Due: 23:55, April 1 (Wednesday night)

We have 8 problems.

In your answer file, specify both the **SOLUTION PROCEDURE** and the **FINAL SOLUTION**.

- 1. In the silicon substrate, boron(B) atoms are uniformly doped. Its doping density is 10^{16} /cm³. Then, what is the expected electron density?
- 2. Starting from the p-well, arsenic ions are implanted with a dose of $5X10^{15}$ /cm² and an energy of 40 keV. The resultant doping concentration (actually, its absolute value) is drawn. Write down the position of the metallurgical junction.

- 3. In the drift-diffusion scheme, the particle current density is written as a sum of the drift current density and the diffusion one. Write down the electron current density, J_n . (Signs are important.)
- 4. Derive an expression for $W_{d,n}$, the depletion width in the N-type region.

- 5. For a PN junction, the donor density is fixed to be 10^{20} cm⁻³. However, the acceptor density varies from 10^{15} cm⁻³ to 10^{20} cm⁻³. Calculate the built-in potentials for 10^{15} cm⁻³, 10^{16} cm⁻³, 10^{17} cm⁻³, 10^{18} cm⁻³, 10^{19} cm⁻³, and 10^{20} cm⁻³. Assume 300 K.
- 6. Based upon the solution of Problem 5, calculate the depletion widths for 10^{15} cm $^{-3}$, 10^{16} cm $^{-3}$, 10^{17} cm $^{-3}$, 10^{18} cm $^{-3}$, 10^{19} cm $^{-3}$, and 10^{20} cm $^{-3}$.
- 7. Based upon the solution of Problem 6, calculate the amount of the positive space charges (charge per area) in the N-type region for 10^{15} cm⁻³, 10^{16} cm⁻³, 10^{17} cm⁻³, 10^{18} cm⁻³, 10^{19} cm⁻³, and 10^{20} cm⁻³.
- 8. Repeat Problem 2 at a low temperature of 77 K. In this problem, we must consider the intrinsic carrier density at 77 K.