

CLAIMS

1 1. A method for photodynamic therapy for the reduction of adipose tissue or
2 adipocytes in a mammalian subject comprising:

3 administering to the subject a therapeutically effective amount of a
4 photosensitizing agent or a photosensitizing agent delivery system or a prodrug, wherein
5 said photosensitizing agent or said photosensitizing agent delivery system or said prodrug
6 selectively localizes in the adipose tissue or the adipocytes;

7 irradiating at least a portion of the subject with light at a wavelength absorbed by
8 said photosensitizing agent or if said prodrug, by a prodrug product thereof, wherein said
9 light is provided by a light source; and wherein said irradiation is administered at a
10 relatively low fluence rate that results in the activation of said photosensitizing agent or
11 said prodrug product; and

12 wherein said PDT drug is cleared from the skin and subcutaneous tissues of the
13 subject prior to said irradiation.

1 2. The method of claim 1, wherein said light source is selected from the
2 group consisting of one or a plurality of: laser diodes; light emitting diodes;
3 electroluminescent light sources; incandescent light sources; cold cathode fluorescent
4 light sources; organic polymer light sources; or inorganic light sources.

1 3. The method of claim 1 or claim 2, wherein said light source is external to
2 the skin layer and the light beam is directed through the skin to the adipose tissue or the
3 adipocytes.

1 4. The method of claim 2, wherein said laser diode is coupled to an optical
2 fiber, and wherein said optical fiber directs said light to the adipose tissue or the
3 adipocytes.

1 5. The method of claim 2, wherein said light emitting diode is a light
2 emitting diode strip, and wherein said light emitting diode strip is placed external to the
3 skin layer and overlying the adipose tissue or the adipocytes.

1 6. The method of claim 4, wherein said optical fiber diffuses said light when
2 placed over the adipose tissue or the adipocytes.

1 7. The method of claim 4 or claim 6, wherein said light source is a mat
2 comprising a plurality of said optical fiber.

1 8. The method of any of the preceding claims, wherein said photosensitizing
2 agent is selected from the group consisting of: indocyanine green; methylene blue;
3 toluidine blue; delta-aminolevulinic acid; protoporphyrin; bacteriochlorins;
4 phthalocyanines; porphyrins; texaphyrins; merocyanines; psoralens; pyropheophorbides;
5 chlorins; purpurins; and any other agent that absorbs light in a range of 500 nm - 1100
6 nm.

1 9. The method of claim 8, wherein said photosensitizing agent is a mono-, di-
2 or polyamide aminodicarboxylic acid derivative of a cyclic or non-cyclic tetrapyrrole.

1 10. The method of any of claims 1-9, wherein said photosensitizing agent is
2 mono-L-aspartyl chlorin e6 (NPe6).

1 11. The method of claim 1, wherein said wavelength is from about 500 nm to
2 about 1100 nm.

1 12. The method of claim 1 or claim 11, wherein said wavelength is greater
2 than about 700 nm.

1 13. The method of any of claims 1-12, wherein said light results in a single
2 photon absorption mode by the photosensitizing agent.

1 14. The method of claim 8, wherein a complex, comprising said
2 photosensitizing agent is conjugated to an adipose-tissue specific ligand which localizes
3 in the adipose tissue or to the adipocytes.

1 15. The method of claim 14, wherein said ligand is an: adipocyte antigen;
2 adipocyte cell receptor; or other adipocyte cellular surface component.

1 16. The method of claim 15, wherein said antigen is lipoprotein lipase.

1 17. The method of claim 14, wherein said complex is administered
2 systemically or locally.

1 18. The method of claim 17, wherein said complex is formulated for
2 administration orally, topically, intravenously or by any percutaneous route of injection.

1 19. The method of claim 17, wherein local administration is followed by a
2 method to allow the complex to permeate the skin and into the subcutaneous adipose
3 tissue.

1 20. The method of claim 8, wherein said light source is inserted internal to the
2 skin layer of the subject.

1 21. The method of any of claims 1-20, wherein the reduction of the adipose
2 tissue or the adipocytes occurs by apoptosis of the adipocytes.

1 22. An apparatus for transcutaneous photodynamic therapy of adipose tissue
2 or adipocytes in a mammalian subject comprising a light source that is external to the
3 subject and is selected from the group consisting of one or a plurality of: laser diodes;
4 light emitting diodes; electroluminescent light sources; incandescent light sources; cold

5 cathode fluorescent light sources; organic polymer light sources; or inorganic light
6 sources.

1 23. The apparatus of claim 22, wherein said light source is at least one laser
2 diode coupled to an optical fiber which directs said light to the adipose tissue or the
3 adipocytes.

1 24. The apparatus of claim 22 or claim 23, wherein said diode is a light
2 emitting diode strip, and wherein said light emitting diode strip may be placed over the
3 skin to contour the adipose tissue to be treated.