CS 530 - Visualization

Human Vision

Slides courtesy of Penny Rheingans (UMBC)

January 28, 2013

Studying Human Vision is **5**Difficult

- Brain is complicated
 - 100×10^9 neurons, 60×10^{12} synapses
 - Vision: ~50% of brain associated with seeing
- Interactions
 - Adaptation (time, conditions)
 - Context dependent
 - Active
 - High-level knowledge

- Dissection and Histology
- Animal measurements
- Structural and functional brain imaging
- Modeling
- Human (subjective) experiments

Dissection

Histology

Animal Studies

Functional / Structural Brain Imaging

Modeling

- Try to predict particular aspects of vision via computer models
 - Neurons
 - Functional elements
- Build artificial systems that mimic behavior of real ones

Human Subjects: Psychophysics

- Subjects respond to stimuli and task
 - Verbal
 - Mechanical (e.g. button)

Various Approaches

- System neurosciences
- Subjective experiences psychophysics
- Illusions
- Evolutionary (role of vision for human survival)
- Pathways

Functions of Human Vision

- Shape/size
- Depth
- Motion
- Recognition

Properties of Vision

- Accurate relative to other senses
 - Location, size, and identification at a distance
- Limitations
 - Veridical perception is limited
 - Absolute judgments are often poor
 - Lack of quantification
- Good at
 - Relative judgments
 - Time and space
 - Identification

Properties of Vision

- Accurate relative to other senses
 - Location, size, and identification at a distance
- Limitations
 - Veridical perception is limited
 - Absolute judgments are often poor
 - Lack of quantification
- Good at
 - Relative judgments
 - Time and space
 - Identification

Human Vision Aspects

- Spatial Vision
- Depth
- Motion
- Color

System View

Light

• Visible range: 390-700nm

- Luminance has a large dynamic range:
 - 0.00003 -- Moonless overcast night sky
 - 30 -- Sky on overcast day
 - 3000 -- Sky on clear day
 - 16,000 -- Snowy ground in full sunlight
- Colors result from spectral curves
 - dominant wavelength, hue
 - brightness, lightness
 - purity, saturation

Spectral Curve (of incoming radiation)

Physiology: Eye

Perspective Projection and Image Formation

Physiology: Photoreceptors

Discrete sensors that measure energy

Adaptation

Rods

active at low light levels (scotopic vision) only one wavelength-sensitivity function

Cones

active at normal light levels (photoptic)

three types: sensitivity functions with different peaks

Cone Sensitivity Functions

Glassner '95, p. 16.

Cone Sensitivity Functions

Rod Sensitivity Function

Rod Sensitivity Functions

Physiology: Ganglia

Transform incoming SML into opponent color responses

- G R
- Y B (Y = R+G)
- $W (W \cong R+G)$

Characteristics

- concentric receptive fields
- logarithmic response of receptors
- adaptation

Center-surround Receptive Fields

Physiology: Brain Lateral Geniculate Nuclei (LGN)

Assemble data for single side of visual field

sheets of neurons arranged in layers

Retinotopic mapping

- 2 monochromatic layers => magnocellular path
- 4 chromatic layers => parvocellular path

Physiology: Brain

- Visual cortex
 - orientation
 - simple vs. end-stopped cells (length specific)
 - binocular w/ocular dominance
 - spatial frequency

Feedback from cognitive levels to earlier stages

Magnocellular Division

- Role in vision
 - identify objects and boundaries
 - depth perception
 - motion perception
- Characteristics
 - color: achromatic
 - acuity: large RF centers
 - speed: fast, transient response

Parvocellular Division

- Role in vision
 - discrimination of fine detail
 - color
- Characteristics
 - color: sensitive to wavelength variations
 - acuity: small RF centers
 - speed: relatively slow response (static)

Visual Pathways: A Theory/Model

- Pathways process information differently
- Information gets combined as needed
- Different levels of distinction (granularity)

	"What" pathway	"Where" pathway
Information	Object Vision: color, shape, texture	Spatial Vision: depth, motion, location
Color	Uses/carries color info	Brightness only
Contrast	Requires large contrast differences	Sensitive to small differences in brightness
Speed	Slower	Faster, more transient
Duration	Longer	Shorter
Acuity (res.)	Higher	Lower (factor of 2-3)
Visual Field	Only central (fovea)	Central & perirpheral
Age (evol.)	Younger	Older
Other senses	Only visual info	Combined with auditory & other info

