

SEQUENCE LISTING

<110> Unsicker, Klaus.
Krieglstein, Kerstin.

<120> Neuroprotective properties of GDF-15, a novel member of
the TGF- β superfamily

<130> MBP-007XX

<140> US 10/009,431
<141> 2002-2-13

<150> PCT/EP00/04445
<151> 2000-05-16

<150> EP 99 109 714.8
<151> 1999-05-17

<160> 7

<170> PatentIn Ver. 2.1

<210> 1
<211> 888
<212> DNA
<213> Homo sapiens

<400> 1
atgctcctgg tggctgtgg gctctcggtt ctggccatg gggggccct gtctctggcc 60
gaggcgagcc ggcgaaggtt cccgggaccc tcagagttgc actccgaaga ctccagattc 120
cgagagttgc ggaaacgcta cgaggacctg ctaaccaggc tgccggccaa ccagagctgg 180
gaagattcga acaccgaccc cgtccggcc cctgcacttc ggataactcac gccagaagtg 240
cggctggat ccggcggcca cctgcaccc cgtatcttc gggccgcct tccccgggg 300
ctccccgggg cctccggcc tcacccggct ctgttccggc tggccggac ggcgtcaagg 360
tcgtgggacg tgacacgacc gctgcggcgt cagctcagcc ttgcaagacc ccaggcgccc 420
gcgctgcacc tgcgactgtc gcccggccg tcgcagtcgg accaactgtc ggcagaatct 480
tcgtccgcac gcccccaact ggagttgcac ttgcggccgc aagccgcac gggccgcgc 540
agagcgcgtg cgcccaacgg ggacgactgt ccgctcggc cccggcggtt ctgcgtctg 600
cacacgggcc ggcgtcgct ggaagacactg ggctggccg attgggtgtc gtcgccacgg 660
gaggtgcaag tgaccatgtc catcggcgcc tgcccgagcc agttccggc ggcaaacatg 720
cacgcgcaga tcaagacgag cctgcaccgc ctgaagcccg acacgggtgc agcgcctgc 780
tgcgtgccc ccagctacaa tcccatgggt ctcttacaaa agaccgacac cgggggtgtcg 840
ctccagaccc atgatgactt gtttagccaaa gactgccact gcatatga 888

<210> 2
<211> 339
<212> DNA
<213> Homo sapiens

<400> 2
gcgcgcacac gggacgactg tccgctcggtt cccgggcgtt gctgccgtct gcacacggc 60
cgcgcgctgc tggaaagaccc gggctggcc gattgggtgc tgccgcacg ggaggtgcaa 120
gtgaccatgt gcacatcgccgc gtggccgagc cagttccggg cggcaaacat gcacgcgcag 180
atcaagacga gcctgcaccc cctgaagccc gacacgggtgc cagcgccctg ctgcgtgccc 240
gccagactaca atcccatgggt gctcttacaaa aagaccgaca cccgggtgtc gctccagacc 300
tatgtatgact tggtagccaa agactgccac tgcatatga 339

<210> 3
<211> 295
<212> PRT
<213> Homo sapiens

<400> 3
 Met Leu Leu Val Leu Leu Val Leu Ser Trp Leu Pro His Gly Gly Ala
 1 5 10 15
 Leu Ser Leu Ala Glu Ala Ser Arg Ala Ser Phe Pro Gly Pro Ser Glu
 20 25 30
 Leu His Thr Glu Asp Ser Arg Phe Arg Glu Leu Arg Lys Arg Tyr Glu
 35 40 45
 Asp Leu Leu Thr Arg Leu Arg Ala Asn Gln Ser Trp Glu Asp Ser Asn
 50 55 60
 Thr Asp Leu Val Pro Ala Pro Ala Val Arg Ile Leu Thr Pro Glu Val
 65 70 75 80
 Arg Leu Gly Ser Gly Gly His Leu His Leu Arg Ile Ser Arg Ala Ala
 85 90 95
 Leu Pro Glu Gly Leu Pro Glu Ala Ser Arg Leu His Arg Ala Leu Phe
 100 105 110
 Arg Leu Ser Pro Thr Ala Ser Arg Ser Trp Asp Val Thr Arg Pro Leu
 115 120 125
 Arg Arg Gln Leu Ser Leu Ala Arg Pro Gln Ala Pro Ala Leu His Leu
 130 135 140
 Arg Leu Ser Pro Pro Pro Ser Gln Ser Asp Gln Leu Leu Ala Glu Ser
 145 150 155 160
 Ser Ser Ala Arg Pro Gln Leu Glu Leu His Leu Arg Pro Gln Ala Ala
 165 170 175
 Arg Gly Arg Arg Arg Ala Arg Ala Arg Asn Gly Asp His Cys Pro Leu
 180 185 190
 Gly Pro Gly Arg Cys Cys Arg Leu His Thr Val Arg Ala Ser Leu Glu
 195 200 205
 Asp Leu Gly Trp Ala Asp Trp Val Leu Ser Pro Arg Glu Val Gln Val
 210 215 220
 Thr Met Cys Ile Gly Ala Cys Pro Ser Gln Phe Arg Ala Ala Asn Met
 225 230 235 240
 His Ala Gln Ile Lys Thr Ser Leu His Arg Leu Lys Pro Asp Thr Val
 245 250 255
 Pro Ala Pro Cys Cys Val Pro Ala Ser Tyr Asn Pro Met Val Leu Ile
 260 265 270
 Gln Lys Thr Asp Thr Gly Val Ser Leu Gln Thr Tyr Asp Asp Leu Leu
 275 280 285
 Ala Lys Asp Cys His Cys Ile
 290 295

<210> 4
 <211> 112
 <212> PRT
 <213> Homo sapiens

<400> 4
Ala Arg Asn Gly Asp His Cys Pro Leu Gly Pro Gly Arg Cys Cys Arg
1 5 10 15

Leu His Thr Val Arg Ala Ser Leu Glu Asp Leu Gly Trp Ala Asp Trp
20 25 30

Val Leu Ser Pro Arg Glu Val Gln Val Thr Met Cys Ile Gly Ala Cys
35 40 45

Pro Ser Gln Phe Arg Ala Ala Asn Met His Ala Gln Ile Lys Thr Ser
50 55 60

Leu His Arg Leu Lys Pro Asp Thr Val Pro Ala Pro Cys Cys Val Pro
65 70 75 80

Ala Ser Tyr Asn Pro Met Val Leu Ile Gln Lys Thr Asp Thr Gly Val
85 90 95

Ser Leu Gln Thr Tyr Asp Asp Leu Leu Ala Lys Asp Cys His Cys Ile
100 105 110

<210> 5
<211> 13
<212> PRT
<213> Homo sapiens

<400> 5
Met Pro Gly Gln Glu Leu Arg Thr Leu Asn Gly Ser Gln
1 5 10

<210> 6
<211> 15
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Peptide
derived from the murine and rat C-terminal
sequence of GDF-15

<400> 6
His Arg Thr Asp Ser Gly Val Ser Leu Gln Thr Tyr Asp Asp Leu
1 5 10 15

<210> 7
<211> 15
<212> PRT
<213> Homo sapiens

<220>
<221> PEPTIDE
<222> (1)..(15)
<223> Peptide corresponds to amino acids 273 to 287 of
human pre-pro-mature GDF-15

<400> 7

Gln Lys Thr Asp Thr Gly Val Ser Leu Gln Thr Tyr Asp Asp Leu
1 5 10 15