Logic families represent kind of digital circuit / methodologies for logic expression.

Scheme	# of gates / chip	
1) Small - scale integration (SSI)	< 12	
a) Medium - scale integration (MSI)	12 - 99	
3) Large - scale integration (LSI)	1000	
4) Very Large - scale integration (VLSI)	iok	
5) Ultra Large - scale integration (ULSI)	100 K	
6) Giga Scale integration (GSI)	1 Meg	

- IC logic gates falls under SSI.
- Combinational logic circuits falls under MSI.
- Microprocessors falls under LSI and VLSI:

Digital Logic Family:

- Logic families can be classified broadly according to the technology they are built.
- There are various logic families

 - Diode Logic (DL)
 Resistor Transistor Logic (RTL)
 - Diode Transister Logic (DTL)
 - Emitter Coupled Logic (ECL)
 - Transistor Transistor Logic (TTL)
 - CMOS Logic
- TTL and CMOS logic families are most widely used in IC technologies.
- Each family has its own rating for speed, power consumption, temp range, voltage levels and current levels.

F	A	B	OUT
l	0	0	11
L	0	1	1 ~
L	1	0	1 ~
L	-1	-1	0 V
_			

 $\begin{array}{c} VDD \\ VDD \\ VDD \\ \left(\frac{Y_1}{Y_1 + R_2}\right) V_{DD} \end{array}$

NAND gate.

OUT =
$$\left(\frac{Y_1}{Y_1 + R_2}\right) V_{DD}$$

= 0 V.

IC Packages!

DIP: Dual In Line backage.