CSCI-567: Assignment #4

Due on Monday, November 9, 2015

Saket Choudhary 2170058637

Contents

Problem 1	:
Problem 1:	(a) Gradient Calculation
Problem 1:	(b) Weak Learner Section
	(c) Step Size Selection
Problem 2	
Problem 2:	(a)
Problem 2:	(b)
Problem 2:	(c)
Problem 2:	(d)
Problem 3.3	8
Problem 3.3	B: (a)
Problem 3.3	B: (b)
Problem 3.3	B: (c)
Problem 3.4	9
Problem 3.4	l: (a)
	k: (b)
Problem 3.5	10
Problem 3.5	5: (a) Polynomial Kernel
	6: (b) RBF Kernel

Problem 1

Problem 1: (a) Gradient Calculation

$$L(y_i, \hat{y}_i) = \log(1 + \exp(-y_i \hat{y}_i))$$

$$g_i = \frac{\partial L(y_i, \hat{y}_i)}{\partial \hat{y}_i}$$

$$g_i = \frac{-y_i \exp(-y_i \hat{y}_i)}{1 + \exp(-y_i \hat{y}_i)}$$

Problem 1: (b) Weak Learner Section

$$h^* = \min_{h \in H} \left(\min_{\gamma \in R} \sum_{i=1}^n (-g_i - \gamma h(x_i))^2 \right)$$

$$\implies \frac{\partial h^*}{\partial \gamma} = 0$$

$$\implies 2 \sum_{i=1}^n (-g_i - \gamma h(x_i))(-h(x_i)) = 0$$

$$\hat{h} = -\frac{\sum_{i=1}^n g_i h(x_i)}{\sum_{i=1}^n h(x_i)^2}$$

Also check if it is indeed minimum with a second derivative test:

$$\frac{\partial^2 h^*}{\partial \gamma^2} = 2\sum_{i=1}^n h(x_i)^2 > 0$$

Since the second derivative is positive definite, $ga\hat{m}ma$ is indeed where the minima occurs.

Problem 1: (c) Step Size Selection

$$\alpha^* = \arg\min_{\alpha \in R} \sum_{1}^{n} L(y_i, \hat{y_i} + \alpha h^*(x_i))$$

Newton's approximation:

$$\alpha_1 = \alpha_0 - \frac{f'(\alpha_0)}{f''(\alpha_0)}$$

We start from $\alpha_0 = 0$ and hence:

$$f(\alpha_0) = \sum_{i=1}^n \log(1 + \exp(-y_i \hat{y}_i))$$

$$f'(\alpha) = \sum_{i=1}^n \frac{\partial L}{\partial \alpha}$$

$$= \sum_{i=1}^n \frac{-y_i h^*(x_i) \exp(-y_i (\hat{y}_i + \alpha h^*(x_i)))}{1 + \exp(-y_i (\hat{y}_i + \alpha h^*(x_i)))}$$

$$f'(\alpha = \alpha_0) = -\sum_{i=1}^n \frac{y_i h^*(x_i) \exp(-y_i \hat{y}_i)}{1 + \exp(-y_i \hat{y}_i)}$$

And,

$$f''(\alpha) = \sum_{i=1}^{n} \frac{\partial^{2}L}{\partial \alpha^{2}}$$

$$= \sum_{i=1}^{n} \frac{\left\{ \left(1 + \exp\left(-y_{i}(\hat{y}_{i} + \alpha h^{*}(x_{i})) \right) \left(y_{i}h^{*}(x_{i}) \right)^{2} + y_{i}h^{*}(x_{i}) \right\} \exp\left(-y_{i}(\hat{y}_{i} + \alpha h^{*}(x_{i})) \right)}{\left(1 + \exp\left(-y_{i}(\hat{y}_{i} + \alpha h^{*}(x_{i})) \right)^{2}}$$

$$f''(\alpha_{0}) = \sum_{i=1}^{n} \frac{\left\{ \left(1 + \exp\left(-y_{i}\hat{y}_{i} \right) \right) \left(y_{i}h^{*}(x_{i}) \right)^{2} + y_{i}h^{*}(x_{i}) \right\} \exp\left(-y_{i}\hat{y}_{i} \right)}{\left(1 + \exp\left(-y_{i}\hat{y}_{i} \right) \right)^{2}}$$

Thus,

$$\alpha_1 = \frac{\sum_{i=1}^n \frac{y_i h^*(x_i) \exp(-y_i \hat{y_i})}{1 + \exp(-y_i \hat{y_i})}}{\sum_{i=1}^n \frac{\left\{ \left(1 + \exp(-y_i \hat{y_i})\right) (y_i h^*(x_i))^2 + y_i h^*(x_i) \right\} \exp(-y_i \hat{y_i})}{(1 + \exp(-y_i \hat{y_i}))^2}}$$

