Pruebas de los métodos:

Bisección:

iter a	Xm	b	f(Xm)	E	
1 0.5	0.5	1	-0.2931087267313766	0.2931087267313766	
2 0.75	0.75	1	-0.11839639385347844	0.11839639385347844	
3 0.875	0.875	1	-0.036817690757380395	0.036817690757380395	
4 0.875	0.9375	0.9375	0.0006339161592386899	0.0006339161592386899	
5 0.90625	0.90625	0.9375	-0.017772289226861138	0.017772289226861138	
6 0.921875	0.921875	0.9375	-0.008486582211768012	0.008486582211768012	
7 0.9296875	0.9296875	0.9375	-0.0039053586270640928	0.0039053586270640928	
8 0.93359375	0.93359375	0.9375	-0.0016304381170096915	0.0016304381170096915	
9 0.935546875	0.935546875	0.9375	-0.0004969353153195244	0.0004969353153195244	
10 0.935546875	0.9365234375	0.9365234375	6.882244496264622e-05	6.882244496264622e-05	
11 0.93603515625	0.93603515625	0.9365234375	-0.00021397350516394464	0.00021397350516394464	
12 0.936279296875	0.936279296875	0.9365234375	-7.255478812057126e-05	7.255478812057126e-05	
13 0.9364013671875	0.9364013671875	0.9365234375	-1.8609849000705836e-06	1.8609849000705836e-06	
14 0.9364013671875	0.93646240234375	0.93646240234375	3.348202684883006e-05	3.348202684883006e-05	
15 0.9364013671875	0.936431884765625	0.936431884765625	1.5810845160335596e-05	1.5810845160335596e-05	
16 0.9364013671875	0.9364166259765625	0.9364166259765625	6.975011174192858e-06	6.975011174192858e-06	
17 0.9364013671875	0.9364089965820312	0.9364089965820312	2.5570333977986692e-06	2.5570333977986692e-06	
18 0.9364013671875	0.9364051818847656	0.9364051818847656	3.4802931392352576e-07	3.4802931392352576e-07	
19 0.9364032745361328	0.9364032745361328	0.9364051818847656	-7.56476526753147e-07	7.56476526753147e-07	
20 0.9364042282104492	0.9364042282104492	0.9364051818847656	-2.042232898902263e-07	2.042232898902263e-07	
21 0.9364042282104492	0.9364047050476074	0.9364047050476074	7.190309125881811e-08	7.190309125881811e-08	
0	0 000404705047	0074			

Se encontró una raíz en: 0.9364047050476074

Regla falsa:

iter	a	Xm	b	f(Xm)	E
1	0.9339403807182157	0.9339403807182157	1	-0.0014290767036854723	0.0014290767036854723
2	0.9339403807182157	0.9365060516656253	0.9365060516656253	5.8756008358140654e-05	5.8756008358140654e-05
3	0.9339403807182157	0.9364047307426412	0.9364047307426412	8.678254082017389e-08	8.678254082017389e-08

Se encontró una raíz en: 0.9364047307426412

Busqueda incremental:

```
Hay una raíz de f en: [-2.5, -2.0] Hay una raíz de f en: [-1.0, -0.5] Hay una raíz de f en: [0.5, 1.0] Hay una raíz de f en: [2.0, 2.5] Hay una raíz de f en: [4.0, 4.5] Hay una raíz de f en: [5.0, 5.5] Hay una raíz de f en: [7.0, 7.5] Hay una raíz de f en: [8.0, 8.5] Hay una raíz de f en: [10.0, 10.5] Hay una raíz de f en: [11.5, 12.0]
```

```
Hay una raíz de f en: [ 13.5 , 14.0 ]
Hay una raíz de f en: [ 14.5 , 15.0 ]
Hay una raíz de f en: [ 16.5 , 17.0 ]
Hay una raíz de f en: [ 17.5 , 18.0 ]
Hay una raíz de f en: [ 19.5 , 20.0 ]
Hay una raíz de f en: [ 21.0 , 21.5 ]
Hay una raíz de f en: [ 22.5 , 23.0 ]
Hay una raíz de f en: [ 24.0 , 24.5 ]
Hay una raíz de f en: [ 26.0 , 26.5 ]
Hay una raíz de f en: [ 27.0 , 27.5 ]
Hay una raíz de f en: [ 29.0 , 29.5 ]
Hay una raíz de f en: [ 30.0 , 30.5 ]
Hay una raíz de f en: [ 32.0 , 32.5 ]
Hay una raíz de f en: [ 33.5 , 34.0 ]
Hay una raíz de f en: [ 35.0 , 35.5 ]
Hay una raíz de f en: [ 36.5 , 37.0 ]
Hay una raíz de f en: [ 38.5 , 39.0 ]
Hay una raíz de f en: [ 39.5 , 40.0 ]
Hay una raíz de f en: [ 41.5 , 42.0 ]
Hay una raíz de f en: [ 43.0 , 43.5 ]
Hay una raíz de f en: [ 44.5 , 45.0 ]
Hay una raíz de f en: [ 46.0 , 46.5 ]
```

