MATH2023 Analysis

Thien Can Pham

Semester 2 2024

Contents

1	Nun	${f aber System \& Foundations}$	
	1.1	Least Upper Bound Axiom/Completeness Axiom	
	1.2	Archimedean Property of $\mathbb N$	
	1.3	Density of Rationals and Irrationals	
	1.4	Boundedness	
2	C		
2		nence and Limits	
	2.1	Convergence of sequence	
	2.2	Proposition	
	2.3	Lemma	
	2.4	Limit Laws	
	2.5	Convergence Theorem	
	2.6	Ratio Test for sequences	
	2.7	Important Limits	
	2.8	Proposition	
	2.9	Lemma	
	2.10	Bolzano-Weierstrass Theorem	
	2.11	Cauchy Sequence	
	2.12	Cauchy Criterion for Sequence	
3	Seri	$_{ m es}$	
Ü	3.1	Geometric Series	
	3.2	Harmonic Series	
	3.3	p-series	
	3.4	Alternating harmonic series	
	3.5	Leibniz Criterion for Series	
	3.6		
	3.7		
	3.8	Comparison test for Series	
	3.9	Corollary	
	3.10	Leibniz test for alternating series	
	3.11	Absolute Convergence	
	3.12	Theorem	
	3.13	Cauchy Product Formula	
	3.14	Ratio Test for Series	
	3.15	Limit Ratio Test for Series	
	3.16	Power Series of Exponential Function	
	3.17	Root Test for Series	
	3.18	Limit Root Test for Series	
	3.19	Abel's Theorem for power series	
	3.20	Radius of Convergence Theorem	
	3.21	How to find radius of convergence R	
4	т :	ita and Cantingita	
4		its and Continuity Continues Directions	
	4.1	Continuous Functions	
	4.2	Properties of continuous functions	
	4.3	Sequential Characterisation of Continuity	
	4.4	Weierstrass Theorem	
	4.5	Bolzano Cauchy Theorem	
	4.6	Corollary: Intermediate Value Theorem	

	4.7	Proposition	1				
5	Uniform Convergence 7						
	5.1	Pointwise Convergence	7				
	5.2	Uniform Convergence	7				
	5.3	Theorem	7				
	5.4	Weierstrass M-Test	7				
	5.5	Corollary	7				
	5.6	Uniform Convergence for Integration	7				
	5.7	Uniform convergence for differentiation	8				
	5.8	Theorem	8				
	5.9	Lemma	8				
	5.10	Theorem	8				
	5.11	Corollary (Uniqueness of expansion into power series)	8				
6	Analytic Functions 8						
Ĭ	6.1	Analytic Function	8				
	6.2	Corollary	8				
	6.3	Uniqueness Theorem for analytic functions	9				
	6.4	Differentiation	9				
7		nplex Analysis	9				
	7.1	Cauchy Riemann Relations Theorem	9				
	7.2	Harmonic functions	9				
	7.3	Path Integral	9				
	7.4	Independence of Path Integral	9				
	7.5	V	10				
	7.6	$oldsymbol{arphi}$	10				
	7.7		10				
	7.8	lackloss	10				
	7.9		10				
	7.10		10				
	7.11	$oldsymbol{v}$	10				
	7.12		11				
	7.13		11				
	7.14		11				
	7 15	Finding Residues	11				

1 Number System & Foundations

1.1 Least Upper Bound Axiom/Completeness Axiom

Every non-empty set $A \subseteq \mathbb{R}$ which is bounded above has a supremum.

Remark: This axiom sets \mathbb{R} apart from \mathbb{Q} . Basically this axiom completes the real number system by filling up the gaps between the rational numbers.

1.2 Archimedean Property of \mathbb{N}

 \mathbb{N} is not bounded above in \mathbb{R} .

1.3 Density of Rationals and Irrationals

Let a, $b \in \mathbb{R}$ with a < b, Then

- 1. $\exists r \in \mathbb{Q} \text{ with a < r < b}$
- 2. $\exists x \in \mathbb{R} \backslash \mathbb{Q}$ with a < x < b

1.4 Boundedness

(Xn) in \mathbb{R} is bounded above if $\exists M \in \mathbb{R}$ with $Xn \leq M \ \forall \ n \in \mathbb{N}$.

(Xn) in \mathbb{C} is bounded if $\exists M > 0 \text{ s.t } |X| \leq M \ \forall n \in \mathbb{N}$.

