ARCHITETTURA DI UN ELABORATORE

IL MODELLO DI JOHN VON NEUMANN

• Primo documento che descrive l'architettura di un computer

- Vantaggi:
 - semplicità: unica linea di connessione
 - flessibilità: si possono aggiungere tanti elementi senza modificare dispositivo di base
 - standardizzabilità: regole precise di comunicazione tra dispositivi diversi
- Svantaggi
 - lentezza: presenza di un unico BUS
 - limitata capacità: al crescere del numero di dispositivi collegati
 - sovraccarico del processore: tutto va al processore

<u>BUS PRESENTA IN REALTÀ 3 BUS DISTINTI</u>

- Bus dei dati (da e verso la CPU)
 - i dati da trasferire
- Bus degli indirizzi (solo da CPU)
 - dove i dati devono andare
- Bus dei segnali di controllo (solo da CPU)
 - segnali di stop, reset, etc

CPU

Central Processing Unit

- Funzioni
 - individua ed esegue le istruzioni del programma
 - esegue elaborazioni aritmetiche e logiche
 - reperisce i dati dalla memoria e li rispedisce dopo averli elaborati
- Costituito da più CORE
 - permette operazioni parallele

CHIP DELLA CPU

- Circuito integrato
 - connettori metallici esterni (pin)
 - collegamenti interni (wire)
 - costituito da silicio
 - package: contenitore plastico o ceramico
- · Costituito da tre parti
 - ALU (Arithmetic-Logic Unit)
 - · esegue elaborazioni aritmetiche e logiche
 - unità di controllo
 - ogoverna il traffico dati
 - registri di memoria
 - memoria temporanea velocissima

CLOCK

- Funzionamento della CPU è ciclico
 - fetch
 - legge da memoria e memorizza su registro
 - decode
 - decodifica istruzione da eseguire
 - execute
 - esegue istruzione
- La frequenza del clock è limitata dalla tecnologia disponibile
- Program Counter
 - registro speciale
 - contiene la posizione dell'istruzione a cui si accede durante la fase di fetch
 - incrementato di un'unità ad ogni ciclo
 - permette di eseguire istruzioni in sequenza

PARALLELISMO

- Parallelismo a livello delle istruzioni
 - architettura pipeline o superscalare
 - come una catena di montaggio
 - pipeline a 5 stadi (tutti gli stadi avvengono contemporaneamente)
 - S1. lettura delle istruzioni
 - S2. decodifica dell'istruzione
 - S3. individuazione e recupero degli operandi
 - S4. esecuzione dell'istruzione
 - S5. invio dei risultati dell'apposito registro
- Parallelismo a livello di processori
 - computer multiprocessori
 - memoria comune
 - multicalcolatori (+ computer contemporaneamente)
 - memoria privata + scambio di messaggi

PROGRAMMAZIONE PARALLELA SU GPU

- CUDA
 - ambiente di sviluppo in parallelo per GPU
- Elaborazioni intensive che sfruttano questo tipo di architetturre
 - Linear algebra
 - FFTs (Signal and image processing)
 - Machine Learning

MEMORIA DEL COMPUTER

- Suddivisa in celle (o locazioni di memoria)
 - ciascuna ha un indirizzo
 - ciascuna cella contiene un numero definito di bit

SPAZIO DI INDIRIZZAMENTO

- Indirizzo -> sequenze di bit
- · Sistemi operativi a 16bit, 32bit, 64bit
 - da cui dipende la lunghezza degli indirizzi -> RAM massima

MEMORIA PRIMARIA (O CENTRALE)

- Veloce ma costosa
- Chip di memoria
- ROM (Read-Only Memory)
 - sola lettura
 - progettata per essere sempre disponibile
 - memorizzato il BIOS (Basic Input/Output System)
 - più tipi di ROM
 - PROM (Programmable ROM)
 - EPROM (Erasable PROM)
 - EEPROM (Electrical EPROM) -> permette multiple scritture

