

Version: 1.0

TECHNICAL SPECIFICATION

MODEL NO.: PD050VXB

The content of this information is	subject to be changed without notice.
Please contact E Ink or its agent for	or further information.
Customer's Confirmation	
Customer	-
Date	-
Ву	_
☐E Ink's Confirmation	
	Zun Z
	Confirmed By 19 79 1
	Prepared By 1778

Revision History

Rev.	Issued Date	Revised	Contents
1.0	August 23,2011	New	

TECHNICAL SPECIFICATION

CONTENTS

NO.	ITEM	PAGE
-	Cover	1
-	Revision History	2
-	Contents	3
1	Application	4
2	Features	4
3	Mechanical Specifications	4
4	Mechanical Drawing of TFT-LCD module	5
5	Input / Output Terminals	7
6	Absolute Maximum Ratings	11
7	Electrical Characteristics	11
8	Pixel Arrangement	13
9	Display Color and Gray Scale Reference	14
10	Block Diagram	15
11	Interface Timing	18
12	Power On/Off Sequence	21
13	Optical Characteristics	21
14	Handling Cautions	25
15	Reliability Test	26
16	Packing Diagram	27

1.Application

This data sheet applies to a color TFT LCD module, PD050VXB. This module applies to OA product, computer peripheral, industrial meter, image communication and multi-media. If you must use in severe reliability environment, please don't extend over E Ink's reliability test conditions. If you use PD050VXB, Elnk Holding Inc advises your systems use E Ink's timing controller IC (PVI-2003A) which will generate proper timing signals to control it.

2. Features

. VGA (640*480 pixels) resolution

. Amorphous silicon TFT LCD panel with back-light unit

. Pixel in stripe configuration

. Thin and light weight

. Display Colors: 262,144 colors

. Portrait mode

. TTL transmission interface

3. Mechanical Specifications

Parameter	Specifications	Unit
Screen Size	5.0(diagonal)	inch
Display Format	$640(H) \times (R, G, B) \times 480(V)$	dot
Display Colors	262,144	
Active Area	74.88 (H)×101.76(V)	mm
Pixel Pitch	0.156(H)×0.159(V)	mm
Pixel Configuration	Stripe	
Surface Treatment	AG+EWV	
Outline Dimension	91.4(H)×119.3 (V)×7.9(D)	mm
Weight	116±10	g
Back-light	LED	
Display mode	Normally white	
Gray scale inversion direction	3 o`clock [ref. to Note 13-1]	

4. Mechanical Drawing of TFT-LCD Module

5. Input / Output Terminals 5-1) TFT-LCD Panel Driving CN 1

LCD Module Connector 30 Pins , Pitch : 0.5 mm

Pin No.	Symbol	I/O	Function	Remark
1	DIO1	I/O	Horizontal Start Pulse Signal Input or Output	Note 5-6
2	VSS1	I	Ground	
3	VDD1	I	Power Supply for Source	
4	CLK	I	Horizontal Shift Clock	
5	VSS1	I	Ground	
6	R/L	I	Right/Left selection	Note 5-6
7	R0	I	Red Data (LSB)	
8	R1	I	Red Data	
9	R2	I	Red Data	
10	R3	I	Red Data	
11	R4	I	Red Data	
12	R5	I	Red Data (MSB)	
13	VSS1	I	Ground	
14	G0	I	Green Data (LSB)	
15	G1	I	Green Data	
16	G2	I	Green Data	
17	G3	I	Green Data	
18	G4	I	Green Data	
19	G5	I	Green Data (MSB)	
20	VSS1	I	Ground	
21	B0	I	Blue Data (LSB)	
22	B1	I	Blue Data	
23	B2	I	Blue Data	
24	В3	I	Blue Data	
25	B4	I	Blue Data	
26	B5	I	Blue Data (MSB)	
27	LD	I	Load output signal	Note 5-7
28	REV	I	Data invert control	Note 5-8
29	POL	I	Polarity selection	Note 5-9
30	DIO2	I/O	Horizontal Start Pulse Signal Input or Output	Note 5-6

