Statistical Analysis Using Structural Equation Models

EPsy 8266

Christopher David Desjardins

Research Methodology Consulting Center

4/25/19

Measurement Invariance Topics

- ► Partial MI
- ► MI with ordinal data

Partial MI

- ► MI assumes that the unstandardized coefficients (patterns, intercepts, errors) are the same across the groups.
- ▶ However, not all the indicators may have the same coefficients across the groups.
 - For example, it might be possible that 4 of the 5 unstandardized pattern coefficients are invariant, while the 5th is not.
 - If this is the case, then this parameter can be left to be freely estimated across the groups.
- ▶ Having partial invariance is okay, but how much is unclear.
 - Probably a few is okay, but once the number of non-invariant indicators increases, there is less confidence that the constructs are operationalized the same way.

HS data

The Holzinger and Swineford (1939) data set consists of mental ability test scores of seventh- and eighth-grade children from two different schools (Pasteur and Grant-White) (n = 301). A subset of 9 indicators measures

- visual,
- verbal/textual, and
- mental speed abilities.

We are interested in comparing the two schools on these factors.

```
library(lavaan)
config.mod <- "
    visual = 'x1 + x2 + x3
    textual = 'x4 + x5 + x6
    speed = 'x7 + x8 + x9
"
config.fit <- cfa(config.mod, HolzingerSwineford1939, group = "school")
fitmeasures(config.fit, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr"))</pre>
```

srmr

chisq df pvalue cfi rmsea

115.851 48.000 0.000 0.923 0.097 0.068

Correlation residuals

```
lavResiduals(config.fit, type = "cor")$Pasteur$cov
     x1
           x2
               x3 x4 x5 x6 x7 x8
## x1 0.000
## x2 -0.021 0.000
## x3 -0.004 0.162 0.000
## x4 0.065 -0.071 -0.081 0.000
## x5 -0.062 -0.050 -0.169 0.014 0.000
## x6 0.067 0.024 -0.015 -0.024 0.006 0.000
## x7 -0.109 -0.209 -0.104 0.112 -0.031 0.056 0.000
## x8 -0.037 -0.036 0.029 -0.051 -0.071 0.028 0.031 0.000
## x9 0.155 0.125 0.205 -0.011 0.008 0.040 -0.033 -0.011 0.000
lavResiduals(config.fit, type = "cor") $ Grant-White $cov
   x1 x2 x3 x4 x5 x6 x7 x8 x9
## x1 0.000
## x2 -0.024 0.000
## x3 -0.021 0.059 0.000
## x4 0.025 -0.014 0.003 0.000
## x5 0.006 -0.072 -0.024 0.001 0.000
## x6 0.015 -0.036 0.037 -0.001 0.000 0.000
## x7 -0.129 -0.112 -0.165 0.017 0.070 -0.004 0.000
## x8 0.026 -0.047 -0.050 -0.128 -0.024 -0.100 0.062 0.000
## x9 0.239 0.058 0.118 0.111 0.160 0.077 -0.044 -0.029 0.000
```

Standardized residuals (z-scores)

```
lavResiduals(config.fit, type = "cor")$Pasteur$cov.z
               x3 x4 x5 x6 x7
     x1
## x1 0.000
## x2 -2.140 0.000
## x3 -0.840 2.719 0.000
## x4 1.891 -1.132 -1.579 0.000
## x5 -2.308 -0.782 -3.434 2.172 0.000
## x6 2.042 0.400 -0.311 -3.620 1.105 0.000
## x7 -2.130 -2.697 -1.483 1.888 -0.540 0.975 0.000
## x8 -1.013 -0.501 0.447 -1.078 -1.609 0.602 1.898 0.000
## x9 2.613 1.689 2.888 -0.189 0.135 0.706 -1.306 -0.731 0.000
lavResiduals(config.fit, type = "cor")$`Grant-White`$cov.z
   x1 x2 x3 x4 x5 x6 x7 x8 x9
## x1 0.000
## x2 -0.716 0.000
## x3 -1.266 1.692 0.000
## x4 0.577 -0.254 0.082 0.000
## x5 0.124 -1.268 -0.551 0.138 0.000
## x6 0.313 -0.635 0.827 -0.135 -0.003 0.000
## x7 -2.328 -1.679 -3.050 0.310 1.230 -0.076 0.000
## x8 0.541 -0.807 -1.142 -3.052 -0.518 -2.174 3.995 0.000
## x9 4.162 0.966 2.127 2.012 2.816 1.343 -2.188 -3.173 0.000
```

<pre>head(modificationindices(config.fit, sort. = TRUE))</pre>	

##		lhs	op	rhs	block	group	level	mi	epc	sepc.lv	sepc.all	sepc.nox
##	178	x7	~ ~	x8	2	2	1	24.819	0.612	0.612	1.247	1.247
##	132	visual	=~	x9	2	2	1	24.539	0.748	0.581	0.567	0.567

##	1/8	X /	X8	2	- 2	1	24.819	0.612	0.612	1.247	1.24/
##	132	visual =~	x9	2	2	1	24.539	0.748	0.581	0.567	0.567
##	113	x4 ~~	×6	1	1	1	11.280	-0.326	-0.326	-0.928	-0.928

