Florent BERBIE Antoine de ROQUEMAUREL

Rédigé avec IATEX Version du 7 janvier 2016

Maison Intelligente

Salle de bain

Université Toulouse III – Paul Sabatier

Table des matières

1	Dia	gramme des exigences (req)	4
2	Diagramme des cas d'utilisations (uc)		5
3 Diagrammes de blocs de définition			6
	3.1	Diagramme de blocs général	6
	3.2	Diagramme de blocs de « Montée-Descente »	7
4	Dia	grammes internes de blocs (ibd)	8
5	Diagrammes d'état		9
	5.1	Diagramme d'état lors de l'entrée d'un utilisateur dans la salle de bain	9
	5.2	Diagramme d'état d'un utilisateur de la douche	10
6	Dia	grammes de séquence (seq)	11
	6.1	Diagramme de séquence lorsque le locataire entre dans la salle de bain	11
	6.2	Diagramme de séquence lorsque le locataire entre dans la douche	13
7	Tab	ole des figures	14

À propos

La Maison Intelligente (MI) constitue un lieu où technologies et sciences humaines se rencontrent pour trouver des solutions permettant d'aider à l'accompagnement du vieillissement des populations dans notre société (handicaps, dépendances, etc).

Pour ce faire, la Maison Intelligente propose un ensemble de solutions permettant à celle-ci de s'adapter à son habitant. L'ensemble des possibilités qu'offre la MI sont définies dans le document : M2DL2015-ExigencesMI.

L'objectif du document est de proposer un ensemble de diagrammes définies au moyen de la norme SysML répondant aux exigences relatives à la salle de bain de la MI.

Les diagrammes ici représentés seront :

- diagramme des **exigences** (req)
- diagramme des cas d'utilisation (uc)
- diagramme de blocs de définition (bdd)
- diagramme **interne de blocs** (idb)
- diagramme comportementaux
 - diagramme d'états (st)
 - diagramme de **séquences** (seq)

Diagramme des exigences (req)

Les exigences de la salle de bain sont réparties en plusieurs parties et concernent l'adaptation de celle-ci à l'habitant :

- L'adaptation des meubles
- L'adaptation de l'éclairage
- L'adaptation de la température de la pièce

Figure 1.1 – Diagramme des exigences de la salle de bain

Diagramme des cas d'utilisations (uc)

L'objectif de la Maison Intelligente est de permettre au **locataire**, quelque soit son niveau d'handicap, de bénéficier des actions primaires.

Au niveau de la salle de bain, les actions primaires sont donc les mêmes qu'un utilisateur classique d'où la notion d'héritage entre **Locataire** et un **Utilisateur**. Tous deux peuvent **se doucher**, **aller aux toilettes** et **utiliser le lavabo**.

FIGURE 2.1 – Diagramme de cas d'utilisation pour un locataire

Diagrammes de blocs de définition

3.1 Diagramme de blocs général

Afin de répondre à l'ensemble des exigences présentées section 1, figure 1.1, la salle de bain possède différents blocs :

Mobilier Concerne les équipements devant s'adapter à l'habitant

Éclairages Tout ce qui est prévu pour l'adaptation des éclairages

Radiateur L'adaptation de la température de la pièce

Contrôleur Un système permettant de contrôler les éléments de notre salle de bain. Ce système contient un micro-contrôleur permettant l'utilisation des capteurs et actionneurs, un système de communication avec les données de la maison intelligente, ainsi qu'un logiciel effectuant les traitements nécessaires (monter/descendre un mobilier, augmenter la température de la pièce, ...)

FIGURE 3.1 – Diagramme de blocs de définition « général »

3.2 Diagramme de blocs de « Montée-Descente »

Chaque mobilier doit pouvoir moduler sa hauteur pour s'adapter à l'habitant de la MI. Chaque mobilier de la salle de bain est doté d'un bloc « Montée-Descente » comportant :

Capteur de mouvement Infra-Rouge détermine les mouvements de l'habitant

Capteur laser permet de déterminer la taille de l'habitant afin de pouvoir s'adapter à lui (montée-descente des meubles)

Système élévateur permet de monter ou descendre la dalle supportant le mobilier (ou l'habitant si celui-ci est dans la douche) en fonction de sa position actuelle et de la taille de l'habitant.

