Amendment to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently amended) An Actinium-225 complex comprising a functionalized polyazamacrocyclic chelant compound of the formula I, hereinbelow:

$$G \xrightarrow{Q} N \xrightarrow{T} Q$$

wherein:

$$\nearrow$$

T is

$$L \xrightarrow{\begin{pmatrix} X \\ C \\ Y \end{pmatrix}_m} (CH_2)_n - C - (CH_2)_r - C$$

G is independently hydrogen or

each Q is independently hydrogen, (CHR⁵)_pCO₂R or (CHR⁵)_pPO₃R⁶R⁷ or

$$L \xrightarrow{\begin{pmatrix} X \\ | \\ C \\ | \\ Y \end{pmatrix}_m} (CH_2)_n \xrightarrow{Q^1} (CH_2)_r \xrightarrow{\qquad}$$

 Q^1 is hydrogen, $(CHR^5)_wCO_2R$ or $(CHR^5)_wPO_3R^6R^7$; each R is independently hydrogen, benzyl or C_1 - C_4 alkyl; R^6 and R^7 are independently H, C_1 - C_6 alkyl or $(C_1$ - C_2 alkyl)phenyl; each R⁵ is independently hydrogen; C₁-C₄ alkyl or

(C₁-C₂ alkyl)phenyl;

with the proviso that at least two of the sum of Q and Q¹ must be other than hydrogen;

A is CH, N, C-Br, C-Cl, C-SO₃H, C-OR⁸, C-OR⁹N⁺-R¹⁰X⁻, or

$$C = C \longrightarrow R^{11}$$

Z and Z¹ independently are CH, N, C-SO₃H, N*-R¹⁰X-, C-CH₂-OR⁸ or C-C(O)-R¹¹;

 R^8 is H, C_1 - C_5 alkyl, benzyl, or benzyl substituted with at least one R^{12} ; R^9 is C_1 - C_{16} alkylamino;

R¹⁰ is C₁-C₁₆ alkyl, benzyl, or benzyl substituted with at least one R¹²; R¹¹ is O (C₁-C₂ alkyl), OH or NHR¹³;

R¹²-is H, NO₂, NH₂, isothiocyanato, semicarbazido, thiosemicarbazido, maleimido, bromoacetamido or carboxyl;

 \mathbb{R}^{13} -is- \mathbb{C}_1 - \mathbb{C}_5 -alkyl;

X and Y are each independently hydrogen or may be taken with an adjacent X and Y to form an additional carbon-carbon bond;

n is 0 or 1;

m is an integer from 0 to 10 inclusive;

p is 1 or 2;

r is 0 or 1;

w is 0 or 1;

with the proviso that n is only 1 when X and/or Y form an additional carbon-carbon bond, and the sum of r and w is 0 or 1;

L is a linker/spacer group covalently bonded to, and replaces one hydrogen atom of one of the carbon atoms to which it is joined, said linker/spacer group being represented by the formula Appln. No. 10/664,670 Response October 13, 2004 Reply to Office Action of August 6, 2004

$$R^1$$
 Cyc $CH_2)_t$

wherein:

s is an integer of 0 or 1;

t is an integer of 0 to 20 inclusive;

R¹ is H, NO₂, NH₂, isothiocyanato, semicarbazido, thiosemicarbazido, maleimido, bromoacetamido or carboxylor an electrophilic or nucleophilic moiety which allows for covalent attachment to a biological carrier, or synthetic linker which can be attached to a biological carrier, or precursor thereof; and

Cyc represents a cyclic aliphatic moiety, aromatic moiety, aliphatic heterocyclic moiety, or aromatic heterocyclic moiety, each of said moieties optionally substituted with one or more groups which do not interfere with binding to a biological carrier selected from the group consisting of a protein, antibody, antibody fragment, hormone, peptide, growth factor, antigen or hapten;

with the proviso that when R¹ is H, the linkage to the biological carrier is through one of Q or Q¹; and with the proviso that when R¹ is other than H, at least one of Q and Q¹ must be (CHR⁵)_pPO₃R⁶R⁷; and with further proviso that when Q is (CHR⁵)_pCO₂R, Q¹ is (CHR⁵)_wCO₂R, R is H, R⁵ is H, and R¹ is H, then the sum of m, n, p, r, s, t, and w is greater than 1;

or pharmaceutically acceptable salt thereof; complexed with ²²⁵Ac.

- 2. (Original) A conjugate comprising the complex of Claim 1 covalently attached to a biological carrier.
- 3. (Original) The conjugate according to Claim 2 wherein the biological carrier is a protein, antibody, antibody fragment, hormone, peptide, growth factor, antigen or hapten.
- 4. (Cancelled)

 (Currently amended) The complex according to Claim 1 wherein the functionalized chelant is a compound of formula II

Π

wherein:

each Q is independently hydrogen, (CHR⁵)_pCO₂R or (CHR⁵)_pPO₃R⁶R⁷ or

$$L \xrightarrow{\begin{pmatrix} X \\ - \\ C \\ Y \end{pmatrix}_m} (CH_2)_n - C \xrightarrow{\downarrow} (CH_2)_r - \cdots$$

 Q^1 is hydrogen, $(CHR^5)_wCO_2R$ or $(CHR^5)_wPO_3R^6R^7$; each R is independently hydrogen, benzyl or C_1 - C_4 alkyl; R^6 and R^7 are independently H, C_1 - C_6 alkyl or $(C_1$ - C_2 alkyl)phenyl;

each R^5 is independently hydrogen; $C_1\text{-}C_4$ alkyl or

(C₁-C₂ alkyl)phenyl;

with the proviso that at least two of the sum of Q and Q¹ must be other than hydrogen;

