

Projet 4 : Anticipez les besoins en consommation de bâtiments

Laurent Cagniart

Problématique (1/2)

- Vous travaillez pour la ville de Seattle.
 Pour atteindre son objectif de ville neutre en émissions de carbone en 2050, votre équipe s'intéresse de près à la consommation et aux émissions des bâtiments non destinés à l'habitation.
- Les relevés sont coûteux à obtenir, et vous voulez tenter de prédire les émissions de CO2 et la consommation totale d'énergie de bâtiments pour lesquels elles n'ont pas encore été mesurées.

Problématique (2/2)

- Vous cherchez également à évaluer l'intérêt de l' « ENERGY STAR Score » , indicateur de performance énergétique, qui est fastidieux à calculer. Vous l'intégrerez dans la modélisation et jugerez de son intérêt.
- Voici un récapitulatif de votre mission :
 - > Réaliser une courte analyse exploratoire.
 - Tester différents modèles de prédiction afin de répondre au mieux à la problématique.

Jeu de données (1/2)

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3376 entries, 0 to 3375
Data columns (total 46 columns):

Data	columns (total 46 columns):		
#	Column	Non-Null Count	Dtype
0	OSEBuildingID	3376 non-null	int64
1	DataYear	3376 non-null	int64
2	BuildingType	3376 non-null	object
3	PrimaryPropertyType	3376 non-null	object
4	PropertyName	3376 non-null	object
5	Address	3376 non-null	object
6	City	3376 non-null	object
7	State	3376 non-null	object
8	ZipCode	3360 non-null	float64
9	TaxParcelIdentificationNumber	3376 non-null	object
10	CouncilDistrictCode	3376 non-null	int64
11	Neighborhood	3376 non-null	object
12	Latitude	3376 non-null	float64
13	Longitude	3376 non-null	float64
14	YearBuilt	3376 non-null	int64
15	NumberofBuildings	3368 non-null	float64
16	NumberofFloors	3376 non-null	int64
17	PropertyGFATotal	3376 non-null	int64
18	PropertyGFAParking	3376 non-null	int64
19	PropertyGFABuilding(s)	3376 non-null	int64
20	ListOfAllPropertyUseTypes	3367 non-null	object
21	LargestPropertyUseType	3356 non-null	object
22	LargestPropertyUseTypeGFA	3356 non-null	float64
23	SecondLargestPropertyUseType	1679 non-null	object
24	SecondLargestPropertyUseTypeGFA	1679 non-null	float64
25	ThirdLargestPropertyUseType	596 non-null	object
26	ThirdLargestPropertyUseTypeGFA	596 non-null	float64
27	YearsENERGYSTARCertified	119 non-null	object
28	ENERGYSTARScore	2533 non-null	float64
29	SiteEUI(kBtu/sf)	3369 non-null	float64
30	SiteEUIWN(kBtu/sf)	3370 non-null	float64
31	SourceEUI(kBtu/sf)	3367 non-null	float64
32	SourceEUIWN(kBtu/sf)	3367 non-null	float64
33	SiteEnergyUse(kBtu)	3371 non-null	float64
34	SiteEnergyUseWN(kBtu)	3370 non-null	float64
35	SteamUse(kBtu)	3367 non-null	float64
36	Electricity(kWh)	3367 non-null	float64
37	Electricity(kBtu)	3367 non-null	float64
38	NaturalGas(therms)	3367 non-null	float64
39	NaturalGas(kBtu)	3367 non-null	float64
40	DefaultData	3376 non-null	bool
41	Comments	0 non-null	float64
42	ComplianceStatus	3376 non-null	object
43	Outlier	32 non-null	object
44	TotalGHGEmissions	3367 non-null	float64
	GHGEmissionsIntensity	3367 non-null	float64
	es: bool(1), float64(22), int64(8), object(15)	
iemor	ry usage: 1.2+ MB		

BuildingType
Campus 24
Multifamily HR (10+) 110
Multifamily LR (1-4) 1018
Multifamily MR (5-9) 580
NonResidential 1460
Nonresidential COS 85
Nonresidential WA 1
SPS-District K-12 98
Name: OSEBuildingID, dtype: int64

Conformément aux critères de la mission, nous excluons tous les bâtiments de type « Multifamily »

3376 1668

> 46 variables/features

Jeu de données (2/2)

Les taux de remplissage sont élevés, à l'exception des second et third property use (type et GFA) et deux features supprimables (comments et outlier dont on supprimera également les observations)

Feature engineering (1/3)

