Análisis Matemático I

Tema 1: El espacio euclídeo. Espacios normados y espacios métricos El espacio euclídeo

Espacios normados

Sespacios métricos

Definiciones y notación

Definición de \mathbb{R}^N

$$N\in\mathbb{N}$$
 fijo $\Delta_N=\{k\in\mathbb{N}:k\leqslant N\}=\{1,2,\ldots,N\}$

$$\mathbb{R}^{N} = \mathbb{R} \times \mathbb{R} \times \dots \times \mathbb{R} = \left\{ (x_{1}, x_{2}, \dots, x_{N}) : x_{1}, x_{2}, \dots, x_{N} \in \mathbb{R} \right\}$$

Para cada $\,x=(x_1,x_2,\ldots,x_N)\in\mathbb{R}^N$, y cada $\,k\in\Delta_N$,

el número real x_k es la k-ésima componente de x

Notación alternativa sin subíndices

$$\mathbb{R}^2 = \{(x,y) : x,y \in \mathbb{R}\} \qquad \mathbb{R}^3 = \{(x,y,z) : x,y,z \in \mathbb{R}\}$$
$$x = (x_1, x_2, \dots, x_N) \in \mathbb{R}^N \longleftrightarrow x : \Delta_N \to \mathbb{R}, \ x(k) = x_k \ \forall k \in \Delta_N$$

Para cada $x \in \mathbb{R}^N$ y cada $k \in \Delta_N$ denotamos también por x(k) a la k-ésima componente de x

Estructura de espacio vectorial

Suma y producto por escalares

$$\begin{split} x &= (x_1, x_2, \dots, x_N) \in \mathbb{R}^N \,, \quad y = (y_1, y_2, \dots, y_N) \in \mathbb{R}^N \,, \quad \lambda \in \mathbb{R} \\ \text{Suma:} \quad x + y &= \left(x_1 + y_1 \,, \, x_2 + y_2 \,, \dots \,, \, x_N + y_N \,\right) \\ \text{o bien} \quad \left(x + y\right)(k) &= x(k) + y(k) \quad \forall \, k \in \Delta_N \end{split}$$

Producto por escalares:
$$\lambda x = (\lambda x_1, \lambda x_2, \dots, \lambda x_N)$$

o bien $(\lambda x)(k) = \lambda x(k) \quad \forall k \in \Delta_N$

 \mathbb{R}^N es un espacio vectorial sobre el cuerpo \mathbb{R}

Base usual de \mathbb{R}^N

 \mathbb{R}^N tiene dimensión N. Su base usual es:

 $\{e_1,e_2,\ldots,e_N\}$ donde, para cada $k\in\Delta_N$, el vector $e_k\in\mathbb{R}^N$ viene dado por

$$e_k(k) = 1 \quad \text{y} \quad e_k(j) = 0 \quad \forall j \in \Delta_N \setminus \{k\}$$

$$x = \sum_{k=1}^{N} x_k e_k = \sum_{k=1}^{N} x(k) e_k \quad \forall x = (x_1, x_2, \dots, x_N) \in \mathbb{R}^N$$

Las componentes de cada $x \in \mathbb{R}^N$ son las coordenadas de x en la base usual

Producto escalar

Producto escalar de \mathbb{R}^N

$$x = (x_1, x_2, \dots, x_N) \in \mathbb{R}^N, \quad y = (y_1, y_2, \dots, y_N) \in \mathbb{R}^N$$

El producto escalar de x por y es el número real $\begin{pmatrix} x & y \end{pmatrix}$ dado por:

$$(x|y) = \sum_{k=1}^{N} x_k y_k = \sum_{k=1}^{N} x(k) y(k)$$

 $(x,y)\mapsto ig(x\,ig|\,yig)$, de $\mathbb{R}^N imes\mathbb{R}^N$ en \mathbb{R} , es el producto escalar de \mathbb{R}^N

