```
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings("ignore")
from ydata_profiling import ProfileReport
from sklearn.preprocessing import OneHotEncoder, StandardScaler
import pandas as pd
import numpy as np
!pip install ydata_profiling
data = pd.read_csv("/content/heart_failure_clinical_records - heart_failure_clinical_records.csv")
data.head()
\overline{\Sigma}
         age anaemia
                       creatinine phosphokinase diabetes ejection fraction high blood pressure platelets serum creatinine serum sodium
      0 55.0
                    Λ
                                             748
                                                         0
                                                                            45
                                                                                                      263358.03
                                                                                                                               1.3
      1 65.0
                    0
                                              56
                                                         0
                                                                            25
                                                                                                      305000.00
                                                                                                                               5.0
      2 45.0
                                             582
                                                                            38
                                                                                                      319000.00
                                                                                                                               0.9
      3 60.0
                                             754
                                                                            40
                                                                                                      328000.00
                                                                                                                               1.2
      4 95.0
                                             582
                                                         0
                                                                            30
                                                                                                     461000.00
                                                                                                                               2.0
                    1
data.shape
→ (5000, 13)
data.info()
</pre
     RangeIndex: 5000 entries, 0 to 4999
     Data columns (total 13 columns):
     #
         Column
                                     Non-Null Count Dtype
     ---
          -----
      0
                                     5000 non-null
                                                    float64
          age
          anaemia
                                     5000 non-null
                                                     int64
      1
      2
          creatinine_phosphokinase
                                     5000 non-null
                                                     int64
                                     5000 non-null
                                                     int64
         diabetes
          ejection_fraction
                                     5000 non-null
                                                     int64
      5
                                     5000 non-null
                                                     int64
          high_blood_pressure
      6
          platelets
                                     5000 non-null
                                                     float64
                                     5000 non-null
                                                     float64
          serum creatinine
      8
          serum_sodium
                                     5000 non-null
                                                     int64
                                     5000 non-null
                                                     int64
          sex
      10
         smoking
                                     5000 non-null
                                                     int64
                                     5000 non-null
      11 time
                                                     int64
     12 DEATH_EVENT
                                     5000 non-null
                                                     int64
     dtypes: float64(3), int64(10)
     memory usage: 507.9 KB
data.columns

    Index(['age', 'anaemia', 'creatinine_phosphokinase', 'diabetes',

            'ejection_fraction', 'high_blood_pressure', 'platelets',
'serum_creatinine', 'serum_sodium', 'sex', 'smoking', 'time',
            'DEATH_EVENT'],
           dtype='object')
data.isna().sum()
                                  0
⋽₹
    age
     anaemia
                                  0
     creatinine_phosphokinase
     diabetes
                                  0
     ejection_fraction
                                  0
                                  0
     high_blood_pressure
     platelets
     serum_creatinine
                                  0
```

serum_sodium

sex

smoking

0

0

sex si

1

1

0

1

1

137

130

140

126

132

```
DEATH_EVENT
     dtype: int64
print(data['age'].nunique())
data['age'].unique()
<del>→</del> 48
                  , 65. , 45. , 60.667, 72.
                                           , 95.
     array([55.
                                  , 60.
                                                             , 63.
                                                                     , 50.
                                                    , 70.
                                   , 64.
                                           , 75.
                                                    , 66.
                                                            , 58.
                                                                     , 42.
            53.
            69.
                                           , 44.
                                                    , 59.
                                                             , 90.
                                                                     , 61.
                  , 68. , 49.
                                   , 51.
                                  , 41.
, 57.
, 47.
                                           , 85.
                                                    , 82.
                                                            , 67.
                                                                     , 52.
                  , 80. , 56.
                                                            , 77.
, 78.
                          , 48.
, 79.
                                           , 40.
, 94.
                                                    , 86.
                  , 81.
                                                                     , 73.
            43.
                                                                              ])
            62.
                  , 87.
                                                                     , 54.
```