<u>Remark</u> The notion of supremum and infimum has been introduced in the course but will be omitted in this note. For simpel recap, given a set of numbers or function, its supremum is the least upper bound and infimum is the most lower bound.

2 Sequence and Limits

2.1 Convergence of sequence

(Xn) in $\mathbb{R}\setminus\mathbb{C}$ converges to X as $n\to\infty$ if $\forall \epsilon>0$ $\exists n_0\in\mathbb{N}$ s.t $n>n_0 \implies |Xn-X|<\epsilon$

Remark: n_0 depends on ϵ .

2.2 Proposition

A sequence is convergent \implies it is bounded.

2.3 Lemma

If (a_n) is bounded and (b_n) is convergent with $\lim_{n\to\infty} b_n = 0$, then $\lim_{n\to\infty} a_n b_n = 0$.

2.4 Limit Laws

Suppose $(X_n)(Y_n)$ are each convergent sequence with limits X and Y respectively, then

- 1. $(X_n + Y_n) \to X + Y$
- 2. $(X_n Y_n) \to XY$
- 3. If (X_n) and $X \neq 0 \ \forall n, (\frac{1}{X_n}) \rightarrow \frac{1}{X}$

2.5 Convergence Theorem

A sequence is monotone and bounded \implies it is convergent.

2.6 Ratio Test for sequences

If (a_n) is a sequence in \mathbb{R} with $a_n > 0 \forall n$. Then

- 1. If $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} < 1 \implies \lim_{n\to\infty} a_n = 0$
- 2. If $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} > 1 \implies \lim_{n\to\infty} a_n = \infty$

Remark: The test cannot determine for $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = 1$ or limit does not exist.

2.7 Important Limits

- 1. $\lim_{n\to\infty} \frac{c^n}{n!} = 0 \ \forall c \in \mathbb{R}$
- 2. $\lim_{n\to\infty} n^k a^n = \begin{cases} 0 \text{ if } 0 \le a < 1, k > 0 \\ \infty \text{ if } a \ge 1 \end{cases}$
- 3. $\lim_{n\to\infty} \sqrt[n]{n} = 1$
- 4. $\lim_{n\to\infty} \sqrt[n]{a} = 1, a > 0$
- $5. \lim_{n \to \infty} (1 + \frac{1}{n})^n = e$

2.8 Proposition

 (X_n) has a limit \implies Its subsequence has a unique accumulation point in that limit.

2.9 Lemma

 $\alpha \in \mathbb{R}$ is an accumulation point of $(X_n) \Leftrightarrow \text{every } \epsilon\text{-neighborhood of } \alpha \text{ contains } X_n \text{ for infinitely many n.}$

2.10 Bolzano-Weierstrass Theorem

Every bounded sequence in \mathbb{R} has a convergent subsequence.

2.11 Cauchy Sequence

 (X_n) is Cauchy if $\forall \epsilon>0 \exists n_0\in \mathbb{N}$ such that m, n > $n_0 \implies |X_m-X_n|<\epsilon$

2.12 Cauchy Criterion for Sequence

A sequence is convergent \Leftrightarrow it is Cauchy.

3 Series

3.1 Geometric Series

 $\sum_{n=0}^{\infty}q^n$ converges $\Leftrightarrow |q|\!<1,$ and $\sum_{n=0}^{\infty}q^n=\frac{1}{1-q}.$

3.2 Harmonic Series

 $\sum_{n=0}^{\infty} \frac{1}{n} is divergent$

3.3 p-series

 $\sum_{n=0}^{\infty} \frac{1}{n^p}$ is convergent $\iff p > 1$

3.4 Alternating harmonic series

 $\sum_{n=0}^{\infty} \frac{(-1)^n}{n}$ is convergent.

3.5 Leibniz Criterion for Series

If
$$\sum_{n=0}^{\infty} a_n$$
 converges $\implies \lim_{n\to\infty} a_n = 0$

3.6 Cauchy Criterion for Series

 $\begin{array}{l} \sum_{n=0}^{\infty} a_n converges \Leftrightarrow \forall \epsilon > 0 \\ \exists n_0 \in \mathbb{N} \text{ such that } m > n > n_0, \\ |\sum_{k=0}^{m} a_k - \sum_{k=0}^{n} a_k| < \epsilon \text{ which can be rewritten as } |\sum_{k=n+1}^{m}| < \epsilon \end{array}$

3.7 Proposition

 $\sum_{n=0}^{\infty} a_n$ with $a_n \ge 0 \forall n$ is convergent \Leftrightarrow its partial sum (Sn) is bounded.

<u>Remark</u>: $\sum_{n=0}^{\infty} \frac{1}{n(n+1)}$ is a convergent <u>telescoping series</u> since its (Sn) is bounded.

3.8 Comparison test for Series

Let $(a_n)(b_n)$ be non-negative sequences, $\exists M > 0$ and $n_0 \in \mathbb{N}$ such that $n > n_0 \implies a_n \leq M \cdot b_n$.

- 1. $\sum_{n=0}^{\infty} b_n$ converges $\implies \sum_{n=0}^{\infty} a_n$ converges
- 2. $\sum_{n=0}^{\infty} a_n$ diverges $\implies \sum_{n=0}^{\infty} b_n$ diverges (contrapositive of point 1)

3.9 Corollary

 $\sum_{n=0}^{\infty} \frac{a_n}{b_n} = \alpha > 0$, then $\sum_{n=0}^{\infty} a_n$ converges $\Leftrightarrow \sum_{n=0}^{\infty} b_n$ converges.

3.10 Leibniz test for alternating series

If (a_n) satisfies the following conditions:

- 1. $a_n \ge 0 \forall n \in \mathbb{N}$.
- $2. \lim_{n\to\infty} a_n = 0.$
- 3. (a_n) is monotone decreasing for sufficiently large n.

Then $\sum_{n=0}^{\infty} (-1)^n a_n$ is convergent.

3.11 Absolute Convergence

 $\sum_{n=0}^{\infty} a_n$ is absolutely convergent if $\sum_{n=0}^{\infty} |a_n|$ converges. $\sum_{n=0}^{\infty} a_n$ is conditionally convergent if it converges but $\sum_{n=0}^{\infty} |a_n|$ diverges.

Remark: If a series is absolutely convergent \implies it is convergent.

3.12 Theorem

 $\sum_{n=0}^{\infty} a_n$ is absolutely convergent and $\sum_{n=0}^{\infty} b_n$ is obtained by rearranging (a_n) , $\implies \sum_{n=0}^{\infty} b_n$ is absolutely convergent with $\sum_{n=0}^{\infty} b_n = \sum_{n=0}^{\infty} a_n$.

3.13 Cauchy Product Formula

Let $\sum_{n=0}^{\infty} a_n$, $\sum_{n=0}^{\infty} b_n$ be absolutely convergent, then $\sum_{m,n=0}^{\infty} a_m b_n$ is absolutely convergent and $(\sum_{m=0}^{\infty} a_m)(\sum_{n=0}^{\infty} b_n) = \sum_{k=0}^{\infty} \sum_{m+n=k}^{\infty} a_{k-n} b_n$.

3.14 Ratio Test for Series

- (i) For $n_0 \in \mathbb{N}$ such that $n > n_0$ and $\frac{|a_{n+1}|}{|a_n|} < 1 \implies \sum_{n=0}^{\infty} a_n$ is absolutely convergent.
- (ii) For $n_0 \in \mathbb{N}$ such that $n > n_0$ and $\frac{|a_{n+1}|}{|a_n|} \ge 1 \implies \sum_{n=0}^{\infty} a_n$ diverges.

3.15 Limit Ratio Test for Series

- (i) $\lim_{n\to\infty} \frac{|a_{n+1}|}{|a_n|} < 1 \implies \sum_{n=0}^{\infty} a_n$ is absolutely convergent.
- (ii) $\lim_{n\to\infty} \frac{|a_{n+1}|}{|a_n|} > 1 \implies \sum_{n=0}^{\infty} a_n$ is divergent.
- (iii) $\lim_{n\to\infty} \frac{|a_{n+1}|}{|a_n|} = 1$ or does not exist then the test is conclusive.

3.16 Power Series of Exponential Function

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

3.17 Root Test for Series

If $\exists 0 < r < 1$ and $n_0 \in \mathbb{N}$ such that $n > n_0 \implies \sqrt[n]{|a_n|} < r$, then $\sum_{n=0}^{\infty} a_n$ is absolutely convergent.

3.18 Limit Root Test for Series

- (i) $\lim_{n\to\infty} \sqrt[n]{|a_n|} < 1 \implies \sum_{n=0}^{\infty} a_n$ is absolutely convergent.
- (ii) $\lim_{n\to\infty} \sqrt[n]{|a_n|} > 1 \implies \sum_{n=0}^{\infty} a_n$ is divergent.
- (iii) $\lim_{n\to\infty} \sqrt[n]{|a_n|} > 1 \implies$ inconclusive.

