Groups and Rings

PMATH 347

William Slofstra

Preface

Disclaimer Much of the information on this set of notes is transcribed directly/indirectly from the lectures of PMATH 347 during Spring 2020 as well as other related resources. I do not make any warranties about the completeness, reliability and accuracy of this set of notes. Use at your own risk.

Spring 2020 classes online only. So the grading scheme:

• Participation: 4%

• Quizzes: 32%

• Written homework: 32%

• Final takehome exam: 32%

For any questions, send me an email via https://notes.sibeliusp.com/contact/.

You can find my notes for other courses on https://notes.sibeliusp.com/.

Sibelius Peng

Contents

Preface								
1	Gro	oups						
	1.1	Binary	Operations	3				
	1.2	Associ	ativity and commutativity	5				
	1.3	Identit	ties and inverses	7				
	1.4	Group	8	10				
		1.4.1	Terminology	10				
		1.4.2	Additive notation	12				
		1.4.3	Multiplicative table	12				
		1.4.4	Order of elements	13				
		Dihed	ral groups	13				
		1.5.1	Special elements of D_{2n}	15				
<u></u>		Permu	tation groups	16				
		1.6.1	Representations	17				
		1.6.2	Cycles	19				

Groups

1.1 Binary Operations

If we randomly ask someone on the street: *What's math about?* The answer we might get is **numbers**. It always comes with **operations**.

Objects	Operations
	addition +
Natural numbers N	subtraction -
Natural numbers iv	$\text{multiplication} \cdot $
	division with remainders
Integers \mathbb{Z}	negation $x \mapsto -x$
Rational number Q	multiplicative inversion $x \mapsto 1/x$
Real numbers \mathbb{R}	kth roots, etc
$\mathbb{Z}/n\mathbb{Z}$	modular arithmetic and operations

Then we realize that math is not just about numbers. We later have **elementary algebra**:

	Objects	Operations	
Expressions with variables		operations with variables	
	Functions	Pointwise operations $+, -, \cdot$ and Composition \circ	

Then ..., and (leaving lots of stuff out), we have **linear algebra**:

Objects	Operations
Vectors	Vector addition +, scalar multiplication ·
Matrices	$+,-$, scalar and matrix multiplication \cdot

Then what's algebra about?

Pre-university answer:

• manipulating expr involving indeterminates (variables):

If $a, b \in \mathbb{R}$, ax = b and $a \neq 0$, then $x = \frac{b}{a}$.

• solving eqs by applying ops to both sides: If A, B are matrices, AX = B and A is invertible, then $X = A^{-1}B$.

Key idea: algebra is about operations

Then what operations should we study? Polynomials in several vars; functions, pointwise ops and function composition... Are there other operations we should study? Then we introduce **abstract algebra**: try to answer this question by studying operations abstractly, and seeing what the possibilities are.

binary operation

A binary operation on a set X is a function $b: X \times X \to X$.

Notation:

- Any letter (b, m) or symbol $(+, \cdot)$
- function notation

$$b: X \times X \to X: (x, y) \mapsto b(x, y)$$

or inline notation

$$+: \mathbb{N} \times \mathbb{N} \to \mathbb{N}: (x, y) \mapsto x + y$$

Typically use inline notation with symbols and function notation with letters.

- There are lots of symbols to choose from: $a + b, a \times b, a \cdot b, a \circ b, a \oplus b, a \otimes b$
- If there's no chance of confusion, can even drop symbol completely:

$$X \times X \to X : (a,b) \mapsto ab$$

Example:

- Addition + is a binary op on \mathbb{B} , but subtraction is not, since a b is not necessarily a natural number.
- Subtraction = is a binary op on \mathbb{Z} .
- If $(V, +, \cdot)$ is a vector space over a field \mathbb{K} , then + is a binary op on V, but \cdot is not, since \cdot is a function $\mathbb{K} \times V \to V$.

