

Schletter, Inc.		25° Tilt w/ Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	2000 mm	Height =	1900 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 25°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

g_{MAX}	=	3.00	psf
g _{мім}	=	1.75	psf

Self-weight of the PV modules.

2.2 Snow Loads

	30.00 psf	Ground Snow Load, P_g =
(ASCE 7-05, Eq. 7-2)	18.56 psf	Sloped Roof Snow Load, P _s =
	1.00	I _s =
	0.82	$C_s =$
	0.90	$C_e =$

1.20

2.3 Wind Loads

Design Wind Speed, V =	85 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 11.34 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Ct+ _{TOP}	=	1.100	
Cf+ BOTTOM	=	1.100 1.700 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.500	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-1.900 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.000	approa ana, nom mo oanaco.

2.4 Seismic Loads

S _s =	2.50	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S_s of 1.5
$S_{DS} =$	1.67	$C_{S} = 0.8$	may be used to calculate the base shear, C_s , of
$S_1 =$	1.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	1.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S _{ds} of 1.0 was used to
T _a =	0.06	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

(ASCE 7, Eq 2.3.2-1 through 2.3.2-7) & (ASCE 7, Section 12.4.3.2)

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations: 1.2D + 1.6S + 0.8W

1.2D + 1.6W + 0.5S 0.9D + 1.6W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E ^O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 1.0W 1.0D + 0.75L + 0.75W + 0.75S 0.6D + 1.0W ^M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ° 1.1785D + 0.65625E + 0.75S ° 0.362D + 0.875E °

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	<u>Location</u>	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	<u>Location</u>			
M4	Outer			
M8	Inner			
M12	Outer			

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	<u>367.34</u>	<u>4595.72</u>	k
Compressive Load =	<u>3978.25</u>	<u>4613.77</u>	k
Lateral Load =	405.38	2479.69	k
Moment (Weak Axis) =	0.82	0.39	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 129037.6 in-lbs Resisting Force Required = 1804.72 lbs A minimum 143in long x 35in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 3007.87 lbs to resist overturning. Minimum Width = Weight Provided = 7559.64 lbs Sliding Force = 595.81 lbs Use a 143in long x 35in wide x 18in tall Friction = 0.4 Weight Required = 1489.54 lbs ballast foundation to resist sliding. Resisting Weight = 7559.64 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 595.81 lbs Cohesion = 130 psf Use a 143in long x 35in wide x 18in tall 34.76 ft² Area = ballast foundation. Cohesion is OK. Resisting = 3779.82 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c = Length = 8 in

ASD LC		1.0D	+ 1.0S			1.0D+	- 1.0W		1	.0D + 0.75L +	0.75W + 0.75	is		0.6D+	1.0W	
Width	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in
FA	1537 lbs	1537 lbs	1537 lbs	1537 lbs	1177 lbs	1177 lbs	1177 lbs	1177 lbs	1895 lbs	1895 lbs	1895 lbs	1895 lbs	-170 lbs	-170 lbs	-170 lbs	-170 lbs
F _B	1604 lbs	1604 lbs	1604 lbs	1604 lbs	1662 lbs	1662 lbs	1662 lbs	1662 lbs	2304 lbs	2304 lbs	2304 lbs	2304 lbs	-2203 lbs	-2203 lbs	-2203 lbs	-2203 lbs
F _V	202 lbs	202 lbs	202 lbs	202 lbs	1087 lbs	1087 lbs	1087 lbs	1087 lbs	950 lbs	950 lbs	950 lbs	950 lbs	-1192 lbs	-1192 lbs	-1192 lbs	-1192 lbs
P _{total}	10700 lbs	10916 lbs	11132 lbs	11348 lbs	10399 lbs	10615 lbs	10831 lbs	11047 lbs	11758 lbs	11974 lbs	12190 lbs	12406 lbs	2163 lbs	2293 lbs	2422 lbs	2552 lbs
M	3731 lbs-ft	3731 lbs-ft	3731 lbs-ft	3731 lbs-ft	2981 lbs-ft	2981 lbs-ft	2981 lbs-ft	2981 lbs-ft	4691 lbs-ft	4691 lbs-ft	4691 lbs-ft	4691 lbs-ft	3794 lbs-ft	3794 lbs-ft	3794 lbs-ft	3794 lbs-ft
е	0.35 ft	0.34 ft	0.34 ft	0.33 ft	0.29 ft	0.28 ft	0.28 ft	0.27 ft	0.40 ft	0.39 ft	0.38 ft	0.38 ft	1.75 ft	1.65 ft	1.57 ft	1.49 ft
L/6	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft									
f _{min}	253.8 psf	252.8 psf	251.9 psf	250.9 psf	256.0 psf	254.9 psf	253.9 psf	253.0 psf	270.3 psf	268.9 psf	267.5 psf	266.2 psf	7.3 psf	10.7 psf	13.9 psf	17.0 psf

361.9 psf 357.9 psf 354.1 psf 350.5 psf 342.4 psf 338.9 psf 335.6 psf 342.4 psf 338.9 psf 335.6 psf 342.4 psf 338.9 psf 36.1 psf 391.4 psf 117.2 psf 117.6 psf 117.9 psf 118.2 psf

36 in

35 in

 $P_{ftg} = (145 \text{ pcf})(11.92 \text{ ft})(1.5 \text{ ft})(2.92 \text{ ft}) = \frac{7560 \text{ lbs}}{7776 \text{ lbs}} = \frac{7992 \text{ lbs}}{7992 \text{ lbs}} = \frac{8208 \text{ lbs}}{7992 \text{ lbs}}$

Ballast Width

<u>37 in</u>

38 in

Maximum Bearing Pressure = 406 psf Allowable Bearing Pressure = 1500 psf Use a 143in long x 35in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Bearing Pressure

Seismic Design

Overturning Check

 $M_O = 3074.5 \text{ ft-lbs}$

Resisting Force Required = 2108.26 lbs S.F. = 1.67

Weight Required = 3513.76 lbs Minimum Width = 35 in in Weight Provided = 7559.64 lbs A minimum 143in long x 35in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	ēΕ	1.1785D + 0.65625E + 0.75S			0.362D + 0.875E				
Width		35 in			35 in			35 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer		
F _Y	324 lbs	710 lbs	230 lbs	952 lbs	2602 lbs	878 lbs	128 lbs	208 lbs	34 lbs		
F _V	239 lbs	233 lbs	244 lbs	174 lbs	170 lbs	192 lbs	240 lbs	234 lbs	241 lbs		
P _{total}	9683 lbs	10069 lbs	9589 lbs	9861 lbs	11511 lbs	9788 lbs	2864 lbs	2944 lbs	2771 lbs		
M	963 lbs-ft	948 lbs-ft	979 lbs-ft	720 lbs-ft	719 lbs-ft	776 lbs-ft	961 lbs-ft	945 lbs-ft	967 lbs-ft		
е	0.10 ft	0.09 ft	0.10 ft	0.07 ft	0.06 ft	0.08 ft	0.34 ft	0.32 ft	0.35 ft		
L/6	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft		
f _{min}	221.6 psf	233.6 psf	218.0 psf	241.1 psf	288.6 psf	235.7 psf	25.5 psf	28.8 psf	22.5 psf		
f _{max}	335.6 psf	345.8 psf	333.8 psf	326.3 psf	373.8 psf	327.5 psf	139.3 psf	140.6 psf	137.0 psf		

Maximum Bearing Pressure = 374 psf Allowable Bearing Pressure = 1500 psf

Use a 143in long x 35in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 143in long x 24in wide x 18in tall ballast foundation and fiber reinforcing with (2) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut
Maximum Axial Load =	3.060 k	Maximum Axial Load = 3.309 k
M12 Bolt Capacity =	12.808 k	M12 Bolt Capacity = 12.808 k
Strut Bearing Capacity =	7.421 k	Strut Bearing Capacity = 7.421 k
Utilization =	<u>41%</u>	Utilization = $\frac{45\%}{}$
Diagonal Strut		
Maximum Axial Load =	1.771 k	
M12 Bolt Shear Capacity =	12.808 k	Bolt and bearing capacities are accounting for double shear.
Strut Bearing Capacity =	7.421 k	(ASCE 8-02, Eq. 5.3.4-1)
Utilization =	<u>24%</u>	

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ll} \text{Mean Height, h}_{\text{sx}} = & 56.48 \text{ in} \\ \text{Allowable Story Drift for All Other} \\ \text{Structures, } \Delta = \{ & 0.020 h_{\text{sx}} \\ 1.130 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & 0.883 \text{ in} \\ \hline 0.883 \leq 1.13, \text{ OK.} \end{array}$

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$\begin{array}{ll} \mathsf{L_b} = & 117 \text{ in} \\ \mathsf{J} = & 0.432 \\ & 323.677 \\ \\ S1 = & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} = & 0.51461 \\ \\ S2 = & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} = & 1701.56 \\ \mathsf{\phiF_L} = & \mathsf{\phib[Bc-1.6Dc*} \sqrt{((\mathsf{LbSc})/(\mathsf{Cb*} \sqrt{(\mathsf{lyJ})/2}))]} \end{array}$$

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L_b} &= & 117 \\ \mathsf{J} &= & 0.432 \\ & & 205.839 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} &= & 1701.56 \\ \varphi \mathsf{F_L} &= & \varphi \mathsf{b} [\mathsf{Bc-1.6Dc^*} \sqrt{((\mathsf{LbSc})/(\mathsf{Cb^*} \sqrt{(\mathsf{lyJ})/2}))]} \\ \varphi \mathsf{F_L} &= & 28.7 \end{split}$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 25.1 \text{ ksi}$$

 $\phi F_1 = 27.5 \text{ ksi}$

3.4.16

b/t = 37.0588

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 23.1 \text{ ksi}$$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi F cy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 37.0588$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr - mDbr^* h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

25.1 ksi

2.155 in⁴

1.335 in³

2.788 k-ft

 $lx = 897074 \text{ mm}^4$

y = 41.015 mm

$$h/t = 32.195$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$ly = 446476 \text{ mm}^4$$

$$1.073 \text{ in}^4$$

$$x = 45.5 \text{ mm}$$

$$Sy = 0.599 \text{ in}^3$$

1.152 k-ft

 $M_{max}Wk =$

Sx=

 $M_{max}St =$

 $\varphi F_L St =$

Compression

3.4.9

b/t = 32.195
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi c[Bp-1.6Dp^*b/t]$$

 $\phi F_L = 25.1 \text{ ksi}$
b/t = 37.0588
S1 = 12.21
S2 = 32.70
 $\phi F_L = (\phi ck2^*\sqrt{(BpE))}/(1.6b/t)$
 $\phi F_L = 21.9 \text{ ksi}$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$

$$\phi F_L = 21.94 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

$$P_{\text{max}} = 41.32 \text{ kips}$$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis: 3.4.14

$$L_b = 104.56 \text{ in}$$
 $J = 1.08$
 179.85

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$
$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$\begin{split} \phi F_L &= \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}] \\ \phi F_I &= 29.0 \text{ ksi} \end{split}$$

3.4.16

$$b/t = 16.2$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 31.6 \text{ ksi}$$

Weak Axis:

$$L_{b} = 104.56$$

$$J = 1.08$$

$$190.335$$

$$61 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{\frac{1}{2}}$$

$$S1 = 0.51461$$

 $S2 = \left(\frac{C_c}{1.6}\right)^2$
 $S2 = 1701.56$

$$S2 = (\frac{1.6}{1.6})$$

 $S2 = 1701.56$

28.9

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))]}$$

3.4.16

 $\phi F_1 =$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi F Cy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Used Rb/t = 18.1
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$
 S1 = 1.1
$$S2 = C_t$$
 S2 = 141.0
$$\varphi F_L = \varphi b[Bt-Dt^* \sqrt{(Rb/t)}]$$

 $\phi F_L =$

16.2

 $\frac{\theta_y}{2}$ 1.3Fcy

3.4.18

h/t =

Bbr -

3.4.18

$$h/t = 7.4$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 73.8$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.0 \text{ ksi}$$

$$lx = 984962 \text{ mm}^4$$

$$2.366 \text{ in}^4$$

y = 43.717 mm

1.375 in³

3.323 k-ft

31.1 ksi

S1 = 36.9
m = 0.65

$$C_0$$
 = 40
 C_0 = 40
 S_0 = $\frac{k_1 B b r}{m D b r}$
S2 = 77.3
 ϕF_L = 1.3 $\phi F_C y$
 ϕF_L = 43.2 ksi
 $\phi F_L W k$ = 33.3 ksi
 $\phi F_L W k$ = 32.249 in⁴
 $\phi F_L W k$ = 40 mm
 $\phi F_L W k$ = 3.904 k-ft

Compression

 $M_{max}St =$

Sx =

3.4.9

b/t =12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula) $\varphi F_L = \varphi c[Bp-1.6Dp*b/t]$ $\varphi F_L =$ 31.6 ksi b/t =7.4 S1 = 12.21 32.70 S2 = $\phi F_L = \phi y F c y$ $\varphi F_L =$ 33.3 ksi

3.4.10

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3

$$\phi F_L = \phi c[Bt-Dt^*\sqrt{(Rb/t)}]$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

58.55 kips

 $P_{max} =$

Rev. 07.29.2016

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = **55x55**

Strong Axis:

3.4.14

$$L_b = 24.8 \text{ in}$$

$$J = 0.942$$

$$38.7028$$

$$\left(Bc - \frac{\theta_y}{\theta_b} Fcy\right)^2$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L \text{= } \phi b [\text{Bc-1.6Dc*} \sqrt{(\text{LbSc})/(\text{Cb*} \sqrt{(\text{lyJ})/2)})}]$$

$$\phi F_L = 31.4 \text{ ksi}$$

Weak Axis: 3.4.14

$$L_{b} = 24.8$$

$$J = 0.942$$

$$38.7028$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$\phi F_{1} = \phi b[Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2)}}]$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_I = 28.2 \text{ ksi}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

 $\phi F_L = 31.4$

3.4.16.1

4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C$$

$$S1 = 1.1$$

$$S2 = C_t$$

S2 =
$$141.0$$

 $\phi F_1 = 1.17 \phi y F c y$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDhr}$$

$$S1 = \frac{\sigma_b}{mDbr}$$

$$S1 = 36.9$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$0.672 \text{ in}^4$$

y = 27.5 mm

$$Sx = 0.621 \text{ in}^3$$

$$M_{max}St = 1.460 \text{ k-ft}$$

3.4.16.1

N/A for Weak Direction

S14.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 28.2 \text{ ksi}$$

$$0.672 \text{ in}^4$$

x = 27.5 mm

$$Sy = 0.621 \text{ in}^3$$

$$M_{max}Wk = 1.460 \text{ k-ft}$$

SCHLETTER

Compression

3.4.7 $\lambda = 0.57371$ r = 0.81 in $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$ $S1^* = 0.33515$ $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$ $S2^* = 1.23671$ $\varphi cc = 0.87952$ $\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$ $\varphi F_L = 28.0279 \text{ ksi}$

3.4.9

b/t =

24.5

$$\begin{array}{lll} S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 28.85 \text{ kips}$$

0.0

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

Strong Axis: Weak Axis: 3.4.14 3.4.14 $L_b =$ 98.03 in 98.03 0.942 0.942 J = J = 152.985 152.985 $S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$ S1 = 0.51461 S1 = 0.51461 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\phi F_1 =$ 29.4 ksi $\phi F_1 =$ 29.4

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used Rb/t = 0.0

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

3.4.18

$$ST = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$C_0 = 27.5$$

$$C_0 = 27.5$$

$$S_0 = \frac{k_1Bbr}{mDbr}$$

$$S_0 = 77.3$$

$$\varphi F_L = 1.3\varphi y Fcy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$
 $lx = 279836 \text{ mm}^4$
 0.672 in^4

$$y = 0.672 \text{ in}^4$$

 $y = 27.5 \text{ mm}$
 $Sx = 0.621 \text{ in}^3$
 $M_{max}St = 1.460 \text{ k-ft}$

$$\begin{array}{cccc} \phi F_L W k = & 28.2 \text{ ksi} \\ & \text{ly} = & 279836 \text{ mm}^4 \\ & & 0.672 \text{ in}^4 \\ & \text{x} = & 27.5 \text{ mm} \\ & \text{Sy} = & 0.621 \text{ in}^3 \end{array}$$

Compression

$$\begin{array}{lll} \lambda = & 2.26776 \\ r = & 0.81 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.89749 \\ & \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ & \phi F_L = & 6.10803 \text{ ksi} \end{array}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \end{array}$$

3.4.10

 $\varphi F_L =$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^{\frac{1}{2}}$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$

$$\phi F_L = 6.11 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{\text{max}} = 6.29 \text{ kips}$$

28.2 ksi

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

Strong Axis: Weak Axis: 3.4.14 $L_b =$ 69.80 in $L_b =$ 69.8 0.942 0.942 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\phi F_L =$ $\phi F_L = 30.0 \text{ ksi}$ 30.0

3.4.16
 3.4.16

 b/t = 24.5
 b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$
 $S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$

 S1 = 12.2
 S1 = 12.2

 $S2 = \frac{k_1 Bp}{1.6Dp}$
 $S2 = \frac{k_1 Bp}{1.6Dp}$

 S2 = 46.7
 $S2 = 46.7$
 $\varphi F_L = \varphi b [Bp-1.6Dp^*b/t]$
 $\varphi F_L = \varphi b [Bp-1.6Dp^*b/t]$
 $\varphi F_L = 28.2 \text{ ksi}$
 $\varphi F_L = 28.2 \text{ ksi}$

3.4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y Fcy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

3.4.18

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

$$\begin{array}{ccc} \phi F_L W k = & 28.2 \text{ ksi} \\ y = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ \text{Sy} = & 0.621 \text{ in}^3 \\ M_{\text{max}} W k = & 1.460 \text{ k-ft} \end{array}$$

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 1.61471 \\ r = & 0.81 \text{ in} \\ S1^* = & \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ S2^* = & \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ \phi cc = & 0.80606 \\ \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ \phi F_L = & 10.8205 \text{ ksi} \end{array}$$

b/t = 24.5
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\varphi F_L = \varphi c [Bp-1.6Dp^*b/t]$$

 $\varphi F_L = 28.2 \text{ ksi}$
b/t = 24.5
S1 = 12.21
S2 = 32.70
 $\varphi F_L = \varphi c [Bp-1.6Dp^*b/t]$
 $\varphi F_L = 28.2 \text{ ksi}$

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt} \right)^2 \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{ϕF}_L &= & \text{ϕF}_L \text{ψF}_L \text{ψF}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1				4	,	, I
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL			.8			8		

