# XCS229i Problem Set 5

## Due Sunday, February 21 at 11:59pm PT.

#### Guidelines

- 1. These questions require thought, but do not require long answers. Please be as concise as possible.
- 2. If you have a question about this homework, we encourage you to post your question on our Slack channel, at http://xcs229i-scpd.slack.com/
- 3. Familiarize yourself with the collaboration and honor code policy before starting work.
- 4. For the coding problems, you may not use any libraries except those defined in the provided started code. In particular, ML-specific libraries such as scikit-learn are not permitted.

#### Submission Instructions

Written Submission: Some questions in this assignment require a written response. For these questions, you should submit a PDF with your solutions online in the online student portal. As long as the PDF is legible and organized, the course staff has no preference between a handwritten and a typeset LATEX submission. If you wish to typeset your submission and are new to LATEX, you can get started with the following:

- Type responses only in submission.tex.
- Submit the compiled PDF, not submission.tex.
- Use the commented instructions within the Makefile and README.md to get started.

Coding Submission: Some questions in this assignment require a coding response. For these questions, you should submit only the src/submission.py file in the online student portal. Your code will be autograded online using src/grader.py, which is provided for you in the src/ subdirectory. You can also run this autograder on your local computer, although some of the tests will be skipped (since they require the instructor solution code for comparison).

## Honor code

We strongly encourage students to form study groups. Students may discuss and work on homework problems in groups. However, each student must write down the solutions independently, and without referring to written notes from the joint session. In other words, each student must understand the solution well enough in order to reconstruct it by him/herself. In addition, each student should write on the problem set the set of people with whom s/he collaborated. Further, because we occasionally reuse problem set questions from previous years, we expect students not to copy, refer to, or look at the solutions in preparing their answers. It is an honor code violation to intentionally refer to a previous year's solutions.

## Writing Code and Running the Autograder

All your code should be entered into src/submission.py. When editing src/submission.py, please only make changes between the lines containing ### START\_CODE\_HERE ### and ### END\_CODE\_HERE ###. Do not make changes to files other than src/submission.py.

The unit tests in src/grader.py (the autograder) will be used to verify a correct submission. Run the autograder locally using the following terminal command within the src/ subdirectory:

### \$ python grader.py

There are two types of unit tests used by the autograder:

- basic: These unit tests will verify only that your code runs without errors on obvious test cases. These tests so not require the instructor solution code and can therefore be run on your local computer.
- hidden: These unit tests will verify that your code produces correct results on complex inputs and tricky corner cases. Since these tests require the instructor solution code to verify results, only the setup and inputs are provided. When you run the autograder locally, these test cases will run, but the results will not be verified by the autograder. When your run the autograder online, these tests will run and you will receive feedback on any errors that might occur.

For debugging purposes, you can run a single unit test locally. For example, you can run the test case 3a-0-basic using the following terminal command within the src/ subdirectory:

#### \$ python grader.py 3a-0-basic

Before beginning this course, please walk through the Anaconda Setup for XCS Courses to familiarize yourself with the coding environment. Use the env defined in src/environment.yml to run your code. This is the same environment used by the online autograder.

#### 1. K-means for compression

In this problem, we will apply the K-means algorithm to lossy image compression, by reducing the number of colors used in an image.

We will be using the files src/01-k\_means/peppers-small.tiff and src/01-k\_means/peppers-large.tiff.

The peppers-large.tiff file contains a 512x512 image of peppers represented in 24-bit color. This means that, for each of the 262144 pixels in the image, there are three 8-bit numbers (each ranging from 0 to 255) that represent the red, green, and blue intensity values for that pixel. The straightforward representation of this image therefore takes about  $262144 \times 3 = 786432$  bytes (a byte being 8 bits). To compress the image, we will use K-means to reduce the image to k = 16 colors. More specifically, each pixel in the image is considered a point in the three-dimensional (r, g, b)-space. To compress the image, we will cluster these points in color-space into 16 clusters, and replace each pixel with the closest cluster centroid.

Follow the instructions below. Be warned that some of these operations can take a while (several minutes even on a fast computer)!

