From Larson/Farber Elementary Statistics: Picturing the World, Fifth Edition
© 2012 Prentice Hall

## **CHAPTER 2**

Class Width = 
$$\frac{\text{Range of data}}{\text{Number of classes}}$$

(round up to next convenient number)

$$Midpoint = \frac{(Lower class limit) + (Upper class limit)}{2}$$

Relative Frequency = 
$$\frac{\text{Class frequency}}{\text{Sample size}} = \frac{f}{n}$$

Population Mean: 
$$\mu = \frac{\sum x}{N}$$

Sample Mean: 
$$\overline{x} = \frac{\sum x}{n}$$

Weighted Mean: 
$$\overline{x} = \frac{\sum (x \cdot w)}{\sum w}$$

Mean of a Frequency Distribution: 
$$\bar{x} = \frac{\sum (x \cdot f)}{n}$$

Range = 
$$(Maximum entry) - (Minimum entry)$$

Population Variance: 
$$\sigma^2 = \frac{\sum (x - \mu)^2}{N}$$

Population Standard Deviation:

$$\sigma = \sqrt{\sigma^2} = \sqrt{\frac{\sum (x - \mu)^2}{N}}$$

Sample Variance: 
$$s^2 = \frac{\sum (x - \overline{x})^2}{n - 1}$$

Sample Standard Deviation: 
$$s = \sqrt{s^2} = \sqrt{\frac{\sum (x - \overline{x})^2}{n - 1}}$$

*Empirical Rule* (or 68-95-99.7 Rule) For data with a (symmetric) bell-shaped distribution:

- 1. About 68% of the data lies between  $\mu \sigma$  and  $\mu + \sigma$ .
- 2. About 95% of the data lies between  $\mu 2\sigma$  and  $\mu + 2\sigma$ .
- 3. About 99.7% of the data lies between  $\mu 3\sigma$  and  $\mu + 3\sigma$ .

**Chebychev's Theorem** The portion of any data set lying within k standard deviations (k > 1) of the mean is at

least 
$$1 - \frac{1}{k^2}$$
.

Sample Standard Deviation of a Frequency Distribution:

$$s = \sqrt{\frac{\sum (x - \overline{x})^2 f}{n - 1}}$$

Standard Score: 
$$z = \frac{\text{Value - Mean}}{\text{Standard deviation}} = \frac{x - \mu}{\sigma}$$

#### **CHAPTER 3**

Classical (or Theoretical) Probability:

$$P(E) = \frac{\text{Number of outcomes in event } E}{\text{Total number of outcomes}}$$
in sample space

Empirical (or Statistical) Probability:

$$P(E) = \frac{\text{Frequency of event } E}{\text{Total frequency}} = \frac{f}{n}$$

Probability of a Complement: P(E') = 1 - P(E)

Probability of occurrence of both events A and B:

$$P(A \text{ and } B) = P(A) \cdot P(B|A)$$

$$P(A \text{ and } B) = P(A) \cdot P(B) \text{ if } A \text{ and } B \text{ are independent}$$

Probability of occurrence of either A or B or both:

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

$$P(A \text{ or } B) = P(A) + P(B) \text{ if } A \text{ and } B \text{ are }$$
mutually exclusive

Permutations of n objects taken r at a time:

$$_{n}P_{r} = \frac{n!}{(n-r)!}$$
, where  $r \le n$ 

Distinguishable Permutations:  $n_1$  alike,  $n_2$  alike, ...,  $n_k$  alike:

$$\frac{n!}{n_1! \cdot n_2! \cdot n_2! \cdots n_k!},$$

where 
$$n_1 + n_2 + n_3 + \cdots + n_k = n$$

Combination of n objects taken r at a time:

$$_{n}C_{r} = \frac{n!}{(n-r)!r!}$$

From Larson/Farber Elementary Statistics: Picturing the World, Fifth Edition
© 2012 Prentice Hall

### **CHAPTER 4**

Mean of a Discrete Random Variable:  $\mu = \sum xP(x)$ 

Variance of a Discrete Random Variable:

$$\sigma^2 = \sum (x - \mu)^2 P(x)$$

Standard Deviation of a Discrete Random Variable:

$$\sigma = \sqrt{\sigma^2} = \sqrt{\sum (x - \mu)^2 P(x)}$$

Expected Value:  $E(x) = \mu = \sum xP(x)$ 

Binomial Probability of x successes in n trials:

$$P(x) = {}_{n}C_{x}p^{x}q^{n-x} = \frac{n!}{(n-x)!x!}p^{x}q^{n-x}$$

Population Parameters of a Binomial Distribution:

Mean: 
$$\mu = np$$
 Variance:  $\sigma^2 = npa$ 

Standard Deviation: 
$$\sigma = \sqrt{npq}$$

Geometric Distribution: The probability that the first success will occur on trial number x is  $P(x) = p(q)^{x-1}$ , where q = 1 - p.

