The Kalman filter

Sensor fusion & nonlinear filtering

Lars Hammarstrand

ANALYTICAL SOLUTION TO THE FILTERING PROBLEM

The filtering equations

$$p(\mathbf{x}_k|\mathbf{y}_{1:k-1}) = \int p(\mathbf{x}_k|\mathbf{x}_{k-1})p(\mathbf{x}_{k-1}|\mathbf{y}_{1:k-1}) d\mathbf{x}_{k-1}$$

$$p(\mathbf{x}_k|\mathbf{y}_{1:k}) \propto p(\mathbf{y}_k|\mathbf{x}_k)p(\mathbf{x}_k|\mathbf{y}_{1:k-1})$$
- update

are applicable to all filtering problems.

• Unfortunately, there are very few examples where the posterior distribution has an analytical expression.

LINEAR AND GAUSSIAN STATE SPACE MODELS

Definition (Linear and Gaussian models)

• For state vector \mathbf{x}_k and observation \mathbf{y}_k ,

$$\mathbf{x}_k = \mathbf{A}_{k-1} \mathbf{x}_{k-1} + \mathbf{q}_{k-1}, \quad \mathbf{q}_{k-1} \sim \mathcal{N}\left(\bar{\mathbf{q}}_{k-1}, \mathbf{Q}_{k-1}\right)$$

$$\mathbf{y}_k = \mathbf{H}_k \mathbf{x}_k + \mathbf{r}_k, \quad \text{noise} \quad \mathbf{r}_k \sim \mathcal{N}\left(\bar{\mathbf{r}}_k, \mathbf{R}_k\right)$$

$$\mathbf{Measurement} \quad \mathbf{model} \quad \mathbf{model} \quad \mathbf{model}$$
and
$$\mathbf{x}_0 \sim \mathcal{N}(\bar{\mathbf{x}}_0, \mathbf{P}_{0|0}).$$

[mon]

p(x1:n, y1:n)

= marginal formsion

= conditional formsion

Note:

 p(x_m|y_{1:n}) is Gaussian for all m and n, i.e., for all filtering, smoothing and prediction problems.

KALMAN FILTER

Kalman filter

- Analytical solution to the filtering equations for linear and Gaussian models.
- The Kalman filter recursively computes

$$\frac{p(\mathbf{x}_k|\mathbf{Y}_{1:k-1})}{p(\mathbf{x}_k|\mathbf{Y}_{1:k})} = \mathcal{N}(\mathbf{x}_k; \hat{\mathbf{x}}_{k|k-1}, \mathbf{P}_{k|k-1}) \in \text{Prediction step}$$

$$\frac{p(\mathbf{x}_k|\mathbf{Y}_{1:k})}{p(\mathbf{x}_k|\mathbf{Y}_{1:k})} = \mathcal{N}(\mathbf{x}_k; \hat{\mathbf{x}}_{k|k}, \mathbf{P}_{k|k}) \in \text{Upolake step}$$
for $k = 1, 2, ...$

Note:

• Only need to compute the moments $\hat{\mathbf{x}}_{k|k-1}$, $\mathbf{P}_{k|k-1}$, $\hat{\mathbf{x}}_{k|k}$ and $\mathbf{P}_{k|k}$ in each recursion.

KALMAN FILTER: PREDICTION

Prediction step

$$\hat{\mathbf{x}}_{k|k-1} = \mathbf{A}_{k-1} \hat{\mathbf{x}}_{k-1|k-1}
\mathbf{P}_{k|k-1} = \mathbf{A}_{k-1} \mathbf{P}_{k-1|k-1} \mathbf{A}_{k-1}^{T} + \mathbf{Q}_{k-1}$$

Note:

- ~ N(0, Qu
- We assume that process noise \mathbf{q}_{k-1} is zero mean.
- On the right hand side, only $\hat{\mathbf{x}}_{k-1|k-1}$ depend on $\mathbf{y}_{1:k-1}$.

