

Counting Rules

Counting operations on *n* objects

Distinct

n!

Some Distinct

n!

 $n_1!n_2!\dots$

Choose *k* (combinations)

Distinct

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Put in *r* buckets

Distinct

None Distinct

$$n$$
 (n)

$$\frac{(n+r-1)!}{n!(r-1)!}$$

Counting Rules

Counting operations on *n* objects

Counting Review

For a DNA tree we need to calculate the DNA distance between each pair of animals. How many calculations are needed?

Counting Review

Q: There are *n* animals. How many distinct pairs of animals are there?

End Review

Sample Space

 Sample space, S, is set of all possible outcomes of an experiment

```
Coin flip:
S = {Head, Tails}
```

- Flipping two coins: S = {(H, H), (H, T), (T, H), (T, T)}
- Roll of 6-sided die: S = {1, 2, 3, 4, 5, 6}
- # emails in a day: $S = \{x \mid x \in \mathbb{Z}, x \ge 0\}$ (non-neg. ints)
- YouTube hrs. in day: $S = \{x \mid x \in \mathbb{R}, 0 \le x \le 24\}$

Events

• **Event**, E, is some subset of S $(E \subseteq S)$

```
Coin flip is heads:
E = {Head}
```

• # emails in a day
$$\le 20$$
: $E = \{x \mid x \in \mathbb{Z}, 0 \le x \le 20\}$

■ Wasted day (
$$\geq 5$$
 YT hrs.): $E = \{x \mid x \in \mathbb{R}, 5 \leq x \leq 24\}$

Note: When Ross uses: \subset , he really means: \subseteq

Number between 0 and 1

Ascribe Meaning

What is a probability?

$$P(E) = \lim_{n \to \infty} \frac{n(E)}{n}$$

What is a probability?

$$P(E) = \lim_{n \to \infty} \frac{n(E)}{n}$$

n is the number of trails

What is a probability?

$$P(E) = \lim_{n \to \infty} \frac{n(E)}{n}$$

n is the number of trails

What is a probability?

$$P(E) = \lim_{n \to \infty} \frac{n(E)}{n}$$

n is the number of trails

What is a probability?

$$P(E) = \lim_{n \to \infty} \frac{n(E)}{n}$$

n is the number of trails

What is a probability?

$$P(E) = \lim_{n \to \infty} \frac{n(E)}{n}$$

n is the number of trails

Axioms of Probability

Recall: S = all possible outcomes. E = the event.

- Axiom 1: $0 \le P(E) \le 1$
- Axiom 2: P(S) = 1
- Axiom 3: $P(E^c) = 1 P(E)$

Special Case of Analytic Probability

Equally Likely Outcomes

- Some sample spaces have equally likely outcomes
 - Coin flip: S = {Head, Tails}
 - Flipping two coins:
 S = {(H, H), (H, T), (T, H), (T, T)}
 - Roll of 6-sided die: S = {1, 2, 3, 4, 5, 6}
- P(Each outcome) = $\frac{1}{|S|}$
- In that case, $P(E) = \frac{\text{number of outcomes in } E}{\text{number of outcomes in } S} = \frac{|E|}{|S|}$

Rolling Two Dice

- Roll two 6-sided dice.
 - What is P(sum = 7)?

•
$$S = \{(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)\}$$

- $E = \{(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)\}$
- P(sum = 7) = |E|/|S| = 6/36 = 1/6

12

Not Equally Likely

- Play lottery.
 - What is P(Win)?
- S = {Lose, Win}
- E = {Win}
- P(Win) = |E|/|S| = 1/2 = 50%

Mandarins and Bananas

- 4 Mandarins and 3 Bananas in a Bag. 3 drawn.
 - What is P(1 Mandarin and 2 Bananas drawn)?

Equally likely sample space? Thought experiment

Mandarins and Grapefruit

- 4 Mandarins and 3 Bananas in a Bag. 3 drawn.
 - What is P(1 Mandarin and 2 Bananas drawn)?
- Ordered:
 - Pick 3 ordered items: |S| = 7 * 6 * 5 = 210
 - Pick Mandarin as either 1st, 2nd, or 3rd item:
 |E| = (4 * 3 * 2) + (3 * 4 * 2) + (3 * 2 * 4) = 72
 - P(1 Mandarin, 2 Grapefruit) = 72/210 = 12/35
- Unordered:

•
$$|S| = \binom{7}{3} = 35$$

•
$$|E| = {4 \choose 1} {3 \choose 2} = 12$$

P(1 Mandarin, 2 Grapefruit) = 12/35

Make indistinct items distinct to get equally likely sample space outcomes

Any "Straight" Poker Hand

- Consider 5 card poker hands.
 - "straight" is 5 consecutive rank cards of any suit
 - What is P(straight)?

$$|S| = {52 \choose 5}$$

$$|E| = 10 \cdot {4 \choose 1}^5$$

What is an example of one outcome?

