Least Squares Problems

Consider the possibly overdetermined system of equations

$$Ax = b \tag{1}$$

where $A \in \mathbb{R}^{n \times m}$ and a vector $b \in \mathbb{R}^n$, $n \ge m$. It may not have an exact solution if n > m or A is square but singular. The **Least Squares Problem** associated with this system is about finding $x_0 \in \mathbb{R}^m$ such that

$$||b - Ax_0||_2 = \min_{x \in \mathbb{R}^m} ||b - Ax||_2.$$

Consider the possibly overdetermined system of equations

$$Ax = b \tag{1}$$

where $A \in \mathbb{R}^{n \times m}$ and a vector $b \in \mathbb{R}^n$, $n \ge m$. It may not have an exact solution if n > m or A is square but singular. The **Least Squares Problem** associated with this system is about finding $x_0 \in \mathbb{R}^m$ such that

$$||b - Ax_0||_2 = \min_{x \in \mathbb{R}^m} ||b - Ax||_2.$$

Applications:

Consider the possibly overdetermined system of equations

$$Ax = b \tag{1}$$

where $A \in \mathbb{R}^{n \times m}$ and a vector $b \in \mathbb{R}^n$, $n \ge m$. It may not have an exact solution if n > m or A is square but singular. The **Least Squares Problem** associated with this system is about finding $x_0 \in \mathbb{R}^m$ such that

$$||b - Ax_0||_2 = \min_{x \in \mathbb{R}^m} ||b - Ax||_2.$$

Applications:

Polynomial curve fitting.

Consider the possibly overdetermined system of equations

$$Ax = b \tag{1}$$

where $A \in \mathbb{R}^{n \times m}$ and a vector $b \in \mathbb{R}^n$, $n \ge m$. It may not have an exact solution if n > m or A is square but singular. The **Least Squares Problem** associated with this system is about finding $x_0 \in \mathbb{R}^m$ such that

$$||b - Ax_0||_2 = \min_{x \in \mathbb{R}^m} ||b - Ax||_2.$$

Applications:

- Polynomial curve fitting.
- Making predictions from existing data.

Consider the possibly overdetermined system of equations

$$Ax = b (1)$$

where $A \in \mathbb{R}^{n \times m}$ and a vector $b \in \mathbb{R}^n$, $n \ge m$. It may not have an exact solution if n > m or A is square but singular. The **Least Squares Problem** associated with this system is about finding $x_0 \in \mathbb{R}^m$ such that

$$||b - Ax_0||_2 = \min_{x \in \mathbb{R}^m} ||b - Ax||_2.$$

Applications:

- Polynomial curve fitting.
- Making predictions from existing data.
- Machine Learning.

Consider the possibly overdetermined system of equations

$$Ax = b (1)$$

where $A \in \mathbb{R}^{n \times m}$ and a vector $b \in \mathbb{R}^n$, $n \ge m$. It may not have an exact solution if n > m or A is square but singular. The **Least Squares Problem** associated with this system is about finding $x_0 \in \mathbb{R}^m$ such that

$$||b - Ax_0||_2 = \min_{x \in \mathbb{R}^m} ||b - Ax||_2.$$

Applications:

- Polynomial curve fitting.
- Making predictions from existing data.
- Machine Learning.

Direct solution methods:

Consider the possibly overdetermined system of equations

$$Ax = b (1)$$

where $A \in \mathbb{R}^{n \times m}$ and a vector $b \in \mathbb{R}^n$, $n \ge m$. It may not have an exact solution if n > m or A is square but singular. The **Least Squares Problem** associated with this system is about finding $x_0 \in \mathbb{R}^m$ such that

$$||b - Ax_0||_2 = \min_{x \in \mathbb{R}^m} ||b - Ax||_2.$$

Applications:

- Polynomial curve fitting.
- Making predictions from existing data.
- Machine Learning.

Direct solution methods:

Normal Equations Method.

Consider the possibly overdetermined system of equations

$$Ax = b (1)$$

where $A \in \mathbb{R}^{n \times m}$ and a vector $b \in \mathbb{R}^n$, $n \ge m$. It may not have an exact solution if n > m or A is square but singular. The **Least Squares Problem** associated with this system is about finding $x_0 \in \mathbb{R}^m$ such that

$$||b - Ax_0||_2 = \min_{x \in \mathbb{R}^m} ||b - Ax||_2.$$

Applications:

- Polynomial curve fitting.
- Making predictions from existing data.
- Machine Learning.

