Engenharia de Sistemas Informáticos

Conceitos de Visão por Computador

• Luz e Cor

Conceitos de Visão por Computador

Espectro Electromagnético

Conceitos de Visão por Computador

Espectro Electromagnético 10-6 10⁻¹² meters 10-9 10° 10^{3} 10^{-3} 1 nanometer 1000 nanometer 1 millimeter 1 meter 1 kilometer Radio Cosmic X-rays **Broadcast Microwaves** band rays Infrared Ultraviolet Gamma Radar (UV) (IR) rays W **Short Wavelenghts Long Wavelengths** Visible Light Ultraviolet Infrared (UV) (IR) 400 nanometers 500 nanometers 600 nanometers 700 nanometers

Conceitos de Visão por Computador

Visão Humana

Conceitos de Visão por Computador

Visão Humana – Células Fotorreceptoras

A **retina** contém **células fotorreceptoras** (bastonetes e cones) que <u>convertem raios de luz (fotões) em correspondentes sinais eléctricos</u>.

Após algum processamento (realizado no próprio olho), estes sinais são enviados, através do nervo óptico, para a região do córtex visual do cérebro.

Mas... de que forma é captada, pelo olho humano, a radiação da luz visível?

Conceitos de Visão por Computador

Visão Humana – Células Fotorreceptoras

Rods: Bastonetes em inglês.

Adapted from WEBVISION http://webvision.med.utah.edu/

Conceitos de Visão por Computador

Visão Humana – Cor

De modo a possibilitar a **percepção da cor**, o **olho humano** faz uso de foto-receptores (designados de **cones**) que combinam **3 cores primárias** (utilizando <u>3 diferentes tipos de cones</u>) para distinguir todas as cores possíveis.

As cores representam apenas a percepção da luz em diferentes frequências:

- Vermelho = 700nm
- Verde = 546.1nm
- Azul = 435.8nm

Nota:

- Maiores frequências = Cores mais frias (ex: azul)
- Menores frequências = Cores mais quentes (ex: vermelho)

Conceitos de Visão por Computador

Visão Humana – Cor

Typical humans are trichromats (three color cone/pigment types – blue, blue-green, and yellow-green)

Conceitos de Visão por Computador

Visão Humana – Percepção da Cor

Cores Primárias:

- As cores primárias de luz são aditivas.
- As cores primárias são: vermelho, verde e azul.
- A combinação das 3 cores primárias dá origem ao branco:

Conceitos de Visão por Computador

Visão Humana – Percepção da Cor

Shining white light on different colored paints

Conceitos de Visão por Computador

Visão Humana – Monocromática

Para a percepção da **luminosidade**, o **olho humano** faz uso de um tipo de foto-receptores especiais, denominados por **bastonetes**.

Estas células **têm maior sensibilidade** que as células cone.

Os **bastonetes** existem em maior número que as células **cone**, à razão de **20-para-1**.

O pico de sensibilidade dos bastonetes ocorre nos 498nm.

Conceitos de Visão por Computador

Visão Humana – Monocromática

Spectrum as perceived by rod cells

Humans also have rod cells (black, white, shades of gray)

Conceitos de Visão por Computador

Visão Humana

Typical humans (three color cone/pigment types plus rod cells)

Conceitos de Visão por Computador

Visão Por Computador

Conceitos de Visão por Computador

Visão Por Computador

Um **sistema de visão por computador** é constituído por:

- componentes de hardware;
- componentes de software.

No seu conjunto, estes componentes efectuam operações de:

- Aquisição;
- Armazenamento;
- Processamento de imagem;
- Visualização.

Conceitos de Visão por Computador

Visão Por Computador

Conceitos de Visão por Computador

Sensores de Aquisição de Imagem

Um sensor de aquisição de imagem é um sensor formado por um circuito integrado capaz de converter luz em electrões.

Existem dois **tipos de sensores**:

- **CCD** (Charge-Coupled Device)
- CMOS (Complementary Metal-oxide Semiconductor)

Conceitos de Visão por Computador

Sensores de Aquisição de Imagem

Image Sensor Technology

It is called, alias "Eyes of the electron", and is a semiconductor that changes the light (image) collected with the lens into an electric signal. CMOS image sensor was developed and mass-produced in advance of the world.

Name	Examples of products to be installed		
Cmos image sensor	Digital SLR camera Digital video camera		
CCD image sensor	Digital still camera Digital video camera		

Fonte: Sony

Conceitos de Visão por Computador

Sensores de Aquisição de Imagem

RGB Inside the Camera

Conceitos de Visão por Computador

Digitalização

Na natureza, as **imagens são analógicas**.

