Derivative formulas

	1
Y = cte	Y' = 0
$Y = x^m$	$Y' = mx^{m-1}$
$Y = kx^m$	$Y' = k m x^{m-1}$
$Y = \frac{1}{x}$	$Y' = -\frac{1}{x^2}$
$Y = \sqrt{x}$	$Y' = -\frac{1}{x^2}$ $Y' = \frac{1}{2\sqrt{x}}$
Y = sinx	Y' = cosx
Y = sinax	Y' = acosax
Y = cosx	Y' = -sinx
Y = cosax	Y' = -asinax
Y = tanx	$Y' = sec^2x$
Y = tanax	$Y' = asec^2 ax$
Y = cotx	$Y' = -csc^2x$
Y = cotax	$Y' = -acsc^2$ ax
Y = sec x	Y' = secx.tanx
Y = secax	Y' = a.sec(ax).tan(ax)
Y = cscx	Y' = -cscx.cotx
Y = cscax	Y' = -a.csc(ax).cot(ax)

Rules of derivative

Y = u + v / Y = u - v	Y' = u' + v' / Y' = u' - v'
Y = u.v	Y' = u'v + v'u
$Y = \frac{u}{v}$	$Y' = \frac{u'v - v'u}{v^2}$

Chain rule

Y = f(u(x))	Y' = f'(u(x)).u'(x)
-------------	---------------------