

Edge: Canny

Dr. Tushar Sandhan

Introduction

- Directions with operators

Horizontal

-1	-1	-1
2	2	2
-1	-1	-1

Introduction

- Directions with operators

Horizontal

-1	-1	-1
2	2	2
-1	-1	-1

+45 degrees

2	-1	-1
-1	2	-1
-1	-1	2

Introduction

- Directions with operators

Horizontal

-1	-1	-1
2	2	2
-1	-1	-1

+45 degrees

2	-1	-1
-1	2	-1
-1	-1	2

Vertical

-1	2	-1
-1	2	-1
-1	2	-1

Introduction

- Directions with operators

Horizontal

-1	-1	-1
2	2	2
-1	-1	-1

+45 degrees

2	-1	-1
-1	2	-1
-1	-1	2

Vertical

-1	2	-1
-1	2	-1
-1	2	-1

-45 degrees

-1	-1	2
-1	2	-1
2	-1	-1

Introduction

- Directions with operators

Horizontal

-1	-1	-1
2	2	2
-1	-1	-1

+45 degrees

2	-1	-1
-1	2	-1
-1	-1	2

Vertical

-1	2	-1
-1	2	-1
-1	2	-1

-45 degrees

-1	-1	2
-1	2	-1
2	-1	-1

Introduction

- Directions with operators

Horizontal

-1	-1	-1
2	2	2
-1	-1	-1

+45 degrees

2	-1	-1
-1	2	-1
-1	-1	2

Vertical

-1	2	-1
-1	2	-1
-1	2	-1

-45 degrees

-1	-1	2
-1	2	-1
2	-1	-1

Introduction

- Directions with operators

Horizontal

-1	-1	-1
2	2	2
-1	-1	-1

+45 degrees

2	-1	-1
-1	2	-1
-1	-1	2

Vertical

-1	2	-1
-1	2	-1
-1	2	-1

-45 degrees

-1	-1	2
-1	2	-1
2	-1	-1

Introduction

- Directions with operators

Horizontal

-1	-1	-1
2	2	2
-1	-1	-1

+45 degrees

2	-1	-1
-1	2	-1
-1	-1	2

Vertical

-1	2	-1
-1	2	-1
-1	2	-1

-45 degrees

-1	-1	2
-1	2	-1
2	-1	-1

Kirsch operator (compass)

- Directions with Kirsch
 - direction is defined by the mask that produces max edge magnitude

$$h_{n,m} = \max_{z=1,\dots,8} \sum_{i=-1}^1 \sum_{j=-1}^1 g_{ij}^{(z)} \cdot f_{n+i,m+j}$$

Kirsch operator (compass)

- Directions with Kirsch
 - direction is defined by the mask that produces max edge magnitude

$$h_{n,m} = \max_{z=1,\dots,8} \sum_{i=-1}^1 \sum_{j=-1}^1 g_{ij}^{(z)} \cdot f_{n+i,m+j}$$

$$\mathbf{g}^{(1)} = \begin{bmatrix} +5 & +5 & +5 \\ -3 & 0 & -3 \\ -3 & -3 & -3 \end{bmatrix}, \quad \mathbf{g}^{(2)} = \begin{bmatrix} +5 & +5 & -3 \\ +5 & 0 & -3 \\ -3 & -3 & -3 \end{bmatrix}, \quad \mathbf{g}^{(3)} = \begin{bmatrix} +5 & -3 & -3 \\ +5 & 0 & -3 \\ +5 & -3 & -3 \end{bmatrix}, \quad \mathbf{g}^{(4)} = \begin{bmatrix} -3 & -3 & -3 \\ +5 & 0 & -3 \\ +5 & +5 & -3 \end{bmatrix}$$

Kirsch operator (compass)