##	132	visual	=~	x9	2	2	1	24.539	0.748	0.581	0.567	0.56
##	113	x4	~ ~	x6	1	1	1	11.280	-0.326	-0.326	-0.928	-0.92

##	132	visual :	=~ :	х9	2	2	1	24.539	0.748	0.581	0.567	0.567
##	113	x4 '		x6	1	1	1	11.280	-0.326	-0.326	-0.928	-0.928
##	130	visual :	=~	x7	2	2	1	11.267	-0.504	-0.391	-0.380	-0.380
##	78	visual :	=~	х9	1	1	1	11.073	0.304	0.318	0.322	0.322
##	79	textual :	=~	x1	1	1	1	10.185	0.944	0.893	0.756	0.756

## 132	visual =~	x9	2	2	1 24.539	0.748	0.581	0.567	0.567
## 113	x4 ~~	x6	1	1	1 11.280	-0.326	-0.326	-0.928	-0.928
## 130	visual =~	x7	2	2	1 11.267	-0.504	-0.391	-0.380	-0.380

Configural model

- Configural model has poor fit.
- Correlation residuals indicate many correlations are over/underestimated.
- ▶ If this was my model, I would fix this model before continuing

Weak (Metric) Invariance

```
weak.fit <- cfa(config.mod, HolzingerSwineford1939,
               group = "school",
               group.equal = "loadings")
fit.stat <- rbind(fitmeasures(config.fit, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr")),
                 fitmeasures(weak.fit, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr")))
rownames(fit.stat) <- c("Configural", "Weak")
fit.stat
##
                chisq df
                               pvalue
                                            cfi
                                                     rmsea
                                                                  srmr
## Configural 115.8513 48 1.545283e-07 0.9233984 0.09691486 0.06786401
## Weak
              124.0435 54 1.962798e-07 0.9209235 0.09283654 0.07165158
# chi-square test of difference
pchisg(124.0435 - 115.8513, df = 54 - 48, lower.tail = FALSE)
## [1] 0.2243578
# compare to:
anova(config.fit, weak.fit)
## Chi Square Difference Test
##
                          BIC Chisq Chisq diff Df diff Pr(>Chisq)
                   AIC
## config.fit 48 7484.4 7706.8 115.85
## weak.fit. 54 7480.6 7680.8 124.04 8.1922
                                                            0.2244
```

Poor fit continues ...

```
lavResiduals(weak.fit, type = "cor") $Pasteur$cov
## x1 x2 x3 x4 x5 x6 x7 x8
## x1 0.000
## x2 -0.055 0.000
## x3 -0.010 0.076 0.000
## x4 0.111 -0.109 -0.116 0.000
## x5 -0.002 -0.083 -0.196 0.041 0.000
## x6 0.106 -0.020 -0.056 -0.042 0.015 0.000
## x7 -0.099 -0.229 -0.125 0.118 -0.020 0.058 0.000
## x8 -0.035 -0.068 -0.005 -0.055 -0.068 0.019 0.055 0.000
## x9 0.149 0.096 0.172 -0.022 0.003 0.025 -0.028 -0.026 0.000
lavResiduals(weak.fit, type = "cor") $`Grant-White`$cov
   x1 x2 x3 x4 x5 x6 x7 x8 x9
## x1 0.000
## x2 -0.013 0.000
## x3 -0.024 0.114 0.000
## x4 0.005 0.012 0.027 0.000
## x5 -0.027 -0.056 -0.014 -0.016 0.000
## x6 0.005 -0.006 0.068 0.033 0.004 0.000
## x7 -0.155 -0.100 -0.157 0.013 0.057 -0.004 0.000
## x8 -0.001 -0.030 -0.038 -0.130 -0.036 -0.096 0.060 0.000
## x9 0.214 0.073 0.129 0.108 0.149 0.080 -0.047 -0.027 0.000
```

Weak invariance summary

- Model fit is not meaningful (or statistically) worse than configural model.
- Model fit is still not good.
- Conclude(?) weak invariance.

Strong (Scalar) invariance

```
strong.fit <- cfa(config.mod, HolzingerSwineford1939,
                 group = "school",
                 group.equal = c("loadings", "intercepts"))
fit.stat <- rbind(fit.stat,
                 fitmeasures(strong.fit, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr")))
rownames(fit.stat)[3] <- "Strong"
fit.stat
##
                chisa df
                               pvalue
                                           cfi
                                                    rmsea
## Configural 115.8513 48 1.545283e-07 0.9233984 0.09691486 0.06786401
## Weak
            124.0435 54 1.962798e-07 0.9209235 0.09283654 0.07165158
           164.1028 60 1.296141e-11 0.8824718 0.10737110 0.08244706
## Strong
# chi-square test of difference
anova(weak.fit, strong.fit)
## Chi Square Difference Test
##
             Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)
## weak.fit 54 7480.6 7680.8 124.04
## strong.fit 60 7508.6 7686.6 164.10 40.059 6 4.435e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Strong invariance summary

- ▶ Model fit is worse than weak invariance model.
- ► Conclude no evidence of strong invariance (at least complete)
- Let's examine partial invariance.

Examining partial invariance

To examine which paths should be freed across groups, we will use the lavTestScore function.

We are looking for statistically significant paths.

