Questions From Competitive Exams

4.1 Introduction

(MHT-CET 2019)

1.	The equation of state for 2g of oxygen at a pressure occupying a volume 'V' will be	1	and temperature T, w
	occupying a volume		· · · · · · · · · · · · · · · · · · ·

a)
$$PV = \frac{1}{16} RT$$

b)
$$PV = RT$$

c)
$$PV = 2RT$$

d)
$$PV = 16 RT$$

4.2 Thermal Equilibrium and Definition of Temperature

(MHT-CET 2004)

2	The state of a thermodynamic system	is	represented	by	y
---	-------------------------------------	----	-------------	----	---

a) pressure only

b) volume only

c) pressure, volume and temperature

d) number of moles

4.3 Zeroth Law of Thermodynamics

(MHT-CET 2003)

Mercury is used as thermometric liquid because 3.

a) it has low specific heat

b) it does not wet the glass tube

c) it is opaque and bright

d) all the above

(MHT-CET 2005)

4. The temperature of sun is measured with

a) Resistance thermometer

b) Vapour pressure thermometer

c) Radiation pyrometer

d) Gas thermometer

(MHT-CET 2009)

Two bodies are said to be in thermal equilibrium when is same. 5.

a) amount of heat

b) specific heat

c) temperature

d) thermal capacit

4.4 Heat, Work and Internal Energy

(MHT-CET 2006)

A gas expands from 75 litres to 125 litres at constant pressure of 4 atmosphere. Will done by the gas during this ab 6. done by the gas during this change is $(10 \text{ atm} = 10^5 \text{ Nm}^{-2})$

a) 50 kJ

b) 40 kJ

c) 30 kJ

d) 20 kJ

(MHT-CET 2010)

Heat is supplied to a diatomic gas which expands at constant pressure. The % of chall in internal energy to heat supplied in 7. in internal energy to heat supplied is

a) 71.4

b) 60.8

c) 40.9

d) 18.6

4.5 First Law of Thermodynamics

(MHT-CET 2003)

If 2 kcal of heat supplied to a system causes a change in the internal energy of a gost of heat supplied to a system causes a change in the internal energy of a gost of heat supplied to a system causes a change in the internal energy of a gost of heat supplied to a system causes a change in the internal energy of a gost of heat supplied to a system causes a change in the internal energy of a gost of heat supplied to a system causes a change in the internal energy of a gost of heat supplied to a system causes a change in the internal energy of a gost of heat supplied to a system causes a change in the internal energy of a gost of heat supplied to a system causes a change in the internal energy of a gost of heat supplied to a system causes a change in the internal energy of a gost of heat supplied to a system causes a change in the internal energy of a gost of heat supplied to a system causes a change in the internal energy of a gost of heat supplied to a system causes a change in the internal energy of a gost of heat supplied to a system cause a change in the internal energy of a gost of heat supplied to a system cause a change in the internal energy of a gost of heat supplied to a system cause a change in the internal energy of a gost of heat supplied to a system cause and a change in the internal energy of a gost of heat supplied to a system cause and a change in the cause and a change in the cause and a change in the c 8. 5030 J, and external work done is 3350 J, then what is mechanical equivalent of head

b) 4190 J/cal

c) 4.19 J/kcal

d) 4.19 J/cal

(MHT-CET 2020)

- If ' ΔQ ' is the amount of heat supplied to 'n' moles of a diatomic gas at constant pressure, $\Delta U'$ is the change in internal energy and $\Delta W'$ is the work done, then $\Delta W:\Delta U:\Delta Q$ is
- c) 2:3:4
- d) 5:7:9

(MHT-CET 2021)

- An ideal gas having pressure 'P', volume 'V' and temperature 'T' undergoes 10. a thermodynamics process in which dW = 0 and dQ < 0. Then for the gas
 - a) V will increase

b) P may increase or decrease

c) T will increase

d) T will decrease

(MHT-CET 2022)

- In a thermodynamic system, 'W' represents the work done by the system and ' $\Delta U'$ is 11. the increase in internal energy. Which of the following statements is TRUE?
 - a) In an isothermal process, $\Delta U = -W$
- b) In an adiabatic process, $\Delta U = W$
- c) In an isothermal process, $\Delta U = W$
- d) In an adiabatic process, $\Delta U = -W$

4.6 Thermodynamic State Variables 4.7 Thermodynamics Process

(MHT-CET 2003)

- In any reversible process the entropy of system and surrounding will 12.
 - a) increase
- b) decrease
- c) remain same
- d) uncertain

(MHT-CET 2004)

