Lecture 5 Urban Economics

Ignacio Sarmiento-Barbieri

Universidad de los Andes

September 3, 2025

Motivación

Ciudades Policéntricas: Extensión del Modelo Monocéntrico

► Dos limitaciones del modelo monocéntrico:

- 1 No explica por qué existen las ciudades (economías de aglomeración)
- 2 Asume un CBD puntual (en realidad las empresas usan tierra)

Solución:

- Empresas y trabajadores compiten por tierra
- Spillovers de productividad entre empresas
- Localización endógena de centros de empleo

Configuración Espacial Básica

La ciudad en una línea:

- ► Ciudad = segmento de línea recta
- ▶ 1 unidad de tierra disponible en cada ubicación *x*

Variables de densidad:

- ightharpoonup m(x) = densidad de empresas en ubicación x
- ightharpoonup n(x) = densidad de residentes en ubicación <math>x

Tres tipos posibles de uso del suelo:

- **1 Uso mixto:** m(x) > 0 y n(x) > 0
- **2** Solo comercial: m(x) > 0 y n(x) = 0
- **3** Solo residencial: m(x) = 0 y n(x) > 0

Economías de Aglomeración: Spillovers de Comunicación

Función de Accesibilidad, Beneficios de la comunicación:

$$A(x) = \int_{-\infty}^{\infty} (b - g|x - y|) m(y) dy$$

Parámetros:

- \blacktriangleright *b* = comunicación máxima (misma ubicación)
- ightharpoonup g = tasa de decaimiento por distancia
- |x y| = distancia entre ubicaciones

Interpretación:

- ► Cada empresa produce 1 unidad de output por unidad de comunicación
- ▶ La productividad depende de la proximidad a otras empresas
- ► El decaimiento es lineal con la distancia

Propiedades de la Función de Comunicación

Primera derivada:

$$\frac{dA(x)}{dx} = g\left[\int_{-\infty}^{x} m(y)dy - \int_{x}^{\infty} m(y)dy\right]$$

- Diferencia entre empresas a la izquierda y derecha
- Máximo donde hay igual número de empresas a cada lado

Segunda derivada:

$$\frac{d^2A(x)}{dx^2} = -2g \cdot m(x)$$

- ► A(x) es **cóncava** donde hay empresas (m(x) > 0)
- ightharpoonup A(x) es **lineal** donde no hay empresas (m(x) = 0)
- ightharpoonup x = 0 en el punto de máxima comunicación

Tecnología de Producción y Parámetro l

Función de producción de la firma:

- ▶ Inputs: 1 unidad de trabajo + *l* unidades de tierra
- ightharpoonup Output: A(x) unidades (depende de comunicación)

Función de costos:

Costo unitario =
$$\frac{w(x) + l \cdot P(x)}{A(x)}$$

Donde:

- \blacktriangleright w(x) = salario en ubicación x
- ightharpoonup P(x) = precio de la tierra en x
- $ightharpoonup l \cdot P(x) = costo total de tierra$
- ightharpoonup A(x) = productividad (comunicación)

Interpretación de *l*:

- ightharpoonup l = intensidad de uso de tierra por empresa
- ► Mayor *l* = empresas más intensivas en tierra
- ► Afecta el trade-off entre aglomeración y costos

Función Bid-Rent de las firmas

Condición de beneficio cero (libre entrada):

$$Ingreso = Costo$$

$$A(x) = w(x) + l \cdot P(x)$$

Función bid-rent comercial $\Phi(x)$ (Ecuación 45):

$$\Phi(x) = \frac{1}{l}[A(x) - w(x)]$$

Interpretación:

- Máximo precio que una empresa puede pagar por tierra
- Mantiene beneficio cero
- ▶ Precio por unidad de tierra (empresa usa *l* unidades)

Determinantes:

- ▶ $\uparrow A(x)$ (más spillovers) $\Rightarrow \uparrow \Phi(x)$
- $ightharpoonup \uparrow w(x)$ (salarios más altos) $\Rightarrow \downarrow \Phi(x)$
- ▶ $\uparrow l$ (más tierra necesaria) $\Rightarrow \downarrow \Phi(x)$

