Appunti di Analisi Matematica II corso della prof.ssa B.Noris Politecnico di Milano

F. Piazza G. Michieletto

September 28, 2022

Chapter 1

Equazioni differenziali

1.1 Equazioni differenziali del 1° ordine

Definizione 1. Una equazione differenziale del 1° ordine è una relazione tra una funzione y e la sua derivata y' che può essere scritta come

$$y' = f(y) \tag{1.1}$$

dove f è una funzione continua su un intervallo I di \mathbb{R} .

Esempi:

- $y' = t\sqrt{y_{(t^2)} + 1}$ è in forma normale con $f(t, s) = t\sqrt{s^2 + 1}$. Il dominio di f è $I = \mathbb{R} \times \mathbb{R}$.
- $y'_{(t)} = \frac{1}{t}$ con t > 0 diventa $f(t, s) = \frac{1}{t}$. Oss: f non dipende esplicitamente da s.

Il dominio di f è $\{(t,s) \in \mathbb{R}^2 : s \in \mathbb{R}, t \in \mathbb{R}^*\}$, dunque è diviso in due parti. Dovrò quindi risolvere la EDO nelle due regioni.

Definizione 2. Si chiama integrale generale l'insieme delle soluzioni.

Definizione 3. Si chiama soluzione particolare una specifica soluzione.

Una EDO del 1° ordine ha ∞^1 , soluzioni, cioè avrà una costante arbitraria. In modo analogo, una EDO del 2° ordine avrà ∞^2 soluzioni, cioè avrà due costanti arbitrarie. Esempi:

- integrale generale ce^t con c costante arbitraria. Esempi di soluzioni particolari: e^t , $2e^t$, $-e^t$.
- $z_{(t)} = -1 + arctan(t)$ con $t \in \mathbb{R}^*$. Esempio di soluzione: $z' = 0 + \frac{1}{1+t^2}$.

Oss: La EDO $y'_{(t)} = f(t, y_{(t)})$ è definita per $(t, y) \in dom(f)$