Bài giảng môn học Đại số tuyến tính

Nguyễn Anh Thi

Chương 5 CHÉO HÓA MA TRẬN

Nội dung

Chương 5: CHÉO HÓA MA TRẬN

Trị riêng, vector riêng Không gian con riêng Chéo hóa ma trận Một số ứng dụng của chéo hóa ma trận

Trị riêng, vector riêng

Định nghĩa

Cho $A \in M_n(\mathbb{R})$, ta nói hệ số $\lambda \in \mathbb{R}$ là một trị riêng của ma trận A nếu có một vector khác không $x \in \mathbb{R}^n$ sao cho

$$Ax^{\top} = \lambda x^{\top}$$

hay nói cách khác

$$(A - \lambda I_n)x^{\top} = 0$$

x được gọi là một vector riêng của A tương ứng với λ .

Ví dụ

 $\lambda=3$ là một giá trị riêng của ma trận $\left(\begin{array}{cc} 3 & 0 \\ 8 & -1 \end{array}\right)$ tương ứng với vector riêng $x=\left(\begin{array}{cc} 1 \\ 2 \end{array}\right)$

Nhận xét

Nếu v là vector riêng ứng với trị riêng λ , thì $\alpha v(\alpha \neq 0)$ cũng là vector riêng ứng với trị riêng λ .

Định nghĩa

Cho $A \in M_n(\mathbb{R})$, đa thức đặc trưng của A được định nghĩa là

$$P_A(\lambda) = det(A - \lambda I_n).$$

Mênh đề

Trị riêng của ma trận A là nghiệm của đa thức đặc trưng $P_A(\lambda)$.

Ví dụ

Tìm các trị riêng của ma trận

$$A = \left(\begin{array}{cc} 1 & 2 \\ -1 & 4 \end{array}\right).$$

Không gian con riêng

Định nghĩa

Cho ma trận $A \in M_n(\mathbb{R})$, và λ là một trị riêng của A. Các vector riêng của A tương ứng với trị riêng λ là các vector khác không x trong không gian nghiệm của hệ phương trình

$$(A - \lambda I_n)x^{\top} = 0$$

Không gian nghiệm này được gọi là không gian riêng $E(\lambda)$ của ma trận A tương ứng với trị riêng λ .

Ví dụ

Tìm cơ sở cho các không gian riêng của ma trận

$$A = \left(\begin{array}{rrr} 3 & -2 & 0 \\ -2 & 3 & 0 \\ 0 & 0 & 5 \end{array}\right)$$

Hướng dẫn:

Đa thức đặc trưng

$$P_A(\lambda) = |A - \lambda I_3| = -(\lambda - 5)^2(\lambda - 1)$$

Trị riêng

$$P_A(\lambda) = 0 \Leftrightarrow \lambda_1 = 5(\text{ bội } 2), \lambda_2 = 1(\text{ bội } 1)$$

Không gian riêng

 \blacktriangleright Với $\lambda_1=5,$ không gian riêng E(5) là không gian nghiệm của hê

$$(A - 5I_3)X = 0 \Leftrightarrow \begin{pmatrix} -2 & -2 & 0 \\ -2 & -2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Giải ra ta được tập nghiệm

$$E(5) = \{(-t, t, s) | t, s \in \mathbb{R}\} = \{(-t, t, 0) + (0, 0, s) | t, s \in \mathbb{R}\}$$
$$= \{t(-1, 1, 0) + s(0, 0, 1) | t, s \in \mathbb{R}\}$$

Suy ra E(5) có số chiều là $\dim E(5) = 2$ với cơ sở

$$\mathcal{B}_1 = \{(-1, 1, 0); (0, 0, 1)\}$$

lacktriangle Với $\lambda_2=1$, không gian E(1) là không gian nghiệm của hệ

$$(A - I_3)X = 0 \Leftrightarrow \left(\begin{array}{ccc} 2 & -2 & 0 \\ -2 & 2 & 0 \\ 0 & 0 & 4 \end{array} \right)X = 0$$

