Unit V: Game Theory (Graphical Method)

The graphical method is used to solve the games whose payoff matrix has

- Two rows and n columns (2 x n)
- m rows and two columns (m x 2)

Algorithm for solving 2 x n matrix games

- Draw two vertical axes 1 unit apart. The two lines are $x_1 = 0$, $x_1 = 1$
- Take the points of the first row in the payoff matrix on the vertical line $x_1 = 1$ and the points of the second row in the payoff matrix on the vertical line $x_1 = 0$.
- The point a_{1j} on axis $x_1 = 1$ is then joined to the point a_{2j} on the axis $x_1 = 0$ to give a straight line. Draw 'n' straight lines for j=1, 2... n and determine the highest point of the lower envelope obtained. This will be the **maximin point**.
- The two or more lines passing through the maximin point determines the required 2 x 2 payoff matrix. This in turn gives the optimum solution by making use of analytical method.

Example 1

Solve by graphical method

$$V = \frac{a_{11} a_{22} - a_{21} a_{12}}{(a_{11} + a_{22}) - (a_{12} + a_{21})} = \frac{6 - 72}{5 - 18}$$

$$V = 66/13$$

$$S_A = (4/13, 9/13)$$

$$S_B = (0, 10/13, 3/13)$$

Example 2

Solve by graphical method

$$V = \frac{a_{11} a_{22} - a_{21} a_{12}}{(a_{11} + a_{22}) - (a_{12} + a_{21})} = \frac{8 - 0}{6 + 1}$$

$$V = 8/7$$

 $S_A = (3/7, 4/7)$
 $S_B = (2/7, 0, 5/7)$

Algorithm for solving m x 2 matrix games

- Draw two vertical axes 1 unit apart. The two lines are $x_1 = 0$, $x_1 = 1$
- Take the points of the first row in the payoff matrix on the vertical line $x_1 = 1$ and the points of the second row in the payoff matrix on the vertical line $x_1 = 0$.
- The point a_{1j} on axis $x_1 = 1$ is then joined to the point a_{2j} on the axis $x_1 = 0$ to give a straight line. Draw 'n' straight lines for j=1, 2... n and determine the lowest point of the upper envelope obtained. This will be the **minimax point**.
- The two or more lines passing through the minimax point determines the required 2 x 2 payoff matrix. This in turn gives the optimum solution by making use of analytical method.

Example 1

Solve by graphical method

$$V = \frac{a_{11} a_{22} - a_{21} a_{12}}{(a_{11} + a_{22}) - (a_{12} + a_{21})} = \frac{6 - 3}{5 + 4}$$

$$V = 3/9 = 1/3$$

$$S_A = (0, 5/9, 4/9, 0)$$

$$S_B = (3/9, 6/9)$$

Example 2

Solve by graphical method

$$V = \frac{a_{11} a_{22} - a_{21} a_{12}}{(a_{11} + a_{22}) - (a_{12} + a_{21})} = \frac{45 + 28}{14 + 3}$$

$$V = 73/17$$

$$S_A = (0, 16/17, 1/17, 0, 0)$$

$$S_B = (5/17, 12/17)$$