Inf2C - Computer Systems Lecture 10-11 Logic Design

Vijay Nagarajan

School of Informatics
University of Edinburgh

Logic design overview

Binary digital logic circuits:

- Two voltage levels (ground and supply voltage) for 0 and 1
 - Built from transistors used as on/off switches
 - Digital logic with more than two states is not practical

Combinational logic: output depends only on the current inputs (no memory of past inputs)

Sequential logic: output depends on the current inputs as well as (some) previous inputs → requires "memory"

Inverter (or NOT gate): 1 input and 1 output "invert the input signal"

input ___output

Inverter (or NOT gate): 1 input and 1 output "invert the input signal"

$$OUT = \overline{IN}$$

AND gate: 2 inputs and 1 output
 "output 1 only if both inputs are 1"

$$IN_1$$
 OUT

IN_1	IN_2	OUT
0	0	0
0	1	0
1	0	0
1	1	1

$$OUT = IN_1 \cdot IN_2$$

OR gate: "output 1 if at least one input is 1"

$$IN_1$$
 OUT IN_2

IN_1	IN_2	OUT	
0	0	0	
0	1	1	$\mathbf{OUT} = \mathbf{IN}_1 + \mathbf{IN}_2$
1	0	1	
1	1	1	

• OR gate: "output 1 if at least one input is 1"

$$IN_1$$
 OUT IN_2

■ NOR gate: "output 1 if no input is 1" (NOT OR)

$$IN_1$$
 OUT IN_2

IN_1	IN_2	OUT	
0	0	1	
0	1	0	$\mathbf{OUT} = \mathbf{IN}_1 + \mathbf{IN}_2$
1	0	0	
1	1	0	

• AND gate: "output 1 if both inputs are 1"

$$OUT = IN_1 \cdot IN_2$$

■ NAND gate: "output 1 if both inputs are <u>not</u> 1" (NOT AND)

$$IN_1$$
 OUT IN_2

IN_1	IN_2	OUT	
0	0	1	OUT - IN IN
0	1	1	$\mathbf{OUT} = \overline{\mathbf{IN}_1 \cdot \mathbf{IN}_2}$
1	0	1	
1	1	0	

Multiple-input gates:

- Functional completeness:
 - Set of gates that is sufficient to express any boolean function
- Examples of functionally-complete sets of gates:
 - AND + OR + NOT
 - NAND
 - NOR

Multiplexer (mux)

Multiplexer: a circuit for selecting one of multiple inputs

$$\mathbf{z} = \begin{cases} \mathbf{i_0} & \text{iff } \mathbf{c} = \mathbf{0} \\ \mathbf{i_1} & \text{iff } \mathbf{c} = \mathbf{1} \end{cases}$$

c	$\mathbf{i_0}$	\mathbf{i}_1	Z
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

$$z = \overline{c}.i_0.\overline{i}_1 + \overline{c}.i_0.i_1 + c.\overline{i}_0.i_1 + c.i_0.i_1$$

$$= \overline{c}.i_0.(\overline{i}_1 + i_1) + c.(\overline{i}_0 + i_0).i_1$$

$$= \overline{c}.i_0 + c.i_1$$
 minimized

"sum of products form"

A multiplexer implementation

- Sum of products form: $i_1 \cdot c + i_0 \cdot \overline{c}$
 - Can be implemented with 1 inverter, 2 AND gates & 1 OR gate:

- Sum of products is not practical for circuits with large number of inputs (n)
 - The number of possible products can be proportional to 2ⁿ

Arithmetic circuits

32-bit adder

64 inputs → too complex for sum of products

- Idea: modularize!
 - Design a generic 1-bit adder block
 - Replicate it N number of times for an N-bit adder

Arithmetic circuits

32-bit adder

64 inputs → too complex for sum of products

• Full adder:

sum =
$$\overline{a}.\overline{b}.c + \overline{a}.\overline{b}.\overline{c} + a.\overline{b}.\overline{c} + a.b.c$$

carry = $b.c + a.c + a.b$

a	b	c	carry	sum
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Ripple carry adder

32-bit adder: chain of 32 full adders

- Carry bits c_i are computed in sequence c_1, c_2, \ldots, c_{32} (where $c_{32} = s_{32}$), as c_i depends on c_{i-1}
- Since sum bits s_i also depend on c_i, they too are computed in sequence

Propagation delays

- Propagation delay = time delay between input signal change and output signal change at the other end
- Delay depends on:
 - 1. technology (transistor parameters, wire capacitance, etc.)
 - 2. delay through each gate (function of gate type)
 - 3. number of gates driven by a gate's output (fan out)
- e.g.: 2-input mux: NOT \rightarrow AND \rightarrow OR \rightarrow 3 gate delays. Fast!
- What's the delay of a 32-bit ripple carry adder?
 - 65 gate delays → slow
 - AND2 + OR3 for each of 31 carries to propagate; followed by NOT + AND3 + OR4 for S_{31}

