1 Complementi

1.1 Spazi euclidei

Analogia tra nozione di sistema di riferimento nel piano e base di uno spazio vettoriale; nella definizione di sistema di riferimento nel piano, è inclusa una condizione di perpendicolarità tra gli assi del piano ed è introdotta un'unità di misura e conseguentemente il concetto di lunghezza. Viene introdotto il concetto di base ortonormale, analogo a quello di sistema di riferimento nel piano, generalizzato per ogni spazio vettoriale finora studiato.

Definizione 1 (Prodotto scalare). Fissato il campo $\mathbb{K} = \mathbb{R}, \mathbb{C}$ e considerato lo spazio vettoriale \mathcal{V} di dimensione finita, si dice *prodotto scalare* su \mathcal{V} la funzione

$$f: \mathcal{V} \times \mathcal{V} \to \mathbb{K}$$

$$(\mathbf{v}, \mathbf{w}) \mapsto \langle \mathbf{v}, \mathbf{w} \rangle$$

$$(1)$$

che associa ad una coppia di vettori un termine numerico appartenente a \mathbb{K} , in modo da soddisfare le seguenti proprietà:

PS1
$$\forall_{\mathbf{v},\mathbf{w},\mathbf{u}\in\mathcal{V}} \quad \forall_{a,b\in K} \langle a\mathbf{v} + b\mathbf{w}, \mathbf{u} \rangle = a\langle \mathbf{v}, \mathbf{u} \rangle + b\langle \mathbf{w}, \mathbf{u} \rangle.$$

$$PS2 \langle \mathbf{u}, \mathbf{v} \rangle = \overline{\langle \mathbf{v}, \mathbf{u} \rangle}.$$

Promemoria. Dato $z=a+ib\in\mathbb{C},$ si dice *coniugato* di z il numero $\bar{z}=a-ib;$ di fatto, si ha che $\Im z=-\Im \bar{z}.$ Se $z=\bar{z},$ si ha

$$z - \overline{z} = 0$$

$$a + ib - (a - ib) = 0$$

$$2ib = 0 \implies b = 0$$

Essendo $b = \Im z = 0$, ne segue che $z \in \mathbb{R}$.

PS3
$$\langle \mathbf{u}, \mathbf{u} \rangle \geq 0$$
; inoltre, $\langle \mathbf{u}, \mathbf{u} \rangle = 0 \iff \mathbf{u} = \mathbf{0}_{\mathcal{V}}$.

Osservazione. Per (PS2), si ha che $(\langle \mathbf{u}, \mathbf{u} \rangle = \overline{\langle \mathbf{u}, \mathbf{u} \rangle}) = \langle \mathbf{u}, \mathbf{u} \rangle$, da cui segue che $\langle \mathbf{u}, \mathbf{u} \rangle \in \mathbb{R}$. Ciò consente di affermare che è possibile stabilire una relazione di ordine tra $\langle \mathbf{u}, \mathbf{u} \rangle$ e lo zero, azione non compibile se esso fosse appartenuto al campo complesso.

Definizione del prodotto scalare in \mathbb{R} e in \mathbb{C} Vediamo ora come viene definito il prodotto scalare a seconda che lo spazio vettoriale sia fissato sul campo dei reali o sul campo complesso.

Campo dei reali Sia $\mathcal{V}:=\mathbb{R}^n$ lo spazio vettoriale fissato su \mathbb{R} . Si ha

$$\langle \mathbf{v}, \mathbf{w} \rangle = \langle (v_1, \dots, v_n), (w_1, \dots, w_n) \rangle := \sum_{i=1}^n v_i w_i \in \mathbb{R}$$
 (2)

Il prodotto scalare in $\mathbb R$ viene detto prodotto scalare standard e verifica le proprietà del prodotto scalare:

PS1 È correttamente verificata, infatti

$$\langle a\mathbf{v} + b\mathbf{w}, \mathbf{u} \rangle = \langle (av_1 + bw_1, \dots, av_n + bw_n), (u_1, \dots, u_n) \rangle$$

$$= (av_1 + bw_1)u_1 + \dots + (av_n + bw_n)u_n$$

$$= av_1u_1 + \dots + av_nu_n + bw_1u_1 + \dots + bw_nu_n$$

$$= a\langle \mathbf{v}, \mathbf{u} \rangle + b\langle \mathbf{w}, \mathbf{u} \rangle$$

PS2 $\langle \mathbf{v}, \mathbf{w} \rangle \in \mathbb{R} = \overline{\langle \mathbf{w}, \mathbf{v} \rangle} \in \mathbb{R} = \langle \mathbf{w}, \mathbf{v} \rangle \in \mathbb{R}$, vero per la commutatività del prodotto in \mathbb{R} . Difatti, $v_1 w_1 + \cdots + v_n w_n = w_1 v_1 + \cdots + w_n v_n$.

PS3 $\langle \mathbf{v}, \mathbf{v} \rangle = v_1^2 + \dots + v_n^2 \ge 0$ è vera, essendo una somma di quadrati. Inoltre, $\langle \mathbf{v}, \mathbf{v} \rangle = 0$ se e solo se $u_1 = \dots = u_n = 0$, ovvero $\mathbf{u} = \mathbf{0}_{\mathbb{R}^n}$.

