UNIVERSITY OF ABERDEEN SESSION 2012-2013

Degree Examination in EG3020 PROCESS THERMODYNAMICS

Wednesday 23rd January 2013 2.00p.m. – 5.00p.m.

Notes: (i) Candidates ARE permitted to use an approved calculator

- (ii) Candidates ARE permitted to use Engineering Mathematics Handbook
- (iii) Data sheets are attached to the paper

Candidates should attempt ALL FIVE questions. All questions carry 20 marks.

PLEASE NOTE THE FOLLOWING

- (i) You **must not** have in your possession any material other than that expressly permitted in the rules appropriate to this examination. Where this is permitted, such material **must not** be amended, annotated or modified in any way.
- (ii) You **must not** have in your possession any material that could be determined as giving you an advantage in the examination.
- (iii) You **must not** attempt to communicate with any candidate during the exam, either orally or by passing written material, or by showing material to another candidate, nor must you attempt to view another candidate's work.

Failure to comply with the above will be regarded as cheating and may lead to disciplinary action as indicated in the Academic Quality Handbook

(www.abdn.ac.uk/registry/quality/appendix7x1.pdf) Section 4.14 and 5.

Question 1

Helium gas (adiabatic coefficient $\gamma = 1.67$) at $P_I = 20$ bar and $T_I = 700$ K is in a closed cylinder-piston apparatus and undergoes a cyclic 4-step process. Helium can be considered as an ideal gas.

In the first step the gas is expanded isothermally to tenfold the initial specific volume. In the second step the gas is cooled in an isochoric process to reach room temperature, $T_3 = 25$ °C. Then it is compressed adiabatically to the initial pressure. In the last step, the gas returns to its initial condition.

a) Calculate pressure, temperature and specific volume for all states. Give your results in SI units (K, Pa, m³, mol).

[11 marks]

b) Sketch the cycle on a PV diagram.

[5 marks]

c) The isothermal and adiabatic processes share a common intermediate state. Calculate its pressure, temperature and specific volume. Give your results in SI units (K, Pa, m³, mol).

[4 marks]

Question 2

Mixtures and mixing processes are of great importance in any kind of chemical plant.

a) For a large-scale combustion research facility, a mixture of hydrogen and nitrogen are prepared. For this purpose, a stream of hydrogen (molar mass M = 2.016 g mol⁻¹) flowing at a rate of 1800 kg h⁻¹ and a stream of nitrogen (molar mass M = 28.014 g mol⁻¹) flowing at the rate of 7200 kg h⁻¹ mix adiabatically in a steady-flow process. If the gases are assumed ideal, what is the rate of entropy increase as a result of the process?

[7 marks]

b) Strong intermolecular interactions in liquid mixtures may cause significant deviation from ideal solution behaviour. The volume change of mixing (cm³ mol⁻¹) for a binary system at 31°C is given by the equation:

$$\Delta V = 0.220(x_1 - x_2)x_1x_2 - 1.026x_1x_2$$

Given that $V_1 = 58.6 \text{ cm}^3 \text{ mol}^{-1}$ and $V_2 = 118.5 \text{ cm}^3 \text{ mol}^{-1}$, what volume of mixture is formed when 700 cm³ of pure species 1 is mixed with 1,400 cm³ of species 2 at 25°C? What would be the volume if an ideal solution were formed?

[9 marks]

c) An engineer claims that the volume expansivity $\frac{1}{V} (\partial V/\partial T)_p$ of an ideal solution is given by:

$$\beta^{id} = \sum_{i} x_i \beta_i$$

Is this claim valid? If so, show why. If not, find a correct expression for β^{id} .

[4 marks]

Question 3

In a coal-fired power plant operating on a Rankine cycle superheated steam at pressure P = 70 bar and temperature T = 500°C enters the turbine, where it expands to ambient pressure of 1 bar.

a) Assuming adiabatic and reversible expansion, calculate the vapour quality.

[10 marks]

b) Assuming irreversible expansion with a turbine efficiency

$$\eta = \frac{\Delta H}{\Delta H_{isentropic}} = 0.7$$

determine the exhaust vapour quality.

[6 marks]

c) Draw the expansion process for both cases a) and b) in a TS diagram. Indicate isobaric lines of the pressure levels involved in the process.

