AS.110.304: Elem. Number Theory

Theorems and Definitions

James Guo (sguo45)

May 4, 2023

Contents

1	Mat	thematical Induction	1		
	1.1	Princ.: Principle of Mathematical Induction	1		
	1.2	Princ.: Well-Ordering Principle	1		
2	Euclid's Division Lemma				
	2.1	Thm.: Euclid's Division Lemma	1		
3	Divisibility				
	3.1	Defn.: Divisibility	1		
	3.2	Thm.: Linear Combinations of Multiples are Multiples	1		
	3.3	Defn.: Greatest Common Divisor	1		
	3.4	Mthd.: Euclidean Algorithm	1		
	3.5	Thm.: Integral Solutions to Linear Equations	2		
	3.6	Defn.: Prime	2		
	3.7	Defn.: Co-prime	2		
	3.8	Thm.: Divisibility of Composite Numbers	2		
4	Linear Diophantine Equations				
	4.1	Thm.: Solutions to Linear Diophantine Equations	2		
	4.2	Mthd.: Solving Linear Diophantine Equations	2		
5	Fun	damental Theorem of Arithmetic	2		
	5.1	Princ.: Principle of Strong Induction	2		
	5.2	Thm.: Fundamental Theorem of Arithmetic	3		
6	Permutations and Combinations				
	6.1	Defn.: Permutation	3		
	6.2	Thm.: Calculation of Permutation	3		
	6.3	Defn.: Combination	3		
	6.4	Thm.: Calculation of Combination	3		

7	Con	Congruence					
	7.1	Defn.: Congruence	3				
	7.2	Thm.: Properties of Congruence	3				
	7.3	Thm.: Ring Structure of Congruence	4				
8	Resi	idue Systems	4				
	8.1	Defn.: Residue	4				
	8.2	Defn.: Complete Residue System	4				
	8.3	Thm.: A Complete Residue System	4				
	8.4	Thm.: Length of Complete Residue System	4				
	8.5	Defn.: Reduced Residue System	4				
	8.6	Thm.: A Reduced Residue System	4				
	8.7	Defn.: Euler ϕ Function	5				
	8.8	Thm.: Length of Reduced Residue System	5				
9	Linear Congruence 5						
	9.1	Thm. Solutions to Linear Congruence	5				
	9.2	Mthd: Solving Linear Congruence	5				
	9.3	Defn.: Inverse	5				
10	Theorems of Euler, Fermat, and Wilson (Leibniz)						
		Thm.: Euler's Theorem	5				
		Thm.: Fermat's Little Theorem	5				
		Thm.: Wilson's/Leibniz's Theorem	5				
11	Chi	nese Remainder Theorem	6				
	11.1	Thm.: Chinese Remainder Theorem	6				
	11.2	Mthd.: Solving a System of Linear Congruence	6				
12	Polynomial Congruence						
	12.1	Thm. Maximum Number of Solutions for Polynomial Congruence	6				
	12.2	Defn.: Degree of the 0 Polynomial	6				
13	Eule	er's φ Function	6				
		(8.7) Defn.: Euler ϕ Function	6				
		Prep.: $\phi(p^n)$	7				
		Thm.: Sum over Euler ϕ Function of Divisors	7				
		Thm.: Multiplicativity of Euler ϕ Function	7				
14	d an	ad σ Function	7				
	14.1	Defn.: $d(n)$	7				
		Prep.: $d(p^n)$	7				
		Thm. Multiplicativity of <i>d</i> Function	7				
		Defn.: $\sigma(n)$	7				
		Prep.: $\sigma(p^n)$	7				
		Thm.: Multiplicativity of σ Function	7				

