# **SBML Model Report**

# Model name: "Liu2011\_Complement\_System"



May 6, 2016

# 1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by the following two authors: Lukas Endler<sup>1</sup> and Bing Liu<sup>2</sup> at January 26<sup>th</sup> 2011 at 4:04 p.m. and last time modified at October tenth 2014 at 10:56 a.m. Table 1 provides an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

| Element           | Quantity | Element              | Quantity |
|-------------------|----------|----------------------|----------|
| compartment types | 0        | compartments         | 1        |
| species types     | 0        | species              | 42       |
| events            | 0        | constraints          | 0        |
| reactions         | 45       | function definitions | 1        |
| global parameters | 85       | unit definitions     | 3        |
| rules             | 1        | initial assignments  | 0        |

# **Model Notes**

This is the continuous deterministic (ODE) model of the complement system described in the article:

Computational and Experimental Study of the Regulatory Mechanisms of the Complement System.

<sup>&</sup>lt;sup>1</sup>EMBL-EBI, lukas@ebi.ac.uk

<sup>&</sup>lt;sup>2</sup>School of Computing, National University of Singapore, 1b@nus.edu.sg

Liu B, Zhang J, Tan PY, Hsu D, Blom AM, Leong B, Sethi S, Ho B, Ding JL and Thiagarajan PS. PLoS Comp. Bio. 2011 Jan. 7:1; doi:10.1371/journal.pcbi.1001059

#### Abstract:

The complement system is key to innate immunity and its activation is necessary for the clearance of bacteria and apoptotic cells. However, insufficient or excessive complement activation will lead to immune-related diseases. It is so far unknown how the complement activity is up- or down- regulated and what the associated pathophysiological mechanisms are. To quantitatively understand the modulatory mechanisms of the complement system, we built a computational model involving the enhancement and suppression mechanisms that regulate complement activity. Our model consists of a large system of Ordinary Differential Equations (ODEs) accompanied by a dynamic Bayesian network as a probabilistic approximation of the ODE dynamics. Applying Bayesian inference techniques, this approximation was used to perform parameter estimation and sensitivity analysis. Our combined computational and experimental study showed that the antimicrobial response is sensitive to changes in pH and calcium levels, which determines the strength of the crosstalk between CRP and L-ficolin. Our study also revealed differential regulatory effects of C4BP. While C4BP delays but does not decrease the classical complement activation, it attenuates but does not significantly delay the lectin pathway activation. We also found that the major inhibitory role of C4BP is to facilitate the decay of C3 convertase. In summary, the present work elucidates the regulatory mechanisms of the complement system and demonstrates how the bio-pathway machinery maintains the balance between activation and inhibition. The insights we have gained could contribute to the development of therapies targeting the complement system.

#### Comment:

Reproduction of figures in the article:

Figure 5: the effects of C4BP

Fig 5A: set initial concentrations PC=0.0327796, GlcNac=0, vary the initial concentration of C4BP from 2.6 to 2600 using parameter scan

Fig 5B: set initial concentrations PC=0, GlcNac=0.0327796, vary the initial concentration of C4BP from 2.6 to 2600 using parameter scan

Figure 6: knockout simulations Set PC=0.0327796, GlcNac=0 Fig 6A: kf01=0, kf02=0

Fig 6B: kf04=0, kf06=0, kf07=0

Fig 6C: kf05=0 Fig 6D: kf03=0

This model originates from BioModels Database: A Database of Annotated Published Models (http://www.ebi.ac.uk/biomodels/). It is copyright (c) 2005-2011 The BioModels.net Team. For more information see the terms of use.

To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novre N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.

# 2 Unit Definitions

This is an overview of six unit definitions of which three are predefined by SBML and not mentioned in the model.

# 2.1 Unit volume

**Definition** ml

#### 2.2 Unit substance

Name nano mole

**Definition** nmol

#### 2.3 Unit nM

Name nM

**Definition** nmol·dl

#### 2.4 Unit area

**Notes** Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

**Definition** m<sup>2</sup>

# 2.5 Unit length

**Notes** Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

**Definition** m

# 2.6 Unit time

**Notes** Second is the predefined SBML unit for time.

**Definition** s

# 3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

| Id          | Name        | SBO     | Spatial Dimensions | Size | Unit  | Constant | Outside |
|-------------|-------------|---------|--------------------|------|-------|----------|---------|
| compartment | compartment | 0000290 | 3                  | 1    | litre | Ø        |         |

# 3.1 Compartment compartment

This is a three dimensional compartment with a constant size of one ml.

Name compartment

SBO:0000290 physical compartment

# 4 Species

This model contains 42 species. Section 9 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

| Table 3: Properties of each species. |                |             |                                      |          |                            |
|--------------------------------------|----------------|-------------|--------------------------------------|----------|----------------------------|
| Id                                   | Name           | Compartment | Derived Unit                         | Constant | Boundary<br>Condi-<br>tion |
| CRP                                  | CRP            | compartment | $nmol \cdot ml^{-1}$                 | $\Box$   | $\Box$                     |
| PC                                   | PC             | compartment | $\mathrm{nmol}\cdot\mathrm{ml}^{-1}$ |          | $\Box$                     |
| PC_CRP                               | PC/CRP         | compartment | $\mathrm{nmol}\cdot\mathrm{ml}^{-1}$ |          |                            |
| C4                                   | C4             | compartment | $nmol \cdot ml^{-1}$                 |          | $\Box$                     |
| C4a                                  | C4a            | compartment | $nmol \cdot ml^{-1}$                 |          | $\Box$                     |
| C4b                                  | C4b            | compartment | $nmol \cdot ml^{-1}$                 |          |                            |
| C2                                   | C2             | compartment | $\mathrm{nmol}\cdot\mathrm{ml}^{-1}$ |          | $\Box$                     |
| C1                                   | C1             | compartment | $\mathrm{nmol}\cdot\mathrm{ml}^{-1}$ |          | $\Box$                     |
| PC_CRP_C1                            | PC/CRP/C1      | compartment | $nmol \cdot ml^{-1}$                 |          | $\Box$                     |
| C2a                                  | C2a            | compartment | $nmol \cdot ml^{-1}$                 |          | $\Box$                     |
| C2b                                  | C2b            | compartment | $nmol \cdot ml^{-1}$                 | $\Box$   |                            |
| $C4b_C2a$                            | C4b/C2a        | compartment | $nmol \cdot ml^{-1}$                 | $\Box$   |                            |
| C3                                   | C3             | compartment | $nmol \cdot ml^{-1}$                 | $\Box$   |                            |
| C3a                                  | C3a            | compartment | $nmol \cdot ml^{-1}$                 |          |                            |
| C3b                                  | C3b            | compartment | $\mathrm{nmol}\cdot\mathrm{ml}^{-1}$ | $\Box$   | $\Box$                     |
| dC3b                                 | dC3b           | compartment | $\mathrm{nmol}\cdot\mathrm{ml}^{-1}$ | $\Box$   | $\Box$                     |
| MASP                                 | MASP           | compartment | $\mathrm{nmol}\cdot\mathrm{ml}^{-1}$ | $\Box$   | $\Box$                     |
| $dC4b_C2a$                           | dC4b/C2a       | compartment | $\mathrm{nmol}\cdot\mathrm{ml}^{-1}$ | $\Box$   | $\Box$                     |
| GlcNac                               | GlcNac         | compartment | $\mathrm{nmol}\cdot\mathrm{ml}^{-1}$ | $\Box$   | $\Box$                     |
| ${\tt GlcNac\_LF}$                   | GlcNac/LF      | compartment | $nmol \cdot ml^{-1}$                 | $\Box$   |                            |
| LF                                   | LF             | compartment | $\mathrm{nmol}\cdot\mathrm{ml}^{-1}$ | $\Box$   | $\Box$                     |
| GlcNac_LF_MASP                       | GlcNac/LF/MASP | compartment | $\mathrm{nmol}\cdot\mathrm{ml}^{-1}$ |          |                            |

| Id                 | Name               | Compartment | Derived Unit                         | Constant | Boundary<br>Condi- |
|--------------------|--------------------|-------------|--------------------------------------|----------|--------------------|
|                    |                    |             |                                      |          | tion               |
| PC_CRP_LF          | PC/CRP/LF          | compartment | $\mathrm{nmol}\cdot\mathrm{ml}^{-1}$ |          | $\Box$             |
| PC_CRP_LF_MASP     | PC/CRP/LF/MASP     | compartment | $\mathrm{nmol}\cdot\mathrm{ml}^{-1}$ |          | $\Box$             |
| GlcNac_LF_CRP      | GlcNac/LF/CRP      | compartment | $\mathrm{nmol}\cdot\mathrm{ml}^{-1}$ |          | $\Box$             |
| GlcNac_LF_CRP_C1   | GlcNac/LF/CRP/C1   | compartment | $\mathrm{nmol}\cdot\mathrm{ml}^{-1}$ | $\Box$   | $\Box$             |
| C4BP               | C4BP               | compartment | $\mathrm{nmol}\cdot\mathrm{ml}^{-1}$ |          | $\Box$             |
| C4BP_PC_CRP        | C4BP/PC/CRP        | compartment | $nmol\cdotml^{-1}$                   | $\Box$   | $\Box$             |
| C4BP_GlcNac_LF_CRP | C4BP/GlcNac/LF/CRP | compartment | $nmol \cdot ml^{-1}$                 |          | $\Box$             |
| iC4b_C2a           | iC4b/C2a           | compartment | $nmol \cdot ml^{-1}$                 |          | $\Box$             |
| C4BP_C4b           | C4BP/C4b           | compartment | $nmol \cdot ml^{-1}$                 |          | $\Box$             |
| C4b_C2a_C4BP       | C4b/C2a/C4BP       | compartment | $\mathrm{nmol}\cdot\mathrm{ml}^{-1}$ |          | $\Box$             |
| dC4b_C2a_C4BP      | dC4b/C2a/C4BP      | compartment | $\mathrm{nmol}\cdot\mathrm{ml}^{-1}$ | $\Box$   | $\Box$             |
| PC_CRP_LF_C1       | PC/CRP/LF/C1       | compartment | $\mathrm{nmol}\cdot\mathrm{ml}^{-1}$ | $\Box$   | $\Box$             |
| C4BP_PC_CRP_LF     | C4BP/PC/CRP/LF     | compartment | $nmol\cdotml^{-1}$                   | $\Box$   | $\Box$             |
| GlcNac_LF_CRP_MASP | GlcNac/LF/CRP/MASP | compartment | $nmol\cdotml^{-1}$                   | $\Box$   | $\Box$             |
| PC_CRP_LF_C1_MASP  | PC/CRP/LF/C1/MASP  | compartment | $nmol\cdotml^{-1}$                   | $\Box$   | $\Box$             |
| GlcNac_LF_C1_MASP  | GlcNac/LF/C1/MASP  | compartment | $nmol\cdotml^{-1}$                   | $\Box$   | $\Box$             |
| GlcNac_HF          | GlcNac/HF          | compartment | $\mathrm{nmol}\cdot\mathrm{ml}^{-1}$ | $\Box$   | $\Box$             |
| HF                 | HF                 | compartment | $\mathrm{nmol}\cdot\mathrm{ml}^{-1}$ |          | $\Box$             |
| GlcNac_HF_MASP     | GlcNac/HF/MASP     | compartment | $\mathrm{nmol}\cdot\mathrm{ml}^{-1}$ |          | $\Box$             |
| X                  | X                  | compartment | $nmol \cdot ml^{-1}$                 | $\Box$   | $\Box$             |

# **5 Parameters**

This model contains 85 global parameters.

