fraud-prediction

April 25, 2025

```
[1]:
     # DATA PREPROCESSING
[2]: import pandas as pd
     import numpy as np
     import warnings
     warnings.filterwarnings("ignore")
     import tensorflow
[3]: df=pd.read_csv("Fraud.csv")
[4]:
     data=pd.DataFrame(df)
[5]: data.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 6362620 entries, 0 to 6362619
    Data columns (total 11 columns):
         Column
                          Dtype
         _____
                          ----
     0
                          int64
         step
     1
         type
                          object
     2
         amount
                          float64
     3
         nameOrig
                          object
     4
         oldbalanceOrg
                          float64
     5
         newbalanceOrig float64
     6
         nameDest
                          object
         oldbalanceDest
                          float64
         newbalanceDest
                         float64
         isFraud
                          int64
     10 isFlaggedFraud int64
    dtypes: float64(5), int64(3), object(3)
    memory usage: 534.0+ MB
[6]: data.head(10)
        step
[6]:
                          amount
                                      nameOrig
                                                oldbalanceOrg newbalanceOrig \
                  type
     0
           1
               PAYMENT
                         9839.64
                                  C1231006815
                                                    170136.00
                                                                     160296.36
     1
           1
                                  C1666544295
                                                                      19384.72
               PAYMENT
                         1864.28
                                                     21249.00
```

```
0.00
     2
              TRANSFER
                           181.00 C1305486145
                                                         181.00
     3
              CASH_OUT
                           181.00
                                                         181.00
                                                                            0.00
                                     C840083671
     4
           1
               PAYMENT
                        11668.14 C2048537720
                                                       41554.00
                                                                        29885.86
     5
                          7817.71
                                                                        46042.29
           1
               PAYMENT
                                      C90045638
                                                       53860.00
     6
               PAYMENT
                          7107.77
                                     C154988899
                                                      183195.00
                                                                       176087.23
           1
     7
                                                                       168225.59
           1
               PAYMENT
                          7861.64 C1912850431
                                                      176087.23
     8
           1
               PAYMENT
                          4024.36 C1265012928
                                                        2671.00
                                                                            0.00
     9
           1
                          5337.77
                                                       41720.00
                                                                        36382.23
                  DEBIT
                                     C712410124
           nameDest
                     oldbalanceDest newbalanceDest
                                                        isFraud
                                                                  isFlaggedFraud
                                 0.0
                                                  0.00
       M1979787155
                                                              0
     1
        M2044282225
                                  0.0
                                                  0.00
                                                              0
                                                                                0
         C553264065
                                  0.0
                                                  0.00
                                                                                0
                             21182.0
                                                  0.00
                                                                                0
     3
          C38997010
                                                               1
     4 M1230701703
                                  0.0
                                                  0.00
                                                              0
                                                                                0
                                  0.0
                                                  0.00
                                                              0
                                                                                0
     5
         M573487274
     6
                                  0.0
                                                  0.00
                                                              0
                                                                                0
         M408069119
     7
         M633326333
                                  0.0
                                                  0.00
                                                              0
                                                                                0
                                  0.0
                                                               0
                                                                                0
     8 M1176932104
                                                  0.00
         C195600860
                             41898.0
                                             40348.79
[7]: data["isFlaggedFraud"].value_counts()
[7]: isFlaggedFraud
          6362604
     0
     1
                16
     Name: count, dtype: int64
[8]: # MISSING VALUES
[9]: missing_values = data.isnull().sum()
     print(missing_values)
    step
                       0
                       0
    type
                       0
    amount
    nameOrig
                       0
    oldbalanceOrg
                       0
    newbalanceOrig
                       0
    nameDest
                       0
    oldbalanceDest
                       0
    newbalanceDest
                       0
    isFraud
                       0
    isFlaggedFraud
                       0
    dtype: int64
```

[10]: # Their are no Missing values

[11]: # OUTLIERS

```
[12]: import seaborn as sns
import matplotlib.pyplot as plt

plt.figure(figsize=(10, 6))
    sns.boxplot(x=data['amount'])
    plt.show()
```



```
[13]: # Their are outliers in the amount column but, in transaction data it is true__

that most of the transactions are in less amount.

# The outlier in this is also important in predicting fraud
```

```
[14]: data["amount"].max()
```

