Tableau de bord / Mes cours / EIIN511B - ECUE Informatique theorique 1 / Tests2021 / CC2_9_11_2021

Commencé le	mardi 9 novembre 2021, 13:35
État	Terminé
Terminé le	mardi 9 novembre 2021, 14:35
Temps mis	59 min 59 s
Note	20,28 sur 22,00 (92 %)
Feedback	Movenne 11 84

Dans les questions 14 et 15 (formes prénexes et Skolem), un mauvais parenthésage faisait que les formules données n'étaient pas des formules closes, donc chacune et chacun a eu 1 point pour chacune de ces questions.

Question 1

Non répondue

Non noté

Si une question vous semble comporter des erreurs ou imprécisions, vulgairement parlant des bugs, ne posez pas de question oralement, mais signalez-le ci-dessous en précisant :

- le numéro de la question concernée
- vos interrogations sur cette question
- éventuellement l'interprétation ou les choix faits pour votre (vos) réponse(s) à cette question.

Pour rappel, dans toutes les questions où il y a des formules à écrire, vous pouvez utiliser les symboles suivants :

• ¬ NOT NON - ! ~

• . ^ AND ET &

• + V ∨ V OR OU |

• ⇒ => >>

• \FORALL FORALL A ∀

• \EXISTS EXISTS EXIST E ∃

La casse (majuscule/minuscule) n'a pas d'importance et tous les espaces ' ' sont ignorés.

Correct

Note de 1,00 sur 1,00

Donner la liste des mintermes qui sont factorisés dans l'impliquant (d'ordre 2) : -1-10

Les mintermes sont à donner sous forme d'entiers écrits en base dix.

Exemples:

- o le minterme 01100 doit être écrit 12
- o le minterme 10011 doit être écrit 19.

Réponse: (régime de pénalités: 0 %)

Réinitialiser la réponse

```
1 # -1-10
2 # séparer les mintermes par (au moins) un espace ou une virgule ',' avec ou sans espace
3 4 10, 14, 26, 30
```

	Got	Expected	Mark	
~	[10, 14, 26, 30]	[10, 14, 26, 30]	1	/

Tous les tests ont été réussis! 🗸

Correct

Question 4
Correct
Note de 1,00 sur 1,00
Dans le cadre de l'application de l'algorithme QMC sur une formule Φ avec 4 variables, la table suivante a été obtenue :

N° de l'impliquant	X 3	X ₂	X ₁	X ₀
1	-	0	0	0
2	0	0	-	0
3	-	0	0	1
4	0	-	0	1
5	0	-	1	0
6	1	0	-	0
7	-	1	0	1
8	0	1	-	1
9	1	-	1	0

Donnez tous les impliquants premiers de la table ci-dessus.

La réponse sera mise sous la forme 1 5 7 si vous trouvez que les impliquants 1, 5 et 7 sont (tous les) impliquants premiers.

Réponse :

48

~

La réponse correcte est : 4 8

									002_0_11_2021
uestion 5									
orrect									
ote de 1,00 s	ur 1,0	0							
				icati	ion	de l	'alg	orith	ne QMC sur une formule Φ avec 4 variables, on obtient comme table des
impliquan	ts pr	emie	ers :						
m0 m	1 m2	2 m3	m4	m5	m6	m7	m8	m9	
ip0 O		0			0				
ip1 O	0		0			0			
ip2	0	0				0		0	
ip3			0				0	0	
ip4 C				0			0		
premiers (essen	tiels	n'o	nt p	as e	été ı	mate	ériali	m0, m1, et les impliquants premiers ip0, ip1, Les impliquants és, à vous de le faire si vous en avez besoin.
	non	nbre	d'i	mpl	iqu	ant	s de	tou	expression minimale obtenue à la fin de l'exécution de l'algorithme
QMC.									
Réponse :	4								✓
La répons	e cor	rect	e es	t : 4					

