Data Structures: Graph's Seminar Report

Hugo Fonseca Díaz (UO258318)

Contents

Path from A to E 2 Exercise 2 2 Path from C to B 2 Path from C to A 2 Path from C to D 3 Exercise 3 3 Path from H to A 3 Path from B to E 4 Path from B to F 4 Exercise 4 4 Path from E to F 5 Path from F to C 5 Drain nodes 5 Source nodes 5 Exercise 5 5 From A 6	xercise 1
Path from C to E 2 Path from A to E 2 Exercise 2 2 Path from C to B 2 Path from C to A 2 Path from C to D 3 Exercise 3 3 Path from H to A 3 Path from A to E 4 Path from B to F 4 Exercise 4 4 Path from E to F 5 Path from F to C 5 Drain nodes 5 Source nodes 5 Exercise 5 5 From A 6	Path from C to D
Path from A to E 2 Exercise 2 2 Path from C to B 2 Path from C to A 2 Path from C to D 3 Exercise 3 3 Path from H to A 3 Path from B to F 4 Path from B to F 4 Path from E to F 5 Path from F to C 5 Drain nodes 5 Source nodes 5 Exercise 5 5 From A 6	Path from C to E
Path from C to B 2 Path from C to A 2 Path from C to D 3 Exercise 3 3 Path from H to A 3 Path from A to E 4 Path from B to F 4 Exercise 4 4 Path from E to F 5 Path from F to C 5 Drain nodes 5 Source nodes 5 Exercise 5 5 From A 6	
Path from C to A 2 Path from C to D 3 Exercise 3 3 Path from H to A 3 Path from A to E 4 Path from B to F 4 Exercise 4 4 Path from E to F 5 Path from F to C 5 Drain nodes 5 Source nodes 5 Exercise 5 5 From A 6	nor case =
Path from C to D 3 Exercise 3 3 Path from H to A 3 Path from A to E 4 Path from B to F 4 Exercise 4 4 Path from A to D 4 Path from F to C 5 Drain nodes 5 Source nodes 5 Exercise 5 5 From A 6	Path from C to B
Path from C to D 3 Exercise 3 3 Path from H to A 3 Path from A to E 4 Path from B to F 4 Exercise 4 4 Path from A to D 4 Path from F to C 5 Drain nodes 5 Source nodes 5 Exercise 5 5 From A 6	Path from C to A
Path from H to A 3 Path from A to E 4 Path from B to F 4 Exercise 4 4 Path from A to D 4 Path from E to F 5 Path from F to C 5 Drain nodes 5 Source nodes 5 Exercise 5 5 From A 6	
Path from A to E 4 Path from B to F 4 Exercise 4 4 Path from A to D 4 Path from E to F 5 Path from F to C 5 Drain nodes 5 Source nodes 5 Exercise 5 5 From A 6	xercise 3
Path from A to E 4 Path from B to F 4 Exercise 4 4 Path from A to D 4 Path from E to F 5 Path from F to C 5 Drain nodes 5 Source nodes 5 Exercise 5 5 From A 6	Path from H to A
Path from B to F 4 Exercise 4 4 Path from A to D 4 Path from E to F 5 Path from F to C 5 Drain nodes 5 Source nodes 5 Exercise 5 5 From A 6	
Path from A to D 4 Path from E to F 5 Path from F to C 5 Drain nodes 5 Source nodes 5 Exercise 5 5 From A 6	
Path from E to F 5 Path from F to C 5 Drain nodes 5 Source nodes 5 Exercise 5 5 From A 6	xercise 4
Path from E to F 5 Path from F to C 5 Drain nodes 5 Source nodes 5 Exercise 5 5 From A 6	Path from A to D
Path from F to C 5 Drain nodes 5 Source nodes 5 Exercise 5 5 From A 6	
Drain nodes 5 Source nodes 5 Exercise 5 5 From A 6	
Source nodes 5 Exercise 5 5 From A 6	
From A	
	xercise 5
	From A
From C	From C
From D	
From G	

Exercise 1

We apply **Dijkstra's algorithm** to calculate the minimum cost path from node C to any other node in G, being G(V, E, W) a graph. We initialize the cost vector D^1 , the path vector P^2 and the set of visited nodes $S.^3$

it	S	w	A	В	С	D	E	F	G	Н	A	В	С	D	Е	F	G	H
1	С	-	INF	1	0	INF	INF	INF	6	2	_	С	-	-	-	-	С	\overline{C}
2	B, C	В	3	1	0	6	INF	INF	6	2	В	\mathbf{C}	-	В	-	-	\mathbf{C}	\mathbf{C}
3	В, С, Н	Η	3	1	0	6	INF	INF	3	2	В	\mathbf{C}	-	В	-	-	Η	\mathbf{C}

¹D vector is the first to appear in the table shown (from the two vectors).

²P vector is the last to appear in the table shown.