0

data.describe()

time

_	age a		anaemia	creatinine_phosphokinase	diabetes	ejection_fraction	high_blood_pressure	platelets	serum_creatinine
	count	5000.000000	5000.000000	5000.000000	5000.000000	5000.000000	5000.000000	5000.000000	5000.000000
	mean	60.288736	0.474400	586.760600	0.439400	37.734600	0.364800	265075.404370	1.369106
	std	11.697243	0.499394	976.733979	0.496364	11.514855	0.481422	97999.758622	1.009750
	min	40.000000	0.000000	23.000000	0.000000	14.000000	0.000000	25100.000000	0.500000
	25%	50.000000	0.000000	121.000000	0.000000	30.000000	0.000000	215000.000000	0.900000
	50%	60.000000	0.000000	248.000000	0.000000	38.000000	0.000000	263358.030000	1.100000
	75%	68.000000	1.000000	582.000000	1.000000	45.000000	1.000000	310000.000000	1.400000
	max	95.000000	1.000000	7861.000000	1.000000	80.000000	1.000000	850000.000000	9.400000
	4								•

Generate the profile report report = ProfileReport(data)

Save the report to a file report.to_file("data_profile_report.html")

Alternatively, you can also display the report directly report.to_notebook_iframe()

Summarize dataset: 100%

Generate report structure: 100%

Render HTML: 100%

Export report to file: 100%

71/71 [00:15<00:00, 2.99it/s, Completed]

1/1 [00:07<00:00, 7.87s/it]

1/1 [00:02<00:00, 2.04s/it]

1/1 [00:00<00:00, 18.81it/s]

Overview

Dataset statistics						
Number of variables	13					
Number of observations	5000					
Missing cells	0					
Missing cells (%)	0.0%					
Duplicate rows	451					
Duplicate rows (%)	9.0%					
Total size in memory	507.9 KiB					
Average record size in memory	104.0 B					

Variable types

Numeric	7
Categorical	6

Alerts

Dataset has 451 (9.0%) duplicate rows	Duplicates
DEATH_EVENT is highly overall correlated with time	High correlation
time is highly overall correlated with DEATH EVENT	High correlation

Reproduction

Analysis started	2024-05-06 14:27:58.739594	
Amaluala	2024 05 00 44 20 42 040440	

data.duplicated().sum()

→ 3680

data=data.drop_duplicates()

data.shape

→ (1320, 13)

Calculate the correlation matrix correlation_matrix = data.corr()

Print the correlation matrix print("Correlation Matrix:") print(correlation_matrix)

