浙江大学 2003 — 2004 学年第二学期期终考试

《The Theory of Computation》课程试卷

	考试	,則用:	_120_	_分钟	井保字	· 阮 <u> </u>	<u> </u>	全 亚		
	姓名	!		:	学号		任课教	如师		
117	•			_	_		_		_	\ \/

题序	1	2	3	4	5	6	7	总分
评分								
评阅人								

- (20pts, 2 each) Tell whether the statements below are true (T) or false (F).
 - (1) () Language $\{a^{6n}b^{3m}c^{p+10}: n \ge 0, m \ge 0, p \ge 0, \}$ is regular.
 - (2) () A and B are two context-free languages, so is $A \oplus B$, where $A \oplus B = (A B) \cup (B A)$.
 - (3) () Let $L_1, L_2 ... L_i ...$ are all regular languages, so is $\bigcup_{i=1}^{i} L_i$.
 - (4) () Suppose that *L* is context-free and *R* is regular, *L*–*R* is context-free language.
 - (5) () Every regular language can be generated by a context-free grammar.
 - (6) () Every computable function is primitive recursive.
 - (7) () Turing Machines with two-way infinite tape accept more languages than standard Turing Machines.
 - (8) () Every Turing machine semidecides a recursive language.
 - (9) () Suppose $M = (K, \Sigma, \Delta, s, F)$ be a nondeterministic finite automaton, then Δ is a function from $K \times \Sigma$ to K.
 - (10)() L is a language, there is a Turing machine M halts on x for every $x \in L$, then L is decidable.

- 2. Automata and regular expressions:
 - (1) (8pts) Give a NFA (Nondeterministic Finite Automaton) accepting the language $L=\{x \mid x \in \{a,b\}^*\}$ and aab occurs as substring of x at least twice. Draw a state transition diagram of the NFA and simplify as much as possible.

(2) (8pts) Write a regular expression for the language accepted by the following finite automaton:

- 3. Pushdown Automata (PDA) and Context-free Grammar (CFG):
 - (1) (8pts) Give a CFG that generates the $L=\{uu^Rcvv^R \mid u,v\in\{a,b\}^*\}$.

(2) (8pts) Design a PDA $M=(K, \Sigma, \Gamma, \Delta, s, F)$ accepting the language above, where

 $\Sigma = \{a, b\};$ Δ :

K=

Γ=

S= F=

4. Say whether each of the following languages is regular or not regular (prove your answers):

(1) (8pts)
$$L_1 = \{a^{i-j} : i=4j, i, j \in \mathbb{N}\}$$

(2) (8pts) $L_2 = \{w: w \in \{a, b\}^* \text{ and } w \neq w^R \}$

5. (10pts) Consider two deterministic finite automata:

$$M_{1} = (K_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}) \text{ and } M_{2} = (K_{2}, \Sigma, \delta_{2}, p_{1}, F_{2}), \text{ where}$$

$$\sum = \{a, b\},$$

$$K_{1} = \{q_{1}, q_{2}\} \text{ and } K_{2} = \{p_{1}, p_{2}, p_{3}\},$$

$$F_{1} = \{q_{2}\} \text{ and } F_{2} = \{p_{3}\},$$

$$\delta_{1}: \qquad \qquad \delta_{2}:$$

$$\frac{\delta_{1}}{q_{1}} \begin{vmatrix} a & b \\ q_{2} & q_{1} \\ q_{2} & q_{1} \end{vmatrix} \qquad \qquad \frac{\delta_{2}}{p_{1}} \begin{vmatrix} a & b \\ p_{1} & p_{1} & p_{3} \\ p_{2} & p_{3} & p_{2} \end{vmatrix}$$

Use the Cartesian product to construct a DFA $M=(K, \Sigma, \delta, s, F)$ accepting the union of the two sets accepted by the automata above. M:

6. (7pts) Give the equivalent primitive recursive function from the predicate *x*=*y*.

7. Let the following Turing machine \mathcal{M} computes f(x, y), the alphabet is $\Sigma = \{0, 1, \square, ;\}$. The head of \mathcal{M} begins from the most left blank; \square is the symbol of blank; x and y are presented by binary strings respectively and separated with the symbol ";".

(1) (7pts) Describe the key configurations when \mathcal{M} started from the configuration $\triangleright \square 1111;100\square$.

(2) (8pts) Try to give the function f(x, y) that this \mathcal{M} can compute.