Campo complesso Sia \mathcal{V} lo spazio vettoriale fissato su \mathbb{C} . Si ha

$$\langle \mathbf{v}, \mathbf{w} \rangle := v_1 \bar{w}_1 + \dots + v_n \bar{w}_n \tag{3}$$

Promemoria. Sia $z \in \mathbb{C}$. Allora, $z\bar{z} = (a-ib)(a+ib) = a^2 - i^2b^2 = a^2 + b^2 \in \mathbb{R}$

Definizione 2 (Spazio euclideo). Si dice *spazio euclideo* uno spazio vettoriale \mathcal{V} su $\mathbb{K} = \mathbb{R}, \mathbb{C}$ su cui è definito un prodotto scalare. Esso viene denotato con la simbologia $(\mathcal{V}, \langle , \rangle)$.

Definizione 3 (Norma). Dato lo spazio euclideo $(\mathcal{V}, \langle, \rangle)$ e il vettore $\mathbf{v} \in \mathcal{V}$, si dice *norma* di \mathbf{v} il numero

$$\|\mathbf{v}\| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle} \tag{4}$$

Nel caso in cui $\|\mathbf{v}\| = 1$, \mathbf{v} viene detto *versore*.

Definizione 4 (vettore normalizzato). Dato il vettore $\mathbf{v} \in \mathcal{V}$, si dice normalizzato di \mathbf{v} il vettore

$$\frac{\mathbf{v}}{\|\mathbf{v}\|} = \frac{1}{\|\mathbf{v}\|} \cdot \mathbf{v} \tag{5}$$

Osservazione. Un vettore normalizzato è anche un versore. Infatti:

$$\left\| \frac{\mathbf{v}}{\|\mathbf{v}\|} \right\| = \frac{1}{\|\mathbf{v}\|} \cdot \|\mathbf{v}\| = 1$$

Esempio 1. Sia considerato il vettore $(v_1, v_2) \in \mathbb{R}^2$. La sua norma è

$$||(v_1, v_2)|| = \sqrt{v_1^2 + v_2^2}$$

Nota: la norma di un vettore misura la sua lunghezza!

Teorema 1 (Disuguaglianza di Cauchy-Schwarz). Dato lo spazio euclideo V, è valida la relazione

$$|\langle \mathbf{u}, \mathbf{v} \rangle| \le \|\mathbf{u}\| \cdot \|\mathbf{v}\| \tag{6}$$

Dimostrazione. Si consideri il caso in cui $\mathbf{v} = \mathbf{0}_{\mathcal{V}}$. Allora, si ha

$$\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{u}, \mathbf{0}_{\mathcal{V}} \rangle = 0$$

Infatti, per (PS2), $\langle \mathbf{u}, \mathbf{0}_{\mathcal{V}} \rangle = \overline{\langle \mathbf{0}_{\mathcal{V}}, \mathbf{u} \rangle} = \overline{\langle \mathbf{0}_{\mathbf{w}}, \mathbf{u} \rangle}$; per (PS1), $\overline{\langle \mathbf{0}_{\mathbf{w}}, \mathbf{u} \rangle} = \overline{0 \langle \mathbf{w}, \mathbf{u} \rangle} = \overline{0} = 0$. Quindi, considerando $\|\mathbf{v}\|$, si ha

$$\|\mathbf{v}\| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle} = \sqrt{\langle \mathbf{0}_{\mathcal{V}}, \mathbf{0}_{\mathcal{V}} \rangle} = \sqrt{0} = 0.$$

Ne risulta che 0 < 0, e quindi la relazione è banalmente vera.

Si consideri $\mathbf{v} \neq \mathbf{0}_{\mathcal{V}}$. La norma di \mathbf{v} è sicuramente positiva, essendo una radice quadrata di somma di termini non nulli al quadrato. Considerando la disequazione

$$\|\mathbf{u} - \langle \mathbf{u}, \mathbf{v} \rangle t \mathbf{v}\|^2 \ge 0 \quad t \in \mathbb{K}$$
 (7)

si ha

$$\|\mathbf{u} - \langle \mathbf{u}, \mathbf{v} \rangle t \mathbf{v}\|^2 = \langle \mathbf{u} - \langle \mathbf{u}, \mathbf{v} \rangle t \mathbf{v}, \mathbf{u} - \langle \mathbf{u}, \mathbf{v} \rangle t \mathbf{v} \rangle \tag{8}$$

avendo utilizzato la definizione di norma,

$$\langle \mathbf{u} - \langle \mathbf{u}, \mathbf{v} \rangle t \mathbf{v}, \mathbf{u} - \langle \mathbf{u}, \mathbf{v} \rangle t \mathbf{v} \rangle \stackrel{PS1}{=} \langle \mathbf{u}, \mathbf{u} - \langle \mathbf{u}, \mathbf{v} \rangle t \mathbf{v} \rangle - \langle \mathbf{u}, \mathbf{v} \rangle t \langle \mathbf{v}, \mathbf{u} - \langle \mathbf{u}, \mathbf{v} \rangle t \mathbf{v} \rangle$$
(9)
$$\stackrel{PS2}{=} \overline{\langle \mathbf{u} - \langle \mathbf{u}, \mathbf{v} \rangle t \mathbf{v}, \mathbf{u} \rangle} - \langle \mathbf{u}, \mathbf{v} \rangle t \overline{\langle \mathbf{u} - \langle \mathbf{u}, \mathbf{v} \rangle t \mathbf{v}, \mathbf{v} \rangle}$$
(10)

