

B.M.S COLLEGE OF ENGINEERING, BANGALORE-19 (Autonomous Institute, Affiliated to VTU)

Department Name: CSE

Third Internals					
Course Code: 19CS4DCDBM	Course Title: Database Mar	nagement System			
Semester: 4 th A, B, C, D	Maximum Marks:40	Date:13/07/2021			
Faculty Handling the Course:	Dr.K.V.N, Prof.V.B.M, Dr.S.K	a.S, Dr.K.P.M			

Instructions: *Internal choice is provided in Part C.*

PART-A

For COs which are mapped of low strength in Course Articulation Matrix Total 5 Marks (No Choice)

Q.No.	Question	Marks
1)	Draw a state diagram, discuss the typical states that a transaction goes through	05
	during execution.	

PART-B

For COs which are mapped of medium strength in Course Articulation Matrix Total 15 Marks (No Choice)

Q.No.	Questions						
2a)	whether the oby showing i)AB->	dependencies violation. W -C ,AB->D,0	s are satisfying That are the key	s of this relation	if not explain why	05	
2b)		ue for those of	perations in the t		ons T1 and T 2.Apply that the database will	05	

2c)	Consider the following two schedules and check which schedule is recoverable Justify with the reason.		
	S1:r1(x),w1(x),r1(y),w1(y),r2(x),w2(x),C2;C1	05	5
	S2:r1(x),w1(x);r2(x);r1(y);w2(x);w1(y);C1;C2		

PART- C

Q.No.	Questions	Marks
3 a)	Define the concept of conflict operations and which of the following schedules is conflict serializable. For each serializable schedule, determine the equivalent serial schedule using precedence graph	
	i. $r1(x); r3(x); w1(x); r2(x); w3(x)$	10
	ii. $r1(x);r3(x);w3(x) w1(x);r2(x)$	10
	iii. $r3(x); r2(x); w3(x); r1(x); w1(x)$.	
	iv. $r3(x);r2(x);r1(x);w3(x);w1(x)$	
3 b)	Assume an immediate database modification scheme. Consider the following log consisting transactions T1, T2, and T3:Give the reasons which transactions require Redo and undo operations why?	
	1. (Start, T1); 2. (Write, T1, P, 500, 600); 3. (Write, T1, Q, 400, 500); 4. (Commit, T1); 5. checkpoint 6. (Start, T2); 7. (Write, T2, P, 600, 550);	10

						S,P,D as shown below }is satisfying Lossless Join	
or n	ot. Give re	easons.			_		
			S	P	D		
			S1	P1	D1		
			S2	P2	D2		
			S3	P1	D3		
						the Relation is having a Vhat will be the Final	
						having any Functional 1	10
	endency?					J	
	Course		Teacher		Book		
	Physics10)1	Green	1	Mechanics		
			Green		Optics		
	Physics101						
	Physics10	01	Brown	I	Mechanics		
	Physics10	01	Brown		Optics		
	Maths30	1	Green	I	Mechanics		
	Maths301		Green		Vectors	_	
				OR			
						.1. Apply Two phase	
OC.	King Proto	col and rev	vrite the S	Schedule.	wny we n	eed two phase locking?	
		7	71		T2		
Read_lock(y)		(y)	Read_lock(z)				
	Read_item(y) Unlock(y)		Read_it	em(z)	_		
				Unlock(z)		l	10
			-(-)			_	
		Write_lock		Write_l	-		
		Read_item	(z)	Read_it	em(y)		
		Z=Z+y		Y=Z+y		⊣	

Write_item(y)

Unlock(y)

Write_item(z)

Unlock(z)