^aWe'll define fields later, now think of $\mathbb{K} = \mathbb{R}$ or \mathbb{C} .

k-ary operation

A k-ary operation on a set X is a function

$$\underbrace{X \times X \times \cdots X}_{k \text{ times}} \to X$$

A 1-ary operation is called a unary operation.

Example:

Negation $\mathbb{Z} \to \mathbb{Z} : x \mapsto -x$ is a unary operation.

Taking the multiplicative inverse $x \mapsto 1/x$ is not a unary operation on \mathbb{Q} , since 1/0 is not defined, but it is a unary operation on

$$\mathbb{Q}^{\times} := \{ a \in \mathbb{Q} : a \neq 0 \}$$

Now let's discuss some properties that binary ops might satisfy.

1.2 Associativity and commutativity

associative

A binary operation $\boxtimes : X \times X \to X$ is associative if

$$a\boxtimes (b\boxtimes c)=(a\boxtimes b)\boxtimes c$$

for all $a, b, c \in X$.

Many operations we've mentioned so far are associative:

- Addition and multiplication for $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$, polynomials, and functions
- Vector addition, matrix addition and multiplication
- Modular addition and multiplication on $\mathbb{Z}/n\mathbb{Z}$
- Function composition

Note that Subtraction and division are not associative. Subtraction is adding negative numbers, same for division. So we aren't that interested in subtraction and division, and focus on associative operations.

Here we introduce an informal definition: A **bracketing** of a sequence $a_1, \ldots, a_n \in X$ is a way of inserting brackets into $a_1 \boxtimes \ldots \boxtimes a_n$ so that the expression can be evaluated.

Example:

The bracketings of a_1, \ldots, a_4 are

$$a_1 \boxtimes (a_2 \boxtimes (a_3 \boxtimes a_4))$$

$$a_1 \boxtimes ((a_2 \boxtimes a_3) \boxtimes a_4)$$

$$(a_1 \boxtimes a_2) \boxtimes (a_3 \boxtimes a_4)$$
$$(a_1 \boxtimes (a_2 \boxtimes a_3) \boxtimes a_4)$$
$$((a_1 \boxtimes a_2) \boxtimes a_3) \boxtimes a_4$$

Proposition 1.1

A binary operation $\boxtimes: X \times X \to X$ is associative if and only if for all finite sequences $a_1, \ldots, a_n \in X, n \geq 1$, every bracketing of a_1, \ldots, a_n evaluated to the same element of X.

Note

If \boxtimes is associative, can use notation $a_1 \boxtimes a_2 \boxtimes \ldots \boxtimes a_n$ without choosing a bracketing.

Proof.

- \Leftarrow The two bracketings $a \boxtimes (b \boxtimes c)$ and $(a \boxtimes b) \boxtimes c$ of a, b, c evaluate to the same element of X for all sequences of length 3.
- \Rightarrow Proof is by induction. Base cases are n = 1, 2, 3.

For n=1,2, there's only one bracketing. For n=3 follows from defn of associativity.

Suppose prop is true for all sequences of length $k, 1 \le k < n$.

Let w be a bracketing of a_1, \ldots, a_n .

 $w = w_1 \boxtimes w_2$ where w_1 is a bracketing of a_1, \ldots, a_k, w_2 is a bracketing of a_{k+1}, \ldots, a_n , for some k < n.

By induction,

$$w_1 = (\cdots ((a_1 \boxtimes a_2) \boxtimes a_3) \cdots \boxtimes a_k)$$
 and $w_2 = (a_{k+1} \boxtimes \cdots (a_{n-1} \boxtimes a_n) \cdots)$

Therefore

$$w = (\cdots ((a_1 \boxtimes a_2) \boxtimes a_3) \cdots \boxtimes a_k) \boxtimes w_2 = (a_{k+1} \boxtimes \cdots (a_{n-1} \boxtimes a_n) \cdots)$$

$$= (\cdots (a_1 \boxtimes a_2) \cdots \boxtimes a_{k-1}) \boxtimes (a_k \boxtimes (a_{k+1} \boxtimes \cdots a_n) \cdots)$$

$$= \cdots$$

$$= (a_1 \boxtimes (a_2 \boxtimes \cdots (a_n \boxtimes a_n) \cdots))$$

commutative

A binary operation $\boxtimes : X \times X \to X$ is commutative (also known as abelian) if $a \boxtimes b = b \boxtimes a$ for all $a, b \in X$.

