Sara Abdorab

Midterm

1.)
$$f := x \to \frac{x^3 e^{\cos(x)}}{2 + x^4}$$

$$f := x \mapsto \frac{x^3 \cdot e^{\cos(x)}}{2 + x^4}$$

$$f := \frac{x^3 e^{\cos(x)}}{2 + x^4}$$

(1)

 $2 + x^{\mathsf{T}}$ $f_{\mathsf{fourth_derivative}} := diff(f, x\$4);$ $f_{\mathsf{ourth_derivative_at_pi}} := evalf(subs(x = Pi, f_{\mathsf{fourth_derivative}}));$ $f_{\mathsf{ourth_derivative}}$ at p_{i} ;

$$f := \frac{x^3 e^{\cos(x)}}{x^4 + 2}$$

$$\begin{split} f_{fourth_derivative} &:= -\frac{192 \, x^9 \cos(x) \, e^{\cos(x)}}{\left(x^4 + 2\right)^3} + \frac{x^3 \sin(x)^4 \, e^{\cos(x)}}{x^4 + 2} + \frac{16 \, x^6 \sin(x)^3 \, e^{\cos(x)}}{\left(x^4 + 2\right)^2} \\ &+ \frac{192 \, x^9 \sin(x)^2 \, e^{\cos(x)}}{\left(x^4 + 2\right)^3} + \frac{1536 \, x^{12} \sin(x) \, e^{\cos(x)}}{\left(x^4 + 2\right)^4} + \frac{6240 \, x^7 \, e^{\cos(x)}}{\left(x^4 + 2\right)^3} - \frac{24 \sin(x) \, e^{\cos(x)}}{x^4 + 2} \\ &- \frac{36 \, x \cos(x) \, e^{\cos(x)}}{x^4 + 2} + \frac{36 \, x \sin(x)^2 \, e^{\cos(x)}}{x^4 + 2} + \frac{816 \, x^4 \sin(x) \, e^{\cos(x)}}{\left(x^4 + 2\right)^2} \\ &+ \frac{216 \, x^5 \cos(x) \, e^{\cos(x)}}{\left(x^4 + 2\right)^2} - \frac{12 \, x^2 \sin(x)^3 \, e^{\cos(x)}}{x^4 + 2} - \frac{216 \, x^5 \sin(x)^2 \, e^{\cos(x)}}{\left(x^4 + 2\right)^2} \\ &- \frac{2304 \, x^8 \sin(x) \, e^{\cos(x)}}{\left(x^4 + 2\right)^3} + \frac{12 \, x^2 \sin(x) \, e^{\cos(x)}}{x^4 + 2} + \frac{x^3 \cos(x) \, e^{\cos(x)}}{x^4 + 2} - \frac{4 \, x^3 \sin(x)^2 \, e^{\cos(x)}}{x^4 + 2} \\ &- \frac{16 \, x^6 \sin(x) \, e^{\cos(x)}}{\left(x^4 + 2\right)^2} - \frac{840 \, e^{\cos(x)} \, x^3}{\left(x^4 + 2\right)^2} - \frac{11520 \, x^{11} \, e^{\cos(x)}}{\left(x^4 + 2\right)^4} + \frac{6144 \, x^{15} \, e^{\cos(x)}}{\left(x^4 + 2\right)^5} \\ &- \frac{48 \, x^6 \cos(x) \, \sin(x) \, e^{\cos(x)}}{\left(x^4 + 2\right)^2} - \frac{6 \, x^3 \sin(x)^2 \, e^{\cos(x)} \cos(x)}{x^4 + 2} + \frac{3 \, x^3 \cos(x)^2 \, e^{\cos(x)}}{x^4 + 2} \end{split}$$

$$+ \frac{36 x^2 \cos(x) \sin(x) e^{\cos(x)}}{x^4 + 2}$$

fourth_derivative_at_pi :=
$$0.3235820776$$

 0.3235820776 (2)

2.)a

$$f := x \rightarrow \frac{\left(\arctan x\right)^6}{1 + x^2} dx$$

$$f := x \mapsto \frac{\arctan^6 \cdot x^6 \cdot dx}{1 + x^2} \tag{3}$$

int(f(x), x)

$$\frac{\arctan^6 dx \, x^5}{5} - \frac{\arctan^6 dx \, x^3}{3} + \arctan^6 dx \, x - \arctan^6 dx \arctan(x) \tag{4}$$

Int(f(x), x)

$$\int \frac{\arctan^6 x^6 dx}{x^2 + 1} dx \tag{5}$$

2.)b

$$g := x \rightarrow Int\left(\frac{\left(\arctan x\right)^{6}}{1+x^{2}}dx, x = 1..3\right);$$

$$g := x \mapsto \int_{1}^{3} \frac{\arctan^{6} \cdot x^{6} \cdot dx}{1+x^{2}} dx$$
(6)

int(g(x), x)

$$x\left(\int_{1}^{3} \frac{\arctan^{6} x^{6} dx}{x^{2} + 1} dx\right) \tag{7}$$

Int(g(x), x)

$$\int \left(\int_{1}^{3} \frac{\arctan^{6} x^{6} dx}{x^{2} + 1} dx \right) dx \tag{8}$$

