2017 Exam

Joanne Kennedy

March 6, 2017

Question 1

Let $(\Omega, \mathcal{F}, \mathbb{Q})$ be a probability space supporting a 1-dimensional Brownian motion W and let $\{\mathcal{F}_t\}_{t\geq 0}$ denote the augmented natural filtration of W.

(a) Suppose that \mathbb{F} and \mathbb{Q} are equivalent probability measures with respect to \mathcal{F} . Show that M is an $(\{\mathcal{F}_t\}, \mathbb{F})$ martingale if and only if ρM is an $(\{\mathcal{F}_t\}, \mathbb{Q})$ martingale where

$$\rho_t := \left. \frac{d\mathbb{F}}{d\mathbb{Q}} \right|_{\mathcal{F}_t}.$$

[20%]

(b) State Girsanov's Theorem for a one-dimensional Brownian motion.

[20%]

(c) Consider a term structure model specified under the measure \mathbb{Q} for which the value at time t of a pure discount bond paying unity at time T is of the form

$$D_{tT} = \exp\left(A_{tT} - B_{tT}y_t - C_{tT}y_t^2\right), t \le T,$$

where for each T, A_{tT} and B_{tT} are deterministic functions of time $t \leq T$, and the process y satisfies the SDE

$$dy_t = -ay_t dt + \sigma dW_t, y_0 = 0,$$

where a and σ are strictly positive constants.

Let α_t be a differentiable deterministic function of t chosen to calibrate the model to the initial yield curve and define

$$N_t := \exp\left(\int_0^t (y_u + \alpha_u)^2 du\right).$$

In answering the following you may assume that \mathbb{Q} is the equivalent martingale measure corresponding to taking N as numeraire.

(i) Use Itô's formula to show that

$$C'_{tT} - 2aC_{tT} - 2\sigma^{2}C_{tT} + 1 = 0,$$

$$B'_{tT} - aB_{tT} - 2\sigma^{2}B_{tT}C_{tT} + 2\alpha_{t} = 0,$$

$$A'_{tT} + \frac{1}{2}\sigma^{2}B_{tT}^{2} - \sigma^{2}C_{tT} - \alpha_{t}^{2} = 0,$$

with A',B' and C' representing the derivative with respect to the first parameter t.

[20%]

(ii) Define a new measure \mathbb{F} on (Ω, \mathcal{F}_T) via

$$\frac{d\mathbb{F}}{d\mathbb{Q}}\bigg|_{\mathcal{F}_{\bullet}} := \exp\left(\int_{0}^{t} \nu(s, T) dW_{s} - \frac{1}{2} \int_{0}^{t} \nu^{2}(s, T) ds\right), \ t \leq T,$$

where

$$\nu(t,T) = -\sigma \left(B_{tT} + 2C_{tT}y_t \right), \ t \le T.$$

Show that \mathbb{F} is an equivalent martingale measure corresponding to taking the pure discount bond maturing at time T as numeraire.

[20%]

(iii) Show that, under the measure \mathbb{F} , y_t is normally distributed with mean.

$$E_{\mathbb{F}}(y_t) = -\sigma^2 \phi_t^{-1} \int_0^t \phi_u B_{uT} du$$

where

$$\phi_t := \int_0^t (a + \sigma^2 C_{sT}) ds.$$

and find its variance.

Hint: You may assume that

$$\int_0^t \phi_u dW_u^T$$

is a martingale where W^T is a Brownian motion under \mathbb{F} .

[20%]

Question 2

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space supporting a one-dimensional Brownian motion W and let $\{\mathcal{F}_t\}_{t\geq 0}$ denote the augmented natural filtration of W.

(a) State the Martingale Representation Theorem for a one-dimensional Brownian motion.

[20%]

(b) Consider an economy defined for the finite time interval $0 \le t \le T < \infty$ and composed of two log-normal assets having price process denoted by $A = (S^{(1)}, S^{(2)})$ satisfying

$$dS_t^{(1)} = \mu_t^{(1)} S_t^{(1)} dt + \sigma_t^{(1)} S_t^{(1)} dW_t.$$

$$dS_t^{(2)} = \mu_t^{(2)} S_t^{(2)} dt + \sigma_t^{(2)} S_t^{(2)} dW_t,$$

where $\mu^{(i)}$ and $\sigma^{(i)}$ are bounded continuous deterministic functions of time for i=1,2.

