

NOMENCLATURA DOS ÁCIDOS

Hidrácidos: ácidos não oxigenados (H_E)

Ácido: Nome de E + idrico
HF: ácido fluorídrico
HCl: ácido clorídrico

Oxiácidos: ácidos oxigenados (H_EO,)

1. OXIÁCIDO-PADRÃO

Ácido	Nome de E + ICO	
HClO ₃	Ácido clórico	
H_2SO_4	Ácido sulfúrico	
H_3PO_4	Ácido fosfórico	
H_4SiO_4	Ácido silícico	
H_3BO_3	Ácido bórico	
H ₂ CO ₃	Ácido carbônico	
HNO_3	Ácido nítrico	

2. REGRA GERAL PARA ELEMENTOS QUE FORMAM DOIS OU MAIS OXIÁCIDOS

3. REGRA A SER APLICADA QUANDO VARIAR O GRAU DE HIDRATAÇÃO

EXERCÍCIOS DE APLICAÇÃO

- 01 Dar nome aos seguintes ácidos (solução aquosa):
- a) $HCIO_2 \rightarrow$
- b) HCl →
- c) HCN \rightarrow
- d) $HNO_2 \rightarrow$
- e) $H_3AsO_4 \rightarrow$
- f) $H_3SbO_3 \rightarrow$
- q) HF \rightarrow
- h) HCl \rightarrow
- i) HCN \rightarrow
- i) $H_2S \rightarrow$
- k) $H_2CO_3 \rightarrow$
- I) $H_3BO3 \rightarrow$
- m) $H_4SiO_4 \rightarrow$

- 02 Escreva a fórmula molecular das substâncias: em solução aquosa.
- a) ácido (orto) fosfórico →
- b) ácido fosforoso →
- c) ácido hipofosforoso →
- d) ácido metafosfórico →
- e) ácido pirofosfórico →
- f) ácido arsênico →
- g) ácido crômico →
- h) ácido sulfídrico →
- i) ácido periódico →
- '' ' ' ' ' ' ' ' ' ' ' ' ' ' '
- j) ácido metarsênico →
- k) ácido bórico →
- I) ácido mangânico →
- m) ácido hipobromoso →

- 03 (Vunesp-SP) Escreva:
- a) as fórmulas moleculares do ácido hipoiodoso e do ácido perbrômico.
- b) os nomes dos compostos de fórmulas H₂SO₃ e H₃PO₄.
- 04 O ácido dicrômico é também chamado ácido pirocrômico. Sabendo que a fórmula do ácido crômico é H₂CrO₄, qual a fórmula do ácido dicrômico?
- 05 **(Ufes-ES)** Os ácidos com as fórmulas moleculares HPO₃, H₃PO₄ e H₄P₂O₇, são, respectivamente:
- a) metafosfórico, ortofosfórico e pirofosfórico.
- b) ortofosfórico, metafosfórico e pirofosfórico
- c) ortofosfórico, pirofosfórico e metafosfórico
- d) piforosfórico, metafosfórico e ortofosfórico
- e) pirofosfórico, ortofosfórico e metafosfórico
- 06 (Mackenzie-SP) A água régia, que é uma mistura capaz de atacar o ouro, consiste numa solução formada de três partes de ácido clorídrico e uma parte de ácido nítrico. As fórmulas das substâncias destacadas são, respectivamente:
- a) Au, HClO₃ e HNO₃
- b) O, HCIO e HCN
- c) Au, HCl e HNO₃
- d) Hg, HCl e HNO₂
- e) Au, HClO₂ e NH₃
- 07 **(FMU-SP)** Os nomes dos ácidos abaixo são respectivamente: HNO₃; HClO; H₂SO₃, H₃PO₃
- a) nitroso, clórico, sulfuroso, metafosfórico.
- b) nítrico, clorídrico, sulfúrico, fosfórico.
- c) nítrico, hipocloroso, sulfuroso, fosforoso.
- d) nitroso, perclórico, sulfúrico, fosfórico.
- e) nítrico, cloroso, sulfúrico, hipofosforoso
- **(Mackenzie-SP)** Os ácidos identificados pelas fórmulas HClO₄(aq), HClO₂(aq), HClO(aq) e HClO₃(aq) denominam-se, respectivamente:
- a) perclórico, cloroso, hipocloroso e clórico.
- b) clórico, hipocloroso, cloroso e perclórico.
- c) hipocloroso, perclórico, clórico e cloroso.
- d) perclórico, hipocloroso, cloroso e clórico
- e) cloroso, clórico, perclórico e hipocloroso.

