Lorena Silva Sampaio,	Samira	Haddad
-----------------------	--------	--------

Análise e Implementação de Algoritmos de Busca de uma r-Arborescência Inversa de Custo Mínimo em Grafos Dirigidos com Aplicação Didática Interativa

Lorena Silva Sampaio, Samira Haddad

Análise e Implementação de Algoritmos de Busca de uma r-Arborescência Inversa de Custo Mínimo em Grafos Dirigidos com Aplicação Didática Interativa

Dissertação apresentada ao Programa de Pós-Graduação como requisito parcial para obtenção do título de Mestre.

Universidade Faculdade Programa de Pós-Graduação

Orientador: Prof. Dr. Mário Leston

Brasil

2025

Agradecimentos

Agradecimentos (opcional).

Resumo

Este trabalho apresenta uma análise e implementação de algoritmos de busca de uma r-arborescência inversa de custo mínimo em grafos dirigidos com aplicação didática interativa.

Palavras-chave: Grafos. Arborescência. Algoritmos. Visualização.

Abstract

This work presents an analysis and implementation of algorithms for finding a minimum cost inverse r-arborescence in directed graphs with interactive didactic application.

Keywords: Graphs. Arborescence. Algorithms. Visualization.

Lista de ilustrações

Figura 1 –	Ciclo gerado pelas escolhas locais "mais baratas por vértice". Os arcos	
	grossos (custo 1) entram em a,b,c e formam $a \to b \to c \to a$. Os arcos	
	tracejados partindo de r existem, mas são mais caros e por isso não	
	são escolhidos pelo critério local	9
Figura 2 –	Ajuste de custo reduzido para um arco entrando em um ciclo con-	
	traído: o arco (u, w) com $w \in C$ torna-se (u, x_C) com custo reduzido	
	$c'(u,x_C)=c(u,w)-c(a_w)$, onde a_w é o arco de menor custo que entra	
	em w	10
Figura 3 –	Bijeção entre arborescências no grafo contraído e no original: toda	
	arborescência em D' escolhe exatamente um arco que entra em x_C ; ao	
	expandir C , esse arco corresponde a um (u, w) que entra em algum	
	$w \in C$ e os arcos internos (de custo reduzido zero) são mantidos,	
	preservando o custo total	11
Figura 4 –	Reexpansão de C : no grafo contraído seleciona-se um arco que entra	
	em x_C ; ao expandir, x_C é substituído por C e o arco selecionado	
	entra em algum $w \in C$; remove-se exatamente um arco interno de C	
	para eliminar o ciclo, preservando conectividade e custo total (arcos	
	internos têm custo reduzido zero).	11
Figura 5 –	Exemplo de normalização de custos reduzidos no vértice v	19

Sumário

1	ALGORITMO DE CHU-LIU/EDMONDS	ç
1.1	O problema dos ciclos e a solução por contração	ç
1.1.1	Supervértices e contração de ciclos	10
1.2	Descrição do algoritmo	10
1.2.1	Exemplo prático: Chu-Liu/Edmonds	12
1.2.2	Corretude	14
1.2.3	Complexidade	15
1.3	Implementação em Python	15
1.3.1	Representação de Digrafos: NetworkX	16
1.3.1.1	Estrutura Interna	16
1.3.1.2	Operações Fundamentais	16
1.3.2	Especificação do Algoritmo	17
1.3.3	Normalização por vértice	18
1.3.4	Construção de F^* :	19
1.3.5	Detecção de ciclo:	20
1.3.6	Contração de ciclo:	21
1.3.7	Remoção de arestas que entram na raiz:	23
1.3.7.1	Remoção de arco interno:	24
1.3.7.2	Procedimento principal (recursivo):	24
1.3.7.3	Notas finais sobre a implementação	28
1.3.7.4	Decisões de projeto e implicações práticas	28
1.3.7.5	Transição para a abordagem primal-dual	29
	REFERÊNCIAS	30
	ANEXOS	31
	ANEXO A – ANEXO A	32

1 Algoritmo de Chu-Liu/Edmonds

O algoritmo de Chu–Liu/Edmonds encontra uma r-arborescência de custo mínimo em um digrafo ponderado. A estratégia funciona de forma gulosa ao escolher, para cada vértice $v \neq r$, o arco de entrada mais barato. No entanto, essa abordagem pode gerar ciclos dirigidos, incompatíveis com a estrutura de arborescência. O algoritmo resolve esse problema combinando normalização de custos, contração de ciclos em supervértices e expansão controlada para garantir otimalidade.

1.1 O problema dos ciclos e a solução por contração

Em uma r-arborescência, cada $v \neq r$ deve ter exatamente um arco de entrada e r tem grau de entrada zero. Se escolhermos para cada vértice o arco mais barato que nele entra, podemos formar um ciclo dirigido C onde todos os vértices recebem seu único arco de dentro do próprio C. Nesse caso, nenhum arco entraria em C a partir de $V \setminus C$ (o corte $\delta^-(C)$ ficaria vazio) e, como $r \notin C$, não existiria caminho de r para os vértices de C, contrariando a alcançabilidade exigida.

A Figura 1 ilustra com um microexemplo: três vértices a,b,c (todos fora de r) onde o arco mais barato que entra em b vem de a, o de c vem de b e o de a vem de c, formando o ciclo $a \to b \to c \to a$. Embora existam arcos de r para cada vértice, eles são mais caros e não são escolhidos pelo critério local, deixando os vértices "presos"no ciclo sem conexão com a raiz.

Figura 1 – Ciclo gerado pelas escolhas locais "mais baratas por vértice". Os arcos grossos (custo 1) entram em a,b,c e formam $a \to b \to c \to a$. Os arcos tracejados partindo de r existem, mas são mais caros e por isso não são escolhidos pelo critério local.

