मिडिल स्कूल रसायन

शिक्षकों के लिए एक संसाधन

संकलन व सम्पादन सुशील जोशी

मिडिल स्कूल रसायन

MIDDLE SCHOOL RASAYAN

शिक्षकों के लिए एक संसाधन संकलन व सम्पादनः सुशील जोशी

आवरणः राकेश खत्री

चित्रः बा.वै. कक्षा-6ः रंजित बालुमुचु

बा.वै. कक्षा-7: शंशाक आचार्य, पुष्पेन्द्र सागर और आशीष नगरकर

बा.वै. कक्षा-8ः कैरन हेडॉक

पेज 3: बोस्की जैन

पेज 86, 93-4, 97, 112, 120-1: भारत जमरा

📵 सुशील जोशी व एकलव्य

इस किताब के किसी भी भाग का गैर-व्यावसायिक शैक्षणिक उद्देश्य से इसी प्रकार के कॉपीलेफ्ट चिह्न के साथ उपयोग किया जा सकता है। स्रोत के रूप में किताब का उल्लेख अवश्य करें तथा एकलव्य तथा लेखक को सूचित करें। किसी भी अन्य प्रकार की अनुमति के लिए एकलव्य तथा लेखक से सम्पर्क करें।

मार्च 2013 / 2000 प्रतियाँ

कागज़ः 100 gsm मेपलिथो व 300 gsm एफ.बी. बोर्ड (कवर)

पराग इनिशिएटिव, सर रतन टाटा ट्रस्ट व नवजबाई रतन टाटा ट्रस्ट के वित्तीय सहयोग से विकसित

ISBN: 978-93-81300-63-3

मूल्यः ₹ 120.00

प्रकाशकः एकलव्य

ई-10, शंकर नगर बी.डी.ए. कॉलोनी, शिवाजी नगर, भोपाल - 462 016 (मध्य प्रदेश) फोनः 0755 - 255 0976, 267 1017 www.eklavya.in / books@eklavya.in

मुद्रकः आदर्श प्राइवेट लिमिटेड, भोपाल, फोनः ०७५५ - २५५ ०२९१

प्रो. मनमोहन कपूर उर्फ मन्नू (1937 - 2011)

मन्तू के लिए...

मिडिल स्कूल रसायन मूलतः बाल वैज्ञानिक के रसायन सम्बन्धी अध्यायों का संकलन है। होशंगाबाद विज्ञान के अन्तर्गत विकिसत बाल वैज्ञानिक पुस्तक श्रृंखला का प्रथम संस्करण 1970 के दशक में तैयार हुआ था। दिल्ली विश्वविद्यालय के प्रो. मनमोहन कपूर यानी हमारे मन्तू की भागीदारी के बगैर यह काम शायद ही सम्भव हो पाता। इसके बाद बाल वैज्ञानिक के तीन संस्करण प्रकाशित हुए और मन्तू ने इन तीनों में खास तौर से रसायन शास्त्र के पाठ्यक्रम के विकास का नेतृत्व किया। विशेषकर तीसरे संस्करण में रसायन शास्त्र के अंश में कई महत्वपूर्ण बदलाव उन्हीं के मार्गदर्शन में हुए।

मन्नू दिल्ली विश्वविद्यालय में रसायन शास्त्र पढ़ाते थे। बताते हैं कि कई वर्षों के अनुभव के बाद भी वे हरेक कक्षा की तैयारी उतनी ही संजीदगी से करते थे। यही जज़्बा उन्होंने होशंगाबाद विज्ञान में भी अपनाया था। शिक्षक प्रशिक्षणों में जब भी कोई अध्याय करवाना हो, वे पूरी मुस्तैदी से उसकी पूर्व तैयारी करते और करवाते थे, यहाँ तक कि शक्कर और नमक घोलने जैसे प्रयोग भी। उनकी यह ज़िद कभी चिढ़ पैदा करती थी मगर हम सब जानते हैं कि इसने हमें कई कक्षाई त्रासदियों से बचाया भी है। रसायन शास्त्र के साथ-साथ विज्ञान के इतिहास और दर्शन पर उनकी पकड़ इन तैयारियों में जान डाल देती थी। और बात यहीं नहीं रुकती थी। शेरो-शायरी, चुटकुले, किस्से-कहानियाँ वगैरह भी उनकी संगत को रंगत प्रदान करते थे।

विज्ञान शिक्षण के साथ-साथ सामाजिक सरोकार के धनी मन्नू जीना जानते थे और खूब खुलकर जीते थे। यह मिलनसार इन्सान दिसम्बर 2011 में हमें छोड़ गया।

यह संकलन उन्हीं को समर्पित है।

विषय क्रम

माध्यमिक शाला के लिए रसायन शास्त्र का पाठ्यक्रम	5
बाल वैज्ञानिक अध्यायों की संरचना	8
किट सूची	11
अम्ल और क्षार की पहचान, अम्ल और क्षार का परस्पर सम्बन्ध	12
अम्ल और क्षार की पहचान	17
अम्ल और क्षार का परस्पर सम्बन्ध के लिए घोल बनाने की विधियाँ	22
अम्ल-क्षार का आपसी सम्बन्ध	23
रंगरेज़ों से जुड़ा है लिटमस का इतिहास	29
क्या बताते हैं सूचक रंग बदलकर?	31
दो तरह की अम्लीयता, क्षारीयता	35
चीज़ों को अलग-अलग करना	38
चीज़ों को अलग-अलग करना (पृथक्करण)	41
घुलनशीलता	51
रवे बनाओ	55
क्रोमेटोग्राफी यानी मिश्रण से अलग होते पदार्थ	58
ऊर्ध्वपातन पदार्थों का एक मज़ेदार गुण	61
पानी — मृदु और कठोर	
(रासायनिक गुणधर्मों को पहचानने का एक आसान तरीका)	64
पानी — मृदु और कठोर	66
पानी की कठोरता — सिर्फ झाग की समस्या नहीं	73
हवा के खेल, गैसें, श्वसन	77
हवा के खेल	79
गैसें - 1	85
गैसें - 2	93
श्वसन	98
हमारा भोजन और पौधों में पोषण	104
हमारा भोजन	106
पौधों में पोषण	112
रासायनिक क्रियाएँ	
(क्रियाओं की गति और विद्युत के रासायनिक प्रभाव)	123
रासायनिक क्रियाएँ	125
रासायनिक क्रियाओं की गति	130
बिजली के प्रभाव तरह-तरह के	136
आगे बढ़ने के लिए	138

माध्यमिक शाला के लिए रसायन शास्त्र का पाठ्यक्रम

होशंगाबाद विज्ञान शिक्षण कार्यक्रम के लिए बनी बाल वैज्ञानिक पाठ्यपुस्तकें 'करके सीखो' के सिद्धान्त पर आधारित, पर्यावरण से जुड़ी पाठ्यपुस्तकें हैं। इनका उपयोग करते हुए शिक्षक को बहुतेरे अवसर मिलते हैं कि वह बच्चों को विज्ञान की खोज प्रक्रिया में शामिल कर सके। इस दृष्टि से देखें तो बाल वैज्ञानिक वास्तव में अपने आप में सम्पूर्ण नहीं है क्योंकि इसमें मूलतः एक प्रक्रिया को परिभाषित करके उसका खाका प्रस्तुत हुआ है और उसमें गतिविधियों को जोड़कर खोजबीन करने का एक रास्ता सुझाया गया है। बच्चों को यह खोजबीन शिक्षक के मार्गदर्शन व मदद से करनी है और बाल वैज्ञानिक की विषयवस्तु को सम्पूर्णता देना है। यदि यह प्रक्रिया न हो तो किताब अधूरी-सी ही रहती है।

बाल वैज्ञानिक अध्यापन में एक दिक्कत यह रही है कि बड़ी संख्या में शिक्षक इसका उपयोग उपरोक्त ढंग से नहीं कर पाए थे। ज्ञान से परिपूर्ण, सारे जवाबों का खज़ाना, अपने आप में पूर्ण 'पाठयपुस्तक' की छवि हमारे ज़ेहन पर इतनी हावी है कि बाल वैज्ञानिक से भी वही अपेक्षा होना स्वाभाविक था। जब बाल वैज्ञानिक को इस नजर से देखा जाए तो उसकी विषयवस्तु काफी कम और पाठ्यक्रम काफी सतही व मामूली-सा लगता है। उम्मीद यह थी कि होशंगाबाद विज्ञान शिक्षण कार्यक्रम के अन्तर्गत चलने वाले शिक्षक प्रशिक्षण व उन्मुखीकरण के प्रयासों से शिक्षक बाल वैज्ञानिक की इस अनुठी प्रकृति से परिचित हो जाएँगे और इसका समग्र उपयोग कर पाएँगे। पूरा प्रशिक्षण कार्यक्रम इसी तरह विकसित किया गया था। इसके अलावा बाल वैज्ञानिक के लिए शिक्षक निर्देशिकाएँ तैयार करने का भी प्रयास किया गया था मगर यह काम कभी भी व्यवस्थित ढंग से हो नहीं पाया। यह एक बड़ी कमी मानी जाएगी। शिक्षक निर्देशिका के अभाव में बाल वैज्ञानिक पाठयक्रम की सारी परतें कक्षा में खुल ही नहीं पाती थीं, एकाध स्कूल के अपवाद की बात जाने दें।

इस परिस्थिति में खास तौर से बाल वैज्ञानिक के रसायन के पाठ्यक्रम पर काफी सवाल उठते रहे थे। एक प्रमुख सवाल यह था कि बाल वैज्ञानिक में रसायन की मुख्य बात तो शामिल की ही नहीं गई है। वह मुख्य बात थी परमाणु, अण्, संकेत, सूत्र, समीकरण व संयोजकता जैसी अवधारणाओं की। यह बात इस सन्दर्भ में उठाई जाती थी कि कक्षा नौ में ये चीज़ें होती हैं और कक्षा आठ तक होशंगाबाद विज्ञान पढ़कर गए बच्चों को वहाँ बहुत दिक्कत होती है जबकि राज्य सरकार व राष्ट्रीय शैक्षिक अनुसन्धान एवं प्रशिक्षण परिषद् (एन.सी.ई.आर.टी.) के आम पाठ्यक्रम में ये चीज़ें कक्षा सात में शामिल थीं। इस सन्दर्भ में संवाद बहुत कठिन होता था। यह समझा पाना बहुत मृश्किल होता था कि दुनिया भर में किए गए अध्ययनों से पता चला है कि कक्षा आठ, यानी 13-14 वर्ष के बच्चे ये अवधारणाएँ नहीं समझ पाते हैं। एक ही तर्क होता था कि चूँकि मुख्यधारा के पाठयक्रम में ये चीज़ें शामिल हैं इसलिए इन्हें बाल वैज्ञानिक में भी होना चाहिए। यह समझाना भी बहुत मृश्किल रहा है कि परमाणु व उससे सम्बन्धित रासायनिक अवधारणाएँ समझने से पहले बच्चे के पास रासायनिक पदार्थों, उनमें होने वाले परिवर्तनों, उनकी आपसी क्रियाओं का अच्छा अनुभव होना चाहिए। तभी वे अवधारणाएँ सार्थक ढंग से सीखी जा सकती हैं। अब एन.सी.ई.आर.टी. द्वारा पाठ्यक्रम व पाठ्यपुस्तकों में किए गए संशोधन की प्रक्रिया (2005-08) के दौरान इस बात को स्वीकार किया गया है और कक्षा आठ तक इन अवधारणाओं को शामिल नहीं किया गया है। यह बहुत खुशी की बात है।

मगर ज़्यादा बुनियादी सवाल यह है कि यदि आप परमाणु व सम्बन्धित अवधारणाएँ नहीं पढ़ाते तो रसायन शास्त्र में क्या पढ़ाएँ। यह एक सामान्य समस्या है। यह समस्या के.जी.-नर्सरी से शुरू हो जाती है। पूरे तंत्र, पूरे समाज को पता नहीं कि तीन-चार साल के बच्चों के साथ क्या करें, तो अल्फाबेट लिखवाना और नाक को नोज़ कहलवाना

शुरू कर देते हैं। यही सवाल स्कूली पाठ्यक्रम में बार-बार हर स्तर पर सिर उठाता है। इसी सवाल का एक संस्करण है कि कक्षा छह-आठ के स्तर पर रसायन शास्त्र में क्या पढ़ाएँ?

इस दृष्टि से बाल वैज्ञानिक का रसायन शास्त्र का पाठ्यक्रम गौरतलब है। 1975 में अपने प्रथम संस्करण से शुरू करके 2002 के तृतीय संस्करण तक बाल वैज्ञानिक में रसायन शास्त्र के पाठ्यक्रम का लगातार विकास होता रहा। धीरे-धीरे यह एक अत्यन्त समृद्ध सामग्री बनी। इस पाठ्यक्रम का विकास इस नज़रिए से किया गया है कि पदार्थों की रासायनिक प्रकृति को समझने में किस तरह से आगे बढ़ना चाहिए। यह स्वीकार करके कि रासायनिक गुणधर्म और रासायनिक परिवर्तनों को समझने के लिए गतिविधियों और प्रयोगों का ठोस अनुभव अनिवार्य है, पूरा पाठ्यक्रम सार्थक व करने योग्य गतिविधियों पर आधारित है।

इस पुस्तिका में बाल वैज्ञानिक के इन अध्यायों को एक साथ प्रस्तुत किया गया है। प्रत्येक अध्याय से पहले कुछ परिचयात्मक टिप्पणियाँ और शिक्षक के लिए कुछ सुझाव/ सुराग दिए गए हैं। इसके अलावा अध्याय में भी बीच-बीच में गतिविधियों को और स्पष्ट करने के लिए या गतिविधियों में विस्तार सुझाने के लिए नोट्स हैं। ऐसी चीज़ें अध्याय में पेज के बाजू में बने इस तरह के बॉक्स में छपी हैं।

यह संकलन इस उम्मीद में तैयार किया गया है कि इससे कक्षा छह-आठ के बच्चों को रासायनिक अवधारणाओं व परिघटना से परिचित कराने में मदद मिलेगी। उम्मीद तो यह है कि इससे पाठ्यक्रम पर पुनर्विचार की प्रक्रिया शुरू होगी मगर वह होने तक भी कई शिक्षक इस सामग्री का उपयोग अपनी कक्षाओं में कर सकते हैं। खास तौर से उन हिस्सों का उपयोग तो किया ही जा सकता है जो मौजूदा पाठ्यक्रम से मेल खाते हैं। इसके अलावा शिक्षक स्वयं भी इन गतिविधियों को करके काफी कुछ हासिल कर सकते हैं। इस सामग्री का उपयोग विभिन्न शिक्षक प्रशिक्षणों में भी सम्भव व मददगार होगा।

एक सवाल यह उठता है कि इन सारी गतिविधियों को करने में प्रयोग सामग्री कहाँ से जुटाई जाएगी। अध्यायों को देखकर स्पष्ट हो जाएगा कि इन अध्यायों की गतिविधियाँ करने-करवाने में बहुत ज़्यादा सामग्री की ज़रूरत नहीं पड़ती। गतिविधियों की रचना ही यह मानकर की गई थी कि ये सारे प्रयोग एक आम सरकारी स्कूल में करना सम्भव होना चाहिए। दरअसल होशंगाबाद विज्ञान का एक प्रमुख योगदान इस मिथक को ध्वस्त करना रहा है कि माध्यमिक स्तर पर प्रयोग व गतिविधि आधारित शिक्षण के लिए बहुत महँगी या विशेष सामग्री की ज़रूरत होती है। यहाँ दी गई गतिविधियों के लिए अधिकांश सामग्री आपके आसपास मिल जाएगी। कुछ उपकरण या रसायन शायद ज़िला स्तर पर किसी स्टेशनरी या प्रयोग सामग्री की दुकान पर मिल जाएँगे। वैसे हाई स्कूल की मदद भी ली जा सकती है। शायद ही कोई चीज़ हो जिसे प्राप्त करने में बहुत ज़्यादा दिक्कत हो। आपकी मदद के लिए एक किट सूची शामिल की गई है। इसमें कुछ स्थाई व कुछ खर्च हो जाने वाली सामग्री शामिल है।

यहाँ इन अध्यायों को उसी क्रम में प्रस्तुत नहीं किया जा रहा है जिसमें ये बाल वैज्ञानिक में रखे गए थे। कारण यह है कि बाल वैज्ञानिक में ये कई अन्य अध्यायों के साथ शामिल थे और कक्षावार एक सन्तुलन के साथ प्रत्येक वर्ष की पुस्तक बनाई जाती थी। यहाँ उस तरह की कोई सीमा नहीं है। अलबत्ता, बाल वैज्ञानिक में भी इनका एक अवधारणात्मक क्रम था और यहाँ भी है।

यह संकलन गतिविधियों का एक पुलिन्दा भर नहीं है, यह एक पूरा पाठ्यक्रम है। कोई एक गतिविधि कभी-कभार अध्याय को रोचक बनाने के लिए करवा देना या कक्षा में जान फूँकने के लिए एकाध डिमॉन्स्ट्रेशन कर देना उपयोगी हो सकता है मगर उसे गतिविधि-आधारित शिक्षण मानना भूल होगी। गतिविधि-आधारित शिक्षण का मतलब है कि कक्षा में सीखने-सिखाने की प्रक्रिया गतिविधियों से शुरू हो और गतिविधियों व प्रयोगों के परिणामों के विश्लेषण के आधार पर आगे बढ़े। इसमें ज़रूरी है कि बच्चों के अपने अनुभवों को जोड़ा जाए, उनके सवालों के लिए गुंजाइश हो। आदर्श परिस्थिति तो यह होगी कि किसी भी अवधारणा की शुरुआत बच्चों के सवालों से हो, उनके अवलोकनों से हो। ऐसा कर पाना स्कूली परिस्थिति में सदा सम्भव नहीं होता। इसलिए बाल वैज्ञानिक के अध्यायों में कोशिश यह

थी कि बच्चों के अपेक्षित सवालों को शामिल करके ही आगे बढ़ा जाए। मगर इसका मतलब यह नहीं है कि उनके सारे सवालों का अन्देशा करके उन्हें शामिल कर लिया गया है।

एक अन्तिम बात। हालाँकि पाठ्यक्रम की दृष्टि से अवधारणाओं को अलग-अलग किया जाता है मगर वास्तविक अनुभव और रोज़मर्रा के जीवन में ये अवधारणाएँ प्रायः मिले-जुले रूप में सामने आती हैं। इसलिए ज़रूरी है कि बच्चों के सवालों को पर्याप्त स्थान दिया जाए ताकि अवधारणाओं के परस्पर सम्बन्धों से ध्यान न हटे।

प्रक्रिया यह सोची गई है कि शुरू में शिक्षक बच्चों के साथ

खुली चर्चा के माध्यम से उनके सवालों और समझ को उभारे। फिर उसे ध्यान में रखते हुए अध्याय की गतिविधियाँ करवाई जाएँ, उनके अवलोकनों व परिणामों को बच्चों के अनुभवों से जोड़ा जाए, गतिविधियों के बाद दिए गए सवालों पर चर्चा हो और निष्कर्ष निकलें, इन निष्कर्षों को अनुभवों व प्रयोगों की कसौटी पर परखा जाए, नई-नई परिस्थितियों में लागू करके देखा जाए। इसका मतलब यह भी है कि कोई भी अध्याय जस-का-तस 'करवा देना' पर्याप्त नहीं होगा क्योंकि हर कक्षा में बच्चों के साथ मिलकर ही पूरी प्रक्रिया की बारीकियों का निर्धारण होगा। अतः इन अध्यायों का उपयोग करते हुए शिक्षक से काफी सृजनशीलता की भी अपेक्षा है।

बाल वैज्ञानिक (बा.वै.) कक्षा 6, 2000, पृ 52

बाल वैज्ञानिक अध्यायों की संरचना

एक मायने में बाल वैज्ञानिक एक अधूरी किताब है। इसमें सिर्फ प्रयोग करने की विधि और सवाल हैं। इन सवालों के जवाबों के साथ ही यह पूरी होती है। मगर बात सिर्फ सवाल और जवाब की नहीं है। सवालों और जवाबों के बीच एक पूरी प्रक्रिया है जिससे होकर ये जवाब मिलते हैं। वह प्रक्रिया है प्रयोगों की, अवलोकनों की, चर्चा की, आँकड़ों के प्रस्तुतीकरण की, विश्लेषण की, सिद्धान्त व नियम विकसित करने की।

बाल वैज्ञानिक के प्रत्येक अध्याय में पाठ्यक्रम के लगभग सारे अंगों का समावेश है। इसलिए यह शिक्षक की अभिरुचि, हुनर, आत्मविश्वास, सम्बन्धित विषय की जानकारी व समझ और बच्चों की तैयारी व कक्षा के माहौल पर निर्भर है कि पाठ्यक्रम के तत्व किन अध्यायों में सर्वोत्तम ढंग से प्रकट होंगे। इस दृष्टि से देखें तो बाल वैज्ञानिक के हरेक अध्याय के दो पक्ष हैं और दोनों बराबर महत्व के हैं। पहला पक्ष है विषयवस्तु का। अध्याय पानी की कठोरता से सम्बन्धित हो सकता है या भोजन व पाचन क्रिया से। मगर दूसरा पक्ष सभी अध्यायों में लगभग एक-सा है; वह है विज्ञान की पद्धित का। यानी प्रयोग करना, अवलोकन करना, अवलोकनों को रिकॉर्ड करना, उन्हें व्यवस्थित रूप देना, पैटर्न पहचानना, तार्किक विश्लेषण करना, निष्कर्ष निकालना, उस निष्कर्ष को तर्क व अनुभव की कसौटी पर कसना, तर्क करना, और इस सबको अपने शब्दों में व्यक्त करना।

टोलियाँ

बाल वैज्ञानिक में छात्रों की टोलियाँ सीखने की इकाई है। शिक्षक से उम्मीद है कि वे अपनी कक्षा में चार-चार बच्चों की टोलियाँ बनवा दें। टोलियों में काम करने के कई महत्वपूर्ण शैक्षिक परिणाम भी होते हैं। इसका एक असर यह होता है कि कक्षा की बनावट और वहाँ होने वाले कामकाज का स्वरूप ही बदल जाता है। जहाँ एक आम कक्षा में सारे छात्र कतारों में शिक्षक की ओर मुँह करके बैठते हैं, वहीं बाल वैज्ञानिक की कक्षा में चार-चार विद्यार्थी घेरे बनाकर बैठे होते हैं। हरेक टोली के बीच में किट सामग्री या अन्य अध्ययन सामग्री रखी होती है और वे अपने काम में, आपसी बातचीत में मशगूल होते हैं। टोलियाँ प्रयोग करते हुए काफी शोरगुल भी करती हैं और सामग्री लाने या अन्य टोलियों के प्रयोग देखने के लिए भागदौड़ भी चलती रहती है।

एक तरह से देखा जाए तो टोलियों में काम करने की वजह से बच्चे काफी स्वायत्त हो जाते हैं और कक्षा के 'गुप्त सत्ता समीकरण' में नया सन्तुलन स्थापित होता है। यह परिवर्तन आंशिक ही सही मगर मामूली नहीं है।

टोली में काम करना सीखने में सामूहिकता का एक घटक है। कुल मिलाकर बाल वैज्ञानिक ज्ञानार्जन को एक निजी, तनहा प्रयास की बजाय पूरी कक्षा के साझा उद्यम में बदलने की कोशिश करती है। टोली में और पूरी कक्षा में लगातार एक सहयोगी माहौल बनाने का यह प्रयास आम शिक्षा में व्याप्त व्यक्तिगत प्रतिस्पर्धा के माहौल को थोड़ा शिथिल करने का जतन है। अनुभव से यह भी पता चलता है कि इस तरह से बच्चे एक-दूसरे से काफी कुछ सीखते हैं।

प्रयोग व गतिविधियाँ

बाल वैज्ञानिक के प्रत्येक अध्याय में बच्चों को कुछ प्रयोग या गतिविधि करने के निर्देश दिए गए हैं। हरेक प्रयोग करने के बाद कुछ सवाल पूछे गए हैं जो बच्चों को अपने अवलोकन रिकॉर्ड करने, उन अवलोकनों का विश्लेषण करने तथा उनसे निष्कर्ष निकालने में मदद करते हैं। प्रयोग और गतिविधियों के निर्देश काफी विस्तार में दिए गए हैं। ये निर्देश लिखित रूप में भी हैं और चित्रों के माध्यम से समझाए भी गए हैं। प्रयोग के निर्देशों को अपने आप में पूर्ण बनाने का प्रयास किया गया है ताकि बच्चे इन्हें पढ़कर खुद वह प्रयोग कर सकें। आम पाठ्यपुस्तकों के विपरीत बाल वैज्ञानिक में लगभग कहीं भी प्रयोग के निर्देश देने के बाद उसके अवलोकन या निष्कर्ष नहीं दिए गए हैं। बल्कि यह कहना ज़्यादा सही होगा कि बाल वैज्ञानिक में भरसक कोशिश की गई है कि बच्चों को तनिक भी आभास न मिले कि किस तरह के अवलोकन की उम्मीद करें। प्रयोग करने में बच्चों की रुचि जगाने के लिए ज़रूरी है कि अवलोकन व निष्कर्ष पहले से मालूम न हों, और न ही कहीं से पके-पकाए मिल जाएँ। प्रयोग करना ही नहीं बल्कि इन प्रयोगों के अवलोकन की व्याख्या के लिए जुझना भी सीखने का एक प्रमुख अंग है। यहाँ यह सवाल उठना स्वाभाविक है कि यदि कक्षा में प्रयोग ठीक से न हुए, अवलोकन 'गलत-सलत' आ गए तो आगे की पूरी प्रक्रिया का क्या होगा? यह सवाल एकदम वाजिब है मगर इसे एक समस्या के रूप में नहीं बल्कि एक चुनौती के रूप में देखा जाना चाहिए। वैसे तो प्रयोग इतने सरल व सहज हैं कि गलत होने की गुंजाइश बहुत कम है। और यदि अवलोकन ठीक न आ रहे हों तो इसे भी एक शैक्षणिक अवसर के रूप में लें। उम्मीद यह की जाती है कि शिक्षक सारे बच्चों के अवलोकनों को देखकर यह सुनिश्चित कर लेंगे कि सबके 'सही' अवलोकन आ गए हैं। यदि ऐसा नहीं है तो चर्चा के माध्यम से यह समझने की कोशिश होगी कि प्रयोग करने में कोई खामी तो नहीं रह गई। बच्चों द्वारा खुद प्रयोग करने में इसकी सम्भावना रहती है मगर जब कक्षा में 10 टोलियाँ प्रयोग कर रही हैं तो इस बात की प्रबल सम्भावना है कि कुछ टोलियों के प्रयोग 'सही' होंगे और विविधता के आधार पर आपको यह मौका मिल जाएगा कि विश्लेषण करके प्रयोग दोहराने की बात कर पाएँ। आदर्श रूप में यही अपेक्षा की जाती है।

बाल वैज्ञानिक में दिए गए प्रयोगों के बारे में दूसरी महत्वपूर्ण बात यह है कि ये 'सत्यापन प्रयोग' नहीं हैं। यानी इन प्रयोगों का मकसद यह नहीं है कि पहले से ज्ञात किसी नियम या सिद्धान्त की पुष्टि करना है। आम तौर पर हाई स्कूल व कॉलेज के स्तर पर विज्ञान में प्रयोगों का प्रावधान होता है मगर वहाँ प्रयोग सत्यापन के लिए होते हैं। शिक्षण में उस तरह के प्रयोगों की भूमिका के विश्लेषण में न जाते हुए भी यह बताना ज़रूरी है कि बाल वैज्ञानिक में प्रयोगों के आधार पर नियम व सिद्धान्त आदि विकसित करना सीखने का प्रमुख आधार है।

तीसरी बात यह है कि, चन्द अपवादों को छोड़कर, सारे

प्रयोग बच्चों द्वारा खुद करने के लिए हैं, शिक्षक द्वारा प्रदर्शन के लिए नहीं।

प्रयोग में तुलना का प्रावधान

ऐसे कई अवलोकन होते हैं जिनसे बहुत 'आसानी' से निष्कर्ष निकाले जा सकते हैं। मगर यह 'आसानी' एक छलावा होती है। जैसे, 'साँप बीन की धून पर नाचता है,' इस कथन की सत्यता पर सन्देह का कोई कारण नहीं है क्योंकि हर साल नागपंचमी के दिन सँपेरे साँप लेकर आते हैं, बीन बजाते हैं, और साँप नाचता है। चाहे मानव जीवन पर ग्रहों का असर हो, दवाइयों का असर हो, झाड़-फूँक का असर हो, हर मामले में दिखता तो यही है कि अमुक क्रिया करने पर फलाँ असर हुआ। मगर इसके आधार पर निष्कर्ष यह निकाला जाता है कि अमुक क्रिया करने के कारण फलाँ असर हुआ। वास्तव में इस तरह के मामलों में कई सम्भावनाएँ होती हैं। जैसे हो सकता है कि ये दोनों बातें हमेशा एक साथ होती तो हों मगर एक-दूसरे के कारण नहीं। इन दोनों का कोई साझा कारण हो सकता है जिसकी वजह से ये हमेशा साथ-साथ होती हैं। या यह भी हो सकता है कि संयोगवश ये साथ-साथ हुई हों। और यह भी हो सकता है कि इनके बीच कार्य-कारण सम्बन्ध हों। आधुनिक विज्ञान में प्रयोग करना जानकारी प्राप्त करने, कार्य-कारण सम्बन्ध स्थापित करने और प्रमाण जुटाने का एक महत्वपूर्ण अंग है। प्रमाण और कार्य-कारण सम्बन्ध स्थापित करने के लिए प्रयोग का उपयोग करते हुए कई बातों का ध्यान रखना होता है। कई मर्तबा ऐसा होता है कि एक ही प्रयोग में एक से अधिक कारक काम करते हैं और निष्कर्ष निकालने में दिक्कत होती है। इस तरह के भ्रम से बचने के लिए विज्ञान के प्रयोगों में कंट्रोल की अवधारणा विकसित हुई है।

कंट्रोलशुदा प्रयोग का मतलब यह होता है कि आप एक ही प्रयोग की उन सारी बातों को पहचानें जिन्हें बदलने पर कोई प्रभाव नज़र आता है और फिर इन्हें एक-एक करके बदलकर देखें। यानी एक कारक को बदलते हुए शेष सारे कारक नहीं बदलना चाहिए। मगर ऐसा करना हमेशा सम्भव नहीं होता। इसलिए तरीका यह अपनाया जाता है कि एक ही प्रयोग को एक साथ दो ढंग से किया जाए। दोनों में शेष समस्त बातें एक-सी हों, सिर्फ कोई एक चीज़ असमान हो। इन्हें हम तुलना के प्रावधान युक्त प्रयोग या

कंट्रोलशुदा प्रयोग कहते हैं।

बाल वैज्ञानिक में ऐसे प्रयोगों को खास महत्व दिया गया है। भोजन और पाचन क्रिया में मण्ड पर लार का प्रभाव, पौधों में पानी के साथ खनिज पदार्थों का ऊपर चढ़ना, 'जल — मृदु और कठोर' अध्याय में विभिन्न लवणों का कठोरता पर प्रभाव, पौधों के पोषण में मण्ड के निर्माण में प्रकाश की भूमिका, श्वसन में साँस की हवा के गुणधर्म वगैरह इसके उदाहरण हैं।

वैसे अन्य कई जगह पर बच्चों का ध्यान इस बात पर दिलाया गया है कि एक ही प्रयोग में एक से अधिक बातों का प्रभाव होता है और निष्कर्ष निकालते समय इस चीज़ पर ध्यान देना जरूरी है।

सवाल-दर-सवाल

हर प्रयोग के बाद प्रश्न दिए गए हैं। ये प्रश्न मूलतः दो प्रकार के हैं। एक वे प्रश्न हैं जो बच्चों का ध्यान अवलोकन पर केन्द्रित करवाने के लिए हैं। इनमें अपेक्षा यह है कि वे अपने अवलोकनों को व्यवस्थित ढंग से लिखेंगे। कहीं-कहीं अवलोकन रिकॉर्ड करवाने के लिए तालिकाओं का उपयोग भी किया गया है।

अवलोकन रिकॉर्ड हो जाने के बाद दूसरे प्रकार के प्रश्नों का सेट आता है जिनमें अवलोकनों का विश्लेषण किया जाता है। यहाँ अपेक्षा यह है कि बच्चे टोलियों में और सामूहिक रूप से अवलोकनों की व्याख्या करेंगे। इसके लिए वे अपने पूर्व अनुभवों का उपयोग भी करेंगे और प्रयोग के अवलोकनों का भी। आदर्श रूप में तो प्रत्येक बच्चे को मौका मिलेगा कि वह अपनी परिकल्पना या व्याख्या प्रस्तुत करे, अन्य बच्चों द्वारा प्रस्तुत व्याख्याओं पर सवाल खड़े करे, उन्हें समझने की कोशिश करे। इस पूरी चर्चा व बहस में शिक्षक की भूमिका बहुत सक्रिय व महत्वपूर्ण होती है। शिक्षक से यह उम्मीद नहीं है कि 'सही व्याख्या' बता दे।

उम्मीद यह है कि वह बच्चों द्वारा प्रस्तुत व्याख्याओं पर आपसी चर्चा में मदद करे, सवाल पूछकर उन्हें अपनी बात स्पष्ट करने में मदद करे, अन्य अनुभवों की कसौटी पर उनकी व्याख्याओं को परखे, और ज़रूरी हो तो विभिन्न व्याख्याओं को परखने के लिए पूरक प्रयोग करवाए। यह प्रक्रिया उतनी ही महत्वपूर्ण है जितना सही व्याख्या तक पहुँचना।

इस तरह से सीखने की प्रक्रिया में बच्चे सक्रिय रूप से शरीक होते हैं, तो ज़ाहिर है 'व्याख्यान पद्धति' की अपेक्षा समय ज़्यादा लगता है। अलबत्ता सीखने की प्रक्रिया बेहतर होती है।

एक दिक्कत यह है कि प्रत्येक प्रयोग से सम्बन्धित प्रश्न प्रयोग के बाद आते हैं। यानी प्रयोग करते समय बच्चों को यह पता नहीं होता कि उसमें किस चीज़ का अवलोकन करना है। ज़ाहिर है हरेक प्रयोग में कई बातें होती हैं। बच्चों को यह बिलकुल अन्दाज़ा नहीं होता कि वे यह प्रयोग कर क्यों रहे हैं। इसलिए प्रयोग करने से पहले बच्चे की कोई अपेक्षा नहीं होती, किस खास चीज़ पर ध्यान देना है यह साफ नहीं होता। शिक्षक से यह अपेक्षा है कि वह कक्षा में वार्तालाप के ज़रिए प्रत्येक प्रयोग से पहले यह भूमिका बनाने का काम करेगा/करेगी। करना यह होगा कि पहले बच्चों से कहा जाए कि वे प्रयोग तथा उससे सम्बन्धित सवाल पढ़ लें, शिक्षक उनको लेकर चर्चा करवाए, मुख्य सवालों पर ध्यान केन्द्रित करवाए और फिर प्रयोग शुरू हो। इससे बच्चों को प्रयोग करने का मकसद शुरू से ही स्पष्ट होगा और वे ज़्यादा सार्थक ढंग से खोजबीन की प्रक्रिया में जुड़ेंगे। शिक्षक से यह भी अपेक्षा है कि वे पिछले प्रयोग और आने वाले प्रयोग की कडी जोडेंगे।

प्रश्नों को नम्बर इस उद्देश्य से दिए गए हैं कि बाद में किसी समय उन्हें सही सन्दर्भ में देखा जा सके।

किट सूची

फिनॉफ्थलीन स्थाई उपकरण कैल्शियम क्लोराइड परखनली/इंजेक्शन की शीशियाँ कैल्शियम कार्बोनेट उफननली मैग्नीशियम सल्फेट कॉर्क एक व दो छेद वाले¹ नौसादर (अमोनियम क्लोराइड) परखनली स्टैंड पोटैशियम परमेग्नेट परखनली पकड़ संगमरमर के टुकड़े तश्तरी जस्ते के टुकड़े बीकर एल्युमिनियम के टुकड़े काँच की छड़ नीला थोथा (कॉपर सल्फेट) काँच की नली टिंक्चर आयोडीन⁷ ड्रॉपर पोटैशियम आयोडाइड कीप बैंज़ोइक अम्ल काँच की स्लाइड्स ऑक्सेलिक अम्ल चम्मच (प्लास्टिक) यूरिया सिरिंज प्लास्टिक की बड़ी बोतलें² खर्च होने वाली सामग्री (अन्य) कोनिकल फ्लास्क (सम्भव हो तो) छन्ना कागज़ मोमबत्ती (सम्भव हो तो स्पिरिट लैंप) एल्युमिनियम का गुटका क्तई खर्च होने वाली सामग्री (रसायन) सफेद चॉक छन्ना कागज़ की पट्टियाँ नमक का अम्ल (हाइड्रोक्लोरिक अम्ल) गन्धक का अम्ल (सल्फ्यूरिक अम्ल) आसुत पानी⁸ नमक (सोडियम क्लोराइड)³ साबुन डिटर्जेंट कैल्शियम बाईकार्बोनेट फुग्गे कॉस्टिक सोडा (सोडियम हाइड्रॉक्साइड) अगरबत्ती खाने का सोडा (सोडियम बाईकार्बोनेट)⁴ टार्टरिक अम्ल वॉल्व ट्यूब विभिन्न रंगों की स्याहियाँ नेफ्थलीन (कपड़ों में रखने वाली गोलियाँ) चूना (खाने वाला)⁵ लोहे का जूना (बरतन माँजने वाला)

इन चीज़ों के अलावा कई बार बच्चों को अपने घर से या आसपास से चीज़ें बटोरनी होंगी, जो वे आसानी से कर सकते हैं।

सेल

1. कॉर्क उफननली में फिट होना चाहिए।

लिटमस कागज़ (लाल व नीले)

- 2. आजकल पानी की जो बोतलें मिलती हैं, वे ठीक रहेंगी।
- 3. साधारण नमक का उपयोग किया जा सकता है, मगर अध्याय में दी गई सावधानी देखें।
- 4. किराने की दुकान से ले सकते हैं।
- 5. पान की दुकान पर मिलता है।
- 6. इंजेक्शन की शीशियों के ढक्कन के ऊपर लगी धातु एल्युमिनियम होती है।
- 7. आजकल घावों पर लगाने के लिए टिंक्चर बेंज़ोइन का उपयोग भी होता है। इसलिए ध्यान से टिंक्चर आयोडीन लाएँ।
- 8. बारिश का पानी सर्वोत्तम आसुत पानी होता है। थोड़ी बारिश होने के बाद इकट्ठा कर लें।

अम्ल और क्षार की पहचान, अम्ल और क्षार का परस्पर सम्बन्ध

बाल वैज्ञानिक के प्रथम संस्करण में यह एक लम्बा अध्याय था जिसका नाम था 'अम्ल, क्षार और लवण' और यह कक्षा आठ में था। आगे चलकर कक्षा छह से आठ तक में सामग्री के सन्तुलित वितरण की दृष्टि से इसे दो भागों में बाँटा गया था — 'अम्ल और क्षार की पहचान' तथा 'अम्ल और क्षार का परस्पर सम्बन्ध'। इनमें से पहला अध्याय कक्षा छह में और दूसरा कक्षा आठ में शामिल किया गया। कारण यह था कि दूसरे वाले हिस्से में थोड़ी गणना वगैरह करनी होती है जिसमें कक्षा छह के बच्चों को थोड़ी कठिनाई होती थी। पहला भाग तो मूलतः गुणात्मक है जिसमें सूचक के रंगों के आधार पर पदार्थों का वर्गीकरण करना होता है।

अम्ल और क्षार की पहचान हम कुछ पदार्थों की मदद से करते हैं। इन्हें सूचक कहते हैं। सूचकों पर अम्ल व क्षार का अलग-अलग असर होता है। आम तौर पर अम्ल और क्षार की उपस्थिति में सूचक अलग-अलग रंग दर्शाते हैं। ज़ाहिर है कि कुछ पदार्थ ऐसे भी होते हैं जिनका सूचकों पर कोई असर नज़र नहीं आता; इन्हें उदासीन पदार्थ कहते हैं।

यदि बच्चों के लिए रसायन शास्त्र के औपचारिक अध्ययन का यह पहला अनुभव हो तो एक महत्वपूर्ण बात ज़रूर स्पष्ट करना चाहिए। जब भी हम रासायनिक गुण परखना चाहते हैं या पदार्थों की आपसी क्रिया करवाना चाहते हैं तो हम सूखे पदार्थों का नहीं बल्कि उनके घोलों का उपयोग करते हैं। इस अध्याय में बच्चे सारे पदार्थों की जाँच घोल के रूप में ही करेंगे। वे देख पाएँगे कि जब भी किसी ठोस पदार्थ की जाँच करनी होती है तो उसे पहले पानी में घोल लेते हैं। यह ज़रूर है कि कुछ क्रियाएँ ठोस अवस्था में भी

होती हैं। पिछले कुछ वर्षों में गैर-जलीय घोलों पर भी काफी अनुसन्धान हुए हैं। गैस अवस्था में भी क्रियाएँ होती हैं। मगर सामान्यतः हम जलीय घोलों की ही बात करते हैं। आम तौर पर अम्ल और क्षार की पहचान के लिए जिस सूचक का उपयोग किया जाता है वह लिटमस है। दरअसल हम लिटमस का उपयोग लिटमस में भीगे कागज़ यानी लिटमस कागज़ के रूप में करते हैं। लिटमस कागज़ दो रंगों में मिलते हैं — नीले और लाल। लिटमस के बारे में आपके अध्ययन के लिए अध्यायों के बाद और जानकारी दी गई है। ऐसा नहीं है कि लिटमस ही एकमात्र सूचक हो मगर इस स्तर पर एक परिभाषा के रूप में हम कह सकते हैं कि जो पदार्थ नीले लिटमस को नीला कर दें वे अम्लीय हैं और जो पदार्थ लाल लिटमस को नीला कर दें वे क्षारीय हैं। जो पदार्थ नीले या लाल दोनों तरह के लिटमस पर कोई असर न डाले, वह उदासीन है।

इस सन्दर्भ में यह कहना ज़रूरी है कि जैसे-जैसे बच्चे रसायन शास्त्र के अध्ययन में आगे बढ़ेंगे, वैसे-वैसे अम्ल व क्षार की परिभाषाएँ न सिर्फ बदलती जाएँगी बल्कि विस्तृत होती जाएँगी। मगर माध्यमिक स्तर पर 'लिटमस टेस्ट' से काम चल जाएगा। अन्य परिभाषाएँ पदार्थों की संरचना समझने के बाद ही अर्थ पा सकती हैं।

अध्याय में दो बातें स्पष्ट की गई हैं जिनका उल्लेख यहाँ किया जा सकता है:

 कई बार ऐसा मान लिया जाता है कि यदि लाल अथवा नीले, किसी भी लिटमस कागज़ पर पदार्थ का असर न हो तो वह पदार्थ उदासीन होगा। यह निष्कर्ष अधूरा है। दोनों तरह के लिटमस कागज़ से परीक्षण करने के बाद ही हम उदासीनता का फैसला कर सकते हैं। इस बात को अभ्यास के प्रश्न क्रमांक 2 में उभारने की कोशिश की गई है।

2. जो पदार्थ न अम्ल हो न क्षार, उन्हें लवण मानने की प्रवृत्ति होती है। कारण यह लगता है कि आम तौर पर बताया जाता है कि अम्ल और क्षार की क्रिया से लवण बनते हैं जो उदासीन होते हैं। इस वज़ह से कई बार लोग मान लेते हैं कि उदासीन घोल लवण के घोल होते हैं। ज़ाहिर है शक्कर जैसे पदार्थ उदासीन हैं मगर लवण नहीं हैं।

इसकी उलटी बात भी भ्रम का विषय है। आम तौर पर माना जाता है कि सारे लवण उदासीन होते हैं। यह सही नहीं है। कई लवण अम्लीय अथवा क्षारीय होते हैं — जैसे कैल्शियम कार्बोनेट क्षारीय होता है जबिक अमोनियम क्लोराइड अम्लीय होता है। वास्तव में सोडियम कार्बोनेट के घोल का उपयोग तो हम अनुमापन में प्राथमिक मानक के रूप में करते हैं।

यानी यदि कोई घोल या पदार्थ उदासीन है तो यह नहीं कहा जा सकता कि वह अनिवार्य रूप से लवण होगा। न ही यह कहा जा सकता है कि सारे लवणों के घोल उदासीन ही होंगे।

दरअसल यहाँ हम इस बारे में चर्चा कर सकते हैं कि अम्ल और क्षार होते क्या हैं और सूचक हमें क्या बताते हैं।

सबसे पहले यह साफ हो जाए कि मिडिल स्कूल के बच्चों के स्तर पर और आम तौर पर रसायन शास्त्र में व्यवहारिक कार्यों के लिए जब अम्ल और क्षार की बात करते हैं तो यह लिटमस के सापेक्ष ही होती है। यानी यदि लिटमस किसी पदार्थ को अम्लीय बता रहा है तो वह अम्लीय है और यदि लिटमस किसी पदार्थ को क्षारीय बताता है तो वह क्षार ही है। इस स्पष्टीकरण के बाद थोड़ी बात अम्ल व क्षार की रासायनिक प्रकृति की हो जाए।

जब यह कहा गया कि लिटमस ही हमारा मानक सूचक है तो एक बात आपके मन में ज़रूर आई होगी कि क्या अन्य सूचक मानक नहीं हैं। यदि आप जाँच करना चाहें तो करके देख सकते हैं।

अम्ल और क्षार का भेद करने के लिए कई सूचक हैं: फिनॉफ्थलीन, मिथाइल ऑरेंज वगैरह का उपयोग आम तौर पर होता है। यदि आप ये सूचक प्राप्त कर सकें (हायर सेकंडरी स्कूलों की प्रयोगशाला में मिल जाएँगे) तो इनसे अलग-अलग पदार्थों की जाँच करके देखें कि क्या इन सबसे मिलने वाले परिणाम एक-से होते हैं या अलग-अलग।

हल्दी के बाद फूलों के रंगों के सूचक बनाए गए हैं। इनमें गुड़हल (जासौन, चाइना रोज़), बेशरम, बोगनविला वगैरह फूलों का उपयोग किया जा सकता है। दरअसल यह बच्चों के लिए एक अच्छा प्रोजेक्ट हो सकता है कि वे अपने आसपास पाए जाने वाले विभिन्न फूलों और अन्य रंगीन पदार्थों का परीक्षण करके देखें। जैसे बगैर दूध की चाय, पीला या लाल कागज़ (जिस पर प्रायः पैम्फलेट छपते हैं), चुकन्दर का रस वगैरह।

इतना हो जाने के बाद लिटमस कागज़ से परिचय होता है। चाहें तो शुरुआत लिटमस से करके उसके बाद अन्य सूचकों का परीक्षण कर सकते हैं।

इस स्तर पर अम्ल व क्षार को हम इस आधार पर परिभाषित कर सकते हैं कि पानी में उनके घोल में हाइड्रोजन आयन की सान्द्रता कितनी होती है। शुद्ध पानी में हाइड्रोजन आयन की सान्द्रता 10⁻⁷ मोल प्रति लीटर होती है। पानी में इतने ही (10⁻⁷ मोल प्रति लीटर) हाइड्रॉक्साइड आयन भी पाए जाते हैं। इन दोनों का गुणनफल होता है 10⁻¹⁴ मोल आयन प्रति लीटर। अम्ल वे पदार्थ होते हैं जो पानी में घुलने पर हाइड्रोजन आयन पैदा करते हैं जबिक क्षार हाइड्रॉक्साइड आयन पैरा पानी में इन दो आयनों का गुणनफल 10⁻¹⁴ मोल आयन प्रति लीटर ही बना रहता है। लिहाज़ा होता यह है कि जब पानी में हाइड्रोजन आयन की सान्द्रता बढ़ती है तो हाइड्रॉक्साइड आयनों की सान्द्रता घट जाती है और गुणनफल वही का वही रहता है। तो जब हाइड्रोजन आयन की

सान्द्रता 10⁻⁷ मोल आयन प्रति लीटर से अधिक होती है तो वह अम्लीय घोल कहलाता है और जब इनकी मात्रा 10⁻⁷ मोल आयन प्रति लीटर से कम हो जाती है तो घोल क्षारीय कहलाता है। अम्लीयता और क्षारीयता को और गहराई में समझने में आगे दिए गए दो आलेख — 'क्या बताते हैं सूचक रंग बदलकर?' (पृष्ठ 34) और 'दो तरह की अम्लीयता, क्षारीयता' (पृष्ठ 38) — मददगार होंगे।

इस आधार पर देखें तो 10⁻⁷ मोल से अधिक हाइड्रोजन आयन प्रति लीटर वाले सारे घोल अम्लीय हैं और 10⁻⁷ मोल प्रति लीटर से कम हाइड्रोजन आयन वाले सारे घोल क्षारीय हैं। हम जो सूचक इस्तेमाल करते हैं वे हाइड्रोजन आयन की अलग-अलग सान्द्रता पर रंग बदलते हैं। किसी का रंग ठीक 10⁻⁷ पर बदलता है तो किसी का 10⁻⁸ पर, तो किसी तीसरे सूचक का 10⁻⁶ पर। इसलिए किसी घोल को एक सूचक अम्लीय बता सकता है जबकि दूसरा सूचक उसी को क्षारीय या उदासीन भी बता सकता है।

जब अम्ल या क्षार प्रबल हों (यानी उनकी हाइड्रोजन आयन सान्द्रता 10⁻⁷ ग्राम आयन प्रति लीटर से बहुत ज़्यादा या कम हो), तो ज़ाहिर है इस बात से कोई फर्क नहीं पड़ेगा कि आपने कौन-सा सूचक लिया है। मगर यदि ऐसे अम्ल या क्षार लिए जाएँ जिनके घोल में हाइड्रोजन आयन की सान्द्रता 10⁻⁷ से थोड़ी ही कम-ज़्यादा होती है, तो सूचक का चुनाव बहुत महत्वपूर्ण हो जाता है। दुर्बल अम्ल व क्षार के रूप में आप टार्टरिक अम्ल, कैल्शियम कार्बोनेट, अमोनियम क्लोराइड वगैरह की जाँच करके देख सकते हैं।

सारे सूचकों और आसपास की चीज़ों से परीक्षण के बाद शायद कुछ पैटर्न देखने का प्रयास हो सकता है। जैसे, क्या जो पदार्थ हल्दी को लाल करते हैं वे सब गुड़हल (जासौन) के फूल का रंग भी एक-जैसा बदलते हैं? कुछ बात पेट में पैदा होने वाली अम्लीयता (एसिडिटी) तथा एंट-एसिडों (अम्लत्वनाशक दवाओं) के बारे में भी कर सकते हैं। भोजन के पाचन के दौरान आमाशय में अम्ल का निर्माण होता है। यह अम्ल आमाशय में एक एंज़ाइम पेप्सिन की क्रिया के लिए ज़रूरी होता है। कभी-कभी अम्ल की मात्रा ज़्यादा हो जाने पर पेट में जलन होती है। ऐसी स्थिति में कुछ क्षारीय पदार्थों का सेवन करने से मदद मिलती है। कई लोग सोडा लेते हैं तो कई लोग दूध पी लेते हैं। इसके लिए अम्लत्वनाशक (एंट-एसिड) गोलियाँ या घोल भी लिया जाता है। वैसे ये

सब पेट में अम्लीयता से तात्कालिक राहत देते हैं। यदि अम्लीयता लम्बे समय तक बनी रहे तो डॉक्टर से सलाह लेना ज़रूरी होता है।

इस अध्याय को करते हुए बच्चे कई तरह के अनुभव प्राप्त करेंगे। जैसे सबसे बड़ी बात तो यही होगी कि वे यह देख पाएँगे कि एक-से दिखने वाले घोलों के गुण बहुत अलग-अलग हो सकते हैं। वे प्रयोग करते हुए उपकरणों की साज-सम्हाल तो सीखेंगे ही, साथ ही खास तौर से अम्ल और क्षार की पहचान करते हुए उन्हें उपकरणों (परखनली, ड्रॉपर वगैरह) को साफ रखने का महत्व भी स्पष्ट होगा। वे यह भी देख पाएँगे कि हमारे आसपास काफी सारा ऐसा कुछ है जिसका अध्ययन किया जा सकता है या जो अध्ययन में काम आ सकता है। रासायनिक गुण पहचानने का भी उनका यह पहला अवसर होगा।

यह सवाल स्वाभाविक है कि जब अम्ल और क्षार परस्पर विपरीत गुण दर्शाते हैं तो क्या इन्हें मिलाने पर इनके गुण नष्ट हो जाएँगे। यदि होंगे तो क्षार और अम्ल की कितनी-कितनी मात्राएँ एक-दूसरे के गुण को खत्म करने को पर्याप्त होंगी। यही सवाल इस अध्याय में उठाया गया है। एंट-एसिड के उदाहरण से इस बात को शुरू किया जा सकता है।

इस अध्याय के प्रयोग करने के लिए शिक्षक को घोल बनाने का काम पहले ही कर लेना होता है। घोल बनाने की विधि अध्याय के शुरू में ही दी गई है।

अध्याय में बच्चे कई सारे प्रयोग करेंगे जिनमें वे यह देखेंगे कि उपयुक्त मात्रा में अम्ल और क्षार के घोल मिलाने पर हमें एक उदासीन घोल मिलता है। घोल की प्रकृति में परिवर्तन का संकेत हमें फिनॉफ्थलीन के सूचक घोल से मिलता है। फिनॉफ्थलीन सूचक का उपयोग करने से पहले थोड़ी तैयारी करनी होती है। यह एक पाउडर के रूप में मिलता है जिसे पानी में घोलने पर हल्का पीला-सा घोल बनता है। यह पानी में बहुत अच्छे से नहीं घुलता इसलिए थोड़ा-सा अल्कोहल डालने से मदद मिलती है। मगर पानी में घोलकर भी काम चल जाता है। 200 मि.ली. पानी में करीब 1 ग्राम पाउडर घोल लें। यह घोल रंगहीन-सा ही होगा। इसे रंगहीन फिनॉफ्थलीन सूचक कहते हैं। इसमें से आधा घोल लेकर उसमें दो चुटकी खाने का सोडा डाल दें तो घोल गुलाबी हो जाएगा। इसे गुलाबी फिनॉफ्थलीन

सूचक कहते हैं। वैसे आयुर्वेदिक औषिध विरेचनी भी फिनॉफ्थलीन से बनी होती है। इसकी दो गोलियाँ 1 ग्राम के बराबर होती हैं।

इस अध्याय के प्रयोगों में साफ-सफाई का बहुत ध्यान रखना होगा। यहाँ तक कि घोल को हिलाने का सही तरीका भी सीखना होगा। आम तौर पर प्रवृत्ति होती है कि यदि किसी चीज़ को 'अच्छे' से हिलाकर मिलाना हो तो परखनली के मुँह को अँगूठे से बन्द करके ऊपर-नीचे हिलाया जाए। मगर बच्चों को यह समझना होगा कि ऐसा करने पर वे न सिर्फ अँगूठे को गन्दा कर रहे हैं बल्कि अँगूठे पर चिपकी गन्दगी को घोल में मिला दे रहे हैं। और तो और, परखनली का थोड़ा घोल अँगूठे पर लग जाने का मतलब है कि परखनली में घोल उतना नहीं बचा है जितना हम मानकर चल रहे हैं। इसके अलावा यहाँ एक और बात का ध्यान रखना होगा कि घोल को जिस परखनली में लिया जाए उस पर लेबल भी लगाया जाए। देखिए, बच्चे धीरे-धीरे रासायनिक तहज़ीब से वाकिफ हो रहे हैं।

अम्ल और क्षार की आपसी क्रिया को हम उदासीनीकरण कहते हैं। इस अध्याय में पहले यह देखने का प्रयास है कि किसी अम्लीय घोल की एक निश्चित मात्रा में क्षारीय घोल की कितनी मात्रा मिलाने पर उदासीन घोल मिलेगा। यहाँ एक महत्वपूर्ण सवाल उठाया गया है — जब एक परखनली में अम्ल का घोल लेकर उसमें दो बूँद गुलाबी फिनॉफ्थलीन सूचक डालते हैं तो वह घोल रंगहीन रहता है। अब बूँद-बूँद करके क्षारीय घोल डालते हैं। एक समय ऐसा आता है जब एक बूँद क्षार डालने पर घोल गुलाबी हो जाता है। इसमें फिर से एक बूँद अम्ल डालने पर घोल रंगहीन हो जाता है। सवाल यह है कि उदासीन घोल कब बना माना जाए। वास्तव में इस प्रयोग में उदासीन घोल बनना हम नहीं देख पाते, यह हमारे सूचक की सीमा है। मगर यदि दोनों घोल बहुत तनु हों तो हम एक बूँद अतिरिक्त अम्ल होने पर या एक बूँद अतिरिक्त क्षार होने पर उसे उदासीन मान सकते हैं।

इसी तरह से उदासीनीकरण का अभ्यास करके बच्चे देख पाएँगे कि दिए गए घोलों में क्षारीय गुण और अम्लीय गुण का एक निश्चित मान होता है। इस बात को कई सवालों के माध्यम से उभारा भी गया है कि यदि हम उदासीनीकरण का एक प्रयोग करके कोई अम्ल और क्षार के आयतनों का अनुपात निकालते हैं तो वह उस अम्ल और उस क्षार की किसी भी मात्रा पर लागू होता है। यानी यदि किसी अम्ल के X मि.ली. किसी क्षार के Y मि.ली. को उदासीन करते हैं तो आप X:Y अनुपात में इनकी चाहे जितनी मात्रा लें, वे एक-दूसरे को उदासीन कर देंगे। (ध्यान रखने की बात यह है कि यहाँ हम अम्ल और क्षार के दिए गए घोल की बात कर रहे हैं जिनकी सान्द्रता निश्चित है।)

आप देख ही सकते हैं कि इन सारे प्रयोगों में हमने आयतन के हिसाब से मापन किया है। हमें यह पता नहीं था कि अम्ल या क्षार के दिए गए घोलों में वज़न के हिसाब से अम्ल या क्षार की मात्रा कितनी थी। सवाल यह उठता है कि यदि बराबर वज़न में कोई क्षार और कोई अम्ल ले लें तो क्या वे एक-दूसरे को पूरी तरह उदासीन कर देंगे। इस सवाल का सम्बन्ध रासायनिक तुल्यता से है। पदार्थों के बीच रासायनिक तुल्यता क्या उनके वज़न की बराबरी से तय होती है?