KALMAN FILTER: UPDATE

Update step

• The posterior mean $\hat{\mathbf{x}}_{k|k}$ and covariance $\mathbf{P}_{k|k}$ is computed as

$$\hat{\mathbf{x}}_{k|k} = \hat{\mathbf{x}}_{k|k-1} + \mathbf{K}_k \mathbf{v}_k$$

$$\mathbf{P}_{k|k} = \mathbf{P}_{k|k-1} - \mathbf{K}_k \mathbf{S}_k \mathbf{K}_k^T$$

where

Kaluan bain
$$\mathbf{K}_k = \mathbf{P}_{k|k-1}\mathbf{H}_k^T\mathbf{S}_k^{-1}$$

Impose $\mathbf{v}_k = \mathbf{y}_k - \mathbf{H}_k\hat{\mathbf{x}}_{k|k-1}$

Importion $\mathbf{S}_k = \mathbf{H}_k \mathbf{P}_{k|k-1} \mathbf{H}_k^T + \mathbf{R}_k$

Note:

 The posterior mean $\hat{\mathbf{x}}_{k|k} = \mathbb{E}\{\mathbf{x}_k|\mathbf{y}_{1:k}\}$ is both the MMSE and MAP estimator.

COMPONENTS IN THE KALMAN FILTER

A few remarks:

- It holds that $p(\mathbf{y}_k|\mathbf{y}_{1:k-1}) = \mathcal{N}(\mathbf{y}_k; \mathbf{H}_k \hat{\mathbf{x}}_{k|k-1}, \mathbf{S}_k)$, which means that \mathbf{S}_k is the predicted covariance of \mathbf{y}_k .
- The innovation $\mathbf{v}_k = \mathbf{y}_k \mathbf{H}_k \hat{\mathbf{x}}_{k|k-1}$ captures the new information in \mathbf{y}_k .
- In $\hat{\mathbf{x}}_{k|k} = \hat{\mathbf{x}}_{k|k-1} + \mathbf{K}_k \mathbf{v}_k$, the Kalman gain \mathbf{K}_k determines how much we should trust the new information.

SELF ASSESSMENT

Recall that $\hat{\mathbf{x}}_{k|k} = \hat{\mathbf{x}}_{k|k-1} + \mathbf{K}_k \mathbf{v}_k$ and $\mathbf{v}_k = \mathbf{y}_k - \mathbf{H}_k \hat{\mathbf{x}}_{k|k-1}$.

Suppose $y_k = x_k + r_k$, such that $H_k = 1$, and $r_k \sim \mathcal{N}(0, R)$ (they are all scalar). Check all statements that apply:

- If $R = \infty$ then $K_k \approx 0$.
- If R = 0 then $K_k = \infty$.
- If R = 1 then $K_k = 0$.
- If R = 0 then $K_k = 1$.

A Bayesian derivation of the Kalman filter

Sensor fusion & nonlinear filtering

Lars Hammarstrand

LINEAR AND GAUSSIAN STATE SPACE MODELS

· Consider a linear and Gaussian model:

$$\mathbf{x}_k = \mathbf{A}_{k-1}\mathbf{x}_{k-1} + \mathbf{q}_{k-1}, \qquad \mathbf{q}_{k-1} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{Q}_{k-1}\right)$$
 $\mathbf{y}_k = \mathbf{H}_k\mathbf{x}_k + \mathbf{r}_k, \qquad \mathbf{r}_k \sim \mathcal{N}\left(\mathbf{0}, \mathbf{R}_k\right)$

where \boldsymbol{x}_0 is Gaussian with mean $\hat{\boldsymbol{x}}_{0|0}$ and covariance matrices $\boldsymbol{P}_{0|0}.$

• We can also express this model as

$$p(\mathbf{x}_k|\mathbf{x}_{k-1}) = \mathcal{N}(\mathbf{x}_k; \mathbf{A}_{k-1}\mathbf{x}_{k-1}, \mathbf{Q}_{k-1})$$
$$p(\mathbf{y}_k|\mathbf{x}_k) = \mathcal{N}(\mathbf{y}_k; \mathbf{H}_k\mathbf{x}_k, \mathbf{R}_k).$$

Objective (in this video)

• Derive analytical expressions for $p(\mathbf{x}_k|\mathbf{y}_{1:k-1})$ and $p(\mathbf{x}_k|\mathbf{y}_{1:k})$.

A BRUTE FORCE DERIVATION

 It is possible to derive the Kalman filter equations from the filtering equations

$$p(\mathbf{x}_k|\mathbf{y}_{1:k-1}) = \int p(\mathbf{x}_k|\mathbf{x}_{k-1})p(\mathbf{x}_{k-1}|\mathbf{y}_{1:k-1}) d\mathbf{x}_{k-1}$$
$$p(\mathbf{x}_k|\mathbf{y}_{1:k}) \propto p(\mathbf{y}_k|\mathbf{x}_k)p(\mathbf{x}_k|\mathbf{y}_{1:k-1})$$

- Unfortunately, the derivation involves various matrix manipulations and is rather tedious.
- Standard derivations instead make use of "well known" results regarding Gaussian distributions. We use this approach below.

