

现代控制理论

第一章 绪论

第二章 系统的状态空间模型

第三章 状态空间方程的解

第四章 系统的稳定性

第五章 能控性与能观性

第六章 传递函数的状态空间实现

第七章 状态反馈与状态观测器

第八章 最优性原理与动态规划

第九章 极小值原理

第十章 二次型指标的线性最优控制

中国科学技术大学自动化系

2020.2.-6.

本课程的篇章结构

建模	直接获取	第2章 系统的状态空间模型
	模型转换	第2章 系统的状态空间模型第6章 传递函数矩阵的状态空间实现
分析	定量分析	第3章 状态空间方程的解
	定性分析	第4章 系统的稳定性 第5章 能控性和能观性
设计	常规控制	第7章 状态反馈和状态观测器
	最优控制	第8章 最优性原理与动态规划 第9章 极小值原理 第10章 二次型指标的线性最优控制

第四章 系统的稳定性

- § 4.1 外部稳定性(BIBO稳定)
- § 4.2 内部稳定性(李雅普诺夫稳定)
- § 4.3 李雅普诺夫直接法
- § 4.4 线性定常系统的李雅普诺夫 稳定性分析

§ 4.1 外部稳定性(BIBO稳定)

定义4.1 BIBO稳定(有界输入有界输出稳定)

Bounded-Input Bounded-Output stable

系统在每一个有界的输入信号激励下所引起的输出响应都有界。

BIBO稳定性是定义在零状态响应之上,即仅当系统初始松弛时才能使用。

系统的稳定性是一个与输入信号无关的概念。

§ 4.1 外部稳定性(BIBO稳定)

定理4.1 线性定常的单输入单输出(SISO)系统BIBO稳定的充要条件是其脉冲响应函数绝对可积。

【证明】充分性: 设系统的脉冲响应函数为 $\overline{g}(t,\tau) = g(t-\tau)$,则其绝对可积是指 $\int_0^{\infty} |g(t)|dt \le M < \infty$,当系统输入有界,即 $|u(t)| \le u_m < \infty$, $\forall t \ge 0$,时

$$|y(t)| = \left| \int_0^t g(t-\tau)u(\tau)d\tau \right| = \left| \int_0^t g(\tau)u(t-\tau)d\tau \right|$$

$$\leq \int_0^t |g(\tau)| \cdot |u(t-\tau)| d\tau \leq u_m \int_0^\infty |g(\tau)| d\tau \leq u_m M$$

用反证法很容易证明此定理的必要性。只要取

$$u(t_1 - \tau) = \begin{cases} 1 & g(\tau) \ge 0 \\ -1 & g(\tau) < 0 \end{cases}$$

§ 4.1 外部稳定性(BIBO稳定)

定理4.2 用有理传递函数 $\hat{g}(s)$ 描述的系统,其BIBO稳定的充要条件是 $\hat{g}(s)$ 的所有(既约)极点都具有负实部。

【例 4-1】若系统 BIBO 稳定且其传递函数为 $\hat{g}(s)$,试证明: 当 $t \to \infty$ 时

- 1. 当输入为 $u(t) = a, t \ge 0$,输出响应趋于 $\hat{g}(0)a$;
- 2. 当输入为 $u(t) = \sin \omega_0 t$, $t \ge 0$, 则输出响应趋于 $|\hat{g}(j\omega_0)| \sin(\omega_0 t + \angle \hat{g}(j\omega_0))$

第四章 系统的稳定性

- § 4.1 外部稳定性(BIBO稳定)
- § 4.2 内部稳定性(李雅普诺夫稳定)
- § 4.3 李雅普诺夫直接法
- § 4.4 线性定常系统的李雅普诺夫 稳定性分析

§ 4.2 内部稳定性(李雅普诺夫稳定)

李雅普诺夫(A.M.Ляпунов,英译Lyapunov)

