# Chapter 2

# **Operating system organization**

A key requirement for an operating system is to support several activities at once. For example, using the system call interface described in Chapter 1 a process can start new processes with fork. The operating system must *time-share* the resources of the computer among these processes. For example, even if there are more processes than there are hardware CPUs, the operating system must ensure that all of the processes get a chance to execute. The operating system must also arrange for *isolation* between the processes. That is, if one process has a bug and malfunctions, it shouldn't affect processes that don't depend on the buggy process. Complete isolation, however, is too strong, since it should be possible for processes to intentionally interact; pipelines are an example. Thus an operating system must fulfill three requirements: multiplexing, isolation, and interaction.

This chapter provides an overview of how operating systems are organized to achieve these three requirements. It turns out there are many ways to do so, but this text focuses on mainstream designs centered around a *monolithic kernel*, which is used by many Unix operating systems. This chapter also provides an overview of an xv6 process, which is the unit of isolation in xv6, and the creation of the first process when xv6 starts.

Xv6 runs on a *multi-core*<sup>1</sup> RISC-V microprocessor, and much of its low-level functionality (for example, its process implementation) is specific to RISC-V. RISC-V is a 64-bit CPU, and xv6 is written in "LP64" C, which means long (L) and pointers (P) in the C programming language are 64 bits, but int is 32-bit. This book assumes the reader has done a bit of machine-level programming on some architecture, and will introduce RISC-V-specific ideas as they come up. A useful reference for RISC-V is "The RISC-V Reader: An Open Architecture Atlas" [12]. The user-level ISA [2] and the privileged architecture [1] are the official specifications.

The CPU in a complete computer is surrounded by support hardware, much of it in the form of I/O interfaces. Xv6 is written for the support hardware simulated by qemu's "-machine virt" option. This includes RAM, a ROM containing boot code, a serial connection to the user's keyboard/screen, and a disk for storage.

<sup>&</sup>lt;sup>1</sup>By "multi-core" this text means multiple CPUs that share memory but execute in parallel, each with its own set of registers. This text sometimes uses the term *multiprocessor* as a synonym for multi-core, though multiprocessor can also refer more specifically to a computer with several distinct processor chips.

## 2.1 Abstracting physical resources

The first question one might ask when encountering an operating system is why have it at all? That is, one could implement the system calls in Figure 1.2 as a library, with which applications link. In this plan, each application could even have its own library tailored to its needs. Applications could directly interact with hardware resources and use those resources in the best way for the application (e.g., to achieve high or predictable performance). Some operating systems for embedded devices or real-time systems are organized in this way.

The downside of this library approach is that, if there is more than one application running, the applications must be well-behaved. For example, each application must periodically give up the CPU so that other applications can run. Such a *cooperative* time-sharing scheme may be OK if all applications trust each other and have no bugs. It's more typical for applications to not trust each other, and to have bugs, so one often wants stronger isolation than a cooperative scheme provides.

To achieve strong isolation it's helpful to forbid applications from directly accessing sensitive hardware resources, and instead to abstract the resources into services. For example, Unix applications interact with storage only through the file system's open, read, write, and close system calls, instead of reading and writing the disk directly. This provides the application with the convenience of pathnames, and it allows the operating system (as the implementer of the interface) to manage the disk. Even if isolation is not a concern, programs that interact intentionally (or just wish to keep out of each other's way) are likely to find a file system a more convenient abstraction than direct use of the disk.

Similarly, Unix transparently switches hardware CPUs among processes, saving and restoring register state as necessary, so that applications don't have to be aware of time sharing. This transparency allows the operating system to share CPUs even if some applications are in infinite loops.

As another example, Unix processes use exec to build up their memory image, instead of directly interacting with physical memory. This allows the operating system to decide where to place a process in memory; if memory is tight, the operating system might even store some of a process's data on disk. Exec also provides users with the convenience of a file system to store executable program images.

Many forms of interaction among Unix processes occur via file descriptors. Not only do file descriptors abstract away many details (e.g., where data in a pipe or file is stored), they are also defined in a way that simplifies interaction. For example, if one application in a pipeline fails, the kernel generates an end-of-file signal for the next process in the pipeline.

The system-call interface in Figure 1.2 is carefully designed to provide both programmer convenience and the possibility of strong isolation. The Unix interface is not the only way to abstract resources, but it has proven to be a very good one.