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-9.843	-9.843	0	0
2	M14	Υ	-9.843	-9.843	0	0
3	M15	Υ	-9.843	-9.843	0	0
4	M16	Υ	-9.843	-9.843	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-5.454	-5.454	0	0
2	M14	Υ	-5.454	-5.454	0	0
3	M15	Υ	-5.454	-5.454	0	0
4	M16	Υ	-5.454	-5.454	0	0

Member Distributed Loads (BLC 3 : Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-55.176	-55.176	0	0
2	M14	Υ	-55.176	-55.176	0	0
3	M15	Υ	-55.176	-55.176	0	0
4	M16	Υ	-55 176	-55 176	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-40.939	-40.939	0	0
2	M14	V	-40.939	-40.939	0	0
3	M15	V	-63.27	-63.27	0	0
4	M16	V	-63.27	-63.27	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	93.044	93.044	0	0
2	M14	V	70.714	70.714	0	0
3	M15	V	37.218	37.218	0	0
4	M16	У	37.218	37.218	0	0

Member Distributed Loads (BLC 6 : Seismic - Lateral)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Ζ	7.874	7.874	0	0
2	M14	Ζ	7.874	7.874	0	0
3	M15	Ζ	7.874	7.874	0	0
4	M16	Ζ	7.874	7.874	0	0
5	M13	Ζ	0	0	0	0
6	M14	Z	0	0	0	0
7	M15	Z	0	0	0	0
8	M16	Z	0	0	0	0

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:__

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	B	Fa
1	LRFD 1.2D + 1.6S + 0.8W	Yes	Υ		1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1.6														
3	LRFD 0.9D + 1.6W	Yes	Υ		2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	Yes	Υ		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Υ		2	.6					5	1												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	469.466	2	1070.021	1	.948	1	.004	1	0	1	0	1
2		min	-616.534	3	-1091.847	3	-54.629	5	295	4	0	1	0	1
3	N7	max	.043	9	1154.552	1	831	12	002	12	0	1	0	1
4		min	129	2	-61.371	3	-311.832	4	629	4	0	1	0	1
5	N15	max	0	15	3060.194	1_	0	9	0	9	0	1	0	1
6		min	-1.516	2	-282.572	3	-293.68	4	604	4	0	1	0	1
7	N16	max	1810.976	2	3549.05	1	0	9	0	1	0	1	0	1
8		min	-1907.451	3	-3535.169	3	-54.337	5	298	4	0	1	0	1
9	N23	max	.053	14	1154.552	1_	16.516	1	.033	1	0	1	0	1
10		min	129	2	-61.371	3	-300.393	5	611	4	0	1	0	1
11	N24	max	469.466	2	1070.021	1	06	12	0	12	0	1	0	1
12		min	-616.534	3	-1091.847	3	-55.453	5	298	4	0	1	0	1
13	Totals:	max	2748.135	2	11058.389	1	0	9						
14		min	-3140.752	3	-6124.178	3	-1062.256	5						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	99.684	1	450.118	1	-8.891	12	0	15	.28	1	0	4
2			min	5.193	12	-524.293	3	-200.313	1	014	1	.015	12	0	3
3		2	max	99.684	1	314.59	1	-6.98	12	0	15	.138	4	.484	3
4			min	5.193	12	-369.166	3	-153.661	1	014	1	.006	12	414	1
5		3	max	99.684	1	179.063	1	-5.068	12	0	15	.077	5	.8	3
6			min	5.193	12	-214.038	3	-107.008	1	014	1	053	1	682	1
7		4	max	99.684	1	43.535	1	-3.157	12	0	15	.041	5	.948	3
8			min	5.193	12	-58.91	3	-60.355	1	014	1	144	1	802	1
9		5	max	99.684	1	96.217	3	-1.082	10	0	15	.009	5	.927	3
10			min	5.193	12	-91.992	1	-32.062	4	014	1	184	1	776	1
11		6	max	99.684	1	251.345	3	32.95	1	0	15	008	12	.739	3
12			min	2.997	15	-227.52	1	-25.395	5	014	1	174	1	603	1
13		7	max	99.684	1	406.473	3	79.603	1	0	15	006	12	.383	3
14			min	-8.066	5	-363.047	1	-22.486	5	014	1	113	1	283	1
15		8	max	99.684	1	561.6	3	126.256	1	0	15	.001	2	.184	1
16			min	-20.85	5	-498.575	1	-19.576	5	014	1	071	4	141	3
17		9	max	99.684	1	716.728	3	172.908	1	0	15	.161	1	.797	1
18			min	-33.633	5	-634.102	1	-16.667	5	014	1	088	5	834	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:_

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
19		10	max	99.684	1	769.63	1	-8.312	12	.014	1	.373	1	1.558	1
20			min	5.193	12	-871.856	3	-219.561	1	001	3	.012	12	-1.694	3
21		11	max	99.684	1	634.102	1	-6.4	12	.014	1	.161	1	.797	1
22			min	5.193	12	-716.728	3	-172.908	1	0	15		12	834	3
23		12	max	99.684	1	498.575	1	-4.489	12	.014	1	.069	4	.184	1
24			min	5.193	12	-561.6	3	-126.256	1	0	15	003	3	141	3
25		13	max	99.684	1	363.047	1	-2.577	12	.014	1	.032	5	.383	3
26			min	5.193	12	-406.473	3	-79.603	1	0	15	113	1	283	1
27		14	max	99.684	1	227.52	1	666	12	.014	1	0	15	.739	3
28		17	min	4.992	15	-251.345	3	-37.225	4	0	15	174	1	603	1
29		15	max	99.684	1	91.992	1	13.702	1	.014	1	007	12	.927	3
30		13		-5.211	5	-96.217	3	-26.546	5	0	15	184	1		1
		16	min				3				1		12	776	3
31		16	max	99.684	1	58.91		60.355	1	.014		005		.948	
32		47	min	-17.995	5	-43.535	1	-23.637	5	0	15	144	1	802	1
33		17	max	99.684	1	214.038	3	107.008	1	.014	1	0	12	.8	3
34			min	-30.779	5	-179.063	1_	-20.727	5	0	15	097	4	682	1
35		18	max	99.684	1	369.166	3	153.661	1	.014	1_	.088	1_	.484	3
36			min	-43.563	5	-314.59	_1_	-17.818	5	0	15	104	5	414	1
37		19	max	99.684	1	524.293	3	200.313	1	.014	1	.28	1	0	1
38			min	-56.347	5	-450.118	1	-14.909	5	0	15	122	5	0	3
39	M14	1	max	61.485	4	491.262	1	-9.189	12	.008	3	.327	1	0	4
40			min	2.652	12	-411.081	3	-207.622	1	013	1	.017	12	0	3
41		2	max	54.932	1	355.735	1	-7.277	12	.008	3	.203	4	.382	3
42			min	2.652	12	-294.658	3	-160.969	1	013	1	.008	12	459	1
43		3	max	54.932	1	220.207	1	-5.366	12	.008	3	.116	5	.638	3
44			min	2.652	12	-178.236	3	-114.316		013	1	022	1	771	1
45		4	max	54.932	1	84.68	1	-3.455	12	.008	3	.064	5	.768	3
46			min	2.652	12	-61.814	3	-67.663	1	013	1	12	1	936	1
47		5	max	54.932	1	54.609	3	-1.543	12	.008	3	.014	5	.772	3
48		J	min	-1.594	5	-50.848	1	-49.655	4	013	1	168	1	954	1
49		6	max	54.932	1	171.031	3	25.642	1	.008	3	007	12	.65	3
50		-	min	-14.378	5	-186.375	1	-40.977	5	013	1	166	1	826	1
		7			1		3			.008			12		3
51 52		-	max	54.932	_	287.454	1	72.295	1		3	006	1	.402	1
			min	-27.162	5	-321.903		-38.068	5	013	1	113		55	_
53		8	max	54.932	1	403.876	3	118.947	1	.008	3	0	10	.027	3
54			min	-39.946	5	-457.43	1	-35.159	5	013	1	119	4	128	1
55		9	max	54.932	1	520.298	3	165.6	1	.008	3	.145	1	.441	1
56			min	-52.73	5	-592.958	1_	-32.249	5	013	1_	151	5	473	3
57		10	max	83.797	4	728.485	1	-8.014	12	.013	1	.35	1	1.156	1
58			min	2.652	12	-636.721	3	-212.253	1	008	3	.011	12	-1.1	3
59		11	max		4	592.958	1	-6.102	12	.013	1_	.204	4	.441	1
60			min	2.652	12	-520.298	3	-165.6	1	008	3	.003	12	473	3
61		12	max	58.229	4	457.43	1	-4.191	12	.013	1	.114	4	.027	3
62			min	2.652	12	-403.876	3	-118.947	1	008	3	009	1	128	1
63		13	max	54.932	1	321.903	1	-2.28	12	.013	1	.06	5	.402	3
64			min	2.652	12	-287.454	3	-72.295	1	008	3	113	1	55	1
65		14	max	54.932	1	186.375	1	368	12	.013	1	.011	5	.65	3
66			min	2.652	12	-171.031	3	-50.727	4	008	3	166	1	826	1
67		15	max		1	50.848	1	21.011	1	.013	1	007	12	.772	3
68			min	2.652	12	-54.609	3	-41.218	5	008	3	168	1	954	1
69		16	max		1	61.814	3	67.663	1	.013	1	004	12	.768	3
70			min	-5.016	5	-84.68	1	-38.308	5	008	3	12	1	936	1
71		17	max	54.932	1	178.236	3	114.316	1	.013	1	.002	3	.638	3
72		17	min	-17.8	5	-220.207	1	-35.399	5	008	3	126	4	771	1
		40				294.658						.127			
73		10	max		1		3	160.969	1	.013	1		1	.382	3
74		10	min	-30.584	5	-355.735	1	-32.49	5	008	3	155	5	459	_
75		19	max	54.932	1_	411.081	3	207.622	1	.013	_1_	.327	_1_	0	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	
76			min	-43.368	5	-491.262	1	-29.58	5	008	3	189	5	0	3
77	M15	1	max	97.704	5	556.533	1	-9.129	12	.014	1	.375	4	0	2
78			min	-58.854	1	-215.514	3	-207.551	1	007	3	.016	12	0	3
79		2	max	84.92	5	401.652	1	-7.218	12	.014	1	.257	4	.202	3
80			min	-58.854	1	-157.151	3	-160.898	1	007	3	.008	12	519	1
81		3	max	72.136	5	246.771	1	-5.306	12	.014	1	.154	5	.34	3
82			min	-58.854	1	-98.788	3	-114.245	1	007	3	022	1	87	1
83		4	max	59.352	5	91.89	1	-3.395	12	.014	1	.087	5	.416	3
84			min	-58.854	1	-40.426	3	-76.509	4	007	3	121	1	-1.054	1
85		5	max	46.568	5	17.937	3	-1.483	12	.014	1	.023	5	.428	3
86			min	-58.854	1	-63.685	2	-63.456	4	007	3	169	1	-1.069	1
87		6	max	33.784	5	76.3	3	25.713	1	.014	1	007	12	.377	3
88			min	-58.854	1	-217.872	1	-54.738	5	007	3	166	1	917	1
89		7	max	21	5	134.662	3	72.366	1	.014	1	006	12	.263	3
90			min	-58.854	1	-372.753	1	-51.829	5	007	3	122	4	597	1
91		8	max	8.216	5	193.025	3	119.018	1	.014	1	0	10	.085	3
92			min	-58.854	1	-527.634	1	-48.92	5	007	3	155	4	11	1
93		9	max	-2.968	15	251.388	3	165.671	1	.014	1	.145	1	.552	2
94			min	-58.854	1	-682.515	1	-46.011	5	007	3	201	5	155	3
95		10	max	-3.118	12	837.396	1	-8.074	12	.007	3	.374	4	1.369	1
96			min	-58.854	1	-309.75	3	-212.324	1	014	1	.011	12	459	3
97		11	max	-2.1	15	682.515	1	-6.162	12	.007	3	.255	4	.552	2
98			min	-58.854	1	-251.388		-165.671	1	014	1	.004	12	155	3
99		12	max	-3.118	12	527.634	1	-4.251	12	.007	3	.15	4	.085	3
100			min	-58.854	1	-193.025	3	-119.018	1	014	1	009	1	11	1
101		13	max	-3.118	12	372.753	1	-2.339	12	.007	3	.081	5	.263	3
102			min	-58.854	1	-134.662	3	-77.626	4	014	1	113	1	597	1
103		14	max	-3.118	12	217.872	1	428	12	.007	3	.017	5	.377	3
104			min	-58.854	1	-76.3	3	-64.574	4	014	1	166	1	917	1
105		15	max	-3.118	12	63.685	2	20.94	1	.007	3	007	12	.428	3
106			min	-68.394	4	-17.937	3	-54.983	5	014	1	169	1	-1.069	1
107		16	max	-3.118	12	40.426	3	67.593	1	.007	3	004	12	.416	3
108			min	-81.178	4	-91.89	1	-52.073	5	014	1	13	4	-1.054	1
109		17	max	-3.118	12	98.788	3	114.245	1	.007	3	.001	3	.34	3
110			min	-93.961	4	-246.771	1	-49.164	5	014	1	165	4	87	1
111		18	max	-3.118	12	157.151	3	160.898	1	.007	3	.127	1	.202	3
112		1	min	-106.745		-401.652	1	-46.255	5	014	1	209	5	519	1
113		19	max	-3.118	12		3	207.551	1	.007	3	.326	1	0	2
114		1	min			-556.533		-43.346	5	014	1	257	5	0	5
115	M16	1	max	92.69	5	515.802	1	-8.714	12	.012	1	.282	1	0	2
116	.,,,,			-111.329	1	-191.93		-200.775		009	3		12		3
117		2		79.907	5	360.921	1	-6.803	12	.012	1	.18	4	.176	3
118		_	min		1	-133.568		-154.122		009	3	.005	12	475	1
119		3		67.123	5	206.04	1	-4.892	12	.012	1	.107	5	.289	3
120			min	-111.329	1	-75.205	3	-107.47	1	009	3	052	1	782	1
121		4	max		5	51.159	1	-2.98	12	.012	1	.06	5	.339	3
122			min		1	-16.842	3	-60.817	1	009	3	143	1	921	1
123		5	max		5	41.52	3	-1.069	12	.012	1	.017	5	.326	3
124				-111.329	1	-103.722	1	-42.852	4	009	3	183	1	893	1
125		6	max		5	99.883	3	32.488	1	.012	1	007	12	.249	3
126			min		1	-258.603		-35.999	5	009	3	173	1	697	1
127		7	max		5	158.246	3	79.141	1	.012	1	006	12	.109	3
128			min			-413.484		-33.09	5	009	3	113	1	333	1
129		8	max		5	216.608	3	125.794	1	.012	1	0	10	.199	1
130			min	-111.329	1	-568.365	1	-30.181	5	009	3	098	4	094	3
131		9	max	-5.498	12	274.971	3	172.447	1	.012	1	.16	1	.899	1
132		3		-111.329	1	-723.246		-27.271	5	009	3	127	5	36	3
132			1111111	-111.329		-125.240		-21.211	J	009	J	121	J	50	J

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>LC</u>
133		10	max	-5.498	12	878.127	1	-8.488	12	.012	1	.372	1	1.766	1
134			min	-111.329	1	-333.333	3	-219.099	1	009	3	.013	12	689	3
135		11	max	-2.586	15	723.246	1	-6.577	12	.009	3	.184	4	.899	1
136			min	-111.329	1	-274.971	3	-172.447	1	012	1	.005	12	36	3
137		12	max	-5.498	12	568.365	1	-4.666	12	.009	3	.097	4	.199	1
138			min	-111.329	1	-216.608	3	-125.794	1	012	1	002	3	094	3
139		13	max	-5.498	12	413.484	1	-2.754	12	.009	3	.047	5	.109	3
140			min	-111.329	1	-158.246	3	-79.141	1	012	1	113	1	333	1
141		14	max	-5.498	12	258.603	1	843	12	.009	3	.002	5	.249	3
142			min	-111.329	1	-99.883	3	-47.823	4	012	1	173	1	697	1
143		15	max	-5.498	12	103.722	1	14.164	1	.009	3	007	12	.326	3
144			min	-111.329	1	-41.52	3	-37.122	5	012	1	183	1	893	1
145		16	max	-5.498	12	16.842	3	60.817	1	.009	3	005	12	.339	3
146			min	-111.329	1	-51.159	1	-34.213	5	012	1	143	1	921	1
147		17	max	-5.498	12	75.205	3	107.47	1	.009	3	0	12	.289	3
148			min	-111.329	1	-206.04	1	-31.304	5	012	1	127	4	782	1
149		18	max	-5.498	12	133.568	3	154.122	1	.009	3	.09	1	.176	3
150			min	-119.178	4	-360.921	1	-28.394	5	012	1	146	5	475	1
151		19	max	-5.498	12	191.93	3	200.775	1	.009	3	.282	1	0	2
152			min	-131.962	4	-515.802	1	-25.485	5	012	1	175	5	0	5
153	M2	1		1044.684	1	2.066	4	.797	1	0	12	0	3	0	1
154			min	-965.206	3	.504	15	-48.423	4	0	4	0	1	0	1
155		2		1045.157	1	2.029	4	.797	1	0	12	0	1	0	15
156		_		-964.851	3	.495	15	-48.834	4	0	4	016	4	0	4
157		3		1045.631	1	1.991	4	.797	1	0	12	0	1	0	15
158			min	-964.496	3	.487	15	-49.245	4	0	4	031	4	001	4
159		4		1046.105	1	1.954	4	.797	1	0	12	0	1	0	15
160			min	-964.14	3	.478	15	-49.657	4	0	4	047	4	002	4
161		5		1046.579	1	1.917	4	.797	1	0	12	.001	1	0	15
162			min	-963.785	3	.469	15	-50.068	4	0	4	063	4	003	4
163		6		1047.052	1	1.88	4	.797	1	0	12	.001	1	<u>.000</u>	15
164			min	-963.43	3	.461	15	-50.479	4	0	4	079	4	003	4
165		7		1047.526	1	1.843	4	.797	1	0	12	.002	1	0	15
166			min	-963.074	3	.452	15	-50.891	4	0	4	095	4	004	4
167		8	max	1048	1	1.806	4	.797	1	0	12	.002	1	001	15
168		0	min	-962.719	3	.443	15	-51.302	4	0	4	112	4	004	4
169		9		1048.474	1	1.769	4	.797	1	0	12	.002	1	001	15
170			min	-962.364		.434	15	-51.713	4	0	4	128	4	005	4
171		10		1048.947	1	1.732	4	.797	1	0	12	.002	1	00 <u>3</u> 001	15
172		10	min	-962.009	3	.426	15	-52.125	4	0	4	145	4	005	4
173		11		1049.421		1.695	4	.797	1	0	12	.003	1	003	15
174		11		-961.653		.417	15	-52.536	4	0	4	161	4	006	4
175		12		1049.895	1	1.658	4	.797	1	0	12	.003	1	002	15
176		12		-961.298		.408	15	-52.947	4	0	4	178	4	002	4
177		13		1050.368	1	1.621	4	.797	1	0	12	.003	1	007	15
178		13			3	.4	15	-53.359	4	0	4	195	4	002	4
179		11		1050.842							12	.003	1	007	
		14			1	1.584	4 1E	.797	1	0					15
180		4.5		-960.587	3	.391	15	-53.77	4	0	4	213	4	<u>008</u>	4
181		15		1051.316	1	1.547	4	.797	1	0	12	.004	1	002	15
182		4.0	min	<u>-960.232</u>	3	.382	15	-54.181	4	0	4	23	4	008	4
183		16		1051.79	1	1.51	4	.797	1	0	12	.004	1	002	15
184		47		-959.877	3	.373	15	-54.593	4	0	4	247	4	009	4
185		17		1052.263	1	1.473	4	.797	1	0	12	.004	1	002	15
186		4.0		-959.521	3	.365	15	-55.004	4	0	4	265	4	009	4
187		18		1052.737	1	1.436	4	.797	1	0	12	.004	1	002	15
188		4 -			3	.356	15	<u>-55.415</u>	4	0	4	282	4	01	4
189		19	max	1053.211	1	1.399	4	.797	1	0	12	.005	1	002	15

