চতুর্থ অধ্যায় পর্যায় সারণি

(Periodic Table)

একটি ভিন্ন ধরনের পর্যায় সারণি৷

2016 সাল পর্যন্ত পৃথিবীতে মোট 118টি মৌলিক পদার্থ আবিষ্কৃত হয়েছে। রসায়ন অধ্যয়ন ও গবেষণার জন্য সব কয়টি মৌলের ভৌত ও রাসায়নিক ধর্ম সম্পর্কে ধারণা থাকা প্রয়োজন। মৌলিক পদার্থাপুলোর মধ্যে কিছু মৌলিক পদার্থ একই রকম ধর্ম প্রদর্শন করে। যে সকল মৌলিক পদার্থ একই রকম ধর্ম প্রদর্শন করে যে সকল মৌলিক পদার্থ একই রকম ধর্ম প্রদর্শন করে তাদেরকে একই গ্রুপে রেখে সমগ্র মৌলিক পদার্থের জন্য একটি ছক তৈরি করার চেন্টা দীর্ঘদিন থেকেই চলছিল। কয়েক শত বছর ধরে বিভিন্ন বিজ্ঞানীর প্রচেন্টা, অনেক পরিবর্তন, পরিবর্ধনের ফলে আমরা মৌলগুলো সাজানোর এই ছকটি পেয়েছি, যেটা পর্যায় সারণি বা Periodic table নামে পরিচিত। এ পর্যায় সারণি রসায়নের জগতে বিজ্ঞানীদের এক অসামান্য অবদান। এ পর্যায় সারণি এবং তার বৈশিন্ট্য সম্পর্কে কারও ভালো ধারণা থাকলে শুধু এই 118টি মৌলের বিভিন্ন ধর্ম নয় বরং এ সকল মৌল দ্বারা গঠিত অসংখ্য যৌগের ধর্মাবলি সম্পর্কে সাধারণ ধারণা জন্ম। এই অধ্যায়ে পর্যায়

সারণি এবং পর্যায় সারণিতে অবস্থিত মৌলসমূহের বিভিন্ন ধর্ম ও বৈশিষ্ট্য সম্পর্কে একটি সাধারণ ধারণা দেওয়ার চেন্টা করা হয়েছে।

এ অধ্যায় পাঠ শেষে আমরা

- পর্যায় সারণি বিকাশের পউভূমি বর্ণনা করতে পারব।
- মৌলের সর্ববহিঃস্তর শক্তিস্তরের ইলেকট্রন বিন্যাসের সাথে পর্যায় সারণির প্রধান গ্রুপগুলোর
 সম্পর্ক নির্ণয় করতে পারব (প্রথম 30টি মৌল)।
- একটি মৌলের পর্যায় শনান্ত করতে পারব।
- পর্যায় সারণিতে কোনো মৌলের অকত্থান জেনে এর ভৌত ও রাসায়নিক ধর্ম সম্পর্কে ধারণা
 করতে পারব।
- মৌলসমূহের বিশেষ নামকরণের কারণ বলতে পারব।
- পর্যায় সারণির গুরুত্ব ব্যাখ্যা করতে পারব।
- পর্যায় সারণির একই গ্রুপের মৌল দ্বারা গঠিত যৌগের একই ধরনের ধর্ম প্রদর্শন করতে
 পারব।
- পরীক্ষণের সময় কাচের যক্তপাতির সঠিক ব্যবহার করতে পারব।
- পরীক্ষণ কাঞ্জে সতর্কতা অবলম্বন করতে পারব।
- পর্যায় সারণি অনুসরণ করে মৌলসমূহের ধর্ম অনুমানে আগ্রহ প্রদর্শন করতে পারব।

4.1 পর্যায় সারণির পটভূমি (Background of Periodic Table)

মানুষ প্রাচীনকাল থেকে বিক্ষিপ্তভাবে পদার্থ এবং তাদের ধর্ম সম্পর্কে যে সকল ধারণা অর্জন করেছিল পর্যায় সারণি হচ্ছে তার একটি সম্মিলিত রূপ। পর্যায় সারণি একজন বিজ্ঞানীর একদিনের পরিশ্রমের ফলে তৈরি হয়নি। অনেক বিজ্ঞানীর অনেক দিনের অক্লান্ড পরিশ্রমের ফলে আজকের এই আধুনিক পর্যায় সারণি তৈরি হয়েছে।

1789 সালে ল্যাভয়সিয়ে অক্সিজেন, নাইট্রোজেন, হাইড্রোজেন, ফসফরাস, মার্কারি, জিংক এবং সালফার ইত্যাদি মৌলিক পদার্থসমূহকে ধাতু ও অধাতু এই দুই ভাগে ভাগ করেন। ল্যাভয়সিয়ের সময় থেকেই মৌলগুলোকে বিভিন্ন ভাগে ভাগ করার চিন্তা-ভাবনা শুরু হয় যেন একই ধরনের মৌলিক পদার্থগুলো একটি নির্দিন্ট ভাগে থাকে।

1829 সালে বিজ্ঞানী ডোবেরাইনার লক্ষ করেন তিনটি করে মৌলিক পদার্থ একই রকমের ধর্ম প্রদর্শন করে। তিনি প্রথমে পারমাণবিক ভর অনুসারে তিনটি করে মৌল সাজান। এরপর তিনি লক্ষ করেন দ্বিতীয় মৌলের পারমাণবিক ভর প্রথম ও তৃতীয় মৌলের পারমাণবিক ভরের যোগফলের অর্ধেক বা তার কাছাকাছি, একে ডোবেরাইনারের ত্রয়ীসূত্র বলে। বিজ্ঞানী ডোবেরাইনার ক্লোরিন, ব্রোমিন ও আয়োডিনকে প্রথম ত্রয়ী মৌল হিসেবে চিহ্নিত করেন।

1864 সাল পর্যন্ত আবিষ্কৃত মৌলসমূহের জন্য নিউল্যান্ত অন্টক সূত্র নামে একটি সূত্র প্রদান করেন। এই সূত্র অনুযায়ী মৌলসমূহকে যদি পারমাণবিক ভরের ছোট থেকে বড় অনুযায়ী সাজানো যায় তবে যেকোনো একটি মৌলের ধর্ম তার অন্টম মৌলের ধর্মের সাথে মিলে যায়।

1869 সালে রাশিয়ান বিজ্ঞানী মেন্ডেলিফ সকল মৌলের ধর্ম পর্যালোচনা করে একটি পর্যায় সূত্র প্রদান করেন। সূত্রটি হলো: "মৌলসমূহের ভৌত ও রাসায়নিক ধর্মাবলি তাদের পারমাণবিক ভর বৃদ্ধির সাথে পর্যায়ক্রমে আবর্তিত হয়"।

এ সূত্র অনুসারে তিনি তখন পর্যন্ত আবিষ্কৃত 63টি মৌলকে 12টি আনুভূমিক সারি আর ৪টি খাড়া কলামের একটি ছকে পারমাণবিক ভর বৃদ্ধি অনুসারে সাজিয়ে দেখান যে, একই কলাম বরাবর সকল মৌলগুলোর ধর্ম একই রকমের এবং একটি সারির প্রথম মৌল থেকে শেষ মৌল পর্যন্ত মৌলগুলোর ধর্মের ক্রমান্বয়ে পরিবর্তন ঘটে। এই ছকের নাম দেওয়া হয় পর্যায় সারণি (Periodic Table)।

মেন্ডেলিফের পর্যায় সারণির আরেকটি সাফল্য হচ্ছে কিছু মৌলিক পদার্থের অস্তিত্ব সম্পর্কে সঠিক ভবিষ্যদ্বাণী। সে সময় মাত্র 63টি মৌল আবিষ্কৃত হওয়ার কারণে পর্যায় সারণির কিছু ঘর ফাঁকা থেকে যায়। মেন্ডেলিফ এই ফাঁকা ঘরগুলোর জন্য যে মৌলের ভবিষ্যদ্বাণী করেছিলেন পরবর্তীতে সেগুলো সত্য প্রমাণিত হয়।