# 2.2 User mode, supervisor mode, and system calls

Strong isolation requires a hard boundary between applications and the operating system. If the application makes a mistake, we don't want the operating system to fail or other applications to

fail. Instead, the operating system should be able to clean up the failed application and continue running other applications. To achieve strong isolation, the operating system must arrange that applications cannot modify (or even read) the operating system's data structures and instructions and that applications cannot access other processes' memory.

CPUs provide hardware support for strong isolation. For example, RISC-V has three modes in which the CPU can execute instructions: *machine mode*, *supervisor mode*, and *user mode*. Instructions executing in machine mode have full privilege; a CPU starts in machine mode. Machine mode is mostly intended for configuring a computer. Xv6 executes a few lines in machine mode and then changes to supervisor mode.

In supervisor mode the CPU is allowed to execute *privileged instructions*: for example, enabling and disabling interrupts, reading and writing the register that holds the address of a page table, etc. If an application in user mode attempts to execute a privileged instruction, then the CPU doesn't execute the instruction, but switches to supervisor mode so that supervisor-mode code can terminate the application, because it did something it shouldn't be doing. Figure 1.1 in Chapter 1 illustrates this organization. An application can execute only user-mode instructions (e.g., adding numbers, etc.) and is said to be running in *user space*, while the software in supervisor mode can also execute privileged instructions and is said to be running in *kernel space*. The software running in kernel space (or in supervisor mode) is called the *kernel*.

An application that wants to invoke a kernel function (e.g., the read system call in xv6) must transition to the kernel. CPUs provide a special instruction that switches the CPU from user mode to supervisor mode and enters the kernel at an entry point specified by the kernel. (RISC-V provides the ecall instruction for this purpose.) Once the CPU has switched to supervisor mode, the kernel can then validate the arguments of the system call, decide whether the application is allowed to perform the requested operation, and then deny it or execute it. It is important that the kernel control the entry point for transitions to supervisor mode; if the application could decide the kernel entry point, a malicious application could, for example, enter the kernel at a point where the validation of arguments is skipped.

### 2.3 Kernel organization

A key design question is what part of the operating system should run in supervisor mode. One possibility is that the entire operating system resides in the kernel, so that the implementations of all system calls run in supervisor mode. This organization is called a *monolithic kernel*.

In this organization the entire operating system runs with full hardware privilege. This organization is convenient because the OS designer doesn't have to decide which part of the operating system doesn't need full hardware privilege. Furthermore, it is easier for different parts of the operating system to cooperate. For example, an operating system might have a buffer cache that can be shared both by the file system and the virtual memory system.

A downside of the monolithic organization is that the interfaces between different parts of the operating system are often complex (as we will see in the rest of this text), and therefore it is easy for an operating system developer to make a mistake. In a monolithic kernel, a mistake is fatal, because an error in supervisor mode will often cause the kernel to fail. If the kernel fails,



Figure 2.1: A microkernel with a file-system server

the computer stops working, and thus all applications fail too. The computer must reboot to start again.

To reduce the risk of mistakes in the kernel, OS designers can minimize the amount of operating system code that runs in supervisor mode, and execute the bulk of the operating system in user mode. This kernel organization is called a *microkernel*.

Figure 2.1 illustrates this microkernel design. In the figure, the file system runs as a user-level process. OS services running as processes are called servers. To allow applications to interact with the file server, the kernel provides an inter-process communication mechanism to send messages from one user-mode process to another. For example, if an application like the shell wants to read or write a file, it sends a message to the file server and waits for a response.

In a microkernel, the kernel interface consists of a few low-level functions for starting applications, sending messages, accessing device hardware, etc. This organization allows the kernel to be relatively simple, as most of the operating system resides in user-level servers.

Xv6 is implemented as a monolithic kernel, like most Unix operating systems. Thus, the xv6 kernel interface corresponds to the operating system interface, and the kernel implements the complete operating system. Since xv6 doesn't provide many services, its kernel is smaller than some microkernels, but conceptually xv6 is monolithic.

# 2.4 Code: xv6 organization

The xv6 kernel source is in the kernel/ sub-directory. The source is divided into files, following a rough notion of modularity; Figure 2.2 lists the files. The inter-module interfaces are defined in defs.h (kernel/defs.h).

