

Kontinuumsmechanik

Sommersemester 2019

Kurzfragentest vom 24.06.2019

Name, Vorname		Matrikelnummer	
	Stu	ıdiengang	
nen DIN A4-Blatte darauf hingewiesen zählen insbesondere gebnisse müssen m Rotstifte dürfen nic	s zu benutzen. Andere H , dass keinerlei elektror Taschenrechner, Laptop	Tilfsmittel sind in hische Hilfsmitte os und Mobiltele fiften (keine Ble	Umfang eines einseitig beschriebenicht erlaubt. Es wird ausdrücklich el benutzt werden dürfen. Hierzuefone. Skizzen, Rechnungen und Eri- i- oder Buntstifte) erstellt werden.
	Un	terschrift	
•	ndergebnisse ausschlie ene Blätter werden n		afür vorgesehenen Kästen ein.
Erreichte Punkte			
Handzeichen			

Aufgabe 1 [3 Punkte]

Geben Sie die Einheiten der folgenden mechanischen Größen in Abhängigkeit der Einheiten \mathbf{kg} , \mathbf{s} und \mathbf{m} bzw. 1 für dimensionslose Größen, an.

Masse pro Länge μ	
Wellenausbreitungsgeschwindigkeit c	
Eigenkreisfrequenz ω	
Biegesteifigkeit EI	

Aufgabe 2 [1 Punkt]

Ordnen Sie die gegebenen Eigenfrequenzen f den skizzierten Eigenformen einer fest/fest gelagerten Saite zu.

Geg: f = 25 Hz, 75 Hz, 125 Hz

Aufgabe 3 [1 Punkt]

Skizzieren Sie für den gegebenen Dehnstab die Eigenform $U_1(x)$ mit der niedrigsten Eigenkreisfrequenz.

Aufgabe 4 [2 Punkte]

Skizzieren Sie für den gegebenen Euler-Bernoulli-Balken die Eigenform $W_1(x)$ mit der niedrigsten (1.) Eigenkreisfrequenz und die Eigenform $W_2(x)$ mit der nächst-höheren Eigenkreisfrequenz (2. Eigenkreisfrequenz).

Aufgabe 5 [2 Punkte]

Eine fest/fest gelagerte Saite (Länge l, Wellenausbreitungsgeschwindigkeit c), vorgespannt mit der Kraft T, wird zum Zeitpunkt t=0 wie skizziert **sinusförmig** mit $w_0(x)$ ausgelenkt und besitzt keine Anfangsgeschwindigkeit.

Geg: T, l, \hat{w}_0 , c

a) Formulieren Sie die Anfangsbedingungen.

$$w_0(x, t = 0) =$$

$$\dot{w_0}(x, t = 0) =$$

b) Wie lautet die Lösung nach d'Alembert der eindimensionalen Wellengleichung für das obige Beispiel?

Aufgabe 6 [2 Punkte]

Die fest/fest gelagerte Saite (Wellenausbreitungsgeschwindigkeit c, Länge 4a) ist mit der Kraft T vorgespannt. Eine Transveralwelle hat zum Zeitpunkt t=0 die skizzierte Auslenkung w(x,0). Die Laufrichtung der Welle ist nach links.

Geg: c, a, T

a) Vervollständigen Sie das Bild, indem Sie die Auslenkung der Saite zum Zeitpunkt $t_1 = 4a/c$ sowie die zugehörige **Laufrichtung** der Welle einzeichnen.

b) Nach welcher Zeit T nimmt die Saite $\mathbf{erstmals}$ wieder den Anfangszustand an?

T =

Aufgabe 7 [2 Punkte]

Geben Sie alle geometrischen und alle dynamischen Randbedingungen für den skizzierten Euler-Bernoulli-Balken (Biegesteifigkeit EI, Länge l) mit Punktmasse (Masse m) und Dämpfer (Dämpfungskonstante d) an.

Geg: EI, d, l, m

Aufgabe 8 [2 Punkte]

Ein Torsionsstab (Schubmodul G, polares Flächenträgheitsmoment I_p , Länge l, Dichte ρ) ist am Ende mit einer starren, dünnen, homogenen Scheibe (Schwerpunkt S, Massenträgheitsmoment $\Theta^{(S)}$) fest verbunden.