	1									
1	1 1 H	2			গ্রুপ সং	था (5			
	Hydrogen হাইড্রোজেন		পারমাণবিক সংখ্যা 24 32 পারমাণবিক ভর							
2	3 7 Li	Be 9		পৰ্যায় সংখ্যা 4						
	Lithium শিথিয়াম	Beryllium বেরিশিরাম		714	યાત્ર ઝારચા	Chron	Chromium ক্লোমিয়াম মৌ		লের নাম	
3	11 23 Na	12 24				Carlina	।।न ६न।	লোগ নাৰ		
	Sodium সোডিরাম	Mg Magnesium स्रागटनिवाम	3	4	5	6	7	8	9	
4	19 39	20 40 Ca	21 45 Sc	22 48 Ti	23 51 V	24 52 Cr	25 55 Mn	26 56 Fe	27 58 Co	
	Potassium পটাশিয়াম	Calcium ক্যানসিয়াম	Scandium ক্যানডিয়াম	Titanium টাইটানিয়াম	V Vanadium ভ্যানাডিয়াম	Chromium ক্রোমিয়াম	Manganese म्हाकानिक	Iron আয়রন	Cobalt কোবাল্ট	
5	37 85.5 Rb	38 88 Sr	39 89 Y	40 91 Zr	41 93 Nb	42 96 Mo	43 98 Tc	44 101 Ru	45 103 Rh	
	Rubidium বুবিডিয়াম	Strontium কৌনসিয়াম	Yttrium ইট্রিয়াম	Zirconium জিরকোনিয়াম	Niobium	Molybdenum মন্দিবডেলাম	Technetium টেকনেসিয়াম	Ruthenium রুপেনিয়াম	Rhodium রোডিয়াম	
6	55 133 CS	56 137 Ba	পারমাণবিক সংখ্যা	72 178.5 Hf	73 181 Ta	74 184 W	75 186 Re	76 190 Os	77 192 Ir	
	Caesium সিজিয়াম	Barium বেরিয়াম	57 থেকে 71	Hafnium হাফনিয়াম	Tantalum ট্যান্টালাম	Tungsten ট্যাংস্টেন	Rhenium রেনিয়াম	Osmium অসমিয়াম	Iridium ইরিডিয়াম	
7	87 223 Fr	88 226 Ra	পারমাণবিক সংখ্যা	104 261 Rf	105 262 Db	106 263 Sg	107 262 Bh	108 265 Hs	109 266 Mt	
	Francium ফ্রানসিয়াম	Radium রেডিয়াম	103	Rutherfordium রাদারর্ফোডিয়াম		Seaborgium সিয়াবর্গিয়াম	Bohrium বোরিয়ায	Hassium হাসিয়াম	Metrenium মিটরেনিয়াম	
			57 139	58 140	59 141	60 144	61 145	62 150	63 152	
	ল্যানথানাইড সারির মৌল		La	Ce	Pr	Nd	Pm	Sm	Eu	
			Lanthanum क्यान्थनाम	Cerium সিরিযাম	Praseodymium প্রাসিওডিমিরাম	নিওডিমিরাম	Promethium প্রোমেথিয়াম	সামারিয়াম	Europium ইউরোপিয়াম	
	অ্যাক টিনাই ড সারির মৌল		89 227 AC	90 232 Th	91 231 Pa	92 238 U	93 237 Np	94 244 Pu	95 243 Am	
			Actinium অ্যাকটিনিয়াম	Thorium থোরিয়াম	Protactinium প্রোটেকটিনিয়াম	Uranium ইউরেনিয়াম	Neptunium নেপচুনিয়াম	Plutonium श्रूरजिनिग्राम	Americium আমেরিসিয়াম	

18								18
আধুনিক পর্যায় সারণি								
~			13	14	15	16	17	Не
							100 A	Helium হিলিয়াম
			5 11	6 12	7 14	8 16	9 19	10 20
			В	С	N	0	F	Ne
			Boron বোরন	Carbon কাৰ্বন	Nitrogen নাইটোজেন	Oxygen অক্সিজেন	Fluorine ফ্লোরিন	Neon निव्रन
			13 27	14 28	15 31	16 32	17	18 40
			Al	Si	P	S	35.5 Cl	Ar
10	11	12	Aluminium অ্যানুমিনিরাম	Silicon जिलिकन	Phosphorus ফসকরাস	Sulfur সালফার	Cholorine ক্লোরিন	Argon আর্গন
28 59	29 63.5	30 65	31 70	32 73	33 75	34 79	35 80	36 84
Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Nickel निर्कम	Copper কণার	Zinc জিংক	Gallium গ্যাপিয়াম	Germenium জার্মেনিয়াম	Arsenic আর্সেনিক	Selenium সেপেনিয়াম	Bromine ব্ৰোমিন	Krypton ক্রিপটন
46 106	47 108	48 112	49 115	50 119	51 122	52 128	53 127	54 131
Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
Palladium शानाण्डियाय	Silver সিলভার	Cadmium ক্যাডমিয়াম	Indium ইন্ডিয়াম	Tin ਹਿਜ	Antimony এন্টিমনি	Tellurium টেলুরিয়াম	Iodine আয়োডিন	Xenon জেনন
78 195	79 197	80 201	81 204	82 207	83 209	84 209	85 210	86 222
Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
Platinum श्लीविद्याय	Gold গোভ	Mercury यार्कान्नि	Thallium গ্যানিয়াম	Lead	Bismuth বিসমাধ	Polonium পোলোনিয়াম	Astatine আস্টাটাইন	Radon রেডন
110 269	111 272	112 285	113 284	114 285	115 288	116 293	117 294	118 294
Ds	Rg	Cn	Nh	Fl	Mc	Lv	Ts	Og
Darmstadtiun ডার্মস্টেডসিয়াম	Roentgenium तन्द्रेष्क्रनिताम	Copernicium কোপারনেসিয়াম	Nihonium নিহোনিয়াম	Flerovium ফ্লেরেভিয়াম		Livermorium শিশুরমোরিয়াম	Tennessine টেনেসাইন	Oganesson ওগানেসন
64 157	65 159	66 163	67 165	68 167	69	70 173	71 175	
Gd	Tb	Dy	Но	Er	169 Tm	Yb	Lu	
Gadolinium গ্যাডোলিনিয়াম	Terbium টার্বিয়াম	Dysprosium ডিসপ্রোসিয়াম	Holmium रुणियाम	Erbium আর্বিয়াম	Thulium পুলিয়াম	Ytterbium ইটারবিয়াম	Lutetium লুটেসিয়াম	
96 247	97 247	98 251	99 252	100 257	101 258	102 259	103 262	
Cm	Bk	Cf	Es	Fm	Md	No	Lr	
Curium कृत्रिग्राम	Berkelium বার্কেনিয়াম	Californium ক্যান্সিফোর্নিয়াম	Einsteinium আইনস্টেনিয়াম	Fermium কার্মিরাম	Mendelevium মেডেলেভিয়াম	Nobelium লোবেশিয়াম	Lawrencium লরেনসিয়াম	
-								ı

মেন্ডেলিফের পর্যায় সারণির কিছু ত্রুটি পরিলক্ষিত হয়। মেন্ডেলিফ পারমাণবিক ভর অনুযায়ী তার পর্যায় সারণিতে যে নিয়মানুযায়ী মৌলগুলো বসিয়েছিলেন সেই নিয়মানুযায়ী যে পরমাণুর পারমাণবিক ভর কম থাকবে সেই পরমাণু পর্যায় সারণিতে আগে বসবে এবং যে পরমাণুর পারমাণবিক ভর বেশি থাকবে সেই পরমাণু পর্যায় সারণিতে পরে বসবে। কিন্তু দেখা যায় মেন্ডেলিফের পর্যায় সারণিতে আর্গনের পারমাণবিক ভর 40 এবং পটাশিয়াম—এর পারমাণবিক ভর 39 হওয়া সত্ত্বেও একই গ্রুপের মৌলসমূহের ধর্মের মিল করানোর জন্য আর্গনকে পটাশিয়ামের আগে বসানো হয়েছিল। এরকম আরও অনেক মৌলের ক্ষেত্রে দেখা যায় পারমাণবিক ভর বেশি হওয়া সত্ত্বেও তাদেরকে কোনো কোনো মৌলের আগে পর্যায় সারণিতে বসানো হয়েছিল। এটি ছিল পর্যায় সারণির ত্রুটি। এরকম আরও অনেক ত্রুটি মেন্ডেলিফের পর্যায় সারণিতে লক্ষ করা যায়।

1913 সালে মোসলে পারমাণবিক ভরের পরিবর্তে **পারমাণবিক সংখ্যা** অনুযায়ী মৌলগুলোকে পর্যায় সারণিতে সাজানোর প্রস্তাব দেন।

পারমাণবিক সংখ্যা অনুসারে পর্যায় সারণিতে মৌলের স্থান দেওয়া হলে মেন্ডেলিফের পর্যায় সারণিতে আর্গনের পারমাণবিক সংখ্যা 18 এবং পটাশিয়াম—এর পারমাণবিক সংখ্যা 19। কাজেই আর্গন পটাশিয়ামের আর্গে বসবে। কাজেই পারমাণবিক সংখ্যা অনুসারে পর্যায় সারণিতে মৌলের স্থান দেওয়া হলে এই রকম ত্রুটিগুলো সংশোধিত হয়।

আশ্তর্জাতিক রসায়ন ও ফলিত রসায়ন সংস্থা (International Union of Pure and Applied Chemistry বা সংক্ষেপে IUPAC) এখন পর্যন্ত 118টি মৌলিক পদার্থকে শনান্ত করেছে। IUPAC সংস্থাটি আশ্তর্জাতিকভাবে রসায়ন ও ফলিত রসায়নের বিভিন্ন নিয়মকানুন, ক্রমবর্ধমান পরিবর্তনের কোনটি গ্রহণ করা যায় এবং কোনটি বর্জন করা উচিত এই বিষয়গুলো দেখাশোনা এবং নিয়ন্ত্রণ করে। 118টি মৌলের মধ্যে বেশির ভাগ মৌলই প্রকৃতিতে পাওয়া যায় এবং বাকি কিছু মৌল ল্যাবরেটরিতে তৈরি করা হয়েছে।

