The Steklov Problem for OPUC and Krein Systems

Michel Alexis

UW-Madison

Defense, May 21st 2021

Setting: $\mathbb{T} \subset \mathbb{C}$.

Setting: $\mathbb{T} \subset \mathbb{C}$.

Setting: $\mathbb{T} \subset \mathbb{C}$.

Can write $z = e^{i\theta}$.

Setting: $\mathbb{T} \subset \mathbb{C}$.

 $1, z, z^2, z^3, \dots$

Can write $z = e^{i\theta}$.

Setting: $\mathbb{T} \subset \mathbb{C}$.

Can write
$$z = e^{i\theta}$$
.

$$1, z, z^2, z^3, \dots \quad \perp \text{ w.r.t.} \qquad \frac{a}{2}$$

Setting: $\mathbb{T} \subset \mathbb{C}$.

Can write $z = e^{i\theta}$.

$$1,z,z^2,z^3,\ldots$$
 \perp w.r.t. $\frac{d\theta}{2\pi}$ \downarrow $w(\theta) rac{d\theta}{2\pi}$

Setting: $\mathbb{T} \subset \mathbb{C}$.

Can write
$$z = e^{i\theta}$$
.

$$1,z,z^2,z^3,\ldots$$
 \perp w.r.t. $\frac{d\theta}{2\pi}$ \downarrow $W(\theta) \frac{d\theta}{2\pi}$

Setting: $\mathbb{T} \subset \mathbb{C}$.

Can write
$$z = e^{i\theta}$$
.

$$1,z,z^2,z^3,\dots$$
 \perp w.r.t. $\frac{d\theta}{2\pi}$ \downarrow $\varphi_0,\varphi_1,\varphi_2,\varphi_3,\dots$ \perp w.r.t. $w(\theta)\frac{d\theta}{2\pi}$

Setting: $\mathbb{T} \subset \mathbb{C}$.

$$1,z,z^2,z^3,\dots$$
 \perp w.r.t. $\frac{d\theta}{2\pi}$ \downarrow Gram-Schmidt \downarrow $\varphi_0,\varphi_1,\varphi_2,\varphi_3,\dots$ \perp w.r.t. $w(\theta)\frac{d\theta}{2\pi}$

Can write $z = e^{i\theta}$.

• $\varphi_n(z)$ is orthonormal polynomial of degree n.

Setting: $\mathbb{T} \subset \mathbb{C}$.

$$1,z,z^2,z^3,\dots$$
 \perp w.r.t. $\frac{d\theta}{2\pi}$ \downarrow Gram-Schmidt \downarrow $\varphi_0,\varphi_1,\varphi_2,\varphi_3,\dots$ \perp w.r.t. $w(\theta)\frac{d\theta}{2\pi}$

Can write $z = e^{i\theta}$.

- $\varphi_n(z)$ is orthonormal polynomial of degree n.
- $\{\varphi_n(z)\}$ are called Orthogonal Polynomials on the Unit Circle.

ullet $\frac{1}{|arphi_n|^2} o w$ in the weak-* sense as measures.

- $\frac{1}{|\varphi_n|^2} \to w$ in the weak-* sense as measures.
- $\log \frac{1}{|\varphi_n|^2} \to \log w$ in L^1 and weak-* sense if $\int_{\mathbb{T}} \log w > -\infty$.

- $\frac{1}{|\varphi_n|^2} \to w$ in the weak-* sense as measures.
- $\log \frac{1}{|\varphi_n|^2} \to \log w$ in L^1 and weak-* sense if $\int_{\mathbb{T}} \log w > -\infty$.

Trend seems to be $|\varphi_n| \to w^{-1/2}$.

- $\frac{1}{|\varphi_n|^2} \to w$ in the weak-* sense as measures.
- $\log \frac{1}{|\varphi_n|^2} \to \log w$ in L^1 and weak-* sense if $\int_{\mathbb{T}} \log w > -\infty$.

Trend seems to be $|\varphi_n| \to w^{-1/2}$.

We expect this behavior pointwise as well.

- $\frac{1}{|\varphi_n|^2} \to w$ in the weak-* sense as measures.
- $\log \frac{1}{|\varphi_n|^2} \to \log w$ in L^1 and weak-* sense if $\int_{\mathbb{T}} \log w > -\infty$.

Trend seems to be $|\varphi_n| \to w^{-1/2}$.

We expect this behavior pointwise as well.

- $\frac{1}{|\varphi_n|^2} \to w$ in the weak-* sense as measures.
- $\log \frac{1}{|\varphi_n|^2} \to \log w$ in L^1 and weak-* sense if $\int_{\mathbb{T}} \log w > -\infty$.

Trend seems to be $|\varphi_n| \to w^{-1/2}$.

We expect this behavior pointwise as well.

$$|\varphi_{\it n}| \rightarrow {\it w}^{-1/2}$$

If $w \geqslant \delta > 0$, then $\{\varphi_n\}$ are bounded above, i.e. $\sup_n \|\varphi_n\|_{L^\infty(w)} < \infty$.

$$|\varphi_n| \to w^{-1/2}$$

If $w \geqslant \delta > 0$, then $\{\varphi_n\}$ are bounded above, i.e. $\sup_n \|\varphi_n\|_{L^\infty(w)} < \infty$.

False! Can create weights w which oscillate rapidly, forcing $\{\varphi_n\}$ to blow-up.

$$|\varphi_n| \to w^{-1/2}$$

If $w \ge \delta > 0$, then $\{\varphi_n\}$ are bounded above, i.e. $\sup_n \|\varphi_n\|_{L^\infty(w)} < \infty$.

False! Can create weights w which oscillate rapidly, forcing $\{\varphi_n\}$ to blow-up.

But $\|\varphi_n\|_{L^2(w)} = 1$ by definition. Maybe we're asking for too much regularity?

$$|\varphi_n| \to w^{-1/2}$$

If $w \ge \delta > 0$, then $\{\varphi_n\}$ are bounded above, i.e. $\sup_n \|\varphi_n\|_{L^\infty(w)} < \infty$.

False! Can create weights w which oscillate rapidly, forcing $\{\varphi_n\}$ to blow-up.

But $\|\varphi_n\|_{L^2(w)} = 1$ by definition. Maybe we're asking for too much regularity?

Problem (Steklov problem)

Does there exist p > 2 such that $\sup_{n} \|\varphi_n\|_{L^p(w)} < \infty$?

$$|\varphi_n| \to w^{-1/2}$$

If $w \ge \delta > 0$, then $\{\varphi_n\}$ are bounded above, i.e. $\sup_n \|\varphi_n\|_{L^\infty(w)} < \infty$.

False! Can create weights w which oscillate rapidly, forcing $\{\varphi_n\}$ to blow-up.

But $\|\varphi_n\|_{L^2(w)} = 1$ by definition. Maybe we're asking for too much regularity?

Problem (Steklov problem)

Does there exist p > 2 such that $\sup_n \|\varphi_n\|_{L^p(w)} < \infty$?

Remark: If $\int_{\mathbb{T}} \log w > -\infty$, then $|\varphi_n(z)| \sim |\Phi_n(z)|$, where $\Phi_n(z)$ are the

monic orthogonal polynomials of degree n.

Theorem (Nazarov, 2016)

Suppose $\epsilon \leqslant w \leqslant \Lambda$. Then there exists p > 2 for which $\sup_{n} \|\Phi_{n}\|_{L^{p}} < \infty$.

Theorem (Nazarov, 2016)

Suppose $\epsilon \leqslant w \leqslant 1$. Then there exists p > 2 for which $\sup_{n} \|\Phi_{n}\|_{L^{p}} < \infty$.

Proof:

Theorem (Nazarov, 2016)

Suppose $\epsilon \leqslant w \leqslant \cancel{N} 1$. Then there exists p > 2 for which $\sup_{n} \|\Phi_n\|_{L^p} < \infty$.

Proof: $\mathcal{P}_{[0,n]} \stackrel{\text{def}}{=} \text{Projection onto } \operatorname{Span}\{1, z, z^2, z^3, \dots, z^n\}.$

Theorem (Nazarov, 2016)

Suppose $\epsilon \leqslant w \leqslant 1$. Then there exists p > 2 for which $\sup_{n} \|\Phi_{n}\|_{L^{p}} < \infty$.

Proof:
$$\mathcal{P}_{[0,n]} \stackrel{\text{def}}{=}$$
 Projection onto $\text{Span}\{1, z, z^2, z^3, \dots, z^n\}$.

$$\begin{cases} \Phi_n = z^n + \mathcal{P}_{[0,n-1]} \Phi_n \quad \text{(monic)} \end{cases}$$

Theorem (Nazarov, 2016)

Suppose $\epsilon \leqslant w \leqslant 1$. Then there exists p > 2 for which $\sup_n \|\Phi_n\|_{L^p} < \infty$.

Proof:
$$\mathcal{P}_{[0,n]} \stackrel{\text{def}}{=} \text{Projection onto } \operatorname{Span}\{1, z, z^2, z^3, \dots, z^n\}.$$

$$\begin{cases} \Phi_n &= z^n + \mathcal{P}_{[0,n-1]} \Phi_n \quad \text{(monic)} \\ 0 &= \mathcal{P}_{[0,n-1]} w \Phi_n \quad \text{(orthogonal)} \end{cases}$$

Theorem (Nazarov, 2016)

Suppose $\epsilon \leqslant w \leqslant \cancel{K} 1$. Then there exists p > 2 for which $\sup_n \|\Phi_n\|_{L^p} < \infty$.