A solução consiste em *normalizar os custos por vértice*: para cada $v \neq r$, subtraímos de todo arco que entra em v o menor custo entre os arcos que chegam a v. Após esse ajuste (custos reduzidos), cada $v \neq r$ passa a ter ao menos um arco de custo reduzido

zero. Se os arcos de custo zero forem acíclicos, já temos a r-arborescência ótima. Se formarem um ciclo C, contraímos C em um **supervértice** x_C , ajustamos os custos dos arcos externos e resolvemos recursivamente no grafo menor. Ao final, expandimos as contrações removendo exatamente um arco interno de cada ciclo para manter grau de entrada 1 e aciclicidade global.

1.1.1 Supervértices e contração de ciclos

Dado um subconjunto $C\subseteq V$ que forma um ciclo dirigido, a *contração de C* substitui todos os vértices de C por um único vértice x_C — o supervértice. Todo arco com exatamente uma ponta em C passa a ser incidente a x_C : arcos (u,w) com $u\notin C$, $w\in C$ tornam-se (u,x_C) ; arcos (w,v) com $w\in C$, $v\notin C$ tornam-se (x_C,v) ; e arcos com ambas as pontas em C são descartados.

Para preservar a comparação relativa dos custos, ajustamos os arcos que *entram* em C: para um arco (u,w) com $w \in C$, definimos $c'(u,x_C)=c(u,w)-c(a_w)$, onde a_w é o arco mais barato que entra em w. Essa normalização garante que decisões ótimas no grafo contraído podem ser traduzidas de volta na expansão.

Figura 2 – Ajuste de custo reduzido para um arco entrando em um ciclo contraído: o arco (u,w) com $w \in C$ torna-se (u,x_C) com custo reduzido $c'(u,x_C) = c(u,w) - c(a_w)$, onde a_w é o arco de menor custo que entra em w.

A Figura 2 mostra o ajuste: o arco (u,b) com custo 7 torna-se (u,x_C) com custo reduzido 7-5=2, já que $a_b=(a\to b)$ tem custo 5.

1.2 Descrição do algoritmo

Apresentamos o algoritmo em visão operacional de alto nível, focando na lógica e nos passos principais. Detalhes de implementação serão discutidos na próxima seção. Denotamos por A' o conjunto de arcos escolhidos na construção da r-arborescência.

Construa A' escolhendo, para cada $v \neq r$, um arco de menor custo que entra em v. Se (V,A') é acíclico, então A' já é uma r-arborescência ótima, pois realizamos o menor

custo de entrada em cada vértice e nenhuma troca pode reduzir o custo mantendo as restrições (KLEINBERG; TARDOS, 2006, Sec. 4.9).

Se A' contiver um ciclo dirigido C (que não inclui r), normalizamos os custos de entrada, contraímos C em um supervértice x_C ajustando arcos que entram em C por $c'(u,x_C)=c(u,w)-c(a_w)$, e resolvemos recursivamente no grafo contraído.

As arborescências do grafo contraído correspondem, em bijeção, às arborescências do grafo original com exatamente um arco entrando em ${\cal C}$. Como os arcos internos de ${\cal C}$ têm custo reduzido zero, os custos são preservados na ida e na volta.

Figura 3 – Bijeção entre arborescências no grafo contraído e no original: toda arborescência em D' escolhe exatamente um arco que entra em x_C ; ao expandir C, esse arco corresponde a um (u,w) que entra em algum $w \in C$ e os arcos internos (de custo reduzido zero) são mantidos, preservando o custo total.

Na expansão, reintroduzimos C e removemos exatamente um arco interno para manter grau de entrada 1 e aciclicidade global (SCHRIJVER, 2003; KLEINBERG; TARDOS, 2006).

Figura 4 – Reexpansão de C: no grafo contraído seleciona-se um arco que entra em x_C ; ao expandir, x_C é substituído por C e o arco selecionado entra em algum $w \in C$; remove-se exatamente um arco interno de C para eliminar o ciclo, preservando conectividade e custo total (arcos internos têm custo reduzido zero).

Abaixo, a descrição formal do algoritmo.

Abaixo, temos a descrição formal do algoritmo.

Algoritmo 1.1: Chu-Liu/Edmonds (visão operacional)

Entrada: digrafo D=(V,A), custos $c:A\to\mathbb{R}_{\geq 0}$, raiz $r.^a$

- 1. Para cada $v \neq r$, escolha $a_v \in \operatorname{argmin}_{(u,v) \in A} c(u,v)$. Defina $y(v) := c(a_v)$ e $F^* := \{a_v : v \neq r\}$.
- 2. Se (V, F^*) é acíclico, devolva F^* . Por (KLEINBERG; TARDOS, 2006, Obs. 4.36), trata-se de uma r-arborescência de custo mínimo.
- 3. Caso contrário, seja C um ciclo dirigido de F^* (com $r \notin C$). Contração: contraia C em um supervértice x_C e defina custos c' por

$$\begin{aligned} c'(u,x_C) &:= c(u,w) - y(w) = c(u,w) - c(a_w) & \text{para } u \notin C, \ w \in C, \\ c'(x_C,v) &:= c(w,v) & \text{para } w \in C, \ v \notin C, \end{aligned}$$

descartando laços em x_C e permitindo paralelos. Denote o digrafo contraído por D'=(V',A').

- 4. **Recursão:** compute uma r-arborescência ótima T' de D' com custos c'.
- 5. **Expansão:** seja $(u, x_C) \in T'$ o único arco que entra em x_C . No grafo original, ele corresponde a (u, w) com $w \in C$. Forme

$$T := (T' \setminus \{\text{arcos incidentes a } x_C\}) \cup \{(u, w)\} \cup ((F^* \cap A(C)) \setminus \{a_w\}).$$

Então T tem grau de entrada 1 em cada $v \neq r$, é acíclico e tem o mesmo custo de T'; logo, é uma r-arborescência ótima de D (KLEINBERG; TARDOS, 2006; SCHRIJVER, 2003, Sec. 4.9).

