Отчет о выполнении лабораторной работы 3.5.1 Изучение плазмы газового разряда в неоне

Костылев Влад, Б01-208

16 декабря 2023 г.

Аннотация

Цель работы: изучение вольт-амперной характеристики тлеющего разряда; изучение свойств плазмы методом зондовых характеристик.

В работе используются: стеклянная газоразрядная трубка, наполненная неоном; высоковольтный источник питания; источник питания постоянного тока; делитель напряжения; потенциометр; амперметры; вольтметры; переключатели.

1 Теоретическая справка

Введение

Как известно, вещество может находиться в трёх агрегатных состояниях — твёрдом, жидком и газообразном, причём эти состояния последовательно сменяются по мере возрастания температуры. Если и дальше нагревать газ, то сначала молекулы диссоциируют на атомы, а затем и атомы распадаются на электроны и ионы, так что газ становится ионизованным, представляя собой смесь из свободных электронов и ионов, а также нейтральных частиц. Если степень ионизации газа (отношение числа ионизованных атомов к их полному числу) оказывается достаточно велика, то такой газ может обладать качественно новыми свойствами. Поведение заряженных частиц приобретает коллективный характер, так что описание свойств среды не может быть сведено к описанию обычного газа, содержащего некоторое количество отдельных заряженных частиц. Такое состояние ионизованного газа называется плазмой. Плазму называют также четвёртым состоянием вещества.

При этом частицы в плазме стремятся распределиться в пространстве таким образом, чтобы средняя плотность заряда была равна нулю. Равенство концентраций положительных и отрицательных частиц — квазинейтральность — нарушается, как правило, лишь в микроскопических масштабах из-за тепловых флуктуаций.

Плазма

В ионизированном газе поле ионов «экранируется» электронами. Для поля ${\bf E}$ и плотности ρ электрического заряда

div
$$\mathbf{E} = 4\pi\rho$$
,

Для одномерного случая:

$$\mathbf{E} = -\operatorname{grad} \varphi \Rightarrow \frac{d^2 \varphi}{dx^2} = -4\pi \rho. \tag{1}$$

Плотности заряда электронов и ионов (которые мы считаем бесконечно тяжёлыми и поэтому неподвижными)

$$\rho_e = -ne \cdot \exp\left(\frac{e\varphi}{kT_e}\right),$$

$$\rho_i = ne.$$
(2)

Тогда из (1) в предположении $\frac{e\varphi}{kT_c}\ll 1$ получим

$$\varphi = \frac{Ze}{r}e^{-r/r_D},\tag{3}$$

где $r_D = \sqrt{\frac{kT_e}{4\pi ne^2}}$ – paduyc Дебая. Среднее число ионов в сфере такого радиуса

$$N_D = n \frac{4}{3} \pi r_D^2. (4)$$

Теперь выделим параллелепипед с плотностью n электронов, сместим их на x. Возникнут поверхностные заряды $\sigma=nex$, поле от которых будет придавать электронам ускорение:

$$\frac{d^2x}{dt^2} = -\frac{eE}{m} = -\frac{4\pi ne^2}{m}x.$$

Отсюда получаем плазменную (ленгмюровскую) частоту колебаний электронов:

$$\omega_p = \sqrt{\frac{4\pi ne^2}{m}}. (5)$$

Одиночный зонд

При внесении в плазму уединённого проводника — $son \partial a$ — с потенциалом, изначально равным потенциалу точки плазмы, в которую его помещают, на него поступают токи электронов и ионов:

$$I_{e0} = \frac{n\langle v_e \rangle}{4} eS,$$

$$I_{i0} = \frac{n\langle v_i \rangle}{4} eS,$$
(6)

где $\langle v_e \rangle$ и $\langle v_i \rangle$ — средние скорости электронов и ионов, S — площадь зонда, n — плотность электронов и ионов. Скорости электронов много больше скорости ионов, поэтому $I_{i0} \ll I_{e0}$. Зонд будет заряжаться до некоторого равновесного напряжения $-U_f$ — плавающего потенциала.