Proof: $\mathcal{P}_{[0,n]} \stackrel{\text{def}}{=} \text{Projection onto } \operatorname{Span}\{1,z,z^2,z^3,\ldots,z^n\}.$

$$\begin{cases} \Phi_n &= z^n + \mathcal{P}_{[0,n-1]} \Phi_n \quad \text{(monic)} \\ 0 &= \mathcal{P}_{[0,n-1]} w \Phi_n \quad \text{(orthogonal)} \end{cases} \Rightarrow \Phi_n = z^n + \mathcal{P}_{[0,n-1]} (1-w) \Phi_n \,,$$

Theorem (Nazarov, 2016)

Suppose $\epsilon \leqslant w \leqslant \cancel{K} 1$. Then there exists p > 2 for which $\sup_n \|\Phi_n\|_{L^p} < \infty$.

Proof: $\mathcal{P}_{[0,n]} \stackrel{\text{def}}{=} \text{Projection onto } \operatorname{Span}\{1, z, z^2, z^3, \dots, z^n\}.$

$$\begin{cases} \Phi_n &= z^n + \mathcal{P}_{[0,n-1]} \Phi_n \quad \text{(monic)} \\ 0 &= \mathcal{P}_{[0,n-1]} w \Phi_n \quad \text{(orthogonal)} \end{cases} \Rightarrow \Phi_n = z^n + \mathcal{P}_{[0,n-1]} (1-w) \Phi_n \,,$$

or rather $(I - \mathcal{P}_{[0,n-1]}(1-w))\Phi_n = z^n$.

Theorem (Nazarov, 2016)

Suppose $\epsilon \leqslant w \leqslant \cancel{K} 1$. Then there exists p > 2 for which $\sup_n \|\Phi_n\|_{L^p} < \infty$.

Proof: $\mathcal{P}_{[0,n]} \stackrel{\text{def}}{=} \text{Projection onto } \operatorname{Span}\{1, z, z^2, z^3, \dots, z^n\}.$

$$\begin{cases} \Phi_n &= z^n + \mathcal{P}_{[0,n-1]} \Phi_n \quad \text{(monic)} \\ 0 &= \mathcal{P}_{[0,n-1]} w \Phi_n \quad \text{(orthogonal)} \end{cases} \Rightarrow \Phi_n = z^n + \mathcal{P}_{[0,n-1]} (1-w) \Phi_n \,,$$

or rather $(I - \mathcal{P}_{\lceil 0, n-1 \rceil}(1-w))\Phi_n = z^n$.

If we can show $\|\mathcal{P}_{[0,n-1]}\|_{p,p} \leq 1 + \epsilon$ for p close to 2, then done!

Theorem (Nazarov, 2016)

Suppose $\epsilon \leqslant w \leqslant 1$. Then there exists p > 2 for which $\sup_{n} \|\Phi_{n}\|_{L^{p}} < \infty$.

Proof: $\mathcal{P}_{[0,n]} \stackrel{\text{def}}{=} \text{Projection onto } \operatorname{Span}\{1, z, z^2, z^3, \dots, z^n\}.$

$$\begin{cases} \Phi_n &= z^n + \mathcal{P}_{[0,n-1]} \Phi_n \quad \text{(monic)} \\ 0 &= \mathcal{P}_{[0,n-1]} w \Phi_n \quad \text{(orthogonal)} \end{cases} \Rightarrow \Phi_n = z^n + \mathcal{P}_{[0,n-1]} (1-w) \Phi_n \,,$$

or rather $(I - \mathcal{P}_{[0,n-1]}(1-w))\Phi_n = z^n$.

If we can show $\|\mathcal{P}_{[0,n-1]}\|_{p,p} \leq 1 + \epsilon$ for p close to 2, then done!

• Indeed, $\|\mathcal{P}_{[0,n-1]}(1-w)\|_{p,p} \leqslant (1+\epsilon)(1-\epsilon) \leqslant 1-\epsilon^2 < 1$

Theorem (Nazarov, 2016)

Suppose $\epsilon \leqslant w \leqslant 1$. Then there exists p > 2 for which $\sup_n \|\Phi_n\|_{L^p} < \infty$.

Proof: $\mathcal{P}_{[0,n]} \stackrel{\text{def}}{=} \text{Projection onto } \operatorname{Span}\{1, z, z^2, z^3, \dots, z^n\}.$

$$\begin{cases} \Phi_n &= z^n + \mathcal{P}_{[0,n-1]} \Phi_n \quad \text{(monic)} \\ 0 &= \mathcal{P}_{[0,n-1]} w \Phi_n \quad \text{(orthogonal)} \end{cases} \Rightarrow \Phi_n = z^n + \mathcal{P}_{[0,n-1]} (1-w) \Phi_n \,,$$

or rather $(I - \mathcal{P}_{[0,n-1]}(1-w))\Phi_n = z^n$.

If we can show $\|\mathcal{P}_{[0,n-1]}\|_{p,p} \leq 1 + \epsilon$ for p close to 2, then done!

- Indeed, $\|\mathcal{P}_{[0,n-1]}(1-w)\|_{p,p} \leqslant (1+\epsilon)(1-\epsilon) \leqslant 1-\epsilon^2 < 1$
- Now by geometric sum,

Theorem (Nazarov, 2016)

Suppose $\epsilon \leqslant w \leqslant 1$. Then there exists p > 2 for which $\sup_n \|\Phi_n\|_{L^p} < \infty$.

Proof: $\mathcal{P}_{[0,n]} \stackrel{\text{def}}{=} \text{Projection onto } \operatorname{Span}\{1,z,z^2,z^3,\ldots,z^n\}.$

$$\begin{cases} \Phi_n &= z^n + \mathcal{P}_{[0,n-1]} \Phi_n \quad \text{(monic)} \\ 0 &= \mathcal{P}_{[0,n-1]} w \Phi_n \quad \text{(orthogonal)} \end{cases} \Rightarrow \Phi_n = z^n + \mathcal{P}_{[0,n-1]} (1-w) \Phi_n \,,$$

or rather $(I - \mathcal{P}_{\lceil 0, n-1 \rceil}(1-w))\Phi_n = z^n$.

If we can show $\|\mathcal{P}_{[0,n-1]}\|_{p,p} \leq 1 + \epsilon$ for p close to 2, then done!

- Indeed, $\|\mathcal{P}_{[0,n-1]}(1-w)\|_{p,p} \le (1+\epsilon)(1-\epsilon) \le 1-\epsilon^2 < 1$
- Now by geometric sum,

$$\|\Phi_n\|_p \leqslant \|(I - \mathcal{P}_{[0,n-1]}(1-w))^{-1}\|_{p,p}\|z^n\|_p$$

Does there exist p > 2 such that $\sup_{n} \|\Phi_n\|_{L^p(w)} < \infty$?

Theorem (Nazarov, 2016)

Suppose $\epsilon \leqslant w \leqslant 1$. Then there exists p > 2 for which $\sup_{n} \|\Phi_{n}\|_{L^{p}} < \infty$.

Proof: $\mathcal{P}_{[0,n]} \stackrel{\text{def}}{=} \text{Projection onto } \operatorname{Span}\{1,z,z^2,z^3,\ldots,z^n\}.$

$$\begin{cases} \Phi_n &= z^n + \mathcal{P}_{[0,n-1]} \Phi_n \quad \text{(monic)} \\ 0 &= \mathcal{P}_{[0,n-1]} w \Phi_n \quad \text{(orthogonal)} \end{cases} \Rightarrow \Phi_n = z^n + \mathcal{P}_{[0,n-1]} (1-w) \Phi_n \,,$$

or rather $(I - \mathcal{P}_{\lceil 0, n-1 \rceil}(1-w))\Phi_n = z^n$.

If we can show $\|\mathcal{P}_{[0,n-1]}\|_{p,p} \leq 1 + \epsilon$ for p close to 2, then done!

- Indeed, $\|\mathcal{P}_{[0,n-1]}(1-w)\|_{\rho,\rho} \leqslant (1+\epsilon)(1-\epsilon) \leqslant 1-\epsilon^2 < 1$
- Now by geometric sum,

$$\|\Phi_n\|_{\rho} \leqslant \|(I - \mathcal{P}_{[0,n-1]}(1-w))^{-1}\|_{\rho,\rho}\|z^n\|_{\rho} \leqslant \|\sum_{k=0}^{\infty} (\mathcal{P}_{[0,n-1]}(1-w))^k\|_{\rho,\rho}$$

• Have uniform control of $\|\mathcal{P}_{[0,n-1]}\|_{p,p}$ since $\mathcal{P}_{[0,n-1]}$ is a linear combination of Hilbert transforms,

• Given $\|\mathcal{P}_{[0,n]}\|_{2,2} = 1$, one can show $\|\mathcal{P}_{[0,n]}\|_{p,p} \leqslant 1 + O(|p-2|)$ uniformly in n.

