

Topic 1

Cortex-M3 Architecture: Introduction to the LPC1768 microcontroller

Index

- 1.1. Introduction: Embedded Systems + Design of Digital Systems. The ARM Cortex-M3
- □ **1.2.** LPC1768: Block Diagram, Memory Map, Busses, Pinout
- **1.3.** LPC1768 exceptions: Types and Vectors, NVIC, Enter+Exit, Priority, CMSIS functions.
- 1.4. LPC1768 system control modules: Clocking Features, RESET, FAULTS, SYSTICK, Power Management.

1.1. Embedded Systems

■ What is an Embedded System?

- Interacts with the environment
- Is divided into three stages: 1 INPUT + 2 PROCESS + 3 OUTPUT
 - The processing is based on:
 - Combinational logic and sequential circuits
 - \square Microprocessors (μ P) Microcontrollers (μ C)
 - ☐ Digital Signal Processor (DSP)
 - □ Programmable Logic Devices (PLDs)
 - □ Programmable Logic Controllers (PLCs)
- In general, they are real-time reactive systems:
 - ☐ They react to external events and keep continuous interaction
 - They are continuously running
 - ☐ Their work is subjected to external time constraints
 - ☐ They do concurrently several tasks

1.1. Design of Digital Systems

- A microcontroller (μC) is a chip that includes in a single chip all elements needed in a digital system
 - the processor (μ P, CPU)
 - different types and amounts of memory and
 - various input/output interfaces and peripherals
 - All of them interconnected by uni/bidirectional busses
- ☐ Therefore:
 - Achieving more integration and lower price
 - Lower time to marked when implementing a project

1.1. Design of Digital Systems: What is Microcontroller?

1.1. The ARM Cortex-M3

☐ ARM is a:

- RISC µP
- 17/18 32 bits visible registers in its programmer's model (37 total)
- Caché Memory (upon version)
- Von Neuman architecture (ARM7)
- Harvard architecture (ARM9 and forward)
- □ The Cortex-M3 µC builds on the success of the ARM7
 - Nonmaskable interrupts for critical tasks
 - Deterministic nested vector exceptions
 - Atomic bit manipulation
 - Optional Memory Protection Unit (MPU)

1.1. ARM Cortex Advanced Processors

1.1. Cortex-M3: Manufacturers

1.1. Manufacturers that incorporate Cortex-M3:Differences?

• Peripherals

1.2. Cortex-M3: Busses

1.2. LPC17xx: Busses

1.2. LPC17xx: Block Diagram

1.2. LPC17xx: Block Diagram

LPC1700 Block Diagram

1.2. LPC17xx: Memory

On-chip Flash

- Maximum 512 KB.
- Zero wait-state performance with Flash Accelerator.

On-Chip SRAM

- Maximun 64 KB:
 - □ 32 KB SRAM accessible by the CPU and DMA controller on a higher speed bus.
 - □ Two additional 16 KB SRAM separate slave port on the AHB multilayer matrix.
 - ☐ Allows CPU and DMA accesses to be spread over 3 separate RAMs that can be accessed simultaneously.

On-Chip ROM

- 8 KB ROM.
- Flash program/erase APIs.
- Used for booting not customer accessible.

1.2. LPC17xx: Family

Part Number	Max Clock (MHz)	Flash (KB)	SRAM (KB)	Ethernet	USB	CAN	l ² S	ADC	DAC	I ² C	I/O Pins	Package
LPC1769	120	512	64	Y	Device/Host/OTG	2	Υ	8	Y	3	70	LQFP100
LPC1768	100	512	64	Υ	Device/Host/OTG	2	Υ	8	Υ	3	70	LQFP100
LPC1767	100	512	64	Υ	None	0	Υ	8	Υ	3	70	LQFP100
LPC1766	100	256	64	Υ	Device/Host/OTG	2	Υ	8	Υ	3	70	LQFP100
LPC1765	100	256	64	N	Device/Host/OTG	2	Υ	8	Υ	3	70	LQFP100
LPC1764	100	128	32	Υ	Device	2	N	8	N	3	70	LQFP100
LPC1759	120	512	64	N	Device/Host/OTG	2	Υ	6	Υ	2	52	LQFP80
LPC1758	100	512	64	Υ	Device/Host/OTG	2	Υ	6	Υ	2	52	LQFP80
LPC1756	100	256	32	N	Device/Host/OTG	2	Υ	6	Υ	2	52	LQFP80
LPC1754	100	128	32	N	Device/Host/OTG	1	N	6	Υ	2	52	LQFP80
LPC1752	100	64	16	N	Device	1	N	6	N	2	52	LQFP80
LPC1751	100	32	8	N	Device	1	N	6	N	2	52	LQFP80

1.2. Cortex-M3: Memory Map

1.2. LPC17xx: Memory Map

Table 3. LPC17xx memory usage and details

Address range	General Use	Address range details and des	scription			
0x0000 0000 to	On-chip non-volatile	0x0000 0000 - 0x0007 FFFF	For devices with 512 kB of flash memory.			
0x1FFF FFFF	memory	0x0000 0000 - 0x0003 FFFF	For devices with 256 kB of flash memory.			
		0x0000 0000 - 0x0001 FFFF	For devices with 128 kB of flash memory.			
		0x0000 0000 - 0x0000 FFFF	For devices with 64 kB of flash memory.			
		0x0000 0000 - 0x0000 7FFF	For devices with 32 kB of flash memory.			
	On-chip SRAM	0x1000 0000 - 0x1000 7FFF	For devices with 32 kB of local SRAM.			
		0x1000 0000 - 0x1000 3FFF	For devices with 16 kB of local SRAM.			
		0x1000 0000 - 0x1000 1FFF	For devices with 8 kB of local SRAM.			
	Boot ROM	0x1FFF 0000 - 0x1FFF 1FFF	8 kB Boot ROM with flash services.			
0x2000 0000 to 0x3FFF FFFF	On-chip SRAM (typically used for	0x2007 C000 - 0x2007 FFFF	AHB SRAM - bank 0 (16 kB), present on devices with 32 kB or 64 kB of total SRAM.			
	peripheral data)	0x2008 0000 - 0x2008 3FFF	AHB SRAM - bank 1 (16 kB), present on devices with 64 kB of total SRAM.			
	GPIO	0x2009 C000 - 0x2009 FFFF	GPIO.			
0x4000 0000 to 0x5FFF FFFF	APB Peripherals	0x4000 0000 - 0x4007 FFFF	APB0 Peripherals, up to 32 peripheral blocks, 16 kB each.			
		0x4008 0000 - 0x400F FFFF	APB1 Peripherals, up to 32 peripheral blocks, 16 kB each.			
	AHB peripherals	0x5000 0000 - 0x501F FFFF	DMA Controller, Ethernet interface, and USB interface.			
0xE000 0000 to 0xE00F FFFF	Cortex-M3 Private Peripheral Bus	0xE000 0000 - 0xE00F FFFF	Cortex-M3 related functions, includes the NVIC and System Tick Timer.			

