Chap. 6
Simplification of
Context-free Grammars and
Normal Forms

Agenda of Chapter 6

- Methods for Transforming Grammars
 - A useful substitution rule
 - Removing useless productions
 - Removing λ productions
 - Removing unit-productions
- □ Two Important Normal Forms
 - Chomsky normal form
 - Greibach normal form
- A Membership Algorithm for Context-Free Grammars

λ – free languages

- L: any context-free language
- \square G=(V,T,S,P) : a CFG for L- $\{\lambda\}$
- Grammar for L is given by
 - Adding new variable S_0 and a production rule $S_0 \rightarrow S$ λ
- From this, we can say that...
 - Any nontrivial conclusion for L- $\{\lambda\}$ will almost certainly transfer to L.
 - No practical difference between CFL including λ and those without λ .
- □ Restriction on discussions in this chapter
 - Consider only λ -free languages.

A Useful Substitution Rule(1/2)

Theorem 6.1] Consider two grammar G, G'

- Let G=(V,T,S,P) be a CFG
 - P contains a production $A \rightarrow x_1Bx_2$
 - A, B: different variables
 - B \rightarrow y₁ | y₂ | ... | y_n : all productions with B in the left side
- Let G'=(V,T,S,P') be a grammar
 P' is constructed by
 - deleting (A → X₁BX₂) ↓ 和 어떻게 어떻게 되었다.
 - adding $A \to x_1 y_1 x_2 | x_1 y_2 x_2 | ... | x_1 y_n x_2$.
- Then, L(G') = L(G)

Proof) Show that $\forall w \in L(G)$, $w \in L(G')$, and vice versa.

- Suppose $S \stackrel{*}{\Rightarrow}_G w$.
- For the derivation, $S \triangleq_G u_1 A u_2 \Rightarrow_G u_1 x_1 B x_2 u_2 \Rightarrow_G u_1 x_1 y_1 x_2 u_2$,
- With G', we have $S \stackrel{*}{\Rightarrow}_{G'} u_1 A u_2 \Rightarrow_{G'} u_1 x_1 y_j x_2 u_2$
- Similarly, we can show vice versa.

A Useful Substitution Rule(2/2)

Ex6.1]

- G=({A,B},{a,b,c}, A,P)

A a | aaA | abBc

B - aaa A | b

- A new grammar G' which is equivalent G

A a | abc | abc | abc | B - aaa | abc | abc |

A new grammar G' which is equivalent G

A a | aaa | abc | B - aaa | abc |

Derivation of aaabbc

Note) G' still has the variable B.

Removing Useless Productions(1/3)

[Definition] Usefulness & uselessness of variable and productions

- G=(V,T,S,P) : a CFG
- A useful variable A∈V
 - there is at least one $(w) \in L(G)$ such that
 - $xAy \stackrel{*}{\Rightarrow} w$, with $x, y \in (V \cup T)^*$.
 - A variable is useful iff it occurs in at least one derivation.
- A useless variable: the one that is not useful.
- production is useless if it involves any useless variable.
- Useless variable and/or production

and styling.

- \sim \rightarrow aSb | λ | A, \triangle \rightarrow aA
- -S \rightarrow A, A \rightarrow aA| λ , B \rightarrow bA

Removing Useless Productions(2/3)

Ex6.3] $G=({S,A,B,C},{a,b},S,P)$

- $[S \rightarrow aS \mid A \mid C, A \rightarrow a, B \rightarrow aa, C \rightarrow aCb]$
- find variables that cannot derive terminal string: C.
- Get new grammar G₁ = (γs.Α.Β), γα,δη, δ, β) β:s-asi A A>a B>aa.
- Find variables that cannot be reached from S
 - Use Dependency Graph for variables

Removing Useless Productions (3/3)

Theorem 6.2] Let G = (V,T,S,P) be a CFG Then there exist an equivalent grammar G' without useless variables or productions.

Proof) Give an algorithm making G' from G

- Find $G_1=(V_1,T_2,S,P_1)$ having only variables A for which $A \Rightarrow w \in T^*$. a. Set $V_1 = \{\}_{opt} \text{ only } A \Rightarrow AB \rightarrow AB \rightarrow AB$
 - b. Repeat untilino more variables are addedito V₁; For every A with a production $A \rightarrow x_1 x_2 ... x_n$, $(x_i \in V_1 \cup T)$, add A to V₁
 - c. P_1 : set of all productions with only symbols in $(V_1 \cup T)$.
- 2. Get G' from G₁ by deleting followings :
 - all variables that cannot be reached from S
 - all productions involving the variables.
 - all terminals that does not occur in some useful productions.

