Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет Программной инженерии и компьютерной техники

Отчёт по лабораторной работе N = 2

Методы оптимизации

Вариант № 9

Выполнил: студент группы Р3214

Силинцев В.В.

Преподаватель: Селина Е.Г.

Содержание

Цель работы	3
Задание	4
Ручные расчеты	
Метод половинного деления	
Метод золотого сечения	
Метод хорд	
Метод Ньютона	
Код программы	
Результат работы программы	
Заключение	17

Цель работы

Изучить четыре метода нахождения экстремума: метод половинного деления, метод золотого сечения, метод хорд, метод Ньютона и реализовать их программно.

Задание

Решить задачу четырьмя методами: методом половинного деления, методом золотого сечения, методом хорд и методом Ньютона. По 5 шагов каждого метода выполнить вручную + написать программу по каждому методу на одном из языков программирования.

- Функция для нахождения экстремума: $f(x) = \frac{1}{3}x^3 5x + x \ln x$.
- Интервал для поиска: [a,b]=[1.5,2].
- Необходимая точность вычислений: ε =0.02 для ручных расчетов и ε =0.0001 для программных расчетов.

Ручные расчеты

Метод половинного деления

Алгоритм поиска экстремума:

• Берем две точки вблизи середины интервала [a,b]:

$$x_1 = \frac{(a+b-\epsilon)}{2}, x_2 = \frac{(a+b+\epsilon)}{2}.$$

- Вычисляем $y_1 = f(x_1)$, $y_2 = f(x_2)$.
- Если $y_1 > y_2$, тогда присваивается $a = x_1$, иначе присваивается $b = x_2$.
- Если $b-a>2\varepsilon$, тогда повторяем с п.1, иначе переходим к пункту 5.
- Вычисляем $x_m = \frac{(a+b)}{2}$, $y_m = f(x_m)$.

Поиск методом половинного деления (5 итераций):

Первая итерация:

1. Находим
$$x_1 = \frac{(1.5 + 2 - 0.02)}{2} = 1.74 \text{ и } x_2 = \frac{(1.5 + 2 + 0.02)}{2} = 1.76.$$

- 2. Вычисляем $y_1 = f(x_1) = \frac{1}{3} 1.74^3 5 \cdot 1.74 + 1.74 \cdot \ln 1.74 \approx -5.98023$ и $y_2 = f(x_2) = \frac{1}{3} 1.76^3 5 \cdot 1.76 + 1.76 \cdot \ln 1.76 \approx -5.98779$.
- 3. $y_1 > y_2$, тогда $a = x_1 = 1.74$.
- 4. $b-a=0.5>2\varepsilon=0.04$, тогда повторяем пункт 1.

Вторая итерация:

1. Находим
$$x_1 = \frac{(1.74 + 2 - 0.02)}{2} = 1.86$$
 и $x_2 = \frac{(1.74 + 2 + 0.02)}{2} = 1.88$.

2. Вычисляем
$$y_1 = f(x_1) = \frac{1}{3} \cdot 1.86^3 - 5 \cdot 1.86 + 1.86 \cdot \ln 1.86 \approx -6.00078$$
 и $y_2 = f(x_2) = \frac{1}{3} \cdot 1.88^3 - 5 \cdot 1.88 + 1.88 \cdot \ln 1.88 \approx -5.99832.$

- 3. $y_1 \le y_2$, тогда $b = x_2 = 1.88$.
- 4. $b-a=0.26>2 \varepsilon=0.04$, тогда повторяем пункт 1.

