第六章 时序逻辑电路

主要要求:

- 熟练掌握时序逻辑电路的描述方法;
- 掌握时序逻辑电路的分析、设计;

■ 掌握寄存器计数器等典型时序逻辑部件的功能和应用。

6.3.4 序列信号发生器

序列信号在通信、雷达、遥控、遥测等领域有着广泛的应用。产生序列信号的电路称为序列信号发生器。

设计给定序列信号的电路,一般有两种结构形式,移存型序列信号发生器和计数型序列信号发生器。

序列信号发生器

1110010 1110010

Q_2	Q ₁ 00	01	11	10
0	001		XXX	100
1	101	110	010	000

方法一: 直接计数型

 $(Q_3 Q_2 Q_1)^{n+1}$

$Q_3Q_2Q_1$
1
1
1
0
0
1
0

例:设计序列信号发生器 1110011 (L=7)

序列信号发生器

方法二:间接计数型

$Q_3Q_2Q_1$		\mathbf{Q}_1	OUT
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1

 $OUT = Q'_3 Q'_1 + Q'_2 Q_1 + Q_2 Q'_1$

OUT

161是M16计数器

OUT=
$$Q'_2 + Q_1$$

 Q_1Q_0

X

$\mathbf{L}\mathbf{O}$	L刀	<u>=</u> [ATT (
$Q_3Q_2Q_1Q_0$						
0	0	0	0			
0	0	0	1			
0	0	1	0			
0	0	1	1			
0	1	0	0			
0	1	0	1			
0	1	1	0			
0	1	1	1			
1	0	0	0			
1	0	0	1			
1	0	1	0			
1	0	1	1			
1	1	0	0			
1	1	0	1			
1	1	1	0			

7 _₹ =16-7=	9= (1001) 2
$Q_3Q_2Q_1Q_0$	OUT	
1 0 0 1	1	
1 0 1 0	1	
1 0 1 1	1	
1 1 0 0	0	
1 1 0 1	0	
1 1 1 0	1	
	_	

解:根据序列信号的长度m=7,可用二进制计数器74LS161

和一个8选1数据选择器组成。

这部分可用其它器件构成吗?

这部分如果用4-1MUX 怎样实现?

 A_2 A_1 A_0

\mathbf{Q}_3	\mathbf{Q}_2	Q_1Q_0	OUT
1	0	0 1	1
1	0	1 0	1
1	0	1 1	1
1	1	0 0	0
1	1	0 1	0
1	1	1 0	1
1	1	1 1	1

用二进制计数器74LS161和74LS138译码器组成。

OUT =
$$m_1 + m_2 + m_3 + m_6 + m_7$$

= $m_1 \cdot m_2 \cdot m_3 \cdot m_6 \cdot m_7$

方法三: 移存型序列信号发生器

$$\mathbf{D}_{1} = \mathbf{Q}_{1}^{n+1} = \mathbf{Q}_{3} \mathbf{Q}_{2} + \mathbf{Q}_{3} \mathbf{Q}_{1}$$

检查自启动

可以自启动

例:设计10100序列信号发生器

\mathbf{Q}_3	\mathbf{Q}_2	Q_1	$Q_4Q_3Q_2Q_1$		Q_1	
0	0	1	1	0	0	1
0	1	0	0	0	1	0
1	0	1	0	1	0	1
0	1	0	1	0	1	0
1	0	0	0	1	0	0
$\overline{\Omega}$						

00

01

11

10

Q_2Q_1				
Q_4Q_3	00	01	11	10
00	000x	001x	011x	0101
01	1001	1010	111x	110x
11	100x	101x	111x	110x
10	000x	0010	011x	0100

 $(\mathbf{Q}_4\mathbf{Q}_3\mathbf{Q}_2\mathbf{Q}_1)^*$

检查自启动

$$\mathbf{D}_{1} = \mathbf{Q}_{1}^{*} = \mathbf{Q'}_{4} \mathbf{Q'}_{1}$$

其它时序逻辑电路的设计

例:设计一个串行数据检测器,对它的要求是,连续输入3个或3个以上的1时,电路输出1,其它输入情况下,电路输出0。

1、进行逻辑抽象

令输入变量为X,输入后的状态为S:

输入 X	状态S
没有输入1以前	S_0
输入一个1	S_1
连续输入两个1	S_2
连续输入三个及以上1	S_3

2、列状态转换表

X表示输入变量,Y表示输出变量,Sn表示现态,Sn+1表示次态

S*/y S X	S_0	S_1	S ₂	S_3
0	S ₀ /0	S ₀ /0	S ₀ /0	S ₀ /0
1	S ₁ /0	S ₂ /0	S ₃ /1	S ₃ /1

3、状态化简

比较S₂和S₃发现,它们是等价状态,因此,可将上表中的

 S_3 用 S_2 代替:

S*/y S X	S_0	S_1	S ₂
0	$S_0/0$	$S_0/0$	$S_0/0$
1	S ₁ /0	S ₂ /0	S ₂ /1

二、状态化简

在同样输入下有同样输出而且次态相同的两个状态是等价状态,可以合并成一个状态。

- 4、给状态编码
- 1)确定触发器的位数 由于状态数M=3 ,而2¹<3<2² 最大n=2,所以,用两位触发器。

2) 编码

两位触发器的输出 Q_1Q_0 有00、01、10、11 四种状态,

- ❖ 给状态编码,将逻辑功能问题转化为时序问题
- ❖ 再通过设计时序电路,实现所需逻辑功能

三、状态编码

取n=2, $\diamondsuit S_0$ 、 S_1 、 S_2 为00、01、10

填次态/输出K图

即将状态S用编码代替

$\frac{S^{n+1}/y}{X}$	$\mathbf{S_0}$	S_1	S ₂
0	$S_0/0$	$S_0/0$	$S_0/0$
1	$S_1/0$	$S_2/0$	S ₂ /1

分解卡洛图,写状态方程

$\mathbf{O}_{\mathbf{r}}$	n.			
X	Q ₀ 00	01	11	10
0	00/0	00/0	XX/X	00/0
1	01/0	10/0	XX/X	10/1

$Q_0^{n+1}Q_1Q_1$	20				
V	00	01	<u>11</u>	10	
\mathbf{A} 0	0	0	X	0	
1	1	0	X	0	
$\mathbf{Q}_0^{\mathbf{n}+1} = \mathbf{X} \overline{\mathbf{Q}}_1 \overline{\mathbf{Q}}_0$					

$$Y = XQ_1$$

四、确定触发器类型,写驱动方程和输出方程。

驱动方程:
$$\begin{cases} J_1 = XQ_0 , K_1 = \overline{X} \\ J_0 = X\overline{Q}_1 , K_0 = 1 \end{cases}$$

输出方程: $Y = XQ_1$

五、检查电路能否自启动

将状态"11"代入状态方程和输出方程,分别求出X=0/1下的次态和现态下的输出,得到:

$$X=0$$
时, $Q_1^*Q_0^*=00$, $Y=0$

$$X=1$$
时, $Q_1^*Q_0^*=10$, $Y=1$

能自启动

六、画逻辑图

$$J_1 = XQ_0$$
 $J_0 = XQ_1'$ $K_1 = X'$ $K_0 = 1$ $Y = XQ_1$

小 结

- 一、同步、异步时序逻辑电路的分析
- 二、同步计数器的设计
- 三、移存型同步计数器的设计

四、用74161(74160)设计任意进制的计数器

七、串行数据检测器的设计