Chapitre 10 : Propriétés des fonctions dérivables

Dans tout ce chapitre, I désigne un intervalle de \mathbb{R} .

I Extremums de fonctions dérivables

Soit $f: I \to \mathbb{R}$, et soit $a \in I$.

Si f présente un extremum local, et si f est dérivable en a et si $a \in \mathring{I}$, alors f'(a) = 0.

Démonstration :

Supposons que f présente un maximum local en a.

Il existe alors $\varepsilon > 0$ tel que $\forall x \in I \cap]a - \varepsilon, a + \varepsilon[f(x)] \le f(a)$.

Comme a est intérieur à I, on peut supposer ε assez petit pour que $]a - \varepsilon, a + \varepsilon[\subset I]$.

En effet:

Il existe déjà β tel que $]a - \beta, a + \beta[\subset I$, et donc avec $\varepsilon' = \min(\varepsilon, \beta)$, on aura $]a - \varepsilon', a + \varepsilon'[\subset I$ et $\forall x \in I \cap]a - \varepsilon', a + \varepsilon'[$, $f(x) \le f(a)$. On notera ε pour ε' dans la suite.

On a alors:
$$\forall x \in]a - \varepsilon, a[, \frac{f(x) - f(a)}{x - a} \ge 0.$$

Le passage à la limite quand $x \mapsto a$ donne $f'(a) \ge 0$

Mais on a aussi
$$\forall x \in]a, a + \varepsilon[, \frac{f(x) - f(a)}{x - a} \le 0$$
. Donc $f'(a) \le 0$

Donc f'(a) = 0.

Toutes les hypothèses sont utiles :

Maximum en a, f a dérivable en a, mais $a \notin \mathring{I}$

La réciproque est fausse :

L'application $x \mapsto x^3$ a une dérivée nulle en 0, mais n'admet pas de maximum, même local, en 0.

II Théorème de Rolle et théorème des accroissements finis

Théorème de Rolle:

Soient $a, b \in \mathbb{R}$ tels que a < b.

Soit $f:[a,b] \to \mathbb{R}$.

Si f est continue sur [a,b], dérivable sur]a,b[au moins, et si f(a) = f(b), alors il existe $c \in [a,b[$ tel que f'(c) = 0.

Démonstration:

Supposons f continue sur [a,b]. Alors l'image par f de ce segment est un segment, disons [m,M] avec $m \le M$

- Si m = M, c'est-à-dire si f est constante sur [a,b], alors f' est nulle sur]a,b[(on a le choix)
- Si m < M, l'un des deux est nécessairement différent de f(a) (et donc aussi de f(b)), disons par exemple M (le raisonnement est le même pour m). De plus, celuici est le maximum de f sur [a,b] (puisque f est continue sur le segment, donc atteint ses bornes). Il existe donc c∈ [a,b] tel que f(c) = M. Alors déjà c≠a et c≠b, car M≠f(a). Donc c∈]a,b[. Donc f est dérivable en c, et f atteint un maximum en c, donc f'(c) = 0.</p>

Attention:

• f(a) = f(b) est indispensable :

• La continuité sur [a,b] aussi :

• Et enfin la dérivabilité sur]a,b[:

Le théorème des accroissements finis :

Soient $a, b \in \mathbb{R}$ tels que a < b.

Soit $f:[a,b] \to \mathbb{R}$, continue sur [a,b], dérivable sur [a,b] au moins.

Alors il existe $c \in]a,b[$ tel que f(b)-f(a)=(b-a)f'(c).

c est tel que la tangente en c de la courbe est parallèle à la corde AB.

Démonstration:

Soit φ la fonction affine coïncidant avec f en a et en b.

Soit *h* la fonction définie par : $h:[a,b] \to \mathbb{R}$

$$x \mapsto f(x) - \varphi(x)$$

Alors h est continue sur [a,b], et dérivable sur]a,b[(au moins), car f et φ le sont (φ est même de classe C^{∞})

On a: h(a) = h(b) (= 0)

Il existe donc $c \in [a, b]$ tel que h'(c) = 0.

Or, $\forall x \in]a,b[,h'(x) = f'(x) - \varphi'(x),$

Et
$$\forall x \in [a,b], \varphi(x) = f(a) + (x-a)\frac{f(b) - f(a)}{b-a}$$

Donc
$$\forall x \in]a,b[,h'(x) = f'(x) - \frac{f(b) - f(a)}{b - a}$$

Donc
$$0 = h'(c) = f'(c) - \frac{f(b) - f(a)}{b - a}$$
, soit $f(b) - f(a) = (b - a)f'(c)$.