Table 4: Properties of each parameter.

| Id                   | Name        | SBO     | Value                            | Unit | Constant                     |
|----------------------|-------------|---------|----------------------------------|------|------------------------------|
| ka01_1               | ka01_1      | 0000339 | 0.028                            |      | <b>✓</b>                     |
| ka01_2               | ka01_2      | 0000338 | 0.011                            |      | $\overline{\mathbf{Z}}$      |
| $ka02_{-}1$          | $ka02_{-}1$ | 0000339 | $7.4 \cdot 10^{-4}$              |      | $ \overline{\checkmark} $    |
| ka02_2               | ka02_2      | 0000338 | 0.001                            |      | $ \overline{\checkmark} $    |
| $ka03_{-}1$          | $ka03_{-}1$ | 0000025 | 2.000                            |      | $ \overline{\checkmark} $    |
| $\mathtt{ka}04_{-}1$ | $ka04_{-}1$ | 0000025 | 10.500                           |      | $ \overline{\checkmark} $    |
| $kc01_{-}1$          | $kc01_{-}1$ | 0000339 | 0.646                            |      | $ \mathbf{Z} $               |
| $kc01_{-}2$          | kc01_2      | 0000338 | 0.195                            |      | $\overline{\mathbf{Z}}$      |
| kc02                 | kc02        | 0000035 | $5.91152775857994 \cdot 10^{-4}$ |      | $\overline{\mathbf{Z}}$      |
| $kc03_{-}1$          | kc03_1      | 0000035 | 0.414                            |      | $\overline{\mathbf{Z}}$      |
| kc03_2               | kc03_2      | 0000038 | 0.996                            |      | $ \overline{\checkmark} $    |
| $kc04_{-}1$          | $kc04_{-}1$ | 0000035 | 0.978                            |      | $ \overline{\checkmark} $    |
| ka03_2               | ka03_2      | 0000027 | 500.000                          |      | $\overline{\mathbf{Z}}$      |
| $ka04_{-}2$          | ka04_2      | 0000027 | 2500.000                         |      | $\overline{\mathbf{Z}}$      |
| $kd02_{-}2$          | kd02_2      | 0000338 | 0.100                            |      | $\overline{\mathbf{Z}}$      |
| $kd02_{-}1$          | $kd02_{-}1$ | 0000339 | 0.037                            |      | $\overline{\mathbf{Z}}$      |
| $kd03_{-}1$          | $kd03_{-}1$ | 0000025 | 66.378                           |      | $\overline{\mathbf{Z}}$      |
| $kd03_2$             | kd03_2      | 0000027 | 829.116                          |      | $ \overline{\checkmark} $    |
| $kb01_{-}1$          | $kb01_{-}1$ | 0000339 | 0.091                            |      | $ \overline{\checkmark} $    |
| $kb01_{-}2$          | kb01_2      | 0000338 | 0.051                            |      | $   \overline{\mathscr{L}} $ |
| $kb02_{-}1$          | $kb02_{-}1$ | 0000033 | 0.037                            |      | $\overline{\mathbf{Z}}$      |
| $kb02_{-}2$          | kb02_2      | 0000338 | 0.100                            |      | $\overline{\mathbf{Z}}$      |
| $kb03_{-}1$          | kb03_1      | 0000025 | 66.378                           |      | $ \overline{\checkmark} $    |
| kb03_2               | kb03_2      | 0000027 | 829.116                          |      | $ \overline{\checkmark} $    |
| $kb04_{-}1$          | $kb04_{-}1$ | 0000025 | 1.100                            |      | $ \overline{\checkmark} $    |
| $kb04_2$             | kb04_2      | 0000027 | 2000.000                         |      | $ \overline{\checkmark} $    |
| $kc04_{-}2$          | $kc04_2$    | 0000038 | 0.199                            |      |                              |
| $kd01_{-}1$          | $kd01_{-}1$ | 0000339 | $7.07 \cdot 10^{-5}$             |      | $ \overline{\checkmark} $    |
| $kd01_{-}2$          | kd01_2      | 0000338 | $7.23 \cdot 10^{-5}$             |      | $ \overline{\checkmark} $    |
| $kd04_{-}1$          | $kd04_{-}1$ | 0000025 | 1.100                            |      |                              |
| $kd04_2$             | kd04_2      | 0000027 | 2000.000                         |      |                              |
| $ke01_{-}1$          | $ke01_{-}1$ | 0000339 | $7.07 \cdot 10^{-5}$             |      | $ \overline{\checkmark} $    |
| $ke01_{-}2$          | ke01_2      | 0000338 | $10^{-4}$                        |      | $ \overline{\checkmark} $    |
| $ke02_{-}1$          | $ke02_{-}1$ | 0000339 | $7.4 \cdot 10^{-4}$              |      | $\overline{\mathbf{Z}}$      |
| $ke02_2$             | ke02_2      | 0000338 | 0.001                            |      | $\overline{\mathbf{Z}}$      |
| $ke03_{-}1$          | ke03_1      | 0000025 | 2.000                            |      | $\overline{\mathbf{Z}}$      |
| ke03_2               | ke03_2      | 0000027 | 500.000                          |      | <u></u>                      |

| Id          | Name        | SBO     | Value    | Unit | Constant                    |
|-------------|-------------|---------|----------|------|-----------------------------|
| ke04_1      | ke04_1      | 0000025 | 10.500   |      | $\checkmark$                |
| ke04_2      | ke04_2      | 0000027 | 2500.000 |      | $\overline{\mathbf{Z}}$     |
| $kf01_{-}1$ | $kf01_{-}1$ | 0000339 | 0.970    |      | $   \overline{\mathbf{Z}} $ |
| $kf01_2$    | kf01_2      | 0000338 | 0.069    |      | $\overline{\mathbf{Z}}$     |
| $kf02_1$    | $kf02_{-}1$ | 0000339 | 0.970    |      | $\overline{\mathbf{Z}}$     |
| kf02_2      | kf02_2      | 0000338 | 0.069    |      | $\overline{\mathbf{Z}}$     |
| kf03        | kf03        | 0000036 | 0.061    |      | $\overline{\mathbf{Z}}$     |
| kf04_2      | kf04_2      | 0000338 | 0.984    |      | $\overline{\mathbf{Z}}$     |
| $kf04_1$    | $kf04_{-}1$ | 0000339 | 0.613    |      | $\overline{\mathbf{Z}}$     |
| kf05        | kf05        | 0000036 | 0.981    |      | $\overline{\mathbf{Z}}$     |
| mC3         | mC3         | 0000472 | 0.000    |      |                             |
| $kf06_1$    | kf06_1      | 0000339 | 0.613    |      |                             |
| kf06_2      | kf06_2      | 0000338 | 0.984    |      | $\overline{\mathbf{Z}}$     |
| $kf07_1$    | kf07_1      | 0000339 | 0.613    |      | $\overline{\mathbf{Z}}$     |
| kf07_2      | kf07_2      | 0000338 | 0.984    |      | $\overline{Z}$              |
| $kd05_{-}1$ | $kd05_{-}1$ | 0000339 | 7.4 · 10 | )-4  | $\overline{\mathbf{Z}}$     |
| kd05_2      | kd05_2      | 0000338 | 0.001    |      | Z                           |
| $kd06_{-}1$ | $kd06_{-}1$ | 0000025 | 2.000    |      | Z                           |
| kd06_2      | kd06_2      | 0000027 | 500.000  |      | Z                           |
| kd07_1      | kd07_1      | 0000025 | 10.500   |      | <b>Z</b>                    |
| kd07_2      | kd07_2      | 0000027 | 2500.000 |      | $\mathbf{Z}$                |
| ke05_1      | ke05_1      | 0000339 | 0.037    |      | $\mathbf{Z}$                |
| ke05_2      | ke05_2      | 0000338 | 0.100    |      | $\mathbf{Z}$                |
| ke06_1      | ke06_1      | 0000025 | 66.378   |      | $\mathbf{Z}$                |
| ke06_2      | ke06_2      | 0000027 | 829.116  |      | $\mathbf{Z}$                |
| ke07_1      | ke07_1      | 0000025 | 1.100    |      | Z                           |
| ke07_2      | ke07_2      | 0000027 | 2000.000 |      | Z                           |
| kd08_1      | $kd08_{-}1$ | 0000339 | 0.037    |      | Z                           |
| kd08_2      | kd08_2      | 0000338 | 0.100    |      | $\overline{\mathbf{Z}}$     |
| $kd09_{-}1$ | $kd09_{-}1$ | 0000339 | 7.4 · 10 | )-4  | $\overline{\mathbf{Z}}$     |
| kd09_2      | kd09_2      | 0000338 | 0.001    |      | Z                           |
| $kd10_{-}1$ | $kd10_{-}1$ | 0000025 | 71.171   |      | $\overline{Z}$              |
| kd10_2      | kd10_2      | 0000027 | 3796.227 |      | $\overline{Z}$              |
| $kd11_{-}1$ | kd11_1      | 0000025 | 38.963   |      | $\overline{Z}$              |
| kd11_2      | kd11_2      | 0000027 | 5972.306 |      | $\overline{\mathbf{Z}}$     |
| kg01_1      | $kg01_{-}1$ | 0000339 | 0.091    |      | <b>Z</b>                    |
| kg01_2      | kg01_2      | 0000338 | 0.051    |      | <b>Z</b>                    |
| kg02_1      | kg02_1      | 0000339 | 0.037    |      | <b>Z</b>                    |
| kg02_2      | kg02_2      | 0000338 | 0.100    |      | <b>Z</b>                    |
| kg03_1      | kg03_1      | 0000025 | 66.378   |      | <b>Z</b>                    |
| kg03_2      | kg03_2      | 0000027 | 829.116  |      | <b>Z</b>                    |
| kg04_1      | kg04_1      | 0000025 | 1.100    |      | <b>Z</b>                    |

| Id                            | Name        | SBO     | Value                   | Unit | Constant                  |
|-------------------------------|-------------|---------|-------------------------|------|---------------------------|
| kg04_2                        | kg04_2      | 0000027 | 2000.000                |      | $ \overline{\checkmark} $ |
| kt01                          | kt01        | 0000035 | $3.42266 \cdot 10^{-1}$ | -4   | $\mathbf{Z}$              |
| kt02                          | kt02        | 0000035 | 0.493                   |      |                           |
| kt03                          | kt03        | 0000035 | 0.047                   |      | $\mathbf{Z}$              |
| $\mathtt{kt04}_{-}\mathtt{1}$ | $kt04_{-}1$ | 0000339 | 0.000                   |      | $\mathbf{Z}$              |
| $kt04_2$                      | kt04_2      | 0000338 | 0.000                   |      | $\checkmark$              |

# **6 Function definition**

This is an overview of one function definition.

# **6.1 Function definition** function\_1

Name my-MM

 $\label{eq:arguments} \text{Arguments} \ k, E, S, Km$ 

**Mathematical Expression** 

$$\frac{k \cdot E \cdot S}{Km + S} \tag{1}$$

# 7 Rule

This is an overview of one rule.

# 7.1 Rule mC3

Rule mC3 is an assignment rule for parameter mC3:

$$mC3 = [dC3b] (2)$$

**Derived unit**  $nmol \cdot ml^{-1}$ 

# **8 Reactions**

This model contains 45 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

| N⁰ | Id        | Name      | Reaction Equation                                      | SBO     |
|----|-----------|-----------|--------------------------------------------------------|---------|
| 1  | a_01      | a_01      | $PC + CRP \Longrightarrow PC\_CRP$                     | 0000177 |
| 2  | $a_{-}02$ | a02       | $PC\_CRP + C1 \Longrightarrow PC\_CRP\_C1$             | 0000177 |
| 3  | a_03      | a_03      | $C4 \xrightarrow{PC\_CRP\_C1} C4a + C4b$               | 0000178 |
| 4  | a04       | a04       | $C2 \xrightarrow{PC\_CRP\_C1} C2a + C2b$               | 0000178 |
| 5  | c_01      | c_01      | $C4b + C2a \rightleftharpoons C4b C2a$                 | 0000177 |
| 6  | c_02      | c_02      | $C4b\_C2a + C3 \longrightarrow C4b\_C2a + C3a + C3b$   | 0000177 |
| 7  | c_03      | c_03      | $C3b \rightleftharpoons dC3b$                          | 0000185 |
| 8  | $c_04$    | c_04      | $C4b\_C2a \Longrightarrow dC4b\_C2a$                   | 0000185 |
| 9  | $d_01$    | d_01      | $PC\_CRP + LF \Longrightarrow PC\_CRP\_LF$             | 0000177 |
| 10 | $d_{-}02$ | d02       | $PC\_CRP\_LF + MASP \Longrightarrow PC\_CRP\_LF\_MASP$ | 0000177 |
| 11 | d_03      | d_03      | $C4 \xrightarrow{PC\_CRP\_LF\_MASP} C4a + C4b$         | 0000178 |
| 12 | d_04      | d_04      | $C2 \xrightarrow{PC\_CRP\_LF\_MASP} C2a + C2b$         | 0000178 |
| 13 | b_01      | b_01      | $GlcNac + LF \Longrightarrow GlcNac LF$                | 0000177 |
| 14 | b_02      | b_02      | $GlcNac\_LF + MASP \Longrightarrow GlcNac\_LF\_MASP$   | 0000177 |
| 15 | b_03      | b_03      | $C4 \xrightarrow{GlcNac\_LF\_MASP} C4a + C4b$          | 0000178 |
| 16 | b_04      | b_04      | $C2 \xrightarrow{GlcNac\_LF\_MASP} C2a + C2b$          | 0000178 |
| 17 | e_01      | e_01      | GlcNac_LF+CRP ← GlcNac_LF_CRP                          | 0000177 |
| 18 | $e_{-}02$ | $e_{-}02$ | GlcNac_LF_CRP+C1                                       | 0000177 |
| 19 | e_03      | e_03      | $C4 \xrightarrow{GlcNac\_LF\_CRP\_C1} C4a + C4b$       | 0000178 |
| 20 | e_04      | e_04      | $C2 \xrightarrow{GlcNac\_LF\_CRP\_C1} C2a + C2b$       | 0000178 |

