明細書

遺伝子多型の検出方法

技術分野

5 本発明は、ENAユニットを含むオリゴヌクレオチドを用いたPCRを利用した、遺伝子 多型の検出方法、遺伝子多型の検出用のオリゴヌクレオチド及び該オリゴヌクレオチドを 含有する遺伝子多型検出用キットに関する。

背景技術

25

30

10 ファーマコジェノミクス研究の進展により、遺伝子多型と薬効、あるいは遺伝子多型と副作用の関係から、個々の患者に対する薬物の効果や副作用を、遺伝子診断で予測することが可能になりつつある。このような例としては、薬物代謝酵素の遺伝子多型の例が挙げられる。多型により活性が増加、あるいは、減少する薬物代謝酵素としては、シトクロムP4501A2、シトクロムP4502A6、シトクロムP4502C9、シトクロムP4501A2、シトクロムP4502D6、シトクロムP4502C1、シトクロムP4502C1、シトクロムP4502C1、シトクロムP4502C1、シトクロムP4502C1、シーのロムP4502C1、シーのロムP4502C1、シーのロムP4502C1、シーのロムP4502C1、シーのロムP4502C1、シー

また、遺伝子多型と疾患との関係を調べることにより、一部の疾患の事前診断や予後の判定も可能になりつつあり、多型解析研究から見出された疾患原因遺伝子が多数報告されている。例えば、遺瘍性大腸炎の原因遺伝子としてのHLA、慢性関節リウマチの原因遺伝子としてのTCR α、アルツハイマー病の原因遺伝子としてのAPOE 4、精神分裂症の原因遺伝子としてのドーパミンD 3 受容体、躁鬱病の原因遺伝子としてのトリプトファン水酸化酵素、アルブミン尿症の原因遺伝子としてのアンジオテンシン前駆体、心筋梗塞の原因遺伝子としての血液凝固因子 VII、肥満の原因遺伝子としてのレプチンなどが報告されている(Nature Genetics、1999 年、第22 巻、p.139-144)。

遺伝子多型の検出方法として、ポリメラーゼチェインリアクション(PCR)法と制限 酵素による切断とを組み合わせたPCR-RFLP法(Science、1991 年、第 252 巻、

p. 1643-)、配列の異なる一本鎖のDNAもしくはRNAはポリアクリルアミドゲル中で異なる移動度を示すという原理に基づいたSSCP (single-strand conformation polymorphism)法、または、オリゴヌクレオチドプライマーの3'末端付近にミスマッチがあるとプライマーの伸長反応が阻止されるという原理に基づいたAS-PCR (allele-specific PCR)法などが開発されている。

5

15

20

25

30

PCR-RFLP法は、検査工程に3~24時間の制限酵素処理を含むために、迅速な方法とは言い難い。SSCP法は検査対象となる塩基配列のどこかに、一個もしくは複数の変異が存在する場合に、その存在を高感度に検出できる点で優れている。しかし、微妙な移動度の差を検出するために実験条件を厳密にコントロールしなければならないので、

10 非常に手間がかかる方法であり、かつ変異の位置を同定できない。また、実際の検体、たとえば血液や組織からSSCP法を行うには、クローニングやPCR法を用いて、事前に大量の核酸を調製する必要があり、多数の検体を効率よく検査するには適さない方法である。

AS-PCR法はPCRを応用した方法であり、事前に大量の核酸を調製する必要はなく、3、末端付近にミスマッチのないプライマーを使用したときのみ増幅産物が得られることを応用したもので、多数の検体を効率よく検査するために適した方法である。しかし、通常のPCRではプライマーにミスマッチが存在する場合でも増幅産物が得られる場合があり、厳密性に問題があった。

また、AS-PCR法を改変し、3'末端から2番目に対象遺伝子とは相補的ではない塩基を持つヌクレオシドを持ち、3'末端に検出したい多型部分を設定した場合、3'末端から2番目に対象遺伝子と相補的である塩基を持つヌクレオシドをもつプライマーに比べ、3'末端に存在する多型部位の検出が改善される報告がある(Bioorganic & Medical Chemistry、2003年、第11巻、p. 2211-2226)。しかし、この方法を用いた場合でもプライマーの3'末端にミスマッチが存在しても増幅産物が得られることがあり、より検出感度の高い遺伝子多型の検出方法の開発が求められていた。

2'-0,4'-C-エチレンヌクレオチド(以下、「ENAヌクレオチド」ともいう。) は非天 然型のヌクレオチドである。ENAヌクレオチドを導入したオリゴヌクレオチドは、相補 鎖RNAに対して高い結合能を有している(日本国特許第3420984号公報(日本国公開特 許公報 特開平12-297097) 及びBioorganic & Medical Chemistry、2003年、第11巻、

p. 2211-2226。)。また、ENAヌクレオチドは糖部の2'位酸素原子と4'位炭素原子を

メチレン鎖で架橋したヌクレオチドである LNA ヌクレオチド(2'-0,4'-C-メチレンヌクレオチド(日本国公開特許公報 特開平 10-304889 号)よりもヌクレアーゼに対して高い抵抗性を有するという特徴を持っている(Bioorganic & Medicinal Chemistry Letters、2002 年、第 12 巻、p. 73-76)。しかしながら、ENAヌクレオチドをプライマーとして用いることによってAS-PCRの測定精度を向上させることができるか否かは不明であった。

本発明者らは、上記、多型の検出方法の問題点を解決すべく、検討を行ったところ、多型部位を3'末端にし、さらに3'末端から3番目にENA修飾が加えられたオリゴヌクレオチドをPCRプライマーとして用いた場合、ミスマッチによる増幅産物の生成量が減少し、精度が高く遺伝子多型が検出できることを見出し、更に該検出方法に用いることができるキットを提供した。

更に本発明者らは、多型部位を3'未端にし、3'未端から2番目のヌクレオチドを検出 対象の遺伝子と相補的ではない塩基を持つヌクレオチドにし、3'未端から3番目に ENA 修飾が加えられたオリゴヌクレオチドをPCRプライマーとして用いた場合、ミスマッチ による増幅産物の生成量が減少し、精度が高く遺伝子多型が検出できることを見出し、更に 該検出方法に用いることができるキットを提供し、本発明を完成させた。

発明の開示

5

10

25

30

本発明の課題は、遺伝子多型を検出する方法及び該方法に使用することができるオリゴ 20 ヌクレオチドを提供し、さらに、該オリゴヌクレオチドを含む遺伝子多型検出用キットを 提供することである。

本発明は鋳型となる核酸のヌクレオチド配列と相補的なヌクレオチド配列からなる合成オリゴヌクレオチドプライマーを合成する際に、合成オリゴヌクレオチドプライマーの3、末端のヌクレオチドを鋳型のヌクレオチドと相補的ではないヌクレオチドにするとDNAポリメラーゼによるプライマーの伸張反応が起こらず、鋳型となる核酸のヌクレオチド配列と完全に相補的な合成オリゴヌクレオチドプライマーを用いた場合にはDNAポリメラーゼによるプライマーの伸張反応が起きる現象を利用した遺伝子多型の検出方法に関する。

さらに詳しくは、本発明は、合成オリゴヌクレオチドのヌクレオチド配列の3¹末端を 多型部位にし、さらに3¹末端から3番目のヌクレオチドとして2¹-0,4¹-C-エチレンヌ

クレオチド(ENA)ユニットを用いたオリゴヌクレオチドをプライマーとして用いることを 特徴とする遺伝子多型の検出方法に関する。

さらに本発明は、合成オリゴヌクレオチドのヌクレオチド配列の3² 末端を多型部位に し、3² 末端から2番目のヌクレオチドを検出対象の遺伝子と相補的ではない塩基を持つ ヌクレオチドにし、3² 末端から3番目のヌクレオチドとして2² -0,4² -C-エチレンヌク レオチド(ENA)ユニットを用いたオリゴヌクレオチドをプライマーとして用いることを特 徴とする遺伝子多型の検出方法に関する。

本発明の課題を解決手段としては具体的には、

1

5

- (1) 以下の(a)及び(b)の特徴を有するオリゴヌクレオチド又はその塩:
- 10 (a)オリゴヌクレオチドの3² 末端から3番目のヌクレオチドが 2² -0,4² -C-エチレンヌクレオチド (ENA) ユニットからなり、他のヌクレオチドは天然型のヌクレオチドからなる:
 - (b) 3 末端部位に対象遺伝子の基準ヌクレオチドに相補的なヌクレオチド、その他の 部位には対象遺伝子のヌクレオチド配列に相補的なヌクレオチドを有する、
- (2) 以下の(a)及び(b)の特徴を有するオリゴヌクレオチド又はその塩:
 (a)オリゴヌクレオチドの3'末端から3番目のヌクレオチドが2'-0,4'-C-エチレンヌクレオチド(ENA)ユニットからなり、他のヌクレオチドは天然型のヌクレオチド
 - ンヌクレオチド (ENA) ユニットからなり、他のヌクレオチドは天然型のヌクレオチト からなる:
- (b) 3 末端部位に対象遺伝子の変異ヌクレオチドに相補的なヌクレオチド、その他の 20 部位には対象遺伝子のヌクレオチド配列に相補的なヌクレオチドを有する、
 - (3) 以下の(a) 乃至(d) の特徴を有するオリゴヌクレオチド又はその塩:
 - (a) オリゴヌクレオチドの3¹ 末端部位が対象遺伝子の基準ヌクレオチドに相補的な ヌクレオチドからなる:
- (b) オリゴヌクレオチドの3 末端から2番目(3 末端のヌクレオチドを1番目と 25 して2番目)のヌクレオチドが基準遺伝子のヌクレオチドと相補的でないヌクレオチド からなる:
 - (c) その他の部位には対象遺伝子のヌクレオチドと相補的なヌクレオチドを有する:
 - (d) オリゴヌクレオチドの 3'末端から 3番目(3'末端のヌクレオチドを 1番目として 3番目)のヌクレオチドが 2'-0, 4'-C-エチレンヌクレオチド (ENA) ユニットからなり、他のヌクレオチドは天然型のヌクレオチドからなる、

- (4) 以下の(a) 乃至(d) の特徴を有するオリゴヌクレオチド又はその塩:
- (a) オリゴヌクレオチドの3' 末端部位が対象遺伝子の変異ヌクレオチドに相補的な ヌクレオチドからなる;
- (b) オリゴヌクレオチドの3 末端から2番目(3 末端のヌクレオチドを1番目として2番目) のヌクレオチドが基準遺伝子のヌクレオチドと相補的でないヌクレオチドからなる;

5

10

- (c) その他の部位には対象遺伝子のヌクレオチドと相補的なヌクレオチドを有する;
- (d) オリゴヌクレオチドの3'未端から3番目(3'未端のヌクレオチドを1番目として3番目)のヌクレオチドが2'-0,4'-C-エチレンヌクレオチド(ENA)ユニットからなり、他のヌクレオチドは天然型のヌクレオチドからなる、
- (5) 18乃至25塩基長からなることを特徴とする、(1)乃至(4)のいずれか1項 に記載のオリゴヌクレオチド又はその塩、
- (6) (1) 乃至(5) のいずれか1項に記載のオリゴヌクレオチドを使用することを 特徴とする、遺伝子多型の検出方法、
- 15 (7) (1) 乃至(5) のいずれか1項に記載のオリゴヌクレオチドを使用することを 特徴とする、遺伝子多型部位のヌクレオチド配列の決定方法、
 - (8) 以下の工程 (a) 及び (b) を含む、遺伝子多型の検出方法:
 - (a) 遺伝子多型部位を含む核酸を鋳型として、(1) 乃至(5) のいずれか1項に記載のオリゴヌクレオチド、及び該オリゴヌクレオチドと対になってPCRで目的配列部分を増幅できるオリゴヌクレオチドを用いてPCRを行う工程:
 - (b) 工程(a) によって反応産物が生成するか否かによって、核酸中の遺伝子多型の 有無を判定する工程、
 - (9) 以下の工程(a)及び(b)を含む、遺伝子多型部位のヌクレオチド配列の決定方法:
- 25 (a) 遺伝子多型部位を含む核酸を鋳型として、(1) 乃至(5) のいずれか1項に記載のオリゴヌクレオチド、及び該オリゴヌクレオチドと対になってPCRで目的配列部分を増幅できるオリゴヌクレオチドを用いてPCRを行う工程;
 - (b) 工程(a) によって反応産物が生成するか否かによって、核酸中の遺伝子多型部位のヌクレオチド配列を決定する工程、
- 30 (10) 反応産物の生成の有無の検出に、電気泳動、TaqMan PCR及び MALDI

-TOF/MS法からなる群から選択される少なくともいずれか一つを用いることを特徴とする(8)又は(9)に記載の方法、

- (11) 遺伝子多型が一塩基多型であることを特徴とする、(6) 乃至(10) のいずれか1項に記載の方法、
- 5 (12) 以下の(a)乃至(d)を含む、遺伝子多型検出用キット:
 - (a) オリゴヌクレオチドの3'未端から3番目のヌクレオチドが2'-0,4'-C-エチレンヌクレオチド(ENA) ユニットからなり、他のヌクレオチドは天然型のヌクレオチドからなり、3'未端部位に対象遺伝子の基準ヌクレオチドに相補的なヌクレオチド、その他の部位には対象遺伝子のヌクレオチド配列に相補的なヌクレオチドを有するオリ
- 10 ゴヌクレオチド;
 - (b)(a)に記載のオリゴヌクレオチドと対になって目的配列部分を増幅し得るオリゴヌクレオチド;
 - (c) DNAポリメラーゼ;
 - (d) PCR緩衝液、
- 15 (13) 以下の(a)乃至(d)を含む、遺伝子多型検出用キット:
 - (a) オリゴヌクレオチドの3'末端から3番目のヌクレオチドが2'-0,4'-C-エチレンヌクレオチド(ENA) ユニットからなり、他のヌクレオチドは天然型のヌクレオチドからなり、3'末端部位に対象遺伝子の変異ヌクレオチドに相補的なヌクレオチド、その他の部位には対象遺伝子のヌクレオチド配列に相補的なヌクレオチドを有するオリ
- 20 ゴヌクレオチド;
 - (b)(a)に記載のオリゴヌクレオチドと対になって目的配列部分を増幅し得るプライマー;
 - (c) DNAポリメラーゼ;
 - (d) PCR緩衝液、
- 25 (14) 以下の(a)乃至(e)を含む、遺伝子多型検出用キット:
 - (a) オリゴヌクレオチドの3'末端から3番目のヌクレオチドが2'-0,4'-C-エチレンヌクレオチド(ENA) ユニットからなり、他のヌクレオチドは天然型のヌクレオチドからなり、3'末端部位に対象遺伝子の基準ヌクレオチドに相補的なヌクレオチド、その他の部位には対象遺伝子のヌクレオチド配列に相補的なヌクレオチドを有するオリ
- 30 ゴヌクレオチド:

(b) オリゴヌクレオチドの3'末端から3番目のヌクレオチドが2'-0,4'-C-エチレンヌクレオチド(ENA) ユニットからなり、他のヌクレオチドは天然型のヌクレオチドからなり、3'末端部位に対象遺伝子の変異ヌクレオチドに相補的なヌクレオチド、その他の部位には対象遺伝子のヌクレオチド配列に相補的なヌクレオチドを有するオリゴヌクレオチド;

- (c)(a)又は(b)に記載のオリゴヌクレオチドと対になって目的配列部分を増幅 し得るオリゴヌクレオチド;
- (d) DNAポリメラーゼ;
- (e) PCR緩衝液、

- 10 (15) 以下の(a)乃至(d)を含む、遺伝子多型検出用キット:
 - (a) 以下の(i) 乃至(iv) の特徴を有するオリゴヌクレオチド又はその塩:
 - (i) オリゴヌクレオチドの3¹ 末端部位が対象遺伝子の基準ヌクレオチドに相補的な ヌクレオチドからなる:
- (ii) オリゴヌクレオチドの3'末端から2番目(3'末端のヌクレオチドを1番目 15 として2番目) のヌクレオチドが基準遺伝子のヌクレオチドと相補的でないヌクレオ チドからなる:
 - (iii) その他の部位には対象遺伝子のヌクレオチドと相補的なヌクレオチドを有する:
- (iv) オリゴヌクレオチドの3'末端から3番目(3'末端のヌクレオチドを1番目 20 として3番目)のヌクレオチドが2'-0,4'-C-エチレンヌクレオチド(ENA)ユニットからなり、他のヌクレオチドは天然型のヌクレオチドからなる;
 - (b)(a)に記載のオリゴヌクレオチドと対になって目的配列部分を増幅し得るオリゴヌクレオチド;
 - (c) DNAポリメラーゼ;
- 25 (d) PCR緩衝液、
 - (16) 以下の(a) 乃至(d) を含む、遺伝子多型検出用キット:
 - (a) (i) 乃至 (iv) の特徴を有するオリゴヌクレオチド又はその塩;
 - (i) オリゴヌクレオチドの3'末端部位が対象遺伝子の変異ヌクレオチドに相補的な ヌクレオチドからなる;
- 30 (ii) オリゴヌクレオチドの3'未端から2番目(3'未端のヌクレオチドを1番目

