Gibbs Sampling Problem 1

Ganchao Wei

5/26/2021

1. Gibbs Sampling for a Bivariate Normal Distribution

1.1 Notations and Full Conditional Distributions

Let $X = (X_1, X_2)' \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, where $\boldsymbol{\mu} = (\mu_1, \mu_2)'$ and $\boldsymbol{\Sigma} = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}$. Therefore, the full conditional distributions of X_1 and X_2 are:

$$X_1|X_2 = x_2 \sim N(\mu_1 + \Sigma_{12}\Sigma_{22}^{-1}(x_2 - \mu_2), \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21})$$
$$X_2|X_1 = x_1 \sim N(\mu_1 + \Sigma_{21}\Sigma_{11}^{-1}(x_1 - \mu_1), \Sigma_{22} - \Sigma_{21}\Sigma_{11}^{-1}\Sigma_{12})$$

1.2 Simulation

Here, I set $\mu = (1,2)'$ and $\Sigma = \begin{pmatrix} 1 & 0.5 \\ 0.5 & 1 \end{pmatrix}$. To visualize the distribution, let's draw 5000 samples directly from the distribution, with contours shown (from kernel density estimation).

Bivariate Normal

Then 5000 Gibbs samples are drawn, with the initial value $x_0 = \mu$. The code for Gibbs sampling are as follows. The contours of kernel density is overlaid by the samples from the Gibbs sampler.

```
GS_BVN <- function(mu, Sig, nGS, x0){
  X <- matrix(NA, nrow = nGS, ncol = 2)</pre>
  X[1, ] <- x0
  for(i in 2:nGS){
    ## update x1
    mu_tmp1 <- mu[1] + Sig[1, 2] %*% solve(Sig[2, 2]) %*% (X[i-1, 2] - mu[2])
    sig_tmp1 <- Sig[1, 1] - Sig[1, 2] %*% solve(Sig[2, 2]) %*% Sig[2, 1]
    X[i, 1] <- rnorm(1, mu_tmp1, sqrt(sig_tmp1))</pre>
    ## update x2
    mu_tmp2 <- mu[2] + Sig[2, 1] %*% solve(Sig[1, 1]) %*% (X[i, 1] - mu[1])
    sig_tmp2 <- Sig[2, 2] - Sig[2, 1] %*% solve(Sig[1, 1]) %*% Sig[1, 2]
    X[i, 2] <- rnorm(1, mu_tmp2, sqrt(sig_tmp2))</pre>
  }
  return(X)
}
set.seed(2)
x0 <- mu
nGS <- 5000
X <- GS_BVN(mu, Sig, nGS, x0)
## plot
X.kde \leftarrow kde2d(X[, 1], X[, 2], n = 100)
image(X.kde, main = 'Gibbs Sampler',
      xlab = 'x1', ylab = 'x2')
lines(X[, 1], X[, 2], type = 'p',
```

Gibbs Sampler

We can see the sampling distribution from the Gibbs sampler matches the true distribution well. Further, the 1-D sample traces and histograms are shown below:


```
par(mfrow = c(1, 1))
```

The trace plots show that there are no heavy auto-correlation issues, and the 1D histograms show that the marginal distributions are normal.

2. Body Temperature

Currently, we focus on temperature only.

```
d2 <- read.table('bodytemp.txt')
temp <- d2$temperature</pre>
```

2.1 Exploratory Analysis

The histogram and normal Q-Q plot are show below.

Histogram of temp

Normal Q-Q Plot


```
par(mfrow = c(1, 1))
```

We can see that the distribution of body temperature is some what normal. The p-value for Shapiro-Wilk test is 0.23, which is larger than 0.05. Therefore, we may assume that the body temperature follows a normal distribution.

```
shapiro.test(temp)
```

```
##
## Shapiro-Wilk normality test
##
## data: temp
## W = 0.98658, p-value = 0.2332
```

The mean and variance:

```
temp.mean <- mean(temp)
temp.var <- var(temp)
temp.n <- length(temp)

cat('sample mean:', temp.mean, '\n')</pre>
```

sample mean: 98.24923

```
cat('sample variance:', temp.var)
```

sample variance: 0.5375575

2.2 Gibbs Sampler

Denote $X_i \stackrel{i.i.d.}{\sim} N(\theta, \sigma^2)$, and $X = (x_1, ..., x_n)'$. Here, we use independent priors for θ and σ^2 as follows:

$$\theta \sim N(\mu_0, \tau_0^2)$$

$$\tilde{\sigma}^2 = 1/\sigma^2 \sim Gamma(\alpha_0, \beta_0)$$

Here, $\tilde{\sigma}^2 = 1/\sigma^2$ is the "precision". Therefore, we can get the full conditional distributions for θ and $\tilde{\sigma}^2$:

$$p(\theta|\tilde{\sigma}^{2}, \boldsymbol{x}) \propto p(\boldsymbol{x}|\theta, \tilde{\sigma}^{2})p(\theta|\tilde{\sigma}^{2})p(\tilde{\sigma}^{2})$$

$$\propto p(\boldsymbol{x}|\theta, \tilde{\sigma}^{2})p(\theta)$$

$$\propto N(\frac{\mu_{0}/\tau_{0}^{2} + n\boldsymbol{x}\tilde{\sigma}^{2}}{1/\tau_{0}^{2} + n\tilde{\sigma}^{2}}, (1/\tau_{0}^{2} + n\tilde{\sigma}^{2})^{-1})$$

$$p(\tilde{\sigma}^{2}|\theta, \boldsymbol{x}) \propto p(\boldsymbol{x}|\theta, \tilde{\sigma}^{2})p(\tilde{\sigma}^{2}|\theta)p(\theta)$$

$$\propto p(\boldsymbol{x}|\theta, \tilde{\sigma}^{2})p(\tilde{\sigma}^{2})$$

$$\propto Gamma(\alpha_{0} + \frac{n}{2}, \beta_{0} + \frac{\sum_{i=1}^{n} (x_{i} - \theta)^{2}}{2})$$

