Дискретная математика I семестр

Теория множества

 $P(X)=2^{|X|}$ - мощность всех подмножеств множества X

Характеристики Б.О.:

	Характеристика	Описание
1	Рефлексивность	$\forall x \in A, (x, x) \in P$
2	Иррефлексивность (Антирефлексивность)	$\forall x \in A, (x, x) \notin P$
3	Симметричность	$\forall x, y \in A, \ xPy \Rightarrow yPx$
4	Асимметричность	$\forall x, y \in A, \ xPy \Rightarrow y\bar{P}x\left((y,x) \notin P\right)$
5	Антисимметричность	$\forall x, y \in A, xPy \land yPx \Rightarrow x = y$
6	Полнота	$\forall x, y \in A, xPy \lor yPx$
7	Связность	$\forall x, y \in A, x \neq y \Rightarrow xPy \lor yPx$
8	Транзитивность	$\forall x, y, z \in A, xPy \land yPz \Rightarrow xPz$
9	Отрицательная транзитивность	$\forall x, y, z \in A, \ xP^c y \land yP^c z \Rightarrow xP^c z$
10	Ацикличность	$ \exists t \geq 1 \text{ и } a_1, a_2, \dots, a_t : \\ a_1 P a_2, a_2 P a_3, \dots, a_{t-1} P a_t, a_t P a_1 $

Отношение эквивалентности

Бинарное отношение ~ на множестве X называется отношением эквивалентности, если оно рефлексивно, симметрично и транзитивно.

Определения

- Множество X не более чем счетно, если оно либо конечно, либо счетно
- Множество X несчетно, если оно ни конечно, ни счетно (бесконечно и несчетно)
- Х ~ Ү множества равномощны

Функции

- Инъекция f(x)
 eq f(y), orall x
 eq y
- Сюръекция, когда для каждого элемента множества Y существует хотя бы один прообраз в множестве X
- Биекция = инъекция + сюръекция

Задачи на множества

Важные теоремы теории множеств

1. $\mathbb{N} \times \mathbb{N}$ - счетно

Можно доказать через таблицу, либо через биекцию $f(x,y)=2^{x-1}(2y-1)$

- 2. $X_1 imes \cdots imes X_n$ счетно, если X_i счетно
- 3. $X \to Y$ инъекция и множество Y счетно, то множество X не более чем счетно
- 4. $\bigcup X_i$ счетно, если $orall X_i$ счетно
- 5. В любом бесконечном множестве есть счетное подмножество
- 6. Если X бесконечно (или несчетно) и Y не более, чем счетно, то $X \cup Y \sim X$

Элементарная комбинаторика

Число размещений

Число размещений из n элементов по k - это количество последовательностей длины k, составленных из различных элементов множества мощности n.

Число способом разложить k разных шариков в n ящиков (в ящик помещается только один шар)

$$A_n^k = rac{n!}{(n-k)!}$$

Число размещений с повторениями

Число размещений с повторениями из n элементов по k - это количество последовательностей длины k, составленных из элементов множества мощности n.

Количество способов разложить k различных шаров в n ящиков (в ящик можно класть сколько угодно шаров)

$$\widetilde{A_n^k} = n^k$$

2

Число сочетаний

Число сочетаний из n по k - это количество k-элементных подмножеств в множестве мощности n ($0 \le k \le n$).

Количество способов разложить к одинаковых шаров в п ящиков.

Возможные обозначения

- $\cdot C_n^k$
- $\binom{n}{k}$

$$C_n^k = rac{n!}{k!(n-k)!}$$

Число сочетаний с повторениями

Число сочетаний с повторениями из n элементов по k это количество неупорядоченных наборов из k элементов n-элементного множества (в отличие от множества, в наборе один и тот же элемент может встречаться несколько раз).

Число способов выбрать k предметов, если есть предметы n типов.

Возможные обозначения

- \widetilde{C}_n^k
- $\binom{n}{k}$

$$\widetilde{C}_n^k = C_{n+k-1}^k$$

Мультиномиальные коэффициенты (полиномиальные коэффициенты)

Мультиномиальные коэффициенты – число способов разбить множество мощности n на m не пересекающихся подмножеств (каждое из которых длины k_i).

$$inom{n}{k_1,k_2,\ldots,k_m}=rac{n!}{k_1!\cdot k_2!\ldots k_m!}$$

Еще немного полезных формул

$$egin{aligned} C_n^k \cdot C_k^l &= C_n^l \cdot C_{n-l}^{n-k} \ & C_n^0 C_m^k + C_n^n C_m^{k-1} + \dots + C_n^k C_m^0 = C_{m+n}^k \ & C_n^0 + C_{n+1}^1 + \dots + C_{n+k}^k = C_{n+k+1}^k \ & n C_n^0 + (n-1) C_n^1 + \dots + C_n^{n-1} = n \cdot 2^{n-1} \end{aligned}$$