[4 marks]

Question 4

A liquid binary mixture is in equilibrium with its vapour at 144°C. The liquid mole fraction of component 1 is $x_1 = 0.6$. In addition, the following information is given:

- $\ln \gamma_1 = Ax_2^2$ and $\ln \gamma_2 = Ax_1^2$
- At 144°C, the saturation pressures are $P_1^{sat} = 75.20$ kPa and $P_2^{sat} = 31.66$ kPa
- The system forms an azeotrope at 144°C for which $x_1^{az} = y_1^{az} = 0.294$
- The modified Raoult's law is valid
 - a) Determine the equilibrium pressure of the system.

[9 marks]

b) Determine the composition of the vapour.

[2 marks]

c) Draw a schematic *P-xy* diagram showing the azeotropic behaviour. Indicate how the *P-x* relationship would look like for Raoult's law.

[6 marks]

d) Which is the main problem that is associated with azeotropic mixtures in technical processes? How can it be overcome (give one example)?

[3 marks]

Question 5

Volumetric and thermodynamic properties.

a) What are the main assumptions for an ideal gas?

[3 marks]

b) Using the thermodynamic relationship dG = VdP - SdT, derive the Clapeyron equation

$$\frac{dP^{sat}}{dT} = \frac{\Delta H^{vap}}{T \cdot \Delta V^{lv}}$$

for the liquid to vapour phase transition. ΔH^{vap} is the latent heat of vaporisation, P^{sat} is the saturation pressure.

[6 marks]

c) One form of the virial equation is

$$Z = 1 + B'P + C'P^2 + D'P^3 + \cdots$$

What is the physical meaning of the virial coefficients B', C', D'? What is the definition of the compressibility factor Z, and how can the given virial equation be used to describe an ideal gas?

[5 marks]

d) Give the definitions of residual and excess properties and explain their difference.

[6 marks]

Data Sheet

Conversions

1	m	=	3.281	ft						
1	kg	=	2.205	lb						
1	J	=	0.2388	cal						
1	bar	=	100000	$N.m^{-2}$	=	14.50	Psi	=	0.986923	atm
1	bar		750.06	Torr		750.06	mmHg			
1	acre ft	=	43560	ft^3	=	7758	bbl			
1	square mile	=	640	acre						
1	bbl	=		ft^3	=	0.159	m^3	=	42	US Gal

Temperature Conversions

$$^{\circ}R = ^{\circ}F + 460$$

 $K = ^{\circ}C + 273$
 $^{\circ}R = 1.8 \times K$

Universal Gas Constant

$$8.314 \text{ J.mol}^{-1}.\text{K}^{-1}$$

 $10.73 \text{ psia.ft}^{3}.\text{lb-mol}^{-1}.^{\circ}\text{R}^{-1}$

Standard Conditions

Stock-tank or Standard Conditions are 60°F and 14.7 psia.

Equations of State

The Generic Cubic Equation of State

$$P = \frac{RT}{V - b} - \frac{a(T)}{(V + \varepsilon b)(V + \sigma b)}$$
$$a(T) = \Psi \frac{\alpha(T_r)R^2T_c^2}{P_c}$$
$$b = \Omega \frac{RT_c}{P_c}$$

Eq. of State	$\alpha(T_r)$	σ	ε	Ω	Ψ
vdW	1	0	0	1/8	27/64
RK	$T_r^{-0.5}$	1	0	0.08664	0.42748
SRK	$\alpha_{SRK}(T_r;\omega)^{\dagger}$	1	0	0.08664	0.42748
PR	$\alpha_{PR}(T_r;\omega)^{\ddagger}$	$1+\sqrt{2}$	$1 - \sqrt{2}$	0.07780	0.30740

$$^{\dagger} \alpha_{SRK}(T_r;\omega) = \left[1 + \left(0.480 + 1.574\omega - 0.176\omega^2\right)\left(1 - T_r^{0.5}\right)\right]^2$$

$$^{\ddagger} \alpha_{PR}(T_r;\omega) = \left[1 + \left(0.37464 + 1.54226\omega - 0.26992\omega^2\right)\left(1 - T_r^{0.5}\right)\right]^2$$

