T1 C	1 /	T	,	1 .	
Ehrenfe	11Cht-	-Hrais	se-n	eleisi	t a
	acii	LIGID	oc p	CICID	UCL

Pauli Niva

Kandidaatintutkielma HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos

Helsinki, 1. toukokuuta 2016

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI

Tiedekunta — Fakultet — Faculty		Laitos — Institution — Department		
Matemaattis-luonnontieteellinen		Tietojenkäsittelytieteen laitos		
Tekijä — Författare — Author				
Pauli Niva				
Työn nimi — Arbetets titel — Title				
Ehrenfeucht-Fraïssé-peleistä				
Oppiaine — Läroämne — Subject				
Tietojenkäsittelytiede				
Työn laji — Arbetets art — Level	Aika — Datum — Mo	nth and year	Sivumäärä — Sidoantal — Number of pages	
Kandidaatintutkielma	1. toukokuuta 2016		18	
Tiivistelmä — Referat — Abstract				

Tämä kirjallisuuskatsaus esittelee Ehfenfeucht–Fraïssé-pelin, sen ominaisuuksia sekä miten ja missä sitä käytetään. Ehfenfeucht–Fraïssé-peli on malliteorian työkalu jonka avulla voidaan määritellä toteuttavatko kaksi matemaattista rakennelmaa samat predikaattilogiikan lauseet, eli ovatko rakennelmat elementaarisesti ekvivalentit. Malliteoria on matemaattisen logiikan ja laskettavuuden teorian osa-alue, joka tutkii matemaattisia rakennelmia, struktuureja, eli malleja. Malli koostuu perusjoukosta ja tämän alkioiden välisiä suhteita kuvaavista relaatioista ja funktioista.

Ehfenfeucht–Fraïssé-pelin kehittivät 1900-luvun puolivälissä ranskalainen loogikko Roland Fraïssé ja puolan amerikkalainen matemaatikko ja tietojenkäsittelytieteilijä Andrzej Ehrenfeucht. Tämän pelin pääsovellusalue on todistuksissa, että jokin määrätty mallin ominaisuus ei ole ilmaistavissa predikaattilogiikan kielellä.

Ehfenfeucht–Fraïssé-pelistä on kehitetty monia erilaisia variaatioita eri tarpeisiin ja eri logiikoille. Nämä pelit ovat erityisen tärkeitä äärellisten mallien teoriassa ja sen sovelluksissa tietojenkäsittelytieteessä, koska Ehfenfeucht–Fraïssé-pelit ovat yksi harvoista malliteorian tekniikoista jotka toimivat kun rajoitutaan äärettömästä äärelliseen. Monet muut yleisesti käytetyt tekniikat, kuten kompaktiusteoreema, eivät toimi äärellisillä malleilla.

ACM Computing Classification System (CCS): Theory of computation \rightarrow Finite Model Theory

Avainsanat — Nyckelord — Keywords
Ehrenfeucht-Fraïssé-peli, äärellisten mallien teoria
Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — Övriga uppgifter — Additional information

Sisältö

1	Joh	danto	1								
2	Per	Peruskäsitteitä									
	2.1	Relaatiot	2								
	2.2	Kielet	2								
	2.3	Mallit									
	2.4	Isomorfia									
	2.5	Elementaarinen ekvivalenssi	6								
3	EF-peli										
	3.1	Pelin kulku	7								
	3.2	EF-pelin ominaisuuksia	10								
4	Sovelluksia										
	4.1	Sovellusaloja	10								
	4.2	Ensimmäisen kertaluokan predikaattilogiikan rajoitteet	11								
	4.3	Kongruenssiapulauseet	14								
	4.4	Bisimulaatio	15								
5	5 Yhteenveto										
Lä	ihtee	et	17								

1 Johdanto

Tässä tutkielmassa tarkastellaan Ehrenfeucht–Fraïssé-pelejä, joita sovelletaan logiikan määrittelemättömyystulosten todistamisessa ja tietojenkäsittelytieteessä esimerkiksi tietokantakielien ilmaisuvoiman mittaamisessa tai verkkojen tutkimisessa. Alunperin Ehrenfeucht–Fraïssé-peli määriteltiin ensimmäisen kertaluvun predikaattilogiikalle, mutta tästä pelistä kehitettiin nopeasti erilaisia variaatioita monille muille logiikoille, kuten esimerkiksi kiintopistelogiikalle (fixpoint logic) [1] ja lineaariselle temporaalilogiikalle (linear temporal logic) [3].

Ensimmäisen kerran elementaarinen ekvivalenssi eli se, että täsmälleen samat ensimmäisen kertaluokan lauseet ovat tosia A:ssa ja B:ssä, esiintyy kirjallisuudessa Alfred Tarskin artikkelissa Grundzüge der Systemenkalküls 1 vuodelta 1935 [17]. Roland Fraïssé käytti väitöskirjatyössään [6] vuonna 1954 edestakaisin-menetelmää osoittaakseen, että kaksi malliteoreettista struktuuria ovat elementaarisesti ekvivalentit. Andrzej Ehrenfeucht muokkasi tästä Fraïssén menetelmästä peliteoreettisen version, joka julkaistiin vuonna 1961 Fundamenta Mathematicae:ssa [2]. Nykyisin nämä pelit tunnetaan nimeltä Ehrenfeucht-Fraïssé-pelit (jatkossa EF-pelit), joskus niitä kutsutaan myös edestakaisin-peleiksi.

Tämä edestakaisin-menetelmä siis karakterisoi elementaarisen ekvivalenssin. Ideana on, että *isomorfismeja* tutkitaan yksi kerrallaan ja katsotaan, kuinka niitä voisi laajentaa suuremmille äärellisille isomorfismeille.

Tämän tutkielman tavoitteena on esitellä täsmällisesti, mutta kuitenkin samalla havainnollisesti EF-peliä ja sen hyödyllisyyttä matemaattisen logiikan ja tietojenkäsittelytieteen saralla. Tässä työssä esitellään joitain logiikan peruskäsitteitä, mutta työn seuraaminen edellyttää kuitenkin lukijalta yliopistotasoisen matematiikan perusteiden hallintaa ja joitain logiikan peruskäsitteiden tuntemista. Lukijan oletetaan esimerkiksi tuntevan joukon ja kuvauksien käsitteet.

Luvussa kaksi esitellään lyhyesti peruskäsitteistö, kuten relaatiot, isomorfian, kielet ja mallit. Kolmannessa luvussa esittelen itse EF-pelin, sen kulun ja voittokriteerit ja -strategian, sekä todistetaan että toisen pelaajan voittostrategian avulla saadaan mallit jaettua *ekvivalenssiluokkiin*. Lisäksi kolmannessa luvussa havainnollistetaan esimerkkin avulla miten peliä pelataan ja esitellään voittava samalla voittostrategia toiselle pelaajalle kyseisessä pelissä. Neljännessä kappaleessa esitellään EF-pelin sovellusaloja ja muutamia konkreettisia esimerkkejä siitä miten EF-peliä sovelletaan.

