

$$\int_{\text{avg}} = \frac{1200 \times 80}{40} = 2400 W$$

$$= 22.4 KV$$

A motorbike engine can develop a power of 90 kilowatt in order to keep a constant velocity of 108 km/h. What is the pushing force?

A	5/6 N	В	5/6 kg.wt		
С	300 N	D	$3 \times 10^8 \text{dyne}$		
			0 11 0 0 10		
		۲ _	9,000	-3000N	
	ナンー	ر م	37	3 . 5 8 1	1 0 -
				$3\times10\times10=3\times10$	

A body of mass 100 kg accelerates uniformly from rest to v=20m/s in time 2 sec. As a function of time t, what is the instantaneous power in kilowatt delivered to the body?

$$\alpha = \frac{\Delta V}{t} = \frac{20}{2} = 10 \text{ m/s}$$

f=ma= 1000 = 1000 N