15	Multiplicative Arithmetic Function	8
	15.1 Defn.: Arithmetic Function	8
	15.2 (13.4, 14.3, 14.6) Prep.: Examples of Multiplicative Arithmetic Functions	8
	15.3 Defn.: Möbius Function	8
	15.4 Thm.: Multiplicativity of Möbius Function	8
16	Möbius Inversion Formula	8
	16.1 Thm. Sum of Möbius Function of Divisors	8
	16.2 Thm.: Möbius Inversion Formula	8
	16.3 Defn.: Möbius Pair	9
	16.4 Thm.: Equivalence in Multiplicativity	9
17	Primitive Roots	9
	17.1 Defn.: Order	9
	17.2 Thm. Divisibility of Order	9
	17.3 Defn.: Primitive Roots	9
	17.4 Thm.: Reduced Residue System from Primitive Root	9
	17.5 Thm.: Order of the Powers	9
	17.6 Thm.: Primes have Primitive Root	10
18	Asymptotic Distribution of Primes	10
	18.1 Defn.: $\pi(x)$	10
	18.2 Thm.: Euclid's Theorem	10
	18.3 Thm.: Prime Number Theorem	10
	18.4 Tchebychev's Theorem	10
	18.5 Thm.: Weaker Results of Prime Number Theorem	10
19	Quadratic Residue and Euler's Criterion	10
	19.1 Defn.: Quadratic Residue	10
	19.2 Thm.: Quadratic Residue and Primitive Root	10
	19.3 Euler's Criterion	11
20	Legendre Symbol	11
	20.1 Defn.: Legendre Symbol	11
	20.2 Thm.: Properties of Legendre Symbol	11
	20.3 Defn.: Jacobi Symbol	11
21	Quadratic Reciprocity Law	11
	21.1 Thm.: Gaussian's Lemma	11
	21.2 Thm.: Quadratic Reciprocity Law	12
	21.3 Thm.: Existence of Quadratic Residue	12
22	Sum of Two Squares	12
	22.1 Fermat's Theorem on Sum of Two Squares	12

1 Mathematical Induction

1.1 Princ.: Principle of Mathematical Induction

To show a statement P(n) about $n \in \mathbb{Z}_{>0}$ is true for all $n \in \mathbb{Z}_{>0}$, it's suffices to show that:

- 1. Base case: P(1) is true;
- 2. Inductive case: For any $k \in \mathbb{Z}_{>0}$, if P(k) is true, then P(k+1) is true.

1.2 Princ.: Well-Ordering Principle

Any non-empty set of positive integers has the least element.

Rmk.: This is equivalent to the principle of mathematical induction.

2 Euclid's Division Lemma

2.1 Thm.: Euclid's Division Lemma

Let $a, b \in \mathbb{Z}$ and b > 0. There exist unique integers q and r such that $0 \le r < b$ and a = qb + r.

3 Divisibility

3.1 Defn.: Divisibility

Let $a, b \in \mathbb{Z}$. We say b divides a, or b is a divisor of a, or a is a multiple of b, if there exists an integer a such that a = ab.

If *b* divides *a*, we write b|a. If *b* does not divide *a*, we write $b \nmid a$.

Rmk.: By definition, *b* can be 0, where 0 only divides 0.

3.2 Thm.: Linear Combinations of Multiples are Multiples

Let $a, b, c \in \mathbb{Z}$. If a|b and a|c, then a|(mb+nc) for all integral m and n.

3.3 Defn.: Greatest Common Divisor

The greatest common divisor of two integers a and b, not both zero, is the largest positive integer that divides both a and b, denotes gcd(a, b).

Rmk.: If a, and b are integers, not both zero, then gcd(a,b) always exists and is unique.

Rmk.: $gcd(\pm a, \pm b) = gcd(\pm a, \mp b)$.

3.4 Mthd.: Euclidean Algorithm

If a = qb + r where $a, b, q, r \in \mathbb{Z}$ and $b \neq 0$, then gcd(a, b) = gcd(b, r). In Euclidean Algorithm, write $a = r_1$ as $a_i = qb + r_{i+1}$ until we finish $r_n = 0$ while r_{n-1} is gcd(a, b).

3.5 Thm.: Integral Solutions to Linear Equations

Let $a, b, c \in \mathbb{Z}$. Suppose that a and b are not both zero. There exists integers x and y such that ax + by = c if and only if gcd(a, b)|c.

3.6 Defn.: Prime

A positive integer $p \neq 1$ is said to be prime if its only positive divisors are 1 and p.

