RS/Conference2020

San Francisco | February 24 – 28 | Moscone Center

HUMAN ELEMENT

SESSION ID: CRYP-R09

Mathematical Advances in Cryptography

Tomoki Moriya

How to Construct CSIDH on Edwards Curves The University of Tokyo

Main result

We extend a CSIDH algorithm to that on Edwards curves.

Contents

- 1. Isogeny-based cryptography
- 2. CSIDH
- 3. Construct CSIDH on Edwards curves
- 4. Computational complexity
- 5. Conclusion

RSA*Conference2020

1. Isogeny-based cryptography

Currently public key cryptography

- RSA crypto. [Rivest, Shamir, Adleman (Communications of the ACM 1978)]
- Elliptic curve crypto. [Miller (CRYPTO 1985)], [Koblitz (Mathematics of Computation 1987)]

They are broken in polynomial time by using quantum computers. [Shor (FOCS 1994)]

We need new cryptosystems: post-quantum cryptography.

Candidates for post-quantum cryptography

- Isogeny-based cryptography
- Lattice-based cryptography
- Multivariate cryptography
- Code-based cryptography
- Hash-based signature
- etc...

Main property of isogeny-based cryptography

- Based on Isogeny Problem
- Using elliptic curves
- Main merit: key lengths are short.
- Main demerit: it takes more time to execute protocols.

Elliptic curves and isogenies (1/3)

Elliptic curves

Elliptic curves are smooth algebraic curves with genus 1.

Elliptic curves have abelian group structures.

Elliptic curves and isogenies (2/3)

Montgomery curves

$$y^2 = x^3 + ax^2 + x (a^2 \neq 4)$$

Edwards curves

$$x^2 + y^2 = 1 + dx^2y^2 (d \neq 0, 1)$$

Elliptic curves and isogenies (3/3)

Isogenies

An isogeny is a morphism between elliptic curves which is also a group morphism on elliptic curves.

Velu formulas and Isogeny Problem (1/3)

Velu formulas [Velu (CR Acad. Sci. 1971)]

Input: an elliptic curve ${\it E}$ and a finite subgroup ${\it G}$ of ${\it E}$

Output : an elliptic curve E/G

and an isogeny $\phi: E \to E/G$ satisfying $\ker \phi = G$

$$(E,G)$$
 \longrightarrow $(E/G,\phi)$

Velu formulas and Isogeny Problem (2/3)

Isogeny Problem

From two given isogenious elliptic curves E and F, compute an isogeny $\phi: E \to F$

$$\phi$$
 or G

$$\phi$$
 or G $(E, E/G)$

Velu formulas and Isogeny Problem (3/3)

Velu formulas (easy)

$$(E/G,\phi)$$

Isogeny Problem (difficult)

$$\phi$$
 or G

RS/Conference2020

2. CSIDH

CSIDH key exchange (1/2)

CSIDH key exchange [Castryck et al. (ASIACRYPT 2018)]

CSIDH is an isogeny-based key exchange protocol based on a group action of a finite abelian group to a set of \mathbb{F}_p -isomorphism classes of supersingular elliptic curves.

CSIDH key exchange (2/2)

CSIDH key exchange [Castryck et al. (ASIACRYPT 2018)]

- A group action of an ideal class group of $\mathbb{Z}[\sqrt{-p}]$ [Waterhouse (1969)]
- This group is a finite abelian group, and a set of equivalent classes of ideals of $\mathbb{Z}[\sqrt{-p}]$.

An algorithm of CSIDH (1/2)

How do we compute an elliptic curve $[a]E_0$?

- Let a prime p satisfy $p=4l_1\cdots l_n-1$, where the l_1,\cdots,l_n are distinct small odd primes.
- A group element [a] satisfies $[a] = [\mathfrak{l}_1]^{e_1} \cdots [\mathfrak{l}_n]^{e_n}$, where $[\mathfrak{l}_i] = [(l_i, \sqrt{-p} 1)], [\mathfrak{l}_i]^{-1} = [(l_i, \sqrt{-p} + 1)]$, and e_1, \ldots, e_n are small integers. (let max absolute value of them be m.)

- Let secret keys (e_1, \dots, e_n) .
- We only consider actions of $[l_i]$ and $[l_i]^{-1}$.

An algorithm of CSIDH (2/2)

How do we compute actions of $[l_i]$ and $[l_i]^{-1}$?

- $[l_i]E = E/E[l_i]$, and $[l_i]^{-1}E = E/E[\overline{l_i}]$. (Waterhouse)
- $E[\mathfrak{l}_i] \coloneqq$ a subgroup of E generated by a point of order l_i contained in $\ker(\pi_p-1)$, where π_p is p-Frobenius map $(x,y)\mapsto(x^p,x^p)$.
- $E[\overline{\mathfrak{l}_i}] \coloneqq$ a subgroup of E generated by a point of order l_i contained in $\ker(\pi_p+1)$.