Vapour & Vapour-like Roots of The Generic Cubic Equation of State

$$\begin{split} V &= \frac{RT}{P} + b - \frac{a(T)}{P} \frac{V - b}{(V + \varepsilon b)(V + \sigma b)} \\ Z &= 1 + \beta - q\beta \frac{Z - \beta}{(Z + \varepsilon \beta)(Z + \sigma \beta)} \\ \beta &= \Omega \frac{P_r}{T_r} \\ q &= \frac{\Psi \alpha(T_r)}{\Omega T_r} \end{split}$$

Liquid & Liquid-like Roots of The Generic Cubic Equation of State

$$V = b + (V + \varepsilon b)(V + \sigma b) \left[\frac{RT + bP - VP}{a(T)} \right]$$
$$Z = \beta + (Z + \varepsilon \beta)(Z + \sigma \beta) \left(\frac{1 + \beta - Z}{q\beta} \right)$$

Raoult's Law

$$y_i P = x_i P_i^{SAT} \qquad i = 1, 2, 3 \dots N$$
$$y_i P = x_i \gamma_i P_i^{SAT}$$

Henry's Law

$$x_i H_i = y_i P$$
 $i = 1, 2, 3...N$

Antoine equation

$$\log_{10} P^* = A - \frac{B}{T + C}$$
 $P^* \text{ in mm Hg, } T \text{ in } ^{\circ}C$

Compound	Formula	A	В	С
Acetone	СЗН6О	7.11714	1210.595	229.664
Benzene	С6Н6	6.89272	1203.531	219.888
Formaldehyde	CH2O	7.19578	970.595	244.124
Methyl Benzene	C7H8	6.95805	1345.773	219.693

$$\label{eq:volume_cm} \begin{split} & \textit{V} = \text{SPECIFIC VOLUME} & \quad \text{cm}^3 \ \text{g}^{-1} \\ & \textit{U} = \text{SPECIFIC INTERNAL ENERGY} & \quad \text{kJ kg}^{-1} \\ & \textit{H} = \text{SPECIFIC ENTHALPY} & \quad \text{kJ kg}^{-1} \\ & \textit{S} = \text{SPECIFIC ENTROPY} & \quad \text{kJ kg}^{-1} \ \text{K}^{-1} \end{split}$$

Table F.1. Saturated Steam, SI Units (Continued)

