실력 완성 | 수학 I

2-2-3.삼각함수를 포함한 방정식과 부등식

수학 계산력 강화

(1)삼각방정식

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

1) 제작연월일 : 2019-02-13

2) 제작자 : 교육지대㈜

3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호 되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무 단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법 외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

01 / 삼각방정식의 풀이

1. 삼각방정식

: 각의 크기가 미지수인 삼각함수를 포함하는 방정식

2. 삼각방정식의 풀이

- ① 주어진 방정식을 $\sin x = k$ (또는 $\cos x = k$ 또는 $\tan x = k$)
- ② 함수 $y = \sin x$ (또는 $y = \cos x$ 또는 $y = \tan x$)의 그래프와 직선 y = k를 그린다.
- ③ 주어진 범위에서 삼각함수의 그래프와 직선의 교점의 x좌표를 찾아 방정식의 해를 구한다.

$ightharpoonup 0 \le x < 2\pi$ 일 때, 다음 방정식을 풀어라.

1.
$$\sin x = -\frac{1}{2}$$

2.
$$3 \tan x - \sqrt{3} = 0$$

3.
$$\tan x = \sqrt{3}$$

4.
$$\sin x = \frac{\sqrt{2}}{2}$$

5.
$$\frac{\sqrt{2}}{2}\cos x - \frac{1}{2} = 0$$

6.
$$2\cos x + \sqrt{3} = 0$$

7.
$$2\cos x - \sqrt{3} = 0$$

8.
$$2 \sin x - \sqrt{2} = 0$$

9.
$$\sin x = \frac{\sqrt{3}}{2}$$

10.
$$\sqrt{3} \tan 2x + 1 = 0$$

11.
$$\sqrt{3} \tan x - \sqrt{3} = 0$$

12.
$$2 \sin 2x = -\sqrt{3}$$

13.
$$\tan \frac{3}{2}x = \frac{\sqrt{3}}{3}$$

14.
$$\cos x = -\frac{1}{2}$$

15.
$$\cos 2x = -\frac{1}{2}$$

16.
$$2 \sin 2x = 1$$

17.
$$\cos\left(x + \frac{\pi}{4}\right) = -\frac{\sqrt{2}}{2}$$

18.
$$\cos\left(x - \frac{\pi}{3}\right) = -\frac{1}{2}$$

19.
$$\sin\left(x + \frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$$

20.
$$\cos\left(x + \frac{\pi}{4}\right) = \frac{1}{2}$$

21.
$$\sin(2x+\pi) = -\frac{1}{2}$$

$$22. \quad \tan x = 2\sin x$$

23.
$$\tan^2 x - 3 = 0$$

24.
$$\cos^2 x - 1 = 0$$

25.
$$3 \sin^2 x - \cos^2 x = 0$$

26.
$$2\cos^2 x - \cos x = 0$$

27.
$$2\cos^2 x + 3\cos x + 1 = 0$$

28.
$$2\sin^2 x - \sin x - 1 = 0$$

29.
$$2\cos^2 x - \sin x - 1 = 0$$

30.
$$2\cos^2 x + 3\sin x - 3 = 0$$

31.
$$-2\cos^2 x + \sin x + 1 = 0$$

32.
$$2\sin^2 x - 3\sin x - 2 = 0$$

33.
$$\cos^2 x + \sin x - 1 = 0$$

34.
$$\tan^2 x - (1 - \sqrt{3}) \tan x - \sqrt{3} = 0$$

 $ightharpoons 0 \le x < 2\pi$ 일 때, 다음 방정식의 모든 근의 합을 구하여

35.
$$\sin x = \frac{1}{2}$$

36.
$$2\cos x = \sqrt{3}$$

37.
$$3\sin x - 1 = 0$$

38.
$$\sqrt{3} \tan x + 1 = 0$$

39.
$$2\cos^2 x + \sin x - 1 = 0$$

40.
$$2\sin x \cos x - \sin x = 0$$

41.
$$2\cos\theta = \frac{\sqrt{3}}{\tan\theta}$$

42.
$$3\sin^2 x - 2 = 0$$

43.
$$\cos(\pi \sin x) = -\frac{1}{2}$$

44.
$$\cos x + 2\sin(\pi - x)\cos(\pi + x) = 0$$

45.
$$\cos(\cos x) = 1$$

46.
$$(3\cos x - 1)(4\cos x - 3) = 0$$

 \square $-\pi < x < \pi$ 일 때, 다음 방정식을 풀어라.

47.
$$\sin \frac{x}{2} + \cos \frac{x}{2} = 0$$

48.
$$\tan\left(\frac{1}{3}x + \frac{\pi}{2}\right) = \sqrt{3}$$

☑ 다음 물음에 답하여라.

49. $0 \le x \le 4\pi$ 에서 삼각방정식 $2\sin^2 x - 3\sin x - 2 = 0$ 의 모든 해의 합을 구하여라.

50. 삼각방정식 $2\sin^2 x - \sin x - 1 = 0$ 의 해를 구하여라. (단, $0 \le x < 3\pi$)

51. $0 \le x < \pi$ 일 때, 방정식 $\cos\left(3x - \frac{\pi}{2}\right) = \frac{\sqrt{3}}{2}$ 을 만 족시키는 모든 x의 값의 합을 구하여라.

방정식 f(x) = g(x)의 서로 다른 실근의 개수는 두 함수 y = f(x)와 y = g(x)의 그래프의 서로 다른 교점의

☑ 다음 방정식의 실근의 개수를 구하여라.

52.
$$\sin \pi x = \frac{1}{3}x$$

53.
$$\cos \pi x = |x|$$

54.
$$\cos \pi x = \frac{1}{3} |x|$$

55.
$$\sin \pi x = \frac{1}{2}x$$

56.
$$\sin\left(x-\frac{3}{2}\pi\right)-\frac{x}{8}=0$$

57.
$$\frac{1}{3}\log_2 x = -\sin \pi x$$

- ☑ 다음 물음에 답하여라.
- **58.** 방정식 $4\sin^2 x + 4\cos x k = 0$ 이 실근을 갖도록 하 는 실수 k의 값의 범위를 구하여라.

