Pseudokonečné struktury a limity

Ondřej Ježil

9. června 2022

• Práce se pohybuje na rozmezí matematické logiky a teorie složitosti

- Práce se pohybuje na rozmezí matematické logiky a teorie složitosti
- Limita struktur: posloupnost konečných grafů → nekonečný "graf", zachycuje vlastnosti dané posloupnosti

- Práce se pohybuje na rozmezí matematické logiky a teorie složitosti
- ullet Limita struktur: posloupnost konečných grafů o nekonečný "graf", zachycuje vlastnosti dané posloupnosti
- Mnoho konstrukcí (ultraprodukt, věta o kompaktnosti, grafony, ...)

- Práce se pohybuje na rozmezí matematické logiky a teorie složitosti
- Limita struktur: posloupnost konečných grafů → nekonečný "graf", zachycuje vlastnosti dané posloupnosti
- Mnoho konstrukcí (ultraprodukt, věta o kompaktnosti, grafony, ...)
- Využití (0-1 zákony, extremální kombinatorika, ...)

• V práci definuji nový pojem tzv. široké limity

- V práci definují nový pojem tzv. široké limity
- Intuice: třída vstupů výpočetního problému → limitní objekt, vlastnosti ≈ jak algoritmy dané složitosti "vidí obecný vstup"

- V práci definuji nový pojem tzv. široké limity
- Intuice: třída vstupů výpočetního problému → limitní objekt, vlastnosti ≈ jak algoritmy dané složitosti "vidí obecný vstup"
- Klíčová metoda: Forsing s náhodnými proměnnými

- V práci definuji nový pojem tzv. široké limity
- Intuice: třída vstupů výpočetního problému → limitní objekt, vlastnosti ≈ jak algoritmy dané složitosti "vidí obecný vstup"
- Klíčová metoda: Forsing s náhodnými proměnnými
- Cíl práce:

- V práci definuji nový pojem tzv. široké limity
- Intuice: třída vstupů výpočetního problému → limitní objekt, vlastnosti ≈ jak algoritmy dané složitosti "vidí obecný vstup"
- Klíčová metoda: Forsing s náhodnými proměnnými
- Cíl práce:
 - Vyvinout základní teorii

- V práci definuji nový pojem tzv. široké limity
- Intuice: třída vstupů výpočetního problému → limitní objekt, vlastnosti ≈ jak algoritmy dané složitosti "vidí obecný vstup"
- Klíčová metoda: Forsing s náhodnými proměnnými
- Cíl práce:
 - Vyvinout základní teorii
 - Předvést příklady

- V práci definuji nový pojem tzv. široké limity
- Intuice: třída vstupů výpočetního problému → limitní objekt, vlastnosti ≈ jak algoritmy dané složitosti "vidí obecný vstup"
- Klíčová metoda: Forsing s náhodnými proměnnými
- Cíl práce:
 - Vyvinout základní teorii
 - Předvést příklady
 - Svázat vlastnosti těchto limit s teorií složitosti

- V práci definuji nový pojem tzv. široké limity
- Intuice: třída vstupů výpočetního problému → limitní objekt, vlastnosti ≈ jak algoritmy dané složitosti "vidí obecný vstup"
- Klíčová metoda: Forsing s náhodnými proměnnými
- Cíl práce:
 - Vyvinout základní teorii
 - Předvést příklady
 - Svázat vlastnosti těchto limit s teorií složitosti
- Následuje neformální popis široké limity

Definice

- existuje rostoucí posloupnost $\{g_k\}_{k>0}$ tak, že pro každé $G \in \mathcal{G}_k$ je množina vrcholů $V_G = \{0, \dots, g_k 1\}$,
- $\lim_{k\to\infty} |\mathcal{G}_k| = \infty$.

