MA 205: Complex Analysis Tutorial Solutions

Ishan Kapnadak

Autumn Semester 2021-22

Updated on: 2021-07-31

Contents

1 Week 1 2

<u>Note</u>: Many of these solutions are either inspired by, or in some cases directly taken from Aryaman Maithani's tutorial solutions for last year's offering of this course.

§1. Week 1

3rd August, 2021

Notation: We use $\mathbb{C}[x]$ to denote the set of all polynomials in x with complex coefficients. $\mathbb{R}[x]$ is defined similarly.

1. Show that a real polynomial that is irreducible has degree at most two, i.e, if

$$f(x) = a_0 + a_1 x + \dots + a_n x^n, a_i \in \mathbb{R},$$

then there are non-constant real polynomials g and h such that f(x) = g(x)h(x) if $n \ge 3$. $(a_n \ne 0, \text{ of course})$

Solution. We consider two cases. First, suppose $f(x) \in \mathbb{R}[x]$ has a real root, x_0 , and let $h(x) := (x - x_0)$. Since $x_0 \in \mathbb{R}$, $h(x) \in \mathbb{R}[x]$. Moreover, we can write

$$f(x) = g(x)h(x)$$

for some $g(x) \in \mathbb{R}[x]$. (Why must g be a real polynomial?) Also, since $\deg f(x) \geq 3$ and $\deg h(x) = 1$, we have that $\deg g(x) \geq 2$. Thus, g and h are two non-constant real polynomials satisfying f(x) = g(x)h(x).

Now, suppose that f(x) has no real root. We may also view f(x) as a polynomial in $\mathbb{C}[x]$. By FTA, we know that f(x) has a complex root $x_0 \in \mathbb{C}$. By assumption, we have that $x_0 \notin \mathbb{R}$, and thus $x_0 \neq \overline{x_0}$.

Claim. $f(\overline{x_0}) = 0$

Proof. We have

$$f(\overline{x_0}) = a_0 + a_1 \overline{x_0} + \dots + a_n (\overline{x_0})^n$$

$$= a_0 + a_1 \overline{x_0} + \dots + a_n \overline{x_0}^n$$

$$= \overline{a_0} + \overline{a_1} \overline{x_0} + \dots + \overline{a_n} \overline{x_0}^n$$

$$= \overline{f(x_0)}$$

$$= \overline{0}$$

$$= 0.$$

$$\downarrow \overline{z^n} = \overline{z}^n$$

$$\downarrow a_i \in \mathbb{R} \text{ and thus, } a_i = \overline{a_i}$$

$$\downarrow \overline{z_1 z_2 + z_3} = \overline{z_1} \overline{z_2} + \overline{z_3}$$

Thus, x_0 and $\overline{x_0}$ are two distinct roots of f(x). Define $g(x) := (x - x_0)(x - \overline{x_0})$. A priori, we have $g(x) \in \mathbb{C}[x]$. However, note that

$$(x - x_0)(x - \overline{x_0}) = x^2 - (2\Re x_0)x + |x_0|^2 \in \mathbb{R}[x].$$

Thus, g(x) is in fact a real polynomial. Since x_0 and $\overline{x_0}$ are distinct, we see that g(x) divides f(x) in $\mathbb{C}[x]$. (Why?) Thus,

$$f(x) = g(x)h(x)$$

for some $h(x) \in \mathbb{C}[x]$. Again, since f(x) and g(x) are both real polynomials, so is f(x). Moreover, since $\deg f(x) \geq 3$ and $\deg g(x) = 2$, we have $\deg h(x) \geq 1$, and we are done.

2. Show that a non-constant polynomial $f(z_1, z_2)$ in complex variables z_1 and z_2 with complex coefficients, has infinitely many roots in \mathbb{C}^2 .

Solution. Before we prove this, we first prove the following useful Lemma.

Lemma. A complex polynomial of degree n has exactly n roots, counted with multiplicity. In particular, all complex polynomials have finitely many roots.

Proof. Let $f(x) \in \mathbb{C}[x]$ be a polynomial of degree n. We prove this via induction on n. When n = 1, $f(x) = a_0 + a_1 x$ for some $a_0, a_1 \in \mathbb{C}$ with $a_1 \neq 0$. We have

$$f(x) = 0$$

$$\iff a_0 + a_1 x = 0$$

$$\iff a_1 x = -a_0$$

$$\iff x = -\frac{a_0}{a_1}.$$

Thus, f(x) has exactly 1 root.

