On solving frictional contact problems: formulations and comparisons of numerical methods.

Vincent Acary and Maurice Brémond and Olivier Huber

Abstract

Notation

The following notation is used throughout the chapter: the 2-norm for a function g is denoted by $\|g\|$ and for a vector $x \in \mathbb{R}^n$ by $\|x\|$. The index $\alpha \in \mathbb{N}$ is used to identify the variable pertaining to a single contact. A multivalued mapping $T : \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ is an operator whose images are sets. The second order cone, also known as Lorentz or ice–cream cone, is defined as $K_{\mu} := \{(x,t) \in \mathbb{R} \times \mathbb{R}_+ \mid \|x\| \leqslant \mu t\}, \ \mu \geqslant 0$. By polarity, the dual convex cone to a convex cone K defined by

$$K^* = \{ x \in \mathbb{R}^n \mid y^\top x \geqslant 0, \quad \text{for all } y \in K \}. \tag{1} \quad \{ \text{eq:dual-cone} \}$$

The normal cone N_K : $\mathbb{R}^n \rightrightarrows \mathbb{R}^n$ to a closed convex set X is the set

$$N_K(x) = \{ d \in \mathbb{R}^n \mid d^\top(y - x) \le 0 \}$$
 (2)

The notation $0 \le x \perp y \ge 0$ denotes that $x \ge 0$, $y \ge 0$ and $x^\top y = 0$. A complementarity problem associated with a function $F: \mathbb{R}^n \to \mathbb{R}^n$ is to find $x \in \mathbb{R}^n$ such that $0 \le F(x) \perp x \ge 0$. The generalized complementarity problem is given by $K^* \ni F(x) \perp x \in K$, where K is a closed convex cone. Finite-dimentional Variational Inequality

Vincent Acary

INRIA, 655, Avenue de l'Europe, 38334 Saint Ismier Cedex, e-mail: vincent.acary@inria.fr

Maurice Brémond

INRIA, 655, Avenue de l'Europe, 38334 Saint Ismier Cedex, e-mail: maurice.bremond@inria.fr

Olivier Huber

e-mail:

(VI) problems subsumes complementarity problems, system of equations. Solving a VI(X, F) is to find $x \in X$ such that

$$F(x)^{\top}(y-x) \geqslant 0$$
 for all $y \in X$. (3)

It is easy to see this problem is equivalent to solving a generalized equation

$$0 \in F(X) + N_X(x). \tag{4}$$

The Euclidean projector on a set X is denoted by P_X .

1 Introduction

More than thirty years after the pioneering work of (Panagiotopoulos, 1975), (Nečas et al, 1980), (Haslinger, 1983, 1984; Haslinger and Panagiotopoulos, 1984), (Del Piero and Maceri, 1983, 1985), (Katona, 1983), (Chaudhary and Bathe, 1986), (Jean and Moreau, 1987), (Mitsopoulou and Doudoumis, 1988) on numerically solving mechanical problems with contact and friction, there are still active research activities on this subject in the computational mechanics and applied mathematics communities. This can be explain by the fact that problems from mechanical systems with unilateral contact and Coulomb friction are difficult to numerically solve and the mathematical results of convergence of the numerical algorithms are rare and most of these require rather strong assumptions. In this chapter, we want to give some insights of the advantages and weaknesses of standard solvers found in the literature by comparing them on the large sets of examples coming from the simulation of a wide range of mechanical systems.

1.1 Problem statement

In this section, we formulate an abstract, algebraic finite—dimensional frictional contact problem. We cast this problem as a complementarity problem over cones, and discuss the properties of the latter. We end by presenting some instances with contact and friction phenomenon that fits our problem description.

Abstract problem

We want to discuss possible numerical solution procedures for the following three–dimensional finite–dimensional frictional contact problem and some of its variants. Let $n_c \in \mathbb{I}\mathbb{N}$ be the number of contact points and $n \in \mathbb{I}\mathbb{N}$ the number of degrees of freedom of a discrete mechanical system.

The problem data are: a symmetric positive (semi-) definite matrix $M \in \mathbb{R}^{n \times n}$, a vector $f \in \mathbb{R}^n$, a matrix $H \in \mathbb{R}^{n \times m}$ with $m = 3n_c$, a vector $w \in \mathbb{R}^m$ and a vector of coefficients of friction $\mu \in \mathbb{R}^{n_c}$. The unknowns are two vectors $v \in \mathbb{R}^n$, a velocity–like vector and $r \in \mathbb{R}^m$, a contact reaction or impulse, solution to

$$\begin{cases} Mv = Hr + f & u := H^{\top}v + w \\ K^{\star} \ni \hat{u} \perp r \in K & \hat{u} := u + g(u), \end{cases}$$
 (5) {eq:soccp1-intro}

where the set K is the cartesian product of Coulomb's friction cone at each contact, that is

$$K = \prod_{\alpha=1\dots n_c} K^{\alpha} = \prod_{\alpha=1\dots n_c} \{r^{\alpha}, \|r^{\alpha}_{\scriptscriptstyle T}\| \leqslant \mu^{\alpha}|r^{\alpha}_{\scriptscriptstyle N}|\} \tag{6} \quad \{\text{eq:CC}\}$$

and K^* is dual. The function $g: \mathbb{R}^m \to \mathbb{R}^m$ is a nonsmooth function defined as

$$g(u) = [[\mu^{\alpha} || u_{\mathrm{T}}^{\alpha} ||, 0, 0]^{\top}, \alpha = 1 \dots n_c]^{\top}.$$
 (7) {eq:gg}

Note that the variable u and \hat{u} do not appear as unknowns since they can be directly obtained from v.

REDACTION NOTE O.H. 1.1

I think I got the gist of the following paragraph, but I think we should work on it a bit. For me we discuss approximations in the literature that don't solve the true problem. I believe figure to illustrate the effect of neglecting g would be useful (for the optimizer).

I also think that we should be more explicit that we focus on the reduced form, and also explain that in the rigid case, it may not destroy the sparse stricture of the problem.

A Second Order Cone Complementarity Problem (SOCCP).

From the mathematical programming point of view, the problem appears to be a Second Order Cone Complementarity Problem (SOCCP) (Facchinei and Pang, 2003) which can be generically defined as

$$\begin{cases} y = f(x) \\ K^* \ni y \perp x \in K, \end{cases}$$
 (8)

where K is a second order cone. If the nonlinear part of the problem (5) is neglected (g(u) = 0), the problem is an associated friction problem with dilatation, and by the way, is a gentle Second Order Cone Linear Complementarity Problem (SOCLCP) with a positive definite matrix $H^{\top}M^{-1}H$ (possibly semi–definite). The assumption of an associated frictional law, i.e, a friction law where the local sliding velocity is normal the friction cone differs dramatically from the standard Coulomb friction since it generates a non–vanishing normal velocity when we slide. In other terms, the

sliding motion implies the separation of the bodies. When the non-associated character of the friction is taken into account through g(u), the problem is non monotone and nonsmooth, and therefore is very hard to solve efficiently. For a given numerical algorithm, it is not so difficult to design mechanical example to run the algorithm into troubles. Proof of convergence of the numerical algorithms are rare and most of these required strong assumptions on either the friction coefficients or full rank assumptions of matrices or operators or the dimension of the space in which the problem is formulated. Among these results, we can cite the Czech school where the coefficient of friction is assumed to be bounded and small. This assumption allows us to use fixed point methods on the convex sub-problems of Tresca friction (friction threshold that does depend on the normal reaction and then transform the cone into a semi-cylinder). We can also mention the results from (Pang and Trinkle, 1996; Stewart and Trinkle, 1996; Anitescu and Potra, 1997) where the friction cone is polyhedral (in 2D or by a faceting process). In that case, if w = 0 or $w \in \text{im}(H^{\top})$, Lemke's algorithm is able to solve the problem. The question of existence of solutions has been treated in (Klarbring and Pang, 1998; Acary et al, 2011) under similar assumptions but with different techniques. The question of uniqueness remains a difficult problem in the general case.

Range of applicability.

We clearly choose to simplify a lot the general problems of formulating the contact problems with friction by avoiding including too much side effects that are themselves interesting but render the study too difficult to carry out in a single chapter. We choose finite dimensional systems where the time dependency does not appear explicitly.

Nevertheless, we believe that there are a strong interest to study this problem since it appears to be relatively generic in numerous simulations of systems with contact and friction. This problem is indeed at the heart of the simulation of mechanical systems with 3D Coulomb's friction and unilateral constraints in the following cases:

- it might be the result of the time—discretization by event—capturing time—stepping
 methods or event—detecting (event—driven) techniques of dynamical systems with
 friction; the variables are homogeneous to pairs velocity/impulses or acceleration
 forces
- it might be the result of space—discretization (by FEM for instance) of the elastic quasi-static problems of frictional contact mechanics; in that case, the variables are homogenous to displacements/forces of displacement rate/forces.
- if the system is a dynamical mechanical system composed of solids, the problem is again obtained by a space and time discretization
- if the material follows a nonlinear mechanical bulk behavior, we can use this model after a standard Newton linearization procedure.

For a description of the derivation of such problems in various practical situations we refer to (Laursen, 2003; Wriggers, 2006; Acary and Brogliato, 2008; Acary and Cadoux, 2013).

1.2 Objectives and outline of the chapter

In this chapter, after stating the problem with more details in Section 2, we recall the existence result of (Acary et al, 2011) for the problem in (5) in Section 2.3. In this framework, we briefly present in Section 3 a few alternative formulations of the problem that enable the design of numerical solution procedures: a) finite-dimensional Variational Inequalities(VI) and Quasi-Variational Inequalities(QVI) b) Nonsmooth equations and c) Optimization based formulations.

Right after these formulations, we list some of the most standard algorithms dedicated to one of the previous formulation :

- 1. the fixed point and projection numerical methods for solving VI are reviewed with a focus on self-adaptive time–step rules (Section 4),
- 2. the nonsmooth (semi-smooth) Newton methods are described based on the various nonsmooth equations formulations (Section 5),
- 3. Section 6 is devoted to the presentation of splitting and proximal point techniques,
- 4. and finally, in Section 7, the Panagiotopoulos alternating optimization technique, the successive approximation technique and the SOCLCP approach are outlined.

Since it is difficult to be exhaustive on the approaches developed in the literature to solve frictional contact problems, we decided to leave out the scope of the chapter the following approaches:

- the approaches that alter the fundamental assumptions of the 3D Coulomb friction model by faceting the cone as in the pioneering work of (Klarbring, 1986) and followed by (Al-Fahed et al, 1991; Pang and Trinkle, 1996; Stewart and Trinkle, 1996; Anitescu and Potra, 1997; Haslinger et al, 2004), or by convexifying the Coulomb law (associated friction law with normal dilatancy) (Heyn et al, 2013; Tasora and Anitescu, 2013, 2011; Anitescu and Tasora, 2010; Tasora and Anitescu, 2009; Krabbenhoft et al, 2012) or finally by regularizing the friction law (Kikuchi and Oden, 1988). In the same way, we are discussing recent developments methods for the frictionless case (Morales et al, 2008; Miyamura et al, 2010; Temizer et al, 2014).
- the approaches that are based on domain decomposition and parallel computing.
 We choose in this chapter to focus on single domain computation and to skip the discussion about distributed computing mainly for a sake of length of the chapter.
 (cite a bit a literature Krause, Koziara, Renouf, Heyn,)

Finally, some possible interesting approaches have not been reported. We are thinking mainly to the interior point methods approach (Christensen and Pang, 1998;

Miyamura et al, 2010; Kleinert et al, 2014). some basic implementations of such methods do not give satisfactory results. One of reasons is the fact that we were not able to get robustness and efficiency on a large class of problems. As it is reported in (Kleinert et al, 2014; Krabbenhoft et al, 2012), it seems that it is needed to alter the friction Coulomb's law by adding regularization or dilatency in the model. In the same spirit, we skip also the comparison for the possibly very promising methods developed in (Heyn et al, 2013; Heyn, 2013) that are based on Krylov subspace and spectral methods. It could be very interesting to bench also these methods on the actual Coulomb friction model, that is to say, in the nonmonotone case. Finally, our preliminary results on the use of direct general SOCP or SOCLCP solvers were not convincing. Indeed, the structure of contact problems (product of a large number of small second order cones) has to be taken into account to get efficiency and unfortunately, these solvers are difficult to adapt to this structure.

Other comparisons chapters have already been published in the literature. One of the first comparison study has been done in (Raous et al, 1988) and in (Chabrand et al, 1998). In this work, several formulations are detailed in the bidimensional case (variational inequality, linear complementarity problem (LCP) and augmented Lagrangian formulation) and comparisons of fixed point methods with projection, splitting methods and Lemke's method for solving LCP. Other comparisons have been done on 2D systems in (Mijar and Arora, 2000a,b, 2004a,b). In (Christensen et al, 1998), a very interesting comparison in the three-dimensional case has been carried out which shows the superiority of the semi-smooth Newton methods over the interior point methods. Comparisons on simple multi-body systems composed of kinematic chains can be found in (Mylapilli and Jain, 2017).

The comparison are performed on a large set of examples using performance profiles. Let us summarize the main conclusion from Section 8: on one hand, the algorithms based on Newton methods for nonsmooth equations solve quickly the problem when they succeed, but suffer from robustness issues mainly if the matrix *H* has not full rank. On the other hand, the iterative methods dedicated to solving variational inequalities are quite robust but with an extremely slow rate of convergence. To sum up, as far as we know there is no option that combines time efficiency and robustness. The set of problems used here are from the FCLIB collection¹. In this work, this collection is solved with the software SICONOS and its component SICONOS/NUMERICS²(Acary et al, 2015).

https://frictionalcontactlibrary.github.io/index.html, which aims at providing many problems to compare algorithms on a fair basis

² http://siconos.gforge.inria.fr

2 Description of the 3D frictional contact problems

2.1 Signorini's condition and Coulomb's friction.

Let us consider the contact between two bodies $A \subset \mathbb{R}^3$ and $B \subset \mathbb{R}^3$ with sufficiently smooth boundaries, as depicted on Figure 1.

Fig. 1: Contact kinematic

From the body A "perspective", the point $C_A \in \partial A$ is called a *master point to contact*. The choice of this master point C_A to write the contact condition is crucial in practice and amounts to consistently discretizing the contact surface. The vector \mathbb{N} defines an outward unit normal vector to A at the point C_A . With T_1, T_2 two vectors in the plane orthogonal to \mathbb{N} , we can build an orthornormal frame $(C_A, \mathbb{N}, T_1, T_2)$ called the *local frame at contact*. The slave contact point $C_B \in \partial B$ is defined as the projection of the point C_A on ∂B in the direction given by \mathbb{N} . Note that we assume that such a point exists. The gap function is defined as the signed distance between C_A and C_B

$$g_{N} = (C_B - C_A)^{\top} N. \tag{9} \quad \{eq: gap\}$$

Consider two strictly convex bodies, which are non penetrating, *i.e.* $A \cap B = \emptyset$, the master and slave contact points can be chosen as the proximal points of each bodies and the normal vector N can be written as

$$N = \frac{C_B - C_A}{\|C_B - C_A\|}.$$
 (10) {eq:normal}

The contact force exerted by A on B is denoted by $r \in \mathbb{R}^3$ and is decomposed in the local frame as

{eq:reaction}
$$r := r_{N} N + r_{T_{1}} T_{1} + r_{T_{2}} T_{2}, \text{ with } r_{N} \in \mathbb{R} \text{ and } r_{T} := [r_{T_{1}}, r_{T_{2}}]^{\top} \in \mathbb{R}^{2}.$$
 (11)

The Signorini condition states that

{eq:signo}
$$0 \leqslant g_{N} \perp r_{N} \geqslant 0, \tag{12}$$

and models the unilateral contact. The condition (12), written at the *position level*, can also be defined at the *velocity level*. To this end, the relative velocity $u \in \mathbb{R}^3$ of the point C_B with respect to C_A is also decomposed in the local frame as

$$u := u_{N} N + u_{T_{1}} T_{1} + u_{T_{2}} T_{2}$$
 with $u_{N} \in \mathbb{R}$ and $u_{T} = [u_{T_{1}}, u_{T_{2}}]^{\top} \in \mathbb{R}^{2}$. (13)

At the velocity level, the Signorini condition is written

{eq:signo-velocity}
$$\begin{cases} 0 \leqslant u_{\rm N} \perp r_{\rm N} \geqslant 0 & \text{if } g_{\rm N} \leqslant 0 \\ r_{\rm N} = 0 & \text{otherwise.} \end{cases}$$
 (14)

The Moreau's viability Lemma (Moreau, 1988) ensures that (14) implies (12) if $g_N \ge 0$ holds in the initial configuration.

Coulomb's friction models the frictional behavior of the contact force law in the tangent plane spanned by (T_1, T_2) . Let us define the Coulomb friction cone K which is the isotropic second order cone (Lorentz or ice–cream cone)

{eq:CoulombCone}
$$K = \{r \in \mathbb{R}^3 \mid ||r_{\mathsf{T}}|| \leqslant \mu r_{\mathsf{N}}\}, \tag{15}$$

where μ is the coefficient of friction. The Coulomb friction states for the sticking case that

{eq:Coulom-stick}
$$u_{\rm T}=0, \quad r\in K,$$
 (16)

and for the sliding case that

{eq:Coulom-slide}
$$u_{\mathrm{T}} \neq 0, \quad r \in \partial K, \quad \text{and} \quad \exists \alpha > 0 \text{ such that } r_{\mathrm{T}} = -\alpha u_{\mathrm{T}}.$$
 (17)

With the Coulomb friction model, there are two relations between $u_{\rm T}$ and $r_{\rm T}$. The distinction is based on the value of the relative velocity $u_{\rm T}$ between the two bodies. If $u_{\rm T}=0$ (sticking case), we have $r_{\rm T}\leqslant \mu r_{\rm N}$. On the other hand, we get the sliding case.

Disjunctive formulation of the Signorini-Coulomb model

If we consider the velocity-level Signorini condition (14) together with the Coulomb friction (16)–(17) which is naturally expressed in terms of velocity, we obtain a disjunctive formulation of the frictional contact behavior as

$$\begin{cases} r=0 & \text{if } g_{\text{N}}>0 \text{ (no contact)} \\ r=0,u_{\text{N}}\geqslant 0 & \text{if } g_{\text{N}}\leqslant 0 & \text{(take-off)} \\ r\in K,u=0 & \text{if } g_{\text{N}}\leqslant 0 & \text{(sticking)} \\ r\in\partial K,u_{\text{N}}=0,\exists\,\alpha>0,u_{\text{T}}=-\alpha r_{\text{T}} & \text{if } g_{\text{N}}\leqslant 0 & \text{(sliding)} \end{cases}$$

In the computational practice, the disjunctive formulation is not suitable for solving the Coulomb problem as it suggests the use of enumerative solvers, with an exponential complexity. In the sequel, alternative formulations of the Signorini-Coulomb model suitable for numerical applications are delineated. The core idea is to translate the cases in (18) into complementarity relations.

Inclusion into normal cones

The Signorini condition (12) and (14), in their complementarity forms can be equivalently written as an inclusion into a normal cone to IR_+

$$-g_{\rm N} \in N_{\rm I\!R_+}(r_{\rm N})$$
 and $-u_{\rm N} \in N_{\rm I\!R_+}(r_{\rm N}),$ (19) {eq:signo-inclusion-velo}

if $g_N \le 0$ and $r_N = 0$ otherwise. An inclusion form of the Coulomb friction for the tangential part can be also proposed: let $D(\cdot)$ be the Coulomb disk:

$$D(c) := \{ x \in \mathbb{R}^2 \mid ||x|| \leqslant c \}. \tag{20} \quad \{ \text{eq:diskR} \}$$

For the Coulomb friction, we get

$$-u_{\mathrm{T}} \in N_{D(u_{r_{\mathrm{N}}})}(r_{\mathrm{T}}).$$
 (21) {eq:Coulomb-inclusion}

Since $D(\mu r_N)$ is not a cone, the inclusion (21) is not a complementarity problem, but a variational inequality. The formulation (21) is often related to Moreau's maximum dissipation principle of the frictional behavior:

$$r_{\mathrm{T}} \in \underset{\|z\| \leqslant \mu r_{\mathrm{N}}}{\arg\max} \ z^{\top} u_{\mathrm{T}}.$$
 (22) {eq:moreau-maxprinciple}

This means that the couple (r_T, u_T) maximizes the energy lost through dissipation.

SOCCP formulation of the Signorini-Coulomb model

In (Acary and Brogliato, 2008; Acary et al, 2011), another formulation is proposed inspired by the so-called bipotential (De Saxcé, 1992; De Saxcé and Feng, 1991; Saxcé and Feng, 1998). The goal is to form a complementarity problem out of (19) and (21) To this end, we introduce the modified relative velocity $\hat{u} \in \mathbb{R}^3$ defined by

{eq:modified-velocity}

$$\hat{u} = u + [\mu \| u_{\text{T}} \|, 0, 0]^{\top}. \tag{23}$$

The entire contact model (18) can be put into a Second-Order Cone Complementarity Problem (SOCCP) as

{eq:contact-SOCCP}

$$K^{\star} \ni \hat{u} \perp r \in K \tag{24}$$

if $g_N \leq 0$ and r = 0 otherwise.

Fig. 2: Coulomb's friction law in the sliding case.

2.2 Frictional contact discrete problems

We assume that a finite set of n_c contact points and their associated local frames has been defined. In general, this task is not straightforward and amounts to correctly discretizing the contact surfaces. For more details, we refer to (Wriggers, 2006; Laursen, 2003). For each contact $\alpha \in \{1, \dots, n_c\}$, the local velocity is denoted by $u^{\alpha} \in \mathbb{R}^3$, the normal velocity by $u^{\alpha}_{\scriptscriptstyle N} \in \mathbb{R}$ and the tangential velocity by $u^{\alpha}_{\scriptscriptstyle T} \in \mathbb{R}^2$ with $u^{\alpha} = [u^{\alpha}_{\scriptscriptstyle N}, (u^{\alpha}_{\scriptscriptstyle T})^{\top}]^{\top}$. The vectors $u, u_{\scriptscriptstyle N}, u_{\scriptscriptstyle T}$ respectively collect all the local velocity $u = [(u^{\alpha})^{\top}, \alpha = 1 \dots n_c]^{\top}$, all the normal velocity $u_{\scriptscriptstyle N} = [u^{\alpha}_{\scriptscriptstyle N}, \alpha = 1 \dots n_c]^{\top}$, and all the tangential velocity $u_{\scriptscriptstyle T} = [(u^{\alpha}_{\scriptscriptstyle T})^{\top}, \alpha = 1 \dots n_c]^{\top}$. For a contact α , the modified local velocity, denoted by \hat{u}^{α} , is defined by

$$\hat{u}^{\alpha} = u^{\alpha} + g^{\alpha}(u) \qquad \text{where} \qquad g^{\alpha}(u^{\alpha}) = [\mu^{\alpha} \| u_{\tau}^{\alpha} \|, 0, 0]^{\top}. \tag{25} \quad \{\text{eq:modified}\}$$

The vector \hat{u} and the function g collect all the modified local velocity at each contact $\hat{u} = [\hat{u}^{\alpha}, \alpha = 1 \dots n_c]^{\top}$ and the function $g(u) = [[\mu^{\alpha} \| u_{\scriptscriptstyle T}^{\alpha} \|, 0, 0]^{\top}, \alpha = 1 \dots n_c]^{\top}$. For each contact α , the reaction vector $r^{\alpha} \in \mathbb{R}^3$ is also decomposed in its normal

For each contact α , the reaction vector $r^{\alpha} \in \mathbb{R}^3$ is also decomposed in its normal part $r_{\scriptscriptstyle N}^{\alpha} \in \mathbb{R}$ and the tangential part $r_{\scriptscriptstyle T}^{\alpha} \in \mathbb{R}^2$ as $r^{\alpha} = [r_{\scriptscriptstyle N}^{\alpha}, (r_{\scriptscriptstyle T}^{\alpha})^{\top}]^{\top}$ The Coulomb friction cone for a contact α is defined by $K^{\alpha} = \{r^{\alpha} \in \mathbb{R}^3 \mid \|r_{\scriptscriptstyle T}^{\alpha}\| \leq \mu^{\alpha}|r_{\scriptscriptstyle N}^{\alpha}|\}$ and the set $K^{\alpha,\star}$ is its dual. The set K is the cartesian product of Coulomb's friction cone at each contact, that is

$$K = \prod_{\alpha=1,\dots,n_c} K^{\alpha}$$
 and K^* is its dual. (26) {eq:CC_bis}

In this chapter, we investigate the case where the problem is given in its *reduced* form. We consider that the discretized dynamics are of the form

$$Mv = Hr + f$$
, (27) {eq:global_dyn}

with M an symmetric positive-definite matrix. The local velocities at the point of contact are given by

$$u = H^{\mathsf{T}} v + w.$$
 (28) {eq:local_v}

More information on the term w is given later in this section. The (global) velocities v can be substitute in (28) by using a Schur-complement technique. This yields

$$u = H^{\top} M^{-1} H r + H^{\top} M^{-1} f + w. \tag{29}$$

Let us define W, often called the *Delassus matrix*, as

$$W := H^{\top} M^{-1} H \tag{30} \quad \{\text{eq:Delassus}\}$$

and the vector q as

$$q := H^{\top} M^{-1} f + w. \tag{31} \quad \{\text{eq:qq}\}$$

We are now ready to define the mathematical problem that we solve.

