## **Example**



The engineer is interested in determining if the RF power setting affects the etch rate, and she has run a completely randomized experiment with four levels of RF power and five replicates (see Table 1).

We will use the analysis of variance to test,  $H_0$ :  $\mu_1 = \mu_2 = \mu_3 = \mu_4$ 

against the alternative,  $H_1$ : Some means are different (OR at least one mean is different)

| RF Power | Observed Etch Rate (Å/min) |                |     |     |     |  |  |  |
|----------|----------------------------|----------------|-----|-----|-----|--|--|--|
| (W)      | 1                          | 2              | 3   | 4   | 5   |  |  |  |
| 160      | 575                        | <u> 542 — </u> | 530 | 539 | 570 |  |  |  |
| 180      | 565                        | 593            | 590 | 579 | 610 |  |  |  |
| 200      | 600                        | 651            | 610 | 637 | 629 |  |  |  |
| 220      | 725                        | 700            | 715 | 685 | 710 |  |  |  |



$$k=4$$
,  $N=20$ ,  $n!=5$ 

$$SS_{T} = \sum y_{1j}^{2} = 7704511$$

$$SS_{M} = N \overline{y}^{2} = 20 \times 617.75 = \frac{y_{1} = 551.2}{y_{1} = 551.2} = \frac{9}{160} = \frac{575.542}{200} = \frac{530.539}{500.579} = \frac{570}{610}$$

$$SS_{TWAITMENT} = \sum N'_{1} (\overline{y}_{1}^{2} - \overline{y}_{1}^{2}) = \frac{y_{1} = 551.2}{y_{2} = 567.4} = \frac{160}{200} = \frac{575.542}{600} = \frac{530.539}{590.579} = \frac{570}{610}$$

$$= 5 \times (551.2 - 617.72) + \frac{y_{1} = 707}{y_{2} = 707} = \frac{7}{150} = \frac{7$$

$$SSemv = (575 - 551.2) + (542 - 557.2)^{2} + \cdots = SS_{T} - SS_{m} - SS_{meatment}$$

$$+ (565 - 587.4)^{2} + (593 - 587.4)^{2} + \cdots$$





|         | S <i>S</i> | DOF        | MS      | Fo             | R |
|---------|------------|------------|---------|----------------|---|
| SST     | 7704511    | 20         | /       |                | - |
| SSm     | 7632301.25 | <b>↓</b> · |         |                |   |
|         | •          | h-1 1      |         | 7 40           | _ |
| SStreat | 668 70:35  | = 3,       | 22290.1 | MStree = 66.80 |   |
| SSem    | 5339.70    | 16 1       | 333.08  |                |   |

| RF Power |       | Observed Etch Rate (Å/min) |     |         |     |   |  |  |  |  |
|----------|-------|----------------------------|-----|---------|-----|---|--|--|--|--|
| (W)      | 1     | 2                          | 3   | 4       | 5   | 6 |  |  |  |  |
| 160      | (575) | 542                        | 530 | (539) - | 570 | ø |  |  |  |  |
| 180      | 565   | 593                        | 590 | 579     | 610 | r |  |  |  |  |
| 200      | 600   | 651                        | 610 | 637     | 629 | • |  |  |  |  |
| 220      | 725   | 700                        | 715 | 685     | 710 |   |  |  |  |  |
|          |       | •                          |     |         |     |   |  |  |  |  |



### **ANOVA: Residuals**



Residuals are the difference between what is ACTUALLY observed (Experiment) vs. what is PREDICTED
from a model that is used to adequately describe the data

$$\epsilon_{ij} = y_{ij} - \widetilde{y_{ij}}$$

• In One-way ANOVA, what is the model?

$$\underline{y_{ij}} = \mu + \tau_i + \widehat{\epsilon_{ij}}$$

 $\mu$  = grand mean

 $\tau_{\rm i}$  = treatment mean

 $\varepsilon_{ij} = \text{error}$ 

• What is the prediction?

$$\widetilde{y_{ij}} = \mu + \tau_i$$
 "Effects Model"

• Remember, we had assumed that the residuals (or errors) are random and normally distributed.

