Asymptotic Expansions and Rigorous Justifications

1 A Motivating Example:

Consider the singularly perturbed algebraic equation

$$\varepsilon x^2 + 2x - 1 = 0, \qquad \varepsilon \text{ small.}$$
 (1)

Solving explicitly, we obtain

$$x_{\pm}(\varepsilon) = \frac{-1 \pm \sqrt{1 + \varepsilon}}{\varepsilon}.$$

Expanding for small ε , we find

$$\sqrt{1+\varepsilon} = 1 + \frac{\varepsilon}{2} - \frac{\varepsilon^2}{8} + O(|\varepsilon|^3), \text{ as } \varepsilon \to 0.$$

Hence, there hold

$$x_{+}(\varepsilon) = \frac{1}{2} - \frac{\varepsilon}{8} + O(\varepsilon^{2})$$
 and $x_{-}(\varepsilon) = -\frac{2}{\varepsilon} - \frac{1}{2} + O(\varepsilon)$, as $\varepsilon \to 0$.

As $\varepsilon \to 0$, the first root $x_+(\varepsilon)$ remains bounded while the second one $x_-(\varepsilon)$ blows up.

Rigorous Justifications

Regular root. Our goal is to establish:

Proposition 1. There exist constants $\varepsilon_0 > 0$ and C > 0 such that for all $|\varepsilon| \le \varepsilon_0$, the equation admits a unique bounded root $x_+(\varepsilon)$ satisfying

$$|x_{+}(\varepsilon) - \frac{1}{2} + \frac{\varepsilon}{8}| \le C\varepsilon^{2}$$

so that

$$x_{+}(\varepsilon) = \frac{1}{2} - \frac{\varepsilon}{8} + O(\varepsilon^{2}).$$

Method 1: Applying Taylor's theorem. The above expansion is obtained formally by Taylor expansion. To make it rigorous, use the Lagrange form of the remainder in Taylor's theorem:

$$\sqrt{1+\varepsilon} = 1 + \frac{\varepsilon}{2} - \frac{\varepsilon^2}{8} + R_3(\varepsilon), \qquad R_3(\varepsilon) = \frac{f'''(\xi)}{3!} \varepsilon^3 \text{ for some } \xi = \xi(\varepsilon) \text{ lying between 0 and } \varepsilon,$$

with $f(x) = \sqrt{1+x}$. For $\varepsilon_0 < 1$ fixed, setting $C := \sup_{x \in [-\varepsilon_0, \varepsilon_0]} \frac{1}{6} |f'''(x)|$, we obtain $|R_3(\varepsilon)| \le C\varepsilon^3$. Thus, for $|\varepsilon| \le \varepsilon_0$, there holds

$$x_{+}(\varepsilon) = \frac{1}{2} - \frac{\varepsilon}{8} + \frac{R_{3}(\varepsilon)}{\varepsilon}, \quad |x_{+}(\varepsilon) - \frac{1}{2} + \frac{\varepsilon}{8}| \le C\varepsilon^{2}.$$

Method 2: Direct estimates. We can estimate directly, without Taylor's theorem, that for fixed $\varepsilon_0 < 1$ and some $C = C(\varepsilon_0) > 0$, there holds

$$\left| x_{+}(\varepsilon) - \frac{1}{2} + \frac{\varepsilon}{8} \right| \le C\varepsilon^{2}, \quad |\varepsilon| \le \varepsilon_{0}.$$

Sketch of the estimation. Using $s = \sqrt{1+\varepsilon}$ so that $\varepsilon = s^2 - 1$, we compute

$$x_+ - \frac{1}{2} + \frac{\varepsilon}{8} = \frac{-1 + \sqrt{1 + \varepsilon}}{\varepsilon} - \frac{1}{2} + \frac{\varepsilon}{8} = \varepsilon^2 \frac{s + 3}{8(s + 1)^3},$$

so $|x_+ - \frac{1}{2} + \frac{\varepsilon}{8}| \le C\varepsilon^2$ with C = 1.

Remark 1. A drawback of methods 1 and 2 are that they rely on the closed form of roots derived from the quadratic formula.

Method 3: Applying implicit function theorem (IFT).