Propiedades del producto escalar

(P.1)
$$(\lambda u + \mu v | y) = \lambda (u | y) + \mu (v | y) \quad \forall u, v, y \in \mathbb{R}^N, \ \forall \lambda, \mu \in \mathbb{R}$$

(P.2)
$$(x | y) = (y | x) \forall x, y \in \mathbb{R}^N$$

(P.3)
$$(x \mid x) > 0 \quad \forall x \in \mathbb{R}^N \setminus \{0\}$$

Espacios pre-hilbertianos

Producto escalar en un espacio vectoria

X espacio vectorial, $\varphi: X \times X \to \mathbb{R}$ forma en dos variables

- φ es una forma bilineal cuando es lineal en cada variable, es decir, cuando fijado un $z \in X$ arbitrario, tanto $x \mapsto \varphi(x,z)$ como $y \mapsto \varphi(z,y)$ son aplicaciones lineales de X en $\mathbb R$
- ullet φ es simétrica cuando: $\varphi(x,y)=\varphi(y,x) \ \ \forall \, x,y\in X$
- ullet Cada forma bilineal simétrica arphi lleva asociada una forma cuadrática:

$$Q: X \to \mathbb{R}, \quad Q(x) = \varphi(x, x) \quad \forall x \in X$$

Se dice que Q es definida positiva cuando: $Q(x) > 0 \quad \forall x \in X \setminus \{0\}$

- Un producto escalar en X es una forma bilineal simétrica $\varphi: X \times X \to \mathbb{R}$ cuya forma cuadrática asociada es definida positiva
- ullet Un espacio pre-hilbertiano es un espacio vectorial X dotado de un producto escalar

Ejemplos de espacios pre-hilbertianos

De dimensión finita

 \mathbb{R}^N es un espacio pre-hilbertiano con su producto escalar, dado por:

$$\varphi(x,y) = (x | y) = \sum_{k=1}^{N} x(k) y(k) \qquad \forall x, y \in \mathbb{R}^{N}$$

Recibe el nombre de espacio euclídeo N-dimensional

De dimensión infinita

C[0,1] espacio vectorial de todas las funciones continuas de [0,1] en $\mathbb R$

$$\varphi(x,y) = \int_0^1 x(t) y(t) dt \qquad \forall x, y \in C[0,1]$$

 φ es un producto escalar, con el que ${\cal C}[0,1]$ es un espacio pre-hilbertiano

Norma de un espacio pre-hilbertiano

Norma de un espacio pre-hilbertiano

X espacio prehilbertiano, con producto escalar $(x,y)\mapsto \left(x\,\middle|\, y\,\right)$

Norma de un vector
$$x \in X$$
: $||x|| = (x | x)^{1/2}$

La aplicación $x\mapsto \|x\|$, de X en $\mathbb R$, es la norma del espacio pre-hilbertiano X, o la norma asociada al producto escalar de X

Propiedades de la norma

(N.1)
$$||x + y|| \le ||x|| + ||y|| \quad \forall x, y \in X$$

(N.2)
$$\|\lambda x\| = |\lambda| \|x\| \quad \forall x \in X, \ \forall \lambda \in \mathbb{R}$$

(N.3)
$$x \in X, ||x|| = 0 \implies x = 0$$

Desigualdad de Cauchy-Schwartz

$$|(x|y)| \le ||x|| ||y|| \quad \forall x, y \in X$$

Se verifica la igualdad si, y sólo si, $x \, e \, y$ son linealmente dependientes

Ejemplo en dimensión finita

Norma euclídea de \mathbb{R}^N

La norma del espacio euclídeo N-dimensional se denomina norma euclídea

Viene dada por:
$$||x|| = \left(\sum_{k=1}^{N} x(k)^2\right)^{1/2} \quad \forall x \in \mathbb{R}^N$$

Para cada $x \in \mathbb{R}^N$, $\|x\|$ se interpreta como la longitud del vector x Sus propiedades tienen una clara interpretación geométrica:

- $||x+y|| \le ||x|| + ||y|| \quad \forall x, y \in \mathbb{R}^N$ (Designal dad triangular)
- $\|\lambda x\| = |\lambda| \|x\| \quad \forall x \in \mathbb{R}^N, \ \forall \lambda \in \mathbb{R}$ (Homogeneidad por homotecias)
- $ullet x \in \mathbb{R}^N \,, \quad \|x\| = 0 \implies x = 0$ (No degeneración)

Designaldad de Cauchy-Schwartz en \mathbb{R}^N :

$$\left| \sum_{k=1}^{N} x(k) y(k) \right| \leq \left(\sum_{k=1}^{N} x(k)^{2} \right)^{1/2} \left(\sum_{k=1}^{N} y(k)^{2} \right)^{1/2} \quad \forall x, y \in \mathbb{R}^{N}$$

La norma euclídea en $\mathbb R$ es el valor absoluto: $\|x\|=|x| \quad \forall x \in \mathbb R$ La igualdad $\left|\left(x\,\middle|\,y\right)\right|=\|x\|\,\|y\| \quad \forall x,y \in \mathbb R^N$ sólo se verifica cuando N=1

Ejemplo en dimensión infinita

La norma de C[0,1]

La norma del espacio pre-hilbertiano C[0,1], viene dada por:

$$||x|| = \left(\int_0^1 x(t)^2 dt\right)^{1/2} \quad \forall x \in C[0,1]$$

Espacios métricos

En este caso, la desigualdad de Cauchy-Schwartz es:

$$\left| \int_0^1 x(t) y(t) dt \right| \le \left(\int_0^1 x(t)^2 dt \right)^{1/2} \left(\int_0^1 y(t)^2 dt \right)^{1/2} \quad \forall x, y \in C[0, 1]$$

Concepto de espacio normado

Norma en un espacio vectorial

Una norma en un espacio vectorial X es una aplicación

$$x\mapsto \|x\|$$
 , de X en $\mathbb R$, que verifica:

- **(N.1)** Designaldad triangular: $||x + y|| \le ||x|| + ||y|| \quad \forall x, y \in X$
- (N.2) Homogeneidad por homotecias: $\|\lambda x\| = |\lambda| \|x\| \quad \forall x \in X, \ \forall \lambda \in \mathbb{R}$
- **(N.3)** No degeneración: $x \in X$, $||x|| = 0 \implies x = 0$

Un espacio normado es un espacio vectorial X, dotado de una norma $\|\cdot\|$

Propiedades de todas las normas

En todo espacio normado X, se tiene:

- $||x|| \geqslant 0 \quad \forall x \in X$, siendo ||x|| = 0 si, y sólo si, x = 0
- $||x|| ||y|| \le ||x \pm y|| \le ||x|| + ||y|| \quad \forall x, y \in X$
- Si $n \in \mathbb{N}$, $x_1, x_2, \ldots, x_n \in X$ y $\lambda_1, \lambda_2, \ldots, \lambda_n \in \mathbb{R}$, entonces:

$$\left\| \sum_{k=1}^{n} \lambda_k x_k \right\| \le \sum_{k=1}^{n} \|\lambda_k x_k\| = \sum_{k=1}^{n} |\lambda_k| \|x_k\|$$

Ejemplos de espacios normados

Espacios pre-hibertianos

Todo espacio pre-hilbertiano es un espacio normado, con la norma asociada a su producto escalar

Normas en $\mathbb R$

Toda norma en ${\mathbb R}$ es proporcional al valor absoluto

Otras normas en \mathbb{R}^N

Norma de la suma:
$$\|x\|_1 = \sum_{i=1}^{N} |x(k)| \quad \forall x \in \mathbb{R}^N$$

Norma del máximo: $\|x\|_{\infty} = \max\left\{\,|\, x(k)\,|\, : k \in \Delta_N\,\right\} \quad \forall \, x \in \mathbb{R}^N$

