	Example 1. Sensitivity of hydraulic head at a point to spatially uniform hydraulic conductivity under steady state flow conditions O. Forward model	
	Governing equation: $Kb\frac{d^2h}{dx^2}+R=0$ Boundary conditions:	(1) (2)
	$-Kbrac{dh(x)}{dx}=0\ , \qquad x=0=\Gamma_2$ $h(x)=h_{\Gamma_1}\ , \qquad x=L=\Gamma_1$	(3) (4) (5)
	$h(x)=h_L+rac{R(L^2-x^2)}{2~K~b}$ Spatial derivatives of hydraulic head obtained from differentiation: $dh = R~x = d^2h = R$	(6) (7)
n [72]:	$\overline{dx} = -\overline{Kb}, \qquad \overline{dx^2} = -\overline{Kb}$	(8)
n [94]:	"this.parentNode.removeChild(this)").format(color) display(HTML(' '.format(script))) from warnings import filterwarnings filterwarnings("ignore", category=DeprecationWarning) import numpy as np	
	<pre>def h(x, K, R, b, L, BC1h): return R/K/2./b*(L**2x**2.) K, R, b, L, BC1h, ocol = 10., 1e-1/1000., 10., 10000., 0., 5000 X = np.arange(L) H0 = np.array([h(x, K, R, b, L, BC1h) for x in X]) %matplotlib inline</pre>	
	<pre>import matplotlib as mpl import matplotlib.pyplot as plt plt.subplots(figsize=[8,2]) plt.plot(X/1000., H0, 'k', mfc='none', label='forward solution, analytical') plt.xlabel('\$x\$ (km)') plt.ylabel('\$h\$ (m)') plt.legend(loc=3);</pre>	
	40 - (E) 20 - (T) 20 - (T) 40	
	1. Direct sensitivity $\frac{\partial h(x')}{\partial K} = \frac{R\left(x^2 - L^2\right)}{2K^2b}$	(9) (10)
n [74]:	<pre>dhdK = [R/K**2./2./b*(x**2L**2.) for x in X] benchmark = dhdK[ocol] %matplotlib inline import matplotlib as mpl</pre>	(11)
	<pre>import matplotlib.pyplot as plt plt.subplots(figsize=[8,2]) plt.plot(X/1000., dhdK, 'k', mfc='none', label='direct sensitivity, analytical') plt.xlabel('\$x\$ (km)') plt.ylabel(r'\$\partial h / \partial K\$') plt.legend();</pre>	
	-4	
n [75]:	set_background('rgba(0, 200, 0, 0.2)') print('%.6f'% benchmark) -3.750000 2. Perturbation sensitivity	
	$rac{\partial h(x')}{\partial K}pprox rac{h(x,K+\Delta K)-h(x,K)}{\Delta K}$ 2a. Analytical	(12)(13)(14)
n [76]:	<pre>dpar = 1e-4 H0 = np.array([h(x, K, R, b, L, BC1h) for x in X]) H1 = np.array([h(x, K+K*dpar, R, b, L, BC1h) for x in X]) dhdK = (H1-H0)/(K*dpar) %matplotlib inline import matplotlib as mpl import matplotlib.pyplot as plt</pre>	
	<pre>plt.subplots(figsize=[8,2]) plt.plot(X/1000., dhdK, 'k', mfc='none', label='perturbation sensitivity, analytical') plt.xlabel('\$x\$ (km)') plt.ylabel(r'\$\partial h / \partial K\$') plt.legend();</pre>	
	-4	
n [77]: n [93]:	<pre>set_background('rgba(0, 200, 0, 0.2)') print('%.6f (%.6f)'% (dhdK[ocol], benchmark)) -3.749625 (-3.750000) 2b. Semi-analytical from os import getcwd, chdir</pre>	
[33].	<pre>cwd = getcwd() chdir(r'//timml') import timml chdir(cwd) M0 = timml.Model3D(kaq=K, z=[0., -b]) timml.ImpLineDoublet1D(M0, xld=0.) timml.HeadLineSink1D(M0, xls=L, hls=0.)</pre>	
	<pre>timml.StripAreaSink(M0, 0., L, R) M0.solve(silent=True) H0 = M0.headalongline(X, 0.).flatten() *matplotlib inline import matplotlib as mpl import matplotlib.pyplot as plt plt.subplots(figsize=[8,2]) plt.plot(X/1000., H0, 'k', mfc='none', label='forward solution, semi-analytical')</pre>	
	<pre>plt.xlabel('\$x\$ (km)') plt.ylabel('\$h\$ (m)') plt.legend(loc=3);</pre>	
n [79]:	M1 = timml.Model3D(kaq=K+K*dpar, z=[0., -b]) timml.ImpLineDoublet1D(M1, xld=0.)	
