

«Московский государственный технический университет имени Н.Э. Баумана» (национальный исследовательский университет) (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ФУНДАМЕНТАЛЬНЫЕ НАУКИ

КАФЕДРА ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА И МАТЕМАТИЧЕСКАЯ ФИЗИКА (ФН11)

НАПРАВЛЕНИЕ ПОДГОТОВКИ МАТЕМАТИКА И КОМПЬЮТЕРНЫЕ НАУКИ (02.03.01)

Отчет по лабораторной работе Я63

Название лабораторной работы:
Радиоактивность.
Вариант № 9

Дисциплина: Физика

Студент группы ФН11-52	2Б	Очкин Н.В.
	(Подпись, дата)	(И.О. Фамилия)
П		П
Преподаватель		Применко А.Э
	(Подпись, дата)	(И.О. Фамилия)

Ход выполнения работы

\overline{i}	Фон	Препарат 0	Препарат 1	Препарат 2	Препарат 3
1	6	54	9	20	22
2	10	51	13	23	18
3	7	51	10	17	19
4	8	63	7	22	26
5	7	57	10	21	23
6	8	55	9	20	24
7	6	66	9	18	20
8	9	49	8	17	20
9	9	67	13	24	23
10	5	59	8	16	24
11	9	52	10	20	22
12	8	43	8	18	25
13	5	56	9	19	24
14	10	57	13	14	26
15	6	56	7	23	24

$$\begin{array}{ll} N_{\Phi} = 226 \\ N_0 = 1672 & N_0 - N_{\Phi} = 1446 \\ N_1 = 286 & N_1 - N_{\Phi} = 60 \\ N_2 = 584 & N_2 - N_{\Phi} = 358 \\ N_3 = 680 & N_3 - N_{\Phi} = 454 \end{array}$$

Коэффициент регистрации	f = 0.04
Масса, г, KCl в препарате 3	m=25
Количество атомов ⁴⁰ K в препарате 3	$N_{40} = 2.368 \cdot 10^{19}$
Скорость счета для калия, 1/с	$n_p = 1.681$
Активность калия, Бк	A = 42.025
Период полураспада (в секундах и годах)	$T = 3.905 \cdot 10^{17}$
Погрешность измерения $T,\%$	$\varepsilon = 3 \cdot 10^{10}$

$$N_{40} = \delta N_A \frac{m}{M} \approx 2.368 \cdot 10^{19},$$

где

 $N_A=6.02\cdot 10^{23}\ {
m моль}^{-1}$ - число Авогадро, $M=75\ {rac{\Gamma}{
m моль}}$ - молярная масса соли, $\delta=1.18\cdot 10^{-4}$ - доля радиоактивного изотопа.

$$n_p = \frac{N_3 - N_{\Phi}}{t} \approx 1.681,$$

где

 $t=270{
m c}$ - полное время 15 измерений.

$$A = \frac{n_p}{f} = 42.025$$

$$T = 0.693 \, N_{40}/A \approx 3.905 \cdot 10^{17}$$

 $T_{\text{табл}} = 1.3 \cdot 10^9$ лет.

$$\varepsilon = 100\% (T - T_{\text{табл}}) / T_{\text{табл}} \approx 3 \cdot 10^{10} \%$$

Удельная активность, Бк/г, препарат 1	a = 0.581	$\varepsilon = 37.83$
Содержание калия, %, препарат 2	$\Omega = 2.174$	$\varepsilon = 37.83$
Активность калия в теле человека, Бк	$A_{\text{\tiny H}} = 4200$	
Поглощенная энергия, Дж	E = 0.01056	
Поглощенная доза, Гр	$D_{\rm K} = 0.000075$	
Эквивалентная доза, Зв	$H_{\rm K} = 0.0015$	
Доля годовой дозы	$H_{\rm K}/H = 0.75$	

$$a = \frac{N - N_{\Phi}}{N_0 - N_{\Phi}} \cdot a_0 \approx 0.581,$$

где

 $N=N_1=286$ - число импульсов от исследуемого препарата,

 $N_{\Phi} = 226$ - число импульсов фона,

 $N_0 = 1672$ - число импульсов от эталонного препарата,

 $a_0 = 14~{\rm F\kappa}\ /\ {\rm r}$ - удельная активность соли KCl с испусканием β - частиц.

$$\Omega = (52.4\%) \frac{N - N_{\Phi}}{N_0 - N_{\Phi}} = 2.174$$

$$\varepsilon = 100\% \sqrt{\frac{N + N_{\Phi}}{(N - N_{\Phi})^2} + \frac{N_0 + N_{\Phi}}{(N_0 - N_{\Phi})^2}} \approx 37.83\%$$

$$A_{\rm q} = m_{\rm q} a_0 = 4200,$$

где

 $m_{\rm q} = 140 \, {\rm f},$

 $a_0 = 30$ Бк / г

$$E = N \cdot E_1 \approx 0.01056,$$

где

 $N = A \cdot T$ - количество распадов в год,

A = 4200 - активность,

 $T = 365 \cdot 24 \cdot 3600$ - количесвто секунд в году,

 $E_1 = 0.5 \cdot 1.6 \cdot 10^{-13} \; \text{Дж}$ - энергия одного распада

$$D = \frac{E}{m} \approx 75e - 6$$

$$H = KD \approx 0.0015$$

$$\frac{H_{\rm K}}{H} = 0.75$$