

Biblioteca Pandas

Prof. Dr. Diego Bruno

Education Tech Lead na DIO Doutor em Robótica e *Machine Learning* pelo ICMC-USP

Biblioteca Pandas

Prof. Dr. Diego Bruno

Machine Learning

Utilizando a biblioteca

O pandas permite trabalhar com diferentes tipos de dados, por exemplo:

- → Dados tabulares, como uma planilha Excel ou uma tabela SQL;
- → Dados ordenados de modo temporal ou não; Matrizes;
- → Qualquer outro conjunto de dados, que não necessariamente precisem estar rotulados;

Bibliotecas de exemplo:

Estruturas de Dados

- Os dois principais objetos da biblioteca Pandas são as Series e os DataFrames:
- → Uma Serie é uma matriz unidimensional que contém uma sequência de valores que apresentam uma indexação (que podem ser numéricos inteiros ou rótulos), muito parecida com uma única coluna no Excel.
- → Já o <u>DataFrame</u> é uma estrutura de dados tabular, semelhante a planilha de dados do Excel, em que tanto as linhas quanto as colunas apresentam rótulos.

Estruturas de Dados

Os dois principais objetos da biblioteca Pandas são as Series e os DataFrames:

Quais as vantagens?

<u>Comandos equivalentes</u>, com a mesma funcionalidade no Pandas;

R	pandas
dim(df)	df.shape
head(df)	df.head()
slice(df, 1:10)	df.iloc[:9]
filter(df, col1 == 1, col2 == 1)	df.query('col1 == 1 & col2 == 1')
df[df\$col1 == 1 & df\$col2 == 1,]	df[(df.col1 == 1) & (df.col2 == 1)]

DataFrame

 Agora se visualizarmos novamente os primeiros 4 dados do nosso conjunto, veremos que todos os valores passados para *na_values*, além dos próprios dados ausentes, foram substituídos por NaN.

f.head(n=4)						
	id	data_aq	produto	quantidade	valor UN	TotaL	setor
0	0	01/01/2019	toalha	6	R\$ 35,00	R\$ 210,00	Mesa_banho
1	1	02/01/2019	toalha	6	R\$ 35,00	R\$ 210,00	NaN
2	2	03/01/2019	toalha	2	R\$ 35,00	R\$ 70,00	mesa_banho
3	3	01/02/2019	toalha	5	R\$ 35,00	R\$ 175,00	NaN

df.shape

df.info

■ <> ■ Python

1 df.info()

Já para saber que formato se encontram os dados em cada coluna, além da quantidade de memória para ler esse conjunto de dados, podemos utilizar o comando *info*:

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 549 entries, 0 to 548
Data columns (total 7 columns):
    Column
                Non-Null Count
                               Dtype
    id
                549 non-null
                               int64
 0
               549 non-null
                               object
    data aq
               542 non-null
    produto
                               object
    quantidade 549 non-null
                               int64
    valor UN
               549 non-null
                               object
    TotaL
               549 non-null
                               object
                535 non-null
                               object
    setor
dtypes: int64(2), object(5)
memory usage: 30.1+ KB
```


Alterações

Na sequência, podemos visualizar quais são nossas colunas existentes e até mesmo alterar esses nomes, basta passar o novo conjunto de nomes desejados com a mesma quantidade de colunas existente no conjunto original:

```
1 df.columns
2 Index(['id', 'data_aq', 'produto', 'quantidade', 'valor UN', 'Total', 'setor'], dtype='object')
3
4 df.columns = ['id', 'data_aq', 'produto', 'quantidade', valor_un', 'valor_total', setor']
```


Verificação

Para verificar quantos dados faltantes existem em nosso conjunto

df.isnull().sum()

id	0
data_aq	0
produto	7
quantidade	0
valor_un	0
valor_total	0
setor	14
dtype: int64	

Valores únicos

No nosso objeto Serie podemos verificar quais os valores únicos existem naquela coluna, com o método *unique*:

1 df['setor'].unique()

Agrupamentos

Ainda a partir desse método podemos gerar uma visualização simples e rápida com o resultado. Como? Com o método *plot*.

df['setor'].value_counts().plot(kind='bar')

Dados estatísticos

o Pandas colabora na exibição de algumas informações estatísticas a respeito do nosso conjunto de dados e permite que possamos realizar facilmente uma análise com o nosso objeto DataFrame

df.describe()

	id	quantidade	valor_total
count	528.000000	528.000000	528.000000
mean	275.229167	6.032197	280.739848
std	157.431587	3.207100	383.826301
min	0.000000	1.000000	2.990000
25%	137.750000	3.000000	64.950000
50%	276.000000	6.000000	142.890000

Obrigado!

Machine Learning

Prof. Dr. Diego Bruno

