矩阵、向量求导法则

目录

1.	. 同:	量、矩阵对兀素来导	.2
		行向量对元素求导	
	1. 2	列向量对元素求导	.2
	1.3	矩阵对元素求导	.2
2.	元	素对向量、矩阵求导	.3
	2. 1	元素对行向量求导	.3
	2. 2	元素对列向量求导	.3
	2. 3	元素对矩阵求导	.3
3.	向	量对向量求导	.4
	3. 1	行向量对列向量求导	.4
	3. 2	列向量对行向量求导	.4
	3. 3	行向量对行向量求导	.4
	3. 4	列向量对列向量求导	.4
4.	矩	阵对向量求导	.5
	4. 1	矩阵对行向量求导	.5
	4. 2	矩阵对列向量求导	.5
5.	矩	阵对向量求导	.6
	5. 1	行向量对矩阵求导	.6
	5. 2	列向量对矩阵求导	.6
	5. 3	矩阵对矩阵求导	.6
6.	例		.7

1. 向量、矩阵对元素求导

1.1 行向量对元素求导

设
$$\mathbf{y}^T = \begin{bmatrix} y_1 & \cdots & y_n \end{bmatrix}$$
 是 n 维行向量, x 是元素, 则 $\frac{\partial \mathbf{y}^T}{\partial x} = \begin{bmatrix} \frac{\partial y_1}{\partial x} & \cdots & \frac{\partial y_n}{\partial x} \end{bmatrix}$ 。

1.2 列向量对元素求导

设
$$\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix}$$
 是 m 维列向量, x 是元素, 则 $\frac{\partial \mathbf{y}}{\partial x} = \begin{bmatrix} \frac{\partial y_1}{\partial x} \\ \vdots \\ \frac{\partial y_m}{\partial x} \end{bmatrix}$ 。

1.3 矩阵对元素求导

设
$$Y = \begin{bmatrix} y_{11} & \cdots & y_{1n} \\ \vdots & & \vdots \\ y_{m1} & \cdots & y_{mn} \end{bmatrix}$$
 是 $m \times n$ 矩阵, x 是元素,则

$$\frac{\partial Y}{\partial x} = \begin{bmatrix} \frac{\partial y_{11}}{\partial x} & \dots & \frac{\partial y_{1n}}{\partial x} \\ \vdots & & & \\ \frac{\partial y_{m1}}{\partial x} & \dots & \frac{\partial y_{mn}}{\partial x} \end{bmatrix} .$$

2. 元素对向量、矩阵求导

2.1 元素对行向量求导

设 y 是元素,
$$\mathbf{x}^T = [x_1 \quad \cdots \quad x_q]$$
 是 q 维行向量,则 $\frac{\partial y}{\partial \mathbf{x}^T} = \begin{bmatrix} \frac{\partial y}{\partial x_1} & \cdots & \frac{\partial y}{\partial x_q} \end{bmatrix}$ 。

2.2 元素对列向量求导

设
$$y$$
 是元素, $\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_p \end{bmatrix}$ 是 p 维列向量, 则 $\frac{\partial y}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y}{\partial x_1} \\ \vdots \\ \frac{\partial y}{\partial x_p} \end{bmatrix}$ 。

2.3 元素对矩阵求导

设
$$y$$
 是元素, $X = \begin{bmatrix} x_{11} & \cdots & x_{1q} \\ \vdots & & \vdots \\ x_{p1} & \cdots & y_{pq} \end{bmatrix}$ 是 $p \times q$ 矩阵, 则

$$\frac{\partial y}{\partial X} = \begin{bmatrix} \frac{\partial y}{\partial x_{11}} & \dots & \frac{\partial y}{\partial x_{1q}} \\ \vdots & & & \\ \frac{\partial y}{\partial x_{p1}} & \dots & \frac{\partial y}{\partial x_{pq}} \end{bmatrix} .$$