Remarque:

Le théorème de Rolle devient maintenant une conséquence évidente du théorème des accroissements finis.

Autres versions:

• Soient $a, b \in \mathbb{R}$, avec $a \neq b$.

On note [a,b] pour $[\min(a,b),\max(a,b)]$, et autres avec les crochets ouverts...

Soit $f:[a,b] \to \mathbb{R}$. Si f est continue sur [a,b], et dérivable sur [a,b], alors il existe $c \in]a,b[$ tel que f(b)-f(a)=(b-a)f'(c).

(« Théorème des accroissements finis entre a et b »)

• Soit $f: I \to \mathbb{R}$, continue sur I et dérivable sur \mathring{I} . Alors, pour tous $a, b \in I$, il existe $\theta \in [0;1]$ tel que $f(b) - f(a) = (b-a)f'(a+\theta(b-a))$.

En effet:

- Si a = b, on choisit $\theta \in]0;1[$ quelconque.
- Si $a \neq b$, on peut appliquer la version précédente : f est continue sur [a,b], car $[a,b] \subset I$, et dérivable sur [a,b] car $[a,b] \subset \mathring{I}$. Il existe donc $c \in]a,b[$ tel que f(b)-f(a)=(b-a)f'(c). Donc, avec $\theta=\frac{c-a}{b-a} \in]0;1[$ (car c-a < b-a), on a bien le résultat voulu.

• Soit $f: I \to \mathbb{R}$, où I contient 0, continue sur I et dérivable sur \mathring{I} . Alors, pour tout $x \in \mathring{I}$, il existe $\theta \in [0;1]$ tel que $f(x) = f(0) + xf'(\theta x)$

Démonstration :

C'est la version précédente entre 0 et x.

Inégalité des accroissements finis :

Théorème:

Soit $f:[a,b] \to \mathbb{R}$, continue sur [a,b], dérivable sur [a,b]. Si il existe $k \in \mathbb{R}^+$ tel que $\forall x \in]a,b[,|f'(x)| \le k$, alors $|f(b)-f(a)| \le k|b-a|$.

Démonstration :

On applique le théorème des accroissements finis entre a et b. Il existe donc $c \in]a,b[$ tel que f(b)-f(a)=(b-a)f'(c). Donc $|f(b)-f(a)|=|b-a|\times|f'(c)|\leq |b-a|\times k$.

On a aussi:

Soit $f:[a,b] \to \mathbb{R}$, où a < b. Si f est continue sur [a,b], dérivable sur [a,b] et si il existe m et M tels que $\forall x \in]a,b[$, $m \le f'(x) \le M$, alors $m(b-a) \le f(b) - f(a) \le M(b-a)$.

III Sens de variation des fonctions dérivables

Théorème:

Soit $f: I \to \mathbb{R}$, continue sur I, dérivable sur \mathring{I} . On a les équivalences :

- (1) f est croissante sur $I \Leftrightarrow \forall x \in \mathring{I}, f'(x) \ge 0$
- (2) f est décroissante sur $I \Leftrightarrow \forall x \in \mathring{I}, f'(x) \le 0$
- (3) f est constante sur $I \Leftrightarrow \forall x \in \mathring{I}, f'(x) = 0$

Démonstration:

Déjà, (2) c'est (1) appliqué à -f, et (3) est obtenu avec (1) et (2). Reste à montrer (1) :

Supposons f croissante sur I. Soit $a \in I$, montrons que $f'(a) \ge 0$. On a :

$$\forall x \in I \setminus \{a\}, \frac{f(x) - f(a)}{x - a} \ge 0$$

(car f est croissante donc f(x) - f(a) et x - a sont de même signe)

Donc, par passage à la limite, $f'(a) \ge 0$.

Réciproquement, supposons que $\forall x \in \mathring{I}, f'(x) \ge 0$

Soient $x_1, x_2 \in I$, avec $x_1 < x_2$.

Selon le théorème des accroissements finis appliqué à f entre x_1 et x_2 (on peut puisque f est continue sur $[x_1,x_2] \subset I$ et dérivable sur $[x_1,x_2] \subset \mathring{I}$), il existe $c \in [x_1,x_2]$ tel que $f(x_2) - f(x_1) = \underbrace{(x_2 - x_1)f'(c)}_{\geq 0 \operatorname{car} ce \mathring{I} \operatorname{et} x_1 < x_2}$, donc $f(x_2) \geq f(x_1)$.

