Lab 14: RNA-Seq analysis mini-project

Ellice Wang (PID: A16882742)

2025-02-20

Table of contents

Section 1. Differential Expression Analysis	1
Running DESeq2	5
Volcono plot	6
Adding gene annotation	8
Section 2. Pathway Analysis	0
KEGG pathways	0
Section 3. Gene Ontology (GO)	7
Section 4. Reactome Analysis	9

Section 1. Differential Expression Analysis

```
# load in required libraries
library(DESeq2)
```

Loading required package: S4Vectors

Warning: package 'S4Vectors' was built under R version 4.4.1

Loading required package: stats4

Loading required package: BiocGenerics

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

anyDuplicated, aperm, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank, rbind, Reduce, rownames, sapply, setdiff, table, tapply, union, unique, unsplit, which.max, which.min

Attaching package: 'S4Vectors'

The following object is masked from 'package:utils':

findMatches

The following objects are masked from 'package:base':

expand.grid, I, unname

Loading required package: IRanges

Warning: package 'IRanges' was built under R version 4.4.1

Loading required package: GenomicRanges

Warning: package 'GenomicRanges' was built under R version 4.4.1

Loading required package: GenomeInfoDb

Loading required package: SummarizedExperiment

Loading required package: MatrixGenerics

Loading required package: matrixStats

Warning: package 'matrixStats' was built under R version 4.4.1

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse, colCounts, colCummaxs, colCummins, colCumprods, colCumsums, colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs, colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats, colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds, colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads, colWeightedMeans, colWeightedMedians, colWeightedSds, colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet, rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods, rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps, rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins, rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks, rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars, rowWeightedMads, rowWeightedMeans, rowWeightedMedians, rowWeightedMedians, rowWeightedMedians, rowWeightedVars

Loading required package: Biobase

Welcome to Bioconductor

Vignettes contain introductory material; view with 'browseVignettes()'. To cite Bioconductor, see 'citation("Biobase")', and for packages 'citation("pkgname")'.

Attaching package: 'Biobase'

The following object is masked from 'package:MatrixGenerics':

rowMedians

The following objects are masked from 'package:matrixStats':

anyMissing, rowMedians

```
# load in files
metaFile <- "GSE37704_metadata.csv"
countFile <- "GSE37704_featurecounts.csv"

# Import metadata
colData = read.csv(metaFile, row.names=1)
head(colData)</pre>
```

```
condition
SRR493366 control_sirna
SRR493367 control_sirna
SRR493368 control_sirna
SRR493369 hoxa1_kd
SRR493370 hoxa1_kd
SRR493371 hoxa1_kd
```

```
# Import countdata
countData = read.csv(countFile, row.names=1)
head(countData)
```

	length	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370
ENSG00000186092	918	0	0	0	0	0
ENSG00000279928	718	0	0	0	0	0
ENSG00000279457	1982	23	28	29	29	28
ENSG00000278566	939	0	0	0	0	0
ENSG00000273547	939	0	0	0	0	0
ENSG00000187634	3214	124	123	205	207	212
	SRR4933	371				
ENSG00000186092		0				
ENSG00000279928		0				
ENSG00000279457		46				
ENSG00000278566		0				
ENSG00000273547		0				
ENSG00000187634	2	258				

Q. Complete the code below to remove the troublesome first column from count-Data

```
countData <- as.matrix(countData[,-1])
head(countData)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000186092	0	0	0	0	0	0
ENSG00000279928	0	0	0	0	0	0
ENSG00000279457	23	28	29	29	28	46
ENSG00000278566	0	0	0	0	0	0
ENSG00000273547	0	0	0	0	0	0
ENSG00000187634	124	123	205	207	212	258

Q. Complete the code below to filter countData to exclude genes (i.e. rows) where we have 0 read count across all samples (i.e. columns).

```
countData = countData[rowSums(countData) > 0, ]
head(countData)
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000279457	23	28	29	29	28	46
ENSG00000187634	124	123	205	207	212	258
ENSG00000188976	1637	1831	2383	1226	1326	1504
ENSG00000187961	120	153	180	236	255	357
ENSG00000187583	24	48	65	44	48	64
ENSG00000187642	4	9	16	14	16	16

Running DESeq2

Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in design formula are characters, converting to factors

```
dds = DESeq(dds)
```

estimating size factors

estimating dispersions

gene-wise dispersion estimates

```
mean-dispersion relationship

final dispersion estimates

fitting model and testing

res = results(dds, contrast=c("condition", "hoxa1_kd", "control_sirna"))
```

Q. Call the summary() function on your results to get a sense of how many genes are up or down-regulated at the default 0.1 p-value cutoff.