2 Peruskäsitteitä

Tässä luvussa esitellään joitakin ensimmäisen kertaluvun predikaattilogiikan peruskäsitteitä. Alaluku 2.1 käsittelee relaatioita. Alaluvussa 2.2 määritel-

lään kieli ja sen alakäsitteet aakkosto, termit ja atomikaavat. Alaluvussa 2.3 puolestaan määritellään mallin sekä alimallin käsitteet. 2.4 keskittyy isomorfiaan ja osittaisisomorfiaan. Lisäksi kappaleessa esitellään Tarskin totuusmääritelmä. Alaluvussa 2.5 määritellään elementaarinen ekvivalenssi ja tuodaan esiin isomorfian ja elementaarisen ekvivalenssin keskinäistä suhdetta. Peruskäsitteiden määrittelyssä seuraan karkeasti Wilfrid Hodgesia [11].

2.1 Relaatiot

Olkoon X jokin joukko. Joukon X n-kertainen karteesinen tulo tarkoittaa kaikkien joukon X alkioiden n-pituisten jonojen joukkoa. Tätä merkitään X^n tai vaihtoehtoisesti $X \times X \times \ldots \times X$, n kertaa. Esimerkiksi joukko \mathbb{R}^2 on järjestettyjen reaalilukuparien joukko. Sen geometrinen vastine on taso. \mathbb{R}^3 on järjestettyjen reaalilukukolmikoiden joukko. Sen geometrinen vastine on kolmiulotteinen avaruus.

Määritelmä 1. Joukon X kaksipaikkainen relaatio R on mikä tahansa joukko joukon X alkioista muodostettuja pareja (x, y), joiden molemmat alkiot ovat joukossa X, eli $R \subset X^2$. Jos $(x, y) \in R$, sanotaan, että x on y:n kanssa relaatiossa R. Joukon X kaksipaikkainen relaatio R on:

- refleksiivinen, jos $(x, x) \in R$, kaikilla $x \in X$
- irrefleksiivinen, jos $(x, x) \notin R$, kaikilla $x \in X$
- symmetrinen, jos $(x,y) \in R$, aina kun $(y,x) \in R$
- antisymmetrinen, aina kun seuraava ehto toteutuu: jos $(x,y) \in R$ ja $(y,x) \in R$, niin x=y
- transitiivinen, aina kun seuraava ehto toteutuu: jos $(x,y) \in R$ ja $(y,z) \in R$, niin $(x,z) \in R$
- vertailullinen, jos $(x,y) \in R$ tai $(y,x) \in R$, kaikilla $x,y \in X$, $x \neq y$

2.2 Kielet

Tässä alaluvussa määritellään aakkosto, termit, atomikaavat sekä ensimmäisen kertaluvun predikaattilogiikan kieli. Tarkemmin sanottuna, ei ole olemassa vain yhtä predikaattilogiikan kieltä, vaan jokaista aakkostoa kohden on oma kielensä, jolla voidaan puhua sen aakkoston malleista.

Määritelmä 2 (Aakkosto). Olkoon l, m ja n kardinaalilukuja. Aakkosto on joukko $L = \{R_i \mid i < l\} \cup \{c_i \mid i < m\} \cup \{f_i \mid i < n\}$ joka sisältää l relaatiosymbolia R_i , m vakiosymbolia c_i ja n funktiosymbolia f_i

Jokaiseen relaatioon R liittyy paikkaluku #R, ilmaisemaan kuinka monipaikkainen kyseinen relaatio on. Samoin jokaiseen funktioon liittyy paikkaluku #f ilmaisemaan kuinka monipaikkainen funktio on kyseessä. Jos jokin kardinaaliluvuista on 0, niin tällöin tätä vastaavia symboleja ei ole aakkostossa.

Määritelmä 3 (Termit). Olkoon R joukko relaatioita, C joukko vakioita ja F joukko funktioita jotka muodostavat aakkoston L. Olkoon X joukko muuttujia. Termien joukko T yli aakkoston L on joukko äärellisiä merkkijonoja joka määritellään seuraavasti:

- Jos $x \in X$, niin $x \in T$.
- Jos $c \in C$, niin $c \in T$.
- Jos $f \in F$, #f = n, $n \in \mathbb{Z}_+$ ja $t_1, \ldots, t_n \in T$, niin $f(t_1, \ldots, t_n) \in T$.

Määritelmä 4 (Atomikaavat). Olkoon R joukko relaatioita, C joukko vakioita ja F joukko funktioita jotka muodostavat aakkoston L. Olkoon T termien joukko yli aakkoston L. Atomikaavojen joukko A on joukko äärellisiä merkkijonoja joka määritellään seuraavasti:

- Jos $s, t \in T$, niin $s = t \in A$. Toisin sanoen s = t on atomikaava.
- Jos $r \in R$, #r = n, $n \in \mathbb{Z}_+$ ja $t_1, \ldots, t_n \in T$, niin $r(t_1, \ldots, t_n) \in A$.

Määritelmä 5 (Kieli). Olkoon A atomikaavojen joukko ja olkoon X muuttujien joukko. $Kieli\ K$ yli aakkoston L on kokoelma merkkijonoja jotka muodostetaan rekursiivisesti atomikaavoista seuraavanlaisesti:

- Kaikki atomikaavat kuuluvat kieleen $K, A \subset K$.
- Jos ψ ja $\varphi \in K$, niin $\neg \varphi \in K$, $(\psi \lor \varphi) \in K$, $(\psi \land \varphi) \in K$, $(\psi \to \varphi) \in K$, sekä $(\psi \leftrightarrow \varphi) \in K$.
- Jos $\varphi \in K$ ja $x \in X$, niin $\forall x(\varphi) \in K$ ja $\exists x(\varphi) \in K$

Kieli K on ensimmäisen kertaluvun predikaattilogiikan kieli, joka sisältää merkkijonoja. Näitä merkkijonoja kutsutaan usein kirjallisuudessa myös kaavoiksi. Kaavojen alikaavoja ovat kaikki kaavan osat jotka itsekin ovat kaavoja.

2.3 Mallit

Tässä alaluvussa määritellään, mikä on *malli* eli *struktuuri*. Karkeasti ottaen se on joukko, jolla on jonkinlainen rakenne ja joka koostuu relaatioista, vakioista ja funktioista. Malli ja struktuuri ovat synonyymeja. Näitä kahta sanaa käytetään rinnakkain konteksista riippuen sen mukaan kumpi soveltuu

kyseiseen tilanteeseen. Sanaa malli käytetään yleensä tällaisessa kontekstissa "Olkoon M malli kaavalle φ ", joka tarkoittaa samaa kuin "Olkoon M struktuuri siten että $M \models \varphi$ " Nämä konseptit määritellään myöhemmin tässä kappaleessa.