Newton:

Iteració	nll	χi	f(xi)	Ш	Error	- 1
10	.11		-0.2931087267313766	- 11	21101	-
10	II	0.5	"	II.		!
1	Ш	0.9283919899125719	-0.2931087267313766	Ш	0.4283919899125719	
2		0.9363667412673313	-0.004662157097372055		0.00797475135475944	6
3		0.9364045800189902	-2.1912619882713535e-05	5	3.783875165885853e-0)5
14	Ш	0.9364045808795621	II -4.98339092214195e-10	Ш	8.605719470367035e-	·10 I

Punto fijo:

```
Ε
| iteración ||
               Χi
                              g(xi)
                                                             f(xi)
                                                                                10
                          || -0.2931087267313766
                                                         || 0.2068912732686234
                                                                               ll.
| 1
        || -0.2931087267313766 || -0.41982154360625734 || -0.12671281687488073 || 0.12671281687488073 |
           -0.41982154360625734 || -0.3463045191776649 || 0.07351702442859243 || 0.07351702442859243 |
| 2
| 3
        || -0.3463045191776649 || -0.39095845654230965 || -0.044653937364644736 || 0.044653937364644736 |
           -0.39095845654230965 || -0.3644050348941392 || 0.026553421648170428 || 0.026553421648170428 |
| 4
           -0.3644050348941392 || -0.3804263031679563 || -0.016021268273817058 || 0.016021268273817058 |
| 5
| 6
           -0.3804263031679563 || -0.37083679528020885 || 0.009589507887747428 || 0.009589507887747428 |
| 7
        || -0.37083679528020885 || -0.3766056453635812 || -0.005768850083372357 || 0.005768850083372357 |
           -0.3766056453635812 || -0.373145417607189 || 0.003460227756392209 || 0.003460227756392209 |
18
| 9
           -0.373145417607189 || -0.3752246411870562 || -0.002079223579867173 || 0.002079223579867173 |
```

```
-0.3752246411870562 || -0.37397658604830963 || 0.00124805513874654 || 0.00124805513874654 |
| 10 ||
       -0.37397658604830963 || -0.3747262157084321 || -0.0007496296601224861 || 0.0007496296601224861 |
| 11 ||
       -0.3747262157084321 || -0.37427613331045395 || 0.00045008239797816874 || 0.00045008239797816874 |
| 12 ||
| 13|| -0.37427613331045395 || -0.3745464284580923 || -0.00027029514763832196 || 0.00027029514763832196 |
       -0.3745464284580923 || -0.3743841264348447 || 0.0001623020232475736 || 0.0001623020232475736 |
| 14 ||
       -0.3743841264348447 || -0.3744815908319551 || -9.746439711039168e-05 || 9.746439711039168e-05 |
| 15 ||
       -0.3744815908319551 || -0.37442306518389706 || 5.8525648058027624e-05 || 5.8525648058027624e-05 |
| 16 ||
| 17||
      -0.37442306518389706 || -0.37445820986270584 || -3.514467880877392e-05 || 3.514467880877392e-05 |
| 18 ||
       -0.37445820986270584 || -0.3744371058494556 || 2.110401325022826e-05 || 2.110401325022826e-05 |
       -0.3744371058494556 || -0.37444977872741303 || -1.2672877957420337e-05 || 1.2672877957420337e-05 |
| 19 ||
      -0.37444977872741303 || -0.37444216876320036 || 7.609964212673681e-06 || 7.609964212673681e-06 |
| 20 |
      -0.37444216876320036 || -0.3744467385052047 || -4.5697420043566694e-06 || 4.5697420043566694e-06 |
| 21||
      -0.3744467385052047 || -0.37444399440652526 || 2.744098679452467e-06 || 2.744098679452467e-06 |
| 22 ||
      -0.37444399440652526 || -0.37444564222126353 || -1.647814738270359e-06 || 1.647814738270359e-06 |
| 23||
      -0.37444564222126353 || -0.37444465271927385 || 9.895019896788426e-07 || 9.895019896788426e-07 |
12411
| 25||
      -0.37444465271927385 || -0.3744452469090602 || -5.941897863737111e-07 || 5.941897863737111e-07 |
      -0.3744452469090602 || -0.37444489010190096 || 3.568071592630062e-07 || 3.568071592630062e-07 |
| 26 ||
| 27|| -0.37444489010190096 || -0.37444510436235334 || -2.1426045238026603e-07 || 2.1426045238026603e-07 |
      -0.37444510436235334 || -0.3744449757003151 || 1.28662038245686e-07 || 1.28662038245686e-07 |
| 28||
| 29 || -0.3744449757003151 || -0.37444505296105535 || -7.726074024994034e-08 || 7.726074024994034e-08 |
```