Distribution des emissions de CO2 avec changement d'échelle

Nos features à prédire sont :

- ➤ la consommation d'énergie, à savoir « SiteEnergyUse(kBtu) »
- Et, les émissions de gaz à effet de serre (en CO2e), « TotalGHGEmissions »

On remarque sur les graphiques suivants que le passage au logarithme nous permet d'obtenir une distribution de type gaussienne

Feature engineering (2/3)

Pour les features liées à l'identification et la localisation géographique, on retiendra :

- « OSEBuildingID »
- « Neighborhood » (bon compromis au niveau des valeurs possibles)

Au niveau des features 'DataYear' et 'YearBuilt', nous les combinons afin d'obtenir la feature 'building age'

Feature engineering (3/3)

Pour le bon fonctionnement de nos modèles, on étudie les corrélations linéaires entre les variables numériques

- Suppressions des données liées aux superficies (/sf, GFA...)
- > Plutôt que la superficie totale, on conserve les superficies 'building' et 'parking'
- Le but est de supprimer les relevés coûteux pour les années à venir => exclusion de toutes les données de relève


```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1548 entries, 0 to 3375
Data columns (total 13 columns):
                            Non-Null Count Dtype
# Column
    OSEBuildingID
                            1548 non-null
                                            int64
                            1548 non-null
     BuildingType
                                            object
                             1548 non-null
                             1548 non-null
     Neighborhood
                                            object
     NumberofBuildings
                            1548 non-null
                                             float64
     NumberofFloors
                             1548 non-null
     PropertyGFAParking
                            1548 non-null
                                            int64
                            1548 non-null
                                            int64
     LargestPropertyUseType 1548 non-null
                                            object
     ENERGYSTARScore
                             997 non-null
                                             float64
    SiteEnergyUse(kBtu)
                            1548 non-null
11 TotalGHGEmissions
                            1548 non-null
                                            float64
 12 BuildingAge
                            1548 non-null
dtypes: float64(4), int64(5), object(4)
memory usage: 201.6+ KB
```

Modélisation(1/15)

	OSEBuildingID	NumberofBuildings	NumberofFloors	PropertyGFAParking	PropertyGFABuilding(s)	ENERGYSTARS core	SiteEnergyUse(kBtu)	TotalGHGEmissions	BuildingAge
count	1548.000000	1548.000000	1548.000000	1548.000000	1.548000e+03	997.000000	1.548000e+03	1548.000000	1548.000000
mean	16497.944444	1.212532	4.286822	13842.337209	1.074898e+05	63.635908	8.860058e+06	193.609426	54.355943
std	13827.877766	3.031517	6.774923	43721.822291	2.926272e+05	28.825309	3.130568e+07	779.105149	32.886918
min	1.000000	1.000000	1.000000	0.000000	3.636000e+03	1.000000	5.713320e+04	0.001000	1.000000
25%	602.750000	1.000000	1.000000	0.000000	2.793675e+04	44.000000	1.251083e+06	20.655000	27.000000
50%	21180.500000	1.000000	2.000000	0.000000	4.608400e+04	71.000000	2.732167e+06	49.845000	50.500000
75%	24609.000000	1.000000	4.000000	0.000000	9.556825e+04	88.000000	7.294487e+06	147.227500	86.000000
max	50226.000000	111.000000	99.000000	512608.000000	9.320156e+06	100.000000	8.739237e+08	16870.980000	116.000000

Il semble que nous ayons des outliers à retraiter pour nos variables à prédire

Modélisation(2/15)

1-1) Encodage et standardisation :

En plus des valeurs numériques vues précédemment, voici la liste des features catégorielles qu'il faudra encoder

Nous utiliserons OneHotEncoder pour les features catégorielles et StandardScaler pour les features numériques

Ex:

Modélisation(3/15)

1-2) Préparation des jeux d'entrainement et de test:

Jeu de test (20%)

Entrainement: 1237 lignes, Test: 310 lignes.

