14 Bayesian Estimation

Thomas Bayes (18th-century mathematician and statistician)

Sir Harold Jeffreys (famous 20th-century mathematician and statistician) wrote that Bayes' theorem "is to the theory of probability what Pythagoras's theorem is to geometry"

14.1 Review: Properties of ML Estimator

Data: i.i.d. sample of size n drawn from $P(X|\theta)$

Consistency: the sequence of MLE estimates $\widehat{\theta}$ converges in probability to the true parameter value θ

Asymptotic Normality: as the sample size increases, the distribution of the MLE tends to the Gaussian distribution with mean θ (and covariance matrix equal to the inverse of the Fisher information matrix)

Efficiency: No consistent estimator has lower asymptotic mean squared error than the ML estimator (ML estimator achieves the Cramer-Rao lower bound when the sample size tends to infinity)

14.2 Bayes' Rule / Theorem

For events A and B, P(A|B) = P(B|A)P(A)/P(B)

Proof follows from our definition of conditional probability, i.e., $P(X|Y) := P(X \cap Y)/P(Y)$

14.3 Example (Coin Flip)

Consider that we don't know if a coin is fair / unfair

We have 2 possibilities in our mind:

- (1) Coin fair, i.e., P(head) = p = 0.5
- (2) Coin biased towards heads with P(head) = q = 0.7

We have a belief (**prior** to observing data) that P(CoinFair) = 0.8

Now we experiment with the coin, collect data, and recompute the probability that the coin is fair

$$P(CoinFair|Data) = P(Data|CoinFair)P(CoinFair)/P(Data)$$

Given: We have data = n observations with r heads and (n-r) tails. What does the data do to our belief?

$$\begin{split} P(\mathsf{Data}|\mathsf{CoinFair}) &= C_r^n 0.5^r 0.5^{n-r} \\ P(\mathsf{Data}|\mathsf{CoinUnfair}) &= C_r^n 0.7^r 0.3^{n-r} \\ P(\mathsf{Data}) &= P(\mathsf{Data}|\mathsf{CoinFair}) P(\mathsf{CoinFair}) + P(\mathsf{Data}|\mathsf{CoinUnfair}) P(\mathsf{CoinUnfair}) \\ P(\mathsf{CoinFair}|\mathsf{Data}) &= \frac{0.5^r 0.5^{n-r} \times 0.8}{0.5^r 0.5^{n-r} \times 0.8 + 0.7^r 0.3^{n-r} \times 0.2} \end{split}$$

Case 1: If n=20, r=11, then $P(\mathsf{CoinFair}|\mathsf{Data}) = 0.9074$ which is more than 0.8. So the data has strengthened our belief !!

Why has this happened? Because 11 heads out of 20 is more like the fair coin.

Case 2: If n=20, r=13, then $P(\mathsf{CoinFair}|\mathsf{Data})=0.6429$ which is less than 0.8. So the data has weakened our belief!!

Why has this happened? Because 13 heads out of 20 is more like the unfair coin.

Case 3: If n = 20, r = 12, then P(CoinFair|Data) = 0.8077 which is close to 0.8.

14.4 Example (Box)

There are two boxes:

- (i) one with 4 black balls and 1 white ball
- (ii) another with 1 black ball and 3 white balls

You pick one box at random (prior probability of picking any box is 0.5).

Then select a ball from the box. It turns out to be white (data).

Given that the ball is white, what is the probability that you picked the 1st box?

Solution: P(Box1|W) = P(W|Box1)P(Box1)/P(W) where, using total probability, P(W) = P(W|Box1)P(Box1) + P(W|Box2)P(Box2)

P(Box1|W) comes out to 0.2105Prior probability for P(Box1) was 0.5

14.5 Example: Gaussian (Unknown mean, Known variance)

Given: Data $\{x_i\}_{i=1}^N$ derived from a Gaussian distribution with known variance σ^2 , but unknown mean μ

Treat mean μ as a random variable

Prior belief on μ is that it is derived from a Gaussian with mean μ_0 and variance σ_0^2

Associated Generative Model here: first draw μ from prior, then draw data given μ . Draw a picture

Goal: Estimate μ , given prior and data

What if we ignore the prior ? (ML estimation seen before)

What if we ignore the likelihood / data ? ($\mu = \mu_0$)

A possible solution: Maximize posterior w.r.t. μ

Posterior: $P(\mu|x_1,\dots,x_N) = P(x_1,\dots,x_N|\mu)P(\mu)/P(x_1,\dots,x_N)$

Assume sample mean = \bar{x}

Then MAP estimate for the mean is:

$$\mu = \frac{\bar{x}\sigma_0^2 + \mu_0 \sigma^2 / N}{\sigma_0^2 + \sigma^2 / N}$$

What if N = 1?

What if $N \to \infty$? (data dominates the prior)

What if $\sigma_0 \to \infty$? (weak prior: ignore the prior)

What if $\sigma_0 \to 0$? (strong prior: ignore the data)

14.6 Posterior Mean Estimate to Minimize MSE

Given data: $\{x_i\}_{i=1}^n$ drawn from $P(X|\theta)$

We have a prior $P(\theta)$ on RV θ

Posterior = conditional density $P(\theta|x_1, \dots, x_n) = \frac{P(x_1, \dots, x_n|\theta)P(\theta)}{\int_{\theta} P(x_1, \dots, x_n, \theta)d\theta}$

Question: Given a PDF $P(\theta|x_1,\dots,x_n)$ on the true parameter θ , what is the best estimate $\widehat{\theta}^*$ to minimize mean squared error $E_{P(\theta|x_1,\dots,x_n)}[(\widehat{\theta}-\theta)^2]$?

Answer: The PDF mean $E_{P(\theta|x_1,\cdots,x_n)}[\theta]$. This is also a Bayes estimate.

14.7 Loss functions and Risk functions

Loss function $L(\widehat{\theta}|\theta) :=$ loss incurred in obtaining the estimate as $\widehat{\theta}$, when the true value was θ . We know that, given the data, the true value θ is distributed as per the posterior PDF $P(\theta|x_1, \cdots, x_n)$

 $\text{Risk function } R(\widehat{\theta}) \coloneqq \text{expected loss} \coloneqq \text{expectation of the loss function } L(\widehat{\theta}|\theta) \text{ under the posterior PDF } P(\theta|x_1,\cdots,x_n)$

Goal: Choose $\widehat{\theta}$ to minimize risk

Example 1: Squared-error loss function: $L(\widehat{\theta}) = (\widehat{\theta} - \theta)^2$

Risk function $=E_{P(\theta|x_1,\cdots,x_n)}[(\widehat{\theta}-\theta)^2]$ = mean squared error

Let risk minimizer = θ^*

Then,
$$\frac{\partial}{\partial \widehat{\theta}} E_{P(\theta|x_1,\cdots,x_n)}[(\widehat{\theta}-\theta)^2]\Big|_{\widehat{\theta}=\theta^*}=0$$

Thus, $\theta^* = E_{P(\theta|x_1,\cdots,x_n)}[\theta] = \text{Posterior mean}$

 $\underline{\text{Example 2.1}}\text{: Zero-one loss function (case of discrete RV θ): }L(\widehat{\theta}) = I(\widehat{\theta} \neq \theta)$