1.2. LPC1768: Memory (Peripherals map)

1.2. LPC1768: Bus structure

1.2. LPC1768: Bus structure (Multilayer AHB Matrix)

1.2. LPC1768: Bus structure (Peripheral)

1.2. LPC1768: Pins

20.0 46	DA A DEL TEMPO CONTROL DE LA CENTRE TEMPO	95	P1.0
20.1 47	P0.0/RD1/TXD3/SDA1 P1.0/ENET_TXD0	94	P1.1
20.2 98	P0.1/TD1/RXD3/SCL1 P1.1/ENET_TXD1	93	P1.4
0.3 99	P0.2/TXD0/AD0.7 P1.4/ENET_TX_EN	92	P1.8
20.4 81	P0.3/RXD0/AD0.6 P1.8/ENET_CRS	91	P1.9
20.5 80	P0.4/I2SRX_CLK/RD2/CAP2.0 P1.9/ENET_RXD0	90	P1.1
20.6 79	P0.5/I2SRX_WS/TD2/CAP2.1 P1.10/ENET_RXD1	89	P1.1
20.7 78	P0.6/I2SRX_SDA/SSEL1/MAT2.0 P1.14/ENET_RX_ER P0.7/I2STX_CLK/SCK1/MAT2.1 P1.15/ENET_REF_CLK	88	P1.1
		87	P1.
20.8 77	P1.16/ENET_MDC	86	P1.
20.9 76	P0.8/I2STX_WS/MISO1/MAT2.2 P1.17/ENET_MDIO		
20.10 48	P0.9/I2STX_SDA/MOSII/MAT2.3	32	P1.
20.11 49	P0.10/TXD2/SDA2/MAT3.0 P1.18/USB_UP_LED/PWM1.1/CAP1.0	33	P1.
20.15 62	P0.11/RXD2/SCL2/MAT3.1 P1.19/MC0A/nUSB_PPWR/CAP1.1	34	P1
	P0.15/TXD1/SCK0/SCK P1.20/MCFB0/PWM1.2/SCK0	35	P1.
20.16 63	P1.21/MCABORT/PWM1.3/SSEL0	36	P1.
20.17 61	P0.16/RXD1/SSEL0/SSEL P1.22/MC0B/USB_PWRD/MAT1.0	37	P1.
0.18 60	P0.17/CTS1/MISO0/MISO P1.23/MCFB1/PWM1.4/MISO0	38	P1.
0.19 59	P0.18/DCD1/M0SI0/MOSI P1.24/MCFB2/PWM1.5/MOSI0	39	P1.
0.20 58	P0.19/DSR1/SDA1 P1.25/MC1A/MAT1.1	40	P1.
0.21 57	P0.20/DTR1/SCL1 P1.26/MC1B/PWM1.6/CAP0.0	43	P1.
0.22 56	P0.21/RI1/RD1 P1.27/CLKOUT/nUSB_OVRCR/CAP0.1	44	P1
0.23 9	P0.22/RTS1/TD1 P1.28/MC2A1.0/MAT0.0	45	P1.
	P0.23/AD0.0/I2SRX_CLK/CAP3.0 P1.29/MC2B/PCAP1.1/MAT0.1	21	P1.
20.24 8	P1.30/VBUS/AD0.4	20	P1.
0.25 7	P0.24/AD0.1/I2SRX_WS/CAP3.1 P1.31/SCK1/AD0.5		
0.26 6	P0.25/AD0.2/I2SRX_SDA/TXD3		
0.27 25	P0.26/AD0.3/AOUT/RXD3	75	P2.
0.28 24	P0.27/SDA0/USB_SDA P2.0/PWM1.1/TXD1	74	P2.
0.29 29	P0.28/SCL0/USB_SCL P2.1/PWM1.2/RXD1	73	P2.
0.30 30	P0.29/USB_D+ P2.2/PWM1.3/CTS1/TRACEDATA3	70	P2.
	P0.30/USB_D- P2.3/PWM1.4/DCD1/TRACEDATA2	69	P2.
	P2.4/PWM1.5/DSR1/TRACEDATA1	68	P2.
23.25 27	P2.5/PWM1.6/DTR1/TRACEDATA0 P3.25/MAT0.0/PWM1.2 P2.6/PCAP1.0/R11/TRACECLK	67	P2.
23.26 26			
Haracan and the same of the sa	P3.26/STCLK/MAT0.1/PWM1.3	66	P2.
	P2.7/RD2/RTS1	65	P2.
24.28 82	P2.8/TD2/TXD2	64	P2.
24.29 85	P4.28/RX_MCLK/MAT2.0/TXD3 P2.9/USB_CONNECT/RXD2	53	P2.
	P4.29/TX_MCLK/MAT2.1/RXD3 P2.10/nEINT0/NMI	52	P2.
	P2.11/nEINT1/I2STX_CLK	51	P2.
	P2.12/nEINT2/I2STX_WS P2.13/nEINT3/I2STX_SDA	50	P2.

1.2. LPC1768: Pin Connect Block

				LPC1768	Pin functions				
Pin	Func 1	Func 2	Func 3	Func 4	Pin	Func 1	Func 2	Func 3	Func 4
1	TDO	SWO			51	P2.12	EINT2N	I2STX_WS	
2	TDI				52	P2.11	EINT1N	12STX CLK	
3	TMS	SWDIO			53	P2.10	EINTON	NMI	
4	nTRST				54	VDD			
5	TCK	SWDCLK			55	VSS			
6	P0.26	AD0.3	AOUT	RXD3	56	P0.22	RTS1	CAN_TX1	
7	P0.25	AD0.2	I2SRX_SDA	TXD3	57	P0.21	RI1	CAN_RX1	
8	P0.24	AD0.1	I2SRX_WS	CAP3.1	58	P0.20	DTR1	SCL1	
9	P0.23	AD0.0	I2SRX_CLK	CAP3.0	59	P0.19	DSR1	MCICLK	SDA1
10	VDDA				60	P0.18	DCD1	MOSI0	MOSI
11	VSSA				61	P0.17	CTS1	MISO0	MISO
12	VREFP				62	P0.15	TXD1	SCK0	SCK
13	N.C.				63	P0.16	RXD1	SSELO	SSEL
14	nRSTOUT				64	P2.9	USB_CONNECT	RXD2	
15	VREFN				65	P2.8	CAN_TX2	TXD2	
16	RTCX1				66	P2.7	CAN_RX2	RTS1	
17	nRESET				67	P2.6	PCAP1.0	RI1	TRACECLK
18	RTCX2				68	P2.5	PWM1.6	DTR1	TRACEDATA0
19	VBAT				69	P2.4	PWM1.5	DSR1	TRACEDATA1
20	P1.31	SCK1	AD0.5		70	P2.3	PWM1.4	DCD1	TRACEDATA2
21	P1.30	VBUS	AD0.4		71	VDD			
22	XTAL1				72	VSS			
23	XTAL2				73	P2.2	PWM1.3	CTS1	TRACEDATA3
24	P0.28	SCLO	USB_SCL		74	P2.1	PWM1.2	RXD1	
25	P0.27	SDAO	USB_SDA		75	P2.0	PWM1.1	TXD1	TRACECLK

Table 75. Pin function select register bits

PINSEL0 to PINSEL9 Values	Function
00	Primary (default) function, typically GPIO port
01	First alternate function
10	Second alternate function
11	Third alternate function

1.2. LPC17xx: Pin Connect Block

Ex: **P0.26** is **AD0.3** (AIN3 in ADC)

Table 80. Pin function select register 1 (PINSEL1 - address 0x4002 C004) bit description

Table 80.	Pin functi	on select registe	r I (PINSELI	1 - address 0x4002 C004) bit description				
PINSEL1	Pin name	Function when 00	Function when 01	Function when 10	Function when 11	Reset value		
1:0	P0.16	GPIO Port 0.16	RXD1	SSEL0	SSEL	00		
3:2	P0.17	GPIO Port 0.17	CTS1	MISO0	MISO	00		
5:4	P0.18	GPIO Port 0.18	DCD1	MOSI0	MOSI	00		
7:6	P0.19 ^[1]	GPIO Port 0.19	DSR1	Reserved	SDA1	00		
9:8	P0.20[1]	GPIO Port 0.20	DTR1	Reserved	SCL1	00		
11:10	P0.21[1]	GPIO Port 0.21	RI1	Reserved	RD1	00		
13:12	P0.22	GPIO Port 0.22	RTS1	Reserved	TD1	00		
15:14	P0.23[1]	GPIO Port 0.23	AD0.0	I2SRX_CLK	CAP3.0	00		
17:16	P0.24[1]	GPIO Port 0.24	AD0.1	I2SRX_WS	CAP3.1	00		
19:18	P0.25	GPIO Port 0.25	AD0.2	I2SRX_SDA	TXD3	00		
21:20	P0.26	GPIO Port 0.26	AD0.3	AOUT	RXD3	00		
23:22	P0.27[1][2]	GPIO Port 0.27	SDA0	USB_SDA	Reserved	00		
25:24	P0.28[1][2]	GPIO Port 0.28	SCL0	USB_SCL	Reserved	00		

```
//clear bits
LPC_PINCON->PINSEL1&=~(3<<20);
//set bits
LPC_PINCON->PINSEL1|=(1<<20);</pre>
```


1.3. Cortex-M3: Exceptions

■ What is an exception?