В равновесии ионный ток мало меняется, а электронный имеет вид

$$I_e = I_0 \exp\left(-\frac{eU_f}{kT_e}\right).$$

Будем подавать потенциал U_3 на зонд и снимать значение зондового тока I_3 . Максимальное значение тока $I_{e\text{H}}$ – электронный ток насыщения, а минимальное $I_{i\text{H}}$ – ионный ток насыщения. Значение из эмпирической формулы Бомона:

$$I_{iH} = 0.4 neS \sqrt{\frac{2kT_e}{m_i}}. (7)$$

Двойной зонд

Двойной зонд — система из двух одинаковых зондов, расположенных на небольшом расстоянии друг от друга, между которыми создаётся разность потенциалов, меньшая U_f . Рассчитаем ток между ними вблизи I=0. При небольших разностях потенциалов ионные токи на оба зонда близки к току насыщения и компенсируют друг друга, а значит величина результирующего тока полностью связана с разностью электронных токов. Пусть потенциалы на зондах

$$U_1 = -U_f + \Delta U_1,$$

$$U_2 = -U_f + \Delta U_2.$$

Между зондами $U = U_2 - U_1 = \Delta U_2 - \Delta U_1$. Через первый электрод

$$I_1 = I_{iH} + I_{e1} = I_{iH} - \frac{1}{4} neS \langle v_e \rangle \exp\left(-\frac{eU_f}{kT_e}\right) \exp\left(\frac{e\Delta U_1}{kT_e}\right) = I_{iH} \left(1 - \exp\left(\frac{e\Delta U_1}{kT_e}\right)\right).$$
(8)

Аналогично через второй получим

$$I_2 = I_{iH} \left(1 - \exp\left(\frac{e\Delta U_2}{kT_e}\right) \right) \tag{9}$$

Из (7) и (8) с учётом последовательного соединение зондов $(I_1 = -I_2 = I)$:

$$\Delta U_1 = \frac{kT_e}{e} \ln \left(1 - \frac{I}{I_{i\text{H}}} \right)$$

$$\Delta U_2 = \frac{kT_e}{e} \ln \left(1 + \frac{I}{I_{\text{iff}}} \right)$$

Тогда итоговые формулы для разности потенциалов и тока

$$U = \frac{kT_e}{e} \ln \frac{1 - I/I_{iH}}{1 + I/I_{iH}}, I = I_{iH} th \frac{eU}{2kT_e}.$$
 (10)

Реальная зависимость выглядит несколько иначе и описывается формулой

$$I = I_{iH} th \frac{eU}{2kT_e} + AU.$$
(11)

Из этой формулы можно найти формулу для T_e : для U=0 мы найдём $I_{i\mathrm{H}}$, продифференцируем в точке U=0 и с учётом th $\alpha\approx\alpha$ при малых α и $A\to0$ получим:

$$kT_e = \frac{1}{2} \frac{eI_{iH}}{\frac{dI}{dU}|_{U=0}}.$$
 (12)

Описание установки

Стеклянная газоразрядная трубка имеет холодный (не накаливаемый) полый катод, три анода и zemmephuiu узел — стеклянный баллон, на внутреннюю поверхность которого напылена газопоглощающая плёнка (zemmep). Трубка наполнена изотопом неона ²2Ne при давлении 2 мм рт. ст. Катод и один из анодом (I и II) с помощью переключателя Π_1 подключается через балластный резистор R_6 (≈ 450 кОм) к регулируемому ВИП с выходным напряжением до 5 кВ.

При подключении к ВИП анода-I между ним и катодом возникает газовый разряд. Ток разряда измеряется миллиамперметром A_1 , а падение напряжения на разрядной трубке – цифровым вольтметром V_1 , подключённым к трубке через высокоомный (25 МОм) делитель напряжения с коэффициентом $(R_1 + R_2)/R_2 = 10$.

При подключении к ВИП анода-II разряд возникает в пространстве между катодом и анодом-II, где находятся двойной зонд, используемый для диагностики плазмы положительного столба. Зонды изготовлены из молибденовой проволоки диаметром d=0.2 мм и имеют длину l=5.2 мм. Они подключены к источнику питания GPS через потенциометр R. Переключатель Π_2 позволяет изменять полярность напряжения на зондах. Величина напряжения на зондах изменяется с помощью дискретного переключателя «V» выходного напряжения источника питания и потенциометра R, а измеряется цифровым вольтметром V_2 . Для измерения зондового тока используется мультиметр A_2 .

2 Используемое оборудование

В работе используются: стеклянная газоразрядная трубка, наполненная неоном; высоковольтный источник питания; источник питания постоянного тока; делитель напряжения; потенциометр; амперметры; вольтметры; переключатели.