Combinational logic: summary

Combinational logic: output depends only on the current inputs

- Does not "remember" previous inputs or outputs

Memory is needed for more complex operations

Sequential logic circuits

- Output depends on current and (some of the) past inputs
 - The circuit has memory
- Sequences of inputs generate sequences of outputs ⇒
 Sequential logic

– With *n* feedback signals \rightarrow up to 2^n states

- Initial state: both IN and OUT are 0

- Initial state: both IN and OUT are 0
- Let's set IN to 1

- Initial state: both IN and OUT are 0
- Let's set IN to 1
 - OUT becomes 1

- Initial state: both IN and OUT are 0
- Let's set IN to 1
 - OUT and FB become 1

- Initial state: both IN and OUT are 0
- Let's set IN to 1
 - OUT and FB become 1
- Let's set IN to 0

- Initial state: both IN and OUT are 0
- Let's set IN to 1
 - OUT and FB become 1
- Let's set IN to 0
 - OUT does not change.

- Initial state: both IN and OUT are 0
- Let's set IN to 1
 - OUT and FB become 1
- Let's set IN to 0
 - OUT does not change. How to change OUT?

- Initial state: both IN and OUT are 0
- Let's set IN to 1
 - OUT and FB become 1
- Let's set IN to 0
 - OUT does not change. OUT will never change!

- Initial state: both IN and OUT are 0
- Let's set IN to 1
 - OUT and FB become 1
- Let's set IN to 0
 - OUT does not change. OUT will never change!

This circuit 'remembers' if there was 1 on IN Works only once, no reset. Not very practical.

A	В	A NOR
0	0	1
0	1	0
1	0	0
1	1	0

- 2 NOR gates
- $-OUT_1 = FB_{2}$; $OUT_2 = FB_1$

	A	В	B NOR
,	0	0	1
	0	1	0
	1	0	0
	1	1	0

- Initial state: IN₁, IN₂, OUT₂ are 0

A	В	B NOR
0	0	1
0	1	0
1	0	0
1	1	0

- Initial state: IN₁, IN₂, OUT₂ are 0
- Let's set IN_2 to 1

	A	В	A NOR
	0	0	1
	0	1	0
	1	0	0
	1	1	0
,			

- Initial state: IN₁, IN₂, OUT₂ are 0
- Let's set IN_2 to 1

A	В	A NOR
0	0	1
0	1	0
1	0	0
1	1	0

- Initial state: IN₁, IN₂, OUT₂ are 0
- Let's set IN_2 to 1
 - Nothing changes!

	A	В	A NOR	
	0	0	1	
	0	1	0	
	1	0	0	
	1	1	0	
,				

- Initial state: IN₁, IN₂, OUT₂ are 0
- Let's set IN_2 to 1
 - Nothing changes!
 - In this state, IN₂ does not affect anything

	A	В	E NOR
,	0	0	1
	0	1	0
	1	0	0
	1	1	0

- Initial state: IN₁, IN₂, OUT₂ are 0

A	В	A NOR
0	0	1
0	1	0
1	0	0
1	1	0

- Initial state: IN₁, IN₂, OUT₂ are 0
- Let's set IN_1 to 1

A	В	B NOR		
0	0	1		
0	1	0		
1	0	0		
1	1	0		

- Initial state: IN₁, IN₂, OUT₂ are 0
- Let's set IN_1 to 1

$$- OUT_1 => 0$$

	A	В	A NOR		
	0	0	1		
	0	1	0		
	1	0	0		
۰	1	1	0		

- Initial state: IN₁, IN₂, OUT₂ are 0
- Let's set IN_1 to 1
 - $OUT_1 => 0$
 - $FB_2 = > 0$

A	В	A NOR		
0	0	1		
0	1	0		
1	0	0		
1	1	0		

- Initial state: IN₁, IN₂, OUT₂ are 0
- Let's set IN_1 to 1
 - $OUT_1 => 0$
 - $FB_2 = > 0$
 - $-OUT_2 = > 1$

A	В	A NOR		
0	0	1		
0	1	0		
1	0	0		
1	1	0		

- Initial state: IN₁, IN₂, OUT₂ are 0
- Let's set IN_1 to 1

$$- OUT_1 => 0$$

$$- FB_2 = > 0$$

$$-OUT_2 = > 1$$

$$- FB_1 => 1$$

A	В	A NOR		
0	0	1		
0	1	0		
1	0	0		
1	1	0		

- Set IN₁ back to 0

- Initial state: IN₁, IN₂, OUT₂ are 0
- Let's set IN₁ to 1

$$- OUT_1 => 0$$

$$- FB_2 => 0$$

$$-OUT_2 => 1$$

$$- FB_1 => 1$$

A	В	A NOR		
0	0	1		
0	1	0		
1	0	0		
1	1	0		

- Initial state: IN₁, IN₂, OUT₂ are 0
- Let's set IN₁ to 1

$$- OUT_1 => 0$$

$$- FB_2 = > 0$$

$$-OUT_2 => 1$$

$$- FB_1 => 1$$

- Nothing changes!

