Unidad 4 Entrada/Salida

Introducción

- Énfasis en: rendimiento, diversidad, confiabilidad, capacidad de expansión y costo
- Rendimiento, dependencias: características del dispositivo, conexión, memoria, buses, discos, red, SO, aplicación.
- Parámetros de rendimiento
 - □ Latencia (latency): Es el tiempo o lapso necesario para que una señal se transfiera de un punto a otro.
 - Ancho de banda (bandwidth): Es la cantidad de datos que pueden ser transportados por unidad de tiempo.
 - Tiempo de respuesta (elapsed time): Es el tiempo o lapso necesario desde que se envía una orden hasta que se recibe su respuesta.
 - □ Productividad (throughput): Cantidad de operaciones que se completan por unidad de tiempo.

Confiabilidad, fiabilidad y disponibilidad

- Confiabilidad: Capacidad de dar un servicio de forma que se pueda tener cierta dependencia. Una falla en un sistema se da cuando el comportamiento del mismo (según es observado por los sistemas con los que interactúa) se desvía del esperado
- Fiabilidad: Medida del tiempo de servicio ininterrumpido sin fallas.
- Disponibilidad: Medida entre el tiempo de servicio sin fallas y la alternancia entre fallas y restauración

Confiabilidad, fiabilidad y disponibilidad

- MTTF: mean time to failure
- MTTR : mean time to repair
- MTBF : Mean time between failures = MTTF + MTTR
- Disponibilidad = MTTF / MTBF
- Para incrementar MTTF
 - □ Evitar fallos
 - □ Tolerar fallos
 - □ Prevenir fallos

Esquema de interconexión

Diversidad

Device	Behavior	Partner	Data rate (Mbit/sec)
Keyboard	input	human	0.0001
Mouse	input	human	0.0038
Voice input	input	human	0.2640
Sound input	input	machine	3.0000
Scanner	input	human	3.2000
Voice output	output	human	0.2640
Sound output	output	human	8.0000
Laser printer	output	human	3.2000
Graphics display	output	human	800.0000-8000.0000
Modem	input or output	machine	0.0160-0.0640
Network/LAN	input or output	machine	100.0000-1000.0000
Network/wireless LAN	input or output	machine	11.0000-54.0000
Optical disk	storage	machine	80.0000
Magnetic tape	storage	machine	32.0000
Magnetic disk	storage	machine	240.0000-2560.0000

Controladores E/S - Funciones

Enlace CPU-Memoria-E/S

- Enlace E/S
- Control y temporización
- Comunicación con CPU
- Comunicación con el dispositivo
- Buffering
- Corrección de errores

Controlador E/S

- Comunicación
 - □ Control: Registro de control (leer, escribir)
 - □ Estado: Registro de estado (listo, error)
 - □ Datos: Registro de datos
- Acceso a los registros de control, estado y datos
 - □ E/S mapeada en memoria: Los registros poseen una direccion dentro del mapa de memoria, ej. MIPS
 - E/S aislada: Los registros se acceden a través de instrucciones especiales de E/S y una dirección en el mapa de E/S, ej Intel IN OUT

Controlador E/S

Buses

- Generalidades
 - Versatilidad
 - □ Bajo costo
 - □ Cuello de botella
 - Velocidad limitada por longitud, ancho de bus, número de dispositivos
- Tipos según su función
 - Control: transfieren señales de control
 - □ Datos: transfieren los datos a leer o escribir
 - Direcciones: transfieren las direcciones de las posiciones de memoria a leer o escribir, puede utilizarse el mismo bus de datos

Buses - Tipos según interconexión

- Procesador-memoria
 - □ Diseño específico
 - Propietarios
 - □ Corta longitud
- Backplane
 - □ Diseño estándar
 - □ Variedad de dispositivo
 - Media longitud
- E/S
 - □ Diseño estándar
 - □ Variedad de dispositivo
 - Mayor longitud