Problem 2

Problem 2: (a)

Primal form:

$$\min_{w} ||w||^2$$
 such that $|y_i - (w^T x_i + b)| \le \epsilon$

Problem 2: (b)

$$\min_{w,\epsilon_i} \frac{1}{2}||w||^2 + C\sum_i \epsilon_i$$

such that $(w^T x_i + b) - y_i \le n_i + \epsilon_i$ (positive deviation) and $y_i - (w^T x_i + b) \le p_i + \epsilon_i$ (negative deviation)

$$n_i \ge 0$$

$$p_i \ge 0$$

Also, the slackness loss needs further constraints:

$$n_{i} = \begin{cases} 0 & |n_{i}| < \epsilon_{i}, \\ |n_{i}| - \epsilon & otherwise \end{cases}$$

$$p_{i} = \begin{cases} 0 & |p_{i}| < \epsilon_{i}, \\ |p_{i}| - \epsilon & otherwise \end{cases}$$

$$p_i = \begin{cases} 0 & |p_i| < \epsilon_i, \\ |p_i| - \epsilon & otherwise \end{cases}$$

So essentially n_i, p_i are non zero, only above the two blue lines

Problem 2: (c)

$$L = \frac{1}{2}||w||^{2} + C\sum_{i}(p_{i} + n_{i})$$

$$-\sum_{i}(\lambda_{i}p_{i} + \lambda'_{i}n_{i})$$

$$-\sum_{i}\alpha_{i}(\epsilon + p_{i} - (y_{i} - (w^{T}x_{i} + b)))$$

$$-\sum_{i}\beta_{i}(\epsilon + n_{i} + (y_{i} - (w^{T}x_{i} + b)))$$

Conditions:

$$\alpha_i \ge 0$$
$$\beta_i \ge 0$$
$$\lambda_i \ge 0$$
$$\lambda_i' \ge 0$$

Dual Form(all summations are from 1 to n)::

$$\Delta_w L = 0$$

$$= w - \sum_i \alpha_i x_i + \sum_i \beta_i x_i = 0$$

$$= w - \sum_i (\alpha_i - \beta_i) x_i = 0$$

$$\Delta_b L = 0$$

$$= \sum_i \alpha_i - \sum_i \beta_i = 0$$

$$\Delta_{p_i} L = 0$$

$$= C - \sum_i \lambda_i - \sum_i \alpha_i = 0$$

$$\Delta_{n_i} L = 0$$

$$= C - \sum_i \lambda_i' - \sum_i \beta_i = 0$$

Thus, w is given by:

$$w = \sum_{i} \alpha_i x_i - \sum_{i} \beta_i x_i$$

depends only on the support vectors.

This reduces the optimisation to:

$$\max f = \frac{1}{2} \sum_{i,j} (\alpha_i - \beta_i) x_i^T x_j (\alpha_j - \beta_j) + p_i (C - \sum_i \lambda_i - \sum_i \alpha_i)$$

$$+ n_i (C + \sum_i \lambda_i' - \sum_i \beta_i)$$

$$+ \epsilon (-\sum_i \alpha_i - \sum_i \beta_i)$$

$$+ \sum_i y_i (\alpha_i - \beta_i) - \sum_i (\alpha_i w^T x_i - \beta_i w^T x_i)$$

$$= -\frac{1}{2} \sum_{i,j} (\alpha_i - \beta_i) x_i^T x_j (\alpha_j - \beta_j) - \epsilon (\sum_i (\alpha_i + \beta_i))$$

$$+ \sum_i y_i (\alpha_i - \beta_i)$$
such that $\sum_i (\alpha_i - \beta_i) = 0$
and $\alpha_i, \beta_i \in [0, C]$

Problem 2: (d)

Using Kernel transformation, we simply replace $x_i^T x_j$ with $k(x_i, x_j)$:

$$w = \sum_{i} (\alpha_i - \beta_i) \phi(x_i)$$

this happens because $x_i'x_j$ gets mapped onto by an equivalent kernel function $k(x_i, x_j) = \phi^T(x_i)\phi(x_j)$ and the objective function is:

$$\max_{f} = \frac{1}{2} \sum_{i,j} (\alpha_i - \beta_i) k(x_i, x_j) (\alpha_j - \beta_j) - \epsilon (\sum_{i} (\alpha_i + \beta_i)) + \sum_{i} y_i (\alpha_i - \beta_i)$$

Problem 3.3

Problem 3.3: (a)

