B. Claims

A complete listing of all the claims appears below; this listing replaces all earlier amendments and listings of the claims.

1. (Currently Amended) A polyhydroxyalkanoate comprising one or more units represented by chemical formula (1) in a molecule:

$$\begin{array}{c}
R\\N-H\\C=O\\ (CH_2)m\\ O\\ (CH_2)n
\end{array}$$

wherein R represents -A₁-SO₂R₁, R₁ represents OH, a halogen atom, ONa, OK, or OR_{1a} , R_{1a} and A_1 each independently represent a substituted or unsubstituted aliphatic hydrocarbon structure, a substituted or unsubstituted aromatic ring structure, or a substituted or unsubstituted heterocyclic structure, n represents an integer selected from 1 to 4, m represents an integer selected from θ -1 to 8, and when multiple units exist the polyhydroxyalkanoate includes more than one unit of the chemical formula (1), R, R₁, R_{1a}, A₁, m, and n are independently selected for each unit.

2. (Currently Amended) A polyhydroxyalkanoate according to claim 1, comprising one or more units each represented by chemical formula (2), (3), (4A), or (4B) in a molecule as units of the chemical formula (1):

2

$$\begin{array}{c} SO_2R_2 \\ A_2 \\ N-H \\ C=O \\ (CH_2)m \\ \\ O \end{array}$$

$$(CH_2)n \qquad (2)$$

wherein R_2 represents OH, a halogen atom, ONa, OK, or OR_{2a} , R_{2a} represents a linear or branched alkyl group having 1 to 8 carbon atoms, or a substituted or unsubstituted phenyl group, A_2 represents a linear or branched alkylene group having 1 to 8 carbon atoms, n represents an integer selected from 1 to 4, m represents an integer selected from θ -1 to 8, and when multiple units exist the polyhydroxyalkanoate includes more than one unit of the chemical formula (2), A_2 , R_2 , R_{2a} , m, and n are independently selected for each unit,

$$R_{3b}$$
 R_{3e}
 R_{3e}

wherein R_{3a} , R_{3b} , R_{3c} , R_{3d} , and R_{3e} each independently represent SO_2R_{3f} (R_{3f} represents OH, a halogen atom, ONa, OK, or OR_{3f1} (R_{3f1} represents a linear or branched alkyl group having 1 to 8 carbon atoms, or a substituted or unsubstituted phenyl group)), a hydrogen

atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an OH group, an NH₂ group, an NO₂ group, COOR_{3g} (R_{3g} represents an H atom, an Na atom, or a K atom), an acetamide group, an OPh group, an NHPh group, a CF₃ group, a C_2F_5 group, or a C_3F_7 group (Ph represents a phenyl group), and at least one of these groups represents SO_2R_{3f} , n represents an integer selected from 1 to 4, m represents an integer selected from θ -1 to 8, and when the polyhydroxyalkanoate includes more than one unit of the chemical formula (3)multiple units exist, R_{3a} , R_{3b} , R_{3c} , R_{3d} , R_{3e} , R_{3f} , R_{3g} , m, and n are independently selected for each unit,

$$R_{4e}$$
 R_{4e}
 R

wherein R_{4a}, R_{4b}, R_{4c}, R_{4d}, R_{4e}, R_{4f}, and R_{4g} each independently represent SO₂R_{4o} (R_{4o} represents OH, a halogen atom, ONa, OK, or OR_{4o1} (R_{4o1} represents a linear or branched alkyl group having 1 to 8 carbon atoms, or a substituted or unsubstituted phenyl group)), a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an OH group, an NH₂ group, an NO₂ group, COOR_{4p} (R_{4p} represents an H atom, an Na atom, or a K atom), an acetamide group, an OPh group, an NHPh group, a CF₃ group, a C₂F₅ group, or a C₃F₇ group (Ph represents a phenyl group), and at least