To help with interpretation, rewrite $\alpha_0 = \frac{\nu_0}{2}$ and $\beta_0 = \frac{\nu_0 \sigma_0^2}{2}$. Here, ν_0 can be viewed as the prior sample size, and σ_0^2 can be viewed as the prior sample variance. Further, since $\sum_{i=1}^n (x_i - \theta)^2 = \sum_{i=1}^n (x_i - \bar{x})^2 + \sum_{i=1}^n (\bar{x} - \theta)^2 = (n-1)s^2 + n(\bar{x} - \theta)^2$, where s^2 and \bar{x} are sample variance and mean. So, the full conditional distribution for $\tilde{\sigma}^2$ can be written as:

$$p(\tilde{\sigma}^2|\theta, \boldsymbol{x}) \propto Gamma(\frac{\nu_0 + n}{2}, \frac{\nu_0 \sigma_0^2 + (n-1)s^2 + n(\bar{\boldsymbol{x}} - \theta)^2}{2})$$

OK, let's begin to do the Gibbs sampler! Set the prior parameters as $\mu_0 = \bar{x}, \tau_0^2 = 1, \nu_0 = 1, \sigma_0^2 = 0.01$. Draw 5000 samples, with initial values be $\theta_0 = \bar{x}$ and $\tilde{\sigma}^2 = 1/s^2$. The code are as follows. In the code, I further denote $\phi = (\theta, \tilde{\sigma}^2)'$

```
nGS <- 5000
PHI <- matrix(NA, nrow = nGS, ncol = 2)
## prior
mu0 <- temp.mean
tau20 <- 1
nu0 <- 1
sig20 <- 0.01
## initialization
PHI[1, ] <- c(temp.mean, 1/temp.var)</pre>
## GS
set.seed(3)
for(i in 2:nGS){
  ## update theta
  mun <- (mu0/tau20 + temp.n*temp.mean*PHI[i-1, 2])/</pre>
    (1/tau20 + temp.n*PHI[i-1, 2])
  tau2n \leftarrow 1/(1/tau20 + temp.n*PHI[i-1, 2])
  PHI[i, 1] <- rnorm(1, mun, sqrt(tau2n))</pre>
  ## update sig2
```

```
alphn <- (nu0 + temp.n)/2
betan <- (nu0*sig20 + (temp.n-1)*temp.var + temp.n*(temp.mean - PHI[i, 1])^2)/2
PHI[i, 2] <- rgamma(1, alphn, betan)
}</pre>
```

Again, let's first see the samples from the posterior distribution by the Gibbs sampler. The contours of kernel density is overlaid by the samples from the Gibbs sampler.

Gibbs Sampler

The traces and histograms are shown below. Gibbs samples mean, 95% HPD 0.25 quantile and 0.975 quantile are overlaid in the histograms.

```
abline(v = theta.quantile[2], lwd = 2, col = 'orange')
legend('topright', legend = c('mean', 'HPD', 'quantile'),
       lwd = 2, col = c('red', 'steelblue3', 'orange'), cex = 0.6)
plot(PHI[, 2], main = 'trace of 1/sig2',
     xlab = 'iteration', ylab = '1/sig2')
hist(PHI[, 2], xlab = '1/sig2',
     main = 'Histogram of 1/sig2')
invSig2.hdi <- hdi(PHI[, 2], credMass = 0.95)</pre>
invSig2.quantile <- quantile(PHI[, 2], c(0.025, 0.975))</pre>
abline(v = mean(PHI[, 2]), lwd = 2, col = 'red')
abline(v = invSig2.hdi[1], lwd = 2, col = 'steelblue3')
abline(v = invSig2.hdi[2], lwd = 2, col = 'steelblue3')
abline(v = invSig2.quantile[1], lwd = 2, col = 'orange')
abline(v = invSig2.quantile[2], lwd = 2, col = 'orange')
legend('topright', legend = c('mean', 'HPD', 'quantile'),
       lwd = 2, col = c('red', 'steelblue3', 'orange'), cex = 0.6)
```



```
par(mfrow = c(1, 1))
```

The trace plots show that there are no heavy auto-correlation issues. The histograms show that the posterior distributions are somewhat symmetric for both parameters.

The posterior mean, 95% HPD and 95% symmetric credible interval for θ :

```
## posterior mean: 98.24945
## 95% HPD: [ 98.12213 , 98.3701 ]
```

```
## 95% symmetric credible interval: [ 98.12409 , 98.37353 ] While the posterior mean, 95% HPD and 95% symmetric credible interval for \tilde{\sigma}^2: ## posterior mean: 1.878633 ## 95% HPD: [ 1.430734 , 2.34759 ] ## 95% symmetric credible interval: [ 1.447963 , 2.37505 ] Further, the values for variance \sigma^2: ## posterior mean: 0.540682 ## 95% HPD: [ 0.4120304 , 0.676463 ] ## 95% symmetric credible interval: [ 0.4210437 , 0.690623 ] The HPD and symmetric credible intervals are close in both parameters. Also, notice that the observation mean & precision are: ## sample mean: 98.24923 ## sample precision: 1.860266
```

2.3 Conclusion

From the above analysis, the 95% HPD for the posterior mean is [98.122, 98.370] and 95% HPD for the posterior variance is [0.412, 0.676]. Since 98.6 is not in 95% HPD of the mean, the normal body temperature is not 98.6.