Lect 9-1

Given the model $Y_{ij} = \mu_i \epsilon_{ij}$ where $\epsilon \sim N(0, \sigma_{\epsilon})$. Then $Y_{ij} \sim N(\mu_i, \sigma_{\epsilon})$

The likelihood function of data Y_{ij} 's is written as

$$L(\mu_i, \sigma_{\epsilon}|Y) = \prod_{i}^{a} \prod_{j}^{n} \text{pdf of Y}$$

$$= \prod_{i}^{a} \prod_{j}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}(\frac{Y_{ij} - \mu_i}{\sigma_{\epsilon}})^2}$$

$$= e^{-\frac{1}{2}\sum_{i}^{a} \sum_{j}^{n} (\frac{Y_{ij} - \mu_i}{\sigma})^2 - \frac{1}{2}log(2\pi\sigma^2)}$$

To find the maximum point of likelihood function, find minimum value of exponent $-\frac{1}{2}\sum_{i}^{a}\sum_{j}^{n}(\frac{Y_{ij}-\mu_{i}}{\sigma})^{2}-\frac{1}{2}log(2\pi\sigma^{2})$

$$\frac{\partial exponent}{\partial \mu_i} = \partial - \frac{1}{2} \sum_{i=1}^{a} \sum_{j=1}^{n} \left(\frac{Y_{ij} - \mu_i}{\sigma} \right)^2 - \frac{1}{2} log(2\pi\sigma^2) / \partial \mu_i$$
$$= -\frac{1}{2} \sum_{i=1}^{a} \sum_{j=1}^{n} \partial \left(\frac{Y_{ij} - \mu_i}{\sigma} \right)^2 / \partial \mu_i$$

Note that μ_k only counts for kth level, therefore,

$$\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \partial \left(\frac{Y_{ij} - \mu_{i}}{\sigma}\right)^{2} / \partial \mu_{k} = -\frac{1}{2} \sum_{j=1}^{n} \partial \left(\frac{Y_{kj} - \mu_{k}}{\sigma}\right)^{2} / \partial \mu_{k}$$
$$= \frac{1}{\sigma^{2}} \sum_{j=1}^{n} (Y_{kj} - \mu_{k})$$

$$\frac{\partial exponent}{\partial \sigma_{\epsilon}} = \partial - \frac{1}{2} \sum_{i}^{a} \sum_{j}^{n} (\frac{Y_{ij} - \mu_{i}}{\sigma})^{2} - \frac{1}{2} log(2\pi\sigma^{2})/\partial \sigma_{\epsilon}$$
$$= \frac{1}{\sigma^{3}} \sum_{i}^{a} \sum_{j}^{n} (Y_{ij} - \mu_{i})^{2} - \frac{N}{\sigma}$$

Let $\frac{\partial L}{\partial \mu_i} = 0$ and $\frac{\partial L}{\partial \sigma_{\epsilon}} = 0$

$$\frac{1}{\sigma^2} \sum_{j=1}^{n} (Y_{kj} - \mu_k) = 0$$
$$\sum_{j=1}^{n} (Y_{kj} - \mu_k) = 0$$
$$Y_{i.} - n\hat{\mu}_i = 0$$
$$\hat{\mu}_i = \bar{Y}_i$$

$$\frac{1}{\sigma^3} \sum_{i=1}^{a} \sum_{j=1}^{n} (Y_{ij} - \mu_i)^2 - \frac{N}{\sigma} = 0$$

$$\sigma_{\epsilon}^2 = \frac{1}{N} \sum_{i=1}^{a} \sum_{j=1}^{n} (Y_{ij} - \hat{\mu}_i)^2$$

Plug in the estimator of μ_i as \bar{Y}_i .

$$\hat{\sigma}_{\epsilon} = \frac{1}{N} \sum_{i}^{a} \sum_{j}^{n} (Y_{ij} - \bar{Y}_{i.})^{2}$$
$$= \frac{SSE}{N} \approx \frac{SSE}{N - a} = MSE$$

