《原子物理学》

第四章 原子中电子的自旋

量子力学初步的回顾(1)

量子力学初步的回顾 (2)

物质的波粒二象

$$v = \frac{E}{h} = \frac{mc^2}{h}$$

$$v = \frac{E}{h} = \frac{mc^2}{h}$$
 $\lambda = \frac{h}{p} = \frac{h}{mv}$

$$y(x,t) = \text{Re}[Ae^{-i2\pi(u-\frac{x}{\lambda})}]$$

波函数及其统计解释

 $\Psi(x,t) = \psi_0 e^{\frac{\iota}{\hbar}(p_x x - Et)}$

- 薛定谔方程
 - 自由粒子薛定谔方程
 - 含时薛定谔方程(+势能)
 - 定态薛定谔方程 (势能不随时间变化)
 - 一维无限深方势井 (解:能量量子化)
 - 一维有限深方势井
 - 一维散射 (量子遂穿)
- 一维谐振子 (常见于热运动)
- 氢原子的薛定谔方程解 (唯一能严格解的原子)

$$i\hbar \frac{\partial}{\partial t} \Psi(\vec{r},t) = \hat{H} \Psi(\vec{r},t)$$

 $\hat{H} = -\frac{\hbar^2}{2m}\nabla^2 + U(\vec{r}, t)$

$$\hat{H}\phi(r) = E\phi(r)$$

量子力学初步的回顾 (3)

- ▶ 平均值与算符
- 氢原子薛定谔方程求解 (变量分离)
 - ▶ 径向方程; 角方程-角动量
 - - ▶ 量子化
 - ▶ 量子数及其含义: n, l, m
 - ▶ 宇称 (-1)^l
 - 原子的电偶极 --- 跃迁选择规则

$$\begin{cases} \Delta l = \pm 1 \\ \Delta m_l = 0, \pm 1 \end{cases}$$

声 薛定谔方程解的含义
 量子力学: 波函数,
$$n=1,2,3$$
 $l=0,1,2,3...n-l$

$$m = 0, \pm 1, \pm 2... \pm l$$

$$L = \sqrt{l(l+1)}\hbar, \ L_z = m\hbar$$

氢原子量子数

- 一组n, l, m确定了原子的状态。
- 给定一组(n, l),有2l+1个相同能量 E_n 的态(对应 $m=0, \pm 1, \pm 2, ..., \pm l$)。
- 氢原子的分立光谱 ⇒ 测量各能态之间跃迁的能级差。但能量态是简并的!无法分辨各个m态。
- 这21+1重简并能够被测量到吗?
- 但当将氢原子放入磁场中会怎么样呢? (提示: m被称为磁量子数!)

问题的提出: 氢原子光谱的精细结构

玻尔理论成功地解释了氢原子光谱,但后来人们发现光谱线还有精细结构,如实验发现Hα线包含多条谱线,暗示有其他相互作用没有考虑到,是什么原因引起能量的变化呢?

一定有其他的相互作用

H_{α} 线,巴耳末谱系第一条线

本章内容

- 电子轨道运动的磁矩
- 施特恩-盖拉赫实验
- 电子的自旋假设
- •原子光谱的精细结构:碱金属双线
- 赛曼效应、斯塔克效应

电子轨道运动的磁矩

电子轨道磁矩

- 角动量量子化的直接检验: 轨道磁矩量子化
- 经典理论中, 电子的轨道运动会产生磁矩
- 量子理论中,尽管轨道概念放弃了,但相应的磁矩概念仍然成立
 - 类似哈密顿算符、动量算符和角动量算符等, 先通过经典定义的磁矩得到相应的磁矩算符(对 应原理);
 - 磁矩算符对波函数求平均值可以得到量子的磁矩。

电偶极矩

- 均匀电场中: $\sum \vec{F} = 0$ $\vec{M} = \vec{l} \times \vec{F} = \vec{l} \times (q\vec{E}) = \vec{p} \times \vec{E}$
- 非均匀电场中: 电场强度沿z轴, 随z的变化为 $\frac{dE}{dz}$, 则合力为: $\frac{dE}{dz}$, $\frac{dE}{dz}$

力力: $F_z = q \frac{dE}{dz} l \cos \theta = p_z \frac{dE}{dz}$

 $p_z = p\cos\theta$

p在外场方向的投影

• 在外场中的势能: $U = -\vec{p} \cdot \vec{E}$

经典理论给出的轨道磁矩

运动的电子会产生相应的磁场 从玻尔模型出发,根据经典电磁理论:

