Characterization of Oncogenes in Pretreatment and Post-treatment Sequence Data

Samuel Chatmon

National Cancer Institute

Background

- Obtained Two SRA fastq files from the SRA database.
- Files were labeled as WES Nextgen Sequence data which were obtained from a melanoma patient before and after treatement
- Wanted to examine the sequences for the variant levels in Ocogenes

Project Overview

- Fastq files were obtained from NCBI's SRA database and transfer using the Fastq-dump tool
- The complete hg38 human genomic sequence was downloaded from the UCSC Genomic Browser Site
- The top twenty genes that contains somatic mutations for melanoma was obtained from the Cosmic Cancer Browser site and their chromosome number and position was obtained from the UCSC site
- Both sets of fastq sequences were aligned against the human genome with the BWA aligner

Project Overview (continued)

- Samtools and BCFtools were employed to create VCF files that the contained base substitutions, deletions and insertions in the data.
- Python programming and bash scripting were utilized to score the number of times variants were found in the genes

First Issue: Forgot about HIPAA Compliance

manager@bl8vbox[Desktop] fastq-dump SRR6431487	[5:08PM]
2018-05-09T17:09:06 fastq-dump.2.9.0 err: query unauthorized while r	esolving que
ry within virtual file system module - failed to resolve accession '	SRR6431487'
- Access denied - please request permission to access phs001469/HMB-	PUB-NPU-MDS
in dbGaP (403)	
2018-05-09T17:09:06 fastq-dump.2.9.0 err: item not found while const	ructing with
in virtual database module - the path 'SRR6431487' cannot be opened	as database
or table	
manager@bl8vbox[Desktop]	[5:09PM]

Fortunately, A Few Files were downloadable

Fortunately, a Few Files were downloadable.

WES of homo sapiens: PBMC: Sample Pt1-normal

325. 1 ILLUMINA (Illumina HiSeq 2500) run: 62.4M spots, 12.5G bases, 4.6Gb downloads Accession: SRX1515322

WES of homo sapiens: melanoma: Sample Pt1-baseline

326. 1 ILLUMINA (Illumina HiSeq 2500) run: 90.6M spots, 18.1G bases, 7.5Gb downloads Accession: SRX1515321

Study: WES of patient derived pre-treatment metastatic melanoma on anti-PD-1 antibody treatment. We will call treatment srr8 and pre-treatment srr7 for short.

Second Issue Issue: Did not consider memory or CPU requirements

Bowtie Alignment ~12 hours in Oracles VirtualMachine ~12gb memory and 2 cpu's

	Family ~	Туре 🔻	vCPUs (i)	Memory (GiB)	Instance Storage (GB) (i)	EBS-Optimized Available (i)	Network Performance (i)	IPv6 Support *
Step 2: Choose an Instance Type GPU grapnics g3.8xlarge 32 244 EBS only Yes 10 Gigabit Yes								
	GPU instances	g2.8xlarge	32	60	2 x 120 (SSD)	-	10 Gigabit	-
	GPU compute	p2.8xlarge	32	488	EBS only	Yes	10 Gigabit	Yes
	GPU compute	p3.8xlarge	32	244	EBS only	Yes	10 Gigabit	Yes
	Memory optimized	r4.8xlarge	32	244	EBS only	Yes	10 Gigabit	Yes
	Memory optimized	x1e.8xlarge	32	976	1 x 960 (SSD)	Yes	Up to 10 Gigabit	Yes
	Storage optimized	i2.8xlarge	32	244	8 x 800 (SSD)	-	10 Gigabit	Yes
	Storage optimized	h1.8xlarge	32	128	4 x 2000	Yes	10 Gigabit	Yes

BWI Alignment ~3 hours in Amazon AWS. But Alas, ,most data on machine. Decided to continue virtual machine and use BWA instead.

Finally can use Samtools to create bam file of alignments.

```
BF<FF<BB000BFB00BFB<<0<<<
                                      AS:1:96 XS:1:20
                chr16
                     52446097
                                                 52446013
SRR3083838.3
                                                                 TCTCTGAAAAACAGGGCATATGCTGACACTGGCTTCTGTGGCT
                                            CATTGGGATCTTTCTTTTTCTTTTGGAGTCTTGGGCTTCTTGCCAGAGTCTG
                                      AS:1:100
SRR3083838.3
                     52446013
                                      100M
                                                 52446097
AGGTTGCATTGGGGTTTTGACCTTTAATTGCAGCCTGTGTGTCTCTGAAAAACAGGG
                                            FFBFBBBBBBBFFFBBBFBB<BBFB
                     NM:i:1 MD:Z:14A85
                                      AS:i:95 XS:i:0
SRR3083838.4
                chr11
                     62617164
                                      100M
                                                 62617033
                                                                  CTCCCGAAGCCGCTGGGCTTTGGGCGTGAGGACCACCAGGTGT
GTGAAGAGGGGCAGGCAGCCAGCAGCCCTGAGACCAGCGGGGTGGGACCCTCA
                                           AS:1:100
                                                            XA:Z:chr3,+160452739,100M,0;
                                                 62617164
SRR3083838.4
                chr11
                     62617033
                                      100M
                                                                  TAGACGACTCCTTGGGTCCCTGGTGGTGGTGGTCCTTCTCCC
                                           CACCCACAGCACCCCTCTGCCCCGGAGCCAGTCCAGGGCCTTGTTCCGCTGCTCGA
```

