Quiz 7

1.	Sei Σ ein Alphabet und $L \subseteq \Sigma^*$, dann
	$\bigcirc L \in \mathcal{L}_{ ext{RE}} \wedge L^{ ext{c}} \in \mathcal{L}_{ ext{RE}} \implies L \in \mathcal{L}_{ ext{R}}$
	$\bigcirc L \in \mathcal{L}_{\mathrm{RE}} \wedge L^{c} \in \mathcal{L}_{\mathrm{RE}} \iff L \in \mathcal{L}_{\mathrm{R}}$
	$\bigcirc L \in \mathcal{L}_{\mathrm{RE}} \wedge L^{c} \in \mathcal{L}_{\mathrm{RE}} \iff L \in \mathcal{L}_{\mathrm{R}}$
	○ Keine der Aussagen ist korrekt
2.	Sei $L = \{ \text{Kod}(M) \mid M \text{ ist eine TM die Primzahlen akzeptiert} \}$ dann gilt
	$\bigcirc \ \ L \in \mathcal{L}_{\mathrm{R}}$
	$\bigcirc \ \ L ot\in \mathcal{L}_{\mathrm{R}}$
	Begründe:
3.	Sei $L = \{ \text{Kod}(M) \mid M \text{ hält nie} \}$
	(a) Bestimme L^{c}
	(b) Zeige $L^{c} \in \mathcal{L}_{RE}$

- 4. Welche Aussagen sind korrekt? (M ist eine MTM, $n \in \mathbb{N}$, C ist eine Konfiguration)
 - $\bigcirc \ \min \{ \mathrm{Time}_{M}(x) \mid x \in \Sigma^{n} \} \ + \ \max \{ \mathrm{Time}_{M}(x) \mid x \in \Sigma^{n} \} \leq 2 \cdot \mathrm{Time}_{M}(n)$
 - $\bigcirc \ \operatorname{Space}_M(n)$ hängt von der Mächtigkeit des Arbeitsalphabetes von Mab.
 - \bigcirc Space $_{M}(n)$ hängt von der Mächtigkeit des Eingabealphabetes von Mab.
 - \bigcirc Space $_{M}(C)$ hängt nicht von der Länge des Eingabewortes ab.