GROWTH, YIELD, VOLUME, AND BIOMASS EQUATION AND TABLES FOR IMPORTANT TREES IN BANGLADESH

M.A. Latif S.M. Zahirul Islam

Forest Inventory Division Bangladesh Forest Research Institute Chittagong

P. O. Box-273, Chittagong 4000, Bangladesh.

2014

Contents

Title	Page
Executive Summary	1
Introduction	1
Material and Methods	2
Result	2
Discussion	3
Bibliography	3
List of Abbreviation	6

Volume Equation/Model

Serial	Species		Forest Trues	Daga
No	Scientific name	Local name	Forest Types	Page
			Hill plantation	7
			Woodlot	7
1	Acacia auriculiformis	Akashmoni	Agroforestry	7
			Strip	8
			Embankment	8
2			Hill Plantation	8
2	Acacia mangium	Mangium	Agroforestry	9
			Woodlot	9
3	Cassia siamea	Minjiri	Hill plantation	9
	Eucalyptus Camaldulensis	Eucalyptus	Cropland	10
4			Woodlot	10
4			Agro forestry	10
			Strip	10
			Cropland	11
5	Swietenia macrophylla	Mahogany	Embankments and Road Sides	11
			Home garden	11
6	Dallamain sing a	Sissoo	Cropland	12
O	Dalbergia sissoo	Sissoo	Embankment and roadsides	12
	Albizia procera		Cropland	12
7		Koroi	Embankment and roadsides	13
/			Central part	13
			Home garden	13

Serial	Species Forest Types	Forest Types	Page	
No	Scientific name	Local name	Tolest Types	1 age
8	Terminalia arjuna	Arjun	Central part	13
9	Samania saman	Rain tree	Embankment and road sides	14
9	Samania saman	Rain tiee	Home garden	14
10	Melia azadarach	Bokain	Embankment and roadsides	14
11	Accacia nilotica	Babla	Embankment and roadsides	14
12	Gmelina arborea	Gamar	Hill plantation	15
13	Cumaium auguda	Dhalriiam	Hill plantation	15
13	Syzygium grande	Dhakijam	Natural Forest	6
14	Tectona grandis	Shegun	Hill plantation	17
15	Dipterocarpus turbinatus	Teli Garjan	Hill plantation	17
13	Dipierocarpus turomatus	Tell Garjan	Natural forest	18
16	Artocarpus chaplasha	Chapalish	Hill plantation	19
17	Paraserianthes falcataria	Molaccana	Hill plantation	20
18	Pinus caribaea	Pine	Hill plantation	20
19	And an aminis no hista chisa	Ditmi	Natural forest	21
19	Aphanamixis polystachya	Pitraj	Home garden	21
20	Dipterocarpus gracilis	Dholi garjan	Natural forest	21
21	Duabanga grandiflora	Banderhola	Natural forest	22
22	Dank me asik m	Circul	Natural forest	22
22	Bombax ceiba	Simul	Home garden	23
23	Mangifera sylvatica	Uriam	Natural forest	23
24	Schima wallichii	Kanak	Natural forest	24
25	Shorea robusta	Sal	Natural forest	25
26	Swintonia floribunda	Civit	Natural forest	25
27	Terminalia bellerica	Bahera	Natural forest	26
28	Tetrameles nudiflora	Chundul	Natural forest	26
29	Eucalyptus spp.	Eucalyptus	Plantation	27
30	Sonneratia apetala	Keora.	Coastal plantation	27
31	Avicennia officinalis	Baen.	Natural forest	28
32	Mangifera indica	Am	Home garden	29
33	Lannea coromandelica	Badi	Home garden	29
34	Syzygium cumuni	Jam	Home garden	29
35	Anthocephalus chinensis	Kadam	Home garden	30

Serial	Species		Forest Types	Page
No	Scientific name	Local name	Totest Types	1 ugc
36	Artocarpus heterophyllus	Kanthal)	Home garden	30
37	Azadirachta indica	Neem	Home garden	30
38	Mixed Species		Natural forest	31
39	Albizia richardiana King and Prain	Rajkoroi	Southern part	31

Growth and Yield Equations/Models

Serial	Species		Forest Types	Page
No.	Scientific name	Local name	1 ofest Types	1 age
1	Acacia auriculiformis	Akashmoni	Hill plantation	32
1	Acacia daricaly or mis	AKasiiikiii	Embankment and roadside	32
2	Acacia mangium	Mangium	Hill Plantation	32
3	Cassia siamea	Minjiri	Hill Plantation	33
4	Eucalyptus camaldulensis	Eucalyptus	Plantation	33
	Eucarypius camaramensis	Lacarypeas	Cropland	33
5	Albizia procera	Koroi	Embankment and roadside	33
	moizia procera	Koror	Cropland	34
			Embankment and roadside	34
6	Swietenia macrophylla	Mahogany	Cropland	34
			Woodlot	34
			Embankment and roadside	35
7	Dalbergia sissoo	Sissoo	Cropland	35
			Woodlot	35
8	Samania saman	Rain tree	Embankment and roadside	36
9	Melia azadarach	Bokain	Embankment and roadside	36
10	Accacia nilotica	Babla	Embankment and roadside	36
11	Gmelina arborea	Gamar	Block plantation	36
12	Pinus caribaea Local	Pine	Block plantation	37
13	Heritiera fomes	Sundri	Mangrove Natural Forest	37
14	Sonneratia apetala	Keora	Coastal Plantation	37
15	Paraserianthes falcataria	Moluccana koroi	Plantation	37

Biomass Equations/Models

Serial	Species		Forest Types	Page
No.	Scientific name	Local name	Torest Types	1 uge
1	Eucalyptus camaldulensis	Eucalyptus	Plantation	38
2	Acacia auriculiformis	Akashmoni	Plantation	38
3	Acacia mangium	Mangium	Plantation	39
4	Cassia siamea	Minjiri	Plantation	39

List of tables

No.	Title of the tables	Page
1	One-way metric volume (cubic meter) table of Akashmoni and Eucalyptus in different locations	40
2	One-way metric volume table of Mangium, Sissoo, Mahogany and Raintree in different locations	41
3	One-way metric volume table of Koroi, Babla, Bokain, Minjiri, Pine and Malacana in different locations	42
4	One-way metric volume table of Arjun, Amm, Jam, Kadam, Kanthal, Neem, Shimul and Pitraj in different locations	43
5	One-way metric volume table of Chapalish, Teli garjan, Banderhola, Uriam, Kanak, Civit, Dhakijam, Bahera and Chundul in Natural forest	44
6.1	Two-way metric volume table of <i>Acacia auriculiformis</i> (Akashmoni) in the plantation	45
6.2	Two-way metric volume table of <i>Acacia auriculiformis</i> (Akashmoni) in the woodlot	46
6.3	Two-way metric volume table of <i>Acacia auriculiformis</i> (Akashmoni) in the agroforestry	47
6.4	Two-way metric volume table of Acacia auriculiformis (Akashmoni) in the strip	48
6.5	Two-way metric Metric volume table of <i>Acacia auriculiformis</i> (Akashmoni) in the embankment	49
7.1	Two-way metric volume table of <i>Acacia mangium</i> (Mangium) in the plantation	50
7.2	Two-way metric volume table of <i>Acacia mangium</i> (Mangium) in the woodlot	51
7.3	Two-way metric volume table of <i>Acacia mangium</i> (Mangium) in the agro-forestry	52
8	Two-way metric volume table of <i>Cassia siamea</i> (Minjiri) in the plantation	53
9.1	Two-way metric volume table of <i>Eucalyptus Camaldulensis</i> (Eucalyptus) in the cropland	54
9.2	Two-way metric volume table of <i>Eucalyptus Camaldulensis</i> (Eucalyptus) in the woodlot	55
9.3	Two-way metric volume table of <i>Eucalyptus Camaldulensis</i> (Eucalyptus) in the agro-forestry	56
9.4	Two-way metric volume table of <i>Eucalyptus Camaldulensis</i> (Eucalyptus) in the strip	57
10.1	Two-way metric volume table of <i>Swietenia macrophylla</i> (Mahogany) in the cropland	58
10.2	Two-way metric volume table of Swietenia macrophylla (Mahogany) in the	59

No.	Title of the tables	Page
	embankment	
10.3	Two-way metric volume table of <i>Swietenia macrophylla</i> (Mahogany) in the Home garden	60
11.1	Two-way metric volume table of <i>Dalbergia sissoo</i> (Sissoo) in the cropland	61
11.2	Two-way metric volume table of <i>Dalbergia sissoo</i> (Sissoo) in the strip plantation	62
11.3	Two-way metric volume table of <i>Dalbergia sissoo</i> (Sissoo) in the embankment	63
12.1	Two-way metric volume table of <i>Albizia procera</i> (Korai) in the cropland	64
12.2	Two-way metric volume table of <i>Albizia procera</i> (Korai) in the embankment	65
12.3	Two-way metric volume table of <i>Albizia procera</i> (Korai) in the central parts	66
12.4	Two-way metric volume table of <i>Albizia procera</i> (Korai) in the Home gardens	67
13	Two-way metric volume table of <i>Terminalia arjuna</i> (Arjun) in the central parts	68
14.1	Two-way metric volume table of <i>Samania saman</i> (Rain Tree) in the embankment	69
14.2	Two-way metric volume table of <i>Samania saman</i> (Rain Tree) in the Home garden	70
15	Two-way metric volume table of <i>Melia azadarach</i> (Bokain) in the cropland	71
16	Two-way metric volume table of Accacia nilotica (Babla) in the embankment	72
17	Two-way metric volume table of <i>Gmelina arborea</i> (Gamar) in the plantation	73
18	Two-way metric volume table of <i>Syzygium grande</i> (Dhakijam) in the plantation	74
19	Two-way metric volume table of <i>Tectona grandis</i> (Teak) in the plantation	75
20.1	Two-way metric volume table of <i>Dipterocarpus Turbinatus</i> (Teli Garjan) in the plantation	76
20.2	Two-way metric volume table of <i>Dipterocarpus Turbinatus</i> (Teli Garjan) in the Natural Forest	77
21.1	Two-way metric volume table of Artocarpus chaplasha (Chapalish) in the plantation	78
21.2	Two-way metric volume table of <i>Artocarpus chaplasha</i> (Chapalish) in the natural forest	79
22	Two-way metric volume table of <i>Albizia falcataria</i> (Molaccana koroi) in the plantation	80
23	Two-way metric volume table of <i>Pinus caribaea</i> (Caribbean pitch pine) in the plantation	81
24.1	Two-way metric volume table of <i>Aphanamixis polystachya</i> (Pitraj) in the natural	82
24.2	Two-way metric volume table of <i>Aphanamixis polystachya</i> (Pitraj) in the Home garden	83
25	Two-way metric volume table of <i>Dipterocarpus gracilis</i> (Dhali garjan) in the natural	84
26	Two-way metric volume table of <i>Duabanga grandiflora</i> (Banderhola) in the natural	85
27.1	Two-way metric volume table of <i>Bombax ceiba</i> (Simul) in the natural	86
27.2	Two-way metric volume table of <i>Bombax ceiba</i> (Simul) in the Home garden	87
28	Two-way metric volume table of <i>Mangifera sylvatica</i> (Uriam) in the natural	88
29	Two-way metric volume table of <i>Schima wallichii</i> (Kanak) in the natural	89
30	Two-way metric volume table of Shorea robusta (Sal) in the natural	90
31	Two-way metric volume table of <i>Swintonia floribunda</i> (Civit) in the natural	91
32	Two-way metric volume table of <i>Terminalia bellerica</i> (Bahera) in the natural	92
33	Two-way metric volume table of <i>Tetrameles nudiflora</i> (Chundul) in the natural	93
34	Two-way metric volume table of <i>Sonneratia apetala</i> (Keora) in the coastal plantation	94
35	Two-way metric volume table of <i>Avicennia officinalis</i> (Baen) in the coastal plantation	95
36	Two-way metric volume table of <i>Mangifera indica</i> (Am) in the Home garden	96
37	Two-way metric volume table of <i>Lannea coromandelica</i> (Badi) in the Home garden	97
38	Two-way metric volume table of <i>Syzygium cumuni</i> (Jam) in the Home garden	98

No.	Title of the tables	Page
39	Two-way metric volume table of <i>Anthocephalus chinensis</i> (Kadam) in the Home garden	99
40	Two-way metric volume table of <i>Artocarpus heterophyllus</i> (Kanthal) in the Home garden	100
41	Two-way metric volume table of Azadirachta indica (Neem) in the Home garden	101
42	Two-way metric volume table of Mixed Species in the natural	102
43	Two-way metric volume table of <i>Albizia richardiana</i> King and Prain (Rajkoroi) in the Southern Part of Bangladesh	103-44
44	Conversion factor to estimate the underbark volumes to different top end girth of Rajkoroi (<i>Albizia richardiana</i> King and Prain)	105

GROWTH, YIELD, VOLUME AND BIOMASS EQUATION AND TABLES FOR IMPORTANT TREES IN BANGLADESH

M.A. Latif and S.M. Zahirul Islam
Forest Inventory Division
Bangladesh Forest Research Institute
P.O. Box No-273, Chittagong 42000, Bangladesh

Summary

A review of growth yield, stem volume and biomass equations and tables for impotent tree species growing in Bangladesh is presented in this document. The mathematical forms of the empirical models, the associated statistical parameters and information about the size of the trees and the country of origin were collated from different scientific articles, bulletins and technical reports. The total number of the compiled equations for growth and yield was 136 (15 different species), for stem volume prediction 705 (39 different species) and biomass estimation 40 (4 different species). The analysis indicated that most of the biomass equations were developed for above ground tree components. The growth and stem volume equations were, in general, based on more representative data covering larger geographical regions. The volume equations were available for major tree species in Bangladesh. The collected information provides a basic tool for estimation of growth and yield rate, stem volume per tree. These information may be used for estimation of carbon stocks and nutrient balance of forest ecosystems across Bangladesh as well as for validation of theoretical models of growth, stem volume and biomass allocation.

Keywords: Aboveground biomass, allometry, biomass function, growth and yield, stem volume, tree diameter, tree height

Introduction

The estimation of growth, stem volume and tree biomass models is needed for both sustainable planning of forest resources and for studies on the energy and nutrients flows in ecosystems. Planners at the strategic and operational levels have strongly emphasised the need for accurate estimates of stem volume, while Hall (1997) reviewed the potential role of biomass as an energy source in the 21st century. In addition, the United Nations Framework Convention on Climate Change and in particular the Kyoto Protocol recognise the importance of forest carbon sink and the need to monitor, preserve and enhance terrestrial carbon stocks, since changes in the forest carbon stock influence the atmospheric CO₂ concentration. Terrestrial biotic carbon stocks and stock changes are difficult to assess (IPCC2003) and most current estimates are subject to considerable uncertainty (Löwe et al. 2000, Clark et al. 2001, Jenkins et al. 2003). The reliability of the current estimates of the forest carbon stock and the understanding of ecosystem carbon dynamics can be improved by applying existing knowledge on the allometry of trees that is available in the form of biomass and volume equations (Jenkins et al. 2003, Zianis and Mencuccini 2003 and Lehtonen et al. 2004). The biomass equations can be applied directly to tree level inventory data

and biomass expansion factors (BEFs) applicable to stand level inventory data can be developed and tested with the help of representative volume and biomass equations (Lehtonen *et al.* 2004).

Recently, remote sensing data have been used to assess standing volume and forest biomass (Montes *et al.* 2000, Drake *et al.* 2002). However, the estimation of biomass depends on ground truth data with measured dimensions of trees, and the empirical biomass equations are therefore needed to predict biomass as a function of recorded variables.

The development of tree growth, stem volume and biomass equations is laborious and time consuming process especially the destructive harvesting of large trees existing equations need to be compiled and evaluated to facilitate identification of the gaps in the coverage of the equations. The compiled equations can also be used to test and compare existing equations with new ones as well as to validate process-based models.

The aim of this study was to develop a database on tree-level tree growth, stem volume and biomass equations for various tree species growing in Bangladesh. Equations for tree growth, stem volume and biomass of different components were considered. The compiled database is a guide to the original publications of these equations. In ecological studies on forest carbon and nutrient cycling, forest and greenhouse gas inventories as well as in the validation of process-based models, this database facilitates effective exploitation of existing information on the allometry of trees.

Material and Methods

The compilation of equations and tables was based on published equations for different tree species growing in Bangladesh. In order to compile the available information we conducted a literature survey on Bangladesh Journal of Forest Science, Bulletins, Mamograph and forest-related journals where published all models, developed by different authors.

The explanatory variables were always the diameter/girth at breast height (D/G), the tree height (H) or a combination of the two. The standardized reference point for breast height and height measurements were from ground level, the stem diameter/girth at breast height have been measured at 1.3 above ground (Bruce and Schumacher 1950, Köhl *et al.* 1997). These two variables (D/G) and H0 are the most commonly used independent variables. In growth equations with several other independent variables (e.g. site fertility, elevation, and soil type) have been also widely developed. Those equations were not, however, included in this database, since selection of variables is highly dependent on local conditions and intended local use of equations. No selection criteria were applied with regard to the species, age, size, site conditions, or sampling method. The compiled tree growth, stem volume and biomass equations were presented according to different tree components as simultaneous equation form.

The measurement units for the regressed and the explanatory variables, the number of sample plots, the number of the sampled trees (n), the coefficient of determination (r^2) , and the range of diameter and height were also ignored in this review whenever this information was available in the original article.

Results

Stem Volume Equations and Tables

The total number of the compiled stem volume equations was 705 (Volume equation section) and 41 volume tables (Table 1-41) for ready use with 39 tree species in different locations and position altogether. In general, the total volume of the tree extending from stem collar up to the top of the stems is accounted in the equations developed. Most of the stem volume equations were based on a sample size of several hundred felled trees. In almost every of the compiled stem volume equations the independent variables were D/G for one way and D/G & H for two way with various mathematical combinations. In all the compiled equations the coefficient of determination was more than 0.7 irrespective of species, location, D/G range, site conditions etc.

Tree Growth Equations

All these models for tree species were based on a system of quality classes using as a basic variable the age and dominant height of the population. The total number of the compiled growth and yield equations was 136 (Growth and yield equations section), and they covered 15 tree species in different locations. The independent variables were stand age (A) and tree site index (S) with various mathematical combinations for growth and yield equations. In all the compiled equations the coefficient of determination was more than 0.7 irrespective of species, location, age range, site conditions, etc.

Tree Above-ground Biomass Equations

The biomass equations for various aboveground parts, particularly for stem, branches and leaves & twigs were complied. The total number of the compiled biomass equations for different tree components was 40 and conversion factors was 24 (Biomass equation section). Biomass equations were derived for four tree species namely young eucalyptus, akashmoni mangium and minjiri. The independent variables were D/G for one way and D/G & H for two ways with various mathematical combinations. The coefficient of determination was more than 0.8 irrespective of species, location, D/G range, site conditions for all the complied equations.

Discussion

Assessment of forest biomass and carbon stock is based on information on forest resources i.e. estimates of forested area and volume of the growing stock as reported by national forest inventories (Liski and Kauppi 2000). In national inventories, the volume of the growing stock is estimated with the help of volume equations. The complied results of this study show that representative volume equations are available for major tree species in Bangladesh. The equations presented in this review can be used for national biomass and carbon inventories, for ecological studies, for validating theoretical models and for planning the use of forest resources.

BIBLIOGRAPHY

- 1. Bruce, D. and Schumacher, F.X. 1950. Forest mensuration. McGraw-Hill Book Company, Inc. New York. 483 p.
- 2. Clark, D.A., Brown, S., Kicklighter, D.W., Chambers, J.Q., R, T.J. and Ni, J. 2001. Measuring net primary production in forests: concepts and field methods. Ecological Applications 11(2): 356–370.
- 3. Das, S. and Latif, M. A. 1996. Initial growth and yield models for young *Dipterocurpus turbinatus* trees in Bangladesh. *Proceedings of the IUFRO Conference*, 10-13 June, 1996, Copenhagen. 183-186 pp.
- 4. Das, S.; Islam, S. M. Z. and Latif, M. A. 2000. Initial growth models for *Swietenia macrophyla* King planted in Chittagong City areas of Bangladesh. *Bangladesh Journal of Forest Science* 29 (1): 48-52
- 5. Das, S.; Rahman, M. F.; Reza, N. A. and Latif, M. A. 1992. *Tree Volume Tables for Sal (Shorea robusta* Gartn. f,) *in the plantations of Bangladesh*. Bulletin 7, Forest Inventory Division, Bangladesh Forest Research Institute, Chittagong. 11 pp.
- 6. Das, S.; Davidson, J.; Khan, S. A.; Latif, M. A. and Zashimuddin, M. 1985. *Tree volume tables for small Eucalypt roundwood in Bangladesh*. Bulletin 4, Silviculture Research Division, Bangladesh Forest Research Institute, Chittagong. 71 pp.
- 7. Davidson, J.; Latif, M. A.; Rahman, F. and Das, S. 1985. *Tree volume tables for moluccana (Paraserianthes falcataria syn. Albizia falcataria syn. A. moluccana) in Bangladesh*. Bulletin 4, Forest Inventory Division, Bangladesh Forest Research Institute, Chittagong. 15 pp.
- 8. Drake, J.B., Dubayah, R.O., Knox, R.G., Clark, D.B. & Blair, J.B. 2002. Sensitivity of large-footprint lidar to canopy structure and biomass in a Neotropical rainforest. *Remote Sensing of Environment* 81:378–392.
- 9. Hall, D.O. 1997. Biomass energy in industrialised countries a view of the future. Forest Ecology and Management 91: 17–45.
- 10. IPCC, 2003. Report on good practice guidance for land use, land-use change and forestry. IPCCNational Greenhouse Gas Inventories Programme http://www.ipccnggip.iges.or.jp/public/gpglulucf/gpglulucf.htm., Japan.
- 11. Jenkins, J.C., Chojnacky, D.C., Heath, L.S. & Birdsey, R.A. 2003. National-scale biomass estimators for United States tree species. *Forest Science* 49: 12–35.
- 12. Köhl, M., Päivinen, R., Traub, B. & Miina, S. 1997. Comparative study. In: Study on European forestry information and communication system. Reports on forest inventory and survey systems 2. European Commission. p. 1265–1322.
- 13. Latif, M. A. 1988. Biomass tables for young *Eucalyptus* grown in Bangladesh. *Bano Biggyan Patrika* 17 (1 & 2): 46-54
- 14. Latif, M. A. 1994. *Tree volume tables for baen* (Avicennia officinalis) in the coastal plantations of Bangladesh. Bulletin 8, Forest Inventory Division, Bangladesh Forest Research Institute, Chittagong. 21-32 pp.
- 15. Latif, M. A. 1994. *Tree volume tables for keora (Sonneratia apetala) in the coastal plantations of Bangladesh*. Bulletin 8, Forest Inventory Division, Bangladesh Forest Research Institute, Chittagong. 20 pp.
- 16. Latif, M. A. 1999a. Growth and yield of bokain, koroi, mahogany, sissoo and eucalypts planted on croplands in Bangladesh. Village and Farm Forestry Program, Swiss Agency for Development and Cooperation, Dhaka, Bangladesh. 25 pp.

- 17. Latif, M. A. 1999b. Growth and yield of sissoo (*Dalbergia sissoo*) and mahogany (*Swietenia macrophylla*) planted as woodlots in the western part of Bangladesh. Village and Farm Forestry Program, Swiss Agency for Development and Cooperation, Dhaka, Bangladesh. 29 pp.
- 18. Latif, M. A. and Del Castillo, R. A. 1990. Growth and yield of keora (*Sonneratia apetala* Buch. Ham.) in the coastal plantations of Bangladesh. *Bangladesh Journal of Forest Science* 19 (1 & 2): 11-18
- 19. Latif, M. A. and Habib, M. A. 1993. Biomass table for *Acacia auriculiformis* grown in the plantations in Bangladesh. *Indian Journal of Forestry* 16 (4): 323-327
- 20. Latif, M. A. and Habib, M. A. 1994. Biomass tables for *Acacia mangium* grown in the plantations in Bangladesh. *Journal of Tropical Forest Science* 7 (2): 296-302
- 21. Latif, M. A. and Habib, M. A. 1994. Biomass tables for minjiri (*Cassia siamea* Lam) grown in the plantations in Bangladesh. *Bangladesh Journal of Forest Science* 23 (1): 59-64
- 22. Latif, M. A. and Islam, M. N. 1984a, *Tree volume tables for Dipterocarpus turbinatus* Gaertn. F. (Teli garjan). Bulletin 2, Forest Inventory Division, Bangladesh Forest Research Institute, Chittagong. 122-150 pp.
- 23. Latif, M. A. and Islam, M. N. 1984b. *Tree Volume Tables for Syzygium grande* (Wt.) wild. (Dhakijam). Bulletin 2, Forest Inventory Division, Bangladesh Forest Research Institute, Chittagong. 25-57 pp.
- 24. Latif, M. A. and Islam, M. N. 1984c. *Tree volume tables for Artocarpus chaplasha* (chapalish). Bulletin 2, Forest Inventory Division, Bangladesh Forest Research Institute, Chittagong. 58-92 pp.
- 25. Latif, M. A. and Islam, S. M. Z. 2000. Volume Tables For 11 Important Tree Species Grown in The Home Gardens of Bangladesh. A joint work of Bangladesh Agriculture Research Council and Bangladesh Forest Research Institute, Chittagong. 30 pp.
- 26. Latif, M. A. and Islam, S. M. Z. 2001. Growth rate of Sissoo, Korio, Akashmoni, Babla, Mahogany and Rain Tree Planted on Embankments and Road Sides in the Coastal Areas of Bangladesh. *Bangladesh Journal of Forest Science* 30 (1): 58-67
- 27. Latif, M. A. and Islam, S. M. Z. 2004. Timber and fuelwood volume tables for *Acacia auriculiformis*, *A. mangium*, *Eucalyptus camaldulensis and Dalbergia sissoo* plantations in Bangladesh. A joint work of Forestry Sector Project, Bangladesh Forest Department and Bangladesh Forest Research Institute, Chittagong. 38 pp.
- 28. Latif, M. A.; Chowdhury, J. A.; Das, S. and Rahman, M. F. 1997. Growth and yield of *Paraserianthes falcatria* in the forests of Bangladesh. *Bangladesh Journal of Forest Science* 26 (2): 23-30
- 29. Latif, M. A.; Chowdhury, J. A.; Das, S.; Rahman, M. F. and Habib, M. A. 1997. Growth and yield models for gamar (*Gmelina arborea*) the plantations of Bangladesh. *Bangladesh Journal of Forest Science* 24 (1): 7-12
- 30. Latif, M. A.; Das, S. and Rahman, M. F. 1993. Growth and yield of *Eucalyptus camaldulensis* in Bangladesh. *Proceedings from the IUFRO Conference* held on 14-17 June, Copenhagen. 222-230 pp.
- 31. Latif, M. A.; Das, S. and Rahman, M. F. 1995. Volume tables for Acacia auriculiformis, Cassia siamea and Pinus caribaea in Bangladesh. Bangladesh Journal of Forest Science 24 (2): 22-30
- 32. Latif, M. A.; Das, S.; Rahman, M. F. and Habib, M. A. 1995. Mathematical models for estimation of growth and yield of *Cassia siamea* in Bangladesh. *Proceedings of the Sessions of Subject group 4.01 Mensuration Growth and yield of the 20th world congress of IUFRO held in Tamper, Finland* 6-12 August, 1995. 97-104 pp.

- 33. Latif, M. A.; Das, S.; Rahman, M. F. and Habib, M. A. 1995. Growth and yield tables for *Acacia mangium* grown in the plantations in Bangladesh. *Journal of Tropical Forest Science* 7 (4): 591-598
- 34. Latif, M. A.; Habib, M. A. and Das, S. 1993. Tree volume tables for *Acacia mangium* in the plantations of Bangladesh. *Bangladesh Journal of Forest Science* 22 (1 & 2): 23-29
- 35. Latif, M. A.; Islam, M. N. and Chowdhury, J. H. 1984c. *Tree volume tables for Gmelina arborea* Roxb (gamar). Bulletin 2, Forest Inventory Division, Bangladesh Forest Research Institute, Chittagong. 93-121 pp.
- 36. Latif, M. A.; Islam, M. N.; and Islam, S. S. 1985a. *Tree volume tables for teak* (Tectona grandis) *in Bangladesh*. Bulletin 5, Forest Inventory Division, Bangladesh Forest Research Institute, Chittagong. 17 pp.
- 37. Latif, M. A.; Islam, M. S. And Islam, S. M. Z. 1999. Volume tables for sissoo, koroi, mahogany, eucalypts and bokain planted on croplands in the western part of Bangladesh. Village and Farm Forestry Program, Swiss Agency for Development and Cooperation, Dhaka, Bangladesh. (Mimeograph). 23 pp.
- 38. Latif, M. A.; Islam, M. S. and Islam, S. M. Z. 2000. *Volume Tables for Sissoo, Korio, Akashmoni, Babla, Mahogany and Rain Tree Planted on Embankments and Road Sides in the Coastal Areas of Bangladesh*. Bulletin 9, Forest Inventory Series, Bangladesh Forest Research Institute, Chittagong. 24 pp.
- 39. Latif, M. A.; Islam, S. S. and Davidson, J. 1985b. *Metric volume tables for some tree species found in the natural forests of Bangladesh*. Bulletin 6, Forest Inventory Division, Bangladesh Forest Research Institute, Chittagong. 79 pp.
- 40. Latif, M. A.; Rahman, M. F. and Das, S. 1996. Initial growth performance of *Pinus caribaea* in Bangladesh. *Proceedings from the IUFRO Conference* held on 11-13 June, Copenhagen. 196-199 pp.
- 41. Latif, M. A.; Rahman, M. F.; Das, S. and Siddiqui, N. A. 1992. Diameter increments for six mangrove tree species in the Sundarbans forest of Bangladesh. *Bangladesh Journal of Forest Science* 21 (1 & 2): 7-12
- 42. Lehtonen, A., Mäkipää, R., Heikkinen, J., Sievänen, R. & Liski, J. 2004. Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. Forest Ecology and Management 188: 211–224.
- 43. Löwe, H., Seufert, G. & Raes, F. 2000. Comparison of methods used within member states for estimating CO₂ emissions and sinks to UNFCCC and UE monitoring mechanism: forest and other wooded land. *Biotechnology, Agronomy, Society and Environment* 4:315–319.
- 44. Montes, N., Gauquelin, T., Badri, W., Bertaudiere, V. & Zaoui, E.H. 2000. A non-destructive method for estimating above-ground forest biomass in threatened woodlands. *Forest Ecology and Management* 130: 37–46.
- 45. Rahman, M. F.; Das, S. and Latif, M. A. 2001. Volume tables for Koroi (*Albizia procera*) and Arjun (*Terminalia arjuna*) tree planted in the central parts of Bangladesh. *Bangladesh Journal of Forest Science* 30 (1): 39-46
- 46. Zianis, D. & Mencuccini, M. 2003. Aboveground biomass relationship for beech (*Fagus moesiaca* Cz.) trees in Vermio Mountain, Northern Greece, and generalised equations for Fagus spp. *Annals of Forest Science* 60: 439–448.

