Einführung in die Ökologie SS 2008

Elisabeth Kalko
Experimentelle Ökologie der
Tiere Bio III
Universität Ulm

Nutzung von Patches

Austernfischer

Schwarz: Territorien der Ansässigen;
Nist- und Futterplatz
zusammen
Hellgrau: Territorien
der "Springer"; Nistund Futterplatz getrennt

Nutzung von Patches: Grenzertragstheorem

- Länge der Aufenthaltsdauer eines Organismus in einem Nahrungsgebiet (patch) wird durch Energieaufnahmerate definiert, die beim Verlassen des Patches vorliegt (Grenzertrag)
- Hängt unter anderem ab von:
 - Profitabilität eines Patches
 - Ergiebigkeit des gesamten Habitats
 - Entfernung zwischen Patches

Grenzertragstheorem

- - - kumulative Energieaufnahme____ Energieaufnahme pro Zeit

Grenzertragstheorem

- t = Migrationszeit zwischen patches
- s =Aufenthaltsdauer

Grenzertragstheorem

- Patches mit geringer Ergiebigkeit sollten früher verlassen werden als Patches mit hoher Ergiebigkeit
- Bei kurzen Migrationszeiten sollten Patches früher verlassen werden als bei längeren.

Ideal-freie Verteilung

- Konsumenten: Aggregation in ergiebigen Patches (hohe Frassrate). ABER: dadurch auch Konkurrenz um Nahrung
- Umverteilung der Prädatoren, bis Ergiebigkeit der Patches gleich
- Konsequenz: mehr Prädatoren an ergiebigen Stellen als an unergiebigen Stelle. Dies schaltet Interferenzkonkurrenz jedoch nicht komplett aus.

Ideal-freie Verteilung

Verteilung von 33 Enten an zwei Stellen; Fütterung mit Brot im Mengenverhältnis 1:2

Individuelle Variabilität

 Organismen, die ihre Nährstoffe von anderen Organismen beziehen und dabei den Wirt schädigen und langfristig töten (Parasiten) oder die ihren Wirt kurzfristig abtöten (Parasitoide)

- Mikroparasiten: klein, zahlreich, direkte Vermehrung im Wirt, meist in Zellen. Übertragung direkt oder über Vektoren.
 - Bakterien, Viren, Protozoen
 (Trypanosomen: Schlafkrankheit;
 Plasmodium spp.: Malaria)

- Makroparasiten: wachsen in oder auf Wirt, vermehren sich jedoch dort meist nicht, bilden infektiöse Stadien. Indirekte Vermehrung über Zwischenwirte. Wiederinfektion des Endwirtes.
 - Eingeweidewürmer: Bandwürmer
 (Plathelminthes: Cestoda); Saugwürmer
 (Trematoden: Schistosoma, Leberegel);
 Faden- /Rundwürmer (Nematoden)
 - Läuse, Flöhe, Zecken, Milben, Pilze

- Ektoparasiten: leben auf Wirt und ernähren sich von dessen Substanzen
- Endoparasiten: leben in Wirt und ernähren sich von dessen Substanzen

Fledermausfliege Ektoparasit

- Nektotrophe Parasiten: töten Wirt ab und leben auf ihm weiter (saprotroph), Bsp. Schafgoldfliege (*Lucilia cuprina*) oder Krötenfliege (*Lucilia bufonivora*)
- Biotrophe Parasiten: Wirt muss lebendig sein

Goldfliege

Krötenfliege

- Pathogene: Krankheitserreger
- Parasiten versus Kommensalen:
 Kommensalen rufen keine Reaktion des Wirtes hervor

Biotrophe Parasiten

 Konkurrenz mit Wirt um Ressourcen, führt langfristig in den meisten Fällen zu früherem Absterben des Wirtes

Biotrophe Parasiten

- Konkurrenz mit Wirt um Ressourcen, führt langfristig in den meisten Fällen zu früherem Absterben des Wirtes
- Parasitierung: Verringerung von Konkurrenzfähigkeit, Fruchtbarkeit und/oder Wachstum (Fitness)
- Fallbeispiel Rauchschwalben: Wie kann die Fitness eines Organismus erkannt werden?

Rauchschwalbe

Rauchschwalbe

- Länge der Schwanzspiesse unterschiedlich zwischen Männchen (länger) und Weibchen (kürzer)
- Weibchen wählen Männchen mit langen, symmetrischen Schwanzspiessen aus
- Asymmetrie der Schwanzspiesse spiegelt Parasitenbefall wider

Parasiten: Populationsstruktur und Dynamik

- Habitat eines Parasiten: der Wirtein lebendiger Lebensraum, der aktiv auf die Anwesenheit von Parasiten reagiert (siehe z. B. Immunantwort)
- Spezifität von Wirten: oft hochgradige
 Spezialisierung auf einen Wirt bzw. Genotyp.