俄国数学家、力学家。1857年6月6日生于雅罗斯拉夫尔; 1918年11月3日 卒于敖德萨(因妻子死于肺结核而自杀身亡)。

李雅普诺夫1876年中学毕业,进入圣彼得堡大学物理数学系学习。出于对大数学家切比雪夫的崇拜,转到数学系学习。大学四年级时就写出具有创见的论文,而获得金质奖章。1880年大学毕业后留校成为力学教师,1885年获硕士学位、1892年获博士学位,其博士论文《运动稳定性一般问题》,奠定了稳定性理论的基础。1893年起任哈尔科夫大学教授,1900年初当选为圣彼得堡科学院通讯院士,1901年又当选为院士,并兼任应用数学学部主席。

李雅普诺夫是切比雪夫创立的彼得堡学派的杰出代表(另一个是其师兄马尔可夫),他的建树涉及到多个领域,尤以概率论、微分方程和数学物理方法最有名。

在数学中以他的姓氏命名的有:李雅普诺夫第一方法,~第二方法,~定理,~函数,~变换,~曲线,~曲面,~球面,~数,~随机函数,~随机算子,~特征指数,~维数,~系统,~分式,~稳定性,…等等,而其中以他的姓氏命名的定理、条件有多种。

§ 4.2 内部稳定性(李雅普诺夫稳定)

4.2.1 平衡状态

定义4.2 平衡状态

对于零输入条件下的自由运动, 若系统达到某 状态时, 系统将维持在此状态而不再发生变化, 则 称状态为该系统的一个平衡状态。

$$\dot{x} = f(t, x, u)$$
 $\dot{x}_e = f(t, x_e, \theta) = \theta$

$$\dot{x} = Ax$$
 $Ax_e = \theta$

 $x_e = 0$ 一定是线性系统的一个平衡状态 连续时间线性系统有且仅有一个平衡状态的充要条件是:系统矩阵A非奇异,或者说A没有零特征值

§ 4.2 内部稳定性(李雅普诺夫稳定)

4.2.2 李雅普诺夫稳定性的定义

一、必要的数学术语

1. 泛函

泛函是指非数集合至数域的一个映射,即其自变量是非数元素,因变量是数。

2. 范数

公理化定义:对某集合中的元素x,若有一泛函 $\|\cdot\|$ 具有如下性质,则称之为该集合上的范数

- ① $||x|| \ge 0$, $\mathbb{H} ||x|| = 0 \Leftrightarrow x = 0$

一、必要的数学术语

3. 向量的范数

n 维欧氏空间中的元素 x (n 维向量)的欧几里德范数为

$$\|\boldsymbol{x}\| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$
 $\boldsymbol{x} = [x_1 \ x_2 \ \dots \ x_n]^T \in \boldsymbol{R}^n$

更一般地: 定义 r 范数: ℯ

$$\|x\|_{r} = \sqrt[r]{|x_{1}|^{r} + |x_{2}|^{r} + \dots + |x_{n}|^{r}}$$
 $r > 0$

除 2 范数是我们熟知的欧氏范数以外,实践中常使用的范数还有 1 范数和无穷范数:。

$$\|\mathbf{x}\|_{1} = |x_{1}| + |x_{2}| + \dots + |x_{n}| = \sum_{k=1}^{n} |x_{k}|$$

$$\|\mathbf{x}\|_{\infty} = \max_{k} |x_{k}|$$

一、必要的数学术语

1958 1958 EEE TO THE STORE and Technology

4. 矩阵的范数

向量范数的概念可推广到矩阵。设A是 $m \times n$ 的矩阵,则

$$||A|| = \sup_{x \neq 0} \frac{||Ax||}{||x||} = \sup_{||x||=1} ||Ax||$$

其中 \sup 表示上确界,即最小的上界。此范数是通过向量 x 的范数来定义的,因此被称作诱导范数。对不同的 $\|x\|$,可得到不同的 $\|A\|$ 。

 $\|A\|_{2} = A$ 的最大奇异值 = $(A^{T}A)$ 的最大特征值)^{1/2}

$$\|A\|_1 = \max_j \left(\sum_{i=1}^m |a_{ij}|\right) =$$
最大的列绝对值和

$$\|A\|_{\infty} = \max_{i} \left(\sum_{j=1}^{n} |a_{ij}| \right) =$$
最大的行绝对值和

对于同一个 A,这些范数都是不同的。例如: $A = \begin{bmatrix} 3 & 2 \\ -1 & 0 \end{bmatrix}$,可求得 $\|A\|_1 = 3 + |-1| = 4$, $\|A\|_2 = 3.7$, $\|A\|_2 = 3 + 2 = 5$