Abbreviation

ln = Natural logarithm (Logarithm on the base e)

G or GBH = Girth at breast height

D or DBH = Diameter at breast height

DomG or DomGBH = Dominant girth at breast height

DomD or DomDBH = Dominant diameter at breast height

BG = Basal girth in centimeter (Basal or Stump girth at about 15 cm above ground level)

SG = Stump girth in centimeter

B or Br = Basal area in centimeter

H or HT = Total height

MHT = Mean height

DomHT or DHT = Dominant height

 H_{30} = Height (Length) up to 30 centimeter top end girth in meter

 H_{45} = Height (Length) up to 45 centimeter top end girth in meter

V or Vt or V_{ob} = Total volume over bark

 V_{ub} = Total volume under bark

 V_5 = Total volume up to 5 centimeter top end diameter

 V_{10} = Total volume up to 10 centimeter top end diameter

 V_{15} = Total volume up to 15 centimeter top end diameter

 V_{20} = Total volume up to 20 centimeter top end diameter

F_{ub} =Conversion factor to estimate under bark volume

 F_5 = Conversion factor to estimate under bark volume up to 5 centimeter top end girth/diameter from over bark volume

 F_{10} = Conversion factor to estimate under bark volume up to 10 centimeter top end girth/diameter from over bark volume

 F_{15} = Conversion factor to estimate under bark volume up to 15 centimeter top end girth/diameter from over bark volume

 F_{20} = Conversion factor to estimate under bark volume up to 20centimeter top end girth/diameter from over bark volume

L & T = Leaves and twigs

M, m = Meter

Cm, cm = Centimeter

Cum, cum = Cubic meter

Kg = Kilogram

N = Numbers of trees

Volume Equations of Important Tree Species

1. Acacia auriculiformis (Akashmoni)

Plantation: (Latif *et al.* 1995)

For Metric Unit

•
$$ln(V_{ob}) = -8.208 + 2.2389 \times ln(D)$$

•
$$ln(V_{ob}) = -10.7709 + 2.2389 \times ln(G)$$

•
$$\ln(V_{ob}) = -9.125 + 1.918 \times \ln(D) + 0.67988 \times \ln(H)$$

•
$$ln(V_{ob}) = -11.3205 + 1.918 \times ln(G) + 0.67988 \times ln(H)$$

•
$$ln(V_{ub}) = -9.187 + 2.468 \times ln(D)$$

•
$$ln(V_{ub}) = -12.0121 + 2.468 \times ln(G)$$

•
$$ln(V_{ub}) = -10.2398 + 2.100244 \times ln(D) + 0.78044 \times ln(H)$$

•
$$ln(V_{ub}) = -12.6440 + 2.100244 \times ln(D) + 0.78044 \times ln(H)$$

Woodlot under Forestry Sector Project (FSP): (Latif and Zahir 2005)

$$\bullet \qquad V_t = -0.0216813 + 0.00067914 \times G + 0.000054772 \times G^2$$

•
$$V_t = -0.05685226 + 0.0055484 \times H + 0.000019628 \times G^2 + 0.00000153866 \times G^2 H$$

•
$$V_T = -0.073139 + 0.001323 \times G + 0.000051832 \times G^2$$

•
$$V_T = 0.027119694 + 0.00000240953 \times G^2 H$$

•
$$Fuelwood = 22.37917 + 0.003226 \times G^2$$

• Leaves & Twigs =
$$15.28295 + 0.004662 \times G^2$$

$$\bullet \quad H = 35.311 - \frac{87.6057}{G^{0.4}}$$

$$\bullet \quad H_{30} = 19.70247 - \frac{551.037}{G}$$

•
$$H_{45} = 26.48525 - \frac{243.405}{G^{0.6}}$$

•
$$GBH = -0.584 + 0.814 \times SG$$

Agroforestry under Forestry Sector Project (FSP): (Latif and Zahir 2005)

•
$$V_t = -0.044269 + 0.00097598 \times G + 0.000061867 \times G^2$$

•
$$V_t = -0.03268139 + 0.003235 \times H + 0.000012807 \times G^2 + 0.00000224532 \times G^2 H$$

14

•
$$V_T = -0.13055 + 0.00261 \times G + 0.0000498 \times G^2$$

•
$$V_T = -0.01147886 + 0.00000301221 \times G^2 H$$

•
$$Fuelwood = 9.08828 + 0.00803 \times G^2$$

- Leaves & Twigs = $9.051987 + 0.008866 \times G^2$
- $H = 39.127 \frac{103.824}{G^{0.4}}$
- $H_{30} = 76.64729 \frac{149.493}{G^{0.2}}$
- $H_{45} = 85.935 \frac{181.8611}{G^{0.2}}$
- $GBH = 2.1827 + 0.7673 \times SG$

Strip under Forestry Sector Project (FSP): (Latif and Zahir 2005)

- $V_t = -0.0094878 0.0004247 \times G + 0.000059764 \times G^2$
- $V_t = -0.078606 + 0.0074058 \times H + 0.0000256646 \times G^2 + 0.00000116449 \times G^2 H$
- $V_T = -0.044833 0.0000266 \times G + 0.0000575 \times G^2$
- $V_T = 0.02059085 + 0.00000257258 \times G^2 H$
- $Fuelwood = 17.17526 + 0.011026 \times G^2$
- Leaves & Twigs = $17.7161 + 0.005383 \times G^2$
- $\bullet \quad H = 54.8535 \frac{90.6548}{G^{0.2}}$
- $\bullet \quad H_{30} = 55.886 \frac{108.24}{G^{0.2}}$
- $H_{45} = 58.4298 \frac{122.444}{G^{0.6}}$
- $GBH = 4.21 + 0.742 \times SG$

Conversion factors to estimate under-bark timber volume from over-bark timber volume all type

$$F_{30} = G/(36.98142 + 0.003359 \times G^2 + 0.388637 \times G$$

Embankments and Roadsides in the coastal areas: (Latif et al. 2000)

- $ln(V) = -11.839665 + 2.404568 \times ln(G)$
- $ln(V) = -11.506528 + 1.973377 \times ln(G) + 0.623823 \times ln(H)$
- $\bullet \quad F_{ub} = G/(10.14316785 + 0.887876 \times G + 0.0007408 \times G^2$
- $F_5 = G/(14.1548988 + 0.93206806 \times G + 0.00061086 \times G^2$
- $F_{10} = -0.2080896 + 0.02051161 \times G 0.00009592 \times G^2$ 0.8869 is constant from GBH 114 cm
- $F_{15} = -0.75195615 + 0.02602414 \times G 0.00010886 \times G^2$ 0.8034 is constant from GBH 120 cm
- $F_{20} = -1.3170613 + 0.0271059 \times G 0.0000902 \times G^2$

• GBH = $-3.78893 + 0.836316 \times BG$

2. Acacia mangium (Mangium)

Plantation: (Latif *et al.* 1993)

For Metric Unit

•
$$ln(V_{ob}) = -8.209 + 2.2178 \times ln(D)$$

•
$$ln(V_{ob}) = -10.7488 + 2.2178 \times ln(G)$$

•
$$ln(V_{ob}) = -9.1426 + 1.7612 \times ln(D) + 0.83335 \times ln(H)$$

•
$$ln(V_{ob}) = -11.1587 + 1.7612 \times ln(G) + 0.83335 \times ln(H)$$

•
$$ln(V_{ub}) = -9.00226 + 2.3246 \times ln(D)$$

•
$$ln(V_{ub}) = -11.6633 + 2.3246 \times ln(G)$$

•
$$ln(V_{ub}) = -10.2221 + 1.74054 \times ln(D) + 1.07596 \times ln(H)$$

•
$$ln(V_{ub}) = -21.2145 + 1.74054 \times ln(G) + 1.07596 \times ln(H)$$

Agroforestry under Forestry Sector Project (FSP): (Latif and Zahir 2005)

•
$$V_t = 0.0379401 - 0.0027469 \times G + 0.000099945 \times G^2$$

•
$$V_t = 0.01368013 - 0.00018226 \times H + 0.000005503 \times G^2 + 0.00000352188 \times G^2 H$$

$$\bullet \quad V_T = 0.047423 - 0.00387 \times G + 0.000109 \times G^2$$

•
$$V_T = -0.02144725 + 0.00000334079 \times G^2 H$$

•
$$Fuelwood = -3.61355 + 0.008262 \times G^2$$

• Leaves & Twigs =
$$-0.0093 + 0.008147 \times G^2$$

•
$$H = 63.702 - \frac{101.98}{G^{0.2}}$$

•
$$H_{30} = 32.1585 - \frac{239.319}{G^{0.6}}$$

•
$$H_{45} = 29.2585 - \frac{602.69154}{G^{0.8}}$$

•
$$GBH = -0.195 + 0.8347 \times SG$$

Woodlot under Forestry Sector Project (FSP): (Latif and Zahir 2005)

•
$$V_t = -0.0670236 + 0.00194737 \times G + 0.000056832 \times G^2$$

•
$$V_t = -0.04085 + 0.00437656 \times H + 0.0000627199 \times G^2 + 0.00000248335 \times G^2 H$$

•
$$V_T = -0.13055 + 0.00261 \times G + 0.0000498 \times G^2$$

•
$$V_T = 0.010632025 + 0.00000289124 \times G^2 H$$

•
$$Fuelwood = 18.79797 + 0.003964 \times G^2$$

• Leaves & Twigs =
$$12.30126 + 0.005796 \times G^2$$

•
$$H = 33.8756 - \frac{61.5402}{G^{0.32}}$$

$$\bullet \quad H_{30} = 26.423 - \frac{381.696}{G^{0.8}}$$

•
$$H_{45} = 21.81173 - \frac{2043}{G^{1.2}}$$

•
$$GBH = 0.54 + 0.8245 \times SG$$

Conversion factors to estimate under-bark timber volume from over-bark timber volume all type

•
$$F_{30} = G/(57.21812 + 0.006295 \times G^2 - 0.08664 \times G$$

3. Cassia siamea (Minjiri)

Plantation: (Latif et al. 1995)

For Metric Unit

- $ln(V_{ob}) = -8.602 + 2.4038 \times ln(D)$
- $ln(V_{ob}) = -11.3536 + 2.4038 \times ln(G)$
- $ln(V_{ob}) = -9.514 + 1.871 \times ln(D) + 0.897 \times ln(H)$
- $ln(V_{ob}) = -11.6557 + 1.871 \times ln(G) + 0.897 \times ln(H)$
- $ln(V_{ub}) = -9.334 + 2.255686 \times ln(D)$
- $ln(V_{ub}) = -12.2632 + 2.255686 \times ln(G)$
- $ln(V_{ub}) = -10.1766698 + 2.0641847 \times ln(D) + 0.8290937 \times ln(H)$
- $ln(V_{ub}) = -12.5396 + 2.0641847 \times ln(D) + 0.8290937 \times ln(H)$

4. Eucalyptus Camaldulensis (Eucalyptus)

For Metric Unit

Cropland: (Latif *et al.* 1999)

- $ln(V)=-11.177929+2.297689 \times ln(G)$
- $\ln(V) = -11.523307 + 1.911628 \times \ln(G) + 0.738982 \times \ln(H)$
- $F_{ub} = G/(7.6919 + 0.998172 \times G)$
- $F_5 = G/(10.48456+1.164249\times G)$
- $F_{10} = G/(68.4346+0.191598\times G+0.0048557\times G^2)$
- $F_{15}=-0.63517+0.020269\times G-0.00007567\times G^2$)

Woodlot under Forestry Sector Project (FSP): (Latif and Zahir 2005)

- $V_t = -0.0242488 0.0001779 \times G + 0.00001637 \times G^2$
- $V_t = -0.062939 + 0.00458384 \times H + 0.000025752 \times G^2 + 0.00000176593 \times G^2H$
- $V_T = -0.1026 + 0.00127 \times G + 0.0000732 \times G^2$
- $V_T = 0.003083594 + 0.00000291538 \times G^2 H$

- Leaves & twigs = $0.510253 + 0.008942xG^2$
- Fuel wood = $0.170844 + 0.011976 \times G^2$
- $H = 71.5701 114.666/G^{0.2}$
- $H_{30} = 29.6559 437.395/G^{0.8}$
- $H_{45} = 54.16862 242.90013/G^{0.4}$
- GBH = $0.535 + 0.79 \times SG$

Agroforestry under Forestry Sector Project (FSP): (Latif and Zahir 2005)

- $V_f = -0.045215 + 0.00091678 \times G + 0.000070213 \times G^2$
- $\bullet \quad V_t \text{= -0.078525} + 0.00623662 \times \text{H} + 0.0000315878 \times \text{G}^2 + 0.00000117728 \times \text{G}^2 \text{H}$
- $V_T = -0.194075 + 0.004555 \times G + 0.0000452 \times G^2$
- $V_T = 0.005034521 + 0.00000269095 \times G^2 H$
- Fuel wood = $5.107743 + 0.008397 \times G^2$
- Leaves & twigs = $2.659055 + 0.008147 \times G^2$
- $H = 77.035 125.205/G^{0.2}$
- $H_{30} = 93.108 182.23/G^{0.2}$
- $H_{45} = 58.766 266.9047/G^{0.4}$
- GBH = $-0.98 + 0.7978 \times SG$

Strip under Forestry Sector Project (FSP): (Latif and Zahir 2005)

- $V_t = 0.343851 0.0109602 \times G + 0.00013951 \times G^2$
- $\bullet \quad V_t = 0.076339 0.00058066 \times H + 0.000016216 \times G^2 + 0.0000032565 \times G^2 H$
- $V_T = 0.321412 0.010935 \times G + 0.0001421 \times G^2$
- $V_T = 0.0044242 + 0.00000274348 \times G^2 H$
- Fuel wood = $21.67055 + 0.008916 \times G^2$
- Leaves & twigs = $20.40226 + 0.004698 \times G^2$
- $H = 96.3518 184.772/G^{0.2}$
- $H_{30} = 86.4366 177.663/G^{0.2}$
- $H_{45} = 89.7657 194.447/G^{0.2}$
- GBH = $3.6965 + 0.7876 \times SG$

Conversion factors to estimate under-bark timber volume from over-bark timber volume all type

$$F_{30} = 1.108653 - 22.2897/G$$

5. Swietenia macrophylla (Mahogany)

Cropland: (Latif *et al.* 1999)

For Metric Unit

• $ln(V) = -12.045383 + 2.460647 \times ln(G)$

- $ln(V) = -11.716535 + 2.084968 \times ln(G) + 0.534389 \times ln(H)$
- $F_{ub} = G/(11.66204 + 0.776157 \times G + 0.001775 \times G^2)$
- $F_5 = G/(14.45426+0.907825\times G+0.000886\times G^2)$
- $F_{10} = -0.95323 + 0.051126 \times G 0.00037 \times G^2$ 0.8126 is Constant from gbh 70 cm
- F_{15} = 1.26594195+0.04436073×G-0.00024683×G²
- $F_{20} = -1.53566885 + 0.04110584 \times G 0.00019804 \times G^2$

Embankments and roadside in the coastal area: (Latif et al. 2000)

- $ln(V) = -12.52620808 + 2.5653795 \times ln(G)$
- $\ln(V) = -12.4361459 + 1.8661846 \times \ln(G) + 1.2282822 \times \ln(H)$
- $F_{ub} = G/(12.2255598 + 0.834757 \times G + 0.0008996 \times G^2$, 0.9574 is constant from GBH 117 cm
- $F_5 = G/(11.1197969 + 0.8596949 \times G + 0.001144 \times G^2$, 0.9214 is constant from GBH 100 cm
- $\bullet \quad F_{10} = -0.2221803 + 0.0170416 \times G 0.0000673 \times G^2$
- $\bullet \quad F_{15} = -0.4795166 + 0.011686 \times G 0.0000527 \times G^2$
- $\bullet \quad F_{20} = -0.5048475 + 0.0126964 \times G 0.0000316 \times G^2$
- GBH = $-3.21387 + 0.80453 \times BG$

Homestead: (Latif and Zahir 2001)

- $ln(V_t) = -11.46122 + 2.29592 \times ln(G)$
- $ln(V_t) = -11.27102 + 1.88064 \times ln(G) + 0.64629 \times ln(H)$
- $F_{ub} = G/(4.52235 + 1.01229 \times G)$
- $F_5 = 1.00005 9.02065/G$
- $F_{10} = 1.15448 26.78537/G$
- $F_{15} = -0.84673 + 0.02915 \times G 0.00012 \times G^2$
- $F_{20} = 1.24989 + 0.03081 \times G 0.00012 \times G^2$

6. Dalbergia sisso (Sissoo)

Croplands: (Latif et al. 1999)

For Metric Unit

- $ln(V) = -12.14678171 + 2.49978991 \times ln(G)$
- $ln(V) = -11.8405276 + 2.07000287 \times ln(G) + 0.6152993 \times ln(H)$
- $F_{ub} = G/(11.350332 + 0.845316 \times G + 0.00115138 \times G^2)$
- $F_5 = G/(13.777788+1.020588 \times G + 0.00043543 \times G^2)$
- $F_{10} = -0.419849 + 0.028034 \times G 0.000157 \times G^2$
- $F_{15} = -1.2178 + 0.039327 \times G 0.000195 \times G^2$
- $F_{20} = -1.59817 + 0.03884 \times G 0.00016438 \times G^2$

Strip under Forestry Sector Project (FSP): (Latif and Zahir 2005)

- $V_t = 0.0801559 0.0044885 \times G + 0.00009212 \times G^2$
- $V_t = 0.012282107 + 0.00168945 \times H 0.000019455 \times G^2 + 0.00000392037 \times G^2 H$
- $V_T = 0.080612 0.004964 \times G + 0.00009522 \times G^2$
- $V_T = -0.01165062 + 0.00000306165 \times G^2 H$
- Fuel wood = $4.52644+0.022514\times G^2$
- Leaves & twigs = $18.44734+0.005118\times G^2$
- $H = 55.8623-96.92/G^{0.2}$
- $H_{30} = 55.5474 109.495 / G^{0.2}$
- $H_{45} = 60.026 127.475/G^{0.2}$

$GBH = 3.1468 + 0.7727 \times SG$

Embankments and roadside in the coastal area: (Latif et al. 2000)

- $ln(V) = -12.427775 + 2.6056676 \times ln(G)$
- $\ln(V) = -12.5189939 + 1.9800535 \times \ln(G) + 1.0775148 \times \ln(H)$
- $F_{ub} = G/(8.2660565 + 0.95299 \times G + 0.0002453 \times G^2)$
- $F_5 = G/(10.3502791 + 1.1634831 \times G 0.0007935 \times G^2$
- $F_{10} = -0.41985 + 0.028034 \times G$, 0.8315 is constant after GBH 90 cm
- $F_{15} = 1.2178 + 0.03933 \times G 0.000195 \times G^2$, 0.7651 is constant after GBH 100 cm
- $F_{20} = -1.5982 + 0.03884 \times G 0.0001644 \times G^2$, 0.6956 is constant after GBH 117 cm
- GBH = $-0.70 + 0.78141 \times BG$

7. Albizia procera (Korai)

Cropland: (Latif *et al.* 1999)

For Metric Unit

- $ln(V) = -12.093533 + 2.463398 \times ln(G)$
- $\ln(V) = -11.961135 + 1.967741 \times \ln(G) + 0.907724 \times \ln(H)$
- $F_{ub} = G/(13.40213 + 0.771253 \times G + 0.001486 \times G^2)$
- $F_5 = G/(16.74442 + 0.845802 \times G + 0.001185 \times G^2)$
- $F_{10} = 1.08657 28.509926 / G$
- $F_{15} = 1.151096 49.83377 / G$
- $F_{20} = 0.95345 + 0.019888 \times \text{G} 0.0000573 \times \text{G}^2$

Embankments and roadside in the coastal area: (Latif et al. 2000)

• $\ln(V) = -12.8715358 + 2.6994968 \times \ln(G)$

- $\ln(V) = -12.4 + 1.7131 \times \ln(G) + 1.58245 \times \ln(H)$
- $F_{ub} = G/(8.2005596 + 0.9405175 \times G + 0.0003273 \times G^2)$
- $F_5 = G/(14.7539854 + 0.9554005 \times G + 0.0005282 \times G^2$
- $F_{10} = 1.0865688 28.5099263 / G$
- $F_{15} = 1.1510961 49.8337744 / G$
- $F_{20} = -0.9534501 + 0.0198877 \times G 0.0000573 \times G^2$
- GBH = $-0.8028 + 0.79396 \times BG$

In central part: (Rahman et al. 2001)

- $\ln (v) = -12.0901 + 2.502194 \times \ln(G)$
- $\ln (v) = -11.6632 + 1.941989 \times \ln(G) + 0.754839 \times \ln(H)$
- $F_{ub} = G/(8.232881 + 0.931363 \times G + 0.000409 \times G^2)$
- $F_{16} = 0.449483 + 0.007209 \times G 0.000029 \times G^2$
- $F_{31} = -0.17785 + 0.018051 \times G 0.000029 \times G^2$
- $F_{47} = -0.6801 + 0.023664 \times G 0.000088 \times G^2$
- $F_{63} = -1.34964 + 0.030888 \times G 0.00011 \times G^2$

Homestead: (Latif and Zahir 2001)

- $ln(V_t) = -11.50692 + 2.31757 \times ln(G)$
- $ln(V_t) = -11.19651 + 1.85690 \times ln(G) + 0.67878 \times ln(H)$
- $F_{ub} = G/(4.71339 + 1.02449 \times G)$
- $F_5 = G/(12.65919 + 1.05281 \times G)$
- $F_{10} = 1.11036 25.51349 \times G$
- $F_{15} = -0..52064 + 0.010970 \times G 0.00007 \times G^2$
- $F_{20} = -0.93939 + 0.02327*G 0.00007 \times G_2$

8. Terminalia arjona (Arjun)

Volume Equation in central parts: (Rahman *et al.* 2001)

For Metric Unit

- $ln(v) = -11.1885 + 2.222144 \times ln(G)$
- $ln(v) = -11.3794 + 0.653558 \times ln(H) + 1.896423 \times ln(G)$
- $F_{ub} = G/(10.26619 + 0.84089 \times G + 0.001049 \times G^2)$, 0.954 is constant from GBH 94 cm.
- $F_{16} = 0.392728 + 0.010266 \times G 0.000052 \times G^2$, 0.899 is constant from GBH 96 cm.
- $F_{31} = 1.158105 28.8941/G$, 0.837 is constant from GBH 90 cm
- $F_{47} = -0.66863 + 0.024224 \times G 0.000097 \times G^2$, 0.784 is constant from GBH 100 cm.
- $F_{63} = -0.38981 + 0.011404 \times G 0.000017 \times G^2$

9. Species: Samania saman (Rain tree)

Embankments and Road Sides in the Coastal Areas: (Latif et al. 2000)

For Metric Unit

- $ln(V) = -12.287524 + 2.5086408 \times ln(G)$
- $\ln(V) = -12.3213818 + 1.8912934 \times \ln(G) + 1.183443 \times \ln(H)$
- $F_{ub} = G/(11.4831022 + 0.9321882 \times G + 0.0002577 \times G^2)$
- $F_5 = G/(16.1036268 + 1.0084875 \times G + 0.0001823 \times G^2)$
- $F_{10} = G/(68.6872892 + 0.362527 \times G + 0.0021786 \times G^2)$
- $\bullet \quad F_{15} = -0.4321178 + 0.0145722 \times G 0.000011 \times G^2$
- $\bullet \quad F_{20} = -0.6798156 + 0.0153724 \times G 0.000001 \times G^2$
- GBH = $-1.39177 + 0.8114 \times BG$

Homesteads: (Latif and Zahir 2001)

- $ln(V_t) = -11.37623 + 2.26924 \times ln(G)$
- $log(V_t) = -11.31983 + 1.91118 \times ln(G) + 0.63606 \times ln(H)$
- $F_{ub} = G/(5.65651 + 0.99995 \times G + 0.00009 \times G^2)$
- $F5 = G/(11.83487 + 1.05773 \times G)$

10. Species: Melia azadarach (Bokain)

Croplands: (Latif et al. 1999)

For Metric Unit

- $ln(V) = -11.041653 + 2.1705 \times ln(D)$
- $ln(V) = -10.962743 + 1.888957 \times ln(D) + 0.505435 \times ln(H)$
- $F_{ub} = G/(7.16243 + 0.937244 \times G + 0.000353 \times G^2)$
- $F_5 = G/(10.703146 + 0.969909 \times G + 0.000286 \times G^2)$
- $F_{10} = G/(59.67343 0.119535 \times G + 0.006555 \times G^2)$
- F_{15} =-0.84408+0.034971×G-0.000185×G²

11. Species: Accacia nilotica (BABLA)

Embankments and Road Sides in the Coastal Areas: (Latif et al. 2000)

- $\ln(V) = -11.2782859 + 2.34743 \times \ln(G)$
- $\ln(V) = -11.875835 + 1.8823999 \times \ln(G) + 1.0819988 \times \ln(H)$
- $F_{ub} = G/(6.7308322 + 0.9248798 \times G + 0.0005741 \times G^2)$
- $F_5 = G/(8.7785999 + 1.02001 \times G + 0.0003543 \times G^2)$

- $F_{10} = -0.49322 + 0.0262412 \times G 0.0001275 \times G^2$
- $F_{15} = -1.0759925 + 0.0311006 \times G 0.0001346 \times G^2$
- $F_{20} = -1.3170613 + 0.0271059 \times G 9.000002 \times G^2$
- GBH = $-2.04655 + 0.88228 \times BG$

12. Species: Gmelina arborea Local Name: Gamar.

Plantation: (Latif *et al.* 1984c)

For Metric Unit

- $ln(V) = -7.9022697 + 2.1472 \times ln(D)$
- $ln(V) = -8.4687076 + 1.63502 \times ln(D) + 0.784847 \times ln(H)$
- $ln(V) = -10.3611 + 2.1472 \times ln(G)$
- $ln(V) = -10.34102 + 1.63502 \times ln(G) + 0.784847 \times ln(H)$

For Imperial Unit

- $ln(V) = -2.33654 + 2.1472 \times ln(D)$
- $ln(V) = -4.31289 + 1.63502 \times ln(D) + 0.784847 \times ln(H)$
- $ln(V) = -4.7945 + 2.1472 \times ln(G)$
- $ln(V) = -6.1845448 + 1.63502 \times ln(G) + 0.784847 \times ln(H)$

Metric Conversion Factor

- $F_{ub} = 0.74986 + 0.00317244 \times D 0.0000243195486 \times D^2$
- $F_5 = 1/(1.000009 + 0.932918 \times e^{-0.189339 \times D})$
- $F_{10} = 0.9933706 2.776834 \times e^{-0.141157756 \times D}$
- $F_{20} = 0.9160558 (1 e^{-0.2045035 \times D})^{186.502}$
- $F_{branch} = 1/(11.14767 + 51987.78 \times e^{-0.76215354 \times D})$

Imperial Conversion Factor

- $F_{ub} = 0.74986 + 0.008058 \times D 0.0001569 \times D^2$
- $F_5 = 1/(1.000009 + 0.932918 \times e^{-0.48107 \times D})$
- $F_{10} = 0.9933706 2.776834 \times e^{-0.358541 \times D}$
- $F_{20} = 0.9160558 (1 e^{-0.5202009 \times D})^{186.502}$
- $F_{branch} = 1/(11.14767 + 51987.78 \times e^{-0.93587 \times D})$

13. Species: Syzygium grande (Dhakijam)

Plantation: (Latif *et al.* 1984b)

For Metric Unit

- $V = 0.00552016 0.0028213 \times D + 0.00078431 \times D^2$
- $V = 0.00018987 + 0.000029999 \times D^2 + 0.00024887 \times DH + 0.000024466 \times D^2 H$

- $V = 0.00552016 0.0008977 \times G + 0.000079403 \times G^2$
- $V = 0.00018987 + 0.00000303 \times G^2 + 0.00007919 \times GH + 0.000002477 \times G^2 H$

For Imperial Unit

- $V = 0.194971 0.253102 \times D + 0.178721 \times D^2$
- $V = 0.0067627 + 0.00681399 \times D + 0.00680484 \times DH + 0.001699227 \times D^2 H$

Metric Conversion Factor

- $F_{ub} = D/(-0.2353111+1.281747xD-0.0028786xD^2)$
- $F_5 = 0.99798(1 e^{-0.3020187 \times D})^{-1.7115096}$
- $F_{10} = 0.98404(1 e^{-0.2418424 \times D})^{-16.65083}$
- $F_{15} = 0.952015(1 e^{-0.2309444882 \times D})^{-57.51946}$
- $F_{20} = 0.940938(1 e^{-0.17372189 \times D})^{-66.24374}$
- $F_{branch} = -0.0497893 + 0.0111444881 \times D 0.000201362452 \times D^2$

Imperial Conversion Factor

- $F_{ub} = D/(-0.092642 + 1.281747 \times D 0.007311588 \times D^2)$
- $F_5 = 0.99798(1 e^{-0.7671276 \times D})^{-1.7115096}$
- $F_{10} = 0.98404(1 e^{-0.614798 \times D})^{-16.65083}$
- $F_{15} = 0.952015 (1 e^{-0.586599 \times D})^{-57.51946}$
- $F_{20} = 0.940938 (1 e^{-0.4412536 \times D})^{-66.24374}$
- $F_{branch} = -0.0497893 + 0.028307 \times D 0.00129911 \times D^2$

Natural: (Latif et al. 1985b)

