Energy Flow Optimization Report

Amine Abdellaziz

June 26, 2025

Abstract

We optimize energy flows in a system consisting of a 1) photovoltaic (PV) system, 2) an electrical battery, 3) a connection to the external electrical grid and 4) a consumer. The objective is to meet the predicted electrical energy consumption while minimizing costs.

1 Part A

1.1 Variables

- \mathbf{pvg}_t : Flow from photovoltaic system to grid at time t (kW).
- \mathbf{pvc}_t : Flow from photovoltaic system to consumer at time t (kW).
- \mathbf{pvb}_t : Flow from photovoltaic system to battery at time t (kW).
- \mathbf{gb}_t : Flow from the grid to battery at time t (kW).
- \mathbf{gc}_t : Flow from the grid to the consumer at time t (kW).
- \mathbf{bg}_t : Flow from the battery to the grid at time t (kW).
- \mathbf{bc}_t : Flow from the battery to the consumer at time t (kW).
- \mathbf{charge}_t : Charge level of the battery at time t (kWh).

All the variables are nonnegative real values. See Figure 1.

1.2 Data

- \mathbf{pv}_t : Predicted photovoltaic production at time t (kW).
- $conso_t$: Predicted consumption at time t (kW).
- $lcos_t$: Levelized cost of storage at time t (cents/kWh).
- \mathbf{sell}_t : Selling price of the energy at time t (cents/kWh).
- **buy**_t: Buying price of the energy at time t (cents/kWh).

Figure 1: The different flows that represent the variables

1.3 Objective Function

$$\min C = \sum_{t} \mathbf{buy}_{t} \cdot \mathbf{eb}_{t} - \mathbf{sell}_{t} \cdot \mathbf{es}_{t} + \mathbf{lcos}_{t} \cdot \mathbf{ed}_{t}$$
(1)

where:

- The bought energy $\mathbf{eb}_t = \mathbf{gb}_t + \mathbf{gc}_t$ is the sum of the grid to battery flow (\mathbf{gb}_t) and the grid to consumer flow (\mathbf{gc}_t) .
- The sold energy $\mathbf{es}_t = \mathbf{bg}_t + \mathbf{pvg}_t$ is the sum of the battery to grid flow (\mathbf{bg}_t) and the photovoltaic system to grid flow (\mathbf{pvg}_t) .
- The discharged energy $\mathbf{ed}_t = \mathbf{bc}_t + \mathbf{bg}_t$ is the sum of the battery to consumer flow (\mathbf{bc}_t) and the battery to grid flow (\mathbf{bg}_t) .

1.4 Constraints

Photovoltaic Production:

$$\mathbf{pvg}_t + \mathbf{pvc}_t + \mathbf{pvb}_t \le \mathbf{pv}_t, \quad \forall t \tag{2}$$

Battery:

$$\mathbf{charge}_t \le 160, \quad \forall t$$
 (3)

(Max discharge)
$$\mathbf{bg}_t + \mathbf{bc}_t \le 100$$
, $\forall t$ (4)

(Max charge)
$$\mathbf{gb}_t + \mathbf{pvb}_t \le 100$$
, $\forall t$ (5)

Figure 2: Results of Part A of the example from test_data.xlsx

Evolution of the level of charge in the battery:

$$\mathbf{charge}_{t} = \begin{cases} 0.92 \cdot (\mathbf{gb}_{t} + \mathbf{pvb}_{t}) - (\mathbf{bg}_{t} + \mathbf{bc}_{t}) & \text{if } t = 0\\ \mathbf{charge}_{t-1} + 0.92 \cdot (\mathbf{gb}_{t} + \mathbf{pvb}_{t}) - (\mathbf{bg}_{t} + \mathbf{bc}_{t}) & \text{if } t > 0 \end{cases}$$
(6)

where the charging efficiency of the battery is 92%.

Grid:

(Max sell power)
$$\mathbf{bg}_t + \mathbf{pvg}_t \le 700$$
, $\forall t$ (7)

(Max buy power)
$$\mathbf{gb}_t + \mathbf{gc}_t \le 700$$
, $\forall t$ (8)

Consumer Demands:

$$\mathbf{gc}_t + \mathbf{pvc}_t + \mathbf{bc}_t = \mathbf{conso}_t, \quad \forall t$$
 (9)

1.5 Results of the optimization

See Figure 2.

2 Part B

To prevent simultaneous buying and selling from the grid, we introduce two binary variables:

- $\mathbf{to}_{-}\mathbf{buy}_{t} \in \{0,1\}$: This binary variable indicates whether we are buying energy from the grid (1) or not (0) at time t.
- $\mathbf{to_sell}_t \in \{0,1\}$: This binary variable indicates whether we are selling energy to the grid (1) or not (0) at time t.

We add a constraint to ensure that buying and selling do not occur at the same time:

$$\mathbf{to_buy}_t + \mathbf{to_sell}_t \le 1, \quad \forall t$$
 (10)

Additionally, we introduce two constraints (through the Big-M method) to enforce the effect of the binary variables on the energy flows:

$$\mathbf{gb}_t + \mathbf{gc}_t \le \mathbf{to}_{-}\mathbf{buy}_t \cdot M, \quad \forall t$$
 (11)

$$\mathbf{bg}_t + \mathbf{pvg}_t \le \mathbf{to_sell}_t \cdot M \,, \quad \forall t$$
 (12)

where M > 0 is any large enough number (we took $M = 10^5$).

These constraints ensure that energy is only bought or sold when the corresponding binary variable is active.

The results of implementing these constraints are illustrated in Figures 3 and 4.

Figure 3: Results of Part B of the example from $test_data.xlsx$

Figure 4: The amount of energy bought and sold over time (Part B). We do ensure that we do not buy and sell simultaneously.