SUPPORT VECTOR MACHINES

1. SVM with various kernels

The SVM command is in package called e1071.

- > install.packages("e1071");
- > library(e1071)

Let's use support vector machines to classify cars into Economy and Consuming classes.

```
> ECO = ifelse( mpg > 22.75, "Economy", "Consuming")
```

- > Color = ifelse(mpg > 22.75, "green", "red")
- > plot(weight, horsepower, lwd=3, col=Color)

The two classes cannot be separated by a hyperplane, but the SVM method is surely applicable.

```
> S = svm( ECO ~ weight + horsepower, data=Auto, kernel = "linear" )
Error in svm.default(x, y, scale = scale, ..., na.action = na.action) :
Need numeric dependent variable for regression.
```

Error? There are other, unused variables in dataset Auto that prevent R from doing this SVM analysis. We'll create a reduced dataset.

```
> d = data.frame(ECO, weight, horsepower)
> S = svm( ECO ~ weight + horsepower, data=d, kernel="linear" )
> summary(S)
```

Parameters:

SVM-Type: C-classification

SVM-Kernel: linear

cost: 1 gamma: 0.5

Number of Support Vectors: 120

(6060)

So, there are 120 points violating the separating hyperplane or the margin, 60 in each class.

> plot(S, data=Auto)

Error in plot.svm(S, data = Auto): missing formula.

Same story. We need to use a reduced dataset that contains only the needed variables.

> plot(S, data=d)

This is the final classification with a <u>linear kernel</u> and therefore, a linear boundary. Support vectors are marked as "x", other points as "o".

We can look at other types of kernels and boundaries – polynomial, radial, and sigmoid.

> S = svm(ECO ~ weight + horsepower, data=d, kernel="polynomial")

> summary(S); plot(S,d)

Number of Support Vectors: 176

> S = svm(ECO ~ weight + horsepower, data=d, kernel="radial")

> summary(S); plot(S,d)

Number of Support Vectors: 121

> S = svm(ECO ~ weight + horsepower, data=d, kernel="sigmoid")

> summary(S); plot(S,d)

Number of Support Vectors: 74

Adding more variables should give a better fit - to the training data.

> S = svm(factor(ECO) ~ weight + horsepower + displacement + cylinders, data=Auto, kernel="linear") > summary(S)

Number of Support Vectors: 99

We can identify the support vectors:

> S\$index

[1] 16 17 18 25 33 45 46 48 60 61 71 76 77 78 80 100 107 108 109

[20] 110 111 112 113 119 120 123 153 154 162 173 178 199 206 208 209 210 240 241

[39] 242 253 258 262 269 273 274 275 280 281 384 24 31 49 84 101 114 122 131

[58] 149 170 177 179 192 205 218 233 266 270 271 296 297 298 299 305 306 313 314

[77] 318 322 326 327 331 337 338 353 355 356 357 358 360 363 365 368 369 375 381

[96] 382 383 385 387

> Auto[S\$index,]

mpg cylinders displacement horsepower weight acceleration year origin

```
16 22.0
           6
                  198
                         95 2833
                                      15.5 70
                                                 1
17 18.0
           6
                  199
                         97 2774
                                       15.5 70
                                                 1
                                       16.0 70
18 21.0
           6
                  200
                         85 2587
                                                 1
25 21.0
           6
                  199
                         90 2648
                                      15.0 70
                                                 1
      < truncated >
```

2. Tuning and cross-validation

The "cost" option specifies the cost of violating the margin. We can try costs 0.001, 0.01, 0.1, 1, 10, 100, 1000:

```
> Stuned = tune( svm, ECO ~ weight + horsepower, data=d, kernel="linear", ranges=list(cost=10^seq(-3,3)) )
> summary(Stuned)
- sampling method: 10-fold cross validation

- best parameters:
cost
0.1

- best performance: 0.1173718
```

Detailed performance results:
cost error dispersion
1 1e-03 0.2478205 0.10663023
2 1e-02 0.1432051 0.05485355

3 1e-01 0.1173718 0.04208311 classification.

