CS3245

Information Retrieval

Lecture 4: Dictionaries and Tolerant Retrieval

Live Q&A https://pollev.com/jin

Last Time: Postings lists and Choosing terms

- Faster merging of posting lists
 - Skip pointers
- Handling of phrase and proximity queries
 - Biword indexes for phrase queries
 - Positional indexes for phrase/proximity queries
- Steps in choosing terms for the dictionary
 - Text extraction
 - Granularity of indexing
 - Tokenization
 - Stop word removal
 - Normalization
 - Lemmatization and stemming

Today: the dictionary and tolerant retrieval

Dictionary

- "Tolerant" retrieval
 - Wild-card queries
 - Spelling correction
 - Soundex

Dictionary data structures for inverted indexes

The dictionary data structure stores the term vocabulary, document frequency, pointers to each postings list ... in what data structure?

Calpurnia $4 \longrightarrow 2 \mid 31 \mid 54 \mid 101$

:

dictionary

postings

A naïve dictionary

An (possibly unsorted) array of entries:

	term	document	pointer to
		frequency	postings list
dict[0]	а	656,265	\longrightarrow
dict[1]	aachen	65	\longrightarrow
•••			
dict[]	zulu	221	\longrightarrow

char[20]

20 bytes

int

8 bytes

Postings Pointer

8 bytes

Quick Q: What's wrong with using this data structure?

A naïve dictionary

term	document	pointer to
	frequency	postings list
а	656,265	\longrightarrow
aachen	65	\longrightarrow
zulu	221	\longrightarrow

char[20] 20 bytes int

Postings Pointer

8 bytes

8 bytes

- Words can only be at most 20 chars long. Waste of space for some words, not enough for others.
- How do we store a dictionary efficiently?
 - → Later in W6

A naïve dictionary

term	document	pointer to
	frequency	postings list
а	656,265	\longrightarrow
aachen	65	\longrightarrow
zulu	221	 →

char[20] 20 bytes int Postings Pointer 8 bytes 8 bytes

- Slow to access, linear scan needed!
- How do we quickly look up elements at query time?

Dictionary data structures

- Two main choices:
 - Hash table
 - Tree
- Focus on the support of tolerant retrieval for this lecture
 - See the textbook for other considerations!

Hash Table

Hash Table

- Pros:
 - Faster (than Tree): O(1) for lookup

- Cons:
 - No easy way to find minor variants:
 - judgment/judgement

Not very tolerant!

No prefix search (e.g., terms starting with "hyp")

Tree: binary tree

Trees

- Pros:
 - Solves the prefix problem (e.g., terms starting with "hyp")
 - Easier to find minor variants:
 - judgment/judgement

More tolerant!

- Cons:
 - Slower: O(log M) [and this requires a balanced tree]

Wildcard queries: *

* matches with any sequence of letters

- Sample use cases
 - File search based on extension (e.g., *.jpg)
 - Variation in spelling (e.g., col*ur)
 - Single vs plural form (e.g., cat*)
 - •

Wildcard queries: *

- mon*: find docs with words beginning with "mon".
 - Maintain a binary tree for terms
 - Retrieve all words in range: mon ≤ w < moo</p>

money monsoon

month

. . .

Wildcard queries: *

- *mon: find docs with words ending in "mon"
 - Maintain an additional tree for terms reversed
 - Retrieve all words in range: nom ≤ w < non.</p>

nomel nomlas nommoc

. . .

Handling general wildcard queries

- How about pro*cient?
 - Retrieve possible words for pro* and *cient from the trees and intersect

Information Retrieval

Handling general wildcard queries

General wildcard queries: X*Y

- Look up X* in a normal tree AND *Y in a reverse tree,
 and then intersect the two term sets
 - Expensive
- The solution: transform wildcard queries into prefix queries (i.e., * occurs at the end)

This gives rise to the Permuterm Index.

Permuterm index

- For the term *hello*, add an end marker \$ and index all rotations:
 - hello\$, ello\$h, llo\$he, lo\$hel, o\$hell and \$hello
- For a wildcard query, add an end marker \$ and look up using the rotation with * at the end
 - X* lookup on \$X*
- *X lookup on X\$*
- X*Y lookup on Y\$X*
- *X* lookup on X*

Query = hel*o X=hel, Y=o Lookup o\$hel*

Not so quick Q: What about X*Y*Z?

Permuterm index

- Lexicon size blows up, proportional to average word length
 - E.g., A 5-letter word, hello, has 6 rotations

Is there any other solution?

Bigram (k-gram) index

- Enumerate all k-grams (sequence of k chars)
 occurring in any term
- e.g., from text "April is the cruelest month" we get the 2-grams (bigrams)

\$a,ap,pr,ri,il,\$,\$i,is,\$\$,\$t,th,he,e\$,\$c,cr,ru,ue,el,le,es,st,t\$,\$m,mo,on,nt,h\$

- As before "\$" is a special word boundary symbol
- Maintain a <u>second</u> inverted index <u>from bigrams to</u> <u>dictionary terms</u> that match each bigram.

