Sum of Squares: Part 2

Apoorv Vikram Singh

February 10, 2021

Recall MaxCut

- Given: G = (V, E).
- Goal: Find $S\subseteq V$, such that $\left|E(S,\overline{S})\right|$ is maximized

Approximation Algorithm for MaxCut

- . Algorithm: Return a random cut.
- . In expectation: Algorithm cuts half the edges.
- . $MaxCut \leq |E|$.
- . Therefore, it is a $\frac{1}{2}$ -approximation algorithm.

Can we improve the 1/2-approximation?

- Question: Is there an LP-based algorithm that achieves $(0.5+\varepsilon)$ -approximation algorithm?
- Answer: There does not exist a $2^{n^{\delta}}$ size LP that gets $(0.5 + f(\delta))$ -approximation.
- . [Goemans-Williamson, 1994] Gave a 0.878-approximation algorithm for MaxCut (based on SDP).

Goal Today

- G = (V, E), and let Opt(G) = MaxCut(G).
- $f_G(\mathbf{x}) = \frac{1}{4} \sum_{(i,j) \in E} (\mathbf{x}_i \mathbf{x}_j)^2$, for $x \in \{-1,1\}^n$.
- $\max_{\mathbf{x} \in \{-1,1\}^n} f_G(\mathbf{x}) = \operatorname{MaxCut}(G)$.

Theorem (0.878 Theorem)

For all G,

$$\frac{Opt(G)}{0.878}-f_G(\mathbf{x})\,,$$

has a degree-2 SoS certificate.

To prove the theorem, we will prove a "rounding" theorem.

Theorem (Rounding Theorem)

Let μ be a degree-2 pseudo-distribution on $\{-1,1\}^n$. Then, there is an actual distribution μ' such that

$$\underset{\mu'}{\mathbb{E}} f_G(\mathbf{x}) \geq 0.878 \, \widetilde{\mathbb{E}}_{\mu} f_G(\mathbf{x}) \,.$$

Rounding: Takes pseudo-distribution to actual distribution.

Rounding Theorem ⇒ 0.878 Theorem

Proof.

Suppose $\frac{\text{Opt}(G)}{0.878} - f_G(\mathbf{x})$ is not SoS_2 , then,

- . \exists a degree-2 p.d. μ such that $\tilde{\mathbb{E}}_{\mu}\left(\frac{\mathsf{Opt}(\mathit{G})}{0.878} \mathit{f}_{\mathit{G}}(\mathbf{x})\right) < 0.$
- . Rearranging: $\tilde{\mathbb{E}}_{\mu}f_{G} > \frac{\mathsf{Opt}(G)}{0.878}$.
- . Rounding Theorem $\implies \exists$ a distribution μ' , such that,

$$\underset{\mu'}{\mathbb{E}} f_{G} \geq 0.878 \, \widetilde{\mathbb{E}}_{\mu} f_{G}(\mathbf{x}) > \operatorname{Opt}(G) \,.$$

. $\mathbb{E}_{\mu'} f_G > \operatorname{Opt}(G)$, contradiction.

Interpreting Rounding Theorem

- . Suppose we have a p.d. μ , and under this p.d., $\tilde{\mathbb{E}}_{\mu}f_{G}(\mathbf{x}) = \mathsf{Opt}_{\mathrm{SoS}_{2}}.$
- . We are interested in finding such cuts, or, if there are such cuts.
- . Find distribution μ' , such that $\mathbb{E}_{\mu'} f_G(\mathbf{x})$ is as large as possible.
- . We won't be able to prove it is equal, but we can prove

$$\underset{\mu'}{\mathbb{E}} f_G(\textbf{\textit{x}}) \geq 0.878 \, \mathsf{Opt}_{\mathrm{SoS}_2} \, .$$

. $\mu \to \mu'$ will be efficient \implies algorithm to approximate MaxCut.

Proving Rounding Theorem

Ideally:

. Given p.d. μ , find distribution μ' over $\{-1,1\}^n$, such that

$$\underset{\mu'}{\mathbb{E}}(1, \boldsymbol{x})^{\otimes 2} = \tilde{\mathbb{E}}_{\mu}(1, \boldsymbol{x})^{\otimes 2}$$
.

This is called: Generalized Moment Problem.

