Chcemy wygenerować wzór na zamianę zmiennych. Dawno dawno temu mogliśmy zrobić tak:

$$\int_{2}^{4} 2xe^{x^{2}} dx = |x^{2}| = t, 2xdx = dt = \int_{4}^{16} e^{t} dt.$$

Czyli w ogólności

$$\int_{\varphi(a)}^{\varphi(b)} f(x) dx = \int_a^b f(\varphi(t)) \varphi'(t) dt.$$

Jak weźmiemy całkę

$$\int f(x,y)dxdy = \int dx \int f(x,y)dy = |r = \sqrt{x^2 + y^2}, \varphi = arctg(\frac{y}{x})| = \int dr \int d\varphi f(r,\varphi)??.$$

"../img/"fig_45.png

Rysunek 1: zmieniamy zmienne pojedynczo a nie jednocześnie $(x,y) \to (x,\varphi) \to (r,\varphi)$

$$\int dx \int dy f(x,y) = \|y = x \operatorname{tg} \varphi, dy = \frac{x}{\cos^2 \varphi} d\varphi \| = \int dx \int \frac{x}{\cos^2 \varphi} \varphi f(x,y(x,\varphi)) =$$

$$= \|x = r \cos \varphi, dx = dr \cos \varphi \| = \int d\varphi \int \frac{dr \cos \varphi r \cos \varphi}{\cos^2 \varphi} f(x(r,\varphi), y(x(r,\varphi))) =$$

$$= \int d\varphi \int dr f(r,\varphi) r, \operatorname{czyli} "??" = r.$$

To teraz w drugą stronę. $(y \to r)$, $(x \to \varphi)$

$$\int \int f(x,y)dxdy = \|y = \sqrt{r^2 - x^2}, dy = \frac{2rdr}{2\sqrt{r^2 - x^2}}\| =$$

$$= \int dx \int \frac{rdr}{\sqrt{r^2 - x^2}} f(x,y(x,r)) = \|x = r\cos\varphi, dx = -r\sin\varphi d\varphi\| =$$

$$= -\int dr \int \frac{r\sin\varphi d\varphi r}{\sqrt{r^2 - x^2}} f(x(r,\varphi), y(x(r,\varphi), r)) =$$

$$= -\int dr r^2 \int d\varphi \frac{\sin\varphi f(r,\varphi)}{\sqrt{r^2 - r^2\cos^2\varphi}} = -\int dr \int d\varphi f(r,\varphi) r.$$

Dostaliśmy prawie to co trzeba (r). Tylko wpadł jakiś dziwny minus. Podobno minus zniknie gdy doprowadzimy do porządku granice zmiennej φ , bo $x=r\cos\varphi$ a cos jest malejący w tym przedziale. (tablica dalej nie działa - minęły 3 miesiące - z marsa by już doszła więc wysyłają pewnie z Saturna - MKTM)

Niech
$$\psi \begin{bmatrix} r \\ \varphi \end{bmatrix} \rightarrow \begin{bmatrix} r \cos \varphi \\ r \sin \varphi \end{bmatrix}$$
.

$$\psi' = \begin{bmatrix} \cos \varphi & -r \sin \varphi \\ \sin \varphi & r \cos \varphi \end{bmatrix}$$
$$\|\psi'\| = r \cos^2 \varphi - (-r \sin^2 \varphi) = r$$

Chcemy pokazać, że jeżeli $\varphi: A \to A, A \subset \mathbb{R}^n, \varphi$ - klasy $\mathcal{C}^1, \varphi^{-1}$ - klasy \mathcal{C}^1 , to możemy przedstawić φ jako złożenie dwóch transformacji, z których pierwsza nie zmienia n-1 zmiennych a druga nie zmienia 1 zmiennej (transformacje pierwotne/prymitywne albo inne ubogacające nazwy).

Dowód. (coś w rodzaju dowodu) φ możemy przedstawić jako

$$\varphi \begin{bmatrix} t_1 \\ \vdots \\ t_n \end{bmatrix} \to \begin{bmatrix} \varphi_1(t_1, \dots, t_n) \\ \vdots \\ \varphi_n(t_1, \dots, t_n) \end{bmatrix} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}.$$

Pytanie 1. Czy istnieje odwzorowanie $\Theta^{-1}: A \to A$ takie, że

$$\Theta = \begin{bmatrix} t_1 \\ \vdots \\ t_n \end{bmatrix} = \begin{bmatrix} t_1 \\ \vdots \\ t_{j-1} \\ \vdots \\ t_{j+1} \\ \vdots \\ t_n \end{bmatrix} = \begin{bmatrix} x_1 \\ \vdots \\ x_{j-1} \\ x_j \\ x_{j+1} \\ \vdots \\ x_n \end{bmatrix}.$$

