

JWST COSMOS-Web 画像データから探る AGN 母銀河の性質

Tanaka et al. (2024), arXiv:2401.13742

Takumi Tanaka (U.Tokyo/Kavli IPMU) John D. Silverman (Kavli IPMU) Knud Jahnke (MPIA)

Feb. 28, 2024 ブラックホール大研究会 @ 御殿場

Today's Topics

- 1. Introduction: $M_{\rm BH}-M_*$ relation
- 2. Model-case study: Tanaka et al. (2024)
- 3. Prospects for Euclid/UNIONS

Tight Correlation between $M_{\rm BH}$ and M_* (or σ_* , $M_{\rm bulge}$) @ local Universe

(e.g. Magorrian et al. 1998; Ferrarase&Merritt 2000; Marconi&Hunt 2003; Kormendy&Ho 2013)

Magorrian et al. 1998

Tight Correlation between $M_{\rm BH}$ and M_* (or σ_* , $M_{\rm bulge}$) @ local Universe

(e.g. Magorrian et al. 1998; Ferrarase&Merritt 2000; Marconi&Hunt 2003; Kormendy&Ho 2013)

Key questions:

"How was the relation formed?"

"What process(es) connect galaxy and BH?"

For insight: check the redshift evolution!

Magorrian et al. 1998

2

How to investigate $M_* - M_{\rm BH}$ relation

• Fitting broad emission line $\rightarrow M_{\rm BH}$ from single epoch method

$$M_{\rm BH} ({\rm H}\beta) = 10^{6.91} \left(\frac{L_{5100}}{10^{44} {\rm erg s}^{-1}}\right)^{0.5} \left(\frac{{\rm FWHM_{H}\beta}}{1000 {\rm km s}^{-1}}\right)^2 M_{\odot}$$

Fitting image with PSF + Sersic component(s)

 \rightarrow host galaxy photometry (+morph) $\rightarrow M_*$ from SED fitting

Today's Topics

- 1. Introduction
- 2. Model-case study: Tanaka et al. (2024)
- 3. Prospects for Euclid/UNIONS

Tanaka et al. (2024), arXiv:2401.13742

Data

COSMOS-Web ($\sim 0.6 \text{ deg}^2$)

- Jan23+Apr23
 (~half of entire COSMOS-Web)
- 5 filters (HST/ACS F814W), F115W, F150W, F277W, F444W
- X-ray detected type-I AGN from Schulze+15;18
 All have SE M_{BH} (Ha, Hb, MgII) N=61

Pixel scale: 0.03"/pix

※ After the completion of COSMOS-Web (Jan24), we will have N∼100 sample!!

2D Decomposition Analysis

 Fitting data with PSF + Sersic component(s) → host galaxy information galight (Ding+20)

 Estimate M* from SED fitting CIGALE (Boquien+19; Yang+22)

Power of JWST

F277-150-115W PSF-subtracted images

Clearly identify substructures even at z~2 AGN!

Calculate the difference from the local relation

$$\Delta \log (M_{\rm BH}/M_{\odot}) = M_{\rm BH} - \alpha_{\rm local} \log (M_*/M_{\odot}) - \beta_{\rm local}$$

Redshift vs $\Delta \log M_{\rm BH}$

Δ~0: no evolution

 Δ >0: mild evolution

Little evolution?

Need to consider the selection bias!

Statistical Analysis: Evolution or No Evolution?

Model the redshift evolution

$$\Delta M_{BH} = N(\gamma \log(1+z), \sigma_{\mu})$$

Generate mock observation using $\Delta M_{\rm BH}$

Compare with the results to **estimate PDF of** γ **and** σ_{μ}

Assumption in genarating mock data:

- · COSMOS2020 SMF (Weaver+23)
- ERDF (Schulze+15)
- · Luminosity-dependent bias of SE $M_{\rm BH}$ with $\beta=0.6$
- · Observational error and bias

Statistical Analysis: Evolution or No Evolution?

Model the redshift evolution

$$\Delta M_{BH} = N(\gamma \log(1+z), \sigma_{\mu})$$

Generate mock observation using $\Delta M_{\rm BH}$

Compare with the results to estimate PDF of γ and σ_u

→ No-to-mild evolution at z<2.5!

Assumption in genarating mock data:

- COSMOS2020 SMF (Weaver+23)
- ERDF (Schulze+15)
- · Luminosity-dependent bias of SE $M_{\rm BH}$ with $\beta=0.6$
- Observational error and bias

σ_{μ} evolution

- Easy simulation of Cosmic Averaging scenario Start from the fitted mock sample Only assuming major merger
 - (merger rate: Rodriguez-Gomez+15)
 - Without feedback & their growth
- Too large uncertainty on σ_{μ}
 - Due to small sample and high redshift. Also difficult to constrain the EoR population.
- We need much larger sample ($N\sim10^3$) We will use **Euclid/UNIONS** data!

Li et al. 2021

This study

Today's Topics

- 1. Introduction
- 2. Model-case study: Tanaka et al. (2024)
- 3. Prospects for Euclid/UNIONS

Power of Euclid/UNIONS

- Euclid/UNIONS covers
 Balmer break around z~0-2
 - → accurate M* estimation

Strategies for AGN-host studies in next yrs

• Spectroscopy: Making catalog, $M_{ m BH}$, σ_*

- Euclid/NISP
- Subaru/PFS

Imaging

M_* , host morph, environment

- Euclid & UNIONS (z<1.5)
- JWST (z>1)

Strategies for AGN-host studies in next yrs

• Spectroscopy: Making catalog, $M_{ m BH}$, σ_*

- Euclid/NISP
- Subaru/PFS

Imaging

M_* , host morph, environment

- Euclid & UNIONS (z<1.5)

Summary & Prospects

We have found:

- No-to-mild evolution in mass relation at z~0.7-2.5
- Still large uncertainty with the N~60 sample
- Euclid can detect z~0.9 AGN-host galaxy (at least)

Prospects:

- Plan to discuss host morphology with the CW sample
- Large spectroscopic surveys;
 Euclid/NISP, Subaru/PFS
- Complementary strategy for image-based host analysis;
 Euclid-UNIONS (z<1.5) & JWST (z>1)
- We can constrain evolution parameters more strongly with larger, higher-z, and wider-z range sample

Tanaka et al. (2024), arXiv:2401.13742

Please check our paper!