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC			z Shear[lb]		Torque[k-ft]				z-z Mome	
190			min	-958.811	3	.347	15	-55.827	4	0	4	3	4	01	4
191	<u>M3</u>	1	max		2	9.022	4	.344	1	0	12	00	1	.01	4
192			min	-574.642	3	2.133	15	717	5	0	4	019	4	.002	15
193		2	max	428.59	2	8.15	4	.344	1	0	12	0	1	.006	4
194			min	-574.77	3	1.928	15	11	5	0	4	019	4	.001	12
195		3	max	428.419	2	7.278	4	.641	4	0	12	0	1	.002	2
196			min	-574.898	3	1.723	15	.017	12	0	4	019	4	0	3
197		4	max	428.249	2	6.406	4	1.248	4	0	12	0	1	0	2
198			min	-575.026	3	1.518	15	.017	12	0	4	018	4	002	3
199		5	max	428.078	2	5.534	4	1.855	4	0	12	0	1	0	15
200			min	-575.153	3	1.313	15	.017	12	0	4	018	4	004	6
201		6	max	427.908	2	4.662	4	2.462	4	0	12	.001	1	001	15
202			min	-575.281	3	1.108	15	.017	12	0	4	017	5	006	6
203		7	max	427.738	2	3.79	4	3.069	4	0	12	.001	1	002	15
204			min	-575.409	3	.903	15	.017	12	0	4	015	5	008	6
205		8	max		2	2.918	4	3.676	4	0	12	.001	1	002	15
206			min	-575.537	3	.698	15	.017	12	0	4	014	5	01	6
207		9	max		2	2.046	4	4.283	4	0	12	.002	1	003	15
208		<u> </u>		-575.664	3	.493	15	.017	12	0	4	012	5	011	6
209		10	max	427.227	2	1.174	4	4.891	4	0	12	.002	1	003	15
210		'0		-575.792	3	.288	15	.017	12	0	4	01	5	012	6
211		11	max		2	.327	2	5.498	4	0	12	.002	1	003	15
212			min	-575.92	3	0	3	.017	12	0	4	008	5	012	6
213		12	max	426.886	2	122	15	6.105	4	0	12	.002	1	003	15
214		12	min	-576.048	3	572	6	.017	12	0	4	005	5	012	6
215		13	max		2	327	15	6.712	4	0	12	.002	1	003	15
216		13	min	-576.175	3	-1.444	6	.017	12	0	4	002	5	012	6
217		14			2	531	15	7.319	4	0	12	.002	1	002	
		14	max						12	0		<u>.002</u>		002	15
218		4.5		-576.303	3	-2.316	6	.017		-	4		12		6
219		15	max	426.375	3	736 -3.188	1 <u>5</u>	7.926 .017	4 12	0	12	<u>.005</u>	12	002 009	15
221		16		-576.431 426.205	2	-3.100 941					12	.009			
		16	max				15	8.533	4	0			4	002	15
222		47		-576.559	3	-4.06	6	.017	12	0	4	0	12	008	6
223		17	max	426.034	2	-1.146	15	9.14	4	0	12	.014	4	001	15
224		40	min	-576.686	3	-4.932	6	.017	12	0	4	0	12	005	6
225		18	max		2	-1.351	15	9.748	4	0	12	.018	4	0	15
226		40	min	-576.814	3	-5.804	6	.017	12	0	4	0	12	003	6
227		19		425.694	2	-1.556	15	10.355	4	0	12	.023	4	0	1
228				-576.942	3_	-6.676	6	.017	12	0	4	0	12	0	1
229	<u>M4</u>	1		1151.486	1_	0	1	83	12	0	1	.016	4	0	1
230		_		-63.671		0		-310.836		0	1	0	12	0	1
231		2		1151.656		0	1	83	12	0	1	0	1	0	1
232				-63.543	3	0	1	-310.983		0	1	02	4	0	1
233		3	_	1151.826		0	1	83	12	0	1	0	12	00	1
234				-63.415	3	0	1	-311.131	4	0	1	056	4	0	1
235		4		1151.997	_1_	0	1	83	12	0	1	0	12	0	1
236				-63.287	3	0	1	-311.279		0	1	091	4	0	1
237		5	max	1152.167	_1_	0	1	83	12	0	1	0	12	0	1
238			min	-63.16	3	0	1	-311.426	4	0	1	127	4	0	1
239		6		1152.337	1	0	1	83	12	0	1	0	12	0	1
240			min	-63.032	3	0	1	-311.574	4	0	1	163	4	0	1
241		7	max	1152.508	1	0	1	83	12	0	1	0	12	0	1
242				-62.904	3	0	1	-311.722	4	0	1	199	4	0	1
243		8		1152.678	1	0	1	83	12	0	1	0	12	0	1
244			min		3	0	1	-311.869	4	0	1	234	4	0	1
245		9		1152.848	1	0	1	83	12	0	1	0	12	0	1
246				-62.649	3	0	1	-312.017	4	0	1	27	4	0	1
					_					_					

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:_

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]		Torque[k-ft]	LC	y-y Mome		z-z Mome	<u>LC</u>
247		10	max	1153.019	_1_	0	1	83	12	0	1	0	12	0	1
248			min	-62.521	3	0	1	-312.165	4	0	1	306	4	0	1
249		11	max	1153.189	1	0	1	83	12	0	1	0	12	0	1
250			min	-62.393	3	0	1	-312.312	4	0	1	342	4	0	1
251		12	max	1153.359	1	0	1	83	12	0	1	0	12	0	1
252			min	-62.265	3	0	1	-312.46	4	0	1	378	4	0	1
253		13	max	1153.53	1	0	1	83	12	0	1	001	12	0	1
254			min	-62.138	3	0	1	-312.607	4	0	1	414	4	0	1
255		14	max	1153.7	1	0	1	83	12	0	1	001	12	0	1
256			min	-62.01	3	0	1	-312.755	4	0	1	45	4	0	1
257		15	max	1153.87	1	0	1	83	12	0	1	001	12	0	1
258			min		3	0	1	-312.903	4	0	1	486	4	0	1
259		16		1154.041	1	0	1	83	12	0	1	001	12	0	1
260			min		3	0	1	-313.05	4	0	1	521	4	0	1
261		17		1154.211	1	0	1	83	12	0	1	001	12	0	1
262			min	-61.627	3	0	1	-313.198		0	1	557	4	0	1
263		18		1154.382	1	0	1	83	12	0	1	002	12	0	1
264			min		3	0	1	-313.346	4	0	1	593	4	0	1
265		19		1154.552	1	0	1	83	12	0	1	002	12	0	1
266		10	min	-61.371	3	0	1	-313.493	4	0	1	629	4	0	1
267	M6	1		3300.913	1	2.2	2	0	1	0	1	0	4	0	1
268	IVIO		min	-3122.048	3	.328	12	-48.981	4	0	4	0	1	0	1
269		2	+	3301.387	1	2.171	2	0	1	0	1	0	1	0	12
270			min		3	.314	12	-49.393	4	0	4	016	4	0	2
271		3		3301.861	<u> </u>	2.142	2	0	1	0	1	0	1	0	12
272		3	min	-3121.337	3	.299	12	-49.804	4	0	4	032	4	001	2
273		1		3302.334			2	0	1		1	0	1	001 0	12
		4			<u>1</u> 3	2.113	12		_	0	4	_	4		2
274			min			.285		-50.215	1	0	1	048	1	002	_
275		5		3302.808	1	2.085	2	0		0		0		0	12
276		6	min	-3120.627	3	.27	12	-50.627	1	0	4	064	4	003	2
277		6		3303.282	1	2.056	2	0		0	1	0	1	0	12
278		7	min	-3120.272	3	.256	12	-51.038	4	0	4	08	4	003	2
279		7		3303.756	1_	2.027	2	0	1	0	1	0	1	0	12
280			min		3_	.241	12	-51.449	4	0	4	096	4	004	2
281		8		3304.229	1_	1.998	2	0	1	0	1	0	1	0	12
282			min		3	.227	12	-51.861	4	0	4	113	4	005	2
283		9		3304.703	_1_	1.969	2	0	1	0	1	0	1	0	12
284			min	-3119.206	3	.213	12		4	0	4	13	4	005	2
285		10		3305.177	_1_	1.94	2	0	1	0	1	0	1	00	12
286			min	-3118.85	3	.198	12	-52.683	4	0	4	146	4	006	2
287		11		3305.651		1.911	2	0	1	0	1	0	1	0	12
288			min		3	.184	12	-53.095	4	0	4	163	4	007	2
289		12	1	3306.124	_1_	1.883	2	0	1	0	1_	0	1	0	12
290				-3118.14	3	.169	12	-53.506	4	0	4	18	4	007	2
291		13	max	3306.598	_1_	1.854	2	0	1	0	1	0	1	0	12
292			min		3	.155	12	-53.917	4	0	4	198	4	008	2
293		14	max	3307.072	_1_	1.825	2	0	1	0	1	0	1	0	12
294			min	-3117.429	3	.14	12	-54.329	4	0	4	215	4	008	2
295		15	max	3307.546	1	1.796	2	0	1	0	1	0	1	001	12
296			min		3	.126	12	-54.74	4	0	4	232	4	009	2
297		16	max	3308.019	1	1.767	2	0	1	0	1	0	1	001	12
298			min		3	.112	12	-55.151	4	0	4	25	4	01	2
299		17		3308.493	1	1.738	2	0	1	0	1	0	1	001	12
300				-3116.363	3	.097	12	-55.563	4	0	4	268	4	01	2
301		18	1	3308.967	1	1.709	2	0	1	0	1	0	1	001	12
302		<u> </u>	min		3	.077	3	-55.974	4	0	4	285	4	011	2
303		19		3309.441	1	1.68	2	0	1	0	1	0	1	001	12
		10	πιαλ	JUUUJ. TT I		1.00		<u> </u>						.001	14

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

204	Member	Sec	min	Axial[lb]		y Shear[lb]				Torque[k-ft]		y-y Mome		z-z Mome	
304	M7	1	min	1693.454	2	.056 9.031	<u>3</u>	-56.385 0	<u>4</u> 1	0	<u>4</u> 1	303 0	1	.011	2
306	IVI 7		min	-1768.481	3	2.12	15	-1.025	5	0	4	019	4	.001	12
307		2		1693.284	2	8.159	6	0	1	0	1	019	1	.008	2
308			min	-1768.609	3	1.915	15	418	5	0	4	019	4	.008	3
309		3			2	7.287	6	.249	4	0	_ 4 _	019	1	.005	2
310		3	max	-1768.737	3	1.71	15	0	1	0	4	019	4	003	3
311		4		1692.943	2	6.415	6	.856	4	0	1	019	1	.002	2
312		4	min	-1768.865	3	1.505	15	.000	1	0	4	019	4	004	3
		_								-	1	019		004	
313		5		1692.773 -1768.993	2	5.543	6 15	1.464	4	0			1		2
314		_	min		3	1.3		0	_	0	<u>4</u> 1	019	4	006	3
315		6		1692.603	2	4.671	6 1E	2.071	4	0		0	1_4	001	15
316		7	min	-1769.12	3	1.095	15	0	1_4	0	<u>4</u> 1	018	4	007	3
317				1692.432	2	3.799	6	2.678	4	0		0	1	002	15
318		_	min	-1769.248	3	.89	15	0	1_	0	4	017	4	008	4
319		8	max		2	2.927	6	3.285	4	0	1	0	1	002	15
320			min	-1769.376	3	.685	15	0	1_	0	4	015	4	01	4
321		9		1692.092	2	2.055	6	3.892	4	0	1	0	1	003	15
322		40	min	-1769.504	3	.474	12	0	1	0	4	013	4	011	4
323		10		1691.921	2	1.315	2	4.499	4	0	1	0	1	003	15
324			min	-1769.631	3	.134	12	0	1	0	4_	012	4	012	4
325		11		1691.751	2	.635	2	5.106	4	0	1_	0	1_	003	15
326			min	-1769.759	3	34	3	0	1_	0	4	009	4	012	4
327		12		1691.581	2	044	2	5.713	4	0	_1_	0	1	003	15
328			min	-1769.887	3	849	3	0	1	0	4	007	4	012	4
329		13	max	1691.41	2	34	15	6.321	4	0	_1_	0	1	003	15
330			min	-1770.015	3	-1.433	4	0	1	0	4	004	4	011	4
331		14	max		2	545	15	6.928	4	0	_1_	0	1	002	15
332			min	-1770.142	3	-2.305	4	0	1	0	4	0	4	011	4
333		15	max		2	75	15	7.535	4	0	_1_	.003	5	002	15
334				-1770.27	3	-3.177	4	0	1	0	4	0	1	009	4
335		16	max	1690.899	2	955	15	8.142	4	0	_1_	.006	4	002	15
336			min	-1770.398	3	-4.049	4	0	1	0	4	0	1	008	4
337		17	max	1690.729	2	-1.16	15	8.749	4	0	1_	.01	4	001	15
338			min	-1770.526	3	-4.921	4	0	1	0	4	0	1	005	4
339		18	max	1690.558	2	-1.365	15	9.356	4	0	1	.015	4	0	15
340			min	-1770.653	3	-5.793	4	0	1	0	4	0	1	003	4
341		19		1690.388	2	-1.57	15	9.963	4	0	1	.019	4	0	1
342			min	-1770.781	3	-6.665	4	0	1	0	4	0	1	0	1
343	M8	1	max	3057.127	1	0	1	0	1	0	1	.013	4	0	1
344			min	-284.872	3	0	1	-297.207	4	0	1	0	1	0	1
345		2	max	3057.298	1	0	1	0	1	0	1	0	1	0	1
346			min	-284.744	3	0	1	-297.354	4	0	1	021	4	0	1
347		3	max	3057.468	1	0	1	0	1	0	1	0	1	0	1
348			min	-284.616	3	0	1	-297.502	4	0	1	055	4	0	1
349		4		3057.638	1	0	1	0	1	0	1	0	1	0	1
350			min	-284.489	3	0	1	-297.649	4	0	1	089	4	0	1
351		5		3057.809	1	0	1	0	1	0	1	0	1	0	1
352				-284.361	3	0	1	-297.797	4	0	1	123	4	0	1
353		6		3057.979	1	0	1	0	1	0	1	0	1	0	1
354				-284.233	3	0	1	-297.945	4	0	1	157	4	0	1
355		7		3058.15	1	0	1	0	1	0	1	0	1	0	1
356		Ė		-284.105	3	0	1	-298.092	4	0	1	192	4	0	1
357		8		3058.32	1	0	1	0	1	0	1	0	1	0	1
358				-283.978	3	0	1	-298.24	4	0	1	226	4	0	1
359		9		3058.49	1	0	1	0	1	0	1	0	1	0	1
360				-283.85	3	0	1	-298.388	4	0	1	26	4	0	1
000			1111111	200.00				200.000	т.	U		.20	т_		_

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
361		10	max	3058.661	1	0	1	0	1	0	1_	0	1	0	1
362			min	-283.722	3	0	1	-298.535	4	0	1	294	4	0	1
363		11	max	3058.831	1	0	1	0	1	0	1	0	1	0	1
364			min	-283.594	3	0	1	-298.683	4	0	1	329	4	0	1
365		12	max	3059.001	1	0	1	0	1	0	1	0	1	0	1
366			min	-283.466	3	0	1	-298.83	4	0	1	363	4	0	1
367		13	max	3059.172	1	0	1	0	1	0	1	0	1	0	1
368			min	-283.339	3	0	1	-298.978	4	0	1	397	4	0	1
369		14	max	3059.342	1	0	1	0	1	0	1	0	1	0	1
370			min	-283.211	3	0	1	-299.126	4	0	1	432	4	0	1
371		15	max	3059.512	1	0	1	0	1	0	1	0	1	0	1
372			min	-283.083	3	0	1	-299.273	4	0	1	466	4	0	1
373		16	max	3059.683	1	0	1	0	1	0	1	0	1	0	1
374			min	-282.955	3	0	1	-299.421	4	0	1	5	4	0	1
375		17	max	3059.853	1	0	1	0	1	0	1	0	1	0	1
376			min	-282.828	3	0	1	-299.569	4	0	1	535	4	0	1
377		18	max	3060.023	1	0	1	0	1	0	1	0	1	0	1
378			min	-282.7	3	0	1	-299.716	4	0	1	569	4	0	1
379		19	max	3060.194	1	0	1	0	1	0	1	0	1	0	1
380			min	-282.572	3	0	1	-299.864	4	0	1	604	4	0	1
381	M10	1		1044.684	1	1.981	6	04	12	0	1	0	4	0	1
382				-965.206	3	.447	15	-48.871	4	0	5	0	3	0	1
383		2		1045.157	1	1.944	6	04	12	0	1	0	10	0	15
384				-964.851	3	.439	15	-49.282	4	0	5	016	4	0	6
385		3		1045.631	1	1.907	6	04	12	0	1	0	12	0	15
386				-964.496	3	.43	15	-49.694	4	0	5	032	4	001	6
387		4		1046.105	1	1.87	6	04	12	0	1	0	12	0	15
388			min	-964.14	3	.421	15	-50.105	4	0	5	047	4	002	6
389		5		1046.579	1	1.833	6	04	12	0	1	0	12	0	15
390			min	-963.785	3	.413	15	-50.516	4	0	5	064	4	002	6
391		6		1047.052	1	1.796	6	04	12	0	1	0	12	0	15
392			min	-963.43	3	.404	15	-50.928	4	0	5	08	4	003	6
393		7		1047.526	1	1.759	6	04	12	0	1	0	12	0	15
394				-963.074	3	.395	15	-51.339	4	0	5	096	4	004	6
395		8	max	1048	1	1.721	6	04	12	0	1	0	12	0	15
396				-962.719	3	.386	15	-51.75	4	0	5	113	4	004	6
397		9		1048.474	1	1.684	6	04	12	0	1	0	12	001	15
398				-962.364	3	.378	15	-52.162	4	0	5	129	4	005	6
399		10		1048.947	1	1.647	6	04	12	0	1	0	12	001	15
400			min	-962.009	3	.369	15	-52.573	4	0	5	146	4	005	6
401		11	max	1049.421	1	1.61	6	04	12	0	1	0	12	001	15
402				-961.653	3	.36	15	-52.984	4	0	5	163	4	006	6
403		12		1049.895	1	1.573	6	04	12	0	1	0	12	001	15
404				-961.298	3	.352	15	-53.396	4	0	5	18	4	006	6
405		13		1050.368	1	1.536	6	04	12	0	1	0	12	002	15
406				-960.943	3	.343	15	-53.807	4	0	5	197	4	007	6
407		14		1050.842	1	1.499	6	04	12	0	1	0	12	002	15
408				-960.587	3	.334	15	-54.218	4	0	5	214	4	007	6
409		15		1051.316	1	1.462	6	04	12	0	1	0	12	002	15
410		'		-960.232	3	.325	15	-54.63	4	0	5	232	4	008	6
411		16		1051.79	1	1.425	6	04	12	0	1	0	12	002	15
412		'		-959.877	3	.317	15	-55.041	4	0	5	249	4	008	6
413		17		1052.263	1	1.388	6	04	12	0	1	0	12	002	15
414		''		-959.521	3	.308	15	-55.452	4	0	5	267	4	002	6
415		18		1052.737	_ <u></u>	1.351	6	04	12	0	1	0	12	002	15
416		10		-959.166	3	.299	15	-55.864	4	0	5	285	4	002	6
417		10		1053.211	1	1.314	6	04	12	0	<u> </u>	0	12	002	15
41/		ן ואַ	πιαχ	1000.211		1.014	U	04	14	U		U	14	002	10

