



Professora: Aline de Oliveira

Contagem, 2021

# **POLARIDADE DAS LIGAÇÕES**

É uma medida de **quão igual ou desigual é o compartilhamento** dos elétrons em uma ligação covalente.

Ligação covalente apolar: os elétrons são compartilhados igualmente.

Exemplos: H−H; O=O; N≡N e Cl−Cl.

Ligação covalente **polar**: um dos átomos **exerce maior atração** sobre os elétrons da ligação que o outro.

Exemplos: H-Cl; H-F; C≡O e I-F.

O átomo mais eletronegativo atrai mais fortemente os elétrons para si em uma ligação química.

#### Relembrando

A eletronegatividade é definida como a capacidade de um átomo em uma molécula atrair elétrons para si.

# **POLARIDADE DAS LIGAÇÕES**

Formação de <u>dipolos</u> nas moléculas



#### Representações

 $\square$  Pelas cargas parciais ( $\delta$ + e  $\delta$ -):

Delta mais 
$$\delta + \delta$$
 Delta menos  $-$ 

Os símbolos  $\delta$ + e  $\delta$ - simbolizam as cargas parciais positivas e negativas, respectivamente.

 $\square$  Pelo momento dipolar  $(\overrightarrow{\mu})$ :

$$\overset{\vec{\mu}}{\longleftrightarrow}$$

A seta indica o deslocamento da densidade eletrônica em direção ao átomo mais eletronegativo.

# **POLARIDADE DAS LIGAÇÕES**

## Momento de dipolo (ou momento dipolar – $\vec{\mu}$ )

É a grandeza que indica a intensidade de um dipolo elétrico, ou seja, que indica a intensidade das carga parciais.

$$\vec{\mu} = Q \cdot \vec{r}$$

$$\text{Carga.} \quad \text{Distância entre os polos.}$$

$$\vec{\mu} \neq 0$$

$$\vec{\mu} \neq 0$$

$$\vec{\mu} = 0$$

$$\vec{\mu} = 0$$

$$\vec{\mu} = 0$$

$$\vec{\mu} = 0$$

Quanto maior a diferença de eletronegatividade entre os átomos ligados, maior é o momento dipolar e, portanto, maior a polaridade da ligação ou da molécula diatômica.

## POLARIDADE DAS MOLÉCULAS



O momento dipolar de uma molécula depende tanto das **polaridades das ligações** individuais quanto da **geometria da molécula**.

O momento dipolar resultante  $(\overrightarrow{\mu_R})$  de uma molécula é dado pela soma vetorial dos momentos de dipolo de todas as suas ligações.

Molécula apolar

$$\overrightarrow{\mu_R} = 0$$

Molécula polar

$$\overrightarrow{\mu_R} \neq 0$$

## POLARIDADE DAS MOLÉCULAS

Exemplos: determinação das polaridades das seguintes moléculas

| HCl                 | CO                                      | $I_2$                 |  |  |
|---------------------|-----------------------------------------|-----------------------|--|--|
| $\vec{\mu} \neq 0$  | $\vec{\mu} \neq 0$                      | $ec{\mu}=0$           |  |  |
| H – Cl              | $C \equiv 0$                            | I – I                 |  |  |
| Polar               | Polar                                   | Apolar                |  |  |
| $0_{2}$             | $H_2O$                                  | $\mathbf{CO}_2$       |  |  |
| $ec{\mu}=0$         | $\vec{\mu} \neq 0$                      | $\vec{\mu} \neq 0$    |  |  |
| O = O               | _0_                                     | O = C = O             |  |  |
| Apolar              | H N H<br>Polar                          | Apolar                |  |  |
| NH <sub>3</sub>     | → CH <sub>4</sub>                       | CH <sub>3</sub> Cl    |  |  |
| $\vec{\mu} \neq 0$  | $ \stackrel{\scriptstyle }{ec \mu}=0  $ | $\vec{\mu} \neq 0$ ÇI |  |  |
| H N <sub>mm</sub> H | H <sup>C</sup> '''H                     | H∕ Ç.″H               |  |  |
| Polar H             | Apolar                                  | <sub>Polar</sub> H    |  |  |

**OBS:** Para o cálculo de  $\overrightarrow{\mu_R}$  a geometria da molécula deve ser considerada.

#### Interações interatômicas (ou intramoleculares)

- Interações entre os átomos em uma molécula, aglomerado iônico ou metal;
- Mantêm os átomos unidos em uma molécula;
- Ligação iônica, covalente e metálica;
- Responsáveis pelas propriedades químicas.

#### **Interações intermoleculares**

- Interações entre as moléculas;
- Natureza das interações: eletrostática;
- ☐ Responsáveis por propriedades físicas.

Interações entre dipolos permanentes

Interações entre dipolos induzidos

Ligações de hidrogênio

Interação íon-dipolo

Interação dipolo-permanente-dipoloinduzido

## Interações dipolo-permanente-dipolo-permanente

- Interações entre moléculas que apresentam dipolos permanentes, ou seja, entre moléculas polares;
- Quanto maior o momento de dipolo maior a interação.

