subgroups of S_4^*

$rm50^{\dagger}$

2013-03-22 0:07:12

The symmetric group on 4 letters, S_4 , has 24 elements. Listed by cycle type, they are:

Cycle type	Number of elements	elements
1, 1, 1, 1	1	()
2, 1, 1	6	(12), (13), (14), (23), (24), (34)
3, 1	8	(123), (132), (124), (142), (134), (143), (234), (243)
2, 2	3	(12)(34), (13)(24), (14)(23)
4	6	(1234), (1243), (1324), (1342), (1423), (1432)

Any subgroup of S_4 must be generated by some subset of these elements, and must have order dividing 24, so must be one of 1, 2, 3, 4, 6, 8, or 12.

Think of S_4 as acting on the set of "letters" $\Omega = \{1, 2, 3, 4\}$ by permuting them. Then each subgroup G of S_4 acts either transitively or intransitively. If G is transitive, then by the orbit-stabilizer theorem, since there is only one orbit we have that the order of G is a multiple of $|\Omega| = 4$. Thus all the transitive subgroups are of orders 4, 8, or 12. If G is intransitive, then G has at least two orbits on Ω . If one orbit is of size k for $1 \le k < 4$, then G can naturally be thought of as (isomorphic to) a subgroup of $S_k \times S_{n-k}$. Thus all intransitive subgroups of S_4 are isomorphic to subgroups of

$$S_2 \times S_2 \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \cong V_4$$

 $S_1 \times S_3 \cong S_3$

Looking first at subgroups of order 12, we note that A_4 is one such subgroup (and must be transitive, by the above analysis):

$$A_4 = \{e, (12)(34), (13)(24), (14)(23), (123), (132), (124), (142), (134), (143), (234), (243)\}$$

Any other subgroup G of order 12 must contain at least one element of order 3, and must also contain an element of order 2. It is easy to see that if G contains

^{*} $\langle SubgroupsOfS4 \rangle$ created: $\langle 2013-03-2 \rangle$ by: $\langle rm50 \rangle$ version: $\langle 40121 \rangle$ Privacy setting: $\langle 1 \rangle$ $\langle Topic \rangle$ $\langle 20B30 \rangle$ $\langle 20B35 \rangle$

[†]This text is available under the Creative Commons Attribution/Share-Alike License 3.0. You can reuse this document or portions thereof only if you do so under terms that are compatible with the CC-BY-SA license.

two elements of order three that are not inverses, then $G = A_4$, while if G contains exactly two elements of order three which are inverses, then it contains at least one element with cycle type 2, 2. But any such element together with a 3-cycle generates A_4 . Thus A_4 is the only subgroup of S_4 of order 12.

We look next at order 8 subgroups. These subgroups are 2-Sylow subgroups of S_4 , so they are all conjugate and thus isomorphic. The number of them is odd and divides 24/8 = 3, so is either 1 or 3. But S_4 has three conjugate subgroups of order 8 that are all isomorphic to D_8 , the dihedral group with 8 elements:

```
\{e, (1324), (1423), (12)(34), (14)(23), (13)(24), (12), (34)\}\
\{e, (1234), (1432), (13)(24), (12)(34), (14)(23), (13), (24)\}\
\{e, (1342), (1243), (14)(23), (13)(24), (12)(34), (14), (23)\}\
```

and so these are the only subgroups of order 8 (which must also be transitive).

All subgroups of order 6 must be intransitive by the above analysis since $4 \nmid 6$, so by the above, a subgroup of order 6 must be isomorphic to S_3 and thus must be the image of an embedding of S_3 into S_4 . S_3 is generated by transpositions (as is S_n for any n), so we can determine embeddings of S_3 into S_4 by looking at the image of transpositions. But the images of the three transpositions in S_3 are determined by the images of (12) and (13) since (23) = (12)(13)(12). So we may send (12) and (13) to any pair of transpositions in S_4 with a common element; there are four such pairs and thus four embeddings. These correspond to four distinct subgroups of S_4 , all conjugate, and all isomorphic to S_3 :

```
\{e, (12), (13), (23), (123), (132)\}\
\{e, (13), (14), (34), (134), (143)\}\
\{e, (23), (24), (34), (234), (243)\}\
\{e, (12), (14), (24), (124), (142)\}\
```

(The fact that transpositions in S_3 must be mapped to transpositions in S_4 rather than elements of cycle type 2, 2 is left to the reader).

