What Is Claimed Is:

1. A compound having the formula:

$$P - N - \begin{bmatrix} B^{1} - X^{1} \end{bmatrix} - CH - X^{2} - CH - B(Z^{1})(Z^{2})$$

$$R = \begin{bmatrix} R^{1} & R^{2} & R^{3} & (1a) \end{bmatrix}$$

and pharmaceutically acceptable salts thereof;

wherein

P is R^7 –C(O)– or R^7 – SO_2 –, where R^7 is one of aryl, aralkyl, heteroaryl or heteroarylalkyl, the ring portion of any of which can be optionally substituted, or when P is R^7 –C(O)–, R^7 can also be N-morpholinyl;

B', at each occurrence, is independently one of N or CH;

 X^{1} , at each occurrence, is independently one of -C(O)-NH-, $-CH_{2}-NH-$, $-CH(OH)-CH_{2}-$, -CH(OH)-CH(OH)-, $-CH(OH)-CH_{2}-NH-$, -CH=CH-, $-C(O)-CH_{2}-$, $-SO_{2}-NH-$, $-SO_{2}-CH_{2}-$ or $-CH(OH)-CH_{2}-C(O)-NH-$, provided that when B^{1} is N, then the X^{1} attached to said B^{1} is -C(O)-NH-;

 X^2 is one of C(O)-NH-, -CH(OH)-CH₂-, -CH(OH)-CH(OH)-, -C(O)-CH₂-, $-SO_2$ -NH-, SO_2 -CH₂- or -CH(OH)-CH₂-C(O)-NH-;

R is hydrogen or alkyl, or R forms together with the adjacent R¹, or when A is zero, forms together with the adjacent R², a nitrogen-containing mono-, bior tri-cyclic, saturated or partially saturated ring system having 4-14 ring members, that can be optionally substituted by one or two of keto, hydroxy, alkyl, aryl, aralkyl, alkoxy or aryloxy;

R¹, at each occurrence, is independently one of hydrogen, alkyl, cycloalkyl, aryl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or -CH₂-R⁵, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted;

10

15

R² is one of hydrogen, alkyl, cycloalkyl, aryl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or -CH₂-R⁵, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted;

R³ is one of hydrogen, alkyl, cycloalkyl, aryl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or -CH₂-R⁵, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted;

R⁵, in each instance, is one of aryl, aralkyl, alkaryl, cycloalkyl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or -W-R⁶, where W is a chalcogen and R⁶ is alkyl, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted;

 Z^1 and Z^2 are independently one of alkyl, hydroxy, alkoxy, or aryloxy, or together Z^1 and Z^2 form a moiety derived from a dihydroxy compound having at least two hydroxy groups separated by at least two connecting atoms in a chain or ring, said chain or ring comprising carbon atoms, and optionally, a heteroatom or heteroatoms which can be N, S, or Θ ; and

A is 0, 1, or 2.

2. The compound of claim 4, wherein:

A is zero;

X is -C(O)-NH-;

R is hydrogen or C₁₋₈alkyl; and

 R_3 is C_{1-6} alkyl.

- 3. The compound of claim 2, wherein R_3 is C_4 alkyl.
- 4. The compound of claim 1 wherein:

P is R^7 –C(O)– or R^7 –SO, where R^7 is one of quinolinyl, quinoxalinyl, pyridyl, pyrazinyl, furanyl or pyriolyl, or when P is R^7 –C(O)–, R^7 can also be N-morpholinyl.

10

5

15

X

20

X

5. The compound of claim 1, wherein P is one of quinolinecarbonyl, pyridinecarbonyl, quinoxalinesulfonyl, quinoxalinecarbonyl, quinoxalinesulfonyl, pyrazinecarbonyl, furancarbonyl, furansulfonyl or N-morpholinylcarbonyl.

5

10

6. The compound of claim 5, wherein P is one of 8-quinolinecarbonyl, 8-quinolinesulfonyl, 2-quinoxalinecarbonyl, 2-quinoxalinesulfonyl, 2-pyrazinecarbonyl, 2-pyrazinesulfonyl, 3-furancarbonyl, 3-furansulfonyl of N-morpholinecarbonyl.

- 7. The compound of claim 1, wherein A is 0.
- 8. The compound of claim 1, wherein B¹, at each occurrence, is CH.
- 9. The compound of claim 8, wherein X¹, at each occurrence, is -C(O)-NH-.

10. The compound of claim 9, wherein X' is -C(O)-NH-.

5

The compound of claim \mathcal{Y} , wherein R is hydrogen or C_{1-8} alkyl.

K

12. The compound of claim 1, wherein:

15 N

 R^1 , at each occurrence, and R^2 and R^3 are each independently one of hydrogen, C_{1-8} alkyl, C_{3-10} cycloalkyl, C_{6-10} aryl, a 5-, 6-, 9- or 10- membered heteroaryl group, or $-CH_2-R^5$;

20

 R^5 , in each instance, is one of C_{6-10} aryl, C_{6-10} ar(C_{1-6})alkyl, C_{1-6} alk(C_{6-10})aryl, C_{3-10} cycloalkyl, C_{1-8} alkoxy, C_{1-8} alkylthio or a 5-, 6-, 9- or 10- membered heteroaryl group;

where the ring portion of any of said aryl, aralkyl, alkaryl or 5-, 6-, 9- or 10- membered heteroaryl groups of R¹, R², R³ and R⁵ can be optionally

substituted by one or two substituents independently selected from the group consisting of C_{1-6} alkyl, C_{3-8} cycloalkyl, C_{1-6} alkyl(C_{3-8})cycloalkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, cyano, amino, C_{1-6} alkylamino, di(C_{1-6})alkylamino, benzylamino, dibenzylamino, nitro, carboxy, carbo(C_{1-6})alkoxy, trifluoromethyl, halogen, C_{1-6} alkoxy, C_{6-10} aryl, C_{6-10} aryl(C_{1-6})alkyl, C_{6-10} aryl(C_{1-6})alkoxy, hydroxy, C_{1-6} alkylsulfinyl, C_{1-6} alkylsulfonyl, C_{6-10} arylsulfinyl, C_{6-10} arylsulfinyl, C_{6-10} arylsulfinyl, C_{6-10} aryl, and halo(C_{6-10})aryl.

13.

The compound of claim \mathcal{X} , wherein R_3 is C_{1-12} alkyl.

8 14.

The compound of claim λ , wherein R_3 is C_{1-6} alkyl.

9

The compound of claim λ , wherein R_3 is C_4 alkyl.

16

The compound of claim 1, wherein R³ is isobutyl.

17. The compound of claim 1, wherein R² is one of isobutyl, 1-naphthylmethyl, 2-naphthylmethyl, 3-pyridylmethyl, 2-pyridylmethyl 6-quinolinylmethyl, 3-indolylmethyl, benzyl, 4-fluorobenzyl, 4-hydroxybenzyl, 4-(2'-pyridylmethoxy)benzyl, 4-(benzyloxy)benzyl, benzylnaphthylmethyl or phenethyl.

18. The compound of claim 1, wherein Z^1 and Z^2 are independently one of $C_{1.6}$ alkyl, bydroxy, $C_{1.6}$ alkoxy, or $C_{6.10}$ aryloxy.

The compound of claim 1/8, wherein Z^1 and Z^2 are both hydroxy.

The compound of claim, wherein together Z¹ and Z² form a moiety derived from a dihydroxy compound selected from the group consisting

A

5

/ 10

(

15

/ 20

of pinacol, perfluoropinacol, pinanediol, ethylene glycol, diethylene glycol, 1,2-cyclohexanediol, 1,3-propanediol, 2,3-butanediol, glycerol or diethanolamine.

The compound of claim, wherein:

P is one of quinolinecarbonyl, pyridinecarbonyl, quinolinesulfonyl, quinoxalinecarbonyl, quinoxalinesulfonyl, pyrazinecarbonyl, pyrazinesulfonyl, furancarbonyl, furansulfonyl or N-morpholinylcarbonyl;

A is zero;

 X^2 is -C(O)-NH-;

R is hydrogen or C₁₋₈ alkyl;

 R^2 and R^3 are each independently one of hydrogen, C_{1-8} alkyl, C_{3-10} cycloalkyl, C_{6-10} aryl, C_{6-10} ar(C_{1-6})alkyl, pyridylmethyl, or quinolinylmethyl; and

 Z^1 and Z^2 are both hydroxy, C_{1-6} alkoxy, or C_{6-10} aryloxy, or together Z^1 and Z^2 form a moiety derived from a dihydroxy compound selected from the group consisting of pinacol, perfluoropinacol, pinanediol, ethylene glycol, diethylene glycol, 1,2-cyclohexanediol, 1,3-propanediol, 2,3-butanediol, glycerol or diethanolamine.