The most likelihood estimator $\hat{\mu_i} = \bar{Y_{i.}}, \, \hat{\sigma_{\epsilon}} = \frac{SSE}{N}$

Lect 9-2

 \mathbf{a}

From the partial derivative on μ and τ_i , we get equations

$$Y_{\cdot \cdot} - N\hat{\mu} - n\hat{\tau}_{\cdot} = 0$$
$$Y_{i \cdot} - n\hat{\mu} - n\hat{\tau}_{i} = 0$$

Plug in the constraint $\hat{\tau}_{\cdot} = 0$ to equation one

$$Y_{\cdot \cdot} - N\hat{\mu} = 0$$
$$\hat{\mu} = \bar{Y}$$

Plug in the estimator for μ to equations $Y_{i.} - n\hat{\mu} - n\hat{\tau}_{i} = 0$

$$Y_{i.} - n\bar{Y}_{..} - n\hat{\tau}_{i} = 0$$

$$\hat{\tau}_{i} = \bar{Y}_{i.} - \bar{Y}_{..}$$

$$\hat{Y}_{ij} = \hat{\mu} + \hat{\tau}_i = \bar{Y}_{..} + \bar{Y}_{i.} - \bar{Y}_{..} = \bar{Y}_{i.}$$

b

Use any constraint $\hat{\tau}_k = c$ where c is a constant, $k \in 1, 2, ...a$. Plug in this constraint to equation $Y_{k.} - n\hat{\mu} - n\hat{\tau}_k = 0$

$$Y_{k.} - n\hat{\mu} = c$$
$$\hat{\mu} = \bar{Y}_{k.} - \frac{c}{n}$$

Plug in the constraint $\hat{\mu} = \bar{Y}_{k.} - \frac{c}{n}$ in to equation $Y_{i.} - n\hat{\mu} - n\hat{\tau}_i = 0$ for $i \neq k$

$$Y_{i.} - n\bar{Y}_{k.} + c - n\hat{\tau}_i = 0$$

$$\tau_i = \bar{Y}_{i.} - \bar{Y}_{k.} + \frac{c}{n}$$

$$Y_{ij} = \hat{\mu} + \hat{\tau}_i = \bar{Y}_{k.} - \frac{c}{n} + \bar{Y}_{i.} - \bar{Y}_{k.} + \frac{c}{n} = \bar{Y}_{i.}$$

Therefore, in general, constraint doesn't change prediction Y_{ij} .

Lect 9-3

a

From the partial derivative on μ and τ_i , we get equations

$$Y_{\cdot \cdot} - N\hat{\mu} - n\hat{\tau}_{\cdot} = 0$$
$$Y_{i \cdot} - n\hat{\mu} - n\hat{\tau}_{i} = 0$$

Plug in the constraint $\hat{\tau}_{\cdot} = 0$ to equation one

$$Y_{\cdot \cdot \cdot} - N\hat{\mu} = 0$$
$$\hat{\mu} = \bar{Y}_{\cdot \cdot \cdot}$$

Plug in the estimator for μ to equations $Y_{i.} - n\hat{\mu} - n\hat{\tau}_{i} = 0$

$$Y_{i.} - n\bar{Y}_{..} - n\hat{\tau}_{i} = 0$$

$$\hat{\tau}_{i} = \bar{Y}_{i.} - \bar{Y}_{..}$$

h

From part a, we have known that estimator for τ_i is $\bar{Y}_{i.} - \bar{Y}_{..}$, then $\hat{\tau_1} = \bar{Y}_{1.} - \bar{Y}_{..}$, $\hat{\tau_2} = \bar{Y}_{2.} - \bar{Y}_{..}$, $\hat{\tau_3} = \bar{Y}_{3.} - \bar{Y}_{..}$

$$\begin{split} \hat{\tau_1} - \hat{\tau_2} &= \bar{Y_1}_{..} - \bar{Y_{..}} - \bar{Y_2}_{..} + \bar{Y_{..}} = \bar{Y_1}_{..} - \bar{Y_2}_{..} \\ \hat{\tau_1} - \hat{\tau_3} &= \bar{Y_1}_{..} - \bar{Y_{..}} - \bar{Y_3}_{..} + \bar{Y_{..}} = \bar{Y_1}_{..} - \bar{Y_3}_{..} \\ \hat{\tau_2} - \hat{\tau_3} &= \bar{Y_2}_{..} - \bar{Y_{..}} - \bar{Y_3}_{..} + \bar{Y_{..}} = \bar{Y_2}_{..} - \bar{Y_3}_{..} \end{split}$$

 \mathbf{c}

From the partial derivative on μ and τ_i , we get equations

$$\begin{split} Y_{\cdot \cdot} - N\hat{\mu} - n\hat{\tau}_{\cdot} &= 0 \\ Y_{i \cdot} - n\hat{\mu} - n\hat{\tau}_{i} &= 0, \, \mathrm{i} = 1,2,3 \, \dots \, \mathrm{a} \end{split}$$

Plug in the constraint $\hat{\tau}_3 = 0$ to equation $Y_{3.} - n\hat{\mu} - n\hat{\tau}_3 = 0$

$$Y_{3.} - n\hat{\mu} = 0$$

$$\hat{\mu} = \frac{Y_{3.}}{n} = \bar{Y_{3.}}$$

Plug in the constraint $\hat{\mu} = \bar{Y}_{3}$ to equations $Y_{i} - n\hat{\mu} - n\hat{\tau}_{i} = 0$ for i = 1, 2, 4...a

$$Y_{i.} - n\bar{Y}_{3.} - n\hat{\tau}_{i} = 0$$

$$\tau_{i} = \bar{Y}_{i.} - \bar{Y}_{3.}$$

 \mathbf{d}

From part c, we have known that estimator for τ_i is $\bar{Y}_{i.} - \bar{Y}_{3.}$, then $\hat{\tau}_1 = \bar{Y}_{1.} - \bar{Y}_{3.}$, $\hat{\tau}_2 = \bar{Y}_{2.} - \bar{Y}_{3.}$, $\hat{\tau}_3 = 0$

$$\begin{split} \hat{\tau_1} - \hat{\tau_2} &= \bar{Y_1}_{.} - \bar{Y_3}_{.} - \bar{Y_2}_{.} + \bar{Y_3}_{.} = \bar{Y_1}_{.} - \bar{Y_2}_{.} \\ \hat{\tau_1} - \hat{\tau_3} &= \bar{Y_1}_{.} - \bar{Y_3}_{.} \\ \hat{\tau_2} - \hat{\tau_3} &= \bar{Y_2}_{.} - \bar{Y_3}_{.} \end{split}$$

 \mathbf{e}

estimator for $\mu + \tau_1$ with constraint in part a is

$$\mu + \tau_1 = \bar{Y}_{..} + \bar{Y}_{1.} - \bar{Y}_{..} = \bar{Y}_{1.}$$

estimator for $\mu + \tau_1$ with constraint in part c is

$$\mu + \tau_1 = \bar{Y}_{3.} + \bar{Y}_{1.} - \bar{Y}_{3.} = \bar{Y}_{1.}$$

estimator for $2\tau_1 - \tau_2 - \tau_3$ with constraint in part a is

$$2\tau_1 - \tau_2 - \tau_3 = 2\bar{Y_{1.}} - 2\bar{Y_{..}} - \bar{Y_{2.}} + \bar{Y_{..}} - \bar{Y_{3.}} + \bar{Y_{..}} = 2\bar{Y_{1.}} - \bar{Y_{2.}} - \bar{Y_{3.}}$$

estimator for $2\tau_1 - \tau_2 - \tau_3$ with constraint in part c is

$$2\tau_1 - \tau_2 - \tau_3 = 2\bar{Y}_{1.} - 2\bar{Y}_{3.} - \bar{Y}_{2.} + \bar{Y}_{3.} = 2\bar{Y}_{1.} - \bar{Y}_{2.} - \bar{Y}_{3.}$$