- Given $\|\mathcal{P}_{[0,n]}\|_{2,2} = 1$, one can show $\|\mathcal{P}_{[0,n]}\|_{p,p} \leqslant 1 + O(|p-2|)$ uniformly in n.
- \bullet Choose p close enough to 2 so that $\|\mathcal{P}_{[0,n-1]}\|_{p,p}\leqslant 1+\epsilon$

$$[w]_{A_2} \stackrel{\mathrm{def}}{=} \sup_{I: \text{ arc in } \mathbb{T}} \left(\frac{1}{|I|} \int_I w \right) \left(\frac{1}{|I|} \int_I w^{-1} \right) < \infty.$$

$$[w]_{A_p} \stackrel{\text{def}}{=} \sup_{I: \text{ arc in } \mathbb{T}} \left(\frac{1}{|I|} \int_I w \right) \left(\frac{1}{|I|} \int_I w^{-p'/p} \right)^{p/p'} < \infty.$$

• We say $w \in A_p$ if

$$[w]_{A_p} \stackrel{\text{def}}{=} \sup_{I: \text{ arc in } \mathbb{T}} \left(\frac{1}{|I|} \int_I w \right) \left(\frac{1}{|I|} \int_I w^{-p'/p} \right)^{p/p'} < \infty.$$

• Facts/notions about A_p :

$$[w]_{A_p} \stackrel{\text{def}}{=} \sup_{I: \text{ arc in } \mathbb{T}} \left(\frac{1}{|I|} \int_I w \right) \left(\frac{1}{|I|} \int_I w^{-p'/p} \right)^{p/p'} < \infty.$$

- Facts/notions about A_p :
- $w \in A_p$ means w cannot be too singular/oscillatory.

$$[w]_{A_p} \stackrel{\text{def}}{=} \sup_{I: \text{ arc in } \mathbb{T}} \left(\frac{1}{|I|} \int_I w \right) \left(\frac{1}{|I|} \int_I w^{-p'/p} \right)^{p/p'} < \infty.$$

- Facts/notions about A_p:
- $w \in A_p$ means w cannot be too singular/oscillatory.
- if $w \in A_p$ then $\log w \in BMO$.

$$[w]_{A_p} \stackrel{\text{def}}{=} \sup_{I: \text{ arc in } \mathbb{T}} \left(\frac{1}{|I|} \int_I w \right) \left(\frac{1}{|I|} \int_I w^{-p'/p} \right)^{p/p'} < \infty.$$

- Facts/notions about A_p:
- $w \in A_p$ means w cannot be too singular/oscillatory.
- if $w \in A_p$ then $\log w \in BMO$.
- Power weights $|\theta|^{\alpha} \in A_p$ if $-1 < \alpha < p-1$

$$[w]_{A_p} \stackrel{\text{def}}{=} \sup_{I: \text{ arc in } \mathbb{T}} \left(\frac{1}{|I|} \int_I w \right) \left(\frac{1}{|I|} \int_I w^{-p'/p} \right)^{p/p'} < \infty.$$

- Facts/notions about A_p:
- $w \in A_p$ means w cannot be too singular/oscillatory.
- if $w \in A_p$ then $\log w \in BMO$.
- Power weights $|\theta|^{\alpha} \in A_p$ if $-1 < \alpha < p-1$

• We say $w \in A_p$ if

$$[w]_{A_p} \stackrel{\text{def}}{=} \sup_{I: \text{ arc in } \mathbb{T}} \left(\frac{1}{|I|} \int_I w \right) \left(\frac{1}{|I|} \int_I w^{-p'/p} \right)^{p/p'} < \infty.$$

- Facts/notions about A_p :
- $w \in A_p$ means w cannot be too singular/oscillatory.
- if $w \in A_p$ then $\log w \in BMO$.
- Power weights $|\theta|^{\alpha} \in A_p$ if $-1 < \alpha < p-1$

Theorem (Hunt-Muckenhoupt-Wheeden)

If
$$w \in A_p$$
, then $\|w^{1/p}\mathcal{H}w^{-1/p}\|_{p,p} = \|\mathcal{H}\|_{L^p(w) \to L^p(w)} < \infty$.

• We say $w \in A_p$ if

$$[w]_{A_p} \stackrel{\mathrm{def}}{=} \sup_{I: \text{ arc in } \mathbb{T}} \left(\frac{1}{|I|} \int_I w \right) \left(\frac{1}{|I|} \int_I w^{-p'/p} \right)^{p/p'} < \infty.$$

- Facts/notions about A_p :
- $w \in A_p$ means w cannot be too singular/oscillatory.
- if $w \in A_p$ then $\log w \in BMO$.
- Power weights $|\theta|^{\alpha} \in A_p$ if $-1 < \alpha < p-1$

Theorem (Hunt-Muckenhoupt-Wheeden)

If
$$w \in A_p$$
, then $\|w^{1/p}\mathcal{H}w^{-1/p}\|_{p,p} = \|\mathcal{H}\|_{L^p(w) \to L^p(w)} < \infty$.

 A_p plays nicely with the Hilbert transform \mathcal{H} , so makes sense to adapt previous proof to A_p weights.

The Steklov problem for A_2 weights

Theorem (A.-Aptekarev-Denisov, '20)

If $w \in A_2$, then $\sup_{n} \|w^{1/p} \Phi_n\|_{L^p} = \sup_{n} \|\Phi_n\|_{L^p(w)} < \infty$ for some p > 2.

Theorem (A.-Aptekarev-Denisov, '20)

If $w \in A_2$, then $\sup_{n} \|w^{1/p} \Phi_n\|_{L^p} = \sup_{n} \|\Phi_n\|_{L^p(w)} < \infty$ for some p > 2.

$$\Phi_n = z^n + \mathcal{P}_{[0,n-1]} \qquad \Phi_n \quad \text{(monic)}$$

$$\Phi_n = \mathcal{P}_{[0,n-1]} \qquad \Phi_n \quad \text{(orthogonal)}$$

Theorem (A.-Aptekarev-Denisov, '20)

If $w \in A_2$, then $\sup_n \|w^{1/p} \Phi_n\|_{L^p} = \sup_n \|\Phi_n\|_{L^p(w)} < \infty$ for some p > 2.

$$\bullet \begin{cases} w^{1/p} \Phi_n &= w^{1/p} z^n + w^{1/p} \mathcal{P}_{[0,n-1]} & \Phi_n \quad \text{(monic)} \\ 0 &= \mathcal{P}_{[0,n-1]} \quad w \quad \Phi_n \quad \text{(orthogonal)} \end{cases}$$

Theorem (A.-Aptekarev-Denisov, '20)

If $w \in A_2$, then $\sup_n \|w^{1/p} \Phi_n\|_{L^p} = \sup_n \|\Phi_n\|_{L^p(w)} < \infty$ for some p > 2.

$$\bullet \ \begin{cases} w^{1/p} \Phi_n &= w^{1/p} z^n + w^{1/p} \mathcal{P}_{[0,n-1]} w^{-1/p} w^{1/p} \Phi_n & \text{(monic)} \\ 0 &= \mathcal{P}_{[0,n-1]} & w & \Phi_n & \text{(orthogonal)} \end{cases}$$

Theorem (A.-Aptekarev-Denisov, '20)

If $w \in A_2$, then $\sup_{n} \|w^{1/p} \Phi_n\|_{L^p} = \sup_{n} \|\Phi_n\|_{L^p(w)} < \infty$ for some p > 2.

$$\begin{cases} w^{1/p} \Phi_n &= w^{1/p} z^n + w^{1/p} \mathcal{P}_{[0,n-1]} w^{-1/p} w^{1/p} \Phi_n & \text{(monic)} \\ 0 &= w^{-1/p'} \mathcal{P}_{[0,n-1]} w^{1/p'} w^{1/p} \Phi_n & \text{(orthogonal)} \end{cases}$$

Theorem (A.-Aptekarev-Denisov, '20)

If $w \in A_2$, then $\sup_n \|w^{1/p} \Phi_n\|_{L^p} = \sup_n \|\Phi_n\|_{L^p(w)} < \infty$ for some p > 2.

Proof.

$$\begin{array}{ll} \bullet & \begin{cases} w^{1/p} \Phi_n &= w^{1/p} z^n + w^{1/p} \mathcal{P}_{[0,n-1]} w^{-1/p} w^{1/p} \Phi_n & \text{(monic)} \\ 0 &= w^{-1/p'} \mathcal{P}_{[0,n-1]} w^{1/p'} w^{1/p} \Phi_n & \text{(orthogonal)} \end{cases}$$

• Subtract bottom from top and re-arrange to get

$$(I - Q_{w,p})w^{1/p}\Phi_n = w^{1/p}z^n$$
,

where $Q_{w,p} = w^{1/p} \mathcal{P}_{[0,n-1]} w^{-1/p} - w^{-1/p'} \mathcal{P}_{[0,n-1]} w^{1/p'}$.

Theorem (A.-Aptekarev-Denisov, '20)

If $w \in A_2$, then $\sup_n \|w^{1/p} \Phi_n\|_{L^p} = \sup_n \|\Phi_n\|_{L^p(w)} < \infty$ for some p > 2.

Proof.

$$\begin{array}{ll} \bullet & \begin{cases} w^{1/p} \Phi_n &= w^{1/p} z^n + w^{1/p} \mathcal{P}_{[0,n-1]} w^{-1/p} w^{1/p} \Phi_n & \text{(monic)} \\ 0 &= w^{-1/p'} \mathcal{P}_{[0,n-1]} w^{1/p'} w^{1/p} \Phi_n & \text{(orthogonal)} \end{cases}$$

Subtract bottom from top and re-arrange to get

$$(I - Q_{w,p})w^{1/p}\Phi_n = w^{1/p}z^n$$
,

where
$$Q_{w,p} = w^{1/p} \mathcal{P}_{[0,n-1]} w^{-1/p} - w^{-1/p'} \mathcal{P}_{[0,n-1]} w^{1/p'}$$
.

• And as it turns out we can invert $I-Q_{w,p}$ for some p near 2 using spectral theory and analytic interpolation. (Deferred till end of presentation, if time permits.)