22. The compound of claim 1, wherein:

P is one of 8-quinolinecarbonyl, 8-quinolinesulfonyl, 2-quinoxalinecarbonyl, 2-quinoxalinesulfonyl, 2-pyrazinecarbonyl, 3-pyridinecarbonyl, 3-pyridinesulfonyl, 3-furancarbonyl, 3-furansulfonyl or N-morpholinecarbonyl;

A is zero;

 X^2 is -C(O)-NH-;

R is hydrogen or C₁₋₈ alkyl;

R³ is isobutyl;

R² is one of isobutyl, 1-naphthylmethyl, 2-naphthylmethyl, 3-pyridylmethyl, 2-pyridylmethyl 6-quinolinylmethyl, 3-indolylmethyl, benzyl,

N

10

5

15

20

25

it.

4-fluorobenzyl, 4-hydroxybenzyl, 4-(2'-pyridylmethoxy)benzyl, 4-(benzyloxy)benzyl, benzylnaphthylmethyl or phenethyl; and

 Z^1 and Z^2 are independently one of hydroxy, C_{1-6} alkoxy, C_{6-10} aryloxy, or together Z^1 and Z^2 form a molety derived from a dihydroxy compound selected from the group consisting of pinacol, perfluoropinacol, pinanediol, ethylene glycol, diethylene glycol, 1,2-cyclohexanediol, 1,3-propanediol, 2,3-butanediol, glycerol of diethanolamine.

The compound of claim, wherein said compound is one of:

N-(2-pyrazine)carbonyl-L-phenylalanine-L-leucine boronic acid,

N-(2-quinoline)sulfonyl-L-homophenylalanine-L-leucine boronic acid,

N-(3-pyridine)carbonyl-L-phenylalanine-L-leucine boronic acid,

N-(4-morpholine)carbonyl-L-phenylalanine-L-leucine boronic acid,

N-(4-morpholine)carbonyl-β-(1-naphthyl)-L-alanine-L-leucine boronic acid,

N-(8-quinoline)sulfonyl-β-(1-naphthyl)-L-alanine-L-leucine boronic acid,

N-(4-morpholine)carbonyl-(O-benzyl)-L-tyrosine-L-leucine boronic acid,

N-(4-morpholine)carbonyl-L-tyrosine-L-leucine boronic acid,

N-(4-morpholine)carbonyl-[O-(2-pyridylmethyl)]-L-tyrosine-L-leucine boronic acid;

or isosteres, pharmaceutically acceptable salts or boronate esters thereof.

24. The compound of claim 23, wherein said compound is N-(2-pyrazine)carbonyl-L-phenylalanine-L-leucine boronic acid, or an isostere, pharmaceutically acceptable salt or boronate ester thereof.

25. A compound having the formula:

$$P - N - B^{1} - X^{1} - CH - X^{2} - CH - B(Z^{1})(Z^{2})$$

$$R - R^{1} - R^{2} - R^{3}$$
(1a)

10

5

15

wherein

P is hydrogen or an amino-group-protecting moiety;

B¹, at each occurrence, is independently one of N or CH;

 X^1 , at each occurrence, is independently one of -C(O)-NH-, $-CH_2-NH-$, $-CH(OH)-CH_2-$, provided that when B^1 is N, then the X^1 attached to said B^1 is -C(O)-NH-;

 X^2 is one of +C(O)-NH-, $-CH(OH)-CH_2-$, -CH(OH)-CH(OH)-, $-C(O)-CH_2-$, $-SO_2-NH-$, $-SO_2-CH_2-$ or $-CH(OH)-CH_2-C(O)-NH-$;

R is hydrogen or alkyl, or R forms together with the adjacent R¹, or when A is zero, forms together with the adjacent R², a nitrogen-containing mono-, bior tri-cyclic, saturated or partially saturated ring system having 4-14 ring members, that can be optionally substituted by one or two of keto, hydroxy, aryl, alkoxy or aryloxy;

 R^1 at each occurrence, R^2 and R^3 are each independently one of hydrogen, alkyl, cycloalkyl, aryl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or $-CH_2-R^5$, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted;

R⁵, in each instance, is one of aryl, aralkyl, alkaryl, cycloalkyl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or W-R⁶, where W is a chalcogen and R⁶ is alkyl, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted,

provided that at least one R¹, R² or R³ is naphthylmethyl, pyridylmethyl or quinolinylmethyl;

 Z^1 and Z^2 are independently one of alkyl, hydroxy, alkoxy, or aryloxy, or together Z^1 and Z^2 form a moiety derived from a dihydroxy compound having at least two hydroxy groups separated by at least two connecting atoms in a chain or ring, said chain or ring comprising carbon atoms, and optionally, a heteroatom or heteroatoms which can be N, S, or O; and

10

5

15

20

or ring, said chain or ring comprising carbon atoms, and optionally, a heteroatom or heteroatoms which can be N, S, or O; and

A is 0, 1, or 2;

provided that the compound is other than isovaleryl-phenylalanine-norvaline-[(naphthylmethyl), (4,4,5,5-tetramethyl-1,3,2-dioxaborolane-2-yl)]methylamide or (3-t-butylsulfonyl)propionyl-norvaline-(1-naphthyl, dihydroxyboryl)methylamide.

26. The compound of claim 25, wherein P is R^7 –C(O)–, R^7 – SO_2 –, R^7 –NH–C(O)– or R^7 –O–C(O)–, and

R⁷ is one of alkyl, aryl, alkaryl, aralkyl, heteroaryl or heteroarylalkyl, any of which can be optionally substituted, or when P is R⁷–C(O)–, then R⁷ can also be saturated or partially saturated heterocycle.

27. The compound of claim 25, wherein P is R^7 –C(O)– or R^7 – SO_2 –; and

 R^7 is one of C_{6-10} aryl, C_{6-10} ar(C_{1-6})alkyl, 5- to 10-membered heteroaryl or 5- to 10-membered heteroaryl(C_{1-6})alkyl, any of which can be optionally substituted, or when P is RNC(O)—, R^7 can also be N-morpholinyl.

- 28. The compound of claim 25, wherein B^1 is CH, and X^1 and X^2 are each -C(O)-NH-.
- 29. The compound of claim 25, wherein R^1 and R^2 are independently selected from the group consisting of alkyl and — CH_2 — R^5 , where R^5 is one of C_{6-10} aryl, C_{1-10} alk(C_{6-10})aryl, C_{3-10} cycloalkyl, or a 5-, 6-, 9- or 10-membered heterocycle.
 - 30. The compound of claim 25, wherein A is zero.

10

5

15

- 31. The compound of claim 25, wherein R² is quinolinylmethyl.
- 32. The compound of claim 25, wherein said compound is one of: N-(4-morpholine)carbonyl- β -(1-naphthyl)-L-alanine-L-leucine boronic acid, or N-(8-quinoline)sulfonyl- β -(1-naphthyl)-L-alanine-L-leucine boronic acid; or isosteres, pharmaceutically acceptable salts or boronate esters thereof.
 - 33. A compound having the formula:

and pharmaceutically acceptable salts thereof; wherein

P is hydrogen or an amino-group-protecting moiety;

B', at each occurrence, is independently one of N or CH;

 X^1 , at each occurrence, is independently one of -C(O)-NH-, $-CH_2-NH-$, $-CH(OH)-CH_2-$, -CH(OH)-CH(OH)-, $-CH(OH)-CH_2-NH-$, -CH=CH-, $-C(O)-CH_2-$, $-SO_2-NH-$, $-SO_2-CH_2-$ or $-CH(OH)-CH_2-C(O)-NH-$, provided that when B^1 is N, then the X^1 attached to said B^1 is -C(O)-NH-;

 X^2 is one of -C(O)-NH-, $-CH(OH)-CH_2-$, -CH(OH)-CH(OH)-, $-C(O)-CH_2-$, $-SO_2-NH-$, $-SO_2-CH_2-$ or $-CH(OH)-CH_2-$ C(O)-NH-;

R forms together with the adjacent R¹, or when A is zero, forms together with the adjacent R², a nitrogen-containing mono-, bi- or tri-cyclic, saturated or partially saturated ring system having 4-14 ring members, and one or two optional substituents selected from the group consisting of keto, hydroxy, alkyl, aryl, aralkyl, alkoxy and aryloxy;

when A is 2, the R¹ that is not adjacent to N-R is one of hydrogen, alkyl, cycloalkyl aryl, a 5- to 10-membered saturated, partially unsaturated or aromatic heterocycle or -CH₂-R⁵;