Bigram index example

The k-gram index finds terms based on a query consisting of k-grams (here k=2).

- Query mon* can now be run as an "AND" Query
 - \$m AND mo AND on
 - Possible matches: month, moon, ...

Bigram query processing

- Oops! We also included moon, a false positive!
 - It also contains all 3 bigrams \$m, mo, on
 - Must post-filter these terms against query.
 - Surviving enumerated terms are then looked up in the term-document inverted index.
- Fast, space efficient (compared to permuterm).

Processing wildcard queries

- After getting the possible terms, we still need to execute a Boolean query for each possible term.
- Wildcards can result in expensive query execution (very large disjunctions...)
 - pyth* AND prog*
- If you encourage laziness, people will respond!

Search

Type your search terms, use '*' if you need to. E.g., Alex* will match Alexander.

Which web search engines allow wildcard queries?

Query misspellings

- Need to correct user queries to retrieve "right" answers
 - E.g., the query Ellon Mask

- We can
 - Return several suggested alternative queries with the correct spelling
 - "Did you mean ... ?"
 - Retrieve documents indexed by the correct spelling

Spellling corektion

- Two main flavors:
 - Isolated word
 - Check each word on its own for misspelling
 - Will not catch typos resulting in correctly spelled words
 e.g., from → form
 - Context-sensitive
 - Look at surrounding words
 e.g., I flew form Narita.

Fundamental premise

There is a lexicon of correct spellings.

- Two basic choices for this
 - A standard lexicon such as
 - Merriam-Webster's English Dictionary
 - A domain-specific lexicon often hand-maintained
 - The lexicon of the indexed corpus
 - E.g., all words on the web
 - All names, acronyms, etc. (including misspellings)

Isolated word correction

- Given a lexicon and a character sequence Q, return the words in the lexicon closest to Q
 - $dof \rightarrow dog, dock, cat....?$

How do we define "closest"?

- We'll study two alternatives
 - Edit distance (Levenshtein distance)
 - ngram overlap

Edit distance

- Given two strings S_1 and S_2 , the edit distance D (S_1, S_2) is the minimum number of operations to convert one to the other
- Operations are typically character-level
 - Insert, Delete, Replace
- E.g., D (dof, dog) = 1
 - D (cat, act) = 2.
 - D (cat, dog) = 3.
- Generally found by dynamic programming

Dynamic Programming

Not dynamic and **not** programming

- Build up solutions of "simpler" instances from small to large
 - Compute solutions of "simpler" instances
 - Use these solutions to solve larger problems
 - E.g., Fibonacci numbers

Fib(1)	Fib(2)	Fib(3)	Fib(4)	Fib(5)
1	1	1+1=2	1+2=3	2+3=5

 Useful when problem can be solved using solution of two or more instances that are only slightly simpler than original instances

3

- Let's try to compute the edit distance between $S_1 = PAT$ and $S_2 = APT$ using this array E, where
 - E (i, j) = the distance between
 S₁ (up to the i-th character) and
 S₂ (up to the j-th character)
 - "_" denotes an empty string
- \blacksquare E (0, 0) = D (_, _)
- \blacksquare E (1, 2) = D (P, AP)
- E (3, 3) = D (PAT, APT)

	0	1	2	3
S_1	ı	Р	Α	Т
_				
Α				
Р				
Т				

3

E.g., base cases

$$-$$
 D(,A)=1

0	1	2	3

S_1	1	Р	Α	Т
-	0	1		
Α	1			
Р				
Т				

- E.g., recursive cases
 - D (PAT, APT) = ??
- What are the smaller problems?
 - If we know D (PAT, AP), the final distance is D (PAT, AP) + 1 since we need **one insertion** to add T to the end of **AP**.
 - If we know D (PA, APT), the final distance is D (PA, APT) + 1 since we need **one insertion** to add T to the end of **PA**.
 - If we know D (PA, AP), the final distance is D (PA, AP) since inserting T to both PA and AP does not change the distance.
- What is the minimal distance?

		0	1	2	3
	S_1	-	Р	Α	Т
0		0	1	2	3
1	Α	1	1	1	2
2	Р	2	1	2	2
3	Т	3	2	2	2

$$E(i, j) = \min\{ E(i, j-1) + 1, E(i-1, j) + 1, E(i-1, j-1) + m \}$$

where $\mathbf{m} = \mathbf{1}$ if $P_i \neq T_j$, $\mathbf{0}$ otherwise

Edit distance to all dictionary terms?

- Given a (misspelled) query do we compute its edit distance to every dictionary term?
 - Expensive and slow
 - Alternative?
- How do we cut the set of candidate dictionary terms?
 - One possibility is to use ngram overlap for this
 - This can also be used by itself for spelling correction

2. Ngram overlap

- Enumerate all the ngrams in the query string as well as in the lexicon
 - Query term: lord → Bigrams: {lo, or, rd}
 - Lexicon term: lore -> Bigrams {lo, or, re}
 - Lexicon term: border → Bigrams {bo, or, rd, de, er}
- Count the overlaps between a pair of terms
 - 2 between lord and lore
 - 2 between lord and border

This favors longer

terms by nature, why?

