1

```
✓ Answer ✓
 create or alter trigger updStuCreditOnInsUpd
 on takes
 after insert, update
 as
 begin
         if (ROWCOUNT_BIG() = 0) return;
         if exists (
                  select grade
                          from inserted as i
                          where (i.grade is not null)
          )
         begin
                 set nocount on;
                  update student
                          set tot_cred = tot_cred +
                                  case
                          when
                                  (i.grade not in ('D-','F')
                                                   (d.grade IS NULL or
 d.grade in ('D-','F')))
                                          then c.credits
                          when
                                  (i.grade in ('D-','F')
                                                           and
                                                   d.grade not in ('D-
 ','F')
                                          then -c.credits
                          else 0
                      end
                          from student as s
                          inner join inserted as i
                                  on s.id = i.id
                          left join deleted as d
                                  on d.id = i.id and d.course_id =
 i.course_id
                          inner join course as c
                                  on i.course_id = c.course_id;
```

end;

end;

2

a

✓ Answer

Given: $A \rightarrow C, B \rightarrow AE, B \rightarrow D, BD \rightarrow C$

 $A \subseteq AE$ by definition

 $AE \rightarrow A$ by reflexivity

 $A \rightarrow C$ given

 $B \rightarrow C$ by transitivity

 $B \rightarrow D$ given

 $B \rightarrow BC$ by augmentation

 $BC \to CD$ by augmentation

 $B \to CD$ by transitivity

b

✓ Answer

$$B^{+} = \{B\}$$

$$B^+=\{B,D\}$$
 by $B o D$

$$B^+ = \{A,B,D,E\}$$
 by $B o AE$

$$B^+ = \{A,B,C,D,E\}$$
 by $A o C$

3

a

✓ Answer

Given R(A,B,C,D,E,F,G), $A \to B, B \to CG, C \to FD, D \to E, E \to G$, and

$$R_1(A, B, C, F), R_2(D, E, G)$$

$$R_1 \cap R_2 = \emptyset$$

And thus $R_1 \cap R_2$ determines nothing, and is thus lossy.

b

✓ Answer

Given R(A,B,C,D,E,F,G), $A\to BFG,B\to CG,AB\to G,C\to D,D\to E,F\to E$, and $R_1(A,B,C,F),R_2(C,D,E,G)$

$$F = R_1 \cap R_2 = C$$

$$F^{+} = C^{+}$$

 $\{C\}\subseteq C^+$ by definition

$$\{C,D\}\subseteq C^+$$
 by $C o D$

$$\{C,D,E\}\subseteq C^+$$
 by $D o E$

No more can be determined.

Since $R_1 \nsubseteq F^+$ and $R_2 \nsubseteq F^+$, this is not lossless.

C

✓ Answer

Given R(A,B,C,D,E,F,G), A o B,B o C,BC o F,D o EG, and $R_1(A,D,E,G),R_2(A,B,C,F)$

$$F = R_1 \cap R_2 = A$$

$$F^{+} = A^{+}$$

 $\{A\} \subseteq A^+$ by definition

$$\{A,B\}\subseteq A^+$$
 by $A\to B$

$$\{A,B,C\}\subseteq A^+$$
 by $B o C$

$$\{A,B,C,F\}\subseteq A^+$$
 by $BC o F$

Since $R_2 \subseteq F^+$, this decomposition is lossless.

4

a

✓ Answer

Given R(A, B, C, D, E, F, G, H, I) and

$$A
ightarrow BHI, C
ightarrow E, E
ightarrow F, BC
ightarrow D, F
ightarrow G, H
ightarrow G, CD
ightarrow A$$

The following transitivity chains exist:

1.
$$C \rightarrow E \rightarrow F \rightarrow G$$

2.
$$CD \rightarrow A \rightarrow BHI \rightarrow 1$$

 $3. \ BC \to D \to 2$ $4. \ H \to G$ $ABCDEFGHI^+ = ABCDHI^+ \text{ by 1}$ $ABCDHI^+ = CD^+ \text{ by 2}$ $CD^+ \text{ is minimal.}$ $ABCDEFGHI^+ = ABCDHI^+ \text{ by 1}$ $ABCDHI^+ = BC^+ \text{ by 3 and 2}$ $BC^+ \text{ is minimal.}$

Thus, our candidate keys are BC and CD

b

✓ Answer

 $\{B,C,D\}$ exist as parts of CKs, and thus are prime attributes

5

a

✓ Answer

Given A o BGHI, C o EF, E o F, BC o ADE, F o G, H o G, CD o A

 $C o E\implies C o EF$ as E o F is also given $BC o AD\implies BC o ADE$ as C o E $BC o D\implies BC o AD$ as CD o A

 $A o BHI \implies A o BGHI ext{ as } H o G$

Which leaves us with:

BC o D

CD o A

A o BHI

 $C \to E$

E o F

 $F \to G$

H o G

b

✓ Answer

None of the one to one dependencies are repeated, so these all cannot be reduced further.

 $A \rightarrow BHI$ is irreducible as there are no other relations between B, H, I

 $BC \rightarrow D$ is irreducible as B, C are unrelated

 $CD \rightarrow A$ is the same

The validity of the dependencies are proven in part a.

6

a

✓ Answer

Given R(A,B,C,D,E,F,G,H,I,J,K) and A o BCD,HI o J,AEFG o HIK

The only irreducible determinants are A, HI, AEFG

The only one of those three that determine all of R is AEFG

 $AEFG
ightarrow HIK \ HI
ightarrow J ext{ as } HIK
ightarrow HI \ AEFG
ightarrow BCD ext{ as } AEFG
ightarrow A$

Therefore it is *AEFG*

b

✓ Answer

J only depends on HI, not our key of AEFG

C

✓ Answer

 $R_1(A, E, F, G, H, I, J, K), R_2(A, B, C, D)$

There is no longer any partial dependency, as BCD only depended on A, not AEFG, the key of our R_1

It does not achieve NF3 as J transitively depends on the primary key through HI.

✓ Answer

$$R_1(A, E, F, G, H, I, K), R_2(A, B, C, D), R_3(H, I, J)$$

There is no longer any transitive dependency, as J was moved into another table.

This is also in BNCF as all columns directly depend on the super key, additionally no non-prime attributes can determine any prime attributes.

e

✓ Answer

For our first decomposition

$$R_1 \cap R_2 = A$$

In
$$R_2$$
, $A o BCD$

$$A^+ = \{A, B, C, D\} = R_2$$

And thus this decomposition is lossless.

For the second decomposition

$$R_1 \cap R_3 = HI$$

In
$$R_3$$
, $HI o J$

$$HI^{+} = \{H, I, J\} = R_3$$

And thus this decomposition is also lossless.

f

✓ Answer

Yes

 $A \rightarrow BCD$ is within R_2

HI
ightarrow J is within R_3

AEFG
ightarrow HIK is within R_1

All dependencies are conserved.

g

✓ Answer

h

✓ Answer

Given J o I and $R_1(A,E,F,G,H,I,K), R_2(A,B,C,D), R_3(H,I,J)$

 $R_1(A, E, F, G, H, J, K), R_2(A, B, C, D), R_4(J, I)$

Since HI determines J, R_1 is able to be changed to this.

Since J on its own is able to determine I, we no longer need HI o J in R_3