Branch-and-Bound

Endre Boros 26:711:653: Discrete Optimization

Spring 2019

$$\max_{s.t.} c^T x = Z(IP) \leq \max_{s.t.} c^T x = Z(LP)$$

$$x \leq b \qquad \qquad Ax \leq b \qquad \qquad Ax \leq b$$

$$x \in \{0,1\}^n \qquad \qquad 1 \geq x \geq 0$$

- ▶ For indices $S \subseteq [n]$ and binary assignments $y \in \{0,1\}^S$ the **subproblem** IP(S,y) is defined by adding to IP the constraints $x_i = y_i, j \in S$.
- - ▶ Stop if $\mathcal{P} = \emptyset$, otherwise return to step Main.

$$\max_{s.t.} c^T x = Z(IP) \leq \max_{s.t.} c^T x = Z(LP)$$

$$x \leq b \qquad Ax \leq b$$

$$x \in \{0,1\}^n \qquad 1 \geq x \geq 0$$

- ▶ For indices $S \subseteq [n]$ and binary assignments $y \in \{0,1\}^S$ the **subproblem** IP(S,y) is defined by adding to IP the constraints $x_i = y_i, j \in S$.
- ▶ Initialize a list of subproblems by $\mathcal{P} = \{IP(\emptyset, ())\}$, and $Zbest = -\infty$.

$$\max_{s.t.} c^T x = Z(IP) \leq \max_{s.t.} c^T x = Z(LP)$$

$$x \leq b$$

$$x \in \{0,1\}^n$$

$$1 \geq x \geq 0$$

- ▶ For indices $S \subseteq [n]$ and binary assignments $y \in \{0,1\}^S$ the **subproblem** IP(S,y) is defined by adding to IP the constraints $x_j = y_j, j \in S$.
- ▶ Initialize a list of subproblems by $\mathcal{P} = \{IP(\emptyset, ())\}$, and $Zbest = -\infty$.

Main Choose a subproblem $IP(S, y) \in \mathcal{P}$ such that the upper bound UB(S, y) = Z(LP(S, y)) is as large as possible, and delete IP(S, y) from \mathcal{P} .

- ▶ Choose a branching variable $j \in [n] \setminus S$ and compute/update new subproblems $\mathcal{P} = \mathcal{P} \cup \{IP(S \cup \{j\}, (y, 0)), IP(S \cup \{j\}, (y, 1))\}.$
- ▶ If a better new feasible solution is found then

$$\max_{s.t.} c^T x = Z(IP) \leq \max_{s.t.} c^T x = Z(LP)$$

$$x \leq b \qquad Ax \leq b$$

$$x \in \{0,1\}^n \qquad 1 \geq x \geq 0$$

- For indices $S \subseteq [n]$ and binary assignments $y \in \{0,1\}^S$ the **subproblem** IP(S,y) is defined by adding to IP the constraints $x_j = y_j, j \in S$.
- ▶ Initialize a list of subproblems by $\mathcal{P} = \{IP(\emptyset, ())\}$, and $Zbest = -\infty$.
- Main Choose a subproblem $IP(S, y) \in \mathcal{P}$ such that the upper bound UB(S, y) = Z(LP(S, y)) is as large as possible, and delete IP(S, y) from \mathcal{P} .
 - ▶ Choose a branching variable $j \in [n] \setminus S$ and compute/update new subproblems $\mathcal{P} = \mathcal{P} \cup \{IP(S \cup \{j\}, (y, 0)), IP(S \cup \{j\}, (y, 1))\}.$
 - ► If a better new feasible solution is found ther

$$\max_{s.t.} c^T x = Z(IP) \leq \max_{s.t.} c^T x = Z(LP)$$

$$x \leq b$$

$$x \in \{0,1\}^n$$

$$1 \geq x \geq 0$$

- ▶ For indices $S \subseteq [n]$ and binary assignments $y \in \{0,1\}^S$ the **subproblem** IP(S,y) is defined by adding to IP the constraints $x_i = y_i, j \in S$.
- ▶ Initialize a list of subproblems by $\mathcal{P} = \{IP(\emptyset, ())\}$, and $Zbest = -\infty$.

