1. Sea $\alpha: I \to \mathbb{R}^3$ una curva parametrizada por el arco cuya traza está contenida en la superficie de una esfera de centro c y radio r. Pruébese que su curvatura es mayor o igual que $\frac{1}{r}$, y que si la igualdad se da para todo valor del parámetro, entonces α es plana.

Que $\alpha(s)$ esté en la esfera de centro c y radio r para todo $s \in I$ significa que

$$\langle \alpha(s) - c, \alpha(s) - c \rangle = r^2$$

Derivando,

$$2\langle \alpha'(s), \alpha(s) - c \rangle = 0 \iff \langle \alpha'(s), \alpha(s) - c \rangle = 0$$

Derivando otra vez,

$$\langle \alpha''(s), \alpha(s) - c \rangle + \langle \alpha'(s), \alpha'(s) \rangle = 0 \iff \langle \alpha''(s), \alpha(s) - c \rangle = -1$$

Por la desigualdad de Cauchy-Schwarz, se tiene que

$$1 = |\langle \alpha''(s), \alpha(s) - c \rangle| \le ||\alpha''(s)|| \, ||\alpha(s) - c|| = rk(s) \iff k(s) \ge \frac{1}{r}$$

y la igualdad se da en caso de que $\alpha''(s)$ y $\alpha(s) - c$ sean linealmente independientes.

Supóngase que se tiene la igualdad en todo $s \in I$, es decir, que existe una función escalar λ de forma que

$$\alpha''(s) = \lambda(s)(\alpha(s) - c)$$

para todo $s \in I$. Entonces se tiene

$$\langle \lambda(s)(\alpha(s)-c), \alpha(s)-c \rangle = -1 \iff \lambda(s) = -\frac{1}{r^2}$$

y como $\alpha''(s) = T'(s) = \frac{1}{r}N(s)$, entonces

$$\frac{1}{r}N(s) = -\frac{1}{r^2}(\alpha(s) - c) \iff N(s) = -\frac{1}{r}(\alpha(s) - c)$$

Derivando,

$$N'(s) = -\frac{1}{r}\alpha'(s) = k(s)T(s)$$

Ahora bien, por las ecuaciones de Frenet se tiene que

$$N'(s) = k(s)T(s) - \tau(s)B(s)$$

luego $\tau(s)B(s)=0$. Si siempre fuese $\tau(s)=0$ el ejercicio se ha acabado. ¿Y si fuese B(s)=0? Se tendría entonces

$$B(s) = T(s) \land N(s) = -\frac{1}{r}\alpha'(s) \land (\alpha(s) - c) = 0$$

así que $\alpha'(s)$ y $\alpha(s) - c$ serían linealmente independientes, que es imposible porque al principio se vio que ambos vectores son ortogonales y ninguno de ellos es el vector nulo. Se concluye que $\tau(s) = 0$ para todo $s \in I$ y por tanto la curva es plana.

2. Considérese el subconjunto de \mathbb{R}^3

$$S = \{(x, y, z) \in \mathbb{R}^3 \colon x^2 + y^2 - z = 1, z > -1\}$$

- (a) Pruébese que S es una superficie regular.
- (b) Obténgase un campo normal unitario sobre toda la superficie.
- (c) Calcúlense las curvaturas y direcciones principales y las direcciones asintóticas en (1,0,0).
- (a) La ecuación de S es equivalente a

$$z = x^2 + y^2 - 1$$

y la restricción z > -1 se traduce en $x^2 + y^2 > 0$. Se tiene entonces que S es la gráfica de la función

$$f: \mathbb{R}^2 \setminus \{(0,0)\} \longrightarrow \mathbb{R}$$

 $(x,y) \longmapsto f(x,y) = x^2 + y^2 - 1$

que es diferenciable en el abierto $\mathbb{R}^2 \setminus \{0,0\}$. Por tanto, S es una superficie regular.

