Random notes about Math for Deep Learning Models

Last update: 18 APR 2020

Contents

1	Intr	coduction	
2	Diff	ferentiation	
	2.1	Introduction about Differentiation	
	2.2	Differentiation Definition in Mathematics	
	2.3	Some Theorems in context of Differentiation	
3	What is convolution in mathematics		
	3.1	Convolution definition	
	3.2	Convolution commutativity	
	3.3	Time invariant property of convolution	
	3.4	Some Convolution Algebraic Properties	
4	$\mathbf{W}\mathbf{h}$	at is cross-correlation in math	
	4.1	Cross-Correlation definition	
	4.2	Cross-Correlation connection with convolution	
	4.3	Some Cross-Correlation Properties not necessary to hold	
5	To '	he continue	

1 Introduction

This document is suggested to be evolved in time and contains some general math things in which DL aspects is leveraging on or heuristically or non-heuristically.

Anybody welcome to append into it **pure mathematical** type things more or less relative to Deep Learning.

It's only in the beginning phase and will be evolved in time.

2 Differentiation

2.1 Introduction about Differentiation

This day's people talk about chain rule when prediction schema $F(x;\theta): X \to Y$ constructed as composition of several differentiable functions.

Leveraging in chain-rule for differentiable function allow compute gradient of function in systematic way, such that computation will be correct from math point of view, even numerically it can be various problems.

2.2 Differentiation Definition in Mathematics

Function $f: \mathbb{R}^n \to \mathbb{R}^m$ is differentiable if for arbitrarily $\Delta x \in \mathbb{R}^n$ which element wise consist of some components (without any inter-dependency in them) we can have:

$$f(x + \Delta x) - f(x) = A\Delta x + \alpha(\Delta x)|\Delta x| \tag{1}$$

Where:

- 1. $\alpha(\Delta x)$ is infinite small function i.e. $\lim_{\Delta x\to 0}\alpha(\Delta x)=0$
- 2. A is a rectangular matrix and its items should not depend on specific direction or values of Δx
- 3. $\alpha(\Delta x)$ is infinite dimensional function relative to Δx

Differentiation is a local property of the function. If function is differentiable in all points in some set χ then people say that function is differentiable in the whole set χ .

2.3 Some Theorems in context of Differentiation

Theorem 2.1 (Partial Derivatives). If function f is differentiable in point then all partial derivatives of the function exist and equal to corresponded elements of the matrix A.

To derive this theorem you should vary $\Delta x = [0, 0, ..., 0, dx_i, 0, ..., 0]^T$. This simple variation in input will allow eliminating every from A, except i-th column.

Theorem 2.2 (Continuity Property). If function f is differentiable in point then function is continuous in the point.

Theorem 2.3 (Differentiability from existing partial derivatives). If function f has all partial derivatives in point a and this partial derivative are continuous functions in a point a then function is differentiable in point a.

Theorem 2.4 (Differentiability of function composition). Also known as the chain rule.

- 1. If function f is differentiable in point of it's domain a.
- 2. If function g is differentiable in point of it's domain b.
- 3. If $\mathbf{b} = f(\mathbf{a})$

Then function z = g(f(x)) is differentiable in points a and $z' = g' \cdot f'$

3 What is convolution in mathematics

3.1 Convolution definition

I think you know that convolution is well-defined operation:

$$f * g(x) = \int_{-\infty}^{+\infty} f(y)g(x-y)dy \tag{2}$$

Sometimes limits of integration in (2) can be reduced to some subinterval of $[-\infty, +\infty]$.

3.2 Convolution commutativity

$$f * g(x) = \int_{-\infty}^{+\infty} f(y)g(x - y)dy =$$

$$|x - y = z, dy = -dz| =$$

$$\int_{+\infty}^{-\infty} f(x - z)g(z)(-dz) =$$

$$\int_{-\infty}^{+\infty} g(z)f(x - z)dz = g * f(x) \quad (3)$$

So we have proved that f * g = g * f

3.3 Time invariant property of convolution

$$\tau(f*g,b) = f*g(x-b) = \int_{-\infty}^{+\infty} f(y)g((x-b) - y)dy =$$

$$|g(x-b) = \tau(g,b)$$

$$\int_{-\infty}^{+\infty} f(y)\tau(g,b)(x-y)dy =$$

$$f*\tau(g,b) \quad (4)$$

So we have proved that f * g = g * f

3.4 Some Convolution Algebraic Properties

$$f * g = g * f \tag{5}$$

$$(f * g) * h) = f * (g * h)$$
 (6)

$$f * (g+h) = f * g + f * h$$
 (7)

$$\frac{d^k(f*g)}{dx^k} = f*\frac{d^kg}{dx^k} \tag{8}$$

$$f * \delta(a) = f(a) \tag{9}$$

4 What is cross-correlation in math

4.1 Cross-Correlation definition

If consider functions $\mathbb{R} \to \mathbb{R}$ then value of cross-correlation for them is **defined point-wise for specific value x** as the following

$$f \star g(x) = \int_{-\infty}^{+\infty} f(y)g(x+y)dy \tag{10}$$

If compared with convolution there is no "flipping and dragging" of convolution kernel in algebraic definition.

What Neural Network community mean by Convolution is some form of Cross-Correlations

4.2 Cross-Correlation connection with convolution

Let's define function $f^- := f(-x)$. This operation takes a function and reverse it w.r.t. to function value axis.

$$f \star g(x) = \int_{-\infty}^{+\infty} f(y)g(x+y)dy =$$

$$|y = -z, dy = -dz| =$$

$$\int_{+\infty}^{-\infty} f(-z)g(x-z)(-dz) =$$

$$\int_{-\infty}^{+\infty} f(-z)g(x-z)dz =$$

$$\int_{-\infty}^{+\infty} f^{-}g(x-z)dz = f^{-} * g$$

$$(11)$$

So we derived $f \star g = f^- * g$

4.3 Some Cross-Correlation Properties not necessary to hold

Convolution behaves like multiplication, but as you see $f \star g = f^- * g$ So due to that different algebraic properties is not necessary to hold. List of some properties which in general does not hold

$$f \star g = f^- * g = g * f^- \neq g^- * f = g \star f$$
 (12)

$$(f \star g) \star h \neq f \star (g \star h) \tag{13}$$

5 To be continue...

Deep Learning models evolve in time and attack composition function representation from different ways and learning too.