Viterbi Algorithm

CS 181 Fall 2021

Definition: Inputs and Outputs

- Inputs $\langle \Theta, \lambda = (n, m, A, B, \pi) \rangle$
 - \circ Θ = a sequence of observations
 - \circ λ = a Hidden Markov Model
 - \blacksquare n = the number of hidden states, S = { $s_1, s_2, ... s_n$ }
 - m = the number of observation symbols, $V = \{v_1, v_2, ..., v_m\}$
 - A = the transition probability distribution $A = \{a_{ij} = \mathbb{P}(q_{t+1} = s_j | q_t = s_i)\}$
 - The (i, j)-th entry is the probability that the HMM is in state j at time t+1, given that it was in state i at time t
 - B = the emission probability distribution $B = \{b_j(k) = \mathbb{P}(v_k \text{ at time } t | q_t = s_j)\}$
 - The (j, k)-th entry is the probability that the HMM emits symbol k at time t, given that is was in state j at time t)
 - \blacksquare π = the initial state distribution $\pi = \{\pi_i = \mathbb{P}(q_1 = s_i)\}$
- Outputs: Q for which $\mathbb{P}(Q|\Theta)$ is maximal
 - The most likely sequence of states (and the probability of observing it)

Definition: Auxiliary Data Structures

- $\delta = \text{Scoring matrix}$ $\delta = \{\delta_t(i) = \max_{q_1 \dots q_{t-1}} \{\mathbb{P}(\theta_1 \dots \theta_t, q_t = s_i)\}$
 - \circ The (*i*, *t*)-th entry gives the maximum probability of observing θ₁, ..., θ_t along any sequence of states and ending in state *i* at time *t*
- ψ = Backtracking matrix
 - The (*i*, *t*)-th entry gives the state at time *t*-1 which produces the maximum probability path ending in state *i* at time *t*

The Algorithm

- 1) Initialize the matrices
- Apply the recurrence relations to fill each matrix

- Compute the maximum probability
- 4) Initialize the backtracking process
- 5) Complete the backtracking
- 6) Output p^* and q_1^* , ..., q_T^*

```
/* Initialization
for i \leftarrow 1 to n do
       \delta_1(i) \leftarrow \pi_i b_i(\theta_1)
      \psi_1(i) \leftarrow 0
end
/* Recurrence
for t \leftarrow 2 to T do
      for j \leftarrow 1 to n do
             \delta_t(j) \leftarrow \underset{1 \le i \le n}{\text{MAX}} [\delta_{t-1}(i) \cdot a_{ij}] \cdot b_j(\theta_t)
             \psi_t(j) \leftarrow \overset{\text{Toler}}{\operatorname{ARGMAX}} [\delta_{t-1}(i) \cdot a_{ij}]
      end
\mathbf{end}
/* Termination
q_T^* \leftarrow \operatorname{ARGMAX}[\delta_T(i)]
/* Backtracking
for t \leftarrow T - 1 to 1 do
      q_t^* \leftarrow \psi_{t+1}(q_{t+1}^*)
end
```

An Example

XYYXX

π	1	2
$P(q_1)$	0.75	0.25

A	1	2
1	0.7	0.3
2	0.2	0.8

В	X	Y
1	0.4	0.6
2	0.7	0.3

δ	1	2
t = 1		
2		
3		
4		
5		

Ψ	1	2
t = 1		
2		
3		
4		
5		

/* Initialization

for
$$i \leftarrow 1$$
 to n do
$$\begin{vmatrix} \delta_1(i) \leftarrow \pi_i b_i(\theta_1) \\ \psi_1(i) \leftarrow 0 \end{vmatrix}$$
end

δ	1	2
t = 1	0.3	
2		
3		
4		
5		

Ψ	1	2
t = 1		
2		
3		
4		
5		

δ	1	2
t = 1	0.3	0.175
2		
3		
4		
5		

Ψ	1	2
t = 1		
2		
3		
4		
5		

δ	1	2
t = 1	0.3	0.175
2		
3		
4		
5		

Ψ	1	2
t = 1	0	0
2		
3		
4		
5		

/* Initialization for $i \leftarrow 1$ to n do $\delta_1(i) \leftarrow \pi_i b_i(\theta_1)$ $\psi_1(i) \leftarrow 0$ end

j=1: max(0.21, 0.035)

δ	1	2
t = 1	0.3	0.175
2		
3		
4		
5		

Ψ	1	2
t = 1	0	0
2		
3		
4		
5		

j=1: max(0.21, 0.035)

δ	1	2
t = 1	0.3	0.175
2	0.126	
3		
4		
5		

Ψ	1	2
t = 1	0	0
2	1	
3		
4		
5		

j=1: max(0.09, 0.14)

δ	1	2
t = 1	0.3	0.175
2	0.126	
3		
4		
5		

Ψ	1	2
t = 1	0	0
2	1	
3		
4		
5		

j=1: max(0.09, 0.14)

δ	1	2
t = 1	0.3	0.175
2	0.126	0.042
3		
4		
5		

Ψ	1	2
t = 1	0	0
2	1	2
3		
4		
5		

j=1: max(0.0882, 0.0084)

δ	1	2
t = 1	0.3	0.175
2	0.126	0.042
3		
4		
5		

Ψ	1	2
t = 1	0	0
2	1	2
3		
4		
5		

j=1: max(0.0882, 0.0084)

δ	1	2
t = 1	0.3	0.175
2	0.126	0.042
3	0.0529	
4		
5		

Ψ	1	2
t = 1	0	0
2	1	2
3	1	
4		
5		

j=1: max(0.0378, 0.0336)

