

Recommender system

Recommendation process

Input: source of information

Explicit feedback:

- The users provide explicit signals about their preferences.
 - Explicit numerical rating, e.g., 2 stars, 3 stars, etc.
 - Binary explicit, thumbs up, thumbs down
- The most popular ratings.

Implicit feedback:

- No explicit feedback of users.
- Clicks/queries/watches to infer preference
- Lack of clicks is implicit lack of preference.
- Time to read a webpage by the users
- Many times an item is sold

Likert scale

How would you rate your experience with us?

Explicit vs. implicit feedback

Implicit feedback: Implicit feedback Explicit feedback High Accuracy Low Abundance High Low If a user did not listen to a track, that does not imply he Context-sensitive Yes Yes does not like the track. Positive and Expressivity of user Positive preference Negative Measurement Relative Absolute reference if a user listened to track A, 10 times and track B 100 times, then we can infer that he has a higher preference for track B than track A.

RS: problem

Example: Predicting movie ratings

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)
Love at last	5	5	0	0
Romance forever	5	?	?	0
Cute puppies of love	?	4	0	? "
Nonstop car chases	0	0	5	4
Swords vs. karate	0	0	5	?

RS approaches

Туре	Definition	Example
content-based filtering	Uses <i>similarity between items</i> to recommend items similar to what the user likes.	If user A watches two cute cat videos, then the system can recommend cute animal videos to that user.
collaborative filtering	Uses similarities between queries and items simultaneously to provide recommendations.	If user A is similar to user B, and user B likes video 1, then the system can recommend video 1 to user A (even if user A hasn't seen any videos similar to video 1).

Content based RS

 Content-based filtering uses item features to recommend other items similar to what the user likes, based on their previous actions or explicit feedback.

Content based RS

 Content-based filtering uses item features to recommend other items similar to what the user likes, based on their previous actions or explicit feedback.

Similarity metric

- Compute similarity between items feature vectors and use profile vector.
- Score each candidate item according to this similarity metric.
- Cosine metric

$$s(q,x) = \cos(q,x)$$

Dot product

$$s(q,x) = \langle q,x \rangle = \sum_{i=1}^d q_i x_i$$
.

Euclidean distance

$$s(q,x) = \|q-x\| = \left[\sum_{i=1}^d (q_i-x_i)^2
ight]^{rac{1}{2}}$$

Comparing metrics

 Determine the item ranking using all three of the similarity measures: cosine, dot product, and Euclidean distance.

Comparing metrics

- Determine the item ranking using all three of the similarity measures: cosine, dot product, and Euclidean distance.
- Item A has the largest norm, and is ranked higher according to the dot-product. Item C has the smallest angle with the query, and is thus ranked first according to the cosine similarity. Item B is physically closest to the query so Euclidean distance favors it.

Dot-product:

Query: Item A -> Item B -> Item C

Cosine

Querr: Item C -> Item A -> Item B

Euclidean

Query: Item B -> Item C -> Item A

Comparing metrics

- Determine the item ranking using all three of the similarity measures: cosine, dot product, and Euclidean distance.
- Item A has the largest norm, and is ranked higher according to the dot-product. Item C has the smallest angle with the query, and is thus ranked first according to the cosine similarity. Item B is physically closest to the query so Euclidean distance favors it.

Dot-product:

Query: Item A -> Item B -> Item C

Cosine

Querr: Item C -> Item A -> Item B

Euclidean

Query: Item B -> Item C -> Item A

Which Similarity Measure to Choose? Homework

Back to our example, which item will be recommended?

- Assume a binary feature matrix
- Using dot-product.

$$s(q,x) = \langle q,x \rangle = \sum_{i=1}^d q_i x_i$$
 .

- S(user, item1) = s1 = 1x1 + 0x0 + 0x0 + 0x0 + 1x1 + 1*0 = 2.
- S(user, item2) = s2 = 1x0 + 0x1 + 0x0 + 0x1 + 1x0 + 1x1 = 1.
- S(user, item3) = s3 = 1x0 + 0x0 + 0x1 + 0x0 + 1x0 + 1x1 = 1.
- s1>s2 and s1>s3
 - => Item 1 will be recommended.

Pros and cons of content-based RS

Pros:

- The model doesn't need any data about other users, since the recommendations are specific to this user. This makes it easier to scale to a large number of users.
- The model can capture the specific interests of a user, and can recommend niche items that very few other users are interested in.

Cons:

- Since the feature representation of the items are hand-engineered to some extent, this technique requires a lot of domain knowledge. Therefore, the model can only be as good as the hand-engineered features.
- The model can only make recommendations based on existing interests of the user. In other words, the model has limited ability to expand on the users' existing interests.

References

- https://medium.com/mlearning-ai/recommendation-systems-content-basedfiltering-e19e3b0a309e
- https://redfield.ai/content-based-recommendation/
- https://builtin.com/data-science/recommender-systems
- https://www.kdnuggets.com/2020/07/building-content-based-bookrecommendation-engine.html
- https://www.diva-portal.org/smash/get/diva2:935353/FULLTEXT02.pdf