- Directions with Kirsch
 - direction is defined by the mask that produces max edge magnitude

$$h_{n,m} = \max_{z=1,\dots,8} \sum_{i=-1}^1 \sum_{j=-1}^1 g_{ij}^{(z)} \cdot f_{n+i,m+j}$$

$$\mathbf{g}^{(1)} = \begin{bmatrix} +5 & +5 & +5 \\ -3 & 0 & -3 \\ -3 & -3 & -3 \end{bmatrix}, \quad \mathbf{g}^{(2)} = \begin{bmatrix} +5 & +5 & -3 \\ +5 & 0 & -3 \\ -3 & -3 & -3 \end{bmatrix}, \quad \mathbf{g}^{(3)} = \begin{bmatrix} +5 & -3 & -3 \\ +5 & 0 & -3 \\ +5 & -3 & -3 \end{bmatrix}, \quad \mathbf{g}^{(4)} = \begin{bmatrix} -3 & -3 & -3 \\ +5 & 0 & -3 \\ +5 & +5 & -3 \end{bmatrix}$$

Kirsch operator (compass)

- Directions with Kirsch
 - direction is defined by the mask that produces max edge magnitude

$$h_{n,m} = \max_{z=1,\dots,8} \sum_{i=-1}^1 \sum_{j=-1}^1 g_{ij}^{(z)} \cdot f_{n+i,m+j}$$

$$\mathbf{g}^{(1)} = \begin{bmatrix} +5 & +5 & +5 \\ -3 & 0 & -3 \\ -3 & -3 & -3 \end{bmatrix}, \quad \mathbf{g}^{(2)} = \begin{bmatrix} +5 & +5 & -3 \\ +5 & 0 & -3 \\ -3 & -3 & -3 \end{bmatrix},$$

$$\mathbf{g}^{(3)} = \begin{bmatrix} +5 & -3 & -3 \\ +5 & 0 & -3 \\ +5 & -3 & -3 \end{bmatrix}, \quad \mathbf{g}^{(4)} = \begin{bmatrix} -3 & -3 & -3 \\ +5 & 0 & -3 \\ +5 & +5 & -3 \end{bmatrix}$$

$\mathbf{g}^{(1)}$

Kirsch operator (compass)

- Directions with Kirsch
 - direction is defined by the mask that produces max edge magnitude

$$h_{n,m} = \max_{z=1,\dots,8} \sum_{i=-1}^1 \sum_{j=-1}^1 g_{ij}^{(z)} \cdot f_{n+i,m+j}$$

$$\mathbf{g}^{(1)} = \begin{bmatrix} +5 & +5 & +5 \\ -3 & 0 & -3 \\ -3 & -3 & -3 \end{bmatrix}, \quad \mathbf{g}^{(2)} = \begin{bmatrix} +5 & +5 & -3 \\ +5 & 0 & -3 \\ -3 & -3 & -3 \end{bmatrix},$$

$$\mathbf{g}^{(3)} = \begin{bmatrix} +5 & -3 & -3 \\ +5 & 0 & -3 \\ +5 & -3 & -3 \end{bmatrix}, \quad \mathbf{g}^{(4)} = \begin{bmatrix} -3 & -3 & -3 \\ +5 & 0 & -3 \\ +5 & +5 & -3 \end{bmatrix}$$

$\mathbf{g}^{(1)}$

$\mathbf{g}^{(2)}$

Kirsch operator (compass)

- Directions with Kirsch
 - direction is defined by the mask that produces max edge magnitude

$$h_{n,m} = \max_{z=1,\dots,8} \sum_{i=-1}^1 \sum_{j=-1}^1 g_{ij}^{(z)} \cdot f_{n+i,m+j}$$

$$\mathbf{g}^{(1)} = \begin{bmatrix} +5 & +5 & +5 \\ -3 & 0 & -3 \\ -3 & -3 & -3 \end{bmatrix}, \quad \mathbf{g}^{(2)} = \begin{bmatrix} +5 & +5 & -3 \\ +5 & 0 & -3 \\ -3 & -3 & -3 \end{bmatrix},$$

$$\mathbf{g}^{(3)} = \begin{bmatrix} +5 & -3 & -3 \\ +5 & 0 & -3 \\ +5 & -3 & -3 \end{bmatrix}, \quad \mathbf{g}^{(4)} = \begin{bmatrix} -3 & -3 & -3 \\ +5 & 0 & -3 \\ +5 & +5 & -3 \end{bmatrix}$$