Poisson Distribution: The probability of exactly x occurrences in an interval is  $P(x) = \frac{\mu^x e^{-\mu}}{x!}$ , where  $e \approx 2.71828$  and  $\mu$  is the mean number of occurences per interval unit.

#### **CHAPTER 5**

Standard Score, or z-Score:

$$z = \frac{\text{Value - Mean}}{\text{Standard deviation}} = \frac{x - \mu}{\sigma}$$

Transforming a z-Score to an x-Value:  $x = \mu + z\sigma$ 

**Central Limit Theorem** ( $n \ge 30$  or population is normally distributed):

Mean of the Sampling Distribution:  $\mu_{\overline{x}} = \mu$ 

Variance of the Sampling Distribution:  $\sigma_{\bar{x}}^2 = \frac{\sigma}{n}$ 

Standard Deviation of the Sampling Distribution (Standard Error):

$$\sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}}$$

z-Score = 
$$\frac{\text{Value - Mean}}{\text{Standard Error}} = \frac{\overline{x} - \mu_{\overline{x}}}{\sigma_{\overline{x}}} = \frac{\overline{x} - \mu}{\sigma/\sqrt{n}}$$

#### **CHAPTER 6**

*c*-Confidence Interval for  $\mu$ :  $\overline{x} - E < \mu < \overline{x} + E$ ,

where  $E = z_c \frac{\sigma}{\sqrt{n}}$  if  $\sigma$  is known and the population is

normally distributed or  $n \ge 30$ , or  $E = t_c \frac{s}{\sqrt{n}}$  if the population is normally or approximately normally distributed,  $\sigma$  is unknown, and n < 30

Minimum Sample Size to Estimate  $\mu$ :  $n = \left(\frac{z_c \sigma}{E}\right)^2$ 

Point Estimate for p, the population proportion of

successes: 
$$\hat{p} = \frac{x}{n}$$

*c*-Confidence Interval for Population Proportion p (when  $np \ge 5$  and  $nq \ge 5$ ):  $\hat{p} - E , where$ 

$$E = z_c \sqrt{\frac{\hat{p}\hat{q}}{n}}$$

Minimum Sample Size to Estimate p:  $n = \hat{p}\hat{q}\left(\frac{z_c}{E}\right)^2$ 

c-Confidence Interval for Population Variance  $\sigma^2$ :

$$\frac{(n-1)s^2}{\chi_R^2} < \sigma^2 < \frac{(n-1)s^2}{\chi_L^2}$$

*c*-Confidence Interval for Population Standard Deviation  $\sigma$ :

$$\sqrt{\frac{(n-1)s^2}{\chi_R^2}} < \sigma < \sqrt{\frac{(n-1)s^2}{\chi_L^2}}$$

From Larson/Farber Elementary Statistics: Picturing the World, Fifth Edition © 2012 Prentice Hall

## CHAPTER 7

z-Test for a Mean  $\mu$ :  $z = \frac{\overline{x} - \mu}{\sigma / \sqrt{n}}$ , for  $\sigma$  known with a normal population, or for  $n \ge 30$ 

t-Test for a Mean  $\mu$ :  $t = \frac{\overline{x} - \mu}{s/\sqrt{n}}$ , for  $\sigma$  unknown,

population is normal or nearly normal, and n < 30. (d.f. = n - 1)

z-Test for a Proportion p (when  $np \ge 5$  and  $nq \ge 5$ ):

$$z = \frac{\hat{p} - \mu_{\hat{p}}}{\sigma_{\hat{p}}} = \frac{\hat{p} - p}{\sqrt{pq/n}}$$

Chi-Square Test for a Variance  $\sigma^2$  or Standard Deviation  $\sigma$ :

$$\chi^2 = \frac{(n-1)s^2}{\sigma^2}$$
 (d.f. =  $n-1$ )

### CHAPTER 8

Two-Sample z-Test for the Difference Between Means (Independent samples;  $n_1$  and  $n_2 \ge 30$  or normally distributed populations):

$$z=\frac{(\overline{x}_1-\overline{x}_2)-(\mu_1-\mu_2)}{\sigma_{\overline{x}_1-\overline{x}_2}},$$

where 
$$\sigma_{\overline{x}_1-\overline{x}_2} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