```
lavTestScore(strong.fit)$uni
##
## univariate score tests:
##
     lhs op rhs X2 df p.value
## 1 .p2. == .p38. 0.306 1
                             0.580
## 2 .p3. == .p39. 1.636 1 0.201
## 3 .p5. == .p41. 2.744 1 0.098
## 4 .p6. == .p42. 2.627 1 0.105
## 5 .p8. == .p44. 0.027 1 0.871
## 6 .p9. == .p45. 0.004 1 0.952
## 7 .p25. == .p61. 5.847 1
                             0.016
## 8 .p26. == .p62. 6.863 1 0.009
## 9 .p27. == .p63. 19.193 1
                             0.000
## 10 .p28. == .p64. 2.139 1
                             0.144
## 11 .p29. == .p65. 1.563 1
                             0.211
## 12 .p30. == .p66. 0.032 1
                             0.857
## 13 .p31. == .p67. 15.021 1
                             0.000
## 14 .p32. == .p68. 4.710 1 0.030
## 15 .p33. == .p69. 1.498 1
                             0.221
```

Identifying .p27.

```
params <- parameterEstimates(strong.fit)
subset(params, label %in% c(".p27."))

## 1hs op rhs block group label est se z pvalue ci.lower ci.upper
## 27 x3 1 1 1 .p27. 2.271 0.083 27.387 0 2.109 2.434
## 63 x3 1 2 2 .p27. 2.271 0.083 27.387 0 2.109 2.434
```

Strong (partial) invariance

Looking again

```
lavTestScore(strong.fit.p1)$uni
##
## univariate score tests:
##
##
     lhs op rhs X2 df p.value
## 1 .p2. == .p38. 0.734 1 0.392
## 2 .p3. == .p39. 0.485 1
                             0.486
## 3 .p5. == .p41. 2.760 1
                             0.097
## 4 .p6. == .p42. 2.630 1
                             0.105
## 5 .p8. == .p44. 0.026 1
                             0.872
## 6 .p9. == .p45. 0.002 1
                             0.960
## 7 .p25. == .p61. 2.833 1
                             0.092
## 8 .p26. == .p62. 2.833 1
                             0.092
## 9 .p28. == .p64. 2.136 1
                             0.144
## 10 .p29. == .p65. 1.560 1
                             0.212
## 11 .p30. == .p66. 0.032 1
                             0.857
## 12 .p31. == .p67. 15.023 1
                             0.000
## 13 .p32. == .p68. 4.727 1
                             0.030
## 14 .p33. == .p69. 1.492 1
                             0.222
```

Identifying .p31.

```
params <- parameterEstimates(strong.fit.pl)
subset(params, label %in% c(".p31."))

## lhs op rhs block group label est se z pvalue ci.lower ci.upper
## 31 x7 '1 1 1 .p31. 4.242 0.073 57.966 0 4.099 4.386
## 67 x7 '1 2 2 .p31. 4.242 0.073 57.966 0 4.099 4.386
```

Strong (partial) invariance again

```
strong.fit.p2 <- cfa(config.mod, HolzingerSwineford1939,
                    group = "school",
                    group.equal = c("loadings", "intercepts"),
                    group.partial = c("x3 ~ 1",
                                     "x7 ~ 1"))
# chi-square test of difference
anova(weak.fit, strong.fit.p2)
## Chi Square Difference Test
##
##
                     AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)
## weak.fit 54 7480.6 7680.8 124.04
## strong.fit.p2 58 7478.0 7663.3 129.42 5.3789 4 0.2506
# fit statistics
fit.stat[3,] <- fitmeasures(strong.fit.p2, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr"))
rownames(fit.stat)[3] <- "Partial strong"
fit.stat
                                  pvalue
                    chisa df
                                              cfi
                                                       rmsea
## Configural 115.8513 48 1.545283e-07 0.9233984 0.09691486 0.06786401
## Weak
               124.0435 54 1.962798e-07 0.9209235 0.09283654 0.07165158
## Partial strong 129,4225 58 2,277881e-07 0,9193667 0,09045555 0,07298884
```

Strong invariance summary

- ► Evidence for partial strong invariance.
- Non-invariant intercepts associated with the verbal and speed factors.
- Again, fit is still poor.

Strict invariance

```
strict.fit <- cfa(config.mod, HolzingerSwineford1939,
                 group = "school",
                 group.equal = c("loadings", "intercepts", "residuals"),
                 group.partial = c("x3 ~ 1",
                                   "x7 ~ 1"))
# chi-square test of difference
anova(strong.fit.p2, strict.fit)
## Chi Square Difference Test
##
##
                Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)
## strong.fit.p2 58 7478.0 7663.3 129.42
## strict.fit 67 7477.8 7629.8 147.26
                                        17.838
                                                             0.0371 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
fit.stat <- rbind(fit.stat,
                 fitmeasures(strict.fit, c("chisq", "df", "pvalue", "cfi", "rmsea", "srmr")))
rownames(fit.stat)[4] <- "Strict"
fit.stat
##
                    chisa df
                                   pvalue
                                               cfi
## Configural 115.8513 48 1.545283e-07 0.9233984 0.09691486 0.06786401
## Weak
                124.0435 54 1.962798e-07 0.9209235 0.09283654 0.07165158
## Partial strong 129,4225 58 2,277881e-07 0,9193667 0,09045555 0,07298884
## Strict
                 147 2605 67 5 882821e=08 0 9093890 0 08921649 0 07899220
```

What to conclude

1. Simulation studies (Cheung & Rensvol, 2002) have suggested Δ CFI \leq .01 indicate stricter invariance should not be rejected.

