calculators will be allowed).

You must show ALL your work to have full credit. An answer without justification is worth no point.

May the Force be with you!

Pierre-Olivier Parisé

Your Signature: _____

Verify if the following vector functions are solutions to the homogeneous system Y' = AY with the given matrix A.

(a) (10 points)
$$A = \begin{bmatrix} 0 & -1 \\ 4 & 0 \end{bmatrix}$$
 and $Y(x) = \begin{bmatrix} \sin(2t) + \cos(2t) \\ -2\cos(2t) + 2\sin(2t) \end{bmatrix}$.

(b) (10 points)
$$A = \begin{bmatrix} 0 & -3 \\ -12 & 0 \end{bmatrix}$$
 and $Y(x) = \begin{bmatrix} e^{6t} + e^{-6t} \\ -2e^{6t} + 2e^{-6t} \end{bmatrix}$.

(a)
$$Y' = \begin{bmatrix} 2\cos(2t) - 2\sin(2t) \\ 4\sin(2t) + 4\cos(2t) \end{bmatrix}$$
 Therefore, we see $Y' = AY$.

Thus fore, we see
$$y' = Ay$$
.

$$A Y = \begin{bmatrix} 2\cos(2t) - 2\sin(2t) \\ 4\sin(2t) + 4\cos(2t) \end{bmatrix}$$

(b)
$$Y' = \begin{bmatrix} be^{6t} - be^{-6t} \\ -12e^{6t} - 12e^{-6t} \end{bmatrix}$$

$$AY = \begin{bmatrix} be^{6t} - be^{-6t} \\ -12e^{6t} - be^{-6t} \end{bmatrix}$$

$$->$$

Therefore, we see
$$y' = Ay$$
.

QUESTION 2

(20 pts)

Consider the following matrix:

$$A = \begin{bmatrix} 2 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}.$$

- (a) (5 points) Find the eigenvalues of the matrix A. (Hint: Use the last row to compute the determinant.)
- (b) (10 points) Find a basis and the dimension of each eigenspace.
- (c) (5 points) Is A diagonalizable? If so, find the diagonal matrix D and the change of basis P such that $D = P^{-1}AP$.

(a)
$$\det(\lambda \mathbf{I} - \mathbf{A}) = \begin{vmatrix} \lambda - 2 & 0 & -1 \\ -1 & \lambda - 1 & -1 \\ 0 & 0 & \lambda - 1 \end{vmatrix} = (\lambda - 1) \begin{vmatrix} \lambda - 2 & 0 \\ -1 & \lambda - 2 \end{vmatrix} = (\lambda - 1)(\lambda - 2)^2$$

Therefore, det $(\lambda I - A) = 0$ $(\lambda - 1)(\lambda - 2)^2 = 0$

(b)
$$\underline{F}_1$$
 Solve $(I-A)v=0$ with $v=\begin{bmatrix}x\\y\\z\end{bmatrix}$.

$$-0 \begin{bmatrix} -1 & 0 & -1 \\ -1 & 0 & -1 \end{bmatrix} \begin{bmatrix} xy \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} -0 -x-z=0 -0 \quad z=-x$$

$$x_1y = \frac{1}{2}$$

Thursfore
$$v = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x \\ y \\ -x \end{bmatrix} = x \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} + y \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} + b \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} + b \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\underline{E_2}$$
. Solve $(2I-A)v=0$ with $v=\begin{bmatrix} 2\\ 2 \end{bmatrix}$

$$-D \begin{bmatrix} 0 & 0 & -1 \\ -1 & 1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} A + D$$
 Z=0 d y=x
$$-x + y = 0$$
 There

Therefore,
$$v = \begin{bmatrix} x \\ 0 \end{bmatrix} = x \begin{bmatrix} 1 \\ 0 \end{bmatrix} - b \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 bean for E_z .

$$D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

$$P = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & 0 & 0 \end{bmatrix}.$$

Solve the following homogeneous system of differential equations.

$$Y' = \begin{bmatrix} 0 & -1 \\ 9 & 0 \end{bmatrix} Y.$$

The diagonal matrix D and the change of basis P such that $A = PDP^{-1}$ are

$$D = \begin{bmatrix} 3i & 0 \\ 0 & -3i \end{bmatrix} \quad \text{ and } \quad P = \begin{bmatrix} i/3 & -i/3 \\ 1 & 1 \end{bmatrix}.$$

Solve Diagonal System.

$$Z=P'Y \rightarrow y'=AY$$
 becomes $Z'=DZ$.
So, $Z(x)=\begin{bmatrix} c_1e^{3ix} \\ c_2e^{-3ix} \end{bmatrix}$ $\rightarrow Z_1=\begin{bmatrix} e^{3ix} \\ 0 \end{bmatrix}$

Find
$$y$$
.