3.)

```
f := \log(6 * x^4 - 2 * x^3 + 10);

tangent\_line := tangent(f, x = -4);

normal\_line := normal(f, x = -4);
```

 $plot([f, tangent_line, normal_line], x = -10 ... 10, y = -10 ... 10, color = [blue, red, green], legend = ["Curve", "Tangent Line", "Normal Line"]);$

$$f := \ln(6x^4 - 2x^3 + 10)$$

$$tangent_line := tangent(ln(6x^4 - 2x^3 + 10), x = -4)$$

Error, invalid input: normal does not recognize the option x = -4 Warning, expecting only range variable x in expression tangent($\ln(6*x^4 - 2*x^3 + 10)$, x = -4) to be plotted but found name tangent

4.)a

$$f := x \rightarrow \frac{e^x + e^{-x}}{2}$$

$$f := x \rightarrow \frac{e^x}{2} + \frac{e^{-x}}{2}$$
(9)

$$g := x \to 21 - 3 x^3 - 2 x^6$$

$$g := x \mapsto 21 - 3 \cdot x^3 - 2 \cdot x^6$$
(10)

with (plots)

[animate, animate3d, animatecurve, arrow, changecoords, complexplot, complexplot3d, conformal, (11) conformal3d, contourplot, contourplot3d, coordplot, coordplot3d, densityplot, display, dualaxisplot, fieldplot3d, gradplot, gradplot3d, implicitplot, implicitplot3d, inequal, interactive, interactiveparams, intersectplot, listcontplot, listcontplot3d, listdensityplot, listplot, listplot3d, loglogplot, logplot, matrixplot, multiple, odeplot, pareto, plotcompare, pointplot, pointplot3d, polarplot, polygonplot, polygonplot3d, polyhedra_supported, polyhedraplot, rootlocus, semilogplot, setcolors, setoptions, setoptions3d, shadebetween, spacecurve, sparsematrixplot, surfdata, textplot, textplot3d, tubeplot]

plot({ *f*, *g* });

4.)b

$$fI := \frac{e^x + e^{-x}}{2};$$

$$fI := \frac{e^x}{2} + \frac{e^{-x}}{2}$$
 (12)

$$f2 := \frac{21 - 3x^3 - 2x^6}{2};$$

$$f2 := -x^6 - \frac{3}{2}x^3 + \frac{21}{2} \tag{13}$$

 $fsolve(\{fl = 0, f2 = 0\});$

$$fsolve\left(\left\{\frac{e^x}{2} + \frac{e^{-x}}{2} = 0, -x^6 - \frac{3}{2}x^3 + \frac{21}{2} = 0\right\}, \{x, y\}\right)$$
 (14)

4.) c

$$f := \frac{e^x + e^{-x}}{2};$$

$$f \coloneqq \frac{\mathrm{e}^x}{2} + \frac{\mathrm{e}^{-x}}{2} \tag{15}$$

$$g := \frac{21 - 3x^3 - 2x^6}{2};$$

$$g := -x^6 - \frac{3}{2} x^3 + \frac{21}{2} \tag{16}$$

a := 0;

b := 1;

area := int(f - g, x = a .. b);

$$a := 0$$
 $b := 1$
 $area := -\frac{559}{56} + \frac{e}{2} - \frac{e^{-1}}{2}$ (17)

5.) a

$$f := -x^4 + x^3 + 13 \cdot x^2 + 12 \cdot x - 11;$$

$$f := -x^4 + x^3 + 13 x^2 + 12 x - 11$$
(18)

 $x_{intercepts} := solve(f = 0, x);$

$$x_intercepts := RootOf(_Z^4 - _Z^3 - 13_Z^2 - 12_Z + 11, index = 1), RootOf(_Z^4 - _Z^3)$$

$$- 13_Z^2 - 12_Z + 11, index = 2), RootOf(_Z^4 - _Z^3 - 13_Z^2 - 12_Z + 11, index$$

$$= 3), RootOf(_Z^4 - _Z^3 - 13_Z^2 - 12_Z + 11, index = 4)$$
(19)

 $y_{intercept} := subs(x = 0, f);$

$$y_{intercept} := -11$$
 (20)

$$f := -x^4 + x^3 + 13 \cdot x^2 + 12 \cdot x - 11;$$

$$f := -x^4 + x^3 + 13 \cdot x^2 + 12 \cdot x - 11$$

$$critical_points := solve(diff(f, x) = 0, x);$$

$$critical_points := \frac{\left(4023 + 12 \operatorname{I}\sqrt{117303}\right)^{1/3}}{12} + \frac{107}{4\left(4023 + 12 \operatorname{I}\sqrt{117303}\right)^{1/3}} + \frac{1}{4},$$

$$-\frac{\left(4023 + 12 \operatorname{I}\sqrt{117303}\right)^{1/3}}{24} - \frac{107}{8\left(4023 + 12 \operatorname{I}\sqrt{117303}\right)^{1/3}} + \frac{1}{4}$$

$$+\frac{\operatorname{I}\sqrt{3}\left(\frac{\left(4023 + 12 \operatorname{I}\sqrt{117303}\right)^{1/3}}{12} - \frac{107}{4\left(4023 + 12 \operatorname{I}\sqrt{117303}\right)^{1/3}}\right)}{2} + \frac{1}{4}$$

$$-\frac{\left(4023 + 12 \operatorname{I}\sqrt{117303}\right)^{1/3}}{24} - \frac{107}{8\left(4023 + 12 \operatorname{I}\sqrt{117303}\right)^{1/3}} + \frac{1}{4}$$

$$-\frac{\operatorname{I}\sqrt{3}\left(\frac{\left(4023 + 12 \operatorname{I}\sqrt{117303}\right)^{1/3}}{12} - \frac{107}{4\left(4023 + 12 \operatorname{I}\sqrt{117303}\right)^{1/3}}\right)}{2}$$