ল্যাভয়সিয়ে মাত্র 33টি মৌল নিয়ে ছক তৈরির কাজ শুরু করেছিলেন। মেন্ডেলিফ 63টি আবিষ্কৃত মৌল এবং 4টি অনাবিষ্কৃত মৌল নিয়ে পর্যায় সারণি নামে যে ছকটি তৈরি করেছিলেন, বর্তমানে সেটি 118টি মৌলের আধুনিক পর্যায় সারণি হিসেবে প্রতিষ্ঠিত হয়েছে।

4.2 পর্যায় সারণির বৈশিষ্ট্য (Characteristics of the Periodic Table)

পর্যায় সারণি মূলত একটি ছক বা টেবিল। টেবিলে যেমন সারি (Row) এবং কলাম (Column) থাকে পর্যায় সারণিতেও তেমনি সারি ও কলাম আছে। পর্যায় সারণির বাম থেকে ডান পর্যন্ত বিস্তৃত

সারিগুলোকে পর্যায় এবং খাড়া কলামগুলোকে গ্রুপ বা শ্রোণি বলে। আধুনিক পর্যায় সারণির বর্গাকার ঘরগুলোতে মোট 118টি মৌল আছে। পর্যায় সারণিটি এই অধ্যায়ের শুরুতে দেখানো হয়েছে।

আধুনিক পর্যায় সারণির অনেক বৈশিষ্ট্য রয়েছে। পর্যায় সারণির দিকে লক্ষ রাখলে এই বৈশিষ্ট্যগুলো খুঁজে পাওয়া যাবে।

- (a) পর্যায় সারণিতে 7টি পর্যায় (Period) বা আনুভূমিক সারি এবং 1৪টি গ্রুপ বা খাড়া স্তম্ভ রয়েছে।
- (b) প্রতিটি পর্যায় বাম দিকে গ্রুপ 1 থেকে শুরু করে ডানদিকে গ্রুপ 18 পর্যন্ত বিস্তৃত।
- (c) মূল পর্যায় সারণির নিচে আলাদাভাবে ল্যাম্থানাইড ও অ্যাকটিনাইড সারির মৌল হিসেবে দেখানো হলেও এগুলো যথাক্রমে 6 এবং 7 পর্যায়ের অংশ।
- (d) (i) পর্যায় 1 এ শুধু 2টি মৌল রয়েছে।
 - (ii) পর্যায় 2 এবং পর্যায় 3 এ ৪টি করে মৌল রয়েছে।
 - (iii) পর্যায় 4 এবং পর্যায় 5 এ 18টি করে মৌল রয়েছে।
 - (iv) পর্যায় 6 এবং পর্যায় 7 এ 32টি করে মৌল রয়েছে।
- (e) (i) গ্রপ 1 এ 7টি মৌল রয়েছে।
 - (ii) গ্রুপ 2 এ 6টি মৌল রয়েছে।
 - (iii) গ্রুপ 3 এ 32টি মৌল রয়েছে।
 - (iv) গ্রুপ 4 থেকে গ্রুপ 12 পর্যন্ত প্রত্যেকটি গ্রুপে 4টি করে মৌল রয়েছে।
 - (v) গ্রুপ 13 থেকে গ্রুপ 17 পর্যন্ত প্রত্যেকটিতে 6টি করে মৌল রয়েছে।
 - (vi) গ্রপ 18 এ 7টি মৌল রয়েছে।

যে সকল মৌলের পারমাণবিক সংখ্যা 57 থেকে 71 পর্যন্ত এরকম 15টি মৌলকে ল্যাম্থানাইড সারির মৌল বলা হয়। যে সকল মৌলের পারমাণবিক সংখ্যা 89 থেকে 103 পর্যন্ত এরকম 15টি মৌলকে অ্যাকটিনাইড সারির মৌল বলা হয়। ল্যাম্থানাইড সারির মৌলগুলোর ধর্ম এত কাছাকাছি এবং অ্যাকটিনাইড সারির মৌলসমূহের ধর্ম এত কাছাকাছি যে তাদেরকে পর্যায় সারণির নিচে ল্যাম্থানাইড সারির মৌল এবং অ্যাকটিনাইড সারির মৌল হিসেবে আলাদাভাবে রাখা হয়েছে।

যদি মৌলগুলোর ধর্মের ভিত্তিতে বিবেচনা করা হয় তাহলে নিচের বৈশিষ্ট্যগুলো লক্ষ করা যায়:

- 1. একই পর্যায়ের বাম থেকে ডানের দিকে গেলে মৌলসমূহের ধর্ম ক্রমাম্বয়ে পরিবর্তিত হয়।
- একই গ্রুপের মৌলগুলোর ভৌত এবং রাসায়নিক ধর্ম প্রায় একই রকমের হয়।

4.3 ইলেকট্রন বিন্যাস থেকে পর্যায় সারণিতে মৌলের অবস্থান নির্ণয় (Determination of the Position of Elements in the Periodic Table from Their Electronic Configuration)

আমরা কোনো একটি মৌলের ইলেকট্রন বিন্যাস থেকে সহজেই মৌলটি কোন গ্রুপ এবং কোন পর্যায়ে রয়েছে সেটি বের করতে পারি। নিচে পর্যায় সারণিতে কোনো মৌলের অবস্থান নির্ণয়ের পদ্ধতি বর্ণনা করা হলো।

পর্যায় নম্বর বের করার নিয়ম

কোনো মৌলের ইলেকট্রন বিন্যাসের সবচেয়ে বাইরের প্রধান শক্তিস্তরের নম্বরই ঐ মৌলের পর্যায় নম্বর। যেমন— Li এর ইলেকট্রন বিন্যাস হলো: $\text{Li}(3) \to 1\text{s}^22\text{s}^1$ । যেহেতু লিখিয়ামের ইলেকট্রন বিন্যাসে সবচেয়ে বাইরের শক্তিস্তর 2, তাই লিখিয়াম 2 নম্বর পর্যায়ের মৌল।

K এর ইলেকট্রন বিন্যাস হলো: $K(19) \to 1s^2 2s^2 2p^6 3s^2 3p^6 4s^1$ । যেহেতু পটাশিয়ামের ইলেকট্রন বিন্যাসে সবচেয়ে বাইরের শক্তিম্তর 4, তাই পটাশিয়াম 4 নম্বর পর্যায়ের মৌল।

গ্রপ নম্বর বের করার নিয়ম

কোনো মৌলের গ্রপ নম্বর বের করার কয়েকটি নিয়ম আছে।

নিয়ম 1: কোনো মৌলের ইলেকট্রন বিন্যাসের বাইরের প্রধান শক্তিশ্তরে যদি শুধু s অরবিটাল থাকে তবে ঐ s অরবিটাল এর মোট ইলেকট্রন সংখ্যাই ঐ মৌলের গ্রুপ নম্বর। যেমন: হাইড্রোজেন, H(1) মৌলের ইলেকট্রন বিন্যাস 1 s^1 । এখানে s অরবিটালে 1টি ইলেকট্রন আছে। কাজেই হাইড্রোজেন—এর গ্রুপ বা শ্রেণি নম্বর 1।

নিয়ম 2: কোনো মৌলের ইলেকট্রন বিন্যাসের বাইরের প্রধান শক্তিম্তর যদি শুধু s ও p অরবিটাল থাকে তবে ঐ s ও p অরবিটাল—এর মোট ইলেকট্রন সংখ্যার সাথে 10 যোগ করলে যে সংখ্যা পাওয়া যায় সেই সংখ্যাই ঐ মৌলের গ্রুপ নম্বর। যেমন: বোরন B(5) মৌলের ইলেকট্রন বিন্যাস $1s^2\ 2s^2\ 2p^1$ । এখানে বোরনের বাইরের শেলে s অরবিটালে 2টি ইলেকট্রন ও p অরবিটালে 1টি ইলেকট্রন আছে। কাজেই বোরন এর গ্রুপ নম্বর 2+1+10=13

নিয়ম 3: কোনো মৌলের ইলেকট্রন বিন্যাসে সবচেয়ে বাইরের প্রধান শক্তিম্বরে যদি s অরবিটাল থাকে এবং আগের প্রধান শক্তিম্বরে যদি d অরবিটাল থাকে তবে s অরবিটাল ও d অরবিটালের ইলেকট্রন সংখ্যা যোগ করলেই প্রুপ নম্বর পাওয়া যায়। যেমন: Fe(26) মৌলের ইলেকট্রন বিন্যাস $1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 3d^6\ 4s^2$ । এখানে আয়রন এর বাইরের শক্তিম্বরে s অরবিটাল আছে এবং তার আগের শক্তিম্বরে

d অরবিটাল আছে। এখানে d অরবিটালে 6টি এবং s অরবিটালে 2টি ইলেকট্রন আছে। কাজেই আয়রন-এর গ্রুপ নম্বর 6+2=8।

তোমাদের বোঝার সুবিধার জন্য মৌলের সবচেয়ে বাইরের স্তরের ইলেকট্রন বিন্যাসকে লাল রং দিয়ে দেখানো হয়েছে।

