Matrix Derivatives. Automatic Differentiation

Seminar

Optimization for ML. Faculty of Computer Science. HSE University

∌ റ ⊘

Theory recap. Differential

• Differential $df(x)[\cdot]: U \to V$ in point $x \in U$ for $f(\cdot): U \to V$:

$$f(x+h) - f(x) = \underbrace{df(x)[h]}_{\text{differential}} + \overline{o}(||h||)$$

Canonical form of the differential:

$U \to V$	\mathbb{R}	\mathbb{R}^n	$\mathbb{R}^{n imes m}$
\mathbb{R}	f'(x)dx	$\nabla f(x)dx$	$\nabla f(x)dx$
\mathbb{R}^n $\mathbb{R}^{n imes m}$	$\nabla f(x)^T dx \ tr(\nabla f(X)^T dX)$	J(x)dx	_

Theory recap. Differentiation Rules

• Useful differentiation rules and standard derivatives:

Differentiation Rules	Standard Derivatives
dA = 0	$d(\langle A, X \rangle) = \langle A, dX \rangle$
$d(\alpha X) = \alpha(dX)$	$d(\langle Ax, x \rangle) = \langle (A + A^T)x, dx \rangle$
d(AXB) = A(dX)B d(X+Y) = dX + dY	$d(Det(X)) = Det(X)\langle X^{-T}, dX \rangle$ $d(X^{-1}) = -X^{-1}(dX)X^{-1}$
$d(X^T) = dX^T + dY$ $d(X^T) = (dX)^T$	w(x) = x + (wx)x
d(XY) = (dX)Y + X(dY)	
$d(\langle X, Y \rangle) = \langle dX, Y \rangle + \langle X, dY \rangle$	
$d\left(\frac{X}{\phi}\right) = \frac{\phi dX - (d\phi)X}{\phi^2}$	

Matrix Calculus. Problem 1

Example

Find $\nabla f(x)$, if $f(x) = \frac{1}{2}x^TAx + b^Tx + c$.

Matrix Calculus. Problem 2

Example

Find $\nabla f(X)$, if $f(X) = tr(AX^{-1}B)$

• $h(x) = f(g(x)) \Rightarrow dh(x_0)[dx] = df(g(x_0))[dg(x_0)[dx]]$

Matrix Calculus. Problem 3

Example

Find the gradient $\nabla f(x)$ and hessian $\nabla^2 f(x)$, if $f(x) = \frac{1}{2} ||x||_2^3$

- $d^2f(x)[h_1, h_2] = d\left(df(x)[\underbrace{h_1}_{\text{fixed when take outer }d(\cdot)}]\right)[h_2]$ Canonic form for $f: \mathbb{R}^n \to \mathbb{R}$: $d^2f(x)[h_1, h_2] = h_1^T \underbrace{\nabla^2 f(x)}_{} h_2$

Automatic Differentiation. Forward mode

Figure 1: Illustration of forward chain rule to calculate the derivative of the function v_i with respect to w_k .

- Uses the forward chain rule
- Has complexity $d \times \mathcal{O}(T)$ operations

Automatic Differentiation. Reverse mode

Figure 2: Illustration of reverse chain rule to calculate the derivative of the function L with respect to the node v_i .

- Uses the backward chain rule
- Stores the information from the forward pass
- Has complexity $\mathcal{O}(T)$ operations

Automatic Differentiation. Problem 1

Example

Which of the AD modes would you choose (forward/ reverse) for the following computational graph of primitive arithmetic operations?

Automatic Differentiation. Problem 2

Figure 4: x could be found as a solution of linear system

Suppose, we have an invertible matrix A and a vector b, the vector x is the solution of the linear system Ax = b, namely one can write down an analytical solution $x = A^{-1}b$.

Find the derivatives $\frac{\partial L}{\partial A}, \frac{\partial L}{\partial b}.$

Automatic Differentiation. Problem 3

Figure 5: Computation graph for singular regularizer

Suppose, we have the rectangular matrix $W \in \mathbb{R}^{m \times n}$, which has a singular value decomposition:

$$W = U\Sigma V^T$$
, $U^T U = I$, $V^T V = I$, $\Sigma = \operatorname{diag}(\sigma_1, \dots, \sigma_{\min(m,n)})$

The regularizer $R(W)=\operatorname{tr}(\Sigma)$ in any loss function encourages low rank solutions. Find the derivative $\frac{\partial R}{\partial W}$.

Computation experiment with JAX

 $\bullet \ \mathsf{JAX} \ \mathsf{docs:} \ \mathsf{https:} //\mathsf{jax.readthedocs.io/en/latest/notebooks/quickstart.html}$

Automatic Differentiation Problems