二、李雅普诺夫稳定性定义

定义4.3 李雅普诺夫意义下稳定(限界稳定): Stable in the sense of Lyapunov (Marginally stable)

平衡状态 x_e 称为在 t肘刻是李雅普诺夫意义下稳定的,是指:对于每个 $\varepsilon>0$,存在着一依赖于 ε 和 t_0 的正数 δ ,使得若 $\|x_0-x_e\|\leq\delta$,则总有

$$\| \mathbf{x}(t) - \mathbf{x}_e \| \le \varepsilon, \quad \forall \ t \ge t_0$$

其中, $x(t) = x(t,t_0,x_0)$ 是系统始于初态 $x(t_0) = x_0$ 的零输入响应。

对于线性系统,李雅普诺夫意义下稳定或限界稳定的定义 可表述得更为简单:

若任一有限的初态所引起的零输入响应有界,则称该线性系统是李雅普诺夫意义下稳定的或称是限界稳定的。

二、李雅普诺夫稳定性定义

定义4.4 渐近稳定: Asymptotically stable

平衡状态 x_e 是渐近稳定的是指:该平衡状态附近任一由有限初态所引起的零输入响应,当 $t \to \infty$ 时趋于零。即 $\lim_{t \to \infty} \|x(t) - x_e\| = 0$

定义4.5 大范围渐渐近稳定(全局渐近稳定):

Large scale asymptotically stable

平衡状态 x_e 是大范围渐近稳定的是指:对于从状态空间中的所有点出发的轨迹都能收敛到 x_e 。此时也称系统是大范围渐近稳定的或全局渐近稳定的。

若线性系统是渐近稳定的,则一定是大范围渐近稳定的; 全局渐近稳定的必要条件是系统在状态空间中只有一个平衡状态。

1958 University of Storage and Technology

二、享雅普诺夫稳定性定义

不稳定

平衡状态不稳定指它不满足李雅普诺夫稳定的定义。即

平衡状态 x_e 是不稳定的是指:若有某个 $\varepsilon>0$,无论 $\delta>0$ 如何小,尽管 $\|x_0-x_e\|\leq\delta$,也总有某时刻 $t_1>t_0$,使 $\|x(t_1,x_0,t_0)-x_e\|>\varepsilon$ 。

注意:李雅普诺夫意义下的稳定(通常也简称为稳定)与在古典控制理论中所提的稳定,在概念上有所不同:

古典控制理论中的临界稳定属于不稳定的一种,而在李雅普诺夫意义下它却是稳定的;

古典理论中所指的稳定性就是这里所述的渐近稳定性。

二、李雅普诺夫稳定性定义

李雅普诺夫意义下的稳定、渐近稳定、不稳定的意义可用如下的二维平面图形加以表示:

稳定

渐近稳定

不稳定

第四章 系统的稳定性

- § 4.1 外部稳定性(BIBO稳定)
- § 4.2 内部稳定性(李雅普诺夫稳定)
- § 4.3 李雅普诺夫直接法
- § 4.4 线性定常系统的李雅普诺夫 稳定性分析

4.3.1 李雅普诺夫第一方法(间接法)

是研究线性化定常系统稳定性的一种间接方法。思路是

- ◆对于非线性系统,在平衡状态附近进行线性化;
- ◆解出线性化状态方程的全部特征值;
- ◆根据线性化系统特征值在复平面上的分布,判定稳定性。 该方法不能对时变系统进行稳定性分析。

定理4.3 线性定常连续时间系统稳定性判据

线性定常连续时间系统李雅普诺夫意义下稳定(限界稳定)的充要条件是:系统的所有特征值均具有零或负的实部,且其零实部特征值均是系统矩阵最小多项式的单根:

线性定常连续时间系统渐近稳定的充要条件是:系统的所有 特征值均具有负实部。

4.3.2 李雅普诺夫第二方法(直接法)

