

IoT-Labor: Smart Lock

Dokumentation

Bachelor of Science

 $\label{eq:continuous} \mbox{des Studiengangs Informatik}$ an der Dualen Hochschule Baden-Württemberg Stuttgart

von

Tom Freudenmann, Maximilian Nagel, Marcel Fleck

26.04.2023

Bearbeitungszeitraum Matrikelnummern, Kurs Dozent 10.03. - 26.04.2023 6378195, 7362334, 9611872, INF20D Hartmut Seitter

Selbstständigkeitserklärung

Ich versichere hiermit, dass ich meine Dokumentation mit dem Thema: *IoT-Labor: Smart Lock* selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe. Ich versichere zudem, dass die eingereichte elektronische Fassung mit der gedruckten Fassung übereinstimmt.

Stutt	gart,	26.04	.2023				
Tom	Freue	denma	nn, Ma	aximiliaı	n Nagel,	Marcel	Fleck

Stand: 18. April 2023 Seite I von IV

Inhaltsverzeichnis

ΑI	Abkürzungsverzeichnis							
Abbildungsverzeichnis								
1	Einleitung	1						
2	Architektur 2.1 Device-Layer 2.2 Network-Layer 2.3 Service-Layer 2.4 Application-Layer	3						
3	Ausblick	5						

Stand: 18. April 2023 Seite II von IV

Abkürzungsverzeichnis

BLE Bluetooth Low Energy

GPS Global Positioning System

HTTP Hypertext Transfer Protokol

IoT Internet of Things

JSON JavaScript Objective Notation

LED Light Emitting Diode

LoRa Long Range (Low Power)

LoRaWan Long Range Wide Area Network

MQTT Message Queuing Telemetry Transport

TTN The Things Network

Stand: 18. April 2023 Seite III von IV

Abbildungsverzeichnis

2.1	Architektur-Diagram des Smart-Locks	2
2.2	Node-Red Serverarchitektur für das Smart-Lock	4

Stand: 18. April 2023 Seite IV von IV

1 Einleitung

TODO: Hier anfangen zu schreiben: Buisinesscase

Stand: 18. April 2023 Seite 1 von 5

2 Architektur

Die entwickelte Internet of Things (IoT)-Lösung Smart Lock teilt sich in vier verschiedene Layer auf: Device-, Network-, Service- und Application-Layer. Abbildung 2.1 beschreibt den architektonischen Aufbau der Lösung genauer und enthält die verschiedenen Hardware und Software Module der Lösung.

Anhand dieser Abbildung beschreiben die folgenden Abschnitte, den architektonischen Aufbau der Komplettlösung. Hierbei wird auf die jeweiligen Architektur-Layer eingegangen und erklärt, welche Eigenschaften die abgebildeten Geräte, Protokolle und Software im Rahmen der IoT-Lösung mit sich bringen.

Abbildung 2.1: Architektur-Diagram des Smart-Locks

Stand: 18. April 2023 Seite 2 von 5

2.1 Device-Layer

Im Device-Layer finden sich alle Sensoren und Aktoren der IoT-Lösung wieder. Zu den Sensoren gehört ein Global Positioning System (GPS)-Chip, der GPS-Daten empfängt, um den Standort des Smart-Locks festzustellen. Eine Light Emitting Diode (LED), die den Zustand des Smart-Locks, also ob geschlossen oder offen, darstellt, gehört zur Gruppe der Aktoren.

Des Weiteren befinden sich zwei Netzwerkschnittstellen in Form zwei gesonderter Chips im Device-Layer der IoT-Lösung. Ein Long Range (Low Power) (LoRa)-Chip dient dem Senden und dem Empfangen von LoRa-Nachrichten mit Hilfe von Long Range Wide Area Network (LoRaWan) an das "The Things Network". Ein Bluetooth Low Energy (BLE)-Chip ermöglicht eine Verbindung mit einem Mobilgerät und dient dem Empfangen von Befehlen, die den Zustand des Smart-Locks ändern können. Diese Netzwerkprotokolle werden in Kapitel 2.2 genauer beschrieben.

2.2 Network-Layer

TODO: Hier anfangen zu schreiben

2.3 Service-Layer

Das Service-Layer besteht aus einem Node-Red Server, der in einem Docker-Container läuft. Das hat den Vorteil, das die Anwendung beliebig umgezogen oder skaliert werden kann. Zusätzlich empfängt der Server die Daten aus dem The Things Network (TTN) über Message Queuing Telemetry Transport (MQTT) und speichert sie local in der *Context*-Variablen und persistent als JavaScript Objective Notation (JSON)-Dokument ab. Dadurch können die Daten auch nach einem Neustart der Anwendung weiter verwendet werden. Abbildung 2.2 zeigt die folgenden drei Prozesse in Node-Red:

• Initialisierung: Der erste *Flow*, der beim Serverstart einmalig ausgeführt wird. Er lädt das gespeicherte JSON-Dokument und setzt die *Context*-Variablen auf die gespeicherten Werte.

Stand: 18. April 2023 Seite 3 von 5

- Verbindung zum TTN-Server: Dieser Prozess wird für jede im TTN empfangene und weitergeleitete Nachricht ausgeführt und speichert die empfangenen GPS- und Sensor-Informationen im JSON-Dokument bzw. Context des Servers.
- App Anfrage: Für jede empfangene Hypertext Transfer Protokol (HTTP)-Anfrage an die Route server-adresse:1880/device-id wird der Flow ausgeführt. Er lädt die Daten für die mitgelieferte device-id und schickt sie als Antwort zurück and die App.

Abbildung 2.2: Node-Red Serverarchitektur für das Smart-Lock

Außerdem wird der Server in der Azure-Cloud, auf einem Ubuntu-Server gehostet. Dadurch ist der Server aus dem Internet zugänglich und die Daten können jeder Zeit vom Benutzer abgerufen werden.

Zusammengefasst, deckt der Server das Service-Layer mit persistenter Speicherung ab, indem er Nachrichten aus dem Network-Layer empfängt und an das Application-Layer weiterleitet. Zusätzlich werden die Daten im Server gespeichert, um sie jeder Zeit abfragen zu können, auch wenn der Server neu gestartet wurde. In Zukunft lässt sich das System weiter skalieren oder auf einem eigenen Server hosten, da es in einem Docker-Container läuft.

2.4 Application-Layer

TODO: Hier anfangen zu schreiben

Stand: 18. April 2023 Seite 4 von 5

3 Ausblick

TODO: Hier anfangen zu schreiben

Stand: 18. April 2023 Seite 5 von 5