Parameterized Algorithms for Matrix Completion with Radius Constraints

Tomohiro Koana¹ Vincent Froese¹ Rolf Niedermeier¹

 1 Techqnische Universität Berlin, Faculty IV, Algorithmics and Computational Complexity

May 12, 2020

Problem Statement

For $i=1\dots n$: $S[i] \ {\sf string} \ {\sf on} \ {\sf alphabet} \ \Sigma \ {\sf admitting} \ {\sf wildcards} \ *$

$$S = \begin{pmatrix} b & a & n & a & n & a \\ a & * & n & * & n & * \\ b & * & * & c & z & a \\ z & a & z & * & n & * \\ b & a & * & a & c & a \\ b & * & n & c & * & z \end{pmatrix} \in (\Sigma \cup \{*\})^{n \times \ell}$$

1

Problem Statement

For i = 1 ... n:

S[i] string on alphabet Σ admitting wildcards *

$$S = \begin{pmatrix} b & a & n & a & n & a \\ a & * & n & * & n & * \\ b & * & * & c & z & a \\ z & a & z & * & n & * \\ b & a & * & a & c & a \\ b & * & n & c & * & z \end{pmatrix} \in (\Sigma \cup \{*\})^{n \times \ell}$$

Minimum Radius Matrix Completion (MinRMC)

Input: Matrix $S \in (\Sigma \cup \{*\})^{n \times \ell}$ and $d \in \mathbb{N}$.

Output: $\exists T$ completion of S and $\exists v \in \Sigma^{\ell}$ s.t. $\delta(v, T) \leq d$?

Problem Statement

For i = 1 ... n:

S[i] string on alphabet Σ admitting wildcards *

$$S = \begin{pmatrix} b & a & n & a & n & a \\ a & * & n & * & n & * \\ b & * & * & c & z & a \\ z & a & z & * & n & * \\ b & a & * & a & c & a \\ b & * & n & c & * & z \end{pmatrix} \in (\Sigma \cup \{*\})^{n \times \ell}$$

Constraint Radius Matrix Completion (ConRMC)

Input: Matrix $S \in (\Sigma \cup \{*\})^{n \times \ell}$ and $d_1 \dots d_n \in \mathbb{N}$.

Output: $\exists T$ completion of S and $\exists v \in \Sigma^{\ell}$ s.t. $\forall i \ \delta(v, T[i]) \leq d_i$?

Related Work

Stringology and ML meet in the middle!

Related Work

Stringology and ML meet in the middle!

ICML '18: Parameterized Algorithms for Matrix Completion

Dataset contains missing entries

Fill the gaps optimizing some metrics (e.g. rank of the matrix)

Related Work

Stringology and ML meet in the middle!

ICML '18: Parameterized Algorithms for Matrix Completion Dataset contains missing entries

Fill the gaps optimizing some metrics (e.g. rank of the matrix)

CPM '14: Parameterized Closest String with Wildcards

 ${\color{red}\mathsf{Closest}} \ \mathsf{string} \equiv \mathsf{MinRMC} \ \mathsf{for} \ \mathsf{a} \ \mathsf{wildcard\text{-}free} \ \mathsf{S}$

Applications in Bioinformatics

- Motif finding
- PCR primer design
- Genetic probe design

Hardness Results

All Problems are Intractable

- ullet Closest String is \mathcal{NP} -hard, even for $|\Sigma|=2$

Hardness Results

All Problems are Intractable

- ullet Closest String is \mathcal{NP} -hard, even for $|\Sigma|=2$
- \bullet Closest String \preceq MinRMC \preceq ConRMC

Fixed Parameter Tractability

$$f(n,k) = \mathcal{O}\left(g(k)n^{\mathcal{O}(1)}\right)$$

Hardness Results

All Problems are Intractable

- ullet Closest String is \mathcal{NP} -hard, even for $|\Sigma|=2$
- ullet Closest String \preceq MinRMC \preceq ConRMC

Fixed Parameter Tractability

$$f(n,k) = \mathcal{O}\left(g(k)n^{\mathcal{O}(1)}\right) \iff f(n,k) = \mathcal{O}^*\left(g(k)\right)$$

4

State of Art

$$S = \begin{pmatrix} b & a & n & a & n & a \\ a & * & n & * & n & * \\ b & * & * & c & z & a \\ z & a & z & * & n & * \\ b & a & * & a & c & a \\ b & * & n & c & * & z \end{pmatrix} d = \begin{pmatrix} 4 \\ 3 \\ 4 \\ 2 \\ 5 \\ 3 \end{pmatrix}$$

ConRMC: find $v \in \Sigma^{\ell}$ s.t. $\exists T$ completion of S, $\forall i \ \delta(v, T[i]) \leq d_i$

Define $P_*(S[i]) = \{j \le \ell \, | \, S[i,j] = *\}$

$$S = \begin{pmatrix} b & a & n & a & n & a \\ a & * & n & * & n & * \\ b & * & * & c & z & a \\ z & a & z & * & n & * \\ b & a & * & a & c & a \\ b & * & n & c & * & z \end{pmatrix} d = \begin{pmatrix} 4 \\ 3 \\ 4 \\ 2 \\ 5 \\ 3 \end{pmatrix}$$

ConRMC: find $v \in \Sigma^{\ell}$ s.t. $\exists T$ completion of S, $\forall i \ \delta(v, T[i]) \leq d_i$

