Martin Lüdtke

Heidelberg, 14 February 2024

The aim of this exercise is to give a Chabauty–Kim proof of the fact that $\mathbb{G}_m(\mathbb{Z}) = \{\pm 1\}$. Let K be a field of characteristic zero, \overline{K}/K an algebraic closure and $G_K = \operatorname{Gal}(\overline{K}/K)$ the absolute Galois group.

(a) Show that the morphisms $\mathbb{G}_{m,\overline{K}} \stackrel{n}{\to} \mathbb{G}_{m,\overline{K}}$, $x \mapsto x^n$ are finite étale covers for all $n \in \mathbb{N}$. Show that every connected finite étale cover of $\mathbb{G}_{m,\overline{K}}$ is of this form.

Hint: reduce to the case $K \subseteq \mathbb{C}$ and use the equivalence between finite étale covers of X and finite topological covers of $X(\mathbb{C})$.

Étale fundamental groups and path spaces can be described via the universal pro-covering. The universal pro-covering of X is a pro-object $\widetilde{X} = (X_i)_i$ of Cov(X) such that for every finite étale cover $Y \to X$ there is a morphism $\widetilde{X} \to Y$ over X. By the definition of morphisms of pro-objects, $Hom(\widetilde{X},Y) = \varinjlim_i Hom(X_i,Y)$. For $b \in X(\overline{K})$ a base point and $\widetilde{b} = (b_i)_i \in \varprojlim_i F_b(X_i)$ compatible points in the fibre over b, the pointed pro-universal cover $(\widetilde{X},\widetilde{b})$ pro-represents the fibre functor $F_b \colon Cov(X) \to FinSet$, i.e. one has a natural isomorphism

$$F_b(Y) \cong \varprojlim_i \operatorname{Hom}(X_i, Y).$$

for $Y \in Cov(X)$. From this one obtains

$$\pi_1^{\text{\'et}}(X;b,x) = \varprojlim_i F_x(X_i)$$

(b) Show that the covers $(\mathbb{G}_{m,\overline{K}} \xrightarrow{n} \mathbb{G}_{m,\overline{K}})_n$ form a pro-universal cover of $\mathbb{G}_{m,\overline{K}}$. Conclude that for $x \in \mathbb{G}_m(K)$ we have

$$\pi_1^{\text{\'et}}(\mathbb{G}_{m,\overline{K}};1,x)\cong \varprojlim_n x^{1/n},$$

where $x^{1/n}$ denotes the set of *n*-th roots of x in \overline{K} . In particular, the étale fundamental group of $\mathbb{G}_{m,\overline{K}}$ is given by

$$\pi_1^{\text{\'et}}(\mathbb{G}_{m,\overline{K}},1) = \hat{\mathbb{Z}}(1) \coloneqq \varprojlim_n \mu_n(\overline{K}).$$

Now fix an auxiliary prime p. Taking the \mathbb{Q}_p -prounipotent completion, the previous item shows that the $(\mathbb{Q}_p$ -points of the) \mathbb{Q}_p -pro-unipotent fundamental group $U^{\text{\'et}}$ of $\mathbb{G}_{m,\overline{K}}$ are

$$U^{\text{\'et}} = \mathbb{Q}_p(1) := \left(\varprojlim_n \mu_{p^n}(\overline{K})\right) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p.$$

(c) Show that the Kummer map

$$\kappa \colon \mathbb{G}_m(K) \to \mathrm{H}^1(G_K, \mathbb{Q}_p(1))$$

can be identified with the natural map

$$K^{\times} \to \left(\varprojlim_{n} K^{\times}/K^{\times p^{n}}\right) \otimes_{\mathbb{Z}_{p}} \mathbb{Q}_{p}.$$

For any prime ℓ consider the diagram

$$\mathbb{G}_m(\mathbb{Z}) \xrightarrow{} \mathbb{G}_m(\mathbb{Z}_\ell)$$

$$\downarrow^j \qquad \qquad \downarrow^{j_\ell}$$

$$\mathrm{H}^1(G_\mathbb{Q}, \mathbb{Q}_p(1)) \xrightarrow{\mathrm{loc}_\ell} \mathrm{H}^1(G_\ell, \mathbb{Q}_p(1)).$$

- (d) Describe the cohomology scheme $H^1(G_\ell, \mathbb{Q}_p(1))$. Distinguish the cases $\ell \neq p$ and $\ell = p$.
- (e) Define the Selmer scheme $\operatorname{Sel}_{\infty}(\mathbb{G}_m)$ as the scheme representing the subfunctor of $\operatorname{H}^1(G_{\mathbb{Q}},\mathbb{Q}_p(1))$ consisting of classes α such that for all primes ℓ , the localisation $\operatorname{loc}_{\ell}(\alpha)$ is contained in $j_{\ell}(\mathbb{G}_m(\mathbb{Z}_{\ell}))^{\operatorname{Zar}}$. Moreover, let $\operatorname{H}^1_f(G_p,\mathbb{Q}_p(1)) := j_p(\mathbb{G}_m(\mathbb{Z}_p))^{\operatorname{Zar}}$. Show that the Chabauty–Kim diagram

$$\mathbb{G}_m(\mathbb{Z}) \longrightarrow \mathbb{G}_m(\mathbb{Z}_p)$$

$$\downarrow^j \qquad \qquad \downarrow^{j_p}$$

$$\operatorname{Sel}_{\infty}(\mathbb{G}_m) \stackrel{\operatorname{loc}_p}{\longrightarrow} \operatorname{H}^1_f(G_p, \mathbb{Q}_p(1))$$

can be identified with

$$\mathbb{G}_m(\mathbb{Z}) \longrightarrow \mathbb{G}_m(\mathbb{Z}_p)$$

$$\downarrow \qquad \qquad \downarrow \log$$

$$\{0\} \xrightarrow{\operatorname{loc}_p} \mathbb{Q}_p$$

where the right vertical map is the p-adic logarithm log: $\mathbb{Z}_p^{\times} \to \mathbb{Q}_p$.

(f) The Chabauty-Kim locus $\mathbb{G}_m(\mathbb{Z}_p)_{\infty}$ is defined as the set of $x \in \mathbb{G}_m(\mathbb{Z}_p)$ such that $j_p(x)$ lies in the scheme-theoretic image of $\mathrm{Sel}_{\infty}(\mathbb{G}_m)$ under the localisation map loc_p . This is a subset of $\mathbb{G}_m(\mathbb{Z}_p)$ containing $\mathbb{G}_m(\mathbb{Z})$ by construction. Determine $\mathbb{G}_m(\mathbb{Z}_p)_{\infty}$ depending on p. Show that

$$\mathbb{G}_m(\mathbb{Z}_p)_{\infty} = \{\pm 1\}$$

for a suitable choice of p, proving that $\mathbb{G}_m(\mathbb{Z}) = \{\pm 1\}$.