_{ ho,Na}$	N _{a0} (lb)	N _a (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	Ncb (lb)	ϕ
408.24	324.00	1.000	1.000	1.000	1.000	12492	15740	0.70

φV_{cpg} (lb) 20601

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2916	6071	0.48	Pass
Concrete breakout	5831	10231	0.57	Pass
Adhesive	5831	8093	0.72	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1524	3156	0.48	Pass (Governs)
T Concrete breakout x+	3048	10875	0.28	Pass
Concrete breakout y-	1524	25334	0.06	Pass
Pryout	3048	20601	0.15	Pass
Interaction check Nua	/φNn Vua/φVn	Combined Rati	o Permissible	Status

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 37-42 Inch Width				
Address:					
Phone:					
E-mail:					

Sec. D.7.3 0.72 0.48 120.3 % 1.2 Pa	3C. D.7.3	0.72	0.48	120.3 %	1.2	Pas
-------------------------------------	-----------	------	------	---------	-----	-----

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.