- Any event (internal or external) that stops μP current process to switch to different task.
- The exception priority is used to manage when an it is attended by the μP, and to nest them.

☐ In Cortex-M3

- **System Exceptions** are numbered 1–15.
- **External Interrupt** (to the μP, known as Interrupt Requests, IRQs) are numbered 16 and above.
- Cortex-M3 chips can have different numbers of IRQs (from 1 to 240) and different numbers of priority levels according to them.
- Cortex-M3 in LPC17XX has 35 vectored exceptions.
- Most of the exceptions have programmable priority, and a few have fixed priority (normally 3, like in LPC17XX).

1.3. Cortex-M3: Exceptions

Exception Number	Exception Type	Priority	Description
1	Reset	-3 (Highest)	Reset
2	NMI	-2	Nonmaskable interrupt (external NMI input)
3	Hard Fault	-1	All fault conditions, if the corresponding fault handler is not enabled
4	MemManage Fault	Programmable	Memory management fault; MPU violation or access to illegal locations
5	Bus Fault	Programmable	Bus error, like Prefetch abort
6	Usage Fault	Programmable	Exceptions due to program error or trying to access coprocessor
7-10	Reserved	N/A	_
11	SVCall	Programmable	System Service call
12	Debug Monitor	Programmable	Debug monitor

1.3. Cortex-M3: Exceptions

13	Reserved	N/A	_
14	PendSV	Programmable	Pendable request for system device
15	SYSTICK	Programmable	System Tick Timer
16	External Interrupt #0	Programmable	External Interrupt
17	External Interrupt #1	Programmable	External Interrupt
255	External Interrupt #239	Programmable	External Interrupt

1.3. LPC17xx: Interrupt Number Definition

□ LPC17xx.	h		Table 50.	Connectio	n of inte	rrupt sources to t	he Vectored Interrupt Controller
typedef enum IRQn	n		Interrupt ID	Exception Number	Vector Offset	Function	Flag(s)
/***** Cortex-M3 Process	or Exceptions Numb	oers *********	0	16	0x40	WDT	Watchdog Interrupt (WDINT)
Reset_IRQn NonMaskableInt_IRQn	= -15, = -14,	/*!< 1 Reset Vector, invo /*!< 2 Non Maskable Inter	1	17	0x44	Timer 0	Match 0 - 1 (MR0, MR1) Capture 0 - 1 (CR0, CR1)
HardFault_IRQn MemoryManagement_IRQn	= -13, = -12, = -11,	/*!< 3 Hard Fault, all c /*!< 4 Cortex-M3 Memory M /*!< 5 Cortex-M3 Bus Faul	2	18	0x48	Timer 1	Match 0 - 2 (MR0, MR1, MR2)
BusFault_IRQn UsageFault_IRQn SVCall IRQn	= -11, = -10, = -5,	/*!< 5 Cortex-m3 Bus Faul /*!< 6 Cortex-M3 Usage Fa /*!< 11 Cortex-M3 SV Call	3	19	0x4C	Timer 2	Capture 0 - 1 (CR0, CR1) Match 0-3
DebugMonitor_IRQn PendSV IRQn	= -4, = -2,	/*!< 12 Cortex-M3 Debug M /*!< 14 Cortex-M3 Pend SV	4	20	0x50	Timor 2	Capture 0-1
SysTick_IRQn	= -1,	/*!< 15 Cortex-M3 System	4	20	UCOU	Timer 3	Match 0-3 Capture 0-1
/****** LPC17xx Specific WDT_IRQn TIMERO_IRQn TIMER1_IRQn TIMER2_IRQn	= 0, = 1, = 2, = 3,	<pre>/*!< Watchdog Timer Inter /*!< TimerO Interrupt /*!< Timer1 Interrupt /*!< Timer2 Interrupt</pre>	5	21	0x54	UART0	Rx Line Status (RLS) Transmit Holding Register Empty (THRE) Rx Data Available (RDA) Character Time-out Indicator (CTI)
TIMER3_IRQn UARTO_IRQn UART1 IRQn	= 4, = 5, = 6,	/*!< Timer3 Interrupt /*!< UARTO Interrupt /*!< UART1 Interrupt				=	End of Auto-Baud (ABEO) Auto-Baud Time-Out (ABTO)
UART2_IRQn UART3_IRQn PWM1_IRQn	= 7, = 8, = 9,	/*!< UART2 Interrupt /*!< UART3 Interrupt /*!< PWM1 Interrupt	6	22	0x58	UART1	Rx Line Status (RLS) Transmit Holding Register Empty (THRE) Rx Data Available (RDA)
I2CO_IRQn I2C1_IRQn I2C2_IRQn	= 10, = 11, = 12,	/*!< I2CO Interrupt /*!< I2C1 Interrupt /*!< I2C2 Interrupt					Character Time-out Indicator (CTI) Modem Control Change
SPI_IRQn SSPO_IRQn SSP1_IRQn	= 13, = 14, = 15,	/*!< SPI Interrupt /*!< SSPO Interrupt /*!< SSP1 Interrupt				*/	End of Auto-Baud (ABEO) Auto-Baud Time-Out (ABTO)
PLLO_IRQn RTC_IRQn	= 16, = 17,	<pre>/*!< PLLO Lock (Main PLL) /*!< Real Time Clock Inter:</pre>	rupt			*/	
EINTO_IRQn EINT1_IRQn EINT2_IRQn	= 18, = 19, = 20,	<pre>/*!< External Interrupt 0 /*!< External Interrupt 1 /*!< External Interrupt 2</pre>	Interrupt			*/ */ */	
EINT3_IRQn ADC_IRQn BOD IRQn	= 21, = 22, = 23,	<pre>/*!< External Interrupt 3 /*!< A/D Converter Interru /*!< Brown-Out Detect Inte:</pre>	pt			*/ */ */	
USB_IRQn CAN_IRQn	= 24, = 25,	/*!< USB Interrupt /*!< CAN Interrupt	-			*/	
DMA_IRQn I2S_IRQn	= 26, = 27,	/*!< General Purpose DMA I: /*!< I2S Interrupt	ncerrupt			*/	

1.3. Cortex-M3: Exceptions (Vector Table)

1.3. LPC17xx: Vector Table definition

Startup_LPC17xx.s

```
AREA
                       RESET, DATA, READONLY
               EXPORT
                       Vectors
Vectors
               DCD
                         initial sp
                                                  ; Top of Stack
               DCD
                       Reset Handler
                                                  ; Reset Handler
                       NMI Handler
               DCD
                                                  : NMI Handler
                       HardFault Handler
               DCD
                                                  ; Hard Fault Handler
               DCD
                       MemManage Handler
                                                  ; MPU Fault Handler
                       BusFault Handler
               DCD
                                                  ; Bus Fault Handler
               DCD
                       UsageFault Handler
                                                  ; Usage Fault Handler
               DCD
                                                  : Reserved
               DCD
                       0
                                                  : Reserved
               DCD
                                                  ; Reserved
               DCD
                                                  ; Reserved
               DCD
                       SVC Handler
                                                  : SVCall Handler
               DCD.
                       DebugMon Handler
                                                  ; Debug Monitor Handler
               DCD
                                                  : Reserved
               DCD
                       PendSV Handler
                                                  ; PendSV Handler
               DCD
                       SysTick Handler
                                                  ; SysTick Handler
               ; External Interrupts
               DCD
                       WDT IRQHandler
                                                  ; 16: Watchdog Timer
                       TIMERO IRQHandler
               DCD
                                                  ; 17: TimerO
               DCD
                       TIMER1 IRQHandler
                                                  ; 18: Timer1
               DCD
                       TIMER2 IRQHandler
                                                  ; 19: Timer2
                       TIMER3 IRQHandler
               DCD
                                                  ; 20: Timer3
               DCD
                       UARTO IRQHandler
                                                  : 21: UARTO
               DCD
                       UART1 IRQHandler
                                                  ; 22: UART1
                       UART2 IRQHandler
               DCD
                                                  ; 23: UART2
               DCD
                       UART3 IRQHandler
                                                  ; 24: UART3
               DCD
                       PWM1 IRQHandler
                                                  ; 25: PWM1
               DCD
                       I2CO IRQHandler
                                                  ; 26: I2CO
               DCD
                       I2C1 IRQHandler
                                                  : 27: I2C1
               DCD
                       I2C2 IRQHandler
                                                  ; 28: I2C2
               DCD
                       SPI IRQHandler
                                                  ; 29: SPI
               DCD
                       SSPO IRQHandler
                                                  ; 30: SSPO
               DCD
                       SSP1 IRQHandler
                                                  : 31: SSP1
               DCD
                       PLLO IRQHandler
                                                  ; 32: PLLO Lock (Main PLL)
               DCD
                       RTC IRQHandler
                                                  ; 33: Real Time Clock
               DCD
                       EINTO IRQHandler
                                                  ; 34: External Interrupt O
                       EINT1 IRQHandler
                                                  ; 35: External Interrupt 1
               DCD
               DCD
                       EINT2 IRQHandler
                                                  ; 36: External Interrupt 2
               DCD
                       EINT3 IRQHandler
                                                  ; 37: External Interrupt 3
```