इस सवाल के जवाब का एक संकेत देने के लिए एक महत्वपूर्ण प्रयोग अध्याय में है। इस प्रयोग में एक अम्ल (टार्टरिक अम्ल) और एक क्षार (सोडियम हाइड्रॉक्साइड) की बराबर मात्रा ली जाती है और उन्हें बराबर-बराबर पानी में घोल लिया जाता है। अब सवाल है कि क्या क्षार के घोल की 50 बूँदों को उदासीन करने के लिए अम्ल के घोल की 50 बुँदें पर्याप्त होंगी। इस रोचक सवाल का जवाब प्रयोग से मिलना काफी उत्साहवर्धक होता है। यहाँ टार्टरिक अम्ल और सोडियम हाइड्रॉक्साइड इसलिए लिए गए हैं क्योंकि दोनों ठोस पदार्थ हैं। खास तौर से इस प्रयोग के लिए घोल बनाने हेत् आसूत पानी का उपयोग करें। आसूत पानी का सबसे अच्छा स्रोत बरसात का पानी है। सोडियम हाइड्रॉक्साइड नमी सोखता है। लिहाज़ा नम मौसम में इसे तौलने में दिक्कत होती है। बेहतर होगा कि यह प्रयोग सूखे मौसम में किया जाए। इसके अलावा सोडियम हाइड्रॉक्साइड को हाथ से न छुएँ तो बेहतर है। एक चिमटी या कागज़ की मदद से उठाएँ। इसलिए अच्छा होगा कि तराज़ू के एक पलड़े में सोडियम हाइड्रॉक्साइड रख दें और दूसरे पलड़े में टार्टरिक अम्ल की मात्रा घटा-बढ़ाकर इन्हें सन्तुलित करें। इस प्रयोग को थोड़ा नाटकीय ढंग से किया जाए तो प्रभाव भी अच्छा पड़ता है और इससे उभरती अवधारणा भी ज्यादा स्पष्ट होती है।

जब हम कोई अध्याय करवाते हैं तो उसके उद्देश्यों की एक सूची मन में रहती है। आम स्कूली कक्षाओं में अध्याय का प्रमुख और कभी-कभी तो एकमात्र उद्देश्य अध्याय में दी गई जानकारी का सम्प्रेषण होता है। बाल वैज्ञानिक के अध्याय इस सीमित उद्देश्य से आगे जाते हैं। जैसे 'अम्ल और क्षार की पहचान' के निम्नलिखित उद्देश्यों को देखिए:

- * पदार्थों की प्रकृति को पहचानना
- पदार्थों को अम्लीय, क्षारीय व उदासीन समूहों में बाँटना
- * अपने आसपास के पदार्थों की जाँच करना

- अपने आसपास ऐसे पदार्थों की खोज करना जिनका उपयोग अम्ल-क्षार सूचकों के रूप में हो सकता है
- * रासायनिक प्रयोगों में उपकरणों की देखभाल, साफ-सफाई, लेबलिंग करने, प्रयोग करने के हुनर का अभ्यास (संक्षेप में रासायनिक तहज़ीब)
- * अवलोकनों को तालिकाबद्ध करना और पैटर्न खोजना
- * तार्किक सोच का विकास

सुझाव यह है कि आप इनमें से कोई भी अध्याय करवाते समय इस तरह से मन में एक सूची बना लें।

बा.वै. कक्षा ६, २०००, पृ ५०

अम्ल और क्षार की पहचान*

रमेश ने कल जब खाना खाया था तो हल्दी का दाग सफेद कमीज़ पर लग गया था। आज उसने सोचा कि चलो साबुन से दाग छुड़ा देते हैं। जैसे ही दाग पर साबुन लगाया, दाग लाल हो गया। रमेश ने अपनी माँ से पूछा कि यह क्या हो गया? माँ ने बताया कि सब्ज़ी में हल्दी थी, जिसका पीला दाग साबुन लगाने से लाल हो गया। वह सोचने लगा कि क्या हल्दी और चीज़ों के साथ भी रंग बदलेगी? उसने जाँच करने की ठानी।

जाँच करने के लिए रमेश ने हल्दी के साथ और कई चीज़ें इकट्ठी कीं। इन चीज़ों के नाम तालिका 1 में लिखे हैं। उसने हल्दी का घोल बनाकर एक कागज़ को उसमें डुबाकर निकाल लिया और धूप में सुखा लिया। इस कागज़ के छोटे-छोटे टुकड़े कर लिए। अब वह एक-एक चीज़ (पदार्थ) लेता और हल्दी कागज़ से उसकी जाँच करता। जाँचने के लिए वह हर पदार्थ की एक बूँद काँच की नली से हल्दी कागज़ पर लगाता था। हर बार घोल लगाने के बाद वह काँच की नली को पानी से साफ कर लेता था।

रंग बदलना हल्दी काः प्रयोग 1

क्या तुम भी रंग बदलने का यह मज़ेदार प्रयोग करना चाहोगे?

इसके लिए तुम्हें हल्दी और तालिका 1 में दी गई चीज़ें घर से लानी पड़ेंगी। और इनमें से कुछ के घोल बनाने होंगे। घोल बनाने के लिए किसी भी पदार्थ की थोड़ी-सी मात्रा लेकर एक परखनली या इंजेक्शन की शीशी में डालो। उसमें थोड़ा-सा पानी डालकर हिलाओ। यह मत करना कि परखनली या इंजेक्शन की शीशी का मुँह अँगूठे से बन्द करके हिलाओ। परखनली या इंजेक्शन की शीशी को धीरे-धीरे झटका देकर पदार्थ को घोलना।

जाँच के लिए हल्दी कागज़ भी तैयार करो।

तालिका 1

क्रमांक	पदार्थ	हल्दी का रंग बदला या नहीं
1.	खाने के सोडे का घोल	
2.	नींबू का रस	

*बाल वैज्ञानिक, कक्षा 6, 2000

रसायनों के साथ प्रयोगों में साफ-सफाई बहुत ज़रूरी है। जैसे यहाँ काँच की नली को हर बार साफ करने की बात है।

हल्दी कागज़ बनाने की विधि

लगभग एक चम्मच पिसी हल्दी में इतना पानी मिलाओ कि उसका गाढ़ा घोल बन जाए। इस घोल में एक छन्ना कागज़ डुबाकर निकाल लो। इस हल्दी लगे छन्ना कागज़ को सुखा लो। अब इसकी 1 से.मी. चौड़ी व 3 से.मी. लम्बी पट्टियाँ काट लो। लो, तुम्हारा हल्दी कागज़ तैयार है।

बा.वै. कक्षा ६, २०००, प्र ५०

3.	चूना (गीला)
4.	शक्कर का घोल
5.	इमली का रस
6.	नींबू का अचार
7.	कपड़े धोने के सोडे का घोल
8.	नमक का घोल
9.	दूध
10.	
11.	

सभी पदार्थों से जाँच करके तालिका 1 पूरी करो। (1)

चाहो तो कई और चीज़ों की जाँच भी करके देखों कि हल्दी का रंग किस-किस के साथ बदलता है।

अब रमेश के मन में यह प्रश्न उठा कि क्या हल्दी जैसी गिरगिटिया चीज़ें और भी होती हैं?

वास्तव में तुम्हें यह जानकर अचरज होगा कि कई और चीज़ें इसी तरह रंग बदलती हैं। इन ढेर सारी चीज़ों में से हम यहाँ तीन चीज़ों के साथ यही प्रयोग दोहराएँगे।

फूलों का रंग बदलकर देखोः प्रयोग 2

तालिका 1 में लिखी चीज़ें तो तुम घर से लाए ही होगे। अब हम इन चीज़ों से रंगबिरंगे फूल की जाँच करेंगे और देखेंगे कि फूलों का रंग भी बदलता है या नहीं। रास्ते से या घर से कुछ रंगबिरंगे फूल, जैसे गुड़हल (जासौन), बेशरम, लाल बोगनविला आदि ले आओ।

आओ, जाँच शुरू करें। किसी एक फूल की पंखुड़ियाँ तोड़ लो। इन्हें कागज़ की एक पट्टी पर रगड़ो तािक पंखुड़ियों का रंग कागज़ पर उतर आए। इसके लिए कम से कम दो-चार फूलों की पंखुड़ियों की ज़रूरत पड़ेगी। अब इस रंगीन कागज़ की पट्टी से प्रयोग करेंगे। प्रयोग शुरू करने से पहले यह देख लेना कि फूल रगड़ने के बाद कागज़ पर कैसा रंग आया है।

जैसे हल्दी कागज़ के साथ जाँच की थी ठीक वैसे ही फूलों से बने रंगीन कागज़ पर करो।

अपने अवलोकन तालिका 2 में लिखो। (2)

बा.वै. कक्षा ६, २०००, प्र ५१

कागज़ पर फूलों को रगड़ने पर शायद वह रंग न आए जो फूल पर दिखता है। कारण यह है कि कागज़ खुद भी कभी-कभी क्षारीय होता है।

तालिका 2

क्र.	चीज़ का नाम	गुड़हल कागज़ पर असर	बेशरम कागज़ पर असर
1.	खाने का सोडा (घोल)		
2.	नींबू का रस		
3.	चूना (गीला)		
4.	शक्कर का घोल		
5.	इमली का रस		
6.	नींबू का अचार		
7.	कपड़े धोने का सोडा (घोल)		
8.	नमक का घोल		
9.	दूध		
10.			

क्या सारी चीज़ें गुड़हल कागज़ का रंग बदलती हैं? उन पदार्थों की सूची बनाओ जो गुड़हल कागज़ का रंग बदलते हैं। (3)

क्या सारी चीज़ें बेशरम कागज़ का रंग बदलती हैं? उन पदार्थों की सूची बनाओ जो बेशरम कागज़ का रंग बदलते हैं। (4)

क्या सारी चीज़ें बोगनविला कागज़ का रंग बदलती हैं? (5)

यही प्रयोग अन्य फूलों से भी कर सकते हो। पदार्थ भी कोई भी चुन सकते हो। रमेश ने भी यही प्रयोग ढेर सारे फूलों से किया। रंग बदलने के इस जादू में रमेश पूरी तरह खो गया। उसके मन में यह सवाल उठा कि एक बार रंग बदलने के बाद अगर हल्दी या फूल का मूल रंग (यानी जो शुरू में था) वापस लाना चाहें तो क्या ऐसा हो सकता है?

लिटमस

एक खास तरह का कागज़ होता है जो लिटमस कागज़ कहलाता है। अब हम इन्हीं चीज़ों की जाँच लिटमस कागज़ से करेंगे। लिटमस कागज़ दो रंगों का मिलता है — नीला लिटमस कागज़ और लाल लिटमस कागज़। पहले नीले लिटमस से और बाद में लाल लिटमस से प्रयोग करेंगे।

प्रयोग शुरू करने से पहले तालिका 3 अपनी कॉपी में बना लो। प्रयोग के अवलोकन इसी तालिका में भरना।

नीले लिटमस से जाँचः प्रयोग 3

नीले लिटमस कागज़ का एक छोटा टुकड़ा हाथ में पकड़ो। जिस पदार्थ की जाँच करनी हो उसकी एक बूँद इस लिटमस कागज़ पर डालो और देखो कि कागज़ के रंग पर क्या असर हुआ। बारी-बारी से हर चीज़ की जाँच करो।

बा.वै. कक्षा ६, २०००, पृ ५२

विभिन्न पदार्थों से प्रयोग शुरू करने से पहले यह देखना ज़रूरी है कि सिर्फ पानी से गीला करने से लिटमस कागज़ों के रंग में क्या परिवर्तन होता है। बेहतर तो यह होता है कि सारे घोल आसुत पानी में बनाए जाएँ, मगर यदि आसुत पानी न हो, तो बहुत चिन्तित होने की ज़रूरत नहीं है। यह न भूलना कि जिस काँच की नली से घोल की बूँद लिटमस कागज़ पर लगाओ उसे हर बार धोना ज़रूरी है।

तालिका 3

क्र .	पदार्थ का नाम	नीले लिटमस से प्रयोग		लाल लिटमस से प्रयोग	
		रंग लाल हो गया	रंग नीला ही रहा	रंग नीला हो गया	रंग लाल ही रहा
1.	खाने का सोडा (घोल)				
2.	नींबू का रस				
3.	चूना (गीला)				
4.	शक्कर का घोल				
5.	इमली का रस				
6.	नींबू का अचार				
7.	कपड़े धोने का सोडा (घोल)				
8.	नमक का घोल				
9.	दूध				
10.					
11.					

अपने अवलोकन तालिका 3 में लिखो। (7)

लाल लिटमस से जाँचः प्रयोग 4

प्रयोग 3 में जैसे किया था, ठीक उसी तरह लाल लिटमस के साथ सभी चीज़ों की बारी-बारी से जाँच करो।

अपने अवलोकन तालिका 3 में लिखो। (8)

अब तुम इन घोलों के तीन समूह बना सकते हो।

- एक समूह उन चीज़ों का होगा जो नीले लिटमस को लाल कर देती हैं।
 ये सभी चीज़ें अम्लीय होती हैं।
- दूसरा समूह उन चीज़ों का होगा जो लाल लिटमस को नीला कर देती हैं। ये चीज़ें क्षारीय होती हैं।
- कुछ चीज़ें ऐसी भी होंगी जिनका किसी भी लिटमस पर कोई असर नहीं होता। यानी लाल लिटमस लाल ही रहता है और नीला लिटमस नीला। ऐसी चीज़ों को **उदासीन** चीज़ें कहते हैं।

तालिका 3 के आधार पर अम्लीय, क्षारीय व उदासीन चीज़ों के समूह बनाकर कॉपी में लिखो। (9)

अब इन समूहों के आधार पर तालिका 1 में देखकर निम्नलिखित प्रश्नों के उत्तर दो:

क्षारीय चीज़ों का हल्दी कागज़ पर क्या प्रभाव होता है? (10)

अम्लीय चीज़ों का हल्दी कागज़ पर क्या प्रभाव होता है? (11) उदासीन चीज़ों का हल्दी कागज़ पर क्या प्रभाव होता है? (12) साबुन लगाने पर हल्दी का दाग लाल पड़ गया था। इसके आधार पर बताओ कि साबुन के घोल को किस समूह में रखोगे। (13)

रंग बदलते पदार्थ यानी सूचक

ऊपर के प्रयोग में तुमने लिटमस से जाँच करके पता किया कि कौन-सी चीज़ें अम्लीय हैं और कौन-सी क्षारीय। यानी लिटमस हमें यह सूचना दे देता है कि कोई पदार्थ अम्लीय है या क्षारीय। सूचना देने वाले ऐसे पदार्थों को हम सूचक कहते हैं। लिटमस जैसे और भी कई सूचक होते हैं जो अम्लीय चीज़ों के साथ एक रंग देते हैं और क्षारीय चीज़ों के साथ दूसरा।

क्या हम हल्दी व फूलों के रंगों को भी सूचक कह सकते हैं? (14)

सूचकों की एक और विशेषता होती है — ये बार-बार रंग बदल सकते हैं। उदाहरण के लिए नीला लिटमस अम्ल डालने पर लाल हो जाता है। यह लाल हुआ लिटमस क्षार डालने पर फिर से नीला हो जाएगा। चाहो तो जल्दी से इस बात की जाँच कर लो।

क्या अब प्रश्न (6) का उत्तर दे सकते हो? (15)

अम्ल और क्षार का पता लगाने के लिए और भी कई सूचकों का उपयोग किया जाता है। आगे के अध्यायों में तुम्हारा परिचय ऐसे कई सूचकों से होगा।

अभ्यास के प्रश्न

- तालिका 3 के आधार पर क्या हम यह कह सकते हैं कि सारी खट्टी चीज़ें अम्लीय होती हैं? नीचे लिखी खट्टी चीज़ों की जाँच करके अपने उत्तर की पुष्टि करोः
 - दही, छाछ, केरी (कच्चा आम), टमाटर।
- 2. एक पदार्थ था जिसके बारे में मालूम नहीं था कि वह अम्लीय है, क्षारीय है या उदासीन। इस पदार्थ की दो-तीन बूँदें लाल लिटमस पर लगाईं तो कोई असर नहीं हुआ। इसे देखकर अजय ने कहा कि यह ज़रूर उदासीन है। मगर रेहाना का कहना था कि यह तो अम्लीय भी हो सकता है। जरा बताओं कि कैसे पता लगे कि वह पदार्थ अम्लीय है या उदासीन।
- उ. तुम्हें तीन घोल दिए गए हैं। एक अम्लीय, एक क्षारीय और एक उदासीन। साथ में केवल नीला लिटमस कागज़ दिया गया है। क्या तुम बता पाओगे कि कौन-सा घोल कैसा है? समझाकर लिखो।
- एक घोल का हल्दी कागज़ पर कोई असर नहीं होता। इसके आधार पर बताओ कि नीचे के वाक्यों में से कौन-सा सही है:
 - (क) वह घोल अम्लीय है।
- (ख) वह घोल क्षारीय है।
- (ग) वह घोल क्षारीय नहीं है।
- (घ) वह घोल उदासीन है।

क्या तुम अनुमान से बता सकते हो कि लाल लिटमस पर इस घोल का क्या असर होगा? सूचक के बार-बार रंग बदल पाने के इस गुण का एक फायदा यह है कि उनका उपयोग भी बार-बार किया जा सकता है।

'अम्ल और क्षार का परस्पर सम्बन्ध' के लिए घोल बनाने की विधियाँ

इस अध्याय के प्रयोगों में कई प्रकार के घोलों की ज़रूरत पड़ेगी। इन्हें पहले से ही पर्याप्त मात्रा में बनाकर रख लेने से सुविधा होगी। सारे घोल यथासम्भव आसुत पानी में ही बनाएँ। खास तौर से प्रयोग 5 के लिए आसुत पानी का उपयोग करें। यदि आपकी कक्षा में चार-चार बच्चों की 10-12 टोलियाँ हैं तो प्रत्येक घोल 200 मि.ली. बनाना ठीक रहेगा। घोल बनाकर उन्हें उपयुक्त पर्चियाँ लगी प्लास्टिक की शीशियों में रख लें।

कॉस्टिक सोडा (सोडियम हाइड्रॉक्साइड)ः लगभग 1 ग्राम सोडियम हाइड्रॉक्साइड 200 मि.ली. पानी में घोलें। यदि सोडियम हाइड्रॉक्साइड टिकिया वाला है तो 2 टिकिया ले सकते हैं।

गन्धक का अम्ल (सल्फ्यूरिक एसिड): यदि आपके पास सान्द्र गन्धक का अम्ल है तो उसमें से 2 मि.ली. लेकर 200 मि.ली. पानी में मिला लें। ध्यान रखें कि पानी में गन्धक के अम्ल को डालें; किसी भी हालत में अम्ल में पानी न डालें। यदि तनु अम्ल है तो उसका 100 मि.ली. लेकर 100 मि.ली. पानी में मिलाएँ।

नमक का अम्ल (हाइड्रोक्लोरिक अम्ल)ः सान्द्र अम्ल हो, तो 5 मि.ली. लेकर 200 मि.ली. बना लें। यदि तनु अम्ल है तो 100 मि.ली. में 100 मि.ली. पानी मिलाएँ।

कपड़े धोने का सोडा (सोडियम कार्बोनेट)ः लगभग 5 ग्राम सोडियम कार्बोनेट 200 मि.ली. पानी में घोल लें।

मुख्य बात यह है कि अम्ल और क्षार के घोल ऐसे हों कि लगभग बराबर आयतन एक-दूसरे को उदासीन करें।

फिनॉफ्थलीन का रंगहीन सूचक घोलः फिनॉफ्थलीन पाउडर किसी विज्ञान सामग्री की

आसुत पानी

इस अध्याय के प्रयोगों के लिए सारे घोल आसुत पानी में बनाने होंगे। आसुत पानी इकट्ठा करने के लिए एक चौड़े मुँह का बरतन बाहर बारिश में रख दें। यह ज़रूरी है कि बरतन को किसी खुली जगह में रखा जाए जहाँ उसमें आसपास के किसी पेड़, कवेलू, छत इत्यादि से पानी न टपके। इसके साथ-साथ यह सावधानी भी रखनी होगी कि इस बरतन में आसपास की मिट्टी उछलकर न गिरे। इकट्ठे किए गए बारिश के पानी को अच्छी तरह साफ की गई बोतल में कॉर्क लगाकर रख लें। यही आसुत पानी है।

दुकान या लैब सप्लायर के पास मिल जाएगा। वैसे आयुर्वेदिक औषधि विरेचनी भी फिनॉफ्थलीन से बनी होती है। करीब 1 ग्राम फिनॉफ्थलीन पाउडर या विरेचनी की 2 गोलियों को पीसकर 200 मि.ली. पानी में घोल लें। इस घोल को छानकर बोतल में भरकर रख लें।

फिनॉफ्थलीन का गुलाबी सूचक घोलः ऊपर बने रंगहीन सूचक घोल में से 100 मि.ली. एक अलग बोतल में लेकर उसमें दो चुटकी खाने का सोडा डाल दें। घोल गाढ़ा गुलाबी हो जाना चाहिए।

अम्ल-क्षार का आपसी सम्बन्ध*

अध्याय 'अम्ल और क्षार की पहचान' में तुमने लिटमस कागज़ की मदद से अम्ल, क्षार और उदासीन पदार्थों की पहचान करना सीखा था। इन अवलोकनों के आधार पर नीचे के वाक्यों में खाली स्थान भरोः

- 1. अम्लीय पदार्थ लिटमस को कर देते हैं।
- 2. लिटमस को करने वाले पदार्थ क्षारीय होते हैं।
- जिन पदार्थों का नीले व लाल दोनों तरह के लिटमस पर कोई प्रभाव नहीं होता उन्हें पदार्थ कहते हैं। (1)

तुमने यह देखा था कि उदासीन घोलों का सूचकों पर कोई प्रभाव नहीं होता है। तुमने यह भी देखा था कि सूचक पर अम्ल और क्षार का प्रभाव एक-दूसरे के विपरीत होता है। तब क्या यह सम्भव है कि अम्ल और क्षार को आपस में मिलाने पर ऐसा घोल बन जाए जो उदासीन हो? आओ करके देखें।

एक और सूचक

इस अध्याय के प्रयोगों में हम एक नए सूचक का उपयोग करेंगे। इसका नाम है फिनॉफ्थलीन सूचक। फिनॉफ्थलीन एक सफेद-पीला पाउडर होता है। यह पानी में घुल जाता है। आधा बीकर साफ पानी लेकर उसमें एक चुटकी फिनॉफ्थलीन पाउडर डालकर अच्छी तरह हिलाकर घोल लो। यह बहुत हल्के पीले रंग का घोल होगा। इसे हम रंगहीन फिनॉफ्थलीन सूचक कहेंगे। इस घोल को दो भागों में बाँट लो। एक भाग को वैसा ही रहने देंगे। इस पर 'रंगहीन सूचक घोल' की पर्ची लगा दो।

घोल के दूसरे भाग में कॉस्टिक सोडा के घोल की कुछ बूँदें डालो। घोल हल्का गुलाबी हो जाएगा। इसे हम 'गुलाबी सूचक घोल' कहेंगे। इस पर भी पर्ची लगा लो।

फिनॉफ्थलीन का घोल भी लिटमस के समान एक सूचक है। हमने देखा कि लिटमस की ही तरह यह दो तरह का हो सकता है — रंगहीन और गुलाबी। रंगहीन सूचक घोल में कोई पदार्थ डालने पर यदि घोल गुलाबी हो जाए, तो वह पदार्थ क्षारीय है। यदि गुलाबी घोल में कोई पदार्थ डालने पर घोल रंगहीन हो जाए तो वह पदार्थ अम्लीय है। उदासीन पदार्थ न तो रंगहीन सूचक पर कोई असर डालते हैं, न गुलाबी सूचक पर।

इस अध्याय के प्रयोग करने के लिए कुछ घोल पहले से बनाकर रख लेने होंगे। इनकी विधि पिछले पन्ने पर दी गई है।

^{*} बाल वैज्ञानिक कक्षा 8, 2002

- सही पर्चियाँ ज़रूर चिपकवा लें,
- हरेक घोल का ड्रॉपर अलग-अलग रखें।

प्रयोगों के लिए प्रत्येक टोली के पास 5 परखनलियाँ, 1 परखनली स्टैंड, 2 काँच की नलियाँ और 3 ड्रॉपर होने चाहिए। वैसे यदि परखनली की जगह इंजेक्शन शीशी का उपयोग करेंगे तो परखनली स्टैंड की ज़रूरत भी नहीं पड़ेगी।

बा.वै. कक्षा ८, २००९, प्र ६७

इस प्रयोग को अनुमापन या टाइट्रेशन कहते हैं। इसमें अन्तिम बिन्दु यानी उदासीनीकरण का पता सूचक के रंग बदलने से चलता है। इसका मतलब है कि हमें उदासीनीकरण का पता तब चलता है जब अम्ल या क्षार की एक बूँद अधिक हो जाती है। यह इस विधि की सीमा है। यही इस विधि का अल्पतम माप है। अर्थात इस विधि में एक बूँद की गलती स्वाभाविक है। अतः जितने तनु घोलों का उपयोग किया जाएगा, त्रुटि उतनी ही कम रहेगी। ज़रा सोचकर बताओ और फिर करके देखो कि

- 1. रंगहीन सूचक घोल में अम्लीय पदार्थ डालने पर क्या होगा?
- 2. गुलाबी सूचक घोल में क्षारीय पदार्थ डालने पर क्या होगा?

उदासीन घोल बनानाः प्रयोग 1

दो साफ परखनलियाँ लो। परखनली की जगह इंजेक्शन की शीशी का उपयोग भी कर सकते हो। एक पर 'कॉस्टिक सोडा' की पर्ची और दूसरी पर 'हाइड्रोक्लोरिक अम्ल' की पर्ची चिपका लो। हाइड्रोक्लोरिक अम्ल को नमक का अम्ल भी कहते हैं।

शिक्षक से आधी-आधी परखनली में कॉस्टिक सोडा (सोडियम हाइड्रॉक्साइड) और हाइड्रोक्लोरिक अम्ल के घोल भरवा लो।

एक और साफ परखनली लो। इसमें ड्रॉपर से हाइड्रोक्लोरिक अम्ल के घोल की 10 बूँदें सावधानीपूर्वक गिनकर डालो। इसी परखनली में दो बूँदें रंगहीन सूचक घोल की भी डालो।

इस घोल का रंग कैसा है? (2)

अब कॉस्टिक सोडा के घोल को एक अन्य ड्रॉपर में लो। इस घोल को बूँद-बूँद गिनकर उसी परखनली में डालो। हर बूँद डालने के बाद परखनली को अच्छी तरह हिलाकर देखों कि इसके घोल के रंग में कोई परिवर्तन आया है या नहीं। घोल

को हिलाने का सही तरीका शिक्षक से सीख लो। कॉस्टिक सोडा का घोल बूँद-बूँद करके तब तक डालते रहो जब तक कि परखनली के घोल का रंग बदलकर गुलाबी होना न शुरू हो जाए।

अब परखनली का घोल कैसा है — अम्लीय या क्षारीय? (3)

इसी परखनली में अब एक बूँद हाइड्रोक्लोरिक अम्ल के घोल की डालो और देखों कि क्या रंग बदलकर पहले जैसा (रंगहीन) हो जाता है। यदि नहीं तो हाइड्रोक्लोरिक अम्ल के घोल की एक और बूँद डालकर देखो। ऐसा तब तक करते जाओ जब तक कि परखनली का घोल फिर से रंगहीन न हो जाए।

अब परखनली का घोल कैसा हो गया है — अम्लीय या क्षारीय? (4)

ऊपर के प्रयोग के आधार पर बताओं कि यदि तुम्हें एक अम्लीय घोल दिया जाए तो उसे क्षारीय कैसे बनाओंगे? (5)

और यदि तुम्हें एक क्षारीय घोल दिया जाए तो उसे अम्लीय कैसे बनाओगे? (6)

ऊपर हमने देखा कि प्रयोग में एक बिन्दु ऐसा आता है जब एक बूँद कॉस्टिक सोडा डालने पर अम्लीय घोल क्षारीय हो जाता है। इस क्षारीय घोल में फिर एक बूँद अम्ल डालने पर घोल अम्लीय हो जाता है।

सोचकर बताओ कि इस प्रयोग में उदासीन घोल बनाने का क्या तरीका हो सकता है? शिक्षक से चर्चा करके उत्तर अपने शब्दों में लिखो। (7)

अम्ल और क्षार को एक निश्चित मात्रा में मिलाने पर उदासीन घोल बनता है। ऊपर के प्रयोग में जब एक बूँद क्षार मिलाने पर अम्लीय घोल क्षारीय हो जाता है और उस क्षारीय घोल में एक बूँद अम्ल मिलाने पर घोल फिर से अम्लीय हो जाता है, तब हम कह सकते हैं कि इनके बीच कहीं उदासीन घोल बनता है। इसलिए जब एक बूँद अम्ल या क्षार मिलाने पर घोल की प्रकृति बदले तो उसे लगभग उदासीन घोल माना जाता है। इस क्रिया को उदासीनीकरण कहते हैं।

अम्ल के घोल की 10 बूँदों का उदासीनीकरण करने के लिए कॉस्टिक सोडा की कितनी बूँदें लगीं? (8)

उदासीनीकरण का अभ्यासः प्रयोग 2

प्रयोग 1 में दिए गए हाइड्रोक्लोरिक अम्ल के घोल की 25 बूँदें एक साफ परखनली में लो। इस परखनली में रंगहीन सूचक घोल की दो बूँदें डालो।

प्रश्न (8) के उत्तर को देखकर अनुमान से बताओ कि हाइड्रोक्लोरिक अम्ल के घोल की 25 बूँदों के उदासीनीकरण के लिए कॉस्टिक सोडा के घोल की कितनी बूँदों की ज़रूरत होगी। (9)

अब इस परखनली में कॉस्टिक सोडा का घोल बूँद-बूँद डालकर उदासीनीकरण करो।

उदासीनीकरण के लिए ऊपर लगाए हुए अनुमान की तुलना में कॉस्टिक सोडा की बूँदें कम लगीं या अधिक? (10)

प्रयोग 3

इस प्रयोग के लिए तुम्हारे शिक्षक हाइड्रोक्लोरिक अम्ल का एक नया घोल बनाएँगे। इसके लिए वे प्रयोग 2 में उपयोग किए गए हाइड्रोक्लोरिक अम्ल में से 25 मि.ली. नपनाघट (Measuring cylinder) में लेकर उसमें इतना पानी डालेंगे कि उसका आयतन 50 मि.ली. हो जाए।

इस नए घोल की 25 बूँदें एक साफ परखनली में लो।

यदि प्रयोग 2 में उपयोग किए गए कॉस्टिक सोडा के घोल से इसका उदासीनीकरण करना हो, तो कॉस्टिक सोडा के घोल की कितनी बूँदें लगेंगी? अपना अनुमान लिख लो। (11)

अब बूँदें गिनकर कॉस्टिक सोडा का घोल परखनली में डालो और उदासीनीकरण करो।

नए अम्ल के घोल की 25 बूँदों का उदासीनीकरण करने के लिए कॉस्टिक सोडा के घोल की कितनी बूँदें लगीं? (12)

प्रयोग 2 की तुलना में इस प्रयोग में कॉस्टिक सोडा के घोल की बूँदें कम लगीं या ज़्यादा? ऐसा क्यों हुआ? (13)

बा.वै. कक्षा ८, २००९, पृ ६८

इन प्रयोगों में अभ्यास इस बात का हो रहा है कि दिए गए घोल में अम्ल या क्षार की एक निश्चित मात्रा है और उदासीनीकरण का निर्धारण घोल के आयतन से नहीं बल्कि घोल में उपस्थित अम्ल या क्षार की मात्रा से होता है। प्रयोग 2 और प्रयोग 3 के अवलोकनों के आधार पर बताओ कि क्या इन दो प्रयोगों में उपयोग किए गए हाइड्रोक्लोरिक अम्ल के घोलों में अम्ल की मात्रा बराबर थी या कम-ज़्यादा? (14)

यदि हम प्रयोग 2 वाला अम्ल और प्रयोग 3 वाला अम्ल 1-1 मि.ली. लें तो इनमें से किसमें अधिक अम्ल होगा और कितने गुना अधिक? (15)

प्रयोग 4

पिछले प्रयोग की परखनलियाँ, ड्रॉपर आदि अच्छी तरह धो लो। दो परखनलियों पर 'गन्धक का अम्ल' (सल्फ्यूरिक अम्ल) और 'सोडियम कार्बोनेट' की पर्ची लगा लो। इनमें शिक्षक से 10-10 मि.ली. गन्धक का अम्ल और सोडियम कार्बोनेट के घोल ले लो।

एक साफ परखनली में गन्धक के अम्ल की 20 बूँदें लो। इसमें दो बूँद गुलाबी सूचक घोल डालो। अब इसमें सोडियम कार्बोनेट की बूँदें गिनकर डालो और उदासीनीकरण करो।

गन्धक के अम्ल की 20 बूँदों का उदासीनीकरण करने के लिए सोडियम कार्बोनेट के घोल की कितनी बूँदें लगीं? (16)

लवण

तुमने अब तक कई बार उदासीनीकरण की क्रिया की है। तुमने यह देखा है कि इस क्रिया में अम्ल और क्षार दोनों के गुण नष्ट हो जाते हैं। दरअसल जब अम्ल और क्षार को आपस में मिलाया जाता है, तब उनमें लवण बनते हैं। उदाहरण के लिए, हाइड्रोक्लोरिक अम्ल को कॉस्टिक सोडा (सोडियम हाइड्रॉक्साइड) के घोल से उदासीन करने पर नमक (सोडियम क्लोराइड) बनता है। इसी प्रकार से बनने वाले कुछ और लवण हैं: सोडियम कार्बोनेट (कपड़े घोने का सोडा), कैल्शियम क्लोराइड, कैल्शियम सल्फेट, कैल्शियम क्लोराइड (नौसादर), कॉपर सल्फेट (नीला थोथा) आदि। इनमें से कुछ लवणों का उपयोग तुम दैनिक जीवन में करते हो। कुछ का उपयोग रसायन शास्त्र के प्रयोगों में करोगे।

किन्तु एक बात का ध्यान रखना। सारे उदासीन घोल लवण के घोल नहीं होते। जैसे शक्कर का घोल या स्टार्च का घोल उदासीन तो होता है पर शक्कर और स्टार्च लवण नहीं हैं। ऐसा न हो कि तुम्हें उदासीन घोल दिखे और तुम कहने लगो कि यह लवण है।

इसी प्रकार से कुछ लवण भी उदासीन न होकर अम्लीय अथवा क्षारीय होते हैं। जैसे सोडियम कार्बोनेट एक लवण है किन्तु क्षारीय होता है। यह अम्ल से उदासीनीकरण की क्रिया करता है, जैसे अन्य क्षार करते हैं।

ऊपर के प्रयोगों में हमने देखा कि उदासीन घोल बनाने के लिए अम्ल की निश्चित मात्रा में क्षार की निश्चित मात्रा मिलानी पड़ती है।

बा.वे. कक्षा ८, २००९, पृ ६७

एक पहेली

रमेश ने एक परखनली में प्रयोग 4 वाला 10 बूँद गन्धक का अम्ल लिया। उसने इसमें 10 बूँद पानी डाल दिया। अनुमान से बताओ कि इसका उदासीनीकरण करने के लिए सोडियम कार्बोनेट के उसी घोल की कितनी बूँदें लगेंगी?

प्रयोग करके अपने अनुमान की जाँच करो।

क्या तुम्हारा अनुमान सही निकला? यदि नहीं, तो इसके कारणों पर कक्षा में चर्चा करो।

तुम्हें क्या लगता है कि क्या 10 ग्राम अम्ल और 10 ग्राम क्षार को आपस में मिलाने पर उदासीनीकरण हो जाएगा? (17)

इस प्रश्न का उत्तर खोजने के लिए निम्नलिखित प्रयोग करो।

अम्ल और क्षार का मुकाबलाः प्रयोग 5

इस प्रयोग में बराबर पानी में बराबर-बराबर क्षार और अम्ल घोलेंगे। तुम्हारे शिक्षक तराजू के एक पलड़े पर टार्टरिक अम्ल और दूसरे पलड़े पर कॉस्टिक सोडा (सोडियम हाइड्रॉक्साइड) रखकर तराजू को सन्तुलित करेंगे। इस प्रकार अम्ल और क्षार की बराबर-बराबर मात्रा प्राप्त हो जाएगी।

अब दो बीकरों में बराबर-बराबर (50-50 मि.ली.) पानी लेंगे। इनमें से एक में टार्टरिक अम्ल और दूसरे में सोडियम हाइड्रॉक्साइड घोल देंगे।

क्या इस तरह बने अम्ल के घोल की एक बूँद में अम्ल की मात्रा और क्षार के एक बूँद घोल में क्षार की मात्रा बराबर है? (18)

अब एक परखनली में अम्ल के घोल की 50 बूँदें लो। इसमें दो बूँद गुलाबी सूचक घोल डालो।

घोल का रंग कैसा हो गया? (19)

इस घोल को उदासीन करने के लिए तुम्हारे अन्दाज़ से क्षार की कितनी बूँदें लगनी चाहिए? (20)

अब बूँद-बूँद करके क्षार का घोल इस परखनली में डालो ताकि घोल का रंग हल्का गुलाबी हो जाए। क्षार की हर बूँद डालने के बाद घोल को हिलाना न भूलना।

क्षार के घोल की कितनी बूँदें लगीं? (21)

क्या तुम्हारे अन्दाज़ और वास्तव में लगी बूँदों की संख्या में कोई अन्तर है? (22)

अब प्रश्न (17) पर फिर से विचार करो। खास तौर से इस बात पर विचार करो कि क्या किसी अम्ल और क्षार की तुलना करने के लिए सिर्फ वज़न जानने से काम चल जाएगा।

अभ्यास के प्रश्न

- 1. एक परखनली में 20 बूँद हाइड्रोक्लोरिक अम्ल लिया गया। इसका उदासीनीकरण करने के लिए सोडियम हाइड्रॉक्साइड के एक घोल की 20 बूँदें लगीं। अब यदि परखनली में 20 बूँद सोडियम हाइड्रॉक्साइड का वही घोल लेकर अम्ल से उसका उदासीनीकरण करें तो अम्ल की कितनी बूँदें लगेंगी?
- 2. एक शाला में शिक्षक ने अम्ल और क्षार के 1-1 लीटर घोल बनाकर रखे। अम्ल के घोल की दस बूँदों से क्षार की दस बूँदों का उदासीनीकरण होता था। गलती से दोनों में से एक घोल में पानी गिर गया।

प्रश्न 17 पर भली-भाँति चर्चा करना उपयोगी होगा क्योंकि इसके बाद प्रयोग 5 में यह दर्शाने का प्रयास है कि बराबर वज़न होने पर अम्ल और क्षार उदासीनीकरण करें यह ज़रूरी नहीं है। प्रयोग 2 व 3 में बच्चों ने देखा था कि अम्ल और क्षार के बराबर-बराबर आयतन लेने पर उदासीनीकरण नहीं होता; हमें अम्ल या क्षार की मात्रा पर ध्यान देना होगा। अब प्रयोग 5 में वे देखेंगे कि सिर्फ मात्रा (वज़न) बराबर होने से भी बात नहीं बनती; कोई और चीज़ है जो अम्ल और क्षार को एक-दूसरे के तुल्य बनाती है।

इस प्रयोग के लिए घोल आसुत पानी में ही बनाएँ।

नए अयलोकनों के प्रकाश में अपने निष्कर्षों पर पुनर्विचार करना विज्ञान की विधि का एक हिस्सा है। बच्चों को प्रश्न 17 के उनके निष्कर्षों की याद दिलाइए।

दरअसल बात यहीं छोड़ दी गई है कि अम्ल और क्षार की तुल्यता उनके भौतिक वज़न से पता नहीं चलती। यह तुल्यता अम्ल या क्षार के तुल्यांक भार से तय होती है। इसे जानबूझकर छोड़ा गया है क्योंकि अभी तो बच्चे अणु भार ही नहीं जानते, तुल्यांक भार की तो बात ही जाने दें। मगर अभी यदि वे इस निष्कर्ष व सवाल को भली-भाँति समझ लेते हैं कि रासायनिक क्रियाओं के दौरान भौतिक वज़न से आगे भी कुछ है, तो पर्याप्त है। जब फिर से उदासीनीकरण किया गया तो अम्ल की 10 बूँदों के लिए क्षार की 15 बूँदें लगीं।

क्या तुम बता सकते हो कि पानी किस घोल में गिर गया था? क्या तुम यह भी बता सकते हो कि कितना पानी गिरा होगा?

- 3. अनीता ने गन्धक के अम्ल की 10 बूँदों का उदासीनीकरण सोडियम हाइड्रॉक्साइड (कॉस्टिक सोडा) के घोल से किया। कॉस्टिक सोडा की 7 बूँदें लगीं। उसने कॉस्टिक सोडा के 20 मि.ली. घोल में 10 मि.ली. पानी मिलाकर 30 मि.ली. बना लिया।
 - गन्धक के अम्ल की 10 बूँदों के उदासीनीकरण में कॉस्टिक सोडा के इस नए घोल की कितनी बूँदें लगेंगी?
- 4. किसी अम्ल 'क' की 10 बूँदों के उदासीनीकरण में एक क्षार की 10 बूँदें लगती हैं। एक दूसरे अम्ल 'ख' की 10 बूँदों के उदासीनीकरण में उस क्षार की 20 बूँदें लगती हैं। फातिमा ने एक परखनली में 'क' अम्ल की 5 और 'ख' अम्ल की 10 बूँदें लीं और उनका उदासीनीकरण उसी क्षार से किया। बताओ इसके लिए क्षार की कितनी बूँदें लगेंगी?
- 5. एक अम्ल के 20 मि.ली. का उदासीनीकरण करने के लिए 30 मि.ली. क्षार लगता है। यदि हम 20 मि.ली. क्षार लें तो उसके उदासीनीकरण के लिए कितना अम्ल लगेगा?

बा.वै. कक्षा ८, २००९, पृ ६९

रंगरेज़ों से जुड़ा है लिटमस का इतिहास*

फूलों के रंग बहुत खूबसूरत होते हैं, जैसे जासौन का सुर्ख लाल रंग। मगर क्या आपने कभी इसका रंग बदलकर देखने की कोशिश की है? काफी आसान है इसका रंग बदलना। वैसे हो सकता है आपने एक अन्य चीज़ का रंग बदलते देखा हो। हल्दी वैसे तो पीली होती है मगर ज़रा उसमें चुना लगाकर देखिए। है ना कमाल?

वनस्पतियों से प्राप्त रंगों का उपयोग अम्ल और क्षार के सूचकों के रूप में बखूबी किया जा सकता है। प्रयोगशाला में लिटमस का उपयोग तो हम करते ही हैं। लिटमस अम्ल और क्षार का एक अत्यन्त सुविधाजनक सूचक है। लिटमस कागज़ के रूप में आप इसे जेब में रखकर घूम सकते हैं। यह इतना प्रसिद्ध हुआ है कि सच और झूठ के फैसले में 'दूध का दूध, पानी का पानी' की तरह 'लिटमस टेस्ट' मुहावरे का भी प्रयोग किया जाता है।

कई बार लोग पूछते हैं कि यह लिटमस चीज़ क्या होती है? यह मिलता कहाँ से है? इसकी रासायनिक संरचना क्या है? तो मैंने कुछ खोजबीन की और जो कुछ पता चला वह काफी दिलचस्प था।

हल्दी का रंग बदलते तो हम सबने देखा है, प्राचीन काल से लोग देखते आ रहे हैं। प्राचीन काल से लोग यह भी देखते आ रहे थे कि वनस्पतियों से प्राप्त रंजकों को अलग-अलग रंगों में प्राप्त किया जा सकता है। काफी पुराने ज़माने से रंगरेज़ लोग रँगाई के लिए वनस्पति से प्राप्त रंगों का उपयोग करते आए हैं।

मगर कहते हैं ना कि गालिब का है कुछ अन्दाज़े बयाँ और! रंगरेज़ों ने अपने अनुभव से देखा था कि वनस्पतियों से प्राप्त पदार्थों का रंग कई बातों पर निर्भर करता है। जैसे रंग पर इस बात का असर पड़ता है कि उसे वनस्पति से किस मौसम में इकट्ठा किया गया है। इसके अलावा रंग पर इस बात का भी असर पड़ता था कि उसे किस विधि से प्राप्त व शोधित किया गया है। रंगरेज़ लोग इन तकनीकों का खूब उपयोग करते थे। मगर इसमें से एक वैज्ञानिक तथ्य खोज निकाला रॉबर्ट बॉयल ने। उन दिनों (1664 में) रॉबर्ट बॉयल (Robert Boyle) अपनी पुस्तक एक्सपेरिमेंटल हिस्ट्री ऑफ कलर्स (रंगों का प्रायोगिक इतिहास) लिख रहे थे। उनका ध्यान रंगरेज़ों के इस करतब पर भी गया। मगर बॉयल मात्र इस करतब का ब्यौरा देकर रुके नहीं।

अम्ल या क्षार मिलाकर अलग-अलग रंग प्राप्त कर सकते हैं तो हम इन रंगों का उपयोग अम्ल और क्षार की पहचान के लिए क्यों नहीं कर सकते? उस समय अम्ल और क्षार की पहचान के लिए कोई सूचक उपलब्ध न था। दूसरी बात यह थी कि खास तौर से खनिज अम्ल उस समय रासायनिक विश्लेषण में बहुत उपयोगी हो गए थे। अतः अम्लीय गुण और क्षारीय गुण की पहचान के लिए किसी आसान तरीके की दरकार थी। बॉयल के उक्त तर्क में से लिटमस का जन्म हुआ। यह रोसेला नामक लाइकेन के सत से प्राप्त एक रंजक था।

इसके बाद तो कई ऐसे सूचक खोजे गए। मगर लिटमस ही प्रथम अम्ल-क्षार सूचक था। उस समय इसका उत्पादन मात्र नीदरलैंड्स में होता था और इसे बनाने की विधि काफी गुप्त रखी जाती थी। नीदरलैंड्स में 16वीं सदी से ही इसका उत्पादन होता चला आ रहा था। यह एकाधिकार 1940 में जाकर समाप्त हुआ जब इंग्लैंड में जॉनसन्स (Johnsons) ने इसका उत्पादन शुरू किया।

मसलन आइरिस नामक पौधे के बैंगनी रस में यदि फिटकरी डाल दी जाए तो उसका रंग हरा हो जाता है। इसी प्रकार से एक लाइकेन रोसेला से बैंगनी रंग प्राप्त होता था। किन्तु यदि इसमें पेशाब मिलाकर इसे क्षारीय बना दिया जाता, तो रंग लाल हो जाता था। और यदि बैंगनी रस में तेज़ाब मिला दिया जाता तो उसका रंग नीला हो जाता था।

^{*} शैक्षणिक संदर्भ, अगस्त-सितम्बर 2001

शोखियों में घोला जाए फूलों का शबाब - लिटमस का उत्पादन

मध्य युग में लिटमस प्राप्त करने के लिए पहले रोसेला लाइकेन में से ऑर्चिल प्राप्त किया जाता था। आप स्वयं इस विधि का लुत्फ उठाइए।

"ऑर्चिल बनाने की विधि"

"एक पाउण्ड लेवॉ की ओर्सेल लो, एकदम स्वच्छ; इसे पेशाब से भिगाओ, इसमें साल अमोनिएक, साल गेमे और सॉल्ट पीटर प्रत्येक दो-दो आउन्स मिलाओ, इन्हें अच्छी तरह कूटकर मिलाओ और फिर 12 दिन के लिए छोड़ दो। दिन में दो बार मिश्रण को हिलाओ, और फिर उसे लगातार गीला रखो, थोड़ी-थोड़ी पेशाब मिलाते रहो। इस स्थिति में इसे आठ दिन रहने दो, लगातार हिलाते रहो, इसके बाद इसमें डेढ़ पाउण्ड पोटाश डालो। एक बार फिर आठ दिन पड़ा रहने दो, समय-समय पर हिलाते रहो और उतनी ही मात्रा में पेशाब डालो। पाँच-छह दिन बाद दो ड्रेचम आर्सेनिक डालो, तब यह उपयोग के लिए तैयार है।"

लिटमस उत्पादन में अन्तर केवल इतना होता है कि पूरे मिश्रण में पोटाश, चूना और जिप्सम भी मिलाए जाते हैं। आजकल

लिटमस का उत्पादन ज़्यादा सरल विधि से किया जाता है। लाइकेन को सोडियम कार्बोनेट व अमोनिया के घोल में पीसा जाता है। कई सप्ताह तक बीच-बीच में हिलाते हुए इसे पड़ा रहने देते हैं। धीरे-धीरे इसका रंग बैंगनी और फिर नीला हो जाता है। अब लाइकेन को सुखाकर पाउडर बना लेते हैं। इस अवस्था में लाइकेन में कुछ मात्रा में लिटमस और कुछ मात्रा में अन्य रंजक होते हैं। अल्कोहल के साथ घोलकर ओर्सीन को अलग कर लिया जाता है। इस प्रकार से शुद्ध लिटमस प्राप्त हो जाता है। ज़ाहिर है इस पूरी प्रक्रिया में बीच में तमाम पदार्थ बनते बिगड़ते होंगे।

दरअसल लाइकेन से रंजकों का एक मिश्रण मिलता है। इस मिश्रण में ऑर्चिल, ओर्सीन, लिटमस आदि रंजक होते हैं। अतः जो लिटमस हम इस्तेमाल करते हैं वह सम्भवतः एक मिश्रण ही है। शुरुआती दौर में इसके उत्पादन के लिए एक मात्र लाइकेन ओक्रोलेचिया टार्टिरिया का उपयोग होता था।

एक रोचक बात यह भी है कि सोलहवीं सदी से उपयोग किए जा रहे इन रंजकों की रासायनिक संरचना का पता काफी देर से चल पाया। इनके विश्लेषण में सबसे बड़ी बाधा तो शायद इन्हें शुद्ध रूप में प्राप्त करने की थी। इस दिशा में पहला कदम पियरे रॉबिकेट (Robiquet H) ने 1829 में उठाया जब उन्होंने मिश्रण में से ओसीन नामक रसायन अलग किया। इसके बाद 1840 में इस लाइकेन से चार अलग रंगीन पदार्थ प्राप्त किए गए — एज़ोलिटमिन, स्पेनियोलिटमिन, इरिथ्रोलिन और इरिथ्रोलिटमिन। इरिथ्रोलिटमिन ही लिटमस है। यह एक बहुलक यानी पॉलीमर होता है। इन यौगिकों की संरचना ज्ञात करने का श्रेय हैंस मुसो (Hans Musso) को जाता है। उन्होंने 1956 से 1965 के बीच इनका अध्ययन करके कम से कम 25 शोध पत्र प्रकाशित किए थे।

वैसे रंगरेज़ों और लिटमस के सम्बन्धों का एक पन्ना अभी और है। उसका सम्बन्ध लिटमस कागज़ से है। आपने ध्यान दिया होगा कि यूनिवर्सल सूचक के अलावा लिटमस ही एक मात्र ऐसा सूचक है जिसका उपयोग लिटमस कागज़ के रूप में किया जाता है। आखिर लिटमस कागज़ बनाने का आइडिया कहाँ से आया? एक बार फिर रंगरेज़ों की याद आती है।

रंगरेज़ लोग एक अन्य पौधे टर्नसोल (क्रोज़ोफेरा टिंक्टोरिया) से बैंगनी रंग प्राप्त किया करते थे। पौधे से इस रंजक का घोल प्राप्त हो जाने पर वे कपड़े के टुकड़ों को इसमें भिगोकर सुखाकर रख लिया करते थे। जब फिर से रंग प्राप्त करना होता था, तो इन कपड़ों को पानी में भिगोया जाता था। मज़ेदार बात यह थी कि ऐसा करने पर बैंगनी नहीं सुर्ख लाल रंग प्राप्त होता था। दूसरी ओर यदि कपड़े को भिगोने से पहले चूने के पानी में से निकाल लिया जाता तो बाद में बैंगनी रंग ही प्राप्त होता था।

कहते हैं कि कागज़ की पट्टियों को रोसेला के सत में भिगोकर लिटमस कागज़ बनाने का विचार बॉयल को यहीं से सुझा था।

क्या बताते हैं सूचक रंग बदलकर?*

अम्ल-क्षार की पहचान करते समय अक्सर सूचकों का इस्तेमाल होता है। लेकिन सूचकों का इस्तेमाल करते हुए शायद ही हम कभी यह सोचते हैं कि सूचक काम कैसे करते हैं, और क्या सब सूचक एक जैसे होते हैं?

अम्ल और क्षार की पहचान करने में सूचकों का उपयोग तो हम सबने किया है; लिटमस, फिनॉफ्थलीन, मिथाइल ऑरेंज... वगैरह कितने ही सूचक हम जानते भी हैं। इन सबकी विशेषता यह है कि ये अम्लीय माध्यम में किसी एक रंग के होते हैं तो क्षारीय माध्यम में किसी और रंग के।

क्यों बदलते हैं रंग

सबसे पहले सवाल तो यही उठता है कि ये रंग बदलते क्यों हैं? इस सवाल का जवाब काफी आसान है। ये सूचक ऐसे पदार्थ हैं जो दो रूपों में रह सकते हैं। एक रूप से दूसरे में इनका परिवर्तन काफी आसानी से होता है। और सबसे बड़ी बात यह है कि यह रूप परिवर्तन रसायन की भाषा में उत्क्रमणीय होता है, यानी रूप परिवर्तन पुनः बहाल किया जा सकता है। रूप परिवर्तन मूलतः इस बात पर निर्भर होता है कि माध्यम क्षारीय है या अम्लीय।

उदाहरण के लिए फिनॉफ्थलीन को लें। यह पदार्थ स्वयं एक दुर्बल अम्ल है। इसका सूत्र इस तरह लिखा जा सकता है: HPh; मगर यह स्थिति अम्लीय घोल में होती है, और उस समय यह घोल रंगहीन होता है।

जब घोल क्षारीय होता है तो फिनॉफ्थलीन का आयनीकरण हो जाता है:

$HPh + OH^{-} \rightarrow HOH + Ph^{-}$

यह Ph- ऋणायन गुलाबी होता है। इसलिए क्षारीय घोल में फिनॉफ्थलीन गुलाबी हो जाता है। जबिक HPh रूप रंगहीन होता है।

समस्त सूचक स्वयं दुर्बल कार्बनिक अम्ल या कार्बनिक क्षार होते हैं। प्रत्येक मामले में आयनीकृत अवस्था और अन-आयनीकृत अवस्था का रंग अलग-अलग होता है। यही इनके रंग बदलने का राज़ है।

सूचक-सूचक एक समान?

