

Product Description

The BSW7421 is a reflective SPDT RF switch that can be used in high power and good performance WLAN 802.11 a/b/g/n/ac/ax, DOCSIS 3.0/3.1 and Wireless Communication applications.

This device is packaged in RoHS-compliant with 1.5x1.5mm, 6-lead UDFN package. It must be used with back side ground soldering.

The BSW7421 has robust ESD protection circuits at all pins and temperature performance (operating temperature range : -40 to +105°C).

This switch does not require blocking capacitors. If DC is presented at the RF port, add a blocking capacitor. This device also has a high linearity performance over all temperature range such as IIP3, IIP2.

A functional block diagram is shown in Figure 1.

Block Diagram

Figure 1 Functional Block Diagram

Applications

- WiMAX 802.16
- WLAN 802.11 a/b/g/n/ac/ax
- DOCSIS 3.0/3.1
- Drone
- Bluetooth
- Wireless Infrastructure
- Remote keyless entry
- Telematics / Infotainment
- Two-way radios
- Wireless control systems
- GPS/Navigation

Package Type

6-Lead 1.5x1.5mm, UDFN Package

Figure 2 Package Type

Device Features - Common

• Output frequency range : 5 MHz to 6.0 GHz

• Fast Switching Time : 125 to 140 ns

• Supply Voltage : 2.7V to 3.6V

• ESD protection: 2.0kV @ all pins

6-lead UDFN package: 1.5mm x 1.5mm x 0.5mm
Operating temperature range: -40°C - +105°C

Device Features - 50Ω

• Low insertion loss

: 0.74dB @ 2.45GHz

: 0.89dB @ 5.75GHz

High isolation

: 52dB @ 2.45GHz

: 37dB @ 5.75GHz

• Input 1 dB output compression

: 39dBm @ 2.45GHz

: 38dBm @ 5.75GHz

• High IIP3

: 65dBm @ 2.45GHz

: 65dBm @ 5.75GHz

Device Features - 75Ω

• Low insertion loss

: 0.59dB @ 204MHz

High isolation

: 60dB @ 204MHz

• 2nd Harmonic

:80dB@204MHz

• 3rd Harmonic

: 107dB @ 204MHz

5MHz-6000MHz

Electrical Specifications - 50Ω

Typical conditions are at VDD = 3.3V, T_A = 25°C, V1 Low = 0V, V1 High = 3.3V, Z_L = 50 Ω , Excluding SMA Connector and PCB loss⁽¹⁾, unless otherwise noted.

Table 1 Electrical Specifications - 50Ω

Parameter	Path	Condition	Min	Тур	Max	Unit
Operating Frequency			5		6000	MHz
Insertion Loss	RFc - RFx	1GHz 2GHz 2.45GHz 3GHz 4GHz		0.73 0.73 0.74 0.76 0.83		dB
		5GHz 5.75GHz 6GHz		0.92 0.89 0.93		
Isolation	RFc - RFx	1GHz 2GHz 2.45GHz 3GHz 4GHz 5GHz 5.75GHz 6GHz		55 52 52 54 50 47 37 36		dB
Isolation	RFx - RFx	1GHz 2GHz 2.45GHz 3GHz 4GHz 5GHz 5.75GHz 6GHz		55 49 46 43 39 33 31 30		dB
Return Loss	RFc, RF1, RF2	5MHz – 6GHz (Active port)		20		dB
Input P1dB	RFc - RFx	2.45GHz 5.75GHz		39 38		dBm
Input IP3 ⁽²⁾	RFc - RFx	2.45GHz 5.75GHz		65 65		dBm
Input IP2 ⁽²⁾	RFc - RFx	2.45GHz 5.75GHz		105 90		dBm
2 nd Harmonic ⁽³⁾	RFc - RFx	2.45GHz 5.75GHz		95 80		dBc
3 rd Harmonic ⁽³⁾	RFc - RFx	2.45GHz 5.75GHz		100 100		dBc
Switching Time	RFc - RFx	50% control to 90% RF 50% control to 10% RF		140 125		ns
Settling Time	RFc - RFx	50% CTRL to 0.05dB final value Rising Edge 50% CTRL to 0.05dB final value Falling Edge		235 210		ns

⁽¹⁾ Excluding SMA Connector and PCB loss. 1GHz (0.12dB), 2GHz (0.20dB), 3GHz (0.27dB), 4GHz (0.35dB), 5GHz (0.51dB), 6GHz (0.52dB)

⁽²⁾ Tone Power is 18dBm and Tone spacing is 20KHz.

