Naïve Bayes Classifier

Machine Learning 10-601B
Seyoung Kim

Let's learn classifiers by learning P(Y|X)

Consider Y=Wealth, X=<Gender, HoursWorked>

P(gender, hours_worked, wealth) => P(wealth| gender, hours_worked)

Gender	HrsWorked	P(rich G,HW)	P(poor G,HW)
F	<40.5	.09	.91
F	>40.5	.21	.79
М	<40.5	.23	.77
М	>40.5	.38	.62

How many parameters must we estimate?

Suppose $X = \langle X_1, ..., X_n \rangle$ where X_i and Y are boolean RV's

Gender	HrsWorked	P(rich G,HW)	P(poor G,HW)
F	<40.5	.09	.91
F	>40.5	.21	.79
М	<40.5	.23	.77
М	>40.5	.38	.62

To estimate $P(Y|X_1, X_2, ..., X_n)$

2ⁿ quantities need to be estimated!

If we have 30 boolean X_i 's: $P(Y | X_1, X_2, ... X_{30})$

 $2^{30} \sim 1$ billion!

You need lots of data or a very small *n*

Can we reduce params using Bayes Rule?

Suppose X =1,... X_n>
$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$$
 where X_i and Y are boolean RV's

How many parameters for $P(X|Y) = P(X_1, ..., X_n|Y)$?

 $(2^{n}-1)x2$

对于这n个X,可以有2的n次方种组合, 然后因为它们的和是1,所以可以省下最后一项, 最后,v有两个取值

How many parameters for P(Y)?

Naïve Bayes

Naïve Bayes assumes

$$P(X_1 \dots X_n | Y) = \prod_i P(X_i | Y)$$

i.e., that X_i and X_j are conditionally independent given Y, for all $i \neq j$

Conditional independence

Two variables A,B are independent if

$$P(A \land B) = P(A) * P(B)$$

$$\forall a, b : P(A = a \land B = b) = P(A = a) * P(B = b)$$

Two variables A,B are conditionally independent given C if

$$P(A,B|C) = P(A|C) * P(B|C)$$

 $\forall a,bc: P(A = a \land B = b \mid C = c) = P(A = a \mid C = c) * P(B = b \mid C = c)$

Conditional Independence

Definition: X is <u>conditionally independent</u> of Y given Z, if the probability distribution governing X is independent of the value of Y, given the value of Z

$$(\forall i, j, k) P(X = x_i | Y = y_j, Z = z_k) = P(X = x_i | Z = z_k)$$

Which we often write

$$P(X|Y,Z) = P(X|Z)$$

E.g.P(Thunder|Rain, Lightning) = P(Thunder|Lightning)

Naïve Bayes uses assumption that the X_i are conditionally independent, given Y

Given this assumption, then:

$$P(X_1,X_2|Y) = P(X_1|X_2,Y)P(X_2|Y)$$
 Chain rule
$$= P(X_1|Y)P(X_2|Y)$$
 Conditional Independence
$$\text{in general: } P(X_1...X_n|Y) = \prod_i P(X_i|Y)$$

$$(2^{n}-1)x2$$

Reducing the number of parameters to estimate

$$P(Y|X_1,...,X_n) = \frac{P(X_1,...,X_n|Y)P(Y)}{P(X_1,...,X_n)}$$

To make this tractable we naively assume conditional independence of the features given the class: ie

$$P(X_1,...,X_n | Y) = P(X_1 | Y) \cdot P(X_2 | Y) \cdot ... \cdot P(X_n | Y)$$

Now: I only need to estimate ... parameters:

$$P(X_1 | Y), P(X_2 | Y), \dots, P(X_n | Y), P(Y)$$

How many parameters to describe $P(X_1...X_n|Y)$? P(Y)?