[14]: 92445516.64

[15]: # FEATURE ENGINEERING

```
[16]: # FEATURE CREATION
    data['netChangeOrig'] = data['newbalanceOrig'] - data['oldbalanceOrg']
    data['netChangeDest'] = data['newbalanceDest'] - data['oldbalanceDest']
```

```
[17]: # Creating new features of transaction frequency
      data['origFreq'] = data.groupby('nameOrig')['nameOrig'].transform('count')
      data['destFreq'] = data.groupby('nameDest')['nameDest'].transform('count')
[18]: # FEARURE DELETION
      data.drop(["nameOrig","nameDest"], axis=1, inplace=True)
      data.head()
[18]:
                           amount oldbalanceOrg newbalanceOrig oldbalanceDest \
         step
                   type
            1
               PAYMENT
                          9839.64
                                        170136.0
                                                       160296.36
                                                                              0.0
                          1864.28
                                         21249.0
                                                        19384.72
                                                                              0.0
      1
            1
              PAYMENT
      2
            1 TRANSFER
                          181.00
                                           181.0
                                                            0.00
                                                                              0.0
            1 CASH_OUT
                          181.00
                                           181.0
                                                            0.00
                                                                          21182.0
               PAYMENT 11668.14
                                         41554.0
                                                        29885.86
                                                                              0.0
         newbalanceDest isFraud isFlaggedFraud netChangeOrig netChangeDest \
      0
                    0.0
                               0
                                                       -9839.64
                                                                            0.0
                                               0
                    0.0
                               0
                                               0
                                                       -1864.28
                                                                            0.0
      1
      2
                    0.0
                                               0
                                                        -181.00
                                                                            0.0
                               1
      3
                    0.0
                               1
                                               0
                                                        -181.00
                                                                      -21182.0
                    0.0
                                               0
                                                      -11668.14
                                                                            0.0
        origFreq destFreq
      0
                1
                1
                          1
      1
      2
                1
                         44
      3
                1
                         41
      4
                1
                          1
[19]: # Classifying transaction in day/night and business/off-hours
      def categorize_day_night(step):
          hour_of_day = step % 24
          if 6 <= hour_of_day < 18:</pre>
              return 'Day'
          else:
              return 'Night'
      data['timeOfDay'] = data['step'].apply(categorize_day_night)
      def categorize_business_hours(step):
          hour_of_day = step % 24
          if 9 <= hour of day < 18:</pre>
              return 'Business'
          else:
              return 'Off-hours'
      data['businessHours'] = data['step'].apply(categorize_business_hours)
```

```
data[['step', 'timeOfDay', 'businessHours']].head()
```

```
[19]:
         step timeOfDay businessHours
      0
            1
                   Night
                              Off-hours
      1
            1
                   Night
                              Off-hours
      2
             1
                   Night
                              Off-hours
      3
             1
                   Night
                              Off-hours
             1
                   Night
                              Off-hours
```

```
[20]: import seaborn as sns
sns.countplot(data=data, x='timeOfDay')
plt.title('Transactions: Day vs Night')
plt.show()
```



```
[21]: # In this we can see that the transaction is around in ratio 2(night):3(day)
```

```
[22]: # Visualising the relation between Fraud and time of Day
import seaborn as sns
sns.countplot(data=data[data['isFraud'] == 1], x='timeOfDay')
```

```
plt.title('Fraudulent Transactions: Day vs Night')
plt.show()
```



```
[23]: # In this we see that difference between frauds at day and night are not much data.drop(["timeOfDay"], axis=1, inplace=True)
```

```
[24]: import seaborn as sns
sns.countplot(data=data, x='businessHours')
plt.title('Transactions: business vs off-hours')
plt.show()
```



```
[25]: # We can see that more transactions are done in business-hours compared to \bigcirc \bigcirc of f-hours
```

```
[26]: # Visualising the relation between Fraud and business hours
import seaborn as sns
sns.countplot(data=data[data['isFraud'] == 1], x='businessHours')
plt.title('Fraudulent Transactions: business vs off-hours')
plt.show()
```