### 2.5 Process overview

The unit of isolation in xv6 (as in other Unix operating systems) is a *process*. The process abstraction prevents one process from wrecking or spying on another process's memory, CPU, file descriptors, etc. It also prevents a process from wrecking the kernel itself, so that a process can't subvert the kernel's isolation mechanisms. The kernel must implement the process abstraction with care because a buggy or malicious application may trick the kernel or hardware into doing something bad (e.g., circumventing isolation). The mechanisms used by the kernel to implement

| File          | Description                                            |
|---------------|--------------------------------------------------------|
| bio.c         | Disk block cache for the file system.                  |
| console.c     | Connect to the user keyboard and screen.               |
| entry.S       | Very first boot instructions.                          |
| exec.c        | exec() system call.                                    |
| file.c        | File descriptor support.                               |
| fs.c          | File system.                                           |
| kalloc.c      | Physical page allocator.                               |
| kernelvec.S   | Handle traps from kernel, and timer interrupts.        |
| log.c         | File system logging and crash recovery.                |
| main.c        | Control initialization of other modules during boot.   |
| pipe.c        | Pipes.                                                 |
| plic.c        | RISC-V interrupt controller.                           |
| printf.c      | Formatted output to the console.                       |
| proc.c        | Processes and scheduling.                              |
| sleeplock.c   | Locks that yield the CPU.                              |
| spinlock.c    | Locks that don't yield the CPU.                        |
| start.c       | Early machine-mode boot code.                          |
| string.c      | C string and byte-array library.                       |
| swtch.S       | Thread switching.                                      |
| syscall.c     | Dispatch system calls to handling function.            |
| sysfile.c     | File-related system calls.                             |
| sysproc.c     | Process-related system calls.                          |
| trampoline.S  | Assembly code to switch between user and kernel.       |
| trap.c        | C code to handle and return from traps and interrupts. |
| uart.c        | Serial-port console device driver.                     |
| virtio_disk.c | Disk device driver.                                    |
| vm.c          | Manage page tables and address spaces.                 |

Figure 2.2: Xv6 kernel source files.

processes include the user/supervisor mode flag, address spaces, and time-slicing of threads.

To help enforce isolation, the process abstraction provides the illusion to a program that it has its own private machine. A process provides a program with what appears to be a private memory system, or *address space*, which other processes cannot read or write. A process also provides the program with what appears to be its own CPU to execute the program's instructions.

Xv6 uses page tables (which are implemented by hardware) to give each process its own address space. The RISC-V page table translates (or "maps") a *virtual address* (the address that an RISC-V instruction manipulates) to a *physical address* (an address that the CPU chip sends to main memory).

Xv6 maintains a separate page table for each process that defines that process's address space. As illustrated in Figure 2.3, an address space includes the process's *user memory* starting at virtual



Figure 2.3: Layout of a process's virtual address space

address zero. Instructions come first, followed by global variables, then the stack, and finally a "heap" area (for malloc) that the process can expand as needed. There are a number of factors that limit the maximum size of a process's address space: pointers on the RISC-V are 64 bits wide; the hardware only uses the low 39 bits when looking up virtual addresses in page tables; and xv6 only uses 38 of those 39 bits. Thus, the maximum address is  $2^{38} - 1 = 0x3fffffffff$ , which is MAXVA (kernel/riscv.h:348). At the top of the address space xv6 reserves a page for a *trampoline* and a page mapping the process's *trapframe* to switch to the kernel, as we will explain in Chapter 4.

The xv6 kernel maintains many pieces of state for each process, which it gathers into a struct proc (kernel/proc.h:86). A process's most important pieces of kernel state are its page table, its kernel stack, and its run state. We'll use the notation p->xxx to refer to elements of the proc structure; for example, p->pagetable is a pointer to the process's page table.

Each process has a thread of execution (or *thread* for short) that executes the process's instructions. A thread can be suspended and later resumed. To switch transparently between processes, the kernel suspends the currently running thread and resumes another process's thread. Much of the state of a thread (local variables, function call return addresses) is stored on the thread's stacks. Each process has two stacks: a user stack and a kernel stack (p->kstack). When the process is executing user instructions, only its user stack is in use, and its kernel stack is empty. When the process enters the kernel (for a system call or interrupt), the kernel code executes on the process's kernel stack; while a process is in the kernel, its user stack still contains saved data, but isn't actively used. A process's thread alternates between actively using its user stack and its kernel stack. The kernel stack is separate (and protected from user code) so that the kernel can execute even if a process has wrecked its user stack.