So is that assumption valid IF we use the particular model? -> Model Adequacy Check!

$$\varepsilon_{ij} = y_{ij} - \frac{\mu - \tau_{i}}{U} = y_{ij}$$

# **ANOVA: Model Adequacy Checking**



#### **Normality Assumption** can be checked using several methods

- A dot diagram
- Histogram of residuals
- Normal probability plot



#### Etch Rate Data and Residuals from Example 3.1<sup>a</sup>

|           | Observations $(j)$ |          |           |          |                  |                             |       |
|-----------|--------------------|----------|-----------|----------|------------------|-----------------------------|-------|
| Power (w) | 1                  | 2        | 3         | 4        | 5                | $\hat{y}_{ij} = \bar{y}_i.$ |       |
|           | 23.8               | -9.2     | -21.2     | -12.2    | 18.8             |                             | ·<br> |
| 160       | √575 (13)          | 542 (14) | 530 (8)   | 539 (5)  | 570 (4)          | 551.2                       | V 9,  |
|           | -22.4              | 5.6      | 2.6       | -8.4     | 22.6             |                             | •     |
| 180       | 565 (18)           | 593 (9)  | 590 (6)   | 579 (16) | 610 (17)         | 587.4                       | 42    |
|           | (-25.4)            | 25.6     | -15.4     | 11.6     | 3.6              |                             |       |
| 200       | 600 (7)            | 651 (19) | (610)(10) | 637 (20) | <b>→</b> 629 (1) | 625.4                       | = 43  |
|           | 18.0               | -7.0     | 8.0       | -22.0    | 3.0              |                             |       |
| 220       | ر25 (2) ھے         | 700 (3)  | 715 (15)  | 685 (11) | 710 (12)         | 707.0                       | 54    |

<sup>&</sup>lt;sup>a</sup>The residuals are shown in the box in each cell. The numbers in parentheses indicate the order in which each experimental run was made.

# **Model Adequacy Checking**

term (may be interaction term) is

needed in the model.





# **Model Adequacy Checking**



#### **Dot Diagram of Residuals (Errors) vs Model Predictions**



If the model is adequate and the assumptions are satisfied, the errors or residuals,  $\epsilon_{ij}$ , should be INDEPENDENT of observations

# **ANOVA: Model Adequacy Checking**





#### Etch Rate Data and Residuals from Example 3.1a

|           | Observations $(j)$ |          |          |          |          |                             |  |
|-----------|--------------------|----------|----------|----------|----------|-----------------------------|--|
| Power (w) | 1                  | 2        | 3        | 4        | 5        | $\hat{y}_{ij} = \bar{y}_i.$ |  |
|           | 23.8               | -9.2     | -21.2    | -12.2    | 18.8     |                             |  |
| 160       | 575 (13)           | 542 (14) | 530 (8)  | 539 (5)  | 570 (4)  | 551.2                       |  |
|           | -22.4              | 5.6      | 2.6      | -8.4     | 22.6     |                             |  |
| 180       | 565 (18)           | 593 (9)  | 590 (6)  | 579 (16) | 610 (17) | 587.4                       |  |
|           | (-25.4)            | 25.6     | -15.4    | 11.6     | 3.6      |                             |  |
| 200       | 600 (7)            | 651 (19) | 610 (10) | 637 (20) | 629 (1)  | 625.4                       |  |
|           | 18.0               | -7.0     | 8.0      | -22.0    | 3.0      |                             |  |
| 220       | 725 (2)            | 700 (3)  | 715 (15) | 685 (11) | 710 (12) | 707.0                       |  |

<sup>&</sup>lt;sup>a</sup>The residuals are shown in the box in each cell. The numbers in parentheses indicate the order in which each experimental run was made.