Risk function $=R(\widehat{\theta})=E_{P(\theta|x_1,\cdots,x_n)}[I(\widehat{\theta}\neq\theta)]$

$$= \sum_{\theta \neq \widehat{\theta}} P(\theta | x_1, \cdots, x_n)$$

= 1 - P(\theta = \hat{\theta} | x_1, \cdots, x_n)

Thus, the risk function is minimized when $\widehat{\theta} = \arg \max_{\theta} P(\theta|x_1, \cdots, x_n)$ = MAP estimate

Example 2.2: Zero-one loss function (case of continuous RV θ)

Assume that the loss function is an *inverted* rectangular pulse —_— with height 1 and an infinitesimally small width $\epsilon > 0$ (we do NOT make $\epsilon = 0$), with center of the pulse at the true parameter value θ . i.e.,

$$L(\widehat{\theta}|\theta) = 0$$
; if $\widehat{\theta} \in (\theta - \epsilon/2, \theta + \epsilon/2)$
 $L(\widehat{\theta}|\theta) = 1$; otherwise

For such a loss function, the risk function $1 - \int_{\widehat{\theta} - \epsilon/2}^{\widehat{\theta} + \epsilon/2} P(\theta|x_1, \cdots, x_n) d\theta$ is minimized when the pulse center is placed at the mode of the PDF.

Take the limit, as $\epsilon \to 0$, of $\arg\max_{\widehat{\theta}} \int_{\widehat{\theta} - \epsilon/2}^{\widehat{\theta} + \epsilon/2} P(\theta|x_1, \cdots, x_n) d\theta$

Draw a picture. Bimodal PDF. One peak is wide. Another peak is narrow.

Example 3: Absolute-error loss function $L(\widehat{\theta}) = |\widehat{\theta} - \theta|$

Risk function
$$=E_{P(\theta|x)}[|\widehat{\theta}-\theta|]$$

$$= \int_{-\infty}^{\infty} |\widehat{\theta} - \theta| P(\theta|x) d\theta$$

=
$$\int_{-\infty}^{\widehat{\theta}} (\widehat{\theta} - \theta) P(\theta|x) d\theta + \int_{\widehat{\theta}}^{\infty} (\theta - \widehat{\theta}) P(\theta|x) d\theta$$

The risk function is minimized when its derivative is zero.

How to take the derivative of an integral where the limits are also a function of the variable of interest? Leibniz's Integral Rule (draw picture):

$$\frac{\partial}{\partial a} \int_{l(a)}^{u(a)} f(z,a) dz = \int_{l(a)}^{u(a)} \frac{\partial f}{\partial a} dz + f(z=u(a),a) \frac{\partial u}{\partial a} - f(z=l(a),a) \frac{\partial l}{\partial a} \int_{l(a)}^{u(a)} f(z,a) dz$$

In our case, $f(z \equiv \theta, a \equiv \widehat{\theta}) \propto (\widehat{\theta} - \theta) P(\theta|x)$

In our case, for the 1st integral: f(z=u(a),a)=0 and the lower-limit term doesn't arise

In our case, for the 2nd integral: f(z = l(a), a) = 0 and the upper-limit term doesn't arise

Thus, the derivative of our risk function w.r.t. $\widehat{\theta}$ is:

$$= \int_{-\infty}^{\widehat{\theta}} (+1)P(\theta|x)d\theta + \int_{\widehat{\theta}}^{\infty} (-1)P(\theta|x)d\theta$$
$$= \int_{-\infty}^{\widehat{\theta}} P(\theta|x)d\theta - \int_{\widehat{\theta}}^{\infty} P(\theta|x)d\theta$$

This is zero when $\widehat{\theta}$ = median of $P(\theta|x)$

The median will be a minimizer if the 2nd derivative is positive. Is that so?

In this case, for both integrals, $\frac{\partial f}{\partial a}=0$

In this case, for 1st integral, the lower-limit term doesn't arise

In this case, for 2nd integral, the upper-limit term doesn't arise

Thus, the 2nd derivative of our risk function w.r.t. $\widehat{\theta}$, evaluated at $\widehat{\theta}$ = median of $P(\theta|x)$, is:

$$= P(\widehat{\theta}|x) + P(\widehat{\theta}|x) \ge 0$$

Note: the median $\widehat{\theta}$ isn't unique if $P(\widehat{\theta}|x) = 0$

14.8 Example: i.i.d. Bernoulli

Given: X_1, \cdots, X_n are i.i.d. Bernoulli with parameter θ and PDF $P(x=1|\theta)=\theta, P(x=0|\theta)=1-\theta$

Data: x_1, \dots, x_n

Estimate $\theta \in (0,1)$

Prior
$$P(\theta) = 1, \forall \theta \in (0,1)$$

Answer:

Rewrite PDF as $P(x|\theta) = \theta^x (1-\theta)^{1-x}$, where $x \in \{0,1\}$

$$P(\theta|x_1,\dots,x_n) = P(x_1,\dots,x_n|\theta)/P(x_1,\dots,x_n)$$

where

Numerator =
$$\theta^{\sum_i x_i} (1 - \theta)^{n - \sum_i x_i}$$

If we want the posterior mean, then we need to care about the denominator as well

Denominator =
$$\int_0^1 \theta^{\sum_i x_i} (1-\theta)^{n-\sum_i x_i} d\theta$$

To handle the integral in the denominator, we exploit the result / trick: $\int_0^1 \theta^m (1-\theta)^r d\theta = m! r! / (m+r+1)!$

Let
$$x = \sum_{i} x_i$$

Then,
$$P(\theta|x_1, \dots, x_n) = \frac{(n+1)!}{x!(n-x)!} \theta^x (1-\theta)^{n-x}$$

Thus,
$$E_{P(\theta|x_1,\cdots,x_n)}[\theta]=\int_0^1 heta rac{(n+1)!}{x!(n-x)!} heta^x (1-\theta)^{n-x} d\theta = rac{x+1}{n+2}$$

Thus, Bayes posterior-mean estimator $=\frac{\sum_{i}X_{i}+1}{n+2}$

Note: ML estimator $= \max_{\theta} \log \left(\theta^{\sum_i X_i} (1 - \theta)^{n - \sum_i X_i} \right)$

$$= \max_{\theta} X \log \theta + (n - X) \log (1 - \theta), \text{ where } X := \sum_{i} X_{i}$$

$$= X/n$$

$$= \sum_{i} X_{i}/n$$

Check that the 2nd derivative is negative (Use the facts: $X \ge 0$ and $n - X \ge 0$ and $0 < \theta < 1$)

Note: In this case, ML estimator \equiv MAP estimator; because $P(\theta) = 1$

Note: When n=0, Bayes estimate =0.5, the mid-point of the interval (0,1). This is what we get when we solely rely on the prior

Note: Asymptotically, i.e., as $n \to \infty$, the Bayes estimator tends to the ML estimator

What happens to the Bayes estimate and ML estimate when true $\theta = 0$ or true $\theta = 1$? Assume n is large.

14.9 Example: i.i.d. Gaussian

Given: X_1, \dots, X_n i.i.d. $G(\theta, \sigma_0^2)$. Unknown mean. Known variance.

Prior: $P(\theta) := G(\theta; \mu; \sigma^2)$

Bayes posterior-mean estimate = ?