ote de 1,00 sur 1,00												
Dans le cadre de l'application de l'algorithme QMC sur une formule Φ avec 4 variables, on obtient comme table de impliquants premiers : m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11	uestic	on 6										
Dans le cadre de l'application de l'algorithme QMC sur une formule Φ avec 4 variables, on obtient comme table de impliquants premiers : m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 ip1	orrect											
impliquants premiers: m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 ip1	ote c	le 1,00	sur '	1,00								
m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 ip1												
impliquants premiers: m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 ip1	D				U	-1:	. :	٠. اـ	11-1-		l <i>-</i>	2146
m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 ip1							ition	ue	ı aıç	jont	nine (ZIVIC
ip1	P	-	_					_			10	
ip3		+		_	m4	m5	m6	m/	m8	m9		
ip3				0				_				0
ip4 O O O O O O O O O O O O O O O O O O O	ip2		0		0			0	-		0	
ip5	ip3				0	0		0	0			
ip6 O O O O O O O O O O O O O O O O O O O	ip4	0					0		0		0	
où ip1, ip2,, ip6 sont les 6 impliquants premiers, et m1, m2,, m11 sont les 11 mintermes Dans cette table, les impliquants premiers essentiels n'ont pas été matérialisés, à vous de le faire si vous en avez besoin. A la fin de l'exécution de l'algorithme QMC, l'algorithme retourne une expression ayant le nombre minimum d'impliquants. Donner le nombre d'expressions possibles ayant ce nombre minimum d'impliquants. Réponse : 3	ip5					0	0		0	0		
Dans cette table, les impliquants premiers essentiels n'ont pas été matérialisés, à vous de le faire si vous en avez besoin. A la fin de l'exécution de l'algorithme QMC, l'algorithme retourne une expression ayant le nombre minimum d'impliquants. Donner le nombre d'expressions possibles ayant ce nombre minimum d'impliquants. Réponse : 3	ip6				0				0	0		0
besoin. A la fin de l'exécution de l'algorithme QMC, l'algorithme retourne une expression ayant le nombre minimum d'impliquants. Donner le nombre d'expressions possibles ayant ce nombre minimum d'impliquants. Réponse: 3	où	ip1, i	ip2,	, ip	6 soı	nt le	s 6 i	mpl	liqua	ants	prem	iers,
besoin. A la fin de l'exécution de l'algorithme QMC, l'algorithme retourne une expression ayant le nombre minimum d'impliquants. Donner le nombre d'expressions possibles ayant ce nombre minimum d'impliquants. Réponse: 3	Dar	ıs cet	te ta	able,	les i	mpli	igua	nts	prer	nier	s esse	entiel
d'impliquants. Donner le nombre d'expressions possibles ayant ce nombre minimum d'impliquants. Réponse : 3						•	•					
d'impliquants. Donner le nombre d'expressions possibles ayant ce nombre minimum d'impliquants. Réponse: 3	A la	fin c	de l'e	exécu	ution	de	l'alg	orit	hme	ON	/IC. l'a	laori
Donner le nombre d'expressions possibles ayant ce nombre minimum d'impliquants. Réponse : 3							9			٠		.90
Réponse : 3 ✓												
	Some to not have a compression possession by an activities in minimum a map requestion											
La réponse correcte est : 3	Réponse : 3											
La réponse correcte est : 3												
La reponse correcte est : 3	La vánanca savvanta arti 2											
	La r	epon	ise c	orre	cte e	est : :	3					

Correct

Note de 2,00 sur 2,00

Mettre la formule suivante sous Forme Normale Conjonctive (FNC) :

 \neg (P3 V \neg (P1 \wedge P3)) V (\neg (P2 V P3) \wedge P2)

Si vous trouvez que la FNC est :

- True : répondre True (avec une casse quelconque)
- False : répondre False (avec une casse quelconque)
- dans les autres cas écrire la FNC trouvée.

Réponse: (régime de pénalités : 0 %)

Réinitialiser la réponse

1 False

	Got	Expected	Mark	
~	0	False	1	~

Tous les tests ont été réussis! 🗸

Correct

Correct

Note de 2,00 sur 2,00

Mettre la formule suivante sous Forme Normale Disjonctive (FND) :

 $\neg (P3 V \neg (P4 \Rightarrow P1)) \land (P3 \Rightarrow (P1 V P3))$

Si vous trouvez que la FND est :

- True : répondre True (avec une casse quelconque)
- False : répondre False (avec une casse quelconque)
- dans les autres cas écrire la FND trouvée.

Réponse: (régime de pénalités : 0 %)

Réinitialiser la réponse

1 (¬P3 Λ ¬P4) V (¬P3 Λ P1)

	Got	Expected	Mark	
~	(¬P3∧¬P4)V(¬P3∧P1)	(P1A¬P3)V(¬P3A¬P4)	1	~

Tous les tests ont été réussis!

Correct

Note pour cet envoi: 2,00/2,00.

Description

Pour les questions qui suivent et où il est demandé de faire une résolution en calcul des propositions, **les clauses ne sont pas à écrire** dans la réponse, car les formules sont déjà quasiment des clauses.