FIGURE 3.2 – Diagramme de blocs de définition de « Montée-Descente »

Diagrammes internes de blocs (ibd)

Le **Système élévateur** associé aux meubles permettant d'adapter la hauteurs de ces derniers à celle de l'habitant fonctionne de la façon présentée ci-dessous.

Nous prenons ici le cas de la douche.

Le système reçoit deux paramètres : la hauteur de l'habitant *hauteurHabitant* (nulle si personne est dans la douche) et une valeur booléenne *estDansLaDouche* indiquant si l'utilisateur se trouve dans la douche. La hauteur de l'habitant est transmise au **Contrôleur** qui va à son tour récupérer la position du mobilier, c'est-à-dire sa hauteur *hauteurMobilier* par rapport au sol. Il va comparer cette valeur obtenue à la hauteur de l'habitant récupérée en entrée afin de déterminer la position de la dalle élévatrice *positionDalle*.

FIGURE 4.1 – Diagramme interne de blocs pour actionner la montée-descente d'un mobilier

5.1 Diagramme d'état lors de l'entrée d'un utilisateur dans la salle de bain

Le diagramme ci-dessous présente l'état du système lorsqu'un utilisateur entre dans la salle de bain.

La présence de l'utilisateur est détéctée au moyen de capteurs infra-rouge, des capteurs de luminosité et de température qui permettent de régler respectivement l'éclairage et le chauffage.

FIGURE 5.1 – Diagramme d'état de l'entrée d'un utilisateur dans la salle de bain

5.2 Diagramme d'état d'un utilisateur de la douche

Le diagramme d'état ci-après décrit l'état du système lorsque l'utilisateur entre dans la douche.

La présence de l'utilisateur dans la douche se fait au moyen d'un **capteur de charge**. Dès lors, un **capteur laser** détermine la taille de l'utilisateur afin de pouvoir adapter la hauteur de la pomme de douche à l'utilisateur. Un **capteur de position** sur le mobilier permet d'en connaître la hauteur et de la comparer à celle de l'utilisateur pour procéder à l'élévation ou l'abaissement de la dalle.

FIGURE 5.2 – Diagramme d'état d'un utilisateur de la douche

Diagrammes de séquence (seq)

6.1 Diagramme de séquence lorsque le locataire entre dans la salle de bain

Le diagramme ci-après présente l'enchainement des actions en fonction du capteur de mouvement Infra-Rouge (IR), du contrôleur, du radiateur et des éclairages de la salle de bain.

Le capteur de mouvement IR permet d'indiquer lorsque l'utilisateur entre et sort de la salle de bain. La présence du locataire dans la salle de bain déclenche l'allumage des éclairages et du radiateur si la température intérieure n'est pas assez élevée. A contrario, lorsque l'utilisateur sort de la salle de bain, les éclairages et le radiateur s'éteignent. L'interprétation des mouvements du capteur et le déclenchement des actions sont réalisées au moyen du **Contrôleur**.

FIGURE 6.1 – Diagramme de séquence lorsque le locataire entre dans la salle de bain

6.2 Diagramme de séquence lorsque le locataire entre dans la douche

Le diagramme ci-dessous présente le déroulement des actions en fonction des différents capteurs (capteur de charge, capteur de position), du contrôleur et de la dalle élévatrice.

Les capteurs fournissent des informations (présence ou non du locataire dans la douche, hauteur du locataire) qui analyse l'arrivée de ces flux en continu (**loop**) puis qui procède au traitement afin d'élever ou d'abaisser la dalle élévatrice.

FIGURE 6.2 – Diagramme de séquence lorsque le locataire entre dans la douche

Table des figures

1.1	Diagramme des exigences de la salle de bain	4
2.1	Diagramme de cas d'utilisation pour un locataire	5
3.1	Diagramme de blocs de définition « général »	6
3.2	Diagramme de blocs de définition de « Montée-Descente »	7
4.1	Diagramme interne de blocs pour actionner la montée-descente d'un mobilier	8
5.1	Diagramme d'état de l'entrée d'un utilisateur dans la salle de bain	9
5.2	Diagramme d'état d'un utilisateur de la douche	10
6.1	Diagramme de séquence lorsque le locataire entre dans la salle de bain	12
6.2	Diagramme de séquence lorsque le locataire entre dans la douche	13