

Hi People! It's us, CV-D GEOFFREY HINTON

PROJECT 1: Face Recognition

(Gender Classification)

Background

Face recognition can be classified as an algorithm to identify and differentiate human faces based on an image or video. It studies unique features of the human face to make its predictions. One part of this algorithm is **gender classification**.

Gender classification is used to determine whether a subject is **male** or **female**. This feature is important, especially for automatic surveillance or monitoring systems. Examples include:

- surveillance of gender specific areas.
- count customers of each gender for sales evaluation.

This study explores the use of Artificial Intelligence, specifically 3 commonly known Convolutional Neural Networks (CNNs) for gender classification.

OBJECTIVE AND MODEL

Objectives

- To obtain CNN models that can classify gender based on images of human faces.
- To compare the classification performance of 3 different CNN models (VGG, ResNet, and GoogLeNet)

Model

Dependent variable = Gender

- Binary classification problem
- Supervised learning Method

TIMELINE

Tack and Specifies	Attondoos		Date												
Task and Specifics	Attendees	6/11	6/12	6/13	6/14	6/15	6/16	6/17	6/18	6/19	6/20	6/21	6/22	6/23	6/24
Project planning and scheduling															
Meeting	A, B, C, E, S														
Task and data understanding															
Translation of task	B, C														
Data preparation and preprocessing	B, C														
Meeting (member update)	B, C, S														
Coding															
Training algorithm understanding & creation	B, C, S														
Model training & algorithm evaluation 1	B, C, S														
algorithm evaluation 2	A, B, C, E, S														
Result Analysis															
Analysis, Graphing, and Validation	B, C														
Presentation															
Powerpoint creation	A, B, C, E, S														
rehearsal	A, B, C, E, S														
Others															
Evaluation and Revision	A, B, C, E, S														
Upload finished code to github	A, B, C, E, S														
			1												

Legend:

A: Alamul Yaqin

B: Shania Salsabilla (Bella)

C: Calvin Christian Chandra

E: Eureka Labdawara

S: Satrio Fatturahman

DATASET:

Used a subset of CelebFaces Attributes Dataset (CelebA) which can be accessed through:

https://drive.google.com/drive/folders/1xaVtzZSFGaRRz1FQikrBwDm4JjgK36zo

Utilizes 2 items:

- 'Images' folder: contains images of **5017** celebrities with a few duplicates.
- List_attribute.txt: contains mainly face attribute data of the images. Will only consider the ['Male'] column for this study.

PREPROCESSING

Removing Duplicate Images

```
[29]:
        images_list_dup = [i for i in images_list if len(i) > 11]
        images_list_dup
[29]: ['189651(1).jpg',
       '189513(1).jpg',
       '183145(1).jpg',
       '182912(1).jpg',
       '189297(1).jpg',
       '183005(1).jpg',
       '189132(1).jpg',
       '183121(1).jpg',
       '189324(1).jpg',
       '182793(1).jpg',
       '183018(1).jpg',
       '182809(1).jpg',
       '189512(1).jpg',
       '183111(1).jpg',
       '189581(1).jpg',
       '183050(1).jpg',
       '182943(1).jpg']
```

Filter Row Label with Images supplied

From 202599 rows of list_attribute, only 5000 row supplied with each respective training Image in provided Images folder.

PREPROCESSING

Using 'Male' Column only for label

Transforming -1 value to 0 in 'Male' Column

	file_name	Male
50	000051.jpg	1
51	000052.jpg	1
64	000065.jpg	1
165	000166.jpg	1
197	000198.jpg	0
202319	202320.jpg	0
202339	202340.jpg	0
202346	202347.jpg	0
202356	202357.jpg	0
202565	202566.jpg	1
5000 rov	vs × 2 colun	nns

PREPROCESSING:

Imbalanced Dataset

Raw Data

Data Augmentation

We Augment separately / differently for Train and Test Images. For Train Images we applied more steps like Random Horizontal Flip and Random Rotation to enrich our Train data.

```
# Define the Transformations:
transforms = {
    'train': transforms.Compose(
       transforms.RandomHorizontalFlip(),
       transforms.Resize(256),
       transforms.RandomRotation(45),
       transforms.CenterCrop(224),
       transforms.ToTensor(),
       transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    'test': transforms.Compose([
       transforms.Resize(256),
       transforms.CenterCrop(224),
       transforms.ToTensor(),
       transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
```