PREDICTION STEP

Prediction step

• Objective is to compute $p(\mathbf{x}_k|\mathbf{y}_{1:k-1})$ using

$$\begin{cases} p(\mathbf{x}_{k-1}|\mathbf{y}_{1:k-1}) = \mathcal{N}(\mathbf{x}_{k-1}; \hat{\mathbf{x}}_{k-1|k-1}, \mathbf{P}_{k-1|k-1}) \\ \mathbf{x}_k = \mathbf{A}_{k-1} \mathbf{x}_{k-1} + \mathbf{q}_{k-1} \end{cases}$$

Background theory (well know results)

• if $\mathbf{z}_1 \sim \mathcal{N}(\mu_1, \mathbf{\Lambda}_1)$ and $\mathbf{z}_2 \sim \mathcal{N}(\mu_2, \mathbf{\Lambda}_2)$ are independent

$$\Rightarrow \mathbf{z} = \mathbf{B}_1 \mathbf{z}_1 + \mathbf{B}_2 \mathbf{z}_2$$
$$\sim \mathcal{N}(\mathbf{B}_1 \boldsymbol{\mu}_1 + \mathbf{B}_2 \boldsymbol{\mu}_2, \mathbf{B}_1 \boldsymbol{\Lambda}_1 \mathbf{B}_1^T + \mathbf{B}_2 \boldsymbol{\Lambda}_2 \mathbf{B}_2^T).$$

A LEMMA FOR THE UPDATE STEP

Conditional distribution of Gaussian variables

• If x and y are two Gaussian random variables with the joint probability density function

probability density function
$$\begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \boldsymbol{\mu}_{x} \\ \boldsymbol{\mu}_{y} \end{bmatrix}, \begin{bmatrix} \mathbf{P}_{xx} & \mathbf{P}_{xy} \\ \mathbf{P}_{yx} & \mathbf{P}_{yy} \end{bmatrix} \right)$$
 then the conditional density of \mathbf{x} given \mathbf{y} is

$$ho(\mathbf{x}ig|\mathbf{y}) = \mathcal{N}(\mathbf{x}; oldsymbol{\mu}_{\scriptscriptstyle \mathcal{X}} + \mathbf{P}_{\scriptscriptstyle \mathcal{X} \! y} \mathbf{P}_{\scriptscriptstyle \mathcal{Y} \! y}^{-1} (\mathbf{y} - oldsymbol{\mu}_{\scriptscriptstyle \mathcal{Y}}), \mathbf{P}_{\scriptscriptstyle \mathcal{X} \! x} - \mathbf{P}_{\scriptscriptstyle \mathcal{X} \! y} \mathbf{P}_{\scriptscriptstyle \mathcal{Y} \! y}^{-1} \mathbf{P}_{\scriptscriptstyle \mathcal{Y} \! x})$$

Note:

- $P_{xy} = 0 \Rightarrow p(\mathbf{x}|\mathbf{y}) = p(\mathbf{x}) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_{y}, \mathbf{P}_{xx})$.
- $Cov\{x|y\} \leq P_{xx}$.

THE UPDATE STEP

.....

• We have a predicted density
$$\mathbf{x}_{k} | \mathbf{y}_{1:k-1} \sim \mathcal{N}(\hat{\mathbf{x}}_{k|k-1}, \mathbf{P}_{k|k-1})$$
 and observe a measurement $\mathbf{y}_{k} = \mathbf{H}_{k}\mathbf{x}_{k} + \mathbf{r}_{k}$

$$\Rightarrow \begin{bmatrix} \mathbf{x}_{k} \\ \mathbf{y}_{k} \end{bmatrix} | \mathbf{y}_{1:k-1} \sim \mathcal{N}\left(\begin{bmatrix} \hat{\mathbf{x}}_{k|k-1} \\ \mathbf{H}_{k}\hat{\mathbf{x}}_{k|k-1} \end{bmatrix}, \begin{bmatrix} \mathbf{P}_{k|k-1} \\ \mathbf{H}_{k}\mathbf{P}_{k|k-1} \\ \mathbf{H}_{k}\mathbf{P}_{k|k-1} \end{bmatrix}, \begin{bmatrix} \mathbf{P}_{k|k-1} \\ \mathbf{H}_{k}\mathbf{P}_{k|k-1} \\ \mathbf{H}_{k}\mathbf{P}_{k|k-1} \end{bmatrix} \right)$$

