ELETTRONICA DIGITALE

Corso di Laurea in Ingegneria Informatica

Prova scritta 11 settembre 2012

Esercizio A

$R_1 = 50 \Omega$	$R_9 = 2 k \Omega$
$R_2 = 1 \text{ k } \Omega$	$R_{10} = 10 \text{ k } \Omega$
$R_3 = 1 k \Omega$	$R_{11} = 4.5 \text{ k } \Omega$
$R_4 = 50 \Omega$	$C_1 = 100 \text{ nF}$
$R_6 = 1.6 \text{ k }\Omega$	$C_2 = 1 \mu F$
$R_7 = 5 \text{ k } \Omega$	$C_3 = 1 \mu F$
$R_8 = 2 k \Omega$	$V_{CC} = 18 \text{ V}$

 Q_1 è un transistore MOS a canale n resistivo, con la corrente di drain in saturazione data da $I_{DS}=k(V_{GS}-V_T)^2$ con k=0.5 mA/V 2 e $V_T=1$ V. Q_2 è un transistore BJT BC109B resistivo con $h_{re}=h_{oe}=0$. Con riferimento all'amplificatore in figura:

- 1) Calcolare il valore della resistenza R_5 in modo che, in condizioni di riposo, $V_U=9$ V; si ipotizzi di trascurare la corrente di base di Q_2 rispetto alla corrente che scorre nella resistenza R_8 . Determinare, inoltre il punto di riposo dei due transistori e verificare la saturazione di Q_1 . (R: $R_5=1200.91~\Omega$)
- 2) Determinare il guadagno V_U/V_i alle frequenze per le quali C_1 , C_2 e C_3 possono essere considerati dei corto circuiti. (R: $V_U/V_i = 161.83$)
- 3) (<u>Solo per 12 CFU</u>) Determinare la funzione di trasferimento V_U/V_i e tracciarne il diagramma di Bode quotato asintotico del modulo. (R: $f_{z1} = 0$ Hz; $f_{p1} = 2893.73$ Hz; $f_{z2} = 132.53$ Hz; $f_{p2} = 531.37$ Hz; $f_{z3} = 79.58$ Hz; $f_{p3} = 7893.7$ Hz)

Esercizio B

Progettare una porta logica in tecnologia CMOS, utilizzando la tecnica della pull-up network e della pull-down network, che implementi la funzione logica:

$$Y = \overline{A} \left(\overline{B} + \overline{C} \left(\overline{\overline{D} + E} \right) \right) + \left(\overline{C(A + B)} \right) \left(\overline{\overline{D}E} \right) + \overline{B}C$$

con in totale, non più di 16 transistori e disegnarne lo schema completo. Dimensionare inoltre il rapporto (W/L) di tutti i 16 transistori, assumendo, per l'inverter di base, W/L pari a 2 per il MOS a canale n e pari a 5 per quello a canale p. Si specifichino i dettagli della procedura di dimensionamento dei transistori.

Esercizio C

Il circuito IC_1 è un NE555 alimentato a $V_{CC} = 5V$, Q_1 ha una $R_{on} = 0$ e $V_T=1V$ e l'inverter è ideale. Determinare la frequenza del segnale di uscita del multivibratore in figura. (R: f = 6507.58 Hz)

È consentita la consultazione del solo manuale della caratteristiche. Nel caso di presenza appunti, testi o carta carbone in vista, si procederà all'immediato annullamento della prova scritta.

=)
$$V_{CE} = 9-4=5V = 3=0$$
 => $I_{B} = 6.8\% \mu J$
 $I_{C} = 2mA$

$$T_8 = \frac{V_B}{R_{8+}} = \frac{4.1}{2000} = 2.35 \text{ mA}$$

$$I_6 = \frac{V_{cc} - V_b}{R_6} = 5.125 \text{ mA}$$

=)
$$(V_{65}-V_{7}) = + \sqrt{\frac{I_{5}}{K}} = 2.865 V$$

$$V_{6} = \frac{V_{62}}{2} = 9V$$
 $V_{6} = \frac{V_{62}}{2} = 9V$
 $V_{6} = \frac{V_{63}}{2} = 9V$
 $V_{6} = \frac{V_{64}}{2} = 9V$
 $V_{6} = \frac{V_{64}}{2} = 9V$

$$=) R_{5} = \frac{V_{5}}{I_{D}} = \frac{3.876496}{4.05 \times 10^{3}} = 333.76.2002 = 320.5.2002$$