Define
$$P_*(S[i]) = \{j \le \ell \mid S[i,j] = *\}, P_*(S[2]) = \{2,4,6\}$$

$$S = \begin{pmatrix} b & a & n & a & n & a \\ a & * & n & * & n & * \\ b & * & * & c & z & a \\ z & a & z & * & n & * \\ b & a & * & a & c & a \\ b & * & n & c & * & z \end{pmatrix} d = \begin{pmatrix} 4 \\ 3 \\ 4 \\ 2 \\ 4 \\ 3 \end{pmatrix}$$

Any
$$v \in \Sigma^{\ell}$$
 is a center $\iff \forall i \leq n \quad \ell - P_*(S[i]) \leq d_i$

- return **True**
- Floor
 - $\exists R_i \subseteq \{1 \dots \ell\} \setminus P_*\left(S[i]\right) \text{ s.t. } |R_i| = d_i + 1$

$$S = \begin{pmatrix} b & a & n & a & n & a \\ a & * & n & * & n & * \\ b & * & * & c & z & a \\ z & a & z & * & n & * \\ b & a & * & a & c & a \\ b & * & n & c & * & z \end{pmatrix} d = \begin{pmatrix} 4 \\ 3 \\ 4 \\ 2 \\ 4 \\ 3 \end{pmatrix}$$

Any
$$v \in \Sigma^{\ell}$$
 is a center $\iff \forall i \leq n \quad \ell - P_*(S[i]) \leq d_i$

If holds:

return True

Else:

$$\exists R_i \subseteq \{1 \dots \ell\} \setminus P_*(S[i]) \text{ s.t. } |R_i| = d_i + 1$$

$$S = \begin{pmatrix} b & a & n & a & n & a \\ a & * & n & * & n & * \\ b & * & * & c & z & a \\ z & a & z & * & n & * \\ b & a & * & a & c & a \\ b & * & n & c & * & z \end{pmatrix} d = \begin{pmatrix} 4 \\ 3 \\ 4 \\ 2 \\ 4 \\ 3 \end{pmatrix}$$

$$v \in \Sigma^{\ell}$$
 is a center $\implies \exists j \in R_i$ s.t. $v[j] = S[i,j]$

$$S = \begin{pmatrix} b & a & n & a & n & a \\ a & * & n & * & n & * \\ b & * & * & c & z & a \\ z & a & z & * & n & * \\ b & a & * & a & c & a \\ b & * & n & c & * & z \end{pmatrix} d = \begin{pmatrix} 4 \\ 3 \\ 4 \\ 2 \\ 4 \\ 3 \end{pmatrix}$$

$$v \in \Sigma^{\ell}$$
 is a center $\implies \exists j \in R_i$ s.t. $v[j] = S[i,j]$

We can recurse over the $|R_i| = d_i + 1$ possible $j \in R_i$

$$S = \begin{pmatrix} b & a & n & a & n & a \\ a & * & n & * & n & * \\ b & * & * & c & z & a \\ z & a & z & * & n & * \\ b & a & * & a & c & a \\ b & * & n & c & * & z \end{pmatrix} d = \begin{pmatrix} 4 \\ 3 \\ 4 \\ 2 \\ 4 \\ 3 \end{pmatrix}$$

$$v \in \Sigma^{\ell}$$
 is a center $\implies \exists j \in R_i$ s.t. $v[j] = S[i,j]$

We can recurse over the $|R_i| = d_i + 1$ possible $j \in R_i$

$$S = \begin{pmatrix} b & a & n & a & n & a \\ a & * & n & * & n & * \\ b & * & * & c & z & a \\ z & a & z & * & n & * \\ b & a & * & a & c & a \\ b & * & n & c & * & z \end{pmatrix} d = \begin{pmatrix} 4 \\ 3 \\ 4 \\ 2 \\ 4 \\ 3 \end{pmatrix} d' = \begin{pmatrix} 4 \\ 2 \\ 4 \\ 3 \end{pmatrix}$$

$$v \in \Sigma^{\ell}$$
 is a center $\implies \exists j \in R_i$ s.t. $v[j] = S[i,j]$

We can recurse over the $|R_i| = d_i + 1$ possible $j \in R_i$

$$S = \begin{pmatrix} b & a & n & a & n & a \\ a & * & n & * & n & * \\ b & * & * & c & z & a \\ z & a & z & * & n & * \\ b & a & * & a & c & a \\ b & * & n & c & * & z \end{pmatrix} d = \begin{pmatrix} 4 \\ 3 \\ 4 \\ 2 \\ 4 \\ 3 \end{pmatrix} d' = \begin{pmatrix} 4 \\ 2 \\ 4 \\ 1 \\ 4 \\ 3 \end{pmatrix}$$

$$T(n,\ell) = (\widetilde{d}+1)T(n,\ell-1) + n\ell$$

$$\implies T(n,\ell) = \mathcal{O}\left(\left(\widetilde{d}+1\right)^{\ell} \cdot n\ell\right) = \mathcal{O}^*\left(\ell^{\ell}\right)$$
 with $\widetilde{d} = \max_i d_i$

A Linear Algorithm for case d=1

Mention that ConRMC is np-hard even for d = 2.

Open Problems

- •
- •

Thank You!