

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

Telephone: +86-755-26648640 Fax: +86-755-26648637

Website: www.cqa-cert.com

Report Template Revision Date: 2018-07-06

Report Template Version: V04

RF Exposure Evaluation Report

Report No.: CQASZ20191001098E-02

Applicant: SHENZHEN HUBSAN TECHNOLOGY CO., LTD.

Address of Applicant: 13th Floor, Bldg 1C, Shenzhen Software Industry Base, Xuefu Road, Nanshan

District, Shenzhen, China 518054

Equipment Under Test (EUT):

EUT Name: Hubsan ZINO PRO
Model No.: ZINO PRO, Zino Pro

Test Model No.: Zino Pro Brand Name: Hubsan

 FCC ID:
 2AN75-ZINOPRORX

 Standards:
 47 CFR Part 1.1307

 47 CFR Part 1.1310

KDB447498D01 General RF Exposure Guidance v06

Date of Receipt: 2019-11-01

Date of Test: 2019-11-01 to 2019-11-25

Date of Issue: 2019-11-25
Test Result: PASS*

*In the configuration tested, the EUT complied with the standards specified above

Tested By:

(Tom chen)

Tor Cha.

Reviewed By:

'Aaron Ma)

Approved By:

(Jack Ai)

Report No.: CQASZ20191001098E-02

1 Version

Revision History Of Report

Report No.	Version	Description	Issue Date
CQASZ20191001098E-02	Rev.01	Initial report	2019-11-25

Report No.: CQASZ20191001098E-02

2 Contents

		Page
1	VERSION	2
2	2 CONTENTS	3
3	GENERAL INFORMATION	4
	3.1 CLIENT INFORMATION	4 4
	RF EXPOSURE EVALUATION	
	4.1 RF Exposure Compliance Requirement	5 5
	4.2 1.1.3 EUT RF EXPOSURE EVALUATION	6

Report No.: CQASZ20191001098E-02

3 General Information

3.1 Client Information

Applicant:	SHENZHEN HUBSAN TECHNOLOGY CO., LTD.		
Address of Applicant:	13th Floor, Bldg 1C, Shenzhen Software Industry Base, Xuefu Road, Nanshan District, Shenzhen, China 518054		
Manufacturer:	SHENZHEN HUBSAN TECHNOLOGY CO., LTD.		
Address of Manufacturer:	13th Floor, Bldg 1C, Shenzhen Software Industry Base, Xuefu Road, Nanshan District, Shenzhen, China 518054		

3.2 General Description of EUT

Product Name:	Hubsan ZINO PRO
Model No.:	ZINO PRO, Zino Pro
Test Model No.:	Zino Pro
Trade Mark:	Hubsan
Hardware Version:	EA04058075-03
Software Version:	V0.1.1
Operation Frequency:	5725 ~ 5850 MHz
Channel Numbers:	5725 ~ 5850 MHz: 5 for 802.11a
Channel Separation:	5MHz
Type of Modulation:	IEEE 802.11a: OFDM(64QAM, 16QAM, QPSK, BPSK)
Channel Spacing:	IEEE 802.11a: 20 MHz
Sample Type:	
Test Software of EUT:	Atheros Radio test 2(manufacturer declare)
Antenna Type:	Integral antenna
Antenna Gain:	3.0dBi
Power Supply:	Battery: 11.4 V 3000 mAh Li-Po

Note:

Model No.: ZINO PRO, Zino Pro

Only the model Zino Pro was tested, since the electrical circuit design, layout, components used and internal wiring were identical for the above models, with difference being model name.

Report No.: CQASZ20191001098E-02

4 RF Exposure Evaluation

4.1 RF Exposure Compliance Requirement

4.1.1 Limits

According to FCC Part1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in part1.1307(b)

Table 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)		
(A) Limits for Occupational/Controlled Exposures						
0.3–3.0 3.0–30 30–300 300–1500 1500–100,000	614 1842/f 61.4	1.63 4.89/f 0.163	*(100) *(900/f²) 1.0 f/300 5	6 6 6 6		
(B) Limits	for General Populati	on/Uncontrolled Exp	oosure			
0.3–1.34 1.34–30 30–300 300–1500 1500–100,000	614 824/f 27.5	1.63 2.19/f 0.073	*(100) *(180/f²) 0.2 f/1500 1.0	30 30 30 30 30 30		

F= Frequency in MHz

Friis Formula

Friis transmission formula: $Pd = (Pout*G)/(4*Pi*R^2)$

Where

Pd = power density in mW/cm2

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

R = distance between observation point and center of the radiator in cm

Pd id the limit of MPE, 1 mW/cm2 . If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

4.1.2 Test Procedure

Software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel individually.

Report No.: CQASZ20191001098E-02

4.2 1.1.3 EUT RF Exposure Evaluation

1) For 5.8G WIFI

ANT1:

Antenna Gain: 3.0dBi

Antenna Gain: The maximum Gain measured in fully anechoic chamber is 2.0 in linear scale.

Output Power Into Antenna & RF Exposure Evaluation Distance:

Measurement Data

ANT1:

802.11a mode					
Test channel	Average Output Power	Tune up tolerance	Maximum tu	ne-up Power	
	(dBm)	(dBm)	(dBm)	(mW)	
5745	17.35	17.0±1	18.0	63.096	
5785	17.54	17.0±1	18.0	63.096	
5825	18.46	18.0±1	19.0	79.433	

The worst case:

1110 110101 04001				
Maximum tune-up Power (mW)	Antenna Gain (dBi)	Power Density at R = 20 cm (mW/cm²)	Limit	Result
79.433	3.0	0.0315	1.0	PASS

Note: 1) Refer to report No. CQASZ20191001098E-01 for EUT test Max Conducted average Output Power value

2) Pd = (Pout*G)/(4* Pi * R²)=(79.433 *2.0)/(4*3.1416*20²)=0.0315

Report No.: CQASZ20191001098E-02

ANT2:

Antenna Gain: 3.0dBi

Antenna Gain: The maximum Gain measured in fully anechoic chamber is 2.0 in linear scale.

Output Power Into Antenna & RF Exposure Evaluation Distance:

Measurement Data

ANT2:

802.11a mode					
Test channel	Average Output Power	Tune up tolerance	Maximum tu	ne-up Power	
	(dBm)	(dBm)	(dBm)	(mW)	
5745	16.49	16.0±1.0	17.0	50.119	
5785	16.01	15.5±1.0	16.5	44.668	
5825	15.08	14.5±1.0	15.5	35.481	

The worst case:

Maximum tune-up Power (mW)	Antenna Gain (dBi)	Power Density at R = 20 cm (mW/cm²)	Limit	Result
50.119	3.0	0.0199	1.0	PASS

Note: 1) Refer to report No. CQASZ20191001098E-01 for EUT test Max Conducted average Output Power value.

2) Pd = (Pout*G)/(4* Pi * R²)=(50.119*2.0)/(4*3.1416*20²)=0.0199

These tow antennas does not transmit simultaneously.