59. $\sin^2 x - 4\cos x + k = 0$ 이 실근을 갖기 위한 k의 값의 범위를 구하여라.

60. $\cos^2 x - 2\cos x + k = 0$ 이 실근을 갖기 위한 k의 값의 범위를 구하여라.

61. 방정식 $2\cos^2 x + (2k+1)\sin x - k - 2 = 0$ 이 서로 다 른 세 실근을 갖기 위한 k의 값을 구하여라. (단, $0 \le x < 2\pi$)

62. x에 대한 이차방정식 $x^2+2x-\cos\theta=0$ 이 중근 을 가지도록 하는 θ 의 값을 구하여라. (단, $0 \le \theta < 2\pi$)

정답 및 해설

1)
$$x = \frac{7}{6}\pi$$
 또는 $x = \frac{11}{6}\pi$

그림에서 $y = \sin x$ 의 그래프와 직선 $y = -\frac{1}{2}$ 의 교점의 x좌표가 $\frac{7}{6}\pi$, $\frac{11}{6}\pi$ 이므로 $x = \frac{7}{6}\pi$ 또는 $x = \frac{11}{6}\pi$

2)
$$x = \frac{\pi}{6}$$
 $\pm \frac{\pi}{6}$ $x = \frac{7}{6}\pi$

 \Rightarrow $\tan x = \frac{\sqrt{3}}{3}$ 이므로 $0 \le x < 2\pi$ 에서 $y = \tan x$ 의 그래프와 직선 $y = \frac{\sqrt{3}}{3}$ 의 교점의 x좌표를 구한

 $\tan \frac{\pi}{6} = \frac{\sqrt{3}}{3}$ 이므로 점 A의 x좌표는 $x = \frac{\pi}{6}$ $y = \tan x$ 의 그래프의 주기는 π 이므로 점 B의 x좌표는 $x = \pi + \frac{\pi}{6} = \frac{7}{6}\pi$

$$\therefore x = \frac{\pi}{6} \quad \text{EL} \quad x = \frac{7}{6}\pi$$

그림에서 $y = \tan x$ 의 그래프와 직선 $y = \sqrt{3}$ 의 교점의 x좌표가 $\frac{\pi}{3}$, $\frac{4}{3}\pi$ 이므로

$$x = \frac{\pi}{3} \quad \text{El} \quad x = \frac{4}{3}\pi$$

그림과 같이 직선 $y = \frac{\sqrt{2}}{2}$ 와 단위원의 두 교점 A, B에 대하여 두 동경 OA, OB가 나타내는 각 의 크기를 구하면 $x=\frac{\pi}{4}$ 또는 $x=\frac{3}{4}\pi$

5)
$$x = \frac{\pi}{4}$$
 또는 $x = \frac{7}{4}\pi$

 $\frac{\sqrt{2}}{2}\cos x - \frac{1}{2} = 0$, 즉 $\cos x = \frac{\sqrt{2}}{2}$ 의 그은 함수 $y = \cos x \ (0 \le x < 2\pi)$ 의 그래프와 직선 $y = \frac{\sqrt{2}}{2}$ 의 교점의 x좌표이므로 $x = \frac{\pi}{4}$ $\pm \frac{\pi}{4}$ $= \frac{7}{4}\pi$

6)
$$x = \frac{5}{6}\pi$$
 또는 $x = \frac{7}{6}\pi$

7)
$$x = \frac{\pi}{6}$$
 $\pm \frac{\pi}{6}$ $x = \frac{11}{6}\pi$

 \Rightarrow $\cos x = \frac{\sqrt{3}}{2}$ 이므로 $0 \le x < 2\pi$ 에서 $y = \cos x$ 의 그래프와 직선 $y = \frac{\sqrt{3}}{2}$ 의 교점의 x좌표를 구한

$$\cos\frac{\pi}{6} = \frac{\sqrt{3}}{2}$$
이므로 점 A의 x 좌표는 $x = \frac{\pi}{6}$

점 A와 점 B는 직선 $x=\pi$ 에 대하여 대칭이므로

점 B의
$$x$$
좌표는 $x = 2\pi - \frac{\pi}{6} = \frac{11}{6}\pi$

$$\therefore x = \frac{\pi}{6} \quad \text{Fig. } x = \frac{11}{6}\pi$$

$$2\sin x - \sqrt{2} = 0$$
, 즉 $\sin x = \frac{\sqrt{2}}{2}$ 의 근은
함수 $y = \sin x \ (0 \le x < 2\pi)$ 의 그래프와
직선 $y = \frac{\sqrt{2}}{2}$ 의 교점의 x 좌표이므로
 $x = \frac{\pi}{4}$ 또는 $x = \frac{3}{4}\pi$

9)
$$x = \frac{\pi}{3} + \frac{\pi}{2} = \frac{2}{3}\pi$$

$$\sin x = \frac{\sqrt{3}}{2}$$
의 근은 함수 $y = \sin x \ (0 \le x < 2\pi)$

의 그래프와 직선
$$y=\frac{\sqrt{3}}{2}$$
의 교점의 x 좌표이므로 $x=\frac{\pi}{2}$ 또는 $x=\frac{2}{2}\pi$

10)
$$x = \frac{5}{12}\pi$$
 또는 $x = \frac{11}{12}\pi$ 또는 $x = \frac{17}{12}\pi$ 또는 $x = \frac{23}{12}\pi$

