МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского»

Радиофизический факультет

С. А. Скороходов

ОТВЕТЫ НА ФИЗИКУ

Ответы на вопросы экзамена Дисциплины – Физика

Студента группы 417/0424С1ИБг1 1 курса специалитета

Основная образовательная программа подготовки по направлению 10.05.02 «Информационная безопасность телекоммуникационных систем» (направленность «Системы подвижной цифровой защищенной связи»)

Нижний Новгород Издательство "Невыспавшийся Студент" 2025

Содержание

1	Отв	тветы на вопросы 5			
	1.1	Теорема об изменении импульса с.м.т. Условия сохранения импульса	6		
	1.2	Теорема о движении центра масс	7		
	1.3	Уравнение Мещерского. Реактивная сила	8		
	1.4	Теорема об изменении момента импульса с.м.т. Закон сохранения момента импульса	9		
	1.5	Теорема об изменении кинетической энергии с.м.т.	10		
	1.6	Потенциальная энергия с.м.т. Теорема об изменении механической энергии с.м.т. Условия сохранения механической энергии.	11		
	1.7		12		
			12		
		1.7.2 Абсолютно упругий удар	13		
	1.8	Уравнение Бернулли	14		
	1.9	Уравнение вращательного движения твердого тела вокруг неподвижной оси. Момент инерции, примеры его вычисления.	15		
	1 10	, , , , , , , , , , , , , , , , , , , ,	16		
		Кинетическая энергия и работа при вращении твердо-	18		
	1.12	Кинематика плоского движения твердого тела. Мгновенная ось вращения	19		

1.13	Уравнения динамики плоского движения твер-	
	дого тела. Кинетическая энергия твердого тела при	90
	плоском движении	20
1.14	Приближенная теория гироскопа. Прецессия гироскопа.	21
1.15	Распределение молекул по объёму сосуда в отсутствие внешних силовых полей. Флуктуации числа молекул .	22
1.16	Распределение Максвелла по проекции и вектору скорости	23
1.17	Распределение Максвелла по модулю скорости. Наиболее вероятная, средняя и средняя квадратичная скорости	24
1.18	Распределение Больцмана , барометрическая формула	25
1.19	Давление идеального газа. Уравнение Клапейрона- Менделеева	26
1.20	Внутренняя энергия идеального газа и ее связь с температурой.	27
1.21	Средняя длина свободного пробега молекул в газах	28
	Распределение Максвелла	29
1.22	Диффузия в газах. Закон Фика, расчёт коэффициента диффузии	31
1.23	Внутреннее трение в газах. Формула Ньютона, расчет вязкости	32
1.24	Теплопроводность в газах. Закон Фурье, расчет коэффициента теплопроводности	33
1.25	Броуновское движение. Формула Эйнштейна	34
1.26	Классическая теория теплоемкости газов. Теорема о равнораспределении энергии по степеням свободы. Недостатки классической теории теплоемкости	37
	статки классической теории теплоемкости	01

1.27	Общий и нулевой принципы термодинамики. Измерение температуры. Классификация процессов	38
1.28	Первый принцип термодинамики. Внутренняя	
	энергия идеального газа. Примеры применения: соотношение Майера, уравнение адиабатическо-	
	го процесса	39
1.29	Второй принцип термодинамики. Формулиров-	
	ки для тепловых двигателей и холодильных ма-	4.0
	шин	40
1.30	Цикл Карно и его КПД. Первая теорема Карно	41
1.31	Необратимые циклы, вторая теорема Карно	42
1.32	Уравнение Ван-дер-Ваальса. Фазовые переходы	43
1.33	Внутренняя энергия газа Ван-дер-Ваальса.	44
1.34	Приведенное количество теплоты. Равенство Клаузиуса. Энтропия. Энтропия идеального газа	45
1.35	Неравенство Клаузиуса. Закон возрастания энтропии (с примерами).	46

1. Ответы на вопросы

В данном разделе представлены ответы на все билеты по физике за 1 курс 2 семестра.

Предупреждение

Данные ответы были составлены не самым умным студентом изза чего могут встречаться различного рода ошибки. Просим сооб-AI .IBIM, щать о их нахождении по контактным данным, указанные в конце документа.

1.1. Теорема об изменении импульса с.м.т. Условия сохранения импульса.

CKOBOXOTOB CODICIN AMERICANTINO BINT

1.2. Теорема о движении центра масс.

CKODOKOHOB CEDIEN WILLIAM CANALISM CANA

1.3. Уравнение Мещерского. Реактивная сила.