1.2.1 Exemplo prático: Chu-Liu/Edmonds

A seguir, ilustramos o funcionamento do algoritmo de Chu–Liu/Edmonds em um grafo de teste. Mostramos o grafo original, os principais passos do algoritmo e a arborescência final encontrada. A Figura abaixo apresenta o grafo original com os pesos das arestas

 $[^]a$ Se algum $v \neq r$ não possui arco de entrada, não existe r-arborescência.

O primeiro passo do nosso algoritmo seria remover as arestas que entram na raiz (vértice 0), porém não há nenhuma nesse caso, logo não existe a necessidade de alterar o grafo.

Dessa forma, o próximo passo é normalizar os pesos das arestas de entrada para cada vértice, nessa etapa, Para cada vértice X (exceto a raiz), o algoritmo encontra a aresta de menor peso que entra em X e subtrai esse menor peso de todas as arestas que entram em X (relembrando que isso serve para zerar o peso da aresta mínima de entrada em cada vértice)

Normalizando pesos de arestas de entrada para '1': Nesse processo notamos que as únicas arestas de entrada são 0 e 2 onde $(0 \rightarrow 1)$ tem peso 3.0 e $(2 \rightarrow 1)$ tem peso 1.0, elegendo a aresta 2 como a de menor peso podemos subtrair o peso das arestas restantes (no caso, o peso da aresta 0) pelo valor do peso da aresta 0, resultando em um novo peso de '2' para a aresta 0

Repetiremos o passo anterior para todas as outras arestas

Com os pesos normalizados, o próximo passo é construir F^* , para isso, selecionamos para cada vértice, a aresta de menor custo de entrada. Além disso, detectamos um ciclo em F^* , formado pelos vértices $\{1 \ e \ 2\}$. Portanto, precisamos contrair esse ciclo em um supervértice n*0. O resultado é o seguinte:

Agora, repetimos o processo recursivamente no grafo contraído até obter uma arborescência.

Após validarmos que a F* não possuí mais ciclos e notarmos que F* forma uma arborescência iremos começar o processo de expanção do ciclo contraído para obter a arborescência final no grafo original. Dessa forma, Adicionamos a aresta de entrada ao ciclo: (0, 1), (1, 2) e a aresta externa de saída: (1, 3), chegando em uma arborescência válida.

1.2.2 Corretude

A corretude do algoritmo de Chu–Liu/Edmonds baseia-se em três pilares principais:

1. Normalização por custos reduzidos: para cada $v \neq r$, defina $y(v) := \min\{c(u,v) : (u,v) \in A\}$ e c'(u,v) := c(u,v) - y(v). Para qualquer r-arborescência T, vale

$$\sum_{a \in T} c'(a) = \sum_{a \in T} c(a) - \sum_{v \neq r} y(v),$$

pois há exatamente um arco de T entrando em cada $v \neq r$. O termo $\sum_{v \neq r} y(v)$ é constante (independe de T); assim, minimizar $\sum c$ equivale a minimizar $\sum c'$

(KLEINBERG; TARDOS, 2006, Obs. 4.37). Em particular, os arcos a_v de menor custo que entram em v têm custo reduzido zero e formam F^* .

- 2. Caso acíclico: se (V, F^*) é acíclico, então já é uma r-arborescência e, por realizar o mínimo custo de entrada em cada $v \neq r$, é ótima (KLEINBERG; TARDOS, 2006, Obs. 4.36).
- 3. *Caso com ciclo (contração/expansão):* se F^* contém um ciclo dirigido C, todos os seus arcos têm custo reduzido zero.

Contraia C em x_C e ajuste apenas arcos que *entram* em C: $c'(u, x_C) := c(u, w) - y(w) = c(u, w) - c(a_w)$.

Resolva o problema no grafo contraído D', obtendo uma r-arborescência ótima T' sob c'. Na expansão, substitua o arco $(u, x_C) \in T'$ pelo correspondente (u, w) (com $w \in C$) e remova a_w de C.

Como os arcos de C têm custo reduzido zero e $c'(u,x_C)=c(u,w)-y(w)$, a soma dos custos reduzidos é preservada na ida e na volta; logo, T' ótimo em D' mapeia para T ótimo em D para c'. Pela equivalência entre c e c', T também é ótimo para c. Repetindo o argumento a cada contração, obtemos a corretude por indução (KLEINBERG; TARDOS, 2006; SCHRIJVER, 2003, Sec. 4.9).

Em termos intuitivos, y funciona como um potencial nos vértices: torna "apertados" (custo reduzido zero) os candidatos corretos; ciclos de arcos apertados podem ser contraídos sem perder otimalidade.

1.2.3 Complexidade

Na implementação direta, selecionar os a_v , detectar/contrair ciclos e atualizar estruturas custa O(m) por nível; como o número de vértices decresce a cada contração, temos no máximo O(n) níveis e tempo total O(mn), com n = |V|, m = |A|.

O uso de memória é O(m+n), incluindo mapeamentos de contração/expansão e as filas de prioridade dos arcos de entrada. A implementação a seguir adota a versão O(mn) por simplicidade e está disponível no repositório do projeto (https://github.com/lorenypsum/GraphVisualizer).

1.3 Implementação em Python

Esta seção apresenta uma implementação em Python do algoritmo de Chu–Liu/Edmonds. A arquitetura segue os passos teóricos: recebe como entrada um digrafo ponderado, os custos das arestas e o vértice raiz. O procedimento seleciona, para cada vértice, o arco de menor custo de entrada, verifica se o grafo é acíclico e, se necessário, contrai ciclos

e ajusta custos. Ao final, retorna como saída a r-arborescência ótima: um conjunto de arestas que conecta todos os vértices à raiz com custo mínimo.

1.3.1 Representação de Digrafos: NetworkX

A implementação utiliza a biblioteca NetworkX¹, que fornece estruturas de dados eficientes para grafos e digrafos. A classe nx.DiGraph representa grafos direcionados (directed graphs) e constitui a base para todas as operações do algoritmo.

