Maximum Likelihood Estimation A Comprehensive Guide for Research Students

Lecturer's Name

May 23, 2025

Table of Contents

Introduction to MLE

Statistical Foundations

What is Maximum Likelihood Estimation?

Intuition Behind MLE

Mathematical Foundation

Generalized MLE

Properties of MLE

Computational Approaches

Applications of MLE

Conclusion

Motivation for MLE

- Understanding parameter estimation
- ▶ Importance in regression and classification tasks

Statistical Inference

- Point Estimation
- ► Interval Estimation

Definition of Likelihood Function

$$\mathcal{L}(\theta; x) = P(X = x | \theta) \tag{1}$$

Visual Explanation of MLE

Deriving the Maximum Likelihood Estimator

$$\hat{\theta}_{MLE} = \arg\max_{\theta} \mathcal{L}(\theta; x) \tag{2}$$

MLE for Various Distributions

- Normal Distribution
- Poisson Distribution

Consistency

Definition: An estimator is consistent if it converges in probability to the true value as sample size increases.

Numerical Approaches

- Gradient Descent
- ► Newton-Raphson

Real-world Examples

- ► Case Study 1
- ► Case Study 2

Summary of Key Points

- ► Importance of MLE in ML
- ► Future Directions in MLE Research

References

► List of Recommended Readings and Resources