Two-Sample t-Test for the Difference Between Means (Independent samples from normally distributed populations,  $n_1$  or  $n_2 < 30$ ):

$$t = \frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{\sigma_{\overline{x}_1 - \overline{x}_2}}$$

If population variances are equal, d.f. =  $n_1 + n_2 - 2$ 

$$\sigma_{\overline{x}_1 - \overline{x}_2} = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}} \cdot \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}.$$

If population variances are not equal, d.f. is the smaller of  $n_1 - 1$  or  $n_2 - 1$  and  $\sigma_{\overline{x}_1 - \overline{x}_2} = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$ .  $E = t_c s_e \sqrt{1 + \frac{1}{n} + \frac{n(x_0 - \overline{x})^2}{n \sum x^2 - (\sum x)^2}}$  (d.f. = n - 2)

t-Test for the Difference Between Means (Dependent

$$t = \frac{\overline{d} - \mu_d}{s_d / \sqrt{n}}$$
, where  $\overline{d} = \frac{\sum d}{n}$ ,  $s_d = \sqrt{\frac{\sum (d - \overline{d})^2}{n - 1}}$ 

and d.f. = 
$$n - 1$$

Two-Sample z-Test for the Difference Between Proportions  $(n_1\overline{p}, n_1\overline{q}, n_2\overline{p}, \text{ and } n_2\overline{q} \text{ must be at least 5})$ :

$$z = \frac{(\hat{p}_1 - \hat{p}_2) - (p_1 - p_2)}{\sqrt{\overline{p}\,\overline{q}\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}, \text{ where } \overline{p} = \frac{x_1 + x_2}{n_1 + n_2}$$

## CHAPTER 9

Correlation Coefficient:

and  $\overline{q} = 1 - \overline{p}$ .

$$r = \frac{n\sum xy - (\sum x)(\sum y)}{\sqrt{n\sum x^2 - (\sum x)^2}\sqrt{n\sum y^2 - (\sum y)^2}}$$

t-Test for the Correlation Coefficient:

$$t = \frac{r}{\sqrt{\frac{1 - r^2}{n - 2}}} \quad \text{(d.f.} = n - 2)$$

Equation of a Regression Line:  $\hat{y} = mx + b$ ,

where 
$$m = \frac{n\sum xy - (\sum x)(\sum y)}{n\sum x^2 - (\sum x)^2}$$
 and

$$b = \overline{y} - m\overline{x} = \frac{\sum y}{n} - m\frac{\sum x}{n}$$

Coefficient of Determination:

$$r^{2} = \frac{\text{Explained variation}}{\text{Total variation}} = \frac{\sum (\hat{y}_{i} - \overline{y})^{2}}{\sum (y_{i} - \overline{y})^{2}}$$

Standard Error of Estimate: 
$$s_e = \sqrt{\frac{\sum (y_i - \hat{y}_i)^2}{n-2}}$$

c-Prediction Interval for y:  $\hat{y} - E < y < \hat{y} + E$ ,

$$E = t_c s_e \sqrt{1 + \frac{1}{n} + \frac{n(x_0 - \overline{x})^2}{n \sum x^2 - (\sum x)^2}} \quad (d.f. = n - 2)$$

From Larson/Farber Elementary Statistics: Picturing the World, Fifth Edition
© 2012 Prentice Hall

### **CHAPTER 10**

Chi-Square: 
$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

Goodness-of-Fit Test: d.f. = k - 1

Test of Independence:

$$d.f. = (no. of rows - 1)(no. of columns - 1)$$

Two-Sample *F*-Test for Variances:  $F = \frac{s_1^2}{s_2^2}$ , where

$$s_1^2 \ge s_2^2$$
, d.f.<sub>N</sub> =  $n_1 - 1$ , and d.f.<sub>D</sub> =  $n_2 - 1$ 

One-Way Analysis of Variance Test:

$$F = \frac{MS_B}{MS_W}$$
, where  $MS_B = \frac{SS_B}{k-1} = \frac{\sum n_i (\overline{x}_i - \overline{\overline{x}})^2}{k-1}$ 

and 
$$MS_W = \frac{SS_W}{N-k} = \frac{\sum (n_i - 1)s_i^2}{N-k}$$

$$(d.f._N = k - 1, d.f._D = N - k)$$

## **CHAPTER 11**

Test Statistic for Sign Test:

When  $n \le 25$ , the test statistic is the smaller number of + or - signs.

When 
$$n > 25$$
,  $z = \frac{(x + 0.5) - 0.5n}{\frac{\sqrt{n}}{2}}$ , where x is the

smaller number of + or - signs and n is the total number of + and - signs.