- Initial state: IN₁, IN₂, OUT₂ are 0
- Let's set IN_1 to 1

$$- OUT_1 => 0$$

$$- FB_2 = > 0$$

$$-OUT_2 => 1$$

$$- FB_1 => 1$$

- Nothing changes!

- Two "mirrored" stable states

- Two "mirrored" stable states
- Setting one of the inputs to 1 changes the state

- Two "mirrored" stable states
- Setting one of the inputs to 1 changes the state
- Outputs are inverse of each other (OUT₁ = \overline{OUT}_2 = Q)

- Two "mirrored" stable states
- Setting one of the inputs to 1 changes the state
- Outputs are inverse of each other (OUT₁ = \overline{OUT}_2 = Q)

- Two "mirrored" stable states
- Setting one of the inputs to 1 changes the state
- Outputs are inverse of each other (OUT₁ = \overline{OUT}_2 = Q)

By setting one of the inputs, Q can be set to either 1 or 0

- Two "mirrored" stable states
- Setting one of the inputs to 1 changes the state
- Outputs are inverse of each other (OUT₁ = \overline{OUT}_2 = Q)

By setting one of the inputs, Q can be set to either 1 or 0

- Setting IN₁ to 1 *resets* the value Q (1 -> 0)
- Setting IN₂ to 1 sets the value Q (0 -> 1)

- Two "mirrored" stable states
- Setting one of the inputs to 1 changes the state
- Outputs are inverse of each other (OUT₁ = \overline{OUT}_2 = Q)

By setting one of the inputs, Q can be set to either 1 or 0

- Setting IN₁ to 1 *resets* the value Q $(1 \rightarrow 0)$
- Setting IN₂ to 1 sets the value Q $(0 \rightarrow 1)$

SR latch

S	R	\mathbf{Q}_{i}	— Previous value
0	0	Q_{i-1}	
0	1	0	inv=invalid
1	0	1	
1	1	inv	

Usage: 1-bit memory

- Keep the value in memory by maintaining S=0 and R=0
- Set the value in memory to 0 (or 1) by setting R=1 (or S=1) for a short time

- Asynchronous sequential logic
 - State (and possibly output) of circuit changes whenever inputs change

- Asynchronous sequential logic
 - State (and possibly output) of circuit changes whenever inputs change

- Asynchronous sequential logic
 - State (and possibly output) of circuit changes whenever inputs change

- Asynchronous sequential logic
 - State (and possibly output) of circuit changes whenever inputs change

- Asynchronous sequential logic
 - State (and possibly output) of circuit changes whenever inputs change

- Asynchronous sequential logic
 - State (and possibly output) of circuit changes whenever inputs change

- Asynchronous sequential logic
 - State (and possibly output) of circuit changes whenever inputs change

- Solution: Synchronous sequential logic
 - State (and possibly output) can only change at times synchronized to an external signal → the clock

Synchronous sequential logic

real output —

Synchronous sequential logic

Clocked SR latch

Some logic computes the data (1 bit)

We want to 'save' the data in an SR latch when the data is ready

Problem: glitches

Solution: add clock!

Clocked SR latch

Some logic computes the data (1 bit)

We want to 'save' the data in an SR latch when the data is ready Set Q to D when Clock is 1; Ignore D if Clock is 0

Clocked SR latch: D flip-flop

Using clock to build a memory element

Level-triggered D flip-flop: whenever clock is 1, D is propagated to Q

Using clock to build a memory element

- Level-triggered D flip-flop: whenever clock is 1, D is propagated to Q
- Edge-triggered D flip-flop: on a positive clock edge, D is propagated to Q

Register

- Tie multiple D flip-flops together using a common clock
- E.g., 4-bit register:

[PDF] 4-Bit D-Type Registers With 3-Stat www.ti.com/lit/gpn/SN74LS173A ▼
50 MHz description. The '173 and 'LS173A 4-bit regi

3-state outputs capable of driving highly capacitive.

General sequential logic circuit

Operation:

- At every rising clock edge, next state signals are propagated to current state signals
- Current state signals plus inputs work through combinational logic and generate output and next state signals

Hardware FSM

- A sequential circuit is a (deterministic) Finite State
 Machine FSM
- Example: Vending machine
 - Accepts 10p, 20p coins, sells one product costing 30p, no change given
 - Coin reader has 2 signals: a, b for 10p, 20p coins respectively. These are the inputs to our FSM $_{00}$
 - Output z asserted when 30p
 or more has been paid in

FSM implementation

Methodology:

- Choose encoding for states, e.g S0=00, ..., S3=11
- Build truth table for the next state s_1 ', s_0 ' and output z
- Generate logic equations for s_1' , s_0' , z
- Design comb logic from logic equations and add stateholding register

\mathbf{s}_1	$ \mathbf{s}_0 $	a	b	\mathbf{s}_{1}	$\mathbf{s_0}'$	Z
0	0	0	0	0	0	0
0	0	0	1	1	0	0
0	0	1	0	0	1	0
0	1	0	0	0	1	0
0	1	0	1	1	1	1
0	1	1	0	1	0	0
• • • • • •				• • •	• • • •	•