টেবিল 4.01: মৌলের ইলেকট্রন বিন্যাস ও গ্রপ নম্বর

মৌল	মৌলের ইলেকট্রন বিন্যাস		গ্রুপ বা শ্রেণি নম্বর
H(1)	1s ¹	1	1 (নিয়ম 1)
He(2)	1s ²	1	18 (ব্যতিক্রম)
Li(3)			
Be(4)			
B(5)	1s ² 2s ² 2p ¹	2	2 + 1 + 10 = 13 (নিয়ম 2)
C(6)			
N (7)	1s ² 2s ² 2p ³	2	2 + 3 + 10 = 15 (নিয়ম 2)
O(8)	1s ² 2s ² 2p ⁴	2	2 + 4 + 10 = 16 (নিয়ম 2)
F(9)	1s ² 2s ² 2p ⁵	2	2 + 5 + 10 = 17 (নিয়ম 2)
Ne(10)	1s ² 2s ² 2p ⁶	2	2 + 6 + 10 = 18 (নিয়ম 2)
Na(11)			
Mg(12)	1s ² 2s ² 2p ⁶ 3s ²	3	2 (নিয়ম 1)
Al(13)			
Si(14)	1s ² 2s ² 2p ⁶ 3s ² 3p ²	3	2 + 2 + 10 = 14 (নিয়ম 2)
P (15)	1s ² 2s ² 2p ⁶ 3s ² 3p ³	3	2 + 3 + 10 = 15 (নিয়ম 2)
S (16)			
Cl(17)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁵	3	2 + 5 + 10 = 17 (নিয়ম 2)
Ar(18)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶	3	2 + 6 + 10 = 18 (নিয়ম 2)
K(19)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹	4	1 (নিয়ম 1)
Ca(20)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ²	4	2 (নিয়ম 1)
Sc(21)			
Ti(22)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ² 4s ²	4	2 + 2 = 4 (নিয়ম 3)
V(23)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ³ 4s ²	4	2 + 3 = 5 (নিয়ম 3)

Cr(24)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁵ 4s ¹	4	1 + 5 = 6 (নিয়ম 3)
Mn(25)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁵ 4s ²	4	2 + 5 = 7 (শিয়ম 3)
Fe(26)			
Co(27)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁷ 4s ²	4	2 + 7 = 9 (নিয়ম 3)
Ni(28)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁸ 4s ²	4	2 + 8 = 10 (নিয়ম 3)
Cu(29)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ¹	4	1 + 10 = 11 (নিয়ম 3)
Zn (30)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ²	4	2 + 10 = 12 (নিয়ম 3)

শিক্ষার্থীর কাজ: উপরের ছকে পারমাণবিক সংখ্যা 3, 4, 6, 11, 13, 16, 20, 21, 26 বিশিষ্ট মৌলের ইলেকট্রন বিন্যাস লিখ এবং ইলেকট্রন বিন্যাস থেকে পর্যায় সারণিতে সেগুলোর অবস্থান নির্ণয় করো।

4.4 ইলেকট্রন বিন্যাসই পর্যায় সারণির মূল ভিন্তি

(Electronic Configurations of Elements are the Main Basis of the Periodic Table)

ইলেকট্রন বিন্যাসের মাধ্যমে কোনো মৌল কত নম্বর পর্যায় এবং কত নম্বর গ্রুপে অবস্থান করে তা বের করা যায়। আবার, যে সকল মৌলের বাইরের প্রধান শক্তিস্তরের ইলেকট্রন বিন্যাস একই রকম সে সকল মৌল একই গ্রুপে অবস্থান করে। অপরদিকে যে সকল মৌলের বাইরের প্রধান শক্তিস্তরের ইলেকট্রন বিন্যাস ভিন্ন রকম সে সকল মৌল ভিন্ন গ্রুপে অবস্থান করে।

টেবিল 4.02: মৌল ও ইলেকট্রন বিন্যাস

গ্রুপ-1	
মৌল	ইলেকট্রন বিন্যাস
H(1)	1s ¹
Li(3)	1s ² 2s ¹
Na(11)	1s ² 2s ² 2p ⁶ 3s ¹
K(19)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹

গ্ৰুপ-2	
মৌল	ইলেকট্রন বিন্যাস
He(2)	1s ²
Be(4)	1s ² 2s ²
Mg(12)	1s ² 2s ² 2p ⁶ 3s ²
Ca(20)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ²

যে সকল মৌলের ইলেকট্রন বিন্যাসে বাইরের শস্তুিস্তরে মোট ইলেকট্রন সংখ্যা 1টি সে সকল মৌল সাধারণত ইলেকট্রন দান করে ধনাত্মক আয়নে পরিণত হওয়ার প্রবণতা দেখায়। যেমন সোডিয়ামের বাইরের শেলে 1টি ইলেকট্রন আছে। তাই সোডিয়াম ঐ 1টি ইলেকট্রন ত্যাগ করে ধনাত্মক আয়নে পরিণত হয়।

Na
$$(1s^22s^22p^63s^1)$$
 Na⁺ $(1s^22s^22p^6) + e^-$

আবার যে সকল মৌলের ইলেকট্রন বিন্যাসে বাইরের শক্তিস্তরে মোট ইলেকট্রন সংখ্যা 7টি সে সকল মৌল সাধারণত 1টি ইলেকট্রন গ্রহণ করে ঋণাত্মক আয়নে পরিণত হবার প্রবণতা দেখায়। যেমন—ক্লোরিনের বাইরের শেলে 7টি ইলেকট্রন আছে। তাই ক্লোরিন 1টি ইলেকট্রন গ্রহণ করে ঋণাত্মক আয়নে পরিণত হয়।

Cl
$$(1s^22s^22p^63s^23p^5) + e^- \longrightarrow Cl^-(1s^22s^22p^63s^23p^6)$$

অতএব ইলেকট্রন বিন্যাসের মাধ্যমে পর্যায় সারণিতে মৌলের অবস্থান নির্ণয় ও মৌলসমূহের অনেক ধর্ম ব্যাখ্যা করা যায়। এজন্য ইলেকট্রন বিন্যাসকেই পর্যায় সারণির মূল ভিত্তি হিসেবে বিবেচনা করা হয়।

4.5 পর্যায় সারণির কিছু ব্যতিক্রম (Some Exceptions in the Periodic Table)

- (a) হাইড্রোজ্বেনের অবস্থান: হাইড্রোজেন একটি অধাতু। কিন্তু পর্যায় সারণিতে হাইড্রোজেনকে তীব্র তড়িৎ ধনাত্মক ক্ষার ধাতু Na, K, Rb, Cs, Fr এর সাথে গ্রুপ-1 এ স্থান দেওয়া হয়েছে। এর কারণ ক্ষার ধাতুর মতো H এর বাইরের প্রধান শক্তিত্বরে একটিমাত্র ইলেকট্রন রয়েছে। আবার, হাইড্রোজেনের অনেক ধর্ম ক্ষার ধাতুগুলোর ধর্মের সাথে মিলে যায়। অন্যদিকে, হ্যালোজেন মৌল (F, Cl, Br, I) এর একটি পরমাণু যেমন একটি ইলেকট্রন গ্রহণ করতে পারে, হাইড্রোজেনও তেমনি একটি ইলেকট্রন গ্রহণ করতে পারে অর্থাৎ H এর অনেক ধর্ম হ্যালোজেন মৌলের ধর্মের সাথেও মিলে যায়। তবে হাইড্রোজেনের বেশির ভাগ ধর্ম ক্ষার ধাতুসমূহের ধর্মের সাথে মিলে যাওয়ায় একে ক্ষার ধাতুর সাথে গ্রুপ 1 এ স্থান দেওয়া হয়েছে।
- (b) **হিলিয়ামের অবস্থান:** হিলিয়ামের ইলেকট্রন বিন্যাস $He(2) \rightarrow 1s^2$ । হিলিয়ামের ইলেকট্রন বিন্যাস অনুসারে একে গ্রুপ-2 এ স্থান দেওয়া উচিত ছিল। কিন্তু গ্রুপ-2 এর মৌলসমূহ তীব্র তড়িৎ ধনাত্মক। এদের মৃৎক্ষার ধাতু বলে। অপরদিকে He একটি নিষ্ক্রিয় গ্যাস। এর ধর্ম অন্যান্য নিষ্ক্রিয় গ্যাস নিয়ন,

আর্গন, ক্রিপ্টন, জ্বেনন, রেডন ইত্যাদির সাথে মিলে যায়। He এর ধর্ম কখনই তীব্র তড়িৎ ধনাত্মক মৃৎক্ষার ধাতুর মতো হয় না। তাই হিলিয়ামকে নিষ্ক্রিয় গ্যাসসমূহের সাথে গ্রুপ-18 তে স্থান দেওয়া হয়েছে।

(c) **স্যান্থানাইড সারির এবং অ্যাকটিনাইড সারির মৌলগুলোর অবস্থান:** পর্যায় সারণিতে স্যান্থানাইড সারির মৌলগুলো 6 নম্বর পর্যায় ও 3 নম্বর গ্রুপে অবস্থিত এবং অ্যাকটিনাইড সারির মৌলগুলো 7 নম্বর পর্যায় ও 3 নম্বর গ্রুপে অবস্থিত। এই অবস্থানগুলোতে স্যান্থানাইড সারির এবং অ্যাকটিনাইড সারির মৌলগুলোকে বসালে পর্যায় সারণির সৌন্দর্য নন্ট হয়। কাজেই পর্যায় সারণিকে সুন্দরভাবে দেখানোর জন্য স্যান্থানাইড সারির এবং অ্যাকটিনাইড সারির মৌলগুলোকে পর্যায় সারণির নিচে আলাদাভাবে রাখা হয়েছে।

