机器学习

04集成学习

李祎

liyi@dlut.edu.cn

目录

- □ 什么是集成学习
- □ Bagging与随机森林
- Boosting: Adaboost
- □ 结合策略
- □ 多样性

类别不平衡问题

➤ 过采样 (oversampling):

- ✓ 样本复制
- ✓ 样本插值
- ✓ 样本生成 (GAN)

[1] Chawla N V, Bowyer K W, et al. **SMOTE: Synthetic Minority Over-Sampling Technique**. *JAIR*, 2002.

> 欠采样 (undersampling)

[2] Xu-Ying Liu, Jianxin Wu, Zhi-Hua Zhou. **Exploratory Undersampling for Class-Imbalance Learning**. *IEEE TSMCB*, 2009.

个体与集成

□ 集成学习(ensemble learning)通过构建并结合多个学习器来提 升性能

都是同一类型学习器:同质 基学习器 基学习算法

包含不同类型学习器: 异质 组件学习器

个体与集成

□ 例如: 一共有500个样本数据,每个子模型只用100个样本数据进行训练。假如每个子模型只有51%的准确率(至少要比随机猜一个50%要高一点),

- □ 如果只有一个子模型,整体准确率:51%
- □ 如果有三个子模型,整体准确率: $0.51^3 + C_3^2 \cdot 0.51^2 \cdot 0.49 = 51.5\%$
- **□** 如果有**500**个子模型,整体准确率: $\sum_{i=251}^{500} C_{500}^i \cdot 0.51^i \cdot 0.49^{500-i} = 65.6\%$
- □ 如果子模型的准确率60%,500个子模型集成:

$$\sum_{i=251}^{500} C_{500}^i \cdot 0.6^i \cdot 0.4^{500-i} = 99.999\%$$

个体与集成

- □ 如何获得比单一学习器更好的性能?
- □ 考虑一个简单的例子,在二分类问题中,假定3个分类器在三个样本中的表现如下图所示,其中√表示分类正确, X 号表示分类错误, 集成的结果通过投票产生。

	测试例1	测试例2	测试例3	沙	引试例1	测试例2	测试例3	ž	则试例1	测试例2	测试例3	
h_1	\checkmark	\checkmark	×	h_1	\checkmark	\checkmark	×	h_1	\checkmark	\times	\times	
h_2	\times	\checkmark	\checkmark	h_2	\checkmark	\checkmark	\times	h_2	\times	\checkmark	×	
h_3	\checkmark	×	\checkmark	h_3	\checkmark	\checkmark	\times	h_3	×	\times	\checkmark	
集君	¥ V			集群	\checkmark	\checkmark	×	集群	×	×	×	
	(a) 集群提升性能				(b) 集群不起作用				(c) 集群起负作用			

■ 集成个体应该: 好而不同

个体与集成 - 简单分析

□ 考虑二分类问题, 假设基分类器的错误率为:

$$P(h_i(\boldsymbol{x}) \neq f(\boldsymbol{x})) = \epsilon$$

□ 假设集成通过简单投票法结合*T*个分类器,若有超过半数的基分类器正确则分类就正确

$$H(oldsymbol{x}) = ext{sign}\left(\sum_{i=1}^T h_i\left(oldsymbol{x}
ight)
ight)$$

个体与集成 - 简单分析

■ 假设基分类器的错误率相互独立,则由Hoeffding不等式可得集成的错误率为:

$$P(H(\boldsymbol{x}) \neq f(\boldsymbol{x})) = \sum_{k=0}^{\lfloor T/2 \rfloor} {T \choose k} (1 - \epsilon)^k \epsilon^{T-k}$$
$$\leq \exp\left(-\frac{1}{2}T(1 - 2\epsilon)^2\right)$$

■ 上式显示,在一定条件下,随着集成分类器数目的增加,集成的错误率将指数级下降,最终趋向于0

个体与集成 - 简单分析

- □ 上面的分析有一个关键假设:基学习器的误差相互独立
- 如何产生"好而不同"的个体学习器是集成学习研究的核心
- □ 集成学习大致可分为两大类
 - 个体学习器间存在强依赖关系、必须串行生成的序列化方法: Boosting
 - 个体学习器间不存在强依赖关系、可同时生成的并行化方法:Bagging

