PATENT ABSTRACTS OF JAPAN

(11)Publication number:

02-005631

(43)Date of publication of application: 10.01.1990

(51)Int.CI.

H04B 7/15

H04B 7/005

(21)Application number : 63-155832

(71)Applicant: MITSUBISHI ELECTRIC CORP

(22)Date of filing:

22.06.1988

(72)Inventor: ODA HIROBUMI

(54) TRANSMISSION POWER CONTROL SYSTEM FOR SATELLITE COMMUNICATION (57) Abstract:

PURPOSE: To compensate precipitation attenuation by a fixed quantity and to attain a satellite communication system to be operated by plural ground stations can be operated by the plural stations by detecting satellite receiving power data at every incoming line frequency from the plural stations and transmitting the data to each ground station.

CONSTITUTION: In order to transmit signals for communication from a ground station 2 to ground stations 3 and (n) satisfying a prescribed channel quality, the transmission power is controlled by calculating precipitation attenuation quantities of incoming channel 4-6. Namely, a satellite reception power detection circuit 1a sends back the detecting data of the satellite

reception power when it rains at the incoming channel 4 to the ground station 2 after superposing the data upon telemeter signals and performing frequency conversion. The ground station 2 calculates the precipitation attenuation quantity by comparing the sent satellite reception power when it rains at the channel 4 with already known data of fine weather and transmits the signals for communication to the stations 3 and (n) by increasing the effective radiation power of the station 2 by the attenuation quantity. Similar transmission power control is performed based on detecting data transmitted from satellite reception power detection circuits 1b and 1n when it rains at the incoming channels 5 and 6 of the ground stations 3 and (n).

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

⑲ 日本国特許庁(JP)

⑪特許出願公開

@ 公 開 特 許 公 報 (A) 平2-5631

31nt. Cl. 5

識別記号

庁内整理番号

@公開 平成2年(1990)1月10日

H 04 B 7/15 7/005

7323-5K

3-5K H 04 B 7/15

Z

審査請求 未請求 請求項の数 1 (全4頁)

60発明の名称

衛星通信送信電力制御方式

②特 顯 昭63-155832

@出 顯 昭63(1988)6月22日

⑩発 明 者 小 田

博 文

兵庫県尼崎市塚口本町8丁目1番1号 三菱電機株式会社

通信機製作所内

⑪出 願 人 三菱電機株式会社

東京都千代田区丸の内2丁目2番3号

個代 理 人 弁理士 大岩 增雄 外2名

US AND 88

1. 発明の名称

南屋通信送信节力制御方式

2. 特許請求の範囲

複数(3局以上)の地球局が衛星を介して酒信を行う衛星通信方式において、これら地球局間同志での回移品質を保持する為に、衛星の実際ではないである。 放射電力を降雨減衰ほに関係ないでというでは受けて変更での受信値力を検出し、その適信をからでは受けて通信である。 としょータ信号に重優して適信信号を送信電のの低下を補正することを特徴とする衛星通信送信電力の低いのである。

3. 発明の詳細な説明

(産業上の利用分野)

(従来の技術)

第3回は昭和53年度電子通信学会光・電波部門 全国大会予称・論文番号 182 「BS主局の上り回 線降雨減衰の補償方法について」に示された従来の衛星通信送信電力制御方式を示す構成図で、図において、(1)は衛星、(2)、(3)は地球局、(4)は上り回線、(5)はテレメータ回線(下り回線)、(6)は下り回線である。

(発明が解決しようとする課題)

従来の商屋通信送信帽力制御方式は以上のよう

に構成されていたので、複数局(3局以上)による運用は考慮されておらず、2局間の単一波運用(上り回線/下り回線各一波)にしか適用できないという問題点があった。

この発明は上記のような問題点を解消するためになされたもので、複数局による運用ができるとともに、2周間でも複数波による運用ができる衛 迅通信送信用力制御方式を得ることを目的とする。 〔類題を解決するための手段〕

この発明に係る衛星通信送信用力制御方式は循題受信用力の検出を複数局から送信される複数の周波数対応で行ない、各周波数でとに衛星受信用力データをそれぞれの地球局へ送り返し、各地球局がその受信データを基にして降雨減衰量を算出し、その補正分だけ送信地球局の実効放射電子を増加させることにより、所定の回線品質を一定とするものである。

(作用)