Vous n'aurez qu'à écrire les résolutions utilisées en respectant la syntaxe ci-dessous :

- si la 3ième résolution utilisée est "de P6 et P9 v !P6, on déduit P9", noter : R3 : P6 , P9 v !P6 : P9
- si la 912ième résolution utilisée est "de P6 et !P6, on déduit la clause vide", noter : R912 : P6 , !P6 : Faux

Correct

Note de 1,00 sur 1,00

Les formules suivantes concernent 4 propositions : P0, P1, P2 et P3.

L'ensemble **H** contient 4 formules :

- 1. P0
- 2. P1
- 3. P1 =>P2
- 4. $(P0 \land P2) => P3$

Et soit la formule $\boldsymbol{\varphi}$:

Р3

On veut montrer par résolution que : $\mathbf{H} \vDash \boldsymbol{\varphi}$

En appliquant le méthode de résolution sur les clauses trouvées, montrer que $\mathbf{H} \models \boldsymbol{\varphi}$.

Réponse : (régime de pénalités : 0 %)

Réinitialiser la réponse

```
# vous pouvez supprimer/ajouter des résolutions ci-dessous
R1: P1, ¬P1 V P2: P2
R2: P2, ¬P0 V ¬P2 V P3: ¬P0 V P3
R3: P0, ¬P0 V P3: P3
R4: P3, ¬P3: Faux
```

	Mark	Comment	
~	1.00	['P0', 'P1', 'P2 ~P1', 'P3 ~P0 ~P2', '~P3']	~
		clause(s) de R1 correcte(s)/resolution correcte	
		clause(s) de R2 correcte(s)/resolution correcte	
		clause(s) de R3 correcte(s)/resolution correcte	
		clause(s) de R4 correcte(s)/resolution R4 correcte	

Tous les tests ont été réussis! 🗸

Correct

Correct

Note de 2,00 sur 2,00

Les formules suivantes concernent 5 propositions : P0, P1, P2, P3 et P4.

L'ensemble **H** contient 6 formules :

- 1. P0 =>P2
- 2. ¬P0 =>P1
- 3. ¬P0 =>P3
- 4. P1 =>P4
- 5. ¬P1 =>P3
- 6. P4 =>P2

Et soit la formule $\boldsymbol{\varphi}$:

P2

En appliquant le méthode de résolution sur les clauses trouvées, montrer que $\mathbf{H} \models \boldsymbol{\varphi}$.

Réponse: (régime de pénalités : 0 %)

Réinitialiser la réponse

```
1  # vous pouvez supprimer/ajouter des résolutions ci-dessous
2  R1 : ¬P2, ¬P0 V P2 : ¬P0
3  R2 : ¬P0, P0 V P1 : P1
4  R3 : P1, ¬P1 V P4 : P4
5  R4 : P4, ¬P4 V P2 : P2
6  R5 : ¬P2, P2 : Faux
```

	Mark	Comment	
~	1.00	['P0 P1', 'P0 P3', 'P1 P3', 'P2 ~P0', 'P2 ~P4', 'P4 ~P1', '~P2'] clause(s) de R1 correcte(s)/resolution correcte clause(s) de R2 correcte(s)/resolution correcte clause(s) de R3 correcte(s)/resolution correcte clause(s) de R4 correcte(s)/resolution correcte clause(s) de R5 correcte(s)/resolution R5 correcte	~

Tous les tests ont été réussis! 🗸

Correct

Question	1	1

Correct

Note de 1,00 sur 1,00

En notant:

- **a(x)** : un prédicat signifiant que **x** est un animal
- **c(x)** : un prédicat signifiant que **x** est un chat
- **d(x)**: un prédicat signifiant que **x** est un chien (dog)

Une formulation en calcul des prédicats de :

Les chats et les chiens sont des animaux

est:

(cochez toutes les réponses exactes et elles seules)

- $\forall x [(c(x) \Rightarrow a(x)) \land (d(x) \Rightarrow a(x))]$
- Aucune des formules proposées
- $\forall x [(c(x) \land d(x)) \Rightarrow a(x)]$
- $\forall x [(c(x) \lor d(x)) \Rightarrow a(x)] \checkmark$

Les réponses correctes sont : $\forall x [(c(x) \lor d(x)) \Rightarrow a(x)], \ \forall x [(c(x) \Rightarrow a(x)) \land (d(x) \Rightarrow a(x))]$

Question 12

Partiellement correct

Note de 0,50 sur 1,00

Une formule est close si:

(cochez toutes les réponses exactes et elles seules)

- elle n'a aucune variable libre
- ✓ toutes ses variables sont liées
- elle ne comporte pas de variables, mais seulement des constantes
- aucune des autres réponses proposées

Les réponses correctes sont : elle n'a aucune variable libre, elle ne comporte pas de variables, mais seulement des constantes

14.40	002_0_11_2021 . Tolostare de terrativo
Question 13	
Correct	
Note de 1,00 sur 1,00	
Pour cette question :	
 x est une variable 	
 p et v sont deux prédicats d'ai 	ité 1
On s'intéresse aux interprétation	s où v(x) signifie que x appartient à l'ensemble vide.
Soit la formule :	
$\Phi: \forall x \ (v(x) \Rightarrow p(x) \)$	
Cochez la réponse exacte (et elle	seule):
Φ est vraie quelque soit l'int	erprétation de p❤
 Φ est parfois vraie et parfois 	fausse selon l'interprétation de p choisie
 Φ est fausse quelque soit l'in 	nterprétation de p
Aucune des autres réponses	proposées

Votre réponse est correcte.

La réponse correcte est :

 Φ est vraie quelque soit l'interprétation de p

Correct

Note de 1,00 sur 1,00

Soit la formule ϕ suivante où p est un prédicat d'arité 1 et q un prédicat d'arité 2, et les xi sont les variables : $[(\exists x 1p(x1)) \Rightarrow (\exists x 2 \neg q(x1,x2))] \Rightarrow [(\exists x 1p(x1)) \Rightarrow (\forall x 2 q(x1,x2))]$

Mettre φ sous forme prénexe.

Si une variable **xi est quantifiée 2 fois, la renommer en yi**, la deuxième fois où elle est quantifiée (aucune variable n'est quantifiée plus de 2 fois).

Réponse: (régime de pénalités : 0 %)

```
Réinitialiser la réponse
```

```
1 v # Mise sous prénexe de :

2 # [ (\exists x1p(x1)) \Rightarrow (\exists x2 \neg q(x1,x2)) ] \Rightarrow [ (\exists x1p(x1)) \Rightarrow (\forall x2 q(x1,x2)) ]

3 4 [ (\exists x1 p(x1)) \land (\forall x2 q(x1,x2))] V [ (\forall y1 \neg p(y1)) \lor (\forall y2 q(y1,y2))]
```

	Mark
~	1.00

Tous les tests ont été réussis! 🗸

Correct

Correct

Note de 1,00 sur 1,00

Soit la formule φ de la question précédente où p est un prédicat d'arité 1 et q un prédicat d'arité 2, et les xi sont les variables :

```
[(\exists x1p(x1)) \Rightarrow (\exists x2 \neg q(x1,x2))] \Rightarrow [(\exists x1p(x1)) \Rightarrow (\forall x2 q(x1,x2))]
```

A partir de la forme prénexe précédente, mettre φ sous forme de Skolem.

Ne pas écrire la liste initiale des variables quantifiées avec le quantificateur universel ∀.

Dans le cadre de la mise sous forme de Skolem :

- si la variable x1 (respectivement x2) devient une constante, donner le nom c1 (respectivement c2) à cette constante
- si la variable y1 (respectivement y2) devient une constante, donner le nom d1 (respectivement d2) à cette constante
- si la variable x1 (respectivement x2) devient une fonction, donner le nom f1 (respectivement f2) à cette fonction. Chacune de ces fonctions est appliquée à une liste d'arguments qui est à écrire (comme fait en TD)
- si la variable y1 (respectivement y2) devient une fonction, donner le nom g1 (respectivement g2) à cette fonction. Chacune de ces fonctions est appliquée à une liste d'arguments qui est à écrire (comme fait en TD).

Réponse: (régime de pénalités : 0 %)

Réinitialiser la réponse

```
1 v # Mise sous fore de Skolem de :

2 # [ (\exists x 1 p(x1)) \Rightarrow (\exists x 2 \neg q(x1, x2))] \Rightarrow [ (\exists x 1 p(x1)) \Rightarrow (\forall x 2 q(x1, x2))]

3 4 [( p(a1)) \land (q(x1, x2))] \lor [(\neg p(y1)) \lor (q(y1, y2))]
```


Tous les tests ont été réussis! 🗸

Correct

Correct

Note de 1,00 sur 1,00

Dans cette question:

- x, y et z sont des variables
- p est un prédicat d'arité 3
- a est une constante
- f, g et h sont des fonctions d'arité 1.

