Continuidad:

Sea $f:A\subset\mathbb{R}^2\to\mathbb{R}$ una función y $(x_0,y_0)\in\overline{A}$ (\overline{A} denota la clausura de A). Decimos que f es continua en (x_0,y_0) si

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = f(x_0,y_0).$$

Para que f sea continua en (x_0, y_0) :

- debe existir el límite $\lim_{(x,y)\to(x_0,y_0)} f(x,y)$,
- debe existir la imagen de f en (x_0, y_0) ,
- el límite de f cuando (x, y) tiende a (x_0, y_0) debe coincidir con la imagen de f en (x_0, y_0) .

Decimos que f es continua en A si f es continua en todos los puntos de A.

Propiedades:

Sean $f, g: A \subset \mathbb{R}^2 \to \mathbb{R}$ dos funciones continuas en A. Entonces

- 1. La suma f + g es continua en A
- 2. El producto $f \cdot g$ es continua en A,
- 3. Si g no se anula en A, entonces el cociente f/g es continua en A.
- 4. La composición de funciones continuas es continua (siempre que se pueda hacer la composición).

Ejercicio: Estudiar la continuidad de las siguientes funciones. En caso de encontrar puntos donde la función es discontinua, clasificar la discontinuidad.

1.
$$f(x,y) = \frac{xy \operatorname{sen}(x)}{e^y x^2 + y^2}$$

Solución:

Observamos primero que el dominio de f es $\mathbb{R}^2 \setminus \{(0,0)\}$. Como las funciones $xy \operatorname{sen}(x)$ y $e^y x^2 + y^2$ son funciones continuas en $\mathbb{R}^2 \setminus \{(0,0)\}$ y $e^y x^2 + y^2$ no se anula en ese conjunto, podemos afirmar que f es continua en todo su dominio.

Aunque f no está definida en (0,0), podemos averiguar qué tipo de discontinuidad tiene en el punto (0,0) calculando el límite de f(x,y) cuando (x,y) tiende a (0,0). Para ello podemos acotar la función f(x,y) de la siguiente manera:

$$\left| \frac{xy \operatorname{sen}(x)}{e^y x^2 + y^2} \right| \le \frac{|x||y|| \operatorname{sen}(x)|}{e^y x^2 + y^2} \le \frac{x^2|y|}{e^y x^2 + y^2} = \frac{e^y x^2}{e^y x^2 + y^2} e^{-y}|y|.$$

1

Usando que $\frac{e^y x^2}{e^y x^2 + y^2} \leq 1$ y $\lim_{(x,y) \to (0,0)} e^{-y} |y| = 0,$ concluimos que

$$\lim_{(x,y)\to(0,0)} \frac{xy \operatorname{sen}(x)}{e^y x^2 + y^2} = 0.$$

Como el límite existe, decimos que la discontinuidad es evitable.

2.
$$f(x,y) = \begin{cases} \frac{(xy-y)^3}{(x-1)^2 + y^2} & \text{si } (x,y) \neq (1,0) \\ 0 & \text{si } (x,y) = (1,0) \end{cases}$$

Solución:

Igual que antes podemos probar que f(x,y) es una función continua en $\mathbb{R}^2 \setminus (1,0)$.

Veamos que ocurre en (1,0). Por la definición de f tenemos que f(1,0)=0. Además, el límite de f(x,y) cuando (x,y) tiende a (1,0) lo podemos calcular usanco coordenadas polares. Reemplazando en el límite $x-1=r\cos\theta$ y $y=r\sin\theta$, donde r>0 y $\theta\in\mathbb{R}$, nos queda

$$\lim_{(x,y)\to(0,0)} \frac{(xy-y)^3}{(x-1)^2 + y^2} = \lim_{(x,y)\to(0,0)} \frac{(y(x-1))^3}{(x-1)^2 + y^2} = \lim_{(x,y)\to(0,0)} \frac{(y(x-1))^3}{(x-1)^2 + y^2}$$
$$= \lim_{r\to 0} \frac{(r^2 \sin\theta\cos\theta)^3}{r^2} = \lim_{r\to 0} \frac{r^6 \sin^3\theta\cos^3\theta}{r^2}$$
$$= \lim_{r\to 0} r^4 \sin^3\theta\cos^3\theta = 0$$

El último límite da cero ya que $sen^3\theta\cos^3\theta$ es una función acotada y $\lim_{r\to 0^+}r^4=0$.

