Boğaziçi University Department of Mathematics Math 231 Advanced Calculus I Fall 2024 – Final Exam.

1	2	3	4	5	\sum
20 pts	20 pts	20 pts	20 pts	21 pts	100 pts

			k_A		Δ_	<u> </u>	2	<u> </u>			\sim				\sim				_	
Date:	January 4, 2025	Full Name:		γ	1	M	П	V[1				1/	V	П		
Time:	13:00-15:45	•			J	Ц	L)[Ι,		J/				$\ $	\parallel	V)
			Г,	τ	0	Г			٦,		•	Ω٦	7	_		_	7			

- For $f: \mathbb{R}^n \to \mathbb{R}$, $\mathbf{b} \in \mathbb{R}^n$, the degree-k Taylor polynomial of f at \mathbf{b} is $P_{\mathbf{b},k}^f(\mathbf{h})$. The Lagrange remainder $R_{\mathbf{b},k}^f(\mathbf{h}) = f(\mathbf{b} + \mathbf{h}) - P_{\mathbf{b},k}(\mathbf{h})$ is given by $\sum_{|\alpha|=k+1} \partial^{\alpha} f(\mathbf{b} + c\mathbf{h}) \frac{\mathbf{h}^{\alpha}}{\alpha!}$, for some $c \in (0,1)$. Recall $|R_{\mathbf{h},k}^f(\mathbf{h})| \leq M||\mathbf{h}||^{k+1}/(k+1)!$ where M is an upper bound for all partials of f of order k+1.
- Actuaction $g: \mathbb{R}^n \to \mathbb{R}$ is called harmonic if for every $\mathbf{x} \in \mathbb{R}^n$ its Laplacian is zero, that is, $\Delta g(\mathbf{x}) = (\partial_{11}g + \partial_{22}g + \ldots + \partial_{nn}g)(\mathbf{x}) = 0.$
- I wish you keep on having fun with maths in 2025.
- 1. Suppose for a C^2 function $f: \mathbb{R}^3 \to \mathbb{R}$, $f(\mathbf{x}) \to \infty$ as $|\mathbf{x}| \to \infty$. Prove that there is a point $\mathbf{b} \in \mathbb{R}^3$ such that $\partial_{11} f(\mathbf{b}) + \partial_{22} f(\mathbf{b}) + \partial_{33} f(\mathbf{b}) \ge 0$.

By thm, there is an absolute min $a \in \mathbb{R}^3$ of f. Since a is a local min, $\nabla f(a) = 0$ and $\int f(a) > 0$ and trace Hf(a) > 0. (can be negative) But this last inequality is exactly what's asked with b=a.

- 2. Consider the function $f(x, y, z, w) = (z^3 + x\psi y, w^3 + yz x)$ and its zero level set $S_0 = \{f = 0\} \in \mathbb{R}^4$. (a) Determine the set of all points $(a, b, c, d) \in S_0$ near which, on S_0 , (y, w) can be written as a function of (x,z). Write down all relations which a,b,c,d must satisfy +2
 - (b) Suppose on S_0 , $(y, w) = \varphi(x, z)$ around the point $(1, 1, 0, 1) \in S_0$. Compute $\partial_z \varphi(1, 0)$.

(a) An application of ImpFT... Note f is C1(polynomial). Consider $\left(\frac{\partial y}{\partial y} \int_{1}^{2} \frac{\partial w}{\partial y} \int_{2}^{2} \left(-\frac{1}{2} \frac{\pi}{2} \frac{1}{2} \right)$. Its det at (a,b,c,d) is $-3d^{2}-ac$. By ImpfT, (y,w) is a fine of (21,2) on So whenever $def \neq 0$ on 5: $|3d^2 + ac \neq 0 \& c^3 + ad = b$, $d^3 + bc = a$ (b) Let P = (1,1,0,1). Suppose $(y,w) = \varphi(\pi_1 z) = (\varphi_1(\pi_1 z), \varphi_2(\pi_2))$ around P on S. We re asked $\partial_2 \varphi = (\partial_2 \varphi_1, \partial_2 \varphi_2) = (\partial_2 y_1, \partial_2 w)$ at P.

around Por S. We're asked
$$\partial_{2}\varphi = (\partial_{2}\varphi_{1}, \partial_{2}\varphi_{2}) = (\partial_{2}y_{1}, \partial_{2}\omega)$$
 at P.

On So, $0 = \partial_{2} \int_{1} = 32^{2} + \pi \cdot \omega_{2}^{2} - y_{2} | = \omega_{2} - y_{2} \longrightarrow y_{2}(10) = 1/3$
 $0 = \partial_{2} \int_{1} = 3\omega^{2} \cdot \omega_{2} + y_{2} + y_{2} + y_{3} = 3\omega_{2} + 1 = \omega_{2}(10) = -1/3$
of P. Hence $\partial_{2}\varphi(P) = (-1/3)/3$

(b) Suppose that $g: I \to \mathbb{R}^q$ is differentiable on the open interval $I \subset \mathbb{R}$ and that |g(t)| = 1 for all $t \in I$. Then the vector $g(t) \in \mathbb{R}^q$ is perpendicular to the vector $Dg(t) \in \mathbb{R}^q$ for all $t \in I$.

$$1=|g(t)|^2=g(t) \cdot g(t)$$
. Differentiate wit t:
 $0=Dg(t) \cdot g(t)+g(t) \cdot Dg(t) \implies g(t) \cdot Dg(t)=0$.

(c) For a harmonic function $h : \mathbb{R}^2 \to \mathbb{R}$, if h has a local minimum at the point $\mathbf{b} \in \mathbb{R}^2$ then all second order partial derivatives of h vanish at \mathbf{b} .

fit b, $\partial_{11}h(b)$ & $\partial_{22}h(b) > 0$. Then both are 0 since h is harmonic. Also $Jh(b) = (\partial_{11} \partial_{22} - \partial_{12} \partial_{21})h(b) > 0$. Because $\partial_{12}h(b) = \partial_{21}h(b)$, we must have both O.