CHAP

Fonction exponentielle

1 L'équation différentielle y' = y avec y(0) = 1

Lemme 1. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction dérivable qui vérifie f' = f et f(0) = 1. Alors, pour tout $x \in \mathbb{R}$, $f(x) \neq 0$.

Démonstration. Soit φ la fonction définie pour tout $x \in \mathbb{R}$ par $\varphi(x) = f(x) \times f(-x)$. La fonction φ est dérivable sur \mathbb{R} comme produit de deux fonction dérivables sur \mathbb{R} . Ainsi, pour tout $\in \mathbb{R}$, $\varphi'(x) = f'(x)f(-x) + f(x)[-f'(-x)] = 0$. Donc φ est constante et comme $\varphi(0) = f(0) \times f(0) = 1$ alors pour tout $x \in \mathbb{R}$, $\varphi(x) = f(x) \times f(-x) = 1$. En particulier, pour tout $x \in \mathbb{R}$, $f(x) \neq 0$.

Proposition 2. L'équation différentielle y' = y avec condition initiale y(0) = 1 admet une unique solution définie et dérivable sur \mathbb{R} . Cette fonction est appelée fonction exponentielle et se note exp.

 $D\acute{e}monstration \otimes$ On admet l'existence d'une solution et on prouve l'unicité. Soient $f,g:\mathbb{R} \to \mathbb{R}$ deux fonctions qui vérifient l'équation différentielle de la proposition précédente. D'après le lemme précédent, g ne s'annule pas sur \mathbb{R} . Ainsi la fonction $\frac{f}{g}$ est dérivable sur \mathbb{R} . Pour tout $x \in \mathbb{R}$, on a

$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2} = \frac{f(x)g(x) - f(x)g(x)}{[g(x)]^2} = 0.$$

Ainsi, la fonction $\frac{f}{g}$ est constante et vaut $\frac{f(0)}{g(0)} = 1$. Alors, pour tout $x \in \mathbb{R}$, $\frac{f(x)}{g(x)} = 1$ soit f(x) = g(x).

Proposition 3.

- i) La fonction exponentielle est strictement positive sur \mathbb{R} .
- ii) La fonction exponentielle est strictement croissante sur \mathbb{R} .

Démonstration. i) Supposons par l'absurde que exp n'est pas strictement positive sur \mathbb{R} . Il existe $a \in \mathbb{R}$ tel que $\exp(a) \leq 0$ et $a \neq 0$. On a déjà vu que (lemme) $\exp(a) \neq 0$. On a alors $\exp(a) < 0$. Comme exp est continue sur \mathbb{R} et $0 \in [\exp(a), 1]$, d'après le théorème des valeurs intermédiaires, il existe $b \in [a, 0]$ si a < 0 ou [0; a] si a > 0 tel que $\exp(b) = 0$: absurde.

ii) On sait maintenant que pour tout $x \in \mathbb{R}$, f'(x) = f(x) > 0. Ainsi, f est strictement croissante sur \mathbb{R} .

2 Relations fonctionnelles

Proposition 4. Soient $x, y \in \mathbb{R}$. Alors, on a les égalités :

- $1. \exp(-x) = \frac{1}{\exp(x)};$
- 2. $\exp(x+y) = \exp(x) \times \exp(y)$;
- 3. $\exp(x-y) = \frac{\exp(x)}{\exp(y)}$;
- 4. pour tout $p \in \mathbb{Z}$, $\exp(px) = \exp(x)^p$.

Démonstration. 1. On a vu dans la démonstration du premier lemme l'égalité que pour tout $x \in \mathbb{R}$, $\exp(x) \times \exp(-x) = 1$. Alors, (comme la fonction exp ne s'annule pas sur \mathbb{R}), pour tout $x \in \mathbb{R}$, $\exp(-x) = \frac{1}{\exp(x)}$.

2. Soit $a \in \mathbb{R}$. On pose pour tout $x \in \mathbb{R}$ $h_a(x) = \exp(x+a) \exp(-x)$. La fonction h_a est dérivable sur \mathbb{R} et pour tout $x \in \mathbb{R}$, $h'_a(x) = \exp(x+a) \exp(-x) + \exp(x+a) [-\exp(-x)] = 0$. Ainsi, la fonction h_a est constante sur \mathbb{R} et vaut $h'_a(0) = \exp(a)$. D'où, pour tout $x \in \mathbb{R}$, $\exp(x+a) \exp(-x) = \exp(a)$ qui se réécrit $\exp(x+a) = \exp(x) \exp(a)$.

1

- 3. Pour tout $x, y \in \mathbb{R}$, $\exp(x y) = \exp(x + (-y)) = \exp(x) \exp(-y) = \frac{\exp(x)}{\exp(y)}$.
- 4. Montrons par récurrence que pour tout $n \in \mathbb{N}$ et pour tout $x \in \mathbb{R}$, $\exp(nx) = \exp(x)^n$. Soit $x \in \mathbb{R}$.
 - Initialisation : on a $\exp(0 \times x) = \exp(0) = 1 = \exp(x)^0$. Donc l'égalité est vraie au rang 0.
 - Hérédité : soit $n \in \mathbb{N}$. On suppose que l'égalité est vraie au rang n. Montrons qu'elle est vraie au rang n+1. On a $\exp((n+1)x) = \exp(nx+x) = \exp(nx) \exp(x) = \exp(x)^n \exp(x) = \exp(x)^{n+1}$ et l'égalité est vraie au rang n+1.