3.7 Defn.: Co-prime

Two integers are said to be co-prime (or relatively prime) if their only positive common divisor (equivalent to the greatest common divisor when the integers are not both 0) is 1.

3.8 Thm.: Divisibility of Composite Numbers

Let $a, b, c \in \mathbb{Z}$. If gcd(a, c) = 1 and a|(bc), then a|b.

Cor.: Let $a, b \in \mathbb{Z}$ and p be prime. If p|(ab) and $p \nmid a$, then p|b.

Cor.: Let a_1, a_2, \dots, a_n be integers. Let p be a prime. If $p | (a_1 a_2 \dots a_n)$, then there exists some $1 \le i \le n$ such that $p | a_i$.

4 Linear Diophantine Equations

4.1 Thm.: Solutions to Linear Diophantine Equations

If gcd(a, b) = 1 and (x_0, y_0) is a solution to ax + by = c is $\{(x, y) | x = x_0 + bt, y = y_0 - at, t \in \mathbb{Z}\}$.

4.2 Mthd.: Solving Linear Diophantine Equations

To solve the equation ax + by = c where $a, b, c \in \mathbb{Z}$ for $a, b \neq 0$.

- 1. Reduce to the case where gcd(a, b) = 1;
- 2. Find a solution (x_0, y_0) by Euclidean Algorithm;
- 3. Find all integral solutions with form $\begin{cases} x = x_0 + bt \\ y = y_0 at \end{cases}$ where $t \in \mathbb{Z}$.

5 Fundamental Theorem of Arithmetic

5.1 Princ.: Principle of Strong Induction

Let P(n) be a statement about positive integer n. To show that P(k) is true for all $n \in \mathbb{Z}_{>0}$, it suffices to show the following statements:

- 1. P(1) is true;
- 2. For any $n \in \mathbb{Z}_{>0}$, if P(k) is true for all positive integers k < n, then P(n) is true.

5.2 Thm.: Fundamental Theorem of Arithmetic

For each integer n > 1, there exist primes $p_1 < p_2 < \cdots < p_r$ and positive integer n_i , $1 \le i \le k$ such that $n = \prod_{i=1}^k p_i^{n_i}$ call a prime factorization, and this factorization is unique.

6 Permutations and Combinations

6.1 Defn.: Permutation

An *r*-permutation of a set *S* of *n* elements is an ordered selection of *r* elements from S ($0 \le r \le n$).

6.2 Thm.: Calculation of Permutation

The number of *r*-permutations of a set of *n* elements, denotes by ${}_{n}P_{r}$, is ${}_{n}P_{r} = n(n-1)\cdots(n-r+1) = \frac{n!}{(n-r)!}$.

6.3 Defn.: Combination

An *r*-combination of a set *S* of *n* elements in a subset of *S* having *r* elements $(0 \le r \le n)$.

6.4 Thm.: Calculation of Combination

The number of *r*-combinations of a set of *n* elements, denotes by $\binom{n}{r}$, is $\binom{n}{r} = \frac{nP_r}{rP_r} = \frac{n(n-1)\cdots(n-r+1)}{r!} = \frac{n!}{(n-r)!r!}$.

Cor.: The product of any n consecutive positive integers is divisible by n!, i.e., $n!|N(N-1)\cdots(N-n+1)$ because $\frac{N(N-1)\cdots(N-n+1)}{n!}=\binom{N}{n}\in\mathbb{Z}$.

7 Congruence

7.1 Defn.: Congruence

Let $a, b, n \in \mathbb{Z}$. a is congruent to b modulo n, denotes $a \equiv b \pmod{n}$ if $n \mid (a - b)$. **Remark**: n can be zero by our definition.

7.2 Thm.: Properties of Congruence

Let $a, b, c, n \in \mathbb{Z}$:

- 1. Reflexive: $a \equiv a \pmod{n}$;
- 2. Symmetric: If $a \equiv b \pmod{n}$, then $b \equiv a \pmod{n}$;
- 3. Transitive: If $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$, then $a \equiv c \pmod{n}$.