businessHours

Business

```
[27]: # But in case of fraud more frauds occur in off-hours compared to business
[28]: data.drop('step',axis=1,inplace=True)
      data = pd.get_dummies(data, columns=['businessHours'])
     data.iloc[:,-1:]=data.iloc[:,-1:].astype(int)
[29]:
[30]:
     data.head()
[30]:
                             oldbalanceOrg newbalanceOrig oldbalanceDest
             type
                     amount
      0
          PAYMENT
                    9839.64
                                   170136.0
                                                  160296.36
                                                                         0.0
         PAYMENT
                    1864.28
                                                   19384.72
      1
                                    21249.0
                                                                         0.0
      2 TRANSFER
                     181.00
                                      181.0
                                                       0.00
                                                                         0.0
      3 CASH_OUT
                                                       0.00
                     181.00
                                      181.0
                                                                     21182.0
      4
          PAYMENT
                   11668.14
                                    41554.0
                                                   29885.86
                                                                         0.0
                                  isFlaggedFraud
                                                   netChangeOrig netChangeDest
         newbalanceDest
                         isFraud
      0
                    0.0
                               0
                                                0
                                                        -9839.64
                                                                             0.0
                    0.0
                               0
                                                        -1864.28
                                                                             0.0
      1
                                                0
                    0.0
                                                0
                                                                             0.0
      2
                                1
                                                         -181.00
```

Off-hours

```
0.0
      3
                                1
                                                0
                                                          -181.00
                                                                        -21182.0
      4
                    0.0
                                0
                                                 0
                                                        -11668.14
                                                                              0.0
                   destFreq businessHours_Business
                                                      businessHours_Off-hours
         origFreq
      0
                1
                           1
                1
                           1
                                               False
                                                                              1
      1
      2
                1
                          44
                                               False
                                                                              1
      3
                1
                          41
                                               False
                                                                              1
      4
                1
                           1
                                               False
                                                                              1
[31]: # Clissifying amount into risks
      bins = [0, 10000, 100000, 200000, float('inf')]
      labels = ['Low', 'Medium', 'High', 'Very High']
      data['amountRisk'] = pd.cut(data['amount'], bins=bins, labels=labels,__
       →include_lowest=True)
[32]: from sklearn.preprocessing import LabelEncoder
      le = LabelEncoder()
      data['amountRisk'] = le.fit_transform(data['amountRisk'])
      data.head()
[32]:
                              oldbalanceOrg newbalanceOrig oldbalanceDest \
                     amount
             type
      0
          PAYMENT
                    9839.64
                                   170136.0
                                                   160296.36
                                                                          0.0
                    1864.28
      1
          PAYMENT
                                    21249.0
                                                    19384.72
                                                                          0.0
      2 TRANSFER
                                      181.0
                                                        0.00
                     181.00
                                                                          0.0
      3 CASH OUT
                     181.00
                                      181.0
                                                        0.00
                                                                     21182.0
          PAYMENT 11668.14
                                    41554.0
                                                    29885.86
                                                                          0.0
         newbalanceDest
                         isFraud isFlaggedFraud
                                                   netChangeOrig netChangeDest \
      0
                                0
                                                         -9839.64
                                                                              0.0
                    0.0
                                                0
      1
                    0.0
                                0
                                                 0
                                                         -1864.28
                                                                              0.0
                    0.0
      2
                                1
                                                 0
                                                          -181.00
                                                                              0.0
      3
                    0.0
                                1
                                                 0
                                                          -181.00
                                                                         -21182.0
      4
                    0.0
                                0
                                                        -11668.14
                                                                              0.0
         origFreq
                   destFreq businessHours_Business
                                                      businessHours_Off-hours
      0
                                               False
                1
                           1
                                                                              1
      1
                1
                           1
                                               False
                                                                              1
      2
                1
                          44
                                               False
                                                                              1
                          41
                                               False
      3
                1
                                                                              1
      4
                           1
                                               False
         amountRisk
      0
      1
                  1
```

```
2 1
3 1
4 2
```

data1.head()

```
[33]: import seaborn as sns
sns.countplot(data=data[data['isFraud'] == 1], x='amountRisk')
plt.title('Fraudulent Transactions: AmountRisk')
plt.show()
```