CKOROKOHOB CERTEN A.HOKCOHING

1.4. Теорема об изменении момента импульса с.м.т. Закон сохранения момента импульса.

CKOBOXONOB CODIENT AMERICALINIDOBINIO

1.5. Теорема об изменении кинетической энергии с.м.т.

CKOPOKOHOB CEPTEN A HEKCHILIROBING

Потенциальная энергия с.м.т. Теорема об изменении механической энергии с.м.т. Условия сохранения механической энергии.

1.6. Потенциальная энергия с.м.т. Теорема об изменении механической энергии с.м.т. Условия сохранения механической энергии.

Теорема об изменении механической энергии с.м.т.

Запишем теорему для материальной точки:

$$W_{\text{mex}} = W_{\text{not}} + W_{\text{kuh}}$$

Распишем изменение кинетической энергии:

$$W_{ ext{кин}} = A_{12}^{ ext{всех сил}} = A_{12}^{ ext{конс}} + A_{12}^{ ext{неконс}} = -\Delta W_{ ext{пот}} + A_{12}^{ ext{неконс}}$$

1.7. Абсолютно неупругое соударение двух частиц.

Соударение (удар, столкновение) — сильное кратковременное взаимодействие тел. Если нет силы реакции и внешние силы не успевают изменить импульс системы, можно применить Закон Сохранения Импульса.

Абсолютно неупругий удар

При абсолютно неупругом ударе тела соединяются и движутся как одно целое. Изменение кинетической энергии системы:

$$\begin{split} \Delta W_{\text{кин}} &= \frac{m_1 + m_2}{2} v^2 - \left(\frac{m_1 v_1^2}{2} + \frac{m_2 v_2^2}{2}\right) = \\ &= \frac{(m_1 \vec{v}_1 + m_2 \vec{v}_2)^2}{2(m_1 + m_2)} - \frac{m_1 v_1^2}{2} - \frac{m_2 v_2^2}{2} = \\ &= \frac{m_1^2 v_1^2 + 2 m_1 m_2 \vec{v}_1 \vec{v}_2 + m_2^2 v_2^2 - m_1 (m_1 + m_2) v_1^2 - m_2 (m_1 + m_2) v_2^2}{2(m_1 + m_2)} = \\ &= -\frac{m_1 m_2 (\vec{v}_2 - \vec{v}_1)^2}{2(m_1 + m_2)} = -\frac{m_{\text{пр}} v_{\text{отн}}^2}{2} \end{split}$$

где
$$m_{
m np} = \frac{m_1 m_2}{m_1 + m_2}$$
 — приведённая масса.

Потерянная кинетическая энергия переходит в:

- Тепловую энергию
- Энергию деформации
- Энергию вращения по теореме Кенинга: $W_{\mathbf{k}} = \underbrace{W'_{\mathbf{k}}}_{\text{вращения}} + \frac{m_1 + m_2}{2} v_c^2$

Рис. 1 Схема соударения двух тел

Абсолютно упругий удар

Для сравнения приведём основные характеристики абсолютно упругого удара:

- \bullet Сохранение кинетической энергии: $\frac{m_1v_1^2}{2}+\frac{m_2v_2^2}{2}=\frac{m_1u_1^2}{2}+\frac{m_2u_2^2}{2}$
- Сохранение импульса: $m_1 \vec{v}_1 + m_2 \vec{v}_2 = m_1 \vec{u}_1 + m_2 \vec{u}_2$
- Скорости после удара (1D случай):

$$u_1 = \frac{(m_1 - m_2)v_1 + 2m_2v_2}{m_1 + m_2}$$
$$u_2 = \frac{(m_2 - m_1)v_2 + 2m_1v_1}{m_1 + m_2}$$

1.8. Уравнение Бернулли

За время Δt жидкость течет из сечения: $1 \to 1'$ и $2 \to 2'$ (см. рис. 2b).

Запишем теорему об изменении механической энергии.

$$dW_{\text{механическая}} = dA^{\text{давления}}$$

$$\frac{dm}{2}(v_2^2 - v_1^2) + g(h_2 - h_2)dm = v_1p_1dS_1 \cdot dt_1 + v_2p_2dS_2 \cdot dt_2$$

$$dm = \rho_1v_1dS_1 \cdot dt \qquad v_1dS_1 = v_2dS_2$$

$$\frac{\rho v_1^2}{2} + \rho gh_1 + p_1 = \frac{\rho v_2^2}{2} + \rho gh_2 + p_2 \quad \Rightarrow \quad \boxed{\frac{\rho v^2}{2} + \rho gh + p = const}$$

Обобщение: Выполняется вдоль линии тока.

