Reconnaissance Automatique de Locuteurs à l'aide de Fonctions de Croyance

Simon Petitrenaud, Vincent Jousse, Sylvain Meignier, Yannick Estève

Laboratoire d'Informatique de l'Université du Maine

Reconnaissance des Formes et Intelligence Artificielle (RFIA10), 20-22 janvier 2010

Lignes directrices

- Identification nommée de locuteur
 - Objectif général
 - Identification de locuteur: état de l'art
 - Système de référence
- Fonctions de croyance et identification de locuteur
 - Théorie des fonctions de croyance ("Dempster-Shafer")
 - Utilisation en reconnaissance de locuteur
- 3 Evaluation
 - Campagne ESTER
 - Métriques utilisées
 - Résultats
- Conclusion et perspectives

Lignes directrices

- Identification nommée de locuteur
 - Objectif général
 - Identification de locuteur: état de l'art
 - Système de référence
- 2 Fonctions de croyance et identification de locuteur
 - Théorie des fonctions de croyance ("Dempster-Shafer")
 - Utilisation en reconnaissance de locuteur
- 3 Evaluation
 - Campagne ESTER
 - Métriques utilisées
 - Résultats
- Conclusion et perspectives

Contexte et buts de l'identification nommée

- Contexte: émissions radiophoniques (ou télévisuelles)
- Objectifs: déterminer qui parle, et à quel moment

Lignes directrices

- Identification nommée de locuteur
 - Objectif général
 - Identification de locuteur: état de l'art
 - Système de référence
- Ponctions de croyance et identification de locuteur
 - Théorie des fonctions de croyance ("Dempster-Shafer")
 - Utilisation en reconnaissance de locuteur
- 3 Evaluation
 - Campagne ESTER
 - Métriques utilisées
 - Résultats
- Conclusion et perspectives

Etat de l'art

- Méthodes basées sur l'acoustique
 - Reconnaissance automatique du locuteur
 - Enregistrements de chaque locuteur ⇒ Difficile à obtenir

Etat de l'art

- Méthodes basées sur l'acoustique
 - Reconnaissance automatique du locuteur
 - Enregistrements de chaque locuteur ⇒ Difficile à obtenir
- Méthodes utilisant la transcription du signal
 - Hypothèse : les locuteurs s'annoncent
 - Extraction des noms des locuteurs à partir des paroles prononcées
 - Reconnaissance automatique de la parole
 - Détection d'"entités nommées": PERSONNES, Lieux, Radios ...

Etat de l'art

- Méthodes basées sur l'acoustique
 - Reconnaissance automatique du locuteur
 - Enregistrements de chaque locuteur ⇒ Difficile à obtenir
- Méthodes utilisant la transcription du signal
 - Hypothèse : les locuteurs s'annoncent
 - Extraction des noms des locuteurs à partir des paroles prononcées
 - Reconnaissance automatique de la parole
 - Détection d'"entités nommées": PERSONNES, Lieux, Radios ...
 - ⇒ Solution retenue: transcription du signal+ détection de Personnes

Identification de personnes: principe de base

- 4 hypothèses sur la personne nommée (Canseco 05)
 - Précédent: elle vient de parler
 - Courant: elle parle
 - Suivant: elle va parler
 - Autre

Lignes directrices

- Identification nommée de locuteur
 - Objectif général
 - Identification de locuteur: état de l'art
 - Système de référence
- 2 Fonctions de croyance et identification de locuteur
 - Théorie des fonctions de croyance ("Dempster-Shafer")
 - Utilisation en reconnaissance de locuteur
- 3 Evaluation
 - Campagne ESTER
 - Métriques utilisées
 - Résultats
- Conclusion et perspectives

Système de référence (revue TAL 09, ICASSP'09)

- Traitement acoustique
- Transcription de la parole en mots, détection de noms complets
- Hypothèses sémantiques sur les noms complets
- Méthode de combinaison, propagation des informations
- Processus de décision d'affectation

Objectif général Identification de locuteur: état de l'a Système de référence

Transcription enrichie d'un document sonore

TOUR 1 (Locuteur 1/Homme) : les grands titres de l'actualité PERSONNE(Maude Bayeu) boniour

TOÜR 2 (Locuteur 2/Femme): bonjour, la polémique sur la mission de PERSONNE/Didier Julia) pour libérer les otages en LIEU(Irak) TOUR 3 (Locuteur 1/Homme): Merci PERSONNE/Maude Bayeu), maintenant la météo [...]