. Not possible, otherwise we would have solved MaxCut exactly.

But, we can do it over \mathbb{R}^n

Lemma (Gaussian Sampling)

For any degree-2 p.d. μ , there exists an actual distribution over \mathbb{R}^n with same first and second moments.

Proof.

For any p.d. μ of degree-2,

$$ilde{\mathbb{E}}_{\mu} \mathbf{x} \mathbf{x}^{\top} \succcurlyeq \mathbf{0}$$
 .

- . First Moment: $\tilde{\mathbb{E}}_{\mu} \mathbf{x}$.
- . Second Moment: $\tilde{\mathbb{E}}_{\mu} \mathbf{x} \mathbf{x}^{\top}$.
- . Sample: $\mathbf{g} \sim \mathcal{N}\left(\tilde{\mathbb{E}}_{\mu}\mathbf{x}, \tilde{\mathbb{E}}_{\mu}\mathbf{x}\mathbf{x}^{\top}\right)$.

$\mathsf{Wlog}\ ilde{\mathbb{E}}_{\mu} extbf{ extit{x}} = extbf{0}$

- . If μ was an actual distribution, then $\mathbf{x} \sim \mu$, and output $+\mathbf{x}$ or $-\mathbf{x}$ uniformly.
- . Second Moment $\tilde{\mathbb{E}}_{\mu} \mathbf{x} \mathbf{x}^{\top}$ remains unchanged.
- . Mean $= \mathbf{0}$.

Look at the p.d. with mean $\mathbf{0}$ and second moment $\tilde{\mathbb{E}}_{\mu} \mathbf{x} \mathbf{x}^{\top}$. The value of $\tilde{\mathbb{E}}_{\mu} f_G$ remains unchanged.

$$f_G(\mathbf{x}) = rac{1}{4} \sum_{(i,j) \in E} (\mathbf{x}_i - \mathbf{x}_j)^2$$

$$= rac{1}{4} \sum_{(i,j) \in E} (2 - 2\mathbf{x}_i \mathbf{x}_j)$$
 $\Longrightarrow \tilde{\mathbb{E}}_{\mu} f_G(\mathbf{x}) = rac{1}{4} \sum_{(i,j) \in E} (2 - 2\tilde{\mathbb{E}}_{\mu} \mathbf{x}_i \mathbf{x}_j).$

Efficient Algorithmic Process

- . $\mu \to \boldsymbol{g}$, such that $\tilde{\mathbb{E}}_{\mu} \boldsymbol{x} \boldsymbol{x}^{\top} = \mathbb{E} \, \boldsymbol{g} \boldsymbol{g}^{\top}$.
- . Issue: \boldsymbol{g} does not have entries in $\{\pm 1\}$.

Efficient Algorithmic Process,

- 1. Take $m{g} \sim \mathcal{N}\left(m{0}, \tilde{\mathbb{E}}_{\mu} m{x} m{x}^{\top} \right)$.
- 2. $\hat{\boldsymbol{x}}_i = \operatorname{sign}(\boldsymbol{g}_i)$, which gives that $\hat{\boldsymbol{x}} \in \{-1,1\}^n$.

Call μ' the distribution on $\hat{\boldsymbol{x}}$.

Claim (Rounding Theorem)

$$\mathbb{E}_{\mu'} f_G(\mathbf{x}) \geq 0.878 \, \tilde{\mathbb{E}}_{\mu} f_G(\mathbf{x}).$$

Lemma (Sheppard's Lemma)

$$\mathbb{P}\left[sign(\mathbf{g}_i) \neq sign(\mathbf{g}_j)\right] \geq \frac{\operatorname{arccos}(\rho)}{2\pi(1-\rho)} \, \mathbb{E}(\mathbf{g}_i - \mathbf{g}_j)^2 \,,$$

for
$$\rho = \tilde{\mathbb{E}}_{\mu} \mathbf{x}_i \mathbf{x}_j = \mathbb{E} \mathbf{g}_i \mathbf{g}_j$$
.

