

Matemática IV - Ing. Mecánica - 2018 Dra. Andrea Ridolfi Ing. Marcos Saromé

Guía de Actividad 5:

Ejercicio 1.

Probar que si m y n son enteros,

$$\int_0^{2x} e^{im\theta} e^{-in\theta} d\theta = \begin{cases} 0 & cuando & m \neq n \\ 2\pi & cuando & z = 0 \end{cases}$$

Ejercicio 2.

Aplicar la desigualdad [10], Sección 30, para probar que en todo valor x del intervalo $-1 \le x \le 1$, las funciones

$$P_n(x) = \frac{1}{\pi} \int_0^{\pi} (x + i\sqrt{1 - x^2} \cos \theta)^n d\theta \ n = 0, 2, 3, \dots$$

satisfacen la desigualdad $|P_n(x)| \le 1$

Ejercicio 3.

Supongamos que una función f(z) es analítica en un punto $z_0 = z_0(t)$ de un arco diferenciable $z = z(t) (a \le t \le b)$ Probar que si w(t) = f[z(t)], entonces

$$w'(t) = f'[z(t)]z'(t)$$

cuando $t = t_0$

Sugerencia: Escribir f(z) = u(x, y) + iv(x, y) y z(t) = x(t) + iy(t) de modo que

$$w(t) = u[x(t), y(t)] + iv[x(t), y(y)]$$

Aplicar entonces la regla de la cadena para funciones de dos variaables para escribir

$$w' = u_x x' + u_y y' + i(v_x x' + v_y y')$$

y utilizar las ecuaciones de Cauchy-Riemann.

Ejercicio 4.

Dados los contornos C y las funciones f usar representaciones paramétricas para C, o para los fragmentos de C, con el fin de calcular:

$$\int_C f(z)dz$$

1

$$f(z) = (z+2)/z$$
 y C es

- 1. el semicírculo $z = 2e^{i\theta} (0 \le \theta \le \pi)$
- 2. el semicírculo $z=2e^{i\theta}(\pi\leq\theta\leq2\pi)$

3. el círculo $z = 2e^{i\theta} (0 \le 2\pi)$

Ejercicio 5.

Sean C_1 y C_2 los círculos $z = Re^{i\theta} (0 \le \theta \le 2\pi)$ y $z = z_0 + Re^{i\theta} (0 \le \theta \le 2\pi)$ respectivamente. Usar estas representaciones paramétrica para probar que

$$\int_C f(z)dz = \int_{C_0} f(z - z_0)dz$$

cuando f es continua a trozos sobre C

Ejercicio 6.

Sea C_0 el circulo $|z-z_0|=R$ en sentido contrario al de las agujas de un reloj. Usar la representación paramétrica $z=z_0+Re^{i\theta}(-\pi\leq\theta\leq\pi)$ para C_0 con objeto de deducir las siguientes fórmulas de integración:

1.
$$\int_{C_0} \frac{dz}{z - z_0} = 2\pi i$$

2.
$$\int_{C_0} (z-z_0)^{n-1} dz = 0 (n = \pm 1, \pm 2, ...)$$

3. $\int_{C_0} (z-z_0)^{a-1} = i\frac{2R^a}{a} \operatorname{sen}(a\pi)$ donde a es cualquier número real distinto de cero y donde se toman la rama principal del integrando y el valor principal de R^a

Ejercicio 7.

Demostrar que si f es analítica en el interior de y sobre un contorno cerrado simple C y Z_0 no esta sobre C, entonces

$$\int_{C} \frac{f'(z)dz}{z - z_{0}} = \int_{C} \frac{f(z)dz}{(z - z_{0})^{2}}$$

Ejercicio 8.

Sea C el círculo unidad $z=e^{i\theta}(-\pi \leq \theta \leq \pi)$. Probar en primer lugar que, para cualquier constante a real,

$$\int \frac{e^{az}}{z} dz = 2\pi i$$

A continuación, escribir la integral en términos de θ para deducir la fórmula de integración

$$\int_0^{\pi} e^{a\cos\theta} \cos(a\sin\theta) d\theta = \pi$$

Ejercicio 9.

Probar de dos maneras que la sucesión

$$z_n = -2 + i \frac{(-1)^n}{n} (n = 1, 2, \dots)$$

converge a -2.

Ejercicio 10.

Sean r_n los módulos y Θ_n los argumentos principales de los números complejos z_n del Ejercicio anterior. Demostrar que la sucesión $r_n (n=1,2,\dots)$ converge, pero la sucesión $\Theta_n (n=1,2,\dots)$ no converge.

Ejercicio 11.

Probar que

si
$$\lim_{n\to\infty} z_n = z$$
 entonces $\lim_{n\to\infty} |z_n| = |z|$

Ejercicio 12.

Considerando los restos $\rho_N(z)$ comprobar que

$$\sum_{n=1}^{\infty}z=\frac{z}{1-z}$$
 para $|z|<1$

Sugerencia: Usar la identidad (Ej 18, Sec 7)

$$1 + z + z + \dots + z^N = \frac{1 - z^{N+1}}{1 - z} (z \neq 1)$$

para probar que $\rho_N(z) = z^{N+1}/(1-z)$

Ejercicio 13.

Escribamos $z = re^{i\theta}$, con 0 < r < 1, en la fórmula de suma obtenida en el ejercicio anterior. Probar entonces, con ayuda del Teorema 2 de la Sección 44, que

$$\sum_{n=1}^{\infty} r^n \cos n\theta = \frac{r \cos \theta - r^2}{1 - 2r \cos \theta + r^2}$$

$$\sum_{n=1}^{\infty} r^n \operatorname{sen} n\theta = \frac{r \operatorname{sen} \theta - r^2}{1 - 2r \cos \theta + r^2}$$

cuando 0 < r < 1. (Nótese que estas fórmulas son asimismo válidas cuando r = 0.)

Ejercicio 14.

Probar que el límite de una sucesión convergente de números complejos es único, recurriendo al correspondiente resultado para las sucesiones reales.

Ejercicio 15.

Demostrar que $si \sum_{n=1}^{\infty} z_n = S$, entonces $\sum_{n=1}^{\infty} \overline{z_n} = \overline{S}$

Ejercicio 16.

Sea c cualquier número complejo. Probar que

si
$$\sum_{n=1}^{\infty} z_n = S$$
, entonces $\sum_{n=1}^{\infty} cz_n = cS$

Ejercicio 17.

Teniendo en cuenta el resultado análogo para series reales, y por referencia al Teorema 2 de la Sección 44, probar que si

$$\sum_{n=1}^{\infty} z_n = S$$
 y $\sum_{n=1}^{\infty} w_n = T$ entonces $\sum_{n=1}^{\infty} (z_n + w_n) = S + T$

Ejercicio 18.

Hallar la representación en serie de Maclaurin

$$z \cosh(z) = \sum_{n=1}^{\infty} \frac{z^{3n+1}}{(2n)!} (|z| < \infty)$$

Ejercicio 19.

Desarrollar $\cos z$ en serie de Taylor centrada en el punto $z=\pi/2$

Ejercicio 20.

Usar la relación sen $z = (e^{iz} e^{-iz})/(2i)$, junto con los ejercicios 16 y 17, al justificar ciertos pasos, para deducir la serie de Maclaurin de sen z a partir de la de e^x

Entrega

Se deben entregar obligatoriamente los ejercicios: