Representaciones inspiradas en VAE para procesar texto a imagen

Laura, Miguel, César

Generación de texto a imagenes

Problema complejo

- De interés en Al
- Aplicaciones

Stack GAN

Stage I: bosquejos Stage II: retoques

64 X 64 pixles

GAN+descripciones

64 X 64 pixeles

Proyecto DL

Problema

- Plantear modelo de DL para generar:
 - Imágenes a partir de texto
 - Conjunto de datosFlickr8

Conjunto de datos Flickr8

- **Imágenes:** 8,091 temas misceláneas (mascotas, paisajes, personas...)
- **Texto:** 5 descripciones en inglés.
- Mechanical Turk de Amazon, < 40 mil pares (texto, imagen)
- Usado originalmente para predecir texto a partir de imágenes

young girl with pigtails painting outside in the grass .

there is a girl with pigtails sitting in front of a rainbow painting .

- a small girl in the grass plays with fingerpaints in front of a white canvas with a rainbow on it .
- a little girl is sitting in front of a large painted rainbow .
- a little girl covered in paint sits in front of a painted rainbow with her hands in a bowl .

Ideas (VAE):

- VAE codifica la representación de una imagen con los parámetros de una distribución de probabilidad de un espacio latente.

Ideas (inspiradas en VAE):

- Codificar la relación semántica texto-imágenes en espacio latente
- Ajustar parámetros de distribución normal multivariada como parte de entrenamiento para espacio latente.
- Emplear encaje pre-entrenado del texto de las descripciones de las imágenes para:
 - reducir dimensionalidad
 - considerar contexto
 - Reducir tiempo de entrenamiento

Global Vectors for Word Representation (GloVe)

- Representaciones vectoriales distribuidas de texto son útiles en NLP
 - Texto representado como punto de R^n
 - Textos "cercanos van a puntos cercanos de R^n

- GloVe

- modelo pre-entrenado de Stanford University,
- Relaciona probabilidades de co-ocurrencias de palabras y en documentos para codificar significado

- GloVe.6B:

- Wikipedia 2014+Gigaword5;
- 60 miles de millones de token,
- Características: 50, 100, 200 y 300

Arquitectura inspirada en VAE

Pérdida:

- Kullback Liber
- (parámetros de distribución normal)
- MSE (imágenes)

RMSprop

Target:

64 x 64 pixeles 3 canales

Modelos inspirados en VAE

Modelo 1: LR "agresivo"

Modelo 2: Modelo 1 + LR "pasivo"

Modelo 3: Modelo 2 - nodos + Dropout

Param: ~ 7.6 millones

Datos: ~40 mil (80% train, 20% test)

Maldición de la dimensionalidad

Limite RAM Google Colab

Table 2. Resultados de ajuste del modelo

Concepto	Modelo 1	Modelo 2	Modelo 3
Training Accuracy*	0.4477	0.4758	0.4781
Training Loss*	0.0684	0.0667	0.0667
Test Accuracy*	0.4961	0.4691	0.4555
Test Loss*	0.0679	0.0667	0.0667
Tiempo por época**	\sim 2 min	\sim 2 min	< 2 min

Pese a esfuerzos, no subió el desempeño

Resultados texto-imagen: Modelo 1

Two helmeted men sit on yellow snowmobiles while another man stands behind watching

Resultados texto-imagen: Modelo 2

The small child climbs on a red ropes on a playground

Resultados texto-imagen: Modelo 3

The brown and white dog with a green collar is biting a stick

¿Por qué es un problema tan difícil?

- Generalidad Texto imágenes
- Necesidad de hardware
- Maldición dimensionalidad
- Explorar más arquitecturas