(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 12 September 2002 (12.09.2002)

PCT

(10) International Publication Number WO 02/070483 A1

(51) International Patent Classification⁷: C07D 213/82, 231/40, 333/38, 403/12, 401/14, 409/12, 409/14, 401/12, 213/81, 413/12

(21) International Application Number: PCT/US02/06582

(22) International Filing Date: 28 February 2002 (28.02.2002)

(25) Filing Language:

English

(26) Publication Language:

English

.....

Ligita

(30) Priority Data: 60/273,474 5 March 2001 (05.03.2001) U

(71) Applicant (for all designated States except US): E. I. DU PONT DE NEMOURS AND COMPANY [US/US]; 1007 Market Street, Wilmington, DE 19898 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): ANIS, Gary, David [US/US]; 13 Franklin Road, Landenberg, PA 19350 (US). FINKELSTEIN, Bruce, Lawrence [US/US]; 204 Valley Stream Drive, Newark, DE 19702 (US).

(74) Agent: BIRCH, Linda, D.; E. I. Du Pont de Nemours and Company, Legal Patent Records Center, 4417 Lancaster Pike, Wilmington, DE 19805 (US). (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: HETEROCYCLIC DIAMIDE INVERTEBRATE PEST CONTROL AGENTS

(57) Abstract: This invention provides compounds of Formula (I), N-oxides and suitable salts thereof, wherein A and B are independently O or S; each J is independently a phenyl ring, a naphthyl ring system, a 5- or 6-membered heteroaromatic ring or an aromatic 8-, 9- or 10-membered fused heterobicyclic ring system wherein each ring or ring system is substituted with 1 to 4 R⁵; K is, together with the two contiguous linking carbon atoms, a 5- or 6-membered heteroaromatic ring optionally substituted with 1 to 3 R⁴; and R¹ R², R³, R⁴, R⁵ and n are as defined in the disclosure. Also disclosed are methods for controlling an invertebrate pest or its environment with a biologically effective amount of a compound of Formula (I), an N-oxide thereof or a suitable salt of the compound (e.g., as a composition described herein). This invention also pertains to a composition for controlling an invertebrate pest comprising a biologically effective amount

of a compound of Formula (I), an N-oxide thereof or a suitable salt of the compound and at least one additional component selected from the group consisting of surfactants, solid diluents and liquid diluents.

HETEROCYCLIC DIAMIDE INVERTEBRATE PEST CONTROL AGENTS BACKGROUND OF THE INVENTION

This invention relates to certain heterocyclic diamides, their N-oxides, suitable salts and compositions, and a method of their use for controlling invertebrate pests in both agronomic and nonagronomic environments.

5

10

15

20

The control of invertebrate pests is extremely important in achieving high crop efficiency. Damage by invertebrate pests to growing and stored agronomic crops can cause significant reduction in productivity and thereby result in increased costs to the consumer. The control of invertebrate pests in forestry, greenhouse crops, ornamentals, nursery crops, stored food and fiber products, livestock, household, and public and animal health is also important. Many products are commercially available for these purposes, but the need continues for new compounds that are more effective, less costly, less toxic, environmentally safer or have different modes of action.

NL 9202078 discloses N-acyl anthranilic acid derivatives of Formula i as insecticides

i

wherein, inter alia, X is a direct bond; Y is H or C_1 - C_6 alkyl; Z is NH_2 , $NH(C_1$ - C_3 alkyl) or $N(C_1$ - C_3 alkyl)₂; and R^1 through R^9 are independently H, halogen, C_1 - C_6 alkyl, phenyl, hydroxy, C_1 - C_6 alkoxy or C_1 - C_7 acyloxy.

WO01/070671 discloses N-acyl anthranilic acid derivatives of Formula i as arthropodicides

$$(R^4)_n \xrightarrow{3}_{4} \xrightarrow{5}_{N} \xrightarrow{R^3}_{R}$$

wherein, inter alia, A and B are independently O or S; J is an optionally substituted phenyl ring, 5- or 6-membered heteroaromatic ring, naphthyl ring system or an aromatic 8-, 9- or 10-membered fused heterobicyclic ring system; R^1 and R^3 are independently H or optionally substituted C_1 - C_6 alkyl; R^2 is H or C_1 - C_6 alkyl; each R^4 is independently H, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, halogen or CN; and n is 1 to 4.

SUMMARY OF THE INVENTION

This invention pertains to compounds of Formula I, and N-oxides or suitable salts thereof

$$(R^4)_n$$
 R^1
 R^2
 R^3

10

15

5

wherein

A and B are independently O or S;

each J is independently a phenyl ring, a naphthyl ring system, a 5- or 6-membered heteroaromatic ring or an aromatic 8-, 9- or 10-membered fused heterobicyclic ring system wherein each ring or ring system is optionally substituted with 1 to 4 R⁵;

K is, together with the two contiguous linking carbon atoms, a 5- or 6-membered heteroaromatic ring optionally substituted with 1 to 3 R⁴;

n is 1 to 3;

20 R¹ is H; or C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl or C₃-C₆ cycloalkyl each optionally substituted with one or more substituents selected from the group consisting of halogen, CN, NO₂, hydroxy, C₁-C₄ alkoxy, C₁-C₄ alkylthio, C₁-C₄

10

15

20

25

30

35

- alkylsulfinyl, C_1 - C_4 alkylsulfonyl, C_2 - C_4 alkoxycarbonyl, C_1 - C_4 alkylamino, C_2 - C_8 dialkylamino and C_3 - C_6 cycloalkylamino; or
- R¹ is C₂-C₆ alkylcarbonyl, C₂-C₆ alkoxycarbonyl, C₂-C₆ alkylaminocarbonyl, C₃-C₈ dialkylaminocarbonyl or C(=A)J;
- R² is H, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₆ cycloalkyl, C₁-C₄ alkoxy, C₁-C₄ alkylamino, C₂-C₈ dialkylamino, C₃-C₆ cycloalkylamino, C₂-C₆ alkoxycarbonyl or C₂-C₆ alkylcarbonyl;
- R³ is H; G; or C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₆ cycloalkyl, each optionally substituted with one or more substituents selected from the group consisting of G, halogen, CN, NO₂, hydroxy, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₂-C₆ alkoxycarbonyl, C₂-C₆ alkylcarbonyl, C₃-C₆ trialkylsilyl, or a phenyl, phenoxy or 5- or 6-membered heteroaromatic ring, each ring optionally substituted with one to three substituents independently selected from R⁶; or
- R² and R³ can be taken together with the nitrogen to which they are attached to form a ring containing 2 to 6 atoms of carbon and optionally one additional atom of nitrogen, sulfur or oxygen, and said ring may be optionally substituted with one to four substituents selected from R¹²; and
 - G is a 5- or 6-membered nonaromatic carbocyclic or heterocyclic ring, optionally including one or two ring members selected from the group consisting of C(=O), SO or S(O)₂ and optionally substituted with one to four substituents selected from R¹²;
 - each R⁴ is independently H, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₆ cycloalkyl, C₁-C₆ haloalkyl, C₂-C₆ haloalkenyl, C₂-C₆ haloalkynyl, C₃-C₆ halocycloalkyl, halogen, CN, NO₂, hydroxy, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₁-C₄ haloalkylthio, C₁-C₄ haloalkylsulfonyl, C₁-C₄ alkylamino, C₂-C₈ dialkylamino, C₃-C₆ cycloalkylamino, C₁-C₄ alkoxyalkyl, C₁-C₄ hydroxyalkyl, C(O)R¹⁰, CO₂R¹⁰, C(O)NR¹⁰R¹¹, NR¹⁰R¹¹, N(R¹¹)CO₂R¹⁰; or
 - each R⁴ is independently a phenyl, benzyl, phenoxy or 5- or 6-membered heteroaromatic ring, each ring optionally substituted with one to three substituents independently selected from R⁶;
- each R⁵ is independently H, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₆
 cycloalkyl, C₁-C₆ haloalkyl, C₂-C₆ haloalkenyl, C₂-C₆ haloalkynyl, C₃-C₆
 halocycloalkyl, halogen, CN, CO₂H, CONH₂, NO₂, hydroxy, C₁-C₄ alkoxy,
 C₁-C₄ haloalkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl,
 C₁-C₄ haloalkylthio, C₁-C₄ haloalkylsulfinyl, C₁-C₄ haloalkylsulfonyl, C₁-C₄
 alkylamino, C₂-C₈ dialkylamino, C₃-C₆ cycloalkylamino, C₂-C₆ alkylcarbonyl,

C₂-C₆ alkoxycarbonyl, C₂-C₆ alkylaminocarbonyl, C₃-C₈ dialkylaminocarbonyl, C₃-C₆ trialkylsilyl; or

- each R⁵ is independently a phenyl, benzyl, benzoyl, phenoxy, 5- or 6-membered heteroaromatic ring or an aromatic 8-, 9- or 10-membered fused heterobicyclic ring system, each ring or ring system optionally substituted with one to three substituents independently selected from R⁶; or
- (R⁵)₂ when attached to adjacent carbon atoms can be taken together as -OCF₂O-, -CF₂CF₂O-, or -OCF₂CF₂O-; and

5

10

15

20

25

30

each R⁶ is independently C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₃-C₆ cycloalkyl, C₁-C₄ haloalkyl, C₂-C₄ haloalkenyl, C₂-C₄ haloalkynyl, C₃-C₆ halocycloalkyl, halogen, CN, NO₂, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₁-C₄ alkylamino, C₂-C₈ dialkylamino, C₃-C₆ cycloalkylamino, C₃-C₆ (alkyl)cycloalkylamino, C₂-C₄ alkylcarbonyl, C₂-C₆ alkoxycarbonyl, C₂-C₆ alkylaminocarbonyl, C₃-C₈ dialkylaminocarbonyl or C₃-C₆ trialkylsilyl;

each R^{10} is independently H, C_1 – C_4 alkyl or C_1 – C_4 haloalkyl; each R^{11} is independently H or C_1 – C_4 alkyl; and each R^{12} is independently C_1 - C_2 alkyl, halogen, CN, NO₂ or C_1 - C_2 alkoxy.

This invention also pertains to a method for controlling an invertebrate pest comprising contacting the invertebrate pest or its environment with a biologically effective amount of a compound of Formula I, an N-oxide thereof or a suitable salt of the compound (e.g., as a composition described herein). This invention also relates to such a method wherein the invertebrate pest or its environment is contacted with a biologically effective amount of a compound of Formula I or a composition comprising a compound of Formula I, an N-oxide thereof or a suitable salt of the compound and a biologically effective amount of at least one additional compound or agent for controlling invertebrate pests.

This invention also pertains to a composition for controlling an invertebrate pest comprising a biologically effective amount of a compound of Formula I, an N-oxide thereof or a suitable salt of the compound and at least one additional component selected from the group consisting of surfactants, solid diluents and liquid diluents. This invention also pertains to a composition comprising a biologically effective amount of a compound of Formula I, an N-oxide thereof or a suitable salt of the compound and an effective amount of at least one additional biologically active compound or agent.

DETAILS OF THE INVENTION

In the above recitations, the term "alkyl", used either alone or in compound words such as "alkylthio" or "haloalkyl" includes straight-chain or branched alkyl, such as, methyl, ethyl, n-propyl, i-propyl, or the different butyl, pentyl or hexyl isomers. "Alkenyl" includes straight-chain or branched alkenes such as ethenyl, 1-propenyl, 2-propenyl, and the different

butenyl, pentenyl and hexenyl isomers. "Alkenyl" also includes polyenes such as 1.2-propadienyl and 2.4-hexadienyl. "Alkynyl" includes straight-chain or branched alkynes such as ethynyl, 1-propynyl, 2-propynyl and the different butynyl, pentynyl and hexynyl isomers. "Alkynyl" can also include moieties comprised of multiple triple bonds such as 2.5-hexadiynyl. "Alkoxy" includes, for example, methoxy, ethoxy, n-propyloxy, isopropyloxy and the different butoxy, pentoxy and hexyloxy isomers. "Alkoxyalkyl" denotes alkoxy substitution on alkyl. Examples of "alkoxyalkyl" include CH₃OCH₂, CH₃OCH₂CH₂, CH₃CH₂OCH₂, CH₃CH₂CH₂CH₂OCH₂ and CH₃CH₂OCH₂CH₂. "Alkylthio" includes branched or straight-chain alkylthio moieties such as methylthio, ethylthio, and the different propylthio and butylthio isomers. "Alkylsulfinyl" includes both enantiomers of an alkylsulfinyl group. Examples of "alkylsulfinyl" include CH₃S(O), CH₃CH₂S(O), CH₃CH₂CH₂S(O), (CH₃)₂CHS(O) and the different butylsulfinyl isomers. Examples of "alkylsulfonyl" include CH₃S(O)₂, CH₃CH₂S(O)₂, CH₃CH₂CH₂S(O)₂, (CH₂)₂CHS(O)₂ and the different butylsulfonyl isomers. "Alkylamino", "dialkylamino", "alkenylthio", "alkenylsulfinyl", "alkenylsulfonyl", "alkynylthio", "alkynylsulfinyl", "alkynylsulfonyl", and the like, are defined analogously to the above examples. "Cycloalkyl" includes, for example, cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl.

10

15

"Aromatic" indicates that each of the ring atoms is essentially in the same plane and has a p-orbital perpendicular to the ring plane, and in which $(4n + 2) \pi$ electrons, when n is 0 or a positive integer, are associated with the ring to comply with Hückel's rule. The term 20 "aromatic ring system" denotes fully unsaturated carbocycles and heterocycles in which at least one ring of a polycyclic ring system is aromatic. The term "aromatic carbocyclic ring or ring system" includes fully aromatic carbocycles and carbocycles in which at least one ring of a polycyclic ring system is aromatic (e.g. phenyl and naphthyl). The term 25 "nonaromatic carbocyclic ring or ring system" denotes fully saturated carbocycles as well as partially or fully unsaturated carbocycles where the Hückel rule is not satisfied by any of the rings in the ring system. The term "hetero" in connection with rings or ring systems refers to a ring or ring system in which at least one ring atom is not carbon and which can contain 1 to 4 heteroatoms independently selected from the group consisting of nitrogen, oxygen and sulfur, provided that each ring contains no more than 4 nitrogens, no more than 2 oxygens 30 and no more than 2 sulfurs. The terms "heteroaromatic ring or ring system" and "aromatic fused heterobicyclic ring system" includes fully aromatic heterocycles and heterocycles in which at least one ring of a polycyclic ring system is aromatic (where aromatic indicates that the Hückel rule is satisfied). The term "nonaromatic heterocyclic ring or ring system" denotes fully saturated heterocycles as well as partially or fully unsaturated heterocycles 35 where the Hückel rule is not satisfied by any of the rings in the ring system. The heterocyclic ring or ring system can be attached through any available carbon or nitrogen by replacement of a hydrogen on said carbon or nitrogen.

30

35

The term "halogen", either alone or in compound words such as "haloalkyl", includes fluorine, chlorine, bromine or iodine. Further, when used in compound words such as "haloalkyl", said alkyl may be partially or fully substituted with halogen atoms which may be the same or different. Examples of "haloalkyl" include F_3C , $ClCH_2$, CF_3CH_2 and CF_3CCl_2 . The terms "haloalkenyl", "haloalkynyl", "haloalkoxy", "haloalkylthio", and the like, are defined analogously to the term "haloalkyl". Examples of "haloalkenyl" include $(Cl)_2C=CHCH_2$ and $CF_3CH_2CH=CHCH_2$. Examples of "haloalkynyl" include $HC\equiv CCHCl$, $CF_3C\equiv C$, $CCl_3C\equiv C$ and $FCH_2C\equiv CCH_2$. Examples of "haloalkoxy" include CF_3O , CCl_3CH_2O , $HCF_2CH_2CH_2O$ and CF_3CH_2O . Examples of "haloalkylthio" include CCl_3S , CF_3S , CCl_3CH_2S and $ClCH_2CH_2CH_2S$. Examples of "haloalkylsulfinyl" include $CF_3S(O)$, $CCl_3S(O)$, $CF_3CH_2S(O)$ and $CF_3CF_2S(O)$. Examples of "haloalkylsulfonyl" include $CF_3S(O)$, $CCl_3S(O)$, $CCl_3S(O)$, $CF_3CH_2S(O)$ and $CF_3CF_2S(O)$. Examples of "haloalkylsulfonyl" include $CF_3S(O)$, $CCl_3S(O)$, $CCl_3S(O)$, $CF_3CH_2S(O)$ and $CF_3CF_2S(O)$.

Examples of "alkylcarbonyl" include C(O)CH₃, C(O)CH₂CH₂CH₃ and C(O)CH(CH₃)₂. Examples of "alkoxycarbonyl" include CH₃OC(=O), CH₃CH₂OC(=O), CH₃CH₂OC(=O), (CH₃)₂CHOC(=O) and the different butoxy- or pentoxycarbonyl isomers. Examples of "alkylaminocarbonyl" include CH₃NHC(=O), CH₃CH₂NHC(=O), CH₃CH₂NHC(=O), CH₃CH₂NHC(=O) and the different butylamino- or pentylaminocarbonyl isomers. Examples of "dialkylaminocarbonyl" include (CH₃)₂NC(=O), (CH₃CH₂)₂NC(=O), CH₃CH₂(CH₃)NC(=O), CH₃CH₂CH₂(CH₃)NC(=O) and (CH₃)₂CHN(CH₃)C(=O).

The total number of carbon atoms in a substituent group is indicated by the "C_i-C_j" prefix where i and j are numbers from 1 to 6. For example, C₁-C₃ alkylsulfonyl designates methylsulfonyl through propylsulfonyl; C₂ alkoxyalkyl designates CH₃OCH₂; C₃ alkoxyalkyl designates, for example, CH₃CH(OCH₃), CH₃OCH₂CH₂ or CH₃CH₂OCH₂; and C₄ alkoxyalkyl designates the various isomers of an alkyl group substituted with an alkoxy group containing a total of four carbon atoms, examples including CH₃CH₂OCH₂ and CH₃CH₂OCH₂CH₂.

In the above recitations, when a compound of Formula I is comprised of one or more heterocyclic rings, all substituents are attached to these rings through any available carbon or nitrogen by replacement of a hydrogen on said carbon or nitrogen.

When a compound is substituted with a substituent bearing a subscript that indicates the number of said substituents can exceed 1, said substituents (when they exceed 1) are independently selected from the group of defined substituents. Further, when the subscript indicates a range, e.g. $(R)_{i-j}$, then the number of substituents may be selected from the integers between i and j inclusive.

The term "optionally substituted with one to three substituents" and the like indicates that one to three of the available positions on the group may be substituted. When a group contains a substituent which can be hydrogen, for example R¹ or R⁵, then, when this

7

substituent is taken as hydrogen, it is recognized that this is equivalent to said group being unsubstituted.

Compounds of this invention can exist as one or more stereoisomers. The various stereoisomers include enantiomers, diastereomers, atropisomers and geometric isomers. One skilled in the art will appreciate that one stereoisomer may be more active and/or may exhibit beneficial effects when enriched relative to the other stereoisomer(s) or when separated from the other stereoisomer(s). Additionally, the skilled artisan knows how to separate, enrich, and/or to selectively prepare said stereoisomers. Accordingly, the present invention comprises compounds selected from Formula I, N-oxides and agriculturally suitable salts thereof. The compounds of the invention may be present as a mixture of stereoisomers, individual stereoisomers, or as an optically active form.

5

10

30

35

One skilled in the art will appreciate that not all nitrogen containing heterocycles can form N-oxides since the nitrogen requires an available lone pair for oxidation to the oxide; one skilled in the art will recognize those nitrogen containing heterocycles which can form N-oxides. One skilled in the art will also recognize that tertiary amines can form N-oxides. 15 Synthetic methods for the preparation of N-oxides of heterocycles and tertiary amines are very well known by one skilled in the art including the oxidation of heterocycles and tertiary amines with peroxy acids such as peracetic and m-chloroperbenzoic acid (MCPBA), hydrogen peroxide, alkyl hydroperoxides such as t-butyl hydroperoxide, sodium perborate, 20 and dioxiranes such as dimethydioxirane. These methods for the preparation of N-oxides have been extensively described and reviewed in the literature, see for example: T. L. Gilchrist in Comprehensive Organic Synthesis, vol. 7, pp 748-750, S. V. Ley, Ed., Pergamon Press; M. Tisler and B. Stanovnik in Comprehensive Heterocyclic Chemistry, vol. 3, pp 18-20, A. J. Boulton and A. McKillop, Eds., Pergamon Press; M. R. Grimmett and B. R. T. Keene in Advances in Heterocyclic Chemistry, vol. 43, pp 149-161, A. R. Katritzky, 25 Ed., Academic Press; M. Tisler and B. Stanovnik in Advances in Heterocyclic Chemistry, vol. 9, pp 285-291, A. R. Katritzky and A. J. Boulton, Eds., Academic Press; and G. W. H. Cheeseman and E. S. G. Werstiuk in Advances in Heterocyclic Chemistry, vol. 22, pp 390-392, A. R. Katritzky and A. J. Boulton, Eds., Academic Press.

The salts of the compounds of the invention include acid-addition salts with inorganic or organic acids such as hydrobromic, hydrochloric, nitric, phosphoric, sulfuric, acetic, butyric, fumaric, lactic, maleic, malonic, oxalic, propionic, salicylic, tartaric, 4-toluenesulfonic or valeric acids. The salts of the compounds of the invention also include those formed with organic bases (e.g., pyridine, ammonia, or triethylamine) or inorganic bases (e.g., hydrides, hydroxides, or carbonates of sodium, potassium, lithium, calcium, magnesium or barium) when the compound contains an acidic group such as a carboxylic acid or phenol.

30

8

As noted above, J is a phenyl ring, a naphthyl ring system, a 5- or 6-membered heteroaromatic ring or an aromatic 8-, 9- or 10-membered fused heterobicyclic ring system wherein each ring or ring system is optionally substituted with 1 to 4 R⁵. The term "optionally substituted" in connection with these J groups refers to groups which are unsubstituted or have at least one non-hydrogen substituent that does not extinguish the 5 biological activity possessed by the unsubstituted analog. An example of phenyl optionally substituted with 1 to 4 R⁵ is the ring illustrated as U-1 in Exhibit 1, wherein R^v is R⁵ and r is an integer from 1 to 4. An example of a naphthyl group optionally substituted with 1 to 4 R⁵ is illustrated as U-85 in Exhibit 1, wherein RV is R5 and r is an integer from 1 to 4. Examples of 5- or 6-membered heteroaromatic rings optionally substituted with 1 to 4 R⁵ 10 include the rings U-2 through U-53 illustrated in Exhibit 1 wherein R^v is R⁵ and r is an integer from 1 to 4. Note that J-1 through J-13 below also denote 5- or 6-membered heteroaromatic rings. Note that U-2 through U-20 are examples of J-1, U-21 through U-35 and U-40 are examples of J-2, U-36 through U-39 are examples of J-3, U-41 through U-48 15 are examples of J-4 and U-49 through U-53 are examples of J-5. Note that J-6 is a subset of U-11, J-7 or J-10 are a subset of U-26, J-8 is a subset of U-42, J-9 is a subset of U-45, J-11 is a subset of U-4 and J-12 or J-13 are a subset of U-24. Also note that in J-6 through J-13 that R⁷ and R⁹ are subsets of R⁵. Examples of aromatic 8-, 9- or 10-membered fused heterobicyclic ring systems optionally substituted with 1 to 4 R⁵ include U-54 through U-84 illustrated in Exhibit 1 wherein R^v is R⁵ and r is an integer from 1 to 4. 20

Although R^v groups are shown in the structures U-1 through U-85, it is noted that they do not need to be present since they are optional substituents. Note that when R^v is H when attached to an atom, this is the same as if said atom is unsubstituted. The nitrogen atoms that require substitution to fill their valence are substituted with H or R^v. Note that some U groups can only be substituted with less than 4 R^v groups (e.g. U-14, U-15, U-18 through U-21 and U-32 through U-34 can only be substituted with one R^v). Note that when the attachment point between (R^v)_r and the U group is illustrated as floating, (R^v)_r can be attached to any available carbon atom of the U group. Note that when the attachment point on the U group is illustrated as floating, the U group can be attached to the remainder of Formula I through any available carbon of the U group by replacement of a hydrogen atom. Exhibit 1

As noted above, K is, together with the two contiguous linking carbon atoms, a 5- or 6-membered heteroaromatic ring optionally substituted with 1 to 3 R⁴. Examples of said K rings wherein said rings are optionally substituted with 1 to 3 R⁴ include the ring systems illustrated as K-1 to K-37 in Exhibit 2, wherein n is an integer from 1 to 3 and R⁴ is as defined above. The term "optionally substituted" in connection with these K groups refers to K groups which are unsubstituted or have at least one non-hydrogen substituent that does not extinguish the biological activity possessed by the unsubstituted analog. As with the carbon atoms in the ring, the nitrogen atoms that require substitution to fill their valence are substituted with hydrogen or with R⁴. Although (R⁴)_n groups are shown in the structures K-1 to K-37, it is noted that R⁴ does not need to be present since it is an optional substituent. Note that some K groups can only be substituted with less than 3 R⁴ groups (e.g. K-7 through K-10, K-15, K-16, K-20, K-21, K-23, K-24, K-26 and K-27 can only be substituted with one R⁴). In the exemplified K groups, the upper right bond is attached through the available linking carbon atom to the nitrogen atom of the NR¹(=A)J portion of Formula I and the lower right bond is attached through the available linking carbon atom to the carbon

5

10

15

atom of the C(=B)NR²R³ portion of Formula I. The wavy line indicates that the K ring is attached to the remainder of Formula I as illustrated below.

$$(R^4)_n = \begin{pmatrix} R^4 \end{pmatrix}_n + \begin{pmatrix} R^4$$

Exhibit 2

$$(R^4)_n$$
 S
 $K-1$
 $(R^4)_n$
 $K-2$
 $(R^4)_n$
 $K-3$
 $(R^4)_n$
 $K-4$
 $K-4$
 $K-1$
 $K-2$
 $(R^4)_n$
 $K-3$
 $K-4$
 $K-1$
 $K-1$

5

$$(R^{4})_{n} \xrightarrow{K-22} K-23 \xrightarrow{K-24} (R^{4})_{n} \xrightarrow{K-32} (R^{4})_{n} \xrightarrow{K-36} (R^{4})_{n} \xrightarrow{K-36} (R^{4})_{n} \xrightarrow{K-37} (R^{4})_{n}$$

Preferred K rings include optionally substituted thiophene, isoxazole, isothiazole, pyrazole, pyridine and pyrimidine rings. More preferred K rings include K-1, K-14, K-15, K-18, K-23, K-28, K-29, K-30, K-31 and K-33. Most preferred are K-28, K-31 and K-33.

5

10

15

20

As noted above, R^3 can be (among others) C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_6 cycloalkyl, each optionally substituted with one or more substituents selected from the group consisting of a phenyl ring, or 5- or 6-membered heteroaromatic ring, each ring optionally substituted with one to three substituents independently selected from R^6 . Examples of such rings incorporated into said R^3 groups include the rings illustrated as U-1 through U-53 and U-86 illustrated in Exhibit 1, except that such rings are optionally substituted with 1 to 3 substituents independently selected from R^6 rather than $(R^{\rm V})_{\rm r}$ and are attached to an R^3 group selected from the list immediately above.

As noted above, R³ can be (among others) G, or C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₆ cycloalkyl, each optionally substituted with G; wherein G is a 5- or 6-membered nonaromatic carbocyclic or heterocyclic ring, optionally including one or two ring members selected from the group consisting of C(=O), SO or S(O)₂ and optionally substituted with 1 to 4 substituents selected from R¹². The term "optionally substituted" in connection with these G groups refers to groups which are unsubstituted or have at least one non-hydrogen substituent that does not extinguish the biological activity possessed by the

unsubstituted analog. Note that when the attachment point on the G group is illustrated as floating, the G group can be attached to the remainder of Formula I through any available carbon of the G group by replacement of a hydrogen atom. The optional substituents can be attached to any available carbon by replacing a hydrogen atom. Examples of 5- or 6-membered nonaromatic carbocyclic rings as G include the rings illustrated as G-1 through G-8 of Exhibit 3. Examples of 5- or 6-membered nonaromatic heterocyclic rings as G include the rings illustrated as G-9 through G-48 of Exhibit 3. Note that when G comprises a ring selected from G-31 through G-34, G-37 and G-38, Q¹ is selected from O, S or N. Note that when G is G-11, G13, G-14, G16, G-23, G-24, G-30 through G-34, G-37 and G-38 and Q¹ is N, the nitrogen atom can complete its valence by substitution with either H or C₁-C₂ alkyl.

10

Exhibit 3

As noted above, each R^4 can be independently (among others) a phenyl, benzyl, phenoxy or 5- or 6-membered heteroaromatic ring, each ring optionally substituted with one to three substituents independently selected from R^6 . Examples of such R^4 groups include the rings or ring systems illustrated as U-1 through U-53, U-86 and U-87 illustrated in Exhibit 1, except that such rings are optionally substituted with 1 to 3 substituents independently selected from R^6 rather than $(R^{\text{v}})_{\text{r}}$.

As noted above, each R^5 can be independently (among others) a phenyl, benzyl, benzoyl, phenoxy, 5- or 6-membered heteroaromatic ring or an aromatic 8-, 9- or 10-membered fused heterobicyclic ring system, each ring optionally substituted with one to three substituents independently selected from R^6 . Examples of such R^5 groups include the rings or ring systems illustrated as U-1 through U-88 illustrated in Exhibit 1, except that such rings are optionally substituted with 1 to 3 substituents independently selected from R^6 rather than $(R^V)_{\Gamma}$.

Preferred compounds for reasons of better activity and/or ease of synthesis are:

Preferred 1. Compounds of Formula I above, and N-oxides and suitable salts thereof, wherein A and B are both O and J is a phenyl ring optionally substituted with 1 to 4 R⁵.

Preferred 2. Compounds of Preferred 1 wherein

10

15

20

25

each R⁴ is independently C₁-C₄ alkyl, C₁-C₄ haloalkyl, halogen, CN, NO₂ or C₁-C₄ alkoxy, and one R⁴ group is attached to the K ring at the atom adjacent to either the NR¹C(=A)J moiety or the C(=B)NR²R³ moiety; and

each R⁵ is independently H, halogen, C₁-C₄ alkyl, C₁-C₂ alkoxy, C₁-C₄ haloalkyl, CN, NO₂, C₁-C₄ haloalkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₁-C₄ haloalkylsulfinyl, C₁-C₄ haloalkylsulfonyl or C₂-C₄ alkoxycarbonyl; or

10

15

20

25

each R⁵ is independently a phenyl or a 5- or 6-membered heteroaromatic ring, each ring optionally substituted with one to three substituents independently selected from R⁶; or

(R⁵)₂ when attached to adjacent carbon atoms can be taken together as -OCF₂O-, -CF₂CF₂O- or -OCF₂CF₂O-.

Preferred 3. Compounds of Preferred 2 wherein

R¹ is H:

R² is H or CH₃;

R³ is C₁-C₄ alkyl optionally substituted with one or more substituents independently selected from halogen, CN, OCH₃ or S(O)_pCH₃;

each R⁴ is independently CH₃, CF₃, CN or halogen, and one R⁴ group is attached to the K ring at the atom adjacent to the NR¹C(=A)J moiety;

each R⁵ is independently H, halogen, methyl, CF₃, OCF₃, OCHF₂, S(O)_pCF₃, S(O)_pCHF₂, OCH₂CF₃, OCF₂CHF₂, S(O)_pCH₂CF₃ or S(O)_pCF₂CHF₂; or a phenyl, pyrazole, imidazole, triazole, pyridine or pyrimidine ring, each ring optionally substituted with one to three substituents independently selected from C₁-C₄ alkyl, C₁-C₄ haloalkyl, halogen or CN; and

p is 0, 1 or 2.

Preferred 4. Compounds of Preferred 3 wherein R³ is C₁-C₄ alkyl.

Preferred 5. Compounds of Formula I wherein

A and B are both O;

J is a 5- or 6-membered heteroaromatic ring selected from the group consisting of J-1, J-2, J-3, J-4 and J-5, each J optionally substituted with 1 to 3 R⁵

Q is O, S or NR5; and

W, X, Y and Z are independently N or CR⁵, provided that in J-4 and J-5 at least one of W, X, Y or Z is N.

Preferred 6. Compounds of Preferred 5 wherein
each R⁴ is independently C₁-C₄ alkyl, C₁-C₄ haloalkyl, halogen, CN, NO₂ or
C₁-C₄ alkoxy, and one R⁴ group is attached to the K ring at the atom

17

adjacent to either the NR¹C(=A)J moiety or the C(=B)NR²R³ moiety; and

each R⁵ is independently H, C₁-C₄ alkyl, C₁-C₄ haloalkyl, halogen, CN, NO₂, C₁-C₄ haloalkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₁-C₄ haloalkylthio, C₁-C₄ haloalkylsulfinyl, C₁-C₄ haloalkylsulfonyl or C₂-C₄ alkoxycarbonyl; or a phenyl or a 5- or 6-membered heteroaromatic ring, each ring optionally substituted with R⁶.

Preferred 7. Compounds of Preferred 6 wherein

5

10

15

J substituted with 1 to 3 R⁵ is selected from the group consisting of J-6, J-7, J-8, J-9, J-10, J-11, J-12 and J-13

 R^5 is H, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, or

J-11

J-10

V is N, CH, CF, CCl, CBr or CI; each R⁶ and R⁷ is independently H, C₁-C₆ alkyl, C₃-C₆ cycloalkyl, C₁-C₆ haloalkyl, halogen, CN, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy or C₁-C₄

J-12

J-13

haloalkylthio; and

PCT/US02/06582

18

- R⁹ is H, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₆ alkenyl, C₃-C₆ haloalkenyl, C₃-C₆ alkynyl or C₃-C₆ haloalkynyl; provided R⁷ and R⁹ are not both H.
- Preferred 8. Compounds of Preferred 7 wherein V is N.
- 5 Preferred 9. Compounds of Preferred 7 wherein V is CH, CF, CCl or CBr.
 - Preferred 10. Compounds of Preferred 8 or Preferred 9 wherein

 R^1 is H;

WO 02/070483

10

15

20

30

35

R² is H or CH₃;

R³ is C₁-C₄ alkyl optionally substituted with one or more substituents independently selected from halogen, CN, OCH₃ or S(O)_pCH₃;

each R⁴ is independently CH₃, CF₃, CN or halogen, and one R⁴ group is attached to the K ring at the atom adjacent to the NR¹C(=A)J moiety;

R⁶ is C₁-C₄ alkyl, C₁-C₄ haloalkyl, halogen or CN;

R⁷ is H, CH₃, CF₃, OCH₂CF₃, OCHF₂ or halogen; and p is 0, 1 or 2.

Preferred 11. Compounds of Preferred 10 wherein R³ is C₁-C₄ alkyl; one R⁴ group is independently CH₃, Cl, Br or I and is attached to the K ring at the atom adjacent to the NR¹C(=A)J moiety; and a second optional R⁴ is H, F, Cl, Br, I or CF₃.

Preferred 12. Compounds of Preferred 11 wherein J substituted with 1 to 3 R⁵ is J-6; R⁶ is Cl or Br; and R⁷ is halogen, OCH₂CF₃ or CF₃.

Preferred 13. Compounds of Preferred 12 wherein V is N; R³ is methyl, ethyl, isopropyl, tertiary butyl or N(CH₃)₂; and R⁷ is Br, Cl, OCH₂CF₃ or CF₃.

- Preferred 14. Compounds of Preferred 11 wherein J substituted with 1 to 3 R⁵ is J-7; R⁶ is Cl or Br; and R⁹ is CF₃, CHF₂, CH₂CF₃ or CF₂CHF₂.
- Preferred 15. Compounds of Preferred 11 wherein J substituted with 1 to 3 R⁵ is J-8; R⁶ is Cl or Br; and R⁷ is halogen, OCH₂CF₃ or CF₃.
 - Preferred 16. Compounds of Preferred 11 wherein J substituted with 1 to 3 R⁵ is J-9; R⁶ is Cl or Br; and R⁷ is OCH₂CF₃ or CF₃.
 - Preferred 17. Compounds of Preferred 11 wherein J substituted with 1 to 3 R⁵ is J-10; R⁶ is Cl or Br; and R⁹ is CF₃, CHF₂, CH₂CF₃ or CF₂CHF₂.
 - Preferred 18. Compounds of Preferred 11 wherein J substituted with 1 to 3 R⁵ is J-11; R⁶ is Cl or Br; and R⁷ is halogen, OCH₂CF₃, or CF₃.
 - Preferred 19. Compounds of Preferred 11 wherein J substituted with 1 to 3 R⁵ is J-12; R⁶ is Cl or Br; R⁷ is H, halogen or CF₃, and R⁹ is H, CF₃, CHF₂, CH₂CF₃, or CF₂CHF₂.
 - Preferred 20. Compounds of Preferred 11 wherein J substituted with 1 to 3 R⁵ is J-13; R⁶ is Cl or Br; R⁷ is H, halogen or CF₃, and R⁹ is H, CF₃, CHF₂, CH₂CF₃ or CF₂CHF₂.

15

20

25

30

35

Most preferred is the compound of Formula I selected from the group consisting of:

4-[[[1-(2-Chlorophenyl)-3-(trifluoromethyl)-1*H*-pyrazol-5-yl]carbonyl]amino]-5-methyl-*N*-1-methylethyl)-3-pyridincarboxamide,

4-Methyl-*N*-(1-methylethyl)-3-[[2-methyl-4-(trifluoromethyl)benzoyl]amino]-2-thiophencarboxamide,

1-Methyl-*N*-(1-methylethyl)-5-[[4-(trifluoromethyl)benzoyl]amino]-1*H*-pyrazole-4-carboxamide;

4-[[[3-Bromo-1-(3-chloro-2-pyridinyl)-1*H*-pyrazol-5-yl]carbonyl]amino]-5-chloro-*N*-methyl-3-pyridinecarboxamide;

3-[[[3-Bromo-1-(3-chloro-2-pyridinyl)-1*H*-pyrazol-5-yl]carbonyl]amino]-2,6-dichloro-*N*-methyl-4-pyridinecarboxamide;

2,6-dichloro-3-[[[1-(3-chloro-2-pyridinyl)-3-(trifluoromethyl)-1*H*-pyrazol-5-yl]carbonyl]amino]-*N*-(1-methylethyl)- 4-pyridinecarboxamide;

3-[[[3-Bromo-1-(3-chloro-2-pyridinyl)-1*H*-pyrazol-5-yl]carbonyl]amino]-6-chloro-*N*,4-dimethyl-2-pyridinecarboxamide;

3-[[[3-Bromo-1-(3-chloro-2-pyridinyl)-1*H*-pyrazol-5-yl]carbonyl]amino]-4,6-dichloro-*N*-methyl-2-pyridinecarboxamide;

5-[[[3-Chloro-1-(3-chloro-2-pyridinyl)-1*H*-pyrazol-5-yl]carbonyl]amino]-*N*,6-dimethyl-4-pyrimidinecarboxamide; and

5-[[[3-Bromo-1-(3-chloro-2-pyridinyl)-1*H*-pyrazol-5-yl]carbonyl]amino]-*N*,*N*,2,6-tetramethyl-4-pyridinecarboxamide.

This invention also pertains to a composition for controlling an invertebrate pest comprising a biologically effective amount of a compound of Formula I, an N-oxide thereof or a suitable salt thereof and at least one additional component selected from the group consisting of surfactants, solid diluents and liquid diluents. This invention also pertains to a composition comprising a biologically effective amount of a compound of Formula I, an N-oxide thereof or a suitable salt thereof and an effective amount of at least one additional biologically active compound or agent. The preferred compositions of the present invention are those which comprise the above preferred compounds.

This invention also pertains to a method for controlling an invertebrate pest comprising contacting the invertebrate pest or its environment with a biologically effective amount of a compound of Formula I, an N-oxide thereof or a suitable salt thereof (e.g., as a composition described herein). This invention also relates to such a method wherein the invertebrate pest or its environment is contacted with a biologically effective amount of a compound of Formula I or a composition comprising a compound of Formula I, an N-oxide thereof or a suitable salt thereof and a biologically effective amount of at least one additional compound or agent for controlling invertebrate pests. The preferred methods of use are those involving the above preferred compounds.

Of note are compounds of Formula 1 (a subset of Formula I) and N-oxides or suitable salts thereof

$$(R^4)_n$$

$$K$$

$$R^2$$

$$R^3$$

wherein

15

25

30

5 A and B are independently O or S;

each J is independently a phenyl ring, a naphthyl ring system, a 5- or 6-membered heteroaromatic ring or an aromatic 8-, 9- or 10-membered fused heterobicyclic ring system wherein each ring or ring system is optionally substituted with 1 to 4 R⁵;

10 K is, together with the two contiguous linking carbon atoms, a 5- or 6-membered heteroaromatic ring optionally substituted with 1 to 3 R⁴;

n is 1 to 3;

R¹ is H; or C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl or C₃-C₆ cycloalkyl each optionally substituted with one or more substituents selected from the group consisting of halogen, CN, NO₂, hydroxy, C₁-C₄ alkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₂-C₄ alkoxycarbonyl, C₁-C₄ alkylamino, C₂-C₈ dialkylamino and C₃-C₆ cycloalkylamino; or

R¹ is C₂-C₆ alkylcarbonyl, C₂-C₆ alkoxycarbonyl, C₂-C₆ alkylaminocarbonyl, C₃-C₈ dialkylaminocarbonyl or C(=A)J;

20 R² is H, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₆ cycloalkyl, C₁-C₄ alkoxy, C₁-C₄ alkylamino, C₂-C₈ dialkylamino, C₃-C₆ cycloalkylamino, C₂-C₆ alkoxycarbonyl or C₂-C₆ alkylcarbonyl;

R³ is H; G; C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₆ cycloalkyl, each optionally substituted with one or more substituents selected from the group consisting of halogen, G, CN, NO₂, hydroxy, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₂-C₆ alkoxycarbonyl, C₂-C₆ alkylcarbonyl, C₃-C₆ trialkylsilyl, or a phenyl, phenoxy or 5- or 6-membered heteroaromatic ring, each ring optionally substituted with one to three substituents independently selected from the group consisting of C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₃-C₆ cycloalkyl, C₁-C₄ haloalkyl,

10

15

20

25

30

35

 $\begin{array}{l} C_2\text{-}C_4 \text{ haloalkenyl, } C_2\text{-}C_4 \text{ haloalkynyl, } C_3\text{-}C_6 \text{ halocycloalkyl, halogen, } CN, \\ NO_2, C_1\text{-}C_4 \text{ alkoxy, } C_1\text{-}C_4 \text{ haloalkoxy, } C_1\text{-}C_4 \text{ alkylthio, } C_1\text{-}C_4 \text{ alkylsulfinyl, } \\ C_1\text{-}C_4 \text{ alkylsulfonyl, } C_1\text{-}C_4 \text{ alkylamino, } C_2\text{-}C_8 \text{ dialkylamino, } C_3\text{-}C_6 \\ \text{cycloalkylamino, } C_3\text{-}C_6 \text{ (alkyl)cycloalkylamino, } C_2\text{-}C_4 \text{ alkylcarbonyl, } C_2\text{-}C_6 \\ \text{alkoxycarbonyl, } C_2\text{-}C_6 \text{ alkylaminocarbonyl, } C_3\text{-}C_8 \text{ dialkylaminocarbonyl or } C_3\text{-}C_6 \text{ trialkylsilyl; } C_1\text{-}C_4 \text{ alkoxy; } C_1\text{-}C_4 \text{ alkylamino; } C_2\text{-}C_8 \text{ dialkylamino; } \\ C_3\text{-}C_6 \text{ cycloalkylamino; } C_2\text{-}C_6 \text{ alkoxycarbonyl or } C_2\text{-}C_6 \text{ alkylcarbonyl; or } \end{array}$

- R² and R³ can be taken together with the nitrogen to which they are attached to form a ring containing 2 to 6 atoms of carbon and optionally one additional atom of nitrogen, sulfur or oxygen, said ring may be optionally substituted with 1 to 4 substituents selected from the group consisting of C₁-C₂ alkyl, halogen, CN, NO₂ and C₁-C₂ alkoxy;
- G is a 5- or 6-membered nonaromatic carbocyclic or heterocyclic ring, optionally including one or two ring members selected from the group consisting of C(=O), SO or S(O)₂ and optionally substituted with 1 to 4 substituents selected from the group consisting of C₁-C₂ alkyl, halogen, CN, NO₂ and C₁-C₂ alkoxy;
- each R⁴ is independently H, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₆ cycloalkyl, C₁-C₆ haloalkyl, C₂-C₆ haloalkenyl, C₂-C₆ haloalkynyl, C₃-C₆ halocycloalkyl, halogen, CN, NO₂, hydroxy, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₁-C₄ haloalkylthio, C₁-C₄ haloalkylsulfinyl, C₁-C₄ haloalkylsulfonyl, C₁-C₄ alkylamino, C₂-C₈ dialkylamino, C₃-C₆ cycloalkylamino, or C₃-C₆ trialkylsilyl; or
- each R⁴ is independently phenyl, benzyl or phenoxy, each optionally substituted with C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₃-C₆ cycloalkyl, C₁-C₄ haloalkyl, C₂-C₄ haloalkenyl, C₂-C₄ haloalkynyl, C₃-C₆ halocycloalkyl, halogen, CN, NO₂, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₁-C₄ alkylamino, C₂-C₈ dialkylamino, C₃-C₆ cycloalkylamino, C₃-C₆ (alkyl)cycloalkylamino, C₂-C₄ alkylcarbonyl, C₂-C₆ alkoxycarbonyl, C₂-C₆ alkylaminocarbonyl, C₃-C₈ dialkylaminocarbonyl or C₃-C₆ trialkylsilyl;
- each R⁵ is independently H, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₆ cycloalkyl, C₁-C₆ haloalkyl, C₂-C₆ haloalkenyl, C₂-C₆ haloalkynyl, C₃-C₆ halocycloalkyl, halogen, CN, CO₂H, CONH₂, NO₂, hydroxy, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₁-C₄ haloalkylthio, C₁-C₄ haloalkylsulfinyl, C₁-C₄ haloalkylsulfonyl, C₁-C₄ alkylamino, C₂-C₆ alkylamino, C₂-C₆ alkylamino, C₃-C₆ cycloalkylamino, C₃-C₆ dialkylaminocarbonyl, C₃-C₆ trialkylsilyl; or

10

15

20

25

each R⁵ is independently a phenyl, benzyl, benzoyl, phenoxy, 5- or 6-membered heteroaromatic ring or an aromatic 8-, 9- or 10-membered fused heterobicyclic ring system, each ring optionally substituted with one to three substituents independently selected from the group consisting of C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₃-C₆ cycloalkyl, C₁-C₄ haloalkyl, C₂-C₄ haloalkenyl, C₂-C₄ haloalkynyl, C₃-C₆ halocycloalkyl, halogen, CN, NO₂, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₁-C₄ alkylamino, C₂-C₈ dialkylamino, C₃-C₆ cycloalkylamino, C₃-C₆ (alkyl)cycloalkylamino, C₂-C₄ alkylcarbonyl, C₂-C₆ alkoxycarbonyl, C₂-C₆ alkylaminocarbonyl, C₃-C₈ dialkylaminocarbonyl or C₃-C₆ trialkylsilyl; or

(R⁵)₂ when attached to adjacent carbon atoms can be taken together as -OCF₂O-, -CF₂CF₂O-, or -OCF₂CF₂O-.

Also of note are selected compounds for reasons of cost, ease of synthesis and/or biological efficacy:

Selection A. Compounds of Formula 1 wherein K is, together with the two linking atoms, a thiophene, pyrazole, isoxazole, pyridine or pyrimidine optionally substituted with 1 to 3 R⁴.

Selection B. Compounds of Selection A wherein J is independently a phenyl ring or a 5or 6-membered heteroaromatic ring wherein each ring is optionally substituted with 1 to 2 R⁵.

Selection C. Compounds of Selection A wherein

J is a phenyl ring or a 5- or 6-membered heteroaromatic ring selected from the group consisting of J-1, J-2, J-3, J-4 and J-5, each ring optionally substituted with 1 to 3 R⁵

$$\begin{array}{c|ccccc}
Q-X & X=Y & X=Y \\
Y & Z & Z & R^5
\end{array}$$

$$\begin{array}{c|cccccc}
& X=Y & X=X & X=X$$

O is O, S or NR5; and

W, X, Y and Z are independently N or CR⁵, provided that in J-4 and J-5 at least one of W, X, Y or Z is N.

10

15

20

25

35

Selection D. Compounds of Selection B or Selection C wherein

A and B are both O;

n is 1 to 2;

R¹ is H, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₃-C₆ cycloalkyl, C₂-C₆ alkylcarbonyl or C₂-C₆ alkoxycarbonyl;

R² is H, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₃-C₆ cycloalkyl, C₂-C₆ alkylcarbonyl or C₂-C₆ alkoxycarbonyl;

R³ is C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl or C₃-C₆ cycloalkyl each optionally substituted with one or more substituents selected from the group consisting of halogen, CN, C₁-C₂ alkoxy, C₁-C₂ alkylthio, C₁-C₂ alkylsulfinyl and C₁-C₂ alkylsulfonyl;

one of the R⁴ groups is attached to the heteroaromatic ring at one of the two positions *ortho* to the two linking atoms, and said R⁴ is C₁-C₄ alkyl, C₁-C₄ haloalkyl, halogen, CN, NO₂, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₁-C₄ haloalkylthio, C₁-C₄ haloalkylsulfinyl or C₁-C₄ haloalkylsulfonyl;

each R⁵ is independently H, C₁-C₄ alkyl, C₁-C₄ haloalkyl, halogen, CN, NO₂, C₁-C₄ haloalkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₁-C₄ haloalkylsulfinyl, C₁-C₄ haloalkylsulfonyl or C₂-C₄ alkoxycarbonyl; or a phenyl or a 5- or 6-membered heteroaromatic ring, each ring optionally substituted with C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₃-C₆ cycloalkyl, C₁-C₄ haloalkyl, C₂-C₄ haloalkenyl, C₂-C₄ haloalkynyl, C₃-C₆ halocycloalkyl, halogen, CN, NO₂, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₁-C₄ alkylamino, C₂-C₈ dialkylamino, C₃-C₆ cycloalkylamino, C₃-C₆ (alkyl)cycloalkylamino, C₂-C₆ alkylaminocarbonyl, C₂-C₆ alkoxycarbonyl, C₂-C₆ alkylaminocarbonyl or C₃-C₆ trialkylsilyl; or

30

(R⁵)₂ when attached to adjacent carbon atoms can be taken together as - OCF₂O-, -CF₂CF₂O- or -OCF₂CF₂O-.

Selection E. Compounds of Selection D wherein

J is selected from the group consisting of phenyl, pyridine, pyrimidine, pyrazole, imidazole, triazole, thiophene, thiazole and oxazole, furan, isothiazole and isoxazole, each optionally substituted with 1 to 2 R⁵.

Selection F. Compounds of Selection E wherein

10

35

J is selected from the group consisting of phenyl, pyridine, pyrimidine, pyrazole, thiophene and thiazole, each optionally substituted with 1 to 2 R⁵:

R¹ and R² are both H;

R³ is C₁-C₄ alkyl optionally substituted with halogen, CN, OCH₃, S(O)_pCH₃; each R⁴ is independently CH₃, CF₃, OCF₃, OCHF₂, S(O)_pCF₃, S(O)_pCHF₂,

CN or halogen;

each R⁵ is independently H, halogen, CH₃, CF₃, OCHF₂, S(O)_pCF₃, S(O)_pCHF₂, OCH₂CF₃, OCF₂CHF₂, S(O)_pCH₂CF₃, S(O)_pCF₂CHF₂; or phenyl, pyrazole, imidazole, triazole, pyridine or pyrimidine, each ring optionally substituted with C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, halogen or CN; and

p is 0, 1 or 2.

15 Selection G. Compounds of Selection F wherein R³ is C₁-C₄ alkyl.

- Selection H. Compounds of Selection G wherein J is a phenyl optionally substituted with 1 to 2 R⁵.
- Selection I. Compounds of Selection H wherein one R^5 is a phenyl optionally substituted with C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, halogen or CN.
- Selection J. Compounds of Selection H wherein one R⁵ is a pyrazole, imidazole, triazole, pyridine or pyrimidine, each ring optionally substituted with C₁-C₄ alkyl, C₁-C₄ haloalkyl, halogen or CN.
 - Selection K. Compounds of Selection I wherein J is a pyridine optionally substituted with 1 to 2 R⁵.
- Selection L. Compounds of Selection K wherein one R^5 is a phenyl optionally substituted with C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, halogen or CN.
 - Selection M. Compounds of Selection K wherein one R^5 is a pyrazole, imidazole, triazole, pyridine or pyrimidine, each ring optionally substituted with C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, halogen or CN.
- 30 Selection N. Compounds of Selection I wherein J is a pyrimidine optionally substituted with 1 to 2 R⁵.
 - Selection O. Compounds of Selection N wherein one R^5 is a phenyl optionally substituted with C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, halogen or CN.
 - Selection P. Compounds of Selection N wherein one R⁵ is a pyrazole, imidazole, triazole, pyridine or pyrimidine, each ring optionally substituted with C₁-C₄ alkyl, C₁-C₄ haloalkyl, halogen or CN.
 - Selection Q. Compounds of Selection I wherein J is a pyrazole optionally substituted with 1 to 2 R⁵.

- Selection R. Compounds of Selection Q wherein one R^5 is a phenyl optionally substituted with C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, halogen or CN.
- Selection S. Compounds of Selection Q wherein one R^5 is a pyrazole, imidazole, triazole, pyridine or pyrimidine, each ring optionally substituted with C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, halogen or CN.
- Selection T. Compounds of Selection S wherein one R^5 is a pyridine optionally substituted with C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, halogen or CN.

Most select is the compound of Formula 1 selected from the group consisting of:

4-[[[1-(2-Chlorophenyl)-3-(trifluoromethyl)-1*H*-pyrazol-5-yl]carbonyl]amino]-5-methyl-*N*-1-methylethyl)-3-pyridincarboxamide,

4-Methyl-*N*-(1-methylethyl)-3-[[2-methyl-4-(trifluoromethyl)benzoyl]amino]-2-thiophencarboxamide, and

1-Methyl-*N*-(1-methylethyl)-5-[[4-(trifluoromethyl)benzoyl]amino]-1*H*-pyrazole-4-carboxamide.

The compounds of Formula I can be prepared by one or more of the following methods and variations as described in Schemes 1-19. The definitions of A, B, J, K, R¹, R², R³, R⁴, R⁵ and n in the compounds of Formulae I and 2-41 below are as defined above in the Summary of the Invention. Compounds of Formulae Ia-c, 2a-b and 4a-g are various subsets of the compounds of Formula I, 2 and 4, respectively. Of note are compounds of Formulae I, 2, 5, 6, 6a, 13, 14, 15, 40 and 41 wherein K is selected from the group consisting of optionally substituted thiophene, isoxazole, isothiazole, pyrazole, pyridine and pyrimidine rings. Also of note are compounds of Formulae I, 2, 5, 6, 6a, 13, 14, 15, 40 and 41 wherein K is K-1, K-14, K-15, K-18, K-23, K-28, K-29, K-30, K-31 and K-33. Of particular note are

compounds of Formulae I, 2, 5, 6, 6a, 13, 14, 15, 40 and 41 wherein K is K-28, K-31 and

25 K-33.

35

5

10

Compounds of Formula I can be prepared by procedures outlined in Schemes 1-19. A typical procedure is detailed in Scheme 1 and involves coupling of an ortho amino carboxylic acid amide of Formula 2 with an acid chloride of Formula 3 in the presence of an acid scavenger to provide the compound of Formula Ia. Typical acid scavengers include amine bases such as triethylamine, diisopropylethylamine and pyridine; other scavengers include hydroxides such as sodium and potassium hydroxide and carbonates such as sodium carbonate and potassium carbonate. In certain instances it is useful to use polymer-supported acid scavengers such as polymer-bound diisopropylethylamine and polymer-bound dimethylaminopyridine. In a subsequent step, amides of Formula Ia can be converted to thioamides of Formula Ib using a variety of standard thio transfer reagents including phosphorus pentasulfide and Lawesson's reagent.

26

Scheme 1

An alternate procedure for the preparation of compounds of Formula la involves coupling of an amide of Formula 2 with an acid of Formula 4 in the presence of a dehydrating agent such as dicyclohexylcarbodiimide (DCC). Polymer supported reagents are useful here, such as polymer-bound cyclohexylcarbodiimide. Synthetic procedures of Schemes 1 and 2 are only representative examples of useful methods for the preparation of Formula I compounds as the synthetic literature is extensive for this type of reaction.

Scheme 2

10

15

20

5

One skilled in the art will also realize that acid chlorides of Formula 3 may be prepared from acids of Formula 4 by numerous well-known methods.

An alternate procedure for the preparation of compounds of Formula Ia involves coupling of an ortho amino carboxylic acid ester of Formula 5 with an acid chloride of Formula 3 by a method similar to that described in Scheme 1, followed by transformation of the ester group into an amide functionality. This transformation can be achieved by an amination with an amine of Formula 7. A Lewis acid such as trimethylaluminum as shown in Scheme 3 may catalyze this reaction.

Scheme 3

$$(R^4)_n \xrightarrow{K} R^1 \xrightarrow{O}_{Cl} (R^4)_n \xrightarrow{K} N_{R^1} \xrightarrow{R} R^2 R^3 NH$$

$$CO_{2alkyl} \xrightarrow{acid} Scavenger \qquad K \xrightarrow{N}_{R^1} T \xrightarrow{R^2 R^3 NH} T \xrightarrow{R}_{Co_{2alkyl}} T \xrightarrow{R}_{Lewis acid} T \xrightarrow{R}_{R^1} T \xrightarrow{R}_{R^2 R^3 NH} T \xrightarrow{R}_{Co_{2alkyl}} T \xrightarrow{R}_{R^2 R^3 NH} T \xrightarrow{R}_{R^2 R^3 NH} T \xrightarrow{R}_{Co_{2alkyl}} T \xrightarrow{R}_{R^2 R^3 NH} T \xrightarrow{R}_{Co_{2alkyl}} T \xrightarrow{R}_{R^2 R^3 NH} T \xrightarrow{R}_{R^2 R^3 NH} T \xrightarrow{R}_{Co_{2alkyl}} T \xrightarrow{R}_{R^2 R^3 NH} T \xrightarrow{R}_{R^2 R^3 NH}$$

5

Alternatively the ester 6 can be transformed to an amide (6a) as shown in Scheme 4 by saponification with a base such as aqueous sodium hydroxide followed by dehydrative coupling with an amine of Formula 7 by a procedure similar to that described in Scheme 2.

Scheme 4

5

10

15

20

Benzoic acids of Formula 4 (J is optionally substituted phenyl) are generally well known in the art as are procedures for their preparation. One particularly useful subset of benzoic acids of this invention are 2-methyl-4-perfluoroalkyl benzoic acids of Formula 4a (R⁵(a) equals e.g. CF₃, C₂F₅, C₃F₇). The synthesis for these compounds is outlined in Schemes 5-9. Benzoic acids of Formula 4a may be prepared from the benzonitriles of Formula 8 by hydrolysis. The conditions used may involve the use of a base such as an alkaline metal hydroxide or alkoxide (e.g. potassium or sodium hydroxide) in a solvent such as water, ethanol or ethylene glycol (e.g. J. Chem. Soc. 1948, 1025). Alternatively, the hydrolysis may be carried out using an acid such as sulfuric acid or phosphoric acid in a suitable solvent such as water (e.g. Org. Synth. 1955, Coll. vol. 3, 557). The choice of the conditions is contingent on the stability of R⁵ to the reaction conditions and elevated temperatures are usually employed to achieve this transformation.

Scheme 5

NC
$$R^{5(a)}$$
Hydrolysis
OH $R_{5}(b)$

8

4a

 $R^{5}(b)$ is Me

Nitriles of Formula 8 may be prepared from anilines of Formula 9 by the classical sequence involving diazotization and treatment of the intermediate diazonium salt with a copper cyanide salt (e.g. *J. Amer. Chem. Soc.* 1902, 24, 1035).

28

Scheme 6

9 R⁵(b) is Me

Anilines of Formula 9 may be prepared from compounds of Formula 10. This transformation may be achieved by a well-known procedure that employs Raney Nickel (Org. Synth. Coll. Vol. VI, 581). Alternatively, the same transformation may be effected by the use of a suitable catalyst such as palladium in the presence of hydrogen. The reaction is usually conducted at pressures of 10⁴ to 10⁷ kPa in a suitable organic solvent such as, but not limited to, toluene. Elevated temperatures of 80-110 °C are usually required to achieve the transformation. As one skilled in the art will realize, numerous chemical modifications of the thioether moiety are possible, and may be employed when necessary to facilitate this transformation.

10

5

10

15

20

Compounds of Formula 10 may be prepared from iminosulfuranes of Formula 11. The transformation may be achieved in a protic solvent such as methanol or water, in a non-protic solvent such as dichloromethane or toluene in the presence of a suitable base such as triethylamine (e.g. Org. Synth. Coll. Vol. VI, 581) or sodium methoxide, or in a combination of a protic solvent, a protic solvent and a base. The temperature at which the reaction is conducted is usually in the range 40-110 °C. As one skilled in the art will realize, suitable salts of compounds of Formula 11 such as, but not limited to a hydrochloride, a sulfate or a bisulfate may also be employed, provided that the appropriate amount of base is first used to generate the free base 11. This may be done as a separate step or as an integral part of the step involving the transformation of compounds of Formula 11 to compounds of Formula 10.

29

Scheme 8

Compounds of Formula 11 may be prepared from anilines of Formula 12 by reaction with dimethyl sulfide and a suitable chlorinating agent such as, but not limited to

N-chlorosuccinimide (e.g. Org. Synth. Coll. Vol. VI, 581), chlorine or

N-chlorobenzotriazole. Alternatively, anilines of Formula 12 may be treated with dimethyl sulfoxide which has been "activated" by treatment with an agent such as acetic anhydride, trifluoroacetic, anhydride, trifluoromethanesulfonic anhydride, cyclohexylcarbodiimide, sulfur trioxide, or phosphorus pentoxide. The reaction is conducted in a suitable organic

solvent such as dichloromethane or dimethyl sulfoxide. The reaction is conducted at a temperature of -70 °C to 25 °C and is dependent on the solvent and reagent used.

Scheme 9

Intermediate ortho amino carboxylic acid amides of Formula 2a and 2b may also be
prepared from isatoic anhydrides of Formula 13 and 14 (Scheme 10). Typical procedures involve combination of equimolar amounts of the amine 7 with the isatoic anhydride in polar aprotic solvents such as pyridine and dimethylformamide at temperatures ranging from room temperature to 100 °C. R¹ substituents such as alkyl and substituted alkyl may be introduced by the base catalyzed alkylation of isatoic anhydride 13 with known alkylating reagents
R¹-Lg (wherein Lg is a leaving group such as halogen, alkyl or aryl suphonates or alkyl sulfates) to provide the alkyl substituted intermediates 14. Isatoic anhydrides of Formula 13 may be made by methods described in Coppola, Synthesis 1980, 505 and Fabis et al Tetrahedron, 1998, 10789.

WO 02/070483

5

10

Scheme 10

$$(R^4)_n$$
 $(R^4)_n$
 $(R^4$

An alternate procedure for the preparation of specific compounds of Formula I (wherein A is O, B is O and R¹ is H) involves reaction of an amine 7 with a heterocyclic fused oxazinone of Formula 15. Typical procedures involve combination of the amine with the oxazinone in solvents such as tetrahydrofuran or pyridine at temperatures ranging from room temperature to the reflux temperature of the solvent. Oxazinones are well documented in the chemical literature and are available via known methods that involve the coupling of either an ortho amino carboxylic acid with an acid chloride. For references to the synthesis and chemistry of heterocyclic fused oxazinones see Jakobsen et al, *Biorganic and Medicinal Chemistry*, 2000, 8, 2803-2812 and references cited therein.

Scheme 11

$$(R^4)_n$$
 $(R^4)_n$
 R^2
 R^3
 R^4
 R^3
 R^4
 R^3
 R^3
 R^2
 R^3
 R^3

Heterocyclic acids of Formula 4, wherein J is an optionally substituted heterocycle, can be prepared by procedures outlined in Schemes 12-17. Both general and specific

references to a wide variety of heterocyclic acids including thiophenes, furans, pyridines, pyrimidines, triazoles, imidazoles, pyrazoles, thiazoles, oxazoles, isothiazoles, thiadiazoles, oxadiazoles, triazines, pyrazines, pyridazines, and isoxazoles can be found in the following compendia: Rodd's Chemistry of Chemistry of Carbon Compounds, Vol. IVa to IVI., S. Coffey editor, Elsevier Scientific Publishing, New York, 1973; Comprehensive Heterocyclic 5 Chemistry, Vol. 1-7, A. R. Katritzky and C. W. Rees editors, Pergamon Press, NewYork, 1984; Comprehensive Heterocyclic Chemistry II, Vol. 1-9, A. R. Katritzky, C. W. Rees, and E. F. Scriven editors. Pergamon Press, NewYork, 1996; and the series, The Chemistry of Heterocyclic Compounds, E. C. Taylor, editor, Wiley, New York. Particularly useful heterocyclic acids of this invention include pyridine acids, pyrimidine acids and pyrazole 10 acids. Procedures for the synthesis of representative examples of each are detailed in Schemes 12-17. A variety of heterocyclic acids and general methods for their synthesis may be found in World Patent Application WO 98/57397.

The synthesis of representative pyridine acids (4b) is depicted in Scheme 12. This procedure involves the known synthesis of pyridines from β-ketoesters and 4aminobutenones (19). Substituent groups R⁵(a) and R⁵(b) include e.g. alkyl and haloalkyl.

15

Scheme 12

$$+ R^{5(a)} \longrightarrow R^{5(a)$$

The synthesis of representative pyrimidine acids (4c) is depicted in Scheme 13. This procedure involves the known synthesis of pyrimidines from vinylidene-β-ketoesters (22) 20 and amidines. Substituent groups R⁵(a) and R⁵(b) include e.g. alkyl and haloalkyl.

32

Scheme 13

$$R^{5}(b)$$
 $CO_{2}Et$
 $CO_{2}Et$
 $R^{5}(b)$
 $CO_{2}Et$
 $R^{5}(b)$
 $CO_{2}Et$
 $R^{5}(b)$
 $CO_{2}Et$
 $R^{5}(b)$
 $CO_{2}Et$
 $R^{5}(b)$
 EtO
 $R^{5}(a)$
 $CO_{2}Et$
 $R^{5}(b)$
 EtO
 $R^{5}(a)$
 $CO_{2}Et$
 $R^{5}(b)$
 EtO
 $R^{5}(a)$
 $CO_{2}Et$
 EtO
 $CO_{2}Et$
 $CO_{2}Et$
 EtO
 $CO_{2}Et$
 $CO_{2}Et$
 EtO
 $CO_{2}Et$
 $CO_{2}Et$
 EtO
 $CO_{2}Et$
 $CO_$

The synthesis of representative pyrazole acids (4d-4g) is depicted in Schemes 14-17. Pyrazoles 4d are described in Scheme 14. The synthesis of Scheme 14 involves as the key step introduction of the R⁵(b) substituent via alkylation of the pyrazole. The alkylating agent R⁵(b)-Lg (wherein Lg is a leaving group such as Cl, Br, I, sulfonates such as ptoluenesulfonate or methanesulfonate or sulfates such as -SO₂OR⁷(b)) includes R⁷(b) groups such as C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₆ cycloalkyl, C₁-C₆ haloalkyl, C₂-C₆ haloalkynyl, C₃-C₆ halocycloalkyl, C₂-C₆ alkylcarbonyl, C₂-C₆ alkoxycarbonyl, C₃-C₈ dialkylaminocarbonyl, C₃-C₆ trialkylsilyl; or phenyl, benzyl, benzoyl, 5- or 6-membered heteroaromatic ring or an aromatic 8-, 9- or 10-membered fused heterobicyclic ring system, each ring or ring system optionally substituted. Oxidation of the methyl group affords the pyrazole carboxylic acid. Some of the more preferred R⁵(a) groups include haloalkyl.

15

10

5

Scheme 14

$$R^{5}(a)$$
 $R^{5}(a)$
 $R^{5}(a)$

Pyrazoles 4e are described in Scheme 15. These pyrazole acids may be prepared via metallation and carboxylation of pyrazoles of formula 28 as the key step. The R⁵(b) group is

introduced in a manner similar to that of Scheme 14, i.e. via alkylation with a R⁵(b) alkylating agent. Representative R⁵(a) groups include e.g. cyano, and haloalkyl.

Scheme 15

$$R^{5}(a)$$
 $R^{5}(b)$ -Lg

 $R^{5}(a)$
 $R^{5}(a)$

Pyrazoles 4f are described in Scheme 16. These can be prepared via reaction of an optionally substituted phenyl hydrazine 29 with a pyruvate 30 to yield pyrazole esters 31. Hydrolysis of the ester affords the pyrazole acids 4f. This procedure is particularly useful for the preparation of compounds where R⁵(b) is optionally substituted phenyl and R⁵(a) is haloalkyl.

10 Scheme 16

5

15

20

Pyrazoles acids of Formula 4g are described in Scheme 17. These can be prepared via 3+2 cycloaddition of an appropriately substituted nitrilimine (32) with either substituted propiolates (33) or acrylates (36). Cycloaddition with acrylates requires additional oxidation of the intermediate pyrazoline to the pyrazole. Hydrolysis of the ester affords the pyrazole acids 4g. Preferred iminohalides for this reaction include the trifluoromethyl iminochloride (38) and the iminodibromide (39). Compounds such as 38 are known (*J. Heterocycl. Chem.* 1985, 22(2), 565-8). Compounds such as 39 are available by known methods (*Tetrahedron Letters* 1999, 40, 2605). These procedures are particularly useful for the preparation of compounds where R⁵(b) is optionally substituted phenyl and R⁵(a) is haloalkyl or bromo.

34

Scheme 17

$$R^{5}(a)$$
 X_{1}
 $Et_{3}N$
 $Et_{3}N$
 $R^{5}(a)$
 $R^{5}(b)$
 $R^{5}(b)$

Ortho-amino carboxylic acid esters of Formula 5 wherein R¹ is H can be prepared from monoesters of ortho dicarboxylic acids of Formula 40 via rearrangement of the corresponding acyl azide and hydrolysis of the resulting isocyanate (or alternatively by trapping of the isocyanate with an alcohol and cleaving of the resulting carbamate) as shown in Scheme 18.

5

10

Scheme 18

Alternatively *ortho*-amino carboxylic acid esters of Formula 5 can be prepared from *ortho* carboxamide carboxylic esters of Formula 41 by Hoffman rearrangement with reagents such as sodium hydroxide and bromine as shown in Scheme 19.

35

$$\begin{array}{c|c}
& \underline{Scheme \ 19} \\
\hline
(R^4)_n & CONH_2 & R^4)_n & NH & R^1 \\
\hline
CO_2alkyl & Br_2 & 5 (R^1 is H)
\end{array}$$

Compounds of Formulae 40 and 41 are known in the art or can be readily prepared from compounds known in the art. (For example, see *Tetrahedron*, 1997, 53, 14497; *J. Chem. Soc.*, *Perkin Trans. 1*, 1996, 10, 1035; WO92/08724 and EP 418667).

5

10

15

20

25

It is recognized that some reagents and reaction conditions described above for preparing compounds of Formula I may not be compatible with certain functionalities present in the intermediates. In these instances, the incorporation of protection/deprotection sequences or functional group interconversions into the synthesis will aid in obtaining the desired products. The use and choice of the protecting groups will be apparent to one skilled in chemical synthesis (see, for example, Greene, T. W.; Wuts, P. G. M. *Protective Groups in Organic Synthesis*, 2nd ed.; Wiley: New York, 1991). One skilled in the art will recognize that, in some cases, after the introduction of a given reagent as it is depicted in any individual scheme, it may be necessary to perform additional routine synthetic steps not described in detail to complete the synthesis of compounds of Formula I. One skilled in the art will also recognize that it may be necessary to perform a combination of the steps illustrated in the above schemes in an order other than that implied by the particular sequence presented to prepare the compounds of Formula I.

One skilled in the art will also recognize that compounds of Formula I and the intermediates described herein can be subjected to various electrophilic, nucleophilic, radical, organometallic, oxidation, and reduction reactions to add substituents or modify existing substituents.

Without further elaboration, it is believed that one skilled in the art using the preceding description can utilize the present invention to its fullest extent. The following Examples are, therefore, to be construed as merely illustrative, and not limiting of the disclosure in any way whatsoever. Percentages are by weight except for chromatographic solvent mixtures or where otherwise indicated. Parts and percentages for chromatographic solvent mixtures are by volume unless otherwise indicated. ¹H NMR spectra are reported in ppm downfield from tetramethylsilane; s is singlet, d is doublet, t is triplet, q is quartet, m is multiplet, dd is doublet of doublets, dt is doublet of triplets, brs is broad singlet.

10

15

20

30

35

EXAMPLE 1

<u>Preparation of 5-methyl-N-(1-methylethyl)-4-[[4-trifluoromethoxy)benzoyl]amino]-3-pyridinecarboxamide</u>

Step A: Preparation of ethyl 4-azido-5-methyl-3-pyridinecarboxylate

A slurry of 14.1 g (78 mmol) of ethyl 1,4-dihydro-5-methyl-4-oxo-3-pyridinecarboxylate (prepared according to Horvath, G.; Dvortsak, P. J. Heterocycl. Chem. 1980, 359) in 30 mL of phosphorous oxychloride was refluxed for 1 hour. After cooling, the volatiles were removed with a rotary evaporator. The residue was poured into cold saturated aqueous sodium bicarbonate. Dichloromethane was added and the mixture was filtered through celite. The layers were separated. The organic layer was dried (sodium sulfate) and the solvent was removed with a rotary evaporator. The residue was dissolved in 150 mL of dimethylformamide. 15.2g (234 mmol) of sodium azide was added. The mixture was heated at 95°C for 1hour. After cooling, the solvent was removed with a rotary evaporator. The residue was partitioned between ethyl acetate and water. The organic layer was dried (sodium sulfate) and the solvent was removed with a rotary evaporator. The residue was passed through a plug of silica gel with 25% ethyl acetate in hexanes as eluant to afford 11.9g of the title compound as a cream colored solid.

¹H NMR (CDCl₃) δ 1.41 (t,3H), 2.12 (s,3H), 4.36 (q,2H), 8.12 (s,1H), 8.83 (s,1H). <u>Step B:</u> <u>Preparation of ethyl 4-amino-5-methyl-3-pyridinecarboxylate</u>

0.50 g of material prepared in Step A was dissolved in 15 mL of ethanol. 0.15g of 10% palladium on carbon was added. The reaction mixture was placed under one atmosphere of hydrogen for 2 hours. The catalyst was removed by filtration. The solvent was removed with a rotary evaporator to afford 0.43 g of the title compound as a white solid.

¹H NMR (CDCl₃) δ 1.42 (t,3H), 2.30 (s,3H), 4.45 (q,2H), 8.47 (s,1H), 8.87 (s,1H).

25 <u>Step C:</u> <u>Preparation of ethyl 5-methyl-4-[[4-trifluoromethoxy)benzoyl]amino]-3-pyridinecarboxylate</u>

1.0g (5.6 mmol) of material prepared in Step C was dissolved in 30 mL of dichloromethane. 0.77 mL (5.6 mmol) of triethylamine, a catalytic amount of 4-dimethylaminopyridine and 0.88 mL (5.6 mmol) of 4-(trifluoromethoxy)benzoyl chloride were added. The mixture was stirred overnight. The reaction mixture was washed with water. The organic layer was dried (sodium sulfate) and the solvent was removed with a rotary evaporator. The residue was purified by medium-pressure liquid chromatography (MPLC) with a gradient of 15-100% ethyl acetate in hexanes as eluant. The bisacylation product eluted first, then 0.42 g of the title compound as white solid. Starting material (0.52 g) was also recovered.

 1 H NMR (CDCl₃) δ 1.41 (t,3H), 2.32 (s,3H), 4.39 (q,2H), 7.37 (d,2H), 8.08 (d,2H), 8.63 (brs,1H), 9.04 (brs,1H), 10.78 (brs,1H).

10

15

25

30

37

Step D: Preparation of 5-methyl-N-(1-methylethyl)-4-[[4-trifluoromethoxy)benzoyl]amino]-3-pyridinecarboxamide

To a solution of 0.049 mL (0.57 mmol) of isopropylamine in 20 mL of dichloroethane at 0 °C was added 0.64 mL (1.3 mmol) of a 2M solution of trimethylaluminum in toluene dropwise. A solution of 0.21 g (0.57 mmol) of the material prepared in Step C in 5 mL of dichloroethane was added dropwise. Four days later an additional 0.049 mL of isopropylamine and 0.64 mL of trimethylaluminum were added. The reaction was refluxed for 6h. After cooling 20 mL of 1N HCl was added. The layers were separated. The aqueous layer was made basic with a saturated sodium bicarbonate solution. Dichloromethane was added and the mixture was filtered through celite. The dichloromethane was separated, combined with the dichloroethane layer from above and dried (sodium sulfate). The solvent was removed with a rotary evaporator. The residue was purified by MPLC with a gradient of 25-50% ethyl acetate in hexanes as eluant to afford 0.047 g of the title compound, a compound of the invention, as a white solid; m.p. 202-204 °C.

¹H NMR (CDCl₃) δ 1.27 (d,6H), 2.33 (s,3H), 4.23 (m,1H), 6.46 (br,1H), 7.35 (d,2H), 8.07 (d,2H), 8.56 (brs,1H), 8.69 (brs,1H), 11.15 (brs,1H).

EXAMPLE 2

<u>Preparation of 1-methyl-N-(1-methylethyl)-5-[[4-trifluoromethoxy)benzoyl]amino]-1H-pyrazole-4-carboxamide</u>

20 Step A: Preparation of 5-amino-1-methyl-N-(1-methylethyl)-1H-pyrazole-4-carboxamide

1.0g (8.0 mmol) of 2-cyano-N-(1-methylethyl)acetamide (prepared according to the procedure of Cheikh et al J. Org. Chem., 1991, 56, 970) was combined with 3.1 mL of triethylorthoformate, 5 mL of acetic anhydride and 0.01g of anhydrous zinc chloride. The mixture was refluxed for 1 hour. A distillation head was placed on the flask and the reaction was heated at 120 °C for 8 hours. After standing for two days the mixture was heated again for 12 hours at 120 °C for 12 hours. The volatiles were removed with a rotary evaporator. Ethanol was added and the volatiles were again removed with a rotary evaporator. This material was dissolved in 15 mL of ethanol. 0.34 mL (6.4 mmol) of methyl hydrazine was added. The reaction mixture was refluxed for 5 hours and then allowed to stand at room temperature overnight. The solvent was removed with a rotary evaporator. The residue was purified by MPLC (ethyl acetate as eluant) to afford 0.14g of the title compound as a solid.

¹H NMR (CDCl₃) δ 1.23 (d,6H), 3.61 (s,3H), 4.21 (m,1H), 5.17 (br,2H), 5.34 (br,1H), 7.38 (s, 1H).

10

20

25

30

35

38

Step B: Preparation of 1-methyl-N-(1-methylethyl)-5-[[4-trifluoromethoxy)benzoyl]amino]-1H-pyrazole-4-carboxamide

0.14 g (0.77 mmol) of the material from Step A was dissolved in 20 mL of tetrahydrofuran and 0.12 mL (0.85 mmol) of triethylamine and 0.12 mL (0.77 mmol) of 4-(trifluoromethoxy)benzoyl chloride were added. Three days later 0.12 mL (0.85 mmol) of triethylamine and 0.12 mL (0.77 mmol) of 4-(trifluoromethoxy)benzoyl chloride were added. The reaction mixture was refluxed for two days. After cooling the reaction mixture was partitioned between ethyl acetate and water. The organic layer was dried (sodium sulfate) and the solvent was removed with a rotary evaporator. The residue was purified by MPLC with 50% ethyl acetate in hexanes as eluant to afford 0.18 g of the title compound, a compound of the invention, as a white solid; m.p. 68-75 °C.

¹H NMR (CDCl₃) δ 1.22 (d,6H), 3.91 (s,3H), 4.14 (m,1H), 5.92 (brd,1H), 7.32 (d,2H), 7.62 (s,1H), 8.08 (d,2H), 10.78 (brs,1H).

EXAMPLE 3

Preparation of 4-methyl-N-(1-methylethyl)-3-[[4-trifluoromethyl)benzoyl]amino]-2thiophenecarboxamide

Step A: Preparation of 7-methyl-2H-thieno[3,2-d][1,3]oxazine-2,4(1H)-dione

Phosgene in toluene (4.4 g, 20%, 8.88 mmol) was added to the sodium salt of 3-amino-4-methyl-thiophene-2-carbocyclic acid (1 g, 5.58 mmol) in water (17 mL) at 0 C. The mixture was allowed to warm to room temperature and was stirred for 1 hour. The mixture was filtered. After drying in vacuum the product was obtained as a solid 0.49 g (47%).

IR (Nujol®) 1785, 1696, 1580, 1513, 1236, 988, 918, 848, 826 cm-1.

¹H NMR (DMSO- d_6) δ 2.20 (s,3H), 7.88 (s,1H).

Step B: Preparation of 7-methyl-2-[4-(trifluoromethyl)phenyl]-4H-thieno[3,2-d][1,3]oxazin-4-one

4-(Dimethylamino)pyridine (0.66 g, 5.41 mmol) was added to the product from Step A in dioxane (10 mL). 4-(Trifluoromethyl)benzoyl chloride (1.13 g, 5.42 mmol) was added to the mixture and the mixture was boiled for approximately 3 hours. The mixture was allowed to cool to room temperature and was poured into hydrochloric acid (100 mL, 1 N). The mixture was extracted with ethyl acetate (3 x 50 mL) and the combined extracts were dried and evaporated. Chromatography on silicon gel (eluted with ethyl acetate/hexanes) gave the product as a white solid 1.56 g, (91.7%).

IR (Nujol®) 2923, 1763, 1600, 1572, 1410, 1312, 1234, 1170, 1125, 1068, 1013, 978, 934, 851, 813 cm-1.

¹H NMR (CDCl₃) δ 2.47 (s,3H), 7.60 (s,1H), 7.77 (d,2H), 8.45(d,2H).

Step C: Preparation of 4-methyl-N-(1-methylethyl)-3-[[4-trifluoromethyl)benzoyl]amino]-2-thiophenecarboxamide

A mixture of the product from Step B (0.2 g, 0.043 mmol) and isopropylamine (0.2 g, 3.39 mmol) in THF (5 mL) was stirred for 6 hours. The solvent was removed under reduced pressure to give the product, a compound of the invention, as a solid 0.21 g, (91%).

IR (Nujol®) 3294, 1664, 1625, 1573, 1524, 1409, 1327, 1207, 1167 1126, 1068, 1018, 954, 885, 857 cm-1.

¹H NMR (CDCl₃) δ 1.22 (d,6H), 2.30 (s,3H), 4.22-4.11 (m,1H), 5.58 (d,1H), 7.03 (s,1H), 7.75 (d, 2H), 8.13 (d,2H), 10.63 (5,1H).

10

20

5

EXAMPLE 4

<u>Preparation of 5-[[[3-Chloro-1-(3-chloro-2-pyridinyl)-1*H*-pyrazol-5-yl]carbonyl]amino]-*N*.6-dimethyl-4-pyrimidinecarboxamide</u>

Step A: Preparation of 1-(1,1-dimethylethyl) 4-ethyl-2-acetyl-3-amino-2-butenedioate

To a mixture of 17.15g (108 mmol) of t-butyl acetoacetate and 12.8 mL (130 mmol) of
ethyl cyanoformate in 25 mL of dichloromethane was added 1.64g of zinc acetylacetonate
hydrate. After stirring overnight the volatiles were removed with a rotary evaporator. The
residue was dissolved in ethyl acetate and filtered through celite. The solvent was removed
with a rotary evaporator to afford 29.9g of the title compound as a white solid as an E/Z
isomer mixture.