是李雅普诺夫稳定性理论的精华,适用于所有系统。

一、向量泛函的定号性

1. 正定和正半定

设v(x)是定义在向量空间原点某邻域 \mathfrak{R} 内的标量函数,称v(x)是正定泛函是指

$$v(x) \ge 0 \quad \forall x \in \Re, \quad \underline{\mathbb{H}} \quad v(x) = 0 \Leftrightarrow x = 0$$

而称v(x)是正半定(也叫半正定)泛函是指

$$v(x) \ge 0 \quad \forall x \in \Re, \quad \underline{\mathbb{H}} \quad x = \theta \Rightarrow v(x) = 0$$

2. 负定和负半定

4.3.2 李雅普诺夫第二方法(直接法)

一、向量泛函的定号性

3. 不定

设v(x)是定义在向量空间原点某邻域 \Re 内的标量函数,若 \Re 内 同时 存在 非零 元素 $x_1 \neq 0$ 和 $x_2 \neq 0$, 使得 $v(x_1) > 0$ 而 $v(x_2) < 0$,则称泛函v(x)是 \Re 中不定的。

二、李雅普诺夫稳定性定理

定理4.4 李雅普诺夫意义下稳定(限界稳定)

若在状态空间原点的某邻域配内,存在一正定泛函 v(x), 且其关于时间的导数 v(x)是负半定的,则系统在状态空间的 原点附近是李雅普诺夫意义下稳定的,也称为系统在原点是 限界稳定的。或者说系统状态空间的原点是李雅普诺夫意义 下稳定的平衡状态,也叫限界稳定的平衡状态。

具有上述特点的正定泛函v(x)叫做李雅普诺夫函数。

注意:

这里的李雅普诺夫稳定性定理是以充分条件的形式给出的。

二、李雅普诺夫稳定性定理

定理4.5 渐近稳定

若在状态空间原点的某邻域 \mathbf{R} 内,存在一正定泛函 v(x),且其关于时间的导数 $\dot{v}(x)$ 是负定的,则系统在状态空间的原点附近是渐近稳定的。或者说系统状态空间的原点是渐近稳定的平衡状态。

定理4.6 不稳定

若在状态空间原点的某邻域 \mathbf{R} 内,存在一正定泛函 v(x),且其关于时间的导数 $\dot{v}(x)$ 也是正定的,则系统在状态空间的原点附近是不稳定的。或者说系统状态空间的原点是不稳定的平衡状态。

注意:

这里的李雅普诺夫稳定性定理都是以充分条件的形式给出的。

二、李雅普诺夫稳定性定理

定理 限界稳定(李雅普诺夫意义下稳定)

如果在状态空间原点的某邻域图内,存在一正定泛函v(x),且其关于时间的导数v(x)是负半定的,则系统在状态空间的原点附近是李雅普诺夫意义下稳定的,也称为系统在原点是限界稳定的。或者说系统状态空间的原点是李雅普诺夫意义下稳定的平衡状态,也叫限界稳定的平衡状态。

具有上述特点的正定泛函 v(x) 叫做李雅普诺夫函数。

定理 渐近稳定

如果在状态空间原点的某邻域图内,存在一正定泛函v(x),且其关于时间的导数v(x)是负定的,则系统在状态空间的原点附近是渐近稳定的。或者说系统状态空间的原点是渐近稳定的平衡状态。

注意: 这里的李雅普诺夫稳定性定理都是以充分条件的形式给出的。

二、享雅普诺夫稳定性定理

【例4.2】试用李雅普诺夫第二方法分析如下系统的稳定性

$$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix} \mathbf{x}$$

解: 劳斯判据易知系统的两个特征值都有负实部, 渐近稳定。用李雅普诺夫直接法: 试选择正定泛函并求对时间的导数:

$$v_1(\mathbf{x}) = 2x_1^2 + x_2^2$$
, $\dot{v}_1(\mathbf{x}) = 4x_1\dot{x}_1 + 2x_2\dot{x}_2 = 2x_1x_2 - 2x_2^2$

