Relatório de Eletromagnetismo I

Determinação do campo magnético terrestre

André Duarte, Marcos Gouveia e Sagar Pratapsi

12 de Novembro de 2013

1 Introdução

O principal objetivo desta atividade experimental foi determinar o valor da componente horizontal do campo magnético criado pelo planeta Terra na nossa localização geográfica, utilizando um pêndulo de torsão magnética. O segundo objectivo foi determinar a corrente equivalente que passa pelos ímanes utilizados.

2 Métodos

Para atingir os nossos objectivos, recorremos a um pêndulo de torsão, formado por dois ímanes de neodímio cilíndricos acoplados e suspensos de modo a rodarem pelo seu diâmetro. Sabendo que os ímanes têm um momento magnético intrínseco m, estes oscilam em torno da direção do campo magnético B_{ht} onde se encontram com uma frequência angular ω dada por:

$$\omega = \sqrt{\frac{mB_{ht}}{I_{CM}}}$$

sendo I_{CM} o momento de inércia do íman duplo em relação a um eixo que passe por um dos seus diâmetros, dado por:

$$I_{CM} = \frac{1}{4}Mr^2 + \frac{1}{12}ML^2$$

e sendo, neste caso, M a massa do conjunto de ímanes, r o seu raio e L a sua altura.

2.1 Cálculo do campo magnético terrestre

A frequência de oscilação foi aumentada, sobrepondo ao campo magnético terrestre um outro campo criado por uma bobina com N=200 espiras por onde se fez passar uma corrente elétrica. Assim, a frequência de oscilação foi dada por

$$\omega = \sqrt{\frac{m(B_{ht} + B_b)}{I_{CM}}}\tag{1}$$

onde B_b corresponde ao campo magnético criado pela espira, que é dado por:

$$B_b = \frac{\mu_0 Ni}{2R} \tag{2}$$

sendo i a intensidade da corrente que passa na espira, μ_0 a permeabilidade magnética do vazio e R o raio das espiras da bobina.

Foi sendo registado, para várias intensidades da corrente, o período de oscilação T do pêndulo. Para o efeito, projetámos o feixe de um laser sobre a superfície espelhada dos ímanes, que depois de refletida atingia uma tela branca. Observando o movimento deste ponto projetado, foi-nos possível medir o tempo que levou ao pêndulo para executar várias oscilações (mediram-se várias oscilações de maneira a diminuir o erro relativo). A partir de T, calculámos o valor para ω , sabendo que $\omega = 2\pi/T$.

Juntando as expressões (1) e (2), obtemos:

$$\omega^2 = \left(\frac{\mu_0 mN}{2RI_{CM}}\right)i + \left(\frac{mB_{ht}}{I_{CM}}\right) = bi + a. \tag{3}$$

Assim, fazendo uma regressão linear dos valores calculados para ω^2 em função de i, podemos calcular b e a, o que nos permite calcular, respectivamente, m e B_{ht} .

2.2 Cálculo da corrente equivalente

Sabendo o valor m do momento dipolar, podemos determinar o valor da corrente equivalente I_T pela sequinte expressão (sabendo que \mathcal{M} representa a magnetização do material, V o seu volume e A a sua área de superfície):

$$I_T = \mathcal{M}L = \frac{m}{V}L = \frac{m}{A} = \frac{m}{\pi r^2}.$$
 (4)

3 Resultados

3.1 Caracterização do íman e das bobinas

Na Tabela 1 reunimos a informação recolhida sobre os ímanes e a bobina. Também apresentamos o valor de I_{CM} calculado pela equação já apresentada e o respectivo erro calculado pela fórmula de propagação de erros.

Tabela 1: Dados recolhidos sobre os ímanes e a bobina; cálculo de I_{CM}

Ímanes	M	0.01395(1) kg
	r	0.01000(5) m
	L	0.0056(1) m
	I_{CM}	$3.85(17)\times10^{-7} \text{ kg m}^2$
Bobina	N	200
	R	0.0625(5) m

3.2 Valores obtidos para os tempos de oscilação do pêndulo

Na Tabela 2 apresentamos os valores medidos para o tempo t que levou o pendulo a efetuar n oscilações, para cada valor de corrente i.

4 Análise e discussão dos dados

4.1 Determinação do momento magnético do íman e do campo magnético terrestre

Na Tabela 3, apresentamos os valores obtidos para a média do período das oscilações e os valores de ω^2 , bem como os respectivos erros. Devido ao pequeno número de dados recolhidos, o erro em T foi

Tabela 2: Valores obtidos para o tempo t necessário para efectuar n oscilações, em função da intensidade da corrente i

<i>i</i> (mA)	0.0(1)	7.3(1)	14.5(1)	25.7(1)	37.3(1)	49.3(1)
n	20	40	40	40	40	40
	10.22	16.37	14.37	12.35	10.97	10.81
	10.15	16.35	14.34	12.28	11.35	9.85
t (s)	10.25	16.41	14.31	12.28	11.19	10.53
	10.22	16.50	14.35	12.34	12.00	11.03
	10.25	16.50		12.35		11.19

considerado como o maior desvio dos valores obtidos em relação à média. O erro em ω^2 foi calculado por propagação de erros. Na Figura 1 apresentamos a regressão linear efectuada de ω^2 em função de i.