5.) c

$$f := -x^4 + x^3 + 13 \cdot x^2 + 12 \cdot x - 11;$$

$$f_second_derivative := diff(f, x, x);$$

$$inflection_points := solve(f_second_derivative = 0, x);$$

$$inflection_points;$$

$$f := -x^4 + x^3 + 13 \cdot x^2 + 12 \cdot x - 11$$

$$f_second_derivative := -12 \cdot x^2 + 6 \cdot x + 26$$

$$inflection_points := \frac{1}{4} - \frac{\sqrt{321}}{12}, \frac{1}{4} + \frac{\sqrt{321}}{12}$$

$$\frac{1}{4} - \frac{\sqrt{321}}{12}, \frac{1}{4} + \frac{\sqrt{321}}{12}$$

$$(23)$$

5.) d

```
f := -x^4 + x^3 + 13 \cdot x^2 + 12 \cdot x - 11;
f derivative := diff(f, x);
 critical\ points := solve(f\ derivative = 0, x);
 intervals := solvetools:-inequal(f derivative > 0, x);
 increasing intervals := select(type, intervals, (x) \rightarrow x > 0);
 decreasing intervals := select(type, intervals, (x) \rightarrow x < 0);
 increasing intervals, decreasing intervals;
                                                          f := -x^4 + x^3 + 13x^2 + 12x - 11
                                                     f \text{ derivative} := -4 x^3 + 3 x^2 + 26 x + 12
critical_points := \frac{\left(4023 + 12 \text{ I}\sqrt{117303}\right)^{1/3}}{12} + \frac{107}{4 \left(4023 + 12 \text{ I}\sqrt{117303}\right)^{1/3}} + \frac{1}{4},
-\frac{\left(4023 + 12 \text{ I}\sqrt{117303}\right)^{1/3}}{24} - \frac{107}{8 \left(4023 + 12 \text{ I}\sqrt{117303}\right)^{1/3}} + \frac{1}{4}
+\frac{\text{I}\sqrt{3}\left(\frac{\left(4023 + 12 \text{ I}\sqrt{117303}\right)^{1/3}}{12} - \frac{107}{4 \left(4023 + 12 \text{ I}\sqrt{117303}\right)^{1/3}}\right)}{2},
            \frac{\left(4023 + 12 \operatorname{I}\sqrt{117303}\right)^{1/3}}{24} - \frac{107}{8 \left(4023 + 12 \operatorname{I}\sqrt{117303}\right)^{1/3}} + \frac{1}{4}
\operatorname{I}\sqrt{3} \left( \frac{\left(4023 + 12 \operatorname{I}\sqrt{117303}\right)^{1/3}}{12} - \frac{107}{4 \left(4023 + 12 \operatorname{I}\sqrt{117303}\right)^{1/3}} \right)
                                                      increasing intervals, decreasing intervals
                                                                                                                                                                                        (24)
```

5.) e

```
f := -x^4 + x^3 + 13 \cdot x^2 + 12 \cdot x - 11;

f\_second\_derivative := diff(f, x, x);

critical\_points := solve(f\_second\_derivative = 0, x);

intervals := solvetools:-inequal(f\_second\_derivative > 0, x);

concave\_up\_intervals := select(type, intervals, (x) \rightarrow x > 0);

concave\_down\_intervals := select(type, intervals, (x) \rightarrow x < 0);
```

concave_up_intervals, concave_down_intervals;

$$f := -x^{4} + x^{3} + 13 x^{2} + 12 x - 11$$

$$f_second_derivative := -12 x^{2} + 6 x + 26$$

$$critical_points := \frac{1}{4} - \frac{\sqrt{321}}{12}, \frac{1}{4} + \frac{\sqrt{321}}{12}$$
(25)

5.) d

$$plot(-x^4 + x^3 + 13 \cdot x^2 + 12 \cdot x - 11)$$

6.)

$$fI := x^2 - 3 \cdot x \cdot y - 7 \cdot y^3 = 1;$$

$$f2 := 7 \cdot x^2 + 3 \cdot x \cdot y - 2 \cdot y^2 = 1;$$

$$plot1 := implicit plot (f1, x = -3 ..3, y = -3 ..3, color = red);$$

$$plot2 := implicit plot (f2, x = -3 ..3, y = -3 ..3, color = blue);$$

$$display(plot1, plot2);$$

$$f1 := -7 y^3 + x^2 - 3 x y = 1$$

$$f2 := 7 x^2 + 3 x y - 2 y^2 = 1$$

$$u[1] := 9;$$

 $u[2] := 0;$
 $u[3] := -1;$

Calculate the terms up to the 30th term

for n from 4 to 30 do u[n] := 5 * u[n-1] - 6 * u[n-2] - u[n-3];end do;

