SRP-99

Celeste Vargas (305395537)

2023-03-15

I. Downloading and Cleaning Data

```
data <- read.csv("C://SRP//AAP 2021-2022 Annual Survey, merged with membership data, deidentified.csv")
#head(data)
#colnames(data)
#View(data)
library(haven)
## Warning: package 'haven' was built under R version 4.2.3
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.2.3
## Warning: package 'ggplot2' was built under R version 4.2.3
## Warning: package 'tibble' was built under R version 4.2.3
## Warning: package 'tidyr' was built under R version 4.2.3
## Warning: package 'readr' was built under R version 4.2.3
## Warning: package 'purrr' was built under R version 4.2.3
## Warning: package 'dplyr' was built under R version 4.2.3
## Warning: package 'stringr' was built under R version 4.2.3
## Warning: package 'forcats' was built under R version 4.2.3
## Warning: package 'lubridate' was built under R version 4.2.3
```

```
## -- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
## v dplyr 1.1.2 v readr
                                    2.1.4
                      v stringr 1.5.0
## v forcats 1.0.0
## v ggplot2 3.4.2 v tibble
                                  3.2.1
## v lubridate 1.9.2
                        v tidyr
                                   1.3.0
              1.0.1
## v purrr
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become error
library(broom)
## Warning: package 'broom' was built under R version 4.2.3
library(pander)
## Warning: package 'pander' was built under R version 4.2.3
data <- read_sav("C://SRP//AAP 2021-2022 Annual Survey cleaned, merged with membership data, FTSP var,
View(data)
unique(data$majorName)
## [1] ""
## [2] "Psychobiology"
## [3] "Political Science"
## [4] "Spanish and Linguistics"
## [5] "Neuroscience"
## [6] "Chicana and Chicano Studies"
## [7] "Molecular, Cell, and Developmental Biology"
## [8] "Microbiology,Immunology&Molecular Genetics"
## [9] "Spanish and Portuguese"
## [10] "Human Biology and Society (BS)"
## [11] "Communication"
## [12] "Pre Psychobiology"
## [13] "Asian Studies"
## [14] "Marine Biology"
## [15] "Applied Mathematics"
## [16] "PreInternational Development Studies"
## [17] "Sociology"
## [18] "Education and Social Transformation"
## [19] "Korean"
## [20] "History"
## [21] "Pre Psychology"
## [22] "Biology"
## [23] "Pre Public Affairs"
## [24] "Pre Mathematics"
## [25] "Psychology"
## [26] "Pre-Data Theory"
## [27] "Presociology"
```