Määritelmä 6 (Malli). Olkoon L aakkosto ja olkoon M epätyhjä joukko. Tällöin L-malli koostuu seuraavista:

- Joukosta M.
- Relaatioista $R^M \subset M$, jokaiselle relaatiosymbolille $R \in L$, #R = n, jossa $n \in \mathbb{Z}_+$.
- Vakioista $c^M \in M$, jokaiselle vakiosymbolille $c \in L$.
- Funktioista $f^M: M^m \to M$, jokaiselle funktiosymbolille $f \in L$, #f = m, jossa $m \in \mathbb{Z}_+$.

Relaatiota R^M sanotaan relaatiosymbolin R tulkinnaksi mallissa M, funktiota f^M sanotaan funktiosymbolin f tulkinnaksi mallissa M, ja alkiota c^M kutsutaan vakiosymbolin c tulkinnaksi mallissa M.

Malli siis antaa aakkoston L symboleille semantiikan eli merkityksen sekä kontekstin, jossa formaalin kielen lauseet voivat olla tosia tai epätosia. Samaa merkintää M käytetään sekä mallista kokonaisuutena että mallin universumista eli mallin alkioiden joukosta.

Relaatiosymbolin R ja sen tulkinnan R^M välistä eroa voidaan havainnollistaa esimerkiksi sanan "tietokone" ja tietokoneen välisellä erolla. Sana "tietokone" on suomen kieltä, joka koostuu yhdeksästä merkistä ja sitä voidaan käyttää muodostettaessa suomenkielisiä lauseita. Tietokone taas on fyysinen laite, joka käsittelee tietoa ohjelmointinsa mukaisesti, eikä sitä voida käyttää suomen kielen lauseiden osana. Lause "Tietokoneeni on Mac" on totta tai epätotta, riippuen siitä, mihin nimenomaiseen tietokoneeseen sana "tietokone" viittaa.

Määritelmä 7 (Alimalli). Oletaan, että A on L-malli. A:n alimalli B on L-malli, jolle pätee

- $B \subset A$
- \bullet jos $R\in L$ on relaatiosymboli ja $\#R=n\in\mathbb{Z}_+,$ niin tällöin $R^B=R^A\cap B^n$
- jos $c \in L$ on vakiosymboli, niin tällöin $c^B = c^A$ ja $c^b \in B$
- jos $f \in L$ on funktiosymboli ja $\#f = n \in \mathbb{Z}_+$, niin tällöin $f^A(B^n) \subset B$ ja $f^B = f^A \upharpoonright B^n$ eli f^B on f^A :n rajoittuma osajoukkoon B^n . Siis B on suljettu f^A :n suhteen.

Olkoon A malli ja $B \subset A$. Tällöin $\langle B \rangle$ on pienin A:n alimalli, joka sisältää joukon B.

2.4 Isomorfia

Mallien kohdalla puhuttiin "jonkinlaisesta rakenteesta", eli struktuurista. Mallin objekteille annettiin nimiä, symboleja ja kaavoja, jotta tätä rakennetta voitiin kuvailla. Malleja joiden rakenne on samanlainen kutsutaan isomorfisiksi.

Määritelmä 8 (Isomorfismi). Oletetaan, että L on aakkosto ja A sekä B ovat L-malleja. Kuvaus $g: A \to B$ on isomorfismi mallista A mallille B, jos

- \bullet g on bijektio.
- Jokaisella vakiosymbolilla $c \in L$ pätee $g(c^A) = c^B$.
- Jokaisella relaatiosymbollilla $R \in L, \#R = n$ pätee $(a_1, \ldots, a_n) \in R^A \iff (g(a_1), \ldots, g(a_n)) \in R^B$.
- Jokaisella funktiosymbolilla $f \in L, \#f = m$ pätee $g(f^A(a_1, \ldots, a_m)) = f^B(g(a_1), \ldots, g(a_m)).$

Jos on olemassa isomorfinen kuvaus $A \to B$, niin sanotaan, että A ja B ovat isomorfiset ja tätä merkitään $A \cong B$.

Isomorfia mallien välillä on refleksiivinen, symmetrinen ja transitiivinen. Jotta mallien välillä voi olla isomorfia, niin mallien täytyy olla saman kokoiset, sillä muuten niiden välillä ei voi olla bijektiota, eikä siten isomorfiaakaan. EFpelien kannalta tärkeä isomorfian ominaisuus on, että se säilyttää totuuden.

Määritelmä 9 (Osittaisisomorfismi). Olkoon L aakkosto sekä olkoon A ja B kummatkin L-malleja. Olkoon $A' \subset A$ ja $B' \subset B$. Lisäksi olkoon $f: A' \to B'$. Jos on olemassa isomorfismi $g: \langle A' \rangle \to \langle B' \rangle$, siten että $g \upharpoonright A' = f$ eli kuvaus g on kuvauksen f rajoittuma osajoukkoon A'. Tällöin kuvausta f kutsutaan osittaisisomorfismiksi $A \to B$ ja tätä merkitään $A \cong_p B$.

Toisin kuin isomorfismissa, osittaisisomorfismissa totuus ei välttämättä säily. Joissain tilanteissa osittaisisomorfismi kuitenkin säilyttää totuuden. Erityisesti näin on *relationaalisten* aakkostojen, eli aakkostojen jotka sisältävät vain relaatiosymboleja ja vakioita, tapauksessa.

Edellä puhuttiin paljon totuudesta ja määritellään seuraavaksi mitä sillä tarkalleen ottaen tarkoitetaan.

Määritelmä 10 (Tarski). Oletetaan, että A on L-malli ja olkoon L aakkosto ja K kieli. Määritellään rekursiivisesti että kielen K kaava φ on totta A:ssa, eli A toteuttaa φ , eli $A \models \varphi$ seuraavasti:

• Jos φ on kaava s=t jossa s ja t ovat termejä, niin $A \models \varphi$ jos ja vain jos $s^A=t^A$.

- Jos φ on kaava $R(t_1, \ldots, t_n)$, missä R on n-paikkainen relaatiosymboli ja t_1, \ldots, t_n ovat termejä, niin $A \models \varphi$ jos ja vain jos $(t_1^A, \ldots, t_n^A) \in R$.
- $A \models \neg \varphi$ jos ja vain jos $A \not\models \varphi$.
- $A \models (\varphi \land \psi)$ jos ja vain jos $A \models \varphi$ ja $A \models \psi$.
- $A \models (\varphi \lor \psi)$ jos ja vain jos $A \models \varphi$ tai $A \models \psi$.
- $A \models (\varphi \rightarrow \psi)$ jos ja vain jos $A \not\models \varphi$ tai $A \models \psi$.
- $A \models (\varphi \leftrightarrow \psi)$ jos ja vain jos $A \models \varphi$ ja $A \models \psi$ tai $A \not\models \varphi$ ja $A \not\models \psi$.
- $A \models \forall x(\varphi)$ jos ja vain jos jokaisella mallin A alkiolla a pätee $A \models \varphi$ kun muuttaja x tulkitaan a:ksi.
- $A \models \exists x(\varphi)$ jos ja vain jos löytyy jokin mallin A alkio a jolla $A \models \varphi$ kun muuttuja x tulkitaan a:ksi.