A process can make a system call by executing the RISC-V ecall instruction. This instruction raises the hardware privilege level and changes the program counter to a kernel-defined entry point. The code at the entry point switches to a kernel stack and executes the kernel instructions that implement the system call. When the system call completes, the kernel switches back to the user

stack and returns to user space by calling the <u>sret</u> instruction, which lowers the hardware privilege level and resumes executing user instructions just after the system call instruction. A process's thread can "block" in the kernel to wait for I/O, and resume where it left off when the I/O has finished.

p->state indicates whether the process is allocated, ready to run, running, waiting for I/O, or exiting.

p->pagetable holds the process's page table, in the format that the RISC-V hardware expects. xv6 causes the paging hardware to use a process's p->pagetable when executing that process in user space. A process's page table also serves as the record of the addresses of the physical pages allocated to store the process's memory.

## 2.6 Code: starting xv6 and the first process

To make xv6 more concrete, we'll outline how the kernel starts and runs the first process. The subsequent chapters will describe the mechanisms that show up in this overview in more detail.

When the RISC-V computer powers on, it initializes itself and runs a boot loader which is stored in read-only memory. The boot loader loads the xv6 kernel into memory. Then, in machine mode, the CPU executes xv6 starting at \_entry (kernel/entry.S:6). The RISC-V starts with paging hardware disabled: virtual addresses map directly to physical addresses.

The loader loads the xv6 kernel into memory at physical address  $0 \times 80000000$ . The reason it places the kernel at  $0 \times 80000000$  rather than  $0 \times 0$  is because the address range  $0 \times 0$ :  $0 \times 80000000$  contains I/O devices.

The instructions at \_entry set up a stack so that xv6 can run C code. Xv6 declares space for an initial stack, stack0, in the file start.c (kernel/start.c:11). The code at \_entry loads the stack pointer register sp with the address stack0+4096, the top of the stack, because the stack on RISC-V grows down. Now that the kernel has a stack, \_entry calls into C code at start (kernel/start.c:21).

The function start performs some configuration that is only allowed in machine mode, and then switches to supervisor mode. To enter supervisor mode, RISC-V provides the instruction mret. This instruction is most often used to return from a previous call from supervisor mode to machine mode. start isn't returning from such a call, and instead sets things up as if there had been one: it sets the previous privilege mode to supervisor in the register mstatus, it sets the return address to main by writing main's address into the register mepc, disables virtual address translation in supervisor mode by writing 0 into the page-table register satp, and delegates all interrupts and exceptions to supervisor mode.

Before jumping into supervisor mode, start performs one more task: it programs the clock chip to generate timer interrupts. With this housekeeping out of the way, start "returns" to supervisor mode by calling mret. This causes the program counter to change to main (kernel/main.c:11).

After main (kernel/main.c:11) initializes several devices and subsystems, it creates the first process by calling userinit (kernel/proc.c:212). The first process executes a small program written in RISC-V assembly, initcode.S (user/initcode.S:1), which re-enters the kernel by invoking the exec system call. As we saw in Chapter 1, exec replaces the memory and registers of the current

process with a new program (in this case, /init). Once the kernel has completed exec, it returns to user space in the /init process. Init (user/init.c:15) creates a new console device file if needed and then opens it as file descriptors 0, 1, and 2. Then it starts a shell on the console. The system is up.

#### 2.7 Real world

In the real world, one can find both monolithic kernels and microkernels. Many Unix kernels are monolithic. For example, Linux has a monolithic kernel, although some OS functions run as user-level servers (e.g., the windowing system). Kernels such as L4, Minix, and QNX are organized as a microkernel with servers, and have seen wide deployment in embedded settings.

Most operating systems have adopted the process concept, and most processes look similar to xv6's. Modern operating systems, however, support several threads within a process, to allow a single process to exploit multiple CPUs. Supporting multiple threads in a process involves quite a bit of machinery that xv6 doesn't have, including potential interface changes (e.g., Linux's clone, a variant of fork), to control which aspects of a process threads share.

#### 2.8 Exercises

1. You can use gdb to observe the very first kernel-to-user transition. Run make <code>qemu-gdb</code>. In another window, in the same directory, run <code>gdb</code>. Type the gdb command <code>break \*0x3fffffff10e</code>, which sets a breakpoint at the <code>sret</code> instruction in the kernel that jumps into user space. Type the <code>continue</code> gdb command. gdb should stop at the breakpoint, about to execute <code>sret</code>. Type <code>stepi</code>. gdb should now indicate that it is executing at address <code>0x0</code>, which is in user space at the start of <code>initcode.S</code>.