Display the 30th term u[30];

$$u_1 := 9$$
 $u_2 := 0$
 $u_3 := -1$
 $u_4 := -14$
 $u_5 := -64$
 $u_6 := -235$
 $u_7 := -777$
 $u_8 := -2411$
 $u_9 := -7158$
 $u_{10} := -20547$
 $u_{11} := -57376$
 $u_{12} := -156440$
 $u_{13} := -417397$
 $u_{14} := -1090969$
 $u_{15} := -2794023$
 $u_{16} := -7006904$
 $u_{17} := -17179413$
 $u_{18} := -41061618$
 $u_{19} := -95224708$
 $u_{20} := -212574419$
 $u_{21} := -450462229$
 $u_{22} := -881639923$
 $u_{23} := -1492851822$
 $u_{24} := -1723957343$
 $u_{25} := 1218964140$

$$u_{26} := 17931416580$$
 $u_{27} := 84067255403$
 $u_{28} := 311528813395$
 $u_{29} := 1035309117977$
 $u_{30} := 3223305454112$
 3223305454112 (26)

8.)

$$f := 1 / \operatorname{sqrt}(1 - x);$$

$$P1 := fseries(f, x = 0, 2);$$

$$P2 := fseries(f, x = 0, 4);$$

$$P3 := fseries(f, x = 0, 6);$$

plot([f, P1, P2, P3], x = -0.9 ... 0.9, y = -10 ... 10, color = [blue, red, green, purple], legend = ["f(x)", "P1(x)", "P2(x)", "P3(x)"]);

$$f := \frac{1}{\sqrt{1 - x}}$$

$$P1 := fseries \left(\frac{1}{\sqrt{1 - x}}, x = 0, 2\right)$$

$$P2 := fseries \left(\frac{1}{\sqrt{1 - x}}, x = 0, 4\right)$$

$$P3 := fseries \left(\frac{1}{\sqrt{1 - x}}, x = 0, 6\right)$$

Warning, expecting only range variable x in expression fseries $(1/(1-x)^{(1/2)}, x = 0, 2)$ to be plotted but found name fseries

9.)

 $limit(7^{(1/n)}, n = infinity);$

Error, invalid input: limit expects its 2nd argument, p, to be of type Or(name = algebraic, set(name = algebraic), list(name = algebraic)), but received 2 = infinity

```
10.)
```

```
count := 0;
                                      count := 0
                                                                                      (27)
for n from 1 to 400 do
  num := 3*n^2 + 7*n - 7;
  is\_prime := isprime(num);
  if is prime then
     count := count + 1;
  end if;
end do;
count;
                                      num := 3
                                                                                      (28)
                                   is prime := true
                                                                                      (28)
                                      num := 19
                                                                                      (28)
                                    is prime := true
                                                                                      (28)
                                                                                      (28)
                                      num := 41
                                                                                      (28)
                                    is prime := true
                                      num := 69
                                                                                      (28)
                                   is prime := false
                                                                                      (28)
                                      num := 103
                                                                                      (28)
                                    is prime := true
                                                                                      (28)
                                      num := 143
                                                                                      (28)
                                   is prime := false
                                                                                      (28)
                                      num := 189
                                                                                      (28)
                                   is prime := false
                                                                                      (28)
                                     num := 241
                                                                                      (28)
                                    is prime := true
                                                                                      (28)
                                      num := 299
                                                                                      (28)
                                   is prime := false
                                                                                      (28)
                                      num := 363
                                                                                      (28)
                                   is prime := false
                                                                                      (28)
```

num := 433	(28)
$is_prime := true$	(28)
num := 509	(28)
$is_prime := true$	(28)
num := 591	(28)
$is_prime := false$	(28)
num := 679	(28)
$is_prime := false$	(28)
num := 773	(28)
$is_prime := true$	(28)
num := 873	(28)
$is_prime := false$	(28)
num := 979	(28)
$is_prime := false$	(28)
num := 1091	(28)
$is_prime := true$	(28)
num := 1209	(28)
$is_prime := false$	(28)
num := 1333	(28)
$is_prime := false$	(28)
num := 1463	(28)
$is_prime := false$	(28)
num := 1599	(28)
$is_prime := false$	(28)
num := 1741	(28)
$is_prime := true$	(28)
num := 1889	(28)
$is_prime := true$	(28)
num := 2043	(28)
$is_prime := false$	(28)
num := 2203	(28)
$is_prime := true$	(28)
$num \coloneqq 2369$	(28)
$is_prime := false$	(28)

num := 2541	(28)
$is_prime := false$	(28)
num := 2719	(28)
is_prime := true	(28)
num := 2903	(28)
$is_prime := true$	(28)
num := 3093	(28)
$is_prime := false$	(28)
num := 3289	(28)
$is_prime := false$	(28)
num := 3491	(28)
$is_prime := true$	(28)
num := 3699	(28)
$is_prime := false$	(28)
num := 3913	(28)
$is_prime := false$	(28)
num := 4133	(28)
$is_prime := true$	(28)
num := 4359	(28)
$is_prime := false$	(28)
num := 4591	(28)
is_prime := true	(28)
num := 4829	(28)
$is_prime := false$	(28)
num := 5073	(28)
$is_prime := false$	(28)
num := 5323	(28)
$is_prime := true$	(28)
num := 5579	(28)
$is_prime := false$	(28)
num := 5841	(28)
$is_prime := false$	(28)
num := 6109	(28)
$is_prime := false$	(28)

