Université Saclay-Paris-Sud

Feuille de TD 9

M303

Exercice 1 Soient $1 \le k \le n$ deux entiers et soient (a_1, \ldots, a_k) un k-cycle et σ une permutation de S_n .

- 1. Calculer $\sigma(a_1,\ldots,a_k)\sigma^{-1}$.
- 2. Montrer que les k-cycles sont tous conjugués dans S_n .
- 3. Notons $\sigma = \prod_{i=1}^r \gamma_i$ sa décomposition en produit de cycles à supports deux à deux disjoints. On note pour tout i, d_i l'ordre de γ_i et on suppose les γ_i ordonnés de sorte que $d_i \leq d_{i+1}$. On appelle le r-uplet (d_1, \ldots, d_r) le type de σ . Déterminer la classe de conjuguaison de σ en fonction de son type.

Exercice 2 Soit $n \geq 2$ un entier.

- 1. Montrer que le groupe S_n est engendré par les transpositions $(i; i+1)_{1 \le i \le n-1}$.
- 2. Montrer que si l'on omet l'une de ces transpositions l'ensemble de celles qui restent n'engendre plus S_n .
- 3. Mêmes questions pour les transpositions $(1; i)_{2 \le i \le n}$.
- 4. Montrer que S_n est engendré par (12) et le cycle $c := (1, \ldots, n)$.

Exercice 3 Soit $n \geq 2$ un entier.

- 1. Déterminer l'ordre du produit s_1s_2 en fonction des ordres respectifs de s_1 et s_2 pour deux éléments s_1 et s_2 du groupe symétrique S_n dont les supports sont disjoints.
- 2. Généraliser, pour un entier p>2 quelconque, le résultat précédent au produit de p éléments $(s_i)_{1\leq i\leq p}$ du groupe symétrique S_n de supports deux à deux disjoints.

Exercice 4 Dans le groupe symétrique S_{11} , y a-t-il un élément d'ordre 12 ? d'ordre 20 ? d'ordre 24 ? Justifier en donnant explicitement une telle permutation ou en expliquant pourquoi elle ne peut pas exister.

Exercice 5 Soit σ la permutation de S_n suivante : $\sigma := \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 4 & 3 & 2 & 5 & 9 & 7 & 8 & 6 & 1 \end{pmatrix}$.

- 1. Calculer σ^{2021} .
- 2. Montrer que σ est conjuguée dans S_9 à σ' := $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 9 & 6 & 4 & 7 & 8 & 5 & 3 & 2 & 1 \end{pmatrix}$.
- 3. Donner explicitement une permutation g telle que $\sigma' = g\sigma g^{-1}$.

Exercice 6 Soient

des permutations dans S_{11} .

- 1. Décomposer les permutations s_1 et s_2 en produits de cycles à supports deux à deux disjoints.
- 2. Déterminer l'ordre de s_1 et s_2 dans le groupe S_{11} .
- 3. Calculer la signature de s_1 et s_2 .
- 4. Calculer s_1^{2022} et s_2^{2022} .
- 5. Les permutations s_1 et s_2 sont elles conjuguées dans S_{11} ?
- 6. Les permutations s_1 et s_2 sont elles des éléments de A_{11} ? Sont elles conjuguées dans A_{11} ?

Exercice 7 Soit G le sous-groupe de S_8 engendré par $\sigma := (123)(45)$ et $\tau := (78)$. Décrire les orbites et les stabilisateurs (dans G) d'un point de chaque orbite et calculer l'ordre de G.

Exercice 8 Soit n un entier.

- 1. Si n est impair, montrer qu'il existe exactement deux classes de conjugaison de n-cycles dans A_n qui contiennent chacune $\frac{(n-1)!}{2}$ éléments.
- 2. Si n est pair, montrer qu'il existe exactement deux classes de conjugaison de n-1-cycles dans A_n qui contiennent chacune $\frac{n(n-2)!}{2}$ éléments.

Exercice 9 1. Donner un élément $s \in S_8$ tel que : $s^2 = \text{Id}$ et tel que pour tout $1 \le i \le 8$, $s(i) \ne i$.

