### 3 Pre-Lab

# 3.1 Controllability and Observability

```
x=Ax+By=Cx
x \theta \theta
A=[0 1 0 0; 0 -6.81 -1.50 0; 0 0 0 1;0 15.47 25.66 0]
B=[0; 1.52; 0; -3.46]
C=[1000; 0010]
Use MATLAB, I got the controllability matrix of this system,
1.0e+03 *
               0.0015
                       -0.0104
         0
                                 0.0758
    0.0015
             -0.0104
                         0.0758
                                -0.5518
         0
              -0.0035
                       0.0236
                                 -0.2492
```

0.0236 -0.2492

Its rank is 4, so it's controllable.

The observability matrix is

-0.0035

| 1.0000 | 0         | 0        | 0       |
|--------|-----------|----------|---------|
| 0      | 0         | 1.0000   | 0       |
| 0      | 1.0000    | 0        | 0       |
| 0      | 0         | 0        | 1.0000  |
| 0      | -6.8123   | -1.4957  | 0       |
| 0      | 15.4731   | 25.6566  | 0       |
| 0      | 46.4072   | 10.1894  | -1.4957 |
| 0      | -105.4069 | -23.1437 | 25.6566 |

Its rank is 4, it's full rank, so it's observable.

# 3.2 Observer Design

1.A is a 4x4 matrix and C is a 2x4 matrix, to make A-LC has the same size as A, L should be a 4x2 matrix, we assume L is [11112; 121122; 131132; 141142]

1.7778

2.A-LC is [ -1.0\*l11, 1.0, -1.0\*112, 0[ -1.0\*|21, -6.8123, - 1.0\*|22 - 1.4957, [-1.0\*131,0, -1.0\*I32, 1.0] [ -1.0\*I41, 15.473, 25.657 - 1.0\*142, 0] we can just use the place command in MATLAB, the eigenvalues of (A-LC) is the same as  $(A^{T}$ - $C^T * L^T$ ), AT=A';CT=C' LT=L'; P=[-10+15i; -10-15i; -12+17i; -12-17i];

```
LT=place(AT,CT,P)
```

### Get L=

16.1595 -2.3767 254.9780 -5.4818 15.7136 21.0282 180.7734 378.1934

## 3.3 Simulation

### 1.The Simulation block



### 2.4 plots of $x^$ and 4 plots of x

### 4 plots for X^:



4 plots for X



4 plots for error



.