Les éléments du corrigé du devoir commun Seconde (troisième trimestre)

EXERCICE 1: La question sur les leçons!

Mathieu doit démontrer que ce quadrilatère possède deux côtés parallèles donc les quatre points A, B, C et D doivent formés deux vecteurs colinéaires (1 point). Il doit les repérer avec le dessin et calculer les coordonnées des deux vecteurs qui ont la même direction. Deux propriétés utilisées :

Si $A(x_A; y_A)$ et $B(x_B; y_B)$ alors \overrightarrow{AB} ... et on utilise la condition de colinéarité de deux vecteurs.

EXERCICE 2: VRAI ou FAUX?

- 1. FAUX! a = 0.5 et $a^2 = 0.25$ or 0.25 < 0.5. 0.5 point
- 2. FAUX! leurs directions peuvent être strictement parallèles
- 3. VRAI! Si a et b sont dans $(-\infty; 0[$, f(a)-f(b)= a^2 -1- $(b^2$ -1)=(a-b)(a+b). Si a<b alors a-b<0 et la somme de deux nombres négatifs est négative donc f(a)-f(b)>0 et f(a)>f(b). cqfd On pouvait utiliser la composée : x- x^2 - x^2 -1 (la fonction carrée inverse l'ordre sur $(-\infty; 0[$ et la fonction affine qui ajoute 1 conserve 1'ordre)

EXERCICE 3:

2. Les coordonnées de A vérifient l'équation de (D)

Donc A est un point de (D).

- 3. Les point E et F nous donne sa pente, le coefficient directeur est 0,5 et il semble que la droite coupe (Oy) en 1,5, l'équation est : y = -0,5 + 1,5.
- 4. Par le calcul:

uuu uuu

M(x ; y) point $de(\Delta) \Leftrightarrow EM$ et EF sont colinéaires. Ou

On calcule la pente $(\frac{y_F - y_E}{x_F - x_E})$ puis on utilise E ou F pour déterminer l'ordonnée à l'origine.

- 5. les deux droites sont sécantes (coefficients directeurs différents $2 \neq -0.5$) et les coordonnées du point d'intersection sont la solution unique du système $\begin{cases} y = 2x + 4 \\ y = -0.5x + 1.5 \end{cases}$ soit (-1;2)
- 6. C'est VRAI car E et F sont équidistants de A et B (AE = 5 = BE et AF = 2 = BF) ou (Δ) contient le milieu I de [AB] (ses coordonnées (-1 ;2) vérifient l'équation de la droite) et est perpendiculaire à (AB) ($A\Omega E$ est rectangle en Ω . Les longueurs vérifient la relation de Pythagore)

EXERCICE 4:

Partie A

On peut conjecturer deux points d'intersection : *On lit sur le graphique et on affine avec le tableur :*

Avec le tableur :

x	f(x)	g(x)
25	1700	1700
43	2924	2924

A(25; 1700) B(43; 2924)

- b) On vérifie en calculant : f(25), f(43), g(25) et g(43).
- c) x_A et x_B sont solution de : $f(x)=g(x) \Leftrightarrow x^2+1075=68x \Leftrightarrow -x^2+68x-1075=0$
- d) En développant (43 x)(x 25) on obtient $-x^2 + 68x + 1075$.
- e) L'équation produit (43 x)(x 25) = 0 donne deux solutions 25 et 43! donc A(25,1700)B(43;2924)Partie B
- 1) Coût de cette production : $C(30) = 20935 \epsilon$.

Recette de la vente de ces 30 tonnes = 30x700 = 21000€.

Bénéfice réalisé : *21000* – *20935* = *65€*

- 2) Bénéfice = Recette $coût = B(x) = 700 x (x^2 + 632x + 1075) = -x^2 + 68x 1075$. a) En développant et réduisant : $B(x) = -x^2 + 68x - 1075 = (43 - x)(x - 25) = -(x - 34)^2 + 81$
- 1) B(x) = (43 x)(x 25) donne un bénéfice nul avec une production de 25 ou 43 tonnes.
- 2) B(x) = (43 x)(x 25) nous permet de déterminer le signe de B(x) selon les valeurs de x;

x	0	25		43		<i>60</i>
<i>Signe de 43 - x</i>	+		+	0	-	
Signe de x - 25	-	0	+		+	
Signe de B(x)	-	0	+	Ø	-	

Pour réaliser un bénéfice positif, il faut produire entre 25 et 43 tonnes de pâte à papier.

3). $B(x) = -(x-34)^2 + 81$ B(34) = 81 et $(x-34)^2 \ge 0 \Leftrightarrow -(x-34)^2 \le 0 \Leftrightarrow B(x) \le 81$ donc le bénéfice est maximum (81€) pour une production de 34 tonnes

EXERCICE 4: (4 points)

Les résultats possibles : BB score (10 pts), RR score (14 pts) , BR score (12pts), RB score (12 pts).

Si le score est 10 l'algorithme calcule R = (10-10)/2 = 0 et B = 2 - 0 = 2.

L'algorithme donne le nombre de boules rouges tirées R et le nombre de boules blanches tirées B.

Le traitement propose une résolution du système :
$$\begin{cases} B+R=2\\ 5B+7R=S \end{cases} \Leftrightarrow \begin{cases} B+R=2\\ 5B+5R+2R=S \end{cases} \Leftrightarrow \begin{cases} B+R=2\\ 10+2R=S \end{cases} \Leftrightarrow \begin{cases} B=2-R\\ R=(S-10)/2 \end{cases}$$

Si on tire trois boules au lieu de deux, le système devient :
$$\begin{cases} B+R=3\\ 5B+7R=S \end{cases}$$

$$\begin{cases} B+R=3\\ 5B+7R=S \end{cases} \Leftrightarrow \begin{cases} B+R=3\\ 5B+5R+2R=S \end{cases} \Leftrightarrow \begin{cases} B+R=3\\ 15+2R=S \end{cases} \Leftrightarrow \begin{cases} B=3-R\\ R=(S-15)/2 \end{cases}$$

Entrée: Saisir votre score S.

Traitement: R prend la valeur (S-15)/2.

B = 3-R

Sortie: Afficher B et R