======= МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ========

УДК: 530.1: 537.226.33: 541.1: 577.: 681.2

Компьютерное моделирование свойств ПВДФ и П(ВДФ-ТрФЭ) нанопленок при фазовом переходе и эмиссионная спектроскопия их поляризации

©2011 Быстров В.С.*1, Парамонова Е.В. 1, Дехтяр Ю.Д. 3, Каташев А. 3, Поляка Н. 3, Быстрова А.В. 4, Сапронова А.В. 5, Фридкин В.М. 6, Клим Γ 7, Холкин А.Л. 2

¹ Институт математических проблем биологии РАН, Пущино, Россия ² Отдел техники керамики и стекла, Центр исследования керамики и композитов (ЦИКЕКО), Университет Авейро, Авейро, Португалия ³ Институт биомедицинской техники и нанотехнологии, Рижский технический

³ Институт биомедицинской техники и нанотехнологии, Рижский технический университет, Рига, Латвия

⁴ Институт теоретической и экспериментальной биофизики РАН, Пущино, Россия ⁵ Бергенский центр вычислительных наук, Унифоб АС, Берген, Норвегия ⁶ Институт кристаллографии РАН, Москва, Россия ⁷ Институт электротехнической физики, Университет земли Саар, Саарбрюккен, Германия

Аннотация. В данной работе были исследованы и проанализированы электронная структура и поляризация ПВДФ и П(ВДФ-ТрФЭ) нанопленок Ленгмюра-Блоджетт в зависимости от их толщины, состава и конформации структуры в процессе фазового перехода при изменении температуры. работы проводилось сочетанием двух Выполнение подходов экспериментально методом спектроскопии термостимулированной экзоэлектронной эмиссии (ТСЭЭ) и теоретически методами компьютерного моделирования и квантово-химическими расчетами из первых принципов. Модели ПВДФ и композитных П(ВДФ-ТрФЭ) (70:30) молекулярных цепочек в состояниях транс и гош конформеров, а также модели кристаллической ячейки, были разработаны и согласованы с данными ТСЭЭ анализа. Квантово-химические расчеты и моделирование, основанные на теории функционала плотности (ТФП), а также на полуэмпирических методах (таких как РМ3), показали, что энергии электронных состояний, а также полная энергия изученных ПВДФ и П(ВДФ-ТрФЭ) молекулярных кластеров, образующихся в процессе фазового превращения, влияют на работу выхода электрона, сродство к электрону. Проведенный анализ экспериментальных данных ТСЭЭ в сочетании с численными данными по молекулярным моделям показывают эффективность развиваемого подхода. В данной работе ТСЭЭ анализ впервые был применен для определения поляризации нанопленок (методом бесконтактных измерений) и характеристики процесса фазового перехода. Предложенный подход может быть использован в нанобиомедицине, в частности, в разработке новых костных био-имплантатов со встроенными датчиками (смарт-нанотехнологии).

Ключевые слова: полимерные сегнетоэлектрики, поляризации и деполяризации, термо-стимулированная экзоэлектронная эмиссия, компьютерное моделирование, работа выхода электрона и сродство электрона.

vsbys@mail.ru

ВВЕДЕНИЕ

Сегнетоэлектрические тонкие плёнки Ленгмюра-Блоджетт (ЛБ), основанные на поливинилиденфториде (ПВДФ) И поли(винилиденфторидтрифторэтилене) (П(ВДФ-ТрФЭ)), демонстрируют явление переключения поляризации на наноуровне с локальным переключением сегнетоэлектрической поляризации на атомно-молекулярном уровне [1–5]. В настоящее время эти ЛБ-полимерные плёнки широко исследуются с использованием различных техник, включая изучение методами атомной силовой микроскопии (АСМ) и силовой микроскопии пьезоотклика (СМП) [6новые перспективные сегнетоэлектрические наноматериалы. Области ПВДФ И П(ВДФ-ТрФЭ) широкого применения _ в нанотехнологиях микроэлектронике, устройствах хранения информации и новых энергонезависимых запоминающих устройствах [12]. И особенно в биомедицине и наномедицине – как многообещающие компоненты различных нанокомпозитов, сенсоров и имплантов, благодаря своим особым акустическим и пьезоэлектрическим свойствам, высокой совместимости со многими органическими и биологическими молекулами и тканями [13–18]. Тем не менее, многие из этих важных физических и структурных свойств и особенностей ПВДФ-полимерных тонких плёнок до сих пор неясны и недостаточно изучены.

В первую очередь это касается особенностей явления переключения поляризации в различных условиях и при разных составах компонент, свойственного этим Это важно для последующих применений. Например, одна из нанопленкам. обещающих новых практических идей В биомедицине использование преобразователя плёнках, сделанного биосовместимых на ЭТИХ ИЗ пьезоэлектрических материалов, который помещается, например, на поверхность костного имплантата и стимулирует рост кости путём электрической и механической стимуляции клеток кости – остеобластов [19, 20]. Это возможно благодаря высокому поверхностному заряду (поляризации) ПВДФ и/или П(ВДФ-ТрФЭ). Фактически эти материалы подобны недавно разработанному высокополяризованному поверхностно заряженному гидроксиапатиту (ГАП) [21], особенно в форме наноструктурированной пористой керамики (ПЕРКЕРАМИК, англ. PERCERAMICS) [22]. Было показано, что количество притянутых и адгезированных остеобластов резко возрастает на такой поляризованной, и особенно на отрицательно заряженной, поверхности ГАП [23]. Аналогично могут действовать и поляризационные заряды сегнетоэлектрических сополимеров.

Как хорошо известно, в сегнетоэлектриках поляризация прямо связана с пьезоэлектрическими константами [24]. Использование ПВДФ и их сополимеров означает, что механическая стимуляция роста кости зависит только от количества приложенной электрической энергии, и что рост кости может быть стимулирован в разных направлениях изменением пьезоэлектрических констант. Основанная на этом эффекте концепция смарт-структур может быть адаптирована и к другим активным устройствам в биомедицине. При этом необходимо знать механизмы поляризации (или формирования избыточного поверхностного электрического заряда) и способы управления ими. При этом важно не искажать нативную динамику поведения контролируемого объекта (например, костной ткани), используя здесь такие подходы, как методы неразрушающего контроля.

В данной работе предлагается такие неразрушающие и бесконтактные измерения поверхностного заряда (поляризации) проводить методом термостимулированной экзоэлектронной эмиссии (ТСЭЭ) [25–27], который позволяет нам получить измерение изменений работы выхода и определить величину соответствующего поверхностного заряда (поляризации). Для корректного определения поляризации в этом случае необходимо иметь правильную и соответствующую молекулярную модель механизмов

физических процессов, происходящих в поверхностных слоях образца. С этой целью в данной работе впервые было выполнено детальное компьютерное моделирование из первых принципов и последовательное изучение молекулярных моделей для нескольких структур ПВДФ и П(ВДФ-ТрФЭ) в двух их разных основных конформациях – транс (Trans, T) и гош (Gauche, G). Соответствующие структуры двух различных физических состояний образца — в полярной сегнетоэлектрической фазе и неполярной параэлектрической фазе — были нами определены (в соответствии с экспериментальными данными), построены и исследованы их молекулярные модели для кристаллической решётки П(ВДФ-ТрФЭ) в этих Т и G конформациях. Полученные нами данные позволили вычислить электронные спектры и построить диаграммы энергетических зон для этих двух различных фаз, определить ширину запрещённой энергетической зоны и величины её изменений при фазовом переходе. Установлена важная особенность, показывающая, что эти параметры зависят от внутреннего электрического поля, которое определяет наклон энергетических зон и сдвиг энергий, появляющийся затем на поверхности, как функцию поверхностного заряда (поляризации). С другой стороны, изменения поверхностного заряда меняют работу выхода, измеренную в данном случае посредством метода ТСЭЭ спектроскопии: в разных фазах и конформациях эти изменения оказываются различными. Построенная модель, основанная на структурных данных энергетических зон электронных уровней и их изменений при фазовом переходе, позволила нам определить величину поляризации и ее изменение (скачок) при фазовом переходе – бесконтактным способом по изменению величины работы выхода, регистрируемой методом ТСЭЭ.

В данной работе приводятся результаты исследований свойств поляризации ПВДФ-полимерных плёнок, в которой впервые был использован бесконтактный метод – метод термостимулированной электронной эмиссионной (ТСЭЭ) спектроскопии [25–27] в сочетании с молекулярным моделированием из первых принципов. Эта работа продолжает серию исследований сегнетоэлектрических свойств ультратонких ПВДФ-сополимерных плёнок ЛБ на наноуровне [11, 16–18]. Предложенный метод определения поляризации по изменению работы выходы, измеренной по методу ТСЭЭ спектроскопии, может быть широко использован как в нанотехнологиях, так и в нанобиомедицине, в особенности при разработке костных биоимплантатов, которые включают встроенные сенсоры (смарт-нанобиотехнологии).

