- 1. לפעמים נסמן . $f=\{(a,a)\mid a\in A\}$ או באופן שקול: f(a)=a איי המוגדרת ע"י המוגדרת לבוצה, $f:A\to A$ הבוצה, ב-id(A).
 - לב שהתחום והתמונה של זהים ושווים לב -A.
- 2. $f:\mathbb{Z} o \mathbb{Z}$ נראה כי $f=\{(x,x^2):x\in \mathbb{Z}\}$. $f(x)=x^2$ נראה כי $\mathrm{dom}(f)=\mathbb{Z}$.
- 3. $\{(x^2,x):x\in R^+\}$, אינו שלם ואינו שלם מעל $\mathbb R$ כי אינו שלם פונקציה מעל אינו פונקציה אינו $\{(x^2,x):x\in \mathbb R\}$ היחס השורש השורש פונקציית השורש.
- היא $f \cup g: A \cup C \to B \cup D$ כי הראו כך ש $f: A \to B \cup C$ פונקציות כך פונקי פונקי פונקי פונקי פונקי. פונקי
- שלם חד-ערכי שהוא צ"ל ב"ל .
 $f \cup g \subseteq (A \cup C) \times (B \cup D)$ מתקיים אכן פתרון .

ע יחיד כך יחיד $y \in B \cup D$ יקיים אייל "צ"ל $x \in A \cup C$ יהיר יהי- $(x,y) \in f \cup g.$

• סלומר ,f(x)=y כך ש $y\in B$ קיים אז קיים פונקציה אז פונקציה אס , $x\in A$ קיום אם קיום א קיום $y\in B\cup D \land (x,y)\in f\cup g.$

כאשר $(x,y)\in f\cup g$ אם ולכן $(x,y)\in g$ כך ש $y\in D$ כך פונקציה קיים $y\in G$ אם אם $x\in C$ אם אם $y\in B\cup D$.

- ער כך $y_1,y_2\in B\cup D$ כי קיימים נניה כי -(x_1,y_1), $(x_1,y_2)\in f\cup g$.
 - יתקיים של מחד-ערכיות מחד $(x_1,y_1),(x_1,y_2)\in f$ אם אם $y_1=y_2.$
 - יתקיים של מחד-ערכיות מחד $(x_1,y_1),(x_1,y_2)\in g$ אם $y_1=y_2.$
 - ש בסתירה לכך ש, $x\in A \land x\in C$ אם $(x_1,y_1)\in f, (x_1,y_2)\in g$ (בלי הגבלת הכלליות) אם $A\cap C=\emptyset.$ הראינו ש $f\cup g$ שלם וחד-ערכי ולכן זו פונקציה.

קבוצות A,B יהיו, $f:A \to B$.

- 1. f אם אח"ע נקראת נקראת $\forall a_1, a_2 \in A(f(a_1) = f(a_2) \rightarrow a_1 = a_2).$
- 2. f אם שקול . $\forall b \in B \exists a \in A(f(a) = b)$ אם B על Im(f) = B.
- אם חח"ע? האם f החf האם האם $f(A) = A \triangle I$ על ידי ועל ידי $f: P(X) \rightarrow P(X)$ נגדיר נגדיר. $I \subseteq X$ האם ידי $I \subseteq X$
 - מסימטריה (מסימטריה נבדוק חח"ע: נוכיח א $A_1\subseteq A_2$ לומר כלומר כלומר כלומר כלומר כלומר (מסימטריה ינבע ש $A_1\subseteq A_1$ ינבע ינבע הינבע א $A_1\subseteq A_1$ ינבע ינבע הינבע ינבע ינבע הינבע ינבע הינבע הינבע ש

יהי $+x\in A_1\bigtriangleup I=A_2\bigtriangleup I$, אחרת, $x\in A_2$ ולכן $x\notin A\bigtriangleup I=A_2\bigtriangleup I$ אז $x\in I$ או $x\in A_1$ יהי $x\in A_1$ יהי $f:A\to A$ המוגדרת ע"י $f:A\to A$ המוגדרת ע"י $f:A\to A$ המוגדרת באופן שקול: $f:A\to A$ המוגדרת ביטון המוגדרת ע"י ה

- לב שהתחום והתמונה של זהים לב שהתחום התחום לב -A.
- 1. $f:\mathbb{Z} o \mathbb{Z}$ נראה כי $f=\{(x,x^2):x\in \mathbb{Z}\}$. $f(x)=x^2$ ידי של המוגדרת לידי $\mathrm{dom}(f)=\mathbb{Z}$.
- 2. $\{(x^2,x):x\in R^+\}$, אינו שלם ואינו שלם מעל כי אינו שלם מעל פונקציה מעל אינו פונקציה מעל אינו פונקציה מעל אינו פונקציית השורש האוא כן פונקציה, וזוהי פונקציית השורש.
- היא $f \cup g: A \cup C \to B \cup D$ כי הראו כך ש $f: A \to B \cup C$ פונקציות כך פונקי פונקי פונקי פונקי פונקי. פונקי
- שלם חד-ערכי שהוא צ"ל ב"ל $f \cup g \subseteq (A \cup C) imes (B \cup D)$ פתרון אכן מתקיים.

ע יחיד כך יחיד $y \in B \cup D$ צ"ל שקיים $x \in A \cup C$ יחיד כך יחיד כך יחיד $(x,y) \in f \cup g$.

• סלומר אם f(x)=y כך עך קיים אז קיים קיים פונקציה אז פונקציה אב , $x\in A$ קיום קיום אם $y\in B\cup D \land (x,y)\in f\cup g.$

כאשר $(x,y)\in f\cup g$ ולכן $(x,y)\in g$ כך כך ער כך פונקציה פונקציה מכיוון שg- מכיוון ש $x\in C$ אם אם $y\in B\cup D$.

- ע כך $y_1,y_2\in B\cup D$ בניח כי קיימים יחידות יחידות
 - יתקיים של מחד-ערכיות מחד $(x_1,y_1),(x_1,y_2)\in f$ אם א $y_1=y_2.$
 - יתקיים של מחד-ערכיות מחד $(x_1,y_1),(x_1,y_2)\in g$ אם $y_1=y_2.$
 - ש בסתירה לכך אז $(x_1,y_1)\in f, (x_1,y_2)\in g$ בסתירה לכך ש. בסתירה לכך אם - $A\cap C=\emptyset$. הראינו ש- $f\cup g$ שלם וחד-ערכי ולכן זו פונקציה.

תבוצות A,B יהיו, $f:A \rightarrow B$.

- 1. f אם אם נקראת נקראת ל $\forall a_1, a_2 \in A(f(a_1) = f(a_2) \rightarrow a_1 = a_2).$
- 2. f אם שקול . $\forall b \in B \exists a \in A (f(a) = b)$ על ועל $\operatorname{Im}(f) = B$.
- אם חח"ע? האם f האם האם $f(A) = A \bigtriangleup I$ על ידי אין $f: P(X) \to P(X)$ נגדיר נגדיר. $I \subseteq X$ האם אידי האם על ידי $f: P(X) \to P(X)$

ולכן $x \in A_2$ ולכן $x \notin A \bigtriangleup I = A_2 \bigtriangleup I$ אז $x \in I$ אם $x \in A_1$ יהי $x \in A_2$.