इस आसान सवाल के बाद एक मुश्किल सवाल पर आते हैं। सवाल यह है कि क्या सभी सूचक अम्ल को अम्ल और क्षार को क्षार बताते हैं। बात को स्पष्ट करना ज़रूरी है क्योंकि बात थोड़ी गोल-गोल लग रही होगी। और इसके लिए ज़रूरी है कि अम्ल और क्षार को परिभाषित कर दिया जाए।

वर्तमान मकसद से मैं अम्ल और क्षार की सबसे सरल परिभाषा से ही शुरू करता हूँ। जो नीले लिटमस को लाल कर दे, वह अम्ल; और जो लाल लिटमस को नीला कर दे, वह क्षार।

अब मान लीजिए पदार्थ 'क' ने लाल लिटमस को नीला कर दिया, तो यह हो गया क्षार। सवाल यह है कि यदि हम फिनॉफ्थलीन सूचक का इस्तेमाल करें तो क्या वह भी इसे क्षार बताएगा; यानी क्या इस घोल में रंगहीन फिनॉफ्थलीन डालने पर वह गुलाबी हो जाएगा? आपका क्या विचार है? यानी मैं यह पूछ रहा हूँ कि लिटमस जिस घोल को क्षारीय बताता है क्या उसे फिनॉफ्थलीन भी क्षारीय बताएगा?

आपको शायद लगे कि यह सवाल ही बेतुका है। जब घोल क्षारीय है, तो फिनॉफ्थलीन हो या कोई भी सूचक हो, उसे क्षारीय ही बताएगा।

मगर बदिकरमती (या खुशिकरमती) से ऐसा नहीं है। कई मर्तबा ऐसा हो जाता है कि एक सूचक जिस घोल को अम्लीय बताता है दूसरा सूचक उसे क्षारीय दर्शाता है।

^{*} शैक्षणिक संदर्भ, अगस्त-सितम्बर 2001

पानी की क्षारीयता

आइए, पानी का उदाहरण लेकर इस बात को समझने की कोशिश करें। पानी के साधारण परीक्षण में उसकी क्षारीयता का मापन किया जाता है। यह काम किसी भी मानक अम्ल के घोल से पानी के अनुमापन (टाइट्रेशन) के द्वारा किया जा सकता है। करते यह हैं कि जिस पानी का परीक्षण करना हो उसे नापकर फ्लास्क में ले लेते हैं। इसमें 2-3 बूँद फिनॉफ्थलीन (रंगहीन) सूचक डाल देते हैं। आम तौर पर यह गुलाबी हो जाता है (पानी क्षारीय है)। अब ब्यूरेट से बूँदब्द करके अम्ल डालते हैं, जब तक कि पानी रंगहीन न हो जाए। पानी के रंगहीन हो जाने तक जितना अम्ल डाला है उसके आधार पर पानी में उपस्थित क्षार की मात्रा की गणना कर लेते हैं।

गुलाबी फिनॉफ्थलीन सूचक रंगहीन हो गया मतलब घोल उदासीन है (या थोड़ा अम्लीय होगा)। अब इस उदासीन घोल में मिथाइल ऑरेंज की 2-3 बूँदें डालते हैं। उम्मीद के विपरीत मिथाइल ऑरेंज इसे क्षारीय दर्शाता है (यानी पीला रंग देता है)। अब एक बार फिर इसमें बूँद-बूँद अम्ल डालकर टाइट्रेशन करते हैं, जब तक कि इसका रंग नारंगी न हो जाए। और एक बार फिर इसकी क्षारीयता की गणना करते हैं।

दरअसल पानी परीक्षण के सन्दर्भ में इन दो क्षारीयताओं को फिनॉफ्थलीन क्षारीयता और कुल क्षारीयता (फिनॉफ्थलीन + मिथाइल ऑरेंज से नापी गई कुल क्षारीयता) के नाम दिए गए हैं। तो यह क्या चक्कर है? जिस घोल को फिनॉफ्थलीन ने उदासीन घोषित कर दिया था, उसे मिथाइल ऑरेंज ने क्षारीय क्यों बताया?

परिभाषा का विस्तार

इसे समझने के लिए हमें अम्ल और क्षार की परिभाषा की अगली पायदान पर जाना होगा । यह परिभाषा आयनीकरण की अवधारणा से उभरती है। वे सारे पदार्थ जो पानी में घुलकर हाइड्रोजन आयन उत्पन्न करते हैं, अम्ल हैं। पानी में घुलकर हाइड्रॉक्सिल आयन उत्पन्न करने वाले पदार्थ क्षार हैं। अर्थात् यदि HA अम्ल है तो पानी में यह निम्नानुसार आयनीकृत होगाः

 $HA \rightarrow H^+ + A^-$

और यदि BOH पदार्थ क्षार है तो पानी में घोलने पर यह निम्नानुसार व्यवहार करेगाः

$$BOH \rightarrow B^+ + OH^-$$

इसका मतलब यह नहीं है कि अम्ल के घोल में हाइड्रॉक्सिल आयन नहीं होते। एक नियम के तौर पर आप यह याद रख सकते हैं कि पानी चाहे शुद्ध हो या मिलावटी उसमें हाइड्रोजन आयन की सान्द्रता और हाइड्रॉक्सिल आयन की सान्द्रता का गुणनफल हमेशा निश्चित होता है:

$$[H^+] \times [OH^-] = 10^{-14}$$

अर्थात [H⁺] की सान्द्रता बढ़ने पर [OH⁻] की सान्द्रता उसी अनुपात में कम होती जाएगी तािक दोनों का गुणनफल 10⁻¹⁴ ही रहे। इसलिए किसी घोल की अम्लीयता व क्षारीयता दोनों को हम [H⁺] आयन की सान्द्रता के रूप में व्यक्त कर सकते हैं। इसके लिए एक आसान पैमाना बनाया गया है। इसे pH पैमाना कहते हैं। यह घोल में H⁺ आयन की सान्द्रता दर्शाता है:

 pH 7 से कम
 घोल अम्लीय

 pH ठीक 7
 घोल उदासीन

 pH 7 से ज़्यादा
 घोल क्षारीय

pH पैमाने को समझने में जिनकी दिलचस्पी हो, वे इस लेख के अन्त में दिया गया बॉक्स ज़रूर पढ़ें।

किसी अम्ल या क्षार को पानी में घोलें तो उस घोल की pH अम्ल या क्षार की प्रकृति पर निर्भर करती है। हाँ, उस पर अम्ल या क्षार की मात्रा का थोड़ा बहुत असर ज़रूर पड़ता है और तापमान का भी असर पड़ता है। मगर मूलतः यह उस अम्ल या क्षार की प्रकृति से ही तय होता है कि उसकी pH कितनी होगी।

सूचक... फिर एक बार

अम्ल या क्षार की इस नई परिभाषा के तहत अब हमारा सवाल यह हो जाता है कि क्या सारे सूचक 7 से कम pH वाले घोलों को अम्लीय और 7 से ज़्यादा pH वाले घोलों को क्षारीय बताते हैं। दूसरे शब्दों में, सवाल यह है कि क्या सभी सूचक pH 7 पर रंग बदलते हैं।

बदिकरमती या खुशिकरमती से ऐसा नहीं होता है। यहाँ प्रस्तुत चार्ट से यह बात स्पष्ट हो जाती है कि अलग-अलग

सूचक	रंग में बदलाव		बदलाव की pH
	अम्लीय	क्षारीय	
मिथाइल वायलेट	पीला	नीला	0.0-1.6
मिथाइल येलो	लाल	पीला	2.9-4.0
ब्रोमोफिनॉल ब्लू	पीला	नीला	3.0-4.6
मिथाइल ऑरेंज	लाल	पीला	3 .2-4 .4
मिथाइल रेड	लाल	पीला	4.8-6.0
लिटमस	लाल	नीला	5.5-8.0
ब्रोमोथाइमॉल ब्लू	पीला	नीला	6.0-7.6
फिनॉल रेड	पीला	लाल	0.8-6.6
फिनॉफ्थेलीन	रंगहीन	लाल	8.2-10.6
थाइमॉलफ्थेलीन	रंगहीन	नीला	9.4-10.6
एलीज़रीन येलो	पीला	लाल	10.0-12.0

सूचक अलग-अलग pH पर रंग बदलते हैं। मसलन, pH 8 से ज़्यादा हो तो फिनॉफ्थलीन गुलाबी या लाल होता है, pH 8 हो तो रंगहीन हो जाता है। यानी pH 8 से कम वाले घोल को यह अम्लीय/उदासीन बताता है। ऐसे घोल (जिनका pH 8 से 7 के बीच है) मिथाइल ऑरेंज से जाँचने पर क्षारीय नज़र आएँगे। इसके विपरीत कई घोल ऐसे भी होंगे (pH 4 से 7 के बीच) जिन्हें अम्लीय होते हुए भी, मिथाइल ऑरेंज क्षारीय/उदासीन बताएगा क्योंकि मिथाइल ऑरेंज pH 4 पर रंग बदलता है।

सूचक के बार-बार रंग बदल पाने के इस गुण का एक फायदा यह है कि उनका उपयोग भी बार-बार किया जा सकता है। आखिर ये सारे सूचक pH 7 पर ही रंग क्यों नहीं बदलते? आइए कारण समझने की कोशिश करें।

मैंने पहले ही कहा था कि ये सब सूचक स्वयं दुर्बल अम्ल या दुर्बल क्षार हैं। इनका रंग इस बात पर निर्भर है कि घोल में ये आयनीकृत अवस्था में हैं या अन-आयनीकृत अवस्था में।

सरलता के लिए हम कह सकते हैं कि प्रत्येक सूचक का आयनीकरण एक विशिष्ट pH पर ही होता है। लिहाज़ा इसी pH पर जाकर वह सूचक रंग बदलेगा।

आसपास बिखरे हैं सूचक

अपने आसपास चारों तरफ ढेरों सूचक बिखरे रहते हैं। अक्सर हमें अन्दाज़ा ही नहीं होता कि हल्दी, बेशरम या गुड़हल का फूल, सफाई के काम आने वाला डोमेक्स का घोल, कुछ स्याहियाँ, बहुत से अन्य फूल और भी जाने कौन-कौन से सूचक बिखरे पड़े हैं चारों तरफ।

अपने इर्द-गिर्द बिखरे हुए विभिन्न सूचक पहचानना और देखना कि वे अम्ल और क्षार के साथ क्या-क्या रंग बदलते हैं, अपने आपमें एक मज़ेदार गतिविधि हो सकती है। और अगर इस अभ्यास को और चुनौतीपूर्ण बनाना हो तो फिर आप ये भी पता लगा सकते हैं कि इनमें से हर सूचक किस pH पर अपना रंग बदलता है। एक अच्छा-खासा प्रोजेक्ट बन सकता है यह प्रयास।

pH पैमाना

हमने ऊपर देखा कि शुद्ध पानी में $[H^+] \times [OH^-] = 10^{-14}$ मोल आयन प्रति लीटर।

अब पानी में हम जब अम्ल या क्षार डालते हैं, तो वे क्रमशः H⁺ आयन या OH⁻ आयन पैदा करते हैं। मान लीजिए हमने अम्ल डाला है, तो पानी में H⁺ आयन की सान्द्रता बढ़ेगी। यदि H⁺ और OH⁻ का गुणनफल स्थिर रहना है तो उसी अनुपात में OH⁻ की सान्द्रता घटेगी।

यदि क्षार डालेंगे तो उसमें OH की सान्द्रता बढ़ेगी। तब गुणनफल को स्थिर रखने के लिए H+ आयन की सान्द्रता घटने लगेगी। लिहाज़ा यदि हमें किसी घोल में H+ आयन की सान्द्रता मालूम है, तो हम उपरोक्त समीकरण के द्वारा OH- आयन की सान्द्रता ज्ञात कर सकते हैं। अतः किसी घोल की अम्लीयता और क्षारीयता दोनों को ही H+ आयन सान्द्रता के रूप में व्यक्त किया जा सकता है।

H+ (मोल आयन प्रति लीटर)	घोल की प्रकृति
10 ⁻⁷	उदासीन
10 ⁻⁷ से ज़्यादा	अम्लीय
10 ⁻⁷ से कम	क्षारीय

 10^{-7} ग्राम आयन प्रति लीटर के रूप में व्यक्त करने की मुश्किलों को देखते हुए सन् 1909 में सोरेन्सन (Sorensen) ने एक पैमाना विकसित किया था। इसे pH पैमाना कहते हैं। उन्होंने बताया कि H^+ सान्द्रता का लॉगेरिद्म निकालकर उसे ऋणात्मक चिह्न से प्रकट किया जाए; और इसे pH कहें।

या $[H^{+}] = 10^{-4}$ तो $pH = -Log[10^{-4}]$ = -[-4]= 4या $[H^{+}] = 10^{-14}$

इसके अनुसार pH = 7 तो घोल उदासीन pH > 7 तो घोल क्षारीय pH < 7 तो घोल अम्लीय

अभी तक जो पढ़ा-समझा है उसे जाँचने के लिए ज़रा गणना कीजिए:

- pH 4 वाले घोल में OH- की सान्द्रता कितनी होगी?
 यहाँ यह स्पष्ट करना ज़रूरी है कि अम्लीय घोल में भी OH- आयन मौजूद होते हैं मगर इनकी मात्रा H+ आयन से बहुत कम होती है।
- किसी घोल में H^+ की मात्रा 3×10^{-2} मोल आयन प्रति लीटर है। इसकी pH कितनी होगी?
- यदि इस घोल में H+ की मात्रा दुगुनी कर दी जाए तो इसकी pH कितनी हो जाएगी?
- यदि H⁺ आयन की मात्रा 10 गुनी कर दी जाए तो इसकी pH कितनी हो जाएगी?

दो तरह की अम्लीयता, क्षारीयता*

अम्लीयता-क्षारीयता के मापन के लिए हम क्षार या अम्ल का एक मानक घोल लेते हैं। इसकी सान्द्रता हमें ज्ञात है। अब जिस घोल की अम्लीयता-क्षारीयता नापनी है उसका उदासीनीकरण इस मानक घोल के निश्चित आयतन से करते हैं। फिर जाने-माने $N_1V_1=N_2V_2$ के सूत्र से हम अज्ञात घोल में अम्ल या क्षार की मात्रा पता लगा लेते हैं। (जहाँ N_1 व N_2 पहले और दूसरे घोल में अम्ल/क्षार की नॉर्मलता दर्शाते हैं और V_1 व V_2 उनके आयतन।)

आप यह भी जानते हैं कि अम्लीयता-क्षारीयता का दूसरा माप है pH | उदासीन पानी की pH 7 होती है | 7 से कम pH होने पर घोल अम्लीय कहलाता है और 7 से ज़्यादा pH हो तो क्षारीय | pH नापने के लिए यूनिवर्सल pH घोल का उपयोग किया जाता है |

बहरहाल अम्लीयता-क्षारीयता मापन की इन दो विधियों में क्या अन्तर है यह समझना अनिवार्य है। मसलन सवाल यह उठता है कि यदि किसी घोल की pH 6.5 है और किसी घोल की pH 4.2 है तो किसकी अम्लीयता ज़्यादा होगी? दूसरे शब्दों में, सवाल यह है कि pH 8.5 क्या दर्शाती है? या किसी क्षार की pH 8.5 है और किसी अन्य क्षार की pH 11.3 है तो किसकी क्षारीयता ज़्यादा होगी? इस प्रश्न का उत्तर पाने के लिए हमें अम्ल और क्षार के एक गुण पर विचार करना होगा। अम्ल वे पदार्थ हैं जो पानी में घोले जाने पर हाइड्रोजन आयन (H+) देते हैं। तथा क्षार वे पदार्थ हैं जो हाइड्रॉक्सिल आयन (OH-) देते हैं।

स्वयं पानी भी कुछ हद तक विभाजित होकर हाइड्रोजन व हाइड्रॉक्सिल आयन के रूप में मौजूद रहता है:

$$H_2O \rightleftharpoons H^+ + OH^- - - - - (1)$$

(ज़ाहिर है, हम अम्ल-क्षार की अर्हीनियस (Arrhenius)

अवधारणा का इस्तेमाल कर रहे हैं। हमारे मकसद के लिए वहीं पर्याप्त व उचित है।)

$$HCl \rightleftharpoons H^+ + Cl^- - - - (2)$$

$$NaOH \rightleftharpoons Na^+ + OH^- - (3)$$

दोनों तरफ बने तीर के निशान से पता चलता है कि ये सारी क्रियाएँ दोनों दिशाओं में चलती हैं — इन्हें कठिन शब्दावली में उत्क्रमणीय क्रियाएँ कहा जाता है। वैसे इन्हें दोतरफा क्रिया कहने से भी काम चल जाएगा। पानी का आयनीकरण (समीकरण 1) देखने से पता चलता है कि H+ व OH- आयन बराबर संख्या में बनते हैं। लिहाज़ा पानी उदासीन बना रहता है। मगर फिर भी हम यह गणना तो कर ही सकते हैं कि उदासीन पानी में कितने H+ आयन होते हैं और कितने OH- आयन होते हैं। अलग-अलग तापमान पर ऐसी गणनाएँ करके जो निष्कर्ष निकाले गए हैं वे यहाँ तालिका में दिए हैं।

तापमान (° से.)	पानी का आयन गुणनफल	उदासीन पानी की pH
0	1.139 × 10 ⁻¹⁵	7.970
18	5.702×10^{-15}	7.117
25	1.008×10^{-14}	7.0
50	5.474×10^{-14}	6.631
100	5.9×10^{-13}	6.120

पानी का आयनों में विभाजन बहुत कम मात्रा में होता है। पानी को आयनों में विभक्त करने की प्रक्रिया में काफी कर्जा (ऊष्मा) लगती है। इसलिए तापमान बढ़ने पर आयनीकरण ज़्यादा होता है। परन्तु एक बात ध्यान में रखनी होगी कि तापमान कुछ भी हो मगर जब भी पानी के एक अणु का आयनीकरण होगा तो बराबर संख्या में H+ व OH- आयन बनेंगे।

^{*} शैक्षणिक संदर्भ, मार्च-अप्रैल 1995

तालिका देखकर बताइए कि तापमान के साथ आयन गुणनफल बढ़ता है या घटता है?

рн क्या चीज़ है?

हमने देखा कि पानी का आयनीकरण होने पर H+ और OH- आयन बनते हैं। अहींनियस नामक वैज्ञानिक ने यह स्पष्ट किया था कि H+ आयन अम्लीय गुण दर्शाते हैं और OH- आयन क्षारीय गुण। पानी का आयनीकरण होने पर दोनों बराबर संख्या में बनते हैं इसलिए पानी उदासीन ही रहता है — इसलिए पानी उभयधर्मी कहलाता है।

अब मान लीजिए हम नमक के अम्ल को पानी में घोलते हैं। नमक के अम्ल का भी आयनों में विभाजन होता है:

$$HC1 \rightleftharpoons H^+ + C1^-$$

इसी प्रकार से एसिटिक अम्ल को पानी में घोलने से भी आयन प्राप्त होते हैं।

$$CH_3COOH \rightleftharpoons CH_3OO^- + H^+$$

अर्थात अम्ल घोलने पर H+ आयन की मात्रा बढ़ेगी। हमें फिलहाल इस बात से कोई मतलब नहीं है कि ऋणात्मक आयन कौन सा है। इसी प्रकार से किसी क्षार (जैसे सोडियम हाइड्रॉक्साइड) को पानी में घोलें तो इस तरह आयनीकरण होता है:

$$NaOH \Rightarrow Na^+ + OH^-$$

$$Ca(OH)_2 \rightleftharpoons Ca^{++} + 2OH^{-}$$

यानी क्षार घोलें तो OH की मात्रा बढ़ेगी। यहाँ एक रोचक बात पर ध्यान देना ज़रूरी है। जब हम जलीय विलयन की बात कर रहे हैं तो यह पक्की बात है कि उसमें H+ और OH- आयनों की मात्रा का गुणनफल एक निश्चित तापमान पर स्थिर रहता है।

मसलन 25 डिग्री सेल्सियस पर यह गुणनफल 1.008 x 10-14 होता है। यदि उसमें अम्ल डाला तो H+ आयन की सान्द्रता बढ़ेगी। गुणनफल को स्थिर रखते हुए उसी अनुपात में OH- की सान्द्रता कम हो जाएगी। इसी प्रकार से क्षार मिलाने पर OH- की सान्द्रता बढ़ती है और उसी अनुपात में H+ की सान्द्रता घट जाती है।

ऐसा क्यों होता है उसमें बाद में जाएँगे, पहले इसका एक फायदा देख लें। H⁺ व OH⁻ के इस सन्तुलन की वजह से फायदा यह होता है कि इनमें से किसी एक की सान्द्रता मालूम हो तो दूसरे की सान्द्रता की गणना की जा सकती है, बशर्ते कि दोनों आयनों का गुणनफल मालूम हो।

ऐसा क्यों होता है?

अगर पानी में नमक का अम्ल (हाइड्रोक्लोरिक अम्ल) मिलाया जाए तो उसमें पानी और अम्ल दोनों का आयनीकरण होगा। इन्हें समीकरण के रूप में इस तरह लिख सकते हैं:

$$HCl \rightleftharpoons H^+ + Cl^-$$

$$H_2O \rightleftharpoons H^+ + OH^-$$

इन दोनों में ही H⁺ आयन उत्पन्न हो रहे हैं। सरल शब्दों में कहें तो इन दो क्रियाओं के बीच प्रतिस्पर्धा होती है। इस प्रतिस्पर्धा में पानी का आयनन कम हो जाता है। अतः OH-की संख्या भी कम हो जाती है। इसी प्रकार से पानी और कॉस्टिक सोडा के घोल में:

$$H_2O \rightleftharpoons H^+ + OH^-$$

$$NaOH \Rightarrow Na^+ + OH^-$$

यहाँ भी दोनों के बीच प्रतिस्पर्धा के कारण पानी का आयनन कम हो जाता है तथा इस तरह से H⁺ की मात्रा भी कम हो जाती है।

पिछले लेख में हम यह देख चुके हैं कि किसी भी घोल में मौजूद आयनों (H⁺ और OH ⁻) की मात्रा को pH के रूप में कैसे दर्शाया जाता है (देखें पेज 35)।

pH दो बातों पर निर्भर है। पहली बात है कि उस घोल में कितना अम्ल मिलाया गया है? और दूसरी बात है कि अम्ल का आयनों में विभाजन कितनी हद तक हुआ है। जितना ज़्यादा विभाजन होगा, pH भी उतनी ही कम होगी। अलग-अलग अम्ल का विभाजन (आयनीकरण) अलग-अलग हद तक होता है। प्रबल अम्लों का आयनीकरण काफी ज़्यादा होता है। प्रबल अम्लों के तनु घोल में तो लगभग पूरा अम्ल ही आयनों के रूप में मौजूद रहता है। दुर्बल अम्लों का आयनीकरण अपूर्ण होता है।

उदाहरण के लिए:

प्रबल अम्ल

$$HCl \longrightarrow H^+ + Cl^-$$

दुर्बल अम्ल

$$CH_3COOH$$
 $CH_3COO^- + H^+$

(तीर की लम्बाई से क्रिया की रफ्तार का पता चलता है।)

पीछे के समीकरणों से दो बातें साफ हैं:

- अम्ल/क्षार के आयनीकरण की क्रिया दोतरफा क्रिया है। यानी अम्ल/क्षार विभक्त होकर आयन बनाते हैं और आयन वापस जुड़कर अम्ल/क्षार बना देते हैं।
- 2. विभिन्न अम्लों/क्षारों में आयनीकरण की रफ्तार और वापस जुड़ने की रफ्तार अलग-अलग होती है। किसी में आयनीकरण ज़्यादा होता है तो किसी में कम। मगर एक समय पर किसी भी अम्ल या क्षार के घोल में आयनों की निश्चित मात्रा होती है।

pH के द्वारा हम यही नापते हैं कि किसी भी वक्त अम्ल/ क्षार के घोल में H+/OH- की मात्रा कितनी है। इसे सक्रिय अम्लीयता/क्षारीयता कहते हैं। हो सकता है कि घोल में कुल अम्ल की मात्रा ज़्यादा हो मगर आयनन कम होने की वजह से उसकी pH ज़्यादा आए। (ज़्यादा pH का अर्थ है कि H+ आयन कम बन रहे हैं)। मसलन यदि हमने एक नॉर्मल (1N) एसिटिक अम्ल और नाइट्रिक अम्ल लिए हैं तो स्पष्ट है कि इन दोनों को उदासीन करने के लिए एक नॉर्मल (1N) सोडियम हाइड्रॉक्साइड के घोल के बराबर-बराबर आयतन लगेंगे। यानी इनकी अम्लीयता बराबर है। मगर यदि 1N एसिटिक अम्ल (CH3COOH) और 1N नाइट्रिक अम्ल (HNO3) के हाइड्रोजन आयन का मापन किया जाए तो HNO3 में यह मात्रा 1 मोल आयन प्रति लीटर आएगी। वहीं CH2COOH में H+ आयन मात्र 0.0034 मोल आयन प्रति लीटर ही होगी। यानी नाइट्रिक अम्ल के 1N घोल की pH - log 1 = 0 के आसपास होगी। जबकि एसिटिक अम्ल के 1N घोल की pH $\log (0.0034) = -\log 3.4 \times 10^{-3} = 3.5$ होगी।

यानी pH द्वारा दर्शित सक्रिय अम्लीयता तथा कुल अम्लीयता में बहुत अन्तर होता है।

एक बार फिर देखें

1. किसी भी जलीय घोल में pH से H⁺ आयनों की मात्रा का पता चलता है।

- 25 डिग्री सेल्सियस तापमान पर पानी में H⁺ और OH⁻ आयनों की संख्या बराबर होती है। इसलिए पानी को उदासीन माना गया है।
- अम्ल पानी में घुलने पर हाइड्रोजन आयन (H+) देते हैं
 और क्षार पानी में घुलने पर हाइड्रॉक्सिल आयन (OH-) देते हैं।
- 4. पानी में अम्ल या क्षार डालने पर H⁺ या OH⁻ की संख्या घट-बढ़ सकती है। परन्तु इन दोनों आयनों का गुणनफल एक निश्चित तापमान पर स्थिर रहता है।
- 5. क्योंकि पानी का आयन गुणनफल हमें मालूम है (25 डिग्री सेल्सियस पर 1.008 x 10⁻¹⁴ मोल आयन प्रति लीटर) इसलिए सिर्फ H+ आयन की मात्रा दर्शाने से OH- की मात्रा का अन्दाज़ा भी लग जाता है।
- pH यही दर्शाती है घोल में H⁺ आयनों की मात्रा।
 pH=-log [H⁺]
- 7. इसलिए pH 7 हो तो घोल उदासीन माना जाता है। 7 से कम होने पर अम्लीय और 7 से ज़्यादा होने पर क्षारीय। घोल अम्लीय हो तो H+ आयनों की संख्या ज़्यादा होगी और OH- की कम। घोल क्षारीय हो तो OH- आयनों की संख्या ज़्यादा होगी, H+ की कम इसलिए pH ज़्यादा।
- यह ध्यान रहे कि अम्लीय घोल में OH आयन भी मौजूद होते हैं और क्षारीय में H+ भी — चाहे इनकी मात्रा कम हो।
- 9. और अन्त में सबसे महत्वपूर्ण बात यह है कि किसी घोल की नॉर्मलता और pH में अन्तर होता है। किसी भी घोल की नॉर्मलता और मात्रा/आयतन पता होने से उस घोल में मौजूद अम्ल या क्षार की कुल मात्रा का पता चलता है।
- 10. परन्तु pH सिर्फ यह बताती है कि उस घोल में अम्ल या क्षार कितने प्रबल हैं या कमज़ोर — कितने H⁺ या OH⁻ आयन उत्पन्न कर रहे हैं। pH से कुल अम्लीयता या क्षारीयता पता नहीं चलती।

चीज़ों को अलग-अलग करना

रसायन शास्त्र में शुद्ध पदार्थ का महत्व बताने की ज़रूरत नहीं है। कोई भी अध्ययन करना हो, चाहे गुणात्मक या मात्रात्मक, आपको पदार्थ शुद्ध अवस्था में चाहिए। दरअसल तत्व, यौगिक और मिश्रण जैसा वर्गीकरण शुद्धता की बुनियाद पर ही खड़ा है।

शुद्ध पदार्थ पाने के महत्व के मद्देनज़र रसायन शास्त्र में पृथक्करण की विधियों का काफी विकास हुआ है। पृथक्करण की कोई भी विधि इस बात पर टिकी होती है कि पदार्थों के गुणों में अन्तर होते हैं और हमें उन अन्तरों के आधार पर तकनीकों का विकास करना होता है।

इस अध्याय में पृथक्करण की कुछ विधियों का अभ्यास किया जाता है। मगर उससे पहले यह महत्वपूर्ण तथ्य उभारने की कोशिश होती है कि दैनिक जीवन में हमें कई पदार्थों को अलग-अलग करने की ज़रूरत पड़ती है। यह बच्चों के लिए एक उपयोगी प्रयास हो सकता है कि वे यह देखें कि रोज़-ब-रोज़ कितनी बार हमें चीज़ों को अलग-अलग करना पड़ता है और इसके लिए हम कितनी अलग-अलग विधियों का उपयोग करते हैं। जैसे बीनना, निथारना, घोलना, निचोड़ना, परेरना (rolling), रवे बनाना, चलनी अथवा छन्नी से छानना, फटकना वगैरह। साथ ही, अच्छा होगा कि वे यह भी देख पाएँ कि पृथक्करण की किसी भी विधि में हम पदार्थों के किस गुणधर्म में अन्तर का फायदा उठाते हैं। जैसे बीनने के लिए ज़रूरी है कि जिन पदार्थों को अलग-अलग करना है उनके आकार, रंग या आकृति में इतना फर्क हो कि हम देख पाएँ। दरअसल पदार्थों के गुणधर्म में अन्तर को तकनीक का रूप देना ही पृथक्करण की कला है।

आप देखेंगे कि वैज्ञानिक कार्यों और उद्योगों में पृथक्करण की जिन विधियों का उपयोग हम करते हैं वे सबकी सब (एक अपवाद को छोड़कर) दैनिक जीवन से ही उभरी हैं। अध्याय में हम घुलनशीलता, रवे बनाना, आसवन, ऊर्ध्वपातन और क्रोमेटोग्राफी से सम्बन्धित प्रयोग करेंगे।

घुलनशीलता

घुलनशीलता का उपयोग पृथक्करण हेतु करने के लिए ज़रूरी है कि जिन पदार्थों को अलग-अलग करना है उनकी घुलनशीलता में काफी अन्तर हो। चूँिक आम तौर पर हम पानी का ही उपयोग करते हैं, इसिलए पानी में घुलनशीलता एक महत्वपूर्ण गुण हो जाता है। प्रयोगों में घुलनशीलता का उपयोग पृथक्करण हेतु करने के अलावा घुलनशीलता पर तापमान के असर को समझने की भी कोशिश करेंगे।

साधारणतः गरम करने पर पदार्थों की घुलशीलता बढ़ती है मगर इसके कई अपवाद हैं। जैसे सभी गैसों की घुलनशीलता गरम करने पर घटती है। इसके अलावा कुछ ठोस पदार्थ भी हैं जिनकी घुलनशीलता तापमान के साथ बढ़ने की बजाय घटती है (उदाहरण चूना यानी कैल्शियम ऑक्साइड)। घुलनशीलता पर तापमान के असर का उपयोग भी पृथक्करण के मकसद से किया जा सकता है।

आप देखेंगे कि घुलनशीलता को समझने के लिए बाल वैज्ञानिक में अलग से एक अध्याय विकसित किया गया था (देखें पृष्ठ 55)। इस अध्याय के प्रयोगों में घुलनशीलता को आंशिक रूप से मात्रात्मक (semi-quantitative) ढंग से समझने की कोशिश हुई है। अर्ध-मात्रात्मक का मतलब है कि छात्र इतना समझ पाएँगे कि गरम करने पर विभिन्न पदार्थों की घुलनशीलता पर अलग-अलग परिमाण में असर होते हैं।

रवे बनाना

दरअसल रवे बनाने की विधि घुलनशीलता पर ही आधारित है। घुलनशीलता सम्बन्धी प्रयोगों से बच्चे देख पाएँगे कि आम तौर पर ठोस पदार्थों की घुलनशीलता गरम करने पर बढ़ती है। प्रायः यह किया जाता है कि गरम पानी में किसी पदार्थ का संतृप्त घोल बना लिया जाता है। फिर इसे ठण्डा किया जाता है। ज़ाहिर है, ठण्डा करने पर पदार्थ की घुलनशीलता कम होती जाएगी और पदार्थ घोल को छोड़कर निकलने लगेगा। यदि उचित ढंग से किया जाए, तो इस प्रक्रिया में पदार्थ रवों के रूप में प्राप्त हो जाता है।

रवे बनाने की एक और विधि यह है कि पदार्थ का साधारण घोल बना लिया जाए (यानी संतृप्त घोल बनाने की ज़रूरत नहीं है)। इस घोल को रखा रहने देंगे तो पानी वाष्पित होगा। इसके साथ ही घुले हुए पदार्थ के रवे तैयार होने लगेंगे।

रवों का अवलोकन एक रोचक अनुभव होता है। अवलोकन के लिए रवे बनाने के लिए वाष्पन की विधि ज़्यादा उपयोगी होती है। अवलोकन करने के लिए हैंडलैंस या सूक्ष्मदर्शी का इस्तेमाल किया जा सकता है। यह देखने की कोशिश करें कि एक ही पदार्थ के रवे सदा एक ही आकृति के होते हैं। रवे बनने की प्रक्रिया की विशेषता यह है कि जो रवा बनता है वह हमेशा लगभग शुद्ध पदार्थ से बना होता है। इसलिए किसी मिश्रण में से रवे बनाना पृथक्करण की अच्छी विधि है। मगर इसे तभी उपयोग में लाया जाता है जब अशुद्धि की मात्रा अपेक्षाकृत कम हो।

आसवन

आसवन विधि दो प्रक्रियाओं का मिला-जुला रूप है — वाष्पन और संघनन। जब कोई ठोस पदार्थ किसी द्रव (जैसे पानी) में घुला हो तो आसवन विधि पृथक्करण की पसन्दीदा विधि होती है। इस मिश्रण को उबालेंगे तो पानी वाष्पित होगा। यदि आपकी रुचि सिर्फ ठोस पदार्थ को प्राप्त करने में है तो पानी को भाप बनकर उड़ जाने दीजिए। मगर यदि आप पानी भी एकत्रित करना चाहते हैं तो ऐसी व्यवस्था जमाना होगी कि भाप संघनित होकर वापस पानी के रूप में एकत्रित की जा सके। आम तौर पर पानी मुफ्त में मिलता है, इसलिए इसे पुनः प्राप्त करना ज़रूरी नहीं माना जाता। मगर जब पानी की बजाय किसी अन्य विलायक का उपयोग किया जाता है तो उसे पुनः प्राप्त करना ज़रूरी होता है। और यह काम आसवन की मदद से किया जाता है।

इसके अलावा आसवन की आवश्यकता खास तौर से तब

पड़ती है जब आप दो परस्पर घुलनशील तरल पदार्थों को अलग-अलग करना चाहते हैं। या किसी तरल पदार्थ को उसमें उपस्थित थोड़ी-सी अशुद्धि से मुक्त करना चाहते हैं। दो तरल पदार्थों को अलग-अलग करते समय इस बात का काफी महत्व होता है कि उनके उबलने के तापमान (क्वथनांक) में पर्याप्त अन्तर हो।

आसवन विधि का उपयोग करने में एक व्यावहारिक कठिनाई आती है। इस विधि में मिश्रण को गरम करना होता है। कभी-कभी गरम करने से पदार्थों में रासायनिक परिवर्तन हो जाते हैं। ऐसी स्थिति में यह कहना मुश्किल हो जाता है कि आपने अन्त में जो शुद्ध पदार्थ प्राप्त किया है वह वही है जो मिश्रण में उपस्थित था। इस समस्या से छुटकारा पाने के लिए इस तथ्य का फायदा उठाया जाता है कि क्वथनांक दाब पर निर्भर करता है। जितना कम दाब होगा, द्रव उतने कम तापमान पर उबलेगा। अतः कम दाब पर आसवन करें तो कम तापमान पर ही काम चल जाता है।

यहाँ एक बात की ओर ध्यान दिलाया जा सकता है। जैसा कि ऊपर कहा गया, आसवन दरअसल दो प्रक्रियाओं के एक साथ उपयोग की विधि है — वाष्पन और संघनन। यह पदार्थों में अवस्था परिवर्तन का मामला है। अवस्था परिवर्तन की समझ पदार्थों की प्रकृति को समझने में काफी मददगार रही है। आप देखेंगे कि अध्याय में आसवन सम्बन्धी प्रयोग को अवस्था परिवर्तन से जोड़कर ही प्रस्तुत किया गया है। प्रयोग 4 व 5 करते हुए बच्चों से कई सवाल पूछे गए हैं जो उनका ध्यान अवस्था परिवर्तन की प्रक्रिया की ओर आकृष्ट करेंगे। आप चाहें तो यहाँ वर्षा चक्र की चर्चा भी हो सकती है।

ऊर्ध्वपातन

दरअसल ऊर्ध्वपातन आसवन का ही एक प्रकार है। जब कोई द्रव उबलता है तो उसे उबलना कहते हैं मगर यदि कोई ठोस पदार्थ उबलने लगे तो उस प्रक्रिया को ऊर्ध्वपातन कहते हैं। इस अर्थ में ऊर्ध्वपातन भी अवस्था परिवर्तन ही है। इसको हम यों भी कह सकते हैं कि जब कोई ठोस बगैर द्रव में बदले सीधे वाष्प में बदल जाए, तो यह क्रिया ऊर्ध्वपातन है। मगर इस परिभाषा में थोड़ी दिक्कत है। इस परिभाषा के मुताबिक सारे ठोस पदार्थों में यह गुण पाया जाएगा (देखें पठन सामग्री 'ऊर्ध्वपातन')।

वैसे यह प्रक्रिया रोचक है मगर इसका उपयोग पृथक्करण के व्यावहारिक काम में बहुत कम होता है।

एक स्पष्टीकरण — आम तौर पर ऊर्ध्वपातन के उदाहरण के रूप में कपूर का नाम लिया जाता है। यह सही नहीं है। कपूर को गरम करके देखें, वह अच्छी तरह पिघलता है। यह भी माना जाता है कि नेपथलीन की गोलियाँ भी ऊर्ध्वपातन का गुण दर्शाती हैं। यह कहना ठीक नहीं है। नेपथलीन भी पिघलकर द्रव बन जाता है। यह सही है कि रखे-रखे नेपथलीन और कपूर गायब (काफूर हो जाना शब्द यही दर्शाता है) हो जाएँगे मगर इस आधार पर यह नहीं कहा जा सकता कि इनमें ऊर्ध्वपातन होता है।

क्रोमेटोग्राफी

जैसा कि पहले ही कहा गया था क्रोमेटोग्राफी एक ऐसी विधि है जो दैनिक जीवन से नहीं उभरी है, और न ही इसका कोई उपयोग दैनिक जीवन में दिखता है। इस विधि के बारे में अतिरिक्त जानकारी आगे एक आलेख के रूप में दी गई है।

अध्याय में प्रयोग व अभ्यास के लिए बहुत ही सरल तरीके और आसानी से उपलब्ध सामग्री की मदद से यह विधि करने का तरीका बताया गया है। बच्चों के लिए यह जानना रोचक होगा कि स्याही में एक नहीं कई रंगों का मिश्रण होता है। वैसे इसे और रोचक बनाने के लिए लाल पत्तों के रस की क्रोमेटोग्राफी करके देखिए। दो-चार लाल पत्ते लेकर उन्हें पानी में मसल लीजिए। पानी लाल हो जाएगा। इस लाल पानी की एक बूँद फिल्टर पेपर पर लगाकर क्रोमेटोग्राफी कीजिए। आप देखेंगे कि... खैर, वह तो आप देख ही लेंगे। शायद इस प्रयोग से इस सवाल का उत्तर जानने में मदद मिलेगी कि लाल पत्तों वाली वनस्पतियाँ प्रकाश संश्लेषण की क्रिया कैसे करती हैं।

अन्य विधियाँ

आजकल प्रयोगशालाओं में पृथक्करण की एक विधि का

उपयोग बहुतायत से होता है — अपकेन्द्रण यानी सेंट्रीफ्यूज। यह विधि दैनिक जीवन में तो सम्भवतः सदियों से इस्तेमाल की जा रही है। खास तौर से मक्खन निकालने में इसका खूब उपयोग होता है। इसे एक वैज्ञानिक विधि के रूप में बीसवीं सदी के शुरुआती वर्षों में अपनाया गया था। खास तौर से कोशिका के विभिन्न उपांगों (organelles) को अलग-अलग करने में यह विधि बहुत उपयोगी साबित हुई। इसके अलावा कई तत्वों के समस्थानिकों (आइसोटोप्स) को अलग-अलग करने में भी इसका उपयोग किया गया है। आजकल जिनेटिक इंजीनियरिंग के ज़माने में यह काफी लोकप्रिय साबित हुई है। वैसे यहाँ इस विधि से सम्बन्धित कोई प्रयोग नहीं दिया गया है।

पृथक्करण की कला

यहाँ प्रस्तुत प्रयोगों से बच्चों को पृथक्करण की विभिन्न विधियों का प्रायोगिक परिचय मिलेगा। यदि आप चाहें तो उन्हें कुछ मिश्रण देकर कह सकते हैं कि उनमें से विभिन्न पदार्थों को अलग-अलग करें। जैसे नमक, नौसादर और रेत का मिश्रण एक अच्छा अभ्यास हो सकता है। इसमें उन्हें यह तो तय करना ही होगा कि किन विधियों का उपयोग करें, साथ ही यह भी तय करना होगा कि इन विधियों का उपयोग किस क्रम में करें। दरअसल उपलब्ध विधियों में से सही विधि चुनना और उन्हें करीने से सही क्रम में सम्पादित करके पदार्थों को प्राप्त करना सिर्फ तकनीक का नहीं, कला का भी मामला है।

रासायनिक तहजीब

यह अध्याय व इसके प्रयोग रासायनिक कौशल विकसित करने का एक अच्छा अवसर प्रदान करते हैं। घोलना, निथारना, छानना, गरम करना, आसवन करना, क्रोमेटोग्राफी वगैरह सब में रासायनिक हुनर सीखने व आज़माने के मौके हैं। ये प्रयोग करते हुए शिक्षक बच्चों का ध्यान कई बातों की ओर दिला सकते हैं।

चीज़ों को अलग-अलग करना* (पृथक्करण)

खिचड़ी बनाने के लिए दाल, चावल, नमक, मिर्च वगैरह को मिलाते हैं। यानी खिचड़ी एक मिश्रण है। रोज़ अपन ऐसे कई मिश्रणों का उपयोग करते हैं।

नीचे कुछ वस्तुओं के नाम दिए हैं। बताओ ये वस्तुएँ किन-किन पदार्थ के मेल से बनी हैं। (1)

- (क) चाय
- (ख) किवाड़
- (ग) बेसन के लड्डू
- (घ) पक्की सड़क

गेहूँ का आटा, चाय, सब्ज़ी, ईंट, गारा सभी तो मिश्रण हैं। इनका उपयोग हम मिश्रण के रूप में ही करते हैं। परन्तु कभी-कभी हमें मिश्रण में से कोई चीज़ अलग भी करनी पड़ती है। जैसे बाज़ार से गेहूँ या चावल लाएँ तो उनमें कंकड़ मिले रहते हैं। इन कंकड़ों को बीनकर अलग करना पड़ता है।

हमें कैसे मालूम पड़ जाता है कि कंकड़ कौन-से हैं और गेहूँ कौन-से? कंकड़ एकदम अलग दिखें तो फटाफट बीने जा सकते हैं। चावल में कई बार ऐसे कंकड़ मिले होते हैं जिसका रंग और आकार लगभग चावल जैसा होता है। तब हमें बीनने में ज़्यादा ध्यान रखना पड़ता है। यदि गेहूँ या चावल को ठीक से न बीना जाए तो क्या होता है?

इसी प्रकार से रोज़ हम न जाने कितने पदार्थों को अलग-अलग करते हैं। पदार्थों को अलग-अलग करने के कितने तरीके हमें पता हैं? हर टोली को एक तरीके का नाम बताना है। यह भी बताना होगा कि उस तरीके में हम चीज़ों को अलग-अलग करने के लिए किस बात का सहारा लेते हैं। जैसे गेहूँ में से कंकड़ अलग करने के लिए हम उनके रंग और आकार में अन्तर का फायदा उठाते हैं।

आगे एक तालिका दी गई है। यह तालिका अपनी कॉपी में बना लो। हर टोली एक तरीका बताए। पूरी कक्षा बातचीत कर ले कि वह तरीका सही है या नहीं। सहमति होने पर उसे इस तालिका में लिख लो। (1) प्रश्न 1 को हल करते हुए बच्चों से चर्चा हो सकती है कि इनमें से प्रत्येक चीज़ में अवयव अलग-अलग हो सकते हैं, और उनके अनुपात भी अलग-अलग हो सकते हैं। जैसे लड्डू में शक्कर की मात्रा बहुत अलग-अलग हो सकती है, जबिक कभी-कभी लड्डू में मेवे भी हो सकते हैं। यह मिश्रणों की विशेषता है जो उन्हें यौगिकों से अलग करती है। फिलहाल यह बात बहुत महत्वपूर्ण नहीं है मगर आगे जब कभी वे यौगिकों के बारे में पढ़ेंगे तो यह अन्तर महत्वपूर्ण हो जाएगा।

^{*} बाल वैज्ञानिक कक्षा 6, 1978 और बाल वैज्ञानिक कक्षा 6, 2000

तालिका 1

क्र.	तरीके का नाम	उदाहरण	किस गुण का सहारा
1.	बीनना	गेहूँ में से कंकड़ अलग करने में	रंग और आकार में अन्तर
		दैनिक जीवन में पृथक्करण की इतनी विधियों का उपयोग होता है कि शायद आप भी दाँतों तले उँगली दबा लेंगे। बच्चों को बताने दीजिए।	

ऊपर की तालिका में चीज़ों को अलग-अलग करने की तुम्हारे द्वारा बताई गई कई विधियाँ हैं। इनमें से एक विधि का अभ्यास हम प्रयोग करके करेंगे। उसके बाद हम कुछ नई विधियाँ भी सीखेंगे। तो अब आगे बढ़ें?

रेत में से नमक

यदि रेत में नमक मिल गया हो, तो क्या तुम रेत और नमक अलग-अलग कर सकोगे?

अलग-अलग करने के लिए हमें इनके एक खास गुण का फायदा उठाना पड़ेगा। आओ उस गुण को समझने की कोशिश करते हैं।

यदि रेत और नमक को पानी में डालें, तो क्या दोनों घुल जाएँगे? कौन-सा घुलेगा और कौन-सा नहीं घुलेगा? (2)

कुछ चीज़ें पानी में घुल जाती हैं और कुछ नहीं घुलतीं। जो चीज़ें पानी में घुल जाती हैं उन्हें **घुलनशील** कहते हैं और जो नहीं घुलतीं उन्हें अघुलनशील कहते हैं। जैसे नमक घुलनशील है और रेत अघुलनशील।

नीचे लिखे पदार्थों में से घुलनशील व अघुलनशील पदार्थ छाँटोः

शक्कर, चॉक, नमक, मिट्टी, हल्दी

छाँटने से पहले एक बात पर ध्यान दो। पदार्थ को घुलनशील हम तभी कहते हैं जब वह घोल में मिले तो घोल पारदर्शी हो यानी उसमें से आर-पार दिखता हो। यदि पानी में कोई चीज़ डालकर हिलाने पर जो मिश्रण बने उसमें आर-पार न दिखता हो और उस पदार्थ के कण भी दिखते हों, तो वह घोल नहीं कहा जाता। ऐसी चीज़ों को हम घुलनशील नहीं कहेंगे।

क्या घुलनशीलता के गुण का फायदा उठाकर नमक और रेत को अलग-अलग कर सकते हो? यदि हाँ, तो लिखो कि कैसे। (3)

नमक और रेत अलग-अलग करें: प्रयोग 1

इस प्रयोग के लिए तुम्हें दो परखनली, एक परखनली स्टैंड, कीप, पानी, छन्ना कागज़ तथा काँच की छड़ की ज़रूरत होगी।

वास्तव में कई चीज़ें तरल पदार्थ में घुलती नहीं बल्कि उनके कण तरल पदार्थ में टँग जाते हैं (निलम्बित रहते हैं)। ये सच्चे घोल नहीं हैं। इन्हें निलम्बन या सस्पेंशन कहते हैं। एक परखनली में रेत और नमक का मिश्रण डालो। प्रयोग के लिए बस आधा चम्मच मिश्रण लेना ठीक रहेगा। ऊपर से पानी डालकर परखनली को एक-तिहाई भर लो। पानी डालने के बाद इसे अच्छी तरह हिलाकर परखनली स्टैंड पर रख दो।

तुम्हारा मन तो करेगा कि परखनली के मुँह पर अँगूठा रखकर हिलाएँ पर रुको... गड़बड़ करने से पहले शिक्षक से सलाह करो।

घोल को हिलाने का सही तरीका गुरुजी से सीखो। थोड़ी देर बाद देखकर बताओ कि रेत कहाँ है और नमक कहाँ है।

अब इसमें से नमक के घोल और रेत को अलग-अलग करने का एक तरीका तो निथारने का है। निथारने से ऊपर-ऊपर से नमक का घोल अलग हो जाएगा और नीचे रेत बच जाएगी। मगर निथारने की बजाय छानना ज्यादा अच्छा रहता है।

घर पर चाय वगैरह छानने के लिए तो छन्नी या कपड़े का उपयोग हम करते ही हैं। अपन यहाँ कागज़ की छन्नी बनाकर उपयोग करेंगे। छन्नी बनाने का तरीका चित्र में देखो।

इस छन्नी को कीप में लगा लो। पहले परखनली में रखे रेत, नमक और पानी के मिश्रण को कीप में रखे छन्ना कागज़ पर डालो। मगर यदि

घोल को छन्ना कागज़ पर बहुत ऊपर से डाला जाए, तो कागज़ के फटने का डर रहता है और घोल छिटककर बाहर गिर भी सकता है। इसलिए घोल को सीधा उड़ेलने की बजाय एक काँच की छड़ के सहारे डाला जाता है, जैसा कि चित्र में दिखाया गया है।

तो चित्र के अनुसार काँच की छड़ के सहारे धीरे-धीरे घोल को कीप में डालो। सारा घोल एक साथ न डाल देना। एक बार में इतना घोल डालना कि छन्ना कागज़ में थोड़ी जगह बची रहे। अब छनने का इन्तज़ार करो। जब पूरा छन जाए, तब देखों कि

कागज़ की छन्नी

 गोल छन्ना कागज़ को बीच से मोड़कर दोहरा कर लो।

 दिखाए अनुसार एक बार और मोड़ लो।

 अब इसे इस तरह खोलो कि तीन तहें एक तरफ रहें और एक दूसरी तरफ।

4. इसे एक कीप में लगा लो। कीप में यह छन्ना कागज़ अच्छी तरह सट जाना चाहिए। यदि नहीं सट रहा है, तो शिक्षक से मदद लो। कीप को एक खाली परखनली में रख दो। कीप में छन्ना कागज़ पर थोड़ा पानी डालो ताकि वह गीला हो जाए। यही है हमारी कागज़ की छन्नी। अब छानने के लिए तैयार हो जाओ।

कक्षा 6, 2000, पृ 120

बा.वै. कक्षा ६, २०००, पृ १२०

क्या पहली परखनली में कुछ रेत बची रह गई है। यदि हाँ, तो परखनली को थोड़े से पानी से धोकर यह पानी भी छन्ना कागज़ में डाल दो।

छन्ना कागज़ में से छनकर नीचे परखनली में क्या इकट्ठा हो रहा है? और रेत कहाँ बच रही है?

नमक व पानी के घोल में से नमक कैसे प्राप्त करोगे? कोई तरीका सोचकर बताओं। (4)

घुलनशीलता को और समझें

यदि हम पदार्थों की पानी में घुलनशीलता के गुण को थोड़ा और समझ लें तो इस विधि का और अच्छे से उपयोग कर सकते हैं।

जैसे नीचे के प्रयोग में हम देखेंगे कि घुलनशीलता पर गर्मी का क्या असर होता है।

प्रयोग 2

इस प्रयोग के लिए तुम्हें एक उफननली (Boiling tube), एक परखनली पकड़ (होल्डर), मोमबत्ती तथा एक परखनली स्टैंड की ज़रूरत पड़ेगी। साथ में एक चम्मच भी रखो।

शिक्षक तुम्हें चार पदार्थ देंगे:

- नमक
- बेंज़ोइक अम्ल
- नौसादर
- कैल्शियम कार्बोनेट

अब एक-एक पदार्थ से प्रयोग करते जाओ और अवलोकन तालिका 2 में भरते जाओ। (5)

उफननली में करीब एक चौथाई चम्मच कोई एक पदार्थ डालो।

बा.वै. कक्षा ६, २०००, पृ १२१

तालिका 2

	पदार्थ	ठण्डे पानी में घुला?	गरम पानी में घुला?	गरम पानी के ठण्डा होने पर क्या हुआ?
1.	नमक			
2.	बेंज़ोइक अम्ल			
3.	नौसादर			
4.	कैल्शियम कार्बोनेट			

पदार्थ को बोतल में से कैसे निकालोगे? क्या कागज़ से? फिर किट में दिए चम्मचों का क्या होगा?

उफननली में एक-चौथाई ऊँचाई तक पानी डालो और अच्छी तरह हिलाओ। यदि पदार्थ ठण्डे पानी में घुल जाए तो तालिका के पहले कॉलम में 'हाँ' लिखो और न घुले तो लिखो 'नहीं'।

यदि पदार्थ ठण्डे पानी में न घुले, तो उफननली को मोमबत्ती पर गरम करो। गरम करने के लिए उफननली को होल्डर में फँसाकर पकड़ो। गरम करते समय उफननली को थोड़ा तिरछा पकड़ते हैं तथा उसका मुँह ऐसे रखते हैं कि किसी व्यक्ति की तरफ न रहे। उफननली को धीरे-धीरे हिलाते हुए गरम करो।

क्या पदार्थ गरम पानी में घुल गया? यदि पदार्थ गरम पानी में घुल जाए तो दूसरे कॉलम में 'हाँ' लिखो, वरना लिखो 'नहीं'।

यदि पदार्थ गरम पानी में घुल गया हो तो घोल को ठण्डा करने के लिए परखनली स्टैंड में रख दो। जब घोल ठण्डा हो जाए तो देखो कि क्या ठण्डा होने पर उफननली में कोई पदार्थ दिखने लगता है?

अपने अवलोकन तालिका में लिखो।

एक पदार्थ से प्रयोग करने के बाद उफननली अच्छी तरह साफ करके अगला पदार्थ लो। बारी-बारी से यह प्रयोग चारों पदार्थों के साथ दोहराओ।

अपने अवलोकन तालिका में लिखना न भूलना।

ठण्डे व गरम पानी में घुलनशीलता के आधार पर बताओ कि नीचे लिखे मिश्रण में से पदार्थों को कैसे अलग-अलग करोगे?

