Machine Learning for Optical Communication

Team 6: Alex Wang, Matthew Luzenski

Credits

We divided the work evenly for this project

All algorithms were researched together

- Maximum Likelihood Estimator implemented by Matthew
 - Coded in Matlab
- Neural Network implemented by Alex
 - Coded in Python using TensorFlow for hardware acceleration
- Support Vector Machines were designed, tested, and analyzed together.
 - Coded in Matlab
 - Basic structure coded together
 - Soft-margin regularizer and desynchronization Alex
 - RBF kernel and channel noise Matthew

Outline

- Background
 - Dispersive optical fibers
 - Feature extraction: Binary (NRZ) and 4-bit (4-PAM)
- Maximum Likelihood Estimator
 - Approximating probability distributions
- Convolutional Neural Network
 - Hidden layer architecture
 - Learned features
- Support Vector Machine
 - Hyperplane hinge loss
 - Hard margin vs. soft margin
 - RBF kernel

Background

Problem Statement

- Fiber-optic communications becoming more prevalent
 - Light confined by total internal reflection
 - High speed, high bandwidth, low loss
 - Issue: signal distortion
- Waveguide dispersion
 - Redistribution of light due to waveguide geometry
- Material dispersion
 - Refractive index and absorption varies with wavelength

from images.google.com

Model Simulation - VPIphotonics

Feature Extraction - Binary (NRZ)

- Input light power is modulated
 - Two levels: 0 and 1mW
- 16 samples per symbol
- Pre-processing:
 - Threshold TX data at 0.5 for labels
 - The majority label within each clock cycle becomes the representative label for all 16 samples

Feature Extraction - 4-PAM

- Four power levels
 - ~40μW, ~350μW,~750μW, ~970μW
- 16 samples per symbol
- Pre-processing:
 - Threshold TX data around each power level
 - Grey coding:

$$0 -> 00$$

Maximum Likelihood Estimator

Approximating Probability Distributions

Bayes' theorem:
$$P(\theta \mid x_1, x_2, ..., x_n) = \frac{f(x_1, x_2, ..., x_n \mid \theta) P(\theta)}{P(x_1, x_2, ..., x_n)}$$
 $n = 16$

where x_i are samples in a set of data, and θ is the classification for the set. We wish to make the maximum a posteriori estimate, assuming that each class is equally likely.

We assume each time sample within a clock cycle has a Gaussian distribution. An input sample is scaled by the variance to find the deviation from the mean of each class, and the prediction is given by the nearest class.

$$x_i \sim N(\mu_i, \sigma_i^2)$$

Program Flow - Maximum Likelihood

- Using the training set, approximate a distribution for each of the 16 samples
- To label the test data:
 - Calculate the weighted norm from the test vector to each class's mean vector
 - Use inverse variances as weights
 - The label is decided by the lowest norm

Histograms (Binary)

- Blue: label 0
- Orange: label 1
- The distributions of the signal values for the two classes are overlapping early in the clock cycle
- The last sample in the clock cycle is the most distinguishable

Histograms (4-PAM)

• Blue: label 0

Red: label 1

Yellow: label 2

Purple: label 3

 Similar to the binary case, the last sample in the clock cycle is the most distinct

Results: 0 misclassifications for both Binary and 4-PAM

Convolutional Neural Network

Neural Network Architecture

Typically used for classifying 2D images, we can implement a convolutional neural net for 1D waveforms.

Convolutions and Pooling

Input Convolutional Pooling Layer Layer Layer

max-pooling

dilated convolution

 Dilated causal convolutions are used to respect the ordering of the data

$$p\left(\mathbf{x}
ight) = \prod_{t=1}^{T} p\left(x_{t} \mid x_{1}, \dots, x_{t-1}
ight)$$

High receptive field, low memory cost

- Max-pooling: the largest node in each window is selected for the next layer
- The outputs can be considered as learned feature embeddings

Dense Layers

- Each connection multiplies the input by a weight
- A node is calculated by summing over all incoming connections

 An additional relu function is applied to the hidden layer

$$f(x) = x^+ = \max(0,x)$$

 Softmax is used to normalize the output layer

$$\sigma(\mathbf{z})_j = rac{e^{z_j}}{\sum_{k=1}^K e^{z_k}}$$
 for j = 1, ..., K .

