Licht

Lichtquellen, Beobachter (Kamera), Beleuchtung

Szene

- Anordnung von
 - Lichtquellen
 - Objekten
 - virtuellen Betrachtern ("Kamera", Viewport)
 - Kulisse (Skybox)
- Im 3D Raum: Geometrische Modellierung
- 2D Bildsynthese: Rendering Pipeline

Szenengraph

- <u>Hierarchische</u> Anordnung der Elemente einer Szene (Struktur, Übersichtlichkeit, Pflegbarkeit)
- Child Elemente "übernehmen" Transformationen der Parent Elemente (Objektkoordinatensystem → Gruppenkoordinatensystem)
- In Unity:
 - Hierarchy
 - o analog: Projektresourcen

Graphikpipeline

- Anwendung
 - Content
 - Interaktion

Anwendung → Geometrie → Rasterung → Bildschirm

- Geometrie
 - Modellbeschreibung
 - Transformation
 - Shader
- Rasterung
 - Post Processing

- Bildschirm
 - Anpassungen Ausgabegerät (Viewport etc.)

(Quelle: Wikipedia)

Geometrie

(Quelle: Wikipedia)

Geometrie

- Modellbeschreibung
- Transformationen

Kamera

- Kamera Transformation
 - Transformation von Weltkoordinaten nach Kamerakoordinaten
- Perspektive
 - In Unity: Eigenschaft der "Kamera"
 - In Unity: "Perspective", "Orthographic"
- Clipping
 - Beschränkung der Objekte auf Kamera-Blickwinkel
 - Beschränkung der Objekte auf z-Tiefe (Unity: "near clipping plane", "far clipping plane")
- Viewport Transformation
 - o 16:9 etc.

Kamera Transformation

(Quelle: Wikipedia)

Wdh: Homogene Koordinaten

$$\frac{20}{2} \begin{pmatrix} x \\ y \\ 2 \end{pmatrix} \qquad 2 \neq 0, \text{ Seliesiz}$$

$$2 = 1 : x, y = \text{ hartesise Ge}$$

$$2 = 1 : x, y = \text{ hartesise Ge}$$

$$2 = 1 : x, y = \text{ hartesise Ge}$$

$$\begin{pmatrix} x \\ y \\ 1 \end{pmatrix} \cdot \begin{pmatrix} A \\ x \\ t_{x} \\ t_{y} \end{pmatrix} = \begin{pmatrix} x + t_{x} \\ y + t_{y} \\ 1 \end{pmatrix}$$

Wdh: Homogene Koordinaten

Skalierung
$$\begin{pmatrix} x \\ y \\ 1 \end{pmatrix}, \begin{pmatrix} S_x \\ S_y \\ 1 \end{pmatrix} = \begin{pmatrix} S_x \cdot x \\ S_y \cdot y \\ 1 \end{pmatrix}$$
Rotation
$$\begin{pmatrix} x \\ y \\ 1 \end{pmatrix}, \begin{pmatrix} \cos \varphi & \sin \varphi \\ -\sin \varphi & \cos \varphi \\ 1 \end{pmatrix} = \begin{pmatrix} x \cos \varphi - y \sin \varphi \\ x \sin \varphi + y \cos \varphi \\ 1 \end{pmatrix}$$

Kamera Transformation

("Augpunkt") Weltkoordinaten Lamera Goordinaten system Sichtstrahl { è vert, cam; è vert, cam; è lori, can vertrais 2 Objectschwerpunkt (Pivot-Punkt)

Kamera Transformation

Transformation

$$\vec{e}_{z} = \frac{\vec{cau} - \vec{osj}}{|\vec{cau} - \vec{osj}|}$$

$$\vec{e}_{x} = \frac{\vec{e}_{vert;am} \times \vec{e}_{z}}{|\vec{e}_{vert;cun} \times \vec{e}_{z}|}$$

$$\vec{e}_{y} = \vec{e}_{z} \times \vec{e}_{x}$$

$$\vec{e}_{z} = \frac{\vec{cau} - \vec{obj}}{|\vec{cau} - \vec{obj}|}$$

$$\vec{e}_{x} = \frac{\vec{e}_{vert;am} \times \vec{e}_{z}}{|\vec{e}_{vert;cam} \times \vec{e}_{z}|}$$

$$\vec{e}_{y} = \vec{e}_{z} \times \vec{e}_{x}$$

$$= \begin{pmatrix} \vec{e}_{x} & \vec{e}_{y} & \vec{e}_{z} & \vec{e}_{z} \\ -(\vec{e}_{x} \cdot \vec{cau}) & -(\vec{e}_{y} \cdot \vec{cau}) & -(\vec{e}_{y} \cdot \vec{cau}) \end{pmatrix}$$

$$\vec{e}_{y} = \vec{e}_{z} \times \vec{e}_{x}$$

Perspektive in Unity

"Perspective"

