WHAT IS CLAIMED IS:

1	A method of forming an optical waveguide on an undercladding		
2	layer of a substrate, the method comprising:		
3	forming at least one silicate glass optical core on said undercladding		
4	layer using a high-density plasma deposition process including a silicon source gas and		
5	an oxygen source gas;		
6	wherein the refractive index of the undercladding layer is less than the		
7	refractive index of the optical core.		
1	2. The method of claim 1 wherein the high-density plasma process		
2	comprises pressure of less than 100 millitorr and an RF energy greater than 3		
3	Watts/cm ² .		
5			
1	3. The method of claim 2 wherein the high-density plasma process		
2	further comprises a nitrogen source gas and the optical core comprises silicon, oxygen,		
3	and nitrogen.		
1	4. The method of claim 3 wherein the nitrogen source gas is		
2	molecular nitrogen.		
_			
1	5. The method of claim 3 wherein the optical core is an SiON		
2	optical core.		
1	6. The method of claim 3 wherein the ratio of oxygen atoms to		
2	silicon atoms is greater than 3:1.		
_			
1	7. The method of claim 3 wherein the silicon source comprises		
2	silane, the oxygen source comprises molecular oxygen, and the nitrogen source		
3	comprises molecular nitrogen.		
1	8. The method of claim 7 wherein the ratio of molecular oxygen t		
2	silane is greater than 1.5:1.		
_			
1	9. The method of claim 7 wherein the oxygen source flow is		
2	between 200-600 sccm.		

1	10. The method of claim 7 wherein the ratio of molecular hittogen to	U	
2	silane is between 0.5 and 5.0.		
_	11. The method of claim 7 wherein the nitrogen source flow is		
1	•		
2	between 300-500 sccm.		
1	 The method of claim 1 wherein the high-density plasma process 	3	
2	is carried out at a temperature of greater than 600°C.		
1	13. The method of claim 1 wherein the optical core comprises a		
2	phosphorus doped silicate glass or germanium doped silicate glass.		
1	14. The method of claim 1 wherein the contrast between the		
2	refractive index of the core and the refractive index of the undercladding layer is		
3	greater than 2%.		
3			
1	15. The method of claim 1 wherein forming at least one optical cor	e	
2	comprises:		
3	depositing a continuous optical core layer using said high-density		
4	plasma deposition process; and		
5	etching the continuous optical core layer to form the at least one optical	al	
6	core.		
	16. The method of claim 15 wherein the depositing using said high	h-	
1			
2	density plasma deposition process does not use an RF bias.		
1	17. The method of claim 1 wherein forming at least one optical co	re	
2	comprises:		
3	etching at least one trench in the undercladding layer;		
4	depositing the at least one optical core in the corresponding at least or	ne	
5	trench using said high-density plasma deposition process; and		
6	depositing an uppercladding layer over the at least one optical core.		
ū		,h	
1	18. The method of claim 17 wherein the depositing using said hig	,11-	
2	density plasma deposition process does includes an RF bias.		

1 2	27. to silane is between		
1	27	The method of claim 26 wherein the ratio of molecular nitrogen	
1	26.	The method of claim 25 wherein the silicon source gas is silane.	
2	molecular nitrogen.		
1	25.	The method of claim 24 wherein said nitrogen source gas is	
2	nitrogen source gas	and the optical core comprises silicon, oxygen, and nitrogen.	
1	24.	The method of claim 22 wherein the dopant source gas is a	
2	silicon atoms is grea	ter than 3:1.	
1	23.	The method of claim 22 wherein the ratio of oxygen atoms to	
8	refractive index of sa	aid optical core above 1.46.	
7	source gas in said processing chamber, wherein the dopant source gas increases the		
6		ling a silicon source gas, an oxygen source gas, and a dopant	
5		ating an RF power density of greater than 3 Watts/cm ² ; and	
4	chamber;		
3	establi	shing a pressure of less than 100 millitorr in said processing	
1 2	processing chamber of		
	22.	A method of depositing an optical core on a substrate in a	
2		the high-density plasma deposition process.	
1	21.	The method of claim 1 further comprising annealing the at least	
2	deposition process is	a high-density plasma chemical vapor deposition process.	
1	20.	The method of claim 1 wherein said high-density plasma	
2	deposition process is a	a high-density plasma electron-cyclotron resonance process.	
1	19.	The method of claim 1 wherein said high-density plasma	