(b) Una carta que recubre toda la superficie es (U, φ) , siendo $U = \mathbb{R}^2 \setminus \{(0, 0)\}$ y

$$\varphi \colon U \longrightarrow \mathbb{R}^3$$

 $(u, v) \longmapsto \varphi(u, v) = (u, v, u^2 + v^2 - 1)$

Se tiene que

$$\varphi_u = (1, 0, 2u) \qquad \qquad \varphi_v = (0, 1, 2v)$$

así que un campo normal unitario definido en toda la superficie es

$$\mathcal{N}_p = \frac{\varphi_u \wedge \varphi_v}{||\varphi_u \wedge \varphi_v||} = \frac{1}{\sqrt{4u^2 + 4v^2 + 1}}(-2u, -2v, 1)$$

(c) Sea $p = (1,0,0) = \varphi(1,0)$. Derivando los vectores de la base coordenada,

$$\varphi_{uu} = (0,0,2)$$
 $\varphi_{vv} = (0,0,2)$ $\varphi_{uv} = (0,0,0)$

En particular, para u = 1, v = 0,

$$\varphi_u = (1,0,2)$$
 $\varphi_v = (0,1,0)$ $\varphi_{uu} = (0,0,2)$ $\varphi_{vv} = (0,0,2)$ $\varphi_{uv} = (0,0,0)$

luego

$$E = 3$$
 $F = 0$ $G = 1$ $e = 2$ $f = 0$ $g = 2$

Se aplican ahora las ecuaciones de Weingarten:

$$a_{11} = \frac{fF - eG}{EG - F^2} = -\frac{2}{3}$$
 $a_{12} = \frac{gF - fG}{EG - F^2} = 0$ $a_{21} = \frac{eF - fE}{EG - F^2} = 0$ $a_{22} = \frac{fF - gE}{EG - F^2} = -2$

Como la matriz de S_p respecto de la base coordenada es diagonal, sus autovalores son los elementos diagonales y sus autovectores, los vectores de la base coordenada. En otras palabras,

$$k_1(p) = \frac{2}{3}$$
 $k_2(p) = 2$

son las curvaturas principales, mientras que

$$e_1 = (1, 0, 2)$$
 $e_2 = (0, 1, 0)$

son las direcciones principales. La ecuación de las líneas asintóticas es

$$eu'(t)^2 + 2fu'(t)v'(t) + gv'(t)^2 = 0 \iff 2u'(t)^2 + 2v'(t)^2 = 0 \iff |u'(t)| = |v'(t)|$$

Un vector $v \in T_pS$ con coordenadas $(v_1, v_2) = (u'(0), v'(0))$ en la base coordenada llevará una dirección asintótica si y solo si $v_1 = \pm v_2$. En resumen, las direcciones asintóticas son dos: las de los vectores

$$u_1 = 1 \cdot \varphi_u + 1 \cdot \varphi_v = (1, 1, 2)$$

 $u_2 = 1 \cdot \varphi_u - 1 \cdot \varphi_v = (1, -1, 2)$

- **3.** Dadas dos curvas $\gamma, \delta \colon I \to \mathbb{R}^3$ diferenciables, la superficie S dada por $\varphi(u, v) = \gamma(u) + v\delta(u)$ se dice que es desarrollable si el plano tangente es el mismo en los puntos de cada línea recta $\varphi(u_0, v)$, con $u_0 \in I$ constante.
 - (a) Demuéstrese que S es desarrollable si y solo si $\delta'(u)$ es combinación lineal de $\gamma'(u)$ y $\delta(u)$ para todo $u \in I$.
 - (b) ¿Es el cilindro una superficie desarrollable?
- (a) Considérese una superficie S dada por $\varphi(u,v) = \gamma(u) + v\delta(u)$, siendo $\gamma, \delta \colon I \to \mathbb{R}^3$ dos curvas diferenciables.
- Supóngase que S es desarrollable y fíjese $u_0 \in V$. Sea $p = \varphi(u_0, v)$ un punto de S. Los vectores de la base coordenada en este punto son

$$\varphi_u(u_0, v) = \gamma'(u_0) + v\delta'(u_0) \qquad \varphi_v(u_0, v) = \delta(u_0)$$

