[Sequence Listing]

<110> Lifenza Co., Ltd. <120> PROTEIN WITH ACTIVITY OF HYDROLYZING AMYLOPECTIN, STARCH, GLYCOGEN AND AMYLOSE, GENE ENCODING THE SAME, CELL EXPRESSING THE SAME, AND PRODUCTION METHOD THEREOF <150> ___ KR2004-0006186 10 <151> 2004-01-30 <160> <170> Kopatentin 1.71 15 **<210> <211>** 647 **<212>** PRT <213> Artificial Sequence 20 <220> <223> E. coli BL21(DE3)pLysS <400> Met Leu Leu IIe Asn Phe Phe IIe Ala Val Leu Gly Val IIe Ser Leu 1 5 10 15 Ser Pro lle Val Val Ala Arg Tyr lle Leu Arg Arg Asp Cys Thr Thr 30 20 Val Thr Val Leu Ser Ser Pro Glu Ser Val Thr Ser Ser Asn His Val 45 35 Glu Leu Ala Ser His Glu Met Cys Asp Ser Thr Leu Ser Ala Ser Leu 35 60 55 50

	Tyr 65	He	Tyr	Asn	Asp	Asp 70	Tyr	Asp	Lys	He	Val 75	Thr	Leu	Tyr	Tyr	Leu 80
5	Thr	Ser	Ser	Gly	Thr 85	Thr	Gly	Ser	Val	Thr 90	Ala	Ser	Tyr	Ser	Ser 95	Ser
	Leu	Ser	Asn	Asn 100	Trp	Glu	Leu	Trp	Ser 105	Leu	Ser	Ala	Pro	Ala 110	Ala	Asp
10	Ala	Val	- Glu 115	He	Thr	Gly	Ala	Ser 120	Tyr	Val	Asp	Ser	Asp 125	Ala	Ser	Ala
		Tyr 130	Ala	Thr	Ser	Phe	Asp 135	He	Pro	Leu	Thr	Thr 140	Thr	Thr	Thr	Ser
15	Ser 145	Ser	Ser	Ala	Ser	Ala 150	Thr	Ser	Thr	Ser	Ser 155	Leu	Thr	Thr	Thr	Ser 160
20	Ser	Val	Ser	He	Ser 165	Val	Ser	Val	Pro	Thr 170	Gly	Thr	Ala	Ala	Asn 175	Trp
	Arg	Gly	Arg	Ala 180	He	Tyr	Glu	He	Va1 185	Thr	Asp	Arg	Phe	Ala 190	Arg	Thr
25	Asp	Gly	Ser 195	Thr	Thr	Tyr	Leu	Cys 200	Asp	Val	Thr	Asp	Arg 205	Val	Tyr	Cys
•	Gly	Gly 210	Ser	Tyr	Glu	Gly	l le 215	He	Asn	Met	Leụ	Asp 220	Tyr	lle	Glu	Gly
- 30	Met 225	Gly	Phe	Thr	Ala	He 230	Trp	He	Ser	Pro	lle 235	Val	Glu	Asn	lle	Pro 240
35	Asp	Asp	Thr	Gly	Tyr 245	Gly	Tyr	Ala	Tyr	His 250	Gly	Tyr	Trp	Met	Lys 255	Asp
	He	Phe	Ala	Leu	Asn	Thr	Asn	Phe	Gly	Thr	Ala	Asp	Asp	Leu	lle	Ala

WO 2005/073369 PCT/KR2005/000235

Leu Ala Thr Glu Leu His Asn Arg Gly Met Tyr Leu Met Val Asp lie Val Val Asn His Phe Ala Phe Ser Gly Ser His Ala Asp Val Asp Tyr Ser Glu-Tyr Phe Pro Tyr Ser Ser Glu Asp Tyr Phe His Ser Phe Cys Trp lie Thr Asp Tyr Ser Asn Glu Thr Asn Val Glu Gln Cys Trp Leu Gly Asp Asp Thr Val Pro Leu Val Asp Val Asn Thr Glu Leu Asp Thr Val Lys Ser Glu Tyr Gln Ser Trp Val Glu Glu Leu Ile Ala Asn Tyr Ser lie Asp Gly Leu Arg lie Asp Thr Val Lys His Val Glu Met Asp Phe Trp Ala Pro Phe Glu Glu Ala Ala Gly lle Tyr Ala Val Gly Glu Val Phe Asp Gly Asp Pro Ser Tyr Thr Cys Pro Tyr Glu Glu Asn Leu Asp Gly Val Leu Asn Tyr Pro Val Tyr Tyr Pro Val Val Ser Ala Phe Glu Ser Val Ser Gly Ser Val Ser Ser Leu Val Asp Met Ile Asp Thr Leu Lys Ser Glu Cys Thr Asp Thr Thr Leu Leu Gly Ser Phe Leu Glu