¹H NMR (CDCl₃) δ 1.33 (t,3H), 1.52 (s,9H), 2.35 (s,3H) [minor isomer 2.40 (s,3H)], 4.33 (m,2H).

<u>Step B:</u> <u>Preparation of 5-(1,1-dimethylethyl) hydrogen 6-methyl-4,5-</u> pyrimidinedicarboxylate

To a solution of 11.6g (45 mmol) of the material from Step A in 55 mL of ethanol was added 10.9g (135 mmol) of formamidine hydrochloride. The reaction mixture was cooled in an ice bath and 17 mL (135 mmol) of 1,1,3,3-tetramethylguanidine was added dropwise. After the mixture was stirred overnight the solvent was removed with a rotary evaporator. The residue was partitioned between ethyl acetate and water. The aqueous layer was cooled in an ice bath, acidified with concentrated HCl and extracted three times with ethyl acetate.

The organic layer was dried (sodium sulfate) and the solvent was removed with a rotary

The organic layer was dried (sodium sulfate) and the solvent was removed with a rotary evaporator to afford 9.12g of the title compound as a yellow solid.

¹H NMR (CDCl₃) δ 1. 65 (s,9H), 2.68 (s,3H), 9.19 (s,1H).

Step C: Preparation of 5-(1,1-dimethylethyl) 4-methyl 6-methyl-4,5-pyrimidinedicarboxylate

To a solution of 9.12g (38 mmol) of the material from Step B in 100 mL of N,N-dimethyl formamide (DMF) was added 3.1 mL (50 mmol) of iodomethane and 3.7g (50 mmol) of lithium carbonate. The reaction mixture was heated at 60 °C for 3 hours.

WO 02/070483 PCT/US02/06582

40

After cooling the reaction mixture was partitioned between dichloromethane and water. The organic layer was dried (sodium sulfate) and the solvent was removed with a rotary evaporator and then a vacuum pump. The residue was purified by MPLC with a gradient of 20-30% ethyl acetate in hexanes as eluant to afford 7.58g of the title compound as an off-white solid.

¹H NMR (CDCl₃) δ 1.63 (s,9H), 2.67 (s,3H), 4.01 (s,3H), 9.19 (s,1H).

5

10

15

20

25

30

35

Step D: Preparation of methyl 5-[[(1,1-dimethylethoxy)carbonyl]amino]-6-methyl-4pyrimidinecarboxylate

7.55g of the material from Step C was dissolved in 40 mL of dichloromethane. 20 mL of trifluoroacetic acid was added. After two days the reaction mixture was refluxed for 6 hours. After an additional day the volatiles were removed with a rotary evaporator. Toluene was added and the solvent was removed with a rotary evaporator. This material (9.2g) was dissolved in 100 mL of *t*-butanol. 9.2 mL (66 mmol) of triethylamine and 14 mL (66 mmol) of diphenylphosphoryl azide were added. The reaction was refluxed 3 hours. After cooling, the solvent was removed with a rotary evaporator. The residue was partitioned between ethyl acetate and water. The organic layer was dried (sodium sulfate) and the solvent was removed with a rotary evaporator. The residue was purified by MPLC with a gradient of 40-100% ethyl acetate in hexanes as eluant to afford 5.81g of the title compound as a yellow solid.

¹H NMR (CDCl₃) δ 1.52 (s,9H), 2.60 (s,3H), 4.03 (s,3H), 8.07 (br,1H),8.98 (s,1H).

Step E: Preparation of methyl 5-amino-6-methyl-4-pyrimidinecarboxylate

5.8g of the material from Step D was dissolved in 25 mL of trifluoroacetic acid. After stirring for 90 minutes the solvent was removed with a rotary evaporator. Saturated aqueous sodium bicarbonate was added. The aqueous layer was extracted five times with dichloromethane. The organic layer was dried (sodium sulfate) and the solvent was removed with a rotary evaporator to afford 3.78g of the title compound with a small amount of an impurity.

¹H NMR (CDCl₃) δ 2.50 (s,3H), 4.00 (s,3H), 5.76 (br,2H),8.56 (s,1H).

Step F: Preparation of 5-amino-6-methyl-4-pyrimidinecarboxylic acid monosodium salt

2.0g (12 mmol) of the material from Step E was dissolved in 24 mL of methanol. 12 mL of a 1N solution of sodium hydroxide was added. After 1 hour the solvent was removed with a rotary evaporator. The residue was dried in a vacuum oven overnight to afford 2.39 g of the title compound as a tan solid.

¹H NMR (D₂O) δ 2.45 (s,3H), 8.37 (s,1H).

Step G: Preparation of 3-chloro-N,N-dimethyl-1H-pyrazole-1-sulfonamide

To a solution of N-dimethylsulfamoylpyrazole (188.0 g, 1.07 mol) in dry

tetrahydrofuran (1500 mL) at -78 °C was added dropwise a solution of 2.5 M n-butyl-

lithium (472 mL, 1.18 mol) in hexane while maintaining the temperature below -65 °C. Upon completion of the addition the reaction mixture was maintained at -78 °C for an additional 45 minutes, after which time a solution of hexachloroethane (279 g, 1.18 mol) in tetrahydrofuran (120 mL) was added dropwise. The reaction mixture was maintained for an hour at -78 °C, warmed to -20 °C and then quenched with water (1 L). The reaction mixture was extracted with methylene chloride (4x500 mL); the organic extracts were dried over magnesium sulfate and concentrated. The crude product was further purified by chromatography on silica gel using methylene chloride as eluent to afford the title product compound as a yellow oil (160 g).

¹H NMR (CDCl₃) δ 3.07 (d, 6H), 6.33 (s, 1H), 7.61 (s, 1H).

Step H: Preparation of 3-chloropyrazole

5

10

15

20

30

35

To trifluoroacetic acid (290 mL) was added dropwise the chloropyrazole product (160 g) from Step G, and the reaction mixture was stirred at room temperature for 1.5 hours and then concentrated at reduced pressure. The residue was taken up in hexane, insoluble solids were filtered off, and the hexane was concentrated to afford the crude product as an oil. The crude product was further purified by chromatography on silica gel using ether/hexane (40:60) as eluent to afford the title product as a yellow oil (64.44 g).

1 H NMR (CDCl₃) 8 6.39 (s, 1H), 7.66 (s, 1H), 9.6 (br s, 1H).

Step I: Preparation of 3-chloro-2-(3-chloro-1H-pyrazol-1-yl)pyridine

To a mixture of 2,3-dichloropyridine (92.60 g, 0.629 mol) and 3-chloropyrazole (64.44 g, 0.629 mol) in N,N-dimethylformamide (400 mL) was added potassium carbonate (147.78 g, 1.06 mol), and the reaction mixture was then heated to 100 °C for 36 hours. The reaction mixture was cooled to room temperature and slowly poured into ice water. The precipitated solids were filtered and washed with water. The solid filter cake was taken up in ethyl acetate, dried over magnesium sulfate and concentrated. The crude solid was chromatographed on silica gel using 20% ethyl acetate/hexane as eluent to afford the title product as a white solid (39.75 g).

¹H NMR (CDCl₃) δ 6.43 (s, 1H), 7.26 (m, 1H), 7.90 (d, 1H), 8.09 (s, 1H), 8.41 (d, 1H).

Step J: Preparation of 3-chloro-1-(3-chloro-2-pyridinyl)-1H-pyrazole-5-carboxylic acid

To a solution of the pyrazole product from Step I (39.75 g, 186 mmol) in dry tetrahydrofuran (400 mL) at -78 °C was added dropwise a solution of 2.0 M lithium diisopropylamide (93 mL, 186 mmol) in tetrahydrofuran. Carbon dioxide was bubbled through the amber solution for 14 minutes, after which time the solution became pale brownish-yellow. The reaction was made basic with 1N aqueous sodium hydroxide solution and extracted with ether (2x500 mL). The aqueous extracts were acidified with 6N hydrochloric acid and extracted with ethyl acetate (3x500 mL). The ethyl acetate extracts were dried over magnesium sulfate and concentrated to afford the title product as an off-

PCT/US02/06582 WO 02/070483

42

white solid (42.96 g). (Product from another run following similar procedure melted at 198-199 °C.)

¹H NMR (DMSO- d_6) δ 6.99 (s, 1H), 7.45 (m, 1H), 7.93 (d, 1H), 8.51 (d, 1H).

5

10

15

20

Preparation of 2-[3-chloro-1-(3-chloro-2-pyridinyl)-1H-pyrazol-5-yl]-8-Step K: methyl-4H-pyrimido[5,4-d][1,3]oxazin-4-one

To a solution of 0.26 mL (3.3 mmol) of methanesulfonyl chloride in 18 mL of acetonitrile at 0°C was added 0.77g (3.0 mmol) of 3-chloro-1-(3-chloro-2-pyridinyl)-1Hpyrazol-5-carboxylic acid from Step J. 0.42 mL (3.0 mmol) of triethylamine in 9 mL of acetonitrile was added dropwise. After 20 minutes at 0 °C, 0.525g (3.0 mmol) of material from Step F was added. After 15 minutes 0.42 mL (3.0 mmol) of triethylamine was added dropwise. After 2 hours 0.26 mL (3.3 mmol) of methanesulfonyl chloride was added. After stirring overnight. The reaction mixture was poured into water. Filtration afforded 0.27g of the title compound.

¹H NMR (CDCl₃) δ 2.20 (s,3H), 7.23 (s,1H), 7.54(dd,1H), 8.01 (dd,1H), 8.57(dd,1H), 9.20 (s,1H).

Preparation of 5-[[[3-Chloro-1-(3-chloro-2-pyridinyl)-1*H*-pyrazol-5-Step L: vl]carbonyl]amino]-N,6-dimethyl-4-pyrimidinecarboxamide

2 mL of a 2M solution of methylamine in tetrahydrofuran was added to 0.090g of material from Step K. After stirring overnight the solvent was removed with a rotary evaporator to afford 0.071g of the title compound, a compound of the invention, as a tan solid; m.p. 205-207 °C.

¹H NMR (CDCl₃) δ 2.48 (s,3H), 3.04 (d,3H), 7.06 (s,1H), 7.41(dd,1H), 7.89 (dd,1H), 8.30 (br,1H), 8.48 (dd,1H), 8.85 (s,1H), 11.57 (br,1H).

EXAMPLE 5

Preparation of 2,6-dichloro-3-[[[1-(3-chloro-2-pyridinyl)-3-(trifluoromethyl)-1H-pyrazol-5-25 yl]carbonyl]amino]-N-(1-methylethyl)- 4-pyridinecarboxamide

Preparation of ethyl 3-amino-4-pyridinecarboxylate Step A:

To a solution of 1 g (7.25 mmol) of 3-amino-4-pyridinecarboxylic acid in 5 mL of ethyl alcohol was added 2 mL of sulfuric acid. The mixture was warmed under reflux for 2 h. It was cooled and basified with conc. NH_4OH solution to pH = 8. The resulting solution 30 was extracted with ethyl acetate and the organic layer was washed with brine and water, dried (MgSO₄) and concentrated in vacuo to give 1.04 g of the title compound as a white solid (87%).

¹H NMR (CDCl₃) δ 8.19 (s 1H), 7.93 (d 1H, J is 5.1Hz), 7.60 (d, 1H, J is 5.1Hz), 5.67 (br s, 2H), 4.36 (q, 2H), 1.40 (t, 3H). 35

10

15

20

25

30

35

WO 02/070483 PCT/US02/06582

43

Step B: Preparation of ethyl 3-amino-2,6-dichloro-4-pyridinecarboxylate

To a solution of 1.04 g (6.27 mmol) of ethyl 3-amino-4-pyridinecarboxylate in 5 mL of DMF was added 1.67 g of N-chlorosuccinimide (12.5 mmol) in a single portion at room temperature. The mixture was then stirred at the same temperature for 24 hours. The resulting mixture was concentrated *in vacuo* and purified by silica gel column to give 1.40 g of the title compound as a white solid (95%).

¹H NMR (CDCl₃) δ 7.67 (s 1H), 6.18 (br s, 2H), 4.39 (q, 2H), 1.42 (t, 3H).

Step C: Preparation of 3-amino-2,6-dichloro-4-pyridinecarboxylic monopotassium salt

To a solution of 1.30 g (5.54 mmol) of ethyl 3-amino-2,6-dichloro-4-pyridinecarboxylate in a mixture of 5 mL of water and 20 mL of ethyl alcohol was added 622 mg (11.1 mmol) of potassium hydroxide at room temperature and the reaction mixture was warmed at 90 °C for 1hour. The mixture was then concentrated *in vacuo* and evaporated with benzene three times to give 1.63 g of the title compound as a white solid. The crude product was used in the next reaction without any further purification (98%).

¹H NMR (DMSOd-₆) δ 7.31 (s, 1H), 7.14 (br s, 2H).

Step D: Preparation of 6,8-dichloro-2H-pyrido[3,4-d][1,3]oxazine-2,4(1H)-dione

To a solution of 1.64 g (5.54 mmol) of the material from Step C in 20 mL of dioxane was added 2.2 g (11.1 mmol) of diphospene at 0 °C. The mixture was allowed to warm to room temperature and stirred for 24 hours. The mixture was then concentrated *in vacuo* to give 1.70 g of the title compound as a white solid (quantitative).

¹H NMR (DMSOd-6) δ 7.99 (s, 1H).

Step E: Preparation of 3-chloro-2-[3-(trifluoromethyl)-1H-pyrazol-1-yl]pyridine

To a mixture of 2,3-dichloropyridine (99.0 g, 0.67 mol) and 3-trifluoromethyl pyrazole (83 g, 0.61 mol) in dry N,N-dimethylformamide (300 mL) was added potassium carbonate (166.0 g, 1.2 mol) and the reaction was then heated to 110–125 °C over 48 hours. The reaction was cooled to 100 °C and filtered through Celite® diatomaceous filter aid to remove solids. N,N-Dimethylformamide and excess dichloropyridine were removed by distillation at atmospheric pressure. Distillation of the product at reduced pressure (b.p. 139–141 °C, 7 mm) afforded the desired intermediate as a clear yellow oil (113.4 g).

¹H NMR (CDCl₃) δ 6.78 (s, 1H), 7.36 (t, 1H), 7.93 (d, 1H), 8.15 (s, 1H), 8.45 (d, 1H).

Step F: Preparation of 1-(3-chloro-2-pyridinyl)-3-(trifluoromethyl)-1*H*-pyrazole-5-carboxylic acid

To a solution of the pyrazole product from Step E (105.0 g, 425 mmol) in dry tetrahydrofuran (700 mL) at -75 °C was added via cannula a -30 °C solution of lithium diisopropylamide (425 mmol) in dry tetrahydrofuran (300 mL). The deep red solution was stirred for 15 minutes, after which time carbon dioxide was bubbled through at -63 °C until the solution became pale yellow and the exothermicity ceased. The reaction was stirred for

an additional 20 minutes and then quenched with water (20 mL). The solvent was removed under reduced pressure, and the reaction mixture partitioned between ether and 0.5 N aqueous sodium hydroxide solution. The aqueous extracts were washed with ether (3x), filtered through Celite® diatomaceous filter aid to remove residual solids, and then acidified to a pH of approximately 4, at which point an orange oil formed. The aqueous mixture was stirred vigorously and additional acid was added to lower the pH to 2.5-3. The orange oil congealed into a granular solid, which was filtered, washed successively with water and 1N hydrochloric acid, and dried under vacuum at 50 °C to afford the title product as an off-white solid (130 g). (Product from another run following similar procedure melted at 175-176 °C.)

¹H NMR (DMSO- d_6) δ 7.61 (s, 1H), 7.76 (dd, 1H), 8.31 (d, 1H), 8.60 (d, 1H).

10

30

35

Preparation of 2,6-dichloro-3-[[[1-(3-chloro-2-pyridinyl)-3-(trifluoromethyl)-Step G: 1H-pyrazol-5-yl]carbonyl]amino]-N-(1-methylethyl)- 4-pyridinecarboxamide

To a solution of 268 mg (0.92 mmol) of 1-(3-chloro-2-pyridinyl)-3-(trifluoromethyl)-1H-pyrazole-5-carboxylic acid (from Step F) in 5 mL of dichloromethane was added 160 µL 15 (1.84 mmol) of oxalyl chloride and two drops of DMF in sequence at room temperature. The mixture was then stirred at the same temperature for 1 hour. The crude mixture was then concentrated in vacuo. The resulting mixture was dissolved with 5 mL of acetonitrile followed by additions of 280 mg (0.92 mmol) of the compound prepared in Step D and 298 µL (3.68 mmol) of pyridine in sequence. The reaction mixture was warmed to 70 °C for 20 2 hours and allowed to cool to room temperature. A solution of 157 µL (1.84 mmol) of isopropylamine in 1 mL of acetonitrile was added to the mixture and it was warmed to 60 °C for 1 hour. The reaction was allowed to cool to room temperature and quenched with water. The aqueous layer was extracted with ethyl acetate and the organic layer was dried with MgSO₄ and concentrated in vacuo. The resulting mixture was purified with a silica gel 25 column to give 250 mg of the title compound, a compound of the invention, as a white solid (52%). m.p. 240-242 °C.

¹H NMR (CDCl₃) δ 9.85 (s, 1H), 8.53 (dd, 1H), 7.90 (dd, 1H), 7.56 (s, 1H), 7.42 (dd, 1H), 7.22 (s, 1H), 6.08 (br d, 1H), 4.13 (m, 1H), 1.14 (d, 6H).

By the procedures described herein together with methods known in the art, the following compounds of Tables 1 to 32 can be prepared. The following abbreviations are used in the Tables: t is tertiary, s is secondary, n is normal, i is iso, c is cyclo, Me is methyl, Et is ethyl, Pr is propyl, i-Pr is isopropyl, t-Bu is tertiary butyl, Ph is phenyl, OMe is methoxy, OEt is ethoxy, SMe is methylthio, SEt is ethylthio, CN is cyano, NO2 is nitro, TMS is trimethylsilyl, S(O)Me is methylsulfinyl, and S(O)₂Me is methylsulfonyl. Structures

of K for Tables 15, 16 and 17 can be found in Exhibit 2.

Table 1

<u>R</u> 4	(R ⁵) _m	<u>R</u> 4	(R ⁵) _m	<u>R</u> 4	(<u>R⁵)</u> m
Me	2-CF ₃	Me	3-CF ₃	Me	4-CF ₃
Me	2-OCF3	Me	3-OCF ₃	Me	4-OCF ₃
Me	2-OCF ₂ H	Me	3-OCF ₂ H	Me	4-OCF ₂ H
Me	2-OCF ₂ CF ₂ H	Me	3-OCF ₂ CF ₂ H	Me	4-OCF2CF2H
Me	2-OCH ₂ CF ₃	Me	3-OCH ₂ CF ₃	Me	4-OCH ₂ CF ₃
Me	2-SCF ₃	Me	3-SCF ₃	Me	4-SCF ₃
Me	2-SOCF ₃	Me	3-SOCF ₃	Me	4-SOCF ₃
Me	2-SO ₂ CF ₃	Me	3-SO ₂ CF ₃	Me	4-SO ₂ CF ₃
Me	2-SCF ₂ H	Me	3-SCF ₂ H	Me	4-SCF ₂ H
Me	2-SOCF ₂ H	Me	3-SOCF ₂ H	Ме	4-SOCF ₂ H
Me	2-SO₂CF2H	Ме	3-SO ₂ CF ₂ H	Me	4-SO₂CF2H
Cl	2-CF ₃	Cl	3-CF ₃	Cl	4-CF ₃
Cl	2-OCF ₃	Cl	3-OCF ₃	CI	4-OCF ₃
Cl	2-OCF ₂ H	Cl	3-OCF ₂ H	CI	4-OCF ₂ H
Cl	2-OCF2CF2H	Cl	3-OCF ₂ CF ₂ H	Cı	4-OCF ₂ CF ₂ H
Cl	2-OCH ₂ CF ₃	CI	3-OCH ₂ CF ₃	Cl	4-OCH ₂ CF ₃
Cl	2-SCF ₃	CI	3-SCF ₃	Cl	4-SCF ₃
Cl	2-SOCF ₃	Cl	3-SOCF ₃	Cl	4-SOCF ₃
Cl	2-SO ₂ CF ₃	CI	3-SO ₂ CF ₃	Cl	4-SO ₂ CF ₃
CI	2-SCF ₂ H	CI	3-SCF ₂ H	CI	4-SCF ₂ H
Cl	2-SOCF ₂ H	CI	3-SOCF ₂ H	Cl	4-SOCF ₂ H
Cl	2-SO₂CF2H	Cl	3-SO₂CF2H	Cl	4-SO₂CF ₂ H
F	2-CF ₃	F	3-CF ₃	F	4-CF ₃
F	2-OCF ₃	F	3-OCF ₃	F	4-OCF ₃
F	2-OCF ₂ H	F	3-OCF ₂ H	F	4-OCF ₂ H
F	2-OCF ₂ CF ₂ H	F	3-OCF ₂ CF ₂ H	F	4-OCF ₂ CF ₂ H
F	2-OCH ₂ CF ₃	F	3-OCH ₂ CF ₃	F	4-OCH ₂ CF ₃

n4	(<u>R⁵)</u> m	<u>R</u> 4	(R ⁵) _m	<u>R</u> 4 "	(R ⁵)m
<u>R⁴</u> F	2-SCF ₃	F.	3-SCF ₃	F	4-SCF ₃
r F	2-SOCF ₃	F	3-SOCF ₃	F	4-SOCF ₃
	2-SOCF ₃	, F	3-SO ₂ CF ₃	F	4-\$O ₂ CF ₃
F	2-SCF ₂ H	F	3-SCF ₂ H	F	4-SCF ₂ H
F		F	3-SOCF ₂ H	F	4-SOCF ₂ H
F	2-SOCF ₂ H	F	3-SO ₂ CF ₂ H	F	4-SO₂CF ₂ H
F	2-SO ₂ CF ₂ H 2-CF ₃	Br	3-GCF ₃	Br	4-CF ₃
Br	-	Br	3-OCF ₃	Br	4-OCF ₃
Br	2-OCF ₃	Br	3-OCF ₂ H	Br	4-OCF ₂ H
Br	2-OCF ₂ H	Br	3-OCF ₂ CF ₂ H	Br	4-OCF ₂ CF ₂ H
Br	2-OCF ₂ CF ₂ H	Br	3-OCH ₂ CF ₃	Br	4-OCH ₂ CF ₃
Br	2-OCH ₂ CF ₃		3-5CF ₃	Br	4-SCF ₃
Br	2-SCF ₃	Br	•	Br	4-SOCF ₃
Br	2-SOCF ₃	Br	3-SOCF ₃	Br	4-SO ₂ CF ₃
Br	2-SO ₂ CF ₃	Br	3-SO ₂ CF ₃		4-SCF ₂ H
Br	2-SCF ₂ H	Br	3-SCF ₂ H	Br	_
Br	2-SOCF ₂ H	Br	3-SOCF ₂ H	Br D-	4-SOCF ₂ H 4-SO ₂ CF ₂ H
Br	2-SO₂CF ₂ H	Br	3-SO₂CF ₂ H	Br	4-50 ₂ CF ₂ H 4-CF ₃
I	2-CF ₃	1	3-CF ₃	I	_
I	2-OCF ₃	I	3-OCF ₃	1	4-OCF ₃
I	2-OCF ₂ H	I	3-OCF ₂ H	I	4-OCF ₂ H
I	2-OCF ₂ CF ₂ H	I	3-OCF ₂ CF ₂ H	I	4-OCF ₂ CF ₂ H
I	2-OCH ₂ CF ₃	I	3-OCH ₂ CF ₃	I	4-OCH ₂ CF ₃
i	2-SCF ₃	I	3-SCF ₃	I	4-SCF ₃
I	2-SOCF ₃	I	3-SOCF ₃	I	4-SOCF ₃
I	2-SO ₂ CF ₃	I	3-SO ₂ CF ₃	1	4-SO ₂ CF ₃
I	2-SCF ₂ H	I	3-SCF ₂ H] I	4-SCF ₂ H
I	2-SOCF ₂ H	I	3-SOCF ₂ H	Į I	4-SOCF ₂ H
I.	2-SO ₂ CF ₂ H	I	3-SO₂CF ₂ H	I	4-SO₂CF2H
OMe	2-CF ₃	OMe	3-CF ₃	OMe	4-CF ₃
OMe	2-OCF ₃	OMe	3-OCF ₃	OMe	4-OCF ₃
ОМе	2-OCF ₂ H	OMe	3-OCF ₂ H	OMe	4-OCF ₂ H
OMe	2-OCF ₂ CF ₂ H	ОМе	3-OCF ₂ CF ₂ H	OMe	4-OCF ₂ CF ₂ H
OMe	2-OCH ₂ CF ₃	OMe	3-OCH ₂ CF ₃	OMe	4-OCH ₂ CF ₃
OMe	2-SCF ₃	OMe	3-SCF ₃	OMe	4-SCF ₃
OMe	2-SOCF ₃	OMe	3-SOCF ₃	OMe	4-SOCF ₃
OMe	2-SO ₂ CF ₃	OMe	3-SO ₂ CF ₃	ОМе	4-SO ₂ CF ₃
ОМе	2-SCF ₂ H	OMe	3-SCF ₂ H	ОМе	4-SCF ₂ H

<u>R</u> 4	(R ⁵) _m	<u>R</u> 4	(R ⁵) _m	<u>R</u> 4	(<u>R⁵)</u> m
OMe	2-SOCF ₂ H	OMe	3-SOCF ₂ H	OMe	4-SOCF ₂ H
OMe	2-SO₂CF2H	OMe	3-SO₂CF ₂ H	OMe	4-SO₂CF2H
CF ₃	2-CF ₃	CF ₃	3-CF ₃	CF ₃	4-CF ₃
CF ₃	2-OCF ₃	CF ₃	3-OCF ₃	CF ₃	4-OCF ₃
CF ₃	2-OCF ₂ H	CF ₃	3-OCF ₂ H	CF ₃	4-OCF ₂ H
CF ₃	2-OCF ₂ CF ₂ H	CF ₃	3-OCF ₂ CF ₂ H	CF ₃	4-OCF ₂ CF ₂ H
CF ₃	2-OCH ₂ CF ₃	CF ₃	3-OCH ₂ CF ₃	CF ₃	4-OCH ₂ CF ₃
CF ₃	2-SCF ₃	CF ₃	3-SCF ₃	CF ₃	4-SCF ₃
CF ₃	2-SOCF ₃	CF ₃	3-SOCF ₃	CF ₃	4-SOCF ₃
CF ₃	2-SO ₂ CF ₃	CF ₃	3-SO ₂ CF ₃	CF ₃	4-SO ₂ CF ₃
CF ₃	2-SCF ₂ H	CF ₃	3-SCF ₂ H	CF ₃	4-SCF ₂ H
CF ₃	2-SOCF ₂ H	CF ₃	3-SOCF ₂ H	CF ₃	4-SOCF ₂ H
CF ₃	2-SO₂CF ₂ H	CF ₃	3-SO₂CF2H	CF ₃	4-SO₂CF2H
OCF ₂ H	2-CF ₃	ocf ₂ H	3-CF ₃	ocf ₂ H	4-CF ₃
OCF ₂ H	2-OCF ₃	OCF ₂ H	3-OCF ₃	OCF ₂ H	4-OCF ₃
OCF ₂ H	2-OCF ₂ H	ocf ₂ H	3-OCF ₂ H	ocf ₂ H	4-OCF ₂ H
OCF ₂ H	2-OCF ₂ CF ₂ H	OCF ₂ H	3-OCF ₂ CF ₂ H	OCF ₂ H	4-OCF ₂ CF ₂ H
OCF ₂ H	2-OCH ₂ CF ₃	OCF ₂ H	3-OCH ₂ CF ₃	ocf ₂ H	4-OCH ₂ CF ₃
OCF ₂ H	2-SCF ₃	OCF ₂ H	3-SCF ₃	ocf ₂ H	4-SCF ₃
OCF ₂ H	2-SOCF ₃	OCF ₂ H	3-SOCF ₃	ocf ₂ H	4-SOCF ₃
OCF ₂ H	2-SO ₂ CF ₃	OCF ₂ H	3-SO ₂ CF ₃	ocf ₂ H	4-SO ₂ CF ₃
OCF ₂ H	2-SCF ₂ H	OCF ₂ H	3-SCF ₂ H	OCF ₂ H	4-SCF ₂ H
OCF ₂ H	2-SOCF ₂ H	OCF ₂ H	3-SOCF ₂ H	ocf ₂ H	4-SOCF ₂ H
OCF ₂ H	2-SO ₂ CF ₂ H	ocf ₂ H	3-SO₂CF ₂ H	OCF ₂ H	4-SO ₂ CF ₂ H
Me	2-Me-4-CF ₃	F	2-Me-4-CF ₃	Cl	2-Me-4-CF ₃
Me	2-Me-4-OCF ₃	F	2-Me-4-OCF ₃	Cl	2-Me-4-OCF ₃
Me	2-Me-4-OCF ₂ H	F	2-Me-4-OCF ₂ H	Cl	2-Me-4-OCF ₂ H
Me	2-Me-4-OCH ₂ CF ₃	F	2-Me-4-OCH ₂ CF ₃	CI	2-Me-4-OCH ₂ CF ₃
Me	2-Me-4-SCF ₃	F	2-Me-4-SCF ₃	CI	2-Me-4-SCF ₃
Me	2-Me-4-SOCF ₃	F	2-Me-4-SOCF ₃	Cl	2-Me-4-SOCF ₃
Me	2-Me-4-SO ₂ CF ₃	F	2-Me-4-SO ₂ CF ₃	Cl ·	2-Me-4-SO ₂ CF ₃
Me	2-Me-4-SCF ₂ H	F	2-Me-4-SCF ₂ H	Cl	2-Me-4-SCF ₂ H
Me	2-Me-4-SOCF ₂ H	F	2-Me-4-SOCF ₂ H	Cl	2-Me-4-SOCF ₂ H
Me	2-Me-4-SO ₂ CF ₂ H	F	2-Me-4-SO ₂ CF ₂ H	Cl	2-Me-4-SO ₂ CF ₂ H
Br ·	2-Me-4-CF ₃	I	2-Me-4-CF ₃	ОМе	2-Me-4-CF ₃
Br	2-Me-4-OCF ₃	I	2-Me-4-OCF ₃	OMe	2-Me-4-OCF ₃
Br	2-Me-4-OCF ₂ H	I	2-Me-4-OCF ₂ H	ОМе	2-Me-4-OCF ₂ H

	1		1		_
<u>R</u> 4	(R ⁵) _m	<u>R</u> 4	(<u>R⁵)</u> m	<u>R</u> 4	(<u>R⁵)</u> m
Br	2-Me-4-OCH ₂ CF ₃	I	2-Me-4-OCH ₂ CF ₃	OMe	2-Me-4-OCH ₂ CF ₃
Br	2-Me-4-SCF ₃	I	2-Me-4-SCF ₃	OMe	2-Me-4-SCF ₃
Br	2-Me-4-SOCF ₃	I	2-Me-4-SOCF ₃	OMe	2-Me-4-SOCF ₃
Br	2-Me-4-SO ₂ CF ₃	I	2-Me-4-SO ₂ CF ₃	OMe	2-Me-4-SO ₂ CF ₃
Br	2-Me-4-SCF ₂ H	I	2-Me-4-SCF ₂ H	OMe	2-Me-4-SCF ₂ H
Br	2-Me-4-SOCF ₂ H	I	2-Me-4-SOCF ₂ H	OMe	2-Me-4-SOCF ₂ H
Br	2-Me-4-SO₂CF ₂ H	1	2-Me-4-SO₂CF ₂ H	OMe	2-Me-4-SO ₂ CF ₂ H
CF ₃	2-Me-4-CF ₃	NO ₂	2-Me-4-CF ₃	SMe	2-Me-4-CF ₃
CF ₃	2-Me-4-OCF ₃	NO_2	2-Me-4-OCF ₃	SMe	2-Me-4-OCF ₃
CF ₃	2-Me-4-OCF ₂ H	NO_2	2-Me-4-OCF ₂ H	SMe	2-Me-4-OCF ₂ H
CF ₃	2-Me-4-OCH ₂ CF ₃	NO_2	2-Me-4-OCH ₂ CF ₃	SMe	2-Me-4-OCH ₂ CF ₃
CF ₃	2-Me-4-SCF ₃	NO_2	2-Me-4-SCF ₃	SMe	2-Me-4-SCF ₃
CF ₃	2-Me-4-SOCF ₃	NO_2	2-Me-4-SOCF ₃	SMe	2-Me-4-SOCF ₃
CF3	2-Me-4-SO ₂ CF ₃	NO ₂	2-Me-4-SO ₂ CF ₃	SMe	2-Me-4-SO ₂ CF ₃
CF ₃	2-Me-4-SCF ₂ H	NO ₂	2-Me-4-SCF ₂ H	SMe	2-Me-4-SCF ₂ H
CF ₃	2-Me-4-SOCF ₂ H	NO ₂	2-Me-4-SOCF ₂ H	SMe	2-Me-4-SOCF ₂ H
CF ₃	2-Me-4-SO₂CF ₂ H	NO ₂	2-Me-4-SO₂CF ₂ H	SMe	2-Me-4-SO₂CF ₂ H

Table 2

<u>R</u> 4	(<u>R⁵)</u> m	<u>R</u> 4	(R ⁵) _m	<u>R</u> 4	(R ⁵) _m
Me	2-CF ₃	Me	3-CF ₃	Me	4-CF ₃
Me	2-OCF ₃	Me	3-OCF ₃	Me	4-OCF ₃
Me	2-OCF ₂ H	Ме	3-OCF ₂ H	Me	4-OCF ₂ H
Me	2-OCF ₂ CF ₂ H	Ме	3-OCF ₂ CF ₂ H	Me	4-OCF ₂ CF ₂ H
Me	2-OCH ₂ CF ₃	Me	3-OCH ₂ CF ₃	Me	4-OCH ₂ CF ₃
Me	2-SCF ₃	Me	3-SCF ₃	Me	4-SCF ₃
Me	2-SOCF ₃	Me	3-SOCF ₃	Me	4-SOCF ₃
Me	2-SO ₂ CF ₃	Me	3-SO ₂ CF ₃	Me	4-SO ₂ CF ₃

<u>R</u> 4	(R ⁵) _m	<u>R</u> 4	(<u>R⁵)_m</u>	<u>R</u> 4	(R ⁵) _m
Me	2-SCF ₂ H	Me	3-SCF ₂ H	Me	4-SCF ₂ H
Me	2-SOCF ₂ H	Me	3-SOCF ₂ H	Me	4-SOCF ₂ H
Me	2-SO₂CF2H	Me	3-SO₂CF ₂ H	Me	4-SO ₂ CF ₂ H
Cl	2-CF ₃	Cl	3-CF ₃	C1	4-CF ₃
Cl	2-OCF ₃	Cl	3-OCF ₃	Cl	4-OCF ₃
Cl	2-OCF ₂ H	Cl	3-OCF ₂ H	Cl	4-OCF ₂ H
Cl	2-OCF ₂ CF ₂ H	Cl	3-OCF ₂ CF ₂ H	Cl	4-OCF ₂ CF ₂ H
Cl	2-OCH ₂ CF ₃	Cl	3-OCH ₂ CF ₃	Cl	4-OCH ₂ CF ₃
Cl	2-SCF ₃	Cl	3-SCF ₃	Cl	4-SCF ₃
Cl	2-SOCF ₃	Cl	3-SOCF ₃	CI	4-SOCF ₃
Cl	2-SO ₂ CF ₃	Cl	3-SO ₂ CF ₃	· CI	4-SO ₂ CF ₃
Cl	2-SCF ₂ H	Cl	3-SCF ₂ H	CI	4-SCF ₂ H
Cl	2-SOCF ₂ H	CI	3-SOCF ₂ H	CI	4-SOCF ₂ H
Cl	2-SO₂CF2H	Cl	3-SO₂CF ₂ H	Ci	4-SO₂CF2H
F	2-CF ₃	F	3-CF ₃	F	4-CF ₃
F	2-OCF ₃	F	3-OCF ₃	F	4-OCF ₃
F	2-OCF ₂ H	F	3-OCF ₂ H	F	4-OCF ₂ H `
F	2-OCF ₂ CF ₂ H	F	3-OCF ₂ CF ₂ H	F	4-OCF ₂ CF ₂ H
F	2-OCH ₂ CF ₃	F	3-OCH ₂ CF ₃	F	4-OCH ₂ CF ₃
F .	2-SCF ₃	F	3-SCF ₃	F	4-SCF ₃
F	2-SOCF ₃	F	3-SOCF ₃	F	4-SOCF ₃
F	2-SO ₂ CF ₃	F	3-SO ₂ CF ₃	F	4-SO ₂ CF ₃
F	2-SCF ₂ H	F	3-SCF ₂ H	F	4-SCF ₂ H
F	2-SOCF ₂ H	F	3-SOCF ₂ H	F	4-SOCF ₂ H
F	2-SO₂CF2H	F	3-SO₂CF ₂ H	F	4-SO ₂ CF ₂ H
Br	2-CF ₃	Br	3-CF ₃	Br	4-CF ₃
Br	2-OCF ₃	Br	3-OCF ₃	Br	4-OCF ₃
Br	2-OCF ₂ H	Br	3-OCF ₂ H	Br	4-OCF ₂ H
Br	2-OCF ₂ CF ₂ H	Br	3-OCF ₂ CF ₂ H	Br	4-OCF ₂ CF ₂ H
Br	2-OCH ₂ CF ₃	Br	3-OCH ₂ CF ₃	Br	4-OCH ₂ CF ₃
Br	2-SCF ₃	Br	3-SCF ₃	Br	4-SCF ₃
Br	2-SOCF ₃	Br	3-SOCF ₃	Br	4-SOCF ₃
Br	2-SO ₂ CF ₃	Br	3-SO ₂ CF ₃	Br	4-SO ₂ CF ₃
Br	2-SCF ₂ H	Br	3-SCF ₂ H	Br	4-SCF ₂ H
Br	2-SOCF ₂ H	Br	3-SOCF ₂ H	Br	4-SOCF ₂ H
Br	2-SO ₂ CF ₂ H	Br	3-SO ₂ CF ₂ H	Br	4-SO₂CF ₂ H
I	2-CF ₃	I	3-CF ₃	I	4-CF ₃

O 02/07048	83				PCT/US02/0658
			50		
<u>R</u> 4	(R ⁵) _m	<u>R</u> 4	(R ⁵)m	<u>R</u> 4	(<u>R⁵)</u> m
l	2-OCF ₃	I	3-OCF ₃	1	4-OCF ₃
I	2-OCF ₂ H	I	3-OCF ₂ H	I	4-OCF ₂ H
1	2-OCF ₂ CF ₂ H	I	3-OCF ₂ CF ₂ H	I	4-OCF ₂ CF ₂ H
ī	2-OCH ₂ CF ₃	I	3-OCH ₂ CF ₃	I	4-OCH ₂ CF ₃
1	2-SCF ₃	I	3-SCF ₃	· I	4-SCF ₃
I	2-SOCF3	I	3-SOCF ₃	I	4-SOCF ₃
I	2-SO ₂ CF ₃	I	3-SO ₂ CF ₃	I	4-SO ₂ CF ₃
1	2-SCF ₂ H	I	3-SCF ₂ H	I	4-SCF ₂ H
I	2-SOCF ₂ H	I	3-SOCF ₂ H	I	4-SOCF ₂ H
I	2-\$O₂CF ₂ H	I	3-SO₂CF2H	I	4-SO ₂ CF ₂ H
OMe	2-CF ₃	OMe	3-CF ₃	ОМе	4-CF ₃
OMe	2-OCF ₃	ОМе	3-OCF ₃	OMe	4-OCF ₃
OMe	2-OCF ₂ H	ОМе	3-OCF ₂ H	ОМе	4-OCF ₂ H
OMe	2-OCF ₂ CF ₂ H	ОМе	3-OCF ₂ CF ₂ H	ОМе	4-OCF ₂ CF ₂ H
OMe	2-OCH ₂ CF ₃	OMe	3-OCH ₂ CF ₃	ОМе	4-OCH ₂ CF ₃
OMe	2-SCF ₃	OMe	3-SCF ₃	OMe	4-SCF ₃
OMe	2-SOCF ₃	ОМе	3-SOCF ₃	OMe	4-SOCF ₃
OMe	2-SO ₂ CF ₃	OMe	3-SO ₂ CF ₃	ОМе	4-SO ₂ CF ₃
OMe	2-SCF ₂ H	OMe	3-SCF ₂ H	OMe	4-SCF ₂ H
ОМе	2-SOCF ₂ H	ОМе	3-SOCF ₂ H	OMe	4-SOCF ₂ H
ОМе	2-SO ₂ CF ₂ H	ОМе	3-SO₂CF ₂ H	OMe	4-SO₂CF2H
CF ₃	2-CF ₃	CF ₃	3-CF ₃	CF ₃	4-CF ₃
CF ₃	2-OCF ₃	CF ₃	3-OCF ₃	CF ₃	4-OCF ₃
CF ₃	2-ОСF ₂ Н	CF ₃	3-OCF ₂ H	CF ₃	4-OCF ₂ H
CF ₃	2-OCF ₂ CF ₂ H	CF ₃	3-OCF ₂ CF ₂ H	CF ₃	4-OCF ₂ CF ₂ H
CF ₃	2-OCH ₂ CF ₃	CF ₃	3-OCH ₂ CF ₃	CF ₃	4-OCH ₂ CF ₃
CF ₃	2-SCF ₃	CF ₃	3-SCF ₃	CF ₃	4-SCF ₃
CF ₃	2-SOCF ₃	CF ₃	3-SOCF ₃	CF ₃	4-SOCF ₃
CF ₃	2-SO ₂ CF ₃	CF ₃	3-SO ₂ CF ₃	CF ₃	4-SO ₂ CF ₃
CF ₃	2-SCF ₂ H	CF ₃	3-SCF ₂ H	CF ₃	4-SCF ₂ H
CF ₃	2-SOCF ₂ H	CF ₃	3-SOCF ₂ H	CF ₃	4-SOCF ₂ H
CF ₃	2-SO₂CF ₂ H	CF ₃	3-SO₂CF ₂ H	CF ₃	4-SO₂CF2H
OCF ₂ H	2-CF ₃	OCF ₂ H	3-CF ₃	OCF ₂ H	4-CF ₃
OCF ₂ H	2-OCF ₃	OCF ₂ H	3-OCF ₃	OCF ₂ H	4-OCF ₃
OCF ₂ H	2-OCF ₂ H	OCF ₂ H	3-OCF ₂ H	OCF ₂ H	4-OCF ₂ H
OCF ₂ H	2-OCF ₂ CF ₂ H	OCF ₂ H	3-OCF ₂ CF ₂ H	OCF ₂ H	4-OCF ₂ CF ₂ H
OCF ₂ H	2-OCH ₂ CF ₃	OCF ₂ H	3-OCH ₂ CF ₃	OCF ₂ H	4-OCH ₂ CF ₃

WO 02/070483 PCT/US02/06582

51

<u>R</u> 4	(R ⁵) _m	<u>R</u> 4	(R ⁵) _m	<u>R</u> 4	(R ⁵) _m
OCF ₂ H	2-SCF ₃	OCF ₂ H	3-SCF ₃	OCF ₂ H	4-SCF ₃
OCF ₂ H	2-SOCF ₃	OCF ₂ H	3-SOCF ₃	ocf ₂ H	4-SOCF ₃
OCF ₂ H	2-SO ₂ CF ₃	OCF ₂ H	3-SO ₂ CF ₃	ocf ₂ H	4-SO ₂ CF ₃
OCF ₂ H	2-SCF ₂ H	OCF ₂ H	3-SCF ₂ H	ocf ₂ H	4-SCF ₂ H
OCF ₂ H	2-SOCF ₂ H	OCF ₂ H	3-SOCF ₂ H	OCF ₂ H	4-SOCF ₂ H
OCF ₂ H	2-SO₂CF ₂ H	OCF ₂ H	3-SO₂CF ₂ H	OCF ₂ H	4-SO₂CF2H
Me	2-Me-4-CF ₃	F	2-Me-4-CF ₃	Cl	2-Me-4-CF ₃
Me	2-Me-4-OCF ₃	F	2-Me-4-OCF ₃	Cl	2-Me-4-OCF ₃
Me	2-Me-4-OCF ₂ H	F	2-Me-4-OCF ₂ H	Cl	2-Me-4-OCF ₂ H
Me	2-Me-4-OCH ₂ CF ₃	F	2-Me-4-OCH ₂ CF ₃	Cl	2-Me-4-OCH ₂ CF ₃
Me	2-Me-4-SCF ₃	F	2-Me-4-SCF ₃	Cl	2-Me-4-SCF ₃
Me	2-Me-4-SOCF ₃	F	2-Me-4-SOCF ₃	Cl	2-Me-4-SOCF ₃
Me	2-Me-4-SO ₂ CF ₃	F	2-Me-4-SO ₂ CF ₃	CI	2-Me-4-SO ₂ CF ₃
Me	2-Me-4-SCF ₂ H	F	2-Me-4-SCF ₂ H	Cl	2-Me-4-SCF ₂ H
Me	2-Me-4-SOCF ₂ H	F	2-Me-4-SOCF ₂ H	Cl	2-Me-4-SOCF ₂ H
Me	2-Me-4-SO₂CF ₂ H	F	2-Me-4-SO₂CF ₂ H	CI	2-Me-4-SO ₂ CF ₂ H
Br	2-Me-4-CF ₃	I	2-Me-4-CF ₃	OMe	2-Me-4-CF ₃
Br	2-Me-4-OCF ₃	I	2-Me-4-OCF ₃	OMe	2-Me-4-OCF ₃
Br	2-Me-4-OCF ₂ H	I	2-Me-4-OCF ₂ H	ОМе	2-Me-4-OCF ₂ H
Br	2-Me-4-OCH ₂ CF ₃	I	2-Me-4-OCH ₂ CF ₃	OMe	2-Me-4-OCH ₂ CF ₃
Br	2-Me-4-SCF ₃	I	2-Me-4-SCF ₃	OMe	2-Me-4-SCF ₃
Br	2-Me-4-SOCF ₃	1	2-Me-4-SOCF ₃	OMe	2-Me-4-SOCF ₃
Br	2-Me-4-SO ₂ CF ₃	1	2-Me-4-SO ₂ CF ₃	OMe	2-Me-4-SO ₂ CF ₃
Br	2-Me-4-SCF ₂ H	1	2-Me-4-SCF ₂ H	OMe	2-Me-4-SCF ₂ H
Br	2-Me-4-SOCF ₂ H	I	2-Me-4-SOCF ₂ H	OMe	2-Me-4-SOCF ₂ H
Br	2-Me-4-SO₂CF ₂ H	I	2-Me-4-SO₂CF ₂ H	OMe	2-Me-4-SO ₂ CF ₂ H
CF ₃	2-Me-4-CF ₃	NO_2	2-Me-4-CF ₃	SMe	2-Me-4-CF ₃
CF ₃	2-Me-4-OCF ₃	NO ₂	2-Me-4-OCF ₃	SMe	2-Me-4-OCF ₃
CF ₃	2-Me-4-OCF ₂ H	NO ₂	2-Me-4-OCF ₂ H	SMe	2-Me-4-OCF ₂ H
CF ₃	2-Me-4-OCH ₂ CF ₃	NO_2	2-Me-4-OCH ₂ CF ₃	SMe	2-Me-4-OCH ₂ CF ₃
CF ₃	2-Me-4-SCF ₃	NO ₂	2-Me-4-SCF ₃	SMe	2-Me-4-SCF ₃
CF ₃	2-Me-4-SOCF ₃	NO ₂	2-Me-4-SOCF ₃	SMe	2-Me-4-SOCF ₃
CF ₃	2-Me-4-SO ₂ CF ₃	NO ₂	$2\text{-Me-}4\text{-SO}_2\text{CF}_3$	SMe	2-Me-4-SO ₂ CF ₃
CF ₃	2-Me-4-SCF ₂ H	NO ₂	2-Me-4-SCF ₂ H	SMe	2-Me-4-SCF ₂ H
CF ₃	2-Me-4-SOCF ₂ H	NO ₂	2-Me-4-SOCF ₂ H	SMe	2-Me-4-SOCF ₂ H
CF ₃	2-Me-4-SO₂CF ₂ H	NO ₂	2-Me-4-SO ₂ CF ₂ H	SMe	2-Me-4-SO ₂ CF ₂ H

Table 3

$$R^4$$
 N
 H
 N
 $(i-Pr)$

<u>R</u> 4	<u>(R⁵)m</u>	<u>R</u> 4	(R ⁵) _m	<u>R</u> 4	(R ⁵) _m
Me	2-CF ₃	Me	3-CF ₃	Me	4-CF ₃
Me	2-OCF ₃	Me	3-OCF ₃	Me	4-OCF ₃
Ме	2-OCF ₂ H	Me	3-OCF ₂ H	Me	4-OCF ₂ H
Me	2-OCF ₂ CF ₂ H	Me	3-OCF ₂ CF ₂ H	Me	4-OCF ₂ CF ₂ H
Me	2-OCH ₂ CF ₃	Me	3-OCH ₂ CF ₃	Me	4-OCH ₂ CF ₃
Me	2-SCF ₃	Me	3-SCF ₃	Me	4-SCF ₃
Me	2-SOCF ₃	Me	3-SOCF ₃	Me	4-SOCF ₃
Me	2-SO ₂ CF ₃	Me	3-SO ₂ CF ₃	Me	4-SO ₂ CF ₃
Me	2-SCF ₂ H	Me	3-SCF ₂ H	Me	4-SCF ₂ H
Me	2-SOCF ₂ H	Me	3-SOCF ₂ H	Me	4-SOCF ₂ H
Me	2-SO ₂ CF ₂ H	Me	3-SO₂CF ₂ H	Me	4-SO₂CF2H
Cl	2-CF ₃	Cl	3-CF ₃	Cl	4-CF ₃
Cl	2-OCF ₃	Cl	3-OCF ₃	CI	4-OCF ₃
Cl	2-OCF ₂ H	Cl	3-OCF ₂ H	Cl	4-OCF ₂ H
Cl	2-OCF ₂ CF ₂ H	Cl	3-OCF ₂ CF ₂ H	CI	4-OCF ₂ CF ₂ H
Cl	2-OCH ₂ CF ₃	Cl	3-OCH ₂ CF ₃	Cı	4-OCH ₂ CF ₃
Cl	2-SCF ₃	CI	3-SCF ₃	CI	4-SCF ₃
Cl	2-SOCF ₃	CI	3-SOCF ₃	CI	4-SOCF ₃
Cl	2-SO ₂ CF ₃	- CI	3-SO ₂ CF ₃	CI	4-SO ₂ CF ₃
CI	2-SCF ₂ H	CI	3-SCF ₂ H	CI	4-SCF ₂ H
CI	2-SOCF ₂ H	CI	3-SOCF ₂ H	CI	4-SOCF ₂ H
Cl	2-SO ₂ CF ₂ H	CI	3-SO₂CF ₂ H	Cl	4-SO₂CF2H
F	2-CF ₃	F	3-CF ₃	F	4-CF ₃
F	2-OCF ₃	F	3-OCF ₃	F	4-OCF ₃
F	2-OCF ₂ H	F	3-OCF ₂ H	F	4-OCF ₂ H
F	2-OCF2CF2H	F	3-OCF ₂ CF ₂ H	F	4-OCF ₂ CF ₂ H
F	2-OCH ₂ CF ₃	F	3-OCH ₂ CF ₃	F	4-OCH ₂ CF ₃

	• .				
<u>R</u> 4	(<u>R⁵)m</u>	<u>R</u> 4	(R ⁵) _m	<u>R</u> 4	$(R^5)_{\underline{m}}$
F	2-SCF ₃	F	3-SCF ₃	F	4-SCF ₃
F	2-SOCF ₃	F	3-SOCF ₃	F	4-SOCF ₃
F	2-SO ₂ CF ₃	F	3-SO ₂ CF ₃	F	4-SO ₂ CF ₃
F	2-SCF ₂ H	F	3-SCF ₂ H	F	4-SCF ₂ H
F	2-SOCF ₂ H	F	3-SOCF ₂ H	F	4-SOCF ₂ H
F	2-SO₂CF ₂ H	F	3-SO₂CF ₂ H	F	4-SO₂CF2H
Br	2-CF ₃	Br	3-CF ₃	Br	4-CF ₃
Br	2-OCF ₃	Br	3-OCF ₃	Br	4-OCF ₃
Br	2-OCF ₂ H	Br	3-OCF ₂ H	Br	4-OCF ₂ H
Br	2-OCF ₂ CF ₂ H	Br	3-OCF ₂ CF ₂ H	Br	4-OCF ₂ CF ₂ H
Br	2-OCH ₂ CF ₃	Br	3-OCH ₂ CF ₃	Br	4-OCH ₂ CF ₃
Br	2-SCF ₃	Br	3-SCF ₃	Br	4-SCF ₃
Br	2-SOCF ₃	Br	3-SOCF ₃	Br	4-SOCF ₃
Br	2-SO ₂ CF ₃	Br	3-SO ₂ CF ₃	Br	4-SO ₂ CF ₃
Br	2-SCF ₂ H	Br	3-SCF ₂ H	Br	4-SCF ₂ H
Br	2-SOCF ₂ H	Br	3-SOCF ₂ H	Br	4-SOCF ₂ H
Br	2-SO₂CF ₂ H	Br	3-SO₂CF2H	Br	4-SO ₂ CF ₂ H
1	. 2-CF ₃	1	3-CF ₃	I	4-CF ₃
I	2-OCF ₃	I	3-OCF ₃	I	4-OCF ₃
I	2-OCF ₂ H	I	3-OCF ₂ H	1	4-OCF ₂ H
I	2-OCF ₂ CF ₂ H	I	3-OCF ₂ CF ₂ H	ı	4-OCF ₂ CF ₂ H
1	2-OCH ₂ CF ₃	1	3-OCH ₂ CF ₃	1	4-OCH ₂ CF ₃
I	2-SCF ₃	I	3-SCF ₃	1	4-SCF ₃
I	2-SOCF ₃	1	3-SOCF ₃	I	4-SOCF ₃
ı	2-SO ₂ CF ₃	I	3-SO ₂ CF ₃	1	4-SO ₂ CF ₃
I	2-SCF ₂ H	I	3-SCF ₂ H	I	4-SCF ₂ H
I	2-SOCF ₂ H	I	3-SOCF ₂ H	I	4-SOCF ₂ H
I	2-SO ₂ CF ₂ H	I	3-SO₂CF ₂ H	I	4-SO₂CF2H
OMe	2-CF ₃	OMe	3-CF ₃	OMe	4-CF ₃
OMe	2-OCF ₃	ОМе	3-OCF ₃	OMe	4-OCF ₃
OMe	2-OCF ₂ H	OMe	3-OCF ₂ H	OMe	4-OCF ₂ H
OMe	2-OCF ₂ CF ₂ H	ОМе	3-OCF ₂ CF ₂ H	OMe	4-OCF ₂ CF ₂ H
OMe	2-OCH ₂ CF ₃	OMe	3-OCH ₂ CF ₃	OMe	4-OCH ₂ CF ₃
OMe	2-SCF ₃	OMe	3-SCF ₃	OMe	4-SCF ₃
OMe	2-SOCF ₃	OMe	3-SOCF ₃	OMe	4-SOCF ₃
OMe	2-SO ₂ CF ₃	OMe	3-SO ₂ CF ₃	OMe	4-SO ₂ CF ₃
OMe	2-SCF ₂ H	ОМе	3-SCF ₂ H	OMe	4-SCF ₂ H

	1				
<u>R</u> 4	(<u>R⁵)</u> m	<u>R</u> 4	(R ⁵) _m	<u>R</u> 4	$(R^5)_{\underline{m}}$
OMe	2-SOCF ₂ H	OMe	3-SOCF ₂ H	OMe	4-SOCF ₂ H
OMe	2-SO₂CF2H	OMe	3-SO₂CF2H	OMe	4-SO₂CF2H
CF ₃	2-CF ₃	CF ₃	3-CF ₃	CF ₃	4-CF ₃
CF ₃	2-OCF ₃	CF ₃	3-OCF ₃	CF ₃	4-OCF ₃
CF ₃	2-OCF ₂ H	CF ₃	3-OCF ₂ H	CF ₃	4-OCF ₂ H
CF ₃	2-OCF ₂ CF ₂ H	CF ₃	3-OCF ₂ CF ₂ H	CF ₃	4-OCF ₂ CF ₂ H
CF ₃	2-OCH ₂ CF ₃	CF ₃	3-OCH ₂ CF ₃	CF ₃	4-OCH ₂ CF ₃
CF ₃	2-SCF ₃	CF ₃	3-SCF ₃	CF ₃	4-SCF ₃
CF ₃	2-SOCF ₃	CF ₃	3-SOCF ₃	CF ₃	4-SOCF ₃
CF ₃	2-SO ₂ CF ₃	CF ₃	3-SO ₂ CF ₃	CF ₃	4-SO ₂ CF ₃
CF ₃	2-SCF ₂ H	CF ₃	3-SCF ₂ H	CF ₃	4-SCF ₂ H
CF ₃	2-SOCF ₂ H	CF ₃	3-SOCF ₂ H	CF ₃	4-SOCF ₂ H
CF ₃	2-SO₂CF ₂ H	CF ₃	3-SO₂CF ₂ H	CF ₃	4-SO₂CF2H
OCF ₂ H	2-CF ₃	OCF ₂ H	3-CF ₃	ocf ₂ H	4-CF ₃
OCF ₂ H	2-OCF ₃	OCF ₂ H	3-OCF ₃	OCF ₂ H	4-OCF ₃
OCF ₂ H	2-OCF ₂ H	OCF ₂ H	3-OCF ₂ H	OCF ₂ H	4-OCF ₂ H
OCF ₂ H	2-OCF ₂ CF ₂ H	OCF ₂ H	3-OCF ₂ CF ₂ H	OCF ₂ H	4-OCF ₂ CF ₂ H
OCF ₂ H	2-OCH ₂ CF ₃	OCF ₂ H	3-OCH ₂ CF ₃	OCF ₂ H	4-OCH ₂ CF ₃
OCF ₂ H	2-SCF ₃	OCF ₂ H	3-SCF ₃	OCF ₂ H	4-SCF ₃
OCF ₂ H	2-SOCF ₃	ocf ₂ H	3-SOCF ₃	ocf ₂ H	4-SOCF ₃
OCF ₂ H	2-SO ₂ CF ₃	OCF ₂ H	3-SO ₂ CF ₃	OCF ₂ H	4-SO ₂ CF ₃
OCF ₂ H	2-SCF ₂ H	OCF ₂ H	3-SCF ₂ H	ocf ₂ h	4-SCF ₂ H
OCF ₂ H	2-SOCF ₂ H	OCF ₂ H	3-SOCF ₂ H	OCF ₂ H	4-SOCF ₂ H
OCF ₂ H	2-SO₂CF2H	OCF ₂ H	3-SO₂CF ₂ H	OCF ₂ H	4-SO₂CF2H
Me	2-Me-4-CF ₃	F	2-Me-4-CF ₃	Cl	2-Me-4-CF ₃
Me	2-Me-4-OCF ₃	· F	2-Me-4-OCF ₃	Cl	2-Me-4-OCF ₃
Me	2-Me-4-OCF ₂ H	F	2-Me-4-OCF ₂ H	Cl	2-Me-4-OCF ₂ H
Me	2-Me-4-OCH ₂ CF ₃	F	2-Me-4-OCH ₂ CF ₃	Cl	2-Me-4-OCH ₂ CF ₃
Me	2-Me-4-SCF ₃	F	2-Me-4-SCF ₃	Cl	2-Me-4-SCF ₃
Me	2-Me-4-SOCF ₃	F	2-Me-4-SOCF ₃	Cl	2-Me-4-SOCF ₃
Me	2-Me-4-SO ₂ CF ₃	F	2-Me-4-SO ₂ CF ₃	Cl	2-Me-4-SO ₂ CF ₃
Me	2-Me-4-SCF ₂ H	F	2-Me-4-SCF ₂ H	Cl	2-Me-4-SCF ₂ H
Me	2-Me-4-SOCF ₂ H	F	2-Me-4-SOCF ₂ H	Cl	2-Me-4-SOCF ₂ H
Me	2-Me-4-SO₂CF ₂ H	F	2-Me-4-SO₂CF ₂ H	Cl	2-Me-4-SO ₂ CF ₂ H
Br	2-Me-4-CF ₃	I	2-Me-4-CF ₃	OMe	2-Me-4-CF ₃
Br	2-Me-4-OCF ₃	I	2-Me-4-OCF ₃	OMe	2-Me-4-OCF ₃
Br	2-Me-4-OCF ₂ H	I	2-Me-4-OCF ₂ H	ОМе	2-Me-4-OCF ₂ H

PCT/US02/06582

<u>R</u> 4	(R ⁵) _m	<u>R</u> 4	(<u>R⁵)_m</u>	<u>R</u> 4	(R ⁵) _m
Br	2-Me-4-OCH ₂ CF ₃	ĭ	2-Me-4-OCH ₂ CF ₃	OMe	2-Me-4-OCH ₂ CF ₃
Br	2-Me-4-SCF ₃	1	2-Me-4-SCF ₃	OMe	2-Me-4-SCF ₃
Br	2-Me-4-SOCF ₃	1	2-Me-4-SOCF ₃	OMe	2-Me-4-SOCF ₃
Br	2-Me-4-SO ₂ CF ₃	I	2-Me-4-SO ₂ CF ₃	OMe	2-Me-4-SO ₂ CF ₃
Br	2-Me-4-SCF ₂ H	I	2-Me-4-SCF ₂ H	OMe	2-Me-4-SCF ₂ H
Br	2-Me-4-SOCF ₂ H	I	2-Me-4-SOCF ₂ H	OMe	2-Me-4-SOCF ₂ H
Br	2-Me-4-SO₂CF ₂ H	I	2-Me-4-SO₂CF ₂ H	ОМе	2-Me-4-SO ₂ CF ₂ H
CF ₃	2-Me-4-CF ₃	NO_2	2-Me-4-CF ₃	SMe	2-Me-4-CF ₃
CF ₃	2-Me-4-OCF ₃	NO ₂	2-Me-4-OCF ₃	SMe	2-Me-4-OCF ₃
CF ₃	2-Me-4-OCF ₂ H	NO ₂	2-Me-4-OCF ₂ H	SMe	2-Me-4-OCF ₂ H
CF ₃	2-Me-4-OCH ₂ CF ₃	NO_2	2-Me-4-OCH ₂ CF ₃	SMe	2-Me-4-OCH ₂ CF ₃
CF ₃	2-Me-4-SCF ₃	NO_2	2-Me-4-SCF ₃	SMe	2-Me-4-SCF ₃
CF ₃	2-Me-4-SOCF ₃	NO ₂	2-Me-4-SOCF ₃	SMe	2-Me-4-SOCF ₃
CF ₃	2-Me-4-SO ₂ CF ₃	NO_2	2-Me-4-SO ₂ CF ₃	SMe	2-Me-4-SO ₂ CF ₃
CF ₃	2-Me-4-SCF ₂ H	NO_2	2-Me-4-SCF ₂ H	SMe	2-Me-4-SCF ₂ H
CF ₃	2-Me-4-SOCF ₂ H	NO ₂	2-Me-4-SOCF ₂ H	SMe	2-Me-4-SOCF ₂ H
CF ₃	2-Me-4-SO₂CF ₂ H	NO_2	2-Me-4-SO₂CF ₂ H	SMe	2-Me-4-SO₂CF ₂ H

Table 4

$$R^4$$
 $(R^5)_m$
 $(R^5)_m$
 $(I-Bu)$

<u>R</u> 4	(R ⁵)m	<u>R</u> 4	(<u>R⁵)</u> m	<u>R</u> 4	$(\mathbb{R}^5)_{\mathbf{m}}$
Me	2-CF ₃	Me	3-CF ₃	Me	4-CF ₃
Me	2-OCF ₃	Me	3-OCF ₃	Me	4-OCF ₃
Me	2-OCF ₂ H	Me	3-OCF ₂ H	Me	4-OCF ₂ H
Me	2-OCF ₂ CF ₂ H	Me	3-OCF ₂ CF ₂ H	Me	4-OCF2CF2H
Me	2-OCH ₂ CF ₃	Me	3-OCH ₂ CF ₃	Me	4-OCH ₂ CF ₃
Me	2-SCF ₃	Me	3-SCF ₃	Me	4-SCF ₃
Me	2-SOCF ₃	Me	3-SOCF ₃	Me	4-SOCF ₃
Me	2-SO ₂ CF ₃	Me	3-SO ₂ CF ₃	Me	4-SO ₂ CF ₃

<u>R</u> 4	(<u>R⁵)</u> m	<u>R</u> 4	<u>(R⁵)_m</u>	<u>R</u> 4	(R ⁵) _m
Me	2-SCF ₂ H	Me	3-SCF ₂ H	Me	4-SCF ₂ H
Me	2-SOCF ₂ H	Me	3-SOCF ₂ H	Me	4-SOCF ₂ H
Me	2-SO₂CF ₂ H	Me	3-SO₂CF ₂ H	Me	4-SO₂CF ₂ H
Cl	2-CF ₃	Cl	3-CF ₃	Cl	4-CF ₃
Cl	2-OCF ₃	Cl	3-OCF ₃	Cl	4-OCF ₃
Cl	2-OCF ₂ H	CI	3-OCF ₂ H	Cl	4-OCF ₂ H
Cl	2-OCF ₂ CF ₂ H	Cl	3-OCF ₂ CF ₂ H	Cl	4-OCF ₂ CF ₂ H
Cl	2-OCH ₂ CF ₃	Cl	3-OCH ₂ CF ₃	Cl	4-OCH ₂ CF ₃
Cl	2-SCF ₃	CI	3-SCF ₃	CI	4-SCF ₃
CI	2-SOCF ₃	Cl	3-SOCF ₃	Cl	4-SOCF ₃
CI	2-SO ₂ CF ₃	Cl	3-SO ₂ CF ₃	Cl	4-SO ₂ CF ₃
Cl	2-SCF ₂ H	Cl	3-SCF ₂ H	Cl	4-SCF ₂ H
CI	2-SOCF ₂ H	Cl	3-SOCF ₂ H	Cl	4-SOCF ₂ H
Cl	2-SO₂CF ₂ H	CI	3-SO₂CF ₂ H	Cl	4-SO₂CF2H
F	2-CF ₃	F	3-CF ₃	F	4-CF ₃
F	2-OCF ₃	·	3-OCF ₃	F	4-OCF ₃
F	2-OCF ₂ H	F	3-OCF ₂ H	F	4-OCF ₂ H
F	2-OCF ₂ CF ₂ H	F	3-OCF ₂ CF ₂ H	F	4-OCF2CF2H
F	2-OCH ₂ CF ₃	F	3-OCH ₂ CF ₃	F	4-OCH ₂ CF ₃
F	2-SCF ₃	F	3-SCF ₃	F	4-SCF ₃
F	2-SOCF ₃	F	3-SOCF ₃	F	4-SOCF ₃
F	2-SO ₂ CF ₃	F	3-SO ₂ CF ₃	F	4-SO ₂ CF ₃
F	2-SCF ₂ H	F	3-SCF ₂ H	F	4-SCF ₂ H
F	2-SOCF ₂ H	F	3-SOCF ₂ H	F	4-SOCF ₂ H
F	2-SO₂CF2H	F	3-SO₂CF2H	F	4-SO₂CF2H
Br	2-CF ₃	. Br	3-CF ₃	Br	4-CF ₃
Br	2-OCF ₃	Br	3-OCF ₃	Br	4-OCF ₃
Br	2-OCF ₂ H	Br	3-OCF ₂ H	Br	4-OCF ₂ H
Br	2-OCF2CF2H	Br	3-OCF ₂ CF ₂ H	Br	4-OCF ₂ CF ₂ H
Вг	2-OCH ₂ CF ₃	Br	3-OCH ₂ CF ₃	Br	4-OCH ₂ CF ₃
Br	2-SCF ₃	Br	3-SCF ₃	Br	4-SCF ₃
Br	2-SOCF ₃	Br	3-SOCF ₃	Br	4-SOCF ₃
Br	2-SO ₂ CF ₃	Br	3-SO ₂ CF ₃	Br	4-SO ₂ CF ₃
Br	2-SCF ₂ H	Br	3-SCF ₂ H	Br	4-SCF ₂ H
Br	2-SOCF ₂ H	Br	3-SOCF ₂ H	Br	4-SOCF ₂ H
Br	2-SO₂CF2H	Br	3-SO₂CF ₂ H	Br	4-SO₂CF ₂ H
I	2-CF ₃] 1	3-CF ₃	ļI	4-CF ₃

					•
<u>R</u> ⁴	$(\mathbb{R}^5)_{\underline{m}}$	<u>R</u> 4	(<u>R⁵)</u> m	<u>R</u> 4	(R ⁵) _m
I	2-OCF ₃	1	3-OCF ₃	I	4-OCF ₃
I	2-OCF ₂ H	I	3-OCF ₂ H	I	4-OCF ₂ H
I	2-OCF ₂ CF ₂ H	I	3-OCF ₂ CF ₂ H	I	4-OCF2CF2H
I	2-OCH ₂ CF ₃	I	3-OCH ₂ CF ₃	l	4-OCH ₂ CF ₃
I	2-SCF ₃	1	3-SCF ₃	I	4-SCF ₃
I	2-SOCF ₃	l	3-SOCF ₃	I	4-SOCF ₃
I	2-SO ₂ CF ₃	I	3-SO ₂ CF ₃	I	4-SO ₂ CF ₃
1	2-SCF ₂ H	I	3-SCF ₂ H	I	4-SCF ₂ H
I	2-SOCF ₂ H	I	3-SOCF ₂ H	I	4-SOCF ₂ H
1,	2-SO₂CF ₂ H	I	3-SO₂CF ₂ H	I	4-SO ₂ CF ₂ H
OMe	2-CF ₃	OMe	3-CF ₃	ОМе	4-CF ₃
OMe	2-OCF ₃	OMe	3-OCF ₃	OMe	4-OCF ₃
OMe	2-OCF ₂ H	OMe	3-OCF ₂ H	ОМе	4-OCF ₂ H
OMe	2-OCF ₂ CF ₂ H	OMe	3-OCF ₂ CF ₂ H	ОМе	4-OCF ₂ CF ₂ H
OMe	2-OCH ₂ CF ₃	OMe	3-OCH ₂ CF ₃	OMe	4-OCH ₂ CF ₃
OMe	2-SCF ₃	OMe	3-SCF ₃	OMe	4-SCF ₃
OMe	2-SOCF ₃	OMe	3-SOCF ₃	OMe	4-SOCF ₃
OMe	2-SO ₂ CF ₃	OMe	3-SO ₂ CF ₃	OMe	4-SO ₂ CF ₃
OMe	2-SCF ₂ H	ОМе	3-SCF ₂ H	OMe	4-SCF ₂ H
OMe	2-SOCF ₂ H	OMe	3-SOCF ₂ H	OMe	4-SOCF ₂ H
OMe	2-SO₂CF2H	ОМе	3-SO₂CF ₂ H	OMe	4-SO ₂ CF ₂ H
CF ₃	2-CF ₃	CF ₃	3-CF ₃	CF ₃	4-CF ₃
CF ₃	2-OCF ₃	CF ₃	3-OCF ₃	CF ₃	4-OCF ₃
CF ₃	2-OCF ₂ H	CF ₃	3-OCF ₂ H	CF ₃	4-OCF ₂ H
CF ₃	2-OCF2CF2H	CF ₃	3-OCF ₂ CF ₂ H	CF ₃	4-OCF ₂ CF ₂ H
CF ₃	2-OCH ₂ CF ₃	CF ₃	3-OCH ₂ CF ₃	CF ₃	4-OCH ₂ CF ₃
CF ₃	2-SCF ₃	CF ₃	3-SCF ₃	CF ₃	4-SCF ₃
CF ₃	2-SOCF ₃	CF ₃	3-SOCF ₃	CF ₃	4-SOCF ₃
CF ₃	2-SO ₂ CF ₃	CF ₃	3-SO ₂ CF ₃	CF ₃	4-SO ₂ CF ₃
CF ₃	2-SCF ₂ H	CF ₃	3-SCF ₂ H	CF ₃	4-SCF ₂ H
CF ₃	2-SOCF ₂ H	CF ₃	3-SOCF ₂ H	CF ₃	4-SOCF ₂ H
CF ₃	2-SO₂CF ₂ H	CF ₃	3-SO ₂ CF ₂ H	CF ₃	4-SO₂CF ₂ H
OCF ₂ H	2-CF ₃	OCF ₂ H	3-CF ₃	OCF ₂ H	4-CF ₃
OCF ₂ H	2-OCF ₃	OCF ₂ H	3-OCF ₃	OCF ₂ H	4-OCF ₃
OCF ₂ H	2-OCF ₂ H	OCF ₂ H	3-OCF ₂ H	OCF ₂ H	4-OCF ₂ H
OCF ₂ H	2-OCF ₂ CF ₂ H	OCF ₂ H	3-OCF ₂ CF ₂ H	OCF ₂ H	4-OCF ₂ CF ₂ H
OCF ₂ H	2-OCH ₂ CF ₃	OCF ₂ H	3-OCH ₂ CF ₃	OCF ₂ H	4-OCH ₂ CF ₃

<u>R</u> 4	(R ⁵) _m	<u>R</u> 4	(R ⁵) _m	<u>R</u> 4	$(\mathbb{R}^5)_{\underline{m}}$
OCF ₂ H	2-SCF ₃	OCF ₂ H	3-SCF ₃	OCF ₂ H	4-SCF ₃
OCF ₂ H	2-SOCF ₃	OCF ₂ H	3-SOCF ₃	ocf ₂ H	4-SOCF ₃
OCF ₂ H	2-SO ₂ CF ₃	OCF ₂ H	3-SO ₂ CF ₃	ocf ₂ H	4-SO ₂ CF ₃
OCF ₂ H	2-SCF ₂ H	ocf ₂ H	3-SCF ₂ H	ocf ₂ H	4-SCF ₂ H
OCF ₂ H	2-SOCF ₂ H	OCF ₂ H	3-SOCF ₂ H	ocf ₂ H	4-SOCF ₂ H
OCF ₂ H	2-SO ₂ CF ₂ H	ocf ₂ H	3-SO₂CF2H	OCF ₂ H	4-SO₂CF ₂ H
Me	2-Me-4-CF ₃	F	2-Me-4-CF ₃	Cl	2-Me-4-CF ₃
Me	2-Me-4-OCF ₃	F	2-Me-4-OCF ₃	Cl	2-Me-4-OCF ₃
Me	2-Me-4-OCF ₂ H	F	2-Me-4-OCF ₂ H	Cl	2-Me-4-OCF ₂ H
Me	2-Me-4-OCH ₂ CF ₃	F	2-Me-4-OCH ₂ CF ₃	Cl	2-Me-4-OCH ₂ CF ₃
Me	2-Me-4-SCF ₃	· F	2-Me-4-SCF ₃	Cl	2-Me-4-SCF ₃
Me	2-Me-4-SOCF ₃	F	2-Me-4-SOCF ₃	Cl	2-Me-4-SOCF ₃
Me	2-Me-4-SO ₂ CF ₃	F	2-Me-4-SO ₂ CF ₃	Cl	2-Me-4-SO ₂ CF ₃
Me	2-Me-4-SCF ₂ H	F	2-Me-4-SCF ₂ H	CI	2-Me-4-SCF ₂ H
Me	2-Me-4-SOCF ₂ H	F	2-Me-4-SOCF ₂ H	Cl	2-Me-4-SOCF ₂ H
Me	2-Me-4-SO₂CF ₂ H	F	2-Me-4-SO₂CF ₂ H	CI	2-Me-4-SO ₂ CF ₂ H
Br	2-Me-4-CF ₃	1	2-Me-4-CF ₃	OMe	2-Me-4-CF ₃
Br	2-Me-4-OCF ₃	I	2-Me-4-OCF ₃	ОМе	2-Me-4-OCF ₃
Br	2-Me-4-OCF ₂ H	I	2-Me-4-OCF ₂ H	ОМе	2-Me-4-OCF ₂ H
Br	2-Me-4-OCH ₂ CF ₃	I	2-Me-4-OCH ₂ CF ₃	OMe	2-Me-4-OCH ₂ CF ₃
Br	2-Me-4-SCF ₃	I	2-Me-4-SCF ₃	OMe	2-Me-4-SCF ₃
Br	2-Me-4-SOCF ₃	1	2-Me-4-SOCF ₃	OMe	2-Me-4-SOCF ₃
Br	2-Me-4-SO ₂ CF ₃	1	2-Me-4-SO ₂ CF ₃	OMe	2-Me-4-SO ₂ CF ₃
Br	2-Me-4-SCF ₂ H	I	2-Me-4-SCF ₂ H	ОМе	2-Me-4-SCF ₂ H
Br	2-Me-4-SOCF ₂ H	I	2-Me-4-SOCF ₂ H	OMe	2-Me-4-SOCF ₂ H
Br	2-Me-4-SO₂CF ₂ H	I	2-Me-4-SO ₂ CF ₂ H	ОМе	2-Me-4-SO ₂ CF ₂ H
CF ₃	2-Me-4-CF ₃	NO ₂	2-Me-4-CF ₃	SMe	2-Me-4-CF ₃
CF ₃	2-Me-4-OCF ₃	NO ₂	2-Me-4-OCF ₃	SMe	2-Me-4-OCF ₃
CF ₃	¹ 2-Me-4-OCF ₂ H	NO ₂	2-Me-4-OCF ₂ H	SMe	2-Me-4-OCF ₂ H
CF ₃	2-Me-4-OCH ₂ CF ₃	NO ₂	2-Me-4-OCH ₂ CF ₃	SMe	2-Me-4-OCH ₂ CF ₃
CF ₃	2-Me-4-SCF ₃	NO ₂	2-Me-4-SCF ₃	SMe	2-Me-4-SCF ₃
CF ₃	2-Me-4-SOCF ₃	NO ₂	2-Me-4-SOCF ₃	SMe	2-Me-4-SOCF ₃
CF ₃	2-Me-4-SO ₂ CF ₃	NO ₂	2-Me-4-SO ₂ CF ₃	SMe	2-Me-4-SO ₂ CF ₃
CF ₃	2-Me-4-SCF ₂ H	NO ₂	2-Me-4-SCF ₂ H	SMe	2-Me-4-SCF ₂ H
CF ₃	2-Me-4-SOCF ₂ H	NO ₂	2-Me-4-SOCF ₂ H	SMe	2-Me-4-SOCF ₂ H
CF ₃	2-Me-4-SO ₂ CF ₂ H	NO ₂	2-Me-4-SO₂CF ₂ H	SMe	2-Me-4-SO₂CF ₂ H

Table 5

<u>R</u> 4	(R ⁵) _m	<u>R</u> 4	$(R^5)_{\rm m}$	<u>R</u> 4	$(R^5)_{\rm m}$
		Me	3-CF ₃	Me	4-CF ₃
Me	2-CF ₃		ì		4-OCF ₃
Me	2-OCF ₃	Me	3-OCF ₃	Me	•
Me	2-OCF ₂ H	Me	3-OCF ₂ H	Me	4-OCF ₂ H
Me	2-OCF ₂ CF ₂ H	Me	3-OCF ₂ CF ₂ H	Me	4-OCF ₂ CF ₂ H
Me	2-OCH ₂ CF ₃	Me	3-OCH ₂ CF ₃	Me	4-OCH ₂ CF ₃
Me	2-SCF ₃	Me	3-SCF ₃	Me	4-SCF ₃
Me	2-SOCF ₃	Me	3-SOCF ₃	Me	4-SOCF ₃
Me	2-SO ₂ CF ₃	Me	3-SO ₂ CF ₃	Me	4-SO ₂ CF ₃
Me	2-SCF ₂ H	Me	3-SCF ₂ H	Me	4-SCF ₂ H
Me	2-SOCF ₂ H	Me	3-SOCF ₂ H	Me	4-SOCF ₂ H
Me	2-SO₂CF ₂ H	Me	3-SO₂CF ₂ H	Me	4-SO₂CF2H
CF ₃	2-Me-4-CF ₃	CF ₂ H	2-Me-4-CF ₃	CH ₂ CF ₃	2-Me-4-CF ₃
CF ₃	2-Me-4-OCF ₃	CF ₂ H	2-Me-4-OCF ₃	CH ₂ CF ₃	2-Me-4-OCF ₃
CF ₃	2-Me-4-OCF ₂ H	CF ₂ H	2-Me-4-OCF ₂ H	CH ₂ CF ₃	2-Me-4-OCF ₂ H
CF ₃	2-Me-4-OCH ₂ CF ₃	CF ₂ H	2-Me-4-OCH ₂ CF ₃	CH ₂ CF ₃	2-Me-4-OCH ₂ CF ₃
CF ₃	2-Me-4-SCF ₃	CF ₂ H	2-Me-4-SCF ₃	CH ₂ CF ₃	2-Me-4-SCF ₃
CF ₃	2-Me-4-SOCF ₃	CF ₂ H	2-Me-4-SOCF ₃	CH ₂ CF ₃	2-Me-4-SOCF ₃
CF ₃	2-Me-4-SO ₂ CF ₃	CF ₂ H	2-Me-4-SO ₂ CF ₃	CH ₂ CF ₃	2-Me-4-SO ₂ CF ₃
CF ₃	2-Me-4-SCF ₂ H	CF ₂ H	2-Me-4-SCF ₂ H	CH ₂ CF ₃	2-Me-4-SCF ₂ H
CF ₃	2-Me-4-SOCF ₂ H	CF ₂ H	2-Me-4-SOCF ₂ H	CH ₂ CF ₃	2-Me-4-SOCF ₂ H
CF ₃	2-Me-4-SO ₂ CF ₂ H	CF ₂ H	2-Me-4-SO ₂ CF ₂ H	CH ₂ CF ₃	2-Me-4-SO ₂ CF ₂ H

Table 6

$$\mathbb{R}^4$$
 \mathbb{N}
 \mathbb{N}

<u>R</u> 4	(R ⁵) _m	<u>R</u> 4	$(R^5)_{\rm m}$	<u>R</u> 4	(<u>R⁵)</u> m
Me	2-CF ₃	Me	3-CF ₃	Me	4-CF ₃
Me	2-OCF ₃	Me	3-OCF ₃	Me	4-OCF ₃
Me	2-OCF ₂ H	Me	3-OCF ₂ H	Me	4-OCF ₂ H
Me	2-OCF ₂ CF ₂ H	Me	3-OCF ₂ CF ₂ H	Me	4-OCF2CF2H
Me	2-OCH ₂ CF ₃	Me	3-OCH ₂ CF ₃	Me	4-OCH ₂ CF ₃
Me	2-SCF ₃	Me	3-SCF ₃	Me	4-SCF ₃
Me	2-SOCF ₃	Me	3-SOCF ₃	Me	4-SOCF ₃
Me	2-SO ₂ CF ₃	Me	3-SO ₂ CF ₃	Me	4-SO ₂ CF ₃
Me	2-SCF ₂ H	Ме	3-SCF ₂ H	Me	4-SCF ₂ H
Me	2-SOCF ₂ H	Me	3-SOCF ₂ H	Me	4-SOCF ₂ H
Me	2-SO₂CF ₂ H	Me	3-SO₂CF ₂ H	Me	4-SO₂CF2H
CF ₃	2-Me-4-CF ₃	CF ₂ H	2-Me-4-CF ₃	CH ₂ CF ₃	2-Me-4-CF ₃
CF ₃	2-Me-4-OCF ₃	CF ₂ H	2-Me-4-OCF ₃	CH ₂ CF ₃	2-Me-4-OCF ₃
CF ₃	2-Me-4-OCF ₂ H	CF ₂ H	2-Me-4-OCF ₂ H	CH ₂ CF ₃	2-Me-4-OCF ₂ H
CF ₃	2-Me-4-OCH ₂ CF ₃	CF ₂ H	2-Me-4-OCH ₂ CF ₃	CH ₂ CF ₃	2-Me-4-OCH ₂ CF ₃
CF ₃	2-Me-4-SCF ₃	CF ₂ H	2-Me-4-SCF ₃	CH ₂ CF ₃	2-Me-4-SCF ₃
CF ₃	2-Me-4-SOCF ₃	CF ₂ H	2-Me-4-SOCF ₃	CH ₂ CF ₃	2-Me-4-SOCF ₃
CF ₃	2-Me-4-SO ₂ CF ₃	CF ₂ H	2-Me-4-SO ₂ CF ₃	CH ₂ CF ₃	2-Me-4-SO ₂ CF ₃
CF ₃	2-Me-4-SCF ₂ H	CF ₂ H	2-Me-4-SCF ₂ H	CH ₂ CF ₃	2-Me-4-SCF ₂ H
CF ₃	2-Me-4-SOCF ₂ H	CF ₂ H	2-Me-4-SOCF ₂ H	CH ₂ CF ₃	2-Me-4-SOCF ₂ H
CF ₃	2-Me-4-SO₂CF ₂ H	CF ₂ H	2-Me-4-SO₂CF ₂ H	CH ₂ CF ₃	2-Me-4-SO ₂ CF ₂ H