3 Результаты измерений и обработка данных

1. Вольт-амперная характеристика разряда

Напряжение зажигания разряда:

$$U_{\text{заж}} = (215, 1 \pm 0, 1) \text{ B}$$

Теперь построим вольт-амперную характеристику разряда (С помощью вольтметра V_1 и амперметра A_1) в диапазоне от 0, 5 мА до 5 мА по току.

При нарастании тока получаем следующее:

I_p, mA	0,59	0,79	0,99	1,12	1,35	1,49	1,69	1,91	2,13	2,3	2,6	2,79	3,09	3,43	3,73	4,02	4,37	4,71	4,95
U_p, B	34,73	34,26	33,91	32,88	29,15	26,56	23,83	21,57	19,52	18,48	15,89	14,9	13,91	12,92	11,52	10	8	5,84	4,54

При убывании:

I_р, мА	4,94	4,53	4,16	3,71	3,31	2,87	2,52	2,08	1,68	1,31	0,91	0,5
U_p, B	4,51	6,97	9,11	11,49	13,19	14,37	16,32	19,83	23,68	29,54	34,14	35,03

Изобразим на одном графике (убывание - красное, нарастание - синее):

Из графика найдем максимальное дифференциальное сопротивление разряда:

$$R_{\partial u\phi} = \frac{1}{0.1846} * 10^3 = (5, 42 \pm 0, 31) \kappa O_M$$

2. Зондовые характеристики

Теперь установим максимально допустимый разрядный ток $I_p \approx 5 \text{мA}$, а на зонде установим максимальное напряжение $U_s \approx 25 B$.

Далее построим вольт-амперную характеристику двойного зонда $I_3\left(U_3\right)$ в диапазоне от $-U_3^{max}$ до U_3^{max} при фиксированном токе разряда $I_{\rm p}$. Проведём данные измерения при трёх различных значениях тока разряда 1,5 мA, 3,0 мA и 5,0 мA. Отцентрируем кривую.

5 MA																						
	U_p, B	24,9	22,05	19	16	13	10,02	7,94	6,06	4,05	1,98	0	-2,07	-4,03	-6,07	-8,03	-9,95	-13,06	-16,04	-19,02	-22,03	-24,9
	І_р, мкА	116,2	114	111	106	97	84,8	74,31	63,66	50,55	34,85	17,46	30,7	45,29	59,77	71,77	82,77	97,8	108,64	116,1	120,53	123,18
цинтрируем																						
	U_p, B	24,9	22,05	19	16	13	10,02	7,94	6,06	4,05	1,98	0	-2,07	-4,03	-6,07	-8,03	-9,95	-13,06	-16,04	-19,02	-22,03	-24,9
	І_р, мкА	98,72	96,54	93,4	88	79,5	67,34	56,85	46,2	33,09	17,39	0	-13,24	-27,83	-42,31	-54,31	-65,3	-80,34	-91,18	-98,64	-103,07	-105,72
3 mA																						
	U_p, B	24,9	22,05	19	16	13	10,02	7,94	6,06	4,05	1,98	0	-2,07	-4,03	-6,07	-8,03	-9,95	-13,06	-16,04	-19,02	-22,03	-24,9
	I р, мкА	61,12	59,53	57,7	55,2	51,1	45,15	39,78	32,76	25,1	15,48	5	14,2	23,08	32,04	39,4	45,27	52,24	57,12	60,39	62,4	64,13
цинтрируем																						
	U_p, B	24,9	22,05	19	16	13	10,02	7,94	6,06	4,05	1,98	0	-2,07	-4,03	-6,07	-8,03	-9,95	-13,06	-16,04	-19,02	-22,03	-24,9
	І_р, мкА	-56,12	-54,5	-52,7	-50,2	-46,1	-40,2	-34,8	-27,8	-20,1	-10,48	0	-9,2	-18,08	-27,04	-34,4	-40,3	-47,24	-52,12	-55,39	-57,4	-59,13
1,5 MA																						
	U_p, B	24,9	22,05	19	16	13	10,02	7,94	6,06	4,05	1,98	0	-2,07	-4,03	-6,07	-8,03	-9,95	-13,06	-16,04	-19,02	-22,03	-24,9
	І_р, мкА	27,21	26,33	25,4	24,5	23,2	21,01	18,69	15,65	11,59	6,33	0,66	5,94	11,15	15,51	19,22	24,91	24,3	25,74	26,79	27,78	28,69
цинтрируем																						
	U_p, B	24,9	22,05	19	16	13	10,02	7,94	6,06	4,05	1,98	0	-2,07	-4,03	-6,07	-8,03	-9,95	-13,06	-16,04	-19,02	-22,03	-24,9
	І_р, мкА	26,55	25,67	24,8	23,8	22,6	20,35	18,03	14,99	10,93	5,67	0	-5,28	-10,49	-14,85	-18,56	-24,3	-23,64	-25,08	-26,13	-27,12	-28,03

