Teoría de Códigos Tarea 1

Rubí Rojas Tania Michelle

3 de abril de 2020

1. Construye el campo \mathbb{F}_{16} . También da sus tablas de suma y multiplicación.

Solución: En el anillo \mathbb{Z}_2 existe el polinomio irreducible $f(x) = x^4 + x + 1$. Tenemos que

$$\mathbb{F}_{16} = \mathbb{Z}_2[x]/(x^4 + x + 1) \tag{1}$$

donde los elementos de \mathbb{F}_{16} son:

$$\mathbb{F}_{16} = \{ax^3 + bx^2 + cx + d : a, b, c, d \in \mathbb{Z}_2\}$$

$$= \{0, 1, x, x + 1, x^2, x^2 + 1, x^2 + x, x^2 + x + 1, x^3, x^3 + 1, x^3 + x, x^3 + x + 1, x^3 + x^2, x^3 + x^2 + x, x^3 + x^2 + 1, x^3 + x^2 + x + 1\}$$

Etiquetamos cada uno de los elementos de \mathbb{F}_{16} de la siguiente manera:

$$g_0(x) = 0$$

$$g_0(x) = 0$$

 $g_1(x) = 1$

$$g_2(x) = x$$

$$g_3(x) = x + 1$$

$$g_4(x) = x^2$$

$$g_5(x) = x^2 + 1$$

$$g_6(x) = x^2 + x$$

$$g_7(x) = x^2 + x + 1$$

$$g_8(x) = x^3$$

$$g_9(x) = x^3 + 1$$

$$g_{10}(x) = x^3 + x$$

$$g_{11}(x) = x^3 + x + 1$$

$$g_{12}(x) = x^3 + x^2$$

$$q_{13}(x) = x^3 + x^2 + x$$

$$g_{14}(x) = x^3 + x^2 + 1$$

$$g_{15}(x) = x^3 + x^2 + x + 1$$

Su respectiva tabla de suma es:

+	g_0	g_1	g_2	g_3	g_4	g_5	g_6	g_7	g_8	g_9	g_{10}	g_{11}	g_{12}	g_{13}	g_{14}	g_{15}
g_0	g_0	g_1	g_2	g_3	g_4	g_5	g_6	g_7	g_8	g_9	g_{10}	g_{11}	g_{12}	g_{13}	g_{14}	g_{15}
g_1	g_1	g_0	g_3	g_2	g_5	g_4	g_7	g_6	g_9	g_8	g_{11}	g_{10}	g_{14}	g_{15}	g_{12}	g_{13}
g_2	g_2	g_3	g_0	g_1	g_6	g_7	g_4	g_5	g_{10}	g_{11}	g_8	g_9	g_{13}	g_{12}	g_{15}	g_{14}
g_3	g_3	g_2	g_1	g_0	g_7	g_6	g_5	g_4	g_{11}	g_{10}	g_9	g_8	g_{15}	g_{14}	g_{13}	g_{12}
g_4	g_4	g_5	g_6	g_7	g_0	g_1	g_2	g_3	g_{12}	g_{14}	g_{13}	g_{15}	g_8	g_{10}	g_9	g_{11}
g_5	g_5	g_4	g_7	g_6	g_1	g_0	g_3	g_2	g_{14}	g_{12}	g_{15}	g_{13}	g_9	g_{11}	g_8	g_{10}
g_6	g_6	g_7	g_4	g_5	g_2	g_3	g_0	g_1	g_{13}	g_{15}	g_{12}	g_{14}	g_{10}	g_8	g_{11}	g_9
g_7	g_7	g_6	g_5	g_4	g_3	g_2	g_1	g_0	g_{15}	g_{13}	g_{14}	g_{12}	g_{11}	g_9	g_{10}	g_8
g_8	g_8	g_9	g_{10}	g_{11}	g_{12}	g_{14}	g_{13}	g_{15}	g_0	g_1	g_2	g_3	g_4	g_6	g_5	g_7
g_9	g_9	g_8	g_{11}	g_{10}	g_{14}	g_{12}	g_{15}	g_{13}	g_1	g_0	g_3	g_2	g_5	g_7	g_4	g_6
g_{10}	g_{10}	g_{11}	g_8	g_9	g_{13}	g_{15}	g_{12}	g_{14}	g_2	g_3	g_0	g_1	g_6	g_4	g_7	g_5
g_{11}	g_{11}	g_{10}	g_9	g_8	g_{15}	g_{13}	g_{14}	g_{12}	g_3	g_2	g_1	g_0	g_7	g_5	g_6	g_4
g_{12}	g_{12}	g_{14}	g_{13}	g_{15}	g_8	g_9	g_{10}	g_{11}	g_4	g_5	g_6	g_7	g_0	g_2	g_1	g_3
g_{13}	g_{13}	g_{15}	g_{12}	g_{14}	g_{10}	g_{11}	g_8	g_9	g_6	g_7	g_4	g_5	g_2	g_0	g_3	g_1
g_{14}	g_{14}	g_{12}	g_{15}	g_{13}	g_9	g_8	g_{11}	g_{10}	g_5	g_4	g_7	g_6	g_1	g_3	g_0	g_2
g_{15}	g_{15}	g_{13}	g_{14}	g_{12}	g_{11}	g_{10}	g_9	g_8	g_7	g_6	g_5	g_4	g_3	g_1	g_2	g_0

mientras que su tabla de multiplicación es:

•	g_0	g_1	g_2	g_3	g_4	g_5	g_6	g_7	g_8	g_9	g_{10}	g_{11}	g_{12}	g_{13}	g_{14}	g_{15}
g_0	g_0	g_0	g_0	g_0	g_0	g_0	g_0	g_0	g_0	g_0	g_0	g_0	g_0	g_0	g_0	g_0
g_1	g_0	g_1	g_2	g_3	g_4	g_5	g_6	g_7	g_8	g_9	g_{10}	g_{11}	g_{12}	g_{13}	g_{14}	g_{15}
g_2	g_0	g_2	g_4	g_6	g_8	g_{10}	g_{12}	g_{13}	g_3	g_1	g_7	g_5	g_{11}	g_{15}	g_9	g_{14}
g_3	g_0	g_3	g_6	g_5	g_{12}	g_{15}	g_{10}	g_9	g_{11}	g_8	g_{14}	g_{13}	g_7	g_1	g_4	g_2
g_4	g_0	g_4	g_8	g_{12}	g_3	g_7	g_{11}	g_{15}	g_6	g_2	g_{13}	g_{10}	g_5	g_{14}	g_1	g_9
g_5	g_0	g_5	g_{10}	g_{15}	g_7	g_2	g_{14}	g_8	g_{13}	g_{11}	g_4	g_1	g_9	g_3	g_{12}	g_6
g_6	g_0	g_6	g_{12}	g_{10}	g_{11}	g_{14}	g_7	g_1	g_5	g_3	g_9	g_{15}	g_{13}	g_2	g_8	g_4
g_7	g_0	g_7	g_{13}	g_9	g_{15}	g_8	g_1	g_6	g_{14}	g_{10}	g_3	g_4	g_2	g_{12}	g_5	g_{11}
g_8	g_0	g_8	g_3	g_{11}	g_6	g_{13}	g_5	g_{14}	g_{12}	g_4	g_{15}	g_7	g_{10}	g_9	g_2	g_1
g_9	g_0	g_9	g_1	g_8	g_2	g_{11}	g_3	g_{10}	g_4	g_{14}	g_5	g_{12}	g_6	g_7	g_{15}	g_{13}
g_{10}	g_0	g_{10}	g_7	g_{14}	g_{13}	g_4	g_9	g_3	g_{15}	g_5	g_8	g_2	g_1	g_6	g_{11}	g_{12}
g_{11}	g_0	g_{11}	g_5	g_{13}	g_{10}	g_1	g_{15}	g_4	g_7	g_{12}	g_2	g_9	g_{14}	g_8	g_6	g_3
g_{12}	g_0	g_{12}	g_{11}	g_7	g_5	g_9	g_{13}	g_2	g_{10}	g_6	g_1	g_{14}	g_{15}	g_4	g_3	g_8
g_{13}	g_0	g_{13}	g_{15}	g_1	g_{14}	g_3	g_2	g_{12}	g_9	g_7	g_6	g_8	g_4	g_{11}	g_{10}	g_5
g_{14}	g_0	g_{14}	g_9	g_4	g_1	g_{12}	g_8	g_5	g_2	g_{15}	g_{11}	g_6	g_3	g_{10}	g_{13}	g_7
g_{15}	g_0	g_{15}	g_{14}	g_2	g_9	g_6	g_4	g_{11}	g_1	g_{13}	g_{12}	g_3	g_8	g_5	g_7	g_{10}

2. Construye una matriz generadora para el código RS(4,11).

Solución: Una matriz generadora para RS(4,11) es

- 3. Supón que recibes la palabra $y=(10,1,2,2,2,10,7,2,9,3,7) \in \mathbb{F}_{11}^{11}$. Decodifica la palabra usando el algoritmo de Gao, sabiendo que la palabra es del código RS(4,11).
- 4. Construye una base para \mathcal{L}_k de tal manera que la matriz generadora del código RS(k,q) sea de la forma

$$\begin{bmatrix} I_k & P \end{bmatrix} \tag{2}$$

donde I_k es la matriz identidad $k \times k$ y P es una matriz $k \times (q - k)$.

5. Demuestra que el número de subespacios vectoriales de \mathbb{F}_q^n de dimensión i es:

$$\mathcal{G}(n,i) = \frac{(q^n - 1)(q^n - q)\cdots(q^n - q^{i-1})}{(q^i - 1)(q^i - q)\cdots(q^i - q^{i-1})}$$
(3)

para i = 1, ..., n.

6. Demuestra que $RS(k,q)_q^{\top} = RS(q-k,q)$.

7. Demuestra que si C es un código MDS, entonces C^{\top} también es MDS.

Demostración. Supongamos que C es un código MDS.

8. Resuelve los siguientes ejercicios

a) Encuentra la matriz generadora G del código Simplex S(3,2). Solución: Sabemos que el código S(3,2) tiene

$$\frac{q^k - 1}{q - 1} = \frac{2^3 - 1}{2 - 1}$$
$$= \frac{8 - 1}{1}$$
$$= 7$$

subespacios de dimensión 1. Por lo tanto,

$$G = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{pmatrix}$$

b) Supongamos que un mensaje es enviado bajo el código H(3,2). Verifica si el mensaje r=1010001 es correcto.

SOLUCIÓN: Sabemos que $H(3,2) = [7,4,3]_2$ y que una matriz de verificación para H(3,2) es cualquier matriz generadora para S(3,2). Así, la matriz obtenida en el inciso anterior es una matriz de verificación para nuestro código H(3,2).

El mensaje r se puede ver como un vector

$$x = (1, 0, 1, 0, 0, 0, 1) \in \mathbb{F}_2^7$$

Ahora, calculamos el síndrome de x.

$$S(y) = G \cdot x^{t}$$

$$= \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

Como $S(y) = (0,1,0)^t \neq 0$ entonces podemos concluir que hubo errores de transmisión. Notemos que $(0,1,0)^t$ corresponde a la segunda columna de G, por lo que sabemos que la segunda coordenada es incorrecta. Por lo tanto, la palabra envíada fue

$$r' = (1, 1, 1, 0, 0, 0, 1)$$

3