Como tal, é necessário realizar a **digitalização** das imagens para que seja possível aplicar técnicas de **processamento de sinal** sobre essas imagens.

Conceitos de Visão por Computador

Digitalização

O processo de **digitalização** de uma imagem envolve a adopção de **escalas para as coordenadas x e y** de uma imagem, bem como uma **escala para quantificar a intensidade da luz** recebida pelo sensor.

Assim, a **digitalização** de uma imagem analógica envolve duas operações:

- Amostragem: espaçamentos horizontal e vertical da matriz de pixéis;
- **Quantização**: níveis de representação da <u>intensidade</u> da luz.

Ambas as operações fazem uso da **discretização** de uma quantidade, mas em diferentes domínios.

Discretização: transformar espaço contínuo em discreto.

Conceitos de Visão por Computador

Digitalização: Amostragem

A **amostragem** consiste em efectuar a <u>discretização da imagem</u> no espaço.

$$f:[1,\ldots,N]\times[1,\ldots,M]\longrightarrow\mathbb{R}^m$$

$$f = \begin{bmatrix} f(1,1) & f(1,2) & \cdots & f(1,M) \\ f(2,1) & f(2,2) & \cdots & f(2,M) \\ \vdots & \vdots & \ddots & \vdots \\ f(N,1) & f(N,2) & \cdots & f(N,M) \end{bmatrix}$$

A dimensão de um pixel ao longo dos eixos (x ou y), está relacionada com o espaço físico (horizontal e vertical) entre as amostras.

(**Pixel** tem origem em **Pic**ture **El**ement.)

Conceitos de Visão por Computador

• Digitalização: Quantização

A quantização consiste em efectuar, para cada pixel, a discretização dos valores da intensidade luminosa.

$$f:[1,\ldots,N]\times[1,\ldots,M]\longrightarrow[0,\ldots,L]$$

Conceitos de Visão por Computador

Digitalização: Quantização

A **quantização** consiste assim em aproximar o valor medido de intensidade de luz, para o **nível** (<u>valor discreto</u>) **de escala mais próximo**.

8 levels

Tipicamente, 256 níveis (*levels* em inglês) são suficientes para representar a intensidade. Para imagens a cores, utilizam-se habitualmente 256 níveis para cada cor.

Conceitos de Visão por Computador

Digitalização: Quantização (Exemplos)

Conceitos de Visão por Computador

Digitalização: Quantização (Exemplos)

168	163	187	<u>184</u>	186	185	188	162	175	174
171	158	198	191	190	180	103	138	153	132
187	166	187	191	133	149	153	130	107	87
159	188	196	123	145	153	134	170	141	114
178	200	102	113	92	98	76	113	67	102
196	87	79	71	77	71	63	77	69	58
98	91	63	77	68	61	102	177	130	50
120	94	68	108	84	99	91	200	210	188
144	148	104	117	138	119	189	205	298	151
148	157	153	139	126	128	150	153	164	181

Conceitos de Visão por Computador

• Digitalização: Quantização

Imagens digitalizadas com 16, 8, 4 e 2 níveis de cinzentos:

Conceitos de Visão por Computador

Digitalização

Conceitos de Visão por Computador

Digitalização

Conceitos de Visão por Computador

Resolução

A **resolução** de uma imagem é definida pelo **número de pixéis** que definem uma imagem.

Assim, quantos **mais pixéis** uma imagem tiver, ou quanto menor for o tamanho dos pixéis, **maior será a resolução** da imagem e

melhor será a sua qualidade.

Conceitos de Visão por Computador

Resolução

256 x 160 128 x 80 64 x 40

Conceitos de Visão por Computador

Tipos de Imagem

Imagem **Binária**:

Possui apenas dois níveis (branco e preto).

Imagem em **Escala de Cinzentos**:

Possui mais de dois níveis, mas um canal de cor.

Imagem a **Cores**:

Possui mais de um canal de cor.

Conceitos de Visão por Computador

• Imagens Monocromáticas

Imagens **monocromáticas** são imagens digitais onde cada pixel possui apenas um canal de cor.

Imagem Binária

Imagem em Escala de Cinzentos

Conceitos de Visão por Computador

Imagens Monocromáticas

N.º de Níveis	Intervalo de Valores	N.º de Bits
2	[0, 1]	1
8	[0, 7]	3
16	[0, 15]	4
256	[0, 255]	8

Conceitos de Visão por Computador

Imagens a Cores

Imagens **coloridas** são imagens digitais onde cada pixel possui mais que um canal de cor.

