A LEVEL (P6) RANDOM VARIABLE

MARK SCHEME

1 (i)									
Х	1	2	3	4	5	6	M1		For 36 in the uncancelled denominator
P(X = x)	11/36	9/ ₃₆	7/36	5/ ₃₆	3/36	1/36	A1		somewhere, accept decimals eg 0.305 recurring or 0.306 etc For 3 correct probabilities
								3	All correct
(ii) E(X) = $1 \times \frac{11}{36} + 2 \times \frac{9}{36} + 3 \times \frac{7}{36} + 4 \times \frac{5}{36} + 5 \times \frac{3}{36} + 6 \times \frac{1}{36} = \frac{91}{36}$									For calculation of $\sum xp$ where all probs < 1
/36 36 36 36 36 36								2	

2 (i)	Options 123, 124, 125, 134, 135, 145, 234, 235, 245, 345	M1	For listings options, at least 4 different ones
	P (odd) = 0.4	B1	For correct answer, legit obtained
(ii)	P(largest is 4) = 0.3	B1	For correct answer
	$OR \frac{1\times_3 C_2}{{}_5C_3}$		SR if 9 options in (i) give B1 for 3/9 or 2/9 depending on their missing option
(iii)	l 3 4 5 P(L = l) 0.1 0.3 0.6	M1	For 3, 4, 5, in table or 1, 2 as well, no need for any probs but need to see an (uncompleted) second line
		M1	For evaluating another probability based on their list
		A1	For correct answer
(iv)	E(L) = $\sum lp = 3 \times 0.1 + 4 \times 0.4 + 5 \times 0.6 = 4.5$	B1 ft	For correct answer, ft if their ∑p= 1
	Var (L) = $3^2 \times 0.1 + 4^2 \times 0.3 + 5^2 \times 0.6 - (\text{their } 4.5^2)$	M1	For evaluating their $\sum l^2 p - (\text{their } 4.5^2) (\text{must see} \\ - \text{their } 4.^2) \text{each } p < 1, \text{in first} \\ \text{numerical instance, ie can forget} \\ \text{the sq rt subsequently}$
	= 0.45	A1	For correct answer

3 (i) P(G, G, G, G, NG) = $(0.25)^4 \times (0.75)^1 \times {}_{5}C_4$	M1		For relevant binomial calculation, need ${}_5 \mbox{C}_{\mbox{\scriptsize r}}$ or 5 or all 5 options
= 0.0146 AG	A 1	[2	For correct answer. AG
(ii)			
X 0 1 2 P(X = x) 0.2373 0.3955 0.2637	В1		For all correct X values
[r(λ - λ) 0.2373 0.3933 0.2037	В1		For one correct prob excluding $P(X = 4)$
(cont)	B1		For 2 correct probs excluding P(X = 4)
X 3 4 5 P(X = x) 0.0879 0.0146 0.0010	B1		For 3 correct probs excluding P(X = 4)
	B1	[5	All correct and in decimals

4 (i) \$2	B1	1	For correct answer
(ii) $P(MMMH) + P(MMMMH)$ = $0.8^3 \times 0.2 + 0.8^4 \times 0.2 = 0.184 \text{ AG}$	M1 A1	2	For attempting to sum P(MMMH) and P(MMMMH) For correct answer
(iii) $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1 B1ft	3	For one correct prob other than 0.184 For another correct prob other than 0.184, ft only if the -1 ignored and their 3^{rd} prob is $1-\Sigma$ the other 2 For correct table, can have separate 2s
(iv) $E(X) = 0.8 + 0.576 - 0.328$ = \$1.05	M1 A1	2	For attempt at Σxp from their table, at least 2 non-zero terms For correct answer

5 (1) 16							1	
(ii) 8						Bt	1	
(iii) Matches 1 2 3 4 5					15	MU		Matches 1,2,3,4,5 3 correct frequencies
freq	16	8	3	2	2	A1 A1	3	All correct
(iv) mean = 62/32 =1.9375 (= 1.94)						MI AI		Using their Σfc/Σ/ Correct answer
$var = 166/32 - (62/32)^{1}$ $= 1.43$						MI AI	4	Subst in $\Sigma f x^2 - (\Sigma f x/n)^2$ formula Correct answer, or B2 if used calculator

6 (i) $q + 3q + 0.26 + 0.05 + 0.09 = 1$	M1		Equation with q in summing probs to 1 must be probs
q = 0.15	A1	2	Correct answer
(ii) $E(X) = 1.56$ $Var(X) = 0.15 + 1.8 + 0.45 + 1.44 - mean^2$ = 1.41	B1ft M1 A1	3	Correct final answer, ft on wrong q Subst in Σpx^2 – mean ² formula Correct final answer

7 (i)	P (all different) = $\frac{{}_{3}C_{1} \times_{4} C_{1} \times_{5} C_{1}}{{}_{12}C_{3}} =$	M1	Attempt using combinations, with $_{12}C_3$ denom, or $P(RGY)$ in any order, i.e. 12 x 11 x 10 in denom
		M1	Correct numerator, or multiplying by 6
	= 3/11 (= 0.273)	A1 3	Correct answer
(ii)	$P(\text{exactly 2 } G) = \frac{{}_{4}C_{2} \times_{8} C_{1}}{{}_{12}C_{3}}$	M1	Attempt using combinations, or mult any $P(GG\overline{G}) \times 3$ Or $P(GGY) \times 3 + P(GGR) \times 3$
	= 12/55 AG	A1 2	Correct answer AG
(iii)	x 0 1 2 3 P(X=x) 14/55 28/55 12/55 1/55 decimal 0.255 0.509 0.218 0.018	M1	For seeing P(0, 1, 2, 3) only and 1 or more probs
	decimal 0.233 0.309 0.210 0.010	M1	For reasonable attempt at $P(X = 0 \text{ or } 1 \text{ or } 3)$
		A1	For one correct probability seen other than P(<i>X</i> =2)
		A1	For a second probability correct other than P(X=2)
		A1 5	All correct

