MAT257 PSET 10—Question 2

Jonah Chen

Lemma 1: If $A \subset B \subset \mathbb{R}^n$, and a function $f: B \to \mathbb{R}$ where $f \ge 0$ is integrable on A and B then $\int_B f = b$, $\int_A f = a$. Then, $b \ge a$.

Proof. Let (\mathcal{U}, Φ) be an admissible open cover and partition of unity for A. Then, as A is integrable, then $\sum_{\varphi \in \Phi} \int \varphi f$ converges absolutely to a.

As $A \subset B$, there is some open cover of B, $\mathcal{V} = \mathcal{U} \cup \mathcal{W}$ where \mathcal{W} is an open cover of $B \setminus A$. Let Ψ be a partition of unity for $B \setminus A$ subordinate to \mathcal{W} . Similarly, $\chi := \Phi \cup \Psi$ is a partition of unity for B subordinate to \mathcal{V} .

Note that as $f \ge 0$, $\sum_{\psi \in \Psi} \int \psi f \ge 0$. Then, as f is also integrable on B, $\sum_{\beta \in \chi} \int \beta f$ converges absolutely to b. This sum

can be rewritten as
$$b = \sum_{\phi \in \Phi} \int \phi f + \sum_{\psi \in \Psi} \int_{B} \psi f \ge \sum_{\phi \in \Phi} \int \phi f = a.$$

Let the coordinate transformation $g(r,\theta)=(r\cos\theta,r\sin\theta)$. Let $V_1=(0,1)\times(0,2\pi)$ and $V_2=(1,\infty)\times(0,2\pi)$. Then, $g(V_1)=U_1$ and $g(V_2)=U_2$. Also, $\det(g')=r$, which is nonzero for any $x\in U_1$ or $x\in U_2$. Note that $|\det(g')|=\det(g')$ as r>0 for any $x\in U_1$ or $x\in U_2$. Also, $f\circ g=\frac{1}{r^2}$. Then, suppose these integrals exist and have a value of

$$I_1 \equiv \int_{U_1} f = \int_{V_1} (f \circ g) |\det g'| = \int_{V_1} \frac{1}{r}$$

$$I_2 \equiv \int_{U_2} f = \int_{V_2} (f \circ g) |\det g'| = \int_{V_2} \frac{1}{r}$$

Let $W_n := (2^{-n}, 1) \subset V_1$. As all W_n are jordan measureable and f is bounded on all W_n . Then, we can use Fubini's theorem to integrate on the closure of W_n to obtain the same result:

$$I_1 \equiv \int_{V_1} f \ge \int_{W_n} f = \int_{\overline{W_n}} f = \int_0^{2\pi} \mathrm{d}\theta \int_{2^{-n}}^1 \mathrm{d}r \frac{1}{r} = 2\pi n \log 2 \text{ for any } n.$$

However, for $n=1+\left\lceil \frac{I_1}{2\pi\log 2}\right\rceil$, this inequality is false. Hence, I_1 cannot exist.

Now, let $W_n := (1, 2^n) \subset V_2$. As all W_n are jordan measurable and f is bounded on all W_n . Then, we can use Fubini's theorem to integrate on the closure of W_n to obtain the same result:

$$I_2 \equiv \int_{V_2} f \ge \int_W f = \int_{\overline{W}} f = \int_0^{2\pi} d\theta \int_1^{2^n} dr \frac{1}{r} = 2\pi n \log 2$$
 for any n .

However, for $n=1+\left\lceil \frac{I_2}{2\pi\log 2} \right\rceil$, this inequality is false. Hence, I_2 cannot exist.