 $(t_{i\neq j})$ mogą zostać zamiast zamieniać je na x_i . Dlaczego interesuje nas czy istnieje funkcja odwrotna? Bo jeżeli istnieje, to możemy zapisać

$$\varphi = \varphi \circ \Theta^{-1} \circ \Theta = (\varphi \circ \Theta^{-1}) \circ \Theta.$$

Wiemy, że φ - klasy \mathcal{C}^1 i φ^{-1} - klasy \mathcal{C}^1 i $\varphi:A\to A$. Mamy twierdzenie o lokalnej odwracalności! $\det\varphi'\neq 0$, czyli w macierzy φ' istnieje prznajmniej 1 element niezerowy. (w rzeczywistości to zawsze będzie trochę więcej - nieśmiały warunek)

np. $\frac{\partial \varphi^i}{\partial t^i} \neq 0$. Oznacza to, że odwzorowanie

$$\eta: \begin{bmatrix} t_1 \\ t_2 \\ \vdots \\ t_{i-1} \\ t_i \\ t_{i+1} \\ \vdots \\ t_n \end{bmatrix} \rightarrow \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_{j-1} \\ x_j = \varphi^i(t_1, \dots, t_n) \\ \vdots \\ x_n \end{bmatrix}.$$

Wtedy

i det $\eta' \neq 0$, więc istnieje η^{-1} . Czyli $\varphi = \varphi \circ \eta \circ \eta^{-1} = (\varphi \circ \eta) \circ \eta^{-1}$

$$\int_{-1}^{1} dx \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} dy f(x,y) = \int_{0}^{1} r dr \int_{0}^{2\pi} d\varphi f(r,\varphi)$$
 (1)

Twierdzenie 1. (O zamianie zmiennych)

Niech Θ, Ω - zbiory otwarte $w \mathbb{R}^n$ i $\xi : \Omega \to \Theta$, $f : \Theta \to \mathbb{R}$, f - ograniczona i całkowalna. ξ - klasy \mathcal{C}^1 na Ω , ξ^{-1} klasy \mathcal{C}^1 na Θ . Wtedy

$$\int_{\Omega} f(x)dx = \int_{\Omega} f(\xi(t))|\det \xi'(t)|dt. \tag{2}$$

$$x=(x^1,\dots,x^n)\in\Theta, t=(t^1,\dots,t^n)\in\Omega$$

Dowód. (przez indukcję względem wymiaru przestrzeni)

- dla n = 1 zrobione w I semetrze.
- zakładamy, że prawdziwy jest napis

$$\int_{A'\subset\mathbb{R}^{n-1}}f(x)dx=\int_{\Omega'\subset\mathbb{R}^{n-1}}f(\xi(t))|det(\xi'(t))|, (\xi:\mathbb{R}^{n-1}\to\mathbb{R}^{n-1}).$$

Chcem pokazać, że prawdziwy jest napis

$$\int_{A\subset\mathbb{P}} f(x)dx = \int_{\Omega\subset\mathbb{P}^n} f(\xi(t))|det(\xi'(t))|.$$

Uwaga: wartośc bezwzględna oznacza, że musimy uważać przy rozstawianiu granic:

 $\left(\int_a^b f\right)$ oznacza, że zakładamy, że $a \leq b$. Dowód przeprowadzamy dla $\xi: \Theta \subset \mathbb{R}^n \to \Omega \subset \mathbb{R}^n$ takiego, że ξ nie zamienia jednej zmiennej.

"../img/"fig_46.png

Rysunek 2: $\Omega \to \Theta - f - \mathbb{R}$

Obserwacja 1. Niech $K = \{(x,y), x^2 + y^2 \leq 1\}$, niech $K_a = \{(x,a), x^2 + a^2 \leq 1\}$. Wówczas $K = \bigcup_{a \in [-1,1]} K_a$, zatem $\int_K f = \int_{-1}^1 da \int_{K_a} f$

Ostatnio skończyliśmy na kroku $n-1 \to n$ i wiemy, że dla n-1 wymiarów możemy napisać

$$\int_{A\in\mathbb{R}^{n-1}} f(x)dx = \int_{B\in\mathbb{R}^{n-1}} f(\xi(t))|\det \xi'|dt.$$

$$\int_{\Theta} f dx = \int_{\Omega} f(\xi(t)) |\det \xi'| dt.$$

Mając zbiór Θ , zdefiniujmy zbiór Θ_a , który jest zbiorem takich $x \in \Theta$, że na miejsca x_i wstawimy wielkość a.

$$\Theta_a = \left\{ x \in \mathbb{Q}, x = (x^1, x^2, \dots, x^{i-1}, a, x^{i+1}, \dots, x^n) \right\}.$$

$$K = \left\{ (x, y), x^2 + y^2 = 1 \right\}.$$

$$K_a = \left\{ (x, y) \in K, (x, y) = (x, a) \right\}, \left\{ (x, a), x^2 + a^2 = 1 \right\}.$$