Théorème:

Soit $f: I \to \mathbb{R}$, continue sur I, dérivable sur \mathring{I} . On a alors l'équivalence :

$$f$$
 est strictement croissante sur $I \Leftrightarrow \begin{cases} \forall x \in \mathring{I}, f'(x) \ge 0 \\ \text{l'ensemble } Z = \left\{ x \in \mathring{I}, f'(x) = 0 \right\} \text{ vérifie } \mathring{Z} = \emptyset \end{cases}$

Pour Z, cela signifie que Z ne contient pas d'intervalle ouvert non vide, ou que f' n'est nulle qu'en des points isolés.

Démonstration:

 \Rightarrow : Déjà, si f est strictement croissante sur I, alors f est croissante sur I, donc $\forall x \in \mathring{I}, f'(x) \ge 0$.

Supposons $\mathring{Z} \neq \emptyset$. Il existe donc un ouvert du type $]\alpha, \beta[\subset Z \text{ (où } \alpha, \beta \in \mathbb{R} \text{)}.$

Alors f' est nulle sur $]\alpha, \beta[$, donc f est constante sur $]\alpha, \beta[$, ce qui est impossible car f est strictement croissante. Donc $\mathring{Z} = \emptyset$.

 \Leftarrow : Supposons que $\forall x \in \mathring{I}, f'(x) \ge 0$, et $\mathring{Z} = \emptyset$.

Déjà, f est croissante d'après la première condition. Elle l'est de plus strictement, car sinon il existerait $x_1, x_2 \in I$ avec $x_1 < x_2$ tels que $f(x_1) = f(x_2)$.

On a urait alors $\forall x \in [x_1, x_2], f(x_1) \le f(x) \le f(x_2)$, puisque f est croissante.

C'est-à-dire qu'on aurait $\forall x \in [x_1, x_2[, f(x) = \text{cte} = f(x_1), \text{ donc } f' \text{ est nulle sur }]x_1, x_2[, \text{d'où } \mathring{Z} \neq \emptyset \text{ (puisqu'il contiendrait au moins }]x_1, x_2[) \text{ ce qui est impossible.}$

Donc f est strictement croissante.

Le théorème est valable aussi si f est dérivable sur I, et on a alors l'équivalence : f est croissante sur $I \Leftrightarrow f'$ est positive sur I.

Attention:

 \bullet Le fait que I soit un intervalle est indispensable. Par exemple :

 $f: x \mapsto \frac{1}{x}$ est dérivable sur \mathbb{R}^* , et $\forall x \in \mathbb{R}^*$, $f'(x) = \frac{-1}{x^2} \le 0$.

Mais f n'est pas décroissante sur \mathbb{R}^* .

En revanche, elle l'est sur \mathbb{R}_{+}^{*} et sur \mathbb{R}_{-}^{*}

• Si f n'est dérivable que sur \mathring{I} , la continuité sur I est indispensable :

f' est positive sur [a,b], donc f est croissante sur [a,b], mais pas sur [a,b].

Diverses idées fausses:

• Soit $f: \mathbb{R} \to \mathbb{R}$, dérivable sur \mathbb{R} et même de classe C^1 . On suppose que f admet un minimum absolu (non local) en 0. On pourrait croire qu'il existe $\alpha > 0$ de façon qu'on ait le tableau de variations suivant :

$$x - \alpha = 0$$
 α

C'est faux !!. par exemple :

$$f(x) = \begin{cases} x^2 (2 + \sin \frac{1}{\sqrt{|x|}}) \operatorname{si} x \neq 0\\ 0 \operatorname{sinon} \end{cases}$$

f est manifestement continue sur \mathbb{R} .

Elle est même de classe C^{∞} sur \mathbb{R}^*

f est dérivable en 0. En effet :

$$\forall x \neq 0, \frac{f(x) - f(0)}{x - 0} = \underbrace{x}_{0} \underbrace{(2 + \sin \frac{1}{\sqrt{|x|}})}_{\text{horn}}, \text{ donc } f \text{ est dérivable en } 0, \text{ et } f'(0) = 0.$$

On voit que $\forall x \in \mathbb{R}^*, f(x) > 0$, car $\forall x \in \mathbb{R}^* 2 + \sin \frac{1}{\sqrt{|x|}} \in [1,3]$.