(a) [5 points (Coding)] K-Means Compression Implementation. First let us *look* at our data. From the src/k\_means/ directory, open an interactive Python prompt, and type

from matplotlib.image import imread; import matplotlib.pyplot as plt;

and run A = imread('peppers-large.tiff'). Now, A is a "three dimensional matrix," and A[:,:,0], A[:,:,1] and A[:,:,2] are 512x512 arrays that respectively contain the red, green, and blue values for each pixel. Enter plt.imshow(A); plt.show() to display the image.

Since the large image has 262,144 pixels and would take a while to cluster, we will instead run vector quantization on a smaller image. Repeat (a) with peppers-small.tiff.

Next we will implement image compression in the file  $src/k\_means.py$  which has some starter code. Treating each pixel's (r, g, b) values as an element of  $\mathbb{R}^3$ , implement K-means with 16 clusters on the pixel data from this smaller image, iterating (preferably) to convergence, but in no case for less than 30 iterations. For initialization, set each cluster centroid to the (r, g, b)-values of a randomly chosen pixel in the image.

Take the image of peppers-large.tiff, and replace each pixel's (r, g, b) values with the value of the closest cluster centroid from the set of centroids computed with peppers-small.tiff. Consider visually comparing it to the original image to verify that your implementation is reasonable.

(b) [1 point (Written)] Compression Factor.

If we represent the image with these reduced (16) colors, by (approximately) what factor have we compressed the image?

#### 2. Semi-supervised EM

Expectation Maximization (EM) is a classical algorithm for unsupervised learning (*i.e.*, learning with hidden or latent variables). In this problem we will explore one of the ways in which the EM algorithm can be adapted to the semi-supervised setting, where we have some labelled examples along with unlabelled examples.

In the standard unsupervised setting, we have  $n \in \mathbb{N}$  unlabelled examples  $\{x^{(1)}, \dots, x^{(n)}\}$ . We wish to learn the parameters of  $p(x, z; \theta)$  from the data, but  $z^{(i)}$ 's are not observed. The classical EM algorithm is designed for this very purpose, where we maximize the intractable  $p(x; \theta)$  indirectly by iteratively performing the E-step and M-step, each time maximizing a tractable lower bound of  $p(x; \theta)$ . Our objective can be concretely written as:

$$\ell_{\text{unsup}}(\theta) = \sum_{i=1}^{n} \log p(x^{(i)}; \theta)$$
$$= \sum_{i=1}^{n} \log \sum_{z^{(i)}} p(x^{(i)}, z^{(i)}; \theta)$$

Now, we will attempt to construct an extension of EM to the semi-supervised setting. Let us suppose we have an additional  $\tilde{n} \in \mathbb{N}$  labelled examples  $\{(\tilde{x}^{(1)}, \tilde{z}^{(1)}), \dots, (\tilde{x}^{(\tilde{n})}, \tilde{z}^{(\tilde{n})})\}$  where both x and z are observed. We want to simultaneously maximize the marginal likelihood of the parameters using the unlabelled examples, and full likelihood of the parameters using the labelled examples, by optimizing their weighted sum (with some hyperparameter  $\alpha$ ). More concretely, our semi-supervised objective  $\ell_{\text{semi-sup}}(\theta)$  can be written as:

$$\ell_{\text{sup}}(\theta) = \sum_{i=1}^{\tilde{n}} \log p(\tilde{x}^{(i)}, \tilde{z}^{(i)}; \theta)$$
$$\ell_{\text{semi-sup}}(\theta) = \ell_{\text{unsup}}(\theta) + \alpha \ell_{\text{sup}}(\theta)$$

We can derive the EM steps for the semi-supervised setting using the same approach and steps as before. You are strongly encouraged to show to yourself (no need to include in the write-up) that we end up with:

## E-step (semi-supervised)

For each  $i \in \{1, \ldots, n\}$ , set

$$Q_i^{(t)}(z^{(i)}) := p(z^{(i)}|x^{(i)};\theta^{(t)})$$

## M-step (semi-supervised)

$$\theta^{(t+1)} := \arg\max_{\theta} \left[ \sum_{i=1}^{n} \left( \sum_{z^{(i)}} Q_i^{(t)}(z^{(i)}) \log \frac{p(x^{(i)}, z^{(i)}; \theta)}{Q_i^{(t)}(z^{(i)})} \right) + \alpha \left( \sum_{i=1}^{\tilde{n}} \log p(\tilde{x}^{(i)}, \tilde{z}^{(i)}; \theta) \right) \right]$$

