FONDAMENTI DI ELETTRONICA – Corso di laurea in Ingegneria Biomedica a.a. 2021/22 – Appello del 01/09/2022

COGNOME E NOME: MATRICOLA:

DA LEGGERE CON ATTENZIONE PRIMA DI INIZIARE L'ESAME

- 1) Il tempo a disposizione è 2.5 ore
- 2) Scrivere cognome, nome e numero di matricola su questo foglio e su tutti i fogli consegnati
- 3) Bisogna consegnare il testo del compito anche in caso di ritiro
- 4) Fornire risposte chiare e adeguatamente giustificate
- 5) Nei conti e nei risultati, i valori numerici DEVONO essere accompagnati dalla relativa unità di misura.
- 6) L'elaborato deve essere scritto e consegnato in forma ORDINATA e COMPRENSIBILE.

PROBLEMA P1

Dato il circuito riportato nella figura sottostante, determinare:

- 1) il valore della resistenza R_4 ;
- 2) il punto di lavoro dei transistor M_1 , M_2 , M_3 sapendo che $V_{DS2} = -V_{DS3}$
- 3) il guadagno di tensione ai piccoli segnali ac $A_v = v_o/v_i$
- 4) il guadagno di corrente ai piccoli segnali ac $A_i=i_L/i_i$
- 5) le resistenze di ingresso e uscita ai piccoli segnali ac R_{IN} e R_{OUT} .

Dati:

$$V_{DD} = V_{SS} = 10 \text{ V}$$

 $R_{I} = 150 \text{ k}\Omega$,
 $R_{2} = 250 \text{ k}\Omega$,
 $R_{3} = 2.0 \text{ k}\Omega$,
 $R_{5} = 1.0 \text{ k}\Omega$,
 $R_{L} = 1.0 \text{ k}\Omega$,
 $R_{i} = 1.0 \text{ k}\Omega$,

$$M_1$$
: k_{n1} =10 mA/V², V_{TN1} = 2 V
 M_2 : k_{n2} =5 mA/V², V_{TN2} = 2 V
 M_3 : k_{p3} =5 mA/V², V_{TP3} = 2 V

$$\lambda_p = \lambda_n = 0 \text{ V}^{-1};$$

PROBLEMA P2

Sia dato il circuito in figura che usa un amplificatore operazionale ideale. **Dati:** $R_1 = 1 \text{ k}\Omega$, $R_2 = 50 \Omega$, $R_3 = 5 \text{ k}\Omega$, $R_4 = 5.55 \text{ k}\Omega$, $R_5 = 1.1 \text{ k}\Omega$, $C_1 = 100 \mu\text{F}$, $C_3 = 20 n\text{F}$, $C_5 = 0.9 \mu\text{F}$.

- 1) ricavare l'espressione della funzione di trasferimento $W(s) = v_o(s)/v_{in}(s)$;
- 2) tracciare il diagramma di Bode asintotico dell'ampiezza e della fase di W(s), (per la fase non usare l'approssimazione a gradino).
- 3) Calcolare $v_o(t)$ sapendo che $v_s = 2V + 1V*\sin(\omega_o t)$ con $\omega_o = 100$ rad/s.

PROBLEMA Q1

L'amplificatore in figura è realizzato con un amplificatore operazionale ideale e un diodo Zener ideale. Determinare:

- 1) i valori della tensione di ingresso per la quale il diodo è ON, OFF e in Breakdown.
- 2) v_o quando $v_s = -2 V$.
- 3) (facoltativo) la transcaratteristica del circuito.

Dati: $R = 1 \text{ k}\Omega, V_{ON} = 0, V_{Z} = 6V$

PROBLEMA Q2

Il circuito di figura impiega un AO quasi ideale con correnti di polarizzazione pari a $I_{\rm B1}$ =120nA (morsetto non invertente), $I_{\rm B2}$ =80nA (morsetto invertente).

- 1) Calcolare v_o considerando l'effetto delle sole correnti di polarizzazione (v_s=0).
- 2) Trovare il valore di R₄ che annulli l'effetto delle correnti di BIAS.

Dati:
$$R_1 = 10 \text{ k}\Omega$$
, $R_2 = 40 \text{ k}\Omega$, $R_3 = 10 \text{ k}\Omega$, $R_4 = 40 \text{ k}\Omega$, $V_{CC} = 10 \text{ V}$.

PROBLEMA Q3

Data la seguente mappa di Karnaugh

- 1) Trovare una F minimizzata
- 2) Disegnare la rete logica minimizzata tramite porte logiche fondamentali.

CD AB	00	01	11	10
00	1	X	X	0
01	0	0	0	0
11	X	1	0	1
10	1	X	X	1