Vimos que el límite existe y coincide con el valor de f(1,0), por lo tanto f es continua en todo \mathbb{R}^2 .

3.
$$f(x,y) = \begin{cases} \frac{x^3y + \cos(x^6 + y^2) - 1}{x^6 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

Solución:

Afirmamos que f es continua en $\mathbb{R}^2 \setminus \{(0,0)\}$ ya que es un cociente de funciones continuas y el denominador $x^6 + y^2$ no se anula en ese conjunto.

El punto donde debemos estudiar la continuidad más cuidadosamente es el (0,0). Por un lado, por la definición de f sabemos que f(0,0)=0. Por otro lado, veamos si existe el límite

$$\lim_{(x,y)\to(0,0)}\frac{x^3y+\cos(x^6+y^2)-1}{x^6+y^2}.$$

Como en el numerador de f tenemos una suma de varias funciones estudiemos por separado la existencia de los siguientes límites:

$$\lim_{(x,y)\to(0,0)} \frac{x^3y}{x^6+y^2} \quad \text{ y } \quad \lim_{(x,y)\to(0,0)} \frac{\cos(x^6+y^2)-1}{x^6+y^2}.$$

Comencemos con el límite de la derecha: si llamamos $u=x^6+y^2$ tenemos que si $(x,y)\to (0,0)$ entonces $u\to 0$. Luego,

$$\lim_{(x,y)\to(0,0)} \frac{\cos(x^6+y^2)-1}{x^6+y^2} = \lim_{t\to 0} \frac{\cos(t)-1}{t} = 0.$$

Ahora si estudiamos el límite de la izquierda por rectas que pasan por el origen y=mx tenemos que

$$\lim_{(x,y)\to(0,0)} \frac{x^3y}{x^6+y^2} = \lim_{x\to 0} \frac{mx^4}{x^6+m^2x^2} = \lim_{x\to 0} \frac{mx^4}{x^6+m^2x^2} = \lim_{x\to 0} \frac{mx^2}{x^4+m^2} = 0$$

Sin embargo, si nos acercamos por la curva $y = x^3$ tenemos que

$$\lim_{(x,y)\to(0,0)}\frac{x^3y}{x^6+y^2}=\lim_{x\to 0}\frac{x^6}{x^6+x^6}=\lim_{x\to 0}\frac{x^6}{2x^6}=\lim_{x\to 0}\frac{1}{2}=\frac{1}{2}.$$

Como acercándonos al (0,0) por caminos diferentes el valor del límite da distinto, el límite $\lim_{(x,y)\to(0,0)}\frac{x^3y}{x^6+y^2}$ no existe.

Por lo tanto,
$$\lim_{(x,y)\to(0,0)} \frac{x^3y + \cos(x^6 + y^2) - 1}{x^6 + y^2}$$
 no existe.

Así que f no es continua en (0,0) y el tipo de discontinuidad es esencial.

4.
$$f(x,y) = \begin{cases} \frac{\sin(x+y)}{x+y} & \text{si } y \neq -x \\ 1 & \text{si } y = -x \end{cases}$$

Solución:

Notemos que el dominio de f(x, y) es \mathbb{R}^2 . Ahora si (x_0, y_0) es un punto que no está sobre la recta y = -x, se cumple que

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = \frac{\operatorname{sen}(x+y)}{x+y} = \frac{\operatorname{sen}(x_0+y_0)}{x_0+y_0} = f(x_0+y_0).,$$

es decir, f(x,y) es continua en $\{(x,y) \in \mathbb{R}^2 : y \neq -x\}$. Veamos que ocurre en los puntos que están sobre la recta y = -x. Primero podemos observar que f(x,y) = 1. Además, si (x_0, y_0) cumple que $y_0 = -x_0$, haciendo el cambio de variables t = x + y tenemos que

$$\lim_{(x,y)\to(x_0,y_0)} \frac{\sin(x+y)}{x+y} = \lim_{t\to 0} \frac{\sin(t)}{t} = 1.$$

Como $\lim_{(x,y)\to(x_0,y_0)} \frac{\operatorname{sen}(x+y)}{x+y} = \lim_{t\to 0} \frac{\operatorname{sen}(t)}{t} = 1 = f(x_0,y_0)$, concluimos que f también es continua en los puntos que están sobre la recta y=-x. Por lo tanto, f es continua en todo \mathbb{R}^2 .