

MY SPECIAL THANKS TO

Adrien THIBAUD
PhD Student on CC in NDN

Alexandre FOURES and François HECTOR Ingénieurs N7 Informatique et Réseaux

SUMMARY

I – From Host to Content

- From a centralized design to a decentralized adventure
- Decentralized data structure

$II - \underline{I}$ nformation \underline{C} entric \underline{N} etworks

- Keys
- Timeline

$III - \underline{\mathbf{N}}$ ame $\underline{\mathbf{D}}$ ata $\underline{\mathbf{N}}$ etworks

- Principle
- Issue

FROM HOST TO CONTENT

- From a centralized design to a decentralized adventure
 - Client/Server
 - Mirrors
 - CDN
 - Cloud, Fog and Edge
- o Decentralized data structure
 - Needs
 - Hash
 - Hash tree

I THE FIRST COMMERCIAL MODEL IN THE INTERNET UNIFORM RESSOURCE LOCATOR

- o Uniform Resource Identifier
 - URN: Uniform Resource Name
 - URL: Uniform Resource Locator
- A string used to uniquely identify a resource on the WWW
- Syntax of a URL:

protocol://user:pass@domain:port/path?query#fragment

 $\label{lem:http://www.enseeiht.fr/fr/formation/masteres-specialises/securite-informatique.html $$ $$ https://en.wikipedia.org/w/index.php?title=IP_over_Avian_Carriers&action=edit§ion=2 $$ $$ https://en.wikipedia.org/w/index.php?title=IP_over_Avian_Carriers&action=edit§ion=2 $$ $$ https://en.wikipedia.org/w/index.php?title=IP_over_Avian_Carriers&action=edit§ion=2 $$ $$ https://en.wikipedia.org/w/index.php?title=IP_over_Avian_Carriers&action=edit§ion=2 $$ https://en.wikipedia.org/w/index.php?title=IP_over_Avian_Carriers&action=edit§ion=2 $$ https://en.wikipedia.org/w/index.php?title=IP_over_Avian_Carriers&action=edit§ion=2 $$ https://en.wikipedia.org/w/index.php?title=IP_over_Avian_Carriers&action=edit§ion=2 $$ https://en.wikipedia.org/w/index.php?title=IP_over_Avian_Carriers&action=edit§ion=2 $$ https://en.wikipedia.org/w/index.php?title=IP_over_Avian_Carriers&action=0 $$ https://en.wikipedia.org/w/index.php?title=IP_over_Avian_Carriers&action=0 $$ https://en.wikipedia.org/w/index.php?title=IP_over_Avian_Carriers&action=0 $$ https://en.wikipedia.org/w/index.php?title=IP_over_Avian_Carriers&action=0 $$ https://en.wikipedia.org/w/index.php?title=IP_over_Avian_Carriers&action=0 $$ https://en.wikipedia.org/w/index.php.$

I THE FIRST COMMERCIAL MODEL IN THE INTERNET HOST CENTRIC DESIGN

- The Internet = an host centric solution
 - Based on the location of host
- o Pro
 - ______ • ____
 - •
- Cons
 - •
 - •
 - _____

CONTENT DELIVERY NETWORK WITH INFRASTRUCTURE

- o "A content delivery network, or content distribution network (CDN), is a geographically distributed network of proxy servers and their data centers. The goal is to provide high availability and performance by distributing the service spatially relative to end users." Wikipedia
- o Appears in the end of 90's
 - to manage/replace mirrors
 - because the Internet is becoming a mission-critical medium of communication
- o Goals
 - To alleviate the issue due to bottlenecks of the Internet.
 - To enhance user QoE
- How
 - Build a overlay network
 - Use of caches, called surrogate servers
 - Cache part of content
 - Proactive or Opportunist
 - Use of redirections
 - More common redirections is made through DNS

CONTENT DELIVERY NETWORKS ACTORS	
o Main Actors	
•	_
•	-
•	
o Pro	
•	_
•	_
•	-
o Cons	_
•	
•	13
:	
•	