Рис. 2 Пример уравнения Бернулли

Пример: (см. рис. 2a)

$$\frac{\rho v_1^2}{2} + p_1 = \frac{\rho v_2^2}{2} + p_2 \quad (h = const)$$

Так как $S_1 > S_2$, то $v_1 < v_2$ и поэтому $p_1 > p_2$.

1.9. Уравнение вращательного движения твердого тела вокруг неподвижной оси. Момент инерции, примеры его вычисления.

CKOPOKOILOB COROKOILOB

1.10. Теорема Гюйгенса-Штейнера

$$J = J_c + ma^2$$

Момент инерции относительно произвольной оси равен сумме момента инерции относительно оси, параллельной данной и проходящей через центр масс тема, и произведению массы тела на квадрат расстояния между осями.

Рис. З Доказательство теоремы Гюгенса-Штейнера

Доказательство

Доказательство
$$\vec{r_\perp'} = \vec{r_\perp} + \vec{a}$$

$$J = \int_m r_\perp'^2 dm = \int_m r_\perp^2 dm + 2\vec{a} \underbrace{\int_m \vec{r_\perp} dm}_0 + a^2 \int_m dm = \boxed{J_c + ma^2}$$

Что и требовалось доказать!

Точки O и O' являются взаимными или сопряженными в том смысле если, подвесить маятник в точке O', то центр качания будет в точке O, а период не изменится.

Доказательство

Доказательство
$$l'_{\rm np}=r'_c+\frac{J_c}{mr'_c}=\frac{J_c}{mr_c}+r_c=l_{\rm np} \qquad r'_c=\frac{J_c}{mr_c}$$

17

1.11. Кинетическая энергия и работа при вращении твердого тела вокруг неподвижной оси

CKOPOKOHOB CEPTEM AHRACAHIROBING

1.12. Кинематика плоского движения твердого тела. Мгновенная ось вращения

CKOBOKOHOB CEDREN A HERCHINDOBING

1.13. Уравнения динамики плоского движения твердого тела. Кинетическая энергия твердого тела при плоском движении

CKOPOKOILOB COPIEM AMERICALINIPORINIA

1.14. Приближенная теория гироскопа. Прецессия гироскопа.

Ckobokolob Cebieji Wilekcalilibobini

1.15. Распределение молекул по объёму сосуда в отсутствие внешних силовых полей. Флуктуации числа молекул

CKOROXOIOB

1.16. Распределение Максвелла по проекции и вектору скорости

CKOBOXOIOB

1.17. Распределение Максвелла по модулю скорости. Наиболее вероятная, средняя и средняя квадратичная скорости

CKOROXOIOB
CEDIEN AND CARLINGORIUM
CKOROXOIOB

1.18. Распределение Больцмана, барометрическая формула

CKOBOKOKOK CEDREW AND CARIFORD CAROLOGO

1.19. Давление идеального газа. Уравнение Клапейрона-Менделеева

CKOBOKOKOK CERHINDORINIA

1.20. Внутренняя энергия идеального газа и ее связь с температурой.

CKOBOXOTOB CODIENT AMERICALITIDOBING

1.21. Средняя длина свободного пробега молекул в газах

Средняя длина свободного пробега - это среднее расстояние, проходимое молекулой между двумя соударениями. Обозначается как λ [м].

Элемент	Символ	$\mathbf{Э}$ ффективный диаметр, $d\left(\mathring{A} ight)$
Гелий	Не	2,0
Неон	Ne	2,2
Аргон	Ar	3,6
Криптон	Kr	4,0
Ксенон	Xe	4,5
Радон	Rn	5,0
Водород	H_2	2,4
Азот	N_2	3,7
Кислород	O_2	3,5
Углекислый газ	CO_2	4,6

Таблица 1 Эффективные диаметры атомов и молекул в газовой фазе

Будем считать что все молекулы кроме одной неподвижны. Среднее расстояние проходимое молекулой за время t тогда будет равно:

$$L = \langle v \rangle \cdot t$$
 и $V = \pi d^2 L = \pi d^2 \langle v \rangle t$

