## PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE FACULTAD DE MATEMATICAS DEPARTAMENTO DE MATEMATICA

Primer semestre 2023

# Ayudantía 11 - MAT1610

1. (a) Determine la antiderivada general de la función

$$g(x) = \frac{2 + x^2 + x\sqrt{1 + x^2}}{1 + x^2}$$

(b) Determine la función f tal.

$$f''(x) = \operatorname{sen}(x) + \cos(x) \text{ y } f(0) = 3 \text{ y } f'(0) = 7$$

(c) Determine una función f tal que  $f'(x) = x^3$  y la recta x + y = 0 sea tangente a la grafica de f.

#### Solución:

(a) Notar que  $g(x) = \frac{2+x^2}{1+x^2} + \frac{x\sqrt{1+x^2}}{1+x^2} = 1 + \frac{1}{1+x^2} + \frac{x}{\sqrt{1+x^2}} = 1 + \frac{1}{1+x^2} + \frac{2x}{2\sqrt{1+x^2}}$  Enonces, la antiederivada general es:

$$G(x) = x + \arctan(x) + \sqrt{1 + x^2} + C$$

(b) Dado que  $f''(x) = \operatorname{sen}(x) + \cos(x) \operatorname{su}(x) + \operatorname{sen}(x) + \operatorname{sen}(x) + \operatorname{cos}(x) \operatorname{su}(x) + \operatorname{sen}(x) + \operatorname{cos}(x) + \operatorname{cos}(x) \operatorname{sen}(x) + \operatorname{cos}(x) + \operatorname{cos$ 

$$f'(0) = -\cos(0) + \sin(0) + C = 7$$

es decir, C=8. Entonces,  $f(x)=-\mathrm{sen}(x)-\mathrm{cos}(x)+8x+K$  y K es el valor que hace que  $f(0)=-\mathrm{sen}(0)-\mathrm{cos}(0)+K=3$ , es decir, k=4. Así, la función buscada es:

$$f(x) = -\operatorname{sen}(x) - \cos(x) + 8x + 4$$

- (c) La antiderivada general para f' es  $F(x) = \frac{x^4}{4} + C$ , para que la recta y = -x (que tiene pendiente -1) sea tangente a F debe ocurrir que  $f'(x_0) = -1$ , es decir,  $x_0^3 = -1$  para algún  $x_0$ , lo cual ocurre si  $x_0 = -1$  e  $y_0 = -x_0 = 1$ . Por lo tanto la constante C debe ser tal que F(-1) = 1, esto es,  $\frac{(-1)^4}{4} + C = \frac{1}{4} + C = 1$ , es decir,  $C = \frac{3}{4}$ . Entonces,  $f(x) = \frac{x^4}{4} + \frac{3}{4}$
- 2. (a) Determine una región cuya área sea igual al límite dado, identificándolo como una suma de Riemann:  $\lim_{n\to\infty}\sum_{k=1}^n\frac{\sqrt{n^2+kn}}{n^2}$

(b) Determine una región cuya área sea igual al límite dado, identificándolo como una suma de Riemann:  $\lim_{n\to\infty}\sum_{k=1}^n\frac{\ln(n+k)-\ln(n)}{n}$ 

### Solución:

(a)

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{\sqrt{n^2 + kn}}{n^2} = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{\sqrt{n^2 + kn}}{n} \frac{1}{n}$$

$$= \lim_{n \to \infty} \sum_{k=1}^{n} \sqrt{1 + k \frac{1}{n} \frac{1}{n}}$$

$$= \lim_{n \to \infty} \sum_{k=1}^{n} \sqrt{1 + k \frac{1}{n} \frac{1}{n}}$$

$$= \lim_{n \to \infty} \sum_{k=1}^{n} \sqrt{1 + k \frac{1}{n} \frac{1}{n}}$$

Así, considerando  $\Delta x=\frac{1}{n}$  (note que el intervalo de intergración debe tener longitud 1) y Una opción,  $[a,b]=[1,2],\ f(x)=\sqrt{x},\ x_0^*=1,\ x_k^*=1+k\Delta x=1+k\frac{1}{n},\ 1\leq k\leq n,$   $(x_n^*=2)$ 



Otra opción,  $f(x) = \sqrt{1+x}$ , [a,b] = [0,1],  $x_0^* = 0$ ,  $x_k^* = 0 + k\Delta x = k\frac{1}{n}$ ,  $1 \le k \le n$ ,  $(x_n^* = 1)$ 

Por lo tanto,

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{\sqrt{n^2 + kn}}{n^2} = \int_{1}^{2} \sqrt{x} dx = \int_{0}^{1} \sqrt{1 + x} dx$$