Fraudulent Transactions: AmountRisk


```
[34]: # We can see that the number of Transaction tagged as Very High in risk are

→most likely to be a fraud transaction

[35]: from sklearn.preprocessing import LabelEncoder

le=LabelEncoder()

data['type'] = le.fit_transform(data['type'])

[36]: data1=data
```

```
[36]:
                 amount oldbalanceOrg newbalanceOrig oldbalanceDest \
         type
                9839.64
                               170136.0
                                              160296.36
                                                                     0.0
      0
            3
      1
            3
                1864.28
                               21249.0
                                               19384.72
                                                                     0.0
      2
            4
                 181.00
                                  181.0
                                                   0.00
                                                                     0.0
      3
                 181.00
                                  181.0
                                                   0.00
                                                                 21182.0
            1
            3 11668.14
                               41554.0
                                               29885.86
                                                                     0.0
         newbalanceDest
                         isFraud isFlaggedFraud netChangeOrig netChangeDest \
      0
                    0.0
                                                        -9839.64
                                                                             0.0
                               0
                                                0
                    0.0
                               0
                                                0
                                                        -1864.28
                                                                             0.0
      1
      2
                    0.0
                                                0
                                                         -181.00
                                                                             0.0
                                1
      3
                    0.0
                                1
                                                0
                                                         -181.00
                                                                        -21182.0
      4
                    0.0
                               0
                                                                             0.0
                                                       -11668.14
                  destFreq businessHours_Business businessHours_Off-hours
         origFreq
      0
                1
      1
                1
                          1
                                               False
                                                                             1
      2
                1
                         44
                                               False
                                                                             1
      3
                1
                         41
                                               False
                                                                             1
      4
                1
                          1
                                               False
                                                                             1
         amountRisk
      0
                  1
      1
      2
                  1
      3
                  1
      4
                  2
[41]: # ML MODEL for understanding the Feature Importance
[46]: from sklearn.ensemble import RandomForestClassifier
      X = data1.drop('isFraud', axis=1)
      y = data1['isFraud']
      model = RandomForestClassifier(n_estimators=20,n_jobs=-1)
      %time model.fit(X, y)
      importances = model.feature_importances_
      feature_importance_data = pd.DataFrame({
          'Feature': X.columns,
          'Importance': importances
      }).sort_values(by='Importance', ascending=False)
      print(feature_importance_data)
```

```
Wall time: 2min 45s
                         Feature Importance
     7
                   netChangeOrig
                                    0.285625
                   netChangeDest
     8
                                    0.171017
     5
                  newbalanceDest
                                    0.154705
     2
                   oldbalanceOrg
                                    0.119573
     1
                          amount
                                    0.095548
     4
                  oldbalanceDest
                                   0.063396
     10
                        destFreq
                                   0.038811
     0
                                   0.031491
                            type
     3
                  newbalanceOrig
                                    0.021281
          businessHours_Business
     11
                                    0.006543
     12 businessHours_Off-hours
                                    0.005700
     13
                      amountRisk
                                    0.005363
     6
                  isFlaggedFraud
                                    0.000739
     9
                        origFreq
                                    0.000209
[65]: # ML MODEL
      # RANDOM FOREST
[49]: # train test split
      from sklearn.model_selection import train_test_split
      X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.
       →25,random_state=42)
      rf=RandomForestClassifier(n_estimators=20,n_jobs=-1)
      %time rf.fit(X_train,y_train)
      accuracy_rf=rf.score(X_test,y_test)*100
      print(accuracy_rf)
     CPU times: total: 10min 38s
     Wall time: 1min 51s
     99.97020095495252
[50]: # Accuracy is very high that may be because there are very less transactions.
      →marked as fraud
      # We will also consider other matrics for this dataset
[51]: from sklearn.metrics import classification_report, confusion_matrix
      y_pred = rf.predict(X_test)
      print(classification_report(y_test, y_pred))
      print(confusion_matrix(y_test, y_pred))
                   precision
                                recall f1-score
                                                   support
```