2.5 Elementaarinen ekvivalenssi

Siinä missä isomorfismi kuvailee kahden mallin rakenteellista samanlaisuutta, niin elementaarinen ekvivalenssi puolestaan vertailee malleja suhteessa käytettyyn kieleen.

Määritelmä 11 (Elementaarinen ekvivalenssi). Olkoon L aakkosto joka muodostaa kielen K. Olkoon A ja B kummatkin L-malleja. A:ta ja B:tä sanotaan elementaarisesti ekvivalenteiksi, jos kaikilla lauseilla $S \in K$ pätee $A \models S \iff B \models S$. Tätä merkitään $A \equiv B$

Korollaari 12. Jos L-mallit A ja B ovat isomorfiset, niin ne ovat elementaarisesti ekvivalentit.

On huomattava, että tämä ei päde toisinpäin. Mallien A ja B välinen elementaarinen ekvivalenssi ei kerro mitään mallien isomorfisuudesta.

3 EF-peli

Huomautus. Jatkossa aakkostolla tarkoitetaan aina relationaalista aakkostoa, ellei toisin mainita.

Tässä kappaleessa esitellään EF-peli, sen säännöt, strategian ja voittavan strategian käsitteet, joissa seuraan pitkälti Jouko Väänästä [20] ja havainnollistetaan EF-peliä esimerkillä kahdelle verkolle.

EF-pelissä ideana on, että peli on kahdelle pelaajalle, joita kutsutaan nimillä Pelaaja I ja Pelaaja II. Peliä pelataan kahdella mallilla A ja B, joilla on sama aakkosto. Pelaaja II haluaa osoittaa, että kyseiset mallit ovat jossain määrin samankaltaiset, kun taas Pelaaja I haluaa osoittaa, että mallit ovat erilaiset. Pelissä on äärellinen määrä vuoroja ja vuorojen määrä on alussa sovittu.

3.1 Pelin kulku

Pelin kulku kuvataan kirjallisuudessa lähes aina samalla tavalla. Määritellään aluksi mielivaltaisen kierroksen kulku ja kummankin pelaajan voittokriteerit.

Määritelmä 13 (Kierroksen kulku). Merkitään pelattavien kierrosten määrää luvulla $k \in \mathbb{Z}_+$. EF-peliä pituudeltaan k-kierrosta malleilla A ja B merkitään $EF_k(A,B)$. Pelin $EF_k(A,B)$ mielivaltaisen kierroksen $i \in \{1,\ldots,k\}$ kulku on seuraavanlainen:

- Ensin Pelaaja I valitsee toisen malleista A tai B sekä jonkin alkion $a_i \in A$ tai $b_i \in B$ tästä mallista.
- Tämän jälkeen Pelaaja II valitsee malleista sen, jota Pelaaja I ei valinnut ja valitsee tästä mallista jonkin alkion.

Määritelmä 14 (Voittokriteeri). Olkoon $a = (a_1, \ldots, a_i)$ mallista A valitut alkiot ja $b = (b_1, \ldots, b_i)$ mallista B valitut alkiot mielivaltaisella kierroksella i. Pelaajan II voittaa jos ja vain jos jokaisella kierroksella $i \leq n$ pari (a,b) määrää osittaisen isomorfismin $A \to B$ eli on olemassa kuvaus $h: A \to B$, siten että $a \in A \mapsto b \in B$ Muussa tapauksessa Pelaaja I voittaa.

Strategia on joukko sääntöjä, joiden mukaan pelaaja tekee valintansa toisen pelaajan valinnasta riippuen. EF-pelissä kummallakin pelaajalla on koko ajan tiedossa mallit, niiden rakenne ja jo tehdyt valinnat, eli peli on täydellisen informaation peli. Strategiaa, jota seuraamalla pelaaja voittaa pelin riippumatta mitä valintoja toinen pelajaa tekee kutsutaan voittavaksi strategiaksi. Jos Pelaaja II:lla on voittava strategia EF-pelissä $EF_k(A, B)$, niin tätä merkitään $A \sim_k B$.

Lause 15. Relaatio \sim_k on L-mallien ekvivalenssirelaatio.

Todistus: Todistus on Jouko Väänäsen kirjassa [20] esiintyvää todistusta mukaileva. Oletetaan, että A,B ja C ovat kaikki saman aakkoston L-malleja. Tällöin

- Refleksiivisyys: $A \sim_k A$. Voittava strategia Pelaajalle II on valita aina sama alkio minkä Pelaaja I valitsi. Täten \sim_k on refleksiivinen.
- Symmetrisyys: $A \sim_k B \iff B \sim_k A$. EF-pelin määritelmä ei millään tavoin tee eroa pelien $EF_k(A,B)$:n ja $EF_k(B,A)$:n välillä. Täten jos $A \sim_k B$, niin Pelaaja II voi käyttää samaa voittostrategiaa myös pelissä $EF_k(B,A)$. Jos taas $B \sim_k A$, niin Pelaaja II voi käyttää samaa voittostrategiaa pelissä $EF_k(A,B)$. Siis \sim_k on symmetrinen.

• Transitiivisuus: $A \sim_k C \wedge B \sim_k C \implies A \sim_k C$. Todistetaan väite käsittelemällä kaikki väitteen ja implikaation pelit samaan aikaan. Peli $EF_k(A,C)$ pelataan siten, että Pelaaja II tekee valintansa pelaamalla samaan aikaa kuvitteellisia pelejä $EF_k(A,B)$ ja $EF_k(B,C)$. Oletetaan, että peli $EF_k(A,C)$ alkaa Pelaajan II valinnalla $a_1 \in A$, jolloin Pelaaja II valitsee seuraavalla strategialla:

Pelaaja II kuvittelee, että Pelaaja I valitsi alkion $a_1 \in A$ pelissä $EF_k(A, B)$, jolloin hän valitsee alkion $b_1 \in B$ pelin $EF_k(A, B)$ voittostrategian mukaisesti. Seuraavaksi Pelaaja II kuvittelee, että äskeinen valinta oli Pelaajan I valinta pelissä $EF_k(B, C)$ ja valitsee alkion $c_1 \in C$ pelin $EF_k(B, C)$ voittostrategian mukaisesti. Tämä valinta c_1 on Pelaajan II vastaus Pelaajan I valintaan a_1 pelissä $EF_k(A, C)$.

Jos Pelaaja I valitseekin alkion $c_1 \in C$, niin Pelaaja II yksinkertaisesti seuraa strategiaa toiseen suuntaan. Näin voidaan toimia, koska äsken todistimme, että voittavat strategiat ovat symmetrisiä.

Kun peliä on pelattu k-kierrosta, niin meillä on valinnoista muodostuneet jonot $a_1, \ldots, a_k, b1, \ldots, b_k$ ja c_1, \ldots, c_k . Oletusten nojalla on olemassa osittaisisomorfismit $f: A \cong_p B$ ja $g: B \cong_p C$. Nyt voidaan muodostaa yhdistetty kuvaus $h(f(a_i)) = g(a_i)$, siten että $a_i \mapsto c_i$ on osittaisisomorfismi, kaikilla $i \in \{1, \ldots, k\}$. Täten $A \sim_k C$, siis relaatio \sim_k on transitiivinen.