Definice

- existuje rostoucí posloupnost $\{g_k\}_{k>0}$ tak, že pro každé $G \in \mathcal{G}_k$ je množina vrcholů $V_G = \{0, \dots, g_k 1\}$,
- $\lim_{k\to\infty} |\mathcal{G}_k| = \infty$.
- G_k : grafy velikosti g_k

Definice

- existuje rostoucí posloupnost $\{g_k\}_{k>0}$ tak, že pro každé $G \in \mathcal{G}_k$ je množina vrcholů $V_G = \{0, \dots, g_k 1\}$,
- $\lim_{k\to\infty} |\mathcal{G}_k| = \infty$.
- \mathcal{G}_k : grafy velikosti g_k

Definice

- existuje rostoucí posloupnost $\{g_k\}_{k>0}$ tak, že pro každé $G \in \mathcal{G}_k$ je množina vrcholů $V_G = \{0, \dots, g_k 1\}$,
- $\lim_{k\to\infty} |\mathcal{G}_k| = \infty$.
- \mathcal{G}_k : grafy velikosti g_k
- Příklady: grafy s právě jednou hranou, grafy s přesně jednou velkou klikou, grafy obsahující trojúhelník, . . .

• Matematická logika: $\exists \mathcal{M} \models \mathsf{Th}(\mathbb{N}), \ \mathcal{M} \ncong \mathbb{N}$

- Matematická logika: $\exists \mathcal{M} \models \mathsf{Th}(\mathbb{N}), \ \mathcal{M} \ncong \mathbb{N}$
- ullet Fixujeme nestandardní model ${\mathcal M}$ (splňující tech. podmínkou)

- Matematická logika: $\exists \mathcal{M} \models \mathsf{Th}(\mathbb{N}), \ \mathcal{M} \ncong \mathbb{N}$
- ullet Fixujeme nestandardní model ${\mathcal M}$ (splňující tech. podmínkou)
- $\mathcal M$ je tedy polookruh, vlastnosti prvního řádu se shodují s $\mathbb N$ (axiomy polookruhů, indukce, Velká Fermatova věta, . . .)

- Matematická logika: $\exists \mathcal{M} \models \mathsf{Th}(\mathbb{N}), \ \mathcal{M} \ncong \mathbb{N}$
- ullet Fixujeme nestandardní model ${\mathcal M}$ (splňující tech. podmínkou)
- $\mathcal M$ je tedy polookruh, vlastnosti prvního řádu se shodují s $\mathbb N$ (axiomy polookruhů, indukce, Velká Fermatova věta, . . .)
- Prvky \mathcal{M} můžeme: sčítat, násobit, $\lfloor \frac{x}{2} \rfloor$, $\lfloor \log(x) \rfloor$, ...

- Matematická logika: $\exists \mathcal{M} \models \mathsf{Th}(\mathbb{N}), \ \mathcal{M} \ncong \mathbb{N}$
- ullet Fixujeme nestandardní model ${\mathcal M}$ (splňující tech. podmínkou)
- $\mathcal M$ je tedy polookruh, vlastnosti prvního řádu se shodují s $\mathbb N$ (axiomy polookruhů, indukce, Velká Fermatova věta, . . .)
- Prvky \mathcal{M} můžeme: sčítat, násobit, $\lfloor \frac{x}{2} \rfloor$, $\lfloor \log(x) \rfloor$, . . .
- Dosadit jako index v široké posloupnosti: \mathcal{G}_n

- Matematická logika: $\exists \mathcal{M} \models \mathsf{Th}(\mathbb{N}), \ \mathcal{M} \ncong \mathbb{N}$
- ullet Fixujeme nestandardní model ${\mathcal M}$ (splňující tech. podmínkou)
- $\mathcal M$ je tedy polookruh, vlastnosti prvního řádu se shodují s $\mathbb N$ (axiomy polookruhů, indukce, Velká Fermatova věta, . . .)
- Prvky \mathcal{M} můžeme: sčítat, násobit, $\lfloor \frac{x}{2} \rfloor$, $\lfloor \log(x) \rfloor$, . . .
- Dosadit jako index v široké posloupnosti: G_n
- Získáme nekonečnou množinu pseudokončených grafů

