디지털 논리회로

1.1 디지털 컴퓨터의 구성

- ◈ 컴퓨터 구성
 - 중앙처리장치: 산술 및 논리 연산 부분, 레지스터, 제어 회로 등으로 구성
 - 기억장치 : 명령어와 데이터를 저장 (RAM)
 - 입출력 프로세서 : 컴퓨터와 외부 세계와의 통신과 데이터 전송을 제어

◈ 컴퓨터 구조적 설계

- 컴퓨터 조직 (organization): 하드웨어 구성품들의 동작 방식과 이들의 연결 방식에 대한 것으로 사용자가 이용할 수 없는 구조의 구현 (파이프라인 구조 등)
- 컴퓨터 설계 (design) 제시된 컴퓨터의 사양에 따라 적절한 하드웨어를 선택하고 그들간의 연결 방식을 결정하여 컴퓨터 하드웨어를 설계
- 컴퓨터 구조 (architecture) 사용자의 입장에서 컴퓨터의 구조나 동작에 관심을 두고서 정보의 형식이나 명령어 집합, 메모리 주소 기법 등을 연구, 사용자가 직접 이용할 수 있는 부분 (명령어 세트, 레지스터, 메모리 관리 테이블 구조, 예외 처리 모델 등)
- 컴퓨터의 구조적 설계는 프로세서나 메모리 같은 다양한 기능적 모듈의 사양을 가지고 컴퓨터 시스템을 설계하는 것

1.2 논리 게이트

◈ 입력 논리의 필요 조건을 만족할 때 1 또는 0을 만드는 하드웨어 블록

AND	$ \begin{array}{c} A \longrightarrow x = A \cdot B \\ B \longrightarrow x = AB \end{array} $	A B x 0 0 0 0 1 0 1 0 0 1 1 1
OR	$ \begin{array}{c} A \longrightarrow \\ B \longrightarrow \\ \end{array} x = A + B $	A B x 0 0 0 0 1 1 1 0 1 1 1 1
Inverter	$A \longrightarrow x = A'$	A x 0 1 1 0
Buffer	$A \longrightarrow x = A$	A x 0 0 1 1

NAND	$\begin{array}{c} A \\ B \end{array} \qquad \qquad x = (AB)'$	A B x 0 0 1 0 1 1 1 0 1 1 1 0
NOR	$A \longrightarrow x x = (A+B)'$	A B x 0 0 1 0 1 0 1 0 0 1 1 0
Exclusive-OR (XOR)	$ \begin{array}{c} A \longrightarrow \\ B \longrightarrow \\ \end{array} $ $ \begin{array}{c} x = A \oplus B \\ \text{or} \\ x = A'B + AB' \end{array} $	A B x 0 0 0 0 1 1 1 0 1 1 1 0
Exclusive-NOR or equivalence	$ \begin{array}{c} A \longrightarrow \\ B \longrightarrow \\ B \longrightarrow \\ C \longrightarrow $	A B x 0 0 1 0 1 0 1 0 0 1 1 1

- 1.3 부울 대수
- ◈ 기본적인 논리 동작: AND, OR, 보수
- ◈ 부울 대수는 디지털 회로의 해석과 설계를 쉽게 하는데 목적이 있음
 - 변수 사이의 진리표 관계를 대수 형식으로 표시할 때 편리
 - 논리도의 입출력 관계를 대수 형식으로 표시할 때 편리
 - 같은 기능을 가진 더 간단한 회로로 표현할 때 편리
- ◈ 진리표와 논리도

$$-F = x + y'z$$

X	y	Z	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

◈ 부울 대수의 기본 관계

(1)
$$x+0=x$$

(3)
$$x+1=1$$

$$(5) x+x=x$$

$$(7) x + x' = 1$$

$$(9) x+y=y+x$$

(11)
$$x+(y+z)=(x+y)+z$$

$$(13) x(y+z) = xy + xz$$

$$(15) (x+y)' = x'y'$$

$$(17) (x')' = x$$

(2)
$$x \cdot 0 = 0$$

$$(4) x \cdot 1 = x$$

$$(6) x \cdot x = x$$

$$(8) x \cdot x' = 0$$

$$(10) xy = yx$$

$$(12) x(yz) = (xy)z$$

(14)
$$x + yz = (x + y)(x + z)$$

$$(16) (xy)' = x' + y'$$

◆ De Morgan 정리 (NOR와 NAND를 취급하는데 매우 중요)

$$(x + y + z)' = x'y'z', (xyz)' = x' + y' + z'$$

- 모든 OR 연산은 AND로, 모든 AND 연산은 OR로 바꾸어줌

$$F = AB+C'D'+B'D$$
, $F' = (AB)'(C'D')'(B'D)' = (A'+B')(C+D)(B+D')$

◈ 간소화

$$F = ABC + ABC' + A'C = AB(C+C') + A'C = AB + A'C$$

1.4 맵의 간소화

- ◈ 맵을 사용한 부울 함수의 간소화: Karnaugh 맵, Veitch 다이어그램
 - $-F(x, y, z) = \sum (1, 4, 5, 6, 7)$

