LAPORAN TUGAS PRAKTIKUM "BIG DATA AND PREDICTIVE ANALYSIS"

"Data Visualization"

PERTEMUAN KE:

NAMA	Muhamad Dekhsa Afnan
NIM	23.61.0245
Dosen Pengampu	Ainul Yaqin
Nama Asisten Praktikum	
Kelas	23-BCI-01

Koor Asisten Praktikum

Tanggal:

NAM.	A :		
Ttd	:		

1. Import Library

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

Imports essential Python libraries for data manipulation (pandas, numpy) and visualization (matplotlib, seaborn).

2. Import Datasets

	index	Patient Id	Age	Gender	Air Pollution		Dust Allergy	OccuPational Hazards	Genetic Risk	chronic Lung Disease	Fatigue	Weight Loss	Shortness of Breath	Wheezing	Swallowing Difficulty	Clubb of Fin
0	0	P1	33		2	4		4	3			4	2			
		P10	17						4					8	6	
2	2	P100	35		4		6			4	8		9			
		P1000	37						6		4				4	
4	4	P101	46		6	8				6			4		4	
95	995	P995	44		6					6					8	
96	996	P996	37		6	8				6	9	6				
97	997	P997	25		4		6		5	4	8		9			
98	998	P998	18		6	8				6			4		4	
99	999	P999	47	1	6	5	6	5	5	4	 8	7	9	2	1	

Reads the lung cancer dataset from a CSV file into a pandas DataFrame called df and displays its contents.

3. Data Overview

```
# Data types and missing values
   df.info()
   df.isnull().sum()
   0.0s
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 26 columns):
     Column
                                Non-Null Count
                                                 Dtype
     index
                                1000 non-null
                                                 int64
                                1000 non-null
     Patient Id
                                                 object
     Age
                                1000 non-null
                                                 int64
                                1000 non-null
     Gender
                                                 int64
     Air Pollution
                                1000 non-null
                                                 int64
     Alcohol use
                                1000 non-null
                                                 int64
     Dust Allergy
                                1000 non-null
                                                 int64
     OccuPational Hazards
                                1000 non-null
                                                 int64
     Genetic Risk
                                1000 non-null
                                                 int64
                                1000 non-null
                                                 int64
     chronic Lung Disease
     Balanced Diet
                                1000 non-null
                                                 int64
11 Obesity
                                1000 non-null
                                                 int64
12
     Smoking
                                1000 non-null
                                                 int64
     Passive Smoker
                                1000 non-null
13
                                                 int64
     Chest Pain
                                1000 non-null
                                                 int64
     Coughing of Blood
                                1000 non-null
15
                                                 int64
     Fatigue
                                1000 non-null
                                                 int64
17
    Weight Loss
                                1000 non-null
                                                 int64
     Shortness of Breath
                                1000 non-null
                                                 int64
    Wheezing
19
                                1000 non-null
                                                 int64
     Snoring
                                1000 non-null
                                                 int64
24
25
    Level
                                1000 non-null
                                                 object
dtypes: int64(24), object(2)
  mory usage: 203.3+ KB
```

df.info() shows the data types and non-null counts for each column.

df.isnull().sum() counts missing values in each column.

Displays summary statistics (mean, std, min, max, etc.) for all columns, including categorical ones.

4. Visualization

```
plt.figure(figsize=(7,5))
sns.countplot(data=df, x='Level', palette='Set2')
plt.title('Distribution of Cancer Levels')
plt.xlabel('Cancer Level')
plt.ylabel('Count')
plt.show()
```


Plots the distribution of cancer levels using a countplot for visualizing class balance.

```
plt.figure(figsize=(8,5))
    sns.boxplot(data=df, x='Level', y='Age', palette='coolwarm')
    plt.title('Age Distribution by Cancer Level')
    plt.xlabel('Cancer Level')
    plt.ylabel('Age')
    plt.show()
    ✓ 0.2s
```


Shows the age distribution for each cancer level using a boxplot.

Visualizes the distribution of genders across different cancer levels.

```
if 'Smoking' in df.columns:
    plt.figure(figsize=(7,5))
    sns.countplot(data=df, x='Smoking', hue='Level', palette='Set1')
    plt.title('Smoking Status by Cancer Level')
    plt.xlabel('Smoking Status')
    plt.ylabel('Count')
    plt.legend(title='Cancer Level')
    plt.show()
else:
    print('Smoking column not found.')
```


Shows the relationship between smoking status and cancer level, if the column exists.

```
selected_cols = ['Age', 'Air Pollution', 'Alcohol use', 'Dust Allergy', 'Genetic Risk', 'Level']
existing_cols = [col for col in selected_cols if col in df.columns]
if len(existing_cols) > 1:
    sns.pairplot(df[existing_cols], hue='Level', palette='husl')
    plt.suptitle('Pairplot of Selected Features', y=1.02)
    plt.show()
else:
    print('Not enough columns for pairplot.')

    4.5s
```


Creates a pairplot for selected features to visualize pairwise relationships, colored by cancer level.