Problem FC (Discrete frictional contact problem). Given

- a symmetric positive semi-definite matrix $W \in \mathbb{R}^{m \times m}$,
- a vector $q \in \mathbb{R}^m$,
- a vector $\mu \in \mathbb{R}^{n_c}$ of coefficients of friction,

find a vector $r \in \mathbb{R}^m$, such that

$$\begin{cases}
K^* \ni \hat{u} \perp r \in K \\
u = Wr + q \\
\hat{u} = u + g(u)
\end{cases}$$
(32)

with $g(u) = [[\mu^{\alpha} || u_{\scriptscriptstyle T}^{\alpha} ||, 0, 0]^{\top}, \alpha = 1 \dots n_c]^{\top}$. An instance of the problem is denoted by $FC(W, q, \mu)$

REDACTION NOTE V.A. 2.1

Is the assumption on the symmetry of the matrix M is mandatory ? I don't think so but it has to be checked carefully in the sequel.

2.3 Existence of solutions

The question of the existence of solution for the Problem FC have been studied in (Klarbring and Pang, 1998) and (Acary et al, 2011) with different analysis techniques. The key assumption for existence of solutions in both chapters is as follows

{ass}
$$\exists v \in \mathbb{R}^m : H^\top v + w \in \text{int } K^*, \tag{33}$$

or equivalently

{asseq}

$$w \in \operatorname{im} H + \operatorname{int} K^{\star}. \tag{34}$$

Under the assumption, the Problem FC have a solution. Therefore, it makes sense to design a procedure to solve the problem. In the sequel, we will compare numerical methods only when this assumption is satisfied.

This assumption is easy verified in numerous applications. For applications in nonsmooth dynamics where the unknown v is a relative contact velocity, the term w vanishes if we have only scleronomic constraints. For $w \in \operatorname{im}(H^\top)$ (and especially w = 0), the assumption is trivially satisfied. As it is explained in (Acary and Cadoux, 2013), the term w has several possible sources. If the constraints are formulated at the velocity level, an input term of w is given in dynamics by the impact law. In the case of the Newton impact law, it holds that $w \in \operatorname{im}(H^\top)$. For other impact law, this is not clear. Another input in w is given by constraints that depends explicitly on

time. In that case, we can have $w \notin \operatorname{im}(H^{\top})$ and non existence of solutions. If the constraints are written at the position level, w can be given by initial of terms that comes from velocity discretization. In that cases, the existence is also not ensured.

The assumption is also satisfied whenever im $H = \mathbb{R}^m$ or in other words if H^{\top} has full row rank. Unfortunately, in large number of applications H^{\top} is rank deficient. From the mechanical point of view, the rank deficiency of H and the amount of friction seems to play a fundamental role in the question of the existence (and uniqueness) of solutions. In the numerical comparisons, we will attempt to get a deeper understanding on the role of these assumptions on the convergence of the algorithms. The rank deficiency of H is related to the number of constraints that are imposed to the system with respect to the number of degrees of freedom in the system. It is closely related to the concept of hyperstaticity in overconstrained systems. In the most favorable cases, it yields indeterminate Lagrange multipliers but also to unfeasible problems and then to the lost of solutions in the worth cases. The second assumption on the amount of friction is also well–know. The frictionless problem is easy to solve if it is feasible. It is clear that large friction coefficients prevent from sliding and therefore increase the degree of hyperstaticity of the system.

3 Alternative formulations

In this section, various equivalent formulations of Problem FC are given. Our goal is to show that such problems can be recast into several well-known problems in the mathematical programming and optimization community. These formulations will serve as a basis for numerical solution procedures that we develop in later sections.

3.1 Variational Inequalities (VI) formulations

Let us recall the definition a finite-dimensional VI(X,F): find $z \in X$ such that

$$F^{\top}(z)(y-z) \geqslant 0$$
 for all $y \in X$, (35) {eq:vi}

with X a nonempty subset of \mathbb{R}^n and F a mapping from \mathbb{R}^n into itself. We refer to (Harker and Pang, 1990; Facchinei and Pang, 2003) for the standard theory of finite-dimensional variational inequalities. The easiest way to state equivalent VI formulations of Problem FC is to use the following equivalences:

$$K^{\star} \ni \hat{u} \perp r \in K \iff -\hat{u} \in N_K(r) \iff \hat{u}^{\top}(s-r) \geqslant 0, \text{ for all } s \in K.$$
 (36) {eq:SOCCP-1}

For Problem FC, the following equivalent formulation in VI is directly obtained from

$$-(Wr+q+g(Wr+q)) \in N_K(r). \tag{37} \quad \{eq: inclusion-1\}$$

The resulting VI is denoted by $VI(F_{vi}, X_{vi})$ with

$$F_{vi}(r) := Wr + q + g(Wr + q)$$
 and $X_{vi} := K$. (38) {eq:vi-II}

Uniqueness properties.

In the general case, it is difficult to prove uniqueness of solutions to (38). If the matrix H has full rank and the friction coefficients are "small", a classical argument for the uniqueness of solution of VIs can be satisfied. Note that the full rank hypothesis on H implies that W is positive-definite. Therefore, we have $(x-y)^T W(x-y) \ge C_W ||x-y||^2$ with $C_W > 0$. Using this relation (38) yields

$$(F_{vi}(x) - F_{vi}(y))^{\top}(x - y) = (x - y)^{\top}W(x - y) + \sum_{\alpha = 1}^{n_c} \mu^{\alpha}(x_N^{\alpha} - y_N^{\alpha})[\|[Wx + q]_{\mathsf{T}}^{\alpha}\| - \|[Wy + q]_{\mathsf{T}}^{\alpha}\|] \geqslant C_W \|x - y\|^2 + \sum_{\alpha = 1}^{n_c} \mu^{\alpha}(x_N^{\alpha} - y_N^{\alpha})[\|[Wx + q]_{\mathsf{T}}^{\alpha}\| - \|[Wy + q]_{\mathsf{T}}^{\alpha}\|].$$
(39)

{eq:mono-II}

Note that for small values of the coefficients of friction the first term in the righthand side dominates the second one. Hence, the mapping F_{vi} is strictly monotone and this ensures that the VI has at most one solution (Facchinei and Pang, 2003, Theorem 2.3.3). The fact that H is full rank also implies that the Assumption (33) for the existence of solutions is trivially satisfied. Hence, there exists a unique solution to the VI(F_{vi} , X_{vi}).

3.2 Quasi-Variational Inequalities (QVI)

Let us recast Problem FC into the QVI framework. A QVI is a generalization of the VI, where the feasible set is allowed to depend on the solution. Let us define this precisely: let X be a multi-valued mapping $\mathbb{R}^n \rightrightarrows \mathbb{R}^n$ and let F be a mapping from \mathbb{R}^n into itself. The quasi-variational inequality problem, denoted by $\mathrm{QVI}(X,F)$, is to find a vector $z \in X(z)$ such that

{eq:qvi}
$$F^{\top}(z)(y-z) \geqslant 0, \forall y \in X(z). \tag{40}$$

The QVI formulation of the frictional contact problems is obtained by considering the inclusions (19) and (21). We get

{eq:qvi-1}
$$u^{\top}(s-r) \geqslant 0, \text{ for all } s \in C(\mu, r_{\text{N}}),$$
 (41)

where $C(\mu, r_{\rm N})$ is the Cartesian product of the semi-cylinders of radius $\mu^{\alpha} r_{\rm N}^{\alpha}$ defined as

$$\{\text{eq:cylinder}\} \qquad \qquad C(\mu, r_{\scriptscriptstyle N}) \coloneqq \prod_{\alpha=1}^{n_c} \left\{ s \in \mathbb{R}^3 \mid s_{\scriptscriptstyle N} \geqslant 0, \|s_{\scriptscriptstyle T}\| \leqslant \mu^{\alpha} r_{\scriptscriptstyle N}^{\alpha} \right\}. \tag{42}$$

Note that the QVI (41) involves only u and not \hat{u} : this is the main interest of this formulation. The price to pay is the dependence on r of the set $C(\mu, r_N)$. Problem FC can be expressed as a QVI by substituting the expression of u, which yields

$$(Wr+q)^{\top}(s-r)\geqslant 0$$
, for all $s\in C(\mu,r_{\rm N})$. (43) {eq:qvi-IIbis}

This expression is compactly rewritten as $QVI(F_{qvi}, X_{qvi})$, with

$$F_{\mathrm{qvi}}(r) := Wr + q$$
 and $X_{\mathrm{qvi}}(r) := C(\mu, r_{\mathrm{N}}).$ (44) {eq:qvi-II}

Since W is assumed to be positive semi-definite matrix, F_{qvi} is monotone. Thus we get an affine monotone $QVI(F_{qvi}, X_{qvi})$ for Problem FC.

3.3 Nonsmooth Equations

In this section, we expose a classical approach to solving a VI or a QVI, based on a reformulation of the inclusion as an nonsmooth equation. The term nonsmooth equation highlights that the mapping we consider fails to be differentiable. This is the price to pay for this reformulation. We can apply fixed-point and Newton-like algorithms to solve the resulting equation. Given the nonsmooth nature of the problem, applying Newton's method appears challenging, but it can still be done for some reformulations. More precisely for Problem FC, we search for an equation of the type

$$G(r) = 0$$
 (45) {eq:ne-1}

where G is generally only locally Lipschitz continuous. The mapping G is such that the zeroes (r) of (45) are the solutions of (32).

Natural and normal maps for the VI formulations

A general-purpose reformulation of VI is obtained by using the normal and natural maps, see (Facchinei and Pang, 2003) for details. The natural map $F^{\text{nat}} \colon \mathbb{R}^n \to \mathbb{R}^n$ associated with the VI (35) is defined by

$$F^{\text{nat}}(z) := z - P_X(z - F(z)), \tag{46} \quad \{\text{eq:naturalmap}\}$$

where P_X is the Euclidean projector on the set X. A well-known result (see (Facchinei and Pang, 2003)) states that the solutions of a VI are related to the zeroes of the natural map:

$$z \text{ solves VI}(X,F) \iff F^{\text{nat}}(z) = 0,$$
 (47) {eq:VI-normalnatural}

Using (35), it is easy to see that if z solves VI(X,F), then it is also a solution to $VI(X,\rho F)$ for any $\rho > 0$. Therefore, we can define a parametric variant of the natural map by

$$F_{\rho}^{\text{nat}}(z) = z - P_X(z - \rho F(z)).$$
 (48)

{eq:parametrized-naturalnor

The relations given in (47) continue to hold for the parametric mapping. Using those equivalences, the frictional contact problem can be restated as zeroes of nonsmooth functions. With the natural map, Problem FC under the VI form (38) can be reformulated as

$$F_{vi}^{\text{nat}}(r) := \left[r - P_K \left(r - \rho \left(Wr + q + g(Wr + q) \right) \right) \right] = 0. \tag{49}$$

Following the same lines, the normal map may also be used to derive algorithms. The normal map $F^{\text{nor}} : \mathbb{R}^n \to \mathbb{R}^n$ is defined by

$$F^{\mathsf{nor}}(x) := F(P_X(x)) + x - P_X(x), \tag{50}$$

and its parametric variant

$$F_0^{\text{nor}}(x) = \rho F(P_X(x)) + x - P_X(x).$$
 (51)

An equivalent results apply

z solves VI(X,F)
$$\iff$$
 $z = P_X(x)$ for some x such that $F^{\text{nor}}(x) = 0$. (52)

The normal map based formulation of VI are also obtained in the same way.

In the seminal work of (Sibony, 1970), iterative methods for solving monotone VIs are based on the natural map and fixed point iterations. The role of ρ is recognized to be very important for the rate of convergence. To improve the methods, Sibony (1970) proposes to use "skewed" projector based on a non-Euclidean metric. Given a positive definite matrix $R \in R^{n \times n}$, a skewed projector $P_{X,R}$ onto X is defined as follows: $z = P_{X,R}(x)$ is the unique solution of the convex programm

$$\begin{cases}
\min \frac{1}{2} (y - x)^{\top} R(y - x), \\
s.t. \ y \in X.
\end{cases}$$
(53)

The skew natural map can be also defined and yield the following nonsmooth equation

{eq:skew-natural-NE}

$$F_R^{\text{nat}}(z) = z - P_{X,R}(z - R^{-1}F(z)). \tag{54}$$

The zeros of $F_R^{\text{nat}}(z)$ are also solution of the VI(X, F). Considering the skew natural map, we obtain for Problem FC under the VI form (38),

{eq:natural-typeII}

$$F_{v,R}^{\text{nat}}(r) := \left[r - P_{K,R} \left(r - R^{-1} (Wr + q + g(Wr + q)) \right) \right]. \tag{55}$$

The previous case is retrieved by choosing $R = \rho^{-1}I_{n \times n}$.

REDACTION NOTE V.A. 3.1

It can be interesting to use something R as a preconditionner of the

problem ? $R = \operatorname{diag}(W)$ or incomplete LU. Warning, W is only SPR, so we cannot have R = W.

Jean-Moreau's and Alart-Curnier's functions

Using the alternative inclusions formulations (19)–(21) with a given set of parameters ρ_N , ρ_T such that

$$\begin{cases} -\rho_{\scriptscriptstyle N} u_{\scriptscriptstyle N} \in N_{\rm IR_+^{n_c}}(r_{\scriptscriptstyle N}), & \rho_{\scriptscriptstyle N} > 0, \\ -\rho_{\scriptscriptstyle T} u_{\scriptscriptstyle T} \in N_{D(\mu,(r_n)_+)}(r_{\scriptscriptstyle T}), & \rho_{\scriptscriptstyle T} > 0, \end{cases}$$

$$(56) \quad \{eq: inclusion-rhorho\}$$

we can replace P_K into $P_{\mathbb{R}^{n_c}}$ and $P_{D(\mu,(r_n)_+)}$ where

$$D(\mu,(r_n)_+) = \prod_{\alpha=1\dots n_c} D(\mu^{\alpha}(r_{\scriptscriptstyle N}^{\alpha})_+). \tag{57} \quad \{\text{eq:diskR-prod}\}$$

defines the Cartesian product of the Coulomb disks for each contact. The notation x_+ stands for $x_+ = \max(0, x)$. Using this procedure, Jean and Moreau (1987); Christensen et al (1998) propose the following nonsmooth equation formulation of the frictional contact condition

$$\begin{cases} r_{\rm N} - P_{{\rm I\!R}_+^{n_{\rm C}}}(r_{\rm N} - \rho_{\rm N} u_{\rm N}) = 0, \\ r_{\rm T} - P_{D(\mu,(r_{\rm N})_+)}(r_{\rm T} - \rho_{\rm T} u_{\rm T}) = 0. \end{cases}$$
 (58) {eq:Moreau-Jean-1}

The parameters $\rho_{\text{\tiny N}}, \rho_{\text{\tiny T}}$ may be also chosen contact by contact. Problem FC is then reformulated as

$$F_{\text{mj}}(r) := \begin{bmatrix} r_{\text{N}} - P_{\text{IR}_{+}^{n_{\text{C}}}}(r_{\text{N}} - \rho_{\text{N}}(Wr + q)_{\text{N}}) \\ r_{\text{T}} - P_{D(\mu,(r_{\text{N}})_{+})}(r_{\text{T}} - \rho_{\text{T}}(Wr + q)_{\text{T}}) \end{bmatrix} = 0. \tag{59}$$

In the seminal work of Alart & Curnier (Curnier and Alart, 1988; Alart and Curnier, 1991), the augmented Lagrangian approach is invoked (see Remark 2) to obtain a similar formulation motivated by the development of nonsmooth (or generalized) Newton methods (see Section 5.2). To be accurate, the original Alart–Curnier function is given by

$$\begin{cases} r_{\text{N}} - P_{\text{IR}_{+}^{n_{\text{C}}}}(r_{\text{N}} - \rho_{\text{N}}u_{\text{N}}) = 0, \\ r_{\text{T}} - P_{D(\mu,(r_{\text{N}} - \rho u_{\text{N}})_{+})}(r_{\text{T}} - \rho_{\text{T}}u_{\text{T}}) = 0. \end{cases}$$
(60) {eq:AC-1}

The difference between (58) and (60) is in the radius of the disk: $D(\mu, (r_N - \rho u_N)_+)$ rather than $D(\mu, (r_N)_+)$. Problem FC can be also reformulated as in (59) using (60). This yields

$$F_{\rm ac}(r) := \begin{bmatrix} r_{\rm N} - P_{\rm I\!R_+^{n_c}}(r_{\rm N} - \rho_{\rm N}(Wr + q)_{\rm N}) \\ r_{\rm T} - P_{D(\mu,(r_{\rm N} - \rho_{\rm N}u_{\rm N})_+)}(r_{\rm T} - \rho_{\rm N}(Wr + q)_{\rm T}) \end{bmatrix} = 0. \tag{61} \quad \{\text{eq:AC-II}\}$$

Remark 1. From the QVI formulation (41), the following nonsmooth equation can also be written

$$r = P_{C(u,r_N)}(r - \rho u) \tag{62} \quad \{eq:qvi-proj\}$$

which corresponds to (58).

Remark 2. In the literature of computational mechanics (Curnier and Alart, 1988; Simo and Laursen, 1992; Alart and Curnier, 1991), very similar expressions are obtained using the concept of augmented Lagrangian functions. This concept introduced in the general framework of Optimization by (Hestenes, 1969) and developed and popularized by (Rockafellar, 1974, 1993) is a strong theoretical tool for analyzing existence and regularity of solutions of constrained optimization problems. Its numerical interest is still a subject of intense debate in the mathematical programming community. In the nonconvex nonsmooth context of problems of frictional contact problems, its invocation is not so clear, but it has enabled the design of robust numerical techniques. Nevertheless, it is worth to note that some of these methods appear as variants of the methods developed to solve variational inequalities in other contexts. The method developed by (Simo and Laursen, 1992) is a dedicated version of fixed point with projection for VI (see Section 1) and the method of (Alart and Curnier, 1991) is a tailored version of semi-smooth Newton methods (see Section 5). Nevertheless, the concept of augmented Lagrangian have never been used in the optimization literature for this purpose.

Xuewen-Soh-Wanji functions

Following earlier work of (Park and Kwak, 1994) and (Leung et al, 1998), the following function is proposed in (Xuewen et al, 2000) as follows

In (Xuewen et al, 2000), the system is solved by a generalized Newton method with a line-search procedure.

Hüeber-Stadler-Wolhmuth functions

In (Stadler, 2004; Hüeber et al, 2008), and subsequently in (Koziara and Bićanić, 2008), another function is used to reformulate the problem FC:

$$F_{\text{hsw}}(r) \coloneqq \begin{bmatrix} r_{\text{N}} - P_{\mathbb{R}^{n_c}_+}(r_{\text{N}} - \rho_{\text{N}}(Wr + q)_{\text{N}}) \\ \max(\mu(r_{\text{N}} - \rho_{\text{N}}u_{\text{N}}), \|r_t - \rho_t u_{\text{T}}\|)r_{\text{T}} - \mu \max(0, r_n - \rho_{\text{N}}u_{\text{N}})(r_t - \rho_{\text{T}}u_{\text{T}}) \end{bmatrix} = 0. \tag{64}$$

In (Hüeber et al, 2008), this function is used considering the problem written at the velocity level rather than in (Koziara and Bićanić, 2008) is stated at the velocity level.

General SOCC-functions

More generally, a large family of reformulations of the SOCCP (24) in terms of equations can be obtained by using a so-called Second Order Cone Complementarity (SOCC) function. Let us consider the following SOCCP over a symmetric cone $K^* = K$. A SOCC-function ϕ is defined by

$$K \ni x \perp y \in K \iff \phi(x,y) = 0.$$
 (65) {eq:SOCC-function}

The frictional contact problem can be written as a SOCCP over symmetric cones by applying the following transformations

$$x = T_x \hat{u} = \begin{bmatrix} \hat{u}_{\text{N}} \\ \mu \hat{u}_{\text{T}} \end{bmatrix}$$
 and $y = T_y r \begin{bmatrix} \mu r_{\text{N}} \\ r_{\text{T}} \end{bmatrix}$. (66) {eq:SOCC-function1}

Clearly, the nonsmooth equations of the previous sections provides several examples of SOCC-functions and the natural map offers the simplest one. In (Fukushima et al, 2001), the standard complementarity functions for Nonlinear Complementarity Problems (NCP) such as the celebrated Fischer-Burmeister function are extended to the SOCCP by means of Jordan algebra. Smoothing functions are also given with theirs Jacobians and they studied their properties in view of the application of Newton's method. For the second order cone, the Jordan algebra can be defined with the following non-associative Jordan product

$$x \cdot y = \begin{bmatrix} x^{\top} y \\ y_{N} x_{T} + x_{N} y_{T} \end{bmatrix}$$
 (67) {eq: Jordan-product}

and the usual componentwise addition x + y. The vector x^2 denotes $x \cdot x$ and there exists a unique vector $x^{1/2} \in K$, the square root of $x \in K$, defined as

$$(x^{1/2})^2 = x^{1/2} \cdot x^{1/2} = x.$$
 (68) {eq:Jordan-sqrt}

A direct calculation for the SOC in IR³ yields

$$x^{1/2} = \begin{bmatrix} s \\ \frac{x_{\text{T}}}{2s} \end{bmatrix}$$
, where $s = \sqrt{(x_{\text{N}} + \sqrt{x_{\text{N}}^2 - \|x_{\text{T}}\|^2})/2}$. (69) {eq:Jordan-sqrt2}

We adopt the convention that $0^{1/2} = 0$. The vector $|x| \in K$ denotes $(x^2)^{1/2}$. Thanks to this algebra and its associated operator, the projection onto K can be written as

$$P_K(x) = \frac{x + |x|}{2}.$$
 (70) {eq:Jordan-projection}

This formula provides a new expression for the natural map and its associated non-smooth equations. This is exactly what is done in (Hayashi et al, 2005) where the natural map (46) is used together with an expression of the projection operator based on the Jordan algebra calculus. The resulting SOCCP is then solved with a semi-smooth Newton method, and a smoothing parameter can be added.