We now assume that an n-degree polynomial $g(x) \in \mathbb{C}[x]$ has exactly n roots (counted with multiplicity). Let $f(x) \in \mathbb{C}[x]$ have degree n+1. By FTA, f(x) has a root $x_0 \in \mathbb{C}$. We may thus write

$$f(x) = (x - x_0)g(x),$$

for some n-degree polynomial $g(x) \in \mathbb{C}[x]$. Now, we have

$$f(x) = 0 \iff x = x_0 \text{ or } q(x) = 0.$$

By assumption, the latter happens for exactly n values of x. Thus, f(x) has exactly n+1 roots counted with multiplicity. The second statement follows from the fact that any polynomial has finite degree.

Since $f(z_1, z_2)$ is non-constant at least one of z_1 or z_2 must "appear" in $f(z_1, z_2)$. Without loss of generality, suppose that z_2 appears in $f(z_1, z_2)$. We may write

$$f(z_1, z_2) = \sum_{k=0}^{n} f_k(z_1) \cdot z_2^k$$

where $n \geq 1$ and $f_k(z_1) \in \mathbb{C}[z_1]$. Moreover, $f_n \neq 0$, and thus, $f_n(z_1)$ has only finitely many roots (possibly zero). Thus, there are infinitely many $\alpha \in \mathbb{C}$ such that

 $f_n(\alpha) \neq 0$. Since, $n \geq 1$, we have that $f(\alpha, z_2) \in \mathbb{C}[z_2]$ is non-constant for all these infinitely many α . By FTA, for each such α , there exists $\beta \in \mathbb{C}$ such that $f(\alpha, \beta) = 0$. Thus, there are infinitely many roots of $f(z_1, z_2)$ in \mathbb{C}^2 (since it contains all these pairs (α, β) as α takes on infinitely many values).

3. Show that the complex plane minus a countable set is path-connected.

Solution. Let $S \subset \mathbb{C}$ be countable. We must show that $\mathbb{C} \setminus S$ is path-connected. Let $z_1, z_2 \in \mathbb{C} \setminus S$ and $z_1 \neq z_2$. Let f be the line segment joining z_1 to z_2 , and let g be the circular arc joining z_1 to z_2 . For every $\lambda \in [0,1]$, we define

$$\sigma_{\lambda}(t) := \lambda f(t) + (1 - \lambda)g(t) \quad \forall t \in [0, 1]$$

Claim.

- (a) σ_{λ} is a path in \mathbb{C} , (b) $\sigma_{\lambda}(0) = z_1$ and $\sigma_{\lambda}(1) = z_2$ for all $\lambda \in [0, 1]$, and (c) if $\lambda_1 \neq \lambda_2$ and $t \in (0, 1)$, then $\sigma_{\lambda_1}(t) \neq \sigma_{\lambda_2}(t)$.

Proof. We leave the proof for (a) and (b) as simple exercises. To show (c), we first note that for $t \in (0,1)$, $f(t) \neq g(t)$. Now, let $\lambda_1, \lambda_2 \in [0,1]$ with $\lambda_1 \neq \lambda_2$. Suppose $\sigma_{\lambda_1}(t) = \sigma_{\lambda_2}(t)$. We then have

$$\lambda_1 f(t) + (1 - \lambda_1) g(t) = \lambda_2 f(t) + (1 - \lambda_2) g(t)$$

$$\Longrightarrow (\lambda_1 - \lambda_2) f(t) = (\lambda_1 - \lambda_2) g(t).$$

Since $\lambda_1 \neq \lambda_2$, we get f(t) = g(t), a contradiction. Intuitively, this means that the images of all these paths are disjoint, barring the start and end points.

Since [0, 1] is uncountable (we assume this without proof), and the images are disjoint (by claim (c)), we have that the set $\{\sigma_{\lambda} \mid \lambda \in [0,1]\}$ is uncountable. Since the set S is only countable, there exists some $\lambda_0 \in [0,1]$ such that $\sigma_{\lambda_0}(t) \notin S$ for all $t \in [0,1]$. In other words, σ_{λ_0} is a path in $\mathbb{C} \setminus S$ starting at z_1 and ending at z_2 . Since z_1, z_2 were arbitrary, we are done.

4. Check for real differentiability and holomorphicity:

- (a) f(z) = c
- (b) f(z) = z
- (c) $f(z) = z^n, n \in \mathbb{Z}$
- (d) $f(z) = \Re z$
- (e) f(z) = |z|

$$(f) f(z) = |z|^2$$

(g)
$$f(z) = \overline{z}$$

(h)
$$f(z) = \begin{cases} \frac{z}{\overline{z}} & \text{if } z \neq 0\\ 0 & \text{if } z = 0 \end{cases}$$

Solution. Some of these are trivial and hence omitted.