• We use the notation
$$p(\mathbf{x}_{k}|\mathbf{y}_{1:k}) = \mathcal{N}(\mathbf{x}_{k};\hat{\mathbf{x}}_{k|k},\mathbf{P}_{k|k})$$
 where
$$\hat{\mathbf{x}}_{k|k} = \mathcal{N}_{k} + \mathcal{P}_{k} \cdot \mathcal{P}_{k|k} \cdot$$

SELF ASSESSMENT

With an ideal sensor we would have $y_k = x_k$. (We consider a scalar case here for simplicity.) Under that assumption, which of the following apply?

•
$$p(y_k|y_{1:k-1}) = \mathcal{N}(y_k; \hat{x}_{k|k-1}, \mathbf{P}_{k|k-1})$$

•
$$p(y_k|y_{1:k-1}) = \delta(y_k - x_k)$$

•
$$p(x_k, y_k|y_{1:k-1}) = \mathcal{N}\left(\begin{bmatrix} x_k \\ y_k \end{bmatrix} \middle| \begin{bmatrix} \hat{x}_{k|k-1} \\ \hat{x}_{k|k-1} \end{bmatrix}, \begin{bmatrix} P_{k|k-1} & P_{k|k-1} \\ P_{k|k-1} & P_{k|k-1} \end{bmatrix}\right)$$

•
$$p(x_k, y_k | y_{1:k-1}) = \mathcal{N}\left(\begin{bmatrix} x_k \\ y_k \end{bmatrix} | \begin{bmatrix} \hat{x}_{k|k-1} \\ x_k \end{bmatrix}, \begin{bmatrix} P_{k|k-1} & 0 \\ 0 & P_{k|k-1} \end{bmatrix}\right)$$

Kalman filter tuning and consistency

Sensor fusion & nonlinear filtering

Lars Hammarstrand

A MATHEMATICAL RESULT BEFORE WE START

Decomposing joint expectations (Product rule)

For any two random variables x and y, it holds that

$$\mathbb{E}\{g(x,y)\} = \mathbb{E}\{\underbrace{\mathbb{E}\{g(x,y)|y\}}\} = \mathbb{E}\{h(y)\}$$

$$\int g(x,y) p(x,y) dx dy = \int g(x,y) p(x|y) dx p(y) dy$$

$$= \int h(y) p(y) dy = E\{h(y)\}$$

THE KALMAN FILTER

Prediction

$$\begin{cases} \hat{\mathbf{x}}_{k|k-1} = \mathbf{A}_{k-1} \hat{\mathbf{x}}_{k-1|k-1} \\ \mathbf{P}_{k|k-1} = \mathbf{A}_{k-1} \mathbf{P}_{k-1|k-1} \mathbf{A}_{k-1}^T + \mathbf{Q}_{k-1} \end{cases}$$

Update

$$\begin{cases} \hat{\mathbf{x}}_{k|k} &= \hat{\mathbf{x}}_{k|k-1} + \mathbf{K}_k \mathbf{v}_k \\ \mathbf{P}_{k|k} &= \mathbf{P}_{k|k-1} - \mathbf{K}_k \mathbf{S}_k \mathbf{K}_k^T \\ \end{cases}$$

$$\begin{cases} \mathbf{K}_k &= \mathbf{P}_{k|k-1} \mathbf{H}_k^T \mathbf{S}_k^{-1} \\ \mathbf{v}_k &= \mathbf{y}_k - \mathbf{H}_k \hat{\mathbf{x}}_{k|k-1} \\ \mathbf{S}_k &= \mathbf{H}_k \mathbf{P}_{k|k-1} \mathbf{H}_k^T + \mathbf{R}_k \end{cases}$$

Does the filter perform well?

- Have we implemented the filter correctly?
- Have we selected good model types?
- Are the covariance matrices properly tuned?