estimator for $\mu + \tau_1 + \tau_2$ with constraint in part a is

$$\mu + \tau_1 + \tau_2 = \bar{Y}_{..} + \bar{Y}_{1.} - \bar{Y}_{..} + \bar{Y}_{2.} - \bar{Y}_{..} = \bar{Y}_{1.} + \bar{Y}_{2.} - \bar{Y}_{..}$$

estimator for $\mu + \tau_1 + \tau_2$ with constraint in part c is

$$\mu + \tau_1 + \tau_2 = \bar{Y_{3.}} + \bar{Y_{1.}} - \bar{Y_{3.}} + \bar{Y_{2.}} - \bar{Y_{3.}} = \bar{Y_{1.}} + \bar{Y_{2.}} - \bar{Y_{3.}}$$

First and second contrasts do not depend on the constraint, implying first and second contrasts are estimable.

Lect 10-1

 \mathbf{a}

 $Y_{ij} \sim N(\mu, \sigma_{\epsilon})$

$$L(\mu, \sigma_{\epsilon}|Y) = \prod_{i}^{a} \prod_{j}^{n} \text{pdf of Y}$$

$$= \prod_{i}^{a} \prod_{j}^{n} \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-\frac{1}{2}(\frac{Y_{ij}-\mu}{\sigma_{\epsilon}})^{2}}$$

$$= e^{-\frac{1}{2}\sum_{i}^{a} \sum_{j}^{n} (\frac{Y_{ij}-\mu}{\sigma})^{2} - \frac{1}{2}log(2\pi\sigma^{2})}$$

To find the maximum point of likelihood function, find minimum value of exponent $-\frac{1}{2}\sum_{i}^{a}\sum_{j}^{n}(\frac{Y_{ij}-\mu}{\sigma})^{2}-\frac{1}{2}log(2\pi\sigma^{2})$

$$\begin{split} \frac{\partial exponent}{\partial \mu} &= \partial - \frac{1}{2} \sum_{i}^{a} \sum_{j}^{n} (\frac{Y_{ij} - \mu}{\sigma})^{2} - \frac{1}{2} log(2\pi\sigma^{2})/\partial \mu_{i} \\ &= -\frac{1}{2} \sum_{i}^{a} \sum_{j}^{n} \partial (\frac{Y_{ij} - \mu}{\sigma})^{2}/\partial \mu_{i} \\ &= \sum_{i}^{a} \sum_{j}^{n} \frac{Y_{ij} - \mu}{\sigma^{2}} \\ &= (\sum_{i}^{a} \sum_{j}^{n} Y_{ij} - N \cdot \mu)/\sigma^{2} \end{split}$$

$$\frac{\partial exponent}{\partial \sigma_{\epsilon}} = \partial - \frac{1}{2} \sum_{i}^{a} \sum_{j}^{n} (\frac{Y_{ij} - \mu}{\sigma})^{2} - \frac{1}{2} log(2\pi\sigma^{2})/\partial \sigma_{\epsilon}$$

$$= \frac{1}{\sigma^{3}} \sum_{i}^{a} \sum_{j}^{n} (Y_{ij} - \mu)^{2} - \frac{N}{\sigma}$$

Let $\frac{\partial L}{\partial \mu}=0$ and $\frac{\partial L}{\partial \sigma_{\epsilon}}=0$

$$(\sum_{i}^{a} \sum_{j}^{n} Yij - N \cdot \hat{\mu})/\sigma^{2} = 0$$

$$\sum_{i}^{a} \sum_{j}^{n} Yij - N \cdot \hat{\mu} = 0$$

$$\hat{\mu} = Y_{i}/N = \bar{Y}_{i}$$

Plug in the estimator of μ as $\bar{Y}_{..}$

$$\hat{\sigma_{\epsilon}} = \frac{1}{N} \sum_{i}^{a} \sum_{j}^{n} (Y_{ij} - \bar{Y}_{..})^{2}$$
$$= \frac{SSE}{N}$$

The most likelihood estimator $\hat{\mu_i} = \bar{Y}_{\cdot \cdot}, \; \hat{\sigma_\epsilon} = \frac{SSE}{N}$