Rysunek 3: Kółko Kskładamy z kresek K_a i mamy $\int_K f = \int da \int_{K_a} f$

Oznacza to, że

$$\int_{\Theta} f dx = \int da \int_{\Theta_a} f(x^1, x^2, \dots, x^{i-1}, a, x^{i+1}, \dots, x^n) dx^1 dx^2 \dots dx^{i-1} dx^{i+1} \dots dx^n.$$

Rozważmy $\xi:\Theta\to\Omega$ taką, że

$$\begin{bmatrix} t_1 \\ \vdots \\ t_n \end{bmatrix} \rightarrow \begin{bmatrix} \xi_1(t_1, \dots, t_n) \\ \xi_2(t_1, \dots, t_n) \\ \vdots \\ \xi_{i-1} \\ t_1 \\ \vdots \\ \xi_{i+1} \\ \vdots \\ \xi_n(t_1, \dots, t_n) \end{bmatrix} \begin{bmatrix} x^1 \\ x^1 \\ \vdots \\ x^i \\ \vdots \\ x^n \end{bmatrix}.$$

Czyli ξ nie zmienia jednej współrzędnej np. $\begin{bmatrix} x \\ y \end{bmatrix} \rightarrow \begin{bmatrix} r \\ x \end{bmatrix}$. Możemy więc zapisać transformację $\xi_a:\Theta_a \rightarrow \Omega_a$

$$\begin{bmatrix} t_1 \\ \vdots \\ t_{i-1} \\ t_{i+1} \\ \vdots \\ t_n \end{bmatrix} \rightarrow \begin{bmatrix} \xi_1(t_1, \dots, t_n) \\ \xi_2(t_1, \dots, t_n) \\ \vdots \\ \xi_{i-1}(\dots) \\ \xi_{i+1}(\dots) \\ \vdots \\ \xi_n(t_1, \dots, t_n) \end{bmatrix}.$$

Wówczas na mocy założenia indukcyjnego wiemy, że

$$\int_{\Theta_a} f(x^1, \dots, x^{i-1}, a, x^{i+1}, \dots, x^n) dx^1 \dots dx^{i-1} dx^{i+1} \dots dx^n =$$

$$\int_{\Omega_a} f(t_1, t_2, \dots, t_{i-1}, a, t_{i+1}, \dots, t_n) |\det \xi'_a| dt^1 dt_2 \dots dt^{i-1} dt^{i+1} \dots dt^n.$$

Wówczas

$$\int_{\Theta} f(x^{1}, \dots, x^{n}) dx^{n} = \int_{a} da \int_{\Omega_{a}} f(t_{1}, \dots, t_{i-1}, a, t_{i+1}, \dots, t_{n}) |\det \xi'_{a}| \cdot (\pm 1) dt^{1} \dots dt^{i-1} dt^{i+1} \dots dt^{n}$$

$$= [a = t_{i}] =$$

$$= \int_{\Omega} f(t^{1}, t^{2}, \dots, t^{n}) |\det \xi'| dt^{1} \dots dt^{n}.$$

$$\xi' = \begin{bmatrix} \frac{\partial \xi_1}{\partial t_1} & \frac{\partial \xi_2}{\partial t_2} & \dots & \frac{\partial \xi_n}{\partial t_n} \\ 0 & \dots & 1 & \dots & 0 \\ \frac{\partial \xi_n}{\partial t_1} & \dots & \frac{\partial \xi_n}{\partial t_n} \end{bmatrix}.$$

"../img/"fig_47.png

Przykład 1. Policzmy całkę $I = \int_0^\infty e^{-x^2} dx$. Nie umiemy. Ale skoro nie umiemy policzyć I, to tym bardziej I^2 ?

$$I^2 = \int_0^\infty e^{-x^2} dx \int_0^\infty e^{-y^2} dy = \int_\square e^{-(x^2+y^2)}.$$

 $\textit{Zamie\'nmy sobie zmienne: } x = r\cos\varphi, \quad y = r\sin\varphi. \ \psi: \begin{bmatrix} r \\ \varphi \end{bmatrix} \rightarrow \begin{bmatrix} x \\ y \end{bmatrix}, \ |\psi'| = r \ \textit{Mamy}$

$$\begin{split} I^2 &= \int_0^\infty dr \int_0^{\frac{\pi}{2}} d\varphi e^{-r^2} r = \frac{\pi}{2} \lim_{p \to +\infty} \int_0^p dr \cdot e^{-r^2} \cdot r = \frac{\pi}{2} \lim_{p \to \infty} \left[-\frac{1}{2} e^{-r^2} \right]_0^p \\ &\frac{\pi}{2} \left[\lim_{p \to \infty} \left[-\frac{1}{2} e^{-p^2} \right] - \left[-\frac{1}{2} e^{(0)^2} \right] \right] = \frac{\pi}{2} \frac{1}{2} = \frac{\pi}{4} \end{split}$$

czyli
$$I^2 = \frac{\pi}{4} \implies I = \frac{\sqrt{\pi}}{2}$$