- Without conditional indep assumption? (2ⁿ-1)x2+1
- With conditional indep assumption? 2n+1

Naïve Bayes Algorithm – discrete X_i

• Train Naïve Bayes (given data for X and Y) for each* value y_k estimate $\pi_k \equiv P(Y=y_k)$ for each* value x_{ij} of each attribute X_i estimate $\theta_{ijk} \equiv P(X_i=x_{ij}|Y=y_k)$

Training Naïve Bayes Classifier Using MLE

- From the data D, estimate class priors.
 - For each possible value of Y, estimate $Pr(Y=y_1)$, $Pr(Y=y_2)$,.... $Pr(Y=y_k)$
 - An MLE estimate: $\widehat{\pi}_k = \widehat{P}(Y = y_k) = \frac{\#D\{Y = y_k\}}{|D|}$
- From the data, estimate the conditional probabilities
 - If every X_i has values $x_{i1},...,x_{ik}$
 - for each y_i and each X_i estimate $q(i,j,k)=Pr(X_i=x_{ij}|Y=y_i)$

$$\widehat{\theta}_{ijk} = \widehat{P}(X_i = x_{ij} | Y = y_k) = \frac{\#D\{X_i = x_{ij} \land Y = y_k\}}{\#D\{Y = y_k\}}$$

Number of items in dataset D for which $Y=y_k$

Naïve Bayes Algorithm – discrete X_i

Train Naïve Bayes (given data for X and Y)

for each* value
$$y_k$$

estimate $\pi_k \equiv P(Y=y_k)$
for each* value x_{ij} of each attribute X_i
estimate $\theta_{ijk} \equiv P(X_i=x_{ij}|Y=y_k)$

• Classify (X^{new})

$$Y^{new} \leftarrow \arg\max_{y_k} \ P(Y=y_k) \prod_i P(X_i^{new}|Y=y_k)$$

$$Y^{new} \leftarrow \arg\max_{y_k} \ \pi_k \prod_i \theta_{ijk}$$
 * probabilities must sum to 1, so need estimate only n-1 of these...

Example: Live in Sq Hill? P(S|G,D,E)

- S=1 iff live in Squirrel Hill
- G=1 iff shop at SH Giant Eagle
 E=1 iff Even # letters last name
- D=1 iff Drive or Carpool to CMU

What probability parameters must we estimate?

P(S=1): P(S=0):

P(D=1 | S=1): P(D=0 | S=1):

P(D=1 | S=0): P(D=0 | S=0):

P(G=1 | S=1): P(G=0 | S=1):

P(G=1 | S=0): P(G=0 | S=0):

P(E=1 | S=1): P(E=0 | S=1):

P(E=1 | S=0): P(E=0 | S=0):

Naïve Bayes: Subtlety #1

If unlucky, our MLE estimate for $P(X_i \mid Y)$ might be zero. (e.g., nobody in your sample has $X_i = <40.5$ and Y=rich)

Why worry about just one parameter out of many?

$$P(X_1 \dots X_n | Y) = \prod_i P(X_i | Y)$$

If one of these terms is 0...

What can be done to avoid this?

Estimating Parameters

• Maximum Likelihood Estimate (MLE): choose θ that maximizes probability of observed data \mathcal{D}

$$\widehat{\theta} = \arg \max_{\theta} P(\mathcal{D} \mid \theta)$$

 Maximum a Posteriori (MAP) estimate: choose θ that is most probable given prior probability and the data

$$\widehat{\theta} = \arg \max_{\theta} \ P(\theta \mid \mathcal{D})$$

$$= \arg \max_{\theta} = \frac{P(\mathcal{D} \mid \theta)P(\theta)}{P(\mathcal{D})}$$

Estimating Parameters: Y, X_i discrete-valued

Maximum likelihood estimates:

$$\hat{\pi}_k = \hat{P}(Y = y_k) = \frac{\#D\{Y = y_k\}}{|D|}$$

$$\hat{\theta}_{ijk} = \hat{P}(X_i = x_j | Y = y_k) = \frac{\#D\{X_i = x_j \land Y = y_k\}}{\#D\{Y = y_k\}}$$