For Metric Unit

- $V = -0.275876 + 0.009951 \times D + 0.0005876 \times D^2$
- $V = 0.08566 + 0.0002378 \times D^2 + 0.011944 \times H + 0.000023649 \times D^2H$
- $\ln(V) = 0.08566 + 0.0000240941 \times G^2 + 0.011944 \times H + 0.00000239117 \times G^2 H$

For Imperial Unit

- $V = -9.74139 + 0.892498 \times D + 0.133871 \times D^2$
- $V = -3.02472 + 0.0541786 \times D^2 + 0.128545 \times H + 0.00164205 \times D^2 H$
- $V = -9.74139 + 0.28409 \times G + 0.013564 \times G^2$
- $V = -3.02472 + 0.005489 \times G^2 + 0.128545 \times H + 0.000166375 \times G^2 H$

Metric Conversion Factor

- $F_{ub} = 1/(1.07405 + 0.2995727 \times e^{-0.035858D})$
- $F_5 = 1.00$ constant
- $F_{10} = 1.00$ constant
- $F_{15} = 1/(1.00207 + 0.287965 \times e^{-0.06397\%D})$

- $F_{20} = 1/(1.003997 + 1.0566205 \times e^{-0.082763 \times D})$
- $F_{branch} = -0.09923815 + 0.004358 \times D 0.000032 \times D^2$

Imperial Conversion Factor

- $F_{ub} = 1/(1.07405 + 0.2995727 \times e^{-0.09108D}$
- $F_2 = 1.00$ constant
- $F_4 = 1.00$ constant
- $F_6 = 1/(1.000207 + 0.287965 \times e^{-0.162507 \times D})$
- $F_8 = 1/(1.003997 + 1.566205 \times e^{-0.2086952 \text{kD}})$
- $\bullet \quad F_{\textit{branch}} = -0.09923815 + 0.01106844 \times D 0.00020955 \times D^2$
- DBH = $0.755543 \times BG$

14. Species: Tectona grandis (Shegun)

Plantation: (Latif et al. 1985a)

For Metric Unit

- $ln(V) = -7.567916 + 2.12337 \times ln(D)$
- $ln(V) = -9.48076 + 1.62116 \times ln(D) + 1.16483 \times ln(H)$
- $ln(V) = -9.9975 + 2.12337 \times ln(G)$
- $ln(V) = -11.3357 + 1.62116 \times ln(G) + 1.16483 \times ln(H)$

For Imperial Unit

- $ln(V) = -2.0244 + 2.12337 \times ln(D)$
- $ln(V) = -5.78932 + 1.62116 \times ln(D) + 1.16483 \times ln(H)$
- $ln(V) = -4.4550878 + 2.12337 \times ln(G)$
- $ln(V) = -7.6451114 + 1.62116 \times ln(G) + 1.16483 \times ln(H)$

Metric Conversion Factor

- $F_{ub} = D/(3.01537 + 1.08688 \times D 0.0003429 \times D^2)$
- $F_5 = 1.000$
- $F_{10} = 0.9979585 (1 e^{-0.0687285 \times D})^{0.310291}$
- $F_{15} = 0.997621 256.13564 \times D^{-2.260389 \times D}$
- $F_{20} = 0.97739 3.72804 e^{-0.08793882 \times D}$
- $F_{branch} = -0.0092912 0.001087 \times D$

Imperial Conversion Factor

- $F_{ub} = D/(1.187155 + 1.08688 \times D 0.000871589 \times D^2)$
- $F_5 = 1.000$
- $F_{10} = 0.9979585(1 e^{-0.1745705 \times D})^{0.310291}$

- $F_{15} = 0.997621 31.145 \times D^{-2.260389}$
- $F_{20} = 0.97739 3.72804 \text{xe}^{-0.2233646 \times D}$
- $F_{branch} = -0.0092912 + 0.2761 \times D$
- DBH = $0.751072 \times BG$

15. Species: Dipterocarpus Turbinatus (Teli Garjan)

Plantation: (Latif *et al.* 1984a)

For Metric Unit

- $ln(V) = -8.5116354 + 2.35556 \times ln(D)$
- $V = 0.00252114 + 0.00010003 \times D^2 + 0.00014779 \times DH + 0.000024065 \times D^2H$
- $ln(V) = -11.20692 + 2.35556 \times ln(G)$
- $V = 0.00252114 + 0.000101 \times G^2 + 0.00047 \times GH + 0.00000244 \times G^2H$

For Imperial Unit

- $ln(V) = -2.75168 + 2.35556 \times ln(D)$
- $V = 0.0890463 + 0.022793 \times D^2 + 0.0040410 \times DH + 0.00167134 \times D^2H$
- $ln(V) = -2.6974 + 2.35556 \times ln(G)$
- $V = 0.022793 + 0.0090222765 \times G^2 + 0.00128629 \times GH + 0.0001693425 \times G^2H$

Metric Conversion Factor

- $F_{ub} = 0.7549622 + 0.00302795 \text{xD} 0.0000195105 \times \text{D}^2$
- $F_5 = 0.999379 3.468647 \times D 0.3558229 \times D^{-167.707}$
- $F_{10} = 0.9817652(1 e^{-0.3558229 \times D})^{69.50948}$
- $F_{15} = 0.9567033(1 e^{-0.29757685})^{273.6787}$
- $F_{20} = 0.9280634(1 e^{-0.27812992 \times D})^{1156.116}$
- $F_{branch} = 0.03835995(1 e^{-0.0417020866 \times D})^{4.103903}$

Imperial Conversion Factor

- $F_{ub} = 0.7549622 + 0.007691 \times D 0.000125874 \times D^2$
- $F_5 = 0.999379 6.611901 \times D^{-3.468647}$
- $F_{10} = 0.9817652(1 e^{-0.9037903 \times D})^{69.50948}$
- $F_{15} = 0.9567033(1 e^{-0.75584525 \times D})^{273.6787}$
- $F_{20} = 0.9280634(1 e^{-0.70645 \times D})^{1156.116}$
- $F_{branch} = 0.03835995(1 e^{-0.1059233 \times D})^{4.103903}$

Natural: (Latif et al. 1985b)

For Metric Unit

- $ln(V) = -7.643303 + 2.12932 ln \times (D)$
- $\ln(V) = -9.187185 + 1.64852 \times \ln(D) + 1.13061 \times \ln(H)$

• $\ln(V) = -11.0689 + 1.64852 \times \ln(G) + 1.13061 \times \ln(H)$

For Imperial Unit

- $\ln(V) = -2.09424 + 2.12932 \ln \times (D)$
- $\ln(V) = -5.43044 + 1.64852 \times \ln(D) + 1.13061 \times \ln(H)$
- $ln(V) = -4.531734 + 2.12932 ln \times (G)$
- $\ln(V) = -7.317549 + 1.64852 \times \ln(G) + 1.13061 \times \ln(H)$

Metric Conversion Factor

- $F_{ub} = 0.8993818 0.000497265 \times D + 0.000006729 \times D^2$
- $F_5 = 1.00$ constant
- $F_{10} = 1/(0.9996527 + 0.1012232 \times e^{-0.0644742 \times D}$ constant
- $F_{15} = 0.9987559 0.3612235 \times e^{-0.0693777 \times D}$
- $F_{20} = 1.000227 1609.242452 \times D^{-2.747173}$
- $\bullet \quad F_{branch} = -0.005090909 + 0.000190656 \times D + 0.000004132 \times D^2$

Imperial Conversion Factor

- $F_{ub} = 0.8993818 0.001263054 \times D + 0.00004341492 \times D^2$
- $F_2 = 1.00$ constant
- $F_4 = 1/(0.9996527 + 0.1012232 \times e^{-0.163746 \times D})$
- $F_6 = 0.9987559 0.3612235 \times e^{-0.1762194D}$
- $F_8 = 1.000227 124.30006 \times D^{-2.747173}$
- $\bullet \qquad F_{\textit{branch}} = -0.005090909 + 0.0004842657 \times D 0.0000266608 \times D^2$
- DBH = $0.792437 \times BG$

16. Species: Artocarpus chaplasha (Chapalish)

Plantation: (Latif *et al.* 1984c)

For Metric Unit

- $ln(V_{ob}) = -8.179774 + 2.24074 \times ln(D)$
- $ln(V_{ob}) = -8.9449526 + 1.82851 \times ln(D) + 0.735381 \times ln(H)$
- $\ln(V_{ob}) = -10.7436798 + 2.24074 \times \ln(G)$
- $\ln(V_{ob}) = -11.03717543 + 1.82851 \times \ln(G) + 0.735381 \times \ln(H)$

For Imperial Unit

- $ln(V_{ob}) = -2.52685 + 2.24074 \times ln(D)$
- $ln(V_{ob}) = -4.55 + 1.82851 \times ln(D) + 0.735381 \times ln(H)$

- $ln(V_{ob}) = -5.09189 + 2.24074 \times ln(G)$
- $ln(V_{ob}) = -6.6431485 + 1.82851 \times ln(G) + 0.735381 \times ln(H)$

Metric Conversion Factor

- $F_{ub} = 0.8993818 0.000497265 \times D + 0.000006729 \times D^2$
- $F_5 = 1.00$ constant
- $F_{10} = 1/(0.9996527 + 0.1012232 \times e^{-0.0644742 \times D}$
- $F_{15} = 0.9987559 0.3612235 \times e^{-0.0693777 \times D}$
- $F_{20} = 1.000227 1609.242452 \times D^{-2.747173}$
- $\bullet \quad F_{branch} = -0.005090909 + 0.000190656 \times D + 0.000004132 \times D^2$

Imperial Conversion Factor

- $F_{ub} = 0.8993818 0.001263054 \times D + 0.00004341492 \times D^2$
- $F_2 = 1.00$ constant
- $F_4 = 1/(0.9996527 + 0.1012232 \times e^{-0.163746 \times D})$
- $F_6 = 0.9987559 0.3612235 \times e^{-0.1762194D}$
- $F_8 = 1.000227 124.30006 \times D^{-2.747173}$
- $\bullet \qquad F_{\textit{branch}} = -0.005090909 + 0.0004842657 \times D 0.0000266608 \times D^2$

Natural: (Latif et al. 1985b)

For Metric Unit

- $ln(V_{ob}) = -8.5181 + 2.30182 \times ln(D)$
- $ln(V_{ob}) = -8.66393 + 2.13197 \times ln(D) + 0.294608 \times ln(H)$
- $ln(V_{ob}) = -11.154 + 2.30182 \times ln(G)$
- $ln(V_{ob}) = -11.10446 + 2.13197 \times ln(G) + 0.294608 \times ln(H)$

For Imperial Unit

- $ln(V_{ob}) = -2.80855 + 2.30182 \times ln(D)$
- $ln(V_{ob}) = -3.46242 + 2.13197 \times ln(D) + 0.294608 \times ln(H)$
- Ln (V_{ob}) = -5.44351+2.30182×ln (G)
- Ln (V_{ob}) = -5.9029+2.13197×ln (G)+0.294608×ln (H)

Imperial Conversion Factors:

- F_{ub} = 0.7653916 + 0.009084665×D 0.0002084166×D²
- $F_5 = 0.999391 (3.371329 \times D)^{-3.148441}$
- $F_{10} = 0.9940039 (76.51808 \times D)^{-3.1231572}$
- $F_{15} = 0.9567597 (1 e^{-0.6795386 \times D})^{-3.148441}$

17. Species: Albizia falcataria (Molaccana koroi) (Das et al. 1985)

For Metric Unit

- $ln(V) = -8.9942 + 1.4963 \times ln(D) + 1.1461 \times ln(H)$
- $ln(V) = -10.707106 + 1.4963 \times ln(G) + 1.1461 \times ln$ (H)

For Imperial Unit

• $ln(V) = -7.1096 + 1.4963 \times ln(G) + 1.1461 \times ln(H)$

Metric Conversion Factors:

- $F_{ub} = 0.913 0.6636 \times e^{-0.3401 \times D}$
- $F_5 = 1.0049 28.503 \times D^{-2.256}$
- $F_{10} = 0.9781(1 e^{-0.2838 \times D})^{84.591}$
- $F_{15} = 0.9352(1 e^{-0.2742 \times D})^{244.88}$
- $F_{20} = 0.9329(1 e^{-0.2313 \times D})^{502.64}$
- $F_{\text{brabch}} = 0.2803(1 e^{-0.02435 \times D})^{1.831}$

18. Species: Pinus caribaea (Caribbean pitch pine) (Latif et al. 1996)

For Metric Unit

- $ln(V_{ob}) = -8.7854 + 2.410755 \times ln(D)$
- $ln(V_{ob}) = -9.39412 + 1.867386 \times ln(D) + 0.839034 \times ln(H)$
- $ln(V_{ub}) = -9.11552 + 2.483187 \times ln(D)$
- $ln(V_{ub}) = -9.7505 + 1.935397 \times ln(D) + 0.851715 \times ln(H)$
- $ln(V_{ub}) = -11.545 + 2.410755 \times ln(G)$
- $ln(V_{ub}) = -11.9660 + 1.935397 \times ln(G) + 0.851715 \times ln(H)$

19. Species: Aphanamixis polystachya (Pitraj)

Natural Forests: (Latif et al. 1985b)

For Metric Unit

- $ln(V_{ob}) = -9.2157 + 2.4781 \times ln(D)$
- $ln(V_{ob}) = -8.9863 + 1.9328 \times ln(D) + 0.6992 \times ln(H)$
- $ln(V_{ob}) = -12.0535 + 2.4781 \times ln(G)$
- $ln(V_{ob}) = -11.198834 + 1.9328 \times ln(G) + 0.6992 \times ln(H)$

For Imperial Unit

- $ln(V_{ob}) = -3.3414 + 2.4781 \times ln(D)$
- $ln(V_{ob}) = -4.4511 + 1.9328 \times ln(D) + 0.6992 \times ln(H)$
- $ln(V_{ob}) = -6.1782 + 2.4781 \times ln(G)$
- $ln(V_{ob}) = -6.6636 + 1.9328 x ln(G) + 0.6992 x ln(H)$

Metric Conversion Factors:

- $F_{ub} = 0.655 + 0.007937 \times D 0.00005847 \times D^2$ Up To 68 Cm Then Constant 0.924
- $F_5 = 1.00$ Constant
- $F_{10} = 1.0001 24.8498 \times D^{-2.4467}$
- $F_{15} = 1/(1.0010 + 0.3036 \times e^{-0.07516 \times D}$
- $F_{20} = 0.9945 1.9156 \times e^{-0.09406 \times D}$
- $F_{branch} = 0.07395 \times (1.0 e^{-0.18846 \times D})^{40546}$

Imperial Conversion Factors:

- $F_{ub} = 0.655 + 0.02016 \times D 0.0003772 \times D^2$ up to 26 inches then constant 0.924
- $F_2 = 1.00$ constant
- $F_4 = 1.0001 2.5399 \times D^{-2.4467}$
- $F_6 = 1/(1.0010 + 0.3036 \times e^{-0.1909 \times D}$
- $F_8 = 0.9945 1.9156 \times e^{-0.2389 \times D}$
- $F_{branch} = 0.07395 \times (1.0 e^{-0.4787 \times D})^{4054.6}$

Homesteads:

For Metric Unit

- $ln(V_t) = -11.25645 + 2.25821 \times ln(G)$
- $ln(V_t) = -11.25528 + 1.98544 \times ln(G) + 0.47163 \times ln(H)$
- $F_{ub} = G/(5.16217 + 1.02520 \times G)$
- $F_5 = G/(21.87330 + 0.77370 \times G + 0.001702 \times G^2$
- $F_{10} = 1.12789 26.50392/G$
- $F_{15} = 1.21272 45.21082/G$
- $F_{20} = 1.34009 69.21674/G$

20. Species: Dipterocarpus gracilis (Dhali garjan)

Natural forests: (Latif et al. 1985b)

For Metric Unit

- $\ln(V) = -8.6333 + 2.4411 \times \ln(D)$
- $ln(V) = -9.4406 + 1.866 \times ln(D) + 0.9648 \times ln(H)$
- $\ln(V) = -11.4287 + 2.4411 \times \ln(G)$
- $ln(V) = -11.5766 + 1.866 \times ln(G) + 0.9648 \times ln(H)$

For Imperial Unit

• $Ln(V)=-8.6333+2.4411\times Ln(D)$

• $Ln(V) = -9.4406 + 1.866 \times Ln(D) + 0.9648 \times Ln(H)$

Metric Conversion Factors:

- F_{ub} = 0.8493+0.001308×D 0.000007031×D² Upto 92 Cm Then Constant At 0.910
- $F_5 = 1.000 \text{ Constant}$
- F_{10} = 1.000 0.03310×E -0.05676×D
- $F_{15} = 0.9998 0.7636 \times E^{-0.05594 \times D}$
- F_{20} = 0.9975-0.1477× $E^{-0.06433}$ ×D

Imperial Conversion Factors:

- F_{ub} = 0.8493+0.003322×D 0.00004536×D² up to a diameter of 36 inches then constant F = 0.910
- $F_5 = 1.000$ constant
- F_{10} = 1.000 0.03310×e^{-1429×D}
- $F_{15} = 0.9998 0.1636 \times e^{-0.1421 \times D}$
- $F_{20} = 0.9975 0.1477 \times e^{-0.1634 \times D}$

21. Species: Duabanga grandiflora (Banderhola)

Natural forests: (Latif et al. 1985b)

For Metric Unit

- $Ln(V) = -9.2929 + 2.4987 \times Ln(D)$
- $Ln(V) = -0.05127 + 0.0004129 \times D^2 + 0.001298 \times H + 0.0000247 \times D^2 h$

For Imperial Unit

- $ln(V) = -3.3995 + 2.4987 \times ln(D)$
- $ln(V) = -18.1030 + 0.09407 \times D^2 + 0.01397 \times H + 0.001715 \times D^2 H$

22. Species: Bombax ceiba (Simul)

Natural forest: (Latif et al. 1985b)

Imperial Volume Tbable Equations (Based on Diameter):

For Metric Unit

- $ln(V) = -8.463 + 2.3088 \times ln(D)$
- $ln(V) = -9.1013 + 1.9419 \times ln(D) + 0.5276 \times ln(H)$
- $ln(V) = -11.107 + 2.3088 \times ln(G)$
- $ln(V) = -11.325 + 1.9419 \times ln(G) + 0.5276 \times ln(H)$

For Imperial Unit

- $ln(V) = -2.7466 + 2.3088 \times ln(D)$
- $ln(V) = -3.46242 + 2.13197 \times ln(D) + 0.294608 \times ln(H)$
- $ln(V) = -5.3896 + 2.3088 \times ln(G)$

• $ln(V) = -6.0126 + 1.9419 \times ln(G) + 0.5276 \times ln(H)$

Metric Conversion Factors:

- $F_{ub} = 0.9440 7.1054 \times D^{-1.1609}$
- $F_5 = 1.000$ constant
- $F_{10}=1.000$ constant
- $F_{15} = 0.9997 203.943 \times D^{-2.5987}$
- $F_{20} = 0.9984 89452.6 \times D^{-3.865}$

Rotetion age 14 years

- Age-volume relationship equation: ln(V) = -0.799 12.709/age
- Height increment: ln(H) = 3.171 6.134/age
- Diameter increment: ln(D) = 3.209 5.708/age
- Diameter-height relation: $H = 0.458 \times D + 2.046$

Homesteads: (Latif and Zahir 2001)

For Metric Unit

- $ln(V_t) = -12.14029 + 2.48771 \times ln(G)$
- $log(V_t) = -11.54528 + 1.93559 \times log(G) + 0.70716 \times ln(H)$
- $F_{ub} = G/(4.71088 + 1.02902 \times G)$
- $F_5 = G/(39.30153 + 0.42284 \times G + 0.0041 \times G^2)$
- $F_{10} = -0.41831 + 0.0204 \times G 0.0011 \times G^2$
- $F_{15} = -0.41250 + 0.01649 \times G 0.00005 \times G^2$
- $F_{20} = -0.16713 + 0.00406 \times G + 0.00003 \times G^2$

23. Species: Mangifera sylvatica (Uriam)

Natural forests: (Latif et al. 1985b)

For Metric Unit

- $ln(V) = -8.5703 + 2.337 \times ln(D)$
- $ln(V) = -8.9048 + 2.0808 \times ln(D) + 0.6926 \times ln$ (H)
- $ln(V) = -11.2465 + 2.337 \times ln(G)$
- $ln(V) = -11.28676 + 2.0808 \times ln(G) + 0.6926 \times ln$ (H)

For Imperial Unit

- $ln(V) = -2.8276 + 2.337 \times ln(D)$
- $ln(V) = -4.8201 + 2.0808 \times ln(D) + 0.6926 \times ln(H)$
- $ln(V) = -5.5028 + 2.337 \times ln(G)$
- $ln(V) = -7.2021 + 2.0808 \times ln(G) + 0.6926 \times ln(H)$

Metric Conversion Factors:

- $F_{ub} = 0.9556 16.5862 \times D^{-1.4465}$
- $F_5 = 1.000$ constant
- $F_{10} = 1.0008 0.01859 \times e^{-0.03721 \times D}$
- $F_{15} = 1.0037 0.08292 \times e^{-0.03518 \times D}$
- $F_{20} = 0.996 1.9569 \times e^{-0.0961 \times D}$

Imperial Conversion Factors:

- $F_{ub} = 0.9556 4.3068 \times D^{-1.4465 \times D}$
- $F_5 = 1.000$ constant
- $F_{10} = 1.0008 0.01859 \times e^{-0.09452 \times D}$
- $F_{15} = 1.0037 0.08292 \times e^{-0.08936 \times D}$
- $F_{20} = 0.996 1.9569 \times e^{-0.2441 \times D}$

24. Species: Schima wallichii (Kanak, monchampa)

Natural forests: (Latif *et al.* 1985b)

For Metric Unit

- $ln(V) = -6.3428 + 1.6912 \times ln(D)$
- $V = 0.05978 0.00003151 \times D^2 + 0.01648 \times H + 0.00002781 \times D^2 H$

For Imperial Unit

- $ln(V) = -1.2021 + 1.6912 \times ln(D)$
- $V = 2.1109 0.007178 \times D^2 + 0.1774 \times H + 0.001931 \times D^2 H$
- $ln(V) = -3.1381 + 1.6912 \times ln(G)$
- $V = 2.1109 0.0007213 \times G^2 + 0.1774 \times H + 0.0001957 \times G^2 H$

Metric Conversion Factors:

- $F_{ub} = 1/(1.1935 + 0.3931 \times E^{-0.04512 \times D})$
- $F_5 = 1.000$
- $F_{10} = 1.0005 0.02896 \times E^{-0.04055 \times D}$
- $F_{15} = 1.0015 0.1408 \times E^{-0.04031 \times D}$
- $F_{20} = 1.005 0.4304 \times E^{-0.03969 \times D}$
- $F_{brance} = 0.09787 3.0658 \times E^{-0.1131 \times D}$

Imperial Conversion Factors:

- $F_{ub} = 1/(1.1935 + 0.3931 \times e^{-0.1146 \times D})$
- $F_5 = 1.000$
- $F_{10} = 1.0005 0.02896 \times e^{-0.1030 \times D}$
- $F_{15} = 1.0015 0.1408 \times e^{-0.1024 \times D}$
- $F_{20} = 1.005 0.4304 \times e^{-0.1008 \times D}$

• $F_{brance} = 0.09787 - 3.0658 \times e^{-0.2872 \times D}$

25. Speies: Shorea robusta Gaertn. f. (Sal)

Natural forests: (Das et al. 1992)

For Metric Unit

- $ln(V_{ob}) = -9.1727759 + 2.5178944 \times ln(D)$
- $ln(V_{ob}) = -9.615639 + 2.033071 \times ln(D) + 0.7361229 \times ln(H)$
- $ln(V_{ob}) = -12.0554 + 2.5178944 \times ln(G)$
- $ln(V_{ob}) = -11.944 + 2.033071 \times ln(G) + 0.7361229 \times ln(H)$
- $V_{ub} = -0.1011481 + 0.0006209 \times D^2$
- $V_{ub} = 0.0032556 + 0.0000269 \times D^2H$
- $ln(V_{ob}) = -11.938881 + 2.033071 \times ln(G) + 0.7361229 \times ln(H)$
- $V_{ub} = -0.1011481 + 0.0000629 \times G^2$
- $V_{ub} = 0.0032556 + 0.0000027255 \times G^2 H$

For Imperial Unit

- $Ln(V_{ob}) = -3.2615386 + 2.5178944 \times Ln(D)$
- $Ln(V_{ob}) = -5.02669 + 2.033071 \times Ln(D) + 0.7361229 \times Ln(H)$
- $ln(V_{ob}) = -6.1438476 + 2.5178944 \times ln(G)$
- $ln(V_{ob}) = -7.3540131 + 2.033071 \times ln(G) + 0.7361229 \times ln(H)$
- $V_{ub} = -3.5720185 + 0.14146622 \times D^2$
- $V_{ub} = -0.11496 + 0.001867 \times D^2H$
- $V_{ub} = -3.5720185 + 0.0143335 \times G^2$
- $V_{ub} = -0.11496 + 0.0001894 \times G^2 H$

26. Species: Swintonia floribunda (Civit)

Natural Forests: (Latif et al. 1985b)

For Metric Unit

- $ln(V) = -7.631146787 + 2.14002 \times ln(D)$
- $ln(V) = -8.862135955 + 1.81484 \times ln(D) + 0.827986 \times ln(H)$

For Imperial Unit

- $ln(V) = -2.07211 + 2.14002 \times ln(D)$
- $ln(V) = -4.58995 + 1.81484 \times ln(D) + 0.827986 \times ln(H)$
- $ln(V) = -4.521853 + 2.14002 \times ln(G)$
- $ln(V) = -6.66745 + 1.81484 \times ln(G) + 0.827986 \times ln(H)$

Metric Conversion Factors:

- $F_{ub} = 0.8244989 + 0.0022889 \times D 0.000010447 \times D2$
- $F_5 = 1.000$
- $F_{10} = 0.9997364 2634.87228 \times D^{-0.363656}$
- $F_{15} = 1.000685 195.6021833 \times D^{-2.509712}$
- $F_{20} = 1.004114 216.84365 \times D^{-2.226021}$
- $F_{branch} = 0.2927091(1-E^{-0.0287884 \times D})^{12.07019}$

Imperial Conversion Factors:

- $F_{ub} = 0.8244989 + 0.005813686 \times D 0.00006740135 \times D^2$
- $F_5 = 1.000$
- $F_{10} = 0.9997346 88.82922 \times D^{-3.636564}$
- $F_{15} = 1.000685 18385201 \times D^{-2.509712}$
- $F_{20} = 1.004114 27.14288 \times D^{-2.22602}$
- $F_{branch} = 0.2927091 (1-e^{-0.07312252 \times D})^{12.07019}$

27. Species: Terminalia bellerica (Bahera)

Natural Forests: (Latif et al. 1985b)

For Metric Unit

- $ln(V) = -8.0446 + 2.1338 \times ln(D)$
- $ln(V) = -8.3245 + 1.7826 \times ln(D) + 0.6257 \times ln(H)$
- $ln(V) = -10.365104 + 1.7826 \times ln(G) + 0.6257 \times ln(H)$

For Imperial Unit

- $ln(V) = -2.4914 + 2.1338 \times ln(D)$
- $ln(V) = -3.8420 + 1.7826 \times ln(D) + 0.6257 \times ln(H)$
- $ln(V) = -4.9340 + 2.1338 \times ln(G)$
- $ln(V) = -5.8826 + 1.7826 \times ln(G) + 0.6257 \times ln(H)$

Metric Conversion Factors:

- $F_{ub} = D/(0.1146 + 0.4594 \times D 0.0003280 \times D^2)$
- $F_5 = 1.000$
- $F_{10} = 1.000$
- $F_{15} = 1.0009 0.1212 \times E^{-0.04406 \times D}$
- $F_{20} = 0.9998 0.5266 \times E^{-0.05224 \times D}$
- $F_{branch} = 0.000002117 \times D^{2.4536}$

Imperial Conversion Factors:

- $F_{ub} = D/(0.1146 + 1.1669 \times D 0.002116 \times D^2)$
- $F_5 = 1.000$

- $F_{10} = 1.000$
- $F_{15} = 1.0009 0.1212 \times e^{-0.119 \times D}$
- F_{20} = 0.9998 0.5266× $e^{-0.1327\times D}$
- $F_{branch} = 0.00002085 \times D^{-2.4536}$

28. Species: Tetrameles nudiflora (Chundul)

Natural Forests. (Latif et al. 1985b)

For Metric Unit

- $ln(V) = -7.077637 + 2.0291 \times ln(D)$
- $ln(V) = -8.492536 + 1.85222 \times ln(D) + 0.687905 \times ln(H)$

For Imperial Unit

- $ln(V) = -1.6223 + 2.0291 \times ln(D)$
- $ln(V) = -4.01938 + 1.85222 \times ln(D) + 0.687905 \times ln(H)$
- $ln(V) = -3.9451 + 2.0291 \times ln(G)$
- $ln(V) = -6.13967 + 1.85222 \times ln(G) + 0.687905 \times ln(H)$

Metric Conversion Factors:

- $F_{ub} = 0.8316 + 0.0021653543xd 0.0000121094xd^2$)
- $F_5 = 1.000$
- $F_{10} = 1.000$
- $F_{15} = 1/(0.9993933 + 0.1137328xe^{-0.04719488xD}$
- $F_{20} = 1/(0.9985865 + 0.3711621 \text{xe}^{-0.478605 \text{xD}})$
- $F_{branch} = 0.0000124585xd^{3.444204}$

Imperial Conversion Factors:

- $F_{ub} = 0.8316 + 0.0055 \times D 0.000078125 \times D^2$
- $F_5 = 1.000$
- $F_{10} = 1.000$
- $F_{15} = 1/(0.9993933 + 0.1137328 \times e^{-0.119875 \times D}$
- $F_{20} = 1/(0.9985865 + 0.3711621 \times e^{-0.1215657 \times D}$
- $F_{branch} = 0.0000005025934 \times D^{3.444204}$

29. Species: Eucalyptus spp. (Military gach)

For Metric Unit

Volume Equations: (All species combined):

• $ln(V_{ob}) = -9.4209 + 1.748 \times ln(D) + 0.931 \times ln(H)$

Volume Equations:: Brassiana

• $ln(V_{ob}) = -9.5783 + 1.6783 \times ln(D) + 1.0483 \times ln(H)$

Volume Equations: Tereticornis

• $ln(V_{ob}) = -9.4264 + 1.685 \times ln(D) + 0.9840 \times ln(H)$

Volume Equations: Camaldulensis

• $ln(V_{ob}) = -9.352 + 1.8055 \times ln(D) + 0.859 \times ln(H)$

Conversion Factors:

- $F_{ub} = 0.6416 + 0.019286 \times D 0.0006263 \times D^2$
- $F_5 = 0.9723(1 e^{-0.6557 \times D})^{24.203}$
- $F_{10} = 0.9151(1 e^{-0.4043 \times D})^{72.101}$
- $F_{15} = -1.6656 + 0.1618 \times D 0.002452 \times D^2$

30. Species: Sonneratia apetala (Keora) (Latif 1994)

For Metric Unit

- $V_{ob} = -0.0306 + 0.000558967 \times D^2$
- $V_{ob} = -0.0117 + 0.0000280056 \times D^2 H$
- $V_{ub} = -0.0332 + 0.0004922 \times D^2$
- $V_{ub} = 0.0041 + 0.0000246325 \times D^2 H$
- $V_{0b} = -0.0306 + 0.00005664 \times G^2$
- $V_{ob} = -0.0117 + 0.00000283756 \times G^2 H$
- $V_{ub} = -0.0332 + 0.00004986 \times G^2$
- $V_{ub} = 0.0041 + 0.00000249579 \times G^2 H$

For Imperial Unit

- $V_{ob} = -1.0086 + 0.12735 \times D^2$
- $V_{ob} = -0.4132 + 0.001946 \times D^2 H$
- $V_{ub} = -1.1724 + 0.1121 \times D^2$
- $V_{ub} = 0.1448 + 0.00172 \times D^2 H$
- $V_{ob} = 1.0086 + 0.0129 \times G^2$
- $V_{ob} = 0.4132 + 0.000198 \times G^2 H$
- $V_{ub} = -1.1724 + 0.01136 \times G^2$
- $V_{ub} = -0.1448 + 0.000173 \times G^2 H$

For Metric Unit: Chittagong.

