Banco de Dados

Prof. Anthony Ferreira La Marca anthony@computacao.cua.ufmt.br

- O SQL utiliza os operadores
- IS NULL
 - Verifica se o atributo é NULO
 - Retorna TRUE
- IS NOT NULL
 - Verifica se o atributo é NÃO NULO
 - Retorna TRUE
- Exemplo
 - Retornar o nome de todos os funcionários que não tenham um supervisor

- Há ocasiões em que uma busca precisa ser feita a partir de outra busca
- Chamada consultas aninhadas
- Exemplo
 - Quero saber o número dos projetos na qual possuem um funcionário com o nome 'Silva' envolvido como gerente

- Operador IN
- Compara um valor de um atributo (v) com um conjunto de valores (V)
- E avalia como TRUE caso v for um dos elementos de V
- Exemplo
 - Quero saber o número dos projetos na qual possuem um funcionário com o nome 'Silva' envolvido como gerente e o número dos projetos que possuem o funcionário com o sobrenome 'Silva' envolvido como trabalhador

- Se a consulta retorna um único valor
- Pode-se utilizar o operador = ao invés do IN
- De modo geral, uma consulta aninhada retorna uma tabela

- Permite mais de um atributo nas comparações
- Exemplo
- SELECT DISTINCT FCPF
 FROM TRABALHA_EM
 WHERE (PNR, HORAS) IN
 (SELECT PNR, HORAS
 FROM TRABALHA_EM
 WHERE FCPF = '35719293816');

- Além do IN pode-se ter o operador ALL
- Estes podem ser combinados com os operadores >, >=, <, <= e !=
- Exemplo

SELECT PNOME, UNOME
 FROM FUNCIONARIO
 WHERE SALARIO > ALL
 (SELECT SALARIO
 FROM FUNCIONARIO
 WHERE DNR = 2);

- Consultas aninhadas correlacionadas
- Sempre que a consulta interna referencia algum atributo de uma relação declarada na consulta externa
- Ambas as consultas são consideradas correlacionadas
- Exemplo utilizando ALIAS
 - Recuperar o nome de todos os funcionários, cujo seu dependente tem o mesmo nome e sexo

- Operador EXISTS
- Seu valor é booleano
- Sendo TRUE se o resultado da consulta aninhada tiver pelo menos uma tupla
- FALSE se não tiver tuplas
- Exemplo

 SELECT F.PNOME, F.UNOME FROM FUNCIONARIO F WHERE EXISTS (SELECT * FROM DEPENDENTE D WHERE F.PNOME = D.NOME DEPEN DENTE AND F.CPF = D.FCPFAND F.SEXO = D.SEXO);

- Recuperar o nome e sobrenome dos funcionários que não tenham dependentes
- SELECT F.PNOME, F.UNOME
 FROM FUNCIONARIO F
 WHERE NOT EXISTS
 (SELECT * FROM DEPENDENTE D
 WHERE F.CPF = D.FCPF);

- Listar os nomes dos gerentes que possuem pelo menos um dependente
- SELECT F.PNOME, F.UNOME FROM FUNCIONARIO F WHERE EXISTS (SELECT * FROM DEPENDENTE D WHERE D.FCPF = F.CPF) AND EXISTS (SELECT * FROM DEPARTAMENTO DEP WHERE F.CPF = DEP.CPF GERENTE);

SQL –Exemplo

- Recuperar o nome de cada funcionário que trabalha em todos os projetos controlados pelo departamento 5
- SELECT F.PNOME, F.UNOME
 FROM FUNCIONARIO F WHERE NOT EXISTS
 ((SELECT P.PROJNUMERO FROM PROJETO P
 WHERE P.DNUM = 5)
- EXCEPT (SELECT T.PNR FROM TRABALHA_EM T WHERE F.CPF = T.FCPF));

OBS: NÃO RODA NA VERSÃO GRATUITA

- Pode-se renomear o nome dos atributos que aparece no resultado
- Operador AS
- Recuperar o nome e sobrenome de todos os funcionários que trabalham nos projetos 10, 20 e 30
 - SELECT F.PNOME AS NOME_FUNCIONARIO, F.UNOME AS SOBRENOME_FUNCIONARIO FROM FUNCIONARIO F, PROJETO P, TRABALHA_EM T WHERE F.CPF = T.FCPF AND T.PNR = P.PROJNUMERO AND T.PNR IN (10, 20, 30);