として2番目)のヌクレオチドが基準遺伝子のヌクレオチドと相補的でないヌクレオ チドからなる:

- (iii) その他の部位には対象遺伝子のヌクレオチドと相補的なヌクレオチドを有する;
- 5 (iv) オリゴヌクレオチドの3'末端から3番目(3'末端のヌクレオチドを1番目 として3番目) のヌクレオチドが 2'-0,4'-C-エチレンヌクレオチド(ENA) ユニッ トからなり、他のヌクレオチドは天然型のヌクレオチドからなる:
 - (b)(a)に記載のオリゴヌクレオチドと対になって目的配列部分を増幅し得るオリゴヌクレオチド:
- 10 (c) DNAポリメラーゼ;

- (d) PCR緩衝液、
- (17) 以下の(a)乃至(e)を含む、遺伝子多型検出用キット:
 - (a) 以下の(i) 乃至(iv) の特徴を有するオリゴヌクレオチド又はその塩:
 - (i) オリゴヌクレオチドの3¹末端部位が対象遺伝子の基準ヌクレオチドに相補的な ヌクレオチドからなる:
 - (ii) オリゴヌクレオチドの3 末端から2番目(3 末端のヌクレオチドを1番目として2番目) のヌクレオチドが基準遺伝子のヌクレオチドと相補的でないヌクレオチドからなる:
- (iii) その他の部位には対象遺伝子のヌクレオチドと相補的なヌクレオチドを有す 20 る;
 - (iv) オリゴヌクレオチドの3¹ 末端から3番目(3¹ 末端のヌクレオチドを1番目として3番目)のヌクレオチドが 2¹ -0,4¹ -C-エチレンヌクレオチド(ENA) ユニットからなり、他のヌクレオチドは天然型のヌクレオチドからなる:
 - (b) (i) 乃至 (iv) の特徴を有するオリゴヌクレオチド又はその塩;
- 25 (i) オリゴヌクレオチドの3'末端部位が対象遺伝子の変異ヌクレオチドに相補的な ヌクレオチドからなる:
 - (ii) オリゴヌクレオチドの3¹ 末端から2番目(3¹ 末端のヌクレオチドを1番目として2番目)のヌクレオチドが基準遺伝子のヌクレオチドと相補的でないヌクレオチドからなる;
- 30 (iii) その他の部位には対象遺伝子のヌクレオチドと相補的なヌクレオチドを有す

る:

5

20

(iv) オリゴヌクレオチドの3'末端から3番目(3'末端のヌクレオチドを1番目として3番目)のヌクレオチドが2'-0,4'-C-エチレンヌクレオチド(ENA) ユニットからなり、他のヌクレオチドは天然型のヌクレオチドからなる。

- (c)(a)又は(b)に記載のオリゴヌクレオチドと対になって目的配列部分を増幅 し得るオリゴヌクレオチド;
 - (d) DNAポリメラーゼ;
 - (e) PCR緩衝液、
- (18) オリゴヌクレオチド及び該オリゴヌクレオチドと対になって目的配列部分を増 10 幅し得るオリゴヌクレオチドの塩基長が18乃至25塩基長であることを特徴とする。
 - (12) 乃至(17) のいずれか1項に記載の遺伝子多型検出用キット、
 - (19) 遺伝子多型が一塩基多型であることを特徴とする、(12)乃至(18)のいずれか1項に記載のキット、

からなる。

- 15 本発明における、遺伝子多型の検出方法の1つの原理は以下の通りである。
 - (1) 遺伝子多型を検出したい配列(目的配列)の多型部分にプライマーの3 末端を設定し、かつプライマーの3 末端から3番目に2'-0,4'-C-エチレンヌクレオチド(ENA)ユニットの修飾を加える。このプライマーと遺伝子多型検出対象のヌクレオチド配列を含む核酸を反応液中で核酸合成酵素の混合物と作用させると、プライマーの3 末端が一致する(塩基が相補的である)場合は、核酸合成反応が起こる。これに対して、3 末端が一致しない場合は、核酸合成反応が起こる。これに対して、3 末端が一致しない場合は、核酸合成反応が起こらない。このように3 末端が一致する場合は核酸合成反応が起こり、一致しない場合は核酸合成反応が起こらない違いを利用して、ヌクレオチド配列の変異を検出することができる。この原理を図1と図2で説明する。
- 図1は、核酸配列に変異(多型)がない場合を示す。(i)は核酸配列の変異(多型)を調べ ようとする対象の鋳型核酸で、塩基配列の一部に3'-ATGC-5'の配列をもつ。この鋳型核酸 と3'末端から3番目にENA修飾が加えられたオリゴヌクレオチド(ii)(2'-0,4'-C-エ チレン-5-メチルウリジン ユニットをeTと表記する)とがアニーリングして2本鎖を形 成する。この場合、(ii)の塩基配列の内少なくとも3'末端は対応するの塩基と相補な構 成になっており、(ii)と(i)とは2本鎖を形成する。この2本鎖を形成しているオリゴヌク 30 レオチド(ii)の3'末端の部分を核酸合成酵素(iii)が認識し、核酸合成反応が続行する。

ここに示した具体的な塩基配列は説明のためのものであり、この塩基配列のみに有効であることを意味するものではない。

図2は核酸配列に変異(多型)がある場合を示す。(i)は核酸配列の変異(多型)を調べようとする対象の鋳型核酸で、塩基配列の一部に 3'-ATAC-5'の配列をもつ。この鋳型核酸と 3'未端から3番目にENA 修飾が加えられたオリゴヌクレオチド(ii) (2'-0,4'-C-エチレン-5-メチルウリジン ユニットを eT と表記する)とがアニーリングして2本鎖を形成する。この場合、(ii)の塩基配列の内少なくとも3'未端は対応する塩基と相補な構成になっておらず、(ii)の3'未端のCが(i)内のAとワトソンークリック塩基対を形成していない。このワトソンークリック塩基対を形成していないオリゴヌクレオチド(ii)の3'未端の部分を核酸合成酵素(iii)が認識できず、核酸合成反応が続行することができない。ここに示した具体的な塩基配列は説明のためのものであり、この塩基配列のみに有効であることを意味するものではない。

5

10

15

20

本発明における、遺伝子多型の検出方法の他の1つの原理は以下の通りである。

- (2) 遺伝子多型を検出したい配列(目的配列)の多型部分にプライマーの3'末端を設定し、3'末端から2番目のヌクレオチドを検出対象の遺伝子と相補的ではない塩基を持つヌクレオチドにし、かつプライマーの3'末端から3番目にENAユニットの修飾を加える。このプライマーと遺伝子多型検出対象のヌクレオチド配列を含む核酸及び該プライマーと対になってPCRで目的配列部分を増幅できるオリゴヌクレオチドを反応液中で核酸合成酵素の混合物と作用させると、プライマーの3'末端が一致する(塩基が相補的である)場合は、核酸合成反応が起こり、遺伝子が増幅される。これに対して、3'末端が一致しない場合は、核酸合成反応が起こらず、遺伝子の増幅は見られない。このように3'末端の塩基が相補する場合は核酸合成反応が起こり、相補しない場合は核酸合成反応が起こらない違いを利用して、ヌクレオチド配列の変異を検出することができる。この原理を図3と図4で説明する。
- 25 図3は、核酸配列に変異(多型)がない場合を示す。(i)は核酸配列の変異(多型)を調べようとする対象の鋳型核酸で、塩基配列の一部に3'-ATGC-5'の配列をもつ。(ii)はプライマーである。このプライマーでは、3'未端から2番目のヌクレオシドを検出対象の遺伝子と相補的ではないヌクレオシドにし(図ではグアニン(G)。)、それ以外のヌクレオシドは検出対象の遺伝子と相補的なヌクレオシドである。また、3'未端から3番目はENA30 修飾が加えられたオリゴヌクレオチド(2'-0,4'-C-エチレン-5-メチルウリジン ユニッ

トを eT と表記する)にしている。この場合、(ii)のヌクレオチド配列のうち3、末端から2番目以外のヌクレオチド配列は対応する(i)のヌクレオチド配列と相補な配列になっており、(ii)のヌクレオチド配列のうち3、末端から2番目でミスマッチするものの、鋳型核酸と多型検出用プライマーがアニーリングして2本鎖を形成する。この相補鎖を形成しているオリゴヌクレオチド(ii)の3、末端の部分を核酸合成酵素(iii)が認識し、核酸合成反応が続行する。

なお、ここに示した具体的なヌクレオチド配列は説明のための例示に過ぎず、本発明が、 このヌクレオチド配列のみに有効であることを意味するものではない。

図4はヌクレオチド配列に変異(多型)がある場合を示す。(i)はヌクレオチド配列の変異
(多型)を調べようとする対象の鋳型核酸で、ヌクレオチド配列の一部に3'-ATAC-5'の配列
をもつ。(ii)はプライマーである。このプライマーでは、3'末端及び3'末端から2番
目のヌクレオシドを検出対象の遺伝子と相補的ではないヌクレオシドにし(図ではグアニン(G)。)、それ以外のヌクレオシドは検出対象の遺伝子と相補的なヌクレオシドである。また、3'末端から3番目はENA修飾が加えられたオリゴヌクレオチド(2'-0,4'-C-エチレン-5-メチルウリジン ユニットをeTと表記する)にしている。この場合、(ii)のヌクレオオチド配列のうち、3'末端及び3'末端から2番目のヌクレオシドは対応するヌクレオシドと相補なヌクレオシドになっておらず、(ii)の3'末端部分がワトソンークリック塩基対を形成しない。このワトソンークリック塩基対を形成していないオリゴヌクレオチド(ii)の3'末端の部分を核酸合成酵素(iii)が認識できず、核酸合成反応は進まない。

なお、ここに示した具体的なヌクレオチド配列は説明のための例示に過ぎず、本発明が、 このヌクレオチド配列のみに有効であることを意味するものではない。

本発明により、新規な遺伝子多型の検出方法が提供された。本発明の遺伝子多型の検出方法を用いることにより、天然型のオリゴヌクレオチドを用いる場合に比べより正確に多型を検出できるようになった。

また、該方法に用いることができる、遺伝子多型の検出用オリゴヌクレオチド及び該オリゴヌクレオチドを含有する遺伝子多型の検出用キットも提供された。

1. 用語の説明

5

10

15

20

25

30 本明細書中において「遺伝子多型」とは、ある遺伝子座において、(a) 1個の塩基が他

の塩基に置き換わっているもの(一塩基多型(SNP))及び/又は(b)1から数十塩基(数千塩基のこともある)が欠失や挿入をしているもの(挿入/欠失多型)を意味する。本明細書において、一塩基多型とはSNP(single nucleotide polymorphism)ともいい、個人間におけるヌクレオチド配列中の一塩基の違いをいう。

一塩基多型部分のヌクレオチドとしては2種類のヌクレオチドの変異が存在することが 知られており(例えば、アデニンかグアニン、チミンかシトシン等)、その変異の割合は対象 となる遺伝子によって異なっている。本明細書中において、「対象遺伝子」とは、遺伝子多 型を検出する対象とする遺伝子のことをいう。

本明細書においては、対象遺伝子の一塩基多型部位の2種類の塩基の変異のうちで出現 10 頻度の高いヌクレオチドを含む配列を基準配列とし、基準配列中の一塩基多型部位のヌク レオチドを基準ヌクレオチドとし、出現頻度の低いヌクレオチドを含む配列を変異配列と し、変異配列中の一塩基多型部位のヌクレオチドを変異ヌクレオチドとする。

また、多型が欠失多型の場合には欠失がない配列を基準配列とし、欠失がある配列を変異配列とする。

15 さらに、多型が挿入多型の場合には挿入がない配列を基準配列とし、挿入がある配列を 変異配列とする。

また、本明細書中において、「多型を有する」とは、対象遺伝子の目的とする多型を含む 配列が変異配列を有することを意味し、「多型を有さない」とは対象遺伝子の目的とする多 型を含む配列が基準配列であることを意味する。

- 20 本明細書中において、「天然型のヌクレオチド」とは、アデニンヌクレオチド、グアニン ヌクレオチド、シトシンヌクレオチド、ウラシルヌクレオチド、チミンヌクレオチドをいう。 また、「天然型のオリゴヌクレオチド」とは、アデニンヌクレオチド、グアニンヌクレオチ ド、シトシンヌクレオチド、ウラシルヌクレオチド、チミンヌクレオチド等の天然型ヌクレ オチドから構成されるオリゴヌクレオチドのことを示す。
- 25 本明細書においてはアデニンヌクレオチドをA^p、グアニンヌクレオチドをG^p、シトシンヌクレオチドをC^p及びチミンヌクレオチドをT^pと表記することもある。また天然型のオリゴヌクレオチドの3^r末端のヌクレオシド、アデニンヌクレオシドはA^t、グアニンヌクレオシドはG^t、シトシンヌクレオシドはC^t及びチミンヌクレオシドはT^tと表わすことができる。
- 30 天然型のヌクレオチドの構造式を以下に示す。

ОН

Ct

но−ॄ=0 GP но−р=0 ÓΗ

T¹

本明細書中において、「ENA ヌクレオチド」(以下、「ENA」ともいう。)とは、糖部の 2' 位酸素原子と 4'位炭素原子をエチレン鎖で架橋したヌクレオチドである(特許第 3420984 号参照。)。

本明細書において 2'-0,4'-C-エチレンヌクレオチド ユニット及び「ENAユニット」とは A^{e2p} 、 G^{e2p} 、 C^{e2p} 、 $5C^{e2p}$ 、 T^{e2p} 、または、オリゴヌクレオチドの3' 末端に有する場合、ENA をヌクレオシドとして扱う場合は、 C^{e2t} 、 $5C^{e2t}$ 、 T^{e2t} 、から選択されるいずれかの基を意味し、その構造は下記に示すとおりである。またLNAユニットとして C^{e1p} の構造も示す。

C^{e1p}

本明細書中における、「相補的なヌクレオチド」とは、ヌクレオチドの塩基部分が相補す るヌクレオチドのことをいい、具体的には、塩基部分がアデニンとチミン、グアニンとシ トシン及びアデニンとウラシルであるヌクレオチドが互いに相補的なヌクレオチドである。 本明細書中における、「その塩」とは、本発明の化合物は、塩にすることができるので、 5 その塩をいい、そのような塩としては、好適にはナトリウム塩、カリウム塩、リチウム塩 のようなアルカリ金属塩、カルシウム塩、マグネシウム塩のようなアルカリ土類金属塩、 アルミニウム塩、鉄塩、亜鉛塩、銅塩、ニッケル塩、コバルト塩等の金属塩;アンモニウ ム塩のような無機塩、 t ーオクチルアミン塩、ジベンジルアミン塩、モルホリン塩、グル コサミン塩、フェニルグリシンアルキルエステル塩、エチレンジアミン塩、Nーメチルグ 10 ルカミン塩、グアニジン塩、ジエチルアミン塩、トリエチルアミン塩、ジシクロヘキシル アミン塩、N. N' -ジベンジルエチレンジアミン塩、クロロプロカイン塩、プロカイン 塩、ジエタノールアミン塩、N-ベンジル-フェネチルアミン塩、ピペラジン塩、テトラ・ メチルアンモニウム塩、トリス(ヒドロキシメチル)アミノメタン塩のような有機塩等の アミン塩: 弗化水素酸塩、塩酸塩、臭化水素酸塩、ヨウ化水素酸塩のようなハロゲン原子 15 化水素酸塩、硝酸塩、過塩素酸塩、硫酸塩、リン酸塩等の無機酸塩;メタンスルホン酸塩、 トリフルオロメタンスルホン酸塩、エタンスルホン酸塩のような低級アルカンスルホン酸 塩、ベンゼンスルホン酸塩、pートルエンスルホン酸塩のようなアリールスルホン酸塩、酢 酸塩、リンゴ酸塩、フマール酸塩、コハク酸塩、クエン酸塩、酒石酸塩、蓚酸塩、マレイ ン酸塩等の有機酸塩:及び、グリシン塩、リジン塩、アルギニン塩、オルニチン塩、グル 20 タミン酸塩、アスパラギン酸塩のようなアミノ酸塩を挙げることができる。

なお、本発明の化合物及びその塩は、水和物としても存在することができ、本発明は、 それらの水和物をも包含する。

25 2. 検体

本発明で遺伝子多型を検出する対象となる検体としては、核酸を含む試料を用いることができる。核酸としては一例として、ゲノムDNAを挙げることができるが、これに限定されない。

