Лабораторная работа №1 ИЗМЕРЕНИЕ СОПРОТИВЛЕНИЯ РЕЗИСТОРОВ ПОСТОЯННОГО ТОКА РАЗЛИЧНЫМИ МЕТОДАМИ

- Цель работы: ознакомление с некоторыми методами измерения активного сопротивления и приборами, служащими для этой цели; приобретение практических навыков измерения сопротивлений.
- Схема:

Рис. 1.3. Измерение сопротивления методом вольтметра-амперметра

• Измерения (в порядке проведения экспериментов, слева направо):

U,B	I,мА	Rx,Ом	U,B	I, MA	Рх,Ом	U,B	I,mA	R1,Ом	U,B	I,мA	R1,OM
0,3	0,4	750	0,36	0,3	1200	0,03	0,1	300	0,03	0,1	300
0,78	0,7	1114	0,76	0,6	1267	0,32	0,5	640	0,32	0,5	640
1,23	1	1230	1,18	1	1180	0,72	1,1	655	0,71	1,1	645
1,7	1,5	1133	1,62	1,4	1157	1,15	1,8	639	1,13	1,7	665
2,15	1,8	1194	2,08	1,8	1156	1,6	2,5	640	1,56	2,4	650
2,61	2,3	1135	2,53	2,2	1150	2,04	3,1	658	1,99	3,1	642
3,06	2,7	1133	2,99	2,6	1150	2,52	3,9	646	2,44	3,8	642
3,52	3,1	1135	3,45	3	1150	2,99	4,6	650	2,89	4,5	642
3,77	3,3	1142	3,66	3,2	1144	3,46	5,3	653	3,36	5,2	646
4,2	3,7	1135	4,1	3,6	1139	3,67	5,7	644	3,56	5,5	647
4,7	4,1	1146	4,55	4	1138	4,12	6,3	654	4	6,2	645
5,13	4,5	1140	5,02	4,4	1141	4,58	7	654	4,46	6,9	646
5,57	4,9	1137	5,47	4,8	1140	5,02	7,8	644	4,93	7,5	657
6,1	5,3	1151	5,93	5,2	1140	5,41	8,5	636	5,36	8,3	646
6,59	5,7	1156	6,42	5,6	1146	5,93	9,1	652	5,81	8,9	653
7,07	6,2	1140	6,88	6,1	1128	6,4	9,8	653	6,27	9,6	653
7,53	6,6	1141	7,35	6,5	1131	6,84	10,6	645	6,73	10,3	653
8,01	7	1144	7,88	6,9	1142	7,33	11,3	649	7,17	11	652
8,01	7	1144	7,88	6,9	1142	7,78	12	648	7,69	11,8	652
		1126			1154,5			629,5			630,4

А так же с помощью омметра: $Rx = 1324(O_M)$, $R_I = 767(O_M)$, магазин $R_I = 782(O_M)$.

- Расчет погрешностей:
- 1. Для отдельно взятого измерение R_i по формуле $\Delta R_i = \sqrt{\left(\frac{\Delta U_i}{U_i}\right)^2 + \left(\frac{\Delta I_i}{I_i}\right)^2}$
- 2. Для среднего значения R по следующему принципу (см. аналитические методы прикладной физики)

$$R = \sum_{i=1}^{n} \frac{R_i}{n}$$
, следовательно $\Delta R = \sqrt{\sum_{k=1}^{n} \left(\frac{\partial}{\partial R_k} \left(\sum_{i=1}^{n} \frac{R_i}{n} \right) \Delta R_k \right)^2} =$
 $= \left[m.\kappa.$ все члены суммы без R_k пропадут $\right] = \sqrt{\sum_{k=1}^{n} \left(\frac{\Delta R_k}{n} \right)^2}$

Итого, получаем (расчеты велись на компьютере):

$$R_x = (1126,5 \pm 21,7) O_M$$

 $R_x = (1154,7 \pm 18,3) O_M$
 $R_1 = (629,5 \pm 14,2) O_M$
 $R_1 = (630,4 \pm 8,7) O_M$

• Аппроксимация методом наименьших квадратов — коэффициенты для линейной зависимости находятся решением следующей системы уравнений(см. программирование и мат. моделирование):

$$C_{0}n + C_{1}\sum U_{i} = \sum I_{i}$$

$$C_{0}\sum U_{i} + C_{1}\sum U_{i}^{2} = \sum U_{i}I_{i}$$

$$\varepsilon \partial e I = C_{0}U + C_{1}$$

Кроме того, найти коэффициенты для линейного приближения этим методом позволяют табличные процессоры, например OpenOffice Calc.

Итого, полученные приближения (в порядке проведения экспериментов, сверху вниз):

$$I = 8,71 \circ 10^{-4} U + 2 \circ 10^{-5} (A)$$

$$I = 8,441 \circ 10^{-4} U - 4 \circ 10^{-5} (A)$$

$$I = 15,41 \circ 10^{-4} U + 1 \circ 10^{-5} (A)$$

$$I = 15,3 \circ 10^{-4} U + 3,6 \circ 10^{-5} (A)$$

• Вывод: для предложенных элементов(резисторов) в предложенном диапазоне напряжений выполняется закон Ома.