

Europäisches Patentamt
European Patent Office

Office européen des brevets

EP 0 795 948 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 17.09.1997 Bulletin 1997/38

(51) Int. Cl.⁶: **H02J 13/00**

(11)

(21) Application number: 96301661.3

(22) Date of filing: 11.03.1996

- (84) Designated Contracting States: DE FR GB IT NL SE
- (71) Applicant: FIRST PACIFIC NETWORKS, INC. San Jose, California 95131 (US)
- (72) Inventors:
 - McNamara, Robert P.
 San Jose, California 95136 (US)

- Amar, Amar C.
 Fremont, California 94539 (US)
- (74) Representative: Hector, Annabel Mary W.P. Thompson & Co., Celcon House, 289-293 High Holborn London WC1V 7HU (GB)

(54) System for utility demand monitoring and control

A system for electric power demand monitoring and control includes one or more data distribution networks interconnecting intelligent utility units located at customer homes with a host computer located in the utility company offices. Each intelligent utility unit is associated with a customer home for connecting and disconnecting a power service meter, monitoring customer demand, and controlling power to selected units. A network within the home interconnects each intelligent utility unit with power consuming units for providing data on power usage and power control. A data distribution network interconnects the plurality of intelligent utility units to the host computer as a head end unit, the data distribution network providing downstream communication channels from the host computer to the plurality of intelligent utility units and upstream communication channels from the plurality of intelligent utility units to the host computer. The communication channels are organized as frequency division multiplex channels in a frequency spectrum. A plurality of distribution networks can be provided for a larger utility environment with each distribution network associated with a power substation and customers served by the power substation.

F16, 1.

EP 0 795 948 A1

In a mid-split system, the frequencies from 5 to 108 MHz (17 channels) are used to carry signal in the inbound direction, and the frequencies from 162 MHz to 1 GHz (50+ channels) are used to carry signals in the outbound direction. See Table 2 for a representative mid-split cable spectrum.

In a high-split system, the frequencies from 5 to 175 MHz (30 channels) are used to carry signals in the inbound direction, and the frequencies from 220 MHz to 1 GHz (35+ channels) are used to carry signals in the outbound direction. See Table 3 for a representative high-split cable spectrum.

A multi-tiered addressing scheme is employed in the network. Each IUU contains the following address structure:

Physical unit address--six-byte address unique to every unit. The address is written in HEX and coded into each IUU.

Group address--allows addressing of assigned group less than all users.

Broadcast address--allows addressing of all system users.

This addressing structure allows the network manager to directly communicate with each individual IUU, a group of IUUs, and all IUUs.

The gateway between the distribution network and the digital backbone interfaced to the host computer is located in the utility company substations. A power view bridge (PVB) provides the routing function between the distribution network and the backbone network. The bridge processor keeps track of IUU addresses and the network processor address and performs the routing function for all packets between the networks. The bridge also performs a filtering function in passing data only to valid known addresses.

Fig. 6 is a functional block diagram of the digital backbone network which interfaces the host computer with the plurality of distribution networks. The backbone network includes a Frame Relay T1 interface for providing the interface between the gateway and the backbone network. A PowerView Network Processor (PNP) which provides an interface between T1 data streams and the utility host computer which provides the management of the overall network. The backbone network can be organized as a star, ring or bus. The actual topology is not important since circuits will be dedicated from the utility substations to the host computer. The digital circuits terminate at a PNP near the utility company's host computer. The backbone network can operate from T-1 rates upwards and exceeding T-3 rates, depending upon network and utility size. The T1 network distribution media is twisted wire, optical fiber, coaxial cable, or microwave. The T3 networks are either fiber or microwave. Minimum network speed is T-1. Network addressing is a function of the circuits dedicated to the distribution network and a lower level addressing between the IUUs and the utility company's host computer.