 $(d\mu, \mathbb{T})$

 $(d\mu,\mathbb{T})$ OPUC

$$(d\mu, \mathbb{T})$$
OPUC
$$\Phi_n(z) = z^n + \sum_{k=0}^{n-1} b_{n,k} z^k$$

$$(d\mu, \mathbb{T})$$
OPUC
$$\Phi_n(z) = z^n + \sum_{k=0}^{n-1} b_{n,k} z^k$$

$$\| \sum_{j=0}^{\infty} a_j \varphi_j(z) \|_{L^2_{\mu}(\mathbb{T})}^2 = \sum_{j=0}^{\infty} |a_j|^2$$

$$(d\mu, \mathbb{T})$$
OPUC
$$\Phi_n(z) = z^n + \sum_{k=0}^{n-1} b_{n,k} z^k$$

$$\|\sum_{j=0}^{\infty} a_j \varphi_j(z)\|_{L^2_{\mu}(\mathbb{T})}^2 = \sum_{j=0}^{\infty} |a_j|^2$$

 $(d\sigma,\mathbb{R})$

$$(d\mu, \mathbb{T})$$
OPUC
$$\Phi_n(z) = z^n + \sum_{k=0}^{n-1} b_{n,k} z^k$$

$$\| \sum_{j=0}^{\infty} a_j \varphi_j(z) \|_{L^2_{\mu}(\mathbb{T})}^2 = \sum_{j=0}^{\infty} |a_j|^2$$

 $(d\sigma,\mathbb{R})$ Krein Systems

$$(d\mu, \mathbb{T})$$
OPUC
$$\Phi_n(z) = z^n + \sum_{k=0}^{n-1} b_{n,k} z^k$$

$$\| \sum_{j=0}^{\infty} a_j \varphi_j(z) \|_{L^2_{\mu}(\mathbb{T})}^2 = \sum_{j=0}^{\infty} |a_j|^2$$

$$(d\sigma,\mathbb{R})$$
Krein Systems
 $P(r,\lambda)=e^{i\lambda r}+\int\limits_0^r b_r(s)e^{i\lambda s}\,ds$

$$(d\mu, \mathbb{T})$$

$$\mathsf{OPUC}$$

$$\Phi_n(z) = z^n + \sum_{k=0}^{n-1} b_{n,k} z^k$$

$$\|\sum_{j=0}^{\infty} a_j \varphi_j(z)\|_{L^2_{\mu}(\mathbb{T})}^2 = \sum_{j=0}^{\infty} |a_j|^2$$

$$\|\int_0^{\infty} f(s) P(s, \lambda) ds\|_{L^2_{d\sigma(\lambda)}(\mathbb{R})}^2 = \int_0^{\infty} |f(s)|^2$$

$$(d\sigma, \mathbb{R})$$

Krein Systems

$$P(r,\lambda) = e^{i\lambda r} + \int_{0}^{\infty} b_{r}(s)e^{i\lambda s} ds$$

$$\int_{0}^{\infty} f(s)P(s,\lambda) ds \|_{L^{2}_{d\sigma(\lambda)}(\mathbb{R})}^{2} = \int_{0}^{\infty} |f(s)|^{2}$$

$$\begin{array}{c} (d\mu,\mathbb{T}) \\ \text{OPUC} \\ \Phi_n(z) = z^n + \sum\limits_{k=0}^{n-1} b_{n,k} z^k \\ \|\sum\limits_{j=0}^{\infty} a_j \varphi_j(z)\|_{L^2_\mu(\mathbb{T})}^2 = \sum\limits_{j=0}^{\infty} |a_j|^2 \\ d\mu = \frac{d\theta}{2\pi} \to \varphi_n(z) = z^n \end{array} \right. \\ \|\int\limits_0^{\infty} f(s) P(s,\lambda) \, ds\|_{L^2_{d\sigma(\lambda)}(\mathbb{R})}^2 = \int\limits_0^{\infty} |f(s)|^2$$

$$(d\sigma,\mathbb{R})$$

Krein Systems $P(r,\lambda)=e^{i\lambda r}+\int\limits_0^r b_r(s)e^{i\lambda s}\,ds$

$$(d\mu, \mathbb{T})$$

$$\mathsf{OPUC}$$

$$\Phi_n(z) = z^n + \sum_{k=0}^{n-1} b_{n,k} z^k$$

$$\| \sum_{j=0}^{\infty} a_j \varphi_j(z) \|_{L^2_{\mu}(\mathbb{T})}^2 = \sum_{j=0}^{\infty} |a_j|^2$$

$$d\mu = \frac{d\theta}{2\pi} \to \varphi_n(z) = z^n$$

$$\begin{array}{c|c} (d\mu,\mathbb{T}) & (d\sigma,\mathbb{R}) \\ \text{OPUC} & \text{Krein Systems} \\ \Phi_n(z) = z^n + \sum\limits_{k=0}^{n-1} b_{n,k} z^k & P(r,\lambda) = e^{i\lambda r} + \int\limits_0^r b_r(s) e^{i\lambda s} \, ds \\ \|\sum\limits_{j=0}^\infty a_j \varphi_j(z)\|_{L^2_\mu(\mathbb{T})}^2 = \sum\limits_{j=0}^\infty |a_j|^2 & \|\int\limits_0^\infty f(s) P(s,\lambda) \, ds\|_{L^2_{d\sigma(\lambda)}(\mathbb{R})}^2 = \int\limits_0^\infty |f(s)|^2 \\ d\mu = \frac{d\theta}{2\pi} \to \varphi_n(z) = z^n & d\sigma = \frac{d\lambda}{2\pi} \to P(r,\lambda) = e^{i\lambda r} \end{array}$$

$$\begin{array}{c|c} (d\mu,\mathbb{T}) & (d\sigma,\mathbb{R}) \\ \text{OPUC} & \text{Krein Systems} \\ \Phi_n(z) = z^n + \sum\limits_{k=0}^{n-1} b_{n,k} z^k & P(r,\lambda) = e^{i\lambda r} + \int\limits_0^r b_r(s) e^{i\lambda s} \, ds \\ \|\sum\limits_{j=0}^\infty a_j \varphi_j(z)\|_{L^2_\mu(\mathbb{T})}^2 = \sum\limits_{j=0}^\infty |a_j|^2 & \|\int\limits_0^\infty f(s) P(s,\lambda) \, ds\|_{L^2_{d\sigma(\lambda)}(\mathbb{R})}^2 = \int\limits_0^\infty |f(s)|^2 \\ d\mu = \frac{d\theta}{2\pi} \to \varphi_n(z) = z^n & d\sigma = \frac{d\lambda}{2\pi} \to P(r,\lambda) = e^{i\lambda r} \\ \end{array}$$

Krein systems are the continuous analogue of OPUC, and so results for one can usually be carried over to the other.

$$(d\mu, \mathbb{T})$$
OPUC
$$\Phi_n(z) = z^n + \sum_{k=0}^{n-1} b_{n,k} z^k$$

$$\|\sum_{j=0}^{\infty} a_j \varphi_j(z)\|_{L^2_{\mu}(\mathbb{T})}^2 = \sum_{j=0}^{\infty} |a_j|^2$$

$$d\mu = \frac{d\theta}{2\pi} \to \varphi_n(z) = z^n$$

$$(d\sigma, \mathbb{R})$$
Krein Systems
$$P(r, \lambda) = e^{i\lambda r} + \int_0^r b_r(s) e^{i\lambda s} ds$$

$$\|\sum_{j=0}^{\infty} a_j \varphi_j(z)\|_{L^2_{\mu}(\mathbb{T})}^2 = \sum_{j=0}^{\infty} |a_j|^2$$

$$d\sigma = \frac{d\lambda}{2\pi} \to P(r, \lambda) = e^{i\lambda r}$$

Krein systems are the continuous analogue of OPUC, and so results for one can usually be carried over to the other.

Notation:

Krein Systems, the continuous analogue of OPUC

$$(d\mu, \mathbb{T})$$
OPUC
$$\Phi_n(z) = z^n + \sum_{k=0}^{n-1} b_{n,k} z^k$$

$$\|\sum_{j=0}^{\infty} a_j \varphi_j(z)\|_{L^2_{\mu}(\mathbb{T})}^2 = \sum_{j=0}^{\infty} |a_j|^2$$

$$d\mu = \frac{d\theta}{2\pi} \to \varphi_n(z) = z^n$$

$$(d\sigma, \mathbb{R})$$
Krein Systems
$$P(r, \lambda) = e^{i\lambda r} + \int_0^r b_r(s) e^{i\lambda s} ds$$

$$\|\sum_{j=0}^{\infty} a_j \varphi_j(z)\|_{L^2_{\mu}(\mathbb{T})}^2 = \sum_{j=0}^{\infty} |a_j|^2$$

$$d\sigma = \frac{d\lambda}{2\pi} \to P(r, \lambda) = e^{i\lambda r}$$

Krein systems are the continuous analogue of OPUC, and so results for one can usually be carried over to the other.

Notation:

• r > 0 is an index (analogous to n in φ_n).

Krein Systems, the continuous analogue of OPUC

$$\begin{array}{c|c} (d\mu,\mathbb{T}) & (d\sigma,\mathbb{R}) \\ \text{OPUC} & \text{Krein Systems} \\ \Phi_n(z) = z^n + \sum\limits_{k=0}^{n-1} b_{n,k} z^k \\ \| \sum\limits_{j=0}^{\infty} a_j \varphi_j(z) \|_{L^2_{\mu}(\mathbb{T})}^2 = \sum\limits_{j=0}^{\infty} |a_j|^2 \\ d\mu = \frac{d\theta}{2\pi} \to \varphi_n(z) = z^n \end{array} \quad \begin{array}{c|c} (d\sigma,\mathbb{R}) \\ \text{Krein Systems} \\ P(r,\lambda) = e^{i\lambda r} + \int\limits_0^r b_r(s) e^{i\lambda s} \, ds \\ \| \int\limits_0^{\infty} f(s) P(s,\lambda) \, ds \|_{L^2_{d\sigma(\lambda)}(\mathbb{R})}^2 = \int\limits_0^{\infty} |f(s)|^2 \\ d\sigma = \frac{d\lambda}{2\pi} \to P(r,\lambda) = e^{i\lambda r} \end{array}$$

Krein systems are the continuous analogue of OPUC, and so results for one can usually be carried over to the other.

Notation:

- r > 0 is an index (analogous to n in φ_n).
- λ is the variable denoting points in the space \mathbb{R} .