```
# difference in CFI between strong and strict invariance
fit.stat[3, 4] - fit.stat[4, 4]
## [1] 0.009977741
```

2. n < 300, $\Delta \text{CFI} \leq .005$ and $\Delta \text{RMSEA} \leq .010$ support invariance (Chen, 2007).

```
# difference in RMSEA between strong and strict invariance
fit.stat[4, 5] - fit.stat[3, 5]
## [1] -0.001239055
```

3. Evidence suggest that strict invariance is met, **but again fit is not good!**

Strict fit output (select), reference group

```
summary(strict.fit)
## Group 1 [Pasteur]:
## Intercepts:
##
                      Estimate Std.Err z-value P(>|z|)
##
      .x3
                         2,487
                                  0.090
                                          27.772
                                                     0.000
##
      .x7
                         4.432
                                  0.082
                                          53.865
                                                    0.000
##
      visual
                         0.000
##
       textual
                         0.000
##
       speed
                         0.000
##
## Variances:
##
                      Estimate Std.Err z-value P(>|z|)
##
       visual
                         0.776
                                  0.164
                                           4.737
                                                    0.000
##
       textual
                         0.893
                                  0.131
                                           6.826
                                                     0.000
                         0.318
                                  0.080
                                           3.990
                                                    0.000
##
       speed
##
##
## Group 2 [Grant-White]:
## Intercepts:
                      Estimate Std.Err z-value P(>|z|)
##
                         1.951
                                         17.044
                                                    0.000
##
      .x3
                                  0.114
      . x7
                         3.992
                                         40.135
##
                                  0.099
                                                    0.000
##
      visual
                         0.054
                                  0.128
                                         0.423
                                                    0.672
      textual
                         0.575
                                          4.888
                                                    0.000
##
                                  0.118
##
       speed
                        -0.071
                                  0.089
                                          -0.805
                                                    0.421
##
## Variances:
##
                      Estimate Std.Err z-value P(>|z|)
                                         4.436
##
       visual
                         0.664
                                  0.150
                                                    0.000
       textual
                         0.876
                                  0.132
                                           6.620
                                                    0.000
##
       speed
                                           4.095
##
                         0.446
                                  0.109
                                                    0.000
```

Latent response variables - dichotomous item

Figure 1. Latent response distribution for a single dichotomous item representing the latent distribution of interest. τ_{11} marks the latent cut-point between observed responses.

Latent response variables - dichotomous item

Let X^* be the latent response variable (LRV).

If we let $X^* \sim \mathit{N}(0,1)$ then the threshold (au_1) correspond to z-scores and

$$X = \begin{cases} 0 & \text{if } X^* \le \tau_{11} \\ 1 & \text{if } X^* > \tau_{11} \end{cases}$$

So, if a respondents score on the LRV is $\leq \tau_1$ they will not endorse the item.

LRVs have nonlinear relationships with the indicators BUT have linear relationships with the factors.

Fit an ordinal variable in lavaan

Parameterizations

Delta scaling

- ▶ Total variance of LRV fixed to 1.
- For the standardized solution, pattern coefficients represent for a 1 SD increase in the factor, expect an XX SD change for the latent response variable.
- For the standardized solution, threshold correspond to normal deviates corresponding to cumulative probabilities

Theta scaling

- Residual variance of each LRV fixed to 1 (like probit regression scaling).
- For the unstandardized solution, pattern coefficients represent for a 1 unit increase in the factor, expect an XX probit (normal deviates) change for the latent response variable,
- For the unstandardized solution, threshold correspond to normal deviates for the next lowest response category where the latent response variable is not standardized.
- Standardized solution identical between the two parameterizations

Invariance with ordinal indicators

- ▶ For a given indicator, the probability of endorsing/selecting an option (e.g., SA, A, N, D, SD) across the groups is the same given the same underlying score on the factor.
- Observed ordinal responses are only indirectly, through continuous LRVs, related to the common factor.
- ► The observed responses are related to the continuous LRVs through the set of thresholds.

Single-factor (Depression) CFA ordinal indicators (Kline)

Identification - Configural model

Millsap & Yun-Tein (2004) "Assessing Factorial Invariance in Ordered-Categorical Measures" is the definitive guide to dealing with invariance with ordinal data.

We won't cover binary data, See Millsap & Yun-Tein (2004) for the rules.

Need at **least 3 categories** and each LRV is a simple indicator with a single pattern coefficient (i.e., **simple structure**).

Use theta parameterization (fixing residual variance of each LRV 1 in the reference group).

- 1. **In just the reference group**, fix the mean of the factors to zero and standardize (1) the residual variance of every LRV.
- 2. **In every group**, fix the direct effect of the constant on every LRV to 0 and set the same LRV as a maker variable and fix it's unstandardized pattern coefficient to 1.
- 3. **For every LRV**, constrain one threshold parameter to equality across the groups and **for the marker variable** constrain a second threshold parameter to equality.

Every thing else is free

Invariance steps

- ► Fit the configural model (previous slide).
- ► Constrain the unstandardized pattern coefficients for each latent response variable (weak invariance). Compare to configural.
- Constrain the remaining free thresholds (strong invariance). Compare to weak invariance.
 - Equality of pattern coefficients and thresholds is required to claim ordinal indicators measure the same common factors but with differing degrees of precision.
- Constrain the error variances/covariances (weak invariance).
 Compare to strong invariance.
 - If strict invariance holds the indicators measure the same common factors in identical ways across the groups.
- ► As with continuous indicators, factor means/variances do not need to be the same across the groups to have invariance.

Example

- Example from Klein
- ightharpoonup N = 2,252 (2,004 white men, 248 African American men)
- Responded to 5 Likert-type items corresponding to symptoms of depression from the CES-D scale.
- ▶ The items each have 4 response categories.

Reading in data

