Mathematical Analysis II

Felix Chen

Contents

Proof. Since $\Omega = \Phi(I)$, let y be the coordinates on I, $x = \Phi(y)$,

$$\int_{\Phi(I)} \nabla \varphi \, \mathrm{d}x = \int_{I} \nabla \varphi(\Phi(y)) (\mathrm{d}\Phi)^{-1} J_{\Phi} \, \mathrm{d}y.$$

Let $A = d\Phi$, WLOG $J_{\Phi} > 0$. Using the index notation and Einstein summation,

$$A_{kj}A^{ji} = A^{kj}A_{ji} = \delta_{ki}.$$

Thus

$$\partial_{y_j} \varphi A^{ji} |A| = \partial_{y_j} (\varphi A^{ji} |A|) - \varphi \partial_{y_j} (A^{ji} |A|)$$

Since $|A| = A_{kl}A^{kl}|A|$, $A_{kl} = \frac{\partial \Phi_k}{\partial y_l}$.

$$\begin{split} \partial_{y_j}(A^{ji}|A|) &= |A|\partial_{y_j}A^{ji} + A^{ji}\partial_{y_j}|A| \\ &= |A|\partial_{y_j}A^{ji} + A^{ji}|A|\partial_{y_j}A_{kl}A^{kl} \\ &= |A|(\partial_{y_j}A^{ji} + \partial_{y_l}A_{kj}A^{kl}) \\ &= |A|(\partial_{y_j}A^{ji} - \partial_{y_j}A^{ji}) = 0. \end{split}$$

Hence by our previous work,

$$\int_{I} \partial_{y_{j}}(\varphi A^{ji}|A|) \, \mathrm{d}y = \int_{\partial I} \varphi A^{ji}|A|\nu_{j} \, \mathrm{d}\sigma.$$

Putting this together for all i's, note that $\widetilde{\nu} = \frac{\nabla \Phi_n^{-1}}{|\nabla \Phi_n^{-1}|}$, TODO

Let (ϕ_1, \ldots, ϕ_n) be an element in the tangent boundle TM, it can represent a vector field

$$X = (\phi_1, \dots, \phi_n) = \sum_{i=1}^n \phi_i \frac{\partial}{\partial x_i}.$$

Here $X \in TM, X(p) \in T_pM$.

We define the **divergence** of X to be

$$\operatorname{div}(X) = \sum_{i=1}^{n} \frac{\partial \phi_i}{\partial x_i}.$$

The Stolke's formula can be presented as divergence theorem:

Analysis II CONTENTS

Theorem 0.0.1 (Divergence theorem)

Let X be a vector field,

$$\int_{D} \operatorname{div}(X) \, \mathrm{d}x = \int_{\partial D} X \cdot \nu \, \mathrm{d}\sigma.$$

Another commonly-used operator is the **Laplace operator**:

$$\Delta = \operatorname{div} \cdot \nabla, \quad \Delta \phi = \operatorname{div}(\nabla \phi) = \operatorname{tr}(H_{\phi}) = \sum_{i=1}^{n} \frac{\partial^{2} \phi}{\partial x_{i}^{2}}.$$

When n=2, we have $X=P\frac{\partial}{\partial x}+Q\frac{\partial}{\partial y}$, $\operatorname{div}(X)=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}$,

$$\int_{D} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} \right) dx dy = \int_{\partial D} X \cdot \nu d\sigma.$$

Since ∂D is a curve $\gamma(t)$, so $d\sigma = |\gamma'(t)| dt$. Let $\gamma(t) = (x(t), y(t))$, then $\nu(t) = \frac{(y'(t), -x'(t))}{|\gamma'(t)|}$. Here we must take $\gamma(t)$ to be *counterclockwise* to ensure ν points outside of D.

Thus we get

$$\int_{\partial D} X \cdot \nu \, d\sigma = \int_{\gamma} \frac{Py'(t) - Qx'(t)}{|\gamma'(t)|} |\gamma'(t)| \, dt = \int_{\partial D} (P \, dy - Q \, dx).$$

This result is known as *Green's formula*.

This leads to the curve integrals of the second type: let $\gamma(t) \in \mathbb{R}^d$, X a vector field, we call the integral

$$\int_{\gamma} \sum_{i=1}^{d} X^{i} dx_{i} = \int_{\gamma} X \cdot d\gamma(t).$$

the curve integral of the second type.

