Государственное образовательное учреждение высшего профессионального образования «Волгоградский государственный университет»

Факультет математики и информационных технологий

УТВЕРЖДЕНО
Учебно-методическим советом
Протокол № <u>7</u> от
«<u>26</u>» <u>08</u> 2011 г.

декан Декан факультета

математики и А.Г. Лосев

математики и А.Г. Лосев

2011 г.

ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Операционные системы

Рабочая программа составлена в соответствии с требованиями Основной образовательной программы по направлению подготовки:

230 700.62 Прикладная информатика

8 зачетных единиц

Составители рабочей программы: к.ф.-м.н., ст. преп. Н.М. Полубоярова

Рабочая программа утверждена на заседании кафедры «<u>29</u> » <u>протокол № 6</u>

Зав. кафедрой

В.А.Клячин

Волгоград 2011 г.

РАЗДЕЛ 1. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА.

1.1. Требования к студентам требуются базовые знания по математике, алгоритмам и минимальный уровень владения персональным компьютером

1.2. Краткая характеристика данной дисциплины, ее особенности

Курс посвящен изучению аспектов функционирования операционных систем.

Основной объект изучения – современные операционные системы, а также ее составляющие: процессы, проблемы взаимоблокировок, организация памяти, структура файловой системы, системы ввода-вывода, сети и безопасность.

При изучении дисциплины «Операционные системы» студенты получают как теоретические сведения о принципах построения современных операционных систем, так и практический опыт их администрирования.

Преподавание курса "Операционные системы" имеет целью формирование у студентов правильных представлений об основных принципах построения, функционирования и администрирования операционных систем и способствует развитию компетенций:

способен использовать, обобщать и анализировать информацию, ставить цели и находить пути их достижения в условиях формирования и развития информационного общества (OK-1);

способен находить организационно-управленческие решения и готов нести за них ответственность (ОК-4);

способен работать с информацией в глобальных компьютерных сетях (ОК-8);

способен ставить и решать прикладные задачи с использованием современных информационно-коммуникационных технологий (ПК-4);

способен использовать технологические и функциональные стандарты, современные модели и методы оценки качества и надежности при проектировании, конструировании и отладке программных средств (ПК-7);

способен проводить обследование организаций, выявлять информационные потребности пользователей, формировать требования к информационной системе, участвовать в реинжиниринге прикладных и информационных процессов (ПК-8);

способен моделировать и проектировать структуры данных и знаний, прикладные и информационные процессы (ПК-9);

способен применять к решению прикладных задач базовые алгоритмы обработки информации, выполнять оценку сложности алгоритмов, программировать и тестировать программы (ПК-10);

способен оценивать и выбирать современные операционные среды и информационно-коммуникационные технологии для информатизации и автоматизации решения прикладных задач и создания ИС (ПК-16);

1.3. Цели изучения дисциплины

- о овладение основами теоретических и практических знаний в области операционных систем (ОС) современных вычислительных систем;
- о формирование представления об инсталляции, настройке, поддержке, архитектуре и функциях операционных систем.

1.4. Учебные задачи дисциплины

- 1) Привить практические навыки инсталляции, настройки, поддержки и применения основных функций ОС;
 - 2) Познакомить студентов с существующими ОС;
 - 3) Научить студентов решению стандартных задач с использованием ресурсов ОС.

1.5. Формы работы студентов.

Теоретические вопросы и практические задачи. Список примерных вопросов и задач дан в настоящей программе.

1.6. Виды контроля

Контроль текущей работы студентов в семестре осуществляется путем выполнения ими контрольных мероприятий и индивидуальных заданий. В течении семестра проводится 3 контрольных мероприятия, на которых студент отвечает на теоретические вопросы. А также в течении семестра проводятся лабораторные занятия, в ходе которых студент отчитывается о выполнении лабораторных работ. Список заданий для лабораторных работ и вопросов выдается в начале семестра. Примерный их перечень приведен в данной рабочей программе.

1.7. Методика формирования результирующей оценки.