Kirsch operator (compass)

- Directions with Kirsch
 - direction is defined by the mask that produces max edge magnitude

$$\mathbf{g}^{(1)} = \begin{bmatrix} +5 & +5 & +5 \\ -3 & 0 & -3 \\ -3 & -3 & -3 \end{bmatrix}, \quad \mathbf{g}^{(2)} = \begin{bmatrix} +5 & +5 & -3 \\ +5 & 0 & -3 \\ -3 & -3 & -3 \end{bmatrix},$$

$$h_{n,m} = \max_{z=1,\dots,8} \sum_{i=-1}^1 \sum_{j=-1}^1 g_{ij}^{(z)} \cdot f_{n+i,m+j}$$

$$\mathbf{g}^{(3)} = \begin{bmatrix} +5 & -3 & -3 \\ +5 & 0 & -3 \\ +5 & -3 & -3 \end{bmatrix}, \quad \mathbf{g}^{(4)} = \begin{bmatrix} -3 & -3 & -3 \\ +5 & 0 & -3 \\ +5 & +5 & -3 \end{bmatrix}$$

$\mathbf{g}^{(1)}$

$\mathbf{g}^{(3)}$

$\mathbf{g}^{(2)}$

$\mathbf{g}^{(4)}$

Kirsch operator (compass)

- Directions with Kirsch
 - direction is defined by the mask that produces max edge magnitude

$$h_{n,m} = \max_{z=1,\dots,8} \sum_{i=-1}^1 \sum_{j=-1}^1 g_{ij}^{(z)} \cdot f_{n+i,m+j}$$

$$\mathbf{g}^{(1)} = \begin{bmatrix} +5 & +5 & +5 \\ -3 & 0 & -3 \\ -3 & -3 & -3 \end{bmatrix}, \quad \mathbf{g}^{(2)} = \begin{bmatrix} +5 & +5 & -3 \\ +5 & 0 & -3 \\ -3 & -3 & -3 \end{bmatrix},$$

$$\mathbf{g}^{(3)} = \begin{bmatrix} +5 & -3 & -3 \\ +5 & 0 & -3 \\ +5 & -3 & -3 \end{bmatrix}, \quad \mathbf{g}^{(4)} = \begin{bmatrix} -3 & -3 & -3 \\ +5 & 0 & -3 \\ +5 & +5 & -3 \end{bmatrix}$$

$h_{n,m}$

Kirsch operator (compass)

- Directions with Kirsch
 - direction is defined by the mask that produces max edge magnitude

$$h_{n,m} = \max_{z=1,\dots,8} \sum_{i=-1}^1 \sum_{j=-1}^1 g_{ij}^{(z)} \cdot f_{n+i,m+j}$$

$$\mathbf{g}^{(1)} = \begin{bmatrix} +5 & +5 & +5 \\ -3 & 0 & -3 \\ -3 & -3 & -3 \end{bmatrix}, \quad \mathbf{g}^{(2)} = \begin{bmatrix} +5 & +5 & -3 \\ +5 & 0 & -3 \\ -3 & -3 & -3 \end{bmatrix},$$

$$\mathbf{g}^{(3)} = \begin{bmatrix} +5 & -3 & -3 \\ +5 & 0 & -3 \\ +5 & -3 & -3 \end{bmatrix}, \quad \mathbf{g}^{(4)} = \begin{bmatrix} -3 & -3 & -3 \\ +5 & 0 & -3 \\ +5 & +5 & -3 \end{bmatrix}$$

$h_{n,m}$

Ref: wikipedia

Kirsch operator (compass)