When n=3, the result is called Gauss's formula, we have $X=P\frac{\partial}{\partial x}+Q\frac{\partial}{\partial y}+R\frac{\partial}{\partial z}$,

$$\int_{D} \operatorname{div}(X) \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z = \int_{\partial D} X \cdot \nu \, \mathrm{d}\sigma.$$

Let $\gamma(u,v)=(x,y,z)$ be a parametrization of ∂D . We have two tangent vector γ_u, γ_v , so the normal vector is defined as $\nu=\frac{\gamma_u\times\gamma_v}{|\gamma_u\times\gamma_v|}$. Also $d\sigma=|\gamma_u\times\gamma_v|\,du\,dv$. After some computation we can get

$$\nu \, d\sigma = (dy \, dz, dz \, dx, dx \, dy).$$

$$\int_{D} \operatorname{div}(X) \, dx \, dy \, dz = \int_{\partial D} (P \, dy \, dz + Q \, dz \, dx + R \, dx \, dy).$$

§0.1 Differential forms

Let T_p^*M denote the *dual space* of T_pM , and $\mathrm{d}x_i$ is the dual basis of $\frac{\partial}{\partial x_i}$. The linear combination of $\mathrm{d}x_i$ are called **differential forms**, and a differential form on a manifold can be written as $\sum_{i=1}^n a_i \, \mathrm{d}x_i$, where a_i are functions on M.

We can construct differential forms of higher order, the order is $1 \le k \le n$, called **k-forms**, which is a linear combination of

$$dx_{i_1} dx_{i_2} \cdots dx_{i_k}, \quad i_1 < i_2 < \cdots < i_k.$$

Analysis II CONTENTS

Here the product is wedge product, i.e. $dx_i dx_j = -dx_j dx_i$. We denote the space of all k-forms by $\Lambda^k(\Omega)$.

We can define the multiplication of forms: let $\omega_1 \in \Lambda^{k_1}$, $\omega_2 \in \Lambda^{k_2}$, then $\omega_1 \wedge \omega_2 \in \Lambda^{k_1+k_2}$ by multiplying the coefficients and dx_i 's respectively.

There's also an operator called **exterior differentiation** $d: \Lambda^k \to \Lambda^{k+1}$, where

$$d(a dx_{i_1} \cdots dx_{i_k}) = \sum_{j=1}^n \frac{\partial a}{\partial x_j} dx_j dx_{i_1} \cdots dx_{i_k}.$$

This operator behaves like the derivatives very much:

$$d(\omega_1 + \omega_2) = d\omega_1 + d\omega_2, \quad d(\omega_1 \omega_2) = d\omega_1 \wedge \omega_2 + (-1)^{k_1 k_2} \omega_1 \wedge d\omega_2.$$

Note that $\omega_1 \wedge \omega_2 = (-1)^{k_1 k_2} \omega_2 \wedge \omega_1$, so when $k_1 k_2$ is even, the wedge product may not be anti-symmetrical.

If we have a coordinate transformation $\Phi:(x_1,\ldots,x_n)\to(y_1,\ldots,y_n)$, we have

$$\mathrm{d}y_i = \sum_{i=1}^n \frac{\partial y_i}{\partial x_i} \, \mathrm{d}x_i,$$

thus $dy_1 \cdots dy_n = J_{\Phi} dx_1 \cdots dx_n$. Here J_{Φ} can be negative, so the differential forms already contains the information of orientation.

Theorem 0.1.1

Let ω be a differential form, $d(d\omega) = 0$.

Proof. Partial derivatives commute.

Definition 0.1.2. Let ω be a differential form, if $d\omega = 0$, we say ω is a **closed form**, if there exists ω_1 s.t. $d\omega_1 = \omega$, then ω is a **exact form**.

The theorem above tells us that exact forms must be closed, but in general closed forms may not be exact, it depends on the topology structure of Ω .

Theorem 0.1.3 (Poincare)

The closed forms on \mathbb{R}^n must be exact.

Proof. Use induction, when ω is an n-form this can be proved by computation.

For a generic form $\omega = \omega_1 + dx_1 \wedge \omega_2$, where ω_1, ω_2 do not contain dx_1 . We want to find ω_3 s.t. $d\omega_3 = dx_1 \wedge \omega_2 + \omega_4$, where ω_3, ω_4 don't contain dx_1 as well. (The construction is direct)

Since $\omega - d\omega_3 = \omega_1 - \omega_4$, and

$$d(\omega - d\omega_3) = d\omega = 0 \implies d(\omega_1 - \omega_4) = 0.$$

Since $d(\omega_1 - \omega_4) = 0$ and it doesn't contain dx_1 , hence all its coefficients can't contain dx_1 . Thus we can view it as a differential form in \mathbb{R}^{n-1} .

Analysis II CONTENTS

Remark 0.1.4 — When Ω is simply connected, then all the closed 1-forms are exact. Also this is equivalent to the integral on any closed curves are 0.

We can rewrite Stolkes' formula using differential forms:

Theorem 0.1.5 (Stolkes' formula)

Let D be a k+1 dimensional orientable manifold, $\omega \in \Lambda^k(\mathbb{R}^n)$, we have

$$\int_D \mathrm{d}\omega = \int_{\partial D} \omega.$$