```
radloff <- read.csv("https://www.guilford.com/add/kline/radloff-lavaan.txt", sep = "\t", header = FALSE,
                  col.names = c("x1", "x2", "x3", "x4", "x5", "g"))
radloff[, 1:5] <- lapply(radloff[, 1:5], function(x) as.ordered(x))
radloff$g <- factor(radloff$g, levels = c(1, 2), labels = c("Wh", "AA"))
str(radloff)
## 'data.frame': 2252 obs. of 6 variables:
## $ x1: Ord.factor w/ 4 levels "0"<"1"<"2"<"3": 1 1 2 1 2 1 1 1 1 1 ...
## $ x2: Ord.factor w/ 4 levels "0"<"1"<"2"<"3": 1 1 2 1 1 1 1 1 4 1 ...
## $ x3: Ord.factor w/ 4 levels "0"<"1"<"2"<"3": 1 1 1 1 2 2 1 1 3 1 ...
## $ x4: Ord.factor w/ 4 levels "0"<"1"<"2"<"3": 1 1 1 1 1 1 1 3 4 2 ...
## $ x5: Ord.factor w/ 4 levels "0"<"1"<"2"<"3": 1 1 2 1 2 1 1 2 2 1 ...
## $ g : Factor w/ 2 levels "Wh", "AA": 1 1 1 1 1 1 1 1 1 1 ...
summary(radloff)
## x1
      x2
               x3 x4 x5
## 0:1749 0:1899 0:1561 0:1388 0:1600
                                            Wh: 2004
## 1: 330 1: 213 1: 383 1: 510 1: 414
                                             AA: 248
## 2: 104
               66 2: 134
          2:
                           2: 199 2: 139
## 3: 69 3: 74 3: 174 3: 155 3: 99
```

Obtaining the polychoric correlations for each group

```
mod <- "
dep = x1 + x2 + x3 + x4 + x5
fit <- cfa(mod, data = radloff, group = "g", parameterization = "theta")
inspect(fit, what = "sampstat")$Wh$cov
## x1 x2 x3 x4 x5
## x1 1.000
## x2 0.437 1.000
## x3 0.471 0.480 1.000
## x4 0.401 0.418 0.454 1.000
## x5 0.423 0.489 0.627 0.465 1.000
inspect(fit, what = "sampstat")$AA$cov
     x1 x2 x3 x4 x5
## x1 1.000
## x2 0.508 1.000
## x3 0.351 0.373 1.000
## x4 0.305 0.336 0.398 1.000
## x5 0.464 0.371 0.531 0.483 1.000
```

Configural Model

```
mod <- "
# x1 is marker variable
# define latent variable
dep = c(1, 1)*x1 + x2 + x3 + x4 + x5
# fix thresholds
x1 \mid c(t11, t11)*t1 + c(t12, t12)*t2 + t3
x2 \mid c(t21, t21)*t1 + t2 + t3
x3 \mid c(t31, t31)*t1 + t2 + t3
x4 \mid c(t41, t41)*t1 + t2 + t3
x5 | c(t51, t51)*t1 + t2 + t3
# fix factor mean to zero in reference group
# freely estimate it (NA) in the second group
dep ~ c(0, NA)*1
# freely estimate variance
dep ~~ NA*dep
# fix residual variance to 1 for reference group
x1 ~~ c(1, NA)*x1
x2 ~~ c(1, NA)*x2
x3 ~~ c(1, NA)*x3
x4 ~~ c(1, NA)*x4
x5 ~~ c(1, NA)*x5
fit <- cfa(mod, data = radloff, group = "g", parameterization = "theta", estimator = "wlsmv")
fitmeasures(fit, c("chisq.scaled", "df.scaled", "pvalue.scaled", "cfi.scaled", "rmsea.scaled", "srmr.scaled"))
## chisq.scaled
                     df.scaled pvalue.scaled
                                                 cfi.scaled rmsea.scaled
          25 162
                        10 000
                                       0.005
                                                      0 994
                                                                    0.037
```

Correlation residuals

Kline adds the error covariance between x1 and x2 for just AA group. I would say it's debatable if it should be added and should be theoretical driven.

Overall, I would conclude this is a reasonably good model as is.

Weak Model