- 2. Quels sont l'ordre et la signature de l'élément s donné ci-dessus?
- 3. Notons E l'ensemble des éléments comme ci-dessus. Les éléments de E ont-ils tous même ordre?
- 4. Les éléments de E ont-ils tous même signature?
- 5. Les éléments de E sont-ils tous conjugués?
- 6. Combien l'ensemble E a-t-il d'éléments?
- 7. L'ensemble E est-il un sous-groupe de S_8 ?
- 8. Existe-t-il un élément $s \in S_8$ tel que $s^3 = \text{Id}$ et tel que pour tout $1 \le i \le 8$, $s(i) \ne i$?

Exercice 10 (Extrait de l'examen de janvier 2021; sur 4 points) Soit $n \ge 3$ impair.

- 1. On rappelle que A_n est simple pour $n \geq 5$. Soit $\phi: S_n \to A_{n+1}$ un morphisme injectif. On note H son image. En faisant agir A_{n+1} sur l'ensemble quotient A_{n+1}/H par translation aboutir à une contradiction : il n'existe pas de tel morphisme injectif.
- 2. Donner une preuve alternative de la question précédente pour $n \notin \{3, 5\}$ en utilisant que pour ces entiers n on sait par le cours que : dans S_{n+1} les sous-groupes d'indice n+1 sont tous conjugués et sont les stabilisateurs d'un point $i \in \{1, \ldots, n+1\}$, notés S(i) (avec i variable).
- 3. Montrer que dans A_4 , si c_1 et c_2 sont deux cycles d'ordre 3 alors il existe $\sigma \in A_4$ telle que

$$c_1 = \sigma c_2 \sigma^{-1}$$
 ou $c_1 = \sigma c_2^2 \sigma^{-1}$.

4. On rappelle qu'un sous-groupe H d'indice 2 d'un groupe G est automatiquement distingué dans G. Montrer, avec ce qui précède, que aussi pour n=3 on ne peut pas avoir un morphisme injectif de S_3 vers A_4 .

Exercice 11 (Extrait de l'examen de janvier 2021, sur 11 points) Soit G le sous-groupe de S_7 engendré par les deux permutations $\alpha = (1,2,5)(3,4,6)$ et $\beta = (1,7)(2,6)$. Le but ultime (que nous n'atteindrons pas) serait de montrer que G est de cardinal 168 et est simple.

- 1. Montrer que G est un sous-groupe du groupe alterné A_7 . Quel est l'ordre de α , de β ?
- 2. Calculer $\alpha\beta\alpha^{-1}$ puis $u = \alpha\beta\alpha^{-1}\beta^{-1}$ et montrer que u est d'ordre 4.
- 3. On note K le sous-groupe de G engendré par u et β .
 - (a) Montrer que le groupe engendré par u, noté $\langle u \rangle$ est un sous-groupe distingué de K et que tout élément de K s'écrit sous la forme $\beta^i u^r$ avec $i \in \{0,1\}$ et $r \in \{0,1,2,3\}$.
 - (b) Montrer que $K/\langle u \rangle$ est d'ordre 2 et en déduire l'ordre de K.
 - (c) Montrer que K n'est pas un sous-groupe distingué de G.
- 4. Déterminer les éléments d'ordre 7 de S_7 . Combien a-t-on d'éléments d'ordre 7 dans A_7 ?
- 5. Combien A_7 a-t-il de 7-sous-groupes de Sylow?
- 6. Le normalisateur d'un sous-groupe H dans un groupe G' est le sous-groupe de G' formé des éléments g tels que $gHg^{-1} = H$. Montrer que si p est un nombre premier divisant l'ordre de G', l'indice du normalisateur d'un p-groupe de Sylow est égal au nombre de p-groupes de Sylow. En déduire que l'ordre du normalisateur dans A_7 d'un 7-sous-groupe de Sylow de A_7 est 21.
- 7. Soit G' un groupe et H un sous-groupe distingué de G'. On suppose que H contient un p-sous-groupe de Sylow T_p de G'. Montrer qu'il contient tous les p-sous-groupes de Sylow de G'.
- 8. On pose $v = \alpha \beta$. Quel est l'ordre de v? Posons u := (1, 2, 4, 5, 7, 3, 6). Montrer que $\langle v \rangle = \langle u \rangle$.
- 9. Montrer que les deux groupes $\langle (1,2,7,5,4,6,3) \rangle$ et $\langle v \rangle$ sont différents.
- 10. Montrer que ce sont deux sous-groupes de G (on pourra calculer $\alpha v \alpha^{-1}$).
- 11. Montrer que 168 divise l'ordre de G.
- 12. On suppose que G possède exactement 8 sous-groupes de Sylow d'ordre 7. Quel peut être l'ordre du normalisateur de $\langle v \rangle$ dans G? En utilisant le calcul de l'ordre du normalisateur de $\langle v \rangle$ dans A_7 , en déduire que G est d'ordre 168.
- Exercice 12 1. Montrer qu'il n'existe pas de morphisme de groupe injectif de S_4 dans A_5 (On pourra raisonner sur le nombre d'éléments des groupes en question).
 - 2. Plus généralement, montrer que si n est pair, il n'existe pas de morphisme injectif de S_n dans A_{n+1} (On pourra penser à utiliser les valuations 2-adiques).

