Objectives
 Examples
 Objectives
 Examples

 0
 000000000
 ●
 00000000

Objectives

You should be able to ...

Lambda Calculus Examples

Dr. Mattox Beckman

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
DEPARTMENT OF COMPUTER SCIENCE

Here are some examples!

- ► Perform a beta-reduction.
- ▶ Detect α -capture and use α -renaming to avoid it.
- ▶ Normalize any given λ -calculus term.

<□▶<@▶<!>
4□▶
4□▶
4□▶
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,
4□,

Objectives	Examples	Objectives	Examples
	•00000000		•00000000

Examples

 $(\lambda x.x) a$ $(\lambda x.x x) a$ $(\lambda x.y x) a$ $(\lambda x.\lambda a.x) a$ $(\lambda x.\lambda x.x) a$ $(\lambda x.(\lambda y.y) x) a$

Examples

$$\begin{array}{ccc} (\lambda x.x) \, a & \longrightarrow_{\beta} & a \\ (\lambda x.x \, x) \, a & \\ (\lambda x.y \, x) \, a & \\ (\lambda x.\lambda a.x) \, a & \\ (\lambda x.\lambda x.x) \, a & \\ (\lambda x.(\lambda y.y) \, x) \, a & \end{array}$$

Objectives Objectives
o Objectives
o Ooooooo O

•00000000

Examples

$$\begin{array}{ccc} (\lambda x.x) \, a & \to_{\beta} & a \\ (\lambda x.x \, x) \, a & \to_{\beta} & a \, a \\ (\lambda x.y \, x) \, a & \\ (\lambda x.\lambda a.x) \, a & \\ (\lambda x.\lambda x.x) \, a & \\ (\lambda x.(\lambda y.y) \, x) \, a & \end{array}$$

Examples

$$\begin{array}{cccc} (\lambda x.x) \ a & \rightarrow_{\beta} & a \\ (\lambda x.x \ x) \ a & \rightarrow_{\beta} & a \ a \\ (\lambda x.y \ x) \ a & \rightarrow_{\beta} & y \ a \\ (\lambda x.\lambda a.x) \ a & \\ (\lambda x.\lambda x.x) \ a & \\ (\lambda x.(\lambda y.y) \ x) \ a & \end{array}$$

4□ > 4₫ > 4불 > 4불 > ½ 90

Examples

Ob	Examples Examples	es Objectives	Examples
0	●00000000	00000 0	•00000000

Examples

Examples

Objectives

Examples

4□ > 4団 > 4 豆 > 4 豆 > 9 Q @

Examples

00000000

Examples

Objectives

Objectives

Examples

<ロト 4回 ト 4 重 ト 4 重 ト ■ 9 9 0 0

Examples

Examples

•00000000

Objectives

α capture

$$(\lambda x. \lambda a. x) a \rightarrow_{\alpha} (\lambda x. \lambda a'. x) \rightarrow_{\beta} \lambda a'. a$$

- lacktriangle If a free occurrence of a variable gets placed under a λ that binds it, this is called α capture.
- ► To resolve this, rename the binder.

Here's One for You to Try!

- ightharpoonup Convert this tree into an equivalent λ term.
- ► Identify the free variables.
- Simplify it by performing as many β reductions (and necessary α renamings) as possible.

 Objectives
 Examples
 Objectives

 ○
 000 €0000
 0

 Examples
 000 €0000
 0

Solution

► There is one free variable

Solution, Step 1

 Objectives
 Examples
 Objectives

 ○
 0000 ● 000
 ○

Solution, Step 2

Solution, Step 2

(□) (□) (□) (□) (□) (□) (□)

←□ → ←□ → ← = → ← = →

 Objectives
 Examples
 Objectives

 ○
 00000●00
 ○

Solution, Step 3

Solution, Step 3

4 D > 4 A > 4 E > 4 E > 9 Q C

ロ ト 4 個 ト 4 星 ト 4 星 ト 9 Q C

C	00000	0000	000000000

Solution, Step 4

Solution, Step 4

$$\begin{array}{ccc}
\mathbb{Q}^{3} & & & \\
\downarrow & \downarrow & & \\
\lambda a & \lambda q & & \\
\downarrow & \downarrow & \\
\mathbb{Q}^{4} & f & & \\
\downarrow & & \\
a & a & \\
(\lambda f'.f'(\lambda q.f))(\lambda a.aa) & \rightarrow_{\beta}
\end{array}$$

Solution, Step 5

Solution, Step 5

