III МЕЖРЕСПУБЛИКАНСКАЯ КОНФЕРЕНЦИЯ "ВОЛОРОЛНОЕ МАТЕРИАЛОВЕЛЕНИЕ И ХИМИЯ ГИДРИДОВ МЕТАЛЛОВ"

THIRD INTERREPUBLIC CONFERENCE
"Hydrogen Material Science and Chemistry of Metal Hydrides"

ICHMS - 93

КАЦИВЕЛИ, ∕КРЫМ∕, УКРАИНА
8 - 15 октября 1993г.

оглавление

1.	Лавренко В.А., Антонова М.М. Новые направления в исследовании гидридных материалов.	4
2.	Горбулин В.П., Үруский О.С. Некоторые особенности использования материалов и покрытий для изделий авиационной и космической техники.	5
3.	Солонин Ю.М., Коломиец Л.Л., Скороход В.В. Многокомпонентные сплавы-сорбенты водорода для никель-металлогидридных источни-ков тока.	6
4.	Братанич Т.И., Солонин Ю.М., Скороход В.В. Эффект торможения гидрирования дисперсных систем на основе Ti-Fe в процессе контактной активации.	7
5.	Братанич Т.И., Солонин Ю.М., Скороход В.В. Контактная активация водопоглощения порошковыми интерметаллидными сорбентами.	8
δ.	Падурец Л.Н., Соколова Е.И., Шилов А.Л. Гидриды и дейтериды фаз Лавеса на основе переходных металлов IV группы.	9
7.	Щур Д.В., Ляшенко А.А., Нагорный С.В. Влияние электроотрица- тельных примесей в объёме циркония на характер его взаимодей- ствия с водородом.	10
8.	Загинайченко С.Ю., Матысина З.А. Водородные бикомплексии и краудионы в металлах и сплавах ГШК структур. Растворимость водорода.	11
9.	Долуханян С.К., Алексанян А.Г., Акопян А.Г. Взаимодействие гафния с водородом и азотом в режиме горения.	12
10.	Скопенко В.В, Макара В.А., Биличенко В.Н., Арбузова А.П., Лысова И.В., Кобзенко Г.Ф. Некоторые особенности дигидрида титана как компонента противорадиационных биозащитных композитов.	13
11.	Тарасов Б.П. Некоторые особеннсти взаимодействия интерметал- лических соединений редкоземельных и 3d-переходных металлов с водородосодержащими газами.	14
12.	Алексеева О.К., Сумароков В.Н., Чистов А.Г. Получение плёнок гидридообразующих интерметаллических соединений.	15
13.	Кацнельсон А.А., Доля И.В., Ревкевич Г.П. Структурные изменения в деформированных и отожжённых сплавах Pd-W при наводороживании и последующей дегазации.	16
14.	Тимошевский Б.Г. Гидридные системы для повышения эффективности энгергетических установок и оборудования.	17
15.	Завалий И. D., Яртысь В. А. Модифицированные кислосодержащи ми добавками сплавы Zr-Fe: фазовый состав, кристаллическая структура и водородсорбционные свойства.	18

