COMP 4418 – Exercise Sheet: Game Theory I

Exercise I: Iterated Dominance

Consider the following two games. Find all Pareto-optimal outcomes and decide whether the games can be solved by iterated strict dominance.

		V	V	Х	ζ	У	7	Z	
	a	0	0	3	2	2	1	1	0
a)	b	3	1	0	1	5	1	3	2
	c	3	2	2	1	0	5	0	1
	d	5	1	1	4	4	0	0	0

		b_1	b_2		b_1	b_2
b)	a_1	(2, 3, 2)	(0, 5, 2)	a_1	(4, 5 , 1)	(1, <mark>0</mark> , 1)
	a_2	(1, 4, 1)	(2, 1, 1)	a_2	(2, 0, 3)	(1, 5, 3)
	a_3	(1, 1, 1)	(5, 4, 2)	a_3	(1, 2, 0)	(2, 2, 1)
c_1				c_2		

Exercise II: Maximin Strategies and Security Levels

a) Consider the following formulation of rock-paper-scissors. What are the maximin strategies and the security levels of both players?

	R	P	S	
R	0 0	-1	1 -1	
P	1 -1	0	-1	
S	-1	1 -1	0	

b) Model the situation with well as a fourth option that beats rock and scissor but loses again paper. What are the maximin strategies and the security levels of both players?

c) Assume there is lava as a fourth option. Lava beats all other option, but if both players play lava, they both experience a super lose with a utility of -100. What are the maximin strategies and the security levels of both players?

Exercise III: Independence

Assume that $A = \{a,b,c\}$ and let \succeq denote a rational and independent preference relation on $\mathcal{L}(A)$ such that $[1:a] \succ [1:b]$ and $[\frac{1}{2}:b,\frac{1}{2}:c] \sim [\frac{2}{3}:a,\frac{1}{3}:c]$. Show the following statements.

- a) $[1:c] \succ [1:a]$.
- b) If \succeq is additionally continuous, then it can be represented by the vNM utility function u given by u(c) = 1, $u(a) = \frac{1}{4}$, u(b) = 0.

Exercise Sheet IV: Preferences over Lotteries

Let \succeq denote the rational preference relation over a set $A = \{x_1, \dots, x_m\}$ given by $x_1 \succ x_2 \succ \dots \succ x_m$. Decide for each of the following relations on $\mathcal{L}(A)$ whether they are rational, continuous, and transitive. Prove your answers!

- a) The relation \succsim_1 is defined by $L_1 \succsim_1 L_2$ if and only if $x \succsim y$ for all $x, y \in A$ with $L_1(x) > 0$ and $L_2(y) > 0$.
- b) We define $\max(\succsim, X)$ as the most preferred alternative in X with respect to \succsim and $\Delta(L_1, L_2) = \max(\succsim, \{x \in A : L_1(x) \neq L_2(x)\})$. The relation \succsim_2 is defined by $L_1 \succsim_2 L_2$ if and only if $L_1 = L_2$ or $L_1(\Delta(L_1, L_2)) \ge L_2(\Delta(L_1, L_2))$.
- c) The relation \succeq_3 is defined by $L_1 \succeq_3 L_2$ if and only if $L_1(x_1) \ge L_2(x_1)$.