Exercices d'oraux de la banque CCP 2014-2015

11 exercices d'analyse sur les 58 peuvent être traités en Maths Sup.

BANQUE ANALYSE

EXERCICE 1

- 1) On considère deux suites numériques $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ telles que $u_n\underset{+\infty}{\sim}v_n$. Démontrer que u_n et v_n sont de même signe à partir d'un certain rang.
- 2) Déterminer le signe, au voisinage de l'infini, de : $\operatorname{sh}\left(\frac{1}{n}\right) \operatorname{tan}\left(\frac{1}{n}\right)$.

EXERCICE 2 (la question 2) est modifiée)

On pose $f(x) = \frac{1}{(x+1)^2(3-x)}$

- 1) Décomposer f(x) en éléments simples et en déduire la primitive G définie sur l'intervalle]-1,3[telle que G(1)=0.
- 2) Pour tout entier naturel n, donner le développement limité de la fonction f à l'ordre n en 0.
- 3) En déduire $G^{(3)}(0)$.

EXERCICE 3

- 1) On pose $g(x) = e^{2x}$ et $h(x) = \frac{1}{1+x}$. Calculer pour tout entier naturel k, la dérivée d'ordre k des fonctions g et h sur leurs ensembles de définition respectifs.
- 2) On pose $f(x) = \frac{e^{2x}}{1+x}$. En utilisant la formule de Leibniz, concernant la dérivée $\mathfrak{n}^{\mathrm{ème}}$ d'un produit de fonctions, déterminer, pour tout entier naturel \mathfrak{n} et pour $x \in \mathbb{R} \setminus \{-1\}$, la valeur de $f^{(\mathfrak{n})}(x)$.
- 3) Démontrer, dans le cas général, la formule de LEIBNIZ, utilisée dans la question précédente.

EXERCICE 4

- 1) Enoncer le théorème des accroissements finis.
- 2) Soit $f:[a,b] \longrightarrow \mathbb{R}$ et soit $x_0 \in]a,b[$. On suppose que f est continue sur [a,b] et que f est dérivable sur $]a,x_0[$ et sur $]x_0,b[$. Démontrer que, si f' admet une limite en x_0 , alors f est dérivable en x_0 et $f'(x_0) = \lim_{x \to x_0} f'(x)$.
- 3) Prouver que l'implication : (f est dérivable en x_0) \Longrightarrow (f' admet une limite finie en x_0) est fausse.

Indication : on pourra considérer la fonction g définie par : $g(x) = x^2 \sin\left(\frac{1}{x}\right)$ si $x \neq 0$ et g(0) = 0.

EXERCICE 5

- 1) On considère la série de terme général $u_n = \frac{1}{n (\ln n)^{\alpha}}$ où $n \geqslant 2$ et $\alpha \in \mathbb{R}$.
 - (a) Cas $\alpha \leq 0$.

En utilisant une minoration très simple de u_n , démontrer que la série diverge.

(b) Cas $\alpha > 0$.

Etudier la nature de la série.

Indication : on pourra utiliser la fonction définie par $f(x) = \frac{1}{x(\ln x)^{\alpha}}$.

2) Déterminer la nature de la série $\sum_{n\geqslant 3} \frac{\left(e-\left(1+\frac{1}{n}\right)^n\right)e^{\frac{1}{n}}}{\left(\ln\left(n^2+n\right)\right)^2}.$

EXERCICE 7

1) Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites de nombres réels positifs. Montrer que :

$$\mathfrak{u}_n \underset{n \to +\infty}{\overset{\sim}{\sim}} \nu_n \Longrightarrow \sum \mathfrak{u}_n \ \mathrm{et} \ \sum \nu_n \ \mathrm{sont} \ \mathrm{de} \ \mathrm{m\^{e}me} \ \mathrm{nature}.$$

2) Etudier la convergence de la série $\sum_{n\geqslant 2}\frac{(i-1)\sin\left(\frac{1}{n}\right)}{\left(\sqrt{n+3}-1\right)\ln n}.$ (i est ici le nombre complexe de carré égal à -1)

EXERCICE 42

On considère les deux équations suivantes :

$$2xy' - 3y = 0$$
 (H)
 $2xy' - 3y = \sqrt{x}$ (E)

- 1) Résoudre l'équation (H) sur l'intervalle $]0, +\infty[$.
- 2) Résoudre l'équation (E) sur l'intervalle $]0, +\infty[$ puis sur l'intervalle $[0, +\infty[$.

EXERCICE 43

Soit $x_0 \in \mathbb{R}$. On définit la suite (u_n) par $u_0 = x_0$ et, $\forall n \in \mathbb{N}$, $u_{n+1} = \operatorname{Arctan}(u_n)$.

- 1) (a) Démontrer que la suite (u_n) est monotone et déterminer, en fonction de la valeur x_0 , le sens de variation de (u_n) .
 - (b) Montrer que (u_n) converge et déterminer sa limite.
- 2) Déterminer l'ensemble des fonctions h continues sur \mathbb{R} telles que : $\forall x \in \mathbb{R}$, $h(x) = h(\operatorname{Arctan} x)$.

EXERCICE 47

- 1) Soit f une fonction continue sur [0, 1].
 - (a) Quel est le sens géométrique de la somme de RIEMANN $R_n(f) = \frac{1}{n} \sum_{k=1}^n f\left(\frac{k}{n}\right)$?
 - (b) Démontrer, lorsque f est de classe C^1 sur [0,1], que $\lim_{n\to +\infty} R_n(f) = \int_0^1 f(x)\ dx.$
- 2) Déterminer la limite de la suite (x_n) définie par $x_n = \sum_{k=1}^n \frac{n}{3n^2 + k^2}.$

EXERCICE 55

Soit a un nombre complexe.

On note E l'ensemble des suites à valeurs complexes telles que :

$$\forall n \in \mathbb{N}, \; u_{n+2} = 2 \mathfrak{a} u_{n+1} + 4 (i\mathfrak{a} - 1) u_n \; \mathrm{avec} \; \left(u_0, u_1 \right) \in \left(\mathbb{C} \right)^2.$$

2

- 1) Prouver que E est un sous-espace vectoriel de l'ensemble des suites à valeurs complexes. Déterminer, en le justifiant, la dimension de E.
- 2) Dans cette question, on considère la suite de E définie par : $u_0 = 1$ et $u_1 = 1$. Exprimer, pour tout entier naturel n, le nombre complexe u_n en fonction de n. Indication : discuter suivant les valeurs de a.

EXERCICE 56

On considère la fonction H définie sur]1, $+\infty$ [par $H(x) = \int_{x}^{x^2} \frac{dt}{\ln t}$.

- 1) Montrer que H est C^1 sur $]1,+\infty[$ et calculer sa dérivée.
- 2) Montrer que la fonction $\mathfrak u$ définie par $\mathfrak u(x)=\frac{1}{\ln x}-\frac{1}{x-1}$ admet une limite finie en x=1.
- 3) En utilisant la fonction $\mathfrak u$ de la question 2), calculer la limite en 1^+ de la fonction H.