	<pre>timml.HeadLineSink1D(M1, xls=L, hls=0.) timml.StripAreaSink(M1, 0., L, R) M1.solve(silent=True) H1 = M1.headalongline(X, 0.).flatten() dhdK = (H1-H0)/(K*dpar) %matplotlib inline import matplotlib as mpl</pre>	
	<pre>import matplotlib as mpr import matplotlib.pyplot as plt plt.subplots(figsize=[8,2]) plt.plot(X/1000., dhdK, 'k', mfc='none', label='perturbation sensitivity, semi-analytical') plt.xlabel('\$x\$ (km)') plt.ylabel(r'\$\partial h / \partial K\$') plt.legend();</pre>	
	2 -2 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4	
	<pre>set_background('rgba(0, 200, 0, 0.2)') print('%.6f (%.6f)'% (dhdK[ocol], benchmark)) -3.749625 (-3.750000) 2c. Numerical import floory</pre>	
n [95]:	<pre>import flopy nrow, ncol = 1, int(L) M0 = flopy.modflow.Modflow(modelname='model', exe_name='/mf2005.exe') flopy.modflow.ModflowDis(M0, nlay=1, nrow=nrow, ncol=ncol, nper=1, delr=1., delc=1., top=0., botm=-b,</pre>	
	<pre>flopy.modflow.ModflowLpf(M0, hk=K, vka=-999., ss=-999., sy=-999., ipakcb=53) flopy.modflow.ModflowRch(M0, nrchop=1, rech=R, ipakcb=53) flopy.modflow.ModflowPcg(M0, hclose=1e-6, rclose=1e-6) flopy.modflow.ModflowOc(M0, stress_period_data={(0,0): ['save head', 'save budget']}) M0.write_input() success, buff = M0.run_model(silent=True) H0 = flopy.utils.binaryfile.HeadFile('model.hds').get_data()[0,0,:]</pre> %matplotlib inline	
	<pre>import matplotlib as mpl import matplotlib.pyplot as plt plt.subplots(figsize=[8,2]) plt.plot(X/1000., H0, 'k', mfc='none', label='forward solution, numerical') plt.xlabel('\$x\$ (km)') plt.ylabel('\$h\$ (m)') plt.legend(loc=3);</pre>	
	40 forward solution, numerical forward solution, numerical forward solution for the formal solution for the fo	
n [82]:	<pre>M1 = M0 flopy.modflow.ModflowLpf(M1, hk=K+K*dpar, vka=-999., ss=-999., sy=-999., ipakcb=53) M1.write_input() success, buff = M1.run_model(silent=True) H1 = flopy.utils.binaryfile.HeadFile('model.hds').get_data()[0,0,:] dhdK = (H1-H0)/(K*dpar)</pre>	