Test Statistic for Wilcoxon Rank Sum Test:

$$z = \frac{R - \mu_R}{\sigma_R}$$
, where  $R = \text{sum of the ranks for the}$ 

smaller sample, 
$$\mu_R = \frac{n_1(n_1 + n_2 + 1)}{2}$$
,

$$\sigma_R = \sqrt{\frac{n_1 n_2 (n_1 + n_2 + 1)}{12}}$$
, and  $n_1 \le n_2$ 

Test Statistic for the Kruskal-Wallis Test:

Given three or more independent samples, the test statistic for the Kruskal-Wallis test is

$$H = \frac{12}{N(N+1)} \left( \frac{R_1^2}{n_1} + \frac{R_2^2}{n_2} + \dots + \frac{R_k^2}{n_k} \right)$$
$$-3(N+1). \quad (d.f. = k-1)$$

Spearman Rank Correlation Coefficient:

$$r_s = 1 - \frac{6\sum d^2}{n(n^2 - 1)}$$

Test Statistic for the Runs Test:

When  $n_1 \le 20$  and  $n_2 \le 20$ , the test statistic is G, the number of runs.

When  $n_1 > 20$  or  $n_2 > 20$ , the test statistic is

$$z = \frac{G - \mu_G}{\sigma_G}$$
, where  $G =$  number of runs,

$$\mu_G = \frac{2n_1n_2}{n_1 + n_2} + 1$$
, and

$$\sigma_G = \sqrt{\frac{2n_1n_2(2n_1n_2 - n_1 - n_2)}{(n_1 + n_2)^2(n_1 + n_2 - 1)}}$$

Table 4 — Standard Normal Distribution



| z            | .09   | .08   | .07   | .06   | .05   | .04   | .03   | .02   | .01   | .00   |
|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| -3.4         | .0002 | .0003 | .0003 | .0003 | .0003 | .0003 | .0003 | .0003 | .0003 | .0003 |
| -3.3         | .0003 | .0004 | .0004 | .0004 | .0004 | .0004 | .0004 | .0005 | .0005 | .0005 |
| -3.2         | .0005 | .0005 | .0005 | .0006 | .0006 | .0006 | .0006 | .0006 | .0007 | .0007 |
| -3.1         | .0007 | .0007 | .0008 | .0008 | .0008 | .0008 | .0009 | .0009 | .0009 | .0010 |
| -3.0         | .0010 | .0010 | .0011 | .0011 | .0011 | .0012 | .0012 | .0013 | .0013 | .0013 |
| - 2.9        | .0014 | .0014 | .0015 | .0015 | .0016 | .0016 | .0017 | .0018 | .0018 | .0019 |
| - 2.8        | .0019 | .0020 | .0021 | .0021 | .0022 | .0023 | .0023 | .0024 | .0025 | .0026 |
| - 2.7        | .0026 | .0027 | .0028 | .0029 | .0030 | .0031 | .0032 | .0033 | .0034 | .0035 |
| -2.6         | .0036 | .0037 | .0038 | .0039 | .0040 | .0041 | .0043 | .0044 | .0045 | .0047 |
| - 2.5        | .0048 | .0049 | .0051 | .0052 | .0054 | .0055 | .0057 | .0059 | .0060 | .0062 |
| - 2.4        | .0064 | .0066 | .0068 | .0069 | .0071 | .0073 | .0075 | .0078 | .0080 | .0082 |