The application package within the host computer includes the ability to collect information about time of day power consumption, the ability to remotely configure the home network through the IUU, the ability to change the price tier in real time either up or down as a function of power generation and consumption, and the ability to collect and process the customer's utility bill which breaks down power consumption by device, time of day, override conditions, and the like in order to provide an itemized billing statement to the customer.

There has been described a system for utility demand monitoring and control and including a distribution network which facilitates demand side management of utility consumption. While the system has been described with reference to an illustrative electric power utility embodiment, the description is illustrative of the invention and is not to be construed as limiting the invention. The system can be used with other utilities such as gas and water as well as with telephone and cable television networks. Other functions are readily incorporated such as security systems. Thus, various modifications and applications will occur to those skilled in the art without departing from the true spirit and scope of the invention as defined by the appended claims.

50

45

EP 0 795 948 A1

TABLE :

SUB-SPLIT BROADBAND

				00.0	bound		-	
			•	Odd.	Band, M	—— [H 2		
					Jana, I	•••		
	CITADO DANO							
10	GUARD BAND	,		22	450-456			
	30-54 MHz			 YY	444-450			
				XX	438-444		•	
				WW	432-438			
				ν ν	426-432			
15				\mathbf{u}	420-426			
13				TT	414-420			
				SS	408-414			
				RR	402-408			
				QQ '	396-402			
			•	PP	390-396			
20			•	00	384-390			
		-		NN	378-384			•
				MM	372-378			
				LĹ	366-372			-्रीक्ष
				KK	360-366			£ 2
25			oound	JJ	354-360			-
25		Chnl	Band, MHz	II	348-354			r +
				нн	342-348			1.1
		T10	23.75-29.75	GG	336-342			.,
		T9	17.75-23.75	FF	330-336			
	Channels L	TB	11.75-17.75	EE	324-330	w/T8		•
30		T 7	5.75-11.75	DO	318-324	w/T10	Powerview	•
				CC	312-318		Channels	- 1
				BB	306-312			
				AA	300-306	w/T10		<u></u>
				W	294-300	w/T9 J		· '₹ -
35			•	Λ	288-294			AC 204 A .
33				U	282-288			
				T	276-282			
				S	270-276			
				R	264-270			
•	9		•	Q	258-264			
40			•	₽	252-258			
		-		0	246-252			
				N	240-246		•	
				М	234-240		•	
				L	228-234	•	•	
45				к	222-228			
45				J	216-222			
				13	210-216			
				12	204-210	•		
				lack				
50				lacksquare				
				•				
				-	5. 60			
				2	54-60			

e

BROADBAND

				SKOADBAND		
_					tbound	
5				Chnl	Band, MHz	
	C			22	450-456	
				YY	444-450	
				XX	438-444	
				WW	432-438	
10				vv	426-432	
				ប្រ		
					420-426	
				TT	414-420	
				SS	408-414	
15			•	RR	402-408	
13				QQ	396-402	
				₽₽	390-396	
			BAND	00	384-390	
				NN	378-384	
		GUARD	BAND 4	MM	372-378	
20		114-1	50 MHz	LL	365-372	
			•	KK	360-366	
			-A	JJ	354-360	
				II	348-354	
				HH	342-348	
				GG		
25					336-342	
		T_1		FF	330-336	
			oound	EE	324-330	
		Chnl	Band, MHz	DD	318-324	
			•	CC	312-318	
			71	38	306-312	
30		A2 '	108-114	AA	300-306	
		FM3 '	102-108	W	294-300	
	г	FM2 '	96-102	V	288-294 7	
		FM1'	90-96	Ū	282-288	
		6'	84-90	T	276-282	
	PowerView	5 '	79-84	s	270-276	PowerView
35	Channels	4A'	72-78	R	264-270	Channels
		4 '	66-72	Q	258-264	
		3'	60-66	P P	252-258	
	L	2'	54-60		246-252	
		T14		0		
40			47.75-53.75	N	240-246	
40		T13	41.75-47.75	M	234-240	
		T12	35.75-41.75	L	228-234	
		T11	29.75-35.75	К	222-228	
		T10	23.75-29.75	J	216-222	
		T9	17.75-23.75	13	210-216	
45		T8	11.75-17.75	12	204-210	
43		T7	5.75-11.75	11	198-204	
				10	192-198	
				9	186-192	
				8	180-186	
				7	174-180	
50				Ī	168-174	
				н	162-168	
				G	156-162	
				F	150-156	