 $^{^3}$ We also show w, which represents the current pivot.

it	S	W	A	В	С	D	Е	F	G	Н	A	В	С	D	Е	F	G	Η
4	A, B, C, H	A	3	1	0	6	INF	INF	3	2	В	С	-	В	-	-	Н	\overline{C}
5	A, B, C, G, H	G	3	1	0	6	INF	5	3	2	В	\mathbf{C}	-	В	-	G	Η	\mathbf{C}
6	A, B, C, F, G, H	\mathbf{F}	3	1	0	6	6	5	3	2	В	\mathbf{C}	-	В	\mathbf{F}	G	Η	\mathbf{C}
7	A, B, C, D, F, G, H	D	3	1	0	6	6	5	3	2	В	\mathbf{C}	-	В	\mathbf{F}	G	Η	\mathbf{C}
8	A, B, C, D, E, F, G, H	\mathbf{E}	3	1	0	6	6	5	3	2	В	\mathbf{C}	-	В	\mathbf{F}	G	\mathbf{H}	\mathbf{C}

Path from C to D

There exists a path between node C and node D, because we can see that in the D vector the cost of going from C to D is not infinite.

The cost of going from C to D is $\mathbf{6}$, and the minimum-cost path will be \mathbf{C} -> \mathbf{B} -> \mathbf{D} .

For getting the path we need to check the P vector, which indicates the previous node that we need to visit in order to get to node D, that is node B. Finally, we check that to go to B we need to depart from node C, and because it's the starting node, we have completed the minimum-cost path.

Path from C to E

There exists a path between node C and node E, because we can observe that in the D vector the cost of going from C to E is not infinite.

The cost of going from C to E is 6 as well, and the minimum-cost path will be C->H->G->F->E.

For getting the path we need to execute the same steps explained in the previous question.

Path from A to E

We don't know if there is a path between nodes A and E because Dijkstra's algorithm was executed for node C, not A.

Exercise 2

In this exercise we were asked to indicate whether there is a path between the following nodes and explain why we have reached that conclusion. If the path exists, we must reconstruct it showing each step of the iteration.

Path from C to B

There exists a path from C to B because we see in the D vector that the cost of going from C to B is not infinite.

The **cost** of going from C to B is 1.

Next we calculate the **mininimum-cost pathway**:

- We go to vector P to check what is the previous node that we need to visit to be able to reach B, that is node C.
- As node C is the starting node, we finish the process.

The minimum-cost pathway will be C->B.

Path from C to A

There does not exist a path between C and A because we see in the D vector that the cost of going from C to A is infinite, which makes it unreachable.

Path from C to D

There exists a path from C to D because we have checked in the D vector that the cost of going from C to D is **not infinite**.

The **cost** of going from C to D is **7**.

Now we will obtain the **minimum-cost pathway**:

- We go to vector P to check what is the previous node that we need to visit to be able to reach D, that is node E.
- We do the same for node E, and we see that the previous node to E is node F.
- Again, we check the previous node to F which is B.
- Finally, we see that for going to B we must depart from the initial node C, so we stop the process.

The minimum-cost pathway will be C->B->F->E->D.

Exercise 3

We apply the **Floyd-Warshall algorithm** to calculate the minimum-cost paths between every pair of nodes in G, being G(V, E, W) a graph. We define the cost matrix A and the path matrix P after the execution of the algorithm.

A matrix	A	В	С	D	Е	F	G	H
A	0	1	4	8	INF	5	INF	2
В	1	0	5	9	INF	6	4	3
$^{\mathrm{C}}$	1	2	0	4	INF	1	4	3
D	2	1	3	0	INF	4	5	4
\mathbf{E}	5	6	4	8	0	6	3	7
\mathbf{F}	INF	INF	INF	INF	INF	0	INF	INF
G	2	3	1	5	INF	2	0	4
H	2	3	2	6	INF	3	1	0

P matrix	A	В	С	D	Ε	F	G	Н
A	-	-	Н	Н	-	Н	-	_
В	-	-	\mathbf{H}	Η	-	Η	\mathbf{H}	A
$^{\mathrm{C}}$	-	A	-	-	-	-	Η	A
D	В	-	-	-	-	\mathbf{C}	Η	В
\mathbf{E}	G	G	G	G	-	-	-	G
\mathbf{F}	-	-	-	-	-	-	-	-
G	\mathbf{C}	\mathbf{C}	-	\mathbf{C}	-	\mathbf{C}	-	С
Н	-	A	G	G	-	G	-	-

Path from H to A

There exists a path from node H to node A, because in the A matrix we can observe that the cost of going from H to A is not infinite.

The **cost** of going from H to A is 2.

To calculate the minimum-cost path, we go to the P matrix and find that there is a direct path between node H and A, so the minimum-cost path will be \mathbf{H} -> \mathbf{A} .

Path from A to E

There does not exist a path from node A to node E because in the A matrix we can see that the cost of going from A to E is infinite, and therefore unreachable.

Path from B to F

There exists a path from node B to node F, because we have checked that in the A matrix the cost of going from B to F is not infinite.

