Knotentheorie - Stefan Knoblauch

- 1. Knoten
- 2. Äquivalenz von Knoten
- 3. Fundamentalgruppe

Unknoten und Kleeblattknoten

1 Knoten

Definition 1. Ein *Knoten* ist eine einfache, geschlossene Kurve, also

- $K: [0,1] \longrightarrow \mathbb{R}^3$ stetig,
- K(0) = K(1) und
- $\bullet \ K(x) = K(y) \Rightarrow (x=y) \lor (x=0 \land y=1) \lor (x=1 \land y=1)$

Problem:

"WilderKnoten" Quelle: Wikipedia

Deshalb zusätzliche Forderung für Knoten:

Definition 2. Ein *Knoten* ist eine einfache, geschlossene Kurve, also

- $K: [0,1] \longrightarrow \mathbb{R}^3$ stetig,
- K(0) = K(1),
- $K(x) = K(y) \Rightarrow (x = y) \lor (x = 0 \land y = 1) \lor (x = 1 \land y = 1)$ und
- K ist stetig differnzierbar auf [0,1]

Definition 3. Sei (p_1, \ldots, p_n) mit $p_i \in \mathbb{R}^3$ $\forall i \in \{1, \ldots, n\}$, dann heißt die Vereinigung von den Strecken $[p_1, p_2], [p_2, p_3], \ldots, [p_{n-1}, p_n], [p_n, p_1]$ geschlossener Polygonzug, wobei $[p_i, p_{i+1}] := \{p_i + (p_{i+1} - p_i)\lambda \mid \lambda \in [0, 1]\}$. Ein Knoten ist ein einfacher (d.h., dass alle Ecken von einander verschieden sind und 2 verschiedene Kanten nur in Ecken den selben Wert annehmen), geschlossener Polygonzug.

Unknoten und Kleeblattknoten als Polygonzüge

Definition 4. Eine *Verschlingung* ist eine endliche Vereinigung von einfachen, geschlossenen Polygonzügen. Ein *Knoten* ist die Vereingung von genau einer Verschlingung.

Triviale Verschlingung

2 Äquivalenz

Zwei Unknoten

Definition 5. Seien (X, d_1) und (Y, d_2) metrische Räume und $f, g: X \longrightarrow Y$ Abbildungen, dann ist eine stetige Abbildung $h: X \times [0, 1] \longrightarrow Y$ mit $h(-, 0) = f \land h(-, 1) = g$ eine *Homotopie* zwischen f und g.

Beispiel.

$$\begin{split} f: \mathbb{R} &\to \mathbb{R} \ , \ x \mapsto x \\ g: \mathbb{R} &\to \mathbb{R} \ , \ x \mapsto 2x+1 \\ h: \mathbb{R} &\times [0,1] \to \mathbb{R} \ , \ (x,t) \mapsto (1+t)x+t \end{split}$$

Quelle: Arndt-Brünner

Definition 6. Zwei Knoten $K, J: [0,1] \longrightarrow \{R^3 \text{ heißen } \ddot{a} quivalent, \text{ falls} \}$

$$K \sim J : \Leftrightarrow \exists H : [0,1] \times [0,1] \to \mathbb{R}^3 \ mit \left\{ \begin{array}{l} H(-,0) = K \\ H(-,1) = K \\ H(-,t) \ \text{ist Knoten} \ \forall t \in [0,1] \end{array} \right\} \\ \text{H ist Homotopie}$$

Dies definiert eine Äquivlanzrelation, da

- Reflexivität $K \sim K \text{ mit } H: [0,1] \times [0,1] \longrightarrow \mathbb{R}^3, \ (x,-) \mapsto K(x)$
- Symmetrie $K \overset{H_{alt}}{\sim} J \Rightarrow J \overset{H_{neu}}{\sim} K \qquad \text{mit } H_{neu}(x.t) := H_{alt}(x,1-t)$
- Transitivität $K \overset{H_1}{\sim} J \text{ und } J \overset{H_2}{\sim} L \Rightarrow K \overset{H}{\sim} L \qquad \text{mit } H(x,t) := \begin{cases} H_1(x,2t) & \text{für } 0 \leq t \leq 0,5 \\ H_2(x,2t-1) & \text{für } 0,5 < t \leq 1 \end{cases}$

