UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

ANDREY ALEXANDRE GUIMARÃES RAFAEL FELIPE PAROLIN

DESENVOLVIMENTO DE UM MULTÍMETRO MODULAR COM COMUNICAÇÃO SEM FIO DE BAIXO CUSTO PARA LABORATÓRIOS DA UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

CURITIBA

ANDREY ALEXANDRE GUIMARÃES RAFAEL FELIPE PAROLIN

DESENVOLVIMENTO DE UM MULTÍMETRO MODULAR COM COMUNICAÇÃO SEM FIO DE BAIXO CUSTO PARA LABORATÓRIOS DA UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

Development of a low cost modular multimeter with wireless communication for laboratories at the Federal Technological University of Paraná

Trabalho de Conclusão de Curso de Graduação apresentado como requisito para obtenção do título de Bacharel em Engenharia Elétrica do Curso de Bacharelado em Engenharia Elétrica da Universidade Tecnológica Federal do Paraná.

Orientador: Prof. Dr. Juan Camilo Castellanos Rodriguez

CURITIBA 2024

Esta licença permite compartilhamento, remixe, adaptação e criação a partir do trabalho, mesmo para fins comerciais, desde que sejam atribuídos créditos ao(s) autor(es). Conteúdos elaborados por terceiros, citados e referenciados nesta obra não são cobertos pela licença.

LISTA DE FIGURAS

Figura 1 -	Diagrama de blocos do multimedidor trifásico oZm3	12
Figura 2 -	Exemplo de um Diagrama de Blocos de um Multímetro de Bancada	12
Figura 3 -	Fluke 28-II	13
Figura 4 -	Gráfico de corrente de consumo de um dispositivo, feito pelo DMM7510	
	7.5 Digit Graphical Sampling Multimeter	13
Figura 5 -	Dispositivo MMW03	14
Figura 6 -	Exemplo de uso TVS Unidirecional	14
Figura 7 -	Exemplo de uso TVS Bidirecional	15
Figura 8 -	Ilustração da Classificação CAT	15
Figura 9 -	Fluke 28-II PCB	17
Figura 10 -	Switches de um Fluke 28-II	17
Figura 11 -	AD202 um exemplo de amplificador isolador	18
Figura 12 –	Bobina Rogowski aberta	19
Figura 13 -	Diagrama de blocos de um ADC	20
Figura 14 –	Diagrama de blocos de um ADC Flash	21
Figura 15 -	Diagrama de blocos de um ADC SAR	22
Figura 16 -	Plot sobre o tempo da saída de um ADC SAR	22
Figura 17 –	Circuito de um comparador utilizando dois resistores como referência	
	de tensão	24
Figura 18 –	Família STM32 separada por função	26
Figura 19 -	Interface WEB usada no 3Ph-ozm	27
Figura 20 -	Módulo ESP32-WROOM-32D frente e verso	28
Figura 21 –	Diagrama de Blocos de um Multimetro Portátil	28
Figura 22 –	Diagrama de Blocos de um Multímetro de Bancada	29
Figura 23 –	Diagrama de Blocos da Lógica de Funcionamento	33
Figura 24 –	Entrada de Tensão e Corrente	34
Figura 25 –	Condicionamento de sinais por divisor resistivo para leitura Single-Ended	35
Figura 26 -	Condicionamento de sinais por divisor resistivo para leitura Single-	
	Ended, menor range	36
Figura 27 –	Condicionamento de sinais por divisor resistivo para leitura diferencial	37

Figura 28 – Circuito de condicionamento de sinais para tensão	38
Figura 29 – Circuito de condicionamento de sinais para corrente	38
Figura 30 – Circuito de comunicação isolado	40
Figura 31 – Circuito de regulação de tensão	40

LISTA DE ABREVIATURAS E SIGLAS

Abreviaturas

ADC Analogic-to-Digital Converter amp-op Amplificador Operacional

CA Corrente Alternada
CC Corrente Contínua
CI Circuito Integrado

DAC Digital-to-Analogic Converter

ESD Electrostatic Discharge

HRC High Rupturing Capacity

IoT Internet of Things

LCD Liquid Crystal Display

MCU Microcontroller Unit
MOV Metal Oxide Varistor

MUX Multiplexador

PCB Printed Circuit Board

PTC Positive Temperature Coefficient

SAR Successive Approximation Register

SEMAP Setor de Almoxarifado/Manutenção dos Laboratórios

TVS Transient Voltage Suppressor

UUT Unit Under Test

WW Wire Wound

Siglas

*I*²C Inter-Integrated Circuit

BOM Book of Materials

IDE Integrated Development Environment

JS JavaScript

SPS Samples per Second

TI Texas Instruments

UTFPR Universidade Tecnológica Federal do Paraná

SUMÁRIO

1	INTRODUÇÃO	7
1.1	TEMA	7
1.1.1	Delimitações do tema	7
1.2	PROBLEMA E PREMISSAS	8
1.3	OBJETIVOS	8
1.3.1	Objetivo Geral	8
1.3.2	Objetivos Específicos	9
1.4	JUSTIFICATIVA	9
1.5	METODOLOGIA DE PESQUISA	10
1.6	ESTRUTURA DO TRABALHO	10
2	REFERENCIAL TEÓRICO	11
2.1	Proteção de Entrada	13
2.1.1	ESD	14
2.1.2	Proteção Específica para Equipamentos de Medição de Sinais Elétricos	15
2.1.2.1	Proteção de Entrada para Circuitos de Corrente	16
2.1.2.2	Proteção de Entrada para Circuitos de Tensão	16
2.2	Condicionamento de Sinal e Pathing	16
2.3	Aquisição de Sinal	17
2.3.1	Resistor Shunt	18
2.3.2	Bobina Rogowski	19
2.3.3	Circuito Integrado de Medição (hall effect)	19
2.4	Conversor Analógico Digital	20
2.4.1	Flash ADC	21
2.4.2	SAR ADC	21
2.5	Referência de Tensão	22
2.6	Aviso de Entrada Incorreta (Input Warning)	23
2.6.1	Comparador para detecção de falhas	23
2.6.2	Tipos de aviso	23
2.6.3	Casos de extrema gravidade	24
2.7	MCU e Interface de Comunicação	25
2.7.1	Microcontroladores	25

2.7.1.1	Microcontroladores Considerados	25
2.7.2	Apresentação dos dados e Comunicação	27
2.7.3	Soluções completas	27
2.8	Power Management	28
2.9	Calibração	29
3	ESPECIFICAÇÕES E PREMISSAS ADOTADAS	31
3.1	Especificações	31
3.2	Premissas Adotadas	31
3.2.1	Hardware	32
3.2.2	Software e Firmware	32
4	MATERIAIS E METODOLOGIA	33
4.1	Metodologia	33
4.1.1	Circuito	33
4.1.2	Software e Firmware	41
4.2	Materiais	41
	REFERÊNCIAS	42

1 INTRODUÇÃO

1.1 TEMA

Segundo o Vocabulário Internacional de Metrologia, a metrologia é a ciência da medição e suas aplicações. Ela engloba todos os aspectos teóricos e práticos da medição, qualquer que seja a incerteza de medição e o campo de aplicação (LINCK, 2017).

Para efeito de medição, são utilizados diversos instrumentos, dependendo da área de atuação e também dos parâmetros desejados. Existem medidores de temperatura, de PH, balanças digitais, espectrofotômetros, cromatógrafos, entre vários outros instrumentos de medição. O escopo de atuação deste trabalho está limitado a equipamentos de medição de múltiplas grandezas elétricas denominados multímetros. Existem multímetros tanto analógicos quanto digitais.

O multímetro digital é a ferramenta padrão utilizada por profissionais nas áreas de elétrica ou eletrônica, principalmente, para medir tensão, corrente e resistência, podendo este ter funções adicionais dependendo do fabricante.

Tão cedo quanto 1950, foram feitas as primeiras iterações do multímetro digital, sendo a primeira versão portátil e confiável fabricada pela Fluke, em 1977, com o modelo 8020A, que revolucionou a indústria (DIGITAL..., 2016). Desenvolvidos com a expectativa de leituras mais precisas, maior confiabilidade, robustez e menores preços, este equipamento começou a ser estudado para substituir o voltímetro, amperímetro, ohmímetro, e também os multímetros analógicos.

Com a evolução da tecnologia, existe a possibilidade da utilização de computadores junto aos instrumentos de medição, tornando-os ainda mais práticos, fornecendo também a possibilidade de armazenamento e tratamento dos dados obtidos.

No curso de Engenharia Elétrica da UTFPR (Universidade Tecnológica Federal do Paraná), a primeira interação dos alunos com instrumentos de medição, mais especificamente o multímetro digital, é feita nas disciplinas de Eletricidade e Magnetismo e Circuitos Elétricos A. Os laboratórios de tais disciplinas e algumas outras serão o ponto focal da utilização dos dispositivos neste trabalho desenvolvidos.