电流:
$$I = \frac{e}{T} = \frac{ev}{2\pi r}$$

电流:
$$I = \frac{e}{T} = \frac{ev}{2\pi r}$$
磁距: $\overrightarrow{\mu} = IS\overrightarrow{n} = \frac{ev}{2\pi r}\pi r^2\overrightarrow{n} = \frac{e}{2}vr\overrightarrow{n}$

$$= \frac{e}{2m_e}m_e\overrightarrow{v} \times \overrightarrow{r}$$

轨道角动量和轨道磁矩

$$=-rac{e}{2m_e}\vec{L}$$
 电子轨道运动的磁矩与轨道角动量反向

均匀磁场中:
$$\sum \vec{F} = 0$$
 $\vec{M} = \vec{\mu} \times \vec{B}$

非均匀磁场中:合力
$$F_z = \mu \frac{dB}{dz} \cos \theta = \mu_z \frac{dB}{dz}$$

$$\hat{L} = \hat{r} \times \hat{p} = -i\hbar \hat{r} \times \nabla,$$

$$\mu_z = \mu \cos \theta$$
 : $\vec{\mu}$ 在外场方向的投影

拉莫尔进动

• 在均匀磁场 \vec{B} 中,磁矩不受力,但受到一个力矩的作用。而力矩的存在引起角动量的变化: $\frac{d\vec{L}}{dt} = \vec{M} = \vec{\mu} \times \vec{B}$

$$\Rightarrow \frac{d\vec{\mu}}{dt} = -\frac{e}{2m_e} \frac{d\vec{L}}{dt} = -\frac{e}{2m_e} \vec{\mu} \times \vec{B} = \vec{\omega} \times \vec{\mu} ;$$

$$\overrightarrow{\boldsymbol{\omega}} \equiv \frac{e}{2m_e} \overrightarrow{\boldsymbol{B}}$$

• $\vec{\mu}$ 绕 \vec{B} 的方向作进动,进动频率(又称为拉莫尔频率)为: $\omega/2\pi$

• 想象一下陀罗的进动

量子理论给出的轨道磁矩

量子理论给出的结果与玻尔模型给出的结果相同:

$$\vec{\mu} = -\frac{e}{2m_e} \vec{L}$$

$$L = \sqrt{l(l+1)}\hbar$$

$$\vec{\mu}_l = -\frac{e\hbar}{2m_e} \frac{\vec{L}}{\hbar} = -\frac{\mu_B}{\hbar} \vec{L}$$

玻尔磁子:
$$\mu_B = \frac{e\hbar}{2m_e} = 0.5788 \times 10^{-4} \text{eV} \cdot \text{T}^{-1}$$

讨论:

轨道磁矩也是量子化的! 空间取向量子化: 共2l+1个! 对于B=0, z方向任意, 原子处在能级简并态!

$$\mu_{lz} = -\frac{\mu_B}{\hbar} L_z = -m_l \mu_B$$

$$m_l = 0, \pm 1, \pm 2, \dots, \pm l$$

角动量取向量子化

μ和L在外磁场方向有21+1个投影值

$$L = \sqrt{l(l+1)} \frac{h}{2\pi} \qquad \mu_l = -\sqrt{l(l+1)} \mu_B$$

$$L_z = m_l \frac{h}{2p} \qquad \boldsymbol{\mu}_{l,z} = -\boldsymbol{m}_l \boldsymbol{\mu}_{\boldsymbol{B}}$$

图 18.3 轨道角动量及其分量的示意图

在外磁场中轨道角动量是空间取向量子化的!

玻尔磁子的量级

运动的电偶极

$$\mu_{\mathbf{B}} = \frac{e\hbar}{2m_{e}}$$

$$= \frac{c}{2} \frac{e^{2}}{4\pi\varepsilon_{0}\hbar c} \cdot \frac{4\pi\varepsilon_{0}\hbar^{2}}{m_{e}e^{2}} \cdot e$$

$$= \frac{c}{2} \alpha(ea_{1})$$

- ea_1 是原子的电偶极矩的 量度,而 μ_B 是原子磁偶极 矩的量度;
- 电磁波与物质中的原子作用时,电场振幅E_m与磁场振幅B_m的关系E_m=cB_m
- 磁相互作用 $B_m \mu_B$ 比电相互作用 $E_m ea_1$ 之比为 $\alpha/2$,小两个量级

测量手段

实验上能够测量这个矢量沿一个给定轴的分量。通常的测量方法是将原子置于在磁场中,取磁场的方向为之轴,分别测它们在之轴的投影。

$$\mu_{l,z} = -m_l \mu_B$$

$$L_z = m_l \hbar$$

$$\cos \theta = \frac{L_z}{L}$$

角动量矢量与 2 轴之间的半经典角度,是一个经典可测量。

施特恩一盖拉赫实验

施特恩-盖拉赫实验

因炉的温度不足以令大多数原子处于激发态,故实验主要显示的是基态原子的角动量和磁矩。如果只考虑原子的轨道角动量,屏上斑纹的条数应当是 2l+1。银原子基态l=0,故应为 1条斑纹。