A rough check for outliers may be made by examining the standardized residuals

$$d_{ij} = \frac{e_{ij}}{\sqrt{MS_E}}$$
 (3.18)

If the errors  $\epsilon_{ij}$  are  $N(0, \sigma^2)$ , the standardized residuals should be approximately normal with mean zero and unit variance. Thus, about 68 percent of the standardized residuals should fall within the limits  $\pm 1$ , about 95 percent of them should fall within  $\pm 2$ , and virtually all of them should fall within  $\pm 3$ . A residual bigger than 3 or 4 standard deviations from zero is a potential outlier.

For the tensile strength data of Example 3.1, the normal probability plot gives no indication of outliers. Furthermore, the largest standardized residual is

$$d_1 = \frac{e_1}{\sqrt{MS_E}} = \frac{25.6}{\sqrt{333.70}} = \frac{25.6}{18.27} = 1.40$$

NOTE: You do NOT have permission to share this file or any c which should cause no concern.

e accessed by others.

# **Example (DIY)**



An article in Nature describes an experiment to investigate the effect of consuming chocolate on cardiovascular health ("Plasma Antioxidants from Chocolate," Nature, Vol. 424, 2003, pp. 1013).

The experiment consisted of using three different types of chocolates: 100 g of dark chocolate, 100 g of dark chocolate with 200 mL of full-fat milk, and 200 g of milk chocolate. Twelve subjects were used, 7 women and 5 men, with an average age range of 32.2  $\pm 1$  years, an average weight of 65.8  $\pm$  3.1 kg, and a body-mass index of 21.9  $\pm$  0.4  $kgm^{-2}$ . On different days a subject consumed one of the chocolate-factor levels and one hour later the total antioxidant capacity of their blood plasma was measured in an assay.

Data similar to that summarized in the article are shown in the Table below.

#### Blood Plasma Levels One Hour Following Chocolate Consumption

|         | Subjects (Observations) |       |       |       |       |       |       |       |       |       |       |       |
|---------|-------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Factor  | 1                       | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    |
| DC →    | 118.8                   | 122.6 | 115.6 | 113.6 | 119.5 | 115.9 | 115.8 | 115.1 | 116.9 | 115.4 | 115.6 | 107.9 |
| DC+MK → | 7 105.4                 | 101.1 | 102.7 | 97.1  | 101.9 | 98.9  | 100.0 | 99.8  | 102.6 | 100.9 | 104.5 | 93.5  |
| MC →    | 102.1                   | 105.8 | 99.6  | 102.7 | 98.8  | 100.9 | 102.8 | 98.7  | 94.7  | 97.8  | 99.7  | 98.6  |



#### ME 794

### **Statistical Design of Experiments**

Chapter 2.3

**Classical Design of Experiments** 

**Two-Factor ANOVA** 

# **Example**



We wish to compare four processes which de-ink newspaper. We want about five tests for each of the four processes. Five batches of pulp are prepared. We assume that all chemicals used will be homogeneous. A batch of pulp can run only four tests, and the amount of ink with a particular batch varies greatly.

|     |          |         | Process (Ch |        |        |        |         |
|-----|----------|---------|-------------|--------|--------|--------|---------|
|     |          |         | 11          | 2      | 3      | 4      | Average |
|     |          | A·      | 89(1)       | 88 (3) | 97 (2) | 94 (4) | 92 🗸    |
|     | Batch    | В       | 84 (4)      | 77 (2) | 92 (3) | 79 (1) | 83      |
| f 2 | (Block)  | С       | 81 (2)      | 87 (1) | 87 (4) | 85 (3) | 85 🗸    |
|     | 5 levels | D       | 87 (1)      | 92 (3) | 89 (2) | 84 (4) | 88      |
|     |          | Е       | 79 (3)      | 81 (4) | 80 (1) | 88 (2) | 82      |
|     |          | Average | 84          | 85     | 89     | 86     |         |

### **Two-Factor ANOVA: Model**







### **Decomposition of Observations**

Decomposition of X<sub>ii</sub>

$$\frac{89}{-} = 86 + (84-86) + (92-86) + (89)$$

$$= 86 + (-2) + (6) + (-1)$$

SSQ: 148,480

147,920

264

**70** 

226

DOF:

20

1

4

3

12

e it can be accessed by others.

