- Tipos de Redes de Computadores

- Modelos de Protocolo e Referência

Prof. Jesus José de Oliveira Neto

Definição de redes

 Uma Rede de Computadores é formada por um conjunto de módulos processadores capazes de trocar informações e compartilhar recursos, interligados por um sistema de comunicação.

 É conexão de dois ou mais computadores para permitir o compartilhamento de recursos e a troca de informações entre as máquinas.

Utilização de uma rede

- Podemos resumir como facilidades disponíveis nas redes de comunicação as seguintes opções:
 - Acesso remoto
 - Cópia de arquivos remotos (downloads)
 - Compartilhamento de periféricos
 - Compartilhamento de arquivos
 - Teleconferência

Tipos de redes

- Podemos definir uma rede como a interligação de vários computadores com o intuito de:
 - Compartilhar arquivos, impressoras, entre outras coisas ou
 - Interligar computadores e outros dispositivos eletrônicos
- Existem três tipos de redes:

Tipos de redes

- LAN(Local Area Network): É uma rede local onde os dispositivos se localizam no mesmo espaço físico. (Salas, laboratórios, etc)
- MAN (Metropolitan Area Network): Está também é rede local porém os dispositivos se localizam em distâncias maiores que a LAN. (Prédios, campus de universidade)

Tipos de redes

 WAN(Wide Area Network): Está é mais conhecida como a internet por ser uma grande rede que possui inúmeras sub redes, que podem estar localizada em qualquer lugar do planeta.

Exemplo de rede LAN

Exemplo de rede MAN

Exemplo de rede WAN

Interligação de várias LANs em cidades distintas

Componentes de uma rede

Placa de rede

Arquiteturas

- Topologias físicas e lógicas
- Protocolos

Cabos

Recursos

- A topologia de uma rede de comunicação irá, muitas vezes caracterizar seu tipo, eficiência e velocidade.
- A topologia refere-se a forma como os enlaces físicos e os nós de comunicação estão organizados, determinando os caminhos físicos existentes e utilizáveis entre quaisquer pares de estações conectadas a essa rede

- A topologia de uma rede de comunicação irá, muitas vezes caracterizar seu tipo, eficiência e velocidade.
- A topologia refere-se a forma como os enlaces físicos e os nós de comunicação estão organizados, determinando os caminhos físicos existentes e utilizáveis entre quaisquer pares de estações conectadas a essa rede

 As conexões partem de um ponto central (concentrador), normalmente um hub ou switch. É o modelo mais utilizado atualmente.

 Computadores são conectados em um anel. É a topologia das redes Token Ring, popularizadas pela IBM nos anos 80.

 Hoje, esse modelo é mais utilizado em sistemas de automação industrial.

- Computadores conectados num sistema linear de cabeamento em sequência.
- Constituem em um único cabo, chamado tronco (e também backbone ou segmento), que conecta todos os computadores da rede em uma linha única.

Requisitos necessários para uma rede

- Usuários que tenham algo a compartilhar: Recursos
- Um caminho ou método de contato entre estes usuários:
 Meio físicos
- Regras bem definidas para que estes usuários possam se comunicar: Protocolos
- Maneira com que os outros usuários enxergarão os Recursos compartilhados na rede: Serviços

Protocolos de Rede

- Toda a parte física da rede: cabos, placas, hubs, etc., serve para criar um meio de comunicação entre os dispositivos da rede. Da mesma forma que o sistema telefônico ou os correios, que permitem que você comunique-se com outras pessoas.
- E para que duas pessoas possam falar ao telefone é necessário que ambas falem a mesma língua, uma saiba o número da outra, etc. Dois computadores para que possam se comunicar através da rede, é preciso também que ambos usem o mesmo protocolo de rede.

Protocolos de Rede

- Endereçamento: especificação clara do ponto de destino da mensagem;
- Numeração e sequencia: individualização de cada mensagem, através de número sequencial;
- Estabelecimento da conexão: estabelecimento de um canal lógico fechado entre fonte e destino;
- Confirmação de recebimento: confirmação do destinatário, com ou sem erro, após cada segmento de mensagem;

Protocolos de Rede

- Controle de erro: detecção e correção de erro;
- Retransmissão: repetição da mensagem a cada recepção de mensagem;
- Conversão de código: adequação do código às características do destinatário;
- Controle de fluxo: manutenção de fluxos compatíveis com os recursos disponíveis.

- Várias redes de comunicação foram criadas através de implementações diferentes tipos de hardware e de software.
- Como resultado, a comunicação entre redes com diferentes especificações tornou-se difícil devido aos protocolos proprietários.
- Para tratar desse problema, a ISO (International Organization for Standardization) lançou em 1984 o modelo de referência OSI (Open Systems Interconnection).
 comunicação..

 Foi então, empregado o conceito de camadas, que ajudam a descrever o processo de fluxo de dados no sistema de comunicação..

E responder às seguintes perguntas...