| N₀ | Id        | Name      | Reaction Equation                                                                                                                                                           | SBO      |
|----|-----------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 21 | f_01      | f_01      | $C4BP + PC\_CRP \Longrightarrow C4BP\_PC\_CRP$                                                                                                                              | 0000177  |
| 22 | f_02      | f_02      | C4BP+GlcNac_LF_CRP \equiv C4BP_GlcNac_LF_CR                                                                                                                                 | P0000177 |
| 23 | f_03      | f_03      | $C4b_{-}C2a + C4BP \longrightarrow iC4b_{-}C2a + C4BP$                                                                                                                      | 0000176  |
| 24 | f_04      | $f_{-}04$ | $C4BP + C4b \rightleftharpoons C4BP\_C4b$                                                                                                                                   | 0000177  |
| 25 | f_05      | f_05      | $C4b\_C2a + C4BP \longrightarrow C4b + C2a + C4BP$                                                                                                                          | 0000180  |
| 26 | f_06      | f_06      | $C4b_C2a + C4BP \Longrightarrow C4b_C2a_C4BP$                                                                                                                               | 0000177  |
| 27 | f_07      | f_07      | $dC4b_C2a + C4BP \Longrightarrow dC4b_C2a_C4BP$                                                                                                                             | 0000177  |
| 28 | t01       | t_01      | $C4BP \longrightarrow \emptyset$                                                                                                                                            | 0000185  |
| 29 | t_02      | t_02      | $C3b \longrightarrow \emptyset$                                                                                                                                             | 0000185  |
| 30 | t_03      | t_03      | $C4b_{-}C2a \longrightarrow \emptyset$                                                                                                                                      | 0000185  |
| 31 | d_05      | d_05      | $PC\_CRP\_LF + C1 \Longrightarrow PC\_CRP\_LF\_C1$                                                                                                                          | 0000177  |
| 32 | d_06      | d_06      | $C4 \xrightarrow{PC\_CRP\_LF\_C1} C4a + C4b$                                                                                                                                | 0000178  |
| 33 | d_07      | d_07      | $C2 \xrightarrow{PC\_CRP\_LF\_C1} C2a + C2b$                                                                                                                                | 0000178  |
| 34 | t04       | t_04      | $C4BP + PC\_CRP\_LF \Longrightarrow C4BP\_PC\_CRP\_LF$                                                                                                                      | 0000177  |
| 35 | e_05      | e_05      | GlcNac_LF_CRP +                                                                                                                                                             | 0000177  |
| 26 | 0.0       |           | $\begin{array}{l} \text{MASP} & \Longrightarrow \text{GlcNac\_LF\_CRP\_MASP} \\ \text{C4} & \xrightarrow{\text{GlcNac\_LF\_CRP\_MASP}} \text{C4a} + \text{C4b} \end{array}$ | 0000170  |
| 36 | e_06      | e_06      |                                                                                                                                                                             | 0000178  |
| 37 | e_07      | e_07      | $C2 \xrightarrow{GlcNac\_LF\_CRP\_MASP} C2a + C2b$                                                                                                                          | 0000178  |
| 38 | d_08      | d_08      | $PC\_CRP\_LF\_C1+MASP \Longrightarrow PC\_CRP\_LF\_C1\_MASP$                                                                                                                | P0000177 |
| 39 | d_09      | d_09      | PC_CRP_LF_MASP +                                                                                                                                                            | 0000177  |
|    |           |           | $C1 \Longrightarrow PC\_CRP\_LF\_C1\_MASP$                                                                                                                                  |          |
| 40 | d_10      | d_10      | $C4 \xrightarrow{PC\_CRP\_LF\_C1\_MASP} C4a + C4b$                                                                                                                          | 0000178  |
| 41 | $d_{-}11$ | d_11      | $C2 \xrightarrow{PC\_CRP\_LF\_C1\_MASP} C2a + C2b$                                                                                                                          | 0000178  |
| 42 | g_01      | g_01      | $X + HF \Longrightarrow GlcNac\_HF$                                                                                                                                         | 0000177  |
| 43 | g_02      | g_02      | GlcNac_HF+MASP <del>←</del> GlcNac_HF_MASP                                                                                                                                  | 0000177  |
| 44 | g_03      | g_03      | $C4 \xrightarrow{GlcNac\_HF\_MASP} C4a + C4b$                                                                                                                               | 0000178  |

| Nº Id   | Name | Reaction Equation                             | SBO     |
|---------|------|-----------------------------------------------|---------|
| 45 g_04 | g_04 | $C2 \xrightarrow{GlcNac\_HF\_MASP} C2a + C2b$ | 0000178 |

# 8.1 Reaction a\_01

This is a reversible reaction of two reactants forming one product.

Name  $a_01$ 

SBO:0000177 non-covalent binding

# **Reaction equation**

$$PC + CRP \Longrightarrow PC CRP$$
 (3)

# **Reactants**

Table 6: Properties of each reactant.

| Id  | Name | SBO |
|-----|------|-----|
| PC  | PC   |     |
| CRP | CRP  |     |

# **Product**

Table 7: Properties of each product.

| Id     | Name   | SBO |
|--------|--------|-----|
| PC_CRP | PC/CRP |     |

# **Kinetic Law**

Derived unit contains undeclared units

$$v_1 = vol (compartment) \cdot (ka01\_1 \cdot [PC] \cdot [CRP] - ka01\_2 \cdot [PC\_CRP]) \tag{4}$$

# 8.2 Reaction a\_02

This is a reversible reaction of two reactants forming one product.

Name  $a_02$ 

SBO:0000177 non-covalent binding

# **Reaction equation**

$$PC\_CRP + C1 \Longrightarrow PC\_CRP\_C1$$
 (5)

# **Reactants**

Table 8: Properties of each reactant.

| Id     | Name   | SBO |
|--------|--------|-----|
| PC_CRP | PC/CRP |     |
| 01     | CI     |     |

#### **Product**

Table 9: Properties of each product.

| Id        | Name      | SBO |
|-----------|-----------|-----|
| PC_CRP_C1 | PC/CRP/C1 |     |

# **Kinetic Law**

**Derived unit** contains undeclared units

$$v_2 = \text{vol}\left(\text{compartment}\right) \cdot \left(\text{ka02\_1} \cdot [\text{PC\_CRP}] \cdot [\text{C1}] - \text{ka02\_2} \cdot [\text{PC\_CRP\_C1}]\right) \tag{6}$$

# 8.3 Reaction a\_03

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Name  $a_03$ 

**SBO:0000178** cleavage

# **Reaction equation**

$$C4 \xrightarrow{PC\_CRP\_C1} C4a + C4b \tag{7}$$

#### Reactant

Table 10: Properties of each reactant.

| Id | Name | SBO |
|----|------|-----|
| C4 | C4   |     |

#### Modifier

Table 11: Properties of each modifier.

| Tuest TIVITOPETHES OF THE INCUMENT |           |         |
|------------------------------------|-----------|---------|
| Id                                 | Name      | SBO     |
| PC_CRP_C1                          | PC/CRP/C1 | 0000460 |

# **Products**

Table 12: Properties of each product.

| Id         | Name       | SBO |
|------------|------------|-----|
| C4a<br>C4b | C4a<br>C4b |     |

#### **Kinetic Law**

**Derived unit** contains undeclared units

$$v_3 = \text{vol} (\text{compartment}) \cdot \text{function}_1 (\text{ka}03\_1, [\text{PC}\_\text{CRP}\_\text{C}1], [\text{C}4], \text{ka}03\_2)$$
 (8)

$$function_{-}1\left(k,E,S,Km\right) = \frac{k \cdot E \cdot S}{Km + S} \tag{9}$$

$$function_{-}1(k,E,S,Km) = \frac{k \cdot E \cdot S}{Km + S}$$
 (10)

### 8.4 Reaction a\_04

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Name a<sub>-</sub>04

**SBO:0000178** cleavage

# **Reaction equation**

$$C2 \xrightarrow{PC\_CRP\_C1} C2a + C2b \tag{11}$$

# Reactant

Table 13: Properties of each reactant.

| Id | Name | SBO |
|----|------|-----|
| C2 | C2   |     |

# **Modifier**

Table 14: Properties of each modifier.

| Id        | Name      | SBO     |
|-----------|-----------|---------|
| PC_CRP_C1 | PC/CRP/C1 | 0000460 |

# **Products**

Table 15: Properties of each product.

| Id  | Name | SBO |
|-----|------|-----|
| C2a | C2a  |     |
| C2b | C2b  |     |

#### **Kinetic Law**

Derived unit contains undeclared units

$$v_4 = \text{vol} \left( \text{compartment} \right) \cdot \text{function} \left( \text{ka04\_1}, [\text{PC\_CRP\_C1}], [\text{C2}], \text{ka04\_2} \right)$$
 (12)

$$function_{-}1(k,E,S,Km) = \frac{k \cdot E \cdot S}{Km + S}$$
 (13)

$$function_{-}1(k, E, S, Km) = \frac{k \cdot E \cdot S}{Km + S}$$
 (14)

# 8.5 Reaction c\_01

This is a reversible reaction of two reactants forming one product.

Name  $c\_01$ 

SBO:0000177 non-covalent binding

# **Reaction equation**

$$C4b + C2a \Longrightarrow C4b C2a \tag{15}$$

# Reactants

Table 16: Properties of each reactant.

| Id  | Name | SBO |
|-----|------|-----|
| C4b | C4b  |     |
| C2a | C2a  |     |

# **Product**

Table 17: Properties of each product.

| Id      | Name    | SBO |
|---------|---------|-----|
| C4b_C2a | C4b/C2a |     |

#### **Kinetic Law**

**Derived unit** contains undeclared units

$$v_5 = \text{vol}(\text{compartment}) \cdot (\text{kc01\_1} \cdot [\text{C4b}] \cdot [\text{C2a}] - \text{kc01\_2} \cdot [\text{C4b\_C2a}])$$
 (16)

# **8.6 Reaction** c\_02

This is an irreversible reaction of two reactants forming three products.

Name  $c_-02$ 

SBO:0000177 non-covalent binding

# **Reaction equation**

$$C4b\_C2a + C3 \longrightarrow C4b\_C2a + C3a + C3b \tag{17}$$

#### **Reactants**

Table 18: Properties of each reactant.

| Id      | Name          | SBO |
|---------|---------------|-----|
| C4b_C2a | C4b/C2a<br>C3 |     |

# **Products**

Table 19: Properties of each product.

| Id      | Name    | SBO |
|---------|---------|-----|
| C4b_C2a | C4b/C2a |     |
| C3a     | C3a     |     |
| СЗЪ     | C3b     |     |

**Derived unit** contains undeclared units

$$v_6 = \text{vol} (\text{compartment}) \cdot \text{kc02} \cdot [\text{C4b\_C2a}] \cdot [\text{C3}]$$
 (18)

# 8.7 Reaction c\_03

This is a reversible reaction of one reactant forming one product.

Name  $c_03$ 

SBO:0000185 transport reaction

# **Reaction equation**

$$C3b \rightleftharpoons dC3b \tag{19}$$

# Reactant

Table 20: Properties of each reactant.

| Id  | Name | SBO |
|-----|------|-----|
| СЗъ | C3b  |     |

# **Product**

Table 21: Properties of each product.

| Id   | Name | SBO |
|------|------|-----|
| dC3b | dC3b |     |

# **Kinetic Law**

Derived unit contains undeclared units

$$v_7 = \text{vol}\left(\text{compartment}\right) \cdot \left(\text{kc03}_{-1} \cdot [\text{C3b}] - \text{kc03}_{-2} \cdot [\text{dC3b}]\right) \tag{20}$$

#### 8.8 Reaction c\_04

This is a reversible reaction of one reactant forming one product.

