Радикальная ось

Определение 1. На плоскости даны окружность S и точка P. Прямая, проведённая через точку P, пересекает окружность в точках A и B. Величина $PA \cdot PB$, взятая со знаком плюс для точки P вне окружности и со знаком минус для точки P внутри окружности, называется степенью точки P относительно окружности S

Упражнение 1. Докажите, что степень X точки равна $d^2 - r^2$, где d — расстояние от точки до центра окружности.

Определение 2. Радикальной осью двух окружностей называется геометрическое место точек, степени которых относительно этих двух окружностей равны

Упражнение 2. На плоскости даны три неконцентрических окружности. Их радикальные оси либо пересекаются в одной точке, либо параллельны.

- 1. На окружности S с диаметром AB взята точка C, из точки C опущен перпендикуляр CH на прямую AB. Докажите, что общая хорда окружности S и окружности S_1 с центром C и радиусом CH делит отрезок CH пополам.
- **2.** Дана окружность S и точки P и K вне её. Через точку проводится секущая PAB (A и B точки пересечения с окружностью). Построим описанную окружность треугольника KAB. Докажите, что все такие окружности имеют общую точку, отличную от K.
- **3.** На сторонах BC, AC, AB остроугольного треугольника ABC взяты произвольные точки A_1, B_1, C_1 . Докажите, что три общие хорды пар окружностей с диаметрами AA_1, BB_1, CC_1 пересекаются в ортоцентре треугольника ABC.
- **4.** а) Через точку P, лежащую на общей хорде AB двух пересекающихся окружностей, проведены хорда A_1B_1 первой окружности и хорда A_2B_2 второй окружности. Докажите, что четырехугольник $A_1A_2B_1B_2$ вписанный.
- б) Теорема о бабочке. Через середину P хорды AB окружности проведены секущие A_1A_2 и B_1B_2 . Хорды A_1B_1 и A_2B_2 пересекают хорду AB в точках M и N. Докажите, что PM=PN. (Указание: сделайте осевую симметрию с центром в точке P.)
- **5.** Через центр равностороннего треугольника ABC проведена прямая, пересекающая прямые AB, BC и CA в точках C_1 , A_1 и B_1 соответственно. Окружность с центром A_1 , проходящая через точку A, пересекает окружность с центром B_1 , проходящую через точку B, в точках K и L. Докажите, что C_1 центр описанной окружности треугольника CKL.
- **6.** Вписанная окружность треугольника ABC касается сторон AB, AC, BC в точках C_1, B_1, A_1 соответственно. Докажите, что средние линии треугольников A_1CB_1 и A_1BC_1 соответственно параллельные сторонам A_1B_1 и A_1C_1 , а также серединный перпендикуляр к BC, пересекаются в одной точке.
- 7. Даны четыре окружности S_1 , S_2 , S_3 и S_4 , причем окружности S_i и S_{i+1} касаются внешним образом для i=1,2,3,4 ($S_5=S_1$). Докажите, что радикальная ось окружностей S_1 и S_3 проходит через точку пересечения общих внешних касательных к S_2 и S_4 .