CS 4231, Fall 2017

Mihalis Yannakakis

- Based on divide and conquer
- practical, fast,
- sorts in place

 Divide: Partition the input array A of elements with respect to a pivot element x into two parts:

$$\leq \chi$$
 $X > X$

- Conquer: Sort recursively the two parts using Quicksort
- Combine: Trivial

Partitioning the array in place

PARTITION(A,p,r)

- Input: Array A[1..n], indices p,r
- Effect: Modifies subarray A[p...r] in place so that subarray partitioned with respect to pivot element x=A[r]

$$\leq X$$
 $X > X$

Output: index of new position of pivot

PARTITION(A,p,r)

```
x = A[r]

i = p-1

for j=p to r-1

if A[j] \le x then { i=i+1, exchange A[i] and A[j] }

exchange A[i+1] and A[r]

return i+1
```

Invariant

Partitioning example

```
3 8 4 2 9 7 6
j
```

Partitioning example

```
3 8 4 2 9 7 6
3 8 4 2 9 7 6
i i
```

Partitioning example

3	8	4	2	9	7	6
3	8	4	2	9	7	6
				Т	Т	
3	8	4	2	9	7	6
					T	
3	4	8	2	9	7	6
3	4	2	8	9	7	6
3	4	2	8	9	7	6
3	4	2	8	9	7	6
3	4	2	6	9	7	8

QUICKSORT(A,p,r)

```
if p < r then
{    q = PARTITION(A,p,r)
        QUICKSORT(A,p,q-1)
        QUICKSORT(A,q+1,r)
}</pre>
```

Main Call: QUICKSORT(A,1,n)

Analysis of Quicksort: Partition routine

PARTITION (A,p,r) partitions subarray A[p..r]

```
x = A[r]

i = p-1

for j=p to r-1

if A[j] \le x then { i=i+1, exchange A[i] and A[j] }

exchange A[i+1] and A[r]

return i+1
```


Complexity: ⊕(|subarray|)

Analysis of Quicksort

- $T(n) = T(|left part|) + T(|right part|) + \Theta(n)$
- Worst Case: When we partition each subarray, last element is largest or smallest \Rightarrow unbalanced partition $T(n) = T(n-1) + \Theta(n)$

Solution: $T(n) = \Theta(n^2)$

- Lucky Case: $\frac{1}{2}$: $\frac{1}{2}$ partition $\Rightarrow T(n) = \Theta(n \log n)$
- "Typical" Case: In-between, e.g. $\frac{1}{4}$: $\frac{3}{4} \Rightarrow T(n) = \Theta(n \log n)$
- For distinct items and random input permutation the average time complexity is ⊕(nlogn)

Randomized Quicksort

 Partition around a randomly chosen pivot element

RANDOMIZED-PARTITION(A,p,r)

```
i = random index in {p,...,r}exchange A[i] and A[r]PARTITION(A,p,r)
```

RANDOMIZED-QUICKSORT(A,p,r)

```
if p<r then
{      q = RANDOMIZED-PARTITION(A,p,r)
            RANDOMIZED-QUICKSORT(A,p,q-1)
            RANDOMIZED-QUICKSORT(A,q+1,r)
}</pre>
```

Main Call: RANDOMIZED-QUICKSORT(A,1,n)

Randomized algorithm

- Makes random choices (coin flips, random numbers ..)
- Different random choices are assumed independent
- Outcome of algorithm and running time depends on random choices (besides input)

 Correctness: Show termination and correct answer for all random choices

Time complexity of randomized algorithms

- Running time: Depends on input I and random choices w: time t(I, w)
- Expected running time for an input I: expected time w.r.t. random choices w: $\bar{t}(I) = E_w t(I, w)$
- Expected time complexity of the algorithm
 Two versions:
 - Worst-case expected time $T(n) = \max_{|I|=n} E_w t(I, w)$ (worst-case expected time over inputs of size n)
 - Average-case expected time $T(n) = E_{|I|=n} E_w t(I, w)$ assumes a probability distribution on inputs of size n, expected time also w.r.t. inputs

Time Complexity of Randomized-Quicksort

- Assume all input elements distinct
- Worst-case expected time T(n)=Θ(nlogn)

Thus, for every input *I*: $\bar{t}(I) = O(n \log n)$

Analysis of Randomized-Quicksort

- Consider an input I = A[1...n]
- Suffices to bound # comparisons X
 t(I,w) = O(n+X)
 Proof:

At most *n* calls to PARTITION routine
Work of each call = O(size of subarray) =
= O(# comparisons in the call)

Analysis of Randomized-Quicksort ctd.

Elements in sorted order : $Z_1, Z_2, ..., Z_n$

indicator random variable
$$X_{ij} = \begin{cases} 1 & \text{if } z_i \text{ is compared to } z_j \\ 0 & \text{otherwise} \end{cases}$$

$$X = \sum_{i < j} X_{ij}$$

$$E[X] = \sum_{i < j} E[X_{ij}] = \sum_{i < j} Pr[z_i \text{ is compared to } z_j]$$

When is z_i compared to z_j ?

- If and only if z_i or z_j is the first element chosen as pivot among z_i, z_{i+1}, ..., z_j
 - The set stays together till the first pivot in this set
 - If we choose first another pivot zk between zi, zj then zi, zj
 will be split in different parts
 - The first pivot element in the set is compared with all of the other elements
- All elements of set equally likely to be first pivot ⇒
 Pr[z_i is compared to z_j] = 2/(j-i+1)

Analysis of Randomized-Quicksort ctd.

$$E[X] = \sum_{i < j} Pr[z_i \text{ is compared to } z_j] = \sum_{i < j} \frac{2}{j - i + 1}$$

$$E[X] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1} = \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{2}{k+1}$$

$$<\sum_{i=1}^{n-1}\sum_{k=1}^{n-i}\frac{2}{k}$$

$$<\sum_{i=1}^{n-1}\sum_{k=1}^{n}\frac{2}{k}$$

$$= \sum_{i=1}^{n-1} O(\log n)$$

$$= O(n \log n)$$

recall harmonic series

$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} = O(\log n)$$

$$\ln(n+1) < H_n < 1 + \ln n$$

Expected time complexity of Randomized-Quicksort

- For every input I, $t(I) = O(E(X)) = O(n \log n)$ $\Rightarrow T(n) = O(n \log n)$
- Conversely, for every input I, $\overline{t}(I) = \Omega(n \log n)$ in fact \forall input I, \forall random choice w, $t(I, w) = \Omega(n \log n)$

$$\Rightarrow T(n) = \Omega(n \log n)$$

$$T(n) = \Theta(n \log n)$$

Quicksort - other points

Duplicate elements

3-way Partition

$$\langle x \rangle = x \rangle x$$

Recurse on left and right part

- Choice of pivot
- Termination of recursion