नमक, बैंज़ोइक अम्ल व कैल्शियम कार्बोनेट। (6)

क्या उण्डे व गरम पानी में घुलनशीलता के आधार पर नमक, नौसादर व कैल्शियम कार्बोनेट के मिश्रण को अलग-अलग कर सकोगे? (7)

ऊपर के प्रयोग में हमने देखा कि पानी में पदार्थों की घुलनशीलता अलग-अलग होती है। हमने घुलनशीलता पर गर्मी के प्रभाव का भी अध्ययन किया।

ये गुणधर्म वैज्ञानिकों के प्रयोगों में तो काम आते ही हैं, हम रोज़ भी इनका उपयोग करते हैं। जैसे पानी में कचरा हो, तो हम इसे कपड़े से छान लेते हैं।

क्या तुम इस तरह छानने की विधि के इस्तेमाल के दो उदाहरण बता सकते हो? (8)

आपस में चर्चा कर उत्तर दो

प्रयोग 2 में तुमने जो नमक का घोल बनाया था, उसमें से क्या नमक फिर से प्राप्त किया जा सकता है? यदि हाँ, तो कैसे? (9)

- ध्यान दें कि पदार्थ को गरम पानी में घोलने की कोशिश तभी करनी है, जब वह ठण्डे पानी में न घुले।
- मोमबत्ती पर गरम करने में दिक्कत यह आती है कि उफननली काली पड़ जाती है, जिसे कागज़ से साफ करते रहने पड़ता है। यदि आपके पास स्पिरिट लैम्प या नीली लौ वाला स्टोव हो, तो उसका उपयोग करें।

- प्रश्न 6 व 7 में छात्रों को तालिका
 2 की जानकारी का विश्लेषण करना
 होगा।
- प्रश्न 6 के मामले में उन्हें यह भी तय करना होगा कि मिश्रण में से पदार्थों को किस क्रम में अलग करें।

बा.वै. कक्षा ७, १९८८, पु ११

प्रश्न 10-11 की शृंखला वाष्पन व संघनन को समझने की दृष्टि से बहुत महत्व रखती है।

कॉर्क में काँच की नली लगाते समय बहुत सावधानी की ज़रूरत है, नहीं तो इसके टूट जाने का डर है। इसका सही तरीका यह है कि नली को कॉर्क के पास से पकड़ा जाए और धीरे-धीरे घुमाकर छेद में पिरोया जाए। ज़रूरी हो तो नली को गीला कर लें। क्या तुम इसी घोल में से पानी भी अलग करके इकट्ठा कर सकते हो? यदि हाँ, तो कैसे? (10)

पृथक्करण का एक और ढंग

प्रयोग 4

एक उफननली में एक-तिहाई पानी भरो और उसे पानी उबलने तक मोमबत्ती पर गरम करो। गरम होते समय उफननली में जो भी क्रियाएँ होती हैं, उनको गौर से देखो।

क्या उफननली के मुँह से कुछ निकलता दिखाई पड़ रहा है? (11) क्या तुम बता सकते हो कि यह क्या है? (12) क्या उफननली के ऊपरी भाग में कुछ दिखाई पड़ता है? (13)

एक परखनली में ठण्डा पानी भरो और उसे उफननली के मुँह के ऊपर रखो।

क्या परखनली की बाहरी सतह पर कुछ दिखाई पड़ता है? (14)

इस परखनली को खाली करके इसमें उबलता पानी भरो और फिर से उफननली के मुँह के ऊपर रखो।

क्या इस बार भी तुमने परखनली की बाहरी सतह पर वही क्रिया देखी जो पिछली बार देखी थी? (15)

अब बताओ कि क्या होगा जब पानी की भाप को

- (क) ठण्डा होने दिया जाए?
- (ख) गरम ही रखा जाए? (16)

आओ, अब एक ऐसा उपकरण बनाएँ जिससे नमकीन पानी में से पानी अलग करके इकट्ठा किया जा सके।

प्रयोग 5

एक उफननली लो और इस पर कसकर बैठ जाने वाला रबर का एक-छेदी कॉर्क चुनो। इस कॉर्क के छेद में से एक काँच की नली पिरोओ (सावधान — ऐसा करने का सही तरीका शिक्षक से सीखो)। काँच की नली पर एक रबर की नली चढ़ाओ। उफननली में एक-तिहाई पानी भरो और काँच की नली वाले एक-छेदी कॉर्क से चित्र में दिखाए अनुसार इसे कसकर बन्द करो। रबर की नली को एक परखनली में डाल दो। परखनली को एक विद्यार्थी पानी से भरे बीकर में सीधा खड़ा रखे। उफननली को होल्डर की मदद से मोमबत्ती पर गरम करो।

उफननली और परखनली दोनों में हो रही क्रियाओं को गौर से देखो और नीचे लिखे प्रश्नों के उत्तर दो।

परखनली में क्या परिवर्तन हो रहा है? (17)

बीकर के पानी में उँगली डालकर बताओं कि क्या इसके तापमान में कोई अन्तर आया है। यदि हाँ, तो क्यों? (18) प्रयोग 4 के आधार पर सोचकर बताओं कि हम क्या करें कि भाप बिना पानी में बदले परखनली से बाहर निकल जाए? (19)

यदि इस प्रयोग के चलते हुए, उफननली में पानी रहते हुए भी परखनली में पानी इकट्ठा होना बन्द हो जाए तो हम क्या करें जिससे ऐसा न हो? (20)

प्रयोग 6

एक उफननली में लगभग एक-तिहाई पानी भरकर उसमें कुछ बूँदें नीली स्याही की डालो ताकि पानी का रंग गाढ़ा नीला हो जाए। इससे अब प्रयोग 5 को दोहराओ।

परखनली में किस रंग का पानी इकट्ठा हो रहा है? (21)

उफननली को साफ करो और उसमें थोड़ा नमकीन पानी डालो। अब इस प्रयोग को फिर करो।

परखनली में इकट्ठे हो रहे पानी का स्वाद कैसा है? (22) क्या अब तुम्हें लगता है कि नमक घुले पानी में से पानी को अलग करके इकट्ठा कर सकते हैं? (23)

जिस विधि से तुमने घोल में से पानी अलग किया है उसे आसवन कहते हैं। इस विधि का उपयोग कहाँ होता है? शिक्षक से चर्चा करके अपने शब्दों में लिखो। (24)

प्रयोग ७

बताओ, निम्नलिखित ठोस पदार्थ को गरम करने पर क्या होता है:

- 1. मोम
- 2. घी
- 3. मक्खन
- 4. बर्फ

- 5. टाटरी
- 6. नेफ्थलीन
- ७. गन्धक

इनमें से जिन पदार्थों को तुमने कभी गरम करके नहीं देखा है, उनको स्वयं एक उफननली में गरम करके देखो और अपनी उत्तर तालिका में लिखो। (25)

कुछ टोस पदार्थों का विशेष गुणः ऊर्ध्वपातन

प्रयोग 8

एक उफननली में चम्मच से ज़रा-सा (चुटकी भर) नौसादर लो। उफननली का मुँह रुई से बन्द कर दो और उसको चिमनी पर गरम करो। उफननली में जो कुछ भी हो रहा है उसे ध्यान से देखो।

सावधानीः जब इस प्रयोग को बन्द करना हो, तो उफननली को चिमनी पर से हटाने के पहले रबर की नली को परखनली में से निकाल लेना पड़ता है, अन्यथा परखनली में एकत्रित पानी पलटकर उफननली में आकर खतरा पैदा कर सकता है। आप ही सोचिए ऐसा क्यों होगा।

> कभी-कभी पानी को उबालने पर स्याही का रंग उड़ जाता है। इसलिए पहले करके देख लें कि रंग पक्का है।

- आसवन विधि का उपयोग दैनिक जीवन में बहुत कम होता है। हाँ, वाष्पन का उपयोग कई जगह करते हैं।
- यदि बच्चे शराब भट्टी का उदाहरण दें, तो उनसे कहें कि वे उसकी क्रियाविधि भी समझाएँ। दरअसल हम किसी पदार्थ को तभी वापस प्राप्त करना चाहेंगे जब वह कीमती या दुर्लभ हो। पानी आम तौर पर निःशुल्क उपलब्ध रहता है इसलिए उसे इकट्ठा करके पुनः उपयोग करने में किसी की रुचि नहीं रहती।
- एक बड़े पैमाने पर वर्षा चक्र आसवन का ही उदाहरण है।

प्रयोग 8 में उफननली काली हो जाए तो दिक्कत है क्योंकि देखना यह है कि नौसादर पिघला या नहीं। या तो स्पिरिट लैम्प का उपयोग करें या नीली लौ वाले स्टोव का। वैसे किसी कटोरी में गरम करके भी देखा जा सकता है।

एक ज़रूरी नियम

प्रयोग में काम आ रही चीज़ों को चखना मना है। हो सकता है कोई पदार्थ तुम्हें नुकसान पहुँचा दे।

बा.वै. कक्षा ६, २०००, प्र १२३

क्या उफननली में कोई सफेद-सी वाष्प बन रही है? (29)

यदि हाँ, तो इसके बनने के पहले क्या अन्य पदार्थों के समान नौसादर भी द्रव बनता है? (30)

रुई हटा देने से क्या होता है? (31)

परखनली के ऊपरी भाग में क्या कोई ठोस पदार्थ जमा हो रहा है? (32)

जब कोई ठोस पदार्थ बिना द्रव में बदले वाष्प में बदल जाता है तो इस क्रिया को **ऊर्ध्वपातन** कहते हैं।

कपूर के बारे में सोचा जाता है कि उसमें ऊर्ध्वपातन का गुण होता है। इस बात की जाँच करके देखों कि क्या कपूर भी वाष्प बनने से पहले द्रव में नहीं बदलता। (33)

नमक और नौसादर के मिश्रण में से नौसादर को कैसे अलग करोगे? (34)

एक अनूठा तरीकाः क्रोमेटोग्राफी

चीज़ों को अलग-अलग करने के इस तरीके का नाम तुमने शायद ही कभी सुना हो। मगर क्रोमेटोग्राफी का तरीका है बहुत मज़ेदार।

इसके बारे में कुछ कहने-सुनने की ज़रूरत नहीं है। बस, इसे करके देखो। मज़ा आ जाएगा।

चॉक से क्रोमेटोग्राफीः प्रयोग 9

एक चॉक के मोटे सिरे से 1 से.मी. छोड़कर काली स्याही का एक छल्ला-सा बनाना है। इसके लिए माचिस की तीली या रिफिल की नोक को स्याही में डुबोकर चित्र में दिखाए अनुसार चॉक पर छुआओ। धीरे-धीरे करके चॉक की गोलाई के चारों तरफ छुआकर छल्ला बना लो। छल्ला जितना पतला और हल्का बने उतना अच्छा। यदि चॉक समान मोटाई वाला हो तो उसके चपटे सिरे की ओर से स्याही

का छल्ला बनाना होगा।

अब एक तश्तरी या किसी डिब्बे के ढक्कन में थोड़ा पानी डालो। ध्यान रखना कि पानी आधा से.मी. से ज़्यादा न हो। चॉक को इस पानी में सीधा खड़ा कर दो। चॉक पर लगी स्याही नीचे की ओर रहेगी पर पानी में नहीं डूबनी चाहिए। अब इन्तज़ार करो और देखों कि चॉक की सफेदी पर क्या गुल खिलने लगे हैं।

क्या पानी चॉक पर चढ रहा है?

और क्या-क्या हो रहा है?

पानी चॉक के ऊपरी छोर तक पहुँचने से पहले ही चॉक को पानी में से हटा लो।

अपनी कॉपी में चित्र बनाकर दिखाओं कि चॉक पर नीचे से ऊपर तक कितने व कौन-कौन से रंग दिख रहे हैं? (35)

ये रंग कहाँ से आए? (36)

छन्ना कागज़ से क्रोमेटोग्राफीः प्रयोग 10

जिस छन्ना कागज़ से हमने छानने का काम किया था उससे क्रोमेटोग्राफी भी हो सकती है। आओ करके देखें।

एक बीकर और रिफिल लो। बीकर में लगभग 1 से.मी. ऊँचाई तक पानी भर लो। अब छन्ना कागज़ की लगभग 4 से.मी. चौड़ी व 12 से.मी. लम्बी एक पट्टी काट लो। इसके एक सिरे पर करीब 2 से.मी. छोड़कर आलिपन की नोक से काली स्याही की एक छोटी-सी बूँद लगा दो। अब कागज़ के दूसरे सिरे को मोड़कर रिफिल पर टिका दो और बीकर में लटका दो। कागज़ का वह सिरा जिस पर स्याही की बूँद लगी है पानी में डूब जाना चाहिए। मगर ध्यान रखना कि स्याही की बूँद पानी में न डूबे। कागज़ की पट्टी बीकर से छूनी भी नहीं चाहिए।

अब एक बार फिर ज़रा इन्तज़ार कर लो। जब पानी छन्ना कागज़ की पट्टी पर चढ़ता हुआ रिफिल तक पहुँचने लगे तो पट्टी को निकालकर सुखा लो।

पट्टी पर कितने रंग हैं? कौन-से हैं? नीचे से ऊपर तक किस क्रम में हैं? अपनी कॉपी में चित्र बनाकर दिखाओ। चॉक और कागज़ पर दिख रहे रंगों और उनके क्रम की तूलना करो। (37)

एक और मज़ेदार प्रयोग

कितने मज़े की बात है। स्याही का रंग तो एक ही दिखता है पर उसमें कितने रंग छिपे हैं। अब एक स्याही की सच्चाई तो पता लग ही गई। और स्याहियों में छिपे रंग देखने की इच्छा नहीं है? तो देर कैसी? क्रोमेटोग्राफी से पता कर लो कि अलग-अलग रंग की स्याहियों में कौन-कौन से रंग मिले हैं।

यदि हम इन रंगों को अलग-अलग प्राप्त करना चाहें तो चॉक के अलग-अलग रंग वाले टुकड़े तोड़ लेंगे। इन टुकड़ों को अलग-अलग चूरा करके परखनली में डाल देंगे और ऊपर से थोड़ा पानी डाल देंगे। अलग-अलग रंग अलग-अलग परखनलियों में आ जाएँगे। चाहो तो करके देखो।

क्या अलग-अलग कम्पनी की काली स्याहियों में एक जैसे रंग मिले होते हैं या अलग-अलग रंग होते हैं? कई कम्पनियों की काली स्याही लेकर क्रोमेटोग्राफी से उनकी तुलना तो करके देखो।

क्या सभी कम्पनियों की काली स्याही एक जैसे रंगों से बनी है? (38)

क्रोमेटोग्राफी पदार्थों को अलग-अलग करने की एक बहुत उपयोगी विधि है। पदार्थ को अलग-अलग करने में इस तरीके की बराबरी करना मुश्किल है। पहली बात तो यह है कि इस तरीके का उपयोग तब भी किया जा सकता है जब मिश्रण बहुत कम मात्रा में हो। जैसे स्याही के रंगों को अलग-अलग करने के लिए तुम्हें बस एक बुँद स्याही लगी।

पौधों से दवाई अलग करना

इस विधि का उपयोग करके पेड़-पौधों में पाई जाने वाली दवाइयों को अलग-अलग

चॉक और सोख्ता कागज़ पर क्रोमेटोग्राफी करने में कभी-कभी रंगों का क्रम बदल जाता है। घबराने की कोई बात नहीं। यह कोई अनहोनी बात नहीं है।

बा.वै. कक्षा ६, २०००, पृ १२४

कर सकते हैं। जैसे तुलसी, नीम, चिरायता आदि ऐसे कई पेड़-पौधे हैं जिनमें दवाइयाँ होती हैं। पहले इनका काढ़ा बना लेते हैं। फिर उस काढ़े की क्रोमेटोग्राफी करते हैं। क्रोमेटोग्राफी करने से काढ़े में उपस्थित पदार्थ अलग-अलग हो जाते हैं। और भी कई उपयोग होते हैं क्रोमेटोग्राफी के। फूल के रंग में उपस्थित पदार्थों की जाँच करने के लिए, किसी चीज़ में मिलावट की जाँच करने के लिए, ऐसे कई कामों में इसका खूब उपयोग होता है।

पदार्थों को अलग-अलग करना हमारे रोज़ के जीवन में भी ज़रूरी है और विज्ञान के काम में भी। इस अध्याय में तुमने पदार्थों को अलग-अलग करने की विधियाँ सीखीं। पदार्थ के गुणधर्मों में अन्तर का फायदा उठाकर ही ये विधियाँ बनाई जाती हैं।

अभ्यास के प्रश्न

- 1. क्या नीचे लिखे मिश्रणों में मिले पदार्थों को घुलनशीलता की विधि से अलग-अलग कर सकोगे?
 - (क) दूध और पानी
- (ख) शक्कर और नमक
- (ग) रेत और शक्कर
- (घ) चॉक का चूरा और रेत

अपने उत्तर का कारण बताओ।

2. सोचकर बताओ और करो:

जेतराम ने देखा कि लालटेन की बत्ती पर मिट्टी का तेल चढ़ता है। उसने यह भी देखा था कि दीये की बत्ती पर भी तेल चढ़ता है। उसने सोचा कि क्यों न इस पर क्रोमेटोग्राफी करके देखी जाए। उसने एक नई बत्ती लेकर उसके एक सिरे से थोड़ा ऊपर स्याही की एक बूँद लगा दी और बत्ती को मिट्टी के तेल में ठीक उसी तरह डुबाया जैसे क्रोमेटोग्राफी में तुमने किया था। तुम्हारा क्या विचार है? क्या जेतराम का प्रयोग सफल होगा? तुम भी करके देखो।

- 3. क्या तुम लकड़ी के बुरादे और रेत को घुलनशीलता की विधि से अलग-अलग कर सकते हो? यदि नहीं तो बताओ कि इन्हें कैसे अलग-अलग करोगे?
- 4. नीचे कुछ प्रयोगों के चित्र दिए गए हैं। इनमें गलती पहचानो और लिखो।

घुलनशीलता*

हमने 'चीज़ों को अलग-अलग करना' अध्याय में देखा था कि कुछ चीज़ें पानी में घुलनशील होती हैं और कुछ अघुलनशील। कुछ चीज़ें ऐसी भी होती हैं जो ठण्डे पानी में नहीं घुलतीं परन्तु गरम पानी में घुल जाती हैं।

इस अध्याय में हम दो पदार्थों — नमक व यूरिया — की घुलनशीलता के कुछ और प्रयोग करेंगे।

इन प्रयोगों के लिए पानी भी नापकर लेना पड़ेगा और नमक एवं यूरिया भी। इंजेक्शन की शीशी का रबर वाला ढक्कन तो तुमने देखा ही है। इसे उलटा कर दें तो इसमें एक गड्ढा दिखाई देगा। इस गड्ढे में नमक या यूरिया भरें और उँगली से सपाट कर दें तो करीब आधा ग्राम नमक या यूरिया आता है। दो बार इस तरह भरकर लेने से 1 ग्राम नमक या यूरिया ले सकते हैं। प्रयोग में जहाँ 1 ग्राम लिखा है वहाँ इसी तरीके से नापना है।

ठण्डे पानी में घुलनशीलताः प्रयोग 1

एक उफननली में एक-चौथाई पानी लो। इसमें 1 ग्राम नमक घोलो। क्या यह नमक घुल गया?

अगर हाँ, तो इसी उफननली में 1 ग्राम नमक और घोलो।

क्या यह नमक भी घुल गया?

यह प्रक्रिया तब तक दोहराते रहो जब तक नमक का घुलना बन्द न हो जाए। इस उफननली पर 'नमक का घोल' लिखकर इसे अलग रख दो।

कितने ग्राम के बाद नमक पानी में घुलना बन्द हो गया? तालिका 1 में लिख लो। (1)

एक और उफननली में एक चौथाई पानी लो। यही प्रयोग यूरिया के साथ करो।

कितने ग्राम के बाद यूरिया पानी में घुलना बन्द हो गया? तालिका 1 में लिखो। (2)

इस उफननली पर 'यूरिया का घोल' लिखकर अलग रख दो।

- यहाँ आयतन का उपयोग वज़न के अनुमान के लिए किया गया है। हर बार बराबर मात्रा लेने के लिए आप किसी भी माप का उपयोग कर सकते हैं। जैसे ओ.आर.एस. घोल बनाने का चम्मच।ध्यान रखने की बात यह है कि नमक व यूरिया के मामले में तो यह तरीका बढ़िया काम करता है। ज़रूरी नहीं कि यह किसी भी पदार्थ के लिए चल जाएगा। सुविधा हो, तो तौलकर ले सकते हैं।
- इसी प्रकार से पानी को भी एक-चौथाई उफननली के हिसाब से लिया गया है। इसे नपनाघट से नापकर भी ले सकते हैं।

बा.वै. कक्षा 6, 2000, पु 149

^{*} बाल वैज्ञानिक कक्षा 6, 2000

तालिका 1

पदार्थ का नाम उण्डे पानी में अधिकतम कितना घुलता है?

नमक

यूरिया

क्या किसी टोली के अवलोकन तुम्हारे अवलोकनों से भिन्न हैं? आपस में चर्चा करो।

पूरी कक्षा के अवलोकनों के आधार पर सही विकल्प चुनकर वाक्यों को पूरा करके अपनी कॉपी में लिखों —

पानी की निश्चित मात्रा में किसी पदार्थ की घुलनशीलता

- (क) निश्चित होती है।
- (ख) कितनी भी हो सकती है। (3)

पानी की निश्चित मात्रा में नमक और यूरिया की

- (क) बराबर-बराबर मात्रा घुलती है।
- (ख) अलग-अलग मात्रा घुलती है। (4)

विभिन्न पदार्थों की पानी में घुलनशीलता

- (क) एक समान होती है।
- (ख) अलग-अलग होती है। (5)

घुलनशीलता पर गर्मी का असरः प्रयोग 2

इस प्रयोग में हम यह देखने की कोशिश करेंगे कि गरम करने पर पदार्थों की घुलनशीलता पर क्या असर होता है। खासकर हम यह जाँच करेंगे कि गरम करने पर नमक और यूरिया की घुलनशीलता पर एक समान असर होता है या अलग-अलग।

यूरिया की घुलनशीलता पर गर्मी के असर को परखने में एक दिक्कत यह आती है कि यूरिया का विघटन होने लगता है और घुलनशीलता की सीमा ही नहीं आती। अतः इस प्रयोग में घुलनशीलता की अधिकतम सीमा तक जाने की कोशिश नहीं की गई है।

बा.वै. कक्षा 6, 2000, प्र 151

तालिका 2

	गरम करने पर क्या हुआ?		
पदार्थ का नाम	क्या टण्डे घोल में बचा रह गया बिना	क्या पहला	क्या दूसरा
	घुला पदार्थ घुल गया?	5 ग्राम घुला?	5 ग्राम घुला?
नमक			
यूरिया			

तुमने प्रयोग 1 में एक उफननली पर 'नमक का घोल' लिखकर रखा था। उस उफननली को इतना गरम करो कि घोल उबलने लगे।

क्या गरम करने पर उफननली में मौजूद बिना घुला नमक घुल गया?

अगर हाँ, तो इसमें 5 ग्राम नमक और डालो। फिर से उफननली को गरम करके घोल को उबालो। क्या यह नमक भी घुल गया?

यदि यह 5 ग्राम नमक भी घुल जाए तो एक बार फिर 5 ग्राम नमक डालकर घोल को उबालो।

क्या यह नमक घुला? अपने परिणाम तालिका 2 में लिख लो। (6)

इस घोल को उण्डा होने के लिए रख दो।

अब यही प्रयोग यूरिया के घोल के साथ दोहराओ।

अपने अवलोकन तालिका 2 में लिखो। (७)

इस घोल को भी ठण्डा होने के लिए रख दो।

अपने अवलोकनों के आधार पर बताओ कि क्या गरम करने पर नमक और यूरिया दोनों की घुलनशीलता बढ़ती है? (8)

क्या नमक और यूरिया की घुलनशीलता पर ताप का असर एक बराबर होता है? (9)

यदि असर बराबर नहीं होता, तो बताओ कि गरम करने पर किसकी घुलनशीलता पर ज़्यादा असर होता है? (10)

क्या इस प्रयोग से यह निष्कर्ष निकालना ठीक होगा कि अलग-अलग पदार्थों की घुलनशीलता पर ताप का प्रभाव अलग-अलग मात्रा में होता है? (11)

जब दोनों घोल ठण्डे हो जाएँ तो उनका अवलोकन करो।

ठण्डा होने पर दोनों घोलों में क्या फर्क दिखा? अपने शब्दों में वर्णन करो। (12)

क्या तुम इसका कारण भी बता सकते हो? (13)

बा.वै. कक्षा ६, २०००, पृ १५३

तुमने देखा कि पानी में एक निश्चित मात्रा से अधिक पदार्थ डालने पर कुछ पदार्थ बिना घुले रह जाता है। अब अगर तुम चाहते हो कि बचा हुआ पदार्थ घुल जाए तो क्या करोगे?

अभी हमने पानी में पदार्थ की घुलनशीलता के प्रयोग किए। कुछ पदार्थ ऐसे भी हैं जो पानी में तो अघुलनशील होते हैं मगर किसी अन्य द्रव में घुल जाते हैं। उदाहरण के लिए जब कपड़ों पर ग्रीस लग जाता है तो उसे केरोसीन से छुड़ाते हैं। यह इसलिए हो पाता है क्योंकि ग्रीस केरोसीन में घुल जाता है।

द्रव में द्रव के घोल: प्रयोग 3

अभी तक हमने ठोस पदार्थों (जैसे यूरिया, नमक आदि) की घुलनशीलता की बात की। दो द्रव (तरल पदार्थ) भी आपस में घुलनशील या अघुलनशील हो सकते हैं। क्या तुमने कभी केरोसीन और पानी को या पानी और तेल को आपस में मिलाकर देखा है?

क्या पानी व केरोसीन एक-दूसरे में घुल जाते हैं? क्या तेल और पानी एक-दूसरे में घुलनशील हैं? क्या केरोसीन और तेल एक-दूसरे में घुल जाएँगे? (14)

आओ इसे देखने के लिए एक सरल प्रयोग करें।

दो परखनलियों में एक-तिहाई केरोसीन लो। पहली में करीब एक-तिहाई परखनली नारियल का तेल डालो। क्या हुआ?

दूसरी परखनली में करीब एक-तिहाई परखनली पानी डालो। क्या हुआ?

नारियल के तेल और पानी की केरोसीन में घुलनशीलता में क्या अन्तर है? (15)

रवे बनाओ*

तुमने घुलनशीलता के अध्याय में देखा था कि यूरिया पानी में घुलनशील है। तुमने यह भी देखा था कि अगर हम इस घोल को गरम करें तो उसमें और अधिक यूरिया घुल जाता है।

ठण्डा होने पर यूरिया की अतिरिक्त (अघुलित) मात्रा रवों के रूप में घोल में से बाहर निकल आती है। इस प्रक्रिया को रवे बनना कहते हैं। बेहतर रवे बनाने के लिए हमें यही प्रक्रिया थोड़े ध्यान से करनी होती है।

आओ कुछ पदार्थों के रवे बनाएँ।

यूरिया के रवेः प्रयोग 1

एक परखनली में 5 मि.ली. पानी लो। उसमें लगभग 8 ग्राम यूरिया डालो। क्या सारा यूरिया घुल गया?

अगर नहीं तो परखनली को तब तक गरम करो जब तक कि सारा यूरिया न घुल जाए।

घोल को ठण्डा होने के लिए रख दो। आधे घण्टे बाद परखनली का अवलोकन करो।

क्या उसमें यूरिया के रवे दिखे? (1)

रवों को गौर से देखो। अगर ज़रूरत हो तो लेंस का उपयोग करो।

इनका आकार कैसा है? चित्र बनाकर दिखाओ। (2) क्या अन्य टोलियों में यूरिया के ऐसे ही रवे बने? (3)

बेंज़ोइक अम्ल के रवेः प्रयोग 2

एक काँच के बीकर में 30 मि.ली. पानी लो। इसमें लगभग 1 ग्राम बेंज़ोइक अम्ल डालो।

बेंज़ोइक अम्ल को घोलने के लिए घोल को गरम करो और फिर ठण्डा होने के लिए रख दो। आधे घण्टे बाद बीकर में बेंज़ोइक अम्ल के रवों को ध्यान से देखो।

बेंज़ोइक अम्ल के रवे कैसे दिखते हैं? अपनी कॉपी में चित्र बनाकर दिखाओ। (4) रवों का चित्र बनाने की कोशिश ज़रूरी है। इसी के आधार पर छात्र समझ पाएँगे कि किसी पदार्थ के सारे रवे एक जैसी शक्ल के होते हैं।

बा.वै. कक्षा ७, २००१, पृ २०१

^{*} रवे बनाओ, बाल वैज्ञानिक कक्षा 7, 2001

क्या सभी टोलियों में रवों का आकार एवं रंग एक-सा दिखा?

फिटकरी के रवेः प्रयोग 3

एक परखनली में 5 मि.ली. पानी लो। इसमें 1 ग्राम फिटकरी डालो।

क्या सारी फिटकरी पानी में घूल गई? (6)

नहीं तो परखनली को गरम करो और फिटकरी के घुलते ही इस घोल को गुनगुने पानी से भरे एक बीकर में ठण्डा होने को रख दो। एक घण्टे बाद परखनली को ध्यान से देखो।

क्या घोल में से फिटकरी के रवे बाहर निकले? (7)

रवों का आकार कैसा है? (8)

आपस में चर्चा करके फिटकरी, यूरिया और बेंज़ोइक अम्ल के रवों की तुलना करो। (9)

के घोल की 4-4, 5-5 बूँदें डालो। ड्रॉपर से नया घोल लेने से पहले उसे पानी से

अच्छी तरह धो लेना।

घण्टे भर बाद सभी स्लाइडों का अवलोकन करो।

इन पर डाले गए घोलों का पानी कहाँ गया? (10)

स्लाइडों पर बने रवों का एक-एक करके सूक्ष्मदर्शी से अवलोकन करो और नीचे दी गई तालिका भरो। रवों का आकार बताने के लिए चित्र बनाओ। (11)

तालिका 1

पदार्थ	रवों का रंग	रवों का आकार
1. नीला थोथा		
2. ऑक्सेलिक अम्ल		
3. यूरिया		
4. नमक		

क्या सभी पदार्थों के रवों का आकार एक जैसा है? (12)

अपनी टोली के नीले थोथे के रवों की तुलना अन्य टोलियों से करो।

क्या सभी टोलियों के नीले थोथे के रवों का आकार एक-सा है? (13)

इसी तरह शेष पदार्थ के रवों के आकार की तुलना भी अन्य टोलियों से करो। यदि तुम नीला थोथा के बड़े-बड़े रवे प्राप्त करना चाहो तो एक बीकर में नीले थोथे का घोल एक तश्तरी से ढँककर रख दो। तीन-चार दिन तक बिना छेड़े रखा रहने दोगे तो काफी बड़े-बड़े रवे मिलेंगे।

अभ्यास के सवाल

- 1. मिश्री वास्तव में शक्कर का रवा है। कोशिश करके पता करो कि मिश्री कैसे बनाई जाती है। चाहो तो खुद भी मिश्री बनाओ।
- 2. प्रयोग 3 में फिटकरी के रवे बनाने के लिए तुमने फिटकरी के घोल को धीरे-धीरे ठण्डा किया था। यदि घोल को तेज़ी से ठण्डा होने दिया जाए तो क्या होगा? प्रयोग करके पता करो।

क्रोमेटोग्राफी यानी मिश्रण से अलग होते पदार्थ*

विभिन्न पदार्थों के मिश्रणों में से प्रत्येक पदार्थ को शुद्ध रूप में अलग-अलग प्राप्त करना रसायनज्ञों का एक प्रमुख काम रहा है। इस काम के लिए छानने, बीनने से लेकर रवे बनाने और आंशिक आसवन (fractional distillation) जैसी विधियाँ इस्तेमाल की जाती हैं। मगर क्रोमेटोग्राफी की बात ही कुछ और है। इसके बारे में तो यह कहना ठीक रहेगा कि शायद क्रोमेटोग्राफी की अनुपस्थिति में कार्बनिक रसायन शास्त्र का इतना तेज़ विकास सम्भव न हो पाता।

तो देखें कि क्रोमेटोग्राफी नामक यह विधि है क्या चीज़। दरअसल रसायन शास्त्र में पृथक्करण के लिए उपयोग में लाई जाने वाली अधिकांश विधियाँ रोज़मर्रा की विधियों के ही परिष्कृत रूप हैं। मगर क्रोमेटोग्राफी उन विधियों में से है जो रोज़ाना के अनुभवों में से नहीं उभरी है। वैसे यह विधि है बहुत आसान। और पेज 52-53 में आप स्वयं इसका आनन्द ले चुके हैं। दरअसल, इस विधि को समझने का सर्वोत्तम तरीका भी यही है। (मूल लेख* में क्रोमेटोग्राफी करने की वही दो विधियाँ दी गई हैं इसलिए यहाँ इन्हें छोड़ा जा रहा है।)

जैसा कि मैंने कहा, क्रोमेटोग्राफी न होती तो कम से कम कार्बनिक रसायन इतनी तेज़ी से तरक्की न करता। क्रोमेटोग्राफी अत्यन्त उपयोगी विधि है। यह सिर्फ पृथक्करण में ही नहीं बल्कि पदार्थों की पहचान व उनकी शुद्धता की जाँच में भी कारगर साबित होती है।

इस रोचक व कारगर विधि का आविष्कार बीसवीं सदी की शुरुआत में हुआ था। 1907 की बात है। सोवियत वैज्ञानिक मिखेल सेमेनोविच त्स्वेत ने सबसे पहले इसका उपयोग पत्तियों के हरे रंग के विश्लेषण के लिए किया था। त्स्वेत ने एल्युमिनियम ऑक्साइड का चूरा एक काँच की नली में भर लिया और इस नली के एक सिरे पर पत्तियों से प्राप्त हरे रंग को डाला। अब नली को खड़ा करके उसने कोई द्रव इसी सिरे (हरे रंग वाले सिरे) से डालना शुरू किया। द्रव धीरे-धीरे एल्युमिनियम ऑक्साइड में से रिसता हुआ

नली के दूसरे छोर तक पहुँच गया। स्पष्ट दिख रहा था कि हरा पदार्थ इकलौता नहीं था, बल्कि दो पदार्थों का मिश्रण था। यही पदार्थ क्लोरोफिल-ए और क्लोरोफिल-बी कहलाए।

कैसी-कैसी क्रोमेटोग्राफी

आपने ध्यान दिया होगा कि हमने चॉक व कागज़ पर जो क्रोमेटोग्राफी की थी उसमें पानी (तरल पदार्थ) नीचे से ऊपर चढ़ रहा था। दूसरी ओर क्लोरोफिल वाले प्रयोग में तरल पदार्थ (जो शायद पानी नहीं था) ऊपर से नीचे की ओर बहाया गया था। पहली यानी चॉक वाली क्रोमेटोग्राफी को चढ़ती (ascending) क्रोमेटोग्राफी कहते हैं जबिक दूसरी वाली को उतरती (descending) क्रोमेटोग्राफी कहते हैं। तो यह हो गया पहला वर्गीकरण।

वैसे इसका वर्गीकरण कई और तरह से किया जा सकता है। लेकिन पहले क्रोमेटोग्राफी का एक सामान्य विवरण प्रस्तुत कर सकते हैं।

दरअसल क्रोमेटोग्राफी के लिए ज़रूरी हैं दो परस्पर अघुलनशील पदार्थ। इन दो परस्पर अघुलनशील पदार्थों को दो प्रावस्थाएँ (phases) कहा जाता है। हमारा मिश्रण इन्हीं दो प्रावस्थाओं के बीच लटका या टँगा होता है।

ये दो प्रावस्थाएँ कई किस्म की हो सकती हैं। जैसा कि हमने अपने प्रयोग में किया था, एक ठोस प्रावस्था (चॉक या सोख्ता कागज़) ली और एक तरल (पानी)। ठोस प्रावस्था स्थिर (अचल) थी और तरल गतिमान। इसी तरह हम एक ठोस व एक गैस प्रावस्था भी ले सकते हैं; दो परस्पर अघुलनशील तरल पदार्थ भी लिए जा सकते हैं। यानी क्रोमेटोग्राफी कई किस्म की हो सकती है: ठोस-द्रव, ठोस-गैस, द्रव-द्रव, द्रव-गैस।

हम यहाँ सिर्फ 'ठोस-द्रव क्रोमेटोग्राफी' की बात करेंगे। हालाँकि सिद्धान्त रूप में सभी क्रोमेटोग्राफी समान हैं मगर तकनीक के स्तर पर जटिलता बढ़ती जाती है।

'ठोस-द्रव क्रोमेटोग्राफी' करना वैसे तो आसान है, मगर

^{*} शैक्षणिक संदर्भ, जनवरी-फरवरी 1997

पृथक्करण की गुणवत्ता बढ़ाना हो तो इसी क्रोमेटोग्राफी को परिष्कृत व महँगे उपकरणों से भी करना पड़ता है।

'ठोस-द्रव क्रोमेटोग्राफी' में पचासों प्रकार की ठोस व द्रव प्रावस्थाएँ ली जा सकती हैं। मसलन, कैल्शियम कार्बोनेट और कागज़ (यानी सेल्यूलोज़) का उपयोग तो हम कर ही चुके हैं। इनके अलावा एल्युमिनियम ऑक्साइड (एल्युमिना), सिलिकॉन ऑक्साइड (सिलिका — जी हाँ, रेत) आदि का उपयोग बहुतायत से किया जाता है।

इसी तरह तरल प्रावस्था के लिए पेट्रोल, क्लोरोफॉर्म, अल्कोहल, बेन्ज़ीन आदि न जाने कितने पदार्थों का उपयोग किया जा सकता है। वैसे तरल प्रावस्था के चयन में ही ज़्यादा विविधता होती है।

जैसा कि मैंने ऊपर कहा था, क्रोमेटोग्राफी का उपयोग पृथक्करण के अलावा पदार्थों की पहचान व शुद्धता की जाँच के लिए भी किया जा सकता है। आइए, इन तीनों उपयोगों — पृथक्करण, पदार्थों की पहचान और शुद्धता की जाँच — को एक-एक करके देखते हैं।

रंगहीन या सफेद पदार्थ

लेकिन उससे पहले शायद एक बात समझ लेना ज़रूरी है। क्रोमेटोग्राफी का शाब्दिक अर्थ 'रंग-चित्र' होता है। परन्तु यह ज़रूरी नहीं है कि क्रोमेटोग्राफी से सिर्फ रंगीन पदार्थों का ही पृथक्करण किया जाए।

चूँिक शुरू में पत्तियों के हरे पदार्थ का विश्लेषण किया गया था, इसलिए क्रोमेटोग्राफी नाम इस विधि से चिपक गया है। सफेद व रंगहीन पदार्थों के विश्लेषण-पृथक्करण में भी यह विधि समान रूप से कारगर है। परन्तु आपके मन में यह सवाल ज़रूर उठेगा कि अगर चॉक या कागज़ पर ऐसे पदार्थ अलग-अलग हो भी गए तो हमें पता कैसे चलेगा कि अलग-अलग पदार्थ हैं कहाँ-कहाँ। यह पता करने के कई तरीके हैं।

मसलन कई पदार्थ ऐसे होते हैं जो सामान्य रोशनी में तो सफेद या रंगहीन होते हैं मगर पराबेंगनी प्रकाश में देखने पर रंगीन नज़र आते हैं। यानी क्रोमेटोग्राफी करने के बाद क्रोमेटोग्राम को पराबैंगनी प्रकाश में रखकर देखा जा सकता है।

इसी तरह कई कार्बनिक पदार्थ सान्द्र गन्धक के अम्ल के साथ क्रिया करके काले-कत्थई पड़ जाते हैं। यदि क्रोमेटोग्राम पर इस अम्ल का छिड़काव किया जाए और फिर उसे थोड़ा गरम कर दिया जाए तो पदार्थ जहाँ-जहाँ होंगे, वे काले धब्बों के रूप में दिखने लगेंगे। ज़ाहिर है इस प्रयोग में आपको मात्र यही पता चलेगा कि क्रोमेटोग्राम पर पदार्थ के कण कहाँ-कहाँ थे। लेकिन पदार्थ प्राप्त नहीं होंगे — वे तो गन्धक के अम्ल से क्रिया करके नष्ट हो चुके होंगे। (वैसे इस समस्या से निपटने के तरीके हैं।)

एक तरीका यह भी होता है कि क्रोमेटोग्राम को आयोडीन वाष्प से भरे एक डिब्बे में रख दिया जाए। आयोडीन उन-उन जगहों पर ज़्यादा चिपकती है जहाँ कार्बनिक पदार्थ होते हैं। इसलिए ये धब्बे-पट्टियाँ नज़र आने लगते हैं। खुली हवा में रखने पर आयोडीन वापस उड़ जाती है।

पदार्थों की उपस्थिति को देखने के कई और तरीके हैं। इनमें से कुछ तो बेहद परिष्कृत होते हैं।

अब हम यह समझने की कोशिश करते हैं कि विभिन्न उद्देश्यों के लिए क्रोमेटोग्राफी कैसे की जाती है।

1. पदार्थों को अलग-अलग करनाः जब हम क्रोमेटोग्राफी से पृथक्करण की बात करते हैं, तो इसका मतलब यह होता है कि हम चाहते हैं कि मिश्रण के सारे पदार्थ (या कभी-कभी कोई चुनिन्दा पदार्थ) हमें प्राप्त हो जाएँ। इसका मतलब हमारे पास मिश्रण काफी मात्रा में है। यहाँ काफी मात्रा का अर्थ स्पष्ट करना ज़रूरी है। क्रोमेटोग्राफी के सन्दर्भ में 'काफी मात्रा' का अर्थ चन्द मिलीग्राम तक हो

सकता है। सामान्य क्रोमेटोग्राफी से आप 5-10 मि.ग्रा. तक का पृथक्करण कर सकते हैं। यदि उच्च दबाव क्रोमेटोग्राफी कर रहे हैं, तो यह मात्रा माइक्रोग्राम में भी हो सकती है।

पृथक्करण की दृष्टि से हम आम तौर पर स्तम्भ (यानी कॉलम) क्रोमेटोग्राफी का इस्तेमाल करते हैं। मिश्रण की मात्रा कम होने पर महीन परत (thin layer) क्रोमेटोग्राफी की जाती है। स्तम्भ क्रोमेटोग्राफी के लिए ठोस प्रावस्था को काँच की एक नली में भर लिया जाता है। यानी ठोस प्रावस्था का एक स्तम्भ बन जाता है। इस स्तम्भ के ऊपरी सिरे पर मिश्रण घुलित अवस्था में डाल दिया जाता है। अब तरल प्रावस्था को ऊपर से डालना शुरू करते हैं। धीरे-धीरे तरल प्रावस्था नीचे की ओर बढ़ती है और साथ में मिश्रण के विभिन्न पदार्थ अलग-अलग गित से बढ़ते हैं। जब तरल प्रावस्था नली के निचले सिरे तक पहुँचे, उस समय यदि क्रोमेटोग्राफी रोक दी जाए तो स्थिति कुछ बाजू के चित्र जैसी होगी। इसमें से

बेशक सारे पदार्थ अलग-अलग किए जा सकते हैं मगर मुश्किल से। इसके लिए पूरे कॉलम को नली से बाहर निकालकर उन हिस्सों को अलग-अलग किया जा सकता है जिनमें विभिन्न पदार्थ नज़र आ रहे हैं। इन अलग-अलग हिस्सों में से प्रत्येक पदार्थ को किसी विलायक में घोलकर प्राप्त किया जा सकता है। मगर व्यवहार में इसी काम के लिए एक अपेक्षाकृत सरल विधि अपनाई जाती है।

उपरोक्त स्थिति में क्रोमेटोग्राफी को रोका नहीं जाता। तरल को नली के निचले सिरे से बहने दिया जाता है और उसे फ्लास्कों में एकत्रित कर लिया जाता है। हमें यह तो पता नहीं है कि तरल पदार्थ के साथ कब-कौन-सा पदार्थ आ रहा है, इसलिए तरल पदार्थ की थोड़ी-थोड़ी मात्रा (मान लीजिए 25-25 मि.ली.) अलग-अलग एकत्रित की जाती है। ऐसे प्रत्येक अंश को अलग-अलग ही रखा जाता है। बाद में इनका विश्लेषण करके देखते हैं किन-किन को आपस में मिलाया जा सकता है।

2. शुद्धता की जाँच व पहचानः ये दोनों उपयोग दरअसल एक जैसे हैं। विशेषता यह है कि क्रोमेटोग्राफी की मदद से ये काम पदार्थ की बहुत कम मात्रा के साथ किए जा सकते हैं। इसका सिद्धान्त बहुत आसान है।

जब ठोस प्रावस्था पर तरल प्रावस्था आगे बढ़ती है तो प्रत्येक पदार्थ उसके साथ एक निश्चित गति से आगे बढ़ता है। अब इस बात को दो तरह से देखा जा सकता है।

पहला, कि यदि क्रोमेटोग्राफी को रोका न जाए तरल पदार्थ को लगातार बहने दिया जाए, तो तरल का एक निश्चित आयतन बह जाने के बाद पहला पदार्थ ठोस प्रावस्था के अन्तिम छोर पर पहुँचेगा। फिर यह तरल पदार्थ के साथ बहकर बाहर निकल जाएगा। इसके बाद तरल का कुछ आयतन बहने के बाद अगला पदार्थ बहेगा, वगैरह।

यदि इसी बात को दूसरी तरह से रखें तो — यदि तरल के ठोस के अन्तिम छोर तक पहुँचने या उससे पहले ही क्रोमेटोग्राफी को रोक दिया जाए, तो मिश्रण के सारे पदार्थ ठोस प्रावस्था पर विभिन्न दूरियों तक पहुँच चुके होंगे।

यदि यह क्रोमेटोग्राफी बार-बार करें और हर बार परिस्थितियाँ एक-सी हों तो हर बार प्रत्येक पदार्थ एक निश्चित दूरी तक ही पहुँचता है।

परन्तु क्रोमेटोग्राफी की परिस्थितियाँ एक-सी रखना बहुत

मुश्किल काम है। इसलिए किया यह जाता है कि जिन पदार्थों की आपस में तुलना करनी हो उनकी क्रोमेटोग्राफी एक साथ की जाती है। जैसे मान लीजिए आपने किसी वनस्पति में से एक पदार्थ प्राप्त किया है। आपका अनुमान है कि यह पदार्थ कोलेस्ट्रॉल है। आप कहीं से कोलेस्ट्रॉल का एक जाँचा-परखा नमूना लाएँगे और अपने पदार्थ और इस मानक कोलेस्ट्रॉल की क्रोमेटोग्राफी साथ-साथ कर डालेंगे। यदि दोनों एक ही दूरी तक पहुँचते हैं तो लगभग यकीन से कहा जा सकता है कि आपका पदार्थ कोलेस्ट्रॉल ही है। यदि दोनों अलग-अलग दूरी तक पहुँचते हैं तो पक्के तौर पर कहा जा सकता है कि आपका पदार्थ कोलेस्ट्रॉल नहीं है।

इस प्रकार की तुलना सोख्ता कागज़ वाली क्रोमेटोग्राफी में आसानी से की जा सकती है। दोनों पदार्थों को उपयुक्त विलायकों में घोलकर एक ही कागज़ पर पास-पास उनकी एक-एक बूँद लगाकर क्रोमेटोग्राफी कर लें। आपका काम हो गया।

वैसे इसी काम के लिए महीन परत क्रोमेटोग्राफी भी इस्तेमाल में लाई जाती है। महीन परत क्रोमेटोग्राफी के लिए ठोस प्रावस्था की एक महीन परत तैयार करनी होती है। काँच की एक प्लेट पर महीन परत तैयार करके शेष काम कागज़ क्रोमेटोग्राफी की तरह किया जाता है। वैसे इस चर्चा से आप समझ गए होंगे कि स्तम्भ क्रोमेटोग्राफी से प्राप्त अंशों का विश्लेषण किस तरह किया जाता है।

तो अब आते हैं शुद्धता की जाँच पर। कागज़ पर या महीन परत पर क्रोमेटोग्राफी करें और क्रोमेटोग्राम में पदार्थ एक ही धब्बे के रूप में दिखे तो लगभग पक्की बात है कि पदार्थ शुद्ध है। 'लगभग पक्की बात' को पक्की करने के लिए थोड़ा और परिश्रम करना पड़ेगा। यदि तरल प्रावस्था में थोड़ा परिवर्तन करने के बाद फिर से क्रोमेटोग्राफी करने पर भी पदार्थ एक ही धब्बे के रूप में दिखता है, तो यकीन मानिए कि वह पदार्थ शुद्ध है। और यह जाँच वाकई मि.ग्रा. के सौवें भाग के साथ भी की जा सकती है।

सही मायने में शुद्धता की जाँच के मकसद से क्रोमेटोग्राफी करते वक्त परिस्थितियाँ कुछ इस तरह एडजस्ट की जाती हैं कि हमारा पदार्थ तरल के अन्तिम छोर से लगभग आधी दूरी तक पहुँचे।

क्रोमेटोग्राफी के कई और रूप हैं जिनकी चर्चा हमने नहीं की है।

ऊर्ध्वपातन पदार्थों का एक मज़ेदार गुण*

आम तौर पर हम जब ठोस चीज़ों को गरम करते हैं तो हमारी उम्मीद होती है कि वे पहले पिघलेंगी, फिर वाष्पित होंगी। मगर क्या यह क्रम हर पदार्थ में देखा जाता है? कुछ ऐसे पदार्थ भी होते हैं जो ठोस अवस्था से सीधे वाष्प में परिवर्तित हो जाते हैं। मसलन नौसादर (यानी अमोनियम क्लोराइड) और आयोडीन। नौसादर तो काफी आसानी से मिलने वाला पदार्थ है। इसे गरम करके आप खुद देख सकते हैं कि यह भाप बनकर उड़ जाता है मगर पिघलता नहीं। इस क्रिया को ऊर्ध्वपातन कहते हैं।

सवाल यह है कि क्या ऊर्ध्वपातन का यह गुण इन कुछ विशिष्ट पदार्थों में ही पाया जाता है या यह एक सामान्य गुण है जो सभी पदार्थों में होता है? और यदि यह गुण सभी पदार्थों में होता है तो हमें दिखता क्यों नहीं।

द्रवों के वाष्पन के विषय में तो आप थोड़ा बहुत जानते ही हैं। फिर भी यहाँ संक्षेप में इस क्रिया को दोहरा लेना अनुचित न होगा।

जब पानी या मिट्टी के तेल जैसे किसी द्रव को खुले में छोड़ देते हैं तो धीरे-धीरे वह वाष्पित होकर उड़ जाता है। मगर यदि यही प्रयोग एक बन्द निर्वात बरतन में किया जाए तो स्थिति थोड़ी अलग होगी। कुछ समय बाद पूरा बरतन उस द्रव की वाष्प से भर जाता है।

यदि अब इस बरतन को थोड़ा गरम किया जाए तो द्रव के थोड़े और अणु वाष्पित हो जाते हैं। मगर धीरे-धीरे फिर से एक सन्तुलन बन जाता है। अब उस बरतन में वाष्प की मात्रा ज़्यादा होती है तो उसका दाब भी ज़्यादा होता है। यानी तापमान बढ़ने के साथ वाष्प दाब बढ़ता जाता है। यहाँ दो बातें ध्यान में रखने की हैं। पहली बात तो यह है कि विभिन्न तापमानों पर वाष्प दाब नापते समय शेष परिस्थितियाँ (जैसे द्रव की सतह का क्षेत्रफल) समान रहें।

दूसरी बात यह है कि किस तापमान पर किसी द्रव का वाष्प दाब कितना होगा यह उस द्रव की प्रकृति पर निर्भर करता है। यानी किसी भी तापमान पर विभिन्न द्रवों का वाष्प दाब अलग-अलग होता है।

ठोस का वाष्प दाब

द्रवों की तरह प्रत्येक ठोस पदार्थ भी निरन्तर वाष्पित होता रहता है। यह बात अलग है कि वाष्प की मात्रा इतनी कम होती है कि हम उसे नाप तक नहीं पाते। बहरहाल यदि किसी ठोस पदार्थ को हम निर्वात बरतन में रख दें तो उसके कुछ अणु वाष्पित हो जाते हैं। लिहाज़ा उस बरतन में उस पदार्थ की कुछ मात्रा वाष्प के रूप में भर जाती है। इसका अपना निश्चित वाष्प दाब होता है।

दरअसल हम इस क्रिया को रोज़ाना देखते, महसूस करते हैं। 'फिनाइल' की गोलियाँ हम कपड़ों की अलमारी में रखते हैं। वह धीरे-धीरे उड़ती रहती हैं। इसी प्रकार से कई ठोस पदार्थों की गन्ध हमें आती है। यह गन्ध वास्तव में उनके वाष्पीकरण के कारण ही हम तक पहुँचती है। यदि किसी ठोस पदार्थ की वाष्पन की दर काफी ज़्यादा है तो उसे वाष्पशील ठोस कह सकते हैं।

गलनांक व क्वथनांक

हमने ऊपर देखा कि द्रव को गरम करने पर उसका वाष्प दाब बढ़ता जाता है। एक स्थिति ऐसी आती है जब वाष्प दाब वायुमण्डल के दाब के बराबर हो जाता है। तब वह द्रव उबलने लगता है। जिस तापमान पर किसी द्रव का वाष्प दाब वायुमण्डलीय दाब के बराबर हो, उसे हम द्रव का सामान्य क्वथनांक कहते हैं।

ज़ाहिर है, यदि बाहरी दाब कम कर दिया जाए तो द्रव कम तापमान पर उबलने लगेगा। पहाड़ी स्थानों पर यह स्थिति आ जाती है। इसके विपरीत यदि बाहरी दाब बढ़ा दिया

^{*} शैक्षिक संदर्भ, मई-जून 1997

जाए तो द्रव ज़्यादा तापमान पर उबलेगा। यह स्थिति प्रेशर कुकर में आ जाती है।

किसी ठोस का सामान्य गलनांक उस तापमान को कहते हैं जिस पर वह पिघलता है। इस पर भी दाब का असर पड़ता है। इसलिए हम यह कहते हैं कि वायुमण्डलीय दाब पर किसी ठोस के पिघलने के तापमान को उसका सामान्य गलनांक कहते हैं। आम तौर पर दाब बढ़ने पर ठोस का गलनांक बढ़ जाता है। यानी दाब बढ़ने पर ठोस अपने सामान्य गलनांक से ज़्यादा ताप पर पिघलते हैं। बर्फ की बात अलग है। दाब बढ़ने पर उसका गलनांक कम हो जाता है।

ऊर्ध्वपातन

ठोस से वाष्प बनने की बात हमने की। देखा जाए तो यही ऊर्ध्वपातन की क्रिया है। मगर इस सन्दर्भ में दो बातों का ध्यान रखना ज़रूरी है।

पहली बात तो यह है कि आम तौर पर ठोस पदार्थों का वाष्प दाब बहुत कम होता है। यानी किसी भी तापमान पर ठोस प्रायः बहुत कम वाष्पित होते हैं। दूसरी बात ज़्यादा महत्व की है। हम ऊपर देख चुके हैं कि वाष्प दाब तापमान पर निर्भर करता है। ठोस को गरम करेंगे तो वाष्प दाब बढ़ेगा। मगर एक ऐसी स्थिति आएगी जब वह पिघल जाएगा।

ऊर्ध्वपातन के लिए ज़रूरी है कि ठोस पदार्थ का गलनांक आने से पूर्व उसका वाष्प दाब वायुमण्डलीय दाब के बराबर पहुँच जाए। ऐसी स्थिति में वह 'उबलने' लगता है। खूब सारी वाष्प निकलती है और वाष्प ठण्डी होकर वापस ठोस के रूप में जमा हो जाती है। इस पूरी प्रक्रिया को 'ठोस का आसवन' भी कह सकते हैं। जिस तापमान पर किसी ठोस का वाष्प दाब वायुमण्डलीय दाब के बराबर हो जाए उसे ऊर्ध्वपातन तापमान या ऊर्ध्वपातांक भी कहते हैं।

क्या सारे ठोस उबलेंगे

हमने लेख के शुरू में यह सवाल रखा था कि क्या समस्त ठोस पदार्थों में ऊर्ध्वपातन का गुण होगा। अब हम इस सवाल का जवाब देने की स्थिति में हैं।

यह तो सही है कि समस्त ठोस पदार्थ कम या ज़्यादा वाष्पित होते रहते हैं। मगर उनका वाष्प दाब बहुत कम

होता है। तापमान के साथ दाब बढ़ता है मगर इतना नहीं बढ़ पाता कि वायुमण्डलीय दाब के बराबर हो जाए, इसके पहले ही वे पिघल जाते हैं। यानी सब ठोस पदार्थों में सामान्य वायुमण्डलीय दाब पर ऊर्ध्वपातन नहीं होता।

मगर यदि दबाव कम कर दिया जाए तो? जी हाँ, यदि बाहरी दबाव को कम कर दिया जाए तो प्रत्येक ठोस पदार्थ के लिए ऐसा कोई तापमान अवश्य होगा जहाँ उसका

विभिन्न द्रवों (डाइ इथाइल ईथर, इथेनॉल, पानी और पारा) के लिए वाष्प दाब और तापमान के बीच खींचा गया ग्राफ (क्रमशः ए, बी, सी और डी)। ग्राफ में दिखाई गई टूटी रेखा सामान्य वायुमण्डलीय दाब को दर्शा रही है। जैसे-जैसे विभिन्न द्रवों का वाष्प दाब वायुमण्डलीय दाब के बराबर होने लगता है, द्रव उबलने लगते हैं।

ऊर्ध्वपातन हो जाएगा। मसलन बर्फ को यदि बहुत कम दबाव पर रखा जाए तो उसका ऊर्ध्वपातन सम्भव है। कुल मिलाकर हमें देखना यह होगा कि किस तापमान पर किसी ठोस का वाष्प दाब कितना है। यदि बाहरी दबाव को

उतना ही कर दिया जाए तो ऊर्ध्वपातन हो जाएगा।

ऊर्ध्वपातित ठोस पिघलेंगे क्या?

