CLAIMS:

5

15

1. The use, for the manufacture of a medicament for treatment or prevention of a disease associated with the deposition of β -amyloid in the brain, of a compound of formula I:

$$(R^{1})_{n}$$

$$V$$

$$R^{2}$$

$$Ar$$

$$X$$

$$Y$$

$$R^{2}$$

wherein V represents a bond, CH2 or CH2CH2;

X represents SO₂ or CHR³ where R³ is H or a hydrocarbon group containing up to 10 carbon atoms which is optionally substituted with halogen, CF₃, C₁₋₄alkoxy or C₁₋₄alkylthio;

Y represents CO₂H or tetrazole;

Ar represents phenyl which optionally bears up to 3 substituents independently selected from hydrocarbon groups of up to 6 carbon atoms and $(CH_2)_m$ -Z where m is 0, 1 or 2 and Z represents halogen, N₃, CN, CF₃, OCF₃, OR⁴, S(O)_tR⁴ where t is 0, 1 or 2, CO₂R⁴, tetrazole, N(R⁴)₂, NHCOR⁵, NHCON(R⁴)₂, CON(R⁴)₂, SO₂N(R⁴)₂, NHSO₂R⁵, COR⁵, or OCOR⁵;

n is 0, 1, 2 or 3;

each R¹ is independently selected from nonaromatic hydrocarbon groups of up to 6 carbon atoms and (CH₂)_q-W where q is 0, 1 or 2 and W represents halogen, CN, CF₃, OR⁴, N(R⁴)₂, S(O)₁R⁴ where t is 0, 1 or 2, CO₂R⁴, tetrazole, CON(R⁴)₂, SO₂N(R⁴)₂, COR⁵, OCOR⁵ or phenyl or heteroaryl either of which optionally bears up to 3 substituents selected from halogen, CF₃, OCF₃, CN, OH, C₁₋₄alkyl, C₁₋₄alkoxy, C₁₋₄alkylthio or C₁₋₄alkoxycarbonyl;

each R^2 is independently H or C_{1-4} alkyl; or one R^2 group together with an R^6 group attached at the same ring position as the $-C(R^2)_2$ -Y moiety completes a spirolinked hydrocarbon ring of 3-6 members;

5

10

R⁴ represents H or a hydrocarbon group of up to 7 carbon atoms, optionally substituted with halogen, CN, CF₃, OH, C₁₋₄alkoxy or C₁₋₄alkoxycarbonyl; or two R⁴ groups attached to the same nitrogen atom may complete a 5- or 6-membered heterocyclic ring;

R⁵ represents R⁴ that is other than H;

p is 0, 1 or 2; and

R⁶ represents C₁₋₆alkyl, C₂₋₆alkenyl or phenyl, benzyl or heteroaryl, said phenyl, benzyl or heteroaryl optionally bearing up to 3 substituents selected from halogen, CN, CF₃, OCF₃, OR⁴, CO₂R⁴, COR⁵, OCOR⁵ and C₁₋₄alkyl; or an R⁶ group together with an R² group may complete a spiro-linked hydrocarbon ring as defined previously;

or a pharmaceutically acceptable salt thereof.

- A method of treating or preventing a disease associated with deposition
 of Aβ in the brain comprising administering to a patient in need thereof a
 therapeutically effective amount of a compound of formula I as defined in claim 1, or
 a pharmaceutically acceptable salt thereof.
- 3. Use according to claim 1 wherein said disease is Alzheimer's disease, cerebral amyloid angiopathy, multi-infarct dementia, dementia pugilistica or Down syndrome.
- 4. A compound according to formula I as defined in claim 1 wherein p is 1 or 2 and at least one R⁶ represents C₂₋₆ alkenyl or optionally-substituted phenyl, 25 heteroaryl or benzyl; or a pharmaceutically acceptable salt thereof.
 - 5. A compound according to formula II:

$$(R^1)_n$$
 V
 R^2
 CO_2H
 CF_3

or a pharmaceutically acceptable salt thereof, where V, X, n, p, R^1, R^2 and R^6 are as defined in claim 1;

with the proviso that if V is CH_2 , X is CH_2 , p is zero and each R^2 is H, then $(R^1)_n$ does not represent 6,8-difluoro.

- 6. A compound according to claim 4 or claim 5 wherein X is CHR³.
- 7. A compound according to formula III:

10

15

$$(R^{1})_{n}$$

$$(R^{6})_{p}$$

$$V$$

$$R^{2}$$

$$R^{3a}$$

$$V$$

$$R^{2}$$

$$III$$

or a pharmaceutically acceptable salt thereof, wherein R^{3a} represents a hydrocarbon group containing from 2 to 10 carbon atoms which is optionally substituted with halogen, CF₃, C₁₋₄alkoxy or C₁₋₄alkylthio; and the remaining variables are as defined in claim 1, with the proviso that R¹ does not represent SOR⁴ or SO₂R⁴.

8. A compound according to claim 7 wherein Y represents CO₂H, Ar represents 4-trifluoromethylphenyl, and both R² groups represent H.

5

10

25

- 9. A compound according to any of claims 4-8 wherein n is 1 or 2 and each R¹ is independently selected from methyl, ethyl, isopropyl, n-butyl, t-butyl, cyclopropyl, Br, Cl, F, CN, CF₃, OCH₃, OCF₃, SCH₃, morpholin-1-yl, 4-fluorophenyl, 3,4-dichlorophenyl, 3-methylthiophenyl, 2,5-dimethylphenyl and 3-trifluoromethoxyphenyl.
- 10. A compound according to any of claims 4-9 for use in treatment of the human body.
- 11. A pharmaceutical composition comprising a compound according to any of claims 4-9 and a pharmaceutically acceptable carrier.
- 12. A process for preparing a compound of formula III as defined in claim 7 comprising the step of hydrogenating a compound of formula (11a) or (11b) over a chiral Ru(BINAP)Cl₂ catalyst:

$$(R^{1})_{n}$$

$$(R^{2})_{n}$$

$$(R^{2})_{n}$$

$$(R^{3})_{n}$$

$$(R^{3})_{n}$$

$$(R^{2})_{n}$$

$$(R^{3})_{n}$$

- wherein BINAP is bis(diphenylphosphino)-1,1'-binaphthyl and R^{3b} is R³ that is other than H.
 - 13. The process of claim 12 wherein the compound of formula (11a) or (11b) is obtained by reaction of a compound of formula (5a) or (5b) with a compound of formula (10):

$$(R^1)_n$$
 $(R^0)_p$
 NNH_2
 Ar
 R^{3b}
 CO_2H
 $(5a)$
 $(5a)$
 (10)