$$= x'y'z + xy'z' + xyz' + xyz' + xyz = x + y'z$$

- 두 개, 세 개, 네 개 변수를 갖는 함수에 대한 맵

A	0	$\stackrel{B}{\overbrace{}}$	
0	0	1	
$A \Big\{ 1 \Big $	2	3	
A $\{1$	2	3	

\bigcap	C	D		(C	
A	$B \setminus$	00	01	11	10	
	00	0	1	3	2	
	01	4	5	7	6	$\Big]_B$
,	11	12	13	15	14] B
A	10	8	9	11	10	,
Ď						

$$- \text{ @1)} \text{ F(A, B, C)} = \sum (3, 4, 6, 7) = \text{BC} + \text{AC}'$$

$$- \text{ @12)} \quad F(A, B, C) = \sum (0, 2, 4, 5, 6) = C' + AB'$$

◈ 논리곱의 논리합 (sum of products), 논리합의 논리곱 (product of sums)

$$- \text{ 0l4}) \text{ F(A, B, C, D)} = \sum (0, 1, 2, 5, 8, 9, 10)$$

1 sum of products

$$F = B'D' + B'C' + A'C'D$$

2 product of sums

$$F' = AB + CD + BD'$$

 $F = (A' + B')(C' + D')(B' + D)$

◈ Don't Care 조건

1.5 조합 회로

- ◈ 입력과 출력을 가진 논리 게이트의 집합으로 출력은 입력들의 조합의 함수
- ◈ 조합 회로 설계 절차
 - 문제가 주어지면 입력과 출력 변수에 문자 기호를 붙임
 - 입력과 출력 사이의 관계를 정의하는 진리표를 유도
 - 각 출력에 대한 간소화된 부울 함수를 얻음
 - 논리도를 그림

◈ 반가산기 : 비트 두 개를 서로 산술적으로 가산하는 조합 회로

$$S = x'y + xy' = x \oplus y$$
$$C = xy$$

◈ 전가산기: 비트 두 개와 이전 단의 캐리를 가산하는 조합 회로 (1비트 덧셈)

입력			출	뗭
X	y	Z	С	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

1.6 플립플롭

● 플립플롭은 한 비트의 정보를 저장하는 이진 셀로 입력 펄스가 상태 변환을일으키기 전까지는 이진 상태를 그대로 유지

- SR 플립플롭

- D 플립플롭

- JK 플립플롭

- T 플립플롭

◈ 모서리-변이형 플립플롭 : 상태 변경을 클럭 펄스의 변이 동안 동기화함

◆ 플립플롭 여기표 : 현재 상태와 다음 상태를 알 때 플립플롭에 어떤 입력을주어야 하는 지를 나타낸 표

SR 플립플롭						
Q(t)	Q(t) Q(t+1) S					
0	0	0	×			
0	1	1	0			
1	0	0	1			
1	1	×	0			

D 플립플롭					
Q(t)	Q(t) Q(t+1)				
0	0 0				
0	0 1				
1	0	0			
1	1	1			

JK 플립플롭					
Q(t)	Q(t) Q(t+1) J				
0	0	0	×		
0	0 1		×		
1	0	×	1		
1	1	×	0		

T 플립플롭				
Q(t)	Q(t) Q(t+1)			
0	0	0		
0	1	1		
1	0	1		
1	1	0		

1.7 순차 회로

◈ 플립플롭과 게이트를 서로 연결한 회로

- 순차 회로의 예

$$D_A = Ax + Bx$$
, $D_B = A'x$, $y = Ax' + Bx'$

◈ 상태표와 상태도

- 출력과 다음 상태는 모두 입력과 현재 상태에 의해 결정
- 상태도에서 상태는 원으로 표시하고 상태 사이의 천이는 원 사이를 연결 하는 직선으로 표시

현재	상태	입력	다음	상태	출력
Α	В	X	Α	В	у
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	1	0	0

◈ 순차 회로의 설계 절차

- 회로의 특성으로부터 상태도를 그림
- 상태의 비트수로부터 필요한 플립플롭의 개수와 회로의 입력수를 결정
- 상태표를 작성하고 확장하여 플립플롭의 여기표를 만듬
- karnaugh 맵을 이용하여 간소화된 입력조건을 구한 후에 순차 회로를 구성

◈ 설계 예: 2비트 이진 카운터

현재	상태	입력	다음	상태	플	립플	롭 입	력
Α	В	X	Α	В	J _A	K _A	J_{B}	K _B
0	0	0	0	0	0	×	0	×
0	0	1	0	1	0	×	1	×
0	1	0	0	1	0	×	×	0
0	1	1	1	0	1	×	×	1
1	0	0	1	0	×	0	0	×
1	0	1	1	1	×	0	1	×
1	1	0	1	1	×	0	×	0
1	1	1	0	0	×	1	×	1

