A Logic for Hybrid Rules

Axel Polleres

Universidad Rey Juan Carlos, Madrid

Joint work with:

Jos de Bruijn, DERI Innsbruck, David Pearce, Univ. Rey Juan Carlos, Agustín Valverde, Univ. de Málaga

RuleML Workshop 2006

Outline

Motivation – Hybrid Knowledge Bases

Combine rules with negation as failure with classical theories:

- Hyrid KB approaches rely on (variants of) the Answer Set Semantics. [Rosati,2005/2005b/2006, Heymans, et al. 2006]
- All give a modular definition of models by projection+reduct.
- Driven by decidability concerns: Defined for syntactically limited programs/FOL theories

We might have some other Questions:

- Can we generalize these combinations in a (non-classical) logic, i.e. with a non-modular model definition?
- Does this provide us with notions of equivalence commonly used (strong equivalence, uniform equivalence, etc.)?

 $\mathcal{K} = (\mathcal{T}, \mathcal{P})$ hybrid knowledge base:

- classical first-order theory $\mathcal T$ over function-free language $\mathcal L_{\mathcal T}=\langle C,P_{\mathcal T}\rangle$
- a logic program \mathcal{P} over function-free language $\mathcal{L} = \langle C, P_{\mathcal{T}} \cup P_{\mathcal{P}} \rangle$, i.e. a set of rules:

$$a_1 \lor a_2 \lor \dots \lor a_k \lor \neg a_{k+1} \lor \dots \lor \neg a_l \leftarrow b_1, \dots, b_m, \neg b_{m+1}, \dots, \neg b_n$$

where
$$P_{\mathcal{T}} \cap P_{\mathcal{P}} = \emptyset$$

Note:

- ullet ${\mathcal T}$ and ${\mathcal P}$ talk about the same constants, and
- allowed predicate symbols in ${\mathcal P}$ are a superset of the predicate symbols in ${\mathcal L}_{\mathcal T}$.

Overall idea for a nonmonotonic semantics: "evaluate" \mathcal{P} wrt a classical model of the theory and then compute stable models.

Let $\mathcal P$ be a ground program an $\mathcal I=\langle U,I\rangle$ an $\mathcal L$ -structure, with $U=(D,\sigma).$

 $\Pi(\mathcal{P},\mathcal{I})$, the projection of \mathcal{P} wrt \mathcal{I} , obtained by

- 1 deleting each rule with head literal p(t) (or $\neg p(t)$) over $At_D(C, P_T)$ such that $p(\sigma(t)) \in I$ (or $p(\sigma(t)) \not\in I$)
- 2 deleting each rule with body literal p(t) (or $\neg p(t)$) over $At_D(C, P_T)$ such that $p(\sigma(t)) \notin I$ (or $p(\sigma(t)) \in I$);

and deleting occurrences of literals from $\mathcal{L}_{\mathcal{T}}$ from remaining rules.

Overall idea for a nonmonotonic semantics: "evaluate" \mathcal{P} wrt a classical model of the theory and then compute stable models.

Let $\mathcal{K}=(\mathcal{T},\mathcal{P})$ be a hybrid knowledge base. An NM-model $\mathcal{M}=\langle U,I\rangle$ of a hybrid knowledge base \mathcal{K} is a first-order \mathcal{L} -structure such that

- 1 $\mathcal{M}|_{\mathcal{L}_{\mathcal{T}}}$ is a model of \mathcal{T} and
- 2 $\mathcal{M}|_{\mathcal{L}_{\mathcal{P}}}$ is a stable model set of $\Pi(gr_{U}(\mathcal{P}), \mathcal{M}|_{\mathcal{L}_{\mathcal{T}}})$, i.e. $\mathcal{M}|_{\mathcal{L}_{\mathcal{P}}}$ is a minimal Herbrand Model of the reduct $\Pi(gr_{U}(\mathcal{P}), \mathcal{M})^{\mathcal{M}|_{\mathcal{L}_{\mathcal{P}}}}$, obtained by taking all rules:
 - such that $\mathcal{M}|_{\mathcal{L}_{\mathcal{P}}} \models a_i$ for negative head atoms a_i and
 - $\mathcal{I} \not\models b_j$ for all negative body atoms b_j .

Example – a small Hybrid KB:

Let
$$\mathcal{K} = (\mathcal{T}, \mathcal{P})$$
 with

T: Each foaf:Person is a foaf:Agent:

$$\forall x. PERSON(x) \rightarrow AGENT(x)$$

 $AGENT(David)$

 \mathcal{P} : Some nonmonotonic rule on top

$$PERSON(x) \leftarrow pcmember(x, LPNMR), AGENT(x), \neg machine(x) \\ pcmember(David, LPNMR)$$

Is David a PERSON?