Direct solution methods:

- Normal Equations Method.
- QR Decomposition Method.

Consider the possibly overdetermined system of equations

$$Ax = b \tag{1}$$

where $A \in \mathbb{R}^{n \times m}$ and a vector $b \in \mathbb{R}^n$, $n \ge m$. It may not have an exact solution if n > m or A is square but singular. The **Least Squares Problem** associated with this system is about finding $x_0 \in \mathbb{R}^m$ such that

$$||b - Ax_0||_2 = \min_{x \in \mathbb{R}^m} ||b - Ax||_2.$$

Applications:

- Polynomial curve fitting.
- Making predictions from existing data.
- Machine Learning.

Direct solution methods:

- Normal Equations Method.
- QR Decomposition Method.
- Singular Value Decomposition Method.

As $A \in \mathbb{R}^{n \times m}$, the linear map from \mathbb{R}^m to \mathbb{R}^n given by $x \mapsto Ax$, for all $x \in \mathbb{R}^m$ has range and null spaces

$$R(A) = \underbrace{\{Ax : x \in \mathbb{R}^m\}}_{\text{also called CoI (A)}} \subset \mathbb{R}^n \text{ and } N(A) = \{x \in \mathbb{R}^m : Ax = 0\} \subset \mathbb{R}^m.$$

As $A \in \mathbb{R}^{n \times m}$, the linear map from \mathbb{R}^m to \mathbb{R}^n given by $x \mapsto Ax$, for all $x \in \mathbb{R}^m$ has range and null spaces

$$R(A) = \underbrace{\{Ax : x \in \mathbb{R}^m\}}_{\text{also called Col (A)}} \subset \mathbb{R}^n \text{ and } N(A) = \{x \in \mathbb{R}^m : Ax = 0\} \subset \mathbb{R}^m.$$

The LSP is a two stage process involving

- 1. Find the best approximation to b from R(A) i.e., find $y_0 \in R(A)$ such that $||b y_0||_2 = \min_{y \in R(A)} ||b y||_2$.
- 2. Find $x_0 \in \mathbb{R}^m$ such that $Ax_0 = y_0$.

As $A \in \mathbb{R}^{n \times m}$, the linear map from \mathbb{R}^m to \mathbb{R}^n given by $x \mapsto Ax$, for all $x \in \mathbb{R}^m$ has range and null spaces

$$R(A) = \underbrace{\{Ax : x \in \mathbb{R}^m\}}_{\text{also called Col (A)}} \subset \mathbb{R}^n \text{ and } N(A) = \{x \in \mathbb{R}^m : Ax = 0\} \subset \mathbb{R}^m.$$

The LSP is a two stage process involving

- 1. Find the best approximation to b from R(A) i.e., find $y_0 \in R(A)$ such that $||b y_0||_2 = \min_{y \in R(A)} ||b y||_2$.
- 2. Find $x_0 \in \mathbb{R}^m$ such that $Ax_0 = y_0$.

Since

$$\mathbb{R}^n = R(A) \oplus R(A)^{\perp}$$
,

for $b \in R^n$, there exists unique $b_1 \in R(A)$, $b_2 \in R(A)^{\perp}$, such that $b = b_1 + b_2$.

Therefore for all
$$x \in \mathbb{R}^m$$
, $b - Ax = \underbrace{b_1 - Ax}_{\in R(A)} + \underbrace{b_2}_{\in R(A)^{\perp}}$ and

$$\begin{split} \|b - Ax\|_2^2 &= \langle b_1 - Ax + b_2, b_1 - Ax + b_2 \rangle \\ &= \|b_1 - Ax\|_2^2 + \|b_2\|_2^2 \qquad \text{(as } \langle b_1 - Ax, b_2 \rangle = 0 \text{ for all } x \in \mathbb{R}^m) \\ &\geq \|b_2\|_2^2 \\ &= \|\underbrace{b - Ax_0}_{:=r(=b_2)}\|_2^2 \end{split}$$

where $x_0 \in \mathbb{R}^m$ such that $Ax_0 = b_1$. Hence, $\min_{x \in \mathbb{R}^m} \|b - Ax\|_2^2 \ge \|b - Ax_0\|_2^2 \ge \min_{x \in \mathbb{R}^m} \|b - Ax\|_2^2 \Rightarrow \min_{x \in \mathbb{R}^m} \|b - Ax\|_2 = \|b - Ax_0\|_2.$

$$X \in \mathbb{R}^m$$

Hence $x_0 \in \mathbb{R}^m$ is a solution of the least squares problem and

$$r:=b-Ax_0=b_2\in R(A)^{\perp}$$

is the residual vector.

