

دانشگاه صنعتی اصفهان دانشکده مهندسی برق و کامپیوتر

عنوان: تکلیف دوم درس مبانی یادگیری ماشین (بخش تئوری)

نام و نام خانوادگی: علیرضا ابره فروش شماره دانشجویی: ۹۸۱۶۶۰۳ نیم سال تحصیلی: پاییز ۱۴۰۱ مدرّس: دکتر مهران صفایانی

١

الف 1.1

$$\theta = \begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix}, x = \begin{bmatrix} 1 \\ x_1 \\ x_2 \end{bmatrix}$$

مرز تصمیم x=0 است. پس داریم:

 $\theta^t x = 0$ \Rightarrow (3) × (1) + (0) × (x₁) + (-1) × (x₂) = 0 $\Rightarrow x_2 = 3$

مرز تصمیم $x_2 = 3$ است.

۲.۱

$$\theta = \begin{bmatrix} -2\\1\\1 \end{bmatrix}, x = \begin{bmatrix} 1\\x_1\\x_2 \end{bmatrix}$$

مرز تصمیم $\theta^t x = 0$ است. پس داریم:

 $\theta^t x = 0$ \Rightarrow (-2) × (1) + (1) × (x₁) + (1) × (x₂) = 0 $\Rightarrow x_2 = -x_1 + 2$

مرز تصمیم $x_2 = -x_1 + 2$ است.

٣.١ ج

???????????????

٢

$$z = \begin{bmatrix} z_0 \\ z_1 \\ \vdots \\ z_{K-1} \end{bmatrix}, \sigma(z) = \begin{bmatrix} \frac{e^{z_0}}{\sum_{i=1}^{K-1} e^{z_i}} \\ \frac{e^{z_1}}{\sum_{i=1}^{K-1} e^{z_i}} \\ \vdots \\ \frac{e^{z_{K-1}}}{\sum_{i=1}^{K-1} e^{z_i}} \end{bmatrix}$$

$$\forall i \in \{0, \cdots, K-1\}$$

$$\sigma(z)_i = \frac{e^{z_i}}{\sum_{j=0}^{K-1} e^{z_j}}$$

$$J = \begin{bmatrix} \frac{\partial \sigma(z)_0}{\partial z_0} & \dots & \frac{\partial \sigma(z)_0}{\partial z_{K-1}} \\ \vdots & \ddots & \vdots \\ \frac{\partial \sigma(z)_{K-1}}{\partial z_0} & \dots & \frac{\partial \sigma(z)_{K-1}}{\partial z_{K-1}} \end{bmatrix}$$

$$\forall i, j \in \{0, \dots, K-1\}$$

 $\frac{\partial}{\partial z_i} \ln (\sigma(z)_i) = \frac{1}{\sigma(z)_i} \cdot \frac{\partial \sigma(z)_i}{\partial z_j}$

