

Politechnika Wrocławska

Wybrane problemy odpornej optymalizacji dyskretnej z możliwością modyfikacji

Autor: Tomasz Strzałka Promotor: dr hab. Paweł Zieliński, prof. PWr Wydział Podstawowych Problemów Techniki

3 lipca 2016

- ▶ Problem: Incremental Minimum Spanning Tree,
 - ► idea,
 - ► LP a Binary-Based IMST.
- ▶ Problem: Recoverable Robust Minimum Spanning Tree,
 - problem: Min-Max,
 - problem adwersarza.
- ► Algorytm: *Tabu Search*.

- ▶ Problem: *Incremental Minimum Spanning Tree*,
 - ▶ idea,
 - ► LP a Binary-Based IMST.
- ▶ Problem: Recoverable Robust Minimum Spanning Tree,
 - problem: Min-Max,
 - problem adwersarza.
- ► Algorytm: *Tabu Search*.

- ▶ Problem: *Incremental Minimum Spanning Tree*,
 - ▶ idea,
 - ► LP a Binary-Based IMST.
- ▶ Problem: Recoverable Robust Minimum Spanning Tree,
 - problem: Min-Max,
 - problem adwersarza.
- ► Algorytm: *Tabu Search*.

- ▶ Problem: Incremental Minimum Spanning Tree,
 - ▶ idea,
 - ► LP a Binary-Based IMST.
- ▶ Problem: Recoverable Robust Minimum Spanning Tree,
 - problem: Min-Max,
 - problem adwersarza.
- ► Algorytm: *Tabu Search*.

- ▶ Problem: Incremental Minimum Spanning Tree,
 - ▶ idea,
 - LP a Binary-Based IMST.
- ▶ Problem: Recoverable Robust Minimum Spanning Tree,
 - problem: Min-Max,
 - problem adwersarza.
- ► Algorytm: *Tabu Search*.

- ▶ Problem: Incremental Minimum Spanning Tree,
 - ▶ idea,
 - ► LP a Binary-Based IMST.
- ▶ Problem: Recoverable Robust Minimum Spanning Tree,
 - problem: Min-Max,
 - problem adwersarza.
- ► Algorytm: *Tabu Search*.

- ▶ Problem: Incremental Minimum Spanning Tree,
 - ▶ idea,
 - LP a Binary-Based IMST.
- ▶ Problem: Recoverable Robust Minimum Spanning Tree,
 - problem: Min-Max,
 - problem adwersarza.
- ► Algorytm: *Tabu Search*.

$$G = (V, E), \quad |V| = n, \quad |E| = m,$$

$$s = [c_1^s, c_2^s, \dots, c_m^s],$$

$$G_s = (V, E, s),$$

$$\forall i \in \{1, 2, \dots, m\} \quad c_{e_i} = c_i^s.$$

$$\exists s, s' : \exists c_i^s \neq c_i^{s'},$$

$$T_s^* = \min arg_{T \in \mathcal{T}(G_s)} \sum_{c \in T} c_e.$$

$$G = (V, E)$$
, $|V| = n$, $|E| = m$, $\mathbf{s} = [c_1^{\mathbf{s}}, c_2^{\mathbf{s}}, \dots, c_m^{\mathbf{s}}]$, $G_{\mathbf{s}} = (V, E, \mathbf{s})$, $\forall i \in \{1, 2, \dots, m\}$ $c_{e_i} = c_i^{\mathbf{s}}$. $\exists \mathbf{s}, \mathbf{s}' : \exists c_i^{\mathbf{s}} \neq c_i^{\mathbf{s}'}$, $T_{\mathbf{s}}^* = \min arg_{T \in \mathcal{T}(G_{\mathbf{s}})} \sum c_{\mathbf{e}}$.