Soient les deux atomes suivants :

p(h(y),f(y),f(x))

p(x,f(h(a)),z)

si ils sont unifiables, donner l'atome obtenu après unification, sinon répondre impossible (ou au moins les 4 premières lettres de impossible).

Exemple, pour les deux atomes :

q(f(a),y)

q(x,y)

répondre q(f(a),y).

Réponse: (régime de pénalités : 0 %)

		Got	Expected	Mark	
	~	p(hha,fha,fhha)	p(hha,fha,fhha)	1	~

Tous les tests ont été réussis!

Correct

Description

Pour les questions qui suivent et où il est demandé de faire une résolution en calcul des prédicats, vous devrez donner :

- 1. la liste des clauses :
 - o C1:
 - o C2:
 - o ...
- 2. la liste des résolutions :
 - o R1:
 - o R2:
 - o ...

Pour obtenir, la liste des clauses, lors de la skolémisation, si vous devez introduire :

- des fonctions, veuillez les noter : f, g, h
- des constantes, veuillez les noter : c, d, e

Pour la liste des résolutions effectuées, veuillez **ne pas préciser l'unification** faite et la syntaxe à respecter pour la réponse est :

• si la 36ième résolution utilisée est "de s(x) V t(f(x)) et ¬s(c), on déduit t(f(c)) en utilisant comme atome unifié s(c)", noter seulement :

 $R36: s(x) \ V \ t(f(x)) \ , \ !s(c): t(f(c))$

• si la 879ième résolution utilisée est "de s(x) et ¬s(c), on déduit la clause vide en utilisant comme atome unifié s(c)", noter seulement :

R879: s(x), !s(c): Faux

Question 17
Incorrect

✓ CC1 12 10 2021
Note de 0,00 sur 1,00

Aller à...

ivionitrez par resolution que

 $[\ \forall x\ (q(x)\Rightarrow r(x)\)\]\Rightarrow [\ (\forall y\ q(y)\)\Rightarrow (\forall z\ r(z)\)\]$

CC3_30_11_2021 ►

est universellement valide.

Donnez la liste des clauses puis la liste des résolutions effectuées, en respectant les consignes données au début de cette partie.

Réponse: (régime de pénalités : 0 %)

```
Réinitialiser la réponse
```

	Mark	Comment	
×	0.00	nombre de clauses != 3 / clauses incorrectes	×

Incorrect

Correct

Note de 1,00 sur 1,00

Soit la formule :

 $[\ \forall x\ (q(x)\ \land\ r(x)\)\] \Rightarrow [\ (\forall x\ q(x)\) \Rightarrow (\forall x\ r(x)\)\]$

Si vous pensez qu'elle est :

- universellement valide, répondre 1
- pas universellement valide, mais satisfiable, répondre 1/2
- toujours fausse, répondre **0**

Réponse : (régime de pénalités : 0 %)

1 1

	Test	Résultat attendu	Résultat obtenu	
	nánanca	1	1	

Tous les tests ont été réussis! 🗸

Correct

Partiellement correct

Note de 1,78 sur 2,00

Les formules suivantes concernent 2 prédicats d'arité 2: p et q.

L'ensemble **H** contient 2 formules :

- ∀x∃y p(x,y)
- 2. $\forall x \forall y (\exists z (p(x,z) \land p(z,y)) \Rightarrow q(x,y))$

Et soit la formule ϕ :

 $\forall x \exists y \ q(x,y)$

En appliquant le méthode de résolution, montrer que $\mathbf{H} \models \boldsymbol{\varphi}$.

Donnez la liste des clauses puis la liste des résolutions effectuées, en respectant les consignes données au début de cette partie.

Réponse: (régime de pénalités : 0 %)

```
Réinitialiser la réponse
```

```
# vous pouvez supprimer/ajouter des clauses ci-dessous
| # vous pouvez supprimer/ajouter des résolutions ci-dessous
| C1 : p(x, f(x))
| C2 : !p(a,c) V !p(c,b) V q(a,b)
| C3 : !q(a,b)
| R1 : p(x, f(x)), !p(a,c) : !p(c,b) V q(a,b)
| R2 : !q(a,b), q(a,b) : Faux
| R2 : !q(a,b), q(a,b) : Faux
```

Mark	Comment	
0.89	clauses correctes	
	clause(s) de R1 incorrecte(s)/resolution correcte	
	clause(s) de R2 incorrecte(s)/resolution correcte	

Partiellement correct

