Задача 1.5

Найти решение начально-краевой задачи и сравнить его с точным

$$\frac{\partial u}{\partial t} + \frac{\partial}{\partial x} \left(\frac{u^2}{2} \right) = 0, \qquad x \in [0, 1], \quad t \in [0, 1],$$

$$t = 0: \quad u(x, 0) = x, \quad x > 0;$$

$$x = 0: \quad u(0, t) = 0, \quad t \ge 0$$

с помощью компактной схемы (перед применением провести верификацию схемы):

$$\frac{1}{6} \left(\frac{u_{j+1}^{n+1} - u_{j+1}^n}{\tau} + 4 \frac{u_j^{n+1} - u_j^n}{\tau} + \frac{u_{j-1}^{n+1} - u_{j-1}^n}{\tau} \right) + u_j^n \frac{u_{j+1}^{n+1/2} - u_{j-1}^{n+1/2}}{2h} = 0,$$

где $u^{n+1/2} = 0.5(u^n + u^{n+1})$.

Точное решение:

$$u(x,t) = \frac{x}{1+t}$$

Порядок аппроксимации:

$$\frac{u^{n+1}-u^n}{\tau} = u_t^n + \frac{\tau}{2} u_{tt}^n + o(\tau^2)$$

$$\left(u_t^n + \frac{\tau}{2} u_{tt}^n + o(\tau^2)\right)_{j+1} = u_t^n + h u_{tx}^n + \frac{h^2}{2} u_{txx}^n + \frac{h^3}{6} u_{txxx}^n + \frac{\tau}{2} u_{tt}^n + \frac{\tau h}{2} + \frac{\tau h^2}{4} u_{ttxx}^n + o(\tau^2 + h^4)$$

$$\left(u_t^n + \frac{\tau}{2} u_{tt}^n + o(\tau^2)\right)_{j+1} = u_t^n - h u_{tx}^n + \frac{h^2}{2} u_{txx}^n - \frac{h^3}{6} u_{txxx}^n + \frac{\tau}{2} u_{tt}^n - \frac{\tau h}{2} + \frac{\tau h^2}{4} u_{ttxx}^n + o(\tau^2 + h^4)$$

учитывая, что

$$\tau h^2 \leqslant \frac{\tau^2 + h^4}{2}$$

$$\frac{1}{6} \left(\frac{u_{j+1}^{n+1} - u_{j+1}^{n}}{\tau} + 4 \frac{u_{j}^{n+1} - u_{j}^{n}}{\tau} + \frac{u_{j-1}^{n+1} - u_{j-1}^{n}}{\tau} \right) = u_{t} + \frac{h^{2}}{6} u_{txx} + \frac{\tau}{2} u_{tt} + o(\tau^{2} + h^{4})$$

$$u_{tt} = 2uu_x^2 + u_{tt}^2$$

$$u_{txx} = -3u_x u_{xx} - 4u_{xxx}$$

тогда

$$\frac{1}{6} \left(\frac{u_{j+1}^{n+1} - u_{j+1}^{n}}{\tau} + 4 \frac{u_{j}^{n+1} - u_{j}^{n}}{\tau} + \frac{u_{j-1}^{n+1} - u_{j-1}^{n}}{\tau} \right) = u_{t}^{n} + \tau u^{n} u_{x}^{n^{2}} + \frac{\tau}{2} u^{n^{2}} u_{xx}^{n} - \frac{h^{2}}{2} u_{x}^{n} u_{xx}^{n} - \frac{h^{2}}{6} u^{n} u_{xxx}^{n} + o\left(\tau^{2} + h^{4}\right) u_{xxx}^{n} + o\left(\tau^{2}$$

$$\frac{u_{j+1}^{n+1} - u_{j-1}^{n+1}}{2h} = u_x^{n+1} + \frac{h^2}{6} u_{xxx}^{n+1} + o(h^4)$$

$$u_x^{n+1} = \frac{u^n + u^{n+1}}{2} = u^n + \frac{\tau}{2} u_t^n + o(\tau^2)$$

$$\frac{u_{j+1}^{n+1 \setminus 2} - u_{j-1}^{n+1 \setminus 2}}{2h} = u_x^n + \frac{\tau}{2} u_{tx}^n + \frac{h^2}{6} u_{xxx}^n + o\left(\tau^2 + h^4\right) = u_x^n - \frac{\tau}{2} u_x^{n2} - \frac{\tau}{2} u^n u_{xx}^{nn} + \frac{h^2}{6} u_{xxx}^n + o\left(\tau^2 + h^4\right)$$
 учитывая