- ## [28] "Pre Economics"
- ## [29] "Pre Business-Economics"
- ## [30] "Pre Political Science"
- ## [31] "Physiological Science"
- ## [32] "Civil Engineering"
- ## [33] "Anthropology B.S."
- ## [34] "Undeclared-Social Science"
- ## [35] "English"
- ## [36] "Public Affairs"
- ## [37] "Cognitive Science"
- ## [38] "Pre Cognitive Science"
- ## [39] "Ethnomusicology"
- ## [40] "Anthropology"
- ## [41] "Bioengineering"
- ## [42] "Gender Studies"
- ## [43] "Mathematics of Computation"
- ## [44] "Economics"
- ## [45] "Ecology, Behavior, and Evolution"
- ## [46] "Pre Mathematics/Economics"
- ## [47] "Environmental Science"
- ## [48] "Biochemistry"
- ## [49] "American Literature and Culture"
- ## [50] "Pre Human Biology and Society (BS)"
- ## [51] "Nursing-Generic/Prelicensure"
- ## [52] "Linguistics and Psychology"
- ## [53] "Mathematics for Teaching"
- ## [54] "Business-Economics"
- ## [55] "Electrical Engineering"
- ## [56] "Film & Television"
- ## [57] "Applied Linguistics"
- ## [58] "Undeclared-Humanities"
- ## [59] "International Development Studies"
- ## [60] "Global Studies"
- ## [61] "Philosophy"
- ## [62] "African American Studies"
- ## [63] "Aerospace Engineering"
- ## [64] "Mechanical Engineering"
- ## [65] "Spanish"
- ## [66] "Latin American Studies"
- ## [67] "Astrophysics"
- ## [68] "Middle Eastern Studies"
- ## [69] "Statistics"
- ## [70] "Pre Mathematics for Teaching"
- ## [71] "Dance"
- ## [72] "Chemical Engineering"
- ## [73] "Chemistry"
- ## [74] "Geography/Environmental Studies"
- ## [75] "Precomputational and Systems Biology"
- ## [76] "Geography"
- ## [77] "Biophysics"
- ## [78] "Atmospheric and Oceanic Sciences"
- ## [79] "Pre Statistics"
- ## [80] "Art History"
- ## [81] "Computational and Systems Biology"

```
## [82] "Undeclared"
## [83] "Pre Human Biology and Society"
## [84] "Preeducation and Social Transformation"
## [85] "Pre Applied Mathematics"
life_sci <- c("Psychobiology", "Pre Psychobiology", "Neuroscience",</pre>
              "Molecular, Cell, and Developmental Biology",
              "Microbiology, Immunology&Molecular Genetics", "Marine Biology", "Biology", "Physiological
              , "Human Biology and Society (BS)", "Cognitive Science",
              "Pre Cognitive Science", "Ecology, Behavior, and Evolution",
              "Environmental Science", "Pre Human Biology and Society (BS)",
              "Linguistics and Psychology", "Geography/Environmental Studies",
              "Precomputational and Systems Biology",
              "Computational and Systems Biology",
              "Pre Human Biology and Society", "Psychology", "Pre Psychology")
phy_sci <- c("Applied Mathematics", "Pre Mathematics", "Pre-Data Theory",</pre>
             "Mathematics of Computation", "Pre Mathematics/Economics",
             "Biochemistry", "Mathematics for Teaching",
             "Pre Mathematics/Economics", "Astrophysics",
             "Statistics", "Chemistry", "Biophysics",
             "Atmospheric and Oceanic Sciences", "Pre Statistics",
             "Pre Applied Mathematics")
```

II. Two-sample T-tests

```
life_science <- data[data$majorName %in% life_sci,]

physical_science <- data[data$majorName %in% phy_sci,]

#Finding n's

one <- life_science %>% count(SelfDoubt_Re_Ability) %>% as_factor()
 two <- life_science %>% count(SelfConfidence_in_Academics)
 three <- life_science %>% count(Sense_of_Belonging)

four <- physical_science %>% count(SelfDoubt_Re_Ability)
 five <- physical_science %>% count(SelfConfidence_in_Academics)
 six <- physical_science %>% count(Sense_of_Belonging)

n_function <- function(n){
    last_number <- length(n$n)
    na <- n$n[last_number]
    the_sum <- sum(n$n[-last_number])

    my_data_frame <- data.frame(n = the_sum, na = na)
    my_data_frame</pre>
```

```
}
n_function(one)
##
      n na
## 1 196 29
n_function(two)
      n na
## 1 196 29
n_function(three)
##
      n na
## 1 197 28
n_function(four)
##
   n na
## 1 34 6
n_function(five)
##
     n na
## 1 36 4
n_function(six)
##
     n na
## 1 36 4
dim(life_science)
## [1] 225 231
dim(physical_science)
## [1] 40 231
life_science %>% count(majorName) %>% as_factor()
## # A tibble: 21 x 2
##
     majorName
     <chr>
##
                                                <int>
## 1 Biology
                                                   44
## 2 Cognitive Science
                                                    3
```

```
## 3 Computational and Systems Biology 1
## 4 Ecology, Behavior, and Evolution 4
## 5 Environmental Science 9
## 6 Geography/Environmental Studies 1
## 7 Human Biology and Society (BS) 10
## 8 Linguistics and Psychology 1
## 9 Marine Biology 10 Microbiology, Immunology&Molecular Genetics 13
## # i 11 more rows
```