Answer:

Property 1: Product of 2 Gaussians is another Gaussian: $G(z; \mu_1, \sigma_1^2)G(z; \mu_2, \sigma_2^2) \propto G(z; \mu_3, \sigma_3^2)$

Numerator exponent
$$= \frac{(z-\mu_1)^2}{2\sigma_1^2} + \frac{(z-\mu_2)^2}{2\sigma_2^2}$$

$$= \frac{1}{2\sigma_1^2\sigma_2^2} \left(z^2(\sigma_2^2 + \sigma_1^2) - (2\mu_1\sigma_2^2 + 2\mu_2\sigma_1^2)z + \mu_1^2\sigma_2^2 + \mu_2^2\sigma_2^2 \right)$$

$$= \frac{1}{2\sigma_1^2\sigma_2^2} \left(z^2(\sigma_2^2 + \sigma_1^2) - (2\mu_1\sigma_2^2 + 2\mu_2\sigma_1^2)z \right) + c, \text{ where } c = \text{constant independent of } z$$

$$= \frac{\sigma_2^2 + \sigma_1^2}{2\sigma_1^2\sigma_2^2} \left(z^2 - \frac{2\mu_1\sigma_2^2 + 2\mu_2\sigma_1^2}{\sigma_2^2 + \sigma_1^2} z \right) + c, \text{ where } c = \text{constant independent of } z$$

$$= \frac{\sigma_2^2 + \sigma_1^2}{2\sigma_1^2\sigma_2^2} \left(z^2 - 2\mu_3z + \mu_3^2 \right) + c', \text{ where } c' = \text{constant independent of } z \text{ and where } \mu_3 = \frac{\mu_1\sigma_2^2 + \mu_2\sigma_1^2}{\sigma_1^2 + \sigma_2^2}$$

$$= \frac{1}{2\sigma_3^2} (z - \mu_3)^2 + c', \text{ where } c' = \text{constant independent of } z \text{ where } \sigma_3^2 = \frac{\sigma_1^2\sigma_2^2}{\sigma_1^2 + \sigma_2^2}$$

$$= \frac{1}{2\sigma_3^2} (z - \mu_3)^2 + c', \text{ where } c' = \text{constant independent of } z \text{ where } \sigma_3^2 = \frac{\sigma_1^2\sigma_2^2}{\sigma_1^2 + \sigma_2^2}$$

In our case, we have two PDFs on θ , i.e.,

Prior
$$P(\theta) = \frac{1}{\sigma\sqrt{2\pi}} \exp((\theta - \mu)^2/(2\sigma^2)) = G(\theta; \mu, \sigma^2)$$

Likelihood
$$P(x_1, \cdots, x_n | \theta) = \frac{1}{(2\pi)^{n/2} \sigma_0^n} \exp(-\sum_i (x_i - \theta)^2 / (2\sigma_0^2)) = G(\theta; x_1, \sigma_0^2) \cdots G(\theta; x_n, \sigma_0^2)$$

The negative exponent here can be written as:

$$(n\theta^2-2(\sum_i x_i)\theta)/(2\sigma_0^2)+c,$$
 where $c=$ constant independent of $\theta=(\theta^2-2(\sum_i x_i/n)\theta)/(2\sigma_0^2/n)+c$ $\propto G(\theta;\sum_i x_i/n,\sigma_0^2/n)$

Let
$$x = \sum_{i} x_i/n$$

Thus, the (normalized) product of the prior and the likelihood gives a Gaussian $G(\theta; \mu^*, \sigma^{*2})$, where $\mu^* = \frac{\mu\sigma_0^2/n + x\sigma^2}{\sigma^2 + \sigma_0^2/n}$, $\sigma^{*2} = \frac{\sigma^2\sigma_0^2/n}{\sigma^2 + \sigma_0^2/n}$

Bayes estimate = mean of posterior = μ^* , which also happens to be the Gaussian posterior's mode = MAP estimate

Note: As the data sample size $n \to \infty$, the mean $\mu^* \to x$ and variance $\sigma^{*2} \to 0$.

Thus, the posterior becomes a delta function at $\theta = x = \text{sample mean}$

In this case, the Bayes estimate converges to the ML estimate = sample mean

MAP Estimation and ML Estimation

Consider the likelihood function $P(x_1, \dots, x_n | \theta)$

Consider prior $P(\theta) = 1/(b-a)$ for $\theta \in (a,b)$, i.e., a uniform distribution over (a,b)

Then, posterior PDF
$$=\frac{P(x_1,\cdots,x_n|\theta)P(\theta)}{\int_a^b P(x_1,\cdots,x_n|\theta)P(\theta)d\theta}$$
, for $\theta\in(a,b)$ $=\frac{P(x_1,\cdots,x_n|\theta)}{\int_a^b P(x_1,\cdots,x_n|\theta)d\theta}$, for $\theta\in(a,b)$

Maximum of the posterior within (a, b) = maximum of $P(x_1, \dots, x_n | \theta)$ within (a, b)

If the mode of the likelihood function lied within (a, b), then the mode of the posterior \equiv ML estimate

14.11 **Bayes Interval Estimate**

Previous analysis gives a point estimate for the parameter θ

How do we get an interval estimate for the parameter θ ?

We can do this by finding a, b such that $\int_a^b P(\theta|x_1, \dots, x_n) d\theta = 1 - \alpha$, where probability α is given.

We can get such information in some special cases, relatively easily

14.11.1 Example: Gaussian

Question: Suppose signal of value s is sent from A to B.

Because of the noisy communication channel, signal received at B has a Gaussian PDF with mean s and variance 60.

A priori, it is known that the signal s being sent is selected from a Gaussian PDF with mean 50 and variance 100.

Given: Value received at B is 40.

Find an interval (a,b) s.t. the probability of the signal being in that interval is 0.9

Answer:

Using formulas derived before for the posterior $P(s|x_1 = 40)$ of parameter s given data x_1 ,

Posterior mean = $\frac{50*60+40*100}{60+100}$ = 43.75 Posterior variance = $\frac{60*100}{60+100}$ = 37.5

We know that the posterior PDF is Gaussian

Thus, $Z:=\frac{S-43.75}{\sqrt{37.5}}$ has a standard Normal PDF

For a standard Normal PDF, we know that the probability mass within $Z \in (-1.645, +1.645)$ is 0.9

Thus, we want to find
$$S$$
 s.t. $P(-1.645 < Z < 1.645 | \mathrm{data}) = 0.9$ i.e., $P(-1.645 < \frac{S-43.75}{\sqrt{37.5}} < 1.645 | \mathrm{data}) = 0.9$ i.e., $P(33.68 < S < 53.83 | \mathrm{data}) = 0.9$

Thus, the desired interval is (a = 33.68, b = 53.83)

14.12 Conjugate Priors

If the posterior PDFs $P(\theta|x)$ are in the same family as the prior PDF $P(\theta)$, then:

- (i) the prior and posterior are called *conjugate* PDFs, and
- (ii) the prior is called the conjugate prior for the likelihood function

Advantage of conjugate priors: The posterior has a closed-form expression because the denominator / normalizing constant has a closed-form expression

$$P(\theta|x) = \frac{P(x|\theta)P(\theta)}{\int P(x|\theta)P(\theta)d\theta}$$

Otherwise, a difficult numerical integration may be required to approximate the normalization factor