CPU times: total: 15min 36s

```
0
                        1.00
                                  1.00
                                             1.00
                                                    1588610
                        0.98
                                   0.79
                                             0.87
                                                       2045
                1
                                             1.00
                                                    1590655
         accuracy
        macro avg
                                             0.94
                                                    1590655
                        0.99
                                  0.89
     weighted avg
                                   1.00
                                             1.00
                                                    1590655
                        1.00
     [[1588572
                    381
                  1609]]
      Γ
           436
 []: # In this we can see that 436 transactions are fraud which are categorised as \Box
       ⇔non fraud
      # We can drop some features that does not have much importance
[53]: from sklearn.ensemble import RandomForestClassifier
      X1 = data1.
       →drop(['isFraud','origFreq','isFlaggedFraud','amountRisk','businessHours_Off-hours','busines
      ⇒axis=1)
      y1 = data1['isFraud']
      from sklearn.model_selection import train_test_split
      X_train, X_test, y_train, y_test=train_test_split(X1, y1, test_size=0.
       →25, random_state=42)
      rf1=RandomForestClassifier(n_estimators=20,n_jobs=-1)
      %time rf1.fit(X_train,y_train)
      accuracy_rf1=rf1.score(X_test,y_test)*100
      print(accuracy_rf1)
      from sklearn.metrics import classification_report, confusion_matrix
      y_pred = rf1.predict(X_test)
      print(classification_report(y_test, y_pred))
      print(confusion_matrix(y_test, y_pred))
     CPU times: total: 15min 22s
     Wall time: 2min 33s
     99.97347004850204
                   precision recall f1-score
                                                    support
                0
                        1.00
                                   1.00
                                             1.00
                                                    1588610
                        0.97
                1
                                   0.82
                                             0.89
                                                       2045
         accuracy
                                             1.00
                                                    1590655
                                  0.91
                                             0.94
        macro avg
                        0.98
                                                    1590655
     weighted avg
                        1.00
                                  1.00
                                             1.00
                                                    1590655
```

```
[[1588555
                    551
           367
                  1678]]
 []: # Still we can see that 367 transactions are fraud but are classified as not,
       \hookrightarrow fraud
      # Lets increase the number of Trees
[54]: from sklearn.ensemble import RandomForestClassifier
      X2 = data1.
       drop(['isFraud','origFreq','isFlaggedFraud','amountRisk','businessHours_Off-hours','busines
      ⊶axis=1)
      y2 = data1['isFraud']
      from sklearn.model_selection import train_test_split
      X_train,X_test,y_train,y_test=train_test_split(X2,y2,test_size=0.
       →25,random_state=42)
      rf2=RandomForestClassifier(n_estimators=50,n_jobs=-1)
      %time rf2.fit(X_train,y_train)
      accuracy_rf2=rf2.score(X_test,y_test)*100
      print(accuracy_rf2)
      from sklearn.metrics import classification_report, confusion_matrix
      y_pred = rf2.predict(X_test)
      print(classification_report(y_test, y_pred))
      print(confusion_matrix(y_test, y_pred))
     CPU times: total: 39min 11s
     Wall time: 5min 44s
     99.97334431413474
                              recall f1-score
                   precision
                                                    support
                0
                         1.00
                                   1.00
                                             1.00
                                                    1588610
                1
                         0.96
                                   0.82
                                             0.89
                                                        2045
                                             1.00
                                                    1590655
         accuracy
                                             0.94
                                                    1590655
        macro avg
                        0.98
                                   0.91
     weighted avg
                         1.00
                                   1.00
                                             1.00
                                                    1590655
     [[1588546
                    64]
                  1685]]
           360
 []: # Not much difference
      # Lets try another Classification Models
```

```
[55]: # LOGISTIC REGRESSION
      from sklearn.linear_model import LogisticRegression
      from sklearn.model_selection import train_test_split
      from sklearn.metrics import classification report, confusion matrix
      X = data1.
      →drop(['isFraud','origFreq','isFlaggedFraud','amountRisk','businessHours_Off-hours','busines
      ⇒axis=1)
      y = data1['isFraud']
      X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, __
      →random_state=42)
      lr = LogisticRegression(max_iter=1000, n_jobs=-1, random_state=42)
      %time lr.fit(X_train, y_train)
      accuracy_lr = lr.score(X_test, y_test) * 100
      print(accuracy_lr)
      y_pred = lr.predict(X_test)
      print(classification_report(y_test, y_pred))
      print(confusion_matrix(y_test, y_pred))
     CPU times: total: 1.53 s
     Wall time: 1min 51s
     99.91443776305987
                   precision recall f1-score
                                                   support
                0
                        1.00
                                  1.00
                                            1.00
                                                   1588610
                        0.74
                1
                                  0.51
                                            0.61
                                                      2045
                                            1.00
                                                   1590655
         accuracy
                                  0.75
                                            0.80
                                                  1590655
        macro avg
                        0.87
     weighted avg
                        1.00
                                  1.00
                                            1.00
                                                   1590655
     [[1588251
                   359]
      1043]]
        1002
 []: # More wrong classification than Random Forest
[64]: # XGBOOST
      from xgboost import XGBClassifier
```