Removing λ - Productions(1/3)

- λ-production
 - Any production of a CFG of the form $(A \rightarrow)$
- Nullable variable

- When a grammar with λ -production generates a language without λ , the λ -production can be removed.
- Ex6.4] $S \rightarrow a S_1 b \mid \lambda$ $\begin{array}{c} \text{S} \rightarrow a \text{S} b \quad S_1 \rightarrow a S_1 b \mid \Lambda \\ \text{Generating language}: \quad \begin{array}{c} \text{Lies-Rolling language} \\ \text{Lies-Rolling language} \end{array}$

 - Removing λ-production :

Removing λ - Productions(2/3)

Theorem 6.3]

```
Let G = \{V,T,S,P\}: a CFG with \lambda \notin L(G).
```

Then there exist an equivalent grammar G' without λ -productions

Proof)

- 1. Find the set (V_N) of all nullable variables of G.
 - a. For all A $\rightarrow \bar{\lambda}$, put A into V_N . $= \hat{\lambda} + \hat{\lambda}$.
 - b. Repeat until no more variables are added to V_N : For all $B \rightarrow A_1 A_2 ... A_n$, with all $A_i \equiv V_N$, put B into V_N .
- 2. For each production $A \rightarrow x_1 x_2 ... x_m$ ($m \ge 1$, x_i in $V \cup T$), put followings into P'
- The production itself.
 - All productions generated by replacing variables in V with in all possible combinations.
 - One exception: if all x are nullable, A→ λ is not put into P'.

Removing λ - Productions(3/3)

口入音中期等限部地。

variables set the

Removing Unit-Productions(1/2)

- Unit-production
 - Any production of a CFG of the form $A \rightarrow B$, $(A, B \in V)$.

Theorem 6.4]

Let $G = \{V,T,S,P\}$: a CFG without λ -productions. Then there exist an equivalent grammar G' without unit-productions

Proof)

- 1. For each variable A, find all variables B such that $A \stackrel{*}{\Rightarrow} B$ use dependency graph with only edges for unit-productions.
- 2) Put all non-unit productions of P into P'.

add $A \rightarrow y_1 | y_2 | ... | y_n into P'$

where $B \rightarrow y_1 | y_2 | ... | y_n$ is all rules in P' with B on the left.

Removing Unit-Productions(2/2)

- Example 6.6) Remove all unit-production from
 - $-S \rightarrow Aa \mid B, B \rightarrow A \mid bb, A \rightarrow a \mid bc \mid B$

- Finally obtained rules:
- Any useless variable and/or production?

(A→A) 別版 入世 BH 時時 社

Transforming a Context-Free Grammar

Theorem 6.5]

Let L be a CFL without λ.

Then there exists a CFG generating L without useless productions, λ-productions, or unit productions.

Proof)

From theorems 6.2, 6.3, and 6.4, we can remove all undesirable productions using the following sequence of steps:

- 1. Remove λ-productions
- 2. Remove unit-productions
- 3. Remove useless productions.

14

Chomsky Normal Form (1/3)

Chomsky Normal Form (CNF)

- A normal forms with limits on the number of symbols on the right of a production.
- A CFG with which all productions are of the form
- $A \rightarrow BC$ or $A \rightarrow a(A, B, C \in V, a \in T)$

Ex6.7]

Chomsky Normal Form (2/3)

Theorem 6.6]

For any CFG G=(V,T,S,P) without λ in L(G),

There exist an equivalent grammar G'=(V',T',S,P') in CNF ▶

Assume G has no λ -production and unit-production.

- \bigcirc Find $G_1 = (V_1, T, S, P_1)$ with which all productions have the form
 - $A \rightarrow a$, or $A \rightarrow C_1C_2...C_n$ (C_i in V_1 , a in T) $\rightarrow U_1$
 - For all productions $A \rightarrow x_1 x_2 ... x_n (x_i \in V \cup T)$
 - if n=1, put the production into P
 - else
 - 1) introduce new variables Ba for each a in T.
 - 2) put $A \rightarrow C_1C_2...C_n$ ($C_i=x_i$ for x_i in V, $C_i=B^a$ for $x_i=a$) into P_1 .
 - 3) Put $B^a \rightarrow a$ into P_1 .