Considering the function $f(x,\varepsilon) = \varepsilon x^2 + 2x - 1$ and applying analytic IFT at $(\frac{1}{2},0)$, there exists $\varepsilon_0 > 0$ and a unique analytic function $x(\varepsilon)$ for $|\varepsilon| < \varepsilon_0$ with x(0) = 1/2 and $f(x(\varepsilon),\varepsilon) \equiv 0$. Analyticity means $x(\varepsilon)$ has a convergent power series

$$x(\varepsilon) = \frac{1}{2} + a_1 \varepsilon + a_2 \varepsilon^2 + \cdots$$

valid for $|\varepsilon| < \varepsilon_0$. Matching coefficients recovers $a_1 = -1/8$ etc., so the formal expansion is not just formal — it converges to the true root. Now

$$|x(\varepsilon) - \frac{1}{2} + \frac{\varepsilon}{8}| = |a_2 \varepsilon^2 + \dots| = \varepsilon^2 |a_2 + \dots| \le C \varepsilon^2,$$

where $C = \max_{|\varepsilon| \ge \frac{1}{2}\varepsilon_0} |a_2 + \cdots|$.

Remark 2. The IFT gives existence, uniqueness (no other root near (1/2)), and convergence of the Taylor series.

Method 4: Constructing contraction mappings.

Rearrange the equation (1) as a fixed-point problem

$$x = F(x; \varepsilon) := \frac{1 - \varepsilon x^2}{2}.$$

We seek a fixed point near $x_0 = \frac{1}{2}$. Let $\varepsilon_0 > 0$ be small and consider the closed ball

$$B:=\Big\{x\in\mathbb{R}:|x-\tfrac12|\le r\Big\},$$

where r will be chosen proportional to ε_0 .

Step 1: F maps B into itself. For $x \in B$ we have

$$|F(x;\varepsilon) - \frac{1}{2}| = \left| \frac{1 - \varepsilon x^2}{2} - \frac{1}{2} \right| = \frac{|\varepsilon|}{2} |x|^2 \le \frac{|\varepsilon|}{2} \left(\frac{1}{2} + r \right)^2.$$

Hence if we require

$$r \ge \frac{|\varepsilon|}{2} \Big(\frac{1}{2} + r\Big)^2,$$

then F maps B into itself. For instance, with $r = \varepsilon_0$ this holds for all $|\varepsilon| \le \varepsilon_0$ provided $\varepsilon_0 \le \frac{1}{2}$.

Step 2: F is a contraction on B. We compute

$$\partial_x F(x;\varepsilon) = -\varepsilon x.$$

Thus for $x, y \in B$,

$$|F(x;\varepsilon) - F(y;\varepsilon)| \le |\varepsilon| |z(x,y;\varepsilon)| |x-y| \le |\varepsilon| (\frac{1}{2} + \varepsilon_0) |x-y|$$

Since $\varepsilon_0 \leq \frac{1}{2}$, for $|\varepsilon| \leq \varepsilon_0$, the Lipschitz constant $\theta = \theta(\varepsilon, \varepsilon_0) := |\varepsilon| \left(\frac{1}{2} + \varepsilon_0\right)$ is at most $|\varepsilon| (< 1)$, so F is a contraction on B.

Combining **Step 1** and **Step 2**, we conclude that for a fixed $\varepsilon_0 \leq \frac{1}{2}$, for $|\varepsilon| \leq \varepsilon_0$, the map

$$F(\cdot;\varepsilon): x \mapsto \frac{1-\varepsilon x^2}{2}$$

is a contraction mapping on $B = \{x \in \mathbb{R} : |x - \frac{1}{2}| \le \varepsilon_0\}$ satisfying

$$|F(x;\varepsilon) - F(y;\varepsilon)| \le \theta(\varepsilon;\varepsilon_0)|x - y|, \quad \text{for } x, y \in B.$$

Step 3: existence, uniqueness, and estimate. By Banach's fixed point theorem, there exists a unique fixed point $x_+(\varepsilon) \in B$ such that $x_+(\varepsilon) = F(x_+(\varepsilon); \varepsilon)$. Now,

$$|x_{+}(\varepsilon) - \frac{1}{2}| = \left| F(x_{+}(\varepsilon); \varepsilon) - F\left(\frac{1}{2}; \varepsilon\right) + F\left(\frac{1}{2}; \varepsilon\right) - \frac{1}{2} \right|$$

$$\leq \left| F(x_{+}(\varepsilon); \varepsilon) - F\left(\frac{1}{2}; \varepsilon\right) \right| + \left| F\left(\frac{1}{2}; \varepsilon\right) - \frac{1}{2} \right|$$

$$\leq \theta |x_{+}(\varepsilon) - \frac{1}{2}| + \frac{|\varepsilon|}{8}$$

for some contraction constant $\theta < 1$. So the fixed point satisfies

$$|x(\varepsilon) - \frac{1}{2}| \le \frac{1}{1 - \theta} \frac{|\varepsilon|}{8},$$

whence $x(\varepsilon) = \frac{1}{2} + \mathcal{O}(|\varepsilon|)$.