CN 2

Pin No.	Symbol	I/O	Function	Remark
1	VSS2	I	Ground	
2	V1	I	Gamma Voltage 1	Note 5-10
3	V2	I	Gamma Voltage 2	Note 5-10
4	V3	I	Gamma Voltage 3	Note 5-10
5	V4	I	Gamma Voltage 4	Note 5-10
6	V5	I	Gamma Voltage 5	Note 5-10
7	V6	I	Gamma Voltage 6	Note 5-10
8	V7	I	Gamma Voltage 7	Note 5-10
9	VSS2	I	Ground	
10	V8	I	Gamma Voltage 8	Note 5-10
11	V9	I	Gamma Voltage 9	Note 5-10
12	V10	I	Gamma Voltage 10	Note 5-10
13	V11	I	Gamma Voltage 11	Note 5-10
14	V12	I	Gamma Voltage 12	Note 5-10
15	V13	I	Gamma Voltage 13	Note 5-10
16	V14	I	Gamma Voltage 14	Note 5-10
17	VSS2	I	Ground	
18	VDD2	I	Voltage for analog circuit	Note 5-10
19	VCOM	I	Common Voltage	
20	XON	I	NC	
21	OE	I	Output Enable	Note 5-5
22	U/D	I	Up/Down selection	Note 5-3
23	CKV	I	Vertical Shift Clock	Note 5-4
24	STVU	I/O	Vertical Shift Pulse Signal Input or Output	Note 5-3
25	STVD	I/O	Vertical Shift Pulse Signal Input or Output	Note 5-3
26	VGG	I	Gate On Voltage	Note 5-2
27	GND	I	Ground	
28	VCC	I	Voltage for logic circuit	
29	GND	I	Ground	
30	VEE	I	Gate Off Voltage	Note 5-1

Note 5-1: Gate off voltage, V_{EE}=-5.5V

Note 5-2: Gate on voltage, $V_{GG}=+15.4V$

Note 5-3: Select up or down shift

U/D	STVU	STVD	Shift
1	Hi-Z	Input	Down to Up
0	Input	Hi-Z	Up to Down

Note 5-4: Gate driver shift clock

Note 5-5: When OE is connected to high "1", the driver outputs are disabled (Gate output = V_{EE}). Under this condition, the operation of registers will not be affected.

Note 5-6: Select left or right shift

R/L	DIO1	DIO2	Shift
1	Input	Hi-Z	Left to right
0	Hi-Z	Input	Right to left

Note 5-7: Latch the polarity of outputs and switch the new data to outputs. At the rising edge (LD), latch the "POL" signal to control the polarity of the outputs.

Note 5-8: Control whether the Data R0~G5 are inverted or not. (E Ink suggests connecting to GND) When "REV=1", these data will be inverted. EX: "00"→"3F", "07"→"38", "15"→"2A"

Note 5-9: Polarity selector for dot-inversion control. Available at the rising edge of LD.

When POL=1: Even outputs range from V1~V7, and Odd outputs range from V8~V14; When POL=0: Even outputs range from V8~V14, and Odd outputs range from V1~V7.

Note 5-10: V_{DD2}=+7.7V

Typical Application Circuit (When $V_1 = +7.7V$)

5-2) Backlight driving

Pin No	Symbol	Description	Remark
1	+	Input terminal(Anode)	Red
2	NC	No connect	-
3	-	Input terminal(Cathode)	Black

6. Absolute Maximum Ratings:

 $V_{SS1}=V_{SS2}=GND=0V$, $Ta=25^{\circ}C$

Parameters	Symbol	MIN.	MAX.	Unit	Remark
	V_{DD1}	-0.5	5.0	V	
	V_{CC}	-0.3	6.0	V	
Cumply Voltage	$ m V_{DD2}$	-0.5	12.0	V	
Supply Voltage	V_{GG}	-0.3	40.0	V	
	V_{GG} - V_{EE}	-0.3	40.0	V	
	V_{EE}	-20	0.3	V	
Storage Temperature	Tst	-30	80	$^{\circ}\!\mathbb{C}$	
Operation Temperature	Тор	-20	70	$^{\circ}\!\mathbb{C}$	