다
$$2x = t \ (0 \le x < 2\pi)$$
로 놓으면
$$\tan t = -\frac{\sqrt{3}}{3} \ (0 \le t < 4\pi)$$
에서
$$t = \frac{5}{6}\pi \ \text{또는} \ t = \frac{11}{6}\pi \ \text{또는} \ t = \frac{17}{6}\pi$$
 또는 $t = \frac{17}{6}\pi$ 또는 $t = \frac{11}{12}\pi$ 또는 $t = \frac{17}{12}\pi$ 또는 $t = \frac{17}{12}\pi$ 또는 $t = \frac{17}{12}\pi$

11)
$$x = \frac{\pi}{4}$$
 $\pm \frac{\pi}{4}$ $x = \frac{5}{4}\pi$

$$ightharpoonup \sqrt{3} an x - \sqrt{3} = 0$$
, 즉 $an x = 1$ 의 근은 함수 $y = an x \ (0 \le x < 2\pi)$ 의 그래프와 직선 $y = 1$ 의 교점의 x 좌표이므로 $x = \frac{\pi}{4}$ 또는

$$x = \frac{5}{4}\pi$$

12)
$$x = \frac{2}{3}\pi$$
 또는 $x = \frac{5}{6}\pi$ 또는 $x = \frac{5}{3}\pi$ 또는 $x = \frac{11}{6}\pi$

다
$$2x = t \ (0 \le x < 2\pi)$$
로 놓으면
$$\sin t = -\frac{\sqrt{3}}{2} \ (0 \le t < 4\pi)$$
에서
$$t = \frac{4}{3}\pi \text{ 또는 } t = \frac{5}{3}\pi \text{ 또는 } t = \frac{10}{3}\pi \text{ 또는 } t = \frac{11}{3}\pi$$
이므로 $x = \frac{2}{3}\pi \text{ 또는 } x = \frac{5}{6}\pi$ 또는 $x = \frac{5}{3}\pi \text{ 또는 } x = \frac{11}{6}\pi$

13)
$$x = \frac{\pi}{9}$$
 또는 $x = \frac{7}{9}\pi$ 또는 $x = \frac{13}{9}\pi$

다
$$\tan\frac{3}{2}x=\frac{\sqrt{3}}{3}$$
에서 $\frac{3}{2}x=t$ 로 놓으면 $0\leq t<3\pi$ 이고, $\tan t=\frac{\sqrt{3}}{3}$ 의 근은 함수 $y=\tan t$ 의 그래 프와 직선 $y=\frac{\sqrt{3}}{3}$ 의 교점의 t 좌표이므로 $t=\frac{\pi}{6}$ 또는 $t=\frac{7}{6}\pi$ 또는 $t=\frac{13}{6}\pi$ \therefore $x=\frac{\pi}{9}$ 또는 $x=\frac{7}{9}\pi$ 또는 $x=\frac{13}{9}\pi$

14)
$$x = \frac{2}{3}\pi$$
 또는 $x = \frac{4}{3}\pi$

다
$$0 \le x < 2\pi$$
일 때, $\cos x = -\frac{1}{2}$ 의 해는
$$x = \frac{2}{3}\pi \ \text{또는} \ x = \frac{4}{3}\pi$$

15)
$$x = \frac{\pi}{3}$$
 또는 $x = \frac{2}{3}\pi$ 또는 $x = \frac{4}{3}\pi$ 또는 $x = \frac{5}{3}\pi$

다
$$\cos 2x = -\frac{1}{2}$$
 에서 $2x = t$ 로 놓으면 $0 \le t < 4\pi$ 이 고, $\cos t = -\frac{1}{2}$ 의 근은 함수 $y = \cos t$ 의 그래프와 직선 $y = -\frac{1}{2}$ 의 교점의 t 좌표이므로 $t = \frac{2}{3}\pi$ 또는 $t = \frac{4}{3}\pi$ 또는 $t = \frac{8}{3}\pi$ 또는 $t = \frac{10}{3}\pi$ $\therefore x = \frac{\pi}{3}$ 또는 $x = \frac{2}{3}\pi$ 또는 $x = \frac{4}{3}\pi$

16)
$$x = \frac{\pi}{12}$$
 $= \frac{5}{12}\pi$

$$\underline{\mathbf{F}} = \frac{13}{12} \pi \ \underline{\mathbf{F}} = \frac{17}{12} \pi$$

- \Rightarrow $\sin 2x = \frac{1}{2}$ 이고 2x = t로 치환하면 $\sin t = \frac{1}{2}$ 한편, $0 \le x < 2\pi$ 이므로 $0 \le t < 4\pi$ ····· ①
 - \bigcirc 의 범위에서 $y = \sin t$ 의 그래프와 직선 $y = \frac{1}{2}$
 - 의 교점의 t좌표를 구하면 $\frac{\pi}{6},~\frac{5}{6}\pi,~\frac{13}{6}\pi,~\frac{17}{6}\pi$

$$2x = \frac{\pi}{6}$$
 $\pm \frac{1}{6}$ $2x = \frac{5}{6}\pi$ $\pm \frac{1}{6}$ $2x = \frac{13}{6}\pi$

또는
$$2x = \frac{17}{6}\pi$$

$$\therefore x = \frac{\pi}{12} \quad \Xi \subseteq x = \frac{5}{12}\pi \quad \Xi \subseteq x = \frac{13}{12}\pi$$

또는
$$x = \frac{17}{12}\pi$$

17)
$$x = \frac{\pi}{2} + \frac{\pi}{2} = \pi$$

$$\Rightarrow \cos\left(x + \frac{\pi}{4}\right) = -\frac{\sqrt{2}}{2} \text{ of } \lambda$$

$$x+\frac{\pi}{4}=t$$
로 치환하면 $\cos t=-\frac{\sqrt{2}}{2}$

한편,
$$0 \le x < 2\pi$$
이므로 $\frac{\pi}{4} \le t < \frac{9}{4}\pi$ …… \bigcirc

 \bigcirc 의 범위에서 $y = \cos t$ 의 그래프와

직선
$$y=-\frac{\sqrt{2}}{2}$$
의 교점의 t 좌표를 구하면

$$\frac{3}{4}\pi,\ \frac{5}{4}\pi$$

$$\therefore x = \frac{\pi}{2} \quad \text{EL} \quad x = \pi$$

18)
$$x = \pi + \frac{5}{3}\pi$$

$$\Leftrightarrow$$
 $\cos\left(x-rac{\pi}{3}
ight)\!\!=\!\!-rac{1}{2}$ 에서 $x-rac{\pi}{3}\!=\!t$ $(0\leq x<2\pi)$ 로

