Winkel und trigonometrische Funktionen

Bedeutung einiger Winkel			
Grad	φ	$\sin \varphi$	Bedeutung
360°	2π	0	Vollkreis
180°	π	0	Halbkreis
90°	$\frac{\pi}{2}$	1	rechter Winkel
60°	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	Gleichseitiges Dreieck
45°	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	Diagonale im Quadrat
30°	$\frac{\pi}{6}$	$\frac{1}{2}$	Halbes gleichseitiges Dreieck

Einige wichtige trigonometrische Formeln			
$\cos\varphi = \sin\left(\varphi + \frac{\pi}{2}\right)$			
$\sin(-\varphi) = -\sin\varphi$			
$\cos(-\varphi) = \cos\varphi$			
$\sin^2 \varphi + \cos^2 \varphi = 1$ (Pythagoras)			
$\sin(\alpha + \beta) = \sin\alpha\cos\beta + \cos\alpha\sin\beta$			
$\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$			
$\sin(2\varphi) = 2\sin\varphi\cos\varphi$			
$\cos(2\varphi) = \cos^2\varphi - \sin^2\varphi$			
$\tan \varphi = \begin{cases} \frac{\sin \varphi}{\cos \varphi} & \text{falls } \cos \varphi \neq 0, \\ \text{undefiniert sonst} \end{cases}$			
$\cot \varphi = \begin{cases} \frac{\cos \varphi}{\sin \varphi} & \text{falls } \sin \varphi \neq 0, \\ \text{undefiniert sonst} \end{cases}$			
$\varphi = \arcsin x \iff \sin \varphi = x \land \varphi \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$			
$\varphi = \arccos x \iff \cos \varphi = x \land \varphi \in [0, \pi]$			
$\varphi = \arctan x \iff \tan \varphi = x \land \varphi \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$			
$\varphi = \operatorname{arccot} x \iff \cot \varphi = x \land \varphi \in]0, \pi[$			

Viele weitere Formeln lassen sich aus diesen herleiten.