Lecture 11: CFG and PDA Equivalence

CSC 320: Foundations of Computer Science

Quinton Yong

quintonyong@uvic.ca

We will prove that set of languages **recognizable by PDAs** is the same as the **context-free languages** (produced by CFGs)

Theorem: A language is context-free if and only if some PDA recognizes it

Proof consists of two parts:

- 1. If a language is **context-free** (can be produced by a CFG), then it can be recognized by a PDA
- 2. If a language can be **recognized by a PDA**, then it is **context-free** (can be produced by a CFG)

 If a language is context-free (can be produced by a CFG), then it can be recognized by a PDA

Idea:

- Construct a PDA which can replicate the derivation a string using the CFG
- The PDA builds **intermediate strings** (steps in leftmost derivation) on the stack nondeterministically
- Pop a **CFG variable** off the stack and **push** the right side of a rule
- Pop a CFG terminal off the stack to read an input string terminal
- Accepts input string if it can be built using the CFG

 $A \rightarrow B$

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

Replicate rule $A \rightarrow 0A1$: pop an A and push 1 then A then 0

$$A \rightarrow B$$

$$B \rightarrow \#$$

Loop to read input:

if it can be built by CFG on stack, then we can read and pop terminals

 $A \rightarrow 0A1$

 $A \rightarrow B$

Proof: For any CFG $G = (V, \Sigma, R, S)$, design PDA $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$ with L(G) = L(M)

- Place marker symbol \$ and start variable \$\mathbf{S}\$ onto empty stack
- For each top stack symbol:
 - If **terminal** a: read next input symbol w and pop stack symbol if w = a
 - If **variable** A: choose some rule $A \rightarrow \alpha_1, \alpha_2, ..., \alpha_k$ and substitute A with $\alpha_1, \alpha_2, ..., \alpha_k$ (α_1 is top stack symbol)
 - If \$: go to accept state

Proof: For any CFG $G = (V, \Sigma, R, S)$, design PDA $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$ with L(G) = L(M)

6-tuple contents of *M*:

- $\mathbf{Q} = \{q_{\rm start}, q_{\rm loop}, q_{\rm accept}\}$ U auxiliary states for pushing \mathbf{S} and right side of rules in \mathbf{R}
- $\Gamma = V \cup \Sigma \cup \{\$\}$
- $q_0 = q_{\text{start}}$
- $\mathbf{F} = \{q_{\text{accept}}\}$

M transitions:

- In $q_{
 m start}$, when reading $m{arepsilon}$ and top symbol $m{arepsilon}$, push \$ and then $m{S}$ onto the stack, then move onto $q_{
 m loop}$
- In $q_{
 m loop}$, for each rule $A olpha_1lpha_2\dotslpha_k$ in R, replace A by $lpha_1lpha_2\dotslpha_k$ ($lpha_1$ new top stack symbol) and stay in $q_{
 m loop}$
- In q_{loop} , for each terminal $\alpha \in \Sigma$ if a is the top stack symbol then read a, pop a, and remain in q_{loop}
- In $q_{
 m loop}$, if \$ is the top stack symbol, pop \$ and move to $q_{
 m accept}$

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

 $A \rightarrow B$

 $A \rightarrow 0A1$

 $A \rightarrow B$

 $A \rightarrow 0A1$

 $A \rightarrow B$

$$A \rightarrow B$$

$$B \rightarrow \#$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

$$w = 00#11$$

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

$$w = 00#11$$

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

$$w = 00#11$$

A \$

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

$$w = 00#11$$

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

$$w = 00#11$$

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

$$w = 00#11$$

0 A 1 \$

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

$$w = 00#11$$

A 1 \$

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

$$w = 00#11$$

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

$$w = 00#11$$

 $A \rightarrow 0A1$

 $A \rightarrow B$

 $B \rightarrow \#$

w = 00#11

0 A 1 1 \$

$$A \rightarrow 0A1$$

 $A \rightarrow B$

 $B \rightarrow \#$

w = 00#11

A 1 1 \$

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

w = 00#11

B1
1
\$

$$A \rightarrow 0A1$$

 $A \rightarrow B$

 $B \rightarrow \#$

w = 00#11

1 1 \$

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

$$w = 00#11$$

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

$$w = 00#11$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

$$w = 00#11$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

$$w = 00#11$$

We will prove that set of languages **recognizable by PDAs** is the same as the **context-free languages** (produced by CFGs)

Theorem: A language is context-free if and only if some PDA recognizes it

Proof consists of two parts:

2. If a language can be **recognized by a PDA**, then it is **context-free** (can be produced by a CFG)

2. If a language can be **recognized by a PDA**, then it is **context-free** (can be produced by a CFG)

We will only introduce the proof idea

Step 1: Simplify the PDA M

- One accept state (make new accept state)
- Only transition from **start state**: $\varepsilon, \varepsilon \to \$$
- Transitions to new **accept state**: ε , \$ $\rightarrow \varepsilon$
- All transitions must **either be push or pop**, not both (replace these by two separate transitions)

Step 2: Design grammar from simplified PDA

Not Context-Free Languages

Is the following language context-free?

$$L = \{ 0^n 1^n 2^n \mid n \ge 0 \}$$

A language is context-free if and only if a **context-free grammar** or **pushdown automaton** recognizes it

Consider how we would make a PDA to recognize *L*:

- Can use stack to $\operatorname{\textbf{push}} \mathbf{0}$'s when reading $\mathbf{0}$'s and $\operatorname{\textbf{pop}} \mathbf{0}$'s when reading $\mathbf{1}$'s
- Then we're left with an empty stack...

L is **not context-free**, but how can we prove that there is no context-free grammar or pushdown automaton that recognizes it?

Pumping Lemma for Context-Free Languages

If L is a context-free language, then there is a number p (pumping length of L) such that for every string $s \in L$ of length at least p, s can be divided into five parts s = uvxyz satisfying the following:

- 1. |vy| > 0 (i.e. v and y cannot both be empty)
- 2. $|vxy| \leq p$
- 3. $uv^ixy^iz \in L$ for each $i \ge 0$