| - 2.3        | .0084 | .0087 | .0089 | .0091 | .0094 | .0096 | .0099 | .0102 | .0104 | .0107 |
| - 2.2        | .0110 | .0113 | .0116 | .0119 | .0122 | .0125 | .0129 | .0132 | .0136 | .0139 |
| - 2.1        | .0143 | .0146 | .0150 | .0154 | .0158 | .0162 | .0166 | .0170 | .0174 | .0179 |
| -2.0         | .0183 | .0188 | .0192 | .0197 | .0202 | .0207 | .0212 | .0217 | .0222 | .0228 |
| <b>– 1.9</b> | .0233 | .0239 | .0244 | .0250 | .0256 | .0262 | .0268 | .0274 | .0281 | .0287 |
| <b>-1.8</b>  | .0294 | .0301 | .0307 | .0314 | .0322 | .0329 | .0336 | .0344 | .0351 | .0359 |
| <b>- 1.7</b> | .0367 | .0375 | .0384 | .0392 | .0401 | .0409 | .0418 | .0427 | .0436 | .0446 |
| - 1.6        | .0455 | .0465 | .0475 | .0485 | .0495 | .0505 | .0516 | .0526 | .0537 | .0548 |
| <b>- 1.5</b> | .0559 | .0571 | .0582 | .0594 | .0606 | .0618 | .0630 | .0643 | .0655 | .0668 |
| - 1.4        | .0681 | .0694 | .0708 | .0721 | .0735 | .0749 | .0764 | .0778 | .0793 | .0808 |
| - 1.3        | .0823 | .0838 | .0853 | .0869 | .0885 | .0901 | .0918 | .0934 | .0951 | .0968 |
| - 1.2        | .0985 | .1003 | .1020 | .1038 | .1056 | .1075 | .1093 | .1112 | .1131 | .1151 |
| - 1.1        | .1170 | .1190 | .1210 | .1230 | .1251 | .1271 | .1292 | .1314 | .1335 | .1357 |
| <b>-1.0</b>  | .1379 | .1401 | .1423 | .1446 | .1469 | .1492 | .1515 | .1539 | .1562 | .1587 |
| - 0.9        | .1611 | .1635 | .1660 | .1685 | .1711 | .1736 | .1762 | .1788 | .1814 | .1841 |
| - 0.8        | .1867 | .1894 | .1922 | .1949 | .1977 | .2005 | .2033 | .2061 | .2090 | .2119 |
| - 0.7        | .2148 | .2177 | .2206 | .2236 | .2266 | .2296 | .2327 | .2358 | .2389 | .2420 |
| - 0.6        | .2451 | .2483 | .2514 | .2546 | .2578 | .2611 | .2643 | .2676 | .2709 | .2743 |
| -0.5         | .2776 | .2810 | .2843 | .2877 | .2912 | .2946 | .2981 | .3015 | .3050 | .3085 |
| -0.4         | .3121 | .3156 | .3192 | .3228 | .3264 | .3300 | .3336 | .3372 | .3409 | .3446 |
| -0.3         | .3483 | .3520 | .3557 | .3594 | .3632 | .3669 | .3707 | .3745 | .3783 | .3821 |
| -0.2         | .3859 | .3897 | .3936 | .3974 | .4013 | .4052 | .4090 | .4129 | .4168 | .4207 |
| -0.1         | .4247 | .4286 | .4325 | .4364 | .4404 | .4443 | .4483 | .4522 | .4562 | .4602 |
| -0.0         | .4641 | .4681 | .4721 | .4761 | .4801 | .4840 | .4880 | .4920 | .4960 | .5000 |

