2.4 Data Preprocessing

- Aggregation
- Sampling
- Dimensionality Reduction
- Feature subset selection
- Feature creation
- Discretization and Binarization
- Attribute Transformation

• Less is more: Combining two or more attributes (or objects) into a single attribute (or object)

Table 2.4. Data set containing information about customer purchases.

Transaction ID	Item	Store Location	Date	Price	
:	:	:	:	:	
101123	Watch	Chicago	$\frac{.}{09/06/04}$	\$25.99	
101123	Battery	Chicago	09/06/04	\$5.99	
101124	Shoes	Minneapolis	09/06/04	\$75.00	
:	:	:	:	:	
•	•	•	•	•	

- Less is more: Combining two or more attributes (or objects) into a single attribute (or object)
- Purpose
 - Data reduction less memory and processing time, more expensive data analysis techniques

- Less is more: Combining two or more attributes (or objects) into a single attribute (or object)
- Purpose
 - Data reduction less memory and processing time, more expensive data analysis techniques
 - Change of scale low level view to high level view
 - Cities aggregated into regions, states, countries, etc.
 - Days aggregated into weeks, months, or years

- Less is more: Combining two or more attributes (or objects) into a single attribute (or object)
- Purpose
 - Data reduction less memory and processing time, more expensive data analysis techniques
 - Change of scale low level view to high level view
 - Cities aggregated into regions, states, countries, etc.
 - Days aggregated into weeks, months, or years
 - Stability groups of objects or attributes is often more stable

- Less is more: Combining two or more attributes (or objects) into a single attribute (or object)
- **Disadvantage**: Potential loss of interesting details.

Example: Precipitation in Australia

• This example is based on precipitation in Australia from the period 1982 to 1993.

- (a) Histogram of standard deviation of average monthly precipitation
- (b) Histogram of standard deviation of average yearly precipitation

Sampling

- Select a **subset** of data objects.
- Sampling is the main technique employed for data reduction.
- Allow usage of more expensive algorithms.

Sampling

- The key principle for effective sampling:
 - Choose representative samples.
 - A sample is **representative** if it has the same properties as the set of data.
 - The representativeness will vary.

Sampling

- The key principle for effective sampling:
 - Choose representative samples.
 - A sample is **representative** if it has the same properties as the set of data.
 - The representativeness will vary.

Q: How to guarantee a high probability of getting representative samples?

Sampling Approaches

- Simple Random Sampling: There is an equal probability of selecting any particular item.
 - 1. Sampling without replacement
 - As each item is selected, it is removed from the population
 - 2. Sampling with replacement
 - Items are not removed from the population.
 - The same item can be picked up more than once.

Sampling Approaches

- Simple Random Sampling: There is an equal probability of selecting any particular item.
 - 1. Sampling without replacement
 - 2. Sampling with replacement
- Stratified sampling:
 - Split the data into several partitions
 - Draw random samples from each partition. The number of selected objects can be equal or proportional to the group size.

Sample Size

- Larger sample sizes: keep representativeness but lose advantage of sampling.
- Smaller sample sizes: Patterns may be missed or wrong patterns can be detected

Dimensionality Reduction

- Datasets can have a large number of features:
 - Documents represented by vectors whose components are the word frequencies.
 - Time series of daily stock price over 30 years.

Dimensionality Reduction

- Datasets can have a large number of features:
 - Documents represented by vectors whose components are the word frequencies.
 - Time series of daily stock price over 30 years.
- Purpose of dimensionality reduction:
 - Eliminate irrelevant features and reduce noises
 - Mitigate curse of dimensionality
 - Lead to more understandable model
 - Easy visualization
 - Save time and memory

Curse of Dimensionality

- Data analysis becomes harder as dimensionality increases.
 - Data becomes **increasingly sparse** in the high-dimensional space.
 - Definitions of density and distance between points become less meaningful

Difference between max and min distance vs. the number of dimensions

Dimensionality Reduction

- Techniques
 - Singular Value Decomposition (SVD)
 - Principal Components Analysis (PCA)
 - Others: supervised and non-linear techniques

- Another way to reduce dimensionality of data
 - Redundant features
 - o **Irrelevant** features

- Redundant features
 - Duplicate information contained in other attributes
 - o Example: purchase price of a product and the amount of sales tax paid
- Irrelevant features
 - Contain no useful information
 - o Example: students' ID is often irrelevant to the task of predicting students' GPA

• Naïve: try all possible 2ⁿ subsets of features

- Naïve: try all possible 2ⁿ subsets of features
- Embedded approaches
- Filter approaches
- Wrapper approaches

- Naïve: try all possible 2ⁿ subsets of features
- Embedded approaches
 - Feature selection occurs as part of the data analysis algorithm.
- Filter approaches
 - Features are selected **independently** from the data analysis algorithm.
- Wrapper approaches
 - Use the target algorithm as a black box to find the best subset of attributes.