2-1) Modèle Baseline: DummyRegressor (moyenne)

	metrique	Baseline
0	MAE	9.452627e+06
1	MSE	8.366226e+14
2	RMSE	2.892443e+07
3	R²	-8.019255e-04

2-2) Modèle Baseline: Régression linéaire multivariée

Meilleur score MAE : -11263938.077

Meilleur Score R2 : -43.582

Meilleurs paramètres : {'regressor_fit_intercept': False, 'regressor_normalize': True}

Temps moyen d'entrainement : 35.59s

Modélisation(4/15)

- 3) Modèles linéaires (avec GridSearch/Validation croisée)
- 3-1) Modèle : ElasticNet (Combinaison des 2 régularisations Ridge et Lasso)

```
Meilleur score MAE : -5948750.728

Meilleur Score R2 : 0.14

Meilleurs paramètres : {'regressor_alpha': 1.0, 'regressor_l1_ratio': 0.1, 'regressor_max_iter': 10}

Temps moyen d'entrainement : 66.72s
```

3-2) Modèle: Support Vector Regression (SVR)

```
Meilleur score MAE : -6531295.329

Meilleur Score R2 : 0.007

Meilleurs paramètres : {'regressor_C': 0.01, 'regressor_epsilon': 0, 'regressor_loss': 'epsilon_insensitive', 'regressor_ma x_iter': 1000}

Temps moyen d'entrainement : 7.19s
```

Modélisation(5/15)

- 4) Modèles non-linéaires (avec GridSearch/Validation croisée)
- 4-1) Modèle RandomForestRegressor

```
Meilleur score MAE : -3653371.261

Meilleur Score R2 : 0.658

Meilleurs paramètres : {'regressor_bootstrap': False, 'regressor_max_depth': 25, 'regressor_max_features': 'sqrt', 'regressor_r_min_samples_leaf': 1, 'regressor_min_samples_split': 2}

Temps moyen d'entrainement : 263.54s
```

4-2) Modèle XGBoost (eXtreme Gradient Boosting)

```
Meilleur score MAE : -3554694.26

Meilleur Score R2 : 0.651

Meilleurs paramètres : {'regressor__n_estimators': 1000, 'regressor__min_child_weight': 1.0, 'regressor__max_depth': 15, 'regressor__learning_rate': 0.01, 'regressor__gamma': 0.25}

Temps moyen d'entrainement : 378.14s
```

Modélisation(6/15)

- 5) Sélection du meilleur modèle
- 5-1-1) Modèle de prédiction des consommations d'énergie

Pour la variable SiteEnergyUse, le modèle RandomForest offre le meilleur compromis scores MAE et temps d'entrainement et de prédiction

Modélisation(7/15)

Visualisation des impacts des hyperparamètres de la GridSearch

Modélisation(8a/15)

Visualisation de l'importance des variables dans notre modèle de forêts aléatoires (global)

Modélisation(8b/15)

Visualisation de l'importance des variables dans notre modèle de forêts aléatoires pour des observations

On voit ici les features qui ont un impact positif ou négatif, expliquant la variation par rapport à la base value

Modélisation(9/15)

5-1-2) Modèle de prédiction des émissions de gaz à effet de serre

Pour la variable TotalGHGEmissions, le modèle RandomForest offre le meilleur compromis scores MAE et temps d'entrainement et de prédiction

Modélisation(10/15)

Visualisation des impacts des hyperparamètres de la GridSearch

1, 'regressor_min_samples_split': 10}

Modélisation(11a/15)

Visualisation de l'importance des variables dans notre modèle de forêts aléatoires (global)

Mod'elisation (11b/15) Visualisation de l'importance des variables dans notre modèle de forêts aléatoires pour des observations

On voit ici les features qui ont un impact positif ou négatif, expliquant la variation par rapport à la base value

Modélisation(12/15)

6) Test des modèles sélectionnés

L'écart est très important sur la catégorie "Campus" qui est faiblement représentée dans le jeu de données mais qui présente les plus grandes consommations.

Modélisation(13/15)

Les écarts de prédiction ne se concentrent pas sur un type de bâtiment comme la feature SiteEnergyUse Sous-évaluation pour 3 catégories et sur-évaluation pour une autre, la 5e est relativement proche

Modélisation(14/15)

7) Influence du score ENERGY STAR

On remarque ici que le score ENERGY STAR ne semble pas avoir de corrélation importante avec la consommation d'énergie. La distribution ne suit pas de loi normale et la majorité des bâtiments a un score supérieur à 50 (de bonne qualité voir de très bonne qualité).

Modélisation(15/15)

7) Influence du score ENERGY STAR

Consommation d'énergie

	Métrique	Sans ENERGY STAR	Avec ENERGY STAR
0	MAE	5.295473e+06	4.668833e+06
1	R²	1.238042e-01	3.465774e-01

Emissions de gaz à effet de serre

	Métrique	Sans ENERGY STAR	Avec ENERGY STAR
0	MAE	88.619471	111.550684
1	R ²	0.345278	0.298050

Pour le coût de collecte, l'amélioration n'apparaît pas comme significative