Main Choose a subproblem $IP(S, y) \in \mathcal{P}$ such that the upper **bound** UB(S,y) = Z(LP(S,y)) is as large as possible, and delete IP(S,y)from \mathcal{P} .

- ▶ Choose a branching variable $j \in [n] \setminus S$ and compute/update new subproblems $\mathcal{P} = \mathcal{P} \cup \{IP(S \cup \{j\}, (y, 0)), IP(S \cup \{j\}, (y, 1))\}.$
- ▶ If a better new feasible solution is found then
- ▶ Stop if $\mathcal{P} = \emptyset$, otherwise return to step Main.

$$\max_{s.t.} c^T x = Z(IP) \leq \max_{s.t.} c^T x = Z(LP)$$

$$x \leq b$$

$$x \in \{0,1\}^n$$

$$1 \geq x \geq 0$$

- ▶ For indices $S \subseteq [n]$ and binary assignments $y \in \{0,1\}^S$ the **subproblem** IP(S,y) is defined by adding to IP the constraints $x_i = y_i, j \in S$.
- ▶ Initialize a list of subproblems by $\mathcal{P} = \{IP(\emptyset, ())\}$, and $Zbest = -\infty$.

Main Choose a subproblem $IP(S, y) \in \mathcal{P}$ such that the upper **bound** UB(S,y) = Z(LP(S,y)) is as large as possible, and delete IP(S,y)from \mathcal{P} .

- ▶ Choose a branching variable $j \in [n] \setminus S$ and compute/update new subproblems $\mathcal{P} = \mathcal{P} \cup \{IP(S \cup \{j\}, (y, 0)), IP(S \cup \{j\}, (y, 1))\}.$
- ▶ If a better new feasible solution is found then
 - ▶ update Zbest, and
- ▶ Stop if $\mathcal{P} = \emptyset$, otherwise return to step Main.

$$\max_{s.t.} c^T x = Z(IP) \leq \max_{s.t.} c^T x = Z(LP)$$

$$x \leq b$$

$$x \in \{0,1\}^n$$

$$1 \geq x \geq 0$$

- For indices $S \subseteq [n]$ and binary assignments $y \in \{0,1\}^S$ the **subproblem** IP(S,y) is defined by adding to IP the constraints $x_j = y_j, j \in S$.
- ▶ Initialize a list of subproblems by $\mathcal{P} = \{IP(\emptyset, ())\}$, and $Zbest = -\infty$.

Main Choose a subproblem $IP(S, y) \in \mathcal{P}$ such that the upper bound UB(S, y) = Z(LP(S, y)) is as large as possible, and delete IP(S, y) from \mathcal{P} .

- ▶ Choose a branching variable $j \in [n] \setminus S$ and compute/update new subproblems $\mathcal{P} = \mathcal{P} \cup \{IP(S \cup \{j\}, (y, 0)), IP(S \cup \{j\}, (y, 1))\}.$
- ▶ If a better new feasible solution is found then
 - ightharpoonup update Zbest, and
 - ▶ **prune** (delete) all subproblems $IP(S', y') \in \mathcal{P}$ for which $UB(S', y') \leq Zbest$.
- ▶ Stop if $\mathcal{P} = \emptyset$, otherwise return to step Main.

$$\max_{s.t.} c^T x = Z(IP) \leq \max_{s.t.} c^T x = Z(LP)$$

$$x \leq b \qquad \qquad Ax \leq b$$

$$x \in \{0,1\}^n \qquad 1 \geq x \geq 0$$

- ▶ For indices $S \subseteq [n]$ and binary assignments $y \in \{0,1\}^S$ the **subproblem** IP(S,y) is defined by adding to IP the constraints $x_i = y_i, j \in S$.
- ▶ Initialize a list of subproblems by $\mathcal{P} = \{IP(\emptyset, ())\}$, and $Zbest = -\infty$.

Main Choose a subproblem $IP(S, y) \in \mathcal{P}$ such that the upper **bound** UB(S,y) = Z(LP(S,y)) is as large as possible, and delete IP(S,y)from \mathcal{P} .