		SPECIFIC VOLUME V			INTERNAL ENERGY U			ENTHALPY H			ENTROPY S			
°c	K	P kPa	sat. liq.	evap.	sat. vap.	sat. liq.	evap.	sat. vap.	sat. liq.	evap.	sat. vap.	sat. liq.	evap.	sat. vap.
75	348.15	38.55	1.026	4133.1	4134.1	313.9	2162.1	2476.0	313.9	2321.5	2635.4	1.0154	6.6681	7.6835
76	349.15	40.19	1.027	3974.6	3975.7	318.1	2159.2	2477.3	318.1	2318.9	2637.1	1.0275	6.6418	7.6693
77	350.15	41.89	1.027	3823.3	3824.3	322.3	2156.3	2478.5	322.3	2316.4	2638.7	1.0395	6.6156	7.6551
78	351.15	43.65	1.028	3678.6	3679.6	326.5	2153.3	2479.8	326.5	2313.9	2640.4	1.0514	6.5896	7.6410
79	352.15	45.47	1.029	3540.3	3541.3	330.7	2150.4	2481.1	330.7	2311.4	2642.1	1.0634	6.5637	7.6271
80	353.15	47.36	1.029	3408.1	3409.1	334.9	2147.4	2482.3	334.9	2308.8	2643.8	1.0753	6.5380	7.6132
81	354.15	49.31	1.030	3281.6	3282.6	339.1	2144.5	2483.5	339.1	2306.3	2645.4	1.0871	6.5123	7.5995
82	355.15	51.33	1.031	3160.6	3161.6	343.3	2141.5	2484.8	343.3	2303.8	2647.1	1.0990	6.4868	7.5858
83	356.15	53.42	1.031	3044.8	3045.8	347.5	2138.6	2486.0	347.5	2301.2	2648.7	1.1108	6.4615	7.5722
84	357.15	55.57	1.032	2933.9	2935.0	351.7	2135.6	2487.3	351.7	2298.6	2650.4	1.1225	6.4362	7.5587
85	358.15	57.80	1.033	2827.8	2828.8	355.9	2132.6	2488.5	355.9	2296.1	2652.0	1.1343	6.4111	7.5454
86	359.15	60.11	1.033	2726.1	2727.2	360.1	2129.7	2489.7	360.1	2293.5	2653.6	1.1460	6.3861	7.5321
87	360.15	62.49	1.034	2628.8	2629.8	364.3	2126.7	2490.9	364.3	2290.9	2655.3	1.1577	6.3612	7.5189
88	361.15	64.95	1.035	2535.4	2536.5	368.5	2123.7	2492.2	368.5	2288.4	2656.9	1.1693	6.3365	7.5058
89	362.15	67.49	1.035	2446.0	2447.0	372.7	2120.7	2493.4	372.7	2285.8	2658.5	1.1809	6.3119	7.4928
90	363.15	70.11	1.036	2360.3	2361.3	376.9	2117.7	2494.6	376.9	2283.2	2660.1	1.1925	6.2873	7.4799
91	364.15	72.81	1.037	2278.0	2279.1	381.1	2114.7	2495.8	381.1	2280.6	2661.7	1.2041	6.2629	7.4670
92	365.15	75.61	1.038	2199.2	2200.2	385.3	2111.7	2497.0	385.4	2278.0	2663.4	1.2156	6.2387	7.4543
93	366.15	78.49	1.038	2123.5	2124.5	389.5	2108.7	2498.2	389.6	2275.4	2665.0	1.2271	6.2145	7.4416
94	367.15	81.46	1.039	2050.9	2051.9	393.7	2105.7	2499.4	393.8	2272.8	2666.6	1.2386	6.1905	7.4291
95	368.15	84.53	1.040	1981.2	1982.2	397.9	2102.7	2500.6	398.0	2270.2	2668.1	1.2501	6.1665	7.4166
96	369.15	87.69	1.041	1914.3	1915.3	402.1	2099.7	2501.8	402.2	2267.5	2669.7	1.2615	6.1427	7.4042
97	370.15	90.94	1.041	1850.0	1851.0	406.3	2096.6	2503.0	406.4	2264.9	2671.3	1.2729	6.1190	7.3919
98	371.15	94.30	1.042	1788.3	1789.3	410.5	2093.6	2504.1	410.6	2262.2	2672.9	1.2842	6.0954	7.3796
99	372.15	97.76	1.043	1729.0	1730.0	414.7	2090.6	2505.3	414.8	2259.6	2674.4	1.2956	6.0719	7.3675
100	373.15	101.33	1.044	1672.0	1673.0	419.0	2087.5	2506.5	419.1	2256.9	2676.0	1.3069	6.0485	7.3554
102	375.15	108.78	1.045	1564.5	1565.5	427.4	2081.4	2508.8	427.5	2251.6	2679.1	1.3294	6.0021	7.3315