		CLES 2007
$\begin{vmatrix} 8 & (i) & 2p + p + 3p = \\ 1 & p = 1/6 & (= 1) \end{vmatrix}$	M1	Equation involving ps and summing
p = 1/6 (=	A	to 1 Correct answer
0.167)	1 2	
(ii) $E(X) = -2 \times 2/6 + 0 + 4 \times$	M1	Using correct formula for $E(X)$, in terms
3/6 = 4/3	A1ft	of p or their $p < 1$
(=1.33)		Correct expectation ft on their p if $p \le 1/3$
$Var (X) = 4 \times 2/6 + 0 + 16 \times 3/6 - (4/3)^2 = 7.56$	M1	Substitution in their Σpx^2 – their $E^2(X)$ need 2
$(4/3)^2 = 7.56$	A	terms Correct answer
(68/9)	1 4	

9 (i)	0.5 A O.5 A A	M1	4 or 5 pairs A and U seen no extra bits but condone (0, 1) branches after any or all As. Exactly 4 pairs of A and U, must be labelled
	0.5 U 0.5 U 0.5 U	A1 3	Correct diagram with all probs correct, allow A1ft for 4 correct pairs and (0,1) branch(es) or A1ft for 5 correct pairs and no (0, 1) branch(es)
(ii)	x 0 1 2 3 4 P(X=x) ½ ¼ 1/8 1/16 1/16	B1 B1 B1 B1 4	P(0) correct P(2) correct P(3) correct P(4) correct
(iii)	E(X) = 15/16 (0.938 or 0.9375)	M1 A1 2	attempt at $\Sigma(xp)$ only with no other numbers correct answer

` '	P(odd) =					B1		Can be implied if normal approx used with
I	$P(7) = {}_{8}C$		3) (1/3	3)		M1		$\mu = 5.333 (= 8 \times 2/3)$ Binomial expression with C in and 2/3 and 1/3 in
	= (0.156						powers summing to 8
I	P(8) = (8)	$(2/3)^8 =$	0.0390			M1		Summing $P(7) + P(8)$ binomial expressions
I	P(7 or 8)) = 0.19	5 (1280)/6561)	A1	[4]	Correct answer
(ii)								
x	2	4	6	7	8	B1		Values of <i>x</i> all correct in table of probabilities
P(X=x)	1/36	2/36	5/36	4/36	4/36	ы		values of x an correct in table of probabilities
				1				
x	9	10	11		12	B2	[3]	All probs correct and not duplicated, -1 ee
P(X=x)	4/36	4/36	8/3	36	4/36	DZ		All proof correct and not duplicated, –1 cc
(iii) I	$E(X) = \sum_{i=1}^{n} e_i X_i$	$\sum p_i \chi_i$						
	-	$\times 1/36$		36 +		M1		attempt to find $\sum p_i x_i$, all $p < 1$ and no further
								division of any sort
	= 3	12/36 (26/3) (8	3.67)		A1	[2]	correct answer
(iv) I	(iv) $P(X > E(X)) = P(X = 9, 10, 11, 12)$							attempt to add their relevant proba
(17)	(A > L)	(A)) — F	(A-9,	10, 1	1, 14)	M1		attempt to add their relevant probs
		= 2	20/36 (5	5/9) (0	.556)	A1	[2]	correct answer

11	(i)	$P(X=2) = 1/4 \times 1/4 + 1/4 = 5/16 \text{ AG}$	M1		Considering cases (1, 1) and (2)
		OR can use a table 12 2 4 4 23 2 5 4 3 4 2 6 4 4 5 2 7 4	A1	[2]	Correct given answer legitimately obtained $(1/16 + 4/16 \text{ needs some justification but } 1/16 + 1/4 \text{ is acceptable})$
	(ii)	$E(X) = \sum xp$	M1		Using correct formula for $E(X)$, no extra division
		= 15/4 (3.75)	A1		Correct answer
		$Var(X) = 2^2 \times 5/16 + 3^2 \times 1/16 + 4^2 \times 3/8 + (15/4)^2$	M1		Using a variance formula correctly with mean ² subtracted numerically, no extra division
		= 260/16 - 225/16 = 35/16 (2.19)	A1	[4]	Correct final answer

12	(i) $-0.16 - p + 0.16 + 2q + 0.66 = 1.05$	M1		Attempt at $\Sigma px = 1.05$ no dividing
	-p + 2q = 0.39 p + q = 0.42 q = 0.27 p = 0.15	A1 B1	[4]	Correct simplified equation Accept $p = 0.42 - q$ oe Both answers correct
	(ii) $Var(X) = 4 \times 0.08 + p + 0.16 + 4q + 1.98 - (1.05)^2$ = 2.59	M1 A1	[2]	Subst in Σpx^2 – mean ² formula, mean ² subt numerically, p +ve and < 1 Correct answer

13 (i) $40 = 120 / 3$ so $r = 3$ $P(40) = 3/45 = 1/15$ AG	M1 A1 [2]	r = 3 seen or obtained from table Given answer legit obtained
(ii) x 120 60 40 30 $P(X=x)$ 1/45 2/45 3/45 4/45 24 20 17.14 15 13.3 5/45 6/45 7/45 8/45 9/45	B1 B1 B1 [3]	8 or 9 values for <i>x</i> , correct to nearest integer One correct probability apart from 1/15 Correct table
(iii) 40/3 oe (13.3)	B1ft [1]	ft their table
(iv) $P(18 < X < 100) = (2 + 3 + 4 + 5 + 6)/45$ = 20/45 (4/9) (0.444)	M1 A1 [2]	Adding 5 probabilities o.e. Correct answer

-3a - b + 1.6 = 0.75 MA	B1 Correct sum probs = 1 o.e. M1 Attempt at $\Sigma xp = 0.75$ Correct a Correct b
-------------------------	--

15 (i)	$\begin{array}{ c c c c }\hline x \\ \hline P(X=x) \\ \hline \end{array}$	0 1/7	1 4/7	2 2/7		B1 B1 B1 [3]	0, 1, 2 only in table or listed with some prob 3, 4 if in table must have blank or 0 for prob One correct probability All correct
	(ii) $E(X) = 8/7 (1.14) AG$ $Var(X) = 12/7 - (8/7)^2$ = 20/49 (0.408)					B1 B1 M1 A1 [3]	Legitimate correct given answer rounding to 1.14 Correct method with mean ² subt numerically no dividing by anything Correct final answer
(iii)	(iii) $P(G \mid NA) = \frac{P(G \cap NA)}{P(NA)}$ $= \frac{2/5 \times 1/4}{2/5 \times 1/4 + 3/5 \times 9/10}$ $= \frac{5}{32} (0.156)$					M1 M1 A1 A1 [4]	Attempt at $P(G \cap NA)$ or $P(G \cap A)$ as numerator of a fraction Attempt at $P(NA)$ or $P(A)$ in form of summing two 2-factor products, seen anywhere Correct unsimplified denominator of a fraction Correct answer