At the 0.1 p-value cutoff, there are 4349 upregulated genes and 4396 downregulated genes.

```
summary(res)
```

```
out of 15975 with nonzero total read count
adjusted p-value < 0.1
LFC > 0 (up) : 4349, 27%
LFC < 0 (down) : 4396, 28%
outliers [1] : 0, 0%
low counts [2] : 1237, 7.7%
(mean count < 0)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results</pre>
```

Volcono plot

```
plot( res$log2FoldChange, -log(res$padj) )
```


Q. Improve this plot by completing the below code, which adds color and axis labels

Adding gene annotation

Q. Use the mapIDs() function multiple times to add SYMBOL, ENTREZID and GENENAME annotation to our results by completing the code below.

```
library("AnnotationDbi")
library("org.Hs.eg.db")
```

columns(org.Hs.eg.db)

[1]	"ACCNUM"	"ALIAS"	"ENSEMBL"	"ENSEMBLPROT"	"ENSEMBLTRANS"
[6]	"ENTREZID"	"ENZYME"	"EVIDENCE"	"EVIDENCEALL"	"GENENAME"
[11]	"GENETYPE"	"GO"	"GOALL"	"IPI"	"MAP"
[16]	"OMIM"	"ONTOLOGY"	"ONTOLOGYALL"	"PATH"	"PFAM"
[21]	"PMID"	"PROSITE"	"REFSEQ"	"SYMBOL"	"UCSCKG"
[26]	"IINTPROT"				

'select()' returned 1:many mapping between keys and columns

'select()' returned 1:many mapping between keys and columns

'select()' returned 1:many mapping between keys and columns

```
head(res, 10)
```

log2 fold change (MLE): condition hoxa1_kd vs control_sirna
Wald test p-value: condition hoxa1 kd vs control sirna
DataFrame with 10 rows and 9 columns

	baseMean	log2FoldChange	lfcSE	stat	pvalue
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>
ENSG00000279457	29.913579	0.1792571	0.3248216	0.551863	5.81042e-01
ENSG00000187634	183.229650	0.4264571	0.1402658	3.040350	2.36304e-03
ENSG00000188976	1651.188076	-0.6927205	0.0548465	-12.630158	1.43990e-36
ENSG00000187961	209.637938	0.7297556	0.1318599	5.534326	3.12428e-08
ENSG00000187583	47.255123	0.0405765	0.2718928	0.149237	8.81366e-01
ENSG00000187642	11.979750	0.5428105	0.5215598	1.040744	2.97994e-01
ENSG00000188290	108.922128	2.0570638	0.1969053	10.446970	1.51282e-25
ENSG00000187608	350.716868	0.2573837	0.1027266	2.505522	1.22271e-02

ENSG00000188157	9128.439422	0.389908	88 0.0467163	8.346304 7.04321e-17
ENSG00000237330	0.158192	0.785955	52 4.0804729	0.192614 8.47261e-01
	padj	symbol	entrez	name
	<numeric></numeric>	<character> <</character>	character>	<character></character>
ENSG00000279457	6.86555e-01	NA	NA	NA
ENSG00000187634	5.15718e-03	SAMD11	148398	sterile alpha motif
ENSG00000188976	1.76549e-35	NOC2L	26155	NOC2 like nucleolar
ENSG00000187961	1.13413e-07	KLHL17	339451	kelch like family me
ENSG00000187583	9.19031e-01	PLEKHN1	84069	pleckstrin homology
ENSG00000187642	4.03379e-01	PERM1	84808	PPARGC1 and ESRR ind
ENSG00000188290	1.30538e-24	HES4	57801	hes family bHLH tran
ENSG00000187608	2.37452e-02	ISG15	9636	ISG15 ubiquitin like
ENSG00000188157	4.21963e-16	AGRN	375790	agrin
ENSG00000237330	NA	RNF223	401934	ring finger protein

Q. Finally for this section let's reorder these results by adjusted p-value and save them to a CSV file in your current project directory.

```
res = res[order(res$pvalue),]
write.csv(res, file="deseq_results.csv")
```

