Activity_Course 3 Waze project lab

February 21, 2025

1 Waze Project

Course 3 - Go Beyond the Numbers: Translate Data into Insights

Your team is still in the early stages of their user churn project. So far, you've completed a project proposal and used Python to inspect and organize Waze's user data.

You check your inbox and notice a new message from Chidi Ga, your team's Senior Data Analyst. Chidi is pleased with the work you have already completed and requests your assistance with exploratory data analysis (EDA) and further data visualization. Harriet Hadzic, Waze's Director of Data Analysis, will want to review a Python notebook that shows your data exploration and visualization.

A notebook was structured and prepared to help you in this project. Please complete the following questions and prepare an executive summary.

2 Course 3 End-of-course project: Exploratory data analysis

In this activity, you will examine data provided and prepare it for analysis.

The purpose of this project is to conduct exploratory data analysis (EDA) on a provided dataset.

The goal is to continue the examination of the data that you began in the previous Course, adding relevant visualizations that help communicate the story that the data tells.

This activity has 4 parts:

- **Part 1:** Imports, links, and loading
- Part 2: Data Exploration * Data cleaning
- Part 3: Building visualizations
- **Part 4:** Evaluating and sharing results

Follow the instructions and answer the question below to complete the activity. Then, you will complete an executive summary using the questions listed on the PACE Strategy Document.

Be sure to complete this activity before moving on. The next course item will provide you with a completed exemplar to compare to your own work.

3 Visualize a story in Python

4 PACE stages

Throughout these project notebooks, you'll see references to the problem-solving framework PACE. The following notebook components are labeled with the respective PACE stage: Plan, Analyze, Construct, and Execute.

4.1 PACE: Plan

Consider the questions in your PACE Strategy Document to reflect on the Plan stage.

4.1.1 Task 1. Imports and data loading

For EDA of the data, import the data and packages that will be most helpful, such as pandas, numpy, and matplotlib.

```
[108]: ### YOUR CODE HERE ###
# Import pandas for data manipulation and analysis
import pandas as pd

# Import numpy for numerical operations
import numpy as np

# Import matplotlib.pyplot for plotting and visualization
import matplotlib.pyplot as plt
import seaborn as sns
```

Read in the data and store it as a dataframe object called df.

Note: As shown in this cell, the dataset has been automatically loaded in for you. You do not need to download the .csv file, or provide more code, in order to access the dataset and proceed with this lab. Please continue with this activity by completing the following instructions.

```
[99]: # Load the dataset into a dataframe
df = pd.read_csv('waze_dataset.csv')
```

4.2 PACE: Analyze

Consider the questions in your PACE Strategy Document and those below where applicable to complete your code: 1. Does the data need to be restructured or converted into usable formats?

2. Are there any variables that have missing data?

==> ENTER YOUR RESPONSES TO QUESTIONS 1-2 HERE

4.2.1 Task 2. Data exploration and cleaning

Consider the following questions:

- 1. Given the scenario, which data columns are most applicable?
- 2. Which data columns can you eliminate, knowing they won't solve your problem scenario?
- 3. How would you check for missing data? And how would you handle missing data (if any)?
- 4. How would you check for outliers? And how would handle outliers (if any)?
- ==> ENTER YOUR RESPONSES TO QUESTIONS 1-4 HERE

Data overview and summary statistics Use the following methods and attributes on the dataframe:

- head()
- size
- describe()
- info()

It's always helpful to have this information at the beginning of a project, where you can always refer back to if needed.

```
[4]: ### YOUR CODE HERE ###
df.head()
```

[4]:		ID	label	sessions	drives	total_s	essions	n_day	s_after_onbo	arding	\
	0	0	retained	283	226	296	.748273			2276	
	1	1	retained	133	107	326	.896596			1225	
2		2	retained	114	95	135	.522926			2651	
	3	3	retained	49	40	67	.589221			15	
	4	4	retained	84	68	168	.247020			1562	
		tot	al_navigat	ions_fav1	total_n	avigatio	ns_fav2	drive	n_km_drives	\	
	0			208			0		2628.845068		
	1	19			64			13715.920550			
	2			0			0		3059.148818		
	3	322		7			913.591123				
	4			166			5		3950.202008		
		dur	ation_minu	tes_drives	activi	ty_days	driving	_days	device		
	0		1	985.775061		28		19	Android		
	1		3	160.472914		13		11	iPhone		
	2		1	610.735904		14		8	Android		
	3			587.196542		7		3	iPhone		
	4		1	219.555924		27		18	Android		

```
[7]:  ### YOUR CODE HERE ###

df.size
```

[7]: 194987

25%

8.000000

Generate summary statistics using the describe() method.