- 13. A gas expands adiabatically at constant pressure such that its temperature $T \propto 1/\sqrt{V}$. The value of C_p/C_v of the gas is
 - a) 1.30
- b) 1.50
- c) 1.67
- d) 2.00

(MHT-CET 2005)

- With same initial conditions, an ideal gas expands from volume V1 to V2 in three different ways. The work done by the gas is W1 if the process is isothermal, W2 if isobaric and W3 if adiabatic, then
 - a) $W_2 > W_1 > W_3$

b) $W_2 > W_3 > W_1$

c) $W_1 > W_2 > W_3$

d) $W_1 > W_3 > W_2$

(MHT-CET 2006)

- 15. Which statement is INCORRECT?
 - a) all reversible cycles have same efficiency
 - b) reversible cycle has more efficiency than an irreversible one
 - Carnot cycle is a reversible one
 - d) Carnot cycle has the maximum efficiency of all the cycles

(MHT-CET 2007)

- 16. We consider a thermodynamic system. If ΔU represents the increase in its internal energy and W the work done by the system, which of the following statements is true?
 - a) ΔU = -W is an adiabatic process
- b) ΔU = W in an isothermal process
- c) $\Delta U = -W$ in an isothermal process
- d) ΔU = W in an adiabatic process

- An ideal gas at pressure 'P' is adiabatically compressed so that its density becomes 23. twice that of the initial. If $\gamma = \frac{c_p}{c_v} = \frac{7}{5}$, then final pressure of the gas is
 - a) P

- c) $\frac{7}{5}$ P
- One mole of an ideal gas expands adiabatically at constant pressure such that its 24. temperature T $\propto \frac{1}{\sqrt{V}}$. The value of γ for the gas is $\left(\gamma = \frac{C_p}{C_v}, V = \text{Volume of the gas}\right)$

- A monoatomic gas is suddenly compressed to (1/8)th of its initial volume adiabatically. 25. The ratio of the final pressure to initial pressure of the gas is $(\gamma = 5/3)$
 - a) 32

b) 8

- In thermodynamic processes which of the following statements is 'NOT CORRECT'? 26.
 - a) In an isochoric process pressure remains constant.
 - b) In an adiabatic process, PV^{γ} = constant, where symbols have usual meaning.
 - c) In an isothermal process, the temperature remains constant.
 - d) In an adiabatic process, the system is insulated from surroundings.
- Which one of the following statements is NOT correct for an isochoric process? 27.
 - a) The volume remains constant.
 - b) The energy exchanged is used to change internal energy.
 - c) The temperature of the system changes.
 - d) The work done is positive.

(MHT-CET 2022)

For a given cycle as shown in figure the work done during isobaric process is 28.

- a) 400 J
- b) 1600 J
- c) 200 J
- In an adiabatic process the state of a gas is changed from P1, V1, T1 to P2, V2, T2. Out of 29. the following relations, the correct one is b) $T_1V_1^{\gamma-1} = T_2V_2^{\gamma-1}$ c) $P_1V_1^{\gamma-1} = P_2V_2^{\gamma-1}$ d) $T_1V_1^{\gamma} = T_2V_2^{\gamma}$
 - a) $P_1V_1^{\gamma} = P_2T_2^{\gamma}$

- 30. In which thermodynamic process, there is no exchange of heat between the system and surroundings?
 - a) Adiabatic
- b) Isobaric
- c) Isothermal
- d) Isochoric
- In an adiabatic expansion of a gas initial and final temperatures are T_1 and T_2 respectively. Then the change in internal energy of the gas is (R = gas constant, γ = adiabatic ratio)
 - a) $R(T_1 T_2)$
- b) zero
- c) $\frac{R}{\gamma-1} (T_2-T_1)$ d) $\frac{R}{\gamma-1} (T_1-T_2)$

4.8 Heat Engines

(MHT-CET 2019)

If α is the coefficient of performance of a refrigerator and ' Q_1 ' is heat released to the horizontal from the cold reservoir ' Q_2 ' is reservoir, then the heat extracted from the cold reservoir 'Q2' is 32.

a) $\frac{\alpha Q_1}{\alpha - 1}$

b) $\frac{\alpha Q_1}{1+\alpha}$

c) $\frac{1+\alpha}{\alpha}$ Q₁

d) $\frac{\alpha-1}{\alpha}Q_1$

(MHT-CET 2020)

For a heat engine operating between temperatures t₁ °C and t₂ °C, its efficiency will be 33.

a) $\frac{t_1-t_2}{t_2}$

b) $\frac{t_1-t_2}{t_1+273}$

c) $\frac{t_1}{t_2}$

d) $1 - \frac{t_2}{t_1}$

4.9 Refrigerators and Heat Pumps 4.10 Second Law of Thermodynamics

(MHT-CET 2001)

Heat cannot by itself flow from a body at lower temperature to a body at high 34. temperature is a statement of

a) 1st law of thermodynamics

b) 2nd law of thermodynamics

c) zeroth law of thermodynamics

d) 4th law of thermodynamics

(MHT-CET 2004)

What is the value of sink temperature when efficiency of engine is 100%? 35.