Example of Image Transformations visualized

Raw

Random Horizontal Flip

Random Rotation

Center Crop

Study Setup: Constant Parameters

Parameters	Value					
Epoch	25					
Initial Learning Rate	0.0001					
Optimizer	Adam					
Image Input Dimension	224 x 224 px, except Inception v3 = 299 x 299 px					
Batch Size	32					
Notebook & Accelerator	Kaggle GPU T4 x2					

Study Setup: Varied Parameters

Models	1	2	3	4
VGG	VGG-11	VGG-13	VGG-16	VGG-19
ResNet	ResNet-18	ResNet-34	ResNet-50	ResNet-101
Inception	Inception V1	Inception V3	-	-

Variations	Initially use Pretrained weights?	Loss Criterion
1	X	BCEWithLogitsLoss
2	V	BCEWithLogitsLoss
3	X	CrossEntropyLoss

Results Training Time

Results Accuracy

Results F1-Score

Validation

Female Male

Validation Results

Highest Accuracy Pretrained Models

ResNet-50	1	2	3	4	5
Female	0	0	0	0	0
Male	0	0	1	1	1
Inference time (s/image)	0.1402539				
VGG-19	1	2	3	4	5
Female	0	0	0	0	0
Male	1	1	1	1	1
Inference time (s/image)	0.1037431				
Inception V1	1	2	3	4	5
Female	1	1	1	1	1
Male	1	1	1	1	1
Inference time (s/image)	0.0707185				

Validation Results

Highest F1-Score Pretrained Models

ResNet-18	1	2	3	4	5
Female	0	1	0	1	1
Male	1	1	1	1	1
Inference time (s/image)	0.1156472				

VGG-19	1	2	3	4	5
Female	0	0	0	0	0
Male	1	1	1	1	1
Inference time (s/image)	0.1037431				

Inception V3	1	2	3	4	5
Female	1	1	1	0	0
Male	1	0	0	1	1
Inference time (s/image)	0.1355324				

Validation Results

Highest Accuracy and F1-Score Non-Pretrained Models

ResNet-18	1	2	3	4	5
Female	0	0	0	0	0
Male	1	1	1	1	1
Inference time (s/image)	0.0537727				

VGG-11	1	2	3	4	5
Female	0	0	0	0	0
Male	1	1	1	1	1
Inference time (s/image)	0.0190841				

Inception V1	1	2	3	4	5
Female	0	0	0	0	0
Male	1	1	1	1	1
Inference time (s/image)	0.0398222				

Conclusion:

- CNN models that can classify gender based on images of human faces were successfully obtained.
- Comparing the classification performance of 3 different CNN models (VGG, ResNet, and GoogLeNet) in our testing reveals in general:
 - more complex models will have increased training time.
 - ResNet and Inception models have relatively faster training time compared to VGG models.
 - Models with initial pretrained weights yield test results with higher and more consistent accuracy and F1-score compared to those without.
 - For **binary classification**, it is better to just **use binary loss criterion** than multiclass loss criterion.
 - From validation, despite having lower test accuracy and F1-score, the non-pretrained models have better prediction capabilities than pretrained models

Future Works:

- Expand the hyperparameters for testing such as number of epochs, optimizers, batch size, etc.
- Further study on validation tests as to why higher test accuracy models didn't guarantee good validation tests.

The brain sure as hell doesn't work by somebody programming in rules. **GEOFFREY HINTON**

Thank You

CV-D (Geoffrey Hinton)	
NAMA ANGGOTA	PENUGASAN
Calvin Christian Chandra (Team Leader)	Coding, pembuatan PPT
Satrio Fatturahman	Coding, pembuatan PPT
Shania Salsabilla	Coding (Pretrain Model, Validation)
Eureka Labdawara	Pembuatan PPT • •
Alamul Yaqin	Pembuatan PPT •