Bayesian and Bandit Optimisation

Matt Hoffman and Rowan McAllister

MLG RCC

24 October 2013

- Introduction
 - Bayesian Optimisation
 - Bandits

② Gittins Index

3 Heuristic Acquisition Functions

Introduction Bayesian Optimisation

Optimisation Task

<u>Goal</u>: find maximum of function $f(\cdot)$ over bounded set \mathcal{X} :

$$\max_{\mathbf{x} \in \mathcal{X} \subset \mathbb{R}^d} f(\mathbf{x})$$

Challenges:

- unknown f, but $y \sim p(\cdot|\mathbf{x}) \ s.t. \ f(\mathbf{x}) = \mathbb{E}[y|\mathbf{x}]$
- sampling y is expensive,
- samples provides no $\frac{df(x)}{dx}$ information,
- unsure if f is nonlinear, convex.

slides borrow many ideas from [Brochu 2010], [Munos 2012], [Hoffman 2005].

Example Scenarios

Examples where sampling objective function $f(\cdot)$ is expensive:

- sequential decision problems requiring many long-horizon simulations
 e.g. adversarial games and reinforcement learning,
- drug trials,
- active user modelling: avoid asking the human an unreasonable amount of questions

Idea

- Keep track of what we expect $f(\mathbf{x})$ to be $\forall \mathbf{x}$,
- and how certain we are of $f(\mathbf{x}) \forall \mathbf{x}$.
- Use this to guide a strategic sampling strategy, given a small 'sample-budget'.

Bayesian Belief Monitoring

Combine prior belief of plausible functions p(f), with evidence from previous samples $\mathcal{D}_{1:t}$, to maintain a posterior belief:

$$p(f|\mathcal{D}_{1:t}) \propto p(f)p(\mathcal{D}_{1:t}|f),$$

= $p(f|\mathcal{D}_{1:t-1})p(\mathcal{D}_t|f)$

The posterior is used to decide where to sample next: \mathbf{x}_{t+1} .

[Brochu 2010]

Bandits

Introduction **Bandits**

Likelihood / Generating Distribution

Discrete version of problem. Consider K slot machines:

- You have T tokens.
- The i'th machine returns \$0 or \$1 based on a fixed yet unknown probability $\theta_i \in [0, 1]$.
- Objective: maximise winnings.

Bernoulli Bandit example

As you play, you record what you see. Your current record is:

	wins	losses
Bandit 1:	1	2
Bandit 2:	10	9

Q: Which machine would you play next if you have 1 token remaining?

Bernoulli Bandit example

As you play, you record what you see. Your current record is:

	wins	losses
Bandit 1:	1	2
Bandit 2:	10	9

Q: Which machine would you play next if you have 1 token remaining?

Q: How about if you have 100 tokens remaining?

Bandits: how to solve?

Treat as a sequential decision making problem in an MDP environment:

- Action space $\mathcal{X} = \text{bandit choice } \{1, ..., K\}$
- State space S = sufficient statistics of record (information states)
- horizon = T tokens
- objective = $\mathbb{E}[\sum_{t=1}^{T} \gamma^{t-1} r_t | s_t]$

Solve with a probabilistic model of each bandit then simulate potential futures using:

- Dynamic Programming
- Tree search

Bernoulli Bandits: example tree solution

t

Bernoulli Bandits: tree solution pros/cons

Pro:

 Computes 'Bayes-optimal' action-values / acquisition function → optimal policy w.r.t beliefs and horizon.

Con:

• Computation time: $\mathcal{O}((2K)^T)$.

This is a general solution. When points are independent, we can compute faster!

Gittins Index

Gittins Index: Introduction

What is it?

- Gittins Index (like tree solution) is the Bayes-optimal acquisition function for the bandit problem.
- Difference: exploits independence of bandits' unknown expected return f to compute same policy faster!

for t = 1 : T

- compute Gittins Index of all K bandits,
- sample / play bandit of greatest Index,
- 3 observe reward-outcomes and update belief-posterior.