Figure 2.11. Flowchart of a feature subset selection process.

Figure 2.11. Flowchart of a feature subset selection process.

Figure 2.11. Flowchart of a feature subset selection process.

Figure 2.11. Flowchart of a feature subset selection process.

Figure 2.11. Flowchart of a feature subset selection process.

- Create new attributes that can capture the important information more efficiently
- Three general methodologies:
 - o Feature extraction
 - Feature construction
 - Mapping data to new space

- o Feature extraction: extract new features from the original raw data
 - Example: extracting edges from images
- o Feature construction
- Mapping data to new space

- Feature extraction
- o Feature construction: construct new features based on the original features
 - Example: density = mass/volume
- Mapping data to new space

- o Feature extraction
- Feature construction
- o Mapping data to new space: apply transforms to get a different view of data
 - o Example: Fourier transform

Frequency

Discretization and Binarization

- Categorical attribute could benefit classification.
- Binary attribute could benefit association pattern discovery.
- Discretization: transform a continuous attribute into a categorical attribute
- Binarization: transform both continuous and discrete attributes into binary attributes

Binarization

- Transform both continuous and discrete attributes into binary attributes
- Assign each categorical value (out of m values) to an integer in [0, m-1]
- n = log 2(m) binary digits are required

Table 2.5. Conversion of a categorical attribute to three binary attributes.

Categorical Value	Integer Value	x_1	x_2	x_3
awful	0	0	0	0
poor	1	0	0	1
OK	2	0	1	0
$good \\ great$	3	0	1	1
great	4	1	0	0

Binarization

- Transform both continuous and discrete attributes into binary attributes
- Assign each categorical value (out of m values) to an integer in [0, m-1]
- n = log 2(m) binary digits are required

Table 2.5. Conversion of a categorical attribute to three binary attributes.

Categorical Value	Integer Value	x_1	x_2	x_3
awful	0	0	0	0
$poor \ OK$	1	0	0	1
OK	2	0	1	0
good	3	0	1	1
great	4	1	0	0

Binarization

- Transform both continuous and discrete attributes into binary attributes
- Assign each categorical value (out of m values) to an integer in [0, m-1]
- n = m binary digits are required

Table 2.6. Conversion of a categorical attribute to five asymmetric binary attributes.

Categorical Value	Integer Value	x_1	x_2	x_3	x_4	x_5
awful	0	1	0	0	0	0
poor	1	0	1	0	0	0
OK	2	0	0	1	0	0
good	3	0	0	0	1	0
great	4	0	0	0	0	1

Discretization

- Transform a continuous attribute into a categorical attribute
 - 1. Decide how many categories
 - 2. Decide how to map continuous values to these categories

Discretization

- Transform a continuous attribute into a categorical attribute
 - 1. Suppose we sort the continuous values and have n intervals (categories)
 - 2. We map all the values in one interval to the same categorical value $\{(x_0, x_1], (x_1, x_2], ..., (x_{n-1}, x_n)\}$, where x_0 and x_n can be $+ \infty$ and ∞

Discretization

- Transform a continuous attribute into a categorical attribute
 - 1. Suppose we sort the continuous values and have n intervals (categories)
 - 2. We map all the values in one interval to the same categorical value $\{(x_0, x_1], (x_1, x_2], ..., (x_{n-1}, x_n)\}$, where x_0 and x_n can be $+ \infty$ and ∞

Challenge is to choose appropriate n.

Data consists of four groups of points and two outliers.

Equal interval width approach used to obtain 4 values.

Equal frequency approach used to obtain 4 values.

K-means approach to obtain 4 values.

• Maximize the purity of the intervals – the intervals mostly contain data from the same class.

(a) Three intervals

- An attribute transform is a transformation applied to all the values of an attribute.
 - Simple functions
 - Normalization

• Simple functions:

- Apply a simple math function to each value individually.
- $\circ x^k$, $\log(x)$, e^x , |x|, \sqrt{x} , $\frac{1}{x}$, $\sin x$, ...
- o Usually used on non-Gaussian distributed attributes
- Change the nature of data (e.g., $\log_{10}(x)$, $\frac{1}{x}$)

- Normalization (Standardization)
 - $\circ \mu$ is mean and δ is standard deviation of values of an attribute.
 - $x' = \frac{x-\mu}{\delta}$, x' is the new attribute having a mean of 0 and a standard deviation of 1.
 - Avoid large attribute dominating the results.