Giải ra ta được tập nghiệm

$$E(1) = \{(t, t, 0) | t \in \mathbb{R}\} = \{t(1, 1, 0) | t \in \mathbb{R}\}\$$

Suy ra E(1) có số chiều là $\dim E(1)=1$ với cơ sở $\mathcal{B}_2=\{(1,1,0)\}$

Chéo hóa ma trận

Định nghĩa

Ma trận $A \in M_n(\mathbb{R})$ được gọi là chéo hóa được nếu tồn tại một ma trận khả nghịch P sao cho $P^{-1}AP$ là ma trận đường chéo.

Định lý

Ma trận $A \in M_n(\mathbb{R})$ chéo hóa được khi và chỉ khi A thỏa mãn hai điều kiện sau:

▶ $P_A(\lambda)$ phân rã trên \mathbb{R} , nghĩa là $P_A(\lambda)$ có thể phân tích thành dạng

$$P_A(\lambda) = (-1)^n (\lambda - \lambda_1)^{m_1} \dots (\lambda - \lambda_p)^{m_p}$$

$$v\acute{o}i \ \lambda_1, \lambda_2, \ldots, \lambda_p \in \mathbb{R} \ v\grave{a} \ m_1 + m_2 + \cdots + m_p = n.$$

 $\forall i \in \{1, 2, \dots, p\}, \, dimE(\lambda_i) = m_i.$

Hệ quả

Nếu ma trận A có n trị riêng khác nhau, thì A chéo hóa được.

Cho ma trận
$$A=\begin{pmatrix}1&2&-2\\3&2&-4\\2&-1&0\end{pmatrix}$$
 . Ma trận A có chéo hóa được

hay không?

Cho ma trận
$$A=egin{pmatrix} 1 & 2 & -2 \\ 3 & 2 & -4 \\ 2 & -1 & 0 \end{pmatrix}$$
 . Ma trận A có chéo hóa được

hay không?

Hướng dẫn:

Đa thức đặc trưng của A là

$$P_A(\lambda) = |A - \lambda I_3|$$

$$= \begin{vmatrix} 1 - \lambda & 2 & -2 \\ 3 & 2 - \lambda & -4 \\ 2 & -1 & -\lambda \end{vmatrix}$$

$$= -\lambda^3 + 3\lambda^2 + 4\lambda - 6$$

$$= (-1)(\lambda - 1)(\lambda^2 - 2\lambda - 6)$$

 $P_A(\lambda)$ có 3 nghiệm phân biệt là $\lambda_1=1, \lambda_2=1+\sqrt{7}, \lambda_3=1-\sqrt{7}.$ Vậy A có 3 trị riêng phân biệt. Do đó A chéo hóa được.

Cho ma trận thực
$$A = \begin{pmatrix} 3 & 3 & 2 \\ 1 & 1 & -2 \\ -3 & -1 & 0 \end{pmatrix}$$
. Tìm trị riêng và vector

riêng của A. Xác định cơ sở, số chiều của các không gian riêng tương ứng. Ma trận A có chéo hóa được hay không?

Cho ma trận thực
$$A=\left(\begin{array}{ccc} 3 & 3 & 2 \\ 1 & 1 & -2 \\ -3 & -1 & 0 \end{array}\right)$$
. Tìm trị riêng và vector

riêng của A. Xác định cơ sở, số chiều của các không gian riêng tương ứng. Ma trận A có chéo hóa được hay không?

