MATH 2418: Linear Algebra

Assignment# 1

Due: 08/30/2022, Tuesday, before 11:59pm

Term <u>:Fall 2022</u>

[Last Name] [First Name] [Net ID] [Lab Section]

Recommended Problems:(Do not turn in)

Sec 1.1: 1, 2, 3, 8, 9, 10, 11, 12, 13, 14, 15, 18, 26, 27, 28, 31.

- 1. Let $\mathbf{v} = (2, 3, 1)$, $\mathbf{w} = (1, -1, -1)$, and $3\mathbf{u} + 2\mathbf{v} 4\mathbf{w} = (1, -2, 3)$. Find
 - (a) the vector \mathbf{u}
 - (b) the linear combination: $2\mathbf{u} 3\mathbf{v} + 5\mathbf{w}$.

- 2. Given vectors \mathbf{u} and \mathbf{v} in diagram below, shade in all linear combinations $c\mathbf{u} + d\mathbf{v}$ for
 - (a) $0 \le c \le 1$ and $0 \le d \le 1$
 - (b) $0 \le c \le 1$ and d > 1
 - (c) $0 \le d \le 1$ and c > 1.

(You can use different shading styles in same picture for all three parts or can graph them separately in three different pictures)

3. Let $\mathbf{0} = (0,0,0)$, $\mathbf{i} = (1,0,0)$, $\mathbf{j} = (0,1,0)$, $\mathbf{k} = (0,0,1)$ be vectors in \mathbb{R}^3 . Given a cube with an edge 5 inches in the figure below

- (a) Write down the vectors \overrightarrow{OE} , \overrightarrow{OD} , \overrightarrow{OF} , \overrightarrow{OG} as linear combinations of $\mathbf{i}, \mathbf{j}, \mathbf{k}$
- (b) Let P,Q,R,S,T,U be the centers of the faces \overrightarrow{AGFE} , \overrightarrow{GBDF} , \overrightarrow{DCEF} , \overrightarrow{OAEC} , \overrightarrow{OAGB} , \overrightarrow{OBDC} respectively, write the vectors: \overrightarrow{OP} , \overrightarrow{OQ} , \overrightarrow{OR} , \overrightarrow{OS} , \overrightarrow{OT} , \overrightarrow{OU} as a linear combinations of \mathbf{i} , \mathbf{j} , \mathbf{k} .

- 4. Let $\mathbf{u} + \mathbf{v} = (3, -3)$ and $\mathbf{u} \mathbf{v} = (1, 1)$.
 - (a) Find \mathbf{u} and \mathbf{v}
 - (b) Draw the vectors \mathbf{u} , \mathbf{v} , $\mathbf{u} + \mathbf{v}$, $(\mathbf{u} \mathbf{v})$, $(-\mathbf{u} + \mathbf{v})$, $(-\mathbf{u} \mathbf{v})$ in a single xy-plane.

- 5. (a) Determine all real values of p such that the set of all linear combination of $\mathbf{u}=(-3,p)$ and $\mathbf{v}=(2,3)$ is all of \mathbb{R}^2 . Justify your answer.
 - (b) Determine all real values of p and q such that the set of all linear combinations of $\mathbf{u}=(1,p,-1)$ and $\mathbf{v}=(3,2,q)$ is a plane in \mathbb{R}^3 . Justify your answer.

- 6. Determine whether the set of all linear combinations of the following set of vectors in \mathbb{R}^3 is a line or a plane or all of \mathbb{R}^3 . Justify, your answer.
 - (a) $\{(-2,5,-3),(6,-15,9),(-10,25,-15)\}$
 - (b) $\{(0,0,3),(0,1,2),(1,1,0)\}$
 - (c) $\{(1,2,0),(1,1,1),(4,5,3)\}$