Konstrukcija implicitne krivulje

Krivuljo v prostoru lahko podamo implicitno kot rešitev dveh enačb. Naj bo $\mathbf{x}=(x,y,z)\in\mathbb{R}^3$. Množica rešitev nelinearnega sistema dveh enačb $f_1(\mathbf{x})=0$, $f_2(\mathbf{x})=0$ v splošnem predstavlja krivuljo. Tako podana krivulja je presečišče dveh ploskev podanih implicitno z enačbama $f_1(\mathbf{x})=0$ in $f_2(\mathbf{x})=0$.

Privzemimo, da sta funkciji f_1 in f_2 parcialno odvedljivi in da ima *Jacobijeva matrika* parcialnih odvodov

$$J = \begin{bmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} & \frac{\partial f_1}{\partial z} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} & \frac{\partial f_2}{\partial z} \end{bmatrix}$$

poln rang. Potem velja:

Izrek o implicitni funkciji: Če sta funkciji f_1 in f_2 parcialno odvedljivi in ima Jacobijeva matrika rang 2, potem množica rešitev sistema $f_1(\mathbf{x}) = 0$, $f_2(\mathbf{x}) = 0$ tvori gladko krivuljo v \mathbb{R}^3 .

Naloga

Napišite funkcijo za konstrukcijo približka za gladko krivuljo, podano implicitno z enačbama $f_1(\mathbf{x}) = 0$ in $f_2(\mathbf{x}) = 0$ oziroma z vektorsko enačbo:

$$\mathbf{F}(\mathbf{x}) = \begin{bmatrix} f_1(\mathbf{x}) \\ f_2(\mathbf{x}) \end{bmatrix} = 0. \tag{1}$$

Klic funkcije naj bo oblike P = implicit(F, JF, x0, h, n), kjer je

- F kazalec na funkcijo, ki izračuna desne strani vektorske enačbe (1),
- JF kazalec na funkcijo, ki izračuna Jacobijevo matriko funkcije F,
- ullet x0 začetna točka v \mathbb{R}^3 , ki je blizu presečišča obeh ploskev,
- h dolžina koraka in
- n število korakov.

Rezultat P naj bo $3 \times (n+1)$ matrika, katere stolpci so koordinate točk na krivulji.

Opis algoritma

1. Začetna točka \mathbf{x}_0 leži na krivulji $f_1(\mathbf{x}) = \varepsilon_1$ in $f_2(\mathbf{x}) = \varepsilon_2$. Izračunajte tangentni vektor \mathbf{v}_0 na to krivuljo v točki \mathbf{x}_0 .

2. Poiščite točko \mathbf{x}_0' na iskani krivulji $f_1(\mathbf{x}) = 0$, $f_2(\mathbf{x}) = 0$ v smeri pravokotno na vektor \mathbf{v}_0 . Drugače povedano, točka \mathbf{x}_0' naj bo rešitev sistema enačb

$$f_1(\mathbf{x}) = 0,$$

$$f_2(\mathbf{x}) = 0,$$

$$\mathbf{v}_0 \cdot (\mathbf{x} - \mathbf{x}_0) = 0,$$

ki jo izračunate z Newtonovo metodo.

- 3. Izračunajte tangenti vektor \mathbf{v}_0' v točki \mathbf{x}_0' in novo točko $\mathbf{x}_1 = \mathbf{x}_0' + h\mathbf{v}_0'$. Korak h naj bo dovolj majhen, da bo točka \mathbf{x}_1 blizu iskane krivulje.
- 4. Poiščite novo točko \mathbf{x}_1' na krivulji na enak način kot \mathbf{x}_0' .
- 5. Postopek ponavljajte dokler ne dobite vseh točk $x_0', x_1', \dots x_n'$

Pazite: na vsakem koraku mora tangenti vektor \mathbf{v}_i' kazati v isto smer vzdlož krivulje, da ne boste skakali med dvema točkama na krivulji tja in nazaj.

Testiranje

Svoj program stestirajte vsaj na naslednjih dveh primerih:

- $f_1(x,y,z) = x^2 + y^2 + z^2 4$, $f_2(x,y,z) = (x-1)^2 + y^2 1$,
- f_1 in f_2 izberete na podlagi zadnjih dveh števk svoje vpisne številke:

0:
$$\frac{1}{x^2+y^2+(z-1)^2} + \frac{1}{x^2+(y-1)^2+z^2} + \frac{1}{(x-1)^2+y^2+z^2} - 3$$

1:
$$x^2 + \cos(y)z^2 - 1$$

2:
$$y^4 + \log(x^2 + 1)z^2 - 4$$

3:
$$e^{-x^2+1} + y^2 + z^2 - 3$$

4:
$$-x^2 + \cos(y)\sin(z) + 1/2$$

5:
$$e^{xyz} + x^2 + y^2 + z^2 - 10$$

6:
$$e^{yz} + x^2 + \cos(zx) - 5$$

7:
$$2(y^2-3x^2)(1-z^2)+(x^2+y^2)^2-(9z^2-1)(1-z^2)$$

8:
$$x^2 + y^2 + z^2 + \sin(3x) + \sin(3y) + \sin(3z) - 1$$

9:
$$z - 4xe^{-x^2 - y^2}$$
.

Če sta zadnji števki vaše vpisne številke enaki, si f_2 izberete poljubno. Prav tako lahko f_2 zamenjate z drugo funkcijo, če slučajno ploskvi določeni z f_1 in f_2 nimata preseka.

Oddaja naloge

Na spletno učilnico oddajte naslednje:

- funkcijo implicit z vsemi pripadajočimi pomožnimi funkcijami,
- funkciji *F* ter *JF* za vaš primer in začetno točko blizu krivulje
- kratko izpeljavo formul, ki jih uporabite v funkciji implicit (1-2 strani, lahko je napisana na roke in poskenirana).

S kolegi se lahko posvetujete in lahko tudi skupaj rešujete nalogo, vendar morate program in poročilo izdelati sami. Uporabljate lahko funkcije, ki smo jih izdelali na vajah.