无磁场 有磁场

<mark>1922</mark>年为验证角动量空间量子化而进行的实验。

加热炉原子速度

热平衡时容器内的原子速度满足<mark>麦克斯韦速率分布</mark>率

$$f(v) = 4\pi \left(\frac{m}{2\pi kT}\right)^{3/2} e^{-\frac{mv^2}{2kT}} v^2$$

从小孔出射的原子速度分布函 数为碰壁原子的速率分布

$$F(v) = \pi \left(\frac{m}{2\pi kT}\right)^{3/2} e^{-\frac{mv^2}{2kT}} v^3$$

利用
$$\frac{dF(v)}{dv} = 0$$
 , 可得最可几速率: $v = \sqrt{\frac{3kT}{m}}$, 即 $mv^2 = 3kT$

实验时温度远低于第一激发能(7万度~9eV),处于基态。

非均匀磁场!

- 磁矩在均匀磁场中只感受力矩,
- 而在非均匀磁场中才受到力
- · 磁场在原子尺度 (~0.1nm) 非均匀

$$F_z = \mu_z \frac{\partial B_z}{\partial z}$$

作用在银原子上的磁偏转力

设由于磁场在之向不均匀,存在一个梯度

$$\frac{\partial B_x}{\partial x} = \frac{\partial B_y}{\partial x} = 0 , \frac{\partial B_z}{\partial z} \neq 0 ,$$

磁矩在磁场中的能量 $E = -\vec{\mu} \cdot \vec{B}$

原子射线

$$E = -\vec{\mu} \cdot B$$

$$F_{z} = -\frac{\partial E}{\partial z} = \mu_{z} \frac{\partial B_{z}}{\partial z} = -m_{l} \mu_{B} \frac{\partial B_{z}}{\partial z}$$
因原子核质量远大于电子,

西城市极质重起人了电了, 而磁矩与质量成反比,故核的 磁矩很小可以忽略不计。计算 只考虑电子的磁矩。

由于量子数 m_1 是分立的,因此 F_2 也是分立的

原子束偏转角度

$$\alpha = \arctan \frac{z_1}{d/2}$$

$$z_2 = D \tan \alpha$$

$$mv^2 = 3kT$$

$$\frac{1}{2} = \frac{1}{2} a t^2 = \frac{1}{2} \frac{F_z}{m} \left(\frac{d}{v}\right)^2 = \frac{1}{2m} \frac{\partial B_z}{\partial z} \left(\frac{d}{v}\right)^2 \mu_z$$

$$= \frac{1}{2m} \frac{\partial B_z}{\partial z} \left(\frac{d}{v}\right)^2 \mu \cos \beta$$

量子化条件: β分立

$$z_{2} = D \tan \alpha = \mu_{z} \frac{\partial B_{z}}{\partial z} \frac{dD}{3KT}$$
$$= \mu \cos \beta \frac{\partial B_{z}}{\partial z} \frac{dD}{3KT}$$

空间取向量子化

$$z_2 = \mu \cos \beta \frac{\partial B_z}{\partial z} \frac{dD}{3KT}$$

施特恩和盖拉赫实验证明了原子具 有磁矩,磁矩的数值和取向是量子 化的,同时也证明了轨道角动量空 间取向也是量子化的。

• 屏上的条数应当是 2*l* + 1,而*l* 为整数,但 只能看到偶数条⇒不符合空间量子化理论 的预言!

图 19.3 史特恩 - 盖拉赫实验对氢原子的结果

一根劣质卷烟的故事一改变原子物理世界

由于设备的(真空)寿命只有几个小时, 所以最后在法兰上收集到的银的镀层 非常薄,用肉眼看不清。斯特恩描述说:

"给真空系统充完气后,盖拉赫卸掉收集原子束的法兰。但是他连一点镀银的痕迹都没有看到,就把法兰递给我。我凑近好细观察,盖拉赫就站在我身后,奇怪的眼球的显现出来…,后来我的鬼迹渐渐的显现出来…,后来我的鬼道是怎么回事了。我当时只是一个助教,收了一个大人,为质烟含有硫。我呼出的气息慢慢地把收集板上的银变成黑色的硫化银,所以就可见了。这就像是冲洗相片。…"

1922年盖拉赫寄给 玻尔的明信片

施特恩(0. Stern, 1888-1969) 盖拉赫(W. Gerlach, 1889-1979)

施特恩

1943年诺贝尔物理学奖

"for his contribution to the development of the molecular ray method and his discovery of the magnetic moment of the proton".