from sklearn.model_selection import train_test_split

```
from sklearn.metrics import classification_report, confusion_matrix
      import warnings
      warnings.filterwarnings("ignore")
      X = data1.
       drop(['isFraud','origFreq','isFlaggedFraud','amountRisk','businessHours_Off-hours','busines
       ⊶axis=1)
      y = data1['isFraud']
      X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, __
       →random_state=42)
      xgb_model = XGBClassifier(n_estimators=100, learning_rate=0.1, max_depth=6,__
       scale_pos_weight=5, use_label_encoder=False, eval_metric='logloss')
      %time xgb_model.fit(X_train, y_train)
      accuracy_xgb = xgb_model.score(X_test, y_test) * 100
      print(accuracy_xgb)
      y_pred = xgb_model.predict(X_test)
      print(classification_report(y_test, y_pred))
      print(confusion_matrix(y_test, y_pred))
     CPU times: total: 1min 22s
     Wall time: 13.8 s
     99.96183961952781
                   precision recall f1-score
                                                   support
                0
                        1.00
                                  1.00
                                            1.00
                                                    1588610
                1
                        0.87
                                  0.82
                                            0.85
                                                       2045
                                                   1590655
                                            1.00
         accuracy
        macro avg
                        0.94
                                  0.91
                                            0.92
                                                   1590655
     weighted avg
                        1.00
                                  1.00
                                            1.00
                                                   1590655
     [[1588368
                   242]
           365
                  1680]]
[39]: # DECISION TREE
      from sklearn.tree import DecisionTreeClassifier
      from sklearn.model_selection import train_test_split
      from sklearn.metrics import classification_report, confusion_matrix
```

```
X = data1.
       -drop(['isFraud','origFreq','isFlaggedFraud','amountRisk','businessHours_Off-hours','busines
       ⇒axis=1)
      y = data1['isFraud']
      X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25,_
       →random state=42)
      dt_model = DecisionTreeClassifier(random_state=42)
      dt_model.fit(X_train, y_train)
      %time dt_model.fit(X_train, y_train)
      accuracy_dt = dt_model.score(X_test, y_test) * 100
      print(accuracy_dt)
      y_pred = dt_model.predict(X_test)
      print(classification_report(y_test, y_pred))
     print(confusion_matrix(y_test, y_pred))
     CPU times: total: 3min 42s
     Wall time: 3min 49s
     99.97114396270719
                   precision recall f1-score
                                                    support
                0
                        1.00
                                  1.00
                                            1.00
                                                    1588610
                        0.89
                                  0.89
                1
                                            0.89
                                                       2045
                                                    1590655
                                             1.00
         accuracy
        macro avg
                        0.94
                                  0.94
                                            0.94
                                                    1590655
     weighted avg
                        1.00
                                  1.00
                                            1.00
                                                    1590655
     [[1588386
                   224]
                  1810]]
      Γ
           235
[40]: # DECISION TREE WITH BALANCED WEIGHT
      from sklearn.tree import DecisionTreeClassifier
      from sklearn.model_selection import train_test_split
      from sklearn.metrics import classification_report, confusion_matrix
      X = data1.
       →drop(['isFraud','origFreq','isFlaggedFraud','amountRisk','businessHours_Off-hours','busines
       ⇒axis=1)
      y = data1['isFraud']
```