Remark(s): Comparing LHS and RHS of claim with lemma.

$$\cdot \underset{\mu'}{\mathbb{E}} f_{G}(\mathbf{x}) = \frac{1}{4} \sum_{(i,j) \in E} \underset{\mu'}{\mathbb{E}} (\hat{\mathbf{x}}_{i} - \hat{\mathbf{x}}_{j})^{2} = \frac{1}{4} \sum_{(i,j) \in E} \mathbb{P} \left[\operatorname{sign}(\mathbf{g}_{i}) \neq \operatorname{sign}(\mathbf{g}_{j}) \right].$$

$$\cdot \tilde{\mathbb{E}}_{\mu} f_{G}(\mathbf{x}) = \frac{1}{4} \sum_{(i,j) \in F} \tilde{\mathbb{E}}_{\mu'} (\mathbf{x}_{i} - \mathbf{x}_{j})^{2} = \frac{1}{4} \sum_{(i,j) \in F} \mathbb{E} (\mathbf{g}_{i} - \mathbf{g}_{j})^{2}.$$

Sheppard's Lemma ⇒ Rounding Theorem

Proof.

$$\min_{\rho \in [-1,1]} \frac{\arccos(\rho)}{2\pi(1-\rho)} \geq \underbrace{\alpha_{GW}}_{=0.878...}, \quad \text{(min at } \rho = 0.69\text{)}.$$

This implies

$$\frac{1}{4} \underset{\mu'}{\mathbb{E}} (\hat{\boldsymbol{x}}_i - \hat{\boldsymbol{x}}_j)^2 \ge \alpha_{GW} \frac{1}{4} \widetilde{\mathbb{E}}_{\mu} (\boldsymbol{x}_i - \boldsymbol{x}_j)^2 ,$$

$$\frac{1}{4} \sum_{(i,j) \in E} \underset{\mu'}{\mathbb{E}} (\hat{\boldsymbol{x}}_i - \hat{\boldsymbol{x}}_j)^2 \ge \alpha_{GW} \frac{1}{4} \sum_{(i,j) \in E} \widetilde{\mathbb{E}}_{\mu} (\boldsymbol{x}_i - \boldsymbol{x}_j)^2 .$$

Proving Sheppard's Lemma

Proof

We have Gaussians $\mathbf{g}_i, \mathbf{g}_j$, such that $\mathbb{E} \mathbf{g}_i \mathbf{g}_j = \widetilde{\mathbb{E}}_{\mu} \mathbf{x}_i \mathbf{x}_j = \rho$, and $\mathbb{E} \mathbf{g}_i^2 = \widetilde{\mathbb{E}}_{\mu} \mathbf{x}_i^2 = 1$.

Procedure to generate such Gaussian vectors:

- . Let $\mathbf{v}, \mathbf{w} \in \mathbb{S}^{(2-1)}$ such that $\langle \mathbf{v}, \mathbf{w} \rangle = \rho$.
- . Take $m{h} \sim \mathcal{N}(\mathbf{0}, \mathit{I}_2)$.
- . $\hat{m{g}_i}=\langle m{h},m{v}
 angle$, $\hat{m{g}_j}=\langle m{h},m{w}
 angle$, this has same joint-distribution as $m{g}_i,m{g}_j$.

We are interested in

$$\mathbb{P}\left[\operatorname{sign}(\boldsymbol{g}_i) \neq \operatorname{sign}(\boldsymbol{g}_j)\right] = \mathbb{P}\left[\operatorname{sign}(\hat{\boldsymbol{g}}_i) \neq \operatorname{sign}(\hat{\boldsymbol{g}}_j)\right] \,.$$

Proof Cont...

$$\mathbb{P}\left[\operatorname{sign}(\mathbf{g}_{i}) \neq \operatorname{sign}(\mathbf{g}_{j})\right] = \mathbb{P}\left[\operatorname{sign}(\hat{\mathbf{g}}_{i}) \neq \operatorname{sign}(\hat{\mathbf{g}}_{j})\right]$$

$$= \mathbb{P}\left[\operatorname{sign}(\langle \mathbf{h}, \mathbf{v} \rangle) \neq \operatorname{sign}(\langle \mathbf{h}, \mathbf{w} \rangle)\right]$$

$$= \frac{\operatorname{arccos}(\rho)}{\pi}.$$

And the other quantity

$$\begin{split} & \tilde{\mathbb{E}}_{\mu}(\mathbf{x}_i - \mathbf{x}_j)^2 = \mathbb{E}(\mathbf{g}_i - \mathbf{g}_j)^2 = \mathbb{E}(\hat{\mathbf{g}}_i - \hat{\mathbf{g}}_j)^2 = 2(1 - \rho). \\ & \Longrightarrow \mathbb{P}\left[\operatorname{sign}(\mathbf{g}_i) \neq \operatorname{sign}(\mathbf{g}_j)\right] \geq \frac{\operatorname{arccos}(\rho)}{2\pi(1 - \rho)} \ \mathbb{E}(\mathbf{g}_i - \mathbf{g}_j)^2 \end{split}$$

Can we do better?