и окончательно

 $u_{tx} = (-uu_x)_x = -u_x^2 - uu_{xx}$

$$\begin{split} u_{t}^{n} + \tau u^{n} u_{x}^{n2} + \frac{\tau}{2} u^{n2} u_{xx}^{n} - \frac{h^{2}}{2} u_{x}^{n} u_{xx}^{n} - \frac{h^{2}}{6} u^{n} u_{xxx}^{n} + u^{n} \left(u_{x}^{n} - \frac{\tau}{2} u_{x}^{n2} - \frac{\tau}{2} u^{n} u_{xxx}^{nn} + \frac{h^{2}}{6} u_{xxx}^{n} \right) + o \left(\tau^{2} + h^{4} \right) = \mathcal{U}_{xxx}^{n} + \mathcal{U}_$$

Устойчивость:

$$\begin{split} &u_{j}^{n} = \lambda^{n} \mathrm{e}^{i w j h} \\ &\frac{1}{6} \left(\frac{u_{j+1}^{n+1} - u_{j+1}^{n}}{\tau} + 4 \frac{u_{j}^{n+1} - u_{j}^{n}}{\tau} + \frac{u_{j-1}^{n+1} - u_{j-1}^{n}}{\tau} \right) + u_{j}^{n} \frac{u_{j+1}^{n+1/2} - u_{j-1}^{n+1/2}}{2h} = \\ &= \lambda^{n} \mathrm{e}^{i w (j-1) h} \left[\frac{(\lambda - 1)}{6 \tau} (\mathrm{e}^{2 i w h} + 4 \mathrm{e}^{i w h} + 1) + \frac{u_{j}^{n}}{4 h} (\lambda \mathrm{e}^{2 i w h} - \lambda + \mathrm{e}^{2 i w h} - 1) \right] = 0 \\ &\Rightarrow \lambda \left(\frac{\cos(w h) + 2}{6 \tau} + i \frac{a \sin(w h)}{4 h} \right) = \frac{\cos(w h) + 2}{6 \tau} - i \frac{a \sin(w h)}{4 h} \\ &= \frac{z}{6 \tau} - i \frac{a \sin(w h)}{4 h}, z = \frac{\cos(w h) + 2}{6 \tau} + i \frac{a \sin(w h)}{4 h} \\ & \text{где} \quad a = \max_{j,n} (u_{j}^{n}) \end{split}$$

Тогда
$$\lambda \cdot z = \bar{z} \rightarrow \lambda = \frac{\bar{z}}{z}; \rightarrow |\lambda| \leq 1$$

т.е. схема устойчива по спектарльному признаку.

Погрешность:

\ X	10	20	40	80	160	320	640	1280	2560	5120
6	4 0.0038954	0.00185616	0.00154555	0.00147336	0.00145525	0.00145086	0.00144973	0.00144946	0.00144944	0.00144941
12	8 0.00362592	0.00114067	0.00081888	0.000745634	0.000727574	0.000723083	0.000721959	0.00072168	0.000721612	0.000721595
25	6 0.00350091	0.000963861	0.000458789	0.000384334	0.000366051	0.00036152	0.000360396	0.000360117	0.000360048	0.00036003
51	2 0.00344015	0.00093036	0.000283017	0.000204231	0.000185847	0.000181322	0.000180194	0.000179913	0.000179843	0.000179826
102	4 0.00341064	0.000914037	0.00024013	0.000114745	9.59E-005	9.14E-005	9.02E-005	9.00E-005	8.99E-005	8.99E-005

График:

синим – точное решение , красным – приближенное