Example: Binomial Likelihood and Beta prior

- 1) Likelihood of s successes in n tries: $P(s, n|\theta) = {}^n C_s \theta^s (1-\theta)^{n-s}$, where $n \in \mathbb{N}, s \in \mathbb{I}_{\geq 0}$
- 2) Prior: $P(\theta) = \text{beta}(\theta; a \in \mathbb{R}^+, b \in \mathbb{R}^+) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \theta^{a-1} (1-\theta)^{b-1}$, Note: a > 0, b > 0
- 3) Posterior $\propto \theta^{s+a-1}(1-\theta)^{n-s+b-1} \equiv \mathsf{beta}(\theta; a+s, b+n-s)$
- We know that the **mean** of the beta PDF beta(θ ; a, b) is a/(a+b)

Thus, Bayes estimate = posterior mean =
$$(a+s)/(a+b+n)$$

= $w(a/(a+b)) + (1-w)(s/n)$, where weight $w = (a+b)/(a+b+n)$

Note: When the sample size n=0, the posterior mean =a/(a+b)= prior mean

Note: As the sample size $n \to \infty$, the weight $w \to 0$ and the posterior mean \to ML estimate

If prior $P(\theta) = 1$ is uniform over $\theta \in (0, 1)$, i.e., $beta(\theta, 1, 1)$ In that case, the likelihood determines the posterior

• We know that the **mode** of the beta PDF beta(θ ; a, b) is (a - 1)/(a + b - 2) for a, b > 1

So, posterior mode
$$= (a+s-1)/(a+b+n-2)$$

= $w((a-1)/(a+b-2)) + (1-w)(s/n)$, where weight $w = (a+b-2)/(a+b+n-2)$

Note: When the sample size n=0, the posterior mode =(a-1)/(a+b-2)= prior mode

Note: As the sample size $n \to \infty$, the weight $w \to 0$ and the posterior mode $\to ML$ estimate

Example: Gaussian (known mean μ , unknown variance θ) and Inverse Gamma

- 1) Likelihood: $P(x_1,\cdots,x_n|\mu,\theta)\propto\prod_{i=1}^n\theta^{-0.5}\exp(-0.5(x_i-\mu)^2/\theta)$ 2) Prior = Inverse Gamma PDF: $P(\theta;a,b)\propto\theta^{-a-1}\exp(-b/\theta)$, where a>0,b>0
- 3) Posterior = Inverse Gamma PDF: $P(\theta; a+n/2, b+\sum_i (x_i-\mu)^2/2)$
- **Mean** of the inverse Gamma $P(\theta; a, b) = b/(a-1)$, for a > 1

Thus, Bayes estimate = posterior mean =
$$(b + \sum_i (x_i - \mu)^2/2)/(a + n/2 - 1)$$
 = $(2b + \sum_i (x_i - \mu)^2)/(2a + n - 2)$ = $w(b/(a-1)) + (1-w)\sum_i (x_i - \mu)^2/n$, where weight $w = (2a-2)/(2a + n - 2)$

Note: When the sample size n=0, the weight w=1 and the posterior mean =b/(a-1)= prior mean

Note: As the sample size $n \to \infty$, the weight $w \to 0$ and the posterior mean \to ML estimate

• **Mode** of the inverse Gamma $P(\theta; a, b) = b/(a+1)$

So, posterior mode =
$$(b + \sum_i (x_i - \mu)^2/2)/(a + n/2 + 1)$$

= $(2b + \sum_i (x_i - \mu)^2)/(2a + n + 2)$
= $w(b/(a+1)) + (1-w) \sum_i (x_i - \mu)^2/n$, where weight $w = (2a+2)/(2a+n+2)$

Note: When the sample size n=0, the weight w=1 and the posterior mode =b/(a+1)= prior mode

Note: As the sample size $n \to \infty$, the weight $w \to 0$ and the posterior mode \to ML estimate

An "uninformative" (misnomer) prior for the Gaussian mean is the (improper) uniform PDF

Why improper? Because it doesn't integrate to a finite number

Why uninformative? Because:

- i) posterior PDF driven by the likelihood function alone
- ii) the prior on θ is invariant to any change in the true θ , which could cause translation of the data x_i (Duda-Hart-Stork). Note: translation of data also implies that the MLE estimate of the mean also gets translated.

Uninformative priors express "objective" (impersonal; unaffected by personal beliefs) information such as "the variable is positive" or "the variable is less than some limit".

Uninformative priors yield results *close to* what we would get with non-Bayesian (e.g., ML) analysis

An "uninformative" (and improper) prior for the Gaussian standard deviation σ is $P(\sigma) = 1/\sigma$

Why uninformative? Because of scale invariance, as follows.

Assume data x comes from a Gaussian with mean zero. Consider the RVs $\log(X)$ and $\log(\sigma)$. If the data x get scaled (which implies that the MLE for the standard deviation σ also gets scaled) in the original domain by factor a, then a term $\log(a)$ gets added in the log domain. Scale-invariant prior on $\sigma \to \text{translation-invariant prior on } \log(\sigma) \to \text{uniform PDF}$ on $\log(\sigma)$.

Transform the RV $U := \log(\Sigma)$ with P(U) = c, to get the RV $V := \exp(U)$. Transformation of variables implies that P(v) = c/v.

Same analysis applies to the Gaussian variance.

The uninformative prior for the Gaussian variance θ is the inverse Gamma PDF with parameters $a=b\to 0$, which implies $P(\theta) \propto 1/\theta$ where $\theta = \sigma^2$. This is an improper PDF.

Example: Poisson PDF and Gamma prior

Use this example to motivate the general result for exponential families later

- 1) Likelihood: $P(k_1,\cdots,k_n|\lambda)=\prod_i \lambda^{k_i} \exp(-\lambda)/k_i!$, where $\lambda\in\mathbb{R}^+,k_i\in\mathbb{I}^+$ 2) Prior: $P(\theta)=\operatorname{Gamma}(\lambda|\alpha,\beta)\propto \lambda^{\alpha-1}\exp(-\beta\lambda)$, where $\alpha\in\mathbb{R}^+,\beta\in\mathbb{R}^+,\lambda\in\mathbb{R}^+$ 3) Posterior: $\propto \lambda^{\sum_i k_i+\alpha-1}\exp(-n\lambda-\beta\lambda)\equiv\operatorname{Gamma}(\lambda;\sum_i k_i+\alpha,n+\beta)$
- For a Gamma distribution Gamma($\lambda | \alpha, \beta$), we know that the **mean** is α / β

```
Thus, the Bayes estimate = posterior mean = (\sum_i k_i + \alpha)/(n + \beta)
=w(\alpha/\beta)+(1-w)\sum_i k_i/n, where weight w=\beta/(\beta+n)
= w(\alpha/\beta) + (1-w)\lambda_{\text{MLE}}
```

Note: When the sample size n=0, the weight w=1 and the posterior mean $=\alpha/\beta=$ prior mean

Note: As the sample size $n \to \infty$, the weight $w \to 0$ and the posterior mean \to ML estimate

• For a Gamma distribution Gamma($\lambda | \alpha, \beta$), we know that the **mode** is $(\alpha - 1)/\beta$ when $\alpha > 1$. When $\alpha < 1$, the case is tricky.

Then, posterior mode =
$$(\sum_i k_i + \alpha - 1)/(n+\beta)$$

= $w((\alpha-1)/\beta) + (1-w)\sum_i k_i/n$, where weight $w = \beta/(\beta+n)$

Note: When the sample size n=0, the weight w=1 and the posterior mode $=(\alpha-1)/\beta=$ prior mode

Note: As the sample size $n \to \infty$, the weight $w \to 0$ and the posterior mode \to ML estimate

14.13 Exponential Family of PDFs

Interesting result: PDFs in the exponential family (typically) have conjugate priors.

