

Centro Federal de Educação Tecnológica de Minas Gerais Timóteo - Campus VII ENGENHARIA DA COMPUTAÇÃO INFORMÁTICA INDUSTRIAL

PROJETO DE CIRCUITOS LÓGICOS COMBINACIONAIS

PROJETO DE CIRCUITOS ÓGICOS COMBINACIONAIS

Expressões do Tipo Soma-de-produtos

Os métodos de simplificação e de projeto de circuitos lógicos que iremos estudar exigem que a expressão lógica esteja na forma de soma-de-produtos, que são compostas por termos AND (produtos) que serão as entradas de uma porta OR (soma):

$$ABC + \overline{A}B\overline{C}$$

$$AB + \overline{A}B\overline{C} + \overline{C}\overline{D} + D$$

Uma vez obtida a expressão booleana relativa a um determinado circuito lógico, podemos reduzi-la a uma forma mais simples, com menos termos e menos variáveis em cada termo, que resulte em um circuito com menos portas lógicas e menos conexões entre elas.

PROJETO DE CIRCUITOS GICOS COMBINACIONAIS

Simplificação Algébrica

Os teoremas da álgebra booleana podem ser usados para simplificar uma expressão, seguindo os seguintes passos:

- 1. A expressão original é colocada na forma de soma-deprodutos por aplicações repetidas dos teoremas de DeMorgan e pela multiplicação dos termos obtidos.
- 2. Uma vez na forma de soma-de-produtos, os termos de cada produtos são verificados de maneira a encontrar fatores comuns, sendo a fatoração executada visando a e eliminação de dois ou mais termos.

PROJETO DE CIRCUITOS LÓGICOS COMBINACIONAIS

Simplifique o seguinte circuito lógico:

PROJETO DE CIRCUITOS LÓGICOS COMBINACIONAIS

Projeto de Circuitos Lógicos Combinacionais

Quando o nível de saída de um circuito lógico é conhecido para todas as possíveis combinações de entrada, a expressão booleana pode ser obtida a partir da tabela-verdade.

Α	В	Χ
0	0	0
0	1	1
1	0	0
1	1	0

PROJETO DE CIRCUITOS LÓGICOS COMBINACIONAIS

Projeto de Circuitos Lógicos Combinacionais

Α	В	С	Χ
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

6

Projeto de Circuitos Lógicos Combinacionais

O *Mapa de Karnaugh* é um método gráfico para simplificar uma equação lógica ou para converter uma tabela-verdade em seu circuito lógico correspondente.

Apesar do Mapa de Karnaugh poder ser aplicado em problemas envolvendo qualquer número de entradas, na prática sua utilização se limita a 4 entradas, sem uso de computador, e até 6 entradas com uso de computador.

7

Α	В	Χ
0	0	1
0	1	0
1	0	0
1	1	1

$$\left\{ \! x = \overline{A} \overline{B} + AB \right\} \quad \begin{array}{c} \overline{A} \\ A \end{array}$$

	\overline{B}	В
Ā	1	0
Α	0	1

		9	
Α	В	С	Χ
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

$$\begin{cases} x = \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C \\ + \overline{A}B\overline{C} + AB\overline{C} \end{cases}$$

	C	C
$\overline{A}\overline{B}$	1	1
$\overline{A}B$	1	0
AB	1	0
$A\overline{B}$	0	0

$\overline{BC} \overline{BCBCBC}$					
Ā	1	1	0	1	
Α	0	0	0	1	

$$S = \overline{A}\overline{B} + B\overline{C}$$

ou

A	В	S
0	0	$\mathbf{m_0}$
0	1	\mathbf{m}_1
1	0	m_2
1	1	m ₃

	\overline{B}	B°
\overline{A}	\mathbf{m}_0	\mathbf{m}_1
A	m_2	m_3

A	B	C	S
0	0	0	\mathbf{m}_0
0	0	1	\mathbf{m}_1
0	1	0	m ₂
0	1	1	m ₃
1	0	0	m_4
1	0	1	m ₅
1	1	0	m ₆
1	1	1	m ₇

ou

BC

 m_3

 m_7

 $B\overline{C}$

 m_2

 m_6

 $\overline{\mathsf{B}}\mathsf{C}$

 \mathbf{m}_1

 m_5

 $\overline{\mathsf{BC}}$

 \mathbf{m}_0

 m_4

	\overline{C}	<i>C</i> .
\overline{AB}	m_0	\mathbf{m}_1
\overline{AB}	m_2	m_3
AB	\mathbf{m}_{6}	\mathbf{m}_{7}
$A\overline{B}$	m ₄	m ₅