例えば、ヒトの遺伝子の多型を検出するためにはヒトゲノムDNAを含む検体を用いる 30 ことができ、マウスの遺伝子の多型を検出するためには、マウスゲノムDNAを用いること

ができる。ゲノムDNAは当業者に公知の方法で取得することができる。以下、ヒトのゲノムDNAを例にして説明するが、他の生物由来のゲノムDNAも同様に取得することができる。

ゲノムDNAを得るための材料としては、被験者から採取されたあらゆる細胞(生殖細胞を除く)、組織、臓器等を使用することができるが、好ましくは末梢血から分離した白血球または単核球であり、最も好適には白血球である。これらの材料は、臨床検査において通常用いられる方法によって採取され得る。

例えば白血球を用いる場合、まず被験者より採取した末梢血から周知の方法で白血球を分離する。次いで、得られた白血球にプロテイナーゼKとドデシル硫酸ナトリウム(SDS)を加えてタンパク質を分解、変性させた後、フェノール/クロロホルム抽出を行うことによりゲノムDNA(RNAを含む)を得る。RNAは、必要に応じRNaseにより除去することができる。ただし、本発明はこれに限定されず、ヒトゲノムDNAを含む試料からのゲノムDNAの抽出にあたっては、本発明の技術分野において周知の方法、すなわち文献(例えば、Sambrook, J. et al. (1989): "Molecular Cloning: A Laboratory Manual (2nd Ed.)" Cold Spring Harbor Laboratory, NY参照)に記載されている方法や、市販のDNA抽出キット等を利用する方法も好ましく用いることができる。

DNAを含む検体は、PCRに用いることができる限度においてその純度は問わず、試料よりの粗抽出物、精製物等を用いることができる。

20 3. 対象遺伝子の選択

10

15

25

30

5

トファン水酸化酵素、アルブミン尿症の原因遺伝子としてのアンジオテンシン前駆体、心筋梗塞の原因遺伝子としての血液凝固因子 VII 及び肥満の原因遺伝子としてのレプチンなどを挙げることができる。その他、human prothrombin 等を挙げることもできる。

また、マウスのゲノムDNAを検体として用いる場合にはマウスのアンジオポエチン関連3(Angiopoietin-like3)遺伝子のプローモーター上の多型及び、欠失多型も挙げることができる。

なお、遺伝子中の多型の位置は翻訳領域、非翻訳領域、プロモーター、イントロン等の調節 領域及びその他の領域のいずれであってもよい。

10 4. オリゴヌクレオチドプライマー

以下のオリゴヌクレオチドは、核酸自動合成機を用いて合成することができる。

天然のオリゴヌクレオチドについては天然のホスホロアミダイドを使用して合成することができる。2'-0,4'-C-エチレンヌクレオチドについては特許第 3420984 号の実施例 14(5'-0-ジメトキシトリチル-2'-0,4'-C-エチレン-6-N-ベンゾイルアデノシン -3'-0-(2-シアノエチル N,N-ジイソプロピル)ホスホロアミダイト)、実施例 27(5'-0-ジメトキシトリチル-2'-0,4'-C-エチレン-2-N-イソブチリルグアノシン-3'-0-(2-シアノエチル N,N-ジイソプロピル)ホスホロアミダイト)、実施例 5(5'-0-ジメトキシトリチル-2'-0,4'-C-エチレン-4-N-ベンゾイルシチジン-3'-0-(2-シアノエチル N,N-ジイソプロピル)ホスホロアミダイト)、実施例 22(5'-0-ジメトキシトリチル-2'-0,4'-C-エチレン-4-N-ベンゾイル-5-メチルシチジン-3'-0-(2-シアノエチル N,N-ジイソプロピル)ホスホロアミダイト)、実施例 9(5'-0-ジメトキシトリチル-2'-0,4'-C-エチレン-5-メチルウリジン-3'-0-(2-シアノエチル N,N-ジイソプロピル)ホスホロアミダイト)、に記載の化合物を用いることによって合成することができる。

- (1) 遺伝子多型検出用オリゴヌクレオチド
- 25 (1) 1 本発明で用いる遺伝子多型検出用のオリゴヌクレオチドとしては、以下の (a) 及び (b) を挙げることができる。
 - (a) 基準配列に相補的なヌクレオチド配列からなるオリゴヌクレオチド: 以下の(i)乃至(iii)の特徴を有する;
- (i) オリゴヌクレオチドの3'末端から3番目(3'末端のヌクレオチドを1番目として3 30 番目) のヌクレオチドが 2'-0,4'-C-エチレンヌクレオチド(ENA) ユニットからなり、

他のヌクレオチドは天然型のヌクレオチドからなる、

5

15

(ii) 3¹末端部位に対象遺伝子の基準ヌクレオチドに相補的なヌクレオチド、その他の部位には対象遺伝子のヌクレオチド配列に相補的なヌクレオチドを有する、

(iii) オリゴヌクレオチドプライマーのヌクレオチドの長さは PCR によって核酸を増幅できる限りにおいて特に制限はないが、好ましくは $15\sim40$ ヌクレオチド、より好ましくは $18\sim35$ ヌクレオチド、更に好ましくは $18\sim25$ ヌクレオチドからなるオリゴヌクレオチドである。

このような特徴を有するオリゴヌクレオチドを、以下、「X-PRIMER」と呼ぶことにする。

- 10 (b)変異配列に相補的なヌクレオチド配列からなるオリゴヌクレオチド
 - (i) オリゴヌクレオチドの 3 $^{\prime}$ 末端から 3番目(3 $^{\prime}$ 末端のヌクレオチドを 1番目として 3番目)のヌクレオチドが 2 $^{\prime}$ - $^{\prime}$ - $^{\prime}$
 - (ii) 3'末端部位に対象遺伝子の変異ヌクレオチドに相補的なヌクレオチド、その他の部位には対象遺伝子のヌクレオチド配列に相補的なヌクレオチドを有する、
 - (iii) オリゴヌクレオチドのヌクレオチドの長さは PCR によって核酸を増幅できる限りに おいて特に制限はないが、好ましくは $15\sim40$ ヌクレオチド、より好ましくは $18\sim35$ ヌクレオチド、更に好ましくは $18\sim25$ ヌクレオチドからなるオリゴヌクレオチドである。
- 上記(a)及び(b)中の(i)において、オリゴヌクレオチドの3'未端から3番目のヌクレオチドが2'-0,4'-C-エチレンヌクレオチド(ENA)ユニットであるとは、3番目のヌクレオチドを天然型のヌクレオチドではなく、ENAヌクレオチドであることをすることを意味する。例えば、A^pの代わりにA^{e2p}、G^pの代わりにG^{e2p}、C^pの代わりに5C^{e2} PまたはC^{e2p}、T^pの代わりにT^{e2p}を用いることを意味する。
- 25 このような特徴を有するオリゴヌクレオチドを、以下、「Y-PRIMER」と呼ぶこと にする。
 - (1) 2 本発明で用いる遺伝子多型検出用のオリゴヌクレオチドとしては、更に以下の(c)及び(d)を挙げることができる。
- (c) 3 末端部位から2番目のヌクレオチド以外が基準配列に相補的なヌクレオチド 30 配列からなるオリゴヌクレオチド

以下の(i)乃至(v)の特徴を有する;

(i) オリゴヌクレオチドの3 末端部位が対象遺伝子の基準ヌクレオチドに相補的なヌクレオチドからなる、

- (ii) オリゴヌクレオチドの3'未端から2番目(3'未端のヌクレオチドを1番目として2番目)のヌクレオチドが基準遺伝子のヌクレオチドと相補的でないヌクレオチドからなる、
 - (iii) その他の部位には対象遺伝子のヌクレオチドと相補的なヌクレオチドを有する、
 - (iv) オリゴヌクレオチドの3^{*} 末端から3番目(3^{*} 末端のヌクレオチドを1番目として3番目)のヌクレオチドが2^{*} -0,4^{*} -C-エチレンヌクレオチド(ENA) ユニットからなり、
- 10 他のヌクレオチドは天然型のヌクレオチドからなる、
 - (v) オリゴヌクレオチドのヌクレオチドの長さは PCR によって核酸を増幅できる限りにおいて特に制限はないが、好ましくは 15~40 ヌクレオチド、より好ましくは 18~35 ヌクレオチド、更に好ましくは 18~25 ヌクレオチドからなるオリゴヌクレオチドである。このような特徴を有するオリゴヌクレオチドを、以下、「N-PRIMER」と呼ぶことにする。
 - (d) 3'末端部位から2番目のヌクレオチド以外が変異配列に相補的なヌクレオチド 配列からなるオリゴヌクレオチド

以下の(i)乃至(v)の特徴を有する;

15

- (i) オリゴヌクレオチドの3 末端部位が対象遺伝子の変異ヌクレオチドに相補的なヌク 20 レオチドからなる、
 - (ii) オリゴヌクレオチドの3'末端から2番目(3'末端のヌクレオチドを1番目として2番目) のヌクレオチドが基準遺伝子のヌクレオチドと相補的でないヌクレオチドからなる、
 - (iii) その他の部位には対象遺伝子のヌクレオチドと相補的なヌクレオチドを有する、
- 25 (iv) オリゴヌクレオチドの3'末端から3番目(3'末端のヌクレオチドを1番目として3番目)のヌクレオチドが2'-0,4'-C-エチレンヌクレオチド(ENA)ユニットからなり、他のヌクレオチドは天然型のヌクレオチドからなる、
 - (v) オリゴヌクレオチドのヌクレオチドの長さはPCR によって核酸を増幅できる限りにおいて特に制限はないが、好ましくは15~40ヌクレオチド、より好ましくは18~35ヌクレオチド、更に好ましくは18~25ヌクレオチドからなるオリゴヌクレオチドである。

このような特徴を有するオリゴヌクレオチドを、以下、「P-PRIMER」と呼ぶことにする。

上記(a)乃至(d)中の(iv)において、オリゴヌクレオチドの3'末端から3番目のヌクレオチドが 2'-0,4'-C-エチレンヌクレオチド (ENA) ユニットであるとは、3番目のヌクレオチドが天然型のヌクレオチドではなく、ENAヌクレオチドであることを意味する。例えば、APの代わりにAe²P、CPの代わりにGe²P、CPの代わりにGe²P、CPの代わりにGe²P、GPの代わりにGP の代わりにGP の

なお、これらの(a) 乃至(d) のオリゴヌクレオチドをPCR用フォワード・プライマー (Forward primer) と呼ぶこともある。

- 10 (2) 対になって用いられるオリゴヌクレオチド
 - (a) PCR用オリゴヌクレオチド

5

15

20

25

30

PCRにおいて上記(1)に記載の(a)乃至(d)のいずれかのオリゴヌクレオチドと対になって用いられるオリゴヌクレオチドのヌクレオチド配列は、遺伝子多型を検出する対象となる遺伝子のヌクレオチド配列において、上記(1)の(a)乃至(d)のいずれかの遺伝子多型検出用のオリゴヌクレオチドと対になってPCRによって対象の遺伝子中の目的の配列を増幅できる限りにおいて特に制限されないが、具体的には相補鎖にあたる配列中の最も5'末端側の位置よりもさらに5'末端側領域に存在する相補鎖の配列中の連続した15~40ヌクレオチド、好ましくは18乃至35ヌクレオチド、更に好ましくは18乃至25ヌクレオチドの任意の部分配列からなる。ただし、遺伝子多型検出用のオリゴヌクレオチドと対になって用いられるオリゴヌクレオチドに互いに相補的な配列が存在すると、お互いにアニーリングすることにより非特異的な配列が増幅され、特異的な遺伝子多型の検出の妨げとなるおそれがあるので、そのような組み合わせを避けたオリゴヌクレオチド及び対になるオリゴヌクレオチドの設計を行うことが好ましい。

なお、本明細書においては、対になるオリゴヌクレオチドをリバース・プライマー (Reverse primer) と呼ぶこともある。

(b) TagManプローブ

TaqMan PCRで用いる遺伝子多型検出用オリゴヌクレオチド(TaqManプロープ)は5'未端はFAMやVICなどの蛍光レポーター色素によって標識されており、同時に3'未端はクエンチャーで標識されており〔ジェネティク・アナリシス(Genet. Anal.), 14, p143-149 (1999), ジャーナル・オブ・クリニカル・マイクロバイオロジー(J.

5

10

15

20

25

30

Clin. Microbiol.), 34, p2933-2936 (1996)].

上記(1)に記載の(a)乃至(d)のいずれかのオリゴヌクレオチドと対になって用いられるTaQManプローブの配列は、遺伝子多型を検出する対象となる遺伝子のヌクレオチド配列において、上記(1)に記載の(a)乃至(d)のいずれかの遺伝子多型検出用のオリゴヌクレオチドと対になってPCRによって対象の遺伝子中の目的の配列を増幅できる限りにおいて特に制限されないが、具体的には相補鎖にあたる配列中の最も5、末端側の位置よりもさらに5、末端側領域に存在する配列中の連続した15~40ヌクレオチド、好ましくは18~35ヌクレオチド、更に好ましくは18~25ヌクレオチドの任意の部分配列からなる。ただし、遺伝子多型検出用のオリゴヌクレオチドとTaQManプローブに互いに相補的な配列が存在すると、お互いにアニーリングすることにより非特異的な配列が増幅され、特異的な遺伝子多型の検出の妨げとなるおそれがあるので、そのような組み合わせを避けたオリゴヌクレオチド及びTaQManプローブの設計を行うことが好ましい。

- 5. 遺伝子多型の検出方法
- A. PCRによる遺伝子多型の検出
- (1) PCR

上記「4. オリゴヌクレオチドプライマー」の項の「(1) 遺伝子多型検出用オリゴヌクレオチド」の項目で設計した(a)乃至(d)のいずれかの遺伝子多型検出用のオリゴヌクレオチド及び該ヌクレオチドと対になって用いられるオリゴヌクレオチドとを用いたPCR反応を行うことにより、対象遺伝子の所定の位置の多型を検出することができる。ここでPCRは(i) 「X-PRIMER」及び該プライマーと対になって用いられるオリゴヌクレオチドとの組み合わせ、(ii) 「Y-PRIMER」及び該プライマーと対になって用いられるオリゴヌクレオチドとの組み合わせ、(iii) 「N-PRIMER」及び該プライマーと対になって用いられるオリゴヌクレオチドとの組み合わせ、(iv) 「P-PRIMER」及び該プライマーと対になって用いられるオリゴヌクレオチドとの組み合わせ、(v) 「P-PRIMER」及び該プライマーと対になって用いられるオリゴヌクレオチドとの組み合わせ、(v) 「i)と(ii)の組み合わせ、(vi) (iii)と(iv)の組み合わせのいずれかの組み合わせで行うことができる。

PCRの反応条件は所望の核酸配列を増幅できる限りにおいて特に制限されず、当業者が通常行う条件でPCRを行うことができるが、例えば、以下のようにして行うことができ

る。

(a) 核酸合成酵素

核酸合成酵素としては、鋳型の核酸の種類に応じて、DNA ポリメラーゼ、RNA ポリメラーゼおよび逆転写酵素(reverse transcriptase)から適宜選択して用いることができる。ここで、DNA ポリメラーゼとしては、例えば、Thermus aquaticus 由来の Taq DNA ポリメラーゼ、Thermus thermophilus 由来の Tth DNA ポリメラーゼ、Pyrococcus 由来の KOD、Pfu あるいは PwoDNA ポリメラーゼ、あるいは前記の耐熱性ポリメラーゼの混合等があるが、これらにのみ限定されるものではない。なお Tth DNA ポリメラーゼは RT 活性も有しているため、RT-PCR を One tube-One step で行うときに、1種類の酵素で賄うことが出来る特徴を有している。逆転写酵素は、RNA を cDNA に逆転写出来る酵素を意味する。逆転写酵素としては、Rous associated virus (RAV)や Avian myeloblastosis virus (AMV)等のトリのレトロウイルス由来の逆転写酵素、Moloney murine leukemia virus (MMLV)等のマウスのレトロウイルス由来の逆転写酵素あるいは前記の Tth DNA ポリメラーゼ等があるが、これらにのみ限定されるものではない。

15. (b) PCR反応

30

PCR反応は例えば、以下のとおりである。

反応液組成の例:

塩化マグネシウム 2乃至2.5mM (好ましくは2.5mM);

1×PCR緩衝液(10mM トリスー塩酸(25℃におけるpH8.3乃至9.0 (好20 ましくは8.3))、50mM 塩化カリウム;

dNTPs 0.2乃至0.25mM(好ましくは0.25mM);

遺伝子多型検出用オリゴヌクレオチド及び該ヌクレオチドと対になって用いられるオリゴ ヌクレオチド $0.2万至0.5 \mu M$ (好ましくは $0.2 \mu M$);

Tagポリメラーゼ 1乃至2.5単位 (好ましくは2.5単位);