Definition: A single-parameter exponential family is a set of PDFs where each PDF can be expressed in the form:

$$P(x|\theta) = \exp\left[\eta(\theta)T(x) - A(\theta) + B(x)\right] = g(\theta)h(x)\exp[\eta(\theta)T(x)]$$

where $T(x), B(x), \eta(\theta), A(\theta)$ are known functions

and

the support of the distribution cannot depend on θ .

So, uniform distribution isn't in this family.

Interpretation: The parameters θ and observation variables x must *factorize* either directly or within either part of an exponential operation

Consider the *canonical form* of the exponential family where $\eta(\theta) := \theta$, i.e., $\eta(\cdot)$ is identity

Note: It is always possible to convert an exponential family to canonical form, by defining a transformed parameter $\theta' = \eta(\theta)$

Example: Bernoulli

$$P(X = x; \theta) = \theta^x (1 - \theta)^{1 - x} = \exp(x \log \theta + (1 - x) \log(1 - \theta)) = \exp(x \log(\theta/(1 - \theta)) + \log(1 - \theta))$$

$$\eta = \log(\theta/(1-\theta))$$

$$T(x) = x$$

$$g(\eta) = \exp(\log(1-\theta)) = (1-\theta)$$

$$h(x) = 1$$

Example: Poisson

$$P(X = x; \lambda) = \frac{\lambda^x \exp(-\lambda)}{x!} = \exp(-\lambda)(1/x!) \exp[x \log \lambda]$$

$$\eta = \log \lambda$$

$$T(x) = x$$

$$g(\eta) = \exp(-\lambda)$$

$$h(x) = 1/x!$$

Definition: A multi-parameter exponential family is a set of PDFs where each PDF can be expressed in the form:

$$P(x|\eta) = \exp\left[\eta^{\top} T(x) - A(\eta) + B(x)\right]$$

where T(x), B(x), $A(\eta)$ are known functions.

Example: Gaussian

$$P(X=x;\mu,\sigma^2) = (1/\sigma)(1/\sqrt{2\pi}) \exp(-0.5x^2/\sigma^2 + \mu x/\sigma^2 - 0.5\mu^2/\sigma^2)$$

$$\begin{split} \eta &= [-0.5/\sigma^2, \mu/\sigma^2]^\top \\ T(x) &= [x^2, x]^\top \\ g(\eta) &= (1/\sigma) \exp(-0.5\mu^2/\sigma^2) \\ h(x) &= (1/\sqrt{2\pi}) \end{split}$$

Some Properties:

- (1) The random variable T(x) is sufficient for parameter θ
- T(X) is a function of data only; not any parameter.

Sufficient Statistic: Statistic T(X) is sufficient for parameter θ if there isn't any information in X regarding θ beyond that in T(X).

If our goal is to estimate θ , all we need is T(X) and X can be discarded.

(2) If **i.i.d.** RVs $\{X_i\}$ are from the one-parameter exponential family, then their joint PDF is also from the one-parameter exponential family (with sufficient statistic $\sum_i T(X_i)$).

The joint PDF is
$$P(x_1, x_2, \cdots, x_N | \theta) = \left(\prod_{n=1}^N h(x_n)\right) \exp\left(\eta^\top \sum_{n=1}^N T(x_i) - NA(\eta)\right)$$

For i.i.d. observations from (i) Bernoulli PMF or (ii) Poisson PDF, sufficient statistic for parameter is the sum $\sum_n x_n$

For i.i.d. observations from (i) Gaussian PDF, sufficient statistic for parameter is the vector sum $[\sum_n x_n^2, \sum_n x_n]$

What other PDFs aren't in the exponential family?

$$P(x|\theta) = [f(x)g(\theta)]^{h(x)j(\theta)} = \exp([h(x)\log f(x)]j(\theta) + h(x)[j(\theta)\log g(\theta)])$$

Laplace / Double-Exponential PDF: $P(x|\theta) := 0.5 \exp(-|x-\theta|)$ (Proof is non-trivial)

• How do we go about guessing what the conjugate prior is ?

Step (1) For the exponential family, the likelihood function for data $\{x_i\}_{i=1}^N$ is: $L(\theta|x_1,\dots,x_N) = (\prod_i \exp(B(x_i))) \exp(\theta(\sum_i T(x_i)) - NA(\theta))$

Step (2) Consider the prior
$$P(\theta|\alpha,\beta) = H(\alpha,\beta) \exp(\alpha\theta - \beta A(\theta))$$

Diaconis and Ylvisaker 1979 gave conditions on the hyper-parameters α, β under which this PDF is integrable (i.e., proper)

Step (3) The posterior PDF $\propto \exp(\theta \left(\alpha + \sum_i T(x_i)\right) - (\beta + N)A(\theta))$ that belongs to the exponential family w.r.t. variable θ and has the same form as the prior

The conversion from the prior to the posterior simply replaces $\alpha \to \alpha + \sum_i T(x_i)$ and $\beta \to \beta + N$

Because the prior can be normalized, so can the posterior

14.14 Kullback-Leibler Divergence / Dissimilarity

Continuous RVs: $D(P(X|\theta_1), Q(X|\theta_2)) := \int_x P(x|\theta_1) \log \frac{P(x|\theta_1)}{Q(x|\theta_2)} dx$

Discrete RVs: $D(P(X|\theta_1), Q(X|\theta_2)) := \sum_x P(x|\theta_1) \log \frac{P(x|\theta_1)}{Q(x|\theta_2)}$

Defined only under the following condition: Q(x) = 0 implies P(x) = 0

When $P(x) \to 0$ and Q(x) > 0, the contribution of the x-th term is zero because $\lim_{P(x) \to 0} P(x) \log P(x) = 0$

When $P(x) \to 0$ and $Q(x) \to 0$, we use the convention / interpretation that $0 \log \frac{0}{0} = 0$; Cover and Thomas (2nd Ed.). Basically, ignore such cases. Can see this as an outcome of regularization: (i) Bayesian prior or (ii) convex combination of each of the given PDFs P(X) and Q(X) with uniform PDF U(X)).

Properties:

1) When PMFs / PDFs P(X) and Q(X) are identical (almost everywhere; in the continuous case), then D(P,Q)=02) $D(P,Q) \geq 0$, for all P,Q

For discrete PMFs, this inequality is known as the Gibbs' inequality

Proof (discrete case):

We know that
$$\log x \le x - 1$$

So,
$$-\log x \ge -(x-1)$$

$$\sum_{x|P(x)>0} P(x) \log \frac{\Gamma(x)}{Q(x)}$$

$$\sum_{x|P(x)>0} P(x) \log \frac{P(x)}{Q(x)}$$

$$= -\sum_{x|P(x)>0} P(x) \log \frac{Q(x)}{P(x)}$$

So,
$$\sum_{x|P(x)>0} P(x) \log P(x) \ge \sum_{x|P(x)>0} P(x) \log Q(x)$$

If we extend the summation to all remaining x', then the LHS stays the same (because $\lim_{P(x')\to 0} P(x') \log P(x') = 0$) and the RHS also stays the same (because P(x') = 0)

Thus,
$$\sum_{x} P(x) \log P(x) \ge \sum_{x} P(x) \log Q(x)$$

Thus, D(P||Q) > 0

When is D(P||Q) = 0 ?