Donc $\forall x \in \mathbb{R} * x^2 (2 + \sin \frac{1}{\sqrt{|x|}}) \in [x^2; 3x^2]$, soit $\forall x \in \mathbb{R} * x^2 (2 + \sin \frac{1}{\sqrt{|x|}}) > 0$.

Donc f atteint un minimum absolu en 0.

Sur \mathbb{R}_{+}^{*} , on a:

$$f'(x) = 2x(2 + \sin\frac{1}{\sqrt{x}}) + x^2 \left(-\frac{1}{2} \frac{1}{x\sqrt{x}} \cos\frac{1}{\sqrt{x}} \right) = \sqrt{x} \left(2\sqrt{x} \left(2 + \sin\frac{1}{\sqrt{x}} \right) - \underbrace{\frac{1}{2} \cos\frac{1}{\sqrt{x}}}_{\in [-1, \frac{1}{2}]} \right)$$

(f est bien de classe C^1 sur \mathbb{R} puisque f' est continue même en 0)

Pour α assez petit, $2\sqrt{x}(2+\sin\frac{1}{\sqrt{x}})$ est compris entre 0 et $\frac{1}{4}$ pour $x \in \left]0,\alpha\right[$.

Mais $\frac{1}{2}\cos\frac{1}{\sqrt{x}}$ prend la valeur $-\frac{1}{2}$ et $\frac{1}{2}$ sur tout intervalle du type $]0,\alpha[$ où $\alpha > 0$.

Donc f' n'est pas de signe constant sur $]0, \alpha]$, et ce quel que soit $\alpha > 0$.

Donc f n'est pas croissante sur $[0, \alpha]$.

• On peut croire que si f est de classe C^1 sur \mathbb{R} , et si f'(0) > 0, alors f' est croissante au voisinage de 0. C'est vrai, mais pas si on suppose f seulement de classe D^1 sur \mathbb{R} .

IV Le théorème « sans nom »

Théorème:

Soit *I* un intervalle de \mathbb{R} , soit $a \in I$, soit $l \in \overline{\mathbb{R}}$.

Si f est continue sur I, dérivable sur $I \setminus \{a\}$, et si $f'(x) \xrightarrow{x \mapsto a} l$, alors :

$$\frac{f(x) - f(a)}{x - a} \xrightarrow[x \neq a]{x \mapsto a} l$$

Par conséquent :

- Si f'(x) a une limite finie l lorsque $x \mapsto a$, alors f est dérivable en a et $f'(a) = l = \lim_{x \mapsto a} f'(x)$, donc en plus f' est continue en a.
- Si $f'(x) \xrightarrow[x \neq a]{} \pm \infty$, alors f n'est pas dérivable en a, mais la courbe de f présente une tangente verticale au point d'abscisse a.
- Si f' n'a pas de limite lorsque $x \mapsto a$, le théorème de permet pas de conclure.

Démonstration:

Soit
$$x \in I \setminus \{a\}$$
.

Selon le théorème des accroissements finis appliqué à f entre a et x (ce qui est possible car f est continue sur [a,x] et dérivable sur [a,x] et dérivable sur [a,x] il existe [a,x] tel que

$$f(x) - f(a) = (x - a)f'(c_x).$$

Mais
$$c_x \xrightarrow[x \to a]{x \to a} a$$
 car $|c_x - a| \le |x - a|$ puisque $c_x \in]a, x[$.

De plus,
$$f'(u) \xrightarrow{u \mapsto a \atop u \neq a} l$$
.

Donc, d'après le théorème de composition de limite, $f'(c_x) \xrightarrow[x \to a]{x \to a} l$

Or,
$$f'(c_x) = \frac{f(x) - f(a)}{x - a}$$
. Donc $\frac{f(x) - f(a)}{x - a} \xrightarrow[x \neq a]{x \mapsto a} l$.

Exemples:

Prenons
$$f(x) = \begin{cases} x^2 \sin \frac{1}{x} \sin x \neq 0 \\ 0 \sin x = 0 \end{cases}$$
.

Alors f est continue sur \mathbb{R} (déjà vu), et est dérivable sur \mathbb{R}^* .

De plus, $\forall x \in \mathbb{R}^*, f'(x) = 2x \sin \frac{1}{x} - \cos \frac{1}{x}$. Donc f'(x) n'a pas de limite en 0.

Cependant,
$$\frac{f(x) - f(0)}{x - 0} = x \sin \frac{1}{x} \xrightarrow{x \to 0} 0$$
, donc f est dérivable en $f'(0) = 0$

(c'est simplement le cas où f est de classe D^1 mais pas de classe C^1)