Sabemos además que $\{\varphi_u(u_0, v), \varphi_v(u_0, v)\}$ es base de T_pS y que variando v se obtiene el mismo plano tangente. Esto quiere decir que si $p' = \varphi(u_0, v')$ es otro punto de S, entonces $\{\varphi_u(u_0, v'), \varphi_v(u_0, v')\}$ y $\{\varphi_u(u_0, v), \varphi_v(u_0, v)\}$ generan el mismo plano. Ahora bien, como $\varphi_v(u_0, v') = \delta(u_0) = \varphi_v(u_0, v)$, entonces los vectores

$$\varphi_u(u_0, v) = \gamma'(u_0) + v\delta'(u_0)$$
 $\varphi_u(u_0, v') = \gamma'(u_0) + v'\delta'(u_0)$

tienen que ser linealmente dependientes. Por tanto,

$$\det(\gamma'(u_0) + v\delta'(u_0), \gamma'(u_0) + v'\delta'(u_0), \delta(u_0)) = 0$$

o lo que es lo mismo, llamando $\gamma' \equiv \gamma'(u_0), \ \delta' \equiv \delta'(u_0), \ \delta \equiv \delta(u_0)$ para ahorrar escritura,

$$\det(\gamma', \gamma', \delta) + v \det(\delta', \gamma', \delta) + v' \det(\gamma', \delta', \delta) + vv' \det(\delta', \delta', \delta) = (v - v') \det(\delta', \gamma', \delta) = 0$$

y como se ha tomado $v \neq v'$, tiene que ser $\det(\delta', \gamma', \gamma) = 0$, de donde se deduce que $\delta'(u_0)$ es combinación lineal de $\gamma'(u_0)$ y $\delta(u_0)$. Como esto es cierto para todo $u_0 \in U$, no hay nada más que probar.

Supóngase que $\delta'(u)$ es combinación lineal de $\gamma'(u)$ y $\delta(u)$ para todo $u \in I$ y veamos que S es desarrollable. Fíjese $u_0 \in I$ y escójanse dos puntos $p = \varphi(u_0, v), p' = \varphi(u_0, v')$ de S. Hay que probar que $T_pS = T_{p'}S$. Por hipótesis, existen escalares $\lambda, \mu \in \mathbb{R}$ tales que

$$\delta'(u_0) = \lambda \delta(u_0) + \mu \gamma'(u_0)$$

Considérense las bases coordenadas $\{\varphi_u(u_0, v), \varphi_v(u_0, v)\}, \{\varphi_u(u_0, v'), \varphi_v(u_0, v')\}$ que generan los planos $T_pS, T_{p'}S$, respectivamente, y veamos que los cuatro vectores anteriores se pueden expresar como combinación lineal de los vectores de la base $\{\gamma'(u_0), \delta(u_0)\}$. Por un lado,

$$\varphi_v(u_0, v) = \delta(u_0) = \varphi_v(u_0, v')$$

Por otro lado,

$$\varphi_u(u_0, v') = \gamma'(u_0) + v'\delta'(u_0) = \gamma'(u_0) + \lambda v'\delta(u_0) + \mu v'\gamma'(u_0) = (1 + \mu v')\gamma'(u_0) + \lambda v'\delta(u_0)$$

$$\varphi_u(u_0, v) = \gamma'(u_0) + v\delta'(u_0) = \gamma'(u_0) + \lambda v\delta(u_0) + \mu v'\gamma'(u_0) = (1 + \mu v)\gamma'(u_0) + \lambda v\delta(u_0)$$

Por tanto, el subespacio que genera $\{\gamma'(u_0), \delta(u_0)\}$ es el mismo que el que generan las dos bases coordenadas, luego los planos tangentes coinciden.

(b) Dos cartas que recubren el cilindro son (U, φ) y (V, ψ) , donde los dominios de las cartas son $U = (0, 2\pi) \times \mathbb{R}$ y $V = (-\pi, \pi) \times \mathbb{R}$, mientras que

$$\varphi \colon U \longrightarrow \mathbb{R}^3 \qquad \qquad \psi \colon V \longrightarrow \mathbb{R}^3$$

$$(u, v) \longmapsto \varphi(u, v) = (r \cos u, r \sin u, v) \qquad (u, v) \longmapsto \psi(u, v) = (r \cos u, r \sin u, v)$$

Sea $p = \varphi(u, v) \in \varphi(U)$. Se tiene que

$$\varphi(u, v) = (r \cos u, r \sin u, 0) + v(0, 0, 1)$$

así que en este caso

$$\gamma(u) = (r\cos u, r\sin u, 0)$$
 $\gamma'(u) = (-r\sin u, r\cos u, 0)$ $\delta(u) = (0, 0, 1)$ $\delta'(u) = (0, 0, 0)$