> Transcription enrichie annotée en entités nommées

Objectif général Identification de locuteur: état de l'ai Système de référence

Utilisation du contexte lexical des noms

Arbre de Classification Sémantique Probabiliste Pour chaque occurence: calcul de proba pour les 4 hypothèses

Probabilités issues de l'arbre

Prise en compte du genre

Conclusion et perspectives

Formalisation

- Occurrence o_j dans un tour t, se réfère au locuteur du tour précédent (t-1), courant ou suivant (t+1)
- Probabilités associées $P(o_i, t+r), r=-1, 0, 1$
- Locuteur *c_l* anonyme (peut regrouper plusieurs tours)
- Noms complets candidats: $\mathcal{E} = \{e_1, \dots, e_l\}$
- α_{il} ∈ [0, 1]: degré de "compatibilité" entre les genres de c_l et e_i.

Propagation des informations

• "score" pour chaque nom complet e_i:

$$s_l(e_i) = \sum_{\{(o_j,t)|o_j=e_i,\ t\in c_l\}} \alpha_{il} P(o_j,t)$$

Remarque: ce score n'est plus une probabilité

Propagation des informations: exemple

Calcul de scores: 8 occurrences dans un tour t (masculin)

Occurrence o _j	sexe	liste	$P(o_j, t)$	score
Oscar Temaru	М	non	0,29	_
Hamid Karzaï	М	non	0,29	_
Jacques Chirac	М	oui	0,29	0,87
Jacques Chirac	M		0,29	
Jacques Chirac	M		0,29	
Jean-Claude Pajak	М	oui	0,29	
Jean-Claude Pajak	M		0,96	1,25
Véronique Rebeyrotte	F	oui	0,29	_

Décision: étape 1

- Pour chaque c_l , choix de l'attribution d'un nom complet e_i^*
- Règle de décision R₁:

$$e_i^* = \arg\max_{e_i \in \mathcal{E}} \mathsf{s}_l(e_i)$$

 Etiquetage multiple? ⇒ problème de mise en correspondance.

Etiquettes concurrentes (1)

 Exemple: même nom complet attribué initialement à 3 locuteurs différents:

Loc 1: scores	
J. Derrida	7,58
N. Demorand	3,99
H. Gardette	1,75
A. Adler	1,12
M. Kravetz	0,54
5 candidats	14,98

_oc 2: scores		
J. Derrida	1,67	
A. Adler	0,88	
2 candidats	2,55	

Loc 3: scores	
J. Derrida	4,94
O. Duhamel	0,39
2 candidats	5,35

Quelle(s) solution(s) pour les départager?

Objectif général Identification de locuteur: état de l'a Système de référence

Décision finale: 1ère méthode (1)

On prend le plus fort parmi les "gagnants"!

Loc 1: scores J. Derrida 7,58 N. Demorand 3,99 H. Gardette 1,75 A. Adler 1,12 M. Kravetz 0,54 5 candidats 14,98

2. 300163		
J. Derrida A. Adler	1,67 0,88	
2 candidats	2,55	

nc 2: scores

Loc 3: scores	
J. Derrida	4,94
O. Duhamel	0,39
2 candidats	5,35

Conclusion et perspectives

Décision finale : 1ère méthode (2)

Formellement, règle de décision R₁:

• Pour tout c_l ,

$$e_i^* = \arg\max_{e_i \in \mathcal{E}} s_l(e_i)$$

- 2 Soit C_e : l'ensemble des locuteurs dont l'assignation est e
- Finalement:

$$c_l^* = \arg\max_{c_l \in \mathcal{C}_{e_l^*}} s(e_l^*, c_l)$$

Etiquettes concurrentes (2)

 Autre solution pour les départager: tenir compte du score relatif

7,58
3,99
1,75
1,12
0,54
14,98

Loc 2: scores		
J. Derrida	1,67	
A. Adler	0,88	
2 candidats	2,55	

Loc 3: scores		
J. Derrida	4,94	
O. Duhamel	0,39	
2 candidats	5,35	

Objectif général Identification de locuteur: état de l'ar Système de référence

Etiquettes concurrentes (3)

