Langages et Automates Résiduels et piles

Engel Lefaucheux

Prépas des INP

Minimiser un automate

Ces deux automates ont le même langage : $\{\varepsilon\}$

Quel algorithme pour minimiser un automate ?

Langage résiduel

Soit L un langage, $w \in \Sigma^*$. Le résiduel de L par w est

$$w^{-1}L = \{v \in \Sigma^* \mid wv \in L\}$$

Exemple :
$$(aa)^{-1}((a+b)^2b^* = b^*$$

Exercice

Calculer

- $(aa)^-1(b^*ab^*ab^*)$
- $(\varepsilon)^{-1}(\varepsilon)$
- $(aa)^-1(b(a+b)^*)$

Calculer l'ensemble des résiduels possibles des langages

- a*b*
- aa(ba)*

Automate des résiduels

Pour un langage régulier L sur Σ , on construit l'automate

$$\mathcal{A} = (Q, \Sigma, T, I, F)$$
 où

- $Q = \{q_{L'} \mid L' \text{ est un résiduel de } L\}$
- $I = \{q_L\}$
- $F = \{q_{L'} \mid \varepsilon \in L'\}$
- $(q_{L_1}, a, q_{L_2}) \in T$ ssi $L_2 = a^-1(L_1)$

Construire l'automate des résiduels de

- a*b*
- aa(ba)*

Notez que cet automate est déterministe.

L'automate des résiduels est correct

Soit $w \in \Sigma^*$ et A l'automate des résiduels de L.

Montrons par récurrence sur |w| que la lecture de w dans A termine dans l'état associé au résiduel $w^{-1}(L)$.

- si |w| = 0, alors $w = \varepsilon$, et le seul chemin étiquetté par ε est celui restant dans l'état initial: q_L et $L = \varepsilon^{-1}(L)$
- si |w| = n > 0, w = ua où $u \in \Sigma^*$ et $a \in \Sigma$. Le chemin étiquetté par u finit dans l'état $q_{u^{-1}(L)}$ par hypothèse de récurrence. De plus, la seule transition étiquetté par a sortant de $q_{u^{-1}(L)}$ est $(q_{u^{-1}(L)}, a, q_{a^{-1}(u^{-1}(L))})$ et $a^{-1}(u^{-1=(L)}) = (ua)^{-1}(L) = w^{-1}(L)$ (voir DM)

Par ailleurs, un mot w est dans L ssi $\varepsilon \in w^{-1}(L)$. Donc A accepte w ssi $w \in L$.

L'automate des résiduels est optimal

Soit L un langage, A l'automate des résiduels de L et A' un autre automate déterministe complet ayant moins d'états que A.

A' étant déterministe et complet, il existe une paire de mots w_1 et w_2 tels que $w_1^{-1}(L) \neq w_2^{-1}(L)$ et un état q de A' tel que les chemins étiquettés par w_1 et w_2 terminent en q.

ightarrow Il suffit de prendre un mot permettant d'accéder à chaque état de A, de voir dans quel état de A' ce mot termine, et d'appliquer le principe des tiroirs.

Soit $u \in w_1^{-1}(L) \setminus w_2^{-1}(L)$. On a donc que $w_1u \in L$ et $w_2u \notin L$. Hors, par déterminisme, A' accepte soit w_1u ET w_2u soit n'accepte ni w_1u , ni w_2u .

Donc A' ne reconnait pas L.

Alternative au lemme de l'étoile

Theorem (Théorème de MYHILL-NERODE)

Un langage est régulier si et seulement s'il possède un nombre fini de résiduels.

Un monde infini

- un système fini (les automates de ce cours) conserve une quantité d'information limitée
- l'environnement envoie une quantité d'information non bornée Comment retenir ces informations ?

Un monde infini

- un système fini (les automates de ce cours) conserve une quantité d'information limitée
- l'environnement envoie une quantité d'information non bornée

Comment retenir ces informations?

Une possibilité : l'utilisation d'une pile

- $\downarrow \alpha$ ajoute α sur la pile
- $\bullet \uparrow \alpha$
 - ullet ne peut se prendre que si lpha est au sommet de la pile
 - ullet retire lpha du somme de la pile.

Quel langage pour cet automate?

Un monde infini

- un système fini (les automates de ce cours) conserve une quantité d'information limitée
- l'environnement envoie une quantité d'information non bornée

Comment retenir ces informations?

Une possibilité : l'utilisation d'une pile

- $\downarrow \alpha$ ajoute α sur la pile
- $\bullet \uparrow \alpha$
 - ullet ne peut se prendre que si lpha est au sommet de la pile
 - \bullet retire α du somme de la pile.

Quel langage pour cet automate?

$$\{w \in \{a, b\}^* \mid \forall v, \text{ prefix de } w, |v|_a \ge |v|_b\}$$

Exercice

Construisez un automate à pile reconnaissant les langages suivants

- $\{a^nb^n \mid n \in \mathbb{N}\}$
- $\{a^nb^mc^md^n \mid n, m \in \mathbb{N}\}$

Le langage suivant peut-il être reconnu par un automate à pile : $\{a^nb^mc^nd^m\mid n,m\in\mathbb{N}\}$

Langage hors contexte

Les langages reconnus par les automates à pile sont appelés langages hors-contexte.

Theorem (Théorème de l'étoile des automates à pile)

Soit L un langage hors contexte. Il existe $N \in \mathbb{N}$ tel que pour tout mot $w \in L$, si $|w| \ge N$, alors w = uvwxy avec

- |vwx| ≤ N
- |vx| > 0
- pour tout $k \in \mathbb{N}$, $uv^n wx^n y \in L$

Donc pour $\{a^nb^mc^nd^m \mid n,m \in \mathbb{N}\}$?

Langage hors contexte

Les langages reconnus par les automates à pile sont appelés langages hors-contexte.

Theorem (Théorème de l'étoile des automates à pile)

Soit L un langage hors contexte. Il existe $N \in \mathbb{N}$ tel que pour tout mot $w \in L$, si $|w| \ge N$, alors w = uvwxy avec

- |vwx| ≤ N
- |vx| > 0
- pour tout $k \in \mathbb{N}$, $uv^n wx^n y \in L$

Donc pour $\{a^nb^mc^nd^m \mid n, m \in \mathbb{N}\}$?

Les langages hors contexte correspondent aux langages générés par des grammaire de type 2.