IMSA Data Mining Intersession

Day 2 Worksheet

k-Nearest Neighbors

We simulated a toy data set of 20 points, plotted below. Each data point has an observation in two variables: x and y. The red data points (1-10) where generated differently than the blue data points (11-20). Your task in this exercise is to implement k-Nearest Neighbors by hand to classify new data points 21-23 (unlabeled, colored black) as either red or blue.

		Simulated data set											\Box	x	7
													1	1	ļ
				9					6				2	8	7
													3	5	5
	ω -			7						23			4	3	4
													5	2	6
					22					2	18		6	7	9
													7	2	8
	9 -	1		5	11			13					8	2	4
													9	2	9
_			1				3						0	3	3
>	4 -	20		8	4			21	17				1	3	6
	, -	20		0	4			21	17				2	5	0
					10	14							.3	6	6
													4	4	3
	α -			16									.5	3	1
													6	2	2
					15				19				7	7	4
													.8	9	7
	0 -	+					12						9	7	1
													0	0	4
		0		2		4		6		8			1	6	4
						:	x						2	3	7
												2	3	8	8

The closer two points are to each other, the more similar they are. Use squared Euclidean distance: The distance between two points (x_1, y_1) and (x_2, y_2) is $(x_1 - x_2)^2 + (y_1 - y_2)^2$.

- 1. Classify the new data point 21 using 1-, 3-, 7- and 19-Nearest Neighbors.
- 2. Classify the new data point 22 using 1-, 3-, 7- and 19-Nearest Neighbors.
- 3. Classify the new data point 23 using 1-, 3-, 7- and 19-Nearest Neighbors.
- 4. Why did we only consider odd values of k in the above exercises?
- 5. What is a benefit of using a large value for k? What is a benefit of using a small value for k?