10

5

15

20

when A is 1 or 2, R² is one of hydrogen, alkyl, cycloalkyl, aryl, a 5- to 10-membered saturated, partially unsaturated or aromatic heterocycle or -CH₂-R⁵;

R³ is one of hydrogen, alkyl, cycloalkyl, aryl, a 5- to 10-membered saturated, partially unsaturated or aromatic heterocycle or -CH₂-R⁵;

R⁵, in each instance, is independently one of aryl, aralkyl, alkaryl, cycloalkyl, a 5- to 10-membered saturated, partially unsaturated or aromatic heterocycle or -W-R⁶, where W is a chalcogen and R⁶ is alkyl;

Z¹ and Z² are independently one of alkyl, hydroxy, alkoxy, or aryloxy, or together Z¹ and Z² form a moiety derived from a dihydroxy compound having at least two hydroxy groups separated by at least two connecting atoms in a chain or ring, said chain or ring comprising carbon atoms, and optionally, a heteroatom or heteroatoms which can be N, S, or O; and

A is 0, 1, or 2.

5

10

15

34. The compound of claim 33, wherein the nitrogen-containing ring system is selected from the group consisting of:

35. The compound of claim 33, wherein P is R^7 –C(O)–, R^7 – SO_2 –, R^7 –NH–C(O)– or R^7 –O–C(O)–, and

R⁷ is one of alkyl, aryl, alkaryl, aralkyl, heteroaryl or heteroarylalkyl, any of which can be optionally substituted, or when P is R⁷-C(O)-, then R⁷ can also be saturated or partially saturated heterocycle.

36. The compound of claim 35, wherein P is R^7 –C(O)– or R^7 – SO_2 –; and

 R^7 is one of C_{6-10} aryl, C_{6-10} ar(C_{1-6})alkyl, 5- to 10-membered heteroaryl or 5- to 10-membered heteroaryl(C_{1-6})alkyl, any of which can be optionally substituted, or when P is R^7 –C(O)–, R^7 can also be N-morpholinyl.

- 37. The compound of claim 33, wherein B¹ is CH, and X¹ and X² are each –C(O)–NH–.
- 38. The combound of claim 33, wherein R^1 and R^2 are independently selected from the group consisting of alkyl and — CH_2 — R^5 , where

 R^5 , in each instance, is one of C_{6-10} aryl, C_{6-10} ar(C_{1-6})alkyl, C_{1-6} alk(C_{6-10})aryl, C_{3-10} cycloalkyl, C_{1-8} alkoxy, C_{1-8} alkylthio or a 5-, 6-, 9- or 10-membered heteroaryl group, where the ring portion of any of said C_{6-10} aryl, C_{6-10} ar(C_{1-6})alkyl, C_{1-6} alk(C_{6-10})aryl, or 5-, 6-, 9- or 10-membered heteroaryl can be optionally substituted by one or two substituents independently selected from the group consisting of C_{1-6} alkyl, C_{3-8} cycloalkyl, C_{1-6} alkyl(C_{3-8})cycloalkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, cyano, amino, C_{1-6} alkylamino, di(C_{1-6})alkylamino, benzylamino, dibenzylamino, nitro, carboxy, carbo(C_{1-6})alkoxy, trifluoromethyl, halogen, C_{1-6} alkoxy, C_{6-10} aryl, C_{6-10} aryl(C_{1-6})alkyl, C_{6-10} aryl(C_{1-6})alkoxy, hydroxy, C_{1-6} alkylthio, C_{1-6} alkylsulfinyl, C_{1-6} alkylsulfonyl, C_{6-10} arylthio, C_{6-10} arylsulfonyl, C_{6-10}

39. The compound of claim 33, wherein A is zero.

10

5

15

20

- The compound of claim 33, wherein P is hydrogen. 40.
- The compound of claim 33, wherein: 41.

A is zero;

P is hydrogen;

 X^2 is -C(O)-NH-

R forms together with the adjacent R2, a nitrogen-containing ring system selected from the group consisting of:

 Z^1 and Z^2 are both hydroxy, C_1 alkoxy, or C_{6-10} aryloxy, or together Z^1 and Z² form a moiety derived from a dihydroxy compound selected from the group consisting of pinacol, perfluoropinacol, pinanediol, ethylene glycol, diethylene

10

glycol, 1,2-cyclohexanediol, 1,3-propanediol, 2,3-butanediol, glycerol or diethanolamine.

42. The compound of claim 33, wherein said compound is L-proline-L-leucine boronic acid, or isosteres, pharmaceutically acceptable salts or boronate esters thereof.

43. A compound having the formula:

$$P - N - \begin{bmatrix} B^{1} - X^{1} \\ | \\ | \\ R^{1} \end{bmatrix} A CH - X^{2} - CH - B(Z^{1})(Z^{2})$$

$$R^{2} \qquad R^{3}$$
(1a)

and pharmaceutically acceptable salts thereof; wherein

P is hydrogen or an amino-group-protecting moiety;

B1, at each occurrence, is independently one of N or CH;

 X^{1} , at each occurrence, is independently one of -C(O)-NH-, $-CH_{2}-NH-$, $-CH(OH)-CH_{2}-$, $-CH(OH)-CH_{2}-$, $-CH(OH)-CH_{2}-$, $-CH(OH)-CH_{2}-$, $-CH_{2}-$, -CH

 X^2 is one of C(O)-NH-, -CH(OH)-CH₂-, -CH(OH)-CH(OH)-, -C(O)-CH₂-, $-SO_2$ -NH-, $-SO_2$ -CH₂- or -CH(OH)-CH₂-C(O)-NH-;

R is hydrogen or alkyl, or R forms together with the adjacent R¹, or when A is zero, forms together with the adjacent R², a nitrogen-containing mono-, bior tri-cyclic, saturated or partially saturated ring system having 4-14 ring members, and one or two optional substituents selected from the group consisting of keto, hydroxy, aryl, alkoxy and aryloxy;

R¹ at each occurrence, R² and R³ are each independently one of hydrogen, alkyl, cycloalkyl, aryl, a 5-10 membered saturated, partially unsaturated or

10

5

15

aromatic heterocycle or -CH₂-R⁵, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted;

5

10

15

20

R⁵, in each instance, is one of aryl, aralkyl, alkaryl, cycloalkyl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or -W-R⁶, where W is a chalcogen and R⁶ is alkyl, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted, provided that at least one R¹, R² or R³ is

where R⁹ is one of hydrogen, alkyl, cycloalkyl, aryl, aralkyl, heteroaryl or heteroarylalkyl; wherein the alkyl is optionally substituted with one of C₁₋₆ alkyl, halogen monohalo (C₁₋₆) alkyl and trifluoromethyl; and wherein said cycloalkyl, aryl, aralkyl, heteroaryl and heteroarylalkyl groups can be optionally substituted with one or two of C₁₋₆ alkyl, C₃₋₈ cycloalkyl, C₁₋₆ alkyl(C₃₋₈)cycloalkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl cyano, amino, C₁₋₆ alkylamino, di(C₁₋₆)alkylamino, benzylamino, dibenzylamino, nitro, carboxy, carbo(C₁₋₆)alkoxy, trifluoromethyl, halogen, C₁₋₆ alkoxy, C₆₋₁₀ aryl, C₆₋₁₀ aryl(C₁₋₆)alkyl, C₆₋₁₀ aryl(C₁₋₆)alkoxy, hydroxy, C₁₋₆ alkylthio, C₁₋₆ alkylsulfinyl, C₁₋₆ alkylsulfonyl, C₆₋₁₀ arylthio, C₆₋₁₀ arylsulfinyl, C₆₋₁₀ arylsulfonyl, C₆₋₁₀ aryl, and halo(C₆₋₁₀)aryl;

 A^1 and A^2 are independently one of hydrogen, halogen, C_{1-6} alkyl, monohalo(C_{1-6})alkyl, or trifluoromethyl;

 Z^1 and Z^2 are independently one of alkyl, hydroxy, alkoxy, or aryloxy, or together Z^1 and Z^2 form a moiety derived from a dihydroxy compound having at least two hydroxy groups separated by at least two connecting atoms in a chain

or ring, said chain or ring comprising carbon atoms, and optionally, a heteroatom or heteroatoms which can be N, \$, or O; and

A is 0, 1, or 2.