1.3.1.1 Estrutura Interna

Internamente, nx. Di Graph armazena o grafo usando dicionários aninhados do Python. Para um digrafo D=(V,A):

- **Vértices:** mantidos em um dicionário que mapeia cada vértice para seus atributos. O método D. nodes () retorna uma visão (NodeView) sobre o conjunto de vértices, permitindo iteração em tempo O(n).
- **Arestas:** armazenadas em estruturas de adjacência bidirecionais. Para cada vértice *u*, mantém-se:
 - Um dicionário de *sucessores*: vértices v tais que $(u, v) \in A$, acessível via D[u].
 - Um dicionário de *predecessores*: vértices w tais que $(w,u) \in A$, usado por D.in_edges(u).
- Atributos de arestas: cada aresta pode ter atributos arbitrários armazenados como dicionários. A notação D[u][v]["w"] acessa o atributo "w" (peso) da aresta (u, v).

Esta representação garante acesso eficiente: adicionar ou remover uma aresta tem complexidade O(1) em média, consultar os vizinhos de um vértice custa $O(\deg(v))$, e iterar sobre todas as arestas leva tempo O(m).

1.3.1.2 Operações Fundamentais

As operações básicas usadas na implementação incluem:

• D. nodes (): retorna uma visão (NodeView) sobre o conjunto de vértices do grafo. Esta visão é iterável e permite percorrer todos os vértices em tempo O(n), onde n=|V|. A visão é dinâmica: se vértices forem adicionados ou removidos do grafo após a chamada, a visão reflete essas mudanças automaticamente.

¹ NetworkX é uma biblioteca Python para criação, manipulação e estudo de estruturas, dinâmicas e funções de redes complexas. Disponível em https://networkx.org/.

- D.in_edges(v, data="w"): retorna uma visão iterável (EdgeDataView) sobre todas as arestas que *entram* no vértice v, ou seja, arestas da forma (u, v) onde u é qualquer predecessor de v. O parâmetro opcional data="w" instrui o método a incluir o valor do atributo "w" (peso) de cada aresta na tupla retornada, resultando em tuplas da forma (u, v, w). O tempo de execução é proporcional ao grau de entrada do vértice.
- D.out_edges(u, data="w"): análogo a in_edges, mas retorna as arestas que saem de u, ou seja, arestas da forma (u, v).
- D.add_edge(u, v, **attr): adiciona uma aresta direcionada de u para v no grafo. Se os vértices u ou v ainda não existirem no grafo, eles são criados automaticamente. O parâmetro opcional **attr permite especificar atributos da aresta como pares chave-valor; por exemplo, w=0 define o atributo "w" (peso) com valor 0. Se a aresta já existir, seus atributos são atualizados. A operação tem complexidade O(1) em média.
- D. remove_edges_from(edges): remove múltiplas arestas em lote, recebendo uma lista de tuplas (u,v). Remove cada aresta especificada do grafo, com complexidade O(k) onde k é o número de arestas a remover. Arestas não existentes são silenciosamente ignoradas.
- D. remove_nodes_from(nodes): remove múltiplos vértices e todas as suas arestas incidentes (tanto de entrada quanto de saída).

1.3.2 Especificação do Algoritmo

Com a representação estabelecida, especificamos formalmente o algoritmo implementado:

- Entrada: digrafo ponderado D=(V,A) (objeto nx.DiGraph), custos $c:A\to\mathbb{R}$ armazenados no atributo "w" das arestas, raiz $r\in V$.
- Hipóteses:
 - D é conexo a partir de r: (i) todo $v \neq r$ é alcançável a partir de r (caso contrário, não há r-arborescência); (ii) para todo subconjunto não vazio $X \subseteq V \setminus \{r\}$, existe ao menos um arco que entra em X ($\delta^-(X) \neq \emptyset$; condições clássicas de existência à la Edmonds (SCHRIJVER, 2003)).
 - Os custos são não negativos: $c(a) \ge 0$ para todo $a \in A$.
- Saída: subgrafo T (objeto nx.DiGraph) com $|A_T| = |V| 1$ arestas, tal que cada $v \neq r$ tem grau de entrada 1, todos os vértices são alcançáveis a partir de r e $\sum_{a \in A_T} c(a)$ é mínimo.

• **Convenções:** arcos paralelos (múltiplos arcos entre o mesmo par de vértices) são permitidos após contrações; laços (self-loops) são descartados.

Criamos funções auxiliares para traduzir cada passo do algoritmo teórico em operações concretas sobre o objeto nx.DiGraph e uma função principal chama essas auxiliares na ordem correta, gerenciando contrações e expansões e todo o fluxo descrito formalmente na seção anterior.

A seguir, detalhamos as implementações das funções auxiliares, apresentamos como elas correspondem aos passos do algoritmo teórico, apresentamos exemplos de uso e por fim discutiremos a função principal que orquestra a execução do algoritmo. Cada função é explicada em termos de sua lógica, parâmetros, retornos e complexidade, começando pela normalização dos custos por vértice.

1.3.3 Normalização por vértice

Esta função normaliza os custos das arestas que entram em um vértice v: calcula $y(v) = \min\{w(u,v)\}$ e substitui cada peso w(u,v) por w(u,v) - y(v). O termo "normalizar"aqui significa subtrair do peso de cada aresta que entra em v o menor peso de entrada (custos reduzidos), preservando a ordem relativa; assim, ao menos uma entrada em v passa a ter custo 0, sem afetar a comparação entre soluções.

Recebe como entrada um digrafo D (objeto nx.DiGraph)² e o rótulo node do vértice cujas arestas de entrada devem ser normalizadas. A implementação coleta todas as arestas de entrada de node com seus pesos usando o método D.in_edges (node, data="w"), que retorna uma lista de tuplas (u, node, w) (linha 2). Em seguida, verifica se a lista está vazia e se estiver retorna imediatamente sem fazer alterações (linhas 3–4). Caso contrário, calcula o peso mínimo yv através de uma compreensão de gerador que extrai o terceiro elemento de cada tupla (linha 5) e, para cada predecessor u, subtrai yv do peso armazenado em D[u][node]["w"] (linha 6).