- Junção em SQL
- Permite realizar as junções das relações envolvidas na consulta na clausula FROM
- Eliminando a necessidade de mistura-las na clausula WHERE junto as condições de seleção
- SELECT F.PNOME, F.UNOME, F.ENDERECO
 FROM (FUNCIONARIO F <u>INNER JOIN</u> DEPAR
 TAMENTO D <u>ON</u> (F.DNR = D.DNUMERO))
 WHERE D.DNOME LIKE '%PESQUISA%';

- Junção Natural
- SELECT F.PNOME, F.UNOME, F.ENDERECO FROM (FUNCIONARIO F NATURAL JOIN DEPARTAMENTO D)

WHERE D.DNOME LIKE '%PESQUISA%';

Obs: Os atributos de junção devem ter o mesmo nome

- Temos também o OUTER JOIN
 - LEFT OUTER JOIN
 - RIGHT OUTER JOIN
 - FULL OUTER JOIN

Junção – Outro Exemplo

empregado

nome_empregado	rua	cidade		
José	João Goulart	Novo Hamburgo		
Ana	Assis Brasil	Porto Alegre		
Pedro	Getúlio Vargas	São Leopoldo		
Maria	João Pessoa	Porto Alegre		

trabalhador_integral

nome_empregado	nome_agencia	salario
José	NOH-1	5000
Ana	POA-1	4800
Flávia	SAL-1	3200
Maria	POA-1	6500

Junção

- Descobrir o nome, a rua, a cidade, a agência e o salário de todos os empregados
- Junção Natural

nome_empregado	rua	cidade	nome_agencia	salario
José	João Goulart	Novo Hamburgo	NOH-1	5000
Ana	Assis Brasil	Porto Alegre	POA-1	4800
Maria	João Pessoa	Porto Alegre	POA-1	6500

Problema

- Os dados de Pedro foram perdidos (nome, rua e cidade)
- Os dados de Flávia também (nome, nome_agencia e salario

Junção Externa à Esquerda

- Pega as tuplas da relação da esquerda que não se encontram par entre as tuplas da relação à direita
- Preenche com nulo os valores
- Adicionadas ao resultado da Junção Natural

nome_empregado	rua	cidade	nome_agencia	salario
José	João Goulart	Novo Hamburgo	NOH-1	5000
Ana	Assis Brasil	Porto Alegre	POA-1	4800
Maria	João Pessoa	Porto Alegre	POA-1	6500
Pedro	Getúlio Vargas	São Leopoldo	12.14	4.0100
			Nulo	Nulo

Junção Externa à Direita

- Pega as tuplas da relação da direita que não se encontram par entre as tuplas da relação à esquerda
- Preenche com nulo os valores
- Adicionadas ao resultado da Junção Natural

nome_empregado	rua	cidade	nome_agencia	salario	
José	João Goulart	Novo Hamburgo	NOH-1	5000	
Ana	Assis Brasil	Porto Alegre	POA-1	4800	
Maria	João Pessoa	Porto Alegre	POA-1	6500	
Flávia	Nulo	Nulo	SAL-1	3200	

Junção Externa Total

Faz ambas as operações

nome_empregado	rua	cidade	nome_agencia	salario
José	João Goulart	Novo Hamburgo	NOH-1	5000
Ana	Assis Brasil	Porto Alegre	POA-1	4800
Maria	João Pessoa	Porto Alegre	POA-1	6500
Pedro	Getúlio Vargas	São Leopoldo	Nulo	Nulo
Flávia	Nulo	Nulo	SAL-1	3200

- Vamos imaginar essa consulta
- SELECT F.PNOME, F.UNOME
 FROM FUNCIONARIO F, FUNCIONARIO S
 WHERE F.CPF_SUPERVISOR = S.CPF;
- Mostrar todos mesmo não tendo um supervisor
- SELECT F.PNOME, F.UNOME
 FROM FUNCIONARIO F <u>LEFT OUTER JOIN</u>
 FUNCIONARIO S <u>ON</u> (F.CPF_SUPERVISOR = S.CPF);