num := 6383	(28)
$is_prime := false$	(28)
num := 6663	(28)
$is_prime := false$	(28)
num := 6949	(28)
$is_prime := true$	(28)
num := 7241	(28)
$is_prime := false$	(28)
num := 7539	(28)
$is_prime := false$	(28)
num := 7843	(28)
$is_prime := false$	(28)
num := 8153	(28)
$is_prime := false$	(28)
num := 8469	(28)
$is_prime := false$	(28)
num := 8791	(28)
$is_prime := false$	(28)
num := 9119	(28)
$is_prime := false$	(28)
num := 9453	(28)
$is_prime := false$	(28)
num := 9793	(28)
$is_prime := false$	(28)
num := 10139	(28)
$is_prime := true$	(28)
num := 10491	(28)
$is_prime := false$	(28)
num := 10849	(28)
$is_prime := false$	(28)
num := 11213	(28)
$is_prime := true$	(28)
num := 11583	(28)
$is_prime := false$	(28)

num := 11959	(28)
is_prime ≔ true	(28)
num := 12341	(28)
$is_prime := false$	(28)
num := 12729	(28)
$is_prime := false$	(28)
num := 13123	(28)
$is_prime := false$	(28)
num := 13523	(28)
is_prime ≔ true	(28)
$num \coloneqq 13929$	(28)
$is_prime := false$	(28)
num := 14341	(28)
is_prime ≔ true	(28)
num := 14759	(28)
is_prime ≔ true	(28)
num := 15183	(28)
$is_prime := false$	(28)
num := 15613	(28)
$is_prime := false$	(28)
num := 16049	(28)
$is_prime := false$	(28)
<i>num</i> := 16491	(28)
$is_prime := false$	(28)
<i>num</i> := 16939	(28)
$is_prime := false$	(28)
<i>num</i> := 17393	(28)
is_prime ≔ true	(28)
<i>num</i> := 17853	(28)
$is_prime := false$	(28)
num := 18319	(28)
$is_prime := false$	(28)
num := 18791	(28)
$is_prime := false$	(28)

num := 19269	(28)
$is_prime := false$	(28)
num := 19753	(28)
$is_prime := true$	(28)
num := 20243	(28)
$is_prime := false$	(28)
num := 20739	(28)
$is_prime := false$	(28)
num := 21241	(28)
$is_prime := false$	(28)
num := 21749	(28)
$is_prime := false$	(28)
num := 22263	(28)
$is_prime := false$	(28)
num := 22783	(28)
$is_prime := true$	(28)
num := 23309	(28)
$is_prime := false$	(28)
num := 23841	(28)
$is_prime := false$	(28)
num := 24379	(28)
$is_prime := true$	(28)
num := 24923	(28)
$is_prime := true$	(28)
num := 25473	(28)
$is_prime := false$	(28)
num := 26029	(28)
$is_prime := true$	(28)
num := 26591	(28)
$is_prime := true$	(28)
num := 27159	(28)
$is_prime := false$	(28)
num := 27733	(28)
is_prime ≔ true	(28)

num := 28313	(28)
$is_prime := false$	(28)
num := 28899	(28)
$is_prime := false$	(28)
num := 29491	(28)
$is_prime := false$	(28)
num := 30089	(28)
$is_prime := true$	(28)
num := 30693	(28)
$is_prime := false$	(28)
num := 31303	(28)
$is_prime := false$	(28)
num := 31919	(28)
$is_prime := false$	(28)
num := 32541	(28)
$is_prime := false$	(28)
num := 33169	(28)
$is_prime := false$	(28)
num := 33803	(28)
$is_prime := false$	(28)
num := 34443	(28)
$is_prime := false$	(28)
num := 35089	(28)
$is_prime := true$	(28)
num := 35741	(28)
$is_prime := false$	(28)
num := 36399	(28)
$is_prime := false$	(28)
num := 37063	(28)
$is_prime := false$	(28)
num := 37733	(28)
is_prime ≔ false	(28)
num := 38409	(28)
$is_prime := false$	(28)

num := 39091	(28)
$is_prime := false$	(28)
num := 39779	(28)
$is_prime := true$	(28)
num := 40473	(28)
$is_prime := false$	(28)
num := 41173	(28)
$is_prime := false$	(28)
num := 41879	(28)
$is_prime := true$	(28)
num := 42591	(28)
$is_prime := false$	(28)
num := 43309	(28)
$is_prime := false$	(28)
num := 44033	(28)
$is_prime := false$	(28)
num := 44763	(28)
$is_prime := false$	(28)
num := 45499	(28)
$is_prime := false$	(28)
num := 46241	(28)
$is_prime := false$	(28)
num := 46989	(28)
$is_prime := false$	(28)
num := 47743	(28)
$is_prime := true$	(28)
num := 48503	(28)
$is_prime := false$	(28)
num := 49269	(28)
$is_prime := false$	(28)
num := 50041	(28)
$is_prime := false$	(28)
num := 50819	(28)
$is_prime := false$	(28)