$$G = (V, E), |V| = n, |E| = m,$$

 $\mathbf{s} = [c_1^{\mathbf{s}}, c_2^{\mathbf{s}}, \dots, c_m^{\mathbf{s}}],$
 $G_{\mathbf{s}} = (V, E, \mathbf{s}),$
 $\forall i \in \{1, 2, \dots, m\} \quad c_{e_i} = c_i^{\mathbf{s}}.$

$$\exists \mathbf{s}, \mathbf{s}' : \exists c_i^{\mathbf{s}} \neq c_i^{\mathbf{s}'},$$

$$T_{\mathbf{s}}^* = \min arg_{T \in \mathcal{T}(G_{\mathbf{s}})} \sum_{s \in T} c_{\mathbf{e}}.$$

$$G = (V, E), |V| = n, |E| = m,$$

 $\mathbf{s} = [c_1^{\mathbf{s}}, c_2^{\mathbf{s}}, \dots, c_m^{\mathbf{s}}],$
 $G_{\mathbf{s}} = (V, E, \mathbf{s}),$
 $\forall i \in \{1, 2, \dots, m\} \quad c_{e_i} = c_i^{\mathbf{s}}.$

$$\exists \mathbf{s}, \mathbf{s}' : \exists c_i^{\mathbf{s}} \neq c_i^{\mathbf{s}'},$$

$$T_{\mathbf{s}}^* = \min arg_{T \in \mathcal{T}(G_{\mathbf{s}})} \sum_{e \in T} c_e.$$

$$G = (V, E), |V| = n, |E| = m,$$

 $\mathbf{s} = [c_1^{\mathbf{s}}, c_2^{\mathbf{s}}, \dots, c_m^{\mathbf{s}}],$
 $G_{\mathbf{s}} = (V, E, \mathbf{s}),$
 $\forall i \in \{1, 2, \dots, m\} \quad c_{e_i} = c_i^{\mathbf{s}}.$

$$\exists \mathbf{s}, \mathbf{s}' : \exists c_i^{\mathbf{s}} \neq c_i^{\mathbf{s}'},$$

$$T_{\mathbf{s}}^* = \min arg_{T \in \mathcal{T}(G_{\mathbf{s}})} \sum_{e \in T} c_e.$$

$$G = (V, E), |V| = n, |E| = m,$$

 $\mathbf{s} = [c_1^{\mathbf{s}}, c_2^{\mathbf{s}}, \dots, c_m^{\mathbf{s}}],$
 $G_{\mathbf{s}} = (V, E, \mathbf{s}),$
 $\forall i \in \{1, 2, \dots, m\} \quad c_{e_i} = c_i^{\mathbf{s}}.$

$$\exists \mathbf{s}, \mathbf{s}' : \exists c_i^{\mathbf{s}} \neq c_i^{\mathbf{s}'},$$

$$T_{\mathbf{s}}^* = \min arg_{T \in \mathcal{T}(G_{\mathbf{s}})} \sum_{e \in T} c_e.$$

$$\begin{split} T_{\mathbf{s}}^* &= \min \textit{arg}_{T \in \mathcal{T}(G)} \sum_{e \in \mathcal{T}} c_e^{\mathbf{s}}, \\ f &: \mathcal{T}(G) \times \mathcal{T}(G) \rightarrow \mathbb{Z}^+, \\ f &(\mathcal{T}, \mathcal{T}') = |\mathcal{T} \setminus \mathcal{T}'| = |\mathcal{T}' \setminus \mathcal{T}|, \\ \mathcal{T}(G, \mathcal{T}, k) &= \{\mathcal{T}' : \mathcal{T}' \in \mathcal{T}(G) \ \land \ f(\mathcal{T}, \mathcal{T}') \leqslant k\}, \end{split}$$

$$T^* = \min arg_{T' \in \mathcal{T}(G,T,k)} \sum_{T'} c_e.$$

$$\begin{split} T_{\mathbf{s}}^* &= \min \textit{arg}_{T \in \mathcal{T}(G)} \sum_{e \in \mathcal{T}} c_e^{\mathbf{s}}, \\ f : \mathcal{T}(G) \times \mathcal{T}(G) \rightarrow \mathbb{Z}^+, \\ f (T, T') &= |T \setminus T'| = |T' \setminus T|, \\ \mathcal{T}(G, T, k) &= \{T' : T' \in \mathcal{T}(G) \ \land \ f(T, T') \leqslant k\}, \end{split}$$