Para cualquier par de escalares λ, μ se tiene que

$$(0,0,0) = \lambda(-r \sin u, r \cos u, 0) + \mu(0,0,1) \iff \delta'(u) = \lambda \gamma'(u) + \mu \delta(u)$$

luego $\delta'(u)$ es combinación linel de $\gamma'(u)$ y $\delta(u)$ para todo $u \in (0, 2\pi)$. Evidentemente, el caso $u \in (-\pi, \pi)$ es idéntico. Por tanto, el cilindro es una superficie desarrollable.

- **4.** Sea $f: S \to \mathbb{R}$ una función diferenciable sobre una superficie regular. Se define el gradiente de f en $p \in S$ como el vector grad $\underline{f}_p \in T_pS$ caracterizado por $df_p(v) = \langle \operatorname{grad} f_p, v \rangle$ para todo $v \in T_pS$. Supóngase que $f = \overline{f}|_S$, siendo $\overline{f}: \mathbb{R}^3 \to \mathbb{R}$ diferenciable.
 - (a) Demuéstrese que grad f_p es la proyección ortogonal de grad \overline{f}_p sobre T_pS , donde grad \overline{f}_p es el gradiente usual de \overline{f} como función de \mathbb{R}^3 . Indicación: recuérdese que grad \overline{f}_p viene caracterizado por la condición $d\overline{f}_p(v) = \langle \operatorname{grad} \overline{f}_p, v \rangle$ para todo $v \in \mathbb{R}^3$.
 - (b) Calcúlese grad f_p , siendo $f: \mathbb{S}^2 \to \mathbb{R}$ la función definida por $f(x, y, z) = (x^2 + y^2 + z^2)^2 + 1$.

(a) Dado un subespacio W de \mathbb{R}^n y un vector $u \in \mathbb{R}^n$, si se realiza la descomposición

$$u = u_W + u_{W^{\perp}}$$

entonces la proyección ortogonal de u sobre W será el vector $u_W \in W$.

Sea $p \in S$ y veamos que grad f_p es la proyección ortogonal de grad \overline{f}_p sobre T_pS . Se trata de demostrar que grad \overline{f}_p puede descomponerse como

$$\operatorname{grad} \overline{f}_p = \operatorname{grad} f_p + u$$

donde $u \in T_p S^{\perp}$ y grad $f_p \in T_p S$.

Considérese un punto $p \in S$. Como $f = \overline{f}|_S$ entonces $d\overline{f}_p|_S = df_p$. Por definición de gradiente, para todo $v \in T_pS$ se verifica

$$df_p = \langle \operatorname{grad} f_p, v \rangle = \langle \operatorname{grad} \overline{f}_p, v \rangle = d\overline{f}_p|_S$$

Como grad \overline{f}_p es un vector de \mathbb{R}^3 normal y corriente, se puede realizar la descomposición

$$\operatorname{grad} \overline{f}_p = u + w$$

con $u \in T_p S$, $w \in T_p S^{\perp}$. Por tanto,

$$df_p = \langle \operatorname{grad} \overline{f}_p, v \rangle = \langle u + w, v \rangle = \langle u, v \rangle$$

y esto es cierto para todo $v \in T_pS$. Ahora bien, grad f_p es, por definición, el vector caracterizado por

$$df_p = \langle u, v \rangle \ \forall \ v \in T_p S$$

así que tiene que ser $u = \operatorname{grad} f_p$. Conclusión:

$$\operatorname{grad} \overline{f}_p = \operatorname{grad} f_p + w$$

lo que demuestra que grad f_p es la proyección ortogonal de grad \overline{f}_p sobre T_pS .

(b) Considérese la función $f: \mathbb{S}^2 \to \mathbb{R}$ definida por $f(x,y,z) = (x^2 + y^2 + z^2)^2 + 1$. Como $(x,y,z) \in \mathbb{S}^2$, entonces f es la función constante 2 definida sobre \mathbb{S}^2 . Esto significa que grad f_p es el vector definido por $\langle \operatorname{grad} f_p, v \rangle = 0$ para todo $v \in T_p S$, o sea, el vector nulo.