num := 51603	(28)
$is_prime := false$	(28)
num := 52393	(28)
$is_prime := false$	(28)
num := 53189	(28)
$is_prime := true$	(28)
num := 53991	(28)
$is_prime := false$	(28)
num := 54799	(28)
$is_prime := true$	(28)
num := 55613	(28)
$is_prime := false$	(28)
num := 56433	(28)
$is_prime := false$	(28)
num := 57259	(28)
$is_prime := true$	(28)
num := 58091	(28)
$is_prime := false$	(28)
num := 58929	(28)
$is_prime := false$	(28)
num := 59773	(28)
$is_prime := false$	(28)
num := 60623	(28)
$is_prime := true$	(28)
num := 61479	(28)
$is_prime := false$	(28)
num := 62341	(28)
$is_prime := false$	(28)
num := 63209	(28)
$is_prime := false$	(28)
num := 64083	(28)
$is_prime := false$	(28)
num := 64963	(28)
$is_prime := false$	(28)

num := 65849	(28)
$is_prime := false$	(28)
num := 66741	(28)
$is_prime := false$	(28)
num := 67639	(28)
$is_prime := false$	(28)
num := 68543	(28)
$is_prime := true$	(28)
num := 69453	(28)
$is_prime := false$	(28)
num := 70369	(28)
$is_prime := false$	(28)
num := 71291	(28)
$is_prime := false$	(28)
num := 72219	(28)
$is_prime := false$	(28)
num := 73153	(28)
$is_prime := false$	(28)
num := 74093	(28)
$is_prime := true$	(28)
num := 75039	(28)
$is_prime := false$	(28)
num := 75991	(28)
$is_prime := true$	(28)
num := 76949	(28)
$is_prime := true$	(28)
num := 77913	(28)
$is_prime := false$	(28)
num := 78883	(28)
$is_prime := false$	(28)
num := 79859	(28)
$is_prime := false$	(28)
num := 80841	(28)
$is_prime := false$	(28)

num := 81829	(28)
$is_prime := false$	(28)
num := 82823	(28)
$is_prime := false$	(28)
num := 83823	(28)
$is_prime := false$	(28)
num := 84829	(28)
$is_prime := false$	(28)
num := 85841	(28)
$is_prime := false$	(28)
num := 86859	(28)
$is_prime := false$	(28)
num := 87883	(28)
$is_prime := false$	(28)
num := 88913	(28)
$is_prime := false$	(28)
num := 89949	(28)
$is_prime := false$	(28)
num := 90991	(28)
$is_prime := false$	(28)
num := 92039	(28)
$is_prime := false$	(28)
num := 93093	(28)
$is_prime := false$	(28)
num := 94153	(28)
is_prime ≔ true	(28)
num := 95219	(28)
is_prime := true	(28)
num := 96291	(28)
$is_prime := false$	(28)
num := 97369	(28)
is_prime ≔ true	(28)
num := 98453	(28)
is_prime := true	(28)

num := 99543	(28)
$is_prime := false$	(28)
num := 100639	(28)
$is_prime := false$	(28)
num := 101741	(28)
$is_prime := true$	(28)
num := 102849	(28)
$is_prime := false$	(28)
num := 103963	(28)
$is_prime := true$	(28)
num := 105083	(28)
$is_prime := false$	(28)
num := 106209	(28)
$is_prime := false$	(28)
num := 107341	(28)
$is_prime := false$	(28)
num := 108479	(28)
$is_prime := false$	(28)
num := 109623	(28)
$is_prime := false$	(28)
num := 110773	(28)
$is_prime := false$	(28)
num := 111929	(28)
$is_prime := false$	(28)
num := 113091	(28)
$is_prime := false$	(28)
num := 114259	(28)
$is_prime := true$	(28)
num := 115433	(28)
$is_prime := false$	(28)
num := 116613	(28)
$is_prime := false$	(28)
num := 117799	(28)
$is_prime := false$	(28)

num := 118991	(28)
$is_prime := false$	(28)
num := 120189	(28)
$is_prime := false$	(28)
num := 121393	(28)
$is_prime := false$	(28)
num := 122603	(28)
$is_prime := false$	(28)
num := 123819	(28)
$is_prime := false$	(28)
num := 125041	(28)
$is_prime := false$	(28)
num := 126269	(28)
$is_prime := false$	(28)
num := 127503	(28)
$is_prime := false$	(28)
num := 128743	(28)
$is_prime := false$	(28)
num := 129989	(28)
$is_prime := false$	(28)
num := 131241	(28)
$is_prime := false$	(28)
num := 132499	(28)
$is_prime := true$	(28)
num := 133763	(28)
$is_prime := false$	(28)
num := 135033	(28)
$is_prime := false$	(28)
num := 136309	(28)
$is_prime := true$	(28)
num := 137591	(28)
$is_prime := false$	(28)
num := 138879	(28)
$is_prime := false$	(28)