1.3. LPC17xx: Vector Table definition

■ Example of program with exceptions

```
// Programa principal
int main(void)
{
   //Funcion de inicializacion
   Config();

   // Programa principal
   while (1) {
   }
}
```

```
void EINT2_IRQHandler void)
{
    // Borrar el falg de la EINT3 --> EXTINT.3
    LPC_SC->EXTINT = 1 << 2;
    activo ++;
}

void EINT3_IRQHandler void)
{
    // Borrar el falg de la EINT3 --> GPIOINT
        LPC_GPIOINT->IOOIntClr |= 1<< 22;
    if ((activo & 1) == 1) {
            LPC_GPIO1->FIOPIN ^= 1<<29;
        }
}</pre>
```

```
// Función de inicialización
void Config(void)
  // Configuracion del P2.13 como EINT3 --> PINSEL-
  LPC PINCON->PINSEL4 \mid= 1 << (12*2);
  // Configurar el pin P1.29 como salida --> GPI01 F1
  LPC GPIO1->FIODIR |= 1<<29;
  // Interrupción activa por flanco de bajada
  LPC SC->EXTMODE |= 1<< 2;
  // Configuramos prioridad 1 a la interrupcion EINT:
 NVIC->IP[EINT2 IRQn] = 0x01 << 3;
 NVIC->IP[EINT3 IRQn] = 0x02 << 3;
  // Habilitar la interrupcion EINT3 --> ISER0.21
 NVIC->ISER[0] = 1 << EINT2 IRQn; /* enable interrul
 NVIC->ISER[0] = 1 << EINT3 IRQn; /* enable interrul
  LPC GPIOINT->IOOIntEnR |= 3<< 21; // PO.21 y PO.21
  LPC GPIOINT->IOOIntEnF |= 3<< 21; //P0.21 y P0.21
```


1.3. LPC17xx: Vector Table definition (keil example)

■ Keil example vectors inicializ.

1.3. NVIC: Characteristics

- Nested Vector Interrupt Controller.
- □ NVIC is integrated into Cortex-M3 core.
- ☐ Supports 240 interrupt sources.
- □ 256 priority levels for each interrupt.
- NVIC hardware supports nested interrupts.
- ☐ Fast context switch.
- □ 12-cycle typical.
- Advanced features:
 - Priority pre-emption
 - Tail-chaining
 - Late-arrival

1.3. NVIC: Characteristics

1.3. NVIC: Interrupt sequence (enter + exit)

☐ Pre-emption & Exit

- Stacking Unstacking
 - ☐ PC, xPSR, r0-r3, r12, LR
- Vector fetch.
- Register update:
 - ☐ SP,PSR,PC,LR

Pre SP(N)	-
N-4	xPSR
N-8	PC
N-12	LR
N-16	R12
N-20	R ₃
N-24	R2
N-28	R1
New SP (N-32)	Ro

1.3. NVIC: Interrupt Latency

- Deterministic interrupt latency
 - Cortex-M3 has an interrupt latency of 12 cycles and 12 cycles to return from servicing.
 - □ ARM7 does not have deterministic interrupt latency (24 to 42 cycles)
 - Latency includes stacking the registers, vector fetch, and fetching instructions for the interrupt handler.

1.3. NVIC: Exception States

□ Inactive:

The exception is not active and not pending.

Pending:

- The exception is waiting to be serviced by the processor.
- An interrupt request from a peripheral or from software can change the state of the corresponding interrupt to pending.

□ Active:

- An exception that is being serviced by the processor but has not completed.
- An exception handler can interrupt the execution of another exception handler. In this case both exceptions are in the active state.

Active and pending

The exception is being serviced by the processor and there is a pending exception from the same source.

1.3. NVIC: Registers (I)

- Each interrupt input has several registers to control it:
 - Enable/Disable Bit (ISERn/ICERn)
 - □ Enable or disable the interrupt
 - Can be set, cleared or read
 - Pending Bit (ISPRn/ICPRn)
 - ☐ If the pending bit is set, then the interrupt is pending
 - □ An interrupt can be "pended" by setting the pending bit
 - ☐ Pending bit can be set, cleared or read
 - Active Bit (IABRn)
 - □ A bit is set if the interrupt is executing or "active-stacked"
 - □ Active register is normally read only
 - Priority field (IPRn)
 - □ 5 bits of priority for each interrupt

1.3. NVIC: Registers (II)

Address	Name	Туре	Description
0xE000E004	ICTR	RO	Interrupt Controller Type Register
0xE000E100 - 0xE000E10B	NVIC_ISER0 - NVIC_ISER2	RW	Interrupt Set-Enable Registers
0xE000E180 - 0xE000E18B	NVIC_ICER0 - NVIC_ICER2	RW	Interrupt Clear-Enable Registers
0xE000E200 - 0xE000E20B	NVIC_ISPR0 - NVIC_ISPR2	RW	Interrupt Set-Pending Registers
0xE000E280 - 0xE000E28B	NVIC_ICPR0 - NVIC_ICPR2	RW	Interrupt Clear-Pending Registers
0xE000E300 - 0xE000E30B	NVIC_IABR0 - NVIC_IABR2	RO	Interrupt Active Bit Register
0xE000E400 - 0xE000E453	NVIC_IPR0 - NVIC_IPR20	RW	Interrupt Priority Register

1.3. NVIC: Registers (III)

☐ To disable exceptions:

PRIMASK

□ A 1-bit register, when this is set, it allows nonmaskable interrupt (NMI) and the hard fault exception; all other interrupts are disabled.

■ FAULTMASK

□ A 1-bit register, when this is set, it allows only the NMI and all other interrupts and fault handling exceptions are disabled.

BASEPRI

□ A register of up to 8-bits (depending on the bit-width implemented for the priority level). It defines the masking priority level. When this is set, it disables all interrupts of the same or lower level; higher priority interrupts are still allowed.

1.3. Cortex-M3: Exceptions (Priority Level)

- A higher-priority exception can preempt a lower-priority exception.
- Reset, NMI, and hard fault have fixed priority levels.
- Supports 256 levels of programmable priority.
- □ The reduction of priority levels can be implemented by cutting out several lowest bits of the priority configuration register:

3 bits of priority level

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Implem	nented		Not imp	plement	ed, read	as zero	

4 bits of priority level

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Implem	Implemented			Not imp	plement	ed, read	as

1.3. System Control Block (SCB)

- Exception enables.
- Setting or clearing exceptions to/from the pending state.
- Exception status (Inactive, Pending, or Active). Inactive is when an exception is neither Pending nor Active.
- Priority setting (for configurable system exceptions)
- ☐ The **exception number** of the **currently executing** code and highest pending exception.