This cost yielded the lowest cross-validation error of

```
4 1e+00 0.1326282 0.04461101
5 1e+01 0.1351923 0.04819639
6 1e+02 0.1351923 0.04819639
7 1e+03 0.1351923 0.04819639
```

We can also find the optimal kernel.

```
> Stuned = tune( svm, ECO ~ weight + horsepower, data=d, ranges=list(cost=10^seq(-3,3),
kernel=c("linear","polynomial","radial","sigmoid")))
> summary(Stuned)
Parameter tuning of 'svm':
- sampling method: 10-fold cross validation
- best parameters:
  cost kernel
  0.1 sigmoid
- best performance: 0.1046154
- Detailed performance results:
              kernel
                           error dispersion
    cost
              linear 0.2164744 0.10501351
   1e-03
   1e-02
              linear 0.1326282 0.05074006
```

```
1e-01
              linear 0.1096154 0.04330918
              linear 0.1172436 0.03813782
   1e+00
   1e+01
              linear 0.1223718 0.04775672
   1e + 02
              linear 0.1223718 0.04775672
   1e+03
              linear 0.1223718 0.04775672
   1e-03 polynomial 0.3720513 0.08274072
   1e-02 polynomial 0.2601282 0.06438244
   1e-01 polynomial 0.1987821 0.07443903
   1e+00 polynomial 0.1784615 0.05328633
   1e+01 polynomial 0.1580769 0.04909157
13 1e+02 polynomial 0.1555128 0.04999836
14 1e+03 polynomial 0.1504487 0.04722372
15 1e-03
              radial 0.5816026 0.05687780
16 1e-02
              radial 0.1301282 0.05190241
17 1e-01
              radial 0.1198077 0.05104329
18 1e+00
              radial 0.1223718 0.04118608
              radial 0.1096795 0.04835338
19
   1e+01
20
   1e+02
              radial 0.1198718 0.04184981
              radial 0.1146795 0.04354410
21 1e+03
22 1e-03
             sigmoid 0.5816026 0.05687780
23 1e-02
            sigmoid 0.1530769 0.04517581
24 1e-01
             sigmoid 0.1046154 0.03711533
                                                   # The best kernel and cost.
25 1e+00
            sigmoid 0.1173718 0.04715638
26 1e+01
            sigmoid 0.1530769 0.06159616
27 1e+02
            sigmoid 0.1582051 0.06489946
28 1e+03
            sigmoid 0.1582051 0.06489946
> Soptimal = svm( ECO ~ weight + horsepower, data=d, cost=0.1, kernel="sigmoid")
> summary(Soptimal); plot(Soptimal,data=d)
Parameters:
 SVM-Type: C-classification
SVM-Kernel: sigmoid
   cost: 0.1
   gamma: 0.5
                                      # We know that more support vectors imply a lower variance
Number of Support Vectors: 164
(8282)
```

Number of Classes: 2

Levels: Consuming Economy

SVM classification plot

Let's use the validation set method to estimate the classification rate of this optimal SVM.

3. More than two classes

Let's create more categories of ECO. The same tool svm() can handle multiple classes.

```
> summary(mpg)
Min. 1st Qu. Median Mean 3rd Qu. Max.
9.00 17.00 22.75 23.45 29.00 46.60

> ECO4 = rep("Economy",n)
> ECO4[mpg < 29] = "Good"
```

> S4 = svm(ECO4 ~ weight + horsepower, data=d, cost=0.1, kernel="sigmoid") Error in svm.default(x, y, scale = scale, ..., na.action = na.action) : Need numeric dependent variable for regression.

R was trying to do regression SVM but realized that ECO4 is not numerical. We can direct R to do classification by replacing ECO4 with factor(ECO4).

> S4 = svm(factor(ECO4) ~ weight + horsepower, data=d, cost=0.1, kernel="sigmoid") > plot(S4, data=d)

SVM classification plot

> Yhat = predict(S4, data.frame(Auto))
> table(Yhat, ECO4)

ECO4
Yhat Consuming Economy Good OK
Consuming 88 0 2 33
Economy 0 96 58 15
Good 0 2 9 5
OK 4 5 24 51

> mean(Yhat == ECO4) [1] 0.622449

It's more difficult to predict finer classes correctly