Table 7

<u>R</u> 4	(R ⁵) _m	<u>R</u> 4	(<u>R⁵)_m</u>	<u>R</u> 4	$(R^5)_{\underline{m}}$
	2-CF ₃	Me	3-CF ₃	Me	4-CF ₃
Me	2-CF ₃ 2-OCF ₃	Me	3-OCF ₃	Me	4-OCF ₃
Me	- 1	Me	3-OCF ₂ H	Me	4-OCF ₂ H
Me	2-OCF ₂ H		_	Me	4-OCF ₂ CF ₂ H
Me	2-OCF ₂ CF ₂ H	Me	3-OCF ₂ CF ₂ H		
Me	2-OCH ₂ CF ₃	Me	3-OCH ₂ CF ₃	Me	4-OCH ₂ CF ₃
Me	2-SCF ₃	Me	3-SCF ₃	Me	4-SCF ₃
Me	2-SOCF ₃	Me	3-SOCF ₃	Me	4-SOCF ₃
Me	2-SO ₂ CF ₃	Me	3-SO ₂ CF ₃	Me	4-SO ₂ CF ₃
Me	2-SCF ₂ H	Me	3-SCF ₂ H	Me	4-SCF ₂ H
Me	2-SOCF ₂ H	Ме	3-SOCF ₂ H	Me	4-SOCF ₂ H
Me	2-SO₂CF ₂ H	Me	3-SO₂CF ₂ H	Me	4-SO₂CF2H
Cl	2-CF ₃	Cl	3-CF ₃	Cl	4-CF ₃
Cl	2-OCF ₃	Cl	3-OCF ₃	Cl	4-OCF ₃
Cl	2-OCF ₂ H	Cl	3-OCF ₂ H	CI	4-OCF ₂ H
Cl	2-OCF ₂ CF ₂ H	Cl	3-OCF ₂ CF ₂ H	CI	4-OCF ₂ CF ₂ H
Cl	2-OCH ₂ CF ₃	, CI	3-OCH ₂ CF ₃	CI	4-OCH ₂ CF ₃
Cl	2-SCF ₃	Cl	3-SCF ₃	Cl	4-SCF ₃
Cl	2-SOCF ₃	Cl	3-SOCF ₃	CI	4-SOCF ₃
Cl	2-SO ₂ CF ₃	Cl	3-SO ₂ CF ₃	CI	4-SO ₂ CF ₃
Cl	2-SCF ₂ H	CI	3-SCF ₂ H	CI	4-SCF ₂ H
Cl	2-SOCF ₂ H	CI	3-SOCF ₂ H	Cl	4-SOCF ₂ H
Cl	2-SO ₂ CF ₂ H	CI	3-SO₂CF2H	Cl	4-SO₂CF ₂ H
F	2-CF ₃	F	3-CF ₃	F	4-CF ₃
F	2-OCF ₃	F	3-OCF ₃	F	4-OCF ₃
F	2-OCF ₂ H	F	3-OCF ₂ H	·F	4-OCF ₂ H
F	2-OCF2CF2H	F	3-OCF ₂ CF ₂ H	F	4-OCF ₂ CF ₂ H
F	2-OCH ₂ CF ₃	F	3-OCH ₂ CF ₃	F	4-OCH ₂ CF ₃

<u>R</u> 4	(R ⁵) _m	<u>R</u> 4	(<u>R⁵)_m</u>	<u>R</u> 4	(R ⁵) _m
F	2-SCF ₃	F	3-SCF ₃	.F	4-SCF ₃
F	2-SOCF ₃	F	3-SOCF ₃	F	4-SOCF ₃
F	2-SO ₂ CF ₃	F	3-SO ₂ CF ₃	F	4-\$O ₂ CF ₃
F	2-SCF ₂ H	F	3-SCF ₂ H	F	4-SCF ₂ H
F	2-SOCF ₂ H	F	3-SOCF ₂ H	F	4-SOCF ₂ H
F	2-SO₂CF ₂ H	F	3-SO₂CF ₂ H	F	4-SO₂CF2H
Br	2-CF ₃	Br	3-CF ₃	Br	4-CF ₃
Br	2-OCF ₃	Br	3-OCF ₃	Br	4-OCF ₃
Br	2-OCF ₂ H	Br	3-OCF ₂ H	Br	4-OCF ₂ H
Br	2-OCF ₂ CF ₂ H	Br	3-OCF ₂ CF ₂ H	Br	4-OCF ₂ CF ₂ H
Br	2-OCH ₂ CF ₃	Br	3-OCH ₂ CF ₃	Br	4-OCH ₂ CF ₃
Br	2-SCF ₃	Br	3-SCF ₃	Br	4-SCF ₃
Br	2-SOCF ₃	Br	3-SOCF ₃	Br	4-SOCF ₃
Br	2-SO ₂ CF ₃	Br	3-SO ₂ CF ₃	Br	4-SO ₂ CF ₃
Br	2-SCF ₂ H	Br	3-SCF ₂ H	Br	4-SCF ₂ H
Br	2-SOCF ₂ H	Br	3-SOCF ₂ H	Br	4-SOCF ₂ H
Br	2-SO₂CF ₂ H	Br	3-SO₂CF ₂ H	Br	4-SO₂CF ₂ H
I	2-CF ₃	I	3-CF ₃	I	4-CF ₃
I	2-OCF ₃	I	3-OCF ₃	1	4-OCF ₃
I	2-OCF ₂ H	I	3-OCF ₂ H	I	4-OCF ₂ H
I	2-OCF ₂ CF ₂ H	Ī	3-OCF ₂ CF ₂ H	I	4-OCF ₂ CF ₂ H
I	2-OCH ₂ CF ₃	1	3-OCH ₂ CF ₃	1	4-OCH ₂ CF ₃
I	2-SCF ₃	I	3-SCF ₃	1	4-SCF ₃
I	2-SOCF ₃	I	3-SOCF ₃	I	4-SOCF ₃
I	2-SO ₂ CF ₃	1	3-SO ₂ CF ₃	1	4-SO ₂ CF ₃
I	2-SCF ₂ H	1	3-SCF ₂ H	I	4-SCF ₂ H
I	2-SOCF ₂ H	i	3-SOCF ₂ H	1	4-SOCF ₂ H
I	2-SO₂CF2H	I	3-SO ₂ CF ₂ H	1	4-SO₂CF2H
OMe	2-CF ₃	OMe	3-CF ₃	OMe	4-CF ₃
OMe	2-OCF ₃	ОМе	3-OCF ₃	OMe	4-OCF ₃
OMe	2-OCF ₂ H	ОМе	3-OCF ₂ H	OMe	4-OCF ₂ H
OMe	2-OCF ₂ CF ₂ H	ОМе	3-OCF ₂ CF ₂ H	OMe	4-OCF ₂ CF ₂ H
OMe	2-OCH ₂ CF ₃	ОМе	3-OCH ₂ CF ₃	OMe	4-OCH ₂ CF ₃
OMe	2-SCF ₃	OMe	3-SCF ₃	OMe	4-SCF ₃
OMe	2-SOCF ₃	ОМе	3-SOCF ₃	OMe	4-SOCF ₃
OMe	2-SO ₂ CF ₃	OMe	3-SO ₂ CF ₃	OMe	4-SO ₂ CF ₃
OMe	2-SCF ₂ H	ОМе	3-SCF ₂ H	OMe	4-SCF ₂ H

	ا ء	-4	. 6	-1	~ 5 .
<u>R</u> 4	(<u>R⁵)</u> m	<u>R</u> 4	(<u>R⁵)</u> m	<u>R</u> 4	(R ⁵) _m
OMe	2-SOCF ₂ H	OMe	3-SOCF ₂ H	OMe	4-SOCF ₂ H
OMe	2-SO₂CF ₂ H	OMe	3-SO₂CF ₂ H	OMe	4-SO₂CF ₂ H
CF ₃	2-CF ₃	CF ₃	3-CF ₃	CF ₃	4-CF ₃
CF ₃	2-OCF ₃	CF ₃	3-OCF ₃	CF ₃	4-OCF ₃
CF ₃	2-OCF ₂ H	CF ₃	3-OCF ₂ H	CF ₃	4-OCF ₂ H
CF ₃	2-OCF ₂ CF ₂ H	CF ₃	3-OCF ₂ CF ₂ H	CF ₃	4-OCF ₂ CF ₂ H
CF ₃	2-OCH ₂ CF ₃	CF ₃	3-OCH ₂ CF ₃	CF ₃	4-OCH ₂ CF ₃
CF ₃	2-SCF ₃	CF ₃	3-SCF ₃	CF ₃	4-SCF ₃
CF ₃	2-SOCF ₃	CF ₃	3-SOCF ₃	CF ₃	4-SOCF ₃
CF ₃	2-SO ₂ CF ₃	CF ₃	3-SO ₂ CF ₃	CF ₃	4-SO ₂ CF ₃
CF ₃	2-SCF ₂ H	CF ₃	3-SCF ₂ H	CF ₃	4-SCF ₂ H
CF ₃	2-SOCF ₂ H	CF ₃	3-SOCF ₂ H	CF ₃	4-SOCF ₂ H
CF ₃	2-SO₂CF2H	CF ₃	3-SO₂CF ₂ H	CF ₃	4-SO ₂ CF ₂ H
OCF ₂ H	2-CF ₃	OCF ₂ H	3-CF ₃	OCF ₂ H	4-CF ₃
OCF ₂ H	2-OCF ₃	OCF ₂ H	3-OCF ₃	OCF ₂ H	4-OCF ₃
OCF ₂ H	2-OCF ₂ H	OCF ₂ H	3-OCF ₂ H	ocf ₂ H	4-OCF ₂ H
OCF ₂ H	2-OCF ₂ CF ₂ H	OCF ₂ H	3-OCF ₂ CF ₂ H	OCF ₂ H	4-OCF ₂ CF ₂ H
OCF ₂ H	2-OCH ₂ CF ₃	OCF ₂ H	3-OCH ₂ CF ₃	ocf ₂ H	4-OCH ₂ CF ₃
OCF ₂ H	2-SCF ₃	OCF ₂ H	3-SCF ₃	осғ ₂ н	4-SCF ₃
ocf ₂ H	2-SOCF ₃	ocf ₂ h	3-SOCF ₃	OCF ₂ H	4-SOCF ₃
OCF ₂ H	2-SO ₂ CF ₃	ocf ₂ h	3-SO ₂ CF ₃	ocf ₂ H	4-SO ₂ CF ₃
OCF ₂ H	2-SCF ₂ H	OCF ₂ H	3-SCF ₂ H	ocf ₂ H	4-SCF ₂ H
OCF ₂ H	2-SOCF ₂ H	OCF ₂ H	3-SOCF ₂ H	OCF ₂ H	4-SOCF ₂ H
OCF ₂ H	2-SO₂CF ₂ H	ocf ₂ H	3-SO₂CF2H	OCF ₂ H	4-SO₂CF2H
Me	2-Me-4-CF ₃	F	2-Me-4-CF ₃	Cl	2-Me-4-CF ₃
Me	2-Me-4-OCF ₃	F	2-Me-4-OCF ₃	Cl	2-Me-4-OCF ₃
Me	2-Me-4-OCF ₂ H	F	2-Me-4-OCF ₂ H	Cl	2-Me-4-OCF ₂ H
Me	2-Me-4-OCH ₂ CF ₃	F	2-Me-4-OCH ₂ CF ₃	Cl	2-Me-4-OCH ₂ CF ₃
Me	2-Me-4-SCF ₃	F	2-Me-4-SCF ₃	Cl	2-Me-4-SCF ₃
Me	2-Me-4-SOCF ₃	F	2-Me-4-SOCF ₃	CI	2-Me-4-SOCF ₃
Me	2-Me-4-SO ₂ CF ₃	F	2-Me-4-SO ₂ CF ₃	CI	2-Me-4-SO ₂ CF ₃
Me	2-Me-4-SCF ₂ H	F	2-Me-4-SCF ₂ H	CI	2-Me-4-SCF ₂ H
Me	2-Me-4-SOCF ₂ H	F	2-Me-4-SOCF ₂ H	Cl	2-Me-4-SOCF ₂ H
Me	2-Me-4-SO ₂ CF ₂ H	F	2-Me-4-SO ₂ CF ₂ H	Cl	2-Me-4-SO ₂ CF ₂ H
Br	2-Me-4-CF ₃	i	2-Me-4-CF ₃	ОМе	2-Me-4-CF ₃
Br	2-Me-4-OCF ₃	I	2-Me-4-OCF ₃	ОМе	2-Me-4-OCF ₃
Вг	2-Me-4-OCF ₂ H	1	2-Me-4-OCF ₂ H	OMe	2-Me-4-OCF ₂ H

<u>R</u> 4	(R ⁵) _m	<u>R</u> 4	(R ⁵) _m	<u>R</u> 4	(R ⁵) _m
Br	2-Me-4-OCH ₂ CF ₃	I	2-Me-4-OCH ₂ CF ₃	OMe	2-Me-4-OCH ₂ CF ₃
Br	2-Me-4-SCF ₃	1	2-Me-4-SCF ₃	OMe	2-Me-4-SCF ₃
Br	2-Me-4-SOCF ₃	I	2-Me-4-SOCF ₃	ОМе	2-Me-4-SOCF ₃
Br	2-Me-4-SO ₂ CF ₃	1	2-Me-4-SO ₂ CF ₃	OMe	2-Me-4-SO ₂ CF ₃
Br	2-Me-4-SCF ₂ H	I	2-Me-4-SCF ₂ H	OMe	2-Me-4-SCF ₂ H
Br	2-Me-4-SOCF ₂ H	I	2-Me-4-SOCF ₂ H	OMe	2-Me-4-SOCF ₂ H
Br	2-Me-4-SO₂CF ₂ H	I	2-Me-4-SO₂CF ₂ H	ОМе	2-Me-4-SO₂CF ₂ H
CF ₃	2-Me-4-CF ₃	NO ₂	2-Me-4-CF ₃	SMe	2-Me-4-CF ₃
CF ₃	2-Me-4-OCF ₃	NO ₂	2-Me-4-OCF ₃	SMe	2-Me-4-OCF ₃
CF ₃	2-Me-4-OCF ₂ H	NO ₂	2-Me-4-OCF ₂ H	SMe	2-Me-4-OCF ₂ H
CF ₃	2-Me-4-OCH ₂ CF ₃	NO ₂	2-Me-4-OCH ₂ CF ₃	SMe	2-Me-4-OCH ₂ CF ₃
CF ₃	2-Me-4-SCF ₃	NO ₂	2-Me-4-SCF ₃	SMe	2-Me-4-SCF ₃
CF ₃	2-Me-4-SOCF ₃	NO ₂	2-Me-4-SOCF ₃	SMe	2-Me-4-SOCF ₃
CF ₃	2-Me-4-SO ₂ CF ₃	NO_2	2-Me-4-SO ₂ CF ₃	SMe	2-Me-4-SO ₂ CF ₃
CF ₃	2-Me-4-SCF ₂ H	NO_2	2-Me-4-SCF ₂ H	SMe	2-Me-4-SCF ₂ H
CF ₃	2-Me-4-SOCF ₂ H	NO ₂	2-Me-4-SOCF ₂ H	SMe	2-Me-4-SOCF ₂ H
CF ₃	2-Me-4-SO₂CF ₂ H	NO_2	2-Me-4-SO ₂ CF ₂ H	SMe	2-Me-4-SO ₂ CF ₂ H

Table 8

$$\mathbb{R}^4$$
 \mathbb{R}^5)_m

<u>R</u> 4	(R ⁵) _m	<u>R</u> 4	(R ⁵) _m	<u>R</u> 4	(<u>R⁵)_m</u>
Ме	2-CF ₃	Me	3-CF ₃	Me	4-CF ₃
Me	2-OCF ₃	Me	3-OCF ₃	Me	4-OCF ₃
Me	2-OCF ₂ H	Me	3-OCF ₂ H	Me	4-OCF ₂ H
Me	2-OCF ₂ CF ₂ H	Me	3-OCF ₂ CF ₂ H	Me	4-OCF2CF2H
Me	2-OCH ₂ CF ₃	Me	3-OCH ₂ CF ₃	Me	4-OCH ₂ CF ₃
Me	2-SCF ₃	Me	3-SCF ₃	Me	4-SCF ₃
Me	2-SOCF ₃	Me	3-SOCF ₃	Me	4-SOCF ₃
Me	2-SO ₂ CF ₃	Me	3-SO ₂ CF ₃	Me	4-SO ₂ CF ₃

	,		ι		
<u>R</u> 4	(<u>R⁵)m</u>	<u>R</u> 4	(R ⁵) _m	<u>R</u> 4	(<u>R⁵)</u> m
Me	2-SCF ₂ H	Me	3-SCF ₂ H	Me	4-SCF ₂ H
Me	2-SOCF ₂ H	Me	3-SOCF ₂ H	Me	4-SOCF ₂ H
Me	2-SO₂CF ₂ H	Me	3-SO ₂ CF ₂ H	Me	4-SO₂CF2H
Cl	2-CF ₃	Cl	3-CF ₃	Cl	4-CF ₃
Cl	2-OCF ₃	Cl	3-OCF ₃	Cl	4-OCF ₃
Cl	2-OCF ₂ H	CI	3-OCF ₂ H	Cl	4-OCF ₂ H
Cl	2-OCF ₂ CF ₂ H	Cl	3-OCF ₂ CF ₂ H	Cl	4-OCF ₂ CF ₂ H
Cl	2-OCH ₂ CF ₃	Cl	3-OCH ₂ CF ₃	Cì	4-OCH ₂ CF ₃
Cl	2-SCF ₃	CI	3-SCF ₃	Cl	4-SCF ₃
Cl	2-SOCF ₃	Cl	3-SOCF ₃	CI	4-SOCF ₃
CI	2-SO ₂ CF ₃	Cl	3-SO ₂ CF ₃	Cl	4-SO ₂ CF ₃
Cl	2-SCF ₂ H	Cl	3-SCF ₂ H	Cl	4-SCF ₂ H
Cl	2-SOCF ₂ H	Cl	3-SOCF ₂ H	CI	4-SOCF ₂ H
Cl	2-SO₂CF2H	Cl	3-SO ₂ CF ₂ H	CI	4-SO₂CF2H
F	2-CF ₃	F	3-CF ₃	F	4-CF ₃
F	2-OCF ₃	F	3-OCF ₃	F	4-OCF ₃
F	2-OCF ₂ H	F	3-OCF ₂ H	F	4-OCF ₂ H
F	2-OCF2CF2H	F	3-OCF ₂ CF ₂ H	F	4-OCF2CF2H
F	2-OCH ₂ CF ₃	F	3-OCH ₂ CF ₃	F	4-OCH ₂ CF ₃
F	2-SCF ₃	F	3-SCF ₃	F	4-SCF ₃
F	2-SOCF ₃	F	3-SOCF ₃	F	4-SOCF ₃
F	2-SO ₂ CF ₃	F.	3-SO ₂ CF ₃	F	4-SO ₂ CF ₃
F	2-SCF ₂ H	F	3-SCF ₂ H	F	4-SCF ₂ H
F	2-SOCF ₂ H	F	3-SOCF ₂ H	F	4-SOCF ₂ H
F	2-SO₂CF2H	F	3-SO₂CF ₂ H	F	4-SO ₂ CF ₂ H
Br	2-CF ₃	Br	3-CF ₃	Br	4-CF ₃
Br	2-OCF ₃	Br	3-OCF ₃	Br	4-OCF ₃
Br	2-OCF ₂ H	Br	3-OCF ₂ H	Br	4-OCF ₂ H
Br	2-OCF ₂ CF ₂ H	Вг	3-OCF ₂ CF ₂ H	Br	4-OCF2CF2H
Br	2-OCH ₂ CF ₃	Br	3-OCH ₂ CF ₃	Br	4-OCH ₂ CF ₃
Br	2-SCF ₃	Br	3-SCF ₃	Br	4-SCF ₃
Br	2-SOCF ₃	Br	3-SOCF ₃	Br	4-SOCF ₃
Br	2-SO ₂ CF ₃	Br	3-SO ₂ CF ₃	Br	4-SO ₂ CF ₃
Br	2-SCF ₂ H	Br	3-SCF ₂ H	Br	4-SCF ₂ H
Br	2-SOCF ₂ H	Br	3-SOCF ₂ H	Br	4-SOCF ₂ H
Br	2-SO₂CF ₂ H	Br	3-SO₂CF ₂ H	Br	4-SO₂CF2H
I	2-CF ₃] I	3-CF ₃	1	4-CF ₃

<u>R</u> 4	(R ⁵) _m	<u>R</u> 4	(R ⁵) _m	<u>R</u> 4	(R ⁵) _m
I	2-OCF ₃	I	3-OCF ₃	I	4-OCF ₃
I	2-OCF ₂ H	J	3-OCF ₂ H	Ι.	4-OCF ₂ H
I	2-OCF ₂ CF ₂ H	1	3-OCF ₂ CF ₂ H	I	4-OCF ₂ CF ₂ H
I	2-OCH ₂ CF ₃	I	3-OCH ₂ CF ₃	I	4-OCH ₂ CF ₃
I	2-SCF ₃	I	3-SCF ₃	I	4-SCF ₃
1	2-SOCF ₃	I	3-SOCF ₃	I	4-SOCF ₃
1	2-SO ₂ CF ₃	I	.3-SO ₂ CF ₃	I	4-SO ₂ CF ₃
1	2-SCF ₂ H	· I	3-SCF ₂ H	1	4-SCF ₂ H
I	2-SOCF ₂ H	Ī	3-SOCF ₂ H	I	4-SOCF ₂ H
I	2-SO₂CF2H	. 1	3-SO₂CF ₂ H	I	4-SO₂CF2H
OMe	2-CF ₃	ОМе	3-CF ₃	ОМе	4-CF ₃
OMe	2-OCF ₃	ОМе	3-OCF ₃	OMe	4-OCF ₃
OMe	2-OCF ₂ H	ОМе	3-OCF ₂ H	ОМе	4-OCF ₂ H
OMe	2-OCF ₂ CF ₂ H	OMe	3-OCF ₂ CF ₂ H	OMe	4-OCF ₂ CF ₂ H
OMe	2-OCH ₂ CF ₃	OMe	3-OCH ₂ CF ₃	OMe	4-OCH ₂ CF ₃
OMe	2-SCF ₃	ОМе	3-SCF ₃	OMe	4-SCF ₃
OMe	2-SOCF ₃	ОМе	3-SOCF ₃	OMe	4-SOCF ₃
OMe	2-SO ₂ CF ₃	ОМе	3-SO ₂ CF ₃	OMe	4-SO ₂ CF ₃
OMe	2-SCF ₂ H	ОMе	3-SCF ₂ H	OMe	4-SCF ₂ H
OMe	2-SOCF ₂ H	ОМе	3-SOCF ₂ H	OMe	4-SOCF ₂ H
OMe	2-SO₂CF2H	ОМе	3-SO₂CF ₂ H	OMe	4-SO₂CF2H
CF ₃	2-CF ₃	CF ₃	3-CF ₃	CF ₃	4-CF ₃
CF ₃	2-OCF ₃	CF ₃	3-OCF ₃	CF ₃	4-OCF ₃
CF ₃	2-OCF ₂ H	CF ₃	3-OCF ₂ H	CF ₃	4-OCF ₂ H
CF ₃	2-OCF ₂ CF ₂ H	CF ₃	3-OCF ₂ CF ₂ H	CF ₃	4-OCF ₂ CF ₂ H
CF ₃	2-OCH ₂ CF ₃	CF ₃	3-OCH ₂ CF ₃	CF ₃	4-OCH ₂ CF ₃
CF ₃	2-SCF ₃	CF ₃	3-SCF ₃	CF ₃	4-SCF ₃
CF ₃	2-SOCF ₃	CF ₃	3-SOCF ₃	CF ₃	4-SOCF ₃
CF ₃	2-SO ₂ CF ₃	CF ₃	3-SO ₂ CF ₃	CF ₃	4-SO ₂ CF ₃
CF ₃	2-SCF ₂ H	CF ₃	3-SCF ₂ H	CF ₃	4-SCF ₂ H
CF ₃	2-SOCF ₂ H	CF ₃	3-SOCF ₂ H	CF ₃	4-SOCF ₂ H
CF ₃	2-SO₂CF2H	CF ₃	3-SO₂CF ₂ H	CF ₃	4-SO₂CF2H
ocf ₂ H	2-CF ₃	OCF ₂ H	3-CF ₃	OCF ₂ H	4-CF ₃
OCF ₂ H	2-OCF ₃	осғ ₂ н	3-OCF ₃	OCF ₂ H	4-OCF ₃
OCF ₂ H	2-OCF ₂ H	OCF ₂ H	3-OCF ₂ H	OCF ₂ H	4-OCF ₂ H
ocf ₂ H	2-OCF ₂ CF ₂ H	OCF ₂ H	3-OCF ₂ CF ₂ H	ocf ₂ H	4-OCF ₂ CF ₂ H
ocf ₂ H	2-OCH ₂ CF ₃	OCF ₂ H	3-OCH ₂ CF ₃	OCF ₂ H	4-OCH ₂ CF ₃

-4	6.	-1	s. 1	-1	. - 5 .
<u>R</u> 4	(<u>R</u> 5) _m	<u>R</u> 4	(R ⁵) _m	<u>R</u> ⁴	(<u>R⁵)_m</u>
OCF ₂ H	2-SCF ₃	OCF ₂ H	3-SCF ₃	OCF ₂ H	4-SCF ₃
OCF ₂ H	2-SOCF ₃	OCF ₂ H	3-SOCF ₃	OCF ₂ H	4-SOCF ₃
OCF ₂ H	2-SO ₂ CF ₃	OCF ₂ H	3-SO ₂ CF ₃	OCF ₂ H	4-SO ₂ CF ₃
OCF ₂ H	2-SCF ₂ H	OCF ₂ H	3-SCF ₂ H	OCF ₂ H	4-SCF ₂ H
OCF ₂ H	2-SOCF ₂ H	OCF ₂ H	3-SOCF ₂ H	ocf ₂ H	4-SOCF ₂ H
OCF ₂ H	2-SO₂CF ₂ H	OCF ₂ H	3-SO₂CF ₂ H	ocf ₂ H	4-SO₂CF ₂ H
Me	2-Me-4-CF ₃	F	2-Me-4-CF ₃	Cl	2-Me-4-CF ₃
Me	2-Me-4-OCF ₃	F	2-Me-4-OCF ₃	CI	2-Me-4-OCF ₃
Me	2-Me-4-OCF ₂ H	F	2-Me-4-OCF ₂ H	CI	2-Me-4-OCF ₂ H
Me	2-Me-4-OCH ₂ CF ₃	F	2-Me-4-OCH ₂ CF ₃	Cl	2-Me-4-OCH ₂ CF ₃
Me	2-Me-4-SCF ₃	F	2-Me-4-SCF ₃	Cl	2-Me-4-SCF ₃
Me	2-Me-4-SOCF ₃	F	2-Me-4-SOCF ₃	Cl	2-Me-4-SOCF ₃
Me	2-Me-4-SO ₂ CF ₃	F	2-Me-4-SO ₂ CF ₃	CI	2-Me-4-SO ₂ CF ₃
Me	2-Me-4-SCF ₂ H	F	2-Me-4-SCF ₂ H	Cl	2-Me-4-SCF ₂ H
Me	2-Me-4-SOCF ₂ H	F	2-Me-4-SOCF ₂ H	Cl .	2-Me-4-SOCF ₂ H
Me	2-Me-4-SO₂CF ₂ H	F	2-Me-4-SO₂CF ₂ H	Cl	2-Me-4-SO ₂ CF ₂ H
Br	2-Me-4-CF ₃	1	2-Me-4-CF ₃	OMe	2-Me-4-CF ₃
Br	2-Me-4-OCF ₃	I	2-Me-4-OCF ₃	OMe	2-Me-4-OCF ₃
Br	2-Me-4-OCF ₂ H	1	2-Me-4-OCF ₂ H	OMe	2-Me-4-OCF ₂ H
Br	2-Me-4-OCH ₂ CF ₃	I	2-Me-4-OCH ₂ CF ₃	OMe	2-Me-4-OCH ₂ CF ₃
Br	2-Me-4-SCF ₃	1	2-Me-4-SCF ₃	OMe	2-Me-4-SCF ₃
Br	2-Me-4-SOCF ₃	I	2-Me-4-SOCF ₃	OMe	2-Me-4-SOCF ₃
Br	2-Me-4-SO ₂ CF ₃	I	2-Me-4-SO ₂ CF ₃	OMe	2-Me-4-SO ₂ CF ₃
Br	2-Me-4-SCF ₂ H	ī	2-Me-4-SCF ₂ H	OMe	2-Me-4-SCF ₂ H
Вг	2-Me-4-SOCF ₂ H	1	2-Me-4-SOCF ₂ H	ОМе	2-Me-4-SOCF ₂ H
Br	2-Me-4-SO₂CF ₂ H	I	2-Me-4-SO₂CF ₂ H	ОМе	2-Me-4-SO ₂ CF ₂ H
CF ₃	2-Me-4-CF ₃	NO ₂	2-Me-4-CF ₃	SMe	2-Me-4-CF ₃
CF ₃	2-Me-4-OCF ₃	NO ₂	2-Me-4-OCF ₃	SMe	2-Me-4-OCF ₃
CF ₃	2-Me-4-OCF ₂ H	NO ₂	2-Me-4-OCF ₂ H	SMe	2-Me-4-OCF ₂ H
CF ₃	2-Me-4-OCH ₂ CF ₃	NO ₂	2-Me-4-OCH ₂ CF ₃	SMe	2-Me-4-OCH ₂ CF ₃
CF ₃	2-Me-4-SCF ₃	NO ₂	2-Me-4-SCF ₃	SMe	2-Me-4-SCF ₃
CF ₃	2-Me-4-SOCF ₃	NO ₂	2-Me-4-SOCF ₃	SMe	2-Me-4-SOCF ₃
CF ₃	2-Me-4-SO ₂ CF ₃	NO ₂	2-Me-4-SO ₂ CF ₃	SMe	2-Me-4-SO ₂ CF ₃
CF ₃	2-Me-4-SCF ₂ H	NO ₂	2-Me-4-SCF ₂ H	SMe	2-Me-4-SCF ₂ H
CF ₃	2-Me-4-SOCF ₂ H	NO ₂	2-Me-4-SOCF ₂ H	SMe	2-Me-4-SOCF ₂ H
CF ₃	2-Me-4-SO ₂ CF ₂ H	NO ₂	2-Me-4-SO₂CF ₂ H	SMe	2-Me-4-SO ₂ CF ₂ H

Table 9

$$\mathbb{R}^4$$
 \mathbb{R}^5 _m

<u>R</u> 4	(R ⁵) _m	<u>R</u> 4	(<u>R⁵)</u> m	<u>R</u> 4	(R ⁵) _m
Me	2-CF ₃	Me	3-CF ₃	Me	4-CF ₃
Me	2-OCF ₃	Me	3-OCF ₃	Me	4-OCF ₃
Me	2-OCF ₂ H	Me	3-OCF ₂ H	Me	4-0CF ₂ H
Me	2-OCF ₂ CF ₂ H	Me	3-OCF ₂ CF ₂ H	Me	4-OCF ₂ CF ₂ H
Me	2-OCH ₂ CF ₃	Me	3-OCH ₂ CF ₃	Me	4-OCH ₂ CF ₃
Me	2-SCF ₃	Me	3-SCF ₃	Me	4-SCF ₃
Me	2-SOCF ₃	Me	3-SOCF ₃	Me	4-SOCF ₃
Me	2-SO ₂ CF ₃	Me	3-SO ₂ CF ₃	Me	4-SO ₂ CF ₃
Me	2-SCF ₂ H	Ме	3-SCF ₂ H	Me	4-SCF ₂ H
Me	2-SOCF ₂ H	Me	3-SOCF ₂ H	Me	4-SOCF ₂ H
Me	2-SO₂CF2H	Me	3-SO ₂ CF ₂ H	Me	4-SO₂CF2H
Cl	2-CF ₃	CI	3-CF ₃	Cl	4-CF ₃
Cl	2-OCF ₃	CI	3-OCF ₃	CI	4-OCF ₃
Cl	2-OCF ₂ H	CI	3-OCF ₂ H	CI	4-OCF ₂ H
Cl	2-OCF ₂ CF ₂ H	Cl	3-OCF ₂ CF ₂ H	CI	4-OCF ₂ CF ₂ H
Cl	2-OCH ₂ CF ₃	Cl	3-OCH ₂ CF ₃	CI	4-OCH ₂ CF ₃
Cl	2-SCF ₃	CI	3-SCF ₃	CI	4-SCF ₃
Cl	2-SOCF ₃	CI	3-SOCF ₃	CI	4-SOCF ₃
Cl	2-SO ₂ CF ₃	CI	3-SO ₂ CF ₃	Cl	4-SO ₂ CF ₃
Cl	2-SCF ₂ H	CI	3-SCF ₂ H	CI	4-SCF ₂ H
Cl	2-SOCF ₂ H	CI	3-SOCF ₂ H	Cl	4-SOCF ₂ H
Cl	2-SO₂CF2H	CI	3-SO ₂ CF ₂ H	Cl	4-SO₂CF2H
F	2-CF ₃	F	3-CF ₃	F	4-CF ₃
F	2-OCF ₃	F	3-OCF ₃	F	4-OCF ₃
F	2-OCF ₂ H	F	3-OCF ₂ H	F	4-OCF ₂ H
F	2-OCF2CF2H	F	3-OCF ₂ CF ₂ H	F	4-OCF ₂ CF ₂ H
F	2-OCH ₂ CF ₃	F	3-OCH ₂ CF ₃	F	4-OCH ₂ CF ₃

R ⁴	(R ⁵) _m	<u>R</u> 4	(R ⁵) _m	<u>R</u> 4	(<u>R⁵)</u> m
F	2-SCF ₃	F	3-SCF ₃	F	4-SCF ₃
F	2-SOCF ₃	F	3-SOCF ₃	F	4-SOCF ₃
F	2-SO ₂ CF ₃	F	3-SO ₂ CF ₃	F	4-SO ₂ CF ₃
F	2-SCF ₂ H	F	3-SCF ₂ H	F	4-SCF ₂ H
F	2-SOCF ₂ H	F	3-SOCF ₂ H	F	4-SOCF ₂ H
F	2-SO ₂ CF ₂ H	F	3-SO₂CF ₂ H	F	4-SO₂CF2H
Br	2-CF ₃	Br	3-CF ₃	Br	4-CF3
Br	2-OCF ₃	Br	3-OCF ₃	Br	4-OCF ₃
Br	2-OCF ₂ H	Br	3-OCF ₂ H	Br	4-OCF ₂ H
Br	2-OCF ₂ CF ₂ H	Br	3-OCF ₂ CF ₂ H	Br	4-OCF ₂ CF ₂ H
Br	2-OCH ₂ CF ₃	Br	3-OCH ₂ CF ₃	Br	4-OCH ₂ CF ₃
Br	2-SCF ₃	Br	3-SCF ₃	Br	4-SCF ₃
Br	2-SOCF ₃	Br	3-SOCF ₃	Br	4-SOCF ₃
Br	2-SO ₂ CF ₃	Br	3-SO ₂ CF ₃	Br	4-SO ₂ CF ₃
Br	2-SCF ₂ H	Br	3-SCF ₂ H	Br	4-SCF ₂ H
Br	2-SOCF ₂ H	Br	3-SOCF ₂ H	Br	4-SOCF ₂ H
Br	2-SO₂CF ₂ H	Br	3-SO ₂ CF ₂ H	Br	4-SO ₂ CF ₂ H
I	2-CF ₃	1	3-CF ₃	ı	4-CF ₃
I	2-OCF ₃	I	3-OCF ₃	I	4-OCF ₃
1	2-OCF ₂ H	I	3-OCF ₂ H	ı	4-OCF ₂ H
1	2-OCF ₂ CF ₂ H	Ι.	3-OCF ₂ CF ₂ H	I	4-OCF ₂ CF ₂ H
I	2-OCH ₂ CF ₃	I	3-OCH ₂ CF ₃	1	4-OCH ₂ CF ₃
I	2-SCF ₃	I	3-SCF ₃	1	4-SCF ₃
I	2-SOCF ₃	I	3-SOCF ₃	I	4-SOCF ₃
I	2-SO ₂ CF ₃	1	3-SO ₂ CF ₃	1	4-SO ₂ CF ₃
I	2-SCF ₂ H	1	3-SCF ₂ H	I	4-SCF ₂ H
I	2-SOCF ₂ H	I	3-SOCF ₂ H	I	4-SOCF ₂ H
I	2-SO ₂ CF ₂ H	1	3-SO₂CF ₂ H	1	4-SO ₂ CF ₂ H
OMe	2-CF ₃	OMe	3-CF ₃	OMe	4-CF ₃
OMe	2-OCF ₃	OMe	3-OCF ₃	OMe	4-OCF ₃
OMe	2-OCF ₂ H	ОМе	3-OCF ₂ H	OMe	4-OCF ₂ H
OMe	2-OCF ₂ CF ₂ H	ОМе	3-OCF ₂ CF ₂ H	OMe	4-OCF ₂ CF ₂ H
OMe	2-OCH ₂ CF ₃	OMe	3-OCH ₂ CF ₃	OMe	4-OCH ₂ CF ₃
ОМе	2-SCF ₃	ОМе	3-SCF ₃	OMe	4-SCF ₃
OMe	2-SOCF ₃	ОМе	3-SOCF ₃	OMe	4-SOCF ₃
ОМе	2-SO ₂ CF ₃	OMe	3-SO ₂ CF ₃	OMe	4-SO ₂ CF ₃
OMe	2-SCF ₂ H	ОМе	3-SCF ₂ H	OMe	4-SCF ₂ H

			1		
<u>R</u> 4	(R ⁵) _m	<u>R</u> 4	(R ⁵) _m	<u>R</u> 4	$(R^5)_{\underline{m}}$
OMe	2-SOCF ₂ H	OMe	3-SOCF ₂ H	OMe	4-SOCF ₂ H
OMe	2-SO₂CF2H	OMe	3-SO₂CF ₂ H	OMe	4-SO ₂ CF ₂ H
CF ₃	2-CF ₃	CF ₃	3-CF ₃	CF ₃	4-CF ₃
CF ₃	2-OCF ₃	CF ₃	3-OCF ₃	CF ₃	4-OCF ₃
CF ₃	2-OCF ₂ H	CF ₃	3-OCF ₂ H	CF ₃	4-OCF ₂ H
CF ₃	2-OCF ₂ CF ₂ H	CF ₃	3-OCF ₂ CF ₂ H	CF ₃	4-OCF ₂ CF ₂ H
CF ₃	2-OCH ₂ CF ₃	CF ₃	3-OCH ₂ CF ₃	CF ₃	4-OCH ₂ CF ₃
CF ₃	2-SCF ₃	CF ₃	3-SCF ₃	CF ₃	4-SCF ₃
CF ₃	2-SOCF ₃	CF ₃	3-SOCF ₃	CF ₃	4-SOCF ₃
CF ₃	2-SO ₂ CF ₃	CF ₃	3-SO ₂ CF ₃	CF ₃	4-SO ₂ CF ₃
CF ₃	2-SCF ₂ H	CF ₃	3-SCF ₂ H	CF ₃	4-SCF ₂ H
CF ₃	2-SOCF ₂ H	CF ₃	3-SOCF ₂ H	CF ₃	4-SOCF ₂ H
CF ₃	2-SO₂CF ₂ H	CF ₃	3-SO₂CF ₂ H	CF ₃	4-SO₂CF2H
OCF ₂ H	2-CF ₃	ocf ₂ H	3-CF ₃	OCF ₂ H	4-CF ₃
OCF ₂ H	2-OCF ₃	ocf ₂ H	3-OCF ₃	OCF ₂ H	4-OCF ₃
OCF ₂ H	2-OCF ₂ H	OCF ₂ H	3-OCF ₂ H	ocf ₂ H	4-OCF ₂ H
OCF ₂ H	2-OCF ₂ CF ₂ H	ocf ₂ H	3-OCF ₂ CF ₂ H	OCF ₂ H	4-OCF ₂ CF ₂ H
OCF ₂ H	2-OCH ₂ CF ₃	OCF ₂ H	3-OCH ₂ CF ₃	OCF ₂ H	4-OCH ₂ CF ₃
OCF ₂ H	2-SCF ₃	OCF ₂ H	3-SCF ₃	OCF ₂ H	4-SCF ₃
OCF ₂ H	2-SOCF ₃	ocf ₂ H	3-SOCF ₃	OCF ₂ H	4-SOCF ₃
OCF ₂ H	2-SO ₂ CF ₃	OCF ₂ H	3-SO ₂ CF ₃	ocf ₂ H	4-SO ₂ CF ₃
OCF ₂ H	2-SCF ₂ H	OCF ₂ H	3-SCF ₂ H	OCF ₂ H	4-SCF ₂ H
OCF ₂ H	2-SOCF ₂ H	ocf ₂ H	3-SOCF ₂ H	ocf ₂ H	4-SOCF ₂ H
OCF ₂ H	2-SO₂CF ₂ H	OCF ₂ H	3-SO₂CF ₂ H	ocf ₂ H	4-SO₂CF2H
Me	2-Me-4-CF ₃	F	2-Me-4-CF ₃	Cl	2-Me-4-CF ₃
Me	2-Me-4-OCF ₃	F	2-Me-4-OCF ₃	Cl .	2-Me-4-OCF ₃
Me	2-Me-4-OCF ₂ H	F	2-Me-4-OCF ₂ H	Cl	2-Me-4-OCF ₂ H
Me	2-Me-4-OCH ₂ CF ₃	F	2-Me-4-OCH ₂ CF ₃	Cl	2-Me-4-OCH ₂ CF ₃
Me	2-Me-4-SCF ₃	F	2-Me-4-SCF ₃	Cl	2-Me-4-SCF ₃
Me	2-Me-4-SOCF ₃	F	2-Me-4-SOCF ₃	Cl	2-Me-4-SOCF ₃
Me	2-Me-4-SO ₂ CF ₃	F	2-Me-4-SO ₂ CF ₃	Cl	2-Me-4-SO ₂ CF ₃
Me	2-Me-4-SCF ₂ H	F ·	2-Me-4-SCF ₂ H	Cl	2-Me-4-SCF ₂ H
Me	2-Me-4-SOCF ₂ H	F	2-Me-4-SOCF ₂ H	Cl	2-Me-4-SOCF ₂ H
Me	2-Me-4-SO₂CF ₂ H	F	2-Me-4-SO ₂ CF ₂ H	CÌ	2-Me-4-SO ₂ CF ₂ H
Br	2-Me-4-CF ₃	1	2-Me-4-CF ₃	OMe	2-Me-4-CF ₃
Br	2-Me-4-OCF ₃	I	2-Me-4-OCF ₃	OMe	2-Me-4-OCF ₃
Br	2-Me-4-OCF ₂ H	I	2-Me-4-OCF ₂ H	OMe	2-Me-4-OCF ₂ H

<u>R</u> 4	(R ⁵) _m	<u>R</u> 4	(<u>R⁵)_m</u>	<u>R</u> ⁴	(R ⁵) _m
Br	2-Me-4-OCH ₂ CF ₃	I	2-Me-4-OCH ₂ CF ₃	OMe	2-Me-4-OCH ₂ CF ₃
Br	2-Me-4-SCF ₃	1	2-Me-4-SCF ₃	OMe	2-Me-4-SCF ₃
Br	2-Me-4-SOCF ₃	1	2-Me-4-SOCF ₃	OMe	2-Me-4-SOCF ₃
Br	2-Me-4-SO ₂ CF ₃	I	2-Me-4-SO ₂ CF ₃	OMe	2-Me-4-SO ₂ CF ₃
Br	2-Me-4-SCF ₂ H	I	2-Me-4-SCF ₂ H	OMe	2-Me-4-SCF ₂ H
Br	2-Me-4-SOCF ₂ H	I	2-Me-4-SOCF ₂ H	OMe	2-Me-4-SOCF ₂ H
Br	2-Me-4-SO₂CF ₂ H	1	2-Me-4-SO₂CF ₂ H	OMe	2-Me-4-SO ₂ CF ₂ H
CF ₃	2-Me-4-CF ₃	NO ₂	2-Me-4-CF ₃	SMe	2-Me-4-CF ₃
CF ₃	2-Me-4-OCF ₃	NO_2	2-Me-4-OCF ₃	SMe	2-Me-4-OCF ₃
CF ₃	2-Me-4-OCF ₂ H	NO_2	2-Me-4-OCF ₂ H	SMe	2-Me-4-OCF ₂ H
CF ₃	2-Me-4-OCH ₂ CF ₃	NO ₂	2-Me-4-OCH ₂ CF ₃	SMe	2-Me-4-OCH ₂ CF ₃
CF ₃	2-Me-4-SCF ₃	NO_2	2-Me-4-SCF ₃	SMe	2-Me-4-SCF ₃
CF ₃	2-Me-4-SOCF ₃	NO ₂	2-Me-4-SOCF ₃	SMe	2-Me-4-SOCF ₃
CF ₃	2-Me-4-SO ₂ CF ₃	NO_2	2-Me-4-SO ₂ CF ₃	SMe	2-Me-4-SO ₂ CF ₃
CF ₃	2-Me-4-SCF ₂ H	NO_2	2-Me-4-SCF ₂ H	SMe	2-Me-4-SCF ₂ H
CF ₃	2-Me-4-SOCF ₂ H	NO_2	2-Me-4-SOCF ₂ H	SMe	2-Me-4-SOCF ₂ H
CF ₃	2-Me-4-SO₂CF ₂ H	NO_2	2-Me-4-SO₂CF ₂ H	SMe	2-Me-4-SO ₂ CF ₂ H

Table 10

<u>R</u> 4	(R ⁵) _m	<u>R</u> ⁴	(<u>R⁵)m</u>	<u>R</u> 4	$(R^5)_{\underline{m}}$
Me	2-CF ₃	Me	3-CF ₃	Me	4-CF ₃
Me	2-OCF ₃	Me	3-OCF ₃	Me	4-OCF ₃
Me	2-OCF ₂ H	Me	3-OCF ₂ H	Me	4-OCF ₂ H
Me	2-OCF ₂ CF ₂ H	Me	3-OCF ₂ CF ₂ H	Me	4-OCF ₂ CF ₂ H
Me	2-OCH ₂ CF ₃	Me	3-OCH ₂ CF ₃	Me	4-OCH ₂ CF ₃
Me	2-SCF ₃	Me	3-SCF ₃	Me	4-SCF ₃
Me	2-SOCF ₃	Me	3-SOCF ₃	Me	4-SOCF ₃
Me	2-SO ₂ CF ₃	Me	3-SO ₂ CF ₃	Me	4-SO ₂ CF ₃

WO 02/070483

PCT/US02/06582

<u>R</u> 4	(R ⁵) _m	<u>R</u> 4	(R ⁵) _m	<u>R</u> 4	(R ⁵) _m
Me	2-SCF ₂ H	Me	3-SCF ₂ H	Me	4-SCF ₂ H
Me	2-SOCF ₂ H	Me	3-SOCF ₂ H	Me	4-SOCF ₂ H
Me	2-SO ₂ CF ₂ H	Me	3-\$O₂CF ₂ H	Me	4-SO₂CF ₂ H
Cl	2-CF ₃	Cl	3-CF ₃	Cl	4-CF ₃
Cl	2-OCF ₃	Cl	3-OCF ₃	Cl	4-OCF ₃
CI	2-OCF ₂ H	Cl	3-OCF ₂ H	Cl	4-OCF ₂ H
Cl	2-OCF ₂ CF ₂ H	Cl	3-OCF ₂ CF ₂ H	Cl	4-OCF ₂ CF ₂ H
CI	2-OCH ₂ CF ₃	Cl	3-OCH ₂ CF ₃	Cl	4-OCH ₂ CF ₃
Cl	2-SCF ₃	Cl	3-SCF ₃	Cl	4-SCF ₃
Cl	2-SOCF ₃	Cl	3-SOCF ₃	Cl	4-SOCF ₃
CI	2-SO ₂ CF ₃	Cl	3-SO ₂ CF ₃	Cl	4-SO ₂ CF ₃
Cl	2-SCF ₂ H	Cl	3-SCF ₂ H	Cl	4-SCF ₂ H
Cl	2-SOCF ₂ H	Cl	3-SOCF ₂ H	CI	4-SOCF ₂ H
Cl	2-SO₂CF ₂ H	Cl	3-SO₂CF2H	Cl	4-SO₂CF2H
· F	2-CF ₃	F	3-CF ₃	F	4-CF ₃
F	2-OCF ₃	F	3-OCF ₃	F	4-OCF ₃
F	2-OCF ₂ H	F	3-OCF ₂ H	F	4-OCF ₂ H
F	2-OCF ₂ CF ₂ H	F	3-OCF ₂ CF ₂ H	F	4-OCF ₂ CF ₂ H
F	2-OCH ₂ CF ₃	F	3-OCH ₂ CF ₃	F	4-OCH ₂ CF ₃
F	2-SCF ₃	F	3-SCF ₃	F	4-SCF ₃
F	2-SOCF ₃	F	3-SOCF ₃	F	4-SOCF ₃
F	2-SO ₂ CF ₃	F	3-SO ₂ CF ₃	F	4-SO ₂ CF ₃
F	2-SCF ₂ H	F	3-SCF ₂ H	F	4-SCF ₂ H
F	2-SOCF ₂ H	F	3-SOCF ₂ H	F	4-SOCF ₂ H
F	2-SO ₂ CF ₂ H	F	3-SO₂CF ₂ H	F	4-SO₂CF2H
Br	2-CF ₃	Br	3-CF ₃	Вг	4-CF ₃
Br	2-OCF ₃	Br	3-OCF ₃	Br	4-OCF ₃
Br	2-OCF ₂ H	Br	3-OCF ₂ H	Br	4-OCF ₂ H
Br	2-OCF ₂ CF ₂ H	Br	3-OCF ₂ CF ₂ H	Br	4-OCF ₂ CF ₂ H
Br	2-OCH ₂ CF ₃	Br	3-OCH ₂ CF ₃	Br	4-OCH ₂ CF ₃
Br	2-SCF ₃	Br	3-SCF ₃	Br	4-SCF ₃
Br	2-SOCF ₃	Br	3-SOCF ₃	Br	4-SOCF ₃
Br	2-SO ₂ CF ₃	Br	3-SO ₂ CF ₃	Br	4-SO ₂ CF ₃
Br	2-SCF ₂ H	Br	3-SCF ₂ H	Br	4-SCF ₂ H
Br	2-SOCF ₂ H	Br	3-SOCF ₂ H	Br	4-SOCF ₂ H
Br	2-SO₂CF ₂ H	Br	3-SO₂CF ₂ H	Br	4-SO₂CF2H
I	2-CF ₃	1	3-CF ₃	I	4-CF ₃

<u>R</u> 4	(R ⁵) _m	<u>R</u> 4	(<u>R⁵)m</u>	<u>R</u> 4	$(R^5)_{\underline{m}}$
I	2-OCF ₃	I	3-OCF ₃	I	4-OCF ₃
I	2-OCF ₂ H	1	3-OCF ₂ H	1	4-OCF ₂ H
1	2-OCF ₂ CF ₂ H	I	3-OCF ₂ CF ₂ H	I	4-OCF2CF2H
I	2-OCH ₂ CF ₃	I	3-OCH ₂ CF ₃	I	4-OCH ₂ CF ₃
1	2-SCF ₃	1	3-SCF ₃	I	4-SCF ₃
1	2-SOCF ₃	1	3-SOCF ₃	1	4-SOCF ₃
I	2-SO ₂ CF ₃	I	3-SO ₂ CF ₃	I	4-SO ₂ CF ₃
1	2-SCF ₂ H	I	3-SCF ₂ H	I	4-SCF ₂ H
I	2-SOCF ₂ H	I	3-SOCF ₂ H	I	4-SOCF ₂ H
I	2-SO₂CF2H	\mathbf{I}_{\perp}	3-SO₂CF ₂ H	I	4-SO₂CF2H
OMe	2-CF ₃	OMe	3-CF ₃	ОМе	4-CF ₃
OMe	2-OCF ₃	OMe	3-OCF ₃	ОМе	4-OCF ₃
OMe	2-OCF ₂ H	OMe	3-OCF ₂ H	OMe	4-OCF ₂ H
OMe	2-OCF ₂ CF ₂ H	OMe	3-OCF ₂ CF ₂ H	OMe	4-OCF ₂ CF ₂ H
OMe	2-OCH ₂ CF ₃	OMe	3-OCH ₂ CF ₃	OMe	4-OCH ₂ CF ₃
OMe	2-SCF ₃	OMe	3-SCF ₃	OMe	4-SCF ₃
OMe	2-SOCF ₃	OMe	3-SOCF ₃	OMe	4-SOCF ₃
OMe	2-SO ₂ CF ₃	OMe	3-SO ₂ CF ₃	OMe	4-SO ₂ CF ₃
OMe	2-SCF ₂ H	OMe	3-SCF ₂ H	OMe	4-SCF ₂ H
OMe	2-SOCF ₂ H	OMe	3-SOCF ₂ H	OMe	4-SOCF ₂ H
OMe	2-SO₂CF2H	OMe	3-SO₂CF2H	OMe	4-SO ₂ CF ₂ H
CF ₃	2-CF ₃	CF ₃	3-CF ₃	CF ₃	4-CF ₃
CF ₃	2-OCF ₃	CF ₃	3-OCF ₃	CF ₃	4-OCF ₃
CF ₃	2-OCF ₂ H	CF ₃	3-OCF ₂ H	CF ₃	4-OCF ₂ H
CF ₃	2-OCF ₂ CF ₂ H	CF ₃	3-OCF ₂ CF ₂ H	CF ₃	4-OCF ₂ CF ₂ H
CF ₃	2-OCH ₂ CF ₃	CF ₃	3-OCH ₂ CF ₃	CF ₃	4-OCH ₂ CF ₃
CF ₃	2-SCF ₃	CF ₃	3-SCF ₃	CF ₃	4-SCF ₃
CF ₃	2-SOCF ₃	CF ₃	3-SOCF ₃	CF ₃	4-SOCF ₃
CF ₃	2-SO ₂ CF ₃	CF ₃	3-SO ₂ CF ₃	CF ₃	4-SO ₂ CF ₃
CF ₃	2-SCF ₂ H	CF ₃	3-SCF ₂ H	CF ₃	4-SCF ₂ H
CF ₃	2-SOCF ₂ H	CF ₃	3-SOCF ₂ H	CF ₃	4-SOCF ₂ H
CF ₃	2-SO₂CF2H	CF ₃	3-SO₂CF ₂ H	CF ₃	4-SO ₂ CF ₂ H
OCF ₂ H	2-CF ₃	OCF ₂ H	3-CF ₃	OCF ₂ H	4-CF ₃
OCF ₂ H	2-OCF ₃	OCF ₂ H	3-OCF ₃	OCF ₂ H	4-OCF ₃
OCF ₂ H	2-OCF ₂ H	OCF ₂ H	3-OCF ₂ H	OCF ₂ H	
OCF ₂ H	2-OCF ₂ CF ₂ H	OCF ₂ H	3-OCF ₂ CF ₂ H	OCF ₂ H	
OCF ₂ H	2-OCH ₂ CF ₃	OCF ₂ H	3-OCH ₂ CF ₃	OCF ₂ H	4-OCH ₂ CF ₃

			•		
<u>R</u> 4	(<u>R⁵)</u> m	<u>R</u> 4	(R ⁵) _m	<u>R</u> 4	(<u>R⁵)_m</u>
OCF ₂ H	2-SCF ₃	ocf ₂ H	3-SCF ₃	ocf ₂ H	4-SCF ₃
OCF ₂ H	2-SOCF ₃	ocf ₂ H	3-SOCF ₃	ocf ₂ H	4-SOCF ₃
OCF ₂ H	2-SO ₂ CF ₃	OCF ₂ H	3-SO ₂ CF ₃	ocf ₂ H	4-SO ₂ CF ₃
OCF ₂ H	2-SCF ₂ H	OCF ₂ H	3-SCF ₂ H	ocf ₂ H	4-SCF ₂ H
OCF ₂ H	2-SOCF ₂ H	OCF ₂ H	3-SOCF ₂ H	OCF ₂ H	4-SOCF ₂ H
OCF ₂ H	2-SO₂CF ₂ H	OCF ₂ H	3-SO₂CF2H	ocf ₂ H	4-SO₂CF2H
Me	2-Me-4-CF ₃	F	2-Me-4-CF ₃	Cl	2-Me-4-CF ₃
Me	2-Me-4-OCF ₃	F	2-Me-4-OCF ₃	Cl	2-Me-4-OCF ₃
Me	2-Me-4-OCF ₂ H	F	2-Me-4-OCF ₂ H	Cl	2-Me-4-OCF ₂ H
Me	2-Me-4-OCH ₂ CF ₃	F	2-Me-4-OCH ₂ CF ₃	Cl	2-Me-4-OCH ₂ CF ₃
Me	2-Me-4-SCF ₃	F	2-Me-4-SCF ₃	CI	2-Me-4-SCF ₃
Me	2-Me-4-SOCF ₃	F	2-Me-4-SOCF ₃	Cl	2-Me-4-SOCF ₃
Me	2-Me-4-SO ₂ CF ₃	F	2-Me-4-SO ₂ CF ₃	Cl	2-Me-4-SO ₂ CF ₃
Me	2-Me-4-SCF ₂ H	F	2-Me-4-SCF ₂ H	Cl	2-Me-4-SCF ₂ H
Me	2-Me-4-SOCF ₂ H	F	2-Me-4-SOCF ₂ H	Cl	2-Me-4-SOCF ₂ H
Me	2-Me-4-SO₂CF ₂ H	F	2-Me-4-SO₂CF ₂ H	Ci	2-Me-4-SO ₂ CF ₂ H
Br	2-Me-4-CF ₃	I	2-Me-4-CF ₃	OMe	2-Me-4-CF ₃
Br	2-Me-4-OCF ₃	I	2-Me-4-OCF ₃	OMe	2-Me-4-OCF ₃
,Br	2-Me-4-OCF ₂ H	I	2-Me-4-OCF ₂ H	OMe	2-Me-4-OCF ₂ H
Br	2-Me-4-OCH ₂ CF ₃	I	2-Me-4-OCH ₂ CF ₃	OMe	2-Me-4-OCH ₂ CF ₃
Br	2-Me-4-SCF ₃	I	2-Me-4-SCF ₃	OMe	2-Me-4-SCF ₃
Br	2-Me-4-SOCF ₃	I	2-Me-4-SOCF ₃	ОМе	2-Me-4-SOCF ₃
Br	2-Me-4-SO ₂ CF ₃	I	2-Me-4-SO ₂ CF ₃	OMe	2-Me-4-SO ₂ CF ₃
Br	2-Me-4-SCF ₂ H	I	2-Me-4-SCF ₂ H	ОМе	2-Me-4-SCF ₂ H
Br	2-Me-4-SOCF ₂ H	I	2-Me-4-SOCF ₂ H	OMe	2-Me-4-SOCF ₂ H
Br	2-Me-4-SO₂CF ₂ H	I	2-Me-4-SO₂CF ₂ H	OMe	2-Me-4-SO ₂ CF ₂ H
CF ₃	2-Me-4-CF ₃	NO ₂	2-Me-4-CF ₃	SMe	2-Me-4-CF ₃
CF ₃	2-Me-4-OCF ₃	NO ₂	2-Me-4-OCF ₃	SMe	2-Me-4-OCF ₃
CF ₃	2-Me-4-OCF ₂ H	NO ₂	2-Me-4-OCF ₂ H	SMe	2-Me-4-OCF ₂ H
CF ₃	2-Me-4-OCH ₂ CF ₃	NO ₂	2-Me-4-OCH ₂ CF ₃	SMe	2-Me-4-OCH ₂ CF ₃
CF ₃	2-Me-4-SCF ₃	NO ₂	2-Me-4-SCF ₃	SMe	2-Me-4-SCF ₃
CF ₃	2-Me-4-SOCF ₃	NO ₂	2-Me-4-SOCF ₃	SMe	2-Me-4-SOCF ₃
.CF ₃	2-Me-4-SO ₂ CF ₃	NO ₂	2-Me-4-SO ₂ CF ₃	SMe	2-Me-4-SO ₂ CF ₃
CF ₃	2-Me-4-SCF ₂ H	NO ₂	2-Me-4-SCF ₂ H	SMe	2-Me-4-SCF ₂ H
CF ₃	2-Me-4-SOCF ₂ H	NO ₂	2-Me-4-SOCF ₂ H	SMe	2-Me-4-SOCF ₂ H
CF ₃	2-Me-4-SO ₂ CF ₂ H	NO ₂	2-Me-4-SO ₂ CF ₂ H	SMe	2-Me-4-SO ₂ CF ₂ H

Table 11

<u>R</u> 4	(R ⁵) _m	<u>R</u> 4	(<u>R⁵)</u> m	· <u>R</u> 4	(R ⁵) _m
Me	2-CF ₃	Me	3-CF ₃	Me	4-CF ₃
Me	2-OCF ₃	Me	3-OCF ₃	Me	4-OCF ₃
Me	2-OCF ₂ H	Me	3-OCF ₂ H	Me	4-OCF ₂ H
Me	2-OCF ₂ CF ₂ H	Me	3-OCF ₂ CF ₂ H	Me	4-OCF ₂ CF ₂ H
Me ·	2-OCH ₂ CF ₃	Me	3-OCH ₂ CF ₃	Me	4-OCH ₂ CF ₃
Me	2-SCF ₃	Me	3-SCF ₃	Me	4-SCF ₃
Me	2-SOCF ₃	Me	3-SOCF ₃	Me	4-SOCF ₃
Me	2-SO ₂ CF ₃	Me	3-SO ₂ CF ₃	Me	4-SO ₂ CF ₃
Me	2-SCF ₂ H	Me	3-SCF ₂ H	Me	4-SCF ₂ H
Me	2-SOCF ₂ H	Me	3-SOCF ₂ H	Me	4-SOCF ₂ H
Me	2-SO ₂ CF ₂ H	Me	3-SO ₂ CF ₂ H	Me	4-SO₂CF ₂ H
Cl	2-CF ₃	Cl	3-CF ₃	CI	4-CF ₃
Cl	2-OCF ₃	Cl	3-OCF ₃	CI	4-OCF ₃
Cl	2-OCF ₂ H	Cl	3-OCF ₂ H	CI	4-OCF ₂ H
Cl	2-OCF ₂ CF ₂ H	Cl	3-OCF ₂ CF ₂ H	CI	4-OCF ₂ CF ₂ H
Cl	2-OCH ₂ CF ₃	Cl	3-OCH ₂ CF ₃	CI	4-OCH ₂ CF ₃
Cl	2-SCF ₃	Cl	3-SCF ₃	CI	4-SCF ₃
Cl	2-SOCF ₃	Cl	3-SOCF ₃	Cl	4-SOCF ₃
Cl	2-SO ₂ CF ₃	Cl	3-SO ₂ CF ₃	Cl	4-SO ₂ CF ₃
Cl	2-SCF ₂ H	Cl	3-SCF ₂ H	CI	4-SCF ₂ H
Cl	2-SOCF ₂ H	Cl	3-SOCF ₂ H	CI	4-SOCF ₂ H
Cl	2-SO ₂ CF ₂ H	CI	3-SO₂CF2H	CI	4-SO₂CF2H
F	2-CF ₃	F	3-CF ₃	F	4-CF ₃
F	2-OCF ₃	F	3-OCF ₃	F	4-OCF ₃
F	2-OCF ₂ H	F	3-OCF ₂ H	F	4-OCF ₂ H
F	2-OCF2CF2H	F	3-OCF ₂ CF ₂ H	F	4-OCF ₂ CF ₂ H
F	2-OCH ₂ CF ₃	F	3-OCH ₂ CF ₃	F	4-OCH ₂ CF ₃

<u>R</u> 4	(<u>R⁵)_m</u>	<u>R</u> 4	(<u>R⁵)m</u>	<u>R</u> 4	(R ⁵) _m
F	2-SCF ₃	F	3-SCF ₃	F	4-SCF ₃
F	2-SOCF ₃	F	3-SOCF ₃	F	4-SOCF ₃
F	2-SO ₂ CF ₃	F	3-SO ₂ CF ₃	F	4-SO ₂ CF ₃
F	2-SCF ₂ H	F	3-SCF ₂ H	F	4-SCF ₂ H
F	2-SOCF ₂ H	F	3-SOCF ₂ H	F	4-SOCF ₂ H
F	2-SO₂CF ₂ H	. F	3-SO₂CF2H	F	4-SO₂CF ₂ H
Br	2-CF ₃	Br	3-CF ₃	Br	4-CF ₃
Br	2-OCF ₃	Br	3-OCF ₃	Br	4-OCF ₃
Br	2-OCF ₂ H	Br	3-OCF ₂ H	Br	4-OCF ₂ H
Br	2-OCF ₂ CF ₂ H	Br	3-OCF ₂ CF ₂ H	Br	4-OCF ₂ CF ₂ H
Br	2-OCH ₂ CF ₃	Br	3-OCH ₂ CF ₃	Br	4-OCH ₂ CF ₃
Br	2-SCF ₃	Br	3-SCF ₃	Br	4-SCF ₃
Br	2-SOCF ₃	Br	3-SOCF ₃	Br	4-SOCF ₃
Br	2-SO ₂ CF ₃	Br	3-SO ₂ CF ₃	Br	4-SO ₂ CF ₃
Br	2-SCF ₂ H	Br	3-SCF ₂ H	Br	4-SCF ₂ H
Br	2-SOCF ₂ H	Br	3-SOCF ₂ H	Br	4-SOCF ₂ H
Br	2-SO ₂ CF ₂ H	Br	3-SO₂CF2H	Br	4-SO ₂ CF ₂ H
I	2-CF ₃	I	3-CF ₃	I	4-CF ₃
I	2-OCF ₃	I	3-OCF ₃	I	4-OCF ₃
I	2-OCF ₂ H	I	3-OCF ₂ H	I	4-OCF ₂ H
I	2-OCF ₂ CF ₂ H	I	3-OCF ₂ CF ₂ H	I	4-OCF ₂ CF ₂ H
I	2-OCH ₂ CF ₃	I	3-OCH ₂ CF ₃	1	4-OCH ₂ CF ₃
I	2-SCF ₃	ı	3-SCF ₃	I	4-SCF ₃
I	2-SOCF ₃	1	3-SOCF ₃	I	4-SOCF ₃
I	2-SO ₂ CF ₃	1	3-SO ₂ CF ₃	1	4-SO ₂ CF ₃
I	2-SCF ₂ H	1	3-SCF ₂ H	I	4-SCF ₂ H
I	2-SOCF ₂ H	I	3-SOCF ₂ H	I	4-SOCF ₂ H
I	2-SO₂CF2H	I	3-SO₂CF2H	1	4-SO₂CF2H
OMe	2-CF ₃	ОМе	3-CF ₃	OMe	4-CF ₃
OMe	2-OCF ₃	OMe	3-OCF ₃	OMe	4-OCF ₃
OMe	2-OCF ₂ H	ОМе	3-OCF ₂ H	OMe	4-OCF ₂ H
OMe	2-OCF2CF2H	OMe	3-OCF ₂ CF ₂ H	OMe	4-OCF ₂ CF ₂ H
ОМе	2-OCH ₂ CF ₃	OMe	3-OCH ₂ CF ₃	OMe	4-OCH ₂ CF ₃
OMe	2-SCF ₃	OMe	3-SCF ₃	OMe	4-SCF ₃
OMe	2-SOCF ₃	OMe	3-SOCF ₃	OMe	4-SOCF ₃
OMe	2-SO ₂ CF ₃	ОМе	3-SO ₂ CF ₃	OMe	4-SO ₂ CF ₃
ОМе	2-SCF ₂ H	OMe	3-SCF ₂ H	OMe	4-SCF ₂ H

<u>R</u> 4	(R ⁵) _m	<u>R</u> 4	(R ⁵) _m	<u>R</u> 4	(R ⁵) _m
OMe	2-SOCF ₂ H	OMe	3-SOCF ₂ H	OMe	4-SOCF ₂ H
ОМе	2-SO₂CF ₂ H	OMe	3-SO₂CF ₂ H	OMe	4-SO₂CF2H
CF ₃	2-CF ₃	CF ₃	3-CF ₃	CF ₃	4-CF ₃
CF ₃	2-OCF ₃	CF ₃	3-OCF ₃	CF ₃	4-OCF ₃
CF ₃	2-OCF ₂ H	CF ₃	3-OCF ₂ H	CF ₃	4-OCF ₂ H
CF ₃	2-OCF ₂ CF ₂ H	CF ₃	3-OCF ₂ CF ₂ H	CF ₃	4-OCF ₂ CF ₂ H
CF ₃	2-OCH ₂ CF ₃	CF ₃	3-OCH ₂ CF ₃	CF ₃	4-OCH ₂ CF ₃
CF ₃	2-SCF ₃	CF ₃	3-SCF ₃	CF ₃	4-SCF ₃
CF ₃	· 2-SOCF ₃	CF ₃	3-SOCF ₃	CF ₃	4-SOCF ₃
CF ₃	2-SO ₂ CF ₃	CF ₃	3-SO ₂ CF ₃	CF ₃	4-SO ₂ CF ₃
CF ₃	2-SCF ₂ H	CF ₃	3-SCF ₂ H	CF ₃	4-SCF ₂ H
CF ₃	2-SOCF ₂ H	· CF ₃	3-SOCF ₂ H	CF ₃	4-SOCF ₂ H
CF ₃	2-SO₂CF2H	CF ₃	3-SO₂CF ₂ H	CF ₃	4-SO ₂ CF ₂ H
OCF ₂ H	2-CF ₃	OCF ₂ H	3-CF ₃	OCF ₂ H	4-CF ₃
OCF ₂ H	2-OCF ₃	OCF ₂ H	3-OCF ₃	OCF ₂ H	4-OCF ₃
OCF ₂ H	2-OCF ₂ H	OCF ₂ H	3-ОСF ₂ н	OCF ₂ H	4-OCF ₂ H
OCF ₂ H	2-OCF ₂ CF ₂ H	OCF ₂ H	3-OCF ₂ CF ₂ H	OCF ₂ H	4-OCF ₂ CF ₂ H
OCF ₂ H	2-OCH ₂ CF ₃	OCF ₂ H	3-OCH ₂ CF ₃	OCF ₂ H	4-OCH ₂ CF ₃
OCF ₂ H	2-SCF ₃	OCF ₂ H	3-SCF ₃	OCF ₂ H	4-SCF ₃
OCF ₂ H	2-SOCF ₃	OCF ₂ H	3-SOCF ₃	ocf ₂ H	4-SOCF ₃
OCF ₂ H	2-SO ₂ CF ₃	ocf ₂ H	3-SO ₂ CF ₃	ocf ₂ H	4-SO ₂ CF ₃
OCF ₂ H	2-SCF ₂ H	OCF ₂ H	3-SCF ₂ H	ocf ₂ H	4-SCF ₂ H
OCF ₂ H	2-SOCF ₂ H	ocf ₂ H	3-SOCF ₂ H	OCF ₂ H	4-SOCF ₂ H
OCF ₂ H	2-SO₂CF ₂ H	OCF ₂ H	3-SO ₂ CF ₂ H	OCF ₂ H	4-SO₂CF2H
Me	2-Me-4-CF ₃	F	2-Me-4-CF ₃	Cl	2-Me-4-CF ₃
Me	2-Me-4-OCF ₃	F	2-Me-4-OCF ₃	Cl	2-Me-4-OCF ₃
Me	2-Me-4-OCF ₂ H	F	2-Me-4-OCF ₂ H	CI	2-Me-4-OCF ₂ H
Me	2-Me-4-OCH ₂ CF ₃	F	2-Me-4-OCH ₂ CF ₃	Cl	2-Me-4-OCH ₂ CF ₃
Me	2-Me-4-SCF ₃	F	2-Me-4-SCF ₃	Cl	2-Me-4-SCF ₃
Me	2-Me-4-SOCF ₃	F	2-Me-4-SOCF ₃	Cl	2-Me-4-SOCF ₃
Me	2-Me-4-SO ₂ CF ₃	F	2-Me-4-SO ₂ CF ₃	CI	2-Me-4-SO ₂ CF ₃
Me	2-Me-4-SCF ₂ H	F	2-Me-4-SCF ₂ H	Cl	2-Me-4-SCF ₂ H
Me	2-Me-4-SOCF ₂ H	F	2-Me-4-SOCF ₂ H	CI	2-Me-4-SOCF ₂ H
Me	2-Me-4-SO ₂ CF ₂ H	F	2-Me-4-SO ₂ CF ₂ H	Cl	2-Me-4-SO ₂ CF ₂ H
Br	2-Me-4-CF ₃	Ι.	2-Me-4-CF ₃	OMe	2-Me-4-CF ₃
Br	2-Me-4-OCF ₃	I	2-Me-4-OCF ₃	OMe	2-Me-4-OCF ₃
Br	2-Me-4-OCF ₂ H	I	2-Me-4-OCF ₂ H	ОМе	2-Me-4-OCF ₂ H

			_		
<u>R</u> 4	(<u>R⁵)</u> m	<u>R</u> 4	(<u>R⁵)</u> m	<u>R</u> 4	(R ⁵) _m
Br	2-Me-4-OCH ₂ CF ₃	I	2-Me-4-OCH ₂ CF ₃	OMe	2-Me-4-OCH ₂ CF ₃
Br	2-Me-4-SCF ₃	1	2-Me-4-SCF ₃	OMe	2-Me-4-SCF ₃
Br	2-Me-4-SOCF ₃	I	2-Me-4-SOCF ₃	OMe	2-Me-4-SOCF ₃
Br	2-Me-4-SO ₂ CF ₃	I	2-Me-4-SO ₂ CF ₃	OMe	2-Me-4-SO ₂ CF ₃
Br	2-Me-4-SCF ₂ H	1	2-Me-4-SCF ₂ H	OMe	2-Me-4-SCF ₂ H
Br	2-Me-4-SOCF ₂ H	I	2-Me-4-SOCF ₂ H	OMe	2-Me-4-SOCF ₂ H
Br	2-Me-4-SO₂CF ₂ H	I	2-Me-4-SO ₂ CF ₂ H	OMe	2-Me-4-SO ₂ CF ₂ H
CF ₃	2-Me-4-CF ₃	NO_2	2-Me-4-CF ₃	SMe	2-Me-4-CF ₃
CF ₃	2-Me-4-OCF ₃	NO_2	2-Me-4-OCF ₃	SMe	2-Me-4-OCF ₃
CF ₃	2-Me-4-OCF ₂ H	NO ₂	2-Me-4-OCF ₂ H	SMe	2-Me-4-OCF ₂ H
CF ₃	2-Me-4-OCH ₂ CF ₃	NO ₂	2-Me-4-OCH ₂ CF ₃	SMe	2-Me-4-OCH ₂ CF ₃
CF ₃	2-Me-4-SCF ₃	NO ₂	2-Me-4-SCF ₃	SMe	2-Me-4-SCF ₃
CF ₃	2-Me-4-SOCF ₃	NO ₂	2-Me-4-SOCF ₃	SMe	2-Me-4-SOCF ₃
CF ₃	2-Me-4-SO ₂ CF ₃	NO ₂	2-Me-4-SO ₂ CF ₃	SMe	2-Me-4-SO ₂ CF ₃
CF ₃	2-Me-4-SCF ₂ H	NO ₂	2-Me-4-SCF ₂ H	SMe	2-Me-4-SCF ₂ H
CF ₃	2-Me-4-SOCF ₂ H	NO ₂	2-Me-4-SOCF ₂ H	SMe	2-Me-4-SOCF ₂ H
CF ₃	2-Me-4-SO₂CF ₂ H	NO ₂	2-Me-4-SO ₂ CF ₂ H	SMe	2-Me-4-SO ₂ CF ₂ H

Table 12

$$\mathbb{R}^4$$
 \mathbb{R}^5)_m

<u>R</u> 4	(R ⁵) _m	<u>R</u> 4	(R ⁵) _m	<u>R</u> 4	(R ⁵) _m
Me	2-CF ₃	Me	3-CF ₃	Me	4-CF ₃
Me	2-OCF ₃	Me	3-OCF ₃	Me	4-OCF ₃
Me	2-OCF ₂ H	Me	3-OCF ₂ H	Me	4-OCF ₂ H
Me	2-OCF ₂ CF ₂ H	Me	3-OCF ₂ CF ₂ H	Me	4-OCF2CF2H
Me	2-OCH ₂ CF ₃	Me	3-OCH ₂ CF ₃	Me	4-OCH ₂ CF ₃
Me	2-SCF ₃	Me	3-SCF ₃	Me	4-SCF ₃
Me	2-SOCF ₃	Me	3-SOCF ₃	Me	4-SOCF ₃
Me	2-SO ₂ CF ₃	Me	3-SO ₂ CF ₃	Me	4-SO ₂ CF ₃

			,		
<u>R</u> 4	(R ⁵) _m	<u>R</u> 4	(R ⁵)m	<u>R</u> 4	(<u>R⁵)</u> m
Me	2-SCF ₂ H	Me	3-SCF ₂ H	Me	4-SCF ₂ H
Me	2-SOCF ₂ H	Me	3-SOCF ₂ H	Me	. 4-SOCF ₂ H
Me	2-SO₂CF ₂ H	Me	3-SO ₂ CF ₂ H	Me	4-SO ₂ CF ₂ H
Cl	2-CF ₃	Cl	3-CF ₃	Cl	4-CF ₃
CÌ	2-OCF ₃	Cl	3-OCF ₃	Cl	4-OCF ₃
Cl	2-OCF ₂ H	Cl	3-OCF ₂ H	Cl	4-OCF ₂ H
Cl	2-OCF ₂ CF ₂ H	Cl	3-OCF ₂ CF ₂ H	Cl	4-OCF ₂ CF ₂ H
Cl	2-OCH ₂ CF ₃	Cl	3-OCH ₂ CF ₃	Cl	4-OCH ₂ CF ₃
Cl	2-SCF ₃	Cl	3-SCF ₃	Cl	4-SCF ₃
Cl	2-SOCF ₃	Cl	3-SOCF ₃	Cl	4-SOCF ₃
Cl	2-SO ₂ CF ₃	Cl	3-SO ₂ CF ₃	Cl	4-SO ₂ CF ₃
CI	2-SCF ₂ H	Cl	3-SCF ₂ H	Cl	4-SCF ₂ H
Cl	2-SOCF ₂ H	Cl	3-SOCF ₂ H	CI	4-SOCF ₂ H
Cl	2-SO ₂ CF ₂ H	Cl	3-SO ₂ CF ₂ H	CI	4-SO ₂ CF ₂ H
F	2-CF ₃	F	3-CF ₃	F	4-CF ₃
F	2-OCF ₃	F	3-OCF ₃	F	4-OCF ₃
F	2-OCF ₂ H	F	3-OCF ₂ H	F	4-OCF ₂ H
F	2-OCF ₂ CF ₂ H	F	3-OCF ₂ CF ₂ H	F	4-OCF ₂ CF ₂ H
F	2-OCH ₂ CF ₃	F	3-OCH ₂ CF ₃	F	4-OCH ₂ CF ₃
F	2-SCF ₃	F	3-SCF ₃	F	4-SCF ₃
F	2-SOCF ₃	F	3-SOCF ₃	F	4-SOCF ₃
F	2-SO ₂ CF ₃	F	3-SO ₂ CF ₃	F	4-SO ₂ CF ₃
F	2-SCF ₂ H	F	3-SCF ₂ H	F	4-SCF ₂ H
F	2-SOCF ₂ H	F	3-SOCF ₂ H	F	4-SOCF ₂ H
F	2-SO ₂ CF ₂ H	F	3-SO ₂ CF ₂ H	F	4-SO ₂ CF ₂ H
Br	2-CF ₃	Br	3-CF ₃	Br	4-CF ₃
Br	2-OCF ₃	Br	3-OCF ₃	Br	4-OCF ₃
Br	2-OCF ₂ H	Br	3-OCF ₂ H	Br	4-OCF ₂ H
Br	2-OCF2CF2H	Br	3-OCF ₂ CF ₂ H	Br	4-OCF ₂ CF ₂ H
Br	2-OCH ₂ CF ₃	Br	3-OCH ₂ CF ₃	Br	4-OCH ₂ CF ₃
Br	2-SCF ₃	Br	3-SCF ₃	Br	4-SCF ₃
Br	2-SOCF ₃	Br	3-SOCF ₃	Br	4-SOCF ₃
Br	2-SO ₂ CF ₃	Br	3-SO ₂ CF ₃	Br	4-SO ₂ CF ₃
Br	2-SCF ₂ H	Br	3-SCF ₂ H	Br	4-SCF ₂ H
Br	2-SOCF ₂ H	Br	3-SOCF ₂ H	Br	4-SOCF ₂ H
Br	2-SO₂CF2H	Br	3-SO ₂ CF ₂ H	Br	4-SO ₂ CF ₂ H
I	2-CF ₃	I	3-CF ₃	I	4-CF ₃