3. 向量对向量求导

3.1 行向量对列向量求导

设
$$\mathbf{y}^T = \begin{bmatrix} y_1 & \cdots & y_n \end{bmatrix}$$
 是 n 维行向量, $\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_p \end{bmatrix}$ 是 p 维列向量, 则

$$\frac{\partial \mathbf{y}^{T}}{\partial \mathbf{x}} = \begin{vmatrix} \frac{\partial y_{1}}{\partial x_{1}} & \dots & \frac{\partial y_{n}}{\partial x_{1}} \\ \vdots & & & \\ \frac{\partial y_{1}}{\partial x_{p}} & \dots & \frac{\partial y_{n}}{\partial x_{p}} \end{vmatrix} .$$

3.2 列向量对行向量求导

设
$$\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix}$$
 是 m 维列向量, $\mathbf{x}^T = [x_1 \ \cdots \ x_q]$ 是 q 维行向量, 则

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}^{T}} = \begin{bmatrix} \frac{\partial y_{1}}{\partial x_{1}} & \cdots & \frac{\partial y_{1}}{\partial x_{q}} \\ \vdots & & & \\ \frac{\partial y_{m}}{\partial x_{1}} & \cdots & \frac{\partial y_{m}}{\partial x_{q}} \end{bmatrix} .$$

3.3 行向量对行向量求导

设 $\mathbf{y}^T = \begin{bmatrix} y_1 & \cdots & y_n \end{bmatrix}$ 是 n 维行向量, $\mathbf{x}^T = \begin{bmatrix} x_1 & \cdots & x_q \end{bmatrix}$ 是 q 维行向量, 则

$$\frac{\partial \mathbf{y}^T}{\partial \mathbf{x}^T} = \begin{bmatrix} \frac{\partial \mathbf{y}^T}{\partial x_1} & \cdots & \frac{\partial \mathbf{y}^T}{\partial x_q} \end{bmatrix} .$$

3.4 列向量对列向量求导

设
$$\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix}$$
 是 m 维列向量, $\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_p \end{bmatrix}$ 是 p 维列向量, 则 $\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y_1}{\partial \mathbf{x}} \\ \vdots \\ \frac{\partial y_m}{\partial \mathbf{x}} \end{bmatrix}$.

4. 矩阵对向量求导

4.1 矩阵对行向量求导

设
$$Y = \begin{bmatrix} y_{11} & \cdots & y_{1n} \\ \vdots & & \vdots \\ y_{m1} & \cdots & y_{mn} \end{bmatrix}$$
 是 $m \times n$ 矩阵, $\mathbf{x}^T = [x_1 & \cdots & x_q]$ 是 q 维行向量,则
$$\frac{\partial Y}{\partial \mathbf{x}^T} = \begin{bmatrix} \frac{\partial Y}{\partial x_1} & \cdots & \frac{\partial Y}{\partial x_q} \end{bmatrix} .$$

4.2 矩阵对列向量求导

设
$$Y = \begin{bmatrix} y_{11} & \cdots & y_{1n} \\ \vdots & & \vdots \\ y_{m1} & \cdots & y_{mn} \end{bmatrix}$$
 是 $m \times n$ 矩阵, $\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_p \end{bmatrix}$ 是 p 维列向量,则

$$\frac{\partial Y}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y_{11}}{\partial \mathbf{x}} & \dots & \frac{\partial y_{1n}}{\partial \mathbf{x}} \\ \vdots & & \vdots \\ \frac{\partial y_{m1}}{\partial \mathbf{x}} & \dots & \frac{\partial y_{mn}}{\partial \mathbf{x}} \end{bmatrix} .$$

5. 矩阵对向量求导

5.1 行向量对矩阵求导

设
$$\mathbf{y}^T = \begin{bmatrix} y_1 & \cdots & y_n \end{bmatrix}$$
 是 n 维行向量, $X = \begin{bmatrix} x_{11} & \cdots & x_{1q} \\ \vdots & & \vdots \\ x_{p1} & \cdots & y_{pq} \end{bmatrix}$ 是 $p \times q$ 矩阵, 则

$$\frac{\partial \mathbf{y}^{T}}{\partial X} = \begin{bmatrix} \frac{\partial \mathbf{y}^{T}}{\partial x_{11}} & \cdots & \frac{\partial \mathbf{y}^{T}}{\partial x_{1q}} \\ \vdots & & \\ \frac{\partial \mathbf{y}^{T}}{\partial x_{p1}} & \cdots & \frac{\partial \mathbf{y}^{T}}{\partial x_{pq}} \end{bmatrix} .$$

