Week 3(DTL)

Question No. 1

For the given DTL NAND circuit, use V_{cc} =10V, R_i =2 $k\Omega$, R_i =5 $k\Omega$, R_i =2 $k\Omega$. Assume common emitter current gain, β_r =30 and V_{ou} =9.5 V, V_{ou} =0.1V. Also assume for saturation mode V_{se} =0.8V, V_{cesar} =0.1 V and cut in voltage for transistor $V\gamma_r$ =0.5V, cut in voltage for Diode, $V\gamma_o$ =0.6V.

(a)	Find the value of β_{Min} when all inputs are logical High (10V).
(b)	Find the maximum fanout (Hint. find fanout for each case and calculate maximum fanout
	from it)
(c)	Find the power dissipation for all cases[Assume N load connected; N= maximum Fanout]
(d)	If all the inputs are high $(V_a=V_b=V_c=10\ V)$, what is the magnitude of the noise voltage in V at the 1
	input A, which will cause the gate to malfunction?
(e)	If at least one input is low $(0.1V)$, what is the magnitude of the noise voltage in V at the input A ,
	which will cause the gate to malfunction?

Question No. 2

For the given modified DTL NAND circuit, use V_{cc} =12V. Assume common emitter current gain, β_r =30 and V_{oh} =11.5 V, V_{oh} =0.1V. Also assume for saturation mode V_{be} =0.8V, forward active mode V_{be} =0.7V, $V_{ce(sat)}$ =0.1 V and cut in voltage for transistor $V\gamma_r$ =0.5V, cut in voltage for diode, $V\gamma_p$ =0.6V.

(a)	Find the value of β_{Min} when all inputs are logical High (10V).
(b)	Find the maximum fanout (Hint. find fanout for each case and calculate maximum fanout
	from it)
(c)	Find the power dissipation for all cases[Assume N load connected; N= maximum Fanout]
(d)	If all the inputs are high $(V_A = V_B = V_C = 10V)$, what is the magnitude of the noise voltage in V at the
	input A, which will cause the gate to malfunction?
(e)	If at least one input is low $(0.1V)$, what is the magnitude of the noise voltage in V at the input A ,
	which will cause the gate to malfunction?

Figure 2

Question No. 3

For the given DTL NAND circuit, assume common emitter current gain, β_r =30.Also assume for saturation mode V_{BE} =0.8V, $V_{CE(SAT)}$ =0.1 V and cut in voltage for transistor $V\gamma_r$ =0.5V, cut in voltage for transistor $V\gamma_D$ =0.6V.

(a) Find I₁, I₂, I_B,I_C and I_L if any input is logical low (0.1V).
(b) Find I₁, I₂, I_B,I_C and I_L if all inputs are logical High (10V).
(c) Find the value of β_{Min} when all inputs are logical High (10V). (Hint: find only for Transistor Q of driver)
(d) Find the power dissipation for the conditions of both (a) and (b) for the driver [Assume no load connected]
(e) Find the maximum fanout (Hint: find fanout for each case and calculate maximum fanout from it)

Figure 3