- (a) Real differentiable and holomorphic.
- (b) Real differentiable and holomorphic.
- (c) For $n \geq 0$, real differentiable and holomorphic. Since holomorphicity implies real differentiability, we only check for holomorphicity. Let $z_0 \in \mathbb{C}$ be arbitrary. We must check for the existence of the following limit:

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}.$$

For $z \neq z_0$, we know that

$$\frac{z^n - z_0^n}{z - z_0} = \sum_{k=0}^{n-1} z^k z_0^{n-1-k}.$$

Since the limit of the RHS exists as $z \to z_0$, we are done.

For n < 0, the function is defined on $\mathbb{C} \setminus \{0\}$. On $\mathbb{C} \setminus \{0\}$, f(z) is non-zero. Thus, $\frac{1}{f}$ is holomorphic on $\mathbb{C} \setminus \{0\}$ by the first case since $\frac{1}{f(z)} = z^{-n}$ and -n > 0. Thus, f(z) is holomorphic on $\mathbb{C} \setminus \{0\}$.

(d) Real differentiable but not holomorphic. We may write f as

$$f(x + \iota y) = x + 0\iota.$$

Thus, u(x,y) = x and v(x,y) = 0. f is clearly real differentiable since all the partial derivatives exist everywhere and are continuous. However, since $u_x(x_0,y_0) = 1$ and $v_y(x_0,y_0) = 0$ for all $(x_0,y_0) \in \mathbb{R}^2$, the CR equations do not hold. Hence, f is complex differentiable nowhere, and thus, not holomorphic.

(e) |z| is real differentiable precisely on $\mathbb{C} \setminus \{0\}$ and complex differentiable nowhere. We may write

$$f(x + \iota y) = \sqrt{x^2 + y^2} + 0\iota$$

giving us $u(x,y) = \sqrt{x^2 + y^2}$, and v(x,y) = 0. On $\mathbb{R}^2 \setminus \{(0,0)\}$, all partial derivatives exist and are continuous, whereas u_x and u_y fail to exist at (0,0). Thus, f(z) is real differentiable on $\mathbb{C} \setminus \{0\}$. Moreover, this shows that f(z) is not complex differentiable at 0 since it's not even real differentiable there. Everywhere else, $v_x = v_y = 0$, but at least one of u_x, u_y is non-zero, violating the CR equations. Thus, f(z) is complex differentiable nowhere.

(f) $|z|^2$ is real differentiable everywhere and complex differentiable precisely at 0. As a result, it is holomorphic nowhere. As before, we have $u(x,y) = x^2 + y^2$, and v(x,y) = 0. Since all partial derivatives exist everywhere and are continuous, f(z) is real differentiable everywhere. Note that

$$u_x(x,y) = 2x \quad u_y(x,y) = 2y$$
$$v_x(x,y) = 0 \quad v_y(x,y) = 0$$

Thus, the CR equations hold precisely at 0.

(g) For $f(z) = \overline{z}$, we may write

$$f(x + \iota y) = x - \iota y,$$

which gives us u(x,y) = x and v(x,y) = -y. Since all partials exist everywhere and are continuous, f(z) is real differentiable everywhere. However, note that

$$u_x(x, y) = 1$$
 $u_y(x, y) = 0$
 $v_x(x, y) = 0$ $v_y(x, y) = -1$

Since $u_x(x,y) \neq v_y(x,y)$ for all $(x,y) \in \mathbb{R}^2$, we see that the CR equations do not hold anywhere and f(z) is complex differentiable nowhere.

(h) f(z) is real differentiable precisely on $\mathbb{C}\setminus\{0\}$, and complex differentiable nowhere. We may multiply and divide by \overline{z} to obtain

$$u(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$$
 and $v(x,y) = \frac{2xy}{x^2 + y^2}$

for $(x,y) \neq (0,0)$, and u(0,0) = v(0,0) = 0. Since u and v are not continuous at (0,0) (recall MA109), neither is f. Hence, f is neither real differentiable, nor complex differentiable at $0 \in \mathbb{C}$. At all other points, all partials exist and are continuous. Hence, f is real differentiable there. However, one may explicitly compute those partial derivatives and verify that the CR equations hold nowhere. Thus, f is complex differentiable nowhere.