Ŀ

TABLE 3

SPLIT BROADBAND

				Ou	tbound		
•	•			Chnl	Band, MHz	,	
				C.4.1	build, fail	•	
				zz	450-456		
10				YY	444-450		
				XX	438-444		
				WW	432-438		
				vv	426-432		
		GUARD	BAND	บับ	420-426		
15			22 MHz	TT	414-420		
				SS	408-414		
		In	bound	RR	402-408		
		Chnl	Band, MH	QQ	396-402		
		-	<u> </u>	PP	390-396		
20			; • • • • • • • • • • • • • • • • • • •	00	384-390		
			3,	NN	378-384		
		8'	180-18.	MM	372-378		
		7'	174-18	LL	366-372		
		ľ,	168-17-	KK	360-366		
25		H'	162-168	JJ	354-360		
		G'	156-162	II	348-354		
		F'	150-156	нн	342-348		
	,	- E'	144-150	GG	336-342	,	
		D'	138-144	FF	330-336		
30		c'	132-138	EE	324-330		
		B'	126-132	DD	318-324	İ	
		Α'	120-126	CC	312-318		
		A1'	114-120	BB	306-312		
	PowerView	A2 '	108-114	AA	300-306		PowerView
35	Channels	FM3 '	102-108	W	294-300	L	Channels
		FM2		v	288-294		CHAILICIS
			·90-96	Ü	282-288		
		6'.	84-90	T	276-282		
		5'	78-84	s	270-276		
40		4A'	72-78	R	264-270		
		4 '	66-72	0	258-264	.	
		3'	60-66	P	252-258		
	ŧ	- 2'	54-60	0.	246-252	j	
45		T14	47.75-53.75	N	240-246		
45		T13	41.75-47.75	M	234-240		
		T12	35.75-41.75	L	228-234		
		T11	29.75-35.75	ĸ	222-228		
		T10	23.75-29.75				
60		T9	17.75-23.75				
50		T8	11.75-17.75				
		T7	5.75-11.75				
		* /	J. (J = 4.4 - 1.4				

