第四次作业 (10.10)

- 1. 设 $\mathscr{A}: \mathbb{F}^{n\times 1} \to \mathbb{F}^{m\times 1}$ 为集合映射. 则: \mathscr{A} 为线性映射 $\iff \pi_i \circ \mathscr{A}$ 为线性映射, $\forall 1 \leq i \leq m$
- 2. 记 $\mathcal{L}(\mathbb{F}^{n\times 1}, \mathbb{F}^{m\times 1})$ 为 $\mathbb{F}^{n\times 1}$ 到 $\mathbb{F}^{m\times 1}$ 的线性映射全体. 对 $\forall A \in \mathbb{F}^{m\times n}, \ \diamondsuit \ \ell_A: \ \mathbb{F}^{n\times 1} \to \mathbb{F}^{m\times 1}, \ \ell_A(X) = AX, \ \forall X \in \mathbb{F}^{n\times 1}.$
 - (1) 证明 ℓ_A 为线性映射
 - (2) $i \square \Phi : \quad \mathcal{L}(\mathbb{F}^{n \times 1}, \mathbb{F}^{m \times 1}) \to \mathbb{F}^{m \times n}$ $\Phi(\mathcal{A}) = (\mathcal{A}e_1, \mathcal{A}e_2, \cdots, \mathcal{A}e_n), \quad \forall \mathcal{A} \in \mathcal{L}(\mathbb{F}^{n \times 1}, \mathbb{F}^{m \times 1});$ $\Psi : \quad \mathbb{F}^{m \times n} \to \mathcal{L}(\mathbb{F}^{n \times 1}, \mathbb{F}^{m \times 1})$ $\Psi(A) = \ell_A, \quad \forall A \in \mathbb{F}^{m \times n}.$

证明: Φ, Ψ 为互逆映射.

- $3.∀A ∈ \mathbb{F}^{m \times n}, B ∈ \mathbb{F}^{n \times p}, C ∈ \mathbb{F}^{p \times q}$, 证明矩阵乘法满足下列性质:
- $(1) \quad (AB)C = A(BC)$
- (2) $AI_n = I_m A = A$, $I_n = diag(1, \dots, 1)$
- (3) $(A_1 + A_2)B = A_1B + A_2B$, $A(B_1 + B_2) = AB_1 + AB_2$
- (4) $(\lambda A)B = A(\lambda B) = \lambda(AB)$
- 4. 讲义习题三 3,5,6