16.	Немошкаленко В.В., Шпак А.П., Кобзенко Г.Ф., Кобзенко Н.С., Нищенко М.М., Прядко Т.В., Школа А.А., Довгопол В.П., Панарин В.Е. Поглощение водорода поликристаллическим титаном с различным состоянием поверностного слоя.	19
17.	Шур Д.В., Винниченко В.Д., Лавренко В.А., Ляшенко А.А., На-горный С.В. Микровесовая плазмохимическая установка для исследования взаимодействия металлов и сплавов с молекулярным и атомарным водородом.	20
18.	Семёнова Е.Л., Антонова М.М., Колесникова Н.Ю. Взаимодействие интерметаллидов системы Sc-Ni с водородом.	21
19.	Коровин Ю.Ф., Чупринко В.Г., Мухачёв А.П., Подгорный А.Н., Со- ловей В.В., Шмалько Ю.Ф., Куценко А.С. Концепция региональной системы экологически чистого транспорта.	22
20.	Соловей В.В., Шмалько Ю.Ф., Лотоцкий М.В., Клочко Е.В. Исследование колебательно возбуждённых состояний молекул водорода, десорбированного из гидридов металлов.	23
21.	Антонова М. М., Хомко Т. В., Лукьянчиков В. С. Сплав магния и ни- келя в качестве высокотемпературного аккумулятора водорода.	24
22.	Севрюков О.Н., Бузаева Н.М., Филянд Ю.М. Влияние быстрой за- калки на структуру и водородопоглотительные характеристики сплава мишметалл-лантан-никель-кобальт.	25
23.	Бастеев А.В., Попов В.В., Прогнимак А.М. Исследование возможности применения эффекта активации водорода на гидридообразующих интерметаллидах в энгергопреобразующих газоразрядных устройствах.	26
24.	Чернявский А.А., Фатеев Г.А., Чеклина А.И., Курочкина М.Ф., Ким К.Д. Использование методов металлогидридного термопре- образования в системе гибридной солнечной станции.	27
25.	Соломина Т.А., Ибрашева Р.Х., Овчинникова Т.В., Жубанов К.А. Влияние модифицирования гидридов интерметаллидов на их сорбционные и каталитические свойства.	28
26.	Ревкевич Г.П., Миткова М., Кацнельсон А.А. Развитие дефектной структуры в сплавах Pd-Sm при насыщении их водородом.	29
27.	Карпов В.Ю., Шаповалов В.И. Особенности образования гидридов полиморфных металлов при их термоциклировании.	30
28.	Чупров С.С., Антонова М.М., Хомко Т.В. Плакированные порошки в качестве аккумуляторов водорода.	31
29.	Щур Д.В., Адеев В.М., Ляшенко А.А., Лавренко В.А., Загинай-ченко С.Ю. Формирование поверхностных плёнок на Ті и Zr в условиях водородной плазмы.	32
30.	Лукьянчиков В.С., Филянд Ю.М., Бадовский В.В. Гидридная систе-	

31. Фокин В. Н. Исследование взаимодействия в системе TiH_2-0_2 .

ма для испытания промышленных образцов интерметаллидов.

33

35

49

32.	Булык И.И., Яртысь В.А. Гидриды интерметалличесчких соединений $R_3Ni_8AL(R=Sm, Gd, Tb, Dy, Ho, Er, Tm, Lu)$: термодинамические и кристаллографические характеристики.	
33.	Кобзенко Г.Ф., Кобзенко А.П., Чубенко М.В., Петьков В.В., По- ленур А.В. Изменеие кристаллической структуры продуктов десор- бции гидрида титана в движущемся гелии.	36
34.	Добровольский В.Д., Ендржеевская С.Н., Копылова Л.И., Скороход В.В., Шапошникова Т.И. Водородосорбционные свойства тройных порошковых сплавов (C14) ${\rm Ti}_{1+x}{\rm Mn}_{1,4}{\rm Fe}_{0,1}$	37
35.	Станулевич А.А., Равич И.Я., Ильина Н.Б. Сравнительное исследование спроса и измениение конъюнктуры на мировом рынке ни- кель-металлгидридных аккумуляторов.	38
36.	Стегний А.И., Щур Д.В., Үруский О.С. Использование солнечной энергии для изучения высокотемпературного взаимодействия Н-Ме.	39
37.	Ажажа В.М., Коган В.С., Кривуля С.С., Свинаренко А.П. Исполь- зование нераспыляемых геттеров в качестве металлогидридных поглотителей водорода.	40
38.	Филянд Ю.М., Фальковская А.Л., Бадовский В.В. Методические особенности аттестации газоёмких сплавов при опытно-промышленном производстве сорбентов водорода.	41
39.	Ибрашева Р.Х., Соломина Т.А., Жубанов К.А. Гидриды интерметал- лических соединений - эффективные катализаторы жидкофазной гидрогенизации органических веществ.	42
40.	Коровин Ю.Ф., Чупринко В.Г., Мухачёв А.П., Соловей В.В., Шмалько Ю.Ф., Лотоцкий М.В., Ивановский А.И. Производство гидридообразующих сплавов прямым восстановлением фторидов методом СВС для систем энерготехнологической переработки водорода.	43
41.	Патрикеев Ю.Б., Ивлиева Н.В., Яшина Г.А., Бадовский В.В. Влияние технологических параметров гидриднокальциевого восстановления оксида циркония на содержание водорода в циркониевых порошках.	44
42.	Ивановский А.И. Эффективность работы короткоцикловых металло- гидридных компримирующих устройств.	45
43.	Чуприна В.Г., Шаля И.М. Изучение процессов окисления водородо- поглощающего интерметаллида TiNi.	46
44.	Яртысь В.А., Панасюк В.В. Физикохимия и кристаллохимия гидри- дов тернарных интерметаллических соединений редкоземельных ме- таллов и циркония с переходными и непереходными элементами.	47
4 5.	Тимофеев В.И. Гидридные теплопреобразующие устройства непрерывного действия для утилизации низкопотенциального тепла.	48

