Kolloquium zur Bachelorarbeit

Inverse Rendering of Wave Optical BRDFs

1. Juni 2022

Bertan Karacora Institut für Informatik, Universität Bonn bertan.karacora@uni-bonn.de

Inhalt

- 1. Einleitung
- 2. Methoden
- 3. Implementation
- 4. Evaluation
- 5. Fazit

Inverses Rendering

Abb. 1.1: Konzept des inversen Renderings. Eigene Darstellung nach Liu et al.¹

> In dieser Arbeit: Rekonstruktion von Oberflächengeometrie

¹Liu, S. and M. N. Do (2017). "Inverse Rendering and Relighting From Multiple Color Plus Depth Images". In: IEEE Transactions on Image Processing 26.10, pp. 4951–4961.

Anwendungsfelder

- Computer Vision²
- Manipulation der Szeneneigenschaften^{2,3,4,5}
- Industrielle Produktionsabläufe⁶

²Karsch, K. (2020). "Inverse Rendering Techniques for Physically Grounded Image Editing". In: CoRR abs/2001.00986. Url: http://arxiv.org/abs/2001.00986.

³Loscos, C., M.-C. Frasson, G. Drettakis, B. Walter, X. Granier, and P. Poulin (1999). "Interactive Virtual Relighting and Remodeling of Real Scenes". In: Proceedings of the 10th Eurographics Conference on Rendering. EGWR'99. Granada, Spain: Eurographics Association, pp. 329–340.

⁴Zhang, K., F. Luan, Q. Wang, K. Bala, and N. Snavely (2021). "PhySG: Inverse Rendering with Spherical Gaussians for Physics-based Material Editing and Relighting". In: CoRR abs/2104.00674. Url: https://arxiv.org/abs/2104.00674.

⁵Liu, S. and M. N. Do (2017). "Inverse Rendering and Relighting From Multiple Color Plus Depth Images". In: IEEE Transactions on Image Processing 26.10, pp. 4951–4961.

⁶Kassubeck, M., F. Bürgel, S. Castillo, S. Stiller, and M. Magnor (Jan. 2021). "Shape from Caustics: Reconstruction of 3D-Printed Glass from Simulated Caustic Images". In: IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 2877–2886.

Bisherige Ansätze

- Materielle Messmethoden (z.B. Interferometrie)⁷
- Inverses Rendering von Mikrostrukturen
 - Basierend auf Strahlenoptik
 - Begrenzte Diskretisierungsrate
 - Einschränkungen bei der Modellierung der Oberflächenstruktur (z.B. Kratzer)

⁷Dong, Z., B. Walter, S. Marschner, and D. P. Greenberg (Dec. 2016). "Predicting Appearance from Measured Microgeometry of Metal Surfaces". In: ACM Trans. Graph. 35.1. Url: https://doi.org/10.1145/2815618.

Ziel

- Anwendung von inversem Rendering auf Wellenoptik
- Schwierigkeiten: Komplexität und Nichtlinearität

Wellenoptische SVBRDF-Samples

Abb. 1.2: Links: isotropisches Höhenfeld. Rechts: gerendertes BRDF-Slice. Rohdaten von Yan et al.⁸

8Yan, L.-Q., M. Hašan, B. Walter, S. Marschner, and R. Ramamoorthi (July 2018). "Rendering Specular Microgeometry with Wave Optics". In: ACM Trans. Graph. 37.4. Url: https://doi.org/10.1145/3197517.3201351.

Inhalt

- 1. Einleitung
- 2. Methoden
- 3. Implementation
- 4. Evaluation
- 5. Fazit

Analyse durch Synthese

Abb. 2.1: Iterative Approximation durch differenzierbares Rendering und Gradientenabstieg.

Wellenoptische BRDFs

- Phasenverschiebung in reflektierten Lichtwellen
- Interferenz im Kohärenzfeld
- Algorithmus von Yan et al.⁸
 - Komplexwertige Reflexionsfunktion
 - Gewichtung mit Kohärenzkernel
 - Fourier-Transformation
 - Analytisch Berechnung durch Gabor-Kernel

Abb. 2.2: Links: Ausschnitt des Höhenfelds mit bikubischer Interpolation. Rechts: Realteil der Reflexionsfunktion.⁸

⁸Yan, L.-Q., M. Hašan, B. Walter, S. Marschner, and R. Ramamoorthi (July 2018). "Rendering Specular Microgeometry with Wave Optics". In: ACM Trans. Graph. 37.4. Url: https://doi.org/10.1145/3197517.3201351.