→ Correlation Matrix:

```
anaemia creatinine_phosphokinase \
                              age
                         1.000000 0.108039
                                                           -0.098890
age
anaemia
                         0.108039 1.000000
                                                           -0.200294
                                                            1.000000
creatinine_phosphokinase -0.098890 -0.200294
                        -0.077437 0.031989
                                                           -0.042517
```

```
serum_creatinine
                             0.197325 0.003655
                                                                 -0.018248
    serum_sodium
                             -0.044933 -0.003755
                                                                  0.047212
                              0.059648 -0.037188
                                                                  0.061105
    sex
    smoking
                              0.022495 -0.056350
                                                                 -0.002144
                             -0.198010 -0.097733
                                                                  0.019553
    time
    DEATH EVENT
                              0.224602 0.063510
                                                                  0.055221
                              diabetes ejection_fraction high_blood_pressure \
                             -0.077437
                                                 0.057771
                                                                      0.122868
    age
    anaemia
                              0.031989
                                                 0.024339
                                                                      0.047177
    creatinine_phosphokinase -0.042517
                                                 0.002157
                                                                     -0.004945
                                                 0.012477
                                                                     -0.038261
    diabetes
                              1.000000
                                                 1.000000
    ejection fraction
                              0.012477
                                                                      0.049202
                                                 0.049202
                                                                     1.000000
    high_blood_pressure
                             -0.038261
    platelets
                              0.044104
                                                 0.083884
                                                                     -0.004260
    serum_creatinine
                             -0.063715
                                                -0.060202
                                                                     0.013098
    serum_sodium
                             -0.095644
                                                 0.194937
                                                                      0.037283
                             -0.149128
                                                -0.143921
                                                                     -0.065553
    sex
                             -0.222771
                                                                     -0.078545
    smoking
                                                 0.002126
                              0.008653
                                                 0.086484
                                                                     -0.219173
    time
    DEATH EVENT
                             -0.001485
                                                -0.271767
                                                                      0.113721
                              platelets serum_creatinine serum_sodium
                                                                              sex \
    age
                              -0.009855
                                                 0.197325
                                                            -0.044933 0.059648
    anaemia
                              -0.006089
                                                 0.003655
                                                              -0.003755 -0.037188
    creatinine_phosphokinase
                              0.015418
                                                -0.018248
                                                               0.047212 0.061105
    diabetes
                               0.044104
                                                -0.063715
                                                              -0.095644 -0.149128
                                                -0.060202
                                                               0.194937 -0.143921
    ejection fraction
                               0.083884
    high_blood_pressure
                              -0.004260
                                                 0.013098
                                                               0.037283 -0.065553
                               1.000000
                                                 0.023062
                                                              0.065051 -0.090300
    platelets
    serum_creatinine
                               0.023062
                                                 1.000000
                                                              -0.263781 0.037234
                               0.065051
                                                -0.263781
                                                              1.000000 -0.047862
    serum sodium
                              -0.090300
                                                 0.037234
                                                              -0.047862 1.000000
    sex
    smoking
                                                               0.011111 0.411603
                               0.043759
                                                 0.020209
                              -0.001018
                                                -0.165679
                                                               0.130820 0.017673
    time
    DEATH EVENT
                              -0.044523
                                                 0.290229
                                                              -0.250990 0.044045
                               smoking
                                            time DEATH_EVENT
                              0.022495 -0.198010
                                                     0 224602
    age
                             -0.056350 -0.097733
                                                     0.063510
    creatinine_phosphokinase -0.002144 0.019553
                                                     0.055221
                             -0.222771 0.008653
                                                    -0.001485
                             0.002126 0.086484
                                                    -0.271767
    ejection fraction
    high_blood_pressure
                            -0.078545 -0.219173
                                                     0.113721
    platelets
                              0.043759 -0.001018
                                                    -0.044523
    serum_creatinine
                              0.020209 -0.165679
                                                     0.290229
                              0.011111 0.130820
                                                    -0.250990
    serum_sodium
    sex .
                              0.411603 0.017673
                                                     0.044045
import seaborn as sns
import matplotlib.pyplot as plt
# Assuming 'correlation matrix' is your calculated correlation matrix
# Replace 'correlation_matrix' with the name of your correlation matrix if different
# Create a heatmap
plt.figure(figsize=(10, 8))
sns.heatmap(correlation matrix, annot=True, cmap='coolwarm', fmt=".2f", linewidths=0.5)
plt.title('Correlation Heatmap')
plt.show()
```

0.057771 0.024339

0.122868 0.047177

-0.009855 -0.006089

ejection fraction

platelets

high_blood_pressure

0.002157

0.015418

-0.004945

Statistical Analysis

```
from scipy import stats
from scipy.stats import zscore

plt.figure(figsize=(15, 10))

# Iterate through each channel and plot on a separate subplot
for i, column in enumerate(data.columns):
    plt.subplot(7, 3, i+1)
    sns.histplot(data[column], kde=True)
    plt.title(f'Distribution of {column}')
    plt.xticks(rotation=45)

# Adjust layout and show the plot
plt.tight_layout()
plt.show()
```

plt.show()