	<pre>%matplotlib inline import matplotlib as mpl import matplotlib.pyplot as plt plt.subplots(figsize=[8,2]) plt.plot(X/1000., dhdK, 'k', mfc='none', label='perturbation sensitivity, numerical') plt.xlabel('\$x\$ (km)') plt.ylabel(r'\$\partial h / \partial K\$')</pre>	
	plt.legend(); O perturbation sensitivity, numerical Yellow	
n [83]:	0 2 4 6 8 10 x(km) set_background('rgba(0, 200, 0, 0.2)') print('%.6f (%.6f)'% (dhdK[ocol], benchmark)) -3.753662 (-3.750000)	
	3. Adjoint sensitivity $\frac{\partial h(x')}{\partial K} = \int\limits_{Y} \psi_1^*(x) \ b \ \frac{d^2h(x)}{dx^2} \ dx$	(15)
	Governing equation: $Kb\frac{d\psi_1^*}{dx} + \frac{1}{2Kb}\delta(x-x') = 0$	(16) (17)
	Boundary conditions: $-K~b~\frac{d\psi_1^*(x)}{dx}=0~, \qquad x=0=\Gamma_2$ $\psi_1^*(x)=0~, \qquad x=L=\Gamma_1$	(18) (19) (20)
n [96]:	Closed-form solution: $\psi_1^*(x) = \frac{1}{2\;K\;b} \big[H\left(x'-x\right) \left(L-x'\right) + H\left(x-x'\right) \left(L-x\right) \big]$ def a(x, xp, K, b, L): if x>xp:	(21)
	<pre>a = L-x else: a = L-xp return a/K/b A = np.array([a(x, 4500., K, b, L) for x in X]) %matplotlib inline import matplotlib as mpl import matplotlib.pyplot as plt</pre>	
	<pre>plt.subplots(figsize=[8,2]) plt.plot(X/1000., A, 'k', mfc='none', label='adjoint solution, analytical') plt.xlabel('\$x\$ (km)') plt.ylabel(r'\$\psi^*_1\$ (T/\$L^2\$)') plt.legend(loc=3);</pre>	
	The second secon	
n [85]:	<pre>3a. Analytical dhdK = [np.sum(np.array([a(x, xp, K, b, L) for x in X])*b*-R/(K*b)) for xp in X[::1000]] %matplotlib inline import matplotlib as mpl import matplotlib.pyplot as plt plt.subplots(figsize=[8,2])</pre>	
	<pre>plt.plot(X[::1000]/1000., dhdK, 'k', mfc='none', label='adjoint sensitivity, analytical') plt.xlabel('\$x\$ (km)') plt.ylabel(r'\$\partial h / \partial K\$') plt.legend();</pre> -1 adjoint sensitivity, analytical	
n [86]:	<pre>set_background('rgba(0, 200, 0, 0.2)') print('%.6f (%.6f)'% (dhdK[int(np.where(X[::1000]==float(ocol))[0])], benchmark))</pre>	
n [87]:	-3.750250 (-3.750000) 3b. Semi-analytical M0 = timml.Model3D(kaq=K, z=[0., -b]) timml.ImpLineDoublet1D(M0, xld=0.) timml.HoadLineSinklD(M0, xld=0.)	
