

Akademia Górniczo-Hutnicza im. Stanisława Staszica

Sprawozdanie

Techniki Pomiarowe

Laboratorium 3 Ćwiczenie 8

> Borsuk Piotr Technologie Przemysłu 4.0 Rok 2, Semestr 4, Grupa nr. 1 Rok akademicki 2023/2024

Zadanie 1. Przygotowanie oscyloskopu do pomiaru – skompensowanie sondy pomiarowej

1.1 Schemat pomiarowy

Rys. 1. Sposób podłączenia sondy do zacisku sygnału kalibrującego.

Sygnał do wejścia oscyloskopu doprowadzamy za pomocą gniazda BNC, co w pewien sposób determinuje sposób doprowadzenia sygnału. Używamy sondy, która jest z jednej strony zakończona wtykiem BNC, a z drugiej posiada masę wyprowadzoną. Sonda ta posiada regulację tłumienia, co umożliwia pomiar sygnałów o różnych amplitudach. Dzięki temu połączeniu zapewniamy sobie szerokie pasmo mierzonych częstotliwości i amplitud sygnałów, ze względu na możliwość regulacji tłumienia.

Aby sonda działała z danym kanałem oscyloskopu, należy ją skompensować. Proces ten polega na dobraniu parametrów układu zastępczego, który powstaje z układu sondy RC oraz układów wejściowych oscyloskopu, tak aby zapewnić niezniekształcający tor do przekazywania sygnału. Konieczne jest, aby charakterystyka amplitudowo-częstotliwościowa takiego toru była płaska, a charakterystyka fazowo-częstotliwościowa liniowa.

Po przeprowadzeniu kompensacji sondy będziemy mieć pewność, że to, co mierzymy, faktycznie jest wyświetlane bez zniekształceń na ekranie oscyloskopu. Ponieważ parametry danego układu oscyloskopu nie są znane i nie da się ich zmienić, kompensację - dopasowanie impedancji uzyskujemy poprzez strojenie sondy, czyli zmianę pojemności wewnątrz sondy.

Strojenie polega na podłączeniu sondy do danego kanału oscyloskopu oraz doprowadzeniu na wejście sondy sygnału kalibrującego, najczęściej prostokątnego.

Zadanie 2. Pomiar okresu, oraz częstotliwości przebiegów okresowych metodą bezpośrednią oraz z zastosowaniem kursorów i pomiaru automatycznego.

2.1 Schemat pomiarowy

Rys. 1. Schemat pomiarowy

2.2 Metody pomiaru

- Metoda bezpośrednia
- Metoda z zastosowaniem kursorów
- Metoda pomiaru automatycznego

2.3 Tabela pomiarowa

Tabela 1. Pomiary metodą bezpośrednią, kursorami i automatyczną.

	Bezpośrednio			Kursorami		Automatyczny		
f	l_x	C_{tx}	T_{x}	f_x	T_{x}	f_x	$T_{\mathbf{x}}$	f_x
	[Dzi]	[µS]	[µS]	$[KH_z]$	[µS]	$[KH_z]$	[µS]	$[KH_z]$
f_1	5.6	20	112	8.928	110	9.09	112	8.928
f_2	6.4	50	320	3.125	328	3.048	326	3.067
f_3	6.6	100	660	1.515	668	1.497	672	1.488
f_4	6.8	200	1360	0.735	1360	0.735	1362	0.734

2.4 Zastosowane wzory.

$$f_{x} = \frac{1}{T_{x}} = \frac{1}{I_{x} * C_{tx}} \tag{1.1}$$

,gdzie:

 T_x – okres,

 l_x – długość odcinka na ekranie (w działkach)odpowiadająca okresowi przebiegu T_x ,

C_{tx}—– aktualnie nastawiona wartość stałej podstawy czasu.