Bagging与随机森林

Bagging

- □ 并行式集成学习方法最著名的代表
- □ 基本思想: 并行构建 T 个分类器、并行训练, 最终将所有分类器的结果进行综合(平均或投票), 达到最终的预测结果。
- □ Bagging: Bootstrap AGGregatING
- □ 自主采样法 (bootstrap sampling)

自助采样法

- □ 给定包含m个样本的数据集D,采样产生数据集D':
- □ 每次随机从D中挑选一个样本,将其拷贝放入D',然后再将该样本放回 初始数据集D中,使得该样本在下次采样时仍有可能被采到;
- □ 这个过程重复执行m次后,我们就得到了包含m个样本的数据集D'。

$$\lim_{m\to\infty} (1-\frac{1}{m})^m \to \frac{1}{e} \approx 0.368$$

Bagging

- □ 采样出 T 个含 m 个训练样本的采样集
- □ 基于每个采样集训练出一个基学习器
- 再将这些基学习器进行结合

Bagging算法

输入: 训练集 $D = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \dots, (\boldsymbol{x}_m, y_m)\};$ 基学习算法 \mathfrak{L} ; 训练轮数 T.

过程:

1: **for**
$$t = 1, 2, ..., T$$
 do

2:
$$h_t = \mathfrak{L}(D, \mathcal{D}_{bs})$$

3: end for

输出:
$$H(\boldsymbol{x}) = \operatorname*{arg\,max}_{y \in \mathcal{Y}} \sum_{t=1}^{T} \mathbb{I}(h_t(\boldsymbol{x}) = y)$$

Bagging算法特点

- □ 时间复杂度低
 - 假定基学习器的计算复杂度为O(m),采样与投票/平均过程的复杂度为O(s),则bagging的复杂度大致为T(O(m)+O(s))
 - 由于O(s)很小且T是一个不大的常数
 - 因此训练一个bagging集成与直接使用基学习器的复杂度同阶

□ 直接适用于多分类、回归等任务

- □ 可使用包外估计
 - 由于基学习器只使用了初始训练集中约63.2%的样本,剩下的约36.8%的样本可用作验证集来对泛化性能进行"包外估计"(out-of-bag estimate)。

Bagging: 包外估计

- 需要记录每个基学习器使用的训练样本Dt
- \square $H^{oob}(x)$ 表示对样本x的包外预测,即仅考虑那些未使用样本x训练的基学习器在x上的预测

$$H^{oob}(oldsymbol{x}) = rgmax_{y \in \mathcal{Y}} \sum_{t=1}^T \mathbb{I}(h_t(oldsymbol{x}) = y) \cdot \mathbb{I}(oldsymbol{x}
otin D_t)$$

□ Bagging泛化误差的包外估计为:

$$\epsilon^{oob} = rac{1}{|D|} \sum_{(oldsymbol{x},y) \in D} \mathbb{I}(H^{oob}(oldsymbol{x})
eq y)$$

Bagging实验结果

□ 从偏差-方差的角度:降低方差,在不剪枝的决策树、神经网络等易受样本影响的学习器上效果更好

偏差-方差分解

对回归任务, 泛化误差可通过"偏差-方差分解"拆解为:

$$E(f; D) = \underbrace{bias^{2}(\mathbf{x})}_{\mathbf{t}} + \underbrace{var(\mathbf{x})}_{\mathbf{t}} + \underline{\varepsilon^{2}}_{\mathbf{t}}$$

$$bias^{2}(\mathbf{x}) = (\bar{f}(\mathbf{x}) - y)^{2}$$

同样大小的训练集的变动, 所导致的

期望输出与真实

输出的差别

性能变化

$$var(\boldsymbol{x}) = \mathbb{E}_D\left[\left(f(\boldsymbol{x}; D) - \bar{f}(\boldsymbol{x})\right)^2\right]$$

训练样本的标记与 真实标记有区别

表达了当前任务上任何学习算法所能达到的期望泛化误差下界

$$\varepsilon^2 = \mathbb{E}_D \left[(y_D - y)^2 \right]$$

泛化性能是由学习算法的能力、数据的充分性以及学习任务本身的难度共同决定

随机森林

- □ 随机森林(Random Forest, 简称RF)是bagging的一个扩展变种
- □ 采样的随机性
- □ 属性选择的随机性
 - 传统决策树: 当前结点的所有属性中选择一个最优属性。
 - RF:

对基决策树的每个结点,

先从该结点的属性集合中随机选择一个包含k个属性的子集, 然后再从这个子集中选择一个最优属性用于划分。

随机森林

基学习器的多样性:

- Bagging 中仅通过样本扰动产生,
- 随机森林中增加了属性扰动,使得最终性能通过个体学习器 之间差异度进一步提升。

Boosting

Boosting

- □ 个体学习器存在强依赖关系,
- □ 串行生成
- □ 每次调整训练数据的样本分布

Boosting

□ 个体学习器存在强依赖关系,

数据权重/分布

□ 串行生成

- 1. 给定初始训练数据,由此训练出第一个基学习器,并确定其权重;
- 2. 对样本分布进行调整, 在之前学习器做错的样本上投入更多关注;
- 3. 用调整后的样本,训练下一个基学习器,确定其权重;
- 4. 重复上述过程 T 次,将 T 个学习器加权结合。

AdaBoost

- □ 给定数据集 $D = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \dots, (\boldsymbol{x}_m, y_m)\}$ 其中, $y_i \in \{-1, +1\}$
- 模型输出:基学习器的线性组合

$$H(oldsymbol{x}) = \sum_{t=1}^T lpha_t h_t(oldsymbol{x})$$

□ 最小化指数损失函数: **0/1**损失的一致性替代损失函数

$$\ell_{\exp}(H \mid \mathcal{D}) = \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}}[e^{-f(\boldsymbol{x})H(\boldsymbol{x})}]$$

 \square 若H(x)能令指数损失函数最小化,则上式对H(x)的偏导值为0,即

$$\frac{\partial \ell_{\exp}(H \mid \mathcal{D})}{\partial H(\boldsymbol{x})} = -e^{-H(\boldsymbol{x})} P(f(\boldsymbol{x}) = 1 \mid \boldsymbol{x}) + e^{H(\boldsymbol{x})} P(f(\boldsymbol{x}) = -1 \mid \boldsymbol{x})$$

$$H(\boldsymbol{x}) = \frac{1}{2} \ln \frac{P(f(\boldsymbol{x}) = 1 \mid \boldsymbol{x})}{P(f(\boldsymbol{x}) = -1 \mid \boldsymbol{x})}$$

$$\begin{split} \operatorname{sign}\left(H\left(\boldsymbol{x}\right)\right) &= \operatorname{sign}\left(\frac{1}{2}\ln\frac{P(f(x)=1\mid\boldsymbol{x})}{P(f(x)=-1\mid\boldsymbol{x})}\right) \\ &= \begin{cases} 1, & P(f(x)=1\mid\boldsymbol{x}) > P(f(x)=-1\mid\boldsymbol{x}) \\ -1, & P(f(x)=1\mid\boldsymbol{x}) < P(f(x)=-1\mid\boldsymbol{x}) \end{cases} \\ &= \underset{y \in \{-1,1\}}{\operatorname{arg}} \max P(f(x)=y\mid\boldsymbol{x}) \;, \end{split}$$

指数损失函数最小化,则分类错误率也将最小化,说明指数损失函数是分类任务原来**0/1**损失函数的一致的替代函数。

 $lue{}$ 当基分类器 h_t 基于分布 D_t 产生后,该基分类器的权重 $lpha_t$ 应使得 $lpha_t h_t$ 最小化指数损失函数

$$\ell_{\exp}(\alpha_{t}h_{t} \mid \mathcal{D}_{t}) = \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}_{t}} \left[e^{-f(\boldsymbol{x})\alpha_{t}h_{t}(\boldsymbol{x})} \right]$$

$$= \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}_{t}} \left[e^{-\alpha_{t}} \mathbb{I} \left(f\left(\boldsymbol{x}\right) = h_{t}\left(\boldsymbol{x}\right) \right) + e^{\alpha_{t}} \mathbb{I} \left(f\left(\boldsymbol{x}\right) \neq h_{t}\left(\boldsymbol{x}\right) \right) \right]$$