Krein Systems, the continuous analogue of OPUC

$$\begin{array}{c|c} (d\mu,\mathbb{T}) & (d\sigma,\mathbb{R}) \\ \text{OPUC} & \text{Krein Systems} \\ \Phi_n(z) = z^n + \sum\limits_{k=0}^{n-1} b_{n,k} z^k & P(r,\lambda) = e^{i\lambda r} + \int\limits_0^r b_r(s) e^{i\lambda s} \, ds \\ \|\sum\limits_{j=0}^\infty a_j \varphi_j(z)\|_{L^2_\mu(\mathbb{T})}^2 = \sum\limits_{j=0}^\infty |a_j|^2 & \|\int\limits_0^\infty f(s) P(s,\lambda) \, ds\|_{L^2_{d\sigma(\lambda)}(\mathbb{R})}^2 = \int\limits_0^\infty |f(s)|^2 \\ d\mu = \frac{d\theta}{2\pi} \to \varphi_n(z) = z^n & d\sigma = \frac{d\lambda}{2\pi} \to P(r,\lambda) = e^{i\lambda r} \\ \end{array}$$

Krein systems are the continuous analogue of OPUC, and so results for one can usually be carried over to the other.

Notation:

- r > 0 is an index (analogous to n in φ_n).
- λ is the variable denoting points in the space \mathbb{R} .

We will be interested in the case when $d\sigma = w(\lambda) \frac{d\lambda}{2\pi}$, where $w-1 \in L^1(\mathbb{R}) + L^2(\mathbb{R})$ to ensure $P(r,\lambda)$ exists.

Problem (Steklov problem for Krein Systems)

Does there exist p > 2 for which $\{P(r, \lambda)\}_{r \ge 0}$ is bounded in $L^p_{loc}(w, \mathbb{R})$?

Problem (Steklov problem for Krein Systems)

Does there exist p > 2 for which $\{P(r, \lambda)\}_{r \geqslant 0}$ is bounded in $L^p_{loc}(w, \mathbb{R})$?

More precisely, what conditions on w ensure that for each compact $\Delta \subset \mathbb{R}$, we have

$$\sup_{r\geqslant 0}\|P(r,\lambda)\|_{L^p(w,\Delta)}<\infty?$$

Problem (Steklov problem for Krein Systems)

Does there exist p > 2 for which $\{P(r, \lambda)\}_{r \geqslant 0}$ is bounded in $L^p_{loc}(w, \mathbb{R})$?

More precisely, what conditions on w ensure that for each compact $\Delta \subset \mathbb{R}$, we have

$$\sup_{r\geqslant 0}\|P(r,\lambda)\|_{L^p(w,\Delta)}<\infty?$$

Note this will follow if we can show

$$\sup_{r\geqslant 0}\|P(r,\lambda)-e^{i\lambda r}\|_{L^p(w,\mathbb{R})}<\infty$$

for some p > 2.

Problem (Steklov problem for Krein Systems)

Does there exist p > 2 for which $\{P(r, \lambda)\}_{r \geqslant 0}$ is bounded in $L^p_{loc}(w, \mathbb{R})$?

More precisely, what conditions on w ensure that for each compact $\Delta \subset \mathbb{R}$, we have

$$\sup_{r\geqslant 0}\|P(r,\lambda)\|_{L^p(w,\Delta)}<\infty?$$

Note this will follow if we can show

$$\sup_{r\geqslant 0}\|P(r,\lambda)-e^{i\lambda r}\|_{L^p(w,\mathbb{R})}<\infty$$

for some p > 2.

Remark: In fact, this is nontrivial for p = 2 and even p < 2.

Theorem

Suppose $w \in A_2(\mathbb{R})$ and $w-1 \in L^1(\mathbb{R})$. Then there exists $\epsilon > 0$ for which

$$\sup_{r\geqslant 0}\|P(r,\lambda)-e^{i\lambda r}\|_{L^p(w)}<\infty$$

whenever $2 \leqslant p \leqslant 2 + \epsilon$.

Theorem

Suppose $w \in A_2(\mathbb{R})$ and $\langle \lambda \rangle (w-1) \in L^1(\mathbb{R})$. Then there exists $\epsilon > 0$ for which

$$\sup_{r\geqslant 0}\|P(r,\lambda)-e^{i\lambda r}\|_{L^p(w)}<\infty$$

whenever $2 - \epsilon \leqslant p \leqslant 2 + \epsilon$. (Recall $\langle \lambda \rangle \stackrel{\text{def}}{=} (1 + \lambda^2)^{1/2}$.)

Theorem

Suppose $w \in A_2(\mathbb{R})$ and $\langle \lambda \rangle (w-1) \in L^1(\mathbb{R})$. Then there exists $\epsilon > 0$ for which

$$\sup_{r\geqslant 0}\|P(r,\lambda)-e^{i\lambda r}\|_{L^p(w)}<\infty$$

whenever $2 - \epsilon \leqslant p \leqslant 2 + \epsilon$. (Recall $\langle \lambda \rangle \stackrel{\text{def}}{=} (1 + \lambda^2)^{1/2}$.)

$$\begin{cases} P(r,\lambda) = e^{i\lambda r} + \mathcal{P}_{[0,r]} P(r,\lambda) \end{cases}$$

Theorem

Suppose $w \in A_2(\mathbb{R})$ and $\langle \lambda \rangle (w-1) \in L^1(\mathbb{R})$. Then there exists $\epsilon > 0$ for which

$$\sup_{r\geqslant 0}\|P(r,\lambda)-e^{i\lambda r}\|_{L^p(w)}<\infty$$

whenever $2 - \epsilon \leqslant p \leqslant 2 + \epsilon$. (Recall $\langle \lambda \rangle \stackrel{\text{def}}{=} (1 + \lambda^2)^{1/2}$.)

$$\begin{cases} P(r,\lambda) &= e^{i\lambda r} + \mathcal{P}_{[0,r]}(P(r,\lambda) - e^{i\lambda r}) \end{cases}$$

Theorem

Suppose $w \in A_2(\mathbb{R})$ and $\langle \lambda \rangle (w-1) \in L^1(\mathbb{R})$. Then there exists $\epsilon > 0$ for which

$$\sup_{r\geqslant 0}\|P(r,\lambda)-e^{i\lambda r}\|_{L^p(w)}<\infty$$

whenever $2 - \epsilon \leqslant p \leqslant 2 + \epsilon$. (Recall $\langle \lambda \rangle \stackrel{\text{def}}{=} (1 + \lambda^2)^{1/2}$.)

$$\begin{cases} P(r,\lambda) &= e^{i\lambda r} + \mathcal{P}_{[0,r]}(P(r,\lambda) - e^{i\lambda r}) \\ 0 &= \mathcal{P}_{[0,r]} \ wP(r,\lambda) \end{cases}$$

Theorem

Suppose $w \in A_2(\mathbb{R})$ and $\langle \lambda \rangle (w-1) \in L^1(\mathbb{R})$. Then there exists $\epsilon > 0$ for which

$$\sup_{r\geqslant 0}\|P(r,\lambda)-e^{i\lambda r}\|_{L^p(w)}<\infty$$

whenever $2 - \epsilon \leqslant p \leqslant 2 + \epsilon$. (Recall $\langle \lambda \rangle \stackrel{\text{def}}{=} (1 + \lambda^2)^{1/2}$.)

$$\begin{cases} P(r,\lambda) &= e^{i\lambda r} + \mathcal{P}_{[0,r]}(P(r,\lambda) - e^{i\lambda r}) \\ 0 &= \mathcal{P}_{[0,r]}(wP(r,\lambda) - e^{i\lambda r}) \end{cases}$$

Theorem

Suppose $w \in A_2(\mathbb{R})$ and $\langle \lambda \rangle (w-1) \in L^1(\mathbb{R})$. Then there exists $\epsilon > 0$ for which

$$\sup_{r\geqslant 0}\|P(r,\lambda)-e^{i\lambda r}\|_{L^p(w)}<\infty$$

whenever $2 - \epsilon \leqslant p \leqslant 2 + \epsilon$. (Recall $\langle \lambda \rangle \stackrel{\text{def}}{=} (1 + \lambda^2)^{1/2}$.)

Proof.

$$\begin{cases} P(r,\lambda) &= e^{i\lambda r} + \mathcal{P}_{[0,r]}(P(r,\lambda) - e^{i\lambda r}) \\ 0 &= \mathcal{P}_{[0,r]}(wP(r,\lambda) - e^{i\lambda r}) \end{cases}$$

Some algebra and the same process as before shows that

$$(I - Q_{w,p})X = -w^{-1/p'}\mathcal{P}_{[0,r]}w^{1/p'}(w^{1/p} - w^{-1/p'})e^{i\lambda r}$$

where $X = w^{1/p}(P(r, \lambda) - e^{i\lambda r})$.

Theorem

Suppose $w \in A_2(\mathbb{R})$ and $\langle \lambda \rangle (w-1) \in L^1(\mathbb{R})$. Then there exists $\epsilon > 0$ for which

$$\sup_{r\geqslant 0}\|P(r,\lambda)-e^{i\lambda r}\|_{L^p(w)}<\infty$$

whenever $2 - \epsilon \leqslant p \leqslant 2 + \epsilon$. (Recall $\langle \lambda \rangle \stackrel{\text{def}}{=} (1 + \lambda^2)^{1/2}$.)