Section 2. Pathway Analysis

KEGG pathways

```
library(pathview)
```

Pathview is an open source software package distributed under GNU General Public License version 3 (GPLv3). Details of GPLv3 is available at http://www.gnu.org/licenses/gpl-3.0.html. Particullary, users are required to formally cite the original Pathview paper (not just mention it) in publications or products. For details, do citation("pathview") within R.

```
library(gageData)
data(kegg.sets.hs)
data(sigmet.idx.hs)
# Focus on signaling and metabolic pathways only
kegg.sets.hs = kegg.sets.hs[sigmet.idx.hs]
# Examine the first 3 pathways
head(kegg.sets.hs, 3)
$`hsa00232 Caffeine metabolism`
            "1544" "1548" "1549" "1553" "7498" "9"
[1] "10"
$`hsa00983 Drug metabolism - other enzymes`
 [1] "10"
               "1066"
                        "10720"
                                  "10941"
                                           "151531" "1548"
                                                              "1549"
                                                                        "1551"
 [9] "1553"
               "1576"
                        "1577"
                                  "1806"
                                           "1807"
                                                     "1890"
                                                              "221223" "2990"
[17] "3251"
               "3614"
                        "3615"
                                  "3704"
                                           "51733"
                                                     "54490"
                                                              "54575"
                                                                        "54576"
                                  "54600"
[25] "54577"
              "54578"
                        "54579"
                                           "54657"
                                                     "54658"
                                                              "54659"
                                                                        "54963"
[33] "574537" "64816"
                        "7083"
                                  "7084"
                                           "7172"
                                                     "7363"
                                                              "7364"
                                                                        "7365"
[41] "7366"
               "7367"
                        "7371"
                                  "7372"
                                           "7378"
                                                     "7498"
                                                              "79799"
                                                                        "83549"
[49] "8824"
               "8833"
                        "9"
                                  "978"
$`hsa00230 Purine metabolism`
                                                      "10623"
                                                               "107"
  [1] "100"
                "10201"
                         "10606"
                                   "10621"
                                            "10622"
                                                                         "10714"
  [9] "108"
                                                      "11164"
                "10846"
                         "109"
                                   "111"
                                            "11128"
                                                               "112"
                                                                         "113"
 [17] "114"
                "115"
                         "122481" "122622" "124583" "132"
                                                               "158"
                                                                         "159"
 [25] "1633"
                "171568" "1716"
                                   "196883" "203"
                                                      "204"
                                                               "205"
                                                                         "221823"
 [33] "2272"
                "22978"
                         "23649"
                                   "246721" "25885"
                                                      "2618"
                                                               "26289"
                                                                         "270"
 [41] "271"
                "27115"
                         "272"
                                   "2766"
                                            "2977"
                                                      "2982"
                                                               "2983"
                                                                         "2984"
                                                               "318"
                                                                         "3251"
 [49] "2986"
                "2987"
                         "29922"
                                   "3000"
                                            "30833"
                                                      "30834"
 [57] "353"
                "3614"
                         "3615"
                                   "3704"
                                            "377841" "471"
                                                               "4830"
                                                                         "4831"
 [65] "4832"
                "4833"
                         "4860"
                                   "4881"
                                            "4882"
                                                      "4907"
                                                               "50484"
                                                                         "50940"
 [73] "51082"
                "51251"
                         "51292"
                                   "5136"
                                            "5137"
                                                      "5138"
                                                               "5139"
                                                                         "5140"
                                                      "5146"
                                                               "5147"
 [81] "5141"
                "5142"
                         "5143"
                                   "5144"
                                            "5145"
                                                                         "5148"
                         "5151"
                                   "5152"
 [89] "5149"
                "5150"
                                            "5153"
                                                      "5158"
                                                               "5167"
                                                                         "5169"
 [97] "51728"
                "5198"
                         "5236"
                                   "5313"
                                            "5315"
                                                      "53343"
                                                               "54107"
                                                                         "5422"
```

```
[105] "5424"
               "5425"
                        "5426"
                                 "5427"
                                          "5430"
                                                   "5431"
                                                            "5432"
                                                                     "5433"
[113] "5434"
               "5435"
                        "5436"
                                 "5437"
                                          "5438"
                                                   "5439"
                                                            "5440"
                                                                     "5441"
[121] "5471"
               "548644" "55276"
                                 "5557"
                                          "5558"
                                                   "55703"
                                                            "55811"
                                                                     "55821"
[129] "5631"
               "5634"
                        "56655"
                                 "56953"
                                          "56985"
                                                   "57804"
                                                            "58497"
                                                                     "6240"
[137] "6241"
               "64425"
                                          "661"
                                                   "7498"
                                                            "8382"
                        "646625" "654364"
                                                                     "84172"
[145] "84265"
               "84284"
                        "84618"
                                 "8622"
                                          "8654"
                                                   "87178"
                                                            "8833"
                                                                     "9060"
[153] "9061"
               "93034"
                        "953"
                                 "9533"
                                          "954"
                                                   "955"
                                                            "956"
                                                                     "957"
[161] "9583"
               "9615"
foldchanges = res$log2FoldChange
```

```
names(foldchanges) = res$entrez
head(foldchanges)
```

```
1266 54855 1465 51232 2034 2317 -2.422719 3.201955 -2.313738 -2.059631 -1.888019 -1.649792
```

