Résumé 5 - Calcul intégral

Intégration sur un segment

→ Construction et propriétés

On définit l'intégrale en approchant sur le segment [a, b] toute fonction continue par morceaux par une suite de de fonctions en escalier.

Ainsi, $\int_a^b f$ existe pour toute fonction $f \in \mathscr{C}_{pm}([a,b];\mathbb{K})$.

Propriétés de l'intégrale : $(f,g \in \mathcal{C}_{pm}([a,b];\mathbb{K}) \text{ et } \lambda \in \mathbb{K})$

- Linéarité: $\int_{a}^{b} \lambda f + g = \lambda \int_{a}^{b} f + \int_{a}^{b} g$
- Relation de Chasles: $\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f \quad (c \in [a, b])$
- Positivité: $f \ge 0 \Longrightarrow \int_a^b f \ge 0$ (seulement pour a < b)
- Croissance: $f \le g \Longrightarrow \int_a^b f \le \int_a^b g$ (idem)
- Inégalité triangulaire : $\left| \int_a^b f \right| \le \int_a^b |f|$ (idem)

Théorème

Soit f une fonction *positive* et *continue* sur [a, b].

 $\int_{a}^{b} f = 0 \iff f \text{ est identiquement nulle sur } [a, b].$

→ Primitives

Une primitive d'une fonction continue f sur un intervalle I est une fonction F dérivable sur I telle que F' = f.

Théorème -

Soient $f: I \to \mathbb{R}$ continue sur l'intervalle I et $a, b \in I$.

 $x \mapsto \int_a^x f(t) dt$ est une primitive de f sur I.

Si F est une primitive de f, $\int_{a}^{b} f(t) dt = F(b) - F(a).$

Toutes les primitives sur un même intervalle sont égales à une constante près.

→ Recherche de primitives

Il existe de nombreuses façons de calculer des primitives.

- Reconnaissance de formes usuelles. Ex. : $f'f^{\alpha}$ se « primitive » en $\frac{f^{\alpha+1}}{\alpha+1}$ si $\alpha \neq -1$, en $\ln |f|$ si $\alpha = -1$.
- Intégration par parties Si f et g sont de classe \mathscr{C}^1 sur [a, b],

$$\int_{a}^{b} f'g = [fg]_{a}^{b} - \int_{a}^{b} fg'$$

• Changement de variables Si $f: J \to \mathbb{R}$ est continue et $\varphi: [a, b] \to J$ de classe \mathscr{C}^1 ,

$$\int_{\varphi(a)}^{\varphi(b)} f(t) dt = \int_{a}^{b} f(\varphi(u)) \varphi'(u) du$$

• Fractions rationnelles

Intégration directe lorsqu'elles sont du type $\frac{1}{(x-a)^n}$.

Sinon, on décompose en éléments simples.

$$x \mapsto \frac{1}{x^2 + a^2}$$
 se primitive en $x \mapsto \frac{1}{a} \arctan\left(\frac{x}{a}\right)$.

- Fractions rationnelles en exp : on pose $u = e^x$.
- Produit d'un polynôme par une exponentielle
 On effectue des intégrations par parties successives jusqu'à éliminer le polynôme.
- Produit d'un polynôme trigonométrique par une exponentielle : on passe en complexe.

→ Calcul approché d'intégrales

La méthode des rectangles (ici « à gauche ») est à connaître.

Théorème : Sommes de Riemann

Soit f une fonction continue (p.m) sur [a, b]. Alors,

$$\frac{b-a}{n} \sum_{i=0}^{n-1} f\left(a+i\frac{b-a}{n}\right) \xrightarrow[n \to +\infty]{} \int_a^b f(t) \, \mathrm{d}t$$

Pour a = 0 et b = 1, on trouve :

$$\frac{1}{n} \sum_{k=0}^{n-1} f\left(\frac{k}{n}\right) \xrightarrow[n \to +\infty]{} \int_0^1 f(t) \, \mathrm{d}t$$

Intégrales généralisées

I désigne désormais un intervalle quelconque de $\mathbb R$.

→ Définition

Définition -

Soit $f:[a,b[\to\mathbb{K} \text{ continue, avec } b\in\mathbb{R} \text{ ou } b=+\infty.$ Si $\int_a^x f$ admet une limite finie lorsque $x\to b^-$, on

dit que l'intégrale converge et on note $\int_a^b f$ la limite.

Dans le cas contraire, on dit que l'intégrale impropre diverge.