- $V_{ob} = -0.02288 + 0.0004998 \times D^2$
- $V_{ob} = 0.0073 + 0.00003324 \times D^2 H$
- $V_{ub} = -0.0256 + 0.0004355 \times D^2$
- $V_{ub} = -0.00088 + 0.0000297 \times D^2 H$
- $V_{ob} = -0.02288 + 0.0000506 \times G^2$
- $V_{ob} = 0.0073 + 0.000003368 \times G^2 H$

•
$$V_{ub} = -0.0256 + 0.0000441 \times G^2$$

$$\bullet \quad V_{ub} = \text{ - } 0.00088 + 0.0000030128 \times G^2 \text{ H}$$

For Imperial Unit: Chittagong

•
$$V_{ob} = -0.789 + 0.115 \times D^2$$

•
$$V_{ob} = 0.25796 + 0.0023084 \times D^2 H$$

•
$$V_{ub} = -0.9261 + 0.102 \times D^2$$

•
$$V_{ub} = 0.25796 + 0.00023084 \times D^2 H$$

Imperial Volume Equations (Based on Girth):

•
$$V_{ob} = -0.789 + 0.01165 \times G^2$$

•
$$V_{ob} = 0.25796 + 0.0002339 \times G^2 H$$

•
$$V_{ub} = -0.9261 + 0.01034 \times G^2$$

•
$$V_{ub} = 0.25796 + 0.0002339 \times G^2 H$$

31. Species: Avicennia officinalis (Baen) (Latif 1994)

For Metric Unit

•
$$V_{ob} = -0.0049 + 0.00035 \times D^2$$

•
$$V_{ub} = -0.0088 + 0.000321 \times D^2$$

•
$$V_{ob} = -0.0089 + 0.0000264 \times D^2 H$$

•
$$V_{ub} = -0.0012 + 0.0000257958 \times D^2 H$$

•
$$V_{ob} = -0.0049 + 0.0000355 \times G^2$$

•
$$V_{ub} = -0.0088 + 0.0000325 \times G^2$$

•
$$V_{ob} = -0.0089 + 0.00000267 \times G^2 H$$

•
$$V_{ub} = -0.0012 + 0.00000261 \times G^2 H$$

For Imperial Unit

•
$$V_{ob} = -0.176 + 0.08005 \times D^2$$

•
$$V_{ub} = -0.312 + 0.07313 \times D^2$$

•
$$V_{ob} = -0.315 + 0.001972 \times D^2 H$$

•
$$V_{ub} = -0.0044 + 0.00179 \times D^2 H$$

•
$$V_{ob} = -0.176 + 0.00811 \times G^2$$

•
$$V_{ub} = -0.312 + 0.00741 \times G^2$$

•
$$V_{ob} = -0.315 + 0.0001998 \times G^2 H$$

•
$$V_{ub} = -0.0044 + 0.0001814 \times G^2 H$$

32. Species: Mangifera indica (Am)

Homesteads: (Latif and Zahir 2001)

For Metric Unit

- $ln(V_t) = -11.27269 + 2.24506 \times ln(G)$
- $ln(V_t) = -11.25377 + 1.96697 \times ln(G) + 0.52237 \times ln(H)$
- $F_{ub} = G/(5.17418 + 0.00747 \times G)$
- $F_5 = 0.93459 8.61513/G$
- $F_{10} = 0.98017 17.68901/G$
- $F_{15} = -0.38336 + 0.01709 \times G 0.00005 \times G^2$
- $F_{20} = -0.21340 + 0.00747xG$

33. Species: Lannea coromandelica (Badi)

Homesteads: (Latif and Zahir 2001)

For Metric Unit

- $ln(V_t) = -11.519102 + 2.01724 \times ln(G) + 0.56356 \times ln(H)$
- $F_{ub} = G/(5.42321 0.00020 \times G + 1.06073 \times G^2)$
- $F_5 = G/(11.61961 + 1.17583 \times G + 0.00015 \times G^2)$
- $F_{10} = 1.03389 23.56134/G$
- $F_{15} = -0.26776 + 0.01039 \times G$
- $F_{20} = -0.01928 0.00269 \times G + 0.00009 \times G^2$

34. Species: Syzygium cumuni (Jam)

Homesteads: (Latif and Zahir 2001)

For Metric Unit

- $ln(V_t) = -11.24854 + 2.24804 \times ln(G)$
- $ln(V_t) = -11.10705 + 2.0044 \times ln(G) + 0.39642 \times ln(H)$
- $F_{ub} = G/(4.68356 + 1.02669 \times G)$
- $F_5 = G/(14.01780 + 1.05539 \times G)$
- $F_{10} = 0.02585 + 0.01522 \times G 0.00007 \times G^2$
- $F_{15} = -0.58716 + 0.02363 \times G 0.00010 \times G^2$
- $F_{20} = 1/(1.23482 59.55799 \times G)$

35. Species: Anthocephalus chinensis (Kadam)

Homesteads: (Latif and Zahir 2001)

For Metric Unit

- $ln(V_t) = -11.63629 + 2..32592 \times ln(G)$
- $ln(V_t) = -11.12693 + 1.83260 \times ln(G) + 0.68015 \times ln(H)$
- $F_{ub} = G/(6.16218 + 0.99459 \times G)$
- $F_5 = G/(13.19902 + 1.02381 \times G)$
- $F_{10} = (-0.72032 + 0.03824 \times G 0.00023 \times G^2)$
- $F_{15} = (-0.36310 + 0.01252 \times G)$
- $F_{20} = 1.34229 69.21674/G$)

36. Species: Artocarpus heterophyllus (Kanthal)

Homesteads: (Latif and Zahir 2001)

For Metric Unit

- $\ln (V_t) = -11.06320 + 2.18203 \times \ln(G)$
- $\ln (V_t) = -10.99533 + 1.80823 \times \ln(G) + 0.68951 \times \ln(H)$
- $F_{ub} = G/(2.78752 + 1.04065 \times G 0.00010 \times G^2)$
- $F_5 = G/(11.53636 + 1.00570 \times G + 0.00024 \times G^2)$
- $F_{10} = 1.11123 22.96773/G$
- $F_{15} = G/(11.53636 + 1.00570 \times G + 0.00024 \times G^2)$
- $F_{20} = -0.35820 + 0.01223 \times G 0.00003 \times G^2$

37. Species: Azadirachta indica (Neem)

Homesteads: (Latif and Zahir 2001)

For Metric Unit

- $ln(Vt) = -11.33340 + 2.25814 \times ln(G)$
- $ln(Vt) = -11.42823 + 1.89235 \times ln(G) + 0.71493 \times ln(H)$
- Fub = $G/(4.52235 + 1.01229 \times G)$
- F5 = 1.00005 9.02065/G
- F10 = 1.15448 26.78537/G
- $F15 = -0.84673 + 0.02915 \times G 0.00012 \times (G^2)$
- $F20 = -1.24989 + 0.03081 \times G 0.00012 (G^2)$
- $F20 = -0.26397 + 0.00820 \times G$

38. Mixed Species Group in Natural Forest

For Metric Unit

- $ln(V) = -7.574983 + 2.08627 \times ln(D)$
- $ln(V) = -8.3367 + 1.59316 \times ln(D) + 0.940025 \times ln(H)$
- $ln(V) = -9.9621407 + 2.08627 \times ln(G)$
- $ln(V) = -10.15963 + 1.59316 \times ln(G) + 0.940025 \times ln(H)$

For Imperial Unit

- $ln(V) = -2.06605 + 2.08627 \times ln(D)$
- $ln(V) = -4.40427 + 1.59316 \times ln(D) + 0.940025 \times ln(H)$
- $ln(V) = -4.45426 + 2.08627 \times ln(G)$
- $ln(V) = -6.2280065 + 1.59316 \times ln(G) + 0.940025 \times ln(H)$

Metric Conversion Factors

- $F_{ub} = 0.840082 + 0.00219243 \times D 0.000014044 \times D^2$
- $F_5 = 1.000$
- $F_{10} = 0.9899 + 0.0001877 \times D 0.000000871 \times D^2$
- $F_{15} = 0.94976 + 0.001001 \times D 0.000005023 \times D^2$
- $F_{20} = 0.8438 + 0.0031035 \times D 0.0000155311 \times D^2$
- $F_{branch} = D/(-241.9453+17.6668\times D 0.1012375\times D^2)$

Imperial Conversion Factors

• $F_{ub} = 0.840082 + 0.00556878 \times D - 0.000090608 \times D^2$

- $F_5 = 1.000$
- $F_{10} = 0.9899 + 0.0004769 \times D 0.0000056217 \times D^2$
- $F_{15} = 0.94976 + 0.0002542 \times D 0.00003241 \times D^2$
- $F_{20} = 0.8438 + 0.007883 \times D 0.0001002 \times D^2$

 $F_{branch} = D/(-241.9453+44.87374 \times D - 0.6531 \times D^2)$

39. Species: Albizia richardiana King and Prain (Rajkoroi)

Southern Part of Bangladesh (Zahir et al. 2012)

For Metric Unit

- $ln(V)=-10.996396+2.247808 \times ln(G)$
- $ln(V)=-10.831293+1.699319 \times ln(G)+0.813706 \times ln(H)$
- $F_{ub}=G/(3.620321+1.050948\times G-0.000049\times G^2)$
- F_{30} =0.425764+0.0069×G-0.000021× G^2 , 0.9236 is Constant from GBH 90 cm
- F_{35} =0.343096+0.007632×G-0.000022×G², 0.8975 is Constant from GBH 94 cm
- $F_{40}=0.217338+0.009023\times G-0.000026\times G^2$, 0.8869 is Constant from GBH 102 cm
- $F_{45}=0.092893+0.010254\times G-0.000029\times G^2$, 0.8699 is Constant from GBH 110 cm
- $F_{Branch} = -0.04419 + 0.004127 \times G 0.0000079 \times G^2$

• Growth and Yield Equations of Forest tree species

1. Species: Acacia auriculiformis (Akashmoni)

Plantation:

Site Index Guide Equations:

• $ln(DHT) = 3.9178 - 2.7334/A^{0.3}$

Growth and Yield Equations:

- $ln(DHT) = 1.5968 + ln(S) 2.7334/A^{0.3}$
- $ln(HT) = -1.7386 + 0.8099 \times ln(A) + 0.9125 \times ln(S)$
- $ln(DBH) = 3.2693 + 0.1097 \times ln(A) 3.6893/A 12.6745/S + 0.0767/A$
- ln(BA/HA) = 4.44361-7.349/A + 0.1464xS/A-11.2177/S-20.1616/S
- $\ln(Vt/HA) = 6.6772 28.1229/S 8.331/A + 0.1634 \times \ln(A)$
- $ln(VOB) = 10.4765 49.5826/S 9.6569/A + 0.2194 \times S/A 0.1411 \times S$

Embankments and Road Sides in the Coastal Areas: (Latif and Zahir 2001)

Site Index Guide Equations:

• $ln(DHT) = 3.6394 - 2.62955 / A^{0.4}$

Growth and Yield Equations:

- $\ln(DHT) = 0.89011 2.62955 \text{ M}^{0.4} + \ln(S)$ Base age 15 years
- $ln(HT) = 0.89966 2.713733 A^{0.4} + 0.9422 \times ln(S)$
- $\ln(\text{GBH}) = 2.10558 3.97967/\text{A}^{0.6} + 1.14278 \times \ln(\text{S})$
- $\ln(\text{Vt/tree}) = -7.35069 9.1448/A^{0.4} + 2.9054 \times \ln(S)$

Rotation Age = 10 year

2. Species: Acacia mangium (Mangium) (Latif et al 1995)

Plantation:

Site Index Guide Equations:

• $ln(DomHT) = 4.0218 - 3.1457 / A^{0.4}$

- $ln(Dom HT) = 1.536 + ln(S) 3.1457 / A^{0.4}$
- $ln(HT) = -1.394 + 1.0648 \times ln(S) 3.5051/A^{0.4}$
- $ln(DBH) = 3.4406 8.8679 / A + 0.2918 \times S / A$
- $\ln(BA/HA) = 4.1601 + 0.7844 \times S/A 19.217/A$
- $ln(VT/HA) = 6.0885 17.647/A + 0.5691 \times S/A$

• $ln(Vob/HA) = 10.4765 - 49.5826/S - 9.6569/A + 0.2194 \times S/A - 0.1411 \times S$

Rotation Age = 10 year

3. Species: Cassia siamea (Minjiri) (Latif et al 1995)

Plantation:

Site Index Guide Equations:

• $\ln(DomHT) = 3.6213 - 3.1157 / A^{0.4}$

Growth and Yield Equations:

- $\ln(DomHT) = 1.52158 + \ln(S) 3.11157 / A^{0.4}$
- $\ln(HT) = -1.1527 + 0.04901 \times \ln(A) + 1.1123 \times \ln(S) 1.1483 / A$
- $ln(DBH) = 0.4658 + 0.7342 \times ln(A) + 0.1058 \times S 0.1249 \times ln(Stem/HA)$
- $\ln(BA/HA) = -8.284 + 1.3678 \times \ln(A) + 0.2078 \times S + 0.7616 \times \ln(Stem/HA)$

Rotation Age = 10 year

4. Species: Eucalyptus Camaldulensis (Eucalyptus)

Plantation: (Latif *et al* 1993)

Site index guide equations:

•
$$ln(DHT) = 5.1314 - 3.6698/A^{0.2}$$

Growth and Yield Equations:

- $\ln(\text{DHT}) = 2.5645557 3.6698/\text{A}^{0.2} + \ln(\text{S})$
- $ln(HT) = -1.257411 + 0.617159 \times ln(A) + 01.914926 \times ln(S)$
- $ln(DBH) = -1.535435 + 0.474627 \times ln(A) + 1.088763 \times ln(S) 0.858463/A$
- $\ln(BA/HA) = -3.313867 -15.290663/S + 0.1181 \times S/A 3.293322/A + 0.719011 \times \ln(stems/H A) + 0.799276 \times \ln(A)$
- $ln(V_t/HA) = 12.062922 0.164398 \times S/A 4.199452/A + 0.735613 \times ln(stems/HA) 0.928967 \times ln(S) 16.755997/ln(S) 6.777983/A^{0.2}$

Croplands: (Latif 1999a)

Site Index Guide Equations:

• $ln(H) = 3.18168 - 3.37211/A^{1.2}$

- $ln(DHT) = ln(S) 3.37211/A^1.2 + 0.32643$ Base age 7 years
- $ln(DGBH) = 2.5322 + 0.74613 \times ln(S) 4.14439/A^{1.2}$
- $ln(H) = 0.7732 + 0.75319 \times ln(S) 3.42381/A^{1.2}$
- $ln(G) = 2.84451 + 0.60308 \times ln(S) 4.28301/A^{1.2}$
- $ln(V_t) = -4.89633 + 1.66954 \times ln(S) 10.1495/A$

Rotation Age = 10 year.

5. Species: Albizia procera (Korai)

Embankments and Road Sides in the Coastal Areas: (Latif and Zahir 2001)

Site Index Guide Equations:

• $ln(H) = 3.3472 - 2.36685/A^{0.5}$

Growth and Yield equations

- $ln(H) = ln(S) 2.36685/A^{0.5} + 0.611105$, Base age 15 years
- $ln(H) = 0.08106 2.17922/A^{0.6} + 1.06862 \times ln(S)$
- $ln(G) = -1.12274 6.07462/A^{1.2} + 2.14125 \times ln(S)$
- $ln(Vt/tree) = -14.5002 13.502/A^{1.1} + 5.33615 \times ln(S)$

Croplands: (Latif 1999a)

Site Index Guide Equation:

• $ln(DHT) = 4.3693 - 3.4886/A^{0.2}$

Growth and Yield equations

- $ln(DHT) = ln(S) 3.4886/A^{0.2} + 2.1223$ Base age 12 years
- $\ln(\text{Dom G}) = 6.76134 + 0.73148 \times \ln(S) 6.25482/A^{0.2}$
- $\ln(G) = 5.55391 + 0.61547 \times \ln(S) 5.16783/A^{0.3}$
- $ln(HT) = 2.96563 + 0.66288 \times ln(S) 3.7099/A^{0.2}$
- $ln(Vt) = -3.85625 + 1.7333 \times ln(S) 7.96153/A^{0.6}$

6. Species: Swietenia macrophylla (Mahogany)

Embankments and Road Sides in the Coastal Areas: (Latif and Zahir 2001)

Site Index Guide Equation:

• $ln(DHT) = 4.6356 - 3.9728/A^{0.24}$

Growth and Yield Equations:

- $ln(DHT) = ln(S) 3.9728/A^{0.24} + 2.0741$ Base age 15 years
- $ln(H) = 2.4843 3.943/A^{0.24} + 0.7364 \times ln(S)$
- $ln(G) = 2.7776 + 0.6181 \times ln(S) 4.6171/A^{1.1}$
- $\ln(Vt/\text{tree}) = -5.4225 12.1071/A^{0.8} + 1.9904 \times \log(S)$

Croplands: (Latif 1999a)

Site Index Guide Equation

• $ln(DHT) = 3.65762 - 2.64829/A^{0.25}$

Growth and Yield Equations:

• $ln(DHT) = ln(S) - 2.64829/A^{0.25} + 1.42289$ Base age 12 years

- $ln(Dom G) = 4.3341 + 0.61165 \times ln(S) 3.4116/A^{0.25}$
- $ln(HT) = 1.75426 + 0.8623 \times ln(S) 2.88648/A^{0.25}$
- $\ln(G) = 4.61655 + 0.51441 \times \ln(S) 3.69153 / A^{0.25}$
- $ln(V_t) = -3.39101 + 0.24486 \times ln(S) 8.23404/A + 0.31762 \times S/A$

Woodlots in the Western Part: (Latif 1999b)

Site Index Guide Equation

• $ln(DHT) = 1.32375 + 0.54812 \times ln(A)$

Growth and Yield Equations:

- $\ln(DHT) = \ln(S) + 0.54812 \times \ln(A) 1.64202$
- $\ln(HT) = 0.950683 \times \ln(S) + 0.589727 \times \ln(A) 1.77759$
- $\ln(G) = 0.273445 + 0.644125 \times \ln(S) + 0.685214 \times \ln(A)$
- $ln(DomG) = 0.477116 + 0.66688 \times ln(A) + 0.680269 \times ln(S)$
- $\ln(BA/HA) = -5.51452 0.03401 \times S/A + 0.9761 \times \ln(S) + 0.45407 \times \ln(N/ha) + 0.9951 \times \ln(A)$
- $ln(V/HA) = 3.093244 6.41044/A^{0.6} + 1.148179 \times ln(S)$
- $ln(V_5/HA) = 2.961097 7.59901/A^{0.7} + 1.099667 \times ln(S)$
- $ln(V_{10}/HT) = -0.50881 15.3644/A + 2.2025621 \times ln(S)$
- N/HA = $2983.77 730.14 \times \ln(A)$

7. Species: Dalbergia sissoo (Sissoo)

Embankments and Road Sides in the Coastal Areas: (Latif and Zahir 2001)

Site Index Guide Equation:

• $ln(DHT) = 3.5683 - 2.54987/A^{0.4}$

Growth and Yield Equations:

- $\ln(\text{DHT}) = \ln(\text{S}) 2.54987/\text{A}^{0.4} + 0.8631$
- Base age 15 years
- $\ln(HT) = 1.876535 2.85225/A^{0.35} + 0.61884 \times \ln(S)$
- $ln(G) = 2.009806 4.83801/A + 1.011956 \times ln(S)$
- $ln(Vt/tree) = -8.05486 11.3207/A^{0.95} + 2.77568xln(S)$

Croplands: (Latif 1999a)

Site Index Guide Equation

• $ln(DHT) = 5.65664 - 4.7817/A^{0.2}$

- $\ln(\text{DHT}) = \ln(\text{S}) 4.7817/\text{A}^{0.2} + 2.90901$ Base age 12 years
- $ln(DomG) = 2.37238 3.55599/A^{0.5} + 1.04009 \times ln(S)$
- $ln(HT) = 2.11928 3.64787/A^{0.3} + 0.75638 \times ln(S)$
- $ln(G) = 3.80871 3.50614/A^{0.5} + 0.47409 \times ln(S)$

• $ln(V_t) = -6.3132 + 1.80467 \times ln(S) - 6.49711/A^{0.8}$

Woodlots in the Western Part: (Latif 1999b)

Site Index Guide Equation

• $ln(DHT) = 4.030766 - 2.94655/A^{0.4}$

Growth and Yield Equations:

- $ln(DHT) = 0.889 + ln(S) 2.94655/A^{0.4}$
- $ln(HT) = -1.06038 + 0.873858 \times ln(S) + 0.423586 \times ln(A) 0.88934/A$
- $ln(DomG) = 1.2521 + 0.779303 \times ln(S) + 0.327486 \times ln(A) 1.76293/A$
- $ln(G) = 0.943113 + 0.692351 \times ln(S) + 0.40033 \times ln(A) 1.48259/A$
- $ln(BA/HA) = 0.589915 + 0.75877 \times ln(S) + 0.234234 \times ln(A) 3.86565/A$
- $ln(V/HA) = 8.297195 + 0.138507 \times S/A + 0.565189 \times ln(S) 0.6853 \times ln(A) 13.7814/A^{0.6}$
- $ln(V_5/HA) = 8.026523 + 0.12236 \times S/A + 0.819744 \times ln(S) 0.88141 \times ln(A) 15.1034/A^{0.6}$
- $ln(V_{10}/HA) = 3.988213 + 0.401387 \times S/A + 1.057907 \times ln(S) 0.276309 \times ln(A) 28.3533/A$
- N/HA = $2768.4 645.21 \times \ln(A)$

8. Species: Samania saman (Rain tree)

Embankments and Road Sides in the Coastal Areas: (Latif and Zahir 2001)

Site Index Guide Equation

• $ln(DHT) = 3.59221 - 2.81293/A^{0.4}$

Growth and Yield Equations:

- $\ln(\text{DHT}) = 0.9520 + \ln(\text{S}) 2.81293/\text{A}^{0.4}$ Base age 15 years
- $ln(HT) = 1.151346 + 0.90778 \times ln(S) 3.10455 / A^{0.4}$
- $ln(G) = 1.67299 6.17255/A^{1.1} + 31.310865 \times ln(S)$
- $ln(V_t/tree) = 8.94968 22.0456/ln(S) 14.2572/A$

9. Species: Melia azadarach Local Name: Bokain

Croplands: (Latif 1999a)

Site Index Guide Equation

• $ln(DHT) = 3.99476 - 3.20499/A^{0.25}$

- $ln(DHT) = ln(S) 3.20499/A^{0.25} + 1.97039$ Base age 7 years
- $ln(DomG) = 5.26879 5.45565/A^{0.25} + 0.97449 \times ln(S)$
- $ln(HT) = 1.97321 3.35471/A^{0.25} + 0.99208 \times ln(S)$

- $ln(G) = 2.56987 4.32713/A + 0.92767 \times ln(S)$
- $ln(V_t) = -5.77137 + 2.23278 \times ln(S) 8.8161/A$

10. Species: Accacia nilotica (Babla)

Embankments and Road Sides in the Coastal Areas: (Latif and Zahir 2001)

Site Index Guide Equation:

• $ln(DHT) = 2.765 - 1.6388/A^{0.55}$

Growth and Yield Equations:

- $ln(DHT) = 0.3696 1.6388/A^{0.55} + ln(s)$, Base age 15 years
- $ln(HT) = 0.08118 1.7364/A^{0.55} + 1.0399 \times ln(s),$
- $\ln(\text{GBH}) = 3.2709 3.3906/\text{A}^{0.55} + 0.6245 \times \ln(s),$
- $ln(Vt/tree) = -5.6308 8.2612/A^{0.55} + 2.30077 \times ln(S)$

11. Species: Gmelina arborea (Gamar) (Latif et al 1995)

Site Index Guide Equations

• $ln(DomHT) = 2.6692 - 6.627/A^{1.8}$

Growth and Yield Equations:

- ln(DomHT) = 0.07565 6.627/A1.8 + ln(S)
- $\ln(HT) = 0.6468 0.093 \times \ln(\text{stem/HA} + 0.035 \times \ln(S) \times \ln(A) + 0.5571/S + 0.8447 \times \ln(S) 6.1048/A^{1.8}$
- $ln(DBH) = 5.9119 4.3723/ln(S) 0.2232 \times ln(stem/HA) 7.763/A^{1.8}$
- $\ln(BA/HA) = -8.1674 + 0.9742 \times \ln(\text{stem/HA}) + 0.1791 \times \ln(S) \times \ln(A) + 1.7332 \times \ln(D) 0.1883 \times \ln(S) 0.3947 \times \ln(A)$
- $ln(V_A/HA) = -8.3913 + 1.0193 \times ln(stem/HA) + .2681 \times ln$ (D)
- $\ln(V_{10}/ha) = -2.9964 + 0.6076 \times \ln(S) \times \ln(A) + 1.0672 \times \ln(DBH)$
- ln(Stem/HA) = 6.764835 + .575533/A0.6

Rotation Age = 10 year

12. Species: *Pinus caribaea* (Caribbean pitch pine) (Latif *et al* 1996)

Site Index Guide Equations:

• $ln(DHT) = 3.2219 - 8.7213/A^{1.2}$

- ln(N/ha) = 7.6 0.27xln(A)
- $ln(DHT) = 0.4421 + ln(S) 8.7213/A^{1.2}$

- ln(HT) = 1.7723 + 0.3224xln(S)xln(A) + 0.1596xS/A 9.012/A 0.0725xA
- $ln(DBH) = 2.5892 + 0.1855xS/A + 23.9037/A 41.4254/A^{1.2}$
- $ln(BA/HA) = 4.8433 + 0.7143 \times ln(stem/HA) + 0.3914 \times S/A 33.2156/A 1.8175 \times ln(A)$.
- $ln(Vt/ha) = 19.1827 + 0.775 \times ln(stem/HA) 431221 \times S + 0.5725 \times S/A 54.2227/A$
- $\ln(V_3/HA) = 11.9168 + 0.7421 \times \ln(\text{stem/ha}) 43.8792/S 0.1599 \times S + 0.5701 \times S/A 42.1398/A$

13. Species: Heritiera fomes (Sundri) (Latif et al. 1992).

Water Zone	DBH class	Diameter increment
Fresh water zone	5.0 - 10.0	0.136
	10.1 - 15.0	0.151
	15.1+	0.113
Moderately saline zone	5.0 - 20.0	0.125
Severely saline zone	5.0 - 20.0	0.077
	All	0.062

14. Species: Sonneratia apetala (Keora) (Latif and Castillo 1996).

Site Index Guide Equations:

• $DomHT = 20(1-e^{-0.0988XA})^{1.2}$

Growth and Yield Equations:

- $log(D) = 0.10 \times S/A 4.613/A + 0.391 \times log(A) + 0.695 \times log(S)$ S is site index
- HT = $1.5488 \times S \times (1 e^{-0.0988XA})^{1.2}$
- $log(B) = 3.2465 + 0.0341 \times S 13.5952/A + 0.4107 \times S/A$ B is basal area
- $log(V) = 4.6147 + 0.0549 \times S 17.2626 / A + 0.5988 \times S / A$

15. Species: *Paraserianthes falcataria* (Moluccana koroi) (Latif *et al* 1997)

Site Index Guide Equations:

• $DomHT = 4.5362 - 2.9955/A^{0.3}$

- $log(N/ha) = 7.165863 0.25805 \times log(A)$
- $log(D) = 0.6672 + 1.9692 \times log(S) 3.1215 / A^{0.3} 0.1551 \times log(N/ha) 0.0547 \times S$
- $log(BA/ha) = 9.2442+1.5483 \times log(S)-0.1306 \times A+0.6384 \times log(N/ha)$
- $\log(\text{mht}) = 1.6366 + 1.0293 \times \log(S) 3.1306 / A^{0.3} 0.0614 \times \log(N/\text{ha})$
- $log(V_t/ha) = -0.8576 + 2.3372 \times log(S) 9.3234/A^{0.3} + 0.6068 \times log(N/ha) 0.0508 \times A$
- $log(V_5/ha) = -3.9242 + 2.0614 \times log(S) 7.2271/A + 0.4979 \times log(N/ha)$

