Домашнее задание №2 по курсу «Машинное обучение»: основы машинного обучения

Скавыш Максим

Задание 1

Предложите алгоритм для генерации случайной линейно разделимой выборки в двумерном пространстве.

Пусть алгоритм принимает на вход следующие величины:

N, P — размеры отрицательной и положительной выборок соответственно $\min_x \leq \max_x$, $\min_y \leq \max_y -$ допустимы границы координат точек x и y соответственно.

Алгоритм:

Впишем в прямоугольник круг с радиусом:

$$R = min\left(\frac{(max_x - min_x)}{2}, \frac{(max_y - min_y)}{2}\right)$$

И возьмем ϕ — произвольный угол

Сгенерируем 2 случайных выборки размера N.

Элементы первой выборки должны удовлетворять условию: 0, < r < R где r – элемент Элементы второй выборки должны удовлетворять условию: $\phi < \alpha < \phi + \pi$ где α – элемент первой выборки.

Получили выборку размерности N: $\{(r_i,\ \alpha_i)\ i\in 1,...,N;\ 0< r_i< R,\ \phi<\alpha_i<\phi+\pi\}$ и, перейдя к полярным координатам, получим пары $(x_i,\ y_i)\ i\in 1,...,N$ объектов отрицательного класса Аналогично для выборки P: $\{(r_i,\ \alpha_i)\ i\in 1,...,N;\ 0< r_i< R,\ \phi+\pi<\alpha_i<\phi+2\pi\}$ и перейдя к полярным координатам, получим пары $(x_i,\ y_i)\ i\in 1,...,P$ объектов положительного класса. Получили линейно разделимую выборку с центром в начале координат. Сложив каждый элемент выборки с координатами центра вписанного в прямоугольник

 $\min_{x} \leq \max_{x}$, $\min_{y} \leq \max_{y}$ получим необходимую нам линейно разделимую выборку:

Вероятность того что два объекта выборки имеют равные координаты равна нулю с вероятностью 1 так как точка имеет меру равную 0.

Задание 2

На данном графике представлена зависимость количества шагов в алгоритме batch perceptron (по вертикали) от размера выборки (горизонталь)

IPython: https://github.com/MaksimSkavysh/Math/blob/master/ML-2017/hw2/batch-Copy1.ipynb