num := 140173	(28)
$is_prime := false$	(28)
num := 141473	(28)
$is_prime := false$	(28)
num := 142779	(28)
$is_prime := false$	(28)
num := 144091	(28)
$is_prime := false$	(28)
num := 145409	(28)
$is_prime := false$	(28)
num := 146733	(28)
$is_prime := false$	(28)
num := 148063	(28)
$is_prime := true$	(28)
num := 149399	(28)
$is_prime := true$	(28)
num := 150741	(28)
$is_prime := false$	(28)
num := 152089	(28)
$is_prime := false$	(28)
num := 153443	(28)
$is_prime := true$	(28)
num := 154803	(28)
$is_prime := false$	(28)
num := 156169	(28)
$is_prime := false$	(28)
num := 157541	(28)
$is_prime := false$	(28)
num := 158919	(28)
$is_prime := false$	(28)
num := 160303	(28)
$is_prime := false$	(28)
num := 161693	(28)
$is_prime := false$	(28)

num := 163089	(28)
$is_prime := false$	(28)
num := 164491	(28)
$is_prime := false$	(28)
num := 165899	(28)
$is_prime := false$	(28)
num := 167313	(28)
$is_prime := false$	(28)
num := 168733	(28)
$is_prime := false$	(28)
num := 170159	(28)
$is_prime := false$	(28)
num := 171591	(28)
$is_prime := false$	(28)
num := 173029	(28)
$is_prime := false$	(28)
num := 174473	(28)
$is_prime := false$	(28)
num := 175923	(28)
$is_prime := false$	(28)
num := 177379	(28)
$is_prime := true$	(28)
num := 178841	(28)
$is_prime := false$	(28)
num := 180309	(28)
$is_prime := false$	(28)
num := 181783	(28)
$is_prime := false$	(28)
num := 183263	(28)
$is_prime := true$	(28)
num := 184749	(28)
$is_prime := false$	(28)
num := 186241	(28)
$is_prime := false$	(28)

num := 187739	(28)
$is_prime := false$	(28)
num := 189243	(28)
$is_prime := false$	(28)
num := 190753	(28)
$is_prime := true$	(28)
num := 192269	(28)
$is_prime := false$	(28)
num := 193791	(28)
$is_prime := false$	(28)
num := 195319	(28)
$is_prime := true$	(28)
num := 196853	(28)
$is_prime := true$	(28)
num := 198393	(28)
$is_prime := false$	(28)
num := 199939	(28)
$is_prime := false$	(28)
num := 201491	(28)
$is_prime := true$	(28)
num := 203049	(28)
$is_prime := false$	(28)
num := 204613	(28)
$is_prime := true$	(28)
num := 206183	(28)
$is_prime := true$	(28)
num := 207759	(28)
$is_prime := false$	(28)
num := 209341	(28)
$is_prime := false$	(28)
num := 210929	(28)
$is_prime := true$	(28)
num := 212523	(28)
$is_prime := false$	(28)

num := 214123	(28)
$is_prime := false$	(28)
num := 215729	(28)
$is_prime := false$	(28)
num := 217341	(28)
$is_prime := false$	(28)
num := 218959	(28)
$is_prime := false$	(28)
num := 220583	(28)
$is_prime := false$	(28)
num := 222213	(28)
$is_prime := false$	(28)
num := 223849	(28)
$is_prime := true$	(28)
num := 225491	(28)
$is_prime := false$	(28)
num := 227139	(28)
$is_prime := false$	(28)
num := 228793	(28)
$is_prime := true$	(28)
num := 230453	(28)
is_prime := true	(28)
num := 232119	(28)
$is_prime := false$	(28)
num := 233791	(28)
$is_prime := false$	(28)
num := 235469	(28)
$is_prime := false$	(28)
num := 237153	(28)
$is_prime := false$	(28)
num := 238843	(28)
$is_prime := false$	(28)
num := 240539	(28)
$is_prime := false$	(28)

num := 242241	(28)
$is_prime := false$	(28)
num := 243949	(28)
$is_prime := false$	(28)
num := 245663	(28)
$is_prime := false$	(28)
num := 247383	(28)
$is_prime := false$	(28)
num := 249109	(28)
$is_prime := false$	(28)
num := 250841	(28)
$is_prime := true$	(28)
num := 252579	(28)
$is_prime := false$	(28)
num := 254323	(28)
$is_prime := false$	(28)
num := 256073	(28)
$is_prime := false$	(28)
num := 257829	(28)
$is_prime := false$	(28)
num := 259591	(28)
$is_prime := false$	(28)
num := 261359	(28)
$is_prime := false$	(28)
num := 263133	(28)
$is_prime := false$	(28)
num := 264913	(28)
$is_prime := false$	(28)
num := 266699	(28)
$is_prime := false$	(28)
num := 268491	(28)
$is_prime := false$	(28)
$num \coloneqq 270289$	(28)
$is_prime := false$	(28)

num := 272093	(28)
$is_prime := true$	(28)
num := 273903	(28)
$is_prime := false$	(28)
num := 275719	(28)
$is_prime := true$	(28)
num := 277541	(28)
$is_prime := false$	(28)
num := 279369	(28)
$is_prime := false$	(28)
num := 281203	(28)
$is_prime := false$	(28)
num := 283043	(28)
$is_prime := false$	(28)
num := 284889	(28)
$is_prime := false$	(28)
num := 286741	(28)
$is_prime := false$	(28)
num := 288599	(28)
$is_prime := false$	(28)
num := 290463	(28)
$is_prime := false$	(28)
num := 292333	(28)
$is_prime := false$	(28)
num := 294209	(28)
$is_prime := false$	(28)
num := 296091	(28)
$is_prime := false$	(28)
num := 297979	(28)
$is_prime := false$	(28)
num := 299873	(28)
$is_prime := false$	(28)
num := 301773	(28)
$is_prime := false$	(28)