Buses – Tipos según sincronización

- Síncronos
 - □ Poseen una señal de reloj
 - □ Sencillos
 - Todos los elementos deben trabajar a la misma frecuencia
 - □ Problemas por sesgo de reloj
- Asíncronos
 - No poseen señal de reloj
 - □ Protocolo de handshake
 - Mayor complejidad
 - □ Buses mas largos
 - Los elementos pueden trabajar a distintas velocidades

Buses - Ancho de banda

- Cantidad de líneas de datos
- Multiplexación de líneas de datos y direcciones
- Transferencia por bloques
- Frecuencia de de reloj (en sincrónicos)

Buses - Acceso

- Obtención de acceso
 - Único maestro: Hay un único elemento que decide cuando utilizar el bus, el procesador, no hay necesidad de arbitraje.
 - Múltiples maestros: Hay varios elementos que requieren utilizar el bus, se necesita arbitrar sobre quien será el próximo en utilizarlo

Buses - Arbitraje

- Tipos
 - □ Centralizado: El arbitraje se realiza por un elemento central
 - Distribuido: El arbitraje se realiza en forma conjunta y distribuida
- Clases Centralizado
 - ☐ En serie (daisy chain)
 - Simple
 - Mayor prioridad el mas cercano al arbitro
 - No se puede asegurar la imparcialidad
 - □ Paralelo centralizado
 - Mas potente
 - Requiere un arbitro mas complejo
 - Requiere mas líneas
 - Ejemplo PCI

Buses - Arbitraje

- Clases descentralizado
 - Distribuido por autoselección
 - Múltiples líneas de selección
 - Cada dispositivo que desea acceder al bus escribe su dirección
 - Cada dispositivo lee la dirección y decide cual es le mas prioritario
 - Ejemplo NuBus de Apple Macintosh
 - Distribuido por detección de colisión
 - Los dispositivos que dean transmitir transmiten
 - Se verifica si hubo colisión
 - En caso de colisión se empela un algoritmo de selección
 - Ejemplo Ethernet

E/S Programada - Concepto

- CPU interroga a modulo de E/S
- Si esta listo se realiza la E/S
- Si no esta listo espera e interroga nuevamente

E/S Programada - Concepto

E/S Programada - Resultado

- Simple
- Útil para dispositivos de E/S de bajo ancho de banda y frecuencia regular y baja o cuando el procesador no tiene tareas adicionales
- Sin hardware adicional
- Procesador malgastado en esperas
- Dificulta manejo de prioridades

Interrupciones - Concepto

- CPU solicita E/S
- CPU cambia de tarea
- Modulo E/S interrumpe cuando termina

Interrupciones - Concepto

Interrupciones - Complejidades

- Nueva línea de entrada a la CPU
- Interrupción es un evento asincrónico
 - No asociada a una instrucción
 - No impide la finalización de la instrucción actual
 - CPU chequea si existen interrupciones pendientes después de cada instrucción
- Necesidad de información adicional
 - □ Interrupciones vectorizadas
 - □ Registro causa

Interrupciones - Complejidades

- Inhibición y enmascaramiento
- Prioridades
- Rutina de atención a interrupción
 - □ Cambio de contexto
 - Guardar estado, parte por hardware, parte por software
 - □ Paso a modo supervisor
 - □ Retorno

Interrupciones - Resultado

- Libera al procesador de las esperas
- Útil para dispositivos de E/S de bajo ancho de banda y frecuencia irregular, ej. mouse
- Mayor complejidad
- Mayor costo
- E/S mas lenta (posiblemente)

- Excepción: Cualquier evento inesperado que puede cambiar el flujo del programa
- Interrupción: Caso particular de excepción, proveniente del exterior del procesador

Register name	Register number	Usage
BadVAddr	8	memory address at which an offending memory reference occurred
Count	9	timer
Compare	11	value compared against timer that causes interrupt when they match
Status	12	interrupt mask and enable bits
Cause	13	exception type and pending interrupt bits
EPC	14	address of instruction that caused exception
Config	16	configuration of machine