Proof.

$$\begin{cases} P(r,\lambda) &= e^{i\lambda r} + \mathcal{P}_{[0,r]}(P(r,\lambda) - e^{i\lambda r}) \\ 0 &= \mathcal{P}_{[0,r]}(wP(r,\lambda) - e^{i\lambda r}) \end{cases}$$

Some algebra and the same process as before shows that

$$(I - Q_{w,p})X = -w^{-1/p'}\mathcal{P}_{[0,r]}w^{1/p'}(w^{1/p} - w^{-1/p'})e^{i\lambda r}$$

where $X=w^{1/p}(P(r,\lambda)-e^{i\lambda r}).$ Since $I-Q_{w,p}$ is invertible, we're

Recall that for OPUC we have

$$\mathcal{P}_{[0,n-1]}w\Phi_n=0.$$

Ignoring issues of integrability, we morally have

$$\mathcal{P}_{[0,r]}$$
 $wP(r,\lambda)=0$,

Ignoring issues of integrability, we morally have

$$\mathcal{P}_{[0,r]} \ \ wP(r,\lambda) = 0 \,,$$

i.e.

$$\langle wP(r,\lambda), \int_{0}^{r} f(s)e^{i\lambda s} ds \rangle_{d\lambda} = 0,$$

Ignoring issues of integrability, we morally have

$$\mathcal{P}_{[0,r]}$$
 $wP(r,\lambda)=0$,

i.e.

$$\langle wP(r,\lambda), \int_0^r f'(s)e^{i\lambda s} ds \rangle_{d\lambda} = 0,$$

Ignoring issues of integrability, we morally have

$$\mathcal{P}_{[0,r]} \ \ wP(r,\lambda) = 0 \,,$$

i.e.

$$\langle \lambda w P(r,\lambda), \int\limits_0^r f(s) e^{i\lambda s} ds \rangle_{d\lambda} = 0,$$

Ignoring issues of integrability, we morally have

$$\mathcal{P}_{[0,r]}\lambda w P(r,\lambda) = 0\,,$$

i.e.

$$\langle \lambda w P(r,\lambda), \int\limits_0^r f(s) e^{i\lambda s} ds \rangle_{d\lambda} = 0,$$

Ignoring issues of integrability, we morally have

$$\mathcal{P}_{[0,r]}\lambda wP(r,\lambda)=0\,,$$

i.e.

$$\langle \lambda w P(r,\lambda), \int\limits_0^r f(s) e^{i\lambda s} ds \rangle_{d\lambda} = 0,$$

for all $f \in C_c^{\infty}(0, r)$.

Idea: let's try to bound

$$\lambda(P(r,\lambda)-e^{i\lambda r})$$

in $L^p(w)$.

Ignoring issues of integrability, we morally have

$$\mathcal{P}_{[0,r]}\lambda w P(r,\lambda) = 0\,,$$

i.e.

$$\langle \lambda w P(r,\lambda), \int\limits_0^r f(s) e^{i\lambda s} ds \rangle_{d\lambda} = 0,$$

for all $f \in C_c^{\infty}(0, r)$.

Idea: let's try to bound

$$\lambda(P(r,\lambda)-e^{i\lambda r})$$

in $L^p(w)$.

 $\lambda(P(r,\lambda)-e^{i\lambda r})$ isnt in $L^p(w)$, need to subtract off a constant-like term

Ignoring issues of integrability, we morally have

$$\mathcal{P}_{[0,r]}\lambda w P(r,\lambda) = 0\,,$$

i.e.

$$\langle \lambda w P(r,\lambda), \int_{0}^{r} f(s) e^{i\lambda s} ds \rangle_{d\lambda} = 0,$$

for all $f \in C_c^{\infty}(0, r)$.

Idea: let's bound

$$R(r,\lambda) \stackrel{\text{def}}{=} \lambda(P(r,\lambda) - e^{i\lambda r}) - e^{i\lambda r}\alpha_{\infty}(r) - \alpha_{2}(r)$$

in $L^p(w)$.

Ignoring issues of integrability, we morally have

$$\mathcal{P}_{[0,r]}\lambda wP(r,\lambda)=0$$
,

i.e.

$$\langle \lambda w P(r,\lambda), \int\limits_0^r f(s) e^{i\lambda s} ds \rangle_{d\lambda} = 0,$$

for all $f \in C_c^{\infty}(0, r)$.

Idea: let's bound

$$R(r,\lambda) \stackrel{\text{def}}{=} \lambda(P(r,\lambda) - e^{i\lambda r}) - e^{i\lambda r}\alpha_{\infty}(r) - \alpha_{2}(r)$$

in $L^p(w)$.

Under certain conditions on w (see next slide), $\alpha_2(r) \in L^2_{dr}(\mathbb{R}^+)$, $\alpha_{\infty}(r) \in L^{\infty}_{dr}(\mathbb{R}^+)$ and $\lim_{r \to \infty} \alpha_{\infty}(r)$ exists.

A remainder estimate

Estimating $\|R(r,\lambda)\|_{L^p(w)}$ quantifies the decay of $P(r,\lambda)-e^{i\lambda r}$ and provides an asymptotic expansion of sorts, in both λ and r.

A remainder estimate

Estimating $\|R(r,\lambda)\|_{L^p(w)}$ quantifies the decay of $P(r,\lambda)-e^{i\lambda r}$ and provides an asymptotic expansion of sorts, in both λ and r.

Theorem

Suppose $w \in A_2(\mathbb{R})$, $\langle \lambda \rangle^q (w-1) \in L^1(\mathbb{R})$ for some q > 2, and

$$\exp\left(\frac{1}{2\pi i}\int_{-\infty}^{\infty}\frac{\log(w(t))}{t-\lambda}\,dt\right)-1=\int\limits_{0}^{\infty}h(x)e^{i\lambda x}\,dx=\hat{h}(\lambda)\in H^{2}(\mathbb{C}^{+})\,.$$

Then there exists $\epsilon > 0$ for which

$$\|\|R(r,\lambda)\|_{L^{p}(w)}\|_{L^{\infty}(dr,\mathbb{R}^{+})+L^{2}(dr,\mathbb{R}^{+})}<\infty$$

whenever $2 - \epsilon \leqslant p \leqslant 2 + \epsilon$.

A remainder estimate

Estimating $\|R(r,\lambda)\|_{L^p(w)}$ quantifies the decay of $P(r,\lambda)-e^{i\lambda r}$ and provides an asymptotic expansion of sorts, in both λ and r.

Theorem

Suppose $w \in A_2(\mathbb{R})$, $\langle \lambda \rangle^q (w-1) \in L^1(\mathbb{R})$ for some q > 2, and

$$\exp\left(\frac{1}{2\pi i}\int_{-\infty}^{\infty}\frac{\log(w(t))}{t-\lambda}\,dt\right)-1=\int\limits_{0}^{\infty}h(x)e^{i\lambda x}\,dx=\hat{h}(\lambda)\in H^{2}(\mathbb{C}^{+})\,.$$

Then there exists $\epsilon > 0$ for which

$$\|\|R(r,\lambda)\|_{L^{p}(w)}\|_{L^{\infty}(dr,\mathbb{R}^{+})+L^{2}(dr,\mathbb{R}^{+})}<\infty$$

whenever $2 - \epsilon \leqslant p \leqslant 2 + \epsilon$.

Examples: If $-1 < \beta < 1$, then $w(\lambda) = |\lambda|^{\beta}$ in [-1,1], and equals 1 outside [-1,1] satisfies all the conditions of the above.

• Idea: we saw that morally, $\mathcal{P}_{[0,r]}\lambda^k w P(r,\lambda)=0$. So as far as the algebra is concerned, we might as well pretend $P(r,\lambda)$ is generated by the weight $\widetilde{w}\stackrel{\mathrm{def}}{=} q(\lambda)w$ for some polynomial $q(\lambda)\geqslant 0$, which we'll require to be in $A_2(\mathbb{R})$.

• Idea: we saw that morally, $\mathcal{P}_{[0,r]}\lambda^k w P(r,\lambda)=0$. So as far as the algebra is concerned, we might as well pretend $P(r,\lambda)$ is generated by the weight $\widetilde{w}\stackrel{\mathrm{def}}{=} q(\lambda)w$ for some polynomial $q(\lambda)\geqslant 0$, which we'll require to be in $A_2(\mathbb{R})$.

Issue: w needs to be centered around 1, which would mean \widetilde{w} would blow-up, meaning the A_2 condition wouldn't be verified.

• Idea: we saw that morally, $\mathcal{P}_{[0,r]}\lambda^k w P(r,\lambda)=0$. So as far as the algebra is concerned, we might as well pretend $P(r,\lambda)$ is generated by the weight $\widetilde{w}\stackrel{\mathrm{def}}{=} q(\lambda)w$ for some polynomial $q(\lambda)\geqslant 0$, which we'll require to be in $A_2(\mathbb{R})$.

Issue: w needs to be centered around 1, which would mean \widetilde{w} would blow-up, meaning the A_2 condition wouldn't be verified.

Possible solution: work with de Branges canonical systems, where w might not need to be centered around 1?

- Idea: we saw that morally, $\mathcal{P}_{[0,r]}\lambda^k w P(r,\lambda)=0$. So as far as the algebra is concerned, we might as well pretend $P(r,\lambda)$ is generated by the weight $\widetilde{w}\stackrel{\mathrm{def}}{=} q(\lambda)w$ for some polynomial $q(\lambda)\geqslant 0$, which we'll require to be in $A_2(\mathbb{R})$.
 - Issue: w needs to be centered around 1, which would mean \widetilde{w} would blow-up, meaning the A_2 condition wouldn't be verified.
 - Possible solution: work with de Branges canonical systems, where *w* might not need to be centered around 1?
- Estimating $\|P(r,\lambda)-e^{i\lambda r}\|_{L^p(w)}$ is kind of overkill. Seems much more natural to try and estimate

$$\|P(r,\lambda)\|_{L^p\left(rac{w(\lambda)d\lambda}{1+\lambda^2}
ight)}$$
.

- Idea: we saw that morally, $\mathcal{P}_{[0,r]}\lambda^k w P(r,\lambda)=0$. So as far as the algebra is concerned, we might as well pretend $P(r,\lambda)$ is generated by the weight $\widetilde{w}\stackrel{\mathrm{def}}{=} q(\lambda)w$ for some polynomial $q(\lambda)\geqslant 0$, which we'll require to be in $A_2(\mathbb{R})$.
 - Issue: w needs to be centered around 1, which would mean \widetilde{w} would blow-up, meaning the A_2 condition wouldn't be verified.
 - Possible solution: work with de Branges canonical systems, where w might not need to be centered around 1?
- Estimating $\|P(r,\lambda)-e^{i\lambda r}\|_{L^p(w)}$ is kind of overkill. Seems much more natural to try and estimate

$$\|P(r,\lambda)\|_{L^p\left(\frac{w(\lambda)d\lambda}{1+\lambda^2}\right)}$$
.