applicando PS1 si ottiene

$$\overline{\langle \mathbf{u}, \mathbf{u} \rangle - \langle \mathbf{u}, \mathbf{v} \rangle t \langle \mathbf{v}, \mathbf{u} \rangle} - \left(\langle \mathbf{u}, \mathbf{v} \rangle t \overline{\langle \mathbf{u}, \mathbf{v} \rangle} - \langle \mathbf{u}, \mathbf{v} \rangle \overline{\langle \mathbf{u}, \mathbf{v} \rangle} t t \overline{\langle \mathbf{v}, \mathbf{v} \rangle} \right)$$
(11)

applicando nuovamente PS2 si ottiene

$$\langle \mathbf{u}, \mathbf{u} \rangle - \overline{t} \overline{\langle \mathbf{u}, \mathbf{v} \rangle} \langle \mathbf{u}, \mathbf{v} \rangle - \langle \mathbf{u}, \mathbf{v} \rangle t \langle \mathbf{v}, \mathbf{u} \rangle + \langle \mathbf{u}, \mathbf{v} \rangle \overline{\langle \mathbf{u}, \mathbf{v} \rangle} t \overline{t} \langle \mathbf{v}, \mathbf{v} \rangle$$
 (12)

Nel caso in cui $t \in \mathbb{R}$ si ha

$$t = \bar{t} \tag{13}$$

da cui, sfruttando anche la definizione di norma, si ha

$$\|\mathbf{u}\|^{2} - t\overline{\langle \mathbf{u}, \mathbf{v} \rangle} \langle \mathbf{u}, \mathbf{v} \rangle - t\overline{\langle \mathbf{u}, \mathbf{v} \rangle} \langle \mathbf{u}, \mathbf{v} \rangle + t^{2}\overline{\langle \mathbf{u}, \mathbf{v} \rangle} \langle \mathbf{u}, \mathbf{v} \rangle \|\mathbf{v}\|^{2}$$
(14)

sfruttando la relazione $z\bar{z}=z^2$ si ottiene

$$\|\mathbf{u}\|^2 - 2t|\langle \mathbf{u}, \mathbf{v} \rangle|^2 + |\langle \mathbf{u}, \mathbf{v} \rangle|^2 t^2 \|\mathbf{v}\|^2$$
(15)

La disequazione (7) può essere riscritta come

$$\|\mathbf{u}\|^2 - 2t|\langle \mathbf{u}, \mathbf{v} \rangle|^2 + |\langle \mathbf{u}, \mathbf{v} \rangle|^2 t^2 \|\mathbf{v}\|^2 \ge 0$$
(16)

Ponendo $t = \frac{1}{\|\mathbf{v}\|^2}$ in (15) si ottiene

$$\|\mathbf{u}\|^2 - 2\frac{|\langle \mathbf{u}, \mathbf{v} \rangle|^2}{\|\mathbf{v}\|^2} + |\langle \mathbf{u}, \mathbf{v} \rangle|^2 \left(\frac{1}{\|\mathbf{v}\|^2}\right)^2 \|\mathbf{v}\|^2$$
(17)

 $\|\mathbf{u}\|^2 - 2\frac{|\langle \mathbf{u}, \mathbf{v} \rangle|^2}{\|\mathbf{v}\|^2} + \frac{|\langle \mathbf{u}, \mathbf{v} \rangle|^2}{\|\mathbf{v}\|^2}$ (18)

$$\|\mathbf{u}\|^2 - \frac{|\langle \mathbf{u}, \mathbf{v} \rangle|^2}{\|\mathbf{v}\|^2} \tag{19}$$

Sostituendo in (7) si ottiene

$$\|\mathbf{u}\|^2 - \frac{|\langle \mathbf{u}, \mathbf{v} \rangle|^2}{\|\mathbf{v}\|^2} \ge 0 \tag{20}$$

da cui

$$|\langle \mathbf{u}, \mathbf{v} \rangle|^2 \le \|\mathbf{u}\|^2 \|\mathbf{v}\|^2 \tag{21}$$

e quindi

$$|\langle \mathbf{u}, \mathbf{v} \rangle| \le \|\mathbf{u}\| \|\mathbf{v}\|$$

1.2 Ortogonalità

Definizione 5 (Vettori ortogonali). Dato lo spazio euclideo $(\mathcal{V}, \langle, \rangle)$, i vettori $\mathbf{v}, \mathbf{w} \in \mathcal{V}$ si dicono *ortogonali* se $\langle \mathbf{v}, \mathbf{w} \rangle = 0$ e si dicono *ortogonali* se sono ortogonali di norma 1.

Esempio 2. Considerato $(\mathbb{R}^2, \langle , \rangle, (1,0) \in (0,1)$ sono ortonormali. Infatti:

$$\langle (1,0), (0,1) \rangle = 1 \cdot 0 + 0 \cdot 1 = 0 \tag{22}$$

$$||(1,0)|| = \sqrt{1^2 + 0^2} = 1 \tag{23}$$

$$||(0,1)|| = \sqrt{0^2 + 1^2} = 1 \tag{24}$$

(*disegno: piano cartesiano con vettori della base canonica*)

Teorema 2 (Gram-Schmidt). Sia V uno spazio euclideo. Allora, esiste una base ortonormale per V, ovvero una base formata da vettori a due a due ortogonali di norma 1.