physical_science %>% count(majorName) %>% as_factor()

```
## # A tibble: 14 x 2
##
     majorName
                                           n
##
      <chr>>
                                       <int>
## 1 Applied Mathematics
                                           5
## 2 Astrophysics
## 3 Atmospheric and Oceanic Sciences
                                           1
## 4 Biochemistry
                                          13
## 5 Biophysics
                                           1
                                           7
## 6 Chemistry
## 7 Mathematics for Teaching
                                           2
## 8 Mathematics of Computation
                                           1
## 9 Pre Applied Mathematics
                                           1
## 10 Pre Mathematics
                                           3
## 11 Pre Mathematics/Economics
                                           2
## 12 Pre Statistics
                                           1
## 13 Pre-Data Theory
                                           1
## 14 Statistics
```

life_science %>% count(degreeExpectedTerm) %>% as_factor()

```
## # A tibble: 7 x 2
     degreeExpectedTerm
     <chr>>
                         <int>
## 1 222
                             8
## 2 22F
                             2
## 3 22S
                            44
## 4 232
## 5 23S
                            61
## 6 24S
                            36
## 7 25S
                            72
```

physical_science %>% count(degreeExpectedTerm) %>% as_factor()

```
## # A tibble: 6 x 2

## cdgreeExpectedTerm n

## 22F 1

## 2 22S 7

## 3 232 1

## 4 23S 13
```

```
## 5 24S
## 6 25S
                          13
life_science %>% count(gender_recoded) %>% as_factor()
## # A tibble: 2 x 2
    gender_recoded
##
    <fct>
            <int>
## 1 Male
                      40
## 2 Female
                     185
physical_science %>% count(gender_recoded)
## # A tibble: 2 x 2
    gender_recoded
     <dbl+lbl> <int>
## 1 0 [Male]
                      12
## 2 1 [Female]
                      28
life_science %>% count(gender) %>% as_factor()
## # A tibble: 5 x 2
    gender
##
                                     n
##
     <fct>
                                 <int>
## 1 Female
                                   182
## 2 Male
                                    38
                                     2
## 3 Non-binary or non-conforming
                                     2
## 4 Prefer not to respond
## 5 Different Identity:
                                     1
physical_science %>% count(gender) %>% as_factor()
## # A tibble: 2 x 2
    gender
     <fct> <int>
## 1 Female
              28
## 2 Male
              12
life_science %>% count(academic_status) %>% as_factor()
## # A tibble: 2 x 2
    academic_status
     <fct> <int>
## 1 Freshman
                      189
## 2 Transfer
                       36
```

physical_science %>% count(academic_status) %>% as_factor()

```
## # A tibble: 2 x 2
## academic_status n
## <fct> <int>
## 1 Freshman 31
## 2 Transfer 9
```

hist(life_science\$SelfDoubt_Re_Ability)

Histogram of life_science\$SelfDoubt_Re_Ability

hist(life_science\$SelfConfidence_in_Academics)

Histogram of life_science\$SelfConfidence_in_Academics

hist(life_science\$Sense_of_Belonging)

Histogram of life_science\$Sense_of_Belonging


```
shapiro.test(life_science$SelfDoubt_Re_Ability)
```

```
##
## Shapiro-Wilk normality test
##
## data: life_science$SelfDoubt_Re_Ability
## W = 0.97076, p-value = 0.0004105
```

shapiro.test(life_science\$SelfConfidence_in_Academics)

```
##
## Shapiro-Wilk normality test
##
## data: life_science$SelfConfidence_in_Academics
## W = 0.95095, p-value = 2.888e-06
```

shapiro.test(life_science\$Sense_of_Belonging)

```
##
## Shapiro-Wilk normality test
##
## data: life_science$Sense_of_Belonging
## W = 0.94546, p-value = 8.362e-07
```

Histogram of physical_science\$SelfDoubt_Re_Ability

hist(physical_science\$SelfConfidence_in_Academics)

Histogram of physical_science\$SelfConfidence_in_Academics

hist(physical_science\$Sense_of_Belonging)

