London Air Quality Pre and Post ULEZ

•••

Ioana and Mina

Changes to levels of PM₁₀ and Nitrogen Dioxide in Central London before and after the introduction of the Ultra-Low Emissions Zone (ULEZ)

What is NO_2 and PM_{10} ?

- Nitrogen Dioxide (NO₂) is produced by burning of fuel, especially diesel-run engines
- Causes irritation in respiratory system
- Particles smaller than about 10 micrometers or PM₁₀ (dust, rubber and metal from engine wear)
- Can settle in the airways and lungs, worsening heart and lung diseases

The Research

Our hypotheses are:

- 1. The introduction of ULEZ (8th April 2019) decreased the amount of NO_2 in the Central London by at least 42%
- 2. The introduction of ULEZ was at least 25% more effective than the introduction of LEZ (4th February 2008) in reducing NO₂ levels in the Central London
- 3. The introduction of ULEZ decreased the amount of PM_{10} in the Central London by at least 33%
- 4. The introduction of ULEZ was at least 25% more effective than the introduction of LEZ in reducing PM₁₀ levels in Central London

Methodology and data

Took King's College London Air quality data from the following sites for the following pollutants:

NO ₂		PM_{10}	
СТ3	City of London, Sir John Cass School	CT3	City of London, Sir John Cass School
KC1	Kensington and Chelsea, North Kensington	CT8	City of London, Upper Thames Street
HK6	Hackney, Old Street		7
СТ6	City of London, Walbrook Wharf	MY7	Westminster Marylebone Road FDMS
WM6	Westminster, Oxford Street	HK6	Hackney, Old Street
		WM6	Westminster, Oxford Street

Methodology and data

- Sampled data for two months of years 2006, 2007, 2018, 2019 to get normal distributions
- Welch T-test
- Final outcome: Cohen's d effect size

The introduction of ULEZ (8th April 2019) decreased the amount of NO2 in the City of London by at least 42%

- rejected Null Hypothesis
- Effect size difference is 6.759
- Cohen's power is 1.0

The introduction of ULEZ was at least 25% more effective than the introduction of LEZ (4th February 2008) in reducing NO2 levels in the City of London

- Reject Null Hypothesis
- Effect size difference is 6.727
- Cohen's power is 1.0
- P value of 0.00
- Alpha of 0.05

The introduction of ULEZ decreased the amount of PM10 in the City London by at least 33%

- reject Null Hypothesis
- Effect size difference is 3.107
- Cohen's power is 1.0

The introduction of ULEZ was at least 25% more effective than the introduction of LEZ in reducing PM10 levels in Central London

NO2 Values For 2009 And 2017

PM10 Values For 2009 And 2017

NO₂ Samples pre- and post-ULEZ

PM₁₀ samples pre- and post-ULEZ

Going forward:

Limitation of our results:

- Smaller population of data for post-ULEZ
- Unevenly distributed data for the Central London sensors

Next steps:

- Repeating sampling and analysis for other pollutants (PM_{2.5} and CO)
- Choosing Inner & Outer London sites for testing impact of LEZ

London's air pollution before ULEZ

And in 2025, after ULEZ and the Mayor's other actions

Reference: LAEI, 2016

Reference: London Environment Strategy, 2018

Conclusion

Our research shows that ULEZ was effective in reducing NO_2 and PM_{10} levels by a significant margin.

Interestingly, ULEZ was significantly more effective in reducing PM₁₀ than LEZ was, whereas LEZ had a moderately larger impact on NO₂ than ULEZ.