Set de instrucciones del Simulador WinMIPS64

Instrucciones de Transferencia de Datos		
lb	rd, Inm(ri)	Copia en r _d un byte (8 bits) desde la dirección (Inm+r _i) (con extensión del signo)
lbu	r _d , Inm(r _i)	Copia en r _d un byte (8 bits) desde la dirección (Inm+r _i) (sin extensión del signo)
sb	r_f , Inm (r_i)	Guarda los 8 bits menos significativos de r _f en la dirección (Inm+r _i)
lh	r _d , Inm(r _i)	Copia en r _d un half-word (16 bits) desde la dir. (Inm+r _i) (con extensión del signo)
lhu	r_{d} , Inm (r_{i})	Copia en r _d un half-word (16 bits) desde la dir. (Inm+r _i) (sin extensión del signo)
sh	r_f , Inm (r_i)	Guarda los 16 bits menos significativos de r_f a partir de la dirección (Inm+ r_i)
lw	rd, Inm(ri)	Copia en r _d un word (32 bits) desde la dir. (Inm+r _i) (con extensión del signo)
lwu	rd, Inm(ri)	Copia en r _d un word (32 bits) desde la dir. (Inm+r _i) (sin extensión del signo)
sw	r_f , Inm (r_i)	Guarda los 32 bits menos significativos de r _f a partir de la dirección (Inm+r _i)
ld	r_d , Inm (r_i)	Copia en r _d un double word (64 bits) desde la dirección (Inm+r _i)
sd	r_f , Inm (r_i)	Guarda r_f a partir de la dirección (Inm+ r_i)
1.d	f_d , Inm(r_i)	Copia en f _d un valor en punto flotante (64 bits) desde la dirección (Inm+r _i)
s.d	f_f , Inm(r_i)	Guarda f_f a partir de la dirección (Inm+ r_i)
lui	rd, Inm	Copia el valor Inm desplazado 16 bits a la izquierda en el registro r _d
mov.d	fd, ff	Copia el valor del registro f _f al registro f _d
movz	rd, rf, rt	Copia el valor del registro r_f al registro r_d si el registro r_t =0
movn	rd, rf, rt	Copia el valor del registro r_f al registro r_d si el registro $r_t \neq 0$
mtc1	r _f , f _d	Copia los 64 bits del registro entero r_f al registro f_d de punto flotante
mfc1	rd, ff	Copia los 64 bits del registro ff de punto flotante al registro rd entero
cvt.d.	1 f _d , f _f	Convierte a punto flotante el valor entero copiado al registro ff, dejándolo en fd
cvt.1.d	d f _d , f _f	Convierte a entero el valor en punto flotante contenido en f _f , dejándolo en f _d