$$\begin{split} & \Rightarrow J_{ij} = \frac{\sigma(z)_i}{\partial z_j} = \sigma(z)_i \frac{\partial}{\partial z_j} \ln(\sigma(z)_i) = \sigma(z)_i \frac{\partial}{\partial z_j} \left(z_i - \ln\left(\sum_{k=0}^{K-1} e^{z_k}\right)\right) \\ & = \sigma(z)_i \left[1\left\{i = j\right\} - \frac{1}{\sum_{k=0}^{K-1} e^{z_k}} \cdot e^{z_j}\right] = \sigma(z)_i \left[1\left\{i = j\right\} - \sigma(z)_j\right] \\ & \Rightarrow J = \begin{bmatrix} \sigma(z)_0 \left(1 - \sigma(z)_0\right) & -\sigma(z)_0 \sigma(z)_1 & \cdots & -\sigma(z)_0 \sigma(z)_{K-1} \\ -\sigma(z)_1 \sigma(z)_0 & \sigma(z)_1 \left(1 - \sigma(z)_1\right) & \cdots & -\sigma(z)_1 \sigma(z)_{K-1} \\ \vdots & \vdots & \ddots & \vdots \\ -\sigma(z)_{K-1} \sigma(z)_0 & -\sigma(z)_{K-1} \sigma(z)_1 & \cdots & \sigma(z)_{K-1} \left(1 - \sigma(z)_{K-1}\right) \end{bmatrix} \mathcal{L}(y) = -\sum_{i=0}^{K-1} y_i \cdot \ln(\sigma(z)_i) \\ & \Rightarrow \frac{\partial \mathcal{L}}{\partial z_j} = -\frac{\partial}{\partial z_j} \sum_{i=0}^{K-1} y_i \cdot \ln(\sigma(z)_i) \\ & = -\sum_{i=0}^{K-1} y_i \cdot \frac{\partial}{\partial z_j} \ln(\sigma(z)_i) \\ & = -\sum_{i=0}^{K-1} \frac{y_i}{\sigma(z)_i} \cdot \frac{\partial \sigma(z)_i}{\partial z_j} \\ & = -\sum_{i=0}^{K-1} \frac{y_i}{\sigma(z)_i} \cdot \sigma(z)_i \cdot \left(1\left\{i = j\right\} - \sigma(z)_j\right) \\ & = -\sum_{i=0}^{K-1} y_i \cdot \sigma(z)_j \cdot \sum_{i=1}^{K-1} y_i \cdot 1\left\{i = j\right\} \\ & = \sum_{i=0}^{K-1} y_i \cdot \sigma(z)_j - \sum_{i=1}^{K-1} y_i \cdot 1\left\{i = j\right\} \\ & = \sum_{i=0}^{K-1} y_i \cdot \sigma(z)_j - y_j \\ & = \sigma(z)_j \cdot \sum_{i=0}^{K-1} y_i - y_j \\ & = \sigma(z)_j - y_j \end{aligned}$$

٣

ستون A که به نسبت سایر ستونها ضرایب بزرگتری دارد فاقد regularization term است. پس مربوط به تابع هزینهی اول است. ستون B فاقد ضرایب صفر است. میدانیم که امکان صفر شدن ضرایب در lasso regression موجود است. پس مربوط به تابع دوم است.

ستون C دارای ضرایب صفر است. می دانیم که در ridge regression هرگز ضرایب صفر نمی شوند. پس مربوط به تابع سوم است.

۴

$$p(x_k|\theta) = \sqrt{\theta} x_k^{\sqrt{\theta} - 1}$$
$$p(X|\theta) = \prod_{k=1}^n p(x_k|\theta)$$

$$\ln\left(p\left(X|\theta\right)\right) = \sum_{k=1}^{n} \ln\left(p\left(x_{k}|\theta\right)\right) = \sum_{k=1}^{n} \ln\left(\sqrt{\theta}x_{k}^{\sqrt{\theta}-1}\right) = \sum_{k=1}^{n} \left[\frac{1}{2}\ln\left(\theta\right) + \left(\sqrt{\theta}-1\right)\ln\left(x_{k}\right)\right]$$

$$\frac{\partial}{\partial \theta} \ln (p(X|\theta)) = \frac{n}{2\theta} - \frac{\sum_{k=1}^{n} \ln(x_k)}{2\sqrt{\theta}} = 0$$

91188.4

$$\theta = \left(\frac{n}{\sum_{k=1}^{n} \ln(x_k)}\right)^2$$

۵

$$p(\mu|X) \propto p(x_k|\mu) . p(\mu)$$

$$p(\mu|X) = \left[\prod_{k=1}^{n} \frac{1}{\sqrt{2\pi\sigma'^{2}}} e^{-\frac{(x_{k}-\mu)^{2}}{2\sigma'^{2}}}\right] \cdot \frac{1}{(2\pi)^{\frac{1}{2}} \sigma_{\mu}^{2}} e^{-\frac{\|\mu-\mu_{0}\|^{2}}{2\sigma_{\mu}^{2}}}$$

$$\ln\left(p\left(\mu|X\right)\right) = \sum_{k=1}^{n} \left[-\ln\left(\sqrt{2\pi\sigma'^{2}}\right) - \frac{(x_{k} - \mu)^{2}}{2\sigma'^{2}} \right] - \ln\left((2\pi)^{\frac{l}{2}} \, \sigma_{\mu}^{2}\right) - \frac{\|\mu - \mu_{0}\|^{2}}{2\sigma_{\mu}^{2}}$$