Elección Óptima del Lugar de Trabajo

Problema del trabajador que vive en x:

$$T(x) \equiv \arg\max_{y} \{w(y) - t|x - y|\}$$

Trade-off:

- w(y) = salario en ubicación de trabajo y
- $\blacktriangleright t|x-y| = \cos to \ de \ commuting$
- $ightharpoonup t = \cos to \ por \ unidad \ de \ distancia$

Implicaciones de equilibrio:

Si trabajadores conmutan entre ubicaciones con empresas:

$$|w(x) - w(y)| = t|x - y|$$

Por lo tanto:

$$\frac{dw}{dx} = \pm t$$

Caso especial: En áreas de uso mixto

- ightharpoonup T(x) = x (viven donde trabajan)
- No hay costos de commuting
 Sarmiento-Barbieri (Uniandes)

Resumen: Elementos Clave del Modelo

- **1 Spillovers espaciales:** A(x) captura economías de aglomeración
- 2 Competencia por tierra: Empresas y residentes compiten
 - Empresas: necesitan *l* unidades de tierra
 - ▶ Residentes: necesitan 1 unidad de tierra
- 3 Gradientes salariales: Reflejan costos de commuting

$$\frac{dw}{dx} = \pm t$$
 (en áreas con commuting)

- 4 Localización endógena:
 - ► Centros de empleo emergen del equilibrio
 - No se asumen a priori (como en modelo monocéntrico)

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ● ● りゅう

Función Bid-Rent de los consumidores

Problema del consumidor:

Maximizar utilidad sujeto a restricción presupuestaria **Simplificación:** Todas las residencias usan 1 unidad de tierra **Función bid-rent** $\Psi(x, u)$:

$$\Psi(x,u) = w(T(x)) - t|x - T(x)| - z(u)$$

Componentes:

- \blacktriangleright w(T(x)) = salario en ubicación óptima de trabajo
- $\blacktriangleright t|x-T(x)|=$ costo de commuting casa-trabajo
- ightharpoonup z(u) = consumo del numerario para alcanzar utilidad <math>u

Interpretación:

- Máximo precio que un residente puede pagar por vivienda en *x*
- ► Mantiene nivel de utilidad *u* (determinado exógenamente)
- ► Trade-off entre accesibilidad laboral y costo de vivienda

10 / 73

Sarmiento-Barbieri (Uniandes) Lecture 5 September 3, 2025

Asignación de Tierra en Equilibrio

Precio de equilibrio:

$$R(x) = \max\{\Phi(x), \Psi(x, u)\}\$$

La tierra va al mejor postor:

► Si Φ(x) > Ψ(x, u): Uso comercial

$$R(x) = \Phi(x), \quad m(x) > 0, \quad n(x) = 0$$

► Si Ψ(x, u) > Φ(x): Uso residencial

$$R(x) = \Psi(x, u), \quad m(x) = 0, \quad n(x) > 0$$

Si Φ (*x*) = Ψ(*x*, *u*): Uso mixto posible

$$R(x) = \Phi(x) = \Psi(x, u), \quad m(x) > 0, \quad n(x) > 0$$

Restricción Física del Uso del Suelo

En cada ubicación *x* hay exactamente 1 unidad de tierra Restricción:

$$lm(x) + n(x) = 1 \text{ si } R(x) > 0$$

$$m(x) = n(x) = 0 \operatorname{si} R(x) < 0$$

Tres casos posibles:

- **1** Uso comercial puro: $m(x) = \frac{1}{l}$, n(x) = 0
 - ► Cada empresa usa l unidades $\Rightarrow \frac{1}{l}$ empresas por unidad
- **2** Uso residencial puro: m(x) = 0, n(x) = 1
 - ightharpoonup Cada residente usa 1 unidad \Rightarrow 1 residente por unidad
- **3** Uso mixto: $lm(x) + n(x) = 1 \operatorname{con} m(x), n(x) > 0$
 - ► Ejemplo: Si l = 1/3 y m(x) = 1.5
 - Tierra comercial = $\frac{1}{3} \times 1.5 = 0.5$
 - ightharpoonup Tierra residencial = n(x) = 0.5

Condiciones de Clearing del Mercado Laboral

Clearing local:

Para cualquier intervalo *X*:

$$\int_X n(x)dx = \int_{T(X)} m(x)dx$$

- ▶ Izquierda: número de trabajadores viviendo en área X
- Derecha: número de empleos donde trabajan esos residentes
- Cada residente necesita exactamente 1 trabajo
- Cada empresa emplea exactamente 1 trabajador

Restricciones agregadas

$$\int_{-\infty}^{\infty} n(x)dx = N \quad \text{(población total)}$$

$$\int_{-\infty}^{\infty} m(x)dx = N \quad \text{(empresas totales)}$$

En equilibrio: número de empresas = número de trabajadores = N

14 / 73

Sarmiento-Barbieri (Uniandes) Lecture 5 September 3, 2025

Sistema Completo de Condiciones de Equilibrio

$$A(x) = \int_{-\infty}^{\infty} (b - g|x - y|) m(y) dy \tag{1}$$

$$\Phi(x) = \frac{1}{I}[A(x) - w(x)] \tag{2}$$

$$T(x) \equiv \arg\max_{y} \{w(y) - t|x - y|\} \tag{3}$$

$$\Psi(x,u) = w(T(x)) - t|x - T(x)| - z(u)$$

$$R(x) = \max\{\Phi(x), \Psi(x, u)\}\$$

$$R(x) = \Phi(x) \operatorname{si} m(x) > 0$$

$$R(x) = \Psi(x, u) \text{ si } n(x) > 0$$

$$+ \omega(\omega) = 1 \approx R(\omega) > 0$$

$$lm(x)+n(x)=1 \ {\rm si} \ R(x)>0$$

$$\int_X n(x)dx = \int_{T(X)} m(x)dx \quad \forall X$$

$$\int_{-\infty}^{\infty} n(x)dx = N = \int_{-\infty}^{\infty} m(x)dx$$

Sarmiento-Barbieri (Uniandes)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

Mecanismos de Equilibrio: Cómo Funciona el Modelo

Decisiones de localización:

- ► Empresas: Balancean spillovers vs. costos salariales/tierra
- ► **Trabajadores:** Balancean salarios vs. costos de commuting/vivienda

Ajustes de precios:

- Salarios w(x): Compensan por commuting
- **Rentas** R(x): Asignan tierra escasa

Características del equilibrio:

- ▶ Endógeno: No se asume un CBD, emerge del modelo
- ▶ Flexible: Puede generar patrones monocéntricos o policéntricos
- Parámetros clave:
 - ▶ *g* (decaimiento spillovers) vs. *t* (costo commuting)
 - l (intensidad de uso de tierra comercial)
 - ► *N* (tamaño de la ciudad)

Ciudades policentricas

¿Son consistentes con el equilibrio?

- 1 Proponemos una estructura espacial específica para el equilibrio
- 2 Derivamos las densidades que debe tener cada zona
- 3 Verificamos que esta estructura satisface todas las condiciones de equilibrio
- **Determinamos** los valores de frontera (x_0, x_1, \bar{x}) que hacen consistente el equilibrio

¿Por qué esta estructura?

- Simetría alrededor de x = 0 (máximo de A(x))
- Balance entre fuerzas de aglomeración y costos de commuting
- Consistencia con competencia por tierra

Estructura Propuesta del Equilibrio

Tres tipos de zonas (simétricas alrededor de x = 0):

Panel (d) Bid-rent gradients

Densidades de equilibrio

Densidad de empresas:

$$m(x) = \begin{cases} \frac{1}{1+l} & \text{si } x \in [-x_0, x_0] \text{ (uso mixto)} \\ \frac{1}{l} & \text{si } x \in [-x_1, -x_0] \cup [x_0, x_1] \text{ (comercial puro)} \\ 0 & \text{si } x \in [-\bar{x}, -x_1] \cup [x_1, \bar{x}] \text{ (residencial puro)} \end{cases}$$

Densidad de consumidores:

$$n(x) = \begin{cases} \frac{l}{1+l} & \text{si } x \in [-x_0, x_0] \text{ (uso mixto)} \\ 0 & \text{si } x \in [-x_1, -x_0] \cup [x_0, x_1] \text{ (comercial puro)} \\ 1 & \text{si } x \in [-\bar{x}, -x_1] \cup [x_1, \bar{x}] \text{ (residencial puro)} \end{cases}$$