ऐसे ठोस पदार्थों में गलनांक आने से पूर्व ही वाष्प दाब वायुमण्डलीय दाब के बराबर हो जाता है। अतः पिघलने से पहले ही ये उबलने लगेंगे। यानी सामान्य वायुमण्डलीय दाब पर ये ठोस नहीं पिघलेंगे। इनको पिघलाने के लिए हमें विशेष जतन करना होगा। इन पर दबाव बढ़ाना होगा। दबाव को इतना बढ़ाना होगा। कि गलनांक से पूर्व इनका वाष्प दाब उस बढ़े हुए दबाव के बराबर न होने पाए।

सवाल यह उठता है कि क्यों कुछ ठोस पदार्थों का वाष्प दाब बढ़कर वायुमण्डलीय दाब के बराबर हो जाता है जबिक अन्य अधिकांश ठोस पदार्थों के साथ यह स्थिति नहीं आती। मैं इस मामले में मात्र यही कहना चाहूँगा कि कम से कम मैं नहीं जानता कि ऐसा क्यों है। सम्भवतः स्थिति यह है कि पदार्थों की अवस्था परिवर्तन के बारे में हमारी समझ ही काफी सीमित है।

उबालने/पिघलाने की गुप्त ऊष्माएँ

हम यह तो जानते ही हैं कि पदार्थों के पिघलने व उबलने की क्रिया में ऊष्मा लगती है। जब कोई पदार्थ पिघलता है या उबलता है तो होता यह है कि वह गर्मी सोखता जाता है। मगर उसका तापमान नहीं बदलता। यह सोखी गई गर्मी उसकी अवस्था परिवर्तन में खप जाती है। इसे गुप्त ऊष्मा कहते हैं। पिघलने की गुप्त ऊष्मा अलग होती है और उबलने की गुप्त ऊष्मा अलग होती है।

ऊर्ध्वपातन की क्रिया में भी गुप्त ऊष्मा सोखी जाती है। किसी भी पदार्थ की ऊर्ध्वपातन की गुप्त ऊष्मा उसके पिघलने व उबलने की गुप्त ऊष्माओं के योग के बराबर होती है।

अब स्थिति यह है कि सभी ठोस पदार्थों का वाष्पन हर तापमान पर होता है। तापमान बढ़ाने पर वाष्पन बढ़ता है। कुछ ठोस पदार्थ ऐसे होते हैं जिनका वाष्प दाब इतना बढ़ जाता है कि वह वायुमण्डलीय दाब के बराबर हो जाता है और वे 'उबलने' लगते हैं। इसे ऊर्ध्वपातन कहते हैं। ऐसे पदार्थों के पृथक्करण व शोधन में यह विधि ठीक उसी तरह उपयोगी है जैसे कि आसवन।

पानी - मृदु और कठोर

रासायनिक गुणधर्मों को पहचानने का एक आसान तरीका

इस अध्याय के प्रयोग बहुत ही सरलता से किए जा सकते हैं और इसमें जो बातें की गई हैं वे प्रायः आम अनुभव का हिस्सा होती हैं। आजकल कपड़े-बरतन धोने के लिए डिटर्जेंट का उपयोग होने लगा है और भाप के इंजिन चलन से बाहर हो गए हैं। इसलिए कुछ हद तक बच्चों के अनुभव में कठोर पानी की समस्या उतने स्पष्ट व तल्ख रूप में शायद न आती हो। मगर फिर भी कहीं न कहीं उनका सामना इस समस्या से होता ही है। जैसे नहाते समय साबुन से झाग न बनना या दाल न पकना वगैरह सामान्य बातें हैं। वैसे यदि कोई व्यक्ति आजीवन सिर्फ कठोर पानी का उपयोग करता रहे तो उसे कभी पता नहीं चलेगा कि उस पानी में कोई 'समस्या' है। उसके लिए तो वही सामान्य स्थित होगी।

पानी में कठोरता की जाँच करते हुए हम पदार्थों के रासायनिक गुणधर्मों की ही जाँच कर रहे हैं। पहले विभिन्न स्रोतों के पानी की जाँच करके बच्चे इस बात से परिचित होते हैं कि अलग-अलग जगह का पानी साबुन के साथ अलग-अलग व्यवहार करता है। तुलना के लिए आसुत पानी का उपयोग किया गया है।

यहाँ एक बात बताना ज़रूरी है कि डिटर्जेंट अलग किस्म के रसायन हैं और कठोरता की उपस्थिति में उनकी झाग देने की क्रिया बाधित नहीं होती। इसलिए सारे प्रयोग साबुन से करने होंगे — नहाने का साबुन लेने से यह सुनिश्चित हो जाएगा कि हम 'साबुन' का ही उपयोग कर रहे हैं, डिटर्जेंट का नहीं। वैसे सारे प्रयोग साबुन और डिटर्जेंट दोनों के साथ किए जाते हैं ताकि अन्तर स्पष्ट हो जाए।

प्रयोगों में इस बात पर काफी ज़ोर दिया गया है कि हर बार पानी की मात्रा एक समान रहे, साबून के घोल की बराबर- बराबर बूँदें डाली जाएँ और हर बार उन्हें बराबर हिलाया जाए। प्रयोगों में सावधानी का यह एक अच्छा अभ्यास हो सकता है। तुलनात्मक प्रयोग से बच्चों का यह पहला सम्पर्क है।

रासायनिक प्रयोगों में उपकरणों की साफ-सफाई की ज़रूरत यहाँ स्पष्ट उभरती है। एक बूँद पानी या साबुन का घोल भी इधर-उधर हुआ तो नतीजे गड़बड़ा सकते हैं।

एक बात का ध्यान रखें। पानी में सोडियम क्लोराइड घोलने पर हम कठोरता की अपेक्षा नहीं करते। आम तौर पर सोडियम क्लोराइड के नाम पर हम नमक का उपयोग करते हैं। इसमें कैल्शियम क्लोराइड की अशुद्धि मिली होती है। इस अशुद्धि की वजह से कभी-कभी सोडियम क्लोराइड पानी को कठोर बना देता है। इस समस्या से निपटने के दो तरीके हैं — या तो प्रयोगशाला श्रेणी का सोडियम क्लोराइड इस्तेमाल करें या पानी में सोडियम क्लोराइड अत्यन्त कम मात्रा में डालें, तािक अशुद्धि की मात्रा न्यूनतम रहे।

इसके बाद आसुत पानी में अलग-अलग लवण घोलकर देखा जाता है कि कौन-से लवण पानी को कठोर बनाते हैं, कौन-से नहीं। एक मोटा-मोटा वर्गीकरण कर सकते हैं। इसके आधार पर निष्कर्ष निकालने की प्रक्रिया हो सकती है कि किस तरह के लवण कठोरता पैदा करेंगे। जैसे शिक्षकों के साथ जब सोडियम क्लोराइड, अमोनियम क्लोराइड, कैल्शियम क्लोराइड, कैल्शियम सल्फेट, मैग्नीशियम सल्फेट, कॉपर सल्फेट, सोडियम सल्फेट, कैल्शियम कार्बोनेट को लेकर प्रयोग किए गए तो वे यह देख पाए कि क्लोराइड या सल्फेट होने से कठोरता पैदा हो भी सकती है, नहीं भी हो सकती है। मगर कैल्शियम या मैग्नीशियम हो, तो ज़रूर कठोरता पैदा

होती है। इस परिकल्पना की आगे जाँच के लिए कई अन्य लवणों से प्रयोग करना होगा मगर इस तरह का विश्लेषण रासायनिक पदार्थों के साथ परिचय का एक अच्छा तरीका है। वैसे बच्चे अभी इस बात से परिचित नहीं हैं कि 'कैल्शियम सल्फेट' का मतलब होता है कि वह 'कैल्शियम' और 'सल्फेट' नामक दो इकाइयों से मिलकर बना है। इसलिए उनके साथ बात को पूरे लवण तक ही सीमित रहने देना ठीक होगा।

एक प्रयोग (प्रयोग 4 — झाग और अवक्षेप का सम्बन्ध) कठोरता के मापन के लिए भी दिया गया है। ध्यान रखने की बात यह है कि इस प्रयोग से कठोरता की मात्रा का मोटा-मोटा अनुमान ही लगाया जा सकता है। दरअसल यह प्रयोग कठोरता के मापन का न होकर यह समझने में मदद करने के लिए है कि कठोर पानी में जो अवक्षेप बनता है वह साबुन और पानी में उपस्थित लवण की क्रिया से बनता है और इसी अवक्षेप को बनाने में साबुन बहुत अधिक खर्च होता है। इसी अवक्षेप बनने को 'साबुन का फटना'

भी कहते हैं। कठोरता के सटीक मापन के लिए थोड़े विशिष्ट रसायनों का उपयोग करना होता है। इसे शायद आगे की कक्षाओं के लिए रखा जा सकता है। वैसे यदि आप चाहें और आपके पास सुविधा हो तो कठोरता के मापन की विधि आगे दी गई है।

अगले चरण में कुछ कठोर पानी के नमूनों को लेकर प्रयोगों के माध्यम से यह समझने का प्रयास किया जाता है कि कठोरता दो तरह की होती है — स्थाई कठोरता और अस्थाई कठोरता। यहाँ यह सवाल भी उठता है कि पानी के विभिन्न उपयोगों की दृष्टि से इन दो तरह की कठोरताओं का क्या महत्व होगा।

अन्त में कठोर पानी को मृदु बनाने के तरीकों से सम्बन्धित प्रयोग (प्रयोग 5) किए जाते हैं।

इस अध्याय के सारे प्रयोगों में आसुत पानी का ही उपयोग किया जाएगा; सिवाय उन प्रयोगों के जहाँ विशेष रूप से किसी अन्य पानी की जाँच की जा रही है।

पानी - मृदु और कठोर*

पानी का उपयोग तो तुम दिन-रात करते हो। पानी इतनी महत्वपूर्ण चीज़ है कि उसके बिना जीवन की कल्पना भी नहीं की जा सकती। पानी का यह महत्व उसके गुणों के कारण है।

तुमने पानी के कई गुणों का अध्ययन किया है। वैसे भी दैनिक जीवन में उपयोगी होने के कारण तुम इसके कई गुणों को जानते ही होगे।

पानी के उपयोगों और गुणों की एक सूची बनाओ।

इस अध्याय में हम पानी के एक विशेष गुण का अध्ययन करेंगे। पर उससे पहले बताओं कि क्या तुमने कभी ऐसे पानी का उपयोग किया है जिसके साथ साबुन लगाने पर झाग नहीं आता?

आसुत पानी

आगे के सभी प्रयोगों के लिए प्रत्येक टोली को लगभग एक ग्लूकोज़ बोतल भर आसुत पानी की ज़रूरत पड़ेगी। आसुत पानी इकट्ठा करने के लिए एक चौड़े मुँह का बरतन बाहर बारिश में रख दो। यह ज़रूरी है कि बरतन को किसी खुली जगह में रखा जाए जहाँ उसमें आसपास के किसी पेड़, कवेलू, छत इत्यादि से पानी न टपके। इसके साथ-साथ यह सावधानी भी रखनी होगी कि इस बरतन में आसपास की मिट्टी उछलकर न गिरे। इकट्ठे किए गए बारिश के पानी को अच्छी तरह साफ की गई ग्लूकोज़ की बोतल में कॉर्क लगाकर रख लो। यही तुम्हारा आसुत पानी है।

क्या तुम बता सकते हो कि वर्षा और आसवन की क्रिया में क्या समानता है? (1)

साबुन का घोल

यह घोल पूरी कक्षा के लिए एक साथ बनाया जाए। इसके लिए नहाने के साबुन का ही उपयोग हो, डिटर्जेंट का नहीं। एक बीकर को आसुत पानी से लगभग आधा भरें। इसमें नहाने के साबुन के टुकड़े करके डाल दें। इसे गलने दें। फिर अच्छे से हिलाकर घोल बना लें। घोल इतना गाढ़ा हो कि एक तिहाई परखनली आसुत पानी में इसकी 5-10 बूँदें डालने पर खूब झाग पैदा हो।

हम इस अध्याय में इसी बात को समझने की कोशिश करेंगे कि क्यों कुछ जगह के पानी में साबुन के साथ बिलकुल झाग नहीं आता और ऐसे पानी को ठीक करने के क्या उपाय हैं। इस अध्याय के लिए अलग-अलग स्रोतों, जैसे कुआँ, नल, नदी, तालाब आदि का पानी लाना होगा।

परन्तु एक बात तो रह ही गई। जब हम कहते हैं कि अमुक पानी में झाग कम आता है, तो किससे कम? हमारे पास कोई तो मापदण्ड होना चाहिए जिससे तुलना करके हम कहेंगे कि झाग कम है या अधिक। हमारा यह मापदण्ड होगा — बारिश के पानी यानी आसुत पानी के साथ बना झाग।

प्रयोग 1

इस प्रयोग में पानी के अलग-अलग नमूनों में साबुन से बने झाग की तुलना आसुत पानी में बने झाग से करेंगे। इसमें तीन सावधानियाँ रखनी होंगी —

 तुलना के लिए पानी की बराबर-बराबर मात्रा ली जाए।

^{*} बाल वैज्ञानिक कक्षा 7, 1987 (थोड़ा संशोधित)

- 2. साबुन के घोल की बराबर-बराबर बूँदें डाली जाएँ।
- तुलना करते समय साबुन का घोल डालने के बाद पानी के हर नमूने को बराबर समय तक हिलाया जाए।

क्या तुम बता सकते हो कि ये तीनों सावधानियाँ रखना क्यों ज़रूरी है? (2)

दो परखनलियों को आसुत पानी से एक-तिहाई भरो। इसमें से एक में साबुन के घोल की 5-10 बूँदें डालकर हिलाओ। दूसरी परखनली में डिटर्जेंट के घोल की 5-10 बूँदें डालकर हिलाओ। इन दोनों का उपयोग हम तुलना के लिए करेंगे। इन्हें उपयुक्त लेबल लगाकर स्टैंड पर रख दो।

साबुन और डिटर्जेंट के लिए अलग-अलग ड्रॉपर का उपयोग करना।
अब दो परखनलियाँ और लो। एक पर 'क' और दूसरी पर 'ख' लेबल लगा दो।
इन परखनलियों में हम बारी-बारी से पानी के अलग-अलग नमूनों की जाँच करेंगे।
सबसे पहले दोनों परखनलियों में नदी का पानी लो।

पानी कितना लोगे? (3)

परखनली 'क' में साबुन के घोल की उतनी ही बूँदें गिनकर डालो जितनी ऊपर आसुत पानी में डाली थी। परखनली 'ख' में इसी प्रकार डिटर्जेंट के घोल की उतनी ही बूँदें डालो जितनी तुलना हेतु लिए गए आसुत पानी में डाली थीं। इन्हें अच्छी तरह हिलाओ। देखो कितना झाग बना। तुलना के लिए रखी परखनलियों का झाग अब तक शायद बैठ चुका होगा। उन्हें फिर से हिलाओ। अब 'क' और 'ख' परखनली में बने झाग की तुलना आसुत पानी में बने झाग से करो।

परखनली 'क' में बने झाग की तुलना आसुत पानी में साबुन के घोल के साथ बने झाग से की जाएगी। परखनली 'ख' में बने झाग की तुलना आसुत पानी में डिटर्जेंट के घोल के साथ बने झाग से की जाएगी।

तुलना करते समय यह देखो कि 'क' और 'ख' परखनली में आसुत पानी की तुलना में कितना झाग बना है — ज़्यादा, बराबर या कम।

अपने परिणाम तालिका में निम्नानुसार भरो —

आसुत पानी से ज़्यादा या बराबर झागः धन चिह्न (+)

आसुत पानी से कम झागः ऋण चिह्न (-)

यह भी देखों कि हिलाने के बाद कोई अघुलनशील पदार्थ (अवक्षेप) तो नहीं बना है। इसे भी अपनी तालिका में लिख लो।

यही प्रयोग अब कुएँ और नल के पानी के साथ करो। (हर बार अपनी परखनली धोना न भूलना)

डिटर्जेंट का घोल

बाज़ार में मिलने वाली कोई भी डिटर्जेंट टिकिया या पाउडर लेकर आसुत पानी (लगभग आधा बीकर) में घोल लें। यह घोल भी काफी गाढ़ा हो।

अब प्रयोग सामग्री तैयार है।

यदि बच्चे तुलनात्मक प्रयोगों के बारे में जानते हैं तो प्रश्न 2 का सटीक जवाब दे पाएँगे। यदि नहीं जानते तो प्रश्न 2 के सन्दर्भ में इस बात पर चर्चा होनी चाहिए कि जब हम तुलना करना चाहते हैं तो जिस चीज़ की तुलना हो रही है, उसके अलावा बाकी सारी चीज़ें समान रहनी चाहिए। प्रश्न 3 में इसी बात की पुष्टि की गई है।

ग्र.वे. कक्षा ७, २००१, पृ ४७

सारे परिणाम तालिका 1 में भर लो। (3)

तालिका 1

क्र.	नमूने का नाम	साबुन से प्रयोग		डिटर्जेंट से प्रयोग	
		आसुत पानी	अवक्षेप बना	आसुत पानी	अवक्षेप बना
		की तुलना में	या नहीं	की तुलना में	या नहीं
		झाग की मात्रा		झाग की मात्रा	
1.	नदी का पानी				
2.	कुएँ का पानी				
3.	नल का पानी				
4.		तालिका १ पूरी भर लेने के बाद बच्चे विभिन्न स्रोतों के			
5.		पानी का एक मोटा-मोटा समूहीकरण कर सकते हैं।			

केल्सियम बाईकार्बोनेट बहुत अस्थिर लवण है। सामान्यतः बाज़ार में मिलता नहीं है और मिलता भी है तो काफी विघटन हो चुका होता है। इसलिए बेहतर है कि प्रयोग के समय इसे बना लिया जाए। चूने के पानी में फूँक मारने से पहले तो दूधियापन आता है और फिर फूँक मारते रहें तो घोल साफ हो जाता है। दरअसल यही कैल्शियम बाईकार्बोनेट का घोल है। इस घोल का उपयोग प्रयोग 4 के लिए भी कीजिए।

प्रयोग 2

अब हम पानी के कुछ ऐसे नमूनों के साथ प्रयोग 1 की प्रक्रिया करेंगे जिसमें हमने अपनी मर्ज़ी से कुछ लवण घोले हैं। तालिका 2 में कुछ लवणों की सूची दी है। अपने प्रयोग के लिए बारी-बारी से इन लवणों का उपयोग करो।

परखनली 'क' और 'ख' को अच्छी तरह आसुत पानी से धो लो। इनमें एक-तिहाई आसुत पानी भरो। दोनों में चावल के एक दाने के बराबर लवण क्र. 1 (कैल्शियम क्लोराइड) डालो। अब परखनली 'क' में साबुन के घोल की बूँदें गिनकर डालो। परखनली 'ख' में डिटर्जेंट के घोल की बूँदें भी गिनकर डालो।

कितनी बूँदें डालोगे?

आसुत पानी से तुलना करके अपने परिणाम तालिका 2 में लिख लो जैसा कि प्रयोग 1 में किया था। (4)

तालिका 2

<u>क्र</u> .	आसुत पानी में	साबुन से प्रयोग		डिटर्जेंट से प्रयोग	
	घोला गया लवण	आसुत पानी	अवक्षेप बना	आसुत पानी	अवक्षेप बना
		की तुलना में	या नहीं	की तुलना में	या नहीं
		झाग की मात्रा		झाग की मात्रा	
1.	कैल्शियम क्लोराइड				
2.	सोडियम क्लोराइड				
3.	कैल्शियम सल्फेट				
4.	मैग्नीशियम सल्फेट				
5.	सोडियम कार्बोनेट				
6.	कैल्शियम बाईकार्बोनेट				

बारी-बारी से यह प्रयोग सभी लवणों के साथ करो। तालिका 2 के आधार पर नीचे लिखे प्रश्नों के उत्तर दो।

क्या सभी प्रकार के लवणों के घोल साबुन के साथ बराबर झाग देते हैं? (5)

जो पानी साबुन से खूब (यानी आसुत पानी के बराबर या ज़्यादा) झाग देता है उसे **मृदु पानी** कहते हैं।

जो पानी कम झाग देता है उसे कठोर पानी कहते हैं।

क्या आसुत पानी मृदु है? (6)

तालिका 1 के आधार पर विभिन्न स्त्रोतों के पानी के समूह बनाओ। (7)

तालिका 2 के आधार पर लवणों का समूहीकरण करके तालिका 3 में लिख लो।

तालिका ३

पानी को कठोर न	पानी को कठोर	साबुन के साथ	
बनाने वाले लवण	बनाने वाले लवण	अवक्षेप बनाने वाले लवण	
	सोडियम क्लोराइड पर विशेष ध्यान दें। अध्याय सम्बन्धी टिप्पणी देखें।		

कौन-कौन से लवण घुले होने पर पानी कठोर हो जाता है? (8)

क्या कोई ऐसे लवण भी हैं जिनके घुले होने के बावजूद पानी मृदु बना रहता है? (9)

क्या यह आवश्यक है कि मृदु पानी शुद्ध हो? (10)

वे कौन-से लवण हैं जिनके घुले होने से साबुन डालने पर अवक्षेप बनता है?

क्या अवक्षेप पैदा करने वाले लवणों और पानी को कठोर बनाने वाले लवणों में कोई सम्बन्ध दिखता है? यदि हाँ, तो क्या? (12)

क्या कठोरता पैदा करने वाले और साबुन के साथ अवक्षेप बनाने वाले लवण एक ही हैं? (13)

क्या डिटर्जेंट हर प्रकार के पानी के साथ बराबर झाग देता है? (14)

क्या डिटर्जेंट के साथ किसी लवण ने अवक्षेप बनाया? (15)

क्या प्रश्नों के उत्तर के आधार पर तुम अवक्षेप बनने और झाग न बनने के आपसी सम्बन्ध पर कुछ कह सकते हो? शिक्षक से चर्चा करो।

- ये प्रश्न झाग न बनने और अवक्षेप बनने का सम्बन्ध स्थापित करते हैं। आप देखेंगे कि प्रश्न 12 जो बात पूछता है, प्रश्न 13 उसका एक सुराग प्रदान करता है।
- यदि प्रश्न 13 की चर्चा आगे बढ़ती है, तो यह बात उभरेगी कि दरअसल अवक्षेप साबुन और लवण की क्रिया से बनता है और जब अवक्षेप बन जाता है तो साबुन अघुलनशील हो जाता है और झाग पैदा करने का सवाल ही नहीं उठता। सारे लवण की साबुन से क्रिया हो जाने के बाद ही झाग बनता है। इसीलिए कठोर पानी में ज़्यादा साबुन खर्च होता है।
- प्रश्न 10 में चर्चा इस बात पर होगी कि शुद्ध से आशय यह है कि वह पानी सिर्फ पानी हो, उसमें कुछ और न मिला हो। बच्चों का ध्यान प्रश्न 9 के जवाब की ओर दिलाकर 'शुद्ध' और 'मृदु' के बीच अन्तर स्पष्ट किया जा सकता है।

- प्रयोग ३ इस अर्थ में थोड़ा मुश्किल है कि यदि आप शुरुआत बहुत कम पानी से करेंगे तो धीरे-धीरे इतना कम पानी बचेगा कि प्रयोग करना असम्भव हो जाएगा।
- दूसरी बात यह है कि यदि लवण थोड़ा भी अधिक हो गया तो कठोरता दूर करने में बहुत समय लगेगा।
- इसलिए बेहतर यह है कि आप करीब आधा बीकर पानी लें और एक राई के दाने के बराबर कैल्शियम क्लोराइड डालें।

बच्चों को बार-बार यह याद दिलाना होगा कि तुलनाएँ आसुत पानी में बने झाग से करनी हैं।

आप चाहें तो अभ्यास के सवाल 4 व 5 की चर्चा प्रयोग 3 के बाद कर सकते हैं।

झाग और अवक्षेप का सम्बन्धः प्रयोग 3

दो बीकर 'क' और 'ख' को अच्छी तरह से साफ कर लो। बीकर 'क' को आसुत पानी से आधा भरो। इसमें चावल के दाने के बराबर कैल्शियम क्लोराइड डालो। अब इसमें साबुन के घोल की 20 बूँदें गिनकर डालो। इसे काँच की एक छड़ से हिलाओ।

क्या झाग बना? (16)

क्या अवक्षेप बना? (17)

इस पानी को बीकर 'ख' में छान लो। बीकर 'ख' में साफ घोल होना चाहिए। इसमें फिर से साबुन के घोल की 20 बूँदें डालकर हिलाओ।

क्या अब झाग बना? (18)

यदि अभी भी झाग नहीं बना तो इसी क्रिया को तब तक दोहराओ जब तक कि अवक्षेप बनना बन्द न हो जाए। अब फिर साबुन के घोल की कुछ बूँदें डालो।

क्या अब झाग बना? (19)

यदि अब इसमें झाग बनता है तो इसका मतलब यह है कि जो लवण (कैल्शियम क्लोराइड) हमने आसुत जल में घोला था वह बीकर 'ख' में नहीं है।

क्या तुम बता सकते हो कि अवक्षेप में क्या रहा होगा? (20) क्या तुम बता सकते हो कि कठोर पानी में ज़्यादा साबुन क्यों खर्च होता है? (21)

दो तरह की कठोरता: प्रयोग 4

कठोरता दो तरह की होती है। इसे देखने के लिए पहले निम्नलिखित प्रयोग करो। यह प्रयोग हम सारे लवणों के साथ नहीं बल्कि सिर्फ दो लवणों — कैल्शियम क्लोराइड और कैल्शियम बाईकार्बोनेट — के साथ करके देखेंगे।

दो परखनलियाँ लो। इन पर 'क' और 'ख' लेबल लगा लो। दोनों में एक-तिहाई आसुत पानी भरो। एक परखनली में एक चावल के दाने के बराबर कैत्शियम क्लोराइड डालो। तालिका 2 में देखों कि क्या यह पानी कठोर है या मृदु। अब इस पानी को उबालो। उबालने के बाद ठण्डा होने पर यदि इसकी तली में कुछ पदार्थ बैठ जाता है तो पानी को एक दूसरी परखनली में छान लो। छने हुए पानी में साबुन के घोल की कुछ बूँदें डालकर हिलाओ।

क्या कैल्शियम क्लोराइड के घोल को उबालने से उसकी कठोरता दूर हो गई? (22)

यही क्रिया दूसरी परखनली में कैल्शियम बाईकार्बोनेट के साथ भी दोहराओ।

क्या कैल्शियम बाईकार्बोनेट के घोल को उबालने से उसकी कठोरता दूर हो गई? (23) इस प्रयोग से हम देख सकते हैं कि कुछ लवणों से उत्पन्न कठोरता उबालने से दूर हो जाती है। ऐसी कठोरता को अस्थाई कठोरता कहते हैं। जो कठोरता उबालने के बाद भी दूर नहीं होती उसे स्थाई कठोरता कहते हैं।

कटोर पानी को मृदु बनाने की रासायनिक विधिः प्रयोग 5

आओ अब देखते हैं कि रासायनिक विधि से कठोर पानी को मृदु कैसे बनाया जा सकता है।

दो परखनलियाँ ('क' और 'ख') लो। दोनों को आसुत जल से एक तिहाई भरो और दोनों में चम्मच से ज़रा-सा (चावल के दाने के बराबर) कैल्शियम क्लोराइड डालो।

अब 'क' और 'ख' परखनिलयों का आसुत पानी कैसा पानी हो गया — कठोर या मृदु? प्रयोग 2 के अवलोकन के आधार पर बताओ। (24)

अब 'ख' परखनली में थोड़ा-सा सोडियम कार्बोनेट (कपड़े धोने का सोडा) डालो और हिलाओ।

क्या 'ख' परखनली में साफ घोल बन गया? (25)

यदि नहीं तो इसे एक और परखनली में छानकर उस परखनली पर 'ख' लिख लो।

अब 'क' और 'ख' परखनलियों में 8-8 बूँदें साबुन के घोल की डालो और हिलाओ। झाग की मात्रा देखो और दोनों की तुलना करो।

क्या 'क' और 'ख' परखनलियों में बराबर झाग बना? (26)

यदि नहीं तो किस परखनली में अधिक झाग बना? (27)

इस परखनली में अधिक झाग क्यों बना? (28)

इन अवलोकनों से तुम क्या निष्कर्ष निकालते हो? (29)

यदि कपड़े धोते समय अधिक साबुन खर्च हो रहा है तो तुम क्या करोगे? (30)

सोडियम कार्बोनेट को कपड़े धोने का सोडा क्यों कहते हैं? (31)

क्या अभी तक किए प्रयोगों के आधार पर तुम और कोई विधि सुझा सकते हो जिससे कठोर पानी को मृदु बनाया जा सके? (32)

अभ्यास के सवाल

- 1. इस अध्याय में किए गए प्रयोगों के आधार पर बताओ कि क्या मृदु पानी सदैव शुद्ध ही होता है?
- 2. घर पर हम जो नमक खाते हैं उसका रासायनिक नाम सोडियम क्लोराइड है। क्या पानी में नमक घोलने से पानी कठोर हो जाएगा?

- 3. कठोरता दो तरह की होती है। एक किस्म की कठोरता पानी को उबालने से दूर हो जाती है या कम हो जाती है। अपने आसपास के कुएँ, तालाब, नदी आदि के पानी की जाँच करके पता लगाओ कि उनकी कठोरता उबालकर दूर या कम की जा सकती है या नहीं।
- 4. कई क्षेत्रों में देखा गया है कि जिस बरतन में पानी उबाला जाता है उसमें सफेद-सा पदार्थ जमा हो जाता है। क्या इस अवलोकन के आधार पर वहाँ के पानी के बारे में कुछ कहा जा सकता है?
- 5. कुछ समय पहले तक रेलगाड़ियों में भाप के इंजिन लगते थे। इन इंजिनों में एक बड़ी-सी टंकी (बॉयलर) में पानी को उबालकर भाप बनाई जाती थी और फिर उस भाप की ताकत से इंजिन चलता था। ताप बिजलीघरों में भी ऐसा ही किया जाता है। सवाल यह है कि यदि भाप के इंजिन या ताप बिजलीघरों के बॉयलर में हमेशा अस्थाई कठोर पानी भरा जाए तो उनके कामकाज पर क्या असर होगा। और यदि बॉयलर में स्थाई कठोर पानी का उपयोग किया जाए तो क्या असर होगा? इस बारे में कक्षा में चर्चा करो और चर्चा का सार अपने शब्दों में लिखो।
- 6. कठोरता की जाँच करना तो तुम सीख ही चुके हो। यह पता लगाओ कि क्या निम्नलिखित चीज़ें डालने पर पानी कठोर होता है:
 - क. चॉक का चूरा
 - ख. राख
 - ग. शक्कर
 - घ. काली चाय
- 7. इस अध्याय के प्रयोग 2 में विभिन्न लवणों के घोल बनाने के लिए आसुत पानी का उपयोग क्यों किया गया था? क्या नल का पानी लेकर प्रयोग नहीं किया जा सकता था? कारण सहित उत्तर दो।

पानी की कठोरता – सिर्फ झाग की समस्या नहीं*

पानी की कठोरता एक ऐसा गुण है जिसे परखना काफी आसान है। जब किसी पानी में साबुन झाग न दे तो वह पानी कठोर है। जब पानी और झाग की बात होती है तो कई सवाल उठते हैं; जैसे झाग क्या है, क्यों बनता है, वैसे ही पानी हिलाएँ तो झाग क्यों नहीं बनता, साबुन में ऐसी क्या बात है कि वह झाग बनाता है, और कौन-सी ऐसी झाग बनाने वाली चीज़ें हैं वगैरह। प्रश्नों का दूसरा समूह है कि सफाई में झाग का क्या महत्व है, कठोर पानी झाग क्यों नहीं देता वगैरह। प्रश्न का तीसरा समूह यह है कि क्या

कठोर पानी में कोई अन्य गुणधर्म भी है। जैसे क्या दाल पकने और झाग बनने का आपसी सम्बन्ध है, और अन्त में सवाल आता है कि कहीं का पानी कठोर हो तो क्या करें। किन्तु झाग से इस लेख का सम्बन्ध मात्र इतना है कि झाग कठोरता की पहचान के लिहाज़ से उपयोगी है। पानी में कठोरता मूलतः कैत्शियम व मैग्नीशियम के लवणों के कारण उत्पन्न होती है। इनमें से कुछ लवण पानी में पर्याप्त घुलनशील हैं जबकि कुछ अत्यत्य मात्रा में घुलनशील हैं।

तरह-तरह की कठोरता

अलग-अलग लवणों के घुले होने के कारण अलग-अलग कठोरता उत्पन्न होती है। कठोरता का वर्गीकरण करने का महत्व यह है कि अलग-अलग किस्म की कठोरता अलग-अलग ढंग से प्रभाव डालती है और कई बार उससे निपटने के तरीके भी अलग-अलग होते हैं।

सर्वप्रथम तो कुल कठोरता की बात कर लें। पानी में उपस्थित कुल कैल्शियम, मैग्नीशियम लवणों की मात्रा को

सामान्य स्तर पर बात करें तो कहेंगे कि द्वितुल्यांकी धातुओं (कैल्शियम, मैग्नीशियम, स्ट्रॉन्शियम और बेरियम) के लवण पानी में कठोरता पैदा करते हैं। इसका कारण समझने के लिए हमें साबुन की रचना को देखना होगा। साबुन दरअसल लम्बी शृंखला वाले वसीय अम्लों के सोडियम लवण हैं। लम्बी शृंखला का मतलब है 14-18 कार्बन से बनी शृंखला।

साबुन का एक अण्।

जब पानी में कठोरता-जनक लवण उपस्थित होते हैं तो कैल्शियम या मैग्नीशियम सोडियम की जगह ले लेते हैं। दूसरे शब्दों में, हमें वसीय अम्ल के कैल्शियम या मैग्नीशियम लवण प्राप्त होते हैं। ये लवण अघुलनशील हैं और झाग नहीं दे पाते। इनके अघुलनशील होने की वजह से ही साबुन फट जाता है।

> हम उसकी कुल कठोरता कहते हैं। यहाँ समस्या यह उठती है कि इन दो धातुओं के तमाम किस्म के लवण पानी में घुले हो सकते हैं। फिर उनकी कुल मात्रा कैसे बताएँ क्योंकि मैग्नीशियम के किसी लवण की 0.5 ग्राम और कैल्शियम के किसी लवण की 0.5 ग्राम मात्रा वज़न में तो बराबर है किन्तु कठोरता की दृष्टि से ये दोनों बराबर नहीं हैं।

> एक उदाहरण से इस बात को समझ लेते हैं। मान लीजिए हमारे पास पानी के दो नमूने हैं 'क' और 'ख'। दोनों 1-1 लीटर हैं। 'क' नमूने में 0.5 ग्राम कैल्शियम क्लोराइड और 'ख' नमूने में 0.5 ग्राम मैग्नीशियम सल्फेट घोला गया है। क्या दोनों नमूनों की कठोरता एक समान होगी? मान लीजिए कि हम साबुन का एक घोल बना लेते हैं। अब 'क' व 'ख' दोनो में बूँद-बूँद करके यह घोल डालते हैं। साबुन के साथ लवणों की क्रिया होगी। जब तक लवण शेष हैं तब तक झाग नहीं बनेगा। क्या दोनों घोलों में लवण को समाप्त करने के लिए बराबर-बराबर साबुन लगेगा?

यदि दोनों में बराबर साबुन नहीं लगता तो हम कहेंगे कि

^{*}शैक्षिक संदर्भ, अगस्त-सितम्बर 2000

दोनों घोल में कठोरता की मात्रा अलग-अलग है। सचमुच होता भी यही है। ऐसी स्थिति में यह कहने का कोई अर्थ नहीं है कि दोनों घोल की कठोरता 0.5 ग्राम प्रति लीटर है।

तो कैसे व्यक्त करें कठोरता की मात्रा? इसका एक तरीका खोजा गया है। हम कठोरता को मात्र कैल्शियम कार्बोनेट की मात्रा के रूप में व्यक्त करते हैं — चाहे उस पानी में कठोरता किसी भी लवण की वजह से हो।

तुलनात्मक दृष्टि से देखें तो हमें यह पता लगाना होगा कि कठोरता के लिहाज़ से किसी लवण की कितनी मात्रा एक ग्राम कैल्शियम कार्बोनेट के बराबर है।

उदाहरण के लिए:

- 1 ग्राम कैल्शियम कार्बोनेट
- = 1.62 ग्राम कैल्शियम बाईकार्बोनेट
- = 1.2 ग्राम मैग्नीशियम सल्फेट

यदि 1 लीटर पानी में 0.5 ग्राम मैग्नीशियम सल्फेट घुला है तो उसकी कठोरता 0.41 ग्राम कैल्शियम कार्बोनेट के बराबर होगी। तो अब हम समस्त कठोरता को ग्राम कैल्शियम कार्बोनेट प्रति लीटर या मिलीग्राम कैल्शियम कार्बोनेट प्रति लीटर जैसी इकाइयों में व्यक्त कर सकते हैं।

मिलीग्राम प्रति लीटर में व्यक्त करना ज़्यादा सुविधाजनक है क्योंकि प्रायः कठोरता मिलीग्राम रेंज में होती है। इसका एक फायदा और भी होता है। 1 लीटर पानी यानी 1किलोग्राम पानी = 1000 ग्राम = 10⁶ मिलीग्राम। इसलिये यदि 10⁶ (1 मिलियन मिलीग्राम) पानी में x मिलीग्राम कठोरता है तो इसे सीधे-सीधे अंश प्रति मिलियन (पी.पी.एम. - पार्ट्स पर मिलियन) भी कह सकते हैं।

संक्षेप में, ध्यान रखने की बात यह है कि कठोरता को हम कैल्शियम कार्बोनेट के रूप में व्यक्त करते हैं। जो भी लवण कठोरता उत्पन्न करते हों उन सबके द्वारा उत्पन्न कठोरता को कैल्शियम कार्बोनेट की इकाई में व्यक्त किया जाए तो यह कुल कठोरता हुई। इसके बाद आते हैं कठोरता के वर्गीकरण पर।

स्थाई-अस्थाई कटोरता

मान लीजिए हम किसी पानी की कठोरता नाप लें (कैल्शियम कार्बोनेट की इकाई में)। इसका यह मतलब नही है कि उस पानी में सिर्फ कैल्शियम कार्बोनेट के कारण कठोरता पैदा हो रही है। अब इस पानी को कुछ समय उबालकर ठण्डा करके छान लेते हैं। और फिर उसकी कठोरता नापते हैं। मान लीजिए कठोरता कम हो जाती है। जो कठोरता पानी को उबालने के बाद भी बची रहे उसे स्थाई कठोरता कहते हैं। और उबालने पर जो दूर हो जाए उसे अस्थाई कठोरता कहते हैं।

अस्थाई कठोरता कैल्शियम, मैग्नीशियम के बाईकार्बोनेट लवणों के कारण होती है। ये लवण काफी अस्थिर प्रकृति के होते हैं तथा गरम करने या उबालने पर विघटित होकर कार्बोनेट में तब्दील हो जाते हैं। कार्बोनेट अघुलनशील होने के कारण अवक्षेपित हो जाता है।

जो कठोरता कार्बोनेट व बाईकार्बोनेट की उपस्थिति की वज़ह से होती है, उसे कार्बोनेट कठोरता कहते हैं। इसके अतिरिक्त शेष कठोरता को गैर-कार्बोनेट कठोरता कहते हैं।

कटोरता के असर

घरेलू व औद्योगिक उपयोग के लिए कठोर पानी का उपयोग करें तो कई समस्याएँ आती हैं। इनमें से एक समस्या से तो सभी परिचित हैं। वह समस्या है कपड़े धोने की। ऐसा बताते हैं कि यदि पानी में 350 मि.ग्रा. प्रति लीटर कठोरता हो, तो प्रति लीटर पानी पर आपको लगभग ढाई ग्राम साबुन ज़्यादा खर्च करना होगा। लगातार कठोर पानी में धोए जाने पर कपड़े चलते भी कम हैं। बताते हैं कि कपड़ा कैल्शियम व मैग्नीशियम के लवण अवशोषित करता है, इस वज़ह से रेशे खराब हो जाते हैं।

बहरहाल, कपड़े धोने की समस्या का समाधान तो डिटर्जेंट ने कर दिया है। इसलिए इस पर ज़्यादा सिर खपाने की ज़रूरत नहीं है। ऐसी भी रिपोर्ट है कि कठोर पानी में खाना पकने में समय ज़्यादा लगता है। मांसाहारियों के लिए बुरी खबर यह है कि कठोर पानी में मांस पकाने में एक दिक्कत यह है कि मांस का जो प्रोटीन निकलकर पानी में आता है वह अधुलनशील हो जाता है तथा शरीर में इसका पाचन नहीं हो पाता। वैसे यह कितनी हद तक होता है कहना मृश्किल है।

जब कठोरता के स्वास्थ्य सम्बन्धी असर की बात चली है तो यह कहना मुनासिब है कि इस बात के कोई व्यवस्थित अध्ययन नहीं हुए हैं। कई वर्ष पूर्व एक अध्ययन हुआ था जिसमें निष्कर्ष यह था कि अत्यधिक मृदु पानी पीने वाले लोगों में हृदय रोग थोड़े ज़्यादा होते हैं। किन्तु अध्ययनकर्ताओं ने साथ ही यह भी कहा था कि इसका मतलब यह नहीं कि सप्लाई से पूर्व पानी को कठोर बनाया जाए।

औद्योगिक दृष्टि से देखें तो पानी की कठोरता एक प्रमुख समस्या के रूप में सामने आती है। आप जानते ही हैं कि उद्योगों में पानी का काफी इस्तेमाल होता है। कई उद्योगों में बॉयलर लगे होते हैं जहाँ पानी को उबाला जाता है।

सबसे पहली समस्या तो यह आती है कि कठोर पानी का उपयोग किया जाए तो बॉयलर की दीवार पर एक पपड़ी जमा होने लगती है। यह वैसे तो आम अनुभव भी है। मसलन होशंगाबाद तथा नर्मदा किनारे के अन्य शहरों-गाँवों में जिस बरतन में पानी उबाला जाता हैं उसमें एक सफेद पपड़ी जम जाती है। यह पपड़ी प्रायः अस्थाई कठोरता की वजह से बनती है। भद्दी दिखने के अलावा इस पपड़ी के कई अन्य असर हैं।

पहली समस्या यह है कि यह पपड़ी कैल्शियम बाईकार्बोनेट के विघटन से बने कैल्शियम कार्बोनेट की होती है जिसकी वज़ह से बॉयलर में ईंधन की खपत बढ़ जाती है।

दूसरी समस्या है — चूँिक पपड़ी ऊष्मा की कुचालक होती है इसलिए उसके नीचे धातु अत्यधिक गरम हो जाती है। इसे सुपर हीटिंग कहते हैं। यदि पपड़ी एक समान मोटाई की न हो तो बॉयलर व ट्यूब में जगह-जगह पर फफोले बनने लगते हैं व दरारें पड़ने लगती हैं।

तीसरी समस्या — पपड़ी में कई जगह दरारें होती हैं और भाप इनमें घुस जाती है और बॉयलर के लोहे से क्रिया करती है, जिससे हाइड्रोजन उत्पन्न होती है। यदि पानी में

कठोरता दूर करने की रासायनिक विधियाँ

पानी में अगर बुझा हुआ चूना डाला जाए तो कैत्शियम और मैग्नीशियम के लवण उससे क्रिया करके अवक्षेपित हो जाते हैं। आपने शायद ध्यान न दिया हो मगर ध्यान देने की बात है कि बुझा हुआ चूना वास्तव में कैत्शियम हाइड्रॉक्साइड होता है। यानी आप पानी में से कैत्शियम-मैग्नीशियम को दूर करने के लिए ऊपर से कैत्शियम डाल रहे हैं। लिहाज़ा कितना चूना डाला (लगाया!) जाए इसका आकलन बहुत सावधानी से करना होता है, अन्यथा कठोरता घटने की बजाय बढ़ सकती है। पूरी प्रक्रिया में चूना डालने के बाद अवक्षेप को हटाना एक पेचीदा तकनीकी काम है। अभी हम इसकी टेक्नॉलॉजी में नहीं जा रहे हैं। रासायनिक क्रियाएँ निम्नानुसार हैं:

$$\begin{aligned} &\operatorname{Ca(HCO_3)_2} + \operatorname{Ca(OH)_2} \longrightarrow 2\operatorname{CaCO_3} + 2\operatorname{H_2O} \\ &\operatorname{Mg(HCO_3)_2} + \operatorname{Ca(OH)_2} \longrightarrow \operatorname{Mg(OH)_2} + \operatorname{Ca(HCO_3)_2} \\ &\operatorname{Ca(HCO_3)_2} + \operatorname{Ca(OH)_2} \longrightarrow 2\operatorname{CaCO_3} + 2\operatorname{H_2O} \end{aligned}$$

इस विधि में मुख्यतः कैल्शियम कठोरता दूर की जाती है। यदि कठोरता गैर-कार्बोनेट किस्म की है तो ऐसे पानी में कपड़े धोने का सोडा भी डालना होता है:

$$CaSO_4 + Na_2CO_3 \rightarrow CaCO_3 + Na_2SO_4$$

लगभग यही असर कॉस्टिक सोडा (NaOH) से भी हासिल किया जा सकता है।

$$Ca(HCO_3)_2 + 2NaOH \rightarrow CaCO_3 + Na_2CO_3 + 2H_2O$$

 $Mg(HCO_3)_2 + 4NaOH \rightarrow Mg(OH)_2 + 2Na_2CO_3 + 2H_2O$

इन क्रियाओं में कपड़े धोने का सोडा (Na₂CO₃) बनता है। यह अन्य गैर-कार्बोनेट कठोरता को दूर कर देता है। परन्तु ऊपर वर्णित विधियों की एक समस्या है। आपने भी गौर किया होगा कि इनमें कठोरता जनक लवणों का स्थान अन्य लवण ले लेते हैं। अतः पानी की कठोरता तो दूर हो जाती है लेकिन लवणों की कुल मात्रा कम नहीं होती। यदि कठोरता दूर करने के साथ-साथ लवणों की कुल सान्द्रता भी कम करनी है तो इसके लिए बेरियम हाइड्रॉक्साइड का इस्तेमाल किया जाता है। परन्तु बेरियम के लवण बहुत महँगे होते हैं।

सल्फेट लवण हैं तो हाइड्रोजन इनसे क्रिया करके हाइड्रोजन सल्फाइड बनाती है जो बॉयलर को क्षति पहुँचाती है।

लिहाज़ा कठोर पानी का उपयोग करें तो समय-समय पर बॉयलर को बन्द करके पपड़ी खुरचना होती है। बॉयलर को बन्द करके फिर से चालू करना भी काफी खर्चीला काम है।

कठोरता पैदा करने वाले लवणों में मैग्नीशियम के लवण भी होते हैं। मैग्नीशियम लवणों के जल अपघटन से पानी की अम्लीयता बढ़ती है। दूसरे शब्दों में, पानी में हाइड्रोजन आयनों की सान्द्रता बढ़ती है। ये हाइड्रोजन आयन बॉयलर को क्षति पहुँचाते हैं।

कठोरता से निपटना

अव्वल तो यदि किसी स्रोत का पानी अत्यन्त कठोर है तो बेहतर होगा कि पानी का अन्य स्रोत तलाश लिया जाए। कठोर पानी को बड़े पैमाने पर मृदु बनाना काफी खर्चीला सौदा है। भाप इंजिनों के ज़माने में यही किया जाता था कि इंजिन में पानी भरने के स्थान सावधानीपूर्वक चुने जाते थे। उस समय देश के कई स्टेशनों का महत्व मात्र पानी की मृदुता के कारण था। कठोरता दूर करने की कई भौतिक व रासायनिक विधियाँ उपलब्ध हैं (रासायनिक विधियाँ पिछले पृष्ठ पर बॉक्स में देखें)।

एक भौतिक विधि की चर्चा तो प्रकारान्तर से हो ही चुकी है। यदि पानी को गरम किया जाए तो बाईकार्बोनेट कठोरता कम की जा सकती है।

इसके अलावा एक विधि आयन आदान-प्रदान की भी है। ऐसे आयन विनिमय पदार्थ उपलब्ध हैं जो कैल्शियम व मैग्नीशियम के आयनों को सोखकर उनके बदले पानी में अन्य आयन घोल देते हैं। इस विधि का इस्तेमाल करके भी पानी को मृदु बना सकते हैं।

हवा के खेल, गैसें, श्वसन

इन तीन अध्यायों को एक साथ रखने का आशय यह है कि इन्हें एक के बाद एक करना उपयोगी होता है। जब तक बच्चे हवा के गुणधर्मों से परिचित नहीं हैं तब तक गैसों की बात करना मुश्किल होता है। और श्वसन की चर्चा कार्बन डाईऑक्साइड व ऑक्सीजन के साथ-साथ ऑक्सीकरण व दहन की समझ से जुड़ी ही है। इसलिए बाल वैज्ञानिक में इन अध्यायों को इसी क्रम में रखा गया था हालाँकि पुस्तक में ये एक के बाद एक नहीं आते थे।

हवा के खेल

आम तौर पर पदार्थ की तीन अवस्थाएँ प्रत्येक पाठ्यक्रम का अंग होती हैं। इन अवस्थाओं के गुणधर्म गिनाकर मामले को निपटा हुआ मान लिया जाता है। मगर यह बात कई अध्ययनों में उभरी है कि बच्चे गैस अवस्था को समझने में बहुत दिक्कतों का सामना करते हैं। इसका एक कारण तो यह है कि गैसें प्रायः अदृश्य होती हैं। एक और कारण यह है कि उनका मापतौल भी आसान नहीं होता। जैसे गैसों का घनत्व बहुत कम होता है, जिसकी वजह से उन्हें तौलना असम्भव नहीं तो कठिन ज़रूर होता है। इसी प्रकार से उन्हें किसी बरतन में भरकर रखना भी मुश्किल होता है। और यदि किसी बरतन में गैस भरी है तो यह बताना बहुत कठिन होता है कि बरतन भरा है। यदि किसी बरतन में कोई चीज़ भरी है तो उसमें दूसरी चीज़ भरने में दिक्कत होनी चाहिए मगर 'हवा भरे गिलास' में पानी भरने में तो कोई परेशानी नहीं होती। तो कैसे मानें कि वह गिलास 'भरा' था। इस तरह की कठिनाइयों के चलते गैसीय अवस्थाओं को समझना कठिनाइयाँ प्रस्तुत करता है और इन्हीं सब कठिनाइयों को देखते हुए बाल वैज्ञानिक में 'हवा के खेल' नामक अध्याय विकसित किया गया था।

इस अध्याय में हवा को 'देखने' के कई तरीके अपनाए गए हैं। बच्चों का सम्पर्क ऐसे अनुभवों से कराया गया है जिनकी व्याख्या के लिए हवा की उपस्थिति को स्वीकार करना होता है। इसके बाद हवा (यानी गैसीय अवस्था) के विभिन्न गुणधर्मों को उजागर करते प्रयोग हैं। जैसे यह महत्वपूर्ण गुणधर्म सरल प्रयोगों के माध्यम से उभारा गया है कि द्रवों के विपरीत हवा (गैस) को दबाया व फैलाया जा सकता है। हवा का आयतन नापने के प्रयोग भी किए गए हैं। गर्मी पाकर हवा के प्रसार दर्शाने के प्रयोग और हवा के दबाव सम्बन्धी कुछ प्रयोग भी शामिल हैं।

ऐसी उम्मीद है कि इस तरह के प्रयोग करने के बाद बच्चे हवा को एक पदार्थ के रूप में पहचानने लगेंगे और इससे उन्हें गैसों को भी पदार्थ मानने में आसानी होगी।

एक रोचक तथ्य यह है कि रासायनिक अभिक्रियाओं की समग्र समझ बनने में इस बात को स्वीकार करने का निर्णायक महत्व रहा है कि गैसें भी पदार्थ हैं और अभिक्रियाओं के नापतौल में उन्हें भी शामिल करना जरूरी है। गैसों को एकत्रित करके नापतौल करने की विधियों का विकास करीब 250 साल पहले हुआ था। उससे पहले होता यह था कि रासायनिक क्रियाओं के दौरान कई बार या तो गैस अभिकारक के रूप में शामिल होती थी या फिर उत्पाद के रूप में, मगर गैस अवस्था की कोई स्पष्ट समझ न होने के कारण क्रिया के दौरान गैसों का हिसाब नहीं रखा जाता था। इसके परिणामस्वरूप कई रासायनिक क्रियाओं, खासकर दहन की प्रकृति को स्पष्ट होने में बहुत समय लगा था। इसलिए गैसों को बतौर पदार्थ समझ पाना काफी ज़रूरी है। इससे यह भी स्पष्ट हो जाता है कि रसायन सम्बन्धी इस पुस्तक में 'हवा' जैसे भौतिक शास्त्र के अध्याय को क्यों शामिल किया गया है।

गैसें

दो अध्याय हैं जिनमें बच्चे चार गैसें बनाकर उनके गुणधर्मों की जाँच करते हैं — कार्बन डाईऑक्साइड, ऑक्सीजन, अमोनिया और हाइड्रोजन। इन प्रयोगों के लिए शिक्षक को पहले से काफी तैयारी कर लेनी होती है ताकि बच्चे उलझे

बगैर गैसें बनाने व जाँचने का काम कर सकें। यह शुरू में ही स्पष्ट कर देना शायद उचित होगा कि जब कोई भी गैस बनाई जाएगी तो उसकी कौन-कौन-सी जाँच करेंगे ताकि समस्त परीक्षणों की तैयारी रहे। एक बार गैस बनना शुरू होने के बाद यहाँ-वहाँ भागना ठीक नहीं।

उपरोक्त चारों में से कोई भी गैस ऐसी नहीं है जो व्यक्ति को नुकसान पहुँचाए। हाँ, अमोनिया तेज़ गन्ध वाली गैस होती है और कभी-कभी बन्द कमरे में बहुत ज़्यादा एकत्रित हो जाए तो थोड़ी तकलीफ हो सकती है। बेहतर होगा कि अमोनिया से सम्बन्धित प्रयोग किसी हवादार खुले स्थान (जैसे स्कूल के बरामदे) में किए जाएँ।

चार गैसों में से एक अम्लीय है, एक क्षारीय है और दो उदासीन हैं। दो को पानी के विस्थापन से एकत्रित किया जाता है, एक को हवा के विस्थापन से जबिक चौथी को एकत्रित नहीं किया जाता। वैसे अमोनिया और कार्बन डाईऑक्साइड को भी द्रव के विस्थापन से एकत्रित किया जा सकता है — मगर द्रव के रूप में पानी नहीं बिल्क किसी ऐसे द्रव का उपयोग करना होगा जिसमें ये गैसें न घुलती हों। जोसेफ प्रिस्टले ने गैसों को पारे के विस्थापन से एकत्र करने की विधि विकसित की थी। एक गैस खुद जलती है, एक जलने में सहायक है, एक चीज़ों को बुझा देती है जबिक एक का जलने से कोई सम्बन्ध नहीं है। इस तरह से ये चार गैसें काफी विविधता प्रदर्शित करती हैं। अब तक बच्चों ने रासायनिक क्रियाओं को घोल के रूप में

इसी अध्याय में वे दहन की क्रिया का अध्ययन भी करेंगे। इसमें ऑक्सीजन और कार्बन डाईऑक्साइड के परस्पर

ही होते देखा होगा। यह पहली बार होगा जब वे गैस रूप

में क्रियाएँ होते देखेंगे।

सम्बन्ध पर भी कुछ प्रयोग किए जाएँगे। दहन (या सामान्य तौर पर ऑक्सीकरण) की क्रिया को समझना रसायन शास्त्र में निर्णायक मोड़ माना जाता है। विज्ञान के कई इतिहासकारों ने तो इसे रासायनिक क्रान्ति की संज्ञा भी दी है।

श्वसन

रासायनिक स्तर पर देखें तो श्वसन और कुछ नहीं ऑक्सीजन की मदद से कार्बोहाइड्रेट व कभी-कभार अन्य कार्बनिक पदार्थों का ऑक्सीकरण करना ही है। इस क्रिया में कार्बन डाईऑक्साइड पैदा होती है। इसलिए कई पाठ्यपुस्तकों में श्वसन को धीमा दहन भी कहा जाता है। यह काफी भ्रामक उपमा है क्योंकि श्वसन में न तो कोई लौ पैदा होती है, न धुआँ। यह कहना सही नहीं है कि हमारे शरीर के अन्दर आग लगी हुई है। हाँ, श्वसन के दौरान ऊष्मा ज़रूर पैदा होती है।

इस अध्याय में श्वसन को लेकर कई छोटे-छोटे प्रयोग हैं जिनकी मदद से श्वसन को समझने की कोशिश होती है। इनमें श्वसन दर को नापना, श्वसन की अनुपस्थिति का प्रत्यक्ष असर, कसरत का श्वसन दर पर असर, साँस में हवा की मात्रा वगैरह शामिल हैं। एक महत्वपूर्ण प्रयोग का सम्बन्ध इस बात से है कि जो हवा हम साँस में लेते हैं और जो हवा हम छोड़ते हैं, उनके बीच क्या अन्तर होता है। इसके आधार पर कुछ अन्दाज़ लगाया जा सकता है कि जब हवा शरीर में जाती है तो उसका क्या होता होगा।

एक बार जब यह स्पष्ट हो जाता है कि हवा में कार्बन डाईऑक्साइड की मात्रा में वृद्धि श्वसन का द्योतक है, तो कुछ प्रयोग पेड़-पौधों तथा बीजों के श्वसन को लेकर भी किए जाते हैं।

हवा के खेल*

बैसाख-जेठ की गरम हवाओं के बाद पानी भरी हवाएँ तुम्हें ज़रूर याद होंगी। और जाड़ों की रातों में उसी हवा से हिड्डयों तक को ठण्ड लगती है। हवा की दिशा में साइकिल चलाएँ तो ज़्यादा मेहनत नहीं करनी पड़ती परन्तु सामने की हवा हो तो बहुत ज़ोर लगाना पड़ता है। यही आँधी धूल, कंकड़ से आकाश भर देती है और कभी-कभी तो बड़े-बड़े पेड़ तक उखाड़ फेंकती है।

हवा के कई ऐसे कारनामे तुम्हारे दिमाग में ज़रूर आ रहे होंगे।

हवा होने का पता तुम्हें और किन-किन बातों से चलता है? (1)

परन्तु अगर हवा ज़रा भी न बह रही हो तो तुम कैसे पहचानोगे कि किसी स्थान पर हवा है या नहीं? एक ऐसे पेड़ के नीचे जिसकी एक भी पत्ती नहीं हिल रही? एक कमरे में? खाली गिलास में? एक बन्द बोतल में? एक काँच की नली में?

