Depth First Search

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming, Data Structures and Algorithms using Python Week 4

Start from i, visit an unexplored neighbour j

Depth First Search

- Start from *i*, visit an unexplored neighbour
- Suspend the exploration of i and explore j instead

- Start from i, visit an unexplored neighbour j
- Suspend the exploration of i and explore j instead
- Continue till you reach a vertex with no unexplored neighbours

- Start from i, visit an unexplored neighbour j
- Suspend the exploration of i and explore j instead
- Continue till you reach a vertex with no unexplored neighbours
- Backtrack to nearest suspended vertex that still has an unexplored neighbour

- Start from i, visit an unexplored neighbour j
- Suspend the exploration of i and explore j instead
- Continue till you reach a vertex with no unexplored neighbours
- Backtrack to nearest suspended vertex that still has an unexplored neighbour
- Suspended vertices are stored in a stack
 - Last in, first out
 - Most recently suspended is checked first

V	isited						
0	False						
1	False						
2	False						
3	False						
4	False						
5	False						
6	False						
7	False						
8	False						
9	False						

Stack of suspended vertices									

V	isited
0	False
1	False
2	False
3	False
4	True
5	False
6	False
7	False
8	False
9	False

Stac					

■ Mark 4,

V	isited
0	True
1	False
2	False
3	False
4	True
5	False
6	False
7	False
8	False
9	False

Stack of suspended vertices									
4									

■ Mark 4, Suspend 4, explore 0

V	isited
0	True
1	True
2	False
3	False
4	True
5	False
6	False
7	False
8	False
9	False

Stack of suspended vertices									
4	0								

- Mark 4, Suspend 4, explore 0
- suspend 0, explore 1

V	isited
0	True
1	True
2	True
3	False
4	True
5	False
6	False
7	False
8	False
9	False

Stack of suspended vertices									
4	0	1							

- Mark 4, Suspend 4, explore 0
- suspend 0, explore 1
- Suspend 1, explore 2

V	isited
0	True
1	True
2	True
3	False
4	True
5	False
6	False
7	False
8	False
9	False

Stack of suspended vertices									
4	0								

- Mark 4, Suspend 4, explore 0
- suspend 0, explore 1
- Suspend 1, explore 2
- Backtrack to 1,

V	Visited						
0	True						
1	True						
2	True						
3	False						
4	True						
5	False						
6	False						
7	False						
8	False						
9	False						

St	Stack of suspended vertices										
4											

- Mark 4, Suspend 4, explore 0
- suspend 0, explore 1
- Suspend 1, explore 2
- Backtrack to 1, 0,

V	isited
0	True
1	True
2	True
3	True
4	True
5	False
6	False
7	False
8	False
9	False

Stack of suspended vertices									

- Mark 4, Suspend 4, explore 0
- suspend 0, explore 1
- Suspend 1, explore 2
- Backtrack to 1, 0, 4

V	Visited							
0	True							
1	True							
2	True							
3	True							
4	True							
5	False							
6	False							
7	False							
8	False							
9	False							

Stack of suspended vertices									
4									

- Mark 4, Suspend 4, explore 0
- suspend 0, explore 1
- Suspend 1, explore 2
- Backtrack to 1, 0, 4
- Suspend 4, explore 3

V	Visited							
0	True							
1	True							
2	True							
3	True							
4	True							
5	True							
6	False							
7	False							
8	False							
9	False							

Stack of suspended vertices									
4	3								

- Mark 4, Suspend 4, explore 0
- suspend 0, explore 1
- Suspend 1, explore 2
- Backtrack to 1, 0, 4
- Suspend 4, explore 3
- Suspend 3, explore 5

V	isited
0	True
1	True
2	True
3	True
4	True
5	True
6	True
7	False
8	False
9	False

Stack of suspended vertices									
4	3	5							

- Mark 4, Suspend 4, explore 0
- suspend 0, explore 1
- Suspend 1, explore 2
- Backtrack to 1, 0, 4
- Suspend 4, explore 3
- Suspend 3, explore 5
- Suspend 5, explore 6

V	isited
0	True
1	True
2	True
3	True
4	True
5	True
6	True
7	False
8	False
9	False

Stack of suspended vertices									
4	3								

- Mark 4, Suspend 4, explore 0
- suspend 0, explore 1
- Suspend 1, explore 2
- Backtrack to 1, 0, 4
- Suspend 4, explore 3
- Suspend 3, explore 5
- Suspend 5, explore 6
- Backtrack to 5,