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]			LC	Torque[k-ft]	LC		LC	z-z Mome	LC_
418			min	-958.811	3	.291	15	-56.275	4	0	5	303	4	009	6
419	M11	1	max	428.76	2	8.964	6	017	12	0	1_	0	12	.009	6
420			min	-574.642	3	2.095	15	766	4	0	4	019	4	.002	15
421		2	max	428.59	2	8.092	6	017	12	0	1	0	12	.005	6
422			min	-574.77	3	1.89	15	344	1	0	4	019	4	.001	15
423		3	max	428.419	2	7.22	6	.455	5	0	1	0	12	.002	2
424			min	-574.898	3	1.685	15	344	1	0	4	019	4	0	3
425		4	max	428.249	2	6.348	6	1.062	5	0	1	0	12	0	2
426			min	-575.026	3	1.48	15	344	1	0	4	019	4	002	3
427		5	max	428.078	2	5.476	6	1.669	5	0	1	0	12	001	15
428			min	-575.153	3	1.275	15	344	1	0	4	018	4	004	4
429		6	max	427.908	2	4.604	6	2.277	5	0	1	0	12	002	15
430			min	-575.281	3	1.07	15	344	1	0	4	017	4	007	4
431		7	max	427.738	2	3.732	6	2.884	5	0	1	0	12	002	15
432			min	-575.409	3	.865	15	344	1	0	4	016	4	009	4
433		8	max	427.567	2	2.86	6	3.491	5	0	1	0	12	002	15
434			min	-575.537	3	.66	15	344	1	0	4	014	4	01	4
435		9	max	427.397	2	1.988	6	4.098	5	0	1	0	12	003	15
436			min	-575.664	3	.455	15	344	1	0	4	013	4	011	4
437		10	max	427.227	2	1.116	6	4.705	5	0	1	0	12	003	15
438			min	-575.792	3	.25	15	344	1	0	4	011	4	012	4
439		11	max	427.056	2	.327	2	5.312	5	0	1	0	12	003	15
440			min	-575.92	3	0	3	344	1	0	4	008	4	012	4
441		12	max	426.886	2	16	15	5.919	5	0	1	0	12	003	15
442			min	-576.048	3	629	4	344	1	0	4	006	4	012	4
443		13	max	426.716	2	365	15	6.526	5	0	1	0	12	003	15
444			min	-576.175	3	-1.501	4	344	1	0	4	003	4	012	4
445		14	max	426.545	2	57	15	7.133	5	0	1	.001	5	003	15
446			min	-576.303	3	-2.373	4	344	1	0	4	002	1	011	4
447		15	max	426.375	2	775	15	7.741	5	0	1	.005	5	002	15
448		'	min	-576.431	3	-3.245	4	344	1	0	4	003	1	009	4
449		16	max	426.205	2	98	15	8.348	5	0	1	.008	5	002	15
450		1.0	min	-576.559	3	-4.117	4	344	1	0	4	003	1	008	4
451		17	max		2	-1.185	15	8.955	5	0	1	.012	5	001	15
452			min	-576.686	3	-4.989	4	344	1	0	4	003	1	006	4
453		18	max		2	-1.39	15	9.562	5	0	1	.017	5	0	15
454			min	-576.814	3	-5.861	4	344	1	0	4	003	1	003	4
455		19	max	425.694	2	-1.595	15	10.169	5	0	1	.021	5	0	1
456			min	-576.942	3	-6.733	4	344	1	0	4	003	1	0	1
457	M12	1		1151.486	1	0	1	17.078	1	0	1	.015	5	0	1
458	14112			-63.671	3	0	1	-301.173		0	1	002	1	0	1
459		2		1151.656	1	0	1	17.078	1	0	1	0	12	0	1
460		_	min	-63.543	3	0	1	-301.32	4	0	1	02	4	0	1
461		3		1151.826		0	1	17.078	1	0	1	.002	1	0	1
462			min	-63.415	3	0	1	-301.468		0	1	055	4	0	1
463		4		1151.997	1	0	1	17.078	1	0	1	.004	1	0	1
464			min		3	0	1	-301.616		0	1	089	4	0	1
465		5		1152.167	1	0	1	17.078	1	0	1	.006	1	0	1
466		<u> </u>	min		3	0	1	-301.763		0	1	124	4	0	1
467		6		1152.337	<u> </u>	0	1	17.078	1	0	1	.008	1	0	1
468		U		-63.032	3	0	1	-301.911		0	1	159	4	0	1
469		7		1152.508	<u> </u>	0	1	17.078	1	0	1	.01	1	0	1
470			min	-62.904	3	0	1	-302.059		0	1	193	4	0	1
471		8		1152.678	<u>ა</u> 1	0	1	17.078	1	0	1	.012	1	0	1
471		0		-62.776	3	0	1	-302.206		0	1	228	4	0	1
473		9	min	1152.848	<u> </u>	0	1	17.078	1	0	1	.013	_ 4	0	1
		9					1								1
474			min	-62.649	3	0		-302.354	4	0	1	263	4	0	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
475		10	max	1153.019	1	0	1	17.078	1	0	1	.015	1	0	1
476			min	-62.521	3	0	1	-302.502	4	0	1	297	4	0	1
477		11	max	1153.189	1	0	1	17.078	1	0	1	.017	1	0	1
478			min	-62.393	3	0	1	-302.649	4	0	1	332	4	0	1
479		12	max	1153.359	1	0	1	17.078	1	0	1	.019	1	0	1
480			min	-62.265	3	0	1	-302.797	4	0	1	367	4	0	1
481		13	max	1153.53	1	0	1	17.078	1	0	1	.021	1	0	1
482			min	-62.138	3	0	1	-302.944	4	0	1	402	4	0	1
483		14	max	1153.7	1	0	1	17.078	1	0	1	.023	1	0	1
484			min	-62.01	3	0	1	-303.092	4	0	1	436	4	0	1
485		15	max		1	0	1	17.078	1	0	1	.025	1	0	1
486			min	-61.882	3	0	1	-303.24	4	0	1	471	4	0	1
487		16		1154.041	1	0	1	17.078	1	0	1	.027	1	0	1
488		'	min	-61.754	3	0	1	-303.387	4	0	1	506	4	0	1
489		17		1154.211	1	0	1	17.078	1	0	1	.029	1	0	1
490		1 /	min	-61.627	3	0	1	-303.535	4	0	1	541	4	0	1
491		18		1154.382	1	0	1	17.078	1	0	1	.031	1	0	1
492		10	min	-61.499	3	0	1	-303.683	4	0	1	576	4	0	1
493		19		1154.552	<u> </u>	0	1	17.078	1	0	1	.033	1	0	1
		19			3	0	1		4		1				1
494	N/14	1	min	-61.371			_	-303.83 56.292		0	1	611	4	0	_
495	<u>M1</u>		max	200.32	1	524.262	3		5	0	_	.28	1	0	15
496		2	min	-14.909	5	-447.795	1	-99.494	1	0	3	122	5	014	1
497		2	max	201.032	1_	523.116	3	57.752	5	0	1	.218	1	.264	1
498			min	-14.577	5	-449.322	1	-99.494	1	0	3	087	5	326	3
499		3	max	369.174	3_	516.795	1	12.304	5	0	3	.156	1	.533	1
500			min	-240.094	2	-377.943	3	-99.025	1	0	1	051	5	641	3
501		4	max	369.708	3	515.268	1	13.764	5	0	3	.095	1_	.213	1
502			min	-239.382	2	-379.089	3	-99.025	1	0	1	043	5	406	3
503		5	max	370.242	_3_	513.741	1	15.224	5	0	3	.033	1	005	15
504			min	-238.67	2	-380.234	3	-99.025	1	0	1	034	5	17	3
505		6	max	370.776	3_	512.214	1_	16.684	5	0	3	001	12	.066	3
506			min	-237.958	2	-381.379	3	-99.025	1	0	1	03	4	425	1
507		7	max	371.31	_3_	510.687	1	18.144	5	0	3	005	12	.303	3
508			min	-237.246	2	-382.524	3	-99.025	1	0	1	09	1	742	1
509		8	max	371.844	3_	509.161	1_	19.604	5	0	3	0	15	.541	3
510			min	-236.534	2	-383.669	3	-99.025	1	0	1	151	1_	-1.059	1
511		9	max	386.226	3	33.662	2	64.241	5	0	9	.094	1	.634	3
512			min	-152.506	2	.459	15	-154.016	1	0	3	161	5	-1.206	1
513		10	max	386.76	3	32.136	2	65.701	5	0	9	0	12	.617	3
514			min	-151.794	2	005	5	-154.016	1	0	3	122	4	-1.217	1
515		11	max	387.294	3	30.609	2	67.161	5	0	9	005	12	.6	3
516			min	-151.082	2	-1.885	4	-154.016	1	0	3	101	4	-1.228	1
517		12		401.583	3	243.239	3	173.923	5	0	1	.148	1	.523	3
518				-102.931	5	-545.667	1	-95.239	1	0	3	269	5	-1.084	1
519		13	max	402.117	3	242.094	3	175.383	5	0	1	.089	1	.373	3
520			min	-102.599	5	-547.194	1	-95.239	1	0	3	16	5	745	1
521		14	max	402.651	3	240.948	3	176.843	5	0	1	.03	1	.223	3
522			min	-102.266	5	-548.721	1	-95.239	1	0	3	051	5	405	1
523		15	max	403.185	3	239.803	3	178.304	5	0	1	.059	5	.073	3
524			min		5	-550.248	1	-95.239	1	0	3	029	1	064	1
525		16		403.719	3	238.658	3	179.764	5	0	1	.17	5	.285	2
526			min		5	-551.775	1	-95.239	1	0	3	088	1	075	3
527		17	max	I I	3	237.513	3	181.224	5	0	1	.282	5	.621	1
528			min		5	-553.302	1	-95.239	1	0	3	147	1	223	3
529		18	max		5	519.522	1	-5.498	12	0	5	.242	5	.31	1
530		10	min		1	-190.862	3	-133.528		0	2	213	1	109	3
531		19			5	517.995	1	-5.498	12	0	5	.175	5	.009	3
UUI		10	IIIIUX	20.707		017.000		0. ₹00	14			.170			

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
532			min	-200.77	1	-192.008	3	-132.068	4	0	2	282	1	012	1
533	M5	1	max	439.109	1	1743.644	3	105.219	5	0	1	0	1	.028	1
534			min	16.624	12	-1527.516	1	0	1	0	4	262	4	0	15
535		2	max	439.821	1	1742.499	3	106.679	5	0	1	0	1	.977	1
536			min	16.98	12	-1529.043	1	0	1	0	4	197	4	-1.079	3
537		3	max	1169.842	3	1503.814	1	65.978	4	0	4	0	1	1.893	1
538			min	-837.15	2	-1182.903	3	0	1	0	1	131	4	-2.128	3
539		4	max	1170.376	3	1502.287	1	67.438	4	0	4	0	1	.96	1
540			min	-836.438	2	-1184.048	3	0	1	0	1	09	4	-1.394	3
541		5	max	1170.91	3	1500.76	1	68.898	4	0	4	0	1	.033	9
542			min	-835.726	2	-1185.194	3	0	1	0	1	047	4	659	3
543		6	max	1171.444	3	1499.233	1	70.358	4	0	4	0	1	.077	3
544			min	-835.014	2	-1186.339	3	0	1	0	1	004	5	903	1
545		7	max	1171.978	3	1497.706	1	71.819	4	0	4	.04	4	.814	3
546			min	-834.302	2	-1187.484	3	0	1	0	1	0	1	-1.833	1
547		8	max	1172.512	3	1496.179	1	73.279	4	0	4	.085	4	1.551	3
548			min	-833.59	2	-1188.629	3	0	1	0	1	0	1	-2.762	1
549		9	max	1196.957	3	111.836	2	212.688	4	0	1	0	1	1.792	3
550			min	-659.94	2	.465	15	0	1	0	1	24	4	-3.131	1
551		10	max	1197.491	3	110.309	2	214.149	4	0	1	0	1	1.729	3
552			min	-659.228	2	.004	15	0	1	0	1	107	4	-3.169	1
553		11	max	1198.025	3	108.782	2	215.609	4	0	1	.026	4	1.667	3
554			min	-658.516	2	-1.57	6	0	1	0	1	0	1	-3.207	1
555		12	max	1222.659	3	740.664	3	242.948	4	0	1	0	1	1.459	3
556			min	-484.879	2	-1619.007	1	0	1	0	4	387	4	-2.853	1
557		13	max	1223.193	3	739.518	3	244.408	4	0	1	0	1	1	3
558			min	-484.167	2	-1620.534	1	0	1	0	4	236	4	-1.848	1
559		14	max	1223.727	3	738.373	3	245.869	4	0	1	0	1	.541	3
560			min	-483.455	2	-1622.061	1	0	1	0	4	084	4	842	1
561		15	max	1224.261	3	737.228	3	247.329	4	0	1	.069	4	.223	2
562			min	-482.743	2	-1623.588	1	0	1	0	4	0	1	0	13
563		16	max	1224.795	3	736.083	3	248.789	4	0	1	.223	4	1.174	1
564			min	-482.031	2	-1625.115	1	0	1	0	4	0	1	374	3
565		17	max	1225.329	3	734.938	3	250.249	4	0	1	.378	4	2.183	1
566			min	-481.319	2	-1626.642	1	0	1	0	4	0	1	83	3
567		18	max	-17.332	12	1768.656	1	0	1	0	4	.382	4	1.122	1
568			min	-438.921	1	-665.933	3	-32.555	5	0	1	0	1	433	3
569		19	max	-16.976	12	1767.129	1	0	1	0	4	.363	4	.024	1
570			min	-438.209	1	-667.078	3	-31.095	5	0	1	0	1	019	3
571	M9	1	max	200.32	1	524.262	3	99.494	1	0	3	015	12	0	15
572			min	8.891	12	-447.795	1	5.193	12	0	4	28	1	014	1
573		2		201.032	1	523.116	3	99.494	1	0	3	011	12	.264	1
574			min	9.247	12	-449.322		5.193	12	0	4	218	1	326	3
575		3	max	369.174	3	516.795	1	99.025	1	0	1	008	12	.533	1
576			min	-240.094	2	-377.943	3	5.152	12	0	3	156	1	641	3
577		4		369.708	3	515.268	1	99.025	1	0	1	005	12	.213	1
578			min		2	-379.089	3	5.152	12	0	3	095	1	406	3
579		5	max	370.242	3	513.741	1	99.025	1	0	1	002	12	005	15
580				-238.67	2	-380.234	3	5.152	12	0	3	046	4	17	3
581		6		370.776	3	512.214	1	99.025	1	0	1	.028	1	.066	3
582			min		2	-381.379	3	5.152	12	0	3	02	5	425	1
583		7		371.31	3	510.687	1	99.025	1	0	1	.09	1	.303	3
584				-237.246		-382.524	3	5.152	12	0	3	002	5	742	1
585		8		371.844	3	509.161	1	99.025	1	0	1	.151	1	.541	3
586			min	-236.534	2	-383.669	3	5.152	12	0	3	.008	12	-1.059	1
587		9		386.226	3	33.662	2	154.016	1	0	3	005	12	.634	3
588				-152.506		.473	15	7.799	12	0	9	196	4	-1.206	1