$$\frac{\partial}{\partial \mu} \ln \left(p\left(\mu | X \right) \right) = 0$$

$$\sum_{k=1}^{n} \frac{x_k - \mu}{\sigma'^2} = \frac{\|\mu - \mu_0\|}{2\sigma_{\mu}^2}$$

$$\mu = \frac{\frac{\sum_{k=1}^{n} x_k}{\sigma'^2} + \frac{\mu}{2\sigma_{\mu}^2}}{n + \frac{1}{2\sigma_{\mu}^2}}$$

۶

تابع هزينه:
$$\mathcal{L}(w)$$

ام
$$i$$
 training example هزينهي: $\mathcal{L}_i(w)$

وزنها در گام
$$t$$
ام w^t

$$y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_9 \end{bmatrix}, X = \begin{bmatrix} (X_1)^2 & X_1 & 1 \\ (X_2)^2 & X_2 & 1 \\ \vdots & \vdots & \vdots \\ (X_9)^2 & X_9 & 1 \end{bmatrix}, w = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

$$\mathcal{L}_i(w^{(t)}) = \frac{1}{2} \left(y_i - X_i^T w^{(t)} \right)^2$$

$$\nabla \mathcal{L}_i(w^{(t)}) = -X_i \left(y_i - X_i^T w^{(t)} \right)$$

$$w^{(t+1)} = w^{(t)} - \alpha \nabla \mathcal{L}_i(w^{(t)})$$

$$w^{(0)} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$w^{(1)} = \begin{bmatrix} 0.000000000 + 00 \\ 0.000000000 + 00 \\ 0.00000000 + 00 \\ 0.00000000 + 00 \end{bmatrix} - 0.1 \times \left(-\begin{bmatrix} 35.38^2 \\ 35.38 \\ 1 \end{bmatrix} \left(2955.53 - \begin{bmatrix} 35.38^2 & 35.38 & 1 \end{bmatrix} \begin{bmatrix} 0.00000000 + 00 \\ 0.00000000 + 00 \\ 0.00000000 + 00 \end{bmatrix} \right) = \begin{bmatrix} 3.69956813e + 05 \\ 1.04566651e + 04 \\ 2.95553000e + 02 \end{bmatrix}$$

$$w^{(2)} = \begin{bmatrix} 3.69956813e + 05 \\ 1.04566651e + 04 \\ 2.95553000e + 02 \end{bmatrix} - 0.1 \times \left(-\begin{bmatrix} 15.32^2 \\ 15.32 \\ 1 \end{bmatrix} \left(560.30 - \begin{bmatrix} 15.32^2 & 15.32 & 1 \end{bmatrix} \begin{bmatrix} 3.69956813e + 05 \\ 1.04566651e + 04 \\ 2.95553000e + 02 \end{bmatrix} \right) = \begin{bmatrix} -2.04129879e + 09 \\ -1.33257738e + 08 \\ -8.69867277e + 06 \end{bmatrix} - 0.1 \times \left(-\begin{bmatrix} 11.74^2 \\ 11.74 \\ 1 \end{bmatrix} \left(334.32 - \begin{bmatrix} 11.74^2 & 11.74 & 1 \end{bmatrix} \begin{bmatrix} -2.04129879e + 09 \\ -1.33257738e + 08 \\ -8.69867277e + 06 \end{bmatrix} \right) = \begin{bmatrix} 3.89738346e + 12 \\ 3.32015359e + 11 \\ 2.82833471e + 10 \end{bmatrix}$$

