Naukri.com job sample data analysis and visualization

Major analysis we are going to do with the naukri.comjobsample data are :

- 1.Company's analysis
- 2.Industry's analysis
- 3. Jobtitle's analysis
- 4.Skill's analysis
- 5.Pay Rate's analysis i.e MIN and MAX Pay Rates and we will add this columns to our updated data
- 6.Experience analysis i.e MIN and MAX Experience and we will add this columns to our updated_data
- 5.1 now the updated data contains 3 extra columns i.e minimum,maximum,average pay
- 6.1 now the updated data contains 3 extra columns i.e minimum, maximum, average experience
- 7. Experience and Pay Rates
- 7.1) co-relation between min_experience and min_pay
- a) seaborn stripplots
- b) seaborn pointplots
- 7.2) co-relation between max_experience and max_pay
- a) seaborn stripplots
- b) seaborn pointplots
- 8. MINIMUM, MAXIMUM EXPERIENCE AND MINIMUM, MAXIMUM PAY
- 8.1) co-relation between MIN_experience, MAX_experience and MIN_pay
- 8.2) co-relation between MIN_experience, MAX_experience and MAX_pay
- 9. co-relation between avg_experience and avg_pay
- 9.1) seaborn stripplots
- 9.2) seaborn pointplots

10. comparison between

- 10.1) MINIMUM PAY & INDUSTRIES
- 10.2) MAXIMUM PAY & INDUSTRIES
- 10.3) AVERAGE PAY AND SKILLS
- 10.4) AVERAGE PAY AND JOBTITLES
- 11. SUMMARY:

let's begin with importing the necessary libraries

In [132]:

```
import numpy as np #for algebric calculations
import pandas as pd #essential for data reading,writing etc
import seaborn as sns #visualization library
import matplotlib.pyplot as plt #visualization library
%matplotlib inline
plt.rcParams['figure.figsize'] = (10, 7) #plotting parameters size's
import warnings
warnings.filterwarnings('ignore')
```

After successfully importing libraries, now let's import the data

In [133]:

data = pd.read_csv("naukri_com-job_sample.csv")

Out[133]:

	company	education	experience	industry	jobdescription	j
0	MM Media Pvt Ltd	UG: B.Tech/B.E Any Specialization PG:Any Po	0 - 1 yrs	Media / Entertainment / Internet	Job Description Send me Jobs like this Quali	210516002
1	find live infotech	UG: B.Tech/B.E Any Specialization PG:MBA/PG	0 - 0 yrs	Advertising / PR / MR / Event Management	Job Description Send me Jobs like this Quali	210516002
2	Softtech Career Infosystem Pvt. Ltd	UG: Any Graduate - Any Specialization PG:Any P	4 - 8 yrs	IT-Software / Software Services	Job Description Send me Jobs like this - as	101016900
3	Onboard HRServices LLP	UG: Any Graduate - Any Specialization PG:CA Do	11 - 15 yrs	Banking / Financial Services / Broking	Job Description Send me Jobs like this - Inv	81016900
4	Spire Technologies and Solutions Pvt. Ltd.	UG: B.Tech/B.E Any Specialization PG:Any Po	6 - 8 yrs	IT-Software / Software Services	Job Description Send me Jobs like this Pleas	120916002
5	PFS Web Global Services Pvt Ltd	UG: B.Tech/B.E Any Specialization PG:MCA	2 - 5 yrs	IT-Software / Software Services	Job Description Send me Jobs like this We ar	13101600
6	Kinesis Management Consultant Pvt. Ltd	NaN	1 - 3 yrs	IT-Software / Software Services	Job Description Send me Jobs like this exper	131016004
7	Agile HR consultancy Pvt. Ltd. hiring for Ross	UG: Diploma - Any Specialization, Electrical,	2 - 7 yrs	Aviation / Aerospace Firms	Job Description Send me Jobs like this Job D	121016002
8	HANSUM INDIA ELECTRONICS PVT.LTD.	UG: Diploma - Any Specialization, Electronics/	1 - 3 yrs	Industrial Products / Heavy Machinery	Job Description Send me Jobs like this Indep	131016002

	company	education	experience	industry	jobdescription	j _'
9	Accenture	UG: Any Graduate - Any Specialization PG:Any P	1 - 5 yrs	IT-Software / Software Services	Job Description Send me Jobs like this Overa	12101690 ⁻

let's read the first 10 columns of our imported data by using a pandas function head(10)

```
In [ ]:
```

data.head(10)

now we have an idea regarding the features we have in the data

let's begin the analysis, as we will get more in-depth useful insights of the data

let's see what are the top 10 companies?