Выполнение каждого письменного контрольного мероприятия, оценивается от 0 до 15 баллов. Максимальное количество баллов за выполнение лабораторных работ составляет 60 баллов. За выполнение индивидуального задания (реферат) начисляется 10 баллов. В конце каждого семестра выставляется оценка по сумме набранных студентом баллов: 60-70 баллов – удовлетворительно, 71-90 баллов – хорошо, 91-100 баллов - отлично.

РАЗДЕЛ 2. СТРУКТУРА ИЗУЧЕНИЯ ДИСЦИПЛИНЫ

Всего часов (общая трудоемкость в часах)	288
в том числе	
Аудиторных занятий	136
Лекций	68
Семинарских/практических занятий	
Лабораторных занятий	68
Практикумов	
Самостоятельных занятий	152
Изучение основной и дополнительной литературы	
Написание курсовых работ, эссе, рефератов,	
Выполнение письменных домашних заданий,	
расчетов, проектов	
Выполнение контрольных работ, тестов	
Подготовка к экзамену, экзамен	

РАЗДЕЛ 3. ТЕМАТИЧЕСКИЙ ПЛАН ИЗУЧЕНИЯ ДИСЦИПЛИНЫ

Тема	Содержание (Перечень дидактических единиц)	Вид занятий (аудиторны е, самостояте льные)	Форма занятий (лекции, семинары, практические занятия), (изучение основной и дополнительной литературы, электронных библиотечных ресурсов, выполнение письменных домашних работ, учебнотренировочное тестирование, и т.д.)	Количе- ство часов	Форма контроля (опрос, проверка домашних заданий, защита проектов, контрольное тестирование и т.д)
Введение в операционные системы	ОС как расширенная машина. ОС как менеджер ресурсов. История ОС. Виды ОС. Обзор аппаратного обеспечения компьютера. Понятия ОС. Системные вызовы. Структура ОС.	ауд.	лекции	4	K/p
Процессы и потоки	Процессы. Потоки. Межпроцессное взаимодействие. Классические проблемы межпроцессного взаимодействия. Планирование.	ауд.	лекции	6	K/p
Взаимоблокиро вка	Ресурсы. Введение. Страусовый алгоритм. Обнаружение и устранение взаимоблокировок. Избежание взаимоблокировок. Предотвращение взаимоблокировок.	ауд.	лекции	4	K/p
Управление	Основное управление памятью. Подкачка.	ауд.	лекции	8	K/p

памятью	Виртуальная память. Алгоритмы замещения				
	страниц. Вопросы разработки систем со				
	страничной организацией памяти. Вопросы				
	реализации. Сегментация.				
Ввод-вывод	Принципы аппаратуры ввода-вывода.	ауд.	лекции	6	K/p
	Принципы ПО ввода-вывода. Программные				
	уровни ввода-вывода. Диски. Таймеры.				
	Алфавитно-цифровые терминалы.				
	Графические интерфейсы пользователя.				
	Сетевые терминалы. Управление режимом				
	энергопотребления.				
Файловые	Файлы. Каталоги. Реализация файловой	ауд.	лекции	4	K/p
системы	системы. Примеры файловых систем.				
Мультимедийн	Мультимедийные файлы. Сжатие видео	ауд.	лекции	6	K/p
ые ОС	информации. Планирование процессов в				
	мультимедийных системах. Парадигмы				
	мультимедийной файловой системы.				
	Размещение файла. Кэширование. Дисковое				
	планирование в мультимедиа.				
Многопроцессо	Мультипроцессоры. Многомашинные	ауд.	лекции	6	K/p
рные системы	системы. Распределенные системы.				
Безопасность	Понятие безопасности. Основы	ауд.	лекции	6	K/p
	криптографии. Аутентификация				
	пользователей. Атаки изнутри системы.				
	Атаки системы снаружи. Механизмы				
	защиты. Надежные системы.				
Unix u Linux	История Unix. Обзор ситемы Unix.	ауд.	лекции	6	K/p
	Процессы в системе Unix. Управление				

