Instituto de Matemática - IM/UFRJ Cálculo I - MAC118 P3 - Prova A - 11/07/2023

Duração: 2h

Marque as respostas com clareza nas questões 1-4. Justifique as respostas nas questões 5-8.

Questão 1: (1 ponto)

Considere a integral $I = \int_0^1 x \, dx$. Indique, na respectiva caixinha, se cada uma das afirmativas é verdadeira (\mathbf{V}) ou falsa (\mathbf{F})

(a)
$$I = 2$$
.

(b)
$$\frac{d}{dx}(I) = x$$
.

(c)
$$I = \lim_{n \to \infty} \sum_{i=1}^{n} \frac{i}{n^2}$$
.

(d)
$$I = \frac{x^2}{2}$$
.

(e) I representa a área de um triângulo retângulo de hipotenusa $\sqrt{2}$.

Questão 2: (1 ponto)

Se $h(x) = \int_{2}^{x^2} e^{\frac{t^2}{2}} dt$, quanto vale $h'(\sqrt{2})$?

- (b) e^2 .

- (d) $2\sqrt{2}e^2$. (e) $2\sqrt{2}e^4$.

Questão 3: (1 ponto)

Calcule $\int_{1}^{e} 3x^{2} \ln(x) dx$.

(a)
$$\frac{1}{3}(2e^3 - 1)$$

(b)
$$\frac{1}{3}(2e^3+1)$$
.

(c)
$$\frac{1}{9}(2e^2-1)$$

(a)
$$\frac{1}{3}(2e^3 - 1)$$
. (b) $\frac{1}{3}(2e^3 + 1)$. (c) $\frac{1}{9}(2e^2 - 1)$. (d) $\frac{1}{9}(2e^3 + 1)$. (e) $\frac{1}{9}(1 - 3e^2)$.

(e)
$$\frac{1}{9}(1-3e^2)$$
.

Questão 4: (1 ponto)

A integral $\int_0^\infty \frac{2 \arctan(x)}{1+x^2} dx$

(a) vale
$$\frac{\pi^2}{2}$$

(b) vale
$$\frac{\pi^2}{6}$$
.

(a) vale
$$\frac{\pi^2}{2}$$
. (b) vale $\frac{\pi^2}{6}$. (c) vale $\frac{\pi^2-1}{4}$.

(e) vale
$$\frac{\pi^2}{4}$$
.

Questão 5: (1 ponto)

Encontre uma equação da reta tangente à curva $y^2 + xy + x^2 = 7$ no ponto (1, 2).

Questão 6: (1.5 ponto)

Considere que a área superficial de um cubo está aumentando a uma taxa de $48 m^2/s$. Quão rápido está aumentando o volume do cubo no instante em que seu lado tem comprimento 2 m?

Questão 7: (1.5 ponto)

- (a) Faça um esboço das curvas $y = 2 \operatorname{sen}(x)$ e $y = \tan(x)$ para x no intervalo $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
- (b) Pinte a região delimitada por ambas as curvas e pelos pontos de interseção entre as curvas no primeiro quadrante.
- (c) Calcule a área da região localizada no **primeiro quadrante**.

Questão 8: (2 pontos)

Considere o sólido obtido por rotação da região R delimitada por y = x e $y = 2\sqrt{x}$ ao redor do eixo x. Faça um esboço da região R, determine uma integral que representa o volume do sólido, e calcule o volume.