[9]: ### YOUR CODE HERE ###

df.describe()

[9]:		ID	sessions	drives	total_sessions	\			
	count	14999.000000	14999.000000	14999.000000	14999.000000				
	mean	7499.000000	80.633776	67.281152	189.964447				
	std	4329.982679	80.699065	65.913872	136.405128				
	min	0.000000	0.000000	0.000000	0.220211				
	25%	3749.500000	23.000000	20.000000	90.661156				
	50%	7499.000000	56.000000	48.000000	159.568115				
	75%	11248.500000	112.000000	93.000000	254.192341				
	max	14998.000000	743.000000	596.000000	1216.154633				
	<pre>n_days_after_onboarding total_navigations_fav1 \</pre>								
	count	149	999.000000	14999.	14999.000000				
	mean	17	749.837789	121.	121.605974				
	std	10	008.513876	148.	121544				
	min		4.000000	0.00000					
	25%	8	378.000000	9.	000000				
	50%	17	741.000000	71.000000					
	75%	26	323.500000	178.000000					
	max	35	500.000000	1236.	000000				
	total_navigati		ions fav2 dr	iven_km_drives	duration_minute	es drives	\		
			99.000000	14999.000000	_	9.000000	·		
	mean	2	29.672512	4039.340921	1860.9760				
	std	4	15.394651	2502.149334	144	6.702288			
	min		0.000000	60.441250	1	8.282082			
	25%		0.000000	2212.600607	83	35.996260			
	50%		9.000000	3493.858085	147	8.249859			
	75%	4	13.000000	5289.861262	246	34.362632			
	max	41	15.000000	21183.401890	1585	51.727160			
		activity_days	driving_day	S					
	count	14999.000000	14999.00000	0					
	mean	15.537102	12.17987	9					
	std	9.004655	7.82403	6					
	min	0.000000	0.00000	0					

5.000000

```
50%
           16.000000
                           12.000000
75%
            23.000000
                           19.000000
max
           31.000000
                           30.000000
```

And summary information using the info() method.

[10]: ### YOUR CODE HERE ### df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 14999 entries, 0 to 14998 Data columns (total 13 columns):

Dava	COTAMID (COCAT TO COTAMIC	· ·			
#	Column	Non-Null Count	Dtype		
0	ID	14999 non-null	int64		
1	label	14299 non-null	object		
2	sessions	14999 non-null	int64		
3	drives	14999 non-null	int64		
4	total_sessions	14999 non-null	float64		
5	n_days_after_onboarding	14999 non-null	int64		
6	total_navigations_fav1	14999 non-null	int64		
7	total_navigations_fav2	14999 non-null	int64		
8	driven_km_drives	14999 non-null	float64		
9	duration_minutes_drives	14999 non-null	float64		
10	activity_days	14999 non-null	int64		
11	driving_days	14999 non-null	int64		
12	device	14999 non-null	object		
dtype	es: float64(3), int64(8),	object(2)			

memory usage: 1.5+ MB

4.3 PACE: Construct

Consider the questions in your PACE Strategy Document to reflect on the Construct stage.

Consider the following questions as you prepare to deal with outliers:

- 1. What are some ways to identify outliers?
- 2. How do you make the decision to keep or exclude outliers from any future models?

==> ENTER YOUR RESPONSES TO QUESTIONS 1-2 HERE

4.3.1 Task 3a. Visualizations

Select data visualization types that will help you understand and explain the data.

Now that you know which data columns you'll use, it is time to decide which data visualization makes the most sense for EDA of the Waze dataset.

Question: What type of data visualization(s) will be most helpful?