(i) Suppose $\sigma_t^{(1)} - \sigma_t^{(2)}$ is bounded away from zero for all t, and consider a deterministic function B defined via

$$B_t := \exp\left(\int_0^t \frac{(\sigma_u^{(1)}\mu_u^{(2)} - \sigma_u^{(2)}\mu_u^{(1)})}{\sigma_u^{(1)} - \sigma_u^{(2)}} du\right).$$

Show that $\phi = (\alpha^{(1)}, \alpha^{(2)})$ where $\alpha^{(i)}, i = 1, 2$ are defined by

$$\alpha_t^{(1)} := -\frac{B_t \sigma_t^{(2)}}{S_t^{(1)} (\sigma_t^{(1)} - \sigma_t^{(2)})},$$

$$\alpha_t^{(2)} := B_t \sigma_t^{(1)}$$

$$\alpha_t^{(2)} := \frac{B_t \sigma_t^{(1)}}{S_t^{(2)} (\sigma_t^{(1)} - \sigma_t^{(2)})},$$

is a self-financing trading strategy for this economy which replicates the deterministic process B.

[25%]

(ii) Let $\mathbb Q$ denote the unique equivalent martingale measure corresponding to taking B as numeraire and under which the rebased stock prices $\hat{S}^{(i)} := \frac{S^{(i)}}{B}, \ i=1,2$ satisfy

$$d\hat{S}_t^{(i)} = \sigma_t^{(i)} \hat{S}_t^{(i)} d\tilde{W}_t,$$

where \tilde{W} is a Brownian motion under \mathbb{Q} . Further let X be a positive \mathcal{F}_T -measurable random variable satisfying $E_{\mathbb{Q}}\left[\frac{X}{D_T}\right]<\infty$.

Show that there exists an $\{\mathcal{F}_t\}$ -predictable self-financing trading strategy

$$\phi^* = (\phi^{(1)}, \phi^{(2)}),$$

of the form

$$\phi_t^{(1)} = \frac{H_t}{\sigma_t^{(1)} \hat{S}_t^{(1)}} + \alpha_t^{(1)} \left(M_t - \frac{H_t}{\sigma_t^{(1)}} \right),$$

$$\phi_t^{(2)} = \alpha_t^{(2)} \left(M_t - \frac{H_t}{\sigma_t^{(1)}} \right),$$

for replicating the payoff X at time T where

$$M_t := E_{\mathbb{Q}} \left[\frac{X}{D_T} | \mathcal{F}_t \right],$$

and H is an $\{\mathcal{F}_t\}$ -predictable process.

[45%]

(c) Consider the set

 $\Lambda = \{X : X \text{ is a positive } \mathcal{F}_T\text{-measurable random variable satisfying } E_{\mathbb{Q}}\left[\frac{X}{D_T}\right] < \infty\}.$

Does the result in (b)(ii) establish that the economy is complete for the set Λ ? Justify your answer.

[10%]

Question 3

Let $0 < T_1 < T_2 < ... < T_n < T_{n+1}$ be a sequence of dates and for i = 1, ..., n let $\alpha_i = T_{i+1} - T_i$. Further let D_{tT_i} denote the value at time t of a pure discount bond that pays unity at T_i .

(a) Define $L_t[T_i, T_{i+1}]$ the forward LIBOR at time t for the period $[T_i, T_{i+1}]$ and write down an expression for $L_t[T_i, T_{i+1}]$ in terms of the values of pure discount bonds.

[15%]

(b) Let $L_t^{(i)} := L_t[T_i, T_{i+1}]$. Fix k where 1 < k < n. In a LIBOR market model working in the equivalent martingale measure corresponding to the numeraire $D_{\cdot T_{k+1}}$ suppose the forward LIBOR rate processes $L^{(i)}$ satisfy an SDE of the form

$$dL_t^{(i)} = \mu_t^{(i)} dt + \sigma_t^{(i)} L_t^{(i)} dW_t^{(i)} \qquad i = 1, \dots, n$$

where each $\sigma^{(i)}$ is a deterministic function of time t, each $\mu^{(i)}$ is some general process to be determined and $W = (W^{(1)}, \dots, W^{(n)})$ is an n dimensional Brownian motion having

$$dW_t^{(i)}dW_t^{(j)} = \rho_{ij}dt$$

where the ρ_{ij} are (appropriate) constants in (-1,1) with $\rho_{ii}=1, \forall i$.