num := 303679	(28)
$is_prime := true$	(28)
num := 305591	(28)
$is_prime := false$	(28)
num := 307509	(28)
$is_prime := false$	(28)
num := 309433	(28)
$is_prime := true$	(28)
num := 311363	(28)
$is_prime := false$	(28)
num := 313299	(28)
$is_prime := false$	(28)
num := 315241	(28)
$is_prime := false$	(28)
num := 317189	(28)
is_prime ≔ true	(28)
num := 319143	(28)
$is_prime := false$	(28)
num := 321103	(28)
$is_prime := false$	(28)
num := 323069	(28)
$is_prime := false$	(28)
num := 325041	(28)
$is_prime := false$	(28)
num := 327019	(28)
$is_prime := false$	(28)
num := 329003	(28)
$is_prime := false$	(28)
num := 330993	(28)
$is_prime := false$	(28)
num := 332989	(28)
is_prime ≔ true	(28)
num := 334991	(28)
is_prime ≔ true	(28)

num := 336999	(28)
$is_prime := false$	(28)
num := 339013	(28)
$is_prime := false$	(28)
num := 341033	(28)
$is_prime := false$	(28)
num := 343059	(28)
$is_prime := false$	(28)
num := 345091	(28)
$is_prime := false$	(28)
num := 347129	(28)
$is_prime := true$	(28)
num := 349173	(28)
$is_prime := false$	(28)
num := 351223	(28)
$is_prime := true$	(28)
num := 353279	(28)
$is_prime := false$	(28)
num := 355341	(28)
$is_prime := false$	(28)
num := 357409	(28)
$is_prime := false$	(28)
num := 359483	(28)
$is_prime := true$	(28)
num := 361563	(28)
$is_prime := false$	(28)
num := 363649	(28)
$is_prime := false$	(28)
num := 365741	(28)
$is_prime := false$	(28)
num := 367839	(28)
$is_prime := false$	(28)
num := 369943	(28)
$is_prime := false$	(28)

num := 372053	(28)
$is_prime := false$	(28)
num := 374169	(28)
$is_prime := false$	(28)
num := 376291	(28)
$is_prime := true$	(28)
num := 378419	(28)
$is_prime := false$	(28)
num := 380553	(28)
$is_prime := false$	(28)
num := 382693	(28)
$is_prime := true$	(28)
num := 384839	(28)
$is_prime := false$	(28)
num := 386991	(28)
$is_prime := false$	(28)
num := 389149	(28)
$is_prime := true$	(28)
num := 391313	(28)
$is_prime := false$	(28)
num := 393483	(28)
$is_prime := false$	(28)
num := 395659	(28)
$is_prime := false$	(28)
num := 397841	(28)
$is_prime := false$	(28)
num := 400029	(28)
$is_prime := false$	(28)
num := 402223	(28)
$is_prime := true$	(28)
num := 404423	(28)
$is_prime := true$	(28)
num := 406629	(28)
$is_prime := false$	(28)

num := 408841	(28)
$is_prime := true$	(28)
num := 411059	(28)
$is_prime := false$	(28)
num := 413283	(28)
$is_prime := false$	(28)
num := 415513	(28)
$is_prime := false$	(28)
num := 417749	(28)
$is_prime := false$	(28)
num := 419991	(28)
$is_prime := false$	(28)
num := 422239	(28)
$is_prime := true$	(28)
num := 424493	(28)
$is_prime := true$	(28)
num := 426753	(28)
$is_prime := false$	(28)
num := 429019	(28)
$is_prime := false$	(28)
num := 431291	(28)
$is_prime := false$	(28)
num := 433569	(28)
$is_prime := false$	(28)
num := 435853	(28)
$is_prime := false$	(28)
num := 438143	(28)
$is_prime := true$	(28)
num := 440439	(28)
$is_prime := false$	(28)
num := 442741	(28)
$is_prime := false$	(28)
num := 445049	(28)
$is_prime := false$	(28)

num := 447363	(28)
$is_prime := false$	(28)
num := 449683	(28)
$is_prime := false$	(28)
num := 452009	(28)
$is_prime := true$	(28)
num := 454341	(28)
$is_prime := false$	(28)
num := 456679	(28)
is_prime ≔ true	(28)
num := 459023	(28)
is_prime ≔ true	(28)
num := 461373	(28)
$is_prime := false$	(28)
num := 463729	(28)
$is_prime := false$	(28)
num := 466091	(28)
is_prime ≔ true	(28)
num := 468459	(28)
$is_prime := false$	(28)
num := 470833	(28)
$is_prime := false$	(28)
num := 473213	(28)
$is_prime := false$	(28)
num := 475599	(28)
$is_prime := false$	(28)
num := 477991	(28)
$is_prime := true$	(28)
num := 480389	(28)
$is_prime := false$	(28)
num := 482793	(28)
$is_prime := false$	(28)
95	(28)

Ø (29)