3	a high-density plasma generating system operatively coupled to the		
4	process chamber;		
5	a substrate holder configured to hold a substrate during substrate		
6	processing;		
7	a gas-delivery system configured to introduce gases into the process		
8	chamber, including sources for a silicon-containing gas, an oxygen-containing gas, and		
9	a dopant-containing gas;		
10	a pressure-control system for maintaining a selected pressure within the		
11	process chamber;		
12	a controller for controlling the high-density plasma generating system,		
13	the gas-delivery system, and the pressure-control system; and		
14	a memory coupled to the controller, the memory comprising a computer-		
15	readable medium having a computer-readable program embodied therein for directing		
16	operation of the substrate processing system to form an optical core a substrate, the		
17	computer-readable program including		
18	instructions to flow a gaseous mixture containing flows of the		
19	silicon-containing gas, the oxygen-containing gas, and the dopant-containing gas;		
20	instructions to maintain a pressure of less than 100 millitorr		
21	within the process chamber; and		
22	instructions to provide an RF power density greater than 3 Watts/		
23	cm ² into the process chamber, and in accordance therewith, generate a high-density		
24	plasma from the gaseous mixture and deposit a doped silicate glass optical core,		
25	wherein the dopant-containing gas increases the refractive index of said optical core		
26	above 1.46.		
1	30. The substrate processing system of claim 29 wherein the ratio of		
2	oxygen atoms to silicon atoms is greater than 3:1.		
_			
1	31. The substrate processing system of claim 29 wherein the dopant-		
2	containing gas comprises a nitrogen-containing gas and the optical core comprises		
3	silicon, oxygen, and nitrogen.		
1	32. The substrate processing system of claim 31 wherein the silicon-		
2			
3	nitrogen.		

1	33. The substrate processing system of claim 32 wherein the ratio of			
2	molecular nitrogen to silane is between 0.5 and 5.0.			
1	34. The substrate processing system of claim 29 wherein the			
2	substrate holder comprises an electrostatic chuck, and wherein computer-readable			
3	program further includes instructions for turning electrostatic chuck off during			
4	deposition of the silicate glass optical core.			
1	35. The substrate processing system of claim 29 further comprising a			
2	top RF source and a side RF source, wherein the ratio of power of the top RF source to			
3	the side RF source is between 0.21 and 0.73.			
	36. The substrate processing system of claim 29 wherein the dopant			
1	36. The substrate processing system of claim 29 wherein the dopant containing gas is a phosphorus containing gas or germanium containing gas.			
2	containing gas is a phosphorus containing gas of germanium containing gas			
1	37. A computer-readable storage medium having a computer-			
2	readable program embodied therein for directing operation of a substrate processing			
3	system including a process chamber; a plasma generation system; and a gas delivery			
4	system configured to introduce gases into the process chamber, the computer-readable			
5	program including instructions for operating the substrate processing system to form ar			
6	optical core on a substrate disposed in the processing chamber in accordance with the			
7	following:			
8	establishing a pressure of less than 100 millitorr in said processing			
9	chamber;			
10	generating an RF power density of greater than 3 Watts/cm ² ; and			
11	providing a silicon source gas, an oxygen source gas, and a dopant			
12	the deposit source gas increases the			
13				
1	38. The computer-readable storage medium of claim 37 wherein the			
2	ratio of oxygen atoms to silicon atoms is greater than 3:1.			
1	39. The computer-readable storage medium of claim 37 wherein the			
1 2	dopant source gas is a nitrogen source gas and the optical core comprises silicon,			
3	oxygen, and nitrogen.			
J	0/1901) 4114 1114 00-111			

1 40. The computer-readable storage medium of claim 39 wherein said
2 nitrogen source gas is molecular nitrogen and the silicon source is silane.

1 41. The computer-readable storage medium of claim 40 wherein the
2 ratio of molecular nitrogen to silane is between 0.5 and 5.0.

1 42. The computer-readable storage medium of claim 37 wherein the
2 dopant source gas is a phosphorus containing gas or germanium containing gas.