Where: Link of visual and motor skills

System Characteristics

- Contrast sensitivity influenced by spatial frequency
- Adaptation
- Communication between neighboring receptors
- Illusions

Communication between Receptors

- Edge completion: subjective contours
- Relative judgments
 - intensity
 - size
 - slope
- Constancy
 - lightness
 - simultaneous contrast
- Tolerance of noise

Constancy

- Distal stimulus objects in the 3D world
- Proximal stimulus pattern on the retina
- Constancy tendency to perceive the unchanging properties of the distal stimulus rather than the transient properties of the proximal stimulus
- Invariants quantities that do not change under a set of transformations

Perceived Sizes are Relative \$\square{\pi}\$

Perceived Sizes are Relative \$\square\$

Ponzo Illusion

Ponzo Illusion

Illusions: Why?

- Violate some set of underlying assumptions
- Feedback from higher visual processes
- 3D interpretation of 2D drawings
- Expectations from experience

- Subjective observations relative (differences)
 - Brightness
 - Color
 - Size
 - Orientation
- Interactions between inputs
 - Local and nonlocal
- What are people good at?
 - Recognition vs analysis
 - Qualitative vs quantitative

Depth

Discriminates objects from one another

Characteristics (relative to parvocellular path)

color: insensitive to wavelength variations

acuity: larger RF centers

speed: faster and more transient response

contrast: more sensitive to low contrast stimuli

Observed characteristics of motion perception

color-blind: impaired at equiluminance

quickness

high contrast sensitivity

low acuity: impaired at high spatial frequencies

Depth Pathway

Red and green cones

Type A retinal ganglion cells

Magnocellular layers in LGN

Primary visual cortex

disparity tuned neurons (thick stripes in V2)

Middle Temporal Lobe (MT)

Motor Cues

- Vergence
 - Angles of the eye
- Accomodation
 - Change of lens shape
 - Focus

Binocular Cues

- Depth cues resulting from two views (one from each eye)
- Include:
 - retinal disparity (stronger for close objects)
 - neurons sensitive to particular disparities

Monocular Cues

- Depth cues available in single eye image
- Include:
 - Occlusion
 - Size
 - Perspective
 - Focus
 - Head-motion parallax
 - Kinetic depth effect (object-motion parallax)

Motion and Interaction

Required for Pattern Vision

Driving Eye Movements

Time to Collision

Exproprioceptive Information

Perception of Moving Objects

Depth from Motion

Encoding 3D Shape

Image Segmentation

Fundamental, independent visual process

motion aftereffects

motion blindness

Based primarily on brightness

Ability to interpret structure degrades in periphery

Spatio-temporal interactions

Motion Pathway

Red and green cones

Type A retinal ganglion cells

Magnocellular layers in LGN

Area 4B in primary visual cortex

direction selectivity

velocity selectivity

expansion/contraction of visual field

global rotation

Middle temporal lobe

Apparent Motion

Definition: perception of motion without stimulus continuity (stroboscopic and cine)

Influences

spatial frequency characteristics

global field effects

number of frames

expectations from reality

Limitations

maximum of 300 msec interstimulus interval

decreased size constancy (max ~8 Hz)

decreased sense of observer motion

Depth from Motion

Motion depth cues

head motion parallax

kinetic depth effect

magnitude of motion indicates relative depth

Applications

indicating relative object positions compensating for lack of other depth cues

Limits

relative, not absolute depth

perceived size, perceived depth related

Head Motion Parallax

3D Structure from Motion

Relative motion conveys info about 3D shape Rigidity assumption

Applications

understanding of irregular/unfamiliar shapes disambiguation of 2D projections

Limits

2 frames (large number of structured points)

2-3 points (many frames)

15 arc min (maximum displacement)

Structure from Motion

Bruce and Green '90, pg. 328.

Image Segmentation

Discontinuities in optical velocity field indicate object boundaries

Boundaries can be detected on the basis of motion alone

Applications

disambiguation of complex scenes

grouping of similar objects

At Equiliminance

Motion perception of gratings degrades

Depth perception disappears

Depth from relative motion disappears

Shape from relative motion disappears