Среднее число соударений:

$$z = Vn = \pi d^2 n \langle v \rangle t$$

Средняя частота соударения:

$$\vartheta = \frac{z}{t} = \pi d^2 n \langle v \rangle$$

Средняя длина свободного пробега:

$$\lambda = \frac{\langle v \rangle}{\vartheta} = \frac{1}{\pi d^2 n}$$

Если учитывать движение всех молекул, то:

$$artheta=\sqrt{2}\pi d^2n\langle v
angle=\sqrt{2}\sigma n\langle v
angle,$$
 где $\sigma=\pi d^2$
$$\lambda=\frac{1}{\sqrt{2}\pi d^2n}=\frac{1}{\sqrt{2}\sigma n}$$

При нормальных условиях концентрация равна:

$$\sqrt{2\pi}d^2n$$
 $\sqrt{2}\sigma n$ условиях концентрация равна: $n=N_L=2.7\times 10^{19}~{
m cm}^{-3}$ $\lambda\approx 1.7\times 10^{-5}~{
m cm}=170~{
m hm}$ $\langle v\rangle\approx 10^{-1}~{
m km/c}$ $au=\frac{1}{\vartheta}\approx 10^{-9}~{
m c}$ анавливается распределение Максвелла. Максвелла

За это время устанавливается распределение Максвелла.

Распределение Максвелла

Распределение Максвелла описывает распределение молекул газа по скоростям в условиях термодинамического равновесия. Для идеального газа вероятность того, что молекула имеет скорость в интервале от v до v+dv, задаётся функцией:

$$f(v) = 4\pi \left(\frac{m}{2\pi kT}\right)^{3/2} v^2 \exp\left(-\frac{mv^2}{2kT}\right)$$

где:

- т масса молекулы
- k постоянная Больцмана $(1,380649 \times 10^{-23} \frac{\text{Дж}}{\text{L}'})$
- Т абсолютная температура
- v скорость молекулы

Характерные скорости:

1. **Наиболее вероятная скорость** (соответствует максимуму распределения):

$$v_{\rm Bep} = \sqrt{\frac{2k_BT}{m}}$$

2. Средняя скорость:

CHOBOLO

$$\langle v \rangle = \sqrt{\frac{8k_BT}{\pi m}}$$

3. Среднеквадратичная скорость:

$$v_{\rm ck} = \sqrt{\frac{3k_BT}{m}}$$

Соотношение между характерными скоростями:

$$v_{\text{вер}}: \langle v \rangle: v_{\text{ск}} = 1: \sqrt{\frac{4}{\pi}}: \sqrt{\frac{3}{2}} \approx 1: 1, 128: 1, 225$$

За время порядка $\tau \approx 10^{-9}$ с после соударения устанавливается распределение Максвелла.

1.22. Диффузия в газах. Закон Фика, расчёт коэффициента диффузии

CKOPOKOJOB

COPIEŻA AJEKCALIJIOOBIAL

1.23. Внутреннее трение в газах. Формула Ньютона, расчет вязкости

CKOBOKOKOB CERRENT AND CARREST TO SERVING CARREST CARREST TO SERVING CARREST C

1.24. Теплопроводность в газах. Закон Фурье, расчет коэффициента теплопроводности

CROPOROLOB CEPTEN AMERICALITY OF CARLES

1.25. Броуновское движение. Формула Эйнштейна

Броуновское движение

Броуновское движение - это непрерывное хаотическое движение макроскопических частиц в жидкости или газе, вызванное ударами молекул окружающей среды.

Частица образует с молекулами газа единую систему **ТРРЭПСС** (термодинамически равновесную систему с равномерно распределённой энергией по степеням свободы).

Будем считать, что смещения статистически независимы: смещение от 0 до t_1 и от t_1 до t ничего не дает в корреляции.

$$\langle x^2 \rangle = \langle x_1^2 \rangle + \langle x_2^2 \rangle$$
$$\langle x^2 \rangle = f(t)$$
$$\langle x_1^2 \rangle = f(t_1) \quad \langle x_2^2 \rangle = f(t - t_1)$$
$$f(t) = f(t_1) + f(t - t_1)$$

Единственное решение, удовлетворяющее этому функциональному уравнению - линейная зависимость:

$$f(t) = \alpha t$$
 где $\alpha = \text{const}$

Таким образом получаем:

$$\langle x^2 \rangle = \alpha t$$
 $\langle x^2 \rangle = \langle y^2 \rangle = \langle z^2 \rangle = \alpha t$

Формулы Эйнштейна

Уравнение Ланжевена для броуновской частицы:

$$m\ddot{x} = -h\dot{x} + F_x(t) \quad \bigg| \cdot x$$

где:

• m — масса частицы [кг]