Using the estimator of μ and σ_{ϵ} , $SSE(\mu) = \sum_{i=1}^{a} \sum_{j=1}^{n} (Y_{ij} - \hat{\mu})^2$ or $N \cdot \hat{\sigma}^2$

b

Know that $\hat{\mu} = \bar{Y}_{..}$, $\hat{\tau}_i = \bar{Y}_{i.} - \bar{Y}_{..}$

$$SSE_{\mu,\tau_{i}} = \sum_{i}^{a} \sum_{j}^{n} (Y_{ij} - \hat{\mu} - \hat{\tau}_{i})^{2}$$

$$= \sum_{i}^{a} \sum_{j}^{n} (Y_{ij} - \bar{Y}_{..} - \bar{Y}_{i.} + \bar{Y}_{..})^{2}$$

$$= \sum_{i}^{a} \sum_{j}^{n} (Y_{ij} - \bar{Y}_{i.})^{2}$$

$$= \sum_{i}^{a} \sum_{j}^{n} (Y_{ij} - \hat{\mu})^{2}$$

$$= N \cdot \hat{\sigma}^{2}$$

 \mathbf{c}

$$SSE(\mu) - SSE(\mu, \tau) = \left[\sum_{i}^{a} \sum_{j}^{n} (Y_{ij} - \bar{Y}_{..})^{2}\right] - \left[\sum_{i}^{a} \sum_{j}^{n} (Y_{ij} - Y_{i..})^{2}\right]$$

$$= \sum_{i}^{a} \sum_{j}^{n} \left[(Y_{ij} - \bar{Y}_{..})^{2} - (Y_{ij} - \bar{Y}_{i..})^{2}\right]$$

$$= \sum_{i}^{a} \sum_{j}^{n} \left[(Y_{ij} - \bar{Y}_{..} + Y_{ij} - \bar{Y}_{i.})(Y_{ij} - \bar{Y}_{..} - Y_{ij} + \bar{Y}_{i..})\right]$$

$$= \sum_{i}^{a} \sum_{j}^{n} \left[(2Y_{ij} - \bar{Y}_{..} - \bar{Y}_{i..})(\bar{Y}_{i.} - \bar{Y}_{..})\right]$$

$$= \sum_{i}^{a} \left[\sum_{j}^{n} (2Y_{ij} - \bar{Y}_{..} - \bar{Y}_{i..})](\bar{Y}_{i.} - \bar{Y}_{..})$$

$$= \sum_{i}^{a} \left[(2Y_{i.} - n\bar{Y}_{..} - Y_{i..})](\bar{Y}_{i.} - \bar{Y}_{..})\right]$$

$$= \sum_{i}^{a} n(\bar{Y}_{i.} - \bar{Y}_{..})(\bar{Y}_{i.} - \bar{Y}_{..})$$

$$= n \sum_{i}^{a} (\bar{Y}_{i.} - \bar{Y}_{..})^{2} = SStr$$

Then
$$F = \frac{MStr}{MSE} = \frac{SS_{treat}/(a-1)}{SSE(\mu,\tau_i)/(N-a)} = \frac{SSE(\mu)-SSE(\mu,\tau_i)/(a-1)}{SSE(\mu,\tau_i)/(N-a)}$$