To show

$$|x_{+}(\varepsilon) - \frac{1}{2} + \frac{\varepsilon}{2}| \le C\varepsilon^{2}$$
,

we can similarly estimate

$$|x_{+}(\varepsilon) - \frac{1}{2} + \frac{\varepsilon}{8}| = \left| F(x_{+}(\varepsilon); \varepsilon) - F\left(\frac{1}{2} - \frac{\varepsilon}{8}; \varepsilon\right) \right| + \left| F\left(\frac{1}{2} - \frac{\varepsilon}{8}; \varepsilon\right) - \left(\frac{1}{2} - \frac{\varepsilon}{8}\right) \right|$$

$$\leq \theta |x_{+}(\varepsilon) - \frac{1}{2} + \frac{\varepsilon}{8}| + \frac{8 - \varepsilon}{128} \varepsilon^{2},$$

provided that $\frac{1}{2} - \frac{\varepsilon}{8} \in B$ which certainly holds. The latter inequality yields that

$$|x_{+}(\varepsilon) - \frac{1}{2} + \frac{\varepsilon}{8}| \le \frac{8 - \varepsilon}{128(1 - \theta)}\varepsilon^{2}.$$

In general, for $|\varepsilon| \le \varepsilon_0$ set the iteration sequence $\{y_n(\varepsilon)\}_{n=0}^{\infty}$ by $y_0 = x_0 = \frac{1}{2}$, $y_n(\varepsilon) = F(y_{n-1}(\varepsilon); \varepsilon)$ for $n \ge 1$. We justify that $y_n(\varepsilon) \in B$ for $n \ge 0$ inductively. The base case $y_0 \in B$ holds. By the invariance of $F(\cdot; \varepsilon)$ on B, given that $y_{n-1}(\varepsilon) \in B$, we have $y_n(\varepsilon) = F(y_{n-1}(\varepsilon); \varepsilon) \in B$. This enables us to estimate

$$\begin{aligned} |x_{+}(\varepsilon) - y_{n}(\varepsilon)| &= |F(x_{+}(\varepsilon); \varepsilon) - F(y_{n-1}(\varepsilon); \varepsilon)| \\ &\leq |\varepsilon| (\frac{1}{2} + \varepsilon_{0}) |x_{+}(\varepsilon) - x_{n-1}(\varepsilon)| \\ &\leq \left(|\varepsilon| (\frac{1}{2} + \varepsilon_{0}) \right)^{n} |x_{+}(\varepsilon) - x_{0}(\varepsilon)| \leq \left(|\varepsilon| (\frac{1}{2} + \varepsilon_{0}) \right)^{n} \frac{1}{1 - \theta} \frac{|\epsilon|}{8} \sim \mathcal{O}(|\varepsilon|^{n+1}). \end{aligned}$$

Note that $y_n(\varepsilon)$ is a polynomial of ε . Warning! If $x_n(\varepsilon)$ is the unique polynomial of ε of degree n such that

$$x_{+}(\varepsilon) = x_{n}(\varepsilon) + \mathcal{O}(|\varepsilon|^{n+1}).$$

we do not have $x_n(\varepsilon) = y_n(\varepsilon)$ for $n \geq 2$ due to the nonlinearity of iteration map $f(\cdot, \varepsilon)$. But $x_n(\varepsilon) = y_n(\varepsilon) + \mathcal{O}(|\varepsilon|^{n+1})$.

Homework: design an algorithm computing $x_n(\varepsilon)$ inductively.

Singular root. Our goal is to justify the formal Laurent expansion

$$x_{-}(\varepsilon) \sim -\frac{2}{\varepsilon} - \frac{1}{2} + O(|\varepsilon|)$$

by establishing:

