Cálculo Diferencial e Integral en Varias Variables

Mauro Polenta Mora

Ejercicio 5

Consigna

Sabiendo que $a_n \geq 0$ y que $\sum a_n$ converge, indicar si las siguientes series son convergentes o no, explicando por qué:

- $\begin{array}{l} 1. & \sum \frac{1}{a_n} \\ 2. & \sum a_n^2 \\ 3. & \sum \sqrt{a_n} \\ 4. & \sum \log(1+a_n) \end{array}$

Resolución

Serie #1

• $\sum \frac{1}{a_n}$

Consideremos para este caso que $a_n > 0$, de lo contrario la sucesión no queda bien definida para todo $n \in \mathbb{N}$

Analizando el término general, como $a_n \to 0$, vamos a tener que:

$$\lim_{n \to \infty} \frac{1}{a_n} = \infty$$

Y como el término general no tiende a 0, la serie es divergente.

Serie #2

• $\sum a_n^2$

Considerando que a_n converge, tenemos que a partir de cierto $n_0 \in \mathbb{N}, \forall n > n_0$ se cumple la siguiente desigualdad:

• $0 \le a_n \le 1$

Entonces, a partir de este n_0 se va a cumplir la siguiente desigualdad:

• $a_n^2 \le a_n$, por lo visto en la anterior desigualdad.

Entonces, utilizando el criterio de comparación, como $\sum a_n$ converge:

• $\sum a_n^2$ también converge.

Serie #3

• $\sum \sqrt{a_n}$

Esta serie no necesariamente converge, veámoslo con el contraejemplo: $\sum \frac{1}{n^2}$. La serie mencionada converge, pero al tomar raíz obtenemos lo siguiente:

•
$$\sum \sqrt{\frac{1}{n^2}} = \sum \frac{1}{n}$$

Y sabemos que $\sum \frac{1}{n}$ diverge.

Por otra parte podemos ver otro ejemplo en el que la serie resultante si converge:

• $\sum \frac{1}{n^4}$

Por lo que no podemos afirmar nada sobre esta serie.

Serie #4

• $\sum \log(1+a_n)$

Observación: Si $x \ge 0$, entonces:

• $\log(1+x) \le x$

Utilizamos entonces la observación con $a_n=x,$ dado que $\lim_{n\to\infty}a_n=0,$ obteniendo:

• $\sum \log(1+a_n) \le \sum a_n$

Y por criterio de comparación, como a_n converge, entonces:

• $\sum \log(1+a_n)$ también converge.