• Třída funkcí F: vstupy jsou grafy, výstupy jsou vrcholy

- Třída funkcí F: vstupy jsou grafy, výstupy jsou vrcholy
- ullet F náhodné vrcholy v $\{0,\ldots,g_n-1\}$

- Třída funkcí F: vstupy jsou grafy, výstupy jsou vrcholy
- F náhodné vrcholy v $\{0,\ldots,g_n-1\}$
- Na F definujeme (Booleovsky ohodnocený) graf $\lim_F \mathcal{G}_n$.

- Třída funkcí F: vstupy jsou grafy, výstupy jsou vrcholy
- F náhodné vrcholy v $\{0, \ldots, g_n 1\}$
- Na F definujeme (Booleovsky ohodnocený) graf $\lim_F \mathcal{G}_n$.
- Pro $\alpha, \beta \in F$ máme pravdivostní hodnotu $[E(\alpha, \beta)]$.

- Třída funkcí F: vstupy jsou grafy, výstupy jsou vrcholy
- F náhodné vrcholy v $\{0, \ldots, g_n 1\}$
- Na F definujeme (Booleovsky ohodnocený) graf $\lim_F \mathcal{G}_n$.
- Pro $\alpha, \beta \in F$ máme pravdivostní hodnotu $[\![E(\alpha, \beta)]\!]$.
- Tato hodnota může být buď 1 (pravda), 0 (nepravda) nebo někde "mezi".

- Třída funkcí F: vstupy jsou grafy, výstupy jsou vrcholy
- F náhodné vrcholy v $\{0,\ldots,g_n-1\}$
- Na F definujeme (Booleovsky ohodnocený) graf $\lim_F \mathcal{G}_n$.
- Pro $\alpha, \beta \in F$ máme pravdivostní hodnotu $\llbracket E(\alpha, \beta) \rrbracket$.
- Tato hodnota může být buď 1 (pravda), 0 (nepravda) nebo někde "mezi".
- Pravdivé sentence v $\lim_F \mathcal{G}_n \rightleftharpoons$ vlastnosti které umí F dosvědčit

Třída funkcí F_{rud}

Definice

 F_{rud} sestává ze všech náhodných vrcholů počítáných rozhodovacími stromy hloubky nejvýše $n^{1/t}$, pro nějaké nestandardní t, následujícího tvaru.

Příklad

$$\lim_{F_{rud}} EDGE_n[[(\exists x)(\exists y)E(x,y)]] = \mathbf{0}.$$

Příklad

$$\lim_{F_{n,d}} EDGE_n[[(\exists x)(\exists y)E(x,y)]] = \mathbf{0}.$$

- Další výsledky:
 - Postačující podmínka na hustotu hran v \mathcal{G}_n vedoucí k limitě bez hran

Příklad

$$\lim_{F_{nud}} EDGE_n[[(\exists x)(\exists y)E(x,y)]] = \mathbf{0}.$$

- Další výsledky:
 - $lackbox{ Postačující podmínka na hustotu hran v \mathcal{G}_n vedoucí k limitě bez hran$
 - Grafy co obsahují právě trojuhelník, čtverec, konstatní podgraf, $\ldots \to$ prázdná limita

Příklad

$$\lim_{F_{nud}} EDGE_n[[(\exists x)(\exists y)E(x,y)]] = \mathbf{0}.$$

- Další výsledky:
 - Postačující podmínka na hustotu hran v \mathcal{G}_n vedoucí k limitě bez hran
 - Grafy co obsahují právě trojuhelník, čtverec, konstatní podgraf, $\ldots \to$ prázdná limita
 - ▶ \exists posloupnost s hustotou hran \rightarrow 0, ale limita obsahuje hranu (Příklad 2.2.4, dotaz 3)

