$$K_2(1820)$$

$$I(J^P) = \frac{1}{2}(2^-)$$

See our mini-review in the 2004 edition of this Review (PDG 04) under $K_2(1770)$.

K₂(1820) MASS

<u>VALUE (MeV)</u> 1819±12 OUR ∕	<u>EVTS</u> VERAGE	DOCUMENT	ID	TECN	COMMENT
$1853\pm27^{+18}_{-35}$	4289	¹ AAIJ	17 C	LHCB	$B^+ \rightarrow J/\psi \phi K^+$
1816±13		² ASTON	93	LASS	$11K^-p \rightarrow K^-\omega p$
● ● We do not u	se the following	data for aver	ages, fits,	limits, 6	etc. • • •
~ 1840		³ DAUM	810	CNTR	$63~K^-p\rightarrow~K^-2\pi p$

¹ From an amplitude analysis of the decay $B^+ \to J/\psi \phi K^+$ with a significance of 3.0 σ .

K₂(1820) WIDTH

VALUE (MeV)	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
264±34 OUR AVE	RAGE				
$167\!\pm\!58\!+\!82\ -72$	4289	⁴ AAIJ	17 C	LHCB	$B^+ \rightarrow J/\psi \phi K^+$
276 ± 35		⁵ ASTON	93	LASS	$11K^-p \rightarrow K^-\omega p$
 ● ● We do not use 	the following	g data for average	s, fits,	limits, e	etc. • • •
~ 230		⁶ DAUM	81 C	CNTR	$63~K^-p\rightarrow~K^-2\pi p$
⁴ From an amplitud	de analysis of	the decay $B^+ \rightarrow$	$I/\eta / a$	δK ⁺ wi	th a significance of 3.0 σ .

 $^{^4}$ From an amplitude analysis of the decay $B^+\to 5^5$ From a partial wave analysis of the $K^-\omega$ system.

K2(1820) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	$K\pi\pi$	
Γ_2	$K_2^*(1430)\pi$	seen
	$K^*(892)\pi$	seen
Γ_4	$K f_2(1270)$	seen
Γ_5	$K\omega$	seen
Γ ₆	$K\phi$	seen

K₂(1820) BRANCHING RATIOS

$\Gamma(K_2^*(1430)\pi)/\Gamma(K\pi\pi)$					Γ_2/Γ_1
VALUE	DOCUMENT ID		TECN	COMMENT	
• • • We do not use the following	g data for average	es, fits,	limits,	etc. • • •	
~ 0.77	DAUM	81 C	CNTR	$63K^-p \rightarrow$	$\overline{K} 2\pi p$
HTTP://PDG.LBL.GOV	Page 1		Creat	ed: 5/30/2	2017 17:21

² From a partial wave analysis of the $K^-\omega$ system.

 $^{^3}$ From a partial wave analysis of the $K^-\,2\pi$ system.

⁶ From a partial wave analysis of the $K^-2\pi$ system.

$\Gamma(K^*(892)\pi)/\Gamma(K^*$	$\pi\pi)$					Γ_3/Γ_1
VALUE		DOCUMENT ID		TECN	COMMENT	
\bullet \bullet We do not use the	ne following	g data for average	es, fits,	limits, e	etc. • • •	
~ 0.05		DAUM	81 C	CNTR	$63K^-p \rightarrow$	$\overline{K} 2\pi p$
$\Gamma(K f_2(1270))/\Gamma(K$	$\pi\pi)$					Γ_4/Γ_1
VALUE		DOCUMENT ID		TECN	<u>COMMENT</u>	
\bullet \bullet We do not use the	ne following	g data for average	es, fits,	limits, e	etc. • • •	
~ 0.18		DAUM	81 C	CNTR	$63K^-p \rightarrow$	$\overline{K} 2\pi p$
$\Gamma(K\phi)/\Gamma_{\text{total}}$						Γ_6/Γ
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT	
seen	4289	⁷ AAIJ	17 C	LHCB	$B^+ \rightarrow J/v$	$\psi \phi K^+$
⁷ From an amplitude	analysis of	the decay $B^+ ightarrow$	J/ψ	<i>∮K</i> + wi	th a significa	nce of 3.0 σ .

K₂(1820) REFERENCES

AAIJ	17C	PRL 118 022003	R. Aaij <i>et al.</i>	(LHCb Collab.)
Also		PR D95 012002	R. Aaij <i>et al.</i>	(LHCb Collab.)
PDG	04	PL B592 1	S. Eidelman <i>et al.</i>	(PDG Collab.)
ASTON	93	PL B308 186	D. Aston et al.	(SLAC, NAGO, CINC, INUS)
DAUM	81C	NP B187 1	C. Daum et al.	(AMST, CERN, CRAC, MPIM $+$)

Created: 5/30/2017 17:21