

Sensitivity analysis of contact related interventions for modeling epidemics.

Evans Kiptoo Korir ^{1, 2} Péter Boldog ¹ Zsolt Vizi ^{1, 2}

Bolyai Institute, University of Szeged ²National Laboratory for Health Security, Bolyai Institute, Szeged, Hungary

Introduction

- Age-Dependent Transmission: We explore how interactions vary across age groups, utilizing a population contact matrix.
- Parameter Sensitivity: Even slight changes in parameters significantly affect disease dynamics such as \mathcal{R}_0 and epidemic size.
- Understanding Impact: Employing sensitivity analysis, we decode the impact of these parameter variations on disease propagation.
- Innovative Techniques: Through Latin Hypercube Sampling (LHS) and the Partial Rank Correlation Coefficient (PRCC) method, we unravel the sensitivity of contact matrix elements.
- Enhanced Precision: We introduce a novel approach to aggregate PRCC values, elevating the precision of pairwise sensitivity analysis.

Social Contact Matrices

If M^H , M^S , M^W , M^O denote the contact matrices for home, school, work, and other types respectively, then:

• Full social contact matrix:

$$M = M^{\mathsf{H}} + M^{\mathsf{S}} + M^{\mathsf{W}} + M^{\mathsf{O}},$$

$$\mathcal{M} = \mathcal{M}^{\mathsf{H}} + \mathcal{M}^{\Delta}.$$

• Formally, for a **population vector** \mathcal{P} :

$$\mathcal{M}^{(i,j)}\mathcal{P}_{j}=\mathcal{M}^{(j,i)}\mathcal{P}_{i},$$

 $\mathcal{M}^{(i,j)}$ is the **element** of the matrix at (i,j), \mathcal{P}_i is the **number of people** in age group *i*.

• **Symmetrize** the contacts:

$$M^{(i,j)} = rac{1}{2\mathcal{P}_j} \left(\mathcal{M}^{(i,j)} \mathcal{P}_j + \mathcal{M}^{(j,i)} \mathcal{P}_i
ight).$$

Our approach

Concept: Perform a sensitivity analysis on the

- Due to dependence, we consider only the
- Assumed reproduction numbers, $\overline{\mathcal{R}}_0 = [1.2, 1.8, 2.5].$
- Considered *target variables, T*: \mathcal{R}_0 and

Approach: Latin Hypercube Sampling/Partial Rank Correlation Coefficient (LHS/PRCC) to the

• Sample only M^{\triangle} i.e. k=136 elements on the interval [0, 1] to get M_{ratio} .

$$M'=M^{ ext{H}}+(\mathbb{1}-M_{ ext{ratio}})\odot M^{ ext{D}}$$
• $\mathbb{1}\in\mathbb{R}^{16 imes16}$ refers to matrix $[1]_{i,j=1}^{16}$, \odot denotes element-wise product calculation.
• $M_{ ext{ratio}}\in[0,1]^{16 imes16}, M_{ ext{ratio}}^{(i,j)}=M_{ ext{ratio}}^{(j,i)}$

- Since when $\mathcal{R}_0 < 1$, there is no epidemic, we generate samples with $\mathcal{R}_0 \geq 1$.
- Thus, $\mathbb{1} M_{\mathsf{ratio}} = \kappa \cdot \mathbb{1}, \kappa \in [0, 1].$

LHS

PRCC

LHS	LHS Parameter Samples				Outputs			
p_1	p_2	• • •	p_K	<i>S</i> ₁	<i>S</i> ₂	• • •	ST	
$p_1^{(1)}$	$p_2^{(1)}$	• • •	$ ho_{\mathcal{K}}^{(1)}$	$s_1^{(1)}$	$s_2^{(1)}$		$s_T^{(1)}$	
$p_1^{(2)}$	$p_2^{(2)}$	• • •	$ ho_{\mathcal{K}}^{(2)}$	$s_1^{(2)}$	$s_2^{(2)}$	• • •	$ s_T^{(2)} $	
•	•	• • •	•	•	•	•••	•	
$p_1^{(N)}$	$p_2^{(N)}$	• • •	$oldsymbol{ ho_{\mathcal{K}}^{(\mathcal{N})}}$	$s_1^{(N)}$	$s_2^{(N)}$	• • •	$ s_T^{(N)} $	

• LHS table, $N \times k$.

in two rounds:

- LHS table intervals, $[0, 1 \kappa]$.
- Simulation outputs, $N \times T$.

LHS Parameter Ranks

• Assumed N = 10,000 simulations.

• For PRCC values P_k , replace LHS table

First variable d is used as target,

output variable, i = 1, 2, ..., k.

• Then models are fitted for each r_i as

• Then, we **linearly fit** 2k regression models

values with ascending integers.

Epidemic Model

- Age-Structured Model: This model incorporates age-dependent parameters.
- Basic Reproduction Number (\mathcal{R}_0): Calculated using the Next Generation Matrix.
- Transmission Rate (β_0): Determined by fixing \mathcal{R}_0 to values [1.2, 1.8, 2.5].

elements of the contact matrix.

- upper triangular elements.
- Final death size.

k=136 parameters: $M=M^{\rm H}+M^{\rm \Delta}$.

Results, Target:
$$\mathcal{R}_0$$
 = 1.2 $\overline{\mathcal{R}}_0$ = 1.8 $\overline{\mathcal{R}}_0$ = 2.5 $\overline{\mathcal{R}}_0$ = 2.5 $\overline{\mathcal{R}}_0$ = 1.0 $\overline{\mathcal{R}}_0$ = 1

For age group pairs, P_k and p_k are depicted with varying values of \mathcal{R}_0 . The green bars represent P_k , while shades of red indicate p_k at different significance levels: < 0.1%(white), 0.1% - 1% (orange), 1% - 10% (red), and > 10%(dark-red).

Considering various values of $\overline{\mathcal{R}}_0$, the red lines denote the lower and upper quartiles of the **P**. Values below 0.3 are shown in light-green, those between 0.3 and 0.5 in green, and values above 0.5 in dark-green.

Results, Target: Final death size

 d_T

Output Ranks

For age group pairs, the corresponding p_k values and P_k with the final death size as the target.

Acknowledgement

This research was completed with support from National Laboratory for Health Security RRF-2.3.1-21-2022-00006 and NKFIH KKP 129877.

death size as the target.

Probability values

$$\mathcal{T}_k = P_k \sqrt{\frac{N-2-k}{1-P_k^2}} \sim t_{N-2-k}$$

- N-2-k degrees of freedom and P-values, p_k ,
- Then p_k , can be computed from \mathcal{T}_k ; $p_k \in [0, 1].$

Aggregation approach

$$\xi_{i,j} = \frac{1 - p_{i,j}}{\sum_{m=1}^{16} (1 - p_{i,m})}$$

- Median, **P** is calculated with respect to $\xi_{i,i}$ along with their corresponding lower and upper quartiles, establishing confidence interval bounds, \mathcal{CI} .
- The **P** shows age group-wise PRCC values, with \mathcal{CI} indicating their **variations**.