- (i) Why is $\mu_t^{(k)} = 0$?
- (ii) Show that for $1 \le i < k$

$$\mu_t^{(i)} = -\sum_{j=i+1}^k \frac{\alpha_j L_t^{(j)}}{1 + \alpha_j L_t^{(j)}} \sigma_t^{(j)} \sigma_t^{(i)} \rho_{ij} L_t^{(i)}.$$

(iii) Show that for $k < i \le n$

$$\mu_t^{(i)} = \sum_{j=k+1}^{i} \frac{\alpha_j L_t^{(j)}}{1 + \alpha_j L_t^{(j)}} \sigma_t^{(j)} \sigma_t^{(i)} \rho_{ij} L_t^{(i)}.$$

Hint: For i = 1, ..., n + 1 write

$$M_t^{(i)} := \frac{D_{tT_i}}{D_{tT_{t+1}}}$$

and show that for i = 1, ..., k - 1

$$M_t^{(i)} := \prod_{j=i}^k (1 + \alpha_j L_t^{(j)}),$$

and for i = k + 2, ..., n + 1

$$M_t^{(i)} := \prod_{j=k+1}^{i-1} (1 + \alpha_j L_t^{(j)})^{-1}.$$

[65%]

(c) Briefly discuss the advantages and disadvantages of the model described in (b).

[20%]

Question 4

Let $0 < T_1 < T_2 < ... < T_n < T_{n+1}$ be a sequence of dates and for i = 1, ..., n write $\alpha_i = T_{i+1} - T_i$. Further let $L^{(i)}$ for i = 1, ..., n denote a set of contiguous forward LIBORs where $L_t^{(i)} := L_t[T_i, T_{i+1}]$ and let D_{tT} denote the value at time t of a pure discount bond that pays unity at T.

(a) Suppose that the market value at time t = 0 for a digital caplet with start date T_i , cashflow at time T_{i+1} and strike K is given by

$$V_0^{(i)}(K) = D_{0T_{i+1}}N(d^{(i)}(K)),$$

where

$$d^{(i)}(K) = \frac{\log\left(\frac{D_{0T_i}}{D_{0T_{i+1}}}(1+\alpha_i K)^{-1}\right)}{\sum_{i}(i)} - \frac{1}{2}\sum_{i}(i),$$

N(.) denotes the standard cumulative normal distribution and $\Sigma^{(i)}$ is a positive constant.

Further suppose that an arbitrage free term structure model has been defined which is consistent with the above formula for all strikes for each of the digital caplets.

Show that for this model the distribution of $L_{T_i}^{(i)} + \alpha_i^{-1}$ is lognormal under an equivalent martingale measure corresponding to numeraire $D_{:T_{i+1}}$.

[35%]

(b) Show that for any arbitrage-free term structure model defined on the filtered space $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}, \mathbb{N})$ under an equivalent martingale measure \mathbb{N} corresponding to the terminal bond $D_{.T_{n+1}}$ as numeraire we have, for all $1 \leq k \leq n$ and $0 \leq t \leq s \leq T_k$

$$\prod_{j=k}^{n} (1 + \alpha_j L_t^{(j)}) = E_{\mathbb{N}} \left[\prod_{j=k}^{n} (1 + \alpha_j L_s^{(j)}) | \mathcal{F}_t \right]$$

$$= E_{\mathbb{N}} \left[\prod_{j=k}^{n} (1 + \alpha_j L_{T_j}^{(j)}) | \mathcal{F}_t \right].$$

[25%]

(c) Consider an arbitrage-free term structure model for which for each $i=1,\ldots,n$ the *i*th LIBOR at its setting date is taken to be of the form

$$(1 + \alpha_i L_{T_i}^{(i)}) = f^i(x_{T_i})$$

where

$$x_t = \sigma \int_0^t e^{au} dW_u,$$

W is a one-dimensional Brownian motion under \mathbb{N} , σ and a are positive constants and the functions f^i for $i=1,\ldots,n$ are chosen so that the model calibrates to the digital caplets in part (a) with

$$\Sigma^{(i)} = \frac{e^{-aT_i} - e^{-aT_{i+1}}}{a} \sqrt{\operatorname{var}(x_{T_i})}.$$

(i) Show that for $0 < t < T_i$

$$(1 + \alpha_i L_t^{(i)}) = \frac{D_{0T_i}}{D_0 T_{i+1}} \exp\left((c_i - c_{i+1})x_t - \frac{1}{2}(c_i^2 - c_{i+1}^2)\operatorname{var}(x_t)\right)$$

where

$$c_i := \frac{e^{-aT_i} - e^{-aT_{n+1}}}{a}.$$

You may assume the model is complete.