Kirsch operator (compass)

Kirsch operator (compass)

North

Kirsch operator (compass)

North

Kirsch operator (compass)

North

North West

Kirsch operator (compass)

North

North West

Kirsch operator (compass)

North

North West

West

Kirsch operator (compass)

North

North West

West

Kirsch operator (compass)

North

North West

West

South West

Kirsch operator (compass)

North

North West

West

South West

Kirsch operator (compass)

North

North West

West

South West

South

Kirsch operator (compass)

North

North West

West

South West

South

South East

Kirsch operator (compass)

North

North West

West

South West

South

South East

East

Kirsch operator (compass)

North

North West

West

South West

South

South East

East

North East

Introduction

- Single point thick edges

input

Introduction

- Single point thick edges

input

Introduction

- Single point thick edges

input

Canny edges

Introduction

- Single point thick edges

input

Canny edges

Introduction

- Single point thick edges

input

Canny edges

Canny PCB edges

Edge

- What would be important steps in edge det.

Edge

- What would be important steps in edge det.
 - Smooth derivatives

Edge

- What would be important steps in edge det.
 - Smooth derivatives

Edge

- What would be important steps in edge det.
 - Smooth derivatives
 - Thresholding

Edge

- What would be important steps in edge det.
 - Smooth derivatives
 - Thresholding

Edge

- What would be important steps in edge det.
 - Smooth derivatives
 - Thresholding

Edge

- What would be important steps in edge det.
 - Smooth derivatives
 - Thresholding
 - Thinning

Edge

- What would be important steps in edge det.
 - Smooth derivatives
 - Thresholding
 - Thinning
 - Linking

Edge

- What would be important steps in edge det.
 - Smooth derivatives
 - Thresholding
 - Thinning
 - Linking

Edge

- What would be important steps in edge det.
 - Smooth derivatives
 - Thresholding
 - Thinning
 - Linking

Canny edge detector

- Objectives

Canny edge detector

- Objectives
 - low error rate
 - all edges should be found

Canny edge detector

- Objectives

- low error rate
 - all edges should be found
 - good localization of edges
 - centre of true edge at i^{th} pixel : c_i
 - obtained edge point at i^{th} pixel: e_i
 - minimize the distance $\|c_i - e_i\|_2$

Canny edge detector

- Objectives
 - low error rate
 - all edges should be found
 - good localization of edges
 - centre of true edge at i^{th} pixel : c_i
 - obtained edge point at i^{th} pixel: e_i
 - minimize the distance $\|c_i - e_i\|_2$
 - single point edge response
 - 1 point for each true edge point

Canny edge detector

- Image derivatives
 - input image $f(x, y)$
 - smoothed $f_s(x, y)$
 - any operator can be used to get $g_x(x, y)$, $g_y(x, y)$

$$G(x, y) = e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

Canny edge detector

- Image derivatives
 - input image $f(x, y)$
 - smoothed $f_s(x, y)$
 - any operator can be used to get $g_x(x, y)$, $g_y(x, y)$

$$G(x, y) = e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

$$f_s(x, y) = G(x, y) \star f(x, y)$$

Canny edge detector

- Image derivatives
 - input image $f(x, y)$
 - smoothed $f_s(x, y)$
 - any operator can be used to get $g_x(x, y)$, $g_y(x, y)$

$$G(x, y) = e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

$$f_s(x, y) = G(x, y) \star f(x, y)$$

$$g_x(x, y) = \partial f_s(x, y) / \partial x \quad g_y(x, y) = \partial f_s(x, y) / \partial y$$