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, __
       ⇔random_state=42)
      dt_model_balanced = DecisionTreeClassifier(class_weight='balanced',_
       →random_state=42)
      dt_model_balanced.fit(X_train, y_train)
      %time dt_model_balanced.fit(X_train, y_train)
      accuracy_dt_balanced = dt_model_balanced.score(X_test, y_test) * 100
      print(accuracy_dt_balanced)
      y_pred_balanced = dt_model_balanced.predict(X_test)
      print(classification_report(y_test, y_pred_balanced))
      print(confusion_matrix(y_test, y_pred_balanced))
     CPU times: total: 2min 31s
     Wall time: 2min 34s
     99.97051529087074
                             recall f1-score
                   precision
                                                    support
                0
                                                    1588610
                        1.00
                                  1.00
                                             1.00
                1
                        0.90
                                  0.87
                                            0.88
                                                       2045
                                             1.00
                                                    1590655
         accuracy
                        0.95
                                  0.93
                                             0.94
                                                    1590655
        macro avg
                                  1.00
                                             1.00
     weighted avg
                        1.00
                                                    1590655
     [[1588411
                   199]
      Γ
           270
                  1775]]
[45]: # Deep Learning
[46]: import pandas as pd
      import numpy as np
      import warnings
      warnings.filterwarnings("ignore")
      from sklearn.model_selection import train_test_split
      from sklearn.preprocessing import StandardScaler
      from sklearn.metrics import classification report, confusion matrix
      from imblearn.over_sampling import SMOTE
      from tensorflow.keras.models import Sequential
      from tensorflow.keras.layers import Dense, Dropout
      from tensorflow.keras.callbacks import EarlyStopping
```

```
X = data1.drop(['isFraud', 'origFreq', 'isFlaggedFraud', 'amountRisk', __
 ⇔'businessHours_Off-hours', 'businessHours_Business'], axis=1)
y = data1['isFraud']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25,_
 →random state=42)
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
sm = SMOTE(random state=42)
X_res, y_res = sm.fit_resample(X_train_scaled, y_train)
model = Sequential()
model.add(Dense(128, input_dim=X_res.shape[1], activation='relu'))
model.add(Dropout(0.3))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.3))
model.add(Dense(1, activation='sigmoid'))
model.compile(optimizer='adam', loss='binary_crossentropy', u
 →metrics=['accuracy'])
early stop = EarlyStopping(monitor='val loss', patience=3)
%time history = model.fit(X_res, y_res, epochs=10, batch_size=512,_
 -validation_split=0.2, callbacks=[early_stop])
y_pred = model.predict(X_test_scaled)
y_pred = (y_pred > 0.5).astype(int)
print("Classification Report:")
print(classification_report(y_test, y_pred))
print("Confusion Matrix:")
print(confusion_matrix(y_test, y_pred))
Epoch 1/10
accuracy: 0.9845 - val_loss: 0.0497 - val_accuracy: 0.9889
accuracy: 0.9915 - val_loss: 0.0265 - val_accuracy: 0.9947
Epoch 3/10
accuracy: 0.9916 - val_loss: 0.0225 - val_accuracy: 0.9934
Epoch 4/10
```