and BCFtools to create vcf file which contains all variants.

```
GT:PL
        0/1:131.0.181
                                                         DP=10; VDB=0.14; SGB=-0.453602; RPB=0.1875; MOB=1: MOSB=1: B
chr1
                                         4.29312 .
B=0.3125;M00F=0;ICB=1;H0B=0.5;AC=1;AN=2;DP4=1,7.0.2;M0=60
                                                                 GT:PL 0/1:37.0.180
                                        5.71907 .
                                                         DP=3;SGB=-0.379885;RPB=1;MOB=1;MOSB=1;BOB=1;MO0F=0.666
67;AC=2;AN=2;DP4=2,0,0,1;MQ=13
                                GT:PL
                                       1/1:31,0,0
                                                         DP=1:SGB=-0.379885:MO0F=0:AC=2:AN=2:DP4=0.0.1.0:MO=30
GT:PL
       1/1:30,3,0
                                                         DP=427; VDB=0.0145003; SGB=-0.693147; RPB=0.000820385; MOB
4.60393e-06;MOSB=0.00284594;BOB=0.207822;MO0F=0.299766;ICB=1;HOB=0.5;AC=1;AN=2;DP4=99,130,109,44;MO=14 GT:PL
0/1:113.0.159
                                                         DP=9; VDB=0.176409; SGB=-0.556411; RPB=0.406082; MQB=0.406
82;MQSB=0.714286;BQB=0.649731;MQ0F=0;ICB=1;HOB=0.5;AC=1;AN=2;DP4=3,2,4,0;MQ=34 GT:PL 0/1:53,0,124
                              T
                                                         DP=26; VDB=0.132453; SGB=-0.616816; RPB=0.557095; MOB=0.40
543; MQSB=0.569783; BQB=0.710273; MQ0F=0.5; ICB=1; HOB=0.5; AC=1; AN=2; DP4=9,10,4,2; MQ=13
                           C
                                        76
                                                         DP=71; VDB=0.337694; SGB=-0.691153; RPB=0.782415; MQB=0.98 0
025; MOSB=0.38374; BOB=0.321351; MO0F=0.0704225; ICB=1; HOB=0.5; AC=1; AN=2; DP4=51,2,16,2; MO=27
.0.156
                                                         DP=10:VDB=0.0389723:SGB=-0.511536:RPB=0.28717:MOB=0.57
341:MOSB=0.25:BOB=0.574341:MO0F=0.5:ICB=1:HOB=0.5:AC=1:AN=2:DP4=1.2.3.0:MO=17 GT:PL
                                                         DP=9:VDB=0.348933:SGB=-0.556411:RPB=0.810265:MOB=0.810
65; MOSB=0.4; BOB=0.405132; MO0F=0; ICB=1; HOB=0.5; AC=1; AN=2; DP4=3.0.2.2; MO=25
                                                                                          0/1:70.0.29
                                                         DP=57; VDB=0.726211; SGB=-0.683931; RPB=0.841869; MQB=0.72
74; MOSB=0.0637448; BOB=0.986986; MO0F=0.0877193; ICB=1; HOB=0.5; AC=1; AN=2; DP4=33.8.6.7; MO=24
```

Obtained 20 more frequent Mutated Genes from Cosmic Site

Utilized Python and BASH scripting to score variants in each data set: List of Genes and Pie Chart for srr7

srr7				
Number	Gene Name			
1	BRAF			
2	ERBB4			
3	FAT4			
4	GRIN2A			
5	KDR			
6	KMT2C			
7	KMT2D			
8	LRP1B			
9	NF1			
10	NOTCH1			
11	NOTCH2			
12	NRAS			
13	PREX2			
14	PTCH1			
15	PTPRT			
16	ROS1			
17	TERT			
18	TP53			
19	TRRAP			

Total number of variants = 1985

Utilized Python and BASH scripting to score variants in each data set: List of Genes and Pie Chart for srr8

srr8				
Number	Gene Name			
1	BRAF			
2	ERBB4			
3	FAT4			
4	GRIN2A			
5	KDR			
6	KMT2C			
7	KMT2D			
8	LRP1B			
9	NF1			
10	NOTCH1			
11	NOTCH2			
12	NRAS			
13	PREX2			
14	PTCH1			
15	PTPRT			
16	ROS1			
17	TERT			
18	TP53			
19	TRRAP			

Total number of variants = 1707

Utilized Python and BASH scripting to score variants in each data set: Bar Graphs for srr7 and srr8

Conclusion

- Can't really hypothesize anything by just using simple visualization tools.
- Most likely would need to look at much more data and using Transcriptomics tools and star alignment tool