Allometric equations for estimation tree bimass of important tree species

1. Species: Acacia auriculiformis (Akashmoni) (Latif and Habib 1993)

- $ln(total) = -1.3577 + 2.4177 \times ln(D)$
- $ln(total) = -2.2782 + 1.9736 \times ln(D) + 0.0.8113 \times ln(H)$
- $ln(Stem) = -2.3176 + 2.6075 \times ln(D)$
- $ln(Stem) = -3.1661 + 2.1982 \times ln(D) + 0.7477 \times ln(H)$
- $ln(Branches) = -2.2156 + 2.0303 \times ln(D)$
- $ln(Branches) = -2.5759 + 1.8565 \times ln(D) + 0.3175 \times ln(H)$
- $ln(Leaves \& twigs) = -2.1982 + 2.1005 \times ln(D)$
- $ln(Leaves \& twigs) = -3.8776 + 1.2902 \times ln(D) + 1.48 \times ln(H)$
- $\ln(\text{Stem \& Branch}) = -1.804 + 2.5037 \times \ln(D)$
- $\ln(\text{Stem \& Branch}) = -2.5761 + 2.1315 \times \ln(D) + 0.6798 \times \ln(H)$
- $\ln (Branch, Leaves \& twigs) = -1.4902 + 2.0582 \times \ln(D)$
- $\ln(\text{Branch}, \text{Leaves \& twigs}) = -3.1781 + 1.2488 \times \ln(D) + 1.8475 \times \ln(H)$

Conversion Factor

For totals

Air-dry: Total biomass: 0.537 Oven-dry: Total biomass: 0.375

Leaves and twigs

Air - dry: Green biomass: 0.394

Oven - dry: Green biomass: 0.337

Main stem

Air-dry: Green biomass: 0.582

Oven-dry: Green biomass: 0.387

2. Species: Acacia mangium Local Name: Mangium (Latif and Habib 1994)

- $ln(total) = -1.4659 + 2.356 \times ln(D)$
- $\ln(\text{total}) = -1.7073 + 2.1922 \times \ln(D) + 0.2331 \times \ln(H)$
- $\ln(\text{Stem}) = -2.2787 + 2.5213 \times \ln(D)$
- $ln(Stem) = -2.7344 + 2.2692 \times ln(D) + 0.4406 \times ln(H)$
- $\ln(\text{Branches}) = -1.0896 + 1.2570 \times \ln(D)$
- $\ln(\text{Branches}) = -1.8261 + 0.8027 \times \ln(D) + 0.7493 \times \ln(H)$
- $ln(Leaves \& twigs) = -2.5539 + 2.0876 \times ln(D)$
- $ln(Leaves \& twigs) = -1.3964 + 2.7273 \times ln(D) 1.1179 \times ln(H)$
- $\ln(\text{Stem \& Branch}) = -1.8493 + 2.3906 \times \ln(D)$
- $\ln(\text{Stem \& Branch}) = -2.4276 + 2.0709 \times \ln(D) + 0.5586 \times \ln(H)$

- $\ln (Branch, Leaves \& twigs) = -1.8911 + 1.9442 \times \ln(D)$
- $\ln(\text{Branch, Leaves \& twigs}) = -1.5667 + 2.1235 \times \ln(D) 0.313 \times \ln(H)$

Conversion Factor

For totals

Air-dry: Total biomass: 0.461 Oven-dry: Total biomass: 0.331

Leaves and twigs

Air - dry: Green biomass: 0.353 Oven - dry: Green biomass: 0.295

Main stem

Air-dry: Green biomass: 0.486 Oven-dry: Green biomass: 0.340

3. Cassia siamea (Minjiri) (Latif and Habib 1994)

- $ln(total) = -1.5851 + 2.4855 \times ln(D)$
- $\ln(\text{total}) = -2.0847 + 2.1723 \times \ln(D) + 0.5141 \times \ln(H)$
- $ln(Stem) = -2.1442 + 2.5917 \times ln(D)$
- $\ln(\text{Stem}) = -2.7095 + 2.2372 \times \ln(D) + 0.5817 \times \ln(H)$
- $ln(Branches) = -2.2732 + 1.9752 \times ln(D)$
- $ln(Branches) = -3.2955 + 1.3142 \times ln(D) + 1.0521 \times ln(H)$
- $\ln(\text{Leaves \& twigs}) = -2.1219 + 1.9299 \times \ln(D)$
- $ln(Leaves \& twigs) = -0.6183 + 2.8726 \times ln(D) 1.5471 \times ln(H)$
- $\ln(\text{Stem \& Branch}) = -2.0512 + 2.6006 \times \ln(D)$
- $\ln(\text{Stem \& Branch}) = -2.9256 + 2.0525 \times \ln(D) + 0.8996 \times \ln(H)$
- $ln(Branch, Leaves \& twigs) = -2.5173 + 2.281 \times ln(D)$
- $\ln(\text{Branch, Leaves \& twigs}) = -2.9974 + 1.98 \times \ln(D) + 0.494 \times \ln(H)$

Conversion Factor

For totals

Air-dry: Total biomass: 0.526 Oven-dry: Total biomass: 0.404

Leaves and twigs

Air-dry: Green biomass: 0.512 Oven-dry: Green biomass: 0.397

Main stem

Air-dry: Green biomass: 0.528

Oven-dry: Green biomass: 0.405

4. Young Eucalyptus Camaldulensis (Eucalyptus) (Das and Latif 1996)

 $ln(total green biomass/tree) = -1.3933 + 2.39602 \times ln(D)$

 $ln(total green biomass/tree) = -4.136 + 2.39602 \times ln(G)$

 $ln(total green biomass/tree) = -2.228 + 1.81492 \times ln(D) + 0.85007 \times ln(H)$

 $ln(total green biomass/tree) = -4.306 + 1.81492 \times ln(D) + 0.85007 \times ln(H)$

CONVERSION FACTOR

For totals

Air-dry: Total biomass: 0.524 Oven-dry: Total biomass: 0.447

Leaves and twigs

Air - dry: Green biomass: 0.506

Oven - dry: Green biomass: 0.414

Main stem

Air-dry: Green biomass: 0.530

Oven-dry: Green biomass: 0.467

Table-1: Metric one-way volume (cubic meter) table of Akashmoni and Eucalyptus in different locations

GBH		1	Akashmon			Eucalyptus					
(cm)	Woodlot	Agro-	Strip	Embank-	Hill	Woodlot	Agro-	Strip	Croplands		
40	0.093	forestry 0.094	0.069	ment	0.081	0.099	forestry 0.104	0.129			
42	0.093	0.094	0.009	0.051	0.081	0.099	0.104	0.129	0.051		
44	0.103	0.100	0.078	0.058 0.065	0.100	0.112	0.117	0.130	0.058 0.065		
46	0.114	0.118	0.088	0.063	0.100	0.120	0.131	0.132	0.063		
48	0.123	0.132	0.097	0.072	0.111	0.140	0.140	0.133	0.072		
50	0.137	0.143	0.108	0.088	0.122	0.171	0.101	0.139	0.080		
52	0.143	0.174	0.110	0.088	0.146	0.177	0.170	0.143	0.088		
54	0.102	0.174	0.142	0.106	0.159	0.204	0.209	0.159	0.106		
56	0.188	0.204	0.154	0.100	0.172	0.222	0.226	0.168	0.100		
58	0.202	0.220	0.167	0.125	0.186	0.240	0.244	0.177	0.125		
60	0.216	0.237	0.180	0.136	0.201	0.259	0.263	0.188	0.136		
62	0.231	0.254	0.194	0.147	0.216	0.279	0.282	0.201	0.147		
64	0.246	0.272	0.208	0.159	0.232	0.299	0.301	0.214	0.159		
66	0.262	0.290	0.223	0.171	0.249	0.320	0.321	0.228	0.171		
68	0.278	0.308	0.238	0.184	0.266	0.341	0.342	0.244	0.184		
70	0.294	0.327	0.254	0.197	0.284	0.363	0.363	0.260	0.197		
72	0.311	0.347	0.270	0.211	0.302	0.386	0.385	0.278	0.211		
74	0.329	0.367	0.286	0.225	0.321	0.410	0.407	0.297	0.225		
76	0.346	0.387	0.303	0.240	0.341	0.434	0.430	0.317	0.240		
78	0.365	0.408	0.321	0.256	0.361	0.459	0.453	0.338	0.256		
80	0.383	0.430	0.339	0.272	0.383	0.484	0.477	0.360	0.272		
82	0.402	0.452	0.358	0.288	0.404	0.510	0.502	0.383	0.288		
84	0.422	0.474	0.377	0.306	0.427	0.537	0.527	0.408	0.306		
86	0.442	0.497	0.396	0.323	0.450	0.564	0.553	0.433	0.323		
88	0.462	0.521	0.416	0.342	0.474	0.592	0.579	0.460	0.342		
90	0.483	0.545	0.436	0.361	0.498	0.621	0.606	0.487	0.361		
92	0.504	0.569	0.457	0.380	0.523	0.650	0.633	0.516	0.380		
94	0.526	0.594	0.479	0.401	0.549	0.680	0.661	0.546	0.401		
96	0.548	0.620	0.501	0.421	0.575	0.711	0.690	0.577	0.421		
98	0.571	0.646	0.523	0.443	0.603	0.742	0.719	0.610	0.443		
100	0.594	0.672	0.546	0.465	0.630	0.774	0.749	0.643	0.465		
102	0.617	0.699	0.569	0.487	0.659	0.807	0.779	0.677	0.487		
104	0.641	0.726	0.593	0.511	0.688	0.840	0.810	0.713	0.511		
106	0.666	0.754	0.617	0.535	0.718	0.874	0.841	0.750	0.535		
108	0.691	0.783	0.642	0.559	0.749	0.909	0.873	0.787	0.559		
110	0.716	0.812	0.667	0.584	0.780	0.944	0.905	0.826	0.584		
112	0.741	0.841	0.693	0.610	0.813	0.980	0.938	0.866	0.610		
114	0.768	0.871	0.719	0.637	0.845	1.016	0.972	0.907	0.637		
116	0.794	0.901	0.745	0.664	0.879	1.054	1.006	0.950	0.664		
118	0.821	0.932	0.773	0.692	0.913	1.091	1.041	0.993	0.692		
120	0.849	0.964	0.800	0.720	0.948	1.130	1.076	1.038	0.720		
122 124	0.876	0.996	0.828	0.750	0.984	1.169	1.112	1.083	0.750		
124	0.905	1.028	0.857	0.780	1.020	1.209 1.249	1.148	1.130	0.780		
126	0.933 0.963	1.061 1.094	0.886 0.915	0.810	1.058 1.096	1.249	1.185 1.223	1.178 1.227	0.810		
130	0.963	1.094	0.915	0.841	1.096	1.332	1.223	1.227	0.841		
130	1.022	1.128	0.943	0.873 0.906	1.134	1.332	1.201	1.328	0.873 0.906		
134	1.022	1.103	1.007	0.906	1.174	1.373	1.338	1.328	0.906		
136	1.084	1.233	1.038	0.939	1.255	1.462	1.378	1.434	0.939		
138	1.115	1.269	1.070	1.008	1.297	1.506	1.418	1.488	1.008		
140	1.113	1.305	1.102	1.044	1.339	1.551	1.459	1.544	1.008		
142	1.179	1.342	1.135	1.080	1.382	1.597	1.501	1.601	1.044		
144	1.212	1.379	1.169	1.117	1.426	1.643	1.543	1.658	1.117		
		,		4,11/	-· · - ·	1.0.5	1.0.5		1.11/		

Table-2: Metric one-way volume table of Mangium, Sissoo, Mahogany and Raintree in different locations

		Manajum		Sissoo			Mahogany			Raintree		
GBH		Mangium			Embank-		Embank-		Home	Embank-	Home	
(cm)	Woodlot	Agro- forestry	Hill	Strip	ment	Croplands	ment	Croplands	garden	ment	garden	
40	0.102	0.088	0.077	0.048	0.060	0.054	0.047	0.051	0.050	0.048	0.050	
42	0.102	0.088		0.048	0.068	0.054		0.051	0.056	0.048	0.055	
44	0.113	0.099	0.086			0.068	0.053					
			0.095	0.061	0.077		0.060	0.065	0.062	0.061	0.061	
46	0.143	0.123	0.105	0.069	0.086	0.076	0.067	0.072	0.069	0.068	0.068	
48	0.157	0.136	0.115	0.077	0.096	0.085	0.075	0.080	0.076	0.076	0.075	
50	0.172	0.150	0.126	0.086	0.107	0.094	0.083	0.089	0.084	0.084	0.082	
52	0.188	0.165	0.138	0.096	0.119	0.103	0.092	0.098	0.092	0.093	0.090	
54	0.204	0.181	0.150	0.106	0.131	0.114	0.101	0.108	0.100	0.102	0.098	
56	0.220	0.198	0.162	0.118	0.144	0.124	0.111	0.118	0.109	0.112	0.106	
58	0.237	0.215	0.175	0.130	0.158	0.136	0.121	0.128	0.118	0.122	0.115	
60	0.254	0.233	0.189	0.142	0.172	0.148	0.132	0.139	0.127	0.133	0.124	
62	0.272	0.252	0.203	0.156	0.188	0.160	0.144	0.151	0.137	0.145	0.134	
64	0.290	0.272	0.218	0.170	0.204	0.174	0.156	0.163	0.148	0.157	0.144	
66	0.309	0.292	0.233	0.185	0.221	0.188	0.169	0.176	0.158	0.169	0.154	
68	0.328	0.313	0.249	0.201	0.239	0.202	0.182	0.190	0.170	0.182	0.165	
70	0.348	0.335	0.266	0.217	0.257	0.217	0.196	0.204	0.181	0.196	0.176	
72	0.368	0.358	0.283	0.235	0.277	0.233	0.211	0.218	0.194	0.210	0.188	
74	0.388	0.382	0.301	0.252	0.297	0.250	0.227	0.233	0.206	0.225	0.200	
76	0.409	0.406	0.319	0.271	0.319	0.267	0.243	0.249	0.219	0.241	0.213	
78	0.431	0.432	0.338	0.291	0.341	0.285	0.259	0.266	0.233	0.257	0.225	
80	0.452	0.458	0.358	0.311	0.364	0.303	0.277	0.283	0.246	0.274	0.239	
82	0.475	0.485	0.378	0.332	0.389	0.323	0.295	0.301	0.261	0.292	0.253	
84	0.498	0.512	0.399	0.353	0.414	0.343	0.314	0.319	0.276	0.310	0.267	
86	0.521	0.541	0.420	0.375	0.440	0.364	0.333	0.338	0.291	0.329	0.281	
88	0.544	0.570	0.442	0.399	0.467	0.385	0.353	0.358	0.307	0.348	0.296	
90	0.569	0.600	0.464	0.422	0.495	0.407	0.374	0.378	0.323	0.368	0.312	
92	0.593	0.631	0.488	0.447	0.524	0.430	0.396	0.399	0.340	0.389	0.328	
94	0.618	0.663	0.511	0.472	0.555	0.454	0.419	0.421	0.357	0.411	0.344	
96	0.644	0.695	0.536	0.498	0.586	0.479	0.442	0.443	0.375	0.433	0.361	
98	0.670	0.729	0.561	0.525	0.618	0.504	0.466	0.466	0.393	0.456	0.378	
100	0.696	0.763	0.587	0.553	0.652	0.530	0.491	0.490	0.411	0.480	0.396	
102	0.723	0.798	0.613	0.581	0.686	0.557	0.516	0.514	0.431	0.504	0.414	
104	0.750	0.833	0.640	0.610	0.722	0.585	0.542	0.539	0.450	0.529	0.433	
106	0.778	0.870	0.668	0.639	0.722	0.613	0.570	0.565	0.470	0.555	0.452	
108	0.806	0.907	0.696	0.670	0.796	0.642	0.598	0.592	0.470	0.582	0.472	
110	0.835	0.945	0.725	0.701	0.835	0.673	0.626	0.619	0.512	0.609	0.472	
112	0.864	0.984	0.754	0.733	0.833	0.704	0.656	0.647	0.512	0.637	0.492	
114	0.894	1.024	0.734	0.766	0.876	0.735	0.687	0.676	0.556	0.666	0.512	
116	0.894	1.024	0.784	0.799	0.917	0.768	0.087	0.706	0.578	0.696	0.555	
118	0.924	1.105	0.813	0.799	1.003	0.708	0.718	0.706	0.578	0.696	0.533	
120	0.985	1.148	0.847	0.868	1.003	0.836	0.783	0.767	0.602	0.728	0.577	
120	1.016	1.148	0.879	0.868	1.048	0.871	0.783	0.767	0.649		0.599	
124	1.048	1.190		i e		0.871				0.790		
124			0.945	0.940	1.141		0.852	0.832	0.674	0.823	0.645	
128	1.081	1.279	0.979	0.977	1.190	0.945	0.888	0.865	0.699	0.856	0.669	
	1.113	1.324	1.014	1.015	1.240	0.982	0.924	0.899	0.725	0.891	0.694	
130	1.147	1.370	1.050	1.053	1.291	1.021	0.962	0.934	0.751	0.926	0.718	
132	1.180	1.417	1.086	1.093	1.343	1.061	1.000	0.970	0.778	0.962	0.744	
134	1,214	1.464	1.123	1.133	1.397	1.102	1.039	1.006	0.806	0.999	0.770	
136	1.249	1.513	1.160	1.174	1.452	1.143	1.080	1.044	0.833	1.037	0.796	
138	1.284	1.562	1.198	1.215	1.508	1.186	1.121	1.082	0.862	1.076	0.823	
140	1.320	1.612	1.237	1.257	1.566	1.229	1.163	1.121	0.891	1.115	0.850	
142	1.355	1.663	1.277	1.300	1.625	1.273	1.206	1.161	0.920	1.156	0.878	
144	1.392	1.715	1.317	1.344	1.685	1.319	1.250	1.202	0.950	1.197	0.906	

Table-3: Metric one-way volume table of Koroi, Babla, Bokain, Minjiri, Pine and Mixed Species in different locations

CDII		Ko	roi		Babla	Bokain	Minjiri	Pine	Mixed Species
GBH (cm)	Embank-			Home	Embank-	Embank-	Hill	Hill	Natural
` ′	ment	Central	Cropland	garden	ment	ment			Naturai
40	0.054	0.057	0.049	0.052	0.073	0.048	0.083	0.070	0.104
42	0.062	0.065	0.056	0.058	0.082	0.053	0.094	0.079	0.115
44	0.070	0.073	0.063	0.065	0.091	0.059	0.105	0.089	0.127
46	0.079	0.081	0.070	0.072	0.101	0.065	0.116	0.099	0.139
48	0.089	0.090	0.078	0.079	0.112	0.071	0.129	0.109	0.152
50	0.099	0.100	0.086	0.087	0.123	0.078	0.142	0.121	0.165
52	0.110	0.110	0.094	0.095	0.135	0.085	0.156	0.133	0.179
54	0.122	0.121	0.104	0.104	0.147	0.092	0.171	0.145	0.194
56	0.135	0.133	0.113	0.113	0.161	0.100	0.187	0.159	0.209
58	0.148	0.145	0.124	0.123	0.174	0.108	0.203	0.173	0.225
60	0.162	0.158	0.134	0.133	0.189	0.116	0.221	0.187	0.242
62	0.177	0.171	0.146	0.143	0.204	0.124	0.239	0.203	0.259
64	0.193	0.186	0.157	0.154	0.220	0.133	0.258	0.219	0.276
66	0.210	0.201	0.170	0.166	0.236	0.143	0.277	0.236	0.295
68	0.227	0.216	0.183	0.178	0.253	0.152	0.298	0.253	0.314
70	0.246	0.232	0.196	0.190	0.271	0.162	0.319	0.271	0.333
72	0.265	0.249	0.210	0.203	0.290	0.172	0.342	0.291	0.354
74	0.286	0.267	0.225	0.216	0.309	0.183	0.365	0.310	0.374
76 70	0.307	0.285	0.240	0.230	0.329	0.194	0.389	0.331	0.396
78	0.329	0.305	0.256	0.244	0.350	0.205	0.414	0.352	0.418
80	0.353	0.325	0.273	0.259	0.371	0.216	0.440	0.375	0.440
82	0.377	0.345	0.290	0.274	0.393	0.228	0.467	0.398	0.464
84	0.402	0.367	0.308	0.290	0.416	0.241	0.495	0.421	0.488
86	0.429	0.389	0.326	0.306	0.440	0.253	0.524	0.446	0.512
88	0.456	0.412	0.345	0.323	0.464	0.266	0.554	0.471	0.537
90	0.485	0.436	0.365	0.340	0.489	0.279	0.585	0.498	0.563
92 94	0.514	0.460	0.385	0.358	0.515	0.293	0.616 0.649	0.525	0.590
96	0.545	0.486	0.406	0.376	0.542	0.307 0.322	0.649	0.553	0.617
98	0.577	0.512 0.539	0.428	0.395	0.569 0.597	0.322	0.083	0.581	0.644
100	0.610 0.644	0.567	0.450 0.473	0.414 0.434	0.626	0.351	0.717	0.611 0.641	0.673
102	0.679	0.596	0.473	0.454	0.626	0.367	0.790	0.673	0.702 0.731
104	0.079	0.596	0.490	0.433	0.687	0.383	0.730	0.705	0.761
106	0.710	0.656	0.546	0.470	0.087	0.399	0.866	0.703	0.792
108	0.793	0.688	0.571	0.497	0.718	0.415	0.906	0.738	0.792
110	0.793	0.720	0.571	0.542	0.783	0.413	0.947	0.772	0.856
112	0.833	0.753	0.625	0.565	0.783	0.449	0.989	0.843	0.889
114	0.917	0.787	0.653	0.588	0.852	0.467	1.032	0.880	0.922
116	0.917	0.787	0.681	0.613	0.832	0.485	1.076	0.880	0.922
118	1.007	0.858	0.711	0.637	0.924	0.503	1.121	0.917	0.991
120	1.054	0.895	0.741	0.663	0.961	0.522	1.167	0.995	1.026
122	1.102	0.933	0.772	0.688	0.999	0.541	1.214	1.036	1.062
124	1.151	0.972	0.803	0.715	1.038	0.560	1.263	1.077	1.099
126	1.202	1.011	0.835	0.742	1.077	0.580	1.312	1.120	1.136
128	1.254	1.052	0.868	0.770	1.118	0.600	1.363	1.163	1.174
130	1.308	1.094	0.902	0.798	1.159	0.621	1.415	1.207	1.213
132	1.363	1.136	0.937	0.826	1.202	0.642	1.468	1.253	1.252
134	1.419	1.180	0.972	0.856	1.245	0.663	1.522	1.299	1.292
136	1.477	1.224	1.008	0.886	1.289	0.685	1.577	1.346	1.332
138	1.537	1.270	1.045	0.916	1.334	0.707	1.633	1.394	1.374
140	1.597	1.316	1.083	0.947	1.380	0.729	1.691	1.443	1.415
142	1.660	1.364	1.121	0.979	1.426	0.752	1.749	1.494	1.458
144	1.724	1.412	1.161	1.011	1.474	0.775	1.809	1.545	1.344

Table-4: Metric one-way volume table of Arjun, Amm, Jam, Kadam, Kanthal, Neem, Shimul and Pitraj in different locations

	Arjun	Amm	Jam	Kadam	Kanthal	Neem	Shi	mul	Pit	rai
GBH		Home	Home	Home	Home	Home	Home		Home	·
(cm)	Central	garden	garden	garden	garden	garden	garden	Natural	garden	Natural
40	0.050	0.050	0.052	0.047	0.049	0.050	0.052	0.075	0.054	0.054
42	0.056	0.056	0.058	0.053	0.055	0.055	0.058	0.084	0.060	0.061
44	0.062	0.062	0.064	0.059	0.060	0.062	0.065	0.093	0.066	0.069
46	0.069	0.069	0.071	0.065	0.067	0.068	0.073	0.104	0.073	0.077
48	0.075	0.076	0.078	0.072	0.073	0.075	0.081	0.114	0.081	0.085
50	0.082	0.083	0.086	0.079	0.080	0.082	0.090	0.126	0.089	0.095
52	0.090	0.091	0.094	0.087	0.087	0.090	0.099	0.137	0.097	0.104
54	0.098	0.099	0.102	0.095	0.095	0.098	0.109	0.150	0.106	0.114
56	0.106	0.107	0.111	0.103	0.102	0.106	0.119	0.163	0.115	0.125
58	0.115	0.116	0.120	0.112	0.110	0.115	0.130	0.177	0.124	0.137
60	0.124	0.125	0.129	0.121	0.119	0.124	0.142	0.191	0.134	0.148
62	0.133	0.134	0.139	0.130	0.128	0.133	0.154	0.206	0.144	0.161
64	0.143	0.144	0.150	0.140	0.137	0.143	0.166	0.222	0.155	0.174
66	0.153	0.155	0.160	0.151	0.146	0.154	0.179	0.238	0.166	0.188
68	0.163	0.165	0.172	0.162	0.156	0.164	0.173	0.255	0.178	0.202
70	0.174	0.176	0.172	0.173	0.166	0.176	0.208	0.273	0.170	0.218
72	0.174	0.176	0.185	0.173	0.100	0.170	0.208	0.273	0.190	0.218
74	0.197	0.200	0.207	0.197	0.188	0.199	0.239	0.310	0.202	0.250
76	0.197	0.212	0.220	0.197	0.199	0.133	0.255	0.310	0.213	0.250
78	0.222	0.212	0.220	0.209	0.133	0.211	0.233	0.351	0.242	0.284
80	0.234	0.223	0.234	0.222	0.211	0.224	0.272	0.372	0.242	0.284
82	0.234	0.252	0.247	0.250	0.225	0.251	0.290	0.372	0.230	0.303
84	0.248	0.232	0.201	0.264	0.233	0.265	0.308	0.394	0.271	0.322
86	0.261	0.280	0.270	0.204	0.248	0.203	0.327	0.410	0.280	0.342
88	0.273	0.280	0.291	0.279	0.201	0.279		0.459	0.302	0.384
90							0.367			
90	0.304	0.310	0.322	0.310	0.288	0.310	0.388	0.488	0.335	0.406
92	0.320	0.326	0.338	0.327	0.302	0.325	0.410	0.513	0.352	0.428
	0.335	0.342	0.355	0.343	0.317	0.342	0.433	0.539	0.369	0.452
96	0.351	0.359	0.372	0.361	0.332	0.358	0.456	0.566	0.387	0.476
98	0.368	0.376	0.390	0.378	0.347	0.375	0.480	0.594	0.405	0.501
100	0.385	0.393	0.408 0.427	0.397 0.415	0.363 0.379	0.393	0.505 0.530	0.622	0.424 0.444	0.527
	0.402	0.411						0.651		0.553
104	0.420	0.429	0.446	0.434	0.395	0.429	0.556	0.681	0.464	0.580
106	0.438	0.448	0.465	0.454	0.412	0.448	0.583	0.712	0.484	0.608
108	0.457	0.467	0.485	0.474	0.429	0.467	0.611	0.743	0.505	0.637
110	0.476	0.487	0.506	0.495	0.446	0.487	0.640	0.775	0.526	0.667
112	0.495	0.507	0.527	0.516	0.464	0.507		0.808	0.548	0.697
114	0.515	0.527	0.548	0.538	0.483	0.528 0.549	0.699	0.842	0.571 0.593	0.729
116 118	0.535	0.548	0.570 0.592	0.560 0.583	0.501 0.520	0.549	0.730	0.877		0.761 0.794
120	0.556 0.577	0.570	0.592	0.583	0.520	0.571	0.762	0.912 0.948	0.617	0.794
120							0.794		0.641	
	0.599	0.614	0.638	0.630	0.560	0.616	0.828	0.985	0.665	0.862
124	0.621	0.637	0.662	0.654	0.580	0.639	0.862	1.022	0.690	0.897
126	0.643	0.660	0.686	0.679	0.600	0.662	0.897	1.061	0.715	0.934
128	0.666	0.684	0.711	0.704	0.621	0.686	0.933	1.100	0.741	0.971
130	0.689	0.708	0.736	0.730	0.643	0.710	0.969	1.140	0.768	1.009
132	0.713	0.733	0.762	0.756	0.664	0.735	1.007	1.181	0.794	1.048
134	0.737	0.758	0.788	0.783	0.687	0.761	1.045	1.223	0.822	1.087
136	0.762	0.784	0.815	0.811	0.709	0.787	1.084	1.265	0.850	1.128
138	0.787	0.810	0.842	0.839	0.732	0.813	1.124	1.309	0.878	1.170
140	0.813	0.837	0.870	0.867	0.755	0.840	1.165	1.353	0.907	1.212
142	0.839	0.864	0.898	0.896	0.779	0.867	1.207	1.398	0.937	1.256
144	0.865	0.891	0.927	0.926	0.803	0.895	1.250	1.444	0.967	1.300

Table-5: Metric one-way volume table of Chapalish, Teli garjan, Banderhola, UriamKanak, Civit, Dhakijam, Bahera and Chundul in different locations

