ÁLGEBRA LINEAL - Clase 17/07

Para hacer en clase

Ejercicio 1. (Ejercicio 33)

- i) Sea V un K-espacio vectorial de dimensión finita y sea $f:V\to V$ una transformación lineal diagonalizable. Si S es un subespacio de V que es f-invariante, probar que $f|_S:S\to S$ es diagonalizable.
- ii) Sean $A, B \in K^{n \times n}$ tales que AB = BA y sea $E_{\lambda}(A) = \{x \in K^n / Ax = \lambda x\}$. Probar que $E_{\lambda}(A)$ es B-invariante.
- iii) Sean $A, B \in K^{n \times n}$ dos matrices diagonalizables tales que A.B = B.A. Probar que existe $C \in GL(n,K)$ tal que $C^{-1}AC$ y $C^{-1}BC$ son diagonales. (Es decir, A y B se pueden diagonalizar simultáneamente.)

Ejercicio 2. (de parcial) Sea $f: \mathbb{R}^{2\times 2} \to \mathbb{R}^{2\times 2}$ dada por $f(A) = -A^t - \operatorname{tr}(A) \cdot \begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix}$. Decidir si f es diagonalizable. En caso afirmativo, hallar una base de autovectores.