one of these groups represents SO_2R_{4o} , n represents an integer selected from 1 to 4 and m represents an integer selected from 0-1 to 8, and when the polyhydroxyalkanoate includes more than one unit of the chemical formula (4A) multiple units exist, R_{4a} , R_{4b} , R_{4c} , R_{4d} , R_{4e} , R_{4f} , R_{4g} , R_{4o} , R_{4o1} , R_{4p} , m, and n are independently selected for each unit,

$$R_{4h}$$
 R_{4h}
 R_{4h}

wherein R_{4h}, R_{4i}, R_{4j}, R_{4k}, R_{4h}, R_{4m}, and R_{4n} each independently represent SO₂R_{4o} (R_{4o} represents OH, a halogen atom, ONa, OK, or OR_{4o1} (R_{4o1} represents a linear or branched alkyl group having 1 to 8 carbon atoms, or a substituted or unsubstituted phenyl group)), a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an OH group, an NH₂ group, an NO₂ group, COOR_{4p} (R_{4p} represents an H atom, an Na atom, or a K atom), an acetamide group, an OPh group, an NHPh group, a CF₃ group, a C₂F₅ group, or a C₃F₇ group (Ph represents a phenyl group), and at least one of these groups represents SO₂R_{4o}, n represents an integer selected from 1 to 4, m represents an integer selected from 0-1 to 8, and when the polyhydroxyalkanoate includes more than one unit of the chemical formula (4B)multiple units exist, R_{4h}, R_{4i}, R_{4j}, R_{4k}, R_{4l}, R_{4m}, R_{4n}, R_{4o}, R_{4o1}, R_{4p}, m, and n are independently selected for each unit.

3. (Currently Amended) A polyhydroxyalkanoate comprising one or more units represented by chemical formula (5):

$$(CH_2)m$$

$$(CH_2)n$$

$$(CH_2)n$$

$$(5)$$

wherein R_5 represents a hydrogen atom, a group for forming a salt, or R_{5a} , R_{5a} represents a linear or branched alkyl or aralkyl group having 1 to 12 carbon atoms, or a group having a saccharide, n represents an integer selected from 1 to 4, m represents an integer selected from θ -1 to 8, when θ -2 to 8, when θ -1 to 9, and when θ -1 to 8, when θ -1 to 8, when θ -2 to 9, and when θ -1 to 8, when θ -2 to 9, and θ -1 to 10 to 10

4. (Currently Amended) A polyhydroxyalkanoate comprising one or more units represented by chemical formula (6):

$$(CH_2)m$$
 $(CH_2)n^{-O}$
 $(CH_2)n^{-O}$

wherein n represents an integer selected from 1 to 4, when n represents an integer

selected from 1, 2, and 4, m represents an integer selected from 0-1-to 8, when n = 3, m represents an integer selected from 0-and-2 to 8, and when the polyhydroxyalkanoate includes more than one unit of the chemical formula (6)multiple units exist, m and n are independently selected for each unit.

5. (Currently Amended) A polyhydroxyalkanoate according to any one of claims 1 to 4, further comprising a unit represented by chemical formula (7) in a molecule:

,

wherein R₇ represents a linear or branched alkylene group having 1 to 11 carbon atoms, an alkyleneoxyalkylene group each alkylene of which has 1 or 2 carbon atoms (alkylene groups each independently have 1 or 2 carbon atoms), or an alkylidene group having 1 to 5 carbon atoms, which may be substituted by an aryl group, and when the polyhydroxyalkanoate includes more than one unit of the chemical formula (7)multiple units exist, R₇ is independently for each unit.

6. (Currently Amended) A method of producing a polyhydroxyalkanoate represented by chemical formula (6) comprising a step of polymerizing a compound represented by chemical formula (8) in a presence of a catalyst:

$$(CH_2)n$$
 O
 O
 O
 O
 O
 O
 O
 O

wherein n represents an integer selected from 1 to 4, when n represents an integer selected from 1, 2, and 4, m represents an integer selected from θ -1 to 8, and when n = 3, m represents an integer selected from θ -1 to 8,

$$(CH_2)m$$
 $(CH_2)n^{-O}$
 $(CH_2)n^{-O}$

wherein n represents an integer selected from 1 to 4, when n represents an integer selected from 1, 2, and 4, m represents an integer selected from θ -1 to 8, when n = 3, m represents an integer selected from θ -and-2 to 8, and when the polyhydroxyalkanoate includes more than one unit of the chemical formula (6)multiple units exist, m and n are independently selected for each unit.