Lect 10-2

$$\begin{split} E(MS_{treat}) &= E(\frac{b\sum_{i}^{a}(\bar{Y_{i.}} - \bar{Y_{..}})^{2}}{a - 1}) \\ &= \frac{b}{a - 1}\sum_{i}^{a} E((\bar{Y_{i.}} - \bar{Y_{..}})^{2}) \\ &= \frac{b}{a - 1}\sum_{i}^{a} E((\frac{\sum_{j}^{b}Y_{ij}}{b} - \frac{\sum_{i}^{a}\sum_{j}^{b}Y_{ij}}{ab})^{2}) \\ &= \frac{b}{a - 1}\sum_{i}^{a} E((\frac{\sum_{j}^{b}\mu + \alpha_{i} + \beta_{j} + \epsilon_{ij}}{b} - \frac{\sum_{i}^{a}\sum_{j}^{b}\mu + \alpha_{i} + \beta_{j} + \epsilon_{ij}}{ab})^{2}) \\ &= \frac{b}{a - 1}\sum_{i}^{a} E((\frac{\sum_{j}^{b}\mu + \alpha_{i} + \beta_{j} + \epsilon_{ij}}{b} - \frac{\sum_{i}^{a}\sum_{j}^{b}\mu + \alpha_{i} + \beta_{j} + \epsilon_{ij}}{ab})^{2}) \\ &= \frac{b}{a - 1}\sum_{i}^{a} E((\frac{b\mu + b\alpha_{i} + \sum_{j}^{b}\beta_{j} + \epsilon_{ij}}{b} - \frac{ab\mu + \sum_{i}^{a}b\alpha_{i} + \sum_{j}^{b}a\beta_{j} + \sum_{i}^{a}\sum_{j}^{b}\epsilon_{ij}}{ab})^{2}) \\ &= \frac{b}{a - 1}\sum_{i}^{a} E((\mu + \alpha_{i} + \bar{\beta}_{.} + \bar{\epsilon_{i.}} - \mu - \bar{\alpha}_{.} - \bar{\beta}_{.} - \bar{\epsilon}_{..})^{2}) \\ &= \frac{b}{a - 1}\sum_{i}^{a} E((\alpha_{i} - \bar{\alpha}_{.} + \bar{\epsilon_{i.}} - \bar{\epsilon}_{..})^{2}) \\ &= \frac{b}{a - 1}\sum_{i}^{a} E((\alpha_{i} - \bar{\alpha}_{.})^{2} + 2(\alpha_{i} - \bar{\alpha}_{.})(\bar{\epsilon_{i.}} - \bar{\epsilon}_{..}) + (\bar{\epsilon_{i.}} - \bar{\epsilon}_{..})^{2}) \\ &= \frac{b}{a - 1}\sum_{i}^{a} [E((\alpha_{i} - \bar{\alpha}_{.})^{2} + 2(\alpha_{i} - \bar{\alpha}_{.})(\bar{\epsilon_{i.}} - \bar{\epsilon}_{..}) + (\bar{\epsilon_{i.}} - \bar{\epsilon}_{..})^{2}) \end{split}$$

Note that α_i 's are parameter $E(2(\alpha_i - \bar{\alpha}_.)(\bar{\epsilon_i}. - \bar{\epsilon}_.)) = 2(\alpha_i - \bar{\alpha}_.)E(\bar{\epsilon_i}. - \bar{\epsilon}_.)$. Since $\epsilon_i j$ are iid's, $E(\bar{\epsilon_i}. - \bar{\epsilon}_.) = 0$, then $E(2(\alpha_i - \bar{\alpha}_.)(\bar{\epsilon_i}. - \bar{\epsilon}_.)) = 0$.

$$E(MS_{treat}) = \frac{b}{a-1} \sum_{i}^{a} [E((\alpha_{i} - \bar{\alpha}_{.})^{2}) - \bar{\epsilon}_{.})) + E(\bar{\epsilon}_{i.} - \bar{\epsilon}_{.})^{2})]$$

$$= \frac{b}{a-1} \sum_{i}^{a} [(\alpha_{i} - \bar{\alpha}_{.})^{2} + \frac{1}{b}(1 - \frac{1}{a}\sigma^{2})]$$

$$= \frac{b}{a-1} \sum_{i}^{a} (\alpha_{i} - \bar{\alpha}_{.})^{2} + \sigma_{\epsilon}^{2}$$

Lect 10-3

 \mathbf{a}

Row means and variances $\bar{Y_{1.}} = \frac{4+6}{2} = 5$, $\bar{Y_{2.}} = \frac{10+2}{2} = 6$, $s_{1.}^2 = \frac{1}{2}(4-6)^2 = 2$, $s_{2.}^2 = \frac{1}{2}(10-2)^2 = 32$