原子的空间量子化理论不完整!

- 一些实验结果如下:
- 在多电子的原子系统中,基态(*n*=1)不能容纳所有电子。在任何给定量子态上最多容纳2个电子
- 碱金属光谱的精细结构
- 反常塞曼效应(光谱线研究): 磁场导致的能级劈裂无法完全用轨道角动量的l量子数描述
- 施特恩一盖拉赫实验 ⇒ 偶数条劈裂细痕

电子的自旋假设

乌仑贝克-古兹米特根据该实验事实,并为了解释氢原子和碱金属原子光谱线的精细结构,提出了描述原子中电子的量子状态的第四个自由度—电子自旋的概念。

电子自旋假设的提出

1925年,荷兰的乌伦贝克和古兹米特提出了大胆的电子自旋假设:

- 电子一方面绕原子核转动(相应轨道角动量);
- 另一方面电子不是质点,有自转,有固有的自旋角动量和相应的自旋磁矩。

注意:把电子看成均匀分布的电荷小球,半径为 10⁻¹⁴cm的小球(其实远小于此值—现代实验:10⁻¹⁸)会出现小球的表面速度大于光速的结论。

电子自旋假设

George Uhlenbeck Hendrik Kramers Samuel Goudsmit

任何电子都有相同的自旋角动量,而且它们在2方向的分量只取两个数值,这是经典物理无法接受的。

$$\vec{L}^2 = l(l+1)\hbar^2 \qquad L_z = m_l \hbar$$

$$\vec{S}^2 = s(s+1)\hbar^2 \qquad s = 1/2$$

$$S_z = m_s \hbar \qquad m_s = 1/2, -1/2$$

$$\vec{\mu}_l = -\frac{\mu_B}{\hbar} \vec{L} \quad \vec{\mu}_{lz} = -m_l \mu_B \qquad z \text{ axis}$$

$$\vec{\mu}_s = -\frac{g_s \mu_B}{\hbar} \vec{S}$$

 $\mu_{sz} = -m_s g_s \mu_B$

 $g_s = 2$

电子自旋假设

- 电子自旋可以很好解释实验: 施特恩-盖拉赫实验; 碱金属光谱的精细结构; 反常塞曼效应
- 但因经典图像的结果的看似"荒谬",招到了多人的反对(包括已经成名的泡利)
- 乌-古两人曾经想撤回论文。
- 但是他们的导师埃伦菲斯特鼓励道:
- "This is a good idea. Your idea may be wrong, but since both of you are so young without any reputation, you would not loose anything by making a stupid mistake."

P. Ehrenfest, upon receiving the paper by G. Uhlenbeck and S. Goudsmit, from "The story of spin", S. Tomonaga

Paul Ehrenfest

电子的自旋

- 1928年,Dirac从量子力学的基本方程出发,很自然地导出了电子自旋的性质,为这个假设提供了理论依据。
 - 电子自旋是电子的内禀属性,就像其有质量、电荷是相对论量子力学特有的,没有经典的运动相对应
- 自旋虽然不能用经典的图象来理解, 但仍然和角动量有关。
- 自旋角动量与自旋磁矩关系满足:

$$\vec{\mu}_S = -\frac{e}{m_e} \vec{S} \qquad |\vec{\mu}_S| = \frac{e}{m_e} \sqrt{s(s+1)} \hbar$$

 原子的磁矩 = $2\sqrt{s(s+1)} \mu_B$

1902-1984 保罗. 狄拉克 英国理论物理学家 他和薛定谔分享1933 年诺贝尔物理学奖。

图 3.3.3 电子自旋在 Z 轴投影

电子轨道运动的磁矩+电子自旋运动磁矩+核磁矩。

电子的运动: 轨道与自旋耦合

轨道角动量:
$$L = \sqrt{l(l+1)} \frac{h}{2\pi}$$
 $l = 0,1,2 \cdots n-1$

自旋角动量:
$$S = \sqrt{s(s+1)} \frac{h}{2\pi}$$
 $s = \frac{1}{2}$

总角动量

总角动量
(矢量相加):
$$\vec{J} = \vec{L} + \vec{S}$$
 $J = \sqrt{j(j+1)} \frac{h}{2\pi}$

$$j = l + s$$
, $l + s - 1$, $|l - s|$

当
$$l > s$$
 时, 共 $2s+1$ 个值
当 $l < s$ 时, 共 $2l+1$ 个值

自旋-轨道耦合

轨道与自旋耦合举例

当
$$l=1$$
 时, $j=1+\frac{1}{2}=\frac{3}{2}$ $j=1-\frac{1}{2}=\frac{1}{2}$

$$L = \sqrt{l(l+1)} \frac{h}{2\pi} = \sqrt{2} \frac{h}{2\pi} \qquad S = \sqrt{s(s+1)} \frac{h}{2\pi} = \frac{\sqrt{3}}{2} \frac{h}{2\pi}$$