Koska relaatio \sim_k on refleksiivinen, symmetrinen ja transitiivinen, niin se on tällöin ekvivalenssirelaatio.

Kuten aikaisemmin todettiin, EF-pelistä on kehitetty monia erilaisia variaatioita, kuten esimerkiksi EF-peli verkoille (verkoilla voidaan esittää ensimmäisen kertaluokan predikaattilogiikan kaavoja. Verkon kaarethan ovat käytännössä relaatioita verkon pisteiden välillä). Havainnollistetaan nyt EF-pelin ideaa yksinkertaisella esimerkillä kahden kierroksen EF-pelillä verkoille X ja Y, sekä esitetään samalla strategia $X \sim_k Y$, eli voittava strategia Pelaajalle II.

Esimerkki 16. Tässä EF-pelissä verkoille ideana on, että rakennetaan pelaajien tekemistä valinnoista kahta uutta verkkoa A ja B, siten että verkosta X valittu solmu merkitään verkon A solmuksi a_i ja verkosta Y valittu solmu verkon B solmuksi b_i , jossa i ilmaisee millä kierroksella valinta on tapahtunut. Uudet verkot A ja B rakennetaan helpottamaan tehtyjen valintojen ja näiden relaatioiden muodostaman kokonaisuuden hahmottamista ja hallintaa.

Kierros 1:

- Pelaaja I voi valita solmun kummasta verkosta tahansa.
- Jos Pelaaja I valitsee solmun verkosta X, Pelaaja II valitsee vastinpariksi verkosta Y solmun y_1 , muulloin Pelaaja II valitsee vastinpariksi solmun x_1 .
- Oletetaan, että Pelaaja I valitsee solmun x_2 . Tällöin meillä on $a_1 := x_2, b_1 := y_1$ ensimmäisen kierroksen jälkeen.

Kierros 2:

- Minkä tahansa solmun Pelaaja I valitseekin, Pelaaja II voi peilata valinnan. Oletetaan, että tällä kertaa Pelaaja I valitsee verkosta Y.
- Jos Pelaaja I valitsee solmun y_1 , eli saman solmun kuin $b_1 = y_1$, on Pelaajan II valittava vastinpariksi Pelaajan I ensimmäisen kierroksen valinta x_2 .
- Jos Pelaaja I taas valitsee solmun y_2 tai y_3 , eli jommankumman solmun $b_1 = y_1$ naapureista, Pelaajan II täytyy valita vastinpariksi solmun $a_1 = x_2$ naapuri.
- Toisen kierroksen jälkeen tilanne on $a_2 \coloneqq x_2, b_2 \coloneqq y_1$ tai $a_2 \coloneqq x_1, b_2 \coloneqq y_2/y_3$.
- Pelaaja II voittaa, koska kuvaus f verkolta A verkolle B, $f(a_i) = b_i$, i = 1, 2 säilyttää naapuruussuhteet, eli f on osittaisisomorfismi.

Jos Pelaaja I olisi tehnyt toisellakin kierroksella valintansa verkosta X:

 $\bullet\,$ Jos Pelaaja I valitsee solmun $x_1,$ niin Pelaaja II valitsee solmun $y_1.$

- Jos Pelaaja I taas valitsee solmun x_2 , niin Pelaaja II valitsee solmun y_2 .
- Tällöin toisen kierroksen jälkeen tilanne olisi ollut $a_2 := x_1, b_2 := y_1$ tai $a_2 := x_2, b_2 := y_2$.
- Pelaaja II voittaa tässäkin skenaariossa, koska kuvaus f verkolta A verkolle B, $f(a_i) = b_i, i = 1, 2$ säilyttää naapuruussuhteet, eli f on osittaisisomorfismi.

3.2 EF-pelin ominaisuuksia

4 Sovelluksia

EF-peli on teoreettisen tietojenkäsittelyn ja äärellisten mallien teorian työkalu jota pääasiassa käytetään määriteltävyyskysymyksiin ja todistusten apuna. Äärellisten mallien teoriaa ja sen menetelmää EF-peliä voidaan soveltaa tietojenkäsittelytieteessä muun muassa verifikoinnissa.

4.1 Sovellusaloja

Äärelliset mallit voidaan koodata verkkoina, puina tai merkkijonoina. Tällöin niitä voidaan käyttää laskennan olioina ja siten niillä voidaan kuvata äärellistilallisia systeemejä ja tutkia näiden toiminnan oikeellisuutta.

Yksi sovellusala on tietokantateoria, koska relationaalinen malli samaistaa tietokannan äärellisen relaationaalisen struktuurin kanssa. Formaalin kielen kaavat voidaan siis ajatella ohjelmina, jotta niiden merkitystä struktuurissa voidaan arvioida. Ja toisinpäin, voidaan esittää jonkin laskennallisen vaativuusluokan kyselyitä jollakin formaalilla kielellä.

Muita tietojenkäsittelytieteen osa-alueita joihin EF-peliä voi soveltaa on esimerkiksi vaativuusteoria, koska äärelliset mallit tarjoavat laskennan vaativuusluokkien loogisen karakterisoinnin ja mahdollistavat vaativuusteoreettisten tulosten todistamisen tätä kautta. Esimerkiksi P=NP-ongelma redusoituu kysymykseksi: onko kahdella kiintopistelogiikalla sama ilmaisuvoima äärellisissä malleissa? Määriteltävyystulosten todistuksissa seuraava teoreema on keskeinen:

Lause 17 (Metodologia teoreema). Ei ole olemassa ensimmäisen kertaluvun predikaattilogiikan lausetta joka ilmaisee ominaisuuden P, jos ja vain jos, kaikilla $n \in \mathbb{Z}_+$, on olemassa mallit A ja B, joille pätee:

- Ominaisuus P on totta A:ssä.
- Ominaisuus P on epätotta B:ssä.
- $A \sim_n B$, eli Pelaaja II voittaa n-kierroksisen EF-pelin A:lla ja B:llä.

Esitetään yksinkertainen relaatioalgebran ongelma esimerkkinä siitä miten metodologia teoreemaa käytetään määärittelemättömyystuloksia todistettaessa. Tässä esimerkissä käytämme Boolen kyselyä, joten ensimmäiseksi määrittelemme tämä tarkasti.

Määritelmä 18 (Boolen kysely). Olkoon M malli. Tällöin Boolen kysely Q on kuvaus $Q: M \to \{0,1\}$ joka säilyy isomorfismeissa. Siis jos $A \cong B$, niin Q(A) = Q(B)

Esimerkki 19. Olkoon A malli, joka sisältää vain vakioita. Tutkitaan Boolen kyselyä: onko A:ssa parillinen määrä alkioita? Konstruoidaan mallit A ja B todistusta varten seuraavanlaisiksi: $A_n := \{a_1, \ldots, a_n\}$ ja $B_n := \{b_1, \ldots, b_{n+1}\}$, mielivaltaisella $n \in \mathbb{Z}_+$. Eli toisessa mallissa on yksi alkio enemmän kuin toisessa. Täten toinen malleista sisältää parittoman määrän alkioita ja toinen parillisen määrän alkioita.