16 (i $P(2) = P(0,2) + P(2,0)$ = $6/10 \times 3/7 + 3/10 \times 4/7$ = $30/70 = 3/7$ AG	M1 Summing two 2-factor probabilities A1 Correct answer legit obtained
(ii) $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1 Correct values for rv X B1 Correct probs [2]
(iii) $E(X) = 13/7$ $Var(X) = 120/70 + 208/70 + 108/70 - (13/7)^2$ = 2.78	B1ft M1 Using variance formula correctly with mean ² subtracted numerically, no extra division A1 Correct final answer
(iv) $P(A2 \mid Sum 2) = \frac{3/10 \times 4/7}{30/70}$ = 0.4	M1 Correct numerator with a 0 < denom < 1 A1 Correct answer [2]

17 (i)	If $y = P(\text{odd number})$ then $P(\text{even number}) = 2y$ 3y + 6y = 1 so $y = 1/9$ oe. OR prob = 1/3	M1 A1 [2]	2P(Odd) shown = P(Even) and summed to 1 correct answer accept either
(ii	Score of 8 means throwing a 6 6 is even so P(8) = 2/9 (AG)	B1 B1 [2]	legit justification of use of 2/9

(iii) $Var(X) = (48 + 36 + 98 + 128 + 100)/9 - (58/9)^2$ = 4.02 accept 4.025 (326/81)	M1 A1 [2]	Correct method no dividings, 6.44 squared subt numerically Correct answer
(iv) P(score 6,10) + P(score 10,6) + P(score 8,8) = 1/81 + 1/81 + 4/81 = 6/81 (2/27) (0.0741)	M1 A1 [2]	Summing two different 2-factor probabilities Correct answer
(v) P(score 6, 10) = 1/81 P(1 st score 6 given total 16) = $(1/81) \div (6/81)$ = 1/6	B1 M1 A1 [3]	1/81 seen in numerator Dividing by their (iv) Correct answer

18	$4p + 5p^{2} + 1.5p + 2.5p + 1.5p = 1$ $10p^{2} + 19p - 2 = 0$	M1	Summing 5 probs to = 1 can be implied
	p = 0.1 or -2	A1	For 0.1 seen with or without –2
	p = 0.1	A1 [3]	Choosing 0.1 must be by rejecting –2

19 ((i)									
		х	1	2	3	4	5		M1	1, 2, 3, 4, 5 seen, together with some
		Prob	k	2k	3 <i>k</i>	4 <i>k</i>	5 <i>k</i>			probabilities involving k but not x
									M1	summing probs involving k to 1
		15k = 1								
	$k = 1/15 \ (0.0667)$						A1	correct answer		
									[3]	
(ii)	E(X)							M1	using Σpx no dividing
`		= k + 4	k + 9k	k + 16k	+25k					8 P 8
	=55k=11/3 (3.67)						A1ft	correct answer, ft on $55k$, $0 < k < 1$		
				` /					[2]	

20 (i) P(any other number) = $9/70$ P($X < 2$) = $27/70 + 1/10$	B1	9/70 Seen
= 34/70 (17/35) (0.486)	B1ft [2]	Ft their probs if < 1
(ii) $E(X) = 108/70 (54/35) (1.543)$	M1	Valid attempt at $E(X)$ (needn't be accurate)
$Var(X) = ((-2)^2 + + 5^2) \times 9 / 70 - (54/35)^2$	M1	Using a variance formula correctly with mean ² subtracted numerically, no extra division
= 5.33	A1 [3]	Correct final answer
(iii) <i>a</i> = 1	B1 [1]	

21 (i) $P(6) = P(3, 9) + P(9, 3) = 2/25 = 0.08 \text{ AG}$	B1 [1]	Accept 2/25 seen
(ii) x 0 1 2 3 4 5 6 Prob 0.2 0.24 0.08 0.08 0.16 0.16 0.08	M1 A1 [2]	Values 0 – 6 seen could be in list All correct
(iii) Mean = $\sum xp = 2.56 (64/25)$	B1 [1]	
(iv) $P(4, 5, 6) = 0.4(10/25)$ or $0.16 + 0.16 + 0.08$ = $P(draw) \times 0.4$	B1 ft M1	ft their P(4, 5, 6) providing $p < 1$ Multiplying by their P(draw) providing $p < 1$
$= 0.2 \times 0.4 = 0.08 (2/25)$	A1ft [3]	Correct answer
(v) P(J wins on <i>n</i> th go) = $(0.2)^{n-1} \times 0.4$ oe	M1 A1ft [2]	Mult by any p^n or p^{n-1} , $p < 1$ ft their probs

22 (i) $(0.75)^n < 0.06$ $n > 9.78$	M1* M1dep*	Equation or inequality with 0.75" and 0.06 or 0.94 seen Attempt at solving by trial and error (can be implied) or using logarithms correctly
n = 10	A1 [3]	Correct answer
(ii) $E(X) = 14 \times 0.75 \text{ or } 10.5$ $\text{Try P}(10) = {}^{14}\text{C}_{10}(0.75)^{10}(0.25)^4 = 0.220$ $P(11) = {}^{14}\text{C}_{11}(0.75)^{11}(0.25)^3 = 0.240$ (mode is) 11	M1 M1 A1 [3]	Evaluating binomial probability for an integer value directly above or below their mean Evaluating the other binomial probability Correct answer
OR	M1 M1 A1	Evaluating binomial $P(n)$ and $P(n + 1)$ Evaluating binomial $P(10)$, $P(11)$ and $P(12)$ Correct answer
(iii) $P(> 11)$ = ${}^{14}C_{12}(0.75)^{12}(0.25)^2 + {}^{14}C_{13}(0.75)^{13}(0.25)^1 + (0.75)^{14}$	M1 M1	A binomial term of the form ${}^{14}C_np^n(1-p)^{14-n}$ seen, $n \ne 0$ or 14 Summing binomial P(12, 13, 14) or P(11, 12, 13, 14,)
= 0.281	A1	Correct answer 0.280 – 0.282
$P(3) = {}^{5}C_{3} (0.2811)^{3} (0.7189)^{2}$	M1	A binomial term of the form ${}^5C_3p^3(1-p)^2$ seen, any p
= 0.115	A1 [5]	Correct answer