- 09 (USJT-SP) O ácido cianídrico é o gás de ação venenosa mais rápida que se conhece: uma concentração de 0,3 mg por litro de ar é imediatamente mortal. É o gás usado nos estados americanos do Norte, que adotam a pena de morte por câmara de gás. A primeira vítima foi seu descobri- dor, Carl Wilhem Scheele, que morreu ao deixar cair um vidro contendo solução de ácido cianídrico, cuja fórmula molecular é:
- a) HCOOH.
- b) HCN.
- c) HCNS.
- d) HCNO.
- e) H₄Fe(CN)₆
- 10 (PUC-MG) A tabela abaixo apresenta algumas características e aplicações de alguns ácidos:

Nome do Ácido	Aplicações e características	
Ácido muriático	Limpeza doméstica e de peças metálicas (decapagem)	
Ácido fosfórico	Usado como acidulante em refri- gerantes, balas e goma de mascar	
Ácido sulfúrico	Desidratante, solução de bateria	
Ácido nítrico	Indústria de explosivos e corantes	

fórmulas dos ácidos da tabela são respectivamente:

- a) HCl, H₃PO₄, H₂SO₄, HNO₃
- b) HClO, H₃PO₃, H₂SO₄, HNO₂
- c) HCl, H₃PO₃, H₂SO₄, HNO₃
- d) HClO₂, H₄P₂O₇, H₂SO₃, HNO₂
- e) HClO, H₃PO₄, H₂SO₃, HNO₃
- **11 (ACAFE-SC)** Os nomes dos ácidos oxigenados abaixo são respectivamente:

HNO₂, HClO₃, H₂SO₃ e H₃PO₄

- a) nitroso, clórico, sulfuroso, fosfórico.
- b) nítrico, clorídrico, sulfúrico, fosfórico.
- c) nítrico, hipocloroso, sulfuroso, fosforoso.
- d) nitroso, perclórico, sulfúrico, fosfórico.
- e) nítrico, cloroso, sulfúrico, hipofosforoso.

- 12 **(UFMT-MT)** Alguns ácidos oxigenados podem formar três ácidos com diferentes graus de hidratação. Estes ácidos recebem prefixos: ORTO, META e PIRO.
- O prefixo ORTO corresponde ao ácido que apresenta:
- a) menor teor de água na molécula.
- b) teor de água intermediário entre o META e o PIRO.
- c) maior teor de água na molécula.
- d) teor de água menor que o META.
- e) teor de água menor que o PIRO.
- 13 O ácido piroantimônico apresenta a sequinte fórmula molecular: $H_4Sb_2O_7$.

As fórmulas dos ácidos meta antimônico e ortoantimônico são, respectivamente:

- a) HSbO₃ e H₃SbO₄
- b) H2SbO₃ e H₃SbO₄
- c) HSbO₃ e H₄Sb₂O₅
- d) H₃SbO₃ e H₃SbO₄
- e) H₄SbO₄ e HSbO₂
- 14 $H_2S_2O_7(aq.)$, $H_2SO_4(aq.)$, $H_2SO_3(aq.)$ e $H_2S_2O_3(aq.)$ são, respectivamente, os ácidos:
- a) sulfuroso, sulfúrico, pirossulforoso e tiossulforoso.
- b) sulfuroso, sulfúrico, pirossulfúrico e persulfúrico.
- c) pirossulfúrico, sulfúrico, sulfuroso e tiossulfúrico.
- d) pirossulfúrico, sulfúrico, pirossulforoso e sulforoso.
- e) sulforoso, sulfúrico, tiossulfúrico e pirossulfúrico.
- 15 (USF-SP)
- 1. H₃PO₃
- 2. H₄P₂O₇
- 3. H₆Si₂O₇
- 4. H₂SiO₃
- 5. HBO₂
- 6. H₃BO₃
- 7. H₄B₂O₅
- A. ácido ortofosfórico
- B. ácido pirofosfórico
- C. ácido metasilício
- D. ácido pirofosfórico
- E. ácido metabórico
- F. ácido ortobórico
- G. ácido ortofosforoso
- H. ácido persilícico
- I. ácido pirossilícico

