Functions

Definition

For non empty sets A and B, a function f from A to B written $f:A\to B$ is a subset of $A\times B$ with two further properties

- for every a in A there is some b in B such that $(a,b) \in f$
- If $(a,b) \in f$ and $(a,c) \in f$ then b=cIn other words, any input has exactly one output
- A is the domain and B is the co-domain
- The range of f is the set of elements in B that are mapped to by f: range $(f) = \{b \in B \mid \exists a \in A \text{ s.t. } f(a) = b\}$
- Image and pre-image, Let f:A o B be a function, and let $C\subseteq A$ and let $D\subseteq B$
 - The set $f(C) = \{f(x) \mid x \in C\}$ is the **image** of C in B
 - The set $f^{-1}(D)=\{x\in A\mid f(x)\in D\}$ is the **preimage** of D in A
 - f^{-1} does not necessarily represent the inverse function

$\equiv \mathbf{Example}$ $A = \{a, b, c, d, e\},$

$$A=\{a,b,c,d,e\}, B=\{1,2,3,4,5\}$$

$$a \rightarrow 1, b \rightarrow 1, c \rightarrow 4, d, e \rightarrow 5$$

Image of
$$\{a, b, c\} : f(\{a, b, c\}) = \{1, 4\}$$

Image of
$$(a,b)=\{1\}$$

Pre-Image of
$$\{4,5\}: f^{-1}(\{4,5\}) = \{c,d,e\}$$

Pre-Image of
$$\{2,3\}:f^{-1}(\{2,3\})=arnothing$$

Pre-Image of
$$\{1,2\}: f^{-1}(\{1,2\}) = \{a,b\}$$

// Problem 1

Suppose that f:A o B is a function and let C be a subset of A. Prove that

$$f(A) - f(C) \subseteq f(A - C)$$

Let $y \in f(A) - f(C)$. We want to show $y \in f(A-C)$ Lowkey don't know how to do this

So
$$y \in f(A)$$
 and $y \notin f(C)$

Since
$$y \in f(A)$$
 then $\exists x \in A \text{ s.t. } f(x) = y$

Since
$$y \not\in f(C)$$
, there does not exist $z \in C$ s.t. $f(z) = y$

We know $x \in A$ and x
otin C given the line above, So $x \in A - C$

Therefore
$$f(x) \in f(A-C)$$

Since $f(x) \in y$, then $y \in f(A-C)$

Problem 2

Suppose that $f: A \rightarrow B$ is a function and let C be a subset of A.

Prove that $f(A) - f(C) \supseteq f(A - C)$ does not always hold

Let
$$A = \{1, 2, 3\}, B = \{4, 5, 6\}, C = \{3\}$$

Define f to be such that f(1) = 5, f(2) = f(3) = 6

Then
$$f(A)=\{5,6\}$$
, $f(C)=\{6\}$ and $f(A)-f(C)=\{5\}
eq f(A-C)=5,6$

- Injective \Rightarrow no overlap, everything maps to a distinct value, nothing in the range has more than one corresponding domain value, $f(a_1)=f(a_2)\Rightarrow a_1=a_2$ and $a_1\neq a_2\Rightarrow f(a_1)\neq f(a_2)$
- Surjective \Rightarrow every point in B is mapped to by $f, \forall b \in B, \exists a \in A \text{ s.t. } f(a) = b$

\equiv Example

- (a) Find a function $f:\mathbb{Z} \to \mathbb{Z}$ which is injective but not surjective
- (b) Surjective but not injective
- (c) What would happen if we replaced $\mathbb Z$ with a finite set in the questions above
- (a) f(x) = 5x, \checkmark
- (b) $g(x) = x^3 4x$, \checkmark
- (c) No clue

Answer

(a) Define $f(n)=2n, orall n\in \mathbb{Z}$

<u>Prove that it is injective</u>: Assume $f(a_1)=f(a_2)$ for some $a_1,a_2\in\mathbb{Z}.$ Then