In [134]:

data['company'].value_counts().head(10)

Out[134]:

Indian Institute of Technology Bombay	403
Confidential	393
National Institute of Industrial Engineering	185
Oracle India Pvt. Ltd.	151
JPMorgan Chase	135
Godrej Industries Ltd	125
Unitforce technologies Pvt. Ltd.	100
Capgemini	98
HCL Technologies	95
Axis Jobs	92
Name: company, dtype: int64	

let's plot plot 10 companies for indepth analysis.

In [135]:

```
top_ten_companies=data['company'].value_counts().head(10)
f,ax=plt.subplots(figsize=(15,5))
top_ten_companies.plot(kind = 'bar')
plt.title('top_ten_companies')
```

Out[135]:

Text(0.5,1,'top_ten_companies')

it is clear that IITbombay is NO.1 among the top 10 company of our data

let's see what are the top 10 industries?

let's plot plot 10 industries for indepth insights.

In [136]:

```
data['industry'].value_counts().head(10)
Out[136]:
IT-Software / Software Services
                                                  9216
Education / Teaching / Training
                                                  1322
BPO / Call Centre / ITES
                                                  1254
Banking / Financial Services / Broking
                                                  1238
Recruitment / Staffing
                                                  1129
Internet / Ecommerce
                                                   738
Pharma / Biotech / Clinical Research
                                                   525
Medical / Healthcare / Hospitals
                                                   495
Automobile / Auto Anciliary / Auto Components
                                                   478
Construction / Engineering / Cement / Metals
                                                   449
Name: industry, dtype: int64
```

In [137]:

```
top_ten_industries = data['industry'].value_counts().head(10)
f,ax=plt.subplots(figsize=(5,5))
top_ten_industries.plot(kind='bar')
plt.title('top_ten_industries')
```

Out[137]:

Text(0.5,1,'top_ten_industries')

let's see what are the top 10 jobtitle's?

let's plot plot 10 jobtitle's for indepth insights.

In [138]:

data['jobtitle'].value_counts().head(10)

Out[138]:

Business Development Executive	93
Business Development Manager	92
Software Engineer	81
Project Manager	67
Android Developer	65
Web Designer	61
Content Writer	59
Senior Software Engineer	58
Sales Executive	56
PHP Developer	54
Name: jobtitle, dtype: int64	

In [139]:

```
top_ten_jobtitles = data['jobtitle'].value_counts().head(10)
f,ax=plt.subplots(figsize=(5,5))
top_ten_jobtitles.plot(kind='bar')
plt.title('top_ten_jobtitles')
```

Out[139]:

Text(0.5,1,'top_ten_jobtitles')

let's see what are the top 10 skill's?

let's plot plot 10 skill's for indepth insights.

In [140]:

<pre>data['skills'].value_counts().head(10)</pre>	
data[Skiiis]: vaiac_counts(): nead(io)	

Out[140]:

IT Software - Application Programming	5989
Sales	2893
ITES	1640
Teaching	1091
HR	928
Marketing	868
Accounts	860
Production	667
Medical	418
Financial Services	413
Name: skills, dtype: int64	

In [141]:

```
top_ten_skills = data['skills'].value_counts().head(10)
f,ax=plt.subplots(figsize=(15,5))
top_ten_skills.plot(kind='bar')
plt.title('top_ten_skills')
```

Out[141]:

Text(0.5,1,'top_ten_skills')

on looking carefully the data given here contains the name of the old names of the cities along with some new names

this will cause error's in the analysis resulting in major mistakes

to avoid that , we will replace the old names with the new names and we will modify the data witch the new names

In [142]:

```
replacements = {
   'joblocation address': {
      r'(Bengaluru/Bangalore)': 'Bangalore',
      r'Bengaluru': 'Bangalore',
      r'Hyderabad / Secunderabad': 'Hyderabad',
      r'Mumbai, Mumbai': 'Mumbai',
      r'Noida': 'NCR',
      r'Delhi': 'NCR',
      r'Gurgaon': 'NCR',
      r'Delhi/NCR(National Capital Region)': 'NCR',
      r'Delhi , Delhi': 'NCR',
      r'Noida , Noida/Greater Noida': 'NCR',
      r'Ghaziabad': 'NCR',
      r'Delhi/NCR(National Capital Region), Gurgaon': 'NCR',
      r'NCR , NCR': 'NCR',
      r'NCR/NCR(National Capital Region)': 'NCR',
      r'NCR, NCR/Greater NCR': 'NCR',
      r'NCR/NCR(National Capital Region), NCR': 'NCR',
      r'NCR , NCR/NCR(National Capital Region)': 'NCR',
      r'Bangalore , Bangalore / Bangalore': 'Bangalore',
      r'Bangalore, karnataka': 'Bangalore',
      r'NCR/NCR(National Capital Region)': 'NCR',
      r'NCR/Greater NCR': 'NCR',
      r'NCR/NCR(National Capital Region) , NCR': 'NCR'
   }
data.replace(replacements, regex=True, inplace=True)
y = data['joblocation_address'].value_counts()
```

let's examine from where the more job's are coming?