4.6 মৌলের পর্যায়বৃত্ত ধর্ম (Periodic Properties of Elements)

পর্যায় সারণিতে অবস্থিত মৌলগুলোর কিছু ধর্ম আছে যেমন: ধাতব ধর্ম, অধাতব ধর্ম, পরমাণুর আকার, আয়নিকরণ শক্তি, তড়িৎ ঋণাত্মকতা, ইলেকট্রন আসন্তি ইত্যাদি। এসব ধর্মকে পর্যায়বৃত্ত ধর্ম বলে।

(a) ধাতব ধর্ম (Metallic Properties): যে সকল মৌল চকচকে, আঘাত করলে ধাতব শব্দ করে এবং তাপ ও বিদ্যুৎ পরিবাহী তাদেরকে আমরা ধাতু বলে থাকি। আধুনিক সংজ্ঞা অনুযায়ী যে সকল মৌল এক বা একাধিক ইলেকট্রন ত্যাগ করে ধনাত্মক আয়নে পরিণত হয় তাদেরকে ধাতু বলে। ধাতুর ইলেকট্রন ত্যাগের এই ধর্মকে ধাতব ধর্ম বলে। যে মৌলের পরমাণু যত সহজে ইলেকট্রন ত্যাগ করতে পারবে সেই মৌলের ধাতব ধর্ম তত বেশি।

যেমন- লিথিয়াম (Li) একটি ধাতু কারণ Li একটি ইলেকট্রন ত্যাগ করে Li* এ পরিণত হয়।

$$Li \rightarrow Li^+ + e^-$$

পর্যায় সারণিতে যেকোনো পর্যায়ের বাম থেকে ডানে গেলে ধাতব ধর্ম হ্রাস পায়।

(b) অধাতব ধর্ম (Non-metallic Properties): যে সকল মৌল চকচকে নয়, আঘাত করলে ধাতব শব্দ করে না এবং তাপ ও বিদ্যুৎ পরিবাহী নয় তাদেরকে আমরা অধাতু বলে থাকি। আধুনিক সংজ্ঞা অনুযায়ী যেসকল মৌল এক বা একাধিক ইলেকট্রন গ্রহণ করে ঋণাত্মক আয়নে পরিণত হয় তাদেরকে অধাতু বলে। অধাতুর ইলেকট্রন গ্রহণের এই ধর্মকে অধাতব ধর্ম বলে। যে মৌলের পরমাণু যত সহজে ইলেকট্রন গ্রহণ করতে পারবে সেই মৌলের অধাতব ধর্ম তত বেশি।

যেমন: ক্লোরিন (Cl) একটি অধাতু কারণ Cl একটি ইলেকট্রন গ্রহণ করে Cl - এ পরিণত হয়।

$$Cl + e^{-} \rightarrow Cl^{-}$$

পর্যায় সারণিতে যেকোনো পর্যায়ের বাম থেকে ডানে গেলে অধাতব ধর্ম বৃদ্দি পায়।

যে সকল মৌল কোনো কোনো সময় ধাতুর মতো আচরণ করে এবং কোনো কোনো সময় অধাতুর মতো আচরণ করে তাদেরকে অর্ধধাতু বা অপধাতু বলা হয়। আবার আধুনিক সংজ্ঞা অনুযায়ী যে সকল মৌল কোনো কোনো সময় ইলেকট্রন ত্যাগ করে এবং কোনো কোনো সময় ইলেকট্রন গ্রহণ করে তাদেরকে অপধাতু বলে। যেমন: সিলিকন (Si) একটি অপধাতু।

পর্যায় সারণির যেকোনো একটি পর্যায়ের দিকে লক্ষ করলে দেখা যাবে যে, বাম দিকের মৌলগুলো সাধারণত অর্ধধাতু বা উপধাতু এবং ডান দিকের মৌলগুলো সাধারণত অর্ধধাতু ।

(c) পরমাণুর আকার/পারমাণবিক ব্যাসার্থ (Size of Atom/Atomic Radius): পরমাণুর আকার তথা পারমাণবিক ব্যাসার্থ একটি পর্যায়বৃত্ত ধর্ম। যেকোনো একটি পর্যায়ের যতই বামদিক থেকে ডান দিকে যাওয়া যায় পরমাণুর আকার/পারমাণবিক ব্যাসার্থ তত কমতে থাকে এবং যেকোনো একটি গ্রুপের যতই উপর দিক থেকে নিচের দিকে যাওয়া যায় পরমাণুর আকার/পারমাণবিক ব্যাসার্থ তত বাড়তে থাকে।

একই পর্যায়ের বাম দিক থেকে যত ডান দিকে যাওয়া যায় পারমাণবিক সংখ্যা তত বাড়তে থাকে ক্পিত প্রধান শক্তিস্তরের সংখ্যা বাড়ে না। পারমাণবিক সংখ্যা বাড়লে নিউক্লিয়াসে প্রোটন সংখ্যা বৃদ্ধি পায় এবং ইলেকট্রন সংখ্যাও বৃদ্ধি পায়। নিউক্লিয়াসের অধিক প্রোটন সংখ্যা এবং নিউক্লিয়াসের বাইরের অধিক ইলেকট্রন সংখ্যার মধ্যে আকর্ষণ বেশি হয় ফলে ইলেকট্রনগুলোর শক্তিস্তর নিউক্লিয়াসের কাছে চলে আসে, ফলে পরমাণুর আকার ছোট হয়ে যায়।

আবার, একই গ্রুপে যতই উপর থেকে নিচের দিকে যাওয়া যায় ততই বাইরের দিকে একটি করে নতুন শক্তিম্তর যুক্ত হয়। একটি করে নতুন শক্তিম্তর যুক্ত হলে পরমাণুর আকার বৃদ্ধি পায়।

একই গ্রুপের উপর থেকে নিচের দিকে গেলে
নিউক্লিয়াসের প্রোটন সংখ্যা এবং বাইরের
কক্ষপথের ইলেকট্রন সংখ্যা বৃদ্ধির জন্য আকর্ষণ
বৃদ্ধি হয়ে পরমাণুর আকার যতটুকু হ্রাস পায়,
নতুন একটি শক্তিম্ভর যোগ হওয়ার কারণে

চিত্র 4.01: পরমাণুর আকারের পর্যায়বৃত্ত ধর্ম।

পরমাণুর আকার তার চেয়ে বেশি বৃদ্ধি পায়। যে কারণে উপরের মৌলের চেয়ে নিচের মৌলের আকার বড় হয়।

(d) আয়নিকরণ শৃত্তি (Ionization Energy): গ্যাসীয় অবস্থায় কোনো মৌলের এক মোল গ্যাসীয় পরমাণু থেকে এক মোল ইলেকট্রন অপসারণ করে এক মোল ধনাত্মক আয়নে পরিণত করতে যে শৃত্তির প্রয়োজন হয়, তাকে ঐ মৌলের আয়নিকরণ শৃত্তি বলে। আয়নিকরণ শৃত্তি একটি পর্যায়বৃত্ত ধর্ম। একই পর্যায়ের বামের মৌলের পারমাণবিক ব্যাসার্ধ বেশি

চিত্র 4.02: মৌলের আয়নিকরণ

এবং ডানের মৌলের পারমাণবিক ব্যাসার্ধ কম। পারমাণবিক ব্যাসার্ধ কমলে আয়নিকরণ শক্তির মান বাড়ে এবং পারমাণবিক ব্যাসার্ধ বাড়লে আয়নিকরণ শক্তির মান কমে।

উদাহরণ

Na, Mg, Si, Al এর মধ্যে Si এর আয়নিকরণ শক্তির মান বেশি। কারণ এই মৌলগুলোর মধ্যে Si এর পারমাণবিক ব্যাসার্ধের মান সবচেয়ে কম। পক্ষান্তরে, এই মৌলগুলোর মধ্যে Na এর পারমাণবিক ব্যাসার্ধের মান বেশি বলে এদের মধ্যে সোডিয়াম এর আয়নিকরণ শস্তির মান কম।

গ্রুপ-1 এর Li, Na, K, Rb, Cs, Fr ক্ষার ধাতুগুলোর মধ্যে Li এর পারমাণবিক ব্যাসার্ধের মান সবচেয়ে কম এজন্য এদের মধ্যে Li এর আয়নিকরণ শক্তির মান সবচেয়ে বেশি।

আবার, গ্র্প-17 এর F, Cl, Br, I এবং At মৌলগুলোর মধ্যে F এর পারমাণবিক ব্যাসার্ধের মান সবচেয়ে কম, কাজেই এই মৌলগুলোর মধ্যে F এর আয়নিকরণ শক্তির মান সবচেয়ে বেশি।

