Bachelor thesis presentation

Model-based investigation and experimental validation of evaporator interconnections for thermal performance enhancement for use in refrigerated display cabinets

Bachelor thesis presentation

Model-based investigation and experimental validation of evaporator interconnections for thermal performance enhancement for use in refrigerated display cabinets

Integrated display cabinet

Problems:

- Product temperature between
 -1°C and 5°C can not be achieved
- Refrigerant capacity of 150g propane per circuit is too low
- Bad air distribution

Necessary Enhancements:

- Increase cooling capacity
- Reduce refrigerant capacity
- Improve air distribution

Integrated display cabinet

Problems:

- Product temperature between
 -1°C and 5°C can not be achieved
- Refrigerant capacity of 150g propane per circuit is too low
- Bad air distribution

Necessary Enhancements:

- Increase cooling capacity
- Reduce refrigerant capacity
- Improve air distribution

Investigations on the IDC150

- Oil filling: 3MAF vs HATCOL 4467
 - Refrigerant solved in oil?
 - Bad oil return?
- <u>Defrost intervals</u>: 4h vs demand defrost
 - When is the best time to defrost?
- Compressors: ZB09KAU-TFD Hybrid (aluminium) vs Standard (copper)
 - Which compressor provides better cooling capacity?
- Evaporator: AHT vs LIDL V1 vs LIDL V2
 - 2 rowed AHT-evap → 4 rowed LIDL-evap
 - Modification of the coil arrangement
 - Building and validation of a simulation model to evaluate the new coil arrangement

Cooling circuits

Problems:

- Refrigerant solved in oil?
- ⇒ Calculation of the solubility of both oils
- ⇒ Loss of cooling capacity?
- Oil trapped in condenser and evaporator?
- ⇒ Using a flushing device to check for remaining oil

Properties	10% Oil in Evaporator	80% Oil in Compressor	10% Oil in Condenser
Viscosity (cSt)	3.72	38.66	0.89
Density (g/cm³)	0.79	0.94	0.73
Solubility (%) Refrigerant in oil (g)	35.4 %	5.0 %	37.1 %
Refrigerant in oil (g)	13.09	17.55	12.79
Refrigerant in oil (%)	8.7 %	11.7 %	8.5 %
Viscosity (cSt)	1.95	17.73	0.87
<mark>ц Density (g/cm³)</mark>	0.75	0.93	0.70
Solubility (%)	41.0 %	5.2 %	41.6 %
Refrigerant in oil (g)	14.53	18.07	13.80
Refrigerant in oil (%)	9.7 %	12.0 %	9.2 %
DF Qty of refrigerant 3MAF VS HATCOL 4467 (g)	1.45	0.52	1.01

	3MAF	HATCOL 4467
el. Leistung Verdichter [W]	2436	2542
Leistung Verdampfer [W]	5383	5442
Leistung Kondensator [W]	7589	7882
EER	2.21	2.14

Problems:

- Refrigerant solved in oil?
- ⇒ Calculation of the solubility of both oils
- ⇒ Loss of cooling capacity
- Oil trapped in condenser and evaporator?
- ⇒ Using a flushing device to check for remaining oil

Results:

- ⇒ The solubility of refrigerant in 3MAF is higher than in HATCOL 4467
 - ⇒ More refrigerant is solved in 3MAF
- ⇒ No remaining oil in heat exchangers!
- ⇒ HATCOL 4467 provides better cooling capacity for the cost of a worse efficiency

Investigations on the IDC150

Oil filling: 3MAF vs HATCOL 4467

→ HATCOL 4467

- Refrigerant solved in oil?
- Bad oil return?
- <u>Defrost intervals</u>: 4h vs demand defrost
 - When is the best time to defrost?
- Compressors: ZB09KAU-TFD Hybrid (aluminium) vs Standard (copper)
 - Which compressor provides better cooling capacity?
- Evaporator: AHT vs LIDL V1 vs LIDL V2
 - 2 rowed AHT-evap → 4 rowed LIDL-evap
 - Modification of the coil arrangement
 - Building and validation of a simulation model to evaluate the new coil arrangement

Problems:

- Demand defrost interval is exactly 3h
 - ⇒No Detection of Ice?
- Need to identify the perfect defrost interval

	4h	Demand (3h)
el. Leistung Verdichter [W]	2542	2554
Leistung Verdampfer [W]	5442	5770
Leistung Kondensator [W]	7882	8230
EER	2.14	2.26

Problems:

- Demand defrost interval is exactly 3h
 - ⇒No Detection of Ice?
- Need to identify the perfect defrost interval

Results:

- \Rightarrow ΔT rises \rightarrow Defrost is not triggered
 - ⇒ Convection heat transfer / → Induction rate of the chamber air /
- ⇒ 3h defrost interval
 - ⇒ higher cooling capacity
 - ⇒ higher efficiency

Investigations on the IDC150

Oil filling: 3MAF vs HATCOL 4467

→ HATCOL 4467

- Refrigerant solved in oil?
- Bad oil return?
- <u>Defrost intervals</u>: 4h vs demand defrost
 - When is the best time to defrost?

- → Demand defrost
- Compressors: ZB09KAU-TFD Hybrid (aluminium) vs Standard (copper)
 - Which compressor provides better cooling capacity?
- Evaporator: AHT vs LIDL V1 vs LIDL V2
 - 2 rowed AHT-evap → 4 rowed LIDL-evap
 - Modification of the coil arrangement
 - Building and validation of a simulation model to evaluate the new coil arrangement

Problems:

- Which compressor provides better cooling capacity?
 - ZB09KAU-TFD Hybrid = Aluminium motor
 - ZB09KAU-TFD Standard = Copper motor

Select data	Hybrid	Standard	
el. Leistung [W]	2490	2400	
Kälteleistung [W]	6840	6870	
Mass flow [g/s]	7.96	8.00	
⇒Select data only valid for	⇒Select data only valid for 0K subcooling / 0% quality (meas.: 6%-23% quality)		
Meas. data	Hybrid	Standard	X +
el. Leistung Verdichter [W]	2554	2697	
Leistung Verdampfer [W]	5770	6161	
Mass flow (C2) [g/s]	8.79	8.29	
Leistung Kondensator [W]	8230	8652	
EER	2.26	2.28	

Problems:

- Which compressor provides better cooling capacity?
 - ZB09KAU-TFD Hybrid = Aluminium motor
 - ZB09KAU-TFD Standard = Copper motor

Results:

- ⇒ Standard model provides 400 W more cooling capacity than hybrid model
- ⇒ Select data only valid for 0K subcooling / 0% quality (meas.: 6%-23% quality)
- ⇒ Power curve of the aluminium motor is different than the one of the copper motor

Investigations on the IDC150

Oil filling: 3MAF vs HATCOL 4467

→ HATCOL 4467

- Refrigerant solved in oil?
- Bad oil return?
- <u>Defrost intervals</u>: 4h vs demand defrost
 - When is the best time to defrost?

- → Demand defrost
- Compressors: ZB09KAU-TFD Hybrid (aluminium) vs Standard (copper)
 - Which compressor provides better cooling capacity?
- → Standard model

- Evaporator: AHT vs LIDL V1 vs LIDL V2
 - 2 rowed AHT-evap → 4 rowed LIDL-evap
 - Modification of the coil arrangement
 - Building and validation of a simulation model to evaluate the new coil arrangement

Problems:

- Does the 4-rowed LIDL-evap provide a better heat transmission than the 2rowed AHT-evap?
- Does a change in the coil arrangement increase the the cooling capacity?

	AHT	LIDL V1
el. Leistung Verdichter [W]	2542	2554
Leistung Verdampfer [W]	5442	5770
Leistung Kondensator [W]	7882	8230
EER	2.14	2.26

Problems:

- Does the 4-rowed LIDL-evap provide a better heat transmission than the 2rowed AHT-evap?
- Does a change in the coil arrangement increase the the cooling capacity?

Results:

- ⇒ Standard model provides 400 W more cooling capacity than hybrid model
- ⇒ Select data only valid for 0K subcooling / 0% quality (meas.: 6%-23% quality)
- ⇒ Power curve of the aluminium motor is different than the one of the copper motor

