1 Use truth tables to verify these equivalences

$$\mathbf{a} \ p \wedge T \equiv p$$

b
$$p \lor F \equiv p$$

Solution
$$\begin{array}{c|cccc} p & F & p \lor F \\ \hline T & F & T \\ F & F & F \end{array}$$

$$\mathbf{c} \ p \wedge F \equiv F$$

$$\mathbf{d} \ p \vee T \equiv T$$

$$\mathbf{e} \ p \vee p \equiv p$$

Solution
$$\begin{array}{c|c} p & p \lor p \\ \hline T & T \\ F & F \end{array}$$

$$\mathbf{f} p \wedge p \equiv p$$

Solution
$$\begin{array}{c|c} p & p \wedge p \\ \hline T & T \\ F & F \end{array}$$

6 Use a truth table to verify the first De Morgan law

$$\neg(p \land q) \equiv \neg p \lor \neg q$$

- 7 Use De Morgan's laws to find the negation of each of the following statements.
 - **a** Jan is rich and happy.

Solution

Let p = Jan is rich Let q = Jan is happy $p \wedge q$ = Jan is rich and happy $\neg (p \wedge q) = \neg p \vee \neg q$ = Jan is not rich or happy

b Carlos will bicycle or run tomorrow.

Solution

Let p = Carlos will bicycle tomorrow Let q = Carlos will run tomorrow $p \lor q$ = Carlos will bicycle or run tomorrow $\neg(p \lor q) = \neg p \land \neg q$ = Carlos will not bicycle and run tomorrow

c Mei walks or takes the bus to class

Solution

Let p = Mei walks to class Let q = Mei takes the bus to class $p \vee q = \text{Mei walks or takes the bus to class}$ $\neg (p \vee q) = \neg p \wedge \neg q = \text{Mei does not walk and take the bus to class}$

d Ibrahim is smart and hard working.

Solution

Let p = Ibrahim is smart Let q = Ibrahim is hard working $p \wedge q = \text{Ibrahim is smart and hard working}$ $\neg (p \wedge q) = \neg p \vee \neg q = \text{Ibrahim is not smart or hard working}$ 9 Show that each of these conditional statements is a tautology by using truth tables.

$$\mathbf{a} \ (p \wedge q) \to p$$

$$\begin{array}{c|c|c|c} p & q & p \wedge q & (p \wedge q) \rightarrow p \\ \hline T & T & T & T \\ \hline Solution & T & F & F & T \\ F & T & F & T \\ F & F & F & T \end{array}$$

$$\mathbf{b} \ p \to (p \vee q)$$

$$\mathbf{c} \neg p \to (p \to q)$$

d
$$(p \wedge q) \rightarrow (p \rightarrow q)$$

	p	q	$p \wedge q$	$p \rightarrow q$	$(p \land q) \to (p \to q)$
	\overline{T}	T	T	T	T
Solution	T	F	F	F	T
	F	T	F	T	T
	F	F	F	T	T
	-	-	1	1 -	

$$\mathbf{e} \neg (n \rightarrow a) \rightarrow n$$

$$\mathbf{f} \neg (p \rightarrow q) \rightarrow \neg q$$

11 Show that each of these conditional statements is a tautology by using truth tables.

$$\mathbf{a}\ (p \wedge q) \to p$$

$(p \land q) \to p$	Given
$\neg(p \land q) \lor p$	Table 7
$\neg p \vee \neg q \vee p$	De Morgan's law
$\neg p \vee p \vee \neg q$	Commutative law
$T \vee \neg q$	Idempotent law
T	Domination law

$$\mathbf{b} \ p \to (p \vee q)$$

$$\begin{array}{ll} p \to (p \vee q) & \text{Given} \\ \neg p \vee (p \vee q) & \text{Table 7} \\ (\neg p \vee p) \vee q & \text{Associative Law} \\ T \vee q & \text{Negation Law} \\ T & \text{Domination Law} \end{array}$$