- Normalization (Standardization)
 - $\circ \mu$ is mean and δ is standard deviation of values of an attribute.
 - $x' = \frac{x-\mu}{\delta}$, x' is the new attribute having a mean of 0 and a standard deviation of 1.
 - Avoid large attribute dominating the results.
 - Affected by outliers
 - Variation:
 - o mean -> median
 - o standard deviation -> absolute standard deviation: $\delta_A = \sum |x_i \mu|$, μ is mean or median

2.5 Similarity and Dissimilarity

- Proximity refers to a similarity or dissimilarity
- Proximity between objects => proximity between corresponding attributes

2.5 Similarity and Dissimilarity

• Similarity measure

- o Numerical measure of how alike two data objects are.
- Is higher when objects are more alike.
- Often falls in the range [0,1]

• Dissimilarity (Distance) measure

- Numerical measure of how different two data objects are
- Lower when objects are more alike
- Minimum dissimilarity is often 0
- Upper limit varies

Similarity/Dissimilarity for Simple Attributes

• The following table shows the similarity and dissimilarity between two objects, x and y, with respect to a single, simple attribute.

Attribute	Dissimilarity	Similarity	
Type			
Nominal	$d = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}$	$s = \begin{cases} 1 & \text{if } x = y \\ 0 & \text{if } x \neq y \end{cases}$	
Ordinal	d = x - y /(n - 1) (values mapped to integers 0 to $n-1$, where n is the number of values)	s = 1 - d	
Interval or Ratio	d = x - y	$s = -d, s = \frac{1}{1+d}, s = e^{-d},$ $s = 1 - \frac{d - min_{-}d}{max_{-}d - min_{-}d}$	

Similarity/Dissimilarity for Simple Attributes

• The following table shows the similarity and dissimilarity between two objects, x and y, with respect to a single, simple attribute.

Attribute Type	Dissimilarity	Similarity
Nominal	$d = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}$	$s = \begin{cases} 1 & \text{if } x = y \\ 0 & \text{if } x \neq y \end{cases}$
Ordinal	d = x - y /(n - 1) (values mapped to integers 0 to $n-1$, where n is the number of values)	s = 1 - d

Example: {poor=0, fair=1, OK=2, good=3, wonderful=4}

P1 is rated wonderful and P2 is rated good

$$D(P1, P2) = (4-3)/4 = 0.25$$

Similarity/Dissimilarity for Simple Attributes

• The following table shows the similarity and dissimilarity between two objects, x and y, with respect to a single, simple attribute.

Attribute	Dissimilarity	Similarity
Type		
Nominal	$d = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}$	$s = \begin{cases} 1 & \text{if } x = y \\ 0 & \text{if } x \neq y \end{cases}$
Ordinal	d = x - y /(n - 1) (values mapped to integers 0 to $n-1$, where n is the number of values)	s = 1 - d
Interval or Ratio	d = x - y	$s = -d, \ s = \frac{1}{1+d}, \ s = e^{-d},$
		$s = -d, s = \frac{1}{1+d}, s = e^{-d},$ $s = 1 - \frac{d - min - d}{max - d - min - d}$

Dissimilarity between objects

- Distance metrics
 - Euclidean distance
 - Minkowski distance
 - Hamming distance
- Distance properties
- Distance definition

Euclidean Distance

Euclidean Distance

$$d(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{k=1}^{n} (x_k - y_k)^2}$$

where n is the number of dimensions (attributes) and x_k and y_k are, respectively, the kth attributes (components) or data objects x and y.

• Standardization is necessary, if attribute scales differ.

Euclidean Distance

Example

Data points

point	X	y
p1	0	2
p2	2	0
р3	3	1
p4	5	1

	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

$$d(p_1, p_2) =$$

$$\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)}$$

$$= \sqrt{(0 - 2)^2 + (2 - 0)^2}$$

$$= \sqrt{8} = 2.828$$

Distance Matrix

Minkowski Distance

• A generalization of Euclidean Distance

$$d(\mathbf{x}, \mathbf{y}) = \left(\sum_{k=1}^{n} |x_k - y_k|^r\right)^{1/r}$$

Where r is a parameter, n is the number of dimensions (attributes) and x_k and y_k are, respectively, the kth attributes (components) or data objects x and y.