ОПИСАНИЕ ЭКСПЕРИМЕНТАЛЬНОЙ ЧАСТИ И МЕТОДОВ МОДЕЛИРОВАНИЯ

1. Подготовка образцов

Подготовка образцов, их структура, а также регистрация фазовых переходов и определение сегнетоэлектрических свойств поли(винилиденфторидтрифторэтиленовых, $\Pi(BД\Phi-Tp\Phi\Theta)$) наноплёнок, изготовленных методом Ленгмюра—Блоджетта (ЛБ), были ранее детально описаны в [1–3]. Как было показано, эти пленки демонстрируют спонтанную поляризацию величиной порядка $P_s \sim 0.1~{\rm Km}^{-2}$ при комнатной температуре в полярной орторомбической фазе «2mm» (согласно стандартной кристаллографической классификации). При температуре $80–100^{\rm o}{\rm C}$ (в зависимости от соотношения состава компонент $BД\Phi-Tp\Phi\Theta$) сополимер переходит в неполярную гексагональную фазу «6:m» через фазовый переход первого рода.

В данной работе высококачественные тонкие плёнки сегнетоэлектрика $\Pi(BД\Phi-Tp\Phi)$) были изготовлены методом Ленгмюра—Блоджетт (ЛБ) с использованием горизонтальной модификации техники ЛБ по Шеферу [1]. Оптимальное поверхностное давление на изотерме было выбрано 6 мНм $^{-1}$. Для приготовления растворов был использован порошок $\Pi(BД\Phi-Tp\Phi)$ производства фирмы Piezotech Inc. в

концентрации 0,1 г/л. Все образцы данных ЛБ пленок были изготовлены в Институте электротехнической физики в Саарбрюкене (Германия). Их структура: 10, 20, 30 и 50 переносов монослоёв (МС) на стеклянную подложку [4, 5]. В данной работе мы использовали образцы в 10 и 30 МС из этой серии. Толщина всех этих плёнок определялась как методом эллипсометрии [4, 5], так и методом атомной силовой микроскопии (АСМ) [6, 11]. Для приготовленных образцов было определено, что один перенос в примененном методе ЛБ по Шеферу соответствовал одному МС средней толщиной 0,5 нм [4, 5].

2. Аналитические и структурные характеристики плёнок

Для определения структуры плёнок была использована также атомная сканирующая туннельная микроскопия (СТМ) высокого разрешения, которая показала, что плёнки имеют высокоупорядоченную кристаллическую структуру, в которой отдельные полимерные цепочки параллельны друг другу и лежат в плоскости плёнки. Наряду с СТМ структура ЛБ-плёнок изучалась методами рентгеновской и нейтронной дифрактометрии [1-3]. Кроме того, для детальной структурной и физической характеристики поверхности образцов плёнок и их толщин использовалась атомная силовая микроскопия (АСМ), а также такая ее модификация, как силовая микроскопия пьезоотклика (СМП) [6–11]. Как топография поверхности плёнок, так и картина пьезоэлектрического отклика были выполнены в лабораториях Центра исследования керамики и композитов Университета Авейро с использованием сканирующего атомного силового микроскопа (ACM модели Multimode, Nanoscope IIIA, Veeco), оборудованного специальными функциональным генератором и синхронизированным усилителем [6, 11]. Ни пьезоэлектрического контраста, ни доменов на изображении пьезоэлектрического отклика на исходных образцах до подачи дополнительного, так называемого «пишущего», напряжения на наконечник («тип») ACM обнаружено не было – только слабый фоновый сигнал, который может появляться либо благодаря небольшой самополяризации поверхностного слоя вблизи контактов (металлических электродов), либо из-за незначительного сигнала, вызванного контактной разностью потенциалов между наконечником АСМ и нижним электродом [11]. Это также свидетельствовало о высокой однородности и хорошем качестве изготовленных ЛБ пленок.

3. Методика термостимулированной экзоэлектронной эмиссии (ТСЭЭ)

Термостимулированная экзоэлектронная эмиссия (ТСЭЭ) регистрировалась с помощью спектрометра фотоэлектронной эмиссии для измерений в вакуумной камере при давлении 10^{-4} Па. Скорость нагрева исследуемых образцов при проведении измерений методом ТСЭЭ была равна 0,4 град/с. В работе также применялось допольнительное фотооблучение ультрафиолетом тех образцов, которые не проявили исходно наличия какой-либо поляризации (это были более тонкие ЛБ пленки – образцы второго типа, как мы их назвали). Необходимая дополнительная фотостимуляция для исследуемых образцов второго типа была проведена этим ультрафиолетовым (УФ) облучением от дейтериевого источника DDS-30. Требуемая энергия фотона выбиралась с помощью монохроматора SF-26. Уширение частоты не превышало 0,08 эВ. Измеряемая величина работы выхода Ф определялась с погрешностью не более $\pm 0.04 \text{ 3B}.$ Для регистрации электронной эмиссии был высокочувствительный детектор электронов. Используемый нами детектор вторичной электронной эмиссии имел шум на уровне не более чем $\sim 0.1 - 1$ электрон/сек [27].

4. Молекулярные модели и вычислительные подходы

В данной работе было рассмотрено несколько версий молекулярных моделей полимерных сегнетоэлектриков на основе поливинилиденфторида (ПВДФ) и поли(винилиденфторид-трифторэтилена) П(ВДФ-ТрФЭ). Все версии моделей были разработаны и исследованы с использованием программного пакета HyperChem 7.52 и его обновленной версии 8.0 на базе различных персональных компьютеров. Для некоторых случаев более точных расчётов «из первых принципов» (лат. ab initio) был также использован Gaussian98 на Linux-кластере ИМПБ. Мы исследовали основные электрические и физические свойства ПВДФ и П(ВДФ-ТрФЭ) (дипольный момент, поляризацию, энергии электронных подсистем, а также полную энергию систем). С помощью специальной опции в пакете HyperChem, позволяющей иммитировать включение внешнего электрического поля в различных направлениях, нами изучалось влияние приложенного электрического поля на структуру моделей молекулярных цепей различной длины и в различных конформациях. При проведении моделирования и расчетов в данной работе были использованы различные вычислительные методы, включая квантово-химические расчеты, основанные на методах ab initio и теории функционала плотности ($T\Phi\Pi$) (англ. Density Functional Theory: DFT), а также на полуэмпирических методах (например, англ. Parameterization Method 3: PM3), в приближениях как ограниченного (англ. Restricted Hartree-Fock: RHF), так и неограниченного (англ. Unrestricted Hartree-Fock: UHF) методов Хартри-Фока. Описания моделей и вычислительных подходов даны подробнее в последующих разделах.

ОСНОВНЫЕ ДАННЫЕ И ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

1. Данные термостимулированной экзоэлектронной эмиссии (ТСЭЭ) и их анализ

термостимулированной экзоэлектронной эмиссии (ТСЭЭ) данных использовался для определения поляризации в образцах поливинилиденфторида (ПВДФ) и поли(винилиденфторид-трифторэтилена) П(ВДФ-ТрФЭ) бесконтактным способом. Примененный анализ данных ТСЭЭ очень хорошо подходит для характеристики поверхностных структурных электронных состояний в изготовленных П(ВДФ-ТрФЭ)-плёнках различной толщины и состава. Как известно, эффект ТСЭЭ из диэлектрических и неметаллических материалов обычно обеспечивается механизмом термоэлектронной эмиссии [25-27]. В этом случае процессы в эмиттере, зависящие от температуры T, являются модулирующим фактором величины регистрируемого тока электронной эмиссии I. В случае сегнетоэлектрических $\Pi(B \coprod \Phi - Tp \Phi \ni)$ -полимерных плёнок ЛБ именно процессы поляризации/деполяризации могут стать таким модулирующим фактором. Следовательно, измеренные особенности поведения функции I(T) характеризуют поляризацию/деполяризацию исследуемого образца П(ВДФ-ТрФЭ)-плёнки. Соответствующее этому случаю распределение энергетических зон, их наклон и сдвиг вблизи поверхности в образцах наших сегнетоэлектрических тонких плёнок, нанесённых на стеклянную подложку (без металлических электродов, что характерно для проведения ТСЭЭ), схематически представлены на рис. 1. Показанные здесь наклон и сдвиг энергетических зон обусловлены наличием внутреннего электрического поля \mathbf{E}_P поляризации \mathbf{P} в образце, которое приводит к сдвигу энергия внутри ПВДФ и П(ВДФ-ТрФЭ) плёнок на величину:

$$\varphi(E_P) = -\int_0^{x_0} E_P(P) dx = -E_P \cdot x_0 = -\left(\frac{P}{2\varepsilon\varepsilon_0}\right) \cdot x_0 , \qquad (1)$$

где x_0 — толщина слоя полимера ПВДФ (или П(ВДФ-ТрФЭ)), ϵ — относительная диэлектрическая проницаемость слоя полимера, ϵ_0 = 8.8541878...·10⁻¹² Кл/(В·м), E_P и P — компоненты поля поляризации вдоль оси x.

При этом работа выхода электрона Φ из образца и её изменение $\Delta\Phi$ определяется выражением

$$\Phi = \chi + \varphi(E_P) + E_F, \tag{2a}$$

$$\Delta \Phi = \Delta \chi_{eff} = \varphi(E_P) \,, \tag{2b}$$

где χ и χ_{eff} – сродство к электрону и эффективное сродство к электрону.

