西安电子科技大学 计算机科学与技术学院 实验报告

课程名称: 机器学习与数据挖掘

课程类型: 必修 (选修)

实验题目: 基于 CNN 的海面船舶图像分类

学号:

姓名:

注意:

报告压缩包命名格式:第三次大作业-学号-姓名 每个压缩包小于 100M。

作业提交截止日期 6 月 5 号晚 24:00 前。过期、迟交作业不再接收,发现 抄袭作业双方算零分。作业发送至课代表邮箱:1260981908@qq.com。

作业: 参考提供的 ResNet34 的实现代码,实现 VGG13 对海面舰船数据的二分类任务(船类和非船类),数据集在提供的文件中。

要求和建议:

- (1)首先在报告中给出关于所选模型的网络架构细节,如网络一共有多少层,有多少卷积层、池化层、全连接层、隐层和输出层的激活函数、初始学习率、batch size 大小、训练集和测试集划分比例等。因硬件资源受限网络训练不能进行时,可适当减少网络层数,但要保证训练收敛,获得一个较好的分类性能。
- (2)报告的实验结果中要给出算法的训练损失函数随迭代期(epoch)的变化曲线、分类性能的评价(参考 ResNet34 的 PPT 和示例代码中四个评价度量指标)、测试集上模型的消耗时间等。也可以给出算法运行的其它形式可展示的中间结果。结果以表格形式展示更直观。
- (3)使用 Python 语言实现,可以借助于现有的公开包和库(如 PyTorch),但要在报告文档中指出主要依赖的包名称。可考虑使用 Google Colab 免费 GPU 服务器训练和测试网络。

电子报告文档中附上源码,提交的作业压缩包中**提供源码,不需要提供原始 训练数据和权重文件**。需要给出实验结果的分析和讨论。

报告大纲(供参考,可不拘泥于提供的大纲): 基于 CNN 的海面舰船图像二分类

本报告选取基于 VGG13 (可替换层其它的模型) 的网络架构模型,实现对海面舰船数据的二分类任务(船类和非船类),报告具体内容如下。

1. 模型依赖的环境和硬件配置

2. VGG13 (可替换) 的网络架构模型细节

VGG13(可替换)网络架构共有 xxx 层,其中卷积层有 xx,全连接层有 xxx 层,xxxx。

3. 实验结果

本节给出基于 VGG13 (可替换) 的卷积神经网络分类模型对海面舰船数据的二分类结果。

3.1 网络模型参数

总样本数	Epoch	Batch size	Iteration	初始学习率

Epoch 大小自己设定,如 10-100 之间的任何值。

3.2 损失函数随 epoch 的变化曲线

3.3 分类模型对海面舰船数据的二分类结果

序	训练组	集样本	测词	集样本	分类性能指标				测试集上
号	船	非船	船	非船	Accuracy	Precision	Recal1	F1	消耗时间
1									
2									

序号1和2可以是修改某些参数后体现出不同的分类精度和消耗时间。

4. 实验结果总结和分析