Secante:

Iteració	on xi	f(xi)	E	
0	0.5	-0.2931087267313766	1	
1	1	0.03536607938024017	I	
2	0.946166222306525	0.005619392737863826	0.05383377769347497	
3	0.9359965807911726	-0.00023632217470054284	0.010169641515352379	
4	0.9364070023767038	1.4022358909571153e-06	0.00041042158553117325	
5	0.9364045814731196	3.4371649970665885e-10	2.420903584265943e-06	
6	0.9364045808795615	-4.996003610813204e-16	5.935580915661376e-10	I

Raíces multiples:

Iter	X		f(X)	E
1	-0.00845827991076109	0).025405775475345838	0.22575233364275316
2	-1.1890183808588653e-	05 3	3.567060801401567e-05	0.008446389726952502
3	-4.218590698935789e-11	7	7.068789997788372e-11	1.1890141622681664e-05
4	-4.218590698935789e-11	0	0.0	0.0

Eliminacion Gaussiana Simple:

Stage #1

Stage # 2

Stage #3

Solution:

[0.03849519 -0.18022747 -0.30971129 0.24759405]

Eliminación Gaussiana con pivoteo parcial:

Stage # 1

```
[ 0.
       -1.71428571 0.28571429 2.57142857 0.85714286]]
Stage # 2
               -2.
[[14.
         5.
                       3.
                              1.
                                    ]
[ 0.
        13.
               -2.
                      11.
                              1.
[ 0.
        0.
               3.16483516 7.66483516 0.91758242]
[ 0.
        0.
               0.02197802 4.02197802 0.98901099]]
Stage # 3
[[14.
         5.
               -2.
                       3.
                              1.
                                    ]
[ 0.
        13.
               -2.
                      11.
                              1.
                                    ]
[ 0.
        0.
               3.16483516 7.66483516 0.91758242]
[ 0.
        0.
                      3.96875 0.98263889]]
               0.
Solution:
[ 0.03849519 -0.18022747 -0.30971129 0.24759405]
Eliminacion Gaussiana con pivoteo total:
[[ 2. -1. 0. 3. 1. ]
[1. 0.5 3. 8. 1.]
[0. 13. -2. 11. 1.]
[14. 5. -2. 3. 1.]]
Stage #1
[[14.
              -2.
                       3.
                              1.
[ 0.
        0.14285714 3.14285714 7.78571429 0.92857143]
[ 0.
        13.
               -2.
                      11.
                              1.
[ 0.
        -1.71428571 0.28571429 2.57142857 0.85714286]]
Stage # 2
               -2.
[[14.
         5.
                       3.
                              1.
                                    ]
        13.
               -2.
                      11.
                              1.
[ 0.
        0.
               3.16483516 7.66483516 0.91758242]
[ 0.
[ 0.
        0.
               0.02197802 4.02197802 0.98901099]]
Stage # 3
                3. -2. 1. ]
[[14.
         5.
```

[0. 13. 11. -2. 1.] [0. 0. 7.66483516 3.16483516 0.91758242] [0. 0. 0. -1.63870968 0.50752688]]

Solution:

 $[\ 0.03849519\ -0.18022747\ \ 0.24759405\ -0.30971129]$