Mathematical Foundations of Computer Science

CS 499, Shanghai Jiaotong University, Dominik Scheder

Group Name: **NOIDEA**

1 Broken Chessboard and Jumping With Coins

1.1 Tiling a Damaged Checkerboard

${\bf Exercise}$	1.1.	$Re ext{-}write$	the	proof	in	your	own	way,	using	simple	English
sentences.											
Proof. Yo	ur pro	oof									
Exercise	1.2.	Another e	exer	cise							
Proof. Yo	ur pro	oof									

2 Exclusion-Inclusion

2.1 Sets

Exercise 2.1.

1. Proof. As is shown in the Venn diagram below, |A| + |B| add the common part $|A \cap B|$ twice. So it should be subtracted once if we want to count $|A \cup B|$.

Figure 1: Venn Diagram

- 2. Solution. $|A \cup B \cup C| = |A| + |B| + |C| |A \cap B| |A \cap C| |B \cap C| + |A \cap B \cap C|$
- 3. Solution. $|A \cup B \cup C \cup D| = |A| + |B| + |C| + |D| |A \cap B| |A \cap C| |A \cap D| |B \cap C| |B \cap D| |C \cap D| + |A \cap B \cap C| + |A \cap B \cap D| + |A \cap C \cap D| + |B \cap C \cap D| |A \cap B \cap C \cap D|$

Exercise 2.2.

Solution.
$$|A_1 \cup \ldots \cup A_n| = \sum_{i=1}^n |A_i| - \sum_{i,j:1 \le i < j \le n} |A_i \cap A_j| + \sum_{i,j,k:1 \le i < j < k \le n} |A_i \cap A_j \cap A_k| - \ldots + (-1)^{n-1} |A_1 \cap \ldots \cap A_n|$$

Exercise 2.3.

1. proof using induction on n

First, let $A_{n,k} = \sum_{1 \leq i_1 < i_2 < ... \leq n} |A_{i_1} \cap A_{i_2} \dots \cap A_{i_k}|$, which denotes the sum of all the possible k-wise intersections in $\{A_1, A_2, ..., A_n\}$.

Then the Inclusion-exclusion principle which we want to prove is as follows:

$$|A_1 \cup \ldots \cup A_n| = \sum_{k=1}^n (-1)^{k+1} A_{n,k}$$

The theorem holds for n = 1, obviously.

The theorem holds for n = 2, as is showed in the 2.1.1

For the induction step, we want to show if it holds for n-1, then it holds for n.

$$|A_{1} \cup \ldots \cup A_{n}| = |A_{1} \cup \ldots \cup A_{n-1}| + |A_{n}| - |(A_{1} \cup \ldots \cup A_{n-1}) \cap A_{n}|$$

$$= \sum_{k=1}^{n-1} (-1)^{k+1} A_{n-1,k} + |A_{n}| - |(A_{1} \cup \ldots \cup A_{n-1}) \cap A_{n}|$$

$$= \sum_{k=1}^{n-1} (-1)^{k+1} A_{n-1,k} + |A_{n}| - |(\bigcup_{i=1}^{i=n-1} (A_{i} \cap A_{n})|$$

$$(1)$$

Let $B_i = (A_i \cap A_n)$.

Similarly, let $B_{n-1,k} = \sum_{1 \leq i_1 < i_2 < \dots \leq n-1} |B_{i_1} \cap B_{i_2} \dots \cap B_{i_k}|$, which denotes the sum of all the possible k-wise intersections in $\{B_1, B_2, \dots, B_n-1\}$.

(1) now becomes

$$\sum_{k=1}^{n-1} (-1)^{k+1} A_{n-1,k} + |A_n| - \left| \left(\bigcup_{i=1}^{i=n-1} B_i \right| \right|$$
 (2)

Similarly, it holds:

$$|B_1 \cup \ldots \cup B_{n-1}| = \sum_{k=1}^{n-1} (-1)^{k+1} B_{n-1,k}$$
 (3)

(2) now becomes

$$\sum_{k=1}^{n-1} (-1)^{k+1} A_{n-1,k} + |A_n| + (-1)^k \sum_{k=1}^{n-1} B_{n-1,k}$$
 (4)

2. proof not using induction on n