Computerphysik I – SS 2023 – Projektliste

A. Mechanik/Dynamik

Julia-Mengen etc.: Berechnung und Darstellung von Fraktalen (A14.1)

Räuber-Beute-Modell: Simulation von Populationsdynamiken mit Lotka-Volterra-Modell [J.W.+L.L. +H.W.]

Das Doppelpendel: Chaos in einfachen mechanischen Systemen [T.O. + R.S.]

van-der-Pol Oszillator: Chaotisches Verhalten beim Oszillator mit nichtlinearer Dämpfung

Duffing-Oszillator: Chaotisches Verhalten beim nichtlinearen Oszillator (A14.2)

Billiard-Simulation: Mehrfachstoß-Experimente und Chaos

Navier-Stokes-Gleichung: Numerische Lösung von Strömungproblemen an Beispielen

Solitonen: Lösungen der Korteweg-de-Vries Gleichung

B. Astrophysik

Dreikörperproblem: Stabilität von Planetenbahnen (A13.4)

Satellitenstart/Shoot-The-Moon: Simulation des Starts eines Satelliten mit Shooting-Methode für den

Flug einer Rakete zum Mond

Swing-by-Manöver: Simulation des Swing-by Manövers beim Raumflug [T.K.+E.A.+B.H.]

Lagrange-Punkte: Planetenbewegung und Satellitenpositionen

Planetensuche: Simulation von Entdeckungsmethoden (Dopplereffekt/Bedeckung) von ext. Planeten

C. Atom-/Quantenphysik

Ionenfallen: Simulation der Bewegung von Teilchen in e-m-Feldern (Paul-Falle, Penning-Falle)

Massenspektrometer: Simulation eines E/B-Spektrometers (Parabel)

Wasserstoffatom: Numerische Lösung und Darstellung von Orbitalen

Quantenmechanische Streuung: Wellenpaket an Barriere (Transmission/Reflexion) [J.W.+K.S.-B.]

Laserkühlung: Simulation des Abbremsens von Atomen mit Photonen

Modell eines Lasers: Besetzungsinversion mithilfe von Ratengleichungen

Alle Projekte sollen in Zweier- oder Dreiergruppen bearbeitet werden. Für die inhaltliche Ausrichtung ihres Projektes ist jede Gruppe selbst verantwortlich. Auch eigene Projektideen sind möglich und Rückfragen jederzeit erwünscht. Abgabe der Ausarbeitungen bis zum 30.9.2023 beim Dozenten.