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:_

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
589		10	max	386.76	3	32.136	2	154.016	1	0	3	.002	1	.617	3
590			min	-151.794	2	.012	15	7.799	12	0	9	121	4	-1.217	1
591		11	max	387.294	3	30.609	2	154.016	1	0	3	.097	1	.6	3
592			min	-151.082	2	-1.771	6	7.799	12	0	9	068	5	-1.228	1
593		12	max	401.583	3	243.239	3	210.052	4	0	3	007	12	.523	3
594			min	-89.473	10	-545.667	1	4.685	12	0	1	324	4	-1.084	1
595		13	max	402.117	3	242.094	3	211.512	4	0	3	004	12	.373	3
596			min	-88.88	10	-547.194	1	4.685	12	0	1	193	4	745	1
597		14	max	402.651	3	240.948	3	212.972	4	0	3	002	12	.223	3
598			min	-88.287	10	-548.721	1	4.685	12	0	1	062	4	405	1
599		15	max	403.185	3	239.803	3	214.433	4	0	3	.071	4	.073	3
600			min	-87.693	10	-550.248	1	4.685	12	0	1	.001	12	064	1
601		16	max	403.719	3	238.658	3	215.893	4	0	3	.205	4	.285	2
602			min	-87.1	10	-551.775	1	4.685	12	0	1	.004	12	075	3
603		17	max	404.253	3	237.513	3	217.353	4	0	3	.339	4	.621	1
604			min	-86.507	10	-553.302	1	4.685	12	0	1	.007	12	223	3
605		18	max	-9.071	12	519.522	1	111.508	1	0	2	.32	4	.31	1
606			min	-201.482	1	-190.862	3	-94.423	5	0	3	.01	12	109	3
607		19	max	-8.715	12	517.995	1	111.508	1	0	2	.282	1	.009	3
608			min	-200.77	1	-192.008	3	-92.963	5	0	3	.014	12	012	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC_x Rotate	e [r LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	0	1	.175	1	.007	3 1.176		NC	1	NC	1
2			min	917	4	023	3	003	2 -1.506	e-3 3	NC	1	NC	1
3		2	max	0	1	.209	3	.046	1 1.31e	-2 1	NC	5	NC	2
4			min	917	4	004	9	025	5 -1.379	e-3 3	1008.321	3	5259.569	1
5		3	max	0	1	.397	3	.108	1 1.444	e-2 1	NC	5	NC	3
6			min	917	4	128	1	031	5 -1.252	e-3 3	556.651	3	2203.377	1
7		4	max	0	1	.512	3	.16	1 1.578	e-2 1	NC	5	NC	3
8			min	917	4	199	1	023	5 -1.126	e-3 3	436.986	3	1474.398	
9		5	max	0	1	.541	3	.187	1 1.711	e-2 1	NC	5	NC	3
10			min	917	4	196	1	007	5 -9.994		415.155	3	1264.52	1
11		6	max	0	1	.484	3	.179	1 1.845	e-2 1	NC	5	NC	3
12			min	918	4	122	1	.007	15 -8.729	e-4 3	461.785	3	1316.687	1
13		7	max	0	1	.359	3	.14	1 1.979	e-2 1	NC	5	NC	3
14			min	918	4	008	9	.008	10 -7.463		612.129	3	1687.52	1
15		8	max	0	1	.2	3	.081	1 2.112	e-2 1	NC	1	NC	3
16			min	918	4	.005	15	0	10 -6.198	e-4 3	1047.172	3	2950.906	1
17		9	max	0	1	.297	1	.031	4 2.246		NC	4	NC	1
18			min	918	4	.009	15	007	10 -4.932	e-4 3	1917.399	1	7408.75	4
19		10	max	0	1	.358	1	.022	3 2.386	-2 1	NC	3	NC	1
20			min	918	4	009	3	015	2 -3.667	e-4 3	1281.218	1	NC	1
21		11	max	0	12	.297	1	.024	3 2.246	e-2 1	NC	4	NC	1
22			min	918	4	.009	15	02	5 -4.932	e-4 3	1917.399	1	NC	1
23		12	max	0	12	.2	3	.081	1 2.112	e-2 1	NC	1	NC	3
24			min	918	4	.005	15	02	5 -6.198	e-4 3	1047.172	3	2950.906	1
25		13	max	0	12	.359	3	.14	1 1.979	e-2 1	NC	5	NC	3
26			min	918	4	008	9	007	5 -7.463	e-4 3	612.129	3	1687.52	1
27		14	max	0	12	.484	3	.179	1 1.845	e-2 1	NC	5	NC	3
28			min	918	4	122	1	.008	15 -8.729		461.785	3	1316.687	1
29		15	max	0	12	.541	3	.187	1 1.711	e-2 1	NC	5	NC	3
30			min	918	4	196	1	.015	10 -9.994		415.155	3	1264.52	1
31		16	max	0	12	.512	3	.16	1 1.578	e-2 1	NC	5	NC	3
32			min	918	4	199	1	.013	10 -1.126		436.986	3	1474.398	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC		LC	(n) L/y Ratio			
33		17	max	0	12	.397	3	.108	1	1.444e-2	_1_	NC	5	NC	3
34			min	918	4	128	1	.008		-1.252e-3	3	556.651	3	2203.377	1
35		18	max	0	12	.209	3	.046	1	1.31e-2	1_	NC	_5_	NC	2
36			min	<u>918</u>	4	004	9	.002		-1.379e-3	3	1008.321	3	5259.569	
37		19	max	0	12	.175	1	.007	3	1.176e-2	1_	NC	_1_	NC	1
38		4	min	<u>918</u>	4	023	3	003		-1.506e-3	3	NC	1_	NC	1
39	M14	1_	max	0	1	.258	3	.007	3	7.146e-3	1_	NC	1	NC NC	1
40		_	min	<u>674</u>	4	<u>547</u>	1	003		-4.005e-3	3	NC	_1_	NC NC	1
41		2	max	0	1	.504	3	.031	1	8.414e-3	1	NC COO O47	5_	NC C470 000	2
42		-	min	674	1	<u>885</u>	1	038		-4.807e-3	3	692.317 NC	1_	6470.388	
43		3	max	0 674		<u>.715</u> -1.181	3	.084	5	9.683e-3	1		<u>15</u> 1	NC 2840.125	3
44 45		4	min	674 0	1	<u>-1.161</u> .868	3	046 .134	1	-5.609e-3 1.095e-2	3	368.851	15	NC	3
46		4	max	674	4	-1.407	1	032		-6.411e-3	3	9360.268 272.04	1	1764.819	
47		5		674 0	1	.95	3	.163	1	1.222e-2	<u>3</u> 1	8073.815	15	NC	3
48		1 5	max	674	4	-1.547	1	006		-7.213e-3	3	234.021	1	1452.977	1
49		6	max	0	1	.961	3	.161	1	1.349e-2	1	7703.531	15	NC	3
50			min	674	4	-1.599	1	.012		-8.015e-3	3	222.449	1	1473.794	
51		7	max	<u> </u>	1	.912	3	.128	1	1.476e-2	1	7921.524	15	NC	3
52			min	674	4	-1.575	1	.007		-8.817e-3	3	227.588	1	1853.661	1
53		8	max	0	1	.828	3	.075	1	1.603e-2	1	8589.384	15	NC	2
54			min	674	4	-1.501	1	0		-9.619e-3	3	245.205	1	3186.835	
55		9	max	0	1	.741	3	.048	4	1.729e-2	1	9488.992	15	NC	1
56			min	674	4	-1.416	1	006	10	-1.042e-2	3	269.081	1	4777.601	4
57		10	max	0	1	.7	3	.02	3	1.856e-2	1	NC	15	NC	1
58			min	674	4	-1.374	1	014	2	-1.122e-2	3	282.906	1	NC	1
59		11	max	0	12	.741	3	.021	1	1.729e-2	1	9488.957	15	NC	1
60			min	674	4	-1.416	1	037	5	-1.042e-2	3	269.081	1	6564.116	5
61		12	max	0	12	.828	3	.075	1	1.603e-2	1_	8589.284	15	NC	2
62			min	674	4	-1.501	1	043	5	-9.619e-3	3	245.205	1_	3189.57	1
63		13	max	0	12	.912	3	.128	1	1.476e-2	_1_	7921.359	<u>15</u>	NC	3
64			min	674	4	-1.575	1	028		-8.817e-3	3	227.588	<u>1</u>	1853.661	1
65		14	max	0	12	.961	3	.161	1	1.349e-2	_1_	7703.298	15	NC	3
66			min	674	4	-1.599	1	001		-8.015e-3	3	222.449	_1_	1473.794	
67		15	max	0	12	.95	3	.163	1	1.222e-2	1_	8073.495	<u>15</u>	NC	3
68		40	min	<u>675</u>	4	<u>-1.547</u>	1	.013		-7.213e-3	3	234.021	1_	1452.977	1
69		16	max	0	12	.868	3	.134	1	1.095e-2	1_	9359.803	<u>15</u>	NC 4704 040	3
70		4.7	min	<u>675</u>	4	<u>-1.407</u>	1	.011		-6.411e-3	3	272.04	1_	1764.819	
71		17	max	0	12	.715	3	.084	1	9.683e-3	1_	NC 200.054	<u>15</u>	NC 2040 405	3
72		10	min	<u>675</u>	12	<u>-1.181</u>	3	.006		-5.609e-3	3	368.851	<u>1</u> 5	2840.125	2
73		18	max			.504		.05 0		8.414e-3 -4.807e-3		NC	<u>5</u> 1		
74 75		19	min	<u>675</u>	12	885 .258	3	.007	10	7.146e-3	3	692.317 NC	1	4584.559 NC	1
76		19	max min	0 675	4	547	1	003		-4.005e-3	<u>1</u> 3	NC NC	1	NC NC	1
77	M15	1	max	<u>075</u> 0	12	.265	3	.006	3	3.318e-3	3	NC	1	NC	1
78	IVITO		min	539	4	546	1	003		-7.294e-3	1	NC	1	NC	1
79		2	max	559 0	12	.426	3	.031	1	3.982e-3	3	NC	5	NC	2
80			min	539	4	912	1	052		-8.599e-3	1	638.68	1	4647.619	
81		3	max	<u>559</u>	12	.57	3	.085	1	4.647e-3	3	NC	15	NC	3
82			min	539	4	-1.232	1	064		-9.903e-3	1	341.244	1	2825.749	
83		4	max	<u>559</u>	12	.682	3	.135	1	5.311e-3	3	9374.102	15	NC	3
84			min	539	4	-1.471	1	047		-1.121e-2	1	252.883	1	1757.952	
85		5	max	<u>.555</u>	12	.756	3	.163	1	5.975e-3	3	8087.153	15	NC	3
86		Ť	min	539	4	-1.614	1	013		-1.251e-2	1	219.081	1	1447.923	
87		6	max	0	12	.79	3	.161	1	6.64e-3	3	7718.131	15	NC	3
88		Ĭ	min	539	4	-1.658	1	.012		-1.382e-2	1	210.321	1	1468.559	
89		7	max	0	12	.79	3	.129	1	7.304e-3	3	7939.14	15	NC	3
		_									_				

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

00	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r					LC
90		0	min	539	4	<u>-1.619</u>	1	.008	10 -1.512e-2	1	218.09	1_	1845.708	1
91		8	max	539	12	.766 -1.525	3	<u>.087</u> .001	4 7.968e-3 10 -1.643e-2	<u>3</u>	8612.06 239.02	<u>15</u>	NC 2663.469	2
93		9	min	539 0	12	<u>-1.525 </u>	3	.001 .06	4 8.633e-3	3	9518.204	<u> </u>	NC	1
		9	max				1		4 8.633e-3 10 -1.773e-2	<u> </u>		1 <u>0</u>	3839.888	
94		10	min	539	1	<u>-1.422</u> .718	3	005 .018		•	267.081 NC			1
95 96		10	max	539	4	-1.371	1	013	3 9.297e-3 2 -1.904e-2	<u>3</u>	283.491	<u>15</u> 1	NC NC	1
97		11		<u>339</u> 0	1	.734	3	.022	1 8.633e-3			<u>1</u>	NC NC	1
98			max	539	4	-1.422	1	049		<u>3</u> 1	267.081	1	4902.503	5
99		12		<u>339</u> 0	1	.766	3	049 .076	5 -1.773e-2 1 7.968e-3	3	8611.987	15	NC	2
100		12	max min	539	4	-1.525	1	058	5 -1.643e-2	<u> </u>	239.02	15 1	3167.537	1
101		13		0	1	<u>-1.525 </u>	3	036 .129	1 7.304e-3	3		15	NC	3
102		13	max	539	4	-1.619	1	038	5 -1.512e-2	1	218.09	1	1845.708	1
103		14	min	<u>339</u> 0	1	<u>-1.619 </u>	3	<u>036</u> .161		3	7717.97		NC	3
		14	max		4		1					<u>15</u>		1
104 105		15	min	539	1	-1.658	3	004	5 -1.382e-2 1 5.975e-3	<u>1</u> 3	210.321	<u>1</u> 15	1468.559 NC	3
		10	max	539		.756	1	.163		1	8086.935	1	1447.923	1
106 107		16	min		1	<u>-1.614</u> .682		.013			219.081 9373.787	<u>1</u> 15	NC	3
107		10	max	539	4		3	.135 .011		3		1	1757.952	
		17	min		1	-1.471	1			1	252.883	•		1
109		17	max	539	4	.57 -1.232	3	.095	4 4.647e-3 10 -9.903e-3	<u>3</u> 1	NC 341.244	<u>15</u>	NC 2436.918	3
110		10	min		1	<u>-1.232</u> .426	3	.006			NC	1_	NC	2
112		18	max	539	4	912	1	<u>.065</u> 0	4 3.982e-3	<u>3</u> 1	638.68	<u>5</u>		
		40	min						10 -8.599e-3			•	3586.583	4
113		19	max	0	1	.265	3	.006	3 3.318e-3	3	NC	1_4	NC NC	1
114	MAC	4	min	539	4	<u>546</u>	1	003	2 -7.294e-3	1	NC NC	1_	NC NC	1
115	M16	1	max	0	12	.17	1	.005	3 6.089e-3	3	NC	1	NC NC	1
116		2	min	15	4	091	3	003	2 -1.104e-2	1	NC NC	1_	NC NC	1
117		2	max	0	12	.005	4	.045	1 6.991e-3 5 -1.221e-2	3	NC	5	NC	2
118		2	min	15	4	054	2	037	0	1	1166.982	1_	5327.944	1
119		3	max	0	12	.025	3	.107	1 7.892e-3	<u>3</u>	NC 653.431	<u>5</u> 1	NC 2210 F	3
120 121		1	min	15	12	<u>211</u> .048	3	047 .16	5 -1.337e-2		NC	•	2218.5 NC	3
122		4	max	15		299	2	036	1 8.794e-3 5 -1.453e-2	<u>3</u> 1	526.817	<u>5</u> 1	1479.55	1
123		5	min	0	12	<u>299</u> .04	3	<u>036</u> .186		3	NC	5	NC	3
124		J	max	15	4	305	2	014	1 9.696e-3 5 -1.57e-2	1	520.348	2	1265.55	1
125		6	min max	0	12	.004	12	<u>014</u> .18	1 1.06e-2	3	NC	5	NC	3
126		-0	min	15	4	23	2	.007	15 -1.686e-2	1	623.301	2	1313.815	1
127		7		0	12	.005	4	.007 .141	1 1.15e-2	3	NC	5	NC	3
128		+-	max	15	4	094	2	.01	10 -1.802e-2	1	979.322	2	1675.785	1
129		8		0	12	.122	1	.082	1 1.24e-2	3	NC	4	NC	
130		0	max min	15	4	128	3	.002	10 -1.919e-2	<u> </u>	3205.164	2	2896	3
131		9	max	0	12	.276	1	.003 .04	4 1.33e-2	3	NC	5	NC	1
132		3	min	15	4	189	3	004	10 -2.035e-2	1		1	5800.725	
133		10	max	0	1	.345	1	.016	3 1.42e-2	3	NC	5	NC	1
134		10	min	15	4	216	3	012	2 -2.151e-2	1	1343.296	1	NC	1
135		11	max	0	1	.276	1	.024	1 1.33e-2	3	NC	5	NC	1
136			min	15	4	189	3	029	5 -2.035e-2	1	2216.637	1	8574.298	
137		12	max	0	1	.122	1	.082	1 1.24e-2	3	NC	4	NC	3
138		14	min	15	4	128	3	03	5 -1.919e-2	1	3205.164	2	2896	1
139		13	max	0	1	.005	6	<u>03</u> .141	1 1.15e-2	3	NC	5	NC	3
140		13	min	15	4	094	2	013	5 -1.802e-2	1	979.322	2	1675.785	1
141		14	max	0	1	.004	12	.18	1 1.06e-2	3	NC	5	NC	3
142		14	min	15	4	23	2	.008	15 -1.686e-2	1	623.301	2	1313.815	
143		15	max	0	1	<u>23</u> .04	3	.006 .186	1 9.696e-3	3	NC	5	NC	3
144		10	min	15	4	305	2	.014	12 -1.57e-2	1	520.348	2	1265.55	1
145		16		15 0	1	305 .048	3	.014 .16	1 8.794e-3	3	NC	5	NC	3
146		10	max min	15	4	299	2	.012	12 -1.453e-2	<u> </u>	526.817	<u>5</u>	1479.55	1
140			1111111	10	4	299		.012	12 -1.4006-2		320.017		1479.00	