(e) ইলেকট্রন আসন্তি (Electron Affinities): গাসীয় অবস্থায় কোনো মৌলের এক মোল গাসীয় পরমাণুতে এক মোল ইলেকট্রন প্রবেশ করিয়ে এক মোল ঋণাত্মক আয়নে পরিণত করতে যে শস্তি নির্গত হয়, তাকে ঐ মৌলের ইলেকট্রন আসন্তি বলে।

ইলেকট্রন আসন্তি একটি পর্যায়বৃত্ত ধর্ম। একই পর্যায়ের বামের মৌলের পারমাণবিক ব্যাসার্ধ বেশি এবং ডানের মৌলের পারমাণবিক ব্যাসার্ধ কম। পারমাণবিক ব্যাসার্ধ কমলে ইলেকট্রন আসন্তির মান বাড়ে এবং পারমাণবিক ব্যাসার্ধ বাড়লে ইলেকট্রন আসন্তির মান কমে।

পর্যায় সার্গ 90

একক কাজ

সমস্যা: Be, Ca, Sr, Ba, Mg এবং Ra মৌলগুলোর মধ্যে কোনোটির ইলেকট্রন আসম্ভি বেশি এবং কোনোটির ইলেকট্রন আসন্তি কম।

সমাধান: Be, Ca, Sr, Ba, Mg এবং Ra মৌলগুলো পর্যায় সারণির 2নং গ্রপ-এর মৌল। এই মৌলগুলোর মধ্যে Be এর পারমাণবিক ব্যাসার্ধের মান সবচেয়ে কম, এর জন্য Be এর ইলেকট্রন আসন্তির মান সবচেয়ে বেশি। আবার Ra এর পারমাণবিক ব্যাসার্ধের মান সবচেয়ে বেশি, এর জন্য Ra ইলেকট্রন আসম্ভি সবচেয়ে কম।

সমস্যা: Na, Mg, Al, Si এর মধ্যে কার ইলেকট্রন আসন্তি বেশি বা কার ইলেকট্রন আসন্তির মান কম?

সমাধান: Na, Mg, Al, Si এর মৌলগুলো পর্যায় সারণির 3 নং পর্যায়ের মৌল। এই মৌলগুলোর মধ্যে Na এর পারমাণবিক ব্যাসার্ধের মান সবচেয়ে বেশি এজন্য সোডিয়াম এর ইলেকট্রন আসম্ভির মান সবচেয়ে কম। আবার, Si এর পারমাণবিক ব্যাসার্ধের মান সবচেয়ে কম সেজন্য এর ইলেকট্রন আসন্তির মান সবচেয়ে বেশি।

(f) তড়িৎ ঋণাম্বকতা (Electronegativity): দুটি পরমাণু যখন সমযোজী বন্দনে আবন্দ হয়ে অণুতে পরিণত হয় তখন অণুর পরমাণুগুলো বন্ধনের ইলেকট্রন দুটিকে নিজের দিকে আকর্ষণ করে। এই আকর্ষণকে তড়িৎ ঋণাত্মকতা বলা হয়। তড়িৎ ঋণাত্মকতা একটি পর্যায়বৃত্ত ধর্ম। একই পর্যায়ের বামের মৌলের পারমাণবিক ব্যাসার্ধ বেশি এবং ডানের মৌলের পারমাণবিক ব্যাসার্ধ কম। পারমাণবিক ব্যাসার্ধ কমলে তড়িৎ ঋণাত্মকতার মান বাড়ে এবং পারমাণবিক ব্যাসার্ধ বাড়লে তড়িৎ ঋণাত্মকতার মান কমে।

যেমন: 3 পর্যায়ে মৌলগুলোর মাঝে Na পরমাণুর তড়িৎ ঋণাত্মকতার মান সবচেয়ে কম এবং Cl এর তড়িৎ ঋণাষ্মকতা সবচেয়ে বেশি। সাধারণত কোনো মৌলের পরমাণুর আকার ছোট হলে তড়িৎ ঋণাত্মকতার মান বেশি হয় এবং কোনো মৌলের পরমাণুর আকার বড় হলে তড়িৎ ঋণাত্মকতার মান কম হয়।

4.7 বিভিন্ন গ্রুপে উপস্থিত মৌলগুলোর বিশেষ নাম (The Special Names of Elements Present in Various Groups)

মৌলসমূহের ভৌত ও রাসায়নিক ধর্মের উপর ভিত্তি করে বিভিন্ন সময়ে তাদের বিশেষ নাম দেওয়া হয়েছিল। আমরা ইতোমধ্যে ধাতু, অধাতু, অর্থধাতু এবং অপধাতুর কথা আলোচনা করেছি। এছাড়া রয়েছে:

ফর্মা নং-১০ , রসায়ন- ১ম-১০ম শ্রেণি

ক্ষার ধাতু: পর্যায় সারণির 1 নং এপে 7টি মৌল আছে। এদের মধ্যে হাইড্রোজেন ছাড়া বাকি 6টি মৌলকে (লিথিয়াম, সোডিয়াম, পটাশিয়াম, রুবিডিয়াম, সিজিয়াম এবং ফ্রানসিয়াম) ক্ষারধাতু বলে। এই ছয়টি মৌলের প্রত্যেকটি পানিতে দ্রবীভূত হয়ে হাইড্রোজেন গ্যাস এবং ক্ষার তৈরি করে বলে এদেরকে ক্ষারধাতু (Alkali Metals) বলা হয়।

মৃৎক্ষার ধাতু: পর্যায় সারণির 2 নং গ্রুপে বেরিলিয়াম, ম্যাগনেসিয়াম, ক্যালসিয়াম, স্ট্রনসিয়াম, বেরিয়াম এবং রেডিয়াম এই 6টি মৌল আছে। এই মৌলগুলোকে মৃৎক্ষার ধাতু বলে। এই ধাতুগুলোকে মাটিতে বিভিন্ন যৌগ হিসেবে পাওয়া যায়। আবার, এরা ক্ষার তৈরি করে। এজন্য সামগ্রিকভাবে এদের মৃৎক্ষার ধাতু (Alkaline Earth Metals) বলা হয়।

মুদ্রা থাতু: গ্রুপ-11 এর 4টি মৌল হচ্ছে কপার, সিলভার, গোল্ড এবং রন্টজেনিয়াম। এই চারটি মৌলের মধ্যে প্রথম 3টি মৌলকে মুদ্রা থাতু (Coin Metals) বলা হয়, কারণ এই গ্রুপের সবচেয়ে নিচের মৌল রন্টজেনিয়াম (Rg) ছাড়া অন্য যে 3টি মৌল আছে তা দিয়ে প্রাচীনকালে মুদ্রা তৈরি হতো এবং ব্যবসাবাণিজ্য ও বিনিময়ের মাধ্যম হিসেবে ব্যবহার করা হতো।

হ্যালোজেন গ্র্প: গ্র্প-17 এর 6টি মৌলকে হ্যালোজেন (Halogen) বলা হয়। এই হ্যালোজেন গ্রুপের 6টি মৌল হচ্ছে: ফ্রোরিন (F), ফ্রোরিন (Cl), ব্রোমিন (Br), আয়োডিন (I), অ্যাস্টাটিন (As) এবং টেনেসিন (Ts)। এ সকল হ্যালোজেন মৌলকে X দ্বারা প্রকাশ করা হয়। হ্যালোজেন মানে লবণ উৎপাদনকারী এবং এর মূল উৎস সামুদ্রিক লবণ। হ্যালোজেন মৌলগুলোর সাথে ধাতু যুক্ত হয়ে লবণ গঠিত হয়। যেমন— F এর সাথে Na যুক্ত হয়ে সোডিয়াম ফ্রোরাইড লবণ কিংবা Cl এর সাথে Na যুক্ত হয়ে সোডিয়াম ফ্রোরাইড লবণ কিংবা Cl এর সাথে Cl হা ভাগাভাগি করে দ্বিমৌল অণু তৈরি করে, যেমন Cl_2 , Cl হা হাটাদি।

নিষ্ক্রিয় গ্যাস: পর্যায় সারণির 18 নং গ্রুপের মৌলসমূহকে নিষ্ক্রিয় গ্যাস (Inert Gases) বলা হয়। মৌলগুলো হলো: হিলিয়াম (He), নিয়ন (Ne), আর্গন (Ar), ক্রিপ্টন (Kr), জেনন (Xe), রেডন (Rn) এবং ওগানেসন (Og)। এই মৌলগুলোর সবচেয়ে বাইরের শক্তিস্তরে প্রয়োজনীয় ইলেকট্রন দিয়ে পূর্ণ থাকে বলে এরা ইলেকট্রন বিনিময় বা ভাগাভাগি করে কোনো যৌগ গঠন করতে চায় না। রাসায়নিক বন্ধন গঠন বা রাসায়নিক বিক্রিয়ায় এরা নিষ্ক্রিয় থাকে বলে এদেরকে নিষ্ক্রিয় মৌল বা নিষ্ক্রিয় গ্যাস বলে। নিষ্ক্রিয় গ্যাসগুলো সাধারণ তাপমাত্রায় গ্যাস হিসেবে থাকে।

অবস্থান্তর মৌল: পর্যায় সারণির 3 নং গ্রুপ থেকে 12 নং গ্রুপের মৌলগুলোকে অবস্থান্তর মৌল বলে। অবস্থান্তর মৌলগুলো যে সকল যৌগ গঠন করে সে সকল যৌগ রঙিন হয়। অবস্থান্তর মৌল বিভিন্ন বিক্রিয়ার প্রভাবক হিসেবে কাজ করে। যেমন: 10 নং গ্রুপের মৌল নিকেল একটি অবস্থান্তর মৌল। নিকেল বিভিন্ন জৈব বিক্রিয়ার প্রভাবক হিসেবে কাজ করে।

একক কাজ

সমস্যা: Ca কে মৃৎক্ষার ধাতু বলা হয় কেন?