Name  $c_-04$ 

SBO:0000185 transport reaction

# **Reaction equation**

$$C4b_{-}C2a \rightleftharpoons dC4b_{-}C2a \tag{21}$$

#### Reactant

Table 22: Properties of each reactant.

| Id      | Name    | SBO |
|---------|---------|-----|
| C4b_C2a | C4b/C2a |     |

#### **Product**

Table 23: Properties of each product.

| Id       | Name     | SBO |
|----------|----------|-----|
| dC4b_C2a | dC4b/C2a |     |

# **Kinetic Law**

Derived unit contains undeclared units

$$v_8 = \text{vol} \left( \text{compartment} \right) \cdot \left( \text{kc04\_1} \cdot \left[ \text{C4b\_C2a} \right] - \text{kc04\_2} \cdot \left[ \text{dC4b\_C2a} \right] \right) \tag{22}$$

# 8.9 Reaction d\_01

This is a reversible reaction of two reactants forming one product.

Name  $d\_01$ 

SBO:0000177 non-covalent binding

# **Reaction equation**

$$PC\_CRP + LF \Longrightarrow PC\_CRP\_LF$$
 (23)

#### **Reactants**

Table 24: Properties of each reactant.

| Id     | Name   | SBO |
|--------|--------|-----|
| PC_CRP | PC/CRP |     |
| LF     | LF     |     |

#### **Product**

Table 25: Properties of each product.

| Id        | Name      | SBO |
|-----------|-----------|-----|
| PC_CRP_LF | PC/CRP/LF |     |

# **Kinetic Law**

**Derived unit** contains undeclared units

$$v_9 = vol\left(compartment\right) \cdot \left(kd01\_1 \cdot [PC\_CRP] \cdot [LF] - kd01\_2 \cdot [PC\_CRP\_LF]\right) \tag{24}$$

# **8.10 Reaction** d\_02

This is a reversible reaction of two reactants forming one product.

Name  $d_02$ 

SBO:0000177 non-covalent binding

# **Reaction equation**

$$PC\_CRP\_LF + MASP \Longrightarrow PC\_CRP\_LF\_MASP$$
 (25)

# **Reactants**

Table 26: Properties of each reactant.

| Id                | Name              | SBO |
|-------------------|-------------------|-----|
| PC_CRP_LF<br>MASP | PC/CRP/LF<br>MASP |     |

#### **Product**

Table 27: Properties of each product.

|                | F F            |     |
|----------------|----------------|-----|
| Id             | Name           | SBO |
|                |                |     |
| PC_CRP_LF_MASP | PC/CRP/LF/MASP |     |

**Derived unit** contains undeclared units

$$v_{10} = vol\left(compartment\right) \cdot \left(kd02\_1 \cdot [PC\_CRP\_LF] \cdot [MASP] - kd02\_2 \cdot [PC\_CRP\_LF\_MASP]\right) \tag{26}$$

# 8.11 Reaction d\_03

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Name  $d_{-}03$ 

**SBO:0000178** cleavage

# **Reaction equation**

$$C4 \xrightarrow{PC\_CRP\_LF\_MASP} C4a + C4b$$
 (27)

# Reactant

Table 28: Properties of each reactant.

| Id | Name | SBO |
|----|------|-----|
| C4 | C4   |     |

#### **Modifier**

Table 29: Properties of each modifier.

| Id             | Name           | SBO     |
|----------------|----------------|---------|
| PC_CRP_LF_MASP | PC/CRP/LF/MASP | 0000460 |

#### **Products**

Table 30: Properties of each product.

| Id  | Name | SBO |
|-----|------|-----|
| C4a | C4a  |     |
| C4b | C4b  |     |

**Derived unit** contains undeclared units

$$v_{11} = vol\left(compartment\right) \cdot function\_1\left(kd03\_1, [PC\_CRP\_LF\_MASP], [C4], kd03\_2\right) \quad (28)$$

$$function_{-}1(k, E, S, Km) = \frac{k \cdot E \cdot S}{Km + S}$$
 (29)

$$function_{-}1\left(k,E,S,Km\right) = \frac{k \cdot E \cdot S}{Km + S} \tag{30}$$

# **8.12 Reaction** d\_04

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Name  $d_{-}04$ 

**SBO:0000178** cleavage

# **Reaction equation**

$$C2 \xrightarrow{PC\_CRP\_LF\_MASP} C2a + C2b$$
 (31)

# Reactant

Table 31: Properties of each reactant.

| Id | Name | SBO |
|----|------|-----|
| C2 | C2   |     |

### **Modifier**

Table 32: Properties of each modifier.

| Id             | Name           | SBO     |
|----------------|----------------|---------|
| PC_CRP_LF_MASP | PC/CRP/LF/MASP | 0000460 |

# **Products**

Table 33: Properties of each product.

| Id | Name       | SBO |
|----|------------|-----|
|    | C2a<br>C2b |     |

#### **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{12} = \text{vol}\left(\text{compartment}\right) \cdot \text{function\_1}\left(\text{kd04\_1}, [\text{PC\_CRP\_LF\_MASP}], [\text{C2}], \text{kd04\_2}\right) \quad (32)$$

$$function_{-}1(k, E, S, Km) = \frac{k \cdot E \cdot S}{Km + S}$$
 (33)

$$function_{-}1\left(k,E,S,Km\right) = \frac{k \cdot E \cdot S}{Km + S} \tag{34}$$

### 8.13 Reaction b\_01

This is a reversible reaction of two reactants forming one product.

**Name** b\_01

SBO:0000177 non-covalent binding

# **Reaction equation**

$$GlcNac + LF \Longrightarrow GlcNac LF$$
 (35)

# **Reactants**

Table 34: Properties of each reactant.

| Id     | Name   | SBO |
|--------|--------|-----|
| GlcNac | GlcNac |     |
| LF     | LF     |     |

# **Product**

Table 35: Properties of each product.

| Id        | Name      | SBO |
|-----------|-----------|-----|
| GlcNac_LF | GlcNac/LF |     |

#### **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{13} = \text{vol} \left( \text{compartment} \right) \cdot \left( \text{kb01}\_1 \cdot [\text{GlcNac}] \cdot [\text{LF}] - \text{kb01}\_2 \cdot [\text{GlcNac}\_\text{LF}] \right)$$
 (36)

# **8.14 Reaction** b\_02

This is a reversible reaction of two reactants forming one product.

**Name** b\_02

SBO:0000177 non-covalent binding

# **Reaction equation**

$$GlcNac LF + MASP \Longrightarrow GlcNac LF MASP$$
 (37)

#### **Reactants**

Table 36: Properties of each reactant.

| Id        | Name      | SBO |
|-----------|-----------|-----|
| GlcNac_LF | GlcNac/LF |     |
| MASP      | MASP      |     |

# **Product**

Table 37: Properties of each product.

| Id             | Name           | SBO |
|----------------|----------------|-----|
| GlcNac_LF_MASP | GlcNac/LF/MASP |     |

**Derived unit** contains undeclared units

$$v_{14} = vol (compartment) \cdot (kb02\_1 \cdot [GlcNac\_LF] \cdot [MASP] - kb02\_2 \cdot [GlcNac\_LF\_MASP])$$
(38)

# 8.15 Reaction b\_03

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

**Name** b\_03

**SBO:0000178** cleavage

# **Reaction equation**

$$C4 \xrightarrow{GlcNac\_LF\_MASP} C4a + C4b$$
 (39)

# Reactant

Table 38: Properties of each reactant.

| Id | Name | SBO |
|----|------|-----|
| C4 | C4   |     |

#### **Modifier**

Table 39: Properties of each modifier.

| Id             | Name           | SBO     |
|----------------|----------------|---------|
| GlcNac_LF_MASP | GlcNac/LF/MASP | 0000460 |

#### **Products**

Table 40: Properties of each product.

| Id  | Name | SBO |
|-----|------|-----|
| C4a | C4a  |     |
| C4b | C4b  |     |

**Derived unit** contains undeclared units

$$v_{15} = vol\left(compartment\right) \cdot function\_1\left(kb03\_1, [GlcNac\_LF\_MASP], [C4], kb03\_2\right) \quad (40)$$

$$function_{-}1\left(k,E,S,Km\right) = \frac{k\cdot E\cdot S}{Km+S} \tag{41} \label{41}$$

$$function_{-}1\left(k,E,S,Km\right) = \frac{k \cdot E \cdot S}{Km + S} \tag{42} \label{eq:42}$$

# 8.16 Reaction b\_04

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Name b<sub>-</sub>04

**SBO:0000178** cleavage

# **Reaction equation**

$$C2 \xrightarrow{GlcNac\_LF\_MASP} C2a + C2b$$
 (43)

#### Reactant

Table 41: Properties of each reactant.

| Id | Name | SBO |
|----|------|-----|
| C2 | C2   |     |

# **Modifier**

Table 42: Properties of each modifier.

| Id             | Name           | SBO     |
|----------------|----------------|---------|
| GlcNac_LF_MASP | GlcNac/LF/MASP | 0000460 |

# **Products**

Table 43: Properties of each product.

| Name       | SBO |
|------------|-----|
| C2a<br>C2b |     |
|            | C2a |

# **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{16} = vol\left(compartment\right) \cdot function\_1\left(kb04\_1, [GlcNac\_LF\_MASP], [C2], kb04\_2\right) \quad (44)$$

$$function_{-}1\left(k,E,S,Km\right) = \frac{k \cdot E \cdot S}{Km + S} \tag{45}$$

$$function_{-}1(k,E,S,Km) = \frac{k \cdot E \cdot S}{Km + S}$$
 (46)

### **8.17 Reaction** e\_01

This is a reversible reaction of two reactants forming one product.

Name  $e_01$ 

SBO:0000177 non-covalent binding

# **Reaction equation**

$$GlcNac\_LF + CRP \Longrightarrow GlcNac\_LF\_CRP$$
 (47)

# **Reactants**

Table 44: Properties of each reactant.

| Id               | Name             | SBO |
|------------------|------------------|-----|
| GlcNac_LF<br>CRP | GlcNac/LF<br>CRP |     |

# **Product**

Table 45: Properties of each product.

| Id            | Name          | SBO |
|---------------|---------------|-----|
| GlcNac_LF_CRP | GlcNac/LF/CRP |     |

#### **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{17} = \text{vol} (\text{compartment}) \cdot (\text{ke}01\_1 \cdot [\text{GlcNac\_LF}] \cdot [\text{CRP}] - \text{ke}01\_2 \cdot [\text{GlcNac\_LF\_CRP}])$$
 (48)

# **8.18 Reaction** e\_02

This is a reversible reaction of two reactants forming one product.

Name  $e_{-}02$ 

SBO:0000177 non-covalent binding

# **Reaction equation**

$$GlcNac\_LF\_CRP + C1 \Longrightarrow GlcNac\_LF\_CRP\_C1$$
 (49)

#### **Reactants**

Table 46: Properties of each reactant.

| Id            | Name                | SBO |
|---------------|---------------------|-----|
| GlcNac_LF_CRP | GlcNac/LF/CRP<br>C1 |     |

# **Product**

Table 47: Properties of each product.

| Id               | Name             | SBO |
|------------------|------------------|-----|
| GlcNac_LF_CRP_C1 | GlcNac/LF/CRP/C1 |     |

# **Derived unit** contains undeclared units

$$v_{18} = vol (compartment) \cdot (ke02\_1 \cdot [GlcNac\_LF\_CRP] \cdot [C1] - ke02\_2 \cdot [GlcNac\_LF\_CRP\_C1])$$
 (50)

# **8.19 Reaction** e\_03

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Name  $e_{-}03$ 

**SBO:0000178** cleavage

# **Reaction equation**

$$C4 \xrightarrow{GlcNac\_LF\_CRP\_C1} C4a + C4b$$
 (51)

# Reactant

Table 48: Properties of each reactant.

| Id | Name | SBO |
|----|------|-----|
| C4 | C4   |     |

#### **Modifier**

Table 49: Properties of each modifier.

| Id               | Name             | SBO     |
|------------------|------------------|---------|
| GlcNac_LF_CRP_C1 | GlcNac/LF/CRP/C1 | 0000460 |

#### **Products**

Table 50: Properties of each product.

| Id  | Name | SBO |
|-----|------|-----|
| C4a | C4a  |     |
| C4b | C4b  |     |

**Derived unit** contains undeclared units

$$v_{19} = vol\left(compartment\right) \cdot function\_1\left(ke03\_1, [GlcNac\_LF\_CRP\_C1], [C4], ke03\_2\right) \quad (52)$$

$$function_{-}1 (k, E, S, Km) = \frac{k \cdot E \cdot S}{Km + S}$$
 (53)

$$function_{-}1\left(k,E,S,Km\right) = \frac{k \cdot E \cdot S}{Km + S} \tag{54}$$

# 8.20 Reaction e\_04

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Name  $e_{-}04$ 

**SBO:0000178** cleavage

# **Reaction equation**

$$C2 \xrightarrow{GlcNac\_LF\_CRP\_C1} C2a + C2b$$
 (55)

#### Reactant

Table 51: Properties of each reactant.

| Id | Name | SBO |
|----|------|-----|
| C2 | C2   |     |

# **Modifier**

Table 52: Properties of each modifier.

| Id               | Name             | SBO     |
|------------------|------------------|---------|
| GlcNac_LF_CRP_C1 | GlcNac/LF/CRP/C1 | 0000460 |

# **Products**

Table 53: Properties of each product.

| Id | Name       | SBO |
|----|------------|-----|
|    | C2a<br>C2b |     |

# **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{20} = \text{vol} (\text{compartment}) \cdot \text{function\_1} (\text{ke04\_1}, [\text{GlcNac\_LF\_CRP\_C1}], [\text{C2}], \text{ke04\_2})$$
 (56)

function\_1 (k, E, S, Km) = 
$$\frac{k \cdot E \cdot S}{Km + S}$$
 (57)

$$function_{-}1(k, E, S, Km) = \frac{k \cdot E \cdot S}{Km + S}$$
 (58)

### 8.21 Reaction f\_01

This is a reversible reaction of two reactants forming one product.