5

10

15

20

44. The compound of claim 43, wherein P is R^7 –C(O)–, R^7 – SO_2 –, R^7 –NH–C(O)– or R^7 –O–C(O)–, and

R⁷ is one of alkyl, aryl, alkaryl, aralkyl, heteroaryl or heteroarylalkyl, any of which can be optionally substituted, or when P is R⁷–C(O)–, then R⁷ can also be saturated or partially saturated heterocycle.

45. The compound of claim 43, wherein P is R^7 –C(O)– or R^7 – SO_2 –; and

 R^7 is one of C_{6-10} aryl, C_{1-0} ar(C_{1-6})alkyl, 5- to 10-membered heteroaryl or 5- to 10-membered heteroaryl(C_{1-6})alkyl, any of which can be optionally substituted, or when P is R^7 -C(O)-, R^7 can also be N-morpholinyl.

46. The compound of claim 43, wherein X¹ and X² are each -C(O)-NH-.

47. The compound of claim 43, wherein one of R¹, R² or R³ is

where

 A^1 and A^2 are independently one of hydrogen, C_{1-6} alkyl, halogen, monohalo (C_{1-6}) alkyl or trifluoromethyl;

R⁹ is one of C_{1-8} alkyl, C_{3-10} cycloalkyl, C_{6-10} aryl, C_{6-10} ar(C_{1-6})alkyl, a 5-to 10-membered heteroaryl or a 5-to 10-membered heteroaryl(C_{1-6})alkyl;

and the remaining R^1 , R^2 and R^3 are independently selected from the group consisting of alkyl and — CH_2 — R^5 , where

 R^5 , in each instance, is one of C_{6-10} aryl, C_{6-10} ar(C_{1-6})alkyl, C_{1-6} alk(C_{6-10})aryl, C_{3-10} cycloalkyl, C_{1-8} alkoxy, C_{1-8} alkylthio or a 5-, 6-, 9- or 10-membered heteroaryl group, where the ring portion of any of said C_{6-10} aryl, C_{6-10} ar(C_{1-6})alkyl, C_{1-6} alk(C_{6-10})aryl, or 5-, 6-, 9- or 10-membered heteroaryl can be optionally substituted by one of two substituents independently selected from the group consisting of C_{1-6} alkyl, C_{3-8} cycloalkyl, C_{1-6} alkyl(C_{3-8})cycloalkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, cyano, amino, C_{1-6} alkylamino, di(C_{1-6})alkylamino, benzylamino, dibenzylamino, nitro, carboxy, carbo(C_{1-6})alkoxy, trifluoromethyl, halogen, C_{1-6} alkoxy, C_{4-10} aryl, C_{6-10} aryl(C_{1-6})alkyl, C_{6-10} aryl(C_{1-6})alkoxy, hydroxy, C_{1-6} alkylthio, C_{1-6} alkylsulfinyl, C_{1-6} alkylsulfonyl, C_{6-10} arylthio, C_{6-10} arylsulfonyl, C_{6-10}

48. The compound of claim 43, wherein A is zero.

49. The compound of claim 43, wherein:

A is zero;

P is one of $R^7 - C(O) - R^7 - SO_2 - R^7 - NH - C(O) - or R^7 - O - C(O) - ;$

 R^7 is one of quinolinyl, quinoxalinyl, pyridyl, pyrazinyl, furanyl or pyrrolyl, or when P is R^7 –C(O)–, R^7 can also be N-morpholinyl;

 X^2 is -C(O)-NH-;

R² is:

$$-CH_2 - A^1 O - R^9$$

where

5

10

15

20

25

 A^1 and A^2 are independently one of hydrogen, C_{1-6} alkyl, halogen, monohalo (C_{1-6}) alkyl or trifluoromethyl;

R⁹ is one of hydrogen, C_{1.8}alkyl, phenyl, benzyl, phenethyl or pyridylmethyl;

R³ is C₁₋₆alkyl; and

5

10

15

20

25

 Z^1 and Z^2 are both hydroxy, C_{1-6} alkoxy, or C_{6-10} aryloxy, or together Z^1 and Z^2 form a moiety derived from a dihydroxy compound selected from the group consisting of pinacol, perfluoropinacol, pinanediol, ethylene glycol, diethylene glycol, 1,2-cyclohexarediol, 1,3-propanediol, 2,3-butanediol, glycerol or diethanolamine.

50. The compound of claim 43, wherein said compound is one of: N-(4-morpholine)carbonyl-(O-penzyl)-L-tyrosine-L-leucine boronic acid, N-(4-morpholine)carbonyl-L-tyrosine-L-leucine boronic acid, or N-(4-morpholine)carbonyl-[O-(2-pyridylmethyl)]-L-tyrosine-L-leucine boronic acid; or isosteres, pharmaceutically acceptable salts or boronate esters thereof.

51. A compound having the formula:

and pharmaceutically acceptable salts thereof;

wherein

A is zero;

P is hydrogen or an amino-group-protecting moiety;

X² is one of -C(O)-NH-, -CH₂-NH-, -CH(OH)-CH₂-, -CH(OH)-CH(OH)-CH₂-NH-, -CH=CH-, -C(O)-CH₂-, -SO₂-NH-, -SO₂-OH₂- or -CH(OH)-CH₂-C(O)-NH-;

R is hydrogen or alkyl, or R forms together with the adjacent R², a nitrogen-containing mono-, bi- or tri-cyclic, saturated or partially saturated ring

system having 4-14 ring members, where said ring system can be optionally substituted by one or two of keto, hydroxy, aryl, alkoxy or aryloxy;

R² and R³ are each independently one of hydrogen, alkyl, cycloalkyl, aryl, a 5-10 membered saturated partially unsaturated or aromatic heterocycle or -CH₂-R⁵, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted;

R⁵, in each instance, is one of aryl, aralkyl, alkaryl, cycloalkyl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or -W-R⁶, where W is a chalcogen and R⁶ is alkyl, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted; and

 Z^1 and Z^2 are independently one of alkyl, hydroxy, alkoxy, or aryloxy, or together Z^1 and Z^2 form a moiety derived from a dihydroxy compound having at least two hydroxy groups separated by at least two connecting atoms in a chain or ring, said chain or ring comprising carbon atoms, and optionally, a heteroatom or heteroatoms which can be N, S, or O;

provided that P is not C_{1-6} alkoxycarbonyl, C_{1-4} alkylcarbonyl or phenyl(C_{1-3})alkyl.

R⁷ is one of alkyl, aryl, alkaryl, aralkyl, heteroaryl or heteroarylalkyl, where the ring portion of any of said aryl, alkaryl, aralkyl, heteroaryl or heteroarylalkyl can be optionally substituted, or when P is R⁷–C(O)–, then R⁷ can also be a saturated or partially unsaturated heterocycle.

53. The compound of claim 51, wherein P is R^7 –C(O)– or R^7 – SO_2 –; and

10

5

15

20

 R^7 is one of C_{6-10} aryl, C_{6-10} ar(C_{1-6})alkyl, a 5- to 10-membered heteroaryl or a 5- to 10-membered heteroaryl(C_{1-6})alkyl, any of which can be optionally substituted, or when P is R^7 –C(O)–, R^7 can also be N-morpholinyl.

54. The compound of claim 51, wherein B¹ is CH, and X¹ and X² are each -C(O)-NH-.

5

- 55. The compound of claim 51, wherein R^2 and R^3 are independently selected from the group consisting of C_{1-8} alkyl and — CH_2 — R^5 , where R^5 is one of C_{6-10} aryl, C_{1-6} alk(C_{6-10} aryl, C_{6-10} ar(C_{1-6})alkyl, C_{3-8} cycloalkyl, or a 5-, 6-, 9- or 10-membered heterocycle.
- 56. The combound of claim 51, which is *N*-(3-phenylpropionyl)-L-phenylalanine-L-bucine boronic acid, or isosteres, pharmaceutically acceptable salts or boronate esters thereof.
- The compound of claim 51, wherein said compound is one of: N-(2-pyrazine)carbonyl-L-phenylalanine-L-leucine boronic acid,
 N-(2-quinoline)sulfonyl-L-homophenylalanine-L-leucine boronic acid,
 N-(3-pyridine)carbonyl-L-phenylalanine-L-leucine boronic acid,
 N-(4-morpholine)carbonyl-L-phenylalanine-L-leucine boronic acid,
 N-(4-morpholine)carbonyl-β-(1-naphthyl)-L-alanine-L-leucine boronic acid,
 N-(8-quinoline)sulfonyl-β-(1-naphthyl)-L-alanine-L-leucine boronic acid,
 N-(4-morpholine)carbonyl-(O-benzyl)-L-tyrosine-L-leucine boronic acid,
 N-(4-morpholine)carbonyl-L-tyrosine-L-leucine boronic acid, or
 N-(4-morpholine)carbonyl-[O-(2-pyridylmethyl)]-L-tyrosine-L-leucine boronic acid; or
 isosteres, pharmaceutically acceptable salts or boronate esters thereof.