놓으면
$$\cos t=-\frac{1}{2}\left(-\frac{\pi}{3} \leq t < \frac{5}{3}\pi\right)$$
에서 $t=\frac{2}{3}\pi$
또는 $t=\frac{4}{3}\pi$ 이므로 $x=\pi$ 또는 $x=\frac{5}{3}\pi$

다
$$\sin\left(x+\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$$
에서 $x+\frac{\pi}{6} = t \ (0 \le x < 2\pi)$ 로 놓으면 $\sin t = \frac{\sqrt{3}}{2} \ \left(\frac{\pi}{6} \le t < \frac{13}{6}\pi\right)$ 에서 $t = \frac{\pi}{3}$ 또는 $t = \frac{2}{3}\pi$ 이므로 $x = \frac{\pi}{6}$ 또는 $x = \frac{\pi}{2}$

20)
$$x = \frac{\pi}{12}$$
 $\pm \pm x = \frac{17}{12}\pi$

$$\Rightarrow \cos\left(x + \frac{\pi}{4}\right) = \frac{1}{2} \text{ only}$$

$$x + \frac{\pi}{4} = t$$
로 놓으면 $\frac{\pi}{4} \le t < \frac{9}{4}$ 제이고,

$$\cos t = \frac{1}{2}$$
의 근은 함수 $y = \cos t$ 로 그래프와 직선

$$y = \frac{1}{2}$$
의 교점의 t 좌표이므로

$$t = \frac{1}{3}\pi \text{ } \pm \frac{\square}{\square} \text{ } t = \frac{5}{3}\pi$$

$$\therefore x = \frac{\pi}{12} \quad \text{Fig.} \quad x = \frac{17}{12}\pi$$

21)
$$x = \frac{\pi}{12}$$
 $\oplus \mathbb{L}$ $x = \frac{5}{12}\pi$ $\oplus \mathbb{L}$ $x = \frac{13}{12}\pi$ $\oplus \mathbb{L}$ $x = \frac{17}{12}\pi$

$$\Rightarrow \sin(2x+\pi) = -\frac{1}{2}$$
에서

 $2x+\pi=t$ 로 놓으면 $\pi \leq t < 5\pi$ 이고, $\sin t = -\frac{1}{2}$ 의

근은 함수 $y = \sin t$ 의 그래프와 직선 $y = -\frac{1}{2}$ 의

교점의 t좌표이므로

$$t = \frac{7}{6}\pi \quad \text{EL} \quad t = \frac{11}{6}\pi \quad \text{EL} \quad t = \frac{19}{6}\pi$$

또는
$$t = \frac{23}{6}\pi$$

$$\therefore x = \frac{\pi}{12} \quad \text{EL} \quad x = \frac{5}{12} \quad \text{EL} \quad x = \frac{13}{12}\pi$$

또는
$$x = \frac{17}{12}\pi$$

22)
$$x = 0$$
 또는 $x = \frac{\pi}{3}$ 또는 $x = \pi$ 또는 $x = \frac{5}{3}\pi$

23)
$$x = \frac{\pi}{3}$$
 또는 $x = \frac{2}{3}\pi$ 또는 $x = \frac{4}{3}\pi$ 또는 $x = \frac{5}{3}\pi$

$$\Rightarrow \tan^2 x - 3 = 0$$
에서 $\tan x = t$ 로 놓으면

$$t^2 - 3 = 0$$
, $(t + \sqrt{3})(t - \sqrt{3}) = 0$

$$\therefore t = -\sqrt{3} \quad \text{£} \stackrel{\vdash}{\vdash} t = \sqrt{3}$$

즉,
$$\tan x = -\sqrt{3}$$
 또는 $\tan x = \sqrt{3}$

(i)
$$\tan x = -\sqrt{3}$$
일 때, $x = \frac{2}{3}\pi$ 또는 $x = \frac{5}{3}\pi$

(ii)
$$\tan x = \sqrt{3}$$
 일 때, $x = \frac{\pi}{3}$ 또는 $x = \frac{4}{3}\pi$

(i), (ii)에서
$$x = \frac{\pi}{3}$$
 또는 $x = \frac{2}{3}\pi$ 또는 $x = \frac{4}{3}\pi$

또는
$$x = \frac{5}{3}\pi$$

24)
$$x = 0$$
 또는 $x = \pi$

$$\Rightarrow \cos^2 x - 1 = 0$$
 에서 $\cos x = t$ 로 놓으면

$$-1 \le t \le 1$$
 \bigcirc $\boxed{1}$ $t^2 - 1 = 0$, $(t+1)(t-1) = 0$

즉,
$$\cos x = -1$$
 또는 $\cos x = 1$

(i)
$$\cos x = -1$$
일 때, $x = \pi$

(ii)
$$\cos x = 1$$
일 때, $x = 0$

(i), (ii)에서
$$x=0$$
 또는 $x=\pi$

25)
$$x = \frac{\pi}{6}$$
 또는 $x = \frac{5}{6}\pi$ 또는 $x = \frac{7}{6}\pi$

$$\underline{\mathbf{F}} = \frac{11}{6}\pi$$

$$\Rightarrow 3 \sin^2 x - \cos^2 x = 0$$
 에서 $\cos^2 x = 1 - \sin^2 x$ 이므로 $4 \sin^2 x - 1 = 0$

$$\sin x = t$$
로 놓으면 $-1 \le t \le 1$ 이고,

$$4t^2-1=0$$
, $(2t+1)(2t-1)=0$

$$\therefore t = -\frac{1}{2} + \frac{1}{2}$$

$$\stackrel{\triangle}{\neg}$$
, $\sin x = -\frac{1}{2}$ $\stackrel{\triangle}{=}$ $\sin x = \frac{1}{2}$