- a) 0 K

b) 300 K

c) 273 K

d) 400 K

(MHT-CET 2007)

A measure of the degree of disorder of a system is known as 36.

a) isobaric

b) isotropy

c) enthalpy

d) entropy

(MHT-CET 2011)

A scientist says that the efficiency of his heat engine which operates at source 37. temperature 127°C and sink temperature 27°C is 26%, then

a) it is impossible

b) it is possible but less probable

c) it is quite probable

d) data is incomplete

In a mechanical refrigerator, the low temperature coils are at a temperature of 38. and the compressed gas in the condenser has a temperature of 27°C. The theoretical coefficient of performance is

a) 5

b) 8

c) 6

d) 6.5

(MHT-CET 2013)

When you make ice cubes, the entropy of water 39.

a) does not change

b) increases

c) decreases

d) may either increase or decrease depending on the process used

hermodynamics	XII - P	HY-1-317						
	(Mur	0-	MHT-CET					
choose the inco	rrect statement from	-CET 2014)						
The efficience	y of a heat engine	the following	efficient of performance of					
a refrigerator	can never be inc	an be 1, but the cov	efficient of					
::) The second la	w of thermodynamics is	basically the princip	le of conservation of energy					
the mist law		anow several	Dhenomena consistant with					
object, is imp	nose sole result is the possible	transfer of heat from	n a colder object to a hotter					
a) i	b) iii	c) ii						
	(MHT	-CFT 2016)	d) iv					
An ideal heat en	gine works between	he terms						
	770 pgs 52 mg - 2	ne temperatures 327	°C (source) and 27°C (sink).					
a) 100%	b) 75%	c) 50%	d) 25%					
4	.11 Carnot Cycl	and Cornet E						
			igine					
		-CET 2002)						
. A Carnot engir	ne absorbs an amou	nt Q of heat from	a reservoir at an absolute					
temperature T a	nd rejects heat to a s	ink at a temperature	of T/3. The amount of heat					
a) Q/4	b) Q/3	c) Q/2	d) 2Q/3					
	(MHT	-CET 2005)	,					
. The efficiency	The efficiency of Carnot's engine operating between reservoirs, maintained at temperatures 27°C and -123°C, is							
a) 50%	b) 24%	c) 0.75%	d) 0.4%					
-, 5070		C-CET 2007)	ω, σ.1 κ.					
Efficiency of a C			fourtlet is EOO V In order to					
increase efficie	ency up to 60% kee	ping temperature of	f outlet is 500 K. In order to of inlet the same what is					
temperature of	outlet?	a) 600 K	d) 800 K					
a) 200 K	b) 400 K		d) 600 K					
	(MHT	-CET 2009)	:					
For which comb	pination of working t	emperatures the effi	ciency of Carnot's engine is					
highest?	100 V 00 V	c) 60 K, 40 K	d) 40 K, 20 K					
a) 80 K, 60 K	b) 100 K, 80 K	CET 2011)						
The con-	(MHT	CET 2011)	emperature of the source is					
The efficiency of	The efficiency of Carnot's heat engine is 0.5 when the temperature of the source is							
In and that of s	The efficiency of Carnot's heat engine is 0.5 when the temperatures of Carnot's heat engine is also 0.5. T_1 and that of sink is T_2 . The efficiency of another Carnot's heat engine is also 0.5. The temperatures of source and sink of the second engine are respectively.							
The temperatur	es of source and sink	of the second chigan						
a) 2T ₁ , 2T ₂	b) $2T_{1/2} \frac{T_2}{2}$	c) $T_1 + 5$, $T_2 - 5$	d) $T_1 + 10$, $T_2 - 10$					
	AALT	-(E ZULU)						
A Carnet	. Latween to	$\mathbf{m}_{\mathbf{p}}$ eratures \mathbf{T}_{1} and \mathbf{T}_{1}	T_2 has efficiency $\frac{1}{6}$. When T_2					
Carnot engine	e operating between the	1 -						
is lowered to	N its officiency incr	eases to $rac{1}{3}$. Then $ extstyle extstyl$	and T ₂ are, respectively 68 K d) 310 K and 248 K					
a) are	Z K, its efficiency	0 K c) 330 K and 2	68 K d) 310 K and 248 K					
3/2 K and 21	0 K b) 372 K and 33	V						