С	Tr. Dataset 1(s)	Tr. Dataset 2(s)	Training Dataset 3(s)	CV Accuracy	Avg. time	e(s)
$4^{-6} = 0.000244$	0.606156	0.400791	0.346078	0.578976	0.451	
$4^{-5} = 0.000977$	0.379495	0.477559	0.498054	0.907001	0.451	
$4^{-4} = 0.003906$	0.529940	0.495841	0.534946	0.926001	0.520	
$4^{-3} = 0.015625$	0.516236	0.577324	0.561874	0.935501	0.551	
$4^{-2} = 0.062500$	0.512287	0.529517	0.554510	0.945006	0.532	
$4^{-1} = 0.250000$	0.630195	0.663459	0.657651	0.943010	0.650	
$4^0 = 1.0000000$	0.746649	0.601710	0.563063	0.939003	0.637	
$4^1 = 4.0000000$	0.633370	0.572011	0.595552	0.942501	0.600	
$4^2 = 16.000000$	0.674677	0.681010	0.698041	0.943503	0.684	

The time shown(t) is in seconds for three partitions, the last column being the average time

As seen from the table. the time seems to increase with C and the CV increases too. C determines the tradeoff between objective function complexity and the overall loss. When C is small, there are chances of overfitting, this is evident from low CV values for lower C (because the generalisation error is high, and this is where cross validation is helpful)

The larger the value of C, the more is the penalisation and hence smaller the ϵ_i would be

Problem 3.3: (b)

Based on lowest cross validation error. $C = 4^2$ (maximum training accuracy = 94.3503%)

Problem 3.3: (c)

With C = 16, test accuracy = 94.35% (it's pretty close to the training accuracy itself)

Problem 3.4

Problem 3.4: (a)

Platform Used: $Ubuntu\ 12.04,\ x86_64$

'libsvm' gives 96.55% as its accuracy which is pretty close to 94.35% that my code gives. Hence the cross validation accuracy is not exactly the same, and 'libsvm' performs better, by a margin of 2.2786%

С	Training Time	CV Accuracy
4^{-6}	0.829624	0.5575
4^{-5}	0.827846	0.5575
4^{-4}	0.831586	0.5575
4^{-3}	0.831599	0.7295
4^{-2}	0.649459	0.9195
4^{-1}	0.425499	0.934
4^{0}	0.281219	0.949
4^{1}	0.210071	0.955
4^2	0.201989	0.9655

Problem 3.4: (b)

'libsvm' is around 3 times faster in the worst case.

Problem 3.5

Problem 3.5: (a) Polynomial Kernel

C	degree	Training Time(s)	CV Accuracy(%)
0.015625	1.000000	0.652999	70.100000
0.015625	2.000000	0.658651	55.750000
0.015625	3.000000	0.658636	55.750000
0.062500	1.000000	0.513652	91.750000
0.062500	2.000000	0.587962	86.550000
0.062500	3.000000	0.655689	76.900000
0.002500	1.000000	0.334359	92.800000
0.250000	2.000000	0.334339	92.550000
0.250000	3.000000	0.504703	91.800000
1.000000	1.000000	0.230170	93.850000
1.000000	2.000000	0.273486	94.700000
1.000000	3.000000	0.335671	94.350000
4.000000	1.000000	0.181141	94.400000
4.000000	2.000000	0.197570	95.100000
4.000000	3.000000	0.230603	95.700000
16.000000	1.000000	0.165130	94.450000
16.000000	2.000000	0.172796	96.100000
16.000000	3.000000	0.197574	96.450000
64.000000	1.000000	0.186566	94.150000
64.000000	2.000000	0.170041	96.600000
64.000000	3.000000	0.184937	96.550000
256.000000	1.000000	0.288991	94.050000
256.000000	2.000000	0.173684	96.000000
256.000000	3.000000	0.184054	96.300000
1024.000000	1.000000	1.013039	94.350000
1024.000000	2.000000	0.223741	95.700000
1024.000000	3.000000	0.184358	96.300000
4096.000000	1.000000	4.086584	94.400000
4096.000000	2.000000	0.204906	95.400000
4096.000000	3.000000	0.183501	96.250000
16384.000000	1.000000	21.828099	94.400000
16384.000000	2.000000	0.206865	95.400000
16384.000000	3.000000	0.183685	96.250000