<u>R</u> 4	(<u>R⁵)</u> m	<u>R</u> 4	(R ⁵) _m	<u>R</u> 4	$(R^5)_{\underline{m}}$
Ī	2-OCF ₃	I	3-OCF ₃	Ĭ	4-OCF ₃
· 1	2-OCF ₂ H	1	3-0CF ₂ H	I	4-OCF ₂ H
I	2-OCF ₂ CF ₂ H	I	3-OCF ₂ CF ₂ H	I	4-OCF ₂ CF ₂ H
I	2-OCH ₂ CF ₃	1	3-OCH ₂ CF ₃	I	4-OCH ₂ CF ₃
I	2-SCF ₃	1	3-SCF ₃	I	4-SCF ₃
I	2-SOCF ₃	I	3-SOCF ₃	I	4-SOCF ₃
Ī	2-SO ₂ CF ₃	I	3-\$O ₂ CF ₃	I	4-SO ₂ CF ₃
I	2-SCF ₂ H	I	3-SCF ₂ H	I	4-SCF ₂ H
I	2-SOCF ₂ H	I	3-SOCF ₂ H	I	4-SOCF ₂ H
1	2-SO₂CF ₂ H	I	3-SO ₂ CF ₂ H	I	4-SO ₂ CF ₂ H
OMe	2-CF ₃	ОМе	3-CF ₃	OMe	4-CF ₃
OMe	2-OCF ₃	OMe	3-OCF ₃	ОМе	4-OCF ₃
OMe	2-OCF ₂ H	ОМе	3-OCF ₂ H	ОМе	4-OCF ₂ H
OMe	2-OCF ₂ CF ₂ H	OMe	3-OCF ₂ CF ₂ H	OMe	4-OCF ₂ CF ₂ H
ОМе	2-OCH ₂ CF ₃	OMe	3-OCH ₂ CF ₃	OMe	4-OCH ₂ CF ₃
OMe	2-SCF ₃	OMe	3-SCF ₃	OMe -	4-SCF ₃
ОМе	2-SOCF ₃	OMe	3-SOCF ₃	OMe	4-SOCF ₃
OMe	2-SO ₂ CF ₃	ОМе	3-SO ₂ CF ₃	OMe	4-SO ₂ CF ₃
OMe	2-SCF ₂ H	ОМе	3-SCF ₂ H	OMe	4-SCF ₂ H
OMe	2-SOCF ₂ H	ОМе	3-SOCF ₂ H	OMe	4-SOCF ₂ H
OMe	2-SO₂CF2H	ОМе	3-SO ₂ CF ₂ H	OMe	4-SO ₂ CF ₂ H
CF ₃	2-CF ₃	CF ₃	3-CF ₃	CF ₃	4-CF ₃
CF ₃	2-OCF ₃	CF ₃	3-OCF ₃	CF ₃	4-OCF ₃
CF ₃	2-OCF ₂ H	CF ₃	. 3-OCF ₂ H	CF ₃	4-OCF ₂ H
CF ₃	2-OCF ₂ CF ₂ H	CF ₃	3-OCF ₂ CF ₂ H	CF ₃	4-OCF ₂ CF ₂ H
CF ₃	2-OCH ₂ CF ₃	CF ₃	3-OCH ₂ CF ₃	CF ₃	4-OCH ₂ CF ₃
CF ₃	2-SCF ₃	CF ₃	3-SCF ₃	CF ₃	4-SCF ₃
CF ₃	2-SOCF ₃	CF ₃	3-SOCF ₃	CF ₃	4-SOCF ₃
CF ₃	2-SO ₂ CF ₃	CF ₃	3-SO ₂ CF ₃	CF ₃	4-SO ₂ CF ₃
CF ₃	2-SCF ₂ H	CF ₃	3-SCF ₂ H	CF ₃	4-SCF ₂ H
CF ₃	2-SOCF ₂ H	CF ₃	3-SOCF ₂ H	CF ₃	4-SOCF ₂ H
CF ₃	2-SO₂CF ₂ H	CF ₃	3-SO ₂ CF ₂ H	CF ₃	4-SO ₂ CF ₂ H
OCF ₂ H	2-CF ₃	OCF ₂ H	3-CF ₃	OCF ₂ H	4-CF ₃
OCF ₂ H	2-OCF ₃	OCF ₂ H	3-OCF ₃	OCF ₂ H	4-OCF ₃
OCF ₂ H	2-OCF ₂ H	OCF ₂ H	3-OCF ₂ H	OCF ₂ H	4-OCF ₂ H
OCF ₂ H	2-OCF ₂ CF ₂ H	OCF ₂ H	3-OCF ₂ CF ₂ H	OCF ₂ H	4-OCF ₂ CF ₂ H
OCF ₂ H	2-OCH ₂ CF ₃	OCF ₂ H	3-OCH ₂ CF ₃	OCF ₂ H	4-OCH ₂ CF ₃

<u>R</u> 4	(R ⁵) _m	<u>R</u> 4	(R ⁵) _m	<u>R</u> 4	(<u>R⁵)</u> m
OCF ₂ H	2-SCF ₃	ocf ₂ H	3-SCF ₃	OCF ₂ H	4-SCF ₃
OCF ₂ H	2-SOCF ₃	OCF ₂ H	3-SOCF ₃	ocf ₂ H	4-SOCF ₃
OCF ₂ H	2-SO ₂ CF ₃	OCF ₂ H	3-SO ₂ CF ₃	ocf ₂ H	4-SO ₂ CF ₃
OCF ₂ H	2-SCF ₂ H	ocf ₂ H	3-SCF ₂ H	ocf ₂ H	4-SCF ₂ H
OCF ₂ H	2-SOCF ₂ H	ocf ₂ H	3-SOCF ₂ H	OCF ₂ H	4-SOCF ₂ H
OCF ₂ H	2-SO₂CF ₂ H	ocf ₂ H	3-SO₂CF2H	ocf ₂ H	4-SO₂CF ₂ H
Me	2-Me-4-CF ₃	F	2-Me-4-CF ₃	Cl	2-Me-4-CF ₃
Me	2-Me-4-OCF ₃	F	2-Me-4-OCF ₃	Cl	2-Me-4-OCF ₃
Me	2-Me-4-OCF ₂ H	F	2-Me-4-OCF ₂ H	Cl	2-Me-4-OCF ₂ H
Me	2-Me-4-OCH ₂ CF ₃	F	2-Me-4-OCH ₂ CF ₃	CI	2-Me-4-OCH ₂ CF ₃
Me	2-Me-4-SCF ₃	F	2-Me-4-SCF ₃	Cl	2-Me-4-SCF ₃
Me	2-Me-4-SOCF ₃	F	2-Me-4-SOCF ₃	Cl	2-Me-4-SOCF ₃
Me	2-Me-4-SO ₂ CF ₃	F	2-Me-4-SO ₂ CF ₃	Cl	2-Me-4-SO ₂ CF ₃
Me	2-Me-4-SCF ₂ H	F	2-Me-4-SCF ₂ H	Cl	2-Me-4-SCF ₂ H
Me	2-Me-4-SOCF ₂ H	F	2-Me-4-SOCF ₂ H	Cl	2-Me-4-SOCF ₂ H
Me	2-Me-4-SO₂CF ₂ H	F	2-Me-4-SO ₂ CF ₂ H	Cl	2-Me-4-SO ₂ CF ₂ H
Br	2-Me-4-CF ₃	ı	2-Me-4-CF ₃	OMe	2-Me-4-CF ₃
Br	2-Me-4-OCF ₃	1	2-Me-4-OCF ₃	OMe	2-Me-4-OCF ₃
Br	2-Me-4-OCF ₂ H	I	2-Me-4-OCF ₂ H	OMe	2-Me-4-OCF ₂ H
Br	2-Me-4-OCH ₂ CF ₃	I	2-Me-4-OCH ₂ CF ₃	OMe	2-Me-4-OCH ₂ CF ₃
Br	2-Me-4-SCF ₃	I	2-Me-4-SCF ₃	OMe	2-Me-4-SCF ₃
Br	2-Me-4-SOCF ₃	I	2-Me-4-SOCF ₃	OMe	2-Me-4-SOCF ₃
Br	2-Me-4-SO ₂ CF ₃	I	2-Me-4-SO ₂ CF ₃	OMe	2-Me-4-SO ₂ CF ₃
Br	2-Me-4-SCF ₂ H	I	2-Me-4-SCF ₂ H	OMe	2-Me-4-SCF ₂ H
Br	2-Me-4-SOCF ₂ H	I	2-Me-4-SOCF ₂ H	ОМе	2-Me-4-SOCF ₂ H
Br	2-Me-4-SO₂CF ₂ H	I	2-Me-4-SO ₂ CF ₂ H	OMe	2-Me-4-SO ₂ CF ₂ H
CF ₃	2-Me-4-CF ₃	NO_2	2-Me-4-CF ₃	SMe	2-Me-4-CF ₃
CF ₃	2-Me-4-OCF ₃	NO_2	2-Me-4-OCF ₃	SMe	2-Me-4-OCF ₃
CF ₃	2-Me-4-OCF ₂ H	NO ₂	2-Me-4-OCF ₂ H	SMe	2-Me-4-OCF ₂ H
CF ₃	2-Me-4-OCH ₂ CF ₃	NO_2	2-Me-4-OCH ₂ CF ₃	SMe	2-Me-4-OCH ₂ CF ₃
CF ₃	2-Me-4-SCF ₃	NO ₂	2-Me-4-SCF ₃	SMe	2-Me-4-SCF ₃
CF ₃	2-Me-4-SOCF ₃	NO ₂	2-Me-4-SOCF ₃	SMe	2-Me-4-SOCF ₃
CF ₃	2-Me-4-SO ₂ CF ₃	NO ₂	2-Me-4-SO ₂ CF ₃	SMe	2-Me-4-SO ₂ CF ₃
CF ₃	2-Me-4-SCF ₂ H	NO ₂	2-Me-4-SCF ₂ H	SMe	2-Me-4-SCF ₂ H
CF ₃	2-Me-4-SOCF ₂ H	NO ₂	2-Me-4-SOCF ₂ H	SMe	2-Me-4-SOCF ₂ H
CF ₃	2-Me-4-SO ₂ CF ₂ H	NO ₂	2-Me-4-SO ₂ CF ₂ H	SMe	2-Me-4-SO ₂ CF ₂ H

WO 02/070483 PCT/US02/06582

Table 13

<u>R</u> 4	(R ⁵) _m	<u>R</u> 4	$(R^5)_{\underline{m}}$	<u>R</u> 4	(R ⁵) _m
Me	2-CF ₃	Me	3-CF ₃	Me	4-CF ₃
Me	2-OCF ₃	Me	3-OCF ₃	Me	4-OCF ₃
Me	2-OCF ₂ H	Me	3-OCF ₂ H .	Me	4-OCF ₂ H
Me	2-OCF ₂ CF ₂ H	Me	3-OCF ₂ CF ₂ H	Me	4-OCF2CF2H
Me	2-OCH ₂ CF ₃	Me	3-OCH ₂ CF ₃	Me	4-OCH ₂ CF ₃
Me	2-SCF ₃	Me	3-SCF ₃	Me	4-SCF ₃
Me	2-SOCF ₃	Me	3-SOCF ₃	Me	4-SOCF ₃
Me	2-SO ₂ CF ₃	Ме	3-SO ₂ CF ₃	Me	4-SO ₂ CF ₃
Me	2-SCF ₂ H	Me	3-SCF ₂ H	Me	4-SCF ₂ H
Me	2-SOCF ₂ H	Me	3-SOCF ₂ H	Me	4-SOCF ₂ H
Me	2-SO₂CF2H	Me	3-SO ₂ CF ₂ H	Me	4-SO₂CF2H
Cl	2-CF ₃	Cl	3-CF ₃	Cl	4-CF ₃
CI	2-OCF ₃	Cl	3-OCF ₃	CI	4-OCF ₃
CI	2-OCF ₂ H	Cl	3-OCF ₂ H	CI	4-0CF ₂ H
Cl	2-OCF ₂ CF ₂ H	Cl	3-OCF ₂ CF ₂ H	CI	4-OCF ₂ CF ₂ H
Cl	2-OCH ₂ CF ₃	Cl	3-OCH ₂ CF ₃	CI	4-OCH ₂ CF ₃
Cl	2-SCF ₃	Cl	3-SCF ₃	CI	4-SCF ₃
CI	2-SOCF ₃	Cl	3-SOCF ₃	CI	4-SOCF ₃
Cl	2-SO ₂ CF ₃	Cl	3-SO ₂ CF ₃	CI	4-SO ₂ CF ₃
CI	2-SCF ₂ H	CI	3-SCF ₂ H	CI	4-SCF ₂ H
Cl	2-SOCF ₂ H	. CI	3-SOCF ₂ H	CI	4-SOCF ₂ H
CI	2-SO ₂ CF ₂ H	Cl	3-SO ₂ CF ₂ H	CI	4-SO ₂ CF ₂ H
F	2-CF ₃	F	3-CF ₃	F	4-CF ₃
F	2-OCF ₃	F	3-OCF ₃	F	4-OCF ₃
F	2-OCF ₂ H	F	3-OCF ₂ H	F	4-OCF ₂ H
F	2-OCF2CF2H	F	3-OCF ₂ CF ₂ H	F	4-OCF ₂ CF ₂ H
F	2-OCH ₂ CF ₃	F	3-OCH ₂ CF ₃	F	4-OCH ₂ CF ₃

<u>R</u> 4	(<u>R⁵)</u> m	<u>R</u> 4	(R ⁵) _m	<u>R</u> 4	(R ⁵) _m
F	2-SCF ₃	F	3-SCF ₃	F	4-SCF ₃
F	2-SOCF ₃	F	3-SOCF ₃	F	4-SOCF ₃
F	2-SO ₂ CF ₃	F	3-SO ₂ CF ₃	F	4-SO ₂ CF ₃
F	2-SCF ₂ H	F	3-SCF ₂ H	F	4-SCF ₂ H
Ė	2-SOCF ₂ H	F	3-SOCF ₂ H	F	4-SOCF ₂ H
F	2-SO₂CF2H	F	3-SO₂CF ₂ H	F	4-SO ₂ CF ₂ H
Br	2-CF ₃	Br	3-CF ₃	Br	4-CF ₃
Br	2-OCF ₃	Br	3-OCF ₃	Br	4-OCF ₃
Br	2-OCF ₂ H	Br	3-OCF ₂ H	Br	4-OCF ₂ H
Br	2-OCF ₂ CF ₂ H	Br	3-OCF ₂ CF ₂ H	Br	4-OCF ₂ CF ₂ H
Br	2-OCH ₂ CF ₃	Br	3-OCH ₂ CF ₃	Br	4-OCH ₂ CF ₃
Br	2-SCF ₃	Br	3-SCF ₃	Br	4-SCF ₃
Br	2-SOCF ₃	Br	3-SOCF ₃	Br	4-SOCF ₃
Br	2-SO ₂ CF ₃	Br	3-SO ₂ CF ₃	Br	4-SO ₂ CF ₃
Br	2-SCF ₂ H	Br	3-SCF ₂ H	Br	4-SCF ₂ H
Br	2-SOCF ₂ H	Br	3-SOCF ₂ H	Br	4-SOCF ₂ H
Br	2-SO₂CF ₂ H	Br	3-SO₂CF ₂ H	Br	4-SO ₂ CF ₂ H
I	2-CF ₃	ľ	3-CF ₃	1	4-CF ₃
I	2-OCF ₃	ĭ	3-OCF ₃	1	4-OCF ₃
I	2-OCF ₂ H	I	3-OCF ₂ H	1	4-OCF ₂ H
I	2-OCF ₂ CF ₂ H	Ι,	3-OCF ₂ CF ₂ H	1	4-OCF ₂ CF ₂ H
ī	2-OCH ₂ CF ₃	I	3-OCH ₂ CF ₃	1	4-OCH ₂ CF ₃
Ī	2-SCF ₃	I	3-SCF ₃	1	4-SCF ₃
I	2-SOCF ₃	I	3-SOCF ₃	ī	4-SOCF ₃
ì	2-SO ₂ CF ₃	I	3-SO ₂ CF ₃	1	4-SO ₂ CF ₃
I	2-SCF ₂ H	I	3-SCF ₂ H	1	4-SCF ₂ H
I	2-SOCF ₂ H	I	3-SOCF ₂ H	[1	4-SOCF ₂ H
I	2-SO₂CF ₂ H	1	3-SO₂CF2H	I	4-SO ₂ CF ₂ H
OMe	2-CF ₃	OMe	3-CF ₃	ОМе	4-CF ₃
OMe	2-OCF ₃	OMe	3-OCF ₃	ОМе	4-OCF ₃
OMe	2-OCF ₂ H	OMe	3-OCF ₂ H	OMe	4-OCF ₂ H
OMe	2-OCF ₂ CF ₂ H	OMe	3-OCF ₂ CF ₂ H	ОМе	4-OCF ₂ CF ₂ H
OMe	2-OCH ₂ CF ₃	OMe	3-OCH ₂ CF ₃	ОМе	4-OCH ₂ CF ₃
OMe	2-SCF ₃	OMe	3-SCF ₃	ОМе	4-SCF ₃
OMe	2-SOCF ₃	OMe	3-SOCF ₃	OMe	4-SOCF ₃
OMe	2-SO ₂ CF ₃	OMe	3-SO ₂ CF ₃	OMe	4-SO ₂ CF ₃
OMe	2-SCF ₂ H	OMe	3-SCF ₂ H	OMe	4-SCF ₂ H

<u>R</u> 4	(R ⁵) _m	<u>R</u> 4	$(\mathbb{R}^5)_{\mathbf{m}}$	<u>R</u> 4	(R ⁵) _m
OMe	2-SOCF ₂ H	OMe	3-SOCF ₂ H	ОМе	4-SOCF ₂ H
OMe	2-SO₂CF2H	ОМе	3-SO ₂ CF ₂ H	ОМе	4-SO ₂ CF ₂ H
CF ₃	2-CF ₃	CF ₃	3-CF ₃	CF ₃	4-CF ₃
CF ₃	2-OCF ₃	CF ₃	3-OCF ₃	CF ₃	4-OCF ₃
CF ₃	2-OCF ₂ H	CF ₃	3-OCF ₂ H	CF ₃	4-OCF ₂ H
CF ₃	2-OCF ₂ CF ₂ H	CF ₃	3-OCF ₂ CF ₂ H	CF ₃	4-OCF2CF2H
CF ₃	2-OCH ₂ CF ₃	CF ₃	3-OCH ₂ CF ₃	CF ₃	4-OCH ₂ CF ₃
CF ₃	2-SCF ₃	CF ₃	3-SCF ₃	CF ₃	4-SCF ₃
CF ₃	2-SOCF ₃	CF ₃	3-SOCF ₃	CF ₃	4-SOCF ₃
CF ₃	2-SO ₂ CF ₃	CF ₃	3-SO ₂ CF ₃	CF ₃	4-SO ₂ CF ₃
CF ₃	2-SCF ₂ H	CF ₃	3-SCF ₂ H	CF ₃	4-SCF ₂ H
CF ₃	2-SOCF ₂ H	CF ₃	3-SOCF ₂ H	CF ₃	4-SOCF ₂ H
CF ₃	2-SO₂CF2H	CF ₃	3-SO₂CF ₂ H	CF ₃	4-SO₂CF2H
OCF ₂ H	2-CF ₃	OCF ₂ H	3-CF ₃	OCF ₂ H	4-CF ₃
OCF ₂ H	2-OCF ₃	OCF ₂ H	3-OCF ₃	OCF ₂ H	4-OCF ₃
OCF ₂ H	2-OCF ₂ H	OCF ₂ H	3-OCF ₂ H	ocf ₂ h	4-OCF ₂ H
OCF ₂ H	2-OCF ₂ CF ₂ H	OCF ₂ H	3-OCF ₂ CF ₂ H	OCF ₂ H	4-OCF ₂ CF ₂ H
OCF ₂ H	2-OCH ₂ CF ₃	OCF ₂ H	3-OCH ₂ CF ₃	ocf ₂ H	4-OCH ₂ CF ₃
OCF ₂ H	2-SCF ₃	OCF ₂ H	3-SCF ₃	ocf ₂ h	4-SCF ₃
OCF ₂ H	2-SOCF ₃	ocf ₂ H	3-SOCF ₃	OCF ₂ H	4-socf ₃
OCF ₂ H	2-SO ₂ CF ₃	OCF ₂ H	3-SO ₂ CF ₃	OCF ₂ H	4-SO ₂ CF ₃
OCF ₂ H	2-SCF ₂ H	OCF ₂ H	3-SCF ₂ H	ocf ₂ h	4-SCF ₂ H
OCF ₂ H	2-SOCF ₂ H	ocf ₂ H	3-SOCF ₂ H	ocf ₂ h	4-SOCF ₂ H
OCF ₂ H	2-SO₂CF ₂ H	OCF ₂ H	3-SO ₂ CF ₂ H	OCF ₂ H	4-SO ₂ CF ₂ H
Me	2-Me-4-CF ₃	F	2-Me-4-CF ₃	Cl	2-Me-4-CF ₃
Me	2-Me-4-OCF ₃	F	2-Me-4-OCF ₃	Cl	2-Me-4-OCF ₃
Me	2-Me-4-OCF ₂ H	F	2-Me-4-OCF ₂ H	Cl	2-Me-4-OCF ₂ H
Me	2-Me-4-OCH ₂ CF ₃	F	2-Me-4-OCH ₂ CF ₃	Cl	2-Me-4-OCH ₂ CF ₃
Me	2-Me-4-SCF ₃	F	2-Me-4-SCF ₃	CI	2-Me-4-SCF ₃
Me	2-Me-4-SOCF ₃	F	2-Me-4-SOCF ₃	CI	2-Me-4-SOCF ₃
Me	2-Me-4-SO ₂ CF ₃	F	2-Me-4-SO ₂ CF ₃	CI	2-Me-4-SO ₂ CF ₃
Me	2-Me-4-SCF ₂ H	F	2-Me-4-SCF ₂ H	CI	2-Me-4-SCF ₂ H
Me	2-Me-4-SOCF ₂ H	F	2-Me-4-SOCF ₂ H	CI	2-Me-4-SOCF ₂ H
Me	2-Me-4-SO ₂ CF ₂ H	F	2-Me-4-SO ₂ CF ₂ H	CI	2-Me-4-SO ₂ CF ₂ H
Br	2-Me-4-CF ₃	I	2-Me-4-CF ₃	OMe	2-Me-4-CF ₃
Br	2-Me-4-OCF ₃	I	2-Me-4-OCF ₃	OMe	2-Me-4-OCF ₃
Br	2-Me-4-OCF ₂ H	I	2-Me-4-OCF ₂ H	OMe	2-Me-4-OCF ₂ H

<u>R</u> 4	(R ⁵) _m	<u>R</u> 4	(<u>R⁵)m</u>	<u>R</u> 4	(<u>R⁵)</u> m
Br	2-Me-4-OCH ₂ CF ₃	I	2-Me-4-OCH ₂ CF ₃	OMe	2-Me-4-OCH ₂ CF ₃
Br	2-Me-4-SCF ₃	I	2-Me-4-SCF ₃	OMe	2-Me-4-SCF ₃
Br	2-Me-4-SOCF ₃	1	2-Me-4-SOCF ₃	ОМе	2-Me-4-SOCF ₃
Br	2-Me-4-SO ₂ CF ₃	I	2-Me-4-SO ₂ CF ₃	ОМе	2-Me-4-SO ₂ CF ₃
Br	2-Me-4-SCF ₂ H	I	2-Me-4-SCF ₂ H	OMe	2-Me-4-SCF ₂ H
Br	2-Me-4-SOCF ₂ H	I	2-Me-4-SOCF ₂ H	ОМе	2-Me-4-SOCF ₂ H
Br	2-Me-4-SO ₂ CF ₂ H	1	2-Me-4-SO₂CF ₂ H	OMe	2-Me-4-SO ₂ CF ₂ H
CF ₃	2-Me-4-CF ₃	NO_2	2-Me-4-CF ₃	SMe	2-Me-4-CF ₃
CF ₃	2-Me-4-OCF ₃	NO_2	2-Me-4-OCF ₃	SMe	2-Me-4-OCF ₃
CF ₃	2-Me-4-OCF ₂ H	NO ₂	2-Me-4-OCF ₂ H	SMe	2-Me-4-OCF ₂ H
CF ₃	2-Me-4-OCH ₂ CF ₃	NO ₂	2-Me-4-OCH ₂ CF ₃	SMe	2-Me-4-OCH ₂ CF ₃
CF ₃	2-Me-4-SCF ₃	NO_2	2-Me-4-SCF ₃	SMe	2-Me-4-SCF ₃
CF ₃	2-Me-4-SOCF ₃	NO_2	2-Me-4-SOCF ₃	SMe	2-Me-4-SOCF ₃
CF ₃	2-Me-4-SO ₂ CF ₃	NO_2	2-Me-4-SO ₂ CF ₃	SMe	2-Me-4-SO ₂ CF ₃
CF ₃	2-Me-4-SCF ₂ H	NO ₂	2-Me-4-SCF ₂ H	SMe	2-Me-4-SCF ₂ H
CF ₃	2-Me-4-SOCF ₂ H	NO ₂	2-Me-4-SOCF ₂ H	SMe	2-Me-4-SOCF ₂ H
CF ₃	2-Me-4-SO ₂ CF ₂ H	NO ₂	2-Me-4-SO₂CF ₂ H	· SMe	2-Me-4-SO ₂ CF ₂ H

Table 14

$$R^4$$
 $(R^5)_m$ $(R^5)_m$

<u>R</u> 4	(<u>R⁵)</u> m	<u>R</u> 4	(R ⁵) _m	<u>R</u> 4	(R ⁵) _m
Me	2-CF ₃	Me	3-CF ₃	Me	4-CF ₃
Me	2-OCF ₃	Me	3-OCF ₃	Me	4-OCF ₃
Me	2-OCF ₂ H	Me	3-OCF ₂ H	Me	4-OCF ₂ H
Me	2-OCF ₂ CF ₂ H	Me	3-OCF ₂ CF ₂ H	Me	4-OCF2CF2H
Me	2-OCH ₂ CF ₃	Me	3-OCH ₂ CF ₃	Me	4-OCH ₂ CF ₃
Me	2-SCF ₃	Me	3-SCF ₃	Me	4-SCF ₃
Me	2-SOCF ₃	Me	3-SOCF ₃	Me	4-SOCF ₃
Me	2-SO ₂ CF ₃	Me	3-SO ₂ CF ₃	Me	4-SO ₂ CF ₃

<u>R</u> 4	(R ⁵) _m	<u>R</u> 4	(R ⁵) _m	<u>R</u> 4	(R ⁵) _m
Me	2-SCF ₂ H	Me	3-SCF ₂ H	Me	4-SCF ₂ H
Me	2-SOCF ₂ H	Me	3-SOCF ₂ H	Me	4-SOCF ₂ H
Me	2-SO ₂ CF ₂ H	Me	3-SO₂CF ₂ H	Me	4-SO₂CF2H
Cl	2-CF ₃	Cl	3-CF ₃	CI	4-CF ₃
Cl	2-OCF ₃	Cl	3-OCF ₃	Cl	4-OCF ₃
Cl	2-OCF ₂ H	Cl	3-OCF ₂ H	· Cl	4-OCF ₂ H
Cl	2-OCF ₂ CF ₂ H	Cl	3-OCF ₂ CF ₂ H	Cl	4-OCF2CF2H
Cl	2-OCH ₂ CF ₃	Cl	3-OCH ₂ CF ₃	CI	4-OCH ₂ CF ₃
Cl	2-SCF ₃	Cl	3-SCF ₃	CI	4-SCF ₃
Cl	2-SOCF ₃	Cl	3-SOCF ₃	Cl	4-SOCF ₃ ·
Cl	2-SO ₂ CF ₃	Cl	3-SO ₂ CF ₃	CI	4-SO ₂ CF ₃
Cl	2-SCF ₂ H	Cl	3-SCF ₂ H	· CI	4-SCF ₂ H
Cl	2-SOCF ₂ H	Cl	3-SOCF ₂ H	CI	4-SOCF ₂ H
Cl	2-SO₂CF ₂ H	Cl	3-SO₂CF2H	Cl	4-SO₂CF2H
F	2-CF ₃	F	3-CF ₃	F	4-CF ₃
F	2-OCF ₃	F	3-OCF ₃	F	4-OCF ₃
F	2-OCF ₂ H	F	3-OCF ₂ H	F	4-OCF ₂ H
F	2-OCF ₂ CF ₂ H	F	3-OCF ₂ CF ₂ H	F	4-OCF ₂ CF ₂ H
F	2-OCH ₂ CF ₃	F	3-OCH ₂ CF ₃	F	4-OCH ₂ CF ₃
F	2-SCF ₃	F	3-SCF ₃	F	4-SCF ₃
F	2-SOCF ₃	F	3-SOCF ₃	F	4-SOCF ₃
F	2-SO ₂ CF ₃	F	3-SO ₂ CF ₃	F	4-SO ₂ CF ₃
F	2-SCF ₂ H	F	3-SCF ₂ H	F	4-SCF ₂ H
F	2-SOCF ₂ H	F	3-SOCF ₂ H	F	4-SOCF ₂ H
F	2-SO₂CF ₂ H	F	3-SO₂CF ₂ H	F	4-SO₂CF2H
Br	2-CF ₃	Br	3-CF ₃	Br	4-CF ₃
Br	2-OCF ₃	Br	3-OCF ₃	Br	4-OCF ₃
Br	2-OCF ₂ H	Br	3-OCF ₂ H	Br	4-OCF ₂ H
Br	2-OCF ₂ CF ₂ H	Br	3-OCF ₂ CF ₂ H	Br	4-OCF ₂ CF ₂ H
Br	2-OCH ₂ CF ₃	Br	3-OCH ₂ CF ₃	Br	4-OCH ₂ CF ₃
Br	2-SCF ₃	Br	3-SCF ₃	Br	4-SCF ₃
Br	2-SOCF ₃	Br	3-SOCF ₃	Br	4-SOCF ₃
Br	2-SO ₂ CF ₃	Br	3-SO ₂ CF ₃	Br	4-SO ₂ CF ₃
Br	2-SCF ₂ H	Br	3-SCF ₂ H	Br	4-SCF ₂ H
Br	2-SOCF ₂ H	Br	3-SOCF ₂ H	Br	4-SOCF ₂ H
Br	2-SO₂CF2H	Br	3-SO₂CF ₂ H	Br	4-SO₂CF ₂ H
I	2-CF ₃	ı	3-CF ₃	1	4-CF ₃

					•
<u>R</u> 4	(R ⁵) _m	<u>R</u> 4	(R ⁵) _m	<u>R</u> 4	$(R^5)_{\underline{m}}$
1	2-OCF3	I	3-OCF ₃	I	4-OCF ₃
I	2-OCF ₂ H	1	3-OCF ₂ H	I	4-OCF ₂ H
I	2-OCF ₂ CF ₂ H	1	3-OCF ₂ CF ₂ H	I	4-OCF2CF2H
I	2-OCH ₂ CF ₃	I	3-OCH ₂ CF ₃	I	4-OCH ₂ CF ₃
I	2-SCF ₃	Ī	3-SCF ₃	I	4-SCF ₃
I	2-SOCF ₃	I	3-SOCF ₃	I	4-SOCF ₃
I	2-SO ₂ CF ₃	I	3-SO ₂ CF ₃	I	4-SO ₂ CF ₃
1	2-SCF ₂ H	1	3-SCF ₂ H	I	4-SCF ₂ H
1	2-SOCF ₂ H	I	3-SOCF ₂ H	I	4-SOCF ₂ H
I	2-SO₂CF2H	I	3-SO₂CF ₂ H	I	4-SO₂CF ₂ H
OMe	2-CF ₃	OMe	3-CF ₃	OMe	4-CF ₃
OMe	2-OCF ₃	ОМе	3-OCF ₃	ОМе	4-OCF ₃
OMe	2-OCF ₂ H	OMe	3-OCF ₂ H	ОМе	4-0CF ₂ H
OMe	2-OCF ₂ CF ₂ H	OMe	3-OCF ₂ CF ₂ H	OMe	4-OCF ₂ CF ₂ H
OMe	2-OCH ₂ CF ₃	OMe	3-OCH ₂ CF ₃	OMe	4-OCH ₂ CF ₃
OMe	2-SCF ₃	OMe	3-SCF ₃	OMe	4-SCF ₃
OMe	2-SOCF ₃	OMe	3-SOCF ₃	ОМе	4-SOCF ₃
OMe	2-SO ₂ CF ₃	OMe	3-SO ₂ CF ₃	OMe	4-SO ₂ CF ₃
OMe	2-SCF ₂ H	OMe	3-SCF ₂ H	OMe	4-SCF ₂ H
OMe	2-SOCF ₂ H	ОМе	3-SOCF ₂ H	OMe	4-SOCF ₂ H
OMe	2-SO₂CF ₂ H	ОМе	3-SO₂CF ₂ H	OMe	4-SO ₂ CF ₂ H
CF ₃	2-CF ₃	CF ₃	3-CF ₃	CF ₃	4-CF ₃
CF ₃	2-OCF ₃	CF ₃	3-OCF ₃	CF ₃	4-OCF ₃
CF ₃	2-OCF ₂ H	CF ₃	3-OCF ₂ H	CF ₃	4-OCF ₂ H
CF ₃	2-OCF ₂ CF ₂ H	CF ₃	3-OCF ₂ CF ₂ H	CF ₃	4-OCF ₂ CF ₂ H
CF ₃	2-OCH ₂ CF ₃	CF ₃	3-OCH ₂ CF ₃	CF ₃	4-OCH ₂ CF ₃
CF ₃	2-SCF ₃	CF ₃	3-SCF ₃	CF ₃	4-SCF ₃
CF ₃	2-SOCF ₃	CF ₃	3-SOCF ₃	CF ₃	4-SOCF ₃
CF ₃	2-SO ₂ CF ₃	CF ₃	3-SO ₂ CF ₃	CF ₃	4-SO ₂ CF ₃
CF ₃	2-SCF ₂ H	CF ₃	3-SCF ₂ H	CF ₃	4-SCF ₂ H
CF ₃	2-SOCF ₂ H	CF ₃	3-SOCF ₂ H	CF ₃	4-SOCF ₂ H
CF ₃	2-SO₂CF ₂ H	CF ₃	3-SO₂CF ₂ H	CF ₃	4-SO₂CF2H
ocf ₂ H	2-CF ₃	OCF ₂ H	3-CF ₃	OCF ₂ H	4-CF ₃
OCF ₂ H	2-OCF ₃	OCF ₂ H	3-OCF ₃	OCF ₂ H	4-OCF ₃
OCF ₂ H	2-OCF ₂ H	ocf ₂ h	3-OCF ₂ H	OCF ₂ H	4-OCF ₂ H
OCF ₂ H	2-OCF ₂ CF ₂ H	OCF ₂ H	3-OCF ₂ CF ₂ H	OCF ₂ H	4-OCF ₂ CF ₂ H
OCF ₂ H	2-OCH ₂ CF ₃	OCF ₂ H	3-OCH ₂ CF ₃	OCF ₂ H	4-OCH ₂ CF ₃

<u>R</u> 4	(R ⁵) _m	<u>R</u> 4	(R ⁵) _m	<u>R</u> 4	(<u>R⁵)</u> m
OCF ₂ H	2-SCF ₃	ocf ₂ H	3-SCF ₃	ocf ₂ H	4-SCF ₃
OCF ₂ H	2-SOCF ₃	ocf ₂ H	3-SOCF ₃	OCF ₂ H	4-SOCF ₃
OCF ₂ H	2-SO ₂ CF ₃	ocf ₂ H	3-SO ₂ CF ₃	OCF ₂ H	4-SO ₂ CF ₃
OCF ₂ H	2-SCF ₂ H	ocf ₂ H	3-SCF ₂ H	OCF ₂ H	4-SCF ₂ H
OCF ₂ H	2-SOCF ₂ H	OCF ₂ H	3-SOCF ₂ H	OCF ₂ H	4-SOCF ₂ H
OCF ₂ H	2-SO₂CF ₂ H	ocf ₂ H	3-SO₂CF ₂ H	ocf ₂ h	4-SO₂CF2H
Me	2-Me-4-CF ₃	F	2-Me-4-CF ₃	Cl	2-Me-4-CF ₃
Me	2-Me-4-OCF ₃	F	2-Me-4-OCF ₃	Cl	2-Me-4-OCF ₃
Me	2-Me-4-OCF ₂ H	F	2-Me-4-OCF ₂ H	Cl	2-Me-4-OCF ₂ H
Me	2-Me-4-OCH ₂ CF ₃	F	2-Me-4-OCH ₂ CF ₃	Cl	2-Me-4-OCH ₂ CF ₃
Me	2-Me-4-SCF ₃	F	2-Me-4-SCF ₃	Cl	2-Me-4-SCF ₃
Me	2-Me-4-SOCF ₃	F	2-Me-4-SOCF ₃	Cl	2-Me-4-SOCF ₃
Me	2-Me-4-SO ₂ CF ₃	F	2-Me-4-SO ₂ CF ₃	Cl	2-Me-4-SO ₂ CF ₃
Me	2-Me-4-SCF ₂ H	F	2-Me-4-SCF ₂ H	Cl	2-Me-4-SCF ₂ H
Me	2-Me-4-SOCF ₂ H	F	2-Me-4-SOCF ₂ H	Cl	2-Me-4-SOCF ₂ H
Me	2-Me-4-SO₂CF ₂ H	F	2-Me-4-SO₂CF ₂ H	CI	2-Me-4-SO ₂ CF ₂ H
Br	2-Me-4-CF ₃	I	2-Me-4-CF ₃	OMe	2-Me-4-CF ₃
Br	2-Me-4-OCF ₃	I	2-Me-4-OCF ₃	OMe	2-Me-4-OCF ₃
Br	2-Me-4-OCF ₂ H	1	2-Me-4-OCF ₂ H	ОМе	2-Me-4-OCF ₂ H
Br	2-Me-4-OCH ₂ CF ₃	1	2-Me-4-OCH ₂ CF ₃	OMe	2-Me-4-OCH ₂ CF ₃
Br	2-Me-4-SCF ₃	1	2-Me-4-SCF ₃	OMe	2-Me-4-SCF ₃
Br	2-Me-4-SOCF ₃	ī	2-Me-4-SOCF ₃	ОМе	2-Me-4-SOCF ₃
Br	2-Me-4-SO ₂ CF ₃	1	2-Me-4-SO ₂ CF ₃	ОМе	2-Me-4-SO ₂ CF ₃
Br	2-Me-4-SCF ₂ H	Ī	2-Me-4-SCF ₂ H	ОМе	2-Me-4-SCF ₂ H
Br	2-Me-4-SOCF ₂ H	1	2-Me-4-SOCF ₂ H	OMe	2-Me-4-SOCF ₂ H
Br	2-Me-4-SO ₂ CF ₂ H	I	2-Me-4-SO ₂ CF ₂ H	ОМе	2-Me-4-SO ₂ CF ₂ H
CF ₃	2-Me-4-CF ₃	NO ₂	2-Me-4-CF ₃	SMe	2-Me-4-CF ₃
CF ₃	2-Me-4-OCF ₃	NO ₂	2-Me-4-OCF ₃	SMe	2-Me-4-OCF ₃
CF ₃	2-Me-4-OCF ₂ H	NO ₂	2-Me-4-OCF ₂ H	SMe	2-Me-4-OCF ₂ H
CF ₃	2-Me-4-OCH ₂ CF ₃	NO ₂	2-Me-4-OCH ₂ CF ₃	SMe	2-Me-4-OCH ₂ CF ₃
CF ₃	2-Me-4-SCF ₃	NO ₂	2-Me-4-SCF ₃	SMe	2-Me-4-SCF ₃
CF ₃	2-Me-4-SOCF ₃	NO ₂	2-Me-4-SOCF ₃	SMe	2-Me-4-SOCF ₃
CF ₃	2-Me-4-SO ₂ CF ₃	NO ₂	2-Me-4-SO ₂ CF ₃	SMe	2-Me-4-SO ₂ CF ₃
CF ₃	2-Me-4-SCF ₂ H	NO ₂	2-Me-4-SCF ₂ H	SMe	2-Me-4-SCF ₂ H
CF ₃	2-Me-4-SOCF ₂ H	NO ₂	2-Me-4-SOCF ₂ H	SMe	2-Me-4-SOCF ₂ H
CF ₃	2-Me-4-SO₂CF ₂ H	NO ₂	2-Me-4-SO₂CF ₂ H	SMe	2-Me-4-SO₂CF ₂ H

Table 15

<u>K</u>	<u>R³</u>	$(\underline{R^4})_{\underline{n}}$	<u>R</u> 5	<u>w</u>	<u>X</u>	Y	<u>Z</u>
K-1	i-Pr	4-Me	CF ₃	СМе	N	СН	CH
K-1	i-Pr	4-C1	CF ₃	CMe	N ·	CH	CH
K-18	i-Pr	4-Me	CF ₃	СМе	N	СН	CH
K-18	i-Pr	4-C1	CF ₃	СМе	N	СН	CH
K-14	i-Pr	1-Me	CF ₃	СМе	N	CH	CH
K-28	i-Pr	4-Me	CF ₃	СМе	N	СН	CH
K-28	i-Pr	4-C1	CF ₃	СМе	N	СН	CH
K-30	<i>i</i> -Pr	5-Me	CF ₃	CMe	N	СН	CH
K-30	i-Pr	5-CI	CF ₃	СМе	N	СН	CH
K-31	i-Pr	2-Me	CF ₃	СМе	N	СН	CH
K-31	i-Pr	2-C1	CF ₃	СМе	N	СН	CH
K-33	i-Pr	6-Me	CF ₃	СМе	N	СН	СН
K-33	<i>i</i> -Pr	6-CI	CF ₃	CMe	N	СН	CH
K-1	<i>i</i> -Pr	4-Me	CF ₃	СМе	CH	И	CH
K-1	<i>i</i> -Pr	4-Cl	CF ₃	СМе	CH	N	CH
K-18	i-Pr	4-Me	CF ₃	СМе	СН	N	CH
K-18	i-Pr	4-C1	CF ₃	СМе	СН	N	CH
K-14	<i>i</i> -Pr	1-Me	CF ₃	СМе	CH	N	CH
K-28	<i>i</i> -Pr	4-Me	CF ₃	СМе	CH	N	CH
K-28	<i>i</i> -Pr	4-Cl	CF ₃	СМе	CH	N	CH
K-30	, i-Pr	5-Me	CF ₃	СМе	CH	N	CH
K-30	i-Pr	5-C1	CF ₃	СМе	СН	N	CH
K-31	i-Pr	2-Me	CF ₃	СМе	СН	N	CH
K-31	i-Pr	2-C1	CF ₃	CMe	СН	N	СН
K-33	i-Pr	6-Me	CF ₃	СМе	СН	N	СН
K-33	i-Pr	6-Cl	CF ₃	СМе	СН	N	CH
K-1	i-Pr	4-Me	CF ₃	СМе	CH	N	CH

PCT/US02/06582

<u>K</u>	<u>R</u> 3	$(\mathbb{R}^4)_n$	<u>R⁵</u>	<u>w</u>	X	Y	<u>z</u>
 K-1	i-Pr	4-Cl	CF ₃	CMe	СН	N	СН
K-18	i-Pr	4-Me	CF ₃	СМе	СН	N	СН
K-18	<i>i-</i> Pr	4-C1	CF ₃	СМе	СН	N	СН
K-14	<i>i-</i> Pr	1-Me	CF ₃	СМе	СН	N	CH
K-28	i-Pr	4-Me	CF ₃	СМе	СН	СН	N
K-28	i-Pr	4-C1	CF ₃	СМе	CH	СН	N
K-30	i-Pr	5-Me	CF ₃	СМе	CH	СН	N
K-30	i-Pr	5-C1	CF ₃	СМе	CH	СН	N
K-31	i-Pr	2-Me	CF ₃	СМе	CH	СН	N
K-31	<i>i</i> -Pr	2-C1	CF ₃	СМе	CH	СН	N
K-33	i-Pr	6-Me	CF ₃	СМе	CH	СН	N
K-33	i-Pr	6-C1	CF ₃	СМе	CH	CH	N
K-1	t-Bu	4-Me	CF ₃	СМе	N	СН	СН
K-1	t-Bu	4-C1	CF ₃	СМе	N	СН	CH
K-18	t-Bu	4-Me	CF ₃	СМе	N	CH	CH
K-18	<i>t</i> -Bu	4-Ci	CF ₃	СМе	N	СН	CH
K-14	<i>t</i> -Bu	1-Me	CF ₃	CMe	N	CH	CH
K-28	t-Bu	4-Me	CF ₃	СМе	N	CH	CH
K-28	t-Bu	4-Cl	CF ₃	СМе	N	CH	CH
K-30	t-Bu	5-Me	CF ₃	CMe	N	СН	CH
K-30	<i>t</i> -Bu	5-Cl	CF ₃	СМе	N	СН	CH
K-31	<i>t</i> -Bu	2-Me	CF ₃	СМе	N	СН	CH
K-31	t-Bu	2-C1	CF ₃	СМе	N	CH	CH
K-33	t-Bu	6-Me	CF ₃	СМе	N	СН	CH
K-33	t-Bu	6-Cl	CF ₃	СМе	N	CH	CH
K-1	t-Bu	4-Me	CF ₃	СМе	СН	N	CH
K-1	t-Bu	4-Cl	CF ₃	СМе	CH	N	CH
K-18	t-Bu	4-Me	CF ₃	СМе	СН	N	CH
K-18	<i>t</i> -Bu	4-CI	CF ₃	СМе	СН	N	СН
K-14	<i>t</i> -Bu	1-Me	CF ₃	СМе	СН	N	СН
K-28	<i>t</i> -Bu	4-Me	CF ₃	СМе	CH	N	CH
K-28	t-Bu	4-C1	CF ₃	CMe	CH	N	СН
K-30	t-Bu	5-Me	CF ₃	СМе	СН	N	СН
K-30	t-Bu	5-Cl	CF ₃	СМе	СН	N	СН
K-31	t-Bu	2-Me	CF ₃	CMe	СН	N	СН
K-31	t-Bu	2-Cl	CF ₃	СМе	СН	N	СН
K-33	t-Bu	6-Me	CF ₃	СМе	CH	N	СН

<u>K</u>	<u>R³</u>	(R ⁴) _n	<u>R</u> 5	<u>w</u>	<u>x</u>	Y	<u>z</u>
K-33	t-Bu	6-Cl	CF ₃	СМе	СН	N	СН
K-1	t-Bu	4-Me	CF ₃	СМе	СН	N	СН
K-1	t-Bu	4-C1	CF ₃	СМе	СН	N	CH
K-18	t-Bu	4-Me	CF ₃	СМе	СН	N	СН
K-18	t-Bu	4-Cl	CF ₃	СМе	СН	N	CH
K-14	t-Bu	1-Me	CF ₃	СМе	СН	N	CH
K-28	t-Bu	4-Me	CF ₃	СМе	CH	CH	N
K-28	t-Bu	4-Cl	CF ₃	СМе	CH	СН	N
K-30	t-Bu	5-Me	CF ₃	СМе	CH	CH	N
K-30	t-Bu	5-Cl	CF ₃	СМе	CH	СН	N
K-31	t-Bu	2-Me	CF ₃	СМе	CH	CH	N
K-31	t-Bu	2-CI	CF ₃	СМе	CH	СН	N
K-33	t-Bu	6-Me	CF ₃	СМе	CH	СН	N
K-33	t-Bu	6-C1	CF ₃	СМе	CH	CH	N
K-1	i-Pr	4-Me	OCF ₃	СМе	N	СН	CH
K-1	<i>i</i> -Pr	4-CI	OCF ₃	СМе	N	СН	CH
K-18	i-Pr	4-Me	OCF ₃	СМе	N	СН	CH
K-18	i-Pr	4-Cl	OCF ₃	СМе	N	СН	CH
K-14	i-Pr	1-Me	OCF ₃	СМе	N	СН	CH
K-28	i-Pr	4-Me	OCF ₃	СМе	N	CH	CH
K-28	i-Pr	4-Cl	OCF ₃	СМе	N	CH	CH
K-30	<i>i</i> -Pr	5-Me	OCF ₃	СМе	N	CH	CH
K-30	i-Pr	5-Cl	OCF ₃	CMe	N	СН	СН
K-31	i-Pr	2-Me	OCF ₃	CMe	N	CH	СН
K-31	i-Pr	2-C1	OCF ₃	CMe	N	СН	СН
K-33	<i>i</i> -Pr	6-Me	OCF ₃	CMe	N	СН	CH
K-33	<i>i</i> -Pr	6-Cl	OCF ₃	CMe	N	СН	СН
K-1	i-Pr	4-Me	OCF ₃	СН	N	СН	CH
K-1	<i>i</i> -Pr	4-C1	OCF ₃	СН	N	СН	CH
K-18	i-Pr	4-Me	OCF ₃	СН	N	СН	CH
K-18	<i>i</i> -Pr	4-Cl	OCF ₃	СН	N	CH	CH
K-14	<i>i</i> -Pr	1-Me	OCF ₃	СН	N	CH	CH
K-28	i-Pr	4-Me	OCF ₃	CH	N	CH	CH
K-28	<i>i-</i> Pr	4-C1	OCF ₃	CH	N	CH	CH
K-30	i-Pr	5-Me	OCF ₃	CH	N	CH	CH
K-30	i-Pr	5-Cl	OCF ₃	CH	N	CH	СН
K-31	<i>i</i> -Pr	2-Me	OCF ₃	СН	N	СН	СН

<u>K</u>	<u>R</u> 3	$(R^4)_n$	<u>R</u> 5	$\underline{\mathbf{w}}$	<u>X</u>	Y	Z
K-31	<i>i</i> -Pr	2-Cl	OCF ₃	СН	N	СН	CH
K-33	i-Pr	6-Me	OCF ₃	СН	N	СН	CH
K-33	<i>i-</i> Pr	6-CI	OCF ₃	СН	N	СН	CH
K-1	i-Pr	4-Me	Cl	СМе	CH	СН	N
K-1	i-Pr	4-Cl	Cl	СМе	CH	СН	N
K-18	<i>i</i> -Pr	4-Me	Cl	СМе	CH	СН	N
K-18	i-Pr	4-Cì	Cl	СМе	CH	СН	N
K-14	i-Pr	1-Me	Cl	СМе	CH	СН	N
K-28	i-Pr	4-Me	Cl	СМе	СН	СН	N
K-28	<i>i</i> -Pr	4-Cl	Cl	СМе	СН	CH	N
K-30	i-Pr	5-Me	Cl	СМе	СН	CH	N
K-30	<i>i-</i> Pr	5-C1	Cl	СМе	СН	СН	N
K-31	i-Pr	2-Me	Cl	CMe	СН	СН	N
K-31	<i>i-</i> Pr	2-Cl	Cl	СМе	СН	СН	N
K-33	i-Pr	6-Me	Cl	СМе	СН	СН	N
K-33	i-Pr	6-C1	Cl	СМе	СН	СН	N

Table 16

$$(R^4)_n$$
 K
 NH
 NH
 R^3

 R^3 is *i*-Pr

		14 15			•
<u>K</u>	$(R^4)_n$	Q ·	<u>X</u>	<u>Y</u>	<u>z</u>
K-1	4-Me	NCHF ₂	СМе	N	СН
K-1	4-Cl	NCHF ₂	CMe	N	СН
K-18	4-Me	NCHF ₂	СМе	N	CH
K-18	4-Cl	NCHF ₂	СМе	N	CH
K-14	1-Me	NCHF ₂	СМе	N	СН
K-28	4-Me	NCHF ₂	СМе	N	CH
K-28	4-C1	NCHF ₂	СМе	N	CH
K-30	5-Me	NCHF ₂	СМе	N	CH
K-30	5-Cl	NCHF ₂	СМе	N	CH

р3	ic	i. Dr
ĸ-	15	1-PT

		K ³ is i-	·PT		
<u>K</u>	<u>(R⁴)</u> n	Q	<u>X</u>	Y	<u>Z</u>
K-31	2-Me	NCHF ₂	СМе	N	СН
K-31	2-C1	NCHF ₂	СМе	N	СН
K-33	6-Me	NCHF ₂	CMe	N	СН
K-33	6-C1	NCHF ₂	СМе	N	СН
K-1	4-Me	NCHF ₂	CH	N	СМе
K-1	4-Cl	NCHF ₂	СН	N	СМе
K-18	4-Me	NCHF ₂	СН	N	СМе
K-18	4-Cl	NCHF ₂	CH	N	СМе
K-14	1-Me	NCHF ₂	СН	N	СМе
K-28	4-Me	NCHF ₂	СН	N	СМе
K-28	4-Cl	NCHF ₂	СН	N	СМе
K-30	5-Me	NCHF ₂	СН	N	СМе
K-30	5-Cl	NCHF ₂	СН	N	СМе
K-31	2-Me	NCHF ₂	СН	N	СМе
K-31	2-CI	NCHF ₂	СН	N	СМе
K-33	6-Me	NCHF ₂	СН	N	СМе
K-33	6-Cl	NCHF ₂	CH	N	СМе
K-1	4-Me	NCF2CHF2	СМе	'N	СН
K-1	4-C1	NCF ₂ CHF ₂	CMe	N	CH
K-18	4-Me	NCF2CHF2	CMe	N	СН
K-18	4-C1	NCF2CHF2	CMe	N	CH
K-14	1-Me	NCF2CHF2	CMe	N	CH
K-28	4-Me	NCF2CHF2	CMe	N	CH
K-28	4-Cl	NCF2CHF2	CMe	N	СН
K-30	5-Me	NCF2CHF2	CMe	N	СН
K-30	5-Cl	NCF ₂ CHF ₂	CMe	N	СН
K-31	2-Me	NCF2CHF2	CMe	N	СН
K-31	2-C1	NCF2CHF2	СМе	N	СН
K-33	6-Me	NCF2CHF2	CMe	N	CH
K-33	6-Cl	NCF2CHF2	СМе	N	СН
K-1	4-Me	NCH ₂ CF ₃	CMe	N	СН
K-1	4-Cl	NCH ₂ CF ₃	СМе	N	CH
K-18	4-Me	NCH ₂ CF ₃	СМе	N	СН
K-18	4-C1	NCH ₂ CF ₃	СМе	N	СН
K-14	1-Me	NCH ₂ CF ₃	СМе	N	СН
K-28	4-Me	NCH ₂ CF ₃	СМе	N	CH

R3	ie	j-Pr
ĸ	16	1-PT

			••		•
<u>K</u>	$(\mathbb{R}^4)_n$	Q	<u>X</u>	Y	<u>z</u>
K-28	4-Cl	NCH ₂ CF ₃	СМе	N	CH
K-30	5-Me	NCH ₂ CF ₃	СМе	N	СН
K-30	5-C1	NCH ₂ CF ₃	СМе	N	СН
K-31	2-Me	NCH ₂ CF ₃	СМе	N	СН
K-31	2-C1	NCH ₂ CF ₃	CMe	N	СН
K-33	6-Me	NCH ₂ CF ₃	CMe	N	CH
K-33	6-Cl	NCH ₂ CF ₃	CMe	N	CH
K-1	4-Me	NCH ₂ CF ₃	CH	N	СМе
K-1	4-Cl	NCH ₂ CF ₃	CH	N	СМе
K-18	4-Me	NCH ₂ CF ₃	· CH	N	СМе
K-18	4-C1	NCH ₂ CF ₃	CH	N	СМе
K-14	1-Me	NCH ₂ CF ₃	CH	N	СМе
K-28	4-Me	NCH ₂ CF ₃	СН	N	СМе
K-28	4-C1,	NCH ₂ CF ₃	СН	N	СМе
K-30	5-Me	NCH ₂ CF ₃	CH	N	СМе
K-30	5-Cl	NCH ₂ CF ₃	СН	N	СМе
K-31	2-Me	NCH ₂ CF ₃	CH	N	СМе
K-31	2-C1	NCH ₂ CF ₃	CH	N	СМе
K-33	6-Me	NCH ₂ CF ₃	СН	N	СМе
K-33	6-C1	NCH ₂ CF ₃	СН	N	СМе
K-1	4-Me	NCF ₂ CHF ₂	N	СН	CMe
K-1	4-Cl	NCF ₂ CHF ₂	N	СН	СМе
. K-18	4-Me	NCF ₂ CHF ₂	N	СН	СМе
K-18	4-C1	NCF ₂ CHF ₂	N	СН	СМе
K-14	1-Me	NCF ₂ CHF ₂	N	СН	СМе
K-28	4-Me	NCF ₂ CHF ₂	N	СН	CMe
K-28	4-C1	NCF ₂ CHF ₂	N	СН	СМе
K-30	5-Me	NCF2CHF2	N	СН	СМе
K-30	5-C1	NCF ₂ CHF ₂	N	СН	СМе
K-31	2-Me	NCF2CHF2	N	СН	СМе
K-31	2-Cl	NCF ₂ CHF ₂	N	СН	СМе
K-33	6-Me	NCF2CHF2	N	СН	СМе
K-33	6-CI	NCF ₂ CHF ₂	N	СН	СМе

		\mathbb{R}^3 is t -	<u>Bu</u>		
<u>K</u>	$(R^4)_n$	Q	<u>X</u>	<u>Y</u>	<u>z</u>
K-1	4-Me	NCHF ₂	СМе	N	CH
K-1	4-C1	NCHF ₂	СМе	N	СН
K-18	4-Me	NCHF ₂	СМе	N	СН
K-18	4-C1	NCHF ₂	СМе	N	СН
K-14	1-Me	NCHF ₂	СМе	N	СН
K-28	4-Me	NCHF ₂	СМе	N	CH
K-28	4-C1	NCHF ₂	СМе	N	CH
K-30	5-Me	NCHF ₂	CMe	N	CH
K-30	5-C1	NCHF ₂	CMe	N	СН
K-31	2-Me	NCHF ₂	CMe	N	СН
K-31	2-C1	NCHF ₂	CMe	N	СН
K-33	6-Me	NCHF ₂	CMe	N	СН
K-33	6-C1	NCHF ₂	CMe	N	СН
K-1	4-Me	NCHF ₂	CH	N	CMe
K-1	4-C1	NCHF ₂	CH	N	СМе
K-18	4-Me	NCHF ₂	СН	N	CMe
K-18	4-Cl	NCHF ₂	CH	N	CMe
K-14	1-Me	NCHF ₂	CH	N	СМе
K-28	4-Me	NCHF ₂	CH	N	СМе
K-28	4-Cl	NCHF ₂	CH	N	СМе
K-30	5-Me	NCHF ₂	СН	N	СМе
K-30	5-C1	NCHF ₂	СН	N	СМе
K-31	2-Me	NCHF ₂	СН	N	СМе
K-31	2-CI	NCHF ₂	СН	N	СМе
K-33	6-Me	NCHF ₂	CH	N	СМе
K-33	6-Cl	NCHF ₂	СН	N	СМе
K-1	4-Me	NCF2CHF2	CMe	N	СН
K-1	4-CI	NCF2CHF2	CMe	N	СН
K-18	4-Me	NCF2CHF2	CMe	N	СН
K-18	4-CI	NCF ₂ CHF ₂	СМе	N	СН
K-14	1-Me	NCF ₂ CHF ₂	СМе	, N	СН
K-28	4-Me	NCF ₂ CHF ₂	CMe	N	СН
K-28	4-Cl	NCF2CHF2	СМе	N	СН
K-30	5-Me	NCF2CHF2	СМе	N	СН
K-30	5-Cl	NCF2CHF2	CMe	N	СН
K-31	2-Me	NCF2CHF2	CMe	N	CH

		90							
R ³ is t-Bu									
<u>K</u>	$(\mathbb{R}^4)_{\underline{n}}$	Q	X	<u>Y</u>	<u>Z</u>				
K-31	2-Cl	NCF2CHF2	СМе	N	СН				
K-33	6-Me	NCF2CHF2	СМе	N	СН				
K-33	6-Cl	NCF2CHF2	СМе	N	СН				
K-1	4-Me	NCH ₂ CF ₃	СМе	N	СН				
K-1	4-C1	NCH ₂ CF ₃	CMe	N	СН				
K-18	4-Me	NCH ₂ CF ₃	СМе	N	СН				
K-18	4-C1	NCH ₂ CF ₃	СМе	N	СН				
K-14	1-Me	NCH ₂ CF ₃	СМе	N	CH				
K-28	4-Me	NCH ₂ CF ₃	СМе	N	CH				
K-28	4-C1	NCH ₂ CF ₃	СМе	N	CH				
K-30	5-Me	NCH ₂ CF ₃	СМе	N	CH				
K-30	5-Cl	NCH ₂ CF ₃	СМе	N	CH				
K-31	2-Me	NCH ₂ CF ₃	СМе	N	СН				
K-31	2-Cl	NCH ₂ CF ₃	CMe	N .	СН				
K-33	6-Me	NCH ₂ CF ₃	CMe	N	СН				
K-33	6-Cl	NCH ₂ CF ₃	CMe	N	СН				
K -1	4-Me	NCH ₂ CF ₃	CH	N	СМе				
K-1	4-Cl	NCH ₂ CF ₃	СН	N	СМе				
K-18	4-Me	NCH ₂ CF ₃	CH	N	СМе				
K-18	4-Cl	NCH ₂ CF ₃	СН	N	СМе				
K-14	1-Me	NCH ₂ CF ₃	CH	N	СМе				
K-28	4-Me	NCH ₂ CF ₃	CH	N	СМе				
K-28	4-C1	NCH ₂ CF ₃	CH	N	СМе				
K-30	5-Me	NCH ₂ CF ₃	CH	N	СМе				
K-30	5-Cl	NCH ₂ CF ₃	СН	N .	СМе				
K-31	2-Me	NCH ₂ CF ₃	СН	N	СМе				
K-31	2-Cl	NCH ₂ CF ₃	CH	N	CMe				
K-33	6-Me	NCH ₂ CF ₃	CH	N	CMe				
K-33	6-Cl	NCH ₂ CF ₃	CH	N	СМе				
K-1	4-Me	NCF2CHF2	N	СН	СМе				
K-1	4-Cl	NCF2CHF2	N	СН	СМе				
K-18	4-Me	NCF2CHF2	N	СН	СМе				
K-18	4-CI	NCF2CHF2	N	СН	СМе				
K-14	1-Me	NCF2CHF2	N	СН	СМе				
K-28	4-Me	NCF2CHF2	N	СН	СМе				
K-28	4-C1	NCF2CHF2	N	СН	СМе				

R^3 is t-Bu										
<u>K</u>	$(\underline{R^4})_{\underline{n}}$		Q	<u>X</u>	Y		<u>Z</u>			
K-30	5-Me	NCF ₂ CHF ₂		N	СН		СМе			
K-30	5-Cl	NCF ₂ CHF ₂		N	CH		СМе			
K-31	2-Me	NCF ₂ CHF ₂		N	СН		СМе			
K-31	2-C1	NCF ₂ CHF ₂		N	СН		СМе			
K-33	6-Me	NO	CF ₂ CHF ₂	N	СН		СМе			
K-33	6-Cl	N	CF ₂ CHF ₂	N	СН		СМе			
	·		X I							
			Ÿ⊗ ₇	N—N						
			<u>,</u>		—R ⁵					
		(R ⁴) _n \		\						
			~	`H						
		N		/ 0						
			'	N.						
	•		H	¹ R ³						
<u>w</u>	<u>X</u>	Y	<u>z</u>	<u>R³</u>	$(R^4)_{\underline{n}}$	<u>R</u> 5	<u>R</u> 6			
СН	СН	CH	СН	<i>i-</i> Pr	4-Me	CF ₃	Me			
СН	СН	CH	СН	t-Bu	4-Me	CF ₃	Me			
СН	СН	CH	СН	i-Pr	4-Cl	CF ₃	Me			
CH	СН	СН	СН	t-Bu	4-Cl	CF ₃	Me			
СН	СН	СН	CH	i-Pr	4-Me	CF ₃	F			
СН	СН	СН	CH	t-Bu	4-Me	CF ₃	F			
СН	СН	СН	СН	i-Pr	4-Cl	CF ₃	F			
СН	СН	CH	СН	t-Bu	4-Cl	CF ₃	F			
СН	СН	CH	СН	i-Pr	4-Me	CF ₃	Cl			
СН	CH	СН	СН	t-Bu	4-Me	CF ₃	Cl			
СН	СН	CH	СН	i-Pr	4-Cl	CF ₃	Cl			
СН	СН	СН	СН	t-Bu	4-C1	CF ₃	Cl			
CH	СН	СН	СН	i-Pr	4-Me	CF ₃	Br			
CH	СН	CH	СН	t-Bu	4-Me	CF ₃	Br			
CH	СН	CH	CH	i-Pr	4-C1	CF ₃	Br			
CH	СН	CH	СН	<i>t</i> -Bu	4-Cl	CF ₃	Br			
CH	СН	СН	CH	i-Pr	4-Me	CF ₃	CN			
	K-30 K-31 K-31 K-33 K-33 K-33 W CH	K-30 5-Me K-30 5-Cl K-31 2-Me K-31 2-Cl K-33 6-Me K-33 6-Cl W X CH C	K-30 5-Me NC K-30 5-Cl NC K-31 2-Me NC K-31 2-Cl NC K-33 6-Me NC K-33 6-Cl NC K-33 6-Cl NC	K (R ⁴) _n Q K-30 5-Me NCF ₂ CHF ₂ K-30 5-Cl NCF ₂ CHF ₂ K-31 2-Me NCF ₂ CHF ₂ K-31 2-Cl NCF ₂ CHF ₂ K-33 6-Me NCF ₂ CHF ₂ K-33 6-Cl NCF ₂ CHF ₂ K-33 6-Cl NCF ₂ CHF ₂ Table (R ⁴) _n W X Y CH CH CH CH CH CH CH CH CH	K (R ⁴) _n Q X K-30 5-Me NCF ₂ CHF ₂ N K-30 5-Cl NCF ₂ CHF ₂ N K-31 2-Me NCF ₂ CHF ₂ N K-31 2-Cl NCF ₂ CHF ₂ N K-33 6-Me NCF ₂ CHF ₂ N K-33 6-Cl NCF ₂ CHF ₂ N K-33 6-Cl NCF ₂ CHF ₂ N K-34 6-Cl NCF ₂ CHF ₂ N K-35 6-Cl NCF ₂ CHF ₂ N K-36 (R ⁴) _n H R ³ W X Y Z R ³ CH CH CH CH CH i-Pr	K (R⁴)n Q X Y K-30 5-Me NCF2CHF2 N CH K-30 5-Cl NCF2CHF2 N CH K-31 2-Me NCF2CHF2 N CH K-31 2-Cl NCF2CHF2 N CH K-33 6-Me NCF2CHF2 N CH K-33 6-Cl NCF2CHF2 N CH K-34 Me NCF2CHF2 N CH K-34 Me NCF2CHF2 N CH K-34 Me NCF2CHF2 N CH	K (R⁴)n Q X Y K-30 5-Me NCF2CHF2 N CH K-30 5-Cl NCF2CHF2 N CH K-31 2-Me NCF2CHF2 N CH K-31 2-Cl NCF2CHF2 N CH K-33 6-Me NCF2CHF2 N CH K-33 6-Cl NCF2CHF2 N CH K-34 M NCF2CHF2 N CH K-37 M CH CH CH CH </td			

K-1	СН	СН	СН	СН	t-Bu	4-Me	CF ₃	CN
K-1	СН	СН	СН	СН	i-Pr	4-C1	CF ₃	CN
K-1	СН	СН	СН	СН	t-Bu	4-CI	CF ₃	CN
K-1	СН	СН	СН	N	i-Pr	4-Me	CF ₃	Me
K-1	СН	СН	СН	N	t-Bu	4-Me	CF ₃	Me
K-1	СН	СН	СН	N	i-Pr	4-Cl	CF ₃	Me
K-1	СН	СН	СН	N	t-Bu	4-C1	CF ₃	Me
K-1	СН	СН	СН	N	<i>i</i> -Pr	4-Me	CF ₃	F
K-1	СН	СН	СН	N	t-Bu	4-Me	CF ₃	F
K-1	СН	СН	СН	N	i-Pr	4-C1	CF ₃	F
K-1	CH	СН	СН	N	t-Bu	4-C1	CF ₃	F
K-1	CH	CH	СН	N	i-Pr	4-Me	CF ₃	Cl
K-1	CH	СН	СН	N	t-Bu	4-Me	CF ₃	Cl
K-1	CH	СН	СН	N	i-Pr	4-CI	CF ₃	Cl
K-1	СН	CH.	CH	N	t-Bu	4-Cl	CF ₃	Cl
K-1	СН	CH	СН	N	i-Pr	4-Me	CF ₃	Br
K-1	СН	CH	CH	N	<i>t</i> -Bu	4-Me	CF ₃	Br
K-1	СН	CH	СН	N	<i>i</i> -Pr	4-Cl	CF ₃	Br
K-1	СН	СН	СН	N	t-Bu	4-C1	CF ₃	Br
K-1	СН	CH	CH	N	i-Pr	4-Me	CF ₃	CN
K-1	СН	СН	СН	N	<i>t</i> -Bu	4-Me	CF ₃	CN
K-1	СН	CH	CH	N	i-Pr	4-CI	CF ₃	CN
K-I	СН	СН	СН	N	t-Bu	4-C1	CF ₃	CN
K-18	СН	CH ·	СН	СН	i-Pr	4-Me	CF ₃	Me
K-18	СН	CH	СН	CH	t-Bu	4-Me	CF ₃	Me
K-18	СН	СН	CH	СН	i-Pr	4-C1	CF ₃	Me
K-18	СН	СН	СН	СН	t-Bu	4-C1	CF ₃	Me
K-18	СН	СН	СН	СН	i-Pr	4-Me	CF ₃	F
K-18	СН	СН	СН	СН	t-Bu	4-Me	CF ₃	F
K-18	CH	СН	СН	СН	i-Pr	4-C1	CF ₃	F
K-18	CH	СН	СН	CH	t-Bu	4-Ci	CF ₃	F
K-18	СН	СН	СН	СН	<i>i</i> -Pr	4-Me	CF ₃	CI
K-18	СН	СН	СН	СН	t-Bu	4-Me	CF ₃	Cl
K-18	СН	СН	СН	СН	<i>i</i> -Pr	4-Cl	CF ₃	Cl
K-18	СН	СН	СН	СН	t-Bu	4-C1	CF ₃	Cl
K-18	СН	СН	СН	СН	i-Pr	4-Me	CF ₃	Br
K-18	СН	СН	СН	СН	<i>t</i> -Bu	4-Me	CF ₃	Br
K-18	СН	СН	CH	СН	i-Pr	4-Cl	CF ₃	Br

K-18	СН	СН	CH	СН	t-Bu	4-C1	CF ₃	Br
K-18	СН	CH	СН	СН	i-Pr	4-Me	CF ₃	CN
K-18	СН	СН	CH	СН	t-Bu	4-Me	CF ₃	CN
K-18	CH	СН	CH	CH	<i>i-</i> Pr	4-Cl	CF ₃	CN
K-18	CH	СН	CH	СН .	t-Bu	4-Cl	CF ₃	CN
K-18	СН	СН	СН	N	i-Pr	4-Me	CF ₃	Me
K-18	СН	СН	СН	N	t-Bu	4-Me	CF ₃	Me
K-18	СН	СН	CH	N	i-Pr	4-C1	CF ₃	Me
K-18	СН	СН	CH	N	t-Bu	4-Cl	CF ₃	Me
K-18	CH	СН	СН	N	i-Pr	4-Me	CF ₃	F
K-18	СН	СН	СН	N	t-Bu	4-Me	CF ₃	F
K-18	СН	СН	СН	N	<i>i</i> -Pr	4-Cl	CF ₃	F
K-18	CH	СН	CH	N	t-Bu	4-Cl	CF ₃	F
K-18	СН	СН	СН	N	<i>i</i> -Pr	4 - Me	CF ₃	Cl
K-18	CH	СН	СН	Ν .	t-Bu	4-Me	CF ₃	CI
K-18	CH	CH	СН	· N	i-Pr	4-Cl	CF ₃	CI
K-18	CH	СН	СН	N	t-Bu	4-Cl	CF ₃	Cl
K-18	CH	СН	СН	N	i-Pr	4-Me	CF ₃	Br
K-18	CH	СН	СН	N	t-Bu	4-Me	CF ₃	Br
K-18	CH	СН	СН	N	i-Pr	4-Cl	CF ₃	Br
K-18	CH	СН	СН	N	t-Bu	4-CI	CF ₃	Br
K-18	CH	CH	CH	N	i-Pr	4-Me	CF ₃	CN
K-18	CH	СН	CH	N	t-Bu	4-Me	CF ₃	CN
K-18	CH	ĆН	CH	N	i-Pr	4-C1	CF ₃	CN
K-18	СН	СН	СН	N	t-Bu	4-Cl	CF ₃	CN
K-14	СН	СН	СН	CH	i-Pr	1-Me	CF ₃	Me
K-14	СН	CH	CH	СН	t-Bu	1-Me	CF ₃	Me
K-14	СН	CH	CH	CH	i-Pr	1-Me	CF ₃	F
K-14	СН	СН	CH	СН	t-Bu	1-Me	CF ₃	F
K-14	CH	СН	CH	СН	<i>i-</i> Pr	1-Me	CF ₃	Cl
K-14	СН	CH	СН	СН	t-Bu	1-Me	CF ₃	Cl
K-14	CH	СН	CH	СН	i-Pr	1-Me	CF ₃	Br
K-14	CH	CH	CH	СН	t-Bu	1-Me	CF ₃	Br
K-14	CH	СН	CH	СН	i-Pr	1-Me	CF ₃	CN
K-14	CH	СН	CH	СН	t-Bu	1-Me	CF ₃	CN
K-14	CH	СН	CH	N	i-Pr	1-Me	CF ₃	Me
K-14	CH	СН	СН	N	<i>t</i> -Bu	1-Me	CF ₃	Me
K-14	CH	СН	СН	N	i-Pr	1-Me	CF ₃	F

K-14	СН	СН	CH	N	t-Bu	1-Me	CF ₃	F
K-14	СН	СН	CH	N	i-Pr	1-Me	CF ₃	Cl
K-14	СН	СН	CH	N	t-Bu	1-Me	CF ₃	Cl
K-14	СН	СН	CH	N	i-Pr	1-Me	CF ₃	Br
K-14	СН	CH	СН	N	t-Bu	I-Me	CF ₃	Br
K-14	СН	СН	СН	N	i-Pr	1-Me	CF ₃	CN
K-14	СН	СН	CH	N	t-Bu	1-Me	CF ₃	CN
K-28	CH	CH	СН	СН	i-Pr	4-Me	CF ₃	Me
K-28	СН	СН	CH	СН	<i>t</i> -Bu	4-Me	CF ₃	Me
K-28	СН	СН	CH	СН	i-Pr	4-C1	CF ₃	Me
K-28	СН	СН	СН	СН	t-Bu	4-Cl	CF ₃	Me
K-28	СН	СН	CH	СН	i-Pr	4-Me	CF ₃	F
K-28	CH	СН	CH	СН	t-Bu	4-Me	CF ₃	F
K-28	CH	СН	CH	СН	i-Pr	4-Cl	CF ₃	F
K-28	CH	СН	CH	СН	t-Bu	4-C1	CF ₃	F
K-28	СН	СН	СН	СН	i-Pr	4-Me	CF ₃	Cl
K-28	CH	CH	CH	СН	t-Bu	. 4-Me	CF ₃	Cl
K-28	CH	СН	CH	CH	i-Pr	4-Cl	CF ₃	CI
K-28	CH	СН	CH	CH	t-Bu	4-Cl	CF ₃	Cl
K-28	CH	СН	CH	CH	i-Pr	4-Me	CF ₃	Br
K-28	CH	СН	CH	CH	t-Bu	4-Me	CF ₃	Br
K-28	CH	СН	CH	СН	<i>i</i> -Pr	4-Cl	CF ₃	Br
K-28	CH	СН	CH	СН	t-Bu	4-Cl	CF ₃	Br
K-28	СН	СН	CH	СН	i-Pr	4-Me	CF ₃	CN
K-28	СН	CH	CH	СН	t-Bu	4-Me	CF ₃	CN
K-28	СН	СН	CH	СН	i-Pr	4-C1	CF ₃	CN
K-28	CH	СН	CH	СН	t-Bu	4-C1	CF ₃	CN
K-28	СН	СН	CH	N	i-Pr	4-Me	CF ₃	Me
K-28	CH	СН	CH	N	t-Bu	4-Me	CF ₃	Me .
K-28	CH	СН	CH	N	i-Pr	4-C1	CF ₃	Me
K-28	СН	СН	CH	N	t-Bu	4-C1	CF ₃	Me
K-28	СН	СН	СН	N	i-Pr	4-Me	CF₃	F
K-28	СН	СН	CH	N	t-Bu	4-Me	CF ₃	F
K-28	CH	СН	СН	N	i-Pr	4-Cl	CF ₃	F
K-28	CH	СН	CH	N	<i>t</i> -Bu	4-Cl	CF ₃	F
K-28	CH	СН	СН	N	i-Pr	4-Me	CF ₃	Cl
K-28	СН	СН	СН	N	t-Bu	4-Me	CF ₃	Cl
K-28	СН	СН	CH	N	i-Pr	4-C1	CF ₃	Cl

PCT/US02/06582

K-28	СН	СН	СН	N	t-Bu	4-Cl	CF ₃	Cl
K-28	СН	CH	CH	N	i-Pr	4-Me	CF ₃	Br
K-28	СН	СН	СН	N	t-Bu	4-Me	CF ₃	Br
K-28	СН	СН	СН	N	i-Pr	4-Cl	CF ₃	Вг
K-28	СН	СН	CH	N	t-Bu	4-Cl	CF ₃	Br
K-28	CH	СН	CH	N	<i>i</i> -Pr	4-Me	CF ₃	CN
K-28	СН	CH	СН	N	<i>t</i> -Bu	4-Me	CF ₃	CN
K-28	СН	CH	CH	N	i-Pr	4-Cl	CF ₃	CN
K-28	СН	CH	CH	N	t-Bu	4-Cl	CF ₃	CN
K-30	СН	CH	CH	CH	i-Pr	Me	CF ₃	Me
K-30	CH	CH	CH	CH	t-Bu	Me	CF ₃	Me
K-30	СН	CH	CH	СН	<i>i</i> -Pr	5-C1	CF ₃	Me
K-30	СН	CH	CH	СН	t-Bu	5-C1	CF ₃	Me
K-30	СН	CH	CH	СН	<i>i-</i> Pr	Me	CF ₃	F
K-30	СН	CH	CH	СН	<i>t</i> -Bu	Me	CF ₃	F
K-30	CH	СН	CH	СН	<i>i</i> -Pr	5-Cl	CF ₃	F
K-30	CH	СН	CH	СН	t-Bu	5-Cl	CF ₃	F
K-30	СН	СН	CH	СН	i-Pr	Me	CF ₃	Cl
K-30	CH	СН	CH	СН	t-Bu	Me	CF ₃	Cl
K-30	СН	CH	CH	СН	<i>i</i> -Pr	5-C1	CF ₃	Cl
K-30	CH	CH	CH	СН	t-Bu	5-Cl	CF ₃	Cl
K-30	CH	СН	CH	СН	i-Pr	Me	CF ₃	Br
K-30	CH	CH	CH	СН	t-Bu	Me	CF ₃	Br
K-30	СН	СН	CH	CH	i-Pr	5-C1	CF ₃	Br
K-30	СН	CH	CH	СН	t-Bu	5-C1	CF ₃	Br
K-30	СН	CH	CH	ĊН	i-Pr	Me	CF ₃	. CN
K-30	СН	СН	CH	СН	t-Bu	Me	CF ₃	CN
K-30	CH	СН	CH	CH	i-Pr	5-C1	CF ₃	CN
K-30	СН	СН	CH	CH	<i>t</i> -Bu	5-C1	CF ₃	CN
K-30	СН	СН	CH	N	<i>i</i> -Pr	Me	CF ₃	Me
K-30	CH	CH	СН	N	t-Bu	Me	CF ₃	Me
K-30	СН	СН	CH	N	<i>i</i> -Pr	5-Cl	CF ₃	Me
K-30	СН	СН	СН	N	<i>t</i> -Bu	5-Cl	CF ₃	Me
K-30	CH	СН	CH	N	<i>i</i> -Pr	Me	CF ₃	F
K-30	СН	СН	СН	N	<i>t</i> -Bu	Me	CF ₃	F
K-30	СН	СН	CH	N	i-Pr	5-C1	CF ₃	F
K-30	СН	СН	CH	N	<i>t-</i> Bu	5-Cl	CF ₃	F
K-30	CH	СН	CH	N	<i>i-</i> Pr	Me	CF ₃	Cl

K-30	СН	СН	СН	N	<i>t</i> -Bu	Me	CF ₃	Cl
K-30	CH	СН	CH	N	<i>i-</i> Pr	5-Cl	CF ₃	Cl
K-30	CH	СН	CH	N .	<i>t</i> -Bu	5-Cl	CF ₃	Cl
K-30	CH	СН	CH	N	i-Pr	Me	CF ₃	Br
K-30	СН	СН	CH	N	t-Bu	Me	CF ₃	Br
K-30	СН	СН	СН	N	i-Pr	5-C1	CF ₃	Br
K-30	CH	СН	CH	N	t-Bu	5-Cl	CF ₃	Br
K-30	CH	СН	CH	N	i-Pr	Me	CF ₃	CN
K-30	CH	СН	CH	N	<i>t-</i> Bu	Me	CF ₃	CN
K-30	CH	CH	СН	N	i-Pr	5-Cl	CF ₃	CN
K-30	СН	СН	CH	N	t-Bu	5-Cl	CF ₃	CN
K-30	CH	СН	CH	CH	i-Pr	Me	CF ₃	Me
K-30	CH	СН	СН	CH	t-Bu	Me	CF ₃	Me
K-30	CH	СН	CH	СН	<i>i</i> -Pr	5-Cl	CF ₃	Me
K-30	СН	СН	CH	CH	t-Bu	5-Cl	CF ₃	Me
K-30	CH	CH	CH	CH	i-Pr	Me	CF ₃	F
K-30	СН	СН	CH	CH	t-Bu	Me	CF ₃	F
K-30	СН	СН	CH	СН	i-Pr	5-Cl	CF ₃	F
K-30	СН	CH	CH	СН	t-Bu	5-Cl	CF ₃	F
K-30	СН	CH	СН	CH	<i>i</i> -Pr	Me	CF ₃	Cl
K-30	СН	СН	CH	СН	t-Bu	Me	CF ₃	Cl
K-30	CH	СН	CH	СН	i-Pr	5-Cl	CF ₃	Cl
K-30	CH	CH	CH	СН	<i>t-</i> Bu	5-Cl	CF ₃	Cl
K-30	CH	СН	CH	CH	<i>i</i> -Pr	Me	CF ₃	Br
K-30	СН	СН	СН	СН	t-Bu	Me	CF ₃	Br
K-30	СН	CH	СН	CH	i-Pr	5-C1	CF ₃	Br
K-30	СН	CH	CH	СН	t-Bu	5-C1	CF ₃	Br
K-30	СН	СН	СН	СН	i-Pr	Me	CF ₃	CN
K-30	СН	CH	СН	СН	t-Bu	Me	CF ₃	CN
K-30	CH	СН	CH	СН	<i>i-</i> Pr	5-Cl	CF ₃	CN
K-30	CH	CH	CH	СН	t-Bu	5-C1	CF ₃	CN
K-30	СН	СН	CH	N	i-Pr	Me	CF ₃	Me
K-30	CH	СН	СН	N	t-Bu	Me	CF ₃	Me
K-30	CH	CH	CH	N	i-Pr	5-Cl	CF ₃	Me
K-30	CH	СН	CH	N	t-Bu	5-C1	CF ₃	Me
K-30	CH	СН	СH	N	i-Pr	Me	CF ₃	F
K-30	CH	CH	СН	N	t-Bu	Me	CF ₃	F
K-30	СН	CH	СН	N	<i>i</i> -Pr	5-C1	CF ₃	F

