Prof. André Gustavo Hochuli

gustavo.hochuli@pucpr.br aghochuli@ppgia.pucpr.br

Plano de Aula

- Apresentação do Professor
- O que esperar da disciplina?
- Introdução a Aprendizagem de Máquina
- Conceitos Básicos

Prof. André Gustavo Hochuli

- · Formação
 - · Ciência da Computação [2004, PUCPR]
 - Mestre [2007, PPGIA/PUCPR]
 - Doutor [2018, PPGINF/UFPR]
- · Experiência Profissional
 - P&D em Visão Computacional [2008-2013]
 - Professor Universitário [2014 Atual]
- · Linhas de Pesquisa
 - Aprendizagem de Máquina e Reconhecimento de Padrões

Hobbies: Aviação Futebol Tecnologia

Convolution Neural Network (CNN)

Aprendizado de Máquina - Prof. André Hochuli

O que esperar da disciplina?

- Aprendizagem de Máquina
 - Conceitos, Definições, Modelos, Aplicações
- Técnicas do Estado da Arte
- Desafios encontrados no cotidiano
- Aulas teóricas e práticas
- Conteúdo incremental
- Trabalhos práticos e Provas Teóricas
- Espaço para o estudante debater e trazer problemas/dúvidas

"Tópico da Ciência da Computação cujo objetivo é desenvolver soluções tecnológicas que simulam o raciocínio humano, ou seja, a inteligência que é característica dos seres humanos."

"Máquinas podem pensar?" - Alan Turing (1950)

IA passa a ser considerada ciência em 1956 (Dartmouth College, USA).

• A inteligência artificial já está presente no nosso dia-a-dia

• A inteligência artificial já está presente no nosso dia-a-dia

A inteligência artificial já está presente no nosso dia-a-dia

Artificial intelligence could eliminate many white-collar jobs in coming decades. Its effects are already being felt in the call centre industry, but there is still no substitute for the human touch

One of the most hotly debated subjects at this year's <u>World Economic Forum</u> in Davos concerned the <u>risks posed by</u> technology to jobs, political stability and cyber security.

 Em conferências nacionais e internacionais, crescem discussões acerca da ética e moral no uso da I.A

ETHICAL

Regulation
Privacy
Mitigation of Bias
Transparency
Relevance

LEGAL

Governance

Confidentiality Liability Accuracy Decision Making

Como se envolver com I.A na graduação ?

- Os professores do curso possuem pesquisas em variados tópicos com publicações no estado da arte
 - Reconhecimento de Facial: Biometria, Emoções, Idade e Genêro
 - Classificação de Vagas de Estacionamento
 - Classificação Multimodal
 - Reconhecimento de Manuscritos: OCR, Digitos, Palavras, Documentos Históricos
 - Classificação de Genêro Musical
 - Detecção de Fraude
 - Sistemas de Recomendação
 - Processamento de Linguagem Natural
 - Processamento de Imagens Médicas
- Projetos PIBIC

 Reconhecimento de Facial: Biometria, Emoções, Idade e Genêro Fusion of feature sets and classifiers for facial expression recognition Thiago H.H. Zavaschi^a, Alceu S. Britto Jr.^a, Luiz E.S. Oliveira^b, Alessandro L. Koerich^{a,b,*}

^b Federal University of Paraná, R. Cel. Francisco H. dos Santos, 100, Curitiba, PR 81531-990, Brazil

Table 4
Comparison with different approaches on JAFFE database.

Reference	Accuracy (%)	Features
Zhang et al. (1998)	90.1	Geometry and Gabor
Bashyal and Venayagamoorthy (2008)	90.2	Gabor and LVQ
Koutlas and Fotiadis (2008)	92.3	Gabor filters
Liu and Wang (2006)	92.5	Gabor filters
Oliveira et al. (2011)	94.0	2DPCA with feature selection and SVM
Shih et al. (2008)	94.1	2D-LDA and SVM
Liao et al. (2006)	94.5	LPB, Tsallis entropies, global appearance
Cheng et al. (2010)	95.2	Gaussian process
Zhi and Ruan (2008)	95.9	2D locality preserving projections
Proposed approach	96.2	Ensemble based on Gabor and LBP

^a Pontifical Catholic University of Paraná (PUCPR), R. Imaculada Conceição, 1155, Curitiba, PR 80215-901, Brazil