Most of the calculus in Jordan algebra are based on the spectral decomposition, a basic concept in Jordan algebra, see (Fukushima et al, 2001) for more details. For $x = (x_N, x_T) \in \mathbb{R} \times \mathbb{R}^2$, the spectral decomposition is defined by

an-spectraldecomposition}

$$x = \lambda_1 u_1 + \lambda_2 u_2, \tag{71}$$

where $\lambda_1, \lambda_2 \in \mathbb{R}$ and $u_1, u_2 \in \mathbb{R}^3$ are the spectral values and the spectral vectors of x given by

n-spectraldecomposition1}

$$\lambda_{i} = x_{N} + (-1)^{i} ||x_{T}||, \quad u_{i} = \begin{cases} \frac{1}{2} \begin{bmatrix} 1 \\ (-1)^{i} \frac{x_{T}}{||x_{T}||} \end{bmatrix}, & \text{if } x_{T} \neq 0 \\ \frac{1}{2} \begin{bmatrix} 1 \\ (-1)^{i} w \end{bmatrix}, & \text{if } x_{T} = 0 \end{cases}$$

$$(72)$$

with $w \in \mathbb{R}^2$ any unit vector. Note that the decomposition is unique whenever $x_T \neq 0$. The spectral decomposition enjoys very nice properties that simplifies the computation of basic functions such that

n-spectraldecomposition2}

$$x^{1/2} = \sqrt{\lambda_1} u_1 + \sqrt{\lambda_2} u_2, \text{ for any } x \in K, P_K(x) = \max(0, \lambda_1) u_1 + \max(0, \lambda_2) u_2.$$
 (73)

More interestingly, general SOCC-functions can also be extended and smoothed version of this function can be also developed (see (Fukushima et al, 2001)). Let us start with the Fischer-Burmeister function

{eq:Jordan-FB}

$$\phi_{FB}(x,y) = x + y - (x^2 + y^2)^{1/2}. (74)$$

It can show that the zeroes of ϕ_{FB} are solutions of the SOCCP (65) using the Jordan algebra associated with K. Using the spectral decomposition, the Fischer-Burmeister function can be easily computed as

{eq:Jordan-FB-1}

$$\phi_{\text{FB}}(x,y) = x + y - (\sqrt{\bar{\lambda}_1}\bar{u}_1 + \sqrt{\bar{\lambda}_2}\bar{u}_2)$$
 (75)

where $\bar{\lambda}_1, \bar{\lambda}_2 \in IR$ and $\bar{u}_1, \bar{u}_2 \in IR^3$ are the spectral values and the spectral vectors of $x^2 + y^2$ that is

$$\bar{\lambda}_{i} = \|x\|^{2} + \|y\|^{2} + 2(-1)^{i} \|x_{N}x_{T} + y_{N}y_{T}\|$$

$$\bar{u}_{i} = \begin{cases}
\frac{1}{2} \begin{bmatrix} 1 \\ (-1)^{i} \frac{x_{N}x_{T} + y_{N}y_{T}}{\|x_{N}x_{T} + y_{N}y_{T}\|} \end{bmatrix}, & \text{if } x_{N}x_{T} + y_{N}y_{T} \neq 0 \\
\frac{1}{2} \begin{bmatrix} 1 \\ (-1)^{i}w \end{bmatrix}, & \text{if } x_{N}x_{T} + y_{N}y_{T} = 0
\end{cases} , i = 1, 2.$$
(76)

Finally, Problem FC is then reformulated as

$$F_{\text{FB}}(u,r) := \begin{bmatrix} u - Wr - q \\ \Phi_{\text{FB}}\left(\begin{bmatrix} \mu r_{\text{N}} \\ r_{\text{T}} \end{bmatrix}, \begin{bmatrix} \frac{1}{\mu}(u_{\text{N}} + \mu \|u_{\text{T}}\|) \\ u_{\text{T}} \end{bmatrix}\right) \end{bmatrix} = 0. \tag{77} \quad \{\text{eq:FB-II}\}$$

where the mapping $\Phi_{FB}: \mathbb{R}^{3n_c} \times \mathbb{R}^{3n_c} \to \mathbb{R}^{3n_c}$ is defined as

$$\boldsymbol{\Phi}_{\text{FB}}(x,y) = \left[(\phi(x^{\alpha}, y^{\alpha}), \alpha = 1 \dots n_c)^{\top} \right]. \tag{78}$$

3.4 Optimization problems

In this section, several optimization-based formulations are proposed. The quest for an efficient optimization formulation of the frictional problem is a hard task. Since the problem is nonsmooth and nonconvex, the use of an associated optimization problem is interesting from the numerical point of view if we want to improve the robustness and the stability of the numerical methods.

A straightforward optimization problem can be written whose cost function to minimize is the scalar product $r^{\top}\hat{u}$. Indeed, this product is always positive and vanishes at the solution. Let us consider this first optimization formulation

$$\begin{cases} \min r^{\top} \hat{u} = r^{\top} u + \sum_{\alpha=1}^{n_c} \mu^{\alpha} r_{\scriptscriptstyle N}^{\alpha} \| u_{\scriptscriptstyle T}^{\alpha} \| \\ s.t. \ \hat{u} \in K^{\star}, \\ r \in K, \end{cases}$$

$$(79) \quad \{\text{eq:opt-1}\}$$

which amounts to minimizing the DeSaxcé's bipotential function (De Saxcé, 1992) over $K^* \times K$. A first simplification can be made by noting that

$$\hat{u} \in K^{\star} \iff u_{\scriptscriptstyle N} \geqslant 0,$$
 (80) {eq:equiv-cone}

which leads to

$$\begin{cases} \min r^{\top} u + \sum_{\alpha=1}^{n_c} \mu^{\alpha} r_{\scriptscriptstyle N}^{\alpha} \| u_{\scriptscriptstyle T}^{\alpha} \| \\ s.t. \ u_{\scriptscriptstyle N} \geqslant 0 \\ r \in K. \end{cases}$$
 (81) {eq:opt-2}

Starting from Problem FC, a direct substitution of u = Wr + q yields

$$\begin{cases} \min r^{\top}(Wr+q) + \sum_{\alpha=1}^{n_c} \mu^{\alpha} r_{\scriptscriptstyle N}^{\alpha} \| (Wr+q)_{\scriptscriptstyle T}^{\alpha} \| \\ s.t. \ (Wr+q) \, \mathbb{N} \geqslant 0, \\ r \in K. \end{cases} \tag{82} \quad \{\text{eq:opt-3}\}$$

which is a nonlinear optimization problem with a nonsmooth and nonconvex cost function. From the numerical point of view this problem may be very difficult and we have to ensure that the cost function have to be zero at the solution which is not guaranteed of some local minima are reached in the minimization process.

Other optimization-based formulations have been proposed in the literature. They are not direct optimization formulation but they try to identify an optimization subproblem which is well-posed and for which efficient numerical methods are available. Three approaches can be listed in three categories: a) the *alternating optimization* problems, b) the *successive approximation* method and c) the *convex SOCP* approach.

The Panagiotopoulos alternating optimization approach

aims at solving the frictional contact problem by alternatively solving the Signorini condition for a fixed value of the tangential reaction $r_{\rm T}$, and solving the Coulomb friction model for a fixed value of the normal reaction $r_{\rm N}$. Let us split the matrix W and the vector q in the following way:

$$\{\text{eq:W-split}\} \qquad \qquad u = Wr + q \quad \Longleftrightarrow \quad \begin{bmatrix} u_{\text{N}} \\ u_{\text{T}} \end{bmatrix} = \begin{bmatrix} W_{\text{NN}} & W_{\text{NT}} \\ W_{\text{TN}} & W_{\text{TT}} \end{bmatrix} \begin{bmatrix} r_{\text{N}} \\ r_{\text{T}} \end{bmatrix} + \begin{bmatrix} q_{\text{N}} \\ q_{\text{T}} \end{bmatrix}. \tag{83}$$

Two sub-problems can therefore be identified: the first one is to find $u_{\rm N}$ and $r_{\rm N}$ such that

$$\begin{cases} u_{\rm N} = W_{\rm NN} r_{\rm N} + \tilde{q}_{\rm N}, \\ 0 \leqslant u_{\rm N} \perp r_{\rm N} \geqslant 0, \end{cases} \tag{84}$$

where $\tilde{q}_{\text{\tiny N}} = q_{\text{\tiny N}} + W_{\text{\tiny NT}} r_{\text{\tiny T}}$. The second problem is to find $u_{\text{\tiny T}}$ and $r_{\text{\tiny T}}$ such that

$$\begin{cases}
 u_{\mathsf{T}} = W_{\mathsf{TT}} r_{\mathsf{T}} + \tilde{q}_{\mathsf{T}}, \\
 -u_{\mathsf{T}} \in N_{D(\mu, \tilde{r}_{\mathsf{N}})}(r_{\mathsf{T}}),
\end{cases} \tag{85}$$

where \tilde{r}_N is fixed and $\tilde{q}_T = q_T + W_{TN} r_N$. Since W is a symmetric positive semi–definite matrix, W_{NN} and W_{TT} are also symmetric semi–definite positive matrices. Therefore, two convex optimization problems can be formulated:

{eq:AO-3}
$$\begin{cases} \min \frac{1}{2} r_{\text{N}}^{\top} W_{\text{NN}} r_{\text{N}} + r_{\text{N}}^{\top} \tilde{q}_{\text{N}} \\ \text{s.t. } r_{\text{N}} \geqslant 0, \end{cases}$$
(86)

and

$$\begin{cases} \min \frac{1}{2} r_{\scriptscriptstyle T}^{\top} W_{\scriptscriptstyle TT} r_{\scriptscriptstyle T} + r_{\scriptscriptstyle T}^{\top} \tilde{q}_{\scriptscriptstyle T} \\ \text{s.t. } r_{\scriptscriptstyle T} \in D(\mu, \tilde{r}_{\scriptscriptstyle N}). \end{cases}$$
(87)

This approach has been proposed by (Panagiotopoulos, 1975) for two–dimensional applications in soil foundation computing. It has also been used in other finite element applications in (Barbosa and Feijóo, 1985; Tzaferopoulos, 1993) and studied from the mathematical point of view in (Haslinger and Panagiotopoulos, 1984; Haslinger et al, 1996).

The successive approximation

method identifies a single optimization problem by introducing a function that maps the normal reaction to itself (or the friction threshold) such that

$$h(r_{\scriptscriptstyle \rm N}) = r_{\scriptscriptstyle \rm N}.$$
 (88) {eq:Haslinger-g}

Using this artifact, we can define a new problem from Problem FC such that

$$\begin{cases} \theta = h(r_{\text{N}}) \\ u = Wr + q \\ -u_{\text{N}} \in N_{\mathbb{R}^{n_c}_+}(r_{\text{N}}) \\ -u_{\text{T}} \in N_{D(\mu,\theta)}(r_{\text{T}}). \end{cases} \tag{89} \quad \{\text{eq:Haslinger-1}\}$$

Since W is a symmetric positive semi-definite matrix, the last three lines are equivalent to a convex optimization problem over the product of semi-cylinders $C(\mu, \theta)$, that is

$$\begin{cases} \theta = h(r_{\text{N}}) \\ \min \frac{1}{2} r^{\top} W r + r^{\top} q \\ \text{s.t. } r \in C(\mu, \theta) \end{cases}$$
 (90) {eq:Haslinger-2}

The method of successive approximation has been extensively used for proving existence and uniqueness of solutions to the discrete frictional contact problems. We refer to (Haslinger et al, 1996) which summarizes the seminal work of the Czech school (Nečas et al, 1980; Haslinger, 1983, 1984). We will see in the sequel that this approach also provides us with very efficient numerical solvers in Section 7.2.

The convex SOCP

approach is in the same vein as the previous one, with the difference that a SOCQP sub-problem is identified. To this aim, we augment the problem by introduction an auxiliary variable s, the image of g(u) introduced in (25). We then obtain

$$\begin{cases} s = g(u) \\ \hat{u} = Wr + q + s \\ K^{\star} \ni \hat{u} \perp r \in K. \end{cases} \tag{91} \quad \{\text{eq:ACLM-2}\}$$

Since W is a positive semi-definite matrix, a new convex optimization sub-problem can be defined

$$\begin{cases} s = g(u) \\ \begin{cases} \min \frac{1}{2} r^{\top} W r + r^{\top} (q+s) \\ \text{s.t.} \quad r \in K. \end{cases} \end{cases}$$
 (92)

This formulation introduced in (Cadoux, 2009) and developed in (Acary and Cadoux, 2013; Acary et al, 2011) has been used to give an existence criteria to the discrete frictional contact problems. Furthermore, this existence criteria can be numerically checked by solving a linear program of second-order cone (SOCLP).

4 Numerical methods for VIs

4.1 Fixed point and projection methods for VI

Starting from the VI formulations (35) or more precisely an associated nonsmooth equation through the natural map,

{eq:skew-natural-NE-bis}

$$F_R^{\text{nat}}(z) = z - P_{X,R}(z - R^{-1}F(z)). \tag{93}$$

The basic idea of the algorithm is to perform fixed point iterations on the mapping

{eq:skew-fixed-point}

$$z \mapsto P_{XR}(z - R^{-1}F(z)), \tag{94}$$

yielding to Algorithm 1 with the specific choice of $R = \rho_k^{-1}I$. The choice of the updating rule of ρ_k is detailed in Section 4.2.

For the formulation (38), the following iterations are performed

$$r_{k+1} \leftarrow P_{K,R}(r_k - R^{-1}(Wr_k + q + g(Wr_k + q))).$$
 (95)

In the sequel when a parameter ρ is specified, it is assumed that $R = \rho^{-1}I$.

The convergence of such methods are generally shown for strongly monotone VI. In our case, this assumption is not satisfied, but we will see in the sequel that such methods can converge in practice.

Remark 3. Algorithm 1 with the iteration rule (95) and a fixed value of ρ_k has been originally proposed in (De Saxcé and Feng, 1991, 1998). The algorithm is called Uzawa's algorithm by reference to the algorithm due to Uzawa in computing the

Algorithm 1 Fixed point iterations for the VI (35)

```
 \begin{tabular}{ll} \textbf{Require:} & F,X \ Data \ of \ VI \ (35) \\ \textbf{Require:} & z_0 \ initial \ values \\ \textbf{Require:} & tol > 0 \ a \ tolerance \ value \ and \ iter_{max} > 0 \ the \ max \ number \ of \ iterations \\ \textbf{Require:} & \rho_0 \ initial \ value \ for \ \rho \\ \textbf{Ensure:} & z \ solution \ of \ VI \ (35) \\ \hline & k \leftarrow 0 \\ \textbf{While} \ error > tol \ and \ k < iter_{max} \ \textbf{do} \\ \hline & Update \ the \ value \ of \ \rho_k \\ \hline & z_{k+1} \leftarrow P_X(z_k - \rho_k F(z_k)) \\ \hline & Evaluate \ error. \\ & k \leftarrow k+1 \\ \hline & \textbf{end \ while} \\ & z \leftarrow z_k \\ \hline \end{tabular}
```

optimal values of convex program by primal-dual techniques(Glowinski et al, 1976; Fortin and Glowinski, 1983). Note that the algorithm in (Simo and Laursen, 1992) is similar to the fixed point algorithm with projection though based on augmented Lagrangian concept (see Remark 2).

Extragradient methods

The extragradient method (Korpelevich, 1976) is also a well-known method for VI which improves the previous projection method. It can be described as

and formally defined in Algorithm 2. The convergence of this method is guaran-

Algorithm 2 Extragradient method for the VI (35)

```
 \begin{tabular}{ll} \textbf{Require:} & F,X \ Data \ of \ VI \ (35) \\ \textbf{Require:} & z_0 \ initial \ values \\ \textbf{Require:} & tol > 0 \ a \ tolerance \ value \ and \ iter_{max} > 0 \ the \ max \ number \ of \ iterations \\ \textbf{Ensure:} & z \ solution \ of \ VI \ (35) \\ & k \leftarrow 0 \\ \textbf{While} \ error > tol \ and \ & k < iter_{max} \ \textbf{do} \\ & Update \ the \ value \ of \ \rho_k \\ & \bar{z}_k \leftarrow P_X(z_k - \rho_k F(z_k)) \\ & z_{k+1} \leftarrow P_X(z_k - \rho_k F(\bar{z}_k)) \\ & Evaluate \ error. \\ & k \leftarrow k+1 \\ & \textbf{end \ while} \\ & z \leftarrow z_k \\ \end{tabular}
```

teed under the following assumptions: there exists a solution and the function F is Lipschitz-continuous and pseudo-monotone.

4.2 Self-adaptive step-size rules

A key ingredient in this efficiency and the convergence of the numerical methods for VI presented above is the choice of the sequence $\{\rho_k\}$. A sensible work has been done in the literature mainly motivated by some convergence proofs under specific assumption. Besides the relaxation of the assumption for the convergence, we are interesting in improving the numerical efficiency and robustness. We present in this section, the most popular approach for choosing the sequence $\{\rho_k\}$.

In (Khobotov, 1987), a method is proposed to improve the extragradient method of Korpelevich (1976) by adapting ρ_k in the following way. The goal is the find ρ_k that satisfies

{eq:khobotov1}
$$0 < \rho_k \leqslant \min \left\{ \bar{\rho}, L \frac{\|z_k - \bar{z}_k\|}{\|F(z_k) - F(\bar{z}_k)\|} \right\} \text{ with } L \in (0, 1)$$

where $\bar{\rho}$ is the maximum value of ρ_k which is chosen in the light of the specific problem. The objective is to find a coefficient that is bounded by the local Lipschitz constant. The standard way to do that is to use an Armijo-type procedure by successively trying value of $\rho_k = \bar{\rho} v^m$ with $m \in \mathbb{N}$ and $v \in (0,1)$, with a typical value of 2/3. In the original article of (Khobotov, 1987), there is no procedure to size $\bar{\rho}$ or to update it. In (He and Liao, 2002) and in the context of prediction-correction, the authors propose to use the rule $\rho_k = \rho_{k-1} v^m$ and if the criteria (97) is largely satisfied for ρ_k , the value is increased. In (Han and Lo, 2002), a similar procedure is used for the extragradient method by adding an increasing step of ρ_k , which is done after the correction as in (He and Liao, 2002). The criteria (97) is verified by computing the ratio

{eq:Khobotov-r}
$$r_k \leftarrow \frac{\rho_k \|F(z_k) - F(\bar{z}_k)\|}{\|z_k - \bar{z}_k\|}.$$
 (98)

In (Solodov and Tseng, 1996), similar Armijo-like technique is used, and the ratio r_k is computed as follows:

{eq:SolodovTseng-r}
$$r_k \leftarrow \frac{\rho_k(z_k - \bar{z}_k)^\top (F(z_k) - F(\bar{z}_k))}{\|z_k - \bar{z}_k\|^2}.$$
 (99)

The approach is summarized in Algorithm 3. The parameter L typically chosen around 0.9 is a safety coefficient in the evaluation of ρ_k . The parameter L_{min} that triggers an increase of ρ_k is chosen around 0.3. In Algorithm 3, a Boolean option is added to the standard Armijo approach. The approximation \bar{z}_k is updated within the self-adaptive loop. This trick is not justifies by any theoretical argument and is most of the chapters this operation is not performed but in practice (see Section

9.1) it appears to improve the convergence speed. The update of the Armijo rule $\rho_k \leftarrow v \rho_k$ can also be replaced by $\rho_k \leftarrow v \rho_k \min\{1, 1/r_k\}$ but it appears that this trick does improve the self-adaptive procedure. Other more evolved step-lengths strategies can be found in (Wang et al, 2010) that have been tried in this study.

REDACTION NOTE O.H. 4.1

The last paragraph is hard to follow. Maybe we could put some informations in the algorithm description, like the typical values.

Algorithm 3 Updating rule for ρ_k

```
Require: F,X Require: Search and safety parameters. L \in (0,1),0 < L<sub>min</sub> < L, v \in (0,1) Require: Initial values z_k \in X, \rho_{k-1} > 0 \rho_k \leftarrow \rho_{k-1} \bar{z}_k \leftarrow P_X(z_k - \rho_k F(z_k)) Evaluate r_k with (98) (or (99)) while r_k > L do \rho_k \leftarrow v \, \rho_k \bar{z}_k \leftarrow P_X(z_k - \rho_k F(z_k)) Evaluate r_k with (98) (or (99)) end while Perform the correction step of extragradient or prediction—correction method. if r_k < L_{min} then \rho_k = \frac{1}{v} \rho_k end if
```

4.3 Nomenclature

A nomenclature for the algorithms based on the VI formulation is given in Table 1.

Name	Algo.	Additional informations
FP-DS	1	iteration rule (95) and fixed ρ
FP-VI-UPK	1 and 3	iteration rule (95) and updating rule (98)
FP-VI-UPTS	1 and 3	iteration rule (95) and updating rule (99)
EG-VI-UPK	2 and 3	iteration rule (96) and updating rule (98)
EG-VI-UPTS	2 and 3	iteration rule (96) and updating rule (99)

Table 1: Naming convention for the algorithms based on VI formulations.

5 Newton based methods

5.1 Principle of the nonsmooth Newton methods

In Section 3.3, several formulations of the frictional contact problem by means of nonsmooth equations have been presented. These nonsmooth equations call for the use of nonsmooth Newton's methods. Remember that the standard Newton method is to solve

$$\{eq: NSN1\}$$

$$G(z) = 0$$
 (100)

by performing the following Newton iteration

{eq:NSN2}
$$z_{k+1} = z_k - J^{-1}(z_k)G(z_k).$$
 (101)

If the mapping G is smooth enough, the matrix J is the Jacobian matrix of G with respect to z, that is $J(z) = \nabla_z^\top G(z)$. When the G is nonsmooth but locally Lipschitz continuous, the Jacobian matrix is replaced by an element of the generalized Jacobian at z denoted by $\Phi(z) \in \partial G(z)$. Let us recall the definition of the generalized Jacobian. By Rademacher's Theorem, if G is locally Lipschitz continuous, then G is almost everywhere differentiable and let us define the set D_G by

{eq: NSN4}
$$D_G := \{z \mid G \text{ is differentiable at } z\}. \tag{102}$$

The generalized Jacobian of G at z can be defined by

{eq:NSN5}
$$\partial G(z) = \operatorname{conv} \partial_B G(z), \tag{103}$$

with

{eq:NSN6}
$$\partial_B G(z) = \{ \lim_{\bar{z} \to z, \bar{z} \in D_G} \nabla G(\bar{z}) \}. \tag{104}$$

If $\Phi(z)$ is nonsingular, then an iteration of the nonsmooth Newton method is given by

{eq:NSN3}
$$z_{k+1} = z_k - \Phi^{-1}(z_k)(G(z_k)).$$
 (105)

The resulting nonsmooth Newton method is detailed in Algorithm 4.

The convergence of nonsmooth Newton methods is based on the assumption of semi–smoothness of the nonsmooth function in (100). For this reason they are often called semi–smooth Newton methods (see (Facchinei and Pang, 2003, Section 7.5) and references therein).

Algorithm 4 Nonsmooth Newton method for (100)

```
 \begin{tabular}{ll} \textbf{Require:} & G \ data \ of \ Problem \ (100) \\ \textbf{Require:} & z_0 \ initial \ values \\ \textbf{Require:} & tol > 0 \ a \ tolerance \ value \ and \ iter_{max} > 0 \ the \ max \ number \ of \ iterations \\ \textbf{Ensure:} & z \ solution \ of \ Problem \ (100) \\ & k \leftarrow 0 \\ \textbf{while} \ error > tol \ and \ k < iter_{max} \ \textbf{do} \\ & compute \ (select) \ \Phi(z_k) \in \partial G(z_k) \\ & z_{k+1} \leftarrow z_k - \Phi^{-1}(z_k)(G(z_k)) \\ & Evaluate \ error. \\ & k \leftarrow k+1 \\ & \textbf{end \ while} \\ & z \leftarrow z_k \\ \end{tabular}
```

5.2 Application to the discrete frictional contact problem

Newton method based on the Jean-Moreau and Alart-Curnier functions

Let us consider now the Alart–Curnier function $F_{ac}(u,r)$ in (61) or the Jean–Moreau function $F_{nij}(u,r)$ (59) for Problem FC. Algorithm 4 is applied with

{eq:phiphi-ac}

$$\Phi(r) \in \partial F_{ac}(r) \quad \text{or} \quad \Phi(r) \in \partial F_{mj}(r).$$
(106)

The details of a possible computation of Φ can be found in Appendix 11.

Newton method based on SOCC-function

Let us consider now the Fischer-Burmeister function $F_{FB}(u,r)$ in (77) for Problem FC. Algorithm 4 is applied with

$$\Phi(r) \in \partial F_{\mathsf{FB}}(r).$$
 (107) {eq:phiphi-soccp}

Nonsmooth newton based on the natural map

Let us consider the natural map F_{vi}^{nat} in (49) that enables to write Problem FC as a nonsmooth equation. Algorithm 4 is applied with

$$\Phi(r) \in \partial F_{\text{vi}}^{\text{nat}}(r).$$
 (108) {eq:phiphi}

Computation of an element of ∂G

for any r_0 in the nonsmooth domain of G, we compute $\Phi(r_0) = \lim_{t \to 0} \Phi(r(t))$ with $t \to r(t)$ a parametrization such that $\lim_{t \to 0} r(t) = r_0$ with r(t) in the smooth domain. Similar computations can also be found in (Joli and Feng, 2008) where a Newton method based on the formulation (49) is used contact by contact in a Gauss–Seidel loop.