$$T^* = \min arg_{T' \in \mathcal{T}(G,T,k)} \sum c_e.$$

$$T_{\mathbf{s}}^* = \min \mathsf{arg}_{T \in \mathcal{T}(G)} \sum_{e \in \mathcal{T}} c_e^{\mathbf{s}},$$
 $f: \mathcal{T}(G) imes \mathcal{T}(G) o \mathbb{Z}^+,$ $f(T, T') = |T \setminus T'| = |T' \setminus T|,$ $\mathcal{T}(G, T, k) = \{T': T' \in \mathcal{T}(G) \ \land \ f(T, T') \leqslant k\},$

$$T^* = \min arg_{T' \in \mathcal{T}(G,T,k)} \sum_{e} c_e.$$

$$T_{\mathbf{s}}^* = \min \mathsf{arg}_{T \in \mathcal{T}(G)} \sum_{e \in \mathcal{T}} c_{e}^{\mathbf{s}},$$
 $f: \mathcal{T}(G) imes \mathcal{T}(G) o \mathbb{Z}^+,$ $f(T, T') = |T \setminus T'| = |T' \setminus T|,$ $\mathcal{T}(G, T, k) = \{T': T' \in \mathcal{T}(G) \ \land \ f(T, T') \leqslant k\},$

$$T^* = \min arg_{T' \in \mathcal{T}(G, T, k)} \sum_{e \in T'} c_e.$$

Problem Incremental - LP

Model LP

$$\begin{aligned} &\min \quad \sum_{e \in E} c_e \cdot x_e, \\ &\text{s.t.} \quad A \cdot \mathbf{x} = \mathbf{b}, \\ &\sum_{e \in \mathcal{T}^* \setminus \mathcal{T}_s^*} x_e \leqslant k, \\ &x_e \geqslant 0, \ \forall e \in E, \end{aligned}$$

Problem Incremental - relaksacja

Relaksacja ograniczeń modelu

$$\begin{aligned} & \min & & \sum_{e \in E} c_e \cdot x_e + \lambda \cdot \left(\sum_{e \in T^* \setminus T_s^*} x_e - k \right), \\ & \text{s.t.} & & A \cdot \mathbf{x} = \mathbf{b}, \\ & & x_e \geqslant 0. \end{aligned} \qquad \forall e \in E.$$

Problem Incremental - cel

$$\sum_{e_i \in E \setminus T_s^*} c_i \cdot x_i + \sum_{e_i \in T_s^*} (c_i - \lambda) \cdot x_i,$$

$$f\left(T^*, T_{\mathbf{s}}^*\right) \leqslant k \wedge \lambda = 0$$
 lub
 $f\left(T^*, T_{\mathbf{s}}^*\right) = k \wedge \lambda \neq 0$,

$$\lambda^* : T' \in \mathcal{T} \left(G_{\mathbf{s}(\lambda^*)}, T, k \right) \wedge f \left(T, T' \right) = k$$

Problem Incremental - cel

$$\sum_{e_i \in E \setminus \mathcal{T}_s^*} c_i \cdot x_i + \sum_{e_i \in \mathcal{T}_s^*} (c_i - \lambda) \cdot x_i,$$

$$f(T^*, T^*_s) \leqslant k \wedge \lambda = 0$$
 lub
 $f(T^*, T^*_s) = k \wedge \lambda \neq 0$,

$$\lambda^*$$
: $T' \in \mathcal{T}\left(G_{\mathbf{s}(\lambda^*)}, T, k\right) \wedge f\left(T, T'\right) = k$