(i)
$$\sin x = -\frac{1}{2}$$
일 때, $x = \frac{7}{6}\pi$ 또는 $x = \frac{11}{6}\pi$

(ii)
$$\sin x = \frac{1}{2}$$
일 때, $x = \frac{\pi}{6}$ 또는 $x = \frac{5}{6}\pi$

(i), (ii)에서
$$x=\frac{\pi}{6}$$
 또는 $x=\frac{5}{6}\pi$ 또는 $x=\frac{7}{6}\pi$

$$\underline{\mathbf{F}} = \frac{11}{6}\pi$$

26)
$$x = \frac{\pi}{3}$$
 또는 $x = \frac{\pi}{2}$ 또는 $x = \frac{3}{2}\pi$ 또는 $x = \frac{5}{3}\pi$

$$\Rightarrow 2\cos^2 x - \cos x = 0$$

$$\cos x(2\cos x - 1) = 0$$

$$\cos x = 0$$
 $\pm \frac{1}{2}$ $\cos x = \frac{1}{2}$

$$0 \le x < 2\pi$$
에서

(i)
$$\cos x = 0$$
이면 $x = \frac{\pi}{2}$ 또는 $x = \frac{3}{2}\pi$

(ii)
$$\cos x = \frac{1}{2}$$
이면 $x = \frac{\pi}{3}$ 또는 $x = \frac{5}{3}\pi$

$$\therefore x = \frac{\pi}{3} \quad \text{E-} \quad x = \frac{\pi}{2} \quad \text{E-} \quad x = \frac{3}{2}\pi$$

$$\text{E-} \quad x = \frac{5}{3}\pi$$

27)
$$x = \frac{2}{3}\pi$$
 또는 $x = \pi$ 또는 $x = \frac{4}{3}\pi$

$$\therefore t = -\frac{1}{2} \stackrel{\square}{+} t = -1$$

즉,
$$\cos x = -\frac{1}{2}$$
 또는 $\cos x = -1$

(i)
$$\cos x = -\frac{1}{2}$$
 일 때, $x = \frac{2}{3}\pi$ 또는 $x = \frac{4}{3}\pi$

(ii)
$$\cos x = -1$$
일 때, $x = \pi$

(i), (ii)에서
$$x = \frac{2}{3}\pi$$
 또는 $x = \pi$ 또는 $x = \frac{4}{3}\pi$

28)
$$x = \frac{\pi}{2}$$
 또는 $\frac{\pi}{6}$ 또는 $x = \frac{11}{6}$

$$\Rightarrow$$
 $2\sin^2 x - \sin x - 1 = 0$ 에서 $\sin x = t$ 로 놓으면 $-1 \le t \le 1$ 이고, $2t^2 - t - 1 = 0$, $(2t+1)(t-1) = 0$

$$\therefore t = -\frac{1}{2} \ \underline{\Xi} \ \underline{t} = 1$$

(i)
$$\sin x = -\frac{1}{2}$$
일 때, $x = \frac{7}{6}\pi$ 또는 $x = \frac{11}{6}\pi$

(ii)
$$\sin x = 1$$
일 때, $x = \frac{\pi}{2}$

(i), (ii)에서
$$x = \frac{\pi}{2}$$
 또는 $\frac{7}{6}\pi$ 또는 $x = \frac{11}{6}\pi$

29)
$$x = \frac{\pi}{6}$$
 또는 $x = \frac{5}{6}\pi$ 또는 $x = \frac{3}{2}\pi$

30)
$$x = \frac{\pi}{6}$$
 $\pm \frac{\pi}{2}$ $x = \frac{\pi}{2}$ $\pm \frac{\pi}{2}$ $x = \frac{5}{6}\pi$

$$\Rightarrow \sin^2 x + \cos^2 x = 1$$
이므로

$$2(1-\sin^2 x) + 3\sin x - 3 = 0$$

$$2\sin^2 x - 3\sin x + 1 = 0$$

$$(2 \sin x - 1)(\sin x - 1) = 0$$

$$\therefore \sin x = \frac{1}{2}$$
 또는 $\sin x = 1$

$$0 \le x < 2\pi$$
에서

(i)
$$\sin x = \frac{1}{2}$$
일 때, $x = \frac{\pi}{6}$ 또는 $x = \frac{5}{6}\pi$

(ii)
$$\sin x = 1$$
일 때, $x = \frac{\pi}{2}$

$$\therefore x = \frac{\pi}{6} \quad \text{ET} \quad x = \frac{\pi}{2} \quad \text{ET} \quad x = \frac{5}{6}\pi$$

31)
$$x = \frac{\pi}{6}$$
 또는 $x = \frac{5}{6}\pi$ 또는 $x = \frac{3}{2}\pi$

$$\Rightarrow$$
 $-2\cos^2 x + \sin x + 1 = 0$ 에서 $\cos^2 x = 1 - \sin^2 x$ 이
므로 $2\sin^2 x + \sin x - 1 = 0$
 $\sin x = t$ 로 놓으면 $-1 \le t \le 1$ 이고,

$$2t^2+t-1=0$$
, $2(t+1)\left(t-\frac{1}{2}\right)=0$

∴
$$t=-1$$
 또는 $t=\frac{1}{2}$

즉,
$$\sin x = -1$$
 또는 $\sin x = \frac{1}{2}$

(i)
$$\sin x = -1$$
일 때, $x = \frac{3}{2}\pi$

(ii)
$$\sin x = \frac{1}{2}$$
일 때, $x = \frac{\pi}{6}$ 또는 $x = \frac{5}{6}\pi$

(i),(ii)에서
$$x=\frac{\pi}{6}$$
 또는 $x=\frac{5}{6}\pi$ 또는 $x=\frac{3}{2}\pi$

32)
$$x = \frac{7}{6}\pi$$
 $\pm \frac{11}{6}\pi$

$$ightharpoonup$$
 주어진 삼각방정식은 $(2\sin x + 1)(\sin x - 2) = 0$ 이고 $-1 \le \sin x \le 1$ 이므로 $\sin x = -\frac{1}{2}$ 을 만족하는 x 를 구한다.