⁽³⁾ Tone Power is 18dBm.

5MHz-6000MHz

Electrical Specifications - 75Ω

Typical conditions are at VDD = 3.3V, T_A = 25°C, V1 Low = 0V, V1 High = 3.3V, Z_L = 75 Ω , Excluding SMA Connector and PCB loss⁽¹⁾, unless otherwise noted.

Table 2 Electrical Specifications - 75Ω

Parameter	Path	Condition	Min	Тур	Max	Unit
Operating Frequency			5		6000	MHz
		5MHz		0.50		
		204MHz		0.59		
Insertion Loss	RFc - RFx	633MHz		0.66		dB
insertion Loss	KFC - KFX	1218MHz		0.74		ив
		1700MHz		0.71		
		1794MHz		0.68		
		5MHz		78		
		204MHz		60		
Isolation	RFc - RFx	633MHz		53		dB
Isolation	KFC - KFX	1218MHz		45		ав
		1700MHz		39		
		1794MHz		38		
		5MHz		78		
		204MHz		60		
laalatia.a	DE., DE.,	633MHz		52		40
Isolation	RFx - RFx	1218MHz		47		dB
		1700MHz		42		
		1794MHz		41		
Return Loss	RFc, RF1, RF2	5MHz – 3GHz (Active port)	15	20		dB
2 nd Harmonic ⁽²⁾	DE: DE	204MHz		80		do -
2 Harmonic'	RFc - RFx	633MHz		110		dBc
3 rd Harmonic ⁽²⁾	RFc - RFx	204MHz		107		dBc
3 Harmonic	KFC - KFX	633MHz		120		ивс

⁽¹⁾ Excluding SMA Connector and PCB loss.

⁵MHz(0.02dB), 204MHz(0.04dB), 633MHz(0.09dB), 1218MHz(0.13dB), 1700MHz(0.17dB), 1794MHz(0.19dB)

⁽²⁾ Tone Power is 18dBm.

5MHz-6000MHz

Product Description

Figure 3 Functional Block Diagram

Table 3 Pin Descriptions

No.	Pin Name	Descriptions
1	V1	Digital Control Logic Input
2	RFC	RF Common port
3	VDD	Supply Voltage
4	RF2	RF2 port
5	GND	Ground
6	RF1	RF1 port
Pad	Exposed Pad	Ground

Table 4 V1 Control Truth Table

V1	RFC-RF1	RFC-RF2
0	OFF	ON
1	ON	OFF

Table 5 Operating Ranges

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage	VDD	2.7	3.3	3.6	V
Supply Current	IDD	-	170	-	μΑ
Digital Input Control (1/1)	V1 High	1.0	-	3.3	V
Digital Input Control (V1)	V1 Low	0	-	0.7	V
Operating Temperature Range	То	-40	+25	+105	°C
RF Input Power, CW Freq.=2.45GHz, 5.75GHz any port, Z ₁ =50Ω	-	-	-	30	dBm

Table 6 Absolute Maximum Ratings

	Parameter		Symbol	Min	Max	Unit
	Supply Voltage		VDD	-0.3	3.6	V
Digi	tal Input Voltage	(V1)	V1	-0.3	3.6	V
Maximur	n Input Power, CV	V (+25°C)	-	-	Input P1dB	dBm
Stora	ige Temperature i	range	-	-65	+150	°C
ECD	НВМ	All pins	=	-	2000	V
ESD	CDM	All pins	-	-	1000	V

BeRex

•website: www.berex.com

●email: <u>sales@berex.com</u>

Typical Performances - 50Ω

Typical conditions are at VDD = 3.3V, T_A = 25°C, V1 Low = 0V, V1 High = 3.3V, Z_L = 50 Ω , Excluding SMA Connector and PCB loss, unless otherwise noted.

Figure 4 Insertion Loss vs. Vdd (RFC - RFx)

Figure 5 Insertion Loss vs. Temp (RFC - RFx)

Figure 6 Return Loss (RFC, RFx)

Figure 7 Return Loss vs. Temp (RFC)

Typical Performances - 50Ω

Typical conditions are at VDD = 3.3V, T_A = 25°C, V1 Low = 0V, V1 High = 3.3V, Z_L = 50 Ω , Excluding SMA Connector and PCB loss, unless otherwise noted.

Figure 8 Isolation vs. Vdd (RFC - RFx)

^{*} Extrapolated data is the actual performance of part excluding the resonance of the evaluation board.

