Econometrics April 6, 2023

Topic 13: Non-convex Learning + Lasso

by Sai Zhang

Key points: Combining the best of the two, we can use **Lasso plus Concave** method, with Lasso screening and concave component selecting variables, achieving a coordinated intrinsic two-scale learning.

Disclaimer: The note is built on Prof. Jinchi Lv's lectures of the course at USC, DSO 607, High-Dimensional Statistics and Big Data Problems.

We are facing a tradeoff:

- **Convex** methods: have appealing <u>prediction power and oracle inequalities</u>, but challenging to provide tight false sign rate control
- **Concave** methods: have good <u>variable selection</u> properties, but challenging to establish <u>global</u> properties and risk properties

Here, we take advantage of the linearity of Lasso (convex *and* concave) and try to combine it with concave regularization to get the best of both.

13.1 Model Setup

Again, consider a linear regression model $y = X\beta + \epsilon$, where

- response vector $(n \times 1)$: $\mathbf{y} = (y_1, \dots, y_n)'$
- design matrix $(n \times p)$: **X** = $(\mathbf{x}_1, \dots, \mathbf{x}_p)$, with each column rescaled to have L_2 -norm $n^{1/2}$

here, we consider a scenario where

- $\beta_0 = (\beta_{0,1}, \dots, \beta_{0,p})'$ is *sparse* (with many 0 components)
- ultra-**high** dimensions: $\log p = O(n^a)$, for some 0 < a < 1

and consider the penalized least squares

$$\min_{\beta \in \mathbb{R}^p} \left\{ (2n)^{-1} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_2^2 + \lambda_0 \|\boldsymbol{\beta}\|_1 + \|p_{\lambda}(\boldsymbol{\beta})\|_1 \right\}$$
 (13.1)

where

- $\lambda_0 = c \left(\frac{\log p}{n}\right)^{1/2}$ for some c > 0
- $p_{\lambda}(\boldsymbol{\beta}) = p_{\lambda}(|\boldsymbol{\beta}|) = (p_{\lambda}(|\beta_1|), \dots, p_{\lambda}(|\beta_p|))'$, with $|\boldsymbol{\beta}| = (|\beta_1|, \dots, |\beta_p|)'$; the concave penalty $p_{\lambda}(t)$ is defined on $t \in [0, \infty)$, indexed by $\lambda \ge 0$, increasing in **both** t and λ , $p_{\lambda}(0) = 0$

the 2 penalty components

- L_1 -component: minimum amount of regularization for removing noise in prediction
- concave component $||p_{\lambda}(\beta)||_1$: adapt model sparsity for *variable selection*

Under this set up, we can derive the hard-thresholding property as

Proposition 13.1.1: Hard-Thresholding Property

Assume the $p_{\lambda}(t)$, $t \ge 0$, is **increasing and concave** with

- $p_{\lambda}(t) \ge p_{H,\lambda}(t) = \frac{1}{2} \left[\lambda^2 (\lambda t)_+^2 \right]$ on $[0, \lambda]$
- $p'_{\lambda}((1-c_1)\lambda) \le c_1\lambda$ for some $c_1 \in [0,1)$
- $-p_{\lambda}''(t)$ decreasing on $[0, (1-c_1)\lambda]$

then any <u>local minimizer</u> of 13.1 that is also a <u>global minimizer</u> in each coordinate has the **hard-thresholding** feature that each component is either 0 or of magnitude **larger** than $(1 - c_1)\lambda$

Such property is shared by a wide class of concave penalties, including hard-thresholding penalty $p_{H,\lambda}(t)$ with $c_1 = 0$, L_0 -penalty, and SICA (with suitable c_1).

With Prop. 13.1.1,