7. Electrical Characteristics

7-1) Recommended Operating Conditions:

 $V_{SS1}=V_{SS2}=GND=0V$, Ta=25 $^{\circ}$ C

Item	Symbol	Min.	Тур.	Max.	Unit	Remark
Supply Voltage for Source Driver	V_{DD1}	2.3	3.3	3.6	V	
	$V_{ m DD2}$	6.5	7.7	13.5	V	
	V_{GG}	14.4	15.4	16.4	V	
Supply Voltage for Gate Driver	$ m V_{EE}$	-6.0	-5.5	-5.0	V	
	V_{CC}	2.3	3.3	5.5	V	
V _{com} Voltage	V_{com}	-	2.6	-	V	
Digital Input Voltage	V_{IH}	$0.7~\mathrm{V_{CC}}$	-	V_{CC}	V	
	V_{IL}	0	-	$0.3~\mathrm{V_{CC}}$	V	

7-2) Recommended Driving Condition for Back Light

 $Ta = 25^{\circ}C$

Parameter	Symbol	Min	TYP	MAX	Unit	Remark
Supply voltage of LED backlight	V_{LED}	-	-	11.5	V	Note 7-1
Supply current of LED backlight	I_{LED}	-	20	30	mA	Note 7-2
Backlight Power Consumption	P_{LED}	1	-	2.3	W	Note 7-1 /Note 7-3

Note 7-1 : $I_{LED} = 20$ mA, Constant Current. Customer system design for driving should be constant current.

Note 7-2: The LED driving condition is defined for each LED module. (3 LED Serial) Input current = 20 mA *10=200mA

Note 7-3:
$$P_{LED} = V_{LED-1} * I_{LED-1} + V_{LED-2} * I_{LED-2} + V_{LED-9} * I_{LED-9} * I_{LED-10} * I_$$

7-3) Power Consumption

Parameter	Symbol	Condition	Тур.	Max.	Unit	Remark
Supply Current for Gate Driver (Hi level)	I_{GG}	$V_{GG}=+15.4V$	0.1	0.3	mA	
Supply Current for Gate Driver (Low level)	I_{EE}	V_{EE} =-5.5 V	0.1	0.3	mA	
Supply Current for Source Driver (Digital)	I_{DD1}	$V_{DD1} = +3.3V$	4.7	9.4	mA	
Supply Current for Source Driver (Analog)	I_{DD2}	$V_{DD2} = +7.7V$	17.0	34.0	mA	
Supply Current for Gate Driver (Digital)	I_{CC}	$V_{CC}=+3.3V$	0.1	0.3	mA	
LCD Panel Power Consumption		-	148.8	300.0	mW	Note 7-4
Back Light Power Consumption		-	-	2.3	W	Note 7-5

Note 7-4: The power consumption for back light is not included.

Note 7-5: Back light power consumption is calculated by I_L×V_L.

8. Pixel Arrangement

The LCD module pixel arrangement is the stripe.

9.Display Color and Gray Scale Reference

Color		Input Color Data																	
				R	ed					Gre	een					Bl	ue		
		R5	R4	R3	R2	R1	R0	G5	G4	G3	G2	G1	G0	B5	B4	B3	B2	B 1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (63)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green (63)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
Basic	Blue (63)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red (00)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (01)	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	Red (02)	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Darker																		
Red	\downarrow	\downarrow	\rightarrow	\rightarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
	Brighter																		
	Red (61)	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	Red (62)	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (63)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green (00)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (01)	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
	Green (02)	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
	Darker																		
Green	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\rightarrow	\downarrow									
	Brighter																		
	Green (61)	0	0	0	0	0	0	1	1	1	1	0	1	0	0	0	0	0	0
	Green (62)	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
	Green (63)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Blue (00)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue (01)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	Blue (02)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
	Darker]																	
Blue	↓	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
	Brighter]																	
	Blue (61)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	1
	Blue (62)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0
	Blue (63)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1

10. Block Diagram

10-1) TFT-module Block Diagram

If you use PD050VXB, you can apply PVI-2003A(Timing controller) which will gemerate timing signals to support PD050VXB.

