International Mathematical Olympiad Training Camp 2011

Day 1

- Let ABC be a triangle each of whose angles is greater than 30°. Suppose a circle centered with P cuts segments BC in T,Q;CA in K,L and AB in M,N such that they are on a circle in counterclockwise direction in that order. Suppose further PQK,PLM,PNT are equilateral. Prove that:
 - a) The radius of the circle is $\frac{2abc}{a^2+b^2+c^2+4\sqrt{3}S}$ where S is area.

$$b)a \cdot AP = b \cdot BP = c \cdot PC.$$

2 Let the real numbers a, b, c, d satisfy the relations a+b+c+d=6 and $a^2+b^2+c^2+d^2=12$. Prove that

$$36 \le 4\left(a^3 + b^3 + c^3 + d^3\right) - \left(a^4 + b^4 + c^4 + d^4\right) \le 48.$$

Proposed by Nazar Serdyuk, Ukraine

- 3 A set of n distinct integer weights w_1, w_2, \ldots, w_n is said to be balanced if after removing any one of weights, the remaining (n-1) weights can be split into two subcollections (not necessarily with equal size) with equal sum.
 - a) Prove that if there exist balanced sets of sizes k, j then also a balanced set of size k + j 1.
 - b) Prove that for all odd $n \geq 7$ there exist a balanced set of size n.

International Mathematical Olympiad Training Camp 2011

Day 2

- The find all positive integer n satisfying the conditions $a)n^2 = (a+1)^3 a^3$ b)2n + 119 is a perfect square.
- 2 Suppose a_1, \ldots, a_n are non-integral real numbers for $n \geq 2$ such that $a_1^k + \ldots + a_n^k$ is an integer for all integers $1 \leq k \leq n$. Prove that none of a_1, \ldots, a_n is rational.
- 3 Let T be a non-empty finite subset of positive integers ≥ 1 . A subset S of T is called **good** if for every integer $t \in T$ there exists an s in S such that gcd(t,s) > 1. Let

$$A = (X, Y) \mid X \subseteq T, Y \subseteq T, gcd(x, y) = 1$$
 for all $x \in X, y \in Y$

Prove that : a) If X_0 is not **good** then the number of pairs (X_0, Y) in A is **even**. b) the number of good subsets of T is **odd**.

International Mathematical Olympiad Training Camp

2011

Day 3

1 Let ABCDE be a convex pentagon such that $BC \parallel AE$, AB = BC + AE, and $\angle ABC = \angle CDE$. Let M be the midpoint of CE, and let O be the circumcenter of triangle BCD. Given that $\angle DMO = 90^{\circ}$, prove that $2\angle BDA = \angle CDE$.

Proposed by Nazar Serdyuk, Ukraine

- 2 Prove that for no integer n is $n^7 + 7$ a perfect square.
- 3 Consider a $n \times n$ square grid which is divided into n^2 unit squares(think of a chess-board). The set of all unit squares intersecting the main diagonal of the square or lying under it is called an n-staircase. Find the number of ways in which an n-stair case can be partitioned into several rectangles, with sides along the grid lines, having mutually distinct areas.

International Mathematical Olympiad Training Camp

2011

Day 4

1 Let ABC be an acute-angled triangle. Let AD, BE, CF be internal bisectors with D, E, F on BC, CA, AB respectively. Prove that

$$\frac{EF}{BC} + \frac{FD}{CA} + \frac{DE}{AB} \ge 1 + \frac{r}{R}$$

 $\boxed{2}$ Find all pairs (m, n) of nonnegative integers for which

$$m^2 + 2 \cdot 3^n = m \left(2^{n+1} - 1 \right).$$

Proposed by Angelo Di Pasquale, Australia

3 Let $\{a_0, a_1, \ldots\}$ and $\{b_0, b_1, \ldots\}$ be two infinite sequences of integers such that

$$(a_n - a_{n-1})(a_n - a_{n-2}) + (b_n - b_{n-1})(b_n - b_{n-2}) = 0$$

for all integers $n \geq 2$. Prove that there exists a positive integer k such that

$$a_{k+2011} = a_{k+2011^{2011}}.$$