Третья итерация:

1. Находим
$$x_1 = \frac{(1.74 + 1.88 - 0.02)}{2} = 1.8 \text{ и } x_2 = \frac{(1.74 + 1.88 + 0.02)}{2} = 1.82.$$

2. Вычисляем
$$y_1 = f(x_1) = \frac{1}{3}1.8^3 - 5 \cdot 1.8 + 1.8 \cdot \ln 1.8 \approx -5.99798$$
 и $y_2 = f(x_2) = \frac{1}{3}1.82^3 - 5 \cdot 1.82 + 1.82 \cdot \ln 1.82 \approx -6.00059.$

- 3. $y_1 > y_2$, тогда $a = x_1 = 1.8$.
- 4. $b-a=0.14>2 \varepsilon=0.04$, тогда повторяем пункт 1.

Четвертая итерация:

1. Находим
$$x_1 = \frac{(1.8 + 1.88 - 0.02)}{2} = 1.83$$
 и $x_2 = \frac{(1.8 + 1.88 + 0.02)}{2} = 1.85$.

2. Вычисляем
$$y_1 = f(x_1) = \frac{1}{3} \cdot 1.83^3 - 5 \cdot 1.83 + 1.83 \cdot \ln 1.83 \approx -6.00127$$
 $y_2 = f(x_2) = \frac{1}{3} \cdot 1.85^3 - 5 \cdot 1.85 + 1.85 \cdot \ln 1.85 \approx -6.00136$.

- 3. $y_1 > y_2$, тогда $a = x_1 = 1.83$.
- 4. $b-a=0.08>2\varepsilon=0.04$, тогда повторяем пункт 1.

Пятая итерация:

1. Находим
$$x_1 = \frac{(1.83 + 1.88 - 0.02)}{2} = 1.845$$
 и $x_2 = \frac{(1.83 + 1.88 + 0.02)}{2} = 1.865$.

2. Вычисляем
$$y_1 = f(x_1) = \frac{1}{3}1.845^3 - 5 \cdot 1.845 + 1.845 \cdot \ln 1.845 \approx -6.0015$$
 и $y_2 = f(x_2) = \frac{1}{3}1.865^3 - 5 \cdot 1.865 + 1.865 \cdot \ln 1.865 \approx -6.00032$.

- 3. $y_1 > y_2$, тогда $a = x_1 = 1.845$.
- 4. $b-a=0.05>2\varepsilon=0.04$.
- 5. Находим $x_m = \frac{(1.83 + 1.88)}{2} = 1.855$, $y_m = f(1.855) \approx -6.00112$. Заканчиваем поиск.

Таблица 1. Поиск методом половинного деления (5 итераций).

№ итерации	а	b	<i>x</i> ₁	<i>x</i> ₂	<i>y</i> ₁	<i>y</i> ₂	b – a
1	1.5	2	1.74	1.76	-5.98023	-5.98779	0.5
2	1.74	2	1.86	1.88	-6.00078	-5.99832	0.26
3	1.74	1.88	1.8	1.82	-5.99798	-6.00059	0.14
4	1.8	1.88	1.83	1.85	-6.00127	-6.00136	0.08
5	1.83	1.88	1.845	1.865	-6.0015	-6.00032	0.05

Метод золотого сечения

Алгоритм поиска экстремума:

- На первом шаге (итерации) точки вычисляются по формулам: $x_1 = a + 0.382(b a), x_2 = a + 0.618(b a).$
- Затем вычисляются значение функции в этих точках.
- Если $f(x_1) < f(x_2)$, то оставляем отрезок $[a, x_2]$. На второй итерации x_2 полагаем равным x_1 , а x_1 вычисляем по формуле $x_1 = a + 0.382(x_2 a)$. Значение функции вычисляется только в точке x_1 , так как значение функции в x_2 уже было вычислено на предыдущем шаге.
- Если $f(x_1) \ge f(x_2)$, то оставляем отрезок $[x_1, b]$. На второй итерации x_1 полагаем равным x_2 , а x_2 вычисляем по формуле $x_2 = a + 0.618(b x_1)$. Значение функции вычисляется только в точке x_2 , так как значение функции в x_1 уже было вычислено на предыдущем шаге.
- Вычисления продолжают до тех пор, пока длина интервала не станет меньше требуемой точности.