Рис. 1. Схема сдвига энергетических зон под влиянием поляризации в ПВДФ-плёнке, нанесенной на стеклянную подложку. Представлено схематическое изображение энергетических зон, их наклон и сдвиг у поверхности под влиянием электрического поля от поляризации внутри тонких ЛБ пленок ПВДФ (аналогично выглядит и случай для $\Pi(\text{ВДФ-ТрФЭ})$), нанесённых на стеклянные подложки: Ф — работа выхода термо-электронной эмиссии, χ и χ_{eff} — сродство и эффективное сродство электрона, ϕ — энергия электрического поля E_P внутри ПВДФ и $\Pi(\text{ВДФ-ТрФЭ})$ плёнок, имеющих поляризацию P, диэлектрическую проницаемость ε и толщину x; E_F — энергия уровня Ферми, E_c и E_v - энергии дна зоны проводимости и потолка валентной зоны в ПВДФ плёнках. H и F — атомы водорода и фтора, ε_0 = $8.85...\cdot 10^{-12}$ Кл/($\mathbb{B}\cdot \mathbf{m}$).

Эмиссия с поверхности ПВДФ-плёнок, нанесённых на стеклянную подложку, имеющих толщины 10 и 30 монослоёв (МС) (или \sim 5 нм и \sim 15 нм, соответственно), была зарегистрирована при измерениях методом ТСЭЭ. Соответствующие ТСЭЭ-спектры представлены на рис. 2а. Для плёнки в 30 МС, в отличие от плёнки в 10 МС, видно, что хорошо проявляется максимум (при $T_{\rm max} = +100^{\circ}{\rm C}$). Это означает, что в исходном состоянии плёнка в 10 МС не имеет ни какой-либо внутренней поляризации, ни её реорганизации при нагревании, в то время как плёнка в 30 МС имеет. Поскольку и ПВДФ-плёнки, и стеклянная подложка являются изоляторами, электроны могут вылететь как из самой плёнки, так и с некоторых локальных уровней стекла. В этом случае тепловой энергии при температуре T недостаточно, чтобы обеспечить термовозбуждение именно с вершины валентной зоны. Принимая во внимание механизм термоэлектронной эмиссии, хараетерный для ТСЭЭ, обнаруженный максимум для образца в 30 МС, может быть результатом конкуренции между возрастающей вероятностью термоэмиссии и уменьшающейся плотностью электронов на локальных уровнях. Оба процесса определяются температурой T. Когда $T < T_{\rm max}$,

эмиссия электронов находится под влиянием электрического поля поляризации (самополяризации). В то же время, когда $T > T_{\rm max}$, происходит фазовый переход в неполярную фазу, и термически индуцированная деполяризация «выключает» внутренее электрическое поле. В этом случае работа выхода электрона под действием термо-электронной эмиссии Φ должна становиться меньше. Для проверки этого утверждения величина Φ была оценена по уравнению, описывающему термоэмиссионный ток I:

$$\ln \frac{I}{T^2} = \ln A - \frac{\Phi}{kT},$$
(3)

где A — коэффициент эмиссии, k — константа Больцмана. Прямые, описываемые уравнением (3), для плёнок с 30 МС представлены на рис. 2b.

Рис. 2. ТСЭЭ-спектры ПВДФ-плёнок, нанесённых на стеклянные подложки: а) ПВДФ-плёнки с толщиной 10 и 30 монослоёв (МС); b) аппроксимирующие прямые по уравнению (3) для плёнки в 30 МС.

Значения Ф, вычисленные из графиков рис. 2b, были равны 1,97 эВ при $T < T_{\text{max}}$ и 0,72 эВ для $T > T_{\text{max}}$. Результат (уменьшение Ф при $T > T_{\text{max}}$) говорит в пользу предложенной выше модели. Более того, температурно-индуцированная деполяризация соответствует изменению электрического потенциала $U_P = 1,97 - 0,72 = 1.25$ В, или скачку соответствующего внутреннего электрического поля на расстоянии, равном

30 МС с толщиной $x_0 = 15$ нм: $E_P = 1,25$ В/15 нм = 0,083 В/нм = $8,3\cdot10^5$ В/см = 0,83 МВ/см. Это электрическое поле является результатом существования в плёнке ПВДФ в 30 МС исходной внутренней поляризации (самополяризации) при $T < T_{\text{max}}$.

Эта внутренняя поляризация и ее электрическое поле в ПВДФ-плёнке сдвигает все электронные энергетические зоны и изменяет термоэлектронную работу выхода Ф, а также электронное сродство γ . Для модели плоской тонкой ПВДФ плёнки толщиной x_0 эти сдвиги схематично представлены на рис. 1. Результирующее изменение потенциальной энергии электрона $\varphi(E_P)$ может быть тогда записано в виде (1). Следовательно, спонтанная поляризация внутри ПВДФ плёнки может быть выражена в виде P = 2 є $\epsilon_0 E_P$. Для ПВДФ плёнки, имеющей 30 МС (толщина $x_0 \sim 15$ нм) значение поляризации, при $\varepsilon \sim 10$ (см. данные для ε в [1, 2, 28–32] для $\Pi(BД\Phi-Tp\Phi\Theta)$) равно P= $0.0147 \text{ Kл/m}^2 \sim 1.5 \text{ мкКл/cm}^2$. Из других данных [4, 5] для подобных образцов в 30 МС $\Pi(B \coprod \Phi$ -Тр Φ Э) (70:30) толщиной $x_0 = 16,3$ нм (при T = 273 K) поляризация равна ~ 5–7 мкКл/см2. Но эти данные получены сразу после поляризации в приложенном электрическом поле, в то время как в нашем случае – данные без приложенного электрического поля (самополяризация) и после долгого времени релаксации. А как известно, в подобных ПВДФ плёнках обычная релаксация в течение ~ 1 часа приводит к падению поляризации на 40-50% [3, 4], поэтому значение поляризации должно быть ниже, порядка $\sim 2-3$ мкКл/см². А при длительном хранении эта величина станет еще меньше, порядка 1 мкКл/см², что близко к полученному выше значению.

Была предпринята попытка поляризовать также и образец толщиной 10 МС. Для этой цели образец был облучен ультрафиолетовым светом. Стеклянная подложка также была облучена, и был проведен анализ её фотоэлектронной эмиссии для оценки изменения индуцированного электрического поля. Показателем этих изменений является величина фотоэлектронной работы выхода Φ_{pe} .

Величина Φ_{pe} была получена из уравнения фотоэмиссионного тока:

$$I_{pe} = (E_p - \Phi_{pe})^m \,, \tag{4}$$

где E_p – энергия фотонов, m — показатель степени.

Проведенное облучение увеличило значение Φ_{pe} с 5,1 $_{2}$ В до 5,2 $_{3}$ В для стеклянной подложки, что означает, что поверхность подложки имела свой отрицательный заряд (см. рис. 1). Спектр ТСЭЭ с этого ПВДФ образца с 10 МС после облучения ультрафиолетом продемонстрировал появление максимума при $T_{max} = +120$ °C (рис. 3a). Прямые, описываемые уравнением (3), для этих плёнок с 10 МС приведены на рис. 3b. Значения Φ , вычисленные по графикам рис. 3b, оказались равны 1,34 эВ при $T < T_{\text{max}}$ и $0.08 \ \mathrm{эB}$ для $T > T_{\mathrm{max}}$. Полученный результат (уменьшение Φ при $T > T_{\mathrm{max}}$) также говорит в пользу предложенной выше модели - деполяризации пленки при нагревании ее выше T_{max} . Учитывая также, что ультрафиолетовое облучение добавляет на стеклянной подложке потенциал $\Delta U_{pe} = 5,2-5,1=0.1$ В, исходный потенциал ПВДФ-плёнки оказывается $U_{n0} = 1.34 - 0.1 = 1.24 \text{ B}$. Следовательно, при повышении температуры происходит деполяризация плёнки и её потенциал падает с 1,24 В до 0,08 В, т. е. мы имеем изменение потенциала на величину $U_p = 1,16 \text{ B}$. Это соответствует наличию при $T < T_{\text{max}}$ электрического поля E_p поляризации в плёнке в 10 MC толщиной x=5 нм: $E_p=$ $U_p/x_0 = 1.16 \text{ B} / 5 \text{ HM} = 0.232 \text{ B/HM} = 23.2 \cdot 10^5 \text{ B/cm} = 2.32 \text{ MB/cm}$. A при $T > T_{\text{max}}$ происходит скачок поля до его полного исчезновения при деполяризации пленки.

Таким образом, в образце ПВДФ толщиной в 10 МС, который не имел внутренней поляризации P перед экспериментом, после ультрафиолетового облучения измерение спектров ТСЭЭ демонстрирует наличие поляризации с величиной внутреннего электрического поля $E_P \sim 23,2\cdot 10^5$ В/см.