Não retorna nenhum valor (retorno implícito None), pois a operação é realizada in-place: o grafo D passado como parâmetro é modificado diretamente, e ao menos uma aresta de entrada de node terá custo reduzido zero após a execução. A complexidade é $O(\deg^-(v))$, pois cada operação percorre as arestas de entrada uma única vez.

Normalização por vértice: custos reduzidos

Normaliza os pesos das arestas que entram em node, subtraindo de cada uma o menor peso de entrada. Modifica o grafo D in-place.

Ver seção sobre Estrutura Interna e Operações Fundamentais para detalhes sobre a representação e API do NetworkX.

```
1 def normalize_incoming_edge_weights(D: nx.DiGraph, node: str):
2    predecessors = list(D.in_edges(node, data="w"))
3    if not predecessors:
4        return
5        yv = min((w for _, _, w in predecessors))
6        D[u][node]["w"] -= yv
```

Para ilustrar o funcionamento da função, considere o vértice v com três arestas de entrada com pesos 5, 3 e 7. Ao chamar normalize_incoming_edge_weights(D, v), a função identifica o menor peso (y(v)=3) e subtrai esse valor de todas as entradas:

Antes: $y(v) = \min\{5, 3, 7\} = 3$ **Depois:** ao menos uma entrada tem custo 0

Figura 5 – Exemplo de normalização de custos reduzidos no vértice v.

A aresta (u_2,v) agora tem custo reduzido zero (destacada em vermelho), enquanto as demais mantêm a ordem relativa: (u_1,v) continua sendo 2 unidades mais cara que (u_2,v) , e (u_3,v) continua sendo 4 unidades mais cara. Esta transformação preserva a estrutura de otimalidade: qualquer solução ótima para os custos originais permanece ótima para os custos reduzidos, pois a diferença $\sum_{w\neq r} y(w)$ é constante para todas as r-arborescências.

1.3.4 Construção de F^* :

Esta função constrói o subdigrafo F^* selecionando, para cada vértice $v \neq r_0$, uma única aresta de custo reduzido zero que entra em v.

Recebe como entrada um digrafo D (objeto nx.DiGraph) e o rótulo r0 da raiz. A implementação cria um novo digrafo vazio F_star (linha 2). Em seguida, para cada vértice v diferente de r0 (linhas 3–4), utilizando o método D.nodes (), coleta todas as arestas de entrada de v com seus pesos em uma lista e armazena na variável in_edges (linha 5). Se não houver arestas de entrada, prossegue para o próximo vértice (linhas 6–7). Caso contrário, utiliza uma compreensão de gerador para encontrar o primeiro

predecessor u cuja aresta (u, v) tem peso zero (linha 8) e, se existir, adiciona essa aresta a F_star com peso zero usando o método add_edge (linhas 9–10).

Retorna o digrafo F_star contendo exatamente uma aresta entrando em cada $v \neq r_0$, todas com custo reduzido zero. O grafo original D não é modificado. A complexidade é O(m), onde m é o número de arestas, pois cada aresta é considerada no máximo uma vez durante a iteração sobre todos os vértices.

Construção de F star

Constrói o subdigrafo F^* a partir do digrafo D, selecionando para cada vértice (exceto a raiz r0) uma aresta de custo reduzido zero que entra nele.

```
1 def get_Fstar(D: nx.DiGraph, r0: str):
2
      F_star = nx.DiGraph()
3
      for v in D.nodes():
4
          if v != r0:
5
              in_edges = list(D.in_edges(v, data="w"))
6
              if not in_edges:
7
                   continue
8
              u = next((u for u, _, w in in_edges if w == 0), None)
9
              if u:
0
                   F_star.add_edge(u, v, w=0)
1
      return F_star
```

Essas três funções foram implementadas para atenderem o passo 1 da descrição do algoritmo de Chu–Liu/Edmonds:

```
Passos 1 o Algoritmo de Chu-Liu/Edmonds
```

```
Entrada: digrafo D = (V, A), custos c : A \to \mathbb{R}_{>0}, raiz r.
```

```
1. Para cada v \neq r, escolha a_v \in \arg\min_{(u,v) \in A} c(u,v). Defina y(v) := c(a_v) e F^* := \{a_v : v \neq r\}.
```

1.3.5 Detecção de ciclo:

Esta função detecta a presença de um ciclo dirigido em F^* e retorna um subgrafo que o contém; se F^* for acíclico, retorna None.

Recebe como entrada um digrafo F_star (objeto nx.DiGraph). A implementação utiliza um bloco try (linha 2) para capturar exceções caso não haja ciclo. Inicializa um conjunto vazio nodes_in_cycle (linha 3) e emprega a função nx.find_cycle do

NetworkX (linha 4), que realiza uma busca em profundidade (DFS) para detectar ciclos. Para cada aresta (u,v) retornada, adiciona ambos os vértices ao conjunto (linha 5). Após coletar todos os vértices do ciclo, constrói e retorna uma cópia do subgrafo induzido por eles (linha 7); a cópia é necessária porque subgraph retorna apenas uma visão, e alterações posteriores afetariam o grafo original. Se nenhum ciclo existir, a exceção nx.NetworkXNoCycle é capturada (linha 8) e a função retorna None (linha 9).

Retorna um subgrafo contendo os vértices e arestas do ciclo detectado, ou None se não houver ciclo. O grafo original F_{-} star não é modificado. A complexidade é O(m), onde m é o número de arestas, pois a DFS visita cada aresta no máximo uma vez.

```
Detecção de ciclo dirigido em F^*
  Detecta um ciclo dirigido em F^* e retorna um subgrafo contendo seus vértices e arestas, ou
  None se for acíclico.
1 def find_cycle(F_star: nx.DiGraph):
2
      try:
3
          nodes_in_cycle = set()
           for u, v, _ in nx.find_cycle(F_star, orientation="original"):
4
5
               nodes_in_cycle.update([u, v])
           return F_star.subgraph(nodes_in_cycle).copy()
6
7
      except nx.NetworkXNoCycle:
8
           return None
```

1.3.6 Contração de ciclo:

Esta função contrai um ciclo dirigido C em um supervértice x_C , redirecionando arcos incidentes e ajustando custos segundo a regra de custos reduzidos. Retorna dicionários auxiliares para reexpansão.

