Fiche d'exercices n°6

Exercice 1. On reprend les données du cours sur la dépendance entre la vitesse et la distance de freinage d'un véhicule. Ayant constaté que le modèle linéaire $Y_i = \beta_1 x_i + \beta_0 + \varepsilon_i$ n'est pas pertinent à cause d'une ordonnée à l'origine estimée négative, on propose d'imposer à la droite des moindres carrés de passer par l'origine. On va donc considérer le modèle linéaire suivant :

$$\forall i \in \{1, \dots, n\}, Y_i = \beta x_i + \varepsilon_i$$

où les ε_i sont indépendantes et de même loi normale $\mathcal{N}(0, \sigma^2)$.

- 1. Déterminer l'estimateur des moindres carrés $\hat{\beta}$ de β . En donner une expression sous forme de combinaison linéaire des Y_i et une autre comme une fonction de C_{xY} , s_x^2 , \bar{x}_n et \bar{Y}_n .
- 2. Montrer que $\hat{\beta}$ est un estimateur sans biais et convergent de β . Donner sa loi de probabilité.
- 3. Calculer l'erreur quadratique moyenne minimale. Déterminer son espérance. En déduire un estimateur sans biais $\hat{\sigma}^2$ de σ^2 . On admettra que $(n-1)\frac{\hat{\sigma}^2}{\sigma^2}$ est de loi χ^2_{n-1} et est indépendant de $\hat{\beta}$.
- 4. Déterminer les estimateurs de maximum de vraisemblance de β et σ^2 .
- 5. Donner des intervalles de confiance de seuil α pour β et σ^2 .
- 6. Sur les données de l'exemple, calculer $\hat{\beta}$ et $\hat{\sigma}^2$. Donner des intervalles de confiance de seuil 5% pour β et σ^2 .