Contextual Maritime Anomaly Detection

Huub Van de Voort

Introduction

Methodolog

Doculto

Discussion

Defenses

Contextual Maritime Anomaly Detection Master Thesis Defense

Huub Van de Voort

Jheronimus Academy of Data Science MSc in Data Science for Business and Entrepreneurship

July 2025

Supervisors:

Indika PK Weerasingha Dewage Fedor Baart Rogier Brussee

Outline

Contextual Maritime Anomaly Detection

Huub Van de Voort

Introduction

Methodology

Discussio

Conclusion

1 Introduction

2 Methodology

3 Results

4 Discussion

5 Conclusion

Domain Context

Contextual Maritime Anomaly Detection

Huub Van de Voort

Introduction

Methodology

0.

Discussion

Conclusio

Deference

 There exists a significant interdependence between economic prosperity and access to maritime trade [2]

- Consequences of maritime incidents impose significant national risks [1]
- Maritime Situational Awareness (MSA) systems mitigate adverse outcomes of maritime incidents [6, 4]

Problem Statement

Contextual Maritime Anomaly Detection

Huub Van de Voort

Introduction

Methodology

0.

Discussio

Conclusio

- Deep learning approaches for maritime anomaly detection ignore meteorological context
- Weather-induced shipping patterns are flagged as anomalous
- High false positive rates reduce MSA system usability for Vessel Traffic Monitoring staff [5]

Research Rationale

Contextual Maritime Anomaly Detection

Huub Van de Voort

Introduction

ivietnodo

Discussion

Literature Gap

Contextual Maritime Anomaly Detection

Huub Van de Voort

Introduction

Methodology

......

Results

Conclusio

Reference

Literature Gap

Current deep learning anomaly detection approaches inadequately address weather-induced behavior, resulting in high false alarm rates

Research Objective

Contextual Maritime Anomaly Detection

Huub Van de Voort

Introduction

Methodology

meemodolog

Results

Conclusio

Main Research Question

How can the integration of meteorological information augment the effectiveness of deep learning approaches in distinguishing weather-induced vessel movements from maritime trajectory anomalies?

Sub-research Objectives

Contextual Maritime Anomaly Detection

Huub Van de Voort

Introduction

MELHOGO

.

resuits

Conclusio

Reference

Sub-research Questions (Summarized)

RQ1: Impact of Model Complexity

RQ2: Impact of Meteorological Variables

RQ3: Model Performance by Anomaly Type

RQ4: Model Performance Under Varying Weather Conditions

Data Sources

Contextual Maritime Anomaly Detection

Huub Van de Voort

Introduction

Methodology

11000110

Conclusio

AIS Data

- US West Coast dataset [3]
- January-September 2023
- 7,340 unique vessel trajectories
- Position, speed, course, timestamp

Meteorological Data

- Fifth generation ECMWF Reanalysis (ERA5)
- Wind components (10m above sea level)
- Wave height, period and direction

Data Integration

Spatial-temporal joining: AIS trajectories enriched with meteorological statistics (μ , σ) per trajectory

Model Architecture

Contextual Maritime Anomaly Detection

Huub Van de Voort

Introduction

Methodology

Discussio

. . .

Reference

Figure: Model Architecture Adapted from [3]. **Key Enhancement:** Weather statistics (μ, σ) per trajectory integrated into the Dynamic Pattern Clustering component.

Experimental Design I

Contextual Maritime Anomaly Detection

Huub Van de Voort

Introduction

Methodology

0.

Conclusio

Deferences

Metrics

- 1 ROC AUC Score: overall discriminative capabilities
- Specificity: true negative rate
- 3 Sensitivity: true positive rate
- 4 McNemar's Statistical Test (Specificity)

Experimental Design II

Contextual Maritime Anomaly Detection

Huub Van de Voort

Introduction

Methodology

Discussion

Conclusio

Conclusio

Synthetic Anomaly Types:

- **1 Shift Deviation:** Lateral/longitudinal displacements
- 2 Abnormal Heading: Lateral/longitudinal displacements and course over ground deviations
- **Abnormal Speeding:** Velocity deviations with Gaussian noise

Evaluation Parameters:

- *d*: Spatial deviation
- r: Ratio of anomalous trajectories (0.1)

RQ1: Optimal GMM Components I

Contextual Maritime Anomaly Detection

Huub Van de Voort

Introduction

Methodo

Results

Discussion

RQ1: Optimal GMM Components II

Contextual Maritime Anomaly Detection

Huub Van de Voort

Results

Key Finding

With added model complexity, ROC AUC Score remains stable; specificity increases at expense of sensitivity.

RQ2: Impact of Meteorological Variables

Contextual Maritime Anomaly Detection

Huub Van de Voort

Introduction

Methodolog

Results

Discussion

Conclusio

Table: Weather-Enhanced minus Baseline Model Performance

Setup	Specificity	Sensitivity	ROC AUC
$A\;(d\in\{0,1\})$	+0.0372	-0.0276	-0.0096
B $(d \in \{0,2\})$	+0.0574	-0.0617	-0.0161

Key Finding

Consistent improvement in specificity (reduced false alarms)

RQ3: Performance by Anomaly Type

Contextual Maritime Anomaly Detection

Huub Van de Voort

Introductio

Methodology

Results

Discussion

Canalusi

Table: Weather-Enhanced minus Baseline Performance

Anomaly Type	ROC AUC	Sensitivity	Specificity
Shift Deviation	-0.0044	+0.1375	-0.1132
Abnormal Heading	-0.0082	-0.1585	+0.1676
Abnormal Speeding	-0.0161	-0.0617	+0.0574

Key Finding

Synthetic anomalies that have no relation with actual weather-induced behaviors will result in better distinguishability from normal behavior, resulting in less false alarms.