Otras normas en un espacio vectorial de dimensión infinita

Para $x \in C[0,1]$ podemos definir:

$$\|x\|_1 = \int_0^1 |x(t)| \, dt$$
 y $\|x\|_\infty = \max\left\{|x(t)| : t \in [0,1]\right\}$

Concepto de espacio métrico

Distancia de un espacio normado

X espacio normado. Distancia entre dos puntos:

$$d(x,y) = \|y - x\| \qquad \forall x, y \in X$$

A partir de la distancia, recuperamos la norma: $||x|| = d(0,x) \quad \forall x \in X$

Propiedades de la distancia:

- $d(x,z) \leq d(x,y) + d(y,z) \quad \forall x,y,z \in X$
- $d(x,y) = d(y,x) \quad \forall x,y \in X$
- \bullet $d(x,y) = 0 \iff x = y$

Distancia en un conjunto $E \neq \emptyset$: función $d: E \times E \rightarrow \mathbb{R}$ que verifica

- **(D.1)** Designaldad triangular: $d(x,z) \leq d(x,y) + d(y,z) \quad \forall x,y,z \in E$
- **(D.2)** Simetría: $d(x,y) = d(y,x) \quad \forall x,y \in E$
- **(D.3)** No degeneración. Para $x, y \in E$, se tiene: $d(x,y) = 0 \iff x = y$

Cuando tenemos definida una distancia $d: E \times E \to \mathbb{R}$, decimos que E es un espacio métrico

Propiedades de todas las distancias

En todo espacio métrico ${\it E}\,$, con distancia ${\it d}\,$, se tiene:

- $|d(x,z) d(y,z)| \le d(x,y)$ $\forall x, y, z \in E$
- $\bullet \quad n \in \mathbb{N}, \ x_0, x_1, \dots, x_n \in E \implies d(x_0, x_n) \leqslant \sum_{k=1} d(x_{k-1}, x_k)$

Primeros ejemplos de espacios métricos

Todo espacio normado X se considera siempre como espacio métrico, con la distancia asociada a su norma: $d(x,y) = \|y-x\| \quad \forall x,y \in X$

En \mathbb{R}^N disponemos de tres distancias, definidas para $x,y\in\mathbb{R}^N$, como sigue:

- \bullet Distancia euclídea: $d(x,y) = \left(\sum_{k=1}^{N} \left(y(k) x(k)\right)^2\right)^{1/2}$
- Distancia de la suma: $d_1(x,y) = \sum_{k=1}^{N} |y(k) x(k)|$
- ullet Distancia del máximo: $d_{\infty}(x,y) = \max \left\{ |y(k) x(k)| : k \in \Delta_N \right\}$

Para N=1 coinciden. Distancia usual: $d(x,y)=|y-x| \quad \forall x,y \in \mathbb{R}$

Otros ejemplos de espacios métricos

Norma y distancia inducidas

- X espacio normado con $\|\cdot\|: X \to \mathbb{R}$. Y subespacio vectorial de X La restricción de $\|\cdot\|$ a Y es una norma $\|\cdot\|_Y: Y \to \mathbb{R}$ Se dice que $\|\cdot\|_Y$ es la norma inducida por $\|\cdot\|$ en Y Con la norma $\|\cdot\|_Y$, se dice que Y es un subespacio normado de X
- E espacio métrico con distancia $d: E \times E \to \mathbb{R}$. $\emptyset \neq A \subset E$ Al restringir d se obtiene una distancia $d_A: A \times A \to \mathbb{R}$ Se dice que d_A es la distancia inducida por d en A Con la distancia d_A , se dice que A es un subespacio métrico de E
- \bullet Un espacio normado $X \neq \{0\}$ tiene multitud de subespacios métricos que no son subespacios normados de X

Distancia discreta

E conjunto no vacío arbitrario. Distancia discreta en E:

$$\delta(x,y) = \begin{cases} 0 & \text{si } x = y \\ 1 & \text{si } x \neq y \end{cases}$$