Name f\_01

SBO:0000177 non-covalent binding

# **Reaction equation**

$$C4BP + PC\_CRP \Longrightarrow C4BP\_PC\_CRP$$
 (59)

# **Reactants**

Table 54: Properties of each reactant.

| Id        | Name   | SBO |
|-----------|--------|-----|
| C4BP      | C4BP   |     |
| $PC\_CRP$ | PC/CRP |     |

# **Product**

Table 55: Properties of each product.

| Id          | Name        | SBO |
|-------------|-------------|-----|
| C4BP_PC_CRP | C4BP/PC/CRP |     |

# **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{21} = \text{vol} \left( \text{compartment} \right) \cdot \left( \text{kf01\_1} \cdot [\text{C4BP}] \cdot [\text{PC\_CRP}] - \text{kf01\_2} \cdot [\text{C4BP\_PC\_CRP}] \right)$$
 (60)

# **8.22 Reaction** f\_02

This is a reversible reaction of two reactants forming one product.

Name  $f_02$ 

SBO:0000177 non-covalent binding

# **Reaction equation**

$$C4BP + GlcNac\_LF\_CRP \Longrightarrow C4BP\_GlcNac\_LF\_CRP$$
 (61)

# **Reactants**

Table 56: Properties of each reactant.

| Id                      | Name          | SBO |
|-------------------------|---------------|-----|
| C4BP                    | C4BP          |     |
| ${\tt GlcNac\_LF\_CRP}$ | GlcNac/LF/CRP |     |

# **Product**

Table 57: Properties of each product.

| Id Name            |                    | SBO |
|--------------------|--------------------|-----|
| C4BP_GlcNac_LF_CRP | C4BP/GlcNac/LF/CRP |     |

**Derived unit** contains undeclared units

$$v_{22} = \text{vol (compartment)}$$

$$\cdot (\text{kf02\_1} \cdot [\text{C4BP}] \cdot [\text{GlcNac\_LF\_CRP}] - \text{kf02\_2} \cdot [\text{C4BP\_GlcNac\_LF\_CRP}])$$
(62)

# **8.23 Reaction** f\_03

This is an irreversible reaction of two reactants forming two products.

Name  $f_{-}03$ 

SBO:0000176 biochemical reaction

# **Reaction equation**

$$C4b\_C2a + C4BP \longrightarrow iC4b\_C2a + C4BP$$
 (63)

# Reactants

Table 58: Properties of each reactant.

| Id      | Name    | SBO |
|---------|---------|-----|
| C4b_C2a | C4b/C2a |     |
| C4BP    | C4BP    |     |

# **Products**

Table 59: Properties of each product.

| Id               | Name             | SBO |
|------------------|------------------|-----|
| iC4b_C2a<br>C4BP | iC4b/C2a<br>C4BP |     |

**Derived unit** contains undeclared units

$$v_{23} = \text{vol} (\text{compartment}) \cdot \text{kf03} \cdot [\text{C4b\_C2a}] \cdot [\text{C4BP}]$$
 (64)

# 8.24 Reaction f\_04

This is a reversible reaction of two reactants forming one product.

Name  $f_04$ 

SBO:0000177 non-covalent binding

# **Reaction equation**

$$C4BP + C4b \rightleftharpoons C4BP\_C4b \tag{65}$$

#### **Reactants**

Table 60: Properties of each reactant.

| Id   | Name | SBO |
|------|------|-----|
| C4BP | C4BP |     |
| C4b  | C4b  |     |

#### **Product**

Table 61: Properties of each product.

| Id       | Name     | SBO |
|----------|----------|-----|
| C4BP_C4b | C4BP/C4b |     |

# **Kinetic Law**

Derived unit contains undeclared units

$$v_{24} = \text{vol}\left(\text{compartment}\right) \cdot \left(\text{kf04\_1} \cdot \left[\text{C4BP}\right] \cdot \left[\text{C4b}\right] - \text{kf04\_2} \cdot \left[\text{C4BP\_C4b}\right]\right) \tag{66}$$

#### 8.25 Reaction f\_05

This is an irreversible reaction of two reactants forming three products.

Name  $f_{-}05$ 

# SBO:0000180 dissociation

# **Reaction equation**

$$C4b\_C2a + C4BP \longrightarrow C4b + C2a + C4BP \tag{67}$$

# **Reactants**

Table 62: Properties of each reactant.

| Id      | Name    | SBO |
|---------|---------|-----|
| C4b_C2a | C4b/C2a | _   |
| C4BP    | C4BP    |     |

#### **Products**

Table 63: Properties of each product.

| Id   | Name | SBO |
|------|------|-----|
| C4b  | C4b  |     |
| C2a  | C2a  |     |
| C4BP | C4BP |     |

# **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{25} = \text{vol} (\text{compartment}) \cdot \text{kf05} \cdot [\text{C4b\_C2a}] \cdot [\text{C4BP}]$$
 (68)

# 8.26 Reaction f\_06

This is a reversible reaction of two reactants forming one product.

Name  $f_{-}06$ 

SBO:0000177 non-covalent binding

# **Reaction equation**

$$C4b\_C2a + C4BP \Longrightarrow C4b\_C2a\_C4BP \tag{69}$$

### **Reactants**

Table 64: Properties of each reactant.

| Id      | Name    | SBO |
|---------|---------|-----|
| C4b_C2a | C4b/C2a |     |
| C4BP    | C4BP    |     |

### **Product**

Table 65: Properties of each product.

| Id           | Name         | SBO |
|--------------|--------------|-----|
| C4b_C2a_C4BP | C4b/C2a/C4BP |     |

#### **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{26} = \text{vol} (\text{compartment}) \cdot (\text{kf06\_1} \cdot [\text{C4b\_C2a}] \cdot [\text{C4BP}] - \text{kf06\_2} \cdot [\text{C4b\_C2a\_C4BP}])$$
 (70)

## **8.27 Reaction** f\_07

This is a reversible reaction of two reactants forming one product.

Name  $f_07$ 

SBO:0000177 non-covalent binding

### **Reaction equation**

$$dC4b\_C2a + C4BP \Longrightarrow dC4b\_C2a\_C4BP \tag{71}$$

## **Reactants**

Table 66: Properties of each reactant.

| Id               | Name             | SBO |
|------------------|------------------|-----|
| dC4b_C2a<br>C4BP | dC4b/C2a<br>C4BP |     |

### **Product**

Table 67: Properties of each product.

| Id            | Name          | SBO |
|---------------|---------------|-----|
| dC4b_C2a_C4BP | dC4b/C2a/C4BP |     |

### **Derived unit** contains undeclared units

$$v_{27} = vol\left(compartment\right) \cdot \left(kf07\_1 \cdot \left[dC4b\_C2a\right] \cdot \left[C4BP\right] - kf07\_2 \cdot \left[dC4b\_C2a\_C4BP\right]\right) \quad (72)$$

### 8.28 Reaction t\_01

This is an irreversible reaction of one reactant forming no product.

#### Name $t_01$

## SBO:0000185 transport reaction

## **Reaction equation**

$$C4BP \longrightarrow \emptyset \tag{73}$$

#### Reactant

Table 68: Properties of each reactant.

| Id   | Name | SBO |
|------|------|-----|
| C4BP | C4BP |     |

#### **Kinetic Law**

Derived unit contains undeclared units

$$v_{28} = \text{vol}(\text{compartment}) \cdot \text{k1}_{-4} \cdot [\text{C4BP}]$$
 (74)

Table 69: Properties of each parameter.

| Id   | Name | SBO | Value                      | Unit | Constant |
|------|------|-----|----------------------------|------|----------|
| k1_4 | k1   | 3   | 3.42266 · 10 <sup>-4</sup> | 4    |          |

### **8.29 Reaction** t\_02

This is an irreversible reaction of one reactant forming no product.

Name  $t_02$ 

SBO:0000185 transport reaction

## **Reaction equation**

$$C3b \longrightarrow \emptyset \tag{75}$$

### Reactant

Table 70: Properties of each reactant.

| Id  | Name | SBO |
|-----|------|-----|
| C3b | C3b  |     |

### **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{29} = \text{vol}(\text{compartment}) \cdot \text{k1\_4} \cdot [\text{C3b}]$$
 (76)

Table 71: Properties of each parameter.

| Id   | Name | SBO Value Unit | Constant |
|------|------|----------------|----------|
| k1_4 | k1   | 0.493          |          |

## 8.30 Reaction t\_03

This is an irreversible reaction of one reactant forming no product.

Name  $t_{-}03$ 

SBO:0000185 transport reaction

## **Reaction equation**

$$C4b_{-}C2a \longrightarrow \emptyset \tag{77}$$

### Reactant

Table 72: Properties of each reactant.

| Id      | Name    | SBO |
|---------|---------|-----|
| C4b_C2a | C4b/C2a |     |

**Derived unit** contains undeclared units

$$v_{30} = \text{vol} (\text{compartment}) \cdot \text{k1\_4} \cdot [\text{C4b\_C2a}]$$
 (78)

Table 73: Properties of each parameter.

| Id   | Name | SBO Value Unit | Constant |
|------|------|----------------|----------|
| k1_4 | k1   | 0.047          |          |

### **8.31 Reaction** d\_05

This is a reversible reaction of two reactants forming one product.