104	377.15	116.68	1.047	1465.1	1466.2	435.8	2075.3	2511.1	435.9	2246.3	2682.2	1.3518	5.9560	7.3078
106	379.15	125.04	1.049	1373.1	1374.2	444.3	2069.2	2513.4	444.4	2240.9	2685.3	1.3742	5.9104	7.2845
108	381.15	133.90	1.050	1287.9	1288.9	452.7	2063.0	2515.7	452.9	2235.4	2688.3	1.3964	5.8651	7.2615
110	383.15	143.27	1.052	1208.9	1209.9	461.2	2056.8	2518.0	461.3	2230.0	2691.3	1.4185	5.8203	7.2388
112	385.15	153.16	1.054	1135.6	1136.6	469.6	2050.6	2520.2	469.8	2224.5	2694.3	1.4405	5.7758	7.2164
114	387.15	163.62	1.055	1067.5	1068.5	478.1	2044.3	2522.4	478.3	2219.0	2697.2	1.4624	5.7318	7.1942
116	389.15	174.65	1.057	1004.2	1005.2	486.6	2038.1	2524.6	486.7	2213.4	2700.2	1.4842	5.6881	7.1723
118	391.15	186.28	1.059	945.3	946.3	495.0	2031.8	2526.8	495.2	2207.9	2703.1	1.5060	5.6447	7.1507
120	393.15	198.54	1.061	890.5	891.5	503.5	2025.4	2529.0	503.7	2202.2	2706.0	1.5276	5.6017	7.1293
122	395.15	211.45	1.062	839.4	840.5	512.0	2019.1	2531.1	512.2	2196.6	2708.8	1.5491	5.5590	7.1082
124	397.15	225.04	1.064	791.8	792.8	520.5	2012.7	2533.2	520.7	2190.9	2711.6	1.5706	5.5167	7.0873
126	399.15	239.33	1.066	747.3	748.4	529.0	2006.3	2535.3	529.2	2185.2	2714.4	1.5919	5.4747	7.0666
128	401.15	254.35	1.068	705.8	706.9	537.5	1999.9	2537.4	537.8	2179.4	2717.2	1.6132	5.4330	7.0462
130	403.15	270.13	1.070	667.1	668.1	546.0	1993.4	2539.4	546.3	2173.6	2719.9	1.6344	5.3917	7.0261
132	405.15	286.70	1.072	630.8	631.9	554.5	1986.9	2541.4	554.8	2167.8	2722.6	1.6555	5.3507	7.0061
134	407.15	304.07	1.074	596.9	598.0	563.1	1980.4	2543.4	563.4	2161.9	2725.3	1.6765	5.3099	6.9864
136	409.15	322.29	1.076	565.1	566.2	571.6	1973.8	2545.4	572.0	2155.9	2727.9	1.6974	5.2695	6.9669
138	411.15	341.38	1.078	535.3	536.4	580.2	1967.2	2547.4	580.5	2150.0	2730.5	1.7182	5.2293	6.9475
140	413.15	361.38	1.080	507.4	508.5	588.7	1960.6	2549.3	589.1	2144.0	2733.1	1.7390	5.1894	6.9284
142	415.15	382.31	1.082	481.2	482.3	597.3	1953.9	2551.2	597.7	2137.9	2735.6	1.7597	5.1499	6.9095
144	417.15	404.20	1.084	456.6	457.7	605.9	1947.2	2553.1	606.3	2131.8	2738.1	1.7803	5.1105	6.8908
146	419.15	427.09	1.086	433.5	434.6	614.4	1940.5	2554.9	614.9	2125.7	2740.6	1.8008	5.0715	6.8723
148	421.15	451.01	1.089	411.8	412.9	623.0	1933.7	2556.8	623.5	2119.5	2743.0	1.8213	5.0327	6.8539
150	423.15	476.00	1.091	391.4	392.4	631.6	1926.9	2558.6	632.1	2113.2	2745.4	1.8416	4.9941	6.8358
152	425.15	502.08	1.093	372.1	373.2	640.2	1920.1	2560.3	640.8	2106.9	2747.7	1.8619	4.9558	6.8178
154	427.15	529.29	1.095	354.0	355.1	648.9	1913.2	2562.1	649.4	2100.6	2750.0	1.8822	4.9178	6.8000
156	429.15	557.67	1.098	336.9	338.0	657.5	1906.3	2563.8	658.1	2094.2	2752.3	1.9023	4.8800	6.7823
158	431.15	587.25	1.100	320.8	321.9	666.1	1899.3	2565.5	666.8	2087.7	2754.5	1.9224	4.8424	6.7648
160	433.15	618.06	1.102	305.7	306.8	674.8	1892.3	2567.1	675.5	2081.3	2756.7	1.9425	4.8050	6.7475