## (a) [5 points (Coding)]

**Convergence.** First we will show that this algorithm eventually converges. In order to prove this, it is sufficient to show that our semi-supervised objective  $\ell_{\text{semi-sup}}(\theta)$  monotonically increases with each iteration of E and M step. Specifically, let  $\theta^{(t)}$  be the parameters obtained at the end of t EM-steps. Show that  $\ell_{\text{semi-sup}}(\theta^{(t+1)}) \ge \ell_{\text{semi-sup}}(\theta^{(t)})$ .

$$\begin{split} \ell(\theta^{(t+1)}) &= \alpha \ell_{\sup}(\theta^{(t+1)}) + \ell_{\operatorname{unsup}}(\theta^{(t+1)}) \\ &\geq \alpha \ell_{\sup}(\theta^{(t+1)}) + \sum_{i=1}^n \sum_{z^{(i)}} Q_i^{(t)}(z^{(i)}) \log \frac{p(x^{(i)}, z^{(i)}; \theta^{(t+1)})}{Q_i^{(t)}(z^{(i)})} \end{split} \qquad \text{Jensen's inequality}$$
 
$$> \end{split}$$

## Semi-supervised GMM

Now we will revisit the Gaussian Mixture Model (GMM), to apply our semi-supervised EM algorithm. Let us consider a scenario where data is generated from  $k \in \mathbb{N}$  Gaussian distributions, with unknown means  $\mu_j \in \mathbb{R}^d$  and covariances  $\Sigma_j \in \mathbb{S}^d_+$  where  $j \in \{1,\dots,k\}$ . We have n data points  $x^{(i)} \in \mathbb{R}^d$ ,  $i \in \{1,\dots,n\}$ , and each data point has a corresponding latent (hidden/unknown) variable  $z^{(i)} \in \{1,\dots,k\}$  indicating which distribution  $x^{(i)}$  belongs to. Specifically,  $z^{(i)} \sim \text{Multinomial}(\phi)$ , such that  $\sum_{j=1}^k \phi_j = 1$  and  $\phi_j \geq 0$  for all j, and  $x^{(i)}|z^{(i)} \sim \mathcal{N}\left(\mu_{z^{(i)}}, \Sigma_{z^{(i)}}\right)$  i.i.d. So,  $\mu$ ,  $\Sigma$ , and  $\phi$  are the model parameters.

We also have additional  $\tilde{n}$  data points  $\tilde{x}^{(i)} \in \mathbb{R}^d, i \in \{1, \dots, \tilde{n}\}$ , and an associated observed variable  $\tilde{z}^{(i)} \in \{1, \dots, k\}$  indicating the distribution  $\tilde{x}^{(i)}$  belongs to. Note that  $\tilde{z}^{(i)}$  are known constants (in contrast to  $z^{(i)}$  which are unknown random variables). As before, we assume  $\tilde{x}^{(i)}|\tilde{z}^{(i)} \sim \mathcal{N}\left(\mu_{\tilde{z}^{(i)}}, \Sigma_{\tilde{z}^{(i)}}\right)$  i.i.d.

In summary we have  $n+\tilde{n}$  examples, of which n are unlabelled data points x's with unobserved z's, and  $\tilde{n}$  are labelled data points  $\tilde{x}^{(i)}$  with corresponding observed labels  $\tilde{z}^{(i)}$ . The traditional EM algorithm is designed to take only the n unlabelled examples as input, and learn the model parameters  $\mu$ ,  $\Sigma$ , and  $\phi$ .

Our task now will be to apply the semi-supervised EM algorithm to GMMs in order to also leverage the additional  $\tilde{n}$  labelled examples, and come up with semi-supervised E-step and M-step update rules specific to GMMs. Whenever required, you can cite the lecture notes for derivations and steps.