Problem Incremental - cel

$$\sum_{e_i \in E \setminus T_s^*} c_i \cdot x_i + \sum_{e_i \in T_s^*} (c_i - \lambda) \cdot x_i,$$

$$f(T^*, T^*_s) \leqslant k \wedge \lambda = 0$$
 lub
 $f(T^*, T^*_s) = k \wedge \lambda \neq 0$,

$$\lambda^* : T' \in \mathcal{T}(G_{s(\lambda^*)}, T, k) \wedge f(T, T') = k$$

Problem Incremental - czas działania

Algorytmy iteracyjne a model LP

Problem Incremental - czas działania

Algorytmy iteracyjne a model LP

Problem Recoverable - idea

Min-Max

$$\begin{aligned} & \min_{\mathbf{x} \in X} \max_{\mathbf{s} \in \mathcal{S}} v\left(\mathbf{x}, \mathbf{s}\right) \\ \mathbf{s} \in \mathcal{S} &= \left\{\mathbf{s}^{1}, \mathbf{s}^{2}, \dots, \mathbf{s}^{n}\right\} \end{aligned}$$

Recoverable Robust

$$\min_{\mathbf{x} \in X} \left(v\left(\mathbf{x}, \mathbf{s}\right) + \max_{\mathbf{s}' \in S} \min_{\mathbf{y} \in S_{\mathbf{x}}} v\left(\mathbf{y}, \mathbf{s}'\right) \right)$$

Problem Recoverable dla IMST - idea

Problem adwersarza

$$\max_{\mathbf{s}' \in S} \min_{\mathbf{y} \in S_{\mathbf{x}}} v\left(\mathbf{y}, \mathbf{s}'\right)$$

Recoverable Robust Incr. Minimum Spanning Tree

$$\min_{T \in \mathcal{T}(G)} \left(\sum_{e \in T} c_e^{\mathbf{s}} + \max_{\mathbf{s}' \in S} \min_{T' \in \mathcal{T}(G_{\mathbf{s}'}, T, k)} \sum_{e' \in T'} c_{e'}^{\mathbf{s}'} \right)$$

Tabu Search

Recoverable Robust Incr. Minimum Spanning Tree

Problem NP-trudny, nieaproksymowalny.

Dowód poprzez sprowadzenie problemu decyzyjnego Minimum Degree Spanning Tree (NP-trudny) do RRIMST.

Adam Kasperski, Adam Kurpisz, and Paweł Zieliński. Recoverable Robust Combinatorial Optimization Problems, strony 147-–153. Springer International Publishing, Cham, 2014.

- Weź losowy punkt z przestrzeni dopuszczalnych rozwiązań,
- wykonaj ruch w otoczeniu obecnego rozwiązania na podstawie funkcji oceny ruchu,
- powtarzaj aż nie zajdzie pewien warunek,
- wybierz inne losowe rozwiązanie, dalekie od tego, wybranego na początku,
- powtarzaj powyższe kroki aż do momentu, gdy zajdzie pewien warunek końca.

- Weź losowy punkt z przestrzeni dopuszczalnych rozwiązań,
- wykonaj ruch w otoczeniu obecnego rozwiązania na podstawie funkcji oceny ruchu,
- powtarzaj aż nie zajdzie pewien warunek,
- wybierz inne losowe rozwiązanie, dalekie od tego, wybranego na początku,
- powtarzaj powyższe kroki aż do momentu, gdy zajdzie pewien warunek końca.

- Weź losowy punkt z przestrzeni dopuszczalnych rozwiązań,
- wykonaj ruch w otoczeniu obecnego rozwiązania na podstawie funkcji oceny ruchu,
- powtarzaj aż nie zajdzie pewien warunek,
- wybierz inne losowe rozwiązanie, dalekie od tego, wybranego na początku,
- powtarzaj powyższe kroki aż do momentu, gdy zajdzie pewien warunek końca.

