La macchina di Turing Universale

Fabio Zanasi¹

¹ Università di Bologna

Abstract

Una Macchina di Turing Universale \grave{e} in grado di emulare il comportamento di una qualsiasi macchina di Turing codificata sul suo nastro.

Keywords: UTM, MTU, Turing

Contents

1	\mathbf{Des}	crizione
	1.1	Struttura
	1.2	La codifica delle regole di transizione per ${\mathfrak M}$
	1.3	Esempio
2	Imp	plementazione
	2.1	Insieme dei simboli
	2.2	Algoritmo

1 Descrizione

1.1 Struttura

La macchina di Turing universale (\mathfrak{U}) è in grado di emulare una qualsiasi macchina di Turing (\mathfrak{M}) il cui insieme di simboli consiste di tre soli simboli : \bot (blank), $\mathbf{0}$ e $\mathbf{1}$.

La configurazione corrente della macchina (\mathfrak{M}) è codificata sul nastro di (\mathfrak{U}) come segue:

- $\bullet \ sinistra-nastro è il contenuto del nastro di <math display="inline">{\mathfrak M}$ alla sinistra della cella corrente.
- $\hat{\mathfrak{M}}$ è la codifica (notare^!) delle regole di transizione per \mathfrak{M} , ove è segnato lo stato corrente.
- \Box è il contenuto della cella corrente di \mathfrak{M} .
- \bullet destra-nastro è il contenuto del nastro di ${\mathfrak M}$ alla destra della cella corrente.

1.2 La codifica delle regole di transizione per \mathfrak{M}

Gli stati di \mathfrak{M} sono numerati q_1, \ldots, q_m . Nel seguito denotiamo con \hat{q}_i la codifica dello stato q_1 (notare $\hat{}$!) . Se q_C \hat{e} lo stato corrente, La codifica delle regole di transizione per \mathfrak{M} ha la forma:

$$\hat{q}_1:\hat{q}_2:\dots\;\hat{q}_{C-1}:\hat{q}_C\;!\;\hat{q}_{C+1}:\dots\;\hat{q}_m$$

dove $\hat{q_i}$ codifica (notare^!) la regola di transizione per lo stato $\hat{q_i}$, la codifica di ogni stato termina con il i due punti (:) eccetto che per lo stato corrente che \hat{e} individuato per terminare con un punto esclamativo.

Data la regola di transizione per lo stato \hat{q}_i :

$$\bullet \ q_i, _ \to s_j, D_j, q_j$$

•
$$q_i,0 \rightarrow s_k,D_k,q_k$$

•
$$q_i, 1 \rightarrow s_l, D_l, q_l$$

dove $s_j, s_k, s_l \in \{ \bot, 0, 1 \}$, $D_j, D_k, D_k \} \in \{ \mathbf{L}, \mathbf{R} \}$ (la testina si muove **sempre**) e $1 \le j, k, l \le m$ (numero degli stati), allora la codifica \hat{q}_i ha la forma

$$s_j\ D_j\ \sigma_{j-i}\ ,\, s_k\ D_k\ \sigma_{k-i}\ ,\, s_l\ D_l\ \sigma_{l-i}$$

dove le tre parti della codifica della regola di transizione sono separate dalla virgola (,) e

$$\sigma_{\delta} = \begin{cases} & se \ \delta = 0, \\ +^{\delta} & se \ \delta > 0, \\ -^{|\delta|} & se \ \delta < 0, \end{cases}$$

gli esponenti (p.e. δ in $+^{\delta}$) denotano ripetizione. Cos \hat{i} una sequenza di $|\delta|$ simboli (+) o (-) codificano il relativo cambiamento nel numero di stato, il punto (.) denota nessun cambiamento di stato. Se non c'è una regola di transizione per (q_i,s) (interpretata come una configurazione di arresto), allora la codifica \hat{q}_i è la stringa vuota.

La dimensione di $\hat{\mathfrak{M}}$ è $O(m^2)$, dove m è il numero di stati di \mathfrak{M} .

1.3 Esempio

La macchina di Turing \mathfrak{M} a due stati per incrementare un numero in formato binario :

•
$$q_1, _ \rightarrow _, \mathbf{L}, q_2$$

•
$$q_1,0 \to {\bf 0},{\bf R},q_1$$

•
$$q_1,1 \to 1,\mathbf{R},q_1$$

•
$$q_2, \rightarrow 1, L, q_3$$

•
$$q_2,0 \to 1,\mathbf{L},q_3$$

•
$$q_2,1 \to 0, \mathbf{L}, q_2$$

•
$$q_3, \bot \rightarrow \bot$$
, **L**, halt

•
$$q_3,0 \to 0, L, q_3$$

•
$$q_3,1 \to 1, L, q_3$$

con stato iniziale q_1 , input iniziale **1011**, ha questa codifica $\hat{\mathfrak{M}}$

$$[L+,0R.,1R.!1L+,1L+,0L.:,0L.,1L.:]1011$$

2 Implementazione

2.1 Insieme dei simboli

 $\mathfrak U$ fa uso di un insieme di 16 simboli { \square **0 1** [] , : ! **L R** . - + # < > }

2.2 Algoritmo

 $\mathfrak U$ inizia posizionandosi alla prima cella a destra di] , ove si trova il primo simbolo di input di $\mathfrak M$.

- 1. Legge il simbolo, s, dalla cella corrente.
- 2. Trova lo stato corrente, muovendosi a sinistra fino a quando non incontra il simbolo!
- 3. Trova la regola di transizione corrente muovendosi a sinistra oltre 2, 1 o 0 virgole (,) se $s \stackrel{.}{e} = \mathbf{0} \mathbf{1}$ rispettivamente.
- 4. Se la regola corrente è vuota , $\mathfrak U$ si ferma.
- 5. Altrimenti, modifica la codifica dello stato corrente, cambiando il punto . in #, ogni in < e ogni + in <
- 6. Legge il simbolo da scrivere dalla regola corrente , si muove verso destra e lo scrive nella cella corrente di $\mathfrak M$
- 7. Muove a sinistra alla regola corrente (riconoscibile dalla presenza di #, <>) e legge la direzione di spostamento (${\bf L}$ o ${\bf R}$)
- 8. Sposta l'intera codifica di M a sinistra o a destra di una cella, poi aggiorna la cella corrente di M.
- 9. Cambia lo stato se necessario sostituendo ogni < con o ogni > con +, e ogni volta , muovendo il simbolo ! alla posizione del successivo : alla sinistra o alla destra rispettivamente. Se non \grave{e} richiesto un cambiamento di stato, il simbolo # \grave{e} sostituito con un .
- 10. Muove a destra alla cella corrente di \mathfrak{M} per ricominciare dal passo 1.