Geg: G, I_p , l, ρ , $\Theta^{(S)}$

a) Geben Sie die Feldgleichung für freie Schwingungen sowie die Wellenausbreitungsgeschwindigkeit c für den skizzierten Torsionsstab an.

b) Geben Sie alle geometrischen und alle dynamischen Randbedingungen an.

Aufgabe 9 [2 Punkte]

a) Geben Sie alle geometrischen und alle dynamischen Randbedingungen für die fest/los gelagerte, vorgespannte (Vorspannkraft T) Saite (Masse pro Länge μ) an.

Geg: T, μ

b) Welchen Einfluss hat eine steigende Vorspannkraft T auf die Eigenkreisfrequenzen der Saitenschwingung des skizzierten Systems? Kreuzen Sie an. Eigenkreisfrequenzen werden mit steigender Vorspannkraft...

größer

Aufgabe 10 [2 Punkte]

Für freie Längsschwingungen des abgebildeten Stabes ist die folgende partielle Differentialgleichung gegeben: $\ddot{u}(x,t)-\frac{E}{\rho}u^{''}(x,t)=0$

Geg: E, A, ρ, l

a) Leiten Sie mit dem Ansatz $u(x,t)=U(x)\sin(\omega t)$ eine gewöhnliche Differentialgleichung für U(x) her.

b) Geben Sie die allgemeine Lösung für U(x) an.

Aufgabe 11

[2 Punkte]

Der skizzierte Euler-Bernoulli-Balken wird mit der Kraft F(t) an einer beliebigen Stelle a belastet.

Geg: EI, l, μ , a, Ω , \hat{F}

a) Geben Sie einen Ansatz vom Typ der rechten Seite an, um eine partikuläre Lösung $w_p(x,t)$ zu bestimmen.

b) Der Balken besitzt die abgebildete zweite

b) Der Balken besitzt die abgebildete zweite Eigenform $W_2(x)$ mit der zugehörigen Eigenkreisfrequenz ω_2 . Er wird mit der Kraft $F(t) = \hat{F}\sin(\Omega t)$ mit $\Omega = \omega_2$ zu Schwingungen angeregt. Dabei werden verschiedene Angriffspunkte x = a der stets vertikalen Kraft \hat{F} betrachtet. Kreuzen Sie die Belastung(en) an, die zur Resonanz führt/führen.

Aufgabe 12 [1 Punkt]

Für ein mechanisches System ergibt sich aus dem Prinzip von Hamilton der folgende Ausdruck:

$$\delta \int_{t_0}^{t_1} \frac{1}{2} \int_0^l \left(\mu \dot{w}^2 - EIw''^2 \right) dx dt + \int_{t_0}^{t_1} \left(F \delta w(l) - d\dot{w}(\frac{l}{2}) \delta w\left(\frac{l}{2}\right) \right) dt = 0$$

Für welches der nachfolgenden skizzierten Systeme mit schlanken Balken ergibt sich dieser Ausdruck im Prinzip von Hamilton? Kreuzen Sie das/die richtige(n) System(e) an.

Geg: μ , EI, d, F

Aufgabe 13 [3 Punkte]

Gegeben ist das skizzierte System, bestehend aus einem Stab (Dehnsteifigkeit EA, Länge l) an dessen rechten Ende eine Punktmasse (Masse m) angebracht ist.

Geg: EA, l, m

a) Geben Sie die geometrische(n) Randbedingung(en) an.

geometrische Randbedingung(en):

b) Nach Ausführen der Variation und partieller Integration liefert das Prinzip von Hamilton für das skizzierte System den Ausdruck

$$\int_{t_0}^{t_1} \left\{ \int_0^l \left(-\mu \ddot{u} + EAu'' \right) \delta u \, dx - m \ddot{u}(l) \delta u(l) - \left[EAu' \delta u \right]_0^l \right\} dt + \int_0^l \left[\mu \dot{u} \delta u + m \dot{u}(l) \delta u(l) \right]_{t_0}^{t_1} dx = 0.$$

Bestimmen Sie unter Verwendung der geometrischen Randbedingun(en) die dynamische(n) Randbedingun(en) des Systems und die Feldgleichung(en).

dynamische(n) Randbedingung(en):

Feldgleichung(en):