GBH	Chapa	ılish	Teli garjan	Banderhola	Uriam	Kanak	Civit	Dhakijam	Bahera	Chundul
(cm)	Natural	Hill	Natural	Natural	Natural	Natural	Natural	Natural	Natural	Natural
40	0.071	0.084	0.108	0.053	0.072	0.130	0.112		0.073	0.147
42	0.079	0.093	0.120	0.060	0.081	0.141	0.125		0.081	0.162
44	0.088	0.104	0.132	0.067	0.090	0.153	0.138		0.090	0.179
46	0.098	0.115	0.145	0.075	0.100	0.165	0.151		0.098	0.195
48	0.108	0.126	0.159	0.084	0.111	0.177	0.166	0.013	0.108	0.213
50	0.119	0.138	0.173	0.093	0.122	0.189	0.181	0.031	0.118	0.231
52	0.130	0.151	0.189	0.102	0.134	0.202	0.197	0.050	0.128	0.251
54	0.142	0.164	0.204	0.112	0.146	0.216	0.213	0.069	0.139	0.271
56	0.154	0.178	0.221	0.123	0.159	0.230	0.231	0.088	0.150	0.291
58	0.167	0.193	0.238	0.134	0.173	0.244	0.248	0.108	0.161	0.313
60	0.181	0.208	0.256	0.146	0.187	0.258	0.267	0.128	0.174	0.335
62	0.195	0.224	0.274	0.159	0.202	0.273	0.287	0.149	0.186	0.358
64	0.210	0.240	0.293	0.172	0.217	0.288	0.307	0.170	0.199	0.382
66	0.225	0.257	0.313	0.185	0.233	0.303	0.328	0.192	0.213	0.407
68	0.241	0.275	0.334	0.200	0.250	0.319	0.349	0.215	0.227	0.432
70	0.258	0.293	0.355	0.215	0.268	0.335	0.372	0.237	0.241	0.458
72	0.275	0.313	0.377	0.230	0.286	0.351	0.395	0.260	0.256	0.485
74	0.293	0.332	0.400	0.247	0.305	0.368	0.419	0.284	0.271	0.513
76	0.312	0.353	0.423	0.264	0.324	0.385	0.443	0.308	0.287	0.541
78	0.331	0.374	0.447	0.281	0.345	0.402	0.468	0.333	0.304	0.571
80	0.351	0.396	0.472	0.300	0.366	0.420	0.495	0.358	0.321	0.601
82	0.371	0.418	0.497	0.319	0.388	0.437	0.521	0.384	0.338	0.632
84	0.392	0.442	0.524	0.339	0.410	0.456	0.549	0.410	0.356	0.663
86	0.414	0.465	0.551	0.359	0.433	0.474	0.577	0.436	0.374	0.696
88	0.437	0.490	0.578	0.380	0.457	0.493	0.606	0.463	0.393	0.729
90	0.460	0.515	0.606	0.402	0.482	0.512	0.636	0.491	0.412	0.763
92	0.484	0.541	0.636	0.425	0.507	0.531	0.667	0.519	0.432	0.798
94	0.509	0.568	0.665	0.448	0.533	0.551	0.698	0.547	0.452	0.833
96	0.534	0.596	0.696	0.473	0.560	0.571	0.731	0.576	0.473	0.870
98	0.560	0.624	0.727	0.498	0.588	0.591	0.764	0.606	0.494	0.907
100	0.587	0.653	0.759	0.523	0.616	0.612	0.797	0.636	0.516	0.945
102	0.614	0.682	0.792	0.550	0.645	0.633	0.832	0.666	0.538	0.983
104	0.642	0.713	0.825	0.577	0.675	0.654	0.867	0.697	0.561	1.023
106	0.671	0.744	0.859	0.605	0.706	0.675	0.903	0.728	0.584	1.063
108	0.701	0.775	0.894	0.634	0.738	0.697	0.940	0.760	0.608	1.104
110	0.731	0.808	0.930	0.664	0.770	0.719	0.978	0.792	0.632	1.146
112	0.762	0.841	0.966	0.695	0.803	0.741	1.016	0.825	0.657	1.189
114	0.794	0.875	1.003	0.726	0.837	0.764	1.055	0.858	0.683	1.232
116	0.827	0.910	1.041	0.758	0.872	0.786	1.095	0.892	0.708	1.277
118	0.860	0.946	1.080	0.792	0.907	0.810	1.136	0.926	0.735	1.322
120	0.894	0.940	1.119	0.732	0.944	0.833	1.178	0.920	0.761	1.368
120	0.894	1.019	1.119	0.860	0.941	0.857	1.220	0.996	0.789	1.414
124	0.929	1.019	1.200	0.896	1.019	0.880	1.263	1.031	0.789	1.462
124	1.000	1.037	1.242	0.830	1.019	0.880	1.307	1.068	0.845	1.510
128	1.037	1.135	1.242	0.933	1.038	0.903	1.352	1.104	0.874	1.559
130	1.075	1.175	1.327	1.008	1.138	0.929	1.332	1.104	0.903	1.609
130	1.114	1.173	1.371	1.008	1.179	0.934	1.398	1.141	0.903	1.659
134	1.114	1.257	1.415	1.048	1.179	1.004	1.491	1.179	0.933	1.711
134	1.193	1.300	1.413	1.129	1.264	1.004	1.539	1.255	0.904	1.763
138	1.193	1.343	1.507	1.129	1.308	1.029	1.588	1.233	1.026	1.816
140	1.234	1.343	1.554	1.171	1.353	1.033	1.638	1.333	1.026	1.870
140	1.276	1.432	1.601	1.213	1.333	1.107	1.688	1.333	1.038	1.870
144	1.318		1.650			1.107	1.740	1.373	1.091	1.924
144	1.301	1.477	1.030	1.302	1.445	1.134	1./40	1.414	1.124	1.980

Table-6.1: Metric two-way volume table of Acacia auriculiformis (Akashmoni) in the plantation

GBH				Volume in	cubic meter	rs for the he	eight in mete	rs		
(cm)	6	8	10	12	14	16	18	20	22	24
40	0.048	0.059	0.069	0.078	0.086	0.094	0.102	0.110	0.117	0.124
42	0.053	0.065	0.075	0.085	0.095	0.104	0.112	0.121	0.129	0.127
44	0.058	0.071	0.082	0.093	0.104	0.113	0.123	0.132	0.141	0.149
46	0.063	0.077	0.090	0.101	0.113	0.123	0.134	0.144	0.153	0.163
48	0.069	0.084	0.097	0.110	0.122	0.134	0.145	0.156	0.166	0.176
50	0.074	0.090	0.105	0.119	0.132	0.145	0.157	0.169	0.180	0.191
52	0.080	0.097	0.113	0.128	0.143	0.156	0.169	0.182	0.194	0.206
54	0.086	0.105	0.122	0.138	0.153	0.168	0.182	0.195	0.208	0.221
56	0.092	0.112	0.131	0.148	0.164	0.180	0.195	0.209	0.224	0.237
58	0.099	0.120	0.140	0.158	0.176	0.193	0.209	0.224	0.239	0.254
60	0.105	0.128	0.149	0.169	0.188	0.205	0.223	0.239	0.255	0.271
62	0.112	0.137	0.159	0.180	0.200	0.219	0.237	0.255	0.272	0.288
64	0.119	0.145	0.169	0.191	0.212	0.233	0.252	0.271	0.289	0.306
66	0.127	0.154	0.179	0.203	0.225	0.247	0.267	0.287	0.306	0.325
68	0.134	0.163	0.190	0.215	0.239	0.261	0.283	0.304	0.324	0.344
70	0.142	0.172	0.201	0.227	0.252	0.276	0.299	0.321	0.343	0.364
72	0.150	0.182	0.212	0.240	0.266	0.291	0.316	0.339	0.362	0.384
74	0.158	0.192	0.223	0.253	0.281	0.307	0.333	0.358	0.381	0.405
76	0.166	0.202	0.235	0.266	0.295	0.323	0.350	0.376	0.401	0.426
78	0.174	0.212	0.247	0.279	0.310	0.340	0.368	0.396	0.422	0.448
80	0.183	0.223	0.259	0.293	0.326	0.357	0.386	0.415	0.443	0.470
82	0.192	0.233	0.272	0.308	0.342	0.374	0.405	0.435	0.464	0.493
84	0.201	0.245	0.285	0.322	0.358	0.392	0.424	0.456	0.486	0.516
86	0.210	0.256	0.298	0.337	0.374	0.410	0.444	0.477	0.509	0.540
88	0.220	0.267	0.311	0.352	0.391	0.428	0.464	0.498	0.532	0.564
90	0.230	0.279	0.325	0.368	0.408	0.447	0.484	0.520	0.555	0.589
92	0.239	0.291	0.339	0.384	0.426	0.466	0.505	0.543	0.579	0.614
94	0.250	0.303	0.353	0.400	0.444	0.486	0.527	0.566	0.604	0.640
96	0.260	0.316	0.368	0.416	0.462	0.506	0.548	0.589	0.628	0.667
98	0.270	0.329	0.382	0.433	0.481	0.526	0.570	0.613	0.654	0.694
100	0.281	0.342	0.398	0.450	0.500	0.547	0.593	0.637	0.680	0.721
102	0.292	0.355	0.413	0.467	0.519	0.568	0.616	0.662	0.706	0.749
104	0.303	0.368	0.429	0.485	0.539	0.590	0.639	0.687	0.733	0.777
106	0.314	0.382	0.445	0.503	0.559	0.612	0.663	0.712	0.760	0.806
108	0.326	0.396	0.461	0.522	0.579	0.634	0.687	0.738	0.788	0.836
110	0.337	0.410	0.477	0.540	0.600	0.657	0.712	0.765	0.816	0.866
112	0.349	0.425	0.494	0.559	0.621	0.680	0.737	0.792	0.845	0.896
114 116	0.361 0.373	0.439	0.511 0.529	0.579 0.598	0.643 0.664	0.704 0.728	0.762 0.788	0.819 0.847	0.874 0.903	0.927 0.958
118	0.373	0.454	0.546	0.598	0.687	0.728	0.788	0.847	0.903	0.958
120	0.386	0.485	0.564	0.638	0.709	0.732	0.814	0.873	0.934	1.023
120	0.399	0.483	0.582	0.659	0.709	0.778	0.841	0.904	0.964	1.023
124	0.411	0.516	0.601	0.680	0.755	0.827	0.896	0.962	1.027	1.089
124	0.424	0.510	0.619	0.701	0.733	0.853	0.890	0.902	1.059	1.123
128	0.451	0.532	0.638	0.701	0.802	0.833	0.952	1.023	1.091	1.123
130	0.465	0.565	0.658	0.744	0.827	0.905	0.981	1.054	1.124	1.193
132	0.478	0.582	0.677	0.767	0.851	0.932	1.010	1.085	1.157	1.228
134	0.492	0.599	0.697	0.789	0.876	0.959	1.039	1.117	1.191	1.264
136	0.507	0.616	0.717	0.812	0.901	0.987	1.069	1.149	1.226	1.300
138	0.521	0.634	0.737	0.835	0.927	1.015	1.100	1.181	1.261	1.337
140	0.536	0.651	0.758	0.858	0.953	1.044	1.131	1.214	1.296	1.375
142	0.550	0.669	0.779	0.882	0.979	1.072	1.162	1.248	1.332	1.413
144	0.565	0.688	0.800	0.906	1.006	1.101	1.193	1.282	1.368	1.451
146	0.581	0.706	0.822	0.930	1.033	1.131	1.225	1.316	1.404	1.490

Table-6.2: Metric two-way volume table of Acacia auriculiformis (Akashmoni) in the woodlot

GBH				Volume in	cubic meter	rs for the he	ight in meter	rs		
(cm)	6	8	10	12	14	16	18	20	22	24
40	0.023	0.039	0.055	0.071	0.087	0.103	0.119	0.135	0.151	0.167
42	0.027	0.044	0.060	0.077	0.093	0.110	0.126	0.143	0.160	0.176
44	0.032	0.049	0.066	0.083	0.101	0.118	0.135	0.152	0.169	0.186
46	0.038	0.055	0.073	0.090	0.108	0.126	0.143	0.161	0.178	0.196
48	0.043	0.061	0.079	0.097	0.116	0.134	0.152	0.170	0.188	0.207
50	0.049	0.067	0.086	0.105	0.124	0.143	0.161	0.180	0.199	0.218
52	0.054	0.074	0.093	0.113	0.132	0.152	0.171	0.190	0.210	0.229
54	0.061	0.081	0.101	0.121	0.141	0.161	0.181	0.201	0.221	0.241
56	0.067	0.088	0.108	0.129	0.150	0.171	0.191	0.212	0.233	0.254
58	0.074	0.095	0.116	0.138	0.159	0.181	0.202	0.224	0.245	0.267
60	0.080	0.103	0.125	0.147	0.169	0.191	0.213	0.236	0.258	0.280
62	0.087	0.110	0.133	0.156	0.179	0.202	0.225	0.248	0.271	0.294
64	0.095	0.118	0.142	0.166	0.189	0.213	0.237	0.261	0.284	0.308
66	0.102	0.127	0.151	0.176	0.200	0.225	0.249	0.274	0.298	0.323
68	0.110	0.135	0.161	0.186	0.211	0.237	0.262	0.287	0.312	0.338
70	0.118	0.144	0.170	0.196	0.223	0.249	0.275	0.301	0.327	0.353
72	0.126	0.153	0.180	0.207	0.234	0.261	0.288	0.315	0.342	0.369
74	0.134	0.162	0.190	0.218	0.246	0.274	0.302	0.330	0.358	0.386
76	0.143	0.172	0.201	0.230	0.259	0.287	0.316	0.345	0.374	0.403
78	0.152	0.182	0.212	0.241	0.271	0.301	0.331	0.361	0.391	0.420
80	0.161	0.192	0.223	0.254	0.284	0.315	0.346	0.377	0.407	0.438
82	0.170	0.202	0.234	0.266	0.298	0.329	0.361	0.393	0.425	0.457
84	0.180	0.213	0.246	0.279	0.311	0.344	0.377	0.410	0.443	0.475
86	0.190	0.224	0.258	0.291	0.325	0.359	0.393	0.427	0.461	0.495
88	0.200	0.235	0.270	0.305	0.340	0.375	0.409	0.444	0.479	0.514
90	0.210	0.246	0.282	0.318	0.354	0.390	0.426	0.462	0.498	0.534
92	0.221	0.258	0.295	0.332	0.369	0.406	0.444	0.481	0.518	0.555
94	0.231	0.270	0.308	0.346	0.385	0.423	0.461	0.499	0.538	0.576
96	0.242	0.282	0.321	0.361	0.400	0.440	0.479	0.519	0.558	0.598
98	0.254	0.294	0.335	0.376	0.416	0.457	0.498	0.538	0.579	0.619
100	0.265	0.307	0.349	0.391	0.433	0.474	0.516	0.558	0.600	0.642
102	0.277	0.320	0.363	0.406	0.449	0.492	0.535	0.578	0.622	0.665
104	0.289	0.333	0.377	0.422	0.466	0.510	0.555	0.599	0.644	0.688
106	0.301	0.346	0.392	0.438	0.483	0.529	0.575	0.620	0.666	0.712
108	0.313	0.360	0.407	0.454	0.501	0.548	0.595	0.642	0.689	0.736
110	0.326	0.374	0.422	0.471	0.519	0.567	0.616	0.664	0.712	0.761
112	0.338	0.388	0.438	0.488	0.537	0.587	0.637	0.686	0.736	0.786
114	0.352	0.403	0.454	0.505	0.556	0.607	0.658	0.709	0.760	0.811
116	0.365	0.417	0.470	0.522	0.575	0.627	0.680	0.732	0.785	0.837
118	0.378	0.432	0.486	0.540	0.594	0.648	0.702	0.756	0.810	0.864
120	0.392	0.447	0.503	0.558	0.614	0.669	0.724	0.780	0.835	0.891
122	0.406	0.463	0.520	0.577	0.634	0.690	0.747	0.804	0.861	0.918
124 126	0.420	0.479	0.537	0.595	0.654	0.712	0.771 0.794	0.829	0.887	0.946
128	0.435	0.495	0.555	0.614	0.674	0.734		0.854	0.914 0.941	0.974
130	0.449	0.511 0.527	0.572 0.590	0.634	0.695	0.757	0.818 0.843	0.880 0.906	0.941	1.003
130	0.464	0.544	0.590	0.653	0.717 0.738	0.780	0.843	0.932	0.969	1.032
134	0.479	0.544	0.609	0.673	0.760	0.803	0.893	0.952	1.025	1.062
134	0.493	0.578	0.646	0.694	0.780	0.820	0.893	0.939	1.023	1.122
138	0.510	0.576	0.665	0.714	0.782	0.830	0.918	1.014	1.034	1.122
140	0.542	0.590	0.685	0.756	0.828	0.873	0.944	1.042	1.113	1.185
142	0.542	0.632	0.705	0.738	0.851	0.833	0.971	1.042	1.113	1.183
144	0.575	0.650	0.705	0.800	0.831	0.949	1.024	1.070	1.174	1.249
146	0.573	0.668	0.725	0.822	0.873	0.949	1.052	1.128	1.205	1.249
140	U.J.7Z	0.008	0.743	0.044	0.070	U.713	1.032	1.140	1.203	1.202

Table-6.3: Metric two-way volume table of Acacia auriculiformis (Akashmoni) in the agro-forestry

GBH				Volume in	cubic meter	rs for the he	ight in meter	rs		
(cm)	6	8	10	12	14	16	18	20	22	24
40	0.029	0.042	0.056	0.070	0.083	0.097	0.111	0.124	0.138	0.152
42	0.033	0.047	0.062	0.076	0.091	0.105	0.119	0.134	0.148	0.163
44	0.038	0.053	0.068	0.083	0.098	0.113	0.129	0.144	0.159	0.174
46	0.042	0.058	0.074	0.090	0.106	0.122	0.138	0.154	0.170	0.186
48	0.047	0.064	0.081	0.098	0.115	0.131	0.148	0.165	0.182	0.199
50	0.052	0.070	0.088	0.106	0.123	0.141	0.159	0.176	0.194	0.212
52	0.058	0.076	0.095	0.114	0.132	0.151	0.169	0.188	0.207	0.225
54	0.063	0.083	0.102	0.122	0.142	0.161	0.181	0.200	0.220	0.239
56	0.069	0.090	0.110	0.131	0.151	0.172	0.192	0.213	0.234	0.254
58	0.075	0.097	0.118	0.140	0.161	0.183	0.205	0.226	0.248	0.269
60	0.081	0.104	0.127	0.149	0.172	0.195	0.217	0.240	0.262	0.285
62	0.088	0.111	0.135	0.159	0.183	0.206	0.230	0.254	0.278	0.301
64	0.094	0.119	0.144	0.169	0.194	0.219	0.244	0.268	0.293	0.318
66	0.101	0.127	0.153	0.179	0.205	0.231	0.257	0.283	0.309	0.335
68	0.108	0.135	0.163	0.190	0.217	0.244	0.272	0.299	0.326	0.353
70	0.115	0.144	0.172	0.201	0.229	0.258	0.286	0.315	0.343	0.372
72	0.123	0.153	0.182	0.212	0.242	0.272	0.301	0.331	0.361	0.391
74	0.131	0.162	0.193	0.224	0.255	0.286	0.317	0.348	0.379	0.410
76	0.139	0.171	0.203	0.236	0.268	0.301	0.333	0.365	0.398	0.430
78	0.147	0.180	0.214	0.248	0.282	0.316	0.349	0.383	0.417	0.451
80	0.155	0.190	0.225	0.261	0.296	0.331	0.366	0.401	0.437	0.472
82	0.163	0.200	0.237	0.273	0.310	0.347	0.383	0.420	0.457	0.493
84	0.172	0.210	0.248	0.287	0.325	0.363	0.401	0.439	0.477	0.516
86	0.181	0.221	0.260	0.300	0.340	0.380	0.419	0.459	0.499	0.538
88	0.190	0.231	0.273	0.314	0.355	0.396	0.438	0.479	0.520	0.561
90	0.200	0.242	0.285	0.328	0.371	0.414	0.457	0.499	0.542	0.585
92	0.209	0.254	0.298	0.343	0.387	0.432	0.476	0.521	0.565	0.609
94	0.219	0.265	0.311	0.357	0.404	0.450	0.496	0.542	0.588	0.634
96	0.229	0.277	0.325	0.372	0.420	0.468	0.516	0.564	0.612	0.660
98	0.239	0.289	0.338	0.388	0.438	0.487	0.537	0.586	0.636	0.685
100	0.250	0.301	0.352	0.404	0.455	0.506	0.558	0.609	0.661	0.712
102	0.260	0.313	0.367	0.420	0.473	0.526	0.579	0.632	0.686	0.739
104	0.271	0.326	0.381	0.436	0.491	0.546 0.567	0.601 0.624	0.656	0.711	0.766 0.794
106 108	0.282	0.359	0.396	0.453 0.470	0.510 0.529	0.587	0.646	0.705	0.764	0.794
110	0.293	0.332	0.411	0.470	0.548	0.587	0.670	0.730	0.704	0.852
112	0.316	0.379	0.420	0.505	0.568	0.630	0.693	0.756	0.791	0.832
114	0.310	0.379	0.442	0.523	0.588	0.652	0.093	0.782	0.847	0.882
116	0.340	0.393	0.474	0.541	0.608	0.675	0.742	0.809	0.876	0.912
118	0.353	0.422	0.491	0.560	0.629	0.698	0.767	0.836	0.905	0.974
120	0.365	0.436	0.507	0.579	0.650	0.721	0.792	0.863	0.934	1.005
122	0.378	0.451	0.524	0.598	0.671	0.744	0.818	0.891	0.964	1.038
124	0.391	0.466	0.542	0.617	0.693	0.768	0.844	0.919	0.995	1.070
126	0.404	0.482	0.559	0.637	0.715	0.793	0.871	0.948	1.026	1.104
128	0.417	0.497	0.577	0.657	0.737	0.818	0.898	0.978	1.058	1.138
130	0.431	0.513	0.596	0.678	0.760	0.843	0.925	1.007	1.090	1.172
132	0.445	0.529	0.614	0.699	0.783	0.868	0.953	1.038	1.122	1.207
134	0.459	0.546	0.633	0.720	0.807	0.894	0.981	1.068	1.155	1.243
136	0.473	0.562	0.652	0.741	0.831	0.920	1.010	1.099	1.189	1.279
138	0.487	0.579	0.671	0.763	0.855	0.947	1.039	1.131	1.223	1.315
140	0.502	0.596	0.691	0.785	0.880	0.974	1.069	1.163	1.258	1.352
142	0.517	0.614	0.711	0.808	0.905	1.002	1.099	1.196	1.293	1.390
144	0.532	0.631	0.731	0.830	0.930	1.030	1.129	1.229	1.328	1.428
146	0.547	0.649	0.751	0.853	0.956	1.058	1.160	1.262	1.364	1.467

Table-6.4: Metric two-way volume table of Acacia auriculiformis (Akashmoni) in the strip

GBH				Volume in	cubic meter	rs for the he	ight in meter	rs		
(cm)	6	8	10	12	14	16	18	20	22	24
40	0.018	0.037	0.055	0.074	0.092	0.111	0.129	0.148	0.166	0.185
42	0.023	0.042	0.061	0.080	0.099	0.118	0.137	0.156	0.175	0.194
44	0.029	0.048	0.068	0.087	0.106	0.126	0.145	0.164	0.184	0.203
46	0.035	0.055	0.074	0.094	0.114	0.134	0.153	0.173	0.193	0.213
48	0.041	0.061	0.081	0.102	0.122	0.142	0.162	0.182	0.202	0.223
50	0.047	0.068	0.089	0.109	0.130	0.151	0.171	0.192	0.213	0.233
52	0.054	0.075	0.096	0.117	0.139	0.160	0.181	0.202	0.223	0.244
54	0.061	0.083	0.104	0.126	0.147	0.169	0.191	0.212	0.234	0.255
56	0.068	0.090	0.112	0.135	0.157	0.179	0.201	0.223	0.245	0.267
58	0.076	0.098	0.121	0.144	0.166	0.189	0.212	0.234	0.257	0.279
60	0.083	0.107	0.130	0.153	0.176	0.199	0.223	0.246	0.269	0.292
62	0.091	0.115	0.139	0.163	0.186	0.210	0.234	0.258	0.281	0.305
64	0.100	0.124	0.148	0.173	0.197	0.221	0.246	0.270	0.294	0.319
66	0.108	0.133	0.158	0.183	0.208	0.233	0.258	0.283	0.308	0.333
68	0.117	0.142	0.168	0.194	0.219	0.245	0.270	0.296	0.321	0.347
70	0.126	0.152	0.178	0.204	0.231	0.257	0.283	0.309	0.336	0.362
72	0.135	0.162	0.189	0.216	0.243	0.270	0.296	0.323	0.350	0.377
74	0.145	0.172	0.200	0.227	0.255	0.282	0.310	0.338	0.365	0.393
76	0.154	0.183	0.211	0.239	0.267	0.296	0.324	0.352	0.381	0.409
78	0.164	0.193	0.222	0.251	0.280	0.309	0.338	0.367	0.396	0.425
80	0.175	0.205	0.234	0.264	0.294	0.323	0.353	0.383	0.413	0.442
82	0.185	0.216	0.246	0.277	0.307	0.338	0.368	0.399	0.429	0.460
84	0.196	0.227	0.259	0.290	0.321	0.352	0.384	0.415	0.446	0.477
86	0.207	0.239	0.271	0.303	0.335	0.368	0.400	0.432	0.464	0.496
88	0.219	0.252	0.284	0.317	0.350	0.383	0.416	0.449	0.481	0.514
90	0.230	0.264	0.298	0.331	0.365	0.399	0.432	0.466	0.500	0.533
92	0.242	0.277	0.311	0.346	0.380	0.415	0.449	0.484	0.518	0.553
94	0.254	0.290	0.325	0.361	0.396	0.431	0.467	0.502	0.537	0.573
96	0.267	0.303	0.339	0.376	0.412	0.448	0.484	0.521	0.557	0.593
98	0.279	0.317	0.354	0.391	0.428	0.465	0.502	0.540	0.577	0.614
100	0.292	0.330	0.369	0.407	0.445	0.483	0.521	0.559	0.597	0.635
102	0.306	0.345	0.384	0.423	0.462	0.501	0.540	0.579	0.618	0.657
104	0.319	0.359	0.399	0.439	0.479	0.519	0.559	0.599	0.639	0.679
106	0.333	0.374	0.415	0.456	0.497	0.538	0.579	0.620	0.661	0.702
108	0.347	0.389	0.431	0.473	0.515	0.557	0.599	0.641	0.682	0.724
110	0.361	0.404	0.447	0.490	0.533	0.576	0.619	0.662	0.705	0.748
112	0.375	0.419	0.463	0.507	0.552	0.596	0.640	0.684	0.728	0.772
114	0.390	0.435	0.480	0.525	0.570	0.616	0.661	0.706	0.751	0.796
116	0.405	0.451	0.497	0.544	0.590	0.636	0.682	0.728	0.774	0.821
118	0.420	0.468	0.515	0.562	0.609	0.657	0.704	0.751	0.798	0.846
120	0.436	0.484	0.533	0.581	0.629	0.678	0.726	0.774	0.823	0.871
122	0.452	0.501	0.551	0.600	0.650	0.699	0.749	0.798	0.848	0.897
124	0.468	0.519	0.569	0.620	0.670	0.721	0.772	0.822	0.873	0.923
126	0.484	0.536	0.588	0.640	0.691	0.743	0.795	0.847	0.898	0.950
128	0.501	0.554	0.607	0.660	0.713	0.766	0.819	0.872	0.925	0.978
130	0.518	0.572	0.626	0.680	0.734	0.788	0.843	0.897	0.951	1.005
132	0.535	0.590	0.646	0.701	0.756	0.812	0.867	0.922	0.978	1.033
134	0.552	0.609	0.665	0.722	0.779	0.835	0.892	0.949	1.005	1.062
136	0.570	0.628	0.686	0.743	0.801	0.859	0.917	0.975	1.033	1.091
138	0.588	0.647	0.706	0.765	0.824	0.883	0.943	1.002	1.061	1.120
140	0.606	0.666	0.727	0.787	0.848	0.908	0.969	1.029	1.089	1.150
142	0.624	0.686	0.748	0.810	0.871	0.933	0.995	1.057	1.118	1.180
144	0.643	0.706	0.769	0.832	0.895	0.958	1.022	1.085	1.148	1.211
146	0.662	0.726	0.791	0.855	0.920	0.984	1.049	1.113	1.177	1.242

Table-6.5: two-way Metric volume table of Acacia auriculiformis (Akashmoni) in the embankment

GBH				Volume in	cubic meter	rs for the he	ight in meter	rs		
(cm)	6	8	10	12	14	16	18	20	22	24
40	0.045	0.053	0.061	0.069	0.076	0.082	0.089	0.095	0.100	0.106
42	0.049	0.059	0.068	0.076	0.083	0.091	0.098	0.104	0.111	0.117
44	0.054	0.064	0.074	0.083	0.091	0.099	0.107	0.114	0.121	0.128
46	0.059	0.070	0.081	0.091	0.100	0.108	0.117	0.125	0.132	0.140
48	0.064	0.077	0.088	0.099	0.109	0.118	0.127	0.136	0.144	0.152
50	0.069	0.083	0.095	0.107	0.118	0.128	0.138	0.147	0.156	0.165
52	0.075	0.090	0.103	0.115	0.127	0.138	0.149	0.159	0.168	0.178
54	0.081	0.097	0.111	0.124	0.137	0.149	0.160	0.171	0.182	0.192
56	0.087	0.104	0.119	0.134	0.147	0.160	0.172	0.184	0.195	0.206
58	0.093	0.111	0.128	0.143	0.158	0.171	0.184	0.197	0.209	0.221
60	0.099	0.119	0.137	0.153	0.169	0.183	0.197	0.211	0.223	0.236
62	0.106	0.127	0.146	0.163	0.180	0.195	0.210	0.225	0.238	0.252
64	0.113	0.135	0.155	0.174	0.191	0.208	0.224	0.239	0.254	0.268
66	0.120	0.143	0.165	0.185	0.203	0.221	0.238	0.254	0.270	0.285
68	0.127	0.152	0.175	0.196	0.216	0.235	0.252	0.270	0.286	0.302
70	0.135	0.161	0.185	0.208	0.228	0.248	0.267	0.285	0.303	0.320
72	0.142	0.170	0.196	0.219	0.242	0.263	0.283	0.302	0.320	0.338
74	0.150	0.180	0.207	0.232	0.255	0.277	0.298	0.318	0.338	0.357
76	0.158	0.190	0.218	0.244	0.269	0.292	0.314	0.336	0.356	0.376
78	0.167	0.200	0.229	0.257	0.283	0.307	0.331	0.353	0.375	0.396
80	0.175	0.210	0.241	0.270	0.297	0.323	0.348	0.371	0.394	0.416
82	0.184	0.220	0.253	0.284	0.312	0.339	0.365	0.390	0.414	0.437
84	0.193	0.231	0.265	0.297	0.327	0.356	0.383	0.409	0.434	0.458
86	0.202	0.242	0.278	0.312	0.343	0.373	0.401	0.428	0.455	0.480
88	0.212	0.253	0.291	0.326	0.359	0.390	0.420	0.448	0.476	0.502
90	0.221	0.265	0.304	0.341	0.375	0.408	0.439	0.469	0.497	0.525
92	0.231	0.276	0.318	0.356	0.392	0.426	0.458	0.489	0.519	0.548
94	0.241	0.288	0.331	0.371	0.409	0.444	0.478	0.511	0.542	0.572
96	0.251	0.301	0.345	0.387	0.426	0.463	0.498	0.532	0.565	0.596
98	0.262	0.313	0.360	0.403	0.444	0.482	0.519	0.554	0.588	0.621
100	0.272	0.326	0.374	0.420	0.462	0.502	0.540	0.577	0.612	0.646
102	0.283	0.339	0.389	0.436	0.480	0.522	0.562	0.600	0.637	0.672
104	0.294	0.352	0.405	0.453	0.499	0.542	0.584	0.623	0.662	0.698
106	0.305	0.365	0.420	0.471	0.518	0.563	0.606	0.647	0.687	0.725
108	0.317	0.379	0.436	0.488	0.538	0.584	0.629	0.672	0.713	0.752
110	0.329	0.393	0.452	0.506	0.557	0.606	0.652	0.696	0.739	0.780
112	0.340	0.407	0.468	0.525	0.578	0.628	0.676	0.722	0.766	0.808
114	0.353	0.422	0.485	0.543	0.598	0.650	0.700	0.747	0.793	0.837
116	0.365	0.437	0.502	0.562	0.619	0.673	0.724	0.773	0.821	0.866
118	0.377	0.452	0.519	0.582	0.640	0.696	0.749	0.800	0.849	0.896
120	0.390	0.467	0.537	0.601	0.662	0.719	0.774	0.827	0.877	0.926
122	0.403	0.482	0.554	0.621	0.684	0.743	0.800	0.854	0.907	0.957
124	0.416	0.498	0.572	0.641	0.706	0.767	0.826	0.882	0.936	0.988
126	0.430	0.514	0.591	0.662	0.729	0.792	0.852	0.910	0.966	1.020
128	0.443	0.530	0.609	0.683	0.752	0.817	0.879	0.939	0.997	1.052
130	0.457	0.547	0.628	0.704	0.775	0.842	0.907	0.968	1.028	1.085
132	0.471	0.563	0.648	0.726	0.799	0.868	0.934	0.998	1.059	1.118
134	0.485	0.580	0.667	0.747	0.823	0.894	0.963	1.028	1.091	1.152
136	0.499	0.598	0.687	0.770	0.847	0.921	0.991	1.058	1.123	1.186
138	0.514	0.615	0.707	0.792	0.872	0.948	1.020	1.089	1.156	1.221
140	0.529	0.633	0.727	0.815	0.897	0.975	1.049	1.121	1.189	1.256
142	0.544	0.651	0.748	0.838	0.923	1.003	1.079	1.153	1.223	1.291
144	0.559	0.669	0.769	0.862	0.948	1.031	1.109	1.185	1.257	1.328
146	0.575	0.687	0.790	0.885	0.975	1.059	1.140	1,218	1.292	1.364