Is each outcome equally likely?

$$P(\text{straight}) = \frac{|E|}{|S|} = \frac{10 \cdot {\binom{4}{1}}^5}{{\binom{52}{5}}} \approx 0.00394$$

Official "Straight" Poker Hand

- Consider 5 card poker hands.
 - "straight" is 5 consecutive rank cards of any suit
 - "straight flush" is 5 consecutive rank cards of same suit
 - What is P(straight, but not straight flush)?

$$|S| = {52 \choose 5}$$

$$|E| = 10 {4 \choose 1}^5 - 10 {4 \choose 1}$$

$$P(\text{straight}) = \frac{|E|}{|S|} = \frac{10\binom{4}{1}^5 - 10\binom{4}{1}}{\binom{52}{5}} \approx 0.00392$$

When approaching an "equally likely probability" problem, start by defining sample spaces and event spaces.

Chip Defect Detection

- n chips manufactured, 1 of which is defective.
- k chips randomly selected from n for testing.
 - What is P(defective chip is in *k* selected chips)?

•
$$|S| = \binom{n}{k}$$

•
$$|\mathsf{E}| = \binom{1}{1} \binom{n-1}{k-1}$$

P(defective chip is in k selected chips)

$$= \frac{\binom{1}{1}\binom{n-1}{k-1}}{\binom{n}{k}} = \frac{\frac{(n-1)!}{(k-1)!(n-k)!}}{\frac{n!}{k!(n-k)!}} = \frac{k}{n}$$

Target Revisited

Screen size = 800x800Radius of target = 200

The dart is equally likely to land anywhere on the screen.

What is the probability of hitting the target?

$$|S| = 800^2$$

 $|E| = \pi 200^2$

$$p(E) = \frac{\pi \cdot 200^2}{800^2} \approx 0.1963$$

Target Revisited

Hit: 196641 Thrown: 1000000 196641 0.1966

Screen size = 800x800Radius of target = 200

The dart is equally likely to land anywhere on the screen.

What is the probability of hitting the target?

$$|S| = 800^2$$

 $|E| = \pi 200^2$

$$p(E) = \frac{\pi \cdot 200^2}{800^2} \approx 0.1963$$

Let it find you.

SERENDIPITY

the effect by which one accidentally stumbles upon something truely wonderful, especially while looking for something entirely unrelated.

WHEN YOU MEET YOUR BEST FRIEND

Somewhere you didn't expect to.

Serendipity

- Say the population of Stanford is 17,000 people
 - You are friends with ?
 - Walk into a room, see 268 random people.
 - What is the probability that you see someone you know?

Assume you are equally likely to see each person at

Stanford

Many times it is easier to calculate $P(E^{C})$.

Back to Axiom 3

Axioms of Probability

Recall: S = all possible outcomes. E = the event.

- Axiom 1: $0 \le P(E) \le 1$
- Axiom 2: P(S) = 1
- Axiom 3: $P(E^c) = 1 P(E)$

Axioms of Probability

Recall: S = all possible outcomes. E = the event.

- Axiom 1: $0 \le P(E) \le 1$
- Axiom 2: P(S) = 1
- Axiom 3: If events *E* and *F* are mutually exclusive:

$$P(E \cup F) = P(E) + P(F)$$

Mutually Exclusive Events

If events are mutually exclusive, probability of OR is simple:

$$P(E \cup F) = P(E) + P(F)$$

Mutually Exclusive Events

If events are mutually exclusive, probability of OR is simple:

$$P(E \cup F) = \frac{7}{50} + \frac{4}{5} = \frac{11}{50}$$

OR with Many Mutually Exclusive Events

$$P(X_1 \cup X_2 \cup \dots \cup X_n) = \sum_{i=1}^n P(X_i)$$

If events are *mutually* exclusive probability of OR is easy!

$$P(E^c) = 1 - P(E)?$$

$$P(E \cup E^c) = P(E) + P(E^c)$$

Since E and E^c are mutually exclusive

$$P(S) = P(E) + P(E^c)$$

Since everything must either be in E or E^c

$$1 = P(E) + P(E^c)$$

Axiom 2

$$P(E^c) = 1 - P(E)$$

Rearrange

Trailing the dovetail shuffle to it's lair – Persi Diaconosis

Making History

- What is the probability that in the n shuffles seen since the start of time, yours is unique?
 - $|S| = (52!)^n$
 - $|E| = (52! 1)^n$
 - P(no deck matching yours) = $(52!-1)^n/(52!)^n$
- For $n = 10^{20}$,
 - P(deck matching yours) < 0.00000001

* Assume 7 billion people have been shuffling cards once a second since cards were invented