Mathematics Department

Mathematics Department
Working out space

Independent Public School	SHOIR CHELLOUNDE
Exceptional schooling. Exceptional students.	
PERTH MODERN SCHOOL	

Course Specialist Test 2 Year 12

Number of questions:	L	
Working time allowed fo	or this task: 40 mins	•
Reading time for this tes	snim 2 : 1	
Таѕk type:	Response/Investig	noite

Materials required: Upto 3 classpads/calculators

Standard items: Pens (blue/black preferred), pencils (including coloured), sharpener,

correction fluid/tape, eraser, ruler, highlighters

Special items: Drawing instruments, templates, notes on one unfolded sheet of A4 paper, and up to three calculators approved for use in the WACE

examinations

Marks available: 42 marks

Task weighting: 13%

Formula sheet provided: no but formulae stated on page 2

Note: All part questions worth more than 2 marks require working to obtain full marks.

test fo bn∃

12 | Page

1 | B 3 g 6

Useful formulae

Complex numbers

Cartesian form				
z = a + bi	$\overline{z} = a - bi$			
Mod $(z) = z = \sqrt{a^2 + b^2} = r$	$Arg(z) = \theta$, $\tan \theta = \frac{b}{a}$, $-\pi < \theta \le \pi$			
$ z_1 z_2 = z_1 z_2 $	$\left \frac{z_1}{z_2}\right = \frac{ z_1 }{ z_2 }$			
$\arg (z_1 z_2) = \arg (z_1) + \arg (z_2)$	$\arg\left(\frac{z_1}{z_2}\right) = \arg\left(z_1\right) - \arg\left(z_2\right)$			
$z\overline{z}= z ^2$	$z^{-1} = \frac{1}{z} = \frac{\overline{z}}{ z ^2}$			
$\overline{z_1 + z_2} = \overline{z}_1 + \overline{z}_2$	$\overline{z_1}\overline{z_2} = \overline{z_1}\overline{z_2}$			
Polar form				
$z = a + bi = r(\cos \theta + i \sin \theta) = r \operatorname{cis} \theta$	$\overline{z} = r \operatorname{cis} (-\theta)$			
$z_1 z_2 = r_1 r_2 cis(\theta_1 + \theta_2)$	$\frac{z_1}{z_2} = \frac{r_1}{r_2} \operatorname{cis} (\theta_1 - \theta_2)$			
$cis(\theta_1 + \theta_2) = cis \ \theta_1 \ cis \ \theta_2$	$cis(-\theta) = \frac{1}{cis \theta}$			
De Moivre's theorem				
$z^n = z ^n cis(n\theta)$	$(cis \theta)^n = \cos n\theta + i \sin n\theta$			
$z^{rac{1}{q}} = r^{rac{1}{q}} \left(\cos rac{ heta + 2\pi k}{q} + i \sin rac{ heta + 2\pi k}{q} ight), ext{ for } k ext{ an integer}$				

$$(x-\alpha)(x-\beta) = x^2 - (\alpha + \beta)x + \alpha\beta$$

11	Рa	g e

Mathematics Department

Working out space

Working out space

Q1 (2 & 3 = 5 marks)

Perth Modern

Consider the function f(x) plotted below.

.
$$\delta = |(x) \mathcal{t}|$$
 not evioe (s

3 | b a g e

p) Sketch
$$y = |f(|x|)|$$
 on the axes below.

Consider the functions $f(x) = \frac{1}{\sqrt{2x-9}}$ and $g(x) = \frac{1}{3x-1}$.

- a) Determine the natural domain and range of g(x).
- b) Does $f \circ g(x)$ exist over the natural domain of g(x)? Explain.

c) Determine the largest possible domain for $f \circ g(x)$.

Q3 (3, 3, 1 & 2 = 9 marks)

Consider the function $f(x) = 3x^2 - 12x + 19$, $x \le 2$.

a) Determine $f^{-1}(x)$ and state its domain.

4 | P a g e

Mathematics Department

Q7 continued on next page

b) Determine the exact point in space, if any, where the smoke trails overlap at some time in the first 6 hours. (3 marks)

Perth Modern Mathematics Department

D3 continued

d) Determine value(s) of x, if any, such that $f \circ f(x) = x$. Explain.

Q4 (3 marks)

5 Page

positive integer, determine the smallest possible value for τ in the form 3^p . Justify your answer. If a = n is a solution to the equation a = n where a = n is a solution to the equation a = n is a

> Perth Modern Mathematics Department

Consider two rockets A&B that are ignited at the same time from different positions and move with Q7 (3 & 3 = 6 marks)

s) Determine the distance of the closest approach between the rockets using scalar dot product

$$\frac{1}{A \cdot m\lambda} \left(\frac{1}{1} \right) = \frac{1}{a^{4}}, \quad m\lambda \left(\frac{\varepsilon}{2} \right) = \frac{1}{a^{4}}$$

$$\frac{1}{A \cdot m\lambda} \left(\frac{\zeta}{2} \right) = \frac{1}{a^{4}}, \quad m\lambda \left(\frac{\varepsilon}{2} \right) = \frac{1}{a^{4}}$$

constant velocities as shown below.

8 | Page

Both rockets leave a smoke trail that stays in the air for at least 6 hours.

(3 marks)

Mathematics Department

Perth Modern

Q5 (3 & 3 = 6 marks)

Consider a triangular plane with vertices A(3,0,0), B(0,4,0) & C(0,0,5) shaded as shown below. There is a light globe situated at point D(5,11,7).

a) Determine the cartesian equation of the shaded plane ABC above.

6 | P a g e

Mathematics Department Perth Modern

Q5 continued

b) Determine the distance of the globe to the shaded plane ABC.

Q6 (5 marks)

7 | Page

Consider the line A
$$r = \begin{pmatrix} -3 \\ 0 \\ 11 \end{pmatrix} + \lambda \begin{pmatrix} 5 \\ -1 \\ 2 \end{pmatrix}$$
 and the sphere B $r - \begin{pmatrix} -3 \\ \alpha \\ 1 \end{pmatrix} = 10$ where α is a real constant.

Determine all possible values of $\, \alpha \,$,to one decimal place such that:

- i) the line misses the sphere.
- i) the line just touches the sphere.
- iii) the line pierces the sphere at two points.