Recebe como entrada um digrafo D (objeto nx.DiGraph), o ciclo C a ser contraído e o rótulo label do novo supervértice. A implementação coleta os vértices de C em um conjunto (linha 2) e inicializa in_to_cycle (linha 3), um dicionário que tem como chave vértices externos ao ciclo e como valor tuplas (v,w), onde v é o vértice do ciclo conectado a u e w é o peso da aresta (u,v). Para cada vértice u no digrafo D (linha 4), se u não pertence ao ciclo (linha 5), identifica a aresta de menor peso que sai de u e entra em C (linhas 6–9) usando uma compreensão de gerador: a expressão ((v, w) for $_-$,

peso usando key=lambda x: x[1] (linha 7) para comparar pelo segundo elemento (o peso), e retorna None se não houver arestas (linha 8). Se tal aresta existir, armazena em in_to_cycle (linhas 9–10). Em seguida, itera sobre in_to_cycle³ e cria arestas de cada vértice u para label com os respectivos pesos (linhas 11–12).

De forma análoga, constrói o dicionário out_from_cycle (linha 13) para mapear arestas que saem do ciclo. Para cada vértice v em D (linha 14), se v não pertence ao ciclo (linha 15), identifica a aresta de menor peso que sai de C e entra em v (linhas 16–17) usando uma compreensão de gerador análoga: a expressão ((u, w) for u, _, w in D.in_edges(v, data="w") if u in cycle_nodes) itera sobre todas as arestas que entram em v, desempacota cada aresta na forma (u, _, w) (capturando a origem u, ignorando o destino com _, e capturando o peso w), filtra apenas aquelas cuja origem u pertence ao ciclo, e produz tuplas (u, w); a função min seleciona a de menor peso. Se existir, armazena em out_from_cycle (linhas 18–19). Depois, itera sobre out_from_cycle e cria arestas de label para cada vértice v com os respectivos pesos (linhas 20–21). Por fim, remove todos os vértices de C do grafo (linha 22).

Retorna dois dicionários: in_to_cycle mapeia vértices externos aos pontos de entrada no ciclo original, e out_from_cycle mapeia vértices externos aos pontos de saída. O digrafo D é modificado in-place: os vértices de C são removidos e substituídos por label. A complexidade é O(m), onde m é o número de arestas, pois cada aresta incidente ao ciclo é processada uma vez.

Observação: o digrafo D ao ser alterado in-place já refletirá as remoções, inserções e ajustes feitos. Isso reduz alocações e pode ser mais eficiente, mas exige cuidado com aliasing/referências ativas, pois o estado anterior não é preservado a menos que seja salvo explicitamente.

Contração de ciclo

Contrai o ciclo C em um supervértice label, redirecionando arcos incidentes e ajustando custos. Modifica D in-place e retorna dicionários para reexpansão.

```
1 def contract_cycle(D: nx.DiGraph, C: nx.DiGraph, label: str):
2    cycle_nodes: set[str] = set(C.nodes())
3    in_to_cycle: dict[str, tuple[str, float]] = {}
4    for u in D.nodes:
```

O método items() é parte da API de dicionários em Python. Ele retorna uma visão (dict_items) sobre os pares chave-valor do dicionário, permitindo iterar simultaneamente sobre chaves e valores. A expressão for u, (v, w) in in_to_cycle.items() desempacota cada par: u é a chave (vértice externo) e (v, w) é o valor (tupla com vértice do ciclo e peso). A visão é dinâmica e reflete mudanças no dicionário, mas não deve ser modificada durante a iteração. A complexidade de percorrer todos os itens é O(n), onde n é o número de entradas no dicionário.

```
5
           if u not in cycle_nodes:
6
               min_weight_edge_to_cycle = min(
7
                   ((v, w) for _, v, w in D.out_edges(u, data="w") if v in
                       cycle_nodes),
8
                   key=lambda x: x[1],
                   default=None,)
9
               if min_weight_edge_to_cycle:
0
1
                   in_to_cycle[u] = min_weight_edge_to_cycle
2
       for u, (v, w) in in_to_cycle.items():
.3
           D.add_edge(u, label, w=w)
4
      out_from_cycle: dict[str, tuple[str, float]] = {}
5
       for v in D.nodes:
           if v not in cycle_nodes:
6
7
               min_weight_edge_from_cycle = min(
8
                   ((u, w) for u, _, w in D.in_edges(v, data="w") if u in
                       cycle_nodes),key=lambda x: x[1], default=None,)
               if min_weight_edge_from_cycle:
                   out_from_cycle[v] = min_weight_edge_from_cycle
      for v, (u, w) in out_from_cycle.items():
           D.add_edge(label, v, w=w)
23
      D.remove_nodes_from(cycle_nodes)
24
       return in_to_cycle, out_from_cycle
```

1.3.7 Remoção de arestas que entram na raiz:

Esta função remove todas as arestas que entram no vértice raiz r_0 , garantindo que a raiz não tenha predecessores.

Recebe como entrada um digrafo D (objeto nx.DiGraph) e o rótulo r0 da raiz. A implementação armazena em uma lista todas as arestas que entram em r0 usando o método in_edges (linha 2). Se a lista não estiver vazia (linha 3), remove todas essas arestas usando o método remove_edges_from (linha 4). Este método da biblioteca NetworkX recebe como parâmetro uma lista de tuplas representando arestas na forma (u, v) e remove cada uma delas do grafo. A operação é realizada em lote: NetworkX itera sobre a lista fornecida e, para cada tupla (u, v), remove a aresta correspondente da estrutura interna de adjacência. Se alguma aresta especificada não existir no grafo, ela é silenciosamente ignorada sem gerar erro. A complexidade de remove_edges_from é O(k), onde k é o número de arestas na lista de entrada, pois cada remoção individual tem custo O(1) em média devido ao uso de dicionários aninhados para armazenar arestas.