47. Солонин Ю. М., Коломиец Л. Л., Щербакова Л. А. Электрохимические

46. Ивашина Ю.К., Немченко А.В., Немченко В.Ф. Особенности взаимо-

действия водорода с дефектами в системе Та-Н.

	свойства многокомпонентных гидридных фаз на основе интерметал- лидов $LaNi_5$ ZrV_2 .	50
48.	Алексеева О.К., Виноградова Е.А., Ильченко Н.Л., Сумароков В.Н., Харитонова Л.Д., Шапир Б.Л. Взаимодействие интерметаллического соединения типа LaNi с сероводородом.	51
49.	Шилкин С.П. Фазообразование в системах $MT-H_2$, где M - редкоземельный металл, Sc, Y, Ba; T - Ag , Cu, Zn , Ni, Rh .	52
5 0 .	Кобзенко Г.Ф., Кобзенко А.П., Чубенко М.В. Взаимосвязь пара- метров десорбции гидридов титана, фазовых переходов и размер- ных факторов.	5 3
51.	Добровольский В.Д., Ендржиевская С.Н., Синельниченко А.К., Скороход В.В. Электронспекроскопическое изучение изменений состояния поверхности при термической активации порошковых гидридообразующих сплавов на основе титана.	54
52.	Щур Д.В., Лавренко В.А., Ляшенко А.А., Адеев В.М. Метод исследования процессов гидридообразования в металлах и сплавах.	55
53.	Яртысь В.А., Завалий И.В., Рябов А.Б. Водородсорбционные свойства сплавов на основе \mathbf{Zr} - \mathbf{V} , содержащих η - ϕ азу.	56
54.	Чуприна В.Г., Шаля И.М. Изучение процессов окисления водород- поглощающего интерметаллида TiFe.	57
55.	Коробов И.И., Мозгина Н.Г. Электрохимия водородабсорбирующих интерметаллических соединений.	58
5 6 .	Солонин Ю. М., Коломиец Л. Л., Третьяченко Л. А., Сухая С. А., Братанич Т. И. Исследование гидридных фаз в многокомпонентных системах на основе интерметаллидов ZrV_2 и LaNi ₅ .	59
57.	Ревкевич Г.П., Князева М.А. Развитие дефектной структуры в сплавах Pd-Cu и Pd-Pt при их насыщении водородом.	60
58.	Филянд Ю. М., Бадовский В.В., Патрикеев Ю.Б. низкотемпературные сорбенты водорода на основе интерметаллидов типа ${ m RNi}_4{ m Co}$.	61
59.	Гуфан Ю.М., Садков А.Н. Изотропные и анизотропные механизмы фазовых переходов в гидридах и других сплавах внедрения.	62
60.	Бастеев А.В., Добровольский В.Д., Прагнимак А.М., Синельничен- ко А.К. Эффект комбинированной активации водоролда.	63
61.	Биннатов И.И., Шамилов Т.Г. Намазов И.Г. Исследование влияния атомов ванадия на структуру инварных сплавов железо-никель.	64
62.	Мехрабов А.О., Биннатов К.Г., Казимов М.М., Бабаев З.М. О конфигурационной теплоёмкости β -латуни.	65
63.	Панахов Г. М., Мусаев З. С., Искандеров И. А., Ибрагимов А. И., Ахмедов В. И. Оптические свойства неупорядоченных сплавов.	66
64.	Mitsuishi N., Fukada S. Separation of hydrogen and inert gas with metal particle beds up to very low concentration of hydrogen.	67

hydrogen.

