The group G is isomorphic to the group labelled by [24, 4] in the Small Groups library. Ordinary character table of $G \cong C3$: Q8:

	1a	2a	12a	12b	4a	3a	6a	4b	4c
χ_1	1	1	1	1	1	1	1	1	1
χ_2	1	1	-1	-1	-1	1	1	-1	1
χ_3	1	1	-1	-1	-1	1	1	1	-1
χ_4	1	1	1	1	1	1	1	-1	-1
χ_5	2	-2	0	0	0	2	-2	0	0
χ_6	2	2	1	1	-2	-1	-1	0	0
χ_7	2	2	-1	-1	2	-1	-1	0	0
χ_8	2	-2	$E(12)^7 - E(12)^{11}$	$-E(12)^7 + E(12)^{11}$	0	-1	1	0	0
χ_9	2	-2	$-E(12)^7 + E(12)^{11}$	$E(12)^7 - E(12)^{11}$	0	-1	1	0	0

Trivial source character table of $G \cong C3$: Q8 at p = 2:

This bounce character table of $a = co$. We at $p = 2$.										
Normalisers N_i			N_2		N_3		N_4	N_5	N_6	
p-subgroups of G up to conjugacy in G	P_1		P_2		P_3		P_4	P_5	P_6	
Representatives $n_j \in N_i$			1a	3a	1a	3a	1a	1a	1 <i>a</i>	
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 2 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	8	8	0	0	0	0	0	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9$	8	-4	0	0	0	0	0	0	0	
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	4	4	4	4	0	0	0	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	4	-2	4	-2	0	0	0	0	0	
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	2	2	2	2	2	2	0	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	2	-1	2	-1	2	-1	0	0	0	
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	2	2	2	2	0	0	2	0	0	
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	2	2	2	2	0	0	0	2	0	
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	1	1	1	1	1	1	1	1	1	

```
P_1 = Group([()]) \cong 1 \\ P_2 = Group([(1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,20)(16,22)(18,23)(21,24)]) \cong C2 \\ P_3 = Group([(1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,20)(16,22)(18,23)(21,24), (1,3,4,9)(2,6,7,13)(5,10,11,17)(8,14,15,20)(12,18,19,23)(16,21,22,24)]) \cong C4 \\ P_4 = Group([(1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,20)(16,22)(18,23)(21,24), (1,2,4,7)(3,13,9,6)(5,16,11,22)(8,19,15,12)(10,24,17,21)(14,18,20,23)]) \cong C4 \\ P_5 = Group([(1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,20)(16,22)(18,23)(21,24), (1,13,4,6)(2,3,7,9)(5,24,11,21)(8,18,15,23)(10,22,17,16)(12,20,19,14)]) \cong C4 \\ P_6 = Group([(1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,20)(16,22)(18,23)(21,24), (1,3,4,9)(2,6,7,13)(5,10,11,17)(8,14,15,20)(12,18,19,23)(16,21,22,24), (1,2,4,7)(3,13,9,6)(5,16,11,22)(8,19,15,12)(10,24,17,21)(14,18,20,23)]) \cong Q8
```

 $N_1 = Group([(1,2,4,7)(3,13,9,6)(5,16,11,22)(8,19,15,12)(10,24,17,21)(14,18,20,23), (1,3,4,9)(2,6,7,13)(5,10,11,17)(8,14,15,20)(12,18,19,23)(16,21,22,24), (1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,20)(16,22)(18,23)(21,24), (1,5,12)(2,8,16)(3,10,18)(4,11,19)(6,14,21)(7,15,22)(9,17,23)(13,20,24)]) \cong C3:Q8$ $N_2 = Group([(1,2,4,7)(3,13,9,6)(5,16,11,22)(8,19,15,12)(10,24,17,21)(14,18,20,23), (1,3,4,9)(2,6,7,13)(5,10,11,17)(8,14,15,20)(12,18,19,23)(16,21,22,24), (1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,20)(16,22)(18,23)(21,24), (1,5,12)(2,8,16)(3,10,18)(4,11,19)(6,14,21)(7,15,22)(9,17,23)(13,20,24)]) \cong C3:Q8$ $N_3 = Group([(1,3,4,9)(2,6,7,13)(5,10,11,17)(8,14,15,20)(12,18,19,23)(16,21,22,24), (1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,20)(16,22)(18,23)(21,24), (1,2,4,7)(3,13,9,6)(5,16,11,22)(8,19,15,12)(10,24,17,21)(14,18,20,23), (1,5,12)(2,8,16)(3,10,18)(4,11,19)(6,14,21)(7,15,22)(9,17,23)(13,20,24)]) \cong C3:Q8$ $N_4 = Group([(1,2,4,7)(3,13,9,6)(5,16,11,22)(8,19,15,12)(10,24,17,21)(14,18,20,23), (1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,20)(16,22)(18,23)(21,24), (1,3,4,9)(2,6,7,13)(5,10,11,17)(8,14,15,20)(12,18,19,23)(16,21,22,24)]) \cong Q8$ $N_5 = Group([(1,13,4,6)(2,3,7,9)(5,24,11,21)(8,18,15,23)(10,22,17,16)(12,20,19,14), (1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,20)(16,22)(18,23)(21,24), (1,2,4,7)(3,13,9,6)(5,16,11,22)(8,19,15,12)(10,24,17,21)(14,18,20,23)]) \cong Q8$ $N_6 = Group([(1,2,4,7)(3,13,9,6)(5,16,11,22)(8,19,15,12)(10,24,17,21)(14,18,20,23), (1,3,4,9)(2,6,7,13)(5,10,11,17)(8,14,15,20)(12,18,19,23)(16,21,22,24), (1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,20)(16,22)(18,23)(21,24), (1,2,4,7)(3,13,9,6)(5,16,11,22)(8,19,15,12)(10,24,17,21)(14,18,20,23)]) \cong Q8$ $N_6 = Group([(1,2,4,7)(3,13,9,6)(5,16,11,22)(8,19,15,12)(10,24,17,21)(14,18,20,23), (1,3,4,9)(2,6,7,13)(5,10,11,17)(8,14,15,20)(12,18,19,23)(16,21,22,24), (1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,20)(16,22)(18,23)(21,24), (1,2,4,7)(3,13,9,6)(5,16,11,22)(8,19,15,12)(10,24,17,21)(14,18,20,23), (1$