K-30	CH	СН	СН	N	<i>t</i> -Bu	5-Cl	CF ₃	F
K-30	СН	СН	СН	N	<i>i</i> -Pr	Me	CF ₃	Cl
K-30	СН	СН	СН	N	t-Bu	Me	CF ₃	Cl
K-30	СН	СН	СН	N	<i>i</i> -Pr	5-Cl	CF ₃	Cl
K-30	CH	СН	СН	N	t-Bu	5-Cl	CF ₃	Cl
K-30	СН	СН	CH	N	i-Pr	Me	CF ₃	Br
K-30	СН	СН	СН	N	t-Bu	Me	CF ₃	Br
K-30	СН	СН	СН	N	i-Pr	5-C1	CF ₃	Br
K-30	CH	CH	СН	N	<i>t</i> -Bu	5-Cl	CF ₃	Br
K-30	CH	CH	СН	N	i-Pr	Me	CF ₃	CN
K-30	CH	CH	СН	N	t-Bu	Me	CF ₃	CN
K-30	СН	CH	СН	Ν.	i-Pr	5-Cl	CF ₃	CN
K-30	СН	СН	СН	N	t-Bu	5-Cl	CF ₃	CN
K-31	СН	СН	СН	СН	i-Pr	2-Me	CF ₃	Me
K-31	СН	СН	СН	CH	t-Bu	2-Me	CF ₃	Me
K-31	СН	СН	СН	CH	i-Pr	2-Cl	CF ₃	Me
K-31	СН	CH	СН	СН	t-Bu	2-Cl	CF ₃	Me
K-31	СН	СН	CH	CH	i-Pr	2-Me	CF ₃	F
K-31	СН	СН	CH	СН	t-Bu	2-Me	CF ₃	F
K-31	СН	СН	CH	СН	<i>i</i> -Pr	2-Cl	CF ₃	F
K-31	СН	СН	СН	СН	t-Bu	2-C1	CF ₃	F
K-31	СН	СН	СН	СН	<i>i-</i> Pr	2-Me	CF ₃	Cl
K-31	СН	СН	СН	CH	t-Bu	2-Me	CF ₃	Cl
K-31	СН	CH	CH	СН	<i>i</i> -Pr	2-C1	CF ₃	Cl
K-31	СН	СН	CH	СН	t-Bu	2-Cl	CF ₃	Cl
K-31	CH	СН	CH	CH	i-Pr	2-Me	CF ₃	Br
K-31	CH	CH	CH	СН	t-Bu	2-Me	CF ₃	Br
K-31	CH	CH	CH	СН	i-Pr	2-Cl	CF ₃	Br
K-31	CH	CH	СН	CH	<i>t</i> -Bu	2-Cl	CF ₃	Br
K-31	CH	CH	СН	CH	i-Pr	2-Me	CF ₃	CN
K-31	CH	СН	СН	CH	t-Bu	2-Me	CF ₃	CN
K-31	СН	СН	СН	CH	i-Pr	2-CI	CF ₃	CN
K-31	СН	СН	СН	CH	t-Bu	2-Cl	CF ₃	CN
K-31	CH	CH	СН	N	i-Pr	2-Me	CF ₃	Me
K-31	СН	СН	СН	N ·	t-Bu	2-Me	CF ₃	Me
K-3 1	СН	СН	СН	N	i-Pr	2-Cl	CF ₃	Me
K-31	СН	СН	СН	N	t-Bu	2-Cl	CF ₃	Me
K-31	СН	СН	CH	N	<i>i</i> -Pr	2-Me	CF ₃	F

K-31	CH	СН	СН	N	t-Bu	2-Me	CF ₃	F
K-31	CH	СН	СН	N	<i>i</i> -Pr	2-Cl	CF ₃	F
K-31	CH	СН	CH	N	t-Bu	2-Cl	CF ₃	F
K-31	CH	СН	СН	N	<i>i</i> -Pr	2-Me	CF ₃	Cl
K-31	CH	СН	СН	N	<i>t</i> -Bu	2-Me	CF ₃	Cl
K-31	СН	СН	СН	N	i-Pr	2-Cl	CF ₃	CI
K-31	CH	СН	СН	N	t-Bu	2-C1	CF ₃	Cl
K-31	CH	СН	CH	N	i-Pr	2-Me	CF ₃	Br
K-31	CH	CH	CH	N	t-Bu	2-Me	CF ₃	Br
K-31	CH	CH	CH	N	i-Pr	2-Cl	CF ₃	Br
K-31	CH	CH	СН	N	t-Bu	2-Cl	CF ₃	Br
K-31	CH	CH	СН	N	i-Pr	2-Me	CF ₃	CN
K-31	CH	СН	СН	N	<i>t</i> -Bu	2-Me	CF ₃	CN
K-31	CH	CH	СН	N	i-Pr	2-Cl	CF ₃	CN
K-31	CH	СН	CH	N	t-Bu	2-Cl	CF ₃	CN
K-31	СН	СН	СН	СН	i-Pr	2-Me	CF ₃	Me
K-31	CH	CH	СН	СН	<i>t</i> -Bu	2-Me	CF ₃	Me
K-31	СН	CH	СН	СН	i-Pr	2-Cl	CF ₃	Me
K-31	CH	СН	СН	СН	t-Bu	2-C1	CF ₃	Me
K-31	CH	CH	CH	СН	i-Pr	2-Me	CF ₃	F
K-31	CH	CH	CH	СН	t-Bu	2-Me	CF ₃	F
K-31	СН	СН	СН	СН	i-Pr	2-C1	CF ₃	F
K-31	CH	CH	CH	СН	t-Bu	2-Cl	CF ₃	F
K-31	CH	CH	СН	СН	i-Pr	2-Me	CF ₃	Cl
K-31	CH	CH	CH	CH	t-Bu	2-Me	CF ₃	Cl
K-31	CH	СН	СН	СН	i-Pr	2-Cl	CF ₃	Cl
K-31	CH	CH	СН	СН	t-Bu	2-Cl	CF ₃	Cl
K-31	CH	СН	СН	СН	i-Pr	2-Me	CF ₃	Br
K-31	CH	CH	СН	CH	t-Bu	2-Me	CF ₃	Br
K-31	CH	CH	СН	CH	<i>i</i> -Pr	2-Cl	CF ₃	Br
K-31	CH	CH	СН	CH	t-Bu	2-Cl	CF ₃	Br
K-31	CH	CH	СН	CH	i-Pr	2-Me	CF ₃	CN
K-31	CH	CH	CH	СН	t-Bu	2-Me	CF ₃	CN
K-31	CH	CH	CH	СН	i-Pr	2-Cl	CF ₃	CN
K-31	CH	СН	СН	CH	t-Bu	2-Cl	CF ₃	CN
K-31	СН	CH	СН	N	i-Pr	2-Me	CF ₃	Me
K-31	СН	CH	СН	N	<i>t</i> -Bu	2-Me	CF ₃	Me
K-31	CH	CH	CH	N	i-Pr	2-C1	CF ₃	Me

K-31	СН	СН	СН	N	t-Bu	2-Cl	CF ₃	Me
K-31	СН	СН	СН	N	<i>i</i> -Pr	2-Me	CF ₃	F
K-31	СН	СН	СН	N	t-Bu	2-Me	CF ₃	F
K-31	СН	CH	CH	N	i-Pr	2-Cl	CF ₃	F
K-31	СН	CH	CH	N	t-Bu	2-Cl	CF ₃	F
K-31	СН	CH	CH	N	i-Pr	2-Me	CF ₃	Cl
K-31	СН	CH	CH	N	t-Bu	2-Me	CF ₃	Cl
K-31	СН	CH	CH	N	<i>i-</i> Pr	2-C1	CF ₃	C1
K-31	СН	CH	CH	N	t-Bu	2-C1	CF ₃	Cl
K-31	СН	CH	СН	N	<i>i</i> -Pr	2-Me	CF ₃	Br
K-31	СН	CH	CH	N	t-Bu	. 2-Me	CF ₃	Br
K-31	СН	СН	СН	N	i-Pr	2-C1	CF ₃	Br
K-31	СН	СН	СН	N	t-Bu	2-Cl	CF ₃	Br
K-31	СН	CH	СН	N	<i>i</i> -Pr	2-Me	CF ₃	CN
K-31	СН	СН	СН	N	<i>t</i> -Bu	2-Me	CF ₃	CN
K-31	СН	СН	СН	N	i-Pr	2-Cl	CF ₃	CN
K-31	СН	СН	СН	N	t-Bu	2-Cl	CF ₃	CN
K-33	СН	СН	СН	СН	<i>i</i> -Pr	6-Me	CF ₃	Me
K-33	СН	СН	СН	СН	t-Bu	6-Me	CF ₃	Me
K-33	CH	CH	СН	СН	<i>i</i> -Pr	6-Cl	CF ₃	Me
K-33	СН	СН	СН	СН	<i>t</i> -Bu	6-Cl	CF ₃	Me
K-33	СН	СН	СН	СН	i-Pr	6-Me	CF ₃	F
K-33	СН	СН	CH	СН	t-Bu	6-Me	CF ₃	F
K-33	СН	СН	СН	СН	i-Pr	6-Cl	CF ₃	F
K-33	CH	СН	СН	СН	t-Bu	6-Cl	CF ₃	F
K-33	CH	СН	СН	СН	i-Pr	6-Me	CF ₃	Cl
K-33	CH	СН	СН	СН	<i>t</i> -Bu	6-Me	CF ₃	Cl
K-33	CH	СН	СН	СН	i-Pr	6-Cl	CF ₃	Cl
K-33	СН	СН	CH	CH	t-Bu	6-Cl	CF ₃	Cl
K-33	CH	СН	СН	CH	i-Pr	6-Me	CF ₃	Br
K-33	СН	СН	CH	CH	t-Bu	6-Me	CF ₃	Br
K-33	CH	СН	СН	CH	i-Pr	6-CI	CF ₃	Br
K-33	СН	СН	CH	CH	t-Bu	6-CI	CF ₃	Br
K-33	CH	СН	CH	CH	i-Pr	6-Me	CF ₃	CN
K-33	СН	СН	СН	CH	t-Bu	6-Me	CF ₃	CN
K-33	СН	СН	СН	CH	<i>i</i> -Pr	6-C1	CF ₃	CN
K-33	CH	CH	CH	CH	t-Bu	6-Cl	CF ₃	CN
K-33	СН	CH	СН	N	i-Pr	6-Me	CF ₃	Me

СН	СН	СН	N	t-Bu	6-Me	CF ₃	Me
СН	СН	СН	N	i-Pr	6-Cl	CF ₃	Me
СН	СН	СН	N	<i>t</i> -Bu	6-Cl	CF ₃	Me
СН	CH	СН	N.	i-Pr	6-Me	CF ₃	F
CH	CH	СН	N	t-Bu	6-Me	CF ₃	F
CH	СН	СН	N	i-Pr	6-Cl	CF ₃	F
CH	CH	CH	N	t-Bu	6-Cl	CF ₃	F
CH	CH	CH	N	i-Pr	6-Me	CF ₃	CI
СН	CH	CH	N	t-Bu	6-Me	CF ₃	Cl
CH	CH	CH	N	i-Pr	6-Cl	CF ₃	Cl
СН	CH	CH	N	t-Bu	6-Cl	CF ₃	Cl
СН	CH	СН	N	i-Pr	6-Me	CF ₃	Br
CH	CH	CH	N	t-Bu	6-Me	CF ₃	Br
CH	СН	СН	N	i-Pr	6-C1	CF ₃	Br
СН	СН	CH	N	<i>t</i> -Bu	6-C1	CF ₃	Br
СН	СН	CH	N	i-Pr	6-Me	CF ₃	CN
CH	CH	CH	N	<i>t-</i> Bu	6-Me	CF ₃	CN
СН	СН	CH	N	i-Pr	6-C1	CF ₃	CN
СН	СН	CH	N	t-Bu	6-C1	CF ₃	CN
CH	CH	CH	CH	<i>i</i> -Pr	6-Me	CF ₃	Me
CH	CH	CH	СН	t-Bu	6-Me	CF ₃	Me
CH	CH	CH	CH	i-Pr	6-CI	CF ₃	Me
СН	CH	CH.	СН	t-Bu	6-C1	CF ₃	Me
CH	CH	CH	СН	i-Pr	6-Me	CF ₃	F
СН	СН	СН	CH	t-Bu	6-Me	CF ₃	F
СН	СН	СН	СН	i-Pr	6-C1	CF ₃	F
СН	CH	CH	CH	<i>t</i> -Bu	6-C1	CF ₃	F
CH	CH	СН	СН	i-Pr	6-Me	CF ₃	Cl
СН	СН	CH	СН	t-Bu	6-Me	CF ₃	Cl
CH	CH	CH	CH	i-Pr	6-C1	CF ₃	Cl
CH	CH	СН	CH	<i>t</i> -Bu	6-Cl	CF ₃	Cl
CH	СН	СН	СН	i-Pr	6-Me	CF ₃	Br
СН	CH	СН	СН	t-Bu	6-Me	CF ₃	Br
СН	CH	CH	СН	i-Pr	6-Cl	CF ₃	Br
CH	СН	CH	СН	<i>t</i> -Bu	6-Cl	CF ₃	Br
CH	CH	СН	СН	i-Pr	6-Me	CF ₃	CN
CH	СН	CH	СН	t-Bu	6-Me	CF ₃	CN
CH	CH	СН	СН	i-Pr	6-Cl	CF ₃	CN
	CH C	CH CH CH <	CH CH CH CH CH CH	CH CH CH N CH CH CH CH CH CH CH CH CH CH CH C	CH CH CH N i-Pr CH CH CH I-Pr CH	CH CH CH N i-Pr 6-Cl CH CH	CH CH CH N

K-33	СН	СН	ÇН	СН	<i>t</i> -Bu	6-C1	CF ₃	CN
K-33	CH	СН	СН	N	i-Pr	6-Me	CF ₃	Me
K-33	СН	CH	СН	N	t-Bu	6-Me	CF ₃	Me
K-33	СН	СН	СН	N	i-Pr	6-Cl	CF ₃	Me
K-33	СН	СН	СН	N	t-Bu	6-C1	CF ₃	Me
K-33	СН	СН	CH	N	i-Pr	6-Me	CF ₃	· F
K-33	СН	СН	СН	N	t-Bu	6-Me	CF ₃	F
K-33	СН	СН	СН	N	i-Pr	6-Cl	CF ₃	F
K-33	СН	СН	CH	N	t-Bu	6-Cl	CF ₃	F
K-33	СН	СН	CH	N	i-Pr	6-Me	CF ₃	Cl
K-33	СН	СН	CH	N	t-Bu	6-Me	CF ₃	Cl
K-33	СН	СН	СН	N	i-Pr	6-Cl	CF ₃	Cl
K-33	СН	СН	CH	N	t-Bu	6-Cl	CF ₃	Cl
K-33	CH	СН	СН	N	i-Pr	6-Me	CF ₃	Br
K-33	СН	СН	CH	N	t-Bu	6-Me	CF ₃	Br
K-33	CH	CH	CH	N	i-Pr	6-Cl	CF ₃	Br
K-33	CH	СН	CH	N	t-Bu	6-C1	CF ₃	Br
K-33	CH	СН	СН	N	i-Pr	6-Me	CF ₃	CN
K-33	СН	СН	СН	N	<i>t</i> -Bu	6-Me	CF ₃	CN
K-33	СН	СН	СН	N	i-Pr	6-Cl	CF ₃	CN
K-33	СН	СН	CH	. N	t-Bu	6-Cl	CF ₃	CN

Table 18

R⁵ is Cl

	<u>K' is Ci</u>											
R ² is H, R ³ is Me			R ² is H, R ³ is Et			R ² is	<u>н, к³ і</u>	s i-Pr	R ² is Me, R ³ is Me			
R4a	R4b	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6	R ^{4a}	<u>R^{4b}</u>	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6	
CH ₃	Н	Cl	CH ₃	Н	Cl	CH ₃	H	CI	CH ₃	Н	CI	
CH ₃	Н	Br	CH ₃	Н	Br	CH ₃	Н	Br	СН3	Н	Br	
CH ₃	I	Cl	СН3	I	Cl	CH ₃	1	Cl	СН3	I	Cl	
CH ₃	I	Br	CH ₃	I	Br	CH ₃	I	Br	CH ₃	i	Br	

R⁵ is Cl

R ² is H, R ³ is Me			-2.	3	<u></u> 				R ² is Me, R ³ is Me			
				H, R ³			H, R ³ i					
R^{4a}	<u>R^{4b}</u>	<u>R</u> 6	R ^{4a}	<u>R^{4b}</u>	<u>R</u> 6	<u>R^{4a}</u>	<u>R4b</u>	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6	
СН3	F	Cl	СН3	F	C1	CH ₃	F	CI	CH ₃	F	CI	
CH ₃	F	Br	CH ₃	F	Br	CH ₃	F	Br	CH ₃	F	Br	
CH ₃	CF ₃	Cl	CH ₃	CF ₃	Cl	CH ₃	CF ₃	Cl	CH ₃	CF ₃	Cl	
CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	
CH ₃	Br	Cl	CH ₃	Br	Cl	CH ₃	Br	Cl	CH ₃	Br	CI	
CH ₃	Br	Br	СН3	Br	Br	CH ₃	Br	Br	CH ₃	Br	Br	
CH ₃	Cl	CI	CH ₃	Cl	Cl	CH ₃	CI	Cl	CH ₃	Cl	Cl	
CH ₃	Cl	Br	CH ₃	CI	Br	CH ₃	Cl	Br	CH ₃	Cl	Вг	
Cl	H	CI	CI	Н	Cl	CI	Н	Cl	CI	H	Cl	
CI	H	Br	Cl	Н	Br	CI	H	Br	CI	H	Br	
CI	I	Ci	CI	I	Cl	CI	I	Cl	Cl	Ī	Cl	
Cl	I	Br	CI	I	Br	Cl	I	Br	Cl	I	Br	
Cl	F	Cl	CI	F	CI	Cl	F	Cl	Cl	F	Cl	
Cl	F	Br	Ci	F	Br	CI	F	Br	Cl	F	Br	
Cl	CF ₃	Cl	Cl	CF ₃	Cl	Cl	CF ₃	Cl	Cl	CF ₃	Cl	
Cl	CF ₃	Br	CI	CF ₃	Br	Cl	CF ₃	Br	Cl	CF ₃	Br	
Cl	Br	C1	CI	Br	Cl	Cl	Br	Cl	Cl	Br	Cl	
C1	Br	Br	Cl	Br	Br	Cl	Br	Br	Cl	Br	Br	
Cl	Cl	Cl	Cl	Cl	Cl	CI	Cl	Cl	Cl	Cl	Cl	
Cl	Cl	Br	Cl	Cl	Br	Cl	Cl	Br	CI	Cl	Br	
Br	H	Cl	Br	Н	Cl	Br	H	Cl	Br	Н	Cl	
Br	Н	Br	Br	Н	Br	Br	Н	Br	Br	Н	Br	
Br	I	C!	Br	I	Cl	Br	I	CI	Br	I	Cl	
Br	I	Br	Br	I	Br	Br	I	Br	Br	I	Br	
Br	F	Cl	Br	F	Cl	Br	F	Cl	Br	F	Cl	
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br	
Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl	
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	
Br	Br	Cl	Br	Br	Cl	Br	Br	Cl	Br	Br	Cl	
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	
Br	Cl	Cl	Br	Cl	Cl	Br	CI	Cl	Br	Cl	CI	
Br	Cl	Br	Br	Cl	Br	Br	Cl	Br	Br	Cl	Br	

R⁵ is Br

	R ⁵ is Br										
R^2 is	H, R ³ i	s Me	\mathbb{R}^2 is	н, R ³ ј	s Et	R ² is	<u>H, R³ is</u>	i-Pr		Me, R ³	
R ^{4a}	R4b	<u>R</u> 6	<u>R^{4a}</u>	R^{4b}	<u>R</u> 6	<u>R^{4a}</u>	<u>R4b</u>	<u>R</u> 6	<u>R^{4a}</u>	R4b	<u>R</u> 6
CH ₃	Н	Cl	CH ₃	H	CI	CH ₃	Н	Cl	CH ₃	H	CI
CH ₃	Н	Br	CH ₃	Н	Br	CH ₃	Н	Br	CH ₃	Н	Br
CH ₃	Ī	Cl	CH ₃	I	Cl	CH ₃	I	Cl	CH ₃	1	Cl
CH ₃	I	Br	СН3	Ι,	Br	СН3	I	Br	CH ₃	I	Br
СН3	F	Cl	СН3	F	CI	СН3	F	CI	CH ₃	F	CI
CH ₃	F	Br	CH ₃	F	Br	CH ₃	F	Br	CH ₃	F _.	Br
CH ₃	CF ₃	Ci	CH ₃	CF ₃	Cl	CH ₃	CF ₃	Ci	CH ₃	CF ₃	Cl
CH ₃	CF ₃	Br	СН3	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br
CH ₃	Br	Cl	CH ₃	Br	Cl	CH ₃	Br	Cl	CH ₃	Br	Cl
CH ₃	Br	Br	СН3	Br	Br	СН3	Br	Br	CH ₃	Br	Br
CH ₃	Ci	Cl	СН3	Cl	Cl	СН3	Cl	CI	CH ₃	Cl	Cl
СН3	Cl	Br	СН3	Cl	Br	CH ₃	Cl	Br	CH ₃	. CI	Br
Cl	Н	Cl	CI	Н	Cl	Cl	Н	Cl	Cl	Н	Cl
CI	Н	Br	Cl	Н	Br	CI	Н	Br	Cl	Н	Br
Cl	I	Cl	Cl	1	Cl	Cl	I	Cl	CI	I	Cl
Cl	I	Br	Cl	I	Br	Cl	I	Br	CI	Ι.	Br
Cl	F	Cl	Cl	F	Cl	Cl	F	Cl	Cl	F	Cl
Cl	F	Br	CI	F	Br	CI	F	Br	Cl	F	Br
Cl	CF ₃	Cl	Cl	CF ₃	· Cl	CI	CF ₃	Cl	Cl	CF ₃	Cl
Cl	CF ₃	Br	Cl	CF ₃	Br	CI	CF ₃	Br	Cl	CF ₃	Br
Cl	Br	Cl	CI	Br	Cl	Cl	Br	Cl	Cl	Br	Cl
Cl	Br ·	Br	CI	Br	Br	Cl	Br	Br	CI	Br	Br
Cl	Cl	Cl	CI	Cl	Cl	Cl	Cl	Cl	CI	Cl	Cl
Cl	Cl	Br	Cl	Cl	Br	CI	Cl	Br	Cl	Cl	Br
Br	Н	Cl	Br	Н	Cl	Br	Н	Cl	Br	Н	Cl
Br	H	Br	Br	Н	Br	Br	Н	Br	Br	Н	Br
Br	I	Cl	Br	I	Cl	Br	I	Cl	Br	1	Cl
Br	I	Br	Br	I	Br	Br	I	Br	Br	I	Br
Br	F	Cl	Br	F	Cl	Br	F	Cl	Br	F	Cl
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br
Br	CF ₃	Cl	Br	CF ₃	CI	Br	CF ₃	Cl	Br	CF ₃	CI
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br
Br	Br	Cl	Br	Br	Cl	Br	Br	Cl	Br	Br	Ci
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br
Br	Cl	Cl	Br	Cl	Cl	Br	Cl	Cl	Br	Cl	Cl

R^{5}	is	Br

	**												
R2 is H, R3 is Me R4a R4b R6 Br Cl Br			R ² is	H, R ³	is Et	R ² is	н, к ³ і	s <i>i-</i> Pr	R ² is Me, R ³ is Me				
R ^{4a}	R4b	<u>R</u> 6	R4a	<u>R^{4b}</u>	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6		
Br	Cl	Br	Br	Cl	Br	Br	Cl	Br	Br	Cl	Br		

R⁵ is CF

	R ⁵ is CF ₃											
\mathbb{R}^2 is	H, R ³ i	is Me	R ² is	H, R ³	is Et	R^2 is	<u>H, R³ i</u>	<u>s <i>i-</i>Pr</u>	R ² is Me, R ³ is Me			
R ^{4a}	<u>R4b</u>	<u>R</u> 6	R ^{4a}	<u>R^{4b}</u>	<u>R</u> 6	R ^{4a}	<u>R^{4b}</u>	<u>R</u> 6	R ^{4a}	<u>R4b</u>	<u>R</u> 6	
CH ₃	Н	Cl	CH ₃	Н	Cl	CH ₃	Н	Cl	CH ₃	H	Cl	
CH ₃	Н	Br	СН3	Н	Br	CH ₃	Н	Br	CH ₃	Н	Br	
CH ₃	I	CI	СН3	I	CI	CH ₃	I	CI	СН3	I	Cl	
CH ₃	I	Br	CH ₃	1	Br	CH ₃	I	Br	CH ₃	I	Br	
CH ₃	F	Cl	СН3	F	Cl	CH ₃	F	CI	CH ₃	F	Cl	
CH ₃	F	Br	СН3	F	Br	СН3	F	Br	СН3	F	Br	
CH ₃	CF ₃	Cl	CH ₃	CF ₃	Cl	CH ₃	CF ₃	Cl	CH ₃	CF ₃	Cl	
CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	
СН3	Br	Cl	СН3	Br	Cl	CH ₃	Br	CI	CH ₃	Br	Cl	
CH ₃	Br	Br	CH ₃	Br	Br	СН3	Br	Br	CH ₃	Br	Br	
CH ₃	Cl	Cl	CH ₃	Cl	Cl	CH ₃	Cl	Cl	CH ₃	Cl	Cl	
CH ₃	Cl	Br	CH ₃	CI	Br	CH ₃	Cl	Br	CH ₃	Cl	Br	
Cl	Н	Cl	CI	Н	Cl	Cl	Н	Cl	Cl	Н	Cl	
Cl	Н	Br	CI	Н	Br	Cl	Н	Br	CI	Н	Br	
Cl	I	Cl	CI	1	Cl	CI	I	Cl	Cl	I	Cl	
CI	I	Br	Cl	I	Br	CI	I	Br	CI	I	Br	
Cl	F	Cl	CI	F	Cl	CI	F	Cl	Cl	F	Cl	
Cl	F	Br	Cl	F	Br	CI	F	Br	Cl	F	Br	
Cl	CF ₃	Cl	Cl	CF ₃	Cl	CI	CF ₃	Cl	Cl	CF ₃	Cl	
Ci	CF ₃	Вг	Cl	CF ₃	Вг	CI	CF ₃	Br	Cl	CF ₃	Br	
Cl	Br	Cl	CI	Br	Cl	Cl	Br	Cl	Cl	Br	Cl	
Cl	Br	Br	Cl	Br	Br	Cl	Br	Br	Cl	Br	Br	
Cl	Cl	Cl	Cl	Cl	Cl	Cl	Cl	Cl	Cl	CI	Cl	
Cl	Cl	Br	Cl	Cl	Br	Cl	Cl	Br	Cl	Cl	Br	
Br	Н	Cl	Br	Н	Cl	Br	Н	Cl	Br	Н	Cl	
Br	Н	Br	Br	Н	Br	Br	Н	Br	Вг	Н	Br	
Br	I	Cl	Br	I	Cl	Br	I	Cl	Br	I	Cl	
Br	I	Br	Br	I	Br	Br	, I	Br	Br	I	Br	
Br	F	CI	Br	F	CI	Br	F	CI	Br	F	Cl	
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br	

	R ⁵ is CF ₃													
R ² is	н, R ³ і	s Me	R ² is	H, R ³	is Et	R ² is	<u>н, к³ і</u>	s i-Pr	R ² is Me, R ³ is Me					
R ^{4a}	R4b	<u>R</u> 6		R4b		R ^{4a}		<u>R</u> 6		<u>R^{4b}</u>	<u>R</u> 6			
Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl			
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br			
Br	Br	Cl	Br	Br	Cl	Br	Br	Cl	Br	Br	Cl			
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br			
Br	Cl	CI	Br	Cl	Cl	Br	Ci	Cl	Br	Cl	Cl			
Br	Cl	Br	Br	Cl	Br	Br	Cl	Br	Br	Cl	Br			

R⁵ is OCH₂CF₃ R^2 is H, R^3 is *i*-Pr R^2 is Me, R^3 is Me R^2 is H, R^3 is Me R^2 is H, R^3 is Et R4a R4b R4b R4b <u>R</u>6 R^{4a} <u>R</u>6 R4b R^{4a} <u>R</u>6 R^{4a} <u>R</u>6 CH₃ Н Cl CH₃ Н Cl CH₃ Н Cl CH₃ Н Cl CH₃ Н Br CH₃ Н CH₃ Н Br CH₃ Н Br Br CH₃ CH₃ Cl CH₃ ſ Cl I Cl CH₃ I Cl I Br CH₃ I CH₃ 1 Br CH₃ I Br CH₃ I Br F CH₃ F CI F Cl CH₃ Cl CH₃ F Cl CH₃ F Br CH₃ F CH₃ F Br CH₃ CH₃ F Br Br CH₃ CF₃ Cl Cl CH₃ CF₃ Cl CH₃ CF₃ CH₃ CF₃ Cl CH₃ CF₃ Br CH₃ CF₃ CH₃ CF₃ Br CH₃ CF₃ Br Br Cl CH₃ CH₃ Br Cl CH₃ Br CH₃ Br CI Br Cl CH₃ Br CH₃ Br CH₃ Br Br Br CH₃ Br Br Br Cl CH₃ Cl Cl CH₃ Cl Cl CH₃ Cl CI CH₃ Cl Cl Cl CH₃ Cl Br CH₃ Br CH₃ Br CH₃ Cl Вr Н Cl Cl CI Cl CI CI Cl Н Н Cl Н Cl Н CI H Br Cl Н Br Cl Н Br Br Cl Cl I Cl Cl CI Cl I Cl Cl I I Cl 1 Cl I Cl I Br CI I Br Br Br F Cl Cl F Cl Cl F Cl Cl F Cl Cl Cl F Br Cl F Br Cl F Br Cl F Br CI Cl Cl CF₃ Ci Cl CF₃ Cl CF₃ Cl CF₃ Cl Cl CF₃ Cl Cl CF₃ Br Cl CF₃ Br Br CF₃ Вг CI Br CI CI Br CI CI Br CI CI Br Cl Cl Cl Cl Cl Br Br Br Br Br Br Br Br Cl Cl Cl Cl Cl Cl Cl CI Cl Cl CI CI Cl Cl Br CI CI Вг Cl CI Вг Cl CI Br Br Н CI Br Н CI Br Н Cl Br Н Cl

R⁵ is OCH₂CF₃

				_								
R ² is	H, R ³ i	s Me	R ² is H, R ³ is Et			R ² is	Н, Ř ³ і	s i-Pr	R ² is Me, R ³ is Me			
<u>R^{4a}</u>	<u>R^{4b}</u>	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6	R4a	R4b	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6	
Br	Н	Br	Br	Н	Br	Br	Н	Br	Вг	Н	Br	
Br	I	Cl	Br	I	Cl	Br	I	Cl	Вг	I	Cl	
Br	I	Br	Br	i	Br	Br	I	Br	Br	I	Br	
Br	F	Cl	Br	F	Cl	Br	F	Cl	Br	F	Cl	
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br	
Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl	
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	
Br	Br	CI	Br	Br	CI	Br	Br	Cl	Br	Br	Cl	
Br	Br	Br	Br	Br	Вг	Br	Br	Br	Br	Br	Br	
Br	Cl	CI	Br	Cl	Cl	Вг	CI	Cl	Br	Cl	Cl	
Br	CI	Br	Br	Cl	Br	Br	CI	Br	Br	Cl	Br	

Table 19

R⁵ is CHF₂

	K-13 CHI 2													
R ² is	H, R ³	s Me	R ² is	H, R ³	is Et	R ² is	<u>н, к³ і</u>	s <i>i-</i> Pr	R ² is	Me, R ³	<u>is Me</u>			
<u>R^{4a}</u>	<u>R^{4b}</u>	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6	R ^{4a}	R^{4b}	<u>R</u> 6			
CH ₃	Н	Cl	CH ₃	Н	Cl	СН3	н	Cl	СН3	Н	CI			
CH ₃	Н	Br	CH ₃	Н	Br	CH ₃	Н	Br	CH ₃	Н	Br			
CH ₃	I	Cl	СН3	I	Cl	CH ₃	I	Cl	CH ₃	I	Cl			
СН3	I	Br	CH ₃	I	Br	СН3	I	Br	СН3	I	Br			
CH ₃	F	Cl	CH ₃	F	Ci	СН3	F	Cl	CH ₃	F	Cl			
СН3	F	Br	СН3	F	Br	СН3	F	Br	СН3	F	Br			
CH ₃	CF ₃	Cl	CH ₃	CF ₃	C!	СН3	CF ₃	Cl	СН3	CF ₃	Cl			
CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	СН3	CF ₃	Br	CH ₃	CF ₃	Br			
CH ₃	Br	Cl	СН3	Br	Cl	СН3	Br	Cl	СН3	Br	Cl			
CH ₃	Br	Br	СН3	Br	Br	СН3	Br	Br	СН3	Br	Br			
CH ₃	Cl	Cl	CH ₃	CI	Cl	СН3	Cl	Cl	СН3	Cl	Cl			
CH ₃	Cl	Br	CH ₃	Cl	Br	СН3	Cl	Br	СН3	Cl	Br			
Cl	Н	Cl	CI	H	Cl	CI	Н	Cl	Cl	Н	Cl			

	R ⁵ is CHF ₂												
R ² is	н, R ³ ј	s Me	R ² is	H, R ³	is Et	R ² is	H, R ³ i	s i-Pr	R ² is	Me, R ³	is Me		
R ^{4a}	<u>R^{4b}</u>	<u>R</u> 6	R ^{4a}	<u>R4b</u>	<u>R</u> 6	R ^{4a}	<u>R4b</u>	<u>R</u> 6	R ^{4a}	<u>R^{4b}</u>	<u>R</u> 6		
CI	Н	Br	Cl	Н	Br	Cl	H	Br	Cl	Н	Br		
Cl	I	Cl	Cl	i	Cl	Cl	I	Cl	Cl	I	CI		
Cl	I	Br	Cl	I	Br	Cl	I	Br	CI	I	Br		
Cl	F	Cl	Cl	F	Cl	Cl	F	Cl	Cl	F	Cl		
Cl	F	Br	CI	F	Br	CI	F	Br	CI	F	Br		
Cl	CF ₃	Cl	Cl	CF ₃	Cl	Cl	CF ₃	Cl	Cl	CF ₃	Ci		
Cl	CF ₃	Br	Cl	CF ₃	Br	CI	CF ₃	Br	Cl	CF ₃	Br		
Cl	Br	Cl	CI	Br	CI	CI	Br	CI	CI	Br	Ci		
Cl	Br	Br	Cl	Br	Br	Cl	Br	Br	Cl	Br	Br		
Cl	Cl	Cl	Cl	Cl	Cl	CI	Cl	CI	Cl	Cl	Cl		
Cl	CI	Br	CI	Cì	Br	Cl	Cl	Br	Cl	Cl	Br		
Br	Н	Cl	Br	Н	Cl	Br	H	CI	Br	H	Cl		
Br	Н	Br	Br	Н	Br	Br	H	Br	Br	Н	Br		
Br	I	Cl	Br	I,	C1	Br	I	Cl	Br	I	Cl		
Br	I	Вг	Br	I	Br	Br	I	Br	Br	I	Br		
Br	F	Cl	Br	F	Cl	Br	F	Cl	Br	F	Cl		
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br		
Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl		
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br		
Br	Br	Cl	Br	Br	Cl	Br	Br	Cl	Br	Br	Cl		
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br		
Вт	Cl	Cl	Br	Cl	Cl	Br	Cl	Cl	Br	Cl	Cl		
Br	Cl.	Br	Br	Cl	Br	Br	Cl	Br	Br	Cl	Br		

R⁵ is CH₂CF₃

	<u>K 13 CK2</u> CS													
R ² is	н. R ³ і	s Me				R ² is	<u>н, к³ і</u>	s i-Pr	R ² is Me, R ³ is Me					
R ^{4a}	<u>R^{4b}</u>	<u>R</u> 6	R4a	R4b	<u>R</u> 6	R ^{4a}	<u>R^{4b}</u>	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6			
CH ₃	Н	Cl	СН3	Н	CI	CH ₃	Н	CI	CH ₃	Н	CI			
CH ₃	Н	Br	CH ₃	Н	Br	CH ₃	Н	Br	CH ₃	Н	Br			
CH ₃	I	Cl	CH ₃	I	Cl	CH ₃	I	Cl	CH ₃	I	CI			
СН3	I	Br	СН3	I	Br	CH ₃	ľ	Br	CH ₃	I	Br			
CH ₃	F	Cl	СН3	F	Cl	СН3	F	CI	CH ₃	F	Cl			
CH ₃	F	Br	CH ₃	F	Br	СН3	F	Br	CH ₃	F	Br			
CH ₃	CF ₃	CI	СН3	CF ₃	CI	СН3	CF ₃	Cl	СН3	CF ₃	Cl			
CH ₃	CF ₃	Br	СН3	CF ₃	Br	СН3	CF ₃	Br	CH ₃	CF ₃	Br			

			_	Ī	CH2CF3						
R^2 is	н, R ³ і	s Me	R ² is	H, R ³	is Et		H, R ³ i	s <i>i-</i> Pr		Ме, R ³	<u>is Me</u>
<u>R^{4a}</u>	R4b	<u>R</u> 6	R ^{4a}	<u>R4b</u>	<u>R</u> 6	R ^{4a}	<u>R^{4b}</u>	<u>R</u> 6	R4a	<u>R^{4b}</u>	<u>R</u> 6
CH ₃	Br	CI	CH ₃	Br	Cl	CH ₃	Br	Cl	СН3	Br	Cl
CH ₃	Br	Br	СН3	Br	Br	СН3	Br	Br	СН3	Br	Br
CH ₃	Cl	Cl	СН3	Cì	Cl	СН3	Cl	Cl	CH ₃	Cl	Cl
CH ₃	Cl	Br	CH ₃	Cl	Br	СН3	Cl	Br	CH ₃	Cl	Br
Cl	Н	CI	CI	Н	Cl	CI	Н	Cl	CI	H	Cl
Cl	Н	Br	CI	Н	Br	CI	H	Br	Cl	Н	Br
Cl	I	Cl	Cl	I	Cl	CI	I	Cl	Cl	I	Cl
CI	I	Br	CI	I	Br	CI	I	Br	Cl	I	Br
Cl	F	Cl	Cl	F	Cl	CI	F	C1	Cl	F	Cl
Cl	F	Br	CI	F	Br	Cl	F	Br	CI	F	Br
Cl	CF ₃	Cl	CI	CF ₃	Cl	Cl	CF ₃	Cl	CI	·CF ₃	Cl
Cl	CF ₃	Br	CI	CF ₃	Br	Cl	CF ₃	Br	CI	CF ₃	Br
Cl	Br	CI	CI	Br	Cl	Cl	Br	Cl	Cl	Br	Cl
Cl	Br	Br	Cl	Br	Br	Cl	Br	Br	CI	Br	Br
Cl	Cl	C1	CI	Cl	Cl	CI	Cl	Cl	СІ	Cl	Cl
Cì	Cl	Br	CI	Cl	Br	CI	Cl	Br	CI	Cl	Br
Br	Н	Cl	Br	Н	Cl	Br	Н	Cl	Br	Н	Cl
Br	Н	Br	Br	Н	Br	Br	Н	Br	Br	Н	Br
Br	I	Cl	Br	I	Cl	Br	I	Cl	Br	I	Cl
Br	1	Br	Br	I	Br	Br	I	Br	Br	I	Br
Br	F	Cl	Br	F	Cl	Br	F	Cl	Br	F	Cl
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br
Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br
Br	Br	Cl	Br	Br	Cl	Br	Вг	Cl	Br	Br	Cl
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br
Br	Cl	Cl	Br	Cl	Cl	Br	Cl	Cl	Br	Cl	Cl
Br	Cl	Br	Br	Cl	Br	Br	CI	Br	Br	Cl	Br

R⁵ is CF₂CHF₂

	<u>K is Cr_2Ciii 2</u>													
R ² is	\mathbb{R}^2 is H, \mathbb{R}^3 is Me \mathbb{R}^2 is H, \mathbb{R}^3 is Et						R2 is H, R3 is i-Pr R2 is Me, R3 is Me R4a R4b R6 CH3 H CH CH3 H Br CH3 H Br							
R ^{4a}	R4b	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6	R4a	R^{4b}	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6			
CH ₃	Н	Cl	СН3	Н	CI	CH ₃	Н	Cl	СН3	Н	Cl			
СН3	Н	Br	СН3	H	Br	CH ₃	Η.	Br	CH ₃	Н	Br			
СН3	I	Cl	CH ₃	I	Cl	CH ₃	I	CI	CH ₃	I	Cl			

				<u>R</u>	⁵ is CI	2CHF	2				
R ² is	н, R ³ і	s Me	R ² is	H, R ³	is Et		H, R ³ i	<u>i-Pr</u>		Ме, R ³	
R ^{4a}	<u>R^{4b}</u>	<u>R</u> 6	R ^{4a}	<u>R^{4b}</u>	<u>R</u> 6	<u>R^{4a}</u>	<u>R4b</u>	<u>R</u> 6	<u>R^{4a}</u>	R4b	<u>R</u> 6
CH ₃	I	Br	СН3	I	Br	СН3	I	Br	CH ₃	I	Br
CH ₃	F	Cl	CH ₃	F	CI	CH ₃	F	CI	CH ₃	F	Ci
CH ₃	F	Br	CH ₃	F	Br	CH ₃	F	Br	CH ₃	F	Br
CH ₃	CF ₃	Cl	CH ₃	CF ₃	Cl	СН3	CF ₃	Cl	CH ₃	CF ₃	Cl
CH ₃	CF ₃	Br	СН3	CF ₃	Br	СН3	CF ₃	Br	CH ₃	CF ₃	Br
CH ₃	Br	Cl	СН3	Br	Cl	CH ₃	Br	Cl	CH ₃	Br	Cl
CH ₃	Br	Br	СН3	Br	Br	CH ₃	Br	Br	CH ₃	Br	Br
CH ₃	Cl	Cl	СН3	Cl	Cl	CH ₃	Cl	Cl	СН3	Cl	Cl
CH ₃	Cl	Br	CH ₃	Cl	Br	CH ₃	Cl	Br	СН3	Cl	Br
Cl	H	Cl	Ci	Н	Cl	CI	Н	Cl	CI	Н	Cl
CI	Н	Br	CI	H	Br	CI	Н	Br	Cl	Н	Br
Cl	I	Cl	CI	I	Cl	CI	I	Cl	Cl	I	Cl
Cl	I	Br	Cl	i	Br	Cl	I	Br	Cl	I	Br
Cì	F	Cl	Cl	F	Cl	Cl	F	Cl	CI	F	Cl
Cl	F	Br	Cl	F	Br	Cl	F	Br	CI	F	Br
Cl	CF ₃	Cl	Cl	CF ₃	Cl	Cl	CF ₃	Cl	Cl	CF ₃	CI
Cl	CF ₃	Br	C1	CF ₃	Br	Cl	CF ₃	Br	Cl	CF ₃	Br
Cl	Br	Cl-	Cl	Br	Cl	CI	Br	Cl	Cl	Br	Cl
Cl	Br	Br	Cl	Br	Br	Cl	Br	Br	Cl	Br	Br
Cl	Cl	Cl	CI	CI	Cl	Cl	Cl	Cl	CI	Cl	Cl
Cl	Cl	Br	CI	Cl	Br	Cl	Cl	Br	CI	Cl	Br
Br	Н	Cl	Br	Н	Cl	Br	Н	Cl	Br	Н	Cl
Br	Н	Br	Br	H	Br	Br	Н	Br	Br	H	Br
Br	I	CI	Br	I	Cl	Br	I	CI	Br	I	Cl
Br	I	Br	Br	ı	Br	Br	I	Br	Br	I	Br
Br	F	Cl	Br	F	Cl	Br	F	Cl	Br	F	Cl
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br
Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	CI
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Вг
Br	Br	Cl	Br	Br	Cl	Br	. Br	Cl	Br	Br	Cl
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br
Br	Cl	Cl	Br	Cl	Cl	Br	CI	Cl	Br	Cl	Cl
Br	Cl	Br	Br	Cl	Br	Br	Cl	Br	Br	Cl	Br

116

Table 20

R⁵ is Cl

R ² is	H, R ³ i	s Me	R ² is	H, R ³	is Et	R ² is	<u>H, R³ i</u>	s i-Pr		<u>Ме, R³</u>	is Me
<u>R^{4a}</u>	R4b	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6	R48	<u>R^{4b}</u>	<u>R</u> 6	<u>R4a</u>	<u>R^{4b}</u>	<u>R</u> 6
СН3	Н	Cl	СН3	Н	Cl	СН3	Н	Cl	CH ₃	H	Cl
СН3	Н	Br	СН3	Н	Вг	CH ₃	Н	Br	CH ₃	H	Br
СН3	I	Cl	.CH ₃	I	Cl	CH ₃	I	Cl	СН3	1	Cl
СН3	I	Br	СН3	I	Br	СН3	I	Br	СН3	I	Br
CH ₃	F	Cl	CH ₃	F	Cl	CH ₃	F	Cl	CH ₃	F	Cl
CH ₃	F	Br	СН3	F	Br	CH ₃	F	Br	CH ₃	F	Br
CH ₃	CF ₃	Cl	СН3	CF ₃	CI	CH ₃	CF ₃	Cl	CH ₃	CF ₃	CI
СН3	CF ₃	Br	СН3	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br
CH ₃	Br	Cl	CH ₃	Br	Cl	CH ₃	Br	Cl	CH ₃	Br	Cl
CH ₃	Br	Br	СН3	Br	Br	СН3	Br	Br	CH ₃	Br	Br
СН3	Cl	Cl	СН3	Cl	Cl	СН3	Cì	Cl	CH ₃	Cl	Cl
CH ₃	Cl	Br	CH ₃	Cl	Br	СН3	Cl	Br	СН3	Cl	Br
CI	Н	Ci	CI	Н	CI	Cl	Н	Cl	CI	Н	Cl
Cl	Н	Br	CI	Н	Br	Cl	Н	Br	Cl	Н	Br
Cl	I	Cl	Cl	I	Cl	Cl	I	Cl	Cl	I	Cl
Cl	1	Br	Cl	I	Br	Cl	1	Br	Cl	I	Br
Cl	F	Cl	CI	F	Cl	Cl	F	Cl	Cl	F	Cl
Cl	F	Br	CI	F	Br	Cl	F	Br	Cl	F	Br
Cl	CF ₃	Cl	Cl	CF ₃	Cl	Cl	CF ₃	CI	Cl	CF ₃	Cl
Cl	CF ₃	Br	CI	CF ₃	Br	Cl	CF ₃	Br	Cl	CF ₃	Br
Cl	Br	Cl	CI	Br	Cl	Cl	Br	Cl	Cl	Br	Cl
Cl	Br	Br	CI	Br	Br	CI	Br	Br	Cl	Br	Br
Cl	Cl	Cl	Cl	Cl	Cl	CI	Cl	Cl	CI	Cl	Cl
Cl	Cl	Br	Cl	Cl	Br	CI	Cl	Br	Cl	Cl	Br
Br	Н	Cl	Br	Н	Cl	Br	Н	Cl	Br	Н	Cl
Br	Н	Br	Br	Н	Br	Br	Н	Br	Br	H	Br

117

_		
D)	:.	\sim 1
ĸ	18	

R ² is	н, R ³ і	s Me	R ² is	H, R ³	is Et	R ² is	H, R ³ i	s i-Pr	R ² is	Me, R ³	is Me
<u>R^{4a}</u>	R4b	<u>R</u> 6	R ^{4a}	<u>R4b</u>	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6	R ^{4a}	<u>R^{4b}</u>	<u>R</u> 6
Br	I	Cl	Br	I	Cl	Br	I	Cl	Br	I	Cl
Br	I	Br	Br	I	Br	Br	I	Br	Br	I	Br
Br	F	Cl	Br	F	Cl	Br	F	Cl	Br	F	Cl
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br
Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	CI
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br
Br	Br	Cl	Вг	Br	Cl	Br	Br	Cl	Br	Br	Cl
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br
Br	Cl	Cl	Br	Cl	CI	Br	Cl	Cl.	Br	Cl	Cl
Br	Cl	Br	Br	Cl	Br	Br	Cl	Br	Br	Cl	Br

R⁵ is Br

					<u></u>	3 2 .					
R ² is	<u>н, к³ і</u>	s Me	R ² is	H, R ³	is Et	R ² is	H, R ³ i	<u>s <i>i</i>-Pr</u>	R ² is I	Me, R ³	is Me
R ^{4a}	R4b	<u>R</u> 6	R ^{4a}	<u>R^{4b}</u>	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6
CH ₃	Н	Cl	СН3	Н	Cl	CH ₃	Н	Cl	CH ₃	H	Cl
CH ₃	Н	Br	СН3	Н	Br	CH ₃	Н	Br	СН3	Н	Br
CH ₃	I	Cl	СН3	I	Cl	CH ₃	I	Cl	CH ₃	I	Cl
СН3	I	Br	CH ₃	I	Br	СН3	I	Br	СН3	I	Br
CH ₃	F	Cl	CH ₃	F	Cl	СН3	F	Cl	CH ₃	F	Cl
CH ₃	F	Br	CH ₃	F	Br	CH ₃	F	Br	CH ₃	Ė	Br
CH ₃	CF ₃	Cl	СН3	CF ₃	Cl	СН3	CF ₃	Cl	CH ₃	CF ₃	Cl
CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br
СН3	Br	Cl	CH ₃	Br	Cl	СН3	Br	Cl	СН3	Br	Cl
CH ₃	Br	Br	CH ₃	Br	Br	CH ₃	Br	Br	CH ₃	Br	Br
CH ₃	Cl	Cl	СН3	Cl	CI	CH ₃	Cl	Cl	CH ₃	Cl	Cl
CH ₃	Cl	Br	CH ₃	Cl	Br	CH ₃	Cl	Br	CH ₃	Cl	Br
Cl	Н	Cl	CI	Н	Cl	Cl	Н	Cl	C1	Н	Cl
Cl	Н	Br	CI	Н	Br	Cl	Н	Br	Cl	Н	Br
Cl	I	Cl	Cl	I	Cl	CI	I	Cl	Cl	I	CI
Cl	1	Br	Cl	I	Br	Cl	I	Br	CI	1	Br
Cl	F	Cl	Cl	F	Cl	CI	F	CI	CI	F	CI
Cl	F	Br	Cl	F	Br	Cl	F	Br	Cı	F	Br
Cl	CF ₃	Cl	Cl	CF ₃	Cl	Ci	CF ₃	CI	Cl	CF ₃	Cl
Ci	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br	Cl	CF ₃	Br
Cl	Br	Cl	Cl	Br	Cl	Ci	Br	Cl	Cl	Br	Cl

118

	R ⁵ is Br													
R ² is	н, R ³ і	s Me	R ² is	H, R ³		R ² is H, R ³ is i-Pr R ^{4a} R ^{4b} R ⁶ Cl Br Br Cl Cl Cl Br Br Br H Cl Br Br H Br Br I Cl Br I Br I			R ² is	Me, R ³	<u>is Me</u>			
R ^{4a}	R4b	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6	<u>R^{4a}</u>	R4b	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6			
Cl	Br	Br	CI	Br	Br	Cl	Br	Br	Cl	Br	Br			
Cl	Cl	CI	CI	Cl	Cl	Cl	CI	Cl	Cl	CI	CI			
Cl	Cl	Br	Cl	Cl	Br	CI	Cl	Br	Cl	Cl	Br			
Br	Н	Cl	Br	H	Cl	Br	H	Cl	Br	Н	CI			
Br	Н	Br	Br	H	Br	Br	H	Br	Br	Н	Br			
Br	I	Cl	Br	I	Cl	Br	I	Cl	Br	I	Cl			
Br	I	Br	Br	I	Br	Br	I	Br	Br	I	Br			
Br	F	Cl	Br	F	CI	Br	F	Cl	Br	F	CI			
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br			
Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl			
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br			

R⁵ is CF₃

Br

Br

Br

Br

Cl

Br

Cl

Br

Cl

Br

Cl

Br

Br

Br

Cl

Cl

Br

Br

Br

Br

Br

Br

Cl

Cl

Cl

Br

Cl

Br

Cl

Br '

Cl

Br

Br

Br

Br

Br

Br

Br

CI

Cl

Br

Br

Br

Br

Br

Br

Cl

Cl

						رحت					
R ² is	H, R ³	s Me	R ² is	H, R ³	is Et	R ² is	<u>н, к³ і</u>	s <i>i-</i> Pr	R ² is	Me, R ³	is Me
$\underline{R^{4a}}$	R4b	<u>R</u> 6	R ^{4a}	<u>R4b</u>	<u>R</u> 6	R ^{4a}	R^{4b}	<u>R</u> 6	<u>R^{4a}</u>	<u>R4b</u>	<u>R</u> 6
CH ₃	н	Cl	CH ₃	Н	Cl	CH ₃	Н	Cl	CH ₃	Н	CI
СН3	Н	Br	CH ₃	H	Br	СН3	Н	Br	CH ₃	Н	Br
CH ₃	I	Cl	СН3	I	Cl	CH ₃	I	Cl	CH ₃	I	Cl
СН3	1	Br	CH ₃	1	Br	CH ₃	I	Br	CH ₃	J	Br
СН3	F	CI	CH ₃	F	Cl	CH ₃	F	Cl	СН3	F	Cl
СН3	F	Br	CH ₃	F	Br	CH ₃	F	Br	CH ₃	F	Br
CH ₃	CF ₃	CI	CH ₃	CF ₃	Cl	СН3	CF ₃	Cl	CH ₃	CF ₃	Cl
CH ₃	CF ₃	Br	СН3	CF ₃	Br	СН3	CF ₃	Br	СН3	CF ₃	Br
CH ₃	Br	Cl	CH ₃	Br	Cl	CH ₃	Br	Cl	CH ₃	Br	Cl
CH ₃	Br	Вг	CH ₃	Br	Br	СН3	Br	Br	CH ₃	Br	Br
CH ₃	Cl	Cl	CH ₃	Cl	Cl	CH ₃	Cl	Cl	СН3	Cl	Cl
CH ₃	Cl	Br	CH ₃	Cl	Br	СН3	Cl	Br	CH ₃	CI	Br
Cl	Н	Cl	Cl	Н	CI	Cl	Н	Cl	Cl	H	Cl
Cl	Н	Br	CI	Н	Br	CI	Н	Br	Cl	H	Br
Cl	I	Cl	CI	I	CI	CI	I	Cl	CI	I	Cl
Cl	I	Br	CI	1	Br	CI	I	Br	CI	I	Br

119

					R ⁵ is	CF ₃					
R ² is	н, R ³ і	s Me	R ² is	H, R ³	is Et	R ² is	H, R ³ i	<u>s <i>i</i>-Pr</u>	R ² is 1	Me, R ³	<u>is Me</u>
R ^{4a}	<u>R^{4b}</u>	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6	R4a	<u>R^{4b}</u>	<u>R6</u>
Cl	F	CI	Cl	F	Cl	Cl	F	Cl	Cl	F	Cl
Cl	F	Br	Cl	F	Br	Cl	F	Br	CI	F	Br
Cl	CF ₃	Cl	Cl	CF ₃	Cl	Cl	CF ₃	Cl	Cl	CF ₃	Cl
Cl	CF ₃	Br	Cl	CF ₃	Br	Cl	CF ₃	Br	Cl	CF ₃	Br
CI	Br	Cl	Cl	Br	CI	СІ	Br	Cl	CI	Br	Cl
Cl	Br	Br	Cl	Br	Br	CI	Br	Br	Cl	Br	Br
Cl	Cl	Cl	CI	Cl	Cl	CI	Cl	Cl	Cl	Cl	Cl
CI	Cl	Br	CI	CI	Br	CI	Cl	Br	Cl	Ci	Br
Br	Н	Cl	Br	Н	Cl	Br	Ĥ	Cl	Br	Н	Cl
Br	Н	Br	Br	H	Br	Br	Н	Br	Br	Н	Br
Br	I	CI	Br	I	Cl	Br	I	Cl	Br	I	CI
Br	I	Br	Br	I	Br	Br	I	Br	Br	I	Br
Br	F	Cl	Br	F	Cl	Br	F	Cl	Br	F	Cl
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br
Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br
Br	Br	Cl	Br	Br	Cl	Br	Br	Cl	Br	Br	C1
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br
Br	Cl	Cl	Br	Cl	Cl	Br	C 1,	Cl	Br	Cl	Cl
Br	Cl	Br	Br	Cl	Br	Br	C1	Br	Br	Cl	Br

R⁵ is OCH₂CF₃

				77	13 0	-11 5-71	<u>3</u>				
R ² is	н, R ³ і	s Me	R ² is	H, R ³	is Et	R ² is	H, R ³ i	s i-Pr	R ² is	Me, R ³	is Me
<u>R^{4a}</u>	R^{4b}	<u>R</u> 6	R48	R4b	<u>R</u> 6	R ^{4a}	<u>R^{4b}</u>	<u>R</u> 6	R ^{4a}	<u>R^{4b}</u>	<u>R</u> 6
СН3	Н	Cl	CH ₃	Н	Cl	СН3	Н	Cl	СН3	Н	Cl
CH ₃	Н	Br	СН3	Н	Br	СН3	Н	Br	СН3	H	Br
CH ₃	I	Cl	CH ₃	I	Cl	CH ₃	I	Cl	СН3	I	Cl
CH ₃	I	Br	CH ₃	I	Br	СН3	I	Br	CH ₃	I	Br
CH ₃	F	Cl	СН3	F	Cl	CH ₃	F	Cl	CH ₃	F	Cl
CH ₃	F	Br	СН3	F	Br	CH ₃	F	Br	CH ₃	F	Br
CH ₃	CF ₃	Cl	CH ₃	CF ₃	CI	СН3	CF ₃	CI	CH ₃	CF ₃	CI
CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	СН3	CF ₃	Br	CH ₃	CF ₃	Br
CH ₃	Br	Cl	CH ₃	Br	Cl	СН3	Br	Cl	СН3	Br	CI -
CH ₃	Br	Br	CH ₃	Br	Br	СН3	Br	Br	CH ₃	Br	Br
CH ₃	Cl	Cl	СН3	Cl	Cl	СН3	Cl	Cl	CH ₃	Cl	Cl

	$\frac{R^5 \text{ is OCH}_2\text{CF}_3}{R^2 \text{ is H. } R^3 \text{ is } H, R^3 \text{ is } i\text{-Pr} \mid R^2 \text{ is Me, } R^3 \text{ is Me}}$												
R ² is	н, R ³ і	s Me	R ² is	H, R ³	is Et	R ² is	H, R ³ i	s i-Pr	R ² is l	Me, R ³	is Me		
R ^{4a}	R ^{4b}	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6	R48	<u>R^{4b}</u>	<u>R6</u>	R ^{4a}	R4b	<u>R</u> 6		
CH ₃	Cl	Br	CH ₃	Cl	Br	СН3	Cl	Br	СН3	Cl	Br		
Cl	Н	Cl	CI	Н	CI	CI	Н	Cl	Cl	Н	Cl		
Cl	Н	Br	Cl	Н	Br	Cl	Н	Br	Cl	Н	Br		
Cl	I	Cl	Cl	I	Cl	Cl	1	Cl	Cl	I	Cl		
Cl	I	Br	CI	ī	Br	Cl	, I	Br	Cl	I	Br		
Cl	F	Cl	Cl	· F	Cl	CI	F	Cl	Cl	F	Cl		
Cl	F	Br	Cl	F	Br	CI	F	Br	Cl	F	Br		
CI	CF ₃	CI	CI	CF ₃	Cl	Cl	CF ₃	Cl	Cl	CF ₃	Cl		
Cl	CF ₃	Br	Cl	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br		
Cl	Br	Cl	Cl	Br	Cl	Cl	Br	Cl	Cl	Br	Cl		
Cl	Br	Br	Cl	Br	Br	Cl	Br	Br	Cl	Br	Br		
Cl	Cl	Cl	Cl	Cl	Cl	Cl	CI	Cl	CI	Cl	Cl		
Cl	Cl	Br	Cl	Cl	Br	Cl	Cl	Br	CI	Cl	Br		
Br	H	Cl	Br	Н	Cl	Br	Н	Cl	Br	Н	Cl		
Br	Н	Br	Br	Н	Br	Br	Н	Br	Br	Н	Br		
Br	1	Cl	Br	I	Cl	Br	I	Cl	Br	I	Cl		
Br	I	Br	Br	I	Br	Br	I	Br	Br	I	Br		
Br	F	Cl	Br	F	Cl	Br	F	Cl	Br	F	Cl		
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br		
Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl		
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br		
Br	Br	Cl	Br	Br	Cl	Br	Br	Cl	Br	Br	Cl		
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br		
Br	Cl	Cl	Br	Cl	Cl	Br	Cl	Cl	Br	Cl	Ci		
Br	Ci	Br	Br	Cl	Br	Br	Cl	Br	Br	Cl	Br		

WO 02/070483

Table 21

R⁵ is CHF₂

					K ³ IS	CHF2			_		
R ² is	H, R ³ i	s Me	R ² is	H, R ³	is Et	R ² is	<u>н, к³ і</u>	s i-Pr	R ² is	Me, R ³	is Me
<u>R^{4a}</u>	R4b	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6	R ^{4a}	<u>R4b</u>	<u>R</u> 6
CH ₃	Н	Cl	CH ₃	Н	Cl	CH ₃	Н	Cl	СН3	Н	Cl
CH ₃	Н	Br	CH ₃	Н	Br	СН3	Н	Br	СН3	Н	Br
CH ₃	I	Cl	CH ₃	I	Cl	СН3	I	Cl	CH ₃	I	CI
CH ₃	1	Br	CH ₃	1.	Br	CH ₃	Ī	Br	CH ₃	I	Br
СН3	F	Cl	CH ₃	F	Cl	СН3	F	Cl	CH ₃	F	Cl
CH ₃	F	Br	СН3	F	Br	CH ₃	F	Br	СН3	F	Br
CH ₃	CF ₃	Cl	СН3	CF ₃	Cl	СН3	CF ₃	Cl	СН3	CF ₃	Cl
СН3	CF ₃	Br	СН3	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br
CH ₃	Br	Cl	СН3	Br	Cl	CH ₃	Br	Cl	СН3	Br	Cl
CH ₃	Br	Br	СН3	Br	Br	CH ₃	Br	Br	CH ₃	Br	Br
CH ₃	Cl	Cl	СН3	Cl	Cl	CH ₃	Cl	Cl	CH ₃	Cl	Cl
CH ₃	Cl	Br	СН3	Cl	Br	СН3	CI	Br	СН3	CI	Br
Cl	Н	Cl	CI	Н	Cl	CI	H	CI	Cl	Н	Cl
Cl	Н	Br	CI	Н	Br	CI	Н	Br	Cl	Н	Br
CI	I	Cl	CI	I	Cl	CI	I	CI	Cl	I	Cl
Cl	I	Br	CI	I	Br	CI	I	Br	Cl	1	Br
Cl	F	Cl	CI	F	CI	CI	F	Cl	Cl	F	Cl
Cl	F	Br	CI	F	Br	CI	F	Br	CI	F	Br
Cl	CF ₃	Cl	CI	CF ₃	Cl	CI	CF ₃	Cl	CI	CF ₃	Cl
Cl	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br
Cl	Br	CI	CI	Br	Cl	Cl	Br	Cl	CI	Br	Cl
Cl	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br
Cl	Cl	Cl	CI	Cl	Cl	Cl	Cl	Cl	CI	Cl	CI
Cl	Cl	Br	CI	Cl	Br	CI	Cl	Br	CI	Cl	Br
Br	Н	Cl	Br	н	CI	Br	Н	Cl	Br	Н	CI
Br	Н	Br	Br	Н	Br	Br	Н	Вт	Br	Н	Br
Br	I	Cl	Br	I	Cl	Br	I	Cl	Br	I	CI

R ⁵ is CHF ₂												
R ² is	н, R ³ і	s Me	R ² is H, R ³ is Et			\mathbb{R}^2 is H, \mathbb{R}^3 is <i>i</i> -Pr			R ² is Me, R ³ is Me			
R ^{4a}	R4b	<u>R</u> 6	R4a	R4b	<u>R</u> 6	R4a	R4b	<u>R</u> 6	R ^{4a}	<u>R^{4b}</u>	<u>R</u> 6	
Br	I	Br	Br	I	Br	Br	I	Br	Br	I	Br	
Br	F	Cl	Br	F	CI	Br	F	Cl	Br	F	CI ·	
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br	
Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl	
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	
Br	Br	Cì	Br	Br	Cl	Br	Br	Cl	Br	Br	Cl	
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	
Br	Cl	CI	Br	CI	CI	Br	Cl	CI	Br	Cl	Cl	
Br	Cl	Br	Br	Cl	Br	Br	Cl	Br	Br	CI	Br	

R⁵ is CH₂CF₃ \mathbb{R}^2 is H, \mathbb{R}^3 is *i*-Pr \mathbb{R}^2 is Me, \mathbb{R}^3 is Me R^2 is H, R^3 is Et R² is H, R³ is Me R4b R4b R^{4a} R4b <u>R</u>6 R^{4a} <u>R</u>6 R^{4a} R4b <u>R</u>6 R^{4a} <u>R</u>6 Cl Н Cl CH₃ Н Cl CH₃ CH₃ Н Cl CH₃ ·H Br CH₃ Н CH₃ Н Н Br CH₃ Н Br CH₃ Br Cl CH₃ CH₃ I Cl CH₃ I Cl CH₃ Cl CH₃ I Br CH₃ I Br 1 CH₃ Br CH₃ I Br Cl CH₃ F F CH₃ F Cl CH₃ Cl CH₃ F Cl F F CH₃ Br F CH₃ F CH₃ Br Br CH₃ Br CH₃ CF₃ CH₃ CF₃ Cl CH₃ CF₃ CI Cl CH₃ CF₃ Cl CF₃ CH₃ Br CH₃ CH₃ CF₃ Вг CF₃ Br CH₃ CF₃ Br Cl Br CH₃ Br CH₃ Br Cl CH₂ Cl CH₃ Br Cl CH₃ Br Br CH₃ \mathbf{Br} Br CH₃ Br Br CH₃ Br Br Cl CH₃ Cl Cl Cl CH₃ CI Cl CH₃ CH₃ CI Cl Cl Br CH₃ Cl CH₃ CH₃ Cl Br Br CH₃ CI Br Cl Cl Cl Н Cl Cl Cl Н Cl Н CI Н Cl Н Br Н Br Cl Н Br Cl Н Br Cl Cl Cl CI Cl I CI Cl I Cl Cl Ĭ I Cl I Br Cl I Вг Cl Br CI Br I F F CI Cl F Cl Cl F Cl CI Cl CI F F CI Br CI F Br Cl F Br Cl Br Cl CF₃ Cl Cl CF₃ Cl CF₃ Cl Cl CF₃ C1 CI Cl CF₃ Br Cl CF₃ CI CF₃ Br Cl CF₃ Вr Br CI Cl CI CI Br CI Br CI CI Br CI Br Cl Br Br CI Br Br Br Cl Br Br Cl Br

R ² is CH ₂ CF ₂	S CH2CF3	is	R^5
---	----------	----	-------

						. = =	•		1			
R ² is	H, R ³ i	s Me	R ² is H, R ³ is Et			\mathbb{R}^2 is H, \mathbb{R}^3 is <i>i-Pr</i>			R ² is Me, R ³ is Me			
R ^{4a}	<u>R^{4b}</u>	<u>R</u> 6	<u>R^{4a}</u>	R4b	<u>R</u> 6	R ^{4a}	<u>R^{4b}</u>	<u>R</u> 6	R ^{4a}	<u>R^{4b}</u>	<u>R</u> 6	
Cl	Cl	Cl	Cl	Cl	CI	Cl	Cl	Cl	CI	Cl	Cl	
Cl	Cl	Br	Cl	Cl	Br	Cl	CI	Br	CI	Cl	Br	
Br	Н	Cl	Br	Н	Cl	Br	Н	Cl	Br	Н	Cl	
Br	Н	Br	Br	Н	Br	Br	Н	Br	Br	Н	Br	
Br	I	Cl	Br	I	CI	Br	I	CI	Br	I	Cl	
Br	I	Br	Br	ĭ	Br	Br	I	Br	Br	I	Br	
Br	F	Cl	Br	F.	Cl	Br	F	Cl	Br	F	Cl	
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br	
Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	CI	Br	CF ₃	Cl	
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	
Br	Br	CI	Br	Br	Cl	Br	Br	CI	Br	Br	Cl	
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	
Br	Cl	Cl	Br	Cl	Cl	Br	Cl	Cl	Br	Cl	Cl	
Br	CI	Br	Br	Cl	Br	Br	Cl	Br	Br	Cl	Br	

R⁵ is CF₂CHF₂

				_			≅				
R ² is	H, R ³	s Me	R ² is	H, R ³	is Et	R^2 is H, R^3 is <i>i-Pr</i>			R ² is Me, R ³ is Me		
R ^{4a}	R4b	<u>R</u> 6	R ^{4a}	<u>R^{4b}</u>	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6	R4a	<u>R^{4b}</u>	<u>R</u> 6
CH ₃	Н	Cl	СН3	Н	CI	СН3	Н	Cl	СН3	H	Cl
CH ₃	Н	Br	CH ₃	Н	Br	СН3	H	Br	СН3	Н	Br
CH ₃	I	Cl	CH ₃	I	Cl	СН3	I	Cl	СН3	I	Cl
CH ₃	I	Br	СН3	1	Br	CH ₃	I	Br	CH ₃	1	Br
CH ₃	F	CI	СН3	F	CI	СН3	F	Cl	CH ₃	F	Cl
CH ₃	F	Br	CH ₃	F	Br	СН3	F	Br	CH ₃	F	Br
CH ₃	CF ₃	Cl	CH ₃	CF ₃	Cl	СН3	CF ₃	Cl	CH ₃	CF ₃	Cl
CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	СН3	CF ₃	Br	CH ₃	CF ₃	Br
СН3	Br	Cl	СН3	Br	Cl	СН3	Br	Cl	CH ₃	Br	CI
CH ₃	Br	Br	СН3	Br	Br	СН3	Br	Br	СН3	Br	Br
CH ₃	Cl	Cl	CH ₃	Cl	Cl	CH ₃	Cl	CI	CH ₃	Cl	CI
CH ₃	Cl	Br	CH ₃	Cl	Br	СН3	Cl	Br	CH ₃	Cl	Br
CI	Н	Cl	CI	Н	Cl	CI	Н	CI	CI	H	CI
Cl	Н	Br	Cl	H	Br	Cl	Н	Br	Cl	Н	Br
Cl	I	Cl	CI	I	Cl	CI	I	CI	CI	I	Cl
Cl	Ī	Br	CI	1	Br	CI	I	Br	CI	1	Br
Cl	F	Cl	Cı	F	Cl	CI	F	Cl	CI	F	Cl

R ⁵ is CF ₂ CHF ₂	
--	--

<u>Z</u> <u>Z</u>												
R ² is	H, R ³ i	s Me	R ² is	H, R ³	<u>is Et</u>	R ² is	<u>н, к³ і</u> :	s <i>i-</i> Pr	R ² is Me, R ³ is Me			
R ^{4a}	R4b	<u>R</u> 6	<u>R^{4a}</u>	R4b	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6	<u>R^{4a}</u>	<u>R4b</u>	<u>R</u> 6	
Cl	F	Br	CI	F	Br	Cl	F	Br	Cl	F	Br	
Cl	CF ₃	Cl	CI	CF ₃	Cl	Cl	CF ₃	Cl	CI	CF ₃	CI	
Cl	CF ₃	Br	CI	CF ₃	Br	Cl	CF ₃	Br	Cl	CF ₃	Br	
Cl	Br	Cl	Cl	Br	Cl	Cl	Br	Cl	CI	Br	Cl	
Cl	Br	Br	CI	Br	Br	CI	Br	Br	Ci	Br	Br	
Cl	Cl	Cl	CI	Cl	CI	Cl	Cl	Cl	CI	Cl	Cl	
Cl	Cl	Br	Cl	Cl	Br	Cl	Cl	Br	CI	Cl	Br	
Br	Н	CI	Br	Н	CI	Br	Н	Cl	Br	Н	Cl	
Br	Н	Br	Br	Н	Br	Br	Н	Br	Вг	Н	Br	
Br	I	Cl	Br	I	Cl	Br	I	Cl	Br	I	Cl	
Br	I	Br	Br	I	Br	Br	I	Br	Br	I	Br	
Br	F	Cl	Br	F	Cl	Br	F	Cl	Br	F	Cl	
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br	
Br	CF ₃	Cl	Br	CF ₃	Ci	Br .	CF ₃	Cì	Br	CF ₃	Cl	
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	
Br	Br	Cl	Br	Br	Cl	Br	Br	Cl	Br	Br	Cl	
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	
Br	CI	Cl	Br	Cl	Cl	Br	Cl	Cl	Br	Cl	CI	
Br	CI	Br	Br	Cl	Br	Br	Cl	Br	Br	CI	Br	

Table 22

R⁵ is Cl

	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
R ² is H, R ³ is Me			R ² is H, R ³ is Et			\mathbb{R}^2 is H, \mathbb{R}^3 is <i>i</i> -Pr			R ² is Me, R ³ is Me				
R^{4a}	<u>R4b</u>	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6	R ^{4a}	<u>R4b</u>	<u>R</u> 6		
CH ₃	Н	Cl	СН3	Н	Cl	СН3	Н	Cl	СН3	Н	Cl		
CH ₃	Н	Br	СН3	H	Br	CH ₃	Н	Br	CH ₃	Н	Br		
CH ₃	I	Cl	CH ₃	I	Cl	CH ₃	I	Cl	СН3	I	Cl		

R⁵ is Cl

					<u>K-1</u>				1 0 0			
R ² is	H, R ³ i	s Me	R ² is	H, R ³	is Et		<u>H, R³ i</u>	s <i>i-</i> Pr	R ² is Me, R ³ is Me			
R ^{4a}	R4b	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6	R ^{4a}	<u>R^{4b}</u>	<u>R</u> 6	<u>R^{4a}</u>	<u>R4b</u>	<u>R</u> 6	
СН3	I	Br	CH ₃	I	Br	CH ₃	I	Br	CH ₃	I	Br	
CH ₃	F	Cl	CH ₃	F	Cl	СН3	F	Cl	CH ₃	F	Cl	
CH ₃	F	Br	CH ₃	F	Br	CH ₃	F	Br	СН3	F	Br	
CH ₃	CF ₃	Cl	CH ₃	CF ₃	Cl	СН3	CF ₃	CI	СН3	CF ₃	Cl	
СН3	CF ₃	Br	СН3	CF ₃	Br	СН3	CF ₃	Br	СН3	CF ₃	Br	
CH ₃	Br	Cl	СН3	Br	Cl	СН3	Br	Cl	СН3	Br	CI	
СН3	Br	Br	CH ₃	Br	Br	СН3	Br	Br	СН3	Br	Br	
CH ₃	Cl	Cl	СН3	CI	Cl	СН3	CI	Cl	СН3	Cl	Cl	
CH ₃	Cl	Br	СН3	Cl	Br	СН3	Cl	Br	CH ₃	Cl	Br	
Cl	Н	Cl	CI	Н	Cl	CI	Н	Cl	Cl	H	Cl	
Ci	Н	Br	CI	Н	Br	CI	Н	Br	Cl	H	Br	
Cĺ	I	Cl	CI	ī	Cl	CI	I	Cl	Cl	I	Cl	
Cl	I	Br	Cl	I	Br	CI	I	Br	C1	I	Br	
Cl	F	Cl	CI	F	CI	Cl	F	Cl	Cl	F	Cl	
Cl	F	Br	CI	F	Br	Ci	F	Br	Cl	F	Br	
Cl	CF ₃	Cl	Cl	CF ₃	Cl	Cl	CF ₃	Cl	Cl	CF ₃	Cl	
Cl	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br	Cl	CF ₃	Br	
Cl	Br	Cl	CI	Br	Cl	CI	Br	Cl	Cl	Br	Cl	
Cl	Br	Br	CI	Br	Br	Cl	Br	Br	Cl	Br	Br	
Cl	Cl	Cl	Cl	Cl	Cl	Cl	CI.	Cl	Cl	Cl	Cl	
Cl	Cl	Br	Cl	Cl	Br	Cl	Cl	Br	Cl	Cl	Br	
Br	Н	C1	Br	Н	Cl	Br	Н	Cl	Br	Н	Cl	
Br	Н	Br	Br	Н	Br	Br	Н	Br	Br	Н	Br	
Br	I	Cl	Br	I	Cl	Br	I	Cl	Br	I	Cl	
Br	I	Br	Br	I	Br	Br	I	Br	Br	I	Br	
Br	F	Cl	Br	F	Cl	Br	F	Cl	Br	F	Cl	
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br	
Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl	
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	
Br	Br	CI	Br	Br	CI	Br	Br	Cl	Br	Br	Cl	
Br	Br	Br	Br	Br /	Br	Br	Br	Br	Br	Br	Br	
Br	Cl	Cl	Br	Cl	Cl	Br	Cl	Cl	Br	Cl	CI	
Br	Cl	Br	Br	Cl	Br	Br	Cl	Br	Br	Cl	Br	

126

R ² is H, R ³ is Me			p2 :-	H, R ³	K ² I		н, R ³ і	o i De	R ² is Me, R ³ is Me			
							_		R-181	R4b		
R ^{4a}	R4b	<u>R</u> 6	<u>R^{4a}</u>	R ^{4b}	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6			<u>R</u> 6	
CH ₃	Н	Cl	CH ₃	Н	Cl	CH ₃	Н	Cl	CH ₃	Н	Cl	
CH ₃	Н	Br	CH ₃	Н	Br	CH ₃	Н	Br	CH ₃	Н	Br	
CH ₃	I	Cl	CH ₃	I	Cl	CH ₃	I	Cl	CH ₃	I	Cl	
CH ₃	I	Br	CH ₃	I	Br	CH ₃	I .	Br	CH ₃	ı	Вг	
CH ₃	F	Cl	CH ₃	F	Cl	CH ₃	F	Cl	CH ₃	F	CI	
CH ₃	F	Br	CH ₃	F	Br	CH ₃	F	Br	CH ₃	F	Br	
CH ₃	CF ₃	Cl	CH ₃	CF ₃	Cl	CH ₃	CF ₃	Cl	CH ₃	CF ₃	Cl	
CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	СН3	CF ₃	Br	CH ₃	CF ₃	Br	
CH ₃	Br	Cl	CH ₃	Br	CI	CH ₃	Br	Cl	CH ₃	Br	Cl	
CH ₃	Br	Br	CH ₃	Br	Br	СН3	Br	Br	CH ₃	Br	Br	
CH ₃	CI	Ci	CH ₃	Cl	Cl	СН3	CI	Cl	СН3	Cl	Cl	
CH ₃	Cl	Br	СН3	Cl	Br	CH ₃	CI	Br	CH ₃	Cl	Br	
Cl	H	Cl	Cl	Н	Cl	Cl	Н	Cl	Cl	Н	Cl	
Cl	H	Br	CI	H	Br	Cl	Н	Br	CI	Н	Br	
Cl	I	Cl	Cl	I	Cl	CI	I	Cl	Cl	1	Cl	
Cl	I	Br	Cl	I	Br	Cl	I	Br	CI	I	Вг	
Cl	F	Cl	Cl	F	Cl	Cl	F	C)	Cl	F	Cl	
Cl	F	Br	CI	F	Br	Cl	F	Br	Cl	F	Br	
Cl	CF ₃	Cl	CI	CF ₃	Cl	Cl	CF ₃	Cl	CI	CF ₃	Cl	
C1	CF ₃	Br	CI	CF ₃	Br	Cl	CF ₃	Br	CI	CF ₃	Br	
Cl	Br	Cl	CI	Br	Cl	Cl	Br	Cl	CI	Br	Cl	
Cl	Br	Br	CI	Br	Br	CI	Br	Br	Cl	Br	Br	
Cl	Cl	Cl	CI	Cì	Cl	CI	Cl	Cl	Cl	Cl	Cl	
CI	Cl	Br	CI	Cl	Br	CI	Cl	Br	Cl	Cl	Br	
Br	Н	Cl	Br	Н	Cl	Br	Н	Cl	Br	Н	Cl	
Br	Н	Br	Br	Н	Br	Br	Н	Br	Br	Н	Br	
Br	I	Cl	Br	ī	Cl	Br	I	Cl	Br	I	Cl	
Br	I	Br	Br	ï	Br	Br	I	Br	Br	I	Br	
Br	F	CI	Br	F	Cl	Br	F	Cl	Br	F	Cl	
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br	
Br	CF ₃	Cl	Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	Cl	
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	
Br	Br	CI	Br	Br	CI	Br	Br	Cl	Br	Br	Cl	
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	
Br	Cl	CI	Br	Cl	CI	Br	Cl	Cl	Br	Cl	Cl	
			•			•			•			

127											
					R ⁵ is				1 _		
\mathbb{R}^2 is	H, R ³ i	s Me		H, R ³	is Et		н, R ³ і				
<u>R^{4a}</u>	R4b	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6	R^{4a}	R4b	<u>R</u> 6	<u>R^{4a}</u>	<u>R^{4b}</u>	<u>R</u> 6
Br	Cl	Br	Br	Cl	Br	Br	Cl	Br	Br	C1	Br
					R ⁵ is	~			ء ا		
R ² is	<u>н, к³ і</u>			H, R ³			<u>н, к³ і</u>			Me, R ³	
R^{4a}	<u>R^{4b}</u>	<u>R</u> 6	R4a	<u>R4b</u>	<u>R</u> 6	R48	<u>R^{4b}</u>	<u>R</u> 6	<u>R^{4a}</u>	<u>R^{4b}</u>	<u>R</u> 6
CH ₃	H	Cl	CH ₃	Н	CI	CH ₃	Н	Cl	CH ₃	Н	Cl
CH ₃	H	Br	CH ₃	Н	Br	CH ₃	Н	Br	CH ₃	Н	Br
СН3	I	Cl	CH ₃	I	CI	CH ₃	I	CI	СН3	I	CI
CH ₃	I	Br	CH ₃	I	Br	CH ₃	I	Br	CH ₃	I	Br
CH ₃	F	Cl	CH ₃	F	Cl	CH ₃	F	Cl	CH ₃	F	CI
СН3	F	Br	СН3	F	Br	CH ₃	F	Br	CH ₃	F	Вг
CH ₃	CF ₃	Cl	СН3	CF ₃	Cl	CH ₃	CF ₃	Cl	CH ₃	CF ₃	Cl
СН3	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	СН3	CF ₃	Br
CH ₃	Br	Cl	СН3	Br	Cl	CH ₃	Br	Cl	СН3	Br	Cl
CH ₃	Br	Br	СН3	Br	Br	СН3	Br	Br	СН3	Br	Br
CH ₃	Cl	Cl	СН3	Cl	Cl	СН3	Cl	Cl	CH ₃	Cl	Cl
CH ₃	Cl	Br	CH ₃	Cl	Br	CH ₃	Cl	Br	CH ₃	Cl	Br
Cl	Н	Cl	Cl	н	Cl	Cl	Н	Cl	Cl	H	Cl
Cl	Н	Br	CI	Н	Br	Cl	H	Br	CI	Н	Br
Cl	I	Cl	CI	I	Cl	Cl	I	Cl	CI	I	Cl
Cl	I	Br .	Cl	I	Br	Cl	I	Br	CI	1	Br
Cl	F	Cl	Cl	F	Cl	Cl	F	Cl	Cl	F	Cl
Cl	F	Br	Cl	F	Br	Cl	F	Br	Cl	F	Br
Cl	CF ₃	Cl	Cl	CF ₃	Cl	Cl	CF ₃	Cl	Cl	CF ₃	CI
Cl	CF ₃	Br	Cl	CF ₃	Br	Cl	CF ₃	Br	Cl	CF ₃	Br
Cl	Br	CI	CI	Br	Cl	Cl	Br	Cl	Cl	Br	Cl
Cl	Br	Br	CI	Br	Br	Cl	Br	Br	Cl	Br	Br
Cl	CI	CI	CI	Cl	Cl	Cl	Cl	Cl	Cl	Cl	Cl
Cl	Cl	Br	CI	Cl	Br	Cl	Cl	Br	Cl	Cl	Br
Br	Н	Cl	Br	Н	Cl	Br	Н	Cl	Br	H	Cl
Br	Н	Br	Br	Н	Br	Br	Н	Br	Br	H	Br
Br	I	CI	Br	I	Cl	Br	. I	Cl	Br	I	Cl
Br	I	Br	Br	1	Br	Br	1	Br	Br	I	Br
Br	F	CI	Br	F	CI	Вг	F	CI	Br	F	CI
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br
			•								