- a) 2-B, 3-H, 4-C, 5-H, 7-D
- b) 2-B, 3-H, 4-C, 5-F, 7-D
- c) 1-G, 2-B, 3-I, 5-E, 6-F
- d) 1-G, 2-B, 3-H, 5-E, 6-F
- e) 1-A, 2-B, 3-I, 5-E, 7-F

- **16 (UFSM-RS)** Associe a 2ª coluna à 1ª, considerando os ácidos.
- $1 H_4P_2O_7$
- $2 H_3PO_3$
- 3 H₃PO₄
- 4 HCℓO₂
- 5 HCℓO₃
- 6 HCℓO₄
- $7 H_2SO_3$
- 8 HNO₂
- a- fosfórico
- b- fosforoso
- c- nitroso
- d- nítrico
- e- hipofosforoso
- f- pirofosfórico
- q- sulfuroso
- h- cloroso
- i- perclórico
- i- clórico
- I- sulfúrico
- A sequência das combinações corretas é:
- a) 1e 2f 3a 4h 5b 6j 7g 8d.
- b) 1f 2e 3b 4j 5h 6i 7l 8c.
- c) 1b 2e 3f 4i 5j 6h 7g 8d.
- d) 1e 2b 3f 4j 5i 6h 7l 8d.
- e) 1f 2b 3a 4h 5i 6i 7g 8c.

17 (MACKENZIE-SP) Certo informe publicitário alerta para o fato de que, se o indivíduo tem azia ou pirose com grande frequência, deve procurar um médico, pois pode estar ocorrendo refluxo gastroesofágico, isto é, o retorno do conteúdo ácido do estômago. A fórmula e o nome do ácido que, nesse caso, provoca a queimação, no estômago, a rouquidão e mesmo dor toráxica são:

Situação normal
Situação de refluxo gastroesofágico

Esôfago
ácido Estômago

- a) HCℓ e ácido clórico.
- b) HCℓO₂ e ácido cloroso.
- c) HCℓO₃ e ácido clorídrico.
- d) $HC\ell O_3$ e ácido clórico.
- e) HCℓ e ácido clorídrico.
- **18 (FEI-SP)** Os nomes dos ácidos oxigenados abaixo são, respectivamente:

$HNO_2(aq)$, $HCIO_3(aq)$, $H_2SO_3(aq)$, $H_3PO_4(aq)$

- a) nitroso, clórico, sulfuroso, fosfórico.
- b) nítrico, clorídrico, sulfúrico, fosfórico.
- c) nítrico, hipocloroso, sulfuroso, fosforoso.
- d) nitroso, perclórico, sulfúrico, fosfórico.
- e) nítrico, cloroso, sulfídrico, hipofosforoso.
- 19 **(PUC-MG)** A tabela apresenta algumas características e aplicações de alguns ácidos:

Nome do	Aplicações e características	
ácido		
Ácido	Limpeza doméstica	
muriático		
Ácido fosfórico	Usado como acidulante	
Ácido sulfúrico	Desidratante, solução de	
	bateria	
Ácido nítrico	Explosivos	

As fórmulas dos ácidos da tabela são, respectivamente:

