5

10

15

20

25

30

35

Patent Claims:

- 1. A method of detecting a first signal in a received signal (y) using a pattern (\hat{s}), the received signal (y) comprising at least one signal group ($y^{(1)}$, ..., $y^{(J)}$), each signal group comprising a number (K) of signal symbols, the pattern (\hat{s}) comprising at least one pattern group ($\hat{s}^{(1)}$, ..., $\hat{s}^{(J)}$), each pattern group comprising at least a number (K) of pattern symbols, wherein the method comprises the steps of:
 - for each signal group $(y^{(1)}, ..., y^{(J)})$ multiplying each signal symbol with a corresponding pattern symbol of a pattern group $(\hat{s}^{(1)}, ..., \hat{s}^{(J)})$ and deriving a sum $(\Sigma_1, ..., \Sigma_J; A_I)$ of the products of multiplication,
 - applying a weight factor $(x_1, ..., x_J; \hat{C}_J)$ of one or more weight factors $(x_1, ..., x_J; \hat{C}_J)$ to each sum $(\Sigma_1, ..., \Sigma_J; A_J)$ giving a weighted sum $(x_1\Sigma_1, ..., x_J\Sigma_J; A_J/\hat{C}_J)$, where said one or more weight factors $(x_1, ..., x_J; \hat{C}_J)$ are selected to preserve an orthogonality relation of said pattern symbols of the at least one pattern group, and
 - determining if a signal is detected or not based on said one or more weighted sums $(x_1\Sigma_1, ..., x_J\Sigma_J; A_I/\hat{C}_I)$.
- 2. A method according to claim 1, c h a r a c t e r i z e d in that said step of determining if a signal is detected or not comprises
 - adding said one or more weighted sums $(x_1\Sigma_1, ..., x_J\Sigma_J; A_f/\hat{C}_f)$ giving a first result $(x_1\Sigma_1 + ... + x_J\Sigma_J; \Sigma_{f=1}^J A_f/\hat{C}_f; \Sigma_{f=1}^J CA_f/\hat{C}_f)$, and
- comparing said first result with a detection threshold (τ,τ_{FAR}) in order to determine whether said signal is detected or not.
 - 3. A method according to claim 2, c h a r a c t e r i z e d in that said detection threshold (τ, τ_{FAR}) is derived based on a signal to interference ratio of a common pilot channel (CPICH).
 - 4. A method according to claim 2, c h a r a c t e r i z e d in that said detection threshold (τ, τ_{FAR}) is derived based on a signal to interference ratio, where the interference is estimated on the basis of symbols of the received signal (y) that should be zero.

5. A method according to claims 2 - 4, c h a r a c t e r i z e d in that said detection threshold (τ_{FAR}) is derived based on a false detection rate factor (I_{FAR}) and a standard deviation (σ_{ϵ}) of the interference of the received signal (γ).

5

15

25

35

- 6. A method according to claims 1-5, c h a r a c t e r i z e d in that said one or more weight factors $(x_1, \ldots, x_J; \hat{C}_j)$ are derived on the basis of a signal to interference ratio (SIR) calculated for a common pilot channel (CPICH).
- 7. A method according to claim 6, c h a r a c t e r i z e d in that said signal to interference ratio (SIR) calculated for a common pilot channel (CPICH) is dependent on an estimate of the interference $(N_f^{(f)})$ for a given finger (f) and a given group (j), where said method further comprises the step of:
 - averaging the estimate of the interference $(N_f^{(j)})$ over a predetermined number of groups before deriving said one or more weight factors $(x_1, ..., x_j; \hat{C}_j)$ on the basis of the signal to interference ratio (SIR) calculated for the common pilot channel (CPICH).
- 8. A method according to claims 1 7, c h a r a c t e r i z e d in that said first signal is an acquisition indicator channel (AICH) signal or a collision detection/channel assignment indicator channel (CD/CA-ICH).
 - 9. A method according to claims 1-8, c h a r a c t e r i z e d in that said received signal (y) is an estimated signal $(\sum_{f=1}^{F} y_{k,f}^{(AlCH)} w_{k,f}^{*})$ derived on the basis of one or more weighted channel estimates $(w_{k,f})$ and of de-spread symbols $(y_{k,f}^{(AlCH)})$ from a RAKE, wherein the one or more weighted channel estimates $(w_{k,f})$ are based on a common pilot channel (CPICH).
- 10. A method according to claims 1 9, c h a r a c t e r i z e d in that said received signal (y) comprises two or three signal groups and that the pattern (ŝ) comprises at least two or three pattern groups.
 - 11. A device for detecting a first signal in a received signal (y) using a pattern (\$\hat{s}\$), the received signal (y) comprising at least one signal group (y⁽¹⁾, ..., y^(J)), each signal group comprising a number (K) of signal symbols, the pattern (\$\hat{s}\$) comprising at least one pattern group (\$\hat{s}^{(1)}, ..., \$\hat{s}^{(J)}\$), each pattern group

