Numerical Algorithms for HPC

Monte Carlo Methods

Introduction to Monte Carlo methods

Overview

- Integration by random numbers
 - why? how?
 - accuracy?
- Algorithms
 - importance sampling
 - Markov Chain Monte Carlo
 - optimisation
- Examples
 - statistical physics
 - finance
 - weather forecasting

Integration – Area under a curve

Tile area with strips of height f(x) and width δx

Analytical:

$$\delta x \rightarrow dx \rightarrow 0$$

Numerical: integral replaced with a sum.

Uncertainty depends on size of δx (N points) and order of scheme, (Trapezoidal, Simpson, etc)

Multi-dimensional integration

1d integration requires *N* points

2d integration requires N^2

Problem of dimension m requires N^m

The "Curse of dimensionality"

Calculating π by Monte Carlo (MC)

Area of circle = πr^2 Area of unit square, s = 1Area of shaded arc, $c = \pi/4$ $c/s = \pi/4$

Estimate ratio of shaded to non-shaded area to determine π

The algorithm

```
y = random() // float [0.0:1.0)
x = random()
p = x*x + y*y //x*x + y*y = 1, eqn of circle
If (p <= 1)
   isInCircle++
Else
   IsOutCircle++
Pi=4*isInCircle / (isOutCircle+isInCircle)</pre>
```


π from 10 darts

$$\pi = 2.8$$

π from 100 darts

$$\pi = 3.0$$

π from 1000 darts

 $\pi = 3.12$

Estimating the uncertainty

- A random or stochastic method
 - -leads to statistical uncertainty
- Estimate this
 - -run each measurement *k* times with different random number sequences
 - -determine the variance of the distribution (plot has k = 100)

$$\sigma^2 = \sum_{i=1}^k (x_i - \bar{x})^2 / (k-1)$$

- Standard deviation is σ
 - how does the uncertainty scale with N, number of samples?

Uncertainty versus N

Log-log plot

$$y = ax^b$$

$$\log y = \log a + b \log x$$

- Exponent b, is gradient
 - b ≈ -0.5
- Law of large numbers and central limit theorem

True for all Monte Carlo methods

Importance Sampling

Distribution often sharply peaked

- especially high-dimensional functions

- often with fine structure detail

- Random sampling
 - $p(x_i) \sim 0$ for most x_i
 - N large for fine structure
- Importance sampling
 - generate weighted distribution
 - proportional to probability

Hill-walking example

• Want to spend your time in areas proportional to height h(x)

- walk randomly to explore all positions x_i
- if you always head up-hill or down-hill
 - get stuck at nearest peak or valley
- if you head up-hill or down-hill with equal probability
 - you don't prefer peaks over valleys
- Strategy
 - take both up-hill and down-hill steps but with a preference for up-hill

Markov Process

- Generate samples of $\{x_i\}$ with probability p(x)
 - x_i no longer chosen independently
- Generate new value from old: evolution

$$x_{i+1} = x_i + \delta x$$

- Accept/reject change based on $p(x_i)$ and $p(x_{i+1})$
 - if $p(x_{i+1}) > p(x_i)$ then accept the change (**uphill** move)

AA Markov 1856-1922

- if $p(x_{i+1}) < p(x_i)$ then accept with probability $\frac{p(x_{i+1})}{p(x_i)}$ (downhill move)
- Asymptotic probability of x_i appearing is proportional to p(x)
- Need random numbers
 - to generate random moves δx and to do accept/reject step

Markov Chain Monte Carlo (MCMC)

- The generated samples form a Markov Chain
 - e.g. the sequence of locations during your hill walk
 - new position generated from the old position
 - accept / reject step is called the Metropolis Algorithm
- The update process must be ergodic
 - able to reach all x
 - if the updates are non-ergodic then probability distribution will not be sampled correctly
- Takes some time to equilibrate
 - starting point is random
 - need lots of updates to forget where you started from

Statistical Physics

- Many applications use Markov Chain Monte Carlo
- Statistical physics is an example
- Systems have extremely high dimensionality
 - e.g. positions and orientations of millions of atoms
 - this is a multi-million-dimensional system
- Use MC to generate "snapshots" or configurations of the system
- Average over these to obtain answer
 - each individual state has no real meaning on its own
 - quantities determined as averages across all the states

Optimisation Problems

- Optima of function rather than averages
- Often minimise or maximise functions of many variables
 - minimum distance for travelling salesman problem
 - minimum cost function for machine learning / neural networks
- Procedure
 - take an initial guess
 - successively update to progress towards solution
- What changes should be proposed?
 - reduce/increase function with each update (steepest descent/ascent) ...
 - ... but this will only find the local minimum/maximum

Stochastic Optimisation

- Add a random component to updates
 - e.g. Simulated Annealing
- Sometimes make "bad" moves
 - possible to escape from local minima
 - but want more up-hill steps than down-hill ones
- Hill-walking example
 - find the highest peak in the Alps by maximising h(x)

MC in Finance

- Price model called Black-Scholes equation
 - Partial Differential Equation (PDE)
 - based on Geometric Brownian Motion (GBM) of underlying asset
 - this is a random process use random numbers!
- Assumes a "perfect" market
 - markets are not perfect, especially during crashes!
 - many extensions
 - area of active research
- Use MC to generate many different GBM paths
 - statistically analyse ensemble

Numerical Weather Prediction

Image taken by NASA's Terra Satellite 7th January 2010

Britain in the grip of a very cold spell of weather

NWP in the UK

- Weather forecasts generated by the UK Met Office
 - code is called the *Unified Model*
 - same code runs climate model and weather forecast
 - can cover the whole globe

- Cray XC40
- almost half a million processor-cores
- weighs 140 tonnes

https://www.metoffice.gov.uk/about-us/what/technology/supercomputer

Met Office

Initial conditions and the Butterfly effect

The equations are extremely sensitive to initial conditions

- small changes in the initial conditions result in large changes in outcome

- Discovered by Edward Lorenz circa 1960
 - 12-variable computer model
 - tiny variations in initial input parameters
 - totally different final weather patterns
- The Butterfly effect
 - "flap of a butterfly's wings can affect the path of a tornado"
 - my prediction is wrong because of effects too small to see

Chaos, randomness and probability

- A Chaotic system evolves to very different states from close initial states
 - no discernible pattern
- Use this to estimate how reliable our forecast is:
- Change the initial conditions a small amount
 - –based on uncertainty of measurement
 - -run a new forecast
- Repeat many times (random numbers to do perturbation)
 - -generate an "ensemble" of forecasts
 - -van then estimate the probability of the forecast being correct
- If we ran 100 simulations and 70 said it would rain
 - -probability of rain is 70%
 - –called ensemble weather forecasting

Parallelisation

- Real simulations use parallel computers
- Large simulations can require trillions of random numbers!
 - parallelisation introduces additional complexities ...
- Run separate random number generators on each process
 - for speed of execution
- Ensure they are all given different seeds
 - so each process generates different random numbers
- Difficult to maintain reproducibility
 - e.g. what happens if you change the number of parallel processes?

Summary

- Random numbers used in many simulations
- Mainly to efficiently sample a large space of possibilities
- Different random numbers explore different possibilities
 - re-running with a different seed gives different answer
 - leads to a statistical uncertainty
- For MC simulation with N samples, error scales as $1/\sqrt{N}$
 - can control the error by choosing appropriate N
 - reducing error by factor of 10 takes 100 times longer!