- ▶ Choose a branching variable $j \in [n] \setminus S$ and compute/update new subproblems $\mathcal{P} = \mathcal{P} \cup \{IP(S \cup \{i\}, (y, 0)), IP(S \cup \{i\}, (y, 1))\}.$
- ▶ If a better new feasible solution is found then
 - ▶ update Zbest, and
 - ▶ **prune** (delete) all subproblems $IP(S', y') \in \mathcal{P}$ for which $UB(S', y') \leq Zbest.$
- ▶ Stop if $\mathcal{P} = \emptyset$, otherwise return to step Main.

Sort items by nonincreasing unit values.

Sort items by nonincreasing unit values.

		$5x_{3}$			
1	1	1	1	<u>1</u>	$72\frac{1}{4}$

$\substack{14x_2\\2x_2}$	++	$\begin{smallmatrix}20x_1\\3x_1\end{smallmatrix}$	++	$5x_{3}$	++	$9x_{5} \\ 2x_{5}$	++	$\substack{17x_4\\4x_4}$	$\stackrel{ ightarrow}{\leq}$	max 13
1		1		1		1		$\frac{1}{4}$		$72\frac{1}{4}$

$\substack{14x_2\\2x_2}$	++	$\begin{smallmatrix}20x_1\\3x_1\end{smallmatrix}$	++	$\frac{25x_3}{5x_3}$	++	$9x_{5} \\ 2x_{5}$	+	$\substack{17x_4\\4x_4}$	$\stackrel{ ightarrow}{\leq}$	max 13
1		1		1		1		$\frac{1}{4}$		$72\frac{1}{4}$
1		1		1		1		0		68
1		1		$\frac{4}{5}$		0		1		71

max 13	$\stackrel{ ightarrow}{\leq}$		+	$9x_{5} \\ 2x_{5}$	++	$\begin{array}{c} 25x_3 \\ 5x_3 \end{array}$	++	$\begin{smallmatrix}20x_1\\3x_1\end{smallmatrix}$	++	$\substack{14x_2\\2x_2}$
$72\frac{1}{4}$		$\frac{1}{4}$		1		1		1		1
68		O		1		1		1		1
71		1		0		$\frac{4}{5}$		1		1

$\substack{14x_2\\2x_2}$	++	$\begin{smallmatrix}20x_1\\3x_1\end{smallmatrix}$	++	$5x_{3}$ $5x_{3}$	++	$9x_{5} \\ 2x_{5}$	++	$\substack{17x_4\\4x_4}$	$\stackrel{ ightarrow}{\leq}$	
1		1		1		1		$\frac{1}{4}$		$72\frac{1}{4}$
1		1		1		1		0		68
1		1		$\frac{4}{5}$		0		1		71

max 13	$\stackrel{ ightarrow}{\leq}$	$\substack{17x_4\\4x_4}$	+		++	$5x_{3}$	++	$\begin{smallmatrix}20x_1\\3x_1\end{smallmatrix}$	+	$\substack{14x_2\\2x_2}$
$72\frac{1}{4}$		$\frac{1}{4}$		1		1		1		1
68		0		1		1		1		1
71		1		0		$\frac{4}{5}$		1		1
60		1		1		0		1		1
$69\frac{1}{2}$		1		0		1		$\frac{2}{3}$		1

max 13	$\stackrel{ ightarrow}{\leq}$	$\substack{17x_4\\4x_4}$	+	$9x_{5} \\ 2x_{5}$	+ +	$5x_{3}$	$\substack{20x_1\\3x_1}$	+	$\substack{14x_2\\2x_2}$
$72\frac{1}{4}$		$\frac{1}{4}$		1		1	1		1
68		0		1		1	1		1
71		1		0		$\frac{4}{5}$	1		1
60		1		1		0	1		1
$69\frac{1}{2}$		1		0		1	$\frac{2}{3}$		1

max 13	$\stackrel{ ightarrow}{\leq}$	$\substack{17x_4\\4x_4}$	+	$9x_{5} \\ 2x_{5}$	++	$\begin{array}{c} 25x_3 \\ 5x_3 \end{array}$	++	$\frac{20x_1}{3x_1}$	+	$\substack{14x_2\\2x_2}$
$72\frac{1}{4}$		$\frac{1}{4}$		1		1		1		1
68		0		1		1		1		1
71		1		0		$\frac{4}{5}$		1		1
60		1		1		0		1		1
$69\frac{1}{2}$		1		0		1		2		1

