approximativement la loi normale $\mathcal{N}(m, \frac{\sigma^2}{125})$ avec m = 25 et $\sigma = 0.44$. Donc X suit la loi $\mathcal{N}(25; 0.039^2)$. b) La région d'acceptation du test au seuil de 5 % est

l'intervalle de fluctuation de la moyenne au seuil de $I = \left[m - u_{\alpha} \frac{\sigma}{\sqrt{n}} ; m + u_{\alpha} \frac{\sigma}{\sqrt{n}} \right]$

$$I = \left[m - u_{\alpha} \frac{\sigma}{\sqrt{n}} ; m + u_{\alpha} \frac{\sigma}{\sqrt{n}} \right]$$

$$\alpha = 0.05 \text{ donc } u_{\alpha} = 1.96$$

$$\text{et } I = \left[25 - 1.96 \times \frac{0.44}{\sqrt{125}} ; 25 + 1.96 \times \frac{0.44}{\sqrt{125}} \right]$$

donc I = [24,92; 25,08]. c) Règle de décision : on prélève un échantillon, on

détermine sa moyenne x_e ; si $x_e \in [24,92; 25,08]$, on accepte H_0 , sinon on rejette H_0 . **3.** 25,1 \notin [24,92; 25,08], l'entreprise n'a donc pas respecté son engagement, au risque de 5 %.

37 **1. a)** H_0 : m = 50; H_1 : $m \neq 50$. b) La région critique est extérieure à l'intervalle :

I = [49,02;50,98].c) On prélève un échantillon, on détermine x_a . Si $x_e \in I$ on accepte H_0 , si $x_e \notin I$ on rejette H_0 .

3. $\overline{x} = 49,2 \quad 49,2 \in I$ on accepte l'hypothèse H_0 . **38** 1. Sous l'hypothèse nulle H_0 , \overline{Y} suit la loi nor-

Donc \overline{Y} suit la loi normale de moyenne 10 et d'écarttype 0,01. **2.** $P(10 - h \le \overline{Y} \le 10 + h) = 0.95$ équivaut à :

male $\mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right)$ où $\mu = 10, \sigma = 0, 1$ et n = 100.

 $P(Y \le 10 + h) = 0.975.$ Avec la calculatrice, on obtient $h \approx 0.02$.

3. La région d'acceptation est l'intervalle :

[10 - 0.02; 10 + 0.02] soit [9.98; 10.02].

La règle de décision est donc : on prélève un échantillon de 100 boulons, on calcule la moyenne des diamètres des pieds y_e , si $y_e \in [9,98; 10,02]$,

on accepte H_0 au seuil de 5 %, sinon on rejette H_0 .

4. 10,03 \notin [9,98; 10,02], on rejette H_0 au risque de 5 % et on accepte H_1 . Au risque de 5 % les boulons du stock

ne sont pas conformes pour le diamètre de leur pied.

1. \overline{Z} suit la loi normale de moyenne $\mu = 42$ et d'écart type $\sigma = 0,25$. À l'aide de la calculatrice on obtient $h \approx 42,41$.