23	(i	$P(X=1) = P(GBBB) \ 4 \times C_1$	M1		Considering values of <i>X</i> of 1, 2, 3, 4
		$= 5/8 \times 3/7 \times 2/6 \times 1/5 \times 4 = 1/14$	M1		Attempting to find the probability of at least 2 values of X
		$P(X=2) = P(GGBB) \times {}_{4}C_{2} = 3/7$			
		$P(X=3) = P(GGGB) \times {}_{4}C_{3} = 3/7$	A1		One correct probability
		$P(X=4) = P(GGGG) \times {}_{4}C_{4} = 1/14$	A1		All correct
		OR			
		$P(1) = {}_{5}C_{1} / {}_{8}C_{4} = 1/14$	M1		Considering values of <i>X</i> of 1, 2, 3, 4
		$P(2) = {}_{3}C_{2} \times {}_{5}C_{2} / {}_{8}C_{4} = 3/7$	M1		Dividing by ₈ C ₄
		$P(3) = {}_{3}C_{1} \times {}_{5}C_{3} / {}_{8}C_{4} = 3/7$	A1		One correct probability
		$P(4) = {}_{5}C_{4} / {}_{8}C_{4} = 1/14$	A1	[4]	All correct

(ii) $Var(X) = 1/14 + 12/7 + 27/7 + 16/14 - (5/2)^2$	M1		Using a variance formula correctly with mean ² subtracted numerically, no extra division
= 15/28 (0.536)	A1	[2]	Correct final answer

24 (i)	$P(2, N2, 2) = 1/4 \times 1 \times 1/7 = 1/28$	M1		Considering at least two options of 2s and 8s
	$P(8, 8, N8) = 1/4 \times 2/5 \times 3/7 = 3/70$	M1		Considering three options for the 8s
	$P(8, N8, 8) = 1/4 \times 3/5 \times 4/7 = 3/35$	M1		Summing their options if more than 3 in total
	$P(N8, 8, 8) = 3/4 \times 2/5 \times 4/7 = 6/35$	B1		One option correct
	$\Sigma = 47/140 \ (0.336)$	A1	[5]	Correct answer
(ii)	P(2, 2 given same) = $\frac{1/28}{47/140}$	M1		1/28 in numerator of a fraction
	= 5/47 (0.106)	A1	[2]	Correct answer
(iii)	P(X) = 47/140	M1		Attempt to compare $P(A \text{ and } B)$ with $P(A) \times P(B)$ or using conditional probabilities
	P(Y) = 1/4			
	$P(X \text{ and } Y) = 1/28 \neq 47/140 \times 1/4$	A1		Legitimate correct answer
	Not independent		[2]	

25 (i	i) $P(3m) = 4/5 (0.8) P(5m) = 1/5 (0.2)$	B1		P(3m) = 4/5 or $P(5m) = 1/5$ seen or implied
	E(X) = 17/5 (3.4)	B1 M1		Correct E(X) Subtract their mean ² numerically from Σx^2 p, no extra dividing
	Var(X) = 16/25 (0.64)	A1	[4]	Correct answer
(i	ii) $P(3, 5) + P(5, 3) = 0.8 \times 0.2 + 0.2 \times 0.8$	M1		Summing two 2-factor terms
	= 8/25 (0.32)	A 1√	[2]	Correct answer, ft on $2 \times p \times (1 - p)$, their p
(i	iii) $P(11) = P(3, 3, 5) + P(3, 5, 3) + P(5, 3, 3)$	M1		Mult 2 probs for 3 with 1 prob for 5
	$= (4/5 \times 4/5 \times 1/5) \times 3$	M1		Multiplying probs for 11 by 3 or summing 3 options
	=48/125 (0.384)	A1	[3]	Correct final answer

26 **(i)** p = 0.1

B1 [1]

(ii) (a) $P(X=1, Y=3) = 0.3 \times 0.2 = 0.06$ $P(X=2, Y=2) = 0.15 \times 0.5 = 0.075$ $P(X=3, Y=1) = 0.3 \times 0.3 = 0.09$ P(sum is 4) = 0.225

M1 Summing 2 or 3 options B1 One option correct unsimplified

A1 [3] correct final answer

11

M1

B1

(b) P(X = 1, Y = anything) = 0.3 P(X = 2, Y = anything) = 0.15 $P(X = 3, Y = 1, 2) = 0.3 \times 0.8 = 0.24$ $P(X = 4, Y = 1) = 0.2 \times 0.3 = 0.06$ $P(X = 5, Y = 1) = 0.05 \times 0.3 = 0.015$ P(product < 8) = 0.765

A1 [3] Correct answer

OR P(Y = 1, X = anything) = 0.3 $P(Y = 2, X = 1, 2, 3) = 0.5 \times 0.75$ = 0.375 $P(Y = 3, X = 1, 2) = 0.2 \times 0.45 = 0.09$ P(product < 8) = 0.765

B1 A1

M1

27 **(i)** y = 0 2 4 P(Y = y) 0.42 0.48 0.1

B1 0, 2, 4 only seen for Y no probs needed. Accept other vals if P(value) = 0 seen in table, allow 0002244 with probs

M1 Summing two or more 2-factor probs (can be implied)

A1 One correct prob

A1 [4] Correct table or list

B1ft [1] Ft their table for Y or X $\Sigma p = 1$

 Σ 3 or more two-factor options

Two correct options

(ii) 0.96 + 0.4 = 1.36

28(i) mean = 11/6 (1 $\frac{5}{6}$, 1.83) B1 correct answer $sd = \sqrt{(1+1+1+4+9+9)/6 - (11/6)^2}$ M1numerical use of a correct sd/variance formula $=\sqrt{29}/6$ (0.898) [3] **A**1 correct answer (ii) B1 all correct x values 2 3 4 6 B1 P(2) and P(6) correct 9/3 6/36 13/36 4/36 4/36 considering more than 1 case for a sum of 3 or 4 M1 P(3), P(4) and P(5) correct **A**1 [4] B1 correct p **(iii)** p = 1/3M1using np = 8 to find n or 8(1 - p) to find var, np = 8 n = 240A1ft correct answer, ft their p [3] $Var = 24 \times 1/3 \times 2/3 = 16/3 (5.33)$

