Robotics (ESE447)

Kinematics

Fixed base manipulators

Definitions

- "n" joints give maximum of "n" DOFs
- Each joint only having 1 DOF can only contribute 1 DOF to end-effector

End-effector in 3D-space

Planar Manipulator

End-effector FRAME description

End-effector FRAME description

R is the rotation matrix which describes the orientation of {B} with respect to {A}

Mapping - Translation

Frame Rotation and Mapping

General Transformation

- Convert known vector ^BP into base frame "A" (pure rotation)
- Translate vector ^B**P** by distance between origins ("A" to "B")
- Write in homogeneous matrix form

$$^{A}P = {}_{B}^{A}R^{B}P + {}^{A}P_{BORG}$$

$${}^{A}P = {}^{A}T {}^{B}P$$

$${}^{A}T = \begin{bmatrix} {}^{A}R & {}^{A}P_{BORG} \\ {}^{0} & 0 & 0 & 1 \end{bmatrix}$$

Transformation as an operator

PROBLEM: Given a vector in space (\mathbf{P}_1) --- translate and rotate that vector creating a new vector (\mathbf{P}_2)

- ullet Translation is once again accomplished by adding a displacement vector to ${f P}_1$
- Rotation is accomplished via $P_2 = RP_1$
- It also follows that : $P_2 = TP_1$

Transformation RECAP

- □ ^AT can be used as a description of frame "B" with respect to frame "A"
- □ ^AT can be used to map a vector in frame "B" into frame "A"
- T can be used to operate on a vector thus creating a new vector

More properties

- Do Transform matrices multiply as did the Rotation matrices ??
- What is the Inverse of the Transform ??

Transform Equation

