Dujiao Sieve

Dujiao Sieve

instance

L3-3 可怜的简单题

式子推导不难,处理无穷求和是转化去一个等比数列。总之需要求的结果就是

$$\sum_{t=1}^n \mu(t) + n \sum_{t=2}^n rac{1}{\lfloor rac{n}{t}
floor - n} \mu(t)$$

inference

Note that factor with $\lfloor \rfloor$ just has $O(\sqrt{n})$ different values, divided into continous segments. So basically the difficulty lies in the prefix sum of μ .

Practice

Prove that

$$\sum_{i=1}^n \mu(i) = 1 - \sum_{t=2}^n \sum_{i=1}^{\lfloor n/t
floor} \mu(i)$$

Step1 →

Actually the technique here is re-combine the μ s by different direction, in $\sum_{k=1}^{n} [k=1]$. List [k=1] s' μ s, row-ly. Column-ly combine them, to get

$$1 = \sum_{d=1}^n \mu(d) \lfloor \frac{n}{d} \rfloor$$

♦ Step2 →

proceed to transform the sum into prefix-like form, based on the index in the μ .

By observing that $\{\lfloor \frac{n}{d} \rfloor : d = 1, \dots, n\}$ is a ladder-shaped stuff, which was just mentioned in above content. We can exhaustively to make them into prefix-like form.

Technically, the process can also be visualized as row-ly to column-ly. Just imagine $\mu(k)$ corresponds a row with length $\lfloor \frac{n}{k} \rfloor$. The details and result will be clarified in the

following step.

Step3 →

Enumerate $t=1,2,\cdots,n$, refers the position on the row of $\mu(1)$ (obviously the length is n), right now we're considering. The limit we can column-ly stretch, is the max X which satisfies

$$\lfloor \frac{n}{|X|}
floor \geq t$$

The tricky technique here is that we can remove the $\lfloor \rfloor$ equivalently.

Then the thing is easy

$$\frac{n}{t} \ge X$$

So

$$X = \lfloor \frac{n}{t} \rfloor$$

:≡ Division-Segmentation

The principle of Division-Segmentation can be proved in the similar way in step3

So how to efficiently take advantage of the recursion-like formula?

algorithm

Denote that

$$S_n := \sum_{i=1}^n \mu(i)$$

Calculate $n = 1, \dots, M$ in advance, do the recursion, then the time complexity should be

$$O(M + \frac{N}{\sqrt{M}})$$

So let $M = O(N^{2/3})$ to get $O(N^{2/3})$.

The details of the analysis can refer <u>杜教筛 - OI Wiki</u>. The usage of memorization lies in the fact

$$\lfloor rac{\lfloor rac{n}{x}
floor}{y}
floor = \lfloor rac{n}{xy}
floor$$

swap x,y vice versa. S	o the possible	value we may	visit is really l	imited, correspo	nding to
the very divisor.					