$$J = \sqrt{j(j+1)} \frac{h}{2\pi} = \frac{\sqrt{15}}{2} \frac{h}{2\pi}, \frac{\sqrt{3}}{2} \frac{h}{2\pi}$$

$$J^{2} = L^{2} + S^{2} + 2LS\cos\theta \qquad \cos\theta = \frac{J^{2} - L^{2} - S^{2}}{2LS} = \frac{j(j+1) - l(l+1) - s(s+1)}{2\sqrt{l(l+1)}\sqrt{s(s+1)}}$$

当
$$j = l + s$$
时 $\cos \theta = \frac{l}{\sqrt{l(l+1)}} \frac{s}{\sqrt{s(s+1)}} > 0$ $\theta < 90^{\circ}$, 称 l 和 \vec{s} "平行"

当
$$j = l - s$$
时 $\cos \theta = -\frac{l+1}{\sqrt{l(l+1)}} \frac{s}{\sqrt{s(s+1)}} < 0$ $\theta > 90^{\circ}$, 称 \vec{L} 和 \vec{S} "反平行"

电子自旋磁矩

自旋作为内禀的转动自由度, 应有相关的磁矩(与角动量 的性质很像!) 自旋磁矩

$$\mu_{s} = -\sqrt{s(s+1)}\mu_{B} = -\frac{1}{2}\sqrt{3}\mu_{B}$$

$$\mu_{s} = -2\sqrt{s(s+1)}\mu_{B} = -\sqrt{3}\mu_{B}$$

自旋磁矩的2分量

$$\mu_{s,z} \equiv -m_s \mu_B \equiv \mp \frac{1}{2} \mu_B$$

$$\mu_{s,z} = -2m_s \mu_B = \mp \mu_B$$

实验测量位移的要求!

电子轨道运动的磁矩

$$\mu_{l} = iSe_{n} = -\frac{eL}{2m_{e}}$$

$$L = \sqrt{l(l+1)}\hbar$$

$$\mu_{B} = \frac{e\hbar}{2m} \quad \mu_{l} = -\sqrt{l(l+1)}\mu_{B}$$

这样可以解释许多实验, 最终可由Dirac相对论 量子力学导出

g-朗德因子: 磁矩与角动量的比值

- 一般表示
- 只考虑轨道角动量时 $j = l, g_l = 1$
- 只考虑自旋角动量时 $j = s = \frac{1}{2}, g_s = 2$
- 总角动量

$$\mu_{j} = -\sqrt{j(j+1)}g_{j}\mu_{B}$$

$$\mu_{j,z} = -m_{j}g_{j}\mu_{B}$$

$$\mu_l = -\sqrt{l(l+1)}\mu_B$$

$$\mu_{l,z} = -m_l \mu_B$$

$$\mu_s = -2\sqrt{s(s+1)}\mu_B = -\sqrt{3}\mu_B$$

$$\mu_{s,z} = -2m_s\mu_B = \mp \mu_B$$

$$\mu_j = -g_j \frac{e}{2m_o} j \qquad \mathbf{g}_j = ?$$

原子的有效磁距

- 原子中的核外电子,由于具有角动量, 而产生磁矩
 - \circ 电子由于绕原子核运动的角动量l,产生轨道磁矩 μ_l
 - 电子由于自旋运动的自旋角动量s,产生自旋磁矩μ。
- 原子的轨道角动量、自旋角动量合成 为原子的总角动量J
- 轨道磁矩、自旋磁矩合成为原子的总磁矩 $\vec{\mu} = \vec{\mu}_l + \vec{\mu}_S$,其方向并不是总角动量J的反方向(为什么?)!
- 需要定义有效磁矩 μ_{eff} 为总磁矩 μ_{cff} 反方向的分量。

