Data Anonymization and Differential Privacy

Dr. Chen Zhang

Department of Computer Science
The Hang Seng University of Hong Kong

Aggregated Personal Data is **Invaluable**

Personal Data is ... Very ... Personal!

Aggregated Personal Data

• ... is made publicly available in many forms.

De-identified records (e.g., medical)

Statistics (e.g., demographic)

Predictive models (e.g., advertising)

Data "Anonymization"

• Anonymity: the property that certain records or transactions not to be attributable to any individual.

- How?
 - Remove "personally identifying information" (PII)
 - Name, Social Security number, phone number, email, address...
 what else?
- Problem: PII has no technical meaning
 - In privacy breaches, any information can be personally identifying

The Massachusetts Governor Privacy Breach

[Sweeney, 2010]

Name
SSN
Visit Date
Diagnosis
Procedure
Medication
Sex
Total Charge

Medical Data Release

SSN: Social Security Number

The Massachusetts Governor Privacy Breach

[Sweeney, 2010]

Name ·Name Address ·SSN • Zip •Date Visit Date Birth Registered Diagnosis date ·Party Procedure affiliation Medication Sex •Date last Total Charge voted

Medical Data Voter List Release

Linkage Attack

· Name Name Address ·SSN • Zip •Date Visit Date Birth Registered Diagnosis date ·Party Procedure affiliation Medication Sex Date last Total Charge voted

[Sweeney, 2010]

Governor of MA
 uniquely identified
 using ZipCode,
 Birth Date, and Sex.

Name linked to Diagnosis

Medical Data Voter List Release

Observation #1: Dataset Joins

- Attacker learns sensitive data by joining two datasets on common attributes
 - Anonymized dataset with sensitive attributes
 - Example: age, race, symptoms
 - "Harmless" dataset with individual identifiers
 - Example: name, address, age, race

 Demographic attributes (age, ZIP code, race, etc.) are common in datasets with information about individuals

Observation #2: Quasi-Identifiers

- Quasi-identifiers are pieces of information that are not of themselves unique identifiers, but are sufficiently well correlated with an entity that they can be combined with other quasi-identifiers to create a unique identifier.
- Sweeney's observation: (birthdate, ZIP code, gender) uniquely identifies more than 60% of US population
- Publishing a record with a quasi-identifier is as bad as publishing it with an explicit identity
- Eliminating quasi-identifiers is not desirable
 - For example, users of the dataset may want to study distribution of diseases by age and ZIP code

	Race	Age	Symptoms	Blood	Medical	
	a Li Ci a ura			type	history	
quasi-ide	ntifiers					
	•••	•••	•••	•••	sensitive attributes	
					sensitive attributes	5
		•••	•••			

Anonymization in a Nutshell

- Dataset is a relational table
- Attributes (columns) are divided into quasi-identifiers and sensitive attributes

	Race	Age	Symptoms	Blood type	Medical history	
quasi-ide	ntifiers —			сурс	THSCOLY	
quasi iuci	111111111111111111111111111111111111111					
					sensitive a	ittributes
	•••	•••				

 Generalize/suppress quasi-identifiers, don't touch sensitive attributes (keep them "truthful")

k-Anonymity

- Proposed by Samarati and Sweeney (1998)
- Definition: Each (transformed) quasi-identifier group must appear in at least k records in the anonymized dataset
 - k is chosen by the data owner
 - Example: any age-race combination from original DB must appear at least 10 times in anonymized DB
- Guarantees that any join on quasi-identifiers with the anonymized dataset will contain at least k records for each quasi-identifier

Achieving k-Anonymity

Most designs based on generalization and suppression

- Generalization
 - Individual values of attributes replaced by broader category
 - Area code instead of phone number: 3442 8765 -- >> 3442 xxxx
 - Value "23" of the age attribute is replaced by 20<Age<=30
- Suppression
 - Replace certain values of the attributes by an asterisk '*'
 (not releasing a value at all.)
 - Example: replace all the values in the 'Name' attribute with a '*'.

Example: 3-Anonymity

This is 3-anonymous, right?

Problem of k-Anonymity

When joining with external database, adversary learns Rusty Shackleford has Flu

Rusty Shackleford	Caucas	78705	

Caucas	787XX	Flu
Asian/AfrA m	78705	Shingle s
Caucas	787XX	Flu
Asian/AfrA m	78705	Acne
Asian/AfrA m	78705	Acne
Caucas	787XX	Flu

Problem: sensitive attributes are not "diverse" within each quasi-identifier group

Other Attempts

• *L*-diversity

 Entropy of sensitive attributes within each quasiidentifier group must be at least L

• *t*-closeness

 Distribution of sensitive attributes within each quasiidentifier group should be "close" to their distribution in the entire original database

Differential Attacks

- Compares the variations in the input with variations in the encrypted output to find the desired key or plaintext message.
- Example:

Differential Privacy

- Statistical outcome is indistinguishable regardless of whether a particular user record is in the data or not.
 - "Whatever is learned would be learned regardless of whether or not you participate".

Indistinguishability

An Example: Statistical Data Release

An Example: Statistical Data Release

Framework of DP

Formalizing Indistinguishability

For every pair of **neighboring databases** that differ in only one record

[Dwork, ICALP'06]

For every output

0

If algorithm A satisfies differential privacy then

$$\frac{\Pr[A(D_1) = O]}{\Pr[A(D_2) = O]} < \exp(\varepsilon) \quad (\varepsilon > 0)$$

Intuition: adversary should not be able to use output O to distinguish between any D_1 and D_2

A is a <u>randomized algorithm</u> that takes a dataset as input (representing the actions of the trusted party holding the data).