Сравнивая это значение с предыдущим значением $E_P \sim 8.3 \cdot 10^5$ В/см, характеризующим самополяризуемую ПВДФ-плёнку толщиной в 30 МС, мы можем заключить: 1) ПВДФ-плёнка в 30 МС, в отличие от плёнки в 10 МС, была исходно поляризована; 2) тонкая (в 10 МС) ПВДФ-плёнка имеет способность поляризоваться под воздействием ультрафиолетового облучения и может обеспечить поляризацию в 2,8 раза высшую, чем самополяризованная плёнка в 30 МС. Соответствующее значение поляризации плёнки в 10 МС (при $\varepsilon \sim 10$) оказывается равным $P \sim 0,0418$ Кл/м² $\sim 4,2$ мкКл/см². Это значение близко к данным прямых измерений поляризации в аналогичных образцах $\sim 4-6$ мкКл/см² [4, 5]. Причем эти данные без учёта релаксации, т. е. сразу после создания поляризации.

Рис. 3. ТСЭЭ-спектры ПВДФ-плёнок толщиной в 10 MC, нанесённых на стеклянные подложки: а) для ПВДФ-плёнки толщиной в 10 MC до и после УФ облучения; b) аппроксимирующие прямые по уравнению (3) для плёнки толщиной в 10 MC.

Полученные результаты объясняют также, почему значение поляризации (и внутреннего электрического поля) для плёнки толщиной в 10 МС выше, чем для плёнки в 30 МС, в то время как обычно образцы с большим числом монослоёв имеют большую поляризацию. Ультрафиолетовое облучение возбуждает электроны в зону проводимости как из стеклянной подложки (заряд поверхности стекла имел отрицательный потенциал), так и, возможно, с вершины валентной зоны $\Pi(BД\Phi-Tp\Phi\Theta)$, потому что известные значения ширины запрещённой зоны для $\Pi B \Phi$ и $\Pi(B\Phi-Tp\Phi\Theta)$ $E_g \sim 5,1-5,6$ B = 131-37 близки к значениям использованных в наших экспериментах энергий фотонов $E_{pe} \sim 5,2-5,3$ B. Однако по приводимым в литературе

данным для различных типов стёкол, обычно в них характерна для возбуждения электронов в зону проводимости энергия фотонов $E_{\rm pe}\sim 6$ –12 эВ [38]. И только в случае стекла с примесью ${\rm Fe_2O_3}$ эта энергия может быть $E_{\rm pe}\sim 5,3-5,4$ эВ. Таким образом, величины ширины запрещённой зоны в обычных стёклах выше, чем в наших экспериментах, и это означает, что электроны, попадающие в зону проводимости, возбуждаются в эту зону в основном именно из слоев тонкой ПВДФ-плёнки, а не из области стекла подложки. Другая возможность связана с существованием в самих ПВДФ уровней-ловушек электронов, близких к дну зоны проводимости (известно, что ПВДФ-плёнки подобны полупроводникам n-типа [1–3]), и этот эффект подробнее обсуждается ниже при анализе моделей.

С другой стороны, мы должны подчеркнуть, что в наших прямых экспериментах с образцом чистого стекла было показано, что его поверхность заряжается отрицательно после ультрафиолетового облучения. Следовательно, возбуждённые заряды со стекла в любом случае также дают свой вклад в общий отрицательный заряд. К тому же, по той причине, что ПВДФ-плёнки довольно тонкие и фотоны могут легко пройти сквозь них, возможно, значительная часть вклада в общий заряд на поверхности образца поступает все же со стороны стеклянной подложки. Но при этом на отрицательно заряженной поверхности стеклянной подложки близлежащие молекулярные цепи ПВДФ-плёнки моментально ориентируются вдоль индуцирующего электрического поля такой подложки – с положительно заряженным атомом водорода, распологающимся ближе к стеклянной подложке с ее отрицательным зарядом на поверхности, и отрицательно заряженным атомом фтора, сдвигающемся дальше в направлении от поверхности подложки. В результате всегда внутри ПВДФ-плёнки возникает стеклянной ориентированная перпендикулярно к ее поверхности, спонтанная поляризация, которая и регистрируется методом ТСЭЭ спектроскопии.

2. Молекулярное моделирование и компьютерный анализ

2.1. Анализ моделей основных блоков сополимеров из двух единиц мономера

анализа полученных результатов, особенностей ПВДФ-полимерных молекулярных структур в различных фазовых конформациях и их изменений при фазовом переходе (при $T > T_{\text{max}}$), мы проводили молекулярное моделирование и структурную оптимизацию моделей с использованием HyperChem 7.52 [39] и 8.0. Был использован ряд разных квантово-химических подходов: 1) методы теории функционала плотности (ТФП) (метод многопараметрического корреляционнообменного функционала Handy (HCTH98) [40], метод на основе функционала Becke-88 [41] с корреляционным функционалом Lee-Yang-Parr (LYP) [42], метод Perdew с обменным функционалом Perdew-Wang-91 [43]); 2) полуэмпирические методы (CNDO, РМЗ [39]), которые значительно быстрее и зачастую удобнее. Применялись также и методы молекулярной механики (MM+, BIO CHARM [39]). Сравнение и анализ данных, полученных различными методами, позволяет повысить надежность результатов (см. также [44]). Развитие полуэмпирических методов конкурирует с методами ТФП, но каждый подход имеет свои области применения. В популярном программном пакете МОРАС появился новый метод параметризации РМ6 [45]. Для практических целей важно подобрать наиболее эффективное сочетание этих подходов, что мы и пытаемся сделать в этой работе.

На первом этапе мы взяли минимальный структурный блок, содержащий основной молекулярный мотив ПВДФ-сополимера ...- CH_2 - CF_2 -... и исследовали модели с различными вариациями ТрФЭ-компоненты состава (когда один из атомов водорода замещается на фтор, и/или наоборот), а также модели с различными его фазовыми конформациями – транс (T) и гош (G) (рис. 4). Основные параметры этих моделей

рассчитаны указанными выше методами (см. табл. 1): дипольный момент (в единицах Дебая, англ. Debye, D), объём (в ų) и поляризация (в Кл/м²), энергия верхних занятых молекулярных орбиталей (E HOMO, англ. Highest Occupied Molecular Orbital), энергия нижних незанятых молекулярных орбиталей (E LUMO, англ. Lowest Unoccupied Molecular Orbital), ширина запрещённой зоны (E_g), ионизационный потенциал IA и вычисленное сродство электрона EA (соответствующее измеряемому χ , показанному на рис. 1). Полученные значения величин близки к рассчитанным другими авторами в разных ТФП-подходах [32–37]. Наиболее интересные полученные результаты связаны с энергиями при фазовых переходах и соответствующими энергиями электронов на верхних уровнях E LUMO (и соответственно, EA), которые близки к сродству электрона χ .

Рис. 4. Структурные представления построенных блоков для моделей полимера, содержащего две минимальных винилиденфторид (ВДФ) единицы ($-CH_2$ - CF_2 -) в различных фазовых конформациях – транс (Т) (верхняя линия) и гош (G) (нижняя линия): а) и b) 2ВДФ-T в Y и Z плоскостях; с) и d) 2(ВДФ-ТрФЭ)-T в Y и Z плоскостях; е) и f) 2ВДФ-G в Y и Z плоскостях; g) и h) 2(ВДФ-TрФЭ)-G в Y и Z плоскостях.

Проведенные расчеты показали, что оптимизированная полная энергия E_{tot} во всех случаях имеет более низкое значения в G конформации, и значит, она энергетически более стабильна по сравнению с Т. Изменения E_{tot} при фазовом переходе между G и T конформациями направлены на понижение этой величины $\Delta E_{TG} = E_G - E_T$ и имеют следующие абсолютные значения (см. табл. 1):

- а) для чистого ПВДФ (или PVDF) $\sim 1.8-1.9$ ккал/моль (или ~ 0.08 эВ) для обоих использованных ТФП-методов, в сравнении со значением ~ 2.3 ккал/моль, приведенном для аналогичных молекулярных структур, например, в работе [37];
- б) для $\Pi(BД\Phi-Tp\Phi\Theta) \sim 1,3$ ккал/моль ($\sim 0,056$ эВ) в сравнении с $\sim 1,46$ ккал/моль и $\sim 1,92$ ккал/моль для двух аналогичных различных конформеров в [37].

особенно для их изменения, результаты оказываются очень близки как для метода РМ3, так и для различных ТФП подходов (см. табл. 1).