Hướng dẫn:

Đa thức đặc trưng

$$P_A(\lambda) = \begin{vmatrix} 3 - \lambda & 3 & 2 \\ 1 & 1 - \lambda & -2 \\ -3 & -1 & -\lambda \end{vmatrix} = -(\lambda - 4)(\lambda^2 + 4)$$

Trị riêng

$$P_A(\lambda) = 0 \Leftrightarrow \lambda = 4.$$

Do đó ma trận A chỉ có một trị riêng $\lambda=4$. Không gian riêng E(4) là không gian nghiệm của hệ $(A-4I_3)X=0$.

$$(A - 4I_3) = \begin{pmatrix} -1 & 3 & 2 \\ 1 & -3 & -2 \\ -3 & -1 & -4 \end{pmatrix} \longrightarrow \begin{pmatrix} -1 & 3 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

Ta có

$$E(4) = \{(x_1, x_2, x_3) = (-t, -t, t) | t \in \mathbb{R}\} = \{t(-1, -1, 1) | t \in \mathbb{R}\}.$$

 $E(4)$ có cơ sở là $\mathcal{B} = \{(-1, -1, 1)\}.$

Vì ma trận A không phân rã được, nên A không chéo hóa được.

Thuật toán chéo hóa ma trận

Bước 1: Tìm đa thức đặc trưng $P_A(\lambda) = \det(A - \lambda I)$.

- ▶ Nếu $P_A(\lambda)$ không phân rã thì A không chéo hóa được và thuật toán kết thúc.
- Ngược lại, chuyển sang bước tiếp theo.

Bước 2: Tìm tất cả các nghiệm $\lambda_1, \lambda_2, \ldots, \lambda_p$ của $P_A(\lambda)$ và các số bội m_1, m_2, \ldots, m_p của chúng. Đối với mỗi $i \in \overline{1,p}$, tìm số chiều của không gian nghiệm $E(\lambda_i)$ của hệ phương trình $(A - \lambda_i I)X = 0$

- Nếu tồn tại một $i \in \overline{1,p}$ sao cho dim $E(\lambda_i) < m_i$ thì A không chéo hóa được và thuật toán kết thúc.
- ▶ Ngược lại, A chéo hóa được và chuyển sang bước tiếp theo.

Bước 3: Với mỗi $i \in \overline{1,p}$ tìm một cơ sở \mathcal{B}_i cho $E(\lambda_i)$, gọi P là ma trận có được bằng cách dựng các vector trong \mathcal{B}_i thành các cột. Khi đó ma trận P làm chéo A và $P^{-1}AP$ là ma trận đường chéo.

$$diag(\lambda_1,\ldots,\lambda_1,\ldots,\lambda_p,\ldots,\lambda_p)$$

trong đó λ_i xuất hiện m_i lần với mọi i.

Chéo hóa ma trận thực
$$A=\left(\begin{array}{ccc}1&3&3\\-3&-5&-3\\3&3&1\end{array}\right)$$

Chéo hóa ma trận thực
$$A=\left(\begin{array}{ccc}1&3&3\\-3&-5&-3\\3&3&1\end{array}\right)$$

Đa thức đặc trưng $P_A(\lambda)=|A-\lambda I_3|=-(\lambda-1)(\lambda+2)^2$. Trị riêng $P_A(\lambda)=0 \Leftrightarrow \lambda_1=1($ bội $1),\lambda_2=-2($ bội 2) Không gian riêng

▶ Với $\lambda_1 = 1$, không gian riêng E(1) là không gian nghiệm của hệ phương trình $(A - I_3)X = 0$.

$$(A - I_3) = \begin{pmatrix} 0 & 3 & 3 \\ -3 & -6 & -3 \\ 3 & 3 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 2 & 1 \\ 0 & -3 & -3 \\ 0 & 0 & 0 \end{pmatrix}$$

Giải ra ta được tập hợp nghiệm

$$E(1) = \{(x_1, x_2, x_3) = (t, -t, t) | t \in \mathbb{R}\} = \{t(1, -1, 1) | t \in \mathbb{R}\}.$$

Suy ra $E(1)$ có dim $E(1) = 1$ với cơ sở $\mathcal{B}_1 = \{u_1 = (1, -1, 1)\}.$

Với $\lambda_2 = -2$, không gian riêng E(-2) là không gian nghiệm của hệ phương trình $(A + 2I_3)X = 0$.