1.1.1 Delimitações do tema

Para o desenvolvimento de um multimedidor capaz de ler diversos canais de maneira isolada seria necessária a utilização de tecnologias de maior custo, como amplificadores operacionais isolados, transformadores de corrente com múltiplos taps, ADCs de alta precisão e velocidade, etc.

Dessa maneira, para que o dispositivo mantenha-se de baixo custo, este será feito de maneira modular, possuindo apenas um canal de tensão e um canal de corrente isolados entre si. Sua modularização se dará pela possibilidade de utilizar mais de um multimedidor em paralelo — medindo um canal extra de tensão e corrente para cada adição — com seus sinais sincronizados através de um circuito acessório que os interconecta e, também, por software.

Existem vários modos de se projetar uma fonte adequada ao sistema proposto, mas para o escopo deste trabalho, foi optado por se utilizar uma fonte comercial que será escolhida para atender as necessidades do protótipo em questão.

1.2 PROBLEMA E PREMISSAS

A Universidade Tecnológica Federal do Paraná - campus Curitiba, possui dois laboratórios de ensino para as disciplinas de Eletricidade e Magnetismo, Circuitos Elétricos A e B, ofertadas por diversos cursos da universidade. Os laboratórios são salas com bancadas de testes para circuitos elétricos que possuem fontes de tensão e corrente, bem como módulos de medidores para diversos fins.

Esses medidores, porém, são, em parte, completamente analógicos, possuem fundo de escala que não condizem necessariamente com os testes que precisam ser realizados durante as aulas práticas e, muitas vezes, não estão em condições adequadas de funcionamento. Isso se dá em grande parte por sua complexidade de reparos: tanto por necessitarem peças antigas para reposição, quanto por possuírem diversas peças mecânicas em seu interior que dificultam o processo de reparo, demandando muito tempo e realização de testes, como calibração posterior; além de não possuírem sistemas de proteção adequados para o uso em sala de aula – local em que o aparelho sofre desgaste por erros comuns da prática de discentes.

Adicionalmente, há também a questão de custos de aquisição de módulos novos que se adequem às bancadas utilizadas nos laboratórios e ao tipo de uso. Há uma grande limitação sobre o número de dispositivos disponíveis, dado os valores de medidores encontrados no mercado e disponibilidade de recursos da universidade.

1.3 OBJETIVOS

1.3.1 Objetivo Geral

Desenvolvimento de um multimedidor modular open source com comunicação sem fio de baixo custo para laboratórios da UTFPR.

1.3.2 Objetivos Específicos

Projetar um multimedidor de baixo custo modular capaz de medir tensão e corrente CC/CA simultaneamente, com proteções contra curto-circuito e sobretensão. Tal equipamento também se comunicará com um smartphone por protocolo *wireless* para apresentar as formas de onda e dados obtidos das medições para ser utilizado nos laboratórios das disciplinas de Eletricidade e Magnetismo, Circuitos Elétricos A e B da UTFPR – câmpus Curitiba.

Para o desenvolvimento do multimedidor, serão necessários os seguintes processos:

- Levantar, juntamente dos professores que utilizam os laboratórios e que utilizarão o equipamento, quais as necessidades físicas, parâmetros de medida, e níveis de tensão e corrente necessários para atender os requerimentos das práticas experimentais;
- Verificar quais são os métodos comumente utilizados por equipamentos profissionais para proteção e amostragem de dados;
- Definir as funções específicas do equipamento;
- Listar os materiais necessários para a construção do equipamento;
- Escolher os softwares e protocolos a serem utilizados para o desenvolvimento do projeto;
- Desenvolver de um protótipo do multimedidor modular;
- Desenvolver um sistema de fixação e alimentação para sua instalação nas bancadas de laboratório e;
- Realizar o teste do protótipo.

1.4 JUSTIFICATIVA

Uma ferramenta de medição de baixo custo, com capacidade de atender às principais demandas de obtenção de dados, proteção e simplicidade de reparos, bem como a possibilidade de replicabilidade de maneira simples, poderia facilitar o dia a dia dos usuários dos laboratórios de aulas práticas e tornar o ensino mais dinâmico e adequado à prática almejada, estendendo a experiência de ensino das disciplinas através do tratamento de dados de maneira mais específica e observação simultânea das formas de onda.

1.5 METODOLOGIA DE PESQUISA

Este trabalho se trata de uma pesquisa exploratória aplicada que visa o desenvolvimento de um protótipo de multimedidor com suas especificidades e testes para assegurar sua viabilidade.

Para a elaboração deste, será necessário compreender melhor o problema que os professores das disciplinas de circuitos da UTFPR enfrentam com os equipamentos de medição disponíveis para as aulas. Aplicar questionários sobre quais medições seriam mais importantes e quais proteções deveriam ser consideradas para os mesmos.

Será necessário desenvolver um sistema elétrico, mecânico (carcaça), software e firmware para a interação do usuário com o medidor. Isso demandará um estudo dos componentes a serem utilizados, bem como definir quais programas e ferramentas de desenvolvimento serão necessários para cada uma das áreas.

Também sobre o equipamento, há de se pesquisar métodos de amostragem utilizados em produtos comerciais e aprofundar os conhecimentos sobre microcontroladores, componentes e plataformas de desenvolvimento escolhidos.

1.6 ESTRUTURA DO TRABALHO

Para atingir os objetivos geral e específicos, este trabalho será estruturado da seguinte forma:

- Capítulo 01: Introdução do tema, motivação e dos objetivos.
- Capítulo 02: Referencial teórico.
- Capítulo 03: Especificações e premissas adotadas.
- Capítulo 04: Desenvolvimento, metodologia e resultados.
- Capítulo 05: Conclusão e próximos passos.

2 REFERENCIAL TEÓRICO

Este capítulo será dedicado a explicar como funcionam as várias partes envolvidas na construção e funcionamento de um multímetro digital e/ou multimedidor.

Neste trabalho, o objetivo é desenvolver um multímetro capaz de medir tensão e corrente simultaneamente e enviar os dados para um smartphone por meio de conexão sem fio. Considerando essa proposta, foram analisadas duas opções para servir como base: um multimedidor e um multímetro.

O multimedidor é um dispositivo geralmente trifásico, que permite a medição simultânea de tensão e corrente, exibindo as formas de onda em um display. Possui três ou mais canais simultâneos. No entanto, apresenta a limitação de possuir apenas um referencial de medição, com resolução na ordem de 1V nos modelos mais baratos e 0,1V nos modelos mais caros, sendo os mesmos valores para a resolução da corrente (FLUKE, 2014).

Por outro lado, o multímetro é um dispositivo monofásico que permite a medição de apenas um canal por vez, como tensão, corrente, resistência, capacitância, entre outros. Este não exibe as curvas na tela, fornecendo apenas valores. A resolução varia, sendo que nos modelos mais simples pode chegar a 0,1 mV, enquanto a resolução da corrente é da ordem de 1µA (MINIPA, 2013).

Considerando que o dispositivo deve ser utilizado como uma ferramenta didática em sala de aula, é essencial que a resolução seja adequada para o bom aproveitamento das disciplinas. Além disso, a apresentação das formas de onda também é relevante. Assim, optou-se por uma abordagem que combina características de ambos os dispositivos, utilizando os diagramas de blocos para identificar as funcionalidades e suas relações com o dispositivo a ser produzido.

Para o multimedidor, foi utilizado o diagrama de blocos do *oZm3* (Figura 1), um produto *open source* (projeto aberto) já introduzido no mercado, sendo uma versão trifásica de outro, também *open source* chamado *(openZmeter)*. Ambos possuem interface de apresentação dos dados via uma página do navegador de um celular ou computador.

Para o multímetro, foi utilizado um diagrama de blocos (Figura 2) disponível no site da *Texas Instruments*, que explica o funcionamento de um produto completo.

Sobre o padrão comercial, existem diversos dispositivos que atendem a necessidades diferentes, como por exemplo, segurança (CAT rating), resolução, precisão ou até mesmo confiabilidade de leitura em condições de temperaturas elevadas, entre vários outros. Adicionalmente, existem também inúmeros fornecedores, tanto regionais, nacionais como internacionais, salientando a diversidade de produtos.

Dispositivos como o representado na Figura 3 possuem boa métrica de confiabilidade e também são portáteis, além de provirem medidas em *True-RMS* (*True Root Mean Square*). Este dispositivo é muito benquisto, tendo boas avaliações no mundo inteiro.

Sobre multímetros digitais, também existem aqueles que são de bancada ou benchtop. Tais dispositivos são de uso mais específico, prezando a precisão de leitura, resolução e

Figura 1 – Diagrama de blocos do multimedidor trifásico oZm3

Fonte: (VICIANA et al., 2023).