Таблица 1. Вычисленные параметры для различных структурных конформаций с двумя основными ВДФ и ВДФ-ТрФЭ единицами (т.е. при $\Pi = 2$ для Π ВДФ и Π (ВДФ-ТрФЭ))

Методы	Параметры	ПВДФ–Т	ПВДФ-С	$\Delta E_{\rm TG} = E_{\rm G}$	П(ВДФ-	П(ВДФ-	$\Delta E_{TG} =$
				$E_{\rm T}$,	ТрФЭ) - Т	ТрФЭ)-G	E_G –
				эВ (ккал/			E_T , $\ni \mathbf{B}$
				моль)			(ккал/ моль)
1	2	3	4	5	6	7	8
PM3	E_{tot} , a.e.	-85.602	-85.599	0.0964	-101.2096	-101.2108	-0.033
FWIS	Lioi, a.c.	05.002	05.577	(2.622)	101.2000	101.2100	(-0.76)
	E LUMO, эВ	1.4617	1.336	-0.125	0.806	0.717	-0.089
	$E HOMO$, $\ni B$	-12.674	-12.848		-12.73	-12.93	
	E_{g} , $\Im \mathbf{B}$	14.136	14.184		13.54	13.64	
	Дипольный момент, D	4.103	2.588		3.235	2.967	
	Объём <i>V</i> ,Å ³	89.58	89.684		92.47	90.78	
	Поляризация P , $K_{\rm Л}/{\rm M}^2$	0.153	0.096		0.117	0.109	
	EA, 9B	1.0945	0.9737	-0.121	0.567	0.312	-0.26
	IA, эB	12.500	12.677		12.18	12.97	
ТФП 1	E_{tot} , a.e.	-555.23	-555.233	-0.077	-654.4227	-654.4248	-0.057
(HCTH				(-1.77)			(-1.32)
98)	ELUMO, эВ	1.5129	1.3576	-0.155	0.689	0.854	0.165
	Е НОМО, эВ	-7.066	-7.324		-7.053	-7.289	
	E_{g} , эВ	8.579	8.681		7.742	8.143	
	Дипольный	3.592	2.207		2.767	2.514	
	момент, Д	00.50	00.60		20.60	00.50	
	Объём <i>V</i> ,Å ³	89.58	89.68		90.68	90.78	
	Поляризация P , K л/ M^2	0.134	0.082		0.102	0.092	
	<i>EA</i> , эВ	3.993	3.896	-0.097	3.988	3.699	-0.289
	IA, əB	10.16	10.435		9.816	10.381	
ТФП 2 (Becke	E_{tot} , a.e.	-555.27	-555.273	-0.081 (-1.87)	-654.4903	-654.4923	-0.055 (-1.23)
88,	E LUMO, эВ	1.439	1.335	-0.105	0.811	0.976	0.1647
LYP)	Е НОМО, эВ	-6.829	-7.089		-6.81	-7.044	
211)	E_g , 9 B	8.506	8.424		7.621	8.019	
	Дипольный	3.447	2.115		2.647	2.372	
	момент, D						
	Объём V , $Å^3$	89.58	89.68		90.68	90.78	
	Поляризация P , K л/ M ²	0.134	0.082		0.097	0.092	
	EA, 9B	3.993	3.896	-0.097	3.988	3.699	-0.289
	<i>IA</i> , 9B	10.16	10.44		9.816	10.38	

Отметим, что электронное сродство и соответствующая энергия E LUMO наиболее существенны для метода TCЭЭ, т.к. термически возбуждённые электроны эмитируют именно со дна зоны проводимости, что и соответствует уровням энергии E LUMO (см. рис. 1). Подчеркнем здесь еще раз, что величины энергий E HOMO получаются различными при вычислении обеими методами $T\Phi\Pi$ и полуэмпирическим PM3, тогда как значения величины энергий E LUMO оказываются довольно близкими. Для TCЭЭ важна именно величина E LUMO, поскольку эмиссия электронов происходит как раз с этих энергетических уровней. Поэтому здесь вполне может быть применим метод PM3.

Для анализа результатов измерений ТСЭЭ мы сосредоточимся в дальнейшем именно на этих энергетических характеристиках.

2.2. Анализ влияния количества единиц мономера в полимерной цепи на энергетические характеристики сополимера

Мы построили серию моделей молекулярных цепей различной длины и с соответствующим разным количеством ВДФ единиц Π сополимера, включая $Tp\Phi$ Э компоненты состава (мы использовали соотношение концентраций компонент $\Pi(BД\Phi:Tp\Phi$ Э) равную (70:30)), для разных конформаций T и G.

Рис. 5. Зависимость рассчитанных значений энергий от числа единиц в полимерной цепи ПВДФ и П(ВДФ-ТрФЭ) (англ. PVDF и P(VDF-TrFE)) для различных конформаций (T, G) и использованных методов: **a**) энергии ширины запрещенной зоны E_g ; b) энергии нижних заполненных электронами орбиталей E HOMO.

b)

Количество единиц в полимерной цепи

Результаты расчетов для этих моделей методами ТФП (в приближении НСТН98), а также полуэмпирическим методом РМ3, представлены на рис. 5 (для данных по энергиям $E\ HOMO$ и ширине запрещенной зоны E_g) и на рис. 6 (для энергий $E\ LUMO$). Возрастание числа основных структурных единиц полимерных цепей приводит к

понижению E_g и E LUMO, но к росту E HOMO, что соответствует известным данным [16, 17]. Это верно для обоих использованных методов (как полуэмпирического метода PM3, так и методов $T\Phi\Pi$). Однако отметим, что в то время как сами уровни энергии E HOMO, вычисленные в PM3-приближении, оказываются почти вдвое ниже по сравнению с расчетами по $T\Phi\Pi$, уровни E LUMO, вычисленные обоими методами, лежат в очень близких областях значений (рис. 6). Таким образом, из полученных данных по результатам расчетов E LUMO обеими методами можно заключить, что для более длинных молекулярных цепей (с количеством структурных единиц полимера $\Pi \sim 5$ –10) отличия уровней энергий, полученных методами PM3 и $T\Phi\Pi$, незначительны, несмотря на то, что уровни энергий E HOMO заметно отличаются (рис. 5 и рис. 6).

В то же самое время разница в уровнях энергий E LUMO для случая различных полимеров — чистого $\Pi B Д \Phi$ и с примесью трифторэтилена $\Pi(B Д \Phi - T p \Phi \Theta)$ — возрастает и достигает значения порядка ~ 0.5 эВ для большего количества молекулярных структурных единиц в полимерной цепи порядка $\Pi \sim 10$.

Как видно на рис.6, для длинных цепей смешанного сополимера в Т-конформации – $\Pi(BД\Phi-Tp\Phi\Theta)$ -Т — уровни энергий E LUMO падают до нуля по абсолютным значениям, и даже имеют значения ниже нуля — для G-конформаций полимерных длинных цепей сополимера $\Pi(BД\Phi-Tp\Phi\Theta)$ -G.

Рис. 6. Зависимость уровней энергии орбитали E LUMO от количества единиц в полимерной цепи, для различных конформаций (Т и G) и вычисленных различными методами. Для оценки точности результатов были проведены также расчеты с использованием целого числа единиц полимерной цепи, имеющей несимметричные концевые участки, и полуцелое их количество, формирующее полностью симметричную полимерную цепь. С ростом общего числа единиц в цепи разница результата нивелируется.

На основе полученных результатов мы можем заключить, что, в отличие от чистой полимерной ПВДФ цепи, смешанная $\Pi(BД\Phi-Tp\Phi\Theta)$ цепь будет иметь более подверженные внешним влияниям свойства, особенно в процессе фазового перехода от T к G конформации, вследствие более легкой термической возбудимости электронов.

2.3. Модель двух взаимодействующих длинных полимерных цепочек

Для того, чтобы прояснить наиболее важные детали этих процессов, была рассмотрена модель взаимодействующих полимерных цепей, состоящая из двух длинных (по 10 структурных единиц, т.е. $\Pi=10$) $\Pi(BД\Phi-Tp\Phi \Theta)$ отдельных цепочек, которые были расположены параллельно и антипараллельно по ориентации их суммарного дипольного момента каждой из цепей в их T конформации, и антипараллельно в их G конформации (последнее необходимо для того, чтобы достичь полной компенсации общего дипольного момента, соответствующего состоянию неполярной параэлектрической G фазы в кристалле). Результаты расчетов по этим моделям представлены в табл. 2.

Таблица 2. Данные результатов расчетов для моделей двух взамодействующих полимерных цепей $\Pi(BД\Phi-Tp\Phi\Theta)$ с составом компонент (70:30) и при их различной ориентации и конформации (по РМЗ методу: здесь α и β – две различные спиновые орбитали электронной подсистемы в UHF аппроксимации)

Рассчитываемые величины	UHF	РМ3 метод				
всличины	Спин.	2 цепи в 10 ед	2 цепи в 10 ед	2 цепи в 10 ед		
	орб.	Т паралл.	Т анти-паралл	G анти- паралл.		
ELUMO, э B	α	-0.72902	-0.68426	+0.32891		
	β	-0.72901	-0.68426	+0.32980		
Е НОМО, эВ	α	-12.2535	-13.3813	-12.6516		
	β	-12.2535	-13.3713	-12.6516		
Eg = E LUMO -	αα	11.52449	12.69706	12.98055		
<i>- Е НОМО</i> , эВ	ββ	11.52450	12.68706	12.98145		
$E_F = Eg/2$, $\ni B$	αα	5.762246	6.348529	6.490275		
	ββ	5.762247	6.343529	6.490724		
E_{tot} , a.u.		-1014.025	-1013.993	-1013.959		
$E_{binding}$ (связи),		-12654.90	-12634.97	-12613.25		
ккал/моль						
IE , $\ni B$	αα	12.04264	13.29948	12.53292		
	ββ	12.04285	13.29971	12.53314		
ЕА, эВ	αα	-1.17175	-0.83292	0.22992		
	ββ	-1.17176	-0.83295	0.22993		
Дипольный мом.		32.772	2.444	0.006 ~ 0		
<i>D</i> , Дебай						
D_{y} (основная		32.772	~ 0	~ 0		
компонента), D						
Объем <i>V</i> , Å ³		863.69	860.92	860.01		
P, Кл/м ²		0.126565	~ 0	~ 0		

Мы проводили в расчеты в приближении неограниченного (UHF) метода Хартри—Фока, дающего, как известно, более точные значения энергий электронных орбиталей. При этом мы получили две серии орбиталей, соответствующих двум ориентациям спина (обозначенные, как α и β). Однако значения энергий этих орбиталей оказались близкими, и для необходимой точности расчетов практически равными.