	<pre>timml.HeadLineSinklD(M0, xls=L, hls=0.) timml.LineSinklD(M0, xls=float(ocol), sigls=-1.) M0.solve(silent=True) A = M0.headalongline(X, 0.).flatten() %matplotlib inline import matplotlib as mpl import matplotlib.pyplot as plt plt.subplots(figsize=[8,2])</pre>	
	<pre>plt.plot(X/1000., A, 'k', mfc='none', label='adjoint solution, semi-analytical') plt.xlabel('\$x\$ (km)') plt.ylabel(r'\$\psi^*_1\$ (T/\$L^2\$)') plt.legend(loc=3);</pre>	
n [97]:	dhdK = np.empty(0)	
	<pre>for xp in X[::1000]: M0 = timml.Model3D(kaq=K, z=[0., -b]) timml.ImpLineDoublet1D(M0, xld=0.) timml.HeadLineSink1D(M0, xls=L, hls=0.) timml.LineSink1D(M0, xls=xp, sigls=-1.) M0.solve(silent=True) A = M0.headalongline(X, 0.).flatten() dhdK = np.append(dhdK, np.sum(A*b*-R/(K*b)))</pre>	
	<pre>%matplotlib inline import matplotlib as mpl import matplotlib.pyplot as plt plt.subplots(figsize=[8,2]) plt.plot(X[::1000][1:]/1000., dhdK[1:], 'k', mfc='none', label='adjoint sensitivity, semi-analytica plt.xlabel('\$x\$ (km)') plt.ylabel(r'\$\partial h / \partial K\$') plt.legend(loc=2);</pre>	1')
	-1 adjoint sensitivity, semi-analytical -2	
n [89]:	<pre>x (km) set_background('rgba(0, 200, 0, 0.2)') print('%.6f (%.6f)'% (dhdK[int(np.where(X[::1000]==float(ocol))[0])], benchmark)) -3.750250 (-3.750000)</pre>	
n [98]:	<pre>3c. Numerical, continuous M0 = flopy.modflow.Modflow(modelname='model', exe_name='/mf2005.exe') flopy.modflow.ModflowDis(M0, nlay=1, nrow=1, ncol=ncol, nper=1, delr=1., delc=1., top=0., botm=-b, steperlen=1., nstp=1) flopy.modflow.ModflowBas(M0, ibound=np.hstack([np.ones([nrow, ncol-1], dtype=int), -1*np.ones([1,1])]</pre>	_
	<pre>flopy.modflow.ModflowWel(M0, stress_period_data={0: [0, 0, ocol, 1.]}) flopy.modflow.ModflowPcg(M0, hclose=1e-6, rclose=1e-6) flopy.modflow.ModflowOc(M0, stress_period_data={(0,0): ['save head', 'save budget']}) M0.write_input() success, buff = M0.run_model(silent=True) A = flopy.utils.binaryfile.HeadFile('model.hds').get_data()[0,0,:] %matplotlib inline import matplotlib as mpl</pre>	
	<pre>import matplotlib.pyplot as plt plt.subplots(figsize=[8,2]) plt.plot(X/1000., A, 'k', mfc='none', label='adjoint solution, numerical') plt.xlabel('\$x\$ (km)') plt.ylabel(r'\$\psi^*_1\$ (T/\$L^2\$)') plt.legend(loc=3);</pre>	
	40 adjoint solution, numerical adjoint solution, numerical x (km)	
n [91]:		
	<pre>dhdK = np.append(dhdK, np.sum(A*b*-R/(K*b))) %matplotlib inline import matplotlib as mpl import matplotlib.pyplot as plt f,s = plt.subplots(figsize=[8,2]) plt.plot(X[::1000]/1000., dhdK, 'k', mfc='none', label='adjoint sensitivity, numerical') plt.xlabel('\$x\$ (km)') plt.ylabel(r'\$\partial h / \partial K\$')</pre>	
	plt.legend(); -1 adjoint sensitivity, numerical adjoint sensitivity, numerical	
[92]:	<pre>print('%.6f (%.6f)'% (dhdK[int(np.where(X[::1000]==float(ocol))[0])], benchmark))</pre>	
in []:	<pre>M1 = M0 flopy.modflow.ModflowWel(M1, stress_period_data={0: [0, 0, ocol, 1.]}) M1.write_input()</pre>	