128

	R ⁵ is CF ₃												
R ² is	H, R ³ j	s Me	R ² is	H, R ³	is Et	\mathbb{R}^2 is H, \mathbb{R}^3 is <i>i</i> -Pr			R ² is Me, R ³ is Me				
R4a	R4b	<u>R</u> 6	R4a	R4b	<u>R</u> 6	R4a	R^{4b}	<u>R</u> 6	R4a	<u>R^{4b}</u>	<u>R</u> 6		
Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	CI		
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br		
Br	Br	Cl	Br	Br	Cl	Br	Br	Cl	Вг	Br	Cl		
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br		
Br	Cl	Cl	Br	Cl	CI	Br	CI	CI	Br	Cl	CI		
Br	Cl	Br	Br	Cl	Br	Br	Cl	Br	Br	Cl	Br		

R⁵ is OCH₂CF₃ R² is Me, R³ is Me R² is H, R³ is Et \mathbb{R}^2 is H, \mathbb{R}^3 is *i*-Pr \mathbb{R}^2 is H, \mathbb{R}^3 is Me R4b R^{4a} R4b R^{4a} R4b R^{4a} R4b <u>R</u>6 <u>R</u>6 R6 R^{4a} <u>R</u>6 Н Cl CH₃ Н Cl CH₃ Н CI CH₃ Н Cl CH₃ CH₃ Н Br CH₃ Н Br CH₃ Н CH₃ Н Br Br Cl CH₃ I CH₃ l CH₃ I Cl CH₃ I Cl Cl CH₃ I Br CH₃ CH₃ I Br CH₃ I Br I Br F Cl F CH₃ F CH₃ Cl CH₃ F Cl CH₃ CI F CH₃ F CH₃ Br CH₃ F CH₃ F Br Br Br CH₃ CF₃ Cl CH₃ CF₃ Cl CH₃ CF₃ CI CH₃ CF₃ Cl CH₃ CF₃ Br CF₃ CF₃ CH₃ CF₃ CH₃ CH₃ Br Br Br CI CH₃ CH₃ Br CH₃ Br CH₃ Br Cl Br Cl Cl CH₃ CH₃ Br CH₃ Br Br CH₃ Br Br Br Br Br Cl CI Cl CH₃ CH₃ Cl Cl CH₃ Cl CH₃ Cl Cl CH₃ Cl Br CH₃ Cl CH₃ Cl Br CH₃ CI Br Br CI Н Cl Ci Н Cl CI Cl Н Cl Cl Н CI Н Br Cl Cl Н Br Cl Н Br Η. Br Cl Cl Cl I Cl CI Cl I Cl CI I l CI Cl I Br CI. I Cl I Br I Br Br Cl F Cl F Cl CI F Cl Cl F Cl Cl F Cl F Br Cl F Вг Cl F Br Cl Br CF₃ Cl Cl CF₃ Cl Cl CI CI CF₃ Cl CI CF₃ Cl CF₃ Br Cl CF₃ Br Cl Cl CF₃ Br CF₃ Br Cl CI Br CI Br CI CI Br CI CI Br Cl Cl Br Br Cl Br Cl Br Br Cl Br Br Br CI Cl Cl Cl Cl CI Cl Cl Cl Cl CI Cl Cl Ci Br CI CI Br CI CI Br CI Ci Br CI Br Н Cl Br Н Cl Br Н Cl Br Н

R^5	is	OCH2CF3
-------	----	---------

	<u> </u>												
R ² is	н, R ³ і	s Me	R ² is H, R ³ is Et			R ² is	н, R ³ і	s i-Pr	R ² is Me, R ³ is Me				
R ^{4a}	R4b	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6	R ^{4a}	<u>R^{4b}</u>	<u>R</u> 6		
Br	Н	Br	Br	Н	Br	Br	Н	Br	Br	Н	Br		
Br	I	Cl	Br	I	Cl	Br	· I	Cl	Br	I	CI		
Br	I	Br	Br	I	Br	Br	I	Br	Br	I	Br		
Br	F	Cl	Br	F	Cl	Br	F	Cl	Br	F	Cl		
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Вг		
Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl		
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br		
Br	Br	Cl	Br	Br	Cl	Br	Br	Cl	Br	Br	Cl		
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br		
Br	Cl	Cl	Br	Cl	Cl	Br	Cl	Cl	Br	Cl	Cl		
Br	Cl	Br	Br	CI	Br	Br	Cl	Br	Br	Cl	Br		

Table 23

R⁵ is CHF₂

	<u> </u>													
R ² is	H, R ³ i	s Me	R ² is	H, R ³	is Et	R ² is	<u>H, R³ i</u>	s i-Pr	R ² is	Me, R ³	<u>is Me</u>			
R ^{4a}	R4b	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6	R ^{4a}	<u>R4b</u>	<u>R</u> 6			
CH ₃	Н	CI	СН3	Н	Cl	СН3	Н	Cl	СН3	H	Cl			
СН3	Н	Br	СН3	H	Br	CH ₃	Н	Br	CH ₃	H	Br			
CH ₃	I	Cl	СН3	I	Cl	CH ₃	I	Cl	CH ₃	I	Cl			
СН3	I	Br	СН3	I	Br	СН3	I	Br	СН3	I	Br			
CH ₃	F	· Cl	СН3	F	Cl	СН3	F	Cl	CH ₃	F	Cl			
CH ₃	F	Br	СН3	F	Br	СН3	F	Br	СН3	F	Br			
CH ₃	CF ₃	CI	СН3	CF ₃	Cl	CH ₃	CF ₃	Cl	CH ₃	CF ₃	Cl			
CH ₃	CF ₃	Br	СН3	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br			
CH ₃	Br	CI	СН3	Br	Cl	CH ₃	Br	Cl	CH ₃	Br	Cl			
CH ₃	Br	Br	СН3	Br	Br	СН3	Br	Br	CH ₃	Br	Br			
CH ₃	Cl	Cl	СН3	Cl	Cl	CH ₃	Cl	Cl	CH ₃	Cl	Cl			
CH ₃	Cl	Br	CH ₃	Cl	Br	CH ₃	Cl	Br	СН3	Cl	Br			
CI	Н	Cl	Cl	Н	Cl	CI	H	Cl	CI	H	Cl			

•													
R ⁵ is CHF ₂													
R ² is	н, R ³ і	s Me	R ² is	H, R ³	is Et	R ² is	<u>н, R³ і</u>	s <i>i-</i> Pr	R ² is	Me, R ³	<u>is Me</u>		
R ^{4a}	R4b	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6	R ^{4a}	R^{4b}	<u>R</u> 6	<u>R^{4a}</u>	<u>R4b</u>	<u>R</u> 6		
Cl	Н	Br	Cl	Н	Br	Cl	Н	Br	Cl	H	Br		
Cl	I	Cl	CI	I	Cl	Cl	I	Cl	CI	I	Cl		
Cl	I	Br	Cl	I	Br	Cl	1	Br	Cl	I	Br		
Cl	F	Cl	Cl	F	Cl	Cl	F	Cl	CI	F	Cl		
Cl	F	Br	CI	F	Br	CI	F	Br	CI	F	Br		
Cl	CF ₃	Cl	CI	CF ₃	Cl	Cl	CF ₃	Cl	Cl	CF ₃	Cl		
Cl	CF ₃	Br	CI	CF ₃	Br	Cl	CF ₃	Br	Cl	CF ₃	Br		
CI	Br	CI	CI	Br	Cl	CI	Br	Cl	Cl	Br	Cl		
Cl	Br	Br	CI	Br	Br	CI	Br	Br	Cl	Br	Br		
Cl	Cl	Cl	Cl	Cl	CI	CI	Cl	C1	Cl	Cl	Cl		
Cl	Cl	Br	Ci	Cl	Br	CI	Cl	Br	Cl	Cl	Br		
Br	Н	CI	Br	Н	Cl	Br	Н	Cl	Br	Н	Cl		
Br	Н	Br	Br	Н	Br	Br	Н	Br	Br	Н	Br		
Br	I	CI	Br	I	Cl	Br	I	Cl	Br	I	CI		
Br	I	Br	Br	I	Br	Br	I	Br	Br	1	Br		
Br	F	Cl	Br	F	Cl	Вг	F	Cl	Br	F	Cl		
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br		
Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl		
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br		
Br	Br	Cl	Br	Br	Cl	Br	Br	CI	Br	Br	Cl		
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br		
Br	Cl	Cl	Br	Cl	CI	Br	Cl	Cl	Br	Cl	Cl		

R5 is CH2CF3 \mathbb{R}^2 is H, \mathbb{R}^3 is *i*-Pr \mathbb{R}^2 is Me, \mathbb{R}^3 is Me R² is H, R³ is Et R² is H, R³ is Me R4b R4a R4b R4a R4b <u>R</u>6 <u>R</u>6 R^{4a} R4b <u>R</u>6 R^{4a} <u>R</u>6 CI CH₃ Η. Н CH₃ Н Cl CH₃ Н Cl CH₃ CI CH₃ CH₃ Н Br CH₃ Н Br CH₃ Br Н Br I CH₃ Cl CH₃ Ī CI CH₃ Cl CH₃ CI CH₃ Br CH₃ I Br CH₃ I Br CH₃ Br CH₃ Cl CH₃ F Cl Cl CH₃ Cl CH₃ F CH₃ F Вг CH₃ Br CH₃ F CH₃ Br Br CH₃ CF₃ Cl CH₃ CF₃ CI CH₃ CF₃ CI CH₃ CF₃ CI CH₃ CF₃ CH₃ CF₃ CH₃ CF₃ Br CH₃ CF₃ Br Br

Br Br Cl Br Br Cl Br Br Cl Br

Cl

Br

WO 02/070483 PCT/US02/06582

· 131

R ⁵ is CH ₂ CF	' 2
--------------------------------------	------------

_					$\begin{array}{c c} R^2 \text{ is H, R}^3 \text{ is } i\text{-Pr} & R^2 \text{ is Me, R}^3 \text{ is Me} \end{array}$						
	<u>н, к³ і</u>			H, R ³					1		
<u>R^{4a}</u>	<u>R^{4b}</u>	<u>R</u> 6	R ^{4a}	<u>R4b</u>	<u>R</u> 6	R ^{4a}	<u>R^{4b}</u>	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6
CH ₃	Br	Cl	CH ₃	Br	Cl	CH ₃	Br	Cl	CH ₃	Br	Ci
CH ₃	Br	Br	CH ₃	Br	Br	CH ₃	Br	Br	CH ₃	Br	Br
CH ₃	Cl	Cl	СН3	Cl	Cl	CH ₃	Cl	Cl	СН3	Cl	Cl
CH ₃	Cl	Br	СН3	Cl	Br	CH ₃	Cl	Br	CH ₃	Cl	Br
Cl	Н	Cl	CI	Н	CI	CI	Н	CI	CI	Н	Ci
Cì	H	Br	CI	Н	Br	Cl	Н	Br	CI	H	Br
Cl	1	CI	CI	I	Cl	CI	1	Cl	CI	I	Cl
CI	I	Br	CI	I	Br	Ci	Ī	Br	CI	I	Br
Cl	F	Cl	Cı	F	Cl	Cl	F	Cl	Cl	F	CI
Cl	F	Br	CI	F	Br	Cl	F	Br	Cl	F	Br
CI	CF ₃	Cl	CI	CF ₃	Cl	Cl	CF ₃	Cl	Cl	CF ₃	Cl
Cl	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br	Cl	CF ₃	Br
Cl	Br	Cl	Cl	Br	CI	Cl	Br	Cl	Cl	Br	Cl
Cl	Br	Br	CI	Br	Br	CI	Br	Br	Cl	Br	Br
Cl	Cl	Cl	Cl	Cl	Cl	Cl	CI	Cl	Cl	Cl	Cl
Cl	Cl	Br	Cl	Cl	Br	Cl	Cl	Br	Cl	Cl	Br
Br	Н	Cl	Br	Н	Cl	Br	Н	Cl	Br	H	Cl
Br	Н	Br	Br	· H	Br	Br	Н	Br	Br	H	Br
Br	I	CI	Br	I	Ci	Br	I	Cl	Br	I	Cl
Br	I	Br	Br	1	Br	Br	I	Br	Br	I	Br
Br	F.	Cl	Br	F	Cl	Br	F	Cl	Br	F	Cl
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br
Br	CF ₃	CI	Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br
Br	Br	Cl	Br	Br	Cl	Br	Br	Cl	Br	Br	CI
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br
Br	Cl	Cl	Br	Cl	Cl	Br	Cl	Cl	Br	Cl	Cl
Br	Cl	Br	Br	Cl	Br	Br	Cl	Br	Br	CI	Br

R⁵ is CF₂CHF₂

R ² is H, R ³ is Me			R ² is	H, R ³	is Et	R ² is	= <u>H, R³ i</u>	s <i>i-</i> Pr	$\begin{array}{c c} R^2 \text{ is Me, } R^3 \text{ is Me} \\ \hline R^{4a} & R^{4b} & R^6 \end{array}$			
R ^{4a}	R4b	<u>R</u> 6	R ^{4a}	<u>R^{4b}</u>	<u>R</u> 6	<u>R</u> 4a	R^{4b}	<u>R</u> 6	R ^{4a}	<u>R4b</u>	<u>R</u> 6	
CH ₂	Н	Cl	CH ₃	Н	Cl	CH3	H	Cl	CH ₃	Н	Cl	
CH ₃	Н	Br	CH ₃	H	Br	CH ₃	Н	Br	CH ₃	Н	Br	
CH ₃	I	Cl	СН3	1	Cl	СН3	ī	Cl	СН3	I	Cl	

132

	R ⁵ is CF ₂ CHF ₂											
R ² is	н, R ³ і	s Me	R ² is	H, R ³	is Et	R ² is	H. R ³ i	s i-Pr	R ² is	<u>Me, R³</u>		
R ^{4a}	R4b	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6	R ^{4a}	R^{4b}	<u>R</u> 6	R4a	<u>R4b</u>	<u>R</u> 6	
CH ₃	I	Br	CH ₃	I	Br	CH ₃	1	Br	CH ₃	I	Br	
CH ₃	F	Cl	CH ₃	F	Cl	СН3	F	Cl	CH ₃	F	CI	
CH ₃	F	Br	СН3	F	Br	СН3	F	Br	CH ₃	F	Br	
CH ₃	CF ₃	Cl	СН3	CF ₃	Cl	CH ₃	CF ₃	Cl	CH ₃	CF ₃	CI	
CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	СН3	CF ₃	Br	CH ₃	CF ₃	Br	
CH ₃	Br	Cl	СН3	Br	Cl	CH ₃	Br	Cl	CH ₃	Br	Cl	
CH ₃	Br	Br	СН3	Br	Br	CH ₃	Br	Br	CH ₃	Br	Br	
CH ₃	Cl	Cl	СН3	CI	CI	СН3	Ci	Cl	CH ₃	Cl	Cl	
CH ₃	Cl	Br	CH ₃	Cl	Br	CH ₃	Cl	Br	CH ₃	Cl	Br	
Cl	H	Cl	Cl	Н	Cl	CI	Н	Cl	Cl	H	Cl	
Cl	H	Br	CI	Н	Br	CI	Н	Br	Cl	H	Br	
Cl	I	Cl	Cl	I	Cl	Cl	I	Cl	Cl	I	CI	
Cl	I	Br	Cl	I	Br	Cl	I	Br	Cl	I	Br	
CI	F	CI	CI	F	Cl	CI	F	Cl	Cl	F	CI	
Cl	F	Br	Cl	F	Br	Cl	F	Br	Cl	F	Br	
Cl	CF ₃	Cl	Cl	CF ₃	Cl	CI	CF ₃	Cl	Cl	CF ₃	Cl	
Cl	CF ₃	Br	Cl	CF ₃	Br	CI	CF ₃	Br	Cl	CF ₃	Br	
Cl	Br	CI	Cl	Br	Cl	Cl	Br	CI	Cl	Br	Cl	
Cl	Br	Br	Cl	Br	Br	Cl	Br	Br	Cl	Br	Br	
Cl	Cl	Cl	Cl	Cl	Cl	Cl	Cl	Cl	Cl	CI	Cl	
Cl	Cl	Br	Cl	Cl	Br	Cl	Cl	Br	Cl	Cl	Br	
Br	Н	Cl	Br	Н	Cl	Br	H	CI	Br	Н	Cl	
Br	Н	Br	Br	Н	Br	Br	Н	Br	Br	Н	Br	
Br	1	Cl	Br	I	Cl	Br	I	CI	Br	I	Cl	
Br	I	Br	Br	I	Br	Br	I	Br	Br	I	Br	
Br	F	Cl	Br	F	Cl	Br	F	Cl	Br	F	CI	
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br	
Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl	
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	
Br	Br	Cl	Br	Br	Cl	Br	Br	Cl	Br	Br	CI	
Br	Br	Br	Br	Br	Вг	Br	Br	Br	Br	Br	Br	
Br	CI	Cl	Br	CI	Cl	Br	Cl	Cl	Br	CI	Cl	
Br	CI	Br	Br	Cl	Br	Br	Cl	Br	Br	CI	Br	

Table 24

R⁵ is Cl

						<u> </u>						
R ² is	H, R ³ i	is <u>Me</u>	R ² is	H, R ³	is Et	R ² is	<u>н, к³ і</u>	s <i>i-</i> Pr	R ² is Me, R ³ is Me			
<u>R^{4a}</u>	R4b	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6	<u>R^{4a}</u>	R4b	<u>R</u> 6	
CH ₃	Н	Cl	CH ₃	Н	Cl	СН3	Н	Ci	СН3	Н	CI	
CH ₃	Н	Br	CH ₃	Н	Br	СН3	Н	Br	СН3	H	Br	
CH ₃	I	Cl	CH ₃	I	Cl	СН3	I	Cl	СН3	I	Cl	
CH ₃	I	Br	СН3	I	Br	CH ₃	I	Br	СН3	I	Br	
CH ₃	F	Cl	СН3	F	Cl	СН3	F	Cl	СН3	F	Cl	
CH ₃	F	Br	СН3	F	Br	СН3	F	Br	СН3	F	Br	
CH ₃	CF ₃	Cl	СН3	CF ₃	Cl	CH ₃	CF ₃	CI	CH ₃	CF ₃	CI	
CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	СН3	CF ₃	Br	
CH ₃	Br	Cl	СН3	Br	Cl	CH ₃	Br	Cl	CH ₃	Br	Cl	
CH ₃	Br	Br	СН3	Br	Br	СН3	Br	Br	СН3	Br	Br	
CH ₃	Cl	Cl	СН3	Cl	Cl	CH ₃	Cl	Cl	СН3	Cl	Cl	
СН3	Cl	Br	СН3	Cl	Br	CH ₃	Cl	Br	CH ₃	CI	Br	
Cl	Н	Cl	Ci	Н	Cl	CI	Н	Cl	CI	Н	Cl	
Cl	Н	Br	Cl	Н	Br	CI	Н	Br	CI	Н	Br	
Cl	I	Cl	CI	I	CI	CI	I	Cl	Cl	I	Cl	
Cl	I	Br	CI	1	Br	Cl	I	Br	Cl	I	Br	
Cl	F	Cl	Cl	F	Cl	CI	F	Cl	Cl	F	Cl	
Cl	F	Br	Cl	F	Br	CI	F	Br	Cl	F	Br	
Cl	CF ₃	Cl	Cl	CF ₃	Cl	Cl	CF ₃	Cl	Cl	CF ₃	CI	
Cl	CF ₃	Br	Cl	CF ₃	Br	Cl	CF ₃	Br	Cl	CF ₃	Br	
Cl	Br	Cl	Cl	Br	Cl	Cl	Br	Cl	Cl	Br	Cl	
Cl	Br	Br	Cl	Br	Br	CI	Br	Br	CI	Br	Br	
CI	Cl	CI	CI	Cl	Cl	CI	Cl	Cl	Cl	Cl	Ci	
Ci	Cl	Br	Cl	Cl	Br	CI	Cl	Br	Cl	Cl	Br	
Br	H	CI	Br	Н	Cl	Br	Н	Cl	Br	Н	Cl	
Br	Н	Br	Br	Н	Br	Br	Н	Br	Br	Н	Br	

134

<u>R</u> 5	is	Cl
------------	----	----

R ² is	\mathbb{R}^2 is H, \mathbb{R}^3 is Me		\mathbb{R}^2 is H, \mathbb{R}^3 is Et			\mathbb{R}^2 is H, \mathbb{R}^3 is <i>i</i> -Pr			R ² is Me, R ³ is Me			
R ^{4a}	R ^{4b}	<u>R</u> 6	<u>R^{4a}</u>	R4b	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6	
Br	I	Cl	Br	I	Cl	Br	I	CI	Br	I	Cl	
Br	I	Br	Br	1	Br	Br	I	Br	Br	I	Br	
Br	F	Cl	Br	F	Cl	Br	F	Cl	Br	F	Cl	
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br	
Br	CF ₃	CI	Br	CF ₃	CI	Br	CF ₃	Ci	Br	CF ₃	Cl	
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	
Br	Br	Cl	Br	Br	Cl	Br	Br	Cl	Br	Br	Cl	
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	
Br	Cl	Cl	Br	Cl	Cl	Br	Cl	Cl	Br	Cl	Cl	
Br	Cl	Br	Br	CI	Br	Br	Cl	Br	Br	Cl	Br	

R⁵ is Br

R ² is	H, R ³ i	s Me	R ² is	H, R ³	<u>is Et</u>	R ² is	<u>н, к³ і</u>	<u>s <i>i</i>-Pr</u>	R ² is	Me, R ³	<u>is Me</u>
R ^{4a}	R4b	<u>R</u> 6	R ^{4a}	<u>R^{4b}</u>	<u>R</u> 6	R ^{4a}	<u>R^{4b}</u>	<u>R</u> 6	R ^{4a}	R^{4b}	<u>R</u> 6
CH ₃	н	Cl	CH ₃	Н	CI	СН3	Н	CI	CH ₃	Н	Cl
CH ₃	Н	Br	СН3	Н	Br	СН3	Н	Br	CH ₃	Н	Br
CH ₃	I	Cl	СН3	I	Cl	СН3	I	Cl	CH ₃	1	Cl
CH ₃	I	Br	CH ₃	I	Br	CH ₃	I	Br	CH ₃	I	Br
CH ₃	F	CI	СН3	F	Cl	CH ₃	F	CI	CH ₃	F	Cl
CH ₃	F	Br	CH ₃	F	Br	СН3	F	Br	CH ₃	F	Br
CH ₃	CF ₃	Cl	СН3	CF ₃	Cl	СН3	CF ₃	Cl	CH ₃	CF ₃	Cl
CH ₃	CF ₃	Br	СН3	CF ₃	Br	СН3	CF ₃	Br	CH ₃	CF ₃	Br
CH ₃	Br	Cl	СН3	Br	CI	СН3	Br	CI	CH ₃	Br	Cl
CH ₃	Br	Br	СН3	Br	Br	CH ₃	Br	Br	CH ₃	Br	Br
CH ₃	Cl	Cl	СН3	Cl	Cl	CH ₃	Cl	Cl	СН3	Cl	Cl
CH ₃	Cl	Br	СН3	Cl	Br	CH ₃	Cl	Br	CH ₃	Cl	Br
Cl	Н	Cl	Cl	Н	Cl	CI	Н	Cl	CI	Н	Cl
Cl	Н	Br	CI	Н	Br	Cl	Н	Br	Cl	Н	Br
Cl	I	Cl	Cl	I	Cl	CI	I	Cl	CI	I	Cl
Cl	i	Br	CI	I	Br	CI	I	Br	CI	I	Br
Cl	F	Cl	CI	F	Cl	CI	F	Cl	CI	F	CI
Cl	F	Br	CI	F	Br	CI	F	Br	CI	F	Br
Cl	CF ₃	Cl	CI	CF ₃	CI	CI	CF ₃	Cl	CI	CF ₃	Cl
Cl	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br
Cl	Br	Cl	CI	Br	Cl	CI	Br	Cl	CI	Br	CI

WO 02/070483

R5	is	Вr

R ² is H, R ³ is Me		s Me	R ² is H, R ³ is Et			\mathbb{R}^2 is H, \mathbb{R}^3 is <i>i</i> -Pr			R ² is Me, R ³ is Me			
R ^{4a}	R4b	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6	R4a	<u>R4b</u>	<u>R</u> 6	
Cl	Br	Br	Cl	Br	Br	Cl	Br	Br	CI	Br	Br	
CI	Cl	Cl	Cl	Cl	CI	CI	Cl	Cl	Cl	CI	CI	
Cl	CI	Br	CI	Cl	Br	CI	Cl	Br	Cl	Cl	Br	
Br	Н	Cl	Br	Н	Cl	Br	Н	Cl	Br	Н	Cl	
Br	Н	Br	Br	Н	Br	Br	Н	Br	Br	Н	Br	
Br	I	Cl	Br	I	Cl	Br	I	Cl	Br	I	Cl	
Br	I	Br	Br	I	Br	Br	I	Br	Br	I	Br	
Br	F	Cl	Br	F	Cl	Br	F	CI	Br	F	CI	
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br	
Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl	
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	
Br	Br	CI	Br	Br	Cl	Br	Br	Cl	Br	Br	Cl	
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	
Br	Cl	Ci	Br	Cl	Cl	Br	CI	Cl	Br	Cl	Cl	
Br	Cl	Br	Br	Cl	Br	Br	Cl	Br	Br	Cl	Br	

R⁵ is CF₃

R ² is	H, R ³	s Me	R ² is	H, R ³	is Et	R ² is	<u>н, к³ і</u>	s i-Pr				
R ^{4a}	<u>R^{4b}</u>	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6	<u>R^{4a}</u>	<u>R^{4b}</u>	<u>R</u> 6	
СН3	Н	Cl	CH ₃	Н	Cl	СН3	Н	Cl	CH ₃	H	Cl	
CH ₃	Н	Br	СН3	Н	Br	CH ₃	Н	Br	СН3	Н	Br	
CH ₃	I	Cl	CH ₃	I	Cl	СН3	I	Cl	СН3	I	Cl	
CH ₃	I	Br	CH ₃	I	Br	CH ₃	I	Br	СН3	1	Br	
CH ₃	F	CI	СН3	F	Cl	СН3	F	Cl	CH ₃	F	Cl	
CH ₃	F	Br	СН3	F	Br	CH ₃	F	Br	CH ₃	F	Br	
CH ₃	CF ₃	Cl	CH ₃	CF ₃	CI	CH ₃	CF ₃	Cl	CH ₃	CF ₃	Cl	
CH ₃	CF ₃	Br	СН3	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	
CH ₃	Br	CI	СН3	Br	Cl	CH ₃	Br	Cl	CH ₃	Br	Cl	
CH ₃	Br	Br	СН3	Br	Br	СН3	Br	Br	CH ₃	Br	Br	
CH ₃	Cl	Cl	CH ₃	Cl	Cl	CH ₃	Cl	Cl	СН3	Cl	Cl	
CH ₃	Cl	Br	СН3	Cl	Br	CH ₃	Cl	Br	CH ₃	Cl	Br	
CI	Н	Cl	Cl	Н	Cl	CI	Н	Cl	Cl	Н	Cl	
Cl	H	Br	Cl	Н	Br	CI	H	Br	Cl	Н	Br	
Cl	I	CI	Cl	I	CI	CI	1	CI	CI	I	Cl	
CI	I	Br	CI	I	Br	Cl	I	Br	Cl	I	Br	

136

R ⁵	is	CF ₂

R ² is	н, R ³ і	s Me	R ² is	H, R ³	<u>is Et</u>	R ² is	<u>н, к³ і</u>	s <i>i-</i> Pr	R ² is Me, R ³ is Me			
R ^{4a}	R4b	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6	R ^{4a}	<u>R4b</u>	<u>R</u> 6	
CI	F	Cl	Cl	F	Cl	CI	F	Cl	Cl	F	Cl	
C1	F	Br	Cl	F	Br	Cl	F	Br	CI	F	Br	
Cl	CF ₃	Cl	Cl	CF ₃	Cl	CI	CF ₃	Cl	CI	CF ₃	Cl	
Cl	CF ₃	Br	Cl	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br	
Cl	Br	Cl	Cl	Br	Cl	CI	Br	Cl	CI	Br	CI	
Cl	Br	Br	Cl	Br	Br	CI	Br	Br	CI	Br	Br	
Cl	Cl	Cl	C1	Cl	Cl	Cl	Cl	Cl	Cl	CI	Cl	
Ci	CI	Br	CI	Cl	Br	CI	CI	Br	Cl	CI	Br	
Br	Н	Cl	Br	Н	Cl	Br	H	Cl	Br	Н	Cl	
Br	Н	Br	Br	Н	Br	Br	Н	Br	Br	Н	Br	
Br	ſ	CI	Br	I	Cl	Br	I	Cl	Br	I	Ci	
Br	I	Br	Br	I	Br	Br	I	Br	Br	I	Br	
Br	F	Cl	Br	F	Cl	Br	F	CI	Br	F	Cl	
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br	
Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	CI	Br	CF ₃	Cl	
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	
Br	Br	Cl	Br	Br	CI	Br	Br	Cl	Br	Br	Cl	
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	
Br	Cl	Cl	Br	Cl	Cl	Br	Cl	Cl	Br	Cl	Cl	
Br	Cl	Br	Br	Cl	Br	Br	Cl	Br	Br	Cl	Br	

R5 is OCH2CF3

	<u></u>											
R ² is	<u>н, к³ і</u>	s Me	R ² is	H, R ³	is Et	R ² is	<u>H, R³ i</u>	<u>s <i>i-</i>Pr</u>	R ² is	Me, R ³	<u>is Me</u>	
<u>R^{4a}</u>	<u>R^{4b}</u>	<u>R</u> 6	<u>R^{4a}</u>	<u>R^{4b}</u>	<u>R</u> 6	R ^{4a}	<u>R^{4b}</u>	<u>R</u> 6	R4a	<u>R^{4b}</u>	<u>R</u> 6	
СН3	Н	Cl	СН3	Н	Ci	CH ₃	Н	Cl	СН3	Н	Cl	
CH ₃	Н	Br	СН3	Н	Br	CH ₃	Н	Br	CH ₃	Н	Br	
CH ₃	ī	Cl	CH ₃	I	Cl	CH ₃	I	Cl	CH ₃	I	Cl	
CH ₃	i	Br	CH ₃	1	Br	CH ₃	I	Br	CH ₃	I	Br	
CH ₃	F	Cl	CH ₃	F	Cl	CH3	F	Cl	CH ₃	F	Cl	
CH ₃	F	Br	СН3	F	Br	CH ₃	F	Br	CH ₃	F	Br	
CH ₃	CF ₃	Cl	CH ₃	CF ₃	Cl	СН3	CF ₃	Cl	CH ₃	CF ₃	Cl	
СН3	CF ₃	Br	СН3	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	
CH ₃	Br	Cl	СН3	Br	Cl	СН3	Br	Cl	CH ₃	Br	Cl	
СН3	Br	Br	CH ₃	Br ·	Br	СН3	Br	Br	CH ₃	Br	Br	
CH ₃	Cl	Cl	СН3	Cl	Cl	CH ₃	Cl	CI	CH ₃	Cl	Cl	

WO 02/070483 PCT/US02/06582

137

	R ⁵ is OCH ₂ CF ₃										
R ² is	H, R ³ i	s Me	R ² is	H, R ³	is Et	R ² is	<u>н, к³ і</u>	s <i>i</i> -Pr	R ² is Me, R ³ is Me		
R4a	<u>R^{4b}</u>	<u>R</u> 6	R ^{4a}	<u>R4b</u>	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6	<u>R^{4a}</u>	R4b	<u>R</u> 6
СН3	Cl	Br	CH ₃	Cl	Br	СН3	Cl	Br	CH ₃	Cl	Br
Cl	Н	Cl	Cl	Н	Cl	Cl	Н	Cl	Cl	Н	Cl
Cl	Н	Br	Cl	Н	Br	Cl	Н	Br	Cl	Н	Br
Cl	1	.Cl	Cl	1	Cl	Cl	I	Cl	CI	I	CI
Cl	I	Br	Cl	I	Br	CI	I	Br	CI	I	Br
Cl	F	Cl	Cl	F	Cl	Cl	F	Cl	Cl	F	Cl
Cl	F	Br	CI	F	Br	Cl	F	Br	Cl	F	Br
Cl	CF ₃	Cl	CI	CF ₃	CI	CI	CF ₃	CI	CI	CF ₃	Cl
Cl	CF ₃	Br	CI	CF ₃	Br	Cl	CF ₃	Br	CI	CF ₃	Br
Cl	Br	Cl	CI	· Br	Cl	Cl	Br	Cl	CI	Br	Cl
Cl	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Вг
Cl	Cl	Cl	CI	Cl	Cl	Cl	Cl	Cl	Cl	Cl	Cl
Cl	Cl	Br	Cl	Cl	Br	Cl	Cl	Br	Cl	Cl	Br
Br	Н	CI	Br	Н	CI	Br	Н	CI	Br	Н	Cl
Br	Н	Br	Br	H	Br	Br	Н	Br	Br	Н	Br
Br	I	Cl	Br	I	Cl	Br	I	Cl	Br	I	Cl
Br	I	Br	Br	I.	Br	Br	I	Вг	Br	I	Br
Br	F	Cl	Br	F	Cl	Br	F	Cl	Br	F	Cl
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br
Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br
Br	Br	Cl	Br	Br	Cl	Br	Br	Cl	Br	Br	Cl
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br
Br	Cl	Cl	Br	Cl	CI	Br	CI	Cl	Br	Cl	Cl
Br	Cl	Br	Br	Cl	Br	Br	CI	Br	Br	Cl	Br

138

Table 25

V is CH

R ² is H, R ³ is Me			R ² is H, R ³ is Et			<u>R²</u>	is H, R ³ is <i>i</i> -	<u>Pr</u>	R ² is Me, R ³ is Me		
<u>R</u> 4	<u>R</u> 5	<u>R</u> 6	<u>R</u> 4	<u>R⁵</u>	<u>R</u> 6	<u>R</u> 4	<u>R</u> 5	<u>R</u> 6	<u>R</u> 4	<u>R</u> 5	<u>R</u> 6
CI	Br	Cl	Cl	Br	Cl	CI	Br	Cl	Cl	Br	C1
CI	Br	Br	Cl	Br	Br	Cl	Br	Br	CI	Br	Br
CI	Br	CN	Cl	Br	CN	Cl	Br	CN	Cl	Br	CN
CI	Cl	Cl	Cl	Cl	Cl	CI	Cl	CI	CI	CI	Cl
Cl	Cl	Br	CI	Cl	Br	CI	Cl	Br	Cl	Cl	Br
Cl	Cl	CN	Cl	Cl	CN	CI	Cl	CN	Cl	Cl	CN
CI	CF ₃	Cl	Cl	CF ₃	CI	CI	CF ₃	Cl	CI	CF ₃	Ci
Cl	CF ₃	Br	Cl	CF ₃	Br	Cl	CF ₃	Br	C1	CF ₃	Br
Cl	CF ₃	CN	Cl	CF ₃	CN	Cl	CF ₃	CN	Cl	CF ₃	CN
CI	OCH ₂ CF ₃	CI	CI	OCH ₂ CF ₃	Ci	Cl	OCH ₂ CF ₃	Ci	Cl	OCH ₂ CF ₃	Cl
Cl	OCH ₂ CF ₃	Br	Cl	OCH ₂ CF ₃	Br	CI	OCH ₂ CF ₃	Br	Cl	OCH ₂ CF ₃	Br
Cl	OCH ₂ CF ₃	CN	CI	OCH ₂ CF ₃	CN	Cl	OCH ₂ CF ₃	CN	Cl	OCH ₂ CF ₃	CN
Br	Br	Cl	Br	Br	Cl	Br	Br	Cl	Br	Br	Cl
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br
Br	Br	CN	Br	Br	CN	Br	Br	CN	Br	Br	CN
Br	Cl	Cl	Br	CI	Cl	Br	Cl	Cl	Br	Cl	Cl
Br	Cl	Br	Br	Cl	Br	Br	Cl	Br	Br	Cl	Br
Br	Cl	CN	Br	Cl	CN	Br	Cl	CN	Br	Cl	CN
Br	CF ₃	CI	Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br
Br	CF ₃	CN	Br	CF ₃	CN	Br	CF ₃	CN	Br	CF ₃	CN
Br	OCH ₂ CF ₃	Cl	Br	OCH ₂ CF ₃	CI	Br	OCH ₂ CF ₃	CI	Вг	OCH ₂ CF ₃	Cl
Br	OCH ₂ CF ₃	Br	Br	OCH ₂ CF ₃	Br	Br	OCH ₂ CF ₃	Br	Br	OCH ₂ CF ₃	Br
Br	OCH ₂ CF ₃	CN	Br	OCH ₂ CF ₃	CN	Br	OCH ₂ CF ₃	CN	Br	OCH ₂ CF ₃	CN
CH ₃	Br	CI	СН3	Br	Cl	CH ₃	Br	CI	СН3	Br	CI
CH ₃	Br	Br	СН3	Br	Br	CH ₃	Br	Br	CH ₃	Br	Br

					V is	<u>CH</u>					
<u>R</u> 2	is H, R ³ is N	<u>1e</u>	<u>R</u> 2	² is H, R ³ is I	<u> </u>	<u>R</u> 2	is H, R ³ is i-	<u>Pr</u>	<u>R</u> ²	is Me, R ³ is I	<u>Me</u>
<u>R</u> 4	<u>R</u> 5	<u>R</u> 6	<u>R</u> 4	<u>R</u> 5	<u>R</u> 6	<u>R</u> 4	<u>R</u> 5	<u>R</u> 6	<u>R</u> 4	<u>R</u> 5	<u>R</u> 6
CH ₃	Br	CN	CH ₃	Br	CN	СН3	Br	CN	CH ₃	Br	CN
CH ₃	Cl	CI	CH ₃	Cl	Cl	CH ₃	Cl	Cl	CH ₃	Cl	Cl
CH ₃	Cl	Br	CH ₃	Cl	Br	CH ₃	Cl	Br	СН3	Cl	Br
CH ₃	Cl	CN	CH ₃	Cl	CN	CH ₃	Cl	CN	СН3	Cl	CN
CH ₃	CF ₃	CI	CH ₃	CF ₃	CI	CH ₃	CF ₃	CI	CH ₃	CF ₃	Cl
CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	СН3	CF ₃	Br
CH ₃	CF ₃	CN	CH ₃	CF ₃	CN	CH ₃	CF ₃	CN	CH ₃	CF ₃	CN
CH ₃	OCH ₂ CF ₃	Cl	СН3	OCH ₂ CF ₃	Cl	CH ₃	OCH ₂ CF ₃	CI	СН3	OCH ₂ CF ₃	CI
CH ₃	OCH ₂ CF ₃	Br	CH ₃	OCH ₂ CF ₃	Br	CH ₃	OCH ₂ CF ₃	Br	CH ₃	OCH ₂ CF ₃	Br
CH ₃	OCH ₂ CF ₃	CN	СН3	OCH ₂ CF ₃	CN	CH ₃	OCH ₂ CF ₃	CN	CH ₃	OCH ₂ CF ₃	CN
CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br	Cl
CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br
CF ₃	Br	CN	CF ₃	Br	CN	CF ₃	Br	CN	CF ₃	Br	CN
CF ₃	Cl	CI	CF ₃	Cl	CI	CF ₃	Cl	Cl	CF ₃	Cl	Cl
CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl	Br
CF ₃	Cl	CN	CF ₃	Cl	CN	CF ₃	Cl	CN	CF ₃	Cl	CN
CF ₃	CF ₃	Cl	CF ₃	CF ₃	Cl	CF ₃	CF ₃	Cl	CF ₃	CF ₃	Cl
CF ₃	CF ₃	Br	CF ₃	CF ₃	Br	CF ₃	CF ₃	Br	CF ₃	CF ₃	Br
CF ₃	CF ₃	CN	CF ₃	CF ₃	CN	CF ₃	CF ₃	CN	CF ₃	CF ₃	CN
CF ₃	OCH ₂ CF ₃	Cl	CF ₃	OCH ₂ CF ₃	Cl	CF ₃	OCH ₂ CF ₃	Cl	CF ₃	OCH ₂ CF ₃	Cl
CF ₃	OCH ₂ CF ₃	Br	CF ₃	OCH_2CF_3	Br	CF ₃	OCH_2CF_3	Br	CF ₃	OCH ₂ CF ₃	Br
CF ₃	OCH_2CF_3	CN	CF ₃	OCH ₂ CF ₃	CN	CF ₃	OCH ₂ CF ₃	CN	CF ₃	OCH ₂ CF ₃	CN

	<u>V is N</u>												
\mathbb{R}^2 is H, \mathbb{R}^3 is Me \mathbb{R}^2 is H, \mathbb{R}^3 is Et					s Et	<u>R</u> 2	is H, R ³ is	<u>i-Pr</u>	R ² is Me, R ³ is Me				
<u>R</u> 4	<u>R</u> 5	<u>R</u> 6	<u>R</u> 4	<u>R⁵</u>	<u>R</u> 6	<u>R</u> 4	<u>R</u> 5	<u>R</u> 6	<u>R</u> 4	<u>R</u> 5	<u>R</u> 6		
Cl	Br	Cl	Cl	Br	Cl	Cl	Br	Cl	Cl	Br	Cl		
Cl	Br	Br	Cl	Br	Br	Cl	Br	Br	Cl	Br	Br		
Cl	Br	CN	Cl	Br	CN	Cl	Br	CN	CI	Br	CN		
Cl	CI	Cl	Cl	Cl	Cl	Cl	Cl	Cl	Cl	Cl	Cl		
Cì	Cl	Br	Cl	Cl	Br	Cl	Cl	Br	Cl	Cl	Br		
Cl	Cl	CN	Cl	Cl	CN	Cl	Cl	CN	Cl	CI	CN		
Cl	CF ₃	Cl	Cl	CF ₃	Cl	Cl	CF ₃	Cl	Cl	CF ₃	Cl		
Cl	CF ₃	Br	Cl	CF ₃	Br	Cl	CF ₃	Br	CI	CF ₃	Br		
Cl	CF ₃	CN	Cl	CF ₃	CN	Cl	CF ₃	CN	Cl	CF ₃	CN		

v	is	N	

	<u>V is N</u>											
<u>R</u> ²	is H, R ³ is N	<u>/le</u>	<u>R</u> 2	² is H, R ³ is I	<u>3t</u>	<u>R</u> 2	is H, R ³ is i-	<u>Pr</u>	<u>R</u> 2	R ² is Me, R ³ is Me		
<u>R</u> 4	<u>R⁵</u>	<u>R</u> 6	<u>R</u> 4	<u>R</u> 5	<u>R</u> 6	<u>R</u> 4	<u>R⁵</u>	<u>R</u> 6	<u>R</u> 4	<u>R</u> 5	<u>R</u> 6	
Cl	OCH ₂ CF ₃	CI	Cl	OCH ₂ CF ₃	Cl	Cl	OCH ₂ CF ₃	Cl	Cl	OCH ₂ CF ₃	Cl	
Cl	OCH ₂ CF ₃	Br	Cl	OCH ₂ CF ₃	Br	Cl	OCH ₂ CF ₃	Br	Cl	OCH ₂ CF ₃	Br	
Cl	OCH ₂ CF ₃	CN	CI	OCH ₂ CF ₃	CN	Cl	OCH ₂ CF ₃	CN	Cl	OCH ₂ CF ₃	CN	
Br	Br	Cl	Br	Br	Cl	Br	Br	Cl	Br	Br	Cl	
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	
Br	Br	CN	Br	. Br	CN.	Br	Br	CN	Br	Br	CN	
Br	Cl	Cl	Br	Cl	CI	Br	Cl	Cl	Br	Cl	Cl	
Br	Cl	Br	Br	Cl	Br	Br	Cl	Br	Br	CI	Br	
Br	Cl	CN	Br	Cl	CN	Br	Cl	CN	Br	Cl	CN	
Br	CF ₃	CI	Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl	
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	
Br	CF ₃	CN	Br	CF ₃	CN	Br	CF ₃	CN	Br	CF ₃	CN	
Br	OCH ₂ CF ₃	Cl	Br	OCH ₂ CF ₃	Cl	Br	OCH ₂ CF ₃	Cl	Br	OCH ₂ CF ₃	Cl	
Br	OCH ₂ CF ₃	Br	Br	OCH_2CF_3	Br	Br	OCH ₂ CF ₃	Br	Br	OCH ₂ CF ₃	Br	
Br	OCH ₂ CF ₃	CN	Br	OCH ₂ CF ₃	CN	Br	OCH ₂ CF ₃	CN	Br	OCH ₂ CF ₃	CN	
CH ₃	Br	CI	СН3	Br	Cl	CH ₃	Br	Cl	СН3	Br	Cl	
CH ₃	Br	Br	СН3	Br	Br	CH ₃	Br	Br	СН3	Br	Br	
CH ₃	Br	CN	CH ₃	Br	CN	CH ₃	Br	CN	СН3	Br	CN	
CH ₃	Cl	Cl	СН3	Cl	Cl	CH ₃	Cl	Cl	СН3	Cl	Cl	
CH ₃	Cl	Br	СН3	Cl	Br	CH ₃	Cl	Br	СН3	Cl	Br	
CH ₃	Cl	CN	CH ₃	Cl	CN	CH ₃	Cl	CN	СН3	Cl	CN	
CH ₃	CF ₃	Cl	CH ₃	CF ₃	Cl	CH ₃	CF ₃	Cl	CH ₃	CF ₃	Cl	
CH ₃	CF ₃	Br	СН3	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	
CH ₃	CF ₃	CN	CH ₃	CF ₃	CN	СН3	CF ₃	CN	СН3	CF ₃	CN	
CH ₃	OCH ₂ CF ₃	Cl	CH ₃	OCH ₂ CF ₃	Cl	СН3	OCH ₂ CF ₃	Cl	CH ₃	OCH ₂ CF ₃	Cl	
CH ₃	OCH ₂ CF ₃	Br	CH ₃	OCH ₂ CF ₃	Br	СН3	OCH ₂ CF ₃	Br	CH ₃	OCH ₂ CF ₃	Br	
CH ₃	OCH ₂ CF ₃	CN	CH ₃	OCH ₂ CF ₃	CN	СН3	OCH ₂ CF ₃	CN	CH ₃	OCH ₂ CF ₃	CN	
CF ₃	Br	CI	CF ₃	Br	Cl	CF ₃	Br	Cl	CF ₃	Br	Cl	
CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	
CF ₃	Br	CN	CF ₃	Br	CN	CF ₃	Br	CN	CF ₃	Br	CN	
CF ₃	Cl	Cl	CF ₃	Cl	Cl	CF ₃	Cl	Cl	CF ₃	Cl	CI	
CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl	Br	
CF ₃	Cl	CN	CF ₃	Cl	CN	CF ₃	Cl	CN	CF ₃	Cl	CN	
CF ₃	CF ₃	Cl	CF ₃	CF ₃	Cl	CF ₃	CF ₃	Cl	CF ₃	CF ₃	CI	
CF ₃	CF ₃	Br	CF ₃	CF ₃	Br	CF ₃	CF ₃	Br	CF ₃	CF ₃	Br	

141

V is N \mathbb{R}^2 is H, \mathbb{R}^3 is *i*-Pr R² is Me, R³ is Me \mathbb{R}^2 is H, \mathbb{R}^3 is Et R² is H, R³ is Me <u>R</u>5 <u>R</u>5 <u>R</u>4 <u>R</u>6 <u>R</u>5 <u>R</u>5 <u>R</u>6 <u>R</u>4 <u>R</u>6 <u>R</u>4 <u>R</u>6 <u>R</u>4 CF₃ CN CF₃ CF₃ CN CF₃ CF₃ CN CF₃ CN CF₃ CF₃ CF₃ OCH₂CF₃ CI CF₃ OCH₂CF₃ CI CF₃ OCH₂CF₃ CI CF₃ OCH₂CF₃ CI CF₃ OCH₂CF₃ Br CF₃ OCH₂CF₃ Br CF₃ OCH₂CF₃ Br CF₃ OCH₂CF₃ Br CF₃ OCH₂CF₃ CN CF₃ OCH₂CF₃ CN CF₃ OCH₂CF₃ CN CF₃ OCH₂CF₃ CN

Table 26

V is CH

R ² is H, R ³ is Me			R	² is H, R ³ is		R ²	is H, R ³ is <i>i</i> -	<u>-Pr</u>	R ² is Me, R ³ is Me		
<u>R</u> 4	<u>R</u> 5	<u>R</u> 6	<u>R</u> 4	<u>R</u> 5	<u>R</u> 6	<u>R</u> 4	<u>R</u> 5	<u>R</u> 6	<u>R</u> 4	<u>R</u> 5	<u>R</u> 6
Cl	Br	Cl	Cl	Br	Cl	Cl	Br	Cl	Cl	Br	Cl
Cl	Br	Br	Cl	Br	Br	Cl	Br	Br	Cl	Br	Br
Cl	Br	CN	Cl	Br	CN	Cl	Br	CN	Ci	Br	CN
Cl	Cl	Cl	Cl	Cl	Cl	Cl	Cl	CI	Cl	CI	Cl
Cl	Cl	Br	Cl	Cl	Br	Cl	Cl	Br	Cl	Cl	Br
Cl	Cl	CN	CI	Cl	CN	Cl	Cl	CN	Cl	Cl	CN
CI	CF ₃	CI	CI	CF ₃	CI	Cl	CF ₃	Cl	Cl	CF ₃	CI
Cl	CF ₃	Br	CI	CF ₃	Br	Cl	CF ₃	Br	Cl	CF ₃	Br
Cl	CF ₃	CN	Cl	CF ₃	CN	Cl	CF ₃	CN	Cl	CF ₃	CN
Ci	OCH ₂ CF ₃	Cl	Cl	OCH ₂ CF ₃	Cl	Cl	OCH ₂ CF ₃	CI	Cl	OCH ₂ CF ₃	CI
Cl	OCH ₂ CF ₃	Br	Cl	OCH ₂ CF ₃	Br	Cl	OCH ₂ CF ₃	Br	Cl	OCH ₂ CF ₃	Br
Cl	OCH ₂ CF ₃	CN	Cl	OCH ₂ CF ₃	CN	Cl	OCH ₂ CF ₃	CN	Cl	OCH ₂ CF ₃	CN
Br	Br	Cl	Br	Br	Cl	Br	Br	Cl	Br	Br	CI
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br .
Br	Br	CN	Br	Br	CN	Вг	Br	CN	Br	Br	CN
Br	Cl	Cl	Br	Cl	Cl	Br	Cl	Cl	Br	CI	Cl
Br	Cl	Br	Br	CI	Br	Br	Cl	Br	Br	Cl	Br
Br	Cl	CN	Br	Cl	CN	Br	Cl	CN	Br	CI	CN

142

٧	is	CH

R ² is H, R ³ is Me			R ²	² is H, R ³ is E	<u>v is</u>		is H, R ³ is i-	<u>Pr</u>	R ² is Me, R ³ is Me		
R ⁴	R ⁵	<u>R</u> 6	<u>R⁴</u> <u>R⁵</u> <u>R</u>		<u>R</u> 6	<u>R</u> 4	<u>R⁵</u>	<u>R</u> 6	<u>R</u> 4	<u>R</u> 5	<u>R</u> 6
Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br
Br	CF ₃	CN	Br	CF ₃	CN	Br	CF ₃	CN	Br	CF ₃	CN
Br	OCH ₂ CF ₃	CI	Br	OCH ₂ CF ₃	Cl	Br	OCH ₂ CF ₃	Cl	Br	OCH ₂ CF ₃	Cl
Br	OCH ₂ CF ₃	Br	Br	OCH ₂ CF ₃	Br	Br	OCH ₂ CF ₃	Br	Br	OCH ₂ CF ₃	Br
Br	OCH ₂ CF ₃	CN	Br	OCH ₂ CF ₃	CN	Br	OCH ₂ CF ₃	CN	Br	OCH ₂ CF ₃	CN
CH ₃	Br	Cl	СН3	Br	Cl	CH ₃	Br	Cl	CH ₃	Br	Cl
CH ₃	Br	Br	СН3	Br	Br	CH ₃	Br	Br	СН3	Br	Br
CH ₃	Br	CN	CH ₃	Br	CN	CH ₃	Br	CN	CH ₃	Br	CN
CH ₃	Cl	Cl	СН3	Cl	Cl	CH ₃	Cl	Cl	CH ₃	Cl	Cl
CH ₃	Cl	Br	СН3	Cl	Br	CH ₃	Cl	Br	CH ₃	Cl	Br
CH ₃	Cl	CN	СН3	Cl	CN	CH ₃	Cl	CN	CH ₃	Cl	CN
CH ₃	CF ₃	CI	СН3	CF ₃	Ċl	CH ₃	CF ₃	Cl	СН3	CF ₃	Cl
CH ₃	CF ₃	Br	СН3	CF ₃	Br	СН3	CF ₃	Br	СН3	CF ₃	Br
CH ₃	CF ₃	CN	СН3	CF ₃	CN	CH ₃	CF ₃	CN	СН3	CF ₃	CN
CH ₃	OCH ₂ CF ₃	Cl	СН3	OCH ₂ CF ₃	CI	CH ₃	OCH ₂ CF ₃	CI	CH ₃	OCH ₂ CF ₃	Cl
CH ₃	OCH ₂ CF ₃	Br	СН3	OCH ₂ CF ₃	Br	СН3	OCH ₂ CF ₃	Br	СН3	OCH ₂ CF ₃	Br
CH ₃	OCH ₂ CF ₃	CN	СН3	OCH ₂ CF ₃	CN	CH ₃	OCH ₂ CF ₃	CN	СН3	OCH ₂ CF ₃	CN
CF ₃	Br	CI	CF ₃	Br	Cl	CF ₃	Br	Cl	CF ₃	Br	Cl
CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br
CF ₃	Br	CN	CF ₃	Br	CN	CF ₃	Br	CN	CF ₃	Br	CN
CF ₃	Cl	Cl	CF ₃	Cì	Cl	CF ₃	Cl	Cl	CF ₃	Cl	Cl
CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl	Br
CF ₃	Cl	CN	CF ₃	Cl	CN	CF ₃	Cl	CN	CF ₃	Cl	CN
CF ₃	CF ₃	Cl	CF ₃	CF ₃	Cl	CF ₃	CF ₃	Cl	CF ₃	CF ₃	Cl
CF ₃	CF ₃	Br	CF ₃	CF ₃	Br	CF ₃	CF ₃	Br	CF ₃	CF ₃	Br
CF ₃	CF ₃	CN	CF ₃	CF ₃	CN	CF ₃	CF ₃	CN	CF ₃	CF ₃	CN
CF ₃	OCH ₂ CF ₃	Cl	CF ₃	OCH ₂ CF ₃	Cl	CF ₃	OCH ₂ CF ₃	Cl	CF ₃	OCH ₂ CF ₃	Cl
CF ₃	OCH ₂ CF ₃	Br	CF ₃	OCH ₂ CF ₃	Br	1 -	OCH ₂ CF ₃	Br		OCH ₂ CF ₃	
CF ₃	OCH ₂ CF ₃	CN	CF ₃	OCH ₂ CF ₃	CN	CF ₃	OCH ₂ CF ₃	CN	CF ₃	OCH ₂ CF ₃	CN

V is N

R ² is H, R ³ is Me			<u>R</u> 2	$ \begin{array}{c ccccc} & & & & & & & & & & & & & & & & & & &$				i-Pr	R ² is Me, R ³ is Me		
<u>R</u> 4	<u>R</u> 5	<u>R</u> 6	<u>R</u> 4	<u>R</u> 5	<u>R</u> 6	<u>R</u> 4	<u>R⁵</u>	<u>R</u> 6	<u>R</u> 4	<u>R</u> 5	<u>R</u> 6
Cl	Br	Cl	Cl	Br	Cl	Cl	Br	Cl	Cl	Br	Cl

143												
<u>V is N</u>												
\mathbb{R}^2 is H, \mathbb{R}^3 is Me			<u>R</u> 2	² is H, R ³ is I	<u> </u>	R^2 is H, R^3 is <i>i</i> -Pr			\mathbb{R}^2 is Me, \mathbb{R}^3 is Me			
<u>R</u> 4	<u>R</u> 5	<u>R</u> 6	<u>R⁴ R⁵ R⁶</u>			<u>R</u> 4	<u>R⁵</u>	<u>R</u> 6	<u>R</u> 4	<u>R⁵</u>	<u>R</u> 6	
Cl	Br	Br	Cl	Br	Br	Cl	Br	Br	Cl	Br	Br	
Cl	Br	CN	Cl	Br	CN	Cl	Br	CN	CI	Br	CN	
Cl	Cl	Cl	CI	Cl	CI	Cl	Cl	Cl	Cl	Cl	Cl	
Cl	Cl	Br	CI	Cl	Br	Cl	Cl	Br	Cl	Cl	Br	
Cl	Cl	CN	CI	Cl	CN	Cl	CI	CN	Cl	Cl	CN	
Cl	CF ₃	Cl	Cl	CF ₃	Cl	Cl	CF ₃	Cl	Cl	CF ₃	Cl	
Cl	CF ₃	Br	CI	CF ₃	Br	Cl	CF ₃	Br	Cl	CF ₃	Br	
Cl	CF ₃	CN	Cl	CF ₃	CN	Cl	CF ₃	CN	Cl	CF ₃	CN	
Cl	OCH ₂ CF ₃	Cl	Cl	OCH ₂ CF ₃	Cl	Cl	OCH ₂ CF ₃	Cl	Cl	OCH ₂ CF ₃	C1	
Cl	OCH ₂ CF ₃	Br	Cl	OCH ₂ CF ₃	Br	Cl	OCH ₂ CF ₃	Br	Cl	OCH ₂ CF ₃	Br	
Cl	OCH ₂ CF ₃	CN	Cl	OCH ₂ CF ₃	CN	CI	OCH ₂ CF ₃	CN	Cì	OCH ₂ CF ₃	CN	
Br	Br	Cl	Br	Br	CI	Br	Br	Cl	Br	Br	Cl	
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	
Br	Br	CN	Br	Br	CN	Br	Br	CN	Br	Br	CN	
Br	Cl	Cl	Br	Cl	Cl	Br	Cl	Cl	Br	Cl	Cl	
Br	Cl	Br	Br	Cl	Br	Br	Cl	Br	Br	Cl	Br	
Br	Cl	CN	Br	Cl	CN	Br	Cl	CN	Br	Cl	CN	
Br	CF ₃	CI	Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl	
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	
Br	CF ₃	CN	Br	CF ₃	CN	Br	CF ₃	CN	Br	CF ₃	CN	
Br	OCH ₂ CF ₃	Cl	Br	OCH ₂ CF ₃	Cl	Br	OCH ₂ CF ₃	Cl	Вг	OCH ₂ CF ₃	Cl	
Br	OCH ₂ CF ₃	Br	Br	OCH ₂ CF ₃	Br	Br	OCH ₂ CF ₃	Br	Br	OCH ₂ CF ₃	Br	
Br	OCH ₂ CF ₃	CN	Br	OCH ₂ CF ₃	CN	Br	OCH ₂ CF ₃	CN	Br	OCH ₂ CF ₃	CN	
CH ₃	Br	Cl	СН3	Br	CI	CH ₃	Br	Cl	CH ₃	Br	Cl	
CH ₃	Br	Br	СН3	Br	Br	CH ₃	Br	Br	CH ₃	Br	Br	
CH ₃	Br	CN	CH ₃	Br	CN	CH ₃	Br	CN	CH ₃	Br	CN	
CH ₃	Cl	CI	CH ₃	Cl	Cl	CH ₃	Cl	Cl	CH ₃	CI	Cl	
CH ₃	Cl	Br	CH ₃	Cl	Br	CH ₃	CI	Br	CH ₃	CI	Br	
CH ₃	CI	CN	CH ₃	Cl	CN	CH ₃	CI	CN	CH ₃	CI	CN	
CH ₃	CF ₃	Cl	CH ₃	CF ₃	Cl	CH ₃	CF ₃	Cl	CH ₃	CF ₃	Cl	
CH ₃	CF ₃	Br	СН3	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	
CH ₃	CF ₃	CN	CH ₃	CF ₃	CN	CH ₃	CF ₃	CN	CH ₃	CF ₃	CN	
•	OCH ₂ CF ₃	Cl	_	OCH ₂ CF ₃	Cl	, -	OCH ₂ CF ₃	Cl	CH ₃	OCH ₂ CF ₃	Cl	
_	OCH ₂ CF ₃	Br	_	OCH ₂ CF ₃	Br	-	OCH ₂ CF ₃	Br	CH ₃	OCH ₂ CF ₃	Br	
CH ₃	OCH ₂ CF ₃	CN	CH ₃	OCH ₂ CF ₃	CN	CH ₃	OCH ₂ CF ₃	CN	CH ₃	OCH ₂ CF ₃	CN	

144

•	<u>V is N</u>													
R^2 is H, R^3 is Me			R ² is H, R ³ is Et			<u>R</u> ²	is H, R ³ is i-	<u>Pr</u>	<u>R</u> 2	is Me, R ³ is	<u>Me</u>			
<u>R</u> 4	<u>R</u> 5	<u>R</u> 6	<u>R</u> 4	<u>R</u> 5	<u>R</u> 6	<u>R</u> 4	<u>R</u> 5	<u>R</u> 6	<u>R</u> 4	<u>R</u> 5	<u>R</u> 6			
CF ₃	Br	Cl	CF ₃	Br	Cl	CF ₃	Br	Cl	CF ₃	Br	Cl			
CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br			
CF ₃	Br	CN	CF ₃	Br	CN	CF ₃	Br	CN	CF ₃	Br	CN			
CF ₃	Cl	Cl	CF ₃	Cl	C1	CF ₃	Cl	Cl	CF ₃	Cl	Cl			
CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	CI	Br			
CF ₃	Cl	CN	CF ₃	Cl	CN	CF ₃	Cl	CN	CF ₃	Cl	CN			
CF ₃	CF ₃	Cl	CF ₃	CF ₃	Cl	CF ₃	CF ₃	Cl	CF ₃	CF ₃	Cl			
CF ₃	CF ₃	Br	CF ₃	CF ₃	Br	CF ₃	CF ₃	Br	CF ₃	CF ₃	Br			
CF ₃	CF ₃	CN	CF ₃	CF ₃	CN	CF ₃	CF ₃	CN	CF ₃	CF ₃	CN			
CF ₃	OCH ₂ CF ₃	Cl	CF ₃	OCH ₂ CF ₃	Cl	CF ₃	OCH ₂ CF ₃	Cl	CF ₃	OCH ₂ CF ₃	Cl			
CF ₃	OCH ₂ CF ₃	Br	CF ₃	OCH ₂ CF ₃	Br	CF ₃	OCH ₂ CF ₃	Br	CF ₃	OCH ₂ CF ₃	Br			
CF ₃	OCH ₂ CF ₃	CN	CF ₃	OCH ₂ CF ₃	CN	CF ₃	OCH ₂ CF ₃	CN	CF ₃	OCH ₂ CF ₃	CN			

Table 27

V is CH

R^2 is H, R^3 is Me			R ² is H, R ³ is Et			R ² is H, R ³ is <i>i</i> -Pr			R ² is Me, R ³ is Me		
<u>R</u> 4	<u>R⁵</u>	<u>R</u> 6	<u>R</u> ⁴	<u>R⁵</u>	<u>R</u> 6	<u>R</u> 4	<u>R</u> 5	<u>R</u> 6	<u>R</u> 4	<u>R</u> 5	<u>R</u> 6
Cl	Br	Cl	Cl	Br	Cl	Cl	Br	Cl	Cl	Br	Cl
Cl	Br	Br	CI	Br	Br	CI	Br	Br	Cl	Br	Br
Cl	Br	CN.	Cl	Br	CN	CI	Br	CN	Cl	Br	CN
Cl	Cl	CI	Cl	Cl	Cl	CI	Cl	Cl	Cl	Cl	Cl
Ci	Cl	Br	CI	CI	Br	CI	Cl	Br	Cl	Cl	Br
Cl	Cl	CN	Cl	Cl	CN	CI	Cl	CN	Cl	Cl	CN
Cl	CF ₃	Cl	Cl	CF ₃	CI	Cl	CF ₃	Cl	Cl	CF ₃	Cl
Cl	CF ₃	Br	Cl	CF ₃	Br	Cl	CF ₃	Br	Cl	CF ₃	Br
Cl	CF ₃	CN	Cl	CF ₃	CN	Cl	CF ₃	CN	Cl	CF ₃	CN
Cì	OCH ₂ CF ₃	CI	Cl	OCH ₂ CF ₃	Cl	Cl	OCH ₂ CF ₃	Cl	Cl	OCH ₂ CF ₃	Cl

v	ie	CH
٧	13	Cn

R ²	is H, R ³ is N	1e	R ²	² is H, R ³ is I	<u>V 18</u> Et		is H, R ³ is <i>i</i> -	Pr	R ² is Me, R ³ is Me		
R ⁴	R ⁵	<u>R</u> 6	R4	<u>R⁵</u>	<u>R</u> 6	<u>R</u> 4	R ⁵	<u>R</u> 6	<u>R</u> 4	<u>R</u> 5	<u>R</u> 6
Cl	OCH ₂ CF ₃	Br	Cl	OCH ₂ CF ₃	Br	Cl	OCH ₂ CF ₃	Br	Cl	OCH ₂ CF ₃	Br
Cl	OCH ₂ CF ₃	CN	Cl	OCH ₂ CF ₃	CN	Cl	OCH ₂ CF ₃	CN	Cl	OCH ₂ CF ₃	CN
Br	Br	CI	Br	Br	Cl	Br	Br	Cl	Br	Br	Cl
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br
Br	Br	CN	Br	Br	CN	Br	Br	CN	Br	Br	CN
Br	Cl	Cl	Br	Cl	Cl	Br	Cl	Cl	Br	CI	Cl
Br	Cl	Br	Br	Cl	Br	Br	Cl	Br	Br	Cl	Br
Br	Cl	CN	Br	CI	CN	Br	CI	CN	Br	CI	CN
Br	CF ₃	CI	Br	CF ₃	Cl	Br	CF ₃	CI	Br	CF ₃	Cl
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Вг	Br	CF ₃	Br
Br	CF ₃	CN	Br	CF ₃	CN	Br	CF ₃	CN	Br	CF ₃	CN
Br	OCH ₂ CF ₃	Cl	Br	OCH ₂ CF ₃	Cl	Br	OCH ₂ CF ₃	Cl	Br	OCH ₂ CF ₃	Cl
Br	OCH ₂ CF ₃	Br	Br	OCH ₂ CF ₃	Br	Br	OCH ₂ CF ₃	Br ·	Br	OCH ₂ CF ₃	Br
Br	OCH ₂ CF ₃	CN	Br	OCH ₂ CF ₃	CN	Br	OCH ₂ CF ₃	CN	Br	OCH ₂ CF ₃	CN
CH ₃	Br	Cl	СН3	Br	Cl	СН3	Br	Cl	СН3	Br	Cl
СН3	Br	Br	CH ₃	Br	Br	CH ₃	Br	Br	СН3	Br	Br
CH ₃	Br	CN	СН3	Br	CN	CH ₃	Br	CN	CH ₃	Br	CN
CH ₃	Cl	Cl	СН3	Cl	Cl	СН3	Cl	Cl	CH ₃	Cl	CI
CH ₃	Cl	Br	CH ₃	Cl	Br	CH ₃	Cl	Br	CH ₃	Cl	Br
CH ₃	Cl	CN	СН3	Cl	CN	CH ₃	Cl	CN	CH ₃	Cl	CN
CH ₃	CF ₃	Cl	СН3	CF ₃	Cl	CH ₃	CF ₃	Cl	CH ₃	CF ₃	Cl
CH ₃	CF ₃	Br	СН3	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br
CH ₃	CF ₃	CN	CH ₃	CF ₃	CN	CH ₃	CF ₃	CN	CH ₃	CF ₃	CN
CH ₃	OCH ₂ CF ₃	Cl	CH ₃	OCH ₂ CF ₃	CI	CH ₃	OCH ₂ CF ₃	Cl	CH ₃	OCH ₂ CF ₃	Cl
CH ₃	OCH ₂ CF ₃	Br	CH ₃	OCH ₂ CF ₃	Br	CH ₃	OCH ₂ CF ₃	Br	CH ₃	OCH ₂ CF ₃	Вг
CH ₃	OCH ₂ CF ₃	CN	CH ₃	OCH ₂ CF ₃	CN		OCH ₂ CF ₃	CN	_	OCH ₂ CF ₃	CN
CF ₃	Br	Cl	CF ₃	Br	Cl	CF ₃	Br	Cl	CF ₃	Br	Cl
CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br
CF ₃	Br	CN	CF ₃	Br	CN	CF ₃	Вг	CN	CF ₃	Br	CN
CF ₃	Cl	Cl	CF ₃	Cl	Cl	CF ₃	Cl	Cl	CF ₃	Cl	Cl
CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl	Br
CF ₃	Cl	CN	CF ₃	Cl	CN	CF ₃	Cl	CN	CF ₃	Cl	CN
CF ₃	CF ₃	Cl	CF ₃	CF ₃	Cl	CF ₃	CF ₃	Cl	CF ₃	CF ₃	Cl
CF ₃	CF ₃	Br	CF ₃	CF ₃	Br	CF ₃	CF ₃	Br	CF ₃	CF ₃	Br
CF ₃	CF ₃	CN	CF ₃	CF ₃	CN	CF ₃	CF ₃	CN	CF ₃	CF ₃	CN

٧	is	CH

R^2 is H, R^3 is Me			R ² is H, R ³ is Et						R^2 is Me, R^3 is Me		
<u>R</u> 4	<u>R</u> 5	<u>R</u> 6	<u>R</u> 4	<u>R</u> 5	<u>R</u> 6	<u>R</u> 4	<u>R</u> 5	<u>R</u> 6	<u>R</u> 4	<u>R</u> 5	<u>R</u> 6
_	OCH ₂ CF ₃		_	-							
	OCH ₂ CF ₃										
CF ₃	OCH ₂ CF ₃	CN	CF ₃	OCH ₂ CF ₃	CN	CF ₃	OCH ₂ CF ₃	CN	CF ₃	OCH ₂ CF ₃	CN

<u>V is N</u>

<u>R</u> 2	is H, R ³ is N	<u>/le</u>	<u>R</u> -	² is H, R ³ is l	- <u></u> - Et	R ²	is H, R ³ is <i>i</i> -	<u>Pr</u>	<u>R</u> 2	is Me, R ³ is I	Ме
<u>R</u> 4	<u>R⁵</u>	<u>R</u> 6	<u>R</u> 4	<u>R</u> 5	<u>R</u> 6	<u>R</u> 4	<u>R</u> 5	<u>R</u> 6	<u>R</u> 4	<u>R</u> 5	<u>R</u> 6
Cl	Br	CI	Cl	Br	Cl	Cl	Br	CI	CI	Br	Cl
Cl	Br	Br	CI	Br	Br	Cl	Br	Br	Cl	Br	Br
Cl	Br	CN	Cl	Br	CN	Cl	Br	CN	Cl	Br	CN
Cl	Cl	CI	CI	Cl	CI	CI	Cl	Cl	Ci	CI	Cl
Cl	Cl	Br	CI	C1	Br	Cl	Cl	. Br	Cl	Cl	Br
Cl	Cl	CN	CI	C1	CN	Cl	Cl	CN	Cl	Cl	CN
CI	CF ₃	CI	CI	CF ₃	Ci	Cl	CF ₃	Cl	Cl	CF ₃	Cl
Cl	CF ₃	Br	Cl	CF ₃	Br	Cl	CF ₃	Br	Cl	CF ₃	Br
Cl	CF ₃	CN	Cl	CF ₃	CN	Cl	CF ₃	CN	,Cl	CF ₃	CN
Cl	OCH ₂ CF ₃	Cl	Cl	OCH ₂ CF ₃	Cl	Cl	OCH ₂ CF ₃	Cl	Cl	OCH ₂ CF ₃	Cl
Cl	OCH ₂ CF ₃	Br	Cl	OCH ₂ CF ₃	Br	Cl	OCH ₂ CF ₃	Br	Cl	OCH ₂ CF ₃	Br
Cl	OCH ₂ CF ₃	CN	CI	OCH ₂ CF ₃	CN	Cl	OCH ₂ CF ₃	CN	Cl	OCH ₂ CF ₃	CN
Br	Br	Cl	Br	Br	Cl	Br	Br	Cl	Br	Br	Cl
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br
Br	Br	CN	Br	Br	CN	Br	Br	CN	Br	Br	CN
Br	Cl	Cl	Br	Cl	CI	Br	Cl	Cl	Br	Cl	Cl
Br	Cl	Br	Br	CI	Br	Br	Cl	Br	Br	Cl	Br
Br	Cl	CN	Br	Cl	CN	Br	Cl	CN	Br	Cl	CN
Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br
Br	CF ₃	CN	Br	CF ₃	CN	Br	CF ₃	CN	Br	CF ₃	CN
Br	OCH ₂ CF ₃	Cl	Br	OCH ₂ CF ₃	Cl	Br	OCH ₂ CF ₃	Cl	Br	OCH ₂ CF ₃	Cl
Br	OCH ₂ CF ₃	Br	Br	OCH ₂ CF ₃	Br	Вг	OCH ₂ CF ₃	Br	Br	OCH ₂ CF ₃	Br
Br	OCH ₂ CF ₃	CN	Br	OCH ₂ CF ₃	CN	Br	OCH ₂ CF ₃	CN	Br	OCH ₂ CF ₃	CN
CH ₃	Br	Cl	СН3	Br	Cl	СН3	Br	Cl	CH ₃	Br	Cl
CH ₃	Br	Br	СН3	Br	Br	сн3	Br	Br	CH ₃	Br	Br
CH ₃	Br	CN	CH ₃	Br	CN	CH ₃	Br	CN	СН3	Br	CN
CH ₃	Cl	Cl	СН3	Cl	Cl	сн3	Cl	Cl	CH ₃	Cl	Cl

	V is N												
<u>R</u> 2	is H, R ³ is N	<u>/le</u>	<u>R</u> 2	² is H, R ³ is I	<u>Et</u>	<u>R</u> 2	is H, R ³ is <i>i-</i>	<u>Pr</u>	<u>R</u> 2	is Me, R ³ is	<u>Me</u>		
<u>R</u> 4	<u>R⁵</u>	<u>R</u> 6	<u>R</u> 4	<u>R</u> 5	<u>R</u> 6	<u>R</u> 4	<u>R⁵</u>	<u>R</u> 6	<u>R</u> 4	<u>R</u> 5	<u>R</u> 6		
CH ₃	Cl	Br	СН3	Cl	Br	CH ₃	Cl	Br	CH ₃	Cl	Br		
CH ₃	Cl	CN	CH ₃	Cl	CN	CH ₃	Cl	CN	CH ₃	Cl	CN		
CH ₃	CF ₃	Cl	CH ₃	CF ₃	Cl	CH ₃	CF ₃	Cl	CH ₃	CF ₃	CI		
CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br		
CH ₃	CF ₃	CN	CH ₃	CF ₃	CN	CH ₃	CF ₃	CN	CH ₃	CF ₃	CN		
CH ₃	OCH ₂ CF ₃	Cl	СН3	OCH ₂ CF ₃	Cl	СН3	OCH ₂ CF ₃	Cl	CH ₃	OCH ₂ CF ₃	Cl		
CH ₃	OCH ₂ CF ₃	Br	СН3	OCH ₂ CF ₃	Br	CH ₃	OCH ₂ CF ₃	Br	CH ₃	OCH ₂ CF ₃	Br		
CH ₃	OCH ₂ CF ₃	CN	СН3	OCH ₂ CF ₃	CN	CH ₃	OCH ₂ CF ₃	CN	СН3	OCH ₂ CF ₃	CN		
CF ₃	Br	Cl	CF ₃	Br	Cl	CF ₃	Br	Cl	CF ₃	Br	Cl		
CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br		
CF ₃	Br	CN	CF ₃	Br	CN	CF ₃	Br	CN	CF ₃	Br	CN		
CF ₃	Cl	Cl	CF ₃	CI	Cl	CF ₃	Cl	Cl	CF ₃	CI	Cl		
CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl	Br		
CF ₃	Ci	CN	CF ₃	Cl	CN	CF ₃	Cl	CN	CF ₃	Cì	CN		
CF ₃	CF ₃	Cl	CF ₃	CF ₃	Cl	CF ₃	CF ₃	Cl	CF ₃	CF ₃	CI		
CF ₃	CF ₃	Br	CF ₃	CF ₃	Br	CF ₃	CF ₃	Br	CF ₃	CF ₃	Br		
CF ₃	CF ₃	CN	CF ₃	CF ₃	CN	CF ₃	CF ₃	CN	CF ₃	CF ₃	CN		
CF ₃	OCH ₂ CF ₃	Cl	CF ₃	OCH_2CF_3	Cl	CF ₃	OCH ₂ CF ₃	Cl	CF ₃	OCH ₂ CF ₃	Cl		

Table 28

CF₃ OCH₂CF₃ Br CF₃ OCH₂CF₃ Br CF₃ OCH₂CF₃ Br CF₃ OCH₂CF₃ Br CF₃ OCH₂CF₃ CN CF₃ OCH₂CF₃ CN CF₃ OCH₂CF₃ CN

V is CH

\mathbb{R}^2 is H, \mathbb{R}^3 is Me			R ² is H, R ³ is Et			<u>R²</u>	is H, R ³ is	i-Pr	R ² is Me, R ³ is Me		
<u>R</u> 4	<u>R</u> 5	<u>R</u> 6	<u>R</u> 4	<u>R</u> 5	<u>R</u> 6	<u>R</u> 4	<u>R⁵</u>	<u>R</u> 6	<u>R</u> 4	<u>R</u> 5	<u>R</u> 6
Cl	Br	Cl	Cl	Br	Cl	CI	Br	Cl	Cl	Br	Cl
Cl	Br	Br	Cl	Br	Br	Cl	Br	Br	Cl	Br	Br

148

V is CH

<u>V is CH</u>											
<u>R</u> 2	is H, R ³ is N	<u>/le</u>		² is H, R ³ is I	<u>Et</u>		is H, R ³ is <i>i</i> -	_ ;		is Me, R ³ is l	<u>Me</u>
<u>R</u> 4	<u>R⁵</u>	<u>R</u> 6	<u>R</u> 4	<u>R⁵</u>	<u>R</u> 6	<u>R</u> 4	. <u>R⁵</u>	<u>R</u> 6	<u>R</u> 4	<u>R⁵</u>	<u>R</u> 6
Cl	Br	CN	Cl	Br	CN	Cl	Br	CN	CI	Br	CN
Cl	Cl	CI	Cl	Cl	Cl	Cl	Cl	Cl	CI	Cl	Cl
Cl	Cl	Br	Cl	Cl	Br	Cl	Cl	Br	Cl	Cl	Br
Cl	Cl	CN	Cl	Cl	CN	Cl	Cl	CN	Cl	Cl	CN
Cl	CF ₃	CI	Cl	CF ₃	Cl	Cl	CF ₃	CI	Cl	CF ₃	Cl
Cl	CF ₃	Br	Cl	CF ₃	Br	Cl	CF ₃	Br	Cl	CF ₃	Br
Cl	CF ₃	CN	Cl	CF ₃	CN	Cl	CF ₃	CN	Cl	CF ₃	CN
Cl	OCH ₂ CF ₃	CI	CI	OCH ₂ CF ₃	Cl	Cl	OCH ₂ CF ₃	CI	Cl	OCH ₂ CF ₃	CI
Cl	OCH ₂ CF ₃	Br	Cl	OCH ₂ CF ₃	Br	Cl	OCH ₂ CF ₃	Br	Cl	OCH ₂ CF ₃	Br
Cl	OCH ₂ CF ₃	CN	Cl	OCH ₂ CF ₃	CN	Cl	OCH ₂ CF ₃	CN	Cl	OCH ₂ CF ₃	CN
Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	Cl
Br	Вг	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br
Br	Br	CN	Br	Br	CN	Br	Br	CN	Br	Br	CN
Br	CI	CI	Br	Cl	Cl	Br	Cl	Ci	Br	Cl	Cl
Br	Cl	Br	Br	Cl	Br	Br	C1	Br	Br	Cl	Br
Br	Cl	CN	Br	Cl	CN	Br	Cl	CN	Br	Cl	CN
Br	CF ₃	CI	Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br
Br	CF ₃	CN	Br	CF ₃	CN	Br	CF ₃	CN	Br	CF ₃	CN
Br	OCH ₂ CF ₃	Cl	Br	OCH ₂ CF ₃	Cl	Br	OCH ₂ CF ₃	Cl	Br	OCH ₂ CF ₃	Cl
Br	OCH_2CF_3	Br	Br	OCH ₂ CF ₃	Br	Br	OCH ₂ CF ₃	Br	Br	OCH ₂ CF ₃	Br
Br	OCH ₂ CF ₃	CN	Br	OCH ₂ CF ₃	CN	Br	OCH ₂ CF ₃	CN	Br	OCH ₂ CF ₃	CN
CH ₃	Br	Cl	СН3	Br	CI	CH ₃	Br	Cl	СН3	Br _.	Cl
CH ₃	Br	Br	СН3	Br	Br	CH ₃	Br	Br	СН3	Br	Br
CH ₃	Br	CN	СН3	Br	CN	СН3	Br	CN	CH ₃	Br	CN
CH ₃	CI	Cl	СН3	Cl	Cl	CH ₃	Cl	CI	CH ₃	Cl	Cl
CH ₃	Cl	Br	CH ₃	C1	Br	CH ₃	Cl	Br	СН3	Cl	Br
CH ₃	Cl	CN	СН3	Cl	CN	CH ₃	Cl	CN	CH ₃	Cl	CN
CH ₃	CF ₃	Cl	СН3	CF ₃	Cl	CH ₃	CF ₃	Cl	CH ₃	CF ₃	Cl
CH ₃	CF ₃	Вг	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br
CH ₃	CF ₃	CN	СН3	CF ₃	CN	CH ₃	CF ₃	CN	СН3	CF ₃	CN
CH ₃	OCH_2CF_3	Cl	CH ₃	OCH ₂ CF ₃	Cl	CH ₃	OCH ₂ CF ₃	Cl	CH ₃	OCH ₂ CF ₃	Cl
CH ₃	OCH_2CF_3	Br	СН3	OCH ₂ CF ₃	Br	СН3	OCH ₂ CF ₃	Br	1 *	OCH ₂ CF ₃	Br
CH ₃	OCH ₂ CF ₃	CN	CH ₃	OCH ₂ CF ₃	CN	CH ₃	OCH ₂ CF ₃	CN	CH ₃	OCH ₂ CF ₃	CN
CF ₃	Br	Cl	CF ₃	Br	Cl	CF ₃	Br	Cl	CF ₃	Br	Cl

WO 02/070483

149

.,		~
v	19	СН

R^2 is H, R^3 is Me			R ² is H, R ³ is Et			R ² is H, R ³ is i-Pr			R ² is Me, R ³ is Me		
<u>R</u> 4	<u>R</u> 5	<u>R</u> 6	<u>R</u> 4	<u>R</u> 5	<u>R</u> 6	<u>R</u> 4	<u>R</u> 5	<u>R</u> 6	<u>R</u> 4	<u>R</u> 5	<u>R</u> 6
CF ₃	Br	Вг	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br
CF ₃	Br	CN	CF ₃	Br	CN	CF ₃	Br	CN	CF ₃	Br	CN
CF ₃	Cl	Cl	CF ₃	Cl	Cl	CF ₃	Cl	Cl	CF ₃	Cl	Cl
CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl	Br
CF ₃	Cl	CN	CF ₃	Cl	CN	CF ₃	Cl	CN	CF ₃	Cl	CN
CF ₃	CF ₃	Cl	CF ₃	CF ₃	Cl	CF ₃	CF ₃	Cl	CF ₃	CF ₃	Cl
CF ₃	CF ₃	Br	CF ₃	CF ₃	Br	CF ₃	CF ₃	Br	CF ₃	CF ₃	Br
CF ₃	CF ₃	CN	CF ₃	CF ₃	CN	CF ₃	CF ₃	CN	CF ₃	CF ₃	CN
CF ₃	OCH ₂ CF ₃	Cl	CF ₃	OCH ₂ CF ₃	Cl	CF ₃	OCH ₂ CF ₃	Cl	CF ₃	OCH ₂ CF ₃	Cl
CF ₃	OCH ₂ CF ₃	Br	CF ₃	OCH ₂ CF ₃	Br	CF ₃	OCH ₂ CF ₃	Br	CF ₃	OCH ₂ CF ₃	Br
CF ₃	OCH ₂ CF ₃	CN	CF ₃	OCH ₂ CF ₃	CN	CF ₃	OCH ₂ CF ₃	CN	CF ₃	OCH ₂ CF ₃	CN

