

# PETEE apoio acadêmico

Conteúdos

ELT084 - Dispositivos e Circuitos Eletrônicos Básicos Transistores







### **Transistores**





BJT



MOSFET

Página anterior



# **Transistores BJT**



Tipos de BJT



Modos de operação





# **Transistores BJT**







Tipos de MOSFET

Modos de operação

Modelos







Outros tópicos

BJT

# Tipos de BJT









BJT

# Modos de operação

Página inicial

### Corte



Nenhuma corrente flui, porque ambas as junções (diodos) estão polarizadas reversamente

### Ativo



É aquele usado se o transistor for operar como um amplificador, operação linear.

Modo Ativo

### Saturação



Para valores de Vcb abaixo de aproximadamente -0,4V, o BJT entra em

caturação

Saturação

# **Modo Ativo**

Página inicial



Corrente de coletor

$$i_C = I_S e^{v_{BE}/V_T}$$

Is: corrente de saturação

Ic é independente do valor de Vcb, ou seja, garantindo o coletor mais positivo que a base, a corrente sempre flui. Corrente de base

$$i_B = \frac{i_C}{\beta}$$

β é chamado de ganho de corrente de emissor comum.

Corrente de emissor

$$i_E = rac{eta+1}{eta}i_C$$

$$i_C = \alpha i_E$$
  $\alpha = \frac{\beta}{\beta + 1}$ 

α é chamado de ganho de corrente de base comum.

A saturação ocorre quando o transistor está completamente "ligado", e a corrente de coletor não aumenta mais significativamente, mesmo com o aumento da tensão entre coletor e emissor.



Como Ic/Ib de um transistor saturado pode ser configurado para qualquer valor desejado menor do que β ajustando Vbc, esse raio é conhecido como β forçado.

$$eta_{ ext{forced}} = \left. rac{i_C}{i_B} 
ight|_{ ext{saturation}} \leq eta$$

BJT

# **Modelos**

Página inicial

### **Grandes sinais**



Aplicado quando o transistor opera com sinais fortes, considerando comportamentos não lineares.

**Grandes Sinais** 

### Pequenos sinais



Utilizado para analisar circuitos com sinais fracos e variações lineares

Pequenos Sinais

Modelos

# Modelo de grandes sinais

Página inicial







### PNP





# Modelo de pequenos sinais

Página inicial

### Modelo T





$$g_m = I_C/V_T$$

$$r_e = \frac{V_T}{I_E} = \frac{\alpha}{g_m}$$

### Modelo $\pi$

OBS: ambos os modelos podem ser usados tanto para o NPN quanto para o PNP.





 $g_m = I_C/V_T$   $r_{\pi} = V_T/I_B = \beta/g_m$   $r_o = V_A/I_C$ 



Quando operam no modo ativo, BJTs práticos apresentam certa dependência da corrente de coletor com a tensão de coletor.

O resultado desse efeito no gráfico corrente de coletor x tensão coletor-base é que as linhas deixam de ser perfeitamente horizontais.

Quando extrapoladas, as linhas características se encontram em um ponto no eixo negativo de Vce, em Vce=-Va (Tensão de Early).

A inclinação não negativa das retas da curva corrente de coletor x tensão coletor-base indica que a resistência de saída vista do coletor não é infinita. Na verdade, ela é definida por:

$$r_o \equiv \left[ \left. \frac{\partial i_C}{\partial v_{CE}} \right|_{v_{BE} = \text{constant}} \right]^{-1}$$

A resistência de saída finita tem um efeito significativo no ganho de amplificadores transistorizados.

No modelo do transistor, a resistência de saída é modelada por uma resistência Ro colocada em paralelo com a fonte de corrente dependente.

Raramente é necessário incluir a dependência de Ic em Vce no projeto e análise de polarização DC realizados manualmente.



# Outros tópicos

Página inicial

### Tensão de ruptura

A tensão máxima que pode ser aplicada depende dos efeitos de ruptura nas junções EB e CB.

A medida que a corrente de base aumenta, a tensão de ruptura diminui.



# Dependência com a temperatura

Há uma faixa de temperatura na qual β é máximo.





# **Transistores MOSFET**

Página inicial



Tipos de MOSFET



Modos de operação



Modelos

**MOSFET** 

# Tipos de MOSFET





MOSFET

# Modos de operação

Página inicial



### Corte

Nenhuma corrente flui, porque **Vgs < Vth** 

### Triodo

É aquele usado se o transistor for operar como uma chave fechada.

Triodo

### Saturação

É aquele usado se o transistor for operar como um amplificador, operação linear.

Saturação

O transistor está neste modo caso a seguinte condição seja estabelecida:

$$v_{DS} < v_{OV}$$

Onde Vov = Vgs - Vth (para NMOS) ou Vov = Vsg -Vth (para PMOS). A corrente drenada pelo transistor pode ser expressa por:

$$i_D = k'_n \left(\frac{W}{L}\right) \left(v_{OV} - \frac{1}{2}v_{DS}\right) v_{DS}$$



# Saturação

Página inicial

O transistor está neste modo caso a seguinte condição seja estabelecida:

$$v_{DS} \geq v_{OV}$$

Onde Vov = Vgs - Vth (para NMOS) ou Vov = Vsg - Vth (para PMOS). A corrente drenada pelo transistor pode ser expressa por:

$$i_D = \frac{1}{2} k_n' \left(\frac{W}{L}\right) v_{OV}^2$$



**MOSFET** 

# **Modelos**

Página inicial

### **Grandes sinais**



Aplicado quando o transistor opera com sinais fortes, considerando comportamentos não lineares.

**Grandes Sinais** 

### Pequenos sinais



Utilizado para analisar circuitos com sinais fracos e variações lineares

**Pequenos Sinais** 

Modelos

# Modelo de grandes sinais

Página inicial

### **NMOS**



Obs: A expressão para o módulo da corrente Id depende do modo de operação do transistor

### **PMOS**

Para o transistor PMOS é utilizado o mesmo modelo, porém apresentando sentido das corrente invertida e o módulo da corrente é dado em função Vsg em vez de Vgs.

# Modelo de pequenos sinais

Página inicial

### Modelo T



OBS: ambos os modelos podem ser usados tanto para o NMOS quanto para o PMOS. No caso do PMOS a fonte de corrente ficará invertida

$$g_m = \mu_n C_{ox} \frac{W}{L} V_{OV} = \sqrt{2\mu_n C_{ox} \frac{W}{L} I_D} = \frac{2I_D}{V_{OV}}$$

### Modelo $\pi$



$$r_o = V_A/I_D = 1/\lambda I_D$$