1 Concetti di di base

Questa sezione presenta i concetti di base di teoria delle cateogrie [...]

1.1 Categorie

Definizione 1.1 (Categorie, sottocategorie). Una categoria \mathcal{C} è composta da:

- 1. una collezione di oggetti $Ob(\mathcal{C})$;
- 2. una collezione di morfismi $Mor(\mathcal{C})$;
- 3. due operazioni che assegnano ad ogni morfismo f un oggetto $dom\ f$, detto dominio e un oggetto $cod\ f$, detto codominio, denotando con $f:A\to B$ il fatto che $dom\ f=A$ e $cod\ f=B$; la collezione di tutti i morfismi da un oggetto A ad un oggetto B in C è denotato con C(A,B);
- 4. un operatore di composizione che assegna ad ogni coppia di morfismi f, g tali che $dom\ g=cod\ f$, un morfismo $composto\ g\circ f:dom\ f\to cod\ g$, tale da soddisfare

$$h \circ (g \circ f) = (h \circ g) \circ f$$

per ogni f, g, h tali che $dom\ g = cod\ f$ e $dom\ h = cod\ f$;

5. per ogni oggetto A, un morfismo identità $id_A: A \to A$ tale che:

$$id_B \circ f = f = f \circ id_A$$

per ogni $f: A \to B$.

Una categoria \mathcal{B} è una sottocategoria di \mathcal{C} se

- 1. ogni oggetto di \mathcal{B} è un oggetto di \mathcal{C} ;
- 2. se A e B sono oggetti di \mathcal{B} , $\mathcal{B}(A,B) \subseteq \mathcal{C}(A,B)$;
- 3. morfismi composti e identità di \mathcal{B} sono gli stessi di \mathcal{C} .

Una sottocategoria \mathcal{B} di \mathcal{C} si dice *completa* se, per ogni coppia di oggetti A, B,si ha $\mathcal{B}(A,B) = \mathcal{C}(A,B)$.

[puntualizzazione sull'utilizzo improprio del temine "collezione" nella definizione]. Un primo esempio interessante è il seguente, nonché fonte di intuizioni per buona parte di questa presentazione della teoria delle categorie.

Esempio 1.2. La categoria Set è la categoria degli insiemi e delle funzioni totali tra essi. La composizione di morfismi corrisponde alla composizione di funzioni, e i morfismi identità corrispondono alle funzioni identità.

Un modo di rappresentare una categoria \mathcal{C} è mediante diagrammi, come illustrato di seguito, i cui vertici sono etichettati con oggetti di \mathcal{C} , e le frecce con morfismi di f, dove una freccia f da A a B rappresenta il morfismo $f:A\to B$. Un diagramma è detto commutativo se, per ogni coppia di vertici A, C, ogni percorso da A a C determina lo stesso morfismo:

in questo caso, la commutatività di tale diagramma esprime l'uguaglianza $g \circ f = h$.

Definizione 1.3 (Monomorfismi, epimorfismi, isomorfismi). Un morfismo $m: B \to C$ in una categoria \mathcal{C} è un monomorfismo (oppure è mono) se, per ogni coppia di morfismi $f,g: A \to B$ in \mathcal{C} , l'uguaglianaza $m \circ f = m \circ g$ implica f = g. Un morfismo $e: C \to D$ in \mathcal{C} è un epimorfismo (oppure è epi) se l'uguaglianza $f \circ e = g \circ e$ implica f = g. Un morfismo $\phi: A \to B$ in \mathcal{C} è un isomorfismo se esiste in \mathcal{C} un morfismo $\psi: B \to A$ tale che $\psi \circ \phi = id_A$ e $\phi \circ \psi = id_B$.

Le definizioni di monomorfismo, epimorfismo e isomorfismo sono una generalizzazione di un concetto ben noto in teoria degli insiemi, come illustra il seguente esempio.

Esempio 1.4. In **Set**, un monomorfismo $m:A\to B$ è una funzione iniettiva dall'inieme A all'insieme B, un epimorfismo $e:C\to D$ è una funzione surgettiva da C a D, mentre un isomorfismo $\phi:E\to F$ è una corripondenza biunivoca tra gli insiemi E ed F

[Non andrei troppo nel dettaglio con gli esempi]