

Project Overview

This project analyzes Terry Stop data to predict whether an arrest was made after a stop, based on details of the stop, subject, and officer. The analysis is sensitive because insights may inform policy and operational decisions regarding police interactions.

6

Problem Statement

Police departments and policymakers need insights into the factors influencing arrests during Terry Stops. By leveraging machine learning, we aim to build a predictive model that:

- Identifies key factors influencing arrests.
- Ensures fairness by avoiding the use of sensitive attributes like race and gender.
- Provides actionable insights to support ethical and data-driven decisionmaking.

Dataset

The dataset includes information on:

- Stop details (e.g., reported year, presence of weapons, frisk flag).
- Subject details (e.g., age group).
- Outcome (arrest made or not).

Target variable: arrest_flag (1 = Arrest made, 0 = No arrest).

Jupyter Notebook 100.0%

Data Preprocessing

Steps applied:

- **Encoding**: Label Encoding (subject_age_group), One-Hot Encoding (other categorical variables).
- Scaling: StandardScaler applied to numerical features.
- Class imbalance: Addressed using SMOTE to balance arrests vs non-arrests.
- Sensitive attributes: Race and gender were excluded to avoid bias in modeling.

Modeling

We compared four models:

- Logistic Regression
- Decision Tree
- Random Forest
- XGBoost

Key Results

Model	Accuracy	Recall (Arrest=1)	ROC-AUC
Logistic Reg	0.931	0.58	0.914
Decision Tree	0.934	0.52	0.726
Random Forest	0.948	0.68	0.931
XGBoost	0.941	0.69	0.933

Final Model

- Chosen Model: XGBoost
- **Reasoning**: Balanced performance across metrics with strong recall (important for correctly identifying arrests).
- **Hyperparameter Tuning:** Improved accuracy to 0.944 and ROC-AUC to 0.934, though recall slightly decreased to 0.68.

عر

Key Insights

- Weapon presence was one of the strongest predictors of arrest.
- Frisk flag and subject age group also played important roles in predicting outcomes.
- Sensitive features (race, gender) were tested but excluded from the final model to maintain fairness.

Conclusions

- Arrest outcomes are strongly influenced by risk-related factors such as weapon presence.
- Machine learning models, especially **XGBoost**, can effectively predict arrests with high accuracy.
- Fair modeling practices are essential excluding sensitive variables avoids biased outcomes.

Recommendations

• **Policy:** Focus resources on higher-risk stop situations (e.g., weapon-related) where arrests are more likely.

- Ethics: Continue avoiding sensitive demographic features in predictive modeling.
- Future Work: Explore methods to further improve recall (catching more true arrests) such as adjusting thresholds or applying cost-sensitive learning.