IT-314 Software Engineering Lab 10 Ruchika Amin-202101158 Lab Group: 2

QUESTION 1

Equivalence Partitioning:

Input Data	Expected Outcome
day = 14, month = 6, year = 2000	day = 13, month = 6, year = 2000
day = 1, month = 1, year = 1990	day = 31, month = 12, year = 1989
day = 30, month = 12, year = 2015	day = 29, month = 12, year = 2015
day = 25, month = 10, year = 2000	day = 24, month = 10, year = 2000
day = 210, month = 12, year = 2015	An error message
day = 15, month = 23, year = 2000	An error message
day = 15, month = 6, year = 1801	An error message
day = 15, month = 6, year = 2035	An error message

Boundary Value Analysis:

Input Data	Expected Outcome
day = 1, month = 6, year = 2000	day = 31, month = 5, year = 2000
day = 31, month = 6, year = 2000	day = 30, month = 6, year = 2000
day = 1, month = 1, year = 1900	day = 1, month = 1, year = 1899
day = 31, month = 12, year = 2015	day = 30, month = 12, year = 2015
day = 0, month = 13, year = 2001	An error message
day = 15, month = 6, year = 2016	An error message
day = 15, month = 6, year = 1899	An error message

QUESTION 2

a) Identify the equivalence classes for the system:

- 1. Equilateral Triangle: A = B = C
- 2. Isosceles Triangle: $A = B \neq C$ or $A = C \neq B$ or $B = C \neq A$
- 3. Scalene Triangle: $A \neq B \neq C$
- 4. Right-Angled Triangle: $A^2 + B^2 = C^2$ (Pythagorean Theorem)
- 5. Non-triangle (A, B, or C is invalid): $A + B \le C$ or $A + C \le B$ or $B + C \le A$
- 6. Non-positive input: A, B, or C is less than or equal to 0

b) Identify test cases to cover the identified equivalence classes:

- 1. Equilateral Triangle:
- -(A = 3, B = 3, C = 3)

$$- (A = 5.5, B = 5.5, C = 5.5)$$

2. Isosceles Triangle:

$$-(A = 4, B = 4, C = 5)$$

$$-(A = 5, B = 6, C = 5)$$

3. Scalene Triangle:

$$-(A = 3, B = 4, C = 5)$$

$$-(A = 7.5, B = 6, C = 8)$$

4. Right-Angled Triangle:

$$-(A = 3, B = 4, C = 5)$$

$$-(A = 5, B = 12, C = 13)$$

5. Non-triangle (A, B, or C is invalid):

-
$$(A = 1, B = 2, C = 3)$$
 # Does not form a triangle

-
$$(A = 6, B = 6, C = 12)$$
 # Does not form a triangle

6. Non-positive input:

$$-(A = -2, B = 3, C = 4)$$

$$-(A = 2, B = 0, C = 3)$$

$$-(A = 4, B = 5, C = -1)$$

c) For the boundary condition A + B > C case (scalene triangle):

$$- (A = 1, B = 1, C = 2) # A + B = 2 (Boundary)$$

-
$$(A = 1, B = 2, C = 3) \# A + B = 3$$
 (Inside the boundary)

-
$$(A = 2, B = 2, C = 4) \# A + B = 4 (Outside the boundary)$$

d) For the boundary condition A = C case (isosceles triangle):

$$- (A = 3, B = 4, C = 3) # A = C (Boundary)$$

-
$$(A = 4, B = 4, C = 5) \# A = C$$
 (Inside the boundary)

-
$$(A = 2, B = 5, C = 2) \# A = C$$
 (Outside the boundary)

e) For the boundary condition A = B = C case (equilateral triangle):

$$- (A = 5, B = 5, C = 5) \# A = B = C (Boundary)$$

-
$$(A = 6, B = 6, C = 6) \# A = B = C$$
 (Inside the boundary)

- (A = 4, B = 4, C = 4.1) # A = B = C (Outside the boundary)

f) For the boundary condition $A^2 + B^2 = C^2$ case (right-angle triangle):

$$-(A = 3, B = 4, C = 5) \# A^2 + B^2 = C^2$$
(Boundary)

-
$$(A = 5, B = 12, C = 13) \# A^2 + B^2 = C^2$$
 (Inside the boundary)

-
$$(A = 7, B = 24, C = 25) \# A^2 + B^2 = C^2$$
 (Outside the boundary)

g) For the non-triangle case, identify test cases to explore the boundary:

-
$$(A = 1, B = 1, C = 1)$$
 # Does not form a triangle (Boundary)

-
$$(A = 1, B = 2, C = 5)$$
 # Does not form a triangle (Inside the boundary)

-
$$(A = 3, B = 4, C = 8)$$
 # Does not form a triangle (Outside the boundary)

h) For non-positive input, identify test points:

-
$$(A = -1, B = 2, C = 3)$$
 # Non-positive A

-
$$(A = 4, B = 0, C = 5)$$
 # Non-positive B

-
$$(A = 6, B = 7, C = -2)$$
 # Non-positive C