$$= e^{-\alpha_{t}} P_{\boldsymbol{x} \sim \mathcal{D}_{t}} \left(f\left(\boldsymbol{x}\right) = h_{t}\left(\boldsymbol{x}\right) \right) + e^{\alpha_{t}} P_{\boldsymbol{x} \sim \mathcal{D}_{t}} \left(f\left(\boldsymbol{x}\right) \neq h_{t}\left(\boldsymbol{x}\right) \right)$$

$$= e^{-\alpha_{t}} \left(1 - \epsilon_{t} \right) + e^{\alpha_{t}} \epsilon_{t} \qquad \epsilon_{t} = P_{\boldsymbol{x} \sim \mathcal{D}_{t}} \left(h_{t}(\boldsymbol{x}) \neq f(\boldsymbol{x}) \right)$$

□ 令指数损失函数的导数为0,即

$$\frac{\partial \ell_{\exp}(\alpha_t h_t \mid \mathcal{D}_t)}{\partial \alpha_t} = -e^{-\alpha_t} (1 - \epsilon_t) + e^{\alpha_t} \epsilon_t$$

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

 $lue{}$ 在获得 H_{t-1} 之后的样本分布进行调整,使得下一轮的基学习器 h_t 能纠正 H_{t-1} 的一些错误,理想的 h_t 能纠正全部错误

$$\ell_{\exp}(H_{t-1} + h_t \mid \mathcal{D}) = \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}}[e^{-f(\boldsymbol{x})(H_{t-1}(\boldsymbol{x}) + h_t(\boldsymbol{x}))}]$$
$$= \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}}[e^{-f(\boldsymbol{x})H_{t-1}(\boldsymbol{x})}e^{-f(\boldsymbol{x})h_t(\boldsymbol{x})}]$$

□ 泰勒展开近似为

$$\ell_{\exp}(H_{t-1} + h_t \mid \mathcal{D}) \simeq \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}} \left[e^{-f(\boldsymbol{x})H_{t-1}(\boldsymbol{x})} \left(1 - f(\boldsymbol{x})h_t(\boldsymbol{x}) + \frac{f^2(\boldsymbol{x})h_t^2(\boldsymbol{x})}{2} \right) \right]$$

$$= \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}} \left[e^{-f(\boldsymbol{x})H_{t-1}(\boldsymbol{x})} \left(1 - f(\boldsymbol{x})h_t(\boldsymbol{x}) + \frac{1}{2} \right) \right]$$

□ 于是,理想的基学习器:

$$h_{t}(\boldsymbol{x}) = \underset{h}{\operatorname{arg \,min}} \, \ell_{\exp}(H_{t-1} + h \mid \mathcal{D})$$

$$= \underset{h}{\operatorname{arg \,min}} \, \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}} \left[e^{-f(\boldsymbol{x})H_{t-1}(\boldsymbol{x})} \left(1 - f(\boldsymbol{x})h(\boldsymbol{x}) + \frac{1}{2} \right) \right]$$

$$= \underset{h}{\operatorname{arg \,max}} \, \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}} \left[e^{-f(\boldsymbol{x})H_{t-1}(\boldsymbol{x})} f(\boldsymbol{x})h(\boldsymbol{x}) \right]$$

$$= \underset{h}{\operatorname{arg \,max}} \, \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}} \left[\frac{e^{-f(\boldsymbol{x})H_{t-1}(\boldsymbol{x})}}{\mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}}[e^{-f(\boldsymbol{x})H_{t-1}(\boldsymbol{x})}]} f(\boldsymbol{x})h(\boldsymbol{x}) \right],$$

□ 注意到 $\mathbb{E}_{x\sim\mathcal{D}}[e^{-f(x)H_{t-1}(x)}]$ 是一个常数,令 \mathbb{D}_{t} 表示一个分布:

$$\mathcal{D}_t(\boldsymbol{x}) = \frac{\mathcal{D}(\boldsymbol{x})e^{-f(\boldsymbol{x})H_{t-1}(\boldsymbol{x})}}{\mathbb{E}_{\boldsymbol{x}\sim\mathcal{D}}[e^{-f(\boldsymbol{x})H_{t-1}(\boldsymbol{x})}]}$$

