INTRODUCTION TO CRYPTOGRAPHY – QUIZ 8

B.Tech. Computer Science and Engineering (Cybersecurity)

Name: Anish Sudhan Nair	Roll No.: K041
Batch: K2/A2	Date of submission: 02/03/2022

Quiz

Consider the SPN where the following S-box is used:

Following table has been created for the given S-box with input sum B and output sum 6 with seven missing entries which are denoted by a, b, c, d, e, f, g:

X	Y	$X_1 \oplus X_3 \oplus X_4$	$Y_2 \oplus Y_3$
0000	1110	0	0
0001	0010	1	1
0010	0001	a	0
0011	0011	0	b
0100	1101	С	1
0101	1001	1	d
0110	0000	1	0
0111	0110	0	0
1000	1111	1	0
1001	0100	0	1
1010	0101	0	1
1011	1010	1	1
1100	1000	1	0
1101	1100	0	е
1110	0111	f	0
1111	1011	1	g

- 1. (14 points) Find the values of a, b, c, d, e, f, g in the above table. (2 points each)
- 2. (2 points) Compute $N_L(B,6)$ and $\in (B,6)$.
 - $\Rightarrow B = X_1 \oplus X_3 \oplus X_4$ $6 = Y_2 \oplus Y_3$

The table for linear approximation is already provided, therefore we simply count the no. of "Yes"

$X_1 \bigoplus X_3 \bigoplus X_4$	$Y_2 \bigoplus Y_3$	
0	0	Yes
1	1	Yes
1	0	No
0	1	No
0	1	No
1	0	No
1	0	No
0	0	Yes
1	0	No
0	1	No
0	1	No
1	1	Yes
1	0	No
0	1	No
0	0	Yes
1	1	Yes

No. of "Yes" =
$$6$$

$$N_L(B,6) = 6$$

 $\epsilon(B,6) = 6/16 - 1/2 = 6-8/16 = -2/16 = -1/8$

- 3. (2 points) Compute \in (*B*,6).
 - → $N_L(B,6) = 6$ ∈(B,6) = 6/16 - 1/2 = 6-8/16 = -2/16 = -1/8
- 4. (2 points) Can this pair be used to construct linear approximation?
 - → Yes.

B=6

 $X_1 \bigoplus X_3 \bigoplus X_4 = Y_2 \bigoplus Y_3$

 $(X_1 \oplus X_3 \oplus X_4) \oplus (Y_2 \oplus Y_3) = 0$