Distribution of anaemia

```
# Iterate through each column and plot on a separate subplot
for i, column in enumerate(data.columns):
    plt.subplot(7, 3, i+1)
    sns.histplot(data[column], kde=True)
    plt.title(f'Distribution of {column}')
    plt.xticks(rotation=45)
    # Check for skewness
    skewness = stats.skew(data[column])
    if skewness < -1 or skewness > 1:
        plt.text(0.5, 0.3, f"Skewed ({skewness:.2f})", horizontalalignment='center', verticalalignment='center', transform=plt.gca().transAxes)
    else:
        plt.text(0.5, 0.3, f"Not Skewed", horizontalalignment='center', verticalalignment='center', transform=plt.gca().transAxes)
# Adjust layout and show the plot
plt.tight_layout()
```



```
plt.figure(figsize=(15, 10))
# Iterate through each column and plot on a separate subplot
for i, column in enumerate(data.columns):
    plt.subplot(7, 3, i+1)
    sns.histplot(data[column], kde=True)
    plt.title(f'Distribution of {column}')
    plt.xticks(rotation=45)
    # Add additional analysis to detect distribution type
    # Check for normal distribution
    k2, p = stats.normaltest(data[column])
    if p < 0.05:
        plt.text(0.5, 0.5, "Not Normal", horizontalalignment='center', verticalalignment='center', transform=plt.gca().transAxes)
    else:
        plt.text(0.5, 0.5, "Normal", horizontalalignment='center', verticalalignment='center', transform=plt.gca().transAxes)
# Adjust layout and show the plot
plt.tight_layout()
plt.show()
```

DEATH_EVENT

Adjust layout and show the plot

plt.tight_layout()
plt.show()


```
# Function to detect outliers using Z-score for a specific column
def detect_outliers_z_score(data, threshold=3):
    z_scores = (data - data.mean()) / data.std()
    outliers = (np.abs(z_scores) > threshold).any(axis=1)
    return outliers
# Detect outliers for each numeric column
outliers = detect_outliers_z_score(data[data.columns])
# Print indices of rows containing outliers
outlier_indices = data.index[outliers].tolist()
print("Index of rows with outliers:", outlier_indices)
print("Count of outliers:", len(outlier_indices))
    Index of rows with outliers: [1, 41, 60, 79, 85, 89, 118, 137, 147, 150, 173, 176, 188, 217, 220, 241, 260, 273, 275, 296, 370, 372, 451, 453,
     Count of outliers: 86
plt.figure(figsize=(15, 10))
# Iterate through each column and plot on a separate subplot
for i, column in enumerate(data.columns):
    plt.subplot(7, 3, i+1)
    sns.boxplot(data[column])
    plt.title(f'Box plot of {column}')
```


Machine Learning Algorithms

Make a deep copy of the original DataFrame
data_analysis = updated_data.copy(deep=True)

Define X and Y

```
X = data.drop( 'DEATH_EVENT', axis=1)
y = data[ 'DEATH_EVENT']
```

Feature Scaling

```
# Normalize the features
min_max_scaler = MinMaxScaler()
min_max_scaler.fit(X)
scaled_features = min_max_scaler.transform(X)

scaled_features = pd.DataFrame(scaled_features,columns=data.columns[:-1])
scaled_features.head()
```

→		age	anaemia	creatinine_phosphokinase	diabetes	ejection_fraction	high_blood_pressure	platelets	serum_creatinine	serum_sodium	se
	0	0.272727	0.0	0.092498	0.0	0.469697	0.0	0.288833	0.089888	0.685714	1.
	1	0.454545	0.0	0.004210	0.0	0.166667	0.0	0.339314	0.505618	0.485714	1.
	2	0.090909	0.0	0.071319	1.0	0.363636	0.0	0.356286	0.044944	0.771429	0.
	3	0.363636	1.0	0.093264	1.0	0.393939	1.0	0.367196	0.078652	0.371429	1.
	4	1.000000	1.0	0.071319	0.0	0.242424	0.0	0.528428	0.168539	0.542857	1.
	4										•

✓ Train Test Split

```
{\tt from \ sklearn.model\_selection \ import \ train\_test\_split}
```

```
X_train, X_test, y_train, y_test = train_test_split(scaled_features, y, test_size=0.30)
```