- Line graph
- Bar chart
- Box plot
- Histogram
- Heat map
- Scatter plot
- A geographic map

==> ENTER YOUR RESPONSE HERE

Begin by examining the spread and distribution of important variables using box plots and histograms.

sessions The number of occurrence of a user opening the app during the month

```
[109]: # Box plot
### YOUR CODE HERE ###
plt.figure(figsize=(5,1))
sns.boxplot(x=df['sessions'], fliersize=1)
plt.title('sessions box plot');
```



```
[110]: # Histogram
### YOUR CODE HERE ###

plt.figure(figsize=(5,3))
sns.histplot(x=df['sessions'])
median = df['sessions'].median()
plt.axvline(median, color='red', linestyle='--')
plt.text(75,1200, 'median=56.0', color='red')
plt.title('sessions box plot');
```


The sessions variable is a right-skewed distribution with half of the observations having 56 or fewer sessions. However, as indicated by the boxplot, some users have more than 700.

drives An occurrence of driving at least 1 km during the month

```
[112]: # Box plot
### YOUR CODE HERE ###
plt.figure(figsize=(5,1))
sns.boxplot(x=df['drives'], fliersize=1)
plt.title('drives box plot');
```



```
[114]: # Helper function to plot histograms based on the # format of the `sessions` histogram def histogrammer(column_str, median_text=True, **kwargs): # **kwargs = any⊔ → keyword arguments
```

```
# from the sns.
\rightarrow histplot() function
   median=round(df[column_str].median(), 1)
   plt.figure(figsize=(5,3))
   ax = sns.histplot(x=df[column_str], **kwargs)
                                                                  # Plot the
\rightarrow histogram
   plt.axvline(median, color='red', linestyle='--')
                                                                  # Plot the median_
\rightarrow line
   if median_text==True:
                                                                  # Add median text
\rightarrowunless set to False
       ax.text(0.25, 0.85, f'median={median}', color='red',
           ha='left', va='top', transform=ax.transAxes)
   else:
       print('Median:', median)
   plt.title(f'{column_str} histogram');
```

```
[115]: # Histogram
### YOUR CODE HERE ###
histogrammer('drives')
```


The drives information follows a distribution similar to the sessions variable. It is right-skewed, approximately log-normal, with a median of 48. However, some drivers had over 400 drives in the last month.

total_sessions A model estimate of the total number of sessions since a user has onboarded

```
[117]: # Box plot
    ### YOUR CODE HERE ###
    plt.figure(figsize=(5,1))
    sns.boxplot(x=df['total_sessions'], fliersize=1)
    plt.title('total_sessions box plot');
```


The total_sessions is a right-skewed distribution. The median total number of sessions is 159.6. This is interesting information because, if the median number of sessions in the last month was 48 and the median total sessions was ~160, then it seems that a large proportion of a user's total drives might have taken place in the last month. This is something you can examine more closely later.

n_days_after_onboarding The number of days since a user signed up for the app

```
[118]: # Box plot
    ### YOUR CODE HERE ###

plt.figure(figsize=(5,1))
    sns.boxplot(x=df['n_days_after_onboarding'], fliersize=1)
    plt.title('n_days_after_onboarding box plot');
```


Median: 1741.0

The total user tenure (i.e., number of days since onboarding) is a uniform distribution with values ranging from near-zero to $\sim 3,500$ (~ 9.5 years).

driven_km_drives Total kilometers driven during the month

```
[120]: # Box plot
### YOUR CODE HERE ###
plt.figure(figsize=(5,1))
sns.boxplot(x=df['driven_km_drives'], fliersize=1)
plt.title('driven_km_drives box plot');
```


The number of drives driven in the last month per user is a right-skewed distribution with half the users driving under 3,495 kilometers. As you discovered in the analysis from the previous course, the users in this dataset drive a lot. The longest distance driven in the month was over half the circumferene of the earth.

duration_minutes_drives Total duration driven in minutes during the month

```
[122]: # Box plot
### YOUR CODE HERE ###
plt.figure(figsize=(5,1))
sns.boxplot(x=df['duration_minutes_drives'], fliersize=1)
plt.title('duration_minutes_drives box plot');
```


The duration_minutes_drives variable has a heavily skewed right tail. Half of the users drove less than ~1,478 minutes (~25 hours), but some users clocked over 250 hours over the month.

activity_days Number of days the user opens the app during the month

```
[124]: # Box plot
    ### YOUR CODE HERE ###
    plt.figure(figsize=(5,1))
    sns.boxplot(x=df['activity_days'], fliersize=1)
    plt.title('activity_days box plot');
```


Median: 16.0

Within the last month, users opened the app a median of 16 times. The box plot reveals a centered distribution. The histogram shows a nearly uniform distribution of ~ 500 people opening the app on each count of days. However, there are ~ 250 people who didn't open the app at all and ~ 250 people who opened the app every day of the month.