$$(A+2I_3) = \begin{pmatrix} 3 & 3 & 3 \\ -3 & -3 & -3 \\ 3 & 3 & 3 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Giải ra ta được tập hợp nghiệm là $E(-2) = \{(x_1, x_2, x_3) = (-t - s, t, s) | t, s \in \mathbb{R}\} = \{(-t, t, 0) + (-s, 0, s) | t, s \in \mathbb{R}\} = \{t(-1, 1, 0) + s(-1, 0, 1) | t, s \in \mathbb{R}\}.$ Suy ra E(-2) có chiều dimE(-2) = 2 với cơ sở $\mathcal{B}_2 = \{u_2 = (-1, 1, 0), u_3 = (-1, 0, 1)\}.$

Vì các không gian $E(\lambda_i)$ của A có số chiều bằng số bội của các trị riêng tương ứng nên A chéo hóa được. Lập ma trận P bằng cách lần lượt dựng các vector trong $\mathcal{B}_1,\mathcal{B}_2$ thành các cột

$$P = \left(\begin{array}{rrr} 1 & -1 & -1 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{array}\right)$$

Khi đó
$$P^{-1}AP = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{pmatrix}.$$

Ví dụ

Chéo hóa ma trận
$$A = \begin{pmatrix} 1 & -4 & -4 \\ 8 & -11 & -8 \\ -8 & 8 & 5 \end{pmatrix}$$
.

Một số ứng dụng của chéo hóa ma trận Lũy thừa ma trân

Bài toán:

Cho ma trận $A \in M_n(\mathbb{R})$. Giả sử A chéo hóa được trên \mathbb{R} . Khi đó tồn tại một ma trận khả nghịch $P \in M_n(\mathbb{R})$ sao cho

$$D = P^{-1}AP \qquad (*)$$

là một ma trân chéo. Giả sử

$$D = diag(\lambda_1, \ldots, \lambda_n).$$

Do (*) nên $A = PDP^{-1}$. Từ đây suy ra

$$A^{k} = (PDP^{-1})^{k} = PD^{k}P^{-1} = Pdiag(\lambda_{1}^{k} \dots \lambda_{n}^{k})P^{-1}.$$

Ví du

Cho ma trận
$$A = \begin{pmatrix} 1 & -1 \\ 2 & 4 \end{pmatrix}$$
 . Tính A^n .

Đáp án:
$$A^n = \begin{pmatrix} 2^{n+1} - 3^n & 2^n - 3^n \\ -2^{n+1} + 2 \cdot 3^n & -2^n + 2 \cdot 3^n \end{pmatrix}$$
.

Tìm một dãy số thỏa công thức tuy hồi

Ta minh họa ý tưởng thông qua một ví dụ sau đây:

Ví dụ

Giả sử các dãy số thực $\{u_n\}$ và $\{v_n\}$ thỏa các công thức truy hồi

$$\begin{cases} u_{n+1}=u_n-v_n;\\ v_{n+1}=2u_n+4v_n \end{cases} \quad \text{v\'oi} \quad \begin{cases} u_0=2;\\ v_0=1. \end{cases} \quad (1)$$

Tìm công thức tính số hạng tổng quát của u_n và v_n .

Hướng dẫn:

Đặt
$$X_n=\begin{pmatrix}u_n\\v_n\end{pmatrix}$$
 và $A=\begin{pmatrix}1&-1\\2&4\end{pmatrix}$. Công thức (1) được viết lại như sau:

$$X_{n+1} = AX_n$$
 với $X_0 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$.

Từ đó tính được

$$X_n = A^n X_0$$
.