I have no clue how to come up with such an estimate beyond the content of this presentation.

Thank you for Listening!

Thank you for Listening! Just kidding!

A few facts:

 $\bullet \ \, \mathsf{Recall} \ \, Q_{w,p} = w^{1/p} \mathcal{P}_{[0,n-1]} w^{-1/p} - w^{-1/p'} \mathcal{P}_{[0,n-1]} w^{1/p'}. \\$

- Recall $Q_{w,p} = w^{1/p} \mathcal{P}_{[0,n-1]} w^{-1/p} w^{-1/p'} \mathcal{P}_{[0,n-1]} w^{1/p'}$.
- $\|Q_{w,p}\|_{p,p} \leq C(\lceil w \rceil_{A_2})$ for all $2 \leq p \leq 2 + \epsilon_0$.

- Recall $Q_{w,p} = w^{1/p} \mathcal{P}_{[0,n-1]} w^{-1/p} w^{-1/p'} \mathcal{P}_{[0,n-1]} w^{1/p'}$.
- $||Q_{w,p}||_{p,p} \le C([w]_{A_2})$ for all $2 \le p \le 2 + \epsilon_0$.
- $\|(I \kappa Q_{w,2})^{-1}\|_{2,2} \le 1$ for all $\kappa \in \mathbb{R}$.

- Recall $Q_{w,2} = w^{1/2} \mathcal{P}_{[0,n-1]} w^{-1/2} w^{-1/2} \mathcal{P}_{[0,n-1]} w^{1/2}$.
- $||Q_{w,p}||_{p,p} \le C([w]_{A_2})$ for all $2 \le p \le 2 + \epsilon_0$.
- $\|(I \kappa Q_{w,2})^{-1}\|_{2,2} \leq 1$ for all $\kappa \in \mathbb{R}$.
 - $Q_{w,2}$ is antisymmetric, i.e. $Q_{w,2}^* = -Q_{w,2}$. Thus the spectrum of $Q_{w,2}$ is pure imaginary and so $I - \kappa Q_{w,2}$ must be invertible.

- Recall $Q_{w,2} = w^{1/2} \mathcal{P}_{[0,n-1]} w^{-1/2} w^{-1/2} \mathcal{P}_{[0,n-1]} w^{1/2}$.
- $||Q_{w,p}||_{p,p} \leqslant C([w]_{A_2})$ for all $2 \leqslant p \leqslant 2 + \epsilon_0$.
- $\|(I \kappa Q_{w,2})^{-1}\|_{2,2} \leq 1$ for all $\kappa \in \mathbb{R}$.
 - $Q_{w,2}$ is antisymmetric, i.e. $Q_{w,2}^* = -Q_{w,2}$. Thus the spectrum of $Q_{w,2}$ is pure imaginary and so $I \kappa Q_{w,2}$ must be invertible.
 - In fact, an inner-product computation shows $\|(I \kappa Q_{w,2})f\|_2^2 \ge \|f\|_2^2$.

- Recall $Q_{w,p} = w^{1/p} \mathcal{P}_{[0,n-1]} w^{-1/p} w^{-1/p'} \mathcal{P}_{[0,n-1]} w^{1/p'}$.
- $||Q_{w,p}||_{p,p} \le C([w]_{A_2})$ for all $2 \le p \le 2 + \epsilon_0$.
- $\|(I \kappa Q_{w,2})^{-1}\|_{2,2} \leq 1$ for all $\kappa \in \mathbb{R}$.
- Choose N large enough so that $\|\frac{Q_{w,p}}{N}\|_{p,p} \leqslant \frac{1}{10}$.

A few facts:

• Recall
$$Q_{w,p} = w^{1/p} \mathcal{P}_{[0,n-1]} w^{-1/p} - w^{-1/p'} \mathcal{P}_{[0,n-1]} w^{1/p'}$$
.

- $||Q_{w,p}||_{p,p} \leq C([w]_{A_2})$ for all $2 \leq p \leq 2 + \epsilon_0$.
- $\|(I \kappa Q_{w,2})^{-1}\|_{2,2} \leq 1$ for all $\kappa \in \mathbb{R}$.
- Choose N large enough so that $\|\frac{Q_{w,p}}{N}\|_{p,p} \leqslant \frac{1}{10}$.

 $\frac{1}{2+\epsilon_0}$: allowed p-values

A few facts:

• Recall
$$Q_{w,p} = w^{1/p} \mathcal{P}_{[0,n-1]} w^{-1/p} - w^{-1/p'} \mathcal{P}_{[0,n-1]} w^{1/p'}$$
.

•
$$||Q_{w,p}||_{p,p} \le C([w]_{A_2})$$
 for all $2 \le p \le 2 + \epsilon_0$.

- $\|(I \kappa Q_{w,2})^{-1}\|_{2,2} \leqslant 1$ for all $\kappa \in \mathbb{R}$.
- Choose N large enough so that $\|\frac{Q_{w,p}}{N}\|_{p,p} \leqslant \frac{1}{10}$.

A few facts:

• Recall
$$Q_{w,p} = w^{1/p} \mathcal{P}_{[0,n-1]} w^{-1/p} - w^{-1/p'} \mathcal{P}_{[0,n-1]} w^{1/p'}$$
.

•
$$||Q_{w,p}||_{p,p} \le C([w]_{A_2})$$
 for all $2 \le p \le 2 + \epsilon_0$.

- $\|(I \kappa Q_{w,2})^{-1}\|_{2,2} \leqslant 1$ for all $\kappa \in \mathbb{R}$.
- Choose N large enough so that $\|\frac{Q_{w,p}}{N}\|_{p,p} \leqslant \frac{1}{10}$.

 $2 + \epsilon_0$: allowed *p*-values

A few facts:

- Recall $Q_{w,p} = w^{1/p} \mathcal{P}_{[0,n-1]} w^{-1/p} w^{-1/p'} \mathcal{P}_{[0,n-1]} w^{1/p'}$.
- $||Q_{w,p}||_{p,p} \le C([w]_{A_2})$ for all $2 \le p \le 2 + \epsilon_0$.
- $\|(I \kappa Q_{w,2})^{-1}\|_{2,2} \leqslant 1$ for all $\kappa \in \mathbb{R}$.
- Choose N large enough so that $\|\frac{Q_{w,p}}{N}\|_{p,p} \leqslant \frac{1}{10}$.

Algorithm:

1 By geometric sum, $\|(I - \frac{1}{N}Q_{w,p})^{-1}\|_{p,p} = |(I - \frac{0}{N}Q_{w,p} - \frac{Q_{w,p}}{N})^{-1}\|_{p,p} \leqslant 10^{10} \text{ for } p \text{ green.}$

A few facts:

- Recall $Q_{w,p} = w^{1/p} \mathcal{P}_{[0,n-1]} w^{-1/p} w^{-1/p'} \mathcal{P}_{[0,n-1]} w^{1/p'}$.
- $||Q_{w,p}||_{p,p} \le C([w]_{A_2})$ for all $2 \le p \le 2 + \epsilon_0$.
- $\|(I \kappa Q_{w,2})^{-1}\|_{2,2} \leq 1$ for all $\kappa \in \mathbb{R}$.
- Choose *N* large enough so that $\|\frac{Q_{w,p}}{N}\|_{p,p} \leqslant \frac{1}{10}$.

Algorithm:

By geometric sum,

$$\|(I - \frac{1}{N}Q_{w,p})^{-1}\|_{p,p} = \|(I - \frac{0}{N}Q_{w,p} - \frac{Q_{w,p}}{N})^{-1}\|_{p,p} \leqslant 10^{10} \text{ for } p \text{ green.}$$

3 Analytically interpolate with good p = 2 estimate to get $\|(I - \frac{1}{2}Q)^{-1}\| < 5$ for 2 , where <math>61 < 0

A few facts:

- Recall $Q_{w,p} = w^{1/p} \mathcal{P}_{[0,n-1]} w^{-1/p} w^{-1/p'} \mathcal{P}_{[0,n-1]} w^{1/p'}$.
- $||Q_{w,p}||_{p,p} \le C([w]_{A_2})$ for all $2 \le p \le 2 + \epsilon_0$.
- $\|(I \kappa Q_{w,2})^{-1}\|_{2,2} \leq 1$ for all $\kappa \in \mathbb{R}$.
- Choose N large enough so that $\|\frac{Q_{w,p}}{N}\|_{p,p} \leqslant \frac{1}{10}$.

Algorithm:

By geometric sum,

$$\|(I - \frac{1}{N}Q_{w,p})^{-1}\|_{p,p} = \|(I - \frac{0}{N}Q_{w,p} - \frac{Q_{w,p}}{N})^{-1}\|_{p,p} \leqslant 10^{10} \text{ for } p \text{ green.}$$

② Analytically interpolate with good p=2 estimate to get $\|(I-\frac{1}{N}Q_{w,p})^{-1}\|_{p,p} \le 5$ for $2 \le p \le 2 + \epsilon_1$, where $\epsilon_1 < \epsilon_0$.

A few facts:

• Recall
$$Q_{w,p} = w^{1/p} \mathcal{P}_{[0,n-1]} w^{-1/p} - w^{-1/p'} \mathcal{P}_{[0,n-1]} w^{1/p'}$$
.

•
$$||Q_{w,p}||_{p,p} \le C([w]_{A_2})$$
 for all $2 \le p \le 2 + \epsilon_0$.

- $\|(I \kappa Q_{w,2})^{-1}\|_{2,2} \leqslant 1$ for all $\kappa \in \mathbb{R}$.
- Choose *N* large enough so that $\|\frac{Q_{w,p}}{N}\|_{p,p} \leqslant \frac{1}{10}$.

