Beim starten den Programms partdiff-par-hybrid mit den Argumenten #T Threads 2 512 2 2 2048 bei #P Prozessen ergab sich folgende Laufzeittabelle:

Messung	Messung 1	Messung 2	Messung 3	Mittelwert
12 Prozesse	107.288	107.700	107.153	107.380
24 Prozesse	73.665	71.520	72.061	72.415
1 Prozess 12 Threads	106.970	106.705	106.644	106.773
1 Prozess 24 Threads	70.660	70.550	70.660	70.623
2 Prozesse 6 Threads	107.790	108.080	107.311	107.727
2 Prozesse 12 Threads	71.321	70.521	70.451	70.764
12 Prozesse 2 Threads	70.815	71.142	71.129	71.028

Womit sich folgender Graph bilden lässt.

Im Folgenden bezeichnet T die Anzahl der Threads und P die Anzahl der Prozesse.

Im hier dargestellten Graphen ist deutlich zu erkennen, dass das Programm mit den 2 Prozessen bei 6 Threads am längsten läuft, dies ist aber auch ersichtlich, da hier im bestem Fall 12 Threads benutzt und diese noch zusätzlich über mehrere Knoten kommunizieren müssen. Es ist aber auch im Vergleich zu den anderen Läufen mit 12 Prozessen zu erkennen, das dieser Durchlauf nicht stark abweicht, sondern noch im Rahmen einer Messungenauigkeit liegt.

Deutlich interessanter sind die Durchläufe mit insgesamt 24 Kernen im Einsatz. Hierbei ist deutlich zu erkennen, dass der Durchlauf auf 24 Prozessen bei je einem Thread am langsamsten läuft. Dies kann sich damit erklären lassen, dass die Prozesse eine hohe Kommunikation untereinander führen müssen, um die wichtigen Zeilen auszutauschen.

Auch sind die Zeiten, bei den maximal 24 Kerne zur Verfügung stehen deutlich schneller als die mit nur 12.

Bei einer maximalen Anzahl von 48 Kernen ist keine Beschleunigung zu erkennen, dies kann daran liegen, dass die Kommunikation zwischen den Knoten zu lange dauert, um das Programm noch weiter zu Beschleunigen.