KNN

```
from sklearn.neighbors import KNeighborsClassifier

from sklearn.metrics import classification_report,confusion_matrix

error_rate = []
for i in range(1,40):
    knn = KNeighborsClassifier(n_neighbors=i)
    knn.fit(X_train,y_train)
    pred_i = knn.predict(X_test)
    error_rate.append(np.mean(pred_i != y_test))

plt.figure(figsize=(10,6))
plt.plot(range(1,40),error_rate,color='blue', linestyle='dashed', marker='o',markerfacecolor='red', markersize=10)
plt.title('Error Rate vs. K Value')
plt.xlabel('K')
plt.ylabel('Error Rate')
print("Minimum error:",min(error_rate),"at K =",error_rate.index(min(error_rate)))
```

Error Rate vs. K Value


```
acc = []
# Will take some time
from sklearn import metrics
for i in range(1,40):
    neigh = KNeighborsClassifier(n_neighbors = i).fit(X_train,y_train)
    yhat = neigh.predict(X_test)
    acc.append(metrics.accuracy_score(y_test, yhat))
plt.figure(figsize=(10,6))
plt.plot(range(1,40),acc,color = 'blue',linestyle='dashed',
         marker='o',markerfacecolor='red', markersize=10)
plt.title('accuracy vs. K Value')
plt.xlabel('K')
plt.ylabel('Accuracy')
print("Maximum accuracy:",max(acc),"at K =",acc.index(max(acc)))
```



```
knn = KNeighborsClassifier(n_neighbors=3)
knn.fit(X_train,y_train)
pred = knn.predict(X_test)
#Training Accuracy
print(knn.score(X_train, y_train))
#Testing Accuracy
print(knn.score(X_test, y_test))
0.9134199134199135
     0.8383838383838383
```

print(classification_report(y_test,pred))

→	precision	recall	f1-score	support
0	0.83	0.96	0.89	277
1	0.87	0.55	0.67	119
accuracy macro avg weighted avg	0.85 0.84	0.76 0.84	0.84 0.78 0.83	396 396 396

print(confusion_matrix(y_test,pred))

```
→ [[267 10]
      [ 54 65]]
ax= plt.subplot()
sns.heatmap(confusion_matrix(y_test,pred), annot=True, ax = ax, fmt = 'g');
ax.set_title('Confusion Matrix', fontsize=20)
# assuming 0 means death
ax.xaxis.set_ticklabels(['Dead', 'Survived'], fontsize = 12)
ax.xaxis.tick_top()
ax.yaxis.set_ticklabels(['Dead', 'Survived'], fontsize = 12)
plt.show()
```


Decision Tree

Using Entropy

```
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split
# Initializing and training the Decision Tree Classifier w
```

Initializing and training the Decision Tree Classifier with Gini impurity
dt_gini = DecisionTreeClassifier(criterion='gini', random_state=42)
dt_gini.fit(X_train, y_train)

Making predictions and evaluating the models
y_pred_gini = dt_gini.predict(X_test)

accuracy_gini = accuracy_score(y_test, y_pred_gini)

accuracy_gini

→ 0.9015151515151515

print('Classification Report Decsion Tree Entropy:')
print(classification_report(y_test, y_pred_gini))

Tree Entropy: recall f1-score support precision 0.95 0.93 0 0.91 277 1 0.87 0.79 0.83 119 0.90 396 accuracy 0.89 0.87 0.88 396 macro avg weighted avg 0.90 0.90 0.90 396

```
ax= plt.subplot()
sns.heatmap(confusion_matrix(y_test, y_pred_gini), annot=True, ax = ax, fmt = 'g');
ax.set_title('Confusion Matrix', fontsize=20)
ax.xaxis.set_ticklabels(['Dead', 'Survived'], fontsize = 12)
ax.xaxis.tick_top()
ax.yaxis.set_ticklabels(['Dead', 'Survived'], fontsize = 12)
plt.show()
\rightarrow
                    Confusion Matrix
                                            Survived
                                                                    250
      Dead
                     263
                                                14
                                                                    - 200
                                                                    - 150
                                                                    - 100
                     25
```

from sklearn.metrics import confusion_matrix, precision_score, recall_score, f1_score, roc_auc_score, roc_curve