Arquitectura de las Computadoras

Number	Name	Cause of exception	
. 0	Int	interrupt (hardware)	
4	AdEL	address error exception (load or instruction fetch)	
5	AdES	address error exception (store)	
6	IBE	bus error on instruction fetch	
7	DBE	bus error on data load or store	
8 /	Sys	syscall exception	
9	Вр	breakpoint exception	
10	RI	reserved instruction exception	
11	CpU	coprocessor unimplemented	
12	Ov	arithmetic overflow exception	
13	Tr	trap	
15	FPE	floating point	

DMA - Concepto

- Nuevo actor, el Controlador de DMA
- El procesador programa al Controlador DMA, envía sentido, posición base, cantidad de bytes y dirección de dispositivo
- El Controlador DMA realiza la transferencia entre el dispositivo de E/S y memoria sin intervención del procesador
- El Controlador DMA envía una interrupción al procesador para notificar que la operación de E/S se completó

M

DMA - Complejidades

DMA - Complejidades

- Se requiere interrupciones
- Controlador de DMA maestro de bus
 - □ Necesidad de arbitraje
 - □ Competencia por el bus
- Memoria Virtual
- Direcciones virtuales mapeadas a físicas
 - Enviar dirección virtual implica traducción dentro del Controlador DMA
 - Enviar direcciones físicas implica que se parta la transferencia en transferencias acotadas dentro de una página
 - El SO debe asegurar que las páginas no cambien de ubicación

DMA - Complejidades

- Memoria Cache
 - Lectura de memoria de dato actualizado en cache, dato obsoleto
 - Escritura de memoria de un dato ubicado también en cache, coherencia
 - Encaminar E/S a través de la cache
 - □ SO para invalidar o vaciar la cache
 - Circuitería para invalidar o vaciar la cache

DMA - Resultado

- Libera al procesador de la transferencia
- Útil para dispositivos de E/S de gran ancho de banda, ej. disco rígido
- Mayor complejidad
- Mayor costo

Procesadores de E/S - Concepto

- Controlador DMA más avanzado
- El procesador envía una serie de ordenes de E/S, denominado programa de E/S
- El procesador de E/S ejecuta todo el programa de E/S e interrumpe al procesador cuando finaliza
- El procesador se libera aún más de trabajo

Discos rígidos

- Plato rotatorio cubierto por superficie magnética.
- Dos caras
- Uno o más platos
- Cabezas lectura-escritura movible por cara solidarias
- Almacenamiento no volátil
- Caras dividas en círculos concéntricos, pistas
- Pistas divididas en sectores
- Conjunto de pistas forman cilindro
- Código de corrección de errores CRC
- Parámetros: velocidad de rotación, tiempo de posicionado, latencia de rotación, tiempo de transferencia
- Tiempo medio de acceso = Tiempo medio de posicionado + latencia de rotación + tiempo de transferencia + sobrecarga de controladora

Discos rígidos

Características	Segate ST330000655SS	Segate ST31000340NS	Segate ST973451SS	Segate ST9160821AS
Diámetro de disco (pulgadas)	3,5	3,5	2,5	2,5
Capacidad formateado (GB)	147	1000	73	160
Numero de superficies de disco (cabezas)	2	4	2	2
Velocidad de rotación (RPM)	15000	7200	15000	5400
Cache interno de disco (MB)	16	32	16	8
Ancho de banda de la interfaz externa (MB/sec)	SAS, 375	SATA, 375	SAS, 375	SATA, 150
Tasa de transferencia sostenida (MB/sec)	73-125	105	79-112	44
Búsqueda mínima (lectura/escritura) (ms)	0,2/0,4	0,8/1,0	0,2/0,4	1,5/2,0
Búsqueda promedio (lectura/escritura) (ms)	3,5/4,0	8,5/9,5	2,9/3,3	12,5/13,0
Tiempo medio para falla (MTTF) (horas)	1.400.000 @ 25 C	1.200.000 @ 25 C	1.600.000 @ 25 C	
Tasa de fallo anual (AFR) (%)	0,62	0,73	0,55	
Ciclos de inicio parada		50.000		>600.000
Garantía	5	5	5	5
Errores no recuperables de lectura por bits leídos	< 1 sector por 10 ¹⁶	< 1 sector por 10 ¹⁵	< 1 sector por 10 ¹⁶	< 1 sector por 10 ¹⁴
Temperatura	5-55	5-55	5-55	0-60
Precio; \$/GB	250; 1,7	275; 0,3	350; 5	100; 0,6