29	$P(0) = 7/10 \times 6/9 \times 5/8 = 210/720$	B1		Finding P(0, 1, 2, 3)
	$P(1) = 3/10 \times 7/9 \times 6/8 \times 3C1 = 378/720$	B1		1 or 2 correct
	$P(2) = 3/10 \times 2/9 \times 7/8 \times 3C2 = 126/720$	B1		3 correct
	$P(3) = 3/10 \times 2/9 \times 1/8 = 6/720 (1/120)$	B1	[4]	All correct

30 (i	$P(9) = P(1,4,4) \times 3 + P(2,3,4) \times 6 + P(3,3,3)$ $= 10/64 (5/32) (0.156) AG$	M1 M1 A1	[3]	Listing at least 2 different options Multiplying P(4,3,2) by 6 or P(1,4,4) by 3 Correct answer must see numerical justification
(ii	probs 1/64, 3/64, 6/64, 10/64, 12/64, 12/64, 10/64, 6/64, 3/64, 1/64.	B1 B1 B1	[3]	3 or more additional correct probs 5 or more correct All correct
(ii	(ii) $P(S) = 6/64(3/32)$ $P(R \cap S) = 3/64, \neq 15/1024 \text{ ie } P(R) \times P(S)$ $P(R S) = \frac{3/64}{6/64} = 1/2, \neq 10/64 \text{ ie } P(R)$	M1 A1 B1 M1		An attempt at $P(S)$ 4,4,1 or 4,2,2 Correct $P(S)$ Correct $P(R \cap S)$ in either intersection or cond prob cases comparing their $P(R \cap S)$ with their $P(R) \times P(S)$ or their $P(R S)$ with their $P(R)$ need
Not inc	dependent	A1ft	[5]	numerical vals correct conclusion ft wrong $P(S)$ or $P(R \cap S)$ only

31		B1		Correct unsimplified equation, oe
	$(-3)^2p + 2^2r + 4^2 \times 0.4 - 2.3^2 = 3.01$	B1		Correct unsimplified equation, oe
	p + q + r + 0.4 = 1	B1		Correct equation, oe
	-3p + 2r = 0.7			-
	9p + 4r = 1.9			
	so $-9p + 6r = 2.1$ or $-6p + 4r = 1.4$			
	4r + 6r = 1.9 + 2.1 or $9p + 6p = 1.9 - 1.4$	M1		Obtain an equation in 1 unknown
	$r = \frac{2}{5} (0.4), p = \frac{1}{30} (0.0333)$	A1		One correct answer
	$q = 0.6 - 0.4 - 0.0333 = \frac{1}{6} (0.167)$	A1	6	Remaining two answers correct

32	(i)	$X \sim \text{Bin} (12, 0.2)$	B1 B1 B1	[3]	Bin or B 12 0.2 or 1/5
	(ii)	P ($X = 3, 4, 5$) = $0.2^{3}0.8^{9}_{12}C_{3} + 0.2^{4}0.8^{8}_{12}C_{4}$ + $0.2^{5}0.8^{7}_{12}C_{5}$ = $0.23622 + 0.13287 + 0.05315$ = 0.422	M1 A1ft A1	[3]	Bin expression with any p Correct unsimplified expression, their p Correct answer
	(iii)	$P(X=0) < 0.01$ $0.8^{n} < 0.01$ $n = 21$	M1 M1 A1	[3]	Statement involving P(X = 0) and 0.01 can be implied Equn involving '0.8', 0.01 or 0.99 Correct answer

33 (i)	$P(T,B) = \frac{5}{12} \times \frac{2}{10} = \frac{1}{12} (0.0833)$	M1 A1	[2]	Mult their $P(T)$ by $2/9$ or $2/10$ only Correct answer
(ii)	$P(C_S \cap C_A) = \frac{7}{12} \times \frac{4}{10} = \frac{28}{120} (0.2333)$	M1		Mult their $P(C_S)$ by 3/9 or 4/10 seen as num or denom of a fraction
	$P(C_A) = \frac{7}{12} \times \frac{4}{10} + \frac{5}{12} \times \frac{3}{10} = \frac{43}{120} (0.3583)$	M1		Summing 2 two-factor products to find $P(C_A)$ seen anywhere
	$P(C_S C_A) = \frac{P(C \cap C)}{P(C_A)} = \frac{28/120}{43/120}$	A1		Correct unsimplified $P(C_A)$ seen as num or denom of a fraction
	$=\frac{28}{43}(0.651)$	A1	[4]	Correct answer
(iii)	x 0 1 2 Prob 7 19/40 7/30	В1		x = 0, 1, 2, can be implied from table or working
	P(X = 0) = P(T, B) + P(T, T)	M1		1 or 2 two-factor products, denoms 12 and 10 or 12 and 9, implied if ans is correct
	$= \frac{5}{12} \times \frac{2}{10} + \frac{5}{12} \times \frac{5}{10} = \frac{7}{24} (0.292)$	A1		One correct unsimplified
	$P(X=2) = P(C, C) = \frac{7}{12} \times \frac{4}{10} = \frac{28}{120} (0.233)$	B1		One other correct unsimplified
	$P(X=1) = 1 - 7/24 - 28/120 = \frac{19}{40}(0.475)$	B1ft	[5]	Third correct ft 1 – P(2 of their probs))

P(at least 2) = P(2, 3) or 1 – P(0, 1)
$$= \frac{5}{12} \times \frac{4}{11} \times \frac{7}{10} \times {}_{3}C_{2} + \frac{5}{12} \times \frac{4}{11} \times \frac{3}{10}$$

$$= \frac{4}{11} (0.364)$$
OR
$$\frac{({}_{5}C_{3}) + ({}_{5}C_{2} \times {}_{7}C_{1})}{{}_{12}C_{3}}$$
M1
M1
A1
Bumming, or 1–, two different three-factor probex expressions, ${}_{3}C_{2}$ not needed
12, 11, 10 seen or implied in denominator Mult a prob by ${}_{3}C_{2}$ or ${}_{3}C_{1}$ oe
Correct answer

M1
$${}_{5}C_{3}$$
 seen added in numerator
$${}_{5}C_{2}$$
 seen mult alone or in numerator
$${}_{12}C_{3}$$
 seen in denom
Correct answer