max 13	$\stackrel{ ightarrow}{\leq}$	$\substack{17x_4\\4x_4}$	+	$9x_{5} \\ 2x_{5}$	++	$5x_{3}$	$\begin{smallmatrix}20x_1\\3x_1\end{smallmatrix}$	+	$\substack{14x_2\\2x_2}$
$72\frac{1}{4}$		$\frac{1}{4}$		1		1	1		1
68		o		1		1	1		1
71		1		0		$\frac{4}{5}$	1		1
60		1		1		0	1		1
$69\frac{1}{2}$		1		0		1	$\frac{2}{3}$		1
65		1		1		1	0		1
69		1		0		1	1		$\frac{1}{2}$

max 13	$\stackrel{\rightarrow}{\leq}$	$\substack{17x_4\\4x_4}$	++	$9x_{5} \\ 2x_{5}$	++	$\begin{array}{c} 25x_3 \\ 5x_3 \end{array}$	++	$\begin{smallmatrix}20x_1\\3x_1\end{smallmatrix}$	++	$^{14x_2}_{2x_2}$
$72\tfrac{1}{4}$		$\frac{1}{4}$		1		1		1		1
68		0		1		1		1		1
71		1		0		$\frac{4}{5}$		1		1
60		1		1		0		1		1
$69\frac{1}{2}$		1		0		1		$\frac{2}{3}$		1
65		1		1		1		0		1
69		1		0		1		1		$\frac{1}{2}$

max 13	$\stackrel{ ightarrow}{\leq}$	$\substack{17x_4\\4x_4}$	++	$9x_{5} \\ 2x_{5}$	++	$\begin{array}{c} 25x_3 \\ 5x_3 \end{array}$	++	$\substack{20x_1\\3x_1}$	+	$\frac{14x_2}{2x_2}$
$72\frac{1}{4}$		$\frac{1}{4}$		1		1		1		1
68		0		1		1		1		1
71		1		0		$\frac{4}{5}$		1		1
60		1		1		0		1		1
$69\frac{1}{2}$		1		0		1		$\frac{2}{3}$		1
65		1		1		1		0		1
69		1		0		- 1		1		1

max 13	$\stackrel{ ightarrow}{\leq}$	$\substack{17x_4\\4x_4}$	++	$9x_{5} \\ 2x_{5}$	++	$\begin{array}{c} 25x_3 \\ 5x_3 \end{array}$	++	$\begin{smallmatrix}20x_1\\3x_1\end{smallmatrix}$	++	$\frac{14x_2}{2x_2}$
$72\frac{1}{4}$		$\frac{1}{4}$		1		1		1		1
68		0		1		1		1		1
71		1		0		$\frac{4}{5}$		1		1
60		1		1		0		1		1
$69\frac{1}{2}$		1		0		1		$\frac{2}{3}$		1
65		1		1		1		0		1
69		1		0		1		1		$\frac{1}{2}$
oo 1		1		1		1				
$66\frac{1}{2}$		1		$\frac{1}{2}$		1		1		0 1
$-\infty$		1		_						

max 13	$\stackrel{ ightarrow}{\leq}$	$\substack{17x_4\\4x_4}$	++	$9x_{5} \\ 2x_{5}$	++	$\begin{array}{c} 25x_3 \\ 5x_3 \end{array}$	++	$\begin{smallmatrix}20x_1\\3x_1\end{smallmatrix}$	++	$2x_2$
$72\frac{1}{4}$		$\frac{1}{4}$		1		1		1		1
68		0		1		1		1		1
71		1		0		$\frac{4}{5}$		1		1
60		1		1		0		1		1
$69\frac{1}{2}$		1		0		1		$\frac{2}{3}$		1
65		1		1		1		0		1
69		1		0		1		1		$\frac{1}{2}$
$66\frac{1}{2}$		1		$\frac{1}{2}$		1		1		0
-~		1		2		1		1		1