3.19 Abel's Theorem for power series

If $\sum_{n=0}^{\infty} a_n z^n$ converges for some $z = \alpha \neq 0$, then the series is absolutely convergent $\forall z \in \mathbb{C}$ with $|z| < |\alpha|$.

3.20 Radius of Convergence Theorem

- (i) $\forall z \in \mathbb{C}$ with $|z| < \mathbb{R} \implies$ series is absolutely convergent.
- (ii) $\forall z \in \mathbb{C}$ with $|z| > \mathbb{R} \implies$ series is divergent.

3.21 How to find radius of convergence R

For any power series $\sum_{n=0}^{\infty} a_n z^n$,

- 1. $R = \lim_{n \to \infty} \frac{|a_n|}{a_{n+1}}$ if the limit exists
- 2. $R = \frac{1}{\lim_{n\to\infty} \sqrt[n]{|a_n|}}$ if the limit exists
- 3. Use the Cauchy Hadamard formula: $R = \frac{1}{\lim_{n\to\infty} \sup_{n\to\infty} \sqrt[n]{|a_n|}}$

Remark:If $\lim_{n\to\infty} \sup \sqrt[n]{|a_n|} = 0$, we write $R = \infty$.

4 Limits and Continuity

4.1 Continuous Functions

f is continuous at x_0 if $\forall \epsilon > 0 \exists$ an $\epsilon > 0$ such that if $|x - x_n| < \delta$ then $|f(x) - f(x_0)| < \epsilon$.

4.2 Properties of continuous functions

Let f, g be continuous at x_0 in \mathbb{R} ,

- 1. f + g is continuous at x_0
- 2. $f \cdot g$ is continuous at x_0
- 3. If $g(x_0) \neq 0, \frac{f}{g}$ is continuous at x_0
- 4. $g \circ f$ or $f \circ g$ is continuous

4.3 Sequential Characterisation of Continuity

Let $f: A \to \mathbb{R}$, $x_0 \in A$. Then, f is continuous at $x_0 \Leftrightarrow x_n \to x_0$ such that $x_n \in A$, $f(x_n) \to f(x_0)$.

4.4 Weierstrass Theorem

If $f:[a,b]\to\mathbb{R}$ is continuous $\Longrightarrow f$ is bounded and has a minimum and maxmum.

Remark: f is bounded $\Leftrightarrow \exists c > 0$ such that |f(x)| < c with $x \in [a, b]$.

4.5 Bolzano Cauchy Theorem

 $f:[a,b]\to\mathbb{R}$ is continuous, assume $f(a)\cdot f(b)<0\Rightarrow \exists x_0\in[a,b]$ such that $f(x_0)=0$.

4.6 Corollary: Intermediate Value Theorem

Let $y \in [f(a), f(b)] \implies \exists x_0 \in [a, b] \text{ such that } f(x_0) = y.$

4.7 Proposition

f is continuous at $x_0 \Leftrightarrow \lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x) = f(x_0)$

<u>Remark:</u> $f(x_0)$ must be defined in the question. Meaning it should not be a removable discontinuity at a point.

5 Uniform Convergence

5.1 Pointwise Convergence

If $\forall x \in \mathbb{D}$, $f_n(x) \to f(x)$ as $n \to \infty$. In short, $\lim_{n \to \infty} f_n(x) = f(x)$.

5.2 Uniform Convergence

If $\forall \epsilon > 0, \exists n_{\epsilon} \in \mathbb{N}$ such that $|f_n(x) - f(x)| < \epsilon \ \forall n > n_{\epsilon}$ and $\forall x \in D$.

Remark: Uniform convergence \implies Pointwise Convergence

5.3 Theorem

If f_n is a sequence of continuous function which converges uniformly to $f \implies f$ is continuous.

5.4 Weierstrass M-Test

Let $g_k(z): D \to \mathbb{C}, D \subset \mathbb{C}$. Let $M_k = \sup_{z \in D} |g_k(z)|$.

If $\sum_{k=0}^{\infty} M_k$ converges $\implies \sum_{k=0}^{\infty} g_k(z)$ converges uniformly and absolutely on D.

5.5 Corollary

If $\sum_{n=0}^{\infty} a_n z^n$ converges uniformly and absolutely for $|z| < R \implies f(z)$ is a continuous function.

5.6 Uniform Convergence for Integration

Let $f_n: [a,b] \to \mathbb{R}$ be continuous and f_n converges uniformly to $f \Longrightarrow \lim_{n\to\infty} \int_a^b f_n(x) dx = \int_a^b \lim_{n\to\infty} f_n(x) dx = \int_a^b f(x) dx$.