সমাধান: Ca ধাতুর বিভিন্ন যৌগ মাটিতে পাওয়া যায়। অতএব ক্যালসিয়াম মৃৎক্ষার ধাতু। আবার Ca ধাতুর হাইড্রোক্সাইড যৌগ $Ca(OH)_2$ একটি ক্ষার। অতএব Ca একটি ক্ষারধাতু। সামগ্রিকভাবে Ca কে মৃৎক্ষার ধাতু বলা হয়।

সমস্যা: He কেন নিষ্ক্রিয় গ্যাস? ব্যাখ্যা করো।

সমাধান: He নিজেদের সাথে যুক্ত হয় না আবার অন্য মৌলের সাথে যুক্ত হয় না। এজন্য হিলিয়াম নিষ্কিয় মৌল। আবার হিলিয়াম মৌল গ্যাস হিসেবে অবস্থান করে। এজন্যই সামগ্রিকভাবে He কে নিষ্কিয় গ্যাস বলা হয়।

4.8 পর্যায় সারণির সুবিধা (Advantages of the Periodic Table)

পর্যায় সারণি বিভিন্ন রসায়নবিদের নির্লস প্রচেন্টায় গড়া রসায়নের জগতে এক অসামান্য অবদান। রসায়ন অধ্যয়ন, নতুন মৌল সম্পর্কে ভবিষ্যদ্বাণী, গবেষণা ইত্যাদিতে পর্যায় সারণি বিরাট ভূমিকা পালন করে। নিচে তার কয়েকটি উদাহরণ ভূলে ধরা হলো:

- (a) রসায়ন পাঠ সহজীকরণ: 2016 সাল পর্যত পৃথিবীতে 118টি মৌল আবিক্ষার করা হয়েছে। আমরা যদি শুধু 4টি ভৌত ধর্ম, যেমন গলনাক্ষ্ক, স্ফুটনাক্ষ্ক, ঘনত্ব ও কঠিন/তরল/গ্যাসীয় অবস্থা এবং 4টি রাসায়নিক ধর্ম, যেমন— অক্সিজেন, পানি, এসিড ও ক্ষারের সাথে বিক্রিয়া বিবেচনা করি তাহলে 118টি মৌলের মোট 118 × (4 + 4) = 944টি ধর্ম বা বৈশিন্ট্য লক্ষ্ক করা যায়। এতগুলো ধর্ম মনে রাখা অসম্ভব ব্যাপার। কিন্তু পর্যায় সারণি সে কাজটিকে অনেক সহজ করে দিয়েছে। এ পর্যায় সারণিতে রয়েছে আঠারোটি গ্রুপ আর সাতটি পর্যায়। প্রতিটি গ্রুপের সাধারণ ধর্ম জানলে 118টি মৌলের ভৌত ও রাসায়নিক ধর্ম সম্বন্ধে একটি মোটামুটি ধারণা লাভ করা যায়। শুধু তাই নয়, পর্যায় সারণি সম্পর্কে ভালোভাবে ধারণা থাকলে বিভিন্ন মৌল দ্বারা গঠিত তাদের যৌগের ধর্ম সম্পর্কেও ধারণা লাভ করা যেতে পারে।
- (b) নতুন মৌলের আবিক্ষার: কিছু দিন আগেও সাতটি পর্যায় আর আঠারোটি গ্র্প নিয়ে গঠিত পর্যায় সারণিতে বেশ কিছু ফাঁকা মর ছিল। এই মৌলগুলো আবিক্ষার হবার আগেই ঐ ফাঁকা মরে যে মৌলগুলো বসবে বা তাদের ধর্ম কেমন হবে তা পর্যায় সারণি থেকে ধারণা পাওয়া গিয়েছিল। তোমরা ইতোমধ্যে

জেনে গেছ যে বিজ্ঞানী মেন্ডেলিফ তাঁর সময়ে আবিষ্কৃত 63টি মৌলকে তার আবিষ্কৃত পর্যায় সারণিতে স্থান দিতে গিয়ে যে মৌলগুলো সম্পর্কে ভবিষ্যদ্বাণী করেছিলেন সেগুলো পরে আবিষ্কৃত হয়েছিল।

(c) পবেষণা ক্ষেত্রে: গবেষণার ক্ষেত্রেও পর্যায় সারণির অসামান্য অবদান রয়েছে। মনে করো, কোনো একজন বিজ্ঞানী কোনো একটি বিশেষ প্রয়োজনের জন্য নতুন একটি পদার্থ আবিক্ষার করতে চাইছেন। তাহলে আগেই তাঁকে ধারণা করতে হবে যে, নতুন পদার্থটির ধর্ম কেমন হবে এবং সেই সকল ধর্মবিশিষ্ট পদার্থ তৈরি করতে কী ধরনের মৌল প্রয়োজন হবে। তার এ ধারণা পর্যায় সারণি থেকেই পাওয়া যাবে। এছাড়া পর্যায় সারণির আরও অনেক ধরনের ব্যবহার আছে যা তোমরা ধীরে ধীরে জানতে পারবে।

4.9 পর্যায় সারণির একই গ্রুপের মৌলগুলো দ্বারা গঠিত যৌগের বিক্রিয়া (Reactions Occurring in the Elements of the Same Group)

পর্যায় সারণির একই গ্রুপের মৌলগুলো যে একই রকম ধর্ম প্রদর্শন করে তা একটি পরীক্ষার মাধ্যমে তোমরা বুঝতে পারবে।

যেমন: 17 নং গ্রুপের মৌল F_2 , Cl_2 , Br_2 , I_2 ইত্যাদি গ্যাস হাইড্রোজেনের সাথে বিক্রিয়া করে যথাক্রমে HF (g), HCl (g), HBr (g) , HI (g) ইত্যাদি গ্যাস উৎপন্ন করে।

$$H_2(g) + F_2(g) \longrightarrow 2HF(g)$$

 $H_2(g) + Cl_2(g) \longrightarrow 2HCl(g)$
 $H_2(g) + Br_2(g) \longrightarrow 2HBr(g)$
 $H_2(g) + I_2(g) \longrightarrow 2HI(g)$

আবার, এই গ্যাসগুলোকে যদি পানিতে দ্রবীভূত করা হয় তাহলে হাইড্রোহ্যালাইড এসিড যথা হাইড্রোফ্রোরিক এসিড [HF(aq)], হাইড্রোক্রোরিক এসিড [HCl(aq)], হাইড্রোক্রোরিক এসিড [HBr(aq)], হাইড্রোআয়োডিক এসিডে [HI(aq)] পরিণত হয়।

$$HF(g) + H_2O(l) \longrightarrow HF(aq)$$
 $HCl(g) + H_2O(l) \longrightarrow HCl(aq)$
 $HBr(g) + H_2O(l) \longrightarrow HBr(aq)$
 $HI(g) + H_2O(l) \longrightarrow HI(aq)$

এই হাইড্রোহ্যালাইড এসিডসমূহ যেকোনো কার্বনেট লবণের সাথে বিক্রিয়া করে কার্বন ডাইঅক্সাইড গ্যাস উৎপন্ন করে। যেমন— ক্যালসিয়াম কার্বনেটের মধ্যে হাইড্রোফ্রোরিক এসিড যোগ করলেও কার্বন ডাই-অক্সাইড গ্যাস উৎপন্ন হয়।

$$CaCO_3 + 2HF (aq) \longrightarrow CaF_2 + CO_2 + H_2O$$

আবার, ক্যালসিয়াম কার্বনেটের মধ্যে হাইড্রোক্লোরিক এসিড যোগ করলেও কার্বন ডাই-অক্সাইড গ্যাস তৈরি হয়।

$$CaCO_3 + 2HCl (aq)$$
 $CaCl_2 + CO_2 + H_2O$

উপরের বিক্রিয়াপুলো থেকে বোঝা যায় যে, 17 নং গ্রুপের মৌল, F_2 , Cl_2 , Br_2 , I_2 একই রকমের ধর্ম ও বিক্রিয়া প্রদর্শন করে।