Gage pathway analysis.

```
# Get the results
keggres = gage(foldchanges, gsets=kegg.sets.hs)
attributes(keggres)
```

\$names

```
[1] "greater" "less" "stats"
```

```
# Look at the first few down (less) pathways
head(keggres$less)
```

```
p.geomean stat.mean
                                                                    p.val
hsa04110 Cell cycle
                                      8.995727e-06 -4.378644 8.995727e-06
hsa03030 DNA replication
                                      9.424076e-05 -3.951803 9.424076e-05
hsa03013 RNA transport
                                      1.375901e-03 -3.028500 1.375901e-03
hsa03440 Homologous recombination
                                      3.066756e-03 -2.852899 3.066756e-03
hsa04114 Oocyte meiosis
                                      3.784520e-03 -2.698128 3.784520e-03
hsa00010 Glycolysis / Gluconeogenesis 8.961413e-03 -2.405398 8.961413e-03
                                            q.val set.size
hsa04110 Cell cycle
                                      0.001448312
                                                       121 8.995727e-06
hsa03030 DNA replication
                                      0.007586381
                                                       36 9.424076e-05
hsa03013 RNA transport
                                                       144 1.375901e-03
                                      0.073840037
hsa03440 Homologous recombination
                                      0.121861535
                                                       28 3.066756e-03
hsa04114 Oocyte meiosis
                                                       102 3.784520e-03
                                      0.121861535
hsa00010 Glycolysis / Gluconeogenesis 0.212222694
                                                       53 8.961413e-03
```

pathview(gene.data=foldchanges, pathway.id="hsa04110")

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/user/Desktop/Ellice/UCSD 2024-25/bimm143/wi25_R_code

Info: Writing image file hsa04110.pathview.png

Figure 1: hsa04110

create PDF output
pathview(gene.data=foldchanges, pathway.id="hsa04110", kegg.native=FALSE)

```
## Focus on top 5 upregulated pathways here for demo purposes only
keggrespathways <- rownames(keggres$greater)[1:5]</pre>
# Extract the 8 character long IDs part of each string
keggresids = substr(keggrespathways, start=1, stop=8)
pathview(gene.data=foldchanges, pathway.id=keggresids, species="hsa")
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/user/Desktop/Ellice/UCSD 2024-25/bimm143/wi25_R code
Info: Writing image file hsa04640.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/user/Desktop/Ellice/UCSD 2024-25/bimm143/wi25_R_code
Info: Writing image file hsa04630.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/user/Desktop/Ellice/UCSD 2024-25/bimm143/wi25_R code
Info: Writing image file hsa00140.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/user/Desktop/Ellice/UCSD 2024-25/bimm143/wi25_R_code
Info: Writing image file hsa04142.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/user/Desktop/Ellice/UCSD 2024-25/bimm143/wi25 R code
Info: Writing image file hsa04330.pathview.png
```


Figure 2: top up-regulated pathways

Q. Can you do the same procedure as above to plot the pathview figures for the top 5 down-reguled pathways?

```
## Focus on top 5 downregulated pathways
keggrespathways <- rownames(keggres$less)[1:5]</pre>
# Extract the 8 character long IDs part of each string
keggresids = substr(keggrespathways, start=1, stop=8)
keggresids
[1] "hsa04110" "hsa03030" "hsa03013" "hsa03440" "hsa04114"
pathview(gene.data=foldchanges, pathway.id=keggresids, species="hsa")
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/user/Desktop/Ellice/UCSD 2024-25/bimm143/wi25_R_code
Info: Writing image file hsa04110.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/user/Desktop/Ellice/UCSD 2024-25/bimm143/wi25_R_code
Info: Writing image file hsa03030.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/user/Desktop/Ellice/UCSD 2024-25/bimm143/wi25_R_code
Info: Writing image file hsa03013.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/user/Desktop/Ellice/UCSD 2024-25/bimm143/wi25_R_code
Info: Writing image file hsa03440.pathview.png
```