Поиск методом половинного деления (5 итераций):

Первая итерация:

- 1. Находим $x_1 = 1.5 + 0.382(2 1.5) = 1.691$ и $x_2 = 1.5 + 0.618(2 1.5) = 1.809$.
- 2. Вычисляем $f(x_1) = \frac{1}{3} \cdot 1.691^3 5 \cdot 1.691 + 1.691 \cdot \ln 1.691 \approx -5.95489$ и $f(x_2) = \frac{1}{3} \cdot 1.809^3 5 \cdot 1.809 + 1.809 \cdot \ln 1.809 \approx -5.999365$.
- 3. $f(x_1) \ge f(x_2)$, тогда $a = x_1 = 1.691$, $x_1 = x_2 = 1.809$, $x_2 = 1.691 + 0.618(2 1.809) \approx 1.809038$.

4. $b-a=0.5>\varepsilon=0.02$, тогда повторяем пункт 2.

Вторая итерация:

- 1. Вычисляем $f(x_1) = \frac{1}{3} 1.809^3 5 \cdot 1.809 + 1.809 \cdot \ln 1.809 \approx -5.999365$ и $f(x_2) = \frac{1}{3} 1.809038^3 5 \cdot 1.809038 + 1.809038 \cdot \ln 1.809038 \approx -5.999371$.
- 2. $f(x_1) \ge f(x_2)$, тогда $a = x_1 = 1.809$, $x_1 = x_2 = 1.809038$, $x_2 = 1.809 + 0.618(2 1.809038) \approx 1.927015$.
- 3. $b-a=0.309>\varepsilon=0.02$, тогда повторяем пункт 1.

Третья итерация:

- 1. Вычисляем $f(x_1) = \frac{1}{3} 1.809038^3 5 \cdot 1.809038 + 1.809038 \cdot \ln 1.809038 \approx -5.999371$ и $f(x_2) = \frac{1}{3} 1.927015^3 5 \cdot 1.927015 + 1.927015 \cdot \ln 1.927015 \approx -5.985756$.
- 2. $f(x_1) < f(x_2)$, тогда $b = x_2 = 1.927015$, $x_2 = x_1 = 1.809038$, $x_1 = 1.809 + 0.382(1.927015 1.809) = 1.809015$.
- 3. $b-a=0.191>\varepsilon=0.02$, тогда повторяем пункт 1.

Четвертая итерация:

- 1. Вычисляем $f(x_1) = \frac{1}{3}1.809015^3 5 \cdot 1.809015 + 1.809015 \cdot \ln 1.809015 \approx -5.999367$ и $f(x_2) = \frac{1}{3}1.809038^3 5 \cdot 1.809038 + 1.809038 \cdot \ln 1.809038 \approx -5.999371.$
- 2. $f(x_1) \ge f(x_2)$, тогда $a = x_1 = 1.809015$, $x_1 = x_2 = 1.809038$, $x_2 = 1.809015 + 0.618(1.927015 1.809038) \approx 1.881925$.
- 3. $b-a=0.118015>\varepsilon=0.02$, тогда повторяем пункт 1.

Пятая итерация:

- 1. Вычисляем $f(x_1) = \frac{1}{3}1.809038^3 5 \cdot 1.809038 + 1.809038 \cdot \ln 1.809038 \approx -5.999371 и$ $f(x_2) = \frac{1}{3}1.881925^3 5 \cdot 1.881925 + 1.881925 \cdot \ln 1.881925 \approx -5.997992.$
- 2. $f(x_1) < f(x_2)$, тогда $b = x_2 = 1.881925$, $x_2 = x_1 = 1.809038$, $x_1 = 1.809015 + 0.382(1.881925 1.809015) = 1.836867$.
- 3. $b-a=0.118>\varepsilon=0.02$, заканчиваем поиск.