- a) HCl, H₃PO₄, H₂SO₄, HNO₃.
- b) HClO, H₃PO₃, H₂SO₄, HNO₂.
- c) HCl, H₃PO₃, H₂SO₄, HNO₂.
- d) $HCIO_2$, $H_4P_2O_7$, H_2SO_3 , HNO_2 .
- e) HClO, H₃PO₄, H₂SO₃, HNO₃.
- 20 (Mackenzie-SP) Certo informe publicitário alerta para o fato de que, se o indivíduo tem azia ou pirose com grande frequência, deve procurar um médico, pois pode estar ocorrendo refluxo gastroesofágico, isto é, o retorno do conteúdo ácido estômago. A fórmula e o nome do ácido que, nesse caso, provoca queimação no estômago, a rouquidão e mesmo dor toráxica são:
- a) HCl e ácido clórico.
- b) HClO₂ e ácido cloroso.
- c) HClO₃ e ácido clórico.
- d) HClO₃ e ácido clorídrico.
- e) HCl e ácido clorídrico.
- 21 O ácido cianídrico é o gás de ação venenosa mais rápida que se conhece; uma concentração de 0,3 mg/L de ar é imediatamente mortal. É o gás usado nos estados americanos do norte que adotam a pena de morte por câmara de gás. A primeira vítima foi seu descobridor, Carl Withelm Scheele, que morreu ao deixar cair um vidro contendo solução de ácido cianídrico, cuja fórmula molecular é:
- a) HCOOH.
- b) HCN.
- c) HCNS
- d) HCNO.
- e) H_4 Fe(CN)₆.
- 22 (UNIV.BRÁS CUBAS-SP) No laboratório de uma escola, encontrou-se um frasco antigo com rótulo parcialmente destruído. Apenas apalavra ácido estava legível. O líquido apresentava coloração avermelhada e, depois de algumas análises feitas pelos alunos, constatou-se a presença de NO₂. No rótulo, deveria estar identificado o ácido:
- a) nítrico.
- b) fosfórico.
- c) clorídrico.
- d) sulfúrico.
- e) carbônico.

(ENEM) O processo de industrialização tem gerado sérios problemas de ordem ambiental, econômica e social, entre os quais se pode citar a chuva ácida. Os ácidos usualmente presentes em maiores proporções na água da chuva são o H₂CO₃, formado pela reação do CO₂ atmosférico com a água, o HNO₃, o HNO₂, o H₂SO₄ e o H₂SO₃. Esses quatro últimos são formados principalmente a partir da reação da água com os óxidos de nitrogênio e de enxofre gerados pela queima de combustíveis fósseis.

A formação de chuva mais ou menos ácida depende não só da concentração do ácido formado, como também do tipo de ácido. Essa pode ser uma informação útil na elaboração de estratégias para minimizar esse problema ambiental. Se consideradas concentrações idênticas, quais dos ácidos citados no texto conferem maior acidez às águas das chuvas?

- a) HNO₃ e HNO₂.
- b) H₂SO₄ e H₂SO₃.
- c) H_2SO_3 e HNO_2 .
- d) H₂SO₄ e HNO₃.
- e) H₂CO₃ e H₂SO₃.
- **24 (Uepb PB)** As fórmulas moleculares dos ácidos, periódico, iodoso, iódico e hipoiodoso são, respectivamente:
- a) HIO₄ HIO₂ HIO₃ HIO
- b) HIO HIO₂ HIO₃ HIO₄
- c) HIO₄ HIO₃ HIO₂ HIO
- d) HIO HIO₄ HIO₃ HIO₂
- e) HIO₂ HIO HIO₄ HIO₃
- 25 **(Fepcs-DF)** Considere as informações abaixo, que tratam de maneira pela qual se atribuem nomes aos ácidos inorgânicos.
- I. A nomenclatura dos hidrácidos apresenta sufixo "ídrico".
- II. Na hipótese de um elemento estar presente exclusivamente em dois oxiácidos, como os do grupo 5A, aquele cujo elemento central tem maior número de oxidação, terá sufixo "ico" e o que tem menor número de oxidação, sufixo "oso".
- III. Na hipótese de um elemento estar presente exclusivamente em quatro oxiácidos, como os do grupo 7A, acrescentam-se, ainda, os prefixos "hipo" e "per" para o menor e maior número de oxidação, respectivamente.

Assim sendo, assinale a opção na qual a nomenclatura corresponde corretamente à fórmula do ácido.

- a) HCN ácido ciânico
- b) HBrO ácido hipobromídrico
- c) H₃PO₄ ácido fosforoso
- d) HClO₄ ácido percloroso
- e) HNO₃ ácido nítrico
- 26 (**Ufmt-MT**) Utilizando a tabela abaixo, que apresenta o nome de vários ácidos, complete-a escrevendo a fórmula molecular e dando a classificação de cada um quanto ao número de hidrogênios ionizáveis.