MAP estimates (Beta, Dirichlet priors):

$$\hat{\pi}_k = \hat{P}(Y=y_k) = \frac{\#D\{Y=y_k\} + (\beta_k-1)}{|D| + \sum_m (\beta_m-1)} \qquad \text{``imaginary'' examples'}$$

$$\hat{\theta}_{ijk} = \hat{P}(X_i=x_j|Y=y_k) = \frac{\#D\{X_i=x_j \land Y=y_k\} + (\beta_k-1)}{\#D\{Y=y_k\} + \sum_m (\beta_m-1)}$$

Naïve Bayes: Subtlety #2

Often the X_i are not really conditionally independent

- We use Naïve Bayes in many cases anyway, and it often works pretty well
 - often the right classification, even when not the right probability (see [Domingos&Pazzani, 1996])
- What is effect on estimated P(Y|X)?
 - Special case: what if we add two copies: $X_i = X_k$

Special case: what if we add two copies: $X_i = X_k$

$$P(X_1 \dots X_n | Y) = \prod_i P(X_i | Y)$$
Redundant terms

About Naïve Bayes

Naïve Bayes is blazingly fast and quite robust!

Learning to classify text documents

- Classify which emails are spam?
- Classify which emails promise an attachment?
- Classify which web pages are student home pages?

How shall we represent text documents for Naïve Bayes?

Baseline: Bag of Words Approach

aardvark 0 about 2 all Africa apple 0 0 anxious gas ... oil Zaire 0

Learning to classify document: P(Y|X) the "Bag of Words" model

- Y discrete valued. e.g., Spam or not
- $X = \langle X_1, X_2, ... X_n \rangle = document$
- X_i is a random variable describing the word at position i in the document 特征是在某一特定位置是某一特定的词的概率
- possible values for X_i: any word w_k in English

- Document = bag of words: the vector of counts for all w_k's
 - (like #heads, #tails, but we have more than 2 values)

Naïve Bayes Algorithm – discrete X_i

Train Naïve Bayes (examples)

for each value
$$y_k$$
 estimate $\pi_k \equiv P(Y = y_k)$

for each value x_j of each attribute X_i

$$\theta_{ijk} \equiv P(X_i = x_j | Y = y_k)$$

prob that word x_j appears in position i, given $Y=y_k$

• Classify (X^{new})

$$Y^{new} \leftarrow \arg\max_{y_k} \ P(Y = y_k) \prod_i P(X_i^{new} | Y = y_k)$$

 $Y^{new} \leftarrow \arg\max_{y_k} \ \pi_k \prod_i \theta_{ijk}$

^{*} Additional assumption: word probabilities are position independent $\theta_{ijk} = \theta_{mjk} \;\; ext{for all} \; i,m$

MAP estimates for bag of words

MAP estimate for multinomial

$$\theta_{i} = \frac{\alpha_{i} + \beta_{i} - 1}{\sum_{m=1}^{k} \alpha_{m} + \sum_{m=1}^{k} (\beta_{m} - 1)}$$

$$\theta_{aardvark} = P(X_i = \text{aardvark}) = \frac{\# \text{ observed 'aardvark'} + \# \text{ hallucinated 'aardvark'} - 1}{\# \text{ observed words } + \# \text{ hallucinated words } - k}$$

What β 's should we choose?

Twenty NewsGroups

Given 1000 training documents from each group Learn to classify new documents according to which newsgroup it came from

comp.graphics comp.os.ms-windows.misc comp.sys.ibm.pc.hardware comp.sys.mac.hardware comp.windows.x

misc.forsale rec.autos rec.motorcycles rec.sport.baseball rec.sport.hockey

alt.atheism
soc.religion.christian
talk.religion.misc
talk.politics.mideast
talk.politics.misc
talk.politics.misc

sci.space sci.crypt sci.electronics sci.med

Naive Bayes: 89% classification accuracy

What you should know:

- Training and using classifiers based on Bayes rule
- Conditional independence
 - What it is
 - Why it's important
- Naïve Bayes
 - What it is
 - Why we use it so much
 - Training using MLE, MAP estimates