Lipschitz continuity properties

For the mapping $F_{v_i}^{\text{nat}}$, F_{ac} , F_{FB} , F_{mj} , F_{xsw} that are mainly generated by a composition of the Lipschitz functions P_X , min, max and $\|.\|$; the local Lipschitz properties can be proven without difficulties. For the mapping F_{FB} , the proof of Lipschitz continuity of ϕ_{FB} can be found in (Sun and Sun, 2005) and references therein. This ensures the consistency of the definition of the generalized Jacobians.

5.3 Convergence and robustness issues.

The local convergence of the nonsmooth Newton methods is based on the semi-smoothness of the mapping G and the fact that all elements of the generalized Jacobian at the solution point z^* , $\Phi(z^*) \in \partial G(z^*)$ are non singular (see (Qi and Sun, 1993) and Chapter 1 of (Qi et al, 2018) for a survey of mathematical results). For our application, the semi-smoothness of the mapping $F_{\rm ac}$, $F_{\rm mj}$, or $F_{\rm hsw}$) is proven in several papers (Christensen and Pang, 1998; Hüeber et al, 2008). The strong semi-smoothness of $\phi_{\rm FB}$ can be found in (Sun and Sun, 2005).

On the contrary, the regularity of all elements of the generalized Jacobians is not necessarily ensured. The first reason is the possible rank deficiency of the matrix W, which is usual in rigid body applications as discussed in Section 2.3. Even if we consider a full rank matrix W, as in the standard one contact case for instance, the invertibility of all the elements of the generalized Jacobian at the solution point is not straightforward. For the mapping $F_{\rm ac}$, $F_{\rm mj}$, some results are given in (Alart, 1993, 1995; Jourdan et al, 1998). Some of the results depends on the value of the coefficient of friction and the exact penalty parameters ρ , $\rho_{\rm N}$, $\rho_{\rm T}$ parameters. For the mapping $F_{\rm hsw}$, some other results can be found in (Hüeber et al, 2008).

In the numerical practice and even if W is full-rank, it may happen that the elements of the generalized Jacobians are not regular or very badly conditioned even when we are far from the solution. This fact is reported in (Alart, 1993, 1995; Jourdan et al, 1998; Hüeber et al, 2008; Koziara and Bićanić, 2008). Some divergence of the Newton algorithm can be encountered. A few work has been done to understand this problem. Among them, we cite (Hüeber et al, 2008) where some modifications of the elements of the generalized Jacobian are performed far form the solution to keep the Newton iteration matrix regular and well conditioned when the function

 F_{hsw} is chosen. This very interesting work opens new directions of research for the other mappings. In (Koziara and Bićanić, 2008), some other heuristics are developed to try avoid divergence of the Newton loop. In the two next sections, we present two complementary ways to partly solve this problem by choosing consistently the parameters ρ , ρ_{N} , ρ_{T} and by applying some line–searches techniques to globalize the convergence.

5.4 Estimation of ρ , ρ_N , ρ_T parameters

One of the key parameters in the efficiency of the nonsmooth Newton methods are the choice of the parameter ρ in the parameterized natural map in (48) and the parameters ρ_N and ρ_T in the Jean–Moreau and Alart-Curnier functions (59) and (61). The default choice is to set these parameters equal to 1 but the numerical practice shows that the convergence of the nonsmooth solvers is drastically deteriorated, especially if the norm or the conditioning of the matrix W is far from this unit value. There is no theoretical rules to size this parameters, but some heuristics may be found in the literature for a single contact problem that we expose in the sequel.

Inverse of a norm of W

A first simple choice is to consider the inverse of a norm of the matrix W. With this heuristics, we set the ρ parameter before the Newton loop as follows:

$$\rho = \frac{1}{\|W\|}, \quad \rho_{\text{N}} = \rho_{\text{T}} = \frac{1}{\|W\|}.$$
(109) {eq:rho-1}

This choice is mainly based on a guess of the inverse of the local Lipschitz constant of the operator Wr+q. In the case of the natural map, it amounts to neglecting the nonlinear contribution of g. Naturally, this choice depends on the choice of the matrix norm. If we assume that the matrix is a symmetric definite positive matrix, a possibility is to choose a 2-norm based on the spectral radius $||W||_2 = \rho(W) = \lambda_{\max}(W)$ of the matrix:

$$\rho = \frac{1}{\lambda_{\max}(W)}, \quad \rho_{\text{N}} = \rho_{\text{T}} = \frac{1}{\lambda_{\max}(W)}. \tag{110} \quad \{\text{eq:rho-2}\}$$

Estimation based on the splitting W_{NN} and W_{TT}

A second possible choice for the map (59) and (61) is to use the fact that the problem is split with respect to the normal and the tangent directions. In that case, we compute a value of ρ_N that is based on the eigenvalues of W_{NN} and a value of ρ_T based on the eigenvalue of W_{TT} . For a single contact, we set

$$\rho_{\text{N}} = \frac{1}{W_{\text{NN}}}, \quad \rho_{\text{T}} = \frac{1}{\lambda_{\text{max}}(W_{\text{TT}})} \tag{111} \quad \{\text{eq:rho-3}\}$$

A third option it also to take into account the conditioning of the matrix W_{TT} by choosing

$$\rho_{\rm N} = \frac{1}{W_{\rm NN}}, \quad \rho_{\rm T} = \frac{\lambda_{\rm min}(W_{\rm NN})}{\lambda_{\rm max}^2(W_{\rm TT})} \tag{112}$$

Adaptive estimation of the parameters

In (Koziara and Bićanić, 2008), an adaptive way of updating ρ is proposed that has been implemented for our experiments.

Default choices

By default, we use the rule (112) for the mapping (59) and (61) and the rule (110) for the natural. When other rules are chosen in the comparison, they are specified.

5.5 Damped Newton and line-search procedures

These line-searches algorithms follow the presentation done in chapter 3 of (Bonnans et al, 2003), where one may find notably all the mathematical explanations of why they terminate, under some assumptions on the merit function. However, even if the assumptions are fulfilled and despite the mathematical proofs, in practice, is is recommended that some emergency tests should be added during extrapolation and interpolation phases to avoid infinite loops.

The choice of the values for the parameters m_1 , m_2 for the Goldstein-Price line-search and the parameter m_1 alone for the Armijo line-search is also discussed and it is advised to choose $m_1 < \frac{1}{2}$ and $m_2 > \frac{1}{2}$.

Merit functions

Termination implies a merit function $q \in C^1$ with q'(0) < 0, which is bounded from below. In our case, the merit function is $t \to \frac{1}{2} \|G(r+td)\|$ where G is the mapping 100. The emergency test is implemented as a maximum number of iterations and when the line-search fails, the Newton loop is continued with t=1 so as it would be without a line-search.

Goldstein-Price (GP) line search

```
Algorithm 5 Goldstein-Price (GP) line search
Require: x, the starting point of the line-search.
Require: d, the direction of search.
Require: t, an initial stepsize-value.
Require: t \to q(t), for t \geqslant 0, with q \in C^1 bounded from below and q'(0) < 0, a merit function
  representing f(x+td)
Require: m_1, m_2, parameters with 0 < m_1 < m_2 < 1
Require: a, with a > 1, parameter for extrapolation
Ensure: a finite line-search
  t_L \leftarrow 0
  t_R \leftarrow 0
  \mathbf{\Delta} \leftarrow \tfrac{q(t) - q(0)}{\cdot}
  while m_2^{'}q'(0) > \Delta or \Delta > m_1q'(0) do
     if m_1q'(0) < \Delta then
        t_R \leftarrow t
     end if
     if \Delta < m_2 q'(0) then
        t_L \leftarrow t
     end if
     if t_R = 0 then
        t \leftarrow at
     else
        t \leftarrow \frac{t_L + t_R}{2}
     end if
     \mathbf{\Delta} \leftarrow \tfrac{q(t) - q(0)}{}
  end while
```

Armijo line-search

Non-monotone line-search

see (Koziara and Bićanić, 2008) based on (Ferris and Lucidi, 1994; Grippo et al, 1986)

5.6 Nomenclature

A nomenclature for the algorithms based on the nonsmooth Newton methods is given listed in Table 2.

```
Algorithm 6 Armijo(A) line search
Require: x, the starting point of the line-search.
Require: d, the direction of search.
Require: t, an initial stepsize-value.
Require: t \to q(t), for t \ge 0, with q \in C^1 bounded from below and q'(0) < 0, a merit function
  representing f(x+td)
Require: m_1, a parameter with 0 < m_1 < 1
Require: a, with a > 1, parameter for extrapolation
Ensure: a finite line-search
  while m_1 q'(0) < \frac{q(t) - q(0)}{t} do
     if t_R = 0 then
       t \leftarrow at
    else
       t_R \leftarrow t
       t \leftarrow \frac{t_R}{2}
     end if
  end while
```

Name	Algo.	Additional informations
NSN-NM	4	Natural map formulation (49)
NSN-AC	4	Alart–Curnier formulation (61)
NSN-JM	4	Jean–Moreau formulation (59)
NSN-FB	4	Fischer-Burmeister formulation (77)
NSN-NM-GP	4 and 5	Natural map formulation (49) and the Goldstein–Price (GP) line search
NSN-AC-GP	4 and 5	Alart–Curnier formulation (61) and the Goldstein–Price (GP) line search
NSN-JM-GP	4 and 5	Jean–Moreau formulation (59) and the Goldstein–Price (GP) line search
NSN-FB-GP	4 and 5	Fischer-Burmeister formulation (77) and the Goldstein–Price (GP) line search
NSN-NM-A	4 and 6	Natural map formulation (49) and the Armijo(A) line search
NSN-AC-A	4 and 6	Alart–Curnier formulation (61) and the Armijo(A) line search
NSN-JM-A	4 and 6	Jean–Moreau formulation (59) and the Armijo(A) line search
NSN-FB-A	4 and 6	Fischer-Burmeister formulation (77) and the Armijo(A) line search
NSN-AC-HYBRID	4	Alart–Curnier formulation (61) with a pre computation of the initial guess with
		100 iterations of EG-VI-UPK algorithm the

Table 2: Naming convention for the algorithms based on nonsmooth Newton (NSN) method

6 Splitting techniques and proximal point algorithm

Splitting techniques are standard techniques to solve VI(F,X) when the function F is affine that is F(z) = Mz + q and the set X can decomposed in a Cartesian product of independent smaller sets $X = \Pi_i X_i$. Usually, a block splitting of the matrix M is performed and a Projected Successive Over Relaxation (PSOR) method is used to solve the VI. Since the cone K is a product of second-order cones in \mathbb{R}^3 , a natural way to split the problem is to form sub-problems by using single contact as a building block. The sub-problems can be solved by any method for the VI that have been presented in the previous sections. In the same way, the proximal point algorithm can also be used which amounts to solving the original VI(F,X) by solving a

sequence of $VI(F_{c,x_k},X)$ problems such that $F_{c,x_k}(z)=z-x_k+cF(z), \quad c>0$ and $\lim_{k\to+\infty}\|x_k-z\|=0.$

6.1 Splitting and relaxation techniques

The particular structure of the cone K as a product of second-order cone in \mathbb{R}^3 calls for a splitting of the problem contact by contact. For Problem FC, the relation

$$u = Wr + q$$
 (113) {eq:delassus-bis}

is splitted along each contact as follows

$$u^{\alpha} = W^{\alpha\alpha}r^{\alpha} + \sum_{\beta \neq \alpha} W^{\alpha\beta}r^{\beta} + q^{\alpha}, \text{ for all } \alpha \in 1...n_c, \tag{114} \quad \{\text{eq:delassus-ter}\}$$

where the matrices α and β are used to label the variable for each contact. The matrices $W^{\alpha\beta}$ with $\alpha \in 1, ..., n_c$ and $\beta \in 1, ..., n_c$ are easily identified from (113). From (114), a projected Gauss–Seidel (PGS) method is obtained by using the following update rule at the k-th iterate:

$$u_{k+1}^{\alpha} = W^{\alpha\alpha} r_{k+1}^{\alpha} + \sum_{\beta < \alpha} W^{\alpha\beta} r_{k+1}^{\beta} + \sum_{\beta > \alpha} W^{\alpha\beta} r_{k}^{\beta} + q^{\alpha}, \text{ for all } \alpha \in 1...n_{c}. \quad (115) \quad \{\text{eq:pgs-l}\}$$

A Projected Successive Over Relaxation (PSOR) scheme is derived by introducing a relaxation parameter $\omega > 0$ such that

$$u_{k+1}^{\alpha} = \frac{1}{\omega} W^{\alpha \alpha} r_{k+1}^{\alpha} - \frac{1}{\omega} W^{\alpha \alpha} r_{k}^{\alpha} + \sum_{\beta < \alpha} W^{\alpha \beta} r_{k+1}^{\beta} + \sum_{\beta \geqslant \alpha} W^{\alpha \beta} r_{k}^{\beta} + q^{\alpha}, \text{ for all } \alpha \in 1 \dots n_{c}.$$

$$(116) \quad \{\text{eq:psor-1}\}$$

At the k-th iteration, the following problem is solved for each contact α :

$$\begin{cases} u_{k+1}^{\alpha} = \bar{W}^{\alpha\alpha} r_{k+1}^{\alpha} + \bar{q}_{k+1}^{\alpha}, \\ \hat{u}_{k+1}^{\alpha} = u_{k+1}^{\alpha} + g(u_{k+1}^{\alpha}), \\ K^{\alpha,\star} \ni \hat{u}_{k+1}^{\alpha} \perp r_{k+1}^{\alpha} \in K^{\alpha}, \end{cases}$$
(117) {eq:psor-3}

where

$$\begin{cases} \bar{W}^{\alpha\alpha} = \frac{1}{\omega} W^{\alpha\alpha} \\ \bar{q}^{\alpha}_{k+1} = -\frac{1}{\omega} W^{\alpha\alpha} r^{\alpha}_{k} + \sum_{\beta < \alpha} W^{\alpha\beta} r^{\beta}_{k+1} + \sum_{\beta \geqslant \alpha} W^{\alpha\beta} r^{\beta}_{k} + q^{\alpha} \end{cases}, \text{ for all } \alpha \in 1 \dots n_{c}.$$

$$(118) \quad \{\text{eq:psor-2}\}$$

The problem (117) has exactly the same structure as Problem FC, but is of lower size since it is only for one contact. It is solved by a *local solver*, which can be any of

the algorithms presented in this chapter or even an analytical method (enumerating all the possible cases as in (Bonnefon and Daviet, 2011)).

The PSOR algorithm is summarized in Algorithm 7 and the NSGS can be recovered by setting $\omega = 1$.

Algorithm 7 PSOR algorithm for Problem FC

```
Require: W, q, \mu
Require: r<sub>0</sub> initial values
\textbf{Require:} \ \ tol>0, tol_{local} \ \ tolerance \ \ values \ \ and \ \ iter_{max}>0, iter_{local\, max}>0 \ \ the \ \ max \ \ number
             of local iterations
Require: \omega a relaxation parameter
Ensure: r, u solution of Problem FC
             while error > tol and k < iter<sub>max</sub> do
                           for \alpha=1\dots n_c do
                                          \bar{\mathsf{W}}_{\mathsf{k}+1}^{\alpha\alpha} \leftarrow \frac{1}{\omega} \mathsf{W}^{\alpha\alpha}
                                        \begin{split} \bar{\mathbf{q}}_{k+1}^{\alpha} \leftarrow & -\frac{1}{\omega} \mathsf{W}^{\alpha\alpha} \mathbf{r}_{k}^{\alpha} + \sum_{\beta < \alpha} \mathsf{W}^{\alpha\beta} \mathbf{r}_{k+1}^{\beta} + \sum_{\beta \geqslant \alpha} \mathsf{W}^{\alpha\beta} \mathbf{r}_{k}^{\beta} + \mathbf{q}^{\alpha} \\ \text{Solve the single contact problem FC}(\bar{\mathsf{W}}^{\alpha\alpha}, \bar{\mathbf{q}}_{k+1}^{\alpha}, \mu) \text{ at accuracy tol}_{\mathsf{local}} \text{ with a maximate problem for the single contact problem for
                                         mum of iteration iter _{\text{local}\,max}>0
                           end for
                           Evaluate error.
                           k \leftarrow k+1
             end while
             \boldsymbol{r} \leftarrow \boldsymbol{r}_k
             u \leftarrow u_k
```

Applications methods in frictional contact date back to the work of (Mitsopoulou and Doudoumis, 1988, 1987) for two-dimensional friction. In (Jourdan et al, 1998), this method is developed in the Gauss-Seidel configuration ($\omega=1$) with a local Newton solver based on the Alart–Curnier formulation. If the local solver is only one iteration of the VI solver based on projection, we get a standard splitting technique for VI. In Table 3, the methods based on PSOR used in the comparison are summarized.

6.2 Proximal points techniques

```
REDACTION NOTE O.H. 6.1
```

```
The following paragraph is a work in progress.
```

Proximal points methods, or more generally augmented Lagrangian methods, find their roots in the study of variational inequalities. They rely on rather theoretical tools (monotone operators and resolvents), introduced to study VI. However, they are also useful to device numerical methods as we shall see. The basic idea is to

design an iterative algorithm to find a solution to the inclusion

$$0 \in F(x) + N_X(x) \qquad \text{also} \quad 0 \in T(x), \tag{119}$$

where *T* is a maximal monotone operator (see Definition 1). Remember that the first inclusion is a VI.

REDACTION NOTE V.A. 6.1

Small introduction on proximal functions of Moreau, algo of Martinet and result of Rockafellar (see (Chen and Teboulle, 1993))

Without entering into theoretical aspects, the key idea of proximal points algorithms is to replace the original VI(F,X) by a sequence of $VI(F_{\rho,x_k},X)$ problems such that

$$F_{\rho,x}(z) = z - x_k + \alpha F(z), \quad \rho > 0$$
 (120) {eq:prox-algo-1}

with the property that $\lim_{k\to+\infty} ||x_k-z|| = 0$. This is usually performed by defining a sequence x_k such that

$$x_{k+1} = (1 - \omega)x_k + \omega z_{k+1}$$
 (121) {eq:prox-algo-2}

where ω is a relaxation parameter and z_{k+1} the solution of VI(F_{ρ,x_k},X). The algorithm is described in algorithm 8

Algorithm 8 Proximal point algorithm for the VI (35)

```
 \begin{array}{lll} \textbf{Require:} & \textbf{F}, \textbf{X} \text{ Data of VI (35)} \\ \textbf{Require:} & \omega \text{ relaxation parameter} \\ \textbf{Require:} & \omega \text{ proximal point parameter} \\ \textbf{Require:} & \alpha \text{ proximal point parameter} \\ \textbf{Require:} & \textbf{tol} > 0, \textbf{tol}_{\text{in}} \text{ tolerance values and iter}_{\text{max}} > 0 \text{ the max number of iterations} \\ \textbf{Ensure:} & \textbf{z} \text{ solution of VI (35)} \\ & \textbf{k} \leftarrow 0 \\ & \textbf{while} \text{ error} > \textbf{tol and k} < \textbf{iter}_{\text{max}} \textbf{ do} \\ & \text{Solve VI}(F_{\alpha,x_k},X) \text{ for } \textbf{z}_{k+1} \text{ at accuracy tol}_{\text{int}} \\ & \textbf{x}_{k+1} \leftarrow (1-\omega)\textbf{x}_k + \omega \textbf{z}_{k+1} \\ & \textbf{Evaluate error.} \\ & \textbf{k} \leftarrow \textbf{k} + 1 \\ & \textbf{end while} \\ & \textbf{z} \leftarrow \textbf{z}_{k+1} \\ \end{array}
```

For solving the sub-problem $VI(F_{\alpha,x_k},X)$, any of the previous presented algorithms can be used. In this sense, the proximal point algorithm defined a general family of algorithm. The main interest of the proximal point algorithm is the regularization it introduces in the definition (120). For instance, let consider an affine VI, that is defined with F(z) = Mz + q. The function is the sub-problem is given by

$$F_{\alpha,x}(z) = (I + \alpha M)z - x_k + \rho q, \quad \rho > 0. \tag{122} \quad \{\text{eq:prox-algo-4}\}$$

We can easily that for sufficiently small ρ , we get a monotone affine VI and even better a strongly monotone VI. For Problem FC with F_{vi} , the proximal point algorithm yields

{eq:prox-algo-5}
$$F_{vi,\rho,x}(r) = (I + \alpha W)r - x_k + \alpha(q + g(Wr + q)), \quad \rho > 0. \tag{123}$$

and it should not be difficult to prove that with a small ρ parameter that we get a monotone VI. Naturally, there is a price to pay, smaller the parameter ρ is, easier the VI problem is, but the resulting solution of z_{k+1} is far from the solution.

The use of proximal point algorithm can be very interesting when the solving of the problem suffers for the lack of regularity of the operator. For instance, the Newton methods are in trouble when the Jacobian is not invertible. Thanks to the proximal point algorithm, we can retrieve invertible Jacobian.

REDACTION NOTE V.A. 6.2

- Prove it !
- Is there an analogy with choosing a small r ?
- · Techniques of (Han, 2008) for sizing alpha

In (He and Liao, 2002), the extragradient method is reinterpreted as a prediction-correction method applied to the proximal point algorithm. Indeed, the proximal point algorithm amounts to solving the following VI for a given z_k

or equivalently

{eq:PPA-VI2}
$$z = P_X(z - [z - z_k + \alpha_k F(z)]) = P_X(z_k - \alpha_k F(z)).$$
 (125)

Searching for a solution z_{k+1} of (125) yields

{eq:PPA-VI3}
$$z_{k+1} = P_X(z_k - \alpha_k F(z_{k+1})).$$
 (126)

A prediction-correction method based may be written as

where the scalars α_k and ρ_k have to be updated at each iteration.

REDACTION NOTE O.H. 6.2

I think that the analogy with the proximal point algorithm is premature. We only introduce it in Section 6.2.

I think we are presenting result with the extragradient. Maybe add a teaser at the end of the paragraph?

 $\it VA$ OK we can discuss this point. It is difficult to do a (European) perfect linear presentation.

6.3 Control of the tolerance of internal solvers tol_{int} and tol_{local} in the splitting and proximal approaches

In Algorithms 8 and 7, an internal tolerance is used to control the accuracy of the internal solver. It is generally not useful to solve the internal problem at the accuracy of the global one. In the comparison study, we set the internal tolerance tol_{int} to a fraction of the error error/10.0 for the Algorithm 8. For Algorithm 7, the local tolerance tol_{local} is set by default to a very low value of 10^{-14} . When it is specified, an adaptive local tolerance is set to error/10.0.

6.4 Nomenclature

A nomenclature for the algorithms based on the projection/splitting approach is given in Table 3.

Algorithm	Description
NSGS-AC	Algorithm 7 with $\omega = 1$ with the local solver NSN-AC with tolerance tol _{local}
NSGS-JM	Algorithm 7 with $\omega = 1$ with the local solver NSN-JM with tolerance tol _{local}
NSGS-AC-GP	Algorithm 7 with $\omega = 1$ with the local solver NSN-AC-GP with tolerance
	tol _{local}
NSGS-JM-GP	Algorithm 7 with $\omega = 1$ with the local solver NSN-JM=GP with tolerance
	tol _{local}
NSGS-FP-DS-One	Algorithm 7 with $\omega = 1$ with one iteration of FP-DS for the local solver
NSGS-FP-VI-UPK	Algorithm 7 with $\omega = 1$ with FP-VI-UPK for the local solver with tolerance
	tol _{local}
NSGS-EXACT	Algorithm 7 with $\omega = 1$ with the exact local solver.
PSOR-AC	Algorithm 7 with the local solver NSN-AC with tolerance tol _{local}
PPA-NSN-AC	Algorithm 8 with the NSN-AC solver as internal solver.
PPA-NSGS-AC	Algorithm 8 with the NSGS-AC solver as internal solver.

Table 3: Naming convention for the algorithms based on splitting and proximal algorithms

7 Optimization based methods

7.1 Alternating optimization problem

The Panagiotopoulos approach described in Section 3.4 generates a family of solvers by choosing a particular solver for the normal contact problem (86) and the tangential contact problem (87). This method may be viewed as a two-block Gauss-Seidel method as it has been pointed out by (Tzaferopoulos, 1993). More precisely, the following choices may be made for the normal and tangent problems.