## **Critical Values**

| Level of Confidence c | z <sub>c</sub> |
|-----------------------|----------------|
| 0.80                  | 1.28           |
| 0.90                  | 1.645          |
| 0.95                  | 1.96           |
| 0.99                  | 2.575          |



**Table 4** — **Standard Normal Distribution** *(continued)* 



| z   | .00   | .01   | .02   | .03   | .04   | .05   | .06   | .07   | .08   | .09   |
|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 0.0 | .5000 | .5040 | .5080 | .5120 | .5160 | .5199 | .5239 | .5279 | .5319 | .5359 |
| 0.1 | .5398 | .5438 | .5478 | .5517 | .5557 | .5596 | .5636 | .5675 | .5714 | .5753 |
| 0.2 | .5793 | .5832 | .5871 | .5910 | .5948 | .5987 | .6026 | .6064 | .6103 | .6141 |
| 0.3 | .6179 | .6217 | .6255 | .6293 | .6331 | .6368 | .6406 | .6443 | .6480 | .6517 |
| 0.4 | .6554 | .6591 | .6628 | .6664 | .6700 | .6736 | .6772 | .6808 | .6844 | .6879 |
| 0.5 | .6915 | .6950 | .6985 | .7019 | .7054 | .7088 | .7123 | .7157 | .7190 | .7224 |
| 0.6 | .7257 | .7291 | .7324 | .7357 | .7389 | .7422 | .7454 | .7486 | .7517 | .7549 |
| 0.7 | .7580 | .7611 | .7642 | .7673 | .7704 | .7734 | .7764 | .7794 | .7823 | .7852 |
| 0.8 | .7881 | .7910 | .7939 | .7967 | .7995 | .8023 | .8051 | .8078 | .8106 | .8133 |
| 0.9 | .8159 | .8186 | .8212 | .8238 | .8264 | .8289 | .8315 | .8340 | .8365 | .8389 |
| 1.0 | .8413 | .8438 | .8461 | .8485 | .8508 | .8531 | .8554 | .8577 | .8599 | .8621 |
| 1.1 | .8643 | .8665 | .8686 | .8708 | .8729 | .8749 | .8770 | .8790 | .8810 | .8830 |
| 1.2 | .8849 | .8869 | .8888 | .8907 | .8925 | .8944 | .8962 | .8980 | .8997 | .9015 |
| 1.3 | .9032 | .9049 | .9066 | .9082 | .9099 | .9115 | .9131 | .9147 | .9162 | .9177 |
| 1.4 | .9192 | .9207 | .9222 | .9236 | .9251 | .9265 | .9279 | .9292 | .9306 | .9319 |
| 1.5 | .9332 | .9345 | .9357 | .9370 | .9382 | .9394 | .9406 | .9418 | .9429 | .9441 |
| 1.6 | .9452 | .9463 | .9474 | .9484 | .9495 | .9505 | .9515 | .9525 | .9535 | .9545 |
| 1.7 | .9554 | .9564 | .9573 | .9582 | .9591 | .9599 | .9608 | .9616 | .9625 | .9633 |
| 1.8 | .9641 | .9649 | .9656 | .9664 | .9671 | .9678 | .9686 | .9693 | .9699 | .9706 |
| 1.9 | .9713 | .9719 | .9726 | .9732 | .9738 | .9744 | .9750 | .9756 | .9761 | .9767 |
| 2.0 | .9772 | .9778 | .9783 | .9788 | .9793 | .9798 | .9803 | .9808 | .9812 | .9817 |
| 2.1 | .9821 | .9826 | .9830 | .9834 | .9838 | .9842 | .9846 | .9850 | .9854 | .9857 |
| 2.2 | .9861 | .9864 | .9868 | .9871 | .9875 | .9878 | .9881 | .9884 | .9887 | .9890 |
| 2.3 | .9893 | .9896 | .9898 | .9901 | .9904 | .9906 | .9909 | .9911 | .9913 | .9916 |
| 2.4 | .9918 | .9920 | .9922 | .9925 | .9927 | .9929 | .9931 | .9932 | .9934 | .9936 |
| 2.5 | .9938 | .9940 | .9941 | .9943 | .9945 | .9946 | .9948 | .9949 | .9951 | .9952 |
| 2.6 | .9953 | .9955 | .9956 | .9957 | .9959 | .9960 | .9961 | .9962 | .9963 | .9964 |
| 2.7 | .9965 | .9966 | .9967 | .9968 | .9969 | .9970 | .9971 | .9972 | .9973 | .9974 |
| 2.8 | .9974 | .9975 | .9976 | .9977 | .9977 | .9978 | .9979 | .9979 | .9980 | .9981 |
| 2.9 | .9981 | .9982 | .9982 | .9983 | .9984 | .9984 | .9985 | .9985 | .9986 | .9986 |
| 3.0 | .9987 | .9987 | .9987 | .9988 | .9988 | .9989 | .9989 | .9989 | .9990 | .9990 |
| 3.1 | .9990 | .9991 | .9991 | .9991 | .9992 | .9992 | .9992 | .9992 | .9993 | .9993 |
| 3.2 | .9993 | .9993 | .9994 | .9994 | .9994 | .9994 | .9994 | .9995 | .9995 | .9995 |
| 3.3 | .9995 | .9995 | .9995 | .9996 | .9996 | .9996 | .9996 | .9996 | .9996 | .9997 |
| 3.4 | .9997 | .9997 | .9997 | .9997 | .9997 | .9997 | .9997 | .9997 | .9997 | .9998 |

