PAU 2003 Pautes de correcció

Química

SÈRIE 3

- 1. <u>Separació de iodur de plom(II).</u> (massa molecular = 461 g⋅mol⁻¹)
 - a) $Pb(NO_3)_2 + 2KI \rightarrow PbI_2 \downarrow + 2KNO_3$

[0,5 punts]

- b) El reactiu limitant és el iodur de potassi (0,1 mol). Reaccionarà completament amb 0,05 mol de nitrat de plom, obtenint-se 0,05 mol de Pbl₂ = 23,05 g Pbl₂ [0,5 punts]
- c) Preparació de dissolucions: es pesa a la balança la quantitat necessària de cada reactiu i s'hi posa en un matràs aforat; s'hi afegeix aigua destil·lada (o desionitzada) fins a enrasar, agitant per homogeneïtzar la dissolució. [0,5 punts] Separació: Cal filtrar el precipitat, rentar-lo amb aigua destil·lada i assecar-lo posteriorment (material: embut, paper de filtre, erlenmeyer o vas de precipitats, flascó rentador, estufa o altre aparell assecador, etc.)
- 2. Reacció permanganat Fe²⁺
 - a) Reducció: $MnO_4^- + 8 H^+ + 5 e^- \rightarrow Mn^{2+} + 4 H_2O$ (MnO_4^- : espècie oxidant) Oxidació: $Fe^{2+} \rightarrow Fe^{3+} + 1 e^-$ (Fe^{2+} : espècie reductora) Reacció global: $MnO_4^- + 5 Fe^{2+} + 8 H^+ \rightarrow Mn^{2+} + 5 Fe^{3+} + 4 H_2O$
 - b) $2 \text{ KMnO}_4 + 10 \text{ FeSO}_4 + 8 \text{ H}_2\text{SO}_4 \rightarrow 2 \text{ MnSO}_4 + 8 \text{ H}_2\text{O} + 5 \text{ Fe}_2(\text{SO}_4)_3 + \text{K}_2\text{SO}_4$ [0,5 punts]
 - c) Comburent: substància oxidant que pot afavorir la combustió de substàncies inflamables i fins i tot causar explosions. Exemples: O₂, KClO₃, H₂O₂ [0,5 punts]
- 3. Oxidació de l'amoníac
 - a) $\Delta H_r^{\circ} = 4 \Delta H_f^{\circ} (NO) + 6 \Delta H_f^{\circ} (H_2O) 4 \Delta H_f^{\circ} (NH_3) = -905,48 \text{ kJ} \cdot \text{mol}^{-1}$

[0,5 punts]

[1 punt]

b) $\Delta S_r^{\circ} = 4 \text{ S}^{\circ}(\text{NO}) + 6 \text{ S}^{\circ}(\text{H}_2\text{O}) - 4 \text{ S}^{\circ}(\text{NH}_3) - 5 \text{ S}^{\circ}(\text{O}_2) = 180,52 \text{ J} \cdot \text{K}^{-1} \text{mol}^{-1}$

[0,5 punts]

- c) $\Delta G^{\circ} = \Delta H^{\circ} T \Delta S^{\circ}$; ΔG° sempre és negatiu, per tant la reacció serà espontània a qualsevol temperatura. [0,5 punts]
- d) Cap a l'esquerra, on hi ha una disminució de volum.

[0,5 punts]

PAU 2003 Pautes de correcció

Química

OPCIÓ A

- 4. <u>Dissolució saturada d'hidròxid de zinc</u> (massa molecular = 99,4 g⋅mol⁻¹)
 - a) $[OH^{-}] = 10^{-5.5} = 3.16 \cdot 10^{-6} \text{ mol} \cdot \text{dm}^{-1}$ $[Zn^{2+}] = \frac{1}{2} [OH^{-}] = 1,58 \cdot 10^{-6} \text{ mol} \cdot \text{dm}^{-3}$

[0,5 punts]

b) $K_{ps} (Zn(OH)_2) = [Zn^{2+}][OH^-]^2 = 1,6 \cdot 10^{-17}$

[0,5 punts]

c) $s = \text{solubilitat} \rightarrow K_{ps} = (2s)^2 s = 4s^3 \rightarrow s = 1,58 \cdot 10^{-6} \text{ mol·dm}^{-3}$ en 200 cm³ : 3,2·10⁻⁷ mol Zn(OH)₂ = 3,14·10⁻⁵ g Zn(OH)₂

[0,5 punts]

- d) Afegint un àcid, que neutralitzaria els ions OH-, desplaçant l'equilibri cap a la dissolució del precipitat. [0,5 punts]
- 5. Dissolució naftalè toluè (massa mol. naftalè = 128 g·mol⁻¹; massa mol. toluè = 92 g·mol⁻¹)
 - a) Per factors de conversió: concentració naftalè = 0,558 mol·dm⁻³

[0,5 punts]

b) $C_{10}H_8 + 12 O_2 \rightarrow 10 CO_2 + 4 H_2O$ $C_7H_8 + 9 O_2 \rightarrow 7 CO_2 + 4 H_2O$

[0,25 punts] [0,25 punts]

c) 32 g naftalè = 0,25 mol \rightarrow 12 · 0,25 = 3 mol O₂ 368 g toluè = 4 mol \rightarrow 4.9 = 36 mol O₂

Total = $39 \text{ mol } O_2$

Per l'equació dels gasos ideals:

[1 punt]

OPCIÓ B

- 4. Obtenció d'àcid clorhídric
 - \rightarrow 2 HCl + Na₂SO₄ a) 2 NaCl + H₂SO₄

 $NaCl + H_2SO_4 \rightarrow HCl + NaHSO_4$

[0,4 punts]

(Qualsevol de les dues opcions és vàlida, i a més tenen la mateixa relació NaCl – HCl)

b) Per factors de conversió: $[HCI] = [H^{+}] = 0.034 \text{ mol·dm}^{-3} \rightarrow pH = 1.47$

[0,8 punts]

c) En 0.5 L: 0.017 mol HCl \Rightarrow 0.017 mol NaOH \Rightarrow conc. = 0.017 M pH = -12.23

[0,8 punts]

- 5. Oxidació del diòxid de sofre
 - a) Es desplaça cap a l'esquerra, en ser una reacció exotèrmica.

[0,5 punts]

- b) Ambdues velocitats augmenten en incrementar-se la temperatura. (Les reaccions s'acceleren a temperatura elevada perquè les molècules poden sobrepassar més fàcilment la barrera d'activació)
- c) Un catalitzador és una espècie, diferent dels reactius i productes, que incrementa la velocitat d'una reacció química. El catalitzador no intervé en la reacció global, però sí en alguna de les etapes d'un mecanisme diferent del de la reacció no catalitzada, per al qual l'energia d'activació global és menor. Exemples: catàlisi àcida (per H⁺); sòlids en catàlisi heterogènia, enzims, etc., etc.