Classificação de Vagas de Estacionamento

Evaluation of Different Annotation Strategies for Deployment of Parking Spaces Classification Systems

Publisher: IEEE

Cite This

🚨 PDF

Andre G. Hochuli; Alceu S. Britto; Paulo R. L. de Almeida; Williams B. S. Alves; Fábio M. C. Cagni All Authors

(a) UFPR04: Rainy

(b) UFPR05: Sunny

(c) PUCPR: Cloudy

(d) UFPR05 with annotations

(e) PUCPR with annotations

Reconhecimento de Manuscritos: OCR, Digitos, Palavras, Documentos Históricos

An End-to-End Approach for Recognition of Modern and Historical Handwritten Numeral Strings

Publisher: IEEE Cite This PDF

Andre G. Hochuli; Alceu S. Britto; Jean P. Barddal; Robert Sabourin; Luiz E. S. Oliveira All Authors

Table VI
BENCHMARK FOR ARDIS DATASET IV (SINGLE DIGITS) OF MODELS ON DIFFERENT TRAINNING PROTOCOLS (REPORTED BY [1])

	Accuracy (%)			
Method	Case I	Case II	Case III	Case IV
YoLo	87.60	64.10	99.70	99.27
Hochuli et al.[5]	67.20	51.90	83.30	60.55
CNN	58.80	35.44	98.60	99.34
HOG-SVM	56.18	33.18	95.50	98.08
RNN	45.74	28.96	91.12	96.74
kNN	50.15	22.72	89.60	96.63
SVM	43.40	30.62	92.40	96.48
Random Forest	20.12	17.15	87.00	93.12

Figure 12. Missed predictions of YoLo for ORAND dataset: (a) '1898' as '1892', (b) '1912' as '1913', (c) '1917' as '917'

 Classificação de Genêro Musical 2012 IEEE International Conference on Systems, Man, and Cybernetics October 14-17, 2012, COEX, Seoul, Korea

Music Genre Classification using Dynamic Selection of Ensemble of Classifiers

Figure 1. Feature extraction from 3 segments of the music signal adapted from [2].

TABLE V. BEST RESULTS OF THE DYNAMIC SELECTION METHOD AND THE CORRESPONDING K VALUE

Selection scheme	# of classifiers selected	# of of votes	Accuracy (%)		
Experiment 1 (E1) Oracle = 100%					
KE(k=1)	72	72	59.66		
KU (k = 10)	249	709	70.31		
Experiment 2 (E2) Oracle = 100%					
KE(k=1)	43	43	57.02		
KU (k = 13)	143	573	64.94		

Published: 22 October 2021

Hierarchical classification of data streams: a systematic literature review

Eduardo Tieppo , Roger Robson dos Santos, Jean Paul Barddal & Júlio Cesar Nievola

Bibliotecas e Ferramentas

Conceitos

Abordagem Tradicional (~1950 ... ~2010)

Deep Learning (~2010 Hoje)

- Temas Emergentes
 - Deep Learning
 - Big Data
 - Data Science

Quando usar?

- Representação do problema não é linearmente separável
- A solução não é determinística

Representação

Tam	Pelo	Cor	Orelha	Focinho	Raça
G	Curta	Branco/ Cinza	Pontuda	Normal	Husky
Р	Curta	Branco/ Preta	Caída	Achatado	Pug
Р	Curta	Caramelo	Pontuda	Normal	Chihuahua
M	Curta	Branco/ Caramelo	Caída	Normal	Beagle
Р	Longa	Preta/ Caramelo	Pontuda	Normal	Yorkshire
G	Longa	Caramelo	Pontuda	Normal	Pastor Alemão
G	Curta	Branco/ Caramelo /Preta	Caída	Normal	Labrador

Representação

Terminologias Básicas

Amostra / Instância

Tipos

Aprendizado Supervisionado

- Dados Anotados
- Treinamento do Modelo Preditivo
 - Classificação ou Regressão

Aprendizado Não-Supervisionado

- Dados Não Anotados
- Treinamento do Modelo Preditivo

Agrupamento (Clustering)

Aprendizado por Reforço

- Não precisa de dados anotados
- Interação vs Recompensa

Lets Code!

• No tutorial abaixo, vamos implementar um modelo utilizando o Scikit-Learn