IDEAL PROPERTIES OF FILTER OUTPUTS

• The filter output is the posterior mean and covariance:

$$\rho(\mathbf{x}_k \big| \mathbf{y}_{1:k}) = \mathcal{N}(\mathbf{x}_k; \hat{\mathbf{x}}_{k|k}, \mathbf{P}_{k|k})$$

Both over xx and

yiin

Deterministic

function of yin

A well performing filter should satisfy

$$\mathbb{E}\left\{\mathbb{E}\left\{\mathbf{x}_{k}-\hat{\mathbf{x}}_{k|k}\right\}\right\} = \mathbb{E}\left\{\mathbf{x}_{k}-\hat{\mathbf{x}}_{k|k}\right\} = 0$$

$$\mathbb{E}\left\{\left(\mathbf{x}_{k}-\hat{\mathbf{x}}_{k|k}\right)\left(\mathbf{x}_{k}-\hat{\mathbf{x}}_{k|k}\right)^{T}|\mathbf{y}_{1:k}\right\} = \mathbb{E}\left\{\left(\mathbf{x}_{k}-\hat{\mathbf{x}}_{k|k}\right)\left(\mathbf{x}_{k}-\hat{\mathbf{x}}_{k|k}\right)^{T}\right\}$$

$$\mathbb{E}\left\{\mathbb{E}\left\{\mathbf{x}_{k}-\hat{\mathbf{x}}_{k|k}\right\}\left(\mathbf{x}_{k}-\hat{\mathbf{x}}_{k|k}\right)^{T}\right\}$$

- Weakness: need to know \mathbf{x}_k to check these conditions!
 - → simulations?
 - → reference sensors in test environment?

SELF-ASSESSMENT

Why is it often difficult to check if $\mathbb{E}\{\mathbf{x}_k - \hat{\mathbf{x}}_{k|k}\}$ using real data (measurements that we have not simulated in a computer):

- It is not a good idea to approximate expected values using ensemble averaging.
- It is difficult to compute $\hat{\mathbf{x}}_{k|k}$.
- We do not know the values of \mathbf{x}_k .

Check all that apply.

Kalman filter tuning and consistency – Innovation

Sensor fusion & nonlinear filtering

Lars Hammarstrand

INNOVATION CONSISTENCY

Innovation consistency

The innovation $\mathbf{v}_k = \mathbf{y}_k - \mathbf{H}_k \hat{\mathbf{x}}_{k|k-1}$ should satisfy

$$\rho(\mathbf{v}_k \big| \mathbf{y}_{1:k-1}) = \mathcal{N}(\mathbf{v}_k; \mathbf{0}, \mathbf{S}_k)$$

$$\operatorname{\mathsf{Cov}}(\mathbf{v}_k,\mathbf{v}_{k-l}) = egin{cases} \operatorname{\mathsf{Cov}}\{\mathbf{v}_k\} & \text{if } l = 0 \\ \mathbf{0} & \text{otherwise.} \end{cases}$$

 Note: it is enough to have a filter and a measurement sequence to compute v₁, v₂,...

TEST OF INNOVATION PROPERTIES - VISUAL INSPECTION

- There are ways to test the properties of the innovation.
 - → we will look at three methods.
- Visual inspection:
 - Zero mean?
 - uncorrelated?

TEST OF INNOVATION PROPERTIES - CONSISTENCY

Consistency

• Ideally $\mathbf{v}_k | \mathbf{y}_{1:k-1} \sim \mathcal{N}(\mathbf{0}, \mathbf{S}_k)$ and then

$$\mathbf{S}_{k}^{-1/2}\mathbf{v}_{k}\sim\mathcal{N}(\mathbf{0},\mathbf{I})\Rightarrow\mathbf{v}_{k}^{T}\mathbf{S}_{k}^{-1}\mathbf{v}_{k}\sim\chi_{n}^{2}$$

Given a sequence v₁, v₂,..., v_K we can compute

$$\xi_{\mathcal{K}} = \sum_{k=1}^{\mathcal{K}} \mathbf{v}_{k}^{\mathsf{T}} \mathbf{S}_{k}^{-1} \mathbf{v}_{k} \sim \mathcal{N}(\mathcal{K} n_{y}, 2\mathcal{K} n_{y})$$

Within 3σ -region?