Col means and variances $\bar{Y}_{.1} = \frac{4+10}{2} = 7$, $\bar{Y}_{.2} = \frac{6+2}{2} = 4$, $s_{.1}^2 = \frac{1}{2}(4-10)^2 = 18$, $s_{.2}^2 = \frac{1}{2}(6-2)^2 = 8$

$$\bar{Y}_{..} = \frac{4+6+10+2}{4} = 5.5, SST = \sum_{i=1}^{2} \sum_{j=1}^{2} (Y_{ij} - \bar{Y}_{..})^2 = 35$$

b

For row quantities, variance of row means is $\frac{1}{2}((5-5.5)^2+(6-5.5)^2)=0.25$. Sum of row variance is 2+32=34.

 $SStr = 2 \cdot \text{variance of row means} = 0.5$, SSE = sum of row variance = 34, $SST = n \cdot SStr + (n - 1) \cdot SSE = 4 \cdot \text{variance of row means} + 2 \cdot \text{sum of row variance} = 1 + 34 = 35 = SST$

 \mathbf{c}

For row quantities, variance of col means is $\frac{1}{2}((7-5.5)^2+(4-5.5)^2)=2.25$. Sum of col variance is 18+8=26.

SStr = 2· variance of col means = 4.5, SSE = sum of col variance = 26, $SST = n \cdot SStr + (n - 1) \cdot SSE = 4$ · variance of col means +2· sum of col variance = 9 + 26 = 35 = SST

Lect 10-4

```
b = 5
a = 4
data = matrix(0, ncol = b, nrow = a)
data[1,] = c(73, 68, 74, 71, 67)
data[2,] = c(73, 67, 75, 72, 70)
data[3,] = c(75, 68, 78, 73, 68)
data[4,] = c(73, 71, 75, 75, 69)
a
y <- as.vector(t(data))
A <- as.factor(rep(c(1:a), each=b))
B <- as.factor(rep(c(1:b), times=a))</pre>
SSE <- summary.aov(lm(y~A+B))[[1]]$'Sum Sq'[3]</pre>
F_block <- summary.aov(lm(y~A+B))[[1]]$'F value'[2]
F_treat <- summary.aov(lm(y~A+B))[[1]]$'F value'[1]
> SSE
[1] 21.8
> F_block
[1] 21.6055
> F_treat
[1] 2.376147
```

SSE is 21.8, F-value for block factor is 21.6, F-value for treatment factor is 2.376

```
b
```

```
lm1 <- summary.aov(lm(y~B))[[1]]
SSE1 <- lm1$'Sum Sq'[2]
> SSE1
[1] 34.75
```

Exclude treatment factor, the SSE of reduced model is 34.75

 \mathbf{c}

```
lm2 <- summary.aov(lm(y~A))[[1]]
SSE2 <- lm2$'Sum Sq'[2]
> SSE2
[1] 178.8
```

Exclude block factor, the SSE of reduced model is 178.8

 \mathbf{d}

$$F_{treat} = \frac{(SSE(\text{without treatment factor}) - SSE(\text{with treatment factor})/(a-1)}{SSE(\text{with treatment factor})/(a-1)(b-1)}$$
 > ((SSE1 - SSE)/(a-1)) / (SSE/((a-1)*(b-1)))
$$[1] \ 2.376147$$

This F ratio is equal to F ration of treatment factor in part a.

$$F_{block} = \frac{(SSE(\text{without block factor}) - SSE(\text{with block factor}))/(b-1)}{SSE(\text{with block factor})/(a-1)(b-1)}$$

```
> ((SSE2 - SSE)/(b-1)) / (SSE/((a-1)*(b-1)))
[1] 21.6055
```

This F ratio is equal to F ration of block factor in part a.

