TRƯỜNG ĐẠI HỌC BÁCH KHOA ĐẠI HỌC QUỐC GIA THÀNH PHỐ HỒ CHÍ MINH KHOA KHOA HỌC VÀ KỸ THUẬT MÁY TÍNH

MÔN: KIẾN TRÚC MÁY TÍNH BÁO CÁO BÀI TẬP CÁ NHÂN

GVHD: NGUYỄN XUÂN MINH **SINH VIÊN THỰC HIỆN:** NGUYỄN HỮU KHANG - 2011365

Câu 1:

Câu trả lời đã được hiện thực trong file Mn_2011365.asm nộp kèm theo file báo cáo này.

Câu 2:

Câu hỏi:

Cho danh sách địa chỉ 32-bit truy xuất theo địa chỉ word như sau:

- 5, 164, 45, 4, 251, 90, 173, 164, 91, 44, 186, 252
- a) Nếu dùng bộ nhớ cache Direct-mapped có 32 block, mỗi block chứa 1 word. Hãy xác định địa chỉ theo bit, từ đó suy ra các vùng tag, index lưu trữ vào cache. Cho biết trạng thái Hit/Miss của chuỗi truy xuất trên.
- b) Làm lại câu a) với bộ nhớ cache Direct-mapped có 16 block, mỗi block chứa 2 word.
- c) Hãy xác định tổng số bit bộ nhớ cần dùng để xây dựng bộ nhớ cache trong cả 2 trường hợp. Biết rằng 1 phần tử cache sẽ chứa 1 bit V, các bit tag và dữ liệu.

Lời giải:

a) Bộ nhớ cache Direct-mapped có 32 block (2^5), do đó Index cần 5 bit để lưu trữ, mỗi block chứa 1 word do đó Offset cần 0 bit để lưu trữ, còn lại 32 - 5 - 0 = 27 bit chứa Tag. Do đó ta có biểu diễn địa chỉ sau:

Tag	Index	Offset
27	5	0

Bởi vì là địa chỉ word cho nên ta phải nhân mỗi địa chỉ cho 4 (dịch trái 2 bit) để chuyển thành địa chỉ byte.

Từ đó ta có bảng sau thể hiện kết quả của câu a):

Địa	Địa	Địa chỉ Bit	Tag	Index	Hit/Miss
chỉ	chỉ		(27)	(5)	
word	Byte				
5	20	00000000 00000000	0	20	Miss
		00000000 00010100			

164	656	00000000 00000000 00000010 10010000	20	16	Miss
45	180	00000000 00000000	5	20	Miss
4	16	00000000 10110100	0	16	Miss
251	1004	00000000 00010000	31	12	Miss
90	360	00000011 11101100 00000000 00000000	11	8	Miss
173	692	00000001 01101000 00000000 00000000	21	20	Miss
164	656	00000010 10110100 00000000 00000000	20	16	Hit
91	364	00000010 10010000 0000000 00000000	11	12	Miss
44	176	00000001 01101100 00000000 00000000	5	16	Miss
186	744	00000000 10110000 0000000 00000000	23	8	Miss
		00000010 11101000	_		Miss
252	1008	00000000 00000000 00000011 11110000	31	16	IVIISS

b) Bộ chớ cache Direct-mapped có 16 block (2^4), do đó Index cần 4 bit để lưu trữ, mỗi block chứa 2 word (2^1 =2), do đó Offset cần 1 bit để lưu trữ, còn lại 32-4-1=27

Tag	Index	Offset
27	4	1

Bởi vì là địa chỉ word cho ta phải nhân mỗi địa chỉ cho 4 (dịch trái 2 bit) để chuyển thành địa byte.

Địa	Địa	Địa chỉ Bit	Tag	Index	Offset	Hit/Miss
chỉ	chỉ		(27)	(4)	(1)	
word	Byte					
5	20	00000000 00000000	0	10	4	Miss
		00000000 00010100				

164	656	00000000 00000000	20	8	0	Miss
		00000010 10010000				
45	180	00000000 00000000	5	10	0	Miss
		00000000 10110100				
4	16	00000000 00000000	0	8	0	Miss
		00000000 00010000				
251	1004	00000000 00000000	31	6	0	Miss
		00000011 11101100				
90	360	00000000 00000000	11	4	0	Miss
		00000001 01101000				
173	692	00000000 00000000	21	10	0	Miss
		00000010 10110100				
164	656	00000000 00000000	20	8	0	Hit
		00000010 10010000				
91	364	00000000 00000000	11	6	0	Miss
		00000001 01101100				
44	176	00000000 00000000	5	8	0	Miss
		00000000 10110000				
186	744	00000000 00000000	23	4	0	Miss
		00000010 11101000				
252	1008	00000000 00000000	31	8	0	Miss
		00000011 11110000				

- c) Tổng số bit bộ nhớ cần dùng để xây dựng bộ nhớ cache trong cả 2 trường hợp:
- Câu a: Bộ nhớ cache Direct-mapped có 32 block, mỗi block chứa 1 word:
- + Bit Valid: 1 bit
- + Bit Tag: 32 5 0 = 27 (bit)
- + Bit Data: 1*4*8 = 32 (bit)

Số bit/block = Valid + Tag + Data =
$$1 + 27 + 32 = 60$$

Tổng số bit bộ nhớ cache = Số bit/block * số cache/block = 60 * 32 = 1920 (bit)

- Câu b: Bộ nhớ cache Direct-mapped có 16 block, mỗi block chưa 2 word:
- + Bit Valid: 1 bit

+ Bit Tag: 32 - 4 - 1 = 27 (bit)

+ Bit Data: 2*4*8 = 64 (bit)

Số bit/block = Valid + Tag + Data = 1 + 27 + 64 = 92

Tổng số bit bộ nhớ cache = Số bit/block * số cache/block = 92 * 16 = 1472 (bit)