	Asn 465	Glu	Asp	Asn	Pro	Arg 470	Phe	Pro	Ser	Tyr	Thr 475	Ser	Asp	Glu	Ser	Leu 480
5	He	Lys	Asn	Ala	11e 485	Ala	Phe	Thr	Met	Leu 490	Ser	Asp	Gly	He	Pro 495	lie
	He	Tyr -	Tyr -	Gly 500	Glu	Glu	Gln	Gly	Leu 505	Asn	Gly	Gly	Asn	Asp. 510	.Pro	Tyr
10	Asn	Arg	Glu 515	Ala	Leu	Trp	Leu	Thr 520	Gly	Tyr	Ser	Thr	Thr 525	Ser	Thr	Phe
15	Tyr	Lys 530	Tyr	lle	Ala	Ser	Leu 535	Asn	Glu	lle	Arg	Asn 540	Glu	Ala	He	Tyr
	Lys 545	Asp	Asp	Thr	Tyr	Leu 550	Thr	Tyr	Glu	Aşn	Trp 555	Val	He	Tyr	Ser	Asp 560
20	Ser	Thr	Thr	He	Ala 565	Met	Arg	Lys	Gly	Phe 570	Thr	Gly	Asn	Glu	l le 575	He
	Thr	Val	Leu	Ser 580	Asn	Leu	Gly	Thr	Ser 585	Gly	Ser	Ser	Tyr	Thr 590	Leu	Thr
25	Leu	Ser	Asn 595	Thr	Gly	Tyr	Thr	Ala 600	Ser	Ser	Val	Val	Tyr 605	Glu	He	Leu
30	Thr	Cys 610	Thr	Ala	Val	Thr	Va1 615	Asp	Ser	Ser	Gly	Asn 620	Leu	Ala	Val	Pro
	Met 625	Ser	Ser	Gly	Leu	Pro 630	Lys	Val	Phe	Tyr	Glµ 635	Glu	Ser	Gln	Leu	Val 640

35 Gly Ser Gly 11e Cys Ser Met

645

	<210>	2						
	<211>	1946						
	<212>	DNA	•					
5	<213>	Artificial Sequence						
	<220>							
	<223>	E. coli BL21(DE3)pLysS						
10								
	<400> atgttg0	2 ctga tcaacttttt catcgctgtt ctgggagtga tatcactgtc tcctattgtg	60					
	gttgcto	cgtt atattetteg acgagattge actacagtta eggtettgte eteccetgag	120					
15	tctgtgacga gttcgaacca tgttcagcta gccagtcatg agatgtgcga cagtaccttg							
	tcagcg	tccc tttatatcta caatgatgat tatgataaga ttgtgacact ttattatctt	240					
20	acatcg	tegg geacaactgg gteegtaaca gegtettatt ettetagttt gagtaacaac	300					
	tgggaa	attgt ggtctctctc ggctccggct gcagatgctg tcgagatcac tggagctagt	360					
	tatgta	agaca gegatgeate tgegacatae gecaegtett ttgatataee tettaetaee	420					
25	acgac	aacgt cgtcgtcttc tgctagtgcg acttcaacat ctagtctaac cacaacatct	480					
	agtgt	ttcca tttcggtgtc cgtccctaca ggaacagctg caaattggcg aggtagggct	540 .					
30	atcta	itcaga togtgactga tagatttgca ogcactgacg gotocaccac atatttatgc	600					
	gatgi	taccg atagggtcta ttgcggaggg tcttatcagg ggattatcaa tatgctggat	660					
		tccaag gcatgggctt tactgctatt tggatttctc ctatagtgga aaatattccc	720					
35	gatg	acaccg gatacggtta cgcatatcat ggttattgga tgaaagatat cttcgccctg	780					

	aatacaaatt	ttggtactgc	agacgatttg	atagogttgg	ctacggaatt	gcataatcgc	840
	ggcatgtact	tgatggttga	tattgttgtc	aatcactttg	ctttctcagg	aagtcatgcc	900
5	gacgtggact	actctgaata	tttcccgtat	tcgtcccagg	attattttca	ttcattttgc	960
	tggattacag	attactcgaa	tcagacaaac	gttgagcagt	gctggcttgg	cgacgatact	1020
	gttcctctcg	tggacgtcaa	tacccaactt	gacaccgtga	aaagtgaata	tcaatcctgg	1080
10	gttcaagaac	ttatagctaa	ttactctatt	gacggcctaa	gaattgacac	cgtcaagcac	1140
	gtgcagatgg	atttttgggc	accatttcaa	gaggctgcag	ggatttacgc	cgttggtgaa	1200
15	gtattcgacg	gtgatccatc	ctacacatgt	ccatatcagg	aaaatcttga	cggtgtcttg	1260
	aattatcctg	tttattatcc	tgtcgtctct	gcgtttgaga	gtgttagtgg	gtcggtctcc	1320
	tcgttagtcg	atatgattga	tacgctcaag	tctgaatgca	ccgacactac	tctcctaggc	1380
20	tcctttctag	agaatcaaga	taatccgcga	ttccctagct	acacttctga	tgagtcttta	1440
	attaaaaatg	cgatcgcttt	cactatgctc	tcagacggca	ttcccataat	ttattacggt	1500
25	caggagcaag	gcctcaatgg	tggaaacgat	ccctataatc	gagaggcgct	ttggcttacg	1560
	ggctactcca	caacgtcgac	gttctacaaa	tacattgcgt	cgttgaatca	gattagaaat	1620
	caggetatat	acaaagatga	tacttatctc	acatatcaga	actgggttat	ttattcggat	1680
30	tccacgacaa	tagcaatgcg	gaaaggtttt	acagggaacc	aaataattac	ggttctgtca	1740
	aatcttggga	ccagtggcag	ttcgtacact	ttgacgcttt	cgaatacggg	atataccgca	1800
35	tctagcgttg	tatatgagat	cttgacatgc	acagctgtga	ctgtggattc	gtctgggaat	1860
	ttggcagtgc	cgatgtccag	tggcctacca	aaagtctttt	atcaggaatc	gcaactggtt	1920

21

1946 ggctctggaa tctgctccat gtagag 5 <210> 3 <211> 27 **<**212> DNA Artificial Sequence <213> 10 <220> L. starkeyi primer 1(sense) <400> 3 27 15 tacagttacg gtcttgtcct cccctga <210> <211> 21 **<212>** DNA 20 <213> Artificial Sequence <220> L. starkeyi primer 2(antisense) <223> 25

30

<400⊳

ctctacatgg agcagattcc a