Rmk.: In other words, Congruence modulo is an equivalence relation.

7.3 Thm.: Ring Structure of Congruence

Let $a_1, a_2, b_1, b_2, n \in \mathbb{Z}$ such that $a_1 \equiv a_2 \pmod{n}$ and $b_1 \equiv b_2 \pmod{n}$. Then:

- 1. Addition: $a_1 + b_1 \equiv b_1 + b_2 \pmod{n}$;
- 2. Subtraction: $a_1 b_1 \equiv a_2 b_2 \pmod{n}$;
- 3. Multiplication: $a_1b_1 \equiv a_2b_2 \pmod{n}$.

Rmk.: Division does not necessarily preserve the congruence.

8 Residue Systems

8.1 Defn.: Residue

If $a, b, m \in \mathbb{Z}$ and $a \equiv b \pmod{m}$, b is a residue of a modulo m.

Rmk.:: *b* may not satisfy $0 \le b < m - 1$ by definition.

8.2 Defn.: Complete Residue System

A set of integers $\{r_1, r_2, \cdots, r_n\}$ is called a complete residue system modulo m if:

- 1. $r_i \not\equiv r_j \pmod{m}$ whenever $i \neq j$;
- 2. For any $n \in \mathbb{Z}$, there exists an r_i such that $n \equiv r_i \pmod{m}$.

8.3 Thm.: A Complete Residue System

The set $\{0, 1, \dots, m-1\}$ is a complete residue system modulo m.

8.4 Thm.: Length of Complete Residue System

Any complete residue system of modulo m are consisted of exactly m elements.

8.5 Defn.: Reduced Residue System

A set of integers $\{r_1, r_2, \dots, r_s\}$ is called a reduced residue system modulo m if:

- 1. $gcd(r_i, m) = 1$ for all $1 \le i \le s$;
- 2. $r_i \not\equiv r_i \pmod{m}$ whenever $i \neq j$;
- 3. For any $n \in \mathbb{Z}$ such that gcd(n, m) = 1, there exists an r_i such that $n \equiv r_i \pmod{m}$.

8.6 Thm.: A Reduced Residue System

Let *S* be a complete residue system modulo *m*. Then $\{r \in S | \gcd(r, m) = 1\}$ is a reduced residue system modulo *m*.

8.7 Defn.: Euler ϕ Function

The Euler ϕ function, denotes $\phi(n)$, is defined to be the cardinality of $\{n \in \mathbb{Z} | 0 \le n \le m-1, \gcd(n, m) = 1\}$.

8.8 Thm.: Length of Reduced Residue System

Any reduced residue system modulo m is consisted of exactly $\phi(m)$ elements.

9 Linear Congruence

9.1 Thm. Solutions to Linear Congruence

Let $a, b, c \in \mathbb{Z}$ where a and b are non-zero. Denote $d = \gcd(a, b)$. Then the congruence $ax \equiv c \pmod{b}$ has a solution if and only if $d \mid c$.

Rmk.: If d|c, then $ax \equiv c \pmod{b}$ has d mutually incongruent solutions modulo c.

Cor.: For $ax \equiv c \pmod{b}$, if gcd(a, b) = 1, then all the solutions are congruent modulo b, where the solution of $ax \equiv c \pmod{b}$ is unique modulo b.

9.2 Mthd: Solving Linear Congruence

To solve the linear congruence $ax \equiv c \pmod{b}$, where $a, b, c \in \mathbb{Z}$.

- 1. Find one solution: Use Euclidean Algorithm, find solutions using properties of congruence;
- 2. Find all incongruent integral solutions: Use Theory of Linear Diophantine Equations and properties of congruence;
- 3. Find all integral solutions: Find all the solutions.

9.3 Defn.: Inverse

If gcd(a, b) = 1, the unique solution modulo b to $ax \equiv 1 \pmod{b}$ is the inverse of a modulo b.

10 Theorems of Euler, Fermat, and Wilson (Leibniz)

10.1 Thm.: Euler's Theorem

Let $m \in \mathbb{Z}_{>0}$ and $a \in \mathbb{Z}$. If gcd(a, m) = 1, then $a^{\phi(m)} \equiv 1 \pmod{m}$.

