Elements of Statistical Learning.
· For several cases the enal is to use the inputs to product the values
· For several cases the goal is to use the inputs to predict the values of the outputs. (Supervised Learning)
Qualitative variables: Categorical or discrete variables.
Distintiction in output type Regression Quantitative outputs. Classification Qualitative outputs.
Classification Qualitative outputs.
• Qualitative Values: "Success" or "failure" "Survived" or "died"
Input variable: X
Quantitative output 1
Quantitative output 1 Qualitative output G
Observed values are written in lowercase; ith of X is written as
Linear models:
Given a vector of inputs $X^T = (\chi_1, \chi_2, \chi_p)$, we predict the output Y via the model
j=1
Include Bo in the vector of coefficients B and then
Include Bo in the vector of coefficients B and then write the linear model in vector form:
$\hat{\mathbf{J}} = \mathbf{X}^{T} \mathbf{\beta} \qquad (2.2)$
How do use fit the linear model to a set of training data?
By for the most popular is the method of least squares.
By for the most popular is the method of least squares. In this approach, we pick the coefficients B to minimize the residual sum of squares
By for the most popular is the method of least squares. In this approach, we pick the coefficients B to minimize the residual sum of squares

```
RSS(B) = \sum_{i=1}^{N} (Y_i - X_i^T B)^2 \qquad (2.3)
        y: = heal values

g = x: B Predicted values.
     Cuadratic function of the parameters - Minimum always exists, but may not be unique. We can write:
                                                                                                              ASS(B) = (y - xB)^{T}(y - xB) (2.4)
       X & Nxp
                                                                                    (Each row is an input vector)
         yen
                                                                    ( Vector of the outputs)
                                                                                                                             \alpha = X^T A x

\frac{\partial a}{\partial x} = \chi^{T}(A + A^{T})

\chi = 2 \sum_{i=1}^{n} \alpha_{ij} \chi_{i} \chi_{j} \qquad \text{Taking } \frac{\partial a}{\partial x_{k}} = 2 \alpha_{ij} \chi_{i} \delta_{jk} + 2 \alpha_{ij} \delta_{ik} \chi_{j}

\frac{\partial a}{\partial x} = \chi^{T}(A + A^{T})

\frac{\partial a}{\partial x
              \frac{\partial d}{\partial x_{\kappa}} = \sum_{i} a_{i\kappa} \chi_{i} + \sum_{j} a_{\kappa j} \chi_{j} = \chi^{T} A^{T} + \chi^{T} A
                                                  ad = xT (AT +A) if the matrix is symmetric:
                                                                                                                                                                                            dd = 2xTA.
                                  \frac{\partial R}{\partial \beta} = -2x^{T}(y-x\beta) = 0
Organiting: XTy-XTXB=0
                                                                                                                        \hat{\beta} = (\chi^{\dagger} \chi) \chi^{\dagger} j = 0 \qquad (2.6)
     The fitted value at ith input is \hat{y_i} = \hat{y_i}(x_i) = x_i T_{\hat{B}}
```

```
· Probabilistic approach:
  Regression problem with P(y1x)=N(y1f(x), o2)
   \chi \in \mathbb{R}^{0} inputs \hat{y} = f(x) + \epsilon.

\hat{y} \in \mathbb{R} targets.
  and E = N(0, \sigma^2) Gaussian dishibution with 0 mean and variance \sigma^2
  Model parameters O (Learning this)
      P(y | x, 0) = N (y | x 0, 02) = y = x 0+6, 6~ N(0,02)
  Parameter estimation:
  We are given a maining set D := \{(x_i, y_i), \dots, (x_N, y_N)\}
Consisting of N inputs J \in \mathbb{R}^N
                               y; and y; are conditionally independent given their respective in puts.
    Xn
   P(y|x,\theta) = p(y_1, ..., y_n|x_1, x_2, ..., x_n, \theta)
  P(y|x,\theta) = \prod_{i=1}^{n} p(y_n|x_n,\theta) = \prod_{i=1}^{n} N(y_n|x_n^{\dagger}\theta,\sigma^2)
  Maximum Livelihood estimation:
    Онг: Maximizing likelihood (Maximize the predictive distribution of the maining data given the model parameters:
                            DHI= argmax P(y1x, €)
 Using the properties of logarithms on products, we minimize the negative log-line lihoood:
```

```
-\log p(y|x;\theta) = -\log \prod p(y;|x;\theta) = -\sum \log (p(y;|x;\theta))
Factorization due to independence.

    \left| \begin{array}{c} \log P(y_n \mid \chi_n; \theta) = -1 & (y_n - \chi_n^T \theta)^2 + C. \\ 2\sigma^2 & \\ \end{array} \right|

    \left| \begin{array}{c} \chi_n = 1 \\ 2\sigma^2 & \\ \end{array} \right|

   \frac{1}{2}(\theta) = \frac{1}{2\sigma^{2}}(y-\chi^{T}\theta)(y-\chi\theta) = \frac{1}{2\sigma^{2}}\|y-\chi\theta\|^{2}.
  Computing the Gradient:
                  \frac{\partial l}{\partial \theta} = \frac{\partial l}{\partial \theta} \left( \frac{1}{2\sigma^2} \left( \frac{1}{2\sigma^2} \left( \frac{1}{2\sigma^2} \right) \right) \left( \frac{1}{2\sigma^2} \right) \right)
                          = \frac{1}{2\sigma^2} \frac{d}{d\theta} \left( y^T q - 2 g^T \chi \theta + \theta^T \chi^T \chi \theta \right)
                         =\frac{1}{\sigma^{2}}\left(-y^{T}x+\theta^{T}x^{T}x\right)
                    Onl = (xTx) XTy.
Again
Now we can use monomial to express different features. For example for a second order polynomial:
                  PHL = (XTX) XTY
```