7. (Currently Amended) A method of producing a polyhydroxyalkanoate containing a unit represented by chemical formula (10) comprising a step of oxidizing a double bond portion of a polyhydroxyalkanoate containing a unit represented by chemical formula (9):

$$(CH_2)m$$
 $(CH_2)n^{-O}$
 $(CH_2)n^{-O}$

wherein n represents an integer selected from 1 to 4 and m represents an integer selected from θ -1 to 8, and when the oxidized polyhydroxyalkanoate includes more than one unit of the chemical formula (9)multiple units exist, m and n are independently selected for each unit,

$$(CH2)m$$

$$(CH2)n$$

$$(CH2)n$$

$$(1 0)$$

wherein R_{10} represents a hydrogen atom or a group for forming a salt, n represents an integer selected from 1 to 4, m represents an integer selected from θ -1 to 8, and when the produced polyhydroxyalkanoate includes more than one unit of the chemical formula (10)multiple units exist, m, n, and R_{10} are independently selected for each unit.

8. (Currently Amended) A method of producing a polyhydroxyalkanoate containing a unit represented by chemical formula (1) comprising a step of subjecting a polyhydroxyalkanoate containing a unit represented by chemical formula (10) and at least one amine compound represented by chemical formula (11) to a condensation reaction:

$$COOR_{10}$$
 $(CH_2)m$
 $(CH_2)n^{-O}$
 $(CH_2)n^{-O}$

wherein R_{10} represents hydrogen or a group for forming a salt, n represents an integer selected from 1 to 4, m represents an integer selected from θ -1 to 8, and when the polyhydroxyalkanoate subjected to the condensation reaction includes more than one unit of the chemical formula (10)multiple units exist, m, n, and R_{10} are independently selected for each unit:

$$H_2N - A_3 - SO_2R_{11}$$
 (11)

wherein R₁₁ represents OH, a halogen atom, ONa, OK, or OR_{11a}, R_{11a} and A₃ are each independently selected from groups each having a substituted or unsubstituted aliphatic hydrocarbon structure, a substituted or unsubstituted aromatic ring structure, or a substituted or unsubstituted heterocyclic structure, and when more than one compound of the chemical formula (11) is used in the condensation reaction multiple units exist, R₁₁, R_{11a}, and A₃ are independently selected for each unitcompound of the chemical formula (11),

$$C = O$$
 $C = O$
 $C =$

10

wherein R represents $-A_1$ -SO₂R₁, R₁ represents OH, a halogen atom, ONa, OK, or OR_{1a}, R_{1a} and A₁ each independently represent a group having a substituted or unsubstituted aliphatic hydrocarbon structure, a substituted or unsubstituted aromatic ring structure, or a substituted or unsubstituted heterocyclic structure, n represents an integer selected from 1 to 4, m represents an integer selected from 0-1 to 8, and when the produced polyhydroxyalkanoate includes more than one unit of the chemical formula (1)multiple units exist, R, R₁, R_{1a}, A₁, m, and n are independently selected for each unit.

9. (Currently Amended) A method of producing a polyhydroxyalkanoate containing a unit represented by chemical formula (101) comprising the steps of:

allowing a polyhydroxyalkanoate containing a unit represented by chemical formula (99) to react with a base; and

allowing a compound obtained in the foregoing step to react with a compound represented by chemical formula (100):

$$(CH_2)n^{-O}$$
(99)

wherein n represents an integer selected from 1 to 4, and when multiple units exist the polyhydroxyalkanoate allowed to react with the base includes more than one unit of the chemical formula (99), n is independently selected for each unit,