10.2 Thm.: Fermat's Little Theorem

If *p* is a prime and $a \in \mathbb{Z}$, then $a^p \equiv a \pmod{p}$.

10.3 Thm.: Wilson's/Leibniz's Theorem

Let $m \in \mathbb{Z}_{>1}$. Then $(m-1)! \equiv -1 \pmod{m}$ if and only if m is a prime.

11 Chinese Remainder Theorem

11.1 Thm.: Chinese Remainder Theorem

Let m_1, m_2, \cdots, m_s be pairwise co-prime, non-zero integers. Denote $M = \prod_{i=1}^s m_i$. Let a_1, a_2, \cdots, a_s be $\begin{cases} a_1 x \equiv b_1 \pmod{m_1} \\ a_2 x \equiv b_2 \pmod{m_2} \end{cases}$ integers such that $\gcd(a_i, m_i) = 1$ for all $1 \leq i \leq s$. Then the system of congruences $\begin{cases} a_1 x \equiv b_1 \pmod{m_1} \\ a_2 x \equiv b_2 \pmod{m_2} \end{cases}$ \vdots $a_s x \equiv b_s \pmod{m_s}$

has a simultaneous solution that is unique modulo M.

Rmk.: The Chinese Remainder Theorem is the polynomial congruences of degree 1.

11.2 Mthd.: Solving a System of Linear Congruence

Let m_1, m_2, \cdots, m_s be pairwise co-prime, non-zero integers. Denote $M = \prod_{i=1}^s m_i$. Let a_1, a_2, \cdots, a_s be $a_1x \equiv b_1 \pmod{m_1}$ integers such that $\gcd(a_i, m_i) = 1$ for all $1 \leq i \leq s$. Then the system of congruences $\begin{cases} a_1x \equiv b_1 \pmod{m_1} \\ a_2x \equiv b_2 \pmod{m_2} \\ \vdots \\ a_sx \equiv b_s \pmod{m_s} \end{cases}$ can be converted to s system of congruences, where the i-th system is: $\begin{cases} a_ix \equiv b_i \pmod{m_i} \\ a_jx \equiv 0 \pmod{m_j} \text{ for all } j \neq i \end{cases}$.

12 Polynomial Congruence

12.1 Thm. Maximum Number of Solutions for Polynomial Congruence

Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0$ be a polynomial with integral coefficients and $a_n \neq 0$. If p is a prime such that $p \nmid a_n$, then the congruence $f(x) \equiv 0 \pmod{p}$ has at most n mutually incongruent solutions modulo p.

Rmk.: $f(x) \equiv 0 \pmod{p}$ does not always have solution when $p \nmid a_n$.

12.2 Defn.: Degree of the 0 Polynomial

The 0 polynomial is declared to have degree $-\infty$.

13 Euler's ϕ Function

13.1 (8.7) Defn.: Euler ϕ Function

The Euler ϕ function, denotes $\phi(n)$, is defined to be the cardinality of $\{n \in \mathbb{Z} | 0 \le n \le m-1, \gcd(n, m) = 1\}$.

13.2 Prep.: $\phi(p^n)$

If p is a prime and $n \in \mathbb{Z}_{\geq 1}$, then $\phi(p^n) = p^n - p^{n-1} = p^{n-1}(p-1)$.

13.3 Thm.: Sum over Euler ϕ Function of Divisors

The sum over ϕ function of positive division of n, denotes $\sum_{d|n} \phi(d)$, equals to n, i.e., $\sum_{d|n} \phi(d) = n$.

13.4 Thm.: Multiplicativity of Euler ϕ Function

Let $m, n \in \mathbb{Z}_{>1}$ be co-prime. Then $\phi(mn) = \phi(m)\phi(n)$.

Cor.: Let p be a prime. Euler ϕ function of n can be written as the product of n and the product over all the one minus the inverse of prime factors of n, denotes $\prod_{p|n} \left(1 - \frac{1}{p}\right)$, i.e., $\phi(n) = n \prod_{p|n} \left(1 - \frac{1}{p}\right)$.