1.3. Cortex-M3: Exceptions (Priority Level Register)

- ☐ This register is further divided into two parts: **preempt priority** and **subpriority**.
- Using a **Priority Group** register, the priority-level configuration register can be divided into two halves, i.e., the upper half (preempt priority) and the lower half (subpriority).
 - Preempt priority: an interrupt or exception with a higher preempt priority can preempt one with a lower preempt priority.
 - Subpriority: the order when multiple interrupts or exceptions with the same preempt priority occur at the same time.

Priority Group	Preempt Priority Field	Subpriority Field
0	Bit [7:1]	Bit [0]
1	Bit [7:2]	Bit [1:0]
2	Bit [7:3]	Bit [2:0]
3	Bit [7:4]	Bit [3:0]
4	Bit [7:5]	Bit [4:0]
5	Bit [7:6]	Bit [5:0]
6	Bit [7]	Bit [6:0]
7	None	Bit [7:0]

1.3. **NVIC:** LPC17xx

- □ LPC17xx supports 35 vectored interrupts.
 - ARM allows manufacturers flexibility to implement fewer than 240
- □ 32 interrupt priority levels.
 - ARM allows flexibility to implement fewer than 256 levels
- Priority.
 - A programmable priority level of 0-31 for each interrupt.
 - A higher level corresponds to a lower priority, so level 0 is the highest interrupt priority.
 - Grouping of priority values into group priority and sub-priority fields.
- ☐ Stack Operations.
 - The processor automatically stacks its state on exception entry and unstacks this state on exception exit, with no instruction overhead.
- ☐ An External Non-Maskable Interrupt (NMI).
- ☐ Includes Wake-up Interrupt Controller (WIC).
 - WIC only available in Cortex-M3 rev2

1.3. LPC17xx: Config. Interrupts priority

- Each priority register is divided into four eight bit priority fields,
 each field being assigned to an individual interrupt vector.
- □ LPC176x Interrupt Vectors starts at ISR #16 (vector offset 0x40)
- Lower numbers are higher priority.
- The LPC17xx only uses 5 bits of this field to implement 32 levels of priority.
 - However, you should note that the active priority bits are in the upper 5 bits of each priority field.
- By default the priority field defines levels of priority with level zero the highest and 32 the lowest.
- □ Format the priority field into priority groups (pre-emption) and subgroups (sub-levels).

1.3. LPC17xx: Config. Interrupts priority

- □ Interrupt source has an **5-bits** interrupt priority value.
- The 5 bits are divided into preempting priority levels and non-preempting "sub-priority" levels.
 - Sub-priority levels only have an effect if the pre-empting priority levels are the same.
 - The software programmable **PRIGROUP** register field of the NVIC chooses how many of the 5-bits are used for "group-priority" and how many are used for "sub-priority".
 - Group priority is the pre-empting priority.

	Interrupt priority	level value, PRI_N[Number of		
PRIGROUP	Binary point[1]	Group priority bits	Subpriority bits	Group priorities	Subpriorities
b010	bxxxxx.000	[7:3]	none	32	1
b011	bxxxx.y000	[7:4]	[3]	16	2
b100	bxxx.yy000	[7:5]	[4:3]	8	4
b101	bxx.yyy000	[7:6]	[5:3]	4	8
b110	bx.yyyy000	[7]	[6:3]	2	16
b111	b.yyyyy000	None	[7:3]	1	32

Hardware interrupt number is lowest level of prioritization.

1.3. CMSIS: Cortex Microcontroller Software Interface Standard

 CMSIS is a vendor-independent hardware abstraction layer (HAL) for the Cortex-M processor series.

- CMSIS enables consistent and simple software interfaces to the processor and the peripherals, simplifying software reuse, reducing the learning curve for new microcontroller developers and reducing the time to market for new devices.
- Standardizing the software interfaces across all Cortex-M silicon vendor products.
- Significant cost reductions in software development!

1.3. CMSIS: Cortex Microcontroller Software Interface Standard

- The CMSIS consists of the following components:
 - CMSIS-CORE: provides an interface to Cortex-M0, Cortex-M3, Cortex-M4, SC000, and SC300 processors and peripheral registers.
 - **CMSIS-DSP:** DSP library with over 60 functions in fixed-point (fractional q7, q15, q31) and single precision floating-point (32-bit) implementation.
 - **CMSIS-RTOS API:** standardized programming interface for real-time operating systems for thread control, resource, and time management.
 - **CMSIS-SVD:** System View Description XML files that contain the programmer's view of a complete microcontroller system including peripherals.

1.3. CMSIS: Cortex Microcontroller Software Interface Standard

- □ Hardware Abstraction Layer (HAL) for Cortex-M processor registers:
 - NVIC, MPU
- ☐ Standardized system exception names. For example:
 - void SVC_Handler()
 - void UARTO_IRQHandler()
- Standardized method of header file organization.
- Common method for system initialization.
 - SystemInit()
- Standardized intrinsic functions. For example:
 - void __disable_irq(void), void __enable_irq(void)
- Common access functions for communication.
- Standardized way for embedded software to determine system clock frequency:
 - **SystemFrequency** variable is defined in device driver code.
 - SystemCoreClock, in Keil !!!!!!

1.3. CMSIS: Accessing Core Registers

Function Definition	Core Register	Description
voidenable_irq (void)	PRIMASK = 0	Global Interrupt enable (using the instruction CPSIE i)
voiddisable_irq (void)	PRIMASK = 1	Global Interrupt disable (using the instruction CPSID i)
voidset_PRIMASK (uint32_t value)	PRIMASK = value	Assign value to Priority Mask Register (using the instruction MSR)
uint32_tget_PRIMASK (void)	return PRIMASK	Return Priority Mask Register (using the instruction MRS)
voidset_CONTROL (uint32_t value)	CONTROL = value	Set CONTROL register value (using the instruction MSR)
uint32_tget_CONTROL (void)	return CONTROL	Return Control Register Value (using the instruction MRS)
voidset_PSP (uint32_t TopOfProcStack)	PSP = TopOfProcStack	Set Process Stack Pointer value (using the instruction MSR)
uint32_tget_PSP (void)	return PSP	Return Process Stack Pointer (using the instruction MRS)
voidset_MSP (uint32_t TopOfMainStack)	MSP = TopOfMainStack	Set Main Stack Pointer (using the instruction MSR)
uint32_tget_MSP (void)	return MSP	Return Main Stack Pointer (using the instruction MRS)

1.3. CMSIS: NVIC functions

In addition, the CMSIS provides a number of functions for NVIC control:

Only Ext. Interrupt.

Function Name	Parameter	Description
void NVIC_SetPriorityGrouping (uint32_t PriorityGroup)	Priority Grouping Value	Set the Priority Grouping (Groups . Subgroups)
void NVIC_EnableIRQ (IRQn_Type IRQn)	IRQ Number	Enable IRQn
void NVIC_DisableIRQ (IRQn_Type IRQn)	IRQ Number	Disable IRQn
uint32_t NVIC_GetPendingIRQ (IRQn_Type IRQn)	IRQ Number	Return 1 if IRQn is pending else 0
void NVIC_SetPendingIRQ (IRQn_Type IRQn)	IRQ Number	Set IRQn Pending
void NVIC_ClearPendingIRQ (IRQn_Type IRQn)	IRQ Number	Clear IRQn Pending Status
void NVIC_SetPriority (IRQn_Type IRQn, uint32_t priority)	IRQ Number, Priority	Set Priority for IRQn
uint32_t NVIC_GetPriority (IRQn_Type IRQn)	IRQ Number	Get Priority for IRQn
uint32_t NVIC_EncodePriority (uint32_t PriorityGroup, uint32_t PreemptPriority, uint32_t SubPriority)	IRQ Number, Priority Group, Preemptive Priority, Sub Priority	Encode priority for given group, preemptive and sub priority
NVIC_DecodePriority (uint32_t Priority, uint32_t PriorityGroup, uint32_t* pPreemptPriority, uint32_t* pSubPriority)	IRQ Number, Priority, pointer to Priority Group, pointer to Preemptive Priority, pointer to Sub Priority	Decode given priority to group, preemptive and sub priority
void NVIC_SystemReset (void)	(void)	Resets the System

□ The CMSIS standard provides the macro ___NVIC_PRIO_BITS, which specifies the number of NVIC priority bits defined in a given ARM Cortex-M implementation.