(100)

wherein m represents an integer selected from 0.1 to 8, X represents a halogen atom, and R_{100} represents a linear or branched alkyl or aralkyl group having 1 to 12 carbon atoms, and when n = 4 in the chemical formula (99), m is not equal to 0,

$$(CH2)m$$

$$(CH2)m (CH2)n (101)$$

wherein n represents an integer selected from 1 to 4, when n represents an integer selected from 1 to 3, m represents an integer selected from 0 to 8, when n = 4, m represents an integer selected from 1 to 8, R_{101} represents a linear or branched alkyl or aralkyl group having 1 to 12 carbon atoms, and when multiple units exist the produced polyhydroxyalkanoate includes more than one unit of the chemical formula (101), R_{101} , m, and n are independently selected for each unit.

10. (Currently Amended) A method of producing a polyhydroxyalkanoate containing a unit represented by chemical formula (102) comprising a step of hydrolyzing a polyhydroxyalkanoate containing a unit represented by chemical formula (101) in a presence of an acid or an alkali or a step of subjecting the polyhydroxyalkanoate to hydrogenolysis including

a catalytic reduction:

$$(CH2)m$$

$$(CH2)n - O \rightarrow (101)$$

wherein n represents an integer selected from 1 to 4, when n represents an integer selected from 1 to 3, m represents an integer selected from 0 to 8, when n = 4, m represents an integer selected from 1 to 8, R_{101} represents a linear or branched alkyl or aralkyl group having 1 to 12 carbon atoms, and when multiple units exist the polyhydroxyalkanoate that is hydrolyzed or subjected to hydrogenolysis includes more than one unit of the chemical formula (101), R_{101} , m, and n are independently selected for each unit,

$$(CH2)m$$

$$(CH2)n -O \rightarrow (102)$$

wherein R_{102} represents hydrogen or a group for forming a salt, n represents an integer selected from 1 to 4. when n represents an integer selected from 1 to 3, m represents an integer selected from 0 to 8, when n = 4, m represents an integer selected from 1 to 8, and when multiple units exist the produced polyhydroxyalkanoate includes more the one unit of the chemical formula (102), R_{102} , m, and n are independently selected for each unit.

11. (Currently Amended) A method of producing a polyhydroxyalkanoate containing a unit represented by chemical formula (104) comprising the steps of:

allowing a polyhydroxyalkanoate containing a unit represented by chemical formula (99) to react with a base; and

allowing a compound obtained in the foregoing step to react with a compound represented by chemical formula (103):

$$(OH_2)n^{-O}$$

$$(99)$$

wherein n represents an integer selected from 1 to 4, and when multiple units exist the polyhydroxyalkanoate allowed to react with the base includes more than one unit of the chemical formula (99), n is independently selected for each unit,

wherein R_{103} represents $-A_{103}$ - SO_2R_{103a} , R_{103a} represents OH, a halogen atom, ONa, OK, or OR_{103b} , R_{103b} and A_{103} are each independently selected from groups each having a substituted or unsubstituted aliphatic hydrocarbon structure, a substituted or unsubstituted aromatic ring structure, or a substituted or unsubstituted heterocyclic structure, and when multiple units existmore than one compound of the chemical formula (103) is allowed to react,

 R_{103} , R_{103a} , R_{103b} , and A_{103} are independently selected for each <u>compound of the chemical</u> formula (103)unit,

$$\begin{array}{c}
R & 104 \\
N-H \\
0 & \\
(CH_2)_2 \\
(CH_2)_n & \\
\end{array}$$
(1 0 4)

wherein n represents an integer selected from 1 to 4, R_{104} represents - A_{104} - SO_2R_{104a} , R_{104a} represents OH, a halogen atom, ONa, OK, or OR_{104b} , R_{104b} and A_{104} each independently represent a group having a substituted or unsubstituted aliphatic hydrocarbon structure, a substituted or unsubstituted aromatic ring structure, or a substituted or unsubstituted heterocyclic structure, and when multiple units exist the produced polyhydroxyalkanoate includes more than one unit of the chemical formula (104), R_{104} , R_{104a} , R_{104b} , A_{104} , and n are independently selected for each unit.