Hello hello

Håkon Kvernmoen

April 30, 2023

Abstract

Heiie

1 Introduction

[Hastie et al., 2001]

$$F = ma (1)$$

Eq. 1

2 Theory

2.1 Mathematical framework and notation

Define shortly

$$N, L, R$$
 (2)

creation and annihilation, anitcommutators, normal order, Hamiltonian, normal order Hamiltonian,

2.2 Coupled Cluster

The exact solution $|\Psi\rangle$ is approximated by an exponential ansatz $|\Psi_{\rm CC}\rangle$

$$|\Psi\rangle \approx |\Psi_{\rm CC}\rangle \equiv e^{\hat{T}} |\Phi_0\rangle \,.$$
 (3)

The operators $\hat{T} = \hat{T}_1 + \hat{T}_2 + \dots$ acting on the ground state ansatz $|\Phi_0\rangle$ are the so-called *cluster operators* defined as

$$\hat{T}_{m} = \frac{1}{(m!)^{2}} \sum_{\substack{ab...\\ij}} t_{ij}^{ab...} \{\hat{a}^{\dagger} \hat{i} \hat{b}^{\dagger} \hat{j} ...\}$$
 (4)

where $m \leq N$. The scalars $t^{ab...}_{ij...}$ are unknown expansion coefficients called *amplitudes*, which we need to solve for. All the creation and annihilation operators of Eq. 4 anticommute, giving the restriction that

$$t_{\hat{P}'(ij...)}^{\hat{P}(ab...)} = (-1)^{\sigma(\hat{P}) + \sigma(\hat{P}')} t_{ij...}^{ab...}.$$
 (5)

Here P and P' permutes $\sigma(P)$ and $\sigma(P')$ indices respectively. This is the reason for the prefactor of Eq. 4, since we have m! ways to independently permute particle and hole indices. Instead of having $(L-N)^mN^m$ independent unknowns, we reduce this number by a factor of $(m!)^2$.

2.3 Doubles truncation

Considering N cluster operators in the exponential ansatz of Eq. 3 is not computationally feasible for realistic systems. The common practice is to include one or more \hat{T}_m operators, making a truncation on $|\Psi_{CC}\rangle$ as well. In the following we will include only the double excitation operator \hat{T}_2 , know as the CCD approximation. This gives us

$$|\Psi\rangle \approx |\Psi_{\rm CC}\rangle \approx |\Psi_{\rm CCD}\rangle \equiv e^{\hat{T}_2} |\Phi_0\rangle,$$
 (6)

$$\hat{T}_{2} = \frac{1}{4} \sum_{abij} t_{ij}^{ab} \{ \hat{a}^{\dagger} \hat{i} \hat{b}^{\dagger} \hat{j} \}, \tag{7}$$

with the four-fold amplitude permutation symmetry ¹.

$$t_{ij}^{ab} = -t_{ij}^{ba} = -t_{ji}^{ab} = t_{ji}^{ba} \tag{8}$$

- 3 Method
- 4 Results
- 5 Discussion
- 6 Concluding remarks

¹For double amplitudes, the index permutation symmetry is equal to that of antisymmetrized two-body matrix elements $\langle pq||rs\rangle$.

References

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning. Springer Series in Statistics. Springer New York Inc., 2001.