Differenzierbares Rendering

- Renderingprozess als Funktion der Höhenwerte
- Loss hinsichtlich Referenzsamples
 - Berechnung des Gradienten
- Automatische Differenzierung (Autodiff)⁹

⁹Margossian, C. C. (2018). "A Review of automatic differentiation and its efficient implementation". In: CoRR abs/1811.05031. arXiv: 1811.05031. url: http://arxiv.org/abs/1811.05031. ¹⁰Nimier-David, M., D. Vicini, T. Zeltner, and W. Jakob (Dec. 2019). "Mitsuba 2: A Retargetable Forward and Inverse Renderer". In: Transactions on Graphics (Proceedings of SIGGRAPH Asia) 38.6.

Optimierung

- Gradientenabstieg im Parameterraum
- Adam Optimizer¹¹
- Customized Mean Squared Logarithmic Error:

$$CMSLE(I,R) = \frac{1}{|\mathcal{P}|} \sum_{p \in \mathcal{P}} \sum_{c \in C} (\log(I_c(p) + \epsilon) - \log(R_c(p) + \epsilon))^2$$

¹¹Kingma, D. P. and J. Ba (2017). Adam: A Method for Stochastic Optimization. arXiv: 1412.6980 [cs.LG].

Inhalt

- 1. Einleitung
- 2. Methoden
- 3. Implementation
- 4. Evaluation
- 5. Fazit

Gesamtprozess

- Optimierungsschleife in Python
 - i. Generation der Referenzsamples
 - ii. Auswertung der Renderingfunktion hinsichtlich Hypothese
 - iii. Berechnung des Loss
 - iv. Backpropagation zu Eingabeparametern
 - v. Gradientenabstieg
- Einbindung des C++ Codes als Library mit pybind11¹²

¹²Jakob, W., J. Rhinelander, and D. Moldovan (2017). pybind11 – Seamless operability between C++11 and Python. https://github.com/pybind/pybind11.

Struktur der Programmbibliothek

Abb. 3.1: Diagramm der wesentlichen Module und Datenstrukturen.

Enoki¹³

- Markierung aller differenzierbaren Datentypen und Operationen
- Massiver Rechenaufwand und Speicherbedarf
- Zuschneiden des Eingabe-Höhenfelds

¹³Jakob, W. (2019). Enoki: structured vectorization and differentiation on modern processor architectures. https://github.com/mitsuba-renderer/enoki.

Inhalt

- 1. Einleitung
- 2. Methoden
- 3. Implementation
- 4. Evaluation
- 5. Fazit

Experimentelle Durchführung

- Einschränkung der Referenz auf einzelnes räumliches Sample
- Geringe Anzahl von Richtungs-Samples
- Erhöhte Learning Rate aufgrund von Initialisierungs-Bias

Experimentelle Ergebnisse

Abb. 4.1: Referenz-BRDF-Slice.

Abb. 4.2: Generierte BRDF der Epochen 0 (Initialisierung), 10, 30, 100, bzw. 300.

Experimentelle Ergebnisse (2)

Abb. 4.3: Grundwahrheit.

Abb. 4.4: Hypothese der Epochen 0, 10, 30, 100, bzw. 300.

Experimentelle Ergebnisse (3)

Abb. 4.5: Loss der Epochen 0, 10, 30, 100, bzw. 300 in Falschfarbendarstellung.

Abb. 4.6: Gradient der Epochen 0, 10, 30, 100, bzw. 300. Positive Werte in grün, negative Werte in rot.

Mehrdeutigkeit und Qualität

Abb. 4.7: Vergleich der Referenz (jeweils links) und der final generierten BRDF (jeweils rechts) für verschiedene Auflösungen.

Erweiterung der Referenz

- Idee: Einschränkung der Lösungskandidaten (lokale Minima)
- Stochastischer Gradientenabstieg
- Unzusammenhängende, verrauschte Gradienten

Initialisierung als Schätzung

Grundwahrheit

Hypothese der Epochen 0, 10, 50, 200 bzw. 1000.

Abb. 4.1: Approximation des Höhenfelds bei Initialisierung als Schätzung.

Initialisierung als Schätzung (2)

Abb. 4.1: Verlauf des CSMLE Loss und des MSE zwischen der Grundwahrheit und der Hypothese. Alle Werte sind normalisiert.