For this to happen, Condition 1: $P(x) = Q(x), \forall x: P(x) > 0$, i.e., when $\log \frac{P(x)}{Q(x)} = 0 = \frac{P(x)}{Q(x)} - 1$ making the first inequality as an equality

The second inequality becomes an inequality when $\sum_{x:P(x)>0}Q(x)=1$ Alternatively, because $\sum_{x:P(x)>0}P(x)=1$, and P(x)=Q(x) on this domain, we have $\sum_{x:P(x)>0}Q(x)$ also =1 Thus, for all x:P(x)=0, we have Q(x) also =0

Thus, $P(x) = Q(x), \forall x$

For continuous PMFs, the proof uses Jensen's inequality.

Jensen's inequality: If $f(\cdot)$ is a convex function and X is a random variable, then $E[f(X)] \ge f(E[X])$

Proof of Jensen's inequality:

Let $\mu := E[X]$

Draw a line tangent to the convex function f(X), touching it at $(\mu, f(\mu))$

The tangent, say, aX + b lies below the function $f(X), \forall X$

LHS =
$$E[f(X)] \ge E[aX + b] = a\mu + b = f(\mu) = \text{RHS}$$

Another variant of Jensen's Inequality:

 $\overline{E_{P(X)}}[f(g(X))] \ge f(E_{P(X)}[g(X)])$, when $f(\cdot)$ is convex and $g(\cdot)$ can be any function.

Proof: LHS

$$=\sum_{i=1}^n P(x_i)f(g(x_i)) = P(x_n)f(g(x_n)) + (1-P(x_n))\sum_{i=1}^{n-1} P'(x_i)f(g(x_i)), \text{ where } P'(x_i) := P(x_i)/(1-P(x_n))$$

$$\geq P(x_n)f(g(x_n)) + (1-P(x_n))f(\sum_{i=1}^{n-1} P'(x_i)g(x_i)) \text{ (because of the induction hypothesis)}$$

$$\geq f\left(P(x_n)g(x_n) + (1-P(x_n))\sum_{i=1}^{n-1} P'(x_i)g(x_i)\right) \text{ (because of the definition of convexity of } f(\cdot))$$

$$= f\left(\sum_{i=1}^n P(x_i)g(x_i)\right)$$

This proof extends to the continuous case.

Proof of KL Divergence being non-negative (continuous case):

$$D(P||Q) = E_{P(X)}[\log(P(X)/Q(X))] = E_{P(X)}[-\log(Q(X)/P(X))]$$

Take $f(\cdot) := -\log(\cdot)$ as the convex function

Take g(X) := Q(X)/P(X)

Then,
$$D(P||Q) \ge -\log E_{P(X)}[Q(X)/P(X)] = -\log 1 = 0$$

KL-Divergence Property: $D(\cdot,\cdot)$ is asymmetric. Not a "distance metric".

14.15 KL Divergence and MLE

Empirical Estimate of PMF / PDF of data: $\widehat{P}(X=x) := \frac{1}{N} \sum_{n=1}^{N} \delta(x;x_n)$

Discrete RV: $\delta(x; x_n)$ is the Kronecker delta function

Continuous RV: $\delta(x; x_n)$ is the Dirac delta function(al)

For Discrete RV, KL divergence between empirical PDF and actual PDF:

```
D(\widehat{P}(X), P(X|\theta))
= \sum_{x} \widehat{P}(x) \log \widehat{P}(x) - \sum_{x} \widehat{P}(x) \log P(x|\theta)
= \sum_{x} \widehat{P}(x) \log \widehat{P}(x) - \sum_{x} (1/N) \sum_{n} \delta(x; x_{n}) \log P(x|\theta)
= \sum_{x} \widehat{P}(x) \log \widehat{P}(x) - (1/N) \sum_{n} \sum_{x} \delta(x; x_{n}) \log P(x|\theta)
= \sum_{x} \widehat{P}(x) \log \widehat{P}(x) - (1/N) \sum_{n} \log P(x_{n}|\theta)
```

where the second term is the average log-likelihood function

Thus, minimizing this KL divergence is the same as maximizing the likelihood function

For Continuous RV, KL divergence between empirical PDF and actual PDF:

$$\begin{split} &D(\hat{P}(X), P(X|\theta)) \\ &= \int_x \hat{P}(x) \log \hat{P}(x) dx - \int_x \hat{P}(x) \log P(x|\theta) dx \\ &= \int_x \hat{P}(x) \log \hat{P}(x) - \int_x (1/N) \sum_n \delta(x;x_n) \log P(x|\theta) dx \\ &= \int_x \hat{P}(x) \log \hat{P}(x) - (1/N) \sum_n \int_x \delta(x;x_n) \log P(x|\theta) dx \\ &= \int_x \hat{P}(x) \log \hat{P}(x) - (1/N) \sum_n \log P(x_n|\theta) \end{split}$$
 where the second term is the average log-likelihood function

Thus, minimizing this KL divergence is the same as maximizing the likelihood function

14.16 Fisher Information

Key Question: How much information can a sample of data provide about the unknown parameter?

(1) If likelihood function $P(\text{data}|\theta)$ is sharply peaked w.r.t. Δ changes in θ around $\theta = \theta_{\text{true}}$, it is easy to estimate θ_{true} from the given data sample of size N.

Example 1: Bernoulli RV with θ close (equal) to 0 or 1

Example 2: Estimating Gaussian mean $\theta := \mu$ in two cases: (i) when variance σ^2 (known) is huge, (ii) when σ^2 is tiny. Data drawn from $G(x; \mu, \sigma^2)$ in 2nd case has a smaller spread.

Likelihood in 2nd case more peaked.

For a small sample of size N (say, N = 5), mean estimate (sample mean; always unbiased = always high accuracy) is much more precise (= much lower variance) in 2nd case

(2) If likelihood function $P(\text{data}|\theta)$ has a large spread w.r.t. changes in θ around θ_{true} , it will take very many N-sized data samples to get the ML estimate of θ to be at / close to θ_{true}

First, consider the average (expected) derivative of the log-likelihood function:

$$\begin{split} E_{P(X|\theta_{\text{true}})} & \left[\frac{\partial}{\partial \theta} \log P(X|\theta) \right]_{\theta = \theta_{\text{true}}} \\ & = \int_{x} P(x|\theta) \frac{\partial P(x|\theta)}{\partial \theta} / P(x|\theta) dx \\ & = \int_{x} \frac{\partial}{\partial \theta} P(x|\theta) dx \\ & = \frac{\partial}{\partial \theta} \int_{x} P(x|\theta) dx \\ & = \frac{\partial}{\partial \theta} 1 \\ & = 0 \end{split}$$

The expectation / integral isn't over θ , but over different instances of observed data $x \sim P(X|\theta_{\text{true}})$

The expectation is zero for all θ_{true}

Now, consider the expected squared slope (slope variance) of the log-likelihood function $\log P(X|\theta)$, evaluated at $\theta = \theta_{\text{true}}$, i.e.,

$$I(\theta_{\mathsf{true}}) := E_{P(X|\theta_{\mathsf{true}})} [\left(\frac{\partial}{\partial \theta} \log P(X|\theta) \big|_{\theta_{\mathsf{true}}} \right)^2]$$

The Fisher information $I(\theta_{\text{true}}) \geq 0$

If $\log P(X|\theta)$ didn't contain θ , then the derivative would be 0, and the data wouldn't contain any information about θ

There is another way to look at Fisher information.