- RAM (Random Access Memory)
 - lettura e scrittura
 - accesso casuale -> si può leggere qualunque cella nello stesso tempo
 - volatile -> quando spegni il computer si cancella
 - utilizzata dai programmi in esecuzione
 - più tipi di RAM
 - SRAM (Static RAM)
 - DRAM (Dynamic RAM)
 - SDRAM (Syncronous DRAM)
 - DDR1-DDR5 (Double Data Rate)
 - packaging
 - SIMM (Single Inline Memory Module) -> connettori 1 lato
 - DIMM (Dual Inline Memory Module) -> connettori 2 lati

Cache

- memoria + veloce della RAM ma più piccola
- algoritmi statistici prevedono quali istruzioni potrebbero essere eseguite in seguito
- località spaziale
 - quando si caricano dei dati dalla RAM
 - sulla cache vengono messi i dati vicini a quelli
- località temporale
 - se carico un dato dalla RAM, potrebbe essere richiesto più volte
 - viene caricato dalla cache

MEMORIA SECONDARIA

- Supporto di memoria NON volatile
- lenta e + economica della memoria primaria

Hard Disk

- piatti roteanti rivestiti di materiale magnetico
- presenza di una testina che legge il disco
- lettura/scrittura elettromagnetica funzionamento meccanico
- formattazione = assegnare degli indirizzi alle varie parti dell'hard disk
- economica

SSD

- memoria stato solido (memoria flash)
- NO parti meccaniche in movimento
- veloce e + costosa

Nastri magnetici

- tipologie: LTO, DLT
- capacità e + robusto -> usati per backup

- CD (Compact Disk)
 - laser brucia fori -> cunette e assenza cunette -> codice binario

INPUT/OUTPUT - MODALITÀ

- Controllo di programma
 - esamina periodicamente lo stato dell'interfaccia hardware (polling)
- Interrupt
 - es. Control Alt Canc
 - dispositivo notifica il suo comportamento alla CPU
- DMA (Direct Memory Access)
 - possibilità di comunicare alla memoria senza BUS

LE PORTE (O INTERFACCE)

- Collegamento fisico
 - attaccate alla scheda madre
 - "prese" a cui si collegano i dispositivi
- · Si dividono in
 - periferiche esterne
 - maneggiabili dall'utente
 - periferiche interne
- Si differenziano per
 - quantità di informazioni che lasciano passare
 - velocità

PORTE STANDARD

- Non più in uso
 - Interfaccia Seriale
 - Interfaccia Parallela
- USB (Universal Serial BUS)
 - versioni (1.0, 2.0, 3.0, 3.1, 3.2, 4)

PERIFERICHE ESTERNE

INPUT

Mouse

- manda segnali al processore
 - pressione di un tasto
 - · rilascio di un tasto
 - spostamento rispetto alla posizione precedente
- informazione viene elaborata e tradotta
- altri dispositivi di puntamento
 - Trackball
 - Touchpad
 - Airmouse
 - Trackpoint

Tastiera

- genera segnale interrupt
- segnale elaborato e trasformato
 - o in un carattere
 - o in un segnale di stato

Scanner/Fotocamera

- produce bitmap
- risoluzione di scansione
 - misura in DPI (punti per pollice)

OUTPUT

Monitor

- LCD (Liquid Crystal Display)
 - emette luce bianca -> eccita cristalli liquidi -> da esso dipende colore pixel
 - tutti i pixel si accendono
- OLED
 - pixel eccitati da elettricità
 - o campo elettrico modifica allineamento molecolare dei cristalli -> proprietà ottiche
 - o nero = assenza di luce -> pixel spenti

Stampanti

- ad aghi
- ad inchiostro
- laser
- 3D

Scheda audio

- trasforma informazioni digitali in suoni
- la qualità dipende dalla frequenza di campionamento e dalla precisione del clock

Rete

scambiare segnali in ingresso e uscita

SCHEDA MADRE

Base su cui sono montati CPU e RAM

② Domande

- Dove viene memorizzato un programma che non sia attualmente in esecuzione?
- Quale parte del computer esegue le operazioni aritmetiche, come addizioni e moltiplicazioni?