\overline{A}	B	C	D	S
0	0	0	0	m_0
0	0	0	1	\mathbf{m}_1
0	0	1	0	m ₂
0	0	1	1	m ₃
0	1	0	0	m ₄
0	1	0	1	m ₅
0	1	1	0	m ₆
0	1	1	1	m ₇
1	0	0	0	m ₈
1	0	0	1	m ₉
1	0	1	0	m ₁₀
1	0	1	1	m ₁₁
1	1	0	0	m ₁₂
1	1	0	1	m ₁₃
1	1	1	0	m ₁₄
1	1	1	1	m ₁₅

	\overline{CD}	$\overline{C}D$	CD	$C\overline{D}$
\overline{AB}	\mathbf{m}_0	\mathbf{m}_1	m ₃	m ₂
$\overline{A}B$	m ₄	m ₅	m ₇	m ₆
AB	m ₁₂	m ₁₃	m ₁₅	m ₁₄
$A\overline{B}$	m ₈	m ₉	m ₁₁	m ₁₀

Α	В	С	D	Χ
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1

$$\begin{cases} x = \overline{A}\overline{B}\overline{C}D \\ + \overline{A}B\overline{C}D \\ + AB\overline{C}D \\ + ABCD \end{cases}$$

	$\overline{C}\overline{D}$	$\overline{C}D$	CD	$C\overline{D}$
$\overline{A}\overline{B}$	0	1	0	0
$\overline{A}B$	0	1	0	0
AB	0	1	1	0
$A\overline{B}$	0	0	0	0

Mapa de Karnaugh para 5 variáveis (E, A, B, C, D):

E	\boldsymbol{A}	В	\boldsymbol{C}	D	S
0	0	0	0	0	\mathbf{m}_0
0	0	0	0	1	\mathbf{m}_1
0	0	0	1	0	m ₂
0	0	0	1	1	m ₃
0	0	1	0	0	m_4
0	0	1	0	1	m ₅
0	0	1	1	0	\mathbf{m}_{6}
0	0	1	1	1	m ₇
0	1	0	0	0	m ₈
0	1	0	0	1	m ₉
0	1	0	1	0	m_{10}
0	1	0	1	1	m ₁₁
0	1	1	0	0	m ₁₂
0	1	1	0	1	m ₁₃
0	1	1	1	0	m ₁₄
0	1	1	1	1	m ₁₅

E	A	B	\boldsymbol{C}	D	S
1	0	0	0	0	m ₁₆
1	0	0	0	1	m ₁₇
1	0	0	1	0	m ₁₈
1	0	0	1	1	m ₁₉
1	0	1	0	0	m ₂₀
1	0	1	0	1	m ₂₁
1	0	1	1	0	m ₂₂
1	0	1	1	1	m ₂₃
1	1	0	0	0	m ₂₄
1	1	0	0	1	m ₂₅
1	1	0	1	0	m ₂₆
1	1	0	1	1	m ₂₇
1	1	1	0	0	m ₂₈
1	1	1	0	1	m ₂₉
1	1	1	1	0	m ₃₀
1	1	1	1	1	m ₃₁

Mapa de Karnaugh para 5 variáveis (E, A, B, C, D):

		\overline{E}		
		Û		
	\overline{CD}	$\overline{C}D$	CD	$C\overline{D}$
\overline{AB}	m_0	\mathbf{m}_1	m ₃	m ₂
$\overline{A}B$	m ₄	m ₅	m ₇	m ₆
AB	m ₁₂	m ₁₃	m ₁₅	m ₁₄
\overline{AB}	m ₈	m ₉	m ₁₁	m ₁₀