Minkowski Distance

- Common examples of Minkowski distances
 - $\circ r = 1$. City block (Manhattan, taxicab, L₁ norm) distance.
 - A common example is the Hamming distance -- the number of bits that are different between two binary vectors
 - $\circ r = 2$. Euclidean distance (L₂ norm)
 - $\circ r \to \infty$. "supremum" (l_{max} norm, l_{∞} norm) distance.
 - This is the maximum difference between any attribute of the objects
 - Note: do not confuse r with n
 - \bullet n the numbers of dimensions (attributes).
 - \bullet r parameter of distance metric.

Minkowski Distance

Data points

point	X	y
p1	0	2
p2	2	0
р3	3	1
p4	5	1

r = 1, City block distance

				<u>-, -, -, -</u>	.,
L1	p1	p2	р3	p4	
p1	0	4	4	6	
p2	4	0	2	4	
р3	4	2	0	2	
p4	6	4	2	0	

r = 2, Euclidean distance

L2	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

 $r = \infty$, Supremum distance

				<u> </u>
$\mathbf{L}_{\!\scriptscriptstyle{\infty}}$	p1	p2	р3	p4
p1	0	2	3	5
p2	2	0	1	3
р3	3	1	0	2
p4	5	3	2	0

Distance Matrix

Common Properties of a Distance

d(x, y) is the distance (dissimilarity) between points (data objects), x and y.

- Positivity: $d(x, y) \ge 0$ for all x and y, d(x, y) = 0 if and only if x = y.
- Symmetry: d(x, y) = d(y, x) for all x and y.
- Triangle Inequality: $d(x,z) \le d(x,y) + d(y,z)$ for all points x, y, and z.

A distance that satisfies these properties is a metric.

Common Properties of a Similarity

s(x, y) is the similarity between points (data objects), x and y.

- s(x, y) = 1 only if $x = y \ (0 \le s(x, y) \le 1)$.
- s(x,y) = s(y,x) for all x and y.
- Triangle inequality does not always hold for similarity.

Similarity Between Binary Vectors

- Objects, x and y, have only binary attributes
- Compute similarities using the following:
 - \circ f₀₁ = the number of attributes where x was 0 and y was 1
 - \circ f₁₀ = the number of attributes where x was 1 and y was 0
 - \circ f₀₀ = the number of attributes where x was 0 and y was 0
 - \circ f₁₁ = the number of attributes where x was 1 and y was 1

Similarity Between Binary Vectors

• Simple Matching Coefficient (SMC)

$$SMC = \frac{\text{number of matching attribute values}}{\text{number of attributes}} = \frac{f_{11} + f_{00}}{f_{01} + f_{10} + f_{11} + f_{00}}$$

Jaccard Coefficients

$$J = \frac{\text{number of matching presences}}{\text{number of attributes not involved in 00 matches}} = \frac{f_{11}}{f_{01} + f_{10} + f_{11}}$$

SMC versus Jaccard: Example

$$\mathbf{x} = 1000000000$$

$$\mathbf{y} = 0000001001$$

 $f_{01} = 2$ (the number of attributes where **x** was 0 and **y** was 1)

 $f_{10} = 1$ (the number of attributes where **x** was 1 and **y** was 0)

 $f_{00} = 7$ (the number of attributes where **x** was 0 and **y** was 0)

 $f_{11} = 0$ (the number of attributes where **x** was 1 and **y** was 1)

SMC =
$$(f_{11} + f_{00}) / (f_{01} + f_{10} + f_{11} + f_{00}) = (0+7) / (2+1+0+7) = 0.7$$

$$J = (f_{11}) / (f_{01} + f_{10} + f_{11}) = 0 / (2 + 1 + 0) = 0$$

Cosine Similarity

• If x and y are two document vectors, then

$$\cos(x, y) = \frac{\langle x, y \rangle}{||x|| ||y||},$$

where $\langle x, y \rangle = \sum x_k y_k$ is inner product, and $||x|| = \sqrt{\sum x_k^2}$ is the length of vector x.

• Example:

$$x = (3,2,0,5,0,0,0,2,0,0)$$

$$y = (1,0,0,0,0,0,0,1,0,2)$$

$$< x, y > = 3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2=5$$

$$||x|| = (3*3+2*2+0*0+5*5+0*0+0*0+0*0+2*2+0*0+0*0)0.5 = (42) 0.5 = 6.481$$

$$||y|| = (1*1+0*0+0*0+0*0+0*0+0*0+0*0+1*1+0*0+2*2) 0.5 = (6) 0.5 = 2.449$$

$$\cos(x,y) = \frac{5}{6.481*2.449} = 0.3150$$

Cosine Similarity

- A measure of the (cosine of the) angle between **x** and **y**.
- cos(x, y) = 1, angle is 0
- cos(x, y) = 0, angle is 90

Figure 2.16. Geometric illustration of the cosine measure.