We shall see that some subgroups of order 4 are transitive while others are intransitive. A subgroup of order four is clearly isomorphic to either $\mathbb{Z}/4\mathbb{Z}$ or to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. The only elements of order 4 are the 4-cycles, so each 4-cycle generates a subgroup isomorphic to $\mathbb{Z}/4\mathbb{Z}$, which also contains the inverse of the 4-cycle. Since there are six 4-cycles, S_4 has three cyclic subgroups of order 4, and each is obviously transitive:

```
{e, (1234), (13)(24), (1432)}
{e, (1243), (14)(23), (1342)}
{e, (1324), (12)(34), (1423)}
```

A subgroup isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ has, in addition to the identity, three elements $\sigma_1, \sigma_2, \sigma_3$ of order 2, and thus of cycle types 2, 1, 1 or 2, 2. There are several possibilities:

- All three of the σ_i are of cycle type 2, 1, 1. Then the product of any two of those is a 3-cycle or of cycle type 2, 2, which is a contradiction.
- Two of the σ_i are of cycle type 2, 2. Then the third is as well, since the product of any pair of the elements of S_4 of cycle type 2, 2 is the third such. In this case, the group is

$${e, (12)(34), (13)(24), (14)(23)}$$

This group acts transitively.

• One of the σ_i is of cycle type 2, 2 and the other two are of cycle type 2, 1, 1. In this case, the two 2-cycles must be disjoint, since otherwise their product is a 3-cycle, so the group looks like

$${e, (12), (34), (12)(34)}$$

or one of its conjugates (of which there are two). These groups are intransitive, each having two orbits of size 2.

Finally, we have a number of subgroups of order 2 and 3 generated by elements of those orders; all of these are intransitive.

Summing up, S_4 has the following subgroups up to isomorphism and conjugation:

Order	Conjugates	Group
12	1	A_4 (transitive)
8	3	$\{e, (1324), (1423), (12)(34), (14)(23), (13)(24), (12), (34)\} \cong D_8 \text{ (transitive)}$
6	4	$\{e, (12), (13), (23), (123), (132)\} \cong S_3 \text{ (intransitive)}$
4	3	$\{e, (1234), (13)(24), (1432)\} \cong \mathbb{Z}/4\mathbb{Z} \text{ (transitive)}$
4	1	$\{e, (12)(34), (13)(24), (14)(23)\} \cong V_4 \text{ (transitive)}$
4	3	$\{e, (12), (34), (12)(34)\} \cong V_4 \text{ (intransitive)}$
3	4	$\{e, (123), (132)\}\ (intransitive)$
2	6	$\{e, (12)\}\ (intransitive)$
2	3	$\{e, (12)(34)\}$ (intransitive)
1	1	$\{e\}$ (intransitive)

Of these, the only proper nontrivial normal subgroups of S_4 are A_4 and the group $\{e, (12)(34), (13)(24), (14)(23)\} \cong V_4$ (see the article on normal subgroups of the symmetric groups).

The subgroup lattice of S_4 is thus (listing only one group in each conjugacy class, and taking liberties identifying isomorphic images as subgroups):

 $@R1pc @C1pc S_4 @-[llddd] @-[d] @-[rrdd] (24) \\ A_4 @-[ldddd] @-[rddd] (12) \\ D_8 @-[ldd] @-[dd] @-[rdd] (8) \\ S_3 @-[rdd] &-[rdd] \\ (9) \\ S_4 @-[lddd] &-[rdd] \\ (9) \\ S_4 @-[lddd] &-[rdd] \\ (9) \\ S_4 @-[rdd] \\ (9) \\ S_5 @-[rdd] \\ (9) \\ S_5 @-[rdd] \\ (9) \\ S_6 @-[$