58. A compound having the formula:

$$Y^{10}$$
 X^{13} X

and pharmaceutically acceptable salts thereof; wherein

Y is one of R⁸–C(O)–, R⁸–SO₂–, R⁸–NH–C(O)– or R⁸–O–C(O)–, where R⁸ is one of alkyl, aryl, alkaryl, aralkyl, any of which can be optionally substituted, or when Y is R⁸–C(O)– or R⁸–SO₂–, then R⁸ can also be an optionally substituted 5-10 membered, saturated, partially unsaturated or aromatic heterocycle;

 X^3 is a covalent bond or $-C(O)-CH_2-$;

R³ is one of hydrogen, alkyl, cycloalkyl, aryl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or -CH₂-R⁵, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted;

R⁵, in each instance, is one of aryl, aralkyl, alkaryl, cycloalkyl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or -W-R⁶, where W is a chalcogen and R⁶ is alkyl, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted; and

 Z^1 and Z^2 are independently alkyl, hydroxy, alkoxy, aryloxy, or together form a moiety derived from dihydroxy compound having at least two hydroxy groups separated by at least two connecting atoms in a chain or ring, said chain or ring comprising carbon atoms, and optionally, a heteroatom or heteroatoms which can be N, S, or O;

provided that when Y is R^8 –C(O)–, R^8 is other than phenyl, benzyl or C_{1-3} alkyl.

59. The compound of claim 58, wherein P is R^8 –C(O)– or R^8 – SO_2 –; and

10

5

15

20

25

 R^8 is one of C_{6-10} aryl, C_{6-10} ar(C_{1-6})alkyl, or a 5-10 membered heteroaryl, any of which can be optionally substituted, or when P is R^8 –C(O)–, R^8 can also be N-morpholinyl.

60. The compound according to claim 58, wherein Y is one of

$$\mathbb{R}^4$$
 \mathbb{C} , \mathbb{N} , \mathbb{N} , \mathbb{N} , \mathbb{N} , \mathbb{N} , \mathbb{N} , \mathbb{N}

where R^4 is C_{6-12} alkyl.

61. A compound having the formula:

and pharmaceutically acceptable salts thereof;

where

Y is

P is one of R^7 –C(O)–, R^7 – SO_2 –, R^7 –NH–C(O)– or R^7 –O–C(O)–, where R^7 is one of alkyl, aryl, alkaryl, aralkyl, any of which can be optionally substituted, or when Y is R^3 –C(O)– or R^7 – SO_2 –, R^7 can also be an optionally substituted 5-10 membered saturated, partially unsaturated or aromatic heterocycle;

 X^3 is a covalent bond or $-C(O)-CH_2-$;

 R^1 , at each occurrence, is independently one of hydrogen, alkyl, cycloalkyl, aryl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or $-CH_2-R^5$, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted;

5

10

15

R³ is one of hydroger, alkyl, cycloalkyl, aryl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or -CH₂-R⁵, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted;

R⁵, in each instance, is one of aryl, aralkyl, alkaryl, cycloalkyl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or -W-R⁶, where W is a chalcogen and R⁶ is alkyl, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted; and

Z¹ and Z² are independently alkyl, hydroxy, alkoxy, aryloxy, or together form a moiety derived from dihydroxy compound having at least two hydroxy groups separated by at least two connecting atoms in a chain or ring, said chain or ring comprising carbon atoms, and optionally, a heteroatom or heteroatoms which can be N, A, or Q.

62. The compound of claim 61, wherein Y is:

63. A pharmaceutical composition, comprising a compound of claims 1, 25, 33, 43, 51, 58 or 61, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier or diluent.

64. A pharmaceutical composition, comprising a compound of claims 22, 28, 41, 49, 55, 60 and 62, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier or diluent.

15 XQ

5

- 65. A pharmaceutical composition, comprising a compound of claims 23, 32, 42, 50, 56 and 57 or an isostere, pharmaceutically acceptable salt or boronate ester thereof, and a pharmaceutically acceptable carrier or diluent.
- 66. The pharmaceutical composition of claim 65, wherein said compound is present in an amount effective to inhibit the proteasome function in a mammal.
- 67. A method of inhibiting the growth of a cancer cell, comprising contacting a cell in need of such inhibiting with an effective growth-inhibiting amount of a compound of claims 1, 25, 33, 43, 51, 58 or 61.
- 68. A method for reducing the rate of muscle protein degradation in a cell comprising contacting a cell in need of said reducing with an effective amount of a proteasome inhibitor of the formula:

$$P^{10} - N - \begin{bmatrix} B^{11} - X^{11} \end{bmatrix} - CH - X^{12} - CH - B(Z^{11})(Z^{12})$$

$$R^{10} \begin{bmatrix} R^{11} - X^{11} \end{bmatrix} - R^{12} - R^{13}$$
(1b)

or a pharmaceutically acceptable salt thereof;

wherein

P¹⁰ is hydrogen or an arnino-group-protecting moiety;

B¹¹ is independently one of N or CH;

 X^{11} , at each occurrence, is independently one of -C(O)-NH-, $-CH_2-NH-$, $-CH(OH)-CH_2-$, -CH(OH)-CH(OH)-, $-CH(OH)-CH_2-NH-$, -CH=CH-, $-C(O)-CH_2-$, $-SO_2-NH-$, $-SO_2-CH_2-$ or $-CH(OH)-CH_2-C(O)-NH-$, provided that when B^{11} is N, then X^{11} is -C(O)-NH;

 X^{12} is one of -C(O)-NH-, -CH(OH)-CH₂-, -CH(OH)-CH(OH)-, -C(O)-CH₂-, $-SO_2$ -NH-, $-SO_2$ -CH₂- or -CH(OH)-CH₂-C(O)-NH-;

5

10

15

R¹⁰ is hydrogen or alkyl, or R¹⁰ forms together with the adjacent R¹¹, or when A¹⁰ is zero, forms together with the adjacent R¹², a nitrogen-containing mono-, bi- or tri-cyclic, saturated or partially saturated ring system having 4-14 ring members, that can be optionally substituted by one or two of keto, hydroxy, alkyl, aryl, aralkyl, alkoxy or aryloxy;

R¹¹, at each occurrence, is independently one of hydrogen, alkyl, cycloalkyl, aryl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or -CH₂-R¹⁵, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted;

R¹² and R¹³ are each independently one of hydrogen, alkyl, cycloalkyl, aryl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or -CH₂-R¹⁵, where the fing portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted,

where R¹⁵ is aryl, aralkyl, alkaryl, cycloalkyl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle, or -chalcogen-alkyl, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted;

 Z^{11} and Z^{12} are independently alkyl, hydroxy, alkoxy, aryloxy, or Z^{11} and Z^{12} together form a dihydroxy compound having at least two hydroxy groups separated by at least two connecting atoms in a chain or ring, said chain or ring comprising carbon atoms, and optionally, a heteroatom or heteroatoms which can be N, S, or O; and

 A^{10} is 0, 1, or 2

69. A method for reducing the activity of NF-κB in a cell, comprising contacting a cell in need of said reducing with an effective amount of a proteasome inhibitor of the formula:

10

5

15

20

$$P^{10} - N - \begin{bmatrix} B^{11} & X^{11} \\ I & I \end{bmatrix} - CH - X^{12} - CH - B(Z^{11})(Z^{12})$$

$$\begin{bmatrix} I & I \\ I & I \end{bmatrix} - CH - X^{12} - CH - B(Z^{11})(Z^{12})$$

$$\begin{bmatrix} I & I \\ I & I \end{bmatrix} - CH - X^{12} - CH - B(Z^{11})(Z^{12})$$

$$\begin{bmatrix} I & I \\ I & I \end{bmatrix} - CH - I \end{bmatrix}$$

$$\begin{bmatrix} I & I \\ I & I \end{bmatrix}$$

$$\begin{bmatrix} I & I \\ I & I \end{bmatrix}$$

$$\begin{bmatrix} I & I \\ I & I \end{bmatrix}$$

$$\begin{bmatrix} I & I \\ I & I \end{bmatrix}$$

$$\begin{bmatrix} I & I \\ I & I \end{bmatrix}$$

$$\begin{bmatrix} I & I \\ I & I \end{bmatrix}$$

$$\begin{bmatrix} I & I \\ I & I \end{bmatrix}$$

$$\begin{bmatrix} I & I \\ I & I \end{bmatrix}$$

$$\begin{bmatrix} I & I \\ I & I \end{bmatrix}$$

$$\begin{bmatrix} I & I \\ I & I \end{bmatrix}$$

$$\begin{bmatrix} I & I \\ I & I \end{bmatrix}$$

$$\begin{bmatrix} I & I \\ I & I \end{bmatrix}$$

$$\begin{bmatrix} I & I \\ I & I \end{bmatrix}$$

$$\begin{bmatrix} I & I \\ I & I \end{bmatrix}$$

$$\begin{bmatrix} I & I \\ I & I \end{bmatrix}$$

$$\begin{bmatrix} I & I \\ I & I \end{bmatrix}$$

$$\begin{bmatrix} I & I \\ I & I \end{bmatrix}$$

$$\begin{bmatrix} I & I \\ I & I \end{bmatrix}$$

$$\begin{bmatrix} I & I \\ I & I \end{bmatrix}$$

$$\begin{bmatrix} I & I \\ I & I \end{bmatrix}$$

$$\begin{bmatrix} I & I \\ I & I \end{bmatrix}$$

$$\begin{bmatrix} I & I \\ I & I \end{bmatrix}$$

$$\begin{bmatrix} I & I \\ I & I \end{bmatrix}$$

$$\begin{bmatrix} I & I \\ I & I \end{bmatrix}$$

$$\begin{bmatrix} I & I \\ I & I \end{bmatrix}$$

$$\begin{bmatrix} I & I \\ I & I \end{bmatrix}$$

$$\begin{bmatrix} I & I \\ I & I \end{bmatrix}$$

$$\begin{bmatrix} I & I \\ I & I \end{bmatrix}$$

$$\begin{bmatrix} I & I \\ I \end{bmatrix}$$

$$\begin{bmatrix} I$$

or a pharmaceutically acceptable salt thereof; wherein

P¹⁰ is hydrogen or an amino-group-protecting moiety;

B¹¹ is independently one of N or CH;

 X^{11} , at each occurrence, is independently one of -C(O)-NH-, $-CH_2-NH-$, $-CH(OH)-CH_2-$, -CH(OH)-CH(OH)-, $-CH(OH)-CH_2-NH-$, -CH=CH-, $-C(O)-CH_2-$, $-SO_2-NH-$, $-SO_2-CH_2-$ or $-CH(OH)-CH_2-C(O)-NH-$, provided that when B^{11} is N, then X^{11} is -C(O)-NH;

 X^{12} is one of -C(O)-NH-, $-CH(OH)-CH_2-$, -CH(OH)-CH(OH)-, $-C(O)-CH_2-$, $-SO_2-NH-$, $-SO_{27}-CH_2-$ or $-CH(OH)-CH_2-$ C(O)-NH-;

R¹⁰ is hydrogen or alkyl, or R¹⁰ forms together with the adjacent R¹¹, or when A¹⁰ is zero, forms together with the adjacent R¹², a nitrogen-containing mono-, bi- or tri-cyclic, saturated or partially saturated ring system having 4-14 ring members, that can be optionally substituted by one or two of keto, hydroxy, alkyl, aryl, aralkyl, alkoxy or aryloxy;

 R^{11} , at each occurrence, is independently one of hydrogen, alkyl, cycloalkyl, aryl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or $-CH_2-R^{15}$, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted;

R¹² and R¹³ are each independently one of hydrogen, alkyl, cycloalkyl, aryl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or –CH₂–R¹⁵, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted,

where R¹⁵ is aryl, aralkyl, alkaryl, cycloalkyl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle, or

10

5

15

20

-chalcogen-alkyl, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted;

 Z^{11} and Z^{12} are independently alkyl, hydroxy, alkoxy, aryloxy, or Z^{11} and Z^{12} together form a dihydroxy compound having at least two hydroxy groups separated by at least two connecting atoms in a chain or ring, said chain or ring comprising carbon atoms, and optionally, a heteroatom or heteroatoms which can be N, S, or O; and

 A^{10} is 0, 1, or 2.

70. A method for reducing the rate of intracellular protein breakdown, comprising contacting cells in need of said reducing with an effective amount of a proteasome inhibitor of the formula:

$$P^{10} - N - \begin{bmatrix} B^{11} - X^{11} \end{bmatrix} - CH - X^{12} - CH - B(Z^{11})(Z^{12})$$

$$R^{10} \begin{bmatrix} R^{11} & R^{12} & R^{13} \end{bmatrix}$$
(1b)

or a pharmaceutically acceptable salt thereof;

wherein

P¹⁰ is hydrogen or an amino-group-protecting moiety;

B11 is independently one of N or CH;

 X^{11} , at each occurrence, is independently one of -C(O)-NH-, $-CH_2-NH-$, $-CH(OH)-CH_2-$, $-CH(OH)-CH_0-$, $-CH(OH)-CH_2-$, $-CH_2-$, provided that when B^{11} is N, then X^{11} is $-CH_1-$ 0.

 X^{12} is one of -C(O)-NH-, $-CH(OH)-CH_2-$, -CH(OH)-CH(OH)-, $-C(O)-CH_2-$, $-SO_2-NH-$, $-SO_2-CH_2-$ or $-CH(OH)-CH_2-$ C(O)-NH-;

R¹⁰ is hydrogen or alkyl, or R¹⁰ forms together with the adjacent R¹¹, or when A¹⁰ is zero, forms together with the adjacent R¹², a nitrogen-containing mono-, bi- or tri-cyclic, saturated or partially saturated ring system having 4-14

10

5

15

20

ring members, that can be optionally substituted by one or two of keto, hydroxy, alkyl, aryl, aralkyl, alkoxy or aryloxy;

R¹¹, at each occurrence, is independently one of hydrogen, alkyl, cycloalkyl, aryl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or -CH₂-R¹⁵, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted;

R¹² and R¹³ are each independently one of hydrogen, alkyl, cycloalkyl, aryl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or –CH₂–R¹⁵, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted,

where R¹⁵ is aryl, aralkyl, alkaryl, cycloalkyl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle, or –chalcogen–alkyl, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted;

 Z^{11} and Z^{12} are independently alkyl, hydroxy, alkoxy, aryloxy, or Z^{11} and Z^{12} together form a dihydroxy compound having at least two hydroxy groups separated by at least two connecting atoms in a chain or ring, said chain or ring comprising carbon atoms, and optionally, a heteroatom or heteroatoms which can be N, S, or O; and

 A^{10} is 0, 1, or 2.

71. A method for reducing the rate of degradation of p53 protein in a cell, comprising administering to a cell in need of said reducing an effective amount of a proteasome inhibitor of the formula:

$$P^{10} - N - \begin{bmatrix} B^{11} - X^{11} \end{bmatrix} - CH - X^{12} - CH - B(Z^{11})(Z^{12})$$

$$R^{10} \begin{bmatrix} R^{11} & R^{12} & R^{13} \end{bmatrix}$$
(1b)

or a pharmaceutically acceptable salt thereof; wherein

10

5

15

20

P¹⁰ is hydrogen or an amin o-group-protecting moiety;

B11 is independently one of N or CH;

 X^{11} , at each occurrence, is independently one of -C(O)-NH-, $-CH_2-NH-$, $-CH(OH)-CH_2-$, -CH(OH)-CH(OH)-, $-CH(OH)-CH-NH_2$, -CH=CH-, $-C(O)-CH_2-$, $-SO_2-NH-$, $-SO_2-CH_2-$ or $-CH(OH)-CH_2-C(O)-NH-$, provided that when B^{11} is N, then X^{11} is -C(O)-NH;

 X^{12} is one of -C(O)-NH-, -CH(OH)-CH₂-, -CH(OH)-CH(OH)-, -C(O)-CH₂-, -SO₂-NH-, -SO₂-CH₂- or -CH(OH)-CH₂-C(O)-NH-;

R¹⁰ is hydrogen of alkyl, or R¹⁰ forms together with the adjacent R¹¹, or when A¹⁰ is zero, forms together with the adjacent R¹², a nitrogen-containing mono-, bi- or tri-cyclic saturated or partially saturated ring system having 4-14 ring members, that can be optionally substituted by one or two of keto, hydroxy, alkyl, aryl, aralkyl, alkoxy or aryloxy;

R¹¹, at each occurrence, is independently one of hydrogen, alkyl, cycloalkyl, aryl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or CN₂-R¹⁵, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted;

R¹² and R hare each independently one of hydrogen, alkyl, cycloalkyl, aryl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or -CH₂-R¹⁵, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted,

where R¹⁵ is aryl, aralkyl, alkaryl, cycloalkyl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle, or –chalcogen–alkyl, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted;

 Z^{11} and Z^{12} are independently alkyl, hydroxy, alkoxy, aryloxy, or Z^{11} and Z^{12} together form a dihydroxy compound having at least two hydroxy groups separated by at least two connecting atoms in a chain or ring, said chain or ring comprising carbon atoms, and optionally, a heteroatom or heteroatoms which can be N, S, or O; and

10

5

15

20

$$A^{10}$$
 is 0, 1, or 2.

