

Detailed Course on Differential Equation for IIT JAM' 23 - II

Unacademy Unlock 20% off* on IIT JAM subscriptions

August 22 - 26

	Duration	Current Price	What you pay	What you Save
	24 Months	2-21780	₹ 17,424	₹ 4,356 (20%)
	12 Months	2-14,974	₹ 11,979	₹ 2,995 (20%)
Plus	9 Months	213,475	₹ 10,780	₹ 2,695 (20%)
	6 Months	2.12,252	₹ 9,802	₹ 2,450 (20%)
	3 Months	₹ 6,807	₹ 5,446	₹ 1,361 (20%)

Subscribe Now

Use code GPSIR

For more details, contact: 8585858585.

"T&C apply, as available on the platform

Unacademy Unlock

20% off* on CSIR UGC NET subscriptions

August 22 - 26

	Duration	Current Price	What you pay	What you Save
	24 Months	.2-23,100	₹ 18,480	₹ 4,620 (20%)
Plus	12 Months	2-16,748	₹ 13,398	₹ 3,350 (20%)
	6 Months	_4-13,398	₹ 10,718	₹ 2,680 (20%)
	24 Months	2 52,975	₹ 42,380	₹ 10,595 (20%)
conic	12 Months	2-30,780	₹ 24,624	₹ 6,156 (20%)
_	6 Months	₹-2t,540	₹ 17,232	₹ 4,308 (20%)

Subscribe Now

Use code ____

*T&C apply, as available on the platform.

Gajendra Purohit

Legend in CSIR-UGC NET & IIT-JAM

- Unlock Code: GPSIR - PhD, CSIR NET (Maths) | Youtuber(800K+165K Sub.)/Dr.Gajendra Purohit (Maths), 17+ Yr. Experience, Author

50M Watch mins

3M Watch mins (last 30 days)

44K Followers

2K Dedications

TOP EDUCATOR ON UNACADEMY FOR CSIR NET & IIT JAM

YouTuber with 800K Subscribers

AUTHOR OF BEST SELLER BOOK FOR CSIR NET & IIT JAM

> Get 10% Off

Referral Code: GP SIR

Unacademy Unlock 20% off* on IIT JAM subscriptions

August 22 - 26

	Duration	Current Price	What you pay	What you Save
П	24 Months	£ 21,780	₹ 17,424	₹ 4,356 (20%)
	12 Months	-2-14,974	₹ 11,979	₹ 2,995 (20%)
Plus	9 Months	¥ 13,475	₹ 10,780	₹ 2,695 (20%)
	6 Months	₹ 12,252	₹ 9,802	₹ 2,450 (20%)
	3 Months	₹ 6,807	₹ 5,446	₹ 1,361 (20%)

Subscribe Now

Use code GPSIR

For more details, contact: 8585858585.

*T&C apply, as available on the platform

DETAILED COURSE 2.0 LINEAR ALGEBRA FOR IIT JAM 2023

8th SEPTEMBER

Gajendra Purohit

Enroll Now

GPSIR
FOR 10% OFF

Unacademy Unlock 20% off* on CSIR UGC NET subscriptions

August 22 - 26

	Duration	Current Price	What you pay	What you Save
	24 Months	£-23,100	₹ 18,480	₹ 4,620 (20%)
5	12 Months	2-16/748	₹ 13,398	₹ 3,350 (20%)
	6 Months	£13,398	₹ 10,718	₹ 2,680 (20%)
	24 Months	4.52,975	₹ 42,380	₹ 10,595 (20%)
	12 Months	4-30,780	₹ 24,624	₹ 6,156 (20%)
	6 Months	-₹21540	₹ 17,232	₹ 4,308 (20%)

Subscribe Now

Use code

20

*T&C apply, as available on the platform.

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months
Save 67%

Total ₹ 21,780

You get 6 months extra for free

Offer expires 15 Jun 2022

12 months	₹ 1,248 / mo
Save 54%	Total ₹ 14,974
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

3 months	₹ 2,269 / mo
Save 17%	Total ₹ 6,807

1 month	₹ 2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

24 months	₹ 817 / mo	
Save 67%	₹ 21,700 ₹ 19,602	
You get 6 months extra for free	Offer expires 15 Jun 2022	

12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹ 12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

Homogeneous Differential Equation Cauchy's Homogeneous Differential Linear Equations

A linear differential equation of the form

$$x^{n} \frac{d^{n} y}{dx^{n}} + a_{1} x^{n-1} \frac{dy^{n-1}}{dx^{n-1}} + \dots + a_{n-1} x \left(\frac{dy}{dx}\right) + a_{n} y = Q$$

Or
$$(x^n D^n + a_1 x^{n-1} D^{n-1} + \dots + a_{n-1} x D + a_n) y = Q$$

Where $a_1, a_2, \dots, a_{n-1}, a_n$ are constants, and Q is either a constant or function of x only is called homogeneous linear differential equation.