Pondération des scores par τ_{ij} : proportion de score allouée à e_i pour l'affectation à c_i

$$\tau_{il} = \frac{s_l(e_i)}{\sum_{q=1}^l s_l(e_q)}$$

Loc 1	
J. Derrida:	51%
N. Demorand	27%
H. Gardette	12%
A. Adler	7%
M. Kravetz	3%
5 candidats	100%

LOC Z	
J. Derrida	65%
A. Adler	35%
2 candidats	100%

Loc 3	
J. Derrida	93%
O. Duhamel	7%
2 candidats	100%

Décision finale: 2ème méthode

- Pondération des scores par les scores relatifs τ_{ii} :
- Règle R₂:

$$SC_l(e_i) = s_l(e_i)\tau_{il}$$

Loc 1	
J. Derrida:	3,84
N. Demorand	1,06
H. Gardette	0,20
A. Adler	0,08
M. Kravetz	0,02
5 candidats	

Loc 2: scores

J. Derrida 1,09 A. Adler 0,30 2 candidats

Loc 3: scores

J. Derrida 4,57
O. Duhamel 0,03
2 candidats

Objectif général Identification de locuteur: état de l'ar Système de référence

Récapitulatif

Exemple d'une assignation initiale multiple.

Locuteur	nom complet e _i *	$s_l(e_i^*)$	$ au_{il}$	$SC_l(e_i^*)$
Loc 1	Jacques Derrida	7 , 58	51%	3,84
Loc 2	Jacques Derrida	1,67	65%	1,09
Loc 3	Jacques Derrida	4,94	93%	4, 57

Décision finale

- Algorithme itératif
- Exemple du processus de décision avec deux itérations.

Locuteur	e_i^* 1ère itération	2ème itération
Loc 1	J. Derrida (3, 84)	N. Demorand (1, 06)
Loc 2	J. Derrida (1,09)	A. Adler (0,30)
Loc 3	J. Derrida (4, 57)	-
Loc 4	O. Duhamel (1, 15)	-

Critique du modèle précédent

- Clarté: utilisation d'un "score" qui n'est pas une probabilité
- Justification de la pondération des scores? (notion de pureté)
- Cohérence des informations au sein de tours de parole contigus.

Cohérence d'informations dans un tour de parole

Exemple: 5 occurrences effectives dans un tour *t* (masculin)

Occurrence o _j	sexe	$P(o_j,t)$	score
Jacques Chirac	M	0,29	0,87
Jacques Chirac	М	0,29	
Jacques Chirac	M	0,29	
Jean-Claude Pajak	М	0,29	
Jean-Claude Pajak	М	0,96	1,25

- Absence de prise en compte globale des informations du tour: conflit entre 2 concurrents.
- Accumulation potentielle de petites erreurs.

Objectif général Identification de locuteur: état de l'ar Système de référence

Cohérence d'informations dans un tour de parole

Solutions envisageables:

- Rester dans le cadre probabiliste: formalisation par probabilités conditionnelles: problème, absence d'information a priori, complexe.
- Modélisation et combinaison des informations par la Théorie des fonctions de croyance (MCT, "Dempster-Shafer"), adaptée à la gestion du conflit d'informations

Cohérence d'informations dans un tour de parole

Solutions envisageables:

- Rester dans le cadre probabiliste: formalisation par probabilités conditionnelles: problème, absence d'information a priori, complexe.
- Modélisation et combinaison des informations par la Théorie des fonctions de croyance (MCT, "Dempster-Shafer"), adaptée à la gestion du conflit d'informations
- ⇒ Modélisation par la Théorie des fonctions de croyance .

Lignes directrices

- Identification nommée de locuteur
 - Objectif général
 - Identification de locuteur: état de l'art
 - Système de référence
- Fonctions de croyance et identification de locuteur
 - Théorie des fonctions de croyance ("Dempster-Shafer")
 - Utilisation en reconnaissance de locuteur
- 3 Evaluation
 - Campagne ESTER
 - Métriques utilisées
 - Résultats
- Conclusion et perspectives

Notions sur les Fonctions de croyance

Soit Ω un ensemble fini (ici).

• Fonction de croyance m sur Ω , application $m: 2^{\Omega} \to [0, 1]$ telle que:

$$\sum_{A\subseteq\Omega}m(A)=1.$$

- Interprétation :
 - traduction d'un état de connaissance sur une variable x dans Ω
 - m(A) = part de croyance allouée à l'hypothèse x ∈ A et à aucune hypothèse plus restrictive.
- Eléments focaux de m: sous-ensembles A, t.q. m(A) > 0.