in []:	<pre>from os import system nrow, ncol = 1, 10000</pre>	
	<pre>M0 = flopy.modflow.Modflow(modelname='model', exe_name='/mf2005.exe') flopy.modflow.ModflowDis(M0, nlay=1, nrow=nrow, ncol=ncol, nper=1, delr=1., delc=1., top=0., botm=-b,</pre>	
	<pre>M0.write_input() #success, buff = M0.run_model(silent=True) system('mf2005_stream.exe < model.in') h = np.reshape(flopy.utils.binaryfile.HeadFile('model.hds').get_data()[0,0,:], [1,ncol]) %matplotlib inline import matplotlib as mpl import matplotlib.pyplot as plt plt.subplots(figsize=[8,2])</pre>	
n []:	<pre>plt.plot(X/1000., h[0, range(500, np.shape(h)[1], 1000)], 'ko', mfc='none', label='forward solution plt.xlabel('\$x\$ (km)') plt.ylabel('\$h\$ (m)') plt.legend();</pre> <pre>print(h[0, range(500, np.shape(h)[1], 1000)]) h = h.T</pre>	, numer
in []:	Assemble A matrix and RHS vector: CR = np.reshape(np.loadtxt('CR.arr').flatten(), [1,ncol]) CR = np.vstack([np.zeros(ncol),	
	<pre>i = 0 for r in range(1, nrow+1): for c in range(1, ncol+1): if r==nrow and c==ncol: continue if i-ocol > -1: A[i, i-ocol] = CC[r-1,c] if i-1 > -1: A[i, i-1] = CR[r,c-1] A[i, i] = -CC[r-1,c]-CR[r,c]-CR[r,c]</pre>	
In []: In []:	<pre>RHS = np.reshape(np.loadtxt('RHS.arr'), [1,ncol]).T print(RHS) M0 = flopy.modflow.Modflow(modelname='model', exe_name='/mf2005.exe') flopy.modflow.ModflowDis(M0, nlay=1, nrow=nrow, ncol=ncol, nper=1, delr=1., delc=1., top=0., botm=-b, perlen=1., nstp=1) flopy.modflow.ModflowBas(M0, ibound=np.hstack([np.ones([nrow, ncol-1], dtype=int), -1*np.ones([1,1])]</pre>	
	<pre>flopy.modflow.ModflowBas(M0, ibound=np.hstack([np.ones([nrow, ncol-1], dtype=int), -1*np.ones([1,1])]</pre>	
	h = np.reshape(flopy.utils.binaryfile.HeadFile('model.hds').get_data()[0,0,:], [1,ncol]).T CR = np.reshape(np.loadtxt('CR.arr').flatten(), [1,ncol]) CR = np.vstack([np.zeros(ncol),	
	<pre>i = 0 for r in range(1, nrow+1): for c in range(1, ncol+1): if i-1 > -1: A[i,i-1] = CR[r,c-1] A[i,i] = -CR[r,c-1]-CR[r,c] if i+1 < nrow*ncol-1: A[i,i+1] = CR[r,c] i +=1</pre>	
In []:	<pre>i +=1 A[-1,-1] = 0. A0 = A print(A0) dpar = 1e-4 M0 = flopy.modflow.Modflow(modelname='model', exe_name='/mf2005.exe') flopy.modflow.ModflowDis(M0, nlay=1, nrow=nrow, ncol=ncol, nper=1, delr=1., delc=1., top=0., botm=-b, perlen=1., nstp=1)</pre>	
	<pre>perlen=1., nstp=1) flopy.modflow.ModflowBas(M0, ibound=np.hstack([np.ones([nrow, ncol-1], dtype=int), -1*np.ones([1,1])]</pre>	
	<pre>system('mf2005_stream.exe < model.in') h = np.reshape(flopy.utils.binaryfile.HeadFile('model.hds').get_data()[0,0,:], [1,ncol]).T CR = np.reshape(np.loadtxt('CR.arr').flatten(), [1,ncol]) CR = np.vstack([np.zeros(ncol),</pre>	
	<pre>i = 0 for r in range(1, nrow+1): for c in range(1, ncol+1): if i-1 > -1:</pre>	
	A[i,i+1] = CR[r,c] i +=1	
n []:	<pre>i +=1 A1 = A print(A1) dAdK = (A1-A0) / (K*dpar) dAdK</pre>	
in []: in []: in []: in []:	<pre>i +=1 A1 = A print(A1) dAdK = (A1-A0)/(K*dpar) dAdK psi dAdK</pre>	