Voittostrategia Pelaajalle II on sellainen, että jos Pelaaja I valitsee mielivaltaisella kierroksella i alkion a_i , niin Pelaaja II yksinkertaisesti valitsee alkion b_i . Eli $A \sim_n B$ ja koska toisessa mallissa on parillinen ja toisessa pariton määrä alkioita, niin ominaisuus "parillinen määrä alkioita" on totta toisessa mallissa ja epätotta toisessa. Täten metodologia teoreeman nojalla Boolen kysely onko mallissa A parillinen määrä alkioita ei ole määriteltävissä ensimmäisen kertaluvun predikaattilogiikan lauseeksi, eikä siten myöskään relaatioalgebran kyselyksi.

Edellinen esimerkki toimii suoraan verkoille, kunhan käsittää mallit A ja B verkoiksi ja alkiot verkon solmuiksi siten, että a_i :sta on kaari a_{i+1} :ssaan ja niin edelleen, sekä vastavuoroisesti B:n samalla tavalla. Eli verkoille ei ole olemassa ensimmäisen kertaluokan predikaattilogiikan lausetta jolla voisi esittää ominaisuuden, että verkko sisältää parillisen määrän solmuja.

4.2 Ensimmäisen kertaluokan predikaattilogiikan rajoitteet

Verkoilla on paljon ominaisuuksia jotka eivät ole ensimmäisen kertaluokan predikaattilogiikka määriteltäviä. Jos G on äärellisten verkkojen luokka, niin esimerkiksi seuraavat kyselyt eivät ole ensimmäisen kertaluokan predikaattilogiikka määriteltävissä G:lle: transitiivinen sulkeuma, tasoverkkoisuus, Eulerilaisuus, Hamiltonilaisuus, k-värittyvyys, kaikilla $k \geq 2$, asyklisyys, leikkaussolmu ja verkon yhtenäisyys.

Todistetaan esimerkin vuoksi näistä epäsuorasti verkon yhtenäisyyden määrittelemättömyys.

Esimerkki 20. Oletetaan että ensimmäisen kertaluokan predikaattilogiikan lause φ määrittelee verkkojen yhtenäisyyden aakkostossa joka muodostuu binaarisesta relaatiosymbolista E. Olkoon L jokin lineaarijärjestys. Muodostestaan lineaarijärjestyksestä L suunnattu verkko G seuraavanlaisesti:

Määritellään seuraajarelaatio S lineaarijärjestyksestä L seuraavasti:

$$S(x,y) := (x < y) \land \forall z ((z \le x) \lor (y \le z))$$

Määritellään että ensimmäisen kertaluokan predikaattilogiikan kaava $\psi(x,y)$ siten että $\psi(x,y)$ on toteutuva jos ja vain jos jokin seuraavista on totta:

- $\exists z(S(x,z) \land S(z,y))$, toisin sanoen y on x:n seuraajan seuraaja.
- $\forall u(y \leq u) \land (\exists z(S(x,z) \land \forall u(u \leq z)))$, toisin sanoen x on viimeisen alkion edeltäjä ja y on ensimmäinen alkio.
- $\forall u(u \leq x) \land (\exists z(S(z,y) \land \forall u(z \leq u)))$, toisin sanoen x on viimeinen alkio ja y on ensimmäisen alkion seuraaja.

Ensimmäisen kertaluokan predikaattilogiikan kaavan ψ määräämä suunnattu verkko G lineaarijärjestyksen L alkioista on yhtenäinen, tarkemmin sanoen se muodostuu yhdestä syklistä, jos sen solmujen määrä on pariton. Seuraavat kaksi kuvaa havainnolistavat tätä:

Huomautus. Verkot on numeroitu vain havainnollistamisen helpottamiseksi.

Verkko G jossa on pariton määrä solmuja (lineaarijärjestystä korostaen)

Verkko G jossa on pariton määrä solmuja (syklisyyttä korostaen)

Jos solmujen määrä on parillinen niin verkko ei ole yhtenäinen, tarkemmin sanoen se koostuu kahdesta erillisestä syklistä. Havainnollistetaan tätä kahdella kuvalla:

Verkko G jossa on parillinen määrä solmuja (lineaarijärjestystä korostaen)

Verkko G jossa on parillinen määrä solmuja (syklisyyttä korostaen)

Sijoittamalla kaavan ψ relaatiosymbolin E ilmentymien tilalle lauseessa $\neg \varphi$ voidaan nyt testata verkon G parillisuutta. Edellisen esimerkin Boolen kyselyn ja sen yleistämisen verkoille perusteella tiedetään, ettei kyseinen testaus ole mahdollista, joten päädymme ristiriitaan. Täten ei ole olemassa ensimmäisen kertaluokan predikaattilogiikan lausetta φ joka määrittelisi verkkojen yhtenäisyyden.

Näiden lisäksi on hyvin monia muitakin verkkojen ominaisuuksia, joita ensimmäisen kertaluokan predikaattilogiikka ei pysty ilmaisemaan. Itse asiassa on osoitettu, että ensimmäisen kertaluokan predikaattilogiikka kykenee ilmaisemaan vain verkkojen lokaaleja ominaisuuksia [9]. Hanf käytti tässä todistuksessaan EF-peliä, tarkemmin Fraïssén algebrallista versiota siitä. Sama lokaalisuus on osoitettu myöhemmin myös toisella metodilla, kvanttorien eliminoinnilla [7]. Nämä tulokset ovat motivoineet pyrkimyksiä kehittää ensimmäisen kertaluokan predikaattilogiikan laajennuksia verkoille, samoin kuin kehittämään näille omia EF-pelejä ilmaisuvoiman mittaamiseen. Tällaisia mittauksia on tehty muun muassa monadiselle toisen kertaluokan predikaattilogiikalle [5] [4], transitiivisen sulkeuman logiikalle [8] ja erilaisille kiintopistelogiikoille [1].

Vaikka ensimmäisen kertaluokan logiikka on hyvin rajoittunut kieli esimerkiksi verkkojen ominaisuuksien ilmaisemiseen, niin kuitenkin sillä voi joitain hyödyllisiäkin kyselyitä verkkojen suhteen ilmaista. Esimerkiksi seuraavat lauseet ovat ilmaistavissa ensimmäisen kertaluokan predikaattilogiikalla (oletetaan, että E on relaatio joka ilmaisee verkon solmujen välistä kaarta ja symbolit x, y, z_i ovat solmuja):

 \bullet "solmulla x on vähintään kaksi toisistaan eroavaa naapuria"

$$(\exists y)(\exists z)(\neg(y=z) \land E(x,y) \land E(x,z))$$

• "jokaisella solmulla x on vähintään kaksi toisistaan eroavaa naapuria"

$$(\forall x)(\exists y)(\exists z)(\neg(y=z) \land E(x,y) \land E(x,z))$$

 \bullet "on olemassa polku solmusta x solmuun y jonka pituus on 3"

$$(\exists z_1)(\exists z_2)(E(x,z_1) \land E(z_1,z_2) \land E(z_2,y))$$

Verkkojen ohella EF-pelit ovat olleet hyödyllisiä ensimmäisen kertaluokan predikaattilogiikan ja formaalien kielten teorian määriteltävyyskysymysten välisen suhteen tutkimisessa. Erityisesti tähtivapaat säännölliset kielet (starfree regular languages) ovat olleet mielenkiinnon kohteena.