25 滅菌水を加えて全量を80μ1に調整し、その全量を、逆転写反応を終了した反応液全量 に加えてからPCRを開始する。

反応温度条件: まず94 \mathbb{C} で2分間加熱した後、90乃至95 \mathbb{C} (好ましくは94 \mathbb{C})で30秒間、40乃至65 \mathbb{C} (好ましくは、プライマーの特性から算出される解離温度 (Tm) からそれより20度低い温度までの範囲内で30秒間、70乃至75 \mathbb{C} (好ましくは72 \mathbb{C})で1.5分間の温度サイクルを28乃至50サイクル (好ましくは30サイクル)

繰り返してから、4℃に冷却する。

(2) 遺伝子多型の検出

PCR終了後、反応液を電気泳動し、目的配列の大きさのバンドが増幅されているか否かを検出する。

(a) 「X-PRIMER」を用いた場合

X-PRIMER及び該プライマーと対になって用いられるオリゴヌクレオチドとの組み合わせによるPCRによって目的とする配列の増幅が確認できた場合には、多型部分のオリゴヌクレオチドはX-PRIMERの3、未端のオリゴヌクレオチドと相補的なヌクレオチドと判断することができ、多型はないと判定することができる。

10 一方目的の配列が増幅されないときは、多型部分のオリゴヌクレオチドはX-PRIM ERの3'未端のオリゴヌクレオチドと相補的なヌクレオチドではないと判断することができ、遺伝子多型を有すると判定することができる。

(b)「Y-PRIMER」を用いた場合

15

20

25

30

Y-PRIMERと該該プライマーと対になって用いられるオリゴヌクレオチドの組み合わせによるPCRによって目的とする配列の増幅が確認できた場合には、多型部分のオリゴヌクレオチドはY-PRIMERの3、末端のオリゴヌクレオチドと相補的なヌクレオチドと判断することができ、遺伝子多型を有すると判定することができる。

一方目的の配列が増幅されないときは、多型部分のオリゴヌクレオチドはY-PRIM ERの3 末端のオリゴヌクレオチドと相補的なヌクレオチドではないと判断することが でき、遺伝子多型を有さないと判定することができる。

(c)「X-PRIMER」及び「Y-PRIMER」の両方を用いた場合

X-PRIMERと該プライマーと対になって用いられるオリゴヌクレオチドとの組み合わせによるPCRによって目的とする配列の増幅が確認でき、Y-PRIMERと該プライマーと対になって用いられるオリゴヌクレオチドとの組み合わせによるPCRによって目的とする配列の増幅が確認できない場合には、遺伝子多型はないと判定することができる。

一方、X-PRIMERと該プライマーと対になって用いられるオリゴヌクレオチドとの組み合わせによるPCRによって目的とする配列の増幅が確認できず、Y-PRIME Rと該プライマーと対になって用いられるオリゴヌクレオチドとの組み合わせによるPC Rによって目的とする配列の増幅が確認できた場合には、遺伝子多型を有すると判定する

ことができる。

5

15

20

25

(d) 「N-PRIMER」を用いた場合

「N-PRIMER」及び該プライマーと対になって用いられるオリゴヌクレオチドとの組み合わせによるPCRによって目的とする配列の増幅が確認できた場合には、多型部分のオリゴヌクレオチドは「N-PRIMER」の3、未端のオリゴヌクレオチドと相補的なヌクレオチドと判断することができ、多型はないと判定することができる。

一方目的の配列が増幅されないときは、多型部分のオリゴヌクレオチドは「N-PRIMER」の3、末端のオリゴヌクレオチドと相補的なヌクレオチドではないと判断することができ、遺伝子多型を有すると判定することができる。

10 (e)「P-PRIMER」を用いた場合

「P-PRIMER」と該プライマーと対になって用いられるオリゴヌクレオチドの組み合わせによるPCRによって目的とする配列の増幅が確認できた場合には、多型部分のオリゴヌクレオチドは「P-PRIMER」の3、末端のオリゴヌクレオチドと相補的なヌクレオチドと判断することができ、遺伝子多型を有すると判定することができる。

一方目的の配列が増幅されないときは、多型部分のオリゴヌクレオチドは「P-PRIMER」の3、末端のオリゴヌクレオチドと相補的なヌクレオチドではないと判断することができ、遺伝子多型を有さないと判定することができる。

(f)「N-PRIMER」及び「P-PRIMER」の両方を用いた場合

「N-PRIMER」と該プライマーと対になって用いられるオリゴヌクレオチドとの組み合わせによるPCRによって目的とする配列の増幅が確認でき、「P-PRIMER」と該プライマーと対になって用いられるオリゴヌクレオチドとの組み合わせによるPCRによって目的とする配列の増幅が確認できない場合には、遺伝子多型はないと判定することができる。

一方、「N-PRIMER」と該プライマーと対になって用いられるオリゴヌクレオチドとの組み合わせによるPCRによって目的とする配列の増幅が確認できず、「P-PRIM ER」と該ヌクレオチドと対になって用いられるオリゴヌクレオチドとの組み合わせによるPCRによって目的とする配列の増幅が確認できた場合には、遺伝子多型を有すると判定することができる。

上記(a) 乃至(f) のいずれかと同様の実験をENAオリゴヌクレオチドを含まない、30 オリゴヌクレオチドで行うと本来バンドが出ないはずの鋳型となる核酸に対してもミスマ

ッチによるバンドの出現が確認され、本方法は従来の方法に比べ感度よく遺伝子多型を検 出できることが確認できる。また、ENAユニットの代わりにLNAを用いた場合もミスマ ッチが確認されるが遺伝子多型の検出の精度は低下する。

また、ENAユニットの位置をオリゴヌクレオチドの3'末端から3番目以外にしたオリゴヌクレオチドを用いた場合には、遺伝子多型の検出の精度及び感度が低下する。

B. TaqMan PCRによる遺伝子多型の検出

上記、「A.」の項目において遺伝子多型検出用オリゴヌクレオチドと上記「4.」の項目に記載のTaqManプローブを用い、ABI 社ABI PRISM 等を用い、その添付プロトコールに従ってTaqMan PCRを行うことによって遺伝子多型を検出することができる。

10 (a)「X-PRIMER」を用いた場合

5

20

25

30

「X-PRIMER」とTaqManプローブとの組み合わせによるTaqMan P CRによって蛍光強度の増加によって目的とする配列の増幅が確認できた場合には、多型部分のオリゴヌクレオチドはX-PRIMERの3、末端のオリゴヌクレオチドと相補的なヌクレオチドと判断することができ、遺伝子多型はないと判定することができる。

15 一方目的の配列が増幅されないときは、多型部分のオリゴヌクレオチドはX-PRIM ERの3'末端のオリゴヌクレオチドと相補的なヌクレオチドではないと判断することができ、遺伝子多型を有すると判定することができる。

(b)「Y-PRIMER」を用いた場合

Y-PRIMERとTaqManプローブとの組み合わせによるPCRによって蛍光強度の増加によって目的とする配列の増幅が確認できた場合には、多型部分のオリゴヌクレオチドはY-PRIMERの3、末端のオリゴヌクレオチドと相補的なヌクレオチドと判断することができ、遺伝子多型を有すると判定することができる。

一方目的の配列が増幅されないときは、多型部分のオリゴヌクレオチドはY-PRIM ERの3 末端のオリゴヌクレオチドと相補的なヌクレオチドではないと判断することが でき、遺伝子多型を有さないと判定することができる。

(c)「X-PRIMER」及び「Y-PRIMER」の両方を用いた場合

X-PRIMERとTaqManプローブとの組み合わせによるPCRによって蛍光強度の増加によって目的とする配列の増幅が確認でき、Y-PRIMERとTaqManプローブとの組み合わせによるPCRによって目的とする配列の増幅が確認できない場合には、遺伝子多型を有さないと判定することができる。

一方、X-PRIMERとTaqManプローブとの組み合わせによるPCRによって目的とする配列の増幅が確認できず、Y-PRIMERとTaqManプローブとの組み合わせによるPCRによって蛍光強度の増加によって目的とする配列の増幅が確認できた場合には、遺伝子多型を有さないと判定することができる。

(d)「N-PRIMER」を用いた場合

5

15

20

25

30

「N-PRIMER」とTaqManプローブとの組み合わせによるTaqMan P CRによって蛍光強度の増加によって目的とする配列の増幅が確認できた場合には、多型部分のオリゴヌクレオチドは「N-PRIMER」の3、末端のオリゴヌクレオチドと相補的なヌクレオチドと判断することができ、遺伝子多型はないと判定することができる。

10 一方目的の配列が増幅されないときは、多型部分のオリゴヌクレオチドは「N-PRIMER」の3'末端のオリゴヌクレオチドと相補的なヌクレオチドではないと判断することができ、遺伝子多型を有すると判定することができる。

(e)「P-PRIMER」を用いた場合

「P-PRIMER」とTaqManプローブとの組み合わせによるPCRによって蛍光強度の増加によって目的とする配列の増幅が確認できた場合には、多型部分のオリゴヌクレオチドは「P-PRIMER」の3、末端のオリゴヌクレオチドと相補的なヌクレオチドと判断することができ、遺伝子多型を有すると判定することができる。

一方目的の配列が増幅されないときは、多型部分のオリゴヌクレオチドは「P-PR I MER」の3、末端のオリゴヌクレオチドと相補的なヌクレオチドではないと判断することができ、遺伝子多型を有さないと判定することができる。

(f)「N-PRIMER」及び「P-PRIMER」の両方を用いた場合

「N-PRIMER」とTaqManプローブとの組み合わせによるPCRによって蛍光強度の増加によって目的とする配列の増幅が確認でき、「P-PRIMER」とTaqManプローブとの組み合わせによるPCRによって目的とする配列の増幅が確認できない場合には、遺伝子多型を有さないと判定することができる。

一方、「N-PRIMER」とTaqManプローブとの組み合わせによるPCRによって目的とする配列の増幅が確認できず、「P PRIMER」とTaqManプローブとの組み合わせによるPCRによって蛍光強度の増加によって目的とする配列の増幅が確認できた場合には、遺伝子多型を有さないと判定することができる。

C. MALDI-TOF/MS法による遺伝子多型の検出

MALDI-TOF/MS法による多型の検出法(「SNP遺伝子多型の戦略」(中村祐輔編),中山書店,東京,(2000)、p. 106-117)に記載の方法を一部改変することによって遺伝子多型を検出することができる。以下、具体的に説明する。

多型部位を含むPCR産物をゲノムDNAより増幅する。その際、多型部位の塩基とPCRプライマーは重複しないように設計する。

5

10

25

30

次にPCR反応系に残存しているdNTPとプライマーとして用いたオリゴヌクレオチドを除去し、精製PCR産物とする。

精製PCR産物を鋳型として、上記「4.」の「(1) 遺伝子多型検出用オリゴヌクレオチド」に記載のオリゴヌクレオチドを鋳型に対して10倍以上の過剰量加え、90万至95℃でアニールさせ、サーマルサイクル反応を行う。サーマルサイクル反応はオリゴヌクレオチドの伸張反応が確認される限りにおいて特に制限されないが、例えば、94℃と37℃の2温度間で25回の反応で、適当な伸張効率が得られる。

得られた伸張反応産物を精製し、塩、緩衝液、界面活性剤、蛋白を除去する。この精製物をMALDIプレートにスポットし、MALDI-TOF/MSによって質量を分析する。

15 対象遺伝子の多型部位が遺伝子多型検出用オリゴヌクレオチドと相補的なオリゴヌクレオチドであるときには遺伝子多型検出用オリゴヌクレオチドにddNTPが付加された伸張反応産物の蓄積が確認されるが、多型部位が遺伝子多型検出用オリゴヌクレオチドと相補的でないときは伸張反応産物は蓄積されない。

「X-PRIMER」を用いた場合に伸張反応産物が確認されれば、多型部分は基準ヌク 20 レオチドであり、多型を有さないと判定することができ、伸張反応産物が確認されなければ、 多型部分は変異ヌクレオチドであり、遺伝子多型を有すると判断できる。

「Y-PRIMER」を用いた場合に伸張反応産物が確認されれば、多型部分は変異ヌクレオチドであり、多型を有すると判断でき、伸張反応産物が確認されなければ、多型部分は基準ヌクレオチドであり、遺伝子多型を有さないと判断できる。

「N-PRIMER」を用いた場合に伸張反応産物が確認されれば、多型部分は基準ヌクレオチドであり、多型を有さないと判定することができ、伸張反応産物が確認されなければ、多型部分は変異ヌクレオチドであり、遺伝子多型を有すると判断できる。

「P-PRIMER」を用いた場合に伸張反応産物が確認されれば、多型部分は変異ヌクレオチドであり、多型を有すると判断でき、伸張反応産物が確認されなければ、多型部分は基準ヌクレオチドであり、遺伝子多型を有さないと判断できる。

また、キアゲン社(Qiagen)のLightCycler system とそれを用いて PCR 産物を検出するキット(Quantitect SYBR Green PCR Kit)等に応用することによって生成する PCR 産物の有無を検出することなどを用いて、PCR 産物を測定することも可能である。

6. 遺伝子多型の存在状態の確認

5

25

30

本発明の方法によると鋳型となる核酸中の多型がヘテロで存在するかホモで存在するか を判定することができる。具体的には以下の(a)乃至(f)のいずれかの方法によって判 定することができる。

(a) 「X-PRIMER」を用いた場合

10 「X-PRIMER」と該プライマーと対になって用いられるオリゴヌクレオチドとの 組み合わせによるPCRによって目的とする配列の増幅が確認できた場合にホモであるこ とが分かっている検体に比べ目的とするバンドの出現量が約半分になっている場合には、 多型は基準ヌクレオチドと変異ヌクレオチドのヘテロであると判定することができる。

(b)「Y-PRIMER」を用いた場合

15 Y-PRIMERと該プライマーと対になって用いられるオリゴヌクレオチドとの組み 合わせによるPCRによって目的とする配列の増幅が確認できた場合にホモであることが 分かっている検体に比べ目的とするバンドの出現量が約半分になっている場合には、多型 は基準ヌクレオチドと変異ヌクレオチドのヘテロであると判定することができる。

(c)「X-PRIMER」及び「Y-PRIMER」の両方を用いた場合

20 X-PRIMERと該プライマーと対になって用いられるオリゴヌクレオチドとの組み合わせによるPCRによって目的とする配列の増幅が確認でき、Y-PRIMERと該ヌクレオチドと対になって用いられるオリゴヌクレオチドとの組み合わせによるPCRによっても目的とする配列の増幅が確認できる場合には、多型はヘテロであると判定することができる。

(d)「N-PRIMER」を用いた場合

「N-PRIMER」と該プライマーと対になって用いられるオリゴヌクレオチドとの組み合わせによるPCRによって目的とする配列の増幅が確認できた場合に、ホモであることが分かっている検体に比べ目的とするバンドの出現量が約半分になっている場合には、多型は基準ヌクレオチドと変異ヌクレオチドのヘテロであると判定することができる。

(e)「P-PRIMER」を用いた場合

「P-PRIMER」と該プライマーと対になって用いられるオリゴヌクレオチドとの組み合わせによるPCRによって目的とする配列の増幅が確認できた場合に、ホモであることが分かっている検体に比べ目的とするバンドの出現量が約半分になっている場合には多型は基準ヌクレオチドと変異ヌクレオチドのヘテロであると判定することができる。

(f)「N-PRIMER」及び「P-PRIMER」の両方を用いた場合

「N-PRIMER」と該プライマーと対になって用いられるオリゴヌクレオチドとの組み合わせによるPCRによって目的とする配列の増幅が確認でき、「P-PRIMER」と該プライマーと対になって用いられるオリゴヌクレオチドとの組み合わせによるPCRによっても目的とする配列の増幅が確認できる場合には、多型はヘテロであると判定することができる。

7. 遺伝子多型検出用キット

5

10

本発明の方法を行うために使用するプライマー及び試薬類を遺伝子多型検出用キットとして提供することができる。そのようなキットは以下の物を含む。

- 15 キット1:(a) オリゴヌクレオチドの3 末端から3番目のヌクレオチドが2'-0,4'-C-エチレンヌクレオチド(ENA) ユニットからなり、他のヌクレオチドは天然型のヌクレオチドからなり、3 末端部位に対象遺伝子の基準ヌクレオチドに相補的なヌクレオチド、その他の部位には対象遺伝子のヌクレオチド配列に相補的なヌクレオチドを有するオリゴヌクレオチド;
- 20 (b)(a)に記載のオリゴヌクレオチドと対になって目的配列部分を増幅し得るオリゴヌクレオチド;
 - (c) DNAポリメラーゼ;
 - (d) PCR緩衝液、
 - (13) 以下のものを含む、遺伝子多型検出用キット:
- 25 (a) オリゴヌクレオチドの3'末端から3番目のヌクレオチドが2'-0,4'-C-エチレンヌクレオチド(ENA)ユニットからなり、他のヌクレオチドは天然型のヌクレオチドからなり、3'末端部位に対象遺伝子の変異ヌクレオチドに相補的なヌクレオチド、その他の部位には対象遺伝子のヌクレオチド配列に相補的なヌクレオチドを有するオリゴヌクレオチド;
- 30 (b)(a)に記載のオリゴヌクレオチドと対になって目的配列部分を増幅し得るプライマ