A few facts:

- Recall $Q_{w,p} = w^{1/p} \mathcal{P}_{[0,n-1]} w^{-1/p} w^{-1/p'} \mathcal{P}_{[0,n-1]} w^{1/p'}$.
- $||Q_{w,p}||_{p,p} \le C([w]_{A_2})$ for all $2 \le p \le 2 + \epsilon_0$.
- $\|(I \kappa Q_{w,2})^{-1}\|_{2,2} \le 1$ for all $\kappa \in \mathbb{R}$.
- Choose *N* large enough so that $\|\frac{Q_{w,p}}{N}\|_{p,p} \leqslant \frac{1}{10}$.

Algorithm:

 $\textbf{ 9} \text{ By geometric sum,} \\ \|(I-\tfrac{2}{N}Q_{w,p})^{-1}\|_{p,p} = \|(I-\tfrac{1}{N}Q_{w,p}-\tfrac{Q_{w,p}}{N})^{-1}\|_{p,p} \leqslant 10^{10} \text{ for } p \text{ green.}$

A few facts:

- Recall $Q_{w,p} = w^{1/p} \mathcal{P}_{[0,n-1]} w^{-1/p} w^{-1/p'} \mathcal{P}_{[0,n-1]} w^{1/p'}$.
- $||Q_{w,p}||_{p,p} \le C([w]_{A_2})$ for all $2 \le p \le 2 + \epsilon_0$.
- $\|(I \kappa Q_{w,2})^{-1}\|_{2,2} \leqslant 1$ for all $\kappa \in \mathbb{R}$.
- Choose N large enough so that $\|\frac{Q_{w,p}}{N}\|_{p,p} \leqslant \frac{1}{10}$.

Algorithm:

$$\|(I - \frac{2}{N}Q_{w,p})^{-1}\|_{p,p} = \|(I - \frac{1}{N}Q_{w,p} - \frac{Q_{w,p}}{N})^{-1}\|_{p,p} \leqslant 10^{10} \text{ for } p \text{ green.}$$

Analytically interpolate with good p = 2 estimate to get $\|(I - \frac{2}{5!}Q_{W,p})^{-1}\|_{p,p} \le 5$ for $2 \le p \le 2 + \epsilon_2$, where $\epsilon_2 < \epsilon_2$

A few facts:

- Recall $Q_{w,p} = w^{1/p} \mathcal{P}_{[0,n-1]} w^{-1/p} w^{-1/p'} \mathcal{P}_{[0,n-1]} w^{1/p'}$.
- $||Q_{w,p}||_{p,p} \le C([w]_{A_2})$ for all $2 \le p \le 2 + \epsilon_0$.
- $\|(I \kappa Q_{w,2})^{-1}\|_{2,2} \leqslant 1$ for all $\kappa \in \mathbb{R}$.
- Choose N large enough so that $\|\frac{Q_{w,p}}{N}\|_{p,p} \leqslant \frac{1}{10}$.

Algorithm:

By geometric sum,

$$\|(I - \frac{2}{N}Q_{w,p})^{-1}\|_{p,p} = \|(I - \frac{1}{N}Q_{w,p} - \frac{Q_{w,p}}{N})^{-1}\|_{p,p} \leqslant 10^{10} \text{ for } p \text{ green.}$$

analytically interpolate with good p = 2 estimate to get $\|(1 - \frac{2}{3}Q_{1})^{-1}\| < 5$ for 2 , where <math>60 < 1

A few facts:

• Recall
$$Q_{w,p} = w^{1/p} \mathcal{P}_{[0,n-1]} w^{-1/p} - w^{-1/p'} \mathcal{P}_{[0,n-1]} w^{1/p'}$$
.

- $||Q_{w,p}||_{p,p} \leqslant C([w]_{A_2})$ for all $2 \leqslant p \leqslant 2 + \epsilon_0$.
- $\|(I \kappa Q_{w,2})^{-1}\|_{2,2} \leqslant 1$ for all $\kappa \in \mathbb{R}$.
- Choose N large enough so that $\|\frac{Q_{w,p}}{N}\|_{p,p} \leqslant \frac{1}{10}$.

A few facts:

- Recall $Q_{w,p} = w^{1/p} \mathcal{P}_{[0,n-1]} w^{-1/p} w^{-1/p'} \mathcal{P}_{[0,n-1]} w^{1/p'}$.
- $||Q_{w,p}||_{p,p} \le C([w]_{A_2})$ for all $2 \le p \le 2 + \epsilon_0$.
- $\|(I \kappa Q_{w,2})^{-1}\|_{2,2} \leqslant 1$ for all $\kappa \in \mathbb{R}$.
- Choose *N* large enough so that $\|\frac{Q_{w,p}}{N}\|_{p,p} \leqslant \frac{1}{10}$.

Algorithm:

A few facts:

- Recall $Q_{w,p} = w^{1/p} \mathcal{P}_{[0,n-1]} w^{-1/p} w^{-1/p'} \mathcal{P}_{[0,n-1]} w^{1/p'}$.
- $||Q_{w,p}||_{p,p} \leq C([w]_{A_2})$ for all $2 \leq p \leq 2 + \epsilon_0$.
- $\|(I \kappa Q_{w,2})^{-1}\|_{2,2} \leq 1$ for all $\kappa \in \mathbb{R}$.
- Choose N large enough so that $\|\frac{Q_{W,p}}{N}\|_{p,p} \leqslant \frac{1}{10}$.

Algorithm:

By geometric sum,

$$\|(I - \frac{3}{N}Q_{w,p})^{-1}\|_{p,p} = \|(I - \frac{2}{N}Q_{w,p} - \frac{Q_{w,p}}{N})^{-1}\|_{p,p} \leqslant 10^{10} \text{ for } p \text{ green.}$$

2 Analytically interpolate with good p = 2 estimate to get $\|(I-\frac{3}{N}Q_{w,p})^{-1}\|_{p,p} \leq 5 \text{ for } 2 \leq p \leq 2+\epsilon_3, \text{ where } \epsilon_3 < \epsilon_2.$

$$\|(I-\frac{5}{N}Q_{w,p})^{-1}\|_{p,p} \leqslant 5 \text{ for } 2 \leqslant p \leqslant 2+\epsilon_3, \text{ where } \epsilon_3 < \epsilon_2.$$

A few facts:

- Recall $Q_{w,p} = w^{1/p} \mathcal{P}_{[0,n-1]} w^{-1/p} w^{-1/p'} \mathcal{P}_{[0,n-1]} w^{1/p'}$.
- $||Q_{w,p}||_{p,p} \le C([w]_{A_2})$ for all $2 \le p \le 2 + \epsilon_0$.
- $\|(I \kappa Q_{w,2})^{-1}\|_{2,2} \leqslant 1$ for all $\kappa \in \mathbb{R}$.
- Choose N large enough so that $\|\frac{Q_{w,p}}{N}\|_{p,p} \leqslant \frac{1}{10}$.

Algorithm:

By geometric sum,

$$\|(I - \frac{3}{N}Q_{w,p})^{-1}\|_{p,p} = \|(I - \frac{2}{N}Q_{w,p} - \frac{Q_{w,p}}{N})^{-1}\|_{p,p} \leqslant 10^{10} \text{ for } p \text{ green.}$$

a Analytically interpolate with good p = 2 estimate to get $\|(1 - \frac{3}{2}Q)\|^{-1}\| \le 5$ for $2 \le n \le 2 + 6$, where $6 \le 1$

$$\|(I-\frac{3}{N}Q_{w,p})^{-1}\|_{p,p}\leqslant 5 \text{ for } 2\leqslant p\leqslant 2+\epsilon_3, \text{ where } \epsilon_3<\epsilon_2.$$

A few facts:

• Recall
$$Q_{w,p} = w^{1/p} \mathcal{P}_{[0,n-1]} w^{-1/p} - w^{-1/p'} \mathcal{P}_{[0,n-1]} w^{1/p'}$$
.

•
$$||Q_{w,p}||_{p,p} \leqslant C([w]_{A_2})$$
 for all $2 \leqslant p \leqslant 2 + \epsilon_0$.

•
$$\|(I - \kappa Q_{w,2})^{-1}\|_{2,2} \leqslant 1$$
 for all $\kappa \in \mathbb{R}$.

• Choose N large enough so that $\|\frac{Q_{w,p}}{N}\|_{p,p} \leqslant \frac{1}{10}$.

Algorithm: Repeat N times ...

A few facts:

- Recall $Q_{w,p} = w^{1/p} \mathcal{P}_{[0,n-1]} w^{-1/p} w^{-1/p'} \mathcal{P}_{[0,n-1]} w^{1/p'}$.
- $||Q_{w,p}||_{p,p} \le C([w]_{A_2})$ for all $2 \le p \le 2 + \epsilon_0$.
- $\|(I \kappa Q_{w,2})^{-1}\|_{2,2} \leqslant 1$ for all $\kappa \in \mathbb{R}$.
- Choose N large enough so that $\|\frac{Q_{w,p}}{N}\|_{p,p} \leqslant \frac{1}{10}$.

 $2 + \frac{1}{2 + \epsilon_N}$: allowed *p*-values

A few facts:

• Recall
$$Q_{w,p} = w^{1/p} \mathcal{P}_{[0,n-1]} w^{-1/p} - w^{-1/p'} \mathcal{P}_{[0,n-1]} w^{1/p'}$$
.

•
$$||Q_{w,p}||_{p,p} \le C([w]_{A_2})$$
 for all $2 \le p \le 2 + \epsilon_0$.

•
$$\|(I - \kappa Q_{w,2})^{-1}\|_{2,2} \leqslant 1$$
 for all $\kappa \in \mathbb{R}$.

• Choose N large enough so that $\|\frac{Q_{w,p}}{N}\|_{p,p} \leqslant \frac{1}{10}$.

Algorithm: Done!

Thank you for Listening (for real this time)!