Combinaison d'informations

- Soient 2 fonctions de croyance m₁ et m₂ issues de 2 sources d'information
- Opérateur de combinaison binaire conjonctif (non normalisé): $\cap \Rightarrow m_{1,2} = m_1 \cap m_2$:

$$\forall A \subseteq \Omega, \ m_{1,2}(A) = \sum_{B \cap C = A} m_1(B) m_2(C).$$

- Opérateur associatif, commutatif.
- Combinaison multiple: $m = m_1 \cap ... \cap m_n$
- Degré de conflit: m(∅)

Fonctions de croyance et décision

 Décision: conversion d'une fonction de croyance m en une distribution de probabilité, probabilité pignistique (smets94):

$$\forall \omega \in \Omega \quad P_m(\{\omega\}) = \sum_{A \subset \Omega} \frac{m(A)}{|A|(1-m(\emptyset))} \delta_A(\omega),$$

- |A|:cardinal de A,
- δ_A : fonction indicatrice d'appartenance à A.
- P_m répartit équitablement la masse d'un sous-ensemble de Ω entre ses éléments.

Lignes directrices

- Identification nommée de locuteur
 - Objectif général
 - Identification de locuteur: état de l'art
 - Système de référence
- Fonctions de croyance et identification de locuteur
 - Théorie des fonctions de croyance ("Dempster-Shafer")
 - Utilisation en reconnaissance de locuteur
- 3 Evaluation
 - Campagne ESTER
 - Métriques utilisées
 - Résultats
- Conclusion et perspectives

Définition des masse de croyance

- Croyance fournie par UNE occurrence de nom complet donnée o_i sur la connaissance du locuteur c_i du tour t
- Cadre de discernement: ensemble des noms complets (liste fermée): $\mathcal{E} = \{e_1, \dots, e_l\}$
- Information sur le genre de e_i et c_i (M, F, inconnu, incertain)
- Masse de croyance à support simple sur E:

$$\begin{cases} m_t^{jr}(\{e_i\}) = \alpha_{ij}P(o_j, t-r) \text{ si } o_j = e_i \\ m_t^{jr}(\mathcal{E}) = 1 - \alpha_{ij}P(o_j, t-r). \end{cases}$$

r = -1,0 ou 1, selon le tour concerné (suivant, courant, précédent).

Combinaison d'informations

Combinaison d'information dans un tour de parole

$$m_t = \bigcap_{r=-1}^1 \bigcap_{j=1}^{n_{t+r}} m_t^{jr}$$

 $(n_{t+r}: nombre d'occurrences concernées)$

2 Propagation à l'ensemble de l'émission

$$M_I = \bigcap_{t \in c_I} m_t$$

Croyance globale concernant l'étiquetage du locuteur c_l .

Exemple de distribution des masses dans un tour de parole (1)

Exemple: 5 occurrences effectives dans un tour *t* (masculin)

Occurrence o _j	sexe	$P(o_j,t)$
Jacques Chirac	M	0,29
Jacques Chirac	М	0, 29
Jacques Chirac	М	0, 29
Jean-Claude Pajak	М	0, 29
Jean-Claude Pajak	М	0,96

Exemple de distribution des masses dans un tour de parole (1)

Exemple: 5 occurrences effectives dans un tour *t* (masculin)

Occurrence o _j	sexe	$P(o_j,t)$
Jacques Chirac	M	0, 29
Jacques Chirac	М	0, 29
Jacques Chirac	М	0, 29
Jean-Claude Pajak	М	0, 29
Jean-Claude Pajak	М	0,96

 \Rightarrow 5 fonctions de croyance à combiner.

Exemple de distribution des masses dans un tour de parole (2)

Eléments focaux	$m_t(\{e_i\})$
Jacques Chirac	0.018
Jean-Claude Pajak	0.348
Ø	0.624
\mathcal{E}	0.010

⇒ degré de conflit important.