The normal contact problem

$$\begin{cases} \min \frac{1}{2} r_{\text{\tiny N}}^{\top} W_{\text{\tiny NN}} r_{\text{\tiny N}} + r_{\text{\tiny N}}^{\top} \tilde{q}_{\text{\tiny N}} \\ \text{s.t. } r_{\text{\tiny N}} \geqslant 0 \end{cases} \quad \text{with } \tilde{q}_{\text{\tiny N}} = q_{\text{\tiny N}} + W_{\text{\tiny NT}} r_{\text{\tiny T},k},$$
 (128)

is a convex quadratic program with simple bound constraints. In the literature, a bunch of solvers has been developed to solve such problems. Among others, we might cite the active set strategy solvers (Fletcher, 1987; Nocedal and Wright, 1999) that are mainly dedicated to small-scale systems and the projected gradient (Calamai and More, 1987) and projected conjugate gradient methods (Moré and Toraldo, 1989; Moré and Toraldo, 1991) that are more dedicated to large-scale systems. Note that there exists also a bunch of methods in the literature that improves the methods of (Moré and Toraldo, 1991) for large-scale systems. For the reader interested in deeper details, we refer to the book of (Dostál, 2016). (see especially (Dostál, 2016), Section 8.7 for a review of the different approaches). It is clear that we might also use semi-smooth Newton methods or interior point methods but our experience has shown that such methods are not efficient when $\ker(W_{NN}) \neq \{0\}$. The optimality conditions of this quadratic reduced to a linear complementarity problem with a semi-definite matrix. In that case, it is also possible to solve the problem with PSOR techniques with line-searches. In order to keep the chapter in a reasonable size, we decided in this work to use the projected gauss-seidel (PGS) algorithm and the projected gradient algorithm of (Calamai and More, 1987) to solve the normal problem described. The projected gradient algorithm solved the following QP for a convex set C

{eq:ConvexQP}
$$\begin{cases} \min q(r) \coloneqq \frac{1}{2} r^{\top} W r + r^{\top} \tilde{b} \\ \text{s.t. } r \in C \end{cases}$$
 (129)

with the algorithm described in Algorithm 9.

The tangential problem,

$$\begin{cases}
\min \frac{1}{2} r_{\scriptscriptstyle T}^{\top} W_{\scriptscriptstyle TT} r_{\scriptscriptstyle T} + r_{\scriptscriptstyle T}^{\top} \tilde{q}_{\scriptscriptstyle T} \\
\text{s.t. } r_{\scriptscriptstyle T} \in D(\mu, \tilde{r}_{\scriptscriptstyle N})
\end{cases} \quad \text{with } \tilde{q}_{\scriptscriptstyle T} = q_{\scriptscriptstyle T} + W_{\scriptscriptstyle TN} r_{\scriptscriptstyle N,k+1}, \tag{130}$$

Algorithm 9 Projected gradient algorithm for QP 129

```
Require: W, b that defines q(r)
Require: C a convex set
Require: r<sub>0</sub> initial values
Require: tol > 0 a tolerance value and iter_{max} > 0 the max number of iterations
Require: \rho_0 > 0, l, \sigma \in (0, 1)
Require: i<sub>Ismax</sub> maximum number of line-search iterations
Ensure: r solution of Problem 129
   r_k \leftarrow r_0 ; \theta_0 \leftarrow q(r_0) ; k \leftarrow 0
   \label{eq:while} \textbf{while} \ \mathsf{error} > \mathsf{tol} \ \mathsf{and} \ \mathsf{k} < \mathsf{iter}_{max} \ \textbf{do}
      Armijo like-search procedure
      i_{ls} \leftarrow \mathbf{0}
      while criterion > 0 and i_{ls} < i_{lsmax} do
          \rho \leftarrow \rho_0 l^{i_{ls}}
          r \leftarrow P_C(r_k - \rho(Mr_k + b))
          \theta \leftarrow q(r)
          criterion \leftarrow \theta - \theta_k - \sigma(Mr_k + b)^{\top}(r - r_k)
          i_{ls} \leftarrow i_{ls} + 1
      end while
      r_k \leftarrow r; \theta_k \leftarrow q(r);
      evaluate error.
   end while
```

is also a convex program but with a more complex structure since the constraints are quadratic one. It exists also some dedicated methods to solve this specific problem as the method in (Dostál and Kozubek, 2012) (an extension of (Moré and Toraldo, 1991)) which is an algorithm for solving QP over convex constraints (disk constraint for instance). Earlier application of projected gradient and projected gradient techniques for the frictionless problem can also be found in (Barbosa et al, 1997) with comparison with PSOR techniques.

In the chapter, we will use a) a reformulation of the optimality conditions of this problem as a variational inequality and we apply the fixed point algorithm and the extra gradient algorithm of Section 4 or b) an adaptation of one of the splitting techniques detailed in Section 6. The algorithm is described in Algorithm 10.

In Table 4, we detailed the algorithms we use in the present study.

7.2 Successive approximation method

The methods of successive approximation is a natural tool for the numerical realization of Problem FC. It is based on the Tresca approximation of the Coulomb cone as it is described in Section 3.4 and the work of the celebrated Czech school which summarizes the seminal work of the Czech school (Nečas et al, 1980; Haslinger, 1983, 1984; Haslinger et al, 1996). Each iterative step is represented by an auxiliary contact problem with given friction described by quadratic program over a cylinder (90), that we recall there:

Algorithm 10 Panagiotopoulos decomposition algorithm for Problem FC

```
Require: W,q,\mu
Require: r_0 initial values
Require: tol > 0, tol_{int} tolerance values and ter_{max} > 0 the max number of iterations
Ensure: r,u solution of Problem FC
r_k \leftarrow r_0 \; ; \; k \leftarrow 0
while error > tol and k < iter_{max} do
\tilde{q}_N \leftarrow q_N + W_{NT}r_{T,k}
solve (128) for r_{N,k+1} at accuracy tol_{int}
\tilde{q}_T \leftarrow q_T + W_{TN}r_{N,k+1}
solve (130) for r_{T,k+1} at accuracy tol_{int}
k \leftarrow k+1
evaluate error.
end while
r \leftarrow r_k
u \leftarrow Wr + q
```

$$\begin{cases} \theta = h(r_{\text{N}}) \\ \min \frac{1}{2} r^{\text{T}} W r + r^{\text{T}} q \\ \text{s.t. } r \in C(\mu, \theta). \end{cases}$$
 (131) {eq:Haslinger-2-bis}

The radius of the cylinder is then updated in an iterative procedure. The algorithm is described in Algorithm 11

Algorithm 11 Tresca approximation algorithm for Problem FC

```
Require: W, q, \mu
Require: r_0 initial values
Require: tol > 0, tol_{int} tolerance values and ter_{max} > 0 the max number of iterations
Ensure: r, u solution of Problem FC
r_k \leftarrow r_0 \; ; \; k \leftarrow 0
while error > tol and k < ter_{max} do
\theta \leftarrow h(r_{N,k})
solve (131) for r_{N,k+1}, r_{T,k+1} at accuracy tol_{int}
k \leftarrow k+1
evaluate error.
end while
r \leftarrow r_k
u \leftarrow Wr + q
```

In the literature, the successive approximation technique has been used in the bidimensional case in (Haslinger et al, 2002) & (Dostál et al, 2002) with improved and dedicated QP solvers overs box-constraints. Two strategies are implemented: a) the classical Tresca iteration (called FPMI) and b) the Panagiotopoulos decomposition plus a Fixed point (called FPMII). They use a specific QP solver for box constraint (Dostál, 1997) that is an improvement of Moré–Toraldo method (Moré and

Toraldo, 1991). This technique has been directly extended in the three-dimensional case with a faceting of the cone in (Haslinger et al, 2004). In the latter case, the problem is still a box constrained QP since it contains only polyhedral constraints. In (Haslinger et al, 2012) the authors propose a successive approximation technique in 3D with the special solver of (Kučera, 2007, 2008) which is itself an extension to disk constraints of the Polyak method (conjugate gradient with active set on the bounds constraint) and its improvements (Dostál, 1997; Dostál and Schöberl, 2005). Other improvements of the method may be found in (Dostál and Kučera, 2010) with a last improvement of the method in (Dostál and Kozubek, 2012). All this work is summarized and details in (Dostál, 2016)

7.3 ACLM approach

In the convex SOCCP approach described in Section 3.4, we have to solve for a given value the following problem

$$\begin{cases} \min \frac{1}{2} r^{\top} W r + r^{\top} (q+s) \\ \text{s.t. } r \in K. \end{cases}$$
 (132) {eq:ACLM-4}

which is again a convex quadratic program over second—order cone. The approach listed below could again be used to solve this problem. In this work, we solve it by three different ways: a) an adaptation of one of the splitting techniques detailed in Section 6, b) using the projected gradient algorithm dedicated to convex QP described in 9 or c) the fixed point algorithm and the extra gradient algorithm of Section 4 . The algorithm is described in Algorithm 12 and we detailed the algorithms we use in the present study in Table 4.

Algorithm 12 ACLM approximation algorithm for Problem FC

```
 \begin{tabular}{ll} \textbf{Require:} & W,q,\mu\\ \textbf{Require:} & r_0 & initial values\\ \textbf{Require:} & tol > 0, tol_{int} & tolerance values and iter_{max} > 0 & the max number of iterations\\ \textbf{Ensure:} & r,u & solution & of Problem FC\\ & u_0 \leftarrow Wr_0+q & ;k\leftarrow 0\\ & u_0 \leftarrow Wr_0+q & ;k\leftarrow 0\\ & \textbf{while} & error > tol & and & k < iter_{max} & \textbf{do}\\ & s\leftarrow g(u_k)\\ & solve & (132) & for & r_{k+1} & at & accuracy & tol_{int}\\ & u_{k+1}\leftarrow Wr_{k+1}+q\\ & k\leftarrow k+1\\ & evaluate & error.\\ & \textbf{end while}\\ & r\leftarrow r_k\\ & u\leftarrow u_k \\ \end{tabular}
```

A nomenclature for the algorithms based on the optimisation approach is given in Table 4.

7.4 Convex relaxation and the SOCCP approach

Finally, we propose to compare the optimization based algorithm to a complete convex relaxation of the problem by solving the convex SOCCP (132) with s = 0. This procedure is very similar to the approach in (Tasora and Anitescu, 2009; Anitescu and Tasora, 2010; Tasora and Anitescu, 2011) where the convex problem is only solved.

7.5 Control of the tolerance of internal solvers tol_{int} in optimization approach

In Algorithms 10, 11 and 12, an internal tolerance is used to control the accuracy of the internal solver. It is generally not useful to solve the internal problem at the accuracy of the global one. In the comparison study, we set the internal tolerance tol $_{\rm int}$ to error/10.0.

Name	Algo.	Additional informations
PANA-PGS-FP-VI-UPK	10	The normal problem is solved by a PGS algorithm and the
		tangent problem is solved with the FP-VI-UPK algorithm
PANA-PGS-EG-VI-UPK	10	The normal problem is solved by a PGS algorithm and the
		tangent problem is solved with the EG-VI-UPK algorithm
PANA-PGS-CONVEXQP-PG	10 &9	The normal problem is solved by a PGS algorithm and the
		tangent problem is solved with Algorithm 9
PANA-CONVEXQP-PG	10&9	Both normal and tangent problems are solved with Algo-
		rithm 9
TRESCA-NSGS-FP-VI-UPK	11	The problem 131 is solved with the FP-VI-UPK algorithm
TRESCA-FP-VI-UPK	11 & 1	The problem 131 is solved with the FP-VI-UPK algorithm
TRESCA-EG-VI-UPK	11 & 2	The problem 131 is solved with the EG-VI-UPK algorithm
TRESCA-CONVEXQP-PG	11 &9	The problem 131 is solved with Algorithm 9
ACLM-NSGS-FP-VI-UPK	12	The problem 132 is solved with the NSGS-FP-VI-UPK
		algorithm
ACLM-FP-VI-UPK	12& 1	The problem 132 is solved with the FP-VI-UPK algorithm
ACLM-EG-VI-UPK & 2	12	The problem 132 is solved with the EG-VI-UPK algorithm
ACLM-CONVEXQP-PG	12	The problem 132 is solved with the Algorithm 9

Table 4: Naming convention for optimization based algorithms

8 Comparison framework

In this section, we present our comparison framework. Especially, we specify how the performance is measured and how the performance profiles are built.

8.1 Measuring errors

A key parameter in the measurement of performance of the solver is the definition of error. The absolute error is given by the norm of the natural map. A relative error is computed with respect to the norm of the vector q. More precisely, the error is given by

$$\operatorname{error} = \frac{\|F_{\text{vi}}^{\text{nat}}(r)\|}{\|q\|}. \tag{133}$$

For all solvers, the error in (133) is compared to the required tolerance tol given by the user.

For some iterative solvers such as VI-FP, VI-EG, NSGS and PSOR, the computation of the error (133) at each iteration penalizes the performance of the solver since it amounts to computing a matrix-vector product that costs more that one iteration. This is the reason why a cheaper error measurement is used inside the main loop in Algorithms 1, 2 and 7. This cheaper error measurement is given by

$$\operatorname{error}_{\operatorname{cheap}} = \frac{\|r_{k+1} - r_k\|}{\|r_k\|}.$$
 (134) {eq:error-2}

The tolerance of solver is then self-adapted in the loop to meet the required tolerance based on the error given by (133).

8.2 Performance profiles

The concept of performance profiles was introduced in (Dolan and Moré, 2002) for bench-marking optimization solvers. It enables to comparison of several solvers on a large set of problems. For a set P of n_p problems, and a set S of n_s solvers, we define a performance criterion for a solver s, a problem p and a required precision tol by

$$t_{p,s} =$$
computing time required for s to solve p at precision tol, (135) {eq:measure}

A performance ratio over all the solvers is defined by

$$r_{p,s} = \frac{t_{p,s}}{\min\{t_{p,s}, s \in S\}} \geqslant 1.$$
 (136)

For $\tau \geqslant 1$, we define a distribution function ρ_s for the performance ratio for a solver s as

$$\rho_s(\tau) = \frac{1}{n_p} \operatorname{size} \{ p \in P, \, r_{p,s} \leqslant \tau \} \leqslant 1.$$
 (137)

This distribution computes the number of problems p that are solved with a performance ratio below a given threshold τ . In other words, $\rho_s(\tau)$ represents the probability that the solver s has a performance ratio not larger than a factor τ of the best solver. It is worth noting that $\rho_s(1)$ represents the probability that the solver s beats the other solvers, and $\rho_s(\tau)$ characterizes the robustness of the method for large values of τ . The higher ρ_s is, the better the method is. The term *performance profile* will be used in the sequel for this graph of the functions $\rho_s(\tau), \tau \ge 1$.

The computational time is used to measure performance in (135). Other criterion can be used. The number of floating point operations (flops) is a better measure of performance since it is independent of the computer. Unfortunately, it is usually difficult to measure it automatically and in a robust way over various platforms. This is the reason why we prefer use the computational time.

In our experiments, we decided to fix the required accuracy with the tolerance of each solver. Another performance criteria could be also used., that, for instance fixes a given maximal computational time and measures the obtained error of the solver. This a way to measure the ability of a solver to give an approximate solution within a prescribed time limit that may be interesting for real-time applications. Another way to measure performance may also to divide the computational time by the number of contacts in order to judge of the ability of the solver to be scalable. For the sake of conciseness, this has not been done in this chapter.

8.3 Benchmarks presentation

To perform the comparison of the solvers on a fair basis, we use a large set of problems that comes from various applications. This collection is FCLib (Frictional Contact libraries) which is an open collection of problems in a hdf5 format described in (Acary et al, 2014)³. In this work, we used the version v1.0 for the comparisons that contains 2368 problems⁴.

The test sets are illustrated in Figure 3 and some details on their contents are given in Table 5. All the problems has been generated thanks to the software codes LMGC90 and Siconos. In Table 5, the number of degrees of freedom n corresponds to the degrees of freedom of the systems before its condensation to local variables. In other words, the number of rows of the matrix M and H in (5). The contact density c is the ratio of the number of contact unknowns over the number of degrees of freedom:

³ More information can be found at https://frictionalcontactlibrary.github.io

⁴ The whole collection of problems can be found at https://github.com/FrictionalContactLibrary/fclib-library

On solving frictional contact problems.

{eq:fclib-1}
$$c = \frac{3n_c}{n} = \frac{m}{n}. \tag{138}$$

The coefficient c corresponds also to the ratio between the number of rows of Hover its number of columns. If this number is larger than 1, the matrix H can not be full row rank and then the matrix W is also rank deficient. In the case that m > n, we can observe in Table 5 that this number c is a good approximation of the rank ratio of the matrix W in our applications. The estimation of the rank of matrix W shows that it is very close to the number of degrees of freedom of the system when c > 1. For $c \gg 1$, the contact density is really high and the system suffers from hyperstaticity as we discussed in Section 2.3. In Table 5, we also give an estimation of the conditioning of the matrix W. When is was possible from a computational point of view, we perform a singular value decomposition (SVD) of the matrix W to estimate the spectral radius and then the conditioning by cutting the small eigenvalues. This process has two drawbacks. Firstly, the computation of the SVD decomposition can be really expensive for large dense matrices. Secondly, the value of the condition number of the matrix is very sensitive to the threshold for cutting off the small eigenvalues. This is the reason why we also use LSMR (Fong and Saunders, 2011) algorithm to give an better approximation of the condition number of rank deficient matrix.

The four first tests in Table 5 are examples that involve flexible elastic bodies meshed by finite element methods. The Delassus matrix W in that case is full rank. We will call these sets of examples the flexible test sets in the sequel.

Fig. 3: Illustrations of the FClib test problems

Test set	code	friction coefficient μ	# of problems	# of d.o.f.	# of contacts	contact density c	rank ratio(W)	cond(W)	cond(W) LSMR
Cubes_H8_2	LMGC90	0.3	15	162	[3:5]	[0.02:0.09]	1	$[2.2.10^1:1.3.10^3]$	$[8.1.10^5:1.5.10^6]$
Cubes_H8_5	LMGC90	0.3	50	1296	[17:36]	[0.02:0.09]	1	$[3.3.10^4:7.2.10^4]$	$[1.3.10^6:3.1.10^6]$
Cubes_H8_20	LMGC90	0.3	50	55566	[361 : 388]	[0.019:0.021]	1	$[2.4.10^5:2.5.10^5]$	$[1.3.10^6:5.2.10^6]$
LowWall_FEM	LMGC90	0.83	50	{7212}	[624 : 688]	[0.28:0.29]	1	_	$[9.3.10^2:5.0.10^5]$
Aqueduct_PR	LMGC90	0.8	10	{1932}	[4337 : 4811]	[6.81:7.47]	[6.80:7.46]	$[4.7.10^7:3.4.10^8]$	$[6.7.10^1:1.5.10^2]$
Bridge_PR	LMGC90	0.9	50	{138}	[70:108]	[1.5:2.3]	[2.27 : 2.45]	$[8.3.10^4:1.1.10^5]$	$[1.9.10^3:2.6.10^4]$
100_PR_Periobox	LMGC90	0.8	106	{606}	[14:578]	[0.2:3]	[1.76:3.215]	$[4.3.10^2:1.0.10^6]$	$[6.3.10^5:3.5.10^6]$
945_SP_Box_PL	LMGC90	0.8	60	{5700}	[2322:5037]	[1.22:2.65]	[1.0:2.66]	L J	$[2.9.10^1:9.2.10^2]$
Capsules	Siconos	0.7	249	{300}	[1:200]	[1.2:1.5]	[1.08 : 1.55]	$[1.2.10^6:7.5.10^9]$	_
Chain	Siconos	0.3	242	{60}	[8:28]	[0.5:1.3]	[1.05 : 1.6]	$[7.4.10^4:4.0.10^9]$	$[1.5.10^1:4.7.10^5]$
KaplasTower	Siconos	0.7	201	[72:792]	[48:933]	[3.0:3.6]	[2.0:3.53]	[67 : 2174]	[8:67]
BoxesStack	Siconos	0.7	255	[6:300]	[1:200]	[1.86:2.00]	[1.875 : 2.0]	$[3.8.10^4:2.5.10^7]$	$[9.0:5.4.10^3]$
Chute_1000	Siconos	1.0	156	[276:5508]	[74:5056]	[0.69:2.95]	[1.0:2.95]	$[2.1.10^1:1.9.10^3]$	
Chute_4000	Siconos	1.0	40	[17280 : 20034]	[15965 : 19795]	[2.51 : 3.06]	_	_	$[5.5.10^1:9.0.10^3]$
Chute_local_problems	Siconos	1.0	834	3	1	1	1	[1.04 : 4.66]	$[2.6:2.6.10^1]$

Table 5: Description of the test sets of FCLib library (v1.0)

REDACTION NOTE V.A. 8.1

Can we say more on the description of the examples ?

8.4 Sofware & implementation details

All the solvers that are used in this chapter are implemented in standard C in the component of the open source software Siconos called numerics. The aim of Siconos is to provide a common platform for the modeling, simulation, analysis and control of general nonsmooth dynamical systems⁵. The algebraic manipulations are based on BLAS/LAPACK. The algorithms VI-FP, VI-EG, NSGS and PSOR use the sparse block structure of the Delassus matrix *W* and we solve. The NSN solvers relies on a standard sparse implementation given by csparse⁶ and we use the linear solver based on LU factorization embedded in csparse. The simulations are performed on the University of Grenoble-Alpes cluster CIMENT⁷.

REDACTION NOTE V.A. 8.2

something more ?

8.5 Simulation campaign

The simulation campaign is described in Table 6. For some test sets, two simulations runs have been performed with different precisions and prescribed time limits. A trade-off between the time limit and the precision has been chosen such that all the problems of the test sets are solved at least by one solver within the prescribed time limit

In Sections 9 and 10, we report the results for the simulation campaign. The simulations campaign represents more that 27000 runs to complete all the simulations of all problems with all the variants of the solvers. Since the large amount of data and the numerous of performance profiles for each test sets that are generated, we do not report any profiles when a list of solvers fails or is not able to meet the required tolerance within the prescribed time defined by the timeout values⁸.

⁵ More information on the software is available at http://siconos.gforge.inria.fr and the software can be downloaded at https://github.com/siconos/siconos

 $^{^6}$ http://people.sc.fsu.edu/ jburkardt/c_src/csparse/csparse.html

⁷ https://ciment-grid.ujf-grenoble.fr/

⁸ Nevertheless, the reader can have access to the complete list of performance profiles at https://github.com/siconos/faf/blob/master/TeX/Full-test/full-test_current.pdf

Test set	precision	prescribed time limit (s)	mean performance of the fastest solver $\mu\{\min\{t_{p,s},s\in\mathcal{S}\}\}$	std. deviation performance of the fastest solver $\sigma(\min\{t_{p,s}, s \in S\})$	mean performance of the fastest solver by contact $\mu \left\{ \min \left\{ I_{p,s}/n_{c,p},s\in S\right\} \right\}$	std. deviation performance of the fastest solver by contact $\sigma(\min\{t_{p,s}/n_{c,p}, s \in S\})$	# of unsolved problems
Cubes_H8_*	10^{-08}	100	1.73	2.13	4.83^{-03}	5.78^{-03}	0
Cubes_H8_* II	10^{-04}	100	0.92	1.06	2.66^{-03}	2.83^{-03}	0
LowWall_FEM	10^{-04}	400	14.8	2.85	2.16^{-02}	4.54^{-03}	0
Aqueduct_PR	10^{-04}	200	5.80	6.36	4.90^{-04}	3.03^{-04}	0
Bridge_PR	10^{-08}	400	10.3	12.9	1.23^{-01}	2.88^{-01}	0
Bridge_PR II	10^{-04}	100	0.048	0.038	1.30^{-03}	1.42^{-03}	0
100_PR_Periobox	10^{-04}	100	0.064	0.062	1.56^{-04}	1.22^{-04}	0
945_SP_Box_PL	10^{-04}	100	3.20	1.71	6.45^{-04}	3.36^{-04}	0
Capsules	10^{-08}	50	$1.46.10^{-02}$	$1.74.10^{-02}$	5.67^{-05}	6.26^{-05}	0
Chain	10^{-08}	50	$6.19.10^{-04}$	$3.68.10^{-04}$	$3.15.10^{-05}$	$1.46.10^{-05}$	0
KaplasTower	10^{-08}	200	$1.27.10^{-01}$	$3.75.10^{-01}$	$1.84.10^{-04}$	$4.57.10^{-04}$	0
KaplasTower II	10^{-04}	100	$2.84.10^{-02}$	$1.51.10^{-01}$	$3.39.10^{-05}$	$1.84.10^{-04}$	0
BoxesStack	10^{-08}	100	$3.42.10^{-02}$	$8.87.10^{-02}$	$3.24.10^{-04}$	$9.77.10^{-04}$	0
Chute_1000	10^{-04}	200	2.62	3.06	6.76^{-04}	6.58^{-04}	0
Chute_4000	10^{-04}	200	10.52	7.88	5.71^{-04}	4.07^{-04}	0
Chute_local_problems	10^{-08}	10	$1.80.10^{-04}$	$1.57.10^{-05}$	$1.80.10^{-04}$	$1.57.10^{-05}$	0

Table 6: Parameters of the simulation campaign

REDACTION NOTE V.A. 8.3

a permanent address on hal would be better

9 Comparison of methods by family

In this section, we perform a comparison of the solvers by family by family. The goal is to study the influence of the various parameters and possible strategies on the performance of the solvers.