(b)

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{\ln(n+k) - \ln(n)}{n} = \lim_{n \to \infty} \sum_{k=1}^{n} \ln\left(\frac{n+k}{n}\right) \frac{1}{n} \text{ propiedad ln}$$

$$= \lim_{n \to \infty} \sum_{k=1}^{n} \ln\left(1 + k \underbrace{\frac{1}{n}}_{\Delta x}\right) \underbrace{\frac{1}{n}}_{\Delta x}$$

Así, considerando  $\Delta x=\frac{1}{n}$  (note que el intervalo de intergración debe tener longitud 1) y Una opción, tomar [a,b]=[1,2],  $f(x)=\ln(x),$  ,  $x_0^*=1,$   $x_k^*=1+k\Delta x=1+k\frac{1}{n},$   $1\leq k\leq n,$   $(x_n^*=2)$ 

Otra opción, tomar  $f(x) = \ln(1+x), [a,b] = [0,1], x_0^* = 0, x_k^* = 0 + k\Delta x = k\frac{1}{n}, 1 \le k \le n$ 



$$(x_n^* = 1)$$

Por lo tanto,



$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{\ln(n+k) - \ln(n)}{n} = \int_{1}^{2} \ln(x) dx = \int_{0}^{1} \ln(1+x) dx$$

3. Demuestre que 
$$\frac{\sqrt{2}\pi}{24} \le \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \cos(x) dx < \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \frac{1}{x} dx \le \frac{1}{2}$$
.

#### Solución

Notar que en el intervalo  $\left[\frac{\pi}{6}, \frac{\pi}{4}\right]$  el valor mínimo absoluto de la función  $x \mapsto \cos(x)$  es  $\cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$  y la longitud del intervalo de integración es  $\frac{\pi}{4} - \frac{\pi}{6} = \frac{\pi}{12}$ 

$$\frac{\sqrt{2}\pi}{24} = \frac{\sqrt{2}}{2} \frac{\pi}{12} \le \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \cos(x) dx$$

Por otro lado, para  $x \in \left[\frac{\pi}{6}, \frac{\pi}{4}\right]$ , como x < 1 entonces  $1 < \frac{1}{x}$  y como  $\cos(x) < 1$ , por transitividad se tiene que, para  $x \in \left[\frac{\pi}{6}, \frac{\pi}{4}\right]$ ,  $\cos(x) < \frac{1}{x}$  y en consecuencia,

$$\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \cos(x) dx < \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \frac{1}{x} dx$$

Por último, en el intervalo  $\left[\frac{\pi}{6}, \frac{\pi}{4}\right]$  el valor máximo absoluto de la función  $x \mapsto \frac{1}{x}$  es  $\frac{6}{\pi}$  y la longitud del intervalo de integración es  $\frac{\pi}{12}$  entonces,

$$\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \frac{1}{x} dx \le \frac{6}{\pi} \frac{\pi}{12} = \frac{1}{2}$$

4. Determine la constante a y la función f(x) tales que

$$\int_{a}^{2x-a} f(t)dt = \operatorname{sen}(x-a) + \arctan(x-a) + a - 2$$

Solución:

Sea 
$$G(x) = \int_a^{2x-a} f(t)dt$$
 entonces,  $G(a) = \int_a^a f(t)dt = 0$ , es decir,  $sen(0) + arctan(0) + a - 2 = 0$  y en consecuencia  $a = 2$  y

$$G(x) = \int_{a}^{2x-a} f(t)dt = \int_{2}^{2x-2} f(t)dt = \operatorname{sen}(x-2) + \arctan(x-2)$$

es decir,

$$\int_{a}^{2x-a} f(t)dt = \operatorname{sen}(x-2) + \arctan(x-2)$$

Entonces, derivando en ambos lados de la igualdad,

$$\frac{d}{dx} \int_{2}^{2x-2} f(t)dt = \cos(x-2) + \frac{1}{1+(x-2)^{2}} \implies f(2x-2)\frac{d}{dx}(2x-2) = \cos(x-2) + \frac{1}{1+(x-2)^{2}}$$

$$\Rightarrow f(2x-2) \cdot 2 = \cos(x-2) + \frac{1}{1+(x-2)^{2}}$$

$$\Rightarrow f(2x-2) = \frac{\cos(x-2) + \frac{1}{1+(x-2)^{2}}}{2}$$

$$\Rightarrow f(x) = \frac{\cos(\frac{x+2}{2}-2) + \frac{1}{1+(\frac{x+2}{2}-2)^{2}}}{2}$$