Inhalt

- 1. Einleitung
- 2. Methoden
- 3. Implementation
- 4. Evaluation
- 5. Fazit

Zusammenfassung

- Gradientenabstieg-Ansatz i.A. nicht erfolgreich
- Korrekte Approximation nur bei Initialisierung als Schätzung
- Begrenzte Qualität lokaler Minima für die Fabrikation von SVBRDFs
- Abhängigkeit aller SVBRDF-Samples von allen Höhenwerten des Kohärenzfeldes

Ausblick

- Verbesserung der Implementation
 - Vektorisierung
 - Einbindung in Mitsuba 2¹⁴
- Simulated Annealing
- Deep Learning

¹⁴Nimier-David, M., D. Vicini, T. Zeltner, and W. Jakob (Dec. 2019). "Mitsuba 2: A Retargetable Forward and Inverse Renderer". In: Transactions on Graphics (Proceedings of SIGGRAPH Asia) 38.6.

Referenzen

¹Liu, S. and M. N. Do (2017). "Inverse Rendering and Relighting From Multiple Color Plus Depth Images". In: IEEE Transactions on Image Processing 26.10, pp. 4951–4961.

²Karsch, K. (2020). "Inverse Rendering Techniques for Physically Grounded Image Editing". In: CoRR abs/2001.00986. Url: http://arxiv.org/abs/2001.00986.

³Loscos, C., M.-C. Frasson, G. Drettakis, B. Walter, X. Granier, and P. Poulin (1999). "Interactive Virtual Relighting and Remodeling of Real Scenes". In: Proceedings of the 10th Eurographics Conference on Rendering. EGWR'99. Granada, Spain: Eurographics Association, pp. 329–340.

⁴Zhang, K., F. Luan, Q. Wang, K. Bala, and N. Snavely (2021). "PhySG: Inverse Rendering with Spherical Gaussians for Physics-based Material Editing and Relighting". In: CoRR abs/2104.00674. Url: https://arxiv.org/abs/2104.00674.

⁵Liu, S. and M. N. Do (2017). "Inverse Rendering and Relighting From Multiple Color Plus Depth Images". In: IEEE Transactions on Image Processing 26.10, pp. 4951–4961.

⁶Kassubeck, M., F. Bürgel, S. Castillo, S. Stiller, and M. Magnor (Jan. 2021). "Shape from Caustics: Reconstruction of 3D-Printed Glass from Simulated Caustic Images". In: IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 2877–2886.

⁷Dong, Z., B. Walter, S. Marschner, and D. P. Greenberg (Dec. 2016). "Predicting Appearance from Measured Microgeometry of Metal Surfaces". In: ACM Trans. Graph. 35.1. Url: https://doi.org/10.1145/2815618.

⁸Yan, L.-Q., M. Hašan, B. Walter, S. Marschner, and R. Ramamoorthi (July 2018). "Rendering Specular Microgeometry with Wave Optics". In: ACM Trans. Graph. 37.4. Url: https://doi.org/10.1145/3197517.3201351.

9Margossian, C. C. (2018). "A Review of automatic differentiation and its efficient implementation". In: CoRR abs/1811.05031. arXiv: 1811.05031. Url: http://arxiv.org/abs/1811.05031.

¹⁰Nimier-David, M., D. Vicini, T. Zeltner, and W. Jakob (Dec. 2019). "Mitsuba 2: A Retargetable Forward and Inverse Renderer". In: Transactions on Graphics (Proceedings of SIGGRAPH Asia) 38.6.

¹¹Kingma, D. P. and J. Ba (2017). Adam: A Method for Stochastic Optimization. arXiv: 1412.6980 [cs.LG].

¹²Jakob, W., J. Rhinelander, and D. Moldovan (2017). pybind11 – Seamless operability between C++11 and Python. https://github.com/pybind/pybind11.

¹³Jakob, W. (2019). Enoki: structured vectorization and differentiation on modern processor architectures. https://github.com/mitsuba-renderer/enoki.

¹⁴Nimier-David, M., D. Vicini, T. Zeltner, and W. Jakob (Dec. 2019). "Mitsuba 2: A Retargetable Forward and Inverse Renderer". In: Transactions on Graphics (Proceedings of SIGGRAPH Asia) 38.6.

Mehrdeutigkeit und Qualität (2)

Abb. 4.8: Verlauf verschiedener Loss-Funktionen und des MSE zwischen der Grundwahrheit und der Hypothese. Alle Werte sind normalisiert.