Name  $d_{-}05$ 

SBO:0000177 non-covalent binding

## **Reaction equation**

$$PC\_CRP\_LF + C1 \Longrightarrow PC\_CRP\_LF\_C1$$
 (79)

#### Reactants

Table 74: Properties of each reactant.

| Id        | Name      | SBO |
|-----------|-----------|-----|
| PC_CRP_LF | PC/CRP/LF |     |
| C1        | C1        |     |

### **Product**

Table 75: Properties of each product.

| Id           | Name         | SBO |
|--------------|--------------|-----|
| PC_CRP_LF_C1 | PC/CRP/LF/C1 |     |

| Id | Name | SBO |
|----|------|-----|
|    |      |     |

**Derived unit** contains undeclared units

$$v_{31} = \text{vol} \left( \text{compartment} \right) \cdot \left( \text{kd05\_1} \cdot \left[ \text{PC\_CRP\_LF} \right] \cdot \left[ \text{C1} \right] - \text{kd05\_2} \cdot \left[ \text{PC\_CRP\_LF\_C1} \right] \right)$$
 (80)

### 8.32 Reaction d\_06

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Name  $d\_06$ 

**SBO:0000178** cleavage

### **Reaction equation**

$$C4 \xrightarrow{PC\_CRP\_LF\_C1} C4a + C4b \tag{81}$$

#### Reactant

Table 76: Properties of each reactant.

| Id | Name | SBO |
|----|------|-----|
| C4 | C4   |     |

#### **Modifier**

Table 77: Properties of each modifier.

| Id           | Name         | SBO     |
|--------------|--------------|---------|
| PC_CRP_LF_C1 | PC/CRP/LF/C1 | 0000460 |

#### **Products**

Table 78: Properties of each product.

| Id  | Name | SBO |
|-----|------|-----|
| C4a | C4a  |     |
| C4b | C4b  |     |

Derived unit contains undeclared units

$$v_{32} = \text{vol} (\text{compartment}) \cdot \text{function}_1 (\text{kd}06\_1, [\text{PC\_CRP\_LF\_C1}], [\text{C4}], \text{kd}06\_2)$$
 (82)

$$function_{-1}(k, E, S, Km) = \frac{k \cdot E \cdot S}{Km + S}$$
 (83)

$$function_{-}1(k, E, S, Km) = \frac{k \cdot E \cdot S}{Km + S}$$
 (84)

### **8.33 Reaction** d\_07

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Name d\_07

**SBO:0000178** cleavage

## **Reaction equation**

$$C2 \xrightarrow{PC\_CRP\_LF\_C1} C2a + C2b$$
 (85)

### Reactant

Table 79: Properties of each reactant.

| Id | Name | SBO |
|----|------|-----|
| C2 | C2   |     |

### **Modifier**

Table 80: Properties of each modifier.

| Id           | Name         | SBO     |
|--------------|--------------|---------|
| PC_CRP_LF_C1 | PC/CRP/LF/C1 | 0000460 |

## **Products**

Table 81: Properties of each product.

| Id | Name       | SBO |
|----|------------|-----|
|    | C2a<br>C2b |     |

**Derived unit** contains undeclared units

$$v_{33} = vol\left(compartment\right) \cdot function\_1\left(kd07\_1, [PC\_CRP\_LF\_C1], [C2], kd07\_2\right) \tag{86}$$

$$function_{-}1(k, E, S, Km) = \frac{k \cdot E \cdot S}{Km + S}$$
 (87)

$$function_{-}1\left(k,E,S,Km\right) = \frac{k \cdot E \cdot S}{Km + S} \tag{88}$$

### 8.34 Reaction t\_04

This is a reversible reaction of two reactants forming one product.

Name  $t_-04$ 

SBO:0000177 non-covalent binding

## **Reaction equation**

$$C4BP + PC\_CRP\_LF \Longrightarrow C4BP\_PC\_CRP\_LF$$
 (89)

#### **Reactants**

Table 82: Properties of each reactant.

| Id        | Name      | SBO |
|-----------|-----------|-----|
| C4BP      | C4BP      |     |
| PC_CRP_LF | PC/CRP/LF |     |

#### **Product**

Table 83: Properties of each product.

| Id             | Name           | SBO |
|----------------|----------------|-----|
| C4BP_PC_CRP_LF | C4BP/PC/CRP/LF |     |

### **Derived unit** contains undeclared units

$$v_{34} = \text{vol} (\text{compartment}) \cdot (\text{k1\_4} \cdot [\text{C4BP}] \cdot [\text{PC\_CRP\_LF}] - \text{k2} \cdot [\text{C4BP\_PC\_CRP\_LF}])$$
 (90)

Table 84: Properties of each parameter.

| Id   | Name | SBO Value Unit | Constant                  |
|------|------|----------------|---------------------------|
| k1_4 | k1   | 0.0            | $\overline{\hspace{1cm}}$ |
| k2   | k2   | 0.0            | $\square$                 |

## **8.35 Reaction** e\_05

This is a reversible reaction of two reactants forming one product.

Name  $e_{-}05$ 

SBO:0000177 non-covalent binding

### **Reaction equation**

$$GlcNac\_LF\_CRP + MASP \Longrightarrow GlcNac\_LF\_CRP\_MASP$$
 (91)

### **Reactants**

Table 85: Properties of each reactant.

| Id                    | Name                  | SBO |  |
|-----------------------|-----------------------|-----|--|
| GlcNac_LF_CRP<br>MASP | GlcNac/LF/CRP<br>MASP |     |  |

#### **Product**

Table 86: Properties of each product.

| Id                 | Name               | SBO |
|--------------------|--------------------|-----|
| GlcNac_LF_CRP_MASP | GlcNac/LF/CRP/MASP |     |

**Derived unit** contains undeclared units

$$v_{35} = vol (compartment) \\ \cdot (ke05\_1 \cdot [GlcNac\_LF\_CRP] \cdot [MASP] - ke05\_2 \cdot [GlcNac\_LF\_CRP\_MASP])$$
 (92)

## **8.36 Reaction** e\_06

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Name  $e_{-}06$ 

**SBO:0000178** cleavage

### **Reaction equation**

$$C4 \xrightarrow{GlcNac\_LF\_CRP\_MASP} C4a + C4b$$
 (93)

#### Reactant

Table 87: Properties of each reactant.

| Id | Name | SBO |
|----|------|-----|
| C4 | C4   |     |

#### **Modifier**

Table 88: Properties of each modifier.

| Id                 | Name               | SBO     |
|--------------------|--------------------|---------|
| GlcNac_LF_CRP_MASP | GlcNac/LF/CRP/MASP | 0000460 |

#### **Products**

Table 89: Properties of each product.

| Id  | Name | SBO |
|-----|------|-----|
| C4a | C4a  |     |
| C4b | C4b  |     |

**Derived unit** contains undeclared units

 $\textit{v}_{36} = vol\left(compartment\right) \cdot function\_1\left(ke06\_1, [GlcNac\_LF\_CRP\_MASP], [C4], ke06\_2\right) \quad (94)$ 

$$function_{-}1(k,E,S,Km) = \frac{k \cdot E \cdot S}{Km + S}$$
 (95)

$$function_{-}1(k, E, S, Km) = \frac{k \cdot E \cdot S}{Km + S}$$
 (96)

### **8.37 Reaction** e\_07

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Name  $e_{-}07$ 

**SBO:0000178** cleavage

## **Reaction equation**

$$C2 \xrightarrow{GlcNac\_LF\_CRP\_MASP} C2a + C2b$$
 (97)

#### Reactant

Table 90: Properties of each reactant.

| Id | Name | SBO |
|----|------|-----|
| C2 | C2   |     |

## **Modifier**

Table 91: Properties of each modifier.

| Id                 | Name               | SBO     |
|--------------------|--------------------|---------|
| GlcNac_LF_CRP_MASP | GlcNac/LF/CRP/MASP | 0000460 |

### **Products**

Table 92: Properties of each product.

| Id | Name       | SBO |
|----|------------|-----|
|    | C2a<br>C2b |     |

#### **Kinetic Law**

#### **Derived unit** contains undeclared units

$$v_{37} = \text{vol} (\text{compartment}) \cdot \text{function\_1} (\text{ke}07\_1, [\text{GlcNac\_LF\_CRP\_MASP}], [\text{C2}], \text{ke}07\_2)$$
 (98)

$$function_{-}1(k, E, S, Km) = \frac{k \cdot E \cdot S}{Km + S}$$
(99)

$$function_{-}1\left(k,E,S,Km\right) = \frac{k \cdot E \cdot S}{Km + S} \tag{100}$$

#### 8.38 Reaction d\_08

This is a reversible reaction of two reactants forming one product.

Name d<sub>-</sub>08

SBO:0000177 non-covalent binding

## **Reaction equation**

$$PC\_CRP\_LF\_C1 + MASP \Longrightarrow PC\_CRP\_LF\_C1\_MASP$$
 (101)

## Reactants

Table 93: Properties of each reactant.

| Id                   | Name                 | SBO |  |
|----------------------|----------------------|-----|--|
| PC_CRP_LF_C1<br>MASP | PC/CRP/LF/C1<br>MASP |     |  |

### **Product**

Table 94: Properties of each product.

| Id                | Name              | SBO |
|-------------------|-------------------|-----|
| PC_CRP_LF_C1_MASP | PC/CRP/LF/C1/MASP |     |

#### **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{38} = \text{vol}(\text{compartment})$$

$$\cdot (\text{kd08\_1} \cdot [\text{PC\_CRP\_LF\_C1}] \cdot [\text{MASP}] - \text{kd08\_2} \cdot [\text{PC\_CRP\_LF\_C1\_MASP}])$$
(102)

## **8.39 Reaction** d\_09

This is a reversible reaction of two reactants forming one product.

Name d<sub>-</sub>09

SBO:0000177 non-covalent binding

### **Reaction equation**

$$PC\_CRP\_LF\_MASP + C1 \Longrightarrow PC\_CRP\_LF\_C1\_MASP$$
 (103)

#### **Reactants**

Table 95: Properties of each reactant.

| Id                   | Name                 | SBO |
|----------------------|----------------------|-----|
| PC_CRP_LF_MASP<br>C1 | PC/CRP/LF/MASP<br>C1 |     |

#### **Product**

Table 96: Properties of each product.

| Id                | Name              | SBO |
|-------------------|-------------------|-----|
| PC_CRP_LF_C1_MASP | PC/CRP/LF/C1/MASP |     |

**Derived unit** contains undeclared units

$$\begin{aligned} \nu_{39} &= vol\left(\text{compartment}\right) \\ &\quad \cdot \left(\text{kd09\_1} \cdot \left[\text{PC\_CRP\_LF\_MASP}\right] \cdot \left[\text{C1}\right] - \text{kd09\_2} \cdot \left[\text{PC\_CRP\_LF\_C1\_MASP}\right]\right) \end{aligned} \tag{104}$$

## **8.40 Reaction** d\_10

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Name  $d_{-}10$ 

**SBO:0000178** cleavage

### **Reaction equation**

$$C4 \xrightarrow{PC\_CRP\_LF\_C1\_MASP} C4a + C4b$$
 (105)

#### Reactant

Table 97: Properties of each reactant.

| Id | Name | SBO |
|----|------|-----|
| C4 | C4   |     |

#### **Modifier**

Table 98: Properties of each modifier.

| Id                | Name              | SBO     |
|-------------------|-------------------|---------|
| PC_CRP_LF_C1_MASP | PC/CRP/LF/C1/MASP | 0000460 |

## **Products**

Table 99: Properties of each product.

| Id | Name       | SBO |
|----|------------|-----|
| 0  | C4a<br>C4b |     |

**Derived unit** contains undeclared units

 $v_{40} = vol\left(compartment\right) \cdot function\_1\left(kd10\_1, [PC\_CRP\_LF\_C1\_MASP], [C4], kd10\_2\right) \quad (106)$ 

$$function_{-}1\left(k,E,S,Km\right) = \frac{k \cdot E \cdot S}{Km + S} \tag{107}$$

$$function_{-}1\left(k,E,S,Km\right) = \frac{k \cdot E \cdot S}{Km + S} \tag{108}$$

### 8.41 Reaction d\_11

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

#### Name d<sub>-11</sub>

**SBO:0000178** cleavage

## **Reaction equation**

$$C2 \xrightarrow{PC\_CRP\_LF\_C1\_MASP} C2a + C2b$$
 (109)

### Reactant

Table 100: Properties of each reactant.

| Id | Name | SBO |
|----|------|-----|
| C2 | C2   |     |

## **Modifier**

Table 101: Properties of each modifier.

| Id                | Name              | SBO     |
|-------------------|-------------------|---------|
| PC_CRP_LF_C1_MASP | PC/CRP/LF/C1/MASP | 0000460 |

### **Products**

Table 102: Properties of each product.

| Name       | SBO |
|------------|-----|
| C2a<br>C2b |     |
|            | C2a |

#### **Kinetic Law**

#### **Derived unit** contains undeclared units

$$v_{41} = \text{vol} (\text{compartment}) \cdot \text{function\_1} (\text{kd11\_1}, [\text{PC\_CRP\_LF\_C1\_MASP}], [\text{C2}], \text{kd11\_2})$$
 (110)

$$function_{-}1(k, E, S, Km) = \frac{k \cdot E \cdot S}{Km + S}$$
 (111)

$$function_{-}1\left(k,E,S,Km\right) = \frac{k \cdot E \cdot S}{Km+S} \tag{112}$$

# **8.42 Reaction** g\_01

This is a reversible reaction of two reactants forming one product.

Name  $g_01$ 

SBO:0000177 non-covalent binding

## **Reaction equation**

$$X + HF \Longrightarrow GlcNac\_HF$$
 (113)

#### **Reactants**

Table 103: Properties of each reactant.

| Id | Name | SBO |
|----|------|-----|
| Х  | X    |     |
| HF | HF   |     |

### **Product**

Table 104: Properties of each product.

| Id        | Name      | SBO |
|-----------|-----------|-----|
| GlcNac_HF | GlcNac/HF |     |

#### **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{42} = vol(compartment) \cdot (kg01_{-}1 \cdot [X] \cdot [HF] - kg01_{-}2 \cdot [GlcNac\_HF])$$
 (114)

## **8.43 Reaction** g\_02

This is a reversible reaction of two reactants forming one product.