Таблица 2. Поиск методом золотого сечения (5 итераций).

№ итера ции	а	b	<i>x</i> ₁	<i>X</i> ₂	$f(x_1)$	$f(x_2)$
1	1.5	2	1.691	1.809	-5.95489	-5.999365
2	1.691	2	1.809	1.809038	-5.999365	-5.999371
3	1.809	2	1.809038	1.927015	-5.999371	-5.985756
4	1.809	1.927015	1.809015	1.809038	-5.999367	-5.999371
5	1.809015	1.927015	1.809038	1.881925	-5.999371	-5.997992

Метод хорд

Алгоритм поиска экстремума:

- Шаг 1. Находим \widetilde{x} по формуле $\widetilde{x} = a \frac{f'(a)}{f'(a) f'(b)}(a b)$. Вычисляем $f'(\widetilde{x})$ и переходим к шагу 2.
- Шаг 2. Проверка на окончание поиска: если $|f'(\widetilde{x})| \le \varepsilon$, то положить $x^* = \widetilde{x}$, $f^* = f(\widetilde{x})$, и завершить поиск, иначе перейти к шагу 3.
- Шаг 3. Переход к новому отрезку. Если $f'(\widetilde{x}) > 0$, то положить $b = \widetilde{x}$, $f'(b) = f'(\widetilde{x})$, иначе положить $a = \widetilde{x}$, $f'(a) = f'(\widetilde{x})$. Перейти к шагу 1.

Поиск методом хорд (3 итерации):

Первая итерация:

- 1. Найдем производную $f'(x) = x^2 4 + \ln x$.
- 2. Находим

$$\widetilde{x} = a - \frac{f'(a)}{f'(a) - f'(b)} (a - b) = 1.5 - \frac{1.5^2 - 4 + \ln 1.5}{(1.5^2 - 4 + \ln 1.5) - (2^2 - 4 + \ln 2)} \cdot (1.5 - 2) \approx 1.829918.$$

Вычисляем $f'(\tilde{x}) = f'(1.829918) \approx -0.047130$.

- 3. $|f'(\tilde{x})|$ =0.047130> ε =0.02, тогда продолжаем поиск.
- 4. $f'(\widetilde{x}) \le 0$, тогда $a = \widetilde{x}$, $f'(a) = f'(\widetilde{x})$. Повторяем пункт 2.

Вторая итерация:

1. Находим

$$\widetilde{x} = a - \frac{f'(a)}{f'(a) - f'(b)}(a - b) = 1.829918 - \frac{-0.047130}{(-0.047130) - (2^2 - 4 + \ln 2)} \cdot (1.829918 - 2).$$
 $\widetilde{x} \approx 1.840746$. Вычисляем $f'(\widetilde{x}) = f'(1.840746) \approx -0.001483$.

2. $|f'(\tilde{x})| = 0.001483 < \varepsilon = 0.02$, продолжаем поиск для большей точности.

3. $f'(\widetilde{x}) \le 0$, тогда $a = \widetilde{x}$, $f'(a) = f'(\widetilde{x})$. Повторяем пункт 1.

Третья итерация:

1. Находим

$$\widetilde{x} = a - \frac{f'(a)}{f'(a) - f'(b)}(a - b) = 1.840746 - \frac{-0.001483}{(-0.001483) - (2^2 - 4 + \ln 2)} \cdot (1.840746 - 2).$$

 $\widetilde{x} \approx 1.841086$. Вычисляем $f'(\widetilde{x}) = f'(1.841086) \approx -0.000046$.

2. $|f'(\widetilde{x})| = 0.000046 < \varepsilon = 0.02$, завершаем поиск.

Таблица 3. Поиск методом хорд (3 итерации).