Canny edge detector

- Image derivatives
 - input image $f(x, y)$
 - smoothed $f_s(x, y)$
 - any operator can be used to get $g_x(x, y)$, $g_y(x, y)$

$$G(x, y) = e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

$$f_s(x, y) = G(x, y) \star f(x, y)$$

$$g_x(x, y) = \partial f_s(x, y) / \partial x \quad g_y(x, y) = \partial f_s(x, y) / \partial y$$

$$M_s(x, y) = \|\nabla f_s(x, y)\| = \sqrt{g_x^2(x, y) + g_y^2(x, y)}$$

Canny edge detector

- Image derivatives
 - input image $f(x, y)$
 - smoothed $f_s(x, y)$
 - any operator can be used to get $g_x(x, y)$, $g_y(x, y)$

$$G(x, y) = e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

$$f_s(x, y) = G(x, y) \star f(x, y)$$

$$g_x(x, y) = \partial f_s(x, y) / \partial x \quad g_y(x, y) = \partial f_s(x, y) / \partial y$$

$$M_s(x, y) = \|\nabla f_s(x, y)\| = \sqrt{g_x^2(x, y) + g_y^2(x, y)}$$

$$\alpha(x, y) = \tan^{-1} \left[\frac{g_y(x, y)}{g_x(x, y)} \right]$$

Canny edge detector

- Thinning
 - $M_s(x, y)$ wide ridges around local maxima
 - ridges thinning is needed
 - non-max suppression
 - suppress where?

$$M_s(x, y) = \|\nabla f_s(x, y)\| = \sqrt{g_x^2(x, y) + g_y^2(x, y)}$$

$$\alpha(x, y) = \tan^{-1} \left[\frac{g_y(x, y)}{g_x(x, y)} \right]$$

Canny edge detector

- Thinning
 - $M_s(x, y)$ wide ridges around local maxima
 - ridges thinning is needed
 - non-max suppression
 - suppress where?
 - on the ridges

$$M_s(x, y) = \|\nabla f_s(x, y)\| = \sqrt{g_x^2(x, y) + g_y^2(x, y)}$$

$$\alpha(x, y) = \tan^{-1} \left[\frac{g_y(x, y)}{g_x(x, y)} \right]$$

Canny edge detector

- Thinning
 - $M_s(x, y)$ wide ridges around local maxima
 - ridges thinning is needed
 - non-max suppression
 - suppress where?
 - on the ridges
 - how?

$$M_s(x, y) = \|\nabla f_s(x, y)\| = \sqrt{g_x^2(x, y) + g_y^2(x, y)}$$

$$\alpha(x, y) = \tan^{-1} \left[\frac{g_y(x, y)}{g_x(x, y)} \right]$$

Canny edge detector

- Thinning
 - $M_s(x, y)$ wide ridges around local maxima
 - ridges thinning is needed
 - non-max suppression
 - suppress where?
 - on the ridges
 - how?
 - walking along edge normals?

$$M_s(x, y) = \|\nabla f_s(x, y)\| = \sqrt{g_x^2(x, y) + g_y^2(x, y)}$$

$$\alpha(x, y) = \tan^{-1} \left[\frac{g_y(x, y)}{g_x(x, y)} \right]$$

Canny edge detector

- Thinning
 - $M_s(x, y)$ wide ridges around local maxima
 - ridges thinning is needed
 - non-max suppression
 - suppress where?
 - on the ridges
 - how?
 - walking along edge normals?

$$M_s(x, y) = \|\nabla f_s(x, y)\| = \sqrt{g_x^2(x, y) + g_y^2(x, y)}$$

$$\alpha(x, y) = \tan^{-1} \left[\frac{g_y(x, y)}{g_x(x, y)} \right]$$

Canny edge detector

- Thinning
 - non-max suppression:
checks whether pixel is local maxima
in grad direction

Canny edge detector

- Thinning
 - non-max suppression:
checks whether pixel is local maxima
in grad direction

Canny edge detector

- Thinning
 - non-max suppression:
checks whether pixel is local maxima
in grad direction

Canny edge detector

- Thinning
 - non-max suppression:
checks whether pixel is local maxima
in grad direction
 - linear interpolation for missing
locations e.g. r, p