不定。不能说明问题

$$v_2(\mathbf{x}) = x_1^2 + x_2^2$$
, $\dot{v}_2(\mathbf{x}) = 2x_1\dot{x}_1 + 2x_2\dot{x}_2 = -2x_2^2$

负半定, 李雅普诺夫意义下稳定。

问题是:对于一个渐近稳定的系统,是否肯定能够找到一个李雅普诺夫函数?回答是肯定的。

$$v_3(\mathbf{x}) = (x_1 + x_2)^2 + 2x_1^2 + x_2^2$$
 $\dot{v}_3(\mathbf{x}) = -2(x_1^2 + x_2^2)$

负定。所以 $v_3(x)$ 是该系统的一个李雅普诺夫函数。

二、享雅普诺夫稳定性定理

【例4.3】试用李雅普诺夫第二方法分析如下系统的稳定性

$$\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = -x_1^3 - x_2 \end{cases}$$

解: 试选择正定泛函

$$v_1(\mathbf{x}) = x_1^2 + x_2^2$$

$$v_2(\mathbf{x}) = x_1^4 + x_2^2$$

$$v_3(\mathbf{x}) = x_1^4 + 2x_2^2$$

练习(不是习题): 试分析以下系统的稳定性:

$$\begin{cases} \dot{x}_1 = x_1 - x_2 - x_1^3 \\ \dot{x}_2 = x_1 + x_2 - x_2^3 \end{cases}$$

二、李雅普诺夫稳定性定理

定理 渐近稳定 (修订、补充、完善)

如果在状态空间原点的某邻域 \mathfrak{n} 内,存在一正定泛函 $\mathfrak{v}(x)$,且其关于时间的导数 $\dot{\mathfrak{v}}(x)$ 是负定的,则系统在状态空间的原点附近是渐近稳定的。或者说系统状态空间的原点是渐近稳定的平衡状态。

如果结合系统的状态方程还能保证 $\dot{v}(x_e) = 0 \Rightarrow x_e = 0$ 则对 $\dot{v}(x)$ 负定的要求可以放宽至" $\dot{v}(x)$ 是负半定的"。

如果还能保证当 $\|x\|\to\infty$ 时 $v(x)\to\infty$,则系统是大范围渐近稳定的。或者说系统状态空间的原点是大范围渐近稳定的平衡状态。

习题: p249-252 (243-245)

6.2, 6.5, 6.6

补:已知系统的状态方程如下,是确定其稳定性

(1)
$$\begin{cases} \dot{x}_1 = x_2 - x_1(x_1^2 + x_2^2) \\ \dot{x}_2 = -x_1 - x_2(x_1^2 + x_2^2) \end{cases}$$

(2)
$$\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = -x_2 - (1+x_2)^2 x_2 \end{cases}$$

第四章 系统的稳定性

- § 4.1 外部稳定性(BIBO稳定)
- § 4.2 内部稳定性(李雅普诺夫稳定)
- § 4.3 李雅普诺夫直接法
- § 4.4 线性定常系统的李雅普诺夫 稳定性分析

§ 4.4 线性定常系统的 李雅普诺夫稳定性分析

4.4.1 基于系统矩阵特征值的稳定性定理

- 1. 线性定常连续时间系统李雅普诺夫意义下稳定(限界稳定)的充要条件是:系统矩阵A的所有特征值均具有零或负的实部,且其零实部特征值均是A的最小多项式的单根;
- 2. 线性定常连续时间系统渐近稳定的充要条件是: 系统矩阵A的所有特征值均有负实部。

等价变换不改变系统矩阵的特征值 等价变换不改变系统矩阵的最小多项式 等价变换不改变系统的稳定性

§ 4.4 线性定常系统的李雅普诺夫稳定性允

4.4.1 基于系统矩阵特征值的稳定性定理

关于"最小多项式"、"单根"

- ◆特征方程无重根时最小多项式与特征多项式完全一致
- ◆特征根重数与相应的互不相关特征向量数相同时,该特 征值仍是最小多项式的单根

$$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix} \mathbf{x} \qquad \begin{array}{l} \text{特征多项式} \, \Delta(\lambda) = \lambda^2(\lambda+1) \\ \text{最小多项式} \, \psi(\lambda) = \lambda(\lambda+1) \end{array}$$