Il y a deux types d'intégrales impropres : l'intégrale de fonctions non bornées sur un intervalle borné $(x \mapsto \ln x \text{ sur }]0,1]$) et celle de fonctions continues sur un intervalle non borné $(x \mapsto e^{-x} \text{ sur } [0,+\infty[).$

On peut étendre la définition précédente au cas]a,b] avec $a \in \mathbb{R}$ ou $a = -\infty$. Pour un intervalle de la forme]a,b[on découpe l'intégrale en deux.

→ Étude de la nature d'une intégrale

On peut quelquefois calculer une primitive et passer à la limite pour prouver la convergence/divergence.

$$\int_{1}^{+\infty} \frac{1}{t^{\alpha}} dt \text{ CV ssi } \alpha > 1; \quad \int_{0}^{1} \frac{1}{t^{\alpha}} dt \text{ CV ssi } \alpha < 1;$$

$$\int_{0}^{+\infty} e^{-\alpha t} dt \text{ CV ssi } \alpha > 0; \quad \int_{0}^{1} \ln t dt \text{ CV.}$$

Si $f:[a,b[\to\mathbb{K} \text{ est continue sur } [a,b[\text{ et prolongeable par continuité en } b \text{ (attention, } b\neq\infty!),$ $\int_a^b f \text{ converge.}$

$$\int_{a}^{b} f = \int_{a}^{b} \tilde{f} \text{ où } \tilde{f} \text{ est le prolongement continu de } f$$

Théorème : Divergence grossière à l'infini

Soit $f:[a,+\infty[\to \mathbb{R}$ continue par morceaux. Si f admet une limite $\ell \neq 0$ en $+\infty$, $\int_a^{+\infty} f(t) \, \mathrm{d}t$ diverge.

Contrairement aux séries, on ne peut rien dire lorsque la limite n'existe pas.

→ Intégrales de fonctions positives

On dispose de plusieurs méthodes lorsque la fonction est positive (ou tout du moins de signe constant).

- Théorème : Règle de majoration -

Soient $f,g:I\to\mathbb{R}$ deux fonctions continues p.m. sur I telles que $0\le f\le g$. Alors,

(i)
$$\int_{I} g$$
 converge $\Longrightarrow \int_{I} f$ converge.
Dans ce cas, $\int_{I} f \leqslant \int_{I} g$

(ii)
$$\int_I f$$
 diverge $\Longrightarrow \int_I g$ diverge.

Théorème : Règle des équivalents

Soient $f,g:[a,b[\to\mathbb{R}]$ deux fonctions continues p.m. sur I, de signe constant au voisinage de b, telles que $f(t) \sim g(t)$. Alors,

$$\int_a^b f$$
 et $\int_a^b g$ sont de même nature.

Théorème : Comparaison séries/intégrales

Soit f une application continue par morceaux, positive et décroissante sur $[a, +\infty[$. Alors,

$$\sum f(n)$$
 et $\int_{a}^{+\infty} f(t) dt$ sont de même nature.

Des encadrements séries-intégrales permettent en outre d'obtenir des équivalents de sommes et d'intégrales.

Théorème : Règle du petit o et du grand O -

Soient $f, g : [a, b] \to \mathbb{R}$. On suppose g continue, positive et d'intégrale convergente sur [a, b].

- si f = o(g) alors $\int_a^b f$ converge (absolument);
- si f = O(g) alors $\int_a^b f$ converge (absolument).

Ainsi, g intégrable $\Longrightarrow f$ intégrable (cf. ci-dessous).

Application à $f(t) = o\left(\frac{1}{t^{\alpha}}\right)$ avec $\alpha > 1$.

→ Calcul intégral

On se placera sur un segment avant d'utiliser une intégration par parties, quitte à passer à la limite.

Théorème : Changement de variable

Soient $f:]a, b[\to \mathbb{K}$ continue et $\varphi:]\alpha, \beta[\to]a, b[$ une bijection strictement croissante de classe \mathscr{C}^1 .

$$\int_{a}^{b} f(t) dt \text{ et } \int_{a}^{\beta} f(\varphi(u))\varphi'(u) du \text{ sont de même}$$
 nature et en cas de convergence, elles sont égales.

Idem pour φ strictement décroissante (aux bornes près).

→ Convergence absolue et fonctions intégrables

- Définition

Soit $f : [a, b] \rightarrow \mathbb{R}$ continue p.m. sur [a, b].

On dit que $\int_a^b f$ est absolument convergente

lorsque
$$\int_{a}^{b} |f|$$
 converge.

