ПРАКТИКУМ ПО ОСНОВАМ ИЗМЕРИТЕЛЬНЫХ ТЕХНОЛОГИЙ

Работа №2.1. Определение погрешности цифрового вольтметра методом прямых измерений

1. ЦЕЛЬ РАБОТЫ

Получение навыков организации и проведения метрологических работ на примере определения (контроля) погрешности цифрового вольтметра методом прямых измерений.

2. ЗАДАНИЕ ДЛЯ ДОМАШНЕЙ ПОДГОТОВКИ

Используя рекомендованную литературу, настоящее описание и Приложение 1 к Практикуму, ознакомьтесь со следующими вопросами:

- Сущность и область применения понятий: единство измерений, метрологическая аттестация, поверка средств измерений, метрологические характеристики средств измерений.
- Организация и порядок проведения поверки средств измерений.
- Требованиями к построению, содержанию и изложению методик поверки средств измерений.
- Составление, содержание и порядок применения поверочных схем.
- Способы получения и представления результатов поверки.
- Принцип действия, устройство и характеристики средств измерений, используемых при выполнении работы.

3. СВЕДЕНИЯ, НЕОБХОДИМЫЕ ДЛЯ ВЫПОЛНЕНИЯ РАБОТЫ

Необходимые для выполнения работы теоретические сведения содержатся в разделе 2.0 и рекомендованной к этой главе литературе.

4. ОПИСАНИЕ ЛАБОРАТОРНОГО СТЕНДА

Лабораторный стенд представляет собой LabVIEW компьютерную модель, располагающуюся на рабочем столе персонального компьютера. На стенде (рис.2.1.1) находятся модели прибора для поверки вольтметров, электронного цифрового мультиметра и устройства управления.

- © МИРЭА
- © Кафедра информационных систем

Рис.2.1.1 Вид модели лабораторного стенда на рабочем столе компьютера при выполнении лабораторной работы №2.1 (1-прибор для поверки вольтметров, 2-электронный цифровой мультиметр, 3-устройство управления, 4-кнопка запуска режима автоматической поверки, 5- кнопка запуска режима сохранения экспериментальных данных).

При выполнении работы модели средств измерений и вспомогательных устройств служат для решения описанных ниже задач.

Модель прибора для поверки вольтметров (ППВ) используется при моделировании работы регулируемой многозначной меры постоянного напряжения с цифровым управлением. При выполнении работы ППВ является образцовым средством измерений, и обеспечивает воспроизведение с высокой точностью значения постоянного напряжения.

Модель электронного цифрового мультиметра (см. Приложение 1) используется при моделировании процесса прямых измерений постоянного напряжения методом непосредственной оценки. В данной работе модель мультиметра играет роль рабочего цифрового вольтметра, погрешность которого подлежит определению.

Модель устройства управления служит для управления работой ППВ и © МИРЭА

© Кафедра информационных систем

поверяемого вольтметра, сбора измерительной информации, получаемой в процессе поверки, а также для передачи измерительной информации в компьютер с целью ее сохранения.

Схема соединения ППВ, поверяемого цифрового мультиметра, устройства управления и компьютера показана на рис. 2.1.2. Отметим, что в качестве компьютера, изображенного на рисунке, используется персональный компьютер, на котором выполняется работа.

Рис. 2.1.2. Схема соединения приборов при выполнении работы 2.1.

5. РАБОЧЕЕ ЗАДАНИЕ

- 5.1. Изучите описание работы, раздел 2.0 настоящего пособия и рекомендованную литературу. Продумайте свои действия за компьютером.
- 5.2. Запустите программу лабораторного практикума и выберите лабораторную работу №2.1 «Определение погрешности цифрового вольтметра методом прямых измерений» в группе работ «Поверка средств измерений». На рабочем столе компьютера автоматически появится модель лабораторного стенда с моделями средств измерений и вспомогательных устройств (Рис. 2.1.1) и окно, созданного в среде МЅ

[©] МИРЭА

[©] Кафедра информационных систем

- Excel, лабораторного журнала, который служит для формирования отчета по результатам выполнения лабораторной работы.
- 5.3. Ознакомьтесь с расположением моделей отдельных средств измерений на рабочем столе и активизируйте их. Опробуйте органы управления моделями. Изменяя в ручном режиме напряжение на выходе ППВ проследите за изменениями показаний цифрового мультиметра. Поменяйте пределы измерений и вновь проследите за изменениями показаний мультиметра по мере изменения напряжения на выходе ППВ. После того, как Вы убедитесь в работоспособности моделей, выключите их.
- 5.4. Приготовьте к работе проверенную на отсутствие вирусов, отформатированную 3,5-дюймовую дискету и вставьте её в дисковод.
- 5.5. Подготовьте к работе прибор для проверки вольтметров и цифровой мультиметр:
- Включите ППВ, нажав кнопку «Вкл»
- Откалибруйте ППВ, нажав кнопку «Калибровка».
- Включите цифровой мультиметр, нажав кнопку «Вкл».
 - 5.6. Приступите к выполнению лабораторной работы.