- Threshold to decide if you have a match
 - E.g., if count >= 2, declare a match

A normalized option – Jaccard coefficient

Let X and Y be two sets; then the J.C. is

A generally useful overlap measure, even outside of IR

- Equals 1 when X and Y have the same elements and 0 when they are disjoint
- Does not favor longer terms.
- E.g., JC(lord, lore) = 2/4 JC(lord, border) = 2/6

- Threshold to decide if you have a match
 - E.g., if Jaccard >= 0.5, declare a match

"coefficient de communauté"

Matching bigrams

- Index the dictionary terms using bigram.
- Identify words with at least 2 overlaps (and Jaccard >= 0.5) by merging.

Context-sensitive correction

- Query: flew form Narita
- Need context to correct "form" to "from"
- Retrieve dictionary terms close (e.g., in edit distance) to each query term
- Enumerate all possible resulting phrases with one word "corrected" at a time
 - flew from Narita
 - fled form Narita
 - flew form Arita

Which one to pick?

Context-sensitive correction

- Decide which ones to present using heuristics
 - Hit-based spelling correction
 - The correction with most hits
 - E.g., flew from Narita (100,000 hits) ← pick this! fled form Narita (200 hits) flew form Arita (500 hits)

General issues in spelling correction

- Confirm with the user vs. search automatically (e.g., with the most possible correction)
 - Disempowerment or effort saved?
- High computational cost
 - Avoid running routinely on every query?
 - Run only on queries that matched few docs

Blanks on slides, you may want to fill in

Soundex

- Class of heuristics to expand a query into phonetic equivalents
 - Language specific mainly for names
 - E.g., chebyshev → tchebycheff
- Invented for the U.S. census
- Available in most databases (Oracle, Microsoft, ...)

We'll explore this just in the context of English

To think about: what other languages does it make sense for?

Soundex – typical algorithm

- Turn every token to be indexed into a 4-character reduced form
- Do the same with query terms
- Build and search an index on the reduced forms (when the query calls for a Soundex match)

 See Wikipedia's entry: https://en.wikipedia.org/wiki/Soundex

Soundex – typical algorithm

- 1. Retain the first letter of the word.
- Change all occurrences of the following letters to '0' (zero):

'A', E', 'I', 'O', 'U', 'H', 'W', 'Y'.

- 3. Change letters to digits as follows:
 - B, F, P, V \rightarrow 1
 - C, G, J, K, Q, S, X, $Z \rightarrow 2$
 - $D,T \rightarrow 3$
 - $L \rightarrow 4$
 - M, N \rightarrow 5
 - $R \rightarrow 6$

Herman

- 1. Herman
- 2. H0rm0n
- 3. H06505

. . .

Soundex continued

- Repeatedly remove one out of each pair of consecutive identical digits
- Remove all zeros from the resulting string.
- 6. Pad the resulting string with trailing zeros and return the first four positions, which will be of the form <uppercase letter> <digit> <digit> <digit>.

E.g., *Herman* becomes H655.

Will *hermann* generate the same code?

3. H06505

4. H06505

5. H655

6. H655

How useful is Soundex?

Not very – for general IR, spelling correction

- Okay for "high recall" tasks (e.g., Interpol), though biased to names of certain nationalities
 - Sucks for Chinese names: Xin (Pinyin) and Hsin (Wade-Giles) mapped completely different
- Might be more useful with Voice Input

Now what queries can we process?

- We have
 - Positional inverted index with skip pointers
 - Wildcard index
 - Spelling correction
 - Soundex
- Queries such as

(SPELL(moriset) /3 toron*to) OR SOUNDEX(chaikofski)

Summary

- Data Structures for the Dictionary
 - Hash
 - Trees

- Learning to be tolerant
- 1. Wildcards
 - General Trees
 - Permuterm
 - Ngrams, redux
- 2. Spelling Correction
 - Edit Distance
 - Ngrams, re-redux
- 3. Phonetic Soundex

Resources

- IIR 3, MG 4.2
- Efficient spelling retrieval:
 - K. Kukich. Techniques for automatically correcting words in text. ACM Computing Surveys 24(4), Dec 1992.
 - J. Zobel and P. Dart. Finding approximate matches in large lexicons. Software - practice and experience 25(3), March 1995.
 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.14.3856&rep=rep1&type=pdf
 - Mikael Tillenius: Efficient Generation and Ranking of Spelling Error Corrections. Master's thesis at Sweden's Royal Institute of Technology. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.1392
- Nice, easy reading on spelling correction:
 - Peter Norvig: How to write a spelling corrector

http://norvig.com/spell-correct.html