LEFT

 Toda tupla da esquerda tem que aparecer, mesmo se ela não tiver uma tupla combinando, ela é preenchida com valores NULL para a tabela da direita

RIGHT

 Toda tupla da direita tem que aparecer, mesmo se ela não tiver uma tupla combinando, ela é preenchida com valores NULL para a tabela da esquerda

FULL

 Aparece todas as tuplas da tabela da esquerda e da direita, mesmo não tendo uma tupla combinando, elas devem ser preenchidas com valores NULL, ambas as tabelas

Exercício

- Recuperar o nome dos alunos e curso que não tenham uma nota A em quaisquer disciplinas
- Recuperar o nome e curso de todos os alunos com nota A em todas as disciplinas

- Funções agregadas
- Resume informações de várias tuplas em uma síntese de uma única tupla
 - COUNT
 - SUM
 - MAX
 - MIN
 - AVG
- O agrupamento é usado para criar subgrupos de tuplas antes do resumo
 - GROUP BY

- Achar a soma dos salários de todos os funcionários que trabalham no departamento "pesquisa", bem como o salário máximo, o salário mínimo e a média dos salário
- SELECT SUM(SALARIO), MAX(SALARIO),
 MIN(SALARIO), AVG(SALARIO)
 FROM (FUNCIONARIO JOIN DEPARTAMENTO
 ON DNR = DNUMERO)
 WHERE DNOME LIKE '%PESQUISA%';

- Recuperar o número total de funcionários da empresa
- SELECT COUNT(*) FROM FUNCIONARIO;
- Quando utilizado a função COUNT com o *, retorna a quantidade de tuplas
- Pode-se utiliza também para contar os valores de um determinado atributo (coluna)

- Contar quantos salários distintos há na empresa
- SELECT COUNT(DISTINCT SALARIO)
 FROM FUNCIONARIO;
- Com a clausula DISTINCT os valores duplicados serão eliminados
- Valores NULL são descartados
- As funções agregadas também são utilizadas em consultas aninhadas

- Recuperar o nome dos funcionários que tem 2 ou mais dependentes
- SELECT F.PNOME FROM FUNCIONARIO F
 WHERE (SELECT COUNT(*)
 FROM DEPENDENTE D WHERE F.CPF =
 D.FCPF) >= 2;

- Aplicar a agregação em subgrupos
- GROUP BY
- HAVING
- Encontrar a média salarial dos funcionários que trabalham em cada departamento
- Encontrar o número de funcionários que trabalham em cada projeto

- Para cada departamento, recuperar o número do departamento, o número de funcionário no departamento e o seu salário médio
- SELECT DNR, COUNT(*), AVG(SALARIO)
 FROM FUNCIONARIO
 GROUP BY DNR;

• Resultado da consuta

Pnome	Minicial	Unome	Cpf	 Salario	Cpf_supervisor	Dnr			Dnr	Count (*)	Avg (Salario)
João	В	Silva	12345678966	30.000	33344555587	5	7	-	5	4	33.250
Fernando	T	Wong	33344555587	40.000	88866555576	5	Шг	-	4	3	31.000
Ronaldo	К	Lima	66688444476	38.000	33344555587	5		-	1	1	55.000
Joice	Α	Leite	45345345376	 25.000	33344555587	5	J II		Resultar	do de C24	
Alice	J	Zelaya	99988777767	25.000	98765432168	4	וו ר		roomen.	30 00 GE 1	
Jennifer	S	Souza	98765432168	43.000	88866555576	4					
André	٧	Pereira	98798798733	25.000	98765432168	4					
Jorge	E	Brito	8886655576	55.000	NULL	1	$\neg \Box$				

- Para cada projeto, recuperar o número e nome do projeto e o número de funcionários que trabalham nesse projeto
- SELECT P.PROJNUMERO, P.PROJNOME, COUNT(*)
 FROM (PROJETO P JOIN TRABALHA_EM T
 ON (P.PROJNUMERO = T.PNR))
 GROUP BY P.PROJNUMERO;
- O agrupamento e as funções são aplicadas após as junções das relações envolvidas na consulta

