Energie électrique fournie ou reçue en régime permanent

Loi de Joule

I- L'énergie électrique reçue par un récepteur

1- Bilan qualitatif d'énergie

On considère le circuit électrique suivant :

L : lampe électrique

E: électrolyseur

G: générateur

Quand on ferme l'interrupteur K, on observe :

La lampe s'allume et s'échauffe. Elle reçoit de l'énergie électrique du générateur. Elle la convertit en énergie rayonnante et en énergie thermique.

$$W_e = W_r + W_{th}$$

L'électrolyseur produit des réactions chimiques, l'énergie reçue par l'électrolyseur est convertit en énergie chimique et en énergie thermique.

$$W_e = W_{ch} + W_{th}$$

Conclusion:

Le récepteur (lampe, moteur,....) convertit l'énergie qu'il reçoit en une autre forme d'énergie en plus de l'énergie thermique.

Il y a conservation de l'énergie lors de ce transfert.

2- Récepteur

2-1- Définition:

Le récepteur est un dipôle qui reçoit l'énergie électrique et la convertit en une autre forme d'énergie en plus de l'énergie thermique.

2-2- Convention récepteur :

Dans la convention récepteur la tension U_{AB} est positive si le courant électrique circule de A à B.

3- L'énergie reçue par un récepteur :

En régime permanent, l'énergie électrique reçue par un récepteur parcourue par un courant I et soumis à une tension U_{AB} , pendant une durée Δt , est :

$$egin{aligned} W &= m{U}_{AB}. m{I}. \Delta t \end{aligned} \ \ \text{avec}: egin{cases} W: \'energie recue en joule (J) \ U_{AB}: tention en volt (V) \ I: Intensit\'e du courant en ampère (A) \ \Delta t: dur\'ee en seconde (s) \end{cases}$$

Remarque:

On utilise une autre unité d'énergie : le kilowattheure (kWh) : c'est l'énergie consommée par un récepteur de 1kW pendant une durée d'une heure.

$$1kWh = 1000 Wh = 1000 \times 3600 = 3.6 MJ$$

4- La puissance électrique reçue par un récepteur :

En régime permanent, la puissance électrique reçue par un récepteur parcourue par un courant I et soumis à une tension U_{AB} est :

$$P = U_{AB}$$
. I avec :
$$\begin{cases} P: puissance \ en \ watt \ (W) \\ U_{AB}: tention \ en \ volt \ (V) \\ I: Intensit\'e \ du \ courant \ en \ amp\`ere \ (A) \end{cases}$$

II- Effet Joule:

1- Mise en évidence de l'effet Joule :

Définition:

L'effet Joule est l'effet thermique associé au passage du courant électrique dans les conducteurs.

Exemple:

Quand un courant électrique passe dans un fil, ce dernier s'échauffe.

2- Cas de conducteur ohmique :

On considère un conducteur ohmique de résistance R parcourue par un courant d'intensité I est soumis à une tension U_{AB} .

L'énergie électrique reçue par le conducteur pendant la durée Δt

est:

$$W_e = U_{AB}.I.\Delta t$$

D'après la loi d'ohm : $U_{AB} = R.I$ d'où la loi de Joule :

$$W_e = Q = R.I^2.\Delta t$$

Le conducteur ohmique transforme toute l'énergie électrique qu'il reçoit, en énergie thermique.

La puissance électrique est :

$$P = R I^2$$

3- Conséquences de l'effet Joule :

Effets bénéfiques :

On utilise cet effet Joule:

- -dans tous les appareils chauffants : fer à repasser, grille-pain, four électrique, cafetière, radiateur
- -L'éclairage par incandescence
- -Les fusibles....

Effet indésirables :

Par contre, cet effet pose des problèmes dans d'autre cas : pertes énergétiques dans les appareils ou dans le transport de l'électricité, l'échauffement des appareils électriques et leur détérioration...

III- Energie électrique fournie par un générateur

1- Définition :

Un générateur est un dipôle qui convertit en énergie électrique une autre forme d'énergie.

2- Convention du générateur :

Dans la convention générateur la tension U_{PN} est positive si le courant électrique passe de N vers P.

Exemple:

La pile transforme l'énergie chimique en énergie électrique.

3- L'énergie fournie par un générateur :

On considère un générateur qui produit un courant électrique d'intensité I, U_{PN} est la tension entre ses bornes.

L'énergie électrique fournie, au reste du circuit, par le générateur, pendant la durée Δt est :

$$W_e = U_{PN}.I.\Delta t$$

La puissance fournie par le générateur au reste du circuit :

$$P_e = U_{PN}.I$$