Consider
$$\frac{\partial^2}{\partial \theta^2} \log P(X|\theta) = \frac{\frac{\partial^2 P(X|\theta)}{\partial \theta^2}}{P(X|\theta)} - \left(\frac{\frac{\partial P(X|\theta)}{\partial \theta}}{P(X|\theta)}\right)^2 = \frac{\frac{\partial^2 P(X|\theta)}{\partial \theta^2}}{P(X|\theta)} - \left(\frac{\partial \log P(X|\theta)}{\partial \theta}\right)^2$$
 (4)

Now, (i) evaluate LHS and RHS at $\theta := \theta_{\text{true}}$ and (ii) take expectation w.r.t. $P(X|\theta_{\text{true}})$:

$$E_{P(X|\theta_{\text{true}})} \left[\frac{\partial^2}{\partial \theta^2} \log P(X|\theta) \Big|_{\theta = \theta_{\text{true}}} \right] = E_{P(X|\theta_{\text{true}})} \left[\frac{\partial^2 P(X|\theta)}{\partial \theta^2} \Big|_{\theta = \theta_{\text{true}}} \right] - I(\theta) = -I(\theta), \text{ because}$$
 (5)

$$E_{P(X|\theta_{\text{true}})} \left[\frac{\frac{\partial^2 P(X|\theta)}{\partial \theta^2}}{P(X|\theta)} \Big|_{\theta = \theta_{\text{true}}} \right] = \int_x \frac{\partial^2 P(x|\theta)}{\partial \theta^2} dx = \frac{\partial^2}{\partial \theta^2} \int_x P(X|\theta) dx = 0$$
 (6)

So, Fisher information is the expectation (over $x \sim P(X|\theta_{\text{true}})$) of the negative 2nd-derivative (curvature) of the log-likelihood function $\log P(x|\theta)$ evaluated at $\theta = \theta_{\text{true}}$

So, larger Fisher information means the log-likelihood function $\log P(x|\theta)$ is expected to be more concave and more curved at $\theta = \theta_{\text{true}}$

Example: Bernoulli RV

$$\begin{split} \log P(x|\theta) &= x \log \theta + (1-x) \log (1-\theta) \\ \frac{\partial}{\partial \theta} \log P(x|\theta) &= x/\theta - (1-x)/(1-\theta) \\ \frac{\partial^2}{\partial \theta^2} \log P(x|\theta) &= -x/\theta^2 - (1-x)/(1-\theta)^2 \\ I(\theta) &= -E[\frac{\partial^2}{\partial \theta^2} \log P(x|\theta)] = \theta/\theta^2 + (1-\theta)/(1-\theta)^2 = 1/(\theta(1-\theta)) \\ \text{So, } I(\theta) \text{ is large when } \theta \text{ close to 0 or 1} \end{split}$$

For a dataset of size N, $I_N(\theta) = N/(\theta(1-\theta))$

Example: Gaussian RV

Unknown mean parameter $\theta = \mu$. Known variance σ^2 .

$$\frac{\partial}{\partial \mu} \log P(x|\mu) = (x - \mu)/\sigma^2$$

$$\frac{\partial^2}{\partial \mu^2} \log P(x|\mu) = -1/\sigma^2$$

$$I(\mu) = 1/\sigma^2$$

Here, $I(\mu)$ is independent of μ , but rather depends on the other parameter σ^2

For a dataset of size N, $I_N(\mu) = N/\sigma^2$

14.17 Cramer-Rao Lower Bound

Let RV X model a dataset.

Assumption: Consider an **unbiased** estimator $\widehat{\theta}(X)$

Then,
$$E_{P(X|\theta_{\mathrm{true}})}[\widehat{\theta}(X) - \theta_{\mathrm{true}}] = 0 = \left(\int_x P(x|\theta)[\widehat{\theta}(x) - \theta] dx\right)\Big|_{\theta = \theta_{\mathrm{true}}}$$

This holds for all θ_{true} .

That is, $\int_x P(x|\theta') [\hat{\theta}(x) - \theta'] dx$ is a function of θ' that is identically zero. So, its derivative is also identically zero.

Thus,
$$0=\frac{\partial}{\partial \theta}\left(\int_x P(x|\theta)[\widehat{\theta}(x)-\theta]dx\right)\Big|_{\theta=\theta_{\mathrm{true}}}$$

For convenience, lets call θ_{true} as θ

Thus,
$$\int_{x} [\widehat{\theta}(x) - \theta] \frac{\partial}{\partial \theta} P(x|\theta) dx = \int_{x} P(x|\theta) dx = 1$$

Thus,
$$1 = \int_x [\widehat{\theta}(x) - \theta] P(x|\theta) \frac{\partial}{\partial \theta} \log P(x|\theta) dx$$

Thus,
$$1 = \int_x \left([\widehat{\theta}(x) - \theta] \sqrt{P(x|\theta)} \right) \left(\sqrt{P(x|\theta)} \frac{\partial}{\partial \theta} \log P(x|\theta) \right) dx$$

Thus,
$$1 = \left[\int_x \left([\widehat{\theta}(x) - \theta] \sqrt{P(x|\theta)} \right) \left(\sqrt{P(x|\theta)} \frac{\partial}{\partial \theta} \log P(x|\theta) \right) dx \right]^2$$

Using Cauchy-Schwarz inequality, $1 \leq \int_x [\widehat{\theta}(x) - \theta]^2 P(x|\theta) dx \cdot \int_x P(x|\theta) \left(\frac{\partial}{\partial \theta} \log P(x|\theta)\right)^2 dx$

Thus,
$$\operatorname{Var}(\widehat{\theta}(X)) \geq I(\theta)^{-1}$$

For i.i.d. Gaussian RVs, any estimator of the unknown mean (known variance) will have variance $\geq \sigma^2/n$. We know that the ML estimator's variance = σ^2/n .

Thus, this ML estimator is an efficient estimator / minimum variance unbiased estimator.

Bayesian estimation can lead to lower mean squared error, for finite data, at the cost of introudcing a bias in the estimator (vis-a-vis unbiased ML estimator).

Let $X \sim \text{Binomial}(n, \theta)$, i.e., each try is Bernoulli with probability of success θ

- * MLE estimator (unbiased): $\widehat{\theta}_{MLE}(\theta) := X/n$
- * MLE estimator's variance: = $Var(X/n) = \theta(1-\theta)/n$

Consider prior Beta(a = 1, b = 1) on θ , as before.

- * Bayes mean estimator: $\widehat{\theta}_{\mathsf{Bayes}}(\theta) := (X+1)/(n+2) = w(X/n) + (1-w)0.5$
- * Bias of Bayes mean estimator: $(n\theta+1)/(n+2)-\theta=(1-w)(0.5-\theta)$ * Variance of Bayes estimator: $= \text{Var}(X)/(n+2)^2=(\theta(1-\theta)/n)*(1/(n+2)^2)=w^2\theta(1-\theta)/n$

 $MSE = Bias^2 + Variance$

MSE of MLE estimator is mostly (i.e., for most values of $\theta \in (0,1)$) greater than the MSE of Bayes estimator. Plot.

Bayesian Cramer-Rao Lower Bound

Applications of the van Trees Inequality: A Bayesian Cramer-Rao Bound Bernoulli 1995, https://www.jstor.org/stable/3318681

Let X model a dataset.

