Esercitazione 13 ottobre 2021

Leonardo Geusa 4N

Un'azienda ha i propri uffici disposti nel seguente modo:

- un locale che ospita i 2 server
- un ufficio per la reception con 2 postazioni più 1 stampante
- quattro uffici ognuno con 3 postazioni più 2 libere e 1 stampante

Progettare la rete e la relativa documentazione di rete

Indice

0	Ipotesi aggiuntive	1
1	Analisi della struttura e delle esigenze dell'azienda	2
2	La classificazione delle reti	2
3	Analisi della topologia fisica e logica	3
4	Analisi degli apparati di rete e mezzi trasmissivi	3
5	Piano di indirizzamento	3
6	Progettazione della rete	4
7	Test di connettività	5

0 Ipotesi aggiuntive

Si presuppone che l'azienda abbia bisogno di un accesso ad internet. La rete più adatta per questo progetto è una rete LAN^1 con una trasmissione di tipo broadcast e con una topologia a stella estesa.

¹Local Area Network

1 Analisi della struttura e delle esigenze dell'azienda

Secondo le informazioni ricevute, l'azienda è costituita da 6 locali:

- un locale che ospita due server
- un ufficio per la reception con due postazioni e una stampante
- quattro uffici ognuno con cinque postazioni (di cui due libere) e una stampante

Sono necessari quindi 2 server, 22 postazioni e 5 stampanti. Di seguito la rappresentazione grafica dell'azienda

La rete deve essere efficiente e scalabile, perciò si ha bisogno di cavi e nodi di commutazione che possano soddisfare al massimo queste due richieste.

2 La classificazione delle reti

Per questo progetto è più opportuno utilizzare una rete LAN, dato che la grandezza della rete non deve superare quella di un edificio.

3 Analisi della topologia fisica e logica

La topologia fisica che verrà applicata sarà a stella estesa. Questa topologia collega tra loro più reti a stella. Una rete a stella prevede che ciascuno dei nodi sia collegato a un nodo di commutazione centrale, chiamato Punto Stella (di solito uno switch). È una rete che garantisce una grande tolleranza ai guasti, flessibilità e scalabilità. Tuttavia, se il centro stella è difettoso, questo compromette l'intera rete.

La topologia logica che si andrà ad applicare sarà di tipo broadcast, ossia ogni nodo invia i dati mediante una scheda di rete a tutti gli altri nodi.

4 Analisi degli apparati di rete e mezzi trasmissivi

Per quanto riguarda gli apparati di rete si andranno ad utilizzare schede di rete, router e switch. La scheda di rete è un dispositivo elettronico installato all'interno di un host che permette il collegamento tra l'host e il cavo, che collega i vari nodi.

Il router è un dispositivo che permette la connessione tra due reti, in particolare una rete LAN e Internet.

Lo switch è un dispositivo che collega insieme altri dispositivi. Lo switch, rispetto all'hub, gestisce in modo più efficiente il trasporto dei dati perché inoltra il pacchetto ricevuto soltanto al destinatario.

5 Piano di indirizzamento

Si procede alla stesura del piano di indirizzamento. L'indirizzo di rete sarà 192.168.10.0/24, l'indirizzo di broadcast sarà 192.168.10.255, la subnet mask sarà 255.255.255.0 e il default gateway sarà 192.168.10.1. Di seguito la tabella con gli indirizzi IP degli host.

Hostname	Indirizzo IP
Server0	192.168.10.5
Server1	192.168.10.4
PC0	192.168.10.32
PC1	192.168.10.30
PC2	192.168.10.6
PC3	192.168.10.7
PC4	192.168.10.9
PC5	192.168.10.10
PC6	192.168.10.11
PC7	192.168.10.12
PC8	192.168.10.13
PC9	192.168.10.15
PC10	192.168.10.16
PC11	192.168.10.17

PC12	192.168.10.18
PC13	192.168.10.19
PC14	192.168.10.20
PC15	192.168.10.22
PC16	192.168.10.23
PC17	192.168.10.29
PC18	192.168.10.28
PC19	192.168.10.27
PC20	192.168.10.25
PC21	192.168.10.24
Printer0	192.168.10.31
Printer1	192.168.10.8
Printer2	192.168.10.14
Printer3	192.168.10.21
Printer4	192.168.10.26

6 Progettazione della rete

Per la realizzazione di questa rete è necessario che ogni host (postazioni e stampanti) abbiano una scheda di rete di 1 GBit/s. Per sfruttare al massimo queste schede di rete è necessario che anche gli switch abbiano porte da 1 GBit/s. Si ha infine bisogno dei cavi, in questo caso UTP² di 1 GBit/s di categoria 6. Tenendo sempre in considerazione la scalabilità e la flessibilità della rete, si ha quindi bisogno dei seguenti dispositivi di rete:

- 7 switch: uno da 4 porte per la stanza server, due da 8 porte per il centro stella e la reception, 4 da 16 porte per gli uffici.
- 1 router, per la connessione a Internet
- 36 cavi UTP: 22 per le connessioni computer switch, 5 per le connessioni stampante switch, 2 per le connessioni server switch, 6 per le connessioni switch centro stella, e uno per la connessione centro stella router

Di seguito la rappresentazione grafica della rete.

 $^{^2}$ Unshielded Twisted Pair

7 Test di connettività

Infine si effettuano dei test di connettività tra i dispositivi. Un caso d'uso particolare potrebbe essere quello di un dipendente con postazione in Ufficio 2 (ad esempio PC9) che ha bisogno di accedere al Server1. Per testare la connettività tra questi due host si invia un comando ping da PC9 a Server1. Il comando sarà:

ping 192.168.10.4

Si può osservare che il pacchetto inviato da PC9 viene ricevuto da Switch4, il quale lo inoltra al centro stella Switch0. Switch0 inoltra il pacchetto a Switch2, che a sua volta lo inoltra a Server1. Server1 invia il pacchetto di risposta, che tramite gli switch viene consegnato a PC9, Se al posto degli switch fossero presenti degli hub il pacchetto verrebbe inoltrato a tutti i dispositivi connessi alla rete. Ciò è altamente sconsigliato qualora la rete abbia il requisito di essere efficiente, perché si andrebbe a creare del traffico inutilmente.