Polynomial Kernel maximum train accuracy: 96.600000

Polynomial Kernel optimal C: 64 Polynomial Kernel optimal degree: 2

Polynomal Kernel test accuracy(%): 95.150000

Problem 3.5: (b) RBF Kernel

С	γ	Training Time(s)	CV (%)				
0.015625	0.000061	0.799739	55.750000				
0.015625	0.000244	0.799145	55.750000				
0.015625	0.000977	0.798638	55.750000	С	0/	Training Time(s)	CV(%)
0.015625	0.003906	0.801114	55.750000	64.000000	$\frac{\gamma}{0.000061}$	0.369279	93.050000
0.015625	0.015625	0.802529	64.750000	64.000000			
0.015625	0.062500	0.805714	73.750000		0.000244	0.262142	93.95000
0.015625	0.250000	0.822912	55.750000	64.000000	0.000977	0.210888	94.75000
0.062500	0.000061	0.799229	55.750000	64.000000	0.003906 0.015625	0.191527	94.95000
0.062500	0.000244	0.798608	55.750000			0.183208	96.65000
0.062500	0.000977	0.799373	55.750000	64.000000	0.062500	0.229521	96.55000
0.062500	0.003906	0.800940	83.350000	64.000000	0.250000	0.541598	95.95000
0.062500	0.015625	0.648832	91.200000	256.000000	0.000061	0.257230	93.90000
0.062500	0.062500	0.634587	91.850000	256.000000	0.000244	0.214556	94.70000
0.062500	0.250000	0.824124	63.600000	256.000000	0.000977	0.191176	94.90000
0.250000	0.000061	0.798746	55.750000	256.000000	0.003906	0.188024	96.45000
0.250000	0.000244	0.799292	55.750000	256.000000	0.015625	0.186326	96.50000
0.250000	0.000977	0.799286	86.350000	256.000000	0.062500	0.224757	96.35000
0.250000	0.003906	0.587110	92.000000	256.000000	0.250000	0.542700	95.95000
0.250000	0.015625	0.426160	93.200000	1024.000000	0.000061	0.212776	94.60000
0.250000	0.062500	0.423444	94.750000	1024.000000	0.000244	0.191017	94.70000
0.250000	0.250000	0.713477	92.300000	1024.000000	0.000977	0.208193	95.05000
1.000000	0.000061	0.800186	55.750000	1024.000000	0.003906	0.225442	96.60000
1.000000	0.000244	0.797172	86.900000	1024.000000	0.015625	0.194065	96.40000
1.000000	0.000977	0.571743	91.850000	1024.000000	0.062500	0.224793	96.35000
1.000000	0.003906	0.381565	93.050000	1024.000000	0.250000	0.542050	95.95000
1.000000	0.015625	0.281917	94.650000	4096.000000	0.000061	0.192989	94.55000
1.000000	0.062500	0.285756	96.150000	4096.000000	0.000244	0.210952	94.75000
1.000000	0.250000	0.568394	96.100000	4096.000000	0.000977	0.271062	96.25000
4.000000	0.000061	0.798443	86.950000	4096.000000	0.003906	0.277291	96.25000
4.000000	0.000244	0.569461	91.850000	4096.000000	0.015625	0.187257	96.35000
4.000000	0.000977	0.371507	93.000000	4096.000000	0.062500	0.224741	96.35000
4.000000	0.003906	0.259033	94.250000	4096.000000	0.250000	0.541835	95.95000
4.000000	0.015625	0.203123	95.550000	16384.000000	0.000061	0.241238	94.35000
4.000000	0.062500	0.230975	96.650000	16384.000000	0.000244	0.310596	94.95000
4.000000	0.250000	0.539952	96.100000	16384.000000	0.000977	0.401110	96.60000
16.000000	0.000061	0.570222	91.850000	16384.000000	0.003906	0.330598	96.25000
16.000000	0.000001	0.369962	93.050000	16384.000000	0.015625	0.187273	96.35000
16.000000	0.000244	0.261383	93.950000	16384.000000	0.062500	0.224825	96.35000
16.000000	0.003906	0.201383	95.050000	16384.000000	0.250000	0.542722	95.95000
16.000000	0.003900	0.195201	96.500000				
16.000000	0.013023	0.195201	96.900000				
16.000000	0.062300	0.225050	95.950000				
10.000000	0.250000	0.041700	99.990000				

RBF Kernel maximum train accuracy: 96.900000

RBF Kernel optimal $\gamma{:}~0.062500$

RBF Kernel optimal C: 16

RBF Kernel test accuracy(%): 96.500000

Summary:

Polynomial Kernel maximum train accuracy: 96.600000

Polynomial Kernel optimal C: 64 Polynomial Kernel optimal degree: 2

Polynomal Kernel test accuracy(%): 95.150000

RBF Kernel maximum train accuracy: 96.900000

RBF Kernel optimal γ : 0.062500

RBF Kernel optimal C: 16

RBF Kernel test accuracy(%): 96.500000

Hence, Best Kernel: RBF (based on maximum train accuracy) and the best choice for RBF kernels 'C' and γ are 16 and 0.0625 respectively (incidentally, also gives a higher test accuracy)