35 (i) if throw H then smallest score is 2 $P(T, 1) = 1/2 \times 1/4 = 1/8 \text{ AG}$							s 2		B1 B1	2	Or equivalent
(i	(ii) $P(3)$ from two dice = $2/16$ seen								B1		From (1, 2) and (2, 1)
	$P(H, 3) = 1/2 \times 2/16 = 2/32$ $P(T, 3) = 1/2 \times 1/4 = 1/8$ So $P(3) = 6/32 = 3/16$ AG								M1 A1 A1	4	Summing P(H, 3) and P(T, 3) One correct Correct answer must see clear reasoning
(ii	i)										
X	1	2	3	4	5	6	7	8	B1		One correct prob
Prob	1	5/32		7/32		3/32			B1 B1	3	A second correct prob A third correct prob
(iv	(iv) $P(Q \cap R) = 0$ or 'if you throw a tail you can't get a 7'						ail yo	ou	M1		Stating $P(Q \cap R) = 0$ or implying by words
	Yes they are exclusive								Aldep	2	Dep on previous M

36 (i)	options (3, 4, 4,) or (4, 3, 4) or (4, 4, 3) Probs (4/10 × 6/9 × 5/8) ×3C1 = 360/720	M1 M1		Summing three 3-factor options oe $10 \times 9 \times 8$ seen in denom
	$= \frac{1}{2} AG$	A1	[3]	Correct answer
	$OR \frac{{}_{6}C_{2} \times_{4} C_{1}}{{}_{10}C_{3}} = \frac{1}{2} AG$	M1 M1 A1		One of 6C2 or 4C1 seen in num 10C3 in denom Correct answer
(ii)		B1	[4]	9, 10, 11, 12 only seen
sum Prob	9 10 11 12 24/720 216/720 360/720 120/720	В1		One correct prob other than P(11), with or without replacement
	$P(3, 3, 3) = 4/10 \times 3/9 \times 2/8 = 24/720 (1/30)$ $P(3, 3, 4) = 4/10 \times 3/9 \times 6/8 \times 3C1$ = 216/720 (3/10)	B1		Another correct prob
	$P(4, 4, 4) = 6/10 \times 5/9 \times 4/8 = 120/720(1/6)$	B1		Σ all 4 probs = 1
(iii)	$P(R) = 0.5 P(S) = 0.4 P(R \cap S) = 120/720$ $P(R \cap S) = 120/720 \neq P(R) \times P(S)$	B1 M1	[3]	$P(R \cap S) = 120/720 \ (1/6)$ Numerical attempt to compare $P(R \text{ and } S)$ with $P(R) \times P(S)$ provided $P(R \cap S) \neq 1/5$
	Not indep	A1ft		Correct conclusion ft wrong $P(R \cap S) \neq 1/5$, $P(S)$ correct
(iv)	$P(R \cap S) \neq 0$ or there is an overlap between R and S (34,4) Not exclusive $\sum xf/\sum f$	B1ft	[1]	Correct answer following correct reasoning ft wrong non zero $P(R \cap S)$

37 (i	P(same) = P(1, 1) + P(3, 3) + P(5, 5)	M1		Summing 3 two-factor options
	$= \frac{2}{9} \times \frac{1}{8} + \frac{4}{9} \times \frac{3}{8} + \frac{3}{9} \times \frac{2}{8}$	M1		Multiplying terms by one less in the numerator or denominator
	= 5/18 (0.278)	A1	3	Correct answer
	Alt. method: $\frac{2C2+4C2+3C2}{9C2}$ or $\frac{2\times 1+3\times 4+2\times 3}{9C2\times 2}$ oe			M1 for numerator, M1 for denominator, A1 correct answer
(ii)	$P(5,\overline{5}) + P(\overline{5},5)$	M1 M1		Mult 2 probs whose numerators sum to 9 o.e. Summing 2 options or mult by 2 (may be 4 options)
	$= \frac{3}{9} \times \frac{6}{8} + \frac{6}{9} \times \frac{3}{8} = \frac{36}{72} = \frac{1}{2} \text{ or } 0.5$	A1	3	Correct answer
	Alt. method: $\frac{6C1 \times 3C1(\times 2)}{9C2(\times 2)} oe$			M1 for numerator, M1 for denominator, A1 correct answer
(iii)	$P(5 \cap \overline{5}) = \frac{3}{9} \times \frac{6}{8} = \frac{1}{4}$	M1		Attempt at P(5 and not 5) seen as numerator or denominator of a fraction
	$P(\overline{5}) = \frac{1}{4} + \frac{6}{9} \times \frac{5}{8} = 48/72 = 0.6666$	M1		Attempt at P(not 5) sum of 2 two-factor terms seen anywhere
	$P(5_1 \overline{5}_2) = \frac{1/4}{48/72} = 3/8$	A1		Correct P($\overline{5}$) as numerator or denominator in fraction
	= 0.375	A1	4	Correct answer
(iv)	$ \begin{array}{c ccccc} x & 0 & 1 & 2 \\ \hline P(X=x) & 5/12 & 1/2 & 1/12 \\ \hline \end{array} $	В1		Values 0, 1, 2 seen in table with at least 1 prob
	$P(0) = P(\overline{5}, \overline{5}) = \frac{6}{9} \times \frac{5}{8} = 30/72 (5/12)$ (0.4166)	B1		Correct P(0) unsimplified
	P(1) = 0.5 from part (ii)			
	P(2) = 6/72 (1/12) (0.0833) from part (i)	B1ft	3	If $x=0,1,2(,3)$ ft $\Sigma p = 1$, no –ve values, all probabilities <1

38	(i)	P (exactly	$(2) = \frac{{}^{6}C_{2}}{{}^{8}C_{2}}$	$\frac{2}{4} = \frac{15}{70} = \frac{1}{1}$	$\frac{3}{4}$ AG	M1		6 Cx / 8 Cx seen or 4 C ₂ mult by 4 fractions (last 2 can be implied)
		OR P(2) =	$= \frac{6}{8} \times \frac{5}{7} \times$	$\frac{2}{6} \times \frac{1}{5} \times ^4 \text{C}$	$_2 = \frac{3}{14} \text{ AG}$	A1	2	Answer legit obtained
(ii)	x Prob	3/14	3 8/14	3/14	B1 B1 B1√	3	2, 3, 4 only in top line one correct prob other than P(2) third correct prob ft $\Sigma = 1$
(i	ii)	Var(X) =	$\frac{12}{14} + \frac{72}{14} +$	$-\frac{48}{14} - 3^2$		M1		using $\Sigma x^2 p - 3^2$ (or their $\{E(X)\}^2$) must be evaluated
		$=\frac{3}{7}(0.42)$	29)			A1	2	correct answer