- 1. Can we do better with degree-2 SoS?: No.
- 2. Can we improve it with degree-4, degree-6, ..., degree-log *n* SoS? Open.

How likely?

Unique Games Conjecture $\implies (\alpha_{GW} + \varepsilon)$ -approx to MaxCut is NP-Hard $\forall \varepsilon > 0$.

- Corollary: Suppose $\operatorname{Opt}(G) \geq (1-\delta)|E|$, then Gaussian rounding gives $\mathbb{E}_{\mu'} f_G(\mathbf{x}) \geq \left(1-\mathcal{O}\left(\sqrt{\delta}\right)\right)|E|$.
- 3. Is this the most optimal rounding? No (RPR² rounding does better in some regimes of δ).

Integrality Gaps?

What's the largest c for which degree-2 SoS certificate exists for $\frac{\text{Opt}(G)}{c} - f_G(\mathbf{x})$? Ans: c = 0.878.. is optimal.

Fact

 C_n : Cycle on n vertices, n odd.

$$MaxCut(C_n) = Opt(C_n) = \left(1 - \frac{1}{n}\right)|E|.$$

Theorem

There is a p.d. μ of degree-2 such that

$$\tilde{\mathbb{E}}_{\mu}f_{C_n}(\mathbf{x}) = \left(1 - \mathcal{O}\left(\frac{1}{n^2}\right)\right)|E|.$$

Choose $n = \frac{1}{\delta}$, then $\operatorname{Opt}(C_n) = (1 - \delta)|E|$, and $\operatorname{Opt}_{\operatorname{SoS}_2}(C_n) \geq 1 - \mathcal{O}(\delta^2)|E|$. \Longrightarrow Corollary for small δ is tight up to constant factors.

Cycle = "Discretized" 2-dimn Sphere
:

= "Discretized" high-dimn Sphere

[Feige-Schechtman'02] Proved α_{GW} is optimal.

Proof Sketch of Theorem

$$\begin{aligned} \mathsf{MaxCut} &= \mathsf{max}_{\boldsymbol{x} \in \{-1,1\}^n} \boldsymbol{x}^\top L_G \boldsymbol{x}. \\ \mathsf{Related} &= \mathsf{max}_{\|\boldsymbol{x}\| = \sqrt{n}} \boldsymbol{x}^\top L_G \boldsymbol{x} = n \|L_G\|_2. \end{aligned}$$

- How to construct such a degree-2 p.d.?
- Choose a distribution on \boldsymbol{x} that are in the "largest eigenspace" of L_G .
- . We just need $\tilde{\mathbb{E}}_{\mu}(1, \mathbf{x})(1, \mathbf{x})^{\top} \succcurlyeq 0$, $\tilde{\mathbb{E}}_{\mu} \mathbf{x}_{i}^{2} = 1$, $\tilde{\mathbb{E}}_{\mu} \mathbf{1} = 1$.
- 1. Idea: $\lambda \max(L_G) = 1 \mathcal{O}(1/n^2)$. It is not Boolean because maxcut is $(1 \mathcal{O}(1/n))|E|$. Top eigenspace is 2-dimensional with vectors $\mathbf{v}_1, \mathbf{v}_2$.
- 2. set $M = \widetilde{\mathbb{E}}_{\mu} \mathbf{x} \mathbf{x}^{\top} = v_1 v_1^{\top} + v_2 v_2^{\top} \succcurlyeq 0$.
- 3. Moreover, $\mathbf{v}_1 \mathbf{v}_1^\top + \mathbf{v}_2 \mathbf{v}_2^\top$ has diagonal entries 1.
- 4. Therefore, this is a valid pseudo-expectation.