Chomsky Normal Form (2/3)

Proof continued)

- 2. Add variables to reduce the length of right side.
 - For all productions A → a, and A → C₁C₂: put them into P'.
 For productions A → C₁C₂...C_n (n>2:)
 Introduce D₁,D₂... and add productions A → C₁D₁, D₁ → C₂D₂, ..., D₂ → C_{n-1}C_n.

$$A \rightarrow C_1D_1$$
, $D_1 \rightarrow C_2D_2$, ..., $D_2 \rightarrow C_{n-1}C_n$.

$$A \rightarrow C_1 D_1$$

$$D_1 \rightarrow C_2 C_2 C_4$$

$$D_{2n}$$

$$A \rightarrow C_1 C_2 C_3 C_4$$

$$D_1 \rightarrow C_2 C_3 C_4$$

$$D_2 \rightarrow C_3 C_4$$

$$D_3 \rightarrow C_3 C_4$$

$$D_3 \rightarrow C_3 C_4$$

$$D_3 \rightarrow C_3 C_4$$

Chomsky Normal Form (3/3)

Ex6.8 Convert the grammar with productions a production, unit production of steal

 $S \rightarrow ABa, A \rightarrow aab, B \rightarrow Ac$ to Chomsky Normal Form.

Step 2)

Greibach Normal Form

Greibach Normal Form (GNF)

- Normal Forms with limits on the position in which terminals and variables can appear.
- A CFG with which all productions are of the form
- $A \rightarrow a \otimes (x \text{ in } V^*, \text{ a in } T) \longrightarrow \text{Lemma} \quad | \text{ In } \text{ which } \text{ or in } \text{$
- c.f.) s-grammar (pin-+)地)

Ex6.9] $S \rightarrow AB$, $A \rightarrow AB$ b

- Applying substitution rule

(A,b) (A,b)

Theorem 6.7]

For any CFG G=(V,T,S,P) without λ in L(G),

There exist an equivalent grammar G' in Greibach Normal Form.

Viin = (A lA→BC, BEVii, CEVinin's

20

CYK algorithm for Chomsky Normal Form

CYK algorithm werch: Membership algorithm of $w=a_1a_2...a_n$ for G=(V,T,S,P) in CNF. Define substring $w_{ii} = a_{i}...a_{i}$ and subset $V_{ij} = \{A \subseteq V \mid A = \emptyset\}$ $w \in L(G)$ if and only if $S \in V_{1n}$. How to find V_{1n} 1. Find V_{ii} using the fact that $A \subseteq V_{ii}$ iff G contains $A \rightarrow a$ Find V_{ij} using the formula $V_{ij} = \bigcup_{k \in \{i, i+1, \dots, j-1\}} \{A \mid A \rightarrow BC, \text{ with } B \in V_{ik}, C \in V_{k+1, j}\}$ 3. Compute all V_{ij} by proceeding in the sequence - Compute (V_1) , (V_{22}) ..., (V_{nn}) - Compute (V_1) , (V_{23}) , ... $(V_{n-1,n})$ - Compute V_{13} , V_{24} , ... $V_{n-2,n}$, and so on. V_{n} AND $V_{n-2,n}$ V= PA/A)= 1 V13= PAI A-BC, BEV1,2, CEV23). V12=PA/A->BC, BGV1, CGV22

VB=PALA-BC, BeVI, CEV2

CYK algorithm for Chomsky Normal Form

CYK algorithm for Chomsky Normal Form

Ex6.11] Apply CYK algorithm to w=aabbb and $S \rightarrow AB$, $A \rightarrow BB|a$, $B \rightarrow AB|b$.

V _{ii}	V ₁₁ =	V ₂₂ =	V ₃₃ =	V ₄₄ =	V ₅₅ =
V _{ii+1}	V ₁₂ =		V ₃₄ =		
		V ₂₃ =		V ₄₅ =	
V _{ii+2}	V ₁₃ =				
		V ₂₄ =			
			V ₃₅ =		
V _{ii+3}	V ₁₄ =				
		V ₂₅ =			
V _{ii+4}	V ₁₅ =				