$$0 \leq x \leq 2\pi$$
에서 $\sin x = -\frac{1}{2}$ 을 만족하는 $x = \frac{7}{6}\pi$,

$$\frac{11}{6}\pi$$
이다.

33)
$$x = 0$$
 또는 $x = \frac{\pi}{2}$ 또는 $x = \pi$

$$\cos^2 x + \sin x - 1 = 0$$
 에서 $\cos^2 x = 1 - \sin^2 x$ 이므로 $-\sin^2 x + \sin x = 0$ $\sin x = t$ 로 놓으면 $-1 \le t \le 1$ 이고, $-t^2 + t = 0$, $t(t-1) = 0$

즉,
$$\sin x = 0$$
 또는 $\sin x = 1$

(i)
$$\sin x = 0$$
일 때, $x = 0$ 또는 $x = \pi$

(ii)
$$\sin x = 1$$
일 때, $x = \frac{\pi}{2}$

(i), (ii)에서
$$x=0$$
 또는 $x=\frac{\pi}{2}$ 또는 $x=\pi$

34)
$$x = \frac{\pi}{4}$$
 또는 $x = \frac{2}{3}\pi$

또는
$$x = \frac{5}{4}\pi$$
 또는 $x = \frac{5}{3}\pi$

$$\Rightarrow \tan^2 x - (1 - \sqrt{3}) \tan x - \sqrt{3} = 0$$
$$(\tan x + \sqrt{3})(\tan x - 1) = 0$$

∴
$$\tan x = -\sqrt{3}$$
 또는 $\tan x = 1$

$$0 \le x < 2\pi$$
에서

(i) tan
$$x=-\sqrt{3}$$
일 때, $x=\frac{2}{3}\pi$ 또는 $x=\frac{5}{3}\pi$

(ii)
$$\tan x = 1$$
일 때, $x = \frac{\pi}{4}$ 또는 $x = \frac{5}{4}\pi$

$$\therefore x = \frac{\pi}{4} \quad \text{ET} \quad x = \frac{2}{3}\pi \quad \text{ET} \quad x = \frac{5}{4}\pi$$

$$\text{ET} \quad x = \frac{5}{2}\pi$$

35)
$$\pi$$

$$\sin x=rac{1}{2}\ (0\leq x<2\pi)$$
을 만족하는 x 의 값은 $x=rac{\pi}{6}$ 또는 $x=rac{5}{6}\pi$ 따라서 두 근의 합은 π 이다.

36) 2π

$$\Rightarrow 0 \le x < 2\pi$$
에서 $\cos x = \frac{\sqrt{3}}{2}$ 를 만족하는 $x = \frac{\pi}{6}$ 또는 $x = 2\pi - \frac{\pi}{6} = \frac{11\pi}{6}$ $\therefore \frac{11\pi}{6} + \frac{1}{6}\pi = 2\pi$

38)
$$\frac{8}{3}\pi$$

39)
$$\frac{7}{2}\pi$$

$$2\cos^2 x + \sin x - 1 = 0$$

$$2(1 - \sin^2 x) + \sin x - 1 = 0$$

$$2 - 2\sin^2 x + \sin x - 1 = 0$$

$$2\sin^2 x - \sin x - 1 = 0$$

$$(2\sin x + 1)(\sin x - 1) = 0$$

$$\sin x = -\frac{1}{2} \text{ 또는 } \sin x = 1$$

$$\sin x = -\frac{1}{2} \text{ 에서 } x = \frac{7}{6}\pi \text{ 또는 } x = \frac{11}{6}\pi$$

$$\sin x = 1 \text{ 에서 } x = \frac{\pi}{2}$$
 따라서 모든 x 의 합은 $\frac{7}{6}\pi + \frac{11}{6}\pi + \frac{\pi}{2} = \frac{7}{2}\pi$

40) 3π

$$\Rightarrow$$
 $2\sin x \cos x - \sin x = 0$, $\sin x (2\cos x - 1) = 0$ $\sin x = 0$ 또는 $\cos x = \frac{1}{2}$ $\sin x = 0$ 에서 $x = 0$ 또는 $x = \pi$ $\cos x = \frac{1}{2}$ 에서 $x = \frac{\pi}{3}$ 또는 $\frac{5}{3}\pi$ 따라서 모든 x 의 합은 $0 + \pi + \frac{1}{3}\pi + \frac{5}{3}\pi = 3\pi$

41) 3π

$$\Rightarrow 2\cos\theta = \frac{\sqrt{3}}{\tan\theta}, \ 2\cos\theta - \frac{\sqrt{3}\cos\theta}{\sin\theta} = 0$$
$$\cos\theta \left(2 - \frac{\sqrt{3}}{\sin\theta}\right) = 0$$

$$\therefore \cos\theta = 0 \quad \text{EL} \quad \sin\theta = \frac{\sqrt{3}}{2}$$

(i)
$$\cos\theta = 0$$
일 때, $\theta = \frac{\pi}{2}$ 또는 $\theta = \frac{3}{2}\pi$

(ii)
$$\sin\theta = \frac{\sqrt{3}}{2}$$
일 때, $\theta = \frac{\pi}{3}$ 또는 $\theta = \frac{2}{3}\pi$

(i), (ii)에서 모든 근의 합은 3π 이다.

