TECHNIQUES IN HOUSE PRICE PREDICTION

Alessandro Pala - alessandro.pala@studenti.unipd.it

Domenico Tremaggi - domenico.tremaggi@studenti.unipd.it

OVERVIEW

- We tried predicting house prices with:
 - o A linear regression
 - o A regularized Poisson regression
 - o A group lasso regression
 - o A neural network
- Enforce sparsity through feature selection variables or groups.

WHY THESE MODELS?

- Linear Regression: Baseline with a simple model.
- Poisson Regression with Elastic Net: Introduce sparsity and reduce multicollinearity.
- Group Lasso: Test grouped predictors (real estate features vs highly correlated variables).
- Neural Network: Establish an upper bound of predictive performance.

WHAT WE EXPECTED

• Feature regularization would outperform others due to the dataset's dimensionality and multicollinearity.

• Group Lasso to outperform other models given the nature of real-world price behavior.

DATASET

- Attributes include temporal, physical, scenic, and locational characteristics.
- Scale and preprocess features for machine learning compatibility.
- Removed duplicates, dropped irrelevant columns, and scaled the data.
- Created engineered variables for richer feature representation.

- An extension of linear regression where the goal is to model the relationship between multiple independent variables and a dependent variable
- Equation:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k + \epsilon$$

• where: Y is the dependent variable, $(X_1, X_2, ..., X_k)$ are the independent variables, β_0 is the intercept, $(\beta_1, \beta_2, ..., \beta_k)$ are the coefficients and ϵ is the error term.

Results:

- Adjusted $R^2 = 1$, low residual standard error.
- Coefficients for bedrooms and intercept are statistically significant; others are not.

Variable	Estimate	Std. Error	t value	p value
(Intercept)	5.405e + 05	4.201e-11	1.287e + 16	< 2e-16 ***
bedrooms	3.677e + 05	7.398e-11	4.970e + 15	< 2e-16 ***
bathrooms	7.485e-11	5.423e-11	1.380e+00	0.168
sqft_living	3.946e-11	7.260e-11	5.440e-01	0.587
$sqft_lot$	-1.557e-10	1.267e-10	-1.229e+00	0.219
floors	7.671e-12	6.084e-11	1.260e-01	0.900
waterfront	-1.241e-11	5.815e-11	-2.130e-01	0.831
view	-6.033e-12	4.719e-11	-1.280e-01	0.898
condition	1.576e-11	5.097e-11	3.090e-01	0.757
grade	3.389e-11	4.487e-11	7.550e-01	0.450
$sqft_above$	7.269e-11	7.782e-11	9.340e-01	0.350
sqft_basement	-4.531e-11	1.110e-10	-4.080e-01	0.683
zipcode	NA	NA	NA	NA
lat	-6.270e-11	5.391e-11	-1.163e+00	0.245
long	-2.108e-11	4.867e-11	-4.330e-01	0.665
sqft_living15	-1.568e-13	5.590e-11	-3.000e-03	0.998
$sqft_lot15$	5.429e-11	7.241e-11	7.500e-01	0.453
age	5.543e-12	6.138e-11	9.000e-02	0.928

Interpretation

- Overfitting evident in "too perfect" results.
- Unsuitable.
- But 'suggests' to take interest in the *bedrooms* variable.

• Poisson distribution:

$$P(Y = y) = \frac{\lambda^y e^{-\lambda}}{y!}$$

• Poisson regression:

$$\log(\lambda_i) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k$$

• where: Y is the dependent variable, $(X_1, X_2, ..., X_k)$ are the independent variables, β_0 is the intercept, $(\beta_1, \beta_2, ..., \beta_k)$ are the coefficient.

• Elastic Net: This kind of regularization combines L_1 and L_2 regularizations and applies penalty to coefficients

Penalty =
$$\gamma \left[\alpha \sum_{j=1}^{k} |\beta_j| + \frac{1}{2} (1 - \alpha) \sum_{j=1}^{k} \beta_j^2 \right]$$

- Where: γ controls the strength of the regularization, α controls the balance between Lasso and Ridge
- Poisson regression with Elastic Net: $\log(\lambda_i) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \cdots + \beta_k X_k + \beta_k X_k$

$$+ \gamma \left[\alpha \sum_{j=1}^{k} |\beta_j| + \frac{1}{2} (1 - \alpha) \sum_{j=1}^{k} \beta_j^2 \right]$$

Results:

- Significant bedroom coefficient, effective sparsity enforcement.
- Regularization mitigated overfitting observed in MLR.

Variable	Coefficient
Intercept	540529.7
Bedrooms	356970.6
Bathrooms	
Sqft_Living	
Sqft_Lot	

Figure 6: Poisson regression actual vs predicted

Interpretation

- *Bedrooms* emerged as the most significant predictor, while other predictors were penalized.
- Predicted values were consistent with actual target values, indicating good generalization.
- Regularization likely the cause of good results rather than GLM.

- An extension of the classical **Lasso** method applied for regularization and variable selection designed to work with grouped variables
- Group coefficients penalty: $\lambda \sum_{g=1}^{G} \|\beta_g\|_2$
- where: β_g represents the coefficient corresponding to the *g*-th group of variables of G groups, $||\beta_g||_2$ is the Euclidean norm of the coefficient vector, λ is a regularization parameter that regulates its strength.
- Thus, the **optimization problem** is:

$$\min_{\beta} \left(\frac{1}{2n} \|y - X\beta\|_{2}^{2} + \lambda \sum_{g=1}^{G} \|\beta_{g}\|_{2} \right)$$

Results:

- Grouped variables did not outperform individual predictors.
- Model struggled to capture better patterns than the others.
- Cross-validation further showed that a very small lambda regularized correctly.

Metric	Value		
mse_1_min	8409.18560397385		
mse_2_min	5329.8980660034		
r2_1_min	0.9999999937796745		
r2_2_min	0.999999960574422		

Interpretation

• No meaningful relationships for the groups.

• Grouping does not align with the dataset's structure.

NEURAL NETWORK

• Architecture: Linear MLP with moderate depth.

• Will the 'best' linear combination give perfect results?

```
self.hidden1 = nn.Linear(input_dim, 64)
self.hidden2 = nn.Linear(64, 128)
self.hidden3 = nn.Linear(128, 64)
self.output = nn.Linear(64, 1)
```

NEURAL NETWORK

NEURAL NETWORK

Interpretation

• The Linear Neural Network worked like a charm.

• We don't need fancy models to do predictions with this dataset.

COMPARISON

- MLR: Overfit but tells us where to look.
- Poisson Regression (Elastic Net): Nice sparsity and great accuracy.
- **Group Lasso:** Effective but with no benefits.
- Neural Network: Best performance is perfect performance even with linear models.

CONCLUSIONS

- Is grouping variables based on hypotheses (e.g., real estate market trends or correlations) intuitively beneficial for modeling?
- Testing this method on the dataset does not support this intuition.
- The grouped regularization did not improve the predictions, likely due to the specific structure of the chosen data.

CONCLUSIONS

• Regardless of testing methods, the data consistently identifies only one feature (*bedrooms*) as a predictor.

• This outcome is inaccurate compared to real-world real estate price prediction models.

• The result is unlikely to generalize to other datasets.