		E		
		Û		
	\overline{CD}	$\overline{C}D$	CD	$C\overline{D}$
\overline{AB}	m ₁₆	m ₁₇	m ₁₉	m ₁₈
\overline{AB}	m ₂₀	m ₂₁	m ₂₃	m ₂₂
AB	m ₂₈	m ₂₉	m ₃₁	m ₃₀
$A\overline{B}$	m ₂₄	m ₂₅	m ₂₇	m ₂₆

Processo Completo de Simplificação:

- Construa o mapa de Karnaugh e coloque os 1s nos quadrados correspondentes com base na tabela-verdade.
- Examine os 1s adjacentes e separe os 1s que não são adjacentes a nenhum outro (1s isolados).
- Combine todos pares de 1s que só tenha um único 1 adjacente.
- Combine todos os octetos, mesmo que parte dos 1s já esteja incluída em outras combinações.
- Combine qualquer quadra que contenham um ou mais 1s que não façam parte de qualquer outra combinação.
- Combine em pares os 1s que ainda não tenham sido combinados, usando o mínimo de combinações.
- Forme a soma OR de todos os termos envolvidos em combinações.

e 5 VARIÁVEIS

Combinações (Looping):

A expressão para saída X pode ser simplificada pela combinação dos quadrados do mapa que contiverem 1.

Combinando Grupos de Dois Quadrados (Pares):

	BC	ВC	ВС	BC	
\overline{A}	0	0	1	1	
Α	0	0	0	0	
$x = \overline{A}$	BC	<u></u> +	ĀB	C =	

$= \overline{A}B$	x =

	ВC	ВC	BC	$B\overline{C}$
\overline{A}	1	0	0	0
Α	1	0	0	0

$$X = \overline{A}\overline{B}\overline{C} + A\overline{B}\overline{C} = \overline{B}\overline{C}$$

Combinações (Looping):

A expressão para saída X pode ser simplificada pela combinação dos quadrados do mapa que contiverem 1.

Combinando Grupos de Dois Quadrados (Pares):

	\overline{C}	С
$\overline{A}\overline{B}$	0	0
$\overline{A}B$	1	0
AB	1	0
$A\overline{B}$	0	0

	C	C
$\overline{A}\overline{B}$	0	0
$\overline{A}B$	1	1
AB	0	0
$A\overline{B}$	0	0

1	0
	0
0	0
0	0
1	0

$$x = \overline{A}B\overline{C} + AB\overline{C} = B\overline{C}$$

$$x = \overline{A}B\overline{C} + \overline{A}BC = \overline{A}B$$

$$x = \overline{A}B\overline{C} + AB\overline{C} = B\overline{C}$$
 $x = \overline{A}B\overline{C} + \overline{A}BC = \overline{A}B$ $x = \overline{A}\overline{B}\overline{C} + A\overline{B}\overline{C} = \overline{B}\overline{C}$

e 5 VARIÁVEIS

Combinações (Looping):

A expressão para saída X pode ser simplificada pela combinação dos quadrados do mapa que contiverem 1.

	$\overline{C}\overline{D}$	$\overline{C}D$	CD	$C\overline{D}$
$\overline{A}\overline{B}$	0	0	1	1
$\overline{A}B$	0	0	0	0
AB	0	0	0	0
$A\overline{B}$	1	0	0	1

$$x = \overline{A}\overline{B}CD + \overline{A}\overline{B}C\overline{D}$$
$$+ A\overline{B}\overline{C}\overline{D} + A\overline{B}C\overline{D}$$
$$= \overline{A}\overline{B}C + A\overline{B}\overline{D}$$

e 5 VARIÁVEIS

Combinando Grupo de Quatro Quadrados (Quadras):

	С	С
$\overline{A}\overline{B}$	0	1
$\overline{A}B$	0	1
AB	0	1
$A\overline{B}$	0	1
		x = (