Figura 2 – Exemplo de um Diagrama de Blocos de um Multímetro de Bancada

Fonte: (DIGITAL..., 2022).

também contendo algumas *features* a mais. Como exemplo, o DMM7510 7.5 *Digit Graphical Sampling Multimeter* da Tektronix é um dispositivo que porta todas as funções já explicitas e também várias outras de uso extremamente específico, como *profiling* de corrente de consumo de energia em dispositivos IoT (*Internet of Things*), como mostrado na Figura 4.

Figura 3 - Fluke 28-II

Fonte: (FLUKE..., 2023).

Figura 4 – Gráfico de corrente de consumo de um dispositivo, feito pelo DMM7510 7.5 Digit Graphical Sampling Multimeter

Fonte: tektDMM.

No caso de multimedidores, que são somente de uso específico industrial, alguns fornecedores e dispositivos se sobressaem, como a WEG. O dispositivo da Figura 5, por exemplo, é um multimedidor da família MMW, fornecido pela mesma, que faz todas as medidas de grandezas elétricas no meio industrial, tem a função de parametrizá-las por meio de aplicativos IoT, identifica sequência e falta de fases, entre outras várias funções que são benéficas para tal aplicação.

2.1 Proteção de Entrada

Proteção de entrada é um assunto extremamente abrangente quando se trata de circuitos eletrônicos. Dependendo da função que este tenha que exercer, existem infinitas topografias que podem ser consideradas. Algumas exigências, porém, são comuns, como a necessidade de um circuito de proteção contra descargas eletrostáticas, ou ESD (*Electrostatic Discharge*). Tais descargas podem entregar picos de tensão extremamente altos, chegando até a 30 kV, o que é extremamente danoso a qualquer circuito que use semicondutores. Pulsos de pico tão alto quanto 2500 V (Volts) já são o suficiente para danificar a maioria dos circuitos eletrônicos. No-

Figura 5 - Dispositivo MMW03

Fonte: WEG.

toriamente, seres humanos são capazes de entregar descargas de até 20 kV por consequência da capacitância inata à sua fisiologia (SEMICONDUCTOR, 2005).

2.1.1 ESD

Esse tipo de proteção é necessária para circuitos que fazem interface com o meio físico e normalmente é exercida por um circuito básico de componentes TVS (*Transient Voltage Suppressor*). Os dispositivos semicondutores mais simples (e também regularmente) utilizados para exercer esta função são diodos Zener (MULTIMETER..., 2023).

Ao serem submetidos a uma tensão maior que à especificada como limite de operação do circuito a ser protegido, diodos Zener apresentam uma resistência baixa, fechando a passagem de corrente entre o circuito e o *ground* do equipamento. Este circuito pode apresentar uma configuração unidirecional ou bidirecional, dependendo da necessidade do circuito a ser protegido (DESIGN..., 2012).

As figuras 6 e 7 demonstram a utilização básica de tal circuito e o conceito por trás da tensão de ruptura de tal semicondutor.

Figura 6 – Exemplo de uso TVS Unidirecional AND8424/D

Fonte: (UNIDIRECTIONAL..., 2009).

Figura 7 – Exemplo de uso TVS Bidirecional AND8424/D

Fonte: (UNIDIRECTIONAL..., 2009).

2.1.2 Proteção Específica para Equipamentos de Medição de Sinais Elétricos

Primeiramente, se faz necessário explicar sobre a classificação de proteção em relação a equipamentos elétricos. A classificação mais robustamente utilizada é a CAT, que funciona conforme a Figura 8. Os numerais indicam o potencial de energia que o sistema pode entregar caso ocorra um curto-circuito ou um transiente de tensão, *i.e.* um instrumento CAT III tem que estar protegido contra transientes muito maiores que um dispositivo CAT II.

Dispositivos CAT IV devem estar protegidos a nível de distribuição de energia, pois estes serão utilizados em conexão entrada de energia de uma facilidade. Dispositivos CAT III devem estar protegidos a nível de distribuição interna (quadros de distribuição), podendo esta ser trifásica ou monofásica. Dispositivos CAT II devem estar protegidos a nível de equipamento terminal ou de uso comum, sendo estes eletrodomésticos e afins. Dispositivos CAT I devem estar protegidos a nível de circuitos eletrônicos e transformadores de baixa potência (SILVEY, 2022).

Figura 8 - Ilustração da Classificação CAT

Fonte: (SILVEY, 2022).

2.1.2.1 Proteção de Entrada para Circuitos de Corrente

O circuito de proteção para a entrada de correntes se divide em duas partes, sendo uma delas para o range de A (Amperes) e os ranges de mA e µA.

Para a entrada de Amperes, é utilizado um fusível HRC (*High Rupturing Capacity*), geralmente de 11 A e 1000 V (para se adequar à classificação CAT III, no caso do multímetro que foi estudado), para se prevenir arcos voltaicos após a queima do fusível, negando a possibilidade de uma continuação da condução de curto-circuito ou sobrecorrente. Logo após, é conectado um shunt, $0R01~\Omega$, entre o ground e a entrada, no qual será feita a medida.

Para a entrada de mA e μA, também é utilizado um fusível HRC, mas de 500 mA e 1000 V. Em sequência, é colocado um retificador em ponte de diodos entre o canal e o ground, para dar clamp em possíveis sobretensões (normalmente ocasionada pela utilização errônea do equipamento, colocando-se a entrada de corrente para medir tensão) até que o fusível possa atuar. Internamente, há um switch entre mA e μA (MANUAL..., 1998).

Para o switch de mA, é conectado em série um resistor shunt de 1 Ω com o shunt do range de A (0R01 Ω), para ser feita a medição em uma resistência aproximada de 1 Ω .

Para o switch de μ A, é conectado um resistor shunt de 100 Ω , no qual será feita a medição. (MULTIMETER..., 2023)

2.1.2.2 Proteção de Entrada para Circuitos de Tensão

O circuito de proteção para a entrada de tensão é simples, sendo este composto de um resistor WW (*Wire Wound*) em série com um termistor PTC (*Positive Temperature Coefficient*) em série com um resistor de 10 $M\Omega$, no qual será feita a medida (MANUAL..., 1998).

Conectado em paralelo ao resistor de 10 M Ω com o ground input, há uma série de varistores MOV (*Metal Oxide Varistor*) de rápida atuação como proteção para transientes de sobretensão, até que o termistor consiga esquentar. Pode ser utilizado somente um varistor, mas uma série destes aumenta a distância de fuga de corrente, reduzindo a chance de arcos voltaicos e também dissipando energia entre vários componentes, melhorando a proteção (MULTIMETER..., 2012).

Uma parte comum do design geral da PCB (*Printed Circuit Board*) são *slots* de isolamento de alta tensão, que se resumem a espaços abertos entre partes da placa, que vão receber altas tensões em funcionamento indesejado, para minimizar as chances de arcos voltaicos entre partes do circuito, como destacado na Figura 9.

2.2 Condicionamento de Sinal e *Pathing*

O condicionamento de sinal se resume ao controle da entrada apropriada a ser avaliada pelo ADC, que geralmente é feita por um MUX (Multiplexador), por *switches* mecânicos, como

Figura 9 - Fluke 28-II PCB

Fonte: (FLUKE..., 2012).

exemplificado na Figura 10, ou em alguns casos, por uma combinação dos dois (MULTIME-TER..., 2023).

Figura 10 - Switches de um Fluke 28-II

Fonte: (FLUKE..., 2012).

2.3 Aquisição de Sinal

A aquisição de sinal é o processo de captura e conversão de sinais físicos em um formato adequado para análise, processamento ou armazenamento. No contexto da medição de tensão e corrente, a aquisição de sinal refere-se à captura e registro desses parâmetros elétricos em um sistema de medição, permitindo sua análise, processamento ou armazenamento em um formato adequado.

Essa pode ser realizada de diferentes maneiras, dependendo do caso. Em alguns cenários, utiliza-se sondas específicas para cada aplicação, as quais permitem capturar e registrar os parâmetros elétricos de forma precisa. Por outro lado, em certos casos, a aquisição ocorre internamente dentro do circuito do próprio medidor, proporcionando uma solução integrada e simplificada para a captura e registro dos sinais elétricos.

2.3.1 Resistor Shunt

Neste tipo de medição, um resistor de valor extremamente baixo ($< 0,1~\Omega$) é colocado em série com o circuito no qual se deseja medir a corrente elétrica, quando esta atravessa o componente, ocorre uma queda de tensão proporcional. Essa queda de tensão pode ser então medida diretamente através de um ADC ou amplificada e então medida para se obter os valores da corrente original (ZIEGLER *et al.*, 2009).

