Module 1: Probability and Statistics

- 1 Difference between Statistical and Probabilistic Domain.
- 2 Difference between Sample and Population.
- 3 Deterministic and Random Variables.
- 4 Random Variables: Qualitative and Quantitative.

5 Statistical Domain

- 5.1 What is Statistics?
- 5.2 Different Statistics of sample data of Quantitative Random Variables.
- 5.3 Sample Python code demonstration along with detailed explanation for Coding Assignment
- 5.4 **Coding Assignment 1.**
- 5.5 Frequency and Relative Frequency.
- 5.6 Frequency and Realtive Frequency Distribution of Random Variables.
- 5.7 First, Second and Third Quartile of a sample of data.
- 5.8 Sample Python code demonstration along with detailed explanation for Coding Assignment
- 5.9 **Coding Assignment 2.**

6 Probabalistic Domain

- 6.1 Mathematical definition of probability of occurance of an event.
- 6.2 Conditional Probability.
- 6.3 Independent Events.
- 6.4 Types of Quantitative Random Variables : Continous and Discrete.
- 6.5 Univariate Probability Distributions.
- 6.6 Individual Univariate Probability Distribution Functions.
- 6.7 Some Continuous Random Variable Probability Distributions : Normal, Standard Normal, Rayleigh.
- 6.8 Cummulative Probability and the Distribution Functions.
- 6.9 Z-score in Standard Normal Probability Distribution.
- 6.10 Sample Python code demonstration along with detailed explanation for Coding Assignment
- 6.11 **Coding Assignment 3.**
- 6.12 Multivariate Probability Distributions.
- 6.13 Different Multivariate Joint Probability Distributions.
- 6.14 Joint Multivariate Normal Probability Distribution.
- 6.15 Joint Multivariate Normal Probability Distribution Function.

7 Frequentist Inferential Statistics

- 7.1 Sampling Distributions and CLT.
- 7.2 Sample Python code demonstration along with detailed explanation for Coding Assignment
- 7.3 **Coding Assignment 4.**
- 7.4 First, Second, Third and Forth order moments, Skewness and Kurtosis of Distributions.
- 7.5 Likelihood Functions.
- 7.6 Point Estimation of Population Parameters.
- 7.7 Confidence Interval Estimation of Population Parameters.
- 7.8 Large Sample Hypothesis Testing for means of one and two populations.
- 7.9 Student-t Distribution.
- 7.10 Small Sample Hypothesis Testing for means of one and two populations.
- 7.11 Chi-Square Distribution.
- 7.12 Small Sample Hypothesis Testing for variance of one population.
- 7.13 F Distribution.
- 7.14 Small Sample Hypothesis Testing for variance of two populations.

7.15	ANNOVA: Small Sample Hypothesis Testing for variance of multiple
7.16	populations. Sample Python code demonstration along with detailed explanation for
7.10	Coding Assignment
7.17	Coding Assignment 5.
7.18	Pearson Correlation Analysis.
7.19	Pearson's Chi-Square statistic for analysis of catagorical data.
7.20	Non Parametric Inferential Statistics
7.20.1	Frequentist Inferential Statistics for Qualitative Data.
7.20.2	Converting Qualitative Data into rank.
7.20.3	B Wilcoxon Rank Sum Test.
7.20.4	Wilcoxon Rank Sum Test for a paired experiment.
7.20.5	Kruskal Wallis H-test for completely randomized design.
7.20.6	Friedmann Fr Test for Randomized Block Designs.
7.20.7	Rank Correlation Coefficient.
7.20.8	Sample Python code demonstration along with detailed
	explanation for Coding Assignment
7.20.9	Coding Assignment 6.
Bayesian	Inferential Statistics
8.1	Bayes Theorem.
8.2	Prior and Posterior Probabilities

- 8

 - 8.3 Different Interprettations of Bayes Theorem.
- 8.4 Applications of Bayes Theorem.
 9 Portfolio Project 1 on Probability and Statistics.