- (b) [5 points (Written)] Semi-supervised E-Step. Clearly state which are all the latent variables that need to be re-estimated in the E-step. Derive the E-step to re-estimate all the stated latent variables. Your final E-step expression must only involve  $x, z, \mu, \Sigma, \phi$  and universal constants.
- (c) [10 points (Written)] Semi-supervised M-Step. Clearly state which are all the parameters that need to be re-estimated in the M-step. Derive the M-step to re-estimate all the stated parameters. Specifically, derive closed form expressions for the parameter update rules for  $\mu^{(t+1)}$ ,  $\Sigma^{(t+1)}$  and  $\phi^{(t+1)}$  based on the semi-supervised objective.

List the parameters which need to be re-estimated in the M-step:

In order to simplify derivation, it is useful to denote

$$w_j^{(i)} = Q_i^{(t)}(z^{(i)} = j),$$

and

$$\tilde{w}_j^{(i)} = \begin{cases} \alpha & \tilde{z}^{(i)} = j \\ 0 & \text{otherwise.} \end{cases}$$

We further denote  $S=\Sigma^{-1}$ , and note that because of chain rule of calculus,  $\nabla_S \ell=0 \Rightarrow \nabla_\Sigma \ell=0$ . So we choose to rewrite the M-step in terms of S and maximize it w.r.t S, and re-express the resulting solution back in terms of S.

Based on this, the M-step becomes:

$$\phi^{(t+1)}, \mu^{(t+1)}, S^{(t+1)} = \arg\max_{\phi, \mu, S} \sum_{i=1}^{n} \sum_{j=1}^{k} Q_i^{(t)}(z^{(i)}) \log \frac{p(x^{(i)}, z^{(i)}; \phi, \mu, S)}{Q_i^{(t)}(z^{(i)})} + \sum_{i=1}^{\tilde{n}} \log p(\tilde{x^{(i)}}, \tilde{z^{(i)}}; \phi, \mu, S)$$

Now, calculate the update steps by maximizing the expression within the argmax for each parameter (We will do the first for you).

 $\phi_j$ : We construct the Lagrangian including the constraint that  $\sum_{j=1}^k \phi_j = 1$ , and absorbing all irrelevant terms into constant C:

$$\begin{split} \mathcal{L}(\phi,\beta) &= C + \sum_{i=1}^n \sum_{j=1}^k w_j^{(i)} \log \phi_j + \sum_{i=1}^{\tilde{n}} \sum_{j=1}^k \tilde{w}_j^{(i)} \log \phi_j + \beta \left(\sum_{j=1}^k \phi_j - 1\right) \\ \nabla_{\phi_j} \mathcal{L}(\phi,\beta) &= \sum_{i=1}^n w_j^{(i)} \frac{1}{\phi_j} + \sum_{i=1}^{\tilde{n}} \tilde{w}_j^{(i)} \frac{1}{\phi_j} + \beta = 0 \\ &\Rightarrow \phi_j = \frac{\sum_{i=1}^n w_j^{(i)} + \sum_{i=1}^{\tilde{n}} \tilde{w}_j^{(i)}}{-\beta} \\ \nabla_{\beta} \mathcal{L}(\phi,\beta) &= \sum_{j=1}^k \phi_j - 1 = 0 \\ &\Rightarrow \sum_{j=1}^k \frac{\sum_{i=1}^n w_j^{(i)} + \sum_{i=1}^{\tilde{n}} \tilde{w}_j^{(i)}}{-\beta} = 1 \\ &\Rightarrow -\beta = \sum_{j=1}^k \left(\sum_{i=1}^n w_j^{(i)} + \sum_{i=1}^{\tilde{n}} \tilde{w}_j^{(i)}\right) \\ &\Rightarrow \phi_j^{(t+1)} &= \frac{\sum_{i=1}^n w_j^{(i)} + \sum_{i=1}^{\tilde{n}} \tilde{w}_j^{(i)}}{\sum_{j=1}^k \left(\sum_{i=1}^n w_j^{(i)} + \sum_{i=1}^{\tilde{n}} \tilde{w}_j^{(i)}\right)} \\ &= \frac{\sum_{i=1}^n w_j^{(i)} + \sum_{i=1}^{\tilde{n}} \tilde{w}_j^{(i)}}{n + \alpha \tilde{n}} \end{split}$$

 $\mu_j$ : Next, derive the update for  $\mu_j$ . Do this by maximizing the expression with the argmax above with respect to  $\mu_j$ .