This distribution is noteworthy because it does not mirror the sessions distribution, which you might think would be closely correlated with activity_days.

driving_days Number of days the user drives (at least 1 km) during the month

```
[126]: # Box plot
    ### YOUR CODE HERE ###
    plt.figure(figsize=(5,1))
    sns.boxplot(x=df['driving_days'], fliersize=1)
    plt.title('driving_days box plot');
```



```
[127]: # Histogram
### YOUR CODE HERE ###
histogrammer('driving_days', median_text=False, discrete=True)
```

Median: 12.0

The number of days users drove each month is almost uniform, and it largely correlates with the number of days they opened the app that month, except the driving_days distribution tails off on the right.

However, there were almost twice as many users (\sim 1,000 vs. \sim 550) who did not drive at all during the month. This might seem counterintuitive when considered together with the information from activity_days. That variable had \sim 500 users opening the app on each of most of the day counts, but there were only \sim 250 users who did not open the app at all during the month and \sim 250 users who opened the app every day. Flag this for further investigation later.

device The type of device a user starts a session with

This is a categorical variable, so you do not plot a box plot for it. A good plot for a binary categorical variable is a pie chart.

Users by device

There are nearly twice as many iPhone users as Android users represented in this data.

label Binary target variable ("retained" vs "churned") for if a user has churned anytime during the course of the month

This is also a categorical variable, and as such would not be plotted as a box plot. Plot a pie chart instead.

Count of retained vs. churned

Less than 18% of the users churned.

driving_days vs. activity_days Because both driving_days and activity_days represent counts of days over a month and they're also closely related, you can plot them together on a single histogram. This will help to better understand how they relate to each other without having to scroll back and forth comparing histograms in two different places.

Plot a histogram that, for each day, has a bar representing the counts of driving_days and activity_days.

```
[130]: # Histogram
### YOUR CODE HERE ###
plt.figure(figsize=(12,4))
label=['driving days', 'activity days']
plt.hist([df['driving_days'], df['activity_days']],
```


As observed previously, this might seem counterintuitive. After all, why are there *fewer* people who didn't use the app at all during the month and *more* people who didn't drive at all during the month?

On the other hand, it could just be illustrative of the fact that, while these variables are related to each other, they're not the same. People probably just open the app more than they use the app to drive—perhaps to check drive times or route information, to update settings, or even just by mistake.

Nonetheless, it might be worthwile to contact the data team at Waze to get more information about this, especially because it seems that the number of days in the month is not the same between variables.

Confirm the maximum number of days for each variable—driving days and activity_days.

```
[131]: print(df['driving_days'].max()) print(df['activity_days'].max())
```

30

31

It's true. Although it's possible that not a single user drove all 31 days of the month, it's highly unlikely, considering there are 15,000 people represented in the dataset.

One other way to check the validity of these variables is to plot a simple scatter plot with the x-axis representing one variable and the y-axis representing the other.

```
[132]: # Scatter plot
    ### YOUR CODE HERE ###
    sns.scatterplot(data=df, x='driving_days', y='activity_days')
    plt.title('driving_days vs. activity_days')
    plt.plot([0,31], [0,31], color='red', linestyle='--');
```


Notice that there is a theoretical limit. If you use the app to drive, then by definition it must count as a day-use as well. In other words, you cannot have more drive-days than activity-days. None of the samples in this data violate this rule, which is good.

Retention by device Plot a histogram that has four bars—one for each device-label combination—to show how many iPhone users were retained/churned and how many Android users were retained/churned.

The proportion of churned users to retained users is consistent between device types.

Retention by kilometers driven per driving day In the previous course, you discovered that the median distance driven per driving day last month for users who churned was 697.54 km, versus 289.55 km for people who did not churn. Examine this further.