0 是最小多项式的单根

系统限界稳定

$$\dot{\boldsymbol{x}} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix} \boldsymbol{x} \qquad \begin{array}{c} \text{特征多项式} \Delta(\lambda) = \lambda^2(\lambda + 1) & \boldsymbol{0} \text{ 是最小多项式的} \\ \text{最小多项式} \psi(\lambda) = \lambda^2(\lambda + 1) & \boldsymbol{s. 6.1} \\ \boldsymbol{x} & \boldsymbol{x$$

0 是最小多项式的重根

§ 4.4 线性定常系统的 李雅普诺夫稳定性分析

4.4.2 基于李雅普诺夫第二法的稳定性判据

对于线性定常系统 $\dot{x} = Ax$

选取最简单的正定二次型函数: $v(x) = x^T Px$ P > 0

因 $\dot{v}(x) = \dot{x}^T P x + x^T P \dot{x} = x^T (A^T P + P A) x =: -x^T Q x$ 其中 $A^T P + P A = -Q$

则由一般的李雅普诺夫直接法定理

若P、Q均为正定对称阵(即P>0, Q>0),则系统渐近稳定

注意:李雅普诺夫定理给出的是充分条件,即选取一个对称正定阵P,若从李雅普诺夫方程中解算出的对称阵Q也正定(有时可放宽为正半定),则系统是渐近稳定的,若Q是不定的,则得不到有用的结论。

4.4.2 基于李雅普诺夫第二法的稳定性判据

事实上,对于线性定常系统,可以给出作为稳定判据的李雅普诺夫定理——

定理4.6 线性定常连续时间系统渐近稳定

线性定常连续时间系统渐近稳定的充要条件是:对任意给 定的正定对称阵Q,李雅普诺夫方程

$$A^T P + PA = -Q$$

有唯一的对称解P,且P是正定的。

注意:

- 1. 这里给出的是充要条件(给Q,由李氏方程求P,判P正定)
- 2. 若 $x^TQx \equiv 0$ 与状态方程 $\dot{x} = Ax$ 联立的唯一解是x = 0,则定理中的Q可以是正半定对称阵;

此定理通常用于确定条件稳定系统的稳定边界

4.4.2 基于李雅普诺夫第二法的稳定性判据

定理4.6 线性定常连续时间系统渐近稳定

线性定常连续时间系统渐近稳定的充要条件是:对任意给定的正定对称阵Q,李雅普诺夫方程 $A^TP+PA=-Q$ 有唯一的对称解P,且P是正定的。

证明: 充分性是李氏第二法基本定理的直接结果,故只要证明必要性:

1. 将
$$\mathbf{P} = \int_0^\infty e^{A^T t} \mathbf{Q} e^{At} dt$$
 代入李雅普诺夫方程:

$$A^{T} \boldsymbol{P} + \boldsymbol{P} \boldsymbol{A} = \int_{0}^{\infty} A^{T} e^{A^{T} t} \boldsymbol{Q} e^{At} dt + \int_{0}^{\infty} e^{A^{T} t} \boldsymbol{Q} e^{At} A dt$$
$$= \int_{0}^{\infty} \frac{d}{dt} \left(e^{A^{T} t} \boldsymbol{Q} e^{At} \right) dt = e^{A^{T} t} \boldsymbol{Q} e^{At} \Big|_{t=0}^{\infty} = 0 - \boldsymbol{Q} = -\boldsymbol{Q}$$

此即表明所选的P是李雅普诺夫方程的解(上面用到了稳定的条件)。

2. 显然 Q 对称则 P 对称,只需再证明 P 正定:因Q正定,故他可分解为 $Q = \overline{Q}^T \overline{Q}$ 其中 \overline{Q} 是非奇异的,于是P 的正定性可由下式直接得到:

$$\boldsymbol{x}^{T}\boldsymbol{P}\boldsymbol{x} = \int_{0}^{\infty} \boldsymbol{x}^{T} e^{A't} \boldsymbol{\bar{Q}}^{T} \boldsymbol{\bar{Q}}^{At} \boldsymbol{x} dt = \int_{0}^{\infty} \left\| \boldsymbol{\bar{Q}} e^{At} \boldsymbol{x} \right\|_{2}^{2} dt$$

