Assignment-Discussion HMM-Viterbi

Deepak Singh Baghel 203050005 Ankush Agarwal 203050007 Nilesh Kshirsagar 203059004

Problem Statement

- Given a sequence of words, produce the POS tag sequence
- Technique to be used: HMM-Viterbi
- Use Universal Tag Set (12 in number)
- 5-fold cross validation

tags: {'ADP', 'CONJ', 'PRON', 'DET', 'PRT', 'VERB', 'NOUN', 'NUM', 'X', 'ADJ', '.', 'ADV'}

Overall performance

- **Precision** : 93.55 %
- Recall: 93.50 %
- F-score (3 values)
 - F1-score: 93.46 %
 - F0.5-score: 93.50 %
 - F2-score: 93.47 %

Per POS performance

```
recall: 86.82 %,
            Precision: 89.65 %,
                                                   F1: 88.21
• Tag: ADV
• Tag: DET Precision: 89.58 %,
                                recall: 98.63 %,
                                                   F1: 93.89
• Tag: VERB
            Precision: 95.25 %,
                                recall: 90.59 %,
                                                   F1: 92.86
                                recall: 96.46 %,
• Tag: ADP
            Precision: 91.85 %,
                                                   F1: 94.10
            Precision: 99.29 %,
                                recall: 99.31 %,
                                                   F1: 99.30
• Tag: CONJ
                                                   F1: 95.29
• Tag: PRON
            Precision: 92.90 %,
                                recall: 97.81 %,
• Tag: NUM
            Precision: 96.93 %,
                                recall: 86.37 %,
                                                   F1: 91.34
                                recall: 86.89 %,
                                                   F1: 87.15
• Taq: ADJ
            Precision: 87.41 %,
            Precision: 65.55 %,
                                recall: 45.02 %,
                                                   F1: 53.38
• Taq: X
            Precision: 89.34 %,
                                                   F1: 89.42
• Tag: PRT
                                recall: 89.49 %,
                                recall: 90.12 %,
                                                   F1: 92.27
• Taq: NOUN
            Precision: 94.53 %,
• Tag: . Precision: 97.55 %,
                               recall: 99.89 %, F1: 98.70
```

Confusion Matrix (12 X 12)

Interpretation of confusion (error analysis)

Noun-Det, Noun-Verb, Verb-Noun

- Same words are used in different senses in different sentences e.g. Play can be used as both noun and verb
- Noun and verbs have higher overall frequency in corpus

Data Processing Info (Pre-processing)

- Use nltk.brown.tagged_sents for tokenization.
- Stored count of tag and tag bigrams in a dictionary using tags as key and used it to calculate the transition prob
- Similarly stored count of word tag pairs in a dictionary and used it to calculate the emission prob

Inferencing/Decoding Info

- For each word, stored the maximum probability path ending at each tag from the list of Universal tags
- From tags for the last word of a sentence, selected tag
 with maximum probability since it has the maximum
 probability path for whole sentence and then used back
 pointer to find the path.

Any thoughts on generative vs. discriminative POS tagging

- Discriminative models model conditional probability P(Y|X) while generative models model joint probability P(Y, X)
- Hence, discriminative models don't need to model marginal probability P(X)