Esempio 3. Considerato lo spazio euclideo $(\mathbb{R}^n, \langle, \rangle)$, la base canonica $\mathcal{C} = (\mathbf{e_1}, \dots, \mathbf{e_n})$ è una base ortonormale.

Per dimostrare il teorema di Gram-Schmidt, ci si avvarrà dell'uso del seguente lemma.

Lemma. Dato lo spazio euclideo \mathcal{V} e l'insieme $\{\mathbf{u_1}, \dots, \mathbf{u_r}\}$ i cui vettori sono ortonormali in \mathcal{V} , i vettori $\mathbf{u_1}, \dots, \mathbf{u_r}$ sono linearmente indipendenti e per ogni $\mathbf{v} \in \mathcal{V}$

$$\mathbf{w} = \mathbf{v} - \sum_{i=1}^{r} \langle \mathbf{v}, \mathbf{u_i} \rangle \mathbf{u_i}$$
 (25)

è ortogonale a tutti i vettori di $\{ u_1, \dots, u_r \}$.

Dimostrazione. Si consideri la combinazione lineare

$$a_1 \mathbf{u_1} + \dots + a_r \mathbf{u_r} = \mathbf{0}_{\mathcal{V}} \tag{26}$$

Considerato il vettore $\mathbf{u_i}$ tale che $i=1,\ldots,r$, si consideri il prodotto scalare di ciascun membro dell'uguaglianza per $\mathbf{u_i}$:

$$\langle (a_1 \mathbf{u_1} + \dots + a_r \mathbf{u_r}), \mathbf{u_i} \rangle = \langle \mathbf{0}_{\mathcal{V}}, \mathbf{u_i} \rangle$$
 (27)

Applicando PS1 e notando che il prodotto scalare di qualunque vettore contro il vettore nullo è pari a 0, si ottiene

$$a_1\langle \mathbf{u_1}, \mathbf{u_i}\rangle + \dots + a_i\langle \mathbf{u_i}, \mathbf{u_i}\rangle + \dots + a_r\langle \mathbf{u_r}, \mathbf{u_i}\rangle = 0$$
 (28)

Essendo per ipotesi i vettori di $\{u_1, \ldots, u_r\}$ tra loro ortonormali, ne risulta che il loro prodotto scalare è uguale a 0 tranne nel caso $\langle u_i, u_i \rangle$: qui, avendo u_i norma 1 in quanto ortonormale, si ha che

$$\langle \mathbf{u_i}, \mathbf{u_i} \rangle = \|\mathbf{u_i}\|^2 = 1^2 = 1. \tag{29}$$

Perciò, si ha che

$$a_i = 0 (30)$$

Essendo questo vero per ogni i = 1, ..., r, ne segue che i vettori $\mathbf{u_1}, ..., \mathbf{u_r}$ sono tra loro linearmente indipendenti.

Verifichiamo che $\forall_{i \in 1...r} \langle \mathbf{w}, \mathbf{u_i} \rangle = 0.$

$$\langle \mathbf{w}, \mathbf{u_i} \rangle = \langle \mathbf{v} - \sum_{i=1}^r \langle \mathbf{v}, \mathbf{u_i} \rangle \mathbf{u_i}, \mathbf{u_i} \rangle$$
 (31)

Per PS1 si ha che $\langle \mathbf{v} - \sum_{i=1}^{r} \langle \mathbf{v}, \mathbf{u_i} \rangle \mathbf{u_i}, \mathbf{u_i} \rangle$ è uguale a

$$\langle \mathbf{v}, \mathbf{u_i} \rangle - \langle \mathbf{v}, \mathbf{u_i} \rangle \langle \mathbf{u_1}, \mathbf{u_i} \rangle - \dots - \langle \mathbf{v}, \mathbf{u_i} \rangle \langle \mathbf{u_i}, \mathbf{u_i} \rangle - \dots - \langle \mathbf{v}, \mathbf{u_i} \rangle \langle \mathbf{u_r}, \mathbf{u_i} \rangle$$
 (32)

Per le stesse considerazioni del passo precedente, si giunge a

$$\langle \mathbf{v}, \mathbf{u_i} \rangle - \langle \mathbf{v}, \mathbf{u_i} \rangle = 0$$
 (33)

Pertanto, w risulta essere ortogonale a $\mathbf{u_i}$ per ogni $i = 1, \dots, r$.

Dimostriamo Gram-Schmidt.

Dimostrazione. Si consideri la base $\{b_1, \ldots, b_n\}$ dello spazio vettoriale \mathcal{V} . Per induzione su n.

n=2 Si definiscano

$$\begin{cases}
\mathbf{v}_{1} = \frac{\mathbf{b}_{1}}{\|\mathbf{b}_{1}\|} \\
\mathbf{w}_{2} = \mathbf{b}_{2} - \langle \mathbf{b}_{2}, \mathbf{v}_{1} \rangle \mathbf{v}_{1} \\
\mathbf{v}_{2} = \frac{\mathbf{w}_{2}}{\|\mathbf{w}_{2}\|}
\end{cases} (34)$$

Il vettore $\mathbf{v_1}$, essendo normalizzato di $\mathbf{b_1}$, ha norma unitaria ed è linearmente indipendente. Per il lemma precedentemente enunciato, $\mathbf{w_2}$ è ortogonale a $\mathbf{v_1}$; inoltre, essendo $\mathbf{v_2}$ definito come il normalizzato di $\mathbf{w_2}$, esso è ortonormale a $\mathbf{v_1}$.