162	435.15	650.16	1.105	291.3	292.4	683.5	1885.3	2568.8	684.2	2074.7	2758.9	1.9624	4.7679	6.7303
164	437.15	683.56	1.107	277.8	278.9	692.1	1878.2	2570.4	692.9	2068.1	2761.0	1.9823	4.7309	6.7133
166	439.15	718.31	1.109	265.0	266.1	700.8	1871.1	2571.9	701.6	2061.4	2763.1	2.0022	4.6942	6.6964
168	441.15	754.45	1.112	252.9	254.0	709.5	1863.9	2573.4	710.4	2054.7	2765.1	2.0219	4.6577	6.6796
170	443.15	792.02	1.114	241.4	242.6	718.2	1856.7	2574.9	719.1	2047.9	2767.1	2.0416	4.6214	6.6630
172	445.15	831.06	1.117	230.6	231.7	727.0	1849.5	2576.4	727.9	2041.1	2769.0	2.0613	4.5853	6.6465
174	447.15	871.60	1.120	220.3	221.5	735.7	1842.2	2577.8	736.7	2034.2	2770.9	2.0809	4.5493	6.6302
176	449.15	913.68	1.122	210.6	211.7	744.4	1834.8	2579.3	745.5	2027.3	2772.7	2.1004	4.5136	6.6140
178	451.15	957.36	1.125	201.4	202.5	753.2	1827.4	2580.6	754.3	2020.2	2774.5	2.1199	4.4780	6.5979
180	453.15	1002.7	1.128	192.7	193.8	762.0	1820.0	2581.9	763.1	2013.1	2776.3	2.1393	4.4426	6.5819
182	455.15	1049.6	1.130	184.4	185.5	770.8	1812.5	2583.2	772.0	2006.0	2778.0	2.1587	4.4074	6.5660
184	457.15	1098.3	1.133	176.5	177.6	779.6	1804.9	2584.5	780.8	1998.8	2779.6	2.1780	4.3723	6.5503
186	459.15	1148.8	1.136	169.0	170.2	788.4	1797.3	2585.7	789.7	1991.5	2781.2	2.1972	4.3374	6.5346
188	461.15	1201.0	1.139	161.9	163.1	797.2	1789.7	2586.9	798.6	1984.2	2782.8	2.2164	4.3026	6.5191
190	463.15	1255.1	1.142	155.2	156.3	806.1	1782.0	2588.1	807.5	1976.7	2784.3	2.2356	4.2680	6.5036
192	465.15	1311.1	1.144	148.8	149.9	814.9	1774.2	2589.2	816.5	1969.3	2785.7	2.2547	4.2336	6.4883
194	467.15	1369.0	1.147	142.6	143.8	823.8	1766.4	2590.2	825.4	1961.7	2787.1	2.2738	4.1993	6.4730
196	469.15	1428.9	1.150	136.8	138.0	832.7	1758.6	2591.3	834.4	1954.1	2788.4	2.2928	4.1651	6.4578
198	471.15	1490.9	1.153	131.3	132.4	841.6	1750.6	2592.3	843.4	1946.4	2789.7	2.3117	4.1310	6.4428
200	473.15	1554.9	1.156	126.0	127.2	850.6	1742.6	2593.2	852.4	1938.6	2790.9	2.3307	4.0971	6.4278
202	475.15	1621.0	1.160	121.0	122.1	859.5	1734.6	2594.1	861.4	1930.7	2792.1	2.3495	4.0633	6.4128
204	477.15	1689.3	1.163	116.2	117.3	868.5	1726.5	2595.0	870.5	1922.8	2793.2	2.3684	4.0296	6.3980
206	479.15	1759.8	1.166	111.6	112.8	877.5	1718.3	2595.8	879.5	1914.7	2794.3	2.3872	3.9961	6.3832
208	481.15	1832.6	1.169	107.2	108.4	886.5	1710.1	2596.6	888.6	1906.6	2795.3	2.4059	3.9626	6.3686
210	483.15	1907.7	1.173	103.1	104.2	895.5	1701.8	2597.3	897.7	1898.5	2796.2	2.4247	3.9293	6.3539
212	485.15	1985.2	1.176	99.09	100.26	904.5	1693.5	2598.0	906.9	1890.2	2797.1	2.4434	3.8960	6.3394
214	487.15	2065.1	1.179	95.28	96.46	913.6	1685.1	2598.7	916.0	1881.8	2797.9	2.4620	3.8629	6.3249
216	489.15	2147.5	1.183	91.65	92.83	922.7	1676.6	2599.3	925.2	1873.4	2798.6	2.4806	3.8298	6.3104
218	491.15	2232.4	1.186	88.17	89.36	931.8	1668.0	2599.8	934.4	1864.9	2799.3	2.4992	3.7968	6.2960