Histogram of physical_science\$Sense_of_Belonging


```
shapiro.test(physical_science$SelfDoubt_Re_Ability)
```

```
##
## Shapiro-Wilk normality test
##
## data: physical_science$SelfDoubt_Re_Ability
## W = 0.94258, p-value = 0.07363
```

shapiro.test(physical_science\$SelfConfidence_in_Academics)

```
##
## Shapiro-Wilk normality test
##
## data: physical_science$SelfConfidence_in_Academics
## W = 0.93779, p-value = 0.04337
```

shapiro.test(physical_science\$Sense_of_Belonging)

```
##
## Shapiro-Wilk normality test
##
## data: physical_science$Sense_of_Belonging
## W = 0.93384, p-value = 0.03277
```

```
t_test1 <- t.test(life_science$SelfDoubt_Re_Ability, physical_science$SelfDoubt_Re_Ability)
t_test2 <- t.test(life_science$SelfConfidence_in_Academics, physical_science$SelfConfidence_in_Academic
t_test3 <- t.test(life_science$Sense_of_Belonging, physical_science$Sense_of_Belonging)

table1 <- tidy(t_test1)
pander(t_test1)</pre>
```

Table 1: Welch Two Sample t-test: life_science\$SelfDoubt_Re_Ability and physical_science\$SelfDoubt_Re_Ability (continued below)

Test statistic	df	P value	Alternative hypothesis	$mean\ of\ x$
-2.092	42.16	0.04253 *	two.sided	2.423

mean of y
2.75

table2 <- tidy(t_test2)
pander(t_test2)</pre>

Table 3: Welch Two Sample t-test: life_science\$SelfConfidence_in_Academics and physical_science\$SelfConfidence_in_Academics

Test statistic	df	P value	Alternative hypothesis	mean of x	mean of y
0.7507	46.14	0.4566	two.sided	2.122	2.028

table3 <- tidy(t_test3)
pander(t_test3)</pre>

Table 4: Welch Two Sample t-test: life_science\$Sense_of_Belonging and physical_science\$Sense_of_Belonging

Test statistic	df	P value	Alternative hypothesis	$mean\ of\ x$	mean of y
-0.4162	44.58	0.6792	two.sided	6.513	6.694

mean(physical_science\$TermGPA, na.rm = TRUE)

[1] 3.2993

mean(life_science\$TermGPA, na.rm = TRUE)

[1] 3.527969

```
ggplot(life_science, aes(x = AAP_21_22_utilize1)) +
geom_bar()
```

Warning: Removed 9 rows containing non-finite values ('stat_count()').

ggplot(physical_science, aes(x = AAP_21_22_utilize1)) +
geom_bar()

Warning: Removed 2 rows containing non-finite values ('stat_count()').

plot(physical_science\$Sense_of_Belonging, physical_science\$TermGPA)

plot(life_science\$Sense_of_Belonging, life_science\$TermGPA)

plot(physical_science\$SelfDoubt_Re_Ability, physical_science\$TermGPA)

plot(life_science\$SelfDoubt_Re_Ability, life_science\$TermGPA)

plot(physical_science\$SelfConfidence_in_Academics, physical_science\$TermGPA)

plot(life_science\$SelfConfidence_in_Academics, life_science\$TermGPA)


```
library(car)

## Warning: package 'car' was built under R version 4.2.3

## Loading required package: carData

## ## Attaching package: 'car'

## The following object is masked from 'package:dplyr':

## recode

## The following object is masked from 'package:purrr':

## some

reg <- lm(physical_science$TermGPA ~ physical_science$Sense_of_Belonging + physical_science$SelfConfide

#summary(reg)
pander(reg)</pre>
```

 $\begin{tabular}{llll} Table & 5: & Fitting & linear & model: \\ physical_science TermGPA & physical_science Sense_of_Belonging \\ + & physical_science Self Confidence_in_A cademics & + \\ physical_science Self Doubt_Re_Ability & + \\ physical_science gender & + & physical_science Self Esteem_mean \\ + & physical_science \$ degree Expected Term (continued below) \\ \end{tabular}$