Задание 1 Определение погрешности цифрового мультиметра в ручном режиме.

- а. Установите на выходе ППВ, используя кнопки «Разряды», напряжение 0,000000 мВ.
- b. Установите предел измерения цифрового вольтметра равным 200мB.
- с. Последовательно вручную увеличивайте напряжение на выходе ППВ от 0 мВ до 200 мВ с шагом 25 мВ. Измерьте с помощью цифрового вольтметра напряжение на выходе ППВ во всех полученных точках. Полученные данные запишите в лабораторный журнал.
- d. Повторите предыдущий пункт задания с той разницей, что напряжение на выходе ППВ последовательно уменьшайте с шагом 25 мВ от 200 мВ до 0 мВ.
- е. Покажите преподавателю или оцените самостоятельно полученные данные, если они удовлетворительны, сохраните результаты в лабораторном журнале..

Задание 2 Определение погрешности цифрового мультиметра в

- © МИРЭА
- © Кафедра информационных систем

автоматическом режиме.

- а. Установите с помощью устройства управления минимальное напряжение на выходе ППВ, равным 0,000000 В, а максимальное 1,990000 В.
- b. Выберите и установите шаг изменения напряжения на выходе ППВ (рекомендуемые значения шага составляют 10 мВ)
- с. Установите предел измерения вольтметра, равным 2 В.
- d. Включите, с помощью расположенной на передней панели устройства управления кнопки «Автоматическая поверка», режим автоматической поверки и наблюдайте за ходом ее выполнения.
- е. Сохраните результаты автоматической поверки, для чего введите имя файла в соответствующий индикатор устройства управления и нажмите кнопку «Сохранить».
- f. Считайте сохраненный файл на отдельный лист MS Excel и изучите полученные данные.
 - 5.7. Сохраните результаты.
 - 5.8. После сохранения результатов закройте приложение LabVIEW и, при необходимости, выключите компьютер.

6. ОФОРМЛЕНИЕ ОТЧЕТА

Отчет должен содержать:

- Сведения о цели и порядке выполнения работы.
- Сведения об использованных методах измерений.
- Сведения о характеристиках использованных средств измерений, включая сведения о возможности применения прибора для поверки вольтметров в качестве образцового средства измерений, для определения (контроля) погрешности цифрового мультиметра.
- Необходимые электрические схемы.
- Экспериментальные данные, включая рекомендации по числу значащих цифр, фиксируемых в протоколе и рекомендации о пределах измерений и показаниях отсчетного устройства, при которых необходимо установить (проконтролировать) погрешность цифрового вольтметра.
- Полностью заполненные таблицы отчета (см. табл. 2.1.1), а также примеры расчетов, выполнявшихся при заполнении таблиц.
- © МИРЭА
- © Кафедра информационных систем

- графики зависимости абсолютной и относительной погрешностей рабочего средства измерений от его показаний, с выделенными на них режимами возрастания и убывания показаний, а также полосами допустимых погрешностей;
- графики зависимостей абсолютной и относительной вариации показаний рабочего средства измерений от его показаний с выделенными на них полосами допустимых погрешностей.
- Анализ полученных данных и вывод об особенностях и качестве проведенных измерений и результатах проделанной работы.

Таблица 2.1.1.

Определение (контроль) погрешности цифрового вольтметра методом прямых измерений постоянного										
напряжения на выходе прибора для поверки вольтметров (ППВ) на пределеВ										
Напряжение на выходе ППВ, В	Показания цифрового вольтметра, В		Абсолютная			Относительная			Вариация	
			погрешность			погрешность			показаний	
			вольтметра, мВ			вольтметра, %			вольтметра	
			расчет	возрастание	убывание	расчет	возрастание	убывание	гная, мВ	относительная, %
	возрастание	убывание	pac	возрас	убыв	pac	возрас	убыв	абсолютная,	относил

7. КОНТРОЛЬНЫЕ ВОПРОСЫ

- 7.1 Что такое поверочная схема?
- 7.2 Можно ли на практике для поверки цифрового вольтметра, обладающего метрологическими характеристиками, подобными характеристикам модели, выбрать прибор для поверки вольтметров, с метрологическими характеристиками, аналогичными характеристикам использованной модели?
- 7.3 Как называется метод поверки, если в качестве образцового средства измерений выступает прибор для поверки вольтметров, а в качестве рабочего цифровой вольтметр?
- 7.4 Назовите основные признаки методики поверки, использованной в работе.
- 7.5 Что является результатом поверки?
- 7.6 Какие средства измерения не подлежат поверке?

© МИРЭА

[©] Кафедра информационных систем