- Théorème : CV absolue ⇒ CV -

Une intégrale absolument convergente converge.

$$\int_{t}^{+\infty} \frac{\sin(t)}{t} dt$$
 est semi-convergente.

- Définition -

Une fonction $f: I \to \mathbb{K}$ continue p.m. sur I est dite intégrable si $\int_I f$ est absolument convergente.

Les propriétés de linéarité, positivité, croissance, relation de Chasles et inégalité triangulaire se vérifient encore pour des fonction intégrables sur un intervalle quelconque.

- Théorème —

L'ensemble $L^1(I,\mathbb{K})\cap \mathscr{C}(I,\mathbb{K})$ des fonctions intégrables et continues sur I muni de $\|\cdot\|_1:f\mapsto \int_I |f|$ est un espace vectoriel normé.

Ce résultat est faux pour des fonctions seulement supposées continues par morceaux.

© Mickaël PROST Année 2022/2023

Si $f, g : [a, b] \to \mathbb{K}$ sont continues et g est de plus positive et intégrable sur [a, b],

• Si
$$f(x) \underset{x \to b}{\sim} g(x)$$
, $\int_{x}^{b} f(t) dt \underset{x \to b}{\sim} \int_{x}^{b} g(t) dt$.

• Si
$$f(x) = \underset{x \to b}{=} o(g(x)), \int_{x}^{b} f(t) dt = o\left(\int_{x}^{b} g(t) dt\right).$$

• Si
$$f(x) = O(g(x))$$
, $\int_{x}^{b} f(t) dt = O\left(\int_{x}^{b} g(t) dt\right)$.

Si g est supposée positive et *non* intégrable sur [a, b[,

• Si
$$f(x) \underset{x \to b}{\sim} g(x)$$
, $\int_a^x f(t) dt \underset{x \to b}{\sim} \int_a^x g(t) dt$.

• Si
$$f(x) = \underset{x \to b}{=} o(g(x)), \int_a^x f(t) dt = \underset{x \to b}{=} o\left(\int_a^x g(t) dt\right).$$

• Si
$$f(x) = O(g(x))$$
, $\int_a^x f(t) dt = O\left(\int_a^x g(t) dt\right)$.

Théorèmes de Lebesgue

\rightarrow Convergence dominée

Théorème : Convergence dominée

Soit (f_n) une suite de fonctions définies sur un intervalle I de \mathbb{R} , à valeurs dans \mathbb{K} . On suppose que :

- Pour tout $n \in \mathbb{N}$, f_n est continue (p.m.) sur I.
- La suite (f_n) converge simplement sur I vers une fonction continue par morceaux f.
- Il existe $\varphi: I \to \mathbb{R}_+$ intégrable sur I vérifiant :

 $\forall n \in \mathbb{N}, |f_n| \leq \varphi$ (hypothèse de domination)

Alors, les fonctions f et f_n sont intégrables sur I et,

$$\lim_{n \to +\infty} \int_{I} f_n(x) \, \mathrm{d}x = \int_{I} f(x) \, \mathrm{d}x$$

Théorème : Convergence dominée (extension)

Soit $(f_x)_{x\in I}$ une famille de fonctions définies sur J à valeurs dans \mathbb{K} . Soit également x_0 un point adhérent à I (ou bien $x_0 = \pm \infty$). On suppose que :

- Pour tout $x \in I$, f_x est continue (p.m) sur J.
- Pour tout $t \in J$, $f_x(t) \xrightarrow[x \to x_0]{} f(t)$ où f est une fonction continue par morceaux sur J.
- Il existe $\varphi: J \to \mathbb{R}_+$ intégrable sur J telle que pour tous $(x, t) \in I \times J$, $|f_x(t)| \le \varphi(t)$.

Alors, les fonctions f_x et f sont intégrables sur J et

$$\lim_{x \to x_0} \int_J f_x(t) \, \mathrm{d}t = \int_J f(t) \, \mathrm{d}t$$

→ Intégration terme à terme

Pour des fonctions $f_n: I \to \mathbb{K}$ positives,

$$\sum_{n=0}^{+\infty} \left(\int_{I} f_n(x) \, \mathrm{d}x \right) = \int_{I} \left(\sum_{n=0}^{+\infty} f_n(x) \right) \, \mathrm{d}x$$

Cette égalité a lieu dans $[0, +\infty]$.