Correlation

- A measure of linear relationship between objects
- In the range [-1, 1]
- 1(-1) indicates perfect positive (negative) linear relationship: y = ax + b
- 0 means no linear relationship (but non-linear relationship may exist)

Correlation

Pearson's correlation

$$\operatorname{corr}(\mathbf{x}, \mathbf{y}) = \frac{\operatorname{covariance}(\mathbf{x}, \mathbf{y})}{\operatorname{standard_deviation}(\mathbf{x}) * \operatorname{standard_deviation}(\mathbf{y})} = \frac{s_{xy}}{s_x s_y},$$

$$\operatorname{covariance}(\mathbf{x}, \mathbf{y}) = s_{xy} = \frac{1}{n-1} \sum_{k=1}^{n} (x_k - \overline{x})(y_k - \overline{y})$$

$$\overline{x} = \frac{1}{n} \sum_{k=1}^{n} x_k \text{ is the mean of } \mathbf{x}$$

$$\operatorname{standard_deviation}(\mathbf{x}) = s_x = \sqrt{\frac{1}{n-1} \sum_{k=1}^{n} (x_k - \overline{x})^2} \quad \overline{y} = \frac{1}{n} \sum_{k=1}^{n} y_k \text{ is the mean of } \mathbf{y}$$

$$\operatorname{standard_deviation}(\mathbf{y}) = s_y = \sqrt{\frac{1}{n-1} \sum_{k=1}^{n} (y_k - \overline{y})^2}$$

Visualize Pearson's correlation

Scatter plots showing the correlation from –1 to 1.

General Approach for Combining Similarities

Sometimes attributes are of many different types, but an overall similarity is needed.

- 1. For the kth attribute, compute a similarity, $s_k(x, y)$, in the range [0, 1].
- 2. Compute

$$similarity(x,y) = \frac{1}{K}s_k(x,y)$$

Does not work with asymmetric attributes.

General Approach for Combining Similarities

Sometimes attributes are of many different types, but an overall similarity is needed.

- 1. For the kth attribute, compute a similarity, $s_k(x, y)$, in the range [0, 1].
- 2. Define an indicator variable, δ_k , for the kth attribute as follows:
 - 1. $\delta_k = 0$ if the kth attribute is an asymmetric attribute and both objects have a value of 0, or if one of the objects has a missing value for the kth attribute
 - 2. $\delta_k = 1$ otherwise
- 3. Compute

similarity(
$$\mathbf{x}, \mathbf{y}$$
) = $\frac{\sum_{k=1}^{n} \delta_k s_k(\mathbf{x}, \mathbf{y})}{\sum_{k=1}^{n} \delta_k}$

Using Weights to Combine Similarities

- May not want to treat all attributes the same.
 - \circ Use non-negative weights ω_k

$$\circ similarity(x,y) = \frac{\sum_{k=1}^{n} \omega_k \delta_k s_k(x,y)}{\sum_{k=1}^{n} \omega_k \delta_k}$$

Can also define a weighted form of distance

$$d(\mathbf{x}, \mathbf{y}) = \left(\sum_{k=1}^{n} w_k |x_k - y_k|^r\right)^{1/r}$$

Select the Right Proximity Measure

- The type of proximity measure should match the type of data
 - o Dense, continuous data: Euclidean distance
 - Sparse data (asymmetric attributes): similarity measures that ignore 0-0 matches, e.g., Cosine and Jaccard

Select the Right Proximity Measure

- The type of proximity measure should match the type of data
 - o Dense, continuous data: Euclidean distance
 - Sparse data (asymmetric attributes): similarity measures that ignore 0-0 matches, e.g., Cosine and Jaccard
- Data characteristics:
 - Time series:
 - Use Euclidean distance if magnitude is important.
 - Use correlation if the shape of the series is more important than magnitude.
 - Transformations and normalizations: Necessary for proper similarity computation, especially for time series with trends or patterns.

Select the Right Proximity Measure

- The type of proximity measure should match the type of data
 - o Dense, continuous data: Euclidean distance
 - o Sparse data (asymmetric attributes): similarity measures that ignore 0-0 matches, e.g., Cosine and Jaccard
- Data characteristics:
 - o Time series:
 - Use Euclidean distance if magnitude is important.
 - Use correlation if the shape of the series is more important than magnitude.
 - Transformations and normalizations: Necessary for proper similarity computation, especially for time series with trends or patterns.
- Practical considerations:
 - Efficiency
 - Software or algorithm limitations