Chap 1 Physical quantities and units

Lesson 1.1

Candidates should be able to:

- (a) show an understanding that all physical quantities consist of a numerical magnitude and a unit
- (b) recall the following SI base quantities and their units: mass (kg), length (m), time (s), current (A), temperature (K), amount of substance (mol)
- (c) express derived units as products or quotients of the SI base units and use the named units listed in this syllabus as appropriate

Physical quantity

- Physical quantity a property which is measurable.
 It has a magnitude and a unit.
- For instance, the temperature of a body is 32°C. temperature is a physical quantity.

```
Magnitude -32
```

Unit - °C

 Non-physical quantity – not measurable, e.g. faith, love, hope, currency

6 base quantities

Base quantities		Base units		
name	symbol	Name	Symbol	
length	ı	metre	m	
mass	m	kilograms	kg	
time	t	second	S	
temperature	Τ, θ	kelvin	K	
electrical current	I	Ampere	A	
amount of substance	n	mole	mol	

Base & Derived quantities

- Base Quantities: Physical quantities that can not be derived from other quantities.
 - E.g. mass, temperature, time.
- Physical quantities that are derived from other quantities, defining by an equation.
 - E.g. speed is a derived quantity which is defined as distance travelled/ time taken, where distance and time are base quantities.

SI base units of a derived quantity

- One must know the definition of a derived quantity or its relation with other quantities before deriving its units and expressing it in SI base units.
- Example 1, force F = mass m x acceleration aF= ma and a = dv/dt

```
[a] = m s^{-1} / s = m s^{-2}
```

$$[m] = kg$$

$$[F] = kg m s^{-2}$$

Derived units

• Example 2

pressure p is defined as force F acting normally per unit area A.

```
p = F/A

[p] = kg m s<sup>-2</sup> / m<sup>2</sup>

= kg m<sup>-1</sup> s<sup>-2</sup>
```

Example 3

Given that intensity = energy transferred per unit time per unit area normal to the propagation of the energy.

```
[Energy] =[force] x [displacement]
= kg m s<sup>-2</sup> x m
= kg m<sup>2</sup> s<sup>-2</sup>
```

$$= kg m^2 s^{-2}$$

s x m²

$$= kg s^{-3}$$

Lesson 1.2

Candidates should be able to:

• (d) use SI base units to check the homogeneity of physical equations

introduction

- o s= ut + ½ a t , is it correct? Let's check!
- [s] = m
- o [ut] = $ms^{-1} x s = m$
- o [at] = $ms^{-2} x s = ms^{-1}$

$$s = ut + \frac{1}{2} a t^2$$

homogeneity

- Homogeneity consistency
- use SI base units to check the homogeneity of physical equations
- \bullet A = BC
- Check both sides of the equation if they have the same SI base units
- \bullet A = B +C +D
- Check each term of the equation if they have the same SI base units

Physically correct & dimensionally correct

- \circ s= ut + $\frac{1}{2}$ a t,
- both physically & dimensionally incorrect
- \circ s= ut + a t²,
- physically incorrect but dimensionally correct because ½ is unitless and hence it cannot be detected
- \circ s= ut + $\frac{1}{2}$ a t²
- both physically & dimensionally correct

Example 1

 Drag force F acting on a car traveling in the air is given by

$$F = \frac{1}{2} C_D A \rho v^2$$

, where C_D is the drag coefficient, A area of vehicle, ρ density and ν speed of vehicle.

Show that C_D has no units.

Solution:
$$F = \frac{1}{2}C_DA\rho v^2$$

LHS $[F] = kg ms^{-2}$

RHS

½ has no unit $[A] = m^2$ $[\rho] = kg m^{-3}$ $[v^2] = m^2 s^{-2}$

$$[A\rho v^2] = m^2 x kg m^{-3} x m^2 s^{-2}$$

= kg m s⁻²

Since $[F] = [A\rho v^2]$ without taking C_D into account, C_D has no units.

Example 2

• This is known as Bernoulli equation:

$$\frac{P}{\rho g} + \frac{v^2}{2g} + h = k$$

where P is pressure, ρ density, g acceleration due to gravity , v speed, h height and k is a constant which has the same dimension as h.