First, calculate the gradient with respect to  $\mu_i$ :

$$\nabla_{\mu_i} =$$

Next, set the gradient to zero and solve for  $\mu_i$ :

$$0 =$$

 $\Sigma_j$ : Finally, derive the update for  $\Sigma_j$  via  $S_j$ . Again, Do this by maximizing the expression with the argmax above with respect to  $S_j$ .

First, calculate the gradient with respect to  $S_i$ :

$$\nabla_{S_i} =$$

Next, set the gradient to zero and solve for  $S_i$ :

$$0 =$$

This results in the final set of update expressions:

$$\phi_i :=$$

$$\mu_j := \Sigma_j := \Sigma_j$$

(d) [5 points (Coding)] Classical (Unsupervised) EM Implementation. For this sub-question, we are only going to consider the *n* unlabelled examples. Follow the instructions in src/semi\_supervised\_em/gmm.py to implement the traditional EM algorithm, and run it on the unlabelled data-set until convergence.

To verify a correct implementation, consider running three trials and using the provided plotting function to construct a scatter plot of the resulting assignments to clusters (one plot for each trial). Your plot will indicate cluster assignments by assigning unique colors for each cluster (*i.e.*, the cluster which had the highest probability in the final E-step). Your plots are not graded.

Your plots should look similar to the following:



Figure 1: Predictions made by GMM model with unsupervised EM.

(e) [5 points (Coding)] Semi-supervised EM Implementation. Now we will consider both the labelled and unlabelled examples (a total of  $n + \tilde{n}$ ), with 5 labelled examples per cluster. We have provided starter code for splitting the dataset into matrices x and x\_tilde of unlabelled and labelled examples respectively. Add to your code in src/semi\_supervised\_em/gmm.py to implement the modified EM algorithm, and run it on the dataset until convergence.

To verify a correct implementation, consider creating a plot for each trial, as done in the previous sub-question. Your plots should look similar to the following (your plots are not graded):



Figure 2: Predictions made by GMM model with semi-supervised EM.

- (f) [3 points (Written)] Comparison of Unsupervised and Semi-supervised EM. Briefly describe the differences you saw in unsupervised vs. semi-supervised EM for each of the following:
  - i. Number of iterations taken to converge.
  - ii. Stability (i.e., how much did assignments change with different random initializations?)
  - iii. Overall quality of assignments.

**Note:** The dataset was sampled from a mixture of three low-variance Gaussian distributions, and a fourth, high-variance Gaussian distribution. This should be useful in determining the overall quality of the assignments that were found by the two algorithms.

This handout includes space for every question that requires a written response. Please feel free to use it to handwrite your solutions (legibly, please). If you choose to typeset your solutions, the README.md for this assignment includes instructions to regenerate this handout with your typeset LATEX solutions.

1.b

2.a

$$\begin{split} \ell(\theta^{(t+1)}) &= \alpha \ell_{\sup}(\theta^{(t+1)}) + \ell_{\operatorname{unsup}}(\theta^{(t+1)}) \\ &\geq \alpha \ell_{\sup}(\theta^{(t+1)}) + \sum_{i=1}^n \sum_{z^{(i)}} Q_i^{(t)}(z^{(i)}) \log \frac{p(x^{(i)}, z^{(i)}; \theta^{(t+1)})}{Q_i^{(t)}(z^{(i)})} \end{split} \qquad \text{ Jensen's inequality } \\ &> \end{split}$$

2.b

2.c

List the parameters which need to be re-estimated in the M-step:

In order to simplify derivation, it is useful to denote

$$w_i^{(i)} = Q_i^{(t)}(z^{(i)} = j),$$

and

$$\tilde{w}_j^{(i)} = \begin{cases} \alpha & \tilde{z}^{(i)} = j \\ 0 & \text{otherwise.} \end{cases}$$

We further denote  $S=\Sigma^{-1}$ , and note that because of chain rule of calculus,  $\nabla_S \ell=0 \Rightarrow \nabla_\Sigma \ell=0$ . So we choose to rewrite the M-step in terms of S and maximize it w.r.t S, and re-express the resulting solution back in terms of  $\Sigma$ .