Note that if P be the orthogonal projection of \mathbb{R}^n onto R(A), then $Pb = b_1$. Therefore in summary,

the orthogonal projection b_1 of b onto the column space of A is the nearest vector to b in the column space of A with respect to $\|\cdot\|_2$ and the solution of the LSP associated with the system is a column vector x_0 of scalars which produce the linear combination of the columns of A to form b_1 .

Hence $x_0 \in \mathbb{R}^m$ is a solution of the least squares problem and

$$r:=b-Ax_0=b_2\in R(A)^{\perp}$$

is the residual vector.

Note that if P be the orthogonal projection of \mathbb{R}^n onto R(A), then $Pb = b_1$. Therefore in summary,

the orthogonal projection b_1 of b onto the column space of A is the nearest vector to b in the column space of A with respect to $\|\cdot\|_2$ and the solution of the LSP associated with the system is a column vector x_0 of scalars which produce the linear combination of the columns of A to form b_1 .

Hence the solution of an LSP problem always exists!

Hence $x_0 \in \mathbb{R}^m$ is a solution of the least squares problem and

$$r:=b-Ax_0=b_2\in R(A)^{\perp}$$

is the residual vector.

Note that if P be the orthogonal projection of \mathbb{R}^n onto R(A), then $Pb = b_1$. Therefore in summary,

the orthogonal projection b_1 of b onto the column space of A is the nearest vector to b in the column space of A with respect to $\|\cdot\|_2$ and the solution of the LSP associated with the system is a column vector x_0 of scalars which produce the linear combination of the columns of A to form b_1 .

Hence the solution of an LSP problem always exists! How many solutions are there?

Hence $x_0 \in \mathbb{R}^m$ is a solution of the least squares problem and

$$r:=b-Ax_0=b_2\in R(A)^{\perp}$$

is the residual vector.

Note that if P be the orthogonal projection of \mathbb{R}^n onto R(A), then $Pb = b_1$. Therefore in summary,

the orthogonal projection b_1 of b onto the column space of A is the nearest vector to b in the column space of A with respect to $\|\cdot\|_2$ and the solution of the LSP associated with the system is a column vector x_0 of scalars which produce the linear combination of the columns of A to form b_1 .

Hence the solution of an LSP problem always exists! How many solutions are there?

The solution is unique if and only if rank A = m.

Hence $x_0 \in \mathbb{R}^m$ is a solution of the least squares problem and

$$r:=b-Ax_0=b_2\in R(A)^{\perp}$$

is the residual vector.

Note that if P be the orthogonal projection of \mathbb{R}^n onto R(A), then $Pb = b_1$. Therefore in summary,

the orthogonal projection b_1 of b onto the column space of A is the nearest vector to b in the column space of A with respect to $\|\cdot\|_2$ and the solution of the LSP associated with the system is a column vector x_0 of scalars which produce the linear combination of the columns of A to form b_1 .

Hence the solution of an LSP problem always exists! How many solutions are there?

The solution is unique if and only if rank A = m. If rank A < m, there are infinitely many solutions!

Hence $x_0 \in \mathbb{R}^m$ is a solution of the least squares problem and

$$r:=b-Ax_0=b_2\in R(A)^{\perp}$$

is the residual vector.

Note that if P be the orthogonal projection of \mathbb{R}^n onto R(A), then $Pb = b_1$. Therefore in summary,

the orthogonal projection b_1 of b onto the column space of A is the nearest vector to b in the column space of A with respect to $\|\cdot\|_2$ and the solution of the LSP associated with the system is a column vector x_0 of scalars which produce the linear combination of the columns of A to form b_1 .

Hence the solution of an LSP problem always exists! How many solutions are there?

The solution is unique if and only if rank A = m. If rank A < m, there are infinitely many solutions!

Exercise: Prove the above statements!

How to get x_0 ?

Since $R(A)^{\perp} = N(A^T)$, where $N(A^T)$ is the null space of the linear map $y \mapsto A^T y$ from \mathbb{R}^n to \mathbb{R}^m , $A^T r = 0$.

How to get x_0 ?

