Rank-73737 over GF(4)

January 15, 2021

The equation

The equation of the surface is:

$$X_1^3 + X_2^3 + X_0 X_3^2 + X_0 X_1 X_2 = 0$$

(0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0) The point rank of the equation over ${\rm GF}(4)$ is 1498764653

General information

Number of lines	9
Number of points	29
Number of singular points	4
Number of Eckardt points	5
Number of double points	6
Number of single points	18
Number of points off lines	0
Number of Hesse planes	0
Number of axes	0
Type of points on lines	5^{9}
Type of lines on points	$3^5, 2^6, 1^{18}$

Singular Points

The surface has 4 singular points:

$$\begin{array}{l} 0:\, P_0 = \mathbf{P}(1,0,0,0) = \mathbf{P}(1,0,0,0) \\ 1:\, P_4 = \mathbf{P}(1,1,1,1) = \mathbf{P}(1,1,1,1) \\ 2:\, P_{66} = \mathbf{P}(1,\omega^2,\omega,1) = \mathbf{P}(1,3,2,1) \end{array}$$

The 9 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}_5 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}_5 = \mathbf{Pl}(1, 0, 1, 0, 1, 0)_{33}$$

$$\ell_{1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & \omega^{2} & \omega \end{bmatrix}_{11} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 3 & 2 \end{bmatrix}_{11} = \mathbf{PI}(3,0,2,0,1,0)_{42}$$

$$\ell_{2} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & \omega & \omega^{2} \end{bmatrix}_{14} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 2 & 3 \end{bmatrix}_{14} = \mathbf{PI}(2,0,3,0,1,0)_{48}$$

$$\ell_{3} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{345} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{345} = \mathbf{PI}(0,1,0,1,0,0)_{13}$$

$$\ell_{4} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{106} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{106} = \mathbf{PI}(1,1,1,1,0,1)_{150}$$

$$\ell_{5} = \begin{bmatrix} 0 & 1 & \omega^{2} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{355} = \begin{bmatrix} 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{355} = \mathbf{PI}(0,3,0,1,0,0)_{15}$$

$$\ell_{6} = \begin{bmatrix} 1 & 0 & \omega & 1 \\ 0 & 1 & \omega^{2} & 0 \end{bmatrix}_{129} = \begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 3 & 0 \end{bmatrix}_{129} = \mathbf{PI}(3,2,2,3,0,1)_{173}$$

$$\ell_{7} = \begin{bmatrix} 0 & 1 & \omega & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{350} = \begin{bmatrix} 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{350} = \mathbf{PI}(0,2,0,1,0,0)_{14}$$

$$\ell_{8} = \begin{bmatrix} 1 & 0 & \omega^{2} & 1 \\ 0 & 1 & \omega & 0 \end{bmatrix}_{149} = \begin{bmatrix} 1 & 0 & 3 & 1 \\ 0 & 1 & 2 & 0 \end{bmatrix}_{149} = \mathbf{PI}(2,3,3,2,0,1)_{166}$$

Rank of lines: (5, 11, 14, 345, 106, 355, 129, 350, 149)

Rank of points on Klein quadric: (33, 42, 48, 13, 150, 15, 173, 14, 166)

Eckardt Points

The surface has 5 Eckardt points:

 $0: P_0 = \mathbf{P}(1, 0, 0, 0) = \mathbf{P}(1, 0, 0, 0),$

 $1: P_3 = \mathbf{P}(0, 0, 0, 1) = \mathbf{P}(0, 0, 0, 1),$

 $2: P_4 = \mathbf{P}(1, 1, 1, 1) = \mathbf{P}(1, 1, 1, 1),$

 $3: P_{66} = \mathbf{P}(1, \omega^2, \omega, 1) = \mathbf{P}(1, 3, 2, 1),$

 $4: P_{78} = \mathbf{P}(1, \omega, \omega^2, 1) = \mathbf{P}(1, 2, 3, 1).$

Double Points

The surface has 6 Double points:

The double points on the surface are:

$$P_{42} = (0, 1, 1, 1) = \ell_0 \cap \ell_3$$

$$P_{65} = (0, 3, 2, 1) = \ell_1 \cap \ell_5$$

$$P_{77} = (0, 2, 3, 1) = \ell_2 \cap \ell_7$$

$$P_{11} = (0, 1, 1, 0) = \ell_3 \cap \ell_4$$

Single Points

The surface has 18 single points:

The single points on the surface are:

$$0: P_{27} = (1, 1, 0, 1)$$
 lies on line ℓ_4

$$1: P_{31} = (1, 2, 0, 1)$$
 lies on line ℓ_8

2 :
$$P_{35} = (1, 3, 0, 1)$$
 lies on line ℓ_6

$$P_{15} = (0, 2, 1, 0) = \ell_5 \cap \ell_6$$

 $P_{19} = (0, 3, 1, 0) = \ell_7 \cap \ell_8$

$$3: P_{39} = (1,0,1,1)$$
 lies on line ℓ_4

$$4: P_{43} = (2, 1, 1, 1)$$
 lies on line ℓ_0

5:
$$P_{44} = (3, 1, 1, 1)$$
 lies on line ℓ_0

 $\begin{array}{lll} 6: \ P_{45} = (0,2,1,1) \ \text{lies on line} \ \ell_5 \\ 7: \ P_{49} = (0,3,1,1) \ \text{lies on line} \ \ell_7 \\ 8: \ P_{54} = (1,0,2,1) \ \text{lies on line} \ \ell_6 \\ 9: \ P_{57} = (0,1,2,1) \ \text{lies on line} \ \ell_7 \\ 10: \ P_{61} = (0,2,2,1) \ \text{lies on line} \ \ell_3 \\ 11: \ P_{67} = (2,3,2,1) \ \text{lies on line} \ \ell_1 \\ 12: \ P_{68} = (3,3,2,1) \ \text{lies on line} \ \ell_1 \\ \end{array}$

The single points on the surface are:

Points on surface but on no line

The surface has 0 points not on any line: The points on the surface but not on lines are:

Line Intersection Graph

	$\begin{array}{c} 012345678 \\ \hline 011100101 \\ 101011001 \\ 11001010 \\ 011000110 \\ 011100101 \\ 01010110 \\ 101011001 \\ 100110101 \\ 110010110 \\ 110010110 \\ \end{array}$
0	011100101
1	101011001
2	110010110
3	100011010
4	011100101
5	010100110
6	101011001
7	001101001
8	110010110

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2	ℓ_3	ℓ_6	ℓ_8
in point	P_0	P_0	P_{42}	P_4	P_4

Line 1 intersects

Line	ℓ_0	ℓ_2	ℓ_4	ℓ_5	ℓ_8
in point	P_0	P_0	P_{66}	P_{65}	P_{66}

Line 2 intersects

Line	ℓ_0	ℓ_1	ℓ_4	ℓ_6	ℓ_7
in point	P_0	P_0	P_{78}	P_{78}	P_{77}

Line 3 intersects

Line	ℓ_0	ℓ_4	ℓ_5	ℓ_7
in point	P_{42}	P_{11}	P_3	P_3

Line 4 intersects

Line	ℓ_1	ℓ_2	ℓ_3	ℓ_6	ℓ_8
in point	P_{66}	P_{78}	P_{11}	P_{78}	P_{66}

Line 5 intersects

Line	ℓ_1	ℓ_3	ℓ_6	ℓ_7
in point	P_{65}	P_3	P_{15}	P_3

Line 6 intersects

Line	ℓ_0	ℓ_2	ℓ_4	ℓ_5	ℓ_8
in point	P_4	P_{78}	P_{78}	P_{15}	P_4

Line 7 intersects

Line	ℓ_2	ℓ_3	ℓ_5	ℓ_8
in point	P_{77}	P_3	P_3	P_{19}

Line 8 intersects

Line	ℓ_0	ℓ_1	ℓ_4	ℓ_6	ℓ_7
in point	P_4	P_{66}	P_{66}	P_4	P_{19}

The surface has 29 points: The points on the surface are:

$0: P_0 = (1, 0, 0, 0)$	$10: P_{42} = (0, 1, 1, 1)$	$20: P_{67} = (2, 3, 2, 1)$
$1: P_3 = (0,0,0,1)$	$11: P_{43} = (2, 1, 1, 1)$	$21: P_{68} = (3, 3, 2, 1)$
$2: P_4 = (1, 1, 1, 1)$	$12: P_{44} = (3, 1, 1, 1)$	$22: P_{70} = (1,0,3,1)$
$3: P_{11} = (0, 1, 1, 0)$	13: $P_{45} = (0, 2, 1, 1)$	$23: P_{73} = (0, 1, 3, 1)$
$4: P_{15} = (0, 2, 1, 0)$	$14: P_{49} = (0, 3, 1, 1)$	$24: P_{77} = (0, 2, 3, 1)$
$5: P_{19} = (0, 3, 1, 0)$	15: $P_{54} = (1,0,2,1)$	$25: P_{78} = (1, 2, 3, 1)$
$6: P_{27} = (1, 1, 0, 1)$	$16: P_{57} = (0, 1, 2, 1)$	$26: P_{79} = (2, 2, 3, 1)$
$7: P_{31} = (1, 2, 0, 1)$	17: $P_{61} = (0, 2, 2, 1)$	$27: P_{80} = (3, 2, 3, 1)$
$8: P_{35} = (1, 3, 0, 1)$	$18: P_{65} = (0, 3, 2, 1)$	$28: P_{81} = (0,3,3,1)$
$9: P_{39} = (1,0,1,1)$	19: $P_{66} = (1, 3, 2, 1)$	