42) 4π

$$\Rightarrow \sin x = \pm \sqrt{\frac{2}{3}}$$
 가 되는 지점을 구하면 된다. $y = \sin x$ 의 그래프를 그리고 이를 표시하자.

 $a_1 + a_2 = \pi$, $a_3 + a_4 = 3\pi$ 이므로 합은 4π 이다.

43) 4π

같다.

다 주어진 범위에서
$$-1 \le \sin x \le 1$$
이므로 $-\pi \le \pi \sin x \le \pi$ 이므로 $\cos(\pi \sin x) = -\frac{1}{2}$
$$\therefore \pi \sin x = \frac{2}{3}\pi \quad \text{또는 } \pi \sin x = -\frac{2}{3}\pi$$
 따라서 $\sin x = \frac{2}{3}, -\frac{2}{3}$ 를 만족하는 해는 그림과

$$\frac{\alpha+\beta}{2}=\frac{\pi}{2}$$
, $\frac{\gamma+\delta}{2}=\frac{3}{2}\pi$ 이므로 모든 해의 합은 $\pi+3\pi=4\pi$ 이다.

44) 3π

$$\cos x + 2\sin(\pi - x)\cos(\pi + x) = 0$$

$$\cos x + 2\sin x(-\cos x) = 0$$

$$\cos x(1 - 2\sin x) = 0$$

$$\cos x = 0 \quad \text{또는} \quad \sin x = \frac{1}{2}$$

$$\cos x = 0 \quad \text{에서} \quad x = \frac{\pi}{2} \quad \text{또는} \quad \frac{3}{2}\pi$$

$$\sin x = \frac{1}{2} \quad \text{에서} \quad x = \frac{\pi}{6} \quad \text{또는} \quad \frac{5}{6}\pi$$
 모든 실수 x 의 합은
$$\frac{\pi}{2} + \frac{3}{2}\pi + \frac{\pi}{6} + \frac{5}{6}\pi = 2\pi + \pi = 3\pi$$

45) 2π

다
$$\cos(\cos x) = 1$$
일 때, $\cos x = 0$ 또는 $\cos x = 2n\pi(n$ 은 정수)이므로 성립하는 경우는 $\cos x = 0$ 에서 $x = \frac{\pi}{2}$ 또는 $x = \frac{3}{2}\pi$ 따라서 모든 x 의 합은 $\frac{\pi}{2} + \frac{3}{2}\pi = 2\pi$ 이다.

46) 4π

47)
$$x = -\frac{\pi}{2}$$

다
$$-\pi < x < \pi$$
에서 $-\frac{\pi}{2} < \frac{x}{2} < \frac{\pi}{2}$ 이므로 $\cos \frac{x}{2} \neq 0$ 이때, $\sin \frac{x}{2} + \cos \frac{x}{2} = 0$, 즉 $\sin \frac{x}{2} = -\cos \frac{x}{2}$ 에서 $\frac{x}{2} = t$ 로 놓으면
$$\sin t = -\cos t, \ \frac{\sin t}{\cos t} = -1 \qquad \therefore \ \tan t = -1$$

 $\tan t = -1$ 의 근은 함수 $y = \tan t \left(-\frac{\pi}{2} < t < \frac{\pi}{2} \right)$ 의 그래프와 직선 y=-1의 교점의 t좌표이므로 $t = -\frac{\pi}{4}$ $\therefore x = -\frac{\pi}{2}$

48)
$$x = -\frac{\pi}{2}$$

 \Rightarrow $\tan\left(\frac{1}{3}x+\frac{\pi}{2}\right)=\sqrt{3}$ 에서 $\frac{1}{3}x+\frac{\pi}{2}=t$ 로 치환하면

한편, $-\pi < x < \pi$ 이므로 $\frac{\pi}{6} < t < \frac{5}{6}\pi$ …… \bigcirc

 \bigcirc 의 범위에서 $y=\tan t$ 의 그래프와 직선 $y=\sqrt{3}$ 의 교점의 t좌표를 구하면 $\frac{\pi}{3}$ 이므로

$$\frac{1}{3}x + \frac{\pi}{2} = \frac{\pi}{3} \qquad \therefore \quad x = -\frac{\pi}{2}$$

$$\therefore x = -\frac{\pi}{2}$$

49) 10π

 \Rightarrow 주어진 삼각방정식은 $(2\sin x + 1)(\sin x - 2) = 0$ 이고 $-1 \le \sin x \le 1$ 이므로 $\sin x = -\frac{1}{2}$ 을 만족하는 x는 $0 \leq x \leq 4\pi$ 에서 $\frac{7}{6}\pi$, $\frac{11}{6}\pi$, $\frac{19}{6}\pi$, $\frac{23}{6}\pi$ 이므 로 모든 해의 합은 10π이다

50)
$$x = \frac{\pi}{2}$$
 또는 $x = \frac{5\pi}{2}$ 또는 $x = \frac{7\pi}{6}$
 또는 $x = \frac{11}{6}\pi$

다
$$2\sin^2 x - \sin x - 1 = 0$$
 $(\sin x - 1)(2\sin x + 1) = 0$ 이므로 $\sin x = 1$ 또는 $\sin x = -\frac{1}{2}$ 따라서 $0 \le x < 3\pi$ 일 때, $\sin x = 1$ 에서 $x = \frac{\pi}{2}$ 또는 $x = \frac{5}{2}\pi$ $\sin x = -\frac{1}{2}$ 에서 $x = \frac{7}{6}\pi$ 또는 $x = \frac{11}{6}\pi$

$$\Leftrightarrow \cos\left(3x - \frac{\pi}{2}\right) = \sin 3x$$
이므로 $\sin 3x = \frac{\sqrt{3}}{2}$ $3x = t$ 라 하면 $0 \le x < \pi$ 일 때, $0 \le t < 3\pi$ 이고,

주어진 방정식은 $\sin t = \frac{\sqrt{3}}{2}$ 이므로 $t = \frac{\pi}{3}$ $\underline{\mathbf{E}}$ $\underline{\mathbf{E}}$ $t = \frac{2}{3}\pi$ $\underline{\mathbf{E}}$ $\underline{\mathbf{E}}$ $t = \frac{7}{3}\pi$ $\underline{\mathbf{E}}$ $\underline{\mathbf{E}}$ $t = \frac{8}{3}\pi$ $rac{4\pi}{9}$ $x = \frac{\pi}{9}$ $x = \frac{\pi}{9}$ $x = \frac{2}{9}$ $x = \frac{7}{9}$ $\underline{\mathfrak{L}} = \frac{8}{9}\pi$ 따라서 모든 근의 합은 2π 이다.