Table F.2. Superheated Steam, SI Units (Continued)

TEMPERATURE: t° C (TEMPERATURE: T kelvins)

				(TEMPERATURE: T kelvins)								
P/kPa (t sat /°C)		sat. liq.	sat. vap.	450 (723.15)	475 (748.15)	500 (773.15)	525 (798.15)	550 (823.15)	575 (848.15)	600 (873.15)	650 (923.15)	
5800 (273.35)	V U H S	1.312 1194.7 1202.3 3.0071	33.651 2591.9 2787.0 5.9066	54.026 2992.9 3306.3 6.7416	56.357 3038.8 3365.7 6.8223	58.644 3084.4 3424.5 6.8996	60.896 3129.8 3483.0 6.9740	63.120 3175.2 3541.2 7.0460	65.320 3220.7 3599.5 7.1157	67.500 3266.4 3657.9 7.1835	71.807 3358.5 3775.0 7.3139	
5900 (274.46)	V U H S	1.315 1200.3 1208.0 3.0172	33.034 2591.1 2786.0 5.8986	53.048 2991.9 3304.9 6.7322	55.346 3037.9 3364.4 6.8132	57.600 3083.5 3423.3 6.8906	59.819 3129.0 3481.9 6.9652	62.010 3174.4 3540.3 7.0372	64.176 3220.0 3598.6 7.1070	66.322 3265.7 3657.0 7.1749	70.563 3357.9 3774.3 7.3054	
6000 (275.55)	V U H S	1.319 1205.8 1213.7 3.0273	32.438 2590.4 2785.0 5.8908	52.103 2990.8 3303.5 6.7230	54.369 3036.9 3363.2 6.8041	56.592 3082.6 3422.2 6.8818	58.778 3128.2 3480.8 6.9564	60.937 3173.7 3539.3 7.0285	63.071 3219.3 3597.7 7.0985	65.184 3265.1 3656.2 7.1664	69.359 3357.4 3773.5 7.2971	
6100 (276.63)	V U H S	1.322 1211.2 1219.3 3.0372	31.860 2589.6 2783.9 5.8830	51.189 2989.8 3302.0 6.7139	53.424 3036.0 3361.9 6.7952	55.616 3081.8 3421.0 6.8730	57.771 3127.4 3479.8 6.9478	59.898 3173.0 3538.3 7.0200	62.001 3218.6 3596.8 7.0900	64.083 3264.5 3655.4 7.1581	68.196 3356.8 3772.8 7.2889	
6200 (277.70)	V U H S	1.325 1216.6 1224.8 3.0471	31,300 2588.8 2782.9 5.8753	50.304 2988.7 3300.6 6.7049	52.510 3035.0 3360.6 6.7864	54.671 3080.9 3419.9 6.8644	56.797 3126.6 3478.7 6.9393	58.894 3172.2 3537.4 7.0116	60.966 3218.0 3595.9 7.0817	63.018 3263.8 3654.5 7.1498	67.069 3356.3 3772.1 7.2808	
6300 (278.75)	V U H S	1.328 1221.9 1230.3 3.0568	30.757 2588.0 2781.8 5.8677	49.447 2987.7 3299.2 6.6960	51.624 3034.1 3359.3 6.7778	53.757 3080.1 3418.7 6.8559	55.853 3125.8 3477.7 6.9309	57.921 3171.5 3536.4 7.0034	59.964 3217.3 3595.0 7.0735	61.986 3263.2 3653.7 7.1417	65.979 3355.7 3771.4 7.2728	
6400 (279.79)	V U H S	1.332 1227.2 1235.7 3.0664	30.230 2587.2 2780.6 5.8601	48.617 2986.6 3297.7 6.6872	50.767 3033.1 3358.0 6.7692	52.871 3079.2 3417.6 6.8475	54.939 3125.0 3476.6 6.9226	56.978 3170.8 3535.4 6.9952	58.993 3216.6 3594.1 7.0655	60.987 3262.6 3652.9 7.1337	64.922 3355.2 3770.7 7.2649	
6500 (280.82)	V U H S	1.335 1232.5 1241.1 3.0759	29.719 2586.3 2779.5 5.8527	47.812 2985.5 3296.3 6.6786	49.935 3032.2 3356.8 6.7608	52.012 3078.3 3416.4 6.8392	54.053 3124.2 3475.6 6.9145	56.065 3170.0 3534.4 6.9871	58.052 3215.9 3593.2 7.0575	60.018 3261.9 3652.1 7.1258	63.898 3354.6 3770.0 7.2572	
