Numerical Analysis, FMN011

Carmen Arévalo
Lund University
carmen@maths.lth.se

Bézier Curves

BERNSTEIN POLYNOMIALS

Binomial expansion of 1:

$$1 = (t + (1 - t))^n = \sum_{i=0}^n \binom{n}{i} t^i (1 - t)^{n-i}$$

The **Bernstein polynomials** of degree n are

$$B_i^n(t) = \binom{n}{i} t^i (1-t)^{n-i}, \quad i = 0, 1, \dots, n$$

COEFFICIENTS OF THE BERNSTEIN POLYNOMIALS

The coefficients can be obtained from Pascal's Triangle:

					1						n = 0
				1		1					n = 1
			1		2		1				n = 2
		1		3		3		1			n = 3
	1		4		6		4		1		n = 4
1		5		10		10		5		1	n = 5

PROPERTIES OF BERNSTEIN POLYNOMIALS

- Recursion formula: $B_i^n(t) = (1-t)B_i^{n-1}(t) + tB_{i-1}^{n-1}(t)$
- Partition of unity: $\sum_{i=0}^{n} B_i^n(t) \equiv 1$
- Linearly independent
- Symmetric: $B_i^n(t) = B_{n-i}^n(1-t)$
- Roots only at 0 and 1: $B_i^n(0)=0$ $(i=1,\ldots,n)$, $B_i^n(1)=0$ $(i=0,\ldots,n-1)$
- **Positive**: $B_i^n(t) > 0$ for 0 < t < 1

BÉZIER CURVES

The n+1 Bernstein polynomials form a basis of all polynomials of degree < n.

Every polynomial curve of degree n can be written as

$$\mathbf{b}(u(t)) = \sum_{i=0}^{n} \mathbf{b_i} B_i^n(t)$$

where u = (1 - t)c + td and $t \in [0, 1]$.

The coefficients \mathbf{b}_i are points and are called **Bézier points** or **control points**. They are the vertices of the **Bézier polygon** of $\mathbf{b}(t)$ over the interval [c,d].

Arévalo FMN011

SOME PROPERTIES OF BÉZIER CURVES

- Convex hull property: A Bézier curve is entirely contained inside the convex hull of its control points.
- Endpoints: $b(c) = b_0$ and $b(d) = b_n$
- **Symmetry**: If the control points are given in reverse order, the shape of the Bézier curve is the same, but the curve is transversed in the opposite direction.
- Variation diminishing property: The Bézier curve will not wiggle more than its control polygon.

Arévalo FMN011

CALCULATION OF A POINT ON A BÉZIER CURVE

$$\mathbf{b}(u) = \sum_{i=0}^{n} \mathbf{b_i^0 B_i^n}(t), \quad \text{with} \quad u = (1-t)c + td$$

Use the recurrence relation and collect terms:

$$\mathbf{b}(u) = \sum_{i=0}^{n} \mathbf{b_i^0} B_i^n(t) = \sum_{i=0}^{n-1} \mathbf{b_i^1} B_i^{n-1}(t) = \dots = \sum_{i=0}^{0} \mathbf{b_i^n} B_i^0(t) = \mathbf{b_0^n}$$

where

$$\mathbf{b_i^{k+1}} = (1-t)\mathbf{b_i^k} + t\mathbf{b_{i+1}^k}$$

THE DE CASTELJAU ALGORITHM

To compute a point for $u=u(t_0)$, on the Bézier curve $\mathbf{b}(u)$, with control points $\mathbf{b_0}, \mathbf{b_1}, \dots, \mathbf{b_n}$:

- 1. Define $\mathbf{b_i^{(0)}} = \mathbf{b_i}$ for $i = 0, \dots, n$.
- 2. for j=1:n for i=0:n-j $\mathbf{b_i^j} = (1-t_0)\mathbf{b_i^{j-1}} + t_0\mathbf{b_{i+1}^{j-1}}$
- 3. $\mathbf{b}(t_0) = \mathbf{b_0^n}$

ILLUSTRATION OF DE CASTELJAU's ALGORITHM

Evaluation of a single point on the Bézier curve. In this case, for t=1/6.

THE DE CASTELJAU ARRAY

$$\mathbf{b_0^0}$$

$$b_1^0 b_0^1$$

· ·

$$\mathbf{b_n^0} \quad \mathbf{b_{n-1}^1} \quad \cdots \quad \mathbf{b_0^n} \quad = \quad \mathbf{b}(t_0)$$

Arévalo FMN011