CLOUD, FOG AND EDGE

- Cloud Definition
 - First use is more like online storage
 - "Centralised infrastructure in data centres that host a lot of compute and storage resources." BCS History of the Cloud
- Timeline
 - 2002 Amazon Web Services (AWS) launching its public cloud in 2002.
 - 2006 Database services available on the cloud (Dropbox = cloud storage as a service)
 - 2006 Amazon Elastic Compute Cloud (EC2) = rent virtual server to deploy your own web service
 - 2017 at now to reduce latency
 - o Compute and store next to user
- Services
 - Software as a Service (SaaS)
 - Platform as a Service (PaaS)
 - Infrastructure as a Service (IaaS)
- Key elements of cloud
 - Virtualization
 - Network
 - Distribution

19

Edge Computing Edge Computing

II INFORMATION CENTRIC NETWORK BIG PICTURE

- Paradox
 - IP = communication network with packet with endpoints name only
 - ⇒ End to End communication
 - The Internet = distribution network
 - ⇒ End to End communication is not relevant
- o To place content at the centre of the network
 - · Location of the hosts should not be the key anymore
- Challenges
 - Data Name
 - Data routing
 - Data distribution
 - ... and to replace IP! (and all its patches!)

25

II INFORMATION CENTRIC NETWORK BIG PICTURE

- Opportunities
 - The multi-opportunities
 - Multicast
 - Multi-homing
 - Multi-producers
 - ${\color{blue} \circ}$ Choose your own multi-thing
 - The storage through the network
 - o ICN nodes caching ability
 - And their quite important questions:
 - Where? (Edge vs core)
 - How to decide?
 - What? (Chunk = just part)
 - A more secured world
 - o Data includes native security
 - Mobility?

NAME DATA NETWORK ROUTING IN NDN -NLSR ILLUSTRATION Impossible to push data in NDN Interest must be sent to require data Example: LSDB Synchronisation (routing update using polling) Router C Router A Router B Router B

- o OSPFN Open Shortest Path First for Named-Data
 - The first step before NLSR
 - Use of OLSA Opaque LSA
 - Exchange of OLSA by routers
 - o But OLSA are interpreted by another application

Hyperbolic Routing

- · To use angular/similarity coordinates instead of name
- Why?
 - ${\color{blue} \bullet}$ Hyperbolicity emerges in very different networks with very different "addressing"
 - ${\color{blue} \circ}$ Addressing does not really matter
 - Hyperbolicity is linked to popularity and similarity. A rule NDN namespace will certainly follow.
- Pro: A local view is sufficient for routing
- · Cons: Not the best path or even Deadend

III NAME DATA NETWORK CONGESTION CONTROL IN NDN	
 One Interest => one chunck, no need for CC! Objection! Why? 	
Offloading is sufficient!Objection!Why?	
	43

III NAME DATA NETWORK CONGESTION CONTROL IN NDN – END-TO-END o ICP Sent Receiver Sender Interests • A receiver driven TCP • Slow Start or Congestion 1 1 avoidance? • ACK or SACK? 2 3 • Issues/Questions o Interaction with cache • Interaction with NDN 3 4 node timers • Is it really relevant?

CONGESTION CONTROL IN NDN - HOP-BY-HOP

- Hop-by-hop solution
 - Use of AQM
 - RED like
 - Shaping
 - Use of Forwarding strategy
- Fast Pipeline Filling (FPF)
 - To fill all the path at their maximum
 - To select the forwarding interface, FPF chooses the one
 - Not at max capa (how to compute well the link capacity?)
 - The lowest RTT

NAME DATA NETWORK CONGESTION CONTROL IN NDN – HYDRID • Practical Congestion control (PCON) • Use of AQM for congestion detection • AQM = CoDel – based on the delay in queue • Mark on the data packet • NDN Nodes: • Forwarding change if possible • Consummers • At the reception of a marked data • Consumer reduces its Interest window • ICP like mechanism

LECTURE, ANALYSE ET EXAMEN

- (1) Impact des overlay dans Internet
 - Overlay Networks: An Akamai Perspective -2014 wiley
 - Axer l'analyse en conclusion sur les Edges
- (2) NDN et IoT
 - IoT-NDN: An IoT Architecture via Named Data Netwoking (NDN) -2019
 - Axer sur les défis à faire de l'IoT avec NDN et les propositions pour les résoudre