Parasiten: Populationsstruktur und Dynamik

- Ausbreitung und Kolonisierung von Wirts"patches":
 - Übertragungs- und Infektionsrate hängt von einer Vielzahl von Faktoren ab:
 - Jahreszeit
 - Fitneß des Wirtes
 - Entfernung der Wirte (Bsp. windverbreitete Pathogene)

Dynamik von Parasitenpopulationen innerhalb von Wirten

- Inter- und intraspezifische Konkurrenz von Parasiten um Ressourcen in bestimmten Wirtsteilen
- dichteabhängige Regulation der Wachstums-, Geburts- und Sterberaten der Parasiten
- "Übervölkerung" führt z. B. zu verringerter Eiproduktion trotz hoher Parasitenzahl
- ABER: nicht nur Konkurrenzphänomene beteiligt, sondern auch Antworten des Wirtes

Dichteabhängige Vermehrung von Parasitenpopulationen

Abhängigkeit der Befallsintensität von Sozialstruktur der Wirte

 Vorhersage: soziale Arten sollten stärker parasitiert sein und höhere Parasitendiversität aufweisen als solitär lebende Arten aufgrund erhöhter Übertragungsmöglichkeiten.

Abhängigkeit der Befallsintensität von Sozialstruktur der Wirte

- Vorhersage: soziale Arten sollten stärker parasitiert sein und höhere Parasitendiversität aufweisen als solitär lebende Arten aufgrund erhöhter Übertragungsmöglichkeiten.
- Aber: dies sollte nicht für Parasiten gelten, die sich über Zwischenwirte vermehren

Artenreichtum der Parasitenfauna in Abhängigkeit von der Lebensform des Wirtes

Artenreichtum der Parasitenfauna in Abhängigkeit von der Lebensform des Wirtes

Cyprinidae: größeres Verbreitungsgebiet, höhere Parasitenlast bei solitären und sozialen Formen

Artenreichtum der Parasitenfauna in Abhängigkeit von der Lebensform des Wirtes

Parasiten ändern das Verhalten ihrer Wirte

- Zur Erhöhung der Übertragungs (Infektions)rate werden Verhaltensänderungen im Wirt induziert:
 - Bsp. Fühlersignal durch Sporocysten von *Leucochloridium* (Plathelminthes) bei der Bernsteinschnecke (*Succinea*) zur Aufnahme von Vögeln (Endwirt)

Leucochloridium in Bernsteinschnecke Succinea

Parasiten ändern das Verhalten ihrer Wirte

 Beißkrampf von Ameisen an Spitzen von Grashalmen bei der Übertragung von den Metacercarien des Kleinen Leberegels (Plathelminthes: *Dicrocoelium dentriticum*) auf Schafe The life cycle of *Plagiorhynchus*

cylindraceus.

Adult female Plagiorhynchus lays eggs within the intestines of infected birds. The eggs are shed with feces.

A terrestrial isopod eats the feces of an infected bird. The eggs of *Plagiorhynchus* hatch within a few hours; they develop into a mature larva in 60-65 days.

Darmparasit (Acaonthocephala, Kratzer)

Leaving shelter makes the isopods more conspicuous and vulnerable to predation by birds. When eaten by a bird, the mature Plagiorhynchus attaches to the bird's intestinal wall.

The mature larvae of Plagiorhynchus alter isopod behavior; infected isopods leave sheltered areas and wander in the open. Starling predation on uninfected and infected

vulgare

Probably because of their more conspicuous behavior, a higher proportion of isopods infected with Plagiorhynchus were eaten by starlings.

Einfluß Befallsintensität von Parasiten auf Sterberate des Wirtes

Stechmücke (Aedes) & Nematode

Schafe & Leberegel Bevölkerungskurve (Fasciola hepatica)

Wie reagieren Wirtspopulationen auf Parasitierung?

- Dynamik hängt von der Fitness des Wirtes und der Infektionsrate durch den Parasiten ab. Jedoch: schwierig, dies im Freiland nachzuweisen, da Populationen in heterogener Umwelt leben
- Einsatz von Wirt-Parasit/ Pathogen/Parasitoid Beziehungen zur Schädlingskontrolle?

Regulation Populationsgrößen durch Parasiten?

- Populationsdichte Wirt in Abwesenheit von Parasit selbst reguliert (intraspezifische Konkurrenz)
- Persistenz von Erreger in Wirtspopulation nur möglich, wenn er selbst keine zu großen Dichten erreicht, sonst Aussterben durch intraspezifische Konkurrenz

Mögliche Ergebnisse von Parasit/Wirt Interaktionen

- Bei Abwesenheit vom Erreger liegt Wirtspopulation bei Umweltkapazität
- Bei Anwesenheit von Erreger:
 - Herunterregulierung des Wirts auf stabile
 Dichte unter Umweltkapazität
 - Wirt und Pathogen durchlaufen regelmäßige Häufigkeitszyklen

Reduktion der Populationsgröße von Wirten bei Infektionen

Rotbrauner Reismehlkäfer (*Tribolium*) & Protozoen

Dörrobstmotte und Granulosevirus

Einsatz von Parasitoiden und Pathogenen zur Schädlingsbekämpfung

- Ziel: Herunterregulierung der Populationsdichte der "Schädlinge"; Verbleiben des Parasitoids/Pathogens in Population, um Massenentwicklung zu verhindern.
- Parasitoid/Pathogen sollte stark genug sein, um Population herunterzuregeln, aber nicht vollständig zum Absterben bringen, denn dann stirbt auch Parasitoid/Pathogen aus und eine neu aufkommende Wirts(Schädlings)population hat "freie Bahn".