V	isited
0	True
1	True
2	True
3	True
4	True
5	True
6	True
7	True
8	False
9	False

Stack of suspended vertices									
4	3	5							

- Mark 4, Suspend 4, explore 0
- suspend 0, explore 1
- Suspend 1, explore 2
- Backtrack to 1, 0, 4
- Suspend 4, explore 3
- Suspend 3, explore 5
- Suspend 5, explore 6
- Backtrack to 5, suspend 5, explore 7

V	isited
0	True
1	True
2	True
3	True
4	True
5	True
6	True
7	True
8	True
9	False

Stack of suspended vertices									
4	3	5	7						

- Mark 4, Suspend 4, explore 0
- suspend 0, explore 1
- Suspend 1, explore 2
- Backtrack to 1, 0, 4
- Suspend 4, explore 3
- Suspend 3, explore 5
- Suspend 5, explore 6
- Backtrack to 5, suspend 5, explore 7
- Suspend 7, explore 8

V	isited
0	True
1	True
2	True
3	True
4	True
5	True
6	True
7	True
8	True
9	True

Stack of suspended vertices										
4	3	5	7	8						

- Mark 4, Suspend 4, explore 0
- suspend 0, explore 1
- Suspend 1, explore 2
- Backtrack to 1, 0, 4
- Suspend 4, explore 3
- Suspend 3, explore 5
- Suspend 5, explore 6
- Backtrack to 5, suspend 5, explore 7
- Suspend 7, explore 8
- Suspend 8, explore 9

V	isited
0	True
1	True
2	True
3	True
4	True
5	True
6	True
7	True
8	True
9	True

Stack of suspended vertices									
4	3	5	7						

- Mark 4, Suspend 4, explore 0
- suspend 0, explore 1
- Suspend 1, explore 2
- Backtrack to 1, 0, 4
- Suspend 4, explore 3
- Suspend 3, explore 5
- Suspend 5, explore 6
- Backtrack to 5, suspend 5, explore 7
- Suspend 7, explore 8
- Suspend 8, explore 9
- Backtrack to 8.

V	isited
0	True
1	True
2	True
3	True
4	True
5	True
6	True
7	True
8	True
9	True

Stack of suspended vertices										
4	3	5								

- Mark 4, Suspend 4, explore 0
- suspend 0, explore 1
- Suspend 1, explore 2
- Backtrack to 1, 0, 4
- Suspend 4, explore 3
- Suspend 3, explore 5
- Suspend 5, explore 6
- Backtrack to 5, suspend 5, explore 7
- Suspend 7, explore 8
- Suspend 8, explore 9
- Backtrack to 8, 7,

V	isited
0	True
1	True
2	True
3	True
4	True
5	True
6	True
7	True
8	True
9	True

Stack of suspended vertices									
4	3								

- Mark 4, Suspend 4, explore 0
- suspend 0, explore 1
- Suspend 1, explore 2
- Backtrack to 1, 0, 4
- Suspend 4, explore 3
- Suspend 3, explore 5
- Suspend 5, explore 6
- Backtrack to 5, suspend 5, explore 7
- Suspend 7, explore 8
- Suspend 8, explore 9
- Backtrack to 8, 7, 5,

V	isited
0	True
1	True
2	True
3	True
4	True
5	True
6	True
7	True
8	True
9	True

Stack of suspended vertices									
4									

- Mark 4, Suspend 4, explore 0
- suspend 0, explore 1
- Suspend 1, explore 2
- Backtrack to 1, 0, 4
- Suspend 4, explore 3
- Suspend 3, explore 5
- Suspend 5, explore 6
- Backtrack to 5, suspend 5, explore 7
- Suspend 7, explore 8
- Suspend 8, explore 9
- Backtrack to 8, 7, 5, 3,

V	isited
0	True
1	True
2	True
3	True
4	True
5	True
6	True
7	True
8	True
9	True

Stack of suspended vertices									

- Mark 4, Suspend 4, explore 0
- suspend 0, explore 1
- Suspend 1, explore 2
- Backtrack to 1, 0, 4
- Suspend 4, explore 3
- Suspend 3, explore 5
- Suspend 5, explore 6
- Backtrack to 5, suspend 5, explore 7
- Suspend 7, explore 8
- Suspend 8, explore 9
- Backtrack to 8, 7, 5, 3, 4