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/user/Desktop/Ellice/UCSD 2024-25/bimm143/wi25_R_code

Info: Writing image file hsa04114.pathview.png

Figure 3: Top 5 down regulated pathways

Section 3. Gene Ontology (GO)

```
data(go.sets.hs)
data(go.subs.hs)
```

```
# Focus on Biological Process subset of GO
gobpsets = go.sets.hs[go.subs.hs$BP]

gobpres = gage(foldchanges, gsets=gobpsets, same.dir=TRUE)

lapply(gobpres, head)

$greater
```

. 6				
		p.geomean	stat.mean	p.val
GO:0007156	homophilic cell adhesion	8.519724e-05	3.824205	8.519724e-05
GD:0002009	morphogenesis of an epithelium	1.396681e-04	3.653886	1.396681e-04
GO:0048729	tissue morphogenesis	1.432451e-04	3.643242	1.432451e-04
GD:0007610	behavior	1.925222e-04	3.565432	1.925222e-04
GD:0060562	epithelial tube morphogenesis	5.932837e-04	3.261376	5.932837e-04
GO:0035295	tube development	5.953254e-04	3.253665	5.953254e-04
		q.val se	t.size	exp1
GO:0007156	homophilic cell adhesion	0.1951953	113 8.5	19724e-05
GD:0002009	morphogenesis of an epithelium	0.1951953	339 1.39	96681e-04
GO:0048729	tissue morphogenesis	0.1951953	424 1.43	32451e-04
GD:0007610	behavior	0.1967577	426 1.93	25222e-04
GD:0060562	epithelial tube morphogenesis	0.3565320	257 5.93	32837e-04
GO:0035295	tube development	0.3565320	391 5.9	53254e-04
\$less				
		p.geomean	stat.mean	p.val
GO:0048285	organelle fission	1.536227e-15	-8.063910	1.536227e-15
GD:0000280	nuclear division	4.286961e-15	-7.939217	4.286961e-15
GD:0007067	mitosis	4.286961e-15	-7.939217	4.286961e-15
GD:0000087	${\tt M}$ phase of mitotic cell cycle	1.169934e-14	-7.797496	1.169934e-14
GO:0007059	chromosome segregation	2.028624e-11	-6.878340	2.028624e-11
GD:0000236	mitotic prometaphase	1.729553e-10	-6.695966	1.729553e-10
		q.val	set.size	exp1
GO:0048285	organelle fission	5.841698e-12	376 1	.536227e-15

\$stats

GO:0000280 nuclear division

GO:0007059 chromosome segregation

GO:0000236 mitotic prometaphase

GO:0000087 M phase of mitotic cell cycle 1.195672e-11

GO:0007067 mitosis

stat.mean exp1

5.841698e-12

5.841698e-12

1.658603e-08

1.178402e-07

352 4.286961e-15

352 4.286961e-15

362 1.169934e-14 142 2.028624e-11

84 1.729553e-10

```
GO:0007156 homophilic cell adhesion 3.824205 3.824205 GO:0002009 morphogenesis of an epithelium 3.653886 3.653886 GO:0048729 tissue morphogenesis 3.643242 3.643242 GO:0007610 behavior 3.565432 3.565432 GO:0060562 epithelial tube morphogenesis 3.261376 3.261376 GO:0035295 tube development 3.253665 3.253665
```

Section 4. Reactome Analysis

```
sig_genes <- res[res$padj <= 0.05 & !is.na(res$padj), "symbol"]
print(paste("Total number of significant genes:", length(sig_genes)))</pre>
```

[1] "Total number of significant genes: 8147"

Q: What pathway has the most significant "Entities p-value"? Do the most significant pathways listed match your previous KEGG results? What factors could cause differences between the two methods?

The cell cycle pathway has the most significant "Entities p-value" with a p-value of 1.09E-4. This does not quite match the previous KEGG results. A lot of the genes were "not found" during the reactome analysis which could influe this. Another cause of the difference between the KEGG pathway analysis and the reactome analysis is that there are different amounts of underlying data between the 2 databases.