- 1. Create a new column in df called km_per_driving_day, which represents the mean distance driven per driving day for each user.
- 2. Call the describe() method on the new column.

```
[134]: # 1. Create `km_per_driving_day` column
### YOUR CODE HERE ###

df['km_per_driving_day'] = df['driven_km_drives'] / df['driving_days']

# 2. Call `describe()` on the new column
df['km_per_driving_day'].describe()
```

```
[134]: count 1.499900e+04
    mean inf
    std NaN
    min 3.022063e+00
```

```
25% 1.672804e+02

50% 3.231459e+02

75% 7.579257e+02

max inf

Name: km_per_driving_day, dtype: float64
```

What do you notice? The mean value is infinity, the standard deviation is NaN, and the max value is infinity. Why do you think this is?

This is the result of there being values of zero in the driving_days column. Pandas imputes a value of infinity in the corresponding rows of the new column because division by zero is undefined.

- 1. Convert these values from infinity to zero. You can use np.inf to refer to a value of infinity.
- 2. Call describe() on the km_per_driving_day column to verify that it worked.

```
[135]: # 1. Convert infinite values to zero
df.loc[df['km_per_driving_day']==np.inf, 'km_per_driving_day'] = 0

# 2. Confirm that it worked
df['km_per_driving_day'].describe()
```

```
[135]: count
                14999.000000
       mean
                  578.963113
       std
                  1030.094384
       min
                     0.000000
       25%
                   136.238895
       50%
                   272.889272
       75%
                   558.686918
       max
                15420.234110
       Name: km_per_driving_day, dtype: float64
```

The maximum value is 15,420 kilometers per drive day. This is physically impossible. Driving 100 km/hour for 12 hours is 1,200 km. It's unlikely many people averaged more than this each day they drove, so, for now, disregard rows where the distance in this column is greater than 1,200 km.

Plot a histogram of the new km_per_driving_day column, disregarding those users with values greater than 1,200 km. Each bar should be the same length and have two colors, one color representing the percent of the users in that bar that churned and the other representing the percent that were retained. This can be done by setting the multiple parameter of seaborn's histplot() function to fill.

```
plt.ylabel('%', rotation=0)
plt.title('Churn rate by mean km per driving day');
```


The churn rate tends to increase as the mean daily distance driven increases, confirming what was found in the previous course. It would be worth investigating further the reasons for long-distance users to discontinue using the app.

Churn rate per number of driving days Create another histogram just like the previous one, only this time it should represent the churn rate for each number of driving days.

The churn rate is highest for people who didn't use Waze much during the last month. The more times they used the app, the less likely they were to churn. While 40% of the users who didn't use the app at all last month churned, nobody who used the app 30 days churned.

This isn't surprising. If people who used the app a lot churned, it would likely indicate dissatisfaction. When people who don't use the app churn, it might be the result of dissatisfaction in the past, or it might be indicative of a lesser need for a navigational app. Maybe they moved to a city with good public transportation and don't need to drive anymore.

Proportion of sessions that occurred in the last month Create a new column percent_sessions_in_last_month that represents the percentage of each user's total sessions that were logged in their last month of use.

```
[138]: ### YOUR CODE HERE ###

df['percent_sessions_in_last_month'] = df['sessions'] / df['total_sessions']
```

What is the median value of the new column?

```
[139]: ### YOUR CODE HERE ###

df['percent_sessions_in_last_month'].median()
```

[139]: 0.42309702992763176

Now, create a histogram depicting the distribution of values in this new column.

median_text=False)

Median: 0.4

Check the median value of the $n_{days_after_onboarding}$ variable.

```
[141]: ### YOUR CODE HERE ###

df['n_days_after_onboarding'].median()
```

[141]: 1741.0

Half of the people in the dataset had 40% or more of their sessions in just the last month, yet the overall median time since onboarding is almost five years.

Make a histogram of n_days_after_onboarding for just the people who had 40% or more of their total sessions in the last month.

Num. days after onboarding for users with >=40% sessions in last month

The number of days since onboarding for users with 40% or more of their total sessions occurring in just the last month is a uniform distribution. This is very strange. It's worth asking Waze why so many long-time users suddenly used the app so much in the last month.

n days after onboarding

4.3.2 Task 3b. Handling outliers

The box plots from the previous section indicated that many of these variables have outliers. These outliers do not seem to be data entry errors; they are present because of the right-skewed distributions.

