

UNIVERSIDADE DO ESTADO DE SANTA CATARINA Centro de Ciências Tecnológicas Disciplina: Física Geral IV (FGE4001) Semestre: 2022/1

Semestre: 2022/1 Prof. Julio César Sagás

IDENTIFICAÇÃO

Curso: Licenciatura em Física

Disciplina: Física Geral IV (FGE4001)

Semestre letivo: 2022/1

Carga horária teórica: 72 horas-aula (4 créditos)

Carga horária prática: 0 horas-aula

EMENTA

Equações de Maxwell e ondas eletromagnéticas. Óptica geométrica. Interferência. Difração e polarização. Introdução à relatividade. Introdução à física quântica.

OBJETIVO GERAL

Compreender as ondas eletromagnéticas e suas propriedades, os princípios da óptica e da propagação da luz. Compreender a teoria da relatividade restrita e suas consequências. Compreender os principais experimentos e os seus resultados que levaram a formulação da teoria quântica no início do século XX.

OBJETIVOS ESPECÍFICOS

- 1. Aplicar os princípios da óptica na descrição de fenômenos físicos e no entendimento de dispositivos tecnológicos.
- 2. Diferenciar os princípios da Física Clássica dos da Física Moderna.
- 3. Aplicar os princípios da Física Quântica na descrição de fenômenos físicos.

CRONOGRAMA*

No	Data	Dia	Assunto
			EQUAÇÕES DE MAXWELL E ONDAS ELETROMAGNÉTICAS. POLARIZAÇÃO. ÓPTICA GEOMÉTRICA.
1	28/03	seg	Apresentação da disciplina. Velocidade da luz. Equações de Maxwell e ondas eletromagnéticas.
2	31/03	qui	Transporte de energia e vetor de Poynting. Pressão da radiação.
3	30/03	seg	Polarização.
4	04/04	qui	Propagação retilínea da luz. Reflexão e refração. Reflexão interna total.
5	06/04	seg	Polarização por reflexão. Princípio de Fermat. Espelho plano.
6	07/04	qui	Espelho esférico. Superfície refratora esférica.
7	11/04	seg	Lentes delgadas. Sistemas de duas lentes.
	14/04	qui	Feriado
8	18/04	seg	Instrumentos ópticos.
	21/04	qui	Feriado
9	25/04	seg	PRIMEIRA AVALIAÇÃO
			INTERFERÊNCIA. DIFRAÇÃO.
10	28/04	qui	Interferência de ondas. Experimento de Young.
11	02/05	seg	Interferência em lâminas delgadas. Interferômetros. Coerência.
12	05/05	qui	Difração de Fresnel e difração de Fraunhofer. Difração em fenda única.
13	09/05	seg	Intensidade na difração em fenda única.

UNIVERSIDADE DO ESTADO DE SANTA CATARINA Centro de Ciências Tecnológicas Disciplina: Física Geral IV (FGE4001) Semestre: 2022/1

Prof. Julio César Sagás

14	12/05	qui	Difração em fenda dupla.
15	16/05	seg	Difração de raios-X.
16	19/05	qui	Difração em orifício circular e poder de resolução.
17	23/05	seg	SEGUNDA AVALIAÇÃO
			INTRODUÇÃO À RELATIVIDADE
18	26/05	qui	O princípio de relatividade. O experimento de Michelson-Morley.
19	30/05	seg	A relatividade da simultaneidade. A transformação de Lorentz.
20	02/06	qui	Cinemática relativística. Efeito Doppler.
21	06/06	seg	Dinâmica relativística. Momento relativístico.
22	09/06	qui	A inércia da energia e energia relativística.
23	13/06	seg	Transformações de energia, momento e força.
	16/06	qui	Feriado
24	20/06	seg	Relatividade e Eletromagnetismo.
25	23/06	qui	Noções de Relatividade Geral.
26	27/06	seg	TERCEIRA AVALIAÇÃO
			INTRODUÇÃO À FÍSICA QUÂNTICA
27	30/06	qui	Descoberta do elétron. Experimento de Thomson. Experimento de Milikan.
28	04/07	seg	Radiação de corpo negro e a hipótese de Planck. O efeito fotoelétrico.
29	07/07	qui	O efeito Compton. Rutherford e a descoberta do núcleo.
30	11/07	seg	Espectros atômicos. Modelo atômico de Bohr.
31	14/07	qui	Ondas de de Broglie. A experiência de Davisson-Germer.
32	18/07	seg	Dualidade onda-partícula e interpretação probabilística. Equação de Schrödinger.
33	21/07	qui	Equação de Schrödinger unidimensional e aplicações.
34	25/07	seg	Princípio de incerteza de Heisenberg. Momento angular orbital. Spin.
35	28/07	qui	Propriedades do núcleo atômico.
36			QUARTA AVALIAÇÃO
	04/08	qui	EXAME

^{*} O cronograma está sujeito a alterações durante o semestre.

BIBLIOGRAFIA

Básica:

- [1] HALLIDAY, D., RESNICK, R. e WALKER, J. Fundamentos de Física Volume 4 Ótica e Física Moderna Livros Técnicos e Científicos Editora.
- [2] NUSSENZVEIG, H. M. Curso de Física Básica Volume 4 Ótica e Física Moderna Editora Edgard Blücher Ltda.
- [3] SEARS E ZEMANSKY & YOUNG E FREEDMAN Física IV Volume 4 Ótica e Física Moderna Editora Pearson Education do Brasil.

Complementar:

- [1] ALONSO & FINN Física, um curso universitário Volume 2, Editora Edgard Blücher Ltda.
- [2] TIPLER, PAUL A.LLEN., MOSCA GENE. Física para Cientistas e Engenheiros, Volume 2, Editora LTC.
- [3] FEYNMAN, RICHARD P. Lectures on Physics/Lições de Física, vols. 1, 2 e 3. Addison Wesley/Bookman.
- [4] PURCELL, EDWARD M. Curso de Física de Berkeley Eletricidade e Magnetismo Vol. 2 Edgard Blucher.
- [5] RAYMOND A SERWAY, JOHN W. JEWETT Jr. Princípios de Física Óptica e Física Moderna, Volume 4, Thomson.

UNIVERSIDADE DO ESTADO DE SANTA CATARINA Centro de Ciências Tecnológicas Disciplina: Física Geral IV (FGE4001) Semestre: 2022/1 Prof. Julio César Sagás

AVALIAÇÃO

A avaliação será feita por meio de quatro avaliações individuais.

CRITÉRIOS DE AVALIAÇÃO

Para avaliação das provas e relatórios, os seguintes critérios serão adotados:

- Domínio dos conceitos físicos;
- Precisão e clareza dos cálculos matemáticos;
- Clareza de raciocínio e expressão de ideias;