In [143]:

```
most_job_posting_city=data['joblocation_address'].value_counts().head()
f ,ax=plt.subplots(figsize=(4,4))
most_job_posting_city.plot(kind = 'pie')
```

Out[143]:

<matplotlib.axes._subplots.AxesSubplot at 0x1f434edec50>

it's clear now, that BENGALURU holds the first place in more joblocation.

thats a pretty good insights regading the

1.top10companies

2.top10industries

3.top10skills

4.jobtitles

5.top city for joblocations

lets examine the payrates:)

In [144]:

```
pay_split = data['payrate'].str[1:-1].str.split('-', expand=True)
pay split.head()
```

Out[144]:

	0	1	2	3	4	5	6
0	,50,000	2,25,000 P.	None	None	None	None	None
1	,50,000	2,50,000 P.A. 2000	None	None	None	None	None
2	ot Disclosed by Recruite	None	None	None	None	None	None
3	ot Disclosed by Recruite	None	None	None	None	None	None
4	ot Disclosed by Recruite	None	None	None	None	None	None

In [145]:

```
#let's clean the payrates more
#remove space in left and right
pay_split[0] = pay_split[0].str.strip()
#remove comma
pay_split[0] = pay_split[0].str.replace(',', '')
#remove all character in two condition
# 1 remove if only character
# 2 if start in number remove after all character
pay_split[0] = pay_split[0].str.replace(r'\D.*', '')
#display
pay_split[0].head()
```

Out[145]:

```
0
     50000
1
     50000
2
3
```

Name: 0, dtype: object

In [146]:

```
#remove space in left and right
pay split[1] = pay split[1].str.strip()
#remove comma
pay split[1] = pay split[1].str.replace(',', '')
#remove all character in two condition
# 1 remove if only character
# 2 if start in number remove after all character
pay split[1] = pay split[1].str.replace(r'\D.*', '')
#display
pay_split[1].head()
```

```
Out[146]:
```

- 0 225000 1 250000
- 2 None
- 3 None
- 4 None

Name: 1, dtype: object

In [147]:

```
pay_split[0] = pd.to_numeric(pay_split[0], errors='coerce')
pay_split[1] = pd.to_numeric(pay_split[1], errors='coerce')
```

that's the end of massive cleaning part , now its time to concatenate the new results

```
In [148]:
```

```
pay=pd.concat([pay_split[0], pay_split[1]], axis=1, sort=False)
```

hurrey! we done it , lets name the new borns:)

```
In [149]:
```

```
pay.rename(columns={0:'min_pay', 1:'max_pay'}, inplace=True)
pay.head()
```

Out[149]:

	min_pay	max_pay
0	50000.0	225000.0
1	50000.0	250000.0
2	NaN	NaN
3	NaN	NaN
4	NaN	NaN

the big work, now lets add this new bornone's to the data

In [150]:

```
#sometimes while testing, we may get multiple min_pay, max_pay columns as we are using
 conaction function for previous data to new data
#in such cases , we can use following code for removal of extra min-pay, max_pay columns
#data = data.drop("min_pay",axis = 1)
#data = data.drop("max_pay",axis = 1)
#data.head()
data=pd.concat([data, pay], axis=1, sort=False)
data.head()
```

Out[150]:

	company	education	experience	industry	jobdescription	jobi
0	MM Media Pvt Ltd	UG: B.Tech/B.E Any Specialization PG:Any Po	0 - 1 yrs	Media / Entertainment / Internet	Job Description Send me Jobs like this Quali	21051600226
1	find live infotech	UG: B.Tech/B.E Any Specialization PG:MBA/PG	0 - 0 yrs	Advertising / PR / MR / Event Management	Job Description Send me Jobs like this Quali	21051600239
2	Softtech Career Infosystem Pvt. Ltd	UG: Any Graduate - Any Specialization PG:Any P	4 - 8 yrs	IT-Software / Software Services	Job Description Send me Jobs like this - as	10101690053
3	Onboard HRServices LLP	UG: Any Graduate - Any Specialization PG:CA Do	11 - 15 yrs	Banking / Financial Services / Broking	Job Description Send me Jobs like this - Inv	81016900536
4	Spire Technologies and Solutions Pvt. Ltd.	UG: B.Tech/B.E Any Specialization PG:Any Po	6 - 8 yrs	IT-Software / Software Services	Job Description Send me Jobs like this Pleas	12091600212