□ 根据数学期望的定义,这等价于令:

$$egin{aligned} h_t(oldsymbol{x}) &= rg\max_h \mathbb{E}_{oldsymbol{x} \sim \mathcal{D}} \left[rac{e^{-f(oldsymbol{x})H_{t-1}(oldsymbol{x})}}{\mathbb{E}_{oldsymbol{x} \sim \mathcal{D}}[e^{-f(oldsymbol{x})H_{t-1}(oldsymbol{x})]}} f(oldsymbol{x}) h(oldsymbol{x})
ight] \ &= rg\max_h \mathbb{E}_{oldsymbol{x} \sim \mathcal{D}_t} \left[f(oldsymbol{x}) h(oldsymbol{x})
ight] \; . \end{aligned}$$

□ 由 $f(x), h(x) \in \{-1, +1\}$ 有:

$$f(\boldsymbol{x})h(\boldsymbol{x}) = 1 - 2 \mathbb{I}(f(\boldsymbol{x}) \neq h(\boldsymbol{x}))$$

□ 则理想的基学习器

$$h_t(\boldsymbol{x}) = \operatorname*{arg\,min}_h \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}_t} \left[\mathbb{I} \big(f(\boldsymbol{x})
eq h(\boldsymbol{x}) \big) \right]$$

□ 最终的样本分布更新公式

$$\mathcal{D}_{t+1}(\boldsymbol{x}) = \frac{\mathcal{D}(\boldsymbol{x}) e^{-f(\boldsymbol{x})H_{t}(\boldsymbol{x})}}{\mathbb{E}_{\boldsymbol{x}\sim\mathcal{D}}\left[e^{-f(\boldsymbol{x})H_{t}(\boldsymbol{x})}\right]}$$

$$= \frac{\mathcal{D}(\boldsymbol{x}) e^{-f(\boldsymbol{x})H_{t-1}(\boldsymbol{x})} e^{-f(\boldsymbol{x})\alpha_{t}h_{t}(\boldsymbol{x})}}{\mathbb{E}_{\boldsymbol{x}\sim\mathcal{D}}\left[e^{-f(\boldsymbol{x})H_{t}(\boldsymbol{x})}\right]}$$

$$= \mathcal{D}_{t}(\boldsymbol{x}) \cdot e^{-f(\boldsymbol{x})\alpha_{t}h_{t}(\boldsymbol{x})} \frac{\mathbb{E}_{\boldsymbol{x}\sim\mathcal{D}}\left[e^{-f(\boldsymbol{x})H_{t-1}(\boldsymbol{x})}\right]}{\mathbb{E}_{\boldsymbol{x}\sim\mathcal{D}}\left[e^{-f(\boldsymbol{x})H_{t}(\boldsymbol{x})}\right]}$$

AdaBoost算法


```
输入: 训练集 D = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \dots, (\boldsymbol{x}_m, y_m)\}; 基学习算法 \mathfrak{L}; 训练轮数 T.
```

过程:

1:
$$\mathcal{D}_1(x) = 1/m$$
. 初始化样本权重

2: **for**
$$t = 1, 2, ..., T$$
 do

3:
$$h_t = \mathfrak{L}(D, \mathcal{D}_t);$$

4:
$$\epsilon_t = P_{\boldsymbol{x} \sim \mathcal{D}_t}(h_t(\boldsymbol{x}) \neq f(\boldsymbol{x})); \quad h_t$$
错误率

5: if
$$\epsilon_t > 0.5$$
 then break

6:
$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$
; 确定 h_t 权重

7:
$$\mathcal{D}_{t+1}(\boldsymbol{x}) = \frac{\mathcal{D}_{t}(\boldsymbol{x})}{Z_{t}} \times \begin{cases} \exp(-\alpha_{t}), & \text{if } h_{t}(\boldsymbol{x}) = f(\boldsymbol{x}) \\ \exp(\alpha_{t}), & \text{if } h_{t}(\boldsymbol{x}) \neq f(\boldsymbol{x}) \end{cases}$$
 更新样本分布
$$= \frac{\mathcal{D}_{t}(\boldsymbol{x})\exp(-\alpha_{t}f(\boldsymbol{x})h_{t}(\boldsymbol{x}))}{Z_{t}}$$

8: end for

输出:
$$H(\boldsymbol{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(\boldsymbol{x})\right)$$