-;

- (c) DNAポリメラーゼ;
- (d) PCR緩衝液。

キット2:

- 5 (a) オリゴヌクレオチドの3'末端から3番目のヌクレオチドが2'-0,4'-C-エチレン ヌクレオチド(ENA) ユニットからなり、他のヌクレオチドは天然型のヌクレオチドからな り、3'末端部位に対象遺伝子の基準ヌクレオチドに相補的なヌクレオチド、その他の部 位には対象遺伝子のヌクレオチド配列に相補的なヌクレオチドを有するオリゴヌクレオチ ド;
- 10 (b) オリゴヌクレオチドの3'末端から3番目のヌクレオチドが2'-0,4'-C-エチレンヌクレオチド(ENA)ユニットからなり、他のヌクレオチドは天然型のヌクレオチドからなり、3'末端部位に対象遺伝子の変異ヌクレオチドに相補的なヌクレオチド、その他の部位には対象遺伝子のヌクレオチド配列に相補的なヌクレオチドを有するオリゴヌクレオチド;
- 15 (c)(a)又は(b)に記載のオリゴヌクレオチドと対になって目的配列部分を増幅し得るオリゴヌクレオチド;
 - (d) DNAポリメラーゼ:
 - (e) PCR緩衝液。

キット3:

- 20 (a) 以下の(i) 乃至(v) の特徴を有するオリゴヌクレオチド:
 - (i) オリゴヌクレオチドの3'末端部位が対象遺伝子の基準ヌクレオチドに相補的なヌクレオチドからなる、
 - (ii) オリゴヌクレオチドの3¹ 末端から2番目(3¹末端のヌクレオチドを1番目として2番目) のヌクレオチドが基準遺伝子のヌクレオチドと相補的でないヌクレオチドからなる、
 - (iii) その他の部位には対象遺伝子のヌクレオチドと相補的なヌクレオチドを有する、
 - (iv) オリゴヌクレオチドの3'末端から3番目(3'末端のヌクレオチドを1番目として3番目)のヌクレオチドが2'-0,4'-C-エチレンヌクレオチド(ENA)ユニットからなり、他のヌクレオチドは天然型のヌクレオチドからなる、
- 30 (v) オリゴヌクレオチドのヌクレオチドの長さは PCR によって核酸を増幅できる限りにお

いて特に制限はないが、好ましくは $15\sim40$ ヌクレオチド、より好ましくは $18\sim35$ ヌクレオチド、更に好ましくは $18\sim25$ ヌクレオチドからなるオリゴヌクレオチドである。

- (b)(a)に記載のオリゴヌクレオチドと対になって目的配列部分を増幅し得るプライマー:
- 5 (c) DNAポリメラーゼ;
 - (d) PCR緩衝液。

キット4:

- (a) 以下の特徴を有するオリゴヌクレオチド:
- (i) オリゴヌクレオチドの3 末端部位が対象遺伝子の変異ヌクレオチドに相補的なヌク 10 レオチドからなる、
 - (ii) オリゴヌクレオチドの3'末端から2番目(3'末端のヌクレオチドを1番目として2番目) のヌクレオチドが基準遺伝子のヌクレオチドと相補的でないヌクレオチドからなる、
 - (jii) その他の部位には対象遺伝子のヌクレオチドと相補的なヌクレオチドを有する、
- 15 (iv) オリゴヌクレオチドの3'末端から3番目(3'末端のヌクレオチドを1番目として3番目)のヌクレオチドが2'-0,4'-C-エチレンヌクレオチド(ENA)ユニットからなり、他のヌクレオチドは天然型のヌクレオチドからなる、
 - (v) オリゴヌクレオチドのヌクレオチドの長さは PCR によって核酸を増幅できる限りにおいて特に制限はないが、好ましくは $15\sim40$ ヌクレオチド、より好ましくは $18\sim35$ ヌクレオチド、更に好ましくは $18\sim25$ ヌクレオチドからなるオリゴヌクレオチドである。
 - (b)(a)に記載のオリゴヌクレオチドと対になって目的配列部分を増幅し得るプライマー:
 - (c) DNAポリメラーゼ;
 - (d) PCR緩衝液。

20

25 本発明のこれらのキット1万至4には、場合によっては電気泳動用の各種試薬、dNTP、電気泳動用マーカー等を含ませることもできる。

図面の簡単な説明

図1は遺伝子多型の検出方法の原理を示す図であり、多型がない場合を示す。

30 図2は遺伝子多型の検出方法の原理を示す図であり、多型がある場合を示す。

図3は遺伝子多型の検出方法の原理を示す図であり、多型がない場合を示す。

図4は遺伝子多型の検出方法の原理を示す図であり、多型がある場合を示す。

図5はPremix Tag を用いて各種プライマーを用いたPCRの結果を示す図である。

図6はPremix EX Tag を用いて各種プライマーを用いたPCRの結果を示す図である。

図7はPCRによって検出されたバンドの蛍光強度を数値化した図である。

図8はアンジオポエチン関連3遺伝子プロモーター内の多型を示す図である。

図9-Aはマウス AKR strain 由来のゲノム DNA (AKR) を鋳型としたPCRの結果を示 す図である。

「図9-BはKK マウス Nga strain 由来のゲノム DNA(KK/Nga)を鋳型としたPCRの結 10 果を示す図である。

図10はAKRのゲノムDNA、KK/NgaのゲノムDNA、KK マウス Snk strain (KK/Snk) のゲノムDNA、並びに、AKR と KK/Nga のゲノム DNA を等量づつ混ぜた DNA を鋳型とした PCRの結果を示す図である。

図11はアンジオポエチン関連3遺伝子プロモーター内の多型を示す図である。

図12はPremix Tag を用いて各種プライマーを用いたPCRの結果を示す図である。 15

発明を実施するための最良の形態

以下、実施例、参考例及び試験例にて本発明をさらに具体的に説明するが、本発明はこれ らに限定されるものではない。なお、下記実施例において、遺伝子操作に関する各操作は 特に明示がない限り、「モレキュラークローニング (Molecular Cloning)」 [Sambrook, J.,Fritsch, E.F.および Maniatis, T. 著、Cold Spring Harbor Laboratory Press より 1989 年に発刊〕に記載の方法により行うか、または、市販の試薬やキットを用いる場合に は市販品の指示書に従って使用した。

(実施例1)

5

20

HO-C^p-A^p-C^p-T^p-G^p-G^p-G^p-A^p-G^p-C^p-A^p-T^p-T^p-G^p-A^p-G^p-G^p-5C^{e2p}-T^p-C¹の合成 25

核酸自動合成機(パーキンエルマー社製 ABI model 394 DNA/RNA synthesizer)を用い、 40 nmol のプログラムで行った。各合成サイクルにおける溶媒、試薬、ホスホロアミダイ トの濃度は天然オリゴヌクレオチド合成の場合と同じものを用いた。CPG は、約 0.1μmol 用いた。非天然型のホスホロアミダイトとしては、特許第3420984号の実施例22(5'-0-ジメトキシトリチル-2'-0.4'-C-エチレン-4-N-ペンゾイル-5-メチルシチジン

-3'-0-(2-シアノエチル N.N-ジイソプロピル)ホスホロアミダイト)、の化合物を用いた。 目的配列を有する保護されたオリゴヌクレオチド類縁体を濃アンモニア水で処理すること によってオリゴマーを支持体から切り出すとともに、リン原子上の保護基シアノエチル基 と核酸塩基上の保護基をはずした。溶媒を減圧下留去し、残った残渣を逆相HPLC(島 津製作所製 LC-10VP、カラム (Merck, Chromolith Performance RP-18e (4.6×100mm))、 5 A 溶液:5%アセトニトリル、0.1M 酢酸トリエチルアミン水溶液(TEAA), pH 7.0、B 溶液: アセトニトリル、B%:10%→ 50%(10min, linear gradient);60℃;2 ml/min;254 nm) に て精製し、 ジメトキシトリチル基を有する目的物のピークを集めた。水を加え、減圧下留 去することで、TEAA を除いた。80%酢酸水溶液(200μl)を加え、20 分放置することで、 ジメトキシトリチル基の脱保護を行った。溶媒を留去したのち逆相HPLC(島津製作所 10 製LC-10VP、カラム (Merck, Chromolith Performance RP-18e (4.6×100mm))、A 溶液: 5%アセトニトリル、0.1M TEAA、pH 7.0、B 溶液: 25%アセトニトリル, 0.1M TEAA、B%: 0% → 40%(10min, linear gradient);60℃;2 ml/min;254 nm) にて精製し、目的物のピー クを集めた。減圧下溶媒を留去後、水 1ml に溶かし、(9.4 A_{so} units)。また、本化合物は、

本化合物の塩基配列は、human prothrombin gene (GenBank accession No. M17262) の ヌクレオチド番号 26784-26803 に相補的な配列である。

負イオン ESI 質量分析により同定した(計算値:6214.11、測定値:6214.62)。

(実施例2)

15

 $HO-C^p-A^p-C^p-T^p-G^p-G^p-G^p-A^p-G^p-C^p-A^p-T^p-T^p-G^p-A^p-G^p-G^p-5C^{e2p}-T^p-T^t$ の合成

20 実施例2の化合物は、実施例1と同様に合成した(21 A₂₆₀ units)。本化合物は、負イオン ESI 質量分析により同定した(計算値:6229.12、測定値:6229.21)。

本化合物の塩基配列は、human prothrombin gene (GenBank accession No. M17262) の ヌクレオチド番号 26784-26803 であって、ヌクレオチド番号 26784 が G から A に変異した ものに相補的な配列である。

25 (実施例3)

HO-A^p-T^p-C^p-T^p-C^p-T^p-A^p-C^p-A^p-T^p-A^p-T^p-A^p-T^p-A^p-T^p-A^p-C^p-A

実施例3の化合物は、実施例1と同様に合成した(8.9 A₂₆₀ units)。本化合物は、負イオンESI 質量分析により同定した(計算値:8530.67、測定値:8530.75)。

30 本化合物の塩基配列は、GenBank accession No. AL935325 記載のヌクレオチド番号

60529-60556 の配列であって、ヌクレオチド番号 60556 のCがTになっている配列である。 (実施例4)

5 実施例4の化合物は、実施例1と同様に合成した(10.1 A₂₆₀ units)。本化合物は、負イオンESI 質量分析により同定した(計算値:8515.66、測定値:8515.56)。

本化合物の塩基配列は、GenBank accession No. AL935325 記載のヌクレオチド番号 60529-60556 の配列である。

(参考例1)

 $10 \qquad \text{HO-CP-AP-CP-TP-GP-GP-GP-AP-GP-CP-AP-TP-TP-GP-AP-GP-GP-CP-TP-C}^{t}$

参考例1の化合物は、核酸自動合成機を用いて常法により合成した。

本化合物の塩基配列は、human prothrombin gene (GenBank accession No. M17262) の ヌクレオチド番号 26784-26803 に相補的な配列であり、配列表の配列番号1に示されてい る。

15 (参考例2)

20

25

 $HO-C^{p}-A^{p}-C^{p}-T^{p}-G^{p}-G^{p}-A^{p}-G^{p}-C^{p}-A^{p}-T^{p}-T^{p}-T^{p}-G^{p}-G^{p}-G^{p}-C^{p}-T^{p}-T^{t}$

参考例2の化合物は、核酸自動合成機を用いて常法により合成した。

本化合物の塩基配列は、human prothrombin gene (GenBank accession No. M17262) の ヌクレオチド番号 26784-26803 であって、ヌクレオチド番号 26784 がGから A に変異した ものに相補的な配列であり、配列表の配列番号 2 に示されている。

(参考例3)

 $HO-C^p-A^p-C^p-T^p-G^p-G^p-G^p-A^p-G^p-C^p-A^p-T^p-T^p-G^p-A^p-G^p-C^p-T^p-C^{e2t}$ の合成

参考例 3 の化合物は、実施例 1 と同様に合成した (0.3 A₂₆₀ units)。但し、非天然型のホスホロアミダイトとしては、特許第 3420984 号の実施例 5 (5'-0-ジメトキシトリチル-2'-0,4'-C-エチレン-4-N-ベンゾイルシチジン-3'-0-(2-シアノエチル N,N-ジイソプロピル)ホスホロアミダイト)の化合物を用い、固相担体は、universal-Q 500 CPG(Glen Research 製)約 0.1 μmol を用いた。本化合物は、負イオン ESI 質量分析により同定した(計算値:6200.08、測定値:6200.25)。

本化合物の塩基配列は、human prothrombin gene (GenBank accession No.M17262) の 30 ヌクレオチド番号 26784-26803 に相補的な配列である。

(参考例4)

5

15

25

30

HO-C^p-A^p-C^p-T^p-G^p-G^p-G^p-G^p-C^p-A^p-G^p-C^p-A^p-T^p-T^p-C^p-A^p-G^p-C^p-C^p-C^p-T^p-T^{c2t}の合成

参考例4の化合物は、実施例1と同様に合成した($0.94 A_{260}$ units)。但し、非天然型のホスホロアミダイトとしては、特許第 3420984 号の実施例 9(5'-0-ジメトキシトリチル-2'-0,4'-C-エチレン-5-メチルウリジン-3'-<math>0-(2-シアノエチル N,N-ジイソプロピル) ホスホロアミダイト)、の化合物を用い、固相担体は、universal-Q 500 CPG(Glen Research 製) 約 0.1μ mol を用いた。本化合物は、負イオンESI 質量分析により同定した(計算値:6215.09、測定値:6215.06)。

本化合物の塩基配列は、human prothrombin gene (GenBank accession No. M17262) の 3クレオチド番号 26784-26803 であって、ヌクレオチド番号 26784 がGから A に変異した ものに相補的な配列である。

(参考例.5)

参考例 5 の化合物は、実施例 1 と同様に合成した (2.28 A₂₆₀ units)。但し、非天然型のホスホロアミダイトとしては、特許第 3420984 号の実施例 9 (5'-0-ジメトキシトリチル-2'-0,4'-C-エチレン-5-メチルウリジン-3'-0-(2-シアノエチル N,N-ジイソプロピル)ホスホロアミダイト)、の化合物を用いた。本化合物は、負イオン ESI 質量分析により同定した (計算値:6200.08、測定値:6200.26)。

本化合物の塩基配列は、human prothrombin gene (GenBank accession No.M17262) の 20 ヌクレオチド番号 26784-26803 に相補的な配列である。

(参考例 6)

 $HO-C^p-A^p-C^p-T^p-G^p-G^p-G^p-A^p-G^p-C^p-A^p-T^p-T^p-G^p-A^p-G^p-C^p-T^e^2p-T^t$ の合成

参考例 6 の化合物は、実施例 1 と同様に合成した(4.98 A₂₆₀ units)。但し、非天然型のホスホロアミダイトとしては、特許第 3420984 号の実施例 9 (5'-0-ジメトキシトリチル-2'-0,4'-C-エチレン-5-メチルウリジン-3'-0-(2-シアノエチル N,N-ジイソプロピル)ホスホロアミダイト)、の化合物を用いた。本化合物は、負イオン ESI 質量分析により同定した(計算値:6215.09、測定値:6215.26)。

本化合物の塩基配列は、human prothrombin gene (GenBank accession No. M17262) の ヌクレオチド番号 26784-26803 であって、ヌクレオチド番号 26784 がGから A に変異した ものに相補的な配列である。

(参考例 7)

 $HO-C^p-A^p-C^p-T^p-G^p-G^p-G^p-A^p-G^p-C^p-A^p-T^p-T^p-G^p-G^p-G^p-G^p-C^p-T^p-C^l$ の合成

参考例7の化合物は、実施例1と同様に合成した(4.32 A₂₀₀ units)。但し、非天然型のホスホロアミダイトとしては、特許第 3420984 号の実施例 27(5'-0-ジメトキシトリチル-2'-0,4'-C-エチレン-2-N-イソブチリルグアノシン-3'-0-(2-シアノエチル N, N-ジイソプロピル)ホスホロアミダイト)、の化合物を用いた。本化合物は、負イオンESI 質量分析により同定した(計算値:6200.08、測定値:6199.95)。

本化合物の塩基配列は、human prothrombin gene (GenBank accession No.M17262) の ヌクレオチド番号 26784-26803 に相補的な配列である。

10 (参考例 8)

5

15

25

 $HO-C^p-A^p-C^p-T^p-G^p-G^p-G^p-A^p-G^p-C^p-A^p-T^p-T^p-G^p-A^p-G^p-G^{e2p}-C^p-T^p-T^t$ の合成