1.3. NVIC access: CMSIS examples (I)


```
#include "LPC17xx.h"
uint32_t priorityGroup;
                                                            /* Variables to store priority group and priority */
uint32 t priority;
uint32_t preemptPriority;
uint32 t subPriority;
int main (void) {
 NVIC SetPriorityGrouping(5);
                                                            /* Set priority group to 5:
                                                               Bit[7..6] preempt priority Bits,
                                                               Bit[5..3] subpriority Bits
                                                               (valid for five priority bits) */
 priorityGroup = NVIC GetPriorityGrouping();
                                                            /* Get used priority grouping */
 priority = NVIC EncodePriority(priorityGroup, 1, 6);
                                                            /* Encode priority with 6 for subpriority and 1 for preempt priority
                                                               Note: priority depends on the used priority grouping */
 NVIC SetPriority(UARTO_IRQn, priority);
                                                            /* Set new priority */
 priority = NVIC GetPriority(UARTO IRQn);
                                                           /* Retrieve priority again */
 NVIC DecodePriority(priority, priorityGroup, &preemptPriority, &subPriority);
  while(1);
```


1.3. NVIC access: CMSIS examples (II)

CMSIS NVIC functions NVIC_EnableIRQ(), NVIC_GetActive()

```
#include "LPC17xx.h"
                                                             /* Variable to store interrupt active state */
uint32 t active;
void TIMERO IRQHandler(void) {
                                                             /* Timer 0 interrupt handler */
                                                             /* Check if interrupt for match channel 0 occured */
  if (LPC TIMO->IR & (1 << 0)) {
    LPC TIMO->IR |= (1 << 0);
                                                             /* Acknowledge interrupt for match channel 0 occured */
  active = NVIC GetActive(TIMERO IRQn);
                                                             /* Get interrupt active state of timer 0 */
int main (void) {
                                                             /* Set match channel register MRO to 1 millisecond */
  LPC TIMO->MR0 = (((SystemCoreClock / 1000) / 4) - 1);
                                                           /* 1 ms? */
                                                             /* Enable interrupt and reset for match channel MRO */
  LPC TIMO -> MCR = (3 << 0);
  NVIC_EnableIRQ(TIMERO_IRQn);
                                                             /* Enable NVIC interrupt for timer 0 */
  LPC TIMO \rightarrow TCR = (1 << 0);
                                                             /* Enable timer 0 */
  while(1);
```


1.3. CMSIS: Peripheral Access

- Describes naming conventions, requirements, and optional features for accessing peripherals.
- □ Each peripheral provides a data type definition with a name that is composed of a prefix <device abbreviation>_ and the <peripheral name>_
 - for example, LPC_UART for the device LPC and the peripheral UART.
 - The intention is to avoid name collisions caused by short names.
 - If more peripherals exist of the same type, identifiers have a postfix consisting of a digit or letter, for example LPC_UARTO, LPC_UART1.
- The data type definition uses the standard C data types from the ANSI C header file <stdint.h>.
 - IO Type Qualifiers are used to specify the access to peripheral variables.
 - IO Type Qualifiers are indented to be used for automatic generation of debug information of peripheral registers and are defined as shown below:

```
#define __I volatile const
#define __0 volatile
#define __IO volatile
```


1.3. CMSIS: Peripheral Access (example)

- ☐ The following *typedef* is an example for a UART.
 - <device abbreviation>_UART_TypeDef: defines the generic register layout for all UART channels in a device.

```
typedef struct
 union {
                             /* Offset: 0x000 (R/ ) Receiver Buffer Register
                                                                                             */
  I uint8 t RBR;
                                 /* Offset: 0x000 ( / W) Transmit Holding Register
   O uint8 t THR;
                                                                                             */
   IO uint8 t DLL;
                                   /* Offset: Ox000 (R/W) Divisor Latch LSB
                                                                                             */
      uint32 t RESERVEDO;
 };
 union {
  IO uint8 t DLM;
                                  /* Offset: OxOO4 (R/W) Divisor Latch MSB
  IO uint32 t IER;
                                   /* Offset: 0x004 (R/W) Interrupt Enable Register
                                                                                             */
 1:
 union {
                           /* Offset: 0x008 (R/ ) Interrupt ID Register
  I uint32 t IIR;
                                                                                             */
                                  /* Offset: 0x008 ( /W) FIFO Control Register
     uint8 t FCR;
                                                                                             */
 1:
                                    /* Offset: OxOOC (R/W) Line Control Register
   IO uint8 t LCR;
      uint8 t RESERVED1[7];
  I uint8 t LSR;
                                    /* Offset: Ox014 (R/ ) Line Status Register
                                                                                             */
      uint8 t RESERVED2[7];
  IO uint8_t SCR;
                                    /* Offset: 0x01C (R/W) Scratch Pad Register
                                                                                             */
      uint8 t RESERVED3[3];
  IO uint32 t ACR;
                                    /* Offset: 0x020 (R/W) Autobaud Control Register
                                                                                             */
                                    /* Offset: 0x024 (R/W) IrDA Control Register
   IO uint8 t ICR;
                                                                                             */
      uint8 t RESERVED4[3];
  IO uint8 t FDR;
                                    /* Offset: 0x028 (R/W) Fractional Divider Register
                                                                                             */
      uint8 t RESERVED5[7];
                                    /* Offset: 0x030 (R/W) Transmit Enable Register
  IO uint8 t TER;
                                                                                             */
      uint8 t RESERVED6[39];
  I uint8 t FIFOLVL;
                                    /* Offset: 0x058 (R/ ) FIFO Level Register
                                                                                             */
} LPC UART TypeDef;
```


1.3. CMSIS: Peripheral Access (ex.: cont.)

- To access the registers of the UART defined above, pointers to a register structure are defined.
- □ In this example **<device abbreviation>_UART#** are two pointers to UARTs defined with above register structure:

```
#define LPC_UART2 ((LPC_UART_TypeDef *) LPC_UART2_BASE )#define LPC_UART3 ((LPC_UART_TypeDef *) LPC_UART3_BASE )
```

- The registers in the various UARTs can now be referred in the user code as shown below:
 - LPC_UART1->DR // is the data register of UART1.

1.3. CMSIS: Peripheral access (min. requirements)

- To access the peripheral registers and related function in a device, the files device.h and core_cm3.h define as a minimum:
 - The **Register Layout Typedef** for each peripheral that defines all register names. **RESERVED** is used to introduce space into the structure for adjusting the addresses of the peripheral registers.

Base Address for each peripheral.

```
□ #define SysTick_BASE (SCS_BASE + 0x0010) /* SysTick Base Address *,
```

- Access Definitions for each peripheral. In case of multiple peripherals that are using the same register layout typdef, multiple access definitions exist (LPC_UARTO, LPC_UART2).
 - # #define SysTick ((SysTick_Type *) Systick_BASE) /* SysTick access definition */
- These definitions allow accessing peripheral registers with simple assignments:
 - SysTick->LOAD= 0xFFFF; // 65636 counts

1.3. CMSIS: Files for the LPC17xx (NXP)

1.3. CMSIS: Files for LPC17xx (NXP)


```
#include "core_cm3.h"
#include "system LPC17xx.h"
```

Include dependency graph for LPC17xx.h:

1.3. CMSIS: core_cm3.h file

- □ As the LPC17xx is CortexM3 based, the core files are "core_cm3.h" and "core_cm3.c".
- □ The files "core_cm3.h" and "core_cm3.c" are standard across all vendor devices that have the CortexM3 at their core.
- □ A fragment of "**core_cm3.h**" is shown in the figure:

```
//** \brief Set Interrupt Priority
    The function sets the priority of an interrupt.
    \note The priority cannot be set for every core interrupt.
                                                                                5 bits
    \param [in] IRQn Interrupt number.
                                                                                (LPC17xx)
    \param [in] priority Priority to set.
  STATIC INLINE void NVIC SetPriority(IRQn Type IRQn, uint32 t priority)
  if(IRQn < 0) { /* set Priority for Cortex-M System Interrupts */
    SCB->SHP[((uint32 t)(IRQn) & 0xF)-4] = ((priority << (8 - NVI/C PRIO BITS)) & 0xff); }
  else { /* set Priority for device specific Interrupts */
    NVIC->IP[(uint32 t)(IRQn)] = ((priority << (8 - NVIC PRIO BITS)) & Oxff);</pre>
```