TEST OF INNOVATION PROPERTIES - CORRELATION

Whiteness

 Estimate the autocorrelation function (autocov. normalised to 1 at lag 0):

$$\rho(l) = \frac{\sum_{k=l+1}^{K} \mathbf{v}_{k}^{T} \mathbf{v}_{k-l}}{\sum_{\tau=l+1}^{K} \mathbf{v}_{\tau}^{T} \mathbf{v}_{\tau}}$$

and check if $\rho(I) \approx 0$ for I > 0.

Kalman filter tuning and consistency – Motion and measurement models

Sensor fusion & nonlinear filtering

Lars Hammarstrand

TUNING MOTION AND MEASUREMENT NOISE COVARIANCES

TUNING MOTION AND MEASUREMENT NOISE COVARIANCES

- A key aspect in tuning is to select the SNR ||Q||/||R||:
 - If SNR is large ⇒ a quickly adapting filter that relies more on new data than predictions.
 - If SNR is low ⇒ the data is noise and we rely more on the predictions, the filter thus adapts slowly to data.
- The sensor noise, **R**, is often described by the manufacturer and/or possible to collect data from which it can be estimated.
- The motion noise, **Q**, is then selected by tuning.
- Unless you know the state sequence, study properties of the innovation to guide the tuning of the filter.

SELF-ASSESSMENT

If we design our filter such that the motion noise $\|\mathbf{Q}\|$ is small and the measurement noise $\|\mathbf{R}\|$ is large we get:

- a filter that adapts quickly to changes.
- a filter that adapts slowly to changes.
- we cannot select $\|\mathbf{Q}\|$ and $\|\mathbf{R}\|$ ourselves since they depend on the real system.

Check all that apply.

The Kalman filter and LMMSE estimators

Sensor fusion & nonlinear filtering

Lars Hammarstrand

THE KALMAN FILTER IS AN LMMSE ESTIMATOR

The Kalman filter computes

$$\hat{\mathbf{x}}_{k|k-1} = \mathbb{E}\{\mathbf{x}_k|\mathbf{y}_{1:k-1}\}$$

$$\hat{\mathbf{x}}_{k|k} = \mathbb{E}\{\mathbf{x}_k|\mathbf{y}_{1:k}\}$$

$$\hat{\mathbf{x}}_{k|k} = \mathbb{E}\{\mathbf{x}_k|\mathbf{y}_{1:k}\}$$

$$\hat{\mathbf{x}}_{k|k-1} = \hat{\mathbf{x}}_{k|k-1}(\mathbf{y}_{1:k-1}) + \hat{\mathbf{x}}_{k|k-1}(\mathbf{y}_{1:k-1}) + \hat{\mathbf{x}}_{k|k-1}(\mathbf{y}_{1:k-1})$$

for linear and Gaussian models.

- Note:
 - 1. The Kalman filter is a linear function of $y_{1:k}$.
 - 2. $\hat{\mathbf{x}}_{k|k}$ is the minimum mean square error (MMSE) estimator.
 - ⇒ The Kalman filter is the linear minimum mean square error (LMMSE) estimator!

LMMSE ESTIMATION

LMMSE objective (static example)

- Find **A** and **b** such that $\hat{\mathbf{x}} = \mathbf{A}\mathbf{y} + \mathbf{b}$ yields the smallest possible MSE, $\mathbb{E}\{(\mathbf{x} \hat{\mathbf{x}})^T(\mathbf{x} \hat{\mathbf{x}})\}.$
- Finding optimum:
 Setting derivatives of MSE with respect to b and A to 0 yields

$$b = \bar{x} - A\bar{y}$$

$$A = P_{xy}P_{yy}^{-1}.$$

$$\Rightarrow \hat{x} = A_y + \bar{x} - A\bar{y} = \hat{x} + A(y - \bar{y})$$

$$= \bar{x} + P_{xx} \cdot P_{yy}^{-1} (y - \bar{y})$$

 Orthogonality principle: select **A** such that $\mathbb{E}\{(\mathbf{x} - \hat{\mathbf{x}})\mathbf{y}^T\} = \mathbf{0}$. $P_{xy} - A \cdot P_{yy} = O$ $A = P_{xy} \cdot P_{yy}^{-1}$ Exyl: inner product => Exyl=0=>x14

SELF ASSESSMENT

What is different in LMMSE estimation compared to MMSE estimation.

- In LMMSE estimation we restrict the estimator to be a linear (or at least affine) function of data (measurements).
- In LMMSE the noise cannot be Gaussian.
- In MMSE estimation we normally compute a posterior distribution conditioned on data.