Из этих данных видно, что после фазового перехода от Т в G фазу сродство электрона EA изменилось на величину от $\sim -1,172$ эВ до $\sim +0,230$ эВ. Т.е. общее увеличение рассчитываемого электронного сродства EA составило $\Delta EA \sim 1,40$ эВ > 0,

что позволяет электронам более легко покидать поверхность образца. Это и произошло с ТСЭЭ в процессе примененной температурной экспозиции. При этом рассчитанные значения энергии E LUMO изменились от \sim -0,73 эВ до \sim +0,33 эВ (см. табл. 2), что дало общее увеличение уровней энергии $\Delta(E\ LUMO)\sim 1,06$ эВ, близкое к изменению сродства ΔEA .

2.4. Модель двойной кристаллической ячейки сополимера

Для более глубокого понимания процессов, происходящих с уровнями энергий электронной подсистемы при фазовом переходе из полярной сегнетоэлектрической фазы в неполярную параэлектрическую фазу, мы разработали детальную модель кристаллической ячейки. Эта модель соотвествует реальной ситуации в наших образцах и известным экспериментальным данным [1–7,11,16,17]. Построенные модели типа двойной ячейки $\Pi(BД\Phi-Tp\Phi\Theta)$ структуры в обеих T и G конформациях представлены на рис. T0. При построении модели и проведении расчетов мы использовали известные данные по параметрам кристаллической ячейки: T1 в T2 в T3 нм, T4 в T4 нм T4 пм T5 определенные по этой модели методом T6 значения энергий электронных уровней оказались у нас следующими: для T4 с T6 в T6 уровней T6 уровней T6 для состояния в стабильной T6 конформации.

Проведенные моделирование и расчеты в данной модели двойной ячейки для Т фазы показали, что общий дипольный момент системы предпочтительно ориентирован в направлении оси ОҮ (рис. 7а). Это направление соответствует случаю ориентации суммарного диполя системы перпендикулярно к поверхности подложки из стекла, имеющей отрицательный заряд в экспериментальных условиях, описанных выше. Полученное значение суммарного дипольного момента равно $D_t \sim D_y \sim 88,4~D$, что для объема этой структуры $V_T \sim 1844,42~\text{Å}^3$ дает в результате соответствующее значение поляризации $P \sim P_y \sim 0,16~\text{Кл/м}^2$, которое очень хорошо сравнимо с известными данными [1–7, 16, 17].

После фазового перехода и трансформации системы в G конформацию и неполярную фазу, полный дипольный момент нашей системы оказывается полностью компенсированным $D_t \sim D_y \sim 0$ при общем объеме двойной ячейки равном $V_G \sim 1838,17~{\rm Å}^3$, что дает также равное нулю значение полной поляризации $P \sim 0$. Значения энергетических уровней электронной подсистемы в конечной неполярной фазе G конформации оказываются следующими: $E\ LUMO \sim +0,0293~{\rm 3B}, E\ HOMO \sim -9,334~{\rm 3B}.$ Схематически структура этих энергетических уровней (или энергетических зон) электронов в обеих фазах представлена на рис. 8.

Очевидно, что мы имеем возрастание энергии E LUMO на величину $\Delta(E$ LUMO) \sim \sim 1,597 эВ и получаем близкое к нулю значение энергии E LUMO в неполярной фазе, и такое же значение электронного сродства в этом случае. Если сравнить эти данные с приведенными выше экспериментальными значениями на основе анализа TCЭЭ спектроскопии, видно, что основной порядок значений величин и тенденция их изменения согласуются между собой (так, например, для случая 2-го образца мы получаем изменение работы выхода по порядку величин от \sim 1,24 эВ до \sim 0,08 эВ, и возрастание электронного сродства на величину около \sim 1,16 эВ, что сопоставимо с приведенными оценками этих величин на основе нашей молекулярной модели двойной ячейки).

Рис. 7. Модель двойной ячейки $\Pi(BД\Phi\text{-}Tp\Phi\Theta)$ структуры в двух конформациях: а) транс (T-Trans) и b)гош (G-Gauche).

Рис. 8. Схематическое изображение электроннных энергетических зон и их сдвига под влиянием внутреннего электрического поля в процессе фазового перехода между T и G конформациями в модели двойной ячейки $\Pi(BД\Phi-Tp\Phi\Theta)$.

3. Основные численные результаты моделирования и сравнение с экспериментальными данными по анализу ТСЭЭ спектроскопии

Дальнейшие вычисления были проведены полуэмпирическим РМЗ методом, как более быстрым, по сравнению с методами ТФП, и дающим правильные значения основных энергий. Поведение и изменение всех энергий ($Eg = E\ HOMO - E\ LUMO$, $E\ LUMO$ и сродство электрона EA) в процессе фазового перехода (от T состояний к G конформации) в моделируемой ячейке P(VDF-TrFE) структруры имеет полностью правильные характеристики: энергия ширины запрещенной зоны Eg увеличивается (т.е. запрещенная зона становится шире) при переходе от T к G состоянию, и все энергетические уровни электронов (включая $E\ LUMO$, $E\ HOMO$ и уровень Ферми E_F) возрастают также.

Детали изменения структуры энергетических зон (схемы зон) при переходе от Т к G состоянию и находящихся под влиянием изменения электрического поля E_P , представлены на рис. 8. Здесь показаны также уровни энергий ионизационного потенциала IA, соответствующего уровню E HOMO, электронное сродство EA, соответствующее уровню E LUMO, энергия уровня Ферми E_F , определяемая как половина ширины запрещенной зоны E_g , а также энергия термо-электронной работы выхода, определяемая как сумма энергии E_F и EA ($\sim E\ LUMO$).

Другие важные для анализа рассчитанные данные представлены на рис. 9: вариации (Q = -1, 0, +1)позволяют определить заряда нам ионизационный потенциал IA и электронное сродство EA, а также их изменения. Вычисленные значения полной энергии системы (рис. 9а) для модели молекулярного кластера (рис. 7) при заряде Q = 0, дают изменение полной энергии при переходе от T к G конформации $\Delta E_{T-G} \sim -1.97$ эВ ~ -46.5 ккал/моль. Это значение оказывается эквивалентно изменению полной энтальпии системы при этом фазовом переходе ~ -58.18 Дж/г для общей молярной массы данного кластера $M_c = 3265,424$ г/моль (рис. 7), состоящего из 8 молекулярных цепочек $C_{11}F_{14}H_{10}$. Отметим, что данная модель, содержащая в целом 280 атомов в 8 молекулярных цепочках $C_{11}F_{14}H_{10}$, соответствует реальной кристаллической структуре сополимера П(ВДФ-ТрФЭ) с составом компонент (70:30), в двух основных конформациях -Т и G, при фазовом переходе от полярной сегнетоэлектрической к неполярной параэлектрической фазе.

Важным результатом является то, что данная модель приводит к правильному характеру поведения полной энергии системы: при переходе от Т к G полная энергия кластера понижается (рис. 9а). Для более правильной количественной оценки и сравнения с известными экспериментальными данными, нам надо перейти к расчетам изменения энергии на единицу объема молекулярного кластера. При переходе от Т к G конформации изменяется как конфигурация каждой молекулярной цепочки (рис. 7), так и ее объем, а также и общий объем кластера: объем его в T состоянии $V_T = 1844.42 \text{ Å}^3$, тогда как в G состоянии объем $V_{\rm G} = 1838,17~{\rm \AA}^3$. Поэтому переходя к величинам плотности энергии, мы получаем: $E_{VT} = -33,05034$ эВ/(Å³), $E_{VG} = -33,16379$ эВ/(Å³), и соответствующее изменение при T-G переходе $\Delta E_{V(T-G)} = -0.1135 \text{ эВ/(Å}^3)$, или в других единицах $\Delta E_{V(T-G)} \sim -2,62$ ккал/моль на единицу объема кластера. Это изменение плотности полной энергии (ее понижение) соответствует также энтальпии процесса ΔH $\sim -3.35 \; \text{Дж/г}$ (на единицу объема кластера). Полученные количественные оценки, как и сам характер выявленных энергетических изменений, оказываются количественно сравнимы со многими опубликованными данными [37,46-50] и соответствуют Т-G фазовому переходу в П(ВДФ-ТрФЭ) (70:30) ячейке.

Рис. 9. Рассчитанные данные в модели двойной ячейки $\Pi(BД\Phi-Tp\Phi\Theta)$ кластера при изменении внешнего приложенного электрического поля: а) полная энергия для разных значений общего заряда в T и G конформациях; b) значение поляризации кластера для T и G конформаций.

