Completitud

Lemas, Teorema de Completitud

Definiciones

- ▶ $\Gamma \subseteq PROP$ es inconsistente si $\Gamma \vdash \bot$.
- ► $\Gamma \subseteq PROP$ es **consistente maximal** si es consistente y además $\Gamma \cup \{\phi\} \vdash \bot$, $\forall \phi \in PROP$.
- ► Un modelo lógico es **correcto** si, $\forall \Gamma \subseteq PROP$, $\Gamma \vdash \phi \implies \Gamma \models \phi$.
- ▶ Un modelo lógico es **completo** si, $\forall \Gamma \subseteq PROP$, $\Gamma \models \phi \implies \Gamma \vdash \phi$.

Lema 1: Formulaciones Equivalentes

Las siguientes proposiciones son equivalentes:

- 1. Γ es consistente.
- 2. $\not\exists \phi \in \text{Prop} \mid \Gamma \vdash \phi \text{ y } \Gamma \vdash \neg \phi$.
- 3. $\exists \phi \in \text{Prop} \mid \Gamma \nvdash \phi$.

Y su contrarrecíproca:

- 1. Γ es inconsistente.
- 2. $\exists \phi \in \text{Prop} \mid \Gamma \vdash \phi \text{ y } \Gamma \vdash \neg \phi$.
- 3. $\forall \phi \in \text{Prop}, \Gamma \nvdash \phi$.

Lema 1: Formulaciones Equivalentes

Desmostración por reducción al absurdo.

- 1 \Longrightarrow 2 Supongamos que $\exists \phi \colon \Gamma \vdash \phi \ y \ \Gamma \vdash \neg \phi$. Por i_{\perp} , $\Gamma \vdash \bot$ pero por hipótesis, Γ es consistente. **Contradicción**.
- 2 \Longrightarrow 3 Supongamos que $\forall \phi$, $\Gamma \vdash \phi$ (en particular, también $\neg \phi$). Luego, por hipótesis, $\Gamma \vdash \phi$ y $\Gamma \vdash \neg \phi$. Contradicción.
- $3 \implies 1$ Suponer que $\Gamma \vdash \bot$. Luego, por e_\bot , $\Gamma \vdash \phi$ para cualquier ϕ . En particular, el de la hipótesis. **Contradicción.**

Lema 2: Condición suficiente de Consistencia

Si Γ es satisfactible entonces también es consistente. Es decir, si existe valuación v tal que $[\![\Gamma]\!]_v = T$, entonces $\Gamma \nvdash \bot$.

Demostración.

Sea v tal que $\llbracket\Gamma\rrbracket_v=T$. Si suponemos que Γ es inconsistente, es decir $\Gamma\vdash\bot$ entonces, por Correctitud, vale $\Gamma\models\bot$. Luego para toda valuación b tal que $\llbracket\Gamma\rrbracket_b=T$ valdrá $\llbracket\bot\rrbracket_b=T$. En particular para v, $\llbracket\bot\rrbracket_v=T$. **Absurdo**. Luego Γ es consistente.

Lema 3: Propiedades de la Inconsistencia

- 1. Si $\Gamma \cup \{\neg \phi\}$ es inconsistente, entonces $\Gamma \vdash \phi$. 2. Si $\Gamma \cup \{\phi\}$ es inconsistente, entonces $\Gamma \vdash \neg \phi$.

Demostración.

$$\frac{\Gamma \qquad [\neg \phi]^{(1)}}{\frac{\bot}{\phi} RAA^{(1)}} Hip$$

$$\frac{\Gamma \qquad [\phi]^{(1)}}{\frac{\bot}{\neg \phi} i_{\neg}} Hip$$

Lema 4: Lema de Lindenbaum

Todo conjunto $\Gamma\subseteq \operatorname{PROP}$ está contenido en un conjunto consistente maximal $\Gamma^*.$

Demostración.