### **Two-Factor ANOVA Table**



When Factor 1 has 'a' levels and Factor 2 has 'b' levels and all possible combinations (N = ab) are tested.

| Source<br>of Variation | Sum of Squares       | Degrees<br>of Freedom | Mean Square                       | $F_0$                        |
|------------------------|----------------------|-----------------------|-----------------------------------|------------------------------|
| Factor 1               | SS Factor 1          | a − 1 ¬               | $\frac{SS \text{ Factor 1}}{a-1}$ | $\frac{MS}{MS_E}$ Factor 1   |
| Factor 2               | SS Factor 2          | b - 1                 | $\frac{SS \text{ Factor 2}}{b-1}$ | $\frac{MS_{Factor 2}}{MS_E}$ |
| Error                  | $\underline{SS}_{E}$ | (a-1)(b-1)            | $\frac{SS_E}{(a-1)(b-1)}$         | Fr, (a-1) 1b                 |
| Total                  | $\subset SS_T$       | N-1                   |                                   |                              |



### Sum of Squares

1. 
$$\sum_{i=1}^{N_b} \sum_{j=1}^{N_t} X_{ij}^2 = 89^2 + 84^2 + \dots = 148,480$$

$$N_b = \text{# of batches (5)}$$

$$N_t = \text{# of processes (4)} \checkmark$$

- 2. Mean:  $N \cdot \overline{\bar{X}}^2 = 20(86)^2 = 147,920$
- 3. Process/ technique:  $\sum_{j=1}^{N_t} N_b (\bar{X}_{\parallel j} \bar{\bar{X}})^2 = 5(84 86)^2 + 5(85 86)^2 + 5(89 86)^2 + 5(86 86)^2 = 70$
- 4. Block/Batch:

$$\sum_{i=1}^{N_b} N_t (\bar{X}_{i\Box} - \bar{\bar{X}})^2 = 4(92 - 86)^2 + 4(83 - 86)^2 + \dots + 4(82 - 86)^2 = 264$$

5. Residual:  $\sum \sum [X_{ij} - \bar{\bar{X}} - (\bar{X}_{i\Box} - \bar{\bar{X}}) - (\bar{X}_{\Box j} - \bar{\bar{X}})]^2 = 226$ 



### **ANOVA table**

| Sources                | SSQ     | DoF  | MS   | Ratio                          | T th   |
|------------------------|---------|------|------|--------------------------------|--------|
| Technique<br>(Process) | 70      | 3)   | 23.3 | X = (1.24) + F <sub>3,12</sub> | 3, 490 |
| Block<br>(Batch)       | 264     | 4    | 66   | 3.51 F <sub>4,12</sub>         | 3,259  |
| Grand Mean             | 147,920 | 1 ✓  |      |                                |        |
| Residual               | 226     | 12 / | 18.8 |                                |        |
| Total                  | 148,480 | 20 / |      |                                |        |

### Critical values for F-distribution

$$F_{0.95}(4,12) = 3.259$$

$$F_{0.95}(3,12) = 3.490$$

# **Example**



THREE analysts each measures the melting point of a particular liquid with each of FOUR different thermometers,

|         | Thermometer |     |      |      |  |  |  |
|---------|-------------|-----|------|------|--|--|--|
| Analyst | Α           | В   | С    | D    |  |  |  |
| 1       | 2.0 /       | 1.0 | -0.5 | 1.5  |  |  |  |
| 2       | 1.0         | 0.0 | -1.0 | -1.0 |  |  |  |
| 3       | 1.5         | 1.0 | 1.0  | 0.5  |  |  |  |



- 1. Are there significant differences among the analysts?
- 2. Are there significant differences among the thermometers?