[20%]

(ii) Suppose instead the functions f^i are chosen so that the resultant model is calibrated to digital caplets satisfying Black's formula, so that $L_{T_i}^{(i)}$ is log normally distributed in the equivalent martingale measure corresponding to $D_{\cdot T_{i+1}}$ as numeraire. Is it the case that the process $L_t^{(i)}$, $t \leq T_i$ is a log normal martingale under this equivalent martingale measure? Justify your answer.

[20%]

m

₩
** * ***
jala
WARREST TO THE STATE OF THE STA
ggy viga vida e a de e a de e a de e

(b) Girsoner's Theorem for a one-dimensional B.M.	
Let (IL, J. P) be a probability space supporting a	
one-dimensional Brownian motion Wand let [] denot	e
the augmented natural Sillication generated by W.	,
(i) Suppose Q ~ P w. 1. + J. Thum I so (I) - predictable	
R-valued process C such that	
	•
6. = 900 / = orb (2 cmgm - 72 cmgm) (+	
(ii) Conversely if p is a strictly positive (It) = 1 P) marlingale some TE[0,00) with E[P]=1 then p has the representation in (t) and define a measure QNP	
mandingale some TETO, 00) with ESCY=1, then & has	
the representation in (+) and define a measure QUP	
Writ Fr	
In either of the above cases under Q	
In eight of the above cases, under D	
is an (A) D) Brownian motion (with Hime howice	20172
is an (St.), (D) Brownian motion (with Himo hovidary being restricted to [O,T] in the later case).	
	MARCH 1 11 7 701011
	ME COLUMN T

(2)	(i) It Q is the EMM corresponding to B as numeroise then Dyr , to T is a martingale under Q Bt
	By Itô's farmula
	JD, - 3D+ J+ 3D+ J3+ 23 D+ 1/2+) (Jy)
	Given $D_{++} = exp(g(+,y_{+}))$
	we have
-	9+6,4+)=0+7-B+49+-C+74
-	99/4)= -B+-2C++4
	9,5(+,4+) = -20+
	$\frac{\partial^{2} P_{+}}{\partial S_{+}} = S_{S_{+}}(S_{+}) D_{+} + O_{+} + O$
	$\frac{\partial^2 D_{++}}{\partial y_{+}^2} = 9 \cdot y_{+} y_{+} D_{++} + (9 y_{+} y_{+})^2 D_{++}$
	Thus
	30 = (P'_+-B'_+y_+-C'_+y_+^2)D_+-J+
	- (B++2C++4) D++ dy
	+1/2[(3++2-++1)2-2-++](=1)+
	Noting dy = - ay H + odw

$$\frac{\partial D_{17}}{\partial x_{17}} = \left[\frac{\partial x_{17}}{\partial x_{17}} - \frac{\partial x_{17}}{\partial x_{17}} + \frac{\partial x_{17}}{\partial x_{17}} + \frac{\partial x_{17}}{\partial x_{17}} + \frac{\partial x_{17}}{\partial x_{17}} \right] + \frac{\partial x_{17}}{\partial x_{17}} \left[\frac{\partial x_{17}}{\partial x_{17}} + \frac{\partial x_{17}}{\partial x_{17}} \right] + \frac{\partial x_{17}}{\partial x_{17}} + \frac{\partial x_{17}}{\partial x_{17}} + \frac{\partial x_{17}}{\partial x_{17}} \right] + \frac{\partial x_{17}}{\partial x_{17}} + \frac{\partial x_{17}}{\partial x$$

$$\frac{dD_{+T}}{D_{+T}} = \left[(P_{+T}^{1} - \sigma^{2}C_{+T} + \frac{1}{2}\sigma^{2}B_{+T}^{2}) + (-B_{+T}^{1} + \alpha B_{+T} + 2\sigma^{2}B_{+T}^{2}) + (-C_{+T}^{1} + 2\alpha C_{+T} + 2\sigma^{2}C_{+T}^{2}) + (-C_{+T}^{1} + 2\alpha C_{+T} + 2\sigma^{2}C_{+T}^{2}) + (-B_{+T}^{1} + 2\alpha C_{+T}^{2} + 2\sigma^{2}C_{+T}^{2}) + (-B_{+T}^{1} + 2\alpha C_{+T}^{2} + 2\sigma^{2}C_{+T}^{2}) + (-B_{+T}^{1} + 2\sigma^{2}C_{+T}^{2}) + (-B_{+T}$$