Найдем для каждых токов I_{in} :

$$5.0 \text{MA}: I_{in} = (76, 54 \pm 2, 37) \text{MKA}$$

$$3.0$$
м $A:I_{in}=(41,54\pm2,23)$ мк A

$$1.5 MA : I_{in} = (18, 99 \pm 1, 64) M \kappa A$$

Теперь найдем температуру электронов по формуле (12):

$$5.0 \text{MA}: T_e = (5,87 \pm 0,41) * 10^4 \text{K}$$

$$3.0$$
MA: $T_e = (4, 96 \pm 0, 52) * 10^4 K$

$$1.5 MA: T_e = (4,07 \pm 0,38) * 10^4 K$$

Полагая, что $n_e=n_i$, найдем n_e , из формулы:

$$n_e = \frac{I_{in}}{0,4eS\sqrt{\frac{2kT_e}{m_i}}}$$

$$S = \pi dl = 3,27 * 10^{-6} \text{m}^2$$
 $m_i = 22 * 1,66 * 10^{-27} \text{kg}$

Тогда:

$$5.0 \text{MA}: n_e = (5, 49 \pm 0, 62) * 10^{16} \text{M}^{-3}$$

$$3.0 \text{ MA}: n_e = (3, 24 \pm 0, 57) * 10^{16} \text{ M}^{-3}$$

$$1.5 MA : n_e = (1, 64 \pm 0, 35) * 10^{16} M^{-3}$$

Рассчитаем плазменную частоту колебаний электронов по следующей формуле:

$$\omega_p = \sqrt{\frac{4\pi n_e e^2}{m_e}} = 5, 6 * 10^4 \sqrt{n_e} [C\Gamma C]$$

 $5.0 \text{MA} : \omega_p = (1, 31 \pm 0, 10) * 10^6 \text{pad/c}$

3.0м $A: \omega_p = (1,01\pm 0,09)*10^6 pa\partial/c$

 $1.5 MA : \omega_p = (0.72 \pm 0.08) * 10^6 pa\partial/c$

Теперь рассчитаем электронную поляризационную длину по формуле:

$$r_{D_e} = \sqrt{\frac{kT_e}{4\pi n_e e^2}}$$

 $5.0 \text{MA}: r_{D_e} = (67, 7 \pm 4, 26) * 10^{-6} \text{M}$

 $3.0 MA : r_{D_e} = (81, 1 \pm 5, 61) * 10^{-6} M$

1.5м $A: r_{D_e} = (103, 2 \pm 5, 91) * 10^{-6}$ м

рассчитаем дебаевский радиус, по похожей формуле, только $T_i \approx 300 K$:

$$5.0 MA : r_D = (4,84 \pm 0,23) * 10^{-6} M$$

$$3.0 \text{MA}: r_D = (6, 30 \pm 0, 31) * 10^{-6} \text{M}$$

$$1.5 MA : r_D = (8, 86 \pm 0, 34) * 10^{-6} M$$

Оценим среднее число ионов в дебаевской сфере:

$$N_D = \frac{4}{3}\pi r_D^3 n_i$$

 $5.0 MA : N_D = 26$

 $3.0 MA : N_D = 34$

 $1.5 MA : N_D = 48$

I_p, мА	T_e, 10^4*K	n_e, 10^16*m^-3	w_p, 10^6*рад/с	R_De, 10^-6*M	R_D, 10^-6*M	N_D	a
5	5,87	5,49	1,31	67,7	4,84	26	9
3	4,96	3,24	1,01	81,1	6,3	34	5
1,5	4,07	1,64	0,72	103,2	8,86	48	3

4 Заключение

В заключение можно сказать, что в данной лабораторной работе мы изучили вольтамперную характеристику тлеющего разряда, а также свойства плазмы методом зондовых характеристик.