Classical models of \mathcal{T} :

```
\forall x. PERSON(x) \rightarrow AGENT(x)
AGENT(David)
\mathcal{M}_1|_{\mathcal{L}_{\mathcal{T}}} = \{AGENT(David), \neg PERSON(David), \neg AGENT(LPNMR), \ldots\}
\mathcal{M}_2|_{\mathcal{L}_{\mathcal{T}}} = \{AGENT(David), PERSON(David), \neg AGENT(LPNMR), \ldots\}
```

```
gr_U(\mathcal{P})

PERSON(David) \leftarrow

pcmember(David, LPNMR), AGENT(David), \neg machine(David)

PERSON(LPNMR) \leftarrow

pcmember(LPNMR, LPNMR), AGENT(LPNMR), \neg machine(LPNMR)

pcmember(David, LPNMR)
```

Is David a PERSON?

Classical models of \mathcal{T} :

```
\forall x.PERSON(x) \rightarrow AGENT(x)
AGENT(David)
\mathcal{M}_{1}|_{\mathcal{L}_{\mathcal{T}}} = \{AGENT(David), \neg PERSON(David), \neg AGENT(LPNMR), \ldots\}
\mathcal{M}_{2}|_{\mathcal{L}_{\mathcal{T}}} = \{AGENT(David), PERSON(David), \neg AGENT(LPNMR), \ldots\}
```

$$\Pi(gr_U(\mathcal{P}), \mathcal{M}_1|_{\mathcal{L}_{\mathcal{T}}})$$

 $\leftarrow pcmember(David, LPNMR), \neg machine(David).$

pcmember(David, LPNMR)

No stable models!

Is David a PERSON?

Classical models of \mathcal{T} :

$$\forall x.PERSON(x) \rightarrow AGENT(x)$$

 $AGENT(David)$

 $\mathcal{M}_1|_{\mathcal{L}_{\mathcal{T}}} = \{AGENT(David), \neg PERSON(David), \neg AGENT(LPNMR), \ldots\}$ $\mathcal{M}_2|_{\mathcal{L}_{\mathcal{T}}} = \{AGENT(David), PERSON(David), \neg AGENT(LPNMR), \ldots\}$

$$\Pi(gr_U(\mathcal{P}), \mathcal{M}_2|_{\mathcal{L}_{\mathcal{T}}})$$

pcmember(David, LPNMR)

One stable model...

Is David a PERSON? Yes!

PERSON(David) in all NM-models, i.e. $\mathcal{K} \models_{NM} PERSON(David)$

Equilibrium Logic

- Equilibrium logic (Pearce, 1997) generalises stable model semantics and answer set semantics for logic programs to arbitrary propositional theories.
- It is a nonmonotonic extension of the logic of Here-and-there with strong negation.
- Model theory based on Kripke semantics for intuitionistic logic
- We need a first-order verstion here...

Quantified Here-and-there Logic

- QHTs is complete for linear Kripke frames with two worlds "here" and "there" with a "static" domain over both worlds: $h \leq t$.
- here-and-there structures: $\mathcal{M} = \langle (D, \sigma), I_h, I_t \rangle$
- ullet I_h,I_t are first-order-interpretations over D such that $I_h\subseteq I_t.$

The models are extended to all formulas via the rules known in intuitionistic logic, notions of validity and logical consequence relation are the ones for (intuitionistic) Kripke semantics.

Quantified Here-and-there Logic

For $w \in \{h, t\}$:

- $\mathcal{M}, w \models \varphi \land \psi$ iff $\mathcal{M}, w \models \varphi$ and $\mathcal{M}, w \models \psi$.
- $\mathcal{M}, w \models \varphi \lor \psi$ iff $\mathcal{M}, w \models \varphi$ or $\mathcal{M}, w \models \psi$.
- $\mathcal{M}, t \models \varphi \rightarrow \psi$ iff $\mathcal{M}, t \not\models \varphi$ or $\mathcal{M}, t \models \psi$.
- $\mathcal{M}, h \models \varphi \rightarrow \psi$ iff $\mathcal{M}, t \models \varphi \rightarrow \psi$ and $\mathcal{M}, h \not\models \varphi$ or $\mathcal{M}, h \models \psi$.
- $\mathcal{M}, w \models \neg \varphi$ iff $\mathcal{M}, t \not\models \varphi$.
- $\mathcal{M}, t \models \forall x \varphi(x)$ iff $\mathcal{M}, t \models \varphi(d)$ for all $d \in D$.
- $\mathcal{M}, h \models \forall x \varphi(x)$ iff $\mathcal{M}, t \models \forall x \varphi(x)$ and $\mathcal{M}, h \models \varphi(d)$ for all $d \in D$.
- $\mathcal{M}, w \models \exists x \varphi(x) \text{ iff } \mathcal{M}, w \models \varphi(d) \text{ for some } d \in D$.

Axel Polleres

Quantified Equilibrium Logic (QEL)

- We write QHT^s-structures more briefly as ordered pairs of atoms $\langle H, T \rangle$, with $H \subseteq T$.
- An QHT^s-Structure $\langle H, T \rangle$ is said to be total if H = T
- Order relation: $\langle H, T \rangle \subseteq \langle H', T' \rangle$ if T = T' and $H \subseteq H'$
- $\bullet \ \langle H,T\rangle$ is an equilibrium model of Π if is
 - (i) $\langle H, T \rangle$ minimal under \leq , and
 - (ii) $\langle H, T \rangle$ is total.