14 d and σ Function

14.1 Defn.: d(n)

For $n \in \mathbb{Z}_{\geq 1}$, d(n) is defined as the number of positive divisors of n.

14.2 Prep.: $d(p^n)$

If p is a prime and $n \in \mathbb{Z}_{>1}$, then $d(p^n) = n + 1$.

14.3 Thm. Multiplicativity of d Function

Let $m, n \in \mathbb{Z}_{\geq 1}$ be co-prime. Then d(mn) = d(m)d(n).

Cor.: For $n = \prod_{i=1}^k p_i^{n_i}$ where p_i 's are positive distinct primes and $n_i \in \mathbb{Z}_{\geq 1}$, $d(n) = \prod_{i=1}^k (n_i + 1)$.

14.4 Defn.: $\sigma(n)$

For $n \in \mathbb{Z}_{\geq 1}$, $\sigma(n)$ is defined as the sum of all positive divisors of n.

14.5 Prep.: $\sigma(p^n)$

If p is a prime and $n \in \mathbb{Z}_{\geq 1}$, then $\sigma(p^n) = \frac{p^{n+1} - 1}{p - 1}$.

14.6 Thm.: Multiplicativity of σ Function

Let $m, n \in \mathbb{Z}_{\geq 1}$ be co-prime. Then $\sigma(mn) = \sigma(m)\sigma(n)$.

Cor.: For $n = \prod_{i=1}^k p_i^{n_i}$ where p_i 's are positive distinct primes and $n_i \in \mathbb{Z}_{\geq 1}$, $\sigma(n) = \prod_{i=1}^k \frac{p_i^{n_i+1}-1}{p_i-1}$.

Rmk.: For $n = \prod_{i=1}^k p_i^{n_i}$, m is a positive divisor of n if and only if $m = \prod_{i=1}^k p_i^{m_i}$ where $0 \le m_i \le n_i$. Therefore, $\sigma(n) = \prod_{i=1}^k \left(\sum_{m_i=0}^{n_i} p_i^{m_i}\right)$.

15 Multiplicative Arithmetic Function

15.1 Defn.: Arithmetic Function

An arithmetic function is a map $f: \mathbb{Z}_{\geq 1} \to \mathbb{C}$. An arithmetic function is multiplicative if $f(mn) = f(m) \cdot f(n)$ whenever gcd(m, n) = 1.

15.2 (13.4, 14.3, 14.6) Prep.: Examples of Multiplicative Arithmetic Functions

 $\phi(n)$, d(n), and $\sigma(n)$ are multiplicative arithmetic functions.

15.3 Defn.: Möbius Function

For
$$n \in \mathbb{Z}_{\geq 1}$$
, $\mu(n) = \begin{cases} 1, & \text{if } n = 1 \\ 0, & \text{if } p^2 | n \text{ for some prime} p \\ (-1)^r, & \text{if } n = p_1 p_2 \cdots p_r \text{ where } p_i \text{'s are distinctive primes} \end{cases}$ or equivalently defined as $\mu(n) = \begin{cases} 0, & \text{if } p^2 | n \text{ for some prime } p \\ 1, & \text{if } n \text{ is square free and has an even number of prime factors} \end{cases}$.

15.4 Thm.: Multiplicativity of Möbius Function

 $\mu(n)$ is a multiplicative arithmetic function.

16 Möbius Inversion Formula

16.1 Thm. Sum of Möbius Function of Divisors

For
$$n \in \mathbb{Z}_{\geq 1}$$
, $\sum_{d|n} \mu(d) = \begin{cases} 1 \text{ if } n = 1 \\ 0 \text{ if } n > 1 \end{cases}$

16.2 Thm.: Möbius Inversion Formula

Let f(n) and g(n) be arithmetic functions. The following conditions are equivalent:

1.
$$f(n) = \sum_{d|n} g(d)$$
 for all n ;

2.
$$g(n) = \sum_{d|n} \mu(d) f\left(\frac{n}{d}\right)$$
 for all n .