AdaBoost特点

□ 优点

- 不容易发生过拟合;
- 由于AdaBoost并没有限制弱学习器的种类,所以可以使用不同的学习算法来构建弱分类器;
- 相对于bagging算法和Random Forest算法, AdaBoost充分考虑的每个分类器的权重;
- AdaBoost的参数少,实际应用中不需要调节太多的参数。

□ 缺点

- AdaBoost迭代次数(弱分类器数目)不好设定,可以使用交叉验证来确定;
- 对异常样本敏感,异常样本在迭代中可能会获得较高的权重,影响最终的强学习器的预测准确性;
- 训练比较耗时。

AdaBoost实验

□ 从偏差-方差的角度: boosting降低偏差,可对泛化性能相当弱的学习器构造出很强的集成

结合策略

平均法

□ 简单平均法

$$H(\boldsymbol{x}) = \frac{1}{T} \sum_{i=1}^{T} h_i(\boldsymbol{x}).$$

□ 加权平均法

$$H(x) = \sum_{i=1}^{T} w_i h_i(x), \qquad w_i \ge 0 \text{ and } \sum_{i=1}^{T} w_i = 1.$$

平均法

- □ 简单平均法是加权平均法的特例
- □ 集成学习中的各种结合方法都可以看成是加权平均法的变种或特例
- □ 加权平均法可认为是集成学习研究的基本出发点
 - 不同方式确定基学习器权重
- □ 加权平均法未必一定优于简单平均法
 - 训练样本不充分或含有噪声,导致学出的权重不完全可靠
- □ 一般而言, 个体学习器性能相差较大: 加权平均

性能相近: 简单平均法

投票法

■ 绝对多数投票法 (majority voting)

$$H\left(\boldsymbol{x}\right) = \begin{cases} c_{j} & \text{if } \sum\limits_{i=1}^{T} h_{i}^{j}\left(\boldsymbol{x}\right) > \frac{1}{2} \sum\limits_{k=1}^{l} \sum\limits_{i=1}^{T} h_{i}^{k}\left(\boldsymbol{x}\right) \\ \text{rejection otherwise} \ . \end{cases}$$

■ 相对多数投票法 (plurality voting)

$$H(\boldsymbol{x}) = c_{\arg\max_{i} \sum_{i=1}^{T} h_{i}^{j}(\boldsymbol{x})}$$

□ 加权投票法 (weighted voting)

$$H(\boldsymbol{x}) = c_{\arg\max_{j} \sum_{i=1}^{T} w_{i} h_{i}^{j}(\boldsymbol{x})}$$

不同类型的 $h_i^j(x)$

值不能混用

学习法

- □ 初级学习器+次级学习器/元学习器
- □ Stacking是学习法的典型代表

多样性

理论分析"好而不同"

□ 定义学习器 h_i 的分歧(ambiguity):

$$A(h_i \mid \boldsymbol{x}) = (h_i(\boldsymbol{x}) - H(\boldsymbol{x}))^2$$

■ 集成的分歧:

$$egin{aligned} \overline{A}(h \mid oldsymbol{x}) &= \sum_{i=1}^T w_i A(h_i \mid oldsymbol{x}) \ &= \sum_{i=1}^T w_i ig(h_i \left(oldsymbol{x}
ight) - H\left(oldsymbol{x}
ight)ig)^2 \end{aligned}$$

 \square 分歧项代表了个体学习器在样本x上的不一致性,即在一定程度上反映了个体学习器的多样性,个体学习器 h_i 和集成H的平方误差分别为

$$E(h_i \mid \boldsymbol{x}) = (f(\boldsymbol{x}) - h_i(\boldsymbol{x}))^2$$

$$E(H \mid \boldsymbol{x}) = (f(\boldsymbol{x}) - H(\boldsymbol{x}))^{2}$$

 \bigcirc 令 $\overline{E}(h \mid \boldsymbol{x}) = \sum_{i=1}^{T} w_i \cdot E(h_i \mid \boldsymbol{x})$ 表示个体学习器误差的加权均值,有

$$\overline{A}(h \mid \boldsymbol{x}) = \sum_{i=1}^{T} w_i E(h_i \mid \boldsymbol{x}) - E(H \mid \boldsymbol{x})$$