Depending on what you'll be doing with this data, it may be useful to impute outlying data with more reasonable values. One way of performing this imputation is to set a threshold based on a percentile of the distribution.

To practice this technique, write a function that calculates the 95th percentile of a given column, then imputes values > the 95th percentile with the value at the 95th percentile. such as the 95th percentile of the distribution.

Next, apply that function to the following columns: * sessions * drives * total_sessions * driven_km_drives * duration_minutes_drives

```
[144]: ### YOUR CODE HERE ###
       for column in ['sessions', 'drives', 'total_sessions',
                       'driven_km_drives', 'duration_minutes_drives']:
                       outlier_imputer(column, 0.95)
                        sessions | percentile: 0.95 | threshold: 243.0
                          drives | percentile: 0.95 | threshold: 201.0
                  total_sessions | percentile: 0.95 | threshold: 454.3632037399997
               driven km drives | percentile: 0.95 | threshold: 8889.7942356
        duration_minutes_drives | percentile: 0.95 | threshold: 4668.899348999999
      Call describe() to see if your change worked.
[145]: ### YOUR CODE HERE ###
       df.describe()
                         ID
[145]:
                                 sessions
                                                  drives
                                                          total_sessions
       count
              14999.000000
                             14999.000000
                                           14999.000000
                                                            14999.000000
               7499.000000
                                              64.058204
                                76.568705
                                                              184.031320
       mean
               4329.982679
                                67.297958
                                              55.306924
                                                              118.600463
       std
                  0.00000
                                 0.000000
                                               0.000000
                                                                0.220211
       min
       25%
                                              20.000000
               3749.500000
                                23.000000
                                                               90.661156
       50%
               7499.000000
                                56.000000
                                              48.000000
                                                              159.568115
       75%
              11248.500000
                               112.000000
                                              93.000000
                                                              254.192341
       max
              14998.000000
                               243.000000
                                              201.000000
                                                              454.363204
              n_days_after_onboarding
                                        total_navigations_fav1
                          14999.000000
                                                   14999.000000
       count
                                                     121.605974
       mean
                           1749.837789
       std
                           1008.513876
                                                     148.121544
       min
                              4.000000
                                                       0.000000
       25%
                            878.000000
                                                       9.000000
       50%
                           1741.000000
                                                      71.000000
       75%
                           2623.500000
                                                     178.000000
                           3500.000000
                                                    1236.000000
       max
                                                          duration minutes drives
              total navigations fav2
                                       driven km drives
       count
                         14999.000000
                                           14999.000000
                                                                      14999.000000
                            29.672512
                                            3939.632764
                                                                       1789.647426
       mean
       std
                            45.394651
                                            2216.041510
                                                                       1222.705167
       min
                             0.00000
                                              60.441250
                                                                         18.282082
       25%
                             0.000000
                                            2212.600607
                                                                        835.996260
       50%
                                             3493.858085
                                                                       1478.249859
                             9.000000
       75%
                            43.000000
                                            5289.861262
                                                                       2464.362632
                                            8889.794236
                                                                       4668.899349
                           415.000000
       max
              activity_days
                             driving_days
                                            km_per_driving_day
               14999.000000
                             14999.000000
                                                   14999.000000
       count
```

mean	15.537102	12.179879	578.963113
std	9.004655	7.824036	1030.094384
min	0.000000	0.000000	0.000000
25%	8.000000	5.000000	136.238895
50%	16.000000	12.000000	272.889272
75%	23.000000	19.000000	558.686918
max	31.000000	30.000000	15420.234110
	percent_session	ns_in_last_month	
count		14999.000000	
mean		0.449255	
std		0.286919	
min		0.000000	
25%		0.196221	
50%		0.423097	
75%		0.687216	
max		1.530637	

Conclusion Analysis revealed that the overall churn rate is ~17%, and that this rate is consistent between iPhone users and Android users.

Perhaps you feel that the more deeply you explore the data, the more questions arise. This is not uncommon! In this case, it's worth asking the Waze data team why so many users used the app so much in just the last month.