С другой стороны, хорошо известно, что $\Pi(BД\Phi-Tp\Phi\Theta)$ имеет свойства полупроводника n-типа с соответствующей энергией уровня Ферми E_{Fn} , которая отличается от энергии уровня Ферми E_F в середине запрещенной зоны E_g для чистой беспримесной $\Pi BД\Phi$ структуры данного полимера-полупроводника и лежит в данном случае довольно близко к дну зоны проводимости E_c , и/или к уровню энергии E LUMO. Согласно работам [3,5,51,52]: $E_{Fn} \sim 0,8-0,4$ э $B < E_F \sim 2-4$ эB (данные уровни энергии схематически указаны на рис. 8). Для сравнения на рис. 10 приведены рассчитанные уровни энергий E_F в случае обеих конформаций T и G, как при отсутствии

электрического поля, так и при его воздействии в двух противоположных направлениях, а также и все другие основные энергетические уровни и параметры. Как видно (рис. 8 и рис. 10), мы получаем сдвиг вверх дна зоны проводимости E_c , соответствующий уровню энергии E LUMO, при T-G фазовом переходе, что обычно наблюдается в таком материале как $\Pi(\mathrm{B} \square \Phi \mathrm{T} \mathrm{p} \Phi \mathrm{T})$ (70:30) [51–53]. В этом случае очевидно, что после У Φ -облучения (с энергией фотонов $E_{pe} \sim 5,2$ эВ -5,3 эВ, близкой к энергии ширины запрещенной зоны $E_g \sim 5,1-5,6$ эВ [31–37]) эти уровни n-типа могут быть легко возбуждены и будут участвовать также и в захвате на них электронов со дна зоны проводимости.

Рис.10. Вычисленные основные энергетические характеристики для модели П(ВДФ-ТрФЭ) кластера при изменении электрического поля: а) для Т конформации, b) для G конформации.

Здесь: IA — потенциал ионизации, EA — электронное сродство, E HOMO и E LUMO — верхние занятые и нижние незанятые орбитали, Eg = E HOMO — E LUMO — ширина запрещенной зоны, $E_f = E_g$ /2 — уровень Ферми, E_g /2 + EA ~ E_g /2— E LUMO ~ Φ — энергия уровня работы выхода при термоэлектронной эмиссии.

В результате мы получаем, что данная модель описывает образцы со свойствами фотосегнетоэлектриков [53]. В случае образцов второго типа мы имеем и экспериментальное подтверждение: облученный УФ образец П(ВДФ-ТрФЭ) толщиной 10 МС явно демонстрирует именно такие свойства фотосегнетоэлектрика [53].

Этот факт имеет здесь вполне очевидные доказательства. Если мы более детально проанализируем наши данные по эксперименту с ТСЭЭ спектроскопией, в сравнении с полученными нами рассчитанными значениями всех основных уровней энергий по нашей молекулярной модели $\Pi(\mathrm{B} \square \Phi \mathrm{T} \mathrm{p} \Phi \mathrm{H})$ (70:30) кластера (см. рис. 1, 2, 3 и рис. 8, 10), то увидим, что для второго УФ-облученного образца энергии термоэлектронной работы выхода Φ оказываются сдвинутыми на величину $\Phi_Q \sim 0.64~\mathrm{B}$ (по сравнению с первым необлученным образцом толщиной 30 МС) как до, так и после прохождения через ТСЭЭ пик: после температуры T_{max} сдвиг составляет $\sim 0.72-0.08=0.64~\mathrm{B}$, в то время как до этой температуры T_{max} сдвиг был равным $\sim 1.97-1.34=0.63~\mathrm{B}$ (если мы здесь пренебрегаем изменением на 0,1 эВ на поверхности подложки из стекла, как упоминалось выше).

Рис. 11. Изображения 3-D изоповерхностей элетронных орбиталей, полученных в модели ячейки П(ВДФ-ТрФЭ) 70:30 кластера в его Т конформации (по моделированию в HyperChem 8.0): **a)** и **b)** *LUMO* орбитали в направлении ориентации Z и Y плоскостей; **c)** и **d)** *HOMO* орбитали в направлении ориентации Z и Y плоскостей.

Это означает, что в обоих случаях (до $T_{\rm max}$ – в состоянии T, а после $T_{\rm max}$ – в состоянии G конформации) для второго УФ-облученного образца, внутри этого образца существует дополнительное электрическое поле, возникшее вследствие захвата зарядов (электронов) на возможные поверхностные уровни (и/или уровни n-типа). В результате оказались сдвинутыми вниз все уровни энергии системы по сравнению с «чистой» идеальной системой без этих дополнительных уровней (см. рис. 8, где данный сдвиг уровней энергии Φ_Q указан жирной синей стрелкой). Для рассмотренной модели этот сдвиг энергий и соответствующее дополнительное внутреннее электрическое поле обеспечивается, по нашим оценкам, при плотности поверхностных зарядов $N_Q \sim 7.10^{12}$ см $^{-2}$. Это вполне разумное значение, соответствующее известным данным [53].

Для иллюстрации эффективности и справедливости предложенной молекулярной модели П(ВДФ-ТрФЭ) (70:30) кластера и развиваемого нами подхода мы приводим рассчитанные (методом РМЗ программного пакета HyperChem 8.0) и представленные в 3-D изображения распределения электронной плотности основных орбиталей *НОМО* и *LUMO* состояний для модели Т конформации (рис. 11).

Из приведенных 3-D изображений (полученных в результате проведенного нами компьютерного моделирования) ясно видно, что под влиянием внутреннего электрического поля (причем, что здесь также важно, именно внутреннего локального поля [54]), возникающего вследствии существующей в T конформации спонтанной поляризации внутри образца, распределение электронной плотности («электронные облака») смещаются в направлении электрического поля: локализация электронов в основном состоянии на орбиталях E HOMO в нижней части кластера (изображенного на рис. 11c,d), смещается в верхнюю часть кластера вдоль оси по направлению поляризации и электрического поля, при возбуждении электронов на орбитали E LUMO. Это наглядно демонстрирует влияние внутреннего электрического поля поляризации на перемещение электронных зарядов при их возбуждении в сегнетофазе, тогда как в аналогичной модели для G конформации нашего кластера такого смещения нет — при этом аналогичные 3-D изображения распределения электронной плотности основных орбиталей E HOMO и E LUMO состояний для модели G конформации сохраняют свой симметричный вид без смещения.

ЗАКЛЮЧЕНИЕ

Разработанная новая компьютерная молекулярная модель ПВДФ и П(ВДФ-ТрФЭ) сегнетоэлектрических полимеров, особенно ее модель двойной ячейки молекулярного кластера, оказывается очень полезной и эффективной для изучения основных физических свойств таких материалов, в том числе на их нано-масштабном уровне, и дает нам новые данные как по полной энергии таких систем, так и по основным важнейшим энергиям электронных орбиталей. Существенной особенностью предложенных моделей является возможность описания фазовых переходов в этих сегнетоэлектрических полимерах от Т к G конформации и получения реальных количественных данных по оценкам изменений электронных энергий, а также поляризации.

Предложенное применение метода ТСЭЭ спектроскопии в сочетании с разработанной молекулярной моделью позволяет нам получать значения поляризации (и ее изменения), а также определять величины электронного сродства и работы выхода образцов ПВДФ и $\Pi(BД\Phi-Tp\Phi\Theta)$, испытывающих фазовый переход от T к G конформации при нагревании.

Основным преимуществом применения метода ТСЭЭ является возможность *прямых* бесконтактных измерений величины поляризации и ее изменения при фазовом переходе из полярной сегнетоэлектрической фазы (в Т конформации) в неполярную параэлектрическую фазу (в G конформации). Такой неразрушающий метод контроля

важен для анализа функционирования костных имплантов, особенно, имплантов со встроенными сенсорами. Такие умные («смарт») нано-биотехнологии очень перспективны и найдут широкое применение в современной нанобиомедицине.

Данные исследования были выполнены при финансовой поддержке по гранту ИНТАС - INTAS-05-1000008-8091. Б.В.С. также благодарит Фонд науки и технологии Португалии Fundação para a Ciencia e a Tecnologia (FCT, Portugal) за поддержку по гранту SFRH/BPD/22230/2005, Немецкое общество академических обменов за грант DAAD 325-A09/03515/2009 и Немецкий научный фонд за грант DFG KL 654/29-1 (Germany).

