Formal Languages

Name:Guangwei Zhang Student ID: 20221001980

November 5, 2022

1 Sentence making

Possible generated sentences are:

a quick cow happily jumps the sad fox the sad fox slowly eats a brown owl a quick owl slowly jumps a brown fox

2 Grammar generating

 $\text{NP} \to \text{Det}$ NONS QST

The rules are :

(1)

	$VP \rightarrow V$ $VP \rightarrow V VP$	(1) (2)	
$\operatorname{Example}^{\scriptsize{\scriptsize{\scriptsize{\scriptsize{\scriptsize{\scriptsize{1}}}}}}}}:$ a quick cow happily eats	slowly jumps the quick fox		① The core of the language is to recursion
(2)			

(3)

$S \to Aux NP VPO$	(4)
$\mathrm{VPO} \rightarrow \mathrm{VerbO}\ \mathrm{N}$	(5)
$NONS \rightarrow N CONJ NONS$	(6)
$Aux \rightarrow do$	(7)
$VerbO \rightarrow jump \mid eat \mid catch$	(8)
$CONJ \rightarrow and$	(9)
$\mathrm{QST} o $?	(10)

 $\text{Example}^{\textcircled{2}}$:

2 Now we can ask questions can't we?

do the cow and the fox eat the owl?

3 FSA Problem

(1) The answer is filled in the following sheet:

1	2	3	4	5	6	7	8	9	10
Y	N	N	Y	N	N	N	Y	Y	N

(2) The formal grammar can be written as the following:

With the finite state automaton $M = \{\{S_0, S_1, S_2, S_3, S_4\}, \{\text{run}, \text{faster}, \text{forrest}\}, t, S_0, \{S_3, S_4\}\},$ where t is the all possible form of $(A, b) \to C$ where node A is connected by edge b to node C.

$$S_0 \to \operatorname{run} S_1 | \text{forrest } S_3$$
 (11)

$$S_1 \to \text{run } S_0 | \text{faster} S_2 | \text{forrest } S_3$$
 (12)

$$S_2 \to \text{forrest } S_3 | \text{run } S_1$$
 (13)

$$S_3 \to \operatorname{run} S_4 | \emptyset$$
 (14)

$$S_4 \to \emptyset$$
 (15)

4 Build an automation

We have the following automation with s_2 and s_4 are accepting states $^{\textcircled{3}}$.

End of lab assignment.

⁽³⁾ Regarding 3 letters as a whole for simplicity without affecting its correctness. If the length of the string is not divisible by 3, then add minimum spaces to make it divisible by 3.