№ итера ции	а	b	\widetilde{x}	f'(a)	f'(b)	$f'(\widetilde{x})$
1	1.5	2	1.829918	-1.344535	0.693147	-0.047130
2	1.829918	2	1.840746	-0.047130	0.693147	-0.001483
3	1.840746	2	1.841086	-0.001483	0.693147	-0.000046

Метод Ньютона

Алгоритм поиска экстремума:

- Выбираем начальное приближение $x_0 \in [a,b]$ к искомой точке x^* .
- Выберем в качестве следующего приближения к x^* точку $x_1 = x_0 \frac{f'(x_0)}{f''(x_0)}$.
- Далее продолжаем находить приближения по формуле $x_{k+1} = x_k \frac{f'(x_k)}{f''(x_k)}$.
- Продолжаем вычисления пока не будет выполнено $|f'(x_k)| \le \varepsilon$.

Поиск методом Ньютона (3 итерации):

Первая итерация:

- 1. Найдем производную $f'(x) = x^2 4 + \ln x$.
- 2. Найдем вторую производную $f''(x) = 2x + \frac{1}{x}$.
- 3. Выберем начальное приближение $x_0 = 1.5$.
- 4. В качестве следуещего приближения возьмем $x_1 = x_0 \frac{f'(x_0)}{f''(x_0)}$. $x_1 = 1.5 \frac{1.5^2 4 + \ln 1.5}{2 \cdot 1.5 + \frac{1}{1.5}} \approx 1.867$.

5.
$$|f'(x_0)| = 1.34 > \varepsilon = 0.02$$
, тогда продолжим поиск. Повторяем пункт 4.

Вторая итерация:

- 1. В качестве следуещего приближения возьмем $x_2 = x_1 \frac{f'(x_1)}{f''(x_1)}$. $x_2 = 1.867 \frac{1.867^2 4 + \ln 1.867}{2 \cdot 1.867 + \frac{1}{1.867}} \approx 1.841$.
- 2. $|f'(x_1)| = 0.11 > \varepsilon = 0.02$, тогда продолжим поиск. Повторяем пункт 1. Третья итерация:
- 1. В качестве следуещего приближения возьмем $x_3 = x_2 \frac{f'(x_2)}{f''(x_2)}$. $x_3 = 1.841 \frac{1.841^2 4 + \ln 1.841}{2 \cdot 1.841 + \frac{1}{1.841}} \approx 1.841$.
- 2. $|f'(x_1)| \approx 0.0 \le \varepsilon = 0.02$, тогда завершаем поиск.

Таблица 4. Поиск методом Ньютона (3 итерации).

№ итерации, <i>k</i>	X_{k-1}	X_k	$f'(x_{k-1})$	$f''(x_{k-1})$
1	1.5	1.867	-1.34	3.667
2	1.867	1.841	0.11	4.269
3	1.841	1.841	0	4.226

Код программы

Полный исходный код приложения:

 $\underline{https://github.com/vvlaads/vvlaads/tree/master/Optimization\%20methods/}$

<u>Lab2</u>

Результат работы программы

```
Метод половинного деления
Найденное значение х: 1.8410767517089845
Значение функции в точке: -6.001532556320019
Количество итераций: 13
Метод золотого сечения
Найденное значение х: 1.9098442901907176
Значение функции в точке: -5.99145505438714
Количество итераций: 45
Метод хорд
Найденное значение х: 1.84108605690007
Значение функции в точке: -6.00153255693550
Количество итераций: 3
Метод Ньютона
Найденное значение х: 1.84109705845008
Значение функции в точке: -6.00153255719121
Количество итераций: 4
```

Рисунок 1: Результат работы программы.

Заключение

В ходе этой работы я познакомился с методами поиска экстремума: методом половинного деления, методом золотого сечения, методом хорд и методом Ньютона. Я научился применять их на практике, а также реализовал их программно.

Наиболее быстрыми методами поиска оказались метод Ньютона и метод Хорд. Самым медленным оказался метод золотого сечения. Наиболее точным из методов оказался метод Ньютона.