Colles semaine 12 - Dérivation : compléments

1 Dérivation

Soit $f: I \to \mathbb{R}$ une fonction continue.

Dérivabilité équation de la tangente, l'écriture

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + o(x - x_0).$$

▶ Formes indéterminées Application aux taux d'accroissement

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0)$$

Application aux inégalités

$$[f(x) \ge g(x)] \iff [\underbrace{f(x) - g(x)}_{=u(x)} \ge 0]$$

puis étude de u(x).

2 Développements limités (à l'ordre 2)

expression	dev ^{nt} limité			
$e^x =$	1+x+	$\frac{x^2}{2}$	+	$o(x^2)$
$\ln(1+h) = h \to 0$	h -	$\frac{h^2}{2}$	+	$o(h^2)$
$\ln(x) = (x-1) - \frac{(x-1)^2}{2} + o((x-1)^2)$				

expression	dev ^{nt} limité
$(1+x)^a = 1 + \epsilon$	$ax + \frac{a(a-1)}{2}x^2 + o(x^2)$
et exemples	s, notamment :
$(1+x)^2 = 1 + 2$	$2x + x^2$
$(1+x)^3 = 1+3$	$3x + 3x^2 + o(x^2)$
$\frac{1}{1+x} = 1 - 1$	$x + x^2 + o(x^2)$

- ▶ **Principe** approximation de f(x) par un polynôme de degré ≤ 2 , avec une erreur $o(x x_0)^2$.
- Formes indéterminées

$$\lim_{x\to 0}\frac{\mathrm{e}^{x}-1-x}{x^{2}}$$

$$\lim_{x \to 0} \frac{\ln(1+x) - x}{x^2}$$

$$\lim_{x \to 0} \frac{(1+x)^a - 1 - ax}{x^2}$$

► Formule de Taylor à l'ordre 2 Si $f: I \to \mathbb{R}$ est C^2 , alors pour $x \to x_0$,

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2}(x - x_0)^2 + o(x - x_0)^2$$

$$f(x_0 + h) = f(x_0) + f'(x_0)h + \frac{f''(x_0)}{2}h^2 + o(h^2) \quad (où h = x - x_0 \to 0)$$

3 Convexité

Soit $f: I \to \mathbb{R}$ une fonction continue.

ightharpoonup Inégalité de convexité f est convexe si :

moyenne des images (sur la corde)

$$\forall a, b \in I, \quad t \in [0; 1],$$

$$f((1-t)\cdot a + t\cdot b) \le (1-t)\cdot f(a) + t\cdot f(b)$$

- ► Caractérisation Pour f de classe C^2 : [f convexe sur I] \iff [$f'' \ge 0$ sur I].
- ▶ Recherche de points d'inflexion où la dérivée seconde s'annule en changeant de signe
- ► **Tangentes** Pour f { dérivable, sur I et $x, x_0 \in I$, on a : $f(x) \ge f(x_0) + f'(x_0) \cdot (x x_0)$. et **convexe**,
- ► Fonction concave $[f concave] \iff [-f convexe]$

(on renverse tout ci-dessus)

4 Inégalité des accroissements finis

► Inégalité des accroissements finis

Si on a
$$k > 0$$
 tel que $\forall x \in I$, $\left| f'(x) \right| \le k$, alors $\forall a, b \in I$, $\left| \frac{f(b) - f(a)}{b - a} \right| \le k$.

(la version la plus utile, mais aussi les versions sans valeur absolue)

▶ Application aux suites récurrentes Soit (u_n) avec : $\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$.

Pour $a = \ell$ (un p^t fixe: $f(\ell) = \ell$), et $b = u_n$, on a

 $|u_{n+1} - \ell| \le k |u_n - \ell|$. (k comme ci-dessus) $|u_n - \ell| \le k^n |u_0 - \ell|$.

On trouve alors par récurrence :

5 Questions de cours

1. Équation de la tangente, et formule de Taylor à l'ordre 2.

2. Les trois développements limités au programme

3. L'inégalité de convexité (version graphe / corde)

4. Convexité et position relative graphe / tangentes (en écrivant inégalité)

5. L'inégalité des accroissements finis (version valeur absolue)

