Homework #4 – Solution

Massive stars, s-process nucleosynthesis

Problem 1 Isotope Abundances in the Iron Peak (20%)

Most of the iron-peak elements are produced by combining α nuclei. Combining 14 on these results in 56 Ni, which decays via β^+ decay to 56 Co and then 56 Fe. Iron-58 and 62 Ni, however, are not on the α chain. Therefore, they are produced in lower abundances compared to 56 Fe, even though they have higher binding energies per nucleon.

• • • • • • •

Problem 2 Supernova Explosion Energy (20%)

Making 56 Fe from hydrogen would release for every 56 Fe made a total of 8.7903 MeV per nucleon. With 56 nucleons, this means that a total of 492.2568 MeV would be released. This is equal to a release of 7.88×10^{-11} J per creation of 56 Fe. The energy release in a supernova is 100 foe, which is equal to 10^{46} J. This means that a total of 1.26×10^{56} Fe could be produced. The molecular mass of 56 Fe is about $56 \,\mathrm{g}$ mol $^{-1}$. Thus, around 1.2×10^{31} kg of 56 Fe could be produced with 100 foe of energy, which is equal to around $6 \,M_{\odot}$.

• • • • • • • •

Problem 3 Local Approximation (20%)

- a. These two isotopes are s-only isotopes and are shielded from the r-process. These isotopes are also far from neutron magic numbers and thus adhere to the local approximation.
- b. There is no stable isobar that shields ¹²⁹Xe from the r-process. It has therefore a mixed production of s- and r-process and does not adhere to the local approximation. Note that the r-process can be estimated by calculating how much of this nuclide is produced by the s-process, since the s-component would adhere to the local approximation.
- c. Finally, 126 Te is shielded from the r-process, however, cannot be produced by the s-process. It is thus a proton-rich nuclei with a different origin, and therefore does not adhere to the local approximation.

• • • • • • • • •

Problem 4 Exploring a Star (40%)

- a. The black curve in Figure 111 shows the ${\rm C/O}$ ratio inside the star. After each third dredge-up event, this ratio in the envelope increases and the star becomes more carbon rich.
- b. Figure 107 shows that the star looses most of its mass in the last thermal pulse. Starting off with $2 M_{\odot}$, the star looses around $0.5 M_{\odot}$ in the last thermal pulse and

- a total of around $0.5 M_{\odot}$ in all preceding pulses. It is therefore left, after strong stellar winds, with about half the mass it started with.
- c. Figure 124 shows produts of the s-process in the intershell. A clear s-process isotope, and the one with the widest distribution, is ⁸⁶Sr. Let us use this isotope to constrain the maximum extension of the ¹³C pocket. In width the production of ⁸⁶Sr goes from $0.603153\,M_{\odot}$ to around $0.603171\,M_{\odot}$. This means that the ¹³C pocket is around $1.8\times10^{-5}\,M_{\odot}$ wide. This is fairly small compared to the size of the whole star.
- d. Clearly, the most abundant isotope is 56 Fe, the seed of the s-process. While the strong s-process, which takes place in TP-AGB stars, makes all s-isotopes starting at strontium, the seed is barely destroyed. There is simply far too much 56 Fe in the star to have a significant effect. For A>80 the two most abundant isotopes are 88 Sr and 138 Ba.
- e. Both, 88 Sr and 138 Ba are neutron magic. Thus, their MACS are very small and pile-up of these isotopes will take place during the s-process. This explains why they are the most abundant isotopes with A>80 in the s-process

.