2.5 Przykładowe obliczenia

$$f_1 = \frac{1}{5.6 * 20 * 10^{-6}} = \frac{1}{112 * 10^{-6}} = 8.928 [KH_Z]$$

$$f_1 = \frac{1}{110 * 10^{-6}} = 9.09 [KH_Z]$$

$$f_1 = \frac{1}{110 * 10^{-6}} = 8.928 [KH_Z]$$

Zadanie 3. Pomiar przesunięcia fazowego za pomocą oscyloskopu metodą bezpośrednią, automatyczną oraz metodą elipsy.

3.1 Schemat pomiarowy.

Rys. 2. Schemat pomiarowy.

- 3.2 Metody pomiaru.
- Metoda bezpośrednia
- Metoda elipsy
- Metoda automatyczna

3.3 Tabela pomiarowa

Tabela 2. Pomiary metodą bezpośrednią, kursorami i automatyczną.

	В	Bezpośred	nia	Automatyczna			Elipsy		
φ	Δt	T	φ	Δt	T	φ	x ₀	X _m	φ
zadane	[µS]	[mS]	[°]	[µS]	[mS]	[°]	[V]	[V]	[°]
-180	-504	1	-181.44	-512	1	-184.32	0	1	0
-150	-416	1	-149.76	-416	1	-149.96	0.58	1	35,45
-90	-248	1	-89.28	-252	1	-90.72	1	1	90
-45	-128	1	-46.08	-128	1	-46.08	0.72	1	46.05
-30	-88	1	-31,68	-90	1	-32.4	0.5	1	30
0	0	1	0	0	1	0	0	1	0
45	120	1	43.2	120	1	43.2	0.68	1	42,84
60	160	1	57.6	160	1	57.6	0.88	1	61,64
90	256	1	92.16	248	1	89.28	1	1	90
120	336	1	120.96	328	1	118.08	0.92	1	66,9
180	504	1	181.44	508	1	182.88	0	1	0

3.4 Zastosowane wzory.

$$\varphi = 360 * \frac{\Delta t}{T} [^{\circ}] \tag{2.1}$$

$$\phi = 360 * \frac{\Delta t}{T} [°]$$
 (2.1)
$$\phi = \arcsin \frac{y_0}{y_m} = \arcsin \frac{x_0}{x_m} [°]$$
 (2.2)

,gdzie:

Δt – opóźnienie czasowe miedzy sygnałami,

T – okres sygnału,

 y_0 , Y_m , x_0 , X_m — obliczone na podstawie rysunku 3.

Rys. 3. Zasada obliczania parametrów metodą elipsy

3.5 Przykładowe obliczenia.

$$\varphi = 360 * \frac{504 * 10^{-3}}{1} = -181,44 [°]$$

$$\varphi = \arcsin \frac{x_0}{X_m} = \arcsin \frac{0.58}{1} = 35,45 \, [^{\circ}]$$

Zadanie 4. Lokalizacja uszkodzeń w przewodach pomiarowych metodą reflektrometryczną (pomiar długości przewodów pomiarowych)

4.1 Schemat

Rys. 5. Schemat pomiarowy.

- 4.2 Metody pomiaru.
- Metoda reflektometryczna

4.3 Tabela pomiarowa.

1. Kabel zdrowy								
$l_{\mathbf{w}}$	$\Delta l_{\mathbf{w}}$	δl_{w}	$t_{\mathbf{w}}$	$\Delta t_{\mathbf{w}}$	δt_x	t_{x}	Δt_{x}	δt_x
[cm]	[cm]	[%]	[nS]	[nS]	[%]	[nS]	[nS]	[%]
1380	5	0,36	144	2	1,38	102	2	1.96

l_x	Δl_x	δl_x
[cm]	[cm]	[%]
958,3	2	3,7

	Kabel uszkodzony							
$l_{\mathbf{w}}$	$\Delta l_{\mathbf{w}}$	δl_w	t_{w}	Δt_{w}	δt_x	t_{x}	Δt_{x}	δt_x
[cm]	[cm]	[%]	[nS]	[nS]	[%]	[nS]	[nS]	[%]
2395	5	0.21	236	2	0,85	140	2	1,43