```
weak.mod <- "
dep = c(1, 1)*x1 + c(lam2, lam2)*x2 + c(lam3, lam3)*x3 + c(lam4, lam4)*x4 + c(lam5, lam5)*x5
dep ~ c(0, NA)*1
dep ~~ NA*dep
x1 \mid c(t11, t11)*t1 + c(t12, t12)*t2 + t3
x2 \mid c(t21, t21)*t1 + t2 + t3
x3 \mid c(t31, t31)*t1 + t2 + t3
x4 \mid c(t41, t41)*t1 + t2 + t3
x5 \mid c(t51, t51)*t1 + t2 + t3
x1 ~~ c(1, NA)*x1
x2 ~~ c(1, NA)*x2
x3 ~~ c(1, NA)*x3
x4 ~~ c(1, NA)*x4
x5 ~~ c(1, NA)*x5
weak.fit <- cfa(weak.mod, data = radloff, group = "g", parameterization = "theta", estimator = "WLSMV")
fit.stats <- rbind(
 fitmeasures(fit, c("chisq.scaled", "df.scaled", "pvalue.scaled", "cfi.scaled", "rmsea.scaled", "srmr.scaled")),
 fitmeasures(weak.fit, c("chisq.scaled", "df.scaled", "pvalue.scaled", "cfi.scaled", "rmsea.scaled", "srmr.scaled")))
row.names(fit.stats) <- c("configural", "weak")
fit.stats
##
              chisq.scaled df.scaled pvalue.scaled cfi.scaled rmsea.scaled
                  25.16183
## configural
                                  10 0.005047058 0.9943511 0.03671128
                  34.09612
## weak
                                 14 0.001996754 0.9925128 0.03572036
anova(fit, weak.fit)
## Scaled Chi Square Difference Test (method = "satorra,2000")
##
##
            Df AIC BIC Chisa Chisa diff Df diff Pr(>Chisa)
## fit
                       14.222
## weak.fit 14
                       21.271
                                  5.8314
                                                     0.2121
```

Strong Model

```
strong.mod <- "
dep = c(1, 1)*x1 + c(lam2, lam2)*x2 + c(lam3, lam3)*x3 + c(lam4, lam4)*x4 + c(lam5, lam5)*x5
dep ~ c(0, NA)*1
dep ~~ NA*dep
x1 \mid c(t11, t11)*t1 + c(t12, t12)*t2 + c(t13, t13)*t3
x2 \mid c(t21, t21)*t1 + c(t22, t22)*t2 + c(t23, t23)*t3
x3 \mid c(t31, t31)*t1 + c(t32, t32)*t2 + c(t33, t33)*t3
x4 \mid c(t41, t41)*t1 + c(t42, t42)*t2 + c(t43, t43)*t3
x5 \mid c(t51, t51)*t1 + c(t52, t52)*t2 + c(t53, t53)*t3
x1 ~~ c(1, NA)*x1
x2 ~~ c(1, NA)*x2
x3 ~~ c(1, NA)*x3
x4 ~~ c(1, NA)*x4
x5 ~~ c(1, NA)*x5
strong.fit <- cfa(strong.mod, data = radloff, group = "g", parameterization = "theta", estimator = "WLSMV")
fit.stats <- rbind(fit.stats.
 fitmeasures(strong.fit, c("chisq.scaled", "df.scaled", "pvalue.scaled", "cfi.scaled", "rmsea.scaled", "srmr.scaled")))
row.names(fit.stats)[3] <- c("strong")
fit.stats
##
             chisq.scaled df.scaled pvalue.scaled cfi.scaled rmsea.scaled
## configural
                 25.16183
                                 10 0.005047058 0.9943511 0.03671128
## weak
                 34.09612
                                14 0.001996754 0.9925128 0.03572036
                 39.81064
                                 23 0.016137246 0.9937369 0.02548895
## strong
anova(strong.fit, weak.fit)
## Scaled Chi Square Difference Test (method = "satorra.2000")
##
             Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)
##
## weak.fit 14
                        21.271
## strong.fit 23
                        26.268
                                   8.6613
                                                      0.4691
```

Strict Model