- ullet Široká posloupnost obsahující právě velkou kliku: $\mathsf{SK}_k^{1/2}$
- Široká posloupnost obsahující alespoň velkou kliku: $CK_k^{1/2}$

- ullet Široká posloupnost obsahující právě velkou kliku: $\mathsf{SK}_k^{1/2}$
- Široká posloupnost obsahující alespoň velkou kliku: $CK_k^{1/2}$
- Teorie složitosti
 - lacktriangle Pouze velká klika ightarrow polynomiální algoritmus ji najde
 - lacktriangle Alespoň velká klika ightarrow předpokládáme \nexists polynomální algoritmus

- ullet Široká posloupnost obsahující právě velkou kliku: $\mathsf{SK}_k^{1/2}$
- Široká posloupnost obsahující alespoň velkou kliku: $CK_k^{1/2}$
- Teorie složitosti
 - lacktriangle Pouze velká klika ightarrow polynomiální algoritmus ji najde
 - lacktriangle Alespoň velká klika ightarrow předpokládáme \nexists polynomální algoritmus
- G_{rud} limita druhého řádu

- ullet Široká posloupnost obsahující právě velkou kliku: $\mathsf{SK}_k^{1/2}$
- Široká posloupnost obsahující alespoň velkou kliku: $\mathsf{CK}_k^{1/2}$
- Teorie složitosti
 - lacktriangle Pouze velká klika ightarrow polynomiální algoritmus ji najde
 - lacktriangle Alespoň velká klika ightarrow předpokládáme \sharp polynomální algoritmus
- G_{rud} limita druhého řádu
- Dokázal jsem
 - $ightharpoonup \operatorname{\mathsf{SK}}^{1/2}_k o_{G_{rud}}$ limita obsahuje relativně velkou kliku
 - $ightharpoonup \mathsf{CK}_k^{1/2} o_{G_{rud}} \ [\![\exists \mathsf{ konečná klika}]\!]
 eq \mathbf{0}$

- ullet Široká posloupnost obsahující právě velkou kliku: $\mathsf{SK}_k^{1/2}$
- Široká posloupnost obsahující alespoň velkou kliku: $\mathsf{CK}_k^{1/2}$
- Teorie složitosti
 - Pouze velká klika → polynomiální algoritmus ji najde
 - ► Alespoň velká klika → předpokládáme ∄ polynomální algoritmus
- Grud limita druhého řádu
- Dokázal jsem
 - $ightharpoonup \operatorname{\mathsf{SK}}^{1/2}_k o_{G_{rud}}$ limita obsahuje relativně velkou kliku
 - $ightharpoonup \mathsf{CK}_k^{1/2} o_{G_{rud}} \ [\![\exists \mathsf{konečná} \mathsf{klika}]\!]
 eq \mathbf{0}$
- Domněnka: $\lim \mathsf{CK}_n^{1/2}$ neobsahuje kliku velikosti $\lfloor n/(c \ln n) \rfloor$

- Široká posloupnost cest s počátkem ve vrcholu 0: *PATH_k
- *PATH_k $\rightarrow_{F_{rud}}$ limita bez hran

- Široká posloupnost cest s počátkem ve vrcholu 0: *PATH_k
- *PATH_k $\rightarrow_{F_{rud}}$ limita bez hran
- Třída funkcí F_{nbtree}

- Široká posloupnost cest s počátkem ve vrcholu 0: *PATH_k
- *PATH_k $\rightarrow_{F_{rud}}$ limita bez hran
- Třída funkcí F_{nbtree}
- Složitost TFNP

- Široká posloupnost cest s počátkem ve vrcholu 0: *PATH_k
- *PATH_k $\rightarrow_{F_{rud}}$ limita bez hran
- Třída funkcí F_{nbtree}
- Složitost TFNP
- Výsledky:
 - ▶ $\lim_{F_{nbtree}} *PATH_n$ je cesta s počátkem, ale bez konce
 - ▶ \Leftrightarrow funkce z F_{nbtree} neumí najít konec cesty
 - to odpovídá tomu, že PPA je ostrou nadmnožinou FP (oracle svět)