单电子总角动量的朗德因子gj

- $\vec{\mu}_{eff} = -g_j \mu_B \frac{\vec{J}}{\hbar} = -g_j \sqrt{j(j+1)} \mu_B$, $\mu_{eff,z} = -m_j g_j \mu_B$
- 当只考虑轨道角动量时:

$$g_j = g_l = 1$$

- 当只考虑自旋时: $g_i = g_S = 2$
- 利用余弦定理,可以推导出:

$$g_j = \frac{3}{2} + \frac{1}{2} \left(\frac{s(s+1) - l(l+1)}{j(j+1)} \right)$$

$$\mu_{eff} = -\frac{\mu_B}{\hbar} (\vec{L} + 2\vec{S}) \cdot \frac{(\vec{L} + \vec{S})}{|J|}$$

$$\vec{\mu}_l = -\frac{e}{2m} \vec{L} \qquad \vec{\mu}_s = -\frac{e}{m} \vec{S}$$

以上隐含假定: s, l耦合成j, 如果外磁场过强, s, l将分别绕外场进动, 因此朗德因子只适用于弱外磁场的情形。

多电子原子的总磁矩和有效磁矩

• 原子的磁矩≅电子的轨道磁矩+电子的自旋磁矩

$$L$$
-S耦合法: 总轨道角动量: $\vec{L} = \sum_{i} \vec{L}_{i}$

总轨道磁矩:
$$\vec{\mu}_l = \sum_i \vec{\mu}_{li} = -\frac{e}{2m} \sum_i \vec{L}_i = -\frac{e}{2m} \vec{L}$$

总自旋角动量:
$$\vec{S} = \sum \vec{S}_i$$

总自旋磁矩:
$$\vec{\mu}_s = \sum_i \vec{\mu}_{si} = -\frac{e}{m} \sum_i \vec{S}_i = -\frac{e}{m} \vec{S}$$

总角动量:
$$\vec{J} = \vec{L} + \vec{S}$$

总磁矩:
$$\vec{\mu} = \vec{\mu}_l + \vec{\mu}_s = -\frac{e}{2m}(\vec{L} + 2\vec{S}) = -\frac{e}{2m}(\vec{J} + \vec{S})$$

$$g = 1 + \frac{J^2 - L^2 + S^2}{2J^2} = 1 + \frac{j(j+1) - l(l+1) + s(s+1)}{2j(j+1)}$$

原子态的g因子计算举例

•原子状态的表达式: 25+1L_J

求下列原子态的g因子:
$$(1)^{1}P_{1}$$
 $(2)^{2}P_{3/2}$ $(3)^{4}D_{1/2}$

$$g = 1 + \frac{j(j+1) - l(l+1) + s(s+1)}{2j(j+1)}$$

(1)
$${}^{1}P_{1}$$
: $s=0$, $l=1$, $j=1$, $g=1$

(2)
$${}^{2}P_{3/2}$$
: $s = \frac{1}{2}$, $l = 1$, $j = \frac{3}{2}$, $g = \frac{4}{3}$

(3)
$${}^{4}D_{1/2}$$
: $s = \frac{3}{2}$, $l = 2$, $j = \frac{1}{2}$, $g = 0$

施特恩-盖拉赫实验的解释

具有磁矩的原子在磁场中要受到力和力矩的作用

发射多种原子的实验结果均与理论计算相符,因此施特恩-盖拉赫实验证明:

- 空间是量子化
- 电子的自旋假设正确且 s = 1/2
- 电子自旋磁矩的数值是 $\mu_{s,z} = \pm \mu_B \Rightarrow g_S = 2$

其他原子的斯特恩-盖拉赫实验

表 6.2 斯特恩一盖拉赫实验结果				
原子	基态	g	Mg	相片图样
Sn, Cd, Hg, Pb	¹S ₀	_	0	
Sn, Pb	$^{3}P_{0}$		0	
H, Li, Na, K	${}^{2}S_{\frac{1}{2}}$	2	± 1	
Cu, Ag, Au T1	$^{2}P_{\frac{1}{2}}$	$\frac{2}{3}$	$\pm \frac{1}{3}$	
	³ P ₂	$\frac{3}{2}$	$\pm 3, \pm \frac{3}{2}, 0$	1 1 1 1
0	$\frac{3}{2}$	$\frac{3}{2}$	$\pm \frac{3}{2},0$	
	P_0	-	0	

2S+1 L.

- 空间量子化的事实
- 电子自旋假设的正确,
- 电子自旋磁矩数值的正确

$$\mu_{s,z} = \pm \mu_{B}, g_{s} = 2$$

朗德因子g的物理内涵

朗德因子g是反映物质内部电磁运动与量子运动相对关系的一个重要物理量. 朗德g因子定量测量可给出电子相互作用的信息,并为波函数的计算提供实验验证.