- Tipo de rede que está sendo analisada?
- O que está sendo transmitido?
- Qual é a forma do pacote transmitido?
- Quais são as regras da transmissão?
- Onde acontece a transmissão?

 O modelo OSI foi dividido em 7 camadas conforme ilustra a figura abaixo

Comunicação entre dois dispositivos

- A comunicação entre dois dispositivos da rede, por exemplo dois computadores, se dá entre as camadas correspondentes.
- Isto é, a camada n em um computador se comunica com a camada n em outro computador.
- Cada camada OSI individual tem um conjunto de funções que a mesma deve executar para que os pacotes de dados trafeguem de uma origem a um destino em uma rede.

Comunicação entre dois dispositivos

Camadas de rede OSI

- Camada 7 Camada de aplicação: A camada de aplicação é a camada OSI mais próxima do usuário, ela fornece serviços de rede aos aplicativos do usuário.
- Camada 6 Camada de apresentação: Assegura que a informação emitida pela camada de aplicação de um sistema seja legível para a camada de aplicação de outro sistema. Por exemplo, encriptação e compressão de dados.
- Camada 5 Camada de sessão: A camada de sessão, como está implícito no nome, estabelece, gerencia e termina sessões entre dois hosts que se comunicam.

Camadas de rede OSI

- Camada 4 Camada de transporte: A camada de transporte segmenta os dados do sistema host que está enviando e monta os dados novamente em uma sequência de dados no sistema host que está recebendo.
- Camada 3 Camada de rede: Fornece conectividade e seleção de caminhos entre dois sistemas hosts que podem estar localizados em redes geograficamente separadas.
- Camada 2 Camada de enlace: A camada de enlace fornece trânsito seguro de dados através de um link físico.

Camadas de rede OSI

 Camada 1 – Camada física: Define as especificações elétricas, mecânicas, funcionais e de procedimentos para ativar, manter e desativar o link físico entre sistemas finais. Características como níveis de voltagem, temporização de alterações de voltagem, taxas de dados físicos, distâncias máximas de transmissão, conectores físicos.

Protocolo TCP/IP - Internet

- O protocolo padrão de comunicação da Internet é o TCP/IP. Baseia-se no modelo OSI mas não o segue ao pé da letra
- Apesar do nome, o TCP/IP possui ainda muitos outros protocolos, dos quais veremos apenas os mais importantes, vários deles necessários para que o TCP e o IP desempenhem corretamente as suas funções.
- Visto superficialmente, o TCP/IP possui 4 camadas, desde as aplicações de rede até o meio físico que carrega os sinais elétricos até o seu destino:
- O modelo de referência TCP/IP e a pilha de protocolos TCP/IP tornam possível a comunicação de dados entre dois computadores quaisquer, em qualquer parte do mundo.

Modelo de camadas do TCP/IP

Camadas do protocolo TCP/IP

- 1 Enlace ou Link de Dados
- 2 Rede
- 3 Transporte
- 4 Aplicação

Camadas de TCP/IP

- Camada 1 de Enlace: serve para transmitir informações em uma ligação ponto-a-ponto (ex: modem). Nada mais do que isso. A preocupação deste protocolo é permitir o uso do meio físico que conecta os computadores na rede e fazer com que os bytes enviados por um computador cheguem a um outro computador diretamente desde que haja uma conexão direta entre eles.
- Camada 2 de Rede: o Internet Protocol (IP), é responsável por fazer com que as informações enviadas por um computador cheguem a outros computadores mesmo que eles estejam em redes fisicamente distintas, ou seja, não existe conexão direta entre eles. Como o próprio nome (Inter-net) diz, o IP realiza a conexão entre redes. E é ele quem traz a capacidade da rede TCP/IP se "reconfigurar" quando uma parte da rede está fora do ar, procurando um caminho (rota) alternativo para a comunicação.

Camadas de TCP/IP

- Camada 3 de transporte: Permite que um mesmo computador tenha vários programas trabalhando com a rede simultaneamente, por exemplo um browser web e um leitor de e-mail. Da mesma forma, um mesmo computador pode estar rodando ao mesmo tempo um servidor Web e um servidor POP3. Os protocolos de transporte (UDP e TCP) atribuem a cada programa um número de porta, que é anexado a cada pacote de modo que o TCP/IP saiba para qual programa entregar cada mensagem recebida pela rede.
- Camada 4 de aplicação: Trata de protocolos de alto nível, questões de representação, codificação e controle de diálogo.

Camadas de TCP/IP

 Camada 4 de aplicação: São protocolos específicos para cada programa que faz uso da rede. Desta forma existe um protocolo para a conversação entre um servidor web e um browser web (HTTP), um protocolo para a conversação entre um cliente de e-mail (pop3) e um servidor de e-mail (smtp). FTP, e assim em diante. Cada aplicação de rede tem o seu próprio protocolo de comunicação, que utiliza os protocolos das camadas mais baixas para poder atingir o seu destino.