- h коэффициент трения [кг/с]
- $F_x(t)$ случайная сила [H]
- x координата частицы [м]

$$mx\ddot{x} = -hx\dot{x} + xF_x(t)$$

Используем тождества для производных:

$$mx\ddot{x}=-hx\dot{x}+xF_{x}(t)$$
 тождества для производных:
$$\frac{d}{dt}(x^{2})=2x\dot{x},\quad \frac{d^{2}}{dt^{2}}(x^{2})=2\dot{x}^{2}+2x\ddot{x}$$
 \ddot{x} :
$$x\ddot{x}=\frac{1}{dt}\frac{d^{2}}{dt^{2}}x^{2}-\dot{x}^{2}$$

Выражаем $x\ddot{x}$:

$$x\ddot{x} = rac{1}{2}rac{d^2}{dt^2}x^2 - \dot{x}^2$$
 ение:

Подставляем в уравнение:

в уравнение.
$$\frac{m}{2}\frac{d^2}{dt^2}x^2 - m\dot{x}^2 = -\frac{h}{2}\frac{d}{dt}x^2 + xF_x(t)$$

Усредняем:

$$\frac{m}{2}\frac{d^2}{dt^2}\langle x^2\rangle - \langle m\dot{x}^2\rangle = -\frac{h}{2}\frac{d}{dt}\langle x^2\rangle + \langle xF_x(t)\rangle$$

Учитываем:

- $\langle m\dot{x}^2\rangle = kT$ [Дж], где k постоянная Больцмана [Дж/K], T температура [К]
- $\langle xF_x(t)\rangle = 0$ [H·M]

Для стационарного режима $(t \gg m/h)$:

$$-kT = -\frac{h}{2}\frac{d}{dt}\langle x^2 \rangle$$

Получаем:

$$\frac{d}{dt}\langle x^2\rangle = \frac{2kT}{h} \quad [M^2/c]$$

Интегрируем:

$$\langle x^2 \rangle = \frac{2kT}{h}t = \frac{kT}{3\pi\eta a}t \quad [\text{M}^2]$$

 $n=3\pi\eta a^{-\frac{1}{2}^{N-1}}$ где η — вязкость жидкости [Па·с], a — радиус частицы [м] Для трехмерного случая:

$$\langle r^2 \rangle = \frac{kT}{\pi \eta a} t \quad [\text{M}^2]$$

Итоговые формулы:

$$\boxed{\langle x^2 \rangle = \frac{kT}{3\pi\eta a}t \quad [\mathbf{M}^2]}, \quad \boxed{\langle r^2 \rangle = \frac{kT}{\pi\eta a}t \quad [\mathbf{M}^2]}$$

1.26. Классическая теория теплоемкости газов. Теорема о равнораспределении энергии по степеням свободы. Недостатки классической теории теплоемкости

CKOROKO KOB

1.27. Общий и нулевой принципы термодинамики. Измерение температуры. Классификация процессов

CKOBOXOTOB COBOXOTOB

Первый принцип термодинамики. Внутренняя энергия идеального газа. Примеры применения: соотношение Майера, уравнение адиабатического процесса

1.28. Первый принцип термодинамики. Внутренняя энергия идеального газа. Примеры применения: соотношение Майера, уравнение адиабатического процесса

CKOBOXOIOB

1.29. Второй принцип термодинамики. Формулировки для тепловых двигателей и холодильных машин

CKOPOKOLOB
COPIEM ALIEKCARILIROBINIA

1.30. Цикл Карно и его КПД. Первая теорема Карно

CKOPOKOKOB COPIEW AND CARIFORNIA

1.31. Необратимые циклы, вторая теорема Карно

CKODOKOHOB CEDIEN AND KESTURO BINING

42

1.32. Уравнение Ван-дер-Ваальса. Фазовые переходы.

CKOPOKOHOB CEPTEN A HEKCAHINDOBING

1.33. Внутренняя энергия газа Ван-дер-Ваальса.

CKOBOXONOB CEDIEN AND KEGATINDOBINI

1.34. Приведенное количество теплоты. Равенство Клаузиуса. Энтропия. Энтропия идеального газа.

CKOPOTORO CEPTEN ANEXCABILIDOS PRO Энтропия - это функция её состояния,

1.35. Неравенство Клаузиуса. Закон возрастания энтропии (с примерами).

CKOBOXOTOB COBIENT PRICE STITUTO BILLIO

Скороходов Сергей Александрович

Студент 1 курса

Email: sergey.skor007@gmail.com

Telegram: t.me/SerKin0

GitHub: github.com/SerKin0 VK: vk.com/serking2