(a) Imagem Colorida

(b) Banda Vermelha (Red)

(c) Banda Verde (Green)

(d) Banda Azul (Blue)

Conceitos de Visão por Computador

Profundidade de Cor

A **Profundidade de Cor** (ou Color Depth) de uma imagem, descreve a capacidade de se **reproduzirem as cores com maior ou menor exactidão**.

A Profundidade de Cor é dada pelo "número de bits que definem um pixel", também conhecido por bpp (bits por pixel).

Como exemplo:

- Imagem binária: **1 bpp**
- Imagem em escala de cinzentos: 8 bpp
- Imagem a cores: **24 bpp**

Conceitos de Visão por Computador

Profundidade de Cor

1 bpp

2 bpp

5 bpp

24 bpp

Conceitos de Visão por Computador

Imagem Digital

Define-se $\mathbf{f_t}$ como a imagem digital obtida no instante de tempo \mathbf{t} .

Uma imagem digital é uma representação, em duas dimensões, de uma imagem num conjunto finito de elementos que tomam valores discretos, organizados numa matriz de **N** por **M** elementos.

Estes elementos, que armazenam o valor da intensidade luminosa da imagem naquela coordenada, são denominados por pixéis (na literatura inglesa **pixel**, é um acrónimo derivado de "**pic**ture **el**ement").

Assim, a intensidade de um pixel nas coordenadas x e y da imagem f_t é definida por $f_t(x,y)$, em que $0 \le x < N$, $0 \le y < M$ e $f_t(x,y)$ toma valores do intervalo [0, 255] (para 8 bpp).

Conceitos de Visão por Computador

Imagem Digital

DO CÁVADO E DO AVE

Conceitos de Visão por Computador

Imagem Digital

No caso de uma imagem colorida, esta é definida pelo conjunto das várias componentes de cor.

Assim, como exemplo, uma imagem do espaço de cor **RGB** é definida por $\mathbf{f_t}$, em que cada pixel $\mathbf{f_t}(\mathbf{x,y})$ é representado pelos respectivos valores da intensidade das componentes **vermelha**, **verde** e **azul**, para o ponto definido pelas coordenadas $(\mathbf{x,y})$, da imagem digital adquirida no instante de tempo \mathbf{t} .

Conceitos de Visão por Computador

Imagem Digital

Escala de Cinzentos

Espaço de Cor RGB

Conceitos de Visão por Computador

Representação de uma Imagem em Linguagem C

Exemplo de declaração e inicialização de uma imagem em escala de cinzentos, 8bpp, com resolução 3x3:

unsigned char imagem[9] = {0, 255, 0, 255, 0, 255, 0, 255, 0};

Conceitos de Visão por Computador

Processamento e Análise de Imagem

Conceitos de Visão por Computador

Conceitos de Visão por Computador

Processamento de Imagem

Processamento de imagem é uma qualquer forma de processamento de sinal que recebe como entrada uma imagem (fotografia, *frame* de sequência de vídeo, etc.) e do qual resulta, à saída, uma outra imagem.

Sobre a imagem de entrada podem ser aplicadas diversas operações matemáticas, com o propósito de gerar uma imagem de melhor qualidade, realçar características da imagem de entrada, ou comprimir os dados que definem a imagem.

A grande maioria das técnicas de processamento de imagem processam os dados da imagem como sendo um sinal bidimensional.

Conceitos de Visão por Computador

Processamento de Imagem

(Exemplo de uma imagem de Raio-X)

Conceitos de Visão por Computador

Análise de Imagem

Análise de imagem refere-se a técnicas de processamento, aplicadas sobre imagens, que visam a extracção de informação contida nas imagens.

As técnicas de análise de imagem têm como propósito **obter informação** descritiva de texturas, geometrias, entre outras características.

Conceitos de Visão por Computador

Análise de Imagem

(Exemplo de uma imagem de células)

Conceitos de Visão por Computador

Exercícios

- Quantos bytes ocupará em memória uma imagem em escala de cinzentos, 8bpp, com resolução 320x240?
- Quantos bytes ocupará em memória uma imagem binária,
 1bpp, com resolução 320x240?
- 3. Quantos bytes ocupará em memória uma imagem binária, 8bpp, com resolução 320x240?
- 4. Declare, utilizando os tipos de dados da linguagem C, um array capaz de armazenar uma imagem em escala de cinzentos, 8bpp, com resolução 704x576.

Conceitos de Visão por Computador

Exercícios

1. Utilizando ciclos *for*, atribua o valor 127 a todos os pixéis da imagem anterior.

2. Utilizando ciclos *for*, atribua o valor 0 (zero) aos pixéis de rebordo da imagem.

Duarte Duque dduque@ipca.pt