Put
$$x = e^z \Rightarrow z = \log x$$
, Let $D_1 = \frac{d}{dz}$ Then we have,
 $x \frac{dy}{dx} = D_1 y, x^2 \frac{d^2 y}{dx^2} = D_1 (D_1 - 1) y, x^3 \frac{d^3 y}{dx^3} = D_1 (D_1 - 1) (D_1 - 2) y$
... $x^n \frac{d^n y}{dx^n} = D_1 (D_1 - 1) (D_1 - 2) ... (D_1 - n + 1) y$

Substituting the values of $x\frac{dy}{dx}$, $x^2\frac{d^2y}{dx^2}$... in above equation and changing independent variable from x to z. So

$$[D_1(D_1-1)(D_1-2)....(D_1-n+1)+.....+a_{n-2}D_1(D_1-1)+a_{n-1}D_1+a_n]y=f(z)$$

Which is of the form linear differential equation with constant coefficients, and hence solve using the methods defined earlier, then replacing z with log x, we got the required solution.

Q1. Consider the differential equation $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} - 4y = 0$ with the boundary condition of y(0) = 0 and y(1) = 1. The complete solution of differential equation is

(a)
$$x^2$$

(b)
$$\sin\left(\frac{\pi x}{2}\right)$$

(c)
$$e^x \sin\left(\frac{\pi x}{2}\right)$$

(d)
$$e^{-x} \sin\left(\frac{\pi x}{2}\right)$$

The general solution of $x^2 \frac{d^2y}{dx^2} - 5x \frac{dy}{dx} + 9y = 0$ is Q2.

(a)
$$(c_1 + c_2x)e^{3x}$$

(b)
$$(c_1 + c_2 \ln x)x^3$$

(c)
$$(c_1 + c_2x)x^3$$

(c)
$$(c_1 + c_2x)x^3$$
 (d) $(c_1 + c_2 \ln x) e^{x^3}$

Q3 The general solution of differential equation

$$4x^2y'' - 8xy' + 9y = 0$$
 is

(a)
$$c_1 e^{5x/2} + c_2 e^{-3x/2}$$
 (b) $c_1 e^{3x/2} + c_2 e^{-3x/2}$

(c)
$$(c_1 + c_2 \log x) x^{3/2}$$
 (d) $c_1 x^{3/2} + c_2 x^{-3/2}$

TARGETED AUDIENCE

- O IIT-JAM
 - M.Sc. Entrance Exam

COMPLETE COURSE ON MATHEMATICS FOR IIT-JAM 2022

TOPICS TO BE COVERED

- REAL ANALYSIS
- FUNCTION OF ONE & TWO VARIABLE
- LINAER ALGEBRA
- MODERN ALGEBRA

TOPICS TO BE COVERED

- SEQUENCE & SERIES
- INTEGRAL CALCULUS
- VECTOR CALCULUS
- DIFFERENTIAL EQUATION

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

12 months	₹1,248 / mo
Save 54%	Total ₹ 14,974
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

3 months	₹ 2,269 / mo
Save 17%	Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

24 months	₹ 817 / mo
Save 67%	₹ 21,700 ₹ 19,602
You get 6 months extra for free	Offer expires 15 Jun 2022

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹ 12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

FOUNDATION COURSE OF MATHEMATICS FOR CSIR-NET

If $\frac{(c_1 + c_2 \ln x)}{(c_1 + c_2 \ln x)}$ is the general solution of the differential

equation
$$x^{2} \frac{d^{2}y}{dx^{2}} + kx \frac{dy}{dx} + y = 0$$
, $x > 0$ the k equals

(a) 3

(b) -3

(c) 2

(d) -1

A solution of the differential equation Q5.

$$2x^2 \frac{d^2y}{dx^2} + 3x \frac{dy}{dx} - y = 0, x > 0 \text{ that passes through the point } (1,1)$$