#### **Exemplos**



## Interações dipolo-induzido-dipolo-induzido

(ou interações de Dispersão de London)

- Único tipo de interação intermolecular entre moléculas apolares;
- Ocorre entre todas as moléculas;
- ☐ São forças atrativas que surgem como resultado de dipolos temporários induzidos nos átomos ou moléculas;
- Dipolo induzido (ou instantâneo): dipolos que ocorrem de modo instantâneo nas moléculas devido à deformações momentâneas em suas nuvens de elétrons;
- A facilidade de distorção da nuvem eletrônica de uma molécula é chamada de **polarizabilidade**. Quanto maior um átomo, mais polarizável.

### Interações dipolo-induzido-dipolo-induzido

(ou interações de Dispersão de London)

Quanto maior a molécula



Mais fortes os dipolos induzidos



Mais forte a interação de dispersão

#### **Exemplos**

$$H - H$$

 $CO_2$ 

$$O = C = O$$

$$O = C = O$$



## Ligações de hidrogênio

■ É um tipo especial de interação entre dipolos permanentes, envolvendo um átomo de hidrogênio e um átomo eletronegativo como N, O e F, em uma ligação polar, tal como N−H, O−H e F−H.



A e B representam os átomos N, O e F.

#### **Exemplos**



## Interação íon-dipolo

- Ocorre entre íons e dipolos;
- Quanto maior o dipolo, maior a interação.

**Exemplos:** hidratação de cátions e ânions (como no NaCl(aq));



## Interação dipolo-permanente-dipolo-induzido

Ocorre entre um dipolo permanente que induz um dipolo instantâneo em uma molécula apolar.

**Exemplo:** HCl (dipolo permanente) com O<sub>2</sub> (dipolo instantâneo).



Pode-se identificar as forças intermoleculares que atuam em uma substância considerando sua **estrutura** e **composição**.

Em geral, as forças relativas das interações intermoleculares variam na seguinte ordem:

Íon-dipolo > ligação de hidrogênio > entre dipolos permanentes > dipolo-permanente-dipolo-induzido > entre dipolos induzidos.

## Interações de van der Waals (ou forças de van der Waals)

- ☐ Interação dipolo-permanente-dipolo-permanente;
- Interação entre dipolos instantaneamente induzidos;
  - Interação dipolo-permanente-dipolo-induzido.

## Temperatura de ebulição

Quanto mais intensas forem as forças intermoleculares



Maior a temperatura de ebulição de uma substância molecular

### **Exemplos**

| Substância       | TE / (°C) | Interação intermolecular<br>predominante |
|------------------|-----------|------------------------------------------|
| CH <sub>4</sub>  | -161,5    | Dispersão de London                      |
| HCl              | -85       | Entre dipolos permanentes                |
| H <sub>2</sub> O | 99,97     | Ligação de hidrogênio                    |

### Temperatura de ebulição de hidretos



Temperaturas de ebulição de hidretos (°C)

| Familia 4A       |      | Familia 5A       |     | Familia 6A        |      | Familia 7A |     |
|------------------|------|------------------|-----|-------------------|------|------------|-----|
| CH₄              | -164 | NH <sub>3</sub>  | -33 | H <sub>2</sub> O  | +100 | HF         | +19 |
| SiH <sub>4</sub> | -112 | PH <sub>3</sub>  | -88 | H <sub>2</sub> S  | -60  | HCI        | -85 |
| GeH₄             | -90  | AsH <sub>3</sub> | -63 | H <sub>2</sub> Se | -42  | HBr        | -67 |
| SnH <sub>4</sub> | 52   | SbH <sub>3</sub> | -18 | H <sub>2</sub> Te | -2   | HI         | -35 |

Ainda que as moléculas NH<sub>3</sub>, HF e H<sub>2</sub>O sejam as menores dos respectivos grupos e, portanto, devessem apresentar menores interações de dispersão, são essas as moléculas que apresentam os maiores pontos de ebulição do grupo. Isso ocorre devido a possibilidade de formação de ligações de hidrogênio entre essas substâncias.

#### Densidade do Gelo



A estrutura tridimensional altamente ordenada do gelo impede que as moléculas se aproximem muito umas das outras. As cavidades na estrutura são responsáveis pela baixa densidade do gelo.

#### **Solubilidade**

Regra geral: Semelhante dissolve semelhante.

A possibilidade de dissolução aumenta quando a intensidade das forças atrativas entre as moléculas de soluto e de solvente é igual ou superior à intensidade das forças atrativas das partículas do soluto entre si e das moléculas do solvente entre si.

#### Viscosidade

É uma medida da resistência que um fluido oferece ao escoamento.

Os líquidos que possuem forças intermoleculares mais intensas também têm maiores viscosidades que aqueles que apresentam forças intermoleculares mais fracas.

## Tensão superficial

É a quantidade de energia necessária para esticar ou aumentar em uma unidade a área da superfície de um líquido (por exemplo, em 1 cm²).



Forças intermoleculares agindo em uma molécula situada na camada superficial de um líquido e de outra molécula situada no interior do líquido.



A tensão superficial permite que alguns insetos caminhem sobre a água.