$g_s \neq 2$? 电子的反常磁矩

1947年, P. Kusch 和 H.M. Foley 用当时的新技术—微波方法,仔细测量了电子的 g_s 因子,发现与2有一点偏离? 这就是电子的反常磁矩: $a = (g_s-2)/2$

Kusch和Foley的测量很快就被J. Schwinger给出解释: 电子与外场(轨道运动产生的磁场或者外场)相互作用的高阶贡献,而狄拉克的理论是不行的! 理论计算精度比实验还要高,从此实验一理论互相竞争,一直到现在。理论概念深化了,实验技术改进了,物理胜利了!

电子的反常磁矩的发现促使了量子电动力学的出现!

电子的反常磁矩的精确测量

H.G. Dehmelt 德莫尔特

W. Paul 保罗

1989年诺贝尔物理学奖

德莫尔特和保罗发展了离子陷阱技术,利用该技术他们可以把电子囚禁在陷阱内长达几周,再结合磁共振技术可以直接测量电子反常磁矩。

 $a = (g_s-2)/2 = 1159652188.4 (43) \times 10^{-12}$ PRL 59, 1987, 26

最近的电子反常磁矩的测量

PRL 100, 120801 (2008)

PHYSICAL REVIEW LETTERS

week ending 28 MARCH 2008

New Measurement of the Electron Magnetic Moment and the Fine Structure Constant

D. Hanneke, S. Fogwell, and G. Gabrielse*

Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA (Received 4 January 2008; published 26 March 2008)

A measurement using a one-electron quantum cyclotron gives the electron magnetic moment in Bohr magnetons, $g/2 = 1.001\,159\,652\,180\,73$ (28) [0.28 ppt], with an uncertainty 2.7 and 15 times smaller than for previous measurements in 2006 and 1987. The electron is used as a magnetometer to allow line shape statistics to accumulate, and its spontaneous emission rate determines the correction for its interaction with a cylindrical trap cavity. The new measurement and QED theory determine the fine structure constant, with $\alpha^{-1} = 137.035\,999\,084\,(51)$ [0.37 ppb], and an uncertainty 20 times smaller than for any independent determination of α .

朗德因子gs=2反常来源

以轻子μ子为例,主要来自于圈图贡献:

$$a_{\ell} = \frac{g_{\ell} - 2}{2} = \frac{a}{2p} + \dots = 0.001161$$

测量 $(g-2)_{\mu}$

World average (2006 - final BNL-E821 report):

 a_{μ} = 11 659 208.9 (5.4) (3.3) × 10⁻¹⁰

...still statistics dominated!

E821, PRD 73, 072003 (2006)

实验测量与理论计算的比较

EW contribution	15.4 (0.2) $\times 10^{-10}$	Czarnecki et al		
Hadronic contribu	ution			
LO hadronic	694.9 (4.3) $\times 10^{-10}$	HLMNT11		
NLO hadronic	$-9.8 (0.1) \times 10^{-10}$	HLMNT11		
light-by-light	$10.5 (2.6) \times 10^{-10}$	Prades, de Rafael & Vainshtein		
Theory TOTAL 11 659 182.8 (4.9) $\times 10^{-10}$				
Experiment	11 659 208.9 (6.3) ×10 ⁻¹⁰	world avg		
Exp — Theory	26.1 (8.0) ×10 ⁻¹⁰	3.3 σ discrepancy		

2018年美国费米实验室的新一代实验即将运行,日本也在规划,还在进一步对缪轻子的反常磁矩进行精确测量!

实验测量与理论计算的比较

2021年4月美国费米实验室宣布其测量结果!

4.3σ!!!~1/40000, 粒子物理:1/3500000, 有望今年

基于自旋的量子精密测量技术

原理:原子核或电子自旋处于外磁场中,能够吸收和放出对应频率的电磁辐射,发生磁共振现象

利用量子精密测量技术寻找轴子

探测原理:轴子和自旋相互作用引起能量移动,等效于在自旋上产生一个赝磁场

"pseudo-magnetic" field:

$$\vec{B}_{\mathrm{ALP}} \propto \underline{g_{\mathrm{aNN}}} \cos(\underline{m_{\mathrm{ALP}}}t) \vec{v}$$

更小相互作用gaNN

更灵敏的传感器

低能区mALP

低频传感器

宇宙天文学界限: 要求测量到0.1fT

Jiang et al., Nature Physics (2021). DOI: 10.1038/s41567-021-01392-z

自旋

- 自旋不是机械运动,是电子的一种内禀属性
- 描述自旋的力学量就是自旋角动量和自旋磁矩, 以及它们的z方向分量
- 自旋磁矩处于轨道运动的磁场中,两者间有相互作用:自旋-轨道相互作用。这是一种磁相互作用
- 轨道角动量不再守恒
- 自旋角动量也不再守恒

