Árboles (CARTs)

Big Data y Machine Learning para Economía Aplicada

Ignacio Sarmiento-Barbieri

Universidad de los Andes

Motivación

▶ Queremos predecir:

$$Price = f(structural \ attributes, amenities, ...)$$
 (1)

Podemos aplicar linear regression,

$$Price = \beta_0 + \beta_1 Habitaciones + \beta_2 DCBD + u$$
 (2)

▶ Aplicar OLS a este problema requiere tomar algunas decisiones.

Sarmiento-Barbieri (Uniandes)

Motivación

Agenda

1 Árboles: Qué hacen?

¿Cómo lo hacen?

3 Sobreajuste

- 1 Y es la variable a predecir, los insumos son X_1 y X_2
- 2 Partimos el espacio (X_1, X_2) en dos regiones, en base a una sola variable .
- 3 Punto: elegir la variable y el punto de partición de manera óptima.

Habitaciones

- 1 Y es la variable a predecir, los insumos son X_1 y X_2
- 2 Partimos el espacio (X_1, X_2) en dos regiones, en base a una sola variable .
- 3 Punto: elegir la variable y el punto de partición de manera óptima.
- 4 Continuamos partiendo

Habitaciones

- 1 Y es la variable a predecir, los insumos son X_1 y X_2
- 2 Partimos el espacio (X_1, X_2) en dos regiones, en base a una sola variable .
- Punto: elegir la variable y el punto de partición de manera optima (mejor ajuste global.
- 4 Continuamos partiendo

Agenda

1 Árboles: Qué hacen?

2 ¿Cómo lo hacen?

3 Sobreajuste

¿Cómo construimos un árbol de decisión?

Problemas de regresión

- ▶ Datos: $y_{n \times 1}$ y $X_{n \times p}$
- Definiciones
 - ightharpoonup j es la variable que parte el espacio y s es el punto de partición
 - Defina los siguientes semiplanos

$$R_1(j,s) = \{X | X_j \le s\} \& R_2(j,s) = \{X | X_j > s\}$$
(3)

ightharpoonup El problema: buscar la variable de partición X_j y el punto s de forma tal que

$$\min_{j,s} \left[\min_{y_{R_1}} \sum_{x_i \in R_1(j,s)} (y - y_{R_1})^2 + \min_{y_{R_2}} \sum_{x_i \in R_2(j,s)} (y - y_{R_2})^2 \right]$$
(4)

¿Cómo construimos un árbol de decisión?

► ¿Cuál es la solución?

¿Cómo construimos un árbol de decisión?

 $photo\ from\ \texttt{https://www.dailydot.com/parsec/batman-1966-labels-tumblr-twitter-vine/batman-1966-labels-tumblr-twitter-wine/batman-1966-labels-tumblr-twitter-vine/batman-1966-labels-tumblr-twitter-vine/batman-1966-labels-tumblr-twitter-wine/batman-1966-labels-tumblr-twitter-wine/batman-1966-labels-tumblr-twitter-wine/batman-1966-labels-tumblr-twitter-wine/batman-1966-labels-tumblr-twitter-wine/batman-1966-labels-twitter-wine/batman-1966-labels-twitter-wine/batman-1966-labels-twitter-wine/batman-1966-labels-twitter-wine/batman-1966-labels-twitter-wine/batman-1966-labels-twitter-wine/batman-1966-labels-twitter-wine/batman-1966-labels-wine/batman-1966-labels-wine/batman-1966-labels-wine/batman-1966-labels-wine/batman-1966-labels-wine/batman-1966-labels-wine/batman-1966-labels-wine/batman-1966-labels-wine/batman-1966-labels-wine/batman-1966-labels-wine/batman-1966-labels-wine/batman-1966-labels-wine/batman-1966-labels-wine/batman-1966-labels-wine/batman-1966-labels-wine/batman-1966-labels-wine/batman-1966-labels-wine/$

11/20

Agenda

1 Árboles: Qué hacen?

2 ¿Cómo lo hacen?

3 Sobreajuste

Sobreajuste

Sobreajuste. Algunas soluciones

- ► Fijar la profundidad del árbol.
- ► Fijar la cantidad de hojas.
- ► Fijar la mínima cantidad de datos que están contenidos dentro de cada hoja.
- ▶ Pruning (poda).
 - ightharpoonup Dejar crecer un árbol muy grande T_0
 - ► Luego cortarlo obteniendo sub-árbol (*subtree*)
 - ► Como cortarlo?

Pruning (poda)

- No es posible calcular el error de predicción usando cross-validation para cada sub-árbol posible
- ► Solución: *Cost complexity pruning (cortar las ramas mas débiles)*
 - ightharpoonup Indexamos los arboles con T.
 - Un sub-árbol $T \in T_0$ es un árbol que se obtuvo colapsando los nodos terminales de otro árbol (cortando ramas).
 - ightharpoonup [T] = número de nodos terminales del árbol T

Pruning (poda)

► Cost complexity del árbol *T*

$$C_{\alpha}(T) = \sum_{m=1}^{|T|} n_m Q_m(T) + \alpha[T]$$

$$\tag{5}$$

- ▶ donde $Q_m(T) = \frac{1}{n_m} \sum_{x_i \in R_m} (y_i \hat{y}_m)^2$ para los árboles de regresión
- $ightharpoonup Q_m(T)$ penaliza la heterogeneidad dentro de la regresión y el número de regiones
- Dijetivo: para un dado α , encontrar el pruning óptimo que minimice $C_{\alpha}(T)$

Pruning (poda)

ightharpoonup Mecanismo de búsqueda para T_{α} (pruning óptimo dado α).

Resultado: para cada α hay un sub-árbol único T_{α} que minimiza $C\alpha$ (T).

- lacktriangle Eliminar sucesivamente las ramas que producen un aumento mínimo en $\sum_{m=1}^{[T]} n_m Q_m(T)$
- ▶ Se colapsa hasta el nodo inicial pero va a través de una sucesión de árboles
- $ightharpoonup T_{\alpha}$ pertenece a esta secuencia. (Breiman et al., 1984)

Árboles: cómo lo hacen?

Algoritmo Completo

- 1 Utilizamos particiones recursivas binarias para hacer crecer el árbol
- 2 Para un dado α , aplicamos *cost complexity pruning* al árbol para obtener la secuencia de los subarboles como α .
- 3 Utilizamos K-fold cross-validation para elegir α .
- 4 Tenemos entonces una secuencia de subarboles para distintos valores de α
- 5 Elegimos el α y el subárbol que tienen el menor error de predicción.

Ejemplo

photo from https://www.dailydot.com/parsec/batman-1966-labels-tumblr-twitter-vine/

Comentarios Finales

- ► Pros:
 - Los árboles son muy fáciles de explicar a las personas (probablemente incluso más fáciles que la regresión lineal)
 - Los árboles se pueden trazar gráficamente y son fácilmente interpretados incluso por no expertos. Variables más importantes en la parte superior
- ► Cons:
 - ► Si la estructura es lineal, CART no funciona bien
 - Los árboles no son muy robustos