Table-7.1: Metric two-way volume table of Acacia mangium (Mangium) in the plantation

GBH				Volume in	cubic meter	rs for the he	ight in meter	rs		
(cm)	6	8	10	12	14	16	18	20	22	24
40	0.042	0.053	0.064	0.075	0.085	0.095	0.105	0.115	0.124	0.133
42	0.046	0.058	0.070	0.082	0.093	0.104	0.114	0.125	0.135	0.145
44	0.050	0.063	0.076	0.089	0.101	0.113	0.124	0.136	0.147	0.158
46	0.054	0.068	0.082	0.096	0.109	0.122	0.134	0.147	0.159	0.171
48	0.058	0.074	0.089	0.103	0.117	0.131	0.145	0.158	0.171	0.184
50	0.062	0.079	0.095	0.111	0.126	0.141	0.156	0.170	0.184	0.198
52	0.067	0.085	0.102	0.119	0.135	0.151	0.167	0.182	0.197	0.212
54	0.071	0.091	0.109	0.127	0.144	0.161	0.178	0.194	0.211	0.226
56	0.076	0.097	0.116	0.135	0.154	0.172	0.190	0.207	0.224	0.241
58	0.081	0.103	0.124	0.144	0.164	0.183	0.202	0.221	0.239	0.257
60	0.086	0.109	0.131	0.153	0.174	0.194	0.214	0.234	0.253	0.273
62	0.091	0.116	0.139	0.162	0.184	0.206	0.227	0.248	0.269	0.289
64	0.096	0.122	0.147	0.171	0.195	0.218	0.240	0.262	0.284	0.305
66	0.102	0.129	0.155	0.181	0.206	0.230	0.254	0.277	0.300	0.322
68	0.107	0.136	0.164	0.191	0.217	0.242	0.267	0.292	0.316	0.340
70	0.113	0.143	0.172	0.201	0.228	0.255	0.281	0.307	0.333	0.358
72	0.118	0.150	0.181	0.211	0.240	0.268	0.296	0.323	0.349	0.376
74	0.124	0.158	0.190	0.221	0.252	0.281	0.310	0.339	0.367	0.394
76	0.130	0.165	0.199	0.232	0.264	0.295	0.325	0.355	0.384	0.413
78	0.136	0.173	0.209	0.243	0.276	0.309	0.340	0.372	0.402	0.433
80	0.142	0.181	0.218	0.254	0.289	0.323	0.356	0.389	0.421	0.452
82	0.149	0.189	0.228	0.265	0.301	0.337	0.372	0.406	0.439	0.472
84	0.155	0.197	0.238	0.277	0.315	0.352	0.388	0.423	0.458	0.493
86	0.162	0.206	0.248	0.288	0.328	0.366	0.404	0.441	0.478	0.514
88	0.169	0.214	0.258	0.300	0.341	0.382	0.421	0.460	0.498	0.535
90	0.175	0.223	0.268	0.312	0.355	0.397	0.438	0.478	0.518	0.557
92	0.182	0.232	0.279	0.325	0.369	0.413	0.455	0.497	0.538	0.579
94	0.189	0.241	0.290	0.337	0.383	0.429	0.473	0.516	0.559	0.601
96	0.196	0.250	0.301	0.350	0.398	0.445	0.491	0.536	0.580	0.624
98	0.204	0.259	0.312	0.363	0.413	0.461	0.509	0.556	0.601	0.647
100	0.211	0.268	0.323	0.376	0.428	0.478	0.527	0.576	0.623	0.670
102	0.219	0.278	0.335	0.389	0.443	0.495	0.546	0.596	0.645	0.694
104	0.226	0.287	0.346	0.403	0.458	0.512	0.565	0.617	0.668	0.718
106	0.234	0.297	0.358	0.417	0.474	0.530	0.584	0.638	0.691	0.743
108	0.242	0.307	0.370	0.431	0.490	0.547	0.604	0.659	0.714	0.767
110	0.250	0.317	0.382	0.445	0.506	0.565	0.624	0.681	0.737	0.793
112	0.258	0.327	0.394	0.459	0.522	0.584	0.644	0.703	0.761	0.818
114	0.266	0.338	0.407	0.474	0.539	0.602	0.664	0.725	0.785	0.844
116	0.274	0.348	0.420	0.488	0.555	0.621	0.685	0.748	0.809	0.870
118	0.282	0.359	0.432	0.503	0.572	0.640	0.706	0.770	0.834	0.897
120	0.291	0.370	0.445	0.518	0.590	0.659	0.727	0.794	0.859	0.924
122	0.300	0.381	0.459	0.534	0.607	0.678	0.748	0.817	0.885	0.951
124	0.308	0.392	0.472	0.549	0.625	0.698	0.770	0.841	0.910	0.979
126	0.317	0.403	0.485	0.565	0.642	0.718	0.792	0.865	0.936	1.007
128	0.326	0.414	0.499	0.581	0.661	0.738	0.814	0.889	0.963	1.035
130	0.335	0.426	0.513	0.597	0.679	0.759	0.837	0.914	0.989	1.064
132	0.344	0.437	0.527	0.613	0.697	0.779	0.860	0.939	1.016	1.093
134	0.353	0.449	0.541	0.630	0.716	0.800	0.883	0.964	1.044	1.122
136	0.363	0.461	0.555	0.646	0.735	0.821	0.906	0.989	1.071	1.152
138	0.372	0.473 0.485	0.570 0.584	0.663 0.680	0.754	0.843	0.930	1.015	1.099	1.182
140					0.773	0.864	0.954	1.041	1.127	1.212
142	0.391	0.497	0.599	0.697	0.793	0.886	0.978	1.067	1.156	1.243
144	0.401	0.510	0.614	0.715	0.813	0.908	1.002	1.094	1.185	1.274
146	0.411	0.522	0.629	0.732	0.833	0.931	1.027	1.121	1.214	1.305

Table-7.2: Metric two-way volume table of *Acacia mangium* (Mangium) in the woodlot

GBH				Volume in	cubic meter	rs for the he	ight in meter	rs		
(cm)	6	8	10	12	14	16	18	20	22	24
40	0.110	0.126	0.143	0.160	0.176	0.193	0.210	0.227	0.243	0.260
42	0.122	0.140	0.157	0.175	0.192	0.210	0.227	0.245	0.262	0.280
44	0.136	0.154	0.172	0.191	0.209	0.228	0.246	0.264	0.283	0.301
46	0.150	0.169	0.188	0.207	0.227	0.246	0.265	0.284	0.304	0.323
48	0.164	0.184	0.205	0.225	0.245	0.265	0.285	0.306	0.326	0.346
50	0.179	0.201	0.222	0.243	0.264	0.285	0.306	0.328	0.349	0.370
52	0.195	0.217	0.240	0.262	0.284	0.306	0.328	0.351	0.373	0.395
54	0.212	0.235	0.258	0.281	0.305	0.328	0.351	0.374	0.398	0.421
56	0.229	0.253	0.277	0.302	0.326	0.350	0.375	0.399	0.423	0.448
58	0.247	0.272	0.297	0.323	0.348	0.374	0.399	0.425	0.450	0.476
60	0.265	0.291	0.318	0.345	0.371	0.398	0.425	0.451	0.478	0.505
62	0.284	0.312	0.339	0.367	0.395	0.423	0.451	0.479	0.507	0.534
64	0.303	0.332	0.362	0.391	0.420	0.449	0.478	0.507	0.536	0.565
66	0.324	0.354	0.384	0.415	0.445	0.475	0.506	0.536	0.567	0.597
68	0.344	0.376	0.408	0.439	0.471	0.503	0.535	0.566	0.598	0.630
70	0.366	0.399	0.432	0.465	0.498	0.531	0.564	0.597	0.630	0.664
72	0.388	0.422	0.457	0.491	0.526	0.560	0.595	0.629	0.664	0.698
74	0.410	0.446	0.482	0.518	0.554	0.590	0.626	0.662	0.698	0.734
76	0.434	0.471	0.509	0.546	0.584	0.621	0.658	0.696	0.733	0.771
78	0.458	0.497	0.536	0.575	0.614	0.653	0.691	0.730	0.769	0.808
80	0.482	0.523	0.563	0.604	0.644	0.685	0.725	0.766	0.806	0.847
82	0.507	0.549	0.592	0.634	0.676	0.718	0.760	0.802	0.845	0.887
84	0.533	0.577	0.621	0.664	0.708	0.752	0.796	0.840	0.883	0.927
86	0.559	0.605	0.650	0.696	0.741	0.787	0.832	0.878	0.923	0.969
88	0.586	0.634	0.681	0.728	0.775	0.823	0.870	0.917	0.964	1.011
90	0.614	0.663	0.712	0.761	0.810	0.859	0.908	0.957	1.006	1.055
92	0.642	0.693	0.744	0.795	0.846	0.896	0.947	0.998	1.049	1.100
94	0.671	0.724	0.777	0.829	0.882	0.934	0.987	1.040	1.092	1.145
96	0.701	0.755	0.810	0.864	0.919	0.973	1.028	1.082	1.137	1.191
98	0.731	0.787	0.844	0.900	0.957	1.013	1.070	1.126	1.182	1.239
100	0.762	0.820	0.878	0.937	0.995	1.054	1.112	1.171	1.229	1.287
102	0.793	0.853	0.914	0.974	1.035	1.095	1.156	1.216	1.276	1.337
104	0.825	0.887	0.950	1.012	1.075	1.137	1.200	1.262	1.325	1.387
106	0.858	0.922	0.987	1.051	1.116	1.180	1.245	1.309	1.374	1.439
108	0.891	0.957	1.024	1.091	1.158	1.224	1.291	1.358	1.424	1.491
110	0.925	0.993	1.062	1.131	1.200	1.269	1.338	1.407	1.475	1.544
112	0.959	1.030	1.101	1.172	1.243	1.314	1.385	1.456	1.528	1.599
114	0.994	1.067	1.141	1.214	1.287	1.361	1.434	1.507	1.581	1.654
116	1.030	1.105	1.181	1.257	1.332	1.408	1.483	1.559	1.635	1.710
118	1.066	1.144	1.222	1.300	1.378	1.456	1.534	1.612	1.689	1.767
120	1.103	1.183	1.264	1.344	1.424	1.505	1.585	1.665	1.745	1.826
122	1.141	1.223	1.306	1.389	1.471	1.554	1.637	1.719	1.802	1.885
124	1.179	1.264	1.349	1.434	1.519	1.604	1.690	1.775	1.860	1.945
126	1.218	1.305	1.393	1.481	1.568	1.656	1.743	1.831	1.919	2.006
128	1.257	1.347	1.437	1.528	1.618	1.708	1.798	1.888	1.978	2.068
130	1.297	1.390	1.483	1.575	1.668	1.761	1.853	1.946	2.039	2.131
132	1.338	1.433	1.528	1.624	1.719	1.814	1.910	2.005	2.100	2.195
134	1.379	1.477	1.575	1.673	1.771	1.869	1.967	2.065	2.163	2.261
136	1.421	1.522	1.622	1.723	1.824	1.924	2.025	2.125	2.226	2.327
138	1.464	1.567	1.670	1.774	1.877	1.980	2.084	2.187	2.290	2.394
140	1.507 1.551	1.613 1.659	1.719	1.825	1.931	2.037	2.143 2.204	2.249	2.356 2.422	2.462
144	1.595	1.639	1.768 1.818	1.877 1.930	1.986 2.042	2.095 2.154	2.204	2.313 2.377	2.422	2.531 2.601
144	1.640	1.755	1.818	1.930	2.042	2.134	2.265	2.377	2.489	2.672
140	1.040	1./33	1.007	1.704	4.070	4.413	4.340	∠ .44 ∠	4.331	4.072

Table-7.3: Metric two-way volume table of Acacia mangium (Mangium) in the agro-forestry

GBH				Volume in	cubic meter	rs for the he	ight in meter	rs		
(cm)	6	8	10	12	14	16	18	20	22	24
40	0.055	0.066	0.077	0.088	0.099	0.110	0.121	0.132	0.142	0.153
42	0.060	0.072	0.084	0.096	0.108	0.120	0.132	0.144	0.156	0.168
44	0.064	0.077	0.091	0.104	0.117	0.131	0.144	0.157	0.170	0.184
46	0.069	0.083	0.098	0.113	0.127	0.142	0.156	0.171	0.185	0.200
48	0.074	0.090	0.106	0.122	0.137	0.153	0.169	0.185	0.201	0.217
50	0.079	0.096	0.114	0.131	0.148	0.165	0.183	0.200	0.217	0.234
52	0.085	0.103	0.122	0.141	0.159	0.178	0.197	0.215	0.234	0.253
54	0.090	0.110	0.131	0.151	0.171	0.191	0.211	0.231	0.252	0.272
56	0.096	0.118	0.140	0.161	0.183	0.205	0.226	0.248	0.270	0.292
58	0.102	0.126	0.149	0.172	0.196	0.219	0.242	0.265	0.289	0.312
60	0.108	0.133	0.158	0.183	0.208	0.233	0.258	0.283	0.308	0.333
62	0.115	0.142	0.168	0.195	0.222	0.249	0.275	0.302	0.329	0.355
64	0.122	0.150	0.179	0.207	0.236	0.264	0.293	0.321	0.350	0.378
66	0.129	0.159	0.189	0.220	0.250	0.280	0.311	0.341	0.371	0.401
68	0.136	0.168	0.200	0.232	0.265	0.297	0.329	0.361	0.393	0.426
70	0.143	0.177	0.211	0.246	0.280	0.314	0.348	0.382	0.416	0.450
72	0.151	0.187	0.223	0.259	0.295	0.331	0.368	0.404	0.440	0.476
74	0.158	0.197	0.235	0.273	0.311	0.349	0.388	0.426	0.464	0.502
76	0.166	0.207	0.247	0.287	0.328	0.368	0.408	0.449	0.489	0.529
78	0.175	0.217	0.260	0.302	0.345	0.387	0.430	0.472	0.515	0.557
80	0.183	0.228	0.272	0.317	0.362	0.407	0.451	0.496	0.541	0.585
82	0.192	0.239	0.286	0.333	0.380	0.427	0.474	0.521	0.568	0.615
84	0.201	0.250	0.299	0.349	0.398	0.447	0.497	0.546	0.595	0.645
86	0.210	0.261	0.313	0.365	0.416	0.468	0.520	0.572	0.623	0.675
88	0.219	0.273	0.327	0.381	0.436	0.490	0.544	0.598	0.652	0.706
90	0.228	0.285	0.342	0.398	0.455	0.512	0.568	0.625	0.682	0.739
92	0.238	0.297	0.357	0.416	0.475	0.534	0.594	0.653	0.712	0.771
94	0.248	0.310	0.372	0.434	0.495	0.557	0.619	0.681	0.743	0.805
96	0.258	0.323	0.387	0.452	0.516	0.581	0.645	0.710	0.774	0.839
98	0.268	0.336	0.403	0.470	0.538	0.605	0.672	0.739	0.807	0.874
100	0.279	0.349	0.419	0.489	0.559	0.629	0.699	0.769	0.840	0.910
102	0.290	0.363	0.436	0.508	0.581	0.654	0.727	0.800	0.873	0.946
104	0.301	0.376	0.452	0.528	0.604	0.680	0.756	0.831	0.907	0.983
106	0.312	0.391	0.469	0.548	0.627	0.706	0.785	0.863	0.942	1.021
108	0.323	0.405	0.487	0.569	0.650	0.732	0.814	0.896	0.978	1.059
110	0.335	0.420	0.505	0.589	0.674	0.759	0.844	0.929	1.014	1.099
112	0.347	0.435	0.523	0.611	0.699	0.787	0.875	0.963	1.051	1.139
114	0.359	0.450	0.541	0.632	0.723	0.815	0.906	0.997	1.088	1.179
116	0.371	0.465	0.560	0.654	0.749	0.843	0.937	1.032	1.126	1.221
118	0.383	0.481	0.579	0.677	0.774	0.872	0.970	1.067	1.165	1.263
120	0.396	0.497	0.598	0.699	0.800	0.901	1.003	1.104	1.205	1.306
122	0.409	0.513	0.618	0.722	0.827	0.931	1.036	1.140	1.245	1.349
124	0.422	0.530	0.638	0.746	0.854	0.962	1.070	1.178	1.286	1.394
126	0.435	0.547	0.658	0.770	0.881	0.993	1.104	1.216	1.327	1.439
128	0.449	0.564	0.679	0.794	0.909	1.024	1.139	1.254	1.369	1.484
130	0.463	0.581	0.700	0.819	0.937	1.056	1.175	1.293	1.412	1.531
132	0.477	0.599	0.721	0.844	0.966	1.088	1.211	1.333	1.456	1.578
134	0.491	0.617	0.743	0.869	0.995	1.121	1.248	1.374	1.500	1.626
136	0.505	0.635	0.765	0.895	1.025	1.155	1.285	1.415	1.545	1.674
138	0.520	0.654	0.787	0.921	1.055	1.189	1.322	1.456	1.590	1.724
140	0.535	0.672	0.810	0.948	1.085	1.223	1.361	1.498	1.636	1.774
142	0.550	0.691	0.833	0.975	1.116	1.258	1.400	1.541	1.683	1.825
144	0.565	0.711	0.856	1.002	1.148	1.293	1.439	1.585	1.730	1.876
146	0.580	0.730	0.880	1.030	1.179	1.329	1.479	1.629	1.779	1.928

Table-8: Metric two-way volume table of Cassia siamea (Minjiri) in the plantation

GBH				Volume in	cubic meter	rs for the he	ight in meter	rs		
(cm)	6	8	10	12	14	16	18	20	22	24
40	0.043	0.056	0.068	0.080	0.092	0.104	0.115	0.127	0.138	0.149
42	0.047	0.061	0.074	0.088	0.101	0.113	0.126	0.139	0.151	0.163
44	0.051	0.066	0.081	0.096	0.110	0.124	0.138	0.151	0.165	0.178
46	0.056	0.072	0.088	0.104	0.119	0.135	0.149	0.164	0.179	0.194
48	0.060	0.078	0.096	0.113	0.129	0.146	0.162	0.178	0.194	0.210
50	0.065	0.084	0.103	0.121	0.139	0.157	0.175	0.192	0.209	0.226
52	0.070	0.091	0.111	0.131	0.150	0.169	0.188	0.207	0.225	0.243
54	0.075	0.098	0.119	0.140	0.161	0.182	0.202	0.222	0.242	0.261
56	0.081	0.104	0.127	0.150	0.172	0.194	0.216	0.237	0.259	0.280
58	0.086	0.111	0.136	0.160	0.184	0.208	0.231	0.254	0.276	0.299
60	0.092	0.119	0.145	0.171	0.196	0.221	0.246	0.270	0.294	0.318
62	0.098	0.126	0.154	0.182	0.209	0.235	0.261	0.287	0.313	0.338
64	0.104	0.134	0.164	0.193	0.221	0.250	0.277	0.305	0.332	0.359
66	0.110	0.142	0.173	0.204	0.234	0.264	0.294	0.323	0.352	0.380
68	0.116	0.150	0.183	0.216	0.248	0.279	0.311	0.341	0.372	0.402
70	0.122	0.158	0.194	0.228	0.262	0.295	0.328	0.360	0.393	0.424
72	0.129	0.167	0.204	0.240	0.276	0.311	0.346	0.380	0.414	0.447
74	0.136	0.176	0.215	0.253	0.290	0.327	0.364	0.400	0.436	0.471
76	0.143	0.185	0.226	0.266	0.305	0.344	0.382	0.420	0.458	0.495
78	0.150	0.194	0.237	0.279	0.320	0.361	0.402	0.441	0.481	0.520
80	0.157	0.203	0.248	0.293	0.336	0.379	0.421	0.463	0.504	0.545
82	0.165	0.213	0.260	0.306	0.352	0.397	0.441	0.485	0.528	0.571
84	0.172	0.223	0.272	0.321	0.368	0.415	0.461	0.507	0.552	0.597
86	0.180	0.233	0.284	0.335	0.385	0.434	0.482	0.530	0.577	0.624
88	0.188	0.243	0.297	0.350	0.402	0.453	0.503	0.553	0.602	0.651
90	0.196	0.254	0.310	0.365	0.419	0.472	0.525	0.577	0.628	0.679
92	0.204	0.264	0.323	0.380	0.436	0.492	0.547	0.601	0.655	0.708
94	0.212	0.275	0.336	0.396	0.454	0.512	0.569	0.626	0.682	0.737
96	0.221	0.286	0.350	0.412	0.473	0.533	0.592	0.651	0.709	0.766
98	0.230	0.297	0.363	0.428	0.491	0.554	0.615	0.676	0.737	0.797
100	0.239	0.309	0.377	0.444	0.510	0.575	0.639	0.703	0.765	0.827
102	0.248	0.320	0.391	0.461	0.529	0.597	0.663	0.729	0.794	0.859
104	0.257	0.332	0.406	0.478	0.549	0.619	0.688	0.756	0.823	0.890
106	0.266	0.344	0.421	0.495	0.569	0.641	0.713	0.783	0.853	0.923
108	0.276	0.357	0.436	0.513	0.589	0.664	0.738	0.811	0.884	0.955
110	0.285	0.369	0.451	0.531	0.610	0.687	0.764	0.840	0.915	0.989
112	0.295	0.382	0.466	0.549	0.631	0.711	0.790	0.868	0.946	1.023
114	0.305	0.395	0.482	0.568	0.652	0.735	0.817	0.898	0.978	1.057
116	0.315	0.408	0.498	0.586	0.673	0.759	0.844	0.927	1.010	1.092
118	0.325	0.421	0.514	0.606	0.695	0.784	0.871	0.958	1.043	1.128
120	0.336	0.434	0.531	0.625	0.718	0.809	0.899	0.988	1.076	1.164
122	0.346	0.448	0.547	0.645	0.740	0.834	0.927	1.019	1.110	1.200
124	0.357	0.462	0.564	0.664	0.763	0.860	0.956	1.051	1.144	1.237
126	0.368	0.476	0.581	0.685	0.786	0.886	0.985	1.083	1.179	1.275
128	0.379	0.490	0.599	0.705	0.810	0.913	1.014	1.115	1.214	1.313
130	0.390	0.505	0.616	0.726	0.833	0.940	1.044	1.148	1.250	1.352
132	0.401	0.519	0.634	0.747	0.858	0.967	1.074	1.181	1.286	1.391
134	0.413	0.534	0.652	0.768	0.882	0.994	1.105	1.215	1.323	1.431
136	0.424	0.549	0.671	0.790	0.907	1.022	1.136	1.249	1.360	1.471
138	0.436	0.564	0.689	0.812	0.932	1.051	1.168	1.283	1.398	1.511
140	0.448	0.580	0.708	0.834	0.957	1.079	1.200	1.318	1.436	1.553
142	0.460	0.595	0.727	0.856	0.983	1.108	1.232	1.354	1.475	1.594
144	0.472	0.611	0.746	0.879	1.009	1.138	1.264	1.390	1.514	1.637
146	0.484	0.627	0.766	0.902	1.036	1.167	1.298	1.426	1.553	1.680

Table-9.1: Metric two-way volume table of *Eucalyptus Camaldulensis* (Eucalyptus) in the cropland

GBH				Volume in	cubic meter	rs for the he	ight in meter	rs		
(cm)	6	8	10	12	14	16	18	20	22	24
40	0.043	0.053	0.063	0.072	0.080	0.089	0.097	0.105	0.112	0.120
42	0.047	0.058	0.069	0.079	0.088	0.097	0.106	0.115	0.123	0.131
44	0.052	0.064	0.075	0.086	0.096	0.106	0.116	0.125	0.135	0.144
46	0.056	0.069	0.082	0.094	0.105	0.116	0.126	0.137	0.147	0.156
48	0.061	0.075	0.089	0.102	0.114	0.126	0.137	0.148	0.159	0.170
50	0.066	0.081	0.096	0.110	0.123	0.136	0.148	0.160	0.172	0.183
52	0.071	0.088	0.103	0.118	0.133	0.146	0.160	0.173	0.185	0.198
54	0.076	0.094	0.111	0.127	0.143	0.157	0.172	0.186	0.199	0.212
56	0.082	0.101	0.119	0.136	0.153	0.169	0.184	0.199	0.214	0.228
58	0.087	0.108	0.127	0.146	0.163	0.180	0.197	0.213	0.228	0.243
60	0.093	0.115	0.136	0.156	0.174	0.193	0.210	0.227	0.244	0.260
62	0.099	0.123	0.145	0.166	0.186	0.205	0.224	0.242	0.259	0.277
64	0.106	0.130	0.154	0.176	0.197	0.218	0.238	0.257	0.276	0.294
66	0.112	0.138	0.163	0.187	0.209	0.231	0.252	0.272	0.292	0.312
68	0.118	0.147	0.173	0.198	0.222	0.245	0.267	0.288	0.309	0.330
70	0.125	0.155	0.183	0.209	0.234	0.258	0.282	0.305	0.327	0.349
72	0.132	0.163	0.193	0.221	0.247	0.273	0.298	0.322	0.345	0.368
74	0.139	0.172	0.203	0.232	0.260	0.287	0.314	0.339	0.364	0.388
76	0.147	0.181	0.214	0.245	0.274	0.303	0.330	0.357	0.383	0.408
78	0.154	0.190	0.225	0.257	0.288	0.318	0.347	0.375	0.402	0.429
80	0.162	0.200	0.236	0.270	0.302	0.334	0.364	0.393	0.422	0.450
82	0.169	0.210	0.247	0.283	0.317	0.350	0.382	0.413	0.443	0.472
84	0.177	0.219	0.259	0.296	0.332	0.366	0.400	0.432	0.463	0.494
86	0.186	0.230	0.271	0.310	0.347	0.383	0.418	0.452	0.485	0.517
88	0.194	0.240	0.283	0.324	0.363	0.400	0.437	0.472	0.507	0.540
90	0.202	0.250	0.295	0.338	0.379	0.418	0.456	0.493	0.529	0.564
92	0.211	0.261	0.308	0.352	0.395	0.436	0.475	0.514	0.552	0.588
94	0.220	0.272	0.321	0.367	0.411	0.454	0.495	0.536	0.575	0.613
96	0.229	0.283	0.334	0.382	0.428	0.473	0.516	0.558	0.598	0.638
98	0.238	0.295	0.348	0.398	0.446	0.492	0.537	0.580	0.622	0.664
100	0.248	0.306	0.361	0.413	0.463	0.511	0.558	0.603	0.647	0.690
102	0.257	0.318	0.375	0.429	0.481	0.531	0.579	0.626	0.672	0.716
104	0.267	0.330	0.389	0.445	0.499	0.551	0.601	0.650	0.697	0.743
106	0.277	0.342	0.404	0.462	0.518	0.571	0.623	0.674	0.723	0.771
108	0.287	0.355	0.418	0.479	0.537	0.592	0.646	0.698	0.749	0.799
110	0.297	0.367	0.433	0.496	0.556	0.613	0.669	0.723	0.776	0.828
112	0.308	0.380	0.449	0.513	0.575	0.635	0.693	0.749	0.803	0.857
114	0.318	0.393	0.464	0.531	0.595	0.657	0.716	0.774	0.831	0.886
116	0.329	0.407	0.480	0.549	0.615	0.679	0.741	0.801	0.859	0.916
118	0.340	0.420	0.496	0.567	0.636	0.701	0.765	0.827	0.888	0.946
120	0.351	0.434	0.512	0.586	0.656	0.724	0.790	0.854	0.917	0.977
122	0.362	0.448	0.528	0.604	0.677	0.748	0.816	0.882	0.946	1.009
124	0.374	0.462	0.545	0.623	0.699	0.771	0.841	0.909	0.976	1.041
126	0.385	0.476	0.562	0.643	0.720	0.795	0.867	0.938	1.006	1.073
128	0.397	0.491	0.579	0.663	0.742	0.819	0.894	0.966	1.037	1.106
130	0.409	0.506	0.596	0.682	0.765	0.844	0.921	0.995	1.068	1.139
132	0.421	0.521	0.614	0.703	0.787	0.869	0.948	1.025	1.100	1.173
134	0.433	0.536	0.632	0.723	0.810	0.894	0.976	1.055	1.132	1.207
136	0.446	0.551	0.650	0.744	0.834	0.920	1.004	1.085	1.164	1,242
138	0.458	0.567	0.669	0.765	0.857	0.946	1.032	1.116	1.197	1.277
140	0.471	0.583	0.687	0.786	0.881	0.973	1.061	1.147	1.231	1.312
142	0.484	0.599	0.706	0.808	0.905	0.999	1.090	1.178	1.264	1.348
144	0.497	0.615	0.725	0.830	0.930	1.026	1.120	1.210	1.299	1.385
146	0.510	0.631	0.745	0.852	0.955	1.054	1.150	1.243	1.333	1.422