(a)
$$y = \frac{1}{x}$$

(a)
$$y = \frac{1}{x}$$

(c) $y = \frac{1}{\sqrt{x}}$

(b)
$$y = \frac{1}{x^2}$$

(b)
$$y = \frac{1}{x^2}$$

(d) $y = \frac{1}{x^{3/2}}$

Q6. Let y(x), x > 0 be the solution of differential equation

$$x^{2} \frac{d^{2}y}{dx^{2}} + 5x \frac{dy}{dx} + 4y = 0$$
 satisfying the conditions

y(1)=1 & y'(1)=0 Then the value of $e^2y(e)$ is

(a) 3

(b) 1

(c) 2

(d) -1

Q7. Let y(x) be the solution of $x^2y''(x)-2y(x)=0$; y(1)=1, y(2)=1Then the value of y(3) is

(a)
$$\frac{11}{21}$$

(c)
$$\frac{17}{21}$$

(d)
$$\frac{11}{7}$$

Q8 A particular solution of $x^2 \frac{d^2 y}{dx^2} + 2x \frac{dy}{dx} + \frac{y}{4} = \frac{1}{\sqrt{x}}$ is

(a)
$$\frac{1}{2\sqrt{x}}$$

(b)
$$\frac{\log x}{2\sqrt{x}}$$

(c)
$$\frac{(\log x)^2}{2\sqrt{x}}$$

(d)
$$\frac{(\log x)\sqrt{x}}{2}$$

Unacademy Unlock 20% off* on IIT JAM subscriptions

August 22 - 26

	Duration	Current Price	What you pay	What you Save
	24 Months	£ 21,780	₹ 17,424	₹ 4,356 (20%)
	12 Months	-2-14,974	₹ 11,979	₹ 2,995 (20%)
Plus	9 Months	¥ 13,475	₹ 10,780	₹ 2,695 (20%)
	6 Months	₹ 12,252	₹ 9,802	₹ 2,450 (20%)
	3 Months	₹ 6,807	₹ 5,446	₹ 1,361 (20%)

Subscribe Now

Use code GPSIR

For more details, contact: 8585858585.

*T&C apply, as available on the platform

DETAILED COURSE 2.0 LINEAR ALGEBRA FOR IIT JAM 2023

8th SEPTEMBER

Gajendra Purohit

Enroll Now

GPSIR
FOR 10% OFF

Unacademy Unlock 20% off* on CSIR UGC NET subscriptions

August 22 - 26

	Duration	Current Price	What you pay	What you Save
	24 Months	£-23,100	₹ 18,480	₹ 4,620 (20%)
5	12 Months	2-16/748	₹ 13,398	₹ 3,350 (20%)
	6 Months	£13,398	₹ 10,718	₹ 2,680 (20%)
	24 Months	4.52,975	₹ 42,380	₹ 10,595 (20%)
	12 Months	4-30,780	₹ 24,624	₹ 6,156 (20%)
	6 Months	-₹21540	₹ 17,232	₹ 4,308 (20%)

Subscribe Now

Use code

20

*T&C apply, as available on the platform.

Educator Profile

Dr.Gajendra Purohit PhD, CSIR NET (Maths) | Youtuber(330K+30k Sub.)/Dr.Gajendra Purohit (Maths), 17+ Yr. Experience, Author of Bestseller

11M Watch mins

1M Watch mins (last 30 days)

22k Followers

1k Dedications

Follow

CSIR-UGC NET

HINDI MATHEMATICAL SCIENCES

Course on Linear Algebra, Partial Diff. Equation & Calculus

Starts on Mar 1, 2021 • 24 lessons

Gajendra Purohit

HINDI MATHEMATICAL SCIENCES

Course on Complex Analysis & Integral Equation

Starts on Jan 14, 2021 • 16 lessons

Gajendra Purohit

HINDI MATHEMATICAL SCIENCES

Foundation Course on Mathematics for CSIR 2021

Starts on Dec 7, 2020 • 20 lessons

Gajendra Purohit

Educator highlights

SEE ALL

Works at Pacific Science College

- Studied at M.Sc., NET,
 PhD(Algebra), MBA(Finance),
 BEd
- PhD, NET | Plus Educator For CSIR NET | Youtuber
 (260K+Subs.) | Director Pacific Science College |
- Lives in Udaipur, Rajasthan,
 India
- Unacademy Educator since

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

12 months	₹1,248 / mo
Save 54%	Total ₹ 14,974
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

3 months	₹ 2,269 / mo
Save 17%	Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

24 months	₹ 817 / mo
Save 67%	₹ 21,700 ₹ 19,602
You get 6 months extra for free	Offer expires 15 Jun 2022

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹ 12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹-6,807-₹6,126

Proceed to pay

THANK YOU VERY MUCH EVERYONE

GET THE UNACADEMY PLUS SUBSCRIPTION SOON.

TO GET 10% DISCOUNT IN TOTAL SUBSCRIPTION AMOUNT

USE REFERRAL CODE: GPSIR