Ortogonalita

DEF Systém vektorů V je ortogonální, právě když $\forall v_1,v_2 \in V, v_1 \neq v_2 :< v_1,v_2>=0$. Ortonormální jej nazvem, pokud $\forall v \in V: ||v||=1$

 ${\bf THM}$ Fourieorvy koeficienty: Nech
ť z_1,\dots,z_2 je ortonormální báze V. Pa
k $\forall x\in V: x=\sum_i < x, z_i>z_i$

DEF Nechť vektorový prostor V a $M\subset V.$ Ortogonální doplněk množiny M je $\{x\in V, \forall y\in M: < x,y>=0\}$

DEF Buď V vektorový prostor a $U \subset V$ podprostor. Pak ortonormánlní projekce $x \in V$ do prostory U je takový vektor y (občas x_U), že:

$$||x - y|| = \min_{y \in U} ||x - y||$$

THM Nechť U je vektorový podprostor konečně generovaného vektorového podprostoru V. Pokud je z_1, \ldots, z_n otronormální báze U, pak jakékoliv $x \in V$ můžeme projektorvat do U:

$$x_U = \sum_i \langle x, z_i \rangle z_i$$