Name  $g_-02$ 

SBO:0000177 non-covalent binding

### **Reaction equation**

$$GlcNac\_HF + MASP \Longrightarrow GlcNac\_HF\_MASP$$
 (115)

#### **Reactants**

Table 105: Properties of each reactant.

| Id                | Name              | SBO |
|-------------------|-------------------|-----|
| GlcNac_HF<br>MASP | GlcNac/HF<br>MASP |     |

### **Product**

Table 106: Properties of each product.

| Id             | Name           | SBO |
|----------------|----------------|-----|
| GlcNac_HF_MASP | GlcNac/HF/MASP |     |

**Derived unit** contains undeclared units

$$v_{43} = vol\left(compartment\right) \cdot \left(kg02\_1 \cdot \left[GlcNac\_HF\right] \cdot \left[MASP\right] - kg02\_2 \cdot \left[GlcNac\_HF\_MASP\right]\right) \tag{116}$$

# **8.44 Reaction** g\_03

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Name  $g_03$ 

**SBO:0000178** cleavage

### **Reaction equation**

$$C4 \xrightarrow{GlcNac\_HF\_MASP} C4a + C4b$$
 (117)

### Reactant

Table 107: Properties of each reactant.

| Id | Name | SBO |
|----|------|-----|
| C4 | C4   |     |

#### **Modifier**

Table 108: Properties of each modifier.

| Id             | Name           | SBO     |
|----------------|----------------|---------|
| GlcNac_HF_MASP | GlcNac/HF/MASP | 0000460 |

#### **Products**

Table 109: Properties of each product.

| Name       | SBO |
|------------|-----|
| C4a<br>C4b |     |
|            | C4a |

**Derived unit** contains undeclared units

 $v_{44} = vol\left(compartment\right) \cdot function\_1\left(kg03\_1, [GlcNac\_HF\_MASP], [C4], kg03\_2\right) \quad (118)$ 

$$function_{-}1(k, E, S, Km) = \frac{k \cdot E \cdot S}{Km + S}$$
 (119)

$$function_{-}1\left(k,E,S,Km\right) = \frac{k \cdot E \cdot S}{Km + S} \tag{120}$$

## **8.45 Reaction** g\_04

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Name  $g_-04$ 

**SBO:0000178** cleavage

## **Reaction equation**

$$C2 \xrightarrow{GlcNac\_HF\_MASP} C2a + C2b$$
 (121)

#### Reactant

Table 110: Properties of each reactant.

| Id | Name | SBO |
|----|------|-----|
| C2 | C2   |     |

## **Modifier**

Table 111: Properties of each modifier.

|                | - I            |         |
|----------------|----------------|---------|
| Id             | Name           | SBO     |
| GlcNac_HF_MASP | GlcNac/HF/MASP | 0000460 |

#### **Products**

Table 112: Properties of each product.

| Id | Name       | SBO |
|----|------------|-----|
|    | C2a<br>C2b |     |

#### **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{45} = \text{vol} (\text{compartment}) \cdot \text{function}_1 (\text{kg}_{04}_1, [\text{GlcNac}_HF_MASP], [\text{C2}], \text{kg}_{04}_2)$$
 (122)

$$function_{-}1\left(k,E,S,Km\right) = \frac{k \cdot E \cdot S}{Km + S} \tag{123}$$

$$function\_1\left(k,E,S,Km\right) = \frac{k \cdot E \cdot S}{Km + S} \tag{124} \label{eq:124}$$

# 9 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions > 0 for certain species.

### 9.1 Species CRP

Name CRP

SBO:0000252 polypeptide chain

Initial concentration  $2 \text{ nmol} \cdot \text{ml}^{-1}$ 

This species takes part in two reactions (as a reactant in a\_01, e\_01).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{CRP} = -|v_1| - |v_{17}| \tag{125}$$

## 9.2 Species PC

Name PC

SBO:0000247 simple chemical

Initial concentration  $0.0327796 \text{ nmol} \cdot \text{ml}^{-1}$ 

This species takes part in one reaction (as a reactant in a\_01).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{PC} = -v_1\tag{126}$$

## 9.3 Species PC\_CRP

Name PC/CRP

SBO:0000297 protein complex

Initial concentration  $0 \text{ nmol} \cdot \text{ml}^{-1}$ 

This species takes part in four reactions (as a reactant in a\_02, d\_01, f\_01 and as a product in a\_01).

$$\frac{d}{dt}PC\_CRP = v_1 - |v_2| - |v_9| - |v_{21}|$$
 (127)

### 9.4 Species C4

Name C4

SBO:0000252 polypeptide chain

Initial concentration  $770 \text{ nmol} \cdot \text{ml}^{-1}$ 

This species takes part in eight reactions (as a reactant in a\_03, d\_03, b\_03, e\_03, d\_06, e\_06, d\_10, g\_03).

$$\frac{\mathrm{d}}{\mathrm{d}t}C4 = -|v_3| - |v_{11}| - |v_{15}| - |v_{19}| - |v_{32}| - |v_{36}| - |v_{40}| - |v_{44}| \tag{128}$$

### 9.5 Species C4a

Name C4a

SBO:0000252 polypeptide chain

Initial concentration  $0 \text{ nmol} \cdot \text{ml}^{-1}$ 

This species takes part in eight reactions (as a product in a\_03, d\_03, b\_03, e\_03, d\_06, e\_06, d\_10, g\_03).

$$\frac{d}{dt}C4a = |v_3| + |v_{11}| + |v_{15}| + |v_{19}| + |v_{32}| + |v_{36}| + |v_{40}| + |v_{44}|$$
(129)

### 9.6 Species C4b

Name C4b

SBO:0000252 polypeptide chain

Initial concentration  $0 \text{ nmol} \cdot \text{ml}^{-1}$ 

This species takes part in eleven reactions (as a reactant in  $c_01$ ,  $f_04$  and as a product in  $a_03$ ,  $d_03$ ,  $b_03$ ,  $e_03$ ,  $f_05$ ,  $d_06$ ,  $e_06$ ,  $d_010$ ,  $g_03$ ).

$$\frac{d}{dt}C4b = v_3 + v_{11} + v_{15} + v_{19} + v_{25} + v_{32} + v_{36} + v_{40} + v_{44} - v_5 - v_{24}$$
 (130)

### 9.7 Species C2

Name C2

SBO:0000252 polypeptide chain

Initial concentration  $310 \text{ nmol} \cdot \text{ml}^{-1}$ 

This species takes part in eight reactions (as a reactant in a\_04, d\_04, b\_04, e\_04, d\_07, e\_07, d\_11, g\_04).

$$\frac{\mathrm{d}}{\mathrm{d}t}C2 = -|v_4| - |v_{12}| - |v_{16}| - |v_{20}| - |v_{33}| - |v_{37}| - |v_{41}| - |v_{45}|$$
(131)

## 9.8 Species C1

Name C1

SBO:0000252 polypeptide chain

Initial concentration 2470 nmol·ml<sup>-1</sup>

This species takes part in four reactions (as a reactant in a\_02, e\_02, d\_05, d\_09).

$$\frac{\mathrm{d}}{\mathrm{d}t}C1 = -|v_2| - |v_{18}| - |v_{31}| - |v_{39}| \tag{132}$$

## 9.9 Species PC\_CRP\_C1

Name PC/CRP/C1

SBO:0000297 protein complex

Initial concentration  $0 \text{ nmol} \cdot \text{ml}^{-1}$ 

This species takes part in three reactions (as a product in a\_02 and as a modifier in a\_03, a\_04).

$$\frac{\mathrm{d}}{\mathrm{d}t} PC\_CRP\_C1 = v_2 \tag{133}$$

### 9.10 Species C2a

Name C2a

SBO:0000252 polypeptide chain

Initial concentration  $0 \text{ nmol} \cdot \text{ml}^{-1}$ 

This species takes part in ten reactions (as a reactant in c\_01 and as a product in a\_04, d\_04, b\_04, e\_04, f\_05, d\_07, e\_07, d\_11, g\_04).

$$\frac{d}{dt}C2a = v_4 + v_{12} + v_{16} + v_{20} + v_{25} + v_{33} + v_{37} + v_{41} + v_{45} - v_5$$
 (134)

### 9.11 Species C2b

Name C2b

SBO:0000252 polypeptide chain

Initial concentration 0 nmol⋅ml<sup>-1</sup>

This species takes part in eight reactions (as a product in a\_04, d\_04, b\_04, e\_04, d\_07, e\_07, d\_11, g\_04).

$$\frac{d}{dt}C2b = v_4 + v_{12} + v_{16} + v_{20} + v_{33} + v_{37} + v_{41} + v_{45}$$
(135)

### 9.12 Species C4b\_C2a

Name C4b/C2a

SBO:0000297 protein complex

Initial concentration  $0 \text{ nmol} \cdot \text{ml}^{-1}$ 

This species takes part in eight reactions (as a reactant in  $c_02$ ,  $c_04$ ,  $f_03$ ,  $f_05$ ,  $f_06$ ,  $t_03$  and as a product in  $c_01$ ,  $c_02$ ).

$$\frac{d}{dt}C4b_{-}C2a = v_5 + v_6 - v_6 - v_8 - v_{23} - v_{25} - v_{26} - v_{30}$$
 (136)

## 9.13 Species C3

Name C3

SBO:0000252 polypeptide chain

Initial concentration  $4650 \text{ nmol} \cdot \text{ml}^{-1}$ 

This species takes part in one reaction (as a reactant in c\_02).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{C}3 = -v_6 \tag{137}$$

## 9.14 Species C3a

Name C3a

SBO:0000252 polypeptide chain

Initial concentration  $0 \text{ nmol} \cdot \text{ml}^{-1}$ 

This species takes part in one reaction (as a product in c\_02).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{C}3\mathrm{a} = v_6 \tag{138}$$

### 9.15 Species C3b

Name C3b

SBO:0000252 polypeptide chain

Initial concentration  $0 \text{ nmol} \cdot \text{ml}^{-1}$ 

This species takes part in three reactions (as a reactant in c\_03, t\_02 and as a product in c\_02).

$$\frac{d}{dt}C3b = |v_6| - |v_7| - |v_{29}| \tag{139}$$

### 9.16 Species dC3b

Name dC3b

SBO:0000252 polypeptide chain

Initial concentration  $0 \text{ nmol} \cdot \text{ml}^{-1}$ 

This species takes part in one reaction (as a product in c\_03).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{dC3b} = v_7 \tag{140}$$

## 9.17 Species MASP

Name MASP

SBO:0000252 polypeptide chain

Initial concentration  $6.8 \text{ nmol} \cdot \text{ml}^{-1}$ 

This species takes part in five reactions (as a reactant in d\_02, b\_02, e\_05, d\_08, g\_02).

$$\frac{d}{dt}MASP = -|v_{10}| - |v_{14}| - |v_{35}| - |v_{38}| - |v_{43}|$$
(141)

### 9.18 Species dC4b\_C2a

Name dC4b/C2a

SBO:0000297 protein complex

Initial concentration  $0 \text{ nmol} \cdot \text{ml}^{-1}$ 

This species takes part in two reactions (as a reactant in f\_07 and as a product in c\_04).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{d}C4b_{-}C2a = v_8 - v_{27} \tag{142}$$

### 9.19 Species GlcNac

Name GlcNac

SBO:0000247 simple chemical

Initial concentration  $0 \text{ nmol} \cdot \text{ml}^{-1}$ 

This species takes part in one reaction (as a reactant in b\_01).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{GlcNac} = -v_{13} \tag{143}$$

### 9.20 Species GlcNac\_LF

Name GlcNac/LF

SBO:0000247 simple chemical

Initial concentration  $0 \text{ nmol} \cdot \text{ml}^{-1}$ 

This species takes part in three reactions (as a reactant in b\_02, e\_01 and as a product in b\_01).

$$\frac{d}{dt}GlcNac_LF = |v_{13}| - |v_{14}| - |v_{17}|$$
(144)

## 9.21 Species LF

Name LF

SBO:0000252 polypeptide chain

Initial concentration 20 nmol·ml<sup>-1</sup>

This species takes part in two reactions (as a reactant in d\_01, b\_01).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{LF} = -|v_9| - |v_{13}| \tag{145}$$