Por fim, a função retorna o grafo D atualizado in-place com todas as arestas de entrada em r0 são removidas (linha 5). A complexidade total da função é $O(\deg^-(r_0))$, pois a operação coleta e remove cada aresta de entrada uma única vez.

Remoção de arestas que entram na raiz

Remove todas as arestas que entram na raiz r0, modificando D in-place e retornando o grafo atualizado.

```
1 def remove_edges_to_r0(D: nx.DiGraph, r0: str):
2    in_edges = list(D.in_edges(r0))
3    if in_edges:
4         D.remove_edges_from(in_edges)
5    return D
```

1.3.7.1 Remoção de arco interno:

ao expandir o ciclo C, a função remove o arco interno que entra no vértice de entrada v do ciclo, já que v agora recebe um arco externo do grafo. A função modifica o subgrafo do ciclo *in-place* e executa em $O(\deg^-(v))$.

Remover arco interno na reexpansão

Remove a aresta interna que entra no vértice de entrada 'v' do ciclo C, pois 'v' passa a receber uma aresta externa do grafo.

```
1 % def remove_internal_edge_to_cycle_entry(C: nx.DiGraph, v):
2
3 %    predecessor = next((u for u, _ in C.in_edges(v)), None)
4
5 %    C.remove_edge(predecessor, v)
```

1.3.7.2 Procedimento principal (recursivo):

A função principal implementa o algoritmo de Chu–Liu/Edmonds de forma recursiva e atua como um orquestrador das fases do método. Em alto nível, ela mantém a seguinte lógica:

O procedimento principal do algoritmo segue estes passos: prepara a instância removendo entradas na raiz, normaliza os custos das arestas que entram em cada vértice (exceto a raiz) para garantir pelo menos uma entrada de custo reduzido zero, constrói o grafo funcional F^* escolhendo para cada vértice a entrada de menor custo

reduzido, verifica se F^* é acíclico (se for, retorna como r-arborescência ótima), e, caso haja ciclo, contrai o ciclo em um supervértice, ajusta os custos das entradas e resolve recursivamente; ao retornar, expande o ciclo e remove uma aresta interna para garantir aciclicidade e grau de entrada igual a 1.

Mais especificamente, o procedimento garante as seguintes propriedades e passos:

- Função (entradas/saídas): Entrada: digrafo ponderado D=(V,A), raiz r_0 , e, opcionalmente, funções draw_fn e log para visualização e registro. Saída: um subdigrafo dirigido T de D com |V|-1 arcos em que todo $v\neq r_0$ tem grau de entrada 1, todos os vértices alcançam r_0 e o custo total $\sum_{a\in T} c(a)$ é mínimo.
- Invariantes: Após a normalização por vértice, cada $v \neq r_0$ tem pelo menos uma entrada de custo reduzido zero; o conjunto F^* contém exatamente uma entrada por vértice distinto de r_0 ; em toda contração, apenas arcos que *entram* no componente têm seus custos reduzidos ajustados por $c'(u, x_C) = c(u, w) c(a_w)$, preservando comparações relativas.
- **Detecção de ciclo e contração:** Se F^* contém um ciclo C, todos os seus arcos têm custo reduzido zero. O procedimento forma o supervértice x_C , reescreve arcos incidentes (descarta laços internos) e prossegue na instância menor. Essa etapa pode manter arcos paralelos e ignora laços.
- Recursão e expansão: Ao obter T' ótimo no grafo contraído, o método mapeia T' de volta para D: substitui o arco (u,x_C) por um (u,w) apropriado (com $w \in C$) e remove uma única aresta interna de C, restaurando a propriedade "uma entrada por vértice" e a aciclicidade.
- Empates e robustez: Empates de custo são resolvidos de modo determinístico/local, sem afetar a otimalidade. Arcos paralelos podem surgir após contrações e são tratados normalmente; laços são descartados por construção.
- Logs e desenho (opcionais): Na implementação disponibilizada no repositório do projeto integramos o solver com a interface do projeto de forma que se fornecidos, log recebe mensagens estruturadas por nível de recursão, e draw_fn e draw_step pode ser chamado para ilustrar passos relevantes (normalização, detecção/contração de ciclos, retorno da recursão e expansão).
- Casos-limite: Se algum $v \neq r_0$ não possui arco de entrada na instância corrente, detecta-se inviabilidade (não existe r-arborescência). Se F^* já é acíclico, retorna imediatamente (base da recursão).

• Complexidade: Em uma implementação direta, cada nível de recursão executa seleção/checagem/ajustes em tempo proporcional a O(m), e há no máximo O(n) níveis devido às contrações, totalizando O(mn) e memória O(m+n).

Essa rotina encapsula, portanto, a estratégia primal do método: induzir arestas de custo reduzido zero por normalização local, extrair uma estrutura funcional F^* de uma entrada por vértice, e resolver conflitos cíclicos por contração/expansão, preservando custos e correção em todas as etapas.