<u>V is N</u>

<u>R</u> 2	² is H, R ³ is N	<u>/1e</u>	<u>R</u>	² is H, R ³ is l	<u>Et</u>	<u>R</u> 2	is H, R ³ is <i>i-</i>	<u>Pr</u>	<u>R</u> 2	R ² is Me, R ³ is Me		
<u>R</u> 4	<u>R</u> 5	<u>R</u> 6	<u>R</u> 4	<u>R⁵</u>	<u>R</u> 6	<u>R</u> 4	<u>R</u> 5	<u>R</u> 6	<u>R</u> 4	<u>R</u> 5	<u>R</u> 6	
Cl	Br	Cl	Cl	Br	Cl	Cl	Br	Cl	CI	Br	Cl	
Cl	Br	Br	Cl	Br	Br	Cl	Br	Br	Cl	Br	Br	
Cl	Br	CN	Cl	Br	CN	Cl	Br	CN	Cl	Br	CN	
Cl	Cl	Cl	Cl	Cl	Cl	Cl	Cl	Cl	Cl	CI	Cl	
Cl	Cl	Br	Cl	Cl	Br	Cl	Cl	Br	Cl	Cl	Br	
Cl	Cl	CN	Cl	Cl	CN	Cl	Cl	CN	Cl	Cl	CN	
Cl	CF ₃	Cl	Cl	CF ₃	Cl	Cl	CF ₃	Cl	CI	CF ₃	Cl	
Cl	CF ₃	Br	Cl	CF ₃	Br	Cl	CF ₃	Br	Cl	CF ₃	Br	
Cl	CF ₃	CN	Cl	CF ₃	CN	Cl	CF ₃	CN	Cl	CF ₃	CN	
Cl	OCH ₂ CF ₃	Cl	Cl	OCH ₂ CF ₃	Cl	Ci	OCH ₂ CF ₃	Cl	Cl	OCH ₂ CF ₃	Cl	
Cl	OCH ₂ CF ₃	Br	Cl	OCH ₂ CF ₃	Br	CI	OCH ₂ CF ₃	Br	Cl	OCH ₂ CF ₃	Br	
Cl	OCH ₂ CF ₃	CN	C1	OCH ₂ CF ₃	CN	CI	OCH ₂ CF ₃	CN	Cl	OCH ₂ CF ₃	CN	
Br	Br	Cl	Br	Br	CI	Br	Br	Cl	Br	Br	Cl	
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	
Br	Br	CN	Br	Br	CN	Br	Вг	CN	Br	Br	CN	
Br	Cl	Cl	Br	Cl	CI	Br	Cl	Cl	Br	Cl	Cl	
Br	Cl	Br	Br	C1	Br	Br	Cl	Br	Br	Cl	Br	
Br	Cl	CN	Br	Cl	CN	Br	Cl	CN	Br	Cl	CN	
Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	CI	
Br	CF ₂	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	

V is N R^2 is H, R^3 is Me \mathbb{R}^2 is H, \mathbb{R}^3 is Et R^2 is H, R^3 is *i*-Pr R² is Me, R³ is Me <u>R</u>6 <u>R</u>5 R6 <u>R</u>4 R^5 <u>R</u>6 <u>R</u>4 <u>R</u>5 <u>R</u>6 <u>R</u>4 <u>R</u>5 <u>R</u>4 CN CF₃ CN CF₃ CN CF₃ Br CF₃ CN Br Br Br OCH₂CF₃ Cl OCH₂CF₃ Cl Br OCH₂CF₃ Cl Br Br OCH₂CF₃ Cl OCH₂CF₃ OCH₂CF₃ Br OCH₂CF₃ Вг Br OCH₂CF₃ Br Br Br Br Br OCH₂CF₃ OCH₂CF₃ CN OCH₂CF₃ CN Br CN Br OCH₂CF₃ CN Br Br Cl CH₃ Br CI CH₃ Br CI CH₃ Br Вг Cl CH₃ CH₃ CH₃ Br Br Br Br CH₃ Br Br CH₃ Br Br CH₃ CN CN CH₃ Br CN CH₃ Вг CN Br CH₃ Br CH₃ CI CI CI CI CH₃ Cl CI Cl Cl CH₃ CH₃ CH₃ CI CH₃ CI Br CI Br Br CH₃ Cl Br CH₃ CI Cl CN CH₃ Cl CN CH₃ Cl CN CN CH₃ CH₃ CH₃ CF₃ Cl CH₃ CF₃ Cl CI CH₃ CF₃ Cl CH₃ CF₃ CF₃ CH₃ CF₃ Br CH₃ CF₃ Br CH₃ CF₃ Br CH₃ Br CN CH₃ CF₃ CN CH₃ CF₃ CN CN CH₃ CF₃ CH₃ CF₃ CH₃ OCH₂CF₃ CI CH₃ OCH₂CF₃ Cl CH₃ OCH₂CF₃ CI CH₃ OCH₂CF₃ CI CH₃ OCH₂CF₃ CH₃ OCH₂CF₃ Br CH₃ OCH₂CF₃ Br CH₃ OCH₂CF₃ Br Br CH₃ OCH₂CF₃ CH₃ OCH₂CF₃ CN CH₃ OCH₂CF₃ CN CH₃ OCH₂CF₃ CN CN Cl CI CF₃ Br Cl CF₃ Br CI CF₃ Br CF₃ Br CF₃ Br CN CF₃ Вт CN CF₃ Br CN CF₃ Br CN CI C! Cl Cl CF₃ CI Cl CF₃ CF₃ Cl Cl CF₃ CI CF₃ CI CF₃ Cl Br CF₃ Cl Br CF₃ Br Br Cl Cl CN Cl CN CF₃ CN CF₃ CF₃ CI CN CF₃ CF₃ CF₃ CI CF₃ CF₃ Cl CF₃ CF₃ Cl CF₃ Cl CF₃ CF₃ CF₃ CF₃ CF₃ Br CF₃ CF₃ Br Br CF₃ CF₃ Br CF₃ CF₃ CF₃ CN CF₃ CF₃ CN CN CF₃ CF₃ CN CF₃ CF₃ OCH₂CF₃ Cl CF3 OCH2CF3 Cl CF₃ OCH₂CF₃ Cl CF₃ OCH₂CF₃ Cl CF₃ OCH₂CF₃ CF₃ OCH₂CF₃ CF₃ OCH₂CF₃ Br CF₃ OCH₂CF₃ Br Вг Br

CF₃ OCH₂CF₃

CN

CF₃ OCH₂CF₃ CN

CF₃ OCH₂CF₃

CN

CF₃ OCH₂CF₃

CN

151

Table 29

R⁴ is CHF₂

			K IS C	<u>ur2</u>		_		
R^2 is H, R	3 is Me	R ² is H. R	3 is Et	R^2 is H, R^3	is <i>i-</i> Pr	R ² is Me, R ³ is Me		
<u>R</u> 5	<u>R</u> 6	<u>R⁵</u>	<u>R</u> 6	<u>R</u> 5	<u>R</u> 6	<u>R</u> 5	<u>R</u> 6	
Br	Cl	Br	Cl	Br	Cl	Br	Cl	
Br	Br	Br	Br	Br	Br	Br	Br	
Br	CN	Br	CN	Br	CN ·	Br	CN	
Cl	Cl	Cl	Cl	CI	Cl	Cl	Cl	
CI	Br	Cl	Br	Cl	Br	Cl	Br	
Cl	CN	Cl	CN	Cl	CN	Cl	CN	
CF ₃	Cl	CF ₃	Cl	CF ₃	Cl	CF ₃	Cl	
CF ₃	Br	CF ₃	Br	CF ₃	Br	CF ₃	Br	
CF ₃	CN	CF ₃	CN	CF ₃	CN	CF ₃	CN	
OCH ₂ CF ₃	Cl	OCH ₂ CF ₃	Cl	OCH ₂ CF ₃	Cl	OCH ₂ CF ₃	Cl	
OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Вг	
OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN	
Br	Cl	Br	Cl	Br	CI	Br	Cl	
Br	Br	Br	Br	Br	Br	Br	Br	
Br	CN	Br	CN	Br	CN	Br	CN	
Cl	Cl	CI	Cl	Cl	Cl	Cl	Cl	
Cl	Br	CI	Br	Cl	Br	Cl	Br	
Cl	CN	Cl	CN	Cl	CN	CI	CN	
CF ₃	Cl	CF ₃	Cl	CF ₃	Cl	CF ₃	C1	
CF ₃	Br	CF ₃	Br	CF ₃	Br	CF ₃	Br	
CF ₃	CN	CF ₃	CN	CF ₃	CN	CF ₃	CN	
OCH ₂ CF ₃	Cl	OCH ₂ CF ₃	Cl	OCH ₂ CF ₃	Cl	OCH ₂ CF ₃	Cl	
OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br	
OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN	
Br	Cl	Br	Cl	Br	Cl	Br	Cl	
Br	Br	Br	Br	Br	Br	Br	Br	

152

R ⁴ is CHF ₂											
\mathbb{R}^2 is H, \mathbb{R}^2	is Me	R^2 is H, R	is Et	\mathbb{R}^2 is H, \mathbb{R}^3	\mathbb{R}^2 is H, \mathbb{R}^3 is <i>i</i> -Pr		is Me				
<u>R</u> 5	<u>R</u> 6	<u>R</u> 5	<u>R</u> 6	<u>R</u> 5	<u>R</u> 6	<u>R</u> 5	<u>R</u> 6				
Br	CN	Вг	CN	Br	CN	Br	CN				
Cl	Cl	Cl	Cl	Cl	Cl	CI	Cl				
Cl	Br	Cl	Br	Cl	Br	Cl	Br				
Cl	CN	Cl	CN	Cl	CN	CI	CN				
CF ₃	Cl	CF ₃	Cl	CF ₃	Cl	CF ₃	Cl				
CF ₃	Br	CF ₃	Br	CF ₃	Br	CF ₃	Br				
CF ₃	CN	CF ₃	CN	CF ₃	CN	CF ₃	CN				
OCH ₂ CF ₃	Cl	OCH ₂ CF ₃	Cl	OCH ₂ CF ₃	CI	OCH ₂ CF ₃	CI				
OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br				
OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN				
Br	Cl	Br	CI	Br	Cl	Br	Cì				
Br	Br	Br	Br	Br	Br	Br	Br				
Br	CN	Br	CN	Br	CN	Br	CN				
Cl	Cl	CI	Cl	CI	Cl	CI	Cl				
Cl	Br	CI	Br	Cl	Br	Cl	Br				
Cl	CN	Cl	CN	Cl	CN	CI	CN				
CF ₃	Cl	CF ₃	Cl	CF ₃	Cl	CF ₃	Cl				
CF ₃	Br	CF ₃	Br	CF ₃	Br	CF ₃	Br				
CF ₃	CN	CF ₃	CN	CF ₃	CN	CF ₃	CN				
OCH ₂ CF ₃	Cl	OCH ₂ CF ₃	Cl	OCH ₂ CF ₃	Cl	OCH ₂ CF ₃	C1				
OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br				
OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN				

			\mathbb{R}^4 is C	CH ₃				
R ² is H, R ³ is Me		\mathbb{R}^2 is H.	R ³ is Et	R ² is H, R	3 is <i>i-</i> Pr	R ² is Me, R ³ is Me		
<u>R⁵</u>	<u>R</u> 6	<u>R</u> 5	<u>R</u> 6	<u>R</u> 5	<u>R</u> 6	<u>R</u> 5	<u>R</u> 6	
Br	Cl	Br	Cl	Br	Cl	Br	Cl	
Br	Br	Br	Br	Br	Br	Br	Br	
Br	CN	Br	CN	Br	CN	Br	CN	
Cl	Cl	СІ	Cl	CI	Cl	Cl	Cl	
Cl	Br	CI	Br	Cl	Br	CI	Br	
Cl	CN	CI	CN	Cl	CN	Cl	CN	
CF ₃	Cl	CF3	Cl ·	CF ₃	Cl	CF ₃	Cl	
CF ₃	Br	CF ₃	Br	CF ₃	Br	CF ₃	Br	
CF ₃	CN	CF ₃	CN	CF ₃	CN	CF ₃	CN	

153

R⁴ is CH₂

	R ⁴ is CH ₃										
R^2 is H, R^3	is Me	R^2 is H, R^2	is Et	\mathbb{R}^2 is H, \mathbb{R}^3	is <i>i-</i> Pr	R ² is Me, R ³	<u>is Me</u>				
<u>R</u> 5	<u>R</u> 6	<u>R</u> 5	<u>R</u> 6	<u>R</u> 5	<u>R</u> 6	<u>R</u> 5	<u>R</u> 6				
OCH ₂ CF ₃	Cl	OCH ₂ CF ₃	Cl	OCH ₂ CF ₃	CI	OCH ₂ CF ₃	Cl				
OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br				
OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN				
Br	Cl	Br	Cl	Br	Cl	Br	Cl				
Br	Br	Br	Br	Br	Br	Br	Br				
Br	CN	Br	CN	Br	CN	Br	CN				
Cl	Cl	Cl	Cl	Cl	Cl	Cl	Cl				
Cl	Br	Cl	Br	Cl	Br	CI	Br				
Cl .	CN	Cl	CN	Cl	CN	CI	CN				
CF ₃	Cl	CF ₃	Cl	CF ₃	Cl	CF ₃	Cl				
CF ₃	Br	CF ₃	Br	CF ₃	Br	CF ₃	Br				
CF ₃	CN	CF ₃	CN	CF ₃	CN	CF ₃	CN				
OCH ₂ CF ₃	Cl	OCH ₂ CF ₃	Cl	OCH ₂ CF ₃	Cl	OCH ₂ CF ₃	Cl				
OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br				
OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN				
Br	Cl	Br	Cl	Br	Cl	Br	Cl				
Br	Br	Br	Br	Br	Br	Br	Br				
Br	CN	Br	CN	Br	CN	Br	CN				
Cl	Cl	СІ	CI	Cl	Cl	Cl	Cl				
Cl	Br	Cl	Br	C1	Br	Cl	Br				
Cl	CN	Cl	CN	Cl	CN	CI	CN				
CF ₃	Cl	CF ₃	Cl	CF ₃	Cl	CF ₃	Cl				
CF ₃	Br	CF ₃	Br	CF ₃	Br	CF ₃	Br				
CF ₃	CN	CF ₃	CN	CF ₃	CN	CF ₃	CN				
OCH ₂ CF ₃	Cl	OCH ₂ CF ₃	Cl	OCH ₂ CF ₃	Cl	OCH ₂ CF ₃	Cl				
OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br				
OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN				
Br	Cl	Br	Cl	Br	Cì	Br	Cl				
Br	Br	Br	Br	Br	Br	Br	Br				
Br	CN	Br	CN	Br	CN	Br	CN				
Cl	Cl	CI	Cl	CI	C1	CI	Cl				
Cl	Br	CI	Br	Cl	Br	CI	Br				
Cl	CN	CI	CN	Cl	CN	. CI	CN				
CF ₃	CI	CF ₃	CI	CF ₃	Cl	CF ₃	CI				
CF ₃	Br	CF ₃	Br	CF ₃	Br	CF ₃	Br				

Br

Br

CN

CN

Br

Br

CN

154

			154							
R ⁴ is CH ₃										
\mathbb{R}^2 is H, \mathbb{R}^2	is Me	R ² is H, R ³	is Et	\mathbb{R}^2 is H, \mathbb{R}^3		R ² is Me, R ³				
<u>R</u> 5	<u>R</u> 6	<u>R</u> 5	<u>R</u> 6	<u>R</u> 5	<u>R</u> 6	<u>R</u> 5	<u>R</u> 6			
CF ₃	CN	CF ₃	CN	CF ₃	CN	CF ₃	CN			
OCH ₂ CF ₃	· Cl	OCH ₂ CF ₃	Cl	OCH ₂ CF ₃	Cl	OCH ₂ CF ₃	Cl			
OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br			
OCH ₂ CF ₃ CN		OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN			
			<u>R⁴ is C</u>	.						
R ² is H, R	3:- 24-	R ² is H, R		$\frac{R^2}{R^2}$ is H, R^3	is i_D+	R ² is Me, R ³	ic Me			
R ² IS H, R ³	R6	R ⁵	R6	R ⁵	<u>R6</u>	R5	<u>R6</u>			
Br Cl		Br	Cl	Br	Cl	Br	Cl			
	Br	Br	Br	Br	Br	Br	Вг			
Br D-	CN	Br	CN	Br	CN	Br	CN			
Br	CI	Cl	Cl	CI	Cl	CI	Cl			
Cl Cl	Br	CI	Br	CI	Br	Cl	Br			
Cl ·	CN	CI	CN	CI	CN	CI	CN			
	CI	CF ₃	Cl	CF ₃	Cl	CF ₃	Cl			
CF ₃	Br	CF ₃	Br	CF ₃	Br	CF ₃	Br			
CF ₃	CN	CF ₃	CN	CF ₃	CN	CF ₃	CN			
OCH ₂ CF ₃	Cl	OCH ₂ CF ₃	Cl	OCH ₂ CF ₃	Cl	OCH ₂ CF ₃	Cl			
OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br			
OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN			
Br	Cl	Br	CI	Br	Cl	Br	Cl			
Br	Br	Br	Br	Br	Br	Br	Br			
Br	CN	Br	CN	Br	CN	Br	CN			
CI	Cl	Cl	Cl	Cl	Cl	CI	Cl			
Cl	Вг	CI	Br	CI	Br	CI	Br			
Cl	CN	Ci	CN	CI	CN	CI	CN			
CF ₃	Cl	CF ₃	Cl	CF ₃	Cl	CF ₃	Cl			
CF ₃	Br	CF ₃	Br	CF ₃	Br	CF ₃	Br			
CF ₃	CN	CF ₃	CN	CF ₃	CN	CF ₃	CN			
OCH ₂ CF ₃	CI	OCH ₂ CF ₃	Cl	OCH ₂ CF ₃	Cl	OCH ₂ CF ₃	Cl			
OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br			
OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN			
Вг	Cl	Br	Cl	Br	Cl	Br	Cl			
Br	Br	Br	Br	Br	Br	Br	Br			
		I		I		1				

WO 02/070483 PCT/US02/06582

155

R4	iş (Έı
Et		
		l

				 2		•	
R^2 is H, R	3 is Me	R ² is H, R	3 is Et	\mathbb{R}^2 is H, \mathbb{R}^3	is <i>i-</i> Pr	R ² is Me, R ³	<u>is Me</u>
<u>R⁵</u>	<u>R</u> 6	<u>R</u> 5	<u>R</u> 6	<u>R</u> 5	<u>R</u> 6	<u>R</u> 5	<u>R</u> 6
CI	Cl	Cl	Cl	Cl	Cl	Cl	Cl
Cl	Br	Cl	Br	C1	Br	Cl	Br
Cl	CN	Cl	CN	Cl	CN	Cl	CN
CF ₃	Cl	CF ₃	Cl	CF ₃	Cl	CF ₃	Cl
CF ₃	Br	CF ₃	Br	CF ₃	Br	CF ₃	Br
CF ₃	CN	CF ₃	CN	CF ₃	CN	CF ₃	CN
OCH ₂ CF ₃	Cl	OCH ₂ CF ₃	Cl	OCH ₂ CF ₃	Cl	OCH ₂ CF ₃	Cl
OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br
OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN
Br	Cl	Br	Cl	Br	Cl	Br	Cl
Br	Br	Br	Br	Br	Br	Br	Br
Br	CN	Br	CN	Br	CN	Br	CN
Cl	C1	СІ	Cl	Cl	Cl	Cl	Cl
Cl	Br	CI	Br	CI	Br	Cl	Br
Cl	CN	CI	CN	Cl	CN	Cl	CN
CF ₃	Cl	CF ₃	Cl	CF ₃	Cl	CF ₃	Cl
CF ₃	Br	CF ₃	Br	CF ₃	Br	CF ₃	Br
CF ₃	CN	CF ₃	CN	CF ₃	CN	CF ₃	CN
OCH ₂ CF ₃	Cl	OCH ₂ CF ₃	Cl	OCH ₂ CF ₃	Cl	OCH ₂ CF ₃	Cl
OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br
OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN

			K' IS CH	<u>2Cr3</u>			
R^2 is H, R^3 is Me		\mathbb{R}^2 is H, \mathbb{R}^3 is Et		R^2 is H, R^3	is i-Pr	R ² is Me, R ³ is Me	
<u>R⁵</u>	<u>R</u> 6	<u>R⁵</u>	<u>R</u> 6	<u>R</u> 5	<u>R</u> 6	<u>R</u> 5	<u>R</u> 6
Br	Cl	Br	Cl	Br	CI	Br	CI
Br	Br	Br	Br	Br	Br	Br	Br
Br	CN	Br	CN	. Br	CN	Br	CN
Cl	Cl	Cl	Cl	CI	CI	Cl	Cl
Cl	Br	Cl	Br	CI	Br	CI	Br
Cl	CN	CI	CN	Cl	CN	Cl	CN
CF ₃	Cl	CF ₃	Cl	· CF ₃	Cl	CF ₃	Cl
CF ₃	Br	CF ₃	Br	CF ₃	Br	CF ₃	Br
CF ₃	CN	CF ₃	CN	CF ₃	CN	CF ₃	CN
OCH ₂ CF ₃	Cl	OCH ₂ CF ₃	Cl	OCH ₂ CF ₃	Cl	OCH ₂ CF ₃	Cl

156

R⁴ is CH₂CF₃

52. 5		1 -2	R ⁴ is CH			-22	
R^2 is H, R		R ² is H, R		R^2 is H, R^3		R ² is Me, R ³	
<u>R</u> 5	<u>R</u> 6	<u>R</u> 5	<u>R</u> 6	<u>R</u> 5	<u>R</u> 6	<u>R</u> 5	<u>R</u> 6
OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br
OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN
Br	Cl	Вг	Cl	Br	Cl	Br	Cl
Br	Br	Br	Br	Br	Br	Br	Br
Br	CN	Br	CN	Br	CN	Br	CN
Cl	Cl	Cl	Cl	Cl	Cl	Cı	Cl
Cl	Br _.	Cl	Br	Cl	Br	CI	Br
Cl	CN	Cl	CN	C1	CN	Cl	CN
CF ₃	Cl	CF ₃	Cl	CF ₃	C1	CF ₃	Cl
CF ₃	Br	CF ₃	Br	CF ₃	Br	CF ₃	Br
CF ₃	CN	CF ₃	CN	CF ₃	CN	CF ₃	CN
OCH ₂ CF ₃	Cl	OCH ₂ CF ₃	Cl	OCH ₂ CF ₃	Cl	OCH ₂ CF ₃	Cl
OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br
OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN
Br	Cl	Br	Cl	Br	Cl	Br	Cl
Br	Br	Br	Br	Br	Br	Br	Br
Br	CN	Br	CN	Br	CN	Br	CN
Cl	Cl	CI	Cl	Cl	Cl	Cl	Cl
Cl	Br	CI	Br	Cl	Br	CI	Br
Cl	CN	Cl	CN	CI	CN	Cl	CN
CF ₃	Cl	CF ₃	Cl	CF ₃	Cl	CF ₃	Cl
CF ₃	Br	CF ₃	Br	CF ₃	Br	CF ₃	Br
CF ₃	CN	CF ₃	CN	CF ₃	CN	CF ₃	CN
OCH ₂ CF ₃	Cl	OCH ₂ CF ₃	Cl	OCH ₂ CF ₃	Cl	OCH ₂ CF ₃	Cl
OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br
OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN
Br	Cl	Br	Cl	Br	CI	Br	Cl
Br	Br	Br	Br	Br	Br	Br	Br
Br	CN	Br	CN	Br	CN	Br	CN
Cl	Cl	CI	Cl	Cl	Cl	Cl	Cl
Cl	Br	Cl	Br	CI	Br	Cl	Br
Cl	CN	CI	CN	Cl	CN	CI	CN
CF ₃	Cl	CF ₃	Cl	CF ₃	Cl	CF ₃	Cl
CF ₃	Br	CF ₃	Br	CF ₃	Br	CF ₃	Br
CF ₃	CN	CF ₃	CN	CF ₃	CN	CF ₃	CN

R4 is CH2CF3

R^2 is H, R^2	3 is Me	R ² is H, R	3 is Et	R ² is H, R ³	R ² is Me, R ³ is Me		
$\begin{array}{cc} R^2 \text{ is H, R}^3 \text{ is Me} \\ \hline R^5 & R^6 \\ \text{OCH}_2\text{CF}_3 & \text{Cl} \\ \text{OCH}_2\text{CF}_3 & \text{Br} \end{array}$		<u>R⁵ R⁶</u>		<u>R</u> 5	<u>R</u> 6	<u>R</u> 5	<u>R</u> 6
OCH ₂ CF ₃	Cl	OCH ₂ CF ₃	CI	OCH ₂ CF ₃	Cl	OCH ₂ CF ₃	Cl
OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br	OCH ₂ CF ₃	Br
OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN	OCH ₂ CF ₃	CN

Table 30

R5b is Cl

	R ³⁰ is Cl												
\mathbb{R}^2 is H, \mathbb{R}^3 is Me \mathbb{R}^2 is H, \mathbb{R}^3 is Et						R ² is	<u>H, R³ i</u>	s i-Pr	R ² is	Me, R ³	is Me		
R ^{4a}	<u>R^{4b}</u>	<u>R</u> 6	<u>R^{4a}</u>	R4b	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6		
CH ₃	Н	Cl	CH ₃	Н	Cl	CH ₃	Н	Cl	СН3	Н	CI		
CH ₃	Н	Br	СН3	Н	Br	СН3	Н	Br	CH ₃	Н	Br		
CH ₃	I	Cl	СН3	I	Cl	СН3	I	Cl	CH ₃	I	Cl		
CH ₃	1	Br	CH ₃	I	Br	СН3	I	Br	СН3	I	Br		
CH ₃	F	Cl	СН3	F	Cl	СН3	F	Cl	CH ₃	F	Cl		
CH ₃	F	Br	CH ₃	F	Br	CH ₃	F	Br	СН3	F	Br		
CH ₃	CF ₃	Cl	CH ₃	CF ₃	Cl	CH ₃	CF ₃	Cl	СН3	CF ₃	Cl		
CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	СН3	CF ₃	Br		
CH ₃	Br	Cl	CH ₃	Br	Cl	СН3	Br	Cl	CH ₃	Br	Cl		
CH ₃	Br	Br	СН3	Br	Br	СН3	Br	Br	СН3	Br	Br		
CH ₃	Cl	CI	СН3	CI	CI	СН3	CI	CI	CH ₃	Cl	CI		
CH ₃	Cl	Br	СН3	Cl	Br	СН3	Cl	Br	CH ₃	Cl	Br		
Cl	Н	Cl	Cl	Н	Cl	Cl	Н	Cl	CI	H	Cl		
CI	Н	Br	CI	Н	Br	CI	Н	Br	CI	Н	Br		
Cl	I	Cl	Cl	I	Cl	Cl	I	Cl	CI	I	Cl		
Cl	I	Br	CI	I	Br	CI	I	Br	CI	I	Br		
Cl	F	Cl	Cl	F	Cl	Cl	F	Cl	CI	F	C1		
Cl	F	Br	Cl	F	Br	Cl	F	Br	CI	F	Br		
Cl	CF ₃	Cl	Cl	CF ₃	Cl	Cl	CF ₃	Cl	Cl	CF ₃	Cl		

WO 02/070483 PCT/US02/06582

158

R ₅ b	is	C1

R ² is H, R ³ is Me			R ² is	H, R ³	is Et	R ² is	H, R ³ i	s i-Pr	R ² is Me, R ³ is Me			
<u>R^{4a}</u>	R4b	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6	R ^{4a}	<u>R4b</u>	<u>R</u> 6	<u>R4a</u>	R4b	<u>R</u> 6	
Cl	CF ₃	Br	CI	CF ₃	Br	Cl	CF ₃	Br	Cl	CF ₃	Br	
Cl	Br	Cl	CI	Br	Cl	Cl	Br	Cl	Cl	Br	Cl	
Cl	Br	Br	CI	Br	Br	Cl	Br	Br	Cl	Br	Br	
Cl	Cl	Cl	CI	Cl	Cl	CI	Cl	Cl	Cl	Cl	Cl	
Cl	Cl	Br	CI	Cl	Br	CI	Cl	Br	Cl	Cl	Br	
Br	Н	Cl	Br	Н	Cl	Br	Н	Cl	Br	Н	Cl	
Br	Н	Br	Br	H	Br	Br	Н	Br	Br	Н	Br	
Br	I	Cl	Br	I	Cl	Br	I	Cl	Br	I	CI	
Br	I	Br	Br	I	Br	Br	I	Br	Вг	I	Br	
Br	F	Cl	Br	F	Cl	Br	F	Cl	Br	F	Cl	
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br	
Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl	
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	
Br	Br	Cl	Br	Br	Ci	Br	Br	Cl	Br	Br	Cl	
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	
Br	CI	Cl	Br	Cl	Cl	Br	Cl	Cl	Br	Cl	Cl	
Br	Cl	Br	Br	Cl	Br	Br	Cl	Br	Br	CI	Br	

R⁵ is OCF₃

						, -			1			
R^2 is H, R^3 is Me			R ² is	H, R ³	<u>is Et</u>	R ² is	<u>н, R³ і</u>	s <i>i-</i> Pr	R ² is Me, R ³ is Me			
R ^{4a}	<u>R4b</u>	<u>R</u> 6	R ^{4a}	<u>R^{4b}</u>	<u>R</u> 6	R ^{4a}	<u>R^{4b}</u>	<u>R</u> 6	R ^{4a}	<u>R^{4b}</u>	<u>R</u> 6	
CH ₃	Н	Cl	СН3	Н	Cl	СН3	Н	Cl	СН3	Н	Cl	
CH ₃	Н	Br	СН3	Н	Br	СН3	Н	Br	CH ₃	Н	Br	
CH ₃	I	Cl	ĊH ₃	I	Cl	СН3	I	Cl	CH ₃	I	Cl	
СН3	I	Br	СН3	I	Br	СН3	I	Br	CH ₃	I	Br	
CH ₃	F	Cl	СН3	F	Cl	СН3	F	Cl	СН3	F	Cl	
CH ₃	F	Br	CH ₃	F	Br	СН3	F	Br	CH ₃	F	Br	
CH ₃	CF ₃	Cl	СН3	CF ₃	Cl	СН3	CF ₃	Cl	CH ₃	CF ₃	Cl	
CH ₃	CF ₃	Br	СН3	CF ₃	Вг	СН3	CF ₃	Br	СН3	CF ₃	Br	
CH ₃	Br	Cl	CH ₃	Br	Cl	СН3	Br	Cl	CH ₃	Br	Cl	
CH ₃	Br	Br	СН3	Br	Br	CH ₃	Br	Br	CH ₃	Br	Br	
CH ₃	Cl	Cl	CH ₃	Cl	Cl	СН3	Cl	Cl	CH ₃	Cl	Cl	
CH ₃	Cl	Br	СН3	Cl	Br	СН3	Cl	Br	СН3	Cl	Br	
Cl	Н	Cl	CI	Н	CI	CI	H	Cl	Cl	Н	Cl	
Cl	Н	Br	Cl	Н	Br	CI	Н	Br	Cl	Н	Br	

159

_R 5	is	OCF ₂

R ² is	H, R ³	s Me	R ² is H, R ³ is Et			R ² is	н, R ³ і	<u>s <i>i</i>-Рг</u>	R ² is Me, R ³ is Me			
R ^{4a}	R4b	<u>R</u> 6	R ^{4a}	R^{4b}	<u>R</u> 6	R ^{4a}	R^{4b}	<u>R</u> 6	R4a	R4b	<u>R</u> 6	
Cl	I	Cl	Cl	I	Cl	Cl	I	Cl	Cl	I	Cl	
Cl	I	Br	Cl	I	Br	Cl	I	Br	Cl	I	Br	
Cl	F	Cl	Cl	F	Cl	Cl	F	Cl	Cl	F	Cl	
Cl	F	Br	Cl	F	Br	CI	F	Br	Cl	F	Br	
Cl	CF ₃	Cl	Cl	CF ₃	Cl	Cl	CF ₃	Cl	Cl	CF ₃	Cl	
Cl	CF ₃	Br	Cl	CF ₃	Br	CI	CF ₃	Br	Cl	CF ₃	Br	
Cl	Br	Cl	Cl	Br	Cl	CI	Br	Cl	Cl	Br	Cl	
Cl	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br	
Cl	Cl	Cl	Cl	Cl	Cl	CI	Cl	Cl	Cl	Cl	Cl	
Cl	Cl	Br	Cl	Cl	Br	CI	Cl	Br	CI	Cl	Br	
Br	Н	Cl	Вг	Н	CI	Br	Н	CI	Br	Н	CI	
Br	Н	Br	Br	Н	Br	Br	Н	Br	Br	Н	Br	
Br	I	Cl	Br	I	Cl	Br	I	Cl	Br	I	Cl	
Br	I	Br	Br	I	Br	Br	I	Br	Br	I	Br	
Br	F	Cl	Br	F	Cl	Br	F	Cl	Br	F	Cl	
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br	
Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl	
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	
Br	Br	Cl	Br	Br	Cl	Br	Br	Cl	Br	Br	Cl	
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	
Br	Cl	Cl	Br	Cl	Cl	Br	Cl	Cl	Br	Cl	CI	
Br	Cl	Br	Br	Cl	Br	Br	Cl	Br	Br	Cl	Br	

R⁵ is CF₃

	<u> </u>													
R ² is H, R ³ is Me			R ² is	H, R ³	is Et	R ² is	H, R ³ i	s i-Pr	R ² is Me, R ³ is Me					
<u>R^{4a}</u>	<u>R^{4b}</u>	<u>R</u> 6	<u>R^{4a}</u>	R4b	<u>R</u> 6	<u>R^{4a}</u>	<u>R^{4b}</u>	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6			
CH ₃	Н	CI	CH ₃	Н	CI	СН3	Н	Cl	СН3	Н	Cl			
CH ₃	Н	Br	CH ₃	Н	Br	СН3	Н	Вг	СН3	Н	Br			
CH ₃	I	Cl	CH ₃	I	Cl	СН3	I	Cl	СН3	I	Cl			
CH ₃	Ĭ	Br	СН3	i	Br	CH ₃	I	Br	СН3	1	Br			
CH ₃	F	CI	СН3	F	CI	CH ₃	F	Cl	СН3	F	Cl			
CH ₃	F	Br	СН3	F	Br	CH ₃	F	Br	СН3	F	Br			
CH ₃	CF ₃	Cl	CH ₃	CF ₃	Cl	CH ₃	CF ₃	Cl	СН3	CF ₃	Cl			
CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	СН3	CF ₃	Br			
CH ₃	Br	Cl	СН3	Br	Cl	CH ₃	Br.	CI	СН3	Br	Cl			

R⁵ is CF₃

R^2 is H, R^3 is Me R^2 is H, R^3 is Et						$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					
R ^{4a}	R4b	<u>R</u> 6	R ^{4a}	<u>R4b</u>	<u>R</u> 6	R ^{4a}	R ^{4b}	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6
CH ₃	Br	Br	CH ₃	Br	Br	CH ₃	Br	Br	CH ₃	Br	Br
CH ₃	Cl	Cl	CH ₃	Cl	Cl	CH ₃	Cl	Cl	CH ₃	CI	Cl
CH ₃	Cl	Br	CH ₃	Cl	Br	CH ₃	Cl	Br	CH ₃	Cl	Br
Cl	Н	Cl	Cl	Н	Cì	Cl	Н	Cl	Cl	Н	Cl
Cl	Н	Br	Cl	Н	Br	Cl	Н	Br	Cl	H	Br
Cl	I	Cl	Cl	I	Cl	Cl	I	Cl	Cl	I	CI
Cl	I	Br	Cl	I	Br	Cl	I	Br	Cl	I	Br
Cl	F	Cl	CI	F	Cl	Cl	F	Cl	CI	F	Cl
CI	F	Br	Cl	F	Br	Cl	F	Br	Cl	F	Br
Cl	CF ₃	Cl	Cl	CF ₃	Cl	CI	CF ₃	Cl	CI	CF ₃	Cl
CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br
C1	Br	Cl	CI	Br	Cl	Cl	Br	Cl	Cl	Br	Cl
Cl	Br	Br	CI	Br	Br	CI	Br	Br	Cl	Br	Br
CI	Cl	Cl	CI	CI	Cl	CI	CI	Cl	Cl	Cl	Cl
Cl	Cl	Вг	Cl	Cl	Br	Cl	Cl	Br	Cl	Cl	Br
Br	Н	Cl	Br	Н	Cl	Br	Н	Cl	Br	Н	Cl
Br	Н	Br	Br	Н	Br	Br	Н	Br	Br	Н	Br
Br	1	Cl	Br	i	CI	Br	1	Cl	Br	I	CI
Br	I	Br	Br	I	Br	Br	I	Br	Br	I	Br
Br	F	Cl	Br	F	C1	Br	F	C1	Br	F	Cl
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br
Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br
Br	Br	Cl	Br	Вr	Cl	Br	Br	Cl	Вг	Br	Cl
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br
Br	Cl	Cl	Br	CI	Cl	Br	CI	Cl	Br	Cl	Cl
Br	Cl	Br	Br	Cl	Br	Br	Cl	Br	Br	Cl	Br

R5b is CF(CF3)2

R ² is H, R ³ is Me			R ² is H, R ³ is Et			R ² is	<u>н, к³ і</u>	s i-Pr	R ² is Me, R ³ is Me				
R^{4a}	R4b	<u>R</u> 6	R ^{4a}	<u>R^{4b}</u>	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6	R ^{4a}	<u>R^{4b}</u>	<u>R</u> 6		
СН3	Н	Cl	СН3	Н	Cl	СН3	Н	Cl	CH ₃	Н	Cl		
	Н												
CH ₃	I	Cl	СН3	I	Cl	СН3	I	Cl	СН3	I	Cl		
СН3	I	Br	CH ₃	I	Br	CH ₃	I	Br	CH ₃	J	Br		

161

R^{5b} is CF(CF₃)₂

R ² is H, R ³ is Me			R ² is	H, R ³	is Et	<u> </u>	<u>2</u> H, R ³ i	s <i>i-</i> Pr	R ² is Me, R ³ is Me			
R ^{4a}	R4b	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6	
CH ₃	F	Cl	СН3	F	Ci	CH ₃	F	Cl	СН3	F	CI	
СН3	F	Br	СН3	F	Br	CH ₃	F	Br	CH ₃	F	Br	
СН3	CF ₃	Cl	СН3	CF ₃	Cl	CH ₃	CF ₃	Cl	СН3	CF ₃	Cl	
СН3	CF ₃	Br	СН3	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	
СН3	Br	Cl	СН3	Br	Cl	СН3	Br	Cl	CH ₃	Br	CI	
CH ₃	Br	Br	СН3	Br	Br	СН3	Br	Br	CH ₃	Br	Br	
CH ₃	Cl	CI	CH ₃	Cl	Cl	CH ₃	Cl	C1	CH ₃	C1	Cl	
CH ₃	Cl	Br	СН3	Cl	Br	CH ₃	Cl	Br	CH ₃	Cl	Br	
Cl	Н	CI	Cl	Н	Cl	Cl	Н	Cl	CI	Н	Cl	
Cl	Н	Br	Cl	Н	Br	Cl	Н	Br	CI	H	Br	
Cl	I	CI	CI	I	CI	CI	I	CI	CI	I	CI	
Cl	I	Br	Cl	I	Br	Cl	I	Br	Cl	I	Br	
Cl	F	Cl	Cl	F	Cl	Cl	F	Cl	Cl	F	Cl	
CI	F	Br	CI	F	Br	CI	F	Br	CI	F	Br	
Cl	CF ₃	Cl	Cl	CF ₃	Cl	Cl	CF ₃	Cl	Cl	CF ₃	Cl	
Cl	CF ₃	Br	Cl	CF ₃	Br	Cl	CF ₃	Br	Cl	CF ₃	Br	
Cl	Br	Cl	CI	Br	Cl	Cl	Br	Cl	Cl	Br	Cl	
Cl	Br	Br	Cl	Br	Br	Cl	Br	Br	Cl	Br	Br	
CI	Cl	Cl	Cl	Cl	Cl	Cl	Cl	Cl	Cl	Cl	Cl	
CI	Cl	Br	Cl	Cl	Br	Cl	CI	Br	CI	Cl	Br	
Br	Ή	CI	Br	Н	Cl	Br	H	Cl	Br	Н	Cl	
Br	Н	Br	Br	Н	Br	Br	Н	Br	Br	Н	Br	
Br	I	Cl	Br	I	Cl	Br	I	Cl	Br	I.	Cl	
Br	I	Br	Br	· I .	Br	Br	1	Br	Br	I	Br	
Br	F	Cl	Br	F	Cl	Br	F -	CI	Br	F	Cl	
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br	
Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl	
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	
Br	Br	Cl	Br	Br	CI -	Br	Br	CI	Br	Br	CI	
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	
Br	CI	Cl	Br	Cl	Cl	Br	Cl	Cl	Br	Cl	Cl	
Br	Cl	Br	Br	Cl	Br	Br	Cl	Br	Br	Cl	Br	

162

Table 31

R5b is CHF2

					ı							
\mathbb{R}^2 is	<u>H, R³ i</u>	s Me	R ² is	H, R ³	is Et	R ² is	<u>н, к³ і</u>	<u>s <i>i</i>-Рт</u>	R ² is Me, R ³ is Me			
<u>R^{4a}</u>	R^{4b}	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6	R ^{4a}	<u>R^{4b}</u>	<u>R</u> 6	<u>R^{4a}</u>	<u>R4b</u>	<u>R</u> 6	
CH ₃	Н	Cl	СН3	Н	CI	СН3	Н	Cl	СН3	н	Cl	
CH ₃	Н	Br	СН3	Н	Br	СН3	H	Br	CH ₃	Н	Br	
CH ₃	I	Cl	CH ₃	Ī	Cl	СН3	I	Cl	СН3	I	Cl	
СН3	I	Br	СН3	1	Br	CH ₃	1	Br	CH ₃	1	Br	
CH ₃	F	Cl	CH ₃	F	Cl	CH ₃	F	Cl	CH ₃	F	Cl	
CH ₃	F	Br	CH ₃	F	Br	CH ₃	F	Br	CH ₃	F	Br	
CH ₃	CF ₃	Cl	CH ₃	CF ₃	Cl	CH ₃	CF ₃	Cl	CH ₃	CF ₃	Cl	
CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	
CH ₃	Br	Cl	CH ₃	Br	Cl	CH ₃	Br	Cl	CH ₃	Br	Cl	
CH ₃	Br	Br	CH ₃	Br	Br	CH ₃	Br	Br	CH ₃	Br	Br	
CH ₃	Cl	Cl	СН3	Cl	Cl	CH ₃	CI	Cl	CH ₃	Cl	Cl	
CH ₃	Cl	Br	CH ₃	Cl	Br	CH ₃	Cl	Br	CH ₃	Cl	Br	
Cl	Н	Cl	CI	Н	Cl	Cl	Н	Cl	Cl	H	Cl	
Cl	Н	Br	Cl	Н	Br	Cl	Н	Br	CI	Н	Br	
CI	I	Cl	Cl	1	Cl	Cl	I	Cl	Cl	I	Cl	
CI	I	Br	Cl	I	Br	Cl	I	Br	CI	I	Br	
Cl	F	Cl	CI	F	Cl	Cl	F	Cl	Cl	F	Cl	
Cl	F	Br	CI	F	Br	Cl	F	Br	Cl	F	Br	
Cl	CF ₃	Cl	CI	CF ₃	CI	Cl	CF ₃	Cl	Cl	CF ₃	Cl	
CI	CF ₃	Br	CI	CF ₃	Br	CI	CF ₃	Br	Cl	CF ₃	Br	
Cl	Br	CI	CI	Br	CI	Cl	Br	Cl	CI	Br	CI	
Cl	Br	Br	CI	Вг	Br	Cl	Br	Br	Cl	Br	Br	
Cl	Cl	CI	Cl	CI	CI	Cl	CI	Cl	Cl	Cl	Cl	
CI	CI	Br	CI	Cl	Br	CI	CI	Br	CI	CI	Br	
Br	Н	Cl	Br	Н	Cl	Br	Н	CI	Вг	Н	Cl	
Br	Н	Br	Br	Н	Br	Br	Н	Br	Br	Н	Br	

R5b is	CHF ₂
--------	------------------

<u>-</u> - <u>-</u>											
R ² is	H, R ³ i	s Me	R^2 is H, R^3 is Et			\mathbb{R}^2 is H, \mathbb{R}^3 is <i>i</i> -Pr			R ² is Me, R ³ is Me		
R ^{4a}	R4b	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6
Br	I	Cl	Br	l	Cl	Br	I	Cl	Br	I	Cl
Br	I	Br	Br	I	Br	Br	I	Br	Br	l	Br
Вг	F	Cl	Br	F	Cl	Br	F	Cl	Br	F	Cl
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br
Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl
Br	CF ₃	Br	Br	CF ₃	Br	Вт	CF ₃	Br	Br	CF ₃	Br
Br	Br	Cl	Br	Br	Cl	Br	Br	Cl	Br	Br	Cl
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br
Br	Cl	Cl	Br	CI	CI	Вг	CI	CI	Br	Cl	Cl
Br	Cl	Br	Br	Cl	Br	Br	Cl	Br	Br	Cl	Br

R^{5b} is CH2CF3

				_			∠				
R ² is	H, R ³ i	s Me	R ² is H, R ³ is Et		\mathbb{R}^2 is	<u>н, R³ і</u>	s i-Pr	R ² is I	<u> Ме, R³</u>	<u>is Me</u>	
R ^{4a}	<u>R^{4b}</u>	<u>R</u> 6	<u>R^{4a}</u>	<u>R4b</u>	<u>R</u> 6	<u>R^{4a}</u>	<u>R^{4b}</u>	<u>R</u> 6	R ⁴⁸	R4b	<u>R</u> 6
CH ₃	Н	Cl	СН3	H	Cl	CH ₃	Н	Cl	СН3	H	Cl
CH ₃	Н	Br	CH ₃	H	Br	СН3	Н	Br	CH ₃	Н	Br
CH ₃	I	Ci	СН3	I	CI	CH ₃	1	Cl	CH ₃	I	Cl
CH ₃	I	Br	CH ₃	I	Br	CH ₃	ĭ	Br	СН3	I	Br
СН3	F	Cl	СН3	F	Cl	CH ₃	F	CI	CH ₃	F	Cl
CH ₃	F	Br	СН3	F	Br	CH ₃	F	Br	CH ₃	F	Br
CH ₃	CF ₃	CI	СН3	CF ₃	Cl	CH ₃	CF ₃	Cl	СН3	CF ₃	Cl
CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br
CH ₃	Br	Cl	CH ₃	Br	Cl	CH ₃	Br	Cl	CH ₃	Br	Cl
CH ₃	Br	Br	CH ₃	Br	Br	CH ₃	Br	Br	CH ₃	Br	Br
CH ₃	Cl	Cl	СН3	Cl	CI	CH ₃	CI	Cl	CH ₃	Cl	Cl
CH ₃	Cl	Br	CH ₃	Cl	Br	CH ₃	Cl	Br	CH ₃	CI	Br
Cl	Н	Cl	CI	H	Cl	Cl	Н	Cl	Cl	Н	Cl
Cl	Н	Br	Cl	Н	Br	Cl	Н	Br	CI	· H	Br
CI	I	CI	Cl	I	Cl	Cl	I	CI	CI	I	Cl
Cl	I	Br	CI	i	Br	CI	I	Br	Cl	I	Br
Cl	F	Cl	CI	F	Ci	CI	F	Cl	CI	F	Cl
Cl	F	Br	Cl	F	Br	Cl	F	Br	Cl	F	Br
Cl	CF ₃	CI	Cl	CF ₃	Cl	Cl	CF ₃	Cl	Cl	CF ₃	Cl
CI	CF ₃	Br	Cl	CF ₃	Br	CI	CF ₃	Br	Cl	CF ₃	Br
Cl	Br	Cl	Cl	Br	Cl	Cl	Br	Cl	CI	Br	Cl

164

_R 5b	is	CH2CF2
V	15	COSCE

R ² is	H, R ³ i	s Me	R ² is	H, R ³	<u>is Et</u>	R ² is	<u>н, к³ і</u>	s i-Pr	R ² is	Me, R ³	<u>is Me</u>
R ^{4a}	<u>R^{4b}</u>	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6	R ^{4a}	R ^{4b}	<u>R</u> 6	R ^{4a}	<u>R^{4b}</u>	<u>R</u> 6
Cl	Br	Br	CI	Br	Br	Cl	Br	Br	CI	Br	Br
Cl	Cl	CI	Cl	Cl	Cl	Cl	Cl	Cl	Cl	Cl	Cl
Cl	Cl	Br	CI	Cì	Br	CI	Cl	Br	CI	CI	Br
Br	Н	Cl	Br	H	Cl	Br	Н	Cl	Br	Н	Cl
Br	Н	Br	Br	Н	Br	Br	н	Br	Br	Н	Br
Br	i	Cl	Br	I	Cl	Br	I	Cl	Br	I	Cl
Br	I	Br	Br	I	Br	Br	I	Br	Br	I	Br
Br	F	Cl	Br	F	CI	Br	F	Cl	Br	F	Cl
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br
Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br
Br	Br	CI	Br	Br	Cl	Br	Br	Cl	Br	Br	Cl
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br
Br	CI	CI	Br	CI	CI	Br	Cl	Cl	Br	Cl	Cl
Br	Cl	Br	Br	CI	Br	Br	Cl	Br	Br	Cl	Br

R^{5b} is CF₃

						رتت					
R ² is	H, R ³ i	s Me	R ² is	H, R ³	<u>is Et</u>	R ² is	<u>н, к³ і</u>	<u>s_<i>i-</i>Pr</u>	R ² is	Me, R ³	<u>is Me</u>
R^{4a}	$\underline{R^{4b}}$	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6	R ^{4a}	<u>R^{4b}</u>	<u>R</u> 6
СН3	Н	Cl	СН3	Н	Cl	СН3	Н	Cl	СН3	н	Cl
CH ₃	Н	Br	СН3	Н	Br	CH ₃	Н	Br	CH ₃	Н	Br
СН3	I	Cl	СН3	I	Cl	CH ₃	I	Cl	CH ₃	I	Cl
СН3	1	Br	СН3	I	Br	СН3	I	Br	CH ₃	I	Br
CH ₃	F	Cl	СН3	F	Cl	CH ₃	F	Cl	CH ₃	F	Cl
СН3	F	Br	СН3	F	Br	CH ₃	F	Br	CH ₃	F	Br
CH ₃	CF ₃	Cl	CH ₃	CF ₃	Cl	СН3	CF ₃	Cl	CH ₃	CF ₃	Cl
СН3	CF ₃	Br	CH ₃	CF ₃	Br	СН3	CF ₃	Br	СН3	CF ₃	Br
CH ₃	Br	CI	CH ₃	Br	Cl	CH ₃	Br	Cl	CH ₃	Br	Cl
CH ₃	Br	Br	CH ₃	Br	Br	CH ₃	Br	Br	CH ₃	Br	Br
CH ₃	Cl	Cl	CH ₃	Cl	Cl	CH ₃	Cl	Cl	СН3	Cl	Cl
CH ₃	Cl	Br	CH ₃	CI	Br	CH ₃	Cl	Br	СН3	Cl	Br
Cl	Н	Cl	Cl	Н	Cl	CI	Н	Cl	CI	Н	Cl
Cl	Н	Br	CI	Н	Br	CI	Н	Br	CI	Н	Br
Cl	I	Cl	Cl	I	Cl	CI	I	Cl	CI	I	Cl
CI	I	Br	CI	I	Br	Cl	I	Br	Cl	I	Вг

165

Rou is CF	,	
-----------	---	--

R ² is	H, R ³ i	s Me	R ² is	H, R ³	is Et	R ² is	н, R ³ і	s <i>i-</i> Pr	R ² is	Me, R ³	is Me
<u>R^{4a}</u>	R4b	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6	<u>R^{4a}</u>	R4b	<u>R</u> 6
Cl	F	Cl.	Cl	F	Cl	Cl	F	Cl	Cl	F	Cl
CI	F	Br	Cl	F	Br	CI	F	Br	Cl	F	Br
CI	CF ₃	Cl	Cl	CF ₃	Cl	Cl	CF ₃	Cl	Cl	CF ₃	Cl
Cl	CF ₃	Br	CI	CF ₃	Br	Cl	CF ₃	Br	CI	CF ₃	Br
Cl	Br	Cl	Cl	Br	Cl	Cl	Br	Cl	CI	Br	Cl
Cl	Br	Br	Cl	Br	Br	Cl	Br	Br	CI	Br	Br
Cl	Cl	Cl	Cl	Cl	Cl	CI	Cl	Cl	CI	Cl	Cl
Cl	CI	Br	CI	Cl	Br	CI	Cl	Br	Cl	Cl	Br
Br	Н	Cl	Br	Н	CI	Br	Н	CI	Br	Н	Cl
Br	Н	Br	Br	Н	Br	Br	Н	Br	Br	Н	Br
Br	I	Cl	Br	I	Cl	Br	I	Cl	Br	I	Cl
Br	I	Br	Br	I	Вŗ	Вг	I	Br	Br	I	Br
Br	F	Cl	Br	F	Cl	Br	F	CI	Br	F	Cl
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br
Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br
Br	Br	Cl	Br	Br	CI	Br	Br	Cl	Br	Br	Cl
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br
Br	Cl	Cl ·	Br	Cl	Cl	Br	CI	Cl	Br	Cl	Cl
Br	Cl	Br	Br	Cl	Br	Br	Cl	Br	Br	Cl	Br

R5b is CF2CHF2

						<u> </u>	<u>~</u>				
R ² is	H, R ³ i	s Me	R ² is	H, R3	is Et	R ² is	H, R ³ i	s <i>i-</i> Pr	R ² is	Me, R ³	is Me
R ^{4a}	R4b	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6	R ^{4a}	$\underline{R^{4b}}$	<u>R</u> 6	R ^{4a}	<u>R^{4b}</u>	<u>R</u> 6
CH ₃	Н	Cl	СН3	Н	Cl	СН3	H	Cl	СН3	Н	Cl
СН3	н	Br	СН3	Н	Br	СН3	H	Br	CH ₃	Н	Br
CH ₃	I	Cl	СН3	1	Cl	СН3	ľ	Cl	CH ₃	I	Cl
CH ₃	I	Br	СН3	ı	Br	CH ₃	I	Br	CH ₃	ī	Br
CH ₃	F	CI	СН3	F	Cl	CH ₃	F	Cl	CH ₃	F	Cl
CH ₃	F	Br	СН3	F	Br	СН3	F	Br	СН3	F	Br
CH ₃	CF ₃	Cl	СН3	CF ₃	Cl	CH ₃	CF ₃	Cl	CH ₃	CF ₃	Cl
CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br
CH ₃	Br	Cl	СН3	Br	Cl	СН3	Br	Cl	СН3	Br	CI
CH ₃	Br	Br	СН3	Br	Br	СН3	Br	Br	СН3	Br	Br
CH ₃	Cl	Cl	СН3	Cl	Cl	СН3	Cl	CI	CH ₃	Cl	Cl

166

R ^{5b}	is	CF2CHF2
-----------------	----	---------

R ² is	H, R ³ i	s Me	R ² is	H, R ³	is Et	R ² is	≃ <u>H, R³ i</u>	s <i>i-</i> Pr	R ² is	Me, R ³	is Me
<u>R^{4a}</u>	R^{4b}	<u>R</u> 6	R ^{4a}	<u>R^{4b}</u>	<u>R</u> 6	R48	R4b	<u>R</u> 6	R ^{4a}	<u>R4b</u>	<u>R</u> 6
СН3	Cl	Br	CH ₃	Cl	Br	СН3	Cl	Br	CH ₃	Cl	Br
Cl	Н	Cl	Cl	Н	Cl	CI	Н	Cl	Cl	Н	Cl
Cl	Н	Br	Cl	Н	Br	CI	Н	Br	Cl	H	Br
Cl	I	Cl	Cl	I	Cl	Cl	I	Cl	CI	i	Cl
Cl	i	Br	CI	I	Br	Cl	I	Br	Cl	I	Br
Cl	F	Cl	CI	F	Cl	CI	F	Cl	CI	F	CI
Cl	F	Br	Cl	F	Br	CI	F	· Br	CI	F	Br
Cl	CF ₃	Cl	Cl	CF ₃	Cl	CI	CF ₃	Cl	CI	CF ₃	Cl
Cl	CF ₃	Br	Cl	CF ₃	Br	Cl	CF ₃	Br	Cl	CF ₃	Br
Cl	Br	Cl	CI	Br	Cl	Cl	Br	Cl	Cl	Br	Cl
Cl	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br
CI	Cl	Cl	Cl	Cl	Cl	Cl	Cl	Cl	Cl	Cl	Cl
Cl	Cl	Br	CI	Cl	Br	CI	Cl	Br	Cl	Cl	Br
Br	H,	CI	Br	Н	CI	Br	Н	Cl	Br	Н	Cl
Br	Н	Br	Br	Н	Br	Br	Н	Br	Br	Н	Br
Br	I	Cl	Br	I	Cl	Br	I	Cl	Br	I	Cl
Br	I	Br	Br	I	Br	Br	I	Br	Br	I	Br
Br	F	Cl	Br	F	Cl	Br	F	Cl	Br	F	.Cl
Br	F	Br	Br	F	Br	Br	F	Вг	Br	F	Br
Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br
Br	Br	Cl	Br	Br	Cl	Вг	Br	CI	Br	Br	Cl
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br
Br	Cl	Cl	Br	Cl	Cl	Br	Cl	Cl	Br	Cl	Cl
Br	Cl	Br	Br	Cl	Br	Br	Cl	Br	Br	Cl	Br

167

Table 32

R5b is CHF2

n2 :-	H, R ³ i	a Ma	l _B 2 :	s H, R ³		<u>Стига</u> _В 2 :	н, R ³ і	a ∂ D=	p2 :	Me, R ³	io Mo
									1		
<u>R^{4a}</u>	<u>R^{4b}</u>	<u>R</u> 6	R ^{4a}	<u>R^{4b}</u>	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6	R ^{4a}	<u>R^{4b}</u>	<u>R</u> 6
CH ₃	Н	Cl	CH ₃	Н	Cl	CH ₃	Н	CI	CH ₃	Н	Cl
CH ₃	Н	Br	CH ₃	Н	Br	CH ₃	Н	Br	CH ₃	Н	Br
CH ₃	I	Cl	CH ₃	I	Cl	CH ₃	I	Cl	CH ₃	I·	Cl
CH ₃	I	Br	СН3	I	Br	CH ₃	I	Br	СН3	I	Br
CH ₃	F	Cl	CH ₃	F	Cl	CH ₃	F	Cl	CH ₃	F	Cl
CH ₃	F	Br	CH ₃	F .	Br	CH ₃	F	Br	CH ₃	F	Br
CH ₃	CF ₃	CI	CH ₃	CF ₃	CI	СН3	CF ₃	Cl	CH ₃	CF ₃	Cl
CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br
CH ₃	Br	CI	СН3	Br	CI	CH ₃	Br	Cl	CH ₃	Br	Cl
CH ₃	Br	Br	СН3	Br	Br	CH ₃	Br	Br	CH ₃	Br	Br
CH ₃	Cl	Cl	CH ₃	Cl	CI	CH ₃	Cl	Cl	CH ₃	Cl	Cl
CH ₃	Cl	Br	СН3	Cl	Br	CH ₃	Cl	Br	CH ₃	Cl	Br
Cl	Н	CI	Cl	Н	Cl	Cl	H	C1	CI	H	CI
Cl	Н	Br	Cl	Н	Br	Cl	Н	Br	Cl	Н	Br
Cl	I	CI	Cl	I	Cl	CI	I	Cl	Cl	I.	Cl
Cl	I	Br	CI	I	Br	Cl	Ι.	Br	CI	I	Br
Cl	F	Cl	CI	F	Cl	Cl	F	Cl	Cl	F	Cl
Cl	F	Br	CI	F	Br	Cl	F	Br	Cl	F	Br
Cl	CF ₃	Cl	Cl	CF ₃	Cl	Cl	CF ₃	Cl	Cl	CF ₃	Cl
Cl	CF ₃	Br	Cl	CF ₃	Br	Cl	CF ₃	Br	Cl	CF ₃	Br
Cl	Br	Cl	Cl	Br	Cl	Cl	Br	Cl	Cl	Br	Cl
Cl	Br	Br	CI	Br	Br	Cl	Br	Br	Cl	Br	Br
Cl	Cl	Cl	CI	Cl	Cl	Cl	Cl	Cl	Cl	Cl	Cl
CI	Cl	Br	CI	Cl	Br	CI	Cl	Br	Cl	CI	Br
Br	Н	Cl	Br	Н	Cl	Br	Н	Cl	Br	Н	Cl
Вг	Н	Br	Br	Н	Br	Br	H	Br	Br	Н	Br

168

R ^{ob} is CHF ₂	R5b	is	CHF	
-------------------------------------	-----	----	-----	--

R^2 is	H, R ³	s Me	<u>R² is</u>	H, R ³	is Et	R ² is	<u>н, к³ і</u>	s i-Pr	R ² is	Me, R ³	is Me
R^{4a}	R4b	<u>R</u> 6	<u>R^{4a}</u>	<u>R4b</u>	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6
Br	1	Cl	Br	I	Cl	Br	I	Cl	Br	1	Cl
Br	1	Br	Br	1	Br	Br	I	Br	Br	I	Br
Br	F	Cl	Br	F	Cl	Br	F	Cl	Br	F	Cl
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br
Br	CF ₃	CI	Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br
Br	Br	Cl	Br	Br	Cl	Br	Br	Cl	Br	Br	Cl
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br
Br	Cl	CI	Br	Cl	Cl	Br	Cl	Cl	Br	Cl	Cl
Br	Cl	Br	Br	Cl	Br	Br	Cl	Br	Вг	Cl	Br

R5b is CH2CF3

				-			2				
\mathbb{R}^2 is	H, R ³	s_Me	R ² is	s H, R ³	is Et	R ² is	H, R ³ i	<u>s <i>i-</i>Pr</u>	R ² is	Me, R ³	is Me
R^{4a}	R4b	<u>R</u> 6	R ^{4a}	<u>R^{4b}</u>	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6
CH ₃	Н	Cl	CH ₃	Н,	Cl	СН3	Н	Cl	CH ₃	Н	Cl
CH ₃	Н	Br	СН3	\mathbf{H}	Br	СН3	Н	Br	CH ₃	Н	Br
CH ₃	I	Cl	CH ₃	I	Cl	СН3	I	Cl	CH ₃	ı	Cl
CH ₃	I	Br	СН3	i	Br	СН3	I	Br	CH ₃	I	Br
CH ₃	F	Cl	СН3	F	Cl	СН3	F	Cl	СН3	F	Cl
CH ₃	F	Br	СН3	F	Br	СН3	F	Br	СН3	F	Br
CH ₃	CF ₃	Cl	СН3	CF ₃	CI	СН3	CF ₃	Cl	СН3	CF ₃	Cl
CH ₃	CF ₃	Br	СН3	CF ₃	Br	СН3	CF ₃	Br	СН3	CF ₃	Br
CH ₃	Br	Cl	CH ₃	Br	Cl	СН3	Br	Cl	СН3	Br	Cl
CH ₃	Br	Br	СН3	Br	Br	СН3	Br	Br	СН3	Br	Br
CH ₃	Cl	Cl	СН3	Cl	Cl	СН3	Cl	Cl	СН3	Cl	Cl
CH ₃	Cl	Br	СН3	Cl	Br	СН3	Cl	Br	СН3	Cl	Br
Cl	Н	CI	Cl	Н	Cl	CI	Н	Cl	Cl	Н	Cl
Cl	Н	Br	Cl	Н	Br	CI	H	Br	Cl	Н	Br
Cl	I	Cl	Cl	I	Cl	CI	I	Cl	Cl	I	Cl
Cl	I	Br	Cl	I	Br	CI	I	Br	Cl	1	Br
Cl	F	Cl	Cl	F	Cl	Cl	F	Cl	Cl	F	Cl
Cl	F	Br	CI	F	Br	Cl	F	Br	Cì	F	Br
Cl	CF ₃	Cl	Cl	CF ₃	Cl	Cl	CF ₃	CI	Cl	CF3	Cl
CI	CF ₃	Br	Cl	CF ₃	Br	Cl	CF ₃	Br	Cl	CF ₃	Br
Cl	Br	Cl	CI	Br	Cl	Cl	Br	Cl	Cl	Br	Cl

R5b is CH2CF3

						=======================================	_				
R ² is	н, R ³ і	s Me	R ² is	H, R ³	<u>is Et</u>	R ² is	H, R ³ i	s <i>i</i> -Pr	R ² is	Me, R ³	is Me
R ^{4a}	R4b	<u>R</u> 6	R ^{4a}	<u>R^{4b}</u>	<u>R</u> 6	R ^{4a}	<u>R^{4b}</u>	<u>R</u> 6	R ^{4a}	<u>R^{4b}</u>	<u>R</u> 6
Cl	Br	Br	Cl	Br	Br	Cl	Br	Br	Cl	Br	Br
Cl	Cl	Cl	CI	Cl	Cl	Cl	Cl	Cl	CI	Cl	Cl
Cl	Cl	Br	CI	Cl	Br	CI	Cl	Br	CI	Cl	Br
Br	Н	Cl	Br	Н	Cl	Br	Н	Cl	Br	Н	Cl
Br	Н	Br	Br	Н	Br	Br	Н	Br	Br	Н	Br
Br	ľ	Cl	Br	1	Cl	Br	I	Cl	Br	I	Cl
Br	I	Br	Br	1	Br	Br	I	Br	Br	I	Вг
Br	F	Cl	Br	F	Cl	Br	F	Cl	Br	F	Cl
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br
Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br
Br	Br	Cl	Br	Br	Cl	Вг	Br	Cl	Br	Br	Cl
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br
Br	CI	Cl	Br	Cl	Cl	Br	CI	CI	Br	CI	CI
Br	Cl	Br	Br	Cl	Br	Вг	Cl	Br	Br	Cl	Br

R5b is CF3

						<u></u>					
R ² is	<u>н, к³ і</u>	s Me	R ² is	H, R ³	is Et	R ² is	<u>н, к³ і</u>	s i-Pr	R ² is	Me, R ³	is Me
<u>R^{4a}</u>	R4b	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6	<u>R^{4a}</u>	<u>R4b</u>	<u>R</u> 6	R ^{4a}	<u>R^{4b}</u>	<u>R</u> 6
СН3	Н	Cì	СН3	Н	Cì	СН3	Н	Cl	СН3	Н	Cl
CH ₃	Н	Br	СН3	Н	Br	СН3	Н	Br	СН3	H	Br
СН3	I	Cl	СН3	I	Cl	СН3	I	Cl	CH ₃	I	Cl
СН3	I	Br	СН3	I	Br	СН3	I	Br	CH ₃	I	Br
CH ₃	F	Cl	СН3	F	Cl	СН3	F	Cl	CH ₃	F	Cl
CH ₃	F	Br	CH ₃	F	Br	CH ₃	F	Br	CH ₃	F	Br
СН3	CF ₃	Cl	СН3	CF ₃	Cl	СН3	CF ₃	Cl	CH ₃	CF ₃	Cl
CH ₃	CF ₃	Br	СН3	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br
CH ₃	Br	Cl	СН3	Br	Cl	CH ₃	Br	Cl	СН3	Br	Cl
CH ₃	Br	Br	СН3	Br	Br	CH ₃	Br	Br	СН3	Br	Br
CH ₃	Cl	Cl	CH ₃	Cl	Cl	CH ₃	Cl	Cl	CH ₃	Cl	Cl
CH ₃	Cl	Br	СН3	Cl	Br	CH ₃	Cl	Br	CH ₃	Cl	Br
Cl	Н	Cl	Cl	H	Cl	Cl	Н	Cl	Cl	Н	Cl
Cl	Н	Br	Cl	Н	Br	Cl	Н	Br	CI	H	Br
Cl	I	Cl	Cl	I	Cl	CI	I	Cl	Cl	Ι.	Cl
Cl	I	Br	CI	I	Br	CI	I	Br	CI	I	Br

170

R ^{5b} is CF ₂

R ² is	H, R ³ i	s Me	<u>R² is</u>	H, R ³	is Et	R ² is	H, R ³ i	s <i>i-</i> Pr	R ² is	Me, R ³	is Me
R ^{4a}	<u>R^{4b}</u>	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6	<u>R</u> 4a.	R4b	<u>R</u> 6	R ^{4a}	<u>R4b</u>	<u>R</u> 6
Cl	F	Cl	Cl	F	Cl	Cl	F	Cl	Cl	F	Cl
Cl	F	Br	CI	F	Br	Cl	F	Br	Cl	F	Br
Cl	CF ₃	Cl	CI	CF ₃	Cl	Cl	CF ₃	Cl	CI	CF ₃	Cl
Cl	CF ₃	Br	CI	CF ₃	Br	Cl	CF ₃	Br	CI	CF ₃	Br
Cl	Br	Cl	CI	Br	Cl	Cl	Br	Cl	CI	Br	Cl
Cl	Br	Br	CI	Br	Br	Cl	Br	Br	CI	Br	Br
Cl	Cl	Cl	Cl	Cl	Cl	Cl	Cl	Cl	Cl	Cl	Cl
Cl	Cl	Br	Cl	Cl	Br	Cl	CI	Br	Cl	Cl	Br
Br	Н	Cl	Br	Н	Cl	Br	Н	Cl	Br	Н	Cl
Br	Н	Br	Br	H	Br	Br	Н	Br	Br	Н	Br
Br	I	Cl	Br	ī	Ci	Br	I	Cl	Br	I	Cl
Br	I	Br	Br	I	Br	Br	I	Br	Br	I	Br
Br	F	Cl	Br	F	Cl	Br	F	Cl	Br	F	Cl
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br
Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl	Вг	CF ₃	Cl
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br
Br	Br	Cl	Br	Br	Cl	Br	Br	Cl	Br	Br	Cl
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br
Br	CI	Cl	Br	Cl	Cl	Br	Cl	Cl	Br	Cl	Cl
Br	Cl	Br	Br	Cl	Br	Br	Cl	Br	Br	Cl	Br

R^{5b} is CF₂CHF₂

							_				
R ² is	H, R ³ i	s Me	R ² is	H, R ³	is Et	R ² is	<u>H, R³ i</u>	s <i>i-</i> Pr	R ² is	Me, R ³	is Me
R^{4a}	<u>R4b</u>	<u>R</u> 6	R ^{4a}	R4b	<u>R</u> 6	<u>R^{4a}</u>	R4b	<u>R</u> 6	R4a	<u>R^{4b}</u>	<u>R</u> 6
CH ₃	Н	Cl	СН3	Н	Cl	СН3	Н	CI	CH ₃	Н	Cl
CH ₃	Н	Br	CH ₃	Н	Br	CH ₃	Н	Br	СН3	Н	Br
CH ₃	I	Cl	CH ₃	I	Cl	CH ₃	I	Cl	CH ₃	I	Cl
CH ₃	I	Br	СН3	I	Br	СН3	I	Br	CH ₃	I	Br
CH ₃	F	CI	СН3	F	Cl	CH ₃	F	Cl	СН3	F	Cl
CH ₃	F	Br	CH ₃	F	Br	CH ₃	F	Br	CH ₃	F	Br
СН3	CF ₃	Cl	СН3	CF ₃	Cl	CH ₃	CF ₃	Cl	СН3	CF ₃	CI
CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br	CH ₃	CF ₃	Br
CH ₃	Br	Cl	СН3	Br	Cl	CH ₃	Br	Cl	CH ₃	Br	Cl
CH ₃	Br	Br	СН3	Br	Br	CH ₃	Br	Br	СН3	Br	Br
CH ₃	Cl	Cl	СН3	Cl	Cl	CH ₃	CI	CI	СН3	Cl	Cl

WO 02/070483 PCT/US02/06582

171

				<u>R</u>	5b is C	F ₂ CHF	2				
\mathbb{R}^2 is	H, R ³	s Me	R ² is	H, R ³			– н, к ³ ј	s <i>i-</i> Pr	R ² is	Me, R ³	is Me
<u>R^{4a}</u>	R4b	<u>R</u> 6	R ^{4a}	R4b	<u>R6</u>	R ^{4a}	R4b	<u>R</u> 6	R4a	R4b	<u>R</u> 6
CH ₃	Cl	Br	CH ₃	Cl	Br	CH ₃	Cl	Br	СН3	CI	Br
Cl	Н	Cl	CI	Н	CI	Cl	Н	Cl	Cl	Н	Cl
Cl	Н	Br	Cl	Н	Br	Cl	Н	Br	CI	Н	Br
Cl	I	Cl	Cl	I	Cl	Cl	I	Cl	Cl	I	Cl
Cl	I	Br	Cl	I	Br	Cl	1	Br	Cl	I	Br
Cl	F	Cl	Cl	F	Cl	CI	F	Cl	CI	F	Cl
Cl	F	Br	Cl	F	Br	Cl	F	Br	CI	F	Br
Cl	CF ₃	Cl	Cl	CF ₃	Cl	Cl	CF ₃	CI	CI	CF ₃	CI
Cl	CF ₃	Br	Cl	CF ₃	Br	Cl	CF ₃	Br	CI	CF ₃	Br
CI	Br	Cl	CI	Br	Cl	Cl	Br	Cl	CI	Вг	Cl
CI	Br	Br	CI	Br	Br	CI	Br	Br	CI	Br	Br
Cl	Cl	Cl	CI	Cl	Cl	Cl	Cl	Cl	Cl	Cl	Cl
Cl	Cl	Br	Cl	Cl	Br	Cl	Cl	Br	CI	Cl	Br
Br	Н	CI	Br	Н	Cì	Br	Н	Cl	Br	Н	CI
Br	Н	Br	Br	Н	Br	Br	Н	Br	Br	H	Br
Br	I	Cl	Br	I	Cl	Br	I	Cl	Br	I	Cl
Br	I	Br	Br	I	Br	Br	I	Br	Br	I	Br
Br	F	Cl	Br	F	Cl	Br	F	Cl	Br	F	Cl
Br	F	Br	Br	F	Br	Br	F	Br	Br	F	Br
Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl	Br	CF ₃	Cl
Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br	Br	CF ₃	Br
Br	Br	CI	Br	Br	Cl	Br	Br	Cl	Br	Br	Cl
Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br	Br
Br	CI	CI	Br	Cl	Cl	Br	Cl	Cl	Br	Cl	Cl
_		_	1 _		_	i 🕳	~1	_	I _		_

Formulation/Utility

5

Br

Cl

Br Br

Cl

Compounds of this invention will generally be used as a formulation or composition with an agriculturally suitable carrier comprising at least one of a liquid diluent, a solid diluent or a surfactant. The formulation or composition ingredients are selected to be consistent with the physical properties of the active ingredient, mode of application and environmental factors such as soil type, moisture and temperature. Useful formulations include liquids such as solutions (including emulsifiable concentrates), suspensions, emulsions (including microemulsions and/or suspoemulsions) and the like which optionally can be thickened into gels. Useful formulations further include solids such as dusts,

Br Br

Cl

Br Br

Cl

Br

WO 02/070483 PCT/US02/06582

powders, granules, pellets, tablets, films, and the like which can be water-dispersible ("wettable") or water-soluble. Active ingredient can be (micro)encapsulated and further formed into a suspension or solid formulation; alternatively the entire formulation of active ingredient can be encapsulated (or "overcoated"). Encapsulation can control or delay release of the active ingredient. Sprayable formulations can be extended in suitable media and used at spray volumes from about one to several hundred liters per hectare. High-strength compositions are primarily used as intermediates for further formulation.

The formulations will typically contain effective amounts of active ingredient, diluent and surfactant within the following approximate ranges that add up to 100 percent by weight.

Walak Danama

		Weight Percent	
	Active Ingredient	Diluent	Surfactant
Water-Dispersible and Water-soluble Granules, Tablets and Powders.	5–90	0–94	1–15
Suspensions, Emulsions, Solutions (including Emulsifiable Concentrates)	5–50	40–95	0–15
Dusts	1–25	70–99	0-5
Granules and Pellets	0.01–99	5–99,99	0–15
High Strength Compositions	90–99	0–10	0–2

Typical solid diluents are described in Watkins, et al., Handbook of Insecticide Dust Diluents and Carriers, 2nd Ed., Dorland Books, Caldwell, New Jersey. Typical liquid diluents are described in Marsden, Solvents Guide, 2nd Ed., Interscience, New York, 1950. McCutcheon's Detergents and Emulsifiers Annual, Allured Publ. Corp., Ridgewood, New Jersey, as well as Sisely and Wood, Encyclopedia of Surface Active Agents, Chemical Publ. Co., Inc., New York, 1964, list surfactants and recommended uses. All formulations can contain minor amounts of additives to reduce foam, caking, corrosion, microbiological growth and the like, or thickeners to increase viscosity.

10

15

20

25

Surfactants include, for example, polyethoxylated alcohols, polyethoxylated alkylphenols, polyethoxylated sorbitan fatty acid esters, dialkyl sulfosuccinates, alkyl sulfates, alkylbenzene sulfonates, organosilicones, *N*,*N*-dialkyltaurates, lignin sulfonates, naphthalene sulfonate formaldehyde condensates, polycarboxylates, and polyoxyethylene/polyoxypropylene block copolymers. Solid diluents include, for example, clays such as bentonite, montmorillonite, attapulgite and kaolin, starch, sugar, silica, talc, diatomaceous earth, urea, calcium carbonate, sodium carbonate and bicarbonate, and sodium sulfate. Liquid diluents include, for example, water, *N*,*N*-dimethylformamide, dimethyl sulfoxide, *N*-alkylpyrrolidone, ethylene glycol, polypropylene glycol, paraffins, alkylbenzenes, alkylnaphthalenes, oils of olive, castor, linseed, tung, sesame, corn, peanut, cotton-seed, soybean, rape-seed and coconut, fatty acid esters, ketones such as

cyclohexanone, 2-heptanone, isophorone and 4-hydroxy-4-methyl-2-pentanone, and alcohols such as methanol, cyclohexanol, decanol and tetrahydrofurfuryl alcohol.

Solutions, including emulsifiable concentrates, can be prepared by simply mixing the ingredients. Dusts and powders can be prepared by blending and, usually, grinding as in a hammer mill or fluid-energy mill. Suspensions are usually prepared by wet-milling; see, for example, U.S. 3,060,084. Granules and pellets can be prepared by spraying the active material upon preformed granular carriers or by agglomeration techniques. See Browning, "Agglomeration", Chemical Engineering, December 4, 1967, pp 147–48, Perry's Chemical Engineer's Handbook, 4th Ed., McGraw-Hill, New York, 1963, pages 8–57 and following, and PCT Publication WO 91/13546. Pellets can be prepared as described in U.S. 4,172,714. Water-dispersible and water-soluble granules can be prepared as taught in U.S. 4,144,050, U.S. 3,920,442 and DE 3,246,493. Tablets can be prepared as taught in U.S. 5,180,587, U.S. 5,232,701 and U.S. 5,208,030. Films can be prepared as taught in GB 2,095,558 and U.S. 3,299,566.

10

15

20

25

For further information regarding the art of formulation, see T. S. Woods, "The Formulator's Toolbox – Product Forms for Modern Agriculture" in *Pesticide Chemistry and Bioscience, The Food–Environment Challenge*, T. Brooks and T. R. Roberts, Eds., Proceedings of the 9th International Congress on Pesticide Chemistry, The Royal Society of Chemistry, Cambridge, 1999, pp. 120–133. See also U.S. 3,235,361, Col. 6, line 16 through Col. 7, line 19 and Examples 10–41; U.S. 3,309,192, Col. 5, line 43 through Col. 7, line 62 and Examples 8, 12, 15, 39, 41, 52, 53, 58, 132, 138–140, 162–164, 166, 167 and 169–182; U.S. 2,891,855, Col. 3, line 66 through Col. 5, line 17 and Examples 1–4; Klingman, *Weed Control as a Science*, John Wiley and Sons, Inc., New York, 1961, pp 81–96; and Hance et al., *Weed Control Handbook*, 8th Ed., Blackwell Scientific Publications, Oxford, 1989.

In the following Examples, all percentages are by weight and all formulations are prepared in conventional ways. Compound numbers refer to compounds in Index Table A.

Example A

Wettable Powder Compound 1 65.0% dodecylphenol polyethylene glycol ether 2.0% sodium ligninsulfonate 4.0% sodium silicoaluminate 6.0% montmorillonite (calcined) 23.0%.