l _x	Δl_x	δl_x		
[cm]	[cm]	[%]		
1420	2	2,49		

4.4 Zastosowane wzory

$$U_2 = qU_1 \tag{4.1}$$

$$q = \frac{Z_2 - Z_1}{Z_2 + Z_1} \tag{4.2}$$

$$l_{x} = \frac{t}{2}v \tag{4.3}$$

$$k = \frac{2l_w}{v * t_w} \tag{4.4}$$

$$l_x = \frac{t_x}{2} v * k \tag{4.5}$$

$$l_{x} = l_{w} \frac{t_{x}}{t_{w}} \tag{4.6}$$

$$\delta_{l_x} = \left| \delta_{l_x} \right| + \left| \delta_{t_x} \right| + \left| \delta_{t_w} \right| \tag{4.7}$$

,gdzie:

t – czas pomiędzy wyemitowaniem impulsu, a jego powrotem,

v – prędkość rozchodzenia się fali w kablu [m/s]

l_w – długość wzorcowego odcinka kabla [m],

 l_x – długość uszkodzonego odcinka kabla [m],

 t_w — czas pomiędzy impulsem nadanym, a odbitym od końca kabla wzorcowego [s],

 t_x — czas, który upłynął pomiędzy impulsem nadanym, a odbitym od miejsca uszkodzenia,

Z - impedancja falowa,

U – fala napięciowa,

4.5 Przykładowe obliczenia.

$$\delta_{lw} = \frac{5}{1380} * 100 = 0.36\%$$

$$l_x = 1380 * \frac{102}{144} = 958.3 cm$$

 $\delta l_x = |0,36| + |1,38| + |1,96| = 3,7\%$

Podsumowanie

W zadaniu 2 przeprowadziliśmy pomiary okresu i częstotliwości przebiegów za pomocą trzech różnych metod: bezpośredniej, z użyciem kursorów oraz automatycznej. Otrzymane wyniki są zbliżone, a różnice pomiędzy pomiarami są minimalne.

W zadaniu 3 dokonaliśmy pomiaru przesunięcia fazowego za pomocą oscyloskopu przy użyciu trzech metod: bezpośredniej, automatycznej oraz metodą elipsy.

W metodzie elipsy do pierwszego kanału wprowadziliśmy sygnał sinusoidalny, który "steruje" położeniem wyświetlanego przebiegu na osi y. Do drugiego kanału podłączyliśmy drugi sygnał sinusoidalny przesunięty w fazie względem pierwszego. Spowodowało to wyświetlanie wartości drugiego sygnału w funkcji pierwszego, co dało kształt elipsy zależny od przesunięcia fazowego między sygnałami.

Z naszych pomiarów i obliczeń wynika, że metoda elipsy jest najdokładniejsza, ze względu na najmniejszy błąd względny. Może to wynikać z trudności w dokładnym ustawieniu kursorów w metodzie bezpośredniej, co wprowadza błędy, oraz z niedokładnej kalibracji generatora czasu. Natomiast w przypadku metody elipsy, choć występują błędy związane z ustawieniem kursorów.

Nietypowe wartości pomiarów w metodzie elipsy są zależne od przesunięcia fazowego, dlatego wartości katów np. 60° i 120° powinny być do siebie zbliżone.

W zadaniu 4 wykorzystaliśmy metodę reflektometryczną do zlokalizowania uszkodzenia w przewodzie pomiarowym. Ta metoda opiera się na pomiarze czasu pomiędzy wysłaniem a powrotem impulsu, co pozwala określić odległość do miejsca uszkodzenia. Układ pomiarowy składał się z generatora impulsów, badanego kabla i oscyloskopu.