 $n-1 \leadsto n$ Riprendendo il punto precedente, si definiscano

$$\begin{cases} \mathbf{w_n} = \mathbf{b_n} - \langle \mathbf{b_n}, \mathbf{v_{n-1}} \rangle \mathbf{v_{n-1}} \\ \mathbf{v_n} = \frac{\mathbf{w_n}}{\|\mathbf{w_n}\|} \end{cases}$$
(35)

Per il lemma precedentemente enunciato, $\mathbf{w_n}$ è ortogonale a $\mathbf{v_1}, \dots, \mathbf{v_{n-1}}$; inoltre, $\mathbf{v_n}$, essendo normalizzato di $\mathbf{w_n}$, è ortonormale a $\mathbf{v_1}, \dots, \mathbf{v_{n-1}}$. Essendo $\mathbf{v_1}, \dots, \mathbf{v_n}$ linearmente indipendenti fra loro, l'insieme $\{\mathbf{v_1}, \dots, \mathbf{v_n}\}$ costituisce una base di vettori ortonormali per \mathcal{V} .

Esempio 4. Sia $\mathcal{V}=(\mathbb{R}^4,\langle,\rangle)$. Dalla definizione di prodotto scalare standard, dati $\mathbf{v},\mathbf{w}\in\mathbb{R}^4$ si ha

$$\langle (v_1, v_2, v_3, v_4), (w_1, w_2, w_3, w_4) \rangle = \sum_{i=1}^4 v_i w_i$$

Si consideri ora $W = \mathcal{L}((1,1,1,1),(0,1,2,3))$. Come è possibile trovare una base ortonormale per W?

Soluzione. I vettori ${\bf v}$ e ${\bf w}$ sono linearmente indipendenti: difatti, considerati come vettori-riga di una matrice, essi formano una matrice ridotta. Tuttavia, essi non sono ortogonali in quanto il loro prodotto scalare non è nullo. Consideriamo il vettore

$$\mathbf{b} = \frac{\mathbf{v}}{\|\mathbf{v}\|} = (1,1,1,1) \cdot \frac{1}{\sqrt{1^2 + 1^2 + 1^2 + 1^2}} = (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2})$$

Essendo normalizzato di \mathbf{v} , è verificabile che \mathbf{b} ha norma unitaria. Utilizzando (25), si definisca

$$\begin{split} \mathbf{d} &= (0,1,2,3) - \langle (0,1,2,3), (\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}) \rangle (\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}) = \\ &= (0,1,2,3) - 3(\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}) = (-\frac{3}{2},-\frac{1}{2},\frac{1}{2},\frac{3}{2}) \end{split}$$

I vettori ${\bf b}$ e ${\bf d}$ sono ortogonali, ma ${\bf d}$ non è ortogonale, non avendo norma unitaria. Si definisca

$$\mathbf{c} = \frac{\mathbf{d}}{\|\mathbf{d}\|} = (-\frac{3}{2}, -\frac{1}{2}, \frac{1}{2}, \frac{3}{2}) \cdot \frac{1}{\sqrt{\frac{9}{4} + \frac{1}{4} + \frac{1}{4} + \frac{9}{4}}} = (-\frac{3}{2}, -\frac{1}{2}, \frac{1}{2}, \frac{3}{2}) \cdot \frac{1}{\sqrt{5}}$$

Per Gram-Schmidt, l'insieme $\left\{ \left(\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right), \left(-\frac{3}{2\sqrt{5}},-\frac{1}{2\sqrt{5}},\frac{1}{2\sqrt{5}},\frac{3}{2\sqrt{5}}\right) \right\}$ costituisce una base per W.

Proprietà delle basi ortonormali. Considerati lo spazio euclideo $(\mathcal{V}, \langle, \rangle)$ e la base ortonormale $\mathcal{B} = (\mathbf{b_1}, \dots, \mathbf{b_n})$, valgono le seguenti proprietà:

1. Per ogni $\mathbf{v} \in \mathcal{V}$ si ha

$$\mathbf{v} = \langle \mathbf{v}, \mathbf{b_1} \rangle \mathbf{b_1} + \dots + \langle \mathbf{v}, \mathbf{b_n} \rangle \mathbf{b_n} = \sum_{i=1}^{n} \langle \mathbf{v}, \mathbf{b_i} \rangle \mathbf{b_i}$$
 (36)

Dimostrazione. Il vettore \mathbf{v} , appartenendo allo spazio \mathcal{V} , è esprimibile come combinazione lineare dei vettori di \mathcal{B} :

$$\mathbf{v} = \sum_{i=1}^{n} a_i \mathbf{b_i}$$

con a_1, \ldots, a_n scalari appartenenti al campo su cui è definito \mathcal{V} . Ora, applicando all'uguaglianza il prodotto scalare per un vettore $\mathbf{b_i} \in \mathcal{B}$, si ottiene

$$\langle \mathbf{v}, \mathbf{b_i} \rangle = \langle \sum_{i=1}^n a_i \mathbf{b_i}, \mathbf{b_i} \rangle \stackrel{PS1}{=} \sum_{i=1}^n a_j \langle \mathbf{b_j}, \mathbf{b_i} \rangle$$