5.2 列向量对矩阵求导

设
$$\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix}$$
 是 m 维列向量, $X = \begin{bmatrix} x_{11} & \cdots & x_{1q} \\ \vdots & & \vdots \\ x_{p1} & \cdots & y_{pq} \end{bmatrix}$ 是 $p \times q$ 矩阵, 则

$$\frac{\partial \mathbf{y}}{\partial X} = \begin{bmatrix} \frac{\partial y_1}{\partial X} \\ \vdots \\ \frac{\partial y_m}{\partial X} \end{bmatrix} .$$

5.3 矩阵对矩阵求导

设
$$Y = \begin{bmatrix} y_{11} & \cdots & y_{1n} \\ \vdots & & \vdots \\ y_{m1} & \cdots & y_{mn} \end{bmatrix} = \begin{bmatrix} \mathbf{y}_1^T \\ \vdots \\ \mathbf{y}_m^T \end{bmatrix}$$
 是 $m \times n$ 矩阵, $X = \begin{bmatrix} x_{11} & \cdots & x_{1q} \\ \vdots & & \vdots \\ x_{p1} & \cdots & y_{pq} \end{bmatrix}$

 $=[\mathbf{x}_1 \ \cdots \ \mathbf{x}_q]$ 是 $p \times q$ 矩阵,则

$$\frac{\partial Y}{\partial X} = \begin{bmatrix} \frac{\partial Y}{\partial \mathbf{x}_{1}} & \cdots & \frac{\partial Y}{\partial \mathbf{x}_{q}} \end{bmatrix} = \begin{bmatrix} \frac{\partial \mathbf{y}_{1}^{T}}{\partial X} \\ \vdots \\ \frac{\partial \mathbf{y}_{m}^{T}}{\partial X} \end{bmatrix} = \begin{bmatrix} \frac{\partial \mathbf{y}_{1}^{T}}{\partial \mathbf{x}_{1}} & \cdots & \frac{\partial \mathbf{y}_{1}^{T}}{\partial \mathbf{x}_{q}} \\ \vdots & & \vdots \\ \frac{\partial \mathbf{y}_{m}^{T}}{\partial \mathbf{x}_{1}} & \cdots & \frac{\partial \mathbf{y}_{m}^{T}}{\partial \mathbf{x}_{q}} \end{bmatrix} .$$

6. 例

例 设
$$\frac{\partial A}{\partial X} = \begin{bmatrix} 2xy & y^2 & y \\ x^2 & 2xy & x \end{bmatrix}$$
 , $X = \begin{bmatrix} x \\ y \end{bmatrix}$, 根据(12)矩阵对列向量求导

法则,有

$$\frac{\partial^2 A}{\partial X^2} = \begin{bmatrix} \frac{\partial (2xy)}{\partial X} & \frac{\partial (y^2)}{\partial X} & \frac{\partial y}{\partial X} \\ \frac{\partial (x^2)}{\partial X} & \frac{\partial (2xy)}{\partial X} & \frac{\partial x}{\partial X} \end{bmatrix} = \begin{bmatrix} 2y & 0 & 0 \\ 2x & 2y & 1 \\ 2x & 2y & 1 \\ 0 & 2x & 0 \end{bmatrix}.$$

例 设 $Y = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}$, $X = \begin{bmatrix} u & x \\ v & y \\ w & z \end{bmatrix}$, 根据(15)矩阵对矩阵求导法则,有

$$\frac{\partial Y}{\partial X} = \begin{bmatrix} \frac{\partial [a & b & c]}{u} & \frac{\partial [a & b & c]}{v} \\ \frac{\partial [u]}{v} & \frac{\partial [u]}{v} \\ \frac{\partial [u]}{w} & \frac{\partial [u]}{z} \\ \frac{\partial [u]}{v} & \frac{\partial [u]}{v} & \frac{\partial [u]}{v} \\ \frac{\partial [u]}{v} & \frac{\partial [u]}{v$$