QEL is determined by the equilibrium models of a theory.

Quantified Equilibrium Logic and Answer Set Semantics

- Equilibrium Logic generalises Answer Set semantics for arbitrary formulae (including disjunctive and nested programs)
- Any rule

$$a_1 \lor a_2 \lor \ldots \lor a_k \lor \neg a_{k+1} \lor \ldots \lor \neg a_l \leftarrow b_1, \ldots, b_m, \neg b_{m+1}, \ldots, \neg b_n$$

is just treated as (universally closed) formula in QEL:

$$(\forall) a_1 \lor a_2 \lor \dots \lor a_k \lor \neg a_{k+1} \lor \dots \lor \neg a_l \leftarrow b_1 \land \dots \land b_m \land \neg b_{m+1} \land \dots \land \neg b_n$$

- Equilibrium models correspond to (open) answer sets: $\langle T,T\rangle$ is a equilibrium model of $\mathcal P$ iff T is an answer set of Π .
- ullet So, for $\mathcal{K}=(\emptyset,P)$ answer sets and QEL-models correspond!

UNA [Pearce&Valverde, 2005] and non-UNA [Pearce&Valverde, 2006] versions of QEL available.

Embedding Hybrid Knowledge Bases

Q: Does the correspondence extend to hybrid KBs? Yes!

Idea: define embedding based on the observation that adding LEM makes intuitionistic logic classical!

Given a hybrid KB $\mathcal{K} = (\mathcal{T}, \mathcal{P})$ we call $\mathcal{T} \cup st(\mathcal{T}) \cup \mathcal{P}$ the stable closure of \mathcal{K} , where $st(\mathcal{T}) = \{ \forall x (p(x) \vee \neg p(x)) : p \in \mathcal{L}_{\mathcal{T}} \}.$

Wake up! Main theorem of the paper!!! ;-)

Theorem

Let $\mathcal{K}=(\mathcal{T},\mathcal{P})$ be a hybrid knowledge base. Let $\mathcal{M}=\langle U,T,T\rangle$ be a total here-and-there model of the stable closure of \mathcal{K} . Then \mathcal{M} is an equilibrium model if and only if it is an NM-model of \mathcal{K} .

Example - stable closure of \mathcal{K} :

```
st(\mathcal{K}) = \mathcal{T} \cup st(\mathcal{T}) \cup \mathcal{P}
\forall x.PERSON(x) \rightarrow AGENT(x)
AGENT(David)
\forall x.PERSON(x) \lor \neg PERSON(x)
\forall x.AGENT(x) \lor \neg AGENT(x)
\forall x.PERSON(x) \leftarrow pcmember(x, LPNMR) \land AGENT(x) \land \neg machine(x)
pcmember(David, LPNMR)
```

There IS a classical model of this theory
$$\mathcal{M} = \{\neg PERSON(David), machine(David), \ldots\}$$

Thus:

 $K \not\models_{FOL} PERSON(David)$

```
st(\mathcal{K}) = \mathcal{T} \cup st(\mathcal{T}) \cup \mathcal{P}
\forall x.PERSON(x) \rightarrow AGENT(x)
AGENT(David)
\forall x.PERSON(x) \vee \neg PERSON(x)
\forall x.AGENT(x) \vee \neg AGENT(x)
\forall x.PERSON(x) \leftarrow pcmember(x, LPNMR), AGENT(x) \wedge \neg machine(x)
pcmember(David, LPNMR)
```

The total HT-model
$$\mathcal{M}_{HT} = \langle H, T \rangle$$
 corresponding to \mathcal{M} with: $H = T = \{machine(David), \ldots\}$

is NO Equilibrium model, since there is a model $\mathcal{M}'_{HT} \lhd \mathcal{M}_{HT}$:

with:
$$H' = \{...\}$$

 $T = \{machine(David),...\}$

All Equilibrium models include PERSON(David), thus: $st(\mathcal{K}) \models_{QEL} PERSON(David) \sqrt{}$

Conclusions/Observations:

- Quantified Equilibrium Logic provides a powerful and intuitive tool as a "carrier" logic for Hybrid KBs
- Embedding is simple: add LEM for classical predicates.
- Why this works is not so surprising: QHT^s based on intuitionistic logic, adding LEM enforces totalization of HT models on the respective predicates, i.e. make them "classical".
- No reducts involved, this gives us:
 - a semantics for nested logic programs. Well-investigated for propositional LPs, first-order case needs more investigation, respective results on QEL relatively new.
 - results on strong equivalence for Equilibrium Logic carry over: HT-model equivalence amounts to strong equivalence! Important notion for nonmonotonic logic programs, program optimization, meaning preserving transformations of hybrid KB's, etc.

Future Work:

- Paper covers only equality-free FOL embedding (results already there in [Pearce&Valverde, 2006])
- Investigation on related (IJCAI) approaches:
 - Logic of minimal knowledge and negation as failure (MKNF) [Motik & Rosati, 2007]
 - First-Order Autoepistemic Logic [de Bruijn et al., 2007]
 - Circumscription [Ferraris et al., 2007]