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio		(n) L/z Ratio	
147		17	max	0	1	.025	3	.107	1	7.892e-3	3	NC	5	NC	3
148			min	15	4	211	2	.009	12	-1.337e-2	1_	653.431	1_	2218.5	1
149		18	max	0	1	.004	6	.054	4	6.991e-3	3	NC	5	NC	2
150			min	15	4	054	2	.003	10	-1.221e-2	1	1166.982	1	4261.338	4
151		19	max	.001	1	.17	1	.005	3	6.089e-3	3	NC	1	NC	1
152			min	149	4	091	3	003	2	-1.104e-2	1	NC	1	NC	1
153	M2	1	max	.007	1	.006	2	.013	1	2.687e-3	5	NC	1	NC	2
154			min	006	3	01	3	857	4	-3.008e-4	1	NC	1	80.624	4
155		2	max	.007	1	.005	2	.012	1	2.729e-3	5	NC	1	NC	2
156		_	min	006	3	01	3	787	4	-2.838e-4	1	NC	1	87.822	4
157		3	max	.006	1	.004	2	.011	1	2.772e-3	5	NC	1	NC	2
158		Ŭ	min	006	3	01	3	717	4	-2.668e-4	1	NC	1	96.376	4
159		4	max	.006	1	.003	2	.01	1	2.814e-3	5	NC	1	NC	2
160			min	005	3	01	3	648	4	-2.498e-4	1	NC	1	106.643	4
161		5	max	.005	1	.002	2	.009	1	2.856e-3	5	NC	1	NC	2
162		-	min	005	3	01	3	58	4	-2.328e-4	1	NC	1	119.104	4
163		6	max	.005	1	.001	2	.008	1	2.898e-3	5	NC	1	NC	2
164			min	005	3	009	3	514	4	-2.157e-4	1	NC	1	134.43	4
165		7	max	.005	1	009	2	.007	1	2.941e-3	5	NC	1	NC	1
166		-	min	004	3	009	3	45	4	-1.987e-4	1	NC	1	153.574	4
167		8	max	.004	1	<u>009</u> 0	15	.006	1	2.986e-3	4	NC	1	NC	1
168		0	min	004	3	009	3	388	4	-1.817e-4	1	NC	1	177.928	4
169		9		.004	1	<u>009</u> 0	15	.005	1	3.033e-3	4	NC	1	NC	1
170		9	max	004	3	008	3	33	4	-1.647e-4	1	NC NC	1	209.589	4
171		10		.003	1	<u>008</u> 0	15	.004	1	3.081e-3	4	NC NC	1	NC	1
172		10	max	003	3	008	3	274	4	-1.476e-4	1	NC NC	1	251.845	4
173		11		.003	1	<u>008</u> 0	15	.003		3.129e-3		NC	1	NC	4
			max		3	007	3		1		4	NC NC	1	310.087	1
174		12	min	003	1	007 0		223	4	-1.306e-4	<u> </u>	NC NC	•	NC	1
175		12	max	.003	3	007	15	.003	1	3.176e-3	<u>4</u> 1	NC NC	<u>1</u> 1		
176		13	min	002	1	007 0	3 15	176 .002	1	-1.136e-4 3.224e-3		NC NC	1	393.67	1
177		13	max	.002	3		3				4		_	NC F20 022	
178		4.4	min	002		006		133	4	-9.659e-5		NC NC	1_	520.033	4
179		14	max	.002	3	0	15	.001	1	3.272e-3	4	NC	1_	NC 704.04	1
180		4.5	min	002		005	3	095	4	-7.957e-5	1_	NC NC	1_	724.84	4
181		15	max	.002	1	0	15	0	1	3.32e-3	4	NC NC	1_	NC 4000 005	1
182		40	min	001	3	004	3	063	4	-6.255e-5	1_	NC NC	1_	1090.925	4
183		16	max	.001	1	0	15	0	1	3.367e-3	4	NC	1_	NC	1
184		47	min	001	3	004	6	037	4	-4.553e-5	1_	NC	1_	1849.778	
185		17	max	0	1	0	15	0	1	3.415e-3	4_	NC	1_	NC	1
186		10	min	0	3	003	6	018	4	-2.851e-5	1_	NC	1_	3875.196	
187		18	max	0		0	15	0	1	3.463e-3	4	NC	1_	NC NC	1
188		40	min	0	3	<u>001</u>	6	005	4	-1.149e-5	1_	NC NC	1_	NC NC	1
189		19	max	0	1	0	1	0	1	3.511e-3	4	NC	1_	NC NC	1
190	140		min	0	1	0	1	0	1	7.309e-8	12	NC	1_	NC	1
191	<u>M3</u>	1_	max	0	1	0	1	0	1	-1.173e-7	12	NC	1_	NC	1
192			min	0	1	0	1	0	1	-7.29e-4	4_	NC	1_	NC NC	1
193		2	max	0	3	0	15	.019	4	6.575e-5	4	NC	1_	NC NC	1
194			min	0	2	003	6	0	12	1.584e-6	12	NC	1_	NC NC	1
195		3	max	0	3	001	15	.037	4	8.606e-4	4	NC	1_	NC 2000 44	1
196			min	0	2	005	6	0	12	3.286e-6	12	NC NC	1_	9296.11	5
197		4	max	0	3	002	15	.054	4	1.655e-3	4	NC	1	NC	1
198			min	0	2	008	6	0	12	4.987e-6	12	NC NC	1_	6859.282	5
199		5	max	.001	3	003	15	.07	4	2.45e-3	4	NC	1_	NC 5750.045	1
200			min	0	2	011	6	0	12	6.689e-6		8967.629	6	5752.015	
201		6	max	.002	3	003	15	.084	4	3.245e-3	4	NC	2	NC 5004.05	1
202		-	min	001	2	014	6	0	12	8.391e-6	12	7226.192	6_	5204.65	5
203		7	max	.002	3	004	15	.098	4	4.04e-3	4	NC	5	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:_

204		Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					
206																
207			8													
208														_		5
209			9													1
210			10													
11			10													_
212			11													
1213																
214			12													
215			12													
216			13													
14 max			10													_
218			14			_										
219																_
Description			15													
16																
Description Color Color			16						.198							1
17										12				6		1
224			17						.21							1
226				min		2			0	12		12		1		1
19	225		18	max	.005	3	0	15	.222	4	1.278e-2	4	NC	1	NC	2
228	226			min	004	2	006	1	0	12	2.881e-5	12	NC	1	9829.789	1
229 M4	227		19	max	.006	3	0	5	.235	4		4	NC	1	NC	2
230				min		2	003			12		12		1		1
231		M4	1_	max	.003		.004			12		_1_		_1_		3
232				min					235			5		1_		
3			2		.003					12		_1_				3
234												5		•		
235			3_			•										
236														•		
237			4_													_
238			-											•		
239			5			-										
240 min 0 3 004 3 141 4 -9.801e-4 5 NC 1 175.607 4 241 7 max .002 1 .003 2 0 12 1.568e-4 1 NC 1 NC 3 242 min 0 3 004 3 124 4 -9.801e-4 5 NC 1 200.495 4 243 8 max .002 1 .002 2 0 12 1.568e-4 1 NC 1 200.495 4 244 min 0 3 004 3 107 4 -9.801e-4 5 NC 1 232.141 4 245 9 max .002 1 .002 2 0 12 1.568e-4 1 NC 1 NC 1 NC 1 NC 1 NC 1 NC					•											
241 7 max .002 1 .003 2 0 12 1.568e-4 1 NC 1 NC 3 242 min 0 3 004 3 124 4 -9.801e-4 5 NC 1 200.495 4 243 8 max .002 1 .002 2 0 12 1.568e-4 1 NC 1 NC 2 244 min 0 3 004 3 107 4 -9.801e-4 5 NC 1 232.141 4 245 9 max .002 1 .002 2 0 12 1.568e-4 1 NC 1 NC 2 246 min 0 3 003 3 091 4 -9.801e-4 5 NC 1 273.252 4 247 10 max .001 1 .002			Ь													
242 min 0 3 004 3 124 4 -9.801e-4 5 NC 1 200.495 4 243 8 max .002 1 .002 2 0 12 1.568e-4 1 NC 1 NC 2 244 min 0 3 004 3 107 4 -9.801e-4 5 NC 1 232.141 4 245 9 max .002 1 .002 2 0 12 1.568e-4 1 NC 1 NC 2 246 min 0 3 003 3 091 4 -9.801e-4 5 NC 1 273.252 4 247 10 max .001 1 .002 2 0 12 1.568e-4 1 NC 1 NC 1 328.06 4 249 11 max .001			7									-				
243 8 max .002 1 .002 2 0 12 1.568e-4 1 NC 1 NC 2 244 min 0 3 004 3 107 4 -9.801e-4 5 NC 1 232.141 4 245 9 max .002 1 .002 2 0 12 1.568e-4 1 NC 1 NC 2 246 min 0 3 003 3 091 4 -9.801e-4 5 NC 1 273.252 4 247 10 max .001 1 .002 2 0 12 1.568e-4 1 NC 1 NC 2 248 min 0 3 003 3 076 4 -9.801e-4 5 NC 1 328.06 4 249 11 max .001 1 .002														1		
244 min 0 3 004 3 107 4 -9.801e-4 5 NC 1 232.141 4 245 9 max .002 1 .002 2 0 12 1.568e-4 1 NC 1 NC 2 246 min 0 3 003 3 091 4 -9.801e-4 5 NC 1 273.252 4 247 10 max .001 1 .002 2 0 12 1.568e-4 1 NC 1 NC 2 248 min 0 3 003 3 076 4 -9.801e-4 5 NC 1 328.06 4 249 11 max .001 1 .002 2 0 12 1.568e-4 1 NC 1 NC 1 X03.491 4 251 1 1 X02 1			0		_									1		
245 9 max .002 1 .002 2 0 12 1.568e-4 1 NC 1 NC 2 246 min 0 3 003 3 091 4 -9.801e-4 5 NC 1 273.252 4 247 10 max .001 1 .002 2 0 12 1.568e-4 1 NC 1 NC 2 248 min 0 3 003 3 076 4 -9.801e-4 5 NC 1 328.06 4 249 11 max .001 1 .002 2 0 12 1.568e-4 1 NC 1 NC 2 250 min 0 3 003 3 061 4 -9.801e-4 5 NC 1 403.491 4 251 12 max .001 1 .001			0							12	-0.8016-4				232 1/1	
246 min 0 3 003 3 091 4 -9.801e-4 5 NC 1 273.252 4 247 10 max .001 1 .002 2 0 12 1.568e-4 1 NC 1 NC 2 248 min 0 3 003 3 076 4 -9.801e-4 5 NC 1 328.06 4 249 11 max .001 1 .002 2 0 12 1.568e-4 1 NC 1 NC 2 250 min 0 3 003 3 061 4 -9.801e-4 5 NC 1 403.491 4 251 12 max .001 1 .001 2 0 12 1.568e-4 1 NC 1 NC 1 NC 1 NC 1 NC 1 NC			a													
247 10 max .001 1 .002 2 0 12 1.568e-4 1 NC 1 NC 2 248 min 0 3 003 3 076 4 -9.801e-4 5 NC 1 328.06 4 249 11 max .001 1 .002 2 0 12 1.568e-4 1 NC 1 NC 2 250 min 0 3 003 3 061 4 -9.801e-4 5 NC 1 403.491 4 251 12 max .001 1 .001 2 0 12 1.568e-4 1 NC 1 NC 1 NC 2 252 min 0 3 002 3 048 4 -9.801e-4 5 NC 1 511.526 4 253 13 max 0 1 .001 2 0			-													_
248 min 0 3 003 3 076 4 -9.801e-4 5 NC 1 328.06 4 249 11 max .001 1 .002 2 0 12 1.568e-4 1 NC 1 NC 2 250 min 0 3 003 3 061 4 -9.801e-4 5 NC 1 403.491 4 251 12 max .001 1 .001 2 0 12 1.568e-4 1 NC 1 NC 1 NC 2 252 min 0 3 002 3 048 4 -9.801e-4 5 NC 1 511.526 4 253 13 max 0 1 .001 2 0 12 1.568e-4 1 NC 1 NC 1 254 min 0 3 <			10									1		•		
249 11 max .001 1 .002 2 0 12 1.568e-4 1 NC 1 NC 2 250 min 0 3 003 3 061 4 -9.801e-4 5 NC 1 403.491 4 251 12 max .001 1 .001 2 0 12 1.568e-4 1 NC 1 NC 2 252 min 0 3 002 3 048 4 -9.801e-4 5 NC 1 511.526 4 253 13 max 0 1 .001 2 0 12 1.568e-4 1 NC 1 NC 1 254 min 0 3 002 3 037 4 -9.801e-4 5 NC 1 674.404 4 255 14 max 0 1 .001 2 0 12 1.568e-4 1 NC 1 NC 1			10									5				_
250 min 0 3 003 3 061 4 -9.801e-4 5 NC 1 403.491 4 251 12 max .001 1 .001 2 0 12 1.568e-4 1 NC 1 NC 2 252 min 0 3 002 3 048 4 -9.801e-4 5 NC 1 511.526 4 253 13 max 0 1 .001 2 0 12 1.568e-4 1 NC 1 NC 1 254 min 0 3 002 3 037 4 -9.801e-4 5 NC 1 674.404 4 255 14 max 0 1 .001 2 0 12 1.568e-4 1 NC 1 NC 1 256 min 0 3 002 3			11		_									_		
251 12 max .001 1 .001 2 0 12 1.568e-4 1 NC 1 NC 2 252 min 0 3 002 3 048 4 -9.801e-4 5 NC 1 511.526 4 253 13 max 0 1 .001 2 0 12 1.568e-4 1 NC 1 NC 1 254 min 0 3 002 3 037 4 -9.801e-4 5 NC 1 674.404 4 255 14 max 0 1 .001 2 0 12 1.568e-4 1 NC 1 NC 1 256 min 0 3 002 3 026 4 -9.801e-4 5 NC 1 937.376 4 257 15 max 0 1 0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																
252 min 0 3 002 3 048 4 -9.801e-4 5 NC 1 511.526 4 253 13 max 0 1 .001 2 0 12 1.568e-4 1 NC 1 NC 1 254 min 0 3 002 3 037 4 -9.801e-4 5 NC 1 674.404 4 255 14 max 0 1 .001 2 0 12 1.568e-4 1 NC 1 NC 1 256 min 0 3 002 3 026 4 -9.801e-4 5 NC 1 937.376 4 257 15 max 0 1 0 2 0 12 1.568e-4 1 NC 1 NC 1 258 min 0 3 001 3			12									-		•		
253 13 max 0 1 .001 2 0 12 1.568e-4 1 NC 1 NC 1 254 min 0 3002 3037 4 -9.801e-4 5 NC 1 674.404 4 255 14 max 0 1 .001 2 0 12 1.568e-4 1 NC 1 NC 1 256 min 0 3002 3026 4 -9.801e-4 5 NC 1 937.376 4 257 15 max 0 1 0 2 0 12 1.568e-4 1 NC 1 NC 1 258 min 0 3001 3018 4 -9.801e-4 5 NC 1 1404.767 4																
254 min 0 3 002 3 037 4 -9.801e-4 5 NC 1 674.404 4 255 14 max 0 1 .001 2 0 12 1.568e-4 1 NC 1 NC 1 256 min 0 3 002 3 026 4 -9.801e-4 5 NC 1 937.376 4 257 15 max 0 1 0 2 0 12 1.568e-4 1 NC 1 NC 1 258 min 0 3 001 3 018 4 -9.801e-4 5 NC 1 1404.767 4			13											1		
255 14 max 0 1 .001 2 0 12 1.568e-4 1 NC 1 NC 1 256 min 0 3 002 3 026 4 -9.801e-4 5 NC 1 937.376 4 257 15 max 0 1 0 2 0 12 1.568e-4 1 NC 1 NC 1 258 min 0 3 001 3 018 4 -9.801e-4 5 NC 1 1404.767 4						•						5		1		-
256 min 0 3 002 3 026 4 -9.801e-4 5 NC 1 937.376 4 257 15 max 0 1 0 2 0 12 1.568e-4 1 NC 1 NC 1 258 min 0 3 001 3 018 4 -9.801e-4 5 NC 1 1404.767 4			14		_									•		
257																
258 min 0 3001 3018 4 -9.801e-4 5 NC 1 1404.767 4			15									-		_		
						3	-							1		4
			16											1		
260 min 0 3 0 301 4 -9.801e-4 5 NC 1 2365.028 4					0	3	0		01	4		5	NC	1	2365.028	4

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
261		17	max	0	1	0	2	0	12	1.568e-4	1	NC	1	NC	1
262			min	0	3	0	3	005	4	-9.801e-4	5	NC	1	4887.938	4
263		18	max	0	1	0	2	0	12	1.568e-4	1	NC	1	NC	1
264			min	0	3	0	3	002	4	-9.801e-4	5	NC	1	NC	1
265		19	max	0	1	0	1	0	1	1.568e-4	1	NC	1	NC	1
266			min	0	1	0	1	0	1	-9.801e-4	5	NC	1	NC	1
267	M6	1	max	.022	1	.024	2	0	1	2.834e-3	4	NC	3	NC	1
268			min	021	3	032	3	866	4	0	1	2895.486	2	79.759	4
269		2	max	.021	1	.022	2	0	1	2.873e-3	4	NC	3	NC	1
270			min	02	3	031	3	795	4	0	1	3198.006	2	86.881	4
271		3	max	.02	1	.019	2	0	1	2.912e-3	4	NC	3	NC	1
272			min	018	3	029	3	725	4	0	1	3567.75	2	95.344	4
273		4	max	.018	1	.017	2	0	1	2.951e-3	4	NC	3	NC	1
274			min	017	3	027	3	655	4	0	1	4025.64	2	105.501	4
275		5	max	.017	1	.015	2	0	1	2.99e-3	4	NC	3	NC	1
276			min	016	3	026	3	586	4	0	1	4601.734	2	117.83	4
277		6	max	.016	1	.013	2	0	1	3.03e-3	4	NC	3	NC	1
278			min	015	3	024	3	52	4	0	1	5340.517	2	132.994	4
279		7	max	.015	1	.011	2	0	1	3.069e-3	4	NC	1_	NC	1
280			min	014	3	022	3	455	4	0	1	6310.208	2	151.936	4
281		8	max	.013	1	.009	2	0	1	3.108e-3	4	NC	_1_	NC	1
282			min	013	3	021	3	393	4	0	1	7620.023	2	176.032	4
283		9	max	.012	1	.007	2	0	1	3.147e-3	4	NC	_1_	NC	1
284			min	012	3	019	3	333	4	0	1	9454.411	2	207.359	4
285		10	max	.011	1	.006	2	0	1	3.186e-3	4	NC	_1_	NC	1
286			min	01	3	017	3	277	4	0	1_	NC	1_	249.169	4
287		11	max	.01	1	.004	2	0	1_	3.225e-3	4	NC	_1_	NC	1
288			min	009	3	01 <u>5</u>	3	225	4	0	1_	NC	1_	306.797	4
289		12	max	.009	1	.003	2	0	1	3.264e-3	4	NC	1	NC	1
290			min	008	3	014	3	177	4	0	1	NC	1_	389.502	4
291		13	max	.007	1	.002	2	0	1	3.304e-3	4	NC	_1_	NC	1
292			min	007	3	012	3	134	4	0	1_	NC	1_	514.539	4
293		14	max	.006	1	00	2	0	1	3.343e-3	4	NC	_1_	NC	1
294			min	006	3	01	3	096	4	0	1	NC	1_	717.204	4
295		15	max	.005	1	0	2	0	1	3.382e-3	4	NC	1_	NC	1
296			min	005	3	008	3	064	4	0	1_	NC	1_	1079.471	4
297		16	max	.004	1	0	2	0	1	3.421e-3	_4_	NC	1_	NC	1
298			min	003	3	006	3	038	4	0	1_	NC	_1_	1830.451	4
299		17	max	.002	1	0	2	0	1	3.46e-3	_4_	NC	1_	NC	1
300			min	002	3	004	3	018	4	0	<u>1</u>	NC	1_	3835.032	4
301		18	max	.001	1	0	2	0	1	3.499e-3	4_	NC	_1_	NC	1
302			min	001	3	002	3	<u>005</u>	4	0	1	NC	1_	NC	1
303		19	max	0	1	0	1	0	1	3.538e-3	4	NC	1	NC NC	1
304			min	0	1	0	1	0	1	0	1_	NC	1_	NC NC	1
305	M7	1_	max	0	1	0	1	0	1	0	1	NC	1_	NC	1
306			min	0	1	0	1	0	1	-7.345e-4	4	NC	1_	NC	1
307		2	max	0	3	0	15	.019	4	3.498e-5	4	NC	1	NC NC	1
308			min	0	2	003	3	0	1	0	1	NC	1_	NC NC	1
309		3	max	.002	3	001	15	.037	4	8.044e-4	4	NC	1	NC 2070 405	1
310		4	min	002	2	006	3	0	1	0	1_1	NC NC	1_	8378.195	
311		4	max	.003	3	002	15	.054	4	1.574e-3	4	NC NC	1_	NC C4.40.540	1
312		_	min	003	2	009	3	0	1	0	1_	NC NC	1_	6140.542	4
313		5_	max	.004	3	003	15	.07	4	2.343e-3	4	NC	1_	NC 5400,000	1
314			min	004	2	012	4	0	1	0	1_	9034.773	4	5109.906	
315		6	max	.005	3	003	15	.085	4	3.113e-3	4	NC 7075 404	1_	NC 4500.04	1
316		-	min	005	2	014	4	0	1	0	1_	7275.181	4	4582.91	4
317		7	max	.006	3	004	15	.099	4	3.882e-3	4	NC	<u>1</u>	NC	_1_