Consider likelihood $P(X|\theta)$ with "parameter" / RV θ

Consider a prior PDF $Q(\theta|\alpha)$ on "parameter" / RV θ with hyper-parameter α

$$E_{O(\theta|\alpha)}[E_{P(X|\theta)}[\widehat{\theta}(X) - \theta]^2]$$

 \geq

$$(E_{Q(\theta|\alpha)}[I_P(\theta)] + J_Q(\theta))^{-1}$$

where

 $I_P(\theta)$ is the Fisher information of the likelihood associated with PDF / model $P(X|\theta)$, and $J(Q;\alpha)$ is the "prior information" of the prior PDF / model $Q(\theta|\alpha)$

Unlike the CRLB, the Bayesian-CRLB gives us a lower bound for all (biased and unbiased both) estimators.

Assumption: Consider the prior θ defined on (compact) interval (a,b) such that: $Q(\theta|\alpha) \to 0$ as $\theta \to a$ and as $\theta \to b$

Then, similar to our strategy in proving CRLB, lets consider

$$\frac{\int_{\theta=a}^{b} \int_{x} \left(\widehat{\theta}(x) - \theta\right) \frac{\partial}{\partial \theta} \left(P(x|\theta)Q(\theta|\alpha)\right) dx d\theta}{= \int_{x} \int_{\theta} \widehat{\theta}(x) \frac{\partial}{\partial \theta} \left(P(x|\theta)Q(\theta|\alpha)\right) d\theta dx - \int_{x} \int_{\theta} \theta \frac{\partial}{\partial \theta} \left(P(x|\theta)Q(\theta|\alpha)\right) d\theta dx}$$

1st term includes the inner integral:

$$\begin{split} & \int_{\theta} \widehat{\theta}(x) \frac{\partial}{\partial \theta} [P(x|\theta)Q(\theta|\alpha)] d\theta \\ & = \widehat{\theta}(x) \int_{\theta} \frac{\partial}{\partial \theta} [P(x|\theta)Q(\theta|\alpha)] d\theta \\ & = \widehat{\theta}(x) [P(x|\theta)Q(\theta|\alpha)]_a^b \end{split}$$

=0, because the prior $Q(\theta|\alpha)$ goes to zero at the boundary points a and b

So, the 1st term reduces to zero

2nd term (without the negative sign) includes an inner integral:

$$\begin{array}{l} \int_{\theta} \theta \frac{\partial}{\partial \theta} \left[P(x|\theta) Q(\theta|\alpha) \right] d\theta = \left[\theta P(x|\theta) Q(\theta|\alpha) \right]_{a}^{b} - \int_{\theta} P(x|\theta) Q(\theta|\alpha) d\theta \\ = 0 - \int_{\theta} P(x|\theta) Q(\theta|\alpha) d\theta \end{array}$$

So, 2nd term (with the negative sign) equals:

$$\int_{x} \int_{\theta} P(x|\theta)Q(\theta|\alpha)d\theta dx$$

$$= \int_{\theta} Q(\theta|\alpha) \left(\int_{x} P(x|\theta)dx \right) d\theta$$

$$= 1$$

So, our original term equals 1:

$$\begin{split} 1 &= \int_{\theta=a}^{b} \int_{x} \left(\widehat{\theta}(x) - \theta \right) \frac{\partial}{\partial \theta} \left(P(x|\theta) Q(\theta|\alpha) \right) dx d\theta \\ &= \int_{\theta=a}^{b} \int_{x} \left(\widehat{\theta}(x) - \theta \right) P(x|\theta) Q(\theta|\alpha) \frac{1}{P(x|\theta) Q(\theta|\alpha)} \frac{\partial}{\partial \theta} \left(P(x|\theta) Q(\theta|\alpha) \right) dx d\theta \\ &= \int_{\theta=a}^{b} \int_{x} \left(\widehat{\theta}(x) - \theta \right) \sqrt{P(x|\theta) Q(\theta|\alpha)} \sqrt{P(x|\theta) Q(\theta|\alpha)} \frac{\partial}{\partial \theta} \log \left(P(x|\theta) Q(\theta|\alpha) \right) dx d\theta \end{split}$$

Now, we apply the Cauchy-Schwarz inequality:

$$1 \leq \int_{\theta=a}^{b} \int_{x} \left(\widehat{\theta}(x) - \theta \right)^{2} P(x|\theta) Q(\theta|\alpha) dx d\theta \cdot \int_{\theta=a}^{b} \int_{x} P(x|\theta) Q(\theta|\alpha) \left[\frac{\partial}{\partial \theta} \log P(x|\theta) Q(\theta|\alpha) \right]^{2} dx d\theta$$

where

1st integral = expected squared error (NOT variance; because bias of estimator $\widehat{\theta}(x)$ may be non-zero)

2nd integral:

$$\begin{split} &= \int_{\theta=a}^{b} \int_{x} P(x|\theta) Q(\theta|\alpha) \left[\frac{\partial}{\partial \theta} \log P(x|\theta) \right]^{2} dx d\theta + \int_{\theta=a}^{b} \int_{x} P(x|\theta) Q(\theta|\alpha) \left[\frac{\partial}{\partial \theta} \log Q(\theta|\alpha) \right]^{2} dx d\theta \\ &+ 2 \int_{\theta=a}^{b} \int_{x} P(x|\theta) Q(\theta|\alpha) \frac{\partial}{\partial \theta} \log P(x|\theta) \frac{\partial}{\partial \theta} \log Q(\theta|\alpha) dx d\theta \end{split}$$

where

$$\begin{aligned} &\text{1st term} = \int_{\theta=a}^b Q(\theta|\alpha) \left(\int_x P(x|\theta) \left[\frac{\partial}{\partial \theta} \log P(x|\theta) \right]^2 dx \right) d\theta = E_{Q(\theta|\alpha)} [I_P(\theta)] \end{aligned}$$

$$&\text{2nd term} = \int_x P(x|\theta) dx \cdot \int_{\theta=a}^b Q(\theta|\alpha) \left[\frac{\partial}{\partial \theta} \log Q(\theta|\alpha) \right]^2 d\theta = J(Q;\alpha)$$

3rd term = $2\int_{\theta-a}^{b} \frac{\partial}{\partial \theta} Q(\theta|\alpha) \cdot \int_{x} \frac{\partial}{\partial \theta} P(x|\theta) dx \cdot d\theta = 0$, because the inner integral is zero.

Q.E.D.

14.19 Jeffreys Prior

Consider likelihood $P(X|\theta)$

Let prior
$$Q(\theta) : \propto \sqrt{I(\theta)}$$

Let transformed / reparametrized RV $\beta:=f(\theta)$, where $f(\cdot)$ is strictly monotonic

Then, what is the PDF $R(\beta)$?

$$R(\beta) = Q(\theta) |\frac{d\theta}{d\beta}|$$
 (transformation random variables)

$$\propto \sqrt{E_{P(X|\theta)} \left[\left(\frac{d \log P(X|\theta)}{d\theta} \frac{d\theta}{d\beta} \right)^2 \right]}$$

$$= \sqrt{E_{P(X|f^{-1}(\beta))} \left[\left(\frac{d \log P(X|f^{-1}(\beta))}{d\beta} \right)^2 \right]}$$
 (reparametrization; doesn't change probability mass / measure on X)
$$\propto \sqrt{I(\beta)}$$