The **cost** of going from B to F is **6**.

The minimum-cost path will be B->A->H->G->C->F. The process of calculating it is shown in **Figure 1**.

Figure 1: Path from B to F

Exercise 4

In this exercise we were required to indicate whether there is a path between the following nodes and why we have reached that conclusion. We also have to check whether drain or source nodes exist in the graph.

Path from A to D

There exists a path from node A to node D given that in the A matrix we can observe that the cost of going from A to D is not infinite.

The **cost** of going from A to D is **9**.

The minimum-cost path will be A->F->E->D. The process of calculating the path is shown in Figure 2.

Figure 2: Path from A to D

Path from E to F

There does not exist a path from node E to F, because the cost of going from E to F in the A matrix is infinite, and therefore unreachable.

Path from F to C

There exists a path from node F to node C because in the A matrix the cost of going from F to C is not infinite.

The **cost** of going from F to C is **5**.

The minimum-cost path will be F->C, because in the P matrix we observe that a direct path exists between the two nodes.

Drain nodes

There is a drain node in the graph, and that is **node** \mathbf{D} , because it cannot travel to any other node in the graph but can be accessed by them, as seen in the A matrix.

Source nodes

There is a source node in the graph, and that is **node** A, because it cannot be accessed from any other node in the graph but can travel to them, as seen in the A matrix.

Exercise 5

In this last exercise we are given a graph G(V, E) and are asked to perform a **depth-first search** from the following departure nodes, showing the order in which the nodes would be visited step by step.

From A

it	Search order	Candidates
1		A
2	A	В,Н
3	$_{\mathrm{A,B}}$	A,G,H,H
4	$_{\mathrm{A,B}}$	$_{\mathrm{G,H}}$
5	$_{A,B,G}$	$_{\mathrm{F,H,H}}$
6	A,B,G,F	$_{\mathrm{H,H}}$
7	A,B,G,F,H	$_{ m A,G,H}$
8	A,B,G,F,H	$_{\mathrm{G,H}}$
9	A,B,G,F,H	H
10	A,B,G,F,H	-

As we can see, from node A we cannot access all nodes of the graph.

From C

it	Search order	Candidates
1	-	$^{\mathrm{C}}$
2	\mathbf{C}	$_{A,D,G}$
3	$_{\mathrm{C,A}}$	$_{\mathrm{B,H,D,G}}$
4	$_{\mathrm{C,A,B}}$	A,G,H,H,D,G
5	$_{\mathrm{C,A,B}}$	$_{\mathrm{G,H,H,D,G}}$
6	$_{\mathrm{C,A,B,G}}$	F,H,H,D,G
7	C,A,B,G,F	$_{\rm H,H,D,G}$
8	C,A,B,G,F,H	A,G,H,D,G
9	C,A,B,G,F,H	$_{\mathrm{G,H,D,G}}$
10	C,A,B,G,F,H	$_{\mathrm{H,D,G}}$
11	C,A,B,G,F,H	$_{\mathrm{D,G}}$
12	C,A,B,G,F,H,D	$_{\mathrm{B,E,F,G}}$
13	C,A,B,G,F,H,D	$_{\mathrm{E,F,G}}$
14	C,A,B,G,F,H,D,E	$_{\mathrm{G,F,F,G}}$
15	C,A,B,G,F,H,D,E	$_{\mathrm{F,F,G}}$
16	C,A,B,G,F,H,D,E	$_{\mathrm{F,G}}$
17	C,A,B,G,F,H,D,E	G
18	C,A,B,G,F,H,D,E	-

From node C we can access all nodes of the graph.

From D

it	Search order	Candidates
1	-	D
2	D	$_{\mathrm{B,E,F}}$
3	$_{\mathrm{D,B}}$	A,G,H,E,F
4	$_{\mathrm{D,B,A}}$	B,H,G,H,E,F
5	$_{\mathrm{D,B,A}}$	$_{\rm H,G,H,E,F}$
6	$_{\mathrm{D,B,A,H}}$	A,G,G,H,E,F
7	$_{\mathrm{D,B,A,H}}$	$_{\rm G,G,H,E,F}$

it	Search order	Candidates
8	$\mathrm{D,B,A,H,G}$	F,G,H,E,F
9	D,B,A,H,G,F	$_{\rm G,H,E,F}$
10	D,B,A,H,G,F	$_{\mathrm{H,E,F}}$
11	D,B,A,H,G,F	$_{\rm E,F}$
12	D,B,A,H,G,F,E	$_{\mathrm{G,F,F}}$
13	D,B,A,H,G,F,E	$_{\mathrm{F,F}}$
14	D,B,A,H,G,F,E	\mathbf{F}
15	D,B,A,H,G,F,E	-

From node D we cannot access all nodes of the graph.

From G

it	Search order	Candidates
1	-	G
2	G	\mathbf{F}
3	$_{\mathrm{G,F}}$	-

From node G we cannot access all nodes of the graph.