Table 5— *t*-Distribution



|          | Level of           |       |       |       |        |        |        |
|----------|--------------------|-------|-------|-------|--------|--------|--------|
|          | confidence, c      | 0.50  | 0.80  | 0.90  | 0.95   | 0.98   | 0.99   |
|          | One tail, $\alpha$ | 0.25  | 0.10  | 0.05  | 0.025  | 0.01   | 0.005  |
| d.f.     | Two tails, $lpha$  | 0.50  | 0.20  | 0.10  | 0.05   | 0.02   | 0.01   |
| 1        |                    | 1.000 | 3.078 | 6.314 | 12.706 | 31.821 | 63.657 |
| 2        |                    | .816  | 1.886 | 2.920 | 4.303  | 6.965  | 9.925  |
| 3        |                    | .765  | 1.638 | 2.353 | 3.182  | 4.541  | 5.841  |
| 4        |                    | .741  | 1.533 | 2.132 | 2.776  | 3.747  | 4.604  |
| 5        |                    | .727  | 1.476 | 2.015 | 2.571  | 3.365  | 4.032  |
| 6        |                    | .718  | 1.440 | 1.943 | 2.447  | 3.143  | 3.707  |
| 7        |                    | .711  | 1.415 | 1.895 | 2.365  | 2.998  | 3.499  |
| 8        |                    | .706  | 1.397 | 1.860 | 2.306  | 2.896  | 3.355  |
| 9        |                    | .703  | 1.383 | 1.833 | 2.262  | 2.821  | 3.250  |
| 10       |                    | .700  | 1.372 | 1.812 | 2.228  | 2.764  | 3.169  |
| 11       |                    | .697  | 1.363 | 1.796 | 2.201  | 2.718  | 3.106  |
| 12       |                    | .695  | 1.356 | 1.782 | 2.179  | 2.681  | 3.055  |
| 13       |                    | .694  | 1.350 | 1.771 | 2.160  | 2.650  | 3.012  |
| 14       |                    | .692  | 1.345 | 1.761 | 2.145  | 2.624  | 2.977  |
| 15       |                    | .691  | 1.341 | 1.753 | 2.131  | 2.602  | 2.947  |
| 16       |                    | .690  | 1.337 | 1.746 | 2.120  | 2.583  | 2.921  |
| 17       |                    | .689  | 1.333 | 1.740 | 2.110  | 2.567  | 2.898  |
| 18       |                    | .688  | 1.330 | 1.734 | 2.101  | 2.552  | 2.878  |
| 19       |                    | .688  | 1.328 | 1.729 | 2.093  | 2.539  | 2.861  |
| 20       |                    | .687  | 1.325 | 1.725 | 2.086  | 2.528  | 2.845  |
| 21       |                    | .686  | 1.323 | 1.721 | 2.080  | 2.518  | 2.831  |
| 22       |                    | .686  | 1.321 | 1.717 | 2.074  | 2.508  | 2.819  |
| 23       |                    | .685  | 1.319 | 1.714 | 2.069  | 2.500  | 2.807  |
| 24       |                    | .685  | 1.318 | 1.711 | 2.064  | 2.492  | 2.797  |
| 25       |                    | .684  | 1.316 | 1.708 | 2.060  | 2.485  | 2.787  |
| 26       |                    | .684  | 1.315 | 1.706 | 2.056  | 2.479  | 2.779  |
| 27       |                    | .684  | 1.314 | 1.703 | 2.052  | 2.473  | 2.771  |
| 28       |                    | .683  | 1.313 | 1.701 | 2.048  | 2.467  | 2.763  |
| 29       |                    | .683  | 1.311 | 1.699 | 2.045  | 2.462  | 2.756  |
| $\infty$ |                    | .674  | 1.282 | 1.645 | 1.960  | 2.326  | 2.576  |