Nome	Fórmula	Classificação
Fosfórico		
Sulfúrico		
Cianídrico		
Ciânico		
Clorídrico		
Nítrico		
Bórico		
Fosforoso		
Sulfídrico		

27 **(Ufc-CE)** Associe a coluna da esquerda com a da direita e assinale a alternativa correta, de cima para baixo:

)
rico
)
r

- a) I, II, IV, III
- b) III, II, I, IV
- c) II, I, IV, III
- d) III, IV, I, II
- 28 Dê o nome dos seguintes ácidos (aquosos):
- a) HF
- b) HCl
- c) HCN
- d) H₂S
- e) H₂CO₃
- f) H₃BO₃
- g) H₄SiO₄

- 29 Dê o nome dos seguintes oxiácidos (aquosos):
- a) HNO₃
- b) HNO₂
- c) H₂SO₄
- d) H₂SO₃
- e) HIO₃
- f) HIO₂
- g) HIO
- h) HIO₄

- i) $H_2S_2O_3$
- 30 Dê a fórmula dos seguintes ácidos:
- a) Ácido sulfídrico
- b) Ácido periódico
- c) Ácido metarsênico
- d) Ácido bórico
- e) Ácido mangânico
- f) Ácido hipobromoso

GABARITO

01a) HClO₂ → ácido cloroso b) HCl → ácido clorídrico c) HCN → ácido cianídrico d) HNO₂ → ácido nitroso e) H₃AsO₄ → ácido arsênico f) H₃SbO₃ → ácido antimonioso g) HF → ácido fluorídrico h) HCl → ácido clorídrico i) HCN → ácido cianídrico j) H₂S → ácido sulfídrico k) $H_2CO_3 \rightarrow$ ácido carbônico I) H₃BO₃ → ácido bórico m) H₄SiO₄ → ácido silícico 02a) ácido (orto) fosfórico → H₃PO₄ b) ácido fosforoso → H₃PO₃ c) ácido hipofosforoso → H₃PO₂ d) ácido metafosfórico → HPO₃ e) ácido pirofosfórico → H₄P₂O₇ f) ácido arsênico → H₃AsO₄ g) ácido crômico \rightarrow H₂CrO₄ h) ácido sulfídrico → H₂S i) ácido periódico → HIO₄ j) ácido metarsênico → HAsO₃ k) ácido bórico → H₃BO₃ I) ácido mangânico → H₂MnO₄ m) ácido hipobromoso → HBrO 03a) HIO e HBrO₄ b) Ácido sulfuroso e Ácido fosfórico 04- H₂Cr₂O₇ 05- A 06- C 07- C 08- A 09-B 10- A 11- A 12- C 13- A 14- C 15- C 16- E 17- E 18- A

19- A 20- E 21- B

22- A

23- D

24- A

25- E

26-

Nome	Fórmula	Classificação
Fosfórico	H ₃ PO ₄	Triácido
Sulfúrico	H ₂ SO ₄	Diácido
Cianídrico	HCN	Monoácido
Ciânico	HCNO	Monoácido
Clorídrico	HCl	Monoácido
Nítrico	HNO ₃	Monoácido
Bórico	H ₃ BO ₃	Triácido
Fosforoso	H ₃ PO ₃	Diácido
Sulfídrico	H ₂ S	Diácido

27- D

28-

- a) Ácido fluorídrico
- b) Ácido clorídrico
- c) Ácido cianídrico
- d) Ácido sulfídrico
- e) Ácido carbônico
- f) Ácido bórico
- g) Ácido ortossilícico

29-

- a) Ácido nítrico
- b) Ácido nitroso
- c) Ácido sulfúrico
- d) Ácido sulfuroso
- e) Ácido iódico
- f) Ácido iodoso
- g) Ácido hipoiodoso
- h) Ácido periódico
- i) Ácido tiossulfúrico

30-

- a) H₂S
- b) HIO₄
- c) HAsO₃
- d) H_3BO_3
- e) H₂MnO₄
- f) HBrO