	памятью в Unix. Ввод-вывод в системе Unix. Файловая система Unix. Безопасность в				
Windows	Unix. История Windows. Программирование в Windows. Структура системы. Процессы и потоки в Windows. Управление памятью. Ввод-вывод в Windows. Файловая система в Windows. Безопасность в Windows.	ауд.	лекции	6	K/p
Разработка ОС	 Windows. Безопасность в Windows. Кэширование в Windows. Природа проблемы проектирования. Разработка интерфейса. Реализация. Производительность. Управление проектом. Тенденции в проектировании ОС. 	ауд.	лекции	6	K/p
				68	

РАЗДЕЛ 4 КОНТРОЛЬНЫЕ ВОПРОСЫ.

1 семестр

- 1. Операционная система как расширенная машина
- 2. Операционная система в качестве менеджера ресурсов
- 3. Процессоры
- 4. Многопоточные и многоядерные микропроцессоры
- 5. Память
- 6. Диски
- 7. Устройства ввода-вывода
- 8. Шины
- 9. Загрузка компьютера
- 10. Операционные системы мейнфреймов
- 11. Серверные операционные системы
- 12. Многопроцессорные операционные системы
- 13. Операционные системы персональных компьютеров
- 14. Операционные системы карманных персональных компьютеров
- 15. Встроенные операционные системы
- 16. Операционные системы сенсорных узлов
- 17. Операционные системы реального времени
- 18. Операционные системы смарт-карт
- 19. Процессы
- 20. Адресные пространства
- 21. Файлы
- 22. Системные вызовы для управления процессами
- 23. Системные вызовы для управления файлами
- 24. Системные вызовы для управления каталогами
- 25. Монолитные системы
- 26. Многоуровневые системы
- 27. Микроядра
- 28. Клиент-серверная модель
- 29. Виртуальные машины
- 30. Экзоядра
- 31. Модель процесса
- 32. Создание процесса

- 33. Завершение процесса
- 34. Иерархии процессов
- 35. Состояния процессов
- 36. Реализация процессов
- 37. Применение потоков
- 38. Классическая модель потоков
- 39. Потоки в POSIX
- 40. Реализация потоков в пользовательском пространстве
- 41. Реализация потоков в ядре
- 42. Гибридная реализация
- 43. Активация планировщика
- 44. Всплывающие потоки
- 45. Превращение однопоточного кода в многопоточный
- 46. Взаимодействие процессов
- 47. Состязательная ситуация
- 48. Критические области
- 49. Взаимное исключение с активным ожиданием
- 50. Приостановка и активизация
- 51. Семафоры
- 52. Мьютексы
- 53. Мониторы
- 54. Передача сообщений
- 55. Барьеры
- 56. Планирование в пакетных системах
- 57. Планирование в интерактивных системах
- 58. Планирование в системах реального времени
- 59. Политика и механизмы
- 60. Планирование потоков
- 61. Задача обедающих философов
- 62. Задача читателей и писателей
- 63. Память без использования абстракций
- 64. Абстракция памяти: адресные пространства
- 65. Понятие адресного пространства
- 66. Свопинг
- 67. Управление свободной памятью

- 68. Виртуальная память
- 69. Страничная организация памяти
- 70. Таблицы страниц
- 71. Ускорение работы страничной организации памяти
- 72. Таблицы страниц для больших объемов памяти
- 73. Оптимальный алгоритм замещения страниц
- 74. Алгоритм исключения недавно использовавшейся страницы
- 75. Алгоритм «первой пришла, первой и ушла»
- 76. Алгоритм «второй шанс»
- 77. Алгоритм «часы»
- 78. Алгоритм замещения наименее востребованной страницы
- 79. Моделирование LRU в программном обеспечении
- 80. Алгоритм «Рабочий набор»
- 81. Алгоритм WSClock
- 82. Сравнительный анализ локальной и глобальной политики
- 83. Управление загрузкой
- 84. Размер страницы
- 85. Разделение пространства команд и данных
- 86. Совместно используемые страницы
- 87. Совместно используемые библиотеки
- 88. Отображаемые файлы
- 89. Политика очистки страниц
- 90. Интерфейс виртуальной памяти
- 91. Участие операционной системы в процессе подкачки страниц
- 92. Обработка ошибки отсутствия страницы
- 93. Перезапуск команды
- 94. Блокировка страниц в памяти
- 95. Резервное хранилище
- 96. Разделение политики и механизма
- 97. Сегментация
- 98. Реализация чистой сегментации
- 99. Сегментация со страничной организацией памяти: система MULTICS
- 100. Сегментация со страничной организацией памяти: система Intel Pentium
- 101. Имена файлов
- 102. Структура файла