```
Epoch 5/10
   accuracy: 0.9921 - val_loss: 0.0271 - val_accuracy: 0.9936
   Epoch 6/10
   accuracy: 0.9922 - val_loss: 0.0203 - val_accuracy: 0.9955
   Epoch 7/10
   accuracy: 0.9924 - val_loss: 0.0239 - val_accuracy: 0.9928
   accuracy: 0.9926 - val_loss: 0.0207 - val_accuracy: 0.9945
   accuracy: 0.9927 - val_loss: 0.0316 - val_accuracy: 0.9925
   CPU times: total: 1h 58min 49s
   Wall time: 23min
   49708/49708 [============ ] - 162s 3ms/step
   Classification Report:
            precision recall f1-score
          0
                1.00
                      0.99
                              1.00
                                  1588610
          1
                0.20
                       0.99
                              0.33
                                     2045
                              0.99
                                  1590655
     accuracy
     macro avg
                0.60
                       0.99
                              0.67
                                  1590655
                1.00
                       0.99
                              1.00
                                  1590655
   weighted avg
   Confusion Matrix:
   [[1580592
           8018]
   22
            2023]]
[]: *Comparision*
                     | Precision (Fraud) | Recall (Fraud) | F1-score
   Model
    →(Fraud) | Accuracy | CPU Time | Wall Time
                     0.97
   Random Forest
                                   0.82
                                              0.89
   → | 99.97% | ~15 min | 2.5 min
   Random Forest (more trees) | 0.96
                                   0.82
                                              0.89
   → | 99.97% | ~39 min | 5.7 min
   Decision Tree
                     0.89
                                   0.89
                                               0.89
                                                          ш
   → | 99.97% | ~3 min | ~3 min
   XGBoost
                     1 0.87
                                   0.82
                                               1 0.85
    → | 99.96% | 1.5 min | 13.8 s
```

accuracy: 0.9918 - val_loss: 0.0297 - val_accuracy: 0.9926

DL (SMOTE) | 0.20 | 0.99 | 0.33 | 0.99 | 0.33 | 0.99 | 0.33 | 0.99 | 0.33 | 0.99 | 0.99 | 0.33 | 0.99 | 0.9

[]: *FINAL Verdict*

- 1.If you want balance (high precision & recall) → Random Forest
- 2.If you want to catch all frauds no matter what (high recall) → Deep Learning → (with SMOTE)
- 3.If you are running in low-resource settings or want fast results → Decision ⊔ → Tree

[]:

Answers to the Ouestions

1. Data cleaning including missing values, outliers, and multi-collinearity. Answer: The dataset had no missing values, so no imputation was required.

Regarding multi-collinearity, I dropped features that were highly \hookrightarrow correlated or redundant after performing exploratory data analysis (EDA) and \hookrightarrow feature importance checks, such as isFlaggedFraud and some one-hot encoded \hookrightarrow time features.

2. Describe your fraud detection model in elaboration.

Answer:I selected the Deep Learning model as the best for fraud detection after \hookrightarrow comparing it with Logistic Regression, Random Forest, XGBoost, and Decision \hookrightarrow Tree.

Why Deep Learning?

It achieved ~99% recall for fraud cases, which is crucial because $_{\sqcup}$ $_{\hookrightarrow}$ catching fraud is more important than occasionally flagging genuine $_{\sqcup}$ $_{\hookrightarrow}$ transactions. The model was trained using SMOTE to balance the classes and $_{\sqcup}$ $_{\hookrightarrow}$ built with Keras using dense layers and dropout to prevent overfitting.

Evaluation showed high accuracy and recall, making it ideal for \Box \Box minimizing missed frauds, even if precision is lower due to false positives.

3. How did you select variables to be included in the model?
Answer:I started with feature engineering-creating new features like

→netChangeOrig, netChangeDest, amountRisk, etc.

Features like amount, oldbalanceOrg, newbalanceDest, etc., were retained $_{\!\!\!\!\perp}$ due to their importance in financial transactions.

I eliminated less informative or redundant features such as \cup \cup is Flagged Fraud or business hour encodings.

4. Demonstrate the performance of the model by using best set of tools. Answer:Decision Tree achieved high performance with very few false negatives, \sqcup \hookrightarrow making it ideal for fraud detection.

I evaluated all models using:

Accuracy

Precision

Recall

F1-Score

Confusion Matrix

Execution Time (CPU & Wall Time)

Compared to other models, Decision Tree was faster than Deep Learning $_{\sqcup}$ $_{\hookrightarrow}$ and showed competitive recall (essential for detecting fraud cases).

5. What are the key factors that predict fraudulent customers? Answer: The most predictive factors identified were:

netChangeOrig, netChangeDest

oldbalanceOrg, oldbalanceDest

newbalanceDest, amount

Transaction Frequency features

Transaction Type (e.g., CASH_OUT or TRANSFER)

6. Do these factors make sense? If yes, how?

Answer: Yes, they make perfect sense because:

Net balance changes highlight sudden or abnormal fund movements.

7. What kind of prevention should be adopted while the company updates its \cup \cup infrastructure?

Answer:Implement real-time fraud detection systems using APIs and machine \Box \Box learning models.

Adopt Multi-Factor Authentication (MFA) to secure logins and critical $_{\sqcup}$ $_{\ominus}$ transactions.

Integrate audit trails and activity monitoring for accountability.

8. Assuming these actions have been implemented, how would you determine if $_{\sqcup}$ $_{\ominus} they work?$

Answer: Pre/Post analysis of fraud incidence and trends.