$$y_{1} = PZ_{1} = \begin{bmatrix} i/3 & -i/3 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} e^{3ix} \\ 0 \end{bmatrix} = \begin{bmatrix} ie^{3ix}/3 \\ e^{3ix} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{i\cos(3x)}{3} - \frac{pin(3x)}{3} \\ \cos(3x) + ipin(3x) \end{bmatrix}$$

$$= \begin{bmatrix} -\frac{\sin(3x)}{3} \\ \cos(3x) \end{bmatrix} + i \begin{bmatrix} \frac{\cos 3x}{3} \\ \sin(3x) \end{bmatrix}$$

$$= [-\frac{\sin(3x)}{3}]$$

so Udvace solutions to Y'= AY and they from a foundamental set of solutions for Y'= AY

$$=) \quad \frac{1}{3} (x) = c_1 0 + c_2 0 = \begin{bmatrix} -\frac{c_1}{3} \sin 3x + \frac{c_2}{3} \cos 3x \\ \cos 3x + c_2 \sin 3x \end{bmatrix}$$

Solve the following initial value problem:

$$Y' = \begin{bmatrix} 2 & 1 \\ -3 & -2 \end{bmatrix} Y$$
 and $Y(0) = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$

The diagonal matrix D and the change of basis P such that $A = PDP^{-1}$ are

$$D = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \quad \text{ and } \quad P = \begin{bmatrix} -1 & -1/3 \\ 1 & 1 \end{bmatrix}.$$

Solve chagonal System.

$$Z = P'Y - PY = AY$$
 becomes $Z' = DZ$.
Solution $-PZ(x) = \begin{pmatrix} c_1e^x \\ c_2e^x \end{pmatrix}$.

Find
$$\forall$$
.

We know $Y = PZ \rightarrow Y = \begin{bmatrix} -1 & -1/3 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} c_1e^{\chi} \\ c_2e^{-\chi} \end{bmatrix}$

$$-h \quad Y = \begin{bmatrix} -c_1e^{\chi} - c_2e^{-\chi} \\ c_1e^{\chi} + c_2e^{-\chi} \end{bmatrix}$$

Answer the following questions.

- (a) (5 points) Let A be a square matrix. Suppose that λ is an eigenvalue for A. Show that λ^3 is an eigenvalue for A^3 .
- (b) (5 points) Suppose the characteristic polynomial of a square matrix A is

$$(\lambda - 2)^4(\lambda + 2)^2(\lambda - 1).$$

Suppose further that $\dim(E_2) = 2$, $\dim(E_{-2}) = 2$, and $\dim(E_1) = 1$. Give the Jordan Canonical Form of A.

- (a) We have $Av = \lambda v$. So, $A^7v = A(Av) = A(\lambda v) = \lambda(Av) = \lambda^2 v$ So, $A^3v = A(A^7v) = A(X^2v) = \lambda^2(Av) = \lambda^2(\lambda v) = \lambda^3 v$
- (b) the Jordan Canonical Form of Ain

$$B = \begin{bmatrix} 2 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

QUESTION 6 (10 pts)
Answer the following statements with True or False . Write your answer on the horizontal line at the end of each statement. Justify your answer in the white space underneath each statement.
(a) (/ 2) For an eigenvalue λ of a square matrix, there is only one eigenvector v associated with λ .
v eigenvector => 2v 13 also an eigenvector.
(a) False. (b) (/ 2) If the characteristic polynomial of a square matrix A is $(\lambda - 4)^2(\lambda + 3)^3(\lambda + 2)^2$, then there are 12 possible Jordan Canonical Forms of A .
$2 \times 3 \times 2 = 12$ possibilities
(c) (/ 2) If 2 and 3 are the eigenvalue of a 3×3 matrix A and if $\dim(E_2) + \dim(E_3) = 2$, then A is diagonalizable.
dim(Fz)+ dim(Ez) = 2 < 3.
(c) False
(d) (/ 2) If v is an eigenvector associated to the eigenvalue λ and if w is an eigenvector associated to the eigenvalue μ , with $\mu \neq \lambda$, then v and w are linearly dependent.
(c) Folse (d) (/ 2) If v is an eigenvector associated to the eigenvalue λ and if w is an eigenvector
 (d) (/ 2) If v is an eigenvector associated to the eigenvalue λ and if w is an eigenvector associated to the eigenvalue μ, with μ ≠ λ, then v and w are linearly dependent. v & w are linearly independent. (d) Fake. (e) (/ 2) Eigenvalues and eigenvectors are important tools to solve applied scientific prob-
(d) (/ 2) If v is an eigenvector associated to the eigenvalue λ and if w is an eigenvector associated to the eigenvalue μ , with $\mu \neq \lambda$, then v and w are linearly dependent. (d) $\underline{\text{Fake}}$.
(d) (/ 2) If v is an eigenvector associated to the eigenvalue λ and if w is an eigenvector associated to the eigenvalue μ , with $\mu \neq \lambda$, then v and w are linearly dependent. (d) Fake. (e) (/ 2) Eigenvalues and eigenvectors are important tools to solve applied scientific problems.