МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Институт №8 «Компьютерные науки и прикладная математика» Кафедра 806 «Вычислительная математика и программирование»

Лабораторная работа №1 по курсу «Программирование графических процессоров»

Освоение программного обеспечения для работы с технологией СИДА.

Примитивные операции над векторами.

Выполнил: Попов М. Р.

Группа: 8О-408Б

Преподаватели: К.Г. Крашенинников,

А.Ю. Морозов

Условие

- 1. **Цель работы:** Ознакомление и установка программного обеспечения для работы с программно-аппаратной архитектурой параллельных вычислений (CUDA). Реализация одной из примитивных операций над векторами.
- 2. Вариант 4: Поэлементное нахождение минимума векторов

Программное и аппаратное обеспечение

1. Графический процессор: Nvidia GeForce GT 545

а. Количество потоковых процессоров: 144

b. Частота ядра: 720 МГц

с. Количество транзисторов: 1.170 млн

d. Тех. процесс: 40 нм

е. Энергопотребление: 70 Вт

2. OC: Ubuntu 16.04

3. Текстовый редактор: VS Code

4. Компилятор: nvcc

Метод решения

Пройдёмся в цикле по каждому элементу из обоих векторов и сравним их поэлементно, наименьший положим в результирующий вектор по соответствующему индексу.

Описание программы

Программа состоит из одного файла, в котором есть функция **kernel**, внутри которой и выполняется проход в цикле по векторам, а также функция **get_min**, которая возвращает минимальное из двух чисел с плавающей точкой.

Результаты

1. Зависимость времени выполнения программы от количества используемых потоков (для тестов использовались два вектора по 10 миллионов чисел):

Потоки	Время (в мс)
1×32	22
32×32	12
1024×1024	1

2. Сравнение программы на CUDA с 32×32 потоками и программы на CPU с одним потоком:

Размер векторов	Время на CUDA (в мс)	Время на СРИ (в мс)
10 млн	12	113331
25 млн	24	283675
100 млн	89	1131260

Выводы

Проделав лабораторную работу, я использовал базовые операции для работы с CUDA, чтобы реализовать алгоритм нахождения поэлементного минимума двух векторов. Также, проведя тестирование своей программы, я убедился, что видеокарта намного эффективнее процессора в многопоточных вычислениях.