39	39 (i) A:P(H) = $2/3$, P(T) = $1/3$ B: P(H) = $1/4$, P(T) = $3/4$							M1		Using some of 2/3, 1/3, ½ or 3/4 in a calculation involving prod of 3 probs		
P(1H) = P(HTT) + P(THT) + P(TTH) = $(2/3 \times 1/3 \times 3/4) + (1/3 \times 2/3 \times 3/4)$								M1		Summing 3 options not all the same		
$+ (1/3 \times 1/3 \times 1/4) = 13/36 \text{ AG}$						3/36 AG		A1	3	Correct answer		
		х	0	1	2	3						
	(ii)	P	3/36	13/36	6 16/36 4/36 B1		B1		0, 1, 2, 3 seen for table no probs needed, table not absolutely necessary if calcs shown			
	$P(0H) = P(TTT) = 1/3 \times 1/3 \times 3/4 = 1/12$						12	B1		One prob correct other than (i) condone 0.083 for 0.0833		
$P(2H) = P(HHT) + P(HTH) + P(THH)$ = $(2/3 \times 2/3 \times 3/4) + (2/3 \times 1/3 \times 1/4)$ + $(1/3 \times 2/3 \times 1/4) = 4/9 \text{ not } 2/3 \times 2/3$					$1/3 \times 1/4$	4)	B1		A second prob correct need 3 factors can be implied			
$P(3H) = P(HHH) = 2/3 \times 2/3 \times 1/4 = 1/9$						< 1/4 = 1	/9	B1√^	4	A third prob correct ft $23/36 - \Sigma$ their 2 probs		
(iii) $E(X) = 13/36 + 32/36 + 12/36$						6		M1		Attempt to evaluate $\sum xp$ at least 3 vals of x in table		
			= 57/36	5 (19/12)	(1.58)			A1	2	Correct answer		

40 (i) $P(2) = {}^{6}C_{3} \times {}^{3}C_{2} / {}^{9}C_{5}$ OR	M1 OR	Using combinations ${}^{a}C_{b} \times {}^{c}C_{d}/{}^{e}C_{f}$
$\frac{{}^{6}\text{C}_{3} \times {}^{3}\text{ C}_{2}}{{}^{6}\text{C}_{5} + {}^{6}\text{C}_{4} \times {}^{3}\text{C}_{1} + {}^{6}\text{C}_{3} \times {}^{3}\text{C}_{2} + {}^{6}\text{C}_{2} \times {}^{3}\text{C}_{3}}$ OR $3/9 \times 2/8 \times 6/7 \times 5/6 \times 4/5 \times {}^{5}\text{C}_{2} = 10/21$ $= 60/126 \text{ AG}$	M1 OR M1 A1 2	Mult 5 probs with a ${}^{p}C_{q}$ If ${}^{5}C_{2}$ replace by 10, oe must be justified Legit method, as answer given

(ii	i)				
	x	0	1	2	3
	Prob	2/42	15/42	20/42	5/42

 $P(0) = {}^{6}C_{5}/{}^{9}C_{5} = 6/126$ $P(1) = {}^{6}C_{4} \times {}^{3}C_{1}/{}^{9}C_{5} = 45/126$ $P(3) = {}^{6}C_{2} \times {}^{3}C_{3}/126 = 15/126$

0, 1, 2, 3 only seen in table. B1

Condone x = 4.5 in table if P(x) = 0 or blank and values in table for x = 0,1,2,3

Any correct prob other than P(2)

Any other correct prob

 $\Sigma P(x) = 1, 3 < n(x) < 6$

41	(i	0.24 + 0.35 + 2k + k + 0.05 = 1 k = 0.12		2	Summing probs = 1 Correct answer		
((ii)	model number is 1	B1	1			
(i	iii)	mean = $1 \times 0.35 + 2 \times 0.24 + 3 \times 0.12 + 4 \times 0.05$ P(>1.39) = P(2.3, 4) = 0.41	B1 M1 B1	3	1.39 seen Finding $P(X > \text{their mean})$ Correct ans following mean or mode only		

Β1

B1

B1√

(ii)

X	1	2	3
Prob	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$

P(1) = P(C) say =
$$\frac{1}{3}$$

P(2) = P(WC) = $\frac{1}{6}$ P(WC) = $\frac{1}{6}$ total P (2)
= $\frac{1}{3}$
P(3) = P(WWC) = $\frac{1}{6}$ P(WWC) =

$$\frac{1}{6}$$
 total P(3) = $\frac{1}{3}$
E(X) = 1 × $\frac{1}{3}$ + 2 × $\frac{1}{3}$ + 3 × $\frac{1}{3}$ = 2

B1 1, 2, 3 seen only oe

B1 2 correct probs

B1 3 correct probs

B1 $^{\$}$ 4 Correct answer ft their probs provided $0.999 \le \Sigma p \le 1$

43 (i
$$\max = 12$$

 $P(12) = (0.7)^{12} = 0.0138$

B1 (Implied by $P(12)$ with power 12)
 $Accept 0.014$

(ii) $P(\text{fewer than } 10) = 1 - P(10, 11, 12)$
 $= 1 - {}^{12}C_{10} \times (0.7)^{10}(0.3)^2 - 12 \times (0.7)^{11}(0.3)$
 $= 1 - 0.2528$
 $= 0.747$

B1 (Implied by $P(12)$ with power 12)
 $Accept 0.014$

Binomial term ${}^{12}C_r(0.7)^r(0.3)^{12-r}$ or ${}^{12}C_r(p)^r(q)^{12-r}$, $0.99 \le p+q \le 1.00$