9.1 Numerical methods for VI: FP-DS, FP-VI-* and FP-EG-*

In Figure 4, we compare the different numerical solvers for VI described in Section 4. The solvers are quite slow to converge in practice for large problems and/or with tight tolerances although they are robust except for FP-DS. Only the test sets for which the solvers are reached the precision before the prescribed time limit are presented. For that reason, the results for the test sets LowWall_FEM, Cubes_H8, Bridge_PR, AqueducPR, 945_SP_Box_PL, BoxesStack, Chute_4000 and Chute_1000 are not depicted. The main conclusions are as follows:

- 1. The solver FP-DS suffers from robustness problems and a lot of divergence has been observed. This is mainly due to the fact that we set a priori the ρ parameter in Algorithm 1 to a fixed value of 1, independently of the problem.
- 2. The solvers FP-VI- \star and FP-EG- \star are really robust but slow. They are able to solve all the problems but they require a lot of time. We did not observe divergence issues on all the test sets for these solvers. Comparing to FP-DS, the self-adaptive rule for sizing the paramater ρ_k is of utmost importance for the robustness and the convergence rate.
- 3. Except for the test set KaplasTower II, the FP-EG-⋆ performs better than FP-VI-⋆.
- 4. The difference between the adaptive strategy for sizing ρ_k , UPK and UPTS, is negligible in all the test sets. Therefore, the choice of the update rule is not really important.

9.2 Splitting based algorithms: NSGS-* and PSOR-*

In this section, we compare the family of solvers based on splitting and relaxation techniques described in Section 6.1. Firstly, we start by comparing the choice of the local solvers in NSGS- \star and then the effect of the local tolerance tol_{local}. Secondly, we study the influence of the order of the contact list. Finally, we study the effect of the relaxation parameter ω in PSOR- \star solvers.

Influence of the local solver in NSGS-★ algorithms

In Figure 5, we report the performance profiles of the NSGS-* for the different local solvers. The main conclusions are:

When the prescribed time limit is sufficiently large and the tolerance is low (10⁻⁴), we observe the NSGS-★ solvers are robust. Indeed, we are able to find to a local solver for each test sets that is able to give a solution at the required low accuracy. Nevertheless, there is no universal efficient local solver that outperforms the other ones.

Fig. 4: Comparison of numerical methods FP-DS, FP-VI-★ and FP-EG-★

- 2. When the tolerance is equal to 10⁻⁸, the NSGS-★ solvers have some difficulties to reach convergence for all the problems within the prescribed time limit. This is the case for the test sets Cubes_H8, Bridge_PR, Chain, Capsules and BoxesStack. Generally, the convergence is so slow that it is difficult to reach tight tolerance with a reasonable time limit.
- 3. Except for the test sets KaplasTower II and BoxesStack, the solver NSGS-EXACT behaves poorly. This is mainly due to the fact that the solver is not robust to find a solution for one contact when we are far from the global solution for all the contacts. This behavior was already reported in (Daviet et al, 2011) where another solver based a nonsmooth Newton technique is used when the exact solution is not satisfactory.

- 4. The NSGS-FP-DS-One solver is most efficient on the test sets Bridge_PR II, KaplasTower II, Chain and BoxesStack. In these tests sets, a part of problems seem easier to solve and the NSGS-FP-DS-One solver seems sufficient to get a global convergence. Nevertheless, this local solver seems slow or suffers from robustness issues for other test sets.
- 5. On the flexible test sets and 945_SP_Box_PL, Chute_4000, the best solver is NSGS-FP-VI-UPK for a relatively low required tolerance (tol_{local} = 10⁻⁰⁶). For these test sets, an approximate solution of the single contact problems seems sufficient to ensure an efficient convergence towards the solution without entailing robustness.
- 6. On the test sets 100_PR_PerioBox, KaplasTower, Chain, Capsules, the solver NSGS-NSN-★ are the best solvers and behave very well on Bridge_PR II. It seems that when a tight accuracy is required, the solvers NSGS-NSN-★ are useful and helps with a tight local tolerance to speed-up the convergence.
- 7. For the Chute_1000, Chute_4000 test sets, we observe large differences between the local formulations of the nonsmooth equations for the Newton solvers (NSGS-NSN-AC or NSGS-NSN-JM). The solver NSGS-NSN-JM is the best solver and really better than NSGS-NSN-AC although their theoretical formulation are very close. Theses two test sets are characterized by difficult local problems where the Delassus matrix *W* is unsymmetric with large extra-diagonal terms.
- 8. For almost the tests, the line—search procedures slow down the solvers without increasing the robustness. The only test sets where is has interest is Chute_4000 where the NSGS-AC solver fails to get a solution and the line—search seems to stabilize the algorithm.

Influence of the tolerance of the local solver tol_{local} in NSGS-FP-VI-UPK algorithms

In this paragraph, the tolerance of the local solver tol_{local} is varied and its effect on the global convergence of the solver is reported. In Figure 6, we report the performance profiles of NSGS-FP-VI-UPK algorithms for the tol_{local} in the range $[10^{-04}, 10^{-16}]$. We also report the efficiency of the adaptive strategy for setting the value of the local tolerance (see Section 6.3). The main observations are:

- For the test sets that are quickly solved (see Table 6), such as Capsules a tight tolerance on the local solver 10⁻¹⁶ improves the efficiency of the NSGS-FP-VI-UPK solver. Similar results are obtained for BoxesStack, Chain, KaplasTower and KaplasTower II; they are not depicted.
- For the other problems that are longer to solve, that is, when we expect more iterations of the NSGS-FP-VI-UPK solver, the adaptive rule, or a tight local tolerance is better.

From these results, it is quite difficult to guess in advance the internal dynamics of the solver. By internal dynamics, we mean the propagation in the algorithm between

Fig. 5: Influence of the local solver in NSGS-* algorithms (continued).

the local problem and the global loop. Note that the range of τ that we used in the graph is quite small so the difference in performance between the solvers is not crucial.

Influence of the tolerance of the local solver tol_{local} in NSGS-AC-GP algorithms.

In Figure 7, we report the performance profiles of NSGS-AC-GP algorithms for the tol_{local} in the range $[10^{-04}, 10^{-16}]$. We also test the adaptive strategy value for the local tolerance. Except for the test set Chute_local_problems, the main observation is that the local tolerance does not change fundamentally the convergence of the solver. For the test set Chute_local_problems, there is no internal dynamics of the main loop of the NSGS since there is only one contact. It is therefore reasonable to see that adaptive strategy performs better that the other.

Influence of the choice of the parameters $\rho_{\scriptscriptstyle N}, \rho_{\scriptscriptstyle T}$ in the local solver of the NSGS-AC algorithms

In Figure 8, we evaluate the influence of the choice of the parameters ρ_N , ρ_T on the convergence of the solver. The main conclusion are:

- 1. For the test sets 945_SP_Box_PL, 100_PR_PerioBox, KaplasTower II, KaplasTower, Chute_local_problems, Chute_4000, Chute_1000, Capsules, a fixed value of ρ_N = ρ_T = 1 has a dramatic effect on the convergence of the algorithm. The scaling of ρ is of utmost importance for the efficiency and the robustness of the solver. Note that the rule (112) that takes into account the condition number of the local Delassus matrix W deteriorates the performance for Chute_4000, Chute_1000. In these problems, the local matrix is unsymmetric with large extradiagonal terms due to large gyroscopic effects.
- 2. For the other tests, the choice of ρ_N, ρ_T does not really change the results such as LowWall_FEM, mainly due the fact that the order of magnitude of the chosen ρ with the rules (110), (111) or (112) is in [10⁻⁰¹, 1]. Cubes_H8 II, Cubes_H8, Bridge_PR II, Bridge_PR, 100_PR_PerioBox, Chain, BoxesStack and AqueducPR are not displayed since the results are similar.

One of the conclusion of this study is as follows, the rules (110), (111) improves a lot some simulations without increasing the computational cost for the others. Therefore, it is strongly advised to use it. Some further theoretical studies are needed to understand the effect of ρ on the convergence. In particular, the rule (112) is usually better, but sometimes destroy completely the convergence.

Fig. 6: Influence of the tolerance of the local solver $\mathsf{tol}_\mathsf{local}$ in NSGS-FP-VI-UPK algorithms.

Fig. 7: Influence of the tolerance of the local solver tol_{local} in NSGS-FP-NSN-AC-GP algorithms.

Influence of the contacts order in NSGS algorithms

In this section, we study the influence of the contact order within the loop of the NSGS-AC-GP solver. We reproduce in Figure 9 the result of the solvers with the original contact list of the problem (NSGS-AC-GP) and with two other ways of iterating over the contacts. The solver NSGS-AC-GP Shuffled corresponds to a single randomization of the list of contacts at the beginning of the algorithm. In the solver NSGS-AC-GP Fully shuffled, the list is shuffled at each iteration. The following observations can be made:

- The solver NSGS-AC-GP Fully shuffled performs really better on the flexible test sets
- 2. For the rigid test sets, we reproduce here only the test set 100_PR_PerioBox because the other test sets behave similarly. The NSGS-AC-GP Fully shuffled has a really bad influence on the convergence of the solver. It seems that it modifies the internal dynamics of the solver in a way that the rate of convergence is really decreased.

Fig. 8: Influence of the choice of the parameters $\rho_{\scriptscriptstyle N}, \rho_{\scriptscriptstyle T}$ in the local solver of the NSGS-AC algorithms

Fig. 9: Influence of the contacts order in NSGS algorithms.

Comparison of PSOR algorithm with respect to the relaxation parameter ω

In Figure 10, the relaxation parameter ω is varied ranging in [0.5, 1.8]. Two conclusions can be drawn:

- 1. For the flexible tests, the efficiency of the solver is really improved as we decreased the value of ω . Moreover, this is done without destroying the robustness of the solver.
- 2. For the rigid tests, the effect of the relaxation is not so clear. For values of ω greater than 1.0, the efficiency is improved but the robustness deteriorates and we observe the contrary for the ω less than 1.0. Note in particular that for the test sets Chute_1000, Chute_4000 the convergence is completely destroyed for $\omega = 1.8$.

To conclude, it is difficult to advice to use PSOR algorithm with $\omega \neq 1$. If it accelerates drastically the rate of convergence of the algorithm for some problems, but it deteriorates the convergence for others. Further studies would be needed to design self-adaptive schemes for sizing ω .

Fig. 10: Effect of relation coefficient ω in PSOR-AC-GP algorithm.

9.3 Comparison of NSN-* algorithms

In this section, the nonsmooth Newton methods are compared. The performance profiles are depicted in Figure 11 for the test sets for which the NSN-★ are able to solve at least 10% of the problems. The main conclusion are as follows:

1. For the flexible tests, most of the Newton methods succeed to solve the problems within the prescribed time limit. The solver NSN-AC-HYBRID appears to be the best solver. The effect of computing an initial condition of the solver with a ro-

bust method such as EG-VI-UPK improves the convergence. In practice, we observe that the precomputation allows one to determine roughly the set of closed and sliding contacts and it helps a lot the convergence of the Newton solvers. The solvers without line—searches perform also better than those with a line—search procedure which seems to slow down the convergence without improving the robustness. For the different formulations, the NSN-AC and NSN-JM give equivalent results and are better that the NSN-NM solver which is in turns better than the NSN-FB solver. Note that the Goldstein—Price line search is usually better than the Armijo despite the fact the merit function is not necessarily smooth. Finally, we note that NSN-FB and NSN-FB-A are really the slowest solver on these flexible examples.

- 2. For the rigid test sets with an high value of the rank ratio or the contact density c (see Table 5), the Newton methods fail to converge and a lot of divergence has been noted in practice. This is the case for the test sets Bridge_PR II, Bridge_PR, AqueducPR, 945_SP_Box_PL, 100_PR_PerioBox that are not depicted in Figure 11.
- 3. For the rigid test sets with a low value of the rank ratio or the contact density c less than 1 such as Chute_1000 and Chain, we observe that the Newton methods are able to solve some problems. We note also that in the Chain test set, the use of a fixed value of ρ is penalizing a lot the convergence of the solver. Contrary to flexible test sets, the use of a line–search procedure helps to get a better robustness of the solver. This is particularly true for NSN-NM-GP.
- 4. For the Chute_local_problems test set, we observe a large variability of the results depending on the formulation and the line–search procedures.
- 5. Finally, for the test sets KaplasTower and Capsules, the NSN-FB-GP is able to solve more than 80% in a very efficient way. Some further studies would be needed to understand why this specific solver performs really better than the others.

As general conclusion, the success of the NSN- \star algorithms is conditioned by the rank of the Delassus matrix W, and then, by the contact density value c. For full rank matrix W, the solvers are robust and efficient. For values of c not larger than 1, the methods are able to find a solution with a tight accuracy. For larger values of c and larger rank ratio, the nonsmooth Newton methods are not robust and generally diverge.

9.4 Comparison of the proximal point algorithm PPA-NSN-* and PPA-NSGS-* algorithms

In Figure 12, we compare the proximal point algorithm with various internal solvers based on nonsmooth Newton methods NSN-*. The main observations are:

1. For the flexible test sets (see for an illustration the test set LowWall_FEM), for which the nonsmooth Newton solvers work pretty well, the use of a proximal

Fig. 11: Comparison of NSN- \star algorithms.

point algorithm has no interest since it slows down the convergence of the algorithm by performing a first iteration with a given, and possibly large, value of the exact regularization parameter α .

- 2. For the test sets KaplasTower, Chute_1000, Chain, Capsules and BoxesStack, the proximal point approach improves greatly the efficiency of the NSN-AC-GP solver and often improves also its reliability (see for comparison Figure 11). Clearly, the regularization introduced in the proximal point algorithm changes the rank of the matrix *W* and it has a strong effect on the convergence of the nonsmooth Newton methods.
- 3. The efficiency of the proximal point algorithm depends strongly on the internal solver. As it is illustrated on the Capsules test, the improvement brought by the proximal point algorithm does not necessarily follows the success of the Newton solver when it is used alone.
- 4. The strategy for updating the regularization parameter α plays also an important role. Quite surprisingly, for the Bridge_PR test set, the adaptive rule that does not take into account the current error is really efficient and allows to get a robust and efficient solver with respect to the others. Unfortunately, there is no updating method for the parameter α that works for all test sets.

In Figure 13, we compare the NSGS-AC solver when it is used directly or inside the proximal point algorithm. On most of the test sets such as KaplasTower, a direct application of the NSGS-AC solver is already efficient and its embedding into a proximal point algorithm does not bring any improvements. Nevertheless, we can see on Figure 13 that the proximal point algorithm improves the robustess and the efficiency for the test sets 945_SP_Box_PL, Chute_4000, Chute_1000 and Capsules has been improved. For the test set Chute_4000, the result is particularly impressive.

9.5 Comparison of optimization-based algorithms PANA-⋆, TRESCA-⋆ and ACLM-⋆

In Figure 14, we compare the algorithms based on the optimization approach presented in Section 7. The pure convex relaxation SOCLCP-NSGS-PLI method has been added to understand the effect of the nonconvexity of the problems on the efficiency and robustness of the solvers. The main conclusions are

1. The pure convex relaxation in SOCLCP-NSGS-PLI simplifies drastically the problems in the test sets LowWall_FEM, AqueducPR, KaplasTower, BoxesStack and is slightly better in Bridge_PR II, 100_PR_PerioBox, KaplasTower II test sets. Especially, we note that if we want to reach a better accuracy as in the KaplasTower test set, the convex relaxation helps a lot but this conclusion cannot be made in the test set Bridge_PR. Let us also note that the convex relaxation does not help a lot in the test sets Cubes_H8, Bridge_PR, Chute_1000, Chute_4000 and Capsules. One of the conclusion may be that the nonconvexity of the prob-

Fig. 12: Comparison of internal solvers in PPA-NSN-* algorithms.

Fig. 13: Comparison of internal solvers in PPA-NSGS-★ algorithms.

lem is not the only difficulty in such problems. Using a convex relaxation is not sufficient to solve all the problems.

2. The solvers based on the optimization approach are generally robust but slow. This is mainly due to two reasons. Firstly, we use internal iterative solvers with a slow convergence rate. The fact that the Delassus matrix has not full rank in the rigid tests prevents the use of second order methods as nonsmooth Newton methods. For the flexible test, it could be of interest to implement dedicated new internal solvers of the internal convex problems based on nonsmooth Newton methods. Furthermore, the tests with standard implementations of optimization

- methods was not really concluding. The general convex solvers are not able to exploit the particular structure of the constraints given by a Cartesian product of a large number of second order cones. Secondly, the fixed point iteration that drives the convergence is generally slow. Once again, it would valuable to implement a second order method for driving the external loop.
- 3. On the choice of a specific optimization based strategy with respect to the others, we can observe that the comparison is really problem—dependent. On the test sets Cubes_H8, Bridge_PR, Bridge_PR II, LowWall_FEM and AqueducPR, the ACLM-* solvers perform better than the others. For the test-sets KaplasTower, 945_SP_Box_PL, Chute_4000, Chute_1000 and BoxesStack, the TRESCA-* solvers are better. Finally, the PANA-* solvers are better on the 100_PR_PerioBox test set. Since the convex relaxation of the internal problem is made in different manners, we may expect that the different families of solvers will not behave in the same way. In particular, if the coefficient of friction is large or if the number of sliding contacts is low, we may expect that the ACLM-* solvers behave better because the *s* variable in the fixed point iteration will not drastically influence the convergence. On the contrary, when the coefficient of friction is low, we may expect that the splitting introduced in the PANA-* will be better. Unfortunately, we have further investigated this point with an analysis of the contact status (closed, sliding, sticking) in the problems.

10 Comparison of different families of solvers.

In this last section, the most efficient solvers by family has been chosen and are compared. The performance profiles are reported in Figure 15. The main conclusions are as follows:

- 1. First of all, we can observe that for all the test sets, a least one solver is able to solve all the problems within the prescribed time. Unfortunately, there is no universal solver that outperforms all the other solvers for all the test sets.
- 2. For the flexible test sets, the nonsmooth Newton solvers NSN-★ are the best solvers. In the test set LowWall_FEM, the NSN-★ are followed the NSGS-FP-VI-UPK and NSGS-AC solvers. On this test set, the requires accuracy is limited to 10⁻⁰⁴ and the NSGS-★ are still able to reach the tolerance in a competitive time. Between the test sets Cubes_H8 II and Cubes_H8, the required accuracy is decreased to 10⁻⁰⁸. With a tighter tolerance, we observe that the relative efficiency of the NSN-★ solvers increase. In other words, on the flexible tests we are able to use nonsmooth Newton methods efficiently since the Delassus matrix *W* has full rank. In that case, we observe that we retrieve a quadratic convergent rate that enables to reach tighter tolerances. Note that in the flexible test sets, the proximal point algorithms PPA-NSN-★ are not really interesting but as the required accuracy decreased, they start to compete with NSGS-★ algorithms.

Fig. 14: Comparison of the optimization based solvers

redo simulation of LowWall at 10^{-08} or cite (Acary et al, 2017)

- 3. For most of the rigid test sets with a low required accuracy of 10⁻⁰⁴ as AqueducPR, 945_SP_Box_PL, 100_PR_PerioBox, KaplasTower, Chute_4000 and Chute_1000, the NSGS-** are the most efficient and robust solvers. In the case of the test sets Chute_4000 and Chute_1000, the NSGS-FP-VI-UPK solvers are better than the NSGS-AC-** due to some robustness issues in the local solvers based on nonsmooth Newton methods. These solvers are generally followed by optimization based solvers such as ACLM-** and TRESCA-** solvers, except for the test set 945_SP_Box_PL where the more robust solver is TRESCA-NSGS-FP-VI-UPK.
- 4. For the rigid test sets with a low requires accuracy of 10⁻⁰⁸ as Bridge_PR, Chain, Capsules and BoxesStack, the solvers PPA-⋆ are the most efficient and robust solvers. The regularization of the Delassus matrix introduced by the proximal point algorithm has a very positive effect on the internal solvers. Especially, it enables the use of nonsmooth Newton techniques that allows one to reach a tighter accuracy thank to their quadratic convergent rates. The PPA-⋆ algorithms are generally followed NSGS-⋆ except in the case of the Chain test set where the NSN-⋆ is able to solve 60% of the problems quite efficiently. In the case of the Bridge_PR test set, the use of proximal point technique PPA-NSN-AC-GP adaptive v0 = 10⁺⁰³ is the only one to solve all the problems at the tolerance of 10⁻⁰⁸. As discussed in Section 9.4, the rule for updating the proximal point parameter α play an important role and deserves further studies.
- 5. In the case of the Chute_local_problems test set, we observe that the optimization based solver are the best solvers and allows one to circumvent the issues of robustness of NSGS-AC-* solvers that are reduced in that case to the NSN-* solvers. We recall that these local problems are extracted from Chute_4000 and selected as most difficult local problems. These problems are characterized by strongly unsymmetric matrices with large extra-diagonal terms compared to the diagonal ones. In that case, the optimization solver based on a convexification helps to solve the problems. We can also note as in the Chute_4000 and Chute_1000 that the NSGS-FP-VI-UPK solvers are not sensitive to this asymmetry of the Delassus matrix.

11 General conclusions

In this chapter, we have reviewed several formulations of the discrete frictional contact problems. These formulations open the way to various solving procedures that have detailed. Most of these solving procedures are already known in the literature such as a) the splitting and relaxation techniques (NSGS-** and PSOR-** solvers), b) the nonsmooth Newton methods (NSN-** solvers) and c) the optimization based solvers (PANA-**, TRESCA-** and ACLM-** solvers). For the first time, we present general solvers based on the variational inequalities formulation (FP-VI-** and FP-

Fig. 15: Comparison of the solvers between families (continued)

EG- \star). These methods extends the FP-DS algorithm in various directions and provides some self-adaptive rule to update the ρ parameters that appears to be crucial in practice fro the efficiency of the methods. As far as we know, it is also the first application of the proximal point algorithms (PPA- \star) to the discrete frictional contact problems. This new family of solvers appears to be a promising alternative when we want to reach tight accuracy for collections of rigid bodies such as granular material.