Théorème : Intégration terme à terme

Soit (f_n) une suite de fonctions définies sur un intervalle I de \mathbb{R} , à valeurs dans \mathbb{K} . On suppose que :

- Pour tout $n \in \mathbb{N}$, f_n est continue (p.m.) sur I.
- La série $\sum f_n$ converge simplement sur I vers une fonction continue par morceaux.
- La série $\sum \int_I |f_n|$ converge. (Avaleur abs.)

Alors, $\sum_{n=0}^{+\infty} f_n$ est intégrable sur I et

$$\sum_{n=0}^{+\infty} \left(\int_{I} f_n(x) \, \mathrm{d}x \right) = \int_{I} \left(\sum_{n=0}^{+\infty} f_n(x) \right) \, \mathrm{d}x$$

Intégrales à paramètre

Fiche 5 - Calcul intégral

On note I et J deux intervalles de \mathbb{R} et on considère :

$$g: x \mapsto \int_I f(x, t) dt$$
 avec $f: I \times J \to \mathbb{R}$

Déterminer le domaine de définition de g revient à étudier pour chaque $x \in I$ l'existence d'une intégrale.

→ Continuité d'une intégrale à paramètre

Théorème : Continuité sous le signe ∫

Si une fonction $f: I \times J \to \mathbb{K}$ vérifie :

- Pour tout $t \in J$, $x \mapsto f(x, t)$ est continue sur I.
- Pour tt $x \in I$, $t \mapsto f(x, t)$ est continue p.m. sur J.
- Il existe $\varphi: J \to \mathbb{R}_+$ intégrable sur J telle que :

$$\forall (x,t) \in I \times J, \quad |f(x,t)| \leq \varphi(t)$$

Alors, $x \mapsto \int_I f(x, t) dt$ est définie et continue sur I.

L'hypothèse de domination peut simplement être vérifiée sur tout segment K inclus dans I, c'est-à-dire :

$$\forall (x,t) \in K \times J, \quad |f(x,t)| \leq \varphi_K(t)$$

La continuité de g sur tout K assure sa continuité sur I. Si J = [a, b] est un segment et f est continue sur $I \times [a, b]$, la domination sur tout segment est toujours vérifiée.

→ Dérivabilité d'une intégrale à paramètre

Théorème : Théorème de Leibniz

Si une fonction $f: I \times J \to \mathbb{K}$ vérifie :

- Pour tout $t \in J$, $x \mapsto f(x, t)$ est de classe \mathcal{C}^1 sur I.
- Pour tout $x \in I$, $t \mapsto f(x,t)$ est intégrable et $t \mapsto \frac{\partial f}{\partial x}(x,t)$ est continue (p.m.) sur J.
- Il existe $\varphi: J \to \mathbb{R}_+$ intégrable sur J telle que :

$$\forall (x,t) \in I \times J, \quad \left| \frac{\partial f}{\partial x}(x,t) \right| \leq \varphi(t)$$

Alors, $g: x \mapsto \int_{I}^{x} f(x, t) dt$ est de classe \mathscr{C}^{1} sur I et

$$\forall x \in I, \quad g'(x) = \int_{I} \frac{\partial f}{\partial x}(x, t) dt$$

On peut là encore se contenter d'une domination sur tout segment inclus dans I. L'hypothèse de domination est toujours vérifiée lorsque J est un segment.

Extension aux fonctions de classe \mathscr{C}^k : on opère en plusieurs fois sur f', f'', ...ou bien on raisonne par récurrence. On peut également appliquer directement :

Théorème : Théorème de Leibniz – version \mathscr{C}^n

Si une fonction $f: I \times J \to \mathbb{K}$ vérifie :

- Pour tout $t \in J$, $x \mapsto f(x, t)$ est de classe \mathscr{C}^n sur I.
- Pour tous $k \in [0, n-1]$ et $x \in I$, $t \mapsto \frac{\partial^k f}{\partial x^k}(x, t)$ est intégrable sur J et $t \mapsto \frac{\partial^n f}{\partial x^n}(x, t)$ continue (p.m.).
- Il existe $\varphi_n: J \to \mathbb{R}_+$ intégrable sur J telle que :

$$\forall (x,t) \in I \times J, \quad \left| \frac{\partial^n f}{\partial x^n}(x,t) \right| \leq \varphi_n(t)$$

Alors, $g: x \mapsto \int_I f(x, t) dt$ est de classe \mathscr{C}^n sur I et

$$\forall x \in I, \quad g^{(n)}(x) = \int_{I} \frac{\partial^{n} f}{\partial x^{n}}(x, t) dt$$

Ces hypothèses sont à savoir retrouver.

© Mickaël PROST