- Weź losowy punkt z przestrzeni dopuszczalnych rozwiązań,
- wykonaj ruch w otoczeniu obecnego rozwiązania na podstawie funkcji oceny ruchu,
- powtarzaj aż nie zajdzie pewien warunek,
- wybierz inne losowe rozwiązanie, dalekie od tego, wybranego na początku,
- powtarzaj powyższe kroki aż do momentu, gdy zajdzie pewien warunek końca.

- Weź losowy punkt z przestrzeni dopuszczalnych rozwiązań,
- wykonaj ruch w otoczeniu obecnego rozwiązania na podstawie funkcji oceny ruchu,
- powtarzaj aż nie zajdzie pewien warunek,
- wybierz inne losowe rozwiązanie, dalekie od tego, wybranego na początku,
- powtarzaj powyższe kroki aż do momentu, gdy zajdzie pewien warunek końca.

Funkcja oceny ruchu - różnica wartości rozwiązań

#	$v_{ts}(T,S)$	$\frac{v_{ts}(T,S) - v_{ts}^{LB^*}}{v_{ts}^{LB^*}}$
1	5388	11,28%
3	5151	6,38%
8	4996	3, 18%
10	4988	3,02%
13	4941	2,04%
40	4927	1,76%
116	4880	0,78%
584	4851	0,19%

Tabu Search - parametry

Funkcje oceny ruchu

$$\begin{aligned} \textit{Mval}\left(T, T_1\right) &= \textit{v}_{\mathsf{RRIMST}}\left(T, S\right) - \textit{v}_{\mathsf{RRIMST}}\left(T_1, S\right), \\ \textit{Mval}\left(T, T_1\right) &= \alpha_1 \cdot \left(\textit{v}_{\mathsf{RRIMST}}\left(T, S\right) - \textit{v}_{\mathsf{RRIMST}}\left(T_1, S\right)\right) + \\ + \alpha_2 \cdot \frac{\mathsf{R}\left[i, j\right]}{it} + \alpha_3 \cdot \frac{\mathsf{R}\left[k, l\right]}{it} + \alpha_4 \cdot \mathsf{MR}\left[i, j\right] + \alpha_5 \cdot \mathsf{MR}\left[k, l\right] \end{aligned}$$

Tabu Search - parametry

Funkcje oceny ruchu

$$\begin{aligned} \textit{Mval}\left(T, T_{1}\right) &= \textit{v}_{\mathsf{RRIMST}}\left(T, S\right) - \textit{v}_{\mathsf{RRIMST}}\left(T_{1}, S\right), \\ \textit{Mval}\left(T, T_{1}\right) &= \alpha_{1} \cdot \left(\textit{v}_{\mathsf{RRIMST}}\left(T, S\right) - \textit{v}_{\mathsf{RRIMST}}\left(T_{1}, S\right)\right) + \\ + \alpha_{2} \cdot \frac{\mathsf{R}\left[i, j\right]}{\mathit{it}} + \alpha_{3} \cdot \frac{\mathsf{R}\left[k, I\right]}{\mathit{it}} + \alpha_{4} \cdot \mathsf{MR}\left[i, j\right] + \alpha_{5} \cdot \mathsf{MR}\left[k, I\right] \end{aligned}$$

Tabu Search - parametry

Dolne ograniczenie

$$\begin{split} |S| &= 1 \rightarrow \min_{\mathbf{x} \in X} v\left(\mathbf{x}, \mathbf{s}\right) + \max_{\mathbf{s}' \in S} \min_{\mathbf{y} \in X_{\mathbf{x}}^k} v\left(\mathbf{y}, \mathbf{s}'\right) \equiv \\ &\equiv \min_{\mathbf{x} \in X} v\left(\mathbf{x}, \mathbf{s}\right) + \min_{\mathbf{y} \in X_{\mathbf{x}}^k} v\left(\mathbf{y}, \mathbf{s}'\right), \\ \mathsf{LB} \leqslant \mathsf{LB}^* &= \max_{\mathsf{LB} \in \mathcal{LB}} \mathsf{LB} \leqslant v_{\mathsf{RRIMST}}^*. \end{split}$$