RQ4: Performance Under Weather Severity

Contextual Maritime Anomaly Detection

Huub Van de Voort

Introductio

Methodology

Results

Discussion

Canalusi

Table: High Severity minus Low Severity Weather Conditions

Anomaly Type	ROC AUC	Sensitivity	Specificity
Shift Deviation	+0.0637	-0.0545	+0.1044
Abnormal Heading	+0.1099	+0.2571	-0.0384
Abnormal Speeding	+0.0782	-0.0105	+0.1545
Mean	+0.0839	+0.0640	+0.0735

Key Finding

Weather-enhanced model improves overall discriminative performance under severe weather conditions.

Key Findings Summary

Contextual Maritime Anomaly Detection

Huub Van de Voort

Introduction

Methodology

...ct..odd.og

Results

Discussi

Conclusio

.

- **Stable Discriminative Capability:** Overall ROC AUC remains stable with weather integration
- Improved Specificity: Consistent reduction in false positives across experimental setups
- **Anomaly-Type Dependent:** Reduction of false positives is most effective for heading and speeding anomalies
- Weather Severity Resilience: Enhanced overall discriminative performance during severe weather conditions

Trade-off

Improved specificity (fewer false alarms) comes at the cost of slightly reduced sensitivity (missed anomalies)

Discussion

Contextual Maritime Anomaly Detection

Huub Van de Voort

Introduction

Methodology

-

Discussion

D 15005101

Deference

Implications

- For maritime operations
- For researchers

Limitations

- Geographical scope
- Validation framework

Future Research Directions & Contribution

Contextual Maritime Anomaly Detection

Huub Van de Voort

Introduction

Methodology

D:-----

Discussion

Conclusion

Future Research

- Generalizability
- Architecture Optimization
- System Usability

Contribution

 Successfully demonstrated that meteorological data integration in a multi-model deep learning model can significantly improve the ability to distinguish weather-induced vessel movements from anomalies.

The End

Contextual Maritime Anomaly Detection

Huub Van de Voort

Introduction

ivietnodo

D 1.

Discussion

Conclusion

References

Thank you for your attention!

Questions & Additional discussions

Backup: Model Hyperparameters

Contextual Maritime Anomaly Detection

Huub Van de Voort

Introduction

Methodology

Discussion

Conclusion

Parameter	Value
Embedding Dimension	32/48
Transformer Heads	8
Transformer Layers	4
Max Sequence Length	10
GMM Components (C)	20/30
Learning Rate	1×10^{-5}
Optimizer	AdamW
Training Epochs	250

Backup: Statistical Significance Tests

Contextual Maritime Anomaly Detection

Huub Van de Voort

Introduction

Methodology

0.

Conclusion

Conclusio

Statistical Significance (McNemar's test, p < 0.01):

■ \checkmark Shift Deviation: $p = 2.72 \times 10^{-17}$

■ \checkmark Abnormal Heading: p = 8.77 \times 10⁻³

• \times Abnormal Speeding: p = 0.332

Backup: Test Set Weather Distribution

Contextual Maritime Anomaly Detection

Huub Van de Voort

Introduction

Methodolog

Poculto

Discussion

Conclusion

Backup: Relationship Between Wave Height and Windspeed

Contextual Maritime Anomaly Detection

Huub Van de Voort

Introduction

Methodologo

Wicelloading.

D1.......

Discussio

Conclusion

Backup: Aggregated Weather Statistics

Contextual Maritime Anomaly Detection

Huub Van de Voort

Introduction

Methodology

2 oculto

Discussion

Conclusion

Backup: Synthetic Anomalies I

Contextual Maritime Anomaly Detection

Huub Van de Voort

Introduction

Methodolo

_ .

Results

Conclusion

Backup: Synthetic Anomalies II

Contextual Maritime Anomaly Detection

Huub Van de Voort

Introduction

Methodo

. .

Conclusion

Backup: Synthetic Anomalies III

Contextual Maritime Anomaly Detection

Huub Van de Voort

Introduction

Marketal

resuits

Conclusion

Concidence

References I

Contextual Maritime Anomaly Detection

Huub Van de Voort

Introductio

Methodology

0,

Results

Discussi

Conclusion

References

European Maritime Safety Agency.
Annual Overview of Marine Casualties and Incidents 2024.
Annual Overview Ares(2024)8229157, European Maritime Safety Agency, Lisbon, Portugal, june 2024.

Jesse M Lane and Michael Pretes.

Maritime dependency and economic prosperity: Why access to oceanic trade matters.

Marine Policy, 121:104180, 2020.

Hui Li, Wengen Li, Shuyu Wang, Hanchen Yang, Jihong Guan, and Yichao Zhang.

Stad: Ship trajectory anomaly detection in ocean with dynamic pattern clustering.

Ocean Engineering, 313:119530, 2024.

References II

Contextual Maritime Anomaly Detection

Huub Van de Voort

Introduction

Methodology

D IDCUDDIOI

Conclusio

References

Maohan Liang, Lingxuan Weng, Ruobin Gao, Yan Li, and Liang Du.

Unsupervised maritime anomaly detection for intelligent situational awareness using ais data.

Knowledge-Based Systems, 284:111313, 2024.

- Saeed Mehri, Ali Asghar Alesheikh, and Anahid Basiri. A context-aware approach for vessels' trajectory prediction. *Ocean Engineering*, 282:114916, 2023.
- Brian Murray and Lokukaluge Prasad Perera.

 A dual linear autoencoder approach for vessel trajectory prediction using historical ais data.

Ocean engineering, 209:107478, 2020.