আবার, 2 নং গ্রুপের মৌল Mg এবং Ca একই রকমের ধর্ম ও বিক্রিয়া প্রদর্শন করে।

ম্যাগনেসিয়াম কার্বনেট (MgCO₃) যেমন শঘু হাইড্রোক্লোরিক এসিডের সাথে বিক্রিয়া করে ম্যাগনেশিয়াম ক্লোরাইড, পানি এবং কার্বন ডাই-অক্লাইড প্যাস উৎপন্ন করে তেমনি ক্যালসিয়াম কার্বনেট শঘু হাইড্রোক্লোরিক এসিডের সাথে বিক্রিয়া করে ক্যালসিয়াম ক্লোরাইড, পানি এবং কার্বন ডাই-অক্লাইড গ্যাস উৎপন্ন করে।

$$MgCO_3 + 2HCl$$
 \longrightarrow $MgCl_2 + CO_2 + H_2O$
 $CaCO_3 + 2HCl$ \longrightarrow $CaCl_2 + CO_2 + H_2O$

পরীক্ষণের নাম: ক্যালসিয়াম কার্বনেটের সাথে লঘু হাইড্রোক্রোরিক এসিডের বিক্রিয়ায় উৎপন্ন কার্বন ডাই-অক্সাইড গ্যাস শনান্তকরণ।

মৃলনীতি: ক্যালসিয়াম কার্বনেট লঘু হাইড্রোক্রোরিক এসিডের সাথে বিক্রিয়া করে ক্যালসিয়াম ক্রোরাইড, পানি এবং কার্বন ডাইঅক্সাইড গ্যাস উৎপন্ন করে।

$$CaCO_3 + 2HCl \longrightarrow CaCl_2 + CO_2 + H_2O$$

প্রয়োজনীয় উপকরণ

যক্তপাতি: 1. একটি গোলতলী ফ্লাম্ক 2. একটি থিসল ফানেল 3. দুইবার সমকোণে বাঁকানো একটি কাচের নির্গম নল 4. কয়েকটি গ্যাসজ্ঞার 5. ছিদ্রযুক্ত ছিপি।

রাসায়নিক দ্বব্যাদি: 1. ক্যালসিয়াম কার্বনেট 2. লঘু হাইড্রোক্লোরিক এসিড 3. পানি।

কার্যপদ্ধতি:

- 1. একটি গোলতলী ফ্লান্সে ক্যালসিয়াম কার্বনেটের কিছু ছোট টুকরো নেওয়া হলো।
- 2. ছিপির সাহায্যে উলফ বোতলের এক মুখ দিয়ে একটি থিসল ফানেল এবং অপর মুখ দিয়ে দুইবার সমকোণে বাঁকানো নির্গম নলের এক প্রান্ত প্রবেশ করানো হলো।

চিত্র 4.05: কার্বন ডাই-অক্সাইড প্রস্তৃত।

- 3. থিসল ফানেলের মধ্য দিয়ে কিছু পরিমাণ পানি গোলতলী ফ্লান্কে নেওয়া হলো যেন ক্যালসিয়াম কার্বনেট এবং থিসল ফানেলের নিম্নপ্রান্ত পানিতে ডুবে থাকে।
- নির্গম নলের অন্য প্রাক্ত একটি গ্যাসজারে প্রবেশ করানো হলো।
- 5. এরপর থিসল ফানেলের ভিতর দিয়ে ধীরে ধীরে হাইড্রোক্রোরিক এসিড যোগ করা হলো। দেখা গেল ক্যালসিয়াম কার্বনেট এবং হাইড্রোক্রোরিক এসিড বিক্রিয়া করে যে কার্বন ডাই-অক্সাইড গ্যাস তৈরি করছে তা বুদু বুদু আকারে নির্গম নল দিয়ে বের হয়ে আসছে।

6. নির্গম নল দিয়ে বের হয়ে আসা গ্যাসকে গ্যাসজারে সংরক্ষণ করা হলো। যেহেতু কার্বন ডাই-অক্সাইড বাতাসের অন্যান্য গ্যাস অপেক্ষা তুলনামূলক ভারী, সেহেতু কার্বন ডাই-অক্সাইড সিলিন্ডারের নিচের দিকে জমা হবে।

কার্বন ডাই-অক্সাইড গ্যাসের ধর্ম পরীক্ষা: 1. উৎপন্ন কার্বন ডাই-অক্সাইড গ্যাসের বর্ণ লক্ষ করা হলো। কার্বন ডাই-অক্সাইডের কোনো বর্ণ দেখা গেল না।

- 2. গ্যাসজারের মুখে একটি জ্বলন্ত কাঠি ধরা হলো। কাঠিটির আগুন নিভে গেল। সিন্দান্ত নেওয়া হলো কার্বন ডাই-অক্সাইড গ্যাস আগুন নিভাতে সাহায্য করে।
- 3. একটি টেস্টটিউব বা পরীক্ষানলে চুনের পানি বা ক্যালসিয়াম হাইড্রোক্সাইড নিয়ে তার মধ্যে উৎপন্ন কার্বন ডাই-অক্সাইড গ্যাস প্রবেশ করানো হলো। প্রথমে সামান্য গ্যাস প্রবেশ করে ক্যালসিয়াম হাইড্রোক্সাইডের সাথে বিক্রিয়া করে ক্যালসিয়াম কার্বনেটের সাদা বর্ণের অধ্যক্ষেপ তৈরি হলো। ফলে চুনের পানি ঘোলা হলো। এরপর আরও অধিক গ্যাস এই ঘোলা পানির মধ্যে প্রবেশ করানো হলো ফলে ক্যালসিয়াম কার্বনেট, পানি এবং কার্বন ডাই-অক্সাইড বিক্রিয়া করে ক্যালসিয়াম বাইকার্বনেট তৈরি করল। এতে চুনের ঘোলা পানি আবার পরিক্ষার হয়ে গেল।

সতর্কতা: 1. থিসল ফানেলের শেষ প্রান্ত পানির নিচে যাতে সব সময় ডুবে থাকে সেই ব্যবস্থা নেওয়া হয়েছিল।

- 2. গোলতলী ফ্লাম্ককে একটি স্ট্যান্ডের সাথে আটকিয়ে রাখা হয়েছিল।
- এই পরীক্ষণের জন্য ক্যালসিয়াম কার্বনেটের পরিবর্তে শামুক, ঝিনুক, ডিমের খোসা এবং হাইড্রোক্লোরিক এসিডের পরিবর্তে ভিনেগার ব্যবহার করা যায়।

বহুনির্বাচনি প্রশ্ন

- 1. আধুনিক পর্যায় সারণির মূল ভিত্তি কী?
 - (ক) পারমাণবিক সংখ্যা

- (খ) পারমাণবিক ভর
- (গ) আপেক্ষিক পারমাণবিক ভর
- (ম্ব) ইলেকট্রন বিন্যাস
- 2. A \rightarrow 1s² 2s² 2p6 3s² 3p6 3d³ 4s² মৌলটি পর্যায় সারণির কোন গ্রুপে অবস্থিত?
 - (季) Group-2
- (考) Group-5
- (গ) Group-11
- (₹) Group-13

নিচের সারণি থেকে 3 ও 4 নং প্রশ্নের উত্তর দাও:

পর্যায় সারণির কোনো একটি গ্রুপের খণ্ডিত অংশ। (এখানে X, Y প্রতীকী অর্থে, প্রচলিত কোনো মৌলের প্রতীক নয়)

> ₃₇X ₅₅Y

- 3. 'X' মৌলটি পর্যায় সারণির কোন পর্যায়ের?
 - (ক) ৩য়
- (খ) ৪র্থ
- (গ) ৫ম
- (ঘ) ৬ঠ
- 4. উল্লিখিত মৌলগুলোর:
 - (i) সর্বশেষ স্তরে 1টি ইলেকট্রন আছে
 - (ii) পারমাণবিক আকার উপর থেকে নিচে ক্রমান্বয়ে হ্রাস পায়
 - (iii) Y মৌলটি X মৌল অপেক্ষা বেশি সক্রিয়

নিচের কোনটি সঠিক?

- (ক) i ও ii
- (খ) ii ଓ iii
- (গ) i ও iii
- (ঘ) i, ii ও iii

পর্যায় সার্নি

1.

		F
Na	Mg	cl
		Br

উদ্দীপকের চিত্রটি পর্যায় সারণির একটি খণ্ডিত অংশ:

- (ক) ত্রয়ী সূত্রটি লেখ।
- (খ) বেরিয়ামকে মৃৎক্ষার ধাতু বলা হয় কেন? ব্যাখ্যা করো।
- (গ) উদ্দীপকের কোন মৌলটির আকার সবচেয়ে বড়? ব্যাখ্যা করো।
- (ঘ) উদ্দীপকের পর্যায়ের বাম থেকে ডানে গেলে ইলেকট্রন আসন্তির মানের পরিবর্তন বিশ্লেষণ করো।

2:

	গ্রুপ	1	গ্ৰুপ 2	গ্রুপ 3
পর্যায় 2				
পর্যায় 3				
পর্যায় 4	A		В	С

উদ্দীপকের চিত্রটি পর্যায় সারণির একটি খণ্ডিত অংশ।

- (ক) আধুনিক পর্যায় সূত্রটি **লেখ**।
- (খ) B কে মৃৎক্ষার ধাতু বলা হয় কেন?
- (গ) A থেকে B এর দিকে যেতে পারমাণবিক আকারের পরিবর্তন ব্যাখ্যা করো।
- (ঘ) A থেকে C এর দিকে যেতে আয়নিকরণ শক্তির মানের পরিবর্তন বিশ্লেষণ করো।