Verificación uso mixto: $lm(x) + n(x) = l \cdot \frac{1}{1+l} + \frac{l}{1+l} = \frac{l+l}{1+l} = \frac{1}{1+l} = \frac{1}{$

Densidades de equilibrio

Panel (a) Share of land in commercial use

Lo que Falta por Determinar

Hemos derivado las densidades, pero aún no sabemos:

- 1 ¿Dónde termina cada zona?
 - ightharpoonup Valor de x_0 (frontera mixto/comercial)
 - ightharpoonup Valor de x_1 (frontera comercial/residencial)
 - ightharpoonup Valor de \bar{x} (borde de la ciudad)
- ¿Bajo qué condiciones existe esta estructura?
 - ¿Cuándo hay uso mixto?
 - ¿Cuándo la ciudad es monocéntrica?
 - ¿Cuándo es completamente integrada?
- 3 ¿Cómo se determinan estos valores?
 - Condiciones de frontera entre zonas
 - Restricciones agregadas de población
 - Condiciones de optimalidad de localización

Derivación de A(x): Objetivo

Recordemos la definición original:

$$A(x) = \int_{-\infty}^{\infty} (b - g|x - y|) m(y) dy$$

Objetivo: Sustituir las densidades de equilibrio m(y):

Derivación de A(x): Objetivo

Recordemos la definición original:

$$A(x) = \int_{-\infty}^{\infty} (b - g|x - y|) m(y) dy$$

Objetivo: Sustituir las densidades de equilibrio m(y):

$$A(x) = \begin{cases} bN - g \left[\frac{x_1^2}{l} - \frac{x_0^2}{l(1+l)} + \frac{x^2}{1+l} \right] & x \in [-x_0, x_0] \\ bN - g \left[\frac{x_1^2}{l} - \frac{2x_0|x|}{l(1+l)} + \frac{x^2}{l} \right] & x \in [-x_1, -x_0] \cup [x_0, x_1] \\ bN - g \left[\frac{2x_1}{l} - \frac{2x_0}{l(1+l)} \right] |x| & x \in [-\bar{x}, -x_1] \cup [x_1, \bar{x}] \end{cases}$$

Propiedades clave:

- ► Cóncava en zonas con empresas (mixta y comercial)
- Lineal en zonas residenciales
- **Continua** en todo el dominio
 - **Máximo** en x = 0 (centro de la ciudad)

September 3, 2025

Sarmiento-Barbieri (Uniandes) Lecture 5

Forma de A(x)

Derivación de w(x): Salarios de Equilibrio

Objetivo: Determinar el gradiente salarial en cada zona de la ciudad **Dos casos fundamentales:**

- **I** Zona de uso mixto: Los trabajadores viven donde trabajan
 - ightharpoonup T(x) = x (no hay commuting)
 - Salarios determinados por igualdad de bid-rents
- **Zonas con commuting:** Trabajadores viajan al trabajo
 - Zonas comerciales puras
 - Zonas residenciales puras
 - ► Salarios compensan exactamente costos de commuting

Caso 1: Zona de Uso Mixto $[-x_0, x_0]$

Condición clave: Los trabajadores viven donde trabajan

$$T(x) = x \Rightarrow \text{No hay commuting}$$

Equilibrio requiere: $\Phi(x) = \Psi(x, u)$

Sustituyendo las definiciones:

$$\Phi(x) = \frac{1}{l} [A(x) - w(x)]$$

$$\Psi(x, u) = w(x) - 0 - z(u) = w(x) - z(u)$$

Igualando:

$$\frac{1}{1}[A(x) - w(x)] = w(x) - z(u)$$

Resolviendo para w(x) en Zona Mixta

paso a paso:

$$\frac{1}{l}[A(x) - w(x)] = w(x) - z(u)$$

Multiplicando por *l*:

$$A(x) - w(x) = l[w(x) - z(u)]$$

Expandiendo:

$$A(x) - w(x) = lw(x) - lz(u)$$

Reagrupando términos con w(x):

$$A(x) + lz(u) = w(x) + lw(x) = w(x)(1+l)$$

Resultado para zona mixta:

$$w(x) = \frac{1}{1+l}A(x) + \frac{l}{1+l}z(u)$$
 para $x \in [-x_0, x_0]$

Interpretación Económica - Zona Mixta

$$w(x) = \frac{1}{1+l}A(x) + \frac{l}{1+l}z(u)$$

- 1 Fracción de productividad:
 - ► El salario solo captura $\frac{1}{1+l}$ de la productividad A(x)
 - A mayor *l* (más tierra por empresa), menor fracción al trabajador
- **2** Componente fijo:
 - $ightharpoonup \frac{1}{1+l}z(u)$ garantiza el nivel de utilidad de reserva
- 3 Gradiente salarial:
 - Como A(x) es cóncava con máximo en x = 0
 - \blacktriangleright w(x) también es cóncava con máximo en el centro

Caso 2: Zonas con Commuting - Principio Fundamental

Condición de arbitraje espacial:

Si trabajadores conmutan entre ubicaciones x e y con empresas:

1 Trabajador en *x* prefiere trabajar en *x*:

$$w(x) - t|T^{-1}(x) - x| > w(y) - t|T^{-1}(x) - y|$$

2 Trabajador en *y* prefiere trabajar en *y*:

$$|w(y) - t|T^{-1}(y) - y| > w(x) - t|T^{-1}(y) - x|$$

Implicación: Estas dos condiciones juntas implican

$$|w(x) - w(y)| = t|x - y|$$

Por tanto: $\frac{dw}{dx} = \pm t$

Gradiente Salarial en Zonas con Commuting

Para el lado derecho (x > 0):

- ▶ Al alejarse del centro, el salario debe compensar el mayor commuting
- large Si un trabajador se mueve de x a x + dx:
 - ► Cambio en salario: dw
 - ightharpoonup Cambio en costo de commuting: $t \cdot dx$
- ► En equilibrio: $dw = -t \cdot dx$
- Por tanto: $\left| \frac{dw}{dx} = -t \right|$ para x > 0

Para el lado izquierdo (x < 0):

Por simetría: $\left| \frac{dw}{dx} = +t \right|$ para x < 0

Interpretación: El salario decrece linealmente al alejarse del centro

Determinando la Constante de Integración

Condición de frontera en $x = x_0$:

Desde la zona mixta:

$$w(x_0) = \frac{1}{1+l}A(x_0) + \frac{l}{1+l}z(u)$$

Este valor sirve como condición inicial para integrar en las zonas con commuting.

Para $x \in [x_0, \bar{x}]$:

Integrando $\frac{dw}{dx} = -t$ desde x_0 hasta x:

$$w(x) - w(x_0) = -t(x - x_0)$$

Por tanto:

$$w(x) = w(x_0) - t(x - x_0)$$

Como x > 0 en esta zona:

$$w(x) = w(x_0) - t(|x| - x_0)$$

Expresión Final de w(x)

$$w(x) = \begin{cases} \frac{1}{1+l}A(x) + \frac{l}{1+l}z(u) & x \in [-x_0, x_0] \\ w(x_0) - t(|x| - x_0) & x \in [-\bar{x}, -x_0] \cup [x_0, \bar{x}] \end{cases}$$

Donde: $w(x_0) = \frac{1}{1+l}A(x_0) + \frac{l}{1+l}z(u)$

Características:

- **Cóncava** en zona mixta (sigue la forma de A(x))
- ▶ **Lineal** en zonas con commuting (pendiente = $\pm t$)
- **Continua** en $x = \pm x_0$
- **Máximo** en x = 0 (centro de la ciudad)

Expresión Final de w(x)

Funciones Bid-Rent

Definiciones:

- $lackbox{}{\Phi}(x)$: Máximo precio que una empresa puede pagar por tierra en x manteniendo beneficio cero
- $\Psi(x,u)$: Máximo precio que un consumidor puede pagar por vivienda en x manteniendo utilidad u

Condiciones de equilibrio:

- Si m(x) > 0: $R(x) = \Phi(x)$ (empresas usan la tierra)
- Si n(x) > 0: $R(x) = \Psi(x, u)$ (consumidroes usan la tierra)
- En uso mixto: Φ(x) = Ψ(x, u) (ambos pagan lo mismo)