तुम्हें क्या लगता है खाली बोतल या गिलास में हवा है या नहीं? इस बात का फैसला करने का कोई तरीका भी बताओ। (2)

इस अध्याय में हवा के कुछ प्रयोग करेंगे। इन प्रयोगों से हम हवा के बारे में कुछ बातें सीखेंगे। हम हवा को देख तो नहीं सकते किन्तु कुछ ऐसे प्रयोग कर सकते हैं जिनसे हमें हवा के बारे में पता चलता है। है ना मज़ेदार बात!

हवा कहाँ है, कहाँ नहीं: प्रयोग 1

यदि तुम गिलास को पानी में डुबाओ तो क्या उसमें पानी भर जाएगा?

तुम कहोगे यह तो रोज़ की बात है। हम गिलास को पानी में डुबाकर भर लेते हैं। परन्तु ज़रा नीचे दिए गए तरीके से गिलास को पानी में डुबाकर देखो।

एक गिलास में कागज़ ठूँसो और पेंदे तक खिसका दो (चित्र 1)। गिलास को एकदम औंधा करके पानी से भरी बाल्टी में पेंदे तक ले जाओ। यानी गिलास औंधा ही पानी में डूब जाना चाहिए। उसमें पानी ास

प्रश्न 1 व 2 बच्चों से हवा की उपस्थिति

के प्रमाण की अपेक्षा करते हैं। ज़रूरी

नहीं कि वे सधे-सधाए प्रमाण प्रस्तुत

करें।

बा.वै. कक्षा ७, २००१, पृ १२४-५

* बाल वैज्ञानिक कक्षा 7, 2001

बा.वै. कक्षा ७, २००१, पृ १२५

अनुमान से बताओ कि गिलास में रखा कागज़ गीला हुआ होगा या नहीं? (3)

गिलास को आँधा ही पानी से बाहर निकालकर अपने उत्तर की जाँच करो। यदि इस प्रयोग में हम गिलास को चित्र 2 की तरह थोड़ा टेढ़ा करके पानी में डुबाएँ तो क्या होगा?

इस प्रयोग को करो और जो कुछ देखो उसे अपने शब्दों में लिखो। (4)

क्या गिलास में पानी भरेगा?: प्रयोग 2

एक बीकर में पानी भर लो। पानी पर एक फुग्गा (बिना फूला हुआ) या रंगीन कागज़ का टुकड़ा तैरा दो। अब एक पारदर्शी गिलास को इस कॉर्क के ऊपर आँधा करके पानी में नीचे दबाओ। फुग्गे या कागज़ से तुम्हें पता चल जाएगा कि गिलास में पानी का तल कहाँ है। यह देखो कि गिलास में पानी भरा या नहीं।

एक चित्र बनाकर बताओ कि बीकर में पानी और गिलास के अन्दर पानी के तल कहाँ-कहाँ हैं? (5)

क्या गिलास में पानी भर गया? (6)

क्या कोई चीज़ पानी को गिलास के अन्दर घुसने से रोकती है? वह चीज़ क्या है? (7)

इसी बात को हम और प्रयोगों में भी देख सकते हैं। तो चलो अब यह देखते हैं कि किसी बोतल में हवा है या नहीं।

बोतल में पानी भरोः प्रयोग 3

एक सँकरे मुँह वाली बोतल लो। एक बाल्टी में पानी भर लो। अब इस बोतल को पानी में डुबाकर इसमें पानी भरो।

जब पानी भरते हैं तो क्या बोतल में से कुछ बाहर भी निकलता है? कैसे पता चलता है? (8)

प्रयोग 1 से 3 में तुमने जो कुछ देखा, उससे हवा के किस गुणधर्म का पता चलता है? (9)

क्या यह कहना सही होगा कि जिस गिलास या बोतल को हम खाली कहते हैं उसमें हवा भरी होती है? (10)

हवा का आयतन

यदि हर जगह हवा है (यानी हवा जगह घेरती है) तो क्या तुम इसका आयतन नापने का कोई तरीका सुझा सकते हो? जैसे, मान लो हम यह पता करना चाहें कि एक इंजेक्शन की शीशी में कितनी हवा है, तो कैसे पता करें?

यदि तुम्हें कोई तरीका सूझ रहा हो तो उस पर कक्षा में चर्चा करो। अपने तरीके से इंजेक्शन की शीशी में हवा का आयतन पता करो।

एक तरीका यहाँ भी सुझाया जा रहा है।

प्रयोग 4

एक बड़ी इंजेक्शन शीशी के ढक्कन में दो छेद करो। दोनों छेदों में खाली रिफिल का एक-एक टुकड़ा (लगभग 2 से.मी.) पिरो लो। दोनों पर एक-एक वॉल्व ट्यूब लगा लो।

एक वॉल्व ट्यूब के दूसरे छोर पर एक उलटी सिरिंज कीप की तरह लगा लो। अब चित्र 3 में दिखाई व्यवस्था जमाओ।

50 मि.ली. का एक नपनाघट लो और उसे ऊपर तक पानी से भर लो। अब इसे पानी से भरी एक तश्तरी में इस तरह उलटा करो कि इसका पानी न गिरे। इंजेक्शन शीशी से निकली एक वॉल्व ट्यूब को इस नपनाघट के मुँह में से अन्दर कर दो।

अब करना यह है कि सिरिंज के माध्यम से इंजेक्शन की शीशी में पानी भरना है। जब पानी भरेंगे तो इंजेक्शन की शीशी की हवा दूसरी नली में से निकलेगी और नपनाघट में भर जाएगी। इस तरह से हम जब इंजेक्शन की शीशी को पानी से पूरा भर देंगे तो उसकी सारी हवा नपनाघट में आ जाएगी। नपनाघट में पढ़कर हमें पता चल जाएगा कि उसमें कितनी हवा है।

सिरिंज से इंजेक्शन शीशी में पानी भरो। ध्यान रखना कि नली का मुँह नपनाघट के अन्दर रहे।

जब इंजेक्शन की शीशी पूरी पानी से भर जाए तो नपनाघट से पढ़कर बताओं कि उसमें कितनी हवा है। (11)

अब इंजेक्शन की शीशी में भरे पानी को नापकर उसका आयतन भी पता करो। (12)

क्या इस पानी का आयतन और हवा का आयतन बराबर है? (13)

क्या इसके आधार पर तुम किसी बरतन में भरी हवा का आयतन नापने का कोई आसान तरीका सुझा सकते हो? (14)

क्या हवा का आयतन निश्चित है?

प्रयोग 4 में तुमने हवा का आयतन नापा। क्या यह आयतन हमेशा निश्चित रहता है? आओ इसे जानने के लिए कुछ प्रयोग करें।

हवा को गरम करके देखो

साइकिल की ट्यूब में यदि खूब हवा भरी हो और गर्मियों में साइकिल को धूप में छोड़ दें तो कई बार ट्यूब फट जाता है। लोग कहते हैं बस्ट हो गया। ट्यूब बस्ट क्यों होता है, यह जानने के लिए आओ हम हवा को गरम करके देखें।

प्रयोग 5

आधे लीटर की प्लास्टिक की बोतल के मुँह पर एक बड़ा फुग्गा चढ़ा दो (चित्र 4)।

चित्र 3

बा.वै. कक्षा ७, २००१, पृ १२६

बा.वै. कक्षा ७, २००१, पृ २०१

चित्र 4

बा.वै. कक्षा ७, २००१, पृ १२७

ध्यान रहे फुग्गा चढ़ाते समय बोतल पिचकनी नहीं चाहिए। बोतल को धूप में रख दो। 4-5 मिनट बाद उसे दुबारा देखो।

फुग्गे को क्या हुआ? (15) ऐसा क्यों होता है? (16)

बोतल को ठण्डा करने के लिए छाँव में रखो और 5 मिनट बाद दुबारा देखो।

अब फुग्गे की क्या दशा है? (17)

ऐसा क्यों होता है? (18)

क्या अब तुम बता सकते हो कि गर्मियों में अक्सर साइकिल की ट्यूब बस्ट क्यों हो जाती है? (19)

प्रयोग 6

एक सिरिंज लो। इसका पिस्टन पूरा खोल लो।

क्या अब सिरिंज के अन्दर हवा भरी है? (20)

इस हवा का आयतन कितना है? (21)

अब सिरिंज का मुँह उँगली से बन्द करके पिस्टन को दबाओ (चित्र 5)।

क्या पिस्टन दब जाता है? (22)

पिस्टन दबाने के बाद हवा का आयतन कितना रह गया? (23)

क्या पिस्टन दबाते वक्त उँगलियों पर कुछ दबाव महसूस होता है? (24)

पिस्टन को दबाने पर क्या सिरिंज के अन्दर की हवा कम हो गई या सिर्फ उसके आयतन में कमी आई? (25)

अब सिरिंज में पानी भरकर इसी प्रयोग को दोहराओ।

क्या पानी भरी सिरिंज में भी तुम पिस्टन को दबा सकते हो? (26)

इस प्रयोग से हवा और पानी के किस गुणधर्म में अन्तर का पता चलता है? (27)

क्या दबाकर हवा का आयतन कम किया जा सकता है? (28)

हवा का दबाव

प्रयोग 6 में जब तुमने सिरिंज का मुँह बन्द करके पिस्टन को दबाया था तो तुमने उँगलियों पर दबाव महसूस किया होगा। यह दबाव किस चीज़ का था?

क्या सिरिंज में भरी हवा दबाव डाल रही थी? आओ, हवा के दबाव से सम्बन्धित कुछ प्रयोग करें।

प्रयोग ७

मोटे प्लास्टिक की एक थैली लो। जिन थैलियों में दूध मिलता है वैसी थैली अच्छी रहेगी। चित्र 6 में दिखाए अनुसार एक काँच की नली या पुराने बॉल पेन की खोल

कॉर्क में नली लगाने का तरीका पृष्ठ 43 पर दिया गया है। का मुँह इस थैली में डालकर धागे या वॉल्व ट्यूब से कसकर बाँध दो। थैली के ऊपर एक-दो किताबें रखो। अब नली में फूँक मारकर थैली में हवा भरो।

क्या हुआ? और क्यों? (29)

प्रयोग 8

एक प्लास्टिक की बड़ी बोतल लो। रबर का एक ऐसा दो छेदी कॉर्क छाँटो जो बोतल के मुँह को कसकर बन्द कर सके। काँच की ऐसी दो नलियाँ लो जो कॉर्क के छेदों में सही-सही पिरोई जा सकें। इनमें से एक नली के निचले सिरे पर एक फुग्गा धागे से कसकर बाँध लो।

बोतल को कॉर्क से कसकर बन्द कर लो। इस स्थिति में फुग्गा बोतल के अन्दर होना चाहिए (चित्र 7)।

बोतल के मुँह को और कॉर्क के छेदों को लाख या मोम से सील कर लो। जिस काँच की नली में फुग्गा नहीं लगा है उसको मुँह में रखकर साँस ऊपर की ओर खींचो।

फुग्गे को क्या होता है? (30)

अनुमान लगाओ कि ऐसा क्यों होता होगा? (31)

प्रयोग 9

काँच की एक नली लो। इसका एक सिरा पानी में डुबाकर, दूसरे सिरे से मुँह से खींचकर तीन-चौथाई भाग पानी से भर दो। इसके एक सिरे को अँगूठे से बन्द कर लो और दूसरे सिरे को पानी से भरे बीकर में डुबो दो (चित्र 8)।

क्या पानी नली में ठहरता है या नीचे गिर जाता है? (32)

अब ऊपर से अँगूठा हटा लो।

क्या हुआ? (३३)

प्रयोग 10

आधे लीटर की प्लास्टिक की बोतल में लगभग एक तिहाई पानी भर लो और उसके मुँह में कसकर बैठ जाने वाला एक छेदी रबर कॉर्क छाँट लो। कॉर्क के छेद में काँच की एक नली पिरो दो। ध्यान रहे कि नली और कॉर्क के छेद के बीच हवा निकलने की जगह न रहे। आवश्यकता हो तो लाख या मोम से उसे सील कर लो। बोतल में इतना पानी होना चाहिए कि कॉर्क लगाने पर नली का निचला हिस्सा पानी में डूबा रहे (चित्र 9)। कॉर्क से बोतल का मुँह कसकर बन्द कर लो। नली से बोतल के अन्दर ज़ोर से फूँककर जल्दी से मुँह हटा लो।

क्या होता है? (34)

चित्र 7

83

प्रयोग 11

पिछले प्रयोग की बोतल से सारा पानी निकालकर कॉर्क फिर कसकर फिट कर दो। बोतल को दोनों हाथों से हल्के से दबाओ तािक वह पिचक जाए। ध्यान रहे बोतल टूटनी नहीं चाहिए। इस स्थिति में बोतल को उलटा करके नली को पानी से भरे बीकर में डुबो दो। अब हाथ ढीले कर दो।

क्या हुआ? (३५)

अभ्यास के सवाल

- 1. एक बाल्टी में कितनी हवा है? इसे नापने का कोई तरीका सुझाओ।
- 2. एक इंजेक्शन की शीशी लो। उसके रबर के ढक्कन में एक रिफिल का टुकड़ा पिरो दो और ढक्कन को शीशी पर लगा दो। रिफिल के टुकड़े के ऊपर पानी की एक बूँद रख दो या रिफिल में थोड़ा-सा पानी भर दो। अब इस शीशी को अपनी हथेली में कसकर पकड़ लो। पानी की बूँद को क्या होता है और क्यों?
- 3. प्रयोग 6 की तरह एक सिरिंज लो। इसका पिस्टन आधा खोल लो। अब इसका मुँह बन्द करके पिस्टन को खींचने की कोशिश करो। क्या पिस्टन आसानी से खिंचता है? उँगली पर क्या महसूस होता है? पिस्टन को छोड़ने पर क्या होता है?
- 4. इस अध्याय में तुमने हवा से सम्बन्धित कई प्रयोग किए हैं। अपने अवलोकनों के आधार पर निम्नलिखित तालिका पूरी करो।

तालिकाः हवा के गुणधर्म

प्रयोग क्र.	प्रयोग द्वारा प्रदर्शित हवा का गुणधर्म
1.	
2.	
3.	
4.	
5.	
6.	
7.	
8.	

गैसें - 1*

तुमने हवा पर कई प्रयोग किए हैं। उनमें तुमने सीखा था कि ठोस और द्रव पदार्थों के समान हवा भी स्थान घेरती है। द्रवों के समान हवा की भी कोई स्थाई या निश्चित शक्ल नहीं होती, और जिस बरतन में यह हो उसी की आकृति इसकी आकृति भी हो जाती है। तुमने अपने प्रयोगों से हवा और द्रव में एक महत्वपूर्ण अन्तर भी सीखा था।

सोचकर बताओं कि क्या —

द्रव का एक निश्चित आयतन होता है? (1)

हवा का एक निश्चित आयतन होता है? (2)

हवा के अध्याय और अपनी कॉपी में हवा के प्रयोगों के अवलोकनों और परिणामों को फिर एक बार ध्यान से देखो।

बताओ कि किन-किन प्रयोगों से यह पता चलता है कि —

हवा की कोई निश्चित आकृति नहीं होती है। (3)

हवा का कोई निश्चित आयतन नहीं होता है। (4)

हवा की तरह जिन पदार्थों की न तो कोई निश्चित शक्ल हो और न ही कोई निश्चित आयतन हो, उन्हें हम गैस कहते हैं।

आओ, हम कुछ गैसें बनाएँ और उनके गुणधर्म परखें।

प्रयोग शुरू करने से पहले चूने का पानी और फिनॉफ्थलीन का गुलाबी सूचक घोल नीचे बताए तरीके से बनाकर रख लो।

चूने का पानी

एक बीकर को लगभग आधा पानी से भरो और उसमें पान में खाया जाने वाला लगभग 5 ग्राम चूना डालो। चूने को एक काँच की छड़ की सहायता से पानी में अच्छी तरह घोलो और फिर रात भर रखा रहने दो। अगले दिन सुबह इसे छन्ना कागज़ से बनी कीप से छान लो। छानने का तरीका पृथक्करण अध्याय में देखो। चूने का जो घोल नीचे छनकर आ रहा है, उसे प्रयोग करने के लिए काम में लाओ। यह घोल पारदर्शक होना चाहिए।

फिनॉफ्थलीन का गुलाबी सूचक घोल

अम्ल और क्षार के परस्पर सम्बन्ध अध्याय में दी गई विधि से यह सूचक घोल बना लो।

^{*} बाल वैज्ञानिक कक्षा ७, १९७९ (कुछ संशोधनों के साथ)

बा.वै. कक्षा ७, २००१

वैसे रासायनिक क्रियाएँ अध्याय आगे आएगा (पृष्ठ 129)। वहाँ यह समझने की कोशिश की गई है कि हम यह कैसे पहचानते हैं कि कोई क्रिया हो रही है। प्रश्न 5 में मूलतः बच्चों को यह ध्यान देना है कि संगमरमर के टुकड़ों से बुलबुले निकल रहे हैं।

आप देख ही सकते हैं कि कार्बन डाईऑक्साइड को हम हवा के विस्थापन द्वारा एकत्रित कर रहे हैं, जबिक ऑक्सीजन को पानी के विस्थापन से एकत्रित करेंगे। कार्बन डाईऑक्साइड हवा से काफी भारी होती है और पानी में घुलनशील होती है। इसलिए उसे इस तरह से एकत्रित करना सुविधाजनक होता है।

कार्बन डाईऑक्साइडः प्रयोग 1

चित्र 1 में दिखाए तरीके से काँच की दो निलयों को रबर की निली से जोड़कर इस प्रकार लगाओं कि काँच की एक निली का खुला सिरा उफननिली के अन्दर हो और काँच की दूसरी निली का खुला सिरा परखनिली में रखे हुए चूने के पानी में डूबा हो।

उफननली का कॉर्क हटाकर उसमें लगभग 5 ग्राम संगमरमर के टुकड़े डालो और उन पर हल्का नमक का अम्ल (हाइड्रोक्लोरिक अम्ल) इतना डालो कि वे उसमें डूब जाएँ। उफननली के मुँह पर काँच की नली वाला कॉर्क कसकर दोबारा लगा दो।

उफननली की जगह इंजेक्शन की शीशी का उपयोग भी किया जा सकता है। एक बड़ी इंजेक्शन की शीशी ढक्कन समेत, एक रिफिल का टुकड़ा और एक 15 से.मी. लम्बी वॉल्व ट्यूब लो। रिफिल के टुकड़े को ढक्कन में पिरो दो ताकि उसका थोड़ा-थोड़ा हिस्सा ढक्कन के दोनों ओर निकला रहे। रिफिल के बाहरी सिरे पर वॉल्व ट्यूब चढ़ा दो। वॉल्व ट्यूब का दूसरा सिरा एक परखनली में डालकर रखो। शीशी में संगमरमर के टुकड़े और थोड़ा-सा नमक का अम्ल डालकर ढक्कन बन्द कर दो।

क्या संगमरमर और नमक के अम्ल की आपस में कोई क्रिया हो रही है? तुम्हें कैसे पता चला कि क्रिया हो रही है? (5)

परखनली में हो रही क्रिया को ध्यान से देखो और बताओ कि क्या उफननली में कोई गैस बन रही है। अपने उत्तर का प्रमाण भी दो। (6)

क्या चूने के पानी में कोई परिवर्तन हो रहा है? (7)

इस प्रयोग के किस अवलोकन के आधार पर तुम बताओगे कि उफननली में कोई नया पदार्थ बन रहा है? (8)

नीचे दिए गए प्रयोगों की मदद से इस पदार्थ के कुछ और गुणधर्म परखो।

प्रयोग 2

एक परखनली को लगभग एक-चौथाई फिनॉफ्थलीन के गुलाबी सूचक घोल से भरो।

प्रयोग 1 की गैस को अब गुलाबी सूचक घोल में से प्रवाहित करो। अर्थात गैस के बुलबुले इस घोल में से होकर निकलने दो।

गैस प्रवाहित करने से गुलाबी सूचक घोल पर क्या असर पड़ा? (9)

प्रयोग 3

चित्र 2 में दिखाए गए तरीके से एक परखनली में इस गैस को इकट्ठा करो। इस गैस का रंग कैसा है? (10)

परखनली को सूँघकर बताओं कि इस गैस की गन्ध कैसी है। (11)

अब इसी परखनली में भीगा हुआ नीला लिटमस कागज़ डालो।

क्या लिटमस कागज़ के रंग में कोई परिवर्तन आया? (12)

प्रयोग 4

एक खाली ग्लूकोज़ बोतल लो और उसमें जलती हुई दियासलाई डालकर देखो कि वह कितनी देर में बुझती है (चित्र 3)। अब इस बोतल में प्रयोग 3 की तरह गैस को भरो और फिर से एक जलती हुई दियासलाई अन्दर डालो।

पहली बार की तुलना में दूसरी बार दियासलाई कितनी देर में बुझी? (13) इस प्रयोग से नमक के अम्ल और संगमरमर की क्रिया से बनने वाली गैस के बारे में तुमने क्या सीखा? (14)

क्या तुम इस गैस के इस गुणधर्म का अपने जीवन में कोई उपयोग सोच सकते हो? (15)

प्रयोग 5

प्रयोग 4 की तरह ग्लूकोज़ बोतल को गैस से भरो और उसे एक उफननली में उड़ेलो जैसे पानी उड़ेलते हैं। यह ज़रूरी है कि ग्लूकोज़ बोतल को उफननली के मुँह पर उलटा करके ज़रा-सा टेढ़ा रखा जाए, न कि उसके मुँह के ठीक ऊपर खड़ा किया जाए (चित्र 4)। टेढ़ा रखने से उफननली की हवा बाहर निकल सकेगी और गैस उसके अन्दर जा सकेगी।

ग्लूकोज़ बोतल कुछ देर उलटा रखने के बाद उसे सीधा करके उसमें भीगा हुआ नीला लिटमस कागज़ डालो।

क्या लिटमस कागज़ के रंग में कोई परिवर्तन आया? (16)

यदि नहीं तो ग्लूकोज़ बोतल में तुमने जो गैस भरी थी वह कहाँ गई? अपने उत्तर का स्पष्ट प्रमाण दो। क्या परखनली में लिटमस परीक्षण करने से कुछ पता चल सकता है? (17)

इस प्रयोग के आधार पर क्या तुम बता सकते हो कि हवा और इस गैस में से कौन भारी है? (18)

इस गैस के तुमने जो गुणधर्म प्रयोग द्वारा सीखे हैं, उनकी एक सूची बनाओ। (19)

इन गुणधर्मों वाली गैस का नाम कार्बन डाईऑक्साइड है।

आगे के प्रयोगों में हम जो गैस बनाएँगे उसे इकट्ठा करने के लिए हम एक विशेष तरीका अपनाएँगे। 'हवा के खेल' अध्याय में हवा को इकट्ठी करने के लिए इस तरीके का उपयोग किया था। एक परखनली को पानी से पूरा भरो और उसके मुँह को अँगूठे से बन्द करके परखनली उलटा कर लो। परखनली को इसी प्रकार

चित्र 3

बा.वै. कक्षा ७, २००१, पृ १५१-२

उलटा पकड़े हुए पानी से भरे बरतन में खड़ा करके अपना अँगूठा हटा लो। तुम देखोगे कि परखनली का पानी नहीं गिरता।

प्रयोग 6

एक उफननली में लगभग 2-3 ग्राम पोटेशियम परमैंग्नेट लो। चित्र 5 में दिखाया उपकरण जमाओ। उफननली को परखनली पकड़ से पकड़कर गरम करो।

क्या प्रयोग 1 के समान उफननली में पड़े रसायन को कुछ हो रहा है? (22) पानी से भरी परखनली में क्या कोई गैस जमा हो रही है? कैसे बताओंगे? (23)

इसका रंग क्या है? (24)

परखनली को गैस से भरकर अलग रख दो। इससे हम कोई प्रयोग नहीं करेंगे क्योंकि इसमें थोड़ी-बहुत हवा होगी।

चित्र 6

गैस से भरी उफननली लो। इसमें एक सुलगती हुई दियासलाई डालो और उसे पूरी तरह जल जाने दो। अब एक और सुलगती हुई दियासलाई इसी उफननली में डालो। ऐसा तब तक करते जाओ जब तक कि सुलगती हुई दियासलाई पर गैस का असर होना बन्द न हो जाए। अब इस उफननली में एक जलती हुई दियासलाई डालो।

क्या हुआ? (28)

जो गैस शुरू में सुलगती हुई दियासलाई को जलने में मदद दे रही थी उसका दियासलाई जलने के बाद क्या हुआ? (29)

क्या इस प्रयोग में तुम्हें इस बात का कोई प्रमाण मिला कि दियासलाई के जलने से उफननली की गैस खर्च हो जाती है? (30)

प्रयोग 4 के आधार पर बताओ कि ऊपर वाले प्रयोग में दियासलाई के जलने के बाद वह कौन-सी गैस बनी होगी जिससे जलती हुई दियासलाई बुझ जाती है? (31)

प्रयोग 8

प्रयोग 6 की तरह एक उफननली को फिर से इस गैस से भरो और उसमें भीगा हुआ नीला लिटमस कागज़ डालो। उफननली को कॉर्क से बन्द करके कुछ देर के लिए स्टैंड पर रख दो।

यदि नीले लिटमस कागज़ पर गैस का असर न हो तो लाल लिटमस कागज़ से जाँच करके देखो।

इस गैस का नीले या लाल लिटमस कागज़ पर क्या प्रभाव हुआ? (32)

प्रयोग 9

जैसा तुमने कार्बन डाईऑक्साइड वाले प्रयोग 1 और 2 में किया था वैसे ही इस गैस को भी चूने के पानी और फिनाफ्थलीन के गुलाबी व रंगहीन सूचक घोल में से प्रवाहित करो।

इस गैस का चूने के पानी पर क्या प्रभाव पड़ा? (33) गुलाबी या रंगहीन सूचक घोल के रंग में क्या परिवर्तन आया? (34)

प्रयोग 10

इस प्रयोग को दो टोलियाँ मिलकर करें।

गैस से भरी एक उफननली लो। जैसे कि प्रयोग 5 में कार्बन डाईऑक्साइड को ग्लूकोज़ बोतल से उफननली में उड़ेला था, वैसे ही इस गैस को भी एक उफननली में उड़ेलो। लगभग आधे मिनट के बाद दोनों परखनलियों को लकड़ी के कॉर्क से बन्द कर लो।

यह पता लगाने के लिए कि गैस नीचे वाली उफननली में गई है या नहीं, एक

सुलगती हुई दियासलाई को परखनली पकड़ से पकड़कर नीचे वाली उफननली के अन्दर ले जाओ।

क्या दियासलाई जल उठी? (35)

क्या गैस ऊपर वाली उफननली से नीचे वाली उफननली में आ गई? (36)

अब गैस से भरी हुई एक और उफननली लो और इसको सीधा पकड़कर इसके मुँह पर एक खाली उफननली उलटी करके आधे मिनट तक रखो। सुलगती हुई दियासलाई की मदद से पता करो कि गैस ऊपर वाली उफननली में गई या नहीं।

अपने अवलोकनों के आधार पर बताओ कि यह गैस हवा से भारी है या हल्की? (37)

इन प्रयोगों से तुमने इस गैस के जो गुणधर्म सीखे हैं, उनकी एक सूची बनाओ। (38)

जिस गैस के ये गुणधर्म हों, उसे हम **ऑक्सीजन** कहते हैं। ऑक्सीजन गैस के हमारे जीवन में महत्व के बारे में तुम श्वसन के अध्याय में कुछ सीखोगे।

कार्बन डाईऑक्साइड और ऑक्सीजन के गुणधर्मों की तुलना

तुमने कार्बन डाईऑक्साइड और ऑक्सीजन गैसों के गुणधर्म सीखे हैं। उनकी तुलना नीचे दी गई तालिका बनाकर करो। (39)

क्र. गुणधर्म

कार्बन डाईऑक्साइड ऑक्सीजन

रंग

- 2. गन्ध
- 3. हवा से भारी या हल्की?
- नीले लिटमस पर प्रभाव
- 5. लाल लिटमस पर प्रभाव
- 6. जलती हुई दियासलाई पर असर
- 7. सुलगती हुई दियासलाई पर असर
- चूने के पानी पर प्रभाव
- 9. गुलाबी सूचक घोल पर प्रभाव
- 10. रंगहीन सूचक घोल पर प्रभाव

हवा, ऑक्सीजन और कार्बन डाईऑक्साइड – जलने का विज्ञानः प्रयोग 11

दो छोटी मोमबत्तियाँ लो। दोनों को मेज़ पर खड़ा करके जला लो। इनमें से एक मोमबत्ती को बीकर या काँच के गिलास से ढँक दो (चित्र 7)।

क्या तुम बता सकते हो कि ढँकी हुई मोमबत्ती क्यों बुझ जाती है? (40)

चित्र 7 बा.वै. कक्षा 7, 2001, पु 154

अलग-अलग आयतन के चार बरतन लो। उदाहरण के लिए 250 मि.ली. का कोनिकल फ्लास्क, 500 मि.ली. की ग्लूकोज़ बोतल और 2 लीटर की प्लास्टिक बोतल ले सकते हो। प्लास्टिक की बोतल के साथ प्रयोग सावधानी से करना होगा, अन्यथा वह पिघल सकती है या आग भी पकड़ सकती है। जलती हुई मोमबत्ती को इन बरतनों से बारी-बारी से ढँको और पता करो कि हर बार ढँकने के कितने समय बाद मोमबत्ती बुझती है।

प्रयोग के परिणामों को तालिका में दिखाओ। तालिका का नमूना नीचे दिया गया है (41)

頭.	बरतन का आयतन (मि.ली.)	बुझने में लगा समय (सेकंड)
1.		
2.		
3.		
4.		

अगर विभिन्न आकार परन्तु समान आयतन के बरतन लें तो क्या बुझने में लगने वाले समय में अन्तर होगा? कारण सहित समझाओ। (42)

प्रयोग 12

एक जलती हुई मोमबत्ती की लौ के थोड़ा ऊपर एक उफननली को परखनली पकड़ की मदद से उलटी पकड़ो। लौ उफननली को छूने न पाए (चित्र 8)। कुछ समय बाद उफननली को सीधी करके उसमें चूने का पानी डालकर हिलाओ।

क्या चूने के पानी पर कुछ असर पड़ा? (43) उफननली में कौन-सी गैस भर गई होगी? (44) यह गैस कहाँ से आई? (45)

तुमने हवा, ऑक्सीजन और कार्बन डाईऑक्साइड में चीज़ों के जलने के बारे में कई प्रयोग किए हैं। तुमने इस विषय पर जो कुछ सीखा है उसके आधार पर नीचे लिखे वाक्यों में खाली स्थानों को भरोः

- (क) गैस सुलगती हुई दियासलाई के जलने में मदद देती है।
- (ख) दियासलाई के जलने पर ______ गैस खर्च हो जाती है।
- (ग) गैस के बिना दियासलाई जल नहीं सकती।
- (घ) प्रयोग 13 के आधार पर हम यह निष्कर्ष निकाल सकते हैं कि चीज़ों के जलने से ————— गैस बनती है।
- (च) ——— गैस जलती हुई चीज़ों को बुझा देती है।
- (छ) हवा में चीज़ें जलती हैं। इसका अर्थ है कि हवा में _____ गैस है।

बा.वै. कक्षा ७, २००१, पृ १५५

(ज) हवा में चीज़ों के जलने से गैस खर्च हो जाती है और — गैस बनती है। (46)

अपने शब्दों में संक्षेप में लिखो कि चीज़ों के जलने से हवा में क्या-क्या परिवर्तन होता है? (47)

अभ्यास के सवाल

- एक गैस भीगे हुए नीले लिटमस को लाल कर देती है। यह गैस अम्लीय है या क्षारीय? इस गैस का गुलाबी सूचक घोल पर क्या असर होगा?
- 2. एक बड़े कमरे में एक बल्ब तथा एक मोमबत्ती जल रही है। मान लो किसी तरीके से कमरे से हवा निकाल दी जाए तो बताओ कि मोमबत्ती और बल्ब पर क्या असर होगा। कारण सहित उत्तर लिखो।
- 3. आग बुझाने के लिए एक उपकरण मिलता है। इसमें से पानी नहीं बिल्क एक गैस निकलती है जिससे आग बुझ जाती है। अध्याय के आधार पर बताओ कि यह गैस कौन-सी हो सकती है।
- 4. हवा में ऑक्सीजन न होती तो क्या होता?
- 5. इस अध्याय में तुमने दो गैसों का अध्ययन किया। क्या तुम कुछ और गैसों के बारे में जानते हो? ऐसी गैसों की सूची बनाओ और उनके जो गुणधर्म तुम जानते हो लिखो।

गैसें - 2*

पिछले अध्याय में तुमने दो गैसें बनाई थीं — कार्बन डाईऑक्साइड और ऑक्सीजन। तुमने यह भी पता लगाया कि हमारे जीवन में इनका क्या महत्व है। इनके अलावा और भी कई गैसें होती हैं। आओ इनमें से दो और गैसें बनाएँ और उन पर कुछ प्रयोग करें।

हाइड्रोजन

शुरू करने से पहले प्रयोग 1 से 4 तक पढ़कर उनकी पूर्व तैयारी कर लो। एक बार जब गैस बननी शुरू हो जाएगी तब ये प्रयोग एक के बाद एक लगातार करने होंगे। यदि तुमने प्रयोगों के बीच रुक-रुककर सामग्री ढूँढने में समय लगाया तो गैस बरबाद होती रहेगी।

हाइड्रोजन गैस दो तरह से बनाई जा सकती है। अपनी सुविधा के हिसाब से प्रयोग 1(क) या प्रयोग 1(ख) के अनुसार इस गैस को बनाओ।

प्रयोग 1 (क)

एक इंजेक्शन की शीशी लो। इसके ढक्कन में एक रिफिल का टुकड़ा पिरो दो। रिफिल के ऊपरी सिरे पर करीब 15 से.मी. लम्बी एक वॉल्व ट्यूब का एक सिरा चढ़ा दो। वॉल्व ट्यूब का दूसरा सिरा खुला रहेगा।

एक परखनली में पानी भरकर उसे पानी भरी एक तश्तरी में इस तरह उलटा खड़ा करो कि परखनली का पानी न गिरे। वॉल्व ट्यूब के खुले सिरे को परखनली के मुँह में डाल दो (चित्र 1)। एक विद्यार्थी इस परखनली को पकड़े रहे।

इंजेक्शन की शीशी में जस्ते के कुछ टुकड़े डालकर ऊपर से इतना तनु हाइड्रोक्लोरिक अम्ल डालो कि टुकड़े अम्ल में डूब जाएँ। शीशी का ढक्कन लगा दो। ढक्कन में लगी रिफिल अम्ल को नहीं छूनी चाहिए।

परखनली को गैस से पूरी भर लो।

चित्र 1

बाल वैज्ञानिक, कक्षा ८, १९८० (कुछ संशोधनों के साथ)

इस प्रयोग में विस्फोट होता है, कृपया ध्यान से करें।

बा.वै. कक्षा ८ खण्ड 1, 1980 (1987), प्र 186

चित्र 2

प्रयोग 1(ख)

हाइड्रोजन गैस एल्युमिनियम और कॉस्टिक सोडा (सोडियम हाइड्रॉक्साइड) की क्रिया से भी बनाई जा सकती है। प्रयोग 1(क) के उपकरण में जस्ते की जगह एल्युमिनियम की पन्नी के टुकड़े और अम्ल की जगह सोडियम हाइड्रॉक्साइड का तनु घोल डालकर प्रयोग करके हाइड्रोजन बनाओ।

आओ अब इस गैस के गुणधर्म परखें।

प्रयोग 2

गैस से भरी परखनली का मुँह पानी के अन्दर ही अँगूठे से बन्द करके बाहर निकालो।

इस गैस का रंग कैसा है? (3)

अँगूठा हटाकर गैस को सूँघो।

इसकी गन्ध कैसी है? (4)

प्रयोग 3

एक और परखनली गैस से भर लो। गैस से भरी परखनली का मुँह पानी के अन्दर ही अँगूठे से बन्द करके बाहर निकालो। परखनली का मुँह नीचे की ओर ही रहे। इस परखनली के मुँह के पास एक जलती हुई मोमबत्ती ले जाकर अँगूठा हटा लो (चित्र 2)।

क्या हुआ? (5)

एक प्रयोग स्वयं सोचो

यह पता करने के लिए एक प्रयोग करो कि यह गैस अम्लीय है, क्षारीय है अथवा उदासीन।

इस गैस की प्रकृति कैसी है? (6) प्रयोग 4 (शिक्षक द्वारा किया जाए)

चित्र 3 जैसा उपकरण जमाइए। इंजेक्शन शीशी 'क' में गैस बनेगी। इंजेक्शन शीशी 'ख' पानी से आधी भरी है। ध्यान रखें कि शीशी 'क' से आने वाली वॉल्व ट्यूब में लगी रिफिल 'ख' शीशी के पानी में अवश्य डूबी रहे। शीशी 'ख' की दूसरी रिफिल पानी से ऊपर निकली रहे। शीशी 'ख' से निकल रही इस दूसरी वॉल्व ट्यूब के खुले सिरे पर एक इंजेक्शन की सूई लगा दीजिए।

इस प्रयोग की सफलता के लिए ज़रूरी है कि गैस तेज़ी से बने। इसके लिए 'क' शीशी में जस्ते के 6-7 टुकड़े डालें। उपकरण जमाने के बाद इंजेक्शन सुई के मुँह के पास एक जलती हुई माचिस की तीली लाइए।

क्या हुआ? क्या जलती हुई गैस की लौ दिखाई दे रही है? (7) इस प्रयोग से इस गैस के किस गुणधर्म का पता चलता है? (8)

जस्ते और हाइड्रोक्लोरिक अम्ल या एल्युमिनियम और सोडियम हाइड्रॉक्साइड की क्रिया से जो गैस तुमने बनाई उसे हाइड्रोजन कहते हैं।

अमोनियाः प्रयोग 5

एक उफननली में लगभग आधा चम्मच नौसादर (अमोनियम क्लोराइड) लो और उसमें कॉस्टिक सोडा (सोडियम हाइड्रॉक्साइड) की 3-4 टिकिया डालो। चित्र 4 जैसा उपकरण जमाओ और उफननली को गरम करो।

काँच की नली के एक छोर को सान्द्र नमक के अम्ल (हाइड्रोक्लोरिक अम्ल) में भिगोकर रबर नली के मुँह के पास रखो।

बा.वै. कक्षा ८ खण्ड १, १९८० (१९८७), पु १९३

क्या हुआ? (9)

क्या तुम बता सकते हो कि उफननली में कोई गैस बन रही है? यदि हाँ, तो इसका तुम्हारे पास क्या प्रमाण है? (10)

इस गैस को सूँघने की कोशिश मत करना। इसकी गन्ध इतनी तेज़ है कि बिना सूँघे ही तुम्हें इसका पता चल जाएगा।

कैसी है इस गैस की गन्ध? (11)

प्रयोग 6

लाल और नीले लिटमस के कागज़ के टुकड़ों को भिगोकर बारी-बारी से रबर नली के मुँह के पास रखो।

बताओ कि यह गैस अम्लीय है, क्षारीय है या उदासीन? (12)

इस गैस का फिनॉफ्थलीन के गुलाबी व रंगहीन सूचक घोल पर क्या असर होगा? इन सूचक घोलों में भीगे सोख्ता कागज़ (फिल्टर पेपर) रबर नली के पास लाकर अपने उत्तर की जाँच करो। (13)

चित्र 5 बा.वै. कक्षा 8 खण्ड 1, 1980 (1987), पु 195

प्रयोग ७

एक सूखी परखनली लो। इसे उलटा पकड़कर उस रबर नली को इसके मुँह में डाल दो जिसमें से गैस निकल रही है। इस तरह गैस परखनली में इकट्ठी होने लगेगी।

हम देख तो नहीं पाएँगे मगर मानकर चलेंगे कि थोड़ी देर में परखनली गैस से भर जाएगी। गैस से भर जाने के बाद रबर की नली निकालकर परखनली का मुँह अँगूठे से बन्द कर लो। मुँह बन्द रखते हुए परखनली का मुँह पानी से भरे एक बरतन में डुबाओ और मुँह खोल दो (चित्र 5)।

क्या हुआ? (14)

अब परखनली का मुँह बन्द करके उसे पानी से बाहर निकालकर सीधा कर लो। परखनली में भरे पानी की जाँच लिटमस कागज़ों से करो।

यह पानी कैसा है — अम्लीय, क्षारीय या उदासीन? (15)

क्या तुम बता सकते हो कि परखनली में पानी क्यों चढ़ गया था? (16)

इन गुणधर्मों वाली गैस को अमोनिया कहते हैं।

हाइड्रोजन व अमोनिया के गुणधर्मों को तालिका बनाकर लिखो। (17) अब तक तुमने चार गैसें बनाई हैं।

इन गैसों को अलग-अलग विधि से क्यों इकट्ठा करते हैं? कक्षा में चर्चा करके उत्तर दो। (18)

चारों गैसों का एक-एक ऐसा गुणधर्म बताओ जिसकी मदद से उन्हें स्पष्ट पहचाना जा सके। (19)

गैसों के साथ एक अतिरिक्त प्रयोग

हाइड्रोजन को कई तरह से बनाया जा सकता है। जैसे हम एल्युमिनियम और सोडियम हाइड्रॉक्साइड की क्रिया से हाइड्रोजन बना सकते हैं। इसी तरह से जस्ता और नमक के अम्ल (हाइड्रोक्लोरिक अम्ल) या गन्धक का अम्ल (सल्फ्यूरिक अम्ल) की क्रिया से या मैग्नीशियम और हाइड्रोक्लोरिक अम्ल की क्रिया से भी हाइड्रोजन बनाई जा सकती है।

इस प्रयोग के लिए जस्ता और मैग्नीशियम की बराबर-बराबर मात्रा लेनी होगी। लगभग 200-200 मि.ग्रा. लेना ठीक रहेगा।

इंजेक्शन की एक शीशी लीजिए। इसके ढक्कन में एक रिफिल का टुकड़ा पिरो दीजिए। टुकड़े के ऊपरी सिरे पर करीब 20 से.मी. लम्बी वॉल्व ट्यूब का एक सिरा चढ़ा दें। वॉल्व ट्यूब का दूसरा सिरा खुला रहेगा।

500 मि.ली. के एक नपनाघट में ऊपर तक पानी भरकर उसे पानी से भरे एक बरतन में इस तरह उलटा खड़ा करें कि नपनाघट का पानी न गिरे। वॉल्व ट्यूब के खुले सिरे को नपनाघट के मुँह में डाल दें (चित्र देखें)। एक विद्यार्थी इस नपनाघट को पकड़े रहे।

इंजेक्शन की शीशी में जस्ते के कुछ टुकड़े डालकर ढक्कन लगा दें। ढक्कन में एक सिरिंज की सुई घुसा दें। सिरिंज कि मदद से इतना तनु हाइड्रोक्लोरिक अम्ल डालें कि शीशी एक-तिहाई अम्ल से भर जाए। ढक्कन में लगी रिफिल अम्ल को नहीं छूनी चाहिए।

गैस बनकर नपनाघट में भर जाएगी। प्रयोग को तब तक जारी रखें जब तक कि गैस बनना पूरी तरह बन्द न हो जाए।

नपनाघट को बाल्टी में ही उलटा रखते हुए गैस का आयतन पढ़ लीजिए। आयतन पढ़ने से पहले नपनाघट को पानी में ऊपर-नीचे करके ऐसी स्थिति लाइए कि नपनाघट के अन्दर व बाहर पानी का तल बराबर हो। ऐसा करने से नपनाघट में भरी गैस का दाब वायुमण्डल के दाब के बराबर रहता है।

उपकरण को अच्छी तरह साफ करके यही प्रयोग मैग्नीशियम के साथ दोहराइए और बनी हुई हाइड्रोजन का आयतन नापिए।

श्वसन*

भोजन के बिना हम कई हफ्तों तक ज़िन्दा रह सकते हैं। तुमने सुना होगा कि उपवास या भूख हड़ताल करने वाले लोग अक्सर ऐसा करते हैं। पानी की कमी होने पर भी हम कुछ दिनों तक गुज़ारा कर सकते हैं। किन्तु यदि हमें थोड़ी देर भी हवा न मिले तो हमारा दम घुटने लगता है।

इस अध्याय में हम देखेंगे कि मनुष्य में श्वसन के दौरान क्या होता है। हमारे द्वारा ली गई और छोड़ी गई साँस में क्या फर्क होता है? क्या पौधे भी श्वसन करते हैं? आओ कुछ प्रयोग करके यह सब जानें।

चित्र 1

बा.वै. कक्षा ७, २००१, पू १५८

मनुष्यों में श्वसनः प्रयोग 1

आओ सबसे पहले यह देखें कि एक व्यक्ति कितनी देर तक साँस रोक सकता है। एक ऐसी घड़ी लो जिसमें सेकंड वाली सुई हो। अपने मुँह को बन्द करो और एक हाथ से नाक बन्द कर लो ताकि हवा अन्दर न जा सके।

अपने हाथ की किसी उँगली की पिछली सतह (नाखुन वाली) को अपने एक साथी की नाक के पास ले जाओ। अपने साथी से कहो कि वह स्वाभाविक ढंग से साँस ले और छोड़े।

इस विधि से यह पता लगाओ कि तुम्हारा साथी एक मिनट में कितनी बार साँस लेता व छोड़ता है। एक मिनट में तुम्हारे साथी ने जितनी बार साँस छोड़ी क्या उतनी ही बार साँस अन्दर भी ली? (3)

शरीर के अन्दर हवा खींचने की क्रिया को अन्तःश्वसन (साँस लेना) और हवा छोड़ने की क्रिया को प्रश्वसन (साँस छोड़ना) कहते हैं। एक मिनट में जितनी बार साँस बाहर छोड़ी जाती है उस संख्या को प्रश्वसन दर कहते हैं।

चित्र 2

बा.वै. कक्षा ७, २००१, पु १५८

^{*} बाल वैज्ञानिक कक्षा ७, २००१ (कुछ संशोधित)

कक्षा 7, 2001, पु 159

कसरत और साँस

तुमने अक्सर देखा होगा कि कुछ देर भागने या कसरत करने के बाद हम हाँफने लगते हैं। तो क्या कसरत करने अथवा भागने से हमारी साँस लेने व छोड़ने की गति पर भी प्रभाव पडता है?

तुम्हारी राय में कसरत करने के बाद प्रश्वसन दर घटती है या बढ़ती है? (4)

अपने एक साथी से कहो कि वह थोड़ा भागकर आए और देखो कि उसकी प्रश्वसन दर पर क्या असर पड़ा।

हम जो साँस लेते हैं वह सीने में स्थित फेफड़ों में भरती है। अगले प्रयोग में हम देखेंगे कि साँस लेने और छोड़ने पर हमारे सीने पर क्या प्रभाव पड़ता है।

प्रयोग 3

नापने के लिए एक फीता या सुतली लो। उसे अपनी टोली के किसी एक साथी की पीठ के पीछे से लेकर सामने सीने तक लाओ और सीने का नाप लो। फीते या सुतली के छोरों को हल्के से पकड़े रहो और अपने साथी से कहो कि वह गहरी साँस ले और फिर धीरे-धीरे छोडे।

जब हवा अन्दर जाती है और बाहर आती है तो सीने की नाप पर क्या असर होता है? (5)

तुम्हारी साँस में कितनी हवाः प्रयोग 4

दो लीटर की एक प्लास्टिक की बोतल लो। पहले इसे नपनाघट बना लो। इसके लिए इसमें नापकर सौ-सौ मि.ली. पानी डालो और हर बार पानी जहाँ तक भरे वहाँ निशान लगाते जाओ।

अब निशान लगी बोतल में पानी ऊपर तक भरकर पानी से भरी बाल्टी या अन्य किसी बड़े बरतन में इस प्रकार औंधा करके रखो कि बोतल में हवा के बुलबुले न रहने पाएँ। एक रबर नली के एक सिरे को पानी में डूबे बोतल के मुँह में डाल दो। नली का दूसरा सिरा हाथ में पकड़े रहो। अब साँस पूरी अन्दर खींचकर नली के सिरे को मुँह में लेकर फूँको। ध्यान रहे कि फूँकते समय बीच में साँस नहीं लेना है। एक साँस में जितनी हवा फ़ुँक सकते हो फ़ुँक दो। यह हवा प्लास्टिक की बोतल में इकट्ठी हो जाएगी। इससे बोतल में पानी का स्तर नीचे गिरता जाएगा।

तुम्हारी साँस से जो हवा निकली उसकी मात्रा कितनी है? (6)

इस प्रकार तुम्हारी टोली के प्रत्येक साथी की साँस की मात्रा पता करो तथा उनकी तुलना करो।

क्या सभी साथियों की साँस में हवा की मात्रा समान है? (7)

क्या छोड़ी हुई व ली हुई हवा एक जैसी है?: प्रयोग 5

अपनी तर्जनी उँगली की पिछली सतह पर नाक से हवा छोड़ो।

चित्र 3

चित्र 5

हवा का आयतन नापने के लिए ज़रूरी है कि हर बार दबाव बराबर हो। इसके लिए किया यह जाता है कि बोतल को पानी के अन्दर ही ऊपर-नीचे करके ऐसी स्थिति में ले आते हैं कि बोतल के अन्दर और बाहर पानी का तल बराबर हो। इस दौरान बोतल की हवा बाहर नहीं निकलना चाहिए।

क्या यह हवा गरम है? (8)

अब एक सिरिंज द्वारा उँगली की उसी सतह पर हवा फेंको।

क्या सिरिंज द्वारा छोड़ी हुई हवा गरम है? (9)

प्रयोग 6

सर्दियों के दिनों में तुमने देखा होगा कि सबेरे तुम्हारी नाक और मुँह से साँस के साथ धुआँ-सा निकलता दिखाई देता है।

बताओ वह क्या है?

इसे जानने के लिए हम एक प्रयोग करेंगे।

एक दर्पण लो। इसको एक कपड़े से अच्छी तरह साफ कर लो। मुँह से दर्पण पर हवा छोड़ो।

दर्पण की सतह को ध्यान से देखो और बताओ कि तुम्हें क्या दिखाई पड़ता है। (10)

दर्पण को फिर साफ करो और इस बार सिरिंज से उस पर हवा फेंको।

क्या इस बार भी दर्पण पर पहले जैसी क्रिया हुई? (11)

क्या इस प्रयोग के आधार पर यह कहना ठीक होगा कि साँस में छोड़ी गई हवा में नमी की मात्रा साधारण हवा से अधिक है? (12)

अब तक किए गए प्रयोग से तुम समझ गए होगे कि सिरिंज से बाहर निकलने वाली हवा और साँस द्वारा शरीर से बाहर छोड़ी गई हवा में क्या-क्या अन्तर है।

क्या है हमारी साँस में?

आओ, अब हम एक ऐसा प्रयोग करेंगे जिसमें फिनॉफ्थलीन के गुलाबी सूचक घोल और चूने के पानी पर अन्तःश्वासित (अन्दर ली गई) और प्रश्वासित (बाहर छोड़ी गई) हवा के प्रभाव का बारी-बारी से अध्ययन किया जाएगा।

आगे बढ़ने से पहले गुलाबी सूचक घोल और चूने का पानी उसी प्रकार तैयार करके रख लो जिस प्रकार गैसों के अध्याय के लिए किया था।

प्रयोग ७

इसके लिए चित्र 6 में दिखाया गया उपकरण जमाओ।

दोनों उफननलियों में लगभग एक-चौथाई ऊँचाई तक गुलाबी सूचक घोल भरो। उफननलियों पर 'क' व 'ख' निशान लगाओ। अब इस उपकरण में बारी-बारी से हवा फूँको और खींचो (जैसा कि चित्र 7 में दर्शाया गया है)।

प्रयोग करते-करते निम्नलिखित बातों पर ध्यान दोः

क) जब हम मुँह से साँस अन्दर खींचते हैं तब हवा किस उफननली में से होकर अन्दर जाती है? इसका पता तुम्हें कैसे लगता है?

छात्रों से इस बारे में ज़रूर चर्चा करें कि प्रयोग 5 और 6 में सिरिंज का उपयोग क्यों किया गया है।

कॉर्क में नली लगाने का तरीका पृष्ठ 46 पर दिया गया है।

इस प्रयोग के अवलोकनों पर छात्रों का ध्यान खास तौर से दिलाना होगा।

चित्र 6

बा.वै. कक्षा ७, २००१, पृ १६१

ख) जब हम साँस छोड़ते हैं, तब हवा किस उफननली में से होकर बाहर निकलती है?