 $2a_1=2a_2\Rightarrow a_1=a_2$ as required so f is injective

<u>Prove that it is not surjective</u>: Consider $1 \in \mathbb{Z}$. If $1 \in \mathrm{range}(f) \dots$

$$\text{(b)}\,g(m)\, \begin{cases} m,m\leq 0\\ m-1,m>0 \end{cases}$$

<u>Prove that it is surjective</u>: Given $y \in \mathbb{Z}$, we will show that $\exists x \in \mathbb{Z} \text{ s.t. } g(x) = y$

Case I: $y \le 0$: Let x = y, then g(x) = g(y) = y

Case 2: y > 0: Let x = y + 1, then g(x) = g(y + 1)

Prove that it is not injective: Note that g(0) = 0 and g(1) = 0

- $(c)\,Not\,possible\,if\,domain=co\text{-}domain\\$
- **Bijections**: If f is both surjective and injective then f is bijective

!≡ Example

- (a) Prove that the function $f:\mathbb{R} \to \mathbb{R}, f(x)=x^3$ is bijective
- (b) Prove that the function $f:\mathbb{R} o\mathbb{R}, f(x)=x^4$ is not bijective
- (a) x^3
 - Injective: Given $a,b\in\mathbb{R}$ s.t. f(a)=f(b), we have $a^3=b^3\Rightarrow a=b$ so f is injective
 - Surjective: Given $y \in \mathbb{R}$, let $x = \sqrt[3]{y} = y$, so f is surjective
- (b) x^4
 - Injective: f(-1)=f(1)=1 so $\exists a,b\in\mathbb{R}$ s.t. $f(a)=f(b)\land a\neq b$ so f is not injective

Problem 3

Prove that the function $f:\mathbb{R}-1 \to \mathbb{R}-\{2\}$ given by $f(x)=\frac{2x}{x-1}$ is bijective Injective: Assume f(a)=f(b) for some $a,b\in\mathbb{R}-\{1\}$

$$\Rightarrow \frac{2a}{a-1} = \frac{2b}{b-1}$$

$$\Rightarrow 2a(b-1) = 2b(a-1)$$

$$\Rightarrow ab - a = ab - b$$

$$\Rightarrow a = b$$
 so f is injective

<u>Surjective</u>: Given $y \in \mathbb{R} - \{2\}$ let $x = \frac{y}{y-2}$

$$\Rightarrow x - 1 = \frac{2}{y - 2}$$

$$\Rightarrow rac{1}{x-1} = rac{y-2}{2}$$
 We can divide by $y-2$ as $y
eq 2$

$$\Rightarrow \frac{\ddot{y}}{2} = 1 + \frac{1}{x-1}$$

$$\Rightarrow \frac{y}{2} = \frac{x}{x-1}$$

$$\Rightarrow y = \frac{2x}{x-1} = f(x)$$
, so f is surjective

Since f is injective and surjective, f is bijective

Scratch for problem 3

We want x s.t. $y=\frac{2x}{x-1}\Rightarrow \frac{y}{2}=\frac{x}{x-1}$ Now we do something funny $\frac{y}{2}=\frac{x-1+1}{x-1}=1+\frac{1}{x-1}$ $\frac{y-2}{2}=\frac{1}{x-1}\Rightarrow x-1=\frac{2}{y-2}$ so we have $x=\frac{y}{y-2}$

Problem 4

(a) Let f:A o B be a surjection and let $D_1,D_2\subseteq B.$ Show that if

$$f^{-1}(D_1)\subseteq f^{-1}(D2)$$
 then $D_1\subseteq D_2$.

Let $y\in D_1$. Consider $f^{-1}(\{y\})$. Since $\{y\}\subseteq D_1$, we have $f^{-1}(\{y\})\subseteq f^{-1}(D_1)$, and since $f^{-1}(D_1)=f^{-1}(D_2)$, we have $f^{-1}(\{y\})\subseteq f^{-1}(D_2)$, let $x\in f^{-1}(\{y\})$. Then f(x)=y, since f is a surjection, $f^{-1}(\{y\})\neq \{\}$ $x\in f^{-1}(D_2)$, so let $f(x)\in D_2$. So $y\in D_2$. So $D_1\subseteq D_2$