 \Rightarrow $\sin \pi x = \frac{1}{3}x$ 의 실근의 개수는 $y = \sin \pi x$ 의 그래 프와 직선 $y = \frac{1}{3}x$ 의 교점의 개수와 같다. $y = \sin \pi x$ 의 주기는 $\frac{2\pi}{\pi} = 2$ 이므로 $y = \sin \pi x$ 와 $y = \frac{1}{2}x$ 의 그래프는 다음과 같다.

따라서 그림에서 두 그래프의 교점이 7개이므로 $\sin \pi x = \frac{1}{3}x$ 의 실근의 개수는 7이다.

53) 2

 \Rightarrow $\cos \pi x = |x|$ 의 실근의 개수는 $y = \cos \pi x$ 의 그래 프와 y=|x|의 그래프의 교점의 개수와 같다. $y = \cos \pi x$ 의 주기는 $\frac{2\pi}{\pi} = 2$ 이므로 $y = \cos \pi x$ 와 y = |x|의 그래프는 다음과 같다.

따라서 그림에서 두 그래프의 교점이 2개이므로 $\cos \pi x = |x|$ 의 실근의 개수는 2이다.

54) 6

위의 그림과 같이 두 함수 $y = \cos \pi x$, $y = \frac{1}{3}|x|$ 의 그래프의 교점의 개수는 6이므로 방정식 $\cos \pi x = \frac{1}{3}|x|$ 의 서로 다른 실근의 개수는 6

55) 3

위의 그림과 같이 두 함수 $y = \sin \pi x$, $y = \frac{1}{2}x$ 의 그래프의 교점의 개수는 3이므로 방정식 $\sin \pi x = \frac{1}{2}x$ 의 서로 다른 실근의 개수는 3이다.

56) 5

57) 9

 \Rightarrow 주어진 방정식의 해의 개수는 두 함수 $y_1 = \log_2 x, \ y_2 = -3\sin\pi x$ 의 교점 개수와 같다.

교점 개수는 그림에서 9개이다.

58) $-4 \le k \le 5$

따라서 주어진 방정식이 실근을 가지려면 $y=-4\cos^2x+4\cos x+4$ 와 직선 y=k의 교점이 존 재해야한다.

 $\cos x = t$ 라 하면 $-1 \le t \le 1$ 이고

$$y = -4t^{2} + 4t + 4$$
$$= -4\left(t - \frac{1}{2}\right)^{2} + 5$$

따라서 $t = \frac{1}{2}$ 일 때, 최댓값 5이고, t = -1일 때, 최솟값이 -4이므로

주어진 방정식이 실근을 가지려면 $-4 \le k \le 5$

59)
$$-4 \le k \le 4$$

 $\Rightarrow \sin^2 x - 4\cos x + k = 0 \text{ odd } k \text{ }$ $(1 - \cos^2 x) - 4\cos x + k = 0$

$$\cos^2 x + 4\cos x - 1 = k$$

함수 $y = \cos^2 x + 4\cos x - 1$ 이라고 하고 $\cos x = t$ 로 치환하면 $-1 \le t \le 1$ 이고

$$y=t^2+4t-1=(t+2)^2-5$$

이때, t=1일 때, 최댓값 4, t=-1일 때, 최솟값 -4를 가지므로 주어진 방정식이 실근을 가지기 위한 실수 k의 값의 범위는 $-4 \le k \le 4$

60) $-3 \le k \le 1$

 $\cos^2 x - 2\cos x + k = 0$ 에서

 $-\cos^2 x + 2\cos x = k$

함수 $y = -\cos^2 x + 2\cos x$ 라고 하고 $\cos x = t$ 로 치환하면 $-1 \le t \le 1$ 이고

$$y = -t^2 + 2t = -(t-1)^2 + 1$$

이때, t=1일 때, 최댓값 1,

t=-1일 때, 최솟값 -3을 가지므로 주어진 방정식이 실근을 가지기 위한 실수 k의 값의 범위는 $-3 \le k \le 1$

61) k = -1 $\mathfrak{E} = k = 1$

 $\Rightarrow 2\cos^2 x + (2k+1)\sin x - k - 2 = 0$

$$2(1-\sin^2 x)+(2k+1)\sin x-k-2=0$$

$$2\sin^2 x - (2k+1)\sin x + k = 0$$

$$(2\sin x - 1)(\sin x - k) = 0$$

$$\therefore \sin x = \frac{1}{2}$$
 $\oplus \pm \sin x = k$

주어진 방정식이 서로 다른 세 실근을 가져야 하므로 k=-1 또는 k=1

62) π

 $\Rightarrow x^2 + 2x - \cos \theta = 0$ 의 판별식을 D라 하면

$$\frac{D}{4} = 1 + \cos \theta = 0 \qquad \therefore \cos \theta = -1$$

 $\cos\theta = -1$ 의 근은 함수 $y = \cos\theta~(0 \le \theta < 2\pi)$ 의 그래프와 직선 y=-1의 교점의 θ 좌표이므로 $\theta = \pi$