Fact The word "abelian" comes from the surname of Niels Henrik Abel (1802-1829).

Many familiar operations are commutative: addition and multiplication on $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$; vector and matrix addition; modular addition and multiplication on $\mathbb{Z}/n\mathbb{Z}$. The following operation are **not** commutative: subtraction and division; function composition; matrix multiplication.

Therefore, subtraction and division are not commutative or associative. Function composition and matrix multiplication are not commutative, but are associative. We are not going to worry about the first type of operation, but we are interested in operations of the second type.

First half of the course: group theory – single associative operation, not necessarily commutative.

Second half of the course: ring theory – two associative operations (like addition and multiplication on \mathbb{Z}), focus on commutative case.

1.3 Identities and inverses

Let \boxtimes be a binary operation on a set X.

identity

An element $e \in X$ is an identity for \boxtimes if

$$e \boxtimes x = x \boxtimes e = x$$

for all $x \in X$.

Example:

The zero element 0 of \mathbb{Z} is an identity for +. $1 \in \mathbb{Q}$ is identity for \cdot . $0 \in \mathbb{Q}$ is not identity for \cdot

Lemma 1.2

If $e, e' \in X$ are both identities for \boxtimes , then e = e'.

Proof:

$$e = e \boxtimes e' = e'$$

inverse

Let \boxtimes be a binary operation on X with identity element e. An element y is a left inverse for x (w.r.t. \boxtimes) if $y \boxtimes x = e$, a right inverse if $x \boxtimes y = e$, and an inverse if $x \boxtimes y = y \boxtimes x = e$.

Example:

-n is an inverse for $n \in \mathbb{Z}$ w.r.t. +.

 $n \in \mathbb{Z}$ does not have an inverse w.r.t. \cdot unless $n = \pm 1$.

If $x \in \mathbb{Q}$ is non-zero, then 1/x is an inverse of x w.r.t. \cdot . The element 0 does not have an inverse.

${ m Lemma} \,\, 1.3$

Let \boxtimes be an **associative** binary op with an identity e. If y_L and y_R are left and right inverse of x respectively, then $y_L = y_R$.

Proof:

$$y_L = y_L \boxtimes e = y_L \boxtimes (x \boxtimes y_R) = (y_L \boxtimes x) \boxtimes y_R = e \boxtimes y_R = y_R$$

Corollary 1.4

- If x has both a left and right inverse, then x has an inverse.
- Inverses are unique.

invertible

An element a is invertible if it has an inverse, in which case the inverse is denoted by a^{-1} .

Exercise

It's possible to have a left (resp. right inverse), but not be invertible. Also, left and right inverses don't have to be unique (unless an element has both).

Lemma 1.5

- 1. If \boxtimes has an identity e, then e is invertible, and $e^{-1} = e$.
- 2. If a is invertible, then so is a^{-1} , and $(a^{-1})^{-1} = a$.
- 3. If \boxtimes is associative, and a and b are invertible, then so is $a \boxtimes b$, and $(a \boxtimes b)^{-1} = b^{-1} \boxtimes a^{-1}$.

Proof:

- 1. $e \boxtimes e = e$
- 2. $a \boxtimes a^{-1} = a^{-1} \boxtimes a = e$, so a is clearly an inverse to a^{-1} .
- 3. $(a \boxtimes b) \boxtimes (b^{-1} \boxtimes a^{-1}) = a \boxtimes (b \boxtimes b^{-1}) \boxtimes a^{-1} = a \boxtimes e \boxtimes a^{-1} = a \boxtimes a^{-1} = e$, and similarly $(b^{-1} \boxtimes a^{-1}) \boxtimes (a \boxtimes b) = e$.