Check if this equation is homogenous.

$$\frac{P}{\rho g} + \frac{v^2}{2g} + h = k$$

$$[\frac{P}{\rho g}] = \text{kg m}^{-1} \text{ s}^{-2} / (\text{kg m}^{-3} \text{ x ms}^{-2}) = \text{m}$$

$$\frac{v^2}{2g}$$
] = m² s⁻² / (ms⁻²) = m

- (h) = [k] = m
- Since each term has the same units, this equation is correct (dimensionally)

Lesson 2.3

Candidates should be able to:

- (f) use the following prefixes and their symbols to indicate decimal submultiples or multiples of both base and derived units: pico (p), nano (n),micro (μ), milli (m), centi (c), deci (d), kilo (k), mega (M), giga (G), tera (T)
- (g) make reasonable estimates of physical quantities included within the syllabus

Prefixes

Multiple	prefix	Symbol	multiple	prefix	symbol
10 ¹²	Tera	Т	10-1	deci	d
10 ⁹	Giga	G	10-2	centi	С
10 ⁶	Mega	M	10-3	mili	m
10 ³	kilo	k	10-6	micro	μ
			10 ⁻⁹	nano	n
Y			10-12	pico	p

examples

- Hard disk Giga byte (Gb)
- Dimension nano metre (nm)
- Capacitance pico farad (pF)
- Intensity of sound decibel (dB)
- Mass of a boy 80 kilograms (kg)

estimates of physical quantities

- Some estimates are logical
 - E.g. mass of an apple,
 - A wide range of estimates are accepted, 100g 500 g
- While some need common sense or knowledge
 the mass of a person 40 100 kg
 the speed of an Olympiad 100-m sprinter, slightly less
 than 10 ms⁻¹
- Some estimates can be calculated
 E.g. the pressure at a point 10 metres deep in water
 p = ρ hg = 1000 x 10 x 10 = 10⁵ Pa

Lesson 2.4

Candidates should be able to:

- (j) distinguish between scalar and vector quantities and give examples of each
- (k) add and subtract coplanar vectors
- (I) represent a vector as two perpendicular components.

Vector & Scalar quantities

Vector quantities	Scalar quantities
Physical quantities that have the properties of magnitude and direction.	Physical quantities that have magnitude but do not have the property of direction.
Acceleration, force, momentum, electric field strength,	temperature, work, energy, pressure, power

Resolving a vector F into two perpendicular components X & Y

 $X/F = \cos \theta$

$$Y/F = \sin \theta$$

 $Y = F \sin \theta$

Example 1 resolve a force of 150 N into two perpendicular components

Example 2

a mass of weight 500 N lies on a ramp. Determine the component of the weight down the slope and normal to the slope

Vector addition

- Determine the resultant vector of two vectors that occur concurrently
- For instance, the resultant force on a boat which is pulled by two tugs

Vector addition

- Two methods
 - Draw to scale and measure the resultant vector by ruler and protractor
 - Cosine rule & sine rule

1. drawing

- Firstly, draw a parallelogram to scale e.g. 1cm: 1N
- Determine the resultant vector
- Measure the length of arrow and calculate the resultant force
- Measure its angle to horizontal with a protractor

2. Cosine rule and since rule

- Firstly, draw a parallelogram
- Determine the resultant vector
- $C^2=4^2+3^2-2(3)(4)\cos 30$

$$C =$$

$$C^2=12^2+35^2-2(12)(35)\cos 135$$

C = 44.3 N

Example 1

Vector subtraction

- Determine the change of a vector
- For instance the change in velocity V-U of a car
- V-U = a t
- The magnitude V-U of is equal to a x t
- The direction of V-U
 represents direction of
 acceleration as well as
 the direction of force that
 causes the change in
 velocity

Change in velocity V-U

- A ball hits the ground with 5 m s⁻¹ and rebounds with 5 m s⁻¹. Taking downwards as positive, determine the change in velocity.
- Answer = 10 m s⁻¹ (-ve means the force that causes the change acts upwards)

Example1 determine **X-Y**?

Example 2 determine **X-Y**

Example3 determine **X-Y**?

Other approach - parallelogram

Additional info

- Unified atomic mass constant $u = 1.66 \times 10^{-27} \text{ kg}$
 - Mass of a nucleus of Uranium-235 = 235 u
- Elementary charge $e = 1.6 \times 10^{-19} \,\mathrm{C}$
 - Charge of a nucleus of Uranium, proton number 92 = 92 e
- 1 Kilowatt-hour (Kwh) = $3.6 \times 10^6 \text{ J}$
- \bullet 1 atm = 1.01 x 10⁵ Pa

Any questions?

** The End **