Sea $\Gamma \subseteq PROP$ consistente. Recordar que PROP es numerable. Se define la sucesión de conjuntos tal que:

$$ightharpoonup$$
 $\Gamma_0 = \Gamma$

Luego tenemos que $\Gamma^* = \bigcup_{n \in \mathbb{N}} \Gamma_n$, entonces:

Lema 4: Lema de Lindenbaum

- 1. $\Gamma = \Gamma_0 \subseteq \Gamma^*$
- 2. $\forall i, \Gamma_i$ consistente, pues por hipótesis $\Gamma_0 = \Gamma$ (**Base**) y si Γ_n consistente (**H.I.**) entonces también Γ_{n+1} pues:
 - Si $\Gamma_n \cup \{\phi_n\} \vdash \bot$ entonces $\Gamma_{n+1} = \Gamma_n$ (consistente por **H.I.**)
 - ► Si $\Gamma_n \cup \{\phi_n\} \not\vdash \bot$ (es consistente) entonces $\Gamma_{n+1} = \Gamma_n \cup \{\phi_n\}$
- 3. Si suponemos que Γ^* no es consistente, es decir, $\Gamma^* \vdash \bot$ entonces $\exists \psi : \Gamma^* \vdash \psi$ y $\Gamma^* \vdash \neg \psi$. En ambas derivaciones, existen un numero finito de premisas $\psi_1, \psi_2, ..., \psi_k \in \Gamma^*$. Considerar $\Gamma_j : \psi_1, \psi_2, ..., \psi_k \in \Gamma_j \subseteq \Gamma^*$, luego $\Gamma_j \vdash \psi$ y $\Gamma_j \vdash \neg \psi$ por lo que Γ_j inconsistente, lo que contradice el punto $\mathbf{2}$. Luego Γ^* consistente.

Lema 4: Lema de Lindenbaum

Sea $\psi_{\mathsf{m}} \in \Delta$. Como Δ consistente y $\Gamma_{\mathsf{m}} \subseteq \Gamma^* \subseteq \Delta$ entonces $\Gamma_{\mathsf{m}} \cup \{\psi_{\mathsf{m}}\}$ es consistente, y por definición, $\Gamma_{\mathsf{m}+1} = \Gamma_{\mathsf{m}} \cup \{\psi_{\mathsf{m}}\}$, de donde $\psi_{\mathsf{m}} \in \Gamma_{\mathsf{m}+1} \subseteq \Gamma^*$, por lo que $\psi_{\mathsf{m}} \in \Gamma^*$. Entonces $\Delta \subseteq \Gamma^*$ y, por doble contención, $\Delta = \Gamma^*$ por lo que Γ^* maximal.

Lema 5: Clausura bajo derivación

Si $\Gamma \subseteq PROP$ es *consistente maximal* entonces, $\forall \phi$, si $\Gamma \vdash \phi$ entonces $\phi \in \Gamma$.

Demostración.

Suponer que $\phi \notin \Gamma$. Como Γ es consistente maximal, entonces vale $\Gamma \cup \{\phi\} \vdash \bot$ y por Lema 2.2, $\Gamma \vdash \neg \phi$. Luego tengo $\Gamma \vdash \phi$ (por hipótesis) y $\Gamma \vdash \neg \phi$, y por i_{\bot} , $\Gamma \vdash \bot$. **Contradicción**. Luego $\phi \in \Gamma$.

Lema 6: Propiedades de consistencia maximal

Si $\Gamma \subseteq \operatorname{PROP}$ es consistente maximal, entonces valen las siguientes propiedades:

- ▶ $\forall \phi : \phi \in \Gamma$ o bien $\neg \phi \in \Gamma$, pero no ambas.
- $\blacktriangleright \ \forall \phi, \psi : \phi \land \psi \in \Gamma \iff \phi \in \Gamma \text{ y } \psi \in \Gamma.$
- $\blacktriangleright \ \forall \phi, \psi : \phi \lor \psi \in \Gamma \iff \phi \in \Gamma \text{ o } \psi \in \Gamma.$
- $\blacktriangleright \ \forall \phi, \psi : \phi \to \psi \in \Gamma \iff \neg \phi \in \Gamma \text{ o } \psi \in \Gamma.$

Demostración. Esta si no tengo ganas de hacerla. Saludos.