5

10

20

comprising at least a number (K) of pattern symbols, wherein the device comprises:

- means (201, 201a, 201b) adapted to for each signal group (y⁽¹⁾, ..., y^(J)) to multiply each signal symbol with a corresponding pattern symbol of a pattern group (ŝ⁽¹⁾, ..., ŝ^(J)) and to derive a sum (Σ₁, ..., Σ_J, A_I) of the products of multiplication,
- means (202, 202a, 202b) for applying a weight factor (x₁, ..., x_J; Ĉ_J) of one or more weight factors (x₁, ..., x_J; Ĉ_J) to each sum (Σ₁, ..., Σ_J; A_J) giving a weighted sum (x₁Σ₁, ..., x_JΣ_J; A_J/Ĉ_J), where said one or more weight factors (x₁, ..., x_J; Ĉ_J) are selected to preserve an orthogonality relation of said pattern symbols of the at least one pattern group, and
- means (102; 103) for determining if a signal is detected or not based on said one or more weighted sums $(x_1\Sigma_1, ..., x_J\Sigma_J; A_J/\hat{C}_J)$.
- 12. A device according to claim 11, c h a r a c t e r i z e d in that said means (102; 103) for determining if a signal is detected or not further comprises
 - a summation circuit (203) for adding said one or more weighted sums $(x_1\Sigma_1, \ldots, x_J\Sigma_J; A_f/\hat{C}_f)$ giving a first result $(x_1\Sigma_1 + \ldots + x_J\Sigma_J; \Sigma_{i=1}^J A_i/\hat{C}_f; \Sigma_{i=1}^J CA_i/\hat{C}_f)$, and
 - detection means (204) for comparing said first result with a detection threshold (τ,τ_{FAR}) in order to determine whether said signal is detected or not.
- 13. A device according to claim 12, c h a r a c t e r i z e d in that the device further comprises processing means (103) for deriving said detection threshold (τ,τ_{FAR}) based on a signal to interference ratio of a common pilot channel (CPICH).
- 14. A device according to claim 12, c h a r a c t e r i z e d in that said device further comprises processing means (103) for deriving said detection threshold (τ,τ_{FAR}) on the basis of a signal to interference ratio and for estimating the interference on the basis of symbols of the received signal (y) that should be zero.
- 15. A device according to claims 12 14, c h a r a c t e r i z e d in that the device further comprises processing means (103) for deriving said detection

WO 2004/028019 PCT/EP2003/009657

threshold (τ_{FAR}) based on a false detection rate factor (I_{FAR}) and a standard deviation (σ_{\bullet}) of the interference of the received signal (y).

26

16. A device according to claims 11 - 15, c h a r a c t e r i z e d in that the device further comprises processing means (103) for deriving one or more weight factors $(x_1, ..., x_j; \hat{C}_j)$ on the basis of a signal to interference ratio (SIR) calculated for a common pilot channel (CPICH).

5

15

20

25

35

- 17. A device according to claim 16, c h a r a c t e r i z e d in that said signal to interference ratio (SIR) calculated for a common pilot channel (CPICH) is dependent on an estimate of the interference $(N_f^{(j)})$ for a given finger (f) and a given group (j), where said processing means (103) is further adapted to:
 - average the estimate of the interference $(N_f^{(j)})$ over a predetermined number of groups before deriving said one or more weight factors $(x_1, ..., x_j; \hat{C}_j)$ on the basis of the signal to interference ratio (SIR) calculated for the common pilot channel (CPICH).
 - 18. A device according to claims 11 17, c h a r a c t e r i z e d in that said first signal is an acquisition indicator channel (AICH) signal or a collision detection/channel assignment indicator channel (CD/CA-ICH).
 - 19. A device according to claims 11 18, c h a r a c t e r i z e d in that the device further comprises a combiner circuit (101) for deriving said received signal (y) as an estimated signal ($\sum_{f=1}^{F} y_{k,f}^{(AICH)} w_{k,f}^{*}$) derived on the basis of one or more weighted channel estimates ($w_{k,f}$) and of de-spread symbols ($y_{k,f}^{(AICH)}$) from a RAKE, wherein the one or more weighted channel estimates ($w_{k,f}$) is based on a common pilot channel (CPICH).
- 20. A device according to claims 11 19, c h a r a c t e r i z e d in that said
 30 received signal (y) comprises two or three signal groups and that the pattern
 (ŝ) comprises at least two or three pattern groups.
 - 21. A computer readable medium having stored thereon instructions for causing one or more processing units to execute the method according to any one of claims 1 10.