参考例 8 の化合物は、実施例 1 と同様に合成した(8.0 A_{260} units)。但し、非天然型のホスホロアミダイトとしては、特許第 3420984 号の実施例 27 (5'-0-ジメトキシトリチル -2'-0, 4'-C-エチレン-2-N-イソブチリルグアノシン-3'-0-(2-シアノエチル N, N-ジイソプロピル)ホスホロアミダイト)、の化合物を用いた。本化合物は、負イオン ESI 質量分析により同定した(計算値:6215.09、測定値:6215.06)。

本化合物の塩基配列は、human prothrombin gene (GenBank accession No.M17262) の ヌクレオチド番号 26784-26803 であって、ヌクレオチド番号 26784 が G から A に変異した ものに相補的な配列である。

20 (参考例 9)

HO-CP-AP-CP-TP-GP-GP-GP-AP-GP-CP-AP-TP-TP-GP-AP-GP-CP-C*IP-TP-C*の合成

参考例 9 の化合物は、実施例 1 と同様に合成した(13.28 A₂₆₀ units)。但し、非天然型のホスホロアミダイトとしては、文献 Tetrahedron(1998)54,3607-3630. 記載の 5'-0-ジメトキシトリチル-2'-0,4'-C-メチレン-4-N-ベンゾイルシチジン-3'-0-(2-シアノエチル N, N-ジイソプロピル)ホスホロアミダイト、の化合物(C^{clp})を用いた。本化合物は、負イオン ESI 質量分析により同定した(計算値:6186.05、測定値:6186.45)。

本化合物の塩基配列は、human prothrombin gene (GenBank accession No.M17262) の ヌクレオチド番号 26784-26803 に相補的な配列である。

(参考例10)

30 HO-C^p-A^p-C^p-T^p-G^p-G^p-G^p-A^p-G^p-C^p-A^p-T^p-T^p-G^p-A^p-G^p-C^{e1p}-T^p-T^tの合成

参考例 10 の化合物は、実施例 1 と同様に合成した (8.0 A₂₆₀ units)。但し、非天然型のホスホロアミダイトとしては、文献 Tetrahedron (1998) 54, 3607-3630. 記載の 5'-0-ジメトキシトリチル-2'-0,4'-C-メチレン-4-N-ベンゾイルシチジン-3'-0-(2-シアノエチルN, N-ジイソプロピル) ホスホロアミダイト、の化合物 (C^{clp}) を用いた。本化合物は、負イオン ESI 質量分析により同定した (計算値:6201.07、測定値:6201.14)。

本化合物の塩基配列は、human prothrombin gene (GenBank accession No.M17262) の ヌクレオチド番号 26784-26803 であって、ヌクレオチド番号 26784 が G から A に変異した ものに相補的な配列である。

(参考例11)

5

本化合物の塩基配列は、GenBank accession No. AL935325 記載のヌクレオチド番号 60529-60556 の配列であって、ヌクレオチド番号 60556 のCがTになっている配列であり、配列表の配列番号 3 に示されている。

15 - (参考例12)

本化合物の塩基配列は、GenBank accession No. AL935325 記載のヌクレオチド番号 60529-60556 の配列であり、配列表の配列番号4に示されている。

20 (参考例13)

25

HO-A^p-T^p-C^p-T^p-C^p-T^p-A^p-C^p-A^p-T^p-A^p-T^p-A^p-T^p-A^p-T^p-A^p-C^p-A

参考例 1 3 の化合物は、実施例 1 と同様に合成した(7.8 A_{260} units)。但し、非天然型のホスホロアミダイトとしては、特許第 3420984 号の実施例 9(5'-0-ジメトキシトリチル-2'-0,4'-C-エチレン-5-メチルウリジン-3'-0-(2-シアノエチル N,N-ジイソプロピル)ホスホロアミダイト)の化合物を用い、固相担体は、universal-Q 500 CPG(Glen Research 製)約 $0.1\,\mu$ mol を用いた。本化合物は、負イオン ESI 質量分析により同定した(計算値:8516.64、測定値:8515.88)。

本化合物の塩基配列は、GenBank accession No. AL935325 記載のヌクレオチド番号 30 60529-60556の配列であって、ヌクレオチド番号 60556のCがTになっている配列である。

(参考例14)

HO-A^p-T^p-C^p-T^p-G^p-T^p-A^p-C^p-A^p-C^p-A^p-T^p-A^p-T^p-A^p-T^p-A^p-T^p-A^p-C^p-A

参考例 1 4 の化合物は、実施例 1 と同様に合成した(7.4 A₂₆₀ units)。但し、固相担体は、universal-Q 500 CPG(Glen Research 製) 約 0.1 μ mol を用いた。本化合物は、負イオン ESI 質量分析により同定した(計算値:8516.66、測定値:8516.00)。

本化合物の塩基配列は、GenBank accession No. AL935325 記載のヌクレオチド番号 60529-60556 の配列である。

(参考例15)

5

15

25

参考例 15 の化合物は、実施例 1 と同様に合成した(8.4 A_{260} units)。但し、非天然型のホスホロアミダイトとしては、特許第 3420984 号の実施例 14(5'-0-3) メトキシトリチルー2'-0, 4'-C- エチレンー6- Nーベンゾイルアデノシンー3'-0-(2-3) アノエチル N, Nージイソプロピル)ホスホロアミダイト)の化合物を用いた。本化合物は、負イオン ESI 質量分析により同定した(計算値:8516.64、測定値:8516.32)。

本化合物の塩基配列は、GenBank accession No. AL935325 記載のヌクレオチド番号 60529-60556 の配列であって、ヌクレオチド番号 60556 のCがTになっている配列である。

(参考例16)

20 HO-A^p-T^p-C^p-T^p-C^p-T^p-A^p-C^p-A^p-C^p-A^p-T^p-A^p-T^p-A^p-T^p-A^p-T^p-A^p-C^p

参考例 1 6 の化合物は、実施例 1 と同様に合成した(7.9 A₂₆₀ units)。但し、非天然型のホスホロアミダイトとしては、特許第 3420984 号の実施例 14(5'-0-ジメトキシトリチル-2'-0,4'-C-エチレン-6-N-ベンゾイルアデノシン-3'-0-(2-シアノエチル N, N-ジイソプロピル)ホスホロアミダイト)の化合物を用いた。本化合物は、負イオンESI 質量分析により同定した(計算値:8501.63、測定値:8500.70)。

本化合物の塩基配列は、GenBank accession No. AL935325 記載のヌクレオチド番号 60529-60556 の配列である。

(参考例17)

30 $HO-A^p-T^p-C^p-T^p-G^p-T^p-C^p-A^p-C^p-A^p-T^p-A^p-T^p-A^p-T^p-A^p-T^p-A^p-C^p$

成

5

15

30

参考例17の化合物は、実施例1と同様に合成した(9.7 A₂₆₀ units)。但し、非天然型のホスホロアミダイトとしては、特許第3420984号の実施例14(5'-0-ジメトキシトリチル-2'-0,4'-C-エチレン-6-N-ベンゾイルアデノシン-3'-0-(2-シアノエチル N, N-ジイソプロピル)ホスホロアミダイト)の化合物を用いた。本化合物は、負イオンESI質量分析により同定した(計算値:8516.64、測定値:8517.14)。

本化合物の塩基配列は、GenBank accession No. AL935325 記載のヌクレオチド番号 60529-60556 の配列であって、ヌクレオチド番号 60556 のCがTになっている配列である。

(参考例18)

10 HO-A^p-T^p-C^p-T^p-C^p-T^p-A^p-C^p-A^p-C^p-A^p-T^p-A^p-T^p-A^p-T^p-A^p-T^p-A^p-C^p

参考例 1 8 の化合物は、実施例 1 と同様に合成した(7.2 A₂₆₀ units)。但し、非天然型のホスホロアミダイトとしては、特許第 3420984 号の実施例 14(5'-0-ジメトキシトリチル-2'-0,4'-C-エチレン-6-N-ベンゾイルアデノシン-3'-0-(2-シアノエチル N, N-ジイソプロピル)ホスホロアミダイト)の化合物を用いた。本化合物は、負イオン ESI 質量分析により同定した(計算値:8501.63、測定値:8501.65)。

本化合物の塩基配列は、GenBank accession No.AL935325 記載のヌクレオチド番号 60529-60556 の配列である。

(試験例1) Human prothrombin gene の SNP の検出

20 human prothrombin gene (coagulation factor II), GenBank accession No. M17262) の SNP (F2 20210G-A) の検出のために、Reverse primer, Human DNA は、Proligo 社の TrueSNP Demo Kit を同プロトコールに従って調製したものを使用した。Reverse primer のヌクレオチド配列は GenBank accession No. M17262) のヌクレオチド番号 26588-266 05に相当し、以下のとおりである。

25 5'-GGGTGAAGGCTGTGACCG-3'(配列表の配列番号5)

Forward primer として実施例 1、実施例 2、参考例 1、参考例 2、参考例 3、参考例 4、参考例 5、参考例 6、参考例 6、参考》 6 大学 6 大学

分、72℃ 1分、の反応を 31 サイクル繰り返した。反応後、反応液 5 μL に 1 μL の loading solution を加え、10%ポリアクリルアミドゲル電気泳動(1xTBE, 200V 定電圧, 約 1 時間)を行い、SYBR Green I (Cambrex 社製) で染色後、Molecular Imager FX Fluoresent Imager system (Bio-Rad)を用いバンドを可視化し、Quantity One software (Bio-Rad)を使って定量した。

その結果を図5に示す。ENA ユニットを 3' 末端から 3 番目に導入した化合物をForwardprimer に用いた場合では 実施例1に記載の化合物では目的の遺伝子(216 bp)の増幅が確認できたのに対し、実施例2に記載の化合物では目的の遺伝子(216 bp)の増幅が確認できなかった。一方、天然型のオリゴヌクレオチドである参考例1及び参考例2に記載の化合物をForward primer に用いた場合では、参考例1に記載の化合物だけではなく、参考例2に記載の化合物でも遺伝子の増幅が確認され、ミスマッチによる遺伝子の増幅が起きていた。また、ENAユニットを 3' 末端に導入した参考例3及び4の化合物、並びに、ENAユニットを 3' 末端から2番目に導入した参考例5及び6の化合物では目的のバンドの増幅は確認できなかった。このことからENAユニットを3' 末端から3番目に導入した化合物をプライマーに用いるとミスマッチがほとんどなく選択的な遺伝子(216 bp)の増幅ができることがわかった。

また、図6においては、Premix Taq(宝酒造製)のかわりに、Premix EX Taq(宝酒造製)を用いた例を示す。この場合においても、ENA ユニットを3'末端から3番目に導入したプライマーにおいてミスマッチがほとんど起こらず、実施例1のプライマーを用いたものが、最も効率的に、かつ、選択的に遺伝子が増幅された。

検出されたバンドの蛍光強度を数値化し、図7のようにプロットした。参考例9、10に記載の化合物は、LNAユニットを3'末端から3番目に導入した場合であり、参考例10の化合物をForward primer に用いた場合、ミスマッチによる遺伝子の増幅が15%見られたのに対し、ENAユニットを3'末端から3番目に導入した、実施例2の化合物をForward primerに用いた場合では、ミスマッチによる遺伝子の増幅が6%に過ぎず、ENA体がミスマッチが少なく選択性が高いことが明らかになった。

(試験例 2) アンジオポエチン関連 3 (Angiopoietin-like 3) 遺伝子プロモーター内の多型の検出

(1) マウスゲノムDNAの調製

5

10

15

20

25

30 マウス AKR strain、KK マウス Nga strain 及び KK マウス Snk strain のマウス(4週齢)

より採取した尾(1.5 cm)を840 μ 1の溶解液(720 μ 1の1×SSC、80 μ 1の10% SDS、40 μ 1の10mg/ml プロテイナーゼKを含む)に浸漬し、50 $\mathbb C$ で保温しながら一晩振盪した。次いで、1mg/ml リボヌクレアーゼAを20 μ 1加えて、50 $\mathbb C$ で1時間保温した。その後、フェノール・クロロホルム抽出を2回、エタノール沈殿操作を1回行い、沈殿を10mM トリスー塩酸(pH7.5)、1mM EDTAを含む緩衝液150 μ 1に溶解した。溶液を分光光度計(U-3000、(株)日立製作所製)で260nm波長における吸光度を測定し、滅菌水を加えて濃度を25ng/ μ 1に調整してゲノムDNA試料とした。

(2) PCR

5

20

25

30

Angiopoietin-like protein 3 遺伝子プロモーター内の多型は、direct sequence の結果から、図8のような多型を持つ。図8では、マウス KK/Nga strain、KK/Snk strain と比べてマウス AKR strainでは「:」で示す 2 塩基(CA)が欠失している多型を有することを示している。

PCRにおける Reverse primer は以下の配列:

15 5'-GTCACTAGACTACTGCTTACTGTCC-3'(配列表の配列番号6)

(本化合物の塩基配列は、GenBank accession No. AL935325 記載のヌクレオチド番号 60658-60682 に相補的な配列である) のものを用いた。Forward primer として実施例 3、実施例 4、参考例 11、参考例 12、参考例 13、参考例 14、参考例 15、参考例 16、参考例 17 及び参考例 18 のいずれかに記載の化合物 (1.25 μM) 5 μL、Reverse primer (1.25 μM) 5 μL、Premix Taq(宝酒造製) 12.5 μL、ゲノム DNA 溶液(100 ng/1 μL) 0.125 μL、滅菌水 2.38 μL の溶液を、Takara PCR Thermal Cycler PERSONAL (TP240) を使って、PCR 反応 (Hot Start 法) を行った。反応サイクルは、94℃ 10 分間の熱処理後、94℃ 分、63℃ 1分、72℃ 1 分のサイクルを 30 サイクル繰り返した。反応後、反応液 5 μL に 1 μL の loading solution を加え、10%ポリアクリルアミドゲル電気泳動(1xTBE, 200V 定電圧、約1 時間)を行い、SYBR Green I (Cambrex 社製) で染色後、Molecular Imager FX Fluoresent Imager system (Bio-Rad) を用い可視化した。

(3) 結果

マウス AKR strain 由来のゲノム DNA (AKR) を鋳型として用いた結果を図 9-Aに示す。 ENA ユニットを 3 末端から 3 番目に導入した実施例 3 及び 4 に記載の化合物において、実 施例 3 の化合物を forward primer に用いたものが、選択的に遺伝子(152 bp)を増幅でき

ることがわかった。

5

10

15

25

30

KKマウスNga strain 由来のゲノムDNA(KK/Nga)を鋳型に用いた場合を図9-Bに示す。 ENA ユニットを 3'末端から3番目に導入した実施例3及び4に記載の化合物において、実施例4に記載の化合物をForward primerに用いたものが、最も効率的に、かつ、選択的に遺伝子(154bp)を増幅できることがわかった。

図10に、実施例3及び4に記載の化合物のいずれかをForward primer として用い、AKR のゲノムDNA、KK/Nga のゲノムDNA、KK/Nga のゲノムDNA、KK/マウス Snk strain (KK/Snk)のゲノムDNA、並びに、AKR と KK/Nga のゲノム DNA を等量づつ混ぜた DNA (Mix) を鋳型とした P C R の結果を示した。図10Aに示したように、AKR では実施例3に記載の化合物を Forward primer として用いたもので選択的な遺伝子の増幅が確認され、また KK/Nga、KK/Snk では実施例4に記載の化合物を Forward primer として用いたもので選択的な遺伝子の増幅が確認され、多種がヘテロである場合でも、見分けがつくことが示された。また、図10Bに示したように、すべてが天然型 DNA プライマーである参考例11 及び12 に記載の化合物を Forward primer として用いた場合、目的のバンドの増幅以外に副生成物が見られ、ENA ユニットを3'末端から3番目に導入した実施例3及び4に記載の化合物の組み合わせの方が遺伝子多型検出に優れていることがわかった。

20 核酸自動合成機 (パーキンエルマー社製 ABI model 394 DNA/RNA synthesizer) を用い、 40 nmol のプログラムで

HO-CP-AP-TP-CP-TP-CP-TP-AP-CP-TP-AP-CP-TP-AP-CP-TP-TP-CP-AP-CP-AP-TP-G^{c2}を合成した(以下、「プライマーA」とする。各合成サイクルにおける溶媒、試薬、ホスホロアミダイトの 濃度は天然オリゴヌクレオチド合成の場合と同じものを用いた。CPG は、約 0.1 μmol 用いた。非天然型のホスホロアミダイトとしては、特許第 3420984 号の実施例 27 (5'-0-ジメトキシトリチルー2'-0,4'-C-エチレン-2-N-イソブチリルグアノシン-3'-0-(2-シアノエチル N, N-ジイソプロピル)ホスホロアミダイト)の化合物を用いた。目的配列を有する保護されたオリゴヌクレオチド類縁体を濃アンモニア水で処理することによってオリゴマーを支持体から切り出すとともに、リン原子上の保護基シアノエチル基と核酸塩基上の保護基をはずした。溶媒を減圧下留去し、残った残渣を逆相HPLC(島津製作所製 LC-10VP、