δ	1	2
t = 1	0.3	0.175
2	0.126	0.042
3	0.0529	
4		
5		

Ψ	1	2
t = 1	0	0
2	1	2
3	1	
4		
5		

j=1: max(0.0378, 0.0336)

δ	1	2
t = 1	0.3	0.175
2	0.126	0.042
3	0.0529	0.0113
4		
5		

Ψ	1	2
t = 1	0	0
2	1	2
3	1	1
4		
5		

j=1: max(0.0370, 0.0027)

δ	1	2
t = 1	0.3	0.175
2	0.126	0.042
3	0.0529	0.0113
4		
5		

Ψ	1	2
t = 1	0	0
2	1	2
3	1	1
4		
5		

j=1: max(0.0370, 0.0027)

δ	1	2
t = 1	0.3	0.175
2	0.126	0.042
3	0.0529	0.0113
4	0.0148	
5		

Ψ	1	2
t = 1	0	0
2	1	2
3	1	1
4	1	
5		

j=1: max(0.0159, 0.0091)

δ	1	2
t = 1	0.3	0.175
2	0.126	0.042
3	0.0529	0.0113
4	0.0148	
5		

Ψ	1	2
t = 1	0	0
2	1	2
3	1	1
4	1	
5		

j=1: max(0.0159, 0.0091)

δ	1	2
t = 1	0.3	0.175
2	0.126	0.042
3	0.0529	0.0113
4	0.0148	0.0111
5		

Ψ	1	2
t = 1	0	0
2	1	2
3	1	1
4	1	1
5		

j=1: max(0.0104, 0.0022)

δ	1	2
t = 1	0.3	0.175
2	0.126	0.042
3	0.0529	0.0113
4	0.0148	0.0111
5		

Ψ	1	2
t = 1	0	0
2	1	2
3	1	1
4	1	1
5		

j=1: max(0.0104, 0.0022)

δ	1	2
t = 1	0.3	0.175
2	0.126	0.042
3	0.0529	0.0113
4	0.0148	0.0111
5	0.0041	

Ψ	1	2
t = 1	0	0
2	1	2
3	1	1
4	1	1
5	1	

j=1: max(0.0044, 0.0089)

δ	1	2
t = 1	0.3	0.175
2	0.126	0.042
3	0.0529	0.0113
4	0.0148	0.0111
5	0.0041	

Ψ	1	2
t = 1	0	0
2	1	2
3	1	1
4	1	1
5	1	

j=1: max(0.0044, 0.0089)

δ	1	2
t = 1	0.3	0.175
2	0.126	0.042
3	0.0529	0.0113
4	0.0148	0.0111
5	0.0041	0.0062

Ψ	1	2
t = 1	0	0
2	1	2
3	1	1
4	1	1
5	1	2

XYYXX

δ	1	2
t = 1	0.3	0.175
2	0.126	0.042
3	0.0529	0.0113
4	0.0148	0.0111
5	0.0041	0.0062

Ψ	1	2
t = 1	0	0
2	1	2
3	1	1
4	1	1
5	1	2

δ	1	2
t = 1	0.3	0.175
2	0.126	0.042
3	0.0529	0.0113
4	0.0148	0.0111
5	0.0041	0.0062

Ψ	1	2
t = 1	0	0
2	1	2
3	1	1
4	1	1
5	1	2

	q*
t=1	
2	
3	
4	
5	2

δ	1	2
t = 1	0.3	0.175
2	0.126	0.042
3	0.0529	0.0113
4	0.0148	0.0111
5	0.0041	0.0062

Ψ	1	2
t = 1	0	0
2	1	2
3	1	1
4	1	1
5	1	2

	q*
t=1	
2	
3	
4	
5	2

δ	1	2
t = 1	0.3	0.175
2	0.126	0.042
3	0.0529	0.0113
4	0.0148	0.0111
5	0.0041	0.0062

Ψ	1	2
t = 1	0	0
2	1	2
3	1	1
4	1	1
5	1	2

	q*
t=1	
2	
3	
4	2
5	2

δ	1	2
t = 1	0.3	0.175
2	0.126	0.042
3	0.0529	0.0113
4	0.0148	0.0111
5	0.0041	0.0062

Ψ	1	2
t = 1	0	0
2	1	2
3	1	1
4	1	1
5	1	2

	q*
t=1	
2	
3	1
4	2
5	2

δ	1	2
t = 1	0.3	0.175
2	0.126	0.042
3	0.0529	0.0113
4	0.0148	0.0111
5	0.0041	0.0062

Ψ	1	2
t = 1	0	0
2	1	2
3	1	1
4	1	1
5	1	2

	q*
t=1	
2	1
3	1
4	2
5	2

δ	1	2
t = 1	0.3	0.175
2	0.126	0.042
3	0.0529	0.0113
4	0.0148	0.0111
5	0.0041	0.0062

Ψ	1	2
t = 1	0	0
2	1	2
3	1	1
4	1	1
5	1	2

	q*
t=1	1
2	1
3	1
4	2
5	2

δ	1	2
t = 1	0.3	0.175
2	0.126	0.042
3	0.0529	0.0113
4	0.0148	0.0111
5	0.0041	0.0062

Ψ	1	2
t = 1	0	0
2	1	2
3	1	1
4	1	1
5	1	2

	q*
t=1	1
2	1
3	1
4	2
5	2

θ: XYYXX

State sequence: 1 1 1 2 2

Probability of observing θ, given the state sequence:

0.0062234

 $p^* = 0.006234$

	q*
t=1	1
2	1
3	1
4	2
5	2