Proposition 2. There exist constants $\varepsilon_0 > 0$ and C > 0 such that for all $|\varepsilon| \le \varepsilon_0$, the equation admits a unique unbounded root $x_-(\varepsilon)$ satisfying

$$|x_{-}(\varepsilon) + \frac{2}{\varepsilon} + \frac{1}{2}| \le C|\varepsilon|,$$

so that

$$x_{-}(\varepsilon) = -\frac{2}{\varepsilon} - \frac{1}{2} + O(|\varepsilon|).$$

desingularization by change of variables. Set

$$X := \varepsilon x$$
,

so the equation $\varepsilon x^2 + 2x - 1 = 0$ becomes

$$X^2 + 2X - \varepsilon = 0.$$

The large root corresponds to X near -2 (since $x \sim -2/\varepsilon$). Write

$$X = -2 + y,$$

so y is expected to be small (indeed $y = O(\varepsilon)$). The equation for y is

$$(-2+y)^2 + 2(-2+y) - \varepsilon = 0 \iff y^2 - 2y = \varepsilon,$$

or equivalently

$$y = S(y) := \frac{y^2 - \varepsilon}{2}.$$

Then applying any method you like to continue the justification.

2 Nonlinear ODE Example:

Consider the initial value problem

$$x''(t) = -\frac{1}{(1 + \varepsilon x(t))^2}, \qquad x(0) = 0, \quad x'(0) = 1,$$
(2)

where ε is small.

Formally, we expect an asymptotic expansion

$$x(t) = x_0(t) + \varepsilon x_1(t) + O(\varepsilon^2), \tag{3}$$

where the big O is understood in some functional space. We now compute $x_0(t)$ and $x_1(t)$. The RHS of (2) expands as

$$-\frac{1}{(1+\varepsilon x)^2} = -1 + 2\varepsilon x + \mathcal{O}(\varepsilon^2).$$

Inserting the ansatz (3) into (2), we obtain

$$x_0'' = -1,$$
 $x_0(0) = 0,$ $x_0'(0) = 1 \implies x_0(t) = t - \frac{1}{2}t^2.$

and

$$x_1''(t) = 2x_0(t), x_1(0) = x_1'(0) = 0,$$

so x_1 is obtained by two integrations:

$$x_1(t) = \int_0^t \int_0^\tau 2x_0(s)dsd\tau = \int_0^t (t-s)2x_0(s)ds.$$

We now show that the asymptotic expansion (3) can *rigorously justified* by a contraction mapping argument and our goal is to prove the following theorem.

Theorem 1 (rigorous first-order expansion). Fix T > 0. There exists $\varepsilon_0 = \varepsilon_0(T) > 0$ and C = C(T) > 0 such that for all $0 \le \varepsilon \le \varepsilon_0$ the IVP

$$x'' = -\frac{1}{(1+\varepsilon x)^2}, \quad x(0) = 0, \quad x'(0) = 1,$$

has a unique solution on [0,T] and

$$x(t) = x_0(t) + \varepsilon x_1(t) + r(t), \qquad |r|_{C([0,T])} \le C\varepsilon^2,$$

where $x_0(t) = t - \frac{1}{2}t^2$ and $x_1(t) = \int_0^t (t-s)2x_0(s)ds$.

Define the remainder

$$r(t) := x(t) - x_0(t) - \varepsilon x_1(t).$$

We will show $|r| = O(\varepsilon^2)$ in a suitable norm by contraction mapping.

Step 1. Integral formulation

Integrating twice, we obtain

$$x(t) = t - \int_0^t (t - s) \frac{1}{(1 + \varepsilon x(s))^2} ds.$$

Define the operator

$$(\mathcal{T}_{\varepsilon}x)(t) := t - \int_0^t (t-s) \frac{1}{(1+\varepsilon x(s))^2} ds.$$

A fixed point $x = \mathcal{T}_{\varepsilon}x$ solves (2).

Step 2. Functional setting.

Let

$$X_T = \{x \in C([0,T]) : x(0) = 0\}, \qquad ||x|| := \sup_{t \in [0,T]} |x(t)|.$$

For small enough T > 0, define the closed ball

$$B_M := \{x(\cdot) \in X_T : ||x(\cdot) - x_0(\cdot)|| \le M\}.$$

Step 3. Invariance.