	Estimate	Std. Error
(Intercept)	3.437	1.33
physical_science\$Sense_of_Belonging	0.04253	0.06758
physical_science\$SelfConfidence_in_Academics	0.4196	0.2363
physical_science\$SelfDoubt_Re_Ability	-0.0511	0.2127
physical_science\$gender	0.2625	0.336
${\bf physical_science\$SelfEsteem_mean}$	-0.1897	0.1478
${\bf physical_science\$ degree Expected Term 22S}$	-0.8352	0.8131
${\bf physical_science\$ degree Expected Term 23S}$	-0.6029	0.7882
$physical_science\$ degree Expected Term 24S$	-0.3761	0.8245
$physical_science \$ degree Expected Term 25S$	-0.7345	0.7697

	t value	Pr(> t)
(Intercept)	2.585	0.01688
physical_science\$Sense_of_Belonging	0.6294	0.5356
physical_science\$SelfConfidence_in_Academics	1.776	0.08963
physical_science\$SelfDoubt_Re_Ability	-0.2402	0.8124
$physical_science\$gender$	0.7811	0.4431
${\bf physical_science \$SelfEsteem_mean}$	-1.283	0.2128
${\bf physical_science\$ degree Expected Term 22S}$	-1.027	0.3155
${\bf physical_science\$ degree Expected Term 23S}$	-0.7649	0.4524
$physical_science\$ degree Expected Term 24S$	-0.4562	0.6527
${\bf physical_science\$ degree Expected Term 25S}$	-0.9543	0.3503

avPlots(reg)

reg2 <- lm(life_science\$TermGPA ~ life_science\$Sense_of_Belonging + life_science\$SelfConfidence_in_Acad
#summary(reg2)
pander(reg2)</pre>

	Estimate	Std. Error	t value
(Intercept)	4.09	0.439	9.317
life_science\$Sense_of_Belonging	0.01379	0.01731	0.797
$life_science \$Self Confidence_in_A cademics$	0.103	0.05673	1.816
$life_science SelfDoubt_Re_Ability$	-0.2336	0.06664	-3.505
${f life_science\$gender}$	0.07053	0.03879	1.818
${\bf life_science\$SelfEsteem_mean}$	-0.135	0.04417	-3.055
${\bf life_science\$ degree Expected Term 22 F}$	0.5069	0.4623	1.097
${\bf life_science\$ degree Expected Term 22S}$	0.4717	0.2065	2.284
${\bf life_science\$ degree Expected Term 23S}$	0.1835	0.202	0.9082
${\bf life_science\$ degree Expected Term 24S}$	0.1794	0.2059	0.8712
${\bf life_science\$ degree Expected Term 25S}$	0.3322	0.2018	1.646

	$\Pr(> t)$
(Intercept)	6.367e-17
life_science\$Sense_of_Belonging	0.4266
life_science\$SelfConfidence_in_Academics	0.0712
$life_science SelfDoubt_Re_Ability$	0.0005843
${f life_science\$gender}$	0.07078
${\bf life_science \$SelfEsteem_mean}$	0.002614
${\bf life_science\$ degree Expected Term 22F}$	0.2744
${\bf life_science\$ degree Expected Term 22S}$	0.02362
${\bf life_science\$ degree Expected Term 23S}$	0.3651
${\bf life_science\$ degree Expected Term 24S}$	0.3849
${\bf life_science\$ degree Expected Term 25S}$	0.1016

avPlots(reg2)

Added-Variable Plots

Females and Males

```
fem_life_sci <- life_science[life_science$gender == 1,]
male_life_sci <- life_science[life_science$gender == 2,]

fem_phy_sci <- physical_science[physical_science$gender == 1,]
male_phy_sci <- physical_science[physical_science$gender == 2,]</pre>
```

t-test

```
t_test4 <- t.test(fem_life_sci$SelfDoubt_Re_Ability, male_life_sci$SelfDoubt_Re_Ability)
t_test5 <- t.test(fem_life_sci$SelfConfidence_in_Academics, male_life_sci$SelfConfidence_in_Academics)
t_test6 <- t.test(fem_life_sci$Sense_of_Belonging, male_life_sci$Sense_of_Belonging)

table4 <- tidy(t_test4)
pander(table4)</pre>
```