小结

- 本章在量子力学的基础上讨论原子的精细结构。
 - 原子中电子轨道运动引起的磁矩
 - 原子与外磁场的相互作用,以及原子内部的磁场引起的相互作用。说明空间量子化的存在
 - 仅靠电子轨道运动不能解释的精细结构,还需要引进电子自旋的概念。
- 电子轨道磁矩和自旋磁矩的耦合是造成光谱的精细结构 主要因素,但是自旋的深刻含义超出了原子物理的范畴, 它是微观物理学最重要的概念之一。

狄拉克 (Dirac) 方程

相对论的"薛定谔方程"

$$\begin{split} i\hbar\frac{\partial}{\partial t}\mathbf{\Psi} &= H\mathbf{\Psi} & E^2 = pc^2 + m^2c^4 \\ \mathbf{H} &= c\hat{\mathbf{\alpha}}\cdot\mathbf{P} + mc^2\hat{\boldsymbol{\beta}} = -i\hbar c\hat{\mathbf{\alpha}}\cdot\nabla + mc^2\hat{\boldsymbol{\beta}} \\ & \left[\frac{1}{c}\frac{\partial}{\partial t} - \left(\sum_i\hat{\alpha}_i\frac{\partial}{\partial x_i} + \frac{imc}{\hbar}\hat{\boldsymbol{\beta}}\right)\right]\left[\frac{1}{c}\frac{\partial}{\partial t} + \left(\sum_k\hat{\alpha}_k\frac{\partial}{\partial x_k} + \frac{imc}{\hbar}\hat{\boldsymbol{\beta}}\right)\right]\mathbf{\Psi} = 0 \\ \Rightarrow & \left\{\frac{1}{c^2}\frac{\partial^2}{\partial t^2} - \sum_{ik}\hat{\alpha}_i\hat{\alpha}_k\frac{\partial}{\partial x_i}\frac{\partial}{\partial x_k} + \frac{mc^2}{\hbar^2}\boldsymbol{\beta}^2 - \frac{imc}{\hbar}\sum_i\left(\hat{\alpha}_i\hat{\boldsymbol{\beta}} + \hat{\boldsymbol{\beta}}\hat{\alpha}_i\right)\frac{\partial}{\partial x_i}\right\}\mathbf{\Psi} = 0 \\ & \left(\frac{1}{c^2}\frac{\partial^2}{\partial t^2} - \nabla^2 + \frac{m^2c^2}{\hbar^2}\boldsymbol{\beta}^2\right)\mathbf{\Psi} = 0 & \Rightarrow \hat{\alpha}_i^2 = \mathbf{1} \quad (i = x, y, z) \quad \hat{\boldsymbol{\beta}}^2 = 1 \\ & \hat{\alpha}_i\hat{\boldsymbol{\beta}} + \hat{\boldsymbol{\beta}}\hat{\alpha}_i = 0 \\ & \hat{\alpha}_i\hat{\alpha}_k = -\hat{\alpha}_k\hat{\alpha}_i \quad (i \neq k) \\ & \hat{\mathbf{\alpha}} = (\hat{\alpha}_x, \hat{\alpha}_y, \hat{\alpha}_z) & \hat{\mathbf{\alpha}}, \hat{\boldsymbol{\beta}} \not\ni N \times N \not\ni \mathbf{E}\mathbf{F} \end{split}$$

自由电子的运动

$$\psi(\mathbf{x},t) = \psi(x) \exp[-(\frac{i}{\hbar})\varepsilon t]$$

$$i\hbar \frac{\partial \psi}{\partial t} = \hat{H}\psi = (c\hat{\mathbf{\alpha}} \cdot \hat{\mathbf{P}} + m_0 c^2 \hat{\mathbf{\beta}})\psi$$

$$\Rightarrow \varepsilon \psi(\mathbf{x}) = \hat{H}\psi$$

$$\hat{\alpha} = \begin{pmatrix} 0 & \hat{\sigma} \\ \hat{\sigma} & 0 \end{pmatrix}$$

$$i\hbar \frac{\partial \psi}{\partial t} = \hat{H}\psi = (c\hat{\mathbf{\alpha}} \cdot \hat{\mathbf{P}} + m_0 c^2 \hat{\mathbf{\beta}})\psi$$

$$\Rightarrow \varepsilon \psi(\mathbf{x}) = \hat{H}\psi$$

$$\hat{\alpha} = \begin{pmatrix} 0 & \hat{\sigma} \\ \hat{\sigma} & 0 \end{pmatrix}$$

$$\hat{\beta} = \begin{pmatrix} \hat{1} & 0 \\ 0 & -\hat{1} \end{pmatrix}$$