```
strict.mod <- "
dep = c(1, 1)*x1 + c(lam2, lam2)*x2 + c(lam3, lam3)*x3 + c(lam4, lam4)*x4 + c(lam5, lam5)*x5
dep ~ c(0, NA)*1
dep ~~ NA*dep
x1 \mid c(t11, t11)*t1 + c(t12, t12)*t2 + c(t13, t13)*t3
x2 \mid c(t21, t21)*t1 + c(t22, t22)*t2 + c(t23, t23)*t3
x3 \mid c(t31, t31)*t1 + c(t32, t32)*t2 + c(t33, t33)*t3
x4 \mid c(t41, t41)*t1 + c(t42, t42)*t2 + c(t43, t43)*t3
x5 \mid c(t51, t51)*t1 + c(t52, t52)*t2 + c(t53, t53)*t3
x1 ~~ c(1, 1)*x1
x2 ~~ c(1, 1)*x2
x3 ~~ c(1, 1)*x3
x4 ~~ c(1, 1)*x4
x5 ~~ c(1, 1)*x5
strict.fit <- cfa(strict.mod, data = radloff, group = "g", parameterization = "theta", estimator = "WLSMV")
fit.stats <- rbind(fit.stats.
 fitmeasures(strict.fit.c("chisq.scaled", "df.scaled", "pvalue.scaled", "cfi.scaled", "rmsea.scaled", "srmr.scaled")))
row.names(fit.stats)[4] <- c("strict")
fit stats
             chisq.scaled df.scaled pvalue.scaled cfi.scaled rmsea.scaled
##
## configural
                 25.16183
                                 10 5.047058e-03 0.9943511 0.03671128
                 34.09612
## weak
                                 14 1.996754e-03 0.9925128 0.03572036
## strong
                 39.81064
                                 23 1.613725e-02 0.9937369 0.02548895
## strict
                 79.40325
                                 28 8.188092e=07 0.9808487 0.04039615
anova(strong.fit, strict.fit)
## Scaled Chi Square Difference Test (method = "satorra,2000")
##
##
             Df AIC BIC Chisa Chisa diff Df diff Pr(>Chisa)
## strong.fit 23
                         26,268
## strict.fit 28
                        61.580
                                 14.029
                                                5
                                                   0.01543 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

What to conclude and do next?

- ▶ Could, and probably should, examine partial strict invariance.
 - ▶ n > 300, Δ CFI \leq .010 and Δ RMSEA \leq .015 support invariance (Chen, 2007).

```
# delta CFI
abs(diff(fit.stats[3:4, 4]))

## strict

## 0.01288819

# delta RMSEA
abs(diff(fit.stats[3:4, 5]))

## strict

## 0.01490721
```