Let $\varepsilon_0 > 0$ be fixed. For $|\varepsilon| \le \varepsilon_0$, we would like to decide how small ε_0 need to be in order for $\mathcal{T}_{\varepsilon}$ to be invariant on B_M . To this end, we compute

$$(\mathcal{T}_{\varepsilon}x)(t) - x_0(t) = t - \int_0^t (t-s) \frac{1}{(1+\varepsilon x(s))^2} ds - (t - \frac{1}{2}t^2)$$
$$= -\int_0^t (t-s) \left(\frac{1}{(1+\varepsilon x(s))^2} - 1\right) ds$$

Set $M_1 := ||x_0(\cdot)||$. We have for $x(\cdot) \in B_M$, $||x(\cdot)|| \le M + M_1$. Let us require that

$$\varepsilon_0 < \frac{1}{M + M_1} \tag{4}$$

so that $(1 + \varepsilon x(s))^{-1}$ makes sense. Setting $F(x) = (1 + x)^{-2}$, we find that

$$\frac{1}{(1+\varepsilon x(s))^2} - 1 = F(\varepsilon x(s)) - F(0) = F'(\theta(\varepsilon x(s)))\varepsilon x(s) = \frac{-2\varepsilon x(s)}{(1+\theta(\varepsilon x(s)))^3}.$$

There then holds for $t \in [0, T]$

$$|(\mathcal{T}_{\varepsilon}x)(t) - x_{0}(t)| \leq \int_{0}^{t} (t - s) \left| \frac{1}{(1 + \varepsilon x(s))^{2}} - 1 \right| ds = \int_{0}^{t} (t - s) \left| \frac{-2\varepsilon x(s)}{(1 + \theta(\varepsilon x(s)))^{3}} \right| ds$$

$$\leq \int_{0}^{t} (t - s) \frac{2(M + M_{1})\varepsilon_{0}}{(1 - \varepsilon_{0}(M + M_{1}))^{3}} ds = \frac{t^{2}(M + M_{1})\varepsilon_{0}}{(1 - \varepsilon_{0}(M + M_{1}))^{3}} \leq \frac{T^{2}(M + M_{1})\varepsilon_{0}}{(1 - \varepsilon_{0}(M + M_{1}))^{3}}.$$

We then choose ε_0 small enough so that

$$\frac{T^2(M+M_1)\varepsilon_0}{(1-\varepsilon_0(M+M_1))^3} \le M,\tag{5}$$

which guarantees that

$$\|(\mathcal{T}_{\varepsilon}x)(\cdot) - x_0(\cdot)\| \le M.$$

Step 4. Contraction estimate

Let $x_1, x_2 \in B_M$. Then

$$(\mathcal{T}_{\varepsilon}x_1)(t) - (\mathcal{T}_{\varepsilon}x_2)(t) = \int_0^t (t-s) \left(\frac{1}{(1+\varepsilon x_1(s))^2} - \frac{1}{(1+\varepsilon x_2(s))^2}\right) ds$$
$$= \int_0^t (t-s) \left(F(\varepsilon x_1(s)) - F(\varepsilon x_2(s))\right) ds$$
$$= \int_0^t (t-s)F'(\theta(\varepsilon x_1(s), \varepsilon x_2(s))\varepsilon(x_1(s) - x_2(s)) ds$$

Note that

$$\|\theta(\varepsilon x_1(s), \varepsilon x_2(s)\| \le 2\varepsilon_0(M+M_1).$$

So we further require that

$$2\varepsilon_0(M+M_1)<1\tag{6}$$

to ensure the uniform boundedness of $F'(\theta(\varepsilon x_1(s), \varepsilon x_2(s)))$. It follows that for $t \in [0, T]$

$$|(\mathcal{T}_{\varepsilon}x_{1})(t) - (\mathcal{T}_{\varepsilon}x_{2})(t)| \leq \int_{0}^{t} (t-s) \frac{2}{(1-2\varepsilon_{0}(M+M_{1}))^{3}} \varepsilon ||x_{1} - x_{2}|| ds$$

$$\leq \frac{T^{2}\varepsilon}{(1-2\varepsilon_{0}(M+M_{1}))^{3}} ||x_{1} - x_{2}||,$$

whence

$$\|(\mathcal{T}_{\varepsilon}x_1)(\cdot) - (\mathcal{T}_{\varepsilon}x_2)(\cdot)\| \leq \frac{T^2\varepsilon}{(1 - 2\varepsilon_0(M + M_1))^3} \|x_1 - x_2\| \leq \frac{T^2\varepsilon_0}{(1 - 2\varepsilon_0(M + M_1))^3} \|x_1 - x_2\|.$$

 $\mathcal{T}_{\varepsilon}$ is a contraction on B_M provided that

$$\frac{T^2\varepsilon_0}{(1-2\varepsilon_0(M+M_1))^3} < 1. \tag{7}$$

By Banach's fixed point theorem, there exists a unique fixed point $x_{\varepsilon}(\cdot) \in X_T$ solving $x = \mathcal{T}_{\varepsilon}x$. Homework: work out the rest of the proof and more.