Gittins Index: Intuition

Consider a Bernoulli bandit of unknown p, and a deterministic bandit that returns known reward $$\nu$$ each play.

Sampling policy solution: perhaps use a tree like before.

Q: Which value of ν makes us indifferent to deciding next-bandit?

Gittins Index: Intuition

Consider a Bernoulli bandit of unknown p, and a deterministic bandit that returns known reward $$\nu$$ each play.

Sampling policy solution: perhaps use a tree like before.

Q: Which value of ν makes us indifferent to deciding next-bandit? ...that is our Gittins Index for bandit i.

Computing Gittins Indices (1)

Computing Gittins Indices (2)

Value of stochastic bandit:

$$V(i, \nu) = \sup_{\tau > 1} \{ \mathbb{E}[\sum_{t=1}^{\tau - 1} \gamma^{t-1} r_t | \alpha_i, \beta_i] + \nu \sum_{t=\tau}^{\tau} \gamma^{t-1} \}$$

Advantage of stochastic bandit:

$$D(i,\nu) = V(i,\nu) - \nu \cdot \frac{1-\gamma^{T}}{1-\gamma},$$

=
$$\sup_{\tau>1} \{ \mathbb{E}[\sum_{t=1}^{\tau-1} \gamma^{t-1} (r_{t}-\nu) | \alpha_{i}, \beta_{i}] \},$$

Solving Gittins Index ν_i :

$$\nu_i = \{ \nu : D(i, \nu) = 0 \}$$

using dynamic programming, computational complexity only $\mathcal{O}(KT^2)$.

Heuristic Acquisition Functions

Bayesian Optimisation Algorithm

Define the acquisition function $u(\mathbf{x})$, the 'utility of sampling' at point \mathbf{x} . It trades off information gain vs. high-expectation of f.

for
$$t = 1 : T$$

- **1** find test-point of greatest sampling utility: $\mathbf{x}_t = \underset{\mathbf{x} \in \mathcal{X}}{\arg\max} \ u(\mathbf{x}|\mathcal{D}_{1:t-1}),$
- 2 sample y_t
- **3** update belief: $P(f|\mathcal{D}_{1:t}) \propto P(f|\mathcal{D}_{1:t-1})P(\mathcal{D}_t|f)$.

What's a Good Acquisition Function $u(\mathbf{x})$?

Want $u(\mathbf{x})$ to:

- consider mean $\mu(\mathbf{x})$ and uncertainty $\sigma(\mathbf{x})$ of posterior belief,
- ullet monotonically increase with μ (exploitatory value),
- ullet monotonically increase with σ (exploratory value),
- trade off exploration and exploitation gains somehow

Probability of Improvement (PI)

$$PI(\mathbf{x}) = P(f(\mathbf{x}) > f(\mathbf{x}^+) + \xi | \mathcal{D}_{1:t})$$

where $\mathbf{x}^+ = \underset{\mathbf{x} \in \mathbf{x}_{1:t}}{\operatorname{arg max}} \mathbb{E}[f(\mathbf{x})].$

 $\xi \geq 0$ determines minimum improvements on $\mathbb{E}[f(\mathbf{x}^+)]$ we'd consider. Low $\xi \to \text{exploitative}$, high $\xi \to \text{explorative}$.