X and Y are each independently hydrogen or may be taken with an adjacent X and Y to form an additional carbon-carbon bond;

n is 0 or 1;

m is an integer from 0 to 10 inclusive;

p is 1 or 2;

r is O or 1;

w is O or 1;

with the proviso that n is only 1 when X and/or Y form an additional carbon-carbon bond, and the sum of r and w is 0 or 1;

L is a linker/spacer group covalently bonded to, and replaces one hydrogen atom of one of the carbon atoms to which it is joined, said linker/spacer group being represented by the formula

$$R^1$$
 (Cyc)_s (CH₂)_t

wherein:

s is an integer of 0 or 1;

t is an integer of 0 to 20 inclusive;

R¹ is H-, NO₂, NH₂, isothiocyanato, semicarbazido, thiosemicarbazido, maleimido, bromoacetamido or carboxylor an electrophilic or nucleophilic moiety which allows for covalent attachment to a biological carrier, or synthetic linker which can be attached to a biological carrier, or precursor thereof; and

Cyc represents a cyclic aliphatic moiety, aromatic moiety, aliphatic heterocyclic moiety, or aromatic heterocyclic moiety, each of said moieties optionally substituted with one or more groups which do not interfere with binding to a biological carrier selected from the group consisting of a protein, antibody, antibody fragment, hormone, peptide, growth factor, antigen or hapten;

with the proviso that when R¹ is H, the linkage to the biological carrier is through one of Q or Q¹; and with the proviso that when R¹ is other than H, at least one of Q and Q¹ must be (CHR⁵)_pPO₃R⁶R⁷; and with further proviso that when Q is (CHR⁵)_pCO₂R, Q¹ is (CHR⁵)_wCO₂R, R is H, R⁵ is H, and R¹ is H, then the sum of m, n, p, r, s, t, and w is greater than 1;

or pharmaceutically acceptable salt thereof.

6. (Currently amended) The complex according to Claim 1 wherein the functionalized chelant is a compound of formula III

Ш

wherein:

each Q is independently hydrogen, (CHR⁵)_pCO₂R or (CHR⁵)_pPO₃R⁶R⁷ or

$$L \xrightarrow{\begin{pmatrix} X \\ C \\ Y \end{pmatrix}_m} (CH_2)_n \xrightarrow{Q}^1 (CH_2)_r - C$$

Q¹ is hydrogen, (CHR⁵)_wCO₂R or (CHR⁵)_wPO₃R⁶R⁷;

each R is independently hydrogen, benzyl or C_1 - C_4 alkyl; R^6 and R^7 are independently H, C_1 - C_6 alkyl or $(C_1$ - C_2 alkyl)phenyl;

each R^5 is independently hydrogen; $C_1\text{-}C_4$ alkyl or

(C₁-C₂ alkyl)phenyl;

with the proviso that at least two of the sum of Q and Q¹ must be other than hydrogen;

X and Y are each independently hydrogen or may be taken with an adjacent X and Y to form an additional carbon-carbon bond;

n is 0 or 1;

m is an integer from 0 to 10 inclusive;

p is l or 2;

r is O or 1;

w is O or 1;

with the proviso that n is only 1 when X and/or Y form an additional carbon-carbon bond, and the sum of r and w is 0 or 1;

L is a linker/spacer group covalently bonded to, and replaces one hydrogen atom of one of the carbon atoms to which it is joined, said linker/spacer group being represented by the formula

$$R^1$$
 (Cyc)_s (CH₂)_t

wherein:

s is an integer of 0 or 1;

t is an integer of 0 to 20 inclusive;

R¹ is H-, NO₂, NH₂, isothiocyanato, semicarbazido, thiosemicarbazido, maleimido, bromoacetamido or carboxylor an electrophilic or nucleophilic moiety which allows for covalent attachment to a biological carrier, or synthetic linker which can be attached to a biological carrier, or precursor thereof; and

Cyc represents a cyclic aliphatic moiety, aromatic moiety, aliphatic heterocyclic moiety, or aromatic heterocyclic moiety, each of said moieties optionally substituted with one or more groups which do not interfere with binding to a biological carrier selected from the group consisting of a protein, antibody, antibody fragment, hormone, peptide, growth factor, antigen or hapten;

with the proviso that when R¹ is H, the linkage to the biological carrier is through one of Q or Q¹; and with the proviso that when R¹ is other than H, at least one of Q and Q¹ must be (CHR⁵)_pPO₃R⁶R⁷; and with further proviso that when Q is (CHR⁵)_pCO₂R, Q¹ is (CHR⁵)_wCO₂R, R is H, R⁵ is H, and R¹ is H, then the sum of m, n, p, r, s, t, and w is greater than 1;

or a pharmaceutically acceptable salt thereof.

- 7. (Original) A conjugate according to Claim 2 comprising the ²²⁵Ac complex of DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) covalently attached via amide linkage to a biological carrier.
- 8. (Original) A conjugate according to Claim 2 comprising the ²²⁵Ac complex of 2-(p-isothiocyanatobenzyl)-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid covalently attached to a biological carrier.
- 9. (Original) A pharmaceutical formulation comprising the ²²⁵Ac conjugate of Claim 2 and a pharmaceutically acceptable carrier.
- 10. (Original) The formulation of Claim 9 wherein the pharmaceutically acceptable carrier is a liquid.
- 11. (Original) A method of therapeutic treatment of a mammal having cancer which comprises administering to said mammal a therapeutically effective amount of the formulation of Claim 9.