Since $R(A)^{\perp} = N(A^T)$, where $N(A^T)$ is the null space of the linear map $y \mapsto A^T y$ from \mathbb{R}^n to \mathbb{R}^m , $A^T r = 0$. Hence x_0 is a solution of

$$A^T A x = A^T b (2)$$

The systems of equations (2) are called the *Normal Equations* of the Least Squares Problem associated with Ax = b.

How to get x_0 ?

Since $R(A)^{\perp} = N(A^T)$, where $N(A^T)$ is the null space of the linear map $y \mapsto A^T y$ from \mathbb{R}^n to \mathbb{R}^m , $A^T r = 0$. Hence x_0 is a solution of

$$A^T A x = A^T b (2)$$

The systems of equations (2) are called the *Normal Equations* of the Least Squares Problem associated with Ax = b.

Exercise: Let $A \in \mathbb{R}^{n \times m}$ and $b \in \mathbb{R}^n$, where $n \geq m$. Prove that the following statements are equivalent.

- 1. rank A = m.
- 2. $A^T A$ is nonsingular.
- 3. $A^T A$ is positive definite.

How to get x_0 ?

Since $R(A)^{\perp} = N(A^T)$, where $N(A^T)$ is the null space of the linear map $y \mapsto A^T y$ from \mathbb{R}^n to \mathbb{R}^m , $A^T r = 0$. Hence x_0 is a solution of

$$A^T A x = A^T b (2)$$

The systems of equations (2) are called the *Normal Equations* of the Least Squares Problem associated with Ax = b.

Exercise: Let $A \in \mathbb{R}^{n \times m}$ and $b \in \mathbb{R}^n$, where $n \geq m$. Prove that the following statements are equivalent.

- 1. rank A = m.
- 2. $A^T A$ is nonsingular.
- 3. $A^T A$ is positive definite.

Pseudocode for solving the Least Squares Problem via Normal Equations when rank A = m:

- 1. Form the Normal Equations. $(2nm^2 + O(nm))$ flops)
- 2. Solve them via the Cholesky Method. $(m^3/3 + O(m^2))$ flops)
- 3. Compute two norm squared of the residual vector. (2nm + 3n flops)

Since $\kappa_2(A^TA) = (\kappa_2(A))^2$, the Normal Equations can be very ill conditioned even if A is mildly ill conditioned.

Since $\kappa_2(A^TA) = (\kappa_2(A))^2$, the Normal Equations can be very ill conditioned even if A is mildly ill conditioned.

The computation of A^TA is the most expensive step in the process and is also very prone to rounding error.

For example, for the full rank matrix

$$A = \left[\begin{array}{cc} 1 & 1 \\ \epsilon & 0 \\ 0 & \epsilon \end{array} \right]$$

where
$$\epsilon^2 < u$$
, $\operatorname{fl}(A^T A) = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ is singular!

Therefore the method may not perform well even for mildly ill conditioned matrices.

Case 1: *A* is full rank, i.e., rank A = m.

Let $A = Q \begin{bmatrix} R_1 \\ 0 \end{bmatrix}$ be a QR decomposition of A and Q_1 be the isometry formed by the first m columns of Q.

Case 1: *A* is full rank, i.e., rank A = m.

Let $A = Q \begin{bmatrix} R_1 \\ 0 \end{bmatrix}$ be a QR decomposition of A and Q_1 be the isometry formed by the first m columns of Q.

Then $Q_1Q_1^T$ is the orthogonal projection onto R(A) or Col(A). Hence, $b_1 = Q_1Q_1^Tb$ and the solution x_0 of the LSP associated with Ax = b satisfies

$$Ax_0 = Q_1 Q_1^T b$$

$$\Rightarrow Q \begin{bmatrix} R_1 \\ 0 \end{bmatrix} x_0 = Q[e_1 \cdots e_m][e_1 \cdots e_m]^T \underbrace{Q^T b}_{:=c}$$

$$\Rightarrow \begin{bmatrix} R_1 \\ 0 \end{bmatrix} x_0 = \begin{bmatrix} I_m & 0 \\ 0 & 0 \end{bmatrix}_{n \times n} c$$

$$\Rightarrow R_1 x_0 = c_1$$

where c_1 is the vector of first m rows of c.

Case 1: *A* is full rank, i.e., rank A = m.

Let $A = Q \begin{bmatrix} R_1 \\ 0 \end{bmatrix}$ be a QR decomposition of A and Q_1 be the isometry formed by the first m columns of Q.