Para a aplicação em 3 canais independentes de corrente, torna-se necessária algum tipo de isolação. Isso pode ser obtido utilizando-se de amplificadores isoladores — amplificadores operacionais que possuem duas referências isoladas entre si. Permitindo uma medição da queda de tensão sobre o resistor shunt para cada canal sem interferência mútua, como exemplo o AD202 na Figura 11.

FB AD202 SIGNAL DEMOD MOD IN+ ±5V IN COM +7.5V POWER +V_{ISO} OUT RECT **OSCILLATOR** AND -V_{ISO} OUT (5 **FILTER** POWER

Figura 11 - AD202 um exemplo de amplificador isolador

Fonte: (AD202..., 2001).

Esse tipo de amplificador, porém, apresenta alto custo e possui uma variação de leitura considerável com a temperatura. São inferiores em precisão a outros métodos de medição que realizam o isolamento do circuito inerentemente por seus aspectos construtivos.

2.3.2 Bobina Rogowski

Utilizando-se do princípio da Lei da Indução de Faraday, a bobina Rogowski trata-se de um loop fechado de fio enrolado em volta de um aro. Esse aro envolve o condutor que, por sua variação de corrente, induz uma tensão elétrica proporcional ao número de espiras e a intensidade da própria corrente a ser medida. Para a medida dos valores obtidos pela bobina Rogowski, é necessário o uso de um integrador (por vezes acoplado no próprio cabo da ponteira de medição) para relacionar a derivada da corrente com a tensão obtida em seus terminais, podendo causar certo erro introduzido pela operação.

Figura 12 - Bobina Rogowski aberta

Fonte: CITAR Metodos de medição (artigo).

É um método amplamente utilizado para medições de altas correntes e suporta uma grande faixa de frequências. Tem um custo próximo dos transformadores de corrente e insere menos impedância parasita no circuito (ZIEGLER *et al.*, 2009).

2.3.3 Circuito Integrado de Medição (hall effect)

Existem circuitos integrados capazes de medir a corrente alternada de maneira isolada do restante do circuito. Utilizando-se do efeito hall, o campo magnético gerado pela corrente que passa entre seus terminais é medida por um sensor montado diretamente no substrato do chip. Uma tensão proporcional a esse campo é fornecida pelo CI como saída e pode ser medida por um ADC, recuperando-se o valor da corrente original.

O uso dessa tecnologia traz custo baixo em relação ao uso de TC's ou bobinas Rogowski, fácil implementação no sistema, isolamento diretamente no chip. Tal medição, porém, possui uma resolução na ordem de $100\,\mathrm{mV/A}$ (considerando um Cl que suporte acima de 10 A) e um ruído intrínseco de 11 mV. Como é o caso do ACS712 (ACS712..., 2022).

2.4 Conversor Analógico Digital

O ADC (*Analog-to-Digital Converter*) é uma parte integral do funcionamento dos equipamentos de medição elétrica, pois este fará o interfaceamento, ou seja, a leitura do sinal analógico a ser interpretado e o converterá para um sinal digital que pode assim ser processado, como mostrado na Figura 13.

Analog • ADC Binary output input •

Figura 13 – Diagrama de blocos de um ADC

Fonte: (KUPHALDT, 2021).

Existem vários tipos de ADCs, sendo alguns deles:

- · Flash ADC;
- · Digital Ramp ADC;
- Successive Approximation ADC;
- Tracking ADC;
- Slope (integrating) ADC;
- Delta-Sigma ($\Delta \Sigma$) ADC;
- entre outros...

Para fins de objetividade, será somente apresentado o SAR (*Successive Approximation Register*), pois este é o mais comumente utilizado em multímetros e o ADC mais básico, chamado de *Flash*. Porém, dependendo da aplicação e necessidade de resolução ou precisão, são utilizados outros tipos de ADC também.

2.4.1 Flash ADC

Este ADC delimita o principio de funcionamento desse tipo de dispositivo. Formado de uma série de comparadores, como mostrado na Figura 14, este compara o sinal de entrada com uma tensão de referência única para cada comparador. A saída destes comparadores são conectadas à um *encoder* de prioridade que produz uma saída binária. Esta topologia não só é a mais simples em termos de operação, mas também é o mais eficiente, em termos de velocidade, sendo limitado só pelos comparadores e *delays* de propagação dos gates. Infelizmente, o *flash* ADC necessita de um número excessivo de componentes, sendo necessários 255 comparadores para uma saída de 8-bits, que seria a necessidade de *output* de qualquer ADC moderno.

Figura 14 – Diagrama de blocos de um ADC Flash

Fonte: (KUPHALDT, 2021).

2.4.2 SAR ADC

O SAR funciona de maneira que se é conectado um contador SAR, que faz uma contagem testando todos os valores de bits, começando com o mais significativo e terminando com o menos significativo a um DAC que então sua saída é comparada com o sinal analógico a ser obtido.

Durante o processo de contagem, um registro monitora a saída deste comparador para ver se a contagem binária é maior ou menor que a entrada do sinal analógico, ajustando os valores de bit de acordo. A maneira que este registro conta é idêntica ao método de conversão decimal para binário, portanto diferentes valores de bits são testados do bit mais significante ao menos significante para conseguir um número binário que se iguala ao número decimal original.

O circuito e resultado de leitura do ADC em questão, em termos simples, pode ser representado pelas figuras 15 e 16.

Figura 15 – Diagrama de blocos de um ADC SAR

Fonte: Adaptado de: (KUPHALDT, 2021).

Figura 16 – Plot sobre o tempo da saída de um ADC SAR

Fonte: Adaptado de: (KUPHALDT, 2021).

2.5 Referência de Tensão

A referência de tensão do ADC, utilizada para a leitura do sinal analógico, pode estar incluída no chip, que é uma solução mais barata e de menor precisão para equipamentos que não exigem tal afinidade, ou ser externa ao chip, que provém uma melhor precisão e, consequentemente, uma melhor leitura. Tal referência externa, hodiernamente, é feita por um CI (Circuito

Integrado) especializado, como por exemplo o ICL8069 (ICL8069..., 2005), visto sendo utilizado no estado da arte.

2.6 Aviso de Entrada Incorreta (Input Warning)

O termo *input warning* refere-se a um aviso emitido quando ocorre uma entrada incorreta ou anormal em um sistema de medição. Esse tipo de aviso é acionado quando há um problema que pode afetar a precisão ou confiabilidade dos dados de medição. Pode ser uma condição fora dos limites esperados, como valores de tensão ou corrente que ultrapassam os limites especificados pelo instrumento de medição (STAFF, 2015).

Em medições de tensão e corrente em um único canal, um aviso de entrada incorreta pode ocorrer quando os valores medidos excedem os limites estabelecidos pelo instrumento. Por exemplo, se a tensão medida estiver além da faixa de operação máxima, o aviso é acionado para indicar que a medição está fora dos limites aceitáveis.

Em medições com vários canais, o *input warning* pode ser diferenciado dependendo da configuração do sistema de aquisição de dados. Pode haver avisos específicos para cada canal, indicando problemas individuais, como tensão excessiva ou corrente anormalmente alta. Alternativamente, pode haver um aviso global indicando um problema geral em qualquer um dos canais.

2.6.1 Comparador para detecção de falhas

Para o caso do multímetro a ser desenvolvido pode-se utilizar um simples circuito comparador para monitorar as tensões de entrada e indicar ao usuário que a escala utilizada está incorreta ou, até mesmo, que a tensão ou corrente medidas está acima do limite suportado. O circuito pode ser visto na Figura 17 e consiste apenas em um amp-op.

Dessa maneira, uma vez definida a tensão de referência, pode-se utilizar-se da saída para disparar algum tipo de aviso.

2.6.2 Tipos de aviso

Os avisos podem ser luminosos, sonoros, ou até mesmo gerar vibrações ou movimentações mecânica mais rigorosas a fim de afastar ou notificar o usuário do dispositivo (STAFF, 2015).

Para tanto, em casos mais brandos — onde há o uso da escala incorreta do medidor — pode-se utilizar uma luz de aviso. Dado que esse uso não danifica o dispositivo, apenas impossibilita a leitura correta do dado. Em casos mais sérios, onde há a possibilidade de causar

ENTRADA

COMPARADOR

DE

TENSÃO

SAÍDA(*)

VREF

(*)

VGC SE VENT VREF

OV SE VENT. VREF

Figura 17 - Circuito de um comparador utilizando dois resistores como referência de tensão

Fonte: (BRAGA, 2017).

dano ao aparelho de medição ou até mesmo ao usuário, se faz necessário um aviso mais severo, como, por exemplo, uma sirene alta.

2.6.3 Casos de extrema gravidade

Um erro comum em laboratórios de eletrônica é a tentativa de medição de tensão elétrica utilizando-se do modo de medição de corrente elétrica do dispositivo.