Lema 7: Condición necesaria de consistencia

Si Γ es consistente entonces también es satisfactible, es decir, existe una valuación v tal que $[\![\Gamma]\!]_v = T$.

Demostración.

Como Γ consistente, por Lema 4, $\Gamma \subseteq \Gamma^*$ consistente maximal. Sea ν valuación tal que:

$$v(p_i) = \begin{cases} \mathsf{T} & \text{ si } p_i \in \Gamma^* \\ \mathsf{F} & \text{ si } p_i \notin \Gamma^* \end{cases}$$

Se prueba $\phi \in \Gamma^* \iff \llbracket \phi \rrbracket_v = T$, por inducción en ϕ :

Lema 7: Condición necesaria de consistencia

- ► Si $\phi \equiv p_i$: $\llbracket p_i \rrbracket_{v} = T \stackrel{\text{H.I.}}{\Longleftrightarrow} p_i \in \Gamma^*.$
- ► Si $\phi \equiv \neg \psi$: $\llbracket \neg \psi \rrbracket_{v} = T \stackrel{\text{def } \neg}{\Longleftrightarrow} \llbracket \psi \rrbracket_{v} = F \stackrel{\text{H.I.}}{\Longleftrightarrow} \psi \notin \Gamma^{*} \stackrel{\text{L6.1}}{\Longleftrightarrow} \neg \psi \in \Gamma^{*}$
- ► Si $\phi \equiv \phi_1 \wedge \phi_2$: $\llbracket \phi_1 \wedge \phi_2 \rrbracket_{\nu} = T \stackrel{\text{def} \wedge}{\Longleftrightarrow} \llbracket \phi_1 \rrbracket_{\nu} = \llbracket \phi_2 \rrbracket_{\nu} = T \stackrel{\text{H.I.}}{\Longleftrightarrow} \phi_1 \in \Gamma^*$ $y \phi_2 \in \Gamma^* \stackrel{\text{L6.2}}{\Longleftrightarrow} (\phi_1 \wedge \phi_2) \in \Gamma^*.$
- ► Si $\phi \equiv \phi_1 \lor \phi_2$: $\llbracket \phi_1 \lor \phi_2 \rrbracket_{\nu} = T \stackrel{\text{def} \lor}{\Longleftrightarrow} \llbracket \phi_1 \rrbracket_{\nu} = T \text{ o } \llbracket \phi_2 \rrbracket_{\nu} = T$ $\stackrel{\text{\textit{H.I.}}}{\Longleftrightarrow} \phi_1 \in \Gamma^* \text{ o } \phi_2 \in \Gamma^* \stackrel{\text{\textit{L6.3}}}{\Longleftrightarrow} (\phi_1 \lor \phi_2) \in \Gamma^*.$

Lema 7: Condición necesaria de consistencia

Como cualquier formula $\phi \in \Gamma$ también estará en Γ^* , entonces resultará $[\![\phi]\!]_v = T$ y por lo tanto $[\![\Gamma]\!]_v = T$.

Teorema de Completitud

Si
$$\Gamma \models \phi$$
 entonces $\Gamma \vdash \phi$.

Demostración por contrarrecíproco ($\Gamma \nvdash \phi$ entonces $\Gamma \not\models \phi$).

- ► Si $\Gamma \nvdash \phi$, por contrarrecíproco Lema 3.1, $\Gamma \cup \{\neg \phi\}$ es consistente.
- ▶ Luego, por Lema 7, $\Gamma \cup \{\neg \phi\}$ es *satisfactible*. Es decir, $\exists v : [\![\Gamma \cup \{\neg \phi\}]\!]_v = T$
- ▶ Por definición de semántica, $\llbracket \Gamma \rrbracket_v = T$ y $\llbracket \neg \phi \rrbracket_v = T \stackrel{\text{def} \neg}{\Longrightarrow} \llbracket \phi \rrbracket_v = F$, por lo que $\Gamma \not\models \phi$.