2018-2019 学年第 2 学期期末考试

得分	1、 <i>N</i> 沟道	_ , . , ,				的条件,	画出场效应管恒
		(不改变场效 加大上限截1		本不改变电容	序耦合共源-	共源-共漏	前 放大电路源电压
3、低通、高	新通、 带通和	7带阻四种类	型滤波电路的	う定性判别 方	法。		

4、定性分析用集成运放(电压放大电路)通过负反馈构建的电流放大电路的性能。

二、图 2 所示电路模型中,所有电源在 t=0 时接入, $u_{C}(0)=0$;①求虚框所示单口的戴维南等效电路;②求 $t\geq 0$ 时的电压 $u_{c}(12\, \%)$ 5 uF

三、图 3 所示正弦稳态电路模型中,输入电压 $u_i = \cos(\omega t)V$,用相量法分别求 $\omega = 100 rad/s \ , \ \omega = 2 \times 10^5 rad/s \ \text{和} \ \omega = 4 \times 10^7 rad/s \ \text{时的输出电压} \ u_o \ . \ (12\ \%)$

四、图 4 所示共源放大电路中,场效应管的 $g_{m1}=4mS$, $r_{ds1}\to\infty$, $C'_{gs1}=50\,pF$, 信号源的 $r_s=0.2k\Omega$; ①求 R_i 、 A_{uoc} 、 R_o 和 A_{us} ; ②求 f_L 、 f_H 和 f_{BW} ; ③如果在负载前插入电容耦合共漏放大电路,且 $R_{i2}=67k\Omega$, $A_{uoc2}=0.89$, $R_{o2}=0.22k\Omega$,求 A_{us} 和 f_{BW} 。 (12 分)

五、在图 5 所示放大电路中引入电阻 R_f 构成合适的负反馈,使输入电压 $\left|u_i\right|=0\sim5V$ 时输出电流 $\left|i_o\right|=0\sim20mA$,在图中标示并求出 R_f 。(12 分)

六、图 6 所示滤波电路中,要求通带放大倍数 $A_{uf}=1.586$,上限截止频率 $f_H=2kHz$,求电容 C 和电阻 R_1 、 R_2 。(12 分)

七、图 7 所示 AC/DC 电源中,输入电压 $u_i=10\cos(100\pi)V$,滤波电容 $C=125\mu F$,