11. Interface Timing

11.1) Timing Parameters

AC Electrical Characteristics (V_{CC}=V_{DD1}=3.3V, V_{DD2}=7.7V, GND=V_{SS1}=V_{SS2}=0V, Ta=25°C)

Parameter Parameter	Symbol	Min.	Тур.	Max.	Unit
CLK Frequency	Fclk	-	25	40	MHz
CLK Pulse Width	Tcw	25	40	-	ns
Data Set-up Time	Tsu	4	-	-	ns
Data Hold Time	Thd	2	-	-	ns
Propagation Delay of DIO2/1	Tphl	6	10	15	ns
Time That The Last Data to LD	Tld	1	-	-	Tcw
Pulse width of LD	Twld	2	-	-	Tew
Time That LD to DIO1/2	Tlds	5	-	-	Tcw
POL Set-up Time	Tpsu	6	-	-	ns
POL Hold Time	Tphd	6	-	-	ns
OE Pulse Width	T _{OEV}	1	-	-	μs
CKV Pulse Width	T_{CKV}	500	-	-	ns
STV Set-up Time	T_{SUV}	400	-	-	ns
STV Hold Time	T_{HDV}	400	-	-	ns
Horizontal Display Period	T_{HDP}	-	640	-	Tcw
Horizontal Period Timing Range	T_{HP}	-	800	-	Tcw
Horizontal Lines Per Field	T_{V}	520	525	640	T_{HP}
Vertical Display Timing Range	T_{DV}	-	480	-	T_{HP}

Fig. 11-1 Horizontal timing (1)

12. Power On/Off Sequence

- $1.10ms \le T1 < T2$
- 2. $0 \text{ms} < T3 \le T4 \le 10 \text{ms}$

13. Optical Characteristics

13-1) Specification:

 $Ta=25^{\circ}C$

Вамама	a4aw	Crosshal	Candition	MINI	TVD	MAV	TT-n:4	Domonika
Param	eter	Symbol	Condition	MIN.	TYP.	MAX.	Unit	Remarks
	Vertical	θ 11,12		70	75		deg	Note 13-1
Viewing	Horizontal	θ 22	CR≧10	65	70	-	deg	
Angle		(3 o'clock)						
7 Higie		θ 21		45	50		deg	
		(9 o'clock)		43	30	_	ueg	
Contrast	Contrast Ratio			500	600	-	-	Note 13-2
Response time	Rise	Tr	$\theta = 0^{\circ}$	1	15	30	ms	Note 13-3
Kesponse time	Fall	Tf	0 -0	1	25	50	ms	Note 13-3
Bright	ness	L	$\theta = 0^{\circ}/\varphi = 0$	700	900	-	cd/m²	
Luminance U	Luminance Uniformity			70	75	-	%	Note 13-4
Life Time				20000	-	-	hrs	Note 13-6
White Chromaticity		X		0.27	0.31	0.35	ı	
winte Cind	maticity	У		0.32	0.36	0.40	1	
Cross Talk			$\theta = 0^{\circ}$	-	-	3.5	%	Note 13-5

All the optical measurement shall be executed 30 minutes after backlight being turn-on. The optical characteristics shall be measured in dark room (ambient illumination on panel surface less than 1 Lux). The measuring configuration shows as following figure.

Optical characteristics measuring configuration

Topcon BM-5A or BM-7 fast luminance meter 1° field of view is used in the testing (after 30 minutes' operation).

Note 13-1: The definitions of viewing angles are as follow

Note 13-2: The definition of contrast ratio $CR = \frac{Luminance at gray level 63}{Luminance at gray level 0}$

Note 13-3: Definition of Response Time Tr and Tf:

Note 13-4: The uniformity of LCD is defined as

 $U = \frac{\text{The Minimum Brightness}}{\text{The Minimum Brightness}}$ of the 9 testing Points

The Maximum Brightness of the 9 testing Points

Luminance meter: BM-5A or BM-7 fast(TOPCON)

Measurement distance: 500 mm +/- 50 mm

Ambient illumination : < 1 Lux

Measuring direction: Perpendicular to the surface of module

The test pattern is white (Gray Level 63).