Essendo \mathcal{B} base composta da vettori ortonormali, ne segue che per $i \neq j$ i prodotti scalari $\langle \mathbf{b_j}, \mathbf{b_i} \rangle$ per ortogonalità dei vettori, mentre $\langle \mathbf{b_i}, \mathbf{b_i} \rangle$ è uguale a 1, essendo $\langle \mathbf{b_j}, \mathbf{b_i} \rangle = ||\mathbf{b_i}||^2$, per ortonormalità. Quindi, si ottiene

$$\langle \mathbf{v}, \mathbf{b_i} \rangle = \sum_{j=1}^n \mathbf{b_j} \mathbf{b_i} = a_i \implies \mathbf{v} = \sum_{i=1}^n a_i \mathbf{b_i} = \sum_{i=1}^n \langle \mathbf{v}, \mathbf{b_i} \rangle \mathbf{b_i}$$

2. Sia $T \in \text{End}(\mathcal{V})$ un endomorfismo di matrice associata nella base \mathcal{B} corrispondente a $M_{\mathcal{B}}(T) = A = [a_{ij}]$. Allora,

$$a_{ij} = \langle T(\mathbf{b_j}), \mathbf{b_i} \rangle$$
 (37)

Dimostrazione. Per definizione di matrice associata, si ha

$$M_{\mathcal{B}}(T) = \left(T(\mathbf{b_1}) \mid \dots \mid T(\mathbf{b_j}) \mid \dots \mid T(\mathbf{b_n}) \right)$$

Richiamando la proprietà precedentemente dimostrata, è possibile affermare che

$$T(\mathbf{b_j}) = \sum_{i=1}^{n} \langle T(\mathbf{b_j}), \mathbf{b_i} \rangle \mathbf{b_i}$$

Quindi, la matrice associata a T nella base $\mathcal B$ avrà forma

L'elemento di riga *i*-esima e colonna *j*-esima corrisponde a $\langle T(\mathbf{b_i}), \mathbf{b_i} \rangle$. \square

Definizione 6 (Complemento ortogonale). Sia \mathcal{V} uno spazio euclideo e sia W un sottospazio vettoriale di \mathcal{V} . Si dice complemento ortogonale di W l'insieme

$$W^{\perp} = \{ \mathbf{v} \in \mathcal{V} : \langle \mathbf{v}, \mathbf{w} \rangle = 0 \quad \forall \mathbf{w} \in W \}$$
 (38)

Lemma. W^{\perp} è sottospazio vettoriale di V.

Dimostrazione. 1. L'appartenenza dell'elemento nullo è verificata. Infatti, per ogni $\mathbf{w} \in W$

$$\langle \mathbf{0}_{\mathcal{V}}, \mathbf{w} \rangle = 0$$

2. Si considerino $\mathbf{v_1}, \mathbf{v_2} \in W^{\perp}$. Per definizione,

$$\langle \mathbf{v_1}, \mathbf{w} \rangle = 0 \quad \langle \mathbf{v_2}, \mathbf{w} \rangle = 0 \quad \forall \mathbf{w} \in W$$

La chiusura rispetto alla somma è verificata, infatti

$$\langle \mathbf{v_1} + \mathbf{v_2}, \mathbf{w} \rangle \stackrel{PS1}{=} \langle \mathbf{v_1}, \mathbf{w} \rangle + \langle \mathbf{v_2}, \mathbf{w} \rangle = 0 + 0 = 0 \implies \mathbf{v_1} + \mathbf{v_2} \in W^{\perp}$$

3. Si considerino $\mathbf{v} \in W^{\perp}$ e lo scalare $\lambda \in \mathbb{K}$. La chiusura rispetto al prodotto per scalare è verificata, infatti

$$\langle \lambda \mathbf{v}, \mathbf{w} \rangle \stackrel{PS1}{=} \lambda \langle \mathbf{v}, \mathbf{w} \rangle = \lambda \cdot 0 = 0 \implies \lambda \mathbf{v} \in W^{\perp}$$

Proposizione 1. Sia V uno spazio euclideo e sia W un suo sottospazio vettoriale. Allora,

$$\mathcal{V} = W + W^{\perp} \tag{39}$$

Dimostrazione. Sia $\mathcal{B} = \{ \mathbf{b_1}, \dots, \mathbf{b_k} \}$ una base ortonormale di W. Come conseguenza del lemma di Steinitz, è possibile completarla ad una base di \mathcal{V} , corrispondente a

$$\mathcal{B}' = \{ \mathbf{b_1}, \dots, \mathbf{b_k}, \mathbf{v_{k+1}}, \dots, \mathbf{v_n} \}$$

L'ortonormalità di questa base non è garantita. Applicando il processo di ortogonalizzazione di Gram-Schmidt (= teorema) ai vettori $\mathbf{v_{k+1}}, \dots, \mathbf{v_n}$, è possibile ottenere la base ortonormale di $\mathcal V$

$$\mathcal{B}'' = \{\ \mathbf{b_1}, \dots, \mathbf{b_k}, \mathbf{b_{k+1}}, \dots, \mathbf{b_n}\ \}$$

