

Intro to GNN

Michael Mateju

Graph Neural Networks: An Introduction

Michael Mateju

Institute/Organization

February 5, 2025

Introduction

Intro to GNN Michael Mateju

- Graph Neural Networks (GNNs) are gaining popularity in Al.
- Leading companies like Google, Uber, and Twitter are adopting GNNs.
- GNNs are effective in modeling relationships in complex datasets.

Advantages of Graph Machine Learning

Intro to GNN

- GNNs excel at capturing complex relationships beyond Euclidean space.
- They allow for node embeddings that represent entities in a meaningful way.
- They improve performance in graph-based tasks like link prediction and clustering.

Applications of GNNs

Intro to GNN

- Drug Discovery: Predicting molecular interactions for new medicines.
- Social Networks: Recommending friends and filtering misinformation.
- Fraud Detection: Identifying fraudulent transactions in banking.
- Traffic Optimization: Predicting road congestion and enhancing navigation.

Graph Neural Networks in Data Mining

Intro to GNN

- GNNs enhance traditional data mining techniques by understanding relational data.
- They can uncover hidden patterns in large-scale graphs.
- Applications in:
 - Anomaly Detection: Identifying outliers in financial transactions
 - Knowledge Graphs: Enhancing search engines with better semantic understanding.
 - **Clustering:** Grouping similar entities based on relationships.

Why GNNs Matter in 2024

Intro to GNN

- GNNs are transitioning from research to industry-wide adoption.
- They offer new ways to leverage graph-based data across different fields.
- The future of AI will involve more graph learning to improve predictions and decision-making.

What are Graph Neural Networks?

Intro to GNN

- Neural networks designed for **graph-structured data**.
- Unlike traditional models, they process nodes and edges.
- Applications: Social networks, molecules, recommendation systems, knowledge graphs.
- GNNs leverage message passing and graph convolution techniques to learn representations.

Graph Representation

Intro to GNN

Michael Mateju A graph is represented as:

$$G = (V, E)$$

- V Set of nodes (vertices).
- *E* Set of **edges** (connections).
- Adjacency Matrix A:

$$A_{ij} = \begin{cases} 1, & \text{if edge exists between } i \text{ and } j \\ 0, & \text{otherwise} \end{cases}$$

• Feature matrix X where X_i represents node features.

How Do GNNs Work?

Intro to GNN

Michael Mateju

Message Passing (Graph Convolution):

$$h_i^{(l+1)} = \sigma \left(W^{(l)} \sum_{j \in \mathcal{N}(i)} \frac{h_j^{(l)}}{c_{ij}} + B^{(l)} h_i^{(l)} \right)$$

- Nodes update their states by aggregating information from neighbors.
- Iterative process across layers.
- Preserves local connectivity and captures relational dependencies.

Graph Convolutional Networks (GCN)

Intro to GNN

Michael Mateju

Update Rule:

$$H^{(l+1)} = \sigma \left(\tilde{D}^{-1/2} \tilde{A} \tilde{D}^{-1/2} H^{(l)} W^{(l)} \right)$$

- $\tilde{A} = A + I$ (Adjacency matrix with self-loops)
- ullet $ilde{D}$ is the degree matrix
- \bullet $W^{(l)}$ is a trainable weight matrix
- Introduces smoothing and enables feature propagation.

Graph Attention Networks (GAT)

Intro to GNN

Michael Mateju

Attention Mechanism:

$$\alpha_{ij} = \frac{\exp(LeakyReLU(a^T[Wh_i||Wh_j]))}{\sum_{k \in \mathcal{N}(i)} \exp(LeakyReLU(a^T[Wh_i||Wh_k]))}$$

- Uses learnable attention weights.
- Dynamically assigns importance to different neighbors.
- Improves performance on heterogeneous graphs.

GraphSAGE: Scalable Learning on Graphs

Intro to GNN

- GraphSAGE samples neighbors instead of using all neighbors.
- Aggregation function (e.g., mean, max-pooling, LSTM-based).
- Computationally efficient for large graphs.

Training Graph Neural Networks

Intro to GNN

Michael Mateju

- Loss function: Cross-entropy, mean squared error, contrastive loss.
- Backpropagation through graph layers.
- Mini-batch training for large-scale graphs.

Training Steps:

- For each training epoch:
 - For each node v_i in batch:
 - Aggregate features from neighbors.
 - Apply non-linear transformation.
 - Compute loss and update weights.

Applications of GNNs

Intro to GNN

Application Area	Use Cases
Social Networks	Friend recommendations, community detection
Biology	Drug discovery, protein interactions
Finance	Fraud detection, credit risk modeling
Recommendations	Personalized content recommendations
Knowledge Graphs	Semantic search, entity linking

Challenges in GNNs

Intro to GNN

- Scalability Large graphs require optimized memory usage.
- Over-smoothing Deep networks make node representations indistinguishable.
- Graph Heterogeneity Different node types require specialized architectures.
- Dynamic Graphs Many real-world graphs evolve over time.
- Limited Label Availability Semi-supervised learning often required.

Summary

Intro to GNN

- GNNs extend deep learning to graphs using message passing.
- Various architectures: GCN, GAT, GraphSAGE.
- Applications in social networks, chemistry, finance, and more.
- Challenges include scalability and over-smoothing.

Thank You!

Intro to GNN

Michael Mateju

Questions?