In [151]:

```
experience_split = data['experience'].str[0:-1].str.split('-', expand=True)
experience split.head()
```

Out[151]:

	0	1	2
0	0	1 yr	None
1	0	0 yr	None
2	4	8 yr	None
3	11	15 yr	None
4	6	8 yr	None

In [152]:

```
#let's clean the experience more
#remove space in left and right
experience_split[1] = experience_split[1].str.strip()
#remove comma
experience_split[1] = experience_split[1].str.replace('yr', '')
#remove all character in two condition
# 1 remove if only character
# 2 if start in number remove after all character
experience_split[1] = experience_split[1].str.replace(r'yr', '')
#display
experience_split[1].head()
```

Out[152]:

```
0
        1
```

1 0

2 8

3 15

4 8

Name: 1, dtype: object

In [153]:

```
experience_split[0] = pd.to_numeric(experience_split[0], errors='coerce')
experience_split[1] = pd.to_numeric(experience_split[1], errors='coerce')
```

In [154]:

```
experience=pd.concat([experience_split[0], experience_split[1]], axis=1, sort=False)
```

In [155]:

```
experience.rename(columns={0:'min_experience', 1:'max_experience'}, inplace=True)
experience.head()
```

Out[155]:

	min_experience	max_experience
0	0.0	1.0
1	0.0	0.0
2	4.0	8.0
3	11.0	15.0
4	6.0	8.0

In [156]:

data=pd.concat([data, experience], axis=1, sort=False) data.head()

Out[156]:

	company	education	experience	industry	jobdescription	jobi
0	MM Media Pvt Ltd	UG: B.Tech/B.E Any Specialization PG:Any Po	0 - 1 yrs	Media / Entertainment / Internet	Job Description Send me Jobs like this Quali	21051600226
1	find live infotech	UG: B.Tech/B.E Any Specialization PG:MBA/PG	0 - 0 yrs	Advertising / PR / MR / Event Management	Job Description Send me Jobs like this Quali	21051600239
2	Softtech Career Infosystem Pvt. Ltd	UG: Any Graduate - Any Specialization PG:Any P	4 - 8 yrs	IT-Software / Software Services	Job Description Send me Jobs like this - as	10101690053
3	Onboard HRServices LLP	UG: Any Graduate - Any Specialization PG:CA Do	11 - 15 yrs	Banking / Financial Services / Broking	Job Description Send me Jobs like this - Inv	81016900536
4	Spire Technologies and Solutions Pvt. Ltd.	UG: B.Tech/B.E Any Specialization PG:Any Po	6 - 8 yrs	IT-Software / Software Services	Job Description Send me Jobs like this Pleas	12091600212

5.1 & 6.1

Now it's time to add some average values of payrate's and experience , giving us more deeper insights

In [158]:

```
data['avg_pay']=(data['min_pay'].values + data['max_pay'].values)/2
data['avg experience']=(data['min experience'].values + data['max experience'].values)/
data.head()
```

Out[158]:

	company	education	experience	industry	jobdescription	jobi
0	MM Media Pvt Ltd	UG: B.Tech/B.E Any Specialization PG:Any Po	0 - 1 yrs	Media / Entertainment / Internet	Job Description Send me Jobs like this Quali	21051600226
1	find live infotech	UG: B.Tech/B.E Any Specialization PG:MBA/PG	0 - 0 yrs	Advertising / PR / MR / Event Management	Job Description Send me Jobs like this Quali	21051600239
2	Softtech Career Infosystem Pvt. Ltd	UG: Any Graduate - Any Specialization PG:Any P	4 - 8 yrs	IT-Software / Software Services	Job Description Send me Jobs like this - as	10101690053
3	Onboard HRServices LLP	UG: Any Graduate - Any Specialization PG:CA Do	11 - 15 yrs	Banking / Financial Services / Broking	Job Description Send me Jobs like this - Inv	81016900536
4	Spire Technologies and Solutions Pvt. Ltd.	UG: B.Tech/B.E Any Specialization PG:Any Po	6 - 8 yrs	IT-Software / Software Services	Job Description Send me Jobs like this Pleas	12091600212

