Part III-B: Medicine AI

Lecture by None Note by THF

2024年10月17日

目录

L	导论	i														1	
	1.1	监督学	岁													2	
		1.1.1	数据挖掘													3	
		1.1.2	数据选择			 •										3	
		1.1.3	数据表征													3	
Le	earn	1															10.07
																	10.07
1	导	论															
	Notat	tion. 机	器学习的流	程	:												
	1	. 确立[目标														
	2	. 收集数	汝据														
	3	数据到	页处理														
	4	. 数据分	分析														
	5	. 模型i	川练														
	6	. 模型:	平估优化														
	7	'. 预测															

机器学习和人工智能的关系:

机器学习算法包含: 无监督学习、监督学习、强化学习

1.1 监督学习

Notation. 机器学习选择数据要求:

- 1. 了解数据类型、属性、量纲
- 2. 分析分布特性
- 3. 选择高可信度数据
- 4. 进行数据表征(将原始数据转换为计算机可识别数据)

Example. 医药领域对小分子、蛋白质、核酸进行特征数字化方法

1.1.1 数据挖掘

- 1. 通过数据分析与统计学规律
- 2. 通过爬虫与自动化程序

1.1.2 数据选择

通过一部分数据来体现总体数据

1.1.3 数据表征

Example. 分子指纹:

首先提取分子结构特征(官能团等),使用分子结构特征生成比特向量,每 个比特元素对应一种分子片段,通过对比比特向量的相似度来记录分子特征

分子指纹分类:基于子结构、拓扑或路径、药效集团的分子指纹和圆形分子 指纹

Notation. SMILES/简化分子线性输入规范: SMILES 是一种 ASCII 字符串,具体规则如下

SMILES RULE

1. 简单规则

原子:原子缩写符号

Example. Au, Pt, C, N

离子:原子加上电荷数,外接中括号

Example. Fe^{3+} : [Fe+++]

 $C^-:[C_-]$

 $Pt^{6+}: [Pt+++++]$

H 原子: 省略

相邻原子: 直接连接

Learn 1

Example. Dodecane: CCCCCCCCCC (12 Carbons)

分支: 以小括号表示

Example. Write in git style:

SMILES: AB(EFG)CD

单键:直接省略

双键: "=" 三键: "#"

芳香键 = 单键(直接省略)

Notation. 部分软件芳香键使用单双键交替表示 芳香原子使用小写字母

Example. hex-2-en-4-yne/戊-2-烯-4-炔(不分顺反): CC=CC#CC toluene: Cc1ccccc1

2. 立体结构

环状结构: 将环断开形成线性结构, 以数字标记断开的原子

Example. Cyclohexane: C1CCCC1

同位素: [核电荷数 + 元素符号]

Example. ¹³C: [13C]

Z/E 构象:使用"/"和"\"代表单键方向

Example. (2E)-hex-2-en-4-yne: C/C=C/C#CC

(2Z)-hex-2-en-4-yne: $C/C=C\setminus C\#CC$

图 1: S&R

手性异构: @ 表示 S, @@ 代表 R

Example. -CH₃ 最小, 放在最后, 对基团大小比较:

 $F > NH_2 > COOH$.

为 R 构型, 即: N[C@@](F)(C)C(=O)O

3. 算法与生成

Notation. 大部分 SMILES 生成算法为商业算法,如 Morgan 算法、Canonical SMILES 算法等

生成 SMILES 主要使用深度优先搜索 (DFS) 算法遍历分子图

Notation. InChI: 国际化合物标识,是规范的线性表示法、基于规范命名法则的唯一标识符

通过分层符号"/"将表示小分子的字符串分层,前三层简化连接表的信息,其他层处理额外问题

InChI RULE

1. 主层

主层可包括三个子层: 化学式、原子连接、氢原子

主层 {化学式 原子连接 氢原子

Learn 2

Learn 2 10.17

Notation. 氨基酸组成和二肽组成 基础知识:组成人体的二十种氨基酸

表 1: 20 amino acids

Alanine(A)	Arginine(R)	Asparagine(N)					
Asparticacid(D)	Cysteine(C)	Glutamine(Q)					
Glutamicaci(E)	Glycine(G)	Histidine(H)					
Isoleucine(I)	Leucine(L)	Lysine(K)					
Methionine(M)	Phenylalani(F)	Proline(P)					
Serine(S)	Threonine(T)	Tryptophan(W)					
Tyrosine(Y)	Valine(V)						

表 2: 20 种基本氨基酸

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
丙氨酸,A	精氨酸,R	天冬酰胺,N					
天冬氨酸,D	半胱氨酸,C	谷氨酰胺,Q					
谷氨酸,E	甘氨酸,G	组氨酸,H					
异亮氨酸,I	亮氨酸,L	赖氨酸,K					
甲硫氨酸,M	苯丙氨酸,F	脯氨酸,P					
丝氨酸,S	苏氨酸,T	色氨酸,W					
酪氨酸,Y	缬氨酸,V						

除此外还有用于终止密码子的硒半胱氨酸、吡咯赖氨酸(U)

Notation. 氨基酸组成的公式:

$$f(k) = \frac{N_k}{N}, k = 1, 2, \dots, 20.$$

其中 N_k 表示第 k 种氨基酸的数量,N 表示氨基酸序列长度

Notation. 二肽组成的公式:

$$f(k,s) = \frac{N_{ks}}{N-1}, k, s = 1, 2, \dots, 20.$$

同理: N_{ks} 为第 k 种和第 s 种氨基酸形成的二肽数量

Notation. 蛋白质独热编码

使用 $20 \times L$ 的矩阵表示蛋白质的序列信息,L 为蛋白质的序列长度

Example. 含 556 个氨基酸的蛋白质序列可以用 20×556 的矩阵表示,纵向量为二十种氨基酸,横向量为蛋白质在某位置的氨基酸种类

Notation. CTD 描述符

组成、转换与分布(Composition, Transition and Distribution, CTD)根据蛋白质序列中残基的特性编码蛋白质

. .

将氨基酸残基分为三类:

表 3: CTD 分类

性质	A	В	С							
疏水性	亲水	中性	疏水							
范德华体积	(0,2.78)	(2.95,4)	(4.43, 8.08)							
极性	(0,0.456)	(0.6, 0.696)	(0.792,1)							
可极化性	(0,0.108)	(0.128, 0.186)	(0.219, 0.409)							
带电性	正电	中性	负电							
表面张力	(-0.2,0.16)	(-0.52, -0.3)	(-2.46, -0.98)							
二级结构	螺旋	折叠	卷曲							
溶剂可及性	包埋	中等	暴露							

Notation. 蛋白质二级结构及蛋白质溶剂可及性 1. 蛋白质二级结构 (PSS)