Figure 10 Isolation vs. Vdd (RFx - RFx)

Figure 9 Isolation vs. Temp (RFC-RFx)

Figure 11 Isolation vs. Temp (RFx - RFx)

BeRex

•website: www.berex.com

•email: sales@berex.com

Typical Performances - 75Ω

Typical conditions are at VDD = 3.3V, T_A = 25°C, V1 Low = 0V, V1 High = 3.3V, Z_L = 75 Ω , Excluding SMA Connector and PCB loss, unless otherwise noted.

Figure 12 Insertion Loss vs. Vdd (RFC - RFx)

Figure 13 Return Loss (RFC, RFx)

Figure 14 Isolation vs. Vdd (RFC - RFx)

Figure 15 Isolation vs. Vdd (RFx - RFx)

Evaluation Board - 50Ω

Figure 16 Evaluation Board Layout - 50Ω

Figure 17 Evaluation Board Schematic - 50Ω

Figure 18 Evaluation Board PCB Layer Information 50Ω

Table 6 Bill of Material - Evaluation Board 50Ω

No.	Ref Des	Part Qty	Part Number	Remark
1	C2	1	CAP 1608 1uF J 50V	
2	C4	1	CAP 1608 100pF J 50V	
3	C5*	1	CAP 1005 100pF J 50V	
4	C6	1	CAP 1005 DNI	
5	R2	1	RES 1608 J 0ohm	
6	J2	1	10 Pin Header	
7	RFC, RF1, RF2	3	SMA_END_LAUNCH	
8	U2	1	BSW7421	

^{*} C5 should be placed near the device.

•website: www.berex.com

•email: sales@berex.com

Evaluation Board - 75Ω

Figure 19 Evaluation Board Layout - 75Ω

Figure 20 Evaluation Board Schematic - 75Ω

Figure 21 Evaluation Board PCB Layer Information 75 Ω

Table 7 Bill of Material - Evaluation Board 75 Ω

No.	Ref Des	Part Qty	Part Number	Remark
1	C4	1	CAP 1608 1uF J 50V	
2	C1, C2, C3	3	CAP 1005 DNI	
3	J2, J3	2	2 Pin Header	
4	RFC, RF1, RF2	3	F Type_END_LAUNCH	
5	U1	1	BSW7421	

Package Outline Drawing

BEREX

SIDE VIEW

NOTES :

- 1. Dimension and tolerancing conform to ASME Y14.5M-1994.
- Controlling Dimensions: Millimeter. Converted INCH dimension are not necessarily exact.
- Dimension b applied to Metallized terminal and is measured between 0.15 to 0.30mm from terminal tip.

N≻∑¤□J			Com	mon		
B	DIMENSI	ONS MILLI	METER	DIME	I SUDISNE	NCH
=	MIN.	N□M.	MAX.	MIN.	N□M.	MAX.
Α	0.45	0.50	0.55	0.018	0.020	0.022
АЗ	0.1	27 REF		0.0	005 REF	₹.
A1	0.00	0.02	0.05	0.000	0.001	0.002
b	0.20	0.25	0.30	0.008	0.010	0.012
D	1.45	1.50	1.55	0.057	0.059	0.061
D2	1.15	1.20	1.25	0.045	0.047	0.049
Ε	1.45	1.50	1.55	0.057	0.059	0.061
E2	0.65	0.70	0.75	0.026	0.028	0.030
е	0.5	500 BS	С	0.	020 BS	С
L	0.125	0.175	0.225	0.005	0.007	0.009
Κ	0.230	_	_	0.009	_	_

Figure 22 Package Outline Drawing

Figure 23 Recommended Land Pattern

BeRex ●website: <u>www.berex.com</u> ●email: <u>sales@berex.com</u> 10

5MHz-6000MHz

Tape & Reel

Figure 24 Tape & Reel

Package Marking

S: Switch

2: The number of switch throw

E : Sequential Number

Y : Year

WW : Work Week

Figure 25 Package Marking

Lead plating finish

100% Tin Matte finish

(All BeRex products undergoes a 1 hour, 150 degree C, Anneal bake to eliminate thin whisker growth concerns.)

MSL / ESD Rating

ESD Rating: Class 2

Value: Passes < 2000V

Test: Human Body Model (HBM)
Standard: JEDEC Standard JESD22-A114B

MSL Rating: Level 1 at +265°C convection reflow

Standard: JEDEC Standard J-STD-020

Proper ESD procedures should be followed when handling this device.

NATO CAGE code:

2 N 9 6 F

BeRex •website: www.berex.com

•email: sales@berex.com