Dazu äquivalent:

Definition 7.

$$K \sim J : \Leftrightarrow \exists H : [0,1] \times [0,1] \to \mathbb{R}^3 \ mit \left\{ \begin{array}{l} H(-,0) = \mathrm{id} \\ H(K(x),1) = J(x) \ \forall x \in [0,1] \\ \underline{H(-,t) \ \mathrm{ist \ bijektiv, \ stetig \ und} \ H^{-1}(-,t) \ \mathrm{ist \ stetig}} \\ \underline{H(-,t) \ \mathrm{ist \ bijektiv, \ stetig \ und} \ H^{-1}(-,t) \ \mathrm{ist \ stetig}} \right\}$$

Beispiel.
$$K(\lambda) := \begin{pmatrix} 0 \\ \cos(2\pi\lambda) \\ \sin(2\pi\lambda) \end{pmatrix}, J(\lambda) := \begin{pmatrix} \cos(2\pi\lambda) \\ 0 \\ \sin(2\pi\lambda) \end{pmatrix}$$

$$H\begin{pmatrix} x \\ y \\ z \end{pmatrix}, t) := \begin{pmatrix} \cos(\frac{\pi}{2}t) & \sin(\frac{\pi}{2}t) & 0 \\ -\sin(\frac{\pi}{2}t) & \cos(\frac{\pi}{2}t) & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \text{ dann:}$$

$$H(K(x), 1) = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} K(x) = \begin{pmatrix} \cos(2\pi\lambda) \\ 0 \\ \sin(2\pi\lambda) \end{pmatrix} = J(x)$$

Definition 8. Die Funktion $P: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$, $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} x \\ y \end{pmatrix}$ ist die Projektion auf die ersten beiden Komponenten.

Definition 9. Das Bild dieser Projektion P heißt reguläre Position, falls

- je nur 2 Punkte des Knotens das selbe Bild haben und
- kein Eckpunkt auf einen Punkt abgebildet wird, auf den noch ein anderer Punkt abgebildet wurde.

3 Fundamentalgruppe

Definition 10. Seien (X, d) metrischer Raum und $p \in X$, dann ist $\Omega(X,p) := \{ \text{Kurven } K : [0,1] \to V \text{ mit } K(0) = K(1) = p \} \text{ die Fundamentalgruppe von }$ p in X.

Achtung, diese Komposition ist nicht kommutativ!

Beispiel.

Definition 12. K homotop zu J mit festem Endpunkt p

Definition 13. Sei $\pi_1(X,p) := \Omega(X,p)/_{\sim}$ die Projektion auf die Äquivalenzklasse [p], dann

$$\star: \pi_1(X,p) \times \pi_1(X,p) \longrightarrow \pi_1(X,p)$$
$$([a],[b]) \mapsto [a \circ b]$$

Proposition. Seien $a, a', b, b' \in \Omega(X, p)$ und gelte $a \stackrel{H_1}{\sim} a'$ und $b \stackrel{H_2}{\sim} b'$, dann $a \circ b \stackrel{H}{\sim} a' \circ b'$ mit $H : [0, 1] \times [0, 1] \to X$, $H(-, t) := H_1(-, t) \star H_2(-, t)$

Beispiel. Fundamentalgruppe von

- \mathbb{R}^3 $\pi_1(\mathbb{R}^3, 1) = \{0\}$
- $\mathbb{R}^3 \setminus \{0\}$ $\pi_1(\mathbb{R}^3 \setminus \{0\}, 1) = \{0\}$
- $\mathbb{R}^2 \setminus \{0\}$ $\pi_1(\mathbb{R}^2 \setminus \{0\}, 1) = \mathbb{Z}$

 $\mathbb{Z}\times\mathbb{Z}$

Quelle: scienceblogs.de

 $\mathbb{Z} \star \mathbb{Z}$

Quelle: mediamanual.at

 \mathbb{Z}

Bemerkung. π_1 ist ein Funktor von der Kategorie der (punktierten) topologischen Räume in die Kategorie der Gruppe. Neben anderen Funktoren (Homologie, Kohomologie,...) bildet er eine fundamentale Verbindung zwischen Topologie und Algebra.