Rank-67243 over GF(2)

January 15, 2021

The equation

The equation of the surface is:

$$X_3^3 + X_0^2 X_2 + X_0 X_1^2 + X_1^2 X_3 + X_0 X_2^2 + X_0 X_1 X_2 = 0$$

(0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0)The point rank of the equation over GF(2) is 67243

General information

Number of lines	2
Number of points	9
Number of singular points	0
Number of Eckardt points	0
Number of double points	1
Number of single points	4
Number of points off lines	4
Number of Hesse planes	0
Number of axes	0
Type of points on lines	3^{2}
Type of lines on points	$2, 1^4, 0^4$

Singular Points

The surface has 0 singular points:

The 2 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{28} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{28} = \mathbf{Pl}(0, 0, 0, 0, 0, 1)_{19}$$

$$\ell_1 = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{31} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{31} = \mathbf{Pl}(0, 1, 0, 0, 0, 1)_{21}$$

Rank of lines: (28, 31)

Rank of points on Klein quadric: (19, 21)

Eckardt Points

The surface has 0 Eckardt points:

Double Points

The surface has 1 Double points:

The double points on the surface are:

$$P_2 = (0,0,1,0) = \ell_0 \cap \ell_1$$

Single Points

The surface has 4 single points:

The single points on the surface are:

 $0: P_1 = (0, 1, 0, 0)$ lies on line ℓ_0

1 : $P_7 = (0, 1, 1, 0)$ lies on line ℓ_0

2: $P_{10} = (0, 1, 0, 1)$ lies on line ℓ_1

The single points on the surface are:

3 : $P_{14} = (0,1,1,1)$ lies on line ℓ_1

Points on surface but on no line

The surface has 4 points not on any line:

The points on the surface but not on lines are:

 $0: P_0 = (1, 0, 0, 0)$

 $1: P_4 = (1, 1, 1, 1)$

 $2: P_6 = (1,0,1,0)$

 $3: P_8 = (1, 1, 1, 0)$

Line Intersection Graph

 $\begin{array}{c|c} 0 \ 1 \\ \hline 0 \ 0 \ 1 \end{array}$

 $1 \mid 1 \mid 0$

Neighbor sets in the line intersection graph:

Line 0 intersects

 $\begin{array}{|c|c|c|c|}\hline \text{Line} & \ell_1\\ \text{in point} & P_2\\ \hline \end{array}$

Line 1 intersects

 $\begin{array}{|c|c|c|} \hline & \text{Line} & \ell_0 \\ \hline & \text{in point} & P_2 \\ \hline \end{array}$

The surface has 9 points:

The points on the surface are:

$0: P_0 = (1, 0, 0, 0)$	$4: P_6 = (1,0,1,0)$	$8: P_{14} = (0, 1, 1, 1)$
$1: P_1 = (0, 1, 0, 0)$	$5: P_7 = (0, 1, 1, 0)$	
$2: P_2 = (0, 0, 1, 0)$	$6: P_8 = (1, 1, 1, 0)$	
$3: P_4 = (1, 1, 1, 1)$	$7: P_{10} = (0, 1, 0, 1)$	