"Orthographic"

Perspektive (mathematisch)

Verkleinerung, abhängig von z Abstand "x,y rücken ein"

Homogene Transformation nach 2D Bildkoordinaten Augpunkt (0, 0, d)

$$\mathbf{P}_{\mathrm{zp}} = egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 \ 0 & 0 & -rac{1}{d} & 1 \end{pmatrix}, \quad \mathbf{P}_{\mathrm{zp}} \; (x,y,z,1)^T = (x,y,0,rac{d-z}{d})^T$$

$$\mathbf{P}_{ ext{zp}} \; (x,y,z,1)^T = (x,y,0,rac{d-z}{d})^T$$

$$\mathbf{P}_{ ext{op}} = egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 \end{pmatrix}, \qquad \mathbf{P}_{ ext{op}} \; (x,y,z,1)^T = (x,y,0,1)^T$$

$$\mathbf{P}_{ ext{op}} \; (x,y,z,1)^T = (x,y,0,1)^T$$

(Quelle: Wikipedia)

Beleuchtung

Zweck

- Sichtbarkeit
- Glaubwürdigkeit der Szene, Stimmung
- Steuerung von Aufmerksamkeit

Arten von Lichtquellen

- Directional Light
- Pointlight
- Spotlight
- Area Light ("baked only")

Übung: Directional Light + Skybox

Stimmung

Unity: Skybox als Lichtquelle

- Lighting / Environment Lighting
- Lighting / Environment Reflexions
- Beispiel: Unity HDRI Cubemap als Lichtquelle
- Photorealistische Beleuchtung

Space Robot Kyle

default skybox cubemap skybox directional light

procedural skybox

Cornell Box

Directional Light

- Unendlich entfernt, Parallele Lichtstrahlen
- o In Unity: Positionierung egal, Parameter = Rotation
- Culling Mask: Möglichkeit der Einschränkung, welche Objekte ausgeleuchtet werden

Shadow Type

- Soft / Hard Shadows: Übergang an Kanten
- Bias / Normal Bias:

Entfernung: Schattenwurf zu Objekt

Erodieren der Schatten um Lücken zu vermeiden

Übung

- Cornell Box erstellen
- Lichtquellen und Objekte hinzufügen
- Experimentieren

Shadow Mapping

Kamera-Ansicht
Tiefeninformation

Ansicht: Lichtquelle

(Quelle: Wikipedia)

Shadow Mapping

Kamera-Ansicht

Projektion Tiefeninformation

Bild mit Schatten (Shader Pass)

(Quelle: Wikipedia)

Global Illumination

- Direct Lighting
 - o von Lichtquellen

- Indirect Lighting
 - Reflektionen von Objekten
 - nur möglich für statische Objekte (vorab berechnet)

Global Illumination

Non-static Capsule vs. Static Capsule

Lightmap

Unity erzeugt für statische Objekte eine Lightmap Texture ("Light baking")

Selbstleuchtende Objekte

Global Illumination

Indirekte Beleuchtung nicht-statischer Objekte

- In Unity: Lightprobe Group
 - Punktweise Erfassen der Beleuchtungsverhältnisse
 - Interpolation des Zwischenraums
- Interessante Bereiche können mit höherer Anzahl Lightprobes beschrieben werden (Add, Duplicate)

Global Illumination

Static Object

Dynamic Object

Lightprobes

Pointlights

- 4 Pi
- Quadratisches Abklingen
- = 0 für größer "Range"

Spotlight

- Gerichtet
- Kegelförmig, Abklingverhalten je nach Unity Version unterschiedlich
- Cookies

Area Light

- "flat"
- "baked" → nur für statische Objekte

3-Punkt-Beleuchtung

- Führungslicht (key light)
 - höchste Intensität
 - 45° zu Kamera
- Aufhellungslicht (fill light)
 - o schräg gegenüber Führungslicht
- Kantenlicht (bump light)
 - von oben, Kopfpartie
 - Kantenaufhellung
- Optional: Hintergrundausleuchtung

(Quelle: Wikipedia)

Übung

"Barbarian Warrior"