Note 13-5: Cross Talk (CTK) =
$$\frac{|YA-YB|}{YA} \times 100\%$$

YA: Brightness of Pattern A YB: Brightness of Pattern B

Luminance meter: BM 5A or BM-7 fast (TOPCON)

Measurement distance: 500 mm +/- 50 mm

Ambient illumination : < 1 Lux

Measuring direction: Perpendicular to the surface of module

Note 13-6: The "LED Life time" is defined as the module brightness decrease to 50% original Brightness that the ambient temperature is $25\,^{\circ}\text{C}$ and I_{LED} =200mA As the performance of an LED may differ when assembled as a monitor together with a TFT panel due to different environmental temperature. Estimated lifetime could vary on a different temperature and usually higher temperature could reduce the life significantly.

14. Handling Cautions

14-1) Mounting of module

- a) Please power off the module when you connect the input/output connector.
- b) Polarizer which is made of soft material and susceptible to flaw must be handled carefully.
- c) Protective film (Laminator) is applied on surface to protect it against scratches and dirt.
- d) Please following the tear off direction as figure 14-1 to remove the protective film as slowly as possible, so that electrostatic charge can be minimized.

14-2) Precautions in mounting

- a) When metal part of the TFT-LCD module (shielding lid and rear case) is soiled, wipe it with soft dry cloth.
- b) Wipe off water drops or finger grease immediately. Long contact with water may cause discoloration or spots.
- c) TFT-LCD module uses glass which breaks or cracks easily if dropped or bumped on hard surface. Please handle with care.
- d) Since CMOS LSI is used in the module. So take care of static electricity and earth yourself when handling.

14-3) Adjusting module

- a) Adjusting volumes on the rear face of the module have been set optimally before shipment.
- b) Therefore, do not change any adjusted values. If adjusted values are changed, the specifications described may not be satisfied.

14-4) Others

- a) Do not expose the module to direct sunlight or intensive ultraviolet rays for many hours.
- b) Store the module at a room temperature place.
- c) The voltage of beginning electric discharge may over the normal voltage because of leakage current from approach conductor by to draw lump read lead line around.
- d) If LCD panel breaks, it is possibly that the liquid crystal escapes from the panel. Avoid putting it into eyes or mouth. When liquid crystal sticks on hands, clothes or feet. Wash it out immediately with soap.
- e) Observe all other precautionary requirements in handling general electronic components.
- f) Please adjust the voltage of common electrode as material of attachment by 1 module.

Figure 14-1 the way to peel off protective film

15. Reliability Test

No	Test Item	Test Condition	Remark
1	High Temperature Storage Test	$Ta = +80^{\circ}C$, 240 hrs	
2	Low Temperature Storage Test	$Ta = -30^{\circ}C$, 240hrs	
3	High Temperature Operation Test	$Ta = +70^{\circ}C$, 240 hrs	
4	Low Temperature Operation Test	$Ta = -20^{\circ}C$, 240hrs	
_	High Temperature & High Humidity	$Ta = +60^{\circ}C$, 90%RH, 240 hrs	
5	Operation Test	(No Condensation)	
	Thermal Cycling Test	-30° C → $+80^{\circ}$ C, 100 Cycles	
6	(non-operating)	30min 30min	
7	Vibration Test (non-operating)	Frequency : $10 \sim 55 \text{ Hz}$, Amplitude : 1 mm Sweep time: 11 min	
		Test Period: 6 Cycles for each direction of X, Y, Z	
8	Shock Test (non-operating)	100G, 6ms Direction: ±X, ±Y, ±Z Cycle: 3 times	
9	Electrostatic Discharge Test (non-operating)	$200 \mathrm{pF}, 0 \Omega$ $\pm 200 \mathrm{V}$ 1 time / each terminal	

Ta: ambient temperature

Note: The protective film must be removed before temperature test.

[Criteria]

In the standard conditions, there is not display function NG issue occurred. (Including: line defect, no image) All the cosmetic specification is judged before the reliability stress.

16. Packing Diagram