Instrucciones Aritméticas		
dadd	rd, rf, rg	Suma r_f con r_g , dejando el resultado en r_d (valores con signo)
daddi	rd, rf, N	Suma r_f con el valor inmediato N, dejando el resultado en r_d (valores con signo)
daddu	r _d , r _f , r _g	Suma r_f con r_g , dejando el resultado en r_d (valores sin signo)
daddui	r _d , r _f , N	Suma r_f con el valor inmediato N, dejando el resultado en r_d (valores con signo)
add.d	f _d , f _f , f _g	Suma f_f con f_g , dejando el resultado en f_d (en punto flotante)
dsub	rd, rf, rg	Resta rq a rf, dejando el resultado en rd (valores con signo)
dsubu	rd, rf, rg	Resta r_q a r_f , dejando el resultado en r_d (valores sin signo)
sub.d	f _d , f _f , f _g	Resta f_q a f_f , dejando el resultado en f_d (en punto flotante)
dmul	rd, rf, rg	Mutiplica r_f con r_g , dejando el resultado en r_d (valores con signo)
dmulu	rd, rf, rg	Mutiplica r _f con r _g , dejando el resultado en r _d (valores sin signo)
mul.d	fd, ff, fg	Multiplica f _f con f _q , dejando el resultado en f _d (en punto flotante)
ddiv	rd, rf, rg	Divide r_f por r_g , dejando el resultado en r_d (valores con signo)
ddivu	rd, rf, rg	Divide r_f por r_g , dejando el resultado en r_d (valores sin signo)
div.d	fd, ff, fg	Divide f_f por f_g , dejando el resultado en f_d (en punto flotante)
slt	rd, rf, rg	Compara r_f con r_g , dejando r_d =1 si r_f es menor que r_g (valores con signo)
slti	rd, rf, N	Compara r_f con el valor inmediato N, dejando r_d =1 si r_f es menor que N (valores con signo)
sltiu	rd, rf, N	Compara r_f con el valor inmediato N, dejando r_d =1 si r_f es menor que N (valores ssin igno)
sltu	rd, rf, rg	Compara r_f con r_g , dejando r_d =1 si r_f es menor que r_g (valores sin signo)
c.lt.d	fd, ff	Compara f_d con f_f , dejando flag FP=1 si f_d es menor que f_f (en punto flotante)
c.le.d	fd, ff	Compara f_d con f_f , dejando flag FP=1 si f_d es menor o igual que f_f (en punto flotante)
c.eq.d	fd, ff	Compara f_d con f_f , dejando flag FP=1 si f_d es igual que f_f (en punto flotante)

Instrucciones Lógicas		
and	rd, rf, rg	Realiza un AND entre r_f y r_g (bit a bit), dejando el resultado en r_d
andi	rd, rf, N	Realiza un AND entre r_f y el valor inmediato N (bit a bit), dejando el resultado en r_d
or	rd, rf, rg	Realiza un OR entre r_f y r_g (bit a bit), dejando el resultado en r_d
ori	rd, rf, N	Realiza un OR entre r_f y el valor inmediato N (bit a bit), dejando el resultado en r_d
xor	rd, rf, rg	Realiza un XOR entre r_f y r_g (bit a bit), dejando el resultado en r_d
xori	rd, rf, N	Realiza un XOR entre r_f y el valor inmediato N (bit a bit), dejando el resultado en r_d

Instrucciones de desplazamiento de bits		
dsll	rd, rf, N	Desplaza a izquierda N veces los bits del registro r_f , dejando el resultado en r_d
dsllv	rd, rf, rN	Desplaza a izquierda r_N veces los bits del registro r_f , dejando el resultado en r_d
dsrl	rd, rf, N	Desplaza a derecha N veces los bits del registro r_f , dejando el resultado en r_d
dsrlv	r_d , r_f , r_N	Desplaza a derecha r_N veces los bits del registro r_f , dejando el resultado en r_d
dsra	rd, rf, N	Igual que dsrl pero mantiene el signo del valor desplazado
dsrav	r_d , r_f , r_N	Igual que dsrlv pero mantiene el signo del valor desplazado

Instrucc	Instrucciones de Transferencia de Control		
j	offN	Salta a la dirección rotulada offN	
jal	offN	Salta a la dirección rotulada offN y copia en r ₃₁ la dirección de retorno	
jalr	rd	Salta a la dirección contenida en el registro r_d y copia en r_{31} la dirección de retorno	
jr	r_d	Salta a la dirección contenida en el registro r _d	
beq	r_{d} , r_{f} , offN	Si r_d es igual a r_f , salta a la dirección rotulada of fN	
bne	r_{d} , r_{f} , offN	Si r_d no es igual a r_f , salta a la dirección rotulada of fN	
beqz	rd, offN	Si r _d es igual a 0, salta a la dirección rotulada offN	
bnez	rd, offN	Si rd no es igual a 0, salta a la dirección rotulada offN	
bc1f	offN	Salta a la dirección rotulada offN si flag FP=0 (ó false) (en punto flotante)	
bc1t	offN	Salta a la dirección rotulada offN si flag FP=1 (ó true) (en punto flotante)	

Instrucciones de Control	
nop	Operación nula
halt	Detiene el simulador