72. A method for inhibiting cyclin degradation in a cell, comprising contacting a cell in need of said reducing with an effective amount of a proteasome inhibitor of the formula:

$$P^{10} - N - \begin{bmatrix} B^{11} - X^{11} \end{bmatrix} - CH - X^{12} - CH - B(Z^{11})(Z^{12})$$

$$R^{10} \begin{bmatrix} R^{11} \\ R^{11} \end{bmatrix} - R^{12} \begin{bmatrix} R^{13} \\ R^{13} \end{bmatrix}$$
(1b)

or a pharmaceutically acceptable salt thereof; wherein

P¹⁰ is hydrogen or an amino-group-protecting moiety;

B¹¹ is independently one of N or CH;

10

5

X¹¹, at each occurrence, is independently one of -C(O)-NH-, -CH₂-NH-, $-CH(OH)-CH_{2}-, \quad CH(OH)-CH(OH)-, \quad -CH(OH)-CH_{2}-NH-, \quad -CH=CH-, \\ -C(O)-CH_{2}-, -SO_{2}-NH-, -SO_{2}-CH_{2}- \text{ or } -CH(OH)-CH_{2}-C(O)-NH-, \text{ provided} \\ \text{that when B11 is N, then X12 is one of -C(O)-NH-, <math display="block"> -CH(OH)-CH_{2}-, \quad -CH(OH)-CH(OH)-, \\ -C(O)-CH_{2}-, -SO_{2}-NH-, \quad -SO_{2}-CH_{2}- \text{ or } -CH(OH)-CH_{2}-C(O)-NH-; \\ \end{array}$

R¹⁰ is hydrogen or alkyl, or R¹⁰ forms together with the adjacent R¹¹, or when A¹⁰ is zero, forms together with the adjacent R¹², a nitrogen-containing mono-, bi- or tri-cyclic, saturated or partially saturated ring system having 4-14 ring members, that can be optionally substituted by one or two of keto, hydroxy, alkyl, aryl, aralkyl, alkoxy or aryloxy;

20

15

R¹¹, at each occurrence, is independently one of hydrogen, alkyl, cycloalkyl, aryl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or -CH₂-R¹⁵, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted;

25

R¹² and R¹³ are each independently one of hydrogen, alkyl, cycloalkyl, aryl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or -CH₂-R¹⁵, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted,

where R¹⁵ is aryl, aralkyl, alkaryl, cycloalkyl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle, or –chalcogen–alkyl, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted;

 Z^{11} and Z^{12} are independently alkyl, hydroxy, alkoxy, aryloxy, or Z^{11} and Z^{12} together form a dihydroxy compound having at least two hydroxy groups separated by at least two connecting atoms in a chain or ring, said chain or ring comprising carbon atoms, and optionally, a heteroatom or heteroatoms which can be N, S, or O; and

 A^{10} is 0, 1, or 2.

73. A method of preventing or treating an inflammatory condition in a patient in need thereof, said method comprising administering to said patient a proteasome inhibitor of the formula:

or a pharmaceutically acceptable salt thereof; wherein

P¹⁰ is hydrogen or an amino-group-protecting moiety;

B" is independently one of N or CH;

 X^{11} , at each occurrence, is independently one of -C(O)-NH-, $-CH_2-NH-$, $-CH(OH)-CH_2-$, -CH(OH)-, provided that when B^{11} is N, then X^{11} is -C(O)-NH;

 X^{12} is one of -C(O)-NH-, -CH(OH)-CH₂-, -CH(OH)-CH(OH)-, -C(O)-CH₂-, -SO₂-NH-, -SO₂-CH₂- or -CH(OH)-CH₂-C(O)-NH-;

10

5

•

15

25

R¹⁰ is hydrogen or alkyl, or R¹⁰ forms together with the adjacent R¹¹, or when A¹⁰ is zero, forms together with the adjacent R¹², a nitrogen-containing mono-, bi- or tri-cyclic, saturated or partially saturated ring system having 4-14 ring members, that can be optionally substituted by one or two of keto, hydroxy, alkyl, aryl, aralkyl, alkoxy or aryloxy;

R¹¹, at each occurrence, is independently one of hydrogen, alkyl, cycloalkyl, aryl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or -CH₂-R¹⁵, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted;

R¹² and R¹³ are each independently one of hydrogen, alkyl, cycloalkyl, aryl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or -CH₂-R¹⁵, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted,

where R¹⁵ is aryl, aralkyl, alkaryl, cycloalkyl, a 5-10 membered saturated partially unsaturated or aromatic heterocycle, or chalcogen-alkyl, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted;

 Z^{11} and Z^{12} are independently alkyl, hydroxy, alkoxy, aryloxy, or Z^{11} and Z^{12} together form a dillydroxy compound having at least two hydroxy groups separated by at least two connecting atoms in a chain or ring, said chain or ring comprising carbon atoms, and optionally, a heteroatom or heteroatoms which can be N, S, or O; and

 A^{10} is 0, 1, or $\frac{1}{2}$.

74. The method of claim 73, wherein said patient has been diagnosed with, or is at risk of developing, a condition selected from the group consisting of tissue rejection, organ rejection, arthritis, an infection, dermatoses, inflammatory bowel disease, and an autoimmune disease.

10

5

15

20

75. A method for inhibiting antigen presentation in a cell comprising administering to a cell in need thereof an effective amount of a proteasome inhibitor of the formula:

$$P^{10} - N - \begin{bmatrix} B^{11} \\ \\ \\ R^{10} \end{bmatrix} X^{11} - CH - X^{12} - CH - B(Z^{11})(Z^{12})$$

$$R^{12} - R^{13}$$
(1b)

or a pharmaceutically acceptable salt thereof; wherein

P¹⁰ is hydrogen or an amino-group-protecting moiety;

B¹¹ is independently one of N or CH;

 X^{11} , at each occurrence, is independently one of -C(O)-NH-, $-CH_2-NH-$, $-CH(OH)-CH_2-$, -CH(OH)-CH(OH)-, $-CH(OH)-CH_2-NH-$, -CH=CH-, $-C(O)-CH_2-$, $-SO_2-NH-$, $-SO_2-CH_2-$ or $-CH(OH)-CH_2-C(O)-NH-$, provided that when B^{11} is N, then X is -C(O)-NH;

X¹² is one of C(O) NH-, -CH(OH)-CH₂-, -CH(OH)-CH(OH)-, -C(O)-CH₂-, -SO₂-NH-, SO₂-CH₂- or -CH(OH)-CH₂-C(O)-NH-;

R¹⁰ is hydrogen or alkyl, or R¹⁰ forms together with the adjacent R¹¹, or when A¹⁰ is zero, forms together with the adjacent R¹², a nitrogen-containing mono-, bi- or tri-cyclic, saturated or partially saturated ring system having 4-14 ring members, that can be optionally substituted by one or two of keto, hydroxy, alkyl, aryl, aralkyl, alkoxy or aryloxy;

R¹¹, at each occurrence, is independently one of hydrogen, alkyl, cycloalkyl, aryl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or -CH₂-R¹⁵, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted;

R¹² and R¹³ are each independently one of hydrogen, alkyl, cycloalkyl, aryl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or –CH₂–R¹⁵, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted,

10

5

15

20

where R¹⁵ is aryl, aralkyl, alkaryl, cycloalkyl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle, or –chalcogen–alkyl, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted;

5

 Z^{11} and Z^{12} are independently alkyl, hydroxy, alkoxy, aryloxy, or Z^{11} and Z^{12} together form a dihydroxy compound having at least two hydroxy groups separated by at least two connecting atoms in a chain or ring, said chain or ring comprising carbon atoms, and optionally, a heteroatom or heteroatoms which can be N, S, or O; and

 A^{10} is 0, 1, or 2.