This review of solvers has been used for a thorough comparison of solvers over a large set of test problems. Using performance profiles, the solvers has been compared by families and then alltogether. The main conclusions and perspectives of this study are as follows:

- The method based on variational inequality formulations (FP-VI-*) are robust solver if a consistent self-adaptive rule for the parameter *ρ* is used. In this chapter, two rules has been described that gives very satisfactory results. Thanks to their robustness, these methods provides a good robust solver for the local problems in splitting techniques. Nevertheless, the convergence rate of the method is low. The methods have difficulties to get a solution within the prescribed time for tight tolerances or if the problem size is large. The main perspectives for these methods are a) to adapt the values of *ρ* contact by contact to try to improve the convergence speed and b) to perform computation in parallel for large systems. Indeed, each iteration of the FP-VI-* solvers may be straightforwardly implemented on distributed computer architectures.
- The methods based on a splitting techniques, the NSGS-* solvers provides us with robust and efficient solvers provided that the solver of the internal solver is also robust. They are generally more efficient than the FP-VI-* since they exploit the particular structure of the problem (sparse block sparsity and local solver routines). Nevertheless, they suffer from the same problems as the FP-VI-* solvers. The convergence rate is low and high accuracy is difficult to reach within the prescribed time for tight tolerances. The main perspective for this solver is to able to improve the robustness and the efficiency of the local solver for instance by using proximal point technique or optimization based solvers. Concerning the PSOR-* solvers, for a certain value of the relaxation parameters ω, they improve greatly the convergence rate with respect to the NSGS-* solvers. The problem is that it is very difficult to guess the correct value of the parameter ω. A wrong value may destroy the efficiency of the solver and can also implies divergence of the algorithm. It is clear that such solvers deserve more attention to try to find a self adaptive rule for sizing the relaxation parameter ω.
- The nonsmooth Newton solvers NSN-* appears to be an efficient family of solvers for problems that have a full-rank Delassus matrix or a very low contact density. For instance, in the case of the flexible tests, they are the best solvers among others and they are able to reach tight tolerances that are not reachable with the FP-VI-* and NSGS-* solvers. For the other test sets, they suffer from robustness issues. To improve the robustness, we work on several options: a) the choice of the *ρ* parameters in the equation based formulation, b) the line-search procedures may help to stabilize the convergence at the price to slow down the convergence and c) improving the initial staring point of the solver with a FP-VI-

- \star . All these improvements appear to be increase the robustness. Unfortunately, it was not sufficient to circumvent all the divergence problems. Some pointers in the literature try to modified the iteration matrix in the Newton loop to improve robustness when the iterates are far form the solution. This solution has still not been tested. The main perspectives for this solver is to work to improve their robustness by testing modification of the iteration matrix or self-adapting rule for sizing ρ . The question of the scaling and the preconditioning must be studied deeper. When the solvers are robust, theses solvers are also highly paralelizable for large systems since we can rely on massively parallel solvers for linear systems.
- As we discussed before, the PPA-* solvers are a possible solution for improving the robustness of NSN-* while keeping their convergence rates. This solution proves its efficiency on a lot of test sets. Nevertheless, we were not able to find an universal rule for updating the exact regularization parameter α such that it works for all test sets. Clearly, this deserves more studies on this aspect.
- The optimization based solvers (PANA-*, TRESCA-* and ACLM-* might be also a good alternative to provide us with robust solvers. Unfortunately, they do not prove to more efficient than the others solvers mainly due to the fact the decrease of the convergence rate implied by the fixed point external loop is not compensated by the efficiency of the internal solver for convex problems. As we have seen, the nonconvexity of the problems is not the only difficult that we have to face and most of the time the rank deficiency of the matrix Delassus matrix is the main cause of the slow convergence or divergence. Finally, it could be interesting to understand why an optimization formulation is better than another for some test sets. One of the reasons might that the contact status (closed, sticking, sliding) are not distributed in the same way along the test sets. A study based on the contact status would be complementary to the measure of the rank ratio and the contact density for guessing the cause of the issues.

Acknowledgements If you want to include acknowledgments of assistance and the like at the end of an individual chapter please use the acknowledgement environment – it will automatically render Springer's preferred layout.

Appendix 1. Basics in Convex Analysis

Definition 1 ((**Rockafellar and Wets, 1997**)). Let $X \subseteq \mathbb{R}^n$. A multivalued (or point-to-set) mapping $T: X \rightrightarrows X$ is said to be (strictly) monotone if there exists $c(>) \ge 0$ such that for all $\hat{x}, \tilde{x} \in X$

$$(\hat{v} - \widetilde{v})^{\top} (\hat{x} - \widetilde{x}) \geqslant c \|\hat{x} - \widetilde{x}\| \quad \text{with } \hat{v} \in T(\hat{x}), \widetilde{v} \in T(\widetilde{x}).$$
 (139)

Moreover T is said to be maximal when it is not possible to add a pair (x, v) to the graph of T without destroying the monotonicity.

The Euclidean projector P_X onto a closed convex set X: for a vector $x \in \mathbb{R}^n$, the projected vector $z = P_X(x)$ is the unique solution of the convex quadratic programm

$$\begin{cases} \min \frac{1}{2} (y - x)^{\top} (y - x), \\ \text{s.t. } y \in X. \end{cases}$$
 (140) {eq:opt-proj}

$$y = P_K(x) \iff \min_{s.t.} \frac{\frac{1}{2}(y - x)^{\top}(y - x)}{s.t.} \quad (141)$$

$$\iff -(y - x) \in N_K(y) \tag{142}$$

{eq:tutu}
$$\iff (x-y)^{\top}(y-z) \geqslant 0, \forall z \in K$$
 (143)

$$-F(x) \in N_K(x) \Longleftrightarrow -\rho F(x)^\top (y-x) \geqslant 0, \forall y \in K$$
(144)

$$\iff (x - (x - \rho F(x))^{\top} (y - x) \ge 0, \forall y \in K$$
 (145)

$$\iff$$
 $x = P_K(x - \rho F(x))$ thanks to (143) (146)

{eq:sub-norm}
$$\partial \|z\|_2 = \begin{cases} \frac{z}{\|z\|} \\ \{x, \|x\| = 1\} \end{cases}$$
 (147)

Euclidean projection on the disk in \mathbb{R}^2 .

Let $D = \{x \in \mathbb{R}^3, ||x|| \le 1\}$. We have

{eq:projD}
$$P_D(z) = \begin{cases} z & \text{if } z \in D \\ \frac{z}{\|z\|} & \text{if } z \notin D \end{cases}$$
 (148)

and

$$\{\text{eq:sub-projD}\} \qquad \qquad \partial P_D(z) = \begin{cases} I & \text{if } z \in D \setminus \partial D \\ I + (s-1)zz^\top, s \in [0,1] & \text{if } z \in \partial D \\ \frac{I}{\|z\|} - \frac{zz^\top}{\|z\|^3} & \text{if } z \notin D \end{cases} \tag{149}$$

Euclidean projection on the second order cone of \mathbb{R}^3 .

Let
$$K = \{x = [x_N x_T]^T \in \mathbb{R}^3, x_N \in \mathbb{R}, ||x_T|| \leqslant \mu x_N\}$$
. We have

$$P_{K}(z) = \begin{cases} z & \text{if } z \in K \\ 0 & \text{if } -z \in K^{*} \\ \frac{1}{1 + \mu^{2}} (z_{N} + \mu ||z_{T}||) \begin{bmatrix} 1 \\ \mu \frac{z_{T}}{||z_{T}||} \end{bmatrix} & \text{if } z \notin K \text{ and } -z \notin K^{*} \end{cases}$$
(150)

Direct computation of an element of the subdifferential

The computation of the subdifferential are given as follows

- if $z \in K \setminus \partial K$, $\partial_z P_K(z) = I$,
- if $-z \in K^* \setminus \partial K^*$, $\partial_z P_K(z) = 0$,
- if $z \notin K$ and $-z \notin K^*$ and, $\partial_z P_K(z) = 0$, we get

$$\partial_{z_{N}}P_{K}(z) = \frac{1}{1+\mu^{2}} \begin{bmatrix} 1\\ \mu z_{T} \end{bmatrix}$$
 (151) {eq:sub-proj_n}

and

$$\partial_{z_{\mathrm{T}}}[P_{K}(z)]_{\mathrm{N}} = \frac{\mu}{1+\mu^{2}} \frac{z_{\mathrm{T}}}{\|z_{\mathrm{T}}\|}$$
 (152) {eq:sub-proj_t1}

$$\partial_{z_{\mathrm{T}}}[P_{K}(z)]_{\mathrm{T}} = \frac{\mu}{(1+\mu^{2})} \left[\mu \frac{z_{\mathrm{T}}}{\|z_{\mathrm{T}}\|} \frac{z_{\mathrm{T}}^{\top}}{\|z_{\mathrm{T}}\|} + (z_{\mathrm{N}} + \mu \|z_{\mathrm{T}}\|) \left(\frac{I_{2}}{\|z_{\mathrm{T}}\|} - \frac{z_{\mathrm{T}} z_{\mathrm{T}}^{\top}}{\|z_{\mathrm{T}}\|^{3}} \right) \right]$$
(153) {eq:sub-proj_2}

that is

$$\partial_{z_{\mathrm{T}}}[P_{K}(z)]_{\mathrm{T}} = \frac{\mu}{(1+\mu^{2})\|z_{\mathrm{T}}\|} \left[(z_{\mathrm{N}} + \mu\|z_{\mathrm{T}}\|) I_{2} + z_{\mathrm{N}} \frac{z_{\mathrm{T}} z_{\mathrm{T}}^{\top}}{\|z_{\mathrm{T}}\|^{2}}) \right]$$
 (154) {eq:sub-proj_2_bis}

REDACTION NOTE V.A. 11.1

to be checked carefully

Computation of the subdifferential using the spectral decomposition

In (Hayashi et al, 2005), the computation of the Clarke subdifferential of the projection operator is also done by inspecting the different cases using the spectral decomposition

$$\partial P_{K}(x) = \begin{cases} I & (\lambda_{1} > 0, \lambda_{2} > 0) \\ \frac{\lambda_{2}}{\lambda_{1} + \lambda_{2}} I + Z & (\lambda_{1} < 0, \lambda_{2} > 0) \\ 0 & (\lambda_{1} < 0, \lambda_{2} < 0) \\ \cos\{I, I + Z\} & (\lambda_{1} = 0, \lambda_{2} > 0) \\ \cos\{0, Z\} & (\lambda_{1} < 0, \lambda_{2} = 0) \\ \cos\{0, U \cup S\} & (\lambda_{1} = 0, \lambda_{2} = 0) \end{cases}$$

$$(155) \quad \{eq: Jordan-projection-Jacobs constants and support to the projection of the pro$$

where

$$Z = \frac{1}{2} \begin{bmatrix} -y_{N} & y_{T}^{\top} \\ y_{T} & -y_{N}y_{T}y_{T}^{\top} \end{bmatrix},$$

$$S = \left\{ \frac{1}{2} (1+\beta)I + \frac{1}{2} \begin{bmatrix} -\beta & w^{\top} \\ w & -\beta ww^{\top} \end{bmatrix} \mid -1 \leqslant \beta \leqslant 1, \|w\| = 1 \right\}$$

$$(156) \quad \{eq: Jordan-projection-Jacobson values of the projection of$$

with $y = x/||x_T||$. A simple verification shows that the previous computation is an element of the subdifferential.

REDACTION NOTE V.A. 11.2

to be checked carefully

Appendix 2. Computation of Generalized Jacobians for Nonsmooth Newton methods

Computation of components of subgradient of F_{vi}^{nat}

Let us introduce the following notation for an element of the sub-differential

{eq:Phi-natural-typeII}

$$\Phi(u,r) = \begin{bmatrix} \rho I & -\rho W \\ \Phi_{ru}(u,r) & \Phi_{rr}(u,r) \end{bmatrix} \in \partial F_{vi}^{nat}(u,r)$$
(157)

where $\Phi_{xy}(u,r) \in \partial_x [F_{vi}^{nat}]_y(u,r)$. Since $\Phi_{uu}(u,r) = I$, a reduction of the system is performed in practise and Algorithm 4 is applied or z = r with

{eq:phiphi_ter}

$$\begin{cases}
G(z) = [F_{vi}^{\text{nat}}]_r(Wr + q, r) \\
\Phi(z) = \Phi_{rr}(r, Wr + q) + \Phi_{ru}(r, Wr + q)W
\end{cases}$$
(158)

REDACTION NOTE V.A. 11.3

to be checked carefully. compare with (Hayashi et al, 2005)

Let us introduce the following notation for an element of the sub-differential with a obvious simplification

$$\Phi(v,r) = \begin{bmatrix}
\rho M & -\rho H \\
-\rho H^{\top} & \rho I & 0 \\
0 & \Phi_{ru}(v,u,r) & \Phi_{rr}(v,u,r)
\end{bmatrix} \in \partial F_{vi}^{nat}(u,r)$$
(159)

where $\Phi_{xy}(v,u,r) \in \partial_x[F_{v_{i-1}}^{nat}]_y(v,u,r)$. A possible computation of $\Phi_{ru}(v,u,r)$ and $\Phi_{rr}(v,u,r)$ is directly given by (161) and (160). In this case, the variable u can be also substituted.

For one contact, a possible computation of the remaining parts in $\Phi(u,r)$ is given by

$$\Phi_{ru}(u,r) = \begin{cases} 0 & \text{if } r - \rho(u + g(u)) \in K \\ I - \partial_r [P_K(r - \rho(u + g(u)))] & \text{if } r - \rho(u + g(u)) \notin K \end{cases}$$
(160)

$$\Phi_{ru}(u,r) = \begin{cases}
\rho \left(I + \begin{bmatrix} 0 & 0 & 0 \\ \frac{u_{\text{T}}}{\|u_{\text{T}}\|} & 0 & 0 \end{bmatrix} \right) & \text{if } \begin{cases} r - \rho(u + g(u)) \in K \\ u_{\text{T}} \neq 0 \end{cases} \\
\rho \left(I + \begin{bmatrix} 0 & 0 & 0 \\ s & 0 & 0 \end{bmatrix} \right), s \in \mathbb{R}^{2}, ||s|| = 1 & \text{if } \begin{cases} r - \rho(u + g(u)) \in K \\ u_{\text{T}} = 0 \end{cases} \\
I + \rho \left(I + \begin{bmatrix} 0 & 0 & 0 \\ \frac{u_{\text{T}}}{\|u_{\text{T}}\|} & 0 & 0 \end{bmatrix} \right) \partial_{u} [P_{K}(r - \rho(u + g(u)))] & \text{if } r - \rho(u + g(u)) \notin K \end{cases}$$
(161) Seq: Phi-natural-type

The computation of an element of ∂P_K is given in Appendix 11.

Alart-Curnier function and its variants

For one contact, a possible computation of the remaining parts in $\Phi(u,r)$ is given by

$$\Phi_{r_{N}u_{N}}(u,r) = \begin{cases} \rho_{N} & \text{if } r_{N} - \rho_{N}u_{N} > 0\\ 0 & \text{otherwise} \end{cases}$$
(162) {eq:Phi-AC-II-rnun}

$$\Phi_{r_{N}r_{N}}(u,r) = \begin{cases} 0 & \text{if } r_{N} - \rho_{N}u_{N} > 0\\ 1 & \text{otherwise} \end{cases}$$

$$(163) \quad \{eq: Phi-AC-II-rnrn\}$$

$$\Phi_{r_{T}u_{N}}(u,r) = \begin{cases} 0 & \text{if } \|r_{T} - \rho_{T}u_{T}\| \leqslant \mu \max(0, r_{N} - \rho_{N}u_{N}) \\ 0 & \text{if } \begin{cases} \|r_{T} - \rho_{T}u_{T}\| > \mu \max(0, r_{N} - \rho_{N}u_{N}) \\ r_{N} - \rho_{N}u_{n} \leqslant 0 \end{cases} \\ \mu \rho_{N} \frac{r_{T} - \rho_{T}u_{T}}{\|r_{T} - \rho_{T}u_{T}\|} & \text{if } \begin{cases} \|r_{T} - \rho_{T}u_{T}\| > \mu \max(0, r_{N} - \rho_{N}u_{N}) \\ r_{N} - \rho_{N}u_{n} > 0 \end{cases} \\ r_{N} - \rho_{N}u_{n} > 0 \end{cases}$$

$$\Phi_{r_{T}u_{T}}(u,r) = \begin{cases} \rho_{T} & \text{if } \|r_{T} - \rho_{T}u_{T}\| \leqslant \mu \max(0, r_{N} - \rho_{N}u_{N}) \\ \mu \rho_{T}(r_{N} - \rho_{N}u_{N})_{+} \Gamma(r_{T} - \rho_{T}u_{T}) & \text{if } \begin{cases} \|r_{T} - \rho_{T}u_{T}\| > \mu \max(0, r_{N} - \rho_{N}u_{N}) \\ r_{N} - \rho_{N}u_{n} > 0 \end{cases} \end{cases}$$

$$(164) \quad \{eq: \text{Phi-AC-II-rtut}\}$$

$$\Phi_{r_{\mathrm{T}}r_{\mathrm{N}}}(u,r) = \begin{cases} 0 & \text{if } \|r_{\mathrm{T}} - \rho_{\mathrm{T}}u_{\mathrm{T}}\| \leqslant \mu \max(0, r_{\mathrm{N}} - \rho_{\mathrm{N}}u_{\mathrm{N}}) \\ 0 & \text{if } \begin{cases} \|r_{\mathrm{T}} - \rho_{\mathrm{T}}u_{\mathrm{T}}\| > \mu \max(0, r_{\mathrm{N}} - \rho_{\mathrm{N}}u_{\mathrm{N}}) \\ r_{\mathrm{N}} - \rho_{\mathrm{N}}u_{\mathrm{n}} \leqslant 0 & (166) \end{cases} \quad \{\text{eq:Phi-AC-II-rtrn}\} \\ -\mu \frac{r_{\mathrm{T}} - \rho_{\mathrm{T}}u_{\mathrm{T}}}{\|r_{\mathrm{T}} - \rho_{\mathrm{T}}u_{\mathrm{T}}\|} & \text{if } \begin{cases} \|r_{\mathrm{T}} - \rho_{\mathrm{T}}u_{\mathrm{T}}\| > \mu \max(0, r_{\mathrm{N}} - \rho_{\mathrm{N}}u_{\mathrm{N}}) \\ r_{\mathrm{N}} - \rho_{\mathrm{N}}u_{\mathrm{n}} > 0 & \text{if } \|r_{\mathrm{T}} - \rho_{\mathrm{T}}u_{\mathrm{T}}\| \leqslant \mu \max(0, r_{\mathrm{N}} - \rho_{\mathrm{N}}u_{\mathrm{N}}) \\ I_{2} - \mu(r_{\mathrm{N}} - \rho_{\mathrm{N}}u_{\mathrm{N}})_{+}\Gamma(r_{\mathrm{T}} - \rho_{\mathrm{T}}u_{\mathrm{T}}) & \text{if } \begin{cases} \|r_{\mathrm{T}} - \rho_{\mathrm{T}}u_{\mathrm{T}}\| > \mu \max(0, r_{\mathrm{N}} - \rho_{\mathrm{N}}u_{\mathrm{N}}) \\ r_{\mathrm{N}} - \rho_{\mathrm{N}}u_{\mathrm{N}} > 0 & (167) \end{cases}$$

$$\Phi_{r_{\mathrm{T}}r_{\mathrm{T}}}(u,r) = \begin{cases}
0 & \text{if } ||r_{\mathrm{T}} - \rho_{\mathrm{T}}u_{\mathrm{T}}|| \leqslant \mu \max(0, r_{\mathrm{N}} - \rho_{\mathrm{N}}u_{\mathrm{N}}) \\
I_{2} - \mu(r_{\mathrm{N}} - \rho_{\mathrm{N}}u_{\mathrm{N}})_{+}\Gamma(r_{\mathrm{T}} - \rho_{\mathrm{T}}u_{\mathrm{T}}) & \text{if } \begin{cases}
||r_{\mathrm{T}} - \rho_{\mathrm{T}}u_{\mathrm{T}}|| > \mu \max(0, r_{\mathrm{N}} - \rho_{\mathrm{N}}u_{\mathrm{N}}) \\
r_{\mathrm{N}} - \rho_{\mathrm{N}}u_{\mathrm{N}} > 0
\end{cases} \tag{167}$$

{eq:Phi-AC-II-rtrt}

with the function $\Gamma(\cdot)$ defined by

{eq:AC-L12}
$$\Gamma(x) = \frac{I_{2\times 2}}{\|x\|} - \frac{xx^{\top}}{\|x\|^3}$$
 (168)

If the variant (58) is chosen, the computation of $\Phi_{r_{\rm T}\bullet}$ simplify in

{eq:Phi-CKPS-II-rtun}
$$\Phi_{r_{\mathrm{L}}u_{\mathrm{N}}}(u,r) = 0 \tag{169}$$

$$\Phi_{r_{\mathrm{T}}u_{\mathrm{T}}}(u,r) = \begin{cases} \rho_{\mathrm{T}} & \text{if } ||r_{\mathrm{T}} - \rho_{\mathrm{T}}u_{\mathrm{T}}|| \leqslant \mu r_{\mathrm{N}} \\ -\mu \rho_{\mathrm{T}} r_{n,+} \Gamma(r_{\mathrm{T}} - \rho_{\mathrm{T}}u_{\mathrm{T}}) & \text{if } ||r_{\mathrm{T}} - \rho_{\mathrm{T}}u_{\mathrm{T}}|| > \mu r_{\mathrm{N}} \end{cases}$$

$$(170)$$

$$\Phi_{r_{T}u_{T}}(u,r) = \begin{cases}
\rho_{T} & \text{if } ||r_{T} - \rho_{T}u_{T}|| \leq \mu r_{N} \\
-\mu \rho_{T}r_{n,+}\Gamma(r_{T} - \rho_{T}u_{T}) & \text{if } ||r_{T} - \rho_{T}u_{T}|| > \mu r_{N}
\end{cases}$$

$$\Phi_{r_{T}v_{N}}(u,r) = \begin{cases}
0 & \text{if } ||r_{T} - \rho_{T}u_{T}|| \leq \mu r_{N} \\
0 & \text{if } \begin{cases}
||r_{T} - \rho_{T}u_{T}|| > \mu r_{N} \\
r_{N} \leq 0
\end{cases}$$

$$-\mu \frac{r_{T} - \rho_{T}u_{T}}{||r_{T} - \rho_{T}u_{T}||} & \text{if } \begin{cases}
||r_{T} - \rho_{T}u_{T}|| > \mu r_{N} \\
r_{N} > 0
\end{cases}$$
(171)

$$\Phi_{r_{\rm T}r_{\rm T}}(u,r) = \begin{cases} 0 & \text{if } ||r_{\rm T} - \rho_{\rm T}u_{\rm T}|| \leqslant \mu r_{\rm N} \\ I_2 - \mu(r_{\rm N})_+ \Gamma(r_{\rm T} - \rho_{\rm T}u_{\rm T}) & \text{if } ||r_{\rm T} - \rho_{\rm T}u_{\rm T}|| > \mu r_{\rm N} \end{cases}$$
(172)

REDACTION NOTE V.A. 11.4

* Is there a difference with the computation of Florent in his thesis?

