IEEE Hyderabad Mentorship Programme -2024: Digital IC Design

Course Overview:

- o **Duration:** 6 weeks [Monday to Friday]
- \circ Timings: 7 PM 8 PM
- o **Mode:** Online [Google meet]
- o FPGA EDA tools: AMD's Xilinx's Vivado, Intel's Altera's Quartus,
- o **ASIC EDA tools:** OpenLane

Course Content:

- Introduction to Verilog HDL 4 weeks
 - Verilog language details
 - Differences between simulation and synthesis
 - Various modelling styles
 - Modelling of combinational logic
 - Modelling of sequential logic
 - FSM design

o FPGA Design Approach - 4 weeks

- Introduction to FPGA design flow
- Intel's Altera's Quartus design tool
- AMD's Xilinx's Vivado design tool

ASIC Design Approach – 4 weeks

- Introduction to RTL-to-GDSII design flow
- ASIC design using open-source PDK
- ASIC design using open-source EDA tool OpenLane

> Installation of the required EDA tools:

- o In order to ensure a smooth learning experience, it is imperative that all participants have the required EDA (Electronic Design Automation) tools installed on their laptops/desktops prior to the commencement of the course. To facilitate this process, we kindly request one week's notice before the scheduled start date of the course.
- We will handle the installation of these tools directly onto your system. This
 will be conducted remotely, connecting to your device via AnyDesk to perform
 the installation seamlessly.
- We understand the importance of having the necessary tools in place to fully engage with the course material, and we are committed to assisting you every step of the way.

Course Instructor:

- o Mohammed Zakir Hussain
- o **SMIEEE 91261181**

➢ Google Meet joining info

o link: https://meet.google.com/kbj-cbxk-qmc

Upon completion of Digital IC Design, you will be undertaking the following mini projects and major projects:

> Mini Projects:

- o Design and Simulation of a 8-Bit ALU.
- o Finite State Machine (FSM) for Traffic Light Controller.

> Major Projects:

- o Design and Implementation of a Simple RISC Processor.
- o Development of a Digital Signal Processing (DSP) System.

Mini Projects:

> Design and Simulation of a 8-Bit ALU (Arithmetic Logic Unit)

- o **Objective:** Design and simulate a 4-bit ALU using Verilog HDL.
- o **Tools:** Xilinx Vivado or Intel Quartus for simulation and synthesis.
- o Details:
 - Implement basic arithmetic operations (addition, subtraction).
 - Implement logical operations (AND, OR, XOR, NOT).
 - Test the design using a testbench.
 - Simulate the design to verify functionality and timing.

Learning Outcomes:

- Understanding of combinational and sequential logic design.
- Experience with Verilog HDL for modeling hardware components.
- Hands-on practice with FPGA tools for simulation and synthesis.

> Finite State Machine (FSM) for Traffic Light Controller

- o **Objective:** Design and simulate an FSM-based traffic light controller using Verilog HDL.
- o **Tools:** Xilinx Vivado or Intel Quartus for simulation and synthesis.
- Details:
 - Create an FSM with states for different traffic light phases.
 - Implement timing control for each phase.
 - Test the FSM with a testbench.
 - Simulate the FSM to verify correct state transitions and timing.

Learning Outcomes:

- Understanding of FSM design and state transition logic.
- Practical experience with sequential logic design.
- Familiarity with FPGA simulation and synthesis tools.

Major Projects:

> Design and Implementation of a Simple RISC Processor

- Objective: Design, simulate, and synthesize a simple 8-bit RISC processor using Verilog HDL.
- o **Tools:** Xilinx Vivado or Intel Quartus for FPGA implementation, OpenLane for ASIC flow.

Details:

- Implement key components: ALU, registers, control unit, and memory interface.
- Develop a simple instruction set architecture (ISA).
- Create test programs to validate processor functionality.
- Perform synthesis and implement the design on an FPGA.
- Optionally, use OpenLane to explore the ASIC design flow for the processor.

Learning Outcomes:

- Comprehensive understanding of processor architecture and design.
- Experience with both FPGA and ASIC design tools.
- Insight into the full digital design flow from HDL modeling to hardware implementation.

> Development of a Digital Signal Processing (DSP) System

- Objective: Design, simulate, and synthesize a DSP system capable of performing basic signal processing tasks (e.g., filtering, FFT) using Verilog HDL.
- o **Tools:** Xilinx Vivado or Intel Quartus for FPGA implementation, OpenLane for ASIC flow.

Details:

- Implement key DSP modules (e.g., FIR filter, FFT module).
- Integrate modules into a cohesive DSP system.
- Develop testbenches to verify the functionality of each module and the entire system.
- Perform synthesis and implement the design on an FPGA.
- Optionally, use OpenLane to explore the ASIC design flow for the DSP system.

Learning Outcomes:

- Deep understanding of DSP algorithms and their hardware implementation.
- Practical experience with designing complex digital systems.
- Exposure to both FPGA and ASIC design methodologies.

These projects will help solidify your understanding of digital IC design, provide hands-on experience with industry-standard tools and open-source EDA tools as well, and prepare you for more advanced design challenges.