	<u></u>		<u></u>
44 (a) (i)	9! 2!2!3!	B1	Dividing by 2!2!3!
	= 15120 ways	B1 [2]	Correct answer
(ii)	******* in $\frac{8!}{2!2!3!}$ = 1680 ways	B1	Correct ways end in 3
	*******7 in $\frac{8!}{2!3!}$ = 3360 ways	B1	Correct ways end in 7
	Total even $= 15120 - 1680 - 3360$	M1	Finding odd and subt from 15120 or their (i)
	= 10080 ways	A1 [4]	Correct answer
	OR		
	********2 in 8!/2!3! = 3360 ways	B1	One correct way end in even
	*******6 in 8!/2!2!3! = 1680 ways	B1	correct way end in another even
	******* 8 in 8!/2!2!2! = 5040ways	M1	Summing 2 or 3 ways
	Total = 10080 ways	A1	Correct answer
	OR "15120" ×6/9 = 10080	M2	Mult their (i) by 2/3 oe
	13120 ^0/9 - 10080	A2	Correct answer
			- Correct ans wer
(b)	T(3) S(6) G(14)		
	1 1 3 in $3 \times 6 \times {}^{14}C_3 = 6552$ 1 3 1 in $3 \times {}^{6}C_3 \times 14 = 840$	M1	Mult 3 (combinations) together
	$1 3 1 \text{ in } 3 \times {}^{\circ}\text{C}_{3} \times 14 = 840$	3.64	assume $6 = {}^{6}C_{1}$ etc
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M1	Listing at least 4 different options
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M1	Summing at least 4 different
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	B1	options At least 3 correct numerical
	1 2 2 111 3 2 2 2 4093	Di	options
	Total ways = 13839 (13800)	A1 [5]	Correct answer
		. ,	

(ii)

Prob

(iii) $E(X) = 0.24 + 2 \times 0.144 + 3 \times 0.144 + 0.144 + 0.144 + 0.144 + 0.144 + 0.144 + 0.144 + 0.144 + 0.144 + 0.144 + 0.144 + 0.144 + 0.144 + 0.144$

0.216 = 1.176 (1.18)

45 (i)	P(2Es 1O) = $\frac{3}{5} \times \frac{2}{4} \times \frac{2}{3} \times {}^{3}C_{2} = \frac{3}{5}$ (0.6) OR P(2Es 1O) = $\frac{{}^{3}C_{2} \times {}^{2}C_{1}}{{}^{5}C_{3}} = \frac{6}{10}$	M1 M1 A1 3	$5\times4\times3$ seen in denom Mult a prob by ${}^{3}C_{2}$ oe Correct answer ${}^{3}C_{x}$ or ${}^{y}C_{2}$ or ${}^{2}C_{1}$ oe seen mult by $k \ge 1$ in num
	= 0.6 OR 241, 247, 261, 267, 461, 467 = 6 options 124 126 127 146 147 167 246 247 267 467	M1 A1 M1 M1	⁵ C ₃ seen in denom Correct answer List at least 3 of 241, 247, 261, 267, 461, 467 ⁵ C ₃ or list to get all 10 options in denom see below
	Prob = 6/10	A1	Correct answer
(ii)	124 12 246 247 s 1 2 4 P(S = s) 6/10 3/10 1/10	M1 A1 B1 B1 B1 5	Attempt at listing with at least 7 correct All correct and no others or all 60 1, 2, 4 only seen in top row Any two correct All correct

46 (i)	$P(1 \text{ W}) = 6/9 \times 3/8 + 3/9 \times 6/8$	M1	summing 2 two-factor probs (condone replacement) not ½½½½ + ½½×½
	= ½ AG	A1 [2]	Correct answer, fully justified
	$OR \frac{{}^{6}C_{1} \times {}^{3} C_{1}}{{}^{9}C_{2}}$	M1	Using combinations consistent, correct format
	$=\frac{1}{2}$ AG	A1	Correct answer, fully justified
(ii)	$P(\overline{W}, \overline{W}) = 3/9 \times 2/8 = 6/72 (1/12)$	B1	Distribution table with 0,1,2 only
	$P(\overline{W}, \overline{W}) = 3/9 \times 2/8 = 6/72 (1/12)$ $P(W, W) = 6/9 \times 5/8 = 30/72 (5/12)$ $x \qquad 0 \qquad 1 \qquad 2$	B1	$P(W,W)$ or $P(\overline{W},\overline{W})$ correct
	Prob 1/12 1/2 5/12	B1 √ [3]	$P(W,W) + P(\overline{W},\overline{W}) = 0.5$
(iii)	E(X) = 16/12 (4/3) (1.33) isw	B1 [1]	Condone 1(.3) if correct working seen, nfww
47 (3)	- <u> </u>		

M1

A1

B1 M1

A1

B1

[4] **M**1

 $\mathbf{A1}$

A1 [3]

3 pairs S (bank, log in,

must be labelled

One more correct prob

One more correct prob

correct P(0) correct

of 0.4 and 0.6

Using $\sum p_i x_i$ Correct answer

success oe) and F oe seen no

Correct diagram with all probs

Multiplying two of more factors

extra bits. Exactly 3 pairs,

MARNING SCHEMES							20				TOPIC 3. RAINDOW VARIABLE	
48 (i)			ı	S	pinner	A						
				1	2	3	3			B 1	1	
			-3	(-2)	-1	0	0					
	Spinn B	er	-2	-1	0	(1)	1					
			-1	0	1	2	2 2					
			1	2	3	4	4					
(ii)	x	-2	-1	0	1	2	3	4		M1		Their values in (i) as the top line, seen listed in (ii) or used in part (iii)
	prob	1	2	4	$\frac{3}{16}$	$\frac{3}{16}$	1	$\frac{2}{16}$		M1		Attempt at probs seen evaluated, need at least 4 correct from their table Correct table seen
	prob	16	16	16	16	16	16	16		A1	3	
(iii)	$E(X) = 1$ $Var(X) = ((-2)^2 + 2 + 3 + 12 + 9 + 32)/16 - 1^2$ $= \frac{62}{16} - 1$									M1 M1		Attempt at E(X) from their table if $\Sigma p = 1$ Evaluating $\Sigma x^2 p - [\text{their E}(X)]^2$ allow $\Sigma p \neq 1$ but all p 's <1
		$=\left(\frac{1}{2}\right)$	$\left(\frac{23}{8}\right)$	2.875)	= (9 + 8 + 4 + 0 + 3 + 4 + 18)/16				A1	3	Correct answer	
								/16	M1			
	=	$\frac{46}{16} =$	2.875	;						M1 A1		
(iv)	P(even given +ve)								M1		Counting their even numbers and dividing by their positive numbers	
	$=\frac{5}{9}$									A1	2	Correct answer
	OR P(even given +ve) = $\frac{\left(\frac{5}{16}\right)}{\left(\frac{9}{16}\right)}$									M1		Using cond prob formula not P(E) × P(+ve) need fraction over fraction accept any of $\frac{5/16 or 6/16 or 9/16}{9/16 or 10/16 or 13/16}$
			$=\frac{5}{9}$	(0.556))					A1		Correct answer