Capítulo 2

Cor e Visão Humana Sistema de Visão Humana

Computação Gráfica - Vol. 2 - Cap. 2

Capítulo 2

- 2.1. Sistema de Visão Humana
- 2.2. Características ópticas da luz
- 2.3. Percepção de Cor
- 2.4. Iluminação
- 2.5. Modelos de Cores
- 2.6. Características das Cores
- 2.7. Percepção e Cognição

Computação Gráfica - Vol. 2 - Cap. 2

_

2.1. Sistema de Visão Humana

Esclerótica - membrana elástica, conhecida como 'branco do olho'.

Córnea - encontra-se na parte da frente do olho e atua como uma lente simples, captando e concentrando a luz.

Íris – membrana colorida que se observa nos olhos com um orifício negro no centro.

Figura 2.3. Elementos do olho em corte (imagem: Wikipedia).

Computação Gráfica - Vol. 2 - Cap. 2

2.1. Sistema de Visão Humana

Cristalino - parte da visão humana responsável pelo foco, sendo também chamado de lente.

Humor vítreo – substância gelatinosa localizada atrás do cristalino.

Figura 2.3. Elementos do olho em corte (imagem: Wikipedia).

Computação Gráfica - Vol. 2 - Cap. 2

4

Sistema de Visão Humana

Humor aquoso – encontrase atrás da córnea uma uma pequena câmara preenchida com um fluido.

Pupila - a luz passa através deste orifício negro

Figura 2.4. Principais elementos do olho humano (imagem: Wikipedia).

Computação Gráfica - Vol. 2 - Cap. 2

Sistema de Visão Humana

de 100 milhões de sensores, converte o estímulo em sinais elétricos;

Retina - composta de cerca

Nervo ótico - transmite para o cérebro os sinais.

Figura 2.4. Principais elementos do olho humano (imagem: Wikipedia).

Computação Gráfica - Vol. 2 - Cap. 2

Características do processo de visão

- Acomodação
- Adaptação
- Campo de visão
- Acuidade
- Persistência visual
- Visão de cores

Computação Gráfica - Vol. 2 - Cap. 2

Gráfica - Vol. 2 - Cap. 2

2.2. Características ópticas da luz

A luz é uma radiação eletromagnética que interage com as superfícies por:

- reflexão
- absorção
- transmissão

Computação Gráfica - Vol. 2 - Cap. 2

10

Tabela 2.1-Radiações do espectro eletromagnético.

	RADIAÇÃO	COMPRIMENTO
		DE ONDA (nm)
	Ondas curtas UV - C	100 a 280
ACTÍNEO	Ondas médias UV - B	280 a 315
	Ondas longas UV –A	315 a 400
VISÍVEL	Espectro visível	400 a 700
	Ondas curtas IV - A	700 a 1400
TÉRMICO	Ondas médias IV – B	1400 a 3000
	Ondas longas IV - C	mais de 3000

Computação Gráfica - Vol. 2 - Cap. 2

2.3. Percepção de Cor

Teoria Tricromática

Apenas três tipos de receptores da retina são necessários operando com sensibilidades a diferentes comprimentos de onda. É baseada na existência de três tipos de cores primárias.

Teoria de Maxwell

Os três cones existentes na retina são sensíveis respectivamente ao vermelho (R), ao verde (G) e ao azul (B), chamadas cores primárias de luz.

Computação Gráfica - Vol. 2 - Cap. 2

13

Tabela 2.3 - Cores criadas com o Vetor cromático R,G,B

Cor	R (%)	G (%)	B (%)	
vermelho puro	100	0	0	
azul puro	0	0	100	
amarelo	100	100	0	
laranja	100	50	0	
verde musgo	0	25	0	
salmão	100	50	50	
cinza	50	50	50	

Computação Gráfica - Vol. 2 - Cap. 2

2.4. Iluminação

- naturais (sol, fogo, estrelas);
- · artificiais (lâmpadas ou iluminantes).

Tabela 2.4. Classificação das lâmpadas

Classificação Geral	Tipos Especiais	Modelos
Incandescentes		Vidro prensado
	Refletoras	Vidro soprado
	Refretoras	Com refletor na
		parte esférica
	Halógenas	-
Descarga	Baixa pressão	Com starter
	(fluorescentes)	Sem starter
		Vapor de Mercúrio
	De alta pressão	Vapor metálico
		Luz mista
		Vapor de sódio

Computação Gráfica - Vol. 2 - Cap. 2

15

A iluminação e as Cores

As características da cor de uma lâmpada são definidas por:

- sua aparência de cor (atributo da temperatura de cor);
- sua capacidade de reprodução de cor (atributo que afeta a aparência de cor dos objetos iluminados).

Tabela 2.5 – Associação entre temperatura e aparência de cor de uma lâmpada (Philips, 1983)

Temperatura de cor (K)	Aparência de cor
T > 5000	Fria (branca- azulada)
3300< T< 5000	Intermediária (branca)
T < 3300	Ouente (branca – avermelhada)

Computação Gráfica - Vol. 2 - Cap. 2

16

Diferença da reprodução de cor em função do iluminante

Figura 2.12. Objetos iluminados com MVM e VS.

Computação Gráfica - Vol. 2 - Cap. 2

17

2.5. Modelos de Cores

Figura 2.13 - Níveis de abstração de cores.

Computação Gráfica - Vol. 2 - Cap. 2

Modelos de cor Elementos que descrevem a cor: • matiz; • saturação; • intensidade. (c) Mudança de Matiz (c) Mudança de Saturação (c) Mudança de Intensidade Figura 2.14. Variações no matiz, saturação e intensidade.

Representação da cor

- Refletivos sistemas que não emitem energia luminosa, utilizam de luz proveniente de uma outra fonte produzindo a informação de cor
- Emissivos são fontes de energia radiante que produzem dretamente a informação de cor.

Computação Gráfica - Vol. 2 - Cap. 2

21

Figura 2.17. Os pigmentos se combinam, subtraindo intensidades luminosas da luz que atinge os objetos.

Computação Gráfica - Vol. 2 - Cap. 2