Proposition 1.6

Let \boxtimes be an associative binary operation on X with identity e, and let x and y be variables taking values in X.

An element $a \in X$ is invertible if and only if the equations

$$a \boxtimes x = b$$
 and $y \boxtimes a = b$

have unique solutions for all $b \in X$.

Proof:

- \Leftarrow A solution to ax = e is a right inverse of a, and a solution to ya = e is a left inverse. If a both have a left and right inverse, then it has an inverse.
- \Rightarrow Suppose a is invertible. Then

$$a \boxtimes (a^{-1}b) = (a \boxtimes a^{-1}) \boxtimes b = e \boxtimes b = b$$

so $a^{-1} \boxtimes b$ is a solution to $a \boxtimes x = b$.

If x_0 is a solution to $a \boxtimes x = b$, then

$$a^{-1} \boxtimes b = a^{-1} \boxtimes (a \boxtimes x_0) = (a^{-1} \boxtimes a) \boxtimes x_0 = e \boxtimes x_0 = x_0$$

So $a^{-1} \boxtimes b$ is the unique solution to $a \boxtimes x = b$.

Similarly $b \boxtimes a^{-1}$ is the unique solution to $y \boxtimes a = b$.

Proposition 1.7: Cancellation property

Let \boxtimes be an associative binary operation, and $a \in X$. Then

- 1. If a has a left inverse and $a \boxtimes u = a \boxtimes v$, then u = v.
- 2. If b has a right inverse and $u \boxtimes a = v \boxtimes a$, then u = v.

Proof:

- 1. $u = a^{-1} \boxtimes a \boxtimes u = a^{-1} \boxtimes a \boxtimes v = v$
- 2. similar.

1 and 2 also hold for $n \in \mathbb{Z}$ w.r.t. \cdot if $n \geq 0$, even though n is not invertible for $n \neq \pm 1$.

1.4 Groups

group

A group is a pair (G, \boxtimes) , where

- 1. G is a set, and
- 2. \boxtimes is an associative binary operation on G such that
 - (a) \boxtimes has an identity e, and
 - (b) every element $g \in G$ is invertible with respect to \boxtimes .

abelian

A group is **abelian** (or commutative) if \boxtimes is abelian.

finite

A group is **finite** if G is a finite set.

order

The **order** of G the number of elements in G if G is finite, and $+\infty$ if G is infinite. The order of G is denoted by |G|.

1.4.1 Terminology

Usually we refer to (G, \boxtimes) simply as G, and just assume the operation is given. (Note: we still need to clearly specify the operation for each group we work with).

It's cumbersome to write \boxtimes all the time, so usually we use one of the following options:

- Use · as the standard symbol, write $g \cdot h$ for the product of $g, h \in G$
- Drop the symbol entirely, write qh for the product of $q, h \in G$.

The identity of G is denoted by e (or e_G when we want to make the group clear). 1 and 1_G are also used.

Since every element of a group G is invertible, g^{-1} is defined for all $g \in G$. The function $G \to G : G \mapsto g^{-1}$ can be regarded as a unary operation on G.

Consider $\iota: G \to G: g \mapsto g^{-1}$. Since $(g^{-1})^{-1} = g$, $\iota \circ \iota = \mathrm{Id}_G$, the identity map $G \to G$. In particular, ι is a bijection, both injective and surjective.

If $g \in G$, then

$$g^{n} := \underbrace{g \cdot \dots \cdot g}_{n \text{ times}} \text{ and } g^{-n} := (g^{-1})^{n} = (g^{n})^{-1}$$

Exercise

If $m, n \in \mathbb{Z}$, then $(g^n)^m = g^{mn}$.

If $g, h \in G$, then

$$(gh)^n = ghgh \cdots gh,$$

which is not necessarily the same as $g^n h^n$ if G is not abelian.