6600 (281.84)	V U H S	1.338 1237.6 1246.5 3.0853	29.223 2585.5 2778.3 5.8452	47.031 2984.5 3294.9 6.6700	49.129 3031.2 3355.5 6.7524	51.180 3077.4 3415.2 6.8310	53.194 3123.4 3474.5 6.9064	55.179 3169.3 3533.5 6.9792	57.139 3215.2 3592.3 7.0497	59.079 3261.3 3651.2 7.1181	62.905 3354.1 3769.2 7.2495	
6700 (282.84)	V U H S	1.342 1242.8 1251.8 3.0946	28.741 2584.6 2777.1 5.8379	46.274 2983.4 3293.4 6.6616	48.346 3030.3 3354.2 6.7442	50.372 3076.6 3414.1 6.8229	52.361 3122.6 3473.4 6.8985	54.320 3168.6 3532.5 6.9714	56.254 3214.5 3591.4 7.0419	58.168 3260.7 3650.4 7.1104	61.942 3353.5 3768.5 7.2420	
6800 (283.84)	V U H S	1.345 1247.9 1257.0 3.1038	28.272 2583.7 2775.9 5.8306	45.539 2982.3 3292.0 6.6532	47.587 3029.3 3352.9 6.7361	49.588 3075.7 3412.9 6.8150	51.552 3121.8 3472.4 6.8907	53.486 3167.8 3531.5 6.9636	55.395 3213.9 3590.5 7.0343	57.283 3260.0 3649.6 7.1028	61.007 3353.0 3767.8 7.2345	
7000 (285.79)	V U H S	1.351 1258.0 1267.4 3.1219	27.373 2581.8 2773.5 5.8162	44.131 2980.1 3289.1 6.6368	46.133 3027.4 3350.3 6.7201	48.086 3074.0 3410.6 6.7993	50.003 3120.2 3470.2 6.8753	51.889 3166.3 3529.6 6.9485	53.750 3212.5 3588.7 7.0193	55.590 3258.8 3647.9 7.0880	59.217 3351.9 3766.4 7.2200	
7200 (287.70)	V U H S	1.358 1267.9 1277.6 3.1397	26.522 2579.9 2770.9 5.8020	42.802 2978.0 3286.1 6.6208	44.759 3025.4 3347.7 6.7044	46.668 3072.2 3408.2 6.7840	48.540 3118.6 3468.1 6.8602	50.381 3164.9 3527.6 6.9337	52.197 3211.1 3586.9 7.0047	53.991 3257.5 3646.2 7.0735	57.527 3350.7 3764.9 7.2058	
7400 (289.57)	V U H S	1.364 1277.6 1287.7 3.1571	25.715 2578.0 2768.3 5.7880	41.544 2975.8 3283.2 6.6050	43.460 3023.5 3345.1 6.6892	45.327 3070.4 3405.9 6.7691	47.156 3117.0 3466.0 6.8456	48.954 3163.4 3525.7 6.9192	50.727 3209.8 3585.1 6.9904	52.478 3256.2 3644.5 7.0594	55.928 3349.6 3763.5 7.1919	
7600 (291.41)	V U H S	1.371 1287.2 1297.6 3.1742	24.949 2575.9 2765.5 5.7742	40.351 2973.6 3280.3 6.5896	42.228 3021.5 3342.5 6.6742	44.056 3068.7 3403.5 6.7545	45.845 3115.4 3463.8 6.8312	47.603 3161.9 3523.7 6.9051	49.335 3208.4 3583.3 6.9765	51.045 3254.9 3642.9 7.0457	54.413 3348.5 3762.1 7.1784	
7800 (293.21)	V U H S	1.378 1296.7 1307.4 3.1911	24.220 2573.8 2762.8 5.7605	39.220 2971.4 3277.3 6.5745	41.060 3019.6 3339.8 6.6596	42.850 3066.9 3401.1 6.7402	44.601 3113.8 3461.7 6.8172	46.320 3160.4 3521.7 6.8913	48.014 3207.0 3581.5 6.9629	49.686 3253.7 3641.2 7.0322	52.976 3347.4 3760.6 7.1652	
8000 (294.97)	V U H S	1.384 1306.0 1317.1 3.2076	23.525 2571.7 2759.9 5.7471	38.145 2969.2 3274.3 6.5597	39.950 3017.6 3337.2 6.6452	41.704 3065.1 3398.8 6.7262	43.419 3112.2 3459.5 6.8035	45.102 3158.9 3519.7 6.8778	46.759 3205.6 3579.7 6.9496	48.394 3252.4 3639.5 7.0191	51.611 3346.3 3759.2 7.1523	