The Baire category theorem

xuascaler

May 6, 2025

Metric Topology

Let (X, d) be a metric space, and $A \subset X$ a subset.

Definition.

- 1. A point $x \in A$ is called an interior point of A if $\exists \epsilon > 0$ s.t. $B(x, \epsilon) = \{y \in X \mid d(y, x) < \epsilon\}$ lies in A. $(\epsilon$ -neighborhood of x).
- 2. A is open if any point $x \in A$ is an interior point of A.

Example. For any $x \in X$ and any r > 0, B(x,r) is open.

Proof. For any $y \in B(x,r)$, we have d(x,y) < r. Take any $0 < \epsilon < r - d(x,y)$. Then for any $z \in B(y,\epsilon)$, $d(z,x) \le d(z,y) + d(y,x) < \epsilon + d(x,y) < r$.

Property.

- 1. \emptyset , X are open sets.
- 2. If $\{A_{\alpha}\}$ are a collection (could be infinite, or even incountable) of open sets in X, so is $\cup_{\alpha} A_{\alpha}$
- 3. If A, B are open sets in X, so is $A \cap B$. (If $A_1, A_2, ..., A_n$ are open, so is $\bigcap_{i=1}^n nA_i$)

Proof.

- 1. Obvious.
- 2. Suppose $x \in \cup_{\alpha} A_{\alpha}$, then $\exists \alpha, x \in A_{\alpha}$. Since A_{α} is open, $\exists \epsilon > 0, B(x, \epsilon) \subset A_{\alpha}$. It follows $B(x, \epsilon) \subset \cup_{\alpha} A_{\alpha}$. So $\cup_{\alpha} A_{\alpha}$ is open.