Example: Groups

 $\mathbb{N}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ are all groups under operation +. The identity is 0 and the inverse of n is -n. These groups have infinite order. They are infinite abelian groups.

 $\mathbb{Z}/n\mathbb{Z}$ is also a group under +. The identity is 0 = [0], and the inverse of [m] is -[m] = [-m]. This group is finite, with order $|\mathbb{Z}/n\mathbb{Z}| = n$. It is a finite abelian group.

If $(V, +, \cdot)$ is a vector space, then (V, +) is group. The identity element is 0, and the inverse of v is -v.

Example: Not a group?! & Trivial group

 \mathbb{Z} is not a group with respect to \cdot , since most elements do not have an inverse.

 $\mathbb Q$ is also not a group with respect to \cdot , since 0 does not have an inverse.

 \mathbb{Q}^{\times} is a group with respect to \cdot .

Every group has to contain at least one element, the identity. So the simplest possible group is $\{1\}$ with operation $1 \cdot 1 = 1$. This is called the **trivial group**.

A non-abelian example

All the examples previously are abelian.

Let $GL_n(\mathbb{K})$ denote the invertible $n \times n$ matrices with entries in a field \mathbb{K} .

Proposition 1.8

 $GL_n(\mathbb{K})$ is a group under matrix multiplication (called the **general linear group**). For $n \geq 2$, $GL_n(\mathbb{K})$ is non-abelian.

Proof:

If A and B are invertible matrices, then AB is also invertible, so matrix multiplication is an associative binary operation $GL_n(\mathbb{K})$. The identity matrix is an identity, and every element has an inverse by definition, so $GL_n(\mathbb{K})$ is a group.

Exercise

Find matrices A, B such that $AB \neq BA$.

1.4.2 Additive notation

Standard notation for operation in a group is gh. This is called **multiplicative notation**. For groups like $(\mathbb{Z}, +)$, it is confusion to write mn instead of m + n, since mn already has another meaning. For abelian groups G, there is another convention called **additive notation**. In additive notation, we write the group operation as g + h. The identity is denoted by 0 or 0_G . Inverse are denoted by -g. Writing g^n in additive notation gives

$$\underbrace{g+g+\ldots+g}_{n \text{ times}},$$

so rather than g^n we use ng. Similarly g^{-n} is -ng.

For nonabelian groups we always use multiplicative notation. For abelian groups, we can choose either.

Note the potential for conflict between the two conventions. We must be clear about what convention we are using!.

For groups like $(\mathbb{Z}, +)$, we could denote the operation by mn, but it's clearer to write m + n. For groups like (Q^{\times}, \cdot) , we could denote the operation by x + y, but it is clearer to write $x \cdot y$ or xy.

1.4.3 Multiplicative table

multiplicative table

The multiplicative table of a group G is a table with rows and columns indexed by the elements of G. The cell for row g and column h contains the product gh.

The multiplication table contains the complete info of the group G. It is defined for finite and infinite groups, but makes the most sense for finite groups.

Example: $\mathbb{Z}/2\mathbb{Z}$

The multiplication table for $\mathbb{Z}/2\mathbb{Z}$ is

$$\begin{array}{c|cccc} & 0 & 1 \\ \hline 0 & 0 & 1 \\ 1 & 1 & 0 \\ \end{array}$$

Multiplicative notation	Additive notation
$g \cdot h$ or gh	g+h
e_G or 1_G	0_G
g^{-1}	-g
g^n	ng

Table 1.1: Comparison between multiplicative and additive notation

1.4.4 Order of elements

order

If G is a group, then the order $g \in G$ is

$$|G| := \min\{k \ge 1 : g^k = e_G\} \cup \{+\infty\}$$

Some easy properties:

- |g| = 1 if and only if $g = e_G$.
- If $g^n = 1$, then $g^{n-1}g = gg^{n-1} = g^n = 1$, so $g^{n-1} = g^{-1}$. In particular, if $|g| = n < +\infty$, then $g^{-1} = g^{n-1}$.