Also, EDA has revealed that users who drive very long distances on their driving days are *more* likely to churn, but users who drive more often are *less* likely to churn. The reason for this discrepancy is an opportunity for further investigation, and it would be something else to ask the Waze data team about.

4.4 PACE: Execute

Consider the questions in your PACE Strategy Document to reflect on the Execute stage.

4.4.1 Task 4a. Results and evaluation

Having built visualizations in Python, what have you learned about the dataset? What other questions have your visualizations uncovered that you should pursue?

Pro tip: Put yourself in your client's perspective. What would they want to know?

Use the following code fields to pursue any additional EDA based on the visualizations you've already plotted. Also use the space to make sure your visualizations are clean, easily understandable, and accessible.

Ask yourself: Did you consider color, contrast, emphasis, and labeling?

==> ENTER YOUR RESPONSE HERE

I have learned

My other questions are

My client would likely want to know \dots

Use the following two code blocks (add more blocks if you like) to do additional EDA you feel is important based on the given scenario.

```
[]: ### YOUR CODE HERE ###

df['monthly_drives_per_session_ratio'] = (df['drives']/df['sessions'])
```

```
[147]: ### YOUR CODE HERE ###

df.head(10)
```

	df	df.head(10)									
[147]:		ID	label	sessions	drives	total_s	essions	n_day	s_after_onl	ooarding	\
	0 0 retained 243		201	296	.748273	_ •		2276			
	1	1	retained	133	107	326	.896596			1225	
	2	2	retained	114	95	135	.522926			2651	
	3	3	retained	49	40	67	.589221			15	
	4	4	retained	84	68	168	.247020			1562	
	5	5	retained	113	103	279	.544437			2637	
	6	6	retained	3	2	236	.725314			360	
	7	7	retained	39	35	176	.072845			2999	
	8	8	retained	57	46	183	.532018			424	
	9	9	churned	84	68	244	.802115			2997	
		tot	al_navigat	ions_fav1	total_n	avigatio	ns_fav2	drive	en_km_drives	s \	
	0			208			0		2628.845068	3	
	1			19			64		8889.794236	3	
	2 0				0		3059.148818	3			
	3 322				7		913.591123	3			
	4 166				5		3950.202008	3			
	5			0			0		901.238699		
	6			185			18		5249.172828		
	7			0			0		7892.052468	3	
	8			0	26			2651.709764			
	9			72			0		6043.46029	5	
	duration_minutes_drives			activi	ty_days	driving	_days	device '	\		
	0			985.775061		28		19	Android		
	1			160.472914		13		11	iPhone		
	2			610.735904		14		8	Android		
	3			587.196542		7		3	iPhone		
	4			219.555924			18	Android			
	5			439.101397				11	iPhone		
	6			726.577205		28		23	iPhone		
	7			466.981741		22		20	iPhone		
	8 1594.342984				25			20	Android		

	km_per_driving_day	percent_sessions_in_last_month	
0	138.360267	0.953670	
1	1246.901868	0.406856	
2	382.393602	0.841186	
3	304.530374	0.724968	
4	219.455667	0.499266	
5	81.930791	0.404229	
6	228.224906	0.012673	
7	394.602623	0.221499	
8	132.585488	0.310573	
9	2014.486765	0.343134	

2341.838528

4.4.2 Task 4b. Conclusion

Now that you've explored and visualized your data, the next step is to share your findings with Harriet Hadzic, Waze's Director of Data Analysis. Consider the following questions as you prepare to write your executive summary. Think about key points you may want to share with the team, and what information is most relevant to the user churn project.

7

3

iPhone

Questions:

9

- 1. What types of distributions did you notice in the variables? What did this tell you about the data?
- 2. Was there anything that led you to believe the data was erroneous or problematic in any way?
- 3. Did your investigation give rise to further questions that you would like to explore or ask the Waze team about?
- 4. What percentage of users churned and what percentage were retained?
- 5. What factors correlated with user churn? How?
- 6. Did newer uses have greater representation in this dataset than users with longer tenure? How do you know?

==> ENTER YOUR RESPONSES TO QUESTIONS 1-6 HERE

Congratulations! You've completed this lab. However, you may not notice a green check mark next to this item on Coursera's platform. Please continue your progress regardless of the check mark. Just click on the "save" icon at the top of this notebook to ensure your work has been logged.