Key statistical concepts

Chuvakin Sergey

«School of Advanced Studies»

October 25, 2020

Outline

- Random variable
- Distribution
- Distribution types
- Central measures
- Dispersion
- Standart deviation
- Types of variables
- Population
- Sample
- ► law of large numbers (maybe)
- central limit theorem (maybe)

Random Variable

Definition

Variable - varying values.

RV - aka random quantity, aleatory variable, or stochastic variable - is a variable whose value is unknown or a function that assigns values to each of an experiment's outcomes.

Examples: - tips for waiter, number of people in a line, number of insects under a bed and a lot of other examples. The idea that it's unlimited number. Everything potentially could be a random variable.

Distribution

Definition

In statistics, a probability distribution is a mathematical description of a random variable in terms of the probabilities of it's particular possible values.

Put it simpler - distribution - possible values of random variable.

NB: It's a function, therefore there are input and output.

Distribution

Types

Tap here! - interactive types of various distributions!

Let us see it together! What worth noticing:

- 1. it can be descrite and continious
- 2. each has extra parameters
- 3. shape varies
- 4. some combinations of parameters of different distributions looks alike!

Distribution

Types

Exercise - try to guess the following!

- 1. meaning of (at least some of) parameters
- 2. difference between descrete and continious
- 3. what is probability mass (density) function (PDF) f(x)
- 4. what if cumulative distribution function (CDF) F(x)

Do not be upset if not all of above is clear! The more important is to grasp intuition...

└ Plot

Normal distribution

Normal distribution

Fomula

$$P(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2\sigma^2}$$

- \triangleright P(x) aka y
- $\triangleright \sigma$ standart deviation
- $\blacktriangleright \mu$ mean aka Expected value E(x)
- \triangleright e e number (2.7 \sim)
- \blacktriangleright π Pi number (3.14 \sim)
- x value from random variable

Intuition behind - probability of x assumed it distributed normally.

Back to variables

Examples in sociology and anthropology

RV - frequently used as quality (or feature) of person or some phenomena.

Examples of pseudo normal distribution:

- Age
- Heigh
- Salary
- ► Number of robberies in a country
- ► Number of votes during elections
- Number of cigarettes smoked

central tendency

- Mean
- ► Mode
- Median

 \triangle In trully normal distrubution Mean \simeq Mode \simeq Median

central tendency

The mean of a distribution is the arithmetic mean, or the $\mbox{\tt ≪average}\mbox{\tt >}$

$$A = \frac{1}{n} \sum_{i=1}^{n} a_i = \frac{a_1 + a_2 + \dots + a_n}{n}$$
$$\mu(X) = \frac{\sum_{i=1}^{n} x^i}{n}$$

central tendency

Formal Statistics

central tendency

The median is the value separating the higher half of sample, a population, or a probability distribution, from the lower half.

- 1. The median is the "middle" value of a [ordered] data set.
- 2. Let there be a variable v1: 20,7,23,17,21,5,19,3,11
- 3. To compute the median of v1, sort the variable into ascending order: 3,5,7,11,17,19,20,21,23
- 4. Pick one in center (17)

central tendency

The mode is the value that appears most often in a set of data

- 1. Consider data 2,5,7,6,7,9,2,0,5,3,3,7,7,8.
- 2. The mode is 7
- 3. What about 3,7,4,2,3,1,0,7,9,6,3,7,4,11?
- 4. The mode of a continuous probability distribution is the value x at which its probability density function has its maximum value
- 5. The mode is at the peak of the distribution

central tendency

Formal Statistics

central tendency

central tendency

 ⚠ 1 Guess why median is more representative one?

 ⚠ 2 What is the synonym for representative?

Dispersion and std

Formula

Range is the difference between the smallest and the largest observation in the sample.

Variance is the average of all squared deviations from the mean:

$$\sigma^2 = \frac{\sum_{i=1}^n (x_i - \mu(X))^2}{n}$$

- ► The larger this value, the greater the dispersion of the observations around the mean value, the more heterogeneous sample (the less informative mean).
- ▶ The standard deviation (denoted as σ or s) is the square root of the variance