$$(2.5,12)$$
 $(5,12)$ $(4.5,12)$

$$-15\cos\theta_{1} + 15\cos\theta_{2} = 2.5$$

 $-\cos\theta_{1} + \cos\theta_{2} = 1/6$ — ①

Squere and add D &@

$$2 - 2\cos\theta_1\cos\theta_2 + 2\sin\theta_1 \sin\theta_2 = \frac{16}{25} + \frac{1}{36}$$

$$2 - \cos(\theta_1 + \theta_2) - \cos(\theta_1 - \theta_2) + \cos(\theta_1 + \theta_2) - \cos(\theta_1 + \theta_2) = \frac{16}{25} + \frac{1}{36}$$

$$2\cos(\theta_1 + \theta_2) = 2 - \frac{16}{25} - \frac{1}{36}$$

$$\cos(\theta_1 + \theta_2) = 0.66611$$

$$\theta_1 + \theta_2 = 48.2323^{\circ}$$

Substitute in a

$$-\cos\left(48.2323-\theta_{2}\right)+\cos\theta_{2}=1/6$$

$$-2\sin\left(48.2323\right)\sin\left(2\theta_{2}-48.2323\right)=\frac{1}{6}$$

$$\sin 2\theta_2 - 48.2323 = -0.20395$$

$$\theta_2 = 12.35^{\circ}$$

 $\theta_1 = 35.88^{\circ}$

20 + 15 cor
$$\theta_3$$
 - 15 cor θ_4 = 7.5

15 cor θ_3 - 15 cor θ_4 = 12.5

 $\cos \theta_3$ - $\cos \theta_4$ = 5/6 - 3

15 din θ_3 + 15 din θ_4 = 12

 $\sin \theta_3$ + $\sin \theta_4$ = 4/5 - 4

Square and add (3) and (4)

2 - 2 cor θ_3 cor θ_4 + 2 $\sin \theta_3$ din θ_4 = $\frac{25}{36}$ + $\frac{16}{25}$

2 - $\cos (\theta_3 + \theta_4)$ - $\cos (\theta_3 - \theta_4)$ - $\cos (\theta_3 + \theta_4)$ = $\frac{25}{36}$ + $\frac{16}{25}$

2 - $\frac{25}{36}$ - $\frac{16}{25}$ = 2 cor $(\theta_3 + \theta_4)$ cor $(\theta_3 + \theta_4)$ = 0.33277

 $\cos (\theta_3 + \theta_4)$ = 0.33277

 θ_3 + θ_4 = 70.563

Air (10.562- θ_4) + Air θ_4 = 4/5

 $2 \sin \frac{10.563}{2} \cos \frac{1}{2} \cos \frac{1}{2}$

convention If we take $\theta_1, \theta_2, \theta_3, \theta_4$ — anticlockwise position and front arm angles weret base arm angles then

Then