16.3 Defn.: Möbius Pair

If two arithmetic functions f(n) and g(n) satisfy one of the condition that:

1.
$$f(n) = \sum_{d|n} g(d)$$
 for all n ;

2.
$$g(n) = \sum_{d|n} \mu(d) f\left(\frac{n}{d}\right)$$
 for all n .

Then, (f(n), g(n)) is a Möbius pair. **Rmk.**: If (f(n), g(n)) is a Möbius pair, (g(n), f(n)) is not necessarily a Möbius pair.

E.g.: $(n, \phi(n))$, (d(n), 1), and $(\sigma(n), n)$ are Möbius pairs.

16.4 Thm.: Equivalence in Multiplicativity

Let (f(n), g(n)) be a Möbius pair of arithmetic functions. Then f(n) is multiplicative if and only if g(n) is multiplicative.

17 Primitive Roots

17.1 Defn.: Order

Let $m \in \mathbb{Z}_{>0}$, $a \in \mathbb{Z}$. Suppose gcd(a, m) = 1. The multiplicative order of a modulo m is the smallest positive integer d such that $a^d \equiv 1 \pmod{m}$.

Rmk.: The smallest of such a *d* exists and $d \le \phi(m)$ by Euler Theorem.

17.2 Thm. Divisibility of Order

If *d* is the order of *a* modulo *m*, and $a^n \equiv 1 \pmod{m}$ for some $n \in \mathbb{Z}_{>0}$, then $d \mid n$.

17.3 Defn.: Primitive Roots

If $\phi(n)$ is the order of a modulo m, then a is a primitive root modulo m.

Rmk.: A primitive root may not exist.

17.4 Thm.: Reduced Residue System from Primitive Root

If a is a primitive root modulo m, then $a, a^2, \dots, a^{\phi(m)}$ form a reduced residue system modulo m.

17.5 Thm.: Order of the Powers

If *d* is the order of *a* modulo *m* and *n* is a positive integer such that gcd(n,d) = e, then $\frac{d}{e}$ is the order of a^n modulo *m*.

Cor.: If *a* is a primitive root modulo *m*, then a^n is a primitive root modulo *m* if and only if $gcd(n, \phi(m)) = 1$. **Cor.**: If there exists a primitive root modulo *m*, then there are exactly $\phi(\phi(m))$ mutually incongruent primitive roots modulo *m*.

17.6 Thm.: Primes have Primitive Root

If p is a prime, there exists a primitive root modulo p.

18 Asymptotic Distribution of Primes

18.1 Defn.: $\pi(x)$

For $x \in \mathbb{R}_{>0}$, denote by $\pi(x)$ the number of primes less than or equal to x.

18.2 Thm.: Euclid's Theorem

There are infinitely many primes, i.e., $\lim_{x \to \infty} \pi(x) = \infty$.

Rmk.: For $x \in \mathbb{R}_{>0}$, $\pi(x) \leq [x] \leq x$.

18.3 Thm.: Prime Number Theorem

For
$$x \in \mathbb{R}_{>0}$$
, $\lim_{x \to \infty} \frac{\pi(x)}{x/\log x} = 1$.

18.4 Tchebychev's Theorem

There exists $c_1, c_2 > 0$ such that $c_1 \frac{x}{\log x} < \pi(x) < c_2 \frac{x}{\log x}$ for all $x \ge 2$.

18.5 Thm.: Weaker Results of Prime Number Theorem

For any
$$k \in \mathbb{Z}_{>0}$$
, $\frac{\pi(x)}{x} \le \frac{\phi(k)}{k} + \frac{k}{x}$.

If
$$M \in \mathbb{Z}_{>1}$$
 and p_1, p_2, \dots, p_s are all primes in $\{1, 2, \dots, M\}$, then $\sum_{n=1}^{M} \frac{1}{n} < \frac{1}{\prod_{i=1}^{s} \left(1 - \frac{1}{p_i}\right)}$.