Canny edge detector

- Thinning
 - non-max suppression:
checks whether pixel is local maxima
in grad direction
 - linear interpolation for missing
locations e.g. r, p

Canny edge detector

- Thinning
 - non-max suppression:
checks whether pixel is local maxima
in grad direction
 - linear interpolation for missing
locations e.g. r, p

$$\frac{y - y_0}{x - x_0} = \frac{y_1 - y_0}{x_1 - x_0}$$

Canny edge detector

- Thinning
 - non-max suppression:
checks whether pixel is local maxima
in grad direction
 - linear interpolation for missing
locations e.g. r, p

$$\frac{y - y_0}{x - x_0} = \frac{y_1 - y_0}{x_1 - x_0}$$

$$y = y_0 + (x - x_0) \frac{y_1 - y_0}{x_1 - x_0}$$

Canny edge detector

- Thinning
 - non-max suppression:
checks whether pixel is local maxima
in grad direction
 - linear interpolation for missing
locations e.g. r, p

$$\frac{y - y_0}{x - x_0} = \frac{y_1 - y_0}{x_1 - x_0}$$

$$y = y_0 + (x - x_0) \frac{y_1 - y_0}{x_1 - x_0}$$

$$= y_0 \left(1 - \frac{x - x_0}{x_1 - x_0}\right) + y_1 \left(\frac{x - x_0}{x_1 - x_0}\right)$$

Canny edge detector

- Thinning
 - non-max suppression:
checks whether pixel is local maxima
in grad direction
 - linear interpolation for missing
locations e.g. r, p

Canny edge detector

- Thinning
 - non-max suppression:
checks whether pixel is local maxima
in grad direction
 - linear interpolation for missing
locations e.g. r, p

Canny edge detector

- Thinning
 - non-max suppression:
checks whether pixel is local maxima
in grad direction
 - linear interpolation for missing
locations e.g. r, p

Canny edge detector

- Thinning
 - non-max suppression:
checks whether pixel is local maxima
in grad direction
 - linear interpolation for missing
locations e.g. r, p

Canny edge detector

- Thinning
 - non-max suppression:
checks whether pixel is local maxima
in grad direction
 - linear interpolation for missing
locations e.g. r, p

Canny edge detector

- Thinning
 - non-max suppression:
checks whether pixel is local maxima
in grad direction
 - linear interpolation for missing
locations e.g. r, p

after non-max supp

Canny edge detector

Canny edge detector

- **LINKING** Points
 - Canny edge detector
 - It starts with one thing: gradients
 - In the end, it doesn't even matter: which operators have been used
 - at last we have to link the non-suppressed ones!

Canny edge detector

- **LINKING** Points
 - Canny edge detector
 - It starts with one thing: gradients
 - In the end, it doesn't even matter: which operators have been used
 - at last we have to link the non-suppressed ones!

Canny edge detector

- **LINKING** Points
 - Canny edge detector
 - It starts with one thing: gradients
 - In the end, it doesn't even matter: which operators have been used
 - at last we have to link the non-suppressed ones!

Canny edge detector

- **LINKING** Points
 - Canny edge detector
 - It starts with one thing: gradients
 - In the end, it doesn't even matter: which operators have been used
 - at last we have to link the non-suppressed ones!
 - two instruments of thresholds: Hysteresis

Canny edge detector

- **LINKING Points**
 - Canny edge detector
 - It starts with one thing: gradients
 - In the end, it doesn't even matter: which operators have been used
 - at last we have to link the non-suppressed ones!
 - two instruments of thresholds: Hysteresis
 - a. find all edge points using TH^{high}
 - b. from each strong point follow the both side direction \perp to the edge normal
 - c. in that directions, construct the contours of connected edge points
 - d. mark all points greater than TH_{low}