Table-9.2: Metric two-way volume table of *Eucalyptus Camaldulensis* (Eucalyptus) in the woodlot

GBH				Volume in	cubic meter	rs for the he	ight in meter	rs		
(cm)	6	8	10	12	14	16	18	20	22	24
40	0.023	0.038	0.052	0.067	0.082	0.097	0.112	0.126	0.141	0.156
42	0.029	0.044	0.059	0.075	0.090	0.106	0.121	0.136	0.152	0.167
44	0.035	0.051	0.067	0.083	0.099	0.115	0.131	0.147	0.163	0.179
46	0.041	0.058	0.075	0.091	0.108	0.125	0.141	0.158	0.175	0.191
48	0.048	0.066	0.083	0.100	0.118	0.135	0.152	0.169	0.187	0.204
50	0.055	0.073	0.091	0.109	0.127	0.145	0.163	0.181	0.199	0.217
52	0.063	0.082	0.100	0.119	0.138	0.156	0.175	0.194	0.213	0.231
54	0.071	0.090	0.109	0.129	0.148	0.168	0.187	0.207	0.226	0.246
56	0.079	0.099	0.119	0.139	0.160	0.180	0.200	0.220	0.240	0.261
58	0.087	0.108	0.129	0.150	0.171	0.192	0.213	0.234	0.255	0.276
60	0.095	0.117	0.139	0.161	0.183	0.205	0.227	0.249	0.270	0.292
62	0.104	0.127	0.150	0.173	0.195	0.218	0.241	0.263	0.286	0.309
64	0.113	0.137	0.161	0.184	0.208	0.232	0.255	0.279	0.303	0.326
66	0.123	0.147	0.172	0.197	0.221	0.246	0.270	0.295	0.319	0.344
68	0.133	0.158	0.184	0.209	0.235	0.260	0.286	0.311	0.337	0.362
70	0.143	0.169	0.196	0.222	0.249	0.275	0.302	0.328	0.354	0.381
72	0.153	0.180	0.208	0.235	0.263	0.290	0.318	0.345	0.373	0.400
74	0.164	0.192	0.221	0.249	0.278	0.306	0.335	0.363	0.392	0.420
76	0.175	0.204	0.234	0.263	0.293	0.322	0.352	0.381	0.411	0.441
78	0.186	0.216	0.247	0.278	0.308	0.339	0.370	0.400	0.431	0.462
80	0.197	0.229	0.261	0.293	0.324	0.356	0.388	0.420	0.451	0.483
82	0.209	0.242	0.275	0.308	0.341	0.374	0.406	0.439	0.472	0.505
84	0.221	0.255	0.289	0.323	0.357	0.391	0.426	0.460	0.494	0.528
86	0.233	0.269	0.304	0.339	0.375	0.410	0.445	0.480	0.516	0.551
88	0.246	0.283	0.319	0.356	0.392	0.429	0.465	0.502	0.538	0.575
90	0.259	0.297	0.335	0.372	0.410	0.448	0.486	0.523	0.561	0.599
92	0.272	0.311	0.350	0.389	0.428	0.468	0.507	0.546	0.585	0.624
94	0.286	0.326	0.366	0.407	0.447	0.488	0.528	0.568	0.609	0.649
96	0.300	0.341	0.383	0.425	0.466	0.508	0.550	0.592	0.633	0.675
98	0.314	0.357	0.400	0.443	0.486	0.529	0.572	0.615	0.658	0.701
100	0.328	0.373	0.417	0.461	0.506	0.550	0.595	0.639	0.684	0.728
102	0.343	0.389	0.435	0.480	0.526	0.572	0.618	0.664	0.710	0.756
104	0.358	0.405	0.452	0.500	0.547	0.595	0.642	0.689	0.737	0.784
106	0.373	0.422	0.471	0.520	0.568	0.617	0.666	0.715	0.764	0.813
108	0.389	0.439	0.489	0.540	0.590	0.640	0.691	0.741	0.791	0.842
110	0.404	0.456	0.508	0.560	0.612	0.664	0.716	0.768	0.820	0.871
112	0.421	0.474	0.527	0.581	0.634	0.688	0.741	0.795	0.848	0.902
114	0.437	0.492	0.547	0.602	0.657	0.712	0.767	0.822	0.877	0.933
116	0.454	0.510	0.567	0.624	0.680	0.737	0.794	0.851	0.907	0.964
118	0.471	0.529	0.587	0.646	0.704	0.762	0.821	0.879	0.937	0.996
120	0.488	0.548	0.608	0.668	0.728	0.788	0.848	0.908	0.968	1.028
122	0.506	0.567	0.629	0.691	0.753	0.814	0.876	0.938	0.999	1.061
124	0.523	0.587	0.650	0.714	0.777	0.841	0.904	0.968	1.031	1.095
126	0.542	0.607	0.672	0.737	0.803	0.868	0.933	0.998	1.064	1.129
128	0.560	0.627	0.694	0.761	0.828	0.895	0.962	1.029	1.096	1.163
130	0.579	0.648	0.717	0.785	0.854	0.923	0.992	1.061	1.130	1.199
132	0.598	0.669	0.739	0.810	0.881	0.951	1.022	1.093	1.164	1.234
134	0.617	0.690	0.762	0.835	0.908	0.980	1.053	1.125	1.198	1,270
136	0.637	0.711	0.786	0.860	0.935	1.009	1.084	1.158	1.233	1.307
138	0.657	0.733	0.810	0.886	0.962	1.039	1.115	1.192	1.268	1.345
140	0.677	0.755	0.834	0.912	0.991	1.069	1.147	1.226	1.304	1.383
142	0.697	0.778	0.858	0.939	1.019	1.099	1.180	1.260	1.341	1.421
144	0.718	0.801	0.883	0.965	1.048	1.130	1.213	1.295	1.378	1.460
146	0.739	0.824	0.908	0.993	1.077	1.162	1.246	1.331	1.415	1.499

Table-9.3: Metric two-way volume table of *Eucalyptus Camaldulensis* (Eucalyptus) in the agro-forestry

GBH				Volume in	cubic meter	rs for the he	ight in meter	rs		
(cm)	6	8	10	12	14	16	18	20	22	24
40	0.021	0.037	0.053	0.069	0.086	0.102	0.118	0.134	0.151	0.167
42	0.027	0.044	0.060	0.077	0.094	0.110	0.127	0.143	0.160	0.177
44	0.034	0.051	0.068	0.085	0.102	0.119	0.136	0.153	0.170	0.187
46	0.041	0.058	0.076	0.093	0.111	0.128	0.145	0.163	0.180	0.198
48	0.048	0.066	0.084	0.102	0.120	0.137	0.155	0.173	0.191	0.209
50	0.056	0.074	0.092	0.111	0.129	0.147	0.166	0.184	0.202	0.221
52	0.063	0.082	0.101	0.120	0.139	0.158	0.176	0.195	0.214	0.233
54	0.072	0.091	0.110	0.130	0.149	0.168	0.188	0.207	0.226	0.246
56	0.080	0.100	0.120	0.140	0.160	0.179	0.199	0.219	0.239	0.259
58	0.089	0.109	0.130	0.150	0.170	0.191	0.211	0.232	0.252	0.272
60	0.098	0.119	0.140	0.161	0.182	0.203	0.224	0.245	0.266	0.287
62	0.107	0.129	0.151	0.172	0.194	0.215	0.237	0.258	0.280	0.301
64	0.117	0.139	0.161	0.184	0.206	0.228	0.250	0.272	0.294	0.316
66	0.127	0.150	0.173	0.195	0.218	0.241	0.264	0.286	0.309	0.332
68	0.138	0.161	0.184	0.208	0.231	0.254	0.278	0.301	0.325	0.348
70	0.148	0.172	0.196	0.220	0.244	0.268	0.292	0.316	0.340	0.364
72	0.159	0.184	0.209	0.233	0.258	0.283	0.307	0.332	0.357	0.381
74	0.171	0.196	0.221	0.247	0.272	0.297	0.323	0.348	0.373	0.399
76	0.182	0.208	0.234	0.260	0.286	0.313	0.339	0.365	0.391	0.417
78	0.194	0.221	0.248	0.274	0.301	0.328	0.355	0.382	0.408	0.435
80	0.206	0.234	0.261	0.289	0.316	0.344	0.372	0.399	0.427	0.454
82	0.219	0.247	0.275	0.304	0.332	0.360	0.389	0.417	0.445	0.474
84	0.232	0.261	0.290	0.319	0.348	0.377	0.406	0.435	0.464	0.493
86	0.245	0.275	0.305	0.334	0.364	0.394	0.424	0.454	0.484	0.514
88	0.258	0.289	0.320	0.350	0.381	0.412	0.442	0.473	0.504	0.535
90	0.272	0.304	0.335	0.367	0.398	0.430	0.461	0.493	0.524	0.556
92	0.286	0.318	0.351	0.383	0.416	0.448	0.480	0.513	0.545	0.578
94	0.300	0.334	0.367	0.400	0.434	0.467	0.500	0.533	0.567	0.600
96	0.315	0.349	0.383	0.418	0.452	0.486	0.520	0.554	0.588	0.623
98	0.330	0.365	0.400	0.435	0.470	0.506	0.541	0.576	0.611	0.646
100	0.345	0.381	0.417	0.453	0.489	0.526	0.562	0.598	0.634	0.670
102	0.361	0.398	0.435	0.472	0.509	0.546	0.583	0.620	0.657	0.694
104	0.377	0.415	0.453	0.491	0.529	0.567	0.605	0.643	0.680	0.718
106	0.393	0.432	0.471	0.510	0.549	0.588	0.627	0.666	0.705	0.744
108	0.410	0.450	0.490	0.530	0.569	0.609	0.649	0.689	0.729	0.769
110	0.427	0.468	0.509	0.549	0.590	0.631	0.672	0.713	0.754	0.795
112	0.444	0.486	0.528	0.570	0.612	0.654	0.696	0.738	0.780	0.822
114	0.461	0.504	0.547	0.590	0.634	0.677	0.720	0.763	0.806	0.849
116	0.479	0.523	0.567	0.611	0.656	0.700	0.744	0.788	0.832	0.876
118	0.497	0.542	0.588	0.633	0.678	0.723	0.769	0.814	0.859	0.904
120	0.515	0.562	0.608	0.655	0.701	0.747	0.794	0.840	0.887	0.933
122	0.534	0.582	0.629	0.677	0.724	0.772	0.819	0.867	0.914	0.962
124	0.553	0.602	0.651	0.699	0.748	0.797	0.845	0.894	0.943	0.991
126	0.573	0.622	0.672	0.722	0.772	0.822	0.872	0.922	0.971	1.021
128	0.592	0.643	0.694	0.745	0.796	0.847	0.898	0.950	1.001	1.052
130	0.612	0.664	0.717	0.769	0.821	0.873	0.926	0.978	1.030	1.082
132	0.632	0.686	0.739	0.793	0.846	0.900	0.953	1.007	1.060	1.114
134	0.653	0.708	0.762	0.817	0.872	0.927	0.981	1.036	1.091	1.146
136	0.674	0.730	0.786	0.842	0.898	0.954	1.010	1.066	1.122	1.178
138	0.695	0.752	0.810	0.867	0.924	0.982	1.039	1.096	1.153	1,211
140	0.716	0.775	0.834	0.892	0.951	1.010	1.068	1.127	1.185	1.244
142	0.738	0.798	0.858	0.918	0.978	1.038	1.098	1.158	1.218	1.278
144	0.760	0.822	0.883	0.944	1.006	1.067	1.128	1.189	1.251	1.312
146	0.783	0.845	0.908	0.971	1.033	1.096	1.159	1.221	1.284	1.347

Table-9.4: Metric two-way volume table of *Eucalyptus Camaldulensis* (Eucalyptus) in the strip

GBH				Volume in	cubic meter	rs for the he	ight in meter	rs		
(cm)	6	8	10	12	14	16	18	20	22	24
40	0.130	0.139	0.149	0.158	0.167	0.176	0.186	0.195	0.204	0.213
42	0.136	0.146	0.157	0.167	0.177	0.188	0.198	0.208	0.219	0.229
44	0.142	0.154	0.165	0.176	0.188	0.199	0.211	0.222	0.234	0.245
46	0.149	0.161	0.174	0.186	0.199	0.212	0.224	0.237	0.249	0.262
48	0.155	0.169	0.183	0.197	0.211	0.224	0.238	0.252	0.266	0.280
50	0.162	0.177	0.192	0.208	0.223	0.238	0.253	0.268	0.283	0.298
52	0.170	0.186	0.202	0.219	0.235	0.252	0.268	0.285	0.301	0.318
54	0.177	0.195	0.213	0.231	0.248	0.266	0.284	0.302	0.320	0.338
56	0.185	0.204	0.224	0.243	0.262	0.281	0.301	0.320	0.339	0.358
58	0.193	0.214	0.235	0.255	0.276	0.297	0.318	0.338	0.359	0.380
60	0.202	0.224	0.246	0.268	0.291	0.313	0.335	0.358	0.380	0.402
62	0.210	0.234	0.258	0.282	0.306	0.330	0.354	0.377	0.401	0.425
64	0.219	0.245	0.270	0.296	0.321	0.347	0.372	0.398	0.423	0.449
66	0.229	0.256	0.283	0.310	0.321	0.365	0.392	0.419	0.446	0.473
68	0.238	0.267	0.296	0.310	0.354	0.383	0.412	0.441	0.470	0.473
70	0.248	0.207	0.310	0.340	0.371	0.402	0.412	0.441	0.470	0.433
70	0.248	0.279	0.310	0.340	0.389	0.402	0.453	0.486	0.494	0.552
	0.269	0.291	0.323	0.330	0.389	0.421	0.434	0.480	0.545	0.579
74	0.209	0.303	0.352	0.372	0.407	0.441	0.478	0.510	0.543	
76										0.607
78	0.290	0.329	0.367	0.406	0.444	0.483	0.521	0.560	0.598	0.637
80	0.302	0.342	0.383	0.423	0.464	0.504	0.545	0.585	0.626	0.666
82	0.313	0.356	0.399	0.441	0.484	0.526	0.569	0.612	0.654	0.697
84	0.325	0.370	0.415	0.460	0.504	0.549	0.594	0.639	0.683	0.728
86	0.337	0.384	0.431	0.478	0.525	0.572	0.619	0.666	0.713	0.760
88	0.350	0.399	0.448	0.498	0.547	0.596	0.645	0.695	0.744	0.793
90	0.362	0.414	0.466	0.517	0.569	0.620	0.672	0.724	0.775	0.827
92	0.375	0.429	0.483	0.537	0.591	0.645	0.699	0.753	0.807	0.861
94	0.389	0.445	0.502	0.558	0.614	0.671	0.727	0.783	0.840	0.896
96	0.402	0.461	0.520	0.579	0.638	0.697	0.756	0.814	0.873	0.932
98	0.416	0.478	0.539	0.600	0.662	0.723	0.785	0.846	0.907	0.969
100	0.430	0.494	0.558	0.622	0.686	0.750	0.814	0.878	0.942	1.006
102	0.445	0.511	0.578	0.645	0.711	0.778	0.844	0.911	0.978	1.044
104	0.460	0.529	0.598	0.667	0.737	0.806	0.875	0.945	1.014	1.083
106	0.475	0.547	0.619	0.691	0.763	0.835	0.907	0.979	1.051	1.123
108	0.490	0.565	0.640	0.714	0.789	0.864	0.939	1.014	1.088	1.163
110	0.505	0.583	0.661	0.738	0.816	0.894	0.971	1.049	1.127	1.204
112	0.521	0.602	0.682	0.763	0.844	0.924	1.005	1.085	1.166	1.246
114	0.538	0.621	0.704	0.788	0.871	0.955	1.038	1.122	1.205	1.289
116	0.554	0.640	0.727	0.813	0.900	0.986	1.073	1.159	1.246	1.332
118	0.571	0.660	0.750	0.839	0.929	1.018	1.108	1.197	1.287	1.376
120	0.588	0.680	0.773	0.866	0.958	1.051	1.143	1.236	1.329	1.421
122	0.605	0.701	0.797	0.892	0.988	1.084	1.180	1.275	1.371	1.467
124	0.623	0.722	0.821	0.920	1.019	1.118	1.217	1.316	1.414	1.513
126	0.641	0.743	0.845	0.947	1.049	1.152	1.254	1.356	1.458	1.561
128	0.659	0.764	0.870	0.975	1.081	1.186	1.292	1.397	1.503	1.609
130	0.677	0.786	0.895	1.004	1.113	1.222	1.331	1.439	1.548	1.657
132	0.696	0.808	0.920	1.033	1.145	1.257	1.370	1.482	1.594	1.707
134	0.715	0.831	0.946	1.062	1.178	1.294	1.410	1.525	1.641	1.757
136	0.734	0.853	0.973	1.092	1.211	1.331	1.450	1.569	1.689	1.808
138	0.754	0.877	1.000	1.122	1.245	1.368	1.491	1.614	1.737	1.860
140	0.774	0.900	1.027	1.153	1.280	1.406	1.533	1.659	1.786	1.912
142	0.794	0.924	1.054	1.184	1.314	1.445	1.575	1.705	1.835	1.965
144	0.814	0.948	1.082	1.216	1.350	1.484	1.618	1.752	1.885	2.019
146	0.835	0.973	1.110	1.248	1.386	1.523	1.661	1.799	1.936	2.074
1.0										

Table-10.1: Metric two-way volume table of Swietenia macrophylla (Mahogany) in the cropland

GBH				Volume in	cubic meter	rs for the he	ight in meter	rs		
(cm)	6	8	10	12	14	16	18	20	22	24
40	0.047	0.054	0.061	0.067	0.073	0.079	0.084	0.089	0.093	0.098
42	0.052	0.060	0.068	0.075	0.081	0.087	0.093	0.098	0.103	0.108
44	0.057	0.066	0.075	0.082	0.089	0.096	0.102	0.108	0.114	0.119
46	0.062	0.073	0.082	0.090	0.098	0.105	0.112	0.118	0.125	0.131
48	0.068	0.079	0.089	0.099	0.107	0.115	0.122	0.129	0.136	0.143
50	0.074	0.086	0.097	0.107	0.117	0.125	0.133	0.141	0.148	0.155
52	0.080	0.094	0.106	0.116	0.126	0.136	0.145	0.153	0.161	0.169
54	0.087	0.101	0.114	0.126	0.137	0.147	0.156	0.166	0.174	0.182
56	0.094	0.109	0.123	0.136	0.148	0.158	0.169	0.179	0.188	0.197
58	0.101	0.118	0.133	0.146	0.159	0.171	0.182	0.192	0.202	0.212
60	0.108	0.126	0.142	0.157	0.170	0.183	0.195	0.206	0.217	0.227
62	0.116	0.135	0.152	0.168	0.182	0.196	0.209	0.221	0.232	0.243
64	0.124	0.145	0.163	0.180	0.195	0.209	0.223	0.236	0.248	0.260
66	0.132	0.154	0.174	0.191	0.208	0.223	0.238	0.251	0.265	0.277
68	0.141	0.164	0.185	0.204	0.221	0.238	0.253	0.268	0.282	0.295
70	0.149	0.174	0.196	0.216	0.235	0.252	0.269	0.284	0.299	0.313
72	0.158	0.185	0.208	0.229	0.249	0.268	0.285	0.302	0.317	0.332
74	0.168	0.196	0.220	0.243	0.264	0.283	0.302	0.319	0.336	0.352
76	0.177	0.207	0.233	0.257	0.279	0.300	0.319	0.337	0.355	0.372
78	0.187	0.218	0.246	0.271	0.294	0.316	0.337	0.356	0.375	0.393
80	0.197	0.230	0.259	0.286	0.310	0.333	0.355	0.376	0.395	0.414
82	0.208	0.242	0.273	0.301	0.327	0.351	0.374	0.395	0.416	0.436
84	0.219	0.255	0.287	0.316	0.344	0.369	0.393	0.416	0.438	0.458
86	0.229	0.268	0.302	0.332	0.361	0.388	0.413	0.437	0.460	0.481
88	0.241	0.281	0.316	0.349	0.379	0.407	0.433	0.458	0.482	0.505
90	0.252	0.294	0.332	0.365	0.397	0.426	0.454	0.480	0.505	0.529
92	0.264	0.308	0.347	0.383	0.415	0.446	0.475	0.503	0.529	0.554
94	0.276	0.322	0.363	0.400	0.434	0.467	0.497	0.526	0.553	0.579
96	0.289	0.337	0.379	0.418	0.454	0.488	0.519	0.549	0.578	0.606
98	0.301	0.351	0.396	0.436	0.474	0.509	0.542	0.573	0.603	0.632
100	0.314	0.367	0.413	0.455	0.494	0.531	0.565	0.598	0.629	0.659
102	0.328	0.382	0.430	0.474	0.515	0.553	0.589	0.623	0.656	0.687
104	0.341	0.398	0.448	0.494	0.536	0.576	0.614	0.649	0.683	0.715
106	0.355	0.414	0.466	0.514	0.558	0.599	0.638	0.675	0.711	0.744
108	0.369	0.430	0.485	0.534	0.580	0.623	0.664	0.702	0.739	0.774
110	0.383	0.447	0.504	0.555	0.603	0.648	0.690	0.730	0.768	0.804
112	0.398	0.464	0.523	0.577	0.626	0.672	0.716	0.758	0.797	0.835
114	0.413	0.482	0.543	0.598	0.650	0.698	0.743	0.786	0.827	0.866
116	0.428	0.499	0.563	0.620	0.674	0.723	0.770	0.815	0.858	0.898
118	0.444	0.518	0.583	0.643	0.698	0.750	0.798	0.845	0.889	0.931
120	0.460	0.536	0.604	0.666	0.723	0.776	0.827	0.875	0.920	0.964
122	0.476	0.555	0.625	0.689	0.748	0.804	0.856	0.905	0.953	0.998
124	0.492	0.574	0.647	0.713	0.774	0.831	0.885	0.937	0.986	1.032
126	0.509	0.593	0.669	0.737	0.800	0.860	0.915	0.968	1.019	1.067
128	0.526	0.613	0.691	0.762	0.827	0.888	0.946	1.001	1.053	1.103
130	0.543	0.633	0.714	0.787	0.854	0.917	0.977	1.034	1.088	1.139
132	0.561	0.654	0.737	0.812	0.882	0.947	1.009	1.067	1.123	1.176
134	0.579	0.675	0.760	0.838	0.910	0.977	1.041	1.101	1.158	1.214
136	0.597	0.696	0.784	0.864	0.938	1.008	1.073	1.136	1.195	1.252
138	0.615	0.717	0.808	0.891	0.967	1.039	1.107	1.171	1.232	1.290
140	0.634	0.739	0.833	0.918	0.997	1.071	1.140	1.206	1.269	1.330
142	0.653	0.761	0.858	0.946	1.027	1.103	1.174	1.242	1.307	1.370
144	0.672	0.784	0.883	0.974	1.057	1.135	1.209	1.279	1.346	1.410
146	0.692	0.807	0.909	1.002	1.088	1.169	1.244	1.317	1.385	1.451

Table-10.2: Metric two-way volume table of Swietenia macrophylla (Mahogany) in the embankment

GBH				Volume in	cubic meter	rs for the he	ight in meter	rs		
(cm)	6	8	10	12	14	16	18	20	22	24
40	0.029	0.040	0.051	0.063	0.075	0.087	0.100	0.112	0.125	0.138
42	0.032	0.044	0.056	0.069	0.082	0.096	0.109	0.123	0.137	0.151
44	0.035	0.048	0.061	0.075	0.090	0.104	0.119	0.134	0.149	0.164
46	0.038	0.052	0.067	0.082	0.097	0.113	0.129	0.146	0.162	0.179
48	0.041	0.056	0.072	0.089	0.106	0.123	0.140	0.158	0.175	0.193
50	0.044	0.061	0.078	0.096	0.114	0.132	0.151	0.170	0.189	0.209
52	0.047	0.065	0.084	0.103	0.123	0.142	0.163	0.183	0.204	0.224
54	0.051	0.070	0.090	0.111	0.131	0.153	0.174	0.196	0.218	0.241
56	0.054	0.075	0.096	0.118	0.141	0.163	0.187	0.210	0.234	0.258
58	0.058	0.080	0.103	0.126	0.150	0.175	0.199	0.224	0.250	0.275
60	0.062	0.085	0.110	0.135	0.160	0.186	0.212	0.239	0.266	0.293
62	0.066	0.091	0.117	0.143	0.170	0.198	0.226	0.254	0.283	0.312
64	0.070	0.096	0.124	0.152	0.181	0.210	0.239	0.269	0.300	0.331
66	0.074	0.102	0.131	0.161	0.191	0.222	0.254	0.285	0.318	0.350
68	0.078	0.108	0.139	0.170	0.202	0.235	0.268	0.302	0.336	0.370
70	0.082	0.114	0.146	0.180	0.213	0.248	0.283	0.319	0.355	0.391
72	0.087	0.120	0.154	0.189	0.225	0.261	0.298	0.336	0.374	0.412
74	0.091	0.126	0.162	0.199	0.237	0.275	0.314	0.353	0.393	0.434
76	0.096	0.133	0.171	0.209	0.249	0.289	0.330	0.371	0.413	0.456
78	0.101	0.139	0.179	0.220	0.261	0.303	0.346	0.390	0.434	0.478
80	0.106	0.146	0.188	0.230	0.274	0.318	0.363	0.409	0.455	0.502
82	0.111	0.153	0.197	0.241	0.287	0.333	0.380	0.428	0.476	0.525
84	0.116	0.160	0.206	0.252	0.300	0.348	0.398	0.448	0.498	0.549
86	0.121	0.167	0.215	0.264	0.313	0.364	0.416	0.468	0.521	0.574
88	0.126	0.175	0.224	0.275	0.327	0.380	0.434	0.488	0.543	0.599
90	0.132	0.182	0.234	0.287	0.341	0.396	0.452	0.509	0.567	0.625
92	0.137	0.190	0.244	0.299	0.355	0.413	0.471	0.530	0.590	0.651
94	0.143	0.197	0.254	0.311	0.370	0.430	0.491	0.552	0.615	0.678
96	0.149	0.205	0.264	0.324	0.385	0.447	0.510	0.574	0.639	0.705
98	0.154	0.213	0.274	0.336	0.400	0.465	0.530	0.597	0.664	0.732
100	0.160	0.222	0.285	0.349	0.415	0.482	0.551	0.620	0.690	0.761
102	0.166	0.230	0.295	0.362	0.431	0.501	0.571	0.643	0.716	0.789
104	0.173	0.238	0.306	0.376	0.447	0.519	0.592	0.667	0.742	0.818
106	0.179	0.247	0.317	0.389	0.463	0.538	0.614	0.691	0.769	0.848
108	0.185	0.256	0.329	0.403	0.479	0.557	0.636	0.716	0.796	0.878
110	0.192	0.265	0.340	0.417	0.496	0.576	0.658	0.740	0.824	0.909
112	0.198	0.274	0.352	0.432	0.513	0.596	0.680	0.766	0.852	0.940
114	0.205	0.283	0.363	0.446	0.530	0.616	0.703	0.791	0.881	0.971
116	0.212	0.292	0.375	0.461	0.548	0.636	0.726	0.818	0.910	1.003
118	0.218	0.302	0.388	0.476	0.566	0.657	0.750	0.844	0.939	1.036
120	0.225	0.311	0.400	0.491	0.584	0.678	0.774	0.871	0.969	1.069
122	0.232	0.321	0.412	0.506	0.602	0.699	0.798	0.898	1.000	1.102
124	0.240	0.331	0.425	0.522	0.620	0.721	0.823	0.926	1.031	1.136
126	0.247	0.341	0.438	0.538	0.639	0.743	0.848	0.954	1.062	1.171
128	0.254	0.351	0.451	0.554	0.658	0.765	0.873	0.982	1.093	1.206
130	0.262	0.361	0.464	0.570	0.678	0.787	0.898	1.011	1.126	1.241
132	0.269	0.372	0.478	0.586	0.697	0.810	0.924	1.041	1.158	1.277
134	0.277	0.383	0.491	0.603	0.717	0.833	0.951	1.070	1.191	1.313
136	0.285	0.393	0.505	0.620	0.737	0.856	0.977	1.100	1.224	1.350
138	0.293	0.404	0.519	0.637	0.757	0.880	1.004	1.131	1.258	1.387
140	0.301	0.415	0.533	0.654	0.778	0.904	1.032	1.161	1.293	1.425
142	0.309	0.426	0.548	0.672	0.799	0.928	1.059	1.192	1.327	1.463
144	0.317	0.437	0.562	0.690	0.820	0.953	1.087	1.224	1.362	1.502
146	0.325	0.449	0.577	0.708	0.841	0.978	1.116	1.256	1.398	1.541

Table-10.3: Metric two-way volume table of Swietenia macrophylla (Mahogany) in the Home garden

GBH				Volume in	cubic meter	rs for the he	ight in meter	rs		
(cm)	6	8	10	12	14	16	18	20	22	24
40	0.042	0.050	0.058	0.065	0.072	0.079	0.085	0.091	0.097	0.102
42	0.046	0.055	0.064	0.072	0.079	0.086	0.093	0.100	0.106	0.112
44	0.050	0.060	0.070	0.078	0.086	0