Now
$$\frac{J(P_{+T})}{J(B_{+})} = B_{+}^{-1} dD_{+T} + D_{+T} d(B_{+}^{-1})$$

$$= 3_{+}^{-1} dD_{+T} - Y_{+} B_{+}^{-1} D_{+T} dt$$
where $Y_{+} := (Y_{+} + d_{+})^{2} = Y_{+}^{2} + 2d_{+}Y_{+} + d_{+}^{2}$

$$\frac{d(2\pi)}{B_{+}} = \frac{D_{++}}{B_{+}} \left[A_{++} - \sigma^{2} C_{++} + \frac{1}{2} \sigma^{2} B_{++} - \lambda_{+}^{2} \right]
\left(-B_{++} + aB_{++} + 2\sigma^{2} B_{++} + C_{++} - 2 \lambda_{+} \right)$$

$$\left(-C_{++} + 2\alpha C_{++} + 2\sigma^{2} C_{+-} - 1 \right) y_{+}^{2}$$

$$\left(-C_{++} + 2\alpha C_{++} + 2\sigma^{2} C_{+-} - 1 \right) y_{+}^{2}$$

(iii) By Girsanon's Theorem JW; = JW, - V(+, T) H = JW, 0 B; 2C, 4) H is a Brawnian motion under F Jy = - ay + + o (JW - o (B, +25, y) dt) $dy_{+} = \left(-\delta^{2}B_{17} - (\alpha + 2\delta^{2}C_{17})y_{+}\right)dt + \sigma d\omega_{1}^{T}$ De Sine $\phi_{+} = \exp\left[\int_{0}^{t} \left(a_{+}2\sigma^{2}C_{n}\right)\right] du$ and set $2_{+} = \phi_{+}y_{+}$ JZ, = 4, Jy, + 4, JQ, = (-52 p, B+T - p+ (0+252 C+1)y+) d+ + & p+ JWT + (a + 252C+T) + 4 4 H = -02 \$ B+78+ 0 \$ JWT 1.6. Y = P= Y= 2= 2 + 1 | PBUTAN + 5P= | PWAWN

Thus of is normally disdibuted
Thus y is normally disdibuted as stopular is normally disdibuted
(& is dedoministic and we may assume who S.I. is a modified
Ey = \$ -1 40-52 \$ -1 \$ \$ 15 \$ 15 \$ 10
$Var(y_+) = \delta^2 + \frac{2}{3} \int_{0}^{+} \psi_n^2 dn$
but, ruce $\phi_t = e^{\int_0^t (a + 20^t C_{t_1} \tau) du}$, were could be said love
Why ast give the value of E(Ye)
Then it's dear what you're allowing as expression for Var (Y)

and the second s	Cuestion 2
	(a) (SLJ, P) probability space suppositing BM W (J, Z) augmented natural Citiletian generated by W
	MRT. Any local maintyale Nout If can be written in the form Not = No + J Hudwa
	for some Styl-predictable 14 s.t. Stylducoo a.s. allt
	(i) For $\phi = (d') d^{(2)}$ do be a self-Sinereing slidegy replicably. The we'require
(+)	1B, = 2"5", + 2", 5" = 1 + 10", 15", - [2", 15"]
	Noting B is of Sinite variation we must have $0 = d_{*}^{(1)} \sigma_{*}^{(1)} S_{*}^{(1)} d\omega_{1} + d_{*}^{(2)} \sigma_{*}^{(2)} S_{*}^{(2)} d\omega_{1}$
	$(x_{1}, x_{1}, x_{2}) = -x_{1}, x_{1}, x_{2}$
	i.e. $d_{1}^{(1)} = -d_{2}^{(2)} \frac{G_{1}^{(2)}}{G_{1}^{(1)}} \frac{S_{1}^{(2)}}{S_{1}^{(1)}}$
	Substituting in (+) and solving for dt) yields
	$a_{11} = -\frac{13}{13} + \frac{1}{13} $
	as required

