Max Gieples, Frie Redolph a) By the Baire category theorem (X 5) is a Baire topological space. Assume that there exists a countable Hamel bosis (an) new and define X = Span (a1, an). One can check that Xn is closed Cas all AEM, because it is a proper subspace of X We also clain that proper subspaces of normed spaces have empty interior. Proof of claim: Suppose X, has nonerpty. Then there exist xe Xn open, i.e. some F 70 with B (k) & X Dow take any ze Xn and define A = X + SlISII . S & B'(x) & X" This implies that z = T (y - x) E X as Xn is a subspace. This is a contradiction to the propeners of Xn. 11 clain Z Hence X + U X as X is a Baile lopolgical space.

	1																	
יי יי															-			
	157	4 6	he	Bai	٦	cel	lego	17	₹ <i>K</i>	205	2~		CC	0,	1)			
			Daise	C	10 p	o loj	si cal	S	bace	•								
	ltene	.e,	1															
					0		/											
		rek	الم	^		3	Ø	•										
	,	•											\ c					
	POH:	Le	that		2	twe	.her		F E	()	e a	M_{\wedge}] .	= 1	J			
	119 00	"		, , , , _–	-, -	- v · y	4.,											
	/ his	, 51	hows itical	f	101				72	ove.	ns e	, ,	,	C 4	- 0,	1		
	110	601	ticula	ω ω	<i>i</i> '	М	1.7	L	01	er	17	•					7	
																	A	