Example: $\mathbb{Z}/n\mathbb{Z}$

We use additive notation for $\mathbb{Z}/n\mathbb{Z}$, so g^n is written as ng, e=0. For this group, k1=0 if and only if n divides k, so |1|=n.

Lemma 1.9

 $g^n = e$ if and only if $g^{-n} = e$, so in particular $|g| = |g^{-1}|$.

Proof.

We have $g^{-n} = (g^n)^{-1}$. Since $g \mapsto g^{-1}$ is a bijection,

$$g^n = e$$
 if and only if $(g^n)^{-1} = e^{-1} = e$.

But g^{-n} also equals $(g^{-1})^n$, so

$${k \ge 1 : g^k = e} = {k \ge 1 : (g^{-1})^k = e}$$

and this implies $|g| = |g^{-1}|$.

1.5 Dihedral groups

n-gon

A regular polygon P_n with n vertices, $n \geq 3$, is called an n-gon.

To be specific: set $v_k = (\cos 2\pi k/n, \sin 2\pi k/n) = e^{2\pi i k/n}$

Get n-gon by drawing line segment from v_k to v_{k+1} for all $0 \le k \le n$ (where $v_n := v_0$)

symmetry

A symmetry of the *n*-gon P_n is an invertible linear transformation $T \in GL_2(\mathbb{R})$ such that $T(P_n) = P_n$.

dihedral group

The set of symmetries of P_n is called the dihedral group, and is denoted by D_{2n} (or D_n).

In this course, we use D_{2n} .

Note

We think of matrices and invertible linear transformations interchangeably.

Matrix multiplication = composition of transformations.

Proposition 1.10

 D_{2n} is a group under composition.

Proof:

Later. Key point: $S, T \in D_{2n} \implies ST \in D_{2n}$.

 v_i and v_j are **adjacent** in P_n if connected by line segment.

Lemma 1.11

- 1. If $T \in D_{2n}$ then $(T(v_0), T(v_1))$ are adjacent
- 2. If $S, T \in D_{2n}$ and $S(v_i) = T(v_i)$, i = 0, 1 then S = T.

Proof:

- 1. v_0, v_1 are adjacent, T is linear
- 2. v_0 and v_1 are linearly independent.

Corollary 1.12

 $|D_{2n}| \le 2n$

Proof:

Let A be the set of adjacent pairs $(v_i, v_j)^a$, so |A| = 2n. By Lemma 1.11, $D_{2n} \to A$: $T \mapsto (T(v_0), T(v_1))$ is well-defined and injective.

 a ordered pairs

For every pair of adjacent vertices (v_i, v_j) , is there an element $T \in D_{2n}$ with $T(v_0) = v_i, T(v_1) = v_j$?

If the answer is yes, then $|D_{2n}| = 2n$.

1.5.1 Special elements of D_{2n}

Let $s \in D_{2n}$ be rotation by $2\pi/n$ radians, so |s| = n (i.e., $s^n = 2, s^k \neq e$ for $1 \leq k < n$).

Let r be reflection through the x-axis:

|r| = 2, i.e. $r^2 = e, r \neq e$.

 $r(v_0) = v_0$. $r(v_1)$ is now the vertex before v_0 , rather than the vertex after v_0 .

If we try to put these two elements together:

- 1. s^i , $0 \le i < n$: sends $v_0 \mapsto v_i, v_1 \mapsto v_{i+1}$ (notes: $v_n = v_0, s^0$ is the identity)
- 2. $s^{i}r, 0 \le i < n$: sends $v_{0} \mapsto v_{i}, v_{1} \mapsto v_{i-1}$ (notes: $v_{-1} = v_{n-1}$)

Proposition 1.13

$$D_{2n} = \{s^i r^j : 0 \le i < n, 0 \le j < 2\}, \text{ so } |D_{2n}| = 2n.$$

What is rs?

$$rs(v_0) = r(v_1) = v_{n-1}$$
 and $rs(v_1) = r(v_2) = v_{n-2}$. So
$$rs = s^{n-1}r = s^{-1}r$$

Corollary 1.14

 D_{2n} is a finite nonabelian group.

$$D_{2n} = \{s^i r^j : 0 \le i < n, 0 \le j < 2\}$$
$$|D_{2n}| = 2n$$
$$s^n = e, r^2 = e, rs = s^{-1}r$$

$$|D_{2n}|=2n$$

$$s^n = e^{-r^2} = e^{-r}s = s^{-1}r$$

These relations are enough to completely determine D_{2n} .