- DFS is most natural to implement recursively
 - For each unvisited neighbour of v, call DFS(v)

```
def DFSInit(AMat):
  # Initialization
  (rows,cols) = AMat.shape
  (visited, parent) = ({},{})
  for i in range(rows):
    visited[i] = False
    parent[i] = -1
  return(visited, parent)
def DFS(AMat, visited, parent, v):
  visited[v] = True
  for k in neighbours(AMat.v):
    if (not visited[k]):
      parent[k] = v
      (visited,parent) =
          DFS(AMat, visited, parent, k)
```

- DFS is most natural to implement recursively
 - For each unvisited neighbour of v, call DFS(v)
- No need to maintain a stack
 - Recursion implicilty maintains stack
 - Separate initialization step

```
def DFSInit(AMat):
  # Initialization
  (rows,cols) = AMat.shape
  (visited, parent) = ({},{})
  for i in range(rows):
    visited[i] = False
    parent[i] = -1
  return(visited, parent)
def DFS(AMat, visited, parent, v):
  visited[v] = True
  for k in neighbours(AMat.v):
    if (not visited[k]):
      parent[k] = v
      (visited,parent) =
          DFS(AMat, visited, parent, k)
```

- DFS is most natural to implement recursively
 - For each unvisited neighbour of v, call DFS(v)
- No need to maintain a stack
 - Recursion implicilty maintains stack
 - Separate initialization step
- Can make visited and parent global
 - Still need to initialize them according to the size of input adjacency matrix/list

```
(visited, parent) = ({},{})
def DFSInitGlobal(AMat):
  # Initialization
  (rows,cols) = AMat.shape
  for i in range(rows):
    visited[i] = False
    parent[i] = -1
  return
def DFSGlobal(AMat.v):
  visited[v] = True
  for k in neighbours(AMat,v):
    if (not visited[k]):
      parent[k] = v
      DFSGlobal(AMat,k)
```

- DFS is most natural to implement recursively
 - For each unvisited neighbour of v, call DFS(v)
- No need to maintain a stack
 - Recursion implicity maintains stack
 - Separate initialization step
- Can make visited and parent global
 - Still need to initialize them according to the size of input adjacency matrix/list
- Use an adjacency list instead

```
def DFSInitList(AList):
  # Initialization
  (visited, parent) = ({},{})
  for i in AList.kevs():
    visited[i] = False
    parent[i] = -1
  return(visited, parent)
def DFSList(AList, visited, parent, v):
  visited[v] = True
  for k in AList[v]:
    if (not visited[k]):
      parent[k] = v
      (visited,parent) =
          DFSList(AList, visited, parent, k)
```

```
return(visited,parent)
```

- DFS is most natural to implement recursively
 - For each unvisited neighbour of v, call DFS(v)
- No need to maintain a stack
 - Recursion implicity maintains stack
 - Separate initialization step
- Can make visited and parent global
 - Still need to initialize them according to the size of input adjacency matrix/list
- Use an adjacency list instead

```
(visited, parent) = ({},{})
def DFSInitListGlobal(AList):
  # Initialization
  for i in AList.keys():
    visited[i] = False
    parent[i] = -1
  return
def DFSListGlobal(AList.v):
  visited[v] = True
  for k in AList[v]:
    if (not visited[k]):
      parent[k] = v
      DFSListGlobal(AList.k)
```

return

Complexity of DFS

■ Like BFS, each vertex is marked and explored once

Complexity of DFS

- Like BFS, each vertex is marked and explored once
- Exploring vertex v requires scanning all neighbours of v
 - O(n) time for adjacency matrix, independent of degree (v)
 - degree(v) time for adjacency list
 - \blacksquare Total time is O(m) across all vertices

Complexity of DFS

- Like BFS, each vertex is marked and explored once
- \blacksquare Exploring vertex v requires scanning all neighbours of v
 - lacksquare O(n) time for adjacency matrix, independent of degree(v)
 - *degree*(*v*) time for adjacency list
 - Total time is O(m) across all vertices
- Overall complexity is same as BFS
 - $O(n^2)$ using adjacency matrix
 - O(m+n) using adjacency list

■ DFS is another systematic strategy to explore a graph

- DFS is another systematic strategy to explore a graph
- DFS uses a stack to suspend exploration and move to unexplored neighbours

- DFS is another systematic strategy to explore a graph
- DFS uses a stack to suspend exploration and move to unexplored neighbours
- Paths discovered by DFS are not shortest paths, unlike BFS

- DFS is another systematic strategy to explore a graph
- DFS uses a stack to suspend exploration and move to unexplored neighbours
- Paths discovered by DFS are not shortest paths, unlike BFS
- Useful features can be found by recording the order in which DFS visits vertices