- 50

```
# Evaluation metrics for Gini model
confusion_gini = confusion_matrix(y_test, y_pred_gini)
precision_gini = precision_score(y_test, y_pred_gini)
recall_gini = recall_score(y_test, y_pred_gini)
f1_score_gini = f1_score(y_test, y_pred_gini)
roc_auc_gini = roc_auc_score(y_test, y_pred_gini)
roc_auc_entropy = roc_auc_score(y_test, y_pred_gini)
# Printing the evaluation metrics
print("Gini Model Evaluation Metrics:")
print("Confusion Matrix:\n", confusion_gini)
print("Precision: {:.2f}".format(precision_gini))
print("Recall: {:.2f}".format(recall_gini))
print("F1 Score: {:.2f}".format(f1_score_gini))
print("ROC AUC: {:.2f}".format(roc_auc_gini))
→ Gini Model Evaluation Metrics:
     Confusion Matrix:
      [[263 14]
      [ 25 94]]
     Precision: 0.87
     Recall: 0.79
     F1 Score: 0.83
     ROC AUC: 0.87
```

dt_entropy.fit(X_train, y_train)

 \rightarrow

Initializing and training the Decision Tree Classifier with Information Gain (Entropy)

dt_entropy = DecisionTreeClassifier(criterion='entropy', random_state=42)

DecisionTreeClassifier
DecisionTreeClassifier(criterion='entropy'. random state=42)

```
# Making predictions and evaluating the models
y_pred_entropy = dt_entropy.predict(X_test)

accuracy_entropy = accuracy_score(y_test, y_pred_entropy)

accuracy_entropy

→ 0.9040404040404041

print('Classification Report Decsion Tree Entropy:')
```

print(classification_report(y_test, y_pred_entropy))

Classification Report DT Entropy: precision recall f1-score support 0 0.91 0.96 0.93 277 1 0.89 0.78 0.83 119 accuracy 0.90 396 0.90 0.87 0.88 macro avg 0.90 0.90 0.90 396 weighted avg

```
ax= plt.subplot()
sns.heatmap(confusion_matrix(y_test, y_pred_entropy), annot=True, ax = ax, fmt = 'g');
ax.set_title('Confusion Matrix', fontsize=20)

ax.xaxis.set_ticklabels(['Dead', 'Survived'], fontsize = 12)
ax.xaxis.tick_top()

ax.yaxis.set_ticklabels(['Dead', 'Survived'], fontsize = 12)
plt.show()
```



```
# Evaluation metrics for Entropy model
confusion_entropy = confusion_matrix(y_test, y_pred_entropy)
precision_entropy = precision_score(y_test, y_pred_entropy)
recall_entropy = recall_score(y_test, y_pred_entropy)
f1_score_entropy = f1_score(y_test, y_pred_entropy)
roc_auc_entropy = roc_auc_score(y_test, y_pred_entropy)
print("\nEntropy Model Evaluation Metrics:")
print("Confusion Matrix:\n", confusion_entropy)
print("Precision: {:.2f}".format(precision_entropy))
print("Recall: {:.2f}".format(recall_entropy))
print("F1 Score: {:.2f}".format(f1_score_entropy))
print("ROC AUC: {:.2f}".format(roc_auc_entropy))
```

```
Entropy Model Evaluation Metrics:
     Confusion Matrix:
     [[265 12]
[ 26 93]]
     Precision: 0.89
     Recall: 0.78
     F1 Score: 0.83
# ROC curve calculations
fpr_gini, tpr_gini, _ = roc_curve(y_test, y_pred_gini)
fpr_entropy, tpr_entropy, _ = roc_curve(y_test, y_pred_entropy)
# Plotting ROC curves
plt.figure(figsize=(10, 6))
plt.plot(fpr_gini, tpr_gini, label='Gini - AUC: {:.3f}'.format(roc_auc_gini))
plt.plot(fpr_entropy, tpr_entropy, label='Entropy - AUC: {:.3f}'.format(roc_auc_entropy))
plt.plot([0, 1], [0, 1], 'k--') # Dashed diagonal line
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curve')
nlt.legend(loc='lower right')
```