Décision

- Transformation des masses de croyance M_l en une probabilité pignistique P_{M_l}
- 2 Règle de décision **R** d'affectation de e_i^* à c_i :

$$e_i^* = \arg\max_{e_i \in \mathcal{E}} \mathsf{P}_{M_i}(e_i)$$

4 Affectation multiple: partage des noms complets comme précédemment.

Décision: exemple

Exemple de décision avec deux itérations

	Locuteur	1ère itération	2ème itération	
-	Loc 1	J. Derrida (0, 72)	N. Demorand (0, 17)	
	Loc 2	J. Derrida (0, 71)	A. Adler (0, 25)	
	Loc 3	J. Derrida (0, 99)	-	
	Loc 4	O. Duhamel (0,88)	-	

Lignes directrices

- Identification nommée de locuteur
 - Objectif général
 - Identification de locuteur: état de l'art
 - Système de référence
- Ponctions de croyance et identification de locuteur
 - Théorie des fonctions de croyance ("Dempster-Shafer")
 - Utilisation en reconnaissance de locuteur
- 3 Evaluation
 - Campagne ESTER
 - Métriques utilisées
 - Résultats
- Conclusion et perspectives

Corpora

- Campagne ESTER (2005): émissions radiophoniques francophones
- 6 radios différentes
- Liste fermée de 1008 noms complets possibles
- 3 corpus : apprentissage (76h), développement (30h) et évaluation (10h)

	Nombre d'occurrences	Nombre de tours
Apprentissage	7416	11292
Dév.	2931	4933
Evaluation	1082	1541

Lignes directrices

- Identification nommée de locuteur
 - Objectif général
 - Identification de locuteur: état de l'art
 - Système de référence
- Ponctions de croyance et identification de locuteur
 - Théorie des fonctions de croyance ("Dempster-Shafer")
 - Utilisation en reconnaissance de locuteur
- 3 Evaluation
 - Campagne ESTER
 - Métriques utilisées
 - Résultats
- Conclusion et perspectives

Evaluation: 5 cas possibles

- Identité proposée correcte (C₁)
- Absence d'identité de la référence(C₂)
- Erreur de substitution (S)
- Erreur de suppression (D)
- Erreur d'insertion (I)

Taux d'erreur

$$Err = \frac{S + I + D}{S + I + D + C_2 + C_1}.$$

Lignes directrices

- Identification nommée de locuteur
 - Objectif général
 - Identification de locuteur: état de l'art
 - Système de référence
- 2 Fonctions de croyance et identification de locuteur
 - Théorie des fonctions de croyance ("Dempster-Shafer")
 - Utilisation en reconnaissance de locuteur
- 3 Evaluation
 - Campagne ESTER
 - Métriques utilisées
 - Résultats
- Conclusion et perspectives

Expériences

Système	ErrDur	ErrLoc
Référence (règle R ₁)	20,6%	20,2%
Référence (règle R ₂)	16,6%	19,5%
Proposé (règle R)	13,7%	14,9%

- Corpus d'évaluation ESTER
- Résultats utilisant la transcription de référence.
- ErrDur: taux d'erreur en durée
- ErrLoc: taux d'erreur en nombre de locuteurs

Conclusion

Apports des fonctions de croyance dans notre méthode d'identification de locuteur:

- Quantitativement: diminution du taux d'erreur.
- Qualitativement:
 - Clarté et unicité de la décision
 - Cohérence de la prise en compte des informations au sein de tours de parole contigus.

Perspectives

- Parole simultanée (au lieu de tours de parole séquentiels): pb de segmentation
- Adaptation à une liste ouverte des noms possibles
- Fusion d'informations acoustiques (coûteuses) sur les locuteurs?
- Optimisation de la mise en correspondance des locuteurs
- Vers un système entièrement automatique:
 - Segmentation/classification en locuteur automatique
 - Transcription automatique

Références sélectives

- L. Canseco-Rodriguez, L. Lamel, J. L. Gauvain. A comparative study using manual and automatic transcriptions for diarization. *Automatic Speech Recognition and Understanding (ASRU)*, 2005.
- V. Jousse, S. Petitrenaud, S. Meignier, Y. Estève, C. Jacquin. Automatic named identification of speakers using diarization and ASR systems. ICASSP'09, 2009.
- V. Jousse, S. Meignier, C. Jacquin, S. Petitrenaud, Y. Estève, B. Daille. Analyse conjointe du signal sonore et de sa transcription pour l'identification nommée de locuteur. Traitement automatique des langues, 50(1), 2009.