- O operador HAVING oferece uma condição sobre o grupo de tuplas associado a cada valor dos atributos de agrupamento
- Somente os grupos que satisfazem a condição são recuperados no resultado da consulta
- Para cada projeto em que mais de dois funcionário trabalham, recupere o nome do projeto e o número de funcionários que trabalham no projeto, ordenado pelo nome do projeto

SELECT PROJNOME, COUNT(*)
 FROM PROJETO, TRABALHA_EM
 WHERE PNR = PROJNUMERO
 GROUP BY PROJNOME
 HAVING COUNT(*) > 2
 ORDER BY PROJNOME;

Projnome	Projnumero		Ecpf	Pnr	Horas	Estes grupos não são selecionados p condição de HAVING de C26.
ProdutoX	1		12345678966	1	32,5	
ProdutoX	1		45345345376	1	20,0	
ProdutoY	2		12345678966	2	7,5	
ProdutoY	2		45345345376	2	20,0	
ProdutoY	2		33344555587	2	10,0	
ProdutoZ	3		66688444476	3	40,0	
ProdutoZ	3		33344555587	3	10,0	
Informatização	10	494	33344555587	10	10,0	
Informatização	10		99988777767	10	10,0	
Informatização	10		98798798733	10	35,0	
Reorganização	20		33344555587	20	10,0	
Reorganização	20		98765432168	20	15,0	
Reorganização	20		88866555576	20	NULL	
Novos Beneficios	30		98798798733	30	5,0	
Novos Beneficios	30		98765432168	30	20,0	
Novos Beneficios	30		99988777767	30	30,0	

Projnome	Projnumero	* * *	Fcpf	Pnr	Horas		Projnome	Count (*
ProdutoY	2		12345678966	2	7,5	\	ProdutoY	3
ProdutoY	2		45345345376	2	20,0		Informatização	3
ProdutoY	2		33344555587	2	10,0	J ┌►	Reorganização	3
Informatização	10		33344555587	10	10,0	حا∐ ٦	Novos Beneficios	3
Informatização	10		99988777767	10	10,0	$ \Box $	Resultado de C26 (Pro	ojnumero
Informatização	10		98798798733	10	35,0		não mostrado)	
Reorganização	20		33344555587	20	10,0	7 II		
Reorganização	20		98765432168	20	15,0			
Reorganização	20		88866555576	20	NULL			
Novos Beneficios	30		98798798733	30	5,0	7		
Novos Beneficios	30		98765432168	30	20,0			
Novos Beneficios	30		99988777767	30	30,0			

 Para cada departamento que tem mais de 2 funcionários, recuperar o número do departamento e o número de seus funcionários que estão ganhando mais de 5000 mil

SELECT DNOME

FROM DEPARTAMENTO, FUNCIONARIO

WHERE DNUMERO = DNR

AND SALARIO > 5000

GROUP BY DNOME

HAVING COUNT(*) > 2;

- Consulta errada
- Pois só retornará os departamentos que tenham mais do que 2 funcionários que ganham mais do que 5mil
- A pergunta é
- Os departamento que tenham mais do que 2 funcionário, retornar os que ganham mais de 5 mil

 SELECT DNOME, PNOME FROM DEPARTAMENTO, FUNCIONARIO WHERE DNUMERO = DNR AND SALARIO > 5000 AND DNUMERO IN (SELECT DNR FROM FUNCIONARIO GROUP BY DNR HAVING COUNT(*) > 2);

Exercícios

- Para cada departamento, recupere o nome do departamento e a média do salario do departamento, onde a média seja maior que 3200 reais
- Para cada departamento, recupere o nome do departamento, o nome do funcionário e seu salário que seja maior que a media de todos os salários
- Para cada departamento, recupere o nome do departamento e a quantidade de funcionários onde o salário seja maior que a média do salario de todos os departamentos

Exercícios

- Recuperar o numero do departamento e o CPF do funcionário do sexo feminino que ganha mais de 2000 reais para cada departamento
- Recuperar o nome de todos os funcionários que trabalham no departamento que tem o funcionário com o maior salário entre todos os funcionários
- Recupere o nome dos funcionários que ganham pelo menos 1000 reais a mais que o funcionário que recebe menos na empresa