Essendo \mathcal{B}'' ottenuta a partire da \mathcal{B}' base di \mathcal{V} , è possibile esprimere $\mathbf{v} \in \mathcal{V}$ come combinazione lineare dei vettori di \mathcal{B}'' :

$$\mathbf{v} = \underbrace{a_1 \mathbf{b_1} + \dots + a_k \mathbf{b_k}}_{\in W} + \underbrace{a_{k+1} \mathbf{b_{k+1}} + \dots + a_n \mathbf{b_n}}_{\in W^{\perp}}$$

Affermare che $a_{k+1}\mathbf{b_{k+1}} + \cdots + a_n\mathbf{b_n} \in W^{\perp}$ è lecito: infatti, per ogni $\mathbf{w} \in W$, si ha

$$\langle a_{k+1}\mathbf{b_{k+1}} + \dots + a_n\mathbf{b_n}, \mathbf{w} \rangle = \langle a_{k+1}\mathbf{b_{k+1}} + \dots + a_n\mathbf{b_n}, a_1\mathbf{b_1} + \dots + a_k\mathbf{b_k} \rangle = 0$$

Questo è dovuto al fatto che tutti i vettori di \mathcal{B}'' sono ortogonali fra loro (infatti, quest'ultima uguaglianza è facilmente verificabile, svolgendo i calcoli).

1.3 Operatori aggiunti

Definizione 7 (Operatore aggiunto). Sia \mathcal{V} uno spazio euclideo e sia $T \in \operatorname{End}(\mathcal{V})$. Si dice che l'operatore T possiede un operatore aggiunto $T^* \in \operatorname{End}(\mathcal{V})$ se per ogni $\mathbf{u}, \mathbf{v} \in \mathcal{V}$ si ha

$$\langle T(\mathbf{u}), \mathbf{v} \rangle = \langle \mathbf{u}, T^*(\mathbf{v}) \rangle$$
 (40)

Come è definito l'endomorfismo T^* ?

Osservazione. Sia $\mathcal{B} = \{\mathbf{b_1}, \dots, \mathbf{b_n}\}$ una base ortonormale di \mathcal{V} . La matrice associata a T^* in \mathcal{B} risulta essere la matrice coniugata trasposta della matrice associata a T nella medesima base. Infatti, considerata $M_{\mathcal{B}}(T^*) = [a_{ij}]$, si ha

$$a_{ij} = \langle T^*(\mathbf{b_j}), \mathbf{b_i} \rangle \stackrel{PS2}{=} \overline{\langle \mathbf{b_i}, T^*(\mathbf{b_j}) \rangle} \stackrel{def}{=} \overline{\langle T^*(\mathbf{b_i}), \mathbf{b_j} \rangle}$$
 (41)

quindi, a_{ij} corrisponde al coniugato dell'elemento sulla j-esima riga e i-esima colonna di $M_{\mathcal{B}}(T)$.

Definizione 8 (Operatore autoaggiunto). Sia \mathcal{V} uno spazio euclideo e sia $T \in \operatorname{End}(\mathcal{V})$. L'operatore T si dice autoaggiunto se $T^* = T$, ovvero, per ogni $\mathbf{u}, \mathbf{v} \in \mathcal{V}$

$$\langle T(\mathbf{u}), \mathbf{v} \rangle = \langle \mathbf{u}, T(\mathbf{v}) \rangle$$
 (42)

Osservazione. Essendo, in generale, $M_{\mathcal{B}}(T^*) = {}^t\overline{M_{\mathcal{B}}(T)}$, se T è autoaggiunto allora

$$T = T^* \iff M_{\mathcal{B}}(T) = {}^t \overline{M_{\mathcal{B}}(T)}$$

In particolare, se $\mathbb{K} = \mathbb{R}$, allora $M_{\mathcal{B}}(T)^t M_{\mathcal{B}}(T)$. Ne segue che la matrice associata ad un operatore autoaggiunto in una base ortonormale è una matrice simmetrica.

Teorema 3 (Teorema spettrale). Sia V uno spazio euclideo fissato sul campo \mathbb{R} e sia $T \in \operatorname{End}(V)$ un operatore autoaggiunto. Allora, esiste una base ortonormale di V formata da autovettori per T. In particolare, T è diagonalizzabile.

Corollario. Sia $A \in \mathbb{R}^{n,n}$ una matrice simmetrica. Allora, A è simile ad una matrice diagonale

$$D = M^{-1}AM$$

dove D è una matrice diagonale e M una matrice ortogonale, ovvero $M^{-1} = {}^{t}M$.

Dimostrazione. Si consideri lo spazio euclideo \mathbb{R}^n . Essendo la matrice A simmetrica per ipotesi, l'operatore $T \in \operatorname{End}(\mathbb{R}^n)$ tale che

$$x \stackrel{T}{\mapsto} Ax$$

è un operatore autoaggiunto. Per il teorema spettrale, esiste una base ortonormale $\{b_1,\ldots,b_n\}$ di autovettori per T. Per similitudine, si ottiene

$$D = M^{-1}AM \quad M = (\mathbf{b_1} \mid \dots \mid \mathbf{b_n})$$

Si osserva che

$${}^{t}M \cdot M = \begin{pmatrix} \mathbf{b_{1}} \\ \vdots \\ \mathbf{b_{n}} \end{pmatrix} \begin{pmatrix} \mathbf{b_{1}} \mid \dots \mid \mathbf{b_{n}} \end{pmatrix} = \begin{pmatrix} 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & 1 & 0 \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix} = I_{n}$$

Ne segue che M è una matrice ortogonale.