WO 02/070483 PCT/US02/06582

174

Example B **Granule** Compound 1 10.0% attapulgite granules (low volatile matter, 5 0.71/0.30 mm; U.S.S. No. 25-50 sieves) 90.0%. Example C Extruded Pellet 25.0% Compound 1 anhydrous sodium sulfate 10.0% 10 crude calcium ligninsulfonate 5.0% 1.0% sodium alkylnaphthalenesulfonate 59.0%. calcium/magnesium bentonite Example D Emulsifiable Concentrate 20.0% 15 Compound 1 blend of oil soluble sulfonates 10.0% and polyoxyethylene ethers 70.0%. isophorone Example E 20 Granule Compound 1 0.5% 2.5% cellulose

lactose

cornmeal

25 Compounds of this invention are characterized by favorable metabolic and/or soil residual patterns and exhibit activity controlling a spectrum of agronomic and nonagronomic invertebrate pests. (In the context of this disclosure "invertebrate pest control" means inhibition of invertebrate pest development (including mortality) that causes significant reduction in feeding or other injury or damage caused by the pest; related expressions are defined analogously.) As referred to in this disclosure, the term 30 "invertebrate pest" includes arthropods, gastropods and nematodes of economic importance as pests. The term "arthropod" includes insects, mites, spiders, scorpions, centipedes, millipedes, pill bugs and symphylans. The term "gastropod" includes snails, slugs and other Stylommatophora. The term "nematode" includes all of the helminths, such as: 35 roundworms, heartworms, and phytophagous nematodes (Nematoda), flukes (Tematoda), Acanthocephala, and tapeworms (Cestoda). Those skilled in the art will recognize that not all compounds are equally effective against all pests. Compounds of this invention display

4.0%

93.0%.

activity against economically important agronomic and nonagronomic pests. The term "agronomic" refers to the production of field crops such as for food and fiber and includes the growth of cereal crops (e.g., wheat, oats, barley, rye, rice, maize), soybeans, vegetable crops (e.g., lettuce, cabbage, tomatoes, beans), potatoes, sweet potatoes, grapes, cotton, and tree fruits (e.g., pome fruits, stone fruits and citrus fruits). The term "nonagronomic" refers 5 to other horticultural (e.g., forest, greenhouse, nursery or ornamental plants not grown in a field), public (human) and animal health, domestic and commercial structure, household, and stored product applications or pests. For reason of invertebrate pest control spectrum and economic importance, protection (from damage or injury caused by invertebrate pests) of agronomic crops of cotton, maize, soybeans, rice, vegetable crops, potato, sweet potato, 10 grapes and tree fruit by controlling invertebrate pests are preferred embodiments of the invention. Agronomic or nonagronomic pests include larvae of the order Lepidoptera, such as armyworms, cutworms, loopers, and heliothines in the family Noctuidae (e.g., fall armyworm (Spodoptera fugiperda J. E. Smith), beet armyworm (Spodoptera exigua Hübner), black cutworm (Agrotis ipsilon Hufnagel), cabbage looper (Trichoplusia ni 15 Hübner), tobacco budworm (Heliothis virescens Fabricius)); borers, casebearers, webworms, coneworms, cabbageworms and skeletonizers from the family Pyralidae (e.g., European corn borer (Ostrinia nubilalis Hübner), navel orangeworm (Amyelois transitella Walker), corn root webworm (Crambus caliginosellus Clemens), sod webworm (Herpetogramma licarsisalis Walker)); leafrollers, budworms, seed worms, and fruit worms in the family 20 Tortricidae (e.g., codling moth (Cydia pomonella Linnaeus), grape berry moth (Endopiza viteana Clemens), oriental fruit moth (Grapholita molesta Busck)); and many other economically important lepidoptera (e.g., diamondback moth (Plutella xylostella Linnaeus), pink bollworm (Pectinophora gossypiella Saunders), gypsy moth (Lymantria dispar Linnaeus)); nymphs and adults of the order Blattodea including cockroaches from the 25 families Blattellidae and Blattidae (e.g., oriental cockroach (Blatta orientalis Linnaeus), Asian cockroach (Blatella asahinai Mizukubo), German cockroach (Blattella germanica Linnaeus), brownbanded cockroach (Supella longipalpa Fabricius), American cockroach (Periplaneta americana Linnaeus), brown cockroach (Periplaneta brunnea Burmeister), Madeira cockroach (Leucophaea maderae Fabricius)); foliar feeding larvae and adults of the 30 order Coleoptera including weevils from the families Anthribidae, Bruchidae, and Curculionidae (e.g., boll weevil (Anthonomus grandis Boheman), rice water weevil (Lissorhoptrus oryzophilus Kuschel), granary weevil (Sitophilus granarius Linnaeus), rice weevil (Sitophilus oryzae Linnaeus)); flea beetles, cucumber beetles, rootworms, leaf beetles, potato beetles, and leafminers in the family Chrysomelidae (e.g., Colorado potato 35 beetle (Leptinotarsa decemlineata Say), western com rootworm (Diabrotica virgifera virgifera LeConte)); chafers and other beetles from the family Scaribaeidae (e.g., Japanese beetle (Popillia japonica Newman) and European chafer (Rhizotrogus majalis

Razoumowsky)); carpet beetles from the family Dermestidae; wireworms from the family Elateridae; bark beetles from the family Scolytidae and flour beetles from the family Tenebrionidae. In addition agronomic and nonagronomic pests include: adults and larvae of the order Dermaptera including earwigs from the family Forficulidae (e.g., European earwig 5 (Forficula auricularia Linnaeus), black earwig (Chelisoches morio Fabricius)); adults and nymphs of the orders Hemiptera and Homoptera such as, plant bugs from the family Miridae, cicadas from the family Cicadidae, leafhoppers (e.g. *Empoasca* spp.) from the family Cicadellidae, planthoppers from the families Fulgoroidae and Delphacidae, treehoppers from the family Membracidae, psyllids from the family Psyllidae, whiteflies from the family Aleyrodidae, aphids from the family Aphididae, phylloxera from the family 10 Phylloxeridae, mealybugs from the family Pseudococcidae, scales from the families Coccidae, Diaspididae and Margarodidae, lace bugs from the family Tingidae, stink bugs from the family Pentatomidae, cinch bugs (e.g., Blissus spp.) and other seed bugs from the family Lygaeidae, spittlebugs from the family Cercopidae squash bugs from the family Coreidae, and red bugs and cotton stainers from the family Pyrrhocoridae. Also included are 15 adults and larvae of the order Acari (mites) such as spider mites and red mites in the family Tetranychidae (e.g., European red mite (Panonychus ulmi Koch), two spotted spider mite (Tetranychus urticae Koch), McDaniel mite (Tetranychus mcdanieli McGregor)), flat mites in the family Tenuipalpidae (e.g., citrus flat mite (Brevipalpus lewisi McGregor)), rust and 20 bud mites in the family Eriophyidae and other foliar feeding mites and mites important in human and animal health, i.e. dust mites in the family Epidermoptidae, follicle mites in the family Demodicidae, grain mites in the family Glycyphagidae, ticks in the order Ixodidae (e.g., deer tick (Ixodes scapularis Say), Australian paralysis tick (Ixodes holocyclus Neumann), American dog tick (Dermacentor variabilis Say), lone star tick (Amblyomma americanum Linnaeus) and scab and itch mites in the families Psoroptidae, Pyemotidae, and 25 Sarcoptidae; adults and immatures of the order Orthoptera including grasshoppers, locusts and crickets (e.g., migratory grasshoppers (e.g., Melanoplus sanguinipes Fabricius, M. differentialis Thomas), American grasshoppers (e.g., Schistocerca americana Drury), desert locust (Schistocerca gregaria Forskal), migratory locust (Locusta migratoria Linnaeus), house cricket (Acheta domesticus Linnaeus), mole crickets (Gryllotalpa spp.)); adults and 30 immatures of the order Diptera including leafminers, midges, fruit flies (Tephritidae), frit flies (e.g., Oscinella frit Linnaeus), soil maggots, house flies (e.g., Musca domestica Linnaeus), lesser house flies (e.g., Fannia canicularis Linnaeus, F. femoralis Stein), stable flies (e.g., Stomoxys calcitrans Linnaeus), face flies, horn flies, blow flies (e.g., Chrysomya 35 spp., Phormia spp.), and other muscoid fly pests, horse flies (e.g., Tabanus spp.), bot flies (e.g., Gastrophilus spp., Oestrus spp.), cattle grubs (e.g., Hypoderma spp.), deer flies (e.g., Chrysops spp.), keds (e.g., Melophagus ovinus Linnaeus) and other Brachycera, mosquitoes (e.g., Aedes spp., Anopheles spp., Culex spp.), black flies (e.g., Prosimulium spp., Simulium

WO 02/070483

177

PCT/US02/06582

spp.), biting midges, sand flies, sciarids, and other Nematocera; adults and immatures of the order Thysanoptera including onion thrips (Thrips tabaci Lindeman) and other foliar feeding thrips; insect pests of the order Hymenoptera including ants (e.g., red carpenter ant (Camponotus ferrugineus Fabricius), black carpenter ant (Camponotus pennsylvanicus De Geer), Pharaoh ant (Monomorium pharaonis Linnaeus), little fire ant (Wasmannia 5 auropunctata Roger), fire ant (Solenopsis geminata Fabricius), red imported fire ant (Solenopsis invicta Buren), Argentine ant (Iridomyrmex humilis Mayr), crazy ant (Paratrechina longicornis Latreille), pavement ant (Tetramorium caespitum Linnaeus), cornfield ant (Lasius alienus Förster), odorous house ant (Tapinoma sessile Say)), bees (including carpenter bees), hornets, yellow jackets and wasps; insect pests of the order 10 Isoptera including the eastern subterranean termite (Reticulitermes flavipes Kollar), western subterranean termite (Reticulitermes hesperus Banks), Formosan subterranean termite (Coptotermes formosanus Shiraki), West Indian drywood termite (Incisitermes immigrans Snyder) and other termites of economic importance; insect pests of the order Thysanura such as silverfish (Lepisma saccharina Linnaeus) and firebrat (Thermobia domestica Packard); 15 insect pests of the order Mallophaga and including the head louse (Pediculus humanus capitis De Geer), body louse (Pediculus humanus humanus Linnaeus), chicken body louse (Menacanthus stramineus Nitszch), dog biting louse (Trichodectes canis De Geer), fluff louse (Goniocotes gallinae De Geer), sheep body louse (Bovicola ovis Schrank), short-nosed cattle louse (Haematopinus eurysternus Nitzsch), long-nosed cattle louse (Linognathus vituli 20 Linnaeus) and other sucking and chewing parasitic lice that attack man and animals; insect pests of the order Siphonoptera including the oriental rat flea (Xenopsylla cheopis Rothschild), cat flea (Ctenocephalides felis Bouche), dog flea (Ctenocephalides canis Curtis), hen flea (Ceratophyllus gallinae Schrank), sticktight flea (Echidnophaga gallinacea Westwood), human flea (Pulex irritans Linnaeus) and other fleas afflicting mammals and 25 birds. Additional arthropod pests covered include: spiders in the order Araneae such as the brown recluse spider (Loxosceles reclusa Gertsch & Mulaik) and the black widow spider (Latrodectus mactans Fabricius), and centipedes in the order Scutigeromorpha such as the house centipede (Scutigera coleoptrata Linnaeus). Compounds of the present invention also have activity on members of the Classes Nematoda, Cestoda, Trematoda, and 30 Acanthocephala including economically important members of the orders Strongylida, Ascaridida, Oxyurida, Rhabditida, Spirurida, and Enoplida such as but not limited to economically important agricultural pests (i.e. root knot nematodes in the genus Meloidogyne, lesion nematodes in the genus Pratylenchus, stubby root nematodes in the 35 genus Trichodorus, etc.) and animal and human health pests (i.e. all economically important flukes, tapeworms, and roundworms, such as Strongylus vulgaris in horses, Toxocara canis in dogs, Haemonchus contortus in sheep, Dirofilaria immitis Leidy in dogs, Anoplocephala perfoliata in horses, Fasciola hepatica Linnaeus in ruminants, etc.).

WO 02/070483

Compounds of the invention show particularly high activity against pests in the order Lepidoptera (e.g., Alabama argillacea Hübner (cotton leaf worm), Archips argyrospila Walker (fruit tree leaf roller), A. rosana Linnaeus (European leaf roller) and other Archips species, Chilo suppressalis Walker (rice stem borer), Cnaphalocrosis medinalis Guenee (rice leaf roller), Crambus caliginosellus Clemens (corn root webworm), Crambus teterrellus 5 Zincken (bluegrass webworm), Cydia pomonella Linnaeus (codling moth), Earias insulana Boisduval (spiny bollworm), Earias vittella Fabricius (spotted bollworm), Helicoverpa armigera Hübner (American bollworm), Helicoverpa zea Boddie (corn earworm), Heliothis virescens Fabricius (tobacco budworm), Herpetogramma licarsisalis Walker (sod webworm), Lobesia botrana Denis & Schiffermüller (grape berry moth), Pectinophora 10 gossypiella Saunders (pink bollworm), Phyllocnistis citrella Stainton (citrus leafminer), Pieris brassicae Linnaeus (large white butterfly), Pieris rapae Linnaeus (small white butterfly), Plutella xylostella Linnaeus (diamondback moth), Spodoptera exigua Hübner (beet armyworm), Spodoptera litura Fabricius (tobacco cutworm, cluster caterpillar), Spodoptera frugiperda J. E. Smith (fall armyworm), Trichoplusia ni Hübner (cabbage 15 looper) and Tuta absoluta Meyrick (tomato leafminer)). Compounds of the invention also have commercially significant activity on members from the order Homoptera including: Acyrthisiphon pisum Harris (pea aphid), Aphis craccivora Koch (cowpea aphid), Aphis fabae Scopoli (black bean aphid), Aphis gossypii Glover (cotton aphid, melon aphid), Aphis pomi De Geer (apple aphid), Aphis spiraecola Patch (spirea aphid), Aulacorthum solani 20 Kaltenbach (foxglove aphid), Chaetosiphon fragaefolii Cockerell (strawberry aphid), Diuraphis noxia Kurdiumov/Mordvilko (Russian wheat aphid), Dysaphis plantaginea Paaserini (rosy apple aphid), Eriosoma lanigerum Hausmann (woolly apple aphid), Hyalopterus pruni Geoffroy (mealy plum aphid), Lipaphis erysimi Kaltenbach (turnip aphid), Metopolophium dirrhodum Walker (cereal aphid), Macrosipum euphorbiae Thomas 25 (potato aphid), Myzus persicae Sulzer (peach-potato aphid, green peach aphid), Nasonovia ribisnigri Mosley (lettuce aphid), Pemphigus spp. (root aphids and gall aphids), Rhopalosiphum maidis Fitch (corn leaf aphid), Rhopalosiphum padi Linnaeus (bird cherryoat aphid), Schizaphis graminum Rondani (greenbug), Sitobion avenae Fabricius (English grain aphid), Therioaphis maculata Buckton (spotted alfalfa aphid), Toxoptera aurantii 30 Boyer de Fonscolombe (black citrus aphid), and Toxoptera citricida Kirkaldy (brown citrus aphid); Adelges spp. (adelgids); Phylloxera devastatrix Pergande (pecan phylloxera); Bemisia tabaci Gennadius (tobacco whitefly, sweetpotato whitefly), Bemisia argentifolii Bellows & Perring (silverleaf whitefly), Dialeurodes citri Ashmead (citrus whitefly) and Trialeurodes vaporariorum Westwood (greenhouse whitefly); Empoasca fabae Harris 35 (potato leafhopper), Laodelphax striatellus Fallen (smaller brown planthopper), Macrolestes quadrilineatus Forbes (aster leafhopper), Nephotettix cinticeps Uhler (green leafhopper), Nephotettix nigropictus Stål (rice leafhopper), Nilaparvata lugens Stål (brown planthopper),

WO 02/070483 PCT/US02/06582

Peregrinus maidis Ashmead (com planthopper), Sogatella furcifera Horvath (white-backed planthopper), Sogatodes orizicola Muir (rice delphacid), Typhlocyba pomaria McAtee white apple leafhopper, Erythroneoura spp. (grape leafhoppers); Magicidada septendecim Linnaeus (periodical cicada); Icerya purchasi Maskell (cottony cushion scale), Quadraspidiotus perniciosus Comstock (San Jose scale); Planococcus citri Risso (citrus mealybug); Pseudococcus spp. (other mealybug complex); Cacopsylla pyricola Foerster

mealybug); Pseudococcus spp. (other mealybug complex); Cacopsylla pyricola Foerster (pear psylla), Trioza diospyri Ashmead (persimmon psylla). These compounds also have activity on members from the order Hemiptera including: Acrosternum hilare Say (green stink bug), Anasa tristis De Geer (squash bug), Blissus leucopterus leucopterus Say (chinch bug), Corythuca gossypii Fabricius (cotton lace bug), Cyrtopeltis modesta Distant (tomato bug), Dysdercus suturellus Herrich-Schäffer (cotton stainer), Euchistus servus Say (brown

bug), Dysdercus suturellus Herrich-Schäffer (cotton stainer), Euchistus servus Say (brown stink bug), Euchistus variolarius Palisot de Beauvois (one-spotted stink bug), Graptosthetus spp. (complex of seed bugs), Leptoglossus corculus Say (leaf-footed pine seed bug), Lygus lineolaris Palisot de Beauvois (tarnished plant bug), Nezara viridula Linnaeus (southern green stink bug), Oebalus pugnax Fabricius (rice stink bug), Oncopeltus fasciatus Dallas (large milkweed bug), Pseudatomoscelis seriatus Reuter (cotton fleahopper). Other insect

orders controlled by compounds of the invention include Thysanoptera (e.g., Frankliniella occidentalis Pergande (western flower thrip), Scirthothrips citri Moulton (citrus thrip), Sericothrips variabilis Beach (soybean thrip), and Thrips tabaci Lindeman (onion thrip); and the order Coleoptera (e.g., Leptinotarsa decemlineata Say (Colorado potato beetle), Epilachna varivestis Mulsant (Mexican bean beetle) and wireworms of the genera Agriotes,

Athous or Limonius).

5

10

15

20

25

30

35

Compounds of this invention can also be mixed with one or more other biologically active compounds or agents including insecticides, fungicides, nematocides, bactericides, acaricides, growth regulators such as rooting stimulants, chemosterilants, semiochemicals, repellents, attractants, pheromones, feeding stimulants, other biologically active compounds or entomopathogenic bacteria, virus or fungi to form a multi-component pesticide giving an even broader spectrum of agricultural utility. Thus compositions of the present invention can further comprise a biologically effective amount of at least one additional biologically active compound or agent. Examples of such biologically active compounds or agents with which compounds of this invention can be formulated are: insecticides such as abamectin, acephate, acetamiprid, avermectin, azadirachtin, azinphos-methyl, bifenthrin, binfenazate, buprofezin, carbofuran, chlorfenapyr, chlorfluazuron, chlorpyrifos, chlorpyrifos-methyl, chromafenozide, clothianidin, cyfluthrin, beta-cyfluthrin, cyhalothrin, lambda-cyhalothrin, cypermethrin, cyromazine, deltamethrin, diafenthiuron, diazinon, diflubenzuron, dimethoate, diofenolan, emamectin, endosulfan, esfenvalerate, ethiprole, fenothicarb, fenoxycarb, fenpropathrin, fenproximate, fenvalerate, fipronil, flonicamid, flucythrinate, tau-fluvalinate, flufenoxuron, fonophos, halofenozide, hexaflumuron, imidacloprid, indoxacarb, isofenphos,

PCT/US02/06582

lufenuron, malathion, metaldehyde, methamidophos, methidathion, methomyl, methoprene, methoxychlor, monocrotophos, methoxyfenozide, nithiazin, novaluron, oxamyl, parathion, parathion-methyl, permethrin, phorate, phosalone, phosmet, phosphamidon, pirimicarb, profenofos, pymetrozine, pyridalyl, pyriproxyfen, rotenone, spinosad, sulprofos, tebufenozide, teflubenzuron, tefluthrin, terbufos, tetrachlorvinphos, thiacloprid, 5 thiamethoxam, thiodicarb, thiosultap-sodium, tralomethrin, trichlorfon and triflumuron; fungicides such as acibenzolar, azoxystrobin, benomyl, blasticidin-S, Bordeaux mixture (tribasic copper sulfate), bromuconazole, carpropamid, captafol, captan, carbendazim, chloroneb, chlorothalonil, copper oxychloride, copper salts, cyflufenamid, cymoxanil, cyproconazole, cyprodinil, (S)-3,5-dichloro-N-(3-chloro-1-ethyl-1-methyl-2-oxopropyl)-4-10 methylbenzamide (RH 7281), diclocymet (S-2900), diclomezine, dicloran, difenoconazole, (S)-3,5-dihydro-5-methyl-2-(methylthio)-5-phenyl-3-(phenylamino)-4H-imidazol-4-one (RP 407213), dimethomorph, dimoxystrobin, diniconazole, diniconazole-M, dodine, edifenphos, epoxiconazole, famoxadone, fenamidone, fenarimol, fenbuconazole, fencaramid (SZX0722), fenpiclonil, fenpropidin, fenpropimorph, fentin acetate, fentin hydroxide, 15 fluazinam, fludioxonil, flumetover (RPA 403397), fluquinconazole, flusilazole, flutolanil, flutriafol, folpet, fosetyl-aluminum, furalaxyl, furametapyr (S-82658), hexaconazole, ipconazole, iprobenfos, iprodione, isoprothiolane, kasugamycin, kresoxim-methyl, mancozeb, maneb, mefenoxam, mepronil, metalaxyl, metconazole, metominostrobin/fenominostrobin (SSF-126), myclobutanil, neo-asozin (ferric methanearsonate), 20 oxadixyl, penconazole, pencycuron, probenazole, prochloraz, propamocarb, propiconazole, pyrifenox, pyraclostrobin, pyrimethanil, pyroquilon, quinoxyfen, spiroxamine, sulfur, tebuconazole, tetraconazole, thiabendazole, thifluzamide, thiophanate-methyl, thiram, tiadinil, triadimefon, triadimenol, tricyclazole, trifloxystrobin, triticonazole, validamycin and vinclozolin; nematocides such as aldicarb, oxamyl and fenamiphos; bactericides such as 25 streptomycin; acaricides such as amitraz, chinomethionat, chlorobenzilate, cyhexatin, dicofol, dienochlor, etoxazole, fenazaquin, fenbutatin oxide, fenpropathrin, fenpyroximate, hexythiazox, propargite, pyridaben and tebufenpyrad; and biological agents such as Bacillus thuringiensis including ssp. aizawai and kurstaki, Bacillus thuringiensis delta endotoxin, baculovirus, and entomopathogenic bacteria, virus and fungi. Compounds of this invention 30 and compositions thereof may be applied to plants genetically transformed to express proteins toxic to invertebrate pests (such as Bacillus thuringiensis toxin). The effect of the exogenous invertebrate pest control compounds and compositions may be synergistic with the expressed toxin proteins.

A general reference for these agricultural protectants is *The Pesticide Manual, 12th Edition*, C. D. S. Tomlin, Ed., British Crop Protection Council, Farnham, Surrey, U.K., 2000.

35

Preferred insecticides and acaricides for mixing with compounds of this invention include pyrethroids such as cypermethrin, cyhalothrin, cyfluthrin, beta-cyfluthrin, esfenvalerate, fenvalerate and tralomethrin; carbamates such as fenothicarb, methomyl, oxamyl and thiodicarb; neonicotinoids such as clothianidin, imidacloprid and thiacloprid; neuronal sodium channel blockers such as indoxacarb; insecticidal macrocyclic lactones such as spinosad, abamectin, avermectin and emamectin; γ-aminobutyric acid (GABA) antagonists such as endosulfan, ethiprole and fipronil; insecticidal ureas such as flufenoxuron and triflumuron; juvenile hormone mimics such as diofenolan and pyriproxyfen; pymetrozine; and amitraz. Preferred biological agents for mixing with compounds of this invention include *Bacillus thuringiensis* and *Bacillus thuringiensis* delta endotoxin as well as naturally occurring and genetically modified viral insecticides including members of the family Baculoviridae as well as entomophagous fungi.

Most preferred mixtures include a mixture of a compound of this invention with cyhalothrin; a mixture of a compound of this invention with beta-cyfluthrin; a mixture of a compound of this invention with esfenvalerate; a mixture of a compound of this invention with methomyl; a mixture of a compound of this invention with imidacloprid; a mixture of a compound of this invention with thiacloprid; a mixture of a compound of this invention with indoxacarb; a mixture of a compound of this invention with endosulfan; a mixture of a compound of this invention with ethiprole; a mixture of a compound of this invention with fipronil; a mixture of a compound of this invention with flufenoxuron; a mixture of a compound of this invention with pyriproxyfen; a mixture of a compound of this invention with mixture of a compound of this invention with Bacillus thuringiensis and a mixture of a compound of this invention with Bacillus thuringiensis delta endotoxin.

In certain instances, combinations with other invertebrate pest control compounds or agents having a similar spectrum of control but a different mode of action will be particularly advantageous for resistance management. Thus, compositions of the present invention can further comprise a biologically effective amount of at least one additional invertebrate pest control compound or agent having a similar spectrum of control but a different mode of action. Contacting a plant genetically modified to express a plant protection compound (e.g., protein) or the locus of the plant with a biologically effective amount of a compound of invention can also provide a broader spectrum of plant protection and be advantageous for resistance management.

Invertebrate pests are controlled in agronomic and nonagronomic applications by applying one or more of the compounds of this invention, in an effective amount, to the environment of the pests including the agronomic and/or nonagronomic locus of infestation, to the area to be protected, or directly on the pests to be controlled. Thus, the present

182

invention further comprises a method for the control of invertebrates in agronomic and/or nonagronomic applications, comprising contacting the invertebrates or their environment with a biologically effective amount of one or more of the compounds of the invention, or with a composition comprising at least one such compound or a composition comprising at least one such compound and an effective amount of at least one additional biologically active compound or agent. Examples of suitable compositions comprising a compound of the invention and an effective amount of at least one additional biologically active compound or agent include granular compositions wherein the additional biologically active compound is present on the same granule as the compound of the invention or on granules separate from those of the compound of this invention.

5

10

15

20

25

30

35

A preferred method of contact is by spraying. Alternatively, a granular composition comprising a compound of the invention can be applied to the plant foliage or the soil. Compounds of this invention are also effectively delivered through plant uptake by contacting the plant with a composition comprising a compound of this invention applied as a soil drench of a liquid formulation, a granular formulation to the soil, a nursery box treatment or a dip of transplants. Compounds are also effective by topical application of a composition comprising a compound of this invention to the locus of infestation. Other methods of contact include application of a compound or a composition of the invention by direct and residual sprays, aerial sprays, gels, seed coatings, microencapsulations, systemic uptake, baits, eartags, boluses, foggers, fumigants, aerosols, dusts and many others. The compounds of this invention may also be impregnated into materials for fabricating invertebrate control devices (e.g. insect netting).

The compounds of this invention can be incorporated into baits that are consumed by the invertebrates or within devices such as traps and the like. Granules or baits comprising between 0.01–5% active ingredient, 0.05–10% moisture retaining agent(s) and 40–99% vegetable flour are effective in controlling soil insects at very low application rates, particularly at doses of active ingredient that are lethal by ingestion rather than by direct contact.

The compounds of this invention can be applied in their pure state, but most often application will be of a formulation comprising one or more compounds with suitable carriers, diluents, and surfactants and possibly in combination with a food depending on the contemplated end use. A preferred method of application involves spraying a water dispersion or refined oil solution of the compounds. Combinations with spray oils, spray oil concentrations, spreader stickers, adjuvants, other solvents, and synergists such as piperonyl butoxide often enhance compound efficacy.

The rate of application required for effective control (i.e. "biologically effective amount") will depend on such factors as the species of invertebrate to be controlled, the pest's life cycle, life stage, its size, location, time of year, host crop or animal, feeding

10

15

20

behavior, mating behavior, ambient moisture, temperature, and the like. Under normal circumstances, application rates of about 0.01 to 2 kg of active ingredient per hectare are sufficient to control pests in agronomic ecosystems, but as little as 0.0001 kg/hectare may be sufficient or as much as 8 kg/hectare may be required. For nonagronomic applications, effective use rates will range from about 1.0 to 50 mg/square meter but as little as 0.1 mg/square meter may be sufficient or as much as 150 mg/square meter may be required. One skilled in the art can easily determine the biologically effective amount necessary for the desired level of invertebrate pest control.

The following TESTS demonstrates the control efficacy of compounds of this invention on specific pests. "Control efficacy" represents inhibition of invertebrate pest development (including mortality) that causes significantly reduced feeding. The pest control protection afforded by the compounds is not limited, however, to these species. See Index Tables A through K and L for compound descriptions. The following abbreviations are used in the Index Tables which follow: t is tertiary, n is normal, i is iso, c is cyclo, s is secondary, Me is methyl, Et is ethyl, Pr is propyl, i-Pr is isopropyl, c-Pr is cyclopropyl, Bu is butyl, s-Bu is secondary butyl, Pent is pentyl, OMe is methoxy, OEt is ethoxy, SMe is methylthio, SEt is ethylthio, CN is cyano, and NO₂ is nitro. The abbreviation "Ex." stands for "Example" and is followed by a number indicating in which example the compound is prepared.

INDEX TABLE A

Compound	<u>R</u> 2	<u>R</u> 3	$(R^4)_{\underline{n}}$	Ī	<u>m.p. °C.</u>
1 (Ex. 3)	Н	<i>i</i> -Pr	4-Me	4-CF ₃ -Ph	•
2	Н	t-Bu	4-Me	4-CF ₃ -Ph	•
3	Н	i-Pr	4-Me	4-OCF ₃ -Ph	*
4	Н	i-Pr	4-Me	2-Me,4-SCHF2-Ph	•
5	H	<i>t</i> -Bu	4-Me	2-Me,4-SCHF ₂ -Ph	•
6	Н	<i>t</i> -Bu	4-Me	4-OCF ₃ -Ph	•
7	Н	i-Pr	4-Me	2-Me,4-SO ₂ CHF ₂ -Ph	*
8	Н	i-Pr	4-Me	2-Me,4-SOCF ₃ -Ph	•

Compound	<u>R</u> 2	<u>R</u> 3	$(R^4)_n$	Ī	<u>m.p. °C.</u>
9	н	<i>t</i> -Bu	4-Me	2-Me,4-SO ₂ CHF ₂ -Ph	•
10	Н	<i>t</i> -Bu	4-Me	2-Me,4-SOCHF ₂ -Ph	•
11	Н	<i>i</i> -Pr	4-Me	4-SCHF ₂ -Ph	*
12	Н	<i>t-</i> Bu	4-Me	4-SCHF ₂ -Ph	•
13	Н	<i>i-</i> Pr	4-Me	2-Me,4-CF ₃ -Ph	*
14	Н	<i>i</i> -Pr	4-Me	2-Me,4-OCF ₃ -Ph	*
15	Н	t-Bu	4-Me	2-Me,4-CF ₃ -Ph	•
16	Н	t-Bu	4-Me	2-Me,4-OCF ₃ -Ph	*
17	Н	<i>i</i> -Pr	4-Me	2-Me,4-Cl-Ph	222.5-225
18	Н	t-Bu	4-Me	2-Me,4-Cl-Ph	214-215
19	Н	i-Pr	4-Me	2-Me-6-CF ₃ -3-pyridinyl	•
20	Н	t-Bu	4-Me	2-Me-6-CF ₃ -3-pyridinyl	•
21	Н	<i>i</i> -Pr	4-Me	1-Ph-3-Me-5-pyrazolyl	*
22	Н	t-Bu	4-Me	1-Ph-3-Me-5-pyrazolyl	•
23	Н	<i>i</i> -Pr	4-Me	2-Me-6-Cl-3-pyridinyl	•
24	Н	t-Bu	4-Me	2-Me-6-Cl-3-pyridinyl	•
25	Н	CH ₂ CH ₂ NMe ₂	4,5-Me ₂	Ph	
26	-CH	I ₂ CH ₂ CH ₂ CH ₂ -	Н	Ph	
27	Н	c-hexyl	Н	Ph	
28	Н	c-propyl	Н	Ph	
29	Н	Н	4- <i>t</i> -Bu-Ph	3,5-Cl ₂ -Ph	
· 30	Н	Me	4-Me	1-(2-Cl-3-pyridinyl)-3-Br-5-pyrazolyl	214-215
31	Н	<i>i</i> -Pr	4-Me	1-(2-Cl-3-pyridinyl)-3-Br-5-pyrazolyl	159-161
32 .	Н	<i>i</i> -Pr	4-Me	1-(2-Cl-Ph)-3-CF ₃ -5-рутаzolyl	198-202
33	Н	Me	4-Me	1-(2-Cl-3-pyridinyl)-3-CF ₃ -5-pyrazolyl	188-190
34	Н	<i>i</i> -Pr	4-Me	1-(2-Cl-3-pyridinyl)-3-CF ₃ -5-pyrazolyl	170-174
35	Н	Me	4-Me	1-(2-Cl-Ph)-3-CF ₃ -5-pyrazolyl	201-203
36	Н	Me	4,5-Cl ₂	1-(2-Cl-Ph)-3-CF ₃ -5-pyrazolyl	238-240
37	Н	i-Pr	4,5-Cl ₂	1-(2-Cl-Ph)-3-CF ₃ -5-pyrazolyl	240
38	Н	i-Pr	4,5-Cl ₂	1-(2-Cl-3-pyridinyl)-3-Br-5-pyrazolyl	208-210
39	H	Me	4,5-Cl ₂	1-(2-Cl-3-pyridinyl)-3-Br-5-pyrazolyl	208
40	Н	i-Pr	4-Me-5-Cl	1-(2-Cl-3-pyridinyl)-3-CF ₃ -5-pyrazolyl	234-236
41	Н	Me	4-Me-5-Cl	1-(2-Cl-3-pyridinyl)-3-Br-5-pyrazolyl	229-231
42	Н	i-Pr	4-Me-5-Ci	1-(2-Cl-3-pyridinyl)-3-Br-5-pyrazolyl	222-223
43	Н	Me	4-Me-5-Cl	1-(2-Cl-3-pyridinyl)-3-CF ₃ -5-pyrazolyl	226-228

^{*} See Index Table L for ¹H NMR data.

185

INDEX TABLE B

Compound	<u>R</u> 3	Ī	<u>m.p. °C.</u>
Bl	i-Pr	2-Me,4-SCHF ₂ -Ph	178.5-180.5
B2	<i>i</i> -Pr	2-Me,4-SO ₂ CHF ₂ -Ph	207-210
В3	i-Pr	2-Me,4-SOCF ₃ -Ph	175-180
B4	i-Pr	2-Me,4-CF ₃ -Ph	201-203
B5	i-Pr	2-Me-6-CF ₃ -3-pyridinyl	221-5-222.5
В6	<i>i</i> -Pr	1-Ph-3-Me-5-pyrazolyl	*
B7	t-Bu	1-Ph-3-Me-5-pyrazolyl	*
B8	<i>t-</i> Bu	2-Me-6-CF ₃ -3-pyridinyl	•
B 9	<i>i</i> -Pr	2-Me-5-CI-3-thienyl	*
B10	Me	1-(2-Cl-Ph)-3-CF ₃ -5-pyrazolyl	266-270
B11	<i>i</i> -Pr	1-(2-Cl-Ph)-3-CF ₃ -5-pyrazolyl	232-236
B12	Me	1-(2-Cl-3-pyridinyl)-3-CF ₃ -5-pyrazolyl	233-236
B13	<i>i</i> -Pr	1-(2-Cl-3-pyridinyl)-3-CF ₃ -5-pyrazolyl	220-222
B14	Me	1-(2-Cl-3-pyridinyl)-3-Br-5-pyrazolyl	235-238
B15	i-Pr	1-(2-Cl-3-pyridinyl)-3-Br-5-pyrazolyl	198-200

^{*} See Index Table L for ¹H NMR data.

INDEX TABLE C

Compound	$\underline{R^2}$	<u>R³</u>	<u>R</u> 4	Ī	<u>m.p. °C.</u>
C 1	Н	i-Pr	Me	4-F-Ph	•
C2	н	<i>i</i> -Pr	Me	4-Br-Ph	•

Compound	<u>R</u> 2	<u>R</u> 3	<u>R</u> 4	ī	<u>m.p. °C.</u>
C3	H	<i>i-</i> Pr	Me	4-Cl-Ph	•
C4	Н	i-Pr	Me	2-NO ₂ -Ph	•
C5	Н	i-Pr	Me	3-Cl-Ph	*
C6	Н	i-Pr	Me	4-CN-Ph	*
C7	Н	i-Pr	Me	4-CF ₃ -Ph	*
C8	Н	i-Pr	Me	2-Me-4-SOCF ₃ -Ph	*
C9 Ex. 2)	H	i-Pr	Me	4-OCF ₃ -Ph	68-75
C10	H	i-Pr	Me	2-Me-4-Br-Ph	•
C11	Pr	Pr	Ph	3-F-Ph	
C12		-(CH ₂) ₅ -	Ph	2-thienyl	
C13	-(CH	2)2NMe(CH2)2-	Ph	4-NO ₂ -Ph	
C14	H	i-Pr	Me	3-pyridinyl	
C15	H	c-hexyl	Ph	2-thienyl	
C16	allyl	allyl	Ph	2-Me-Ph	
C17	Et	Et	Ph	Ph .	
C18	H	allyl	Ph	Ph	
C19	H	$(CH_2)_2$ Ph	Ph	Ph	
C20	Me	Me	Ph	4-Me-Ph	
C21	-(CH	2)2NMe(CH2)2-	Ph	4-Br-Ph	
C22	-(C	H ₂) ₂ O(CH ₂) ₂ -	Ph	Ph	
C23	Н	Et	Me	1-(2-Cl-3-pyridinyl)-3-CF ₃ -5-pyrazolyl	253-255
C24	Н	i-Pr	Me	1-(2-Cl-3-pyridinyl)-3-CF ₃ -5-pyrazolyl	214-216
C25	Н	Me	Me	1-(2-Cl-3-pyridinyl)-3-CF ₃ -5-pyrazolyl	230-232
C26	Н	Me	Me	1-(2-Cl-3-pyridinyl)-3-Br-5-pyrazolyl	234-236
C27	Н	<i>i</i> -Pr	Me	1-(2-Cl-Ph)-3-CF ₃ -5-pyrazolyl	218-220
C28	Н	i-Pr	Me	1-(2-Cl-Ph)-3-Br-5-pyrazolyl	170-173
C29	Н	CH ₂ -2-furanyl	Ph	3-Me-Ph	
C30	Н	Et	CH ₂ CF ₃	1-(2-Cl-3-pyridinyl)-3-CF ₃ -5-pyrazolyl	236-238
C31	Н	<i>i</i> -Pr	CH ₂ CF ₃	1-(2-Cl-3-pyridinyl)-3-CF ₃ -5-pyrazolyl	216-218
C32	Н	Me	Et	1-(2-Cl-3-pyridinyl)-3-CF ₃ -5-pyrazolyl	238-240
C33	Н	Et	Et	1-(2-Cl-3-pyridinyl)-3-CF ₃ -5-pyrazolyl	216-218
C34	Н	<i>i</i> -Pr	Et	1-(2-Cl-3-pyridinyl)-3-CF ₃ -5-pyrazolyl	198-201
C35	Н	Me	CH ₂ CF ₃	1-(2-Cl-3-pyridinyl)-3-CF ₃ -5-pyrazolyl	260-262
C36	Н	Me	CH ₂ CF ₃	1-(2-Cl-3-pyridinyl)-3-Br-5-pyrazolyl	253-256
C37	Н	Et	CH ₂ CF ₃	1-(2-Cl-3-pyridinyl)-3-Br-5-pyrazolyl	220-223
C38	H	i-Pr	CH ₂ CF ₃	1-(2-Cl-3-pyridinyl)-3-Br-5-pyrazolyl	188-190
C39	H	Me	Et	1-(2-Cl-3-pyridinyl)-3-Br-5-pyrazolyl	221-223

Compound	<u>R</u> 2	<u>R</u> 3	<u>R</u> 4	ī	<u>m.p. °C.</u>
C40	Н	Et	Et	1-(2-Cl-3-pyridinyl)-3-Br-5-pyrazolyl	182-184
C41	Н	i-Pr	Et	1-(2-Cl-3-pyridinyl)-3-Br-5-pyrazolyl	172-175
C42		-(CH ₂) ₆ -	Ph	4-Br-Ph	
C43	-(CH ₂) ₄ -		Ph	4-Me-Ph	
C44	-(CH ₂) ₅ -		Ph	3-F-Ph	
C45	-(CH ₂) ₄ -		Ph	3-F-Ph	
C46	Н	CH ₂ Ph	Ph	2-F-Ph	
C47	Н	CH ₂ -2-furanyl	Ph	3-F-Ph	
C48		-(CH ₂) ₆ -	Ph	4-Me-Ph	
C49	-(CH ₂) ₂ O(CH ₂) ₂ -		Ph	2-Me-Ph	

^{*} See Index Table L for ¹H NMR data.

INDEX TABLE D

Compound	<u>R</u> 2	<u>R</u> 3	<u>R</u> 4	Ī	<u>m.p. °C.</u>
Dl	Н	i-Pr	2-Me	4-CF ₃ -Ph	223-225
D2	Н	t-Bu	2-Me	4-CF ₃ -Ph	260-261
D3 (Ex. 1)	Н	i-Pr	2-Me	4-OCF ₃ -Ph	202-204
D4	Н	i-Pr	2-Me	2-Me,4-CF ₃ -Ph	235-236
D5	Н	i-Pr	2-Me	2-Me,4-OCF ₃ -Ph	198-200
D6	Н	i-Pr	2-Me	2-Me-6-CF ₃ -3-pyridinyl	240-243
D7	Н	<i>i-</i> Pr	2-Me	1-Ph-3-CF ₃ -5-pyrazolyl	215-220 (dec.)
D8	Н	i-Pr	2-Me	1-(2-Cl-Ph)-3-CF ₃ -5-pyrazolyl	140-144
D9	Н	i-Pr	2-Me	2-Me-3-Cl-Ph	260-261
D10	Н	i-Pr	2-Me	1-(2-Cl-3-pyridinyl)-3-CF ₃ -5-pyrazolyl	207-209*
D11	Me	Me	2-Me	1-(2-Cl-Ph)-3-CF ₃ -5-pyrazolyl	172-175
D12	Н	Me	2-Me	1-(2-Cl-Ph)-3-CF ₃ -5-pyrazolyl	193-195
D13	Н	i-Pr	2-Cl	1-(2-Cl-3-pyridinyl)-3-CF ₃ -5-pyrazolyl	175-179
D14	Н	i-Pr	2-Me	1-(2-Cl-3-pyridinyl)-3-Br-5-pyrazolyl	156-158
D15	Н	<i>i</i> -Pr	2-Cl	1-(2-Cl-3-pyridinyl)-3-Br-5-pyrazolyl	160-165

188

Compound	<u>R</u> 2	<u>R³</u>	<u>R</u> 4	<u>ī</u>	m.p. °C.
D16	Н	Me	2-C1	1-(2-Cl-3-pyridinyl)-3-CF ₃ -5-pyrazolyl	178-180
D17	Н	Me	2-Cl	1-(2-Cl-3-pyridinyl)-3-Br-5-pyrazolyl	118-125
D18	H	Me	2-Me	1-(2-Cl-3-pyridinyl)-3-CF ₃ -5-pyrazolyl	207-209
D19	H	Me	2-Me	1-(2-Cl-3-pyridinyl)-3-Br-5-pyrazolyl	216-218
D20	Н	allyl	Me	1-(2-Cl-3-pyridinyl)-3-CF ₃ -5-pyrazolyl	187
D21	Н	allyl	Me	1-(2-Cl-3-pyridinyl)-3-Br-5-pyrazolyl	199-201

^{*} See Index Table L for ¹H NMR data.

INDEX TABLE E

Compound	<u>R</u> 2	<u>R</u> 3	$(R^4)_{\underline{n}}$	ī	<u>m.p. °C.</u>
El	Н	<i>i</i> -Pr	H	4-CF ₃ -Ph	*
E2	Н	i-Pr	Н	4-OCF ₃ -Ph	*
E3	Н	<i>i</i> -Pr	2-Cl	4-CF ₃ -Ph	*
E4	Н	i-Pr	H	2-Me,3-Cl-Ph	*
E5	Н	i-Pr	2-Me	1-(2-Cl-3-pyridinyl)-3-CF ₃ -5-pyrazolyl	138-140
E6	Н	i-Pr	2-Me	1-(2-Cl-Ph)-3-CF ₃ -5-pyrazolyl	170-173
E7	Н	i-Pr	2-Me	1-(2-Cl-Ph)-3-Br-5-pyrazolyl	*
E8	Н	<i>i</i> -Pr	2-Me	1-(2-Cl-3-pyridinyl)-3-CN-5-pyrazolyl	*
E9	Н	i-Pr	2-Me	1-(2-Cl-3-pyridinyl)-3-Br-5-pyrazolyl	112-115
E10	Н	Et	2,6-Cl ₂	1-(2-Cl-3-pyridinyl)-3-Br-5-pyrazolyl	147-150
E11	Н	Me	2,6-Cl ₂	1-(2-Cl-3-pyridinyl)-3-Br-5-pyrazolyl	223-224
E12	Н	<i>i-</i> Pr	2,6-Cl ₂	1-(2-Cl-3-pyridinyl)-3-Br-5-pyrazolyl	142-145
E13	Н	Me	2,6-Cl ₂	1-(2-Cl-3-pyridinyl)-3-CF ₃ -5-pyrazolyl	238-240
E14	Н	Et	2,6-Cl ₂	1-(2-Cl-3-pyridinyl)-3-CF ₃ -5-pyrazolyl	207-209
E15 (Ex. 5)	Н	i-Pr	2,6-Cl ₂	1-(2-Cl-3-pyridinyl)-3-CF ₃ -5-pyrazolyl	240-242
E16	Me	Me	2,6-Cl ₂	1-(2-Cl-3-pyridinyl)-3-CF ₃ -5-pyrazolyl	153-155
E17	Me	Me	2,6-Cl ₂	1-(2-Cl-3-pyridinyl)-3-Cl-5-pyrazolyl	224-226
E18	Me	Me	2,6-Br ₂	2,6-Br ₂ -3-NH ₂ -4-pyridinyl	208-210
E19	Н	Et	2,6-Br ₂	1-(2-Cl-3-pyridinyl)-3-CF ₃ -5-pyrazolyl	223-225

Compound	<u>R²</u>	\mathbb{R}^3	(<u>R⁴)</u> n	Ī	<u>m.p. °C.</u>
E20	Н	i-Pr	2,6-Br ₂	1-(2-Cl-3-pyridinyl)-3-CF ₃ -5-pyrazolyl	>240
E21	Et	Et	2,6-Cl ₂	1-(2-Cl-3-pyridinyl)-3-Br-5-pyrazolyl	231-233
E22	Н	<i>i</i> -Pr	2-Cl-6-Br	1-(2-Cl-3-pyridinyl)-3-Br-5-pyrazolyl	224-226
E23	Н	NMe ₂	2,6-Br ₂	1-(2-Cl-3-pyridinyl)-3-Cl-5-pyrazolyl	•
E24	Н	Н	2,6-Cl ₂	1-(2-Cl-3-pyridinyl)-3-Br-5-pyrazolyl	
E25	Н	NMe ₂	2,6-Cl ₂	1-(2-Cl-3-pyridinyl)-3-Br-5-pyrazolyl	
E26	Me	Me	2-Cl-6-NMe2	1-(2-Cl-3-pyridinyl)-3-Br-5-pyrazolyl	*
E27	Н	Me	2,6-Br ₂	1-(2-Cl-Ph)-3-CF ₃ -5-pyrazolyl	*
E28	Н	Et	2,6-Br ₂	1-(2-Cl-Ph)-3-CF ₃ -5-pyrazolyl	*
E29	Н	Me	2,6-Br ₂	1-(2-Cl-3-pyridinyl)-3-CF ₃ -5-pyrazolyl	*
E30	H	Et	2,6-Br ₂	1-(2-Cl-3-pyridinyl)-3-Cl-5-pyrazolyl	*
E31	H	Me	2,6-Br ₂	1-(2-Cl-3-pyridinyl)-3-Cl-5-pyrazolyl	*
E32	Н	i-Pr	2,6-Br ₂	1-(2-Cl-3-pyridinyl)-3-Cl-5-pyrazolyl	*
E33	Н	NMe_2	2,6-Cl ₂	1-(2-CI-3-pyridinyl)-3-CF ₃ -5-pyrazolyl	*
E34	Н	i-Pr	2,6-Br ₂	1-(2-Cl-Ph)-3-CF ₃ -5-pyrazolyl	*
E35	Н	NMe ₂	2,6-Cl ₂	2,6-Cl ₂ -3-NH ₂ -4-pyridinyl	*
E36	Et	Et	2,6-Cl ₂	2,6-Cl ₂ -3-NH ₂ -4-pyridinyl	*

* See Index Table L for ¹H NMR data.

INDEX TABLE F

Compound	<u>R³</u>	$(\mathbb{R}^4)_{\underline{n}}$	<u>J</u>	<u>m.p. °C.</u>
F1	i-Pr	Н	4-CF ₃ -Ph	
F2	t-Bu	Н	4-CF ₃ -Ph	199-200
F3	i-Pr	6-Me	4-CF ₃ -Ph	218-220
F4	<i>i-</i> Pr	4,6-Me ₂	4-CF ₃ -Ph	235-237
F5	i-Pr	6-Ме	2-Me-4-Cl-Ph	172-174
F6	t-Bu	Н	2-Me-3-Cl-Ph	218-220
F7	i-Pr	Н	2-Me-3-Cl-Ph	•

* See Index Table L for ¹H NMR data.

190

INDEX TABLE G

Compound	$\underline{R^2}$	<u>R³</u>	$(\mathbb{R}^4)_{\underline{n}}$	Ī	m.p. °C.
G1	Н	i-Pr	4-Me	4-CF ₃ -Ph	121-123*
G2	Н	i-Pr	4-Me	1-(2-Cl-3-pyridinyl)-3-CF ₃ -5-pyrazolyl	183-184
G3	Н	S-CH(Ph)Me	Н	3-pyridinyl	
G4	Н	<i>i</i> -Pr	4-Me	1-(2-Cl-3-pyridinyl)-3-Br-5-pyrazolyl	172-175
G5	Н	<i>i-</i> Pr	4-Me	1-(2-Cl-3-Ph)-3-Br-5-pyrazolyl	
G6	H	<i>i</i> -Pr	4-Me-6-Cl	1-(2-Cl-3-pyridinyl)-3-Br-5-pyrazolyl	175-177
G7	Н	Me	4-Me-6-Cl	1-(2-Cl-3-pyridinyl)-3-Br-5-pyrazolyl	230-235
G8	Me	Me	4,6-Cl ₂	1-(2-Cl-3-pyridinyl)-3-Br-5-pyrazolyl	225-227
G9	Н	NMe ₂	4,6-Cl ₂	1-(2-Cl-3-pyridinyl)-3-Br-5-pyrazolyl	125-130
G10	Н	Н	4,6-Cl ₂	1-(2-Cl-3-pyridinyl)-3-Br-5-pyrazolyl	130-135
G11	Н	Me	4,6-Cl ₂	1-(2-Cl-3-pyridinyl)-3-Br-5-pyrazolyl	214-216
G12	Н	Et	4,6-Cl ₂	1-(2-Cl-3-pyridinyl)-3-Br-5-pyrazolyl	210-212
G13	Н	i-Pr	4,6-Cl ₂	1-(2-Cl-3-pyridinyl)-3-Br-5-pyrazolyl	208-210
G14	Н	NMe ₂	4,6-Cl ₂	4,6-Cl ₂ -3-NH ₂ -2-pyridinyl	192-194
G15	Me	Me	4,6-Cl ₂	4,6-Cl ₂ -3-NH ₂ -2-pyridinyl	171-172
G16	Н	Н	4,6-Br ₂	1-(2-Cl-3-pyridinyl)-3-Cl-5-pyrazolyl	>240
G17	Н	Me	4,6-Cl ₂	1-(2-Cl-3-pyridinyl)-3-CF ₃ -5-pyrazolyl	
G18	Н	Et	4,6-Cl ₂	1-(2-Cl-3-pyridinyl)-3-CF ₃ -5-pyrazolyl	
G19	Н	<i>i</i> -Pr	4,6-Cl ₂	1-(2-Cl-3-pyridinyl)-3-CF ₃ -5-pyrazolyl	
G20	Н	Н	4,6-Cl ₂	1-(2-Cl-3-pyridinyl)-3-CF ₃ -5-pyrazolyl	
G21	Et	Et	4,6-Cl ₂	1-(2-Cl-3-pyridinyl)-3-CF ₃ -5-pyrazolyl	
G22	Н	Me	4,6-Cl ₂	1-(2-Cl-3-pyridinyl)-3-Cl-5-pyrazolyl	
G23	Н	Et	4,6-Cl ₂	1-(2-Cl-3-pyridinyl)-3-Cl-5-pyrazolyl	
G24	Н	i-Pr	4,6-Cl ₂	1-(2-Cl-3-pyridinyl)-3-Cl-5-pyrazolyl	
G25	Н	NMe ₂	4,6-Cl ₂	1-(2-Cl-3-pyridinyl)-3-CF ₃ -5-pyrazolyl	
G26	Me	Me	4,6-Cl ₂	1-(2-Cl-3-pyridinyl)-3-CF ₃ -5-pyrazolyl	
G27	Me	Me	4,6-Cl ₂	1-(2-Cl-3-pyridinyl)-3-Cl-5-pyrazolyl	
G28	Н	Н	4,6-Cl ₂	l-(2-Cl-3-pyridinyl)-3-Cl-5-pyrazolyl	

191

Compound	<u>R</u> 2	<u>R</u> 3	$(R^4)_{\underline{n}}$	ī	<u>m.p. °C.</u>
G29	Н	NMe ₂	4,6-Cl ₂	1-(2-Cl-3-pyridinyl)-3-Cl-5-pyrazolyl	
G30	Et	Et	4,6-Cl ₂	1-(2-Cl-3-pyridinyl)-3-Cl-5-pyrazolyl	
G31	Н	Me	4,5,6-Cl ₃	1-(2-Cl-3-pyridinyl)-3-CF ₃ -5-pyrazolyl	
G32	Н	Et	4,5,6-Cl ₃	1-(2-Cl-3-pyridinyl)-3-CF ₃ -5-pyrazolyl	
G33	Н	CH ₂ CH ₂ SMe	4,6-Cl ₂	1-(2-Cl-3-pyridinyl)-3-Cl-5-pyrazolyl	

^{*} See Index Table L for ¹H NMR data.

INDEX TABLE H

Compound Hl 2-Me-4-Br-Ph

* See Index Table J for ¹H NMR data.

INDEX TABLE I

Compound	<u>R</u> 2	<u>R</u> 3	$(R^4)_n$	Ī	<u>m.p. °C.</u>
11	Me	Me	4,6-Me ₂	1-(2-Cl-3-pyridinyl)-3-CF ₃ -5-pyrazolyl	244-245*
12	Н	i-Pr	4,6-Me ₂	1-(2-Cl-3-pyridinyl)-3-CF ₃ -5-pyrazolyl	
13	Н	Me	4,6-Me ₂	1-(2-Cl-3-pyridinyl)-3-CF ₃ -5-pyrazolyl	195-197
14	Ме	Me,	4,6-Me ₂	1-(2-Cl-3-pyridinyl)-3-Br-5-pyrazolyl	243-244
15	Н	Me	4,6-Me ₂	1-(2-Cl-3-pyridinyl)-3-Br-5-pyrazolyl	202-204
16 (Ex. 4)	Me	Me	4-Me	1-(2-Cl-3-pyridinyl)-3-Cl-5-pyrazolyl	232-236
17	Н	i-Pr	4-Me	1-(2-Cl-3-pyridinyl)-3-Cl-5-pyrazolyl	87-90
18	Н	i-Pr	4,6-Me ₂	1-(2-Cl-3-pyridinyl)-3-Br-5-pyrazolyl	81-83
19	Н	Me	4-Me	1-(2-Cl-3-pyridinyl)-3-Cl-5-pyrazolyl	205-207

^{*} See Index Table L for ¹H NMR data.

INDEX TABLE J

Compound	<u>R</u> 2	<u>R³</u>	<u>R</u> 4	ī	<u>m.p. °C.</u>
J1	Н	i-Pr	Me	1-(2-Cl-Ph)-3-CF ₃ -5-pyrazolyl	174-176*
J2	Н	i-Pr	Me	1-(2-Cl-3-pyridinyl)-3-CF ₃ -5-pyrazolyl	206-208
J3	Н	Me	Me	1-(2-Cl-Ph)-3-CF ₃ -5-pyrazolyl	166-168
J4	Н	Me	Me	1-(2-Cl-3-pyridinyl)-3-CF ₃ -5-pyrazolyl	176-178
J5	Н	Me	Me	1-(2-Cl-3-pyridinyl)-3-Br-5-pyrazolyl	227-229
Ј8	Н	<i>i</i> -Pr	Me	1-(2-Cl-3-pyridinyl)-3-Br-5-pyrazolyl	172-174

* See Index Table L for ¹H NMR data.

INDEX TABLE K

Compound	\mathbb{R}^2	R ³	<u>R⁴</u>	I .	<u>m.p. °C.</u>
	_			<u>v</u>	
K 1	Н	Me	Me	1-(2-Cl-3-pyridinyl)-3-Br-5-pyrazolyl	224-226*
K2	Н	i-Pr	Me	1-(2-Cl-3-pyridinyl)-3-Br-5-pyrazolyl	168-172
K3	Н	Me	Me	1-(2-Cl-Ph)-3-CF ₃ -5-pyrazolyl	185-190
K4	Н	i-Pr	Me	1-(2-Cl-Ph)-3-CF ₃ -5-pyrazolyl	160-162
K5	Н	Me	Me	1-(2-Cl-3-pyridinyl)-3-CF ₃ -5-pyrazolyl	176-179
K6	Н	<i>i</i> -Pr	Me	1-(2-Cl-3-pyridinyl)-3-CF ₃ -5-pyrazolyl	180-182

• See Index Table L for ¹H NMR data.

193

INDEX TABLE L

¹ H NMR Partial Spectrum Data (CDCl ₃ solution unless indicated otherwise) ^a
10.63 (s,1H), 5.58 (d,1H)
10.55 (s,1H), 5.60 (s,1H)
10.55 (s,1H), 5.58 (d,1H)
9.80 (s,1H), 5.60 (d,1H)
9.68 (s,1H), 5.60 (s,1H)
10.45 (s,1H), 5.60 (d,1H)
9.93 (s,1H), 5.60 (d,1H)
9.90 (s,1H), 5.59 (d,1H)
9.83 (s,1H), 5.60 (s,1H)
9.78 (s,1H), 5.60 (s,1H)
10.57 (s,1H), 5.58 (d,1H)
10.46 (s,1H), 5.60 (s,1H)
9.85 (s,1H), 5.60 (d,1H)
9.82 (s,1H), 5.58 (d,1H)
9.76 (s,1H), 5.62 (s,1H)
9.68 (s,1H), 5.60 (s,1H)
10.19 (s,1H), 5.72 (d,1H)
10.23 (s,1H), 5.71 (d,1H)
10.23 (s,1H), 5.66 (s,1H)
9.50 (s,1H), 5.62 (d,1H)
10.18 (s,1H), 5.67 (s,1H)
10.41 (s,1H), 5.62 (s,1H)
10.36 (s,1H), 5.66 (s,1H)
9.56 (s,1H), 5.54 (d,1H)
9.56 (s,1H), 5.53 (d,1H)
12.2 (brs,1H), 6.0 (s,1H)
10.10 (s,1H), 6.24 (s,1H)
10.08 (s,1H), 6.30 (s,1H)
8.36 (m,3H), 7.94 (d,1H), 7.79 (d,2H), 4.36 (m,1H), 1.32 (d,6H)
10.05,1H), 6.16 (d,1H)
7.75 (d,1H), 7.67 (s,1H)
8.23 (s,1H), 7.77 (d,1H)
(DMSO-d ₆) 10.8 (m,1H), 9.5 (s,1H)
(DMSO-d ₆) 10.5 (s,1H)
$(DMSO-d_6)$ 10.9 (s,1H)
(DMSO- d_6) 13.4 (brs,1H)

10

15

E27	9.0 (s,1H), 6.2 (m,1H)
E28	9.25 (s,1H), 6.18 (m,1H)
E29	(DMSO-d ₆) 10.9 (s,1H), 8.55 (m,1H)
E30	9.3 (s,1H), 6.25 (t,1H)
E31	(DMSO-d ₆) 10.75 (s,1H), 8.55 (m,1H)
E32	(DMSO-d ₆) 13.5 (brs,1H)
E33	(DMSO-d ₆) 10.9 (m,1H), 9.6 (s,1H)
E34	9.5 (brs,1H), 6.05 (d,1H)
E35	(DMSO-d ₆) 10.9 (s,1H), 6.66 (m,1H)
E36	10.3 (s,1H)
Fi	11.56 (s,1H), 8.41 (d,1H)
G1	11.97 (s,1H)
H1	5.56 (d,1H)

a 1H NMR data are in ppm downfield from tetramethylsilane. Couplings are designated by (s)-singlet, (d)-doublet, (t)-triplet, (q)-quartet, (m)-multiplet, (dd)-doublet of doublets, (dt)-doublet of triplets, (br s)-broad singlet.

BIOLOGICAL EXAMPLES OF THE INVENTION TEST A

For evaluating control of diamondback moth (*Plutella xylostella*) the test unit consisted of a small open container with a 12–14-day-old radish plant inside. This was pre-infested with 10–15 neonate larvae on a piece of insect diet by use of a core sampler to remove a plug from a sheet of hardened insect diet having many larvae growing on it and transfer the plug containing larvae and diet to the test unit. The larvae moved onto the test plant as the diet plug dried out.

Test compounds were formulated using a solution containing 10% acetone, 90% water and 300 ppm X-77® Spreader Lo-Foam Formula non-ionic surfactant containing alkylarylpolyoxyethylene, free fatty acids, glycols and isopropanol (Loveland Industries, Inc.), unless otherwise indicated. The formulated compounds were applied in 1 mL of liquid through a SUJ2 atomizer nozzle with 1/8 JJ custom body (Spraying Systems Co.) positioned 1.27 cm (0.5 inches) above the top of each test unit. All experimental compounds in these tests were sprayed at 250 ppm and replicated three times. After spraying of the formulated test compound, each test unit was allowed to dry for 1 hour and then a black, screened cap was placed on top. The test units were held for 6 days in a growth chamber at 25 °C and 70% relative humidity. Plant feeding damage was then visually assessed based on foliage consumed.

Of the compounds tested the following provided very good to excellent levels of plant protection (ratings of 0-1, 10% or less feeding damage): 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 15,

195

16, 19, 20, 21, 22, 23, 24, 30, 31, 32, 33, 34, 36, 37, 38, B1, B3, B5, B11, B12, B15, C1, C2, C3, C7, C9, C24, D1, D3, D4, D5, D6, D7, D8, D10, D11, D12, D13, D14, D18, D19, D20, D21, E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, E16, E17, E19, E20, E21, E22, G1, G2, G4, G5, G6, G7, G8, G9, G10, G11, G12, G13, J6, K1 and K2.

TEST B

5

10

15

20

25

30

35

For evaluating control of fall armyworm (Spodoptera frugiperda) the test unit consisted of a small open container with a 4-5-day-old corn (maize) plant inside. This was pre-infested (using a core sampler) with 10-15 1-day-old larvae on a piece of insect diet.

Test compounds were formulated and sprayed at 250 ppm as described for Test A. The applications were replicated three times. After spraying, the test units were maintained in a growth chamber and then visually rated as described for Test A.

Of the compounds tested, the following provided excellent levels of plant protection (10% or less feeding damage): 30, 31, 32, 33, 34, 35, 36, B10, B11, B12, B13, B14, D1, D3, D7,D8, D10,D11, D14, D15, E5, E6, E7, E9, E10, E11, E12, E13, E22, G2, G4, G5, G6, G7, G9, G10, G11, G12, G13, J6 and K2.

TEST C

For evaluating control of tobacco budworm (*Heliothis virescens*) the test unit consisted of a small open container with a 6-7 day old cotton plant inside. This was preinfested (using a core sampler) with 8 2-day-old larvae on a piece of insect diet.

Test compounds were formulated and sprayed at 250 ppm as described for Test A. The applications were replicated three times. After spraying, the test units were maintained in a growth chamber and then visually rated as described for Test A.

Of the compounds tested, the following provided very good to excellent levels of plant protection (20% or less feeding damage): 31, 32, 33, 34, 35, 36, 37, B12, B13, B14, B15, D1, D4, D5, D6, D8, D10, D11, D12, D13, D14, D15, D18, D19, D20, D21, E5, E6, E7, E9, E10, E12, E15, E20, E21, E22, G2, G5, G6, G7, G8, G9, G10, G11, G12, and G13.

TEST D

For evaluating control of beet armyworm (*Spodoptera exigua*) the test unit consisted of a small open container with a 4–5-day-old corn plant inside. This was pre-infested (using a core sampler) with 10–15 1-day-old larvae on a piece of insect diet.

Test compounds were formulated and sprayed at 250 ppm as described for Test A. The applications were replicated three times. After spraying, the test units were maintained in a growth chamber and then visually rated as described for Test A.

Of the compounds tested, the following provided very good to excellent levels of plant protection (20% or less feeding damage): 31, 32, 34, B13, B15, D1, D3, D4, D7, D8, D10, D11, D14, D19, E5, E6, E7, E9, E10, E15, E22, G1, G2, G4, G5, G6, G7, G9, G10, G11, G12, G13, D20, J6 and K2.

196

TEST E

For evaluating control of green peach aphid (*Myzus persicae*) through contact and/or systemic means, the test unit consisted of a small open container with a 12–15-day-old radish plant inside. This was pre-infested (using the cut leaf method) with 30–40 insects on each piece of leaf, and the soil was covered with a layer of sand.

5

10

15

Test compounds were formulated and sprayed at 250 ppm as described for Test A. The applications were replicated three times. After spraying, the test units were maintained in a growth chamber and then visually assessed for insect mortality.

Of the compounds tested, the following resulted in at least 80% mortality: C48, E13, E14, E16, G4, G9, G10, G11 and G13.

TEST F

For evaluating control of cotton melon aphid (*Aphis gossypii*) through contact and/or systemic means, the test unit consisted of a small open container with a 6–7-day-old cotton plant inside. This was pre-infested (using the cut leaf method) with 30–40 insects on each piece of leaf, and the soil was covered with a layer of sand.

Test compounds were formulated and sprayed at 250 ppm as described for Test A. The applications were replicated three times. After spraying, the test units were maintained in a growth chamber and then visually rated as described for Test E.

Of the compounds tested, the following resulted in at least 80% mortality: E9.

CLAIMS

What is claimed is:

1. A compound of Formula I, an N-oxide thereof or suitable salt thereof

$$(R^4)_n$$
 K
 R^2
 R^3

5 wherein

10

15

20

25

30

A and B are independently O or S;

each J is independently a phenyl ring, a naphthyl ring system, a 5- or 6-membered heteroaromatic ring or an aromatic 8-, 9- or 10-membered fused heterobicyclic ring system wherein each ring or ring system is optionally substituted with 1 to 4 R⁵:

K is, together with the two contiguous linking carbon atoms, a 5- or 6-membered heteroaromatic ring optionally substituted with 1 to 3 R⁴;

n is 1 to 3;

R¹ is H; or C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl or C₃-C₆ cycloalkyl each optionally substituted with one or more substituents selected from the group consisting of halogen, CN, NO₂, hydroxy, C₁-C₄ alkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₂-C₄ alkoxycarbonyl, C₁-C₄ alkylamino, C₂-C₈ dialkylamino and C₃-C₆ cycloalkylamino; or

R¹ is C₂-C₆ alkylcarbonyl, C₂-C₆ alkoxycarbonyl, C₂-C₆ alkylaminocarbonyl, C₃-C₈ dialkylaminocarbonyl or C(=A)J;

R² is H, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₆ cycloalkyl, C₁-C₄ alkoxy, C₁-C₄ alkylamino, C₂-C₈ dialkylamino, C₃-C₆ cycloalkylamino, C₂-C₆ alkoxycarbonyl or C₂-C₆ alkylcarbonyl;

R³ is H; G; or C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₆ cycloalkyl, each optionally substituted with one or more substituents selected from the group consisting of G, halogen, CN, NO₂, hydroxy, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₂-C₆ alkoxycarbonyl, C₂-C₆ alkylcarbonyl, C₃-C₆ trialkylsilyl, or a phenyl, phenoxy or 5- or 6-membered heteroaromatic ring, each ring optionally substituted with one to three substituents independently selected from R⁶; or

10

15

20

25

30

35

- R² and R³ can be taken together with the nitrogen to which they are attached to form a ring containing 2 to 6 atoms of carbon and optionally one additional atom of nitrogen, sulfur or oxygen, and said ring may be optionally substituted with one to four substituents selected from R¹²; and
- G is a 5- or 6-membered nonaromatic carbocyclic or heterocyclic ring, optionally including one or two ring members selected from the group consisting of C(=O), SO or S(O)₂ and optionally substituted with one to four substituents selected from R¹²;
- each R⁴ is independently H, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₆ cycloalkyl, C₁-C₆ haloalkyl, C₂-C₆ haloalkenyl, C₂-C₆ haloalkynyl, C₃-C₆ halocycloalkyl, halogen, CN, NO₂, hydroxy, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₁-C₄ haloalkylthio, C₁-C₄ haloalkylsulfinyl, C₁-C₄ haloalkylsulfonyl, C₁-C₄ alkylamino, C₂-C₈ dialkylamino, C₃-C₆ cycloalkylamino, C₁-C₄ alkoxyalkyl, C₁-C₄ hydroxyalkyl, C(O)R¹⁰, CO₂R¹⁰, C(O)NR¹⁰R¹¹, NR¹⁰R¹¹, N(R¹¹)CO₂R¹⁰; or
 - each R⁴ is independently a phenyl, benzyl, phenoxy or 5- or 6-membered heteroaromatic ring, each ring optionally substituted with one to three substituents independently selected from R⁶;
- each R⁵ is independently H, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₆ cycloalkyl, C₁-C₆ haloalkyl, C₂-C₆ haloalkenyl, C₂-C₆ haloalkynyl, C₃-C₆ halocycloalkyl, halogen, CN, CO₂H, CONH₂, NO₂, hydroxy, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₁-C₄ haloalkylthio, C₁-C₄ haloalkylsulfonyl, C₁-C₄ alkylamino, C₂-C₆ dialkylamino, C₃-C₆ cycloalkylamino, C₂-C₆ alkylcarbonyl, C₂-C₆ alkoxycarbonyl, C₂-C₆ alkylaminocarbonyl, C₃-C₈ dialkylsilyl; or
- each R⁵ is independently a phenyl, benzyl, benzyl, phenoxy, 5- or 6-membered heteroaromatic ring or an aromatic 8-, 9- or 10-membered fused heterobicyclic ring system, each ring or ring system optionally substituted with one to three substituents independently selected from R⁶; or
- (R⁵)₂ when attached to adjacent carbon atoms can be taken together as -OCF₂O-, -CF₂CF₂O-, or -OCF₂CF₂O-; and
- each R⁶ is independently C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₃-C₆ cycloalkyl, C₁-C₄ haloalkyl, C₂-C₄ haloalkenyl, C₂-C₄ haloalkynyl, C₃-C₆ halocycloalkyl, halogen, CN, NO₂, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₁-C₄ alkylamino, C₂-C₈ dialkylamino, C₃-C₆ cycloalkylamino, C₃-C₆ (alkyl)cycloalkylamino, C₂-C₄

10

15

20

25

30

alkylcarbonyl, C₂-C₆ alkoxycarbonyl, C₂-C₆ alkylaminocarbonyl, C₃-C₈ dialkylaminocarbonyl or C₃-C₆ trialkylsilyl;

each R^{10} is independently H, C_1 – C_4 alkyl or C_1 – C_4 haloalkyl; each R^{11} is independently H or C_1 – C_4 alkyl; and

each R¹² is independently C₁-C₂ alkyl, halogen, CN, NO₂ or C₁-C₂ alkoxy.

- 2. The compound of Claim 1 wherein A and B are both O and J is a phenyl ring optionally substituted with 1 to 4 R⁵.
 - 3. The compound of Claim 2 wherein
 - each R⁴ is independently C₁-C₄ alkyl, C₁-C₄ haloalkyl, halogen, CN, NO₂ or C₁-C₄ alkoxy, and one R⁴ group is attached to the K ring at the atom adjacent to either the NR¹C(=A)J moiety or the C(=B)NR²R³ moiety; and
 - each R⁵ is independently H, halogen, C₁-C₄ alkyl, C₁-C₂ alkoxy, C₁-C₄ haloalkyl, CN, NO₂, C₁-C₄ haloalkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfinyl, C₁-C₄ haloalkylsulfinyl, C₁-C₄ haloalkylsulfinyl or C₂-C₄ alkoxycarbonyl; or
 - each R⁵ is independently a phenyl or a 5- or 6-membered heteroaromatic ring, each ring optionally substituted with one to three substituents independently selected from R⁶; or
 - (R⁵)₂ when attached to adjacent carbon atoms can be taken together as -OCF₂O-, -CF₂CF₂O- or -OCF₂CF₂O-.
 - 4. The compound of Claim 3 wherein

R1 is H;

 \mathbb{R}^2 is H or \mathbb{CH}_3 ;

- R³ is C₁-C₄ alkyl optionally substituted with one or more substituents independently selected from halogen, CN, OCH₃ or S(O)_pCH₃;
- each R⁴ is independently CH₃, CF₃, CN or halogen, and one R⁴ group is attached to the K ring at the atom adjacent to the NR¹C(=A)J moiety;
- each R⁵ is independently H, halogen, methyl, CF₃, OCF₃, OCHF₂, S(O)_pCF₃, S(O)_pCHF₂, OCH₂CF₃, OCF₂CHF₂, S(O)_pCH₂CF₃ or S(O)_pCF₂CHF₂; or a phenyl, pyrazole, imidazole, triazole, pyridine or pyrimidine ring, each ring optionally substituted with one to three substituents independently selected from C₁-C₄ alkyl, C₁-C₄ haloalkyl, halogen or CN; and

p is 0, 1 or 2.

- 5. The compound of Claim 4 wherein R^3 is C_1 - C_4 alkyl.
- 35 6. The compound of Claim 1 wherein

A and B are both O;

J is a 5- or 6-membered heteroaromatic ring selected from the group consisting of J-1, J-2, J-3, J-4 and J-5, each J optionally substituted with 1 to 3 R⁵

10

15

200

Q is O, S or NR5; and

W, X, Y and Z are independently N or CR⁵, provided that in J-4 and J-5 at least one of W, X, Y or Z is N.

7. The compound of Claim 6 wherein

each R⁴ is independently C₁-C₄ alkyl, C₁-C₄ haloalkyl, halogen, CN, NO₂ or C₁-C₄ alkoxy, and one R⁴ group is attached to the K ring at the atom adjacent to either the NR¹C(=A)J moiety or the C(=B)NR²R³ moiety; and

each R⁵ is independently H, C₁-C₄ alkyl, C₁-C₄ haloalkyl, halogen, CN, NO₂, C₁-C₄ haloalkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₁-C₄ haloalkylthio, C₁-C₄ haloalkylsulfinyl, C₁-C₄ haloalkylsulfonyl or C₂-C₄ alkoxycarbonyl; or a phenyl or a 5- or 6-membered heteroaromatic ring, each ring optionally substituted with R⁶.

8. The compound of Claim 7 wherein

J substituted with 1 to 3 R⁵ is selected from the group consisting of J-6, J-7, J-8, J-9, J-10, J-11, J-12 and J-13

R⁵ is H, C₁-C₄ alkyl, C₁-C₄ haloalkyl, or

V is N, CH, CF, CCl, CBr or CI;

each R⁶ and R⁷ is independently H, C₁-C₆ alkyl, C₃-C₆ cycloalkyl, C₁-C₆ haloalkyl, halogen, CN, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy or C₁-C₄ haloalkylthio; and

- R⁹ is H, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₆ alkenyl, C₃-C₆ haloalkenyl, C₃-C₆ alkynyl or C₃-C₆ haloalkynyl; provided R⁷ and R⁹ are not both H.
 - 9. The compound of Claim 8 wherein V is N.
 - 10. The compound of Claim 8 wherein V is CH, CF, CCl or CBr.
 - 11. The compound of Claim 9 or Claim 10 wherein

 R^1 is H;

5

15

20

R² is H or CH₃;

R³ is C₁-C₄ alkyl optionally substituted with one or more substituents independently selected from halogen, CN, OCH₃ or S(O)_pCH₃;

each R⁴ is independently CH₃, CF₃, CN or halogen, and one R⁴ group is attached to the K ring at the atom adjacent to the NR¹C(=A)J moiety;

R6 is C1-C4 alkyl, C1-C4 haloalkyl, halogen or CN;

R⁷ is H, CH₃, CF₃, OCH₂CF₃, OCHF₂ or halogen; and p is 0, 1 or 2.

- 12. The compound of Claim 11 wherein R³ is C₁-C₄ alkyl; one R⁴ group is independently CH₃, Cl, Br or I and is attached to the K ring at the atom adjacent to the NR¹C(=A)J moiety; and a second optional R⁴ is H, F, Cl, Br, I or CF₃.
 - 13. The compound of Claim 12 wherein J substituted with 1 to 3 R⁵ is J-6; R⁶ is Cl or Br; and R⁷ is halogen, OCH₂CF₃ or CF₃.
- 14. The compound of Claim 13 wherein V is N; R³ is methyl, ethyl, isopropyl, tertiary butyl or N(CH₃)₂; and R⁷ is Br, Cl, OCH₂CF₃, or CF₃.
 - 15. The compound of Claim 12 wherein J substituted with 1 to 3 R⁵ is J-7; R⁶ is Cl or Br; and R⁹ is CF₃, CHF₂, CH₂CF₃ or CF₂CHF₂.
 - 16. The compound of Claim 12 wherein J substituted with 1 to 3 R⁵ is J-8; R⁶ is Cl or Br; and R⁷ is halogen, OCH₂CF₃ or CF₃.
- 30 17. The compound of Claim 12 wherein J substituted with 1 to 3 R⁵ is J-9; R⁶ is Cl or Br; and R⁷ is OCH₂CF₃ or CF₃.
 - 18. The compound of Claim 12 wherein J substituted with 1 to 3 R⁵ is J-10; R⁶ is Cl or Br; and R⁹ is CF₃, CHF₂, CH₂CF₃ or CF₂CHF₂.

15

25

35

- The compound of Claim 12 wherein J substituted with 1 to 3 R⁵ is J-11; R⁶ is Cl 19. or Br; and R⁷ is halogen, OCH₂CF₃ or CF₃.
- The compound of Claim 12 wherein J substituted with 1 to 3 R⁵ is J-12; R⁶ is Cl or Br; R7 is H, halogen or CF3, and R9 is H, CF3, CHF2, CH2CF3, or CF2CHF2.
- The compound of Claim 12 wherein J substituted with 1 to 3 R⁵ is J-13; R⁶ is Cl 21. or Br; R7 is H, halogen or CF3, and R9 is H, CF3, CHF2, CH2CF3 or CF2CHF2.
 - The compound of Claim 1 selected from the group consisting of: 4-[[[1-(2-Chlorophenyl)-3-(trifluoromethyl)-1H-pyrazol-5-yl]carbonyl]amino]-5methyl-N-1-methylethyl)-3-pyridincarboxamide,
- 4-Methyl-N-(1-methylethyl)-3-[[2-methyl-4-(trifluoromethyl)benzoyl]amino]-2-10 thiophencarboxamide,
 - 1-Methyl-N-(1-methylethyl)-5-[[4-(trifluoromethyl)benzoyl]amino]-1H-pyrazole-4carboxamide;
 - 4-[[[3-Bromo-1-(3-chloro-2-pyridinyl)-1H-pyrazol-5-yl]carbonyl]amino]-5-chloro-N-methyl-3-pyridinecarboxamide;
 - 3-[[[3-Bromo-1-(3-chloro-2-pyridinyl)-1H-pyrazol-5-yl]carbonyl]amino]-2,6dichloro-N-methyl-4-pyridinecarboxamide;
 - 2,6-dichloro-3-[[[1-(3-chloro-2-pyridinyl)-3-(trifluoromethyl)-1H-pyrazol-5yl]carbonyl]amino]-N-(1-methylethyl)- 4-pyridinecarboxamide;
- 3-[[[3-Bromo-1-(3-chloro-2-pyridinyl)-1H-pyrazol-5-yl]carbonyl]amino]-6-chloro-20 N,4-dimethyl-2-pyridinecarboxamide;
 - 3-[[[3-Bromo-1-(3-chloro-2-pyridinyl)-1H-pyrazol-5-yl]carbonyl]amino]-4,6dichloro-N-methyl-2-pyridinecarboxamide;
 - 5-[[[3-Chloro-1-(3-chloro-2-pyridinyl)-1H-pyrazol-5-yl]carbonyl]amino]-N,6dimethyl-4-pyrimidinecarboxamide; and
 - 5-[[[3-Bromo-1-(3-chloro-2-pyridinyl)-1H-pyrazol-5-yl]carbonyl]amino]-N,N,2,6tetramethyl-4-pyridinecarboxamide.
- A method for controlling an invertebrate pest comprising contacting the 23. invertebrate pest or its environment with a biologically effective amount of a compound of 30 Claim 1.
 - The method of Claim 23 further comprising a biologically effective amount of at 24. least one additional compound or agent for controlling invertebrate pests.
 - A composition for controlling an invertebrate pest comprising a biologically 25. effective amount of a compound of Claim 1 and at least one additional component selected from the group consisting of surfactants, solid diluents and liquid diluents.
 - 26. The composition of Claim 25 further comprising a biologically effective amount of at least one additional compound or agent for controlling invertebrate pests.

INTERNATIONAL SEARCH REPORT

Inter 1al Application No PCT/US 02/06582

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C07D213/82 C07D231/40 C07D333/38 C07D403/12 C07D401/14 C07D401/12 C07D213/81 CO7D413/12 CO7D409/14 C07D409/12 According to International Patent Classification (IPC) or to both national classification and IPC Minimum documentation searched (classification system followed by classification symbols) IPC 7 C07D Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, CHEM ABS Data, WPI Data, PAJ C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. X EP 0 289 879 A (MITSUBISHI CHEM IND) 1-26 9 November 1988 (1988-11-09) compound no. 86 page 12, line 44 - line 54; claims 1,4 X US 5 538 939 A (MUENSTER PETER ET AL) 1-22,25. 23 July 1996 (1996-07-23) 26 column 1, line 5 -column 2, line 12 column 15 -column 18 column 9, line 65 -column 10, line 11 X PATENT ABSTRACTS OF JAPAN 1-22,25, vol. 017, no. 689 (C-1143) 26 16 December 1993 (1993-12-16) -& JP 05 230016 A (TAKEDA CHEM IND LTD). 7 September 1993 (1993-09-07) abstract page 14 -page 46 Further documents are listed in the continuation of box C. Patent family members are listed in annex. * Special categories of cited documents: "T" later document published after the International filing date or priority date and not in conflict with the application but clied to understand the principle or theory underlying the *A* document defining the general state of the art which is not considered to be of particular relevance. "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) involve an inventive step when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-*O* document referring to an oral disclosure, use, exhibition or other means ments, such combination being obvious to a person skilled in the art. *P* document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 17 July 2002 24/07/2002 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Seymour, L

INTERNATIONAL SEARCH REPORT

Interi nal Application No PCT/US 02/06582

		1/05 02/00582
	INTERPOLATION DOCUMENTS CONSIDERED TO BE RELEVANT	Delayant to claim \$15
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 4 565 875 A (CAVENDER PATRICIA L) 21 January 1986 (1986-01-21) column 2, line 12 -column 3, line 64; table I	1-22,25, 26
P,A	WO 01 70671 A (DU PONT ;LAHM GEORGE P (US); MYERS BRIAN J (US); SELBY THOMAS P (U) 27 September 2001 (2001-09-27) cited in the application the whole document	1-26
		·
	· .	
i		

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

The initial phase of the search revealed a very large number of documents relevant to the issue of novelty. So many documents were retrieved that it is impossible to determine which parts of the claims may be said to define subject-matter for which protection might legitimately be sought (Article 6 PCT). For these reasons, a meaningful search over the whole breadth of the claims is impossible. Consequently, the search has been restricted to compounds of formula I used in pest control.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

INTERNATIONAL SEARCH REPORT

ational application No. PCT/US 02/06582

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
DUX I	Costs and to the column column and to the column column and the co
This inte	ernational Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
	Although claims 23 and 24 include a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
2. X	Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful international Search can be carried out, specifically:
	see FURTHER INFORMATION sheet PCT/ISA/210
3. 🗀	Claims Nos.:
۳.	because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This inte	rmational Searching Authority found multiple inventions in this international application, as follows:
1.	As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
з. 🗀	As only some of the required additional search fees were timely paid by the applicant, this international Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4.	No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark	on Protest The additional search fees were accompanied by the applicant's protest.
	No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

Information on patent family members

Interr 1al Application No PCT/US 02/06582

					T
Patent document cited in search report		Publication date		Patent family member(s)	Publication date
EP 0289879	A	09-11-1988	AT	86979 T	15-04-1993
			BR	8802011 A	21-11-1989
			CA	1330342 A1	21-06-1994
			CN	88102427 A ,B	09-11-1988
			DE	3879262 D1	22-04-1993
			DE	3879262 T2	02-09-1993
			EP	0289879 A1	09-11-1988
			ES	2053611 T3	01-08-1994
			IN	166898 A1	04-08-1990
			JP	1025763 A	27-01-1989
			JP	1838897 C	25-04-1994
			JP	5051582 B	03-08-1993
			KR	9509363 B1	21-08-1995
			PT	87302 A ,B	01-05-1988
			US	4950668 A	21-08-1990
			ZA	8802738 A	17-10-1988
US 5538939	A	23-07-1996	DE	4328425 A1	02-03-1995
			CA	2130620 A1	25-02-1995
			DE	59408425 D1	29-07-1999
			EP ,	0640597 A1	01-03-1995
JP 05230016	A	07-09-1993	NONE		
US 4565875	Α	21-01-1986	AU	4541185 A	24-01-1986
			CA	1266666 A1	13-03-1990
		•	EP	0189458 A1	06-08-1986
	•		WO	8600305 A1	16-01-1986
			ZA	8504713 A	26-02-1986
WO 0170671	A	27-09-2001	AU	5094601 A	03-10-2001
			WO	0170671 A2	27-09-2001