基础物理实验 ——测量介质中的声速实验报告

赵雅鹏 2100011762 化学与分子工程学院 2022 年 10 月 14 日

1 共振频率的测量结果

$$f_0 = 40.000 \text{kHz}$$

2 极值法

测量序数	1	2	3	4	5	6	7	8	9	10
正向测量距离/mm	44.062	48.432	52.942	57.462	62.732	66.091	70.419	74.739	79.088	83.349
正向测量峰-峰值电压/V	7.76	7.12	6.32	5.28	4.88	4.16	3.70	3.88	3.84	3.84
反向测量距离/mm	96.125	91.808	87.700	82.979	79.513	74.141	69.958	66.461	61.310	56.940
反向测量峰-峰值电压/V	3.20	3.44	3.52	3.76	3.84	3.84	4.00	3.92	4.72	5.04

逐差法计算(由于没有告知示波器允差,故在此忽略示波器允差,实际上使用的示波器精度非常高,估计测量距离的仪器和螺旋测微器允差类似,实际上也足够小可以忽略,故次估算合理)

3 相位法

测量序数x	1	2	3	4	5	6	7	8	9	10
正向测量距离y/mm	26.019	30.632	35.141	39.480	43.929	48.292	52.620	57.022	61.361	65.773
反向测量距离y/mm	74.100	69.668	65.348	61.220	56.790	52.531	48.128	43.710	39.308	34.913

最小二乘法计算(由于没有告知示波器允差,故在计算不确定度时忽略示波器允差,实际上使用的示波器精度非常高,估计测量距离的仪器和螺旋测微器允差类似,实际上也足够小可以忽略,故次估算合理)

估计测量距离的仪器和螺旋测微器允差类似,实际上也足够小可以忽略,故次估算合理)
正向测量:
$$\bar{y} = \frac{\sum_{i=0}^{10} y_i}{10} = 46.0269(mm); \quad \bar{x} = \frac{\sum_{i=0}^{10} x_i}{10} = 5.5$$

$$\overline{xy} = \frac{1}{10} \sum_{i=0}^{10} x_i y_i = 289.4518 \quad \bar{x^2} = \frac{1}{10} \sum_{i=0}^{10} x_i^2 = 38.5$$

$$\lambda = \frac{\overline{xy} - \bar{x}\bar{y}}{\overline{x^2} - (\bar{x})^2} = \frac{289.4518 - 46.0269 \times 5.5}{38.5 - 5.5^2} = 4.400 \text{ (mm)}$$

$$v = \lambda f_0 = 352.0 \text{m/s}$$

$$r = \frac{\sum_{i=1}^{10} (x_i - \bar{x}) \cdot (y_i - \bar{y})}{\sqrt{\sum_{i=1}^{10} (x_i - \bar{x})^2 \cdot \sum_{i=1}^{10} (y_i - \bar{y})^2}} = 0.9999746$$

4 气体参量法

温度 θ	相对湿度	水的饱和蒸汽压 p_s	水的分压 p_w	大气压p
23.0°C	45	2809.1Pa	62.424	766.0mmHg

声速(
$$T_0 = 273.15$$
°C):
$$v = 331.45 \times \sqrt{(1 + \frac{\theta}{T_0})(1 + \frac{0.3192p_w}{p})} = 345$$
m/s

5 水中声速的测量(频率1.8000MHz)

测量序数	1	2	3	4	5	6	7	8	9	10
正向测量距离/cm	1.7842	1.8682	1.9517	2.0350	2.1172	2.1978	2.2856	2.3690	2.4520	2.5348
反向测量距离/cm	3.0262	2.9421	2.8591	2.7767	2.6955	2.6144	2.5315	2.4468	2.3638	2.2812

逐差法计算

正向测量:
$$\frac{\lambda}{2} = \frac{(x_{10} + x_9 + x_8 + x_7 + x_6) - (x_5 + x_4 + x_3 + x_2 + x_1)}{5^2} = 0.08332 \text{cm}$$

$$v = \frac{\lambda}{2} \times 2f_0 = 1.500 \times 10^3 \text{m/s}$$
反向测量:
$$\frac{\lambda}{2} = \frac{(x_5 + x_4 + x_3 + x_2 + x_1) - (x_{10} + x_9 + x_8 + x_7 + x_6)}{5^2} = 0.08248 \text{cm}$$

$$v = \frac{\lambda}{2} \times 2f_0 = 1.485 \times 10^3 \text{m/s}$$

$$v = \frac{\lambda}{2} \times 2f_0 = 1.485 \times 10^3 \text{m/s}$$

$$v = \frac{1.500 \times 10^3 + 1.485 \times 10^3}{2} = 1.492 \times 10^3 \text{m/s}$$
同理进行不确定度的计算后可知 $v = 1.49 \times 10^3 \text{m/s}$

6 分析与讨论

图 1: 峰-峰值电压随距离衰减图

由图知,声波能量随传播距离衰减规律:峰-峰值电压随距离增大而衰减,且距离越大,衰减得越慢。

7 收获与感想

本次实验最大的感想就是,做物理实验除了做实验外,分析数据也很不容易,分析计算数据和计算不确定度,都是 一项需要认真细致,有耐心的耗时工程。

本次实验发现,连接示波器、信号源以及测量仪器的数据线如果摆放很乱,会影响信号,导致示波器上面显示的信号不稳定,故需要摆放整齐。

以及使用IPT_EX制作实验报告,可以将电脑带入实验室记录数据提升效率,既在实验记录本上记录数据,同时也计入IPT_EX可以提升学习效率。

示波器上的正弦波和李萨如图形周期性变化,李萨如图形可以找到成为线形的情况,相比正弦波达到极值进行观察更容易,故相位法测量更为方便,精度更高。