$$w^{(4)} = \begin{bmatrix} 3.89738346e + 12 \\ 3.32015359e + 11 \\ 2.82833471e + 10 \end{bmatrix} - 0.1 \times \left(-\begin{bmatrix} 19.05^2 \\ 19.05 \\ 1 \end{bmatrix} \left(864.44 - \begin{bmatrix} 19.05^2 & 19.05 & 1 \end{bmatrix} \begin{bmatrix} 3.89738346e + 12 \\ 3.32015359e + 11 \\ 2.82833471e + 10 \end{bmatrix} \right) = \begin{bmatrix} -5.15545092e + 16 \\ -2.70614602e + 15 \\ -1.42044054e + 14 \end{bmatrix} - 0.1 \times \left(-\begin{bmatrix} 26.85^2 \\ 26.85 \\ 1 \end{bmatrix} \left(1709.09 - \begin{bmatrix} 26.85^2 & 26.85 & 1 \end{bmatrix} \begin{bmatrix} -5.15545092e + 16 \\ -2.70614602e + 15 \\ -1.42044054e + 14 \end{bmatrix} \right) = \begin{bmatrix} 2.6463555e + 21 \\ -1.42044054e + 14 \end{bmatrix}$$

$$3.72381873e + 18$$

$$w^{(6)} = \begin{bmatrix} 2.68463555e + 21 \\ 9.99856406e + 19 \\ 3.72381873e + 18 \end{bmatrix} - 0.1 \times \left(-\begin{bmatrix} 39.45^2 \\ 39.45 \\ 1 \end{bmatrix} \begin{pmatrix} 3670.48 - \begin{bmatrix} 39.45^2 \\ 39.45^2 \\ 39.45^2 \end{pmatrix} \cdot 39.45 & 1 \end{bmatrix} \begin{bmatrix} 2.68463555e + 21 \\ 9.99856406e + 19 \\ 9.99856406e + 19 \\ 9.72381873e + 18 \end{bmatrix} \right) \right) = \begin{bmatrix} -6.50851298e + 26 \\ -1.64980998e + 25 \\ -4.18201594e + 23 \end{bmatrix} - 0.1 \times \left(-\begin{bmatrix} 30.51^2 \\ 30.51 \\ 1 \end{bmatrix} \begin{pmatrix} 2202.93 - \begin{bmatrix} 30.51^2 \\ 30.51^2 \\ -4.18201594e + 23 \end{bmatrix} - \begin{bmatrix} -6.50851298e + 26 \\ -1.64980998e + 25 \\ -4.18201594e + 23 \end{bmatrix} - 0.1 \times \left(-\begin{bmatrix} 3.98^2 \\ 3.98 \\ 1 \end{bmatrix} \begin{pmatrix} 13.08 - \begin{bmatrix} 30.51^2 \\ 30.51^2 \end{bmatrix} \cdot 30.51 & 1 \end{bmatrix} \begin{bmatrix} 5.64425427e + 31 \\ 1.84997346e + 30 \\ 6.06351097e + 28 \end{bmatrix} - 0.1 \times \left(-\begin{bmatrix} 3.98^2 \\ 3.98 \\ 1 \end{bmatrix} \begin{pmatrix} 13.08 - \begin{bmatrix} 30.51^2 \\ 30.51^2 \end{bmatrix} \cdot 30.51 & 1 \end{bmatrix} \begin{bmatrix} 5.64425427e + 31 \\ 1.84997346e + 30 \\ 6.06351097e + 28 \end{bmatrix} \right) = \begin{bmatrix} -1.37156316e + 33 \\ -3.56945428e + 32 \\ -9.00889632e + 31 \end{bmatrix}$$

$$w^{(9)} = \begin{bmatrix} -1.37156316e + 33 \\ -3.56945428e + 32 \\ -9.00889632e + 31 \end{bmatrix} - 0.1 \times \left(-\begin{bmatrix} 0.29^2 \\ 0.29 \\ 1 \end{bmatrix} \begin{pmatrix} 2.28 - \begin{bmatrix} 0.29^2 & 0.29 & 1 \end{bmatrix} \begin{bmatrix} -1.37156316e + 33 \\ -3.56945428e + 32 \\ -9.00889632e + 31 \end{bmatrix} \right) = \begin{bmatrix} -1.36896487e + 33 \\ -3.56945428e + 32 \\ -9.00889632e + 31 \end{bmatrix}$$

در هر گام از بین training exampleها یکی را به صورت تصادفی انتخاب میکنیم. این کار را به تعداد training exampleها تکرار میکنیم تا کل دادهها توسط مدل دیده شوند.

منابع

عليه ضا ابه ه فروش،