$$= \overline{E}(h \mid \boldsymbol{x}) - E(H \mid \boldsymbol{x}).$$

lacksquare 上式对所有样本x均成立,令p(x)表示样本的概率密度,则在全样本上有

$$\sum_{i=1}^T w_i \int A(h_i \mid \boldsymbol{x}) p(\boldsymbol{x}) d\boldsymbol{x} = \sum_{i=1}^T w_i \int E(h_i \mid \boldsymbol{x}) p(\boldsymbol{x}) d\boldsymbol{x} - \int E(H \mid \boldsymbol{x}) p(\boldsymbol{x}) d\boldsymbol{x}$$

□ 个体学习器h_i在全样本上的泛化误差和分歧项分别为:

$$E_i = \int E(h_i \mid \boldsymbol{x}) p(\boldsymbol{x}) d\boldsymbol{x}$$

$$A_i = \int A(h_i \mid m{x}) p(m{x}) dm{x}$$

■ 集成的泛化误差为:

$$E = \int E(H \mid \boldsymbol{x}) p(\boldsymbol{x}) d\boldsymbol{x}$$

$$E = \overline{E} - \overline{A}$$

 $\Rightarrow \overline{E} = \sum_{i=1}^{T} w_i E_i$ 表示个体学习器**泛化误差**的加权均值, $\overline{A} = \sum_{i=1}^{T} w_i A_i$ 表示个体学习器的加权**分歧值**,有

$$E = \overline{E} - \overline{A}$$

- □ 这个漂亮的式子显示:个体学习器精确性越高、多样性越大,则集成 效果越好。称为误差-分歧分解
- □ 为什么不能直接把 $\bar{E} \bar{A}$ 作为优化目标来求解?
 - ightharpoonup 现实任务中很难直接对 $\bar{E} \bar{A}$ 进行优化,
 - 它们定义在整个样本空间上
 - *Ā*不是一个可直接操作的多样性度量
 - 上面的推导过程只适用于回归学习,难以直接推广到分类学习任务上去

多样性: 多样性度量

□ 多样性度量(diversity measure)用于度量集成中个体学习器的 多样性

口 对于二分类问题,分类器 h_i 与 h_j 的预测结果联立表(contingency table)为

	$h_i = +1$	$h_i = -1$
$h_j = +1$	a	c
$h_j = -1$	b	d

$$a+b+c+d=m$$

多样性: 多样性度量

- □常见的多样性度量
 - 不合度量(Disagreement Measure)

$$dis_{ij} = \frac{b+c}{m}$$

● 相关系数(Correlation Coefficient)

$$\rho_{ij} = \frac{ad - bc}{\sqrt{(a+b)(a+c)(c+d)(b+d)}}$$

多样性: 多样性度量

□ 常见的多样性度量

● Q-统计量(Q-Statistic)

$$Q_{ij} = rac{ad - bc}{ad + bc} \qquad |Q_{ij}| \le |
ho_{ij}|$$

● K-统计量(Kappa-Statistic)

$$\kappa = rac{p_1 - p_2}{1 - p_2} \qquad p_1 = rac{a + d}{m}, \ p_2 = rac{(a + b)(a + c) + (c + d)(b + d)}{m^2}$$

多样性增强

- □ 常见的增强个体学习器的多样性的方法
 - 数据样本扰动
 - 输入属性扰动
 - 输出表示扰动
 - 算法参数扰动

- □ 不同的多样性增强机制可以同时使用
 - 例如, 随机森林

数据样本扰动

- □ 数据样本扰动通常是基于采样法
 - Bagging中的自助采样法
 - Adaboost中的序列采样

数据样本扰动对"不稳定基学习器"很有效

- □ 对数据样本的扰动敏感的基学习器(不稳定基学习器)
 - 决策树. 神经网络等

- □ 对数据样本的扰动不敏感的基学习器(稳定基学习器)
 - 线性学习器,支持向量机,朴素贝叶斯, k近邻等

总结

- □ 什么是集成学习
- Bagging与随机森林
- Boosting
 - Adaboost
- □ 结合策略
 - 平均法
 - 投票法
 - 学习法
- □ 多样性
 - 误差-分歧分解
 - 多样性度量
 - 多样性扰动