4.3 Kongruenssiapulauseet

Kieltä kutsutaan tähtivapaaaksi, jos sen pystyy kuvailemaan säännöllisenä lausekkeena joka on konstruoitu aakkoston symboleista, tyhjän joukon symboleista ja kaikista muista loogisista operaatioista, kuten konkatenaatiosta ja komplementista paitsi Kleenen tähdestä. Hyvin tunnettu tulos formaalien kielten teoriassa on, että kieli on ensimmäinen kertaluokka predikaattilogiikkamääriteltävä jos ja vain jos se on tähtivapaa [14]. Tämän todistuksessa käytetään yleensä induktiota kvanttorisyvyyden suhteen kuten esimerkiksi Ladner tekee [12].

Määritelmä 21 (Kvanttoriaste). Ensimmäisen kertaluokan predikaattilogiikan kaavan φ kvanttoriaste $qr(\varphi)$ on sisäkkäisten kvanttorien syvyys ja se määritellään seuraavasti:

- Jos φ on atomikaava, niin $qr(\varphi) = 0$.
- $qr(\neg \varphi) = qr(\varphi)$.
- $qr(\varphi_1 \wedge \varphi_2) = qr(\varphi_1 \vee \varphi_2) = max\{qr(\varphi_1, qr(\varphi_2))\}$
- $qr(\forall x\varphi) = qr(\exists x\varphi) = qr(\varphi) + 1.$

Tähtivapaan kielen ja kielen ensimmäisen kertaluokkalogiikan määriteltävyyden välisen loogisen ekvivalenssin todistuksen induktioaskeleen kriittinen kohta on seuraava väite:

Lemma 22 (Kongruenssilemma). Olkoon s, s', t, t' sanoja yli aakkoston Σ ja olkoon S, S', T, T' näitä kuvailevia malleja. Tällöin:

$$S \cong_m S' \wedge T \cong_m T' \Longrightarrow S \cdot T \cong_m S' \cdot T'$$

Lemman todistus on EF-peliä käyttämällä hyvin suoraviivainen. Oletuksen nojalla Pelaajalla II on voittostrategia peleissä $EF_m(S,S')$ ja $EF_m(T,T')$. Pelaajan II voittostrategia pelille $EF_m(S \cdot T, S' \cdot T')$ on kompositio kummastakin oletuksen voittostrategiasta. Siis osille S ja S' käytetään ensimmäisen pelin voittostrategiaa ja osille T ja T' toisen pelin voittostrategiaa.

Kongruenssilemma sanoo, että mallin ominaisuudet määräytyvät osiensa ominaisuuksien mukaan. Täten mallit voidaan myös rakentaa osista ja näiden ominaisuuksista. Kongruenssilemmat ovat tyypillisiä EF-pelien sovelluksia. Näitä on todistettu monille muille logiikoilla sekä sanoja monimutkaisemmille malleille. Esimerkiksi Shelah esittelee esimerkkejä monadisen logiikan

kongruenssilemmoista lineaarijärjestyksille [16]. Thomas käyttää EF-pelejä todistaakseen kongruenssilemman ensimmäisen kertaluokan predikaattilogii-kan muunnokselle jossa kaavat ovat prenex-normaalimuodossa ja kvanttorit määrätynlaisessa prefiksimuodossa [18], sekä tähtivapaille säännöllisille lausekkeille [19].

Predikaattilogiikan ja tähtivapaiden lausekkeiden ekvivalenssi on hyvin tunnettu. Thomas ja Lippert esittelevät tähtivapaiden säännöllisten lausekkeiden joissa ylimääräinen vakio kiinnitetään johonkin kieleen, eli relativoidut tähtivapaat lausekkeet (relativized star-free expressions) ja ensimmäisen kertaluokan predikaattilogiikan eroja EF-pelin muunnoksen, konkatenaatiopelin, avulla. Tässä työssään he näyttävät että relativoidut tähtivapaat lausekkeet ovat heikompia kuin vastaavat ensimmäisen kertaluokan predikaattilogiikan lauseet. [13]

4.4 Bisimulaatio

Yksi tärkeä malliteoreettisten pelien sovellus automaattien ja tilasiirtymäsysteemien teoriassa on Parkin esittelemä bisimulaation käsite [15]. Bisimulaatiota voi tarkastella eräänlaisena osittaisisomorfismien "perheenä", joka vastaa rajoitettua EF-peliä, jossa osittaisisomorfismia on heikennetty niin että kuvauksen ei tarvitse olla enää injektiivinen. Vaikka klassisen, tässä tutkielmassa määritellyn, EF-pelin ja bisimulaation välillä on hyvin läheinen kytkös, niin ne on kehitetty kuitenkin hyvin pitkälti erillään toisistaan. Bisimulaatiota käytetään esimerkiksi Hennessyn ja Milnerin modaalilogiikassa [10].

Hennessy-Milner modaalilogiikkaa käytetään tilasiirtymäsysteemien omaisuuksien määrittelyyn. Tilasiirtymäsysteemit ovat hyvin paljon automaatteja muistuttavia struktuureja. Määritellään seuraavaksi bisimulaatio.

Määritelmä 23 (Bisimulaatio). Olkoon M ja M' malleja, jotka koostuvat solmujen (tilojen) joukosta W, solmujen välisestä Relaatiosta (kaarista) R ja funktiosta V, joka liittää jokaiseen propositiosymboliin p_i joukon W osajoukon $V(p_i)$. Intuitiivisesti ajatellen joukko $V(p_i)$ on niiden tilojen joukko, jossa p_i on tosi. Bisimulaatio mallien M ja M' välillä on epätyhjä relaatio $B \subseteq W \times W'$, jolle pätee kaikilla $(w, w') \in B$ seuraavat ehdot:

- Tilat w ja w' toteuttavat samat propositiosymbolit.
- Jos $(w, v) \in R$, niin on olemassa $v' \in W'$, jolle pätee $(w', v') \in R'$ ja $(v, v') \in B$.
- Jos $(w', v') \in R'$, niin on olemassa $v \in W$, jolle pätee $(w, v) \in R$ ja $(v, v') \in B$.

Jos on olemassa jokin bisimulaatio B mallien M ja M' välillä ja $(w, w') \in B$ niin sanotaan, että tilat ovat bisimilaarisia.