定理4.6 线性定常连续时间系统渐近稳定

线性定常连续时间系统渐近稳定的充要条件是:对任意给定的正定对称阵Q,李雅普诺夫方程 $A^TP+PA=-Q$ 有唯一的对称解P,且P是正定的。

要指出的是:此定理的充分性,亦可不依据李雅普诺夫定理直接得到:

2014 年考研题: ...七、证明题 (15分)

2. 试直接证明 (指不依赖于李雅普诺夫稳定性定理): 若有正定对称阵 P 和 Q 满足 $A^TP+PA=-Q$,则线性定常系统 $\dot{x}=Ax+bu$ 渐近稳定。

我们来证明,若 Q 和 P 都正定,则 A 稳定。设 λ 是 A 的一个特征值,且 $\nu \neq 0$ 是其相应的一个特征向量,即 $A\nu = \lambda \nu$ 。尽管 A 是实阵,但其特征向量和特征值也可能是复的。对 $A\nu = \lambda \nu$,取复共轭转置得 $\nu^*A^* = \nu^*A' = \lambda^*\nu^*$,其中星号表示复共轭转置。对李雅普诺夫方程 左乘 ν^* 右乘 ν 则得

$$-v^*Qv = v^*A'Pv + v^*PAv = (\lambda^* + \lambda)v^*Pv = 2\operatorname{Re}(\lambda)v^*Pv$$

因 v^*Pv 与 v^*Qv 均为实数且为正,这意味着 $Re(\lambda) < 0$ 。这就证明了A的 每个特征值具有负实部。

4.4.2 基于李雅普诺夫第二法的稳定性判据

【例4.4】已知系统的状态方程是

$$\dot{\boldsymbol{x}} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & -2 & 1 \\ -k & 0 & -1 \end{bmatrix} \boldsymbol{x} + \begin{bmatrix} 0 \\ 0 \\ k \end{bmatrix} \boldsymbol{u}$$

试确定使系统渐近稳定的 k 值范围。

解:线性定常系统的内部稳定性仅与系统矩阵A有关,故以下分析不考虑系统的控制矩阵(相当于假定零输入);为简化计算,可验证并选定合适的正半定矩阵Q,并解出相应的P

$$\mathbf{Q} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{A}^{T} \mathbf{P} + \mathbf{P} \mathbf{A} = -\mathbf{Q} \qquad \mathbf{P} = \frac{1}{12 - 2k} \begin{bmatrix} k^{2} + 12k & 6k & 0 \\ 6k & 3k & k \\ 0 & k & 6 \end{bmatrix}$$

§ 4.4 线性定常系统的 李雅普诺夫稳定性分析

4.4.3 离散时间系统的相应定理

- 1. 线性定常离散时间系统 x[k+1] = Fx[k] 限界稳定的充要条件是: F 的所有特征值,其模都小于或等于 1。且模为 1 的特征值是 F 之最小多项式的单根;
- 2. 线性定常离散时间系统 x[k+1] = Fx[k] 渐近稳定的充要条件是: F 的所有特征值的模均小于 1;
- 3. 线性定常离散时间系统x[k+1] = Fx[k]渐近稳定的充要条件是:对任意的正定对称阵N,离散李雅普诺夫方程

$$M - F^T MF = N$$

有唯一的对称正定解M。

习题: p243-245

6.2, 6.5, 6.6

补:已知系统的状态方程如下,是确定其稳定性

(1)
$$\begin{cases} \dot{x}_1 = x_2 - x_1(x_1^2 + x_2^2) \\ \dot{x}_2 = -x_1 - x_2(x_1^2 + x_2^2) \end{cases}$$

(2)
$$\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = -x_2 - (1 + x_2)^2 x_2 \end{cases}$$

6.15, 6.16(a), 6.17, 6.22, 6.23