Procedimento principal (recursivo)

Função recursiva que encontra a arborescência ótima em um digrafo D com raiz r0 usando o algoritmo de Chu–Liu/Edmonds.

```
1 % def find_optimum_arborescence_chuliu(
2 %
         D: nx.DiGraph,
3 %
         r0: str,
4 %
         level=0,
5 % ):
6
7 %
         D_{-}copy = D.copy()
8
9 %
         for v in D_copy.nodes:
             if v != r0:
0 %
1 %
                 normalize_incoming_edge_weights(D_copy, v)
2
3 %
         # Build F_star
         F_star = get_Fstar(D_copy, r0)
4 %
6 %
         if nx.is_arborescence(F_star):
             for u, v in F_star.edges:
                 F_{star}[u][v]["w"] = D[u][v]["w"]
8 %
             return F_star
20
21 %
         else:
22 %
             C: nx.DiGraph = find_cycle(F_star)
24 %
             contracted_label = f"\n n*{level}"
25 %
             in_to_cycle, out_from_cycle = contract_cycle(
                 D_copy, C, contracted_label
26 %
27 %
             )
28
```

```
29 %
             # Recursive call
30 %
             F_prime = find_optimum_arborescence_chuliu(
31 %
                 D_copy,
32 %
                 r0,
                 level + 1
33 %
34 %
             )
35
36 %
             # Identify the vertex in the cycle that received the only incoming
       edge from the arborescence
             in_edge = next(iter(F_prime.in_edges(contracted_label, data="w")),
37 %
       None)
38
39 %
             u, _, _ = in_edge
40
41 %
             v, _ = in_to_cycle[u]
42
43 %
             # Remove the internal edge entering vertex 'v' from cycle C
44 %
             remove_internal_edge_to_cycle_entry(
45 %
                 C, v
             ) # Note: w is coming from F_prime, not from G
46 %
47
48 %
             # Add the external edge entering the cycle (identified by in_edge)
       , the weight will be corrected at the end using G
49 %
             F_prime.add_edge(u, v)
50
51 %
             # Add the remaining edges of the modified cycle C
52 %
             for u_c, v_c in C.edges:
53 %
                 F_prime.add_edge(u_c, v_c)
54
55 %
             # Add the external edges leaving the cycle
56 %
             for _, z, _ in F_prime.out_edges(contracted_label, data=True):
57
58 %
                 u_cycle, _ = out_from_cycle[z]
59 %
                 F_prime.add_edge(u_cycle, z)
60
61 %
             F_prime.remove_node(contracted_label)
62
63 %
             # Update the edge weights with the original weights from G
64 %
             for u, v in F_prime.edges:
                 F_{prime}[u][v]["w"] = D[u][v]["w"]
65 %
```

```
66
67 % return F_prime
```

1.3.7.3 Notas finais sobre a implementação

A implementação acima segue diretamente a descrição do algoritmo de Chu–Liu/Edmonds, enfatizando clareza e correção. Para aplicações práticas, otimizações podem ser introduzidas, como estruturas de dados eficientes para seleção de mínimos, detecção rápida de ciclos e manipulação de grafos dinâmicos. Além disso, a função pode ser adaptada para lidar com casos especiais, como grafos desconexos ou múltiplas raízes, conforme necessário.

A complexidade da implementação direta é O(mn) no pior caso, onde m é o número de arestas e n o número de vértices, devido à potencial profundidade de recursão e ao processamento linear em cada nível. Implementações mais sofisticadas podem reduzir isso para $O(m\log n)$ usando estruturas avançadas, como heaps e union-find, mas a versão apresentada prioriza a compreensão do algoritmo fundamental.

SAMIRA

1.3.7.4 Decisões de projeto e implicações práticas

Antes de prosseguir para uma visão alternativa do mesmo problema, vale destacar algumas decisões de projeto e implicações práticas da implementação de Chu-Liu/Edmonds:

- Estruturas e efeitos colaterais: Optamos por modificar grafos *in-place* (por exemplo, durante a normalização e a contração de ciclos) para reduzir alocações e facilitar a visualização incremental. Isso exige invariantes explícitos e cuidado com referências ativas ao grafo original.
- Empates, paralelos e laços: Empates são resolvidos de forma determinística/local sem afetar a otimalidade. A contração pode induzir *arcos paralelos*; preservamos apenas o de menor custo. Laços (self-loops) são descartados por construção.
- Validação e testes: O repositório inclui artefatos úteis para experimentação (por exemplo, tests.py, test_results.csv, test_log.txt). Onde um volume de grafos é gerado aleatoriamente, a função é executada e os resultados são validados são comparados com soluções de força bruta.
- Integração com visualização e logs: A função draw_fn permite registrar *snapshots* (normalização, formação de F^* , contração/expansão). O log facilita auditoria e depuração em execuções recursivas.

• Extensões: Variantes com múltiplas raízes, restrições adicionais (p.ex., proibições por partição) e empacotamento de arborescências exigem ajustes na fase de extração/expansão ou formulações via matroides.

1.3.7.5 Transição para a abordagem primal-dual

Embora o algoritmo de Chu–Liu/Edmonds seja elegante e eficiente, sua mecânica operacional — normalizar custos, selecionar mínimos, contrair ciclos — pode parecer um conjunto de heurísticas bem-sucedidas sem uma justificativa teórica unificadora aparente. Por que escolher a melhor entrada para cada vértice garante otimalidade global após o tratamento de ciclos? A resposta reside na dualidade em programação linear.

No capítulo seguinte, revisitaremos o mesmo problema sob uma ótica primal—dual em duas fases, proposta por András Frank. Essa perspectiva organiza a normalização via potenciais $y(\cdot)$, explica os custos reduzidos e introduz a noção de cortes apertados (família laminar) como guias das contrações. Veremos como a mesma mecânica operacional (normalizar \rightarrow contrair \rightarrow expandir) emerge de condições duais que também sugerem otimizações e generalizações.

No contexto primal—dual, "potenciais" são valores escalares y(v) atribuídos aos vértices para definir custos reduzidos c'(u,v)=c(u,v)-y(v). Ajustar y desloca uniformemente os custos das arestas que entram em v, sem mudar a otimalidade global: preserva a ordem relativa entre entradas e torna "apertadas" (custo reduzido zero) as candidatas corretas, habilitando contrações e uma prova de corretude via cortes apertados.

Referências

KLEINBERG, J.; TARDOS, É. *Algorithm Design*. [S.l.]: Addison-Wesley, 2006. Citado 3 vezes nas páginas 11, 12 e 15.

SCHRIJVER, A. *Combinatorial Optimization: Polyhedra and Efficiency*. [S.l.]: Springer, 2003. Citado 4 vezes nas páginas 11, 12, 15 e 17.

ANEXO A - Anexo A

Conteúdo do anexo A.