Comumente a corrente é medida através da queda de tensão em um resistor *shunt*, conforme discorrido em 2.3.1. Colocar as ponteiras em um ponto onde haja tensão sem nenhum dispositivo limitador de corrente, faria com que o resistor shunt sofresse um enorme estresse levando possivelmente a sua falha ou diminuição drástica da vida útil.

Como geralmente há um sistema de proteção nesses dispositivos, muitas vezes, há a queima de um elemento fusível no lugar do resistor shunt. Porém, é necessário alertar o usuário de que o uso do equipamento foi incorreto e, caso a corrente seja removida a tempo, preservar a própria proteção. Caso essa seja rompida, também é importante notificar o usuário de que a mesma deve ser substituída.

Para tanto, pode-se utilizar um *buzzer* com o som alto o suficiente para notificar o usuário mesmo em um ambiente com certo ruído, como é o caso de um laboratório de aula.

2.7 MCU e Interface de Comunicação

2.7.1 Microcontroladores

O MCU ou *Microcontroller Unit* é um dispositivo eletrônico altamente integrado contendo um processador, memória e periféricos de entrada e saída. Os microcontroladores são amplamente utilizados em uma variedade de aplicações, desde eletrodomésticos e automóveis até dispositivos médicos e sistemas de controle industrial.

Eles são usados para controlar e executar tarefas específicas em um sistema eletrônico. Ao contrário de um microprocessador, que é projetado para executar uma ampla variedade de tarefas e requer componentes externos adicionais, o MCU possui praticamente todos os recursos necessários integrados em um único chip.

No caso dos medidores, o MCU é utilizado como o interpretador dos sinais obtidos pelo ADC, podendo realizar as operações matemáticas necessárias para se obter os valores médios, eficazes, pico, e demais necessários, a partir da amostragem obtida. Esse é o caso do *3Ph-ozm*, que utiliza um microcontrolador com pré-processador dos dados e como sistema de controle para as funções fundamentais do dispositivo (VICIANA *et al.*, 2023).

Juntamente do MCU, o *3Ph-ozm* utiliza um microprocessador para realizar o trabalho de comunicação através de WiFi e Bluetooth. Tal abordagem, porém, traz um custo mais alto ao projeto, uma vez que um microprocessador é mais caro que um microcontrolador — que pode ser capaz de tanto processar, como enviar os sinais (COMPONENTS101, 2019).

2.7.1.1 Microcontroladores Considerados

Existe uma vasta gama de MCU's capazes de realizar o processamento dos sinais obtidos. Logo, se faz necessária uma filtragem prévia dos principais requisitos do projeto antes mesmo do inicio da metodologia. Para tanto, foram considerados os seguintes pontos:

- Popularidade um item popularmente conhecido pode ser encontrado com maior facilidade em lojas locais;
- Facilidade de programação como um dos objetivos primordiais do projeto é a replicabilidade e a disponibilização por meios open source, a simplicidade na programação deve ser levada em conta:
- Preço o microcontrolador tem potencial para ser o item único mais custoso do projeto, reduzir seu preço auxiliaria na questão do baixo custo;

• Comunicação — dispositivos com Wifi, I^2 C, UART ou demais protocolos de comunicação já embarcados auxiliariam no processo de transmissão e tratamento dos dados obtidos.

Seguindo esses critérios e as informações disponíveis no artigo *How to Select the Microcontroller for Your New Product* (TEEL, 2019), os MCU's adequados à finalidade de medição seriam os que possuem arquitetura de 32 bits, uma vez que estes possuem também certas características de microprocessadores como, por exemplo, a lógica de prioridade nas interrupções e a velocidade de trabalho com ponto flutuante.

Os MCU's mais populares dessa arquitetura são os da família STM32, representado na Figura 18.

Figura 18 - Família STM32 separada por função

Fonte: Mouser.

Para a seleção de um microcontrolador adequado, pode-se seguir a linha *mainstream* da Figura 18, pois tratam-se de MCU's populares e que possuem vasta documentação disponível online. Porém, ao utilizar tais microcontroladores, seria necessária a utilização de outro periférico para a função de Wifi e/ou Bluetooth.

2.7.2 Apresentação dos dados e Comunicação

Os dispositivos de medição que possuem comunicação com sistemas externos o fazem de diversas maneiras.

A mais simples delas trata-se de um display que apresenta os valores da leitura ao usuário. Este pode utilizar a tecnologia de LCD ou semelhantes para mostrar apenas números, como também pode mostrar as formas de onda em telas que possuam uma resolução maior.

Os dados também podem ser enviados a um sistema externo que fará a apresentação dos dados, os armazenará para usos posteriores, ou dará outra finalidade conforme o sistema.

Para realizar esse envio, podem-se utilizar diversas tecnologias diferentes, desde protocolos com fio (CAN, MODBUS, I^2 C, UART, etc.) até protocolos sem fio — que serão os mais aprofundados nessa seção.

Baseando-se no artigo Abate *et al.* (2019), as tecnologias que podem ser usadas são as encontradas no ambiente de IoT (Internet das Coisas) como LoRa, Sigfox e NB-IoT. Também é possível utilizar tecnologias mais populares, como é o caso do Viciana *et al.* (2023) que utiliza WiFi e Bluetooth para realizar sua comunicação e o display de seus dados através de uma interface web conforme a Figura 19.

Figura 19 - Interface WEB usada no 3Ph-ozm

Fonte: www.openzmeter.com/.

2.7.3 Soluções completas

Há também a possibilidade da utilização de módulos que possuem um microcontrolador e outras funções integradas. Como é o caso do ESP32-WROOM-32D (Figura 20), construído em torno do chip ESP32.

Esse módulo possui um microprocessador *Xtensa® Dual-Core 32-bit LX6* e as funções principais de um microcontrolador, como ADC próprio e tratamento de interrupções por ordem de relevância. Além de possuir dois DAC's. O principal diferencial desse módulo, porém, é a sua capacidade de trabalhar com WiFi e Bluetooth sem a necessidade de nenhum periférico extra, além de possuir grande facilidade em sua programação (ESP32..., 2023).

Figura 20 – Módulo ESP32-WROOM-32D frente e verso

Fonte: DigiKey.

2.8 Power Management

Multímetros digitais se apresentam em duas configurações, sendo estas de bancada e portátil. Na configuração portátil, se é utilizado pilhas ou baterias para prover a tensão necessária para se ligar todos os subsistemas do aparelho. Já na configuração de bancada, é utilizada uma fonte isolada, conectada à rede de energia para fornecer a tensão adequada para se ligar todos os subsistemas do dispositivo, como se pode ver nas figuras 21 e 22, dos designs propostos pela TI.

Power management Non-isolated DC/DC Shunt reference Battery Sequencer charger IC eFuse LDO Buck Battery fuel Hot swap controlle controlle LDO gauge Input power LDO protection **USB** charging LDO port controller stage

Figura 21 – Diagrama de Blocos de um Multimetro Portátil

Fonte: (DIGITAL..., 2022).

Existem vários modos de se projetar uma fonte adequada ao sistema proposto, mas para o escopo deste trabalho, foi optado por se utilizar uma fonte comercial que será escolhida para atender as necessidades do protótipo em questão.

Power management Isolated DC/DC Non-isolated DC/DC EMI filter and PFC Sync rectifie LDO rectifier HV FFTs Isolated gate Flyback LDO LDO LDO stage AC line: 85 to 265 VÄÖ

Figura 22 – Diagrama de Blocos de um Multímetro de Bancada

Fonte: (DIGITAL..., 2022).

2.9 Calibração

Todo equipamento de medição precisa ser calibrado para exercer a sua função com precisão. Normalmente, este serviço é feito pelo provedor do produto e, dependendo do tipo de uso de tal produto e sua precisão, feito em intervalos regulares para garantir sua eficácia. Muitas vezes, realizar a calibração de um equipamento como um multímetro pode ser mais caro que comprar um novo.

Para se calibrar um multímetro, é utilizado um outro dispositivo com no mínimo 4x a precisão do multímetro a ser calibrado. Portanto, normalmente se é utilizado um equipamento específico para exercer tal função. Esse equipamento geralmente é chamado de *calibrator* ou *standard* (ELECTRICAL..., 2023).

Tais equipamentos também necessitam ser calibrados, então o fornecedor deve garantir que estes estejam de acordo com os órgãos regionais, nacionais e internacionais em questão de procedência da calibração. Uma documentação e traçabilidade extensivas são requerimentos indispensáveis.