Cor.: Suppose $p_1 < p_2 < \cdots$ are all the prime numbers. Then $\sum_{i=1}^{\infty} \frac{1}{p_i} = \infty$.

$$\lim_{x \to \infty} \frac{\pi(x)}{x} = 0.$$

19 Quadratic Residue and Euler's Criterion

19.1 Defn.: Quadratic Residue

Let p be a prime and $a \in \mathbb{Z}$. If $p \nmid a$ and $x^2 \equiv a \pmod{p}$ has a solution, then a is a quadratic residue modulo p.

19.2 Thm.: Quadratic Residue and Primitive Root

Let p be an odd prime and $a \in \mathbb{Z}$ such that $p \nmid a$. Let g be a primitive root modulo p. Let $r \in \mathbb{Z}$ be such that $g^r \equiv a \pmod{p}$. Then a is a quadratic residue modulo p if and only if r is even.

19.3 Euler's Criterion

Let p be an odd prime, and $a \in \mathbb{Z}$, then a is a quadratic residue modulo p if and only if $a^{(p-1)/2} \equiv 1 \pmod{p}$.

20 Legendre Symbol

20.1 Defn.: Legendre Symbol

Let p be an odd prime and $a \in \mathbb{Z}$. The Legendre symbol of a over p, denotes $\left(\frac{a}{p}\right)$, is defined to be $\left(\frac{a}{p}\right) = \begin{cases} 0, & \text{if } p \mid a \\ 1, & \text{if } a \text{ is a quadratic residue modulo } p \\ -1, & \text{otherwise} \end{cases}$

20.2 Thm.: Properties of Legendre Symbol

Let p be an odd prime, the follow properties are ture:

1. If
$$a \equiv b \pmod{p}$$
, then $\left(\frac{a}{p}\right) = \left(\frac{b}{p}\right)$;

$$2. \left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \left(\frac{b}{p}\right);$$

3.
$$a^{(p-1)/2} \equiv \left(\frac{a}{p}\right) \pmod{p}$$
.

20.3 Defn.: Jacobi Symbol

If $m = p_1 p_2 \cdots p_r$ where p_i are odd primes (not necessarily distinct), then $\left(\frac{n}{m}\right) = \left(\frac{n}{p_1}\right) \left(\frac{n}{p_2}\right) \cdots \left(\frac{n}{p_r}\right)$.

21 Quadratic Reciprocity Law

21.1 Thm.: Gaussian's Lemma

Let p be an odd prime and $a \in \mathbb{Z}$ such that $p \nmid a$. For $n \in \mathbb{Z}$ define the least residue of n modulo p (denoted by r(n)) to be the unique integer $x \in \left(-\frac{p}{2}, \frac{p}{2}\right]$ such that $n \equiv x \pmod{p}$. Let m be the number of integers in $\{a, 2a, \cdots, \frac{p-1}{2}a\}$ whose least modulo p are negative. Then $\left(\frac{a}{p}\right) = (-1)^m$.

Cor.: If *p* is an odd prime, then $\left(\frac{-1}{p}\right) = (-1)^{(p-1)/2}$.

Cor.: If *p* is an odd prime, then $\left(\frac{2}{p}\right)^p = (-1)^{(p^2-1)/8}$.

21.2 Thm.: Quadratic Reciprocity Law

If p and q are distinct odd primes, then $\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{(p-1)(q-1)/4}.$

Rmk.:
$$\left(\frac{p}{q}\right) = -\left(\frac{q}{p}\right)$$
 only if $p \equiv q \equiv 3 \pmod{4}$, and $\left(\frac{p}{q}\right) = \left(\frac{q}{p}\right)$ otherwise.

21.3 Thm.: Existence of Quadratic Residue

Let p be an odd prime and $a \in \mathbb{Z}$ such that $p \nmid a$. Let $n \in \mathbb{Z}_{>0}$, then the Congruence $x^2 \equiv a \pmod{p^n}$ has a solution if and only if $\left(\frac{a}{p}\right) = 1$.

22 Sum of Two Squares

22.1 Fermat's Theorem on Sum of Two Squares

Let *p* be an odd prime. There exist integers $x, y \in \mathbb{Z}$ such that $p = x^2 + y^2$ if and only if $p \equiv 1 \pmod{4}$.