Canny edge detector

- Hysteresis

Canny edge detector

- Hysteresis
 - two instruments of thresholds: Hysteresis

Canny edge detector

- Hysteresis
 - two instruments of thresholds: Hysteresis
 - a. find all edge points using TH^{high}
 - b. from each strong point follow the both side direction \perp to the edge normal
 - c. in that directions, construct the contours of connected edge points
 - d. mark all points greater than TH_{low}

Canny edge detector

- Hysteresis
 - two instruments of thresholds: Hysteresis
 - a. find all edge points using TH^{high}
 - b. from each strong point follow the both side direction \perp to the edge normal
 - c. in that directions, construct the contours of connected edge points
 - d. mark all points greater than TH_{low}

Canny edge detector

- Hysteresis
 - two instruments of thresholds: Hysteresis
 - a. find all edge points using TH^{high}
 - b. from each strong point follow the both side direction \perp to the edge normal
 - c. in that directions, construct the contours of connected edge points
 - d. mark all points greater than TH_{low}

after non-max supp

Canny edge detector

- Hysteresis
 - two instruments of thresholds: Hysteresis
 - a. find all edge points using TH^{high}
 - b. from each strong point follow the both side direction \perp to the edge normal
 - c. in that directions, construct the contours of connected edge points
 - d. mark all points greater than TH_{low}

after non-max supp

double thresh

Canny edge detector

- Hysteresis
 - two instruments of thresholds: Hysteresis
 - a. find all edge points using TH^{high}
 - b. from each strong point follow the both side direction \perp to the edge normal
 - c. in that directions, construct the contours of connected edge points
 - d. mark all points greater than TH_{low}

after non-max supp

double thresh

hysteresis

Canny edge detector

- Hysteresis
 - two instruments of thresholds: Hysteresis
 - a. find all edge points using TH^{high}
 - b. from each strong point follow the both side direction \perp to the edge normal
 - c. in that directions, construct the contours of connected edge points
 - d. mark all points greater than TH_{low}

after non-max supp

double thresh

hysteresis

White – strong edges
Blue – weak connect
Red – remaining weak edges (non-edge)

Canny edge detector

- Hysteresis
 - two instruments of thresholds: Hysteresis
 - a. find all edge points using TH^{high}
 - b. from each strong point follow the both side direction \perp to the edge normal
 - c. in that directions, construct the contours of connected edge points
 - d. mark all points greater than TH_{low}

after non-max supp

double thresh

hysteresis

White – strong edges
Blue – weak connect
Red – remaining weak edges (non-edge)

Ref: P. Kalra

Canny edge detector

- Entire algorithm composition:

Canny edge detector

- Entire algorithm composition:
 1. Filter image with derivatives of Gaussian
 2. Get M, α
 3. Non-max suppression
 - o thin multi-pixel wide edges to a single pixel widths
 4. Linking: the hysteresis
 - o 2 thresholds: TH_{low} , TH^{high}
 - o TH^{high} : to start an edge
 - o TH_{low} : continue started edge

Canny edge detector

Canny edge detector

- Speeding up the beats of operations
 - binning the α (angles)
 - 4 directions

Canny edge detector

- Speeding up the beats of operations
 - binning the α (angles)
 - 4 directions

Horizontal

+45 degrees

Vertical

-45 degrees

Canny edge detector

- Speeding up the beats of operations
 - binning the α (angles)
 - 4 directions

Horizontal
+45 degrees
Vertical
-45 degrees

Canny edge detector

- Speeding up the beats of operations

- binning the α (angles)
 - 4 directions

Horizontal
+45 degrees
Vertical
-45 degrees

Canny edge detector

- Speeding up the beats of operations
 - binning the α (angles)
 - get the directional bin $Bin()$ closest to α
 - from previous operations edge: $M(x, y)$
 - suppression
 - If $M(x', y') > M(x, y)$ then
 $M(x, y) \rightarrow 0$
 - where neighbors $x', y' \leftarrow Bin(x, y)$

Canny edge detector

1. **Smoothing:** Blurring of the image to remove noise.
2. **Finding gradients:** The edges should be marked where the gradients of the image has large magnitudes.
3. **Non-maximum suppression:** Only local maxima should be marked as edges.
4. **Double thresholding:** Potential edges are determined by thresholding.
5. **Edge tracking by hysteresis:** Final edges are determined by suppressing all edges that are not connected to a very certain (strong) edge.