Table 9: Table continues below

estimate	estimate1	estimate2	statistic	p.value	parameter	conf.low
0.3535	2.493	2.139	2.502	0.01572	49.04	0.06963

conf.high	method	alternative
0.6374	Welch Two Sample t-test	two.sided

table5 <- tidy(t_test5)
pander(table5)</pre>

Table 11: Table continues below

estimate	estimate1	estimate2	statistic	p.value	parameter	conf.low
-0.233	2.08	2.313	-1.956	0.05631	47.65	-0.4724

conf.high	method	alternative
0.006518	Welch Two Sample t-test	two.sided

table6 <- tidy(t_test6)
pander(table6)</pre>

Table 13: Table continues below

estimate	estimate1	estimate2	statistic	p.value	parameter	conf.low
0.2644	6.626	6.362	0.6389	0.5261	45.55	-0.5689

conf.high	method	alternative
1.098	Welch Two Sample t-test	two.sided

t_test7 <- t.test(fem_phy_sci\$SelfDoubt_Re_Ability, male_phy_sci\$SelfDoubt_Re_Ability)</pre>

t_test8 <- t.test(fem_phy_sci\$SelfConfidence_in_Academics, male_phy_sci\$SelfConfidence_in_Academics)</pre>

t_test9 <- t.test(fem_phy_sci\$Sense_of_Belonging, male_phy_sci\$Sense_of_Belonging)</pre>

table7 <- tidy(t_test7)
pander(table7)</pre>

Table 15: Table continues below

estimate	estimate1	estimate2	statistic	p.value	parameter	conf.low
0.6989	2.935	2.236	2.319	0.03451	15.39	0.058

conf.high	method	alternative
1.34	Welch Two Sample t-test	two.sided

table8 <- tidy(t_test8)
pander(table8)</pre>

Table 17: Table continues below

estimate	estimate1	estimate2	statistic	p.value	parameter	conf.low
-0.4074	1.926	2.333	-1.674	0.1132	16.29	-0.9225

conf.high	method	alternative
0.1077	Welch Two Sample t-test	two.sided

table9 <- tidy(t_test9)
pander(table9)</pre>

Table 19: Table continues below

estimate	estimate1	estimate2	statistic	p.value	parameter	conf.low
-1.148	6.407	7.556	-1.359	0.192	16.92	-2.931

conf.high	method	alternative
0.6351	Welch Two Sample t-test	two.sided

```
t_test10 <- t.test(fem_life_sci$SelfDoubt_Re_Ability, fem_phy_sci$SelfDoubt_Re_Ability)
t_test11 <- t.test(fem_life_sci$SelfConfidence_in_Academics, fem_phy_sci$SelfConfidence_in_Academics)
t_test12 <- t.test(fem_life_sci$Sense_of_Belonging, fem_phy_sci$Sense_of_Belonging)

table10 <- tidy(t_test10)
pander(table10)</pre>
```

Table 21: Table continues below

estimate	estimate1	estimate2	statistic	p.value	parameter	conf.low
-0.4422	2.493	2.935	-2.525	0.01701	30.32	-0.7997

conf.high	method	alternative
-0.08475	Welch Two Sample t-test	two.sided

table11 <- tidy(t_test11)
pander(table11)</pre>

Table 23: Table continues below

estimate	estimate1	estimate2	statistic	p.value	parameter	conf.low
0.1542	2.08	1.926	1.047	0.3028	33.52	-0.1454

conf.high	method	alternative
0.4539	Welch Two Sample t-test	two.sided

table12 <- tidy(t_test12)
pander(table12)</pre>

Table 25: Table continues below

estimate	estimate1	estimate2	statistic	p.value	parameter	conf.low
0.2189	6.626	6.407	0.425	0.6738	31.3	-0.8313

conf.high	method	alternative	
1.269	Welch Two Sample t-test	two.sided	

```
t_test13 <- t.test(male_life_sci$SelfDoubt_Re_Ability, male_phy_sci$SelfDoubt_Re_Ability)
t_test14 <- t.test(male_life_sci$SelfConfidence_in_Academics, male_phy_sci$SelfConfidence_in_Academics)
t_test15 <- t.test(male_life_sci$Sense_of_Belonging, male_phy_sci$Sense_of_Belonging)

table13 <- tidy(t_test13)
pander(table13)</pre>
```

