Huffman Report

Terminology

Huffman coding uses a specific method for choosing the representation for each symbol, resulting in a prefix code (sometimes called "prefix-free codes", that is, the bit string representing some particular symbol is never a prefix of the bit string representing any other symbol). Huffman coding is such a widespread method for creating prefix codes that the term "Huffman code" is widely used as a synonym for "prefix code".

Description of implementation:

1. Compression of Files/Folder

1)The program asks user for the file/folder name to be compressed after that the program check that the file/folder exist in **same directory**. if exists the program open the input file/folder and read the message (if folder the program read each file within folder and merge them in one string as whole message knowing the size of each message)

The construction algorithm uses a <u>priority queue</u> where the node with lowest frequency is given highest priority, where:

- 2) **Create** a **leaf node** for each symbol and add it to the heap.
- 3) While there is more than one node in the heap:
 - 3.1)**Remove** the two nodes of highest priority (lowest frequency) from the min heap
 - 3.2) **Create** a **new internal node** with these two nodes as children and with frequency equal to **the sum** of the two nodes' frequencies.
 - 3.3)**Add** the new node to the heap.
 - 4)Traverse tree and make codes
 - 5)**encode** the message using this codes
 - 6)**Add** padding
 - 7)return compressed file/folder

2.Decompression Of File/Folder

- 1)The program asks user for the file/folder name to be decompressed after that the program check that the file/folder exist in **same directory**. if exists the program open the input file (if folder the program read file and un merge them then consider each of them as separate file) then:
 - 1)**Read** headers from compressed file and <u>convert</u>them to **binary strings**
 - 2)**Remove** padding
 - 3)**Loop** through the **binary string** and check that bit is in the in reverse mapping of codes :
 - if not in reverse mapping take 2 bits and check,
 - if found return the char and start from third bitetc.
 - 4)**return** decompressed File/Folder

Data structures used for implementing the encoding techniques:

Pkiority Queue/Min Heap(heapq library)/Dictionary(built-in python Hash-Maps)

The algorithms used and its complexity

Huffman:

heap data structures require $O(\log n)$ time per insertion, and a tree with n leaves has 2n-1 nodes, this algorithm operates in $O(n \log n)$ time, where n is the number of symbols.

Header format of Compression.

Compression Header Of File

• First Byte : Padding Size

• <u>Second Byte</u> : Indicator to know how many byte should be read to know the number of bytes the message written in (let it be n)

• Third byte to n : get the number of bytes should be read to get the message (let it be X)

• Fourth byte to X :message

• X+1 to rest of file :dictionary(Codes)

Compression Header Of Folder

• First Byte : Padding Size

Second Byte : Number of files in folder (let it be n)
 Third Byte to n*3 : Each file has three byte to know its length

• (n*3)+1 : Indicator to know how many byte should be read to know the number of bytes the message written in (let it be x)

• <u>(n*3)+2 to x</u> : get the number of bytes should be read to get the message (let it be z)

• Following byte to Z :message

• **<u>Z+1 to rest of file</u>** :dictionary(Codes)

Sample run using given text file(test_huffman)

- 1)Ask user for compress/decompress file/folder
- 2)Ask for file name

```
$ python huffman.py
1)Compress
2)Decompress
1
1)CompressFile
2)CompressFolder
1
Please Enter File Name To Compress (Without Extention) : test_huffman
```

3)File get compressed with printing codes used to compress, compression rate ,running time

Please Ente	r File Name To	Compress (Without	Extention) : test_huffman			
File Compressed						
Compression Rate = 55.70608335309416 %						
Char	Bytes	Code	NewCode			
	32	100000	00			
u	117	1110101	01000			
Ь	98	1100010	010010			
f	102	1100110	010011			
n	110	1101110	0101			
Α	65	1000001	011000000			
q	113	1110001	01100000100			
C	67	1000011	01100000101			
M	77	1001101	0110000011			
Н	72	1001000	011000010			
:	58	111010	0110000110			
0	79	1001111	0110000111			
S	83	1010011	011000100			
!	33	100001	0110001010			
J	74	1001010	0110001011			
V	86	1010110	0110001100000			
X	88	1011000	0110001100001			
*	42	101010	011000110001000			
2	50	110010	0110001100010010			
5	53	110101	0110001100010011			
(40	101000	01100011000101			
)	41	101001	01100011000110			
1	49	110001	0110001100011			
G	71	1000111	01100011001			
N	78	1001110	0110001101			
W	87	1010111	011000111			
C	99	1100011	011001			
1	108	1101100	01101			
a	97	1100001	0111			
0	111	1101111	1000			
,	44	101100	100100			
I	73	1001001	1001010			
	46	101110	1001011			
r	114	1110010	10011			
t	116	1110100	1010			
m	109	1101101	101100			
У	121	1111001	101101			
g	103	1100111	101110			
	39	100111	1011110			
В	66	1000010	1011111000			
F	70	1000110	101111100100			
K	75	1001011	1011111001010			
8	56	111000	10111110010110000			
9	57	111001	10111110010110001			
Q	81	1010001	1011111001011001			
0	48	110000	101111100101101			

3	51	110011	1011111001011100	
4	52	110100	10111110010111010	
7	55	110111	10111110010111011	
/	47	101111	1011111001011110	
6	54	110110	10111110010111110	
\$	36	100100	1011111001011111100	
%	37	1001	10111110010111111101000	
#	35	100011	1011111001011111101001	
@	64	1000000	101111100101111110101	
[91	1011011	101111100101111110110	
]	93	1011101	101111100101111110111	
Z	90	1011010	101111100101111111	
R	82	1010010	10111110011	
E	69	1000101	1011111010	
j	106	1101010	1011111011	
V	118	1110110	10111111	
P	112	1110000	1100000	
k	107	1101011	1100001	
	10	1010	110001	
i	105	1101001	11001	
d	100	1100100	11010	
s	115	1110011	11011	
e	101	1100101	1110	
P	80	1010000	11110000000	
z	122	1111010	111100000010	
U	85	1010101	111100000011	
?	63	111111	1111000001	
T	84	1010100	111100001	
-	45	101101	11110001	
;	59	111011	111100100	
L	76	1001100	11110010100	
×	120	1111000	11110010101	
Υ	89	1011001	11110010110	
D	68	1000100	11110010111	
"	34	100010	11110011	
W	119	1110111	111101	
h	104	1101000	11111	
Time For Compress: 1.4615630999999993				

Decompression

```
$ python huffman.py
1)Compress
2)Decompress
2
1)DecompressFile
2)DecompressFolder
1
Please Enter File Name To Decompress (Without Extention) : test_huffman
File Decompressed
Time For Decompress: 2.357712499999999
```