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		_		(n) L/y Ratio			
318			min	006	2	017	4	0	1	0	<u>1</u>	6217.898	4_	4332.213	
319		8	max	.007	3	004	15	.112	4	4.652e-3	4	NC	5	NC	1
320			min	006	2	<u>019</u>	4	0	1	0	1_	5565.315	4_	4269.764	
321		9	max	.008	3	<u>005</u>	15	124	4	5.421e-3	4	NC	5	NC	1
322		40	min	007	2	02	4	0	1	0	_1_	5177.54	4_	4364.598	4
323		10	max	.009	3	005	15	.135	4	6.191e-3	4	NC 4000 404	5_	NC 4040.757	1
324		4.4	min	008	2	021	4	0	1	0	1_	4986.484	4_	4618.757	4
325		11	max	.01	3	005	15	.145	4	6.96e-3	4_	NC 4000 04	5	NC FOCO COA	1
326		40	min	009	2	021	4	0	1	7 7200 2	1_1	4963.81	4_	5063.601	4
327 328		12	max	.011	3	005 021	15	.155	1	7.729e-3	<u>4</u> 1	NC 5110.043	<u>5</u> 4	NC 5769.656	4
329		13	min	01 .012	3		15	<u> </u>	4	8.499e-3	4	NC	_4 5	NC	1
		13	max		2	005		0	1	0.4996-3		5456.137	4	6876.04	4
330		14	min	011 .013	3	02 004	15	.175	4	9.268e-3	<u>1</u> 4	NC	-4 5	NC	1
331 332		14	max	012	2	004 018	4	.175	1	9.2666-3	1	6079.717	4	8664.755	4
333		15	min max	.014	3	016 004	15	.184	4	1.004e-2	4	NC	1	NC	1
334		15	min	013	2	004 015	4	0	1	0	1	7153.575	4	NC	1
335		16	max	.014	3	003	15	.194	4	1.081e-2	4	NC	1	NC	1
336		10	min	014	2	013	4	<u>.194</u>	1	0	1	9096.768	4	NC	1
337		17	max	.015	3	002	15	.204	4	1.158e-2	4	NC	1	NC	1
338		11/	min	015	2	002	1	0	1	0	1	NC	1	NC	1
339		18	max	.016	3	001	15	.214	4	1.235e-2	4	NC	1	NC	1
340		10	min	016	2	007	1	0	1	0	1	NC	1	NC	1
341		19	max	.017	3	0	15	.225	4	1.312e-2	4	NC	1	NC	1
342		10	min	017	2	005	1	0	1	0	1	NC	1	NC	1
343	M8	1	max	.007	1	.016	2	0	1	0	1	NC	1	NC	1
344			min	0	3	018	3	225	4	-1.155e-3	4	NC	1	110.019	4
345		2	max	.007	1	.015	2	0	1	0	1	NC	1	NC	1
346			min	0	3	017	3	207	4	-1.155e-3	4	NC	1	119.762	4
347		3	max	.006	1	.014	2	0	1	0	1	NC	1	NC	1
348			min	0	3	016	3	189	4	-1.155e-3	4	NC	1	131.351	4
349		4	max	.006	1	.013	2	0	1	0	1	NC	1	NC	1
350			min	0	3	015	3	171	4	-1.155e-3	4	NC	1	145.265	4
351		5	max	.006	1	.012	2	0	1	0	1	NC	1	NC	1
352			min	0	3	014	3	153	4	-1.155e-3	4	NC	1	162.157	4
353		6	max	.005	1	.011	2	0	1	0	1_	NC	1_	NC	1
354			min	0	3	013	3	136	4	-1.155e-3	4	NC	1	182.934	4
355		7	max	.005	1	.01	2	0	1	0	1	NC	_1_	NC	1
356			min	0	3	012	3	119	4	-1.155e-3	4	NC	1_	208.88	4
357		8	max	.004	1	.01	2	0	1	0	1	NC	1_	NC	1
358			min		3	011	3	103	4	-1.155e-3	4	NC	1	241.87	4
359		9	max	.004	1	.009	2	0	1	0	1	NC	1_	NC	1
360			min	0	3	01	3	087	4	-1.155e-3	4	NC	1_	284.728	4
361		10	max	.004	1	.008	2	0	1	0	_1_	NC	1_	NC	1
362			min	0	3	009	3	073	4	-1.155e-3	4_	NC	1_	341.866	4
363		11	max	.003	1	.007	2	0	1	0	1	NC	1_	NC 100 501	1
364		40	min	0	3	008	3	<u>059</u>	4	-1.155e-3	4	NC	1_	420.504	4
365		12	max	.003	1	.006	2	0	1	0	1	NC		NC 500 404	1
366		40	min	0	3	007	3	047	4	-1.155e-3	4_	NC	1_	533.134	4
367		13	max	.002	1	.005	2	0	1	0	1_1	NC NC	1_1	NC 702.044	1
368		4.4	min	0	3	006	3	035	4	-1.155e-3	4	NC NC	1_	702.944	4
369		14	max	.002	1	.004	2	0	1	0	1_1	NC NC	1	NC	1
370		15	min	0	3	005	3	025	4	-1.155e-3	4	NC NC	1_1	977.115	4
371		15	max	.002	3	.003	2	0	1	1 1550 2	1_1	NC NC	1	NC	1
372 373		16	min	.001	1	004 .003	2	017 0	1	-1.155e-3 0	<u>4</u> 1	NC NC	<u>1</u> 1	1464.429 NC	1
374		10	max	.001	3		3	01	4	-1.155e-3	4	NC NC	1	2465.664	
3/4			min	U	3	003	J	01	4	-1.1006-3	4	INC		2403.004	4

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/v Ratio	LC	(n) L/z Ratio	LC
375		17	max	Ö	1	.002	2	Ö	1	0	1	NC	1	NC	1
376			min	0	3	002	3	005	4	-1.155e-3	4	NC	1	5096.387	4
377		18	max	0	1	0	2	0	1	0	1	NC	1	NC	1
378			min	0	3	0	3	001	4	-1.155e-3	4	NC	1	NC	1
379		19	max	0	1	0	1	0	1	0	1	NC	1	NC	1
380			min	0	1	0	1	0	1	-1.155e-3	4	NC	1	NC	1
381	M10	1	max	.007	1	.006	2	0	12	2.821e-3	4	NC	1	NC	2
382			min	006	3	01	3	864	4	1.631e-5	12	NC	1	79.94	4
383		2	max	.007	1	.005	2	0	12	2.859e-3	4	NC	1	NC	2
384			min	006	3	01	3	794	4	1.54e-5	12	NC	1	87.077	4
385		3	max	.006	1	.004	2	0	12	2.897e-3	4	NC	1	NC	2
386			min	006	3	01	3	723	4	1.449e-5	12	NC	1	95.56	4
387		4	max	.006	1	.003	2	0	12	2.935e-3	4	NC	1	NC	2
388			min	005	3	01	3	654	4	1.358e-5	12	NC	1	105.741	4
389		5	max	.005	1	.002	2	0	12	2.973e-3	4	NC	1	NC	2
390			min	005	3	01	3	585	4	1.267e-5	12	NC	1	118.098	4
391		6	max	.005	1	.001	2	0	12	3.011e-3	4	NC	1_	NC	2
392			min	005	3	009	3	518	4	1.176e-5	12	NC	1	133.297	4
393		7	max	.005	1	0	2	0	12	3.049e-3	4	NC	1	NC	1
394			min	004	3	009	3	454	4	1.085e-5	12	NC	1	152.283	4
395		8	max	.004	1	0	2	0	12	3.088e-3	4_	NC	_1_	NC	1
396			min	004	3	009	3	392	4	9.938e-6	12	NC	1_	176.435	4
397		9	max	.004	1	001	2	0	12	3.126e-3	4	NC	1_	NC	1
398			min	004	3	008	3	333	4	9.028e-6	12	NC	1	207.835	4
399		10	max	.003	1	002	2	0	12	3.164e-3	4	NC	1_	NC	1_
400			min	003	3	008	3	277	4	8.118e-6	12	NC	1_	249.745	4
401		11	max	.003	1	002	15	0	12	3.202e-3	4_	NC	_1_	NC	1
402			min	003	3	007	3	225	4	7.208e-6	12	NC	1_	307.511	4
403		12	max	.003	1	002	15	0	12	3.24e-3	4	NC	_1_	NC	1
404			min	002	3	007	4	177	4	6.298e-6	12	NC	1	390.416	4
405		13	max	.002	1	002	15	0	12	3.278e-3	4_	NC	_1_	NC	1
406			min	002	3	006	4	134	4	5.388e-6	12	NC	1_	515.76	4
407		14	max	.002	1	002	15	00	12	3.316e-3	4_	NC	_1_	NC	1
408			min	002	3	006	4	096	4	4.478e-6	12	NC	1_	718.933	4
409		15	max	.002	1	001	15	0	12	3.354e-3	_4_	NC	_1_	NC	1
410			min	001	3	005	4	064	4	3.567e-6	12	NC	1_	1082.135	4
411		16	max	.001	1	001	15	0	12	3.392e-3	_4_	NC	_1_	NC	1
412			min	001	3	004	4	038	4	2.657e-6	12	NC	<u>1</u>	1835.139	
413		17	max	0	1	0	15	0	12	3.431e-3	4	NC	_1_	NC	1
414			min	0	3	003	4	018	4	1.747e-6	12	NC	1_	3845.529	4
415		18	max	0	1	0	15	0	12		4_	NC	_1_	NC	1
416			min	0	3	002	4	005	4	8.37e-7	12	NC	_1_	NC	1
417		19	max	0	1	0	1	0	1	3.507e-3	_4_	NC	1_	NC	1
418			min	0	1	0	1	0	1	-5.534e-6	_1_	NC	1_	NC	1
419	M11	1	max	0	1	0	1	0	1	3.272e-6	_1_	NC	1	NC	1
420			min	0	1	0	1	0	1	-7.271e-4	4_	NC	1_	NC	1
421		2	max	0	3	0	15	.019	4	5.239e-5	5_	NC	1	NC NC	1
422			min	0	2	003	4	0	1	-3.217e-5	_1_	NC	1_	NC	1
423		3	max	0	3	001	15	.037	4	8.224e-4	4	NC	1	NC 2017 FO1	1
424			min	0	2	006	4	0	1	-6.761e-5	1_	NC	1_	8817.504	
425		4	max	0	3	002	15	.054	4	1.597e-3	4	NC	1	NC 0.400, 400	1
426		_	min	0	2	009	4	0	1	-1.031e-4	1_	NC NC	1_	6489.438	4
427		5	max	.001	3	003	15	.069	4	2.372e-3	4_	NC	1_	NC 5405.544	1
428			min	0	2	012	4	0	1	-1.385e-4	1_	8618.074	4_	5425.541	4
429		6	max	.002	3	004	15	.084	4	3.146e-3	4	NC COZO COO	2	NC 4004 000	1
430		-	min	001	2	015	4	0	1	-1.739e-4	1_	6970.033	4_	4891.898	
431		7	max	.002	3	004	15	.098	4	3.921e-3	4	NC	5	NC	_1_

Model Name

: Schletter, Inc. : HCV

:

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					
432			min	001	2	018	4	0	1	-2.094e-4	1_	5978.114	4	4652.603	
433		8	max	.002	3	005	15	.111	4	4.696e-3	4_	NC	5	NC	1
434			min	002	2	02	4	001	1	-2.448e-4	_1_	5366.156	4_	4618.231	4
435		9	max	.003	3	005	15	.123	4	5.471e-3	4_	NC 5004.040	5_	NC 4700 044	1
436		40	min	002	2	021	4	002	1	-2.803e-4	1_	5004.213	4_	4760.611	4
437		10	max	.003	3	005	15	.134	4	6.245e-3	4	NC	<u>5</u>	NC FORR OFF	4
438 439		11	min	002 .003	3	022 005	15	002 .145	4	-3.157e-4	<u>1</u> 4	4829.203 NC	_4 5	5088.965 NC	1
440			max	002	2	005 022	4	003	1	7.02e-3 -3.512e-4	1	4815.332	4	5648.719	
441		12	max	.002	3	022 005	15	.155	4	7.795e-3	4	NC	5	NC	1
442		12	min	003	2	021	4	003	1	-3.866e-4	1	4964.208	4	6537.72	4
443		13	max	.003	3	005	15	.165	4	8.569e-3	4	NC	5	NC	1
444		10	min	003	2	02	4	004	1	-4.22e-4	1	5306.716	4	7951.41	4
445		14	max	.004	3	005	15	.174	4	9.344e-3	4	NC	5	NC	1
446			min	003	2	018	4	005	1	-4.575e-4	1	5919.047	4	NC	1
447		15	max	.004	3	004	15	.184	4	1.012e-2	4	NC	3	NC	1
448			min	003	2	016	4	006	1	-4.929e-4	1	6970.119	4	NC	1
449		16	max	.005	3	003	15	.194	4	1.089e-2	4	NC	1	NC	1
450			min	003	2	013	4	007	1	-5.284e-4	1	8869.073	4	NC	1
451		17	max	.005	3	002	15	.205	4	1.167e-2	4	NC	1	NC	1
452			min	004	2	009	4	009	1	-5.638e-4	1	NC	1	NC	1
453		18	max	.005	3	001	15	.216	4	1.244e-2	4	NC	1	NC	2
454			min	004	2	006	1	01	1	-5.993e-4	1	NC	1	9829.789	1
455		19	max	.006	3	0	10	.228	4	1.322e-2	4	NC	1	NC	2
456			min	004	2	003	1	012	1	-6.347e-4	1	NC	1	8426.925	1
457	M12	1_	max	.003	1	.004	2	.012	1	-7.902e-6	12	NC	_1_	NC	3
458			min	0	3	006	3	228	4	-1.055e-3	4	NC	1_	108.847	4
459		2	max	.003	1	.004	2	.011	1	-7.902e-6	12	NC	_1_	NC	3
460			min	0	3	005	3	209	4	-1.055e-3	4	NC	1_	118.479	4
461		3	max	.002	1	.003	2	.01	1	-7.902e-6	<u>12</u>	NC	_1_	NC	3
462			min	0	3	005	3	191	4	-1.055e-3	4	NC	1_	129.935	4
463		4	max	.002	1	.003	2	.009	1	-7.902e-6	12	NC	1_	NC 1 10 00	3
464		+-	min	0	3	005	3	<u>173</u>	4	-1.055e-3	4	NC NC	1_	143.69	4
465		5	max	.002	1	.003	2	.008	1	-7.902e-6	12	NC NC	1_	NC 400,000	3
466		6	min	.002	3	005	2	1 <u>55</u>	4	-1.055e-3	4	NC NC	1_	160.389 NC	3
467 468		6	max	.002	3	.003 004	3	.007 137	4	-7.902e-6	<u>12</u> 4	NC NC	<u>1</u> 1	180.929	4
469		7	min	.002	1	.003	2	.006	1	-1.055e-3 -7.902e-6	12	NC NC	1	NC	3
470			max min	0	3	004	3	12	4	-1.055e-3	4	NC NC	1	206.58	4
471		8	max	.002	1	.002	2	.006	1	-7.902e-6	12	NC	1	NC	2
472		-	min		3	004	3	104		-1.055e-3		NC	1	239.195	
473		9	max	.002	1	.002	2	.005	1	-7.902e-6		NC	1	NC	2
474		Ť	min	0	3	003	3	088	4	-1.055e-3		NC	1	281.564	4
475		10	max	.001	1	.002	2	.004	1	-7.902e-6		NC	1	NC	2
476			min	0	3	003	3	073	4	-1.055e-3	4	NC	1	338.051	4
477		11	max	.001	1	.002	2	.003	1	-7.902e-6	12	NC	1	NC	2
478			min	0	3	003	3	06	4	-1.055e-3	4	NC	1	415.793	4
479		12	max	.001	1	.001	2	.003	1	-7.902e-6		NC	1	NC	2
480			min	0	3	002	3	047	4	-1.055e-3	4	NC	1	527.138	4
481		13	max	0	1	.001	2	.002	1	-7.902e-6	12	NC	1	NC	1
482			min	0	3	002	3	036	4	-1.055e-3	4	NC	1	695.008	4
483		14	max	0	1	.001	2	.001	1	-7.902e-6	12	NC	1	NC	1
484			min	0	3	002	3	026	4	-1.055e-3	4	NC	1	966.043	4
485		15	max	0	1	0	2	0	1	-7.902e-6	12	NC	1	NC	1
486			min	0	3	001	3	017	4	-1.055e-3	4	NC	1	1447.772	4
487		16	max	0	1	0	2	0	1	-7.902e-6		NC	1	NC	1
488			min	0	3	0	3	01	4	-1.055e-3	4	NC	1_	2437.508	4

