[0.1] Consider a DTMC shown below:

- (a) Find communicating classes.
- (b) Find prob that the DIMC gets absorbed in communicating class {1,2}, assuming that initial state is onitorally chosen.
- (c) Assuming, $x_0 = 5 \omega \cdot p.1$. Find fraction of time the DIMC spends in each of the states.
- (d) Solve (c) assuming $\chi_0 = 3 \omega. p. 1.$
- Q.2 Consider a DIMC on finite \leq with TPM p.

 (a) show that max $p_{ij}^{(m+1)} \leq \max_{i \neq j} p_{ij}^{(m)}$ (b) Show that $\min_{i \neq j} p_{ij}^{(m+1)} \geq \min_{i \neq j} p_{ij}^{(m)}$.

with pf (0,1/2).

- (a) Find steady state distribution (if exists).
- (b) Find the expected time to return to state $0 (v_{00})$.

- (a) Use your intuition to find value of p for which the DTMC is recurrent-
- (b) Solve y = Qy, to tornally prove @
- @ Let Sx denok the prob. that the DTMC ever visits state k. Find Sx (Assume No20).
- Consider an irreducible DIMC on a with TPM P. for any ica define

 Di= g.c.d. fn: fii >0 g.

 show that Di = Dj vi 4j.