किस उफननली में सूचक घोल का रंग बदला? इसके आधार पर बताओ कि अन्तःश्वासित और प्रश्वासित हवाएँ क्या एक समान हैं? अगर नहीं तो उनमें क्या अन्तर है? (13)

दोनों उफननलियों को अब अच्छी तरह से धोकर साफ करो और इनमें लगभग एक-चौथाई ऊँचाई तक चूने का पानी भरो।

अब जैसा कि ऊपर के प्रयोग में किया गया था, उसी प्रकार इनमें भी हवा फूँको और खींचो।

हवा फूँकने और खींचने पर किस उफननली में चूने का पानी दूधिया हुआ? इस प्रयोग से तुम्हें अन्दर ली जाने वाली और बाहर छोड़ी जाने वाली हवा के किसी अन्तर का पता चला? (14)

तुमने गैसों के अध्याय में ऑक्सीजन, कार्बन डाईऑक्साइड, हाइड्रोजन व अमोनिया गैसों के गुणों का अध्ययन किया था।

इस जानकारी के आधार पर क्या तुम बता सकते हो कि प्रश्वासित हवा में कौन-सी गैस उपस्थित है? (15)

प्रश्वासित हवा में यह गैस कैसे और कहाँ से आई होगी? सोचकर बताओ। (16)

चाहें तो प्रश्न 16 की चर्चा में श्वसन की रासायनिक क्रिया के बारे में बताया जा सकता है, मगर यह परखने के बाद कि छात्र कितनी दूर तक जाने को तैयार हैं। हम जो हवा साँस में लेते हैं उसमें केवल ऑक्सीजन ही नहीं होती बल्कि अन्य गैसें भी मिली रहती हैं। इसी प्रकार छोड़ी गई साँस में सिर्फ कार्बन डाईऑक्साइड न होकर कई गैसें मिली होती हैं। यदि हम वातावरण से 1000 मि.ली. (1 लीटर) हवा लेते हैं तो उसमें निम्न तालिका के अनुसार विभिन्न गैसें ली तथा छोड़ी जाती हैं:

क्र. गैस	अन्तःश्वसन (मि.ली.)	प्रश्वसन (मि.ली.)
1. ऑक्सीजन	210	165
2. कार्बन डाईऑक्साइड	0.3	40
 नाइट्रोजन एव अन्य गै 	सें 790	795

प्रयोग 5, 6, 7 और ऊपर की तालिका के आधार पर बताओ कि अन्तःश्वासित और प्रश्वासित हवा में क्या-क्या अन्तर हैं? (17)

पौधों में श्वसन: प्रयोग 8

क्या पौधे भी मनुष्य की तरह श्वसन करते हैं? आओ पता करने के लिए प्रयोग करें।

दो कोनिकल फ्लास्क लो। एक कोनिकल फ्लास्क में कुछ ताज़ा फूल और किलयाँ डाल दो। दूसरे कोनिकल फ्लास्क में कुछ कंकड़ या रेत डाल दो। कंकड़ या रेत का आयतन लगभग उतना ही हो जितने फूल-किलयाँ पहले फ्लास्क में डाले हैं। दोनों फ्लास्क को आधे घण्टे तक रखा रहने दो।

अब फूल वाले फ्लास्क में ठीक से बैठ जाने वाला दो-छेदी कॉर्क लगाओ। प्रत्येक छेद में सावधानी से एक-एक काँच की नली लगा दो। एक नली में रबर की नली लगा दो तथा दूसरी काँच की नली में ठीक से बैठ जाने वाली कीप लगा दो। एक परखनली में एक-चौथाई चूने का पानी भरकर रबर नली को उसमें डुबा दो (चित्र 8)। यदि कीप ठीक से न बैठ रही हो, तो ड्रॉपर काटकर भी कीप बनाई जा सकती है, जैसा कि चित्र 9 में दिखाया गया है।

अब कीप में बूँद-बूँद पानी डालो। कोनिकल फ्लास्क में एक चौथाई भरने तक पानी डालते रहो। फिर परखनली को ध्यान से देखो।

क्या चूने के पानी के रंग में कोई परिवर्तन हुआ? (18)

अब दूसरे कोनिकल फ्लास्क (जिसमें कंकड़ या रेत है) पर कॉर्क लगाकर पिछले प्रयोग की तरह कीप में फिर से बूँद-बूँद पानी डालो और परखनली को ध्यान से देखो।

अब चूने के पानी के रंग में क्या परिवर्तन हुआ? (19)

फ्लास्क की हवा पर फूल-कलियों और कंकड़-रेत के असर में क्या अन्तर है? यह अन्तर क्यों है? (20)

आम तौर पर कहा जाता है कि हम ऑक्सीजन लेते हैं और कार्बन डाई-ऑक्साइड छोड़ते हैं। तालिका से स्पष्ट है कि यह कहना सही नहीं है। प्रश्वासित हवा में काफी मात्रा में ऑक्सीजन होती है। इसीलिए तो हम किसी व्यक्ति को कृत्रिम श्वसन करा सकते हैं।

चित्र 8

बा.वै. कक्षा ७, २००१, पृ १६२-६३

अंकुरित बीजों में श्वसनः प्रयोग 9

फूलों और कलियों की जगह अंकुरित बीज (मूँग, चना आदि) लेकर प्रयोग 8 दोहराओ।

अंकुरित बीजों के साथ प्रयोग में चूने के पानी पर क्या प्रभाव पड़ा? (20) क्या प्रयोग 8 व 9 के अवलोकनों के आधार पर यह कहा जा सकता है कि फूल, कलियाँ, अंकुरित बीज आदि भी श्वसन करते हैं? (21)

हमारी तरह पेड़-पौधे भी श्वसन करते हैं। हमने ऊपर प्रयोग 8 और 9 में पौधों के कुछ भागों (फूल व बीज) में श्वसन क्रिया देखी। किन्तु प्रयोग द्वारा पूरे पौधे की श्वसन क्रिया को देख पाना मुश्किल होता है। श्वसन की क्रिया में पौधे और प्राणी दोनों ही ऑक्सीजन का उपयोग करते हैं।

तुमने सुना होगा कि अस्पतालों में ऑक्सीजन गैस से भरे सिलेंडर रखे जाते हैं। जब किसी व्यक्ति को साँस लेने में तकलीफ होती है तब उसे ऑक्सीजन दी जाती है। इसके लिए उसकी नाक में ऑक्सीजन सिलेंडर से एक रबर नली लगाई जाती है। कभी-कभी ऑपरेशन करते समय भी मरीज़ को इसी प्रकार ऑक्सीजन देनी पड़ती है।

दिमागी कसरत

चन्द्रमा पर जाने से पहले ही वैज्ञानिकों को मालूम था कि उसकी सतह पर हवा नहीं है।

इसलिए क्या यह सम्भव था कि चन्द्रमा पर जाने वाले मानव को वहाँ पर हमारे ही समान कोई अन्य जीवधारी मिलते? अपने उत्तर को कारण सहित समझाओ? (22)

चन्द्रमा पर जाने वाले यात्री हवा के बिना किस प्रकार ज़िन्दा रह पाते हैं? (23)

अभ्यास के सवाल

- अध्याय में तुमने फूलों, बीजों आदि के श्वसन सम्बन्धी प्रयोग किए। क्या तुम कोई ऐसा प्रयोग सुझा सकते हो जिसमें पूरे पौधे के श्वसन के बारे में जानकारी मिल सके।
- 2. प्रयोग 8 में एक फ्लास्क में कंकड़ डालकर प्रयोग क्यों किया गया था?
- 3. श्वसन के बारे में इस अध्याय में तुमने जो कुछ सीखा है, उसके आधार पर क्या तुम श्वसन और जलने की क्रिया के बीच कोई समानता देख पाते हो?

प्रश्न 2 में प्रयोग में तुलना के प्रावधान यानी एक्सपेरिमेंटल कंट्रोल को उभारने का प्रयत्न किया गया है। विज्ञान में यह एक महत्वपूर्ण अवधारणा है। बच्चों को सोचने में मदद कीजिए कि किसी भी प्रयोग में हम जिस चीज़ का अध्ययन कर रहे हैं, उसके अलावा बाकी सब बातें एक जैसी रहनी चाहिए। अन्यथा यह कहना मुश्किल हो जाता है कि देखा गया परिवर्तन किस कारण से हुआ है।

हमारा भोजन और पौधों में पोषण

दरअसल 'श्वसन', 'हमारा भोजन' और 'पौधों का पोषण' जैसे अध्यायों की चर्चा आम तौर पर जीव विज्ञान के सन्दर्भ में की जाती है। मगर बाल वैज्ञानिक में इस तरह के सख्त विभाजन स्वीकार नहीं किए गए थे। वैसे भी देखा जाए तो कई सारे विषय ऐसे हैं जिनको समझने के लिए हमें ज्ञान की एकाधिक शाखाओं का सहारा लेना पड़ता है, उनकी अवधारणाओं का उपयोग करना पड़ता है। इसके अलावा यह भी होता है कि इन विषयों में हो रहे शोध कई विषयशाखाओं पर असर डालते हैं। खास तौर से पौधों में पोषण ऐसा ही विषय है। इसलिए आप पाएँगे कि 'श्वसन', 'हमारा भोजन' और 'पौधों का पोषण' अध्यायों में खोजबीन कई रास्तों से की गई है।

हमारा भोजन

जैसे 'हमारा भोजन' को ही लें। एक ओर तो भोजन का सीधा सम्बन्ध हमारी तन्दुरुस्ती से है। भरपेट भोजन मिलना जीवन की एक अनिवार्य शर्त है। मगर यदि थोड़ा गहराई में जाएँ तो समझ में आता है कि सिर्फ भरपेट भोजन पर्याप्त नहीं होता। भोजन में विभिन्न घटक या पोषक तत्व सही अनुपात में होना भी ज़रूरी है। इन पोषक तत्वों का अन्वेषण रासायनिक विधियों से ही सम्भव है। इनमें कार्बोहाइड्रेट, प्रोटीन और वसा तो थोक (स्थूल) पोषक तत्व हैं, यानी इनकी काफी मात्रा की आवश्यकता होती है। अध्याय में विभिन्न भोज्य पदार्थों में इन तीनों की जाँच की विधियाँ दी गई हैं। इसके अलावा कई पोषक पदार्थ हैं जिनकी ज़रूरत थोड़ी कम मात्रा में होती है, जिन्हें सूक्ष्म पोषक तत्व कहते हैं। इनमें मुख्यतः विटामिन और लवण आते हैं। इनकी जाँच विधियाँ कक्षा छह-आठ के स्तर पर व्यावहारिक रूप से सम्भव नहीं है, इसलिए इन्हें छोड़ दिया गया है।

पोषण का एक महत्वपूर्ण भाग पाचन है। जहाँ अट्ठारहवीं

सदी में पाचन को एक ऐसी क्रिया माना जाता था जो सजीवों में जीवनी शक्ति (vital force) की वजह से होती है, वहीं तमाम वैज्ञानिकों के अजीबोगरीब प्रयोगों की मदद से धीरे-धीरे उन्नीसवीं सदी में यह समझ बनने लगी थी कि पाचन एक रासायनिक क्रिया है और शरीर से बाहर भी सम्पन्न हो सकती है। साथ ही यह भी पता चलने लगा था कि पाचन क्रिया के दौरान होने वाली रासायनिक क्रियाएँ कहीं अधिक नियंत्रित ढंग से होती हैं।

अध्याय में बच्चे एक भोज्य पदार्थ — मण्ड — के पाचन के एक चरण का अध्ययन भी करते हैं। यह प्रयोग कंट्रोलशुदा प्रयोग का एक अच्छा उदाहरण भी है। कंट्रोलशुदा प्रयोग विज्ञान की महत्वपूर्ण अवधारणा व तकनीक है। जब किसी परिघटना पर अलग-अलग कारकों का असर होता है तब परिस्थिति को समझने में यह तकनीक बहुत कारगर होती है। करना यह होता कि दो प्रयोग इस तरह से किए जाएँ कि जाँचे जा रहे कारक के अलावा बाकी चीज़ें दोनों प्रयोगों में हूबहू एक-सी हों। दूसरे वाले प्रयोग को कंट्रोल या तुलना का प्रावधान कहते हैं।

भोजन सिर्फ एक 'वैज्ञानिक' विषय नहीं है। कुपोषण का सम्बन्ध इस बात से है कि व्यक्ति को पर्याप्त मात्रा में सन्तुलित भोजन नहीं मिलता। मगर पर्याप्त मात्रा में सन्तुलित भोजन मिलने या न मिलने का सम्बन्ध सामाजिक मुद्दों से है। कई लोग मानते हैं कि कुपोषण एक राजनैतिक-आर्थिक समस्या है।

पौधों में पोषण

'पौधों में पोषण' विज्ञान के इतिहास का एक रोचक अध्याय है। अनिगनत वैज्ञानिकों ने कई-कई दिशाओं से खोजबीन करके पौधों में पोषण की कहानी का खुलासा किया है। सोलहवीं सदी में शुरू हुई यह कहानी बीसवीं सदी में ही पूरी हो पाई है। आज हम पौधों में पोषण के विषय में जो कुछ जानते हैं वह टुकड़ा-टुकड़ा करके असंख्य लोगों के प्रयासों से जोड़ा गया है। 'पौधों में पोषण' अध्याय बच्चों को इस कहानी की एक झलक भर देता है और उन्हें वैज्ञानिक खोजबीन के तौर-तरीकों में शरीक होने का न्यौता देता है। इस खोज का काफी बड़ा हिस्सा रासायनिक रास्ते से होकर गुज़रता है। और तो और, मज़ेदार बात यह है कि कई बार पौधों में पोषण पर रोशनी डालने वाले प्रयोग पौधों के पोषण को समझने के लिए नहीं किए गए थे। जैसे ऑक्सीजन, कार्बन डाईऑक्साइड व दहन सम्बन्धी प्रयोगों से यह विचार उभरा था कि पौधे एक ऐसी क्रिया सम्पन्न करते हैं जो श्वसन व दहन से उलट

है। इससे पहले यह स्पष्ट हुआ था कि श्वसन व दहन रासायनिक दृष्टि से एक-सी क्रियाएँ हैं। इसी प्रकार से पौधों के पोषण में हवा के महत्व को समझने से पहले ज़रूरी था कि गैसों को एकत्रित करने का उपकरण हाथ में आ जाए। इसके अलावा पौधों में पोषण सम्बन्धी समझ में प्रकाश के वर्णक्रम विश्लेषण, समस्थानिकों का बतौर निशानदेही इस्तेमाल किया जाना वगैरह बातों का भी निर्णायक महत्व है। दरअसल पौधों में पोषण एक उदाहरण है कि विज्ञान में खोजबीन कैसे की जाती है और कैसे कृत्रिम विषयवार विभाजन मात्र सहूलियत के सवाल हैं, वास्तविक खोजबीन में इन सीमाओं के आर-पार जाना होता है।

हमारा भोजन*

खाना तो हम सब रोज़ ही खाते हैं। दिन में दो बार या तीन बार खाते हैं। यदि हम भोजन न करें तो क्या होगा?

यदि तुमने कभी उपवास किया हो तो बताओ कि एक दिन भूखे रहने पर क्या महसूस होता है? अनुमान से यह भी बताओ कि कई दिन भूखे रहना पड़े तो क्या-क्या होगा? (1)

ठीक से भोजन न मिले या भूखे रहना पड़े तो मनुष्य दुबला हो जाता है. उसमें काम करने की ताकत नहीं रहती और वह बीमार भी पड़ सकता है।

मनुष्य के भोजन में बहुत अधिक विविधता होती है। कई लोग रोटी-दाल ज़्यादा खाते हैं तो कई लोग चावल ज़्यादा खाते हैं। किसी के खाने में मांस-मछली अधिक होती है तो किसी के खाने में सब्ज़ी अधिक होती है। कोई-कोई रोज़ दूध पीते हैं तो कोई रोज़ फल खाते हैं।

हमारे भोजन में क्या है?

भोजन कोई भी हो, उसमें तीन मुख्य पदार्थ होते हैं। इन्हें वसा, प्रोटीन और मण्ड कहते हैं। इनके अलावा हमें पानी, लवण, विटामिन और शर्करा की भी आवश्यकता होती है। इन सबको पोषक पदार्थ कहते हैं।

मिट्टी का तेल, डीज़ल या मोम रगड़ने पर भी कागज़ पारदर्शक हो जाता है। लेकिन ये भोज्य पदार्थ नहीं हैं। इनमें

मण्ड दरअसल एक तरह का कार्बोहाइड्रेट है। यहाँ मनुष्य के भोजन

की बात हो रही है इसलिए मण्ड

कहने से काम चल जाएगा। सामान्य

रूप में बात करेंगे तो कार्बोहाइड्रेट

कहना ही ठीक होगा।

वसा नहीं होती।

वसा, प्रोटीन और मण्ड की जाँच आसानी से की जा सकती है। इसलिए हम खाने की अलग-अलग चीज़ों में वसा, प्रोटीन और मण्ड की जाँच करेंगे।

लवण, विटामिन और शर्करा का परीक्षण करना अभी तुम्हारे लिए सम्भव नहीं है। लेकिन ये शरीर के लिए बहुत आवश्यक होते हैं।

तालिका 1 अपनी कॉपी में बनाओ और अपने सारे अवलोकन उसमें लिखो। प्रत्येक वस्तु पर ये तीनों परीक्षण करो। यदि किसी वस्तु में वसा, प्रोटीन या मण्ड हो तो तालिका में उसके सामने 'है' और न हो तो 'नहीं' लिखो। (2)

^{*} बाल वैज्ञानिक कक्षा 6, 2000

तालिका 1

क्र.	वस्तु का नाम	वसा है या नहीं	प्रोटीन है या नहीं	मण्ड है या नहीं
1.	उबले हुए चावल			
2.	उबले चावल का पानी			
3.	कच्चे चावल/कुटकी			
4.	गेहूँ/ज्वार			
5.	गेहूँ का आटा			
6.	आलू का टुकड़ा			
7.	मूँगफली के दाने			
8.	साबुत तुअर			
9.	तुअर की दाल			
10.	घी			
11.	दूध			
12.	किसी सब्ज़ी (भिण्डी, लौकी			
	इत्यादि) का टुकड़ा			
13.	किसी फल (केला, बेर			
	इत्यादि) का टुकड़ा			

वसा परीक्षणः प्रयोग 1

जिस पदार्थ का परीक्षण करना है उसकी थोड़ी-सी मात्रा लेकर एक कागज़ के दुकड़े पर हल्के-से रगड़ दो। इसे कुछ देर तक सूखने दो। यदि कागज़ चिकना और अल्प-पारदर्शक हो जाए तो उस पदार्थ में वसा (चर्बी) है।

प्रोटीन परीक्षणः प्रयोग 2

जिस पदार्थ का परीक्षण करना हो उसकी 10 बूँदें एक साफ परखनली में लो। यदि पदार्थ ठोस है तो उसकी थोड़ी-सी मात्रा पीसकर परखनली में लो और उसमें 10 बूँदें पानी डालकर अच्छी तरह हिलाओ।

इसमें नीले थोथे के 2 प्रतिशत घोल की दो बूँदें और कॉस्टिक सोडा के 10 प्रतिशत घोल की 10 बूँदें डालकर अच्छी तरह हिलाओ।

जामुनी रंग या बैंगनी रंग हो जाने का मतलब है कि उसमें प्रोटीन है।

मण्ड परीक्षणः प्रयोग 3

जिस वस्तु का परीक्षण करना हो उस पर आयोडीन के हल्के घोल की दो-चार बूँदें डालो। यदि गहरा नीला या काला रंग हो जाए तो उस पदार्थ में मण्ड है। मण्ड को माण्ड या स्टार्च भी कहते हैं।

यदि स्कूल में आयोडीन का हल्का घोल न हो तो टिंक्चर आयोडीन ले सकते हैं। टिंक्चर आयोडीन अस्पताल या मेडिकल स्टोर पर मिल जाएगा। इसकी लगभग 10 बूँदें एक परखनली में डालकर परखनली को पानी से भर दें। यही आयोडीन का हल्का घोल है। इसका रंग हल्का पीला होता है।

बा.वै. कक्षा ६, २०००, प्र ६०

तालिका देखकर बताओं कि क्या वसा, प्रोटीन और मण्ड भोजन की हर वस्तु में हैं? (3)

क्या यह कहना ठीक होगा कि भोज्य पदार्थों में एक से अधिक पोषक पदार्थ होते हैं? (4)

क्या साबुत गेहूँ और गेहूँ के आटे के साथ आयोडीन की क्रिया में कोई अन्तर है? (5)

भोजन का पाचन

भोजन के अधिकतर पोषक पदार्थों का उपयोग शरीर में सीधे नहीं हो सकता। इसलिए यह ज़रूरी होता है कि इन पोषक पदार्थ को ऐसे पदार्थों में बदल दिया जाए जिनका उपयोग शरीर कर सके। इस क्रिया को पाचन कहते हैं।

भोजन का पाचन शरीर के भीतरी अंगों में होता है। पाचन करने वाले इन अंगों को अध्याय के अन्त में दिए गए चित्र में देखो।

इनमें होने वाली पाचन क्रिया को तुम नहीं देख सकते। लेकिन मण्ड का पाचन मुँह में ही शुरू हो जाता है जब हम भोजन को चबा ही रहे होते हैं। इसे हम महसूस भी कर सकते हैं और एक आसान-सा प्रयोग करके देख भी सकते हैं।

करो और सोचो

कच्चा पोहा (चिवड़ा) या गेहूँ की रोटी का टुकड़ा मुँह में डालकर धीरे-धीरे चबाओ। क्या कुछ समय बाद उसका स्वाद बदला? यदि हाँ, तो स्वाद कैसा लगा? सोचो कि स्वाद बदलने का क्या कारण हो सकता है। इस बारे में तुम एक मज़ेदार प्रयोग कर सकते हो।

पाचन क्रिया का पहला कदमः प्रयोग 4

आधा चम्मच आटा एक-चौथाई बीकर पानी में घोल लो। एक परखनली में इस घोल की 10-12 बूँदें लो। उसमें आयोडीन के घोल की 2 बूँदें डालकर यह जाँच लो कि वह नीला या काला रंग देता है या नहीं। दो साफ परखनलियाँ लो। एक पर 'क' तथा दूसरी पर 'ख' लेबल लगा दो।

प्रत्येक परखनली में आटे के घोल की 25-25 बूँदें डालो।

'क' परखनली को होठों से लगाकर उसमें थोड़ी-सी लार (थूक) डालो। परखनली में लगभग उतनी लार गिरनी चाहिए जितना आटे का घोल उसमें है। लार डालकर परखनली को अच्छी तरह हिलाओ।

'ख' परखनली में लार नहीं डालना है।

दोनों परखनलियों को आधे घण्टे तक रखा रहने दो। इसके बाद दोनों परखनलियों में आयोडीन घोल की 2-2 बूँदें डालो।

तालिका 2 कॉपी में बनाकर उसमें अपने परीक्षण के परिणाम लिखो। (6) अब बताओ कि मण्ड पर लार का क्या प्रभाव होता है। (7)

बा.वै. कक्षा ६, २०००, पु ६१

परखनली	लार है या नहीं	आयोडीन के साथ काला या नीला	मण्ड है या नहीं
		रंग आता है या नहीं	
क			
ख			

मण्ड पर लार का प्रभाव मण्ड के पाचन का पहला कदम है।

सोचकर लिखो कि भोजन को अच्छी तरह चबाकर खाने को क्यों कहा जाता है। (8)

मुँह में चबाया हुआ भोजन सीने में एक नली से होता हुआ पेट में स्थित एक थैलीनुमा रचना (आमाशय) में इकट्ठा हो जाता है। आमाशय से एक लम्बी नली (आँत) निकलती है। आमाशय और आँत में मण्ड के शेष भाग, प्रोटीन और वसा का पाचन होता है।

शरीर में भोजन लेने, उसके पाचन और शरीर द्वारा पचे हुए भोजन का उपयोग करने को पोषण कहते हैं।

कितना भोजन, कैसा भोजन

तालिका 2

ऐसा माना जाता है कि किसी व्यक्ति को भरपेट भोजन नियमित रूप से मिले तो उसके शरीर की पोषण की ज़रूरत पूरी हो जाती है। किन्तु यह पूरी तरह सही नहीं है। भोजन में यदि एक ही एक चीज़ खाएँ तो सारे पोषक पदार्थ नहीं मिल पाते। इसलिए भोजन में तरह-तरह की चीज़ें खाना ज़रूरी होता है।

यदि कोई व्यक्ति नियमित रूप से भरपेट मिला-जुला भोजन करे तो उसे पर्याप्त पोषण मिल जाएगा। ऐसा भोजन जिसमें सब पोषक पदार्थ हों, सन्तुलित आहार कहलाता है। यदि किसी व्यक्ति को भरपेट भोजन न मिले या ऐसा भोजन मिले जिसमें सारे पोषक पदार्थ न हों तो उसका शरीर कमज़ोर पड़ जाएगा। जब शरीर को आवश्यक मात्रा में पोषक पदार्थ नहीं मिलते तो इस स्थिति को कुपोषण कहते हैं। बच्चे कुपोषण का शिकार जल्दी हो जाते हैं। चित्र 3 में सूखा रोग का मरीज़

बा.वै. कक्षा ६, २०००, पृ ५०

खिड़की वाले पेट की कहानी

पौने दो सौ वर्ष पहले तक वैज्ञानिकों को यह पता नहीं था कि पेट में पहुँचने के बाद भोजन का क्या होता है। पाचन रसों के बारे में उन्हें कोई जानकारी नहीं थी। पेट के अन्दर झाँकने का कोई तरीका भी तो नहीं था। फिर अचानक एक अद्भुत घटना घटी जिसकी कहानी बड़ी मज़ेदार है।

सन् 1822 की बात है। मार्टिन नाम के एक युवक को गोली लग गई थी। उसे ज़ख्मी हालत में डॉक्टर बोमोन के पास लाया गया। उन्होंने मार्टिन का इलाज शुरू किया। घाव ठीक होने लगा। डॉक्टर बोमोन डेढ़ साल तक घाव पर पट्टी बाँधते रहे। फिर उन्होंने एक अजीब-सी चीज़ देखी। घाव तो ठीक हो गया पर पेट में एक छेद बना रहा। उसके ऊपर की चमड़ी को एक तरफ से हटाकर मार्टिन के पेट में नली डाली जा सकती थी और पेट का भोजन बाहर निकाला जा सकता था। मज़ेदार बात यह थी कि मार्टिन को इससे कोई परेशानी नहीं थी और उसका स्वास्थ्य हमेशा बढ़िया रहा।

बस, फिर क्या था। डॉक्टर बोमोन ने सोचा क्यों न इस अद्भुत पेट से पाचन के रहस्य को जाना जाए। नौ साल तक उन्होंने मार्टिन के खिड़की वाले पेट से अलग-अलग प्रयोग किए और नई-नई जानकारी हासिल की।

पहले तो डॉक्टर बोमोन ने एक नली से पेट का पाचक रस निकाला। इसे एक छोटी बोतल में रखा और उसमें खाने की कोई चीज़ डाल दी। कुछ घण्टों बाद उन्होंने देखा कि खाने के टुकड़े पाचक रस में पड़े-पड़े ही घुल गए थे। इसी से वे समझ गए कि पेट के अन्दर का रस वास्तव में खाने को

पचाने में मदद करता है और पाचन की क्रिया कोई जादू नहीं है।

वे समझ पाए कि पाचक रस और भोजन के तत्वों के बीच कुछ **रासायनिक क्रिया** होती है। यह क्रिया पेट के बाहर एक बोतल में भी करवाई जा सकती है।

एक बच्चा दिखाया गया है। यह रोग उन बच्चों को होता है जिन्हें भरपेट भोजन नहीं मिलता।

कई बार ऐसा भी हो जाता है कि बच्चे को भरपेट भोजन तो मिलता है किन्तु उसमें प्रोटीन की कमी रह जाती है। चित्र 4 ऐसे ही बच्चे का है जिसके भोजन में पर्याप्त मात्रा में प्रोटीन नहीं होता।

क्या तुमने सूखा रोग से या प्रोटीन की कमी से पीड़ित बच्चा देखा है?

यदि देखा हो तो पता लगाकर लिखो कि उसे दिनभर में क्या-क्या और कितना भोजन मिलता है। (9)

कक्षा में आपस में चर्चा करके लिखो कि ऐसे बच्चे को भरपेट भोजन क्यों नहीं मिलता। (10)

यह तो तुम जानते ही हो कि बीमार व्यक्ति कमज़ोर हो जाता है और जो व्यक्ति कमज़ोर होता है वह जल्दी बीमार भी हो जाता है। कुपोषण से पीड़ित बच्चों की यही स्थिति होती है। कुपोषित बच्चे जल्दी-जल्दी बीमार होते हैं। यानी बीमारी और

सूखा रोग से पीड़ित बच्चा बाल भूरे रंग के बूढ़े व्यक्ति की तरह चेहरा हमेशा सूखा पेट फूला हुआ बहुत कम वज़न दुबला-पतला इस बच्चे की हड़िडयों पर केवल चमड़ी है

प्रोटीन की कमी से पीड़ित बच्चा सूजा हुआ चेहरा सूजे हुए हाथ-पाँव बालों और चमड़ी का रंग उड़ा हुआ बाहों का ऊपरी हिस्सा पतला (घेरा 13 से.मी. से कम)

बा.वै. कक्षा ६, २०००, प ६४

कुपोषण का चक्कर शुरू हो जाता है। ऐसे बच्चों को बचाने के लिए उनका कुपोषण दूर करना ज़रूरी है।

यदि कोई बच्चा कुपोषण का शिकार हो जाए तो यह ज़रूरी नहीं है कि उसे महँगी दवाइयाँ और टॉनिक दिए जाएँ। कुपोषण का तो एक ही इलाज है। वह इलाज है सन्तुलित भरपेट भोजन। ऐसा भोजन दवाइयों व टॉनिकों जैसा महँगा भी नहीं होता। यदि कोई व्यक्ति दाल, चावल, रोटी, हरी सब्ज़ी, थोड़ा-सा तेल और गुड़ भोजन में ले तो उसके शरीर की ज़रूरत पूरी हो जाती है। साथ में फलियाँ, टमाटर, गाजर, जामफल, ककड़ी, नींबू, पका पपीता, आँवला आदि खाने से तरह-तरह के विटामिन और लवण भी मिल जाते हैं।

यदि कोई बच्चा कुपोषण का शिकार हो तो उसे नीचे लिखी खुराक रोज़ देने से वह ठीक हो सकता है:

बराबर-बराबर मात्रा में मूँगफली, गेहूँ और चना मिलाकर आटा बना लें। इस आटे को तेल में भूनकर गुड़ मिलाकर कुपोषित बच्चे को रोज़ पर्याप्त मात्रा में खिलाएँ तो वह ठीक हो सकता है। यदि सम्भव हो तो ठीक होने के बाद भी बच्चे को यह खुराक देते रहना चाहिए।

अभ्यास के प्रश्न

- भोजन के परीक्षण वाली तालिका देखकर नीचे लिखे वाक्यों में से सही-गलत बताओः
 - (क) केवल चावल खाने से शरीर की सारी ज़रूरतें पूरी हो जाएँगी।
 - (ख) यदि कोई व्यक्ति केवल घी खाए तो उसे और कुछ खाने की ज़रूरत नहीं है।
 - (ग) अच्छा भोजन वही है जिसमें कई तरह की चीज़ें होती हैं।
- 2. सोचकर लिखो कि भोजन को अच्छी तरह चबाकर खाने को क्यों कहा जाता है।
- 3. प्रयोग 4 में हमने 'क' परखनली के आटे के घोल में लार डाली थी। 'ख' परखनली के आटे के घोल को वैसे ही छोड़ दिया था। आपस में व शिक्षक से चर्चा करके अपने शब्दों में लिखो कि इस प्रयोग में परखनली 'ख' में आटे का घोल क्यों लिया गया था।

पौधों में पोषण*

क्या तुमने कभी एक मज़ेदार बात पर विचार किया है? पहले तो तुम्हें वह बात बताते हैं। तुम यह तो जानते ही हो कि गेहूँ खेतों में पैदा होता है। एक हैक्टेयर के खेत में आम तौर पर एक-डेढ़ क्विंटल गेहूँ बीज के रूप में बोए जाते हैं। तीन-चार महीने बाद हमें लगभग 20-25 क्विंटल गेहूँ प्राप्त होता है। गेहूँ के अलावा हमें ढेर सारा भूसा भी मिलता है।

इसी प्रकार आम की एक गुठली से उगा पौधा देखते-देखते आम का एक बड़ा पेड़ बन जाता है। इतना मोटा तना, इतनी सारी पितयाँ और हर साल ढेर सारे रस भरे आम आखिर कहाँ से आते हैं! अपनी बात करें तो एक बच्चे को बड़ा होने के लिए दोनों समय कितना भोजन करना पड़ता है? तो फिर ये पेड़-पौधे बिना खाए-पिए इतने बड़े कैसे हो जाते हैं? इतना गेहूँ, भूसा और फल आते कहाँ से हैं? ज़मीन में से, डाले गए पानी में से, या फिर हवा में से?

इस सवाल पर लोग पुराने ज़माने से ही सोचने लगे थे। पहले लोगों को लगता था कि पेड़-पौधों को अपनी वृद्धि के लिए यह सारा पदार्थ मिट्टी से मिलता है। प्रसिद्ध ग्रीक दार्शनिक-वैज्ञानिक अरस्तू (Aristotle) का भी ऐसा ही विचार था कि पौधों में जन्तुओं के समान पाचक अंग नहीं होते। अतः वे मिट्टी में घुले सड़े-गले पदार्थ भोजन के रूप में प्राप्त करते है। परन्तु किसी ने भी इसकी जाँच नहीं की थी। फिर काफी साल बाद बेल्जियम के एक व्यक्ति ने इस बात को जाँचने की सोची। उसने एक प्रयोग किया जो पूरे पाँच साल चला। आओ हम भी उस प्रयोग के बारे में जानें।

पाँच साल का प्रयोग

उस व्यक्ति का नाम था फॉन हेल्मॉन्ट (von Helmont)। उसने यह प्रयोग आज से करीब 350 साल पहले सन् 1648 में किया था।

फॉन हेल्मॉन्ट ने एक बड़ा गमला लिया। उस गमले में उसने 90 किलोग्राम सूखी मिट्टी भरी। फिर इसमें विलो नाम के पौधे की एक टहनी लगा

^{*} बाल वैज्ञानिक कक्षा 7, 2001

दी। जिसका वज़न 2.268 किलोग्राम था। इस टहनी को उसने पूरे पाँच साल तक आसुत जल से सींचा। वह गमला बहुत बड़ा था। और उसे ज़मीन में गाड़कर रखा गया था। फाँन हेल्मॉन्ट ने इस बात का भी पूरा ध्यान रखा कि गमले की मिट्टी को हवा तो मिले, मगर बाहर से आने वाली धूल-मिट्टी इसमें न जाने पाए। अतः इसे बारीक-बारीक छेद वाले एक मोटे पतरे से ढाँका गया था।

धीरे-धीरे पौधा एक छोटा पेड़ बन चुका था। पाँच साल बाद उसने पौधे को सावधानी से उखाड़कर साफ करके तौला। इस पौधे का वज़न निकला पूरा 74 किलोग्राम। फिर उसने गमले की मिट्टी को सुखाकर तोला। इसका वज़न निकला 89 किलोग्राम 944 ग्राम। प्रयोग के शुरू में 90 किलोग्राम मिट्टी ली थी। पाँच साल में मिट्टी के वज़न में मात्र 56 ग्राम की कमी आई। दूसरी ओर पौधे का वज़न 71.732 किलोग्राम बढ़ गया था।

इस प्रयोग के आधार पर तुम क्या निष्कर्ष निकालोगे? पौधे की वृद्धि के लिए सारा पदार्थ मिट्टी से आया होगा, क्या ऐसा मानना सही होगा? अपने उत्तर का कारण भी बताओ। (1)

फॉन हेल्मॉन्ट ने तो यह प्रयोग पाँच साल तक किया था। परन्तु एक प्रयोग तो कई घरों में ऐसे ही चलता रहता है। तुमने मनीप्लांट का नाम तो सुना ही होगा। इसे सजावट के लिए घरों में पानी भरी शीशियों और प्रयूज़ बल्बों में लगाया जाता है। यहाँ यह बड़े आराम से बढ़ता रहता है। यहाँ तो मिट्टी भी नहीं है। तो फिर इसे पोषण कहाँ से मिलता होगा?

क्या तुमने अपने आसपास नदी-तालाब में कोई अन्य ऐसा पौधा देखा है जो पानी पर तैरता हो और जिसका ज़मीन से कोई सम्पर्क न हो। यदि देखा हो तो उसके बारे में सबको बताओ।

सोचकर बताओं कि क्या सभी पौधों की वृद्धि के लिए मिट्टी ज़रूरी है? (2)

तो क्या पानी ही पौधों का भोजन है?

तुम्हारा निष्कर्ष जो भी हो मगर फॉन हेल्मॉन्ट ने निम्नलिखित निष्कर्ष निकाले थेः

- 1. पौधों की वृद्धि के लिए पदार्थ मिट्टी से नहीं आता।
- 2. पौधे की वृद्धि उसे मिलने वाले पानी से होती है।

क्या फॉन हेल्मॉन्ट की ये बातें पूरी तरह सही हैं? इसका पता तुम्हें आगे चलेगा।

प्रिस्टले का पहला प्रयोग

फॉन हेल्मॉन्ट के प्रयोग के बाद करीब 100 साल तक किसी ने पौधों के पोषण के सवाल पर ध्यान नहीं दिया। सन् 1771 में जोसेफ प्रिस्टले (Joseph Priestley) द्वारा किए गए प्रयोगों से इस मामले में कई नई जानकारियाँ मिलीं। वैसे प्रिस्टले ने ये प्रयोग पौधों के पोषण को समझने के उद्देश्य से नहीं किए थे। वे वास्तव में हवा में उपस्थित गैसों के बारे में जानना चाहते थे।

बा.वै. कक्षा ७, २००१, पृ २१९

मोमबत्ती क्यों बुझ जाती है? (3)

हम जानते हैं कि मोमबत्ती के जलने में ऑक्सीजन गैस खर्च हो जाती है और कार्बन डाईऑक्साइड बनती है।

प्रिस्टले ने जब यह प्रयोग किया था तब कार्बन डाईऑक्साइड और ऑक्सीजन के बारे में किसी को पता नहीं था। प्रिस्टले ने निष्कर्ष निकाला था कि जलने की क्रिया से बीकर के अन्दर की हवा अशुद्ध हो जाती है। इस अशुद्ध हवा में मोमबत्ती नहीं जल सकती।

प्रिस्टले का दूसरा प्रयोग

प्रिस्टले ने एक छोटे चूहे को बीकर से ढँक दिया। थोड़ी देर बाद उन्होंने देखा कि चूहे का दम घुटने लगा। प्रिस्टले ने निष्कर्ष निकाला कि चूहे के श्वसन के कारण भी हवा अशुद्ध हो जाती है।

प्रिस्टले का निष्कर्ष था कि जन्तु व आग की लौ हवा को कुछ ऐसा नुकसान पहुँचाते हैं कि अब वह हवा न तो लौ को सहारा दे सकती है, न जीवन को।

तुमने भी मोमबत्ती वाला प्रयोग किया है। क्या तुम्हारा निष्कर्ष प्रिस्टले के निष्कर्ष से मेल खाता है? (4)

इन प्रयोगों ने प्रिस्टले को उलझन में डाल दिया। दुनिया में इतने सारे जन्तु हैं। दुनिया में इतनी सारी आग भी जलती रहती है। प्रिस्टले ने सोचा कि फिर क्यों पूरी दुनिया की हवा अशुद्ध नहीं हो जाती?

हम सब लोग, सारे जानवर, सारे कीड़े-मकोड़े लगातार साँस लेते और छोड़ते हैं। तो धीरे-धीरे सारी ऑक्सीजन खर्च हो जाना चाहिए और चारों तरफ कार्बन डाईऑक्साइड ही कार्बन डाईऑक्साइड भर जानी चाहिए। परन्तु ऐसा होता नहीं। आखिर क्यों?

तुम्हारा क्या विचार है? (5)

प्रिस्टले का तीसरा प्रयोग

अन्ततः 1771 के अगस्त महीने में प्रिस्टले ने कुछ हद तक इस सवाल को सुलझा लिया।

उन्होंने एक बहुत ही अनोखा प्रयोग किया। एक मोमबत्ती को जलाकर उसके ऊपर एक बीकर रख दिया। जैसी कि उम्मीद थी, थोड़ी देर में मोमबत्ती बुझ गई। अब प्रिस्टले ने इस बीकर में पुदीने की एक टहनी डाल दी। टहनी डालते वक्त यह सावधानी रखी कि बीकर के अन्दर की हवा और बाहर की हवा आपस में मिलने न पाएँ।

बा.वै. कक्षा ७, २००१, पु २१९-२०

दस दिन बाद जब मोमबत्ती को फिर से जलाया गया तो वह जलने लगी। मोमबत्ती को जलाने के लिए बीकर को नहीं हटाया गया था। बाहर से ही लेंस की मदद से उसे जलाया गया था।

पहली बार मोमबत्ती को जलाने पर वह बुझ क्यों गई थी? (6) मोमबत्ती के जलने के कारण बीकर में कौन-सी गैस भर गई होगी? (7)

फिर दूसरी बार मोमबत्ती क्यों जलने लगी? उसे दुबारा से जलने के लिए ऑक्सीजन कहाँ से मिली होगी? (8)

बीकर के अन्दर भरी कार्बन डाईऑक्साइड कहाँ चली गई? (9)

प्रिस्टले के तीनों प्रयोगों का सारांश अपने शब्दों में लिखो। (10)

इन प्रयोगों के आधार पर वातावरण में पेड़-पौधों की भूमिका के बारे में तुम क्या कह सकते हो? (11)

क्या तुम सोच सकते हो कि उस ज़माने में यह प्रयोग कितना महत्वपूर्ण रहा होगा? प्रिस्टले ने निष्कर्ष निकाला था कि पुदीने ने हवा को फिर से शुद्ध कर दिया है। आज हम कह सकते हैं कि मोमबत्ती के जलने से ऑक्सीजन खर्च हो गई थी और कार्बन डाईऑक्साइड बन गई थी।

पुदीने की टहनी ने इस कार्बन डाईऑक्साइड का इस्तेमाल करके ऑक्सीजन पैदा की। इसलिए मोमबत्ती फिर जल सकी।

प्रिस्टले ने अपने प्रयोग के आधार पर बताया कि सारे हरे पेड़-पौधों में यह गुण होता है। वे ही पूरी पृथ्वी के वातावरण को शुद्ध करते रहते हैं।

आओ प्रिस्टले जैसा एक प्रयोग हम भी करें

प्रिस्टले ने जो प्रयोग किया था उसे थोड़े अलग ढंग से हम भी कर सकते हैं।

प्रयोग 1

एक बीकर, एक परखनली और एक कीप लो। इस प्रयोग के लिए बीकर व कीप दोनों पारदर्शी होना चाहिए। पानी में उगने वाले किसी पौधे की कुछ टहनियाँ भी लाओ। इन टहनियों को पानी में ही रखकर लाना तािक वे सूखें नहीं। बीकर में पानी भर लो। पानी में एक चुटकी खाने का सोडा (सोडियम बाईकार्बोनेट) डाल दो। अब कीप के अन्दर पानी के पौधे की कुछ टहनियाँ डालकर चित्र के अनुसार जमाओ। एक परखनली को पूरा पानी से भरकर कीप की नली पर रखो। ऐसा करते हुए ध्यान रखना कि परखनली का पानी गिरना नहीं चाहिए।

इस उपकरण को धूप में रख दो।

ऐसा ही एक और उपकरण जमाओ। इसमें पौधे की टहनियाँ मत डालना। इसे भी धूप में रख दो।

बा.वै. कक्षा ७, २००१, पृ २२०-२१

बा.वै. कक्षा ७, २००१, पु २२१-२

क्या पौधे में से बुलबुले निकल रहे हैं? (12)

जिस उपकरण में टहनियाँ नहीं रखी थीं क्या उसमें भी बुलबुले बन रहे हैं? (13)

लगभग 1 घण्टे तक इस उपकरण को धूप में रखा रहने दो। परखनली जब बुलबुलों से आधी से ज़्यादा भर जाए तब हम जाँचेंगे कि ये बुलबुले किस गैस के हैं।

परखनली के आधी से ज़्यादा गैस से भर जाने पर इसे पानी में ही उलटा रखते हुए इसके मुँह को एक कॉर्क से बन्द कर दो। कॉर्क न हो तो अँगूठे से भी मुँह बन्द किया जा सकता है। मुँह बन्द रखते हुए परखनली को सीधा करो।

अब एक अगरबत्ती सुलगाओ। परखनली का मुँह खोलकर उसमें सुलगती हुई अगरबत्ती डालो। अगरबत्ती इस तरह डालना कि उसका सिरा पानी को न छुए।

क्या हुआ? परखनली में कौन-सी गैस है? (14)

यह गैस कहाँ से आई? इसमें पौधे की क्या भूमिका है? (15)

इस प्रयोग में हमने जलीय पौधे का उपयोग अपनी सुविधा के लिए किया था। पर जैसे कि तुमने प्रिस्टले के तीसरे प्रयोग में देखा था, यह क्रिया सभी पेड़-पौधे करते हैं।

प्रिस्टले के प्रयोग की परेशानी

प्रिस्टले ने पुदीने की टहनी से जो प्रयोग किया वह बहुत महत्वपूर्ण था। जब कोई इतना महत्वपूर्ण प्रयोग होता है तो अन्य वैज्ञानिक उसे खुद करके देखते हैं। कई वैज्ञानिकों ने प्रिस्टले का प्रयोग दोहराया। मगर इसमें काफी परेशानियाँ आने लगीं। सब लोगों को वही परिणाम नहीं मिलते थे जो प्रिस्टले को मिले थे। कभी प्रयोग सफल हो जाता तो कभी असफल रह जाता। आखिर गड़बड़ी कहाँ थी?

पूरे मामले की बारीकी से छानबीन करने का काम एक अन्य वैज्ञानिक ने किया। उसका नाम था यान इन्गेनहोज़ (Jan Ingenhousz)। इन्गेनहोज़ ने प्रिस्टले के प्रयोग को अलग-अलग परिस्थितियों में करके देखा।

इन्गेनहोज़ ने देखा कि हवा को 'शुद्ध' करने का काम सिर्फ पौधों के हरे भाग (यानी पत्तियाँ) ही करते हैं।

इन्गेनहोज़ ने दूसरी बात यह देखी कि पत्तियाँ हवा को 'शुद्ध' करने का काम सिर्फ रोशनी में ही करती हैं। अँधेरे में वे भी हवा को 'अशुद्ध' बनाती हैं।

अर्थात इन्गेनहोज़ ने पाया कि हरी पत्तियाँ प्रकाश की उपस्थिति में हवा की कार्बन डाईऑक्साइड का उपयोग करके ऑक्सीजन छोड़ती हैं। परन्तु रोशनी के अभाव में पौधे भी वही करते हैं जो जन्तु श्वसन में करते हैं, अर्थात् ऑक्सीजन का उपयोग करते हैं और कार्बन डाईऑक्साइड छोड़ते हैं।

इन्गेनहोज़ द्वारा दोहराए गए प्रिस्टले के प्रयोग से एक बात बहुत स्पष्ट रूप से पता चली कि प्रयोग से एक समान परिणाम तभी मिलते हैं जब वे समान परिस्थितियों में किए जाएँ। अतः प्रयोग को परखने के लिए इन बातों का ध्यान रखना बहुत जरूरी है।

रोशनी का असर: प्रयोग 2

तुमने प्रयोग 1 में पौधों द्वारा ऑक्सीजन का बनना देखा था। अब इस प्रयोग में थोड़ा परिवर्तन करो। उपकरण को धूप में रखने की बजाय छाया में रख दो।

क्या बुलबुलों के बनने की गति पर कुछ असर हुआ? (16)

अब बीकर को एक काले कागज़ या कपड़े से ढँक दो।

कुछ देर बाद कपड़ा/कागज़ हटाकर देखो कि क्या अभी बुलबुले बन रहे हैं?

हवा से भोजन?

पहले हमने फॉन हेल्मॉन्ट का प्रयोग देखा। उससे निष्कर्ष निकलता है कि पौधों को भोजन पानी से मिलता है। फिर हमने प्रिस्टले और इन्गेनहोज़ के प्रयोग देखे। इनसे पता चलता है कि हरी पत्तियाँ प्रकाश की उपस्थिति में कार्बन डाईऑक्साइड लेकर ऑक्सीजन उत्पन्न करती हैं।

इन दोनों बातों को जोड़कर यह निष्कर्ष निकाला गया कि हरे पौधे कार्बन डाईऑक्साइड और पानी लेकर प्रकाश की उपस्थिति में अपना भोजन स्वयं बनाते हैं। ज़रा सोचो, पौधे हवा-पानी पर ज़िन्दा हैं!

हवा-पानी से भोजन

धीरे-धीरे और प्रयोग हुए। आखिर वैज्ञानिकों को यह बात समझ में आ गई कि पत्तियाँ सूर्य की रोशनी की उपस्थिति में कार्बन डाईऑक्साइड और पानी को जोडकर मण्ड बनाती हैं।

धूप की उपस्थिति में हरी पत्तियों में होने वाली इस क्रिया को हम एक समीकरण के रूप में भी लिख सकते हैं:

इस क्रिया में मण्ड तो बनता ही है, साथ में ऑक्सीजन भी निकलती है। इस क्रिया को प्रकाश संश्लेषण कहते हैं।

संश्लेषण का अर्थ होता है दो या दो से अधिक चीज़ों से रासायनिक क्रिया द्वारा कोई नई चीज़ बनाना। और चूँिक यह क्रिया प्रकाश की उपस्थिति में ही होती है इसलिए इसे प्रकाश संश्लेषण कहते हैं। प्रकृति में इस क्रिया के लिए पत्तियों में हरे पदार्थ की उपस्थिति ज़रूरी है। इस हरे पदार्थ को क्लोरोफिल कहते हैं।

प्रकाश संश्लेषण के लिए ज़रूरी चीज़ें

प्रकाश संश्लेषण बहुत ही महत्वपूर्ण क्रिया है। इससे पौधों में भोजन बनता है। उनमें वृद्धि होती है। उनका वज़न बढ़ता है। अब शायद तुम समझ पाओगे कि 1-1.5 क्विंटल गेहूँ बोकर 20-25 क्विंटल गेहूँ कहाँ से व कैसे पैदा होता है। यदि प्रकाश संश्लेषण क्रिया न हो तो हममें से किसी को भी भोजन नहीं मिलेगा।

तुम यह जान चुके हो कि पौधों में भोजन बनने (प्रकाश संश्लेषण) के लिए चार चीज़ें ज़रूरी हैं:

- 1. पानी
- 2. कार्बन डाईऑक्साइड
- 3. प्रकाश
- 4. पत्तियों का हरा पदार्थ (क्लोरोफिल)

पानी: आए कहाँ से

फॉन हेल्मॉन्ट की यह बात तो सही निकली कि पौधों का भोजन पानी से आता है। किन्तु बात पूरी सच नहीं थी क्योंकि पौधों का भोजन हवा से भी आता है।

मज़ेदार बात यह है कि पौधे को पानी तो मिलता है ज़मीन से और प्रकाश संश्लेषण की क्रिया होती है पत्तियों में। तो जड़ों से पानी पत्ती तक कैसे पहुँचता है, किस रास्ते से पहुँचता है?

आओ इसे देखने के लिए एक प्रयोग करें।

प्रयोग 3

इस प्रयोग में हम सफेद फूल वाले सदाबहार, गाजर घास या गुलतेवड़ी के पौधे का उपयोग करेंगे। अच्छा हो कि पौधों पर सफेद या किसी और हल्के रंग के फूल लगे हों।

बा.वै. कक्षा ७, २००१, पु २२५

सावधानी से मिट्टी खोदकर दो छोटे-छोटे पौधे जड़ सहित उखाड़ लो। ध्यान रहे कि उखाड़ते समय जड़ को कम से कम नुकसान पहुँचे। उन्हें तुरन्त ताज़े पानी से भरे बरतन में रखो।

दो बोतलें या गिलास लो और उन्हें एक-तिहाई साफ पानी से भरो। एक गिलास में लगभग चार चम्मच लाल स्याही डालो। एक ही तरह के दोनों पौधों को अलग-अलग दो सूखी लकड़ियों पर बाँध दो। बाँधते समय यह ध्यान रहे कि तनों को कोई नुकसान न पहुँचे। एक पौधे को लाल स्याही के घोल वाले गिलास में और दूसरे को सादे पानी वाले गिलास में लकड़ियों के सहारे टिका दो। दोनों गिलासों को लगभग एक घण्टे के लिए छाया में रख दो।

दोनों पौधों को ध्यान से देखकर अपने अवलोकन तालिका 1 मे लिखो। (18)

तालिका 1

क्र . प्रश्न	अवलोकन	
	सादे पानी में रखा पौधा	लाल स्याही के घोल में रखा पौधा
1. पौधों की पत्तियों को ध्यान से देखो। दोनों पौधों की पत्तियों में तुम्हें क्या अन्तर दिखाई दिया?		
 पौधों के फूलों को ध्यान से देखो। इनके रंग में क्या कोई परिवर्तन आया? 		

अब दोनों पौधों के तने को बीच में से ब्लेड से आड़ा काटो और कटे हुए सिरों कों हैंडलेंस की मदद से देखो।

क्या तुम्हें कहीं लाल रंग दिखाई पड़ता है?

क्या ये स्थान ऊपर के चित्र में दर्शाए अनुसार हैं?

अवलोकन के आधार पर बताओं कि लाल पानी फूलों व पत्तियों में कहाँ से होता हुआ पहुँचा? (19)

इस प्रयोग से तुम जड़ के काम और पौधों के पोषण के बारे में क्या निष्कर्ष निकाल सकते हो? (20)

गेहूँ या धान की फसल में पत्ते पीले पड़ने पर किसान यूरिया खाद का उपयोग करते हैं जिससे पत्तियाँ हरी हो जाती हैं।

खेत में यूरिया डालने के बाद पानी क्यों दिया जाता है? सोचकर बताओ। यूरिया तो किसान ज़मीन पर छिड़कते हैं। फिर इसका असर पत्तियों पर कैसे हो जाता है?

तुमने उपरोक्त प्रयोग एवं यूरिया वाली जानकारी से मालूम किया कि पौधे पानी एवं उसमें घुले अन्य पोषक पदार्थ कहाँ से व कैसे प्राप्त करते हैं।

हवा का लेन-देन

पानी तो जड़ों से मिल गया। कार्बन डाईऑक्साइड हवा से लेनी पड़ती है। यह काम पितयाँ ही करती हैं। पितयों में हवा के लेन-देन के लिए बहुत बारीक छेद होते हैं। ये इतने बारीक होते हैं कि हमें वैसे दिखाई नहीं देते। सूक्ष्मदर्शी से देखने पर नज़र आते हैं। इन छिद्रों को स्टोमेटा कहते हैं। इन्हीं से पित्तयों में हवा का लेन-देन चलता रहता है।

स्टोमेटा देखना वैसे आसान है, बशर्ते कि तुम्हारे पास एक सूक्ष्मदर्शी हो। किसी भी पत्ती की निचली सतह से एक झिल्ली निकालो। इस झिल्ली को काँच की स्लाइड पर एक बूँद पानी में रखो और प्लास्टिक की पन्नी के छोटे से टुकड़े से ढँक दो। अब इसे सूक्ष्मदर्शी से देखो। चित्र की मदद से स्टोमेटा खोजने की कोशिश करो।

हमने देखा कि पौधे जड़ों के माध्यम से पानी और पत्तियों में उपस्थित स्टोमेटा से हवा लेते हैं। क्लोरोफिल तो पत्तियों में है ही। अब प्रकाश संश्लेषण की क्रिया के लिए और क्या चाहिए?

प्रयोग २ के अपने निष्कर्षों को देखो।

वहाँ जब पौधे को धूप नहीं मिल रही थी तब भी क्या बुलबुले बनते रहे थे? (21)

क्या इस प्रयोग के आधार पर हम कह सकते हैं कि पौधे सिर्फ प्रकाश की उपस्थिति में कार्बन डाईऑक्साइड का उपयोग करके ऑक्सीजन बनाते हैं?

