Between MDPs and Semi-MDPs: A framework for temporal abstraction in reinforcement learning.

Paper by: R.Sutton, Doina Precup, Satinder Singh

Monica Patel (260728093)

31-March-2017

McGill University

Synopsis of the Paper

- Paper introduces extended notion of actions from MDP frame work to include 'options', to take action over a period of time.
- Paper also shows that options can be used like actions for planning and learning.
- There is brief introduction to what are options and what are semi-Markov decision process.
- Notion of subgoal is introduced which can be used to improve options.

MDP and SMDP frame work

- The base problem under consideration is a MDP, but the state transition resulted from actions of this MDP are extended and variable in time. These actions are called OPTIONS.
- Fixed Set of such options defines a discrete time SMDP, which is embedded within MDP.

Options

- Options are generalization of temporally extended actions in MDP.
- It consists of three components:
 - Policy π : $S \times A \rightarrow [0,1]$
 - Termination condition β : $S^+ \rightarrow [0,1]$
 - initiation set: $I \subset S$
- ullet An option is available in state s_t iff $s_t \in I$
- If the option is taken, then actions are selected according to π until the option terminates stochastically according to β
- Its is also helpful sometimes to terminate or exit an option after a particular time τ even if it fails to reach the end states.
- Since the above is not possible in Markov option, (termination depends solely on current state) Semi- Markov options are used.
- in Semi-Markov options Policy and termination condition is decided based on history for the option was running: $h_{t\tau}$ (running from t to τ)
- \bullet Set of all history is denoted by Ω

Options Continued

- Given two options they can be taken in sequence. Taking b after a terminates (inside of b's initiation states)
- This is a composed option ab.
- Composition of two Markov options is semi-Markov option because actions are selected differently before and after termination of first option.
- Composition of two semi-Markov options is semi-Markov option.

Policies over Options

Markov Policy over options: $S \times O \rightarrow [0,1]$

- Initialize in state s_t
- ullet Select an option $o \in O$ according to probability distribution $\mu(s_t,.)$
- Option o is taken in s_t until it terminates in state s_{t+k} at which time new option is selected and this goes on.
- Value of state s under semi Markov flat policy is defined as expected return given that π initialized in s.

$$V^{\pi} = E\{r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3}... | e(\pi, s, t)\}$$
 where $e(\pi, s, t)$ denotes event of π initiated in s at time t.

• Option-Value function $Q^{\mu}(s,o)$ is defined as the value of taking option o in state $s \in I$ under policy π

$$Q^{\mu}(s,o) = E\{r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3}... | e(o\mu, s, t)\}$$

Where $o\mu$ is composition of o and μ , first follow o then choose next option according to μ

V* and Q* over Options

$$\begin{split} V_{\mathcal{O}}^*(s) &\stackrel{\text{def}}{=} \max_{\mu \in \Pi(\mathcal{O})} V^{\mu}(s) \\ &= \max_{o \in \mathcal{O}_s} E \left\{ r_{t+1} + \dots + \gamma^{k-1} r_{t+k} + \gamma^k V_{\mathcal{O}}^*(s_{t+k}) \, \middle| \, \mathcal{E}(o, s, t) \right\} \\ &\quad \text{(where } k \text{ is the duration of } o \text{ when taken in } s) \\ &= \max_{o \in \mathcal{O}_s} \left[r_s^o + \sum_{s'} p_{ss'}^o V_{\mathcal{O}}^*(s') \right] \\ &= \max_{o \in \mathcal{O}_s} E \left\{ r + \gamma^k V_{\mathcal{O}}^*(s') \, \middle| \, \mathcal{E}(o, s) \right\}, \end{split}$$

$$\begin{split} Q_{\mathcal{O}}^*(s,o) &\stackrel{\text{def}}{=} \max_{\mu \in \Pi(\mathcal{O})} Q^{\mu}(s,o) \\ &= E \big\{ r_{t+1} + \dots + \gamma^{k-1} r_{t+k} + \gamma^k V_{\mathcal{O}}^*(s_{t+k}) \, \big| \, \mathcal{E}(o,s,t) \big\} \\ &\quad \text{(where } k \text{ is the duration of } o \text{ from } s) \\ &= E \Big\{ r_{t+1} + \dots + \gamma^{k-1} r_{t+k} + \gamma^k \max_{o' \in \mathcal{O}_{s_{t+k}}} Q_{\mathcal{O}}^*(s_{t+k},o') \, \Big| \, \mathcal{E}(o,s,t) \big\}, \\ &= r_s^o + \sum_{s'} p_{ss'}^o \max_{o' \in \mathcal{O}_{s'}} Q_{\mathcal{O}}^*(s',o') \\ &= E \Big\{ r + \gamma^k \max_{o' \in \mathcal{O}_{s'}} Q_{\mathcal{O}}^*(s',o') \, \Big| \, \mathcal{E}(o,s) \big\}, \end{split}$$

SMDP Planning

The above bellman equations can used for dynamic-programming style planning for SMDP. Typically approximation of V^* and Q^* is maintained for all states and options.

Synchronous Value Iteration:

 Option starts with arbitrary approximation of V* and computes new approximation by:

$$V_k(s) = \max_{o \in O_s} [r_s^o + \sum_{s' \in S} P_{ss'}^o V_k 1(s')]$$

New approximation for Q* are computed by

$$Q_k(s,o) = r_s^o + \sum_{s' \in S} P_{ss'}^o \max_{o' \in O_s} Q_k 1(s',o')$$

Conclusion

- Representing knowledge at multiple level of temporal abstraction speed up planning and learning.
- Transfer between subtask is not completely understood.
- As for extended actions there can be same implications made for extended perception.