$$S_{2} - Jahe$$

$$\phi_{+}^{(1)} = \phi_{+}^{(1)} + \alpha_{+}^{(1)} + \alpha_{+}^{(2)}$$

$$\phi_{+}^{(2)} = \phi_{+}^{(2)} + \alpha_{+}^{(2)} + \alpha_{+}^{(2)}$$

$$\phi_{+}^{(2)} = \phi_{+}^{(2)} + \alpha_{+}^{(2)} + \alpha_{+}^{(2)}$$

1.e.
$$\psi_{+}^{(1)} = H_{+}(\delta^{(1)}\hat{S}_{+}^{(1)})^{-1} - \alpha_{+}^{(1)}(M_{+} - H_{+})$$

$$\phi_{(r)}^{+} = \sigma_{(s)}^{+} \left(\omega^{+} - H^{*} \left(\omega^{+} - H^{*} \right) \right)$$

(c) The result in (b)(ii) provides a replicating strategy for any X & A. To show the economy is complete we need to check that this strategy is admissible For the definition of admissible given in lectures this means we need to check the rebased gain process is a martingale with any numeraire pair (N, M)

Q3_

(a) LT. [Ti, Ti+1] = rate of interest payable at Tity for a unit deposit at Ti for period [Ti, Ti+1]

payment made is diLT. [Ti, Ti+1] di=Ti+1-Ti

Lifti, Titi] = rate of interest that will be paid as above if contract agreed at t

 $L_{+}[T;,T;+] = D_{+}T;-D_{+}T;+$ (*)

d.) +Tin

(b) Under N, each D+T: is a martingale

(i) It follows that L is a martingale and so the drift in the SDE for L must be zero i.e. $\mu^{(k)} = 0$

(ii) From (*)

D, T; = (1+ d; L') D+ T;+1

For 15 i < k

 $M_{+}^{(i)} := \frac{D_{+}\tau_{i}}{D_{+}\tau_{kn}} = \frac{R}{1 + \lambda_{i}} \frac{D_{+}\tau_{i}}{D_{+}\tau_{in}} = \frac{R}{1 + \lambda_{i}} \frac{D_{+}\tau_{i}}{1 + \lambda_{i}} \frac{R}{1 + \lambda_{i}} \frac{D_{+}\tau_{i}}{1 + \lambda_{i}} \frac{R}{1 + \lambda_{i}} \frac$

and so

W(!) = W(!+) + 9: [+) W(!+)

M(i) a martingale =) d; L; M(i+1) a mardingale 9(res, Wisen) = risquises + Wises) 9 res, 9 res, 9 res, 9 res, and equating finise variation toms to zero =) W(in) h(i) 9+ + 9W(in) Q(i) T(i) 9M(i) = 0 (#) From (t) JM(in) = I = 3mt 60, [i,1) = I dinter) (0) [1) dw(1) + F.V. Substituting in (#) W(141) M(1) 9+ + \(\sum_{\(1+\)} \\ \gamma_{\(1+\)} \\ \gamma_{\(1+\) and thus for Isick $V_{(i)}^{+} = -Q_{(i)}^{-} \Gamma_{(i)}^{+} \sum_{k} \frac{1+\alpha^{2} \Gamma_{(i)}^{-}}{q^{2} Q_{(i)} \Gamma_{(i)}^{+}} \sum_{k} \frac{1+\alpha^{2} \Gamma_{(i)}^{-}}{q^{2} Q_{(i)} \Gamma_{(i)}^{-}}$ as required

(iii) For
$$i = k_{+} \lambda_{+} \dots$$
, n^{-k}

$$M_{i}^{(i)} := \frac{D_{+} T_{k+1}}{D_{+} T_{k+1}} = \frac{1}{D_{+}} \frac{1}{D_{+}$$

as required.

in the contract of

(c)plians for a very flexible fit to market correlations between LIBOR votes Califrales de Complet prices ous givon bay Black's Jornala Wigh dimensional so difficult to implement in prendice especially - 2. path dependent p1020215 P seperability assumption would reduce effective dimension (so close approximation cold be implemented via a making Sunctional appleach) but this would reduce flexibility.

