Ансамбли

Корлякова Мария. 2021

Регрессионная модель связи X и D

- $\bullet D = f(X) + \varepsilon$
- ε ожидаемая ошибка
 - нормально распределена
 - $M(\varepsilon)=0$
- f(X) регрессионная модель
- она есть объективно

Свойства модели

- 1. Среднее значение ожидаемой ошибки arepsilon для любой реализации X = E[arepsilon|x] = 0, тогда
- $2. \quad f(x) = E[D|x]$
- 3. Ошибка ε не коррелирует с функцией регрессии f(X): $E[\varepsilon f(X)]=0$

Е[] - математическое ожидание

Определение w

• Минимизация функции стоимости:

 $F(x_i, w)$ – модель (мы ее строим)

Критерий:

$$Er(w) = \frac{1}{2} \sum (d_i - F(x_i, w))^2$$

$$Er(w) = \frac{1}{2} Er[(f(x) - F(x,T))^2]$$

W зависят от выборки $T=\{(X,d)\}$

Et[] - среденее выборочное

Мера прогнозирования

$$L_{av}(f(x), F(x,T)) = ET[(f(x) - F(x,T))^2]$$

$$f(x) = E[D|x] - f(x)$$
 мат. ожидание $D|x$

$$L_{av}(f(x), F(x,T)) = Em[(E[D|X=x]-F(x,T))^2]$$

Ошибка оценивания регрессионной функции f(X) аппроксимационной F(x,T)

$$(E[D|X=x]-F(x,T)) =$$

 $(E[D|X=x]-E_T[F(x,T)]) + (E_T[F(x,T)]-F(x,T))$

Тогда

$$L_{av}(f(x),F(x,T))=ET[(E[D|X=x]-F(x,T))^2]=B^2(w)+V(w)+$$

+
$$E_T[(E[D|X=x] - f(x))^2]$$

 $B(w) = E_T [(E[D|X=x] - F(x, T))] -$ смещение среднего для F(x, T) относительно $f(x) \Rightarrow$ ошибка аппроксимации $V(w) = E_T [(E_T[F(x, T)] - F(x, T))^2] -$ дисперсия F(x, T) на всем T.

^{*} пренебрегаем бесконечно малыми и получим простое выражение

Дилемма дисперсии-смещения

Малое смещение Большое смещение Малый разброс Большой разброс

Дилемма дисперсии-смещения

Дилемма дисперсии-смещения

 Одновременно уменьшить смещение и дисперсию можно только для бесконечно большой выборки

Как решить дилему:

- Композиции алгоритмов
 - Алгебраический подход к построению корректных алгоритмов
 - Области компетентности
 - Багинг bagging
 - Бустинг boosting

Центральная предельная теорема (теор.вер.)

- Последовательности частичных средних, вычисленных по наборам из n независимых случайных величин, даже имеющих большую дисперсию σ, стремятся к нормальному распределению с дисперсией D=D/√n.
- Тем самым, если использовать в качестве результата среднее от значений прогнозов отдельных моделей, то неопределенность такого результата окажется ниже неопределенности отдельной модели.

- Пусть есть три алгоритма А1, А2, А3
- Аі, решает определенную задачу бинарной классификации с вероятностью успеха **р**, независимо от остальных.
- Тогда при классификации примера Х возможны 8 исходов:
 - все классификаторы выдали верный ответ, р³
 - два из трех не ошиблись (три варианта), 3p²(1 p),
 - не ошибся лишь один (еще три варианта), **3р(1 р)**²
 - ошиблись все три алгоритма одновременно, **(1 р)**³.
- комитет большинства,
- вероятность благоприятного исхода (1 и 2 вариант)
- $q = p^3 + 3p^2(1 p) = 3p^2 2p^3$.

Вероятность верной классификации комитетом

Точность одного классификатора

Усреднение по ансамблю

- Стратегия обучения
 - Уменьшение общей ошибки за счет варьирования начальных состояний.
 - Эксперты обучаются с избытком
 - Дисперсия уменьшается за счет усреднения

точность ансамбля моделей

- можно улучшить, если:
- 1) повысить точность каждой отдельной модели и, одновременно,
- 2) обеспечить статистическую независимость ошибок разных членов ансамбля.

Бэгинг

Статистики по Бутстрэп выборки Исходная выборка бутстрэп выборкам Статистика 1 Статистика 2 Статистика 3 Бутстрэп Статистика по выборке распределение

Out-Of-Bag-Error