 \bullet Výsledky z předchozích slidů \approx analýza pravdivých sentencí

- ullet Výsledky z předchozích slidů pprox analýza pravdivých sentencí
- V práci kombinuji metody teorie složitosti, kombinatoriky a teorie modelů

- ullet Výsledky z předchozích slidů pprox analýza pravdivých sentencí
- V práci kombinuji metody teorie složitosti, kombinatoriky a teorie modelů
- Kromě úvodu, Preliminaries a části kapitoly 1, jsou všechny výsledky vlastní

- ullet Výsledky z předchozích slidů pprox analýza pravdivých sentencí
- V práci kombinuji metody teorie složitosti, kombinatoriky a teorie modelů
- Kromě úvodu, Preliminaries a části kapitoly 1, jsou všechny výsledky vlastní
- Formuluji několik problémů navazujících na mé výsledky

Námitky oponenta

- Námitky oponenta
- Zřetelněji vyznačit autorství při prezentaci Forsingu v kapitole 1

- Námitky oponenta
- Zřetelněji vyznačit autorství při prezentaci Forsingu v kapitole 1
- Ovšem: Chyby nemají za následek neplatnost nějakého tvrzení

- Námitky oponenta
- Zřetelněji vyznačit autorství při prezentaci Forsingu v kapitole 1
- Ovšem: Chyby nemají za následek neplatnost nějakého tvrzení
- V erratě nepřesnosti a překlepy objasňuji

Otázka

Mohl byste podrobněji ukázat, jak plyne nerovnost mezi (4.26) a (4.27)?

Otázka

Mohl byste podrobněji ukázat, jak plyne nerovnost mezi (4.26) a (4.27)?

$$\prod_{i=0}^{n^{1/t}} \left(1 - \frac{2}{n-2i-c-2} \right) \ge \prod_{i=0}^{n^{1/t}} \left(1 - \frac{2}{n-2n^{1/t}-c-2} \right) \\
= \left(1 - \frac{2}{n-2n^{1/t}-c-2} \right)^{n^{1/t}+1} \\
\ge \left(1 - \frac{2(n^{1/t}+1)}{n-2n^{1/t}-c-2} \right)$$

Otázka

Mohl byste podrobněji ukázat, jak plyne nerovnost mezi (4.26) a (4.27)?

$$\prod_{i=0}^{n^{1/t}} \left(1 - \frac{2}{n-2i-c-2} \right) \ge \prod_{i=0}^{n^{1/t}} \left(1 - \frac{2}{n-2n^{1/t}-c-2} \right) \\
= \left(1 - \frac{2}{n-2n^{1/t}-c-2} \right)^{n^{1/t}+1} \\
\ge \left(1 - \frac{2(n^{1/t}+1)}{n-2n^{1/t}-c-2} \right)$$

Argument není ovlivněn

◆ロト ◆個ト ◆差ト ◆差ト 差 めるぐ

Otázka

Mohl byste podrobněji ukázat, jak plyne nerovnost mezi (4.26) a (4.27)?

$$\prod_{i=0}^{n^{1/t}} \left(1 - \frac{2}{n-2i-c-2} \right) \ge \prod_{i=0}^{n^{1/t}} \left(1 - \frac{2}{n-2n^{1/t}-c-2} \right) \\
= \left(1 - \frac{2}{n-2n^{1/t}-c-2} \right)^{n^{1/t}+1} \\
\ge \left(1 - \frac{2(n^{1/t}+1)}{n-2n^{1/t}-c-2} \right)$$

- Argument není ovlivněn
- BÚNO lze zvolit T aby původní nerovnost platila

Děkuji za pozornost