Kaksi tilaa ovat siis bisimilaarisia, jos ja vain jos niiden toteuttamat propositiosymbolit sekä tilojen mahdolliset tilasiirtymät vastaavat toisiaan. Seuraava kuva havainnollistaa tilojen bisimilaarisuutta:

Bisimilaariset tilat on yhdistetty katkonuolilla

Bisimulaation käsite mahdollistaa sen tutkimisen että mitä mallien ominaisuuksia on mahdollista kuvailla modaalilogiikan avulla ja mitä taas ei ole mahdollista kuvailla. Bisimulaatio on yksi modaalilogiikan tärkeimpiä työkaluja ja sopii mainiosta ohjelmien verifiointiin. Se onkin yksi verifioinnin ja samanaikaisuusteorian kulmakivistä. Sille löytyy myös käyttöä tekoälytutkimuksessa, lingvistiikassa ja filosofiassa.

5 Yhteenveto

Tässä tutkielmassa on tarkasteltu Ehrenfeucht-Fraïssé-pelejä ja näiden sovelluksia eri näkökulmista. Teoreettiselta kannalta tutkielmassa esiteltiin EF-peli, sen säännöt ja esiteltiin esimerkin avulla miten EF-peliä käytännössä pelataan. Lisäksi todistettiin, että Pelaajan II voittostrategia on ekvivalenssirelaatio joten voittostrategian avulla voidaan jakaa malleja ekvivalenssiluokkiin ja täten tarvittaessa samaistaa nämä mallit yhdeksi malliksi. Käytännön kannalta tutkielmassa on esimerkkien avulla esitelty miten EF-peliä sovelletaan määriteltävyyskysymyksissä ja todistuksissa. Kirjallisuutta ja tutkimuksia on esitelty syvällistä aiheeseen tutustumista helpottamaan.

Tutkielmassa esiteltiin myös laajalti EF-peleihin liittyvää matemaattista peruskäsitteistöä, kuten kielet ja mallit sekä isomorfismi ja totuus predikaattilogiikassa. Lisäksi aivan aluksi luotiin pikainen katsaus EF-pelien historiaan ja syihin miksi EF-pelit ovat äärellisten mallien teoriassa niin keskeisessä osassa.

Lähteet

- [1] Bosse, Uwe: An Ehrenfeucht-Fraissé Game for Fixpoint Logic and Stratified Fixpoint Logic. Teoksessa Selected Papers from the Workshop on Computer Science Logic, CSL '92, sivut 100–114, London, UK, UK, 1993. Springer-Verlag, ISBN 3-540-56992-8. http://dl.acm.org/citation.cfm?id=647842.736408.
- [2] Ehrenfeucht, Andrzej: An application of games to the completeness problem for formalized theories. Fundamenta Mathematicae, 49(2):129–141, 1961. http://eudml.org/doc/213582.
- [3] Etessami, K. ja Wilke, T.: An Until hierarchy for temporal logic. Teoksessa Logic in Computer Science, 1996. LICS '96. Proceedings., Eleventh Annual IEEE Symposium on, sivut 108–117, Jul 1996.
- [4] Fagin, R., Stockmeyer, L. ja Vardi, M. Y.: On monadic NP vs. monadic co-NP. Teoksessa Structure in Complexity Theory Conference, 1993., Proceedings of the Eighth Annual, sivut 19–30, May 1993.
- [5] Fagin, Ronald: *Monadic Generalized Spectra*. Mathematical Logic Quarterly, 21(1):89–96, 1975.
- [6] Fraïssé, Roland: Sur l'extension aux relations de quelques propriétés des ordres. Annales scientifiques de l'École Normale Supérieure, 71(4):363– 388, 1954. http://eudml.org/doc/81696.
- [7] Gaifman, Haim: On Local and Non-Local Properties. Teoksessa Stern, J. (toimittaja): Proceedings of the Herbrand Symposium, nide 107 sarjassa Studies in Logic and the Foundations of Mathematics, sivut 105 135. Elsevier, 1982. http://www.sciencedirect.com/science/article/pii/S0049237X08718792.
- [8] Grädel, Erich: Computer Science Logic: 5th Workshop, CSL '91 Berne, Switzerland, October 7-11, 1991 Proceedings, luku On transitive closure logic, sivut 149-163. Springer Berlin Heidelberg, Berlin, Heidelberg, 1992, ISBN 978-3-540-47285-8. http://dx.doi.org/10.1007/BFb0023764.
- [9] Hanf, William: Model-Theoretic Methods in the Study of Elementary Logic. Teoksessa Addison, J. W. (toimittaja): Journal of Symbolic Logic, sivut 132–145. Amsterdam, North-Holland Pub. Co., 1965.
- [10] Hennessy, Matthew ja Milner, Robin: Automata, Languages and Programming: Seventh Colloquium Noordwijkerhout, the Netherlands July 14–18, 1980, luku On observing nondeterminism and concurrency, sivut 299–309. Springer Berlin Heidelberg, Berlin, Heidelberg, 1980, ISBN 978-3-540-39346-7. http://dx.doi.org/10.1007/3-540-10003-2 79.

- [11] Hodges, Wilfrid: A Shorter Model Theory. Cambridge University Press, 1997, ISBN 0-521-58713-1.
- [12] Ladner, Richard E.: Application of model theoretic games to discrete linear orders and finite automata. Information and Control, 33(4):281 303, 1977, ISSN 0019-9958. http://www.sciencedirect.com/science/article/pii/S0019995877904430.
- [13] Lippert, D. ja Thomas, W.: Semigroups Theory and Applications: Proceedings of a Conference held in Oberwolfach, FRG, Feb. 23–Mar. 1, 1986, luku Relativized star-free expressions, first-order logic, and a concatenation game, sivut 194–204. Springer Berlin Heidelberg, Berlin, Heidelberg, 1988, ISBN 978-3-540-39225-5. http://dx.doi.org/10.1007/BFb0083433.
- [14] McNaughton, Robert ja Papert, Seymour A.: Counter-Free Automata (M.I.T. Research Monograph No. 65). The MIT Press, 1971, ISBN 0262130769.
- [15] Park, David: Theoretical Computer Science: 5th GI-Conference Karls-ruhe, March 23–25, 1981, luku Concurrency and automata on infinite sequences, sivut 167–183. Springer Berlin Heidelberg, Berlin, Heidelberg, 1981, ISBN 978-3-540-38561-5. http://dx.doi.org/10.1007/BFb0017309.
- [16] Shelah, Saharon: The monadic theory of order. Annals of Mathematics, sivut 379–419, 1975.
- [17] Tarski, Alfred: Grundzüge der Systemenkalküls I. Fundamenta Mathematicae, 25(1):503-526, 1935. http://eudml.org/doc/212807.
- [18] Thomas, Wolfgang: An application of the Ehrenfeucht-Fraïssé game in formal language theory. Mémoires de la Société Mathématique de France, 16:11–21, 1984.
- [19] Thomas, Wolfgang: Computation Theory and Logic. luku A Concatenation Game and the Dot-depth Hierarchy, sivut 415–426. Springer-Verlag, London, UK, UK, 1987, ISBN 0-387-18170-9. http://dl.acm.org/citation.cfm?id=36545.36580.
- [20] Väänänen, J.: *Models and Games*. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2011, ISBN 9780521518123.