 Cross-entropy is used as a loss function

$$H(p,q) = \sum_{x_i} p(x_i) \, \log rac{1}{q(x_i)}$$

where p and q are two probability distributions

Program Flow - CNN

- Inputs are fed to the neural net in batches
- Training is done via gradient descent
 - Gradients automatically calculated by TensorFlow

Values being optimized:

- Weights of the dilated convolutional filter
- Weights of the dense layer connections

Classifier Performance

trains in 20,000 epochs
~1 minute
0 misclassifications
loss = 0.35

trains in 100,000 epochs
~10 minutes
0 misclassifications
loss = 0.10

Learned Features

- After training, the kernels from the 2nd dilated convolutional layer are displayed here
- These are obtained by plotting the outputs of the 2nd pooling layer using an input delta function
- Each graph can be interpreted as a low-resolution waveform shape that the neural network learns to look for

Support Vector Machine

Hyperplane Hinge Loss

We wish to find the maximum-margin hyperplane: $\ ec{w} \cdot ec{x} - b = 0 \$

$$ec{v}\cdotec{x}-b=0$$
 w,x_i

 $w, x_i \in \mathcal{R}^{16}$

For the binary case, we have two classes.

$$ec{w}\cdotec{x}_i-b\geq 1,$$
 if $y_i=1$

$$ec{w}\cdotec{x}_i-b\geq 1,$$
 if $y_i=1$ $ec{w}\cdotec{x}_i-b\leq -1,$ if $y_i=-1$

To train the SVM, we minimize the hinge loss:

$$\left[rac{1}{n}\sum_{i=1}^n \max\left(0,1-y_i(ec{w}\cdotec{x}_i-b)
ight)
ight]$$

Subgradient descent:

if
$$1 - y_i(w \cdot x_i - b) > 0$$
: $w_m = w_{m-1} + \frac{\mu}{n} \sum_{i=1}^n y_i x_i$
 $b_m = b_{m-1} - \frac{\mu}{n} \sum_{i=1}^n y_i$

$$\mu \stackrel{\Delta}{=} learning \ rate$$

else:
$$w_m$$

else:
$$w_m = w_{m-1}$$
 $b_m = b_{m-1}$

$$b_m = b_{m-1}$$

Program Flow - SVM

- Single SVM for binary classification
- For 4-PAM, we train two SVMs
 - First hyperplane separates lower and upper power levels
 - Second hyperplane separates between levels close to mean and far from mean

Hard-margin SVM Results (Binary)

Optimized Hyperplane

Hard-margin SVM Results (4-PAM)

Hard-margin SVM Accuracy

Soft-margin SVM

Introduce another term to the loss function:

$$\left[rac{1}{n}\sum_{i=1}^n \max\left(0,1-y_i(ec{w}\cdotec{x}_i-b)
ight)
ight] + \lambda \|ec{w}\|^2$$

- More points are allowed to violate the margin
- Once the tolerance is reached, ||w|| begins to reduce (margin grows wider)

 μ = 10, tolerance = 0.1, training size = 128 symbols

Radial Basis Function Kernel

RBF SVM on a Noisy Binary Channel

- RBF SVM tested on data added with white gaussian noise
- Misclassifications decrease as SNR increases
- High error rate for certain high SNR demonstrates RBF overfitting
- Error Rate 6.91% with no noise

 μ = .01, γ = 1500 training size = 64 symbols

Effect of Signal Desynchronization

- The trained SVM can classify inputs even when the RX data is received late
- Accuracy begins to decrease when input vectors lag by 7 samples

 μ = 10, tolerance = 0.01, training size = 128 symbols

Conclusions

- Maximum Likelihood Estimator
 - Assumes a uniform prior distribution and is not adaptive
- Convolutional Neural Network
 - Binary data can be perfectly decoded after ~1 minute of training
 - 4-PAM data requires ~10 minutes of training
 - Difficult to get 100% accuracy without a large training set (we used ½ of the data)
- Support Vector Machines
 - Binary data can be perfectly decoded after training for 10 seconds on only 10 samples
 - 4-PAM data requires 30 seconds on a training set on the order of 100 samples
 - MSB classifier trains much faster than LSB
 - SVM is more resilient to non-ideal scenarios

References

- D. Wang, et al., Nonlinear Decision Boundary Created by a Machine Learning-based Classifier to Mitigate Nonlinear Phase Noise. Ecoc (2015); ID:0720.
- B. Zhao, et al., **Waveforms Classification based on Convolutional Neural Networks.** *IEEE* (2017); DOI:10.1109.
- D. J. Sebald, et al., **Support Vector Machines and the Multiple Hypothesis Test Problem.** *Trans. Signal Process., vol. 49, no. 11, p. 2865 (2001).*
- A. van den Oord, et al., **WaveNet: A Generative Model for Raw Audio.** *Google DeepMind (2016); arXiv:1609.03499v2.*

Questions?