Vinay S Banakar

#4570, Dept. of Computer Science 1205 University Ave, Madison, WI 53706 vin@cs.wisc.edu www.vinaybanakar.com

EDUCATION

University of Wisconsin-Madison Ph.D in Computer Science Advisors: Andrea Arpaci-Dusseau & Remzi Arpaci-Dusseau 2020 (ongoing) 2020 - 2023

PES University 2013-2017

B.E in Computer Science and Engineering

PUBLICATIONS

M.S. in Computer Science

[1] Address-Space-Engineered Data Structures for Memory Efficiency
Vinay Banakar et al.

Under submission

[2] **Tidying Up the Virtual Address Space**Vinay Banakar, Suli Yang, Kan Wu, Andrea Arpaci-Dusseau,

Remzi Arpaci-Dusseau, and Kimberly keeton

[3] **WiscSort: External Sorting for Byte-Addressable Storage**VLDB'23

Vinay Banakar, Kan Wu, Yuvraj Patel,

Kimberly keeton, Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau

[4] Understanding and Benchmarking the Impact of GDPR on Database Systems
Supreeth Shastri, Vinay Banakar, Melissa Wasserman,
Arun Kumar, and Vijay Chidambaram

[5] CIED - Rapid Composability of Rack Scale Resources Using Capability
Inference Engine Across Datacenters

IEEE Infra'20

[6] Analyzing the Impact of GDPR on Storage Systems
Vinay Banakar, Aashaka Shah, Supreeth Shastri,
Melissa Wasserman, and Vijay Chidambaram

Vinay Banakar, Pavan Upadhya, and Maneesh Keshavan

ACM HotStorage'19

PATENTS

[1] Intent driven hardware placement using rack capability inference engine across datacenters, 2019

Vinay Banakar, Pavan Upadhya, and Maneesh Keshavan

[2] Intelligent orchestration of disaggregated applications based on class of service, 2019
Tom Golway, Vinay Banakar, and Sandeep Panda

[3] Preemptive compatibility failure detection using graph structure
learning in datacenters, 2018
Vinay Banakar, Pavan Upadhya, and Maneesh Keshavan

[4] **Topology based root cause triangulation of hardware issues**Pavan Upadhya, Maneesh Keshavan, Naveena Kedlaya, and *Vinay Banakar*US10831587B2

RECENT PROJECTS

- Vector FileSystems: Developing native support for storing and queering multi-modal embeddings of raw data blocks. Enables semantic-aware block layouts for high performance and improved reliability.
- OCC hierarchical validation: Designed a new hierarchical validation scheme for databases that use optimistic concurrency control [Fall'22].
- Disaggregated-PM aware datastructures: Explored the performance v/s functionality trade-offs and skewed read/write performance of a disaggregated-PM architecture by implementing a B+-tree and distributed external sort over InfiniBand RDMA [Fall'21].

- RecoverKV: Strongly consistent, partition tolerant Key-Value store built in Go using quorum protocol [Spring'21].
- AutoTune: Optimizing Linux IO scheduler and memory allocator parameters using Bayesian Optimization.
- TLB optimization: Reduced IPI queuing delay by 2x in Linux kernel by optimizing TLB invalidation across multiple cores. Resulting in efficient page evictions to swap (SSD) or disaggregated memory.

TEACHING EXPERIENCE

• CS739: Distributed Systems

• CS537: Operating Systems

• ECE252: Computer Organization

• CS220: Data Science Programming

TA (UW Madison, Spring 2022)
TA (UW Madison, Fall 2021)

TA (UW Madison, Spring 2021) TA (UW Madison, Fall 2020)

RESEARCH & INDUSTRY EXPERIENCE

Google

Student Researcher
Systems Research Group
Summer 2023 - Present

Advisor: Dr. Kimberly Keeton

- Developed ML models to improve memory efficiency and reliability in Borg.
- Built a compiler-runtime system, for hot/cold object separation within application address spaces. Achieved up to 70% memory footprint reduction.
- Developed a framework to help optimize memory tiering for Spanner using LLVM program analysis and TcMalloc allocation hints.

UW Madison

Research Assistant Advanced Systems Lab Summer 2021 - Present Advisors: *Prof. Andrea Arpacı-Dusseau* and *Prof. Remzi Arpacı-Dusseau*Designed *WiscSort*, a high-performance concurrent sorting system for byte-addressable storage that is 7x faster than state-of-the-art. Bridging the semantic gap between application and kernel memory management to achieve peak memory efficiency through dynamic layout optimization.

Microsoft

Research Assistant Gray Systems Lab Spring 2023 Advisor: Dr. Jesús Camacho Rodríguez

- Investigated new HTAP designs for CXL memory and storage devices.
- Extended SCAN, JOIN, and SORT operations to support persistent memory.
- Optimized DB operations to exploit hardware heterogeneity.

HPE RnD Labs

Senior Systems Engineer 2017-2020

Advisors: Dr. Kimberly Keeton

Developed applications for disaggregated persistent Fabric Attached Memory (openFAM) to evaluate it against traditional cluster-based HPC programming models (openSHMEM and MPI). Also, built features for large scale datacenter management software (OneView) and developed Redfish compliant server hardware simulator.

UT Austin

Research Fellow Systems and Storage Lab 2018-2019 Advisor: Prof. Vijay Chidambaram

- Demonstrated the pitfalls of retrofitting existing systems to comply with GDPR. Modified Redis, Postgres, etc to showcase feasible alternatives.
- Built GDPRBench, a benchmark that lets user to assess compliance level of storage systems and help evaluate compliance-performance tradeoff.

HPE RnD Labs

Research intern 2017

Implemented a virtual host simulation platform that mimics ESXi instances as hosts in VMware vCenter clusters. Scaled up to 1000+ simulated hosts that were leveraged for performance evaluation in OneView.

AWARDS AND ACCOMPLISHMENTS

- SOSP 2024, VLDB 2023 Student Travel Grant
- Silver award for innovation at Hewlett Packard Enterprise, 2020
- First prize at 8th IEEE conference on Cloud Computing in Emerging Markets, 2019.
- Second place at Open hack 2016 and SimpliHack 2015.

SERVICE

- Program committee: HPE TechCon'20, IEEE HiPC (2024, 2025), EuroSys'25 (shadow), IPDPS'25
- Artifact evaluation review Committee: ASPLOS 2020, SOSP 2019
- Book Contribution: Effective Cybersecurity Understanding and Using Standards and Best Practices.
- Open source contributions: Apache Ratis, Postgresql and YCSB