

Из книги А. Д. Полянина «Справочник по линейным уравнениям математической физики». — М.: Физматлит, 2001.

4.5.1. Уравнение вида
$$s(x)rac{\partial^2 w}{\partial t^2}=rac{\partial}{\partial x}\Big[p(x)rac{\partial w}{\partial x}\Big]-q(x)w+\Phi(x,t)$$

Считаем, что функции s, p, p'_x, q — непрерывны и выполняются неравенства s > 0, p > 0 при $x_1 \leqslant x \leqslant x_2$.

4.5.1-1. Общие формулы для решения линейных неоднородных краевых задач.

Решение данного уравнения с общими начальными условиями

$$w = f_0(x)$$
 при $t = 0$,
 $\partial_t w = f_1(x)$ при $t = 0$ (1)

и произвольными линейными неоднородными граничными условиями

$$a_1 \partial_x w + b_1 w = g_1(t)$$
 при $x = x_1$,
 $a_2 \partial_x w + b_2 w = g_2(t)$ при $x = x_2$ (2)

можно записать в виде суммь

$$w(x,t) = \int_{0}^{t} \int_{x_{1}}^{x_{2}} \Phi(\xi,\tau) \mathcal{G}(x,\xi,t-\tau) d\xi d\tau + \frac{\partial}{\partial t} \int_{x_{1}}^{x_{2}} s(\xi) f_{0}(\xi) \mathcal{G}(x,\xi,t) d\xi + \int_{x_{1}}^{x_{2}} s(\xi) f_{1}(\xi) \mathcal{G}(x,\xi,t) d\xi + p(x_{1}) \int_{0}^{t} g_{1}(\tau) \Lambda_{1}(x,t-\tau) d\tau + p(x_{2}) \int_{0}^{t} g_{2}(\tau) \Lambda_{2}(x,t-\tau) d\tau.$$
(3)

Здесь модифицированная функция Грина определяется по формуле
$$\mathcal{G}(x,\xi,t) = \sum_{n=1}^{\infty} \frac{y_n(x)y_n(\xi)\sin(t\sqrt{\lambda_n})}{\|y_n\|^2\sqrt{\lambda_n}}, \qquad \|y_n\|^2 = \int_{x_1}^{x_2} s(x)y_n^2(x)\,dx, \tag{4}$$

где λ_n и $y_n(x)$ — собственные значения и собственные функции задачи Штурма — Лиувилля для линейного обыкновенного дифференциального уравнения второго порядка:

$$[p(x)y'_x]'_x + [\lambda s(x) - q(x)]y = 0,$$

$$a_1 y'_x + b_1 y = 0 \quad \text{при} \quad x = x_1,$$

$$a_2 y'_x + b_2 y = 0 \quad \text{при} \quad x = x_2.$$
(5)

Функции $\Lambda_1(x,t)$ и $\Lambda_2(x,t)$, входящие в подынтегральные выражения двух последних слагаемых в решении (3), выражаются через функцию Грина (4). Соответствующие формулы будут указаны далее при исследовании конкретных краевых задач.

Общие свойства задачи Штурма — Лиувилля (5):

- 1° . Существует бесконечное множество собственных значений $\lambda_1 < \lambda_2 < \lambda_3 < \cdots$, причем $\lambda_n o \infty$ при $n o \infty$ (поэтому может быть лишь конечное число отрицательных собственных
- 2° . Собственные функции $y_n(x)$ и $y_m(x)$ при $n \neq m$ ортогональны между собой с весом s(x)на отрезке $x_1 \leqslant x \leqslant x_2$:

$$\int_{x_1}^{x_2} s(x) y_n(x) y_m(x) dx = 0 \quad \text{при} \quad n \neq m.$$

3°. При выполнении условий

$$q(x) \geqslant 0, \quad a_1 b_1 \leqslant 0, \quad a_2 b_2 \geqslant 0 \tag{6}$$

отрицательных собственных значений нет. Если $q \equiv 0, b_1 = b_2 = 0$, то наименьшим собственным значением будет $\lambda_1=0$, которому отвечает собственная функция $\varphi_1={
m const.}$ В остальных случаях при выполнении условий (6) все собственные значения положительны.

Замечание. Более подробно свойства задачи Штурма — Лиувилля (5) описаны в разд. 1.8.9. Там же приведены асимптотические и приближенные формулы для собственных значений и собственных функций.

4.5.1-2. Первая краевая задача (случай $a_1=a_2=0,\,b_1=b_2=1$).

Решение первой краевой задачи для данного уравнения с начальными условиями (1) и граничными условиями

$$w = g_1(t)$$
 при $x = x_1,$
 $w = g_2(t)$ при $x = x_2$

дается формулами (3)-(4), где

$$\Lambda_1(x,t) = \frac{\partial}{\partial \xi} \mathcal{G}(x,\xi,t) \Big|_{\xi=x_1}, \quad \Lambda_2(x,t) = -\frac{\partial}{\partial \xi} \mathcal{G}(x,\xi,t) \Big|_{\xi=x_2}.$$

4.5.1-3. Вторая краевая задача (случай $a_1=a_2=1, b_1=b_2=0$).

Решение второй краевой задачи для данного уравнения с начальными условиями (1) и граничными условиями

$$\partial_x w = g_1(t)$$
 при $x = x_1$, $\partial_x w = g_2(t)$ при $x = x_2$

дается формулами (3)-(4), где

$$\Lambda_1(x,t) = -\mathcal{G}(x,x_1,t), \quad \Lambda_2(x,t) = \mathcal{G}(x,x_2,t).$$

4.5.1-4. Третья краевая задача (случай $a_1 = a_2 = 1, b_1 \neq 0, b_2 \neq 0$).

Решение третьей краевой задачи для данного уравнения с начальными условиями (1) и граничными условиями (2) при $a_1=a_2=1$ дается формулами (3)–(4), где

$$\Lambda_1(x,t) = -\mathcal{G}(x,x_1,t), \quad \Lambda_2(x,t) = \mathcal{G}(x,x_2,t).$$

4.5.1-5. Смешанная краевая задача (случай $a_1 = b_2 = 0$, $a_2 = b_1 = 1$).

Решение смешанной краевой задачи для данного уравнения с начальными условиями (1) и граничными условиями

$$w=g_1(t)$$
 при $x=x_1,$ $\partial_x w=g_2(t)$ при $x=x_2$

дается формулами (3)-(4), где

$$\Lambda_1(x,t) = \frac{\partial}{\partial \xi} \mathcal{G}(x,\xi,t) \Big|_{\xi=x_1}, \quad \Lambda_2(x,t) = \mathcal{G}(x,x_2,t).$$

|4.5.1-6. Смешанная краевая задача (случай $a_1=b_2=1,\,a_2=b_1=0$).

Решение смешанной краевой задачи для данного уравнения с начальными условиями (1) и граничными условиями

$$\partial_x w = g_1(t)$$
 при $x = x_1,$ $w = g_2(t)$ при $x = x_2$

дается формулами (3)-(4), где

$$\Lambda_1(x,t) = -\mathcal{G}(x,x_1,t), \quad \Lambda_2(x,t) = -\frac{\partial}{\partial \xi} \mathcal{G}(x,\xi,t) \Big|_{\xi=x_2}.$$

Литература к разделу 4.5.1: В. М. Бабич, М. Б. Капилевич, С. Г. Михлин и др. (1964, стр. 48–51, 191–194), В. С. Владимиров (1971, стр. 471–473), А. Д. Полянин (2000 а).