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:_

489	Member	Sec 17	max	x [in]	LC 1	y [in] 0	LC 2	z [in]	LC 1	x Rotate [r	LC 12	(n) L/y Ratio	LC 1	(n) L/z Ratio	LC 1
490		17	min	0	3	0	3	005	4	-1.055e-3	4	NC	1	5037.924	
491		18	max	0	1	0	2	0	1	-7.902e-6	12	NC	1	NC	1
492		1.0	min	0	3	0	3	001	4	-1.055e-3	4	NC	1	NC	1
493		19	max	0	1	0	1	0	1	-7.902e-6	12	NC	1	NC	1
494		15	min	0	1	0	1	0	1	-1.055e-3	4	NC	1	NC	1
495	M1	1	max	.007	3	.175	1	.918	4	1.368e-2	1	NC	1	NC	1
496	IVII		min	003	2	023	3	0	12	-1.852e-2	3	NC	1	NC	1
497		2	max	.007	3	.087	1	.888	4	1.05e-2	4	NC	5	NC	1
498			min	003	2	011	3	009	1	-9.191e-3	3	1523.855	1	9144.624	_
499		3	max	.007	3	.01	3	.857	4	1.796e-2	4	NC	5	NC	2
500		T .	min	003	2	009	2	013	1	-2.843e-4	1	731.458	1	5011.126	
501		4	max	.007	3	.048	3	.825	4	1.563e-2	4	NC	15	NC	1
502		+-	min	003	2	117	1	012	1	-3.674e-3	3	459.63	1	3599.266	
503		5	max	.007	3	.096	3	.792	4	1.33e-2	4	9567.734	15	NC	1
504		+	min	003	2	232	1	008	1	-7.254e-3	3	330.24	1	2884.564	
505		6	max	.007	3	.15	3	.759	4	1.466e-2	1	7552.593	15	NC	1
506		1	min	003	2	343	1	004	1	-1.083e-2	3	259.16	1	2450.544	
507		7	max	.007	3	.201	3	.724	4	1.964e-2	1	6363.844	15	NC	1
508		+ '	min	003	2	443	1	0	3	-1.441e-2	3	217.318	1	2143.865	
509		8	max	.007	3	.244	3	.689	4	2.462e-2	1	5660.922	15	NC	1
510		1	min	003	2	523	1	0	12	-1.799e-2	3	192.621	1	1915.794	
511		9	max	.006	3	.272	3	.652	4	2.704e-2	1	5293.516	15	NC	1
512		1 3	min	003	2	573	1	0	1	-1.817e-2	3	179.764	1	1768.264	
513		10	max	.006	3	.283	3	.611	4	2.775e-2	1	5181.324	15	NC	1
514		10	min	003	2	589	1	0	12	-1.607e-2	3	175.904	1	1725.478	
515		11	max	.006	3	.276	3	.567	4	2.846e-2	<u> </u>	5293.309	15	NC	1
516		+	min	003	2	572	1	.307	12	-1.397e-2	3	179.984	1	1765.31	4
517		12	max	.006	3	.253	3	.519	4	2.68e-2	<u> </u>	5660.432	15	NC	1
518		12	min	003	2	521	1	001	1	-1.176e-2	3	193.3	1	1896.094	_
519		13	max	.006	3	.216	3	.465	4	2.159e-2	<u> </u>	6362.887	15	NC	1
520		13	min	003	2	44	1	0	1	-9.408e-3	3	218.979	1	2258.845	
521		14	max	.006	3	.168	3	.407	4	1.639e-2	<u> </u>	7550.829	15	NC	1
522		14	min	003	2	339	1	.407	12	-7.054e-3	3	262.713	1	3064.571	4
523		15	max	.006	3	.114	3	.347	4	1.119e-2	1	9564.484	15	NC	1
524		13	min	003	2	226	1	0	12	-4.699e-3	3	337.528	1	5000.073	4
525		16	max	.005	3	.058	3	.289	4	1.08e-2	4	NC	15	NC	1
526		10	min	003	2	111	1	0	12	-2.345e-3	3	474.871	1	NC	1
527		17	max	.005	3	.003	3	.236	4	1.204e-2	4	NC	5	NC	1
528		17	min	003	2	005	2	0	12	8.104e-6	12	765.525	1	NC	1
529		10	max	.005	3	.087	1	.19		8.319e-3	1	NC	5	NC NC	1
530		10	min	003	2	045	3	.19	12	-2.598e-3	3	1609.987	1	NC	1
531		19	max	.005	3	.17	1	.149	4	1.608e-2	<u> </u>	NC	1	NC	1
532		19	min	003	2	091	3	001	1	-5.294e-3	3	NC	1	NC	1
533	M5	1	max	.022	3	.358	1	.918	4	0	<u> </u>	NC	1	NC	1
534	IVIO		min	015	2	009	3	.916	1	-8.602e-6	4	NC	1	NC	1
535		2	max	.022	3	.177	1	.895	4	9.203e-3	4	NC	5	NC	1
536		+-	min	015	2	004	3	0	1	0	1	746.093	1	6814.55	4
537		3		.022	3	.032	3	.866	4	1.819e-2	4	NC	15	NC	1
538		3	max min	015	2	03	1	0	1	0	1	346.926	1	4001.292	
539		4		.022	3	<u>03</u> .122	3	.833	4	1.482e-2	4	6757.241	15	NC	1
540		4	max	015	2	285	1	.033	1	0	1	209.365	1	3091.445	
541		5	max	.021	3	<u>265</u> .25	3	.798	4	1.145e-2	4	4711.957	15	NC	1
542		J	min	015	2	566	1	.798	1	0	1	145.598	1 <u>1</u>	2651.275	
543		6		.021	3	.396	3	-	4	8.086e-3		3617.774		NC	4
544		6	max min	014	2	848	1	.761 0	1	0.0866-3	<u>4</u> 1	111.534	<u>15</u> 1	2378.583	4
545		7		.021	3	<u>040 </u>	3	.724	4	4.717e-3	4	2987.517	15	NC	1
545		/	max	.021	⊥ o	.04	⊥ o	.124	_ 4	4.7 176-3	4	2301.317	ıυ	INC	<u> </u>

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		_		(n) L/y Ratio			
546			min	014	2	-1.105	1	0	1	0	_1_	91.934	1_	2160.934	
547		8	max	.02	3	.662	3	.688	4	1.348e-3	4_		<u>15</u>	NC	1
548			min	014	2	<u>-1.311</u>	1	0	1	0	1_	80.573	1_	1945.574	
549		9	max	.02	3	.741	3	.653	4	0	1_		15	NC	1
550		40	min	013	2	<u>-1.441</u>	1	0	1	-4.823e-6	5	74.757	1_	1762.818	
551		10	max	.019	3	.77	3	.611	1	0 -4.621e-6	1		<u>15</u>	NC	4
552 553		11	min	013 .019	3	<u>-1.485</u> .751	3	<u> </u>	4	0	<u>5</u> 1		<u>1</u> 15	1739.941 NC	1
554			max	013	2	<u>.751</u> -1.44	1	<u>.366</u>	1	-4.419e-6	5			1790.768	
555		12	max	.018	3	.686	3	.521	4	8.49e-4	4		15	NC	1
556		12	min	013	2	-1.307	1	0	1	0.496-4	1		1	1859	4
557		13	max	.018	3	.581	3	.467	4	2.972e-3	4		15	NC	1
558		10	min	013	2	-1.095	1	0	1	0	1	92.852	1	2204.078	
559		14	max	.017	3	.448	3	.406	4	5.096e-3	4		15	NC	1
560			min	012	2	832	1	0	1	0	1	113.617	1	3152.496	4
561		15	max	.017	3	.3	3	.342	4	7.219e-3	4		15	NC	1
562			min	012	2	545	1	0	1	0	1		1	6158.781	5
563		16	max	.016	3	.15	3	.281	4	9.343e-3	4		15	NC	1
564			min	012	2	263	1	0	1	0	1	219.693	1	NC	1
565		17	max	.016	3	.01	3	.226	4	1.147e-2	4	NC	15	NC	1
566			min	012	2	015	2	0	1	0	1	0. =.0	1	NC	1
567		18	max	.016	3	.181	1	.183	4	5.801e-3	4	NC	5	NC	1
568			min	012	2	109	3	0	1	0	1_	814.928	1	NC	1
569		19	max	.016	3	.345	1	.15	4	0	_1_	NC	1_	NC	1
570			min	012	2	216	3	0	1	-4.688e-6	4	NC	1	NC	1
571	<u>M9</u>	1	max	.007	3	.175	1	.917	4	1.852e-2	3	NC	1	NC	1
572			min	003	2	023	3	0	1	-1.368e-2	_1_		<u>1</u>	NC	1
573		2	max	.007	3	.087	1	.893	4	9.191e-3	3_		5	NC	1
574			min	003	2	<u>011</u>	3	0	12	-6.593e-3	1_		1_	7300.338	
575		3	max	.007	3	.01	3	.864	4	1.813e-2	4	NC 704 450	5	NC 4040,000	2
576		4	min	003	2	009	2	0	12	8.233e-7	<u>10</u>	7011100	1_	4210.823	
577		4	max	.007	3	.048	3	.832	12	1.419e-2 -4.697e-3	5	NC 459.63	<u>15</u> 1	NC 3189.017	1
578 579		5	min	003 .007	3	<u>117</u>	3	<u> </u>	4	1.069e-2	<u>1</u> 5		<u>1</u> 15	NC	1
580		- O	max	003	2	.096 232	1	0	12	-9.677e-3	1	330.24	1	2683.612	4
581		6	min max	.003	3	<u>232</u> .15	3	<u></u> .761	4	1.083e-2	3		<u>1</u> 15	NC	1
582		0	min	003	2	343	1	0	12	-1.466e-2	1	259.16	1	2372.1	4
583		7	max	.007	3	.201	3	.724	4	1.441e-2	3		15	NC	1
584			min	003	2	443	1	0	1	-1.964e-2	1	217.318	1	2139.142	
585		8	max	.007	3	.244	3	.688	4	1.799e-2	3		<u>-</u> 15	NC	1
586			min		2	523	1	001		-2.462e-2				1931.737	
587		9	max	.006	3	.272	3	.652	4	1.817e-2	3		15	NC	1
588			min	003	2	573	1	0	12		1		1	1762.343	4
589		10	max	.006	3	.283	3	.611	4	1.607e-2	3		15	NC	1
590			min	003	2	589	1	0	1	-2.775e-2	1		1	1726.541	4
591		11	max	.006	3	.276	3	.567	4	1.397e-2	3	5272.671	15	NC	1
592			min	003	2	572	1	0	1	-2.846e-2	1	179.984	1	1772.87	4
593		12	max	.006	3	.253	3	.52	4	1.176e-2	3	5638.204	<u> 15</u>	NC	1
594			min	003	2	521	1	0	12	-2.68e-2	1_		1	1880.422	4
595		13	max	.006	3	.216	3	.465	4	9.408e-3	3		15	NC	1
596			min	003	2	44	1	0	12	-2.159e-2	1_		1	2258.808	
597		14	max	.006	3	.168	3	.405	4	7.054e-3	3		15	NC	1
598			min	003	2	339	1	003	1	-1.639e-2	<u>1</u>			3163.207	5
599		15	max	.006	3	.114	3	.343	4	6.83e-3	5		<u>15</u>	NC	1
600		40	min	003	2	226	1	008	1	-1.119e-2	<u>1</u>	000=0	1_	5569.337	5
601		16	max	.005	3	.058	3	.283	4	9.192e-3	5_		<u>15</u>	NC NC	1
602			min	003	2	111	1	011	1	-5.989e-3	1_	474.871	1	NC	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	o LC
603		17	max	.005	3	.003	3	.229	4	1.161e-2	4	NC	5	` NC	1
604			min	003	2	005	2	012	1	-7.866e-4	1	765.525	1	NC	1
605		18	max	.005	3	.087	1	.185	4	5.535e-3	5	NC	5	NC	1
606			min	003	2	045	3	009	1	-8.319e-3	1	1609.987	1	NC	1
607		19	max	.005	3	.17	1	.15	4	5.294e-3	3	NC	1	NC	1
608			min	003	2	091	3	0	12	-1.608e-2	1	NC	1	NC	1

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method: ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			•

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1020.0	27.0	565.0	565.6	
Sum	1020.0	27.0	565.0	565 6	

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1020

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)	
8095	0.75	6071	

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_t)$	Nc / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec. I	D.4.1 & Eq. D-4))			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247.75	0.967	1.00	1.000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

rt-term K _{sat} τ _{k,cr} (psi)
0 1.00 1035
. D-16f)
(in) h_{ef} (in) N_{a0} (lb)
0 6.000 9755
Ψ _{ed,Na} Ψ _{p,Na} N _{a0} (Sec. D.4.1 & Eq. D-16a)
$\Psi_{\text{ed},Na}$ $\Psi_{\text{p},Na}$

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	4/5		
Project:	Standard PVMax - Worst Case, 14-40 Inch Width				
Address:					
Phone:					
E-mail:					

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f'_c (psi)	c _{a1} (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	7.00	6947			
$\phi V_{cby} = \phi (A_V)$	/c / A vco) \(\mathcal{P}_{ed, V} \(\mathcal{P}_{c, V} \)	$ \sqrt{\Psi_{h,V}V_{by}} $ (Sec.	D.4.1 & Eq. D-2	1)				
A_{Vc} (in ²)	A_{Vco} (in ²)	$arPsi_{\sf ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)	
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934	

 V_{bx} (lb)

8282

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/c$	$(d_a)^{0.2} \sqrt{d_a} \lambda \sqrt{f'_c} c_{a1}$				
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	
4.00	0.50	1.00	2500	7.87	

 $\phi V_{cbx} = \phi (A_{Vc}/A_{Vco}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{bx}$ (Sec. D.4.1 & Eq. D-21)

Avc (in ²)	Avco (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f_c c_{a1}}^{1.5} \text{ (Eq. D-24)}$ $\frac{I_e \text{ (in)} \qquad d_a \text{ (in)} \qquad \lambda \qquad \qquad f'_c \text{ (psi)} \qquad c_{a1} \text{ (in)} \qquad V_{by} \text{ (lb)}}{4.00 \qquad 0.50 \qquad 1.00 \qquad 2500 \qquad 7.00 \qquad 6947}$ $\phi V_{cbx} = \phi (2) (A_{Vc}/A_{Vc}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{by} \text{ (Sec. D.4.1, D.6.2.1(c) \& Eq. D-21)}$

$\varphi \mathbf{v} \cos \varphi \left(\frac{2}{3} \right) (11)$	ωχ ψ (2)(11νε) 11νεο) 1 εα, ν 1 ε, ν 1 η, ν ν μ (333. Β. π. η, Β.3.2. η (3) α Ε η. Β Σ 1)						
Avc (in ²)	$Av\infty$ (in ²)	$\varPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V _{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f_c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cby} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a \; ; \; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \, \Psi_{ed,Na} \, \Psi_{p,Na} N_{a0} \; ; \; k_{cp} (A_{Nc}/A_{Nco}) \, \Psi_{ed,N} \, \Psi_{c,N} \, \Psi_{cp,N} N_b| \; (\text{Eq. D-30a})$

Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{p,Na}$	N _{a0} (lb)	N _a (lb)		
2.0	109.66	109.66	1.000	1.000	9755	9755		
Anc (in²)	Ανω (in²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ	$\phi V_{c ho}$ (lb)
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 14-40 Inch Width				
Address:					
Phone:					
E-mail:			_		

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1020	6071	0.17	Pass
Concrete breakout	1020	5710	0.18	Pass
Adhesive	1020	5365	0.19	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	566	3156	0.18	Pass (Governs)
T Concrete breakout y+	565	3934	0.14	Pass
T Concrete breakout x+	27	3018	0.01	Pass
Concrete breakout y+	27	8508	0.00	Pass
Concrete breakout x+	565	6875	0.08	Pass
Concrete breakout, combined	-	-	0.14	Pass
Pryout	566	12298	0.05	Pass
Interaction check Nua	$/\phi N_n$ $V_{ua}/\phi V_n$	Combined Rat	io Permissible	Status
Sec. D.7.1 0.1	9 0.00	19.0 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	1/5		
Project:	Standard PVMax - Worst Case, 21-31 Inch Width				
Address:					
Phone:					
E-mail:					

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes h_{min} (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 S_{min} (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2 Load combination: not set

Seismic design: No

Anchors subjected to sustained tension: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

Ψ_{c,V}: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	8/1/2016					
Engineer:	HCV	Page:	2/5					
Project:	Standard PVMax - Worst Case, 21	Standard PVMax - Worst Case, 21-31 Inch Width						
Address:								
Phone:								
E-mail:								

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 21-	-31 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2495.5	1558.5	0.0	1558.5
2	2495.5	1558.5	0.0	1558.5
Sum	4991.0	3117.0	0.0	3117.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 4991

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)	
8095	0.75	6071	

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

<i>k</i> _c	λ	f'c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_c)$	Nc / A Nco) $\Psi_{ec,N}$ Ψ_{ec}	$_{I,N} \varPsi_{c,N} \varPsi_{cp,N} N_{b}$ (Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
378.00	324.00	1.000	0.972	1.00	1.000	12492	0.65	9208

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

f short-term	K _{sat}	τ _{k,cr} (psi)
1.00	1.00	1035
nef (Eq. D-16f)		
d _a (in)	h _{ef} (in)	N _{a0} (lb)
0.50	6.000	9755
	1.00 nef (Eq. D-16f) de (in)	1.00 1.00 nef (Eq. D-16f) d _a (in) h _{ef} (in)

 $\phi N_{ag} = \phi \left(A_{Na} / A_{Na0} \right) \varPsi_{ed,Na} \varPsi_{g,Na} \varPsi_{ec,Na} \varPsi_{\rho,Na} N_{a0} \left(\text{Sec. D.4.1 \& Eq. D-16b} \right)$

A_{Na} (in ²)	A_{Na0} (in ²)	$arPsi_{\sf ed,Na}$	$arPsi_{g,Na}$	$arPsi_{ec,Na}$	$arPsi_{p,Na}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)	
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093	

Company:	Schletter, Inc.	Date:	8/1/2016				
Engineer:	HCV	Page:	4/5				
Project:	Standard PVMax - Worst Case, 21-31 Inch Width						
Address:							
Phone:							
E-mail:							

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ extit{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	12.00	15593			
$\phi V_{cbgx} = \phi (A$	Avc / Avco) Yec, v Ye	$_{ed,V} \varPsi_{c,V} \varPsi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	ą. D-22)				
Avc (in ²)	$Av \infty$ (in ²)	$\Psi_{ec,V}$	$\varPsi_{\sf ed,V}$	$arPsi_{ extsf{c}, extsf{V}}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (Ib)
378.00	648.00	1.000	0.836	1.000	1.000	15593	0.70	5323

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

le (in)	da (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.16	8744		
$\phi V_{cbx} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (Ib)
299.64	299.64	1.000	1.000	1.000	8744	0.70	12241

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cpg} = \phi \min |k_{cp} N_{ag} \; ; \; k_{cp} N_{cbg}| = \phi \min |k_{cp} (A_{Na} / A_{Nao}) \; \Psi_{ed,Na} \; \Psi_{g,Na} \; \Psi_{ec,Na} \; \Psi_{p,Na} N_{a0} \; ; \; k_{cp} (A_{Nc} / A_{Nco}) \; \Psi_{ed,N} \; \Psi_{e,N} \; \Psi_{c,N} \;$

,			(,	-, 3,,	μ, ,μ (,	,,,	(-1)
<i>k</i> _{cp}	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m p,Na}$	N _{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
A_{Nc} (in ²)	A _{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	N _{cb} (lb)	ϕ
378.00	324.00	1.000	0.972	1.000	1.000	12492	14166	0.70

φV_{cpg} (lb) 19833

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2496	6071	0.41	Pass
Concrete breakout	4991	9208	0.54	Pass
Adhesive	4991	8093	0.62	Pass (Governs)
Shear	Factored Load, Vua (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1559	3156	0.49	Pass
T Concrete breakout x+	3117	5323	0.59	Pass (Governs)

Company:	Schletter, Inc.	Date:	8/1/2016	
Engineer:	HCV	Page:	5/5	
Project:	Standard PVMax - Worst Case, 21-31 Inch Width			
Address:				
Phone:				
E-mail:				

Concrete break	out y- 1559	12241	0.	13	Pass (Governs)	
Pryout	3117	19833	0.	16	Pass	
Interaction check	Nua/φNn	Vua/ ϕ Vn	Combined Ratio	Permissible	Status	
Sec. D.7.3	0.62	0.59	120.2 %	1.2	Pass	

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.