カラム (Merck, Chromolith Performance RP-18e ($4.6 \times 100 \text{nm}$))、A 溶液: 5% 7 セトニトリル、0.1 M 酢酸トリエチルアミン水溶液(TEAA), pH 7.0、B 溶液: 7 セトニトリル、8%: $10\% \rightarrow 50\%$ (10 min, linear gradient); 60%; 2 ml/min; 254 nm) にて精製し、 ジメトキシトリチル基を有する目的物のピークを集めた。水を加え、減圧下留去することで、TEAAを除いた。80%酢酸水溶液(200μ l)を加え、20 分放置することで、ジメトキシトリチル基の脱保護を行った。溶媒を留去したのち逆相HPLC(島津製作所製 LC-10VP、カラム(Merck,Chromolith Performance RP-18e($4.6 \times 100 \text{nm}$))、A 溶液:5% 7 セトニトリル、0.1 M TEAA,pH 7.0、B 溶液:25% 7 セトニトリル,0.1 M TEAA、B%: $0\% \rightarrow 40\%$ (10 min, linear gradient);60%;2 ml/min;254 nm) にて精製し、目的物のピークを集めた。減圧下溶媒を留去後、水 1 ml に溶かし、MALDI-10 ml 質量分析により同定した(計算値:10 ml 10 ml $10 \text{$

5

10

30

本化合物 (プライマーA) の塩基配列は、GenBank accession No. AL935325. 14 記載のヌクレオチド番号 60499-60523 の配列であって、ヌクレオチド番号 60522 のCがTであって、ヌクレオチド番号 60523 の A が G になっている配列である。

HO-CP-AP-TP-CP-TP-AP-CP-TP-AP-CP-TP-AP-CP-TP-AP-CP-TP-CP-AP-CP-AP-CP-AP-TP-C^{c2p}-TP-A^t
(以下「プライマーB」とする。)を、実施例 5 と同様の方法で合成し、MALDI-TOF 質量分析により同定した(計算値:7609.0、測定値:7609.2)。

20 本化合物 (プライマーB) の塩基配列は、GenBank accession No. AL935325.14 記載のヌクレオチド番号 60499-60523 の配列であって、ヌクレオチド番号 60522 のCがTになっている配列である。

 25
 HO-CP-AP-TP-GP-TP-AP-CP-TP-AP-CP-TP-AP-CP-TP-AP-CP-AP-CP-AP-TP-Ge2p-GP-GL

 (以下、「プライマーC」とする。) を、実施例1と同様の方法で合成し、MALDI-TOF 質量

 分析により同定した(計算値:7650.0、測定値:7649.4)。

本化合物 (プライマーC) の塩基配列は、GenBank accession No. AL935325.14 記載のヌクレオチド番号 60499-60523 の配列であって、ヌクレオチド番号 60522 のCがGであって、ヌクレオチド番号 60523 の A が G になっている配列である。

HO-CP-AP-TP-CP-TP-AP-CP-TP-AP-CP-TP-AP-CP-TP-AP-CP-AP-CP-AP-CP-AP-TP-G² - GP-A¹ (以下、「プライマーD」とする。)を、実施例 5 と同様の方法により合成し、MALDI-TOF 質量分析により同定した(計算値:7634.1、測定値:7634.2)。

本化合物 (プライマーD) の塩基配列は、GenBank accession No. AL935325. 14 記載のヌクレオチド番号 60499-60523 の配列であって、ヌクレオチド番号 60522 の C が G になっている配列である。

(参考例19)HO-CP-AP-TP-GP-TP-CP-TP-AP-CP-TP-AP-CP-TP-AP-CP-AP-CP-AP-TP-GP-TP-GP

10 の合成

 $HO - C^p - A^p - T^p - G^p - T^p - C^p - T^p - A^p - C^p - T^p - G^p - C^p - T^p - A^p - C^p - A^p - A^p - C^p - A^p -$

(以下、「プライマーE」とする。)を核酸自動合成機を用いて常法により合成した。本化合物(プライマーE)の塩基配列は、GenBank accession No. AL935325.14 記載のヌクレオチド番号 60499-60523 の配列であって、ヌクレオチド番号 60522 の C が T であって、ヌクレオチド番号 60523 の A が G になっている配列であり、配列表の配列番号7に示されている。

(参考例20)

5

15

20

30

HO-CP-AP-TP-CP-TP-AP-CP-TP-AP-CP-TP-AP-CP-TP-AP-CP-AP-CP-AP-TP-CP-AP-TP-AI の合成 HO-CP-AP-TP-CP-TP-AP-CP-TP-AP-CP-TP-AP-CP-TP-AP-CP-TP-AP-CP-TP-AP-CP-TP-AP-CP-TP-AP-CP-TP-AP-CP-TP-AP-CP-TP-AP-CP-TP-AP-CP-TP-AP-CP-TP-AP-CP-TP-AI (以下、「プライマーF」とする。)を核酸自動合成機を用いて常法により合成した。本化合物(プライマーF)の塩基配列は、GenBank accession No. AL935325.14 記載のヌクレオチド番号 60499-60523 の配列であって、ヌクレオチド番号 60522 のCがTになっている配列であり、配列表の配列番号 8 に示されている。

(参考例21)HO-CP-AP-TP-GP-TP-AP-CP-TP-AP-CP-TP-AP-CP-TP-AP-CP-AP-TP-CP-AP-TP-GP-GP-G¹
25 の合成

HO-CP-AP-TP-CP-TP-AP-CP-TP-AP-CP-TP-AP-CP-TP-AP-CP-AP-CP-AP-TP-GP-GP-GP-G 本(以下、「プライマーG」とする。)は核酸自動合成機を用いて常法により合成した。

プライマーGの塩基配列は、GenBank accession No. AL935325.14 記載のヌクレオチド番号 60499-60523 の配列であって、ヌクレオチド番号 60522 の C が G であって、ヌクレオチド番号 60523 の A が G になっている配列であり、配列表の配列番号 9 に示されている。

(参考例22)

15

30

HO-CP-AP-TP-GP-TP-CP-TP-AP-CP-TP-GP-CP-TP-AP-CP-TP-TP-CP-AP-CP-AP-TP-GP-GP-A^tの合成

HO-CP-AP-TP-CP-TP-AP-CP-TP-GP-CP-TP-AP-CP-TP-TP-CP-AP-CP-AP-TP-AP-CP-AP-TP-AP-CP-AP-TP-AP-TP-CP-AP-TP-AP-CP-AP-TP-AP-CP-AP-TP-CP-AP-TP-CP-AP-TP-CP-AP-TP-CP-AP-TP-CP-AP-TP-CP-AP-TP-CP-AP-TP-CP-AP-TP-AP-CP-AP-TP-AP-CP-AP-TP-AP-CP-AP-TP-AP-CP-AP-TP-AP-CP-AP-TP-AP-TP-CP-AP-TP-AP-TP-CP-AP-T

プライマーHの塩基配列は、GenBank accession No. AL935325.14 記載のヌクレオチド番号 60499-60523 の配列であって、ヌクレオチド番号 60522 の C が G になっている配列であり、配列表の配列番号 1 O に示されている。

(試験例3) アンジオポエチン関連3 (Angiopoietin-like3) 遺伝子プロモーター内 の SNP の検出

マウス AKR 系統(strain)及び KK マウス Nga 系統(strain)由来マウス(4週齢)より採取した尾(1.5 cm)を840 μ 1の溶解液(720 μ 1の1×SSC、80 μ 1の10% SDS、40 μ 1の10mg/m1 プロテイナーゼ Kを含む)に浸漬し、50℃で保温しながら一晩振盪した。次いで、1mg/m1 リボヌクレアーゼ Aを20 μ 1加えて、50℃で1時間保温した。その後、フェノール・クロロホルム抽出を2回、エタノール沈殿操作を1回行い、沈殿を10mM トリスー塩酸(pH7.5)、1mM EDTAを含む緩衝液150 μ 1に溶解した。その後、分光光度計(U-3000、(株)日立製作所製)で260nm波長における吸光度を測定し、滅菌水を加えて濃度を25ng/ μ 1に調整してゲノムDNA試料とした。

20 Angiopoietin-like 3 遺伝子プロモーター内の SNP は、direct sequence の結果から、図 1 1 のような SNP を持つ。

リバース・プライマー (Reverse primer) のヌクレオチド配列は:

5'-GTCACTAGACTACTGCTTACTGTCC-3'(配列表の配列番号6)、

(本化合物の塩基配列は、GenBank accession No. AL935325 記載のヌクレオチド番号60658-60682 に相補的な配列である。) である。

Premix Taq(宝酒造製) 12.5 μ L、ゲノム DNA 溶液(100 ng/1 μ L) 0.125 μ L、リバース・プライマー(1.25 μ M) 5 μ L、滅菌水 2.38 μ L、フォワード・プライマー (forward primer) として実施例または、参考例に記載の化合物(プライマーA、プライマーB、プライマーC、プライマーD、プライマーE、プライマーF、プライマーG及びプライマーH)(1.25 μ M)を5 μ L になるように調製し、Takara PCR Thermal Cycler PERSONAL (TP240)を使っ

て、PCR 反応 (Hot Start 法) を行った。反応サイクルは、94℃、10 分後、94℃ 1 分、63℃ 1 分、72℃ 1 分、これを 30 サイクル繰り返した。

反応後、反応液 5 μL に 1 μL の添加液 (loading solution) を加え、10%ポリアクリルアミドゲル電気泳動 (1xTBE, 200V 定電圧, 約 1 時間) を行い、SYBR Green I (Cambrex 社製)で染色後、Molecular Imager FX Fluoresent Imager system (Bio-Rad)を用い可視化した。

5

10

15

PCR反応が正確に行われた場合、マウス AKR 系統(strain)由来のゲノム DNA(AKR)を用いた場合、選択的に遺伝子(182 bp)が増幅され、KK マウス Nga 系統(strain)由来のゲノム DNA(KK/Nga)を用いた場合、選択的に遺伝子(184 bp)が増幅されると予想された。

結果を図12に示す。プライマーE又はプライマーFをフォワード・プライマーとして PCRを行ったところ、マウス AKR 系統由来のゲノムDNAでは、プライマーEをプライマーとして用いた場合に遺伝子の増幅が確認された。一方、KK マウス Nga 系統由来のゲノムDNAにおいては、プライマーFをプライマーとして用いた場合及びプライマーEをプライマーとして用いた場合の両方で遺伝子の増幅が観察された。

またプライマーA又はプライマーBをプライマーとしてPCRを行ったところ、マウス AKR 系統由来のゲノムDNAでは、プライマーAをプライマーとして用いた場合に遺伝子が増幅され、KK マウス Nga 系統由来のゲノムDNAにおいては、プライマーBをプライマーとして用いた場合に遺伝子の増幅が観察された。

20 プライマーG又はプライマーHをプライマーとして用いた場合、マウス AKR 系統由来のゲノムDNAでは、プライマーGをプライマーとして用いた場合に目的の遺伝子産物が増幅されたが、プライマーHをプライマーとした場合には、目的の大きさより小さい副生成物と考えられる増幅産物が得られた。また、KK マウス Nga 系統由来のゲノムDNAにおいては、プライマーHをプライマーとした場合には、目的の遺伝子産物だけでなく、目的よりも小さい鎖長を持つ副生成物と考えられる増幅産物が得られた。

プライマーC又はプライマーDをプライマーとして用いた場合、マウス AKR 系統由来のゲノムDNAでは、プライマーCをプライマーとして用いた場合に遺伝子が増幅され、さらに、KK マウス Nga 系統由来のゲノムDNAにおいては、プライマーDをプライマーとして用いた場合に遺伝子の増幅が観察された。

30 以上のことから ENA ユニットを 3'末端から3番目に導入したプライマーを用いること

により、ENAユニットを導入していない、従来のプライマーと比べて検出効率が向上することが確認できた。

産業上の利用可能性

5 本発明の方法により、遺伝子多型の検出が可能となる。また、本発明の遺伝子多型の検出 方法を用いることにより、天然型のオリゴヌクレオチドを用いる場合に比べより正確に多 型を検出できるようになる。

また、該方法に用いることができる、遺伝子多型の検出用オリゴヌクレオチド及び該オリゴヌクレオチドを含有する遺伝子多型の検出用キットによって、種々の遺伝子多型を検出できる。本発明は、医療、農業、食品、工業等の種々の産業に利用することができるが、遺伝子多型の検出を必要とする限りにおいて産業分野は制限されない。

請求の範囲

- 1. 以下の(a)及び(b)の特徴を有するオリゴヌクレオチド又はその塩:
 - (a)オリゴヌクレオチドの3²末端から3番目のヌクレオチドが 2²-0,4²-C-エチレンヌクレオチド (ENA) ユニットからなり、他のヌクレオチドは天然型のヌクレオチドからなる:
 - (b) 3 末端部位に対象遺伝子の基準ヌクレオチドに相補的なヌクレオチド、その他の 部位には対象遺伝子のヌクレオチド配列に相補的なヌクレオチドを有する。
- 2. 以下の(a)及び(b)の特徴を有するオリゴヌクレオチド又はその塩:
- 10 (a)オリゴヌクレオチドの3'末端から3番目のヌクレオチドが2'-0,4'-C-エチレンヌクレオチド(ENA)ユニットからなり、他のヌクレオチドは天然型のヌクレオチドからなる:
 - (b) 3 末端部位に対象遺伝子の変異ヌクレオチドに相補的なヌクレオチド、その他の 部位には対象遺伝子のヌクレオチド配列に相補的なヌクレオチドを有する。
- 15 3. 以下の(a) 乃至(d) の特徴を有するオリゴヌクレオチド又はその塩:
 - (a) オリゴヌクレオチドの3'末端部位が対象遺伝子の基準ヌクレオチドに相補的な ヌクレオチドからなる:
 - (b) オリゴヌクレオチドの3' 末端から2番目(3' 末端のヌクレオチドを1番目として2番目) のヌクレオチドが基準遺伝子のヌクレオチドと相補的でないヌクレオチドからなる:
 - (c) その他の部位には対象遺伝子のヌクレオチドと相補的なヌクレオチドを有する:
 - (d) オリゴヌクレオチドの3'末端から3番目(3'末端のヌクレオチドを1番目として3番目)のヌクレオチドが 2'-0,4'-C-エチレンヌクレオチド (ENA) ユニットからなり、他のヌクレオチドは天然型のヌクレオチドからなる。
- 25 4. 以下の(a)乃至(d)の特徴を有するオリゴヌクレオチド又はその塩:
 - (a) オリゴヌクレオチドの3'末端部位が対象遺伝子の変異ヌクレオチドに相補的な ヌクレオチドからなる;
 - (b) オリゴヌクレオチドの3^{*} 末端から2番目(3^{*} 末端のヌクレオチドを1番目として2番目)のヌクレオチドが基準遺伝子のヌクレオチドと相補的でないヌクレオチド
- 30 からなる;

5

(c) その他の部位には対象遺伝子のヌクレオチドと相補的なヌクレオチドを有する;

- (d) オリゴヌクレオチドの3'末端から3番目(3'末端のヌクレオチドを1番目として3番目)のヌクレオチドが 2'-0, 4'-C-エチレンヌクレオチド(ENA) ユニットからなり、他のヌクレオチドは天然型のヌクレオチドからなる。
- 5 5. 18乃至25塩基長からなることを特徴とする、請求項1乃至4のいずれか1項に記載のオリゴヌクレオチド又はその塩。
 - 6. 請求項1乃至5のいずれか1項に記載のオリゴヌクレオチドを使用することを特徴とする、遺伝子多型の検出方法。
 - 7. 請求項1乃至5のいずれか1項に記載のオリゴヌクレオチドを使用することを特徴 とする、遺伝子多型部位のヌクレオチド配列の決定方法。
 - 8. 以下の工程(a)及び(b)を含む、遺伝子多型の検出方法:

10

20

25

- (a) 遺伝子多型部位を含む核酸を鋳型として、請求項1乃至5のいずれか1項に記載のオリゴヌクレオチド、及び該オリゴヌクレオチドと対になってPCRで目的配列部分を増幅できるオリゴヌクレオチドを用いてPCRを行う工程;
- 15 (b) 工程 (a) によって反応産物が生成するか否かによって、核酸中の遺伝子多型の 有無を判定する工程。
 - 9. 以下の工程(a)及び(b)を含む、遺伝子多型部位のヌクレオチド配列の決定方法:
 - (a) 遺伝子多型部位を含む核酸を鋳型として、請求項1乃至5のいずれか1項に記載でのオリゴヌクレオチド、及び該オリゴヌクレオチドと対になってPCRで目的配列部分を増幅できるオリゴヌクレオチドを用いてPCRを行う工程:
 - (b) 工程(a) によって反応産物が生成するか否かによって、核酸中の遺伝子多型部位のヌクレオチド配列を決定する工程。
 - 10. 反応産物の生成の有無の検出に、電気泳動、TaqMan PCR及び MALDI-TOF/MS法からなる群から選択される少なくともいずれか一つを用いることを特徴とする請求項8又は9に記載の方法。
 - 11. 遺伝子多型が一塩基多型であることを特徴とする、請求項6乃至10のいずれか1項に記載の方法。
 - 12. 以下の(a)乃至(d)を含む、遺伝子多型検出用キット:
 - (a) オリゴヌクレオチドの3'末端から3番目のヌクレオチドが2'-0,4'-C-エチレンヌクレオチド(ENA) ユニットからなり、他のヌクレオチドは天然型のヌクレオチド

からなり、3 末端部位に対象遺伝子の基準ヌクレオチドに相補的なヌクレオチド、その他の部位には対象遺伝子のヌクレオチド配列に相補的なヌクレオチドを有するオリゴヌクレオチド:

- (b)(a)に記載のオリゴヌクレオチドと対になって目的配列部分を増幅し得るオリゴヌクレオチド:
 - (c) DNAポリメラーゼ;
 - (d) PCR緩衝液。

- 13. 以下の(a)乃至(d)を含む、遺伝子多型検出用キット:
- (a) オリゴヌクレオチドの3'末端から3番目のヌクレオチドが2'-0,4'-C-エチレンヌクレオチド(ENA) ユニットからなり、他のヌクレオチドは天然型のヌクレオチドからなり、3'末端部位に対象遺伝子の変異ヌクレオチドに相補的なヌクレオチド、その他の部位には対象遺伝子のヌクレオチド配列に相補的なヌクレオチドを有するオリゴヌクレオチド:
- (b) (a) に記載のオリゴヌクレオチドと対になって目的配列部分を増幅し得るプラ 15 イマー;
 - (c) DNAポリメラーゼ;
 - (d) PCR緩衝液。
 - 14. 以下の(a)乃至(e)を含む、遺伝子多型検出用キット:
- (a) オリゴヌクレオチドの3'末端から3番目のヌクレオチドが2'-0,4'-C-エチレンヌクレオチド(ENA) ユニットからなり、他のヌクレオチドは天然型のヌクレオチドからなり、3'末端部位に対象遺伝子の基準ヌクレオチドに相補的なヌクレオチド、その他の部位には対象遺伝子のヌクレオチド配列に相補的なヌクレオチドを有するオリゴヌクレオチド:
- (b) オリゴヌクレオチドの3'末端から3番目のヌクレオチドが2'-0,4'-C-エチレンヌクレオチド(ENA) ユニットからなり、他のヌクレオチドは天然型のヌクレオチドからなり、3'末端部位に対象遺伝子の変異ヌクレオチドに相補的なヌクレオチド、その他の部位には対象遺伝子のヌクレオチド配列に相補的なヌクレオチドを有するオリゴヌクレオチド;
- (c)(a) 又は(b) に記載のオリゴヌクレオチドと対になって目的配列部分を増幅 30 し得るオリゴヌクレオチド;

- (d)DNAポリメラーゼ;
- (e) PCR緩衝液。
- 15. 以下の(a)乃至(d)を含む、遺伝子多型検出用キット:
 - (a) 以下の(i) 乃至(iv) の特徴を有するオリゴヌクレオチド又はその塩:
- 5 (i) オリゴヌクレオチドの3'末端部位が対象遺伝子の基準ヌクレオチドに相補的な ヌクレオチドからなる;
 - (ii) オリゴヌクレオチドの3 末端から2番目(3 末端のヌクレオチドを1番目として2番目) のヌクレオチドが基準遺伝子のヌクレオチドと相補的でないヌクレオチドからなる;
- 10 (iii) その他の部位には対象遺伝子のヌクレオチドと相補的なヌクレオチドを有する;
 - (iv) オリゴヌクレオチドの3'末端から3番目(3'末端のヌクレオチドを1番目として3番目)のヌクレオチドが2'-0,4'-C-エチレンヌクレオチド(ENA) ユニットからなり、他のヌクレオチドは天然型のヌクレオチドからなる;
- 15 (b)(a)に記載のオリゴヌクレオチドと対になって目的配列部分を増幅し得るオリ ゴヌクレオチド:
 - (c) DNAポリメラーゼ:
 - (d) PCR緩衝液。

25

- 16. 以下の(a)乃至(d)を含む、遺伝子多型検出用キット:
- 20 (a) (i) 乃至 (iv) の特徴を有するオリゴヌクレオチド又はその塩:
 - (i) オリゴヌクレオチドの3'末端部位が対象遺伝子の変異ヌクレオチドに相補的な ヌクレオチドからなる;
 - (ii) オリゴヌクレオチドの3 末端から2番目(3 末端のヌクレオチドを1番目として2番目) のヌクレオチドが基準遺伝子のヌクレオチドと相補的でないヌクレオチドからなる:
 - (iii) その他の部位には対象遺伝子のヌクレオチドと相補的なヌクレオチドを有する;
 - (iv) オリゴヌクレオチドの3'末端から3番目(3'末端のヌクレオチドを1番目として3番目)のヌクレオチドが2'-0,4'-C-エチレンヌクレオチド(ENA) ユニットからなり、他のヌクレオチドは天然型のヌクレオチドからなる:

(b)(a)に記載のオリゴヌクレオチドと対になって目的配列部分を増幅し得るオリゴヌクレオチド:

- (c) DNAポリメラーゼ;
 - (d) PCR緩衝液。
- 5 17. 以下の(a) 乃至(e) を含む、遺伝子多型検出用キット:
 - (a) 以下の(i) 乃至(iv) の特徴を有するオリゴヌクレオチド又はその塩;
 - (i) オリゴヌクレオチドの3¹末端部位が対象遺伝子の基準ヌクレオチドに相補的な ヌクレオチドからなる;
- (ii) オリゴヌクレオチドの3 末端から2番目(3 末端のヌクレオチドを1番目 10 として2番目) のヌクレオチドが基準遺伝子のヌクレオチドと相補的でないヌクレオ チドからなる;
 - (iii) その他の部位には対象遺伝子のヌクレオチドと相補的なヌクレオチドを有する:
- (iv) オリゴヌクレオチドの3² 末端から3番目(3² 末端のヌクレオチドを1番目 15 として3番目)のヌクレオチドが 2² -0,4² -C-エチレンヌクレオチド(ENA) ユニットからなり、他のヌクレオチドは天然型のヌクレオチドからなる;
 - (b) (j) 乃至 (iv) の特徴を有するオリゴヌクレオチド又はその塩;
 - (i) オリゴヌクレオチドの3¹ 末端部位が対象遺伝子の変異ヌクレオチドに相補的な ヌクレオチドからなる;
- 20 (ii) オリゴヌクレオチドの3 末端から2番目(3 末端のヌクレオチドを1番目 として2番目) のヌクレオチドが基準遺伝子のヌクレオチドと相補的でないヌクレオ チドからなる;
 - (iii) その他の部位には対象遺伝子のヌクレオチドと相補的なヌクレオチドを有する:
- 25 (iv) オリゴヌクレオチドの3² 末端から3番目(3² 末端のヌクレオチドを1番目 として3番目)のヌクレオチドが 2² -0,4² -C-エチレンヌクレオチド(ENA) ユニットからなり、他のヌクレオチドは天然型のヌクレオチドからなる。
 - (c)(a)又は(b)に記載のオリゴヌクレオチドと対になって目的配列部分を増幅 し得るオリゴヌクレオチド:
- 30 (d) DNAポリメラーゼ:

- (e) PCR緩衝液。
- 18. オリゴヌクレオチド及び該オリゴヌクレオチドと対になって目的配列部分を増幅 し得るオリゴヌクレオチドの塩基長が18万至25塩基長であることを特徴とする、請求項12万至17のいずれか1項に記載の遺伝子多型検出用キット。
- 5 19. 遺伝子多型が一塩基多型であることを特徴とする、請求項12万至18のいずれか 1項に記載のキット。

図2

BEST AVAILABLE COPY

図5 参考例1 参考例2 参考例3 参考例4 参考例5 参考例6 実施例1 実施例2 参考例7 参考例8

С	T	С	T	С	T	С	T	С	Т	 3'末端の配列
なし	なし	1	1	2	2	3	3	4	4	ENAの修飾部位

参考例1 参考例2 参考例9 参考例10 実施例1 実施例2

(KK/Nga, KK/Snk) ACAT (AKR) ---ATCTGTCTACATATATATACACACACA::T---

Primer 5'ATCTGTCTACATATATACACACACAT3' 5'ATCTGTCTACATATATATACACACACAC3'

Α マーカー 参考例12 参考例14 参考例16 実施1例4 参考例18 参考例11 参考例13 参考例15 実施例3 参考例17 200 bp 100 bp T C T T C T C T С 3'末端の配列

> В 参考例13 実施例3 参考例17 参考例14 参考例16 実施例4 参考例18 T С CTCTCTC T

3'末端の配列

図10 A

B

図11

(KK/Nga) A

(AKR) --CATGTCTACTGCTACTTCACATGCG--
Primer 5'CATGTCTACTGCTACTTCACATGKG3'
5'CATGTCTACTGCTACTTCACATGKA3'
K=G/T, G=ENA

図12

Solar Control Control Control

SEQUENCE LISTING

<110> S	ANKYO	COMPANY,	LIMITED
---------	-------	----------	---------

- <120> Method for identifying SNPs
- <130> 2004073SU
- <150> JP 2003-378039
- <151> 2003-11-07
- <150> JP 2004-121080
- <151> 2004-04-16
- <160> 10
- <170> Patentln version 3.1
- <210> 1
- <211> 20
- <212> DNA
- <213> Homo sapiens
- <220>
- <223> Inventor: Koizumi, Makoto
- <400> 1
- cactgggagc attgaggctc

- <210> 2
- <211> 20
- <212> DNA
- <213> Homo sapiens
- <220>

<221> allele

<222> (20)..(20)

<223>

<220>

<221> allele

<222> (20)..(20)

<223> C is transitonded to T

<400> 2

cactgggagc attgaggctt

20

<210> 3

<211> 28

<212> DNA

<213> Mus musculus

<220>

<221> allele

<222> (28)..(28)

<223> C is transitioned to T

<400> 3

atctgtctac atatatatac acacacat

28

<210> 4

<211> 28

<212> DNA

<213> Mus musculus

<400> 4

atctgtctac atatatatac acacacac

<210>	5				
<211>	18			•	
<212>	DNA				
<213>	Homo sapiens				
<400>	5				
gggtgaa	aggc tgtgaccg		•		18
				•.• • • • • • • •	
<210>					
<211>					
<212>					
<213>	Mus musculus				
-400-					
<400>					05
gicacia	gac tactgettac tgtcc				25
			· .		
<210>	7				
<211>	25				
<212>	DNA				
<213>	Artificial				
<220>		, _/ n	•		
<223>	primerE '				
<400>					
catgtcta	ct gctacttcac atgtg		,		25
	•			·	
-040-	0				
<210> <211>	8				
<211>	25 DNA				

<213> Artificial

<220> <223> primer F -<400> 8 catgtctact gctacttcac atgta 25 <210> 9 <211> 25 <212> DNA <213> Artificial <220> <223> primer G <400> 9 catgtctact gctacttcac atggg 25 <210> 10 <211 > 25 <212> DNA <213> Artificial <220>

<223> primer H

catgtctact gctacttcac atgga

<400> 10

INTERNATIONAL SEARCH REPORT

International application No.

		I PC	T/JP2004/016715	
A. CLASSIFICA Int.Cl ⁷	TION OF SUBJECT MATTER C12N15/11, C12Q1/68, C07H21/	04		
	national Patent Classification (IPC) or to both nation	al classification and IPC		
B. FIELDS SEAI				
Minimum documer Int.Cl ⁷	ntation searched (classification system followed by c C12N15/11, C12Q1/68, C07H21/	lassification symbols) 0 4		
	rched other than minimum documentation to the ext e consulted during the international search (name of			
JSTPlus,	WPI (DIALOG), BIOSIS (DIALOG)	PUBMED	search terms used)	
T	S CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where a	opropriate, of the relevant passage	Relevant to claim No.	
	KOIZUMI, M. et al., Triplex: 2'-O,4'-C-ethylene-bridged nu having C3'-endo conformation pH, Nucleic Acids Res. (2003 No.12, pages 3267 to 3273	acleic acids(ENA) at physiological	1-19	
	MORITA, K. et al., 2'-0,4'-C- Nucleic Acids(ENA): Highly Nu and Thermodynamically Stable for Antisense Drug, Bioorg.Me (2002), Vol.12, No.1, pages 1	1-19		
	Masafumi MATSUO et al., Kosei Shinkei Shikkan Kenkyu Itakuh Hokokushu, Heisei 14 Nendo (2	0 1-19		
		. •		
	nents are listed in the continuation of Box C.	See patent family annex.		
"A" document defini to be of particula	es of cited documents: ing the general state of the art which is not considered ar relevance on or patent but published on or after the international	the principle or theory underly	the international filing date or priority ne application but cited to understand ring the invention nee; the claimed invention cannot be	
"L" document which cited to establish	h may throw doubts on priority claim(s) or which is h the publication date of another citation or other	step when the document is tak	e considered to involve an inventive	
special reason (a: "O" document referrir "P" document publist priority date clair	ng to an oral disclosure, use, exhibition or other means hed prior to the international filing date but later than the	considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art "&" document member of the same patent family		
Date of the actual co 17 Januar	mpletion of the international search cy, 2005 (17.01.05)	Date of mailing of the international search report O1 February, 2005 (01.02.05)		
Name and mailing ad Japanese	dress of the ISA/ Patent Office	Authorized officer		
Facsimile No.	econd sheet) (January 2004)	Telephone No.		

国際調查報告

A. 発明の属する分野の分類(国際特許分類(I P C)) Int. Cl' C 1 2 N 1 5 / 1 1 , C 1 2 Q 1 / 6 8 , C 0 7 H 2 1 / 0 4						
B 調査を行った分野						
B. 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC)) Int.Cl' C12N15/11, C12Q1/68, C07H21/04						
最小限资料以外	最小限資料以外の資料で調査を行った分野に含まれるもの					
国際調査で使用する。	用した電子データベース(データベースの名称、 ıs, WPI(DIALOG), BIOSIS(D	調査に使用した用語) IALOG), PUBMED				
	ると認められる文献					
引用文献の カテゴ リー*	引用文献名 及び一部の箇所が関連する	ときは、その関連する箇所の表示	関連する 請求の範囲の番号			
A A	KOIZUMI M. et al., Triplex form ethylene-bridged nucleic acids conformation at physiological process (2003-Jun), Worlt A. et al. 2'-0, 4'-C-Ethylene-bridged nucleic Acids Res.	(ENA) having C3'-endo oH, Vol.31, No.12, p.3267-3273 Lene-Bridged Nucleic Acids	1 - 19 $1 - 19$			
	(ENA): Highly Nuclease-Resistar Stable Oligonucleotides for Ant Bioorg. Med. Chem. Lett. (2002), Vo	isense Drug,				
区 個の続き	とにも文献が列挙されている。	□ パテントファミリーに関する別	紙を参照。			
もの 「E」回際 以後にな 「L」優先権は での では では では では では では では では では では では では では	のカテゴリー 他のある文献ではなく、一般的技術水準を示す 自日前の出願または特許であるが、国際出願日 公表されたもの E張に疑義を提起する文献又は他の文献の発行 は他の特別な理由を確立するために引用する 理由を付す) はる明示、使用、展示等に言及する文献 面目的で、かつ優先権の主張の基礎となる出願	の日の後に公表された文献 「T」国際出願日又は優先日後に公表さ出願と矛盾するものではなく、多の理解のために引用するもの 「X」特に関連のある文献であって、当の新規性又は進歩性がないと考え 「Y」特に関連のある文献であって、当上の文献との、当業者にとって最よって進歩性がないと考えられる「&」同一パテントファミリー文献	巻明の原理又は理論 当該文献のみで発明 えられるもの 当該文献と他の1以 自明である組合せに 5もの			
国際調査を完了	「した日 17.01.2005	国際調査報告の発送日				
日本日	0名称及びあて先 国特許庁(ISA/JP) 郵便番号100-8915 B千代田区霞が関三丁目4番3号	特許庁審査官(権限のある職員) 上 條 路 電話番号 03-3581-1101	4B 9453 内線 3448			

C (続き).	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	松尾雅文 他, 厚生労働省精神・神経疾患研究委託費による研究報告集 平成14年度 (2003-Jul), p. 590	1-19
		·
·		
		`
·		

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.