O calibrator tem a capacidade de fornecer sinais elétricos precisos e de função variável, que podem ser produzidos de µV a kV, normalmente. Estes sinais, em ranges específicos, serão lidos pela UUT (*Unit Under Test*) e então serão anotados os resultados da medição, fazendo-se um levantamento de dados do multímetro. Após tal levantamento, realiza-se os passos necessários para calibrar tal dispositivo, dependendo das suas necessidades e também do fabricante do mesmo. Este equipamento também consegue fazer medições de precisão, caso seja necessário.

O standard cumpre a mesma função do calibrator, mas geralmente é limitado a poucos ranges de geração de sinal e somente uma função, o que possibilita uma performance e precisão muito maior que a do *calibrator*.

Entretanto, existe uma proposta de calibração do equipamento on-board, feita pela TI (*Texas Instruments*), utilizando-se um DAC para corrigir erros de leitura, seja por mudanças de temperatura, mudança na tensão de referência do ADC ou qualquer outro fator que possa afetar a leitura do sinal. Também nesse circuito é incluído um sensor de temperatura para avisar o usuário sobre mudanças consideráveis de temperatura.

O funcionamento do DAC, porém, está diretamente relacionado à sua tensão de referência. Geralmente, se é utilizada uma referência externa para medidas de precisão, pois esta estará isolada da aquisição de sinal do multímetro e logo não será afetada caso haja uma mudança de temperatura (O'REILLY, 2012). A solução proposta pela TI é de se utilizar um DAC de precisão (16-Bits) com *on-board low-drift voltage reference* junto com um *buffer* por meio de um amp-op de alta velocidade. Tais componentes são de uso extremamente específico e por isso são caros, colocando-os assim fora do escopo do estudo deste trabalho (HIGH-PRECISION..., 2017).

3 ESPECIFICAÇÕES E PREMISSAS ADOTADAS

Neste capítulo, serão apresentadas tanto as especificações do protótipo quanto as premissas adotadas, tendo em vista os objetivos do projeto.

3.1 Especificações

Baseado em relatos dos professores das disciplinas de Eletricidade e Magnetismo, Circuitos A e Circuitos B da UTFPR de Curitiba, os equipamentos utilizados nos laboratórios destas disciplinas, bem como os utilizados no SEMAP(Setor de Almoxarifado/Manutenção dos Laboratórios) da universidade, definiram-se as seguintes especificações elétricas para o multímetro desenvolvido, conforme a Tabela 3:

Tabela 3 – Resolução e precisão necessárias para o dispositivo

Especificação	Tensão	Corrente
Faixa de Leitura	0 - 220V	0 - 10 A
Precisão	<2%	<5%

Foram também definidas as especificações quanto a construção e sistemas do dispositivo, conforme segue:

- Número de bornes para tensão: 2
- Número de bornes para corrente: 2
- Tipo de alimentação: Fonte interna isolada
- Display de dados: Smartphones com acesso a navegador, por WiFi.

Os dados que o dispositivo será capaz de apresentar ao usuário são:

- Formas de onda de tensão e corrente simultâneas,
- Tensão e corrente RMS,
- Potência ativa, reativa, aparente,
- Fator de potência.

3.2 Premissas Adotadas

As premissas deste trabalho são de suma importância, visto que o objetivo do mesmo é projetar um protótipo com um alto nível de replicabilidade e sendo o mais barato possível. Para isso, serão utilizadas as plataformas gratúitas descritas em seguida e também será fornecido um link para o repositório no qual será desenvolvido o software.

3.2.1 Hardware

Primeiramente, nota-se que o circuito e a *PCB* (*Printed Circuit Board*) estão sendo desenvolvidos em uma plataforma chamada easyEDA. Esta plataforma, além de fornecer todo um sistema para simulações e desenvolvimento, possúi uma *supply chain* integrada, tornando extremamente simplificado o desenvolvimento e a prototipagem do circuito, sendo possível escolher já as footprints de todos os componentes e também já verificar a disponibilidade destes no mercado.

O roteamento das trilhas de cobre, definição de sua espessura e também o a modelagem em 3D da *PCB* são disponíveis nesta plataforma, tornando-a extremamente versátil. Tudo isto é fornecido de forma gratuita pelo site.

Assim, além de ser desenvolvido em uma plataforma gratúita, o projeto desenvolvido será disponibilizado para acesso pelo link disponibilizado no final deste trabalho..

3.2.2 Software e Firmware

O desenvolvimento completo do *software* utilizado neste projeto se dá pelo editor de código chamado *Visual Studio Code*, ou em abreviação, VSCode. Esta plataforma é gratúita e oferece suporte para todas as linguagens de programação.

Dentro deste editor, existem 3 vetores de programação que serão a base do *software* e *firmware*. Primeiramente, se é utilizado HTML 5 e JS (JavaScript) para a construção do aplicativo web que servirá de monitor para os dados obtidos pelos sensores.

Para o código em Arduino que controlará o ESP32 e também o *Firmware*, será utilizado o PlatformIO, uma *IDE* (*Integrated Development Environment*) gratúita que é uma extensão do VSCode.

Por último, será utilizado o Git, que é um software de controle e versionamento de código, tornando assim possível a disponibilização de todo o software desenvolvido neste projeto e também seu versionamento por meio de um site chamado GitHub. Tal software também pode ser utilizado como uma extensão do VSCode, aumentando e simplificando ainda mais a disponibilidade do software desenvolvido. O link para o repositório está disponibilizado no final deste trabalho.

4 MATERIAIS E METODOLOGIA

Neste capítulo, será discutido e analizado todos os processos relacionados com o desenvolvimento do protótipo, a justificativa de cada escolha tomada, assim como um *BOM* (*Book of Materials*) consolidado, com os preços na data do trabalho, para a confecção de um protótipo.

4.1 Metodologia

Esta seção será dedicada à discussão sobre todas as partes integrantes do protótipo.

4.1.1 Circuito

O circuito foi projetado para seguir um fluxo de informações conforme o diagrama de blocos representado na ??. Este foi feito para guiar a lógica de design e também para explicar sucintamente o que cada parte do sistema compreende.

Figura 23 – Diagrama de Blocos da Lógica de Funcionamento

Fonte: Autoria própria (2024).

Primeiramente, se tem a proteção de entrada. Esta é dividida em duas partes, sendo uma delas a proteção da entrada da tensão e a outra da corrente. Para se proteger a entrada de tensão, utilizam-se um resistor PTC e MOVs. O PTC é projetado para caso a tensão de entrada do circuito seja muito maior que a desejada ou tenha um curto, este esquente e vire uma impedância muito grande, sendo assim uma barreira para qualquer tipo de corrente. Porém, a sua atuação para proteção é demasiada lenta, se pondo necessário a implementação dos MOVs, que atuarão mais rapidamente e fecharão um curto entre a entrada e o ground do circuito enquanto o resistor está sendo ativado.

Para a proteção de corrente, primeiramente se é colocado fusíveis HRC, que são fusíveis especiais para a extinguição de qualquer possível arco voltáico decorrente da queima do

filamento interno deste, prevenindo assim qualquer continuidade após a atuação deste. A ponte de diodos logo em seguida dos resistores shunt atua como um clamp de tensão para limitar esta caso ultrapasse de valores desejados e também como um caminho para a corrente, caso esta não seja o suficiente para queimar os fusíveis, mas sim para queimar o circuito. Estes componentes e sua montagem se encontram discretizados na Figura 24

OSCILOBOY PROTECTION

PTO REPORT OF THE PTO REPO

Figura 24 – Entrada de Tensão e Corrente

Fonte: Autoria própria (2024).

Nesta figura também, pode-se observar as entradas do circuito, sendo a entrada de tensão diretamente ligada à próxima parte do circuito, sendo esta o condicionamento de sinais de tensão e a entrada de corrente composta por resistores, que servem como shunt para a leitura de corrente.

O resistor de 10 m Ω é para a leitura de corrente na proporção de Amperes, a série entre este e o resistor de 1 Ω compõe a leitura da entrada de mA e o resistor de 100 Ω para a leitura de μ A. Para altenar entre as entradas de mA/ μ A e A, foi colocado um switch, discretizando-as.

Para se obter um sinal que o ADC consiga interpretar e também seja seguro para não queimá-lo, é de suma importância que este seja condicionado para tal, entrando na proxima parte do circuito, os condicionadores de tensão.

Existem duas possibilidades para a leitura de um sinal que ADCs conseguem fazer: leitura "Diferencial"e leitura "Single-Ended".

A primeira opção a ser considerada foi a *Single-Ended*. Este tipo de leitura é feita pela comparação de tensão entre um ponto do circuito e o *ground*. Para fazer tal leitura com diferentes *ranges*, o que é de grande importância para se alcançar uma precisão boa, foi primeiro projetado um condicionamento de sinais por divisor resistivo, como representado na Figura 25.