65.	Mitkov M., Bozic D. Hydride-dehydride conversion of the compact ${\rm Ti_6^A}_{14}{\rm V}$ to the PM powder.	68
66.	Rao B.K., Jena P. A new look at metal-hydrogen systems.	69
67.	Rickert A. Hydrogen storage in niobium and DB 5800 equilibrium measurements, volume strain and calculations.	70
68.	Nietsch T. Isothermal curves in metal hydrides.	71
69.	Chin ZH., Chen CC., Perng TP. Preparation and hydrogenation of amorphous Ti-Mn powders.	73
70.	Lewis F.A., Sakamoto Y., Tong X.Q. Strain gradient effects on hydrogen permeation through hydrided metals.	74
71.	Lewis F.A., Kandasamy K., McNicholl R-A.,. Tong X.Q. Hydrogen pressure-hydrogen content and electrical resistance-hydrogen content relationships of palladium and palladium alloy-hydrogen systems.	75
72.	Burger J.P. General results for metal-hydrogen systems concerning the stability of hydrogen, the local atomic interaction and the morphology of hydride phases.	76
73.	Harris I.R. Exploting hydrogen in the production and characterization of NdFeB-type magnets.	77
74.	McGuiness P.I., Fitzpatrick L., Yartys V.A., Harris I.R. Anisotropic hydrogen decrepitation and corrosion behaviour of Nd-Fe-B sintered magnets.	78
75.	Krasovskii E.E., Nemoshkalenko V.V., Kobzenko C.F., Antonov V.N. Electronic structure of early transition metal dihydrides and hypothetical ScH ₃ , TiH ₃ , VH ₃ compounds.	79
76.	Antonov V.N., Gavriluk V.G., Nemoshkalenko V.V. Electronic structure of $CrNiFe_{2}^{H}$.	80
77.	Slobodyan O.V., Krasovskii E.E. Theoretical study of ultraviolet photoemission spectra of transition metal dihydrides.	81
78.	Dobrovolsky V.D., Skorokhod V.V., Yendrzhievsky S.N. Hydrogen absorption by Ti ₁ Fe _{1-x-y} M M and Ti _x Mn a-y-z M Z alloys: surface and volume aspects.	82
79.	Schur D.V., Lavrenko V.A., Lyashenko A.A. Method of processes investigation of hydride formation in constructional metals and alloys.	83
80.	Schur D.V., Lyashenko A.A. The thin films formation on Ti and Zr surface under conditions of hydrogen plasma.	84
81.	Matysina Z.A., Zaginaichenko S.Yu., Schur D.V., Lyashenko A.A. Surface energy of real hexagonal close-packed crystals.	85

82. Tarasov B.P. Some peculiarities of interaction of the rare earth and transition 3d metal compounds with

with

	nydrogen-concarning gases.	~0
83.	Fokin V.N. Investigation of interaction in the $\mathrm{TiH_2^{-0}_2}$ system.	87
84.	Shilkin S.P. The phase formation in the MT-H ₂ systems, where M is REM, Sc, Y, Ba; T is Ag, Cu, Zn, Ni, Rh.	88
85.	Korobov I.I., Mozgina N.G. Electchemistry of hydrogen storage intermetallic compounds.	89
86.	Matysina Z.A., Zaginaichenko S.Yu. The hydrogen bicomplexies and crowdiones in metals and alloys with face-centered cubic structure. Hydrogen solubility.	90
87.	Dugandzic I., Bauer H.J. Metal-Hydrogen phase transitions in nickel and nickel alloys under high pressure conditions followed 'in situ' by electric and magnetic measurements.	91
88.	Schur D.V., Lyashenko A.A., Nagornyi S.V. Effect of electrone- gative impurities in zirconium volume and on the surface on behaviour its interaction with activated hydrogen.	92
89.	Богун С.В., Борковских В.А., Савин В.В., Фёдоров В.В. Взаимо- действие водорода с газораспылённым порошком сплавов системы	

93

Fe-Nd-B.

. ...