### 9.22 Species GlcNac\_LF\_MASP

Name GlcNac/LF/MASP

SBO:0000297 protein complex

Initial concentration  $0 \text{ nmol} \cdot \text{ml}^{-1}$ 

This species takes part in three reactions (as a product in b\_02 and as a modifier in b\_03, b\_04).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{GlcNac}_{\perp}\mathrm{LF}_{\perp}\mathrm{MASP} = v_{14} \tag{146}$$

### 9.23 Species PC\_CRP\_LF

Name PC/CRP/LF

SBO:0000297 protein complex

Initial concentration  $0 \text{ nmol} \cdot \text{ml}^{-1}$ 

This species takes part in four reactions (as a reactant in d\_02, d\_05, t\_04 and as a product in d\_01).

$$\frac{d}{dt}PC\_CRP\_LF = |v_9| - |v_{10}| - |v_{31}| - |v_{34}|$$
(147)

### 9.24 Species PC\_CRP\_LF\_MASP

Name PC/CRP/LF/MASP

SBO:0000297 protein complex

Initial concentration  $0 \text{ nmol} \cdot \text{ml}^{-1}$ 

This species takes part in four reactions (as a reactant in d\_09 and as a product in d\_02 and as a modifier in d\_03, d\_04).

$$\frac{\mathrm{d}}{\mathrm{d}t} PC\_CRP\_LF\_MASP = v_{10} - v_{39}$$
 (148)

### 9.25 Species GlcNac\_LF\_CRP

Name GlcNac/LF/CRP

SBO:0000297 protein complex

Initial concentration  $0 \text{ nmol} \cdot \text{ml}^{-1}$ 

This species takes part in four reactions (as a reactant in e\_02, f\_02, e\_05 and as a product in e\_01).

$$\frac{d}{dt}GlcNac_LF_CRP = |v_{17}| - |v_{18}| - |v_{22}| - |v_{35}|$$
(149)

## 9.26 Species GlcNac\_LF\_CRP\_C1

Name GlcNac/LF/CRP/C1

SBO:0000297 protein complex

Initial concentration  $0 \text{ nmol} \cdot \text{ml}^{-1}$ 

This species takes part in three reactions (as a product in e\_02 and as a modifier in e\_03, e\_04).

$$\frac{d}{dt}GlcNac\_LF\_CRP\_C1 = v_{18}$$
 (150)

#### 9.27 Species C4BP

Name C4BP

SBO:0000252 polypeptide chain

Initial concentration 260 nmol·ml<sup>-1</sup>

This species takes part in eleven reactions (as a reactant in f\_01, f\_02, f\_03, f\_04, f\_05, f\_06, f\_07, t\_01, t\_04 and as a product in f\_03, f\_05).

$$\frac{d}{dt}C4BP = v_{23} + v_{25} - v_{21} - v_{22} - v_{23} - v_{24} - v_{25} - v_{26} - v_{27} - v_{28} - v_{34}$$
 (151)

## 9.28 Species C4BP\_PC\_CRP

Name C4BP/PC/CRP

SBO:0000297 protein complex

Initial concentration  $0 \text{ nmol} \cdot \text{ml}^{-1}$ 

This species takes part in one reaction (as a product in f\_01).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{C4BP\_PC\_CRP} = |v_{21}| \tag{152}$$

## 9.29 Species C4BP\_GlcNac\_LF\_CRP

Name C4BP/GlcNac/LF/CRP

SBO:0000297 protein complex

Initial concentration  $0 \text{ nmol} \cdot \text{ml}^{-1}$ 

This species takes part in one reaction (as a product in f\_02).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{C4BP\_GlcNac\_LF\_CRP} = v_{22} \tag{153}$$

## 9.30 Species iC4b\_C2a

Name iC4b/C2a

SBO:0000297 protein complex

Initial concentration  $0 \text{ nmol} \cdot \text{ml}^{-1}$ 

This species takes part in one reaction (as a product in f\_03).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{iC4b}_{-}\mathrm{C2a} = v_{23} \tag{154}$$

### 9.31 Species C4BP\_C4b

Name C4BP/C4b

SBO:0000297 protein complex

Initial concentration  $0 \text{ nmol} \cdot \text{ml}^{-1}$ 

This species takes part in one reaction (as a product in f\_04).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{C4BP}_{-}\mathrm{C4b} = v_{24} \tag{155}$$

### 9.32 Species C4b\_C2a\_C4BP

Name C4b/C2a/C4BP

SBO:0000297 protein complex

Initial concentration  $0 \text{ nmol} \cdot \text{ml}^{-1}$ 

This species takes part in one reaction (as a product in f\_06).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{C4b}_{-}\mathrm{C2a}_{-}\mathrm{C4BP} = v_{26} \tag{156}$$

### 9.33 Species dC4b\_C2a\_C4BP

Name dC4b/C2a/C4BP

SBO:0000297 protein complex

Initial concentration  $0 \text{ nmol} \cdot \text{ml}^{-1}$ 

This species takes part in one reaction (as a product in f\_07).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{dC4b\_C2a\_C4BP} = v_{27} \tag{157}$$

### 9.34 Species PC\_CRP\_LF\_C1

Name PC/CRP/LF/C1

SBO:0000297 protein complex

Initial concentration  $0 \text{ nmol} \cdot \text{ml}^{-1}$ 

This species takes part in four reactions (as a reactant in d\_08 and as a product in d\_05 and as a modifier in d\_06, d\_07).

$$\frac{\mathrm{d}}{\mathrm{d}t} PC\_CRP\_LF\_C1 = |v_{31}| - |v_{38}| \tag{158}$$

### 9.35 Species C4BP\_PC\_CRP\_LF

Name C4BP/PC/CRP/LF

SBO:0000297 protein complex

Initial concentration  $0 \text{ nmol} \cdot \text{ml}^{-1}$ 

This species takes part in one reaction (as a product in t\_04).

$$\frac{d}{dt}C4BP\_PC\_CRP\_LF = v_{34}$$
 (159)

#### 9.36 Species GlcNac\_LF\_CRP\_MASP

Name GlcNac/LF/CRP/MASP

SBO:0000297 protein complex

Initial concentration  $0 \text{ nmol} \cdot \text{ml}^{-1}$ 

This species takes part in three reactions (as a product in e\_05 and as a modifier in e\_06, e\_07).

$$\frac{d}{dt}GlcNac\_LF\_CRP\_MASP = v_{35}$$
 (160)

### 9.37 Species PC\_CRP\_LF\_C1\_MASP

Name PC/CRP/LF/C1/MASP

SBO:0000297 protein complex

Initial concentration  $0 \text{ nmol} \cdot \text{ml}^{-1}$ 

This species takes part in four reactions (as a product in d\_08, d\_09 and as a modifier in d\_10, d\_11).

$$\frac{d}{dt}PC\_CRP\_LF\_C1\_MASP = |v_{38}| + |v_{39}|$$
 (161)

## 9.38 Species GlcNac\_LF\_C1\_MASP

Name GlcNac/LF/C1/MASP

SBO:0000297 protein complex

Initial concentration  $0 \text{ nmol} \cdot \text{ml}^{-1}$ 

This species does not take part in any reactions. Its quantity does hence not change over time:

$$\frac{d}{dt}GlcNac\_LF\_C1\_MASP = 0$$
 (162)

### 9.39 Species GlcNac\_HF

Name GlcNac/HF

SBO:0000297 protein complex

Initial concentration  $0 \text{ nmol} \cdot \text{ml}^{-1}$ 

This species takes part in two reactions (as a reactant in g\_02 and as a product in g\_01).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{GlcNac\_HF} = |v_{42}| - |v_{43}| \tag{163}$$

#### 9.40 Species HF

Name HF

SBO:0000252 polypeptide chain

Initial concentration  $0 \text{ nmol} \cdot \text{ml}^{-1}$ 

This species takes part in one reaction (as a reactant in g\_01).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{HF} = -v_{42} \tag{164}$$

### 9.41 Species GlcNac\_HF\_MASP

Name GlcNac/HF/MASP

SBO:0000297 protein complex

Initial concentration  $0 \text{ nmol} \cdot \text{ml}^{-1}$ 

This species takes part in three reactions (as a product in g\_02 and as a modifier in g\_03, g\_04).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{GlcNac\_HF\_MASP} = v_{43} \tag{165}$$

#### 9.42 Species X

Name X

SBO:0000252 polypeptide chain

Initial concentration  $5 \cdot 10^{-4} \text{ nmol} \cdot \text{ml}^{-1}$ 

This species takes part in one reaction (as a reactant in  $g_01$ ).

$$\frac{\mathrm{d}}{\mathrm{d}t}X = -v_{42} \tag{166}$$

# A Glossary of Systems Biology Ontology Terms

**SBO:0000025** catalytic rate constant: Numerical parameter that quantifies the velocity of an enzymatic reaction

**SBO:0000027** Michaelis constant: Substrate concentration at which the velocity of reaction is half its maximum. Michaelis constant is an experimental parameter. According to the underlying molecular mechanism it can be interpreted differently in terms of microscopic constants

**SBO:0000033 reverse bimolecular rate constant:** Numerical parameter that quantifies the reverse velocity of a chemical reaction involving only one product. This parameter encompasses all the contributions to the velocity except the quantity of the product

- **SBO:0000035** forward unimolecular rate constant, continuous case: Numerical parameter that quantifies the forward velocity of a chemical reaction involving only one reactant. This parameter encompasses all the contributions to the velocity except the quantity of the reactant. It is to be used in a reaction modelled using a continuous framework
- **SBO:0000036 forward bimolecular rate constant, continuous case:** Numerical parameter that quantifies the forward velocity of a chemical reaction involving two reactants. This parameter encompasses all the contributions to the velocity except the quantity of the reactants. It is to be used in a reaction modelled using a continuous framework

- **SBO:0000038** reverse unimolecular rate constant, continuous case: Numerical parameter that quantifies the reverse velocity of a chemical reaction involving only one product. This parameter encompasses all the contributions to the velocity except the quantity of the product. It is to be used in a reaction modelled using a continuous framework
- **SBO:0000176** biochemical reaction: An event involving one or more chemical entities that modifies the electrochemical structure of at least one of the participants.
- **SBO:0000177 non-covalent binding:** Interaction between several biochemical entities that results in the formation of a non-covalent comple
- **SBO:0000178 cleavage:** Rupture of a covalent bond resulting in the conversion of one physical entity into several physical entities
- **SBO:0000180** dissociation: Transformation of a non-covalent complex that results in the formation of several independent biochemical entitie
- **SBO:0000185 transport reaction:** Movement of a physical entity without modification of the structure of the entity
- SBO:0000247 simple chemical: Simple, non-repetitive chemical entity
- **SBO:0000252 polypeptide chain:** Naturally occurring macromolecule formed by the repetition of amino-acid residues linked by peptidic bonds. A polypeptide chain is synthesized by the ribosome. CHEBI:1654
- **SBO:0000290 physical compartment:** Specific location of space, that can be bounded or not. A physical compartment can have 1, 2 or 3 dimensions
- **SBO:0000297 protein complex:** Macromolecular complex containing one or more polypeptide chains possibly associated with simple chemicals. CHEBI:3608
- **SBO:0000338 dissociation rate constant:** Rate with which a complex dissociates into its components
- **SBO:0000339** bimolecular association rate constant: Rate with which two components associate into a complex
- **SBO:0000460 enzymatic catalyst:** A substance that accelerates the velocity of a chemical reaction without itself being consumed or transformed, by lowering the free energy of the transition state. The substance acting as a catalyst is an enzyme
- **SBO:0000472** molar concentration of an entity: Molarity, or molar concentration, denotes the number of moles of a given substance per litre of solution. The unit of measure of molarity is mol/L, molar, or the capital letter M as an abbreviated form

SML2ATEX was developed by Andreas Dräger<sup>a</sup>, Hannes Planatscher<sup>a</sup>, Dieudonné M Wouamba<sup>a</sup>, Adrian Schröder<sup>a</sup>, Michael Hucka<sup>b</sup>, Lukas Endler<sup>c</sup>, Martin Golebiewski<sup>d</sup> and Andreas Zell<sup>a</sup>. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

<sup>&</sup>lt;sup>a</sup>Center for Bioinformatics Tübingen (ZBIT), Germany

<sup>&</sup>lt;sup>b</sup>California Institute of Technology, Beckman Institute BNMC, Pasadena, United States

<sup>&</sup>lt;sup>c</sup>European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

<sup>&</sup>lt;sup>d</sup>EML Research gGmbH, Heidelberg, Germany