Table 27: Table continues below

estimate	estimate1	estimate2	statistic	p.value	parameter	conf.low
-0.09683	2.139	2.236	-0.3421	0.7379	12.51	-0.7107

conf.high	conf.high method	
0.5171	Welch Two Sample t-test	two.sided

table14 <- tidy(t_test14)
pander(table14)</pre>

Table 29: Table continues below

estimate	estimate1	estimate2	statistic	p.value	parameter	conf.low
-0.0202	2.313	2.333	-0.08886	0.9305	13	-0.5113

conf.high	method	alternative	
0.4709	Welch Two Sample t-test	two.sided	

```
table15 <- tidy(t_test15)
pander(t_test15)</pre>
```

Table 31: Welch Two Sample t-test: male_life_sci\$Sense_of_Belonging and male_phy_sci\$Sense_of_Belonging

Test statistic	df	P value	Alternative hypothesis	mean of x	mean of y
-1.516	13.47	0.1526	two.sided	6.362	7.556

library(ggpubr)

Warning: package 'ggpubr' was built under R version 4.2.3

```
ggplot(life_science, aes(x = SelfDoubt_Re_Ability, y = TermGPA)) +
  geom_point(size = 3, shape = 21, color = "black", fill = "blue") +
  stat_cor(p.accuracy = 0.001, r.accuracy = 0.01, label.x.npc = "left",
  label.y.npc = "bottom")
```

- ## Warning: Removed 31 rows containing non-finite values ('stat_cor()').
- ## Warning: Removed 31 rows containing missing values ('geom_point()').


```
ggplot(life_science, aes(x = SelfConfidence_in_Academics, y = TermGPA)) +
  geom_point(size = 3, shape = 21, color = "black", fill = "blue") +
  stat_cor(p.accuracy = 0.001, r.accuracy = 0.01,label.x.npc = "left",
  label.y.npc = "bottom")
```

Warning: Removed 31 rows containing non-finite values ('stat_cor()').
Removed 31 rows containing missing values ('geom_point()').


```
ggplot(life_science, aes(x = Sense_of_Belonging, y = TermGPA)) +
geom_point(size = 3, shape = 21, color = "black", fill = "blue") +
stat_cor(p.accuracy = 0.001, r.accuracy = 0.01, label.x.npc = "left",
label.y.npc = "bottom")
```

- ## Warning: Removed 30 rows containing non-finite values ('stat_cor()').
- ## Warning: Removed 30 rows containing missing values ('geom_point()').

Samples are very small for the physical science students, so it makes sense that the correlations are non significant.

```
ggplot(physical_science, aes(x = SelfDoubt_Re_Ability, y = TermGPA)) +
geom_point(size = 3, shape = 21, color = "black", fill = "blue") +
stat_cor(p.accuracy = 0.001, r.accuracy = 0.01, label.x.npc = "left",
label.y.npc = "bottom")
```

- ## Warning: Removed 6 rows containing non-finite values ('stat_cor()').
- ## Warning: Removed 6 rows containing missing values ('geom_point()').


```
ggplot(physical_science, aes(x = SelfConfidence_in_Academics, y = TermGPA)) +
  geom_point(size = 3, shape = 21, color = "black", fill = "blue") +
  stat_cor(p.accuracy = 0.001, r.accuracy = 0.01,label.x.npc = "left",
  label.y.npc = "bottom")
```

Warning: Removed 4 rows containing non-finite values ('stat_cor()').

Warning: Removed 4 rows containing missing values ('geom_point()').


```
ggplot(physical_science, aes(x = Sense_of_Belonging, y = TermGPA)) +
geom_point(size = 3, shape = 21, color = "black", fill = "blue") +
stat_cor(p.accuracy = 0.001, r.accuracy = 0.01, label.x.npc = "left",
label.y.npc = "bottom")
```

Warning: Removed 4 rows containing non-finite values ('stat_cor()').
Removed 4 rows containing missing values ('geom_point()').