Exercice 13 Pour tout entier $n \geq 1$, montrer que le groupe symétrique S_n est isomorphe à un sous-groupe du groupe alterné A_{n+2} (on pourra considérer le morphisme naturel de S_n dans S_{n+2} qui envoie un élément s sur lui même et le modifier légérement de sorte à arriver dans A_{n+2}).

Exercice 14 (extrait de l'examen de juin 2021, sur 9 points)

1. Calculer le cardinal de $G = GL_2(\mathbb{Z}/5\mathbb{Z})$ en justifiant sommairement. Combien le plan $P = (\mathbb{Z}/5\mathbb{Z})^2$ (sur le corps $\mathbb{Z}/5\mathbb{Z}$) a-t-il de droites? On note X l'ensemble des droites de P.

- 2. On fait opérer G sur X de manière naturelle (préciser quelle est l'action). L'action estelle transitive? Soit $\lambda: G \to S(X)$ l'homomorphisme associé. Calculer le noyau de λ (on rappelle qu'un endomorphisme laissant stable toutes les droites est une homothétie).
- 3. Soit H un sous-groupe de S_n d'indice n avec $n \geq 5$.
 - (a) On fait opérer S_n sur $Y = S_n/H$ par multiplication à gauche. Montrer que l'homomorphisme associé de S_n dans S(Y) est injectif. (Indication : On rappelle que A_n est le seul sous-groupe distingué non trivial de S_n .)
 - (b) Calculer le stabilisateur de l'élément $y_0 = H$ de Y et montrer que H est isomorphe à S_{n-1} .
- 4. Montrer que $PGL_2(\mathbb{Z}/5\mathbb{Z}) = GL_2(\mathbb{Z}/5\mathbb{Z})/(\mathbb{Z}/5\mathbb{Z})^{\times}$ est isomorphe à S_5 . (Indication : On pourra utiliser le résultat montré à la question précédente : un sous-groupe d'indice n de S_n est isomorphe à S_{n-1} pour $n \geq 5$.)
- 5. Montrer que le carré du déterminant se factorise en un homomorphisme de groupes de $PGL_2(\mathbb{Z}/5\mathbb{Z})$ sur $\{\pm 1\}$ qui correspond à la signature $S_5 \to \{\pm 1\}$ par l'isomorphisme précédent.

Exercice 15 Soit V un \mathbb{K} -espace vectoriel de dimension $n \geq 1$ (où \mathbb{K} est un corps) muni d'une base (v_1, \ldots, v_n) .

1. Montrer que pour tout $s \in S_n$, il existe un unique endomorphisme $\phi(s)$ de V défini par

$$\forall 1 \le i \le n, \ \phi(s)(v_i) := v_{s(i)}.$$

- 2. Montrer que pour tout $s \in S_n$, l'élément $\phi(s)$ est inversible et que ϕ est un morphisme de groupes de S_n dans GLV.
- 3. Le morphisme ϕ est-il injectif? surjectif?
- 4. La representation de S_n donnée par ϕ est-elle irréductible ou non? Autrement dit existet-il un sous-espace $W \subset V$ tel que

$$W \neq V$$
 et $W \neq \{0\}$, et tel que $\forall s \in S_n, \ \phi(s)(W) \subset W$.