

Chapter 7: Sampling and Sampling Distributions Cheat Sheet by allyrae97 via cheatography.com/29652/cs/8742/

Definitions	
Element: The entity on which data are collected	Population: A collection of all the elements of interest
Sample: A subset of the population	Sampled population: The population from which the sample is collected

Frame: a list of elements that the sample will be collected from

Sampling from an Infinite Population

Populations generated by an ongoing process are referred to as Infinite Populations: parts being manufactured, transactions occurring at a bank, calls at a technical help desk, customers entering a store

Each element selected must come from the population of interest, Each element is selected independently.

Sampling Distribution of

Expected value of \bar{x} : $E(\bar{x})$ Standard Deviation of \bar{x} : Finite Population: $\sigma \bar{x}$ Infinite Population: $\sigma x^- = \sigma/\sqrt{n}$ $=\sqrt{N-n/(N-1)}$ (σ/\sqrt{n}) Z-value at the upper Area under the curve to the left of the upper endpoint of endpoint=largest value-u/ σx on the z table interval=largest value-u/ σx Z-value at the lower Area under the curve to the left of the lower endpoint of the endpoint=smallest value-u/ σx on the z interval=smallest table value-u/ σx

error is decreased.

When selecting a different sample number,

expected value remains the same. When

the sample size is increased the standard

Sampling from a Finite Population

Finite Populations are often defined by lists: Organization Member Roster, Credit Card Account Numbers, Inventory **Product Numbers**

A simple random sample of size n from a finite population of size N: a sample selected such that each possible sample of size n has the same probability of being selected

Point Estimation

Point Estimation is a form of statistical inference.	We use the data from the sample to compute a value of a sample statistic that serves as an estimate of a population parameter.
\bar{x} is the point estimator of the population mean	s is the point estimator of the population standard deviation
p^- is the point estimator of the population proportion	$\overline{x} = (\sum xi)/n$
$s=\sqrt{\sum(xi-x^{-})^2/n-1}$	\bar{p} =x/n

	Sampling Distribution of	
	Expected value of \bar{p} =E(\bar{p})= p	Standard Deviation of \bar{p} ;
	Finite Population: σp^- = $\sqrt{N-n}/(N-1)$)($\sqrt{p(1-p/n)}$	Infinite Population: $\sigma p^- = \sqrt{p(1-p/n)}$
	Z-value at the upper endpoint of the interval=largest value- $p/\sigma \bar{p}$	Area under the curve to the left of the upper endpoint equals z value of largest value-p/ σp
	Z-value at the lower endpoint of the interval=smallest value-p/ σp^-	Area under the curve to the left of the lower endpoint=z=value of mallest value-p/ $\sigma \bar{p}$
	Probability=area under curve to	left of upper endpoint-area under curve to

Probability=area under

endpoint-area under curve

to left of lower endpoint

curve to left of upper

By allyrae97 cheatography.com/allyrae97/

Published 1st August, 2016. Last updated 2nd August, 2016. Page 1 of 1.

Sponsored by ApolloPad.com Everyone has a novel in them. Finish Yours! https://apollopad.com