Esta topografia promete 4 ranges de leitura tanto para corrente quanto para tensão, sendo estes 200 V, 20 V, 2 V e 200 mV (com precisão de 2%) e 10 A, 200 mA, 20 mA e 2000 μ A (com precisão de 5%). É também necessário o uso de amp-ops para a seleção do range, para

Figura 25 - Condicionamento de sinais por divisor resistivo para leitura Single-Ended

Fonte: Autoria própria (2024).

isolar o ADC da entrada e também para manter a tensão de entrada do ADC dentro do range requerido.

Desta maneira, foram calculados os resistores de forma a manter a tensão de entrada dos amp-ops sempre entre 30 e -30 V no maior fundo de escala possivel (atenuação de 10x), respeitando os aspectos construtivos destes componentes. O cálculo para tais resistores se resume na resolução do seguinte sistema:

(1)

Obtendo os seguintes resultados:

(2)

Substituindo x, y e z, respectivamente, em R1, R2 e R3 na Figura 25, chega-se às tensões condicionadas desejadas. Com isto, agora, é necessário serem respeitadas as necessidades do ADC, que é o componente principal do circuito, pois este efetivamente fará as leituras.

Primeiramente, foi escolhido o ADC ADS1115 da Texas Instruments, pois este possui 16-bits de resolução, o que torna a leitura extremamente precisa, possui uma referência interna de tensão, tornando desnecessário a construção de uma referência no circuito, tornando-o menos complexo, além de ser compatível com o protocolo de comunicação I^2 C que será utilizado para interfacear este com o microcontrolador. Porém, devido a sua taxa de leitura extremamente baixa, de 860 samples per second, ou SPS, o que prejudicaria a leitura até de frequência 60 Hz, finalmente foi decidido se utilizar o ADC ADS1015.

Este, também da TI, apesar de ter uma resolução mais baixa de 12-bits, oferece uma taxa de SPS de 3300, possibilitando assim uma reconstrução mais fiel da onda a ser

lida, possuindo, como o ADS1115, uma referência interna de tensão e compatibilidade com o protocolo I^2 C. Este ADC também possui uma proteção interna contra surtos por TVS, tornando-o extremamente robusto. Os requerimentos para o funcionamento adequado deste ADC são uma tensão de entrada máxima de 3,3 V e esta não pode ser negativa.

Seguindo tais parâmetros, nota-se que o condicionamento de sinal é inadequado, necessitando de mais componentes e circuitos auxiliares para exercer sua função adequadamente. Limitando-se a tensão de entrada a um range entre -1 e 1 V e adicionando um offset de tensão de 1 V para possibilitar a leitura de tensões negativas, se é imposto então que sinais entre 0 e 1 V serão interpretados como negativos e sinais entre 1 e 2 V a serem interpretados como positivos.

Para a leitura *Single-Ended*, após o divisor resistivo e seu primeiro buffer, põe-se necessário, primeiramente, fazer uma inversão do sinal de *output* do amp-op, pois este inverte o sinal de entrada na saída, colocando em cascata um amp-op. Para estes componentes conseguirem também suportar tensões negativas em sua entrada, é de grande importância que a sua alimentação seja simétrica. Isto acarreta na necessidade da utilização de mais um circuito auxiliar que possibilite a entrega desta tensão negativa, chamado *Negative Charge Pump*.

Segundo, se é necessário também que a tensão de offset proposta seja de extrema precisão para introduzir o mínimo de erro possível ao sinal de leitura. Existem Cls que exercem esta função com a precisão necessária, porém estes são extremamente caros.

Finalmente, para o menor range de tensão, seria necessária a aplicação de mais um amp-op em cascata para a amplificação do sinal, pois este ficaria fora do range do bit menos significativo do ADC, tornando o circuito de condicionamento de sinais algo como mostrado na Figura 26.

Figura 26 – Condicionamento de sinais por divisor resistivo para leitura *Single-Ended*, menor range

Fonte: Autoria própria (2024).

Cada amp-op possui um *drift* de saída, o que introduz ainda mais erro à leitura do ADC, além de como se é necessária uma amplificação de sinal final, quaisquer ruídos introduzidos serão também amplificados. Com todos estes problemas compostos, tomou-se a decisão de fazer a leitura por modo diferencial, que é a outra opção de leitura nativa ao ADC escolhido.

Este tipo de leitura, ao invés de comparar a tensão entre um ponto do circuito e o *ground*, compara a tensão entre dois pontos do circuito e mede efetivamente a diferença entre elas, como mostrado na Figura 27. Isso significa que nenhuma das entradas está ligada a uma referência, eliminando assim problemas referentes ao isolamento da leitura com o terra e também eliminando ruídos de entrada, pois como estes são introduzidos dos dois lados, eles se cancelam.

Figura 27 – Condicionamento de sinais por divisor resistivo para leitura diferencial

Fonte: Autoria própria (2024).

Para o dimensionamento dos resistores desta topologia, é feita uma malha resultando na seguinte equação:

(3)

Resolvendo esta, chega-se ao resultado de 2 M Ω e 20 k Ω para os resistores.

Para o offset de tensão, como os erros introduzidos são anulados pela própria topografia, utiliza-se uma referência tensão menos precisa, diminuindo o custo do circuito regulador como um todo. A referência de tensão utilizada para este projeto é fornecida pelo CI TL431A, tendo este ainda assim uma precisão de 1%, mas sendo muito mais barato que a opção anterior. Além disso, este possibilita mais facilmente a utilização do range inteiro de leitura do ADC, tornando assim o offset 3,3/2, que pode ser regulado pela ação do trimpot junto ao circuito auxiliar. Como não são utilizados amp-ops, também não é necessária a utilização do circuito auxiliar *Negative Charge Pump*.

Então, com todos estes benefícios em mente, foi escolhida esta topologia e tipo de leitura para o circuito final, como explícito na Figura 28. Para a leitura de corrente, a mesma lógica se aplica, pois o resistor shunt é visto como uma fonte de tensão pelo circuito de leitura. Como

esta tensão é extremamente baixa, não há a necessidade de um resistor de entrada para a atenuação da mesma, como explícito na Figura 29.

Figura 28 – Circuito de condicionamento de sinais para tensão

CONDIC / LEITURA TENSÃO

Fonte: Autoria própria (2024).

Figura 29 – Circuito de condicionamento de sinais para corrente

CONDIC / LEITURA CORRENTE

Fonte: Autoria própria (2024).

Após a leitura dos sinais e a conversão feita pelo ADC, o sinal digital de saída é processado por um microcontrolador para então ser entregue a uma webpage e assim tratado para visualização pelo usuário. Algumas necessidades básicas devem ser atendidas pelo chip escolhido, como suporte para comunicação *wireless*, seja *WiFi* ou *Bluetooth*, *clock speed* alta o

suficiente para não interferir na aquisição de dados e também ter uma boa documentação para ser possível o desenvolvimento do código.

Com isso em mente, o microcontrolador utilizado para este projeto é o ESP32, fabricado pela Espressif. A escolha deste foi feita por vários motivos:

- Performance: O ESP32 opera em clock speeds de até 240 MHz, oferecendo um robusto poder de processamento para o código e também para não interferir ou atrasar a aquisição dos sinais;
- Suporte: Este microcontrolador tem suporte tanto para WiFi quanto para Bluetooth, trabalha com o protocolo I²C, que será utilizado para fazer a comunicação tanto com o ADC quanto com o webserver e utiliza-se do Arduino como sua principal plataforma de desenvolvimento;
- Ambiente: Este chip é extensamente utilizado em vários setores da tecnologia e tem uma vasta comunidade de usuários, o que garante um extenso leque de resources como bibliotecas, tutoriais, videos, forums, entre outros, para ajudar na confecção do software e firmware. Também apresenta suporte oferecido pela própria Espressif sobre as suas funcionalidades muito bem documentados;
- Modularidade: Esta parte crucial do trabalho também é suportada por este microcontrolador, e
- Preço: Para todas as funcionalidades providas pelo ESP32, este apresenta um grande custo benefício, além de estar facilmente disponível no mercado.

Para ter uma comunicação confiável entre os dois ADCs conectados a fontes diferentes e o ESP32, é necessário o isolamento entre estes, evitando-se ruídos indesejados. Para isso, foi utilizado um circuito de comunicação isolada por optocouplers, como demonstrado na Figura 30.

explicação sobre o circuito de comunicação isolado e os optos

Para a alimentação do circuito como um todo, existiam duas opções: baterias ou fontes. Como este protótipo será de bancada, foi escolhida a alimentação por fontes, pois estas não precisam ser trocadas frequentemente e é possível ligá-las à rede.

Para este projeto são utilizadas duas fontes isoladas, uma para alimentar o circuito de leitura de tensão e outra para alimentar o circuito de leitura de corrente, reduzindo assim possíveis ruídos e interferências entre circuitos e também aumentando a confiabilidade do protótipo, pois como o objetivo é realizar leituras simultâneas de corrente e tensão, o isolamento entre eles é necessário para previnir curtos.

Porém, o output das fontes escolhidas é de 12 V, não atendendo as necessidades de alimentação dos CIs envolvidos e também do microcontrolador. Para isso, circuitos de regulação de tensão foram implementados, gerando duas saídas, como explícito na Figura 31. Estes

Figura 30 – Circuito de comunicação isolado

COMUNICA쟃O ÓPTICA - ADC2

Fonte: Autoria própria (2024).

circuitos são iguais tanto para a leitura de tensão e de corrente, visto que estes tem as mesmas necessidades.

CONVERSÃO DE TENSÃO 1

VCC 1

Figura 31 – Circuito de regulação de tensão

Fonte: Autoria própria (2024).

Como visto na Figura 28, o ADC é alimentado com 3,3 V, mas o LM358 (que gera o offset de tensão) é alimentado com 5 V. O ESP32, como o ADC, é alimentado com 3,3 V e esta está conectada, por especificação do projeto, sempre ao circuito de conversão de tensão referente à leitura de tensão.

4.1.2 Software e Firmware

4.2 Materiais

Tabela 4 - Book of Materials

Material	Oughtidada	-
	Quantidade	Preço Unidade
ESP32	01	N/A
ADC ADS1015	02	N/A
Buzzer THT	01	N/A
Capacitor 100 nF	16	N/A
Capacitor 330 pF	04	N/A
Capacitor 10 μF	04	N/A
Capacitor 1 μF	06	N/A
Diodo Schottky 1N5819	04	N/A
Diodo 1N4007	10	N/A
Trimpot 1 K Ω	04	N/A
Transistor BC547	01	N/A
Resistor 220 Ω	06	N/A
Resistor 1 k Ω	13	N/A
Resistor 330 Ω	02	N/A
Resistor 0 Ω	04	N/A
Resistor 3k3 Ω	01	N/A
Resistor 1% 2 M Ω	04	N/A
Resistor 1% 10 k Ω	04	N/A
Resistor 1% 100 Ω	04	N/A
Resistor 1% 1 Ω	04	N/A
Resistor SMD 1% 10 m Ω	01	N/A
Varistor S05K385	02	N/A
Fusível HRC 440 mA	01	N/A
Fusível HRC 11 A	01	N/A
Borne KRE2	03	N/A
Borne KRE3	02	N/A
Alavanca 2 posições	01	N/A
LM317T	02	N/A
LM358	02	N/A
LM7805	02	N/A
6N137	05	N/A
Barra de Pinos Fêmea 40x1	02	N/A
PCB	01	N/A
Fonte Isolada	02	N/A
	I.	1

REFERÊNCIAS

ABATE, F. *et al.* A low cost smart power meter for IoT. **Measurement**, v. 136, p. 59–66, mar. 2019. ISSN 0263-2241. Disponível em: https://www.sciencedirect.com/science/article/pii/S0263224118312144.

ACS712 datasheet. [*S.l.*], 2022. Disponível em: https://datasheetspdf.com/pdf-file/570845/AllegroMicroSystems/ACS712/1.

AD202 datasheet. [*S.l.*], 2001. Disponível em: https://www.digchip.com/datasheets/parts/datasheet/041/AD202-pdf.php.

BRAGA, N. C. Como Funciona o Comparador de Tensão (ART1511). 2017. Disponível em: https://www.newtoncbraga.com.br/index.php/como-funciona/12973-como-funciona-o-comparador-de-tensao-art1511.html.

COMPONENTS101. **Difference between Microprocessor and Microcontroller**. 2019. Disponível em: https://components101.com/articles/difference-between-microprocessor-and-microcontroller.

DESIGN Considerations for System-Level ESD Circuit Protection. 2012. Disponível em: https://www.ti.com/lit/an/slyt492/slyt492.pdf?ts=1684694830547&ref_url=https%253A%252F%252Fwww.ti.com%252Fsolution%252Fdigital-multimeter-dmm%253Fvariantid%253D20220%2526subsystemid%253D33457.

DIGITAL multimeter (DMM) design resources | Tl.com. 2022. Disponível em: https://www.ti.com/solution/digital-multimeter-dmm?variantid=20220.

DIGITAL Multimeters, Universe of Instrumentation. 2016. Disponível em: http://www.edisontc.org/ui/home/course/unit-i/multimeters/.

ELECTRICAL Calibration Equipment | Fluke Calibration. 2023. Disponível em: https://eu.flukecal.com/products/electrical-calibration-0.

ESP32 Datasheet. [*S.l.*], 2023. Disponível em: https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32e_esp32-wroom-32ue_datasheet_en.pdf.

FLUKE. **Manual do usuário Fluke 434**. [*S.l.*], 2014. Disponível em: https://www.manualsbase.com/pt/manual/431880/stereo_system/fluke/434/.

FLUKE 28 II Ex Intrinsically Safe True RMS Digital Multimeter. 2023. Disponível em: https://www.fluke.com/en/product/intrinsically-safe/fluke-28-ii-ex.

FLUKE 28 II EX (Pre-production model) - A look inside / mini review. 2012. Disponível em: https://www.mjlorton.com/forum/index.php?topic=150.0.

HIGH-PRECISION Reference Design for Buffering a DAC Signal. 2017. Disponível em: https://www.ti.com/lit/ug/tiduct8/tiduct8.pdf?ts=1685988821918&ref_url=https%253A%252F%252Fwww.ti.com%252Fsolution%252Fdigital-multimeter-dmm%253Fvariantid%253D20220%2526subsystemid%253D33430.

ICL8069 Datasheet. [*S.l.*], 2005. Disponível em: https://pdfserv.maximintegrated.com/en/ds/ICL8069.pdf.

KUPHALDT, T. R. **Lessons in Electric Circuits**. 4. ed. [*s.n.*], 2021. IV. (Lessons In Electric Circuits, IV). Original-date: November, 2007. Disponível em: https://www.circuitbread.com/textbooks/lessons-in-electric-circuits-volume-iv-digital.

LINCK, C. **Fundamentos de Metrologia**. 2. ed. Porto Alegre: SAGAH, 2017. v. 1. Original-date: 2017. ISBN 978-85-9502-023-8. Disponível em: https://integrada.minhabiblioteca.com.br/#/books/9788595020238/.

MANUAL Fluke 27. [*S.l.*], 1998. Disponível em: https://www.testmart.com/webdata/mfr_pdfs/FLU/27____smeng0100.pdf.

MINIPA. **MINIPA ET-1100 INSTRUCTION MANUAL**. [*S.l.*], 2013. Disponível em: https://www.manualslib.com/manual/1085992/Minipa-Et-1100.html.

MULTIMETER design. 2023. Disponível em: https://lygte-info.dk/info/DMMDesign%20UK.html.

MULTIMETER Input Protection Tutorial. 2012. Disponível em: https://www.eevblog.com/forum/blog/eevblog-373-multimeter-input-protection-tutorial/.

MULTIMETER protection and safety. 2023. Disponível em: https://lygte-info.dk/info/DMMDesignProtection%20UK.html.

O'REILLY, C. E.-K. P. Modern DACs and DAC Buffers Improve System Performance, Simplify Design | Analog Devices. 2012. Disponível em: https://www.analog.com/en/analog-dialogue/articles/buffering-the-output-of-high-speed-dacs.html.

SEMICONDUCTOR, O. **TVS/Zener Theory and Design Considerations**. 2005. Disponível em: http://www.reallyreallyrandom.com/zener/media/Zener_Theory_and_Design.pdf.

SILVEY, S. **Understanding the CAT Rating System**. 2022. Disponível em: https://www.ecmweb.com/test-measurement/article/21247639/understanding-the-cat-rating-system.

STAFF, E. **Basics of Alarms and Trips - Instrumentation Tools**. 2015. Disponível em: https://instrumentationtools.com/basics-of-alarms-and-trips/.

TEEL, J. **How to Select the Microcontroller for Your New Product**. 2019. Disponível em: https://predictabledesigns.com/how-to-select-the-microcontroller-for-your-new-product/.

UNIDIRECTIONAL Versus Bidirectional Protection. 2009. Disponível em: https://www.mouser.com/pdfdocs/AND8424-D.PDF.

VICIANA, E. *et al.* All-in-one three-phase smart meter and power quality analyzer with extended IoT capabilities. **Measurement**, v. 206, p. 112309, jan. 2023. ISSN 02632241. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S0263224122015056.

ZIEGLER, S. *et al.* Current Sensing Techniques: A Review. **IEEE Sensors Journal**, v. 9, n. 4, p. 354–376, abr. 2009. ISSN 1530-437X. Disponível em: http://ieeexplore.ieee.org/document/4797906/.