Objetivo: Derivar $\Phi(x)$ y $\Psi(x,u)$ usando los valores de equilibrio de A(x) y w(x)

Expresiones Completas

$\Phi(x)$ - Bid-rent comercial :

$$\Phi(x) = \begin{cases} \frac{1}{1+l} [A(x) - z(u)] & x \in [-x_0, x_0] \\ \Phi(x_0) + \frac{1}{l} [A(x) - A(x_0)] + \frac{t}{l} (|x| - x_0) & x \in [x_0, \bar{x}] \end{cases}$$

 $\Psi(x, u)$ - Bid-rent residencial :

$$\Psi(x,u) = \begin{cases} \frac{1}{1+l} [A(x) - z(u)] & x \in [-x_0, x_0] \\ \Psi(x_0, u) - t(|x| - x_0) & x \in [x_0, \bar{x}] \end{cases}$$

Donde: $\Phi(x_0) = \Psi(x_0, u) = \frac{1}{1+l} [A(x_0) - z(u)]$

Propiedades de las Funciones Bid-Rent

Panel (d) Bid-rent gradients

Condiciones de Transición entre Zonas

En $x = x_0$ (frontera mixto/comercial):

- \blacktriangleright $\Phi(x_0) = \Psi(x_0, u)$ siempre se cumple
- ► Ambas funciones son continuas
- ▶ Puede haber cambio en las pendientes

En $x = x_1$ (frontera comercial/residencial):

- ▶ Debe cumplirse: $\Phi(x_1) = \Psi(x_1, u)$
- Esta condición determina x_1 (Ecuación 68)
- Punto donde empresas ya no pueden competir con residentes

En $x = \bar{x}$ (borde de la ciudad):

- $\Psi(\bar{x}, u) = 0$ (precio de tierra agrícola)
- $ightharpoonup \Phi(\bar{x}) < 0$ (empresas no pueden pagar)
- \blacktriangleright Esta condición determina \bar{x} (Ecuación 67)

Determinación del Borde de la Ciudad: \bar{x}

Objetivo: Encontrar dónde termina la ciudad **Condición clave:** La población total debe ser *N*

$$\int_{-\bar{x}}^{\bar{x}} n(x) dx = N$$

Método:

- 1 Sustituir las densidades de equilibrio n(x)
- 2 Integrar por zonas
- 3 Resolver para \bar{x}

Determinación del Borde de la Ciudad: \bar{x}

Observación clave: El total de tierra disponible es $2\bar{x}$ **Uso total de tierra:**

- Cada residente usa 1 unidad de tierra
- ► Cada empresa usa *l* unidades de tierra
- ► Hay *N* residentes y *N* empresas en total

Balance:

Tierra total =
$$N \times 1 + N \times l = N(1 + l)$$

Por tanto:

$$2\bar{x} = N(1+l)$$

$$\bar{x} = \frac{(1+l)N}{2}$$

Resultado final:

$$\bar{x} = \frac{(1+l)N}{2}$$

Significado económico:

- El tamaño de la ciudad está determinado por:
 - ► La población total *N*
 - La intensidad de uso de tierra comercial *l*
- NO depende de:
 - Costos de commuting t
 - Decaimiento de spillovers g

Próximo paso:

- ightharpoonup Determinar x_0 y x_1
- Estos SÍ dependerán de *t* y *g*
- Determinan la estructura interna, no el tamaño total

Determinación de x_0 y x_1 : Las Fronteras Internas

Problema: Encontrar dónde terminan las zonas

- \triangleright x_0 : frontera entre zona mixta y comercial
- \triangleright x_1 : frontera entre zona comercial y residencial

Método: Sistema de dos ecuaciones

- **1** Condición de equilibrio en x_1 : $\Phi(x_1) = \Psi(x_1, u)$
- **2 Restricción agregada:** Total de empresas = N

Sistema de Ecuaciones para x_0 y x_1

Tenemos 2 ecuaciones con 2 incógnitas:

$$\frac{g}{l}\left(x_1^2 - x_0^2 - \frac{2}{1+l}x_0(x_1 - x_0)\right) = (1+l)t(x_1 - x_0)$$

$$\frac{2x_0}{1+l} + \frac{2(x_1 - x_0)}{l} = N$$

Parámetros del modelo:

- **▶** Dados: *N*, *l*, *t*, *g*
- ightharpoonup A determinar: x_0 , x_1
- ► Ya determinado: $\bar{x} = \frac{(1+l)N}{2}$

Próximo paso: Resolver el sistema (tiene múltiples soluciones)

Resolviendo el Sistema: Tres Posibles Soluciones

El sistema de ecuaciones tiene tres tipos de soluciones:

- **1** Ciudad completamente mixta: $x_0 = x_1 = \bar{x}$
 - ► Toda la ciudad es de uso mixto
 - No hay separación espacial
- **2** Ciudad con tres zonas: $0 < x_0 < x_1 < \bar{x}$
 - Zona mixta central
 - Zonas comerciales puras
 - Zonas residenciales periféricas
- **3** Ciudad monocéntrica: $x_0 = 0 < x_1 < \bar{x}$
 - ► CBD puro en el centro
 - Zona residencial alrededor

¿Cuál ocurre? Depende del ratio $\frac{t(1+l)}{g}$

Sarmiento-Barbieri (Uniandes)

Solución de Ciudad Mixta

Estructura:

$$x_0 = x_1 = \bar{x} = \frac{(1+l)N}{2}$$

Densidades uniformes:

- ► Empresas: $m(x) = \frac{1}{1+l}$ en toda la ciudad
- ► Residentes: $n(x) = \frac{1}{1+l}$ en toda la ciudad

Condición de existencia:

$$N \le \frac{t(1+l)}{g}$$

Características económicas:

- ▶ No hay commuting: todos viven donde trabajan
- No hay gradientes de precio ni salario
- Spillovers moderados pero uniformes
- ► Solución eficiente cuando los costos de transporte son altos

September 3, 2025

Ciudad con Tres Zonas

Estructura: La configuración más rica del modelo

- ► Centro mixto: trabajadores viven donde trabajan
- ► Anillos comerciales: solo empresas, alta densidad
- ▶ Periferia residencial: trabajadores conmutan al centro

Valores de equilibrio:

$$x_0 = \frac{t(1+l)^2}{g} - \frac{(1+l)N}{2}$$

$$x_1 = \frac{t(1+l)}{g} - \frac{N}{2l}$$

Existe cuando:
$$\frac{N}{2} < \frac{t(1+l)}{g} < N$$

Sarmiento-Barbieri (Uniandes)

Solución de Ciudad Mixta

Panel (d) Bid-rent gradients

Sarmiento-Barbieri (Uniandes)

Solución de Ciudad Monocentrica

Agenda

Modelos Hedónicos

Modelos

- ▶ Where do you want to live?
 - Spatial equilibrium
 - ▶ Within cities: Alonso-Muth-Mills (Monocentric/Polycentric Model)
 - ► Hedonic pricing of amenities and local public goods (Rosen)
 - ► Across locations: Rosen-Roback

Mercados de Viviendas

- ► Residential real estate is a huge market
 - ► The course will not cover commercial real estate
- ► Housing is by far the main asset for most households
- Macroeconomic relevance

Greater London Real Home Price Index, Quarterly, 1987-I to 2007-II

Home price indices deflated for consumer prices and rescaled to 1890=100, Netherlands, Norway, and USA.

Fig. 1. Kernel density estimates for log of real sales price.

Sarmiento-Barbieri (Uniandes)

Figure 4: Estimated Sale Price Densities for Chicago

Sarmiento-Barbieri (Uniandes)

Rosen's Hedonic Model

- ► Goods are valued for their utility-bearing attributes
- ▶ Heterogeneous or differentiated goods are products whose characteristics vary in such a way that there are distinct product varieties even though the product is sold in one market (e.g. houses, cars, computers, etc).
- ► The variation in product variety gives rise to variations in product prices within each market.
- ► The hedonic method relies on market transactions for these differentiated goods to determine the implied value or implicit price of characteristics.