103.	Типы файлов
104.	Доступ к файлам
105.	Атрибуты файлов
106.	Операции с файлами
107.	Системы с одноуровневыми каталогами
108.	Иерархические системы каталогов
109.	Операции с каталогами
110.	Структура файловой системы
111.	Реализация файлов
112.	Реализация каталогов
113.	Совместно используемые файлы
114.	Файловые системы с журнальной структурой
115.	Журналируемые файловые системы
116.	Виртуальные файловые системы
117.	Резервное копирование файловой системы
118.	Непротиворечивость файловой системы
119.	Производительность файловой системы
120.	Дефрагментация дисков
121.	Устройства ввода-вывода
122.	Контроллеры устройств
123.	Ввод-вывод, отображаемый на пространство памяти
124.	Прямой доступ к памяти (DMA)
125.	Программный ввод-вывод
126.	Ввод-вывод, управляемый прерываниями
127.	Ввод-вывод с использованием DMA
128.	Обработчики прерываний
129.	Драйверы устройств
130.	Программное обеспечение ввода-вывода, не зависящее от конкретных
устро	йств
131.	Программное обеспечение ввода-вывода, работающее в пространстве
польз	ователя
132.	Аппаратная часть дисков
133.	Форматирование диска
134.	Алгоритмы планирования перемещения блока головок

135.

Обработка ошибок

136.	Стабильное хранилище данных
137.	Выгружаемые и невыгружаемые ресурсы
138.	Получение ресурса
139.	Условия возникновения ресурсных взаимоблокировок
140.	Моделирование взаимоблокировок
141.	Страусиный алгоритм
142.	Обнаружение взаимоблокировок и восстановление работоспособности
143.	Обнаружение взаимоблокировки при использовании одного ресурса
каждо	го типа
144.	Обнаружение взаимоблокировки при использовании нескольких ресурсов
каждо	го типа
145.	Выход из взаимоблокировки
146.	Уклонение от взаимоблокировок
147.	Траектории ресурса
148.	Безопасное и небезопасное состояние
149.	Алгоритм банкира для одного ресурса
150.	Алгоритм банкира для нескольких типов ресурсов
151.	Предотвращение взаимоблокировки
152.	Атака условия взаимного исключения
153.	Атака условия удержания и ожидания
154.	Атака условия невыгружаемости
155.	Атака условия циклического ожидания

РАЗДЕЛ **5.** УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ПРОГРАММЫ

Базовый учебник

1. Таненбаум Э. Современные операционные системы. 3-е издание. – СПб.: Питер – 2010.

Основная литература

- 2. Партыка Т.Т. Попон И.И. Операционные системы, среды, оболочки. Учебное пособие. М.: ФОРУМ ИНФРА-М, 2004.
- 3. Олифер В.Г., Олифер И.А. Сетевые операционные системы. СПб.: Питер 2001.

Дополнительная литература

- 1. Гласс Г., Эйблс К. UNIX для программистов и пользователей. ВНУ. СПб 2004.
- 2. Моли Б. Unix/Linux. Теория и практика программирования. «Кудиц-образ», Москва, 2004.

Реестры электронных библиотечных ресурсов.

1. Сайт intuit.ru, курсы «Введение в операционные системы», «Современные операционные системы» и др.

Ссылка на ПТК «УМКа».

http://umka.volsu.ru/newumka2/