M.L. OVERTON-"Numerical Computing with I EEE
Floating Point Arithmetic" - SIAM (2001 -1:= BFF00-0 -2: = 60000-0

Doppia precisione: 64 bit (1+11+52)

Table 4.2: IEEE Double Format $a_1 a_2 a_3 \dots a_{11} \mid b_1 b_2 b_3 \dots b_{52}$

AU = \$ Sub not mal

4= 40100 -

NOR, MAL

(-1023)

Atleast one 1

All = 1 Exception -

If exponent bitstring is $a_1 \dots a_{11}$	Then numerical value represented is	
$(00000000000)_2 = (0)_{10}$	$\pm (0.b_1b_2b_3\dots b_{52})_2 \times 2^{-1022}$:= reduin re 5:00
$(00000000001)_2 = (1)_{10}$	$\pm (1.b_1b_2b_3b_{52})_2 \times 2^{-1022}$:= testana ne
$(00000000010)_2 = (2)_{10}$	$\pm (1.b_1b_2b_3\dots b_{52})_2 \times 2^{-1021}$	
$(00000000011)_2 = (3)_{10}$	$\pm (1.b_1b_2b_3b_{52})_2 \times 2^{-1020}$	
$(011111111111)_2 = (1023)_{10}$	$\pm (1.b_1b_2b_3b_{52})_2 \times 2^0$	=1 kb :=0
$(10000000000)_2 = (1024)_{10}$	$\pm (1.b_1b_2b_3b_{52})_2 \times 2^1$:= 2 K 3:=0
$(111111111100)_2 = (2044)_{10}$	$\pm (1.b_1b_2b_3b_{52})_2 \times 2^{1021}$	
$(111111111101)_2 = (2045)_{10}$	$\pm (1.b_1b_2b_3b_{52})_2 \times 2^{1022}$	
$(111111111110)_2 = (2046)_{10}$	$\pm (1.b_1b_2b_3\dots b_{52})_2 \times 2^{1023}$	
$(1111111111111)_2 = (2047)_{10}$	$\pm \infty$ if $b_1 = \cdots = b_{52} = 0$, NaN otherwise	

08/06/01

ted uiu:= 2 -1022 (NORMUE)

2 = per pecdo sobustante