A Golden Dataset to Enable Automatic Photovoltaic Fault Detection Processes

Daniel Fregosi¹, Wayne Li¹, Steven Koskey², **Scott Sheppard²**, Chris Perullo²

¹Electric Power Research Institute, Charlotte, NC ²Turbine Logic, Atlanta, GA

2023 PVPMC Workshop May 9, 2023

The Problem...Using Available Data to Full Potential

- Large plant may have "10s" of inverters
- Limited sensor data available to detect DC side faults

- Each Inverter contains 10s to 100s of Combiner Boxes
- Each CB may have current and voltage measurements
- Can be used for diagnostics not typically used today

Can we couple physics-based modeling and Al to better detect and localize string level faults?

Project Motivation

- Goal: Provide a better diagnostic solutions with fewer false alarms and actionable M&D insight
- Subtle failures across the DC collector field often go undetected for large amounts of time
 - Determining the source of the failure is time consuming
 - Aerial inspections
 - Performed to detect small-scale faults across the DC collector field
 - Are typically performed infrequently
 - Current gold standard
- MODEL-DRIVEN APPROACH USES BIG DATA AVAILABLE AT PV SITES ENABLES REAL-TIME DETECTION
 - Improves ability to detect faults while reducing presence of false alarms
 - Improves ability to locate faults to more specific hardware components
 - Provides further aid in diagnosing cause of underperformance

M&D centers have abundant data available, how can it better be used for detection of subtle faults?

Creating "Clean" Validation Datasets

- Purpose: create "golden datasets" with known faults to use for benchmarking fault detection algorithms
- Introduce faults to site hardware where absolute impacts are known
- Intentional faults should be introduced in a controlled manner
 - Magnitude of each fault is known
 - How faulted does the hardware need to be to be detectable?
 - Specific hardware is known
 - Are we detecting faults on the correct hardware?
 - Exact time that each intentional fault was introduced is known
 - Do we detect the fault at onset?

Intentional Fault Introduction

- Method: block sunlight from individual modules by covering them with opaque fabric
- Fabric effectively reduced sunlight reaching each covered panel, triggering bypass diodes
- Introduce faults introduced at three plants at different locations and site architectures

Determining Plant State via Aerial Scan

- Real site data often is **not** clean
 - Hardware may be faulted, sensors may not be reporting correctly
- IR and RGB aerial scans are common method to detect faults (down to specific modules)
- Aerial scans performed at each site prior the introduction of intentional faults

Additional faults present at each site have been catalogued and are shared as part of each dataset.

Aerial Scan Summary

- PV Sites often have many faults of different types present at any given time
- Faults can be bucketed into different categories, based on fault magnitude
 - Minor Faults: Impact a single module
 - String Outages: Impact one or more strings
 - Sectional Outages: Impact several strings
- Overlapping faults presents a challenge for benchmarking, obscures how much impact each fault has

Golden Dataset Preparation

- Data has been anonymized to respect owner privacy
- Raw data from affected inverters and one on-site met station
- Generalized site metadata
- Findings from aerial scans performed prior to the introduction of intentional faults

1	А	В	С	D	E
		Inverter 1 Combiner	Inverter 1 Combiner	Inverter 1 Combiner	Inverter 1 Combiner
1	Timestamps	Box 1 DC Current	Box 10 DC Current	Box 11 DC Current	Box 12 DC Current
905	11/1/2021 15:03	170.24578	154.79992	126.67841	127.77987
906	11/1/2021 15:04	170.41721	154.61811	126.539955	127.68941
907	11/1/2021 15:05	170.58865	154.43629	126.40149	127.59896
908	11/1/2021 15:06	170.76006	154.25447	126.26303	127.5085
909	11/1/2021 15:07	170.92972	154.07294	126.12457	127.41805
910	11/1/2021 15:08	170.89085	153.92495	125.99455	127.327
	11/1/2021 15:09	170.70902	153.79995	125.89921	127.2371
	11/1/2021 15:10	170.52721		125.8076	127.1466
	11/1/2021 15:11	Raw data	4 anonymiz	ed tablect	127.0562
	11/1/2021 15:12	170.16356	153.42495	125.6244	126.9657
	11/1/2021 15:13	170.01451	153.29995	125.53279	126.8753
	11/1/2021 15:14	1. Inverte	er DC meas	urements •	
		169.86143	152	125.25798	126.60398
	11/1/2021 15:17	2. Combi	iner box DC	. currents _{ss}	126.5135
					126,4230
	11/1/2021 15:19	269.169\/	let. station	data 124.98317	
	11/1/2021 15:20	169.00625	$\frac{1}{1}$	124.89157	126.2421
				124.79997	126.1517
	11/1/2421 15:22	racker mot	or position	s (if applica	able) 126.06123
	11/1/2021 15:23	169	151.16272	124.61676	125.9708
	11/1/2021 15:24			124.52516	125,8803

Modeling Approach

Physics-based models coupled with AI to identify failed string and tracker outages

Typically comprise 3% of lost generation

- Model leverages modularity of PV plant for quick customization to new sites
- Model can run in real-time or on historical data

Data Filtering and Cleanup

- Removing noise and poor-quality data significantly improves detection capability
- IEC 61724-3 (right) provides guidance on filtering data from sensors
- Filtering against self-shading and clouded operation significantly reduces noise

		Suggested criteria for flag (15 min data)			
Flag type	Description	Irradiance W/m²	Temperature °C	Wind speed m/s	Power (AC power rating)
Range	Value outside of reasonable bounds	< -6 or > 1 500	> 50 or < -30	>32 or < 0	> 1,02 × rating or < -0,01 × rating
Missing	Values are missing or duplicates	n/a	n/a	n/a	n/a
Dead	Values stuck at a single value over time. Detected using derivative.	< 0,0001 while value is > 5	< 0,0001	?	?
Abrupt change	Values change unreasonably between data points. Detected using derivative.	> 800	> 4	> 10	> 80 % rating

Self-shading from adjacent row depends on row spacing and is most prevalent in the winter

Filter data that is rapidly changing due to clouds, reduces false alarms and increases detection sensitivity

Fault Detection

- Various faults impact the currentvoltage characteristic of the hardware
- With online diagnostics, the full curve is not measured
- Physical model allows for replication of the curve
- Feature extraction leads to identification of the presence of faults

Measured Data: I_{mpp}, V_{mpp}

Modeled Data: I_{sc}, V_{oc}

Fault	Strings per CB	Panels per String	# Covered Panels	Fault Magnitude (@ Inv)	Detected
1	24	29	29	4.2%	✓
2	24	29	21	3%	\checkmark
3	24	29	16	2.3%	✓
4	24	29	12	1.7%	✓
5	24	29	8	1.1%	

How to access

https://github.com/epri-dev/PV-Golden-Datasets

- One dataset currently uploaded, the other two in the coming days
- Datasets will eventually be hosted on OSTI.gov