- Once settle on a model, can compare mean differences calculate effects, etc.
- For brevity, we'll look at the strong.fit model.

```
summary(strong.fit, fit = TRUE, standardized = TRUE, rsquare = TRUE)
    Optimization method
                                                   NLMINB
##
    Number of free parameters
                                                       46
    Number of equality constraints
                                                       19
##
##
    Number of observations per group
     Wh
                                                     2004
##
    ΔΔ
                                                      248
##
    Estimator
                                                     DWLS.
                                                               Robust
    Model Fit Test Statistic
                                                   26.269
                                                               39.811
    Degrees of freedom
                                                       23
                                                                   23
    P-value (Chi-square)
                                                    0.288
                                                                0.016
##
    Scaling correction factor
                                                                0.711
    Shift parameter for each group:
##
      Wh
                                                                2.548
      AA
##
                                                                0.315
##
      for simple second-order correction (Mplus variant)
##
## Chi-square for each group:
##
    Wh
                                                    9.976
                                                               16.580
##
##
    AA
                                                   16.292
                                                               23.231
##
## Model test baseline model:
##
    Minimum Function Test Statistic
                                                 3408.088
                                                             2704.055
    Degrees of freedom
                                                       20
                                                                   20
    P-value
                                                    0.000
                                                                0.000
##
## User model versus baseline model:
##
##
    Comparative Fit Index (CFI)
                                                    0.999
                                                                0.994
    Tucker-Lewis Index (TLI)
                                                    0.999
                                                                0.995
##
    RMSEA
                                                    0.011
                                                                0.025
    SRMR
                                                    0.026
                                                                0.026
```

```
summary(strong.fit, fit = TRUE, standardized = TRUE, rsquare = TRUE)
## Group 1 [Wh]:
##
## Latent Variables:
##
                       Estimate Std.Err z-value P(>|z|)
                                                               Std.lv Std.all
##
     dep =~
##
       x1
                          1,000
                                                                 0.764
                                                                          0.607
##
       x2
                (lam2)
                                    0.108
                                            10.384
                                                       0.000
                                                                 0.859
                                                                          0.651
##
       хЗ
                (lam3)
                          1.694
                                    0.158
                                            10.720
                                                       0.000
                                                                 1,295
                                                                          0.791
##
       x4
                (lam4)
                          0.996
                                    0.086
                                            11.646
                                                       0.000
                                                                 0.761
                                                                          0.606
##
       x5
                (lam5)
                          1.557
                                    0.142
                                            10.993
                                                       0.000
                                                                1.190
                                                                          0.766
##
   Intercepts:
##
                       Estimate Std.Err z-value P(>|z|)
                                                               Std.lv Std.all
##
       dep
                          0.000
                                                                 0.000
                                                                          0.000
                          0.000
                                                                 0.000
                                                                          0.000
      .x1
##
      .x2
                          0.000
                                                                 0.000
                                                                          0.000
##
      .x3
                          0.000
                                                                 0.000
                                                                          0.000
##
      .x4
                          0.000
                                                                 0.000
                                                                          0.000
##
      .x5
                          0.000
                                                                 0.000
                                                                          0.000
##
## Thresholds:
##
                       Estimate Std.Err z-value P(>|z|)
                                                               Std.lv
                                                                       Std.all
       x1|t1
                          0.962
                                                                0.962
                                                                          0.765
##
                                    0.046
                                            21.017
##
       x1|t2
                          1.799
                                    0.064
                                            28.043
                                                       0.000
                                                                1.799
                                                                          1.429
       x1|t3
                                    0.084
                                            28.184
                                                       0.000
                                                                          1.873
##
                                                                2.358
                          1.355
                                            22.131
                                                                1.355
##
       x2|t1
                                    0.061
                                                       0.000
       x2|t2
                          2.056
                                            25.733
                                                                2.056
                                                                          1.560
##
                                    0.080
                                                       0.000
##
       x2|t3
                          2.470
                                    0.094
                                            26.225
                                                       0.000
                                                                2.470
                                                                          1.874
##
       x3|t1
                          0.870
                                    0.062
                                            14.000
                                                       0.000
                                                                0.870
                                                                          0.532
                 (t32)
##
       x3|t2
                          1.878
                                    0.093
                                            20.248
                                                       0.000
                                                                1.878
                                                                          1.148
                                            21.764
                                                                2.453
##
       x3|t3
                          2.453
                                    0.113
                                                       0.000
                                                                          1.499
       x4|t1
                 (t41)
                          0.378
                                                       0.000
                                                                0.378
                                                                          0.301
##
                                    0.036
                                            10.408
                          1.270
                                            27.141
                                                                1.270
                                                                          1.011
##
       x4|t2
                 (t42)
                                    0.047
                                                       0.000
##
       x4|t3
                 (t43)
                          1.872
                                    0.060
                                            31.221
                                                       0.000
                                                                1.872
                                                                          1.490
                                            14.933
                                                                          0.561
##
       x5|t1
                                    0.058
                                                       0.000
                                                                0.872
                 (t52)
                          1.952
                                                                          1.256
##
                                    0.089
                                            21.886
                                                       0.000
                                                                1.952
                 (t53)
                                            23.131
                                                                          1.712
##
                          2.661
                                                       0.000
                                                                2.661
```

```
summary(strong.fit, fit = TRUE, standardized = TRUE, rsquare = TRUE)
## Variances:
##
                     Estimate Std.Err z-value P(>|z|)
                                                           Std.lv Std.all
                                                            1,000
##
      dep
                         0.584
                                 0.082
                                          7,122
                                                   0.000
                                                                     1.000
##
     .x1
                        1,000
                                                            1.000
                                                                     0.631
                                                                     0.576
##
     .x2
                        1,000
                                                            1.000
                                                                     0.374
     .x3
                        1,000
                                                             1.000
##
     .x4
                        1,000
                                                             1,000
                                                                     0.633
                        1.000
                                                            1.000
                                                                     0.414
##
     .x5
##
## Scales y*:
                     Estimate Std.Err z-value P(>|z|)
                                                           Std.lv Std.all
##
      x1
                        0.794
                                                            0.794
                                                                     1.000
                                                            0.759
##
      x2
                        0.759
                                                                     1,000
                                                            0.611
##
      хЗ
                        0.611
                                                                     1.000
      x4
                        0.796
                                                            0.796
                                                                     1.000
##
       x5
                        0.643
                                                            0.643
                                                                     1,000
##
## R-Square:
                     Estimate
##
##
                        0.369
      x1
##
      x2
                        0.424
##
      хЗ
                        0.626
##
      x4
                        0.367
##
      x5
                        0.586
```

```
summary(strong.fit, fit = TRUE, standardized = TRUE, rsquare = TRUE)
## Group 2 [AA]:
##
## Intercepts:
                     Estimate Std.Err z-value P(>|z|)
##
                                                            Std.lv Std.all
##
       dep
                         0.059
                                  0.091
                                           0.651
                                                    0.515
                                                             0.075
                                                                      0.075
##
## Variances:
                     Estimate Std.Err z-value P(>|z|)
                                                            Std.lv Std.all
##
##
                         0.622
                                  0.142
                                          4.385
                                                    0.000
                                                            1,000
                                                                      1.000
      dep
##
      .x1
                         0.907
                                  0.188
                                          4.819
                                                    0.000
                                                             0.907
                                                                      0.593
##
      .x2
                         1.408
                                  0.302
                                          4.655
                                                    0.000
                                                            1.408
                                                                      0.642
     .x3
                         3.719
                                  0.947
                                          3.926
                                                    0.000
                                                            3.719
                                                                      0.676
##
      .x4
                         0.960
                                  0.199
                                          4.828
                                                    0.000
                                                             0.960
                                                                      0.609
                         0.876
                                  0.243
                                          3.602
                                                    0.000
                                                            0.876
                                                                      0.368
##
     .x5
##
## Scales y*:
##
                     Estimate Std.Err z-value P(>|z|)
                                                            Std.lv Std.all
                         0.809
                                                             0.809
                                                                      1.000
##
      x1
      x2
                         0.675
                                                            0.675
                                                                      1.000
##
##
      x3
                         0.426
                                                            0.426
                                                                      1.000
                                                             0.796
                                                                      1.000
##
      x4
                         0.796
      x5
                         0.648
                                                             0.648
                                                                      1.000
##
##
## R-Square:
##
                     Estimate
                         0.407
##
      x1
      x2
                         0.358
##
##
      хЗ
                         0.324
                         0.391
##
      x4
##
      x5
                         0.632
```