Problem 1: a) $\lambda = 0$. 0 = 0 => 0= A - B8 So 0 = A. b) $\lambda = -a^2$ 0" = a20 = 0 = Acosh(a9) + Bornh(a0) => A = B = 0 c) $\lambda = \alpha^2 > 0$ $\theta'' + \alpha^2 \theta = 0 \Rightarrow \theta = A \cos(\alpha \theta) + B \sin(\alpha \theta)$ Has non-trivial 27 - zen'odic sol'u when a = n, a positive integer. So: $\lambda = 0$ or $\lambda = n^2$, n integer. Problem ?: r2R"+ rR = 0 u= R' => (2 u' + rn=0 =) <u>u'</u> + 1 = 0

=> lun + lyr= (=> ly (ur)= c on ur = B g => R'= B => R(r)= A+ Blur. Problem 3: Set R(r) = rh

$$r^{2} k(k-1) r^{k-2} + r k r^{k-1} - n^{2} r^{k} = 6$$

$$\Rightarrow k(k-1) + k - n^{2} = 6$$

$$\Rightarrow k^{2} - n^{2} = 0 \Rightarrow k = 4n$$

$$So R(r) = A r^{n} + B r^{-n}$$

$$\Rightarrow r^{2} P^{k} \theta + r P^{k} P \theta + r^{2} P \theta^{n} = 0$$

$$\Rightarrow r^{2} P^{k} \theta + r P^{k} P \theta + r^{2} P \theta^{n} = 0$$

$$\Rightarrow (^{2} P^{n} + r P^{k}) = -\frac{\theta^{n}}{\theta^{n}}$$

$$2. So: -\frac{\theta^{n}}{\theta^{n}} = \lambda \Rightarrow \theta^{n} + \lambda \theta = 0.$$

$$\Rightarrow R(r)\theta(\theta) = R(r)\theta(\theta + 2\pi)$$

$$\Rightarrow R(r)\theta(\theta) = R(r)\theta(\theta + 2\pi)$$

$$\Rightarrow \theta(\theta) = \theta(\theta + 2\pi)$$

$$3. So \lambda = 0 \text{ or } \lambda = n^{2}$$

$$4. Thus either $r^{2} P^{k} + r P^{k} + r P^{k} = 0$

$$r^{2} P^{n} + r P^{k} - n^{2} P^{n} = 0$$$$

So
$$P_{0}(n) = A + B lu r^{2}$$
) $A + B lu \beta = 0$
 $P_{0}(\beta) =$

	/-	۱4 ((š)	^- (÷	<u> </u>	=	0د,	۸,	ou	= [Sett.	f(0))cos(n &) d	e
		3 _u													