$$\mathbf{c} \neg p \to (p \to q)$$

$\neg p \to (p \to q)$	Given
$p \vee (\neg p \vee q)$	Table 7
$(p \vee \neg p) \vee q$	Associative Law
$T \vee q$	Negation Law
T	Domination Law

$$\mathbf{d} \ (p \wedge q) \to (p \to q)$$

$(p \land q) \to (p \to q)$	Given
$\neg(p \land q) \lor (p \to q)$	Table 7
$\neg p \vee \neg q \vee (p \to q)$	De Morgan's law
$\neg p \vee \neg q \vee (\neg p \vee q)$	Table 7
$\neg p \vee \neg p \vee \neg q \vee q$	Commutative Law
$\neg(p \land p) \lor \neg q \lor q$	De Morgan's Law
$\neg p \vee \neg q \vee q$	Idempotent law
$\neg p \vee T$	Negation law
T	Domination law

$$\mathbf{e} \neg (p \rightarrow q) \rightarrow p$$

$$\mathbf{f} \neg (p \rightarrow q) \rightarrow \neg q$$

$$\begin{array}{lll} \neg (p \rightarrow q) \rightarrow \neg q & \text{Given} \\ \hline \neg (\neg p \lor q) \rightarrow \neg q & \text{Table 7} \\ \hline p \land \neg q \rightarrow \neg q & \text{De Morgan's law} \\ \hline \neg (p \land \neg q) \lor \neg q & \text{Table 7} \\ \hline \neg p \lor q \lor \neg q & \text{De Morgan's law} \\ \hline \neg p \lor T & \text{Negation law} \\ \hline T & \text{Domination law} \\ \hline \end{array}$$

14 Determine whether $(\neg p \land (p \rightarrow q)) \rightarrow \neg q$ is a tautology

$(\neg p \land (p \to q)) \to \neg q$	Given
$(\neg p \land (\neg p \lor q)) \to \neg q$	Table 7
$\neg(\neg p \land (\neg p \lor q)) \lor \neg q$	Table 7
$\neg((\neg p \land \neg p) \lor q) \lor \neg q$	Associative law
$\neg(\neg p \lor q) \lor \neg q$	Idempotent law
$p \land \neg q \lor \neg q$	De Morgan's law
$p \wedge (\neg q \vee \neg q)$	Associative law
$p \wedge \neg q$	Idempotent law

 $(\neg p \land (p \rightarrow q)) \rightarrow \neg q$ is the logical equivalent of $p \land \neg q$, which is not a tautology and is therefore is not a tautology

20 Show that $\neg(p \oplus q)$ and $p \leftrightarrow q$ are logically equivalent

	p	q	$p \oplus q$	$\neg(p\oplus q)$	$p \leftrightarrow q$
	T	T	F	T	T
Solution	T	F	T	F	F
	F	T	T	F	F
	F	F	F	T	$\mid T \mid$

27 Show that $p \leftrightarrow q$ and $(p \to q) \land (q \to p)$ are logically equivalent

	p	q	$p \rightarrow q$	$q \to p$	$(p \to q) \land (q \to p)$	$p \leftrightarrow q$
	\overline{T}	T	T	T	T	T
Solution	T	F	F	T	F	F
	F	T	T	F	F	F
	F	F	T	T	T	T

32 Show that $(p \land q) \to r$ and $(p \to r) \land (q \to r)$ are not logically equivalent

$$\begin{array}{c} (p \to r) \wedge (q \to r) & \text{Given} \\ (p \to r) \wedge (q \to r) \equiv (p \vee q) \to r & \text{Table 7} \\ (p \wedge q) \to r \not\equiv (p \vee q) \to r & \end{array}$$

41 Find a compound proposition involving the propositional variables p, q, and r that is true when exactly two of p, q, and r are true and is false otherwise.

Solution
$$(p \land q \land \neg r) \lor (p \land r \land \neg q) \lor (q \land r \land \neg p)$$

58 How many of the disjunctions $p \lor \neg q$, $\neg p \lor q$, $q \lor r$, $q \lor \neg r$, $\neg q \lor \neg r$ can be made simultaneously true by an assignment of truth values to p,q, and r?