Conclusion: pour tout $n \in \mathbb{N}$, $\exp(nx) = \exp(x)^n$.

Enfin, pour un entier
$$p < 0$$
 et $x \in \mathbb{R}$, on a $\exp(px) = \exp(-(-px)) = \frac{1}{\exp(-px)} = \frac{1}{\exp(x)^{-p}} = \exp(x)^p$.

Remarque 5. Si on note e le nombre $\exp(1)$, on a pour tout $p \in \mathbb{Z}$, $\exp(p) = e^p$ (on le prouve par récurrence sur \mathbb{N} et on utilise la formule i pour étendre ce résultat à \mathbb{Z}). Plus généralement, on pose, pour $x \in \mathbb{R}$, $\exp(x) = e^x$. Les formules de la proposition précédente se réécrivent alors $e^{x+y} = e^x e^y$, $e^{x-y} = \frac{e^x}{e^y}$.

3 Étude de la fonction $x \mapsto e^x$

Proposition 6. Pour tout $x \in \mathbb{R}$, $e^x \geqslant x + 1$.

Démonstration. Pour tout $x \in \mathbb{R}$, on pose $f(x) = e^x - (x+1)$. La fonction f est dérivable sur \mathbb{R} et pour tout $x \in \mathbb{R}$, $f'(x) = e^x - 1$. On a alors le tableau suivant.

x	$-\infty$	0		$+\infty$
signe de $f'(x)$	-	0	+	
variations de f				

Ainsi, pour tout $x \in \mathbb{R}$, $f(x) \ge 0$ et $e^x \ge x + 1$.

Corollaire 7. On
$$a \lim_{x \to +\infty} e^x = +\infty$$
 et $\lim_{x \to -\infty} e^x = 0$.

 $D\acute{e}monstration \otimes$ On sait que $\lim_{x\to +\infty}(x+1)=+\infty$ et pour tout $x\in \mathbb{R}, e^x\geqslant x+1$. Donc, d'après le théorème de comparaison, $\lim_{x\to +\infty}e^x=+\infty$. En outre, $\lim_{x\to -\infty}e^x=\lim_{x\to +\infty}e^{-x}=\lim_{x\to +\infty}\frac{1}{e^x}=0$.

En résumé (à retenir)

Le tableau de variations de la fonction exponentielle est le suivant.

La représentation graphique de la fonction exponentielle est donnée ci-dessous.

Proposition 8. On
$$a \lim_{x \to +\infty} \frac{e^x}{x} = +\infty$$
 et $\lim_{x \to -\infty} xe^x = 0$

 $\begin{array}{l} \textit{D\'{e}monstration.} \text{ On commence par remarquer que pour } x>0, \frac{\mathrm{e}^x}{x}=\left(\frac{\mathrm{e}^{x/2}}{\sqrt{x}}\right)^2. \text{ Or } \mathrm{e}^{x/2}\geqslant\frac{x}{2}+1\geqslant\frac{x}{2}. \text{ D'o\`{u}} \\ \frac{\mathrm{e}^{x/2}}{\sqrt{x}}\geqslant\frac{\sqrt{x}}{2}. \text{ Ainsi, par passage au carr\'{e}, on obtient } \frac{\mathrm{e}^x}{x}\geqslant\frac{x}{4}. \text{ Par comparaison, comme } \lim_{x\to+\infty}\frac{x}{4}=+\infty, \text{ il vient } \lim_{x\to+\infty}\frac{\mathrm{e}^x}{x}=+\infty. \text{ Enfin, } \lim_{x\to-\infty}x\mathrm{e}^x=\lim_{x\to+\infty}-x\mathrm{e}^{-x}=\lim_{x\to+\infty}-\frac{x}{\mathrm{e}^x}=\lim_{x\to+\infty}-\frac{1}{\mathrm{e}^x}=0. \end{array}$

Proposition 9. On
$$a \lim_{x\to 0} \frac{e^x - 1}{x} = 1$$

Démonstration. On remarque que pour tout $x \in \mathbb{R}$,

$$\frac{e^x - 1}{x} = \frac{\exp(x) - \exp(0)}{x - 0}.$$

On en déduit

$$\lim_{x \to 0} \frac{e^x - 1}{x} = \lim_{x \to 0} \frac{\exp(x) - \exp(0)}{x - 0} = \exp'(0) = e^0 = 1.$$

Proposition 10. Soient I un intervalle et $u: I \to \mathbb{R}$ une fonction dérivable sur I. Alors la fonction $x \mapsto e^{u(x)}$ est dérivable sur I et sa dérivée est la fonction $x \mapsto u'(x) \times e^{u(x)}$.

 $D\acute{e}monstration$. C'est un cas particulier la dérivée d'une fonction composée dont la formule a été vue au chapitre 5.