Memoria Flash

- No-volátil
- Latencia comparada con un disco rígido 100 a 1000 veces menor
- Tamaño pequeño
- Resistente a golpes
- Consumo de energía eficiente
- Costo por GB mayor a disco rígido
- Lectura y escritura por bloques
- Desgaste de memoria
- Controlador para distribuir las escrituras

Memoria Flash

Características	Kingston SecureDigital (SD) SD4/8 GB	Transend Type I CompactFlash TS16GCF133	RiDATA Solid State 2,5 pulgadas SATA
Capacidad formateada (GB)	8	16	32
Sectores por byte	512	512	512
Tasa de transferencia de datos (lectura/escritura) (MB/seg)	4	20/18	68/50
Potencia operación/suspensión (W)	0,66/0,15	0,66/0,15	2,1/-
Tamaño: alto x ancho x prof (pulgadas)	0,94 x1,26 x 0,08	1,43 x 1,68 x 0,13	0,35 x 2,75 x 4,00
Peso (gramos)	2,5	11,4	52
Tiempo medio entre fallos (horas)	>1.000.000	>1.000.000	>4.000.000
Precio	30	70	300

RAID: Redundant Array of Inexpensive Disk

- RAID 0
 - □ Sin redundancia
 - □ Se usan N discos con N >= 1
 - □ Se escribe parte en una parte en cada disco
 - □ La capacidad total es la suma de las capacidades de los discos
 - Se muestra como una gran disco
 - □ Mejora el acceso ya que los discos trabajan en paralelo

RAID 1

- □ Espejo
- □ Se escriben los mismos datos en ambos discos
- □ Es la redundancia mas cara
- □ La capacidad total es la capacidad del disco mas pequeño

RAID 5

- Paridad distribuida
- N discos
- □ Se escribe una parte en cada uno de los N-1 discos
- Se escribe la paridad en el disco N
- ☐ El disco N no es siempre el mismo, para distribuir la paridad
- □ Evita el cuello de botella si se usa un único disco para paridad

RAID 6

 Idem RAID 5 pero con disco extra para soportar falla de más de un disco

RAID 10

- □ RAID 1 + RAID 0
- Se espeja un discos y se genera una unidad logica con el arreglo de espejos

- Comentarios
 - □ Es posible dejar discos como repuestos "stand by spare"
 - Algunas controladoras soportan cambio en caliente "hot swap"

Servidores

- Uso en datacenters
- Optimizar espacio y consumo
- No se necesita teclado, mouse ni monitor
- Servers rackeables: 19 pulgadas de ancho y 1,75 pulgadas de Unidad de alto
- Énfasis en disponibilidad, capacidad de expansión, administración
- Calidad de componentes
- Cantidad y tipo de procesadores
- Tamaño máximo de RAM soportado
- Conexiones de discos
- Tamaño máximo y cantidad máxima de discos soportados
- Cantidad y capacidad de placas de red
- RAID
- Redundancia en general (fuente, procesadores)
- Capacidad de administración, identificación, gestión remota, reinicio
- Capacidad de autodiagnóstico

Servidores

Servidores - Sun Fire x4150 1U Server

- 8 procesadores de 2,66 GHz en dos sockets (2 Intel Xeon 5345)
- 64 GB de RAM DDR2, en 16 bancos de 4 GB
- 8 discos SAS de 73 GB y 15.000 RPM
- 1 controladora RAID que soporta RAID 0, 1, 5 y
- 4 puertos Ethernet de 10/100/1000
- 3 puertos PCI Express x8
- 4 puertos externos y 1 puerto interno USB 2.0

М

Servidores - Sun Fire x4150 1U Server