Solution Let p, q, r = T
$$p \lor \neg q = T$$
 $\neg p \lor q = T$ $q \lor r = T$ $q \lor \neg r = T$ $\neg q \lor \neg r = F$

58 How many of the disjunctions $p \lor \neg q \lor s$, $\neg p \lor \neg r \lor s$, $\neg p \lor \neg r \lor \neg s$, $\neg p \lor q \lor \neg s$, $q \lor r \lor \neg s$, $q \lor r \lor \neg s$, $\neg p \lor \neg q \lor \neg s$, $p \lor r \lor s$, and $p \lor r \lor \neg s$ can be made simultaneously true by an assignment of truth values to p, q, r, and s?

$$\begin{split} \textbf{Solution} \quad \text{Let p, q, r, s} &= \text{T} \\ p \vee \neg q \vee s &= T \\ \neg p \vee \neg r \vee s &= T \\ \neg p \vee \neg r \vee \neg s &= F \\ \neg p \vee q \vee \neg s &= \\ q \vee r \vee \neg s &= T \\ q \vee \neg r \vee \neg s &= T \\ \neg p \vee \neg q \vee \neg s &= F \\ p \vee r \vee s &= T \\ p \vee r \vee \neg s &= T \end{split}$$

61 Determine whether each of these compound propositions is satisfiable.

$$\mathbf{a} \ (p \lor \neg q) \land (\neg p \lor q) \land (\neg p \lor \neg q)$$

Solution

 $p \vee \neg q$ can be satisfied when either p = T or q = F

 $\neg p \lor q$ can be satisfied when either p = F or q = T

 $\neg p \lor \neg q$ can be satisfied when either p = F or q = F

This proposition can be satisfied if both p and q are false.

b
$$(p \to q) \land (p \to \neg q) \land (\neg p \to q) \land (\neg p \to \neg q)$$

	p	q	$\neg p$	$\neg q$	$p \rightarrow q$	$p \rightarrow \neg q$	$\neg p \rightarrow q$	$\neg p \rightarrow \neg q$
	\overline{T}	T	F	F	T	F	T	T
Solution	T	F	F	T	F	T	T	F
	\overline{F}	T	T	F	T	T	T	T
	\overline{F}	F	T	T	T	T	F	T

This proposition can be satisfied if p = false and q = true

$$\mathbf{c} \ (p \leftrightarrow q) \land (\neg p \leftrightarrow q)$$

Solution This proposition cannot be satisfied because p cannot be true if and only if q while being simultaneously false if and only if q

61 Determine whether each of these compound propositions is satisfiable.

$$\mathbf{a} \ (p \lor q \lor \neg r) \land (p \lor \neg q \lor \neg s) \land (p \lor \neg r \lor \neg s) \land (\neg p \lor \neg q \lor \neg s) \land (p \lor q \lor \neg s)$$

Solution All propositions here are disjunctions and contain at least one negation so it can be satisfied if p, q, r, and s are false

$$\mathbf{b} \ (\neg p \vee \neg q \vee r) \wedge (\neg p \vee q \vee \neg s) \wedge (p \vee \neg q \vee \neg s) \wedge (\neg p \vee \neg r \vee \neg s) \wedge (p \vee q \vee \neg r) \wedge (p \vee \neg r \vee \neg s)$$

Solution All propositions here are disjunctions and contain at least one negation so it can be satisfied if p, q, r, and s are false

$$\mathbf{c} \quad (p \lor q \lor r) \land (p \lor \neg q \lor \neg s) \land (q \lor \neg r \lor s) \land (\neg p \lor r \lor s) \land (\neg p \lor q \lor \neg s) \land (p \lor \neg q \lor \neg r) \land (\neg p \lor \neg q \lor s) \land (\neg p \lor \neg r \lor \neg s)$$

Solution All propositions here contain at least 1 non negated truth value except for $(\neg p \lor \neg r \lor \neg s)$, which requires either p r or s to be false. No other proposition depends on r being true so setting it to false satisfies this proposition.