[Brochu 2010]

Expected Improvement (EI)

El takes into account probability and amount of improvement.

$$EI(\mathbf{x}) = \mathbb{E}[\max\{0, f(\mathbf{x}) - f(\mathbf{x}^+) - \xi\} | \mathcal{D}_{1:t}]$$
$$= \int_{f(\mathbf{x}^+)}^{\infty} (y - f(\mathbf{x}^+) - \xi) \rho(f(\mathbf{x}) = y | \mathcal{D}_{1:t}) dy$$

GP Upper Confidence Bound (GP-UCB)

$$UCB(\mathbf{x}) = \mu(\mathbf{x}) + \kappa \sigma(\mathbf{x})$$

GP- $UCB(\mathbf{x})$:

$$\kappa_t = \mathcal{O}(\sqrt{\log t})$$

Acquisition Function Comparisons

Extra Slides

Notation

```
d
                          dimensionality of \mathcal{X}
                          time horizon
\mathbf{x}^{+}
                           arg max f(\mathbf{x})
                             x \in x_{1 \cdot t}
\mathbf{x}^*
                          arg max f(\mathbf{x})
                              \mathbf{x} \in \mathcal{X}
                          mean of p(f|\mathcal{D}_{1:t}) at x
\mu(\mathbf{x})
\sigma^2(\mathbf{x})
                          variance of p(f|\mathcal{D}_{1:t}) at x
\phi(\cdot)
                           normal probability density function
\Phi(\cdot)
                           normal cumulative distribution function
```

Performance Measures

Simple Regret

$$r_T = f(\mathbf{x}^*) - f(\mathbf{x}_T)$$

Cumulative Regret

$$R_T = \sum_{t=1}^T f(\mathbf{x}^*) - f(\mathbf{x}_t)$$

where
$$\mathbf{x}^* = \underset{\mathbf{x} \in \mathcal{X}}{\operatorname{arg max}} f(\mathbf{x})$$
 (unknown to agent)

Lipschitz-Continuity

f is Lipschitz-continuous, $\forall \mathbf{x}_i, \mathbf{x}_j \in \mathcal{X}, \exists C < \infty \text{ s.t.}$:

$$||f(\mathbf{x}_i) - f(\mathbf{x}_j)|| \leq C||\mathbf{x}_i - \mathbf{x}_j||$$

Expected Improvement (EI) - details

El takes into account probability and amount of improvement.

$$\begin{split} EI(\mathbf{x}) &= & \mathbb{E}[\max\{0, f(\mathbf{x}) - f(\mathbf{x}^+)\}|\mathcal{D}_{1:t}] \\ &= & \int_{f(\mathbf{x}^+)}^{\infty} (y - f(\mathbf{x}^+)p(f(\mathbf{x}) = y|\mathcal{D}_{1:t})\mathrm{d}y \\ &= & \begin{cases} (\mu(\mathbf{x}) - f(\mathbf{x}^+))\Phi(z) + \sigma(\mathbf{x})\sigma(z), & \text{if } \sigma(\mathbf{x}) > 0 \\ 0, & \text{if } \sigma(\mathbf{x}) = 0 \end{cases} \\ z &= & \frac{\mu(\mathbf{x}) - f(\mathbf{x}^+)}{\sigma(\mathbf{x})} \end{split}$$

GP Upper Confidence Bound (GP-UCB) - details

$$UCB(\mathbf{x}) = \mu(\mathbf{x}) + \kappa \sigma(\mathbf{x})$$

GP-UCB(x): set
$$\kappa_t^2 = 2\log(t^22\pi^2/(3\delta)) + 2d\log(t^2dbr\sqrt{\log(4da/\delta)})$$
, then $P(R_T \le \sqrt{8T\kappa_T\gamma_T/\log(1+\sigma^{-2})} + 2 \ \forall T \ge 1) \ge 1-\delta$. [Srinivas 2010]

where:

- δ is user selected $\in (0,1)$,
- ullet r is the length of space ${\mathcal X}$ in each dimension.
- γ_T is maximum information gain on $f(\cdot)$ by time T,
- a and b define probabilistic derivative bounds on GP-samples of f: $P(\max_{x \in \mathcal{X}} |\partial f/\partial x_j| > L) \le ae^{-(L/b)^2}$.

 $GP\text{-}UCB(\mathbf{x})$ achieves no-regret: $\lim_{n\to\infty} R_T/T = 0$ with high probability.

Acquisition Function Comparisons (2)