What's group theory about?

Basic answer: study sets with one binary op. A better answer: group theory is study of symmetry. If we resize or rotate P_n , then symmetries are the same.

Kleinian view of geometry:

- D_{2n} captures what it means to be a regular n-gon
- More generally, geometry is about study of symmetries

Permutation groups 1.6

If X is a set, let $\operatorname{Fun}(X,X)$ be set of functions $X\to X$. Then

$$\circ : \operatorname{Fun}(X, X) \times \operatorname{Fun}(X, X) \to \operatorname{Fun}(X, X) : (f, g) \mapsto f \circ g$$

is an associative operation with an identity Id_X . Let $S_X = \{f \in \mathrm{Fun}(X,X) : f \text{ is a bijection}\}$

Proposition 1.15

 S_X is a group under \circ .

Proof:

See homework.

symmetric/permutation group

Let $n \geq 1$. The symmetric group (or permutation group) S_n is the group S_X with $X = \{1, \ldots, n\}$.

Elements of S_n are bijections $\pi: \{1, \ldots, n\} \to \{1, \ldots, n\}$

What makes a function $\pi: \{1, ..., n\} \rightarrow \{1, ..., n\}$ a bijection?

Every element of $\{1, \ldots, n\}$ must appear in the list $\pi(1), \ldots, \pi(n)$, and no element can appear twice (\Leftarrow redundant by pig.-hole princ.)

How many elements in S_n ?

n choices for $\pi(1)$, n-1 choices for $\pi(2)$, ..., 1 choice for $\pi(n)$. So $n(n-1)\cdots 1=n!$ choices $\Longrightarrow |S_n|=n!$.

Note $|S_1| = 1! = 1$, so S_1 is the trivial group.

1.6.1 Representations

Elements of S_n are called **permutations**. There are a number of different ways to represent permutations:

1. Two-line representation:

$$\pi = \left(\begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 5 & 1 & 4 & 2 & 3 \end{array}\right)$$

2. One-line representation:

$$\pi = 651423$$

This representation saves space than the previous one, but it is hard to do operations in group theory. The one below seems counter-intuitive, but convenient for doing operations.

3. Note $\pi(1) = 6$, $\pi(6) = 3$, $\pi(3) = 1$. Say (163) is a **cycle** of π .

Disjoint cycle representation: write down cycles of π

$$\pi = (163)(25)(4) = (163)(25)$$

We typically drop cycles of length 1.

Identity is empty in disjoint cycle notation, so just use e.

The convention is that we start from the lowest item in the cycle, and sort the cycles by their lowest items.

Multiplication

Multiplication can be done in two-line or disjoint cycle notation

$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 5 & 1 & 4 & 2 & 3 \end{pmatrix} = (163)(25)$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 6 & 4 & 5 & 3 & 1 \end{pmatrix} = (126)(345)$$

$$\pi\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 3 & 4 & 2 & 1 & 6 \end{pmatrix} = (15)(234)$$

Note i comes from the right: $\pi(\sigma(i))$.

(It's a bit of a pain in one-line notation, so we don't use one-line notation often in group theory)

Inversion

We can also take inverse in two-line or disjoint cycle notation

$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 5 & 1 & 4 & 2 & 3 \end{pmatrix} = (163)(25)$$

$$\pi^{-1} = \begin{pmatrix} 6 & 5 & 1 & 4 & 2 & 3 \\ 1 & 2 & 3 & 4 & 5 & 6 \end{pmatrix} \stackrel{*}{=} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 5 & 6 & 4 & 2 & 1 \end{pmatrix} = (136)(25)$$

*: swap two rows and sort the columns by the first row. Disjoint cycle notation is even easier.