Check all that apply.

SEQUENTIAL LMMSE IN THE DYNAMIC CASE

LMMSE objective

• Sequentially find $\{\mathbf{L}_{k|k-1}, \mathbf{b}_{k|k-1}\}$ and $\{\mathbf{L}_{k|k}, \mathbf{b}_{k|k}\}$ such that

$$\hat{\mathbf{x}}_{k|k-1} = \mathbf{L}_{k|k-1} \mathbf{\underline{y}}_{1:k-1} + \mathbf{b}_{k|k-1}$$

$$\hat{\mathbf{x}}_{k|k} = \mathbf{L}_{k|k} \mathbf{\underline{y}}_{1:k} + \mathbf{b}_{k|k}$$

minimize the MSE, $\mathbb{E}\{(\mathbf{x}_k - \hat{\mathbf{x}}_{k|k-1})^T(\cdot)\}\$ and $\mathbb{E}\{(\mathbf{x}_k - \hat{\mathbf{x}}_{k|k})^T(\cdot)\}.$

Note:

- Find a linear mapping based on all the data up to the relevant time.
- We generalise and allow us to consider affine functions of data.

LMMSE FOR LINEAR STATE SPACE MODELS

Linear state space model with additive (non-Gaussian) noise

• Consider state space model

$$\mathbf{x}_k = \mathbf{A}_{k-1} \mathbf{x}_{k-1} + \mathbf{q}_{k-1},$$

 $\mathbf{y}_k = \mathbf{H}_k \mathbf{x}_k + \mathbf{r}_k$

where \mathbf{x}_0 , \mathbf{q}_{k-1} and \mathbf{r}_k are independed random variables with known mean and covariances.

Key results (Additive non-Gaussian noise)

• The Kalman filter gives LMMSE estimates, $\hat{\mathbf{x}}_{k|k-1}$ and $\hat{\mathbf{x}}_{k|k}$, with the correct error covariances

$$\begin{aligned} \mathbf{P}_{k|k-1} &= \mathbb{E}\{(\mathbf{x}_k - \hat{\mathbf{x}}_{k|k-1})(\cdot)^T\} \\ \mathbf{P}_{k|k} &= \mathbb{E}\{(\mathbf{x}_k - \hat{\mathbf{x}}_{k|k})(\cdot)^T\} \end{aligned}$$

PROOF OUTLINE

• Assumption:
$$\begin{cases} \mathbb{E}\left[(\mathbf{x}_{k-1} - \hat{\mathbf{x}}_{k-1|k-1})\mathbf{y}_{1:k-1}^{T}\right] = 0\\ \mathbb{E}\left[(\mathbf{x}_{k-1} - \hat{\mathbf{x}}_{k-1|k-1})(\cdot)^{T}\right] = \mathbf{P}_{k-1|k-1} \end{cases}$$

Prediction

$$\mathbb{E}\left[(\mathbf{x}_{k} - \hat{\mathbf{x}}_{k|k-1})\mathbf{y}_{1:k-1}^{T}\right] = 0$$

$$\mathbb{E}\left[(\mathbf{x}_{k} - \hat{\mathbf{x}}_{k|k-1})(\cdot)^{T}\right] = \mathbf{P}_{k|k-1}$$

Update

$$\mathbb{E}\left[(\mathbf{x}_{k} - \hat{\mathbf{x}}_{k|k})\mathbf{y}_{1:k-1}^{T}\right] = \mathbf{0}$$

$$\mathbb{E}\left[(\mathbf{x}_{k} - \hat{\mathbf{x}}_{k|k})\mathbf{y}_{k}^{T}\right] = \mathbf{0}$$

$$\mathbb{E}\left[(\mathbf{x}_{k} - \hat{\mathbf{x}}_{k|k})(\mathbf{x}_{k} - \hat{\mathbf{x}}_{k|k})^{T}\right] = \mathbf{P}_{k|k}$$

• DIY: Make the proof for the scalar case where x_0 , q_{k-1} , r_k are zero mean.

SELF ASSESSMENT

Fact:

For linear state space models with additive noise, the Kalman filter computes the LMMSE estimate recursively, also when the noise is not Gaussian.

Statement for you to verify or reject:

However, the Kalman filter is merely the best linear estimator among all *recursive* algorithms and we can sometime do better if we consider all measurements at the same time.

- True.
- False