(b), posted online

Definition

Compositions

Let $f: A \to B$ and $g: B \to C$. The **composition** of f and g is

 $g\circ f:A o C$

where $(g \circ f)(a) = g(f(a)), \forall a, \in A$

• Order Matters!!, $f(x)=x^3$ & g(x)=2x, $g\circ f=g(f(x))=2x^3$ and $f\circ g=8x^3$

Inverses

Definition

Left Inverse

Let $A = \{a, b\}$ and $B = \{1, 2, 3\}$, then $f : A \rightarrow B$ gives f(a) = 1 and f(b) = 2

We can go in the reverse direction with g:B o A, g(1)=a and g(2)=b

What we are looking for is $g\circ f(x)=x$ But 3 doesn't map to anything so g is not a function right now, lets let g(3)=b

Does g act as an inverse?

$$g \circ f(a) = g(1) = a$$

$$g\circ f(b)=g(2)=b$$

So we have that $g\circ f$ has the domain A and co-domain A

So $g\circ f:A\to A,g\circ f$ is the identity function on A

So g is a left inverse of f as we can put it on the left to be an inverse

- We say an inverse because there can be more than one inverse
- Another left inverse of f,h:B o A, h(1)=a, h(2)=b and h(3)=a so h
 eq g but they
- are both left inverses of f

Definition

Right Inverse

$$S = \{c,d,e\}, T = \{4,5\}$$

$$f: S \to T, f(c) = 4, f(d) = 5, f(e) = 5$$

This f does **not** have a left inverse! Because f is not injective

Let
$$g:T o S, g(4)=c, g(5)=d$$

So we have
$$f\circ g(4)=4$$
 and $f\circ g(5)=5$

So g is a right inverse of f

- Once again there is another right inverse, h:T o S with h(4)=c and h(5)=e
- $g \neq h$ but they are still both right inverses of f
- Formally we have i_A be the identity function on A and i_B on B
- let $f:A \rightarrow B$ and $g:B \rightarrow A$
- if $g \circ f = i_A$ then g is a left inverse of f
- if $f \circ g = i_B$ then g is a right inverse of f
- if g is both the right and left inverse of f then g is the inverse of f
- A function only has an if and only if it is bijective
- A function has a left inverse iff it is injective
- A function has a right inverse iff it is surjective

Problem 5

Let $f:A\to B$ be a function. Prove:

- (a) If there is a function $g:B\to A$ that is a left inverse of $f, \forall x\in A$ Then f is injective
- (b) Prove that if f is injective then there is a function g:B o A such that $g\circ f(x)=x, orall x\in A$
- (a)
 - Assume $f(x_1)=f(x_2)$ for some $x_1,x_2\in A$. We want to show $x_1=x_2$
 - Apply $g: g(f(x_1)) = g(f(x_2))$
 - Since $g \circ f(x) = x : x_1 = x_2$
 - So f is injective
- (b)
 - We can construct a function g:B o A
 - Given $b \in B$
 - Case 1: $b \in \operatorname{range}(f)$
 - Prove is in notes 20 on pages
 - Case 2: $b \in \text{range}(f)$
 - Fix $z \in A$ independant of b
 - Define g(b) = z
 - This defines our function g
 - Consider $g\circ f(x)=g(f(x))$ for any $x\in A$
 - Since $f(x) \in \operatorname{range}(f)$, by definition of g, we have $g(f(x)) = x, \forall x \in A$.
 - So g is a left inverse for f

Practice

- Find a function has a right inverse but no left inverse
- Let $f(x)=x^2, f:\mathbb{R} o [0,\infty)$ so f is surjective on its domain
- Therefore It has a right inverse

- Let $g(x) = \sqrt{x}, g: [0, \infty) \to \mathbb{R}$
- Then $f\circ g(x)=f(g(x))=f(\sqrt{x})=x.$ So g is a right inverse of f
- f does not have a left inverse : Let's claim that $h:[0,\infty) o\mathbb{R}$ is a left inverse of f
- Then we must have $h\circ f(x)=x, orall x\in \mathbb{R}$
- But we must have $h\circ f(-1)=h(1)=-1$ and $h\circ f(1)=h(1)=1$ which doesn't make sense and is not possible
- So h doesn't exist