Lect 11-1

a

```
y <- as.vector(t(data))
grand_mean <- mean(y)
SSTr <- sum((apply(data, 1, mean) - grand_mean)^2) * b
SSE <- sum(apply(data, 1, var)) * (b-1)</pre>
```

```
F_ratio <- (SSTr / (a-1)) / (SSE / (a*b - a))
p_val <- pf(F_ratio, df1 = a-1, df2=a*b - a, lower.tail = F)
> p_val
[1] 0.764377
```

By CRD model, under H_0 that treatment factor has no effect on strength, p-value of ANOVA one-way F-test is 0.76, which is insignificant to reject null hypothesis.

```
b
A <- as.factor(rep(c(1:a), each=b))
B <- as.factor(rep(c(1:b), times=a))

yi. <- apply(data, 1, mean)
y.j <- apply(data, 2, mean)
SStr <- b * sum((yi. - grand_mean)^2)
SSbl <- a * sum((y.j - grand_mean)^2)
SST <- sum((y - grand_mean)^2)
SSE <- SST - SStr - SSbl
F_ratio <- (SStr / (a-1)) / (SSE / ((a-1)*(b-1)))
p_val <- pf(F_ratio, df1=a-1, df2=(a-1) * (b-1), lower.tail = F)
> p_val
[1] 0.1211445
```

By RCBD model, under H_0 that treatment factor has no effect on strength, p-value of ANOVA one-way F-test is 0.121, which is insignificant to reject null hypothesis.

```
In CRD, \hat{Y_{ij}} = \hat{\mu} + \hat{\tau_i} = \bar{Y_i}. 
y_hat <- rep(yi., each=b) resid <- y - y_hat par(mfrow=c(1,2)) plot(x=y_hat, y=resid, xlab='Y-hat', ylab='Residuals')
```

plot(x=y, y=resid, xlab='Y', ylab='Residuals')

 \mathbf{c}

abline(h=0, lty=2)

The plot of residuals vs \hat{Y} distributed randomly, implying the equal variance assumption is not violate.

```
\mathbf{d}
```

```
In RCBD, \hat{Y_{ij}} = \hat{\mu} + \hat{\alpha_i} + \hat{\beta_j} = \bar{Y_{i.}} + \bar{Y_{.j}} - \bar{Y_{..}} 
y_hat <- rep(yi., each=b) + rep(y.j, times=a) - grand_mean resid <- y - y_hat par(mfrow=c(1,2)) plot(x=y_hat, y=resid, xlab='Y-hat', ylab='Residuals') abline(h=0, lty=2) plot(x=y, y=resid, xlab='Y', ylab='Residuals')
```


The plot of residuals vs \hat{Y} distributed randomly, implying the equal variance assumption is not violate.

```
\mathbf{e}
```

```
y_hat1 <- rep(yi., each=b)
resid1 <- y - y_hat1
y_hat2 <- rep(yi., each=b) + rep(y.j, times=a) - grand_mean
resid2 <- y - y_hat2
par(mfrow=c(1,2))
qqnorm(resid1, main='CRD Residuals QQplot')
qqnorm(resid2, main='RCBD Residuals QQplot')</pre>
```

CRD Residuals QQplot

RCBD Residuals QQplot

The qqplots for both models have the shape of a line, implying the normality assumption is not violated.

Lect 11-2

A	В	\mathbf{C}		A	В	\mathbf{C}	A	\mathbf{C}	В		Α	\mathbf{C}	В
В	С	A		С	A	В	В	A	С		С	В	A
С	A	В		В	С	Α	С	В	Α		В	Α	$\overline{\mathbf{C}}$
			,							,			
В	A	С		В	A	С	В	С	Α		В	С	A
A	С	В		С	В	Α	Α	В	С		С	Α	В
С	В	A		A	С	В	С	Α	В		Α	В	С
										•			
С	A	В		С	В	A	С	В	A		С	A	В
A	В	С		Α	С	В	В	A	С		В	С	Α
В	С	A		В	A	С	A	С	В		A	В	С

Lect 11-3

A	В	С	D	A	В	С	D	A	В	С	D	A	В	С	D
В	С	D	A	В	Α	D	С	В	D	A	С	В	A	D	С
С	D	A	В	С	D	A	В	С	A	D	В	С	D	В	Α
D	Α	В	С	D	С	В	A	D	С	В	A	D	С	A	В