7. Experience and Pay_Rates

Relation between experience and pay_rates

this will give us an idea how your experience impacts your pay_rates

7.1) co-relation between min_experience and min_pay

let's get the insights by using

A)seaborn stripplots

In [163]:

```
f,ax=plt.subplots(figsize=(15,5))
sns.stripplot(x='min_experience', y='min_pay', data=data, jitter=True)
```

Out[163]:

<matplotlib.axes._subplots.AxesSubplot at 0x1f435d63438>

B)seaborn pointplots

In [165]:

```
f,ax=plt.subplots(figsize=(15,5))
sns.pointplot(x='min_experience', y='min_pay', data=data)
```

Out[165]:

<matplotlib.axes._subplots.AxesSubplot at 0x1f435f092e8>

7.2) co-relation between max_experience and max_pay

let's get the insights by using

A)seaborn stripplots

In [169]:

```
f,ax=plt.subplots(figsize=(15,5))
sns.stripplot(x='max_experience', y='max_pay', data=data, jitter=True)
```

Out[169]:

<matplotlib.axes. subplots.AxesSubplot at 0x1f436308e80>

B) seaborn pointplots

In [171]:

```
f,ax=plt.subplots(figsize=(15,5))
sns.pointplot(x='max_experience', y='max_pay', data=data)
```

Out[171]:

<matplotlib.axes._subplots.AxesSubplot at 0x1f435f3a198>

8) MINIMUM, MAXIMUM experience and MINIMUM, MAXIMUM pay

8.1) Relation between MIN, MAX experience and MIN pay

In [172]:

```
sns.pairplot(data,
             size=5, aspect=0.9,
             x_vars=["min_experience","max_experience"],
             y_vars=["min_pay"],
             kind="reg")
```

Out[172]:

<seaborn.axisgrid.PairGrid at 0x1f4361675c0>

8.2) Relation between MIN, MAX experience and MAX pay

In [173]:

```
sns.pairplot(data,
             size=5, aspect=0.9,
             x_vars=["min_experience","max_experience"],
             y_vars=["max_pay"],
             kind="reg")
```

Out[173]:

<seaborn.axisgrid.PairGrid at 0x1f4363a8630>

9) Relation between AVERAGE experience and AVERAGE pay_rates

In [174]:

```
sns.jointplot(x='avg_experience', y='avg_pay', data=data,
              kind="kde",xlim={0,15}, ylim={0,1000000})
```

Out[174]:

<seaborn.axisgrid.JointGrid at 0x1f436008fd0>

9.1) co-relation between avg_experience and avg_pay by using seaborn.stripplots

In [176]:

```
f,ax=plt.subplots(figsize=(15,5))
sns.stripplot(x='avg_experience', y='avg_pay', data=data, jitter=True)
```

Out[176]:

<matplotlib.axes._subplots.AxesSubplot at 0x1f4398fe400>

9.2) co-relation between avg_experience and avg_pay by using seaborn.pointplots

In [177]:

```
f,ax=plt.subplots(figsize=(15,5))
sns.pointplot(x='avg_experience', y='avg_pay', data=data)
```

Out[177]:

<matplotlib.axes._subplots.AxesSubplot at 0x1f439b8d860>

10. comparison between

10.1) MINIMUM PAY & INDUSTRIES

```
In [186]:
```

data[['min_pay','industry']].groupby(["industry"]).median().sort_values(by='min_pay',as cending=False).head(10).plot.bar(color='green')

Out[186]:

<matplotlib.axes._subplots.AxesSubplot at 0x1f43b4bd048>

10.2) MAXIMUM PAY & INDUSTRIES

In [182]:

data[['max_pay','industry']].groupby(["industry"]).median().sort_values(by='max_pay',as cending=False).head(10).plot.bar(color='yellow')

Out[182]:

<matplotlib.axes._subplots.AxesSubplot at 0x1f43b391208>

10.3) AVERAGE PAY AND SKILLS

In [185]:

data[['avg_pay','skills']].groupby(["skills"]).median().sort_values(by='avg_pay',ascend ing=False).head(10).plot.bar(color='purple')

Out[185]:

<matplotlib.axes. subplots.AxesSubplot at 0x1f435ca42e8>

10.4) AVERAGE PAY AND JOBTITLES

In [183]:

data[['avg_pay','jobtitle']].groupby(["jobtitle"]).median().sort_values(by='avg_pay',as cending=False).head(10).plot.bar(color='r')

Out[183]:

<matplotlib.axes. subplots.AxesSubplot at 0x1f43b3e83c8>

Thanking you, satyamsharma(Highly Passionate Machine Learning **Engineer**)