Velu formulas

CSIDH on Montgomery curves (1/2)

Montgomery curves :
$$y^2 = x^3 + ax^2 + x$$

- x-coordinate [Montgomery (Mathematics of Computation 1987)] [Costello et al. (ASIACRYPT 2017)]
- $x \in \mathbb{F}_p$: random $\Rightarrow P \in \ker(\pi_p 1)$ or $\ker(\pi_p + 1)$, where x(P) = x. $y(P)^2 = x^3 + ax^2 + x$: square $\Rightarrow P \in \ker(\pi_p 1)$. $y(P)^2 = x^3 + ax^2 + x$: not square $\Rightarrow P \in \ker(\pi_p + 1)$. $\frac{p+1}{l_i}P$ is a point of order l_i with high probability $(1 1/l_i)$.
- a is unique up to \mathbb{F}_p -isomorphism.

CSIDH on Montgomery curves (2/2)

 $[\mathfrak{l}_i]E$ Output : coefficient

 $y(P)^2$: square

 $x \in \mathbb{F}_p$: random

 $\frac{p+1}{l_i}$ times

Velu formulas

 $y(P)^2$: not square

$$P \in \ker(\pi_p + 1)$$

 $[l_i]^{-1}E$ Output : coefficient

RSA*Conference2020

3. Construct CSIDH on Edwards curves

CSIDH on Edwards curves

Edwards curves :
$$x^2 + y^2 = 1 + dx^2y^2$$

- w-coordinate : $w(x, y) = dx^2y^2$ [Farashahi et al. (ACISP 2017)][Kim et al. (ASIACRYPT 2019)]
- $w \in \mathbb{F}_p$: random \Rightarrow sometimes $P \notin \ker(\pi_p 1)$ and $P \notin \ker(\pi_p + 1)$, where w(P) = w.
- There is no proof that d is unique up to \mathbb{F}_p -isomorphism.

Main theorems (1/3)

Theorem 1,3

$$w(P)$$
: square $w(P') := w(P) \in \ker(\pi_p + 1)$
 $w(P)$: not square $w(P') := 1/w(P) \in \ker(\pi_p + 1)$

In each case, $\frac{p+1}{4l_i}P'$ is a point of order l_i with high probability (1 $-1/l_i$).

Main theorems (2/3)

Theorem 2

Main theorems (3/3)

Theorem 4

Coefficients of Edwards curves $d \leftarrow 1:1$ \mathbb{F}_p -isomorphism classes

CSIDH on Edwards curves

 $[\mathfrak{I}_i]E$ Output : coefficient

w(2P): not square

$$w \in \mathbb{F}_p$$
: random $w(P) \coloneqq w^2$

$$\frac{p+1}{4l_i}$$
 times

Velu formulas

w(2P): square

$$P' \in \ker(\pi_p + 1)$$

 $[l_i]^{-1}E$ Output : coefficient

RSA*Conference2020

4. Computational complexity

Theoretical comparing computational complexity (1/2)

Montgomery

Sampling points

• Compute $Cx^3 + Ax^2 + Cx$ 3M + 1S + 2a

Edwards

Sampling points

- Compute w²
 1S
- Compute w(2P)4M + 1S + 5a

$$1M + 1S + 3a$$

Scalar multiplication

• Compute
$$Q = \left[\frac{p+1}{\prod_{k \in S} \ell_k}\right] P$$

Scalar multiplication

• Compute
$$Q = \left[\frac{p+1}{4\Pi_{k \in S}\ell_k}\right]P'$$

$$-8M - 3S - 9a$$

Theoretical comparing computational complexity (2/2)

Montgomery

Sampling points and scalar multiplication

Edwards

Sampling points and scalar multiplication

$$-3\mathbf{M} - \frac{1}{2}\mathbf{S} - \frac{3}{2}\mathbf{a} \text{ (at least)}$$

• Compute $E \rightarrow E/\langle R \rangle$ $(6s+2)\mathbf{M} + 8\mathbf{S} + (4s+8)\mathbf{a}$ two s th-power

Compute isogenies [Kim et al. (ASIACRYPT 2019)]

• Compute $E \rightarrow E/\langle R \rangle$ $(6s+2)\mathbf{M} + 8\mathbf{S} + (4s+6)\mathbf{a}$ two s th-power

Implementation

Based on the original paper of CSIDH, p was chosen as $p=4 \cdot l_1 \cdots l_{74}-1$, where l_1, \cdots, l_{73} were the smallest distinct odd primes, and $l_{74}=587$. Let m=5.

We measured the average computational complexity by executing it 50000 times.

	Montgomery	Edwards
M	328,195	328,055
S	116,915	116,857
a	332,822	331,844
Total	438,368	438,133

$$1S = 0.8M$$
, $1a = 0.05M$

RSA*Conference2020

5. Conclusion

Conclusion

- We proposed a new CSIDH algorithm on Edwards curves.
- This algorithm is as fast as (a little bit faster than) that on Montgomery curves.

Thank you for listening!