(b) Taking D. T., as numerous a let mi dende the corresponding Emm. The value of the ith digital caplet is given by $V_{O}(K) = D_{OT} + E_{IN} \left[\begin{array}{c} V_{T} \\ D_{T} \cdot T_{i+1} \end{array} \right]$ = DOTO, N'(L') >K). Thus m'(L'+, > K) = N(SW) for K 20 (+) where N() is the comulative normal disdibility
This specifies the disdibilition of (a) under the To identify the distribution note Mi(1/1/2K)=Mi(log(Lit,+2/1)) log(K+d/1)) = m (log(Lis;+a=)-log(Lis+a)+5(Z)) > log(k+a;")-log(li)+d)+{(Z)} = Ni (leg(Lit; -di) - [log(Li) +di) - 5/2] 3 - Ji) = mi(23-Ja) (16-c2)im= Nonce log(i''; +d;') ~ N (log(i'' +d;')-{ti) (Z'))

 $M_{+}^{k} := TU(1+2)U_{+}^{(1)} = TU D_{+}T_{5} = D_{+}T_{R}$ j=k J=kSince of the John asset this must be a martingale under whe Emm M. This gives The Eirst equality which is just the modinions (+) $E_{1}^{*}(M_{3}^{*}|\mathcal{F}_{1}) = M_{+}^{*}, R=1,..., N$, $O \leq t \leq s \leq T_{k}$ Next observe $m_{\pm}^{\kappa} = E^{N} / m_{s}^{\kappa} / J_{+} = E^{N} / E^{N} / m_{t_{k}}^{\kappa} / J_{s} / J_{+}$ using mg = En (int) by Town property = E. (m+1/1+2 (1+2)]] by defind m Mk Mkr = En [E (milet) 372) (1+02 (12)]] by ma propedy
for mul = ET [mr. 1 (1+2 k L) [] Using taking ent Note all processes Holis bloky = En (12+1 TI (1+2 5 = 1 Ti)]] + repeating the chare shops positive set Short is lehron opphes = EM MT ((Hd)L()) | ft) by terotion assuming Fring = ET (17 (17 d; L'75) | 3,

 $\frac{(1+d\cdot L)}{D_{OTin}} = \frac{D_{OTi}}{D_{OTin}} \frac{v_{1}v_{1}}{v_{2}} \left(\frac{1}{2} - c_{1} + c_{2} + c_{3} + c_{4} + c_{4}$ = Dorc exp(s(c;-s+1) [e"dw, = 2 (c;-c;) 2 52 (ezhu)du)

Dorin $\log\left(1+\lambda;L_{T_{i}}\right)=\log\left(\frac{2\pi i}{2\pi i}\right)-\frac{1}{2}\left(\frac{2\pi i}{2\pi i}\right)$ + 1 (<;-<;+) x; $\sim N \left(\frac{\log \left(\frac{D_{\sigma T_i}}{D_{\sigma T_{i+1}}} \right) - \log d_i - \frac{1}{2} \left(\frac{Z^{(i)}}{Z^{(i)}} \right)^2 \left(\frac{Z^{(i)}}{Z^{(i)}} \right)^2 \right)$ Note log Por; -logd; = log (111 + d-1)

	(ii) From part (b) we can see that (i) will be a Suretion of the one-dimensional process
	be a Sometion of the one-dimensional process
# 1,700 of pt garages for the mode a mondace free possible	If I'll is a leg-nermal mandingale under
	the measure M' corresponding to D. Fix, os numicine we would have
***************************************	as numerous we would have
	$A_1 = -i \left(\frac{1}{2} \right) - i \left(\frac{1}{2} \right)$
	dit = 0 : L'oest do
AN TO AND A STANDARD COMMISSION OF THE BASIN THE TANK THE	Wa Bon vody D Taj
	But we know Svom lactures that the only way the model could than be abilitage from is if
	The drift of L' order the terminal masque
	is as in the LIBOX-Maizet model and
	so a sondien of Cij=i11 - n But this
	means the model would be high-dimensional
UNDER SAMPHARATE ST.	-a contradiation
NAME OF A PARTY OF THE PARTY OF	Hole The model in (ii) is the LIBOR Markon Londonal
<u> </u>	modul calibrated to Black's Varmula
A SALAR STREET,	
e space as a suite a shifting age; agree of how that had been ex-	
y NA NASANINA I ANY TAONA MANAGEMBER NA TAONA NA SANTANINA NA SANTANINA NA SANTANINA NA SANTANINA NA SANTANINA	
magning, at p _{er} 4, year good provide data of the EU 2012 (1.8 to 2012) (1.0 to 2012)	
120000	
Andrews Control of the Control of th	