Based on this, the M-step becomes:

$$\phi^{(t+1)}, \mu^{(t+1)}, S^{(t+1)} = \arg\max_{\phi, \mu, S} \sum_{i=1}^{n} \sum_{j=1}^{k} Q_i^{(t)}(z^{(i)}) \log \frac{p(x^{(i)}, z^{(i)}; \phi, \mu, S)}{Q_i^{(t)}(z^{(i)})} + \sum_{i=1}^{\tilde{n}} \log p(\tilde{x^{(i)}}, \tilde{z^{(i)}}; \phi, \mu, S)$$

Now, calculate the update steps by maximizing the expression within the argmax for each parameter (We will do the first for you).

 $\phi_j$ : We construct the Lagrangian including the constraint that  $\sum_{j=1}^k \phi_j = 1$ , and absorbing all irrelevant terms into constant C:

$$\mathcal{L}(\phi,\beta) = C + \sum_{i=1}^{n} \sum_{j=1}^{k} w_{j}^{(i)} \log \phi_{j} + \sum_{i=1}^{\tilde{n}} \sum_{j=1}^{k} \tilde{w}_{j}^{(i)} \log \phi_{j} + \beta \left(\sum_{j=1}^{k} \phi_{j} - 1\right)$$

$$\nabla_{\phi_{j}} \mathcal{L}(\phi,\beta) = \sum_{i=1}^{n} w_{j}^{(i)} \frac{1}{\phi_{j}} + \sum_{i=1}^{\tilde{n}} \tilde{w}_{j}^{(i)} \frac{1}{\phi_{j}} + \beta = 0$$

$$\Rightarrow \phi_{j} = \frac{\sum_{i=1}^{n} w_{j}^{(i)} + \sum_{i=1}^{\tilde{n}} \tilde{w}_{j}^{(i)}}{-\beta}$$

$$\nabla_{\beta} \mathcal{L}(\phi,\beta) = \sum_{j=1}^{k} \phi_{j} - 1 = 0$$

$$\Rightarrow \sum_{j=1}^{k} \frac{\sum_{i=1}^{n} w_{j}^{(i)} + \sum_{i=1}^{\tilde{n}} \tilde{w}_{j}^{(i)}}{-\beta} = 1$$

$$\Rightarrow -\beta = \sum_{j=1}^{k} \left(\sum_{i=1}^{n} w_{j}^{(i)} + \sum_{i=1}^{\tilde{n}} \tilde{w}_{j}^{(i)}\right)$$

$$\Rightarrow \phi_{j}^{(t+1)} = \frac{\sum_{i=1}^{n} w_{j}^{(i)} + \sum_{i=1}^{\tilde{n}} \tilde{w}_{j}^{(i)}}{\sum_{j=1}^{k} \left(\sum_{i=1}^{n} w_{j}^{(i)} + \sum_{i=1}^{\tilde{n}} \tilde{w}_{j}^{(i)}\right)}$$

$$= \frac{\sum_{i=1}^{n} w_{j}^{(i)} + \sum_{i=1}^{\tilde{n}} \tilde{w}_{j}^{(i)}}{\sum_{j=1}^{k} \left(\sum_{i=1}^{n} w_{j}^{(i)} + \sum_{i=1}^{\tilde{n}} \tilde{w}_{j}^{(i)}\right)}$$

 $\mu_i$ : Next, derive the update for  $\mu_i$ . Do this by maximizing the expression with the argmax above with respect to  $\mu_i$ .

13

First, calculate the gradient with respect to  $\mu_j$ :

$$\nabla_{\mu_j} =$$

Next, set the gradient to zero and solve for  $\mu_i$ :

$$0 =$$

 $\Sigma_j$ : Finally, derive the update for  $\Sigma_j$  via  $S_j$ . Again, Do this by maximizing the expression with the argmax above with respect to  $S_j$ .

First, calculate the gradient with respect to  $S_i$ :

$$\nabla_{S_j} =$$

Next, set the gradient to zero and solve for  $S_j$ :

$$0 =$$

This results in the final set of update expressions:

$$\phi_j :=$$

$$\mu_j :=$$

$$\Sigma_j :=$$

2.f