- ► House: $z = (z_1, ..., z_n)$
- ▶ Price: $p(z) = p(z_1, ..., z_n)$
- ightharpoonup Consumer utility is U(x,z) where x is non-housing consumption
- ▶ The consumer buys one house and has budget y = x + p(z)
 - ▶ *y* denotes exogenous income
 - x denotes consumption of non-housing goods

Fig. 1 $\raiset{1}$ September 3, 2025 $\raiset{2}$ September 3, 2025 $\raiset{6}$ (Uniandes) Lecture 5 September 3, 2025 $\raiset{6}$ $\raiset{6}$ $\raiset{7}$ 3

- ightharpoonup Each firm produces a specific bundle of attributes $z=(z_1,\ldots,z_n)$
- ▶ Production costs are $C(M, z, \beta)$ where
 - \blacktriangleright M(z) denotes number of units produced of designs offering specification z
 - ightharpoonup Producers have different technologies parametrized by β
- ▶ The firm is a price taker p(z) and maximizes profits

$$\pi = Mp(z) - C(M, z) \tag{11}$$

Sarmiento-Barbieri (Uniandes)

64 / 73

Market Equilibrium

- ▶ The market hedonic function p(z) is a joint envelope
 - Upper envelope of consumer's bid functions
 - ► Lower envelope of producer's offer functions
- lackbox Quantities demanded and supplied at each z depend on all of p(z)

Market Equilibrium

- Rosen (1974) proposed a two-step empirical strategy
 - Estimate hedonic prices p(z) with the best fitting functional form
 - Take partial derivatives of the estimate $\hat{p}(z)$ at the sample values and estimate the simultaneous demand and supply equations

$$\frac{\partial p}{\partial z_i} = F_i(z, x^d, y - p(z)) \tag{12}$$

$$\frac{\partial p}{\partial z_i} = F_i(z, x^d, y - p(z))$$

$$\frac{\partial p}{\partial z_i} = G_i(z, x^s, p(z))$$
(12)

- Rosen (1974) proposed a two-step empirical strategy
 - Estimate hedonic prices p(z) with the best fitting functional form
 - Take partial derivatives of the estimate $\hat{p}(z)$ at the sample values and estimate the simultaneous demand and supply equations

$$\frac{\partial p}{\partial z_i} = F_i(z, x^d, y - p(z)) \tag{12}$$

$$\frac{\partial p}{\partial z_i} = F_i(z, x^d, y - p(z))$$

$$\frac{\partial p}{\partial z_i} = G_i(z, x^s, p(z))$$
(12)

Problems?

Empirics Solutions

- ▶ Bartik (1987): exogenous shifts in the consumer's budget constraint
 - Exogenous income changes if you can find them (field experiments)
- Urban economists have mostly shied away from structural estimation
 - ► Stop at the first-step hedonic regression
 - ► Focus on omitted-variable bias

Example: Currie et al (2015) AER

American Economic Review 2015, 105(2): 678–709 http://dx.doi.org/10.1257/aer.20121656

> Environmental Health Risks and Housing Values: Evidence from 1,600 Toxic Plant Openings and Closings[†]

> > By Janet Currie, Lucas Davis, Michael Greenstone, and Reed Walker*

Zip Code with TRI Toxic Plants within one mile

Example: Currie et al (2015) AER

Example: Currie et al (2015) AER

TABLE 2—THE EFFECT OF TOXIC PLANTS ON LOCAL HOUSING VALUES

	0–0.5 Miles		0.5–1 Miles		0–1 Miles		0–1 Miles (+/– 2 years)	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Panel C. First difference:	00	<i>3 1</i>	0	0				
(Plant Opening) × Near	-0.096*** (0.036)	-0.107*** (0.034)	-0.007 (0.023)	-0.008 (0.020)	-0.020 (0.022)	-0.022 (0.019)	-0.030 (0.028)	-0.038 (0.025)
(Plant Closing) × Near	0.017 (0.011)	0.010 (0.009)	0.008 (0.005)	0.003 (0.004)	0.010* (0.006)	0.005 (0.005)	0.005 (0.007)	0.001 (0.005)
H_0 : Opening = -Closing (p -value)	0.051	0.013	0.968	0.827	0.688	0.438	0.402	0.164
Observations	1,114,248	1,114,248	1,305,780	1,305,780	1,375,751	1,375,751	1,196,000	1,196,000
State × year fixed FE County × year FE	X	X	X	X	X	X	X	X

73 / 73