Privacy Budget ε

For every pair of neighboring databases that differ in only one record

For every output

$$Pr[A(D_1) = O] \le e^{\varepsilon} Pr[A(D_2) = O]$$

Controls the degree to which D_1 and D_2 can be distinguished. Smaller ε gives more privacy (and worse utility)

Output Randomization

- Add noise to answers such that:
 - Each answer does not leak too much information about the database.
 - Noisy answers are close to the original answers.

Laplace Mechanism

 $\lambda = \frac{s}{\varepsilon}$, where ε is privacy budget and s is sensitivity

The sensitivity of a function reflects the amount the function's output will change when its input changes. 26

A random variable has a $\operatorname{Laplace}(\mu,b)$ distribution if its probability density function is

$$egin{aligned} f(x \mid \mu, b) &= rac{1}{2b} \exp \left(-rac{|x - \mu|}{b}
ight) \ &= rac{1}{2b} \left\{ egin{aligned} \exp \left(-rac{\mu - x}{b}
ight) & ext{if } x < \mu \ \exp \left(-rac{x - \mu}{b}
ight) & ext{if } x \geq \mu \end{aligned}
ight.$$

Here, μ is a location parameter and b>0, which is sometimes referred to as the diversity, is a scale parameter. If $\mu=0$ and b=1, the positive half-line is exactly an exponential distribution scaled by 1/2.

https://en.wikipedia.org/wiki/Laplace distribution

https://en.wikipedia.org/wiki/Laplace distribution

Composition Theorems

Why composition?

 Reasoning about privacy of a complex algorithm is hard.

- Helps software design
 - If building blocks are proven to be private, it would be easy to reason about privacy of a complex algorithm built entirely using these building blocks.

Sequential Composition

 If M₁, M₂, ..., M_k are algorithms that access a private database D such that each M_i satisfies ε_i -differential privacy,

then running all k algorithms sequentially satisfies ϵ -differential privacy with $\epsilon = \epsilon_1 + ... + \epsilon_k$

Parallel Composition

• If M_1 , M_2 , ..., M_k are algorithms that access disjoint databases D_1 , D_2 , ..., D_k such that each M_i satisfies ε_i -differential privacy,

then running all k algorithms in "parallel" satisfies ϵ -differential privacy with $\epsilon = \max\{\epsilon_1,...,\epsilon_k\}$

Composition theorems

Sequential composition $\sum_{i} \varepsilon_{i}$ –differential privacy

Parallel composition $max(\varepsilon_i)$ —differential privacy

Summary

- Differential privacy ensures that an attacker can't infer the presence or absence of a single record in the input based on any output
- Basic algorithm with random perturbation
 - Laplacian mechanism
- Composition rules help build complex algorithms using building blocks

The problem of DP: Need A Trust Data Center

Trying to Reduce Trust

- Most work on differential privacy assumes a trusted party
 - Data aggregator (e.g., organizations) that sees the true, raw data
 - Can compute exact query answers, then perturb for privacy
- A reasonable question: can we reduce the amount of trust?
 - Can we remove the trusted party from the equation?
 - Users produce locally private output, aggregate to answer queries

Local Differential Privacy

- How about having each user run a DP algorithm on their data?
 - Then combine all the results to get a final answer
- On first glance, this idea seems crazy
 - Each user adds noise to mask their own input
 - So surely the noise will always overwhelm the signal?
- But ... noise can cancel out or be subtracted out
 - We end up with the true answer, plus noise which can be smaller

Framework of Local Differential Privacy

Local Differential Privacy

- We can achieve LDP, and obtain reasonable accuracy (for large N)
- Generic approach: apply centralized DP algorithm to local data
 - But error might be quite large
 - Unclear how to merge private outputs (e.g. private clustering)
- So we seek to design new LDP algorithms
 - Maximize the accuracy of the results
 - Minimize the costs to the users (space, time, communication)
 - Ensure that there is an accurate algorithm for aggregation

Privacy with A Coin Toss: Randomized Response

- Each user has a single bit of private information
 - Encoding e.g. political/sexual/religious preference, illness, etc.
- Randomize Response (RR): toss an unbiased coin [Warner 65]
 - If Heads (probability $p = \frac{1}{2}$), report the true answer
 - Else, toss unbiased coin again: if Heads, report True, else False
- Collect responses from N users, subtract noise
 - See Differential Privacy Tutorial.ipynb
 - Generalization: allow biased coins (p ≠ ½)

Key difference between DP and LDP

- DP concerns two neighboring datasets
- LDP concerns any two values
- As a result, the amount of noise is different: In aggregated result for counting queries
 - Noise in DP is $\Omega(1)$ (sensitivity is constant)
 - But in LDP, even noise for each user is constant, the aggregated result is $\Omega(\sqrt{n})$ [1]

[1] Optimal lower bound for differentially private multi-party aggregation by T.-H. H. Chan, E. Shi, and D. Song

The Use of Differential Privacy

Google:

- Chrome
- Google Maps
- Google assistant
- BigQuery
- differential privacy library developed by Google: https://github.com/google/differential-privacy

Apple:

- iOS e.g., Learning iconic scenes, discovering new words
- Safari e.g., Auto-play intent analysis

• Microsoft:

- Windows e.g., understand overall app usage
- Advertiser queries on LinkedIn
- Machine learning
- https://blogs.microsoft.com/ai-for-business/differential-privacy/

- Local Differential Privacy is a big success for privacy research
 - Adopted by Google, Apple, Microsoft and more for deployment
 - Deployments affecting (hundreds of) millions of users
 - In contrast, centralized DP has smaller success
- However, there are reasons to pause and reflect:
 - LDP only works when you can rely on millions of active participants
 - Privacy settings are not very tight: deployed ε ranges from 0.5 to 8+