Remark: Uniform convergence preserves continuity in the limit and allows interchange between integral and limit.

5.7 Uniform convergence for differentiation

Let $f_n:[a,b]\to\mathbb{R}$ be continuously differentiable.

Assume $f'_n \to g$ uniformly locally and $f_n \to f$ pointwise on [a, b] $\implies f' = g$.

In short, $\lim_{n\to\infty} f'_n = (\lim_{n\to\infty} f_n)'$.

5.8 Theorem

Let
$$f(z) = \sum_{n=0}^{\infty} a_n z^n, z \in \mathbb{C}$$
. Define $g(z) = \sum_{n=1}^{\infty} n a_n z^{n-1} = \sum_{m=0}^{\infty} (m+1) a_{m+1} z^m$ and $F(z) = \sum_{n=0}^{\infty} \frac{1}{n+1} a_n z^{n+1}$ where f' = g and F' = f.

If R is the radius of convergence for f(z), then R has the same value for F and g.

5.9 Lemma

Let $f(z) = \sum_{n=0}^{\infty} a_n z^n, z \in \mathbb{C}$, f has derivatives at all orders for $|z| < \mathbb{R}$. $f^{(k)}(z) = k! \sum_{n=k}^{\infty} {n \choose k} a_n z^{n-k}$ and $a_n = \frac{1}{n!} f^{(n)}(0), \ n \ge 0$.

5.10 Theorem

Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ and assume (z_n) with $|z_n| < R$ such that $z_n \to 0 \implies f(z) = 0 \forall |z| < R$.

5.11 Corollary (Uniqueness of expansion into power series)

Let
$$f(z) = \sum_{n=0}^{\infty} a_n z^n = \sum_{n=0}^{\infty} b_n z^n$$
, then $a_n = b_n \forall |z| < R \implies \sum_{n=0}^{\infty} (a_n - b_n) z^n = 0 \ \forall z, a_n = b_n \forall n$.

6 Analytic Functions

6.1 Analytic Function

Let $f: D \to \mathbb{C}, D \subset \mathbb{C}$. f is analytic at $z_0 \in D$ if \exists a disc $\subset D(z_0, \epsilon) = z \in D; |z - z_0| < \epsilon$ such that $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n, z \in D(z_0, \epsilon)$. In short, an analytic function is one that can be represented by a power series.

Remark: Let $f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n$, then f(z) is analytic at z_0 within the radius of convergence.

6.2 Corollary

If f is analytic at every $z_0 \in D$, then f is analytic in D.

6.3 Uniqueness Theorem for analytic functions

Let D be a path connected domain. Let $x_n \in D, n \ge 1, a \in D$ and $x_n \to a$ but $x_n \ne a$. If f is analytic in D and $f(x_n) = g(x_n) \forall n$, then f(a) = g(a).

6.4 Differentiation

Let $f: \mathbb{R} \to \mathbb{R}, a \in \mathbb{R}$. $f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$ if the limit exists.

Remark: f'(a) exists \Leftrightarrow f is differentiable at x = a.

 $\underline{\text{Remark:}} \text{If } \lim_{x \to a^-} \frac{f(x) - f(a)}{x - a} = \lim_{x \to a^+} \frac{f(x) - f(a)}{x - a} \implies f'(a) \text{ exists.}$

7 Complex Analysis

7.1 Cauchy Riemann Relations Theorem

Let $f: D \to \mathbb{C}, D \subset \mathbb{C}$. f = u + iv.

f'(z) exists at $z \in D \Leftrightarrow u_x = v_y$ and $u_y = -v_x$.

Remark:u, v are continuous and f is continuous.

7.2 Harmonic functions

$$u_{xx} + u_{yy} = 0$$

$$v_{xx} + v_{yy} = 0$$

7.3 Path Integral

Let D be path-connected, take $\gamma(a) = z_1$ and $\gamma(b) = z_2$ where $z_1 \& z_2$ in D. Let $a \le t \le b$ and assume path is continuously differentiable, then $\int_{z_1}^{z_2} f(z) dz = \int_a^b f(\gamma(t)) \gamma'(t) dt$.

<u>Remark:</u> Path integral is well defined for piece wise differentiable paths. This means we can add multiple integrals to form a path integral.