	$\overline{C}\overline{D}$	$\overline{C}D$	CD	$C\overline{D}$
$\overline{A}\overline{B}$	0	0	0	0
$\overline{A}B$	0	1	1	0
AB	0	1	1	0
$A\overline{B}$	0	0	0	0
	v = RD			

	$\overline{C}\overline{D}$	$\overline{C}D$	CD	$C\overline{D}$
$\overline{A}\overline{B}$	0	0	0	0
ĀB	0	0	0	0
AB	1	0	0	1
$A\overline{B}$	1	0	0	1

 $x = A\overline{D}$

$\overline{A}\overline{B}$	1	0	0	1
$\overline{A}B$	0	0	0	0
AB	0	0	0	0
$A\overline{B}$	1	0	0	1

x =	$\overline{B}\overline{D}$	

CD CD CD

	$\overline{C}\overline{D}$	$\overline{C}D$	CD	$C\overline{D}$
$\overline{A}\overline{B}$	0	0	0	0
$\overline{A}B$	0	0	0	0
AB	1	1	1	1
$A\overline{B}$	0	0	0	0

$$x = AB$$

Combinando Grupo de Oito Quadrados (Octetos):

	$\overline{C}\overline{D}$	$\overline{C}D$	CD	CD
$\overline{A}\overline{B}$	0	0	0	0
$\overline{A}B$	1	1	1	1
AB	1	1	1	1
$A\overline{B}$	0	0	0	0

$$x = B$$

	$\overline{C}\overline{D}$	$\overline{C}D$	CD	CD
$\overline{A}\overline{B}$	1	1	1	1
$\overline{A}B$	0	0	0	0
AB	0	0	0	0
$A\overline{B}$	1	1	1	1

$$x = \overline{B}$$

	$\overline{C}\overline{D}$	$\overline{C}D$	CD	$C\overline{D}$
$\overline{A}\overline{B}$	1	1	0	0
$\overline{A}B$	1	1	0	0
AB	1	1	0	0
$A\overline{B}$	1	1	0	0

$$\mathbf{x} = \overline{\mathbf{C}}$$

	\overline{CD}	$\overline{C}D$	CD	$C\overline{D}$
\overline{AB}	1	0	0	1
ĀΒ	1	0	0	1
AB	1	0	0	1
$A\overline{B}$	1	0	0	1

$$x = \overline{D}$$

Condições "Sem Importância" ("Don't Care"):

Alguns circuitos lógicos podem ser projetados de maneira que existam certas condições de entrada para as quais não haja especificação de saída, em função de não ser permitida a ocorrência de tais combinações de entrada. Nas linhas correspondentes de tais condições, denominadas *condições "sem importância"* ou *"sem efeito"*, aparece um X no lugar de 0 ou 1. O projetista fica livre para substituir o X por 0 ou 1 de modo a obter a melhor simplificação possível para o circuito lógico:

						C		С	_			C		C
				AB		O		O		$\overline{A}\overline{B}$		O		O
Α	В	С	Z	AB		0		×	1 .	$\overline{A}B$		0		O
0	O	O	0					1				1		1
О	O	1	О	AB	_	1	_			AB AB	Ш			•
0	1	0	0	AB		×		1			1 1			
О	1	1	×	1					ou			z =	= A	
1	0	О	×	∃ BC BC BC							$\overline{BC} \overline{BCBCBC}$			
1	О	1	1	_						_				
1	1	О	1	Ā	0	0	×	0	_	Ā	0	0	0	0
1	1	1	1	^	~	_	4	4		^				
				Α	×	1	1	1		Α			1	
												Z	= A	

Problema:

Um forno de microondas deve funcionar quando a porta estiver fechada, "timer" acionado e o botão de "Liga/Desliga" acionado. Mas a luz interna deve ficar acesa sempre que a porta estiver aberta, ou quando o forno estiver funcionando. Implemente o circuito para fazer este controle.

Determine:

- As variáveis de entrada e saída
- A convenção adotada para as variáveis de entrada e saída
- A tabela com as variáveis de entrada e saída que expressa a análise do problema a ser resolvido
- A expressão minimizada do circuito
- O circuito que representa o problema dado