$$\begin{split} & \bar{A} \left[\bar{B} + \bar{C} \left(D \bar{E} \right) \right] + \left[\bar{C} + (\bar{A} + \bar{B}) \right] \left[D + \bar{E} \right] + \bar{B} C = \\ & = \bar{A} \bar{B} + \bar{A} \bar{C} D \bar{E} + \left[(\bar{C} + \bar{A} \bar{B}) (D + \bar{E}) \right] + \bar{B} C = \\ & = \bar{A} \bar{B} + \bar{A} \bar{C} D \bar{E} + \bar{C} D + \bar{C} \bar{E} + \bar{A} \bar{B} D + \bar{A} \bar{B} \bar{E} + \bar{B} C = \\ & = \bar{B} (\bar{A} + C) + \bar{C} \left(D + \bar{E} \right) \end{split}$$

$$V_{i} = \frac{1}{3} V_{ce}$$

$$V_{k} = \frac{V_{ce}}{R_{s} + R_{c} + R_{s}}$$

$$V_{k} = \frac{V_{ce}}{R_{s} + R_{c} + R_{s}}$$

$$V_{tr} = \frac{2V_{ce}}{R_{s}} - \frac{V_{ce} - \frac{2}{3}V_{ce}}{R_{s}} \cdot R_{1} = 2.5V$$

$$R_{3} = \frac{2}{3} V_{ce} - \frac{V_{ce} - \frac{2}{3}V_{ce}}{R_{2}} \cdot R_{1} = 2.5V$$

$$R_{3} = \frac{2}{3} V_{ce} - \frac{V_{ce} - \frac{2}{3}V_{ce}}{R_{2}} \cdot R_{1} = 2.5V$$

$$R_{3} = \frac{2}{3} V_{ce} - \frac{V_{ce} - \frac{2}{3}V_{ce}}{R_{2}} \cdot R_{1} = 2.5V$$

$$R_{3} = \frac{2}{3} V_{ce} - \frac{V_{ce} - \frac{2}{3}V_{ce}}{R_{2}} \cdot R_{1} = 2.5V$$

$$R_{3} = \frac{2}{3} V_{ce} - \frac{2}{3} V_{ce} \cdot R_{1} = 2.5V$$

$$R_{3} = \frac{2}{3} V_{ce} - \frac{2}{3} V_{ce} \cdot R_{1} = 2.5V$$

$$R_{3} = \frac{2}{3} V_{ce} - \frac{2}{3} V_{ce} \cdot R_{1} = 2.5V$$

$$R_{3} = \frac{2}{3} V_{ce} - \frac{2}{3} V_{ce} \cdot R_{1} = 2.5V$$

$$R_{3} = \frac{2}{3} V_{ce} - \frac{2}{3} V_{ce} \cdot R_{1} = 2.5V$$

$$R_{3} = \frac{2}{3} V_{ce} - \frac{2}{3} V_{ce} \cdot R_{1} = 2.5V$$

$$R_{3} = \frac{2}{3} V_{ce} - \frac{2}{3} V_{ce} \cdot R_{1} = 2.5V$$

$$R_{3} = \frac{2}{3} V_{ce} - \frac{2}{3} V_{ce} \cdot R_{1} = 2.5V$$

$$R_{3} = \frac{2}{3} V_{ce} - \frac{2}{3} V_{ce} \cdot R_{1} = 2.5V$$

$$R_{3} = \frac{2}{3} V_{ce} - \frac{2}{3} V_{ce} \cdot R_{1} = 2.5V$$

$$R_{3} = \frac{2}{3} V_{ce} - \frac{2}{3} V_{ce} \cdot R_{1} = 2.5V$$

$$R_{3} = \frac{2}{3} V_{ce} - \frac{2}{3} V_{ce} \cdot R_{1} = 2.5V$$

$$R_{3} = \frac{2}{3} V_{ce} - \frac{2}{3} V_{ce} \cdot R_{1} = 2.5V$$

$$R_{3} = \frac{2}{3} V_{ce} - \frac{2}{3} V_{ce} \cdot R_{1} = 2.5V$$

$$R_{3} = \frac{2}{3} V_{ce} - \frac{2}{3} V_{ce} -$$

$$V_i = \frac{1}{3}V_{cz}$$
 $V_R = \frac{V_{cc}}{R_{s+}R_{c+}R_{s}}$
 $R_s = \frac{4.3448V}{R_{s+}R_{c+}R_{s}}$

$$Q = \phi$$

$$\begin{cases}
R_1 \\
V_{TR}
\end{cases} V_i = 2.5V$$

$$V_f = \phi$$

$$V_{con} = \frac{1}{2}V_{cc}$$

$$V_i = 2.5V$$

$$V_f = \phi$$

$$V_{con} = \frac{1}{3} V_{cc}$$

$$T_2 = C[R_3||R_4||(R_1+R_2)] = 1.395 \times 10^{-4}$$