この発明における衛星通信送信電力制御方式は衛星受信電力の検出を複数局からの上り回線周波

点を下記の手段で算出して送信電力を制御する。 即ち、 新星受信電力検出回路(la)により、上り回 線似が降雨時の衛星受信電力の検出データを、テ レメータ 信号に 選 役 し て 胸 波 数 変 換 し て 地 球 局 (2) へ送り返す。上り回線のが晴天時の衛星受信権力 は既知であるので、地球局(2)ではとの晴天時の旺 知データと、 衛星(1) から送られてくる上り回線(4) が降雨時の衛星受信電力とを比較して降雨減衰量 を算出し、この減衰分だけ地球局(2)の実効放射領 力を増加させ、地球局(3)及び地球局(1)へ送信する 通信用信号の循星の実効放射電力を一定とし、所 定の回線品質が満足出来る様にする。 地球局(3)及 び地球局(11)の上り回線(6)(6)が降雨時の場合も、上 記と同様、 衛星受債権力検出回路(1b)、(1n)によ って送信される検出データより送信印力制御を行 15 5 .

なお、上記実施例では衛星受信電力を各地球局からの上り回線の規波数でとに検出する回路を、各上り回線関波数でとに設けた場合を示したが、 衛星受信電力検出回路を1つだけとし、上り回線 数でとに行ない、それぞれ周波数変換して検出データを地球局へ送信することにより、複数局及び 複数波による循星通信運用を行なうことを可能と する。

(実施例)

以下、この発明の一実施例を図について説明する。

第1図において、(1)は衛星、(1a)、(1b)…(1n)は複数局からの各上り回線周波数でとの循尾受信 で力検出回路、(2)、(3)、…、(n)は地球局、(4)、(5)、(6)はそれぞれ他の地球局へ通信信号を送信する為の上り回線、(7)、(4)、(9)はそれぞれ上り回線(4)、(5)、(6)の周波数に対応した衛星受信電力の検出データをテレメータ信号に選及した下り回線、(5a)、(5b)は、地球局(3)から送信する通信信号の下り回線、(6a)、(6b)は地球局(n)から送信する通信信号の下り回線、(6a)、(6b)は地球局(n)から送信する通信信号の下り回線、(6a)、(6b)は地球局(n)から送信する通信信号の下り回線である。

第1図において、地球局(2)から地球局(3)及び地球局(n)へ通信用信号を所定の回線品質を満足する様に送信する為に、上り回線(4)~(6)での降雨減衰

また、第2a 図の構成では衛星受信用力の検出データの送信周波数を、各地球局毎に変えた場合を示しているが、これを 1 波(周波数 fr)のみとしてもよく、この場合の他の実施例を第2c 図に示す。第2a 図と同様、検出回路(1a)入力のサン

プラによって、上り回線(4)、(5)、(6)の 衛星受信符力を順次検出し、下り回線 周波数 17-波による TDMA (時分割多元接続)によって、 第 2 d 図に示すタイミングで各地球局(2)、(3)、(n)に送信する。各地球局(2)、(3)、(n)ではあらかじめ定められたタイム・パースト・プランによって、それぞれの衛星受信電力検出データ Pi、Pi、Piを取得し、このデータに基づき送信電力制御を行なり。

(発明の効果)

以上のようにこの発明によれば、複数局からの上り回線開放数でとに衛星受信用力データを検出し、そのデータを各地球局に送信する様にしたので、複数の地球局による衛星通信方式において、一定量の降雨減衰を補正するこの発明による送信が力制御方式によって所定の回線品質を保持できる効果がある。

4. 図面の簡単な説明

第1図はこの発明の一実施例による衛星通信送信頼力制御方式の構成図、第2a図は、この発明の他の実施例1による衛星通信送信頼力制御方式

の構成図、 部 2 b 図は、 他の 実 施例 1 に おける 衛星受信電力検出のタイミング・チャート、 第 2 c 図はこの 発明の 他の 実 施例 2 による 衛星通信送信電力制御方式の構成図、 第 2 d 図は、 他の 実 施例 2 における T D M A 伝送のタイミングチャート、 部 3 図は従来の 衛星通信送信電力制御方式の 構成図である。

図において、(1)は衛星、(2)、(3)、(n)は地球局、(4)、(5)、(6)は上り回線、(7)、(4)、(9)は、それぞれ上り回線(4)、(5)、(6)に対応した衛星受信電力の検出データを重張した下り回線、(1a)、(1b)、(1n)は新星受信電力検出回路、(5a)、(5b)は地球局(3)から送信する通信信号の下り回線を示す。なお、図中、同一符号は同一、または相当部分

代理人 大岩增雄

を示す。