1.3. CMSIS: startup_LPC17xx.s

The key variations in **startup_LPC17xx.s** for the different compilers:

	IVT definition	default ISR handlers	Import	Export
arm	DCD SysTick_Handler	SysTick_Handler PROC EXPORT SysTick_Handler [WEAK] B . ENDP	IMPORT SystemInit	EXPORTVectors
iar	DCD SysTick_Handler	PUBWEAK SysTick_Handler SECTION .text:CODE:REORDER(1) SysTick_Handler B SysTick_Handler	EXTERN SystemInit	PUBLICvector_table
gcc	.long SysTick_Handler	.weak SysTick_Handler .type SysTick_Handler, %function SysTick_Handler: Bsize SysTick_Handler, SysTick_Handler	EXTERN SystemInit	.globl cs3_interrupt_vector_cor tex_m

Also in startup_LPC17xx.s we have the Reset Handlers. Shown below are the examples for ARM:

```
Reset Handler
                PROC
                                                    [WEAK]
                EXPORT
                         Reset Handler
                         SystemInit
                IMPORT
                IMPORT
                           main
                LDR
                         R0, =SystemInit
                BLX
                         RØ
                         R0, = main
                LDR
                BX
                         R0
                ENDP
```


1.4. Clocking Features (I)

- □ Operating Frequency 100 MHz
- □ The LPC1700 includes three independent oscillators (same as LPC236x).
 - Main Oscillator
 - Internal RC oscillator (Default after Reset)
 - RTC oscillator
- Any of the three clock sources can be chosen by software to drive the main PLL and ultimately the CPU.

1.4. Clocking Features (II)

■ Internal RC oscillator

- Clock source for the WDT, and/or as the clock that drives the PLL and subsequently the CPU.
- The nominal IRC frequency is 4 MHz \pm 1% accuracy over the entire tempand voltage range.

Main oscillator

- Clock source for the CPU, with or without using the PLL.
- The main oscillator also provides the clock source for USB PLL.
- Operates at frequencies of 1 MHz to 24 MHz.

□ RTC oscillator

- Clock source for the RTC block, the main PLL, and subsequently the CPU.
- 1 Hz clock to RTC.

1.4. Clocking Features (III)

- ☐ Main PLL (PPL0)
 - Input clock frequency in the range of 32 kHz to 50 MHz.
 - May run from the main oscillator, the internal RC oscillator, or the RTC oscillator.
- ☐ Second PLL (PLL1)
 - Dedicated to provide clocking for the USB interface to allow added flexibility for the main PLL settings.
- □ Peripheral Clock Selection Register(s)
 - Used to control the rate of the clock signal that will be supplied to the individual peripheral(s).
 - Each Peripheral can have its own clock setting where it can be individually set equal to CPU clock or divided down.
- □ Clock output function
 - For use during system development to allow checking the main oscillator clock, IRC clock, RTC clock, CPU clock (cclk), or the USB clock.

1.4. Clocking Features (III)

1.4. System Clock: PLL0 Config. registers

□ Registros de configuración del PLL0

Name	Description	Access	Reset value	address
PLLOCON	PLLO Control Register. Holding register for updating PLLO control bits. Values written to this register do not take effect until a valid PLLO feed sequence has taken place.	R/W	0	0x400FC080
PLLOCFG	PLLO Configuration Register. Holding register for updating PLLO configuration values. Values written to this register do not take effect until a valid PLLO feed sequence has taken place.	R/W	0	0x400FC084
PLLOSTAT	PLLO Status Register. Read-back register for PLLO control and configuration information. If PLLOCON or PLLOCFG have been written to, but a PLLO feed sequence has not yet occurred, they will not reflect the current PLLO state. Reading this register provides the actual values controlling the PLLO, as well as the PLLO status.	RO	0	0x400FC088
PLLOFEED	PLLO Feed Register. This register enables loading of the PLLO control and configuration information from the PLLOCON and PLLOCFG registers into the shadow registers that actually affect PLLO operation.	WO	NA	0x400FC08C

87

1.4. System Clock: PLL0 Config. registers

□ CCLKCFG: Registro de configuración del reloj de la CPU

Bit	Symbol	Value	Description	Reset Value
7:0	CCLKSEL		Selects the divide value for creating the CPU clock (CCLK) from the PLLO output.	0x00
		0 to 1	Not allowed, the CPU clock will always be greater than 100 MHz.	
		2	PLLO output is divided by 3 to produce the CPU clock.	
		3	PLLO output is divided by 4 to produce the CPU clock.	'
		4	PLLO output is divided by 5 to produce the CPU clock.	
		255	PLL0 output is divided by 256 to produce the CPU clock.	
31:8	-	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

1.4. System Clock: PLL0 Config. registers

□ PLLOCFG: Registro de configuración del PLLO

Bit	Simbol	Description	Reset value
14:0	MSEL0	PLLO Multiplier value. Supplies the value "M" in PLLO frequency	0
		calculations. The value stored here is M - 1. Supported values for M are 6	
		through 512. Note: Not all values of M are needed, and therefore some are	
		not supported by hardware.	
15	=	Reserved, user software should not write ones to reserved bits. Thevalue	NA
		read from a reserved bit is not defined.	
23:16	NSEL0	PLLO Pre-Divider value. Supplies the value "N" in PLLO frequency	0
		calculations. The value stored here is N - 1. Supported values for N are 1	
		through 32.	
31:24	-	Reserved, user software should not write ones to reserved bits. The value	NA
		read from a reserved bit is not defined.	

1.4. System Clock: Keil Config.

□ system_LPC17xx.c

```
/* Determine core clock frequency according to settings */
#if (PLLO SETUP)
   #if ((CLKSRCSEL Val & 0x03) == 1)
       #define CORE CLK ( FCCO(OSC CLK) / CCLK DIV)
   #elif ((CLKSRCSEL Val & 0x03) == 2)
       #define CORE CLK ( FCCO(RTC CLK) / CCLK DIV)
   #else
       #define CORE CLK ( FCCO(IRC OSC) / CCLK DIV)
   #endif
 #else
   #if ((CLKSRCSEL Val & 0x03) == 1)
       #define CORE CLK (OSC CLK
                                     / CCLK_DIV)
   #elif ((CLKSRCSEL Val & 0x03) == 2)
       #define CORE CLK (RTC_CLK / __CCLK_DIV)
       #define CORE CLK (IRC OSC / CCLK DIV)
   #endif
 #endif
```

```
uint32_t SystemCoreClock
= __CORE_CLK;
/*! < System Clock
Frequency (Core Clock)*/</pre>
```