Then $Q_1Q_1^T$ is the orthogonal projection onto R(A) or Col(A). Hence, $b_1 = Q_1Q_1^Tb$ and the solution x_0 of the LSP associated with Ax = b satisfies

$$Ax_0 = Q_1 Q_1^T b$$

$$\Rightarrow Q \begin{bmatrix} R_1 \\ 0 \end{bmatrix} x_0 = Q[e_1 \cdots e_m][e_1 \cdots e_m]^T \underbrace{Q^T b}_{:=c}$$

$$\Rightarrow \begin{bmatrix} R_1 \\ 0 \end{bmatrix} x_0 = \begin{bmatrix} I_m & 0 \\ 0 & 0 \end{bmatrix}_{n \times n} c$$

$$\Rightarrow R_1 x_0 = c_1$$

where c_1 is the vector of first m rows of c.

Case 2: rank A = r < m.

Case 2: rank A = r < m.

Exercise: Let $AP = Q \begin{bmatrix} R_1 & R_2 \\ 0 & 0 \end{bmatrix}$ be a rank revealing QR

decomposition of A where $R_1 \in \mathbb{R}^{r \times r}$, $R_2 \in \mathbb{R}^{r \times m - r}$, R_1 being upper triangular and nonsingular. Let $Q_1 = [q_1 \cdots q_r]$ be the isometry formed by the first r columns of Q. Then prove that

$$\textit{Col}(\textit{A})(=\textit{R}(\textit{A})) = \text{span}\,\{\textit{APe}_1,\cdots,\textit{APe}_r\} = \text{span}\,\{\textit{q}_1,\cdots,\textit{q}_r\} = \textit{Col}(\textit{Q}_1).$$

Case 2: rank A = r < m.

Exercise: Let $AP = Q \begin{bmatrix} R_1 & R_2 \\ 0 & 0 \end{bmatrix}$ be a rank revealing QR

decomposition of A where $R_1 \in \mathbb{R}^{r \times r}$, $R_2 \in \mathbb{R}^{r \times m - r}$, R_1 being upper triangular and nonsingular. Let $Q_1 = [q_1 \cdots q_r]$ be the isometry formed by the first r columns of Q. Then prove that

$$Col(A)(=R(A))=\operatorname{span}\{APe_1,\cdots,APe_r\}=\operatorname{span}\{q_1,\cdots,q_r\}=Col(Q_1).$$

Therefore, $Q_1Q_1^T$ is the orthogonal projection onto Col(A) and any solution x_0 of the LSP associated with Ax = b satisfies

$$Ax_0 = Q_1 Q_1^T b \Rightarrow Q \begin{bmatrix} R_1 & R_2 \\ 0 & 0 \end{bmatrix} \underbrace{P^T x_0}_{:=y} = Q[e_1 \cdots e_r][e_1 \cdots e_r]^T \underbrace{Q^T b}_{:=c}$$

$$\Rightarrow \begin{bmatrix} R_1 & R_2 \\ 0 & 0 \end{bmatrix}_{n \times m} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}_{m \times 1} = \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}_{n \times m} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}_{n \times 1}$$

 c_1 , y_1 being the vectors of first r rows of c and y respectively and c_2 , y_2 the vector formed by the last m-r rows of y and last n-r rows of c respectively

Then, $R_1y_1 + R_2y_2 = c_1 \Rightarrow R_1y_1 = c_1 - R_2y_2$.

Then, $R_1y_1 + R_2y_2 = c_1 \Rightarrow R_1y_1 = c_1 - R_2y_2$.

Choose y_2 arbitrarily and y_1 as the solution of the above $r \times r$ upper triangular system.

Then, $R_1y_1 + R_2y_2 = c_1 \Rightarrow R_1y_1 = c_1 - R_2y_2$.

Choose y_2 arbitrarily and y_1 as the solution of the above $r \times r$ upper triangular system.

For ease of computation choose $y_2 = 0$. Then one solution $x_0 \in \mathbb{R}^m$ satisfying

$$||b - Ax_0||_2^2 = \min_{x \in \mathbb{R}^m} ||b - Ax||_2^2$$

is given by

$$x_0 = P \begin{bmatrix} y_1 \\ 0 \end{bmatrix}$$

where $R_1 y_1 = c_1$.

Then, $R_1y_1 + R_2y_2 = c_1 \Rightarrow R_1y_1 = c_1 - R_2y_2$.

Choose y_2 arbitrarily and y_1 as the solution of the above $r \times r$ upper triangular system.