Table 6— Chi-Square Distribution



| Degrees of |        |        |        |        |        | α       |         |         |         |         |
|------------|--------|--------|--------|--------|--------|---------|---------|---------|---------|---------|
| freedom    | 0.995  | 0.99   | 0.975  | 0.95   | 0.90   | 0.10    | 0.05    | 0.025   | 0.01    | 0.005   |
| 1          | _      |        | 0.001  | 0.004  | 0.016  | 2.706   | 3.841   | 5.024   | 6.635   | 7.879   |
| 2          | 0.010  | 0.020  | 0.051  | 0.103  | 0.211  | 4.605   | 5.991   | 7.378   | 9.210   | 10.597  |
| 3          | 0.072  | 0.115  | 0.216  | 0.352  | 0.584  | 6.251   | 7.815   | 9.348   | 11.345  | 12.838  |
| 4          | 0.207  | 0.297  | 0.484  | 0.711  | 1.064  | 7.779   | 9.488   | 11.143  | 13.277  | 14.860  |
| 5          | 0.412  | 0.554  | 0.831  | 1.145  | 1.610  | 9.236   | 11.071  | 12.833  | 15.086  | 16.750  |
| 6          | 0.676  | 0.872  | 1.237  | 1.635  | 2.204  | 10.645  | 12.592  | 14.449  | 16.812  | 18.548  |
| 7          | 0.989  | 1.239  | 1.690  | 2.167  | 2.833  | 12.017  | 14.067  | 16.013  | 18.475  | 20.278  |
| 8          | 1.344  | 1.646  | 2.180  | 2.733  | 3.490  | 13.362  | 15.507  | 17.535  | 20.090  | 21.955  |
| 9          | 1.735  | 2.088  | 2.700  | 3.325  | 4.168  | 14.684  | 16.919  | 19.023  | 21.666  | 23.589  |
| 10         | 2.156  | 2.558  | 3.247  | 3.940  | 4.865  | 15.987  | 18.307  | 20.483  | 23.209  | 25.188  |
| 11         | 2.603  | 3.053  | 3.816  | 4.575  | 5.578  | 17.275  | 19.675  | 21.920  | 24.725  | 26.757  |
| 12         | 3.074  | 3.571  | 4.404  | 5.226  | 6.304  | 18.549  | 21.026  | 23.337  | 26.217  | 28.299  |
| 13         | 3.565  | 4.107  | 5.009  | 5.892  | 7.042  | 19.812  | 22.362  | 24.736  | 27.688  | 29.819  |
| 14         | 4.075  | 4.660  | 5.629  | 6.571  | 7.790  | 21.064  | 23.685  | 26.119  | 29.141  | 31.319  |
| 15         | 4.601  | 5.229  | 6.262  | 7.261  | 8.547  | 22.307  | 24.996  | 27.488  | 30.578  | 32.801  |
| 16         | 5.142  | 5.812  | 6.908  | 7.962  | 9.312  | 23.542  | 26.296  | 28.845  | 32.000  | 34.267  |
| 17         | 5.697  | 6.408  | 7.564  | 8.672  | 10.085 | 24.769  | 27.587  | 30.191  | 33.409  | 35.718  |
| 18         | 6.265  | 7.015  | 8.231  | 9.390  | 10.865 | 25.989  | 28.869  | 31.526  | 34.805  | 37.156  |
| 19         | 6.844  | 7.633  | 8.907  | 10.117 | 11.651 | 27.204  | 30.144  | 32.852  | 36.191  | 38.582  |
| 20         | 7.434  | 8.260  | 9.591  | 10.851 | 12.443 | 28.412  | 31.410  | 34.170  | 37.566  | 39.997  |
| 21         | 8.034  | 8.897  | 10.283 | 11.591 | 13.240 | 29.615  | 32.671  | 35.479  | 38.932  | 41.401  |
| 22         | 8.643  | 9.542  | 10.982 | 12.338 | 14.042 | 30.813  | 33.924  | 36.781  | 40.289  | 42.796  |
| 23         | 9.260  | 10.196 | 11.689 | 13.091 | 14.848 | 32.007  | 35.172  | 38.076  | 41.638  | 44.181  |
| 24         | 9.886  | 10.856 | 12.401 | 13.848 | 15.659 | 33.196  | 36.415  | 39.364  | 42.980  | 45.559  |
| 25         | 10.520 | 11.524 | 13.120 | 14.611 | 16.473 | 34.382  | 37.652  | 40.646  | 44.314  | 46.928  |
| 26         | 11.160 | 12.198 | 13.844 | 15.379 | 17.292 | 35.563  | 38.885  | 41.923  | 45.642  | 48.290  |
| 27         | 11.808 | 12.879 | 14.573 | 16.151 | 18.114 | 36.741  | 40.113  | 43.194  | 46.963  | 49.645  |
| 28         | 12.461 | 13.565 | 15.308 | 16.928 | 18.939 | 37.916  | 41.337  | 44.461  | 48.278  | 50.993  |
| 29         | 13.121 | 14.257 | 16.047 | 17.708 | 19.768 | 39.087  | 42.557  | 45.722  | 49.588  | 52.336  |
| 30         | 13.787 | 14.954 | 16.791 | 18.493 | 20.599 | 40.256  | 43.773  | 46.979  | 50.892  | 53.672  |
| 40         | 20.707 | 22.164 | 24.433 | 26.509 | 29.051 | 51.805  | 55.758  | 59.342  | 63.691  | 66.766  |
| 50         | 27.991 | 29.707 | 32.357 | 34.764 | 37.689 | 63.167  | 67.505  | 71.420  | 76.154  | 79.490  |
| 60         | 35.534 | 37.485 | 40.482 | 43.188 | 46.459 | 74.397  | 79.082  | 83.298  | 88.379  | 91.952  |
| 70         | 43.275 | 45.442 | 48.758 | 51.739 | 55.329 | 85.527  | 90.531  | 95.023  | 100.425 | 104.215 |
| 80         | 51.172 | 53.540 | 57.153 | 60.391 | 64.278 | 96.578  | 101.879 | 106.629 | 112.329 | 116.321 |
| 90         | 59.196 | 61.754 | 65.647 | 69.126 | 73.291 | 107.565 | 113.145 | 118.136 | 124.116 | 128.299 |
| 100        | 67.328 | 70.065 | 74.222 | 77.929 | 82.358 | 118.498 | 124.342 | 129.561 | 135.807 | 140.169 |