Với A^n đã được tính ở ví dụ trước, ta có

$$\begin{pmatrix} u_n \\ v_n \end{pmatrix} = \begin{pmatrix} 2^{n+1} - 3^n & 2^n - 3^n \\ -2^{n+1} + 2 \cdot 3^n & -2^n + 2 \cdot 3^n \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
$$= \begin{pmatrix} 2^{n+2} - 2 \cdot 3^n + 2^n - 3^n \\ -2^{n+2} + 4 \cdot 3^n - 2^n + 2 \cdot 3^n \end{pmatrix}$$

Vậy
$$\begin{cases} u_n = 5.2^n - 3^{n+1}; \\ v_n = -5.2^n + 6.3^n. \end{cases}$$

Bài toán. Tìm nghiệm của hệ phương trình vi phân tuyến tính

$$\begin{cases} \frac{dx_1}{dt} &= a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n; \\ \frac{dx_2}{dt} &= a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n; \\ \dots & \dots & \dots \\ \frac{dx_n}{dt} &= a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n; \end{cases}$$
(1)

trong đó mọi $a_{ij} \in \mathbb{R}$ và mọi x_i đều là hàm khả vi theo biến t.

Hướng dẫn. Đặt
$$X=\begin{pmatrix}x_1\\x_2\\\vdots\\x_n\end{pmatrix}$$
. Khi đó hệ (1) được viết lại dưới dạng

ma trận như sau

$$\frac{dX}{dt} = AX$$
, với $A = (a_{ij})$ (2)

Giả sử A chéo hóa được, nghĩa là tồn tại ma trận đường chéo D và ma trận khả nghịch P sao cho

$$D = P^{-1}AP \quad (3)$$

Đặt

$$Y = P^{-1}X \quad (4)$$

Lấy vi phân theo t ta có

$$\frac{dY}{dt} = P^{-1}\frac{dX}{dt}.$$
 (5)

Thay (2) vào (5) ta được

$$\frac{dY}{dt} = P^{-1}AX \quad (6)$$

Từ (3) ta có $P^{-1}A = DP^{-1}$. Thay vào (6) ta được

$$\frac{dY}{dt} = DP^{-1}X$$

Mặt khác $Y = P^{-1}X$. Suy ra

$$\frac{dY}{dt} = DY.$$

Vì D là ma trận đường chéo nên ta dễ dàng tìm ra Y. Sau đó dùng công thức X=PY để tìm ra X.

Nếu A là một ma trận chéo hóa được, thì ta có thể giải hệ (1) qua các bước sau:

Bước 1. Chéo hóa ma trận A, nghĩa là tìm ma trận khả nghịch P sao cho $D=P^{-1}AP$ là ma trận chéo.

Bước 2. Giải hệ $\frac{dY}{dt} = DY$.

Bước 3. Tìm X bởi công thức X = PY.

Ví dụ

Giải hệ phương trình vi phân

$$\begin{cases} \frac{dx_1}{dt} &= x_1 - x_2; \\ \frac{dx_2}{dt} &= 2x_1 + 4x_2. \end{cases}$$

Bước 1:

Ma trận của hệ $A=\begin{pmatrix}1&-1\\2&4\end{pmatrix}$. Chéo hóa ma trận A, ta tìm được ma trận $P=\begin{pmatrix}-1&-1\\1&2\end{pmatrix}$ làm chéo A và

$$D = P^{-1}AP = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}.$$

Bước 2. Viết lại hệ $\frac{dY}{dt} = DY$ thành hệ

$$\begin{cases} \frac{dy_1}{dt} &= 2y_1 \\ \frac{dy_2}{dt} &= 3y_2 \end{cases} \Leftrightarrow \begin{cases} \frac{dy_1}{y_1} &= 2dt \\ \frac{dy_2}{y_2} &= 3dt \end{cases}$$

$$\Leftrightarrow \begin{cases} \int \frac{dy_1}{y_1} &= \int 2dt \\ \int \frac{dy_2}{y_2} &= \int 3dt \end{cases} \Leftrightarrow \begin{cases} \ln(|y_1|) &= 2t + \alpha_1 \\ \ln(|y_2|) &= 3t + \alpha_2 \end{cases}$$

$$\Leftrightarrow \begin{cases} y_1 &=& e^{2t+\alpha_1} \\ y_2 &=& e^{3t+\alpha_2} \end{cases} \Leftrightarrow \begin{cases} y_1 &=& C_1 e^{2t} \\ y_2 &=& C_2 e^{3t} \end{cases}; \quad C_1, C_2 \text{ là các hằng số.}$$

