CSC236 Midterm Test Solutions

A correlation between the midterm test and exam has been confirmed. Please use this resource to study well!

Written by AlexTheMango, with pleasure [^_-]/

Prepared for December 19, 2024

Question #1

Let \mathcal{F} be the collection of all functions with domain \mathbb{N} and co-domain \mathbb{R} . Given $A, B \in \mathcal{P}(\mathcal{F})$, define addition on $\mathcal{P}(\mathcal{F})$ by

$$A + B := \{ f + g : f \in A, g \in B \}.$$

Recall that f+g is the function with domain $\mathbb N$ and co-domain $\mathbb R$ such that

$$(f+g)(n) = f(n) + g(n).$$

Also recall that, if $h \in \mathcal{F}$, then

$$O(h) = \{ q \in \mathcal{F} : (\exists n_0, c \in \mathbb{N}) (\forall n \ge n_0) [|q(n)| \le c|h(n)|] \}.$$

<u>Claim:</u> For arbitrary nonnegative $u, v \in \mathcal{F}$, it follows that O(u) + O(v) = O(u + v).

Proof.

This proof demonstrates a double-subset inclusion to show equality.

Forward Inclusion —
$$O(u) + O(v) \subseteq O(u+v)$$
:
Let $h \in [O(u) + O(v)]$. Then, $h = f + g$, where $f \in O(u)$ and $g \in O(v)$.

By definition, there exists $c_1, c_2, n_1, n_2 > 0$ such that

- $|f(n)| \le c_1 |u(n)|$ for all $n \ge n_1$;
- $|g(n)| \le c_2 |v(n)|$ for all $n \ge n_2$.

Choose $n_0 = max(n_1, n_2)$ and $c = max(c_1, c_2)$.

Using the definition, triangle inequality, and assumption that u, v are nonnegative functions,

it follows that

$$|h(n)| = |f(n) + g(n)| \le |f(n)| + |g(n)| \le c_1 |u(n)| + c_2 |v(n)|$$

$$\le c|u(n)| + c|v(n)|$$

$$\le c(|u(n)| + |v(n)|)$$

$$= c(u(n) + v(n)) = c(|u(n) + v(n)|) = c(|(u + v)(n)|).$$

Thus, $|h(n)| \le c|(u+v)(n)|$.

By definition, $h \in O(u+v)$. Therefore, $O(u) + O(v) \subseteq O(u+v)$.

Backward Inclusion — $O(u) + O(v) \supseteq O(u+v)$: Let $h \in O(u+v)$.

By definition, there exists $c, n_0 > 0$ such that $|h(n)| \le c|(u+v)(n)|$ for all $n \ge n_0$.

It follows that $|h(n)| \le c|u(n) + v(n)| = c(u(n) + v(n))$, as u, v are nonnegative functions.

Case:

Question #X

wordsgohere

Proof.

 ${\it proofgoeshere}$