10

76. A method for inhibiting inducible NF-kB dependent cell adhesion in an animal in need of said inhibiting, comprising administering to said animal an effective amount of a proteasome inhibitor of the formula:

$$P^{10} - N - B^{11} - CH - X^{12} - CH - B(Z^{11})(Z^{12})$$
 $R^{10} - R^{10} - R^{11} - CH - X^{12} - CH - B(Z^{11})(Z^{12})$
 $R^{10} - R^{10} -$

15

or a pharmaceutically acceptable salt thereof;

wherein

P¹⁰ is hydrogen or an ammo-group-protecting moiety;

B¹¹ is independently one of N or CH;

20

 X^{11} , at each occurrence, is independently one of -C(O)-NH-, $-CH_2-NH-$, $-CH(OH)-CH_2-$, -CH(OH)-CH(OH)-, $-CH(OH)-CH_2-NH-$, -CH=CH-, $-C(O)-CH_2-$, $-SO_2-NH-$, $-SO_2-CH_2-$ or $-CH(OH)-CH_2-C(O)-NH-$, provided that when B^{11} is N, then X^{11} is -C(O)-NH;

 X^{12} is one of -C(O)-NH-, $-CH(OH)-CH_2-$, -CH(OH)-CH(OH)-, $-C(O)-CH_2-$, $-SO_2-NH-$, $-SO_2-CH_2-$ or $-CH(OH)-CH_2-$ C(O)-NH-;

25

R¹⁰ is hydrogen or alkyl, or R¹⁰ forms together with the adjacent R¹¹, or when A¹⁰ is zero, forms together with the adjacent R, ¹² nitrogen-containing

mono-, bi- or tri-cyclic, saturated or partially saturated ring system having 4-14 ring members, that can be optionally substituted by one or two of keto, hydroxy, alkyl, aryl, aralkyl, alkoxy or aryloxy;

R¹¹, at each occurrence, is independently one of hydrogen, alkyl, cycloalkyl, aryl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or -CH₂-R¹⁵, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted;

R¹² and R¹³ are each independently one of hydrogen, alkyl, cycloalkyl, aryl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or –CH₂–R¹⁵, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted,

where R¹⁵ is aryl, aralkyl, alkaryl, cycloalkyl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle, or –chalcogen–alkyl, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted;

 Z^{11} and Z^{10} are independently alkyl, hydroxy, alkoxy, aryloxy, or Z^{11} and Z^{12} together form a dihydroxy compound having at least two hydroxy groups separated by at least two connecting atoms in a chain or ring, said chain or ring comprising carbon atoms, and optionally, a heteroatom or heteroatoms which can be N, S, or O; and

 A^{10} is 0, 1, or 2.

77. A method for inhibiting HIV replication in an animal in need of said inhibiting, comprising administering to said animal an effective amount of a proteasome inhibitor of the formula:

$$P^{10} - N - \begin{bmatrix} B^{11} - X^{11} \end{bmatrix} - CH - X^{12} - CH - B(Z^{11})(Z^{12}) \\ R^{10} \begin{bmatrix} R^{11} \\ R^{11} \end{bmatrix} - CH - X^{12} - CH - B(Z^{11})(Z^{12})$$

$$(1b)$$

or a pharmaceutically acceptable salt thereof;

5

10

15

20

wherein

Pho is hydrogen or an amino-group-protecting moiety;

B¹¹\is independently one of N or CH;

 X^{11} , at each occurrence, is independently one of -C(O)-NH-, $-CH_2-NH-$, $-CH(OH)-CH_2-$, -CH(OH)-CH(OH)-, $-CH(OH)-CH-NH_2-$, -CH=CH-, $-C(O)-CH_2-$, $-SO_2-NH-$, $-SO_2-CH_2-$ or $-CH(OH)-CH_2-C(O)-NH-$, provided that when B^{11} is N, then X^{11} is -C(O)-NH;

 X^{12} is one of -C(O)-NH-, $-CH(OH)-CH_2-$, -CH(OH)-CH(OH)-, $-C(O)-CH_2-$, $-SO_2-NH-$, $-SO_2-CH_2-$ or $-CH(OH)-CH_2-$ C(O)-NH-;

R¹⁰ is hydrogen or alkyl, or R¹⁰ forms together with the adjacent R¹¹, or when A¹⁰ is zero, forms together with the adjacent R¹², a nitrogen-containing mono-, bi- or tri-cyclic, saturated or partially saturated ring system having 4-14 ring members, that can be optionally substituted by one or two of keto, hydroxy, alkyl, aryl, aralkyl alkoxy or aryloxy;

 R^{11} , at each occurrence, is independently one of hydrogen, alkyl, cycloalkyl, aryl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or $-CH_2-R^{15}$, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted;

R¹² and R¹³ are each independently one of hydrogen, alkyl, cycloalkyl, aryl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle or –CH₂–R¹⁵, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted,

where R¹⁵ is aryl, aralkyl, alkaryl, cycloalkyl, a 5-10 membered saturated, partially unsaturated or aromatic heterocycle, or –chalcogen–alkyl, where the ring portion of any of said aryl, aralkyl, alkaryl or heterocycle can be optionally substituted;

 Z^{11} and Z^{12} are independently alkyl hydroxy, alkoxy, aryloxy, or Z^{11} and Z^{12} together form a dihydroxy compound having at least two hydroxy groups separated by at least two connecting atoms in a chain or ring, said chain or ring

10

5

15

20

comprising carbon atoms, and optionally, a heteroatom or heteroatoms which can be N, S, or O; and

 A^{10} is 0, 1, or 2.

78. The method of claims 67, 68, 69, 70, 71, 72, 73, 75, 76 or 77 5 wherein said protesome inhibitor is one of:

N-(2-pyrazine)carbonyl-L-phenylalanine-L-leucine boronic acid,

N-(2-quinoline)sulfonyl-L-homophenylalanine-L-leucine boronic acid,

N-(3-pyridine)carbonyl-L-phenylalanine-L-leucine boronic acid,

N-(4-morpholine)carbonyl-L-phenylalanine-L-leucine boronic acid,

N-(4-morpholine)carbonyl- β -(1-naphthyl)-L-alanine-L-leucine boronic acid,

N-(8-quinoline)sulfonyl- β -(1-naphthyl)-L-alanine-L-leucine boronic acid,

N-(4-morpholine)carb ϕ nyl-(O-benzyl)-L-tyrosine-L-leucine boronic acid,

N-(4-morpholine)carbohyl-L-tyrosine-L-leucine boronic acid, or

N-(4-morpholine)carbonyl-[O-(2-pyridylmethyl)]-L-tyrosine-L-leucine boronic

acid; or

10

15

20

isosteres, pharmaceutically acceptable salts or boronate esters thereof.

- A method for reducing the rate of muscle protein degradation in 79. a cell comprising contacting said cell with a compound of claim 58 or 61.
- 80. A method for reducing the activity of NF-kB in a cell comprising contacting said cell with a compound of claim 58 or 61.
- 81. A method for reducing the rate of intracellular protein breakdown comprising contacting cells with a compound of claim 58 or 61.
- 82. A method for reducing the rate of degradation of p53 protein in a cell comprising administering to said cell a compound of claim 58 or 61.

- 83. A method for inhibiting cyclin degradation in a cell comprising contacting said cell with a compound of claim 58 or 61.
- 84. A method of preventing or treating an inflammatory condition in a patient in need thereof, said method comprising administering to said patient a compound of claim 58 or 61.
- 85. The method of claim 84, wherein said patient has been diagnosed with, or is at risk of developing, a condition selected from the group consisting of tissue rejection, organ rejection, arthritis, an infection, dermatoses, inflammatory bowel disease, asthma, osteoporosis, osteoarthritis and an autoimmune disease.
- 86. A method for inhibiting the growth of a cancer cell, comprising contacting said cell with a compound of claim 58 or 61.
- 87. A method for inhibiting antigen presentation in a cell comprising administering to said cell a compound of claim 58 or 61.
- 88. A method for inhibiting NF-kB dependent cell adhesion in an animal comprising administering to said animal a compound of claim 58 or 61.
- 89. A method for inhibiting HIV replication in an animal comprising administering to said animal a compound of claim 58 or 61.

10

15