55

Claims

- 1. A system for utility demand monitoring and control comprising:
 - a host computer having access to power utility customers for receiving customer data and providing management reports on customer demand and billing statements to customers,
 - a plurality of intelligent utility units, each unit associated with a customer's home for connecting and disconnecting a service meter and monitoring customer utility demand,
 - a home network interconnecting each intelligent utility unit with utility units within a home for providing data on utility usage, and
 - a distribution network interconnecting said plurality of intelligent utility units.
- 2. The system as defined by claim 1 comprising communication channels which are organised as frequency and time division multiplexed channels in a frequency spectrum.
- 3. The system as defined by claim 1 or 2 comprising communication channels which include voice and data channels, and video channels.
- 4. The system as defined by claim 1, 2, or 3, wherein said distribution network comprises a fibre distribution network, or a coaxial distribution network, or a wireless network, or a combination of a fibre distribution network, a coaxial distribution network, and a wireless network.
 - 5. The system as defined by any preceding claim wherein said host computer includes a digital backbone network for interfacing with said distribution network, said backbone interface including a Frame Relay with said distribution network and a Frame Relay router to interface the digital backbone data stream and said host computer.
 - 6. The system as defined by any one of claims 1 to 4 wherein said host computer includes a digital backbone network for interfacing with said distribution network, said backbone interface including an ATM interface with said distribution network and an ATM interface router to interface the digital backbone data stream and said host computer.
 - 7. The system as defined by claim 5 or 6 including a plurality of distribution networks each running from a power substation to a plurality of customer homes, said backbone network including a multiplexer for interfacing with said plurality of distribution networks.
- 35 8. The system as defined by any preceding claim, wherein said distribution network comprises a Frequency Division Multiplexed Cable TV system, containing a data stream in a television channel space, that contains a Time Division Multiplexed Voice Time Slot system, upon which a Carrier Sense Multiple Access with Collision Detection packet switched network is placed using at least one Voice Time Slot for packet data transmission.
- 40 9. A distribution network for communicating between a host computer and a plurality of customer homes in an electric power utility demand monitoring and control system, said distribution network comprising
 - a plurality of intelligent units, each associated with a customer home for connecting and disconnecting a power service meter and monitoring customer power demand.
 - a data transmission line interconnecting said plurality of intelligent utility units, said data transmission line providing downstream communication channels from said host computer to said plurality of intelligent utility units and upstream communication channels from said plurality of intelligent utility units to said host computer.
 - 10. The distribution system as defined by claim 9 wherein said communication channels are organised as frequency and time division multiplexed channels in a frequency spectrum.
 - 11. The distribution network as defined by claim 9 or 10 wherein said transmission line comprises a coaxial cable, or a fibre cable, or a wireless cable, or a twisted pair.
- 12. The distribution network as defined by claim 9, 10 or 11, wherein said distribution network comprises a Frequency Division Multiplexed Cable TV system, containing a data stream in a television channel space, that contains a Time Division Multiplexed Voice Time Slot system, upon which a Carrier Sense Multiple Access with Collision Detection packet switched network is placed using at least one Voice Time Slot for packet data transmission.

15

5

10

30

45

50

FIG. 1.

ö

POWERVIEW APPLICATION: WATER HEATER, REFRIGERATOR, AC

F16. 4.

F/G. 5.

F/G. 6.

EUROPEAN SEARCH REPORT

Application Number EP 96 30 1661

	DOCUMENTS CONSI			
ategory	Citation of document with it of relevant pa	CLASSIFICATION OF TH APPLICATION (Inc.CL6)		
Y A	EP-A-0 019 287 (TOC * page 4, line 16 - figures 1-5 *		1,9 2-4,10, 11	H02J13/00
1	EP-A-0 407 902 (ALC * column 2, line 31 figure 1 *	ATEL) - column 4, line 27;	1,9	
4	US-A-5 040 175 (TUC * column 2, line 56 figures 1-7 *	H ET AL) - column 7, line 49;	1,2,9	
4	EP-A-0 503 464 (ALC * column 2, line 54 figures 1,2 *	ATEL) - column 8, line 21;	1,6,9	
4	EP-A-0 265 342 (SAN * column 4, line 50 figures 1-4 *	GAMO WESTON) - column 12, line 57	1,9	
Ą	WO-A-95 12911 (UHER * page 2, line 26 - figure 1 *		1,9	TECHNICAL FIELDS SEARCHED (Int.CI.6)
A	FR-A-2 677 469 (EUR * page 3, line 12 - figures 1-3 *		1,9	
A	ELEKTROTECHNIK UND vol. 107, no. 7/8, pages 371-378, XP00 HACKL: "entwicklum modernen betriebsfü" the whole documen	0150972 gstendenzen der hrungstechnik"		
	The present search report has b	een drawn up for all claims		
	Place of search	Date of completion of the search	<u> </u>	Exceptions
	THE HAGUE	18 June 1996	Ca	larasanu, P
Y:pau doo A:tec O:no	CATEGORY OF CITED DOCUME riticularly relevant if taken alone riticularly relevant if combined with an rument of the same category honological background o-written disclosure ermediate document	E : earlier pare after the fil D : document of L : document	rinciple underlying th int document, but put ling date cited in the application ited for other reasons the same patent fam	alished on, or