СПИСОК ЛИТЕРАТУРЫ

- 1. Blinov L., Fridkin V., Palto S., Bune A., Dowben P. and Ducharme S. *Physics-Uspekhi*. 2000. V. 43. № 3. P. 243-257.
- 2. Bune A.V., Fridkin V.M., Ducharme S., Blinov L.M., Palto S.P., Sorokin A.V., Yudin S.G. and Zlatkin A. *Nature (London)*. 1998. V. 391. P. 874.
- 3. Qu H., Yao W., Zhang J., Dusharme S., Dowben P.A., Sorokin A.V. and Fridkin V.M. *Appl. Phys. Lett.* 2003. V. 82. P. 4322-4324.
- 4. Kliem H. and Tardos-Morgane R. J. Phys. D: Appl. Phys. 2005. V. 38. P. 1860-1868.
- 5. Tadros-Morgane R. and Kliem H. J. Phys. D: Appl. Phys. 2006. V. 39. P. 4872-4877.
- 6. Gruverman A. and Kholkin A. *Rep. Prog. Phys.* 2006. V. 69. P. 2443–2474.
- 7. Tolstousov A., Gaynutdinov R., Tadros-Morgane R., Judin S., Tolstikhina A., Kliem H., Ducharme S. and Fridkin V. *Ferroelectrics*. 2007. V. 354. P. 99-105.
- 8. Li D. and Bonneli D.A. Ferroelectric Lithography. In: *Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale.* Eds. Kalinin S.V. and Gruverman A. New York: Springer, 2007. P. 906–928.
- 9. Rodriguez B., Jesse S., Baddorf A. and Kalinin S. *Phys. Rev. Lett.* 2006. V. 96. P. 237602.
- 10. Rodrigeuz B.J., Jesse S., Kalinin S., Kim J., Ducharme S. and Fridkin V.M. *Appl. Phys. Lett.* 2007. V. 90. P. 122904.
- 11. Bystrov V.S., Bdikin I.K., Kiselev D.A., Yudin S.G., Fridkin V.M. and Kholkin A.L. *J. Phys. D: Appl. Phys.* 2007. V. 40. P. 4571–4577.
- 12. Kang S.J., Bae I., Shin Y.J., Park Y.J., Huh J., Park S.-M., Kim H.-C. and Park C. *NANO Letters*. 2011. V. 11. P. 138–144.
- 13. Egusa S., Wang Z., Chocat N., Ruff Z.M., Stolyarov A.M., Shemuly D., Sorin F., Rakich P.T., Joannopoulos J.D and Fink Y. *Nature Materials / Advanced online Publication*. 2010. P. 1–6. doi: 10.1038/NMAT2792.
- 14. Hu Z., Tian M., Nysten B. and Jonas A.M. *Nature Materials*. 2009. V. 8. P. 62–67.
- 15. Amer S. and Badawy W. Current Pharmaceutical Biotechnology. 2005. V. 6. P. 57.
- 16. Bystrov V.S., Bystrova N.K., Paramonova E.V., Vizdrik G., Sapronova A.V., Kuehn M., Kliem H. and Kholkin A.L. *J. Phys: Condens. Matter.* 2007. V. 19. P. 456210.
- 17. Bystrov V., Bystrova N., Kiselev D., Paramonova E., Kuehn M., Kliem H. and Kholkin A. *Integrated Ferroelectrics*. 2008. V. 99. P. 31–40.
- 18. Hereida A., Machado M., Bdikin I., Gracio J., Yudin S., Fridkin V.M., Delgadillo I. and Kholkin A.L., *J. Phys. D: Appl. Phys.* 2010. V. 43. № 33. P. 335301.
- 19. Callegari B. and Belangero W.D. Analysis of the interface formed among the poli(viniilidene) fluoride (piezoelectric and nonpiezoelectric) and the bone tissue of rats. *Acta Ortop.Bras.* 2004. V. 12. № 3. P. 160–166.
- 20. Mehta R. The hip gets smart. *Materials World Magazine*, 01 Apr 2010. URL: http://www.iom3.org/news/hip-and-smart-biomaterials (accessed 17 July 2011).
- 21. Bystrov V.S., Bystrova N.K., Paramonova E.V. and Dekhtyar Yu.D. Interaction of charged hydroxyapatite and living cells. I. Hydroxyapatite polarization properties.

- *Mathematical biology and bioinformatics.* 2009. V. 4. № 2. P. 7–11. URL: http://www.matbio.org/downloads_en/Bystrov_en2009(4_7).pdf (accessed 17 July 2011).
- 22. PERCERAMICS. URL: http://www.perceramics.vip.lv/ (accessed 17 July 2011).
- 23. Dekhtyar Yu., Bystrov V., Khlusov I., Polyaka N., Sammons R. and Tyulkin F. Hydroxyapatite Surface Nanoscaled characterization and Electrical Potential F Functionalization to Engineer Osteoblasts Attachment and Generate Bone Tissue. In: *The Society For Biomaterials 2011 Annual Meeting & Exposition* (April 13–16, 2011, Orlando, Florida, USA). A 519.
- 24. Lines M.E. and Glass A.M. *Principles and Applications of Ferroelectrics and Related Materials*. Clarendon Press: Oxford, 1979.
- 25. Minc R.I., Mil'man I.I. and Kryuk V.I. *Physics-Uspekhi* (Russian). 1976. V. 19. № 8. P. 697-707.
- 26. Dekhtyar Yu.D. and Vinyarskaya Yu.A. Exoelectron analysis of amorphous silicon. *J. Appl. Phys.* 1994. V. 75. № 8. P. 4201–4207.
- 27. Dekhtyar Yu.D. Photo-, dual- and exoelectron spectroscopy to characterize nanostructures. In: *Functionalized Nanoscale Materials, Devices and Systems NATO Science for Peace and Security Series B: Physics and Biophysics.* Eds. Vaseashta A. and Mihailescu I.N. Springer Science + Business Media B.V. 2008. P. 169–183.
- 28. Marcus M.A. Ferroelectrics. 1982. V. 40. P. 29-41.
- 29. Furukawa T. Ferroelectrics. 1984. V. 57. P. 63-72.
- 30. Kimura K. and Ohigashi H. Jpn. J. Appl. Phys. 1986. V. 25. P. 383.
- 31. Newnham R.E., Sundar V., Yumnirun R., Su J. and Zhang Q.M. *J. Phys. Chem. B.* 1997. V. 101. P. 10141–10150.
- 32. Xiao J., Zhou X., Zhang Q.M. and Dowben P.A. *J. Appl. Phys.* 2009. V. 106. P. 044105.
- 33. Choi J., Dowben P.A., Pebley S., Bune A.V. and Ducharme S. *Phys. Rev. Lett.* 1998. V. 80. № 6. P. 1328–1331.
- 34. Elashmawi I.S. and Hakeem N.A. *Polymer Engineering and Science*. 2008. V. 48. № 5. P. 895–901.
- 35. Elashmawi I.S., Abdelrazek E.M., Ragab H.M. and Hakeem N.A. *Physica B.* 2010. V. 405. P. 94–98.
- 36. Mandal D., Henkel K., Muller K. and Schmeiber D. *Bull. Mater. Sci.* 2010. V. 33. № 4. P. 457–461.
- 37. Ortiz E., Cuan A., Badillo C., Cortes-Romero C.M., Wang Q. and Norena L. *Int. J Quantum Chem.* 2010. V. 110. P. 2411–2417.
- 38. Арбузов В.И. Основы радиационного оптического материаловедения : учебное пособие. СПб: СПбГУИТМО, 2008. 284 с.
- 39. Hypercube 2002 *HyperChem. Tools for Molecular Modeling.* URL: http://www.hyper.com/?tabid=360 (accessed 17 July 2011).
- 40. Hamprecht F.A., Cohen A.J., Tozer D.J., and Handy N.C. *J. Chem. Phys.* 1998. V. 109. P. 6264-6271.
- 41. Becke A.D. Phys Rev A. 1988. V. 38. P. 3098-3100.
- 42. Johnson B.G., Gill P.M. and Pople J.A. J. Chem. Phys. 1993. V. 98. P. 5612-5626.
- 43. Perdew J.P., Chevary J.A., Volsko S.H. Jackson K.A., Pederson M.R., Singh D.J., and Fiolhais C. *Phys. Rev. B.* 1992. V. 46. P. 6671-6687.
- 44. Zhao Y. and Truhlar D.G. *Accounts of Chemical Research*. 2007. V. 41. № 2. P. 157–167
- 45. Stewart J.J.P. J. Mol. Model. 2008. V. 14. P. 499–535.
- 46. Su H., Strachan A. and Goddard W.A.III. *Phys. Rev. B.* 2004. V. 70. P. 064101.

- 47. Guo S.S., Sun X.H., Wang S.X., Xu S., Zhao X.-Z. and Chan H.L.W. Thermal and structural properties of high-energy electron irradiated Poly(Vinylidene Fluoride-Trifluoroethylene) copolymer blends. *Mater. Chem. and Phys.* 2005. V. 91. P. 348–354.
- 48. Guo S.S., Sun C.L., Wu T.S., Zhao X.Z. and Chan H.L.W. Thermal study on structural changes and phase transition in high-energy electron-irradiated blends of P(VDF–TrFE) copolymers. *J. Mater. Sci.* 2007. V. 42. P. 1184–1189.
- 49. Li W., Meng Q., Zheng Y. Zhang Z., Xia W., and Xu Z. *Appl. Phys. Lett.* 2010. V. 96. P. 192905.
- 50. Gregorio R.Jr. and Botta M.M. *J Polymer Sci: Part B: Polymer Physics*. 1998. V. 36. P. 403–414.
- 51. Duan C-G., Mei W.N., Harfy J.R., Ducharme S., Choi J. and Dowben P.A. *Europhys. Lett.* 2003. V. 61. № 1. P. 81–87.
- 52. Dowben P.A., Xiao J., Xu B., Sokolov A. and Doudin B. *Applied Surface Sciences*. 2008. V. 254. № 14. P. 4238–4244.
- 53. Fridkin V.M. *Photoferroelectrics*. Springer-Verlag: NY- Berlin, 1979.
- 54. Kliem H. Advances in Solid State Physics. 2003. V. 43. P. 861-874.

Материал поступил в редакцию 25.10.2011, опубликован 28.12.2011.