Dato l'operatore autoaggiunto, cosa garantisce l'esistenza di autovalori nel campo dei reali?

Lemma. Sia V uno spazio euclideo e sia $T \in \text{End}(V)$ un operatore autoaggiunto su V, con λ autovalore per T. Allora, $\lambda \in \mathbb{R}$.

Dimostrazione. Se $\lambda \in \mathbb{C}$ è autovalore per T, allora esiste $\mathbf{v} \in \mathcal{V}$ con $\mathbf{v} \neq \mathbf{0}_{\mathcal{V}}$ tale che $T(\mathbf{v}) = \lambda \mathbf{v}$. Si consideri $\lambda \langle \mathbf{v}, \mathbf{v} \rangle$; allora

$$\begin{split} \lambda \langle \mathbf{v}, \mathbf{v} \rangle &\stackrel{PS1}{=} \langle \lambda \mathbf{v}, \mathbf{v} \rangle = \langle T(\mathbf{v}), \mathbf{v} \rangle = \underbrace{\langle \mathbf{v}, T(\mathbf{v}) \rangle}_{\substack{T \text{ è autoaggiunto}}} \\ &= \langle \mathbf{v}, \lambda \mathbf{v} \rangle \stackrel{PS2}{=} \overline{\langle \lambda \mathbf{v}, \mathbf{v} \rangle} \stackrel{PS1}{=} \overline{\lambda \langle \mathbf{v}, \mathbf{v} \rangle} \stackrel{PS2}{=} \bar{\lambda} \langle \mathbf{v}, \mathbf{v} \rangle \end{split}$$

Quindi, essendo $\mathbf{v} \neq \mathbf{0}_{\mathcal{V}}$ per definizione di autovalore, vale la relazione

$$\lambda \langle \mathbf{v}, \mathbf{v} \rangle = \bar{\lambda} \langle \mathbf{v}, \mathbf{v} \rangle \implies \lambda = \bar{\lambda}$$

Quindi, è dimostrato che $\lambda \in \mathbb{R}$.

Abbiamo quindi dimostrato che gli autovalori per T appartengono tutti al campo dei reali. Procediamo alla dimostrazione del teorema spettrale.

Dimostrazione. Si supponda dim $(\mathcal{V}) = n$. Per induzione su n.

- $n=1\,$ La matrice associata a T nella base canonica $\mathcal C$ ha dimensione 1×1 , quindi è sicuramente diagonalizzabile, essendo la matrice composta da un unico elemento corrispondente alla sua diagonale principale.
- $n-1 \leadsto n$ Per il lemma precedentemente dimostrato, esiste uno scalare $\lambda \in \mathbb{R}$ autovalore per T per cui esiste un autovettore non nullo $\mathbf{u} \in \mathcal{V}$. Si consideri il sottospazio vettoriale $U = \mathcal{L}(\mathbf{u}) \subseteq \mathcal{V}$ ed il suo complemento ortogonale

$$U^{\perp} = \{ \mathbf{v} \in \mathcal{V} : \langle \mathbf{v}, \mathbf{w} \rangle = 0 \forall \mathbf{w} \in U \}$$

Sapendo che $U \cap U^{\perp} = \{ \mathbf{0}_{\mathcal{V}} \}$, per Grassmann si ha

$$\dim(U^{\perp}) = \dim(U) + \dim(U^{\perp}) - \dim(U \cap U^{\perp}) = n + 0 - 1 = n - 1$$

Ne segue che per U^{\perp} il teorema spettrale è valido. Verifichiamo che sia possibile attuare una restrizione di T su U^{\perp} , ovvero che $T(U^{\perp}) \subseteq U^{\perp}$ e quindi per ogni $\mathbf{v} \in U^{\perp}$ valga $T(\mathbf{v} \in U^{\perp})$.

$$\begin{split} T(\mathbf{v}) \in U^{\perp} &\implies \langle T(\mathbf{v}), \mathbf{w} \rangle = 0 \quad \forall \mathbf{w} \in U \\ &\iff \underbrace{\langle \mathbf{v}, T(\mathbf{w}) \rangle = 0 \quad \forall \mathbf{w} \in U}_{T \text{ è autoaggiunto}} \\ &\iff \langle \mathbf{v}, T(m\mathbf{u}) \rangle \quad \forall m \in \mathbb{R} \\ &\iff \langle \mathbf{v}, \underbrace{m \lambda \mathbf{u}}_{\in U} \rangle = 0 \end{split}$$

L'ultima uguaglianza è verificata, poiché $\mathbf{v} \in U^\perp$ per ipotesi. Si consideri allora la restrizione

$$T|_{U^{\perp}} : U^{\perp} \to U^{\perp}$$

Per il teorema spettrale, esiste una base di ortonormale $\{\mathbf{v_1},\dots,\mathbf{v_n}\}$ di U^{\perp} formata da autovettori per $T|_{U^{\perp}}$. Si consideri $\mathbf{v}=\frac{\mathbf{u}}{\|\mathbf{u}\|}$. Allora, l'insieme

$$\mathcal{B} = \{\,\mathbf{v}, \mathbf{v_1}, \ldots, \mathbf{v_n}\,\}$$

è una base di $\mathcal{V} = U + U^{\perp}$ formata da autovettori per T.