7.4 Independence of Path Integral

Let $\gamma: [a,b]$ be a piece-wise differentiable path and F be primitive of f, $F'(z) = f(z), z \in D \Rightarrow \int_{\gamma} f(z)dz = F(\gamma(b)) - F(\gamma(a)).$

Remark: f(z) has to be analytic in order to use this theorem.

Remark: f(z) is complex differentiable $\Leftrightarrow f(z)$ is analytic.

7.5 Corollary

Let γ be a closed path/contour. If f = F', then $\int_{\gamma} f(z)dz = F(\gamma(b)) - F(\gamma(a)) = 0$.

Identity:
$$\int_{\gamma} \frac{dz}{z-z_0} = \begin{cases} 0 \text{ if } z_0 \text{ outside } \gamma \\ 2\pi i \text{ if } z_0 \text{ inside } \gamma \end{cases}$$

7.6 Closed Path Integral Theorem

Let $D \subset \mathbb{C}$ be a disc and $D' = D \setminus z_1, z_2, z_n$

- 1. Assume $f: D' \to \mathbb{C}$ is differentiable
- 2. $\lim_{z\to z_i} (z-z_j)f(z) = 0$, j = 1 ... n

Then $\int_{\gamma} f(z)dz = 0$ for any closed path in D'.

Remark: $\lim_{z\to z_j} (z-z_j) f(z) = 0$ implies no singularities or poles in D'.

7.7 Cauchy Integral formula

Let $D \subset \mathbb{C}$ be a disc. Assume $f: D \to \mathbb{C}$ is differentiable. γ is positively oriented circle in $D: \gamma \subset D$ closed with center a. Then $f(a) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z-a} dz$.

7.8 Cauchy Generalized Integral Formula

$$f^{(n)}(z) = \frac{n!}{z\pi i} \int_{\gamma} \frac{\phi(w)}{(w-z)^{n+1}} dw$$

7.9 Morera's Theorem

Let $f: D \to \mathbb{C}$ be continuous. Assume every closed path $\gamma \subset D$, $\int_{\gamma} f(z)dz = 0 \implies$ f is infinitely differentiable.

7.10 Liouville's Theorem

Let $f: \mathbb{C} \to \mathbb{C}$ be differentiable and bounded \implies f must be constant.

7.11 Cauchy Integral Formula for Annulus

Let f be analytic in an annulus $R_1 < |z - z_0| < R_2$.

Let c_1, c_2 be 2 contours inside this annulus centered at z_0 , positively oriented c_1 inside c_2 .

Then $\forall z$ in between c_1 and c_2 , $f(z) = \frac{1}{2\pi i} \int_{c_2} \frac{f(w)}{w-z} dw - \frac{1}{2\pi i} \int_{c_1} \frac{f(w)}{w-z} dw$.

7.12 Laurent Series Theorem

Let f be analytic in the annulus $\implies \forall z$ in the annulus, $f(z) = \sum_{n=1}^{\infty} \frac{a_{-n}}{(z-z_0)^n} + \sum_{n=0}^{\infty} a_n(z-z_0)^n$. Where $\sum_{n=1}^{\infty} \frac{a_{-n}}{(z-z_0)^n}$ is known as the singular part and $\sum_{n=0}^{\infty} a_n(z-z_0)^n$ is the regular part.

7.13 Singularities

 z_0 is a singularity if \exists a disc around z_0 with $\epsilon > 0$ such that f is analytic in the disc $\backslash z_0$. In short, $f: D(z_0, \epsilon) \backslash z_0 \to \mathbb{C}$ is analytic.

7.14 Residue Theorem

Let $D \subset \mathbb{C}$, $f: D \setminus z_1, ...z_n$ is analytic. Let γ be a simple, closed curve in $D \implies \int_{\gamma} f(z) dz = 2\pi i \sum_{k=1}^{\infty} Res(f, z_k)$.

<u>Remark:</u>Sum up residues of poles within the closed curve to get the integral of the function, ignore the poles that lie outside the closed curve.

7.15 Finding Residues

Let z_0 be an isolated singularity of f.

- 1. z_0 is removable $\implies \text{Res}(f, z_0) = 0$.
- 2. z_0 is a simple pole $\implies \operatorname{Res}(f, z_0) = \lim_{z \to z_0} [(z z_0)f(z)]$
- 3. z_0 is a pole of order $m \ge 1 \implies \text{Res}(f, z_0) = \frac{1}{(m-1)!} \lim_{z \to z_0} \frac{d^{m-1}}{dz^{(m-1)}} [(z-z_0)^m f(z)]$