Canny edge detector

1. **Smoothing:** Blurring of the image to remove noise.
2. **Finding gradients:** The edges should be marked where the gradients of the image has large magnitudes.
3. **Non-maximum suppression:** Only local maxima should be marked as edges.
4. **Double thresholding:** Potential edges are determined by thresholding.
5. **Edge tracking by hysteresis:** Final edges are determined by suppressing all edges that are not connected to a very certain (strong) edge.

Ref: P. Kalra

Canny edge detector

1. **Smoothing:** Blurring of the image to remove noise.
2. **Finding gradients:** The edges should be marked where the gradients of the image has large magnitudes.
3. **Non-maximum suppression:** Only local maxima should be marked as edges.
4. **Double thresholding:** Potential edges are determined by thresholding.
5. **Edge tracking by hysteresis:** Final edges are determined by suppressing all edges that are not connected to a very certain (strong) edge.

Ref: P. Kalra

Canny edge detector

- Varying σ

input

Canny edge detector

- Varying σ

input

Canny edge detector

- Varying σ

input

Canny edge detector

- Varying σ

input

σ small

Canny edge detector

- Varying σ

input

σ small

σ large

Canny edge detector

- Comparing other edge detectors

input

Canny edge detector

- Comparing other edge detectors

input

Sobel with TH

Canny edge detector

- Comparing other edge detectors

input

Sobel with TH

LoG zero crossings

Canny edge detector

- Comparing other edge detectors

input

Sobel with TH

LoG zero crossings

Canny

Canny edge detector

- Comparing other edge detectors

input

Canny edge detector

- Comparing other edge detectors

input

Sobel with TH

Canny edge detector

- Comparing other edge detectors

input

Sobel with TH

LoG zero crossings

Canny edge detector

- Comparing other edge detectors

input

Sobel with TH

LoG zero crossings

Canny

A canny player with a Canny edge!

A canny player with a Canny edge!

Messi

A canny player with a Canny edge!

Messi

A canny player with a Canny edge!

Messi

Sobel

A canny player with a Canny edge!

Messi

Sobel

A canny player with a Canny edge!

Messi

Sobel

Laplacian

A canny player with a Canny edge!

Messi

Sobel

Laplacian

A canny player with a Canny edge!

Messi

Sobel

Laplacian

Canny

A canny player with a Canny edge!

Messi

who will you
go with?

Sobel

Laplacian

Canny

Conclusion

- Canny edge detector

Conclusion

- Canny edge detector

- Single point thick edges

- Canny operations

- Thinning: non-max suppression
- Linking: double TH hysteresis
- High accuracy is paid via computational expenses

Conclusion

- Canny edge detector

❑ Single point thick edges

❑ Canny operations

- Thinning: non-max suppression
- Linking: double TH hysteresis
- High accuracy is paid via computational expenses

Conclusion

- Canny edge detector

❑ Single point thick edges

❑ Canny operations

- Thinning: non-max suppression
- Linking: double TH hysteresis
- High accuracy is paid via computational expenses

Go with a ‘canny’ player, for accuracy

Conclusion

- Canny edge detector

❑ Single point thick edges

❑ Canny operations

- Thinning: non-max suppression
- Linking: double TH hysteresis
- High accuracy is paid via computational expenses

Go with a 'canny' player, for accuracy

And with uSθin BθLt, for speed!

Conclusion

- Canny edge detector

❑ Single point thick edges

❑ Canny operations

- Thinning: non-max suppression
- Linking: double TH hysteresis
- High accuracy is paid via computational expenses

Go with a 'canny' player, for accuracy

And with uSθin BθLt, for speed!