For ease of computation choose $y_2 = 0$. Then one solution $x_0 \in \mathbb{R}^m$ satisfying

$$||b - Ax_0||_2^2 = \min_{x \in \mathbb{R}^m} ||b - Ax||_2^2$$

is given by

$$x_0 = P \begin{bmatrix} y_1 \\ 0 \end{bmatrix}$$

where $R_1 y_1 = c_1$.

Exercise: If $r = b - Ax_0$ prove that $||r||_2 = ||c_2||_2$.

Pseudocode for solving the LSP associated with Ax = b via QR decomposition method:

1. Find $R = \begin{bmatrix} R_1 & R_2 \\ 0 & 0 \end{bmatrix}$ of a rank revealing QR decomposition of A and suppose Q_1, \ldots, Q_r are the reflectors and P_1, \ldots, P_r are the permutations required in the process. Here $r \leq m$.

(costs $2nm^2 - \frac{2}{3}m^3 + O(nm) + O(m^2)$ flops if r = m.)

Pseudocode for solving the LSP associated with Ax = b via QR decomposition method:

1. Find $R = \begin{bmatrix} R_1 & R_2 \\ 0 & 0 \end{bmatrix}$ of a rank revealing QR decomposition of A and suppose Q_1, \ldots, Q_r are the reflectors and $P_1, \ldots P_r$ are the permutations required in the process. Here $r \leq m$.

(Costs $2nm^2 - \frac{2}{3}m^3 + O(nm) + O(m^2)$ flops if r = m.)

2. Compute $c = Q_r \cdots Q_1 b$ and extract vectors c_1, c_2 from its first entries.

(costs O(nm) flops if r = m.)

Pseudocode for solving the LSP associated with Ax = b via QR decomposition method:

1. Find $R = \begin{bmatrix} R_1 & R_2 \\ 0 & 0 \end{bmatrix}$ of a rank revealing QR decomposition of A and suppose Q_1, \ldots, Q_r are the reflectors and P_1, \ldots, P_r are the permutations required in the process. Here $r \leq m$.

(costs
$$2nm^2 - \frac{2}{3}m^3 + O(nm) + O(m^2)$$
 flops if $r = m$.)

2. Compute $c = Q_r \cdots Q_1 b$ and extract vectors c_1, c_2 from its first entries.

```
(costs O(nm) flops if r = m.)
```

3. Find $||r||_2^2 = ||c_2||_2^2$. (costs O(nm) flops if r = m.)

Pseudocode for solving the LSP associated with Ax = b via QR decomposition method:

1. Find $R = \begin{bmatrix} R_1 & R_2 \\ 0 & 0 \end{bmatrix}$ of a rank revealing QR decomposition of A and suppose Q_1, \ldots, Q_r are the reflectors and P_1, \ldots, P_r are the permutations required in the process. Here $r \leq m$.

(costs
$$2nm^2 - \frac{2}{3}m^3 + O(nm) + O(m^2)$$
 flops if $r = m$.)

2. Compute $c = Q_r \cdots Q_1 b$ and extract vectors c_1, c_2 from its first entries.

(costs
$$O(nm)$$
 flops if $r = m$.)

- 3. Find $||r||_2^2 = ||c_2||_2^2$. (costs O(nm) flops if r = m.)
- 4. Solve $R_1 y = c_1$. (costs $O(m^2)$ flops if r = m.)

Pseudocode for solving the LSP associated with Ax = bvia QR decomposition method:

- 1. Find $R = \begin{bmatrix} R_1 & R_2 \\ 0 & 0 \end{bmatrix}$ of a rank revealing QR decomposition of A and suppose Q_1, \ldots, Q_r are the reflectors and $P_1, \dots P_r$ are the permutations required in the process. Here $r \leq m$.
 - (costs $2nm^2 \frac{2}{3}m^3 + O(nm) + O(m^2)$ flops if r = m.)
- 2. Compute $c = Q_1 \cdots Q_1 b$ and extract vectors c_1, c_2 from its first entries.
 - (costs O(nm) flops if r = m.)
- 3. Find $||r||_2^2 = ||c_2||_2^2$. (costs O(nm) flops if r = m.)
- 4. Solve $R_1 y = c_1$. (costs $O(m^2)$ flops if r = m.)
- 5. Set $x_0 = P_1 \cdots P_r \begin{bmatrix} y \\ 0 \end{bmatrix}_{m \times 1}$. (Here the zeroes are necessary only if r < m.)