Tabela 3: Cálculo dos valores do período de oscilação t, de ω^2 e dos respectivos erros, para cada corrente i

<i>i</i> (A)	$T(\mathbf{s})$	δT (s)	$\omega^2 \ (\mathbf{s}^{-2})$	$\delta\omega^2~({ m s}^{-2})$
0.0000(1)	0.5109	0.0034	151.2	2.0
0.0073(1)	0.4106	0.0019	234.1	2.2
0.0145(1)	0.3585	0.0008	307.1	1.4
0.0257(1)	0.3080	0.0010	416.2	2.7
0.0373(1)	0.284	0.016	4.9×10^{2}	0.5×10^{2}
0.0493(1)	0.267	0.021	5.5×10^{2}	0.9×10^{2}

Figura 1: Regressão linear de ω^2 em função de i

Os valores obtidos para a ordenada na origem e para o declive foram, respectivamente, $a=1.551(17)\times 10^2~{\rm s}^{-2}$ e $b=1.035(12)\times 10^5~{\rm s}^{-2}/{\rm A}$. Pela equação 3, concluimos que

$$a = \frac{mB_{ht}}{I_{CM}}$$

$$b = \frac{\mu_0 mN}{2RI_{CM}}$$

Substituindo com os valores obtidos, e efectuando a propagação de erros, obtém-se:

$$B_{ht} = 30.1(7) \ \mu \text{T}$$

$$m = 1.98(3) \text{ J/T}$$

O valor do χ^2 reduzido obtido foi de 3.5, pelo que o modelo utilizado parece ser adequado, e os resultados obtidos parecem ser uma boa estimativa, tendo em conta os erros obtidos. No entanto, o valor previsto para o campo magnético em Coimbra é de 44.4 μ T 1 . Os valores não são concordantes, havendo uma diferença percentual relativa de 32%. Apesar da diferença significativa, os tempos obtidos foram em número pequeno, e foram obtidos poucos pontos experimentais. Para melhorar a estimativa, poderse-iam efectuar mais medidas, melhorando a precisão dos resultados e obtendo uma melhor estimativa para os erros. Com este trabalho foi possível ter uma ideia da ordem de grandeza do campo magnético, com uma aproximação razoável.

4.2 Determinação da corrente equivalente

Aplicando a equação 4 com os valores obtidos para m e r, e efectuando a devida propagação de erros, vem que

$$I_T = 6.31(13) \text{ kA}.$$

O valor da corrente é de grandeza considerável. De facto, os ímanes utilizados são os mais potentes existentes no mercado e o campo magnético criados por estes é tal, que seria necessário um circuito com uma grande intensidade de corrente para o simular.

5 Anexos

5.1 Cálculo dos erros associados às medidas

Para cada medida utilizada, foi calculado um erro associado. Se determinada grandeza não foi medida directamente, isto é, se foi calculada a partir de outras, então a respectiva incerteza foi calculada pela fórmula de propagação de erros que nos diz que, se uma grandeza f é função das grandezas x_1, \ldots, x_n , o seu erro δf pode ser aproximado por

$$\delta f(x_1, ...x_n) = \sqrt{\sum_{i=1}^n \left(\frac{\partial f}{\partial x_i} \delta x_i\right)^2}$$

Apresentamos agora a fórmula obtida por esta via para as grandezas utilizadas no trabalho. Erro no momento de inércia:

$$\delta I_{CM} = \sqrt{\left(\frac{Mr\delta r}{2}\right)^2 + \left(\frac{ML\delta L}{6}\right)^2}$$

Erro no raio dos ímanes (D representa o diâmetro dos ímanes, medido directamente):

$$\delta r = \frac{\delta D}{2}$$

Erro no período dos movimentos ($\delta \bar{t}$ representa a média dos tempos registados)

$$\delta T = \frac{\delta \bar{t}}{2}$$

Erro em ω^2 :

$$\delta\omega^2 = \frac{8\pi^2\delta T}{T^3}$$

 $^{^1}$ Valor previsto pelo simulador WMM 2010, excluindo perturbações locais, da National Geophysical Data Center, U.S. Department of Commerce, USA

Erro em m:

$$\delta m = m \sqrt{\left(\frac{\delta R}{R}\right)^2 + \left(\frac{\delta I_{CM}}{I_{CM}}\right)^2 + \left(\frac{\delta b}{b}\right)^2}$$

Erro em B_{ht} :

$$\delta B_{ht} = B_{ht} \sqrt{\left(\frac{\delta a}{a}\right)^2 + \left(\frac{\delta I_{CM}}{I_{CM}}\right)^2 + \left(\frac{\delta m}{m}\right)^2}$$

Erro em I_T :

$$\delta I_T = I_T \sqrt{\left(\frac{\delta m}{\pi r^2}\right)^2 + \left(\frac{2m\delta r}{\pi r^3}\right)^2}$$