1.4. System Clock: Keil debug windows

□ Peripherals->Clocking & Power Control

1.4. System Clock: Keil debug windows

Peripherals->Clocking & Power Control

M=100 N=6

1.4. System Clock: system_LPC17xx.c file

□ system_LPC17xx.c

```
Define clocks
                                 /* Oscillator frequency
#define XTAL (12000000UL)
#define OSC_CLK (XTAL)
                 (12000000UL)
                                 /* Main oscillator frequency
#define RTC CLK ( 32768UL)
                               /* RTC oscillator frequency
#define IRC OSC
                                 /* Internal RC oscillator frequency */
                  ( 4000000UL)
/* F ccoO = (2 * M * F in) / N */
#define M
                  (((PLLOCFG Val ) & Ox7FFF) + 1)
#define N (((PLLOCFG Val >> 16) & OxOOFF) + 1)
#define __FCCO(__F_IN) ((2ULL * __M * __F_IN) / __N)
#define CCLK DIV (((CCLKCFG Val ) & 0x00FF) + 1)
```

```
/* Determine core clock frequency according to settings */
#if (PLLO SETUP)
   #if ((CLKSRCSEL Val & 0x03) == 1)
       #define CORE CLK ( FCCO(OSC CLK) / CCLK DIV)
   #elif ((CLKSRCSEL Val & 0x03) == 2)
       #define CORE CLK ( FCCO(RTC CLK) / CCLK DIV)
   #else
       #define CORE CLK ( FCCO(IRC OSC) / CCLK DIV)
   #endif
#else
   #if ((CLKSRCSEL Val & 0x03) == 1)
       #define CORE CLK (OSC CLK
                                     / __CCLK_DIV)
   #elif ((CLKSRCSEL Val & 0x03) == 2)
       #define CORE CLK (RTC_CLK / __CCLK_DIV)
       #define CORE CLK (IRC OSC / CCLK DIV)
   #endif
#endif
```

```
uint32_t SystemCoreClock
= __CORE_CLK;
/*!< System Clock
Frequency (Core Clock)*/
```


1.4. Reset (I)

- \square The most urgent exception in any μ P.
 - Reset Sequence: µP will read 2 words from the Vector Table:
 - ☐ Address **0x00000000**: Starting value of R13 (the MSP)
 - ☐ Address **0x0000004**: Reset Vector (VN 1), starting value of R15 (the PC)

After the Reset Vector is fetched:

- Cortex-M3 begins normal operations starting the program from the Reset Vector (VN 1)
- It is necessary to have the SP initialized from that moment, as some of the exceptions (such as NMI) can happen right after reset

1.4. Reset (II)

■ Reset Types and Signals.

Reset Type	Reset Signal on the Cortex-M3 Processor	Description
Power on reset	PORESETn	Reset that should be asserted when the device is powered up; resets processor core, peripherals, and debugging system Activate by power up sequence of the device
System reset	SYSRESETn	System reset; affects the whole system including processor core, NVIC (except debug control registers), MPU, peripherals but not the debugging system; activate by power up sequence of the device, reset request from debugger through NVIC register "AIRCR"
Processor reset	VECTRESET bit in the NVIC AIRCR register	Reset processor core only; affect the processor system including processor core, NVIC (except debug control registers), MPU, but not the debugging system; activate reset request from debugger through NVIC register "AIRCR"—intended to be used by debugger
JTAG reset	nTRST	Reset for JTAG tap controller (only if JTAG interface is available)

1.4. Fault Exceptions

- ☐ Can be used during software development to determine the causes of errors in the program and correct them.
- ☐ What to do with them in final running systems? Fault-Handling methods:
 - **Recovery:** In some cases, it might be possible to resolve the problem that caused the fault. For example, in the case of coprocessor instructions, the problem can be resolved using coprocessor emulation software.
 - **Task termination:** In systems that run an OS, the offending applications could be terminated and restarted if needed.
 - **Reset:** In some other cases, the system might need a reset, with SYSRESETREQ or VECTRESET (depending on the part of the system wanted to reset)
- Types of Fault Exceptions (ordered by VN, from 3 to 6):
 - Hard
 - Memory Management
 - Bus
 - Usage

1.4. Hard Fault Exception

- ☐ The hard fault handler can be caused by:
 - Usage faults, bus faults, and memory management faults if their handler cannot be executed.
 - A bus fault during vector fetch.
- □ Hard Fault Status Register (HFSR) is used in the exception handler to determine the cause of the fault.

1.4. Bus Fault Exception

- ☐ Bus faults are produced when an error response is received during a transfer on the AHB interfaces.
- Bus fault due to:
 - 1. Instruction prefetch abort.
 - 2. Data read/write abort.
 - 3. Stack PUSH in the beginning of interrupt processing.
 - 4. Stack POP at the end of interrupt processing.
 - 5. Reading of an interrupt vector address when the processor starts the interrupt-handling sequence.
- Bus Fault Status Register (BFSR) is used in the exception handler to determine the cause of the fault.

1.4. Memory Management Fault Exception

- Common memory manage faults include:
 - 1. Access to memory regions not defined in MPU setup.
 - 2. Execute code from nonexecutable memory regions.
 - 3. Writing to read-only regions.
 - 4. An access in the user state to a region defined as privileged access only.
- Memory Management Fault Status Register (MFSR) is used in the exception handler to determine the cause of the fault.

1.4. Usage Fault Exception

- Usage faults can be caused by:
 - 1. Undefined instructions.
 - 2. Coprocessor instructions.
 - 3. Trying to switch to the ARM state (This can happen if you load a new value to PC with the LSB equal to 0).
 - 4. Invalid interrupt return (Link Register contains invalid/incorrect values)
 - 5. Unaligned memory accesses using multiple load or store instructions.
 - 6. Divide by zero.
- Usage Fault Status Register (UFSR) is used in the exception handler to determine the cause of the fault.

1.4. SYSTICK Timer

- SYSTICK timer is a **24-bit** down counter. The counter loads the reload value from the **RELOAD** register when it reach zero.
- It always run until the enable bit in the SYSTICK Control and Status register is cleared.
- □ **2** configurable Clock sources.
- ☐ Suitable for Real Time OS or other scheduled tasks.
- ☐ With **100 MHz** bus clock, decrements every **10ns**.

1.4. SYSTICK configuration (I)

□ Initialization (3 steps)

- Step1: Specify the RELOAD value.
- Step2: **Clear the counter** via NVIC_CURRENT
- Step3: Set CLK_SRC=1, interrupt action (INTEN), and enable counter (ENABLE) via NVIC_CTRL.

Address	31-24	23-17	16	15-3	2	1	0	Name
\$E000E010	0	0	COUNT	0	CLK_SRC	INTEN	ENABLE	NVIC_ST_CTRL_R
\$E000E014	0	24-bit RELOAD value						NVIC_ST_RELOAD_R
\$E000E018	0	24-bit CURRENT value of SysTick counter						NVIC_ST_CURRENT_R

CMSIS function:

SysTick_Config(uint32_t ticks)

1.4. SYSTICK configuration (II)

core_cm3.h:

```
#define Ftick 100 // SYSTICK Frequency interrupt. SysTick_Config(SystemCoreClock/Ftick); // 100 Hz.
```


1.4. Power Modes (I)

□ Sleep

- **■** CPU execution is suspended.
- Peripherals continue running.
- Ireg = 2.29 mA (@ 25° C)
- State is preserved.

□ Deep-Sleep*

- Main oscillator and all internal clocks except the IRC are stopped.
- Flash memory is in standby, ready for immediate use.
- Ireg = $240 \mu A (@ 25^{\circ} C)$
- State is preserved.

*BOD Disable

□ Power-down*

- Same as Deep-Sleep mode except Flash and IRC are shut down
- Ireg = $30 \mu A (@ 25° C)$
- State is preserved.

Deep power-down

- All clocks including IRC are stopped. Internal voltage is turned off.
- Complete system state is lost, only special registers in the RTC domain are preserved.
- Wake up via reset, external pin, or RTC Alarm.
- Ibat = \sim 500 nA (@ 25° C).

1.4. Power Modes (II)

■ LPC1700 Current Consumption Profile

1.4. Power Modes (III)

■ Wake-Up Controller (WIC)

- Allows "automatic" system wakeup from any priority interrupt that can occur while the clocks are stopped in any Power-down mode.
 - □ Does not require a separate enable for wakeup and interrupt.
- When the CPU enters Power Down, Sleep or Deep Sleep modes by executing the WFI (Wait For Interrupt) instruction, the NVIC sends a mask of the current interrupt situation to the WIC.
- This mask includes all of the interrupts that are both enabled and of sufficient priority to be serviced immediately
 - The WIC simply has to notice that one of these interrupts occurred and then wake up the CPU
 - ☐ Will also wake from CAN activity or USB activity
- Eliminates the need to periodically wake up the controller and poll the interrupts --saving power.

□ Power Control Feature for Peripherals:

Allows individual peripherals can be turned off if they are not needed in the application, resulting in additional power savings.