Branch: CSE & IT

Computer Network IPv4 Addressing

DPP 05

[MCQ]

- 1. Consider a class C network with 19 subnets and 6 hosts per subnet. Then which of the following is possible subnet mask?
 - (a) 255.255.255.241
 - (b) 255.255.255.244
 - (c) Both (a) and (b)
 - (d) None of these

[MSQ]

- **2.** An organization need Class B network with 32 subnet and each subnet need 100 hosts which of the following is/are possible subnet mask?
 - (a) 255.255.7.3
 - (b) 255.255.128.135
 - (c) 255.255.248.0
 - (d) 255.255.0.248

[NAT]

3. A physics wallah organization is granted a class B network with IP address 186.24.0.0. For revolution 2.0, 10 bits are fixed for subnet. Then, the total number of hosts in each subnet are _____.

[MCQ]

- **4.** Consider a class C network 200.200.250.68. if 3 bits are borrowed from HID part, instead of first 3 subnet bits, last 3 bits are borrowed from HID part. Then which of the following is belong to 3rd subnet ID?
 - (a) 200.200.250.96
 - (b) 200.200.250.64
 - (c) 200.200.250.3
 - (d) 200.200.250.2

[MCQ]

5. Consider a class C network address of 220.220.220.0. it is divided into 3 subnets A, B and C each subnet need 90, 40 and 33 hosts respectively. Which of the

following is a valid subnet mask for subnet B and C respectively?

Batch: Hinglish

- (a) 255.255.255.128 and 255.255.255.192.
- (b) 255.255.255.192 and 255.255.255.128.
- (c) Both the subnet mask are same.
- (d) None of these.

[MCQ]

6. Suppose, a class C network is divided into 3 subnets P, Q and R. Subnet P need 50 host, subnet Q need 40 hosts and subnet R need 120 hosts. Which of the following is an appropriate subnet mask for R?

(Hints: using VLSM technique)

- (a) 255.255.255.128
- (b) 255.255.255.224
- (c) 255.255.255.0
- (d) 255.255.255.192

[MCQ]

7. Suppose, an organization is divided into 6 departments with network 199.198.197.196 For each department 3 bits are borrowed from HID part of given network.

SID	Department
	Number
010	1
100	2
110	3
101	4
111	5
101	6

Which of the following is direct broadcast address of department number 5 and 4 respectively?

- (a) 199.198.197.191 and 199.198.197.255
- (b) 199.198.197.169 and 199.198.197.191
- (c) 199.198.197.169 and 199.198.197.255
- (d) 199.198.197.255 and 199.198.197.191

[MCQ]

8. In a class B network. On the internet has a subnet mask 255.255.240.0 How many minimum number of subnets are possible?

- (a) 32
- (b) 30
- (c) 16
- (d) 14

Answer Key

1. (c)

2. (a, b, c, d)

3. (62)

4. (d)

5. (c)

6. (a)

7. (d)

8. (c)

Hints & Solutions

1. (c)

- Class = C
- The number of host ID bits = 8 (class C)
- $19*6 \le 2^8 2$

 $114 \le 254$ (Condition True)

The number of 1's in SM = NID + SID (19 subnet)

$$= 24 + 5$$

= 29 bits

(a) 111111111111111111111111111111110001

The number of 1's = 29

SM = 255.255.255.241 (Valid)

This subnet mask practically not possible.

(b) 11111111.11111111.111111111.11110100

255 . 255 .

255 . 244

So, both subnet mask are possible.

Hence option (c) is correct.

2. (a, b, c, d)

Class = B (16 NID)

The number of subnets = 32 (5 bit)

The number of 1's in subnet mask = 21

$$32 * 100 \le 2^{16} - 2$$
 (Host)

$$3200 \le 2^{16} - 2$$
 (True)

- (a) 11111111.111111111.00000111.00000011 255.255.7.3 (possible)
- (b) 11111111.11111111.10000000.10000111 255.255.128.135 (possible)
- (c) 11111111.11111111.11111000.000000000 255.255.248.0 (best subnet mask)
- (d) 11111111.11111111.00000000.111111000 255.255.0.248 (possible)

Hence, all subnet masks are possible.

3. (62)

Class = B (16 bits NID)

Subnet bits = 10

Total number of hosts in class $B = 2^{16} - 2$

Total number of host bit after subnet = 32 - 16 - 10

= 6 bits

The number of hosts / subnets $= 2^6 - 2$ = 62

Hence, (62) is correct.

4. (d)

Network = 200.200.250.68

HID bit = 8 bit (class C)

Subnet bits	Subnet number
4 2 1	
010	3 rd subnet

Last 8 bits = 000000010

Subnet bits = 2

 3^{rd} subnet ID = 200.200.250.2

Hence, option (d) is correct.

5. (c)

Class = C

Subnet A = 90 (7 bits)

Subnet B = 40 (6 bits)

Subnet C = 33 (6 bits)

- $90 + 40 + 33 < 2^8 2$
- $166 \le 254 \text{ (valid)}$ 220,220,220,0

Subnet mask for A = 255.255.255.128

Subnet mask for B = 255.255.255.192

Subnet mask for C = 255.255.255.192

Both the subnet mask are same for subnet A and B Hence, option (c) is correct.

6. (a)

Total hosts =
$$50 + 40 + 120$$

= $90 + 120$
= 210

Subnet mask for R = 255.255.255.128Subnet mask for P = 255.255.255.192Subnet mask for Q = 255.255.255.192Hence option (a) is correct. 7. (d)

SID of department 4 = 199.198.197.10100000

SID of department 4 = 199.198.197.160

DBA of department 4 = 199.198.197.10111111

= 199.198.197.191

SID of department 5 = 199.198.197.11100000

= 199.198.197.224

DBA of department 5 = 199.198.197.11111111

= 199.178.197.255

Hence option (d) is correct.

8. (c)

The number of subnets = 2^4

= 16

Hence, Option (c) is correct.

Any issue with DPP, please report by clicking here: https://forms.gle/t2SzQVvQcs638c4r5
For more questions, kindly visit the library section: Link for web: https://smart.link/sdfez8ejd80if