References

- Acary V, Brogliato B (2008) Numerical methods for nonsmooth dynamical systems. Applications in mechanics and electronics. Lecture Notes in Applied and Computational Mechanics 35. Berlin: Springer. xxi, 525 p. 5, 10
- Acary V, Cadoux F (2013) Recent Advances in Contact Mechanics, Stavroulakis, Georgios E. (Ed.), Lecture Notes in Applied and Computational Mechanics, vol 56, Springer Verlag, chap Applications of an existence result for the Coulomb friction problem 5, 12, 24
- Acary V, Cadoux F, Lemaréchal C, Malick J (2011) A formulation of the linear discrete coulomb friction problem via convex optimization. ZAMM Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 91(2):155–175, DOI 10.1002/zamm.201000073, URL http://dx.doi.org/10.1002/zamm.201000073 4, 5, 10, 12, 24
- Acary V, Brémond M, Koziara T, Pérignon F (2014) FCLIB: a collection of discrete 3D Frictional Contact problems. Technical Report RT-0444, INRIA, URL https://hal.inria.fr/hal-00945820 46
- Acary V, Brémond M, Huber O, Pérignon F (2015) An introduction to Siconos. Tech. Rep. TR-0340, second version, INRIA, http://hal.inria.fr/inria-00162911/en/ 6
- Acary V, Brémond M, Dubois F (2017) Méthodes de Newton non-lisses pour les problèmes de contact frottant dans les systèmes de multi-corps flexibles. In: CSMA 2017 13ème Colloque National en Calcul des Structures, Presqu'île de Giens (Var), France, p 8, URL https://hal.inria.fr/hal-01562706
- Al-Fahed A, Stavroulakis G, Panagiotopulos P (1991) Hard and soft fingered robot grippers. the linear complementarity approach. Zeitschrift für Angewandte Mathematik und Mechanik 71:257–265 5
- Alart P (1993) Injectivity and surjectivity criteria for certain mappings of \mathbb{R}^n into itself; application to contact mechanics. (Critères d'injectivité et de surjectivité pour certaines applications de \mathbb{R}^n dans lui-même; application à la mécanique du contact.). RAIRO, Modélisation Math Anal Numér 27(2):203–222 30
- Alart P (1995) Méthode de newton généralisée en mécanique du contact. Journal de Mathématiques Pures et Appliquées 30
- Alart P, Curnier A (1991) A mixed formulation for frictional contact problems prone to Newton like solution method. Computer Methods in Applied Mechanics and Engineering 92(3):353–375 17, 18
- Anitescu M, Potra F (1997) Formulating dynamic multi-rigid-body contact problems with friction as solvable linear complementarity problems. Nonlinear Dynamics, Transactions of ASME 14:231–247 4, 5
- Anitescu M, Tasora A (2010) An iterative approach for cone complementarity problems for nonsmooth dynamics. Comput Optim Appl 47(2):207–235, DOI 10.1007/s10589-008-9223-4, URL http://dx.doi.org/10.1007/s10589-008-9223-4 5,44

- Barbosa H, Feijóo R (1985) A numerical algorithm for signorini problem with Coulomb friction. In: (Del Piero and Maceri, 1985) 23
- Barbosa H, Raupp F, Borges C (1997) Numerical experiments with algorithms for bound constrained quadratic programming in Mechanics. Computers & Structures 64(1–4):579–594 41
- Bonnans J, Gilbert J, Lemaréchal C, Sagastizábal C (2003) Numerical Optimization: Theoretical and Practical Aspects. Springer-Verlag 32
- Bonnefon O, Daviet G (2011) Quartic formulation of Coulomb 3D frictional contact. Technical Report RT-0400, INRIA, URL https://hal.inria.fr/inria-00553859 36
- Cadoux F (2009) Analyse convexe et optimisation pour la dynamique non–regulière. PhD thesis, Université Joseph Fourier, Grenoble I 24
- Calamai P, More J (1987) Projected gradient methods for linearly constrained problems. Mathematical Programming 39(1):93–116, DOI http://dx.doi.org/10.1007/BF02592073 40
- Chabrand P, Dubois F, Raous M (1998) Various numerical methods for solving unilateral contact problems with friction. Mathematical and Computer Modelling 28(4–8):97 108, DOI http://dx.doi.org/10.1016/S0895-7177(98)00111-3, URL http://www.sciencedirect.com/science/article/pii/S0895717798001113, recent Advances in Contact Mechanics 6
- Chaudhary A, Bathe K (1986) A solution method for static and dynamic analysis of three–dimensional contact problems with friction. Computers & Structures 24(6):855–873 2
- Chen G, Teboulle M (1993) Convergence analysis of a proximal-like minimization algorithm using bregman functions. SIAM Journal on Optimization 3(3):538–543, DOI 10.1137/0803026, URL http://dx.doi.org/10.1137/0803026 37
- Christensen P, Pang J (1998) Frictional contact algorithms based on semismooth newton methods. In: Qi MFL (ed) Reformulation Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, Kluwer Academic Publishers, Dordrecht, pp 81–116 5, 30
- Christensen P, Klarbring A, Pang J, Stromberg N (1998) Formulation and comparison of algorithms for frictional contact problems. International Journal for Numerical Methods in Engineering 42:145–172 6, 17
- Curnier A, Alart P (1988) A generalized Newton method for contact problems with friction. Journal de Mécanique Théorique et Appliquée supplément no 1 to 7:67–82 17, 18
- Daviet G, Bertails-Descoubes F, Boissieux L (2011) A Hybrid Iterative Solver for Robustly Capturing Coulomb Friction in Hair Dynamics. ACM Transactions on Graphics 30(6):139:1–139:12, DOI 10.1145/2070781.2024173, URL https://hal.inria.fr/hal-00647497 53
- De Saxcé G (1992) Une généralisation de l'inégalité de Fenchel et ses applications aux lois constitutives. Comptes Rendus de l'Académie des Sciences t 314, série II:125–129 10, 21

- De Saxcé G, Feng ZQ (1991) New inequality and functional for contact with friction : The implicit standard material approach. Mech Struct & Mach 19(3):301–325 10. 24
- De Saxcé G, Feng ZQ (1998) The bipotential method: A constructive approach to design the complete contact law with friction and improved numerical algorithms. Mathemetical and Computer Modelling 28(4):225–245 24
- Del Piero G, Maceri F (eds) (1983) Unilateral Problems in Structural Analysis, CISM courses and lectures, vol 288, Springer, Ravello, Italy 2
- Del Piero G, Maceri F (eds) (1985) Unilateral Problems in Structural Analysis II., CISM courses and lectures, vol 304, Springer, Prescudin, Italy 2, 82
- Dolan E, Moré J (2002) Benchmarking optimization software with performance profiles. Mathematical Programming 91(2):201–213 45
- Dostál Z (1997) Box constrained quadratic programming with proportioning and projections. SIAM J Optim 7(3):871–887, DOI 10.1137/S1052623494266250, URL http://dx.doi.org/10.1137/S1052623494266250 42, 43
- Dostál Z (2016) Scalable Algorithms for Contact Problems. Springer New York, New York, NY, DOI 10.1007/978-1-4939-6834-3_8, URL https://doi.org/10.1007/978-1-4939-6834-3_8 40,43
- Dostál Z, Kozubek T (2012) An optimal algorithm and superrelaxation for minimization of a quadratic function subject to separable convex constraints with applications. Math Program 135(1-2, Ser. A):195–220, DOI 10.1007/s10107-011-0454-2, URL http://dx.doi.org/10.1007/s10107-011-0454-2 41,43
- Dostál Z, Kučera R (2010) An optimal algorithm for minimization of quadratic functions with bounded spectrum subject to separable convex inequality and linear equality constraints. SIAM Journal on Optimization 20(6):2913–2938, DOI 10.1137/090751414, URL http://dx.doi.org/10.1137/090751414, http://dx.doi.org/10.1137/090751414 43
- Dostál Z, Schöberl J (2005) Minimizing quadratic functions subject to bound constraints with the rate of convergence and finite termination. Comput Optim Appl 30(1):23–43, DOI 10.1007/s10589-005-4557-7, URL http://dx.doi.org/10.1007/s10589-005-4557-7 43
- Dostál Z, Haslinger J, Kučera R (2002) Implementation of the fixed point method in contact problems with Coulomb friction based on a dual splitting type technique. J Comput Appl Math 140(1-2):245–256, DOI 10.1016/S0377-0427(01)00405-8, URL http://dx.doi.org/10.1016/S0377-0427(01)00405-8 42
- Facchinei F, Pang JS (2003) Finite-dimensional Variational Inequalities and Complementarity Problems, Springer Series in Operations Research, vol I & II. Springer Verlag NY. Inc. 3, 13, 14, 15, 28
- Ferris MC, Lucidi S (1994) Nonmonotone stabilization methods for nonlinear equations. Journal of Optimization Theory and Applications 81(1):53–71, DOI 10.1007/BF02190313, URL https://doi.org/10.1007/BF02190313
- Fletcher R (1987) Practical Methods of Optimization. Chichester: John Wiley & Sons, Inc. 40

- Fong DCL, Saunders M (2011) Lsmr: An iterative algorithm for sparse least-squares problems. SIAM Journal on Scientific Computing 33(5):2950–2971, DOI 10.1137/10079687X, URL https://doi.org/10.1137/10079687X 47
- Fortin M, Glowinski R (1983) Augmented Lagrangian methods, Studies in Mathematics and its Applications, vol 15. North-Holland Publishing Co., Amsterdam, applications to the numerical solution of boundary value problems, Translated from the French by B. Hunt and D. C. Spicer 25
- Fukushima M, Luo Z, Tseng P (2001) Smoothing functions for second-order-cone complementarity problems. SIAM Journal on Optimization 12(2):436–460, DOI 10.1137/S1052623400380365, URL http://link.aip.org/link/?SJE/12/436/1 19, 20
- Glowinski R, JL L, Trémoliéres R (1976) Approximations des Inéquations Variationnelles. Dunod, Paris 25
- Grippo L, Lampariello F, Lucidi S (1986) A nonmonotone line search technique for newton's method. SIAM Journal on Numerical Analysis 23(4):707–716, DOI 10. 1137/0723046, URL https://doi.org/10.1137/0723046, https://doi.org/10.1137/0723046 33
- Han D (2008) A generalized proximal-point-based prediction correction method for variational inequality problems. Journal of Computational and Applied Mathematics 221(1):183 193, DOI http://dx.doi.org/10.1016/j.cam.2007.10. 063, URL http://www.sciencedirect.com/science/article/pii/S037704270700578X 38
- Han D, Lo HK (2002) Two new self-adaptive projection methods for variational inequality problems. Computers & Mathematics with Applications 43(12):1529 1537, DOI http://dx.doi.org/10.1016/S0898-1221(02)00116-5, URL http://www.sciencedirect.com/science/article/pii/S0898122102001165 26
- Harker P, Pang JS (1990) Finite-dimensional variational inequality and complementarity problems: a survey of theory, algorithms and applications. Mathematical Programming 48:160–220 13
- Haslinger J (1983) Approximation of the signorini problem with friction, obeying the coulomb law. Mathematical Methods in the Applied Sciences 5:422–437 2, 23, 41
- Haslinger J (1984) Least square method for solving contact problems with friction obeying coulomb's law. Applications of mathematics 29(3):212–224, URL http://dml.cz/dmlcz/104086 2, 23, 41
- Haslinger J, Panagiotopoulos PD (1984) The reciprocal variational approach to the signorini problem with friction. approximation results. Proceedings of the Royal Society of Edinburgh: Section A Mathematics 98:365–383, DOI 10. 1017/S0308210500013536, URL http://journals.cambridge.org/article_S0308210500013536 2, 23
- Haslinger J, Hlaváček I, Nečas J (1996) Numerical methods for unilateral problems in solid mechanics. In: Ciarlet P, Lions J (eds) Handbook of Numerical Analysis, North-Holland, Amsterdam, 1996, vol IV, Part 2, pp 313–485 23, 41

- Haslinger J, Dostál Z, Kučera R (2002) On a splitting type algorithm for the numerical realization of contact problems with Coulomb friction. Comput Methods Appl Mech Engrg 191(21-22):2261–2281, DOI 10.1016/S0045-7825(01)00378-4, URL http://dx.doi.org/10.1016/S0045-7825(01)00378-4 42
- Haslinger J, Kučera R, D Z (2004) An algorithm for the numerical realization of 3D contact problems with Coulomb friction. In: Proceedings of the 10th International Congress on Computational and Applied Mathematics (ICCAM-2002), vol 164/165, pp 387–408, DOI 10.1016/j.cam.2003.06.002, URL http://dx.doi.org/10.1016/j.cam.2003.06.002 5, 43
- Haslinger J, Kučera R, Vlach O, Baniotopoulos C (2012) Approximation and numerical realization of 3d quasistatic contact problems with coulomb friction. Mathematics and Computers in Simulation 82(10):1936 1951, DOI http://dx.doi.org/10.1016/j.matcom.2011.01.004, URL http://www.sciencedirect.com/science/article/pii/S0378475411000310, the Fourth IMACS Conference: Mathematical Modelling and Computational Methods in Applied Sciences and Engineering" Devoted to Owe Axelsson in ocassion of his 75th birthday 43
- Hayashi S, Yamashita N, Fukushima M (2005) A combined smoothing and regularization method for monotone second-order cone complementarity problems. SIAM J on Optimization 15(2):593–615, DOI http://dx.doi.org/10.1137/S1052623403421516 20, 77, 78
- He B, Liao L (2002) Improvements of some projection methods for monotone nonlinear variational inequalities. Journal of Optimization Theory and Applications 112(1):111–128, DOI 10.1023/A:1013096613105, URL http://dx.doi.org/10.1023/A%3A1013096613105 26, 38
- Hestenes M (1969) Multiplier and gradient methods. Journal of Optimization Theory and Applications 4:303–320 18
- Heyn T (2013) On the modeling, simulation, and visualization of many–body dynamics problems with friction and contact. PhD thesis, University of Wisconsin–Madison 6
- Heyn T, Anitescu M, Tasora A, Negrut D (2013) Using Krylov subspace and spectral methods for solving complementarity problems in many-body contact dynamics simulation. Internat J Numer Methods Engrg 95(7):541–561, DOI 10.1002/nme. 4513, URL http://dx.doi.org/10.1002/nme.4513 5, 6
- Hüeber S, Stadler G, Wohlmuth BI (2008) A primal-dual active set algorithm for three-dimensional contact problems with coulomb friction. SIAM J Sci Comput 30(2):572–596, DOI 10.1137/060671061, URL http://dx.doi.org/10.1137/060671061 18, 19, 30
- Jean M, Moreau J (1987) Dynamics in the presence of unilateral contacts and dry friction: a numerical approach. In: Del Pietro G, Maceri F (eds) Unilateral problems in structural analysis. II, CISM 304, Spinger Verlag, pp 151–196 2, 17
- Joli P, Feng ZQ (2008) Uzawa and newton algorithms to solve frictional contact problems within the bi-potential framework. International Journal for Numerical Methods in Engineering 73(3):317–330, DOI 10.1002/nme.2073, URL http://dx.doi.org/10.1002/nme.2073 30

- Jourdan F, Alart P, Jean M (1998) A Gauss Seidel like algorithm to solve frictional contact problems. Computer Methods in Applied Mechanics and Engineering 155(1):31–47 30, 36
- Katona MG (1983) A simple contact–friction interface element with applications to buried culverts. International Journal for Numerical and Analytical Methods in Geomechanics 7(3):371–384, DOI 10.1002/nag.1610070308, URL http://dx.doi.org/10.1002/nag.1610070308 2
- Khobotov E (1987) Modification of the extra-gradient method for solving variational inequalities and certain optimization problems. {USSR} Computational Mathematics and Mathematical Physics 27(5):120 127, DOI http://dx.doi.org/10.1016/0041-5553(87)90058-9, URL http://www.sciencedirect.com/science/article/pii/0041555387900589 26
- Kikuchi N, Oden JT (1988) Contact problems in elasticity: a study of variational inequalities and finite element methods, SIAM Studies in Applied Mathematics, vol 8. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, DOI 10.1137/1.9781611970845, URL http://dx.doi.org/10.1137/1.9781611970845.5
- Klarbring A (1986) A mathematical programming approach to three-dimensional contact problem with friction. Compt Methods Appl Math Engrg 58:175–200 5
- Klarbring A, Pang JS (1998) Existence of solutions to discrete semicoercive frictional contact problems. SIAM Journal on Optimization 8(2):414–442 4, 12
- Kleinert J, Simeon B, Obermayr M (2014) An inexact interior point method for the large-scale simulation of granular material. Computer Methods in Applied Mechanics and Engineering 278(0):567 598, DOI http://dx.doi.org/10.1016/j.cma.2014.06.009, URL http://www.sciencedirect.com/science/article/pii/S0045782514001959 6
- Korpelevich G (1976) The extragradient method for finding saddle points and other problems. Matecon 12(747–756) 25, 26
- Koziara T, Bićanić N (2008) Semismooth newton method for frictional contact between pseudo-rigid bodies. Computer Methods in Applied Mechanics and Engineering 197(33-40):2763 2777, DOI http://dx.doi.org/10.1016/j.cma.2008.01.006, URL http://www.sciencedirect.com/science/article/pii/S0045782508000194 18, 19, 30, 31, 32, 33
- Krabbenhoft K, Lyamin A, Huang J, da Silva MV (2012) Granular contact dynamics using mathematical programming methods. Computers and Geotechnics 43:165 176, DOI http://dx.doi.org/10.1016/j.compgeo.2012.02. 006, URL http://www.sciencedirect.com/science/article/pii/S0266352X12000262 5, 6
- Kučera R (2007) Minimizing quadratic functions with separable quadratic constraints. Optim Methods Softw 22(3):453–467, DOI 10.1080/10556780600609246, URL http://dx.doi.org/10.1080/10556780600609246 43
- Kučera R (2008) Convergence rate of an optimization algorithm for minimizing quadratic functions with separable convex constraints. SIAM J Optim

- 19(2):846-862, DOI 10.1137/060670456, URL http://dx.doi.org/10.1137/060670456 43
- Laursen T (2003) Computational Contact and Impact Mechanics Fundamentals of Modeling Interfacial Phenomena in Nonlinear Finite Element Analysis. Springer Verlag, 1st ed. 2002. Corr. 2nd printing, 5, 11
- Leung A, Guoqing C, Wanji C (1998) Smoothing Newton method for solving two– and thre–dimensional frictional contact problems. International Journal for Numerical Methods in Engineering 41:1001–1027 18
- Mijar A, Arora J (2000a) Review of formulations for elastostatic frictional contact problems. Structural and Multidisciplinary Optimization 20(3):167–189, DOI 10.1007/s001580050147, URL http://dx.doi.org/10.1007/s001580050147 6
- Mijar A, Arora J (2000b) Study of variational inequality and equality formulations for elastostatic frictional contact problems. Archives of Computational Methods in Engineering 7(4):387–449, DOI 10.1007/BF02736213, URL http://dx.doi.org/10.1007/BF02736213 6
- Mijar A, Arora J (2004a) An augmented lagrangian optimization method for contact analysis problems, 1: formulation and algorithm. Structural and Multidisciplinary Optimization 28(2-3):99–112, DOI 10.1007/s00158-004-0423-y, URL http://dx.doi.org/10.1007/s00158-004-0423-y 6
- Mijar A, Arora J (2004b) An augmented lagrangian optimization method for contact analysis problems, 2: numerical evaluation. Structural and Multidisciplinary Optimization 28(2-3):113–126, DOI 10.1007/s00158-004-0424-x, URL http://dx.doi.org/10.1007/s00158-004-0424-x 6
- Mitsopoulou E, Doudoumis I (1987) A contribution to the analysis of unilateral contact problems with friction. Solid Mechanics Archives 12(3):165–186 36
- Mitsopoulou E, Doudoumis I (1988) On the solution of the unilateral contact frictional problem for general static loading conditions. Computers & Structures 30(5):1111–1126 2, 36
- Miyamura T, Kanno Y, Ohsaki M (2010) Combined interior-point method and semismooth newton method for frictionless contact problems. International Journal for Numerical Methods in Engineering 81(6):701–727, DOI 10.1002/nme. 2707, URL http://dx.doi.org/10.1002/nme.2707 5,6
- Morales JL, Nocedal J, Smelyanskiy M (2008) An algorithm for the fast solution of symmetric linear complementarity problems. Numerische Mathematik 111(2):251–266, DOI 10.1007/s00211-008-0183-5, URL http://dx.doi.org/10.1007/s00211-008-0183-5 5
- Moré J, Toraldo G (1991) On the solution of large quadratic convex programming problems with bound constraints. SIAM J Optimization 1(1):93–113 40, 41, 42
- Moré JJ, Toraldo G (1989) Algorithms for bound constrained quadratic programming problems. Numerische Mathematik 55(4):377–400, DOI 10.1007/BF01396045, URL https://doi.org/10.1007/BF01396045 40
- Moreau J (1988) Unilateral contact and dry friction in finite freedom dynamics. In: Moreau J, PD P (eds) Nonsmooth Mechanics and Applications, no. 302 in CISM,

- Courses and lectures, CISM 302, Spinger Verlag, Wien- New York, pp 1–82, formulation mathematiques tire du livre Contacts mechanics 8
- Mylapilli H, Jain A (2017) Complementarity techniques for minimal coordinates contact dynamics. ASME Journal of Computational and Nonlinear Dynamics 12(2) 6
- Nečas J, Jarušek J, Haslinger J (1980) On the solution of the variational inequality to the Signorini problem with small friction. Bollettino UMI 5(17-B):796–811 2, 23, 41
- Nocedal J, Wright S (1999) Numerical Optimization. Springer Verlag 40
- Panagiotopoulos P (1975) A nonlinear programming approach to the unilateral contact-, and friction-boundary value problem in the theory of elasticity. Ingenieur-Archiv 44(6):421–432, DOI 10.1007/BF00534623, URL http://dx.doi.org/10.1007/BF00534623 2, 23
- Pang J, Trinkle J (1996) Complementarity formulations and existence of solutions of dynamic multi-rigid-body contact problems with Coulomb friction. Mathematical Programming 73:199–226 4, 5
- Park J, Kwak B (1994) Three dimensional frictional contact analysis using the homotopy method. Journal of Applied Mechanics, Transactions of ASME 61:703–709 18
- Qi L, Sun J (1993) A nonsmooth version of Newton's method. Mathematical Programming 58:353–367 30
- Qi L, Sun D, Ulbrich M (eds) (2018) Semismooth and Smoothing Newton Methods. Springer Verlag 30
- Raous M, Chabrand P, Lebon F (1988) Numerical methods for frictional contact problems and applications. J Méc Théor Appl 7(1):111–18 6
- Rockafellar R (1974) Augmented Lagrange multiplier functions and duality in nonconvex programming. SIAM Journal on Control 12:268–285 18
- Rockafellar R (1993) Lagrange multipliers and optimality. SIAM Review 35(2):183–238 18
- Rockafellar R, Wets R (1997) Variational Analysis, vol 317. Springer Verlag, New York 75
- Saxcé GD, Feng ZQ (1998) The bipotential method: A constructive approach to design the complete contact law with friction and improved numerical algorithms. Mathematical and Computer Modelling 28(4–8):225 245, DOI http://dx.doi.org/10.1016/S0895-7177(98)00119-8, URL http://www.sciencedirect.com/science/article/pii/S0895717798001198, recent Advances in Contact Mechanics 10
- Sibony M (1970) Méthodes itératives pour les équations et inéquations aux dérivées partielles non linéaires de type monotone. Calcolo 7:65—183 16
- Simo J, Laursen T (1992) An augmented Lagrangian treatment of contact problems involving friction. Computers & Structures 42(1):97–116 18, 25
- Solodov M, Tseng P (1996) Modified projection-type methods for monotone variational inequalities. SIAM Journal on Control and Optimization 34(5):1814–1830, URL citeseer.ist.psu.edu/article/solodov95modified. html 26

- Stadler G (2004) Semismooth newton and augmented lagrangian methods for a simplified friction problem. SIAM Journal on Optimization 15(1):39–62, DOI 10.1137/S1052623403420833, URL https://doi.org/10.1137/S1052623403420833, https://doi.org/10.1137/S1052623403420833 18
- Stewart D, Trinkle J (1996) An implicit time-stepping scheme for rigid body dynamics with inelastic collisions and Coulomb friction. International Journal for Numerical Methods in Engineering 39(15), reference tiree du site WILEY 4, 5
- Sun D, Sun J (2005) Strong semismoothness of the fischer-burmeister sdc and soc complementarity functions. Mathematical Programming 103(3):575–581, DOI 10.1007/s10107-005-0577-4, URL https://doi.org/10.1007/s10107-005-0577-4 30
- Tasora A, Anitescu M (2009) A fast NCP solver for large rigid-body problems with contacts, friction, and joints. In: Multibody dynamics, Comput. Methods Appl. Sci., vol 12, Springer, Berlin, pp 45–55 5, 44
- Tasora A, Anitescu M (2011) A matrix-free cone complementarity approach for solving large-scale, nonsmooth, rigid body dynamics. Comput Methods Appl Mech Engrg 200(5-8):439–453, DOI 10.1016/j.cma.2010.06.030, URL http://dx.doi.org/10.1016/j.cma.2010.06.030 5, 44
- Tasora A, Anitescu M (2013) A complementarity-based rolling friction model for rigid contacts. Meccanica 48(7):1643–1659, DOI 10.1007/s11012-013-9694-y, URL http://dx.doi.org/10.1007/s11012-013-9694-y 5
- Temizer I, Abdalla M, Gürdal Z (2014) An interior point method for isogeometric contact. Computer Methods in Applied Mechanics and Engineering 276(0):589 611, DOI http://dx.doi.org/10.1016/j.cma.2014.03. 018, URL http://www.sciencedirect.com/science/article/pii/S0045782514001042 5
- Tzaferopoulos M (1993) On an efficient new numerical method for the frictional contact problem of structures with convex energy density. Computers & Structures 48(1):87–106 23, 40
- Wang X, He B, Liao LZ (2010) Steplengths in the extragradient type methods. Journal of Computational and Applied Mathematics 233(11):2925 2939, DOI http://dx.doi.org/10.1016/j.cam.2009.11.037, URL http://www.sciencedirect.com/science/article/pii/S0377042709007845 27
- Wriggers P (2006) Computational Contact Mechanics, 2nd edn. Springer Verlag, originally published by John Wiley & Sons Ltd., 2002 5, 11
- Xuewen L, Soh AK, Wanji C (2000) A new nonsmooth model for three-dimensional frictional contact problems. Computational Mechanics 26:528–535 18