SM4 分组密码算法

SM4 block cipher algorithm

目 次

1	术语和定义	1							
	符号和缩略语								
	算法结构1								
	密钥及密钥参量1								
	轮函数 F								
	5.1 轮函数结构								
	5.2 合成置换 T								
6	算法描述								
	6.1 加密算法	2							
	6.2 解密算法								
	6.3 密钥扩展算法	3							
阼	'录 A 运算示例								
	A.1 示例 1								
	A.2 示例 2								

SM4 分组密码算法

本算法是一个分组算法。该算法的分组长度为 128 比特,密钥长度为 128 比特。加密算法与密钥扩展算法都采用 32 轮非线性迭代结构。解密算法与加密算法的结构相同,只是轮密钥的使用顺序相反,解密轮密钥是加密轮密钥的逆序。

1 术语和定义

下面术语和定义适用于本文件。

1.1

分组长度 block length

一个信息分组的比特位数。

1.2

密钥长度 key length

密钥的比特位数。

13

密钥扩展算法 key expansion algorithm

将密钥变换为轮密钥的运算单元。

1.4

轮数 rounds

轮函数的迭代次数。

1.5

字 word

长度为32比特的组(串)。

1.6

S 盒 S-box

S 盒为固定的 8 比特输入 8 比特输出的置换,记为 $Sbox(\cdot)$ 。

2 符号和缩略语

下列符号和缩略语适用于本文件:

⊕ 32 比特异或

< べ i 32 比特循环左移i位

3 算法结构

SM4 密码算法是一个分组算法。该算法的分组长度为 128 比特,密钥长度为 128 比特。加密算法与密钥扩展算法都采用 32 轮非线性迭代结构。数据解密和数据加密的算法结构相同,只是轮密钥的使用顺序相反,解密轮密钥是加密轮密钥的逆序。

4 密钥及密钥参量

加密密钥长度为 128 比特,表示为 $MK = (MK_0, MK_1, MK_2, MK_3)$,其中 MK_i (i = 0,1,2,3)为字。

轮密钥表示为 $(rk_0, rk_1, \cdots, rk_{31})$,其中 $rk_i(i=0, \cdots, 31)$ 为 32 比特字。轮密钥由加密密钥生成。

 $FK = (FK_0, FK_1, FK_2, FK_3)$ 为系统参数, $CK = (CK_0, CK_1, \dots, CK_{31})$ 为固定参数,用于密钥扩展算法,其中 $FK_i (i = 0, \dots, 3)$ 、 $CK_i (i = 0, \dots, 31)$ 为字。

5 轮函数 F

5.1 轮函数结构

设输入为 $(X_0,X_1,X_2,X_3) \in (Z_2^{32})^4$,轮密钥为 $rk \in Z_2^{32}$,则轮函数F为: $F(X_0,X_1,X_2,X_3,rk) = X_0 \oplus T(X_1 \oplus X_2 \oplus X_3 \oplus rk)$.

5.2 合成置换 T

 $T: Z_2^{32} \to Z_2^{32}$ 是一个可逆变换,由非线性变换 τ 和线性变换L复合而成,即 $T(\cdot) = L(\tau(\cdot))$ 。 (1) 非线性变换 τ

τ由 4 个并行的 S 盒构成。

设输入为 $A = (a_0, a_1, a_2, a_3) \in (Z_2^8)^4$,输出为 $B = (b_0, b_1, b_2, b_3) \in (Z_2^8)^4$,则 $(b_0, b_1, b_2, b_3) = \tau(A) = (Sbox(a_0), Sbox(a_1), Sbox(a_2), Sbox(a_3))$

其中, Sbox 数据如下:

	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
0	D6	90	E9	FE	CC	E1	3D	В7	16	B6	14	C2	28	FB	2C	05
1	2B	67	9A	76	2A	BE	04	C3	A	44	13	26	49	86	06	99
2	9C	42	50	F4	91	EF	98	7A	33	54	0B	43	Е	CF	AC	62
3	E4	В3	1C	A9	C9	08	E8	95	80	DF	94	F	75	8F	3F	A6
4	47	07	A7	FC	F3	73	17	BA	83	59	3C	19	E6	85	4F	A8
5	68	6B	81	B2	71	64	DA	8B	F8	EB	0F	4B	70	56	9D	35
6	1E	24	0E	5E	63	58	D1	A2	25	22	7C	3B	01	21	78	87
7	D4	00	46	57	9F	D3	27	52	4C	36	02	E7	A0	C4	C8	9E
8	Е	BF	8A	D2	40	C7	38	B5	A3	F7	F2	CE	F9	61	15	A1
9	E0	ΑE	5D	A4	9B	34	1A	55	A	93	32	30	F5	8C	B1	E3
Α	1D	F6	E2	2E	82	66	CA	60	C0	29	23	AB	0	53	4E	6F
В	D5	DB	37	45	DE	FD	8E	2F	03	FF	6A	72	6	6C	5B	51
С	8D	1B	A	92	BB	DD	BC	7F	11	D9	5C	41	1F	10	5A	D8
D	0A	C1	31	88	A5	CD	7B	BD	2D	74	D0	12	B8	E5	B4	В0
Е	89	69	97	4A	0C	96	77	7E	65	В9	F1	09	C5	6E	C6	84
F	18 · 输 λ ′	F0	7D	EC	3A	DC	4D	20	79	EE	5F	3E	D	СВ	39	48

注: 输入'EF',则经S盒后的值为表中第E行和第F列的值,Sbox(EF) = 84。

(2) 线性变换 L

非线性变换 τ 的输出是线性变换 L 的输入。设输入为 $B \in Z_2^{32}$,输出为 $C \in Z_2^{32}$,则 $C = L(B) = B \oplus (B \iff 2) \oplus (B \iff 10) \oplus (B \iff 24)$.

6 算法描述

6.1 加密算法

本加密算法由 32 次迭代运算和 1 次反序变换 R 组成。 设明文输入为 $(X_0,X_1,X_2,X_3) \in (Z_2^{32})^4$,密文输出为 $(Y_0,Y_1,Y_2,Y_3) \in (Z_2^{32})^4$,轮密钥为

 $rk_i \in \mathbb{Z}_2^{32}$, $i = 0,1,\cdots,31$ 。加密算法的运算过程如下:

- (1) 32 次迭代运算: $X_{i+4} = F(X_i, X_{i+1}, X_{i+2}, X_{i+3}, rk_i)$, $i = 0,1,\dots,31$;
- (2) 反序变换: $(Y_0, Y_1, Y_2, Y_3) = R(X_{32}, X_{33}, X_{34}, X_{35}) = (X_{35}, X_{34}, X_{33}, X_{32})$ 。

6.2 解密算法

本算法的解密变换与加密变换结构相同,不同的仅是轮密钥的使用顺序。解密时,使用轮密钥序 $(rk_{31}, rk_{30}, \cdots, rk_0)$ 。

6.3 密钥扩展算法

本算法轮密钥由加密密钥通过密钥扩展算法生成。

加密密钥 $MK = (MK_0, MK_1, MK_2, MK_3) \in (Z_2^{32})^4$, 轮密钥生成方法为:

 $(K_0, K_1, K_2, K_3) = (MK_0 \oplus FK_0, MK_1 \oplus FK_1, MK_2 \oplus FK_2, MK_3 \oplus FK_3),$

 $rk_i = K_{i+4} = K_i \oplus T'(K_{i+1} \oplus K_{i+2} \oplus K_{i+3} \oplus CK_i), \quad i = 0,1,\dots,31$

(1) T' 是将 5.2 中合成置换 T 的线性变换 L 替换为 L':

 $L'(B) = B \oplus (B \ll 13) \oplus (B \ll 23);$

(2) 系统参数 FK 的取值为:

 $FK_0 = (A3B1BAC6), FK_1 = (56AA3350), FK_2 = (677D9197), FK_3 = (B27022DC);$

(3) 固定参数CK的取值方法为:

设 $ck_{i,j}$ 为 CK_i 的第j字节($i=0,1,\cdots,31; j=0,1,2,3$),即 $CK_i=\left(ck_{i,0},ck_{i,1},ck_{i,2},ck_{i,3}\right)\in (Z_2^8)^4$,则 $ck_{i,j}=(4i+j)\times 7 (mod\ 256)$ 。

固定参数 $CK_i(i = 0,1,\cdots,31)$ 具体值为:

00070E15, 1C232A31, 383F464D, 545B6269,

70777E85, 8C939AA1, A8AFB6BD, C4CBD2D9,

E0E7EEF5, FC030A11, 181F262D, 343B4249,

50575E65, 6C737A81, 888F969D, A4ABB2B9,

COC7CED5, DCE3EAF1, F8FF060D, 141B2229,

30373E45, 4C535A61, 686F767D, 848B9299,

A0A7AEB5, BCC3CAD1, D8DFE6ED, F4FB0209,

10171E25, 2C333A41, 484F565D, 646B7279。

附录 A

运算示例

A.1 示例 1

本部分为 SM4 分组密码算法对一组明文进行加密的运算示例。 输入明文: 01 23 45 67 89 AB CD EF FE DC BA 98 76 54 32 10 输入密钥: 01 23 45 67 89 AB CD EF FE DC BA 98 76 54 32 10 轮密钥与每轮输出状态:

rk[0] = F12186F9	X[0] = 27FAD345
rk [1] = 41662B61	X[1] = A18B4CB2
rk[2] = 5A6AB19A	X[2] = 11C1E22A
rk[3] = 7BA92077	X[3] = CC13E2EE
rk[4] = 367360F4	X[4] = F87C5BD5
rk[5] = 776A0C61	X[5] = 33220757
rk[6] = B6BB89B3	X[6] = 77F4C297
rk[7] = 24763151	X[7] = 7A96F2EB
rk[8] = A520307C	X[8] = 27DAC07F
rk[9] = B7584DBD	X[9] = 42DD0F19
rk[10] = C30753ED	X[10] = B8A5DA02
rk[11] = 7EE55B57	X[11] = 907127FA
rk [12] = 6988608C	X[12] = 8B952B83
rk[13] = 30D895B7	X[13] = D42B7C59
rk[14] = 44BA14AF	X[14] = 2FFC5831
rk[15] = 104495A1	X[15] = F69E6888
rk[16] = D120B428	X[16] = AF2432C4
rk[17] = 73B55FA3	X[17] = ED1EC85E
rk[18] = CC874966	X[18] = 55A3BA22
rk [19] = 92244439	X[19] = 124B18AA
rk[20] = E89E641F	X[20] = 6AE7725F
rk[21] = 98CA015A	X[21] = F4CBA1F9
rk[22] = C7159060	X[22] = 1DCDFA10
rk[23] = 99E1FD2E	X[23] = 2FF60603
rk[24] = B79BD80C	X[24] = EFF24FDC
rk[25] = 1D2115B0	X[25] = 6FE46B75
rk[26] = 0E228AEB	X[26] = 893450AD
rk[27] = F1780C81	X[27] = 7B938F4C
rk[28] = 428D3654	X[28] = 536E4246
rk[29] = 62293496	X[29] = 86B3E94F
rk[30] = 01CF72E5	X[30] = D206965E
rk[31] = 9124A012	X[31] = 681EDF34
输出密文: 68 1E DF 34 D2	06 96 5E 86 B3 E9 4F 53 6E 42 46

输出密文: 68 1E DF 34 D2 06 96 5E 86 B3 E9 4F 53 6E 42 46

A.2 示例 2

本部分为 SM4 分组密码算法使用固定的加密密钥,对一组明文反复加密1000000次的运算示例。

输入明文: 01 23 45 67 89 AB CD EF FE DC BA 98 76 54 32 10

输入密钥: 01 23 45 67 89 AB CD EF FE DC BA 98 76 54 32 10 输出密文: 59 52 98 C7 C6 FD 27 1F 04 02 F8 04 C3 3D 3F 66