If $\pi(i) = j$, then $\pi^{-1}(j) = i$, so cycles of π^{-1} are cycles of π in opposite order.

fixed points

The fixed points of a permutation $\pi \in S_n$ are the numbers $1 \leq i \leq n$ such that $\pi(i) = i$.

support set

The support set of $\pi \in S_n$ is

$$supp(\pi) = \{1 < i < n : \pi(i) \neq i\}$$

disjoint

 π and σ are disjoint if $\operatorname{supp}(\pi) \cap \operatorname{supp}(\sigma) = \emptyset$

Example:

$$supp((163)(25)) = \{1, 2, 3, 5, 6\}$$

Remark:

In general, $supp(\pi)$ are numbers that appear in disjoint cycle representation of π (when cycles of length one are dropped).

 $supp(\pi) = \emptyset$ if and only if $\pi = e$

$$\operatorname{supp}(\pi^{-1}) = \operatorname{supp}(\pi)$$

If $i \in \text{supp}(\pi)$, then $\pi(i) \in \text{supp}(\pi)$

commute

Two elements g, h in a group G commute if gh = hg.

Lemma 1.16

If $\pi, \sigma \in S_n$ are disjoint, then $\pi \sigma = \sigma \pi$.

Proof:

Suppose $1 \le i \le n$. If $i \in \text{supp}(i)$, then $\pi(i) \in \text{supp}(\pi)$. Since π, σ disjoint, $i, \pi(i) \notin \text{supp}(\sigma)$. So $\pi(\sigma(i)) = \pi(i) = \sigma(\pi(i))$.

By symmetry, $\pi(\sigma(i)) = \sigma(\pi(i))$ if $i \in \text{supp}(\sigma)$.

If $i \notin \operatorname{supp}(\pi) \cup \operatorname{supp}(\sigma)$, then $\pi(\sigma(i)) = i = \sigma(\pi(i))$.

So $\pi(\sigma(i)) = \sigma(\pi(i))$ for all $i \implies \pi\sigma = \sigma\pi$.

1.6.2 Cycles

k-cycle

A k-cycle is an element of S_n with disjoint cycle notation $(i_1 i_2 \cdots i_k)$.

Suppose cycles of $\pi \in S_n$ are c_1, \ldots, c_k . We can regard c_i as an element of S_n , $\pi = c_1 \cdot c_2 \cdot \cdots \cdot c_k$ as product in S_n . c_i and c_j are disjoint, so $c_i c_j = c_j c_i$. Note that order of cycles in disjoint cycle representation doesn't matter.

Example:

$$\pi = (163)(25) = (25) \cdot (163)$$

We can also get an interesting prospective on this formula for the inverse of π in the disjoint cycle notation. If c_1, \ldots, c_k are cycles of π , then $\pi = c_1 c_2 \cdots c_k$ as product in S_n .

$$c_i$$
 and c_j are disjoint, so $c_i c_j = c_j c_i$.
 $\pi^{-1} = c_k^{-1} \cdots c_1^{-1} = c_1^{-1} \cdots c_k^{-1}$

Example:

If c and c' are non-disjoint cycles, then they don't necessarily commute: (12)(23) = (123) while $(23)(12) = (123)^{-1} = (132) \neq (12)(23)$.

If π is a permutation, then π commutes with π^i for all i since $\pi^{i+1} = \pi \pi^i = \pi^i \pi$, so π and π^i commute. However, note that they don't necessarily have disjoint support sets.

Index

Α	
abelian 10 associative 5	identity7inverse7invertible8
В	K
binary operation 4	k-ary operation
C commutative	M
commute	multiplicative table 12
D	N
dihedral group 14 disjoint 19	n-gon
F	0
finite	order
•	S
G group	support set18symmetric/permutation group17symmetry14