Bước 3. Ta có X = PY, do đó

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} -1 & -1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} -y_1 - y_2 \\ y_1 + 2y_2 \end{pmatrix}.$$

Suy ra

$$\begin{cases} x_1 = -C_1 e^{2t} - C_2 e^{3t} \\ x_2 = C_1 e^{2t} + 2C_2 e^{3t} \end{cases}$$

Ví dụ

Giải hệ phương trình vi phân

$$\begin{cases} \frac{dx_1}{dt} &= -x_1 - 3x_2 - 2x_3\\ \frac{dx_2}{dt} &= -2x_1 - 2x_2 - 2x_3\\ \frac{dx_3}{dt} &= 6x_1 + 9x_2 + 7x_3 \end{cases}$$

Dãy Fibonacii

Dãy Fibonacii là dãy vô hạn các số

$$0, 1, 1, 2, 3, 5, 8, 13, 21, \cdots$$

Mỗi số hạn trong dãy Fibonacii (kể từ số hạng thứ ba) bằng tổng của hai số hạng đứng ngay trước nó:

$$F_{k+2} = F_{k+1} + F_k, \quad k \ge 0, F_0 = 0, F_1 = 1.$$

Làm thế nào để tính số hạng F_n mà không cần tính lần lượt từ các số $F_0=0, F_1=1$?

Hướng dẫn.

Đặt
$$u_k=egin{pmatrix} F_{k+1} \\ F_k \end{pmatrix}$$
 và $A=egin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$. Khi đó
$$u_{k+1}=Au_k.$$

Từ đó suy ra

$$u_k=A^ku_0,\quad ext{v\'oi}\ u_0=egin{pmatrix}1\\0\end{pmatrix}.$$

Dãy Fibonacii

Vấn đề dẫn đến việc tính A^k . Ta sẽ dùng phương pháp chéo hóa ma trận để tính.

Đa thức đặc trưng $p_A(\lambda) = \lambda^2 - \lambda - 1$ có các nghiệm khác nhau là

$$\lambda_1=\frac{1+\sqrt{5}}{2}, \lambda_2=\frac{1-\sqrt{5}}{2}.$$

Do đó A chéo hóa được và một dạng chéo của A là

$$D=P^{-1}\!AP=egin{pmatrix} \lambda_1 & 0 \ 0 & \lambda_2 \end{pmatrix}, \ \ ext{v\'oi}\ P=egin{pmatrix} \lambda_1 & \lambda_2 \ 1 & 1 \end{pmatrix}.$$

Ta có

$$P^{-1} = \frac{1}{\lambda_1 - \lambda_2} \begin{pmatrix} 1 & -\lambda_2 \\ -1 & \lambda_1 \end{pmatrix}.$$

Dãy Fibonacii

Thay vào ta được

$$A^k = PD^kP^{-1} = \frac{1}{\lambda_1 - \lambda_2} \begin{pmatrix} \lambda_1 & \lambda_2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \lambda_1^k & 0 \\ 0 & \lambda_2^k \end{pmatrix} \begin{pmatrix} 1 & -\lambda_2 \\ -1 & \lambda_1 \end{pmatrix}.$$

Hơn nữa, ta có

$$\begin{pmatrix} F_{k+1} \\ F_k \end{pmatrix} = u_k = A^k u_0 = \frac{1}{\lambda_1 - \lambda_2} \begin{pmatrix} \lambda_1^{k+1} - \lambda_2^{k+1} \\ \lambda_1^k - \lambda_2^k \end{pmatrix}.$$

Thay các giá trị của λ_1 và λ_2 vào ta được

$$F_k = rac{1}{\sqrt{5}} \left[\left(rac{1+\sqrt{5}}{2}
ight)^k - \left(rac{1-\sqrt{5}}{2}
ight)^k
ight].$$