तब सवाल उठता है कि कार्बन डाईऑक्साइड और पानी को जोड़कर मण्ड बनाने की क्रिया पत्तियों में क्या सिर्फ प्रकाश की उपस्थिति में ही होती है? आओ इसे जानने की कोशिश करें।

प्रकाश न मिले तो

एक प्रयोग का विवरण यहाँ दिया गया है। इसे पढ़कर तुम्हें निष्कर्ष निकालना होगा कि पत्तियों में मण्ड बनने पर प्रकाश का क्या असर होता है। वैसे तो यह प्रयोग किसी भी पेड़-पौधे पर किया जा सकता है मगर यहाँ जिस प्रयोग का वर्णन है वह चाँदनी के पेड़ पर किया गया था।

हमें पत्तियों में मण्ड की उपस्थिति का पता लगाना होगा। तुम्हें मण्ड के परीक्षण का तरीका तो मालूम ही है ('हमारा

भोजन' अध्याय देखो)। परन्तु पत्तियों में मण्ड का पता लगाने में समस्या आती है। पत्तियों का तो अपना रंग हरा होता है। यदि किसी पत्ती पर आयोडीन का घोल डालें, तो मण्ड होने पर नीला रंग तो आएगा मगर हमें दिखेगा नहीं। इसलिए पत्तियों में मण्ड का पता लगाने के लिए ज़रूरी है कि पहले पत्ती का हरा रंग हटा दिया जाए। हरा रंग हटाने के लिए पत्ती को पहले उबलते पानी में डालना होता है और फिर अल्कोहल में उबालना पड़ता है। यह काम थोड़ा मृश्किल है। अल्कोहल में उबालते समय बहुत सावधानी रखनी होती है।

प्रयोग के लिए एक दोपहर में चाँदनी की चार-पाँच पत्तियाँ ली गईं। इनका हरा रंग निकालने के बाद आयोडीन के घोल में डाल दिया गया। पत्तियों का रंग काला पड़ गया।

क्या तुम बता सकते हो कि ऐसा क्यों हुआ होगा? (23)

अब प्रयोग का दूसरा भाग किया गया। पेड़ पर ही चाँदनी की चार-पाँच पत्तियों को एक-एक काले कागज़ से ढँक दिया गया। इसमें कागज़ में से + आकार का टुकड़ा काटकर निकाल दिया गया था। पत्तियों पर काला कागज़ चित्र में दिखाए अनुसार लगाया गया था।

दो दिन बाद इन पत्तियों को तोड़कर लाया गया। इनका हरा रंग निकालने के बाद इन्हें आयोडीन के घोल में डाला गया, पत्तियों पर काला रंग पिछले पेज के नीचे वाले चित्र की तरह दिखाई पड़ रहा था।

चित्र देखकर बताओ कि पत्ती में कहाँ मण्ड उपस्थित है और कहाँ नहीं। (24)

काला कागज़ लगाने के बाद क्या पूरी पत्ती को प्रकाश मिल रहा था? यदि नहीं तो किन भागों को प्रकाश नहीं मिल रहा था?

क्या मण्ड का निर्माण सिर्फ उन भागों में हुआ है जहाँ प्रकाश पड़ रहा था? (26)

इस प्रयोग के आधार पर तुम पत्तियों में मण्ड बनने और प्रकाश के बीच क्या सम्बन्ध देखते हो?

क्या पौधे सिर्फ मण्ड बनाते हैं?

'हमारा भोजन' अध्याय में तुमने देखा था कि भोजन में मण्ड, वसा तथा प्रोटीन होते हैं। ये पेड़-पौधों में भी तो होते हैं। तो ये सारे पदार्थ कहाँ से आते हैं? वास्तव में एक बार मण्ड बन जाने पर उससे अन्य सारे पदार्थ पौधों में बन सकते हैं। इनके अलावा भी पौधों को कई और पोषक तत्वों की ज़रूरत होती है। इनमें प्रमुख पोषक तत्व नाइट्रोजन, पोटेशियम व फॉस्फोरस हैं। इनके अलावा कुछ अन्य पोषक तत्वों की ज़रूरत कम मात्रा में होती है। इसलिए इन्हें सूक्ष्म पोषक तत्व कहते हैं। हम इन पोषक तत्वों के बारे में अभी कोई प्रयोग तो नहीं कर पाएँगे।

जन्तुओं और पौधों का सम्बन्धः भोजन शृंखला

यह कितनी बड़ी बात है कि पौधे स्वयं के लिए तो भोजन बनाते ही हैं साथ में जन्तुओं का भी पोषण करते हैं। अतः भोजन के माध्यम से जन्तुओं और पौधों का एक सीधा सम्बन्ध है। इसे एक चित्र के द्वारा समझाया जा सकता है। पेड़-पौधों और जन्तुओं का एक सम्बन्ध प्रकाश संश्लेषण और श्वसन का भी है।

पेड़-पौधे, जीव-जन्तु सब श्वसन करते हैं। हाँ, यह बात ध्यान में रखने की है कि पेड़-पौधे भी श्वसन करते हैं और उनका श्वसन बिलकुल वैसा ही होता है जैसा जन्तुओं का होता है। यानी पेड़-

पौधे भी श्वसन में ऑक्सीजन खर्च करते हैं और कार्बन डाईऑक्साइड पैदा करते हैं। यह क्रिया दिन-रात चौबीस घण्टे चलती रहती है। सारे सजीवों (यानी पेड़-पौधों और जीव-जन्तुओं) के श्वसन से वातावरण में कार्बन डाईऑक्साइड की मात्रा बढ़ती है। दिन के उजाले में क्लोरोफिल की मदद से पौधे कार्बन डाईऑक्साइड का उपयोग करके वातावरण में ऑक्सीजन छोड़ देते हैं। दिन के समय पौधों में प्रकाश संश्लेषण की क्रिया बहुत तेज़ होती है। इसलिए दिन में पौधों के श्वसन का हमें पता नहीं चलता।

अभ्यास के सवाल

- 1. प्रयोग 1 में हमने एक जैसे दो बीकर जमाए थे। उनमें से केवल एक में ही पौधा रखा गया था। क्या तुम बता सकते हो कि इस प्रयोग में बिना पौधे वाला बीकर क्यों रखा गया था?
- 2. प्रिस्टले के दूसरे एवं तीसरे प्रयोग के आधार पर बताओ कि अगर बीकर के अन्दर चूहे को ज़्यादा देर तक जीवित रखना हो तो हम क्या कर सकते हैं।
- उ. गमले में लगे पौधे को एक दिन प्रकाश में रखकर उसकी एक पत्ती पर मण्ड का परीक्षण किया गया। इसी पौधे को दो दिन अँधेरे में रखने के बाद उसकी पत्ती पर मण्ड परीक्षण किया गया। क्या दोनों प्रयोगों के परिणामों में कोई अन्तर होगा? कारण सहित उत्तर लिखो।

रासायनिक क्रियाएँ

क्रियाओं की गति और विद्युत के रासायनिक प्रभाव

आम तौर पर रासायनिक परिवर्तन और भौतिक परिवर्तन के बीच भेद करना काफी छोटी कक्षा में सिखाया जाता है। वैसे यह खुशी की बात है कि आजकल पाठ्यक्रमों में इस भेद को बहुत ज़्यादा महत्व नहीं दिया जा रहा है। दरअसल रासायनिक व भौतिक परिवर्तनों के बीच भेद बहुत सूक्ष्म ही है और हमेशा बता पाना सम्भव भी नहीं होता। बाल वैज्ञानिक में एक अध्याय विकसित किया गया था — रासायनिक क्रियाएँ। इसमें बच्चे कुछ प्रयोग करते हैं और यह देखने की कोशिश करते हैं कि कब-कब कोई नया पदार्थ बना है। जिन क्रियाओं में कोई नया पदार्थ बनता है उन्हें रासायनिक क्रियाएँ कहते हैं। यहाँ दिए गए प्रयोग मुलतः कुछ संकेत प्रदान करते हैं जो दर्शाते हैं कि नया पदार्थ बना है या नहीं। जैसे किन्हीं दो पदार्थों को मिलाने पर अवक्षेप बनना, किन्हीं दो पदार्थों को मिलाने पर रंग में परिवर्तन, अवस्था में परिवर्तन वगैरह ऐसे ही संकेतक हैं। मगर आप कई उदाहरण ऐसे सोच सकते हैं जिनमें भौतिक परिवर्तन होता है मगर उपरोक्त में से कोई एक या एक से अधिक बातें नज़र आती हैं। लिहाज़ा रासायनिक क्रिया हुई या नहीं इसे जानने का कोई सटीक और अचूक तरीका नहीं है, सिवाय इसके कि हम शुरुआती पदार्थों और अन्तिम पदार्थों का रासायनिक विश्लेषण करें। इतना सब कहने का मतलब यही है कि रासायनिक परिवर्तन को पहचानना हमेशा सरल नहीं होता।

यह भी स्पष्ट होना चाहिए कि हर परिवर्तन को स्पष्ट रूप से रासायनिक या भौतिक कहना सम्भव भी नहीं होता। पानी में नमक के घुलने को क्या कहेंगे?

बहरहाल, एक बार हम मोटे तौर पर तय कर लें कि रासायनिक क्रिया क्या होती है तो उनका अध्ययन करने के तौर-तरीके विकसित किए जा सकते हैं। जैसे यही देखा जा सकता है कि कोई रासायनिक क्रिया किस रफ्तार से होती है। वैसे तो इसके कई तरीके हैं मगर कोई भी तरीका दो में से एक बात पर निर्भर रहेगा — या तो हम यह मापन करें कि क्रिया करने वाले अभिकारक किस गति से खत्म हो रहे हैं या यह मापन करें कि क्रियाफल किस गति से बन रहे हैं। यहाँ चर्चा किए जा रहे अध्याय के प्रयोगों में क्रियाफल बनने की रफ्तार को नापने की विधि का सहारा लिया गया है।

दो गैसों — कार्बन डाईऑक्साइड और हाइड्रोजन — का निर्माण किया जाता है। तरीके वही हैं जिनका उपयोग बच्चे पहले भी कर चुके हैं। गैसों को इसलिए चुना गया है क्योंकि इनके बनने की सतत निगरानी आसान है; आपको सिर्फ इतना करना है कि गैस के बुलबुले पानी में से निकलने दें और उन्हें गिनते जाएँ। (ज़ाहिर है कि बुलबुले बनने की गति बहुत तेज़ न हो, वरना गिनने में दिक्कत होगी।) यदि बनने वाले पदार्थ ठोस या तरल हों तो उनके बनने की गति देखना मुश्किल होता है; समय-समय पर उस घोल के नमूने लेने होते हैं जिसमें क्रिया हो रही है, क्रिया को किसी तरह से रोकना पड़ता है और यह पता करना होता है कि कितने अभिकारक समाप्त हो चुके हैं या कितने क्रियाफल बन चुके हैं।

रासायनिक क्रियाओं की गित पर तीन कारकों के असर को परखा गया है। प्रत्येक कारक के असर को परखते हुए कोशिश यह की गई है कि शेष परिस्थितियाँ यथासम्भव एक समान रहें। यह एक और मौका है जब बच्चों के साथ प्रयोग में तुलना के प्रावधान की चर्चा की जा सकती है। क्रियाओं की गित पर असर डालने वाले कारक अन्य भी हैं। इनमें प्रमुख रूप से उत्प्रेरकों का नाम लिया जा सकता है। उत्प्रेरक ऐसे पदार्थ होते हैं जो रासायनिक क्रिया की गति को प्रभावित करते हैं, यद्यपि वे स्वयं उस क्रिया में भाग नहीं लेते। इनकी बात प्रस्तुत अध्याय में नहीं की गई है। एक बार रासायनिक क्रियाओं का अनुभव हो जाने के बाद बच्चे विभिन्न स्थितियों में रासायनिक क्रियाएँ देख पाते हैं। जैसे किसी विद्युत अपघट्य पदार्थ के घोल में से बिजली प्रवाहित करने पर होने वाले रासायनिक परिवर्तन एक उदाहरण हैं। अध्याय पढ़ते समय आपने देखा ही होगा कि इससे सम्बन्धित प्रयोग काफी सरल हैं और बहुत ज़्यादा सामग्री की भी ज़रूरत नहीं होती। रासायनिक क्रिया का अवलोकन भी मुश्किल नहीं होता। एक तो किसी एक इलेक्ट्रोड पर नया पदार्थ जमा होने लगता है, दूसरे इलेक्ट्रोड के आसपास बुलबुले निकलते भी दिखाई दे सकते हैं। विद्युत को समझने और विद्युत अपघट्य पदार्थों (यानी जिन पदार्थों का विद्युत अपघटन होता है) के संगठन को समझने में इन प्रयोगों का महत्व बताने की ज़रूरत नहीं है। फेराडे (Faraday) ने विद्युत अपघटन सम्बन्धी प्रयोगों को मात्रात्मक ढंग से करके ही इसके नियम प्रतिपादित किए थे। इन्हीं प्रयोगों के आधार पर रासायनिक तुल्यता की

बात को एक ठोस बुनियाद मिली थी। यदि हमारे पास एक अच्छी रासायनिक तुला हो तो हम भी इन प्रयोगों को मात्रात्मक ढंग से करके विद्युत के बारे में काफी कुछ सीख सकते हैं। जैसे यदि ऋण इलेक्ट्रोड पर ताँबा जमा हो रहा है तो हम क्रिया से पहले और क्रिया के बाद उस इलेक्ट्रोड को तौलकर पता कर सकते हैं कि कितना ताँबा जमा हुआ है। यही क्रिया किसी अन्य धातु के साथ करके उनके बीच तुल्यता का पता कर सकते हैं। यानी हम यह पता करने की कोशिश कर सकते हैं कि क्या बराबर मात्रा में विद्युत प्रवाहित करने पर विभिन्न धातुओं की बराबर मात्रा जमा होती है। विद्युत अपघटन की मदद से ही पानी का रासायनिक संघटन पता किया गया था। ये प्रयोग करते हुए बच्चों का ध्यान ऊर्जा के रूपान्तरण की ओर भी दिलाया जा सकता है। इन प्रयोगों में विद्युत ऊर्जा को रासायनिक कार्य करने में प्रयुक्त किया जा रहा है। दूसरे शब्दों में, विद्युत ऊर्जा रासायनिक परिवर्तन को चला सकती है। इसका विलोम भी सम्भव है — रासायनिक क्रियाएँ विद्युत पैदा कर सकती हैं। यही तो रासायनिक सेलों (जैसे टॉर्च सेल) का सिद्धान्त है।

रासायनिक क्रियाएँ

दूध में खटाई पड़ जाए तो दूध फट जाता है। पानी अलग और छेना (पनीर) अलग हो जाता है। मोमबत्ती को जलाते हैं तो पूरी मोमबत्ती धुआँ बनकर उड़ जाती है। दूध में थोड़ा-सा दही डालकर रख दें तो धीरे-धीरे पूरा दूध दही बन जाता है। इन सब उदाहरणों में कोई न कोई नई चीज़ बनी है। रोज़ाना ऐसी कई घटनाएँ होती हैं जिनमें एक पदार्थ से दूसरा नया पदार्थ बन जाता है। परन्तु पदार्थों को घोलने-मिलाने की क्रिया तो हम कई बार करते रहते हैं। क्या हर बार कोई नया पदार्थ बनता है? शक्कर को पानी में घोल दें या बल्ब जलाएँ या दूध में पानी मिलाएँ तो कोई नया पदार्थ बनता है क्या? कई बार एक ही पदार्थ भी रखे-रखे या गरम करने पर बदलकर नया पदार्थ बना देता है। जैसे शक्कर को गरम कर दें तो वह काली पड़ जाती है।

ऐसे और उदाहरण सोचकर बताओ जहाँ एक ही पदार्थ से या दो पदार्थ को मिलाने से कोई नया पदार्थ बनता हो। प्रत्येक टोली एक उदाहरण बताए। प्रत्येक उदाहरण में यह भी बताओ कि तुमने कैसे जाना कि कोई नया पदार्थ बना है। (1)

किसी क्रिया में कोई नया पदार्थ बना है या नहीं इस बात का पता हमें कई तरह से चलता है। कभी-कभी ऐसा भी होता है कि नया पदार्थ बन जाता है मगर आसानी से पता नहीं चलता कि नया पदार्थ बन गया है। ऐसी क्रियाओं को जिनमें नए पदार्थ बनते हैं, रासायनिक क्रियाएँ कहते हैं। इस अध्याय में हम कुछ रासायनिक क्रियाएँ करके देखेंगे। प्रत्येक क्रिया में हम देखेंगे कि हमें कैसे पता चलता है कि नया पदार्थ बन रहा है। प्रत्येक उदाहरण में इसी बात का खास अवलोकन करना है।

ताँबे की कलई: प्रयोग 1

एक बीकर में 50 मि.ली. पानी लेकर उसमें आधा चम्मच नीला थोथा (कॉपर सल्फेट) घोल लो। इस घोल में 1 मि.ली. तन् गन्धक का अम्ल डाल दो। अब पाँच

बा.वै. कक्षा ७, २००१, प्र २१२

^{*} बाल वैज्ञानिक कक्षा 7, 2001

परखनितयाँ लो। इन परखनितयों पर 1 से 5 नम्बर के लेबल लगा दो। कॉपर सल्फेट का घोल इन पाँच परखनितयों में बराबर-बराबर डाल दो। पहली परखनिल के घोल में लोहे की 1-2 कीलें या ऑलिपनें, दूसरी में एल्युमिनियम की पन्नी, तीसरी में प्लास्टिक की कोई चीज़ तथा चौथी परखनली में लकड़ी का एक टुकड़ा डालकर रख दो। पाँचवी परखनली में कुछ नहीं डालना है।

आधे घण्टे बाद परखनलियों में कॉपर सल्फेट के घोल के रंग और प्रत्येक में रखी चीज़ का अवलोकन करो। यह देखों कि क्या उस चीज़ के रंग में कोई परिवर्तन हुआ है या क्या उस पर कोई पदार्थ जमा हुआ है।

अपने अवलोकन तालिका 1 में लिखो। (2)

तालिका 1

परखनली क्रमांक	कॉपर सल्फेट के घोल में क्या चीज़ डाली है?	घोल के रंग में परिवर्तन	क्या कोई अवक्षेप बना?	चीज़ पर परिवर्तन
1.	लोहे की कील या ऑलपिन			
2.	एल्युमिनियम की पन्नी			
3.	प्लास्टिक			
4.	लकड़ी			
5.	कुछ नहीं			

किस-किस परखनली में रखे कॉपर सल्फेट के घोल का रंग फीका पड़ा या बदला? (3)

किस-किस परखनली में रखी चीज़ पर कोई परिवर्तन दिखाई पड़ा? (4) अपने अवलोकनों के आधार पर कारण सहित बताओ कि किस-किस परखनली में रासायनिक क्रिया हुई है? (5)

क्या तुम अन्दाज़ा लगा सकते हो कि रासायनिक क्रिया में कौन-सा नया पदार्थ बना है? (6)

कुछ सोचने को

क्या कोई परखनली ऐसी भी है जिसमें घोल का रंग तो बदला हो मगर उसमें रखी चीज़ पर कोई असर न हुआ हो? (7)

क्या कोई परखनली ऐसी भी है जिसमें रखी चीज़ पर असर तो हुआ हो मगर घोल का रंग न बदला हो? (8)

क्या घोल का रंग बदलना और उसमें रखी चीज़ पर होने वाले असर का आपस में कोई सम्बन्ध हो सकता है? (9)

प्रयोग 2

आओ, अब एक और रासायनिक क्रिया का उदाहरण देखते हैं।

इस प्रयोग में हम दो पदार्थों के घोलों को आपस में मिलाकर देखेंगे कि क्या कोई नया पदार्थ बनता है।

एक परखनली में आधा चम्मच यूरिया लेकर उसमें एक-तिहाई परखनली पानी डालो। इसे अच्छे से हिलाकर घोल लो।

दूसरी परखनली में आधा चम्मच ऑक्सेलिक अम्ल लेकर उसे भी एक-तिहाई परखनली पानी में घोल लो।

क्या दोनों पदार्थ (यूरिया और ऑक्सेलिक अम्ल) पानी में अच्छी तरह घूलनशील हैं? (10)

अब ऑक्सेलिक अम्ल के घोल को यूरिया के घोल में डाल दो।

इन दोनों घोलों को मिलाने पर जो कुछ होता है उसका वर्णन करो। (11)

क्या दोनों घोलों को मिलाने पर कोई अघुलनशील पदार्थ बना? (12)

क्या हम कह सकते हैं कि कोई नया पदार्थ बन गया है? अपने उत्तर का कारण भी बताओ। (13)

नया पदार्थ किस रूप में यूरिया व ऑक्सेलिक अम्ल से भिन्न है? (14)

जूना वह लेना होगा जो साधारण लोहे का बना होता है।

लोहे पर जंगः प्रयोग 3

दो प्रयोग में हमने यह देखा कि नए पदार्थ के बनने का पता कैसे चलता है। आओ अब इसका एक और उदाहरण देखते हैं।

लोहे पर जंग लगना तो तुमने कई बार देखा होगा। यहाँ हम एक प्रयोग करके देखेंगे कि जंग लगने के दौरान क्या-क्या परिवर्तन होते हैं। इस प्रयोग में थोड़ा ज़्यादा समय लगता है। इसलिए इसे धीरज से करना होगा और उपकरण को सम्हालकर रखने की व्यवस्था भी करनी होगी।

तीन परखनितयाँ, दो बीकर तथा बरतन साफ करने वाला लोहे का ब्रश (जूना) लो। परखनितयों पर क्रमांक 1, 2 व 3 के लेबल लगा दो। ब्रश में से लोहे के तार के आधा-आधा मीटर लम्बे दो टुकड़े काट लो। इन लम्बे टुकड़ों को लपेटकर दो छोटी-छोटी गेंद बना लो। एक गेंद को थोड़ी गीली करके परखनली क्रमांक 1 में पेंदे तक घुसा दो। दूसरी गेंद को सूखा ही परखनली क्रमांक 2 में घुसा दो। गेंद ऐसी बनाना कि वह परखनली के पेंदे में फँस जाए और परखनली उलटा करने पर भी न गिरे। परखनली क्रमांक 3 में कुछ नहीं करना है।

अब एक बीकर में लगभग एक चौथाई पानी भरो। परखनली क्रमांक 1 व 3 को बीकर के पानी में उलटा खड़ा कर दो। परखनली क्रमांक 2 को एक सूखे बीकर में उलटा खड़ा कर दो। पानी में रखी दोनों परखनलियों में पानी का तल देखो। तुम देखोगे दोनों में ही पानी का तल बिलकुल नहीं चढ़ा है। इतना करने के बाद

बा.वै. कक्षा ७, २००१, पृ २१४

बा.वै. कक्षा ७, २००१, पृ २१५

बीकर को परखनिलयों समेत किसी सुरिक्षत स्थान पर रख दो। अगले तीन दिनों तक प्रतिदिन इनका अवलोकन करना होगा। परखनिलयों का अवलोकन करने के लिए उन्हें पानी में से बाहर मत निकालना। पानी में रखे-रखे ही देखो कि लोहे के तार पर क्या असर हुआ है और पानी के तल में क्या परिवर्तन हुआ है।

अपने अवलोकनों को नीचे दी गई तालिका में लिखो। (15)

तालिका 2

蛃.	परखनली	परखनली के लोहे पर प्रभाव	परखनली के पानी के तल में परिवर्तन
1.	गीला लोहा		
2.	सूखा लोहा		
3.	बगैर लोहा		

किस परखनली में लोहे पर प्रभाव दिखता है? (16)

किस परखनली में पानी के तल में परिवर्तन आया? (17)

पानी के तल में परिवर्तन का क्या कारण हो सकता है? आपस में और शिक्षक से चर्चा करके उत्तर दो। (18)

किस परखनली में रासायनिक क्रिया होने के प्रमाण मिले और क्या प्रमाण मिले? (19)

हमने ऊपर तीन प्रयोगों में देखा कि नया पदार्थ बनने, यानी रासायनिक क्रिया होने के अलग-अलग संकेत हो सकते हैं।

हमारा भोजन अध्याय में तुमने अलग-अलग चीज़ों में वसा, प्रोटीन और मण्ड का परीक्षण किया था।

इनमें से किस-किस परीक्षण में नया पदार्थ बना था? कारण सहित बताओ। (20)

एक परखनली में थोड़ा-सा चूने का पानी लो। एक काँच की नली से इसमें फूँक मारो।

कुछ देर तक फूँकने के बाद चूने के पानी में क्या परिवर्तन हुआ? (21) क्या तुम्हारी फूँक से चूने के पानी में कोई रासायनिक क्रिया हो रही है? (22)

निम्नलिखित में से किस-किस क्रिया को रासायनिक क्रिया कहोगे:

- 1. नींबू का रस निकालना 2. लकड़ी का जलना 3. गिलास टूटना
- 4. कागज़ का फटना 5. आम का पकना (23)

आगे कई अध्यायों में तुम रासायनिक क्रियाओं से सम्बन्धित प्रयोग करोगे। किसी अध्याय में तुम कोई गैस बनाकर उसके गुणधर्मों की जाँच करोगे तो किसी में यह देखोगे कि रासायनिक क्रियाओं की गति को कैसे नापा जाता है। तुम यह भी देखोगे कि इन क्रियाओं पर किन-किन बातों का असर पड़ता है।

अभ्यास के सवाल

- 1. नीचे कुछ क्रियाओं की सूची दी गई है। इसमें बताओ कि कौन-सी रासायनिक क्रियाएँ हैं और तुमने यह कैसे पता लगाया कि वे रासायनिक क्रियाएँ हैं।
 - क. नमक का घोल बनाना
 - ख. बर्फ का पिघलना
 - ग. संगमरमर पर नमक का अम्ल डालना
 - घ. क्रोमेटोग्राफी में रंगों का अलग-अलग हो जाना
 - च. मोम का पिघलना
 - छ. पानी का भाप बन जाना
 - ज. फिनॉफ्थलीन के रंगहीन सूचक घोल का गुलाबी हो जाना
- 2. श्वसन के अध्याय में तुमने अन्तःश्वासित और प्रश्वासित हवा के बीच अन्तर पता लगाया था। इसके आधार पर बताओं कि श्वसन के दौरान क्या हमारे शरीर के अन्दर कोई रासायनिक क्रिया होती है।
- 3. प्रयोग 3 में जंग लगने की क्रिया देखने के लिए हमने तीन परखनलियाँ क्यों लीं? क्या एक परखनली से प्रयोग करने पर निष्कर्ष निकालने में कोई समस्या आती? कारण सहित लिखो।

रासायनिक क्रियाओं की गति*

तुमने कार्बन डाईऑक्साइड और ऑक्सीजन गैसें बनाई हैं। प्रयोग करते हुए कभी-कभी ऐसा हुआ होगा कि गैस जल्दी-जल्दी नहीं बनती।

गैस जल्दी-जल्दी बने इसके लिए तुम क्या-क्या करते हो? (1)

इस अध्याय में हम यही देखने की कोशिश करेंगे कि रासायनिक क्रिया की गति कैसे नापते हैं और गति पर किन-किन बातों का असर पड़ता है। जिन वजहों से क्रिया की गति में परिवर्तन होता है उन्हें हम अलग-अलग कारक कहते हैं।

कौन तेज़, कौन धीमा

गैस बनने की गित वास्तव में रासायनिक क्रिया की गित पर निर्भर होती है। यदि क्रिया तेज़ी से होगी तो गैस भी जल्दी-जल्दी बनेगी। यानी गैस बनने की गित से हम बता सकते हैं कि क्रिया किस गित से हो रही है। गैस बनने की गित को हम आसानी से नाप सकते हैं। जब गैस को पानी के विस्थापन से इकट्ठा करते हैं तो हम एक मिनट में बनने वाले बुलबुले गिनकर गित पता लगा सकते हैं। क्रिया जितनी तेज़ होगी, एक मिनट में उतने अधिक बुलबुले बनेंगे।

आगे दिए गए प्रयोगों में हम कार्बन डाईऑक्साइड और हाइड्रोजन गैसें बनाएँगे। कॉर्बन डाईऑक्साइड और हाइड्रोजन बनाने की विधि तो वही होगी जो तुम पहले भी कर चुके हो। अन्तर सिर्फ इतना होगा कि हम इन विधियों में एक-एक कारक को बदलकर देखेंगे कि इससे गैस बनने की गति पर क्या असर पड़ता है। तो तैयार?

कार्बन डाईऑक्साइड

यह प्रयोग तो तुम कर ही चुके हो। संगमरमर के टुकड़ों पर नमक का अम्ल (हाइड्रोक्लोरिक अम्ल) डालने से कार्बन डाईऑक्साइड नाम की गैस बनती है।

एक इंजेक्शन की शीशी लो जिसमें रबर का ढक्कन लगा हो। रबर के ढक्कन में

एक रिफिल का टुकड़ा फँसा दो। ढक्कन में रिफिल के टुकड़े को ऐसे लगाओ कि वह शीशी के अन्दर थोड़ा-सा ही निकला रहे। रिफिल के ऊपरी सिरे पर एक वॉल्व ट्यूब चढ़ा दो।

एक परखनली को पूरा पानी से भर लो। एक तश्तरी या

किसी डिब्बे के ढक्कन में भी पानी भर लो। अब प्रयोग की तैयारी पूरी हो गई है। हम आगे कार्बन डाईऑक्साइड से सम्बन्धित प्रयोग करेंगे।

इन प्रयोगों में ये तीन प्रमुख कारक हैं — अम्ल की सान्द्रता, तापमान और ठोस पदार्थ के कणों की साइज़। अन्य क्रियाओं में इनके अलावा कारक भी हो सकते हैं। वैसे छात्र इन तीन क्रियाओं के बारे में भी सोच सकते हैं कि क्या और कोई चीज़ है जिसका असर क्रिया की गति पर पड़ेगा।

बा.वै. कक्षा ८, २००९, पु १००

^{*} बाल वैज्ञानिक कक्षा 8, 2002

प्रयोग 1-क में अम्ल के गाढ़ेपन (सान्द्रता) का असर परखेंगे।

प्रयोग १-ख में तापमान का असर परखेंगे।

प्रयोग 1-ग में यह देखेंगे कि संगमरमर के टुकड़े को बड़ा-छोटा (मोटा-बारीक) करने पर क्या असर होता है।

अम्ल के गाढ़ेपन (सान्द्रता) का असरः प्रयोग 1 (क)

इस प्रयोग में हम यह देखने की कोशिश करेंगे कि नमक के अम्ल को गाढ़ा-पतला करने पर क्रिया की गति पर क्या असर पड़ता है। इसके लिए अम्ल के अलग-अलग घोल बनाने पडेंगे।

दो परखनितयाँ लो। इन पर 1 व 2 नम्बर के लेबल लगा लो। दोनों परखनिलयों में बराबर-बराबर मात्रा में हाइड्रोक्लोरिक अम्ल लो। परखनली क्रमांक 1 के अम्ल में हम ऊपर से पानी नहीं मिलाएँगे। परखनली क्रमांक 2 में जितना अम्ल लिया है, उतना ही पानी डाल दो।

इस प्रकार से परखनली क्रमांक 1 का अम्ल गाढ़ा (सान्द्र) है जबकि परखनली क्रमांक 2 का अम्ल पतला (तनु) है।

अब हम बारी-बारी प्रयोग करेंगे।

प्रयोग की व्यवस्था चित्र में दिखाए अनुसार करना है। परन्तु प्रयोग शुरू करने से पहले टोली का एक सदस्य घड़ी लेकर समय गिनने के लिए तैयार हो जाए। जैसे ही गैस बनाना शुरू हो, वह समय नोट करके बुलबुले गिनना शुरू कर दें। ज़्यादा अच्छा होगा यदि बुलबलों की गिनती थोड़ी गैस बन जाने के बाद की जाए। एक मिनट में बनने वाले बुलबुलों की संख्या नोट करना है।

परखनली को पानी गिराए बगैर सावधानीपूर्वक ढक्कन या तश्तरी के पानी में उलटा खड़ा कर दो। इंजेक्शन की शीशी में संगमरमर के 4-5 टुकड़े डालो। अब इसमें परखनली 1 का हाइड्रोक्लोरिक अम्ल डाल दो। थोड़ी गैस निकल जाने के बाद वॉल्व ट्यूब के सिरे को परखनली के नीचे डाल दो। गैस के बुलबुले पानी में ऊपर उठेंगे और गैस परखनली में भरने लगेगी।

घड़ी की मदद से बुलबुले गिनकर यह पता करों कि एक मिनट में कितने बुलबुले निकलते हैं।

अपने अवलोकन तालिका 1 में लिखो। (2)

तालिका 1

क्र.	अम्ल	एक मिनट में बुलबुलों की संख्या
1.	गाढ़ा (सान्द्र)	
2.	पतला (तनु)	

अब इंजेक्शन की शीशी का सारा अम्ल फेंक दो और इसमें परखनली क्र. 2 का अम्ल डालकर प्रयोग को दोहराओ। तनु अम्ल उतना ही डालना है जितना सान्द्र अम्ल डाला था।

प्रयोग के दौरान एक मिनट में निकलने वाले बुलबुलों की संख्या गिनो और तालिका में नोट करो। (3)

अम्ल को पतला (तनु) करने पर गैस बनने की गति पर क्या असर पड़ता है? (4)

सब टोलियों का निष्कर्ष एक जैसा है या अलग-अलग है? (5)

अगले प्रयोग में हम यह देखने की कोशिश करेंगे कि क्रिया की गति पर तापमान का क्या प्रभाव पड़ता है। प्रयोग 1-क में हमने क्रिया के लिए जिस अम्ल का उपयोग किया था उसे न तो हमने गरम किया था और न ठण्डा किया था। उसका तापमान तो वही था जो आसपास की बाकी चीज़ों का था। इसे हम कहते हैं कि क्रिया कमरे के तापमान पर हो रही थी। अगले प्रयोग में हम अम्ल का तापमान थोड़ा बढ़ाकर क्रिया करेंगे।

तापमान का असरः प्रयोग 1(ख)

एक परखनली लेकर उसमें 5 मि.ली. नमक का अम्ल लो तथा इसमें 15 मि.ली. पानी मिला दो। अब इस अम्ल को दो बराबर भागों में बाँट दो। इंजेक्शन की शीशी में संगमरमर के 4-5 टुकड़े डालो। एक परखनली का अम्ल इसमें डालकर गैस इकट्ठी करो तथा एक मिनट में निकलने वाले बुलबुलों की संख्या गिनो।

इन आँकड़ों को तालिका 2 में लिखो। (6)

तालिका 2

क्रमांक	अम्ल का तापमान	एक मिनट में बुलबुलों की संख्या
1.	कमरे का तापमान	
2.	गुनगुना	

अब इंजेक्शन की शीशी का अम्ल फेंक दो। संगमरमर के टुकड़े नहीं फेंकना। दूसरी परखनली के अम्ल को मोमबत्ती पर थोड़ा गरम करो। हल्का गुनगुना हो जाने पर उसे इंजेक्शन की शीशी में डाल दो। एक बार फिर बुलबुलों की संख्या ज्ञात करो।

आँकड़ों को तालिका में लिखो। (७)

तापमान बढ़ाने पर क्रिया की गति में क्या परिवर्तन होता है? (8)

इस प्रयोग के लिए यदि हम अलग-अलग सान्द्रता के अम्ल का उपयोग करें तो निष्कर्ष निकालने में क्या परेशानी आएगी? (9)

प्रश्न क्रमांक 5 में 'निष्कर्ष एक जैसा' होने का अर्थ यह नहीं है कि सब टोलियों में गति में कमी एक बराबर हो। मतलब यह है कि क्या सब टोलियों में क्रिया की गति कम होती है। प्रयोग 1-क और प्रयोग 1-ख में तुमने पता किया कि रासायनिक क्रिया की गति पर अम्ल की सान्द्रता और तापमान का क्या असर पड़ता है। अगले प्रयोग में हम देखेंगे कि क्या संगमरमर के टुकड़ों की साइज़ में परिवर्तन करके हम रासायनिक क्रिया की गति को बदल सकते हैं।

छोटे-बड़े टुकड़े: प्रयोग 1(ग)

संगमरमर का एक बड़ा टुकड़ा लो। एक परखनली में 5 मि.ली. नमक का अम्ल लेकर उसमें 15 मि.ली. पानी मिला लो। इसे दो भागों में बाँट लो। अब संगमरमर के बड़े टुकड़े को इंजेक्शन की शीशी में डालकर उस पर अम्ल डालो तथा क्रिया की गति नापो।

अपने अवलोकन तालिका 3 में लिखो। (10)

यह काम पूरा हो जाने के बाद इंजेक्शन की शीशी का अम्ल फेंक दो। संगमरमर के टुकड़े को निकालकर उसे कूटकर बारीक कर लो। अब इस चूरे के साथ फिर से ऊपर वाला प्रयोग दोहराओ तथा बुलबुले गिनकर गैस बनने की गति नापो।

आँकड़े तालिका 3 में लिखो। (11)

तालिका ३

क्र .	संगमरमर के टुकड़ों की साइज़	एक मिनट में बुलबुलों की संख्या
1.	बड़ा टुकड़ा	
2.	बारीक टुकड़े (चूर्ण)	

संगमरमर के टुकड़ों की साइज़ बदलने से गैस बनने की गति पर क्या असर पड़ता है।

दोनों परखनलियों में अम्ल एक समान गाढ़ा था, दोनों का तापमान भी एक ही था और दोनों में संगमरमर की मात्रा भी बराबर थी।

फिर गैस बनने की गति में बदलाव क्यों आया होगा? कक्षा में चर्चा करके उत्तर अपने शब्दों में लिखो। (12)

हाइड्रोजन बनने की गति

कार्बन डाईऑक्साइड और ऑक्सीजन की तरह हाइड्रोजन भी एक गैस है। इसे बनाना आसान भी है। एल्युमिनियम और सोडियम हाइड्रॉक्साइड की क्रिया से हाइड्रोजन बनती है। सवाल यह है कि क्या हाइड्रोजन बनने की गति पर भी उसी तरह के असर पड़ेंगे जैसे हमने कार्बन डाईऑक्साइड के मामले में देखे हैं?

आओ हाइड्रोजन बनाएँ और इस बात का पता लगाएँ।

एक इंजेक्शन की शीशी में एल्युमिनियम की पन्नी या इंजेक्शन की शीशी के

चमकीले ढक्कन का एक टुकड़ा डालकर इसमें सोडियम हाइड्रॉक्साइड (कॉस्टिक सोडा) का घोल डालकर चित्र के अनुसार व्यवस्था जमाना होगा।

जैसे कार्बन डाईऑक्साइड के मामले में किया था, वैसे ही यहाँ भी हम अलग-अलग परिस्थिति में हाइड्रोजन गैस बनने की गति को नापेंगेः

प्रयोग 2-क में हम सोडियम हाइड्रॉक्साइड के गाढ़े और पतले घोल से प्रयोग करेंगे।

प्रयोग 2-ख में हम सोडियम हाइड्रॉक्साइड के एक ही घोल का तापमान बदलकर क्रिया की गति पर असर देखेंगे।

प्रयोग 2-ग में हम एल्युमिनियम की पन्नी के टुकड़ों को छोटा-बड़ा करके देखेंगे कि हाइड्रोजन बनने की गति पर क्या असर होता है।

पहले की तरह गित नापने के लिए एक मिनट में बुलबुलों की संख्या नोट करेंगे। प्रयोगों को ठीक उसी तरह से करना है जैसे प्रयोग 1-क, प्रयोग 1-ख और प्रयोग 1-ग किए थे।

प्रयोग 2 (क)

कॉस्टिक सोडा के दो घोल तालिका 4 में दिए अनुसार बनाकर बारी-बारी से प्रयोग करो।

तालिका 4

क्र.	घोल का गाढ़ापन	एक मिनट में बुलबुलों की संख्या
1.	2 ग्राम कॉस्टिक सोडा 15 मि.ली. पानी	में
2.	2 ग्राम कॉस्टिक सोडा 30 मि.ली. पानी	में

अपने आँकड़े तालिका ४ में लिखो। (13)

प्रयोग २ (ख)

इस प्रयोग के लिए प्रयोग 2-क के घोल क्रमांक 2 (30 मि.ली. पानी में 2 ग्राम सोडियम हाइड्रॉक्साइड) जैसा घोल बनाओ। इसे दो भागों में बाँट लो। अब एक भाग से क्रिया कमरे के तापमान पर तथा एक भाग को गुनगुना करके करो।

परिणाम तालिका 5 में लिखो। (14)

तालिका 5

क्रमांक	घोल का तापमान	एक मिनट में बुलबुलों की संख्या
1.	कमरे का तापमान	
2.	गुनगुना	

प्रयोग 2 (ग)

एल्युमिनियम की दो बराबर साइज़ की पिन्नयाँ लो। एक पन्नी को साबुत रहने दो। दूसरी के छोटे-छोटे टुकड़े कर लो। अब साबुत पन्नी से और बारीक टुकड़ों से अलग-अलग प्रयोग करो। ध्यान रखना कि दोनों प्रयोग में कॉस्टिक सोडा का घोल एक-सा हो।

परिणाम तालिका 6 में नोट करो। (15)

तालिका ६

क्रमांक	एल्युमिनियम पन्नी की साइज़	एक मिनट में बुलबुलों की संख्या
1.	एक बड़ा टुकड़ा	
2.	छोटे-छोटे टुकड़े	

हाइड्रोजन बनने की गति पर किन-किन कारकों का कैसा-कैसा प्रभाव पड़ता है, समझाकर लिखो। (16)

निम्नलिखित वाक्यों में खाली स्थान भरोः

- 1) तापमान बढ़ाने पर क्रिया की गति...... है।
- 2) संगमरमर के एक बड़े टुकड़े की जगह चूर्ण लें तो गैस...... बनेगी।
- 3) कार्बन डाईऑक्साइड बनाते वक्त यदि अम्ल में पानी गिर जाए तो गैस...... बनेगी।

बिजली के प्रभाव तरह-तरह के*

तुमने देखा होगा कि एक बल्ब में बिजली बहाकर बिजली से प्रकाश पैदा किया जा सकता है। यानी बल्ब के प्रकाश को बिजली के एक प्रभाव के रूप में देखा और समझा जा सकता है। प्रकाश के अलावा भी बिजली के कुछ और महत्वपूर्ण प्रभाव होते हैं। इस अध्याय में हम ऐसे ही एक प्रभाव का अध्ययन करेंगे।

खण्ड 1: बिजली के रासायनिक प्रभाव

ताँबे की कलई: प्रयोग 1

आधा बीकर पानी लेकर उसमें नीले थोथे (कॉपर सल्फेट) का ऐसा घोल तैयार करों कि वह गहरा नीला दिखाई दे। एक पुराने सेल से कार्बन छड़ निकालकर उसके ऊपर वाले सिरे पर रेगमाल से अच्छी तरह साफ किया हुआ ताँबे का तार लपेट दो। ताँबे का एक मोटा तार लो और उसका इनेमल अच्छी तरह से साफ करके एक सिरे को हथौड़ी से इतना पीटो कि वह चपटा हो जाए। अब कार्बन छड़ और ताँबे के तार के चपटे सिरे को नीले थोथे के घोल में डुबा दो। दो मिनट बाद उन्हें बाहर निकालकर देखो।

क्या उन पर कोई असर हुआ है? (1)

कार्बन की छड़ और चपटे सिरे वाले ताँबे के तार को दो सेलों से चित्र 1 के अनुसार जोड़ दो। ध्यान रहे कि कार्बन की छड़ सेल के ऋण छोर से और चपटे सिरे वाला तार सेल के धन छोर से जुड़े हों। अब कार्बन की छड़ और चपटे सिरे वाले तार को नीले थोथे के घोल में इस प्रकार डुबाओ कि वे एक-दूसरे को छुएँ नहीं और कार्बन की छड़ पर लिपटा तार हमेशा घोल से बाहर रहे। दो मिनट के बाद कार्बन छड़ और चपटे सिरे वाले तार को बाहर निकालकर देखो।

उन पर कोई असर हुआ है या नहीं? (2)

परिपथ में दोनों सेलों को पलट दो जिससे कि कार्बन की छड़ सेल के धन से और चपटे सिरे वाला तार सेल के ऋण से जुड़ा हो। छड़ और तार को घोल में उसी प्रकार रखो जैसे पहले रखा था। दो मिनट बाद दोनों को फिर बाहर निकालकर देखो।

उनमें क्या परिवर्तन हुआ है? (3)

इस प्रयोग में तुमने जो क्रिया देखी उसके बारे में क्या कभी पहले भी सुना था? अगर नहीं भी सूना हो तो सोचो कि इसके क्या-क्या उपयोग हो सकते हैं।

बा.वै. कक्षा 8, 2009, पु 158

^{*} बाल वैज्ञानिक कक्षा ८, २००९ (अध्याय का अंश)

आओ अब बिजली का एक और रासायनिक प्रयोग देखें।

पोटेशियम आयोडाइड में से मुक्त आयोडीनः प्रयोग 2

तीन परखनलियाँ लो। एक परखनली 'क' में चूटकी भर गेहूँ का आटा डालकर उसमें लगभग तीन-चौथाई पानी भरकर आटे का घोल बनाओ। घोलने के लिए परखनली को हल्की आँच पर थोड़ा-सा गरम करो। दूसरी परखनली 'ख' मे तीन-चार चुटकी पोटैशियम आयोडाइड लो। इस परखनली में तीन-चौथाई पानी भरकर पोटैशियम आयोडाइड का घोल बनाओ। 'क' और 'ख' परखनलियों में से लगभग आधा-आधा घोल 'ग' परखनली में मिलाओ।

क्या दोनों घोलों को मिलाने पर उनके रंग में कोई परिवर्तन हुआ? (4)

'ग' परखनली में अच्छी तरह साफ किए हुए ताँबे के दो तार इस प्रकार डुबाओ कि वे एक-दूसरे को छुएँ नहीं। चित्र 2 में दिखाया गया परिपथ बनाओ।

परखनली में क्या हो रहा है? घोल के रंग में क्या कोई परिवर्तन हो रहा है? इसका क्या कारण हो सकता है? (5)

इस प्रश्न का उत्तर देने में तुम्हें 'हमारा भोजन' अध्याय में किए गए मण्ड परीक्षण के प्रयोग से मदद मिल सकती है।

ध्यान से देखों कि किस तार पर कोई नई क्रिया हो रही है।

यह तार सेल के धन छोर से जुड़ा है या ऋण से? (6)

इसी क्रिया के सहारे एक जादूनुमा प्रयोग भी किया जा सकता है।

विद्युत कलमः प्रयोग 3

'क' और 'ख' परखनली में बचे हुए घोलों को एक साफ परखनली में मिला लो। इस नए घोल में छन्ना कागज़ के एक टुकड़े को भिगो लो।

गीले छन्ना कागज़ को एल्युमिनियम के एक गुटके पर बिछा दो। अगर एल्युमिनियम का गुटका न हो तो लकड़ी के गुटके के चारों ओर एल्युमिनियम की पन्नी लपेटकर भी यह प्रयोग किया जा सकता है।

चित्र 3 के अनुसार गुटके को ताँबे के तार के एक सिरे पर रख दो और तार के दूसरे सिरे को सेल के ऋण छोर से जोड़ दो। एक और तार लो और उसके एक सिरे को सेल के धन छोर से जोड़कर दूसरे सिरे को ताँबे के मोटे तार पर लपेट दो। अब इस ताँबे के मोटे तार से गीले छन्ना कागज़ पर मनचाहा लिख सकते हो, पेन-पेंसिल की कोई ज़रूरत नहीं।

विद्युत कलम की स्याही कैसे बनी? (7)

चित्र 2

बा.वै. कक्षा ८, २००९, पु १५८-९

चित्र 3

आगे बढ़ने के लिए

यह किताब मूलतः कक्षा छह से आठ तक के विद्यार्थियों का परिचय पदार्थों के रासायनिक गुणों, रासायनिक परिवर्तनों, पदार्थों के बीच रासायनिक सम्बन्धों तथा कुछ हद तक रासायनिक क्रियाओं के अर्ध-मात्रात्मक विवरण को लेकर समझ विकसित करने के मकसद से तैयार की गई है। इसमें होशंगाबाद विज्ञान शिक्षण कार्यक्रम के अन्तर्गत इस दृष्टि से तैयार किए गए अध्यायों के अलावा उनसे सम्बन्धित आलेख भी शामिल किए गए हैं। ये आलेख शिक्षकों से अन्तर्क्रिया के दौरान उठे सवालों के सन्दर्भ में लिखे गए थे।

बाल वैज्ञानिक पुस्तक दरअसल करके सीखने को सम्भव बनाने का प्रयास करती है। उम्मीद की जाती है कि शिक्षक की मदद से बच्चे अध्यायों में दिए गए प्रयोग करेंगे और अपने परिणामों पर विचार करके, विश्लेषण करके सवालों के जवाब खोजने का प्रयास करेंगे। इस पद्धति को लेकर कई मर्तबा यह शंका ज़ाहिर की गई है कि क्या रसायन शास्त्र या विज्ञान का कोई भी विषय सीखने के लिए प्रयोग करते ही जाना होगा। इसी सवाल को प्रकारान्तर से यों भी पूछा जाता है कि क्या विज्ञान का सारा ज्ञान छात्रों द्वारा प्रयोग कर-करके हासिल किया जा सकता है।

इन सवालों के जवाब थोड़े पेचीदा हैं। विज्ञान में हम जो भी जानने का दावा करते हैं, वह अन्ततः प्रयोगों या अवलोकनों की कसौटी पर खरे उतरना चाहिए। यह सम्भव है कि कोई परिकल्पना या सिद्धान्त शुरू में प्रायोगिक आँकड़ों के बगैर प्रस्तृत की गई हो, मगर अन्ततः उसके सत्यापन की कसौटी प्रयोग ही होंगे। यह कहना भी ठीक नहीं है कि परमाण् सिद्धान्त जैसे सिद्धान्त प्रायोगिक आँकड़ों के बगैर ही प्रस्तुत कर दिए गए थे। यह सही है कि जब डाल्टन (Dalton) ने परमाणू सिद्धान्त प्रस्तुत किया था तब किसी ने परमाणु को देखा नहीं था मगर यह भी उतना ही सही है कि उस समय रासायनिक क्रियाओं के बारे में जितनी जानकारी थी वह पदार्थ की परमाणविक प्रकृति का स्पष्ट संकेत दे रही थी। इस जानकारी के आधार पर पदार्थ की सूक्ष्म संरचना का एक मॉडल विकसित किया गया जिसे हम परमाणु सिद्धान्त कहते हैं। आगे चलकर यह प्रयोगों की कसौटी पर परखा गया और इसका सत्यापन किया गया। तो हम यह कह सकते हैं कि

विज्ञान में कई बार उपलब्ध सूचनाओं, आँकड़ों, प्रयोगों के परिणामों का सृजनात्मक, कल्पनाशील उपयोग किया जाता है और परिकल्पनाएँ प्रस्तुत की जाती हैं।

बहरहाल, हम इतना तो मान ही सकते हैं कि मौजूदा ज्ञान के निर्माण में जिन सारे प्रयोगों का इस्तेमाल किया गया उन सबको बच्चों या किसी के लिए भी करके देखना सम्भव नहीं है। मगर इस बात का आग्रह तो ज़रूर किया जाना चाहिए कि कोई भी व्यक्ति ज्ञान के इस भण्डार को स्वीकार करने से पहले उस पद्धति से अच्छी तरह वाकिफ हो जाए जिसके ज़रिए यह हासिल हुआ है। दूसरे शब्दों में, विज्ञान के छात्रों को पता होना चाहिए किः

- 1. पाठ्यपुस्तकों में परोसा गया ज्ञान प्रयोगों, तर्कों, अवलोकनों का परिणाम है। ये परिणाम प्राप्त करने के लिए हम जिन विधियों का उपयोग करते हैं उनसे भी परिचय आवश्यक है।
- 2. वे सारे प्रयोग हम न कर पाएँ तो भी उन प्रयोगों को समझ तो ज़रूर सकते हैं।
- 3. चूँिक यह ज्ञान प्रयोगों और अवलोकनों पर आधारित है, अतः नए अवलोकन, नए आँकड़े प्राप्त होने पर इसका पुनरावलोकन आवश्यक होगा और शायद संशोधन भी।

उपरोक्त के मद्देनज़र यह ज़रूरी हो जाता है कि यदि आगे चलकर छात्रों को किताबी ज्ञान से ही काम चलाना पड़े तो भी उनके पास उस ज्ञान को सराहने तथा उसे विश्वसनीय मानने का कोई आधार तो होना चाहिए। उनके पास वे औज़ार भी होने चाहिए जिनकी मदद से वे उपयुक्त सवाल कर सकें और बताई जा रही बातों की मोटी-मोटी परख कर सकें। होशंगाबाद विज्ञान शिक्षण कार्यक्रम और उसके अन्तर्गत विकसित बाल वैज्ञानिक यही बुनियाद खड़ी करने में मददगार है।

फिलहाल, एकलव्य समूह तथा कई अन्य लोग मिलकर कोशिश कर रहे हैं कि विज्ञान सीखने-सिखाने में मदद के लिए (खास तौर से हाई स्कूल स्तर पर) सामग्री तैयार करें और शिक्षकों के साथ साझा करें। वह सामग्री बाल वैज्ञानिक के तरीके को आगे बढ़ाएगी और उसमें नए-नए आयाम जोड़ेगी।

सुशील जोशी

होशंगाबाद विज्ञान शिक्षण कार्यक्रम

होशंगाबाद विज्ञान शिक्षण कार्यक्रम (हो.वि.शि.का.), जो 1972 से शुरू हुआ था, स्कूली शिक्षा में नवाचार का एक अनोखा कार्यक्रम था। इस कार्यक्रम में अनिगत लोगों ने मिलकर शिक्षा, और खासकर विज्ञान शिक्षा को बच्चों के लिए एक सार्थक व आनन्ददायी अनुभव बनाने के प्रयास किए। हो.वि.शि.का. में जानकारी के विस्फोट की बजाय विज्ञान करने व अवधारणा के विकास को पाठ्यक्रम की बुनियाद बनाया गया। कोशिश यह थी कि बच्चों को स्वतंत्र सीखने वाले बनाया जाए और उन्हें उन तौर-तरीकों से लैस किया जाए जो नए-नए सवालों व समस्याओं की खोजबीन को आगे बढ़ाने में सहायक हों।

खोज व पर्यावरण पर आधारित इस कार्यक्रम में बच्चे अपने पर्यावरण से अन्तर्क्रिया करते हुए प्रयोग करके ऐसी परिकल्पनाएँ गढ़ते थे जिनको वे जाँच सकें। कार्यक्रम के तहत माध्यमिक कक्षाओं में बच्चे टोलियों में बैठकर प्रयोग करते थे, परिभ्रमणों पर जाते थे, अपने अवलोकनों का ब्यौरा रखते थे, उनका विश्लेषण करके निष्कर्ष निकालते थे, विज्ञान के सिद्धान्त सीखते थे और मज़ा करते थे।

सीखने की इस प्रक्रिया में शिक्षक एक साथी व मार्गदर्शक की भूमिका में होते थे। पाठ्यक्रम विकास, बाल वैज्ञानिक पाठ्यपुस्तकों का निर्माण, शिक्षक-प्रशिक्षण, कार्यक्रम का अनुवर्तन जैसे हो.वि.शि.का. के समस्त पहलुओं में शिक्षकों की भागीदारी व भूमिका महत्वपूर्ण थी।

एकलव्य

एकलव्य एक स्वैच्छिक संस्था है जो पिछले कई वर्षों से शिक्षा एवं जनविज्ञान के क्षेत्र में काम कर रही है। एकलव्य की गतिविधियाँ स्कूल में व स्कूल के बाहर दोनों क्षेत्रों में हैं।

एकलव्य का मुख्य उद्देश्य ऐसी शिक्षा का विकास करना है जो बच्चे से व उसके पर्यावरण से जुड़ी हो; जो खेल, गतिविधि व सृजनात्मक पहलुओं पर आधारित हो। अपने काम के दौरान हमने पाया है कि स्कूली प्रयास तभी सार्थक हो सकते हैं जब बच्चों को स्कूली समय के बाद, स्कूल से बाहर और घर में भी, रचनात्मक गतिविधियों के साधन उपलब्ध हों। किताबें तथा पत्रिकाएँ इन साधनों का एक अहम हिस्सा हैं।

पिछले कुछ वर्षों में हमने अपने काम का विस्तार प्रकाशन के क्षेत्र में भी किया है। बच्चों की पत्रिका चकमक के अलावा स्रोत (विज्ञान एवं टेक्नॉलॉजी फीचर्स) तथा शैक्षणिक संदर्भ (शैक्षिक पत्रिका) हमारे नियमित प्रकाशन हैं। शिक्षा, जनविज्ञान एवं बच्चों के लिए सृजनात्मक गतिविधियों के अलावा विकास के व्यापक मुद्दों से जुड़ी किताबें, पुस्तिकाएँ, सामग्रियाँ आदि भी एकलव्य ने विकसित एवं प्रकाशित की हैं।

वर्तमान में एकलव्य मध्य प्रदेश में भोपाल, होशंगाबाद, पिपरिया, हरदा, देवास, इन्दौर, उज्जैन, शाहपुर (बैतूल) व परासिया (छिन्दवाड़ा) में स्थित कार्यालयों के माध्यम से कार्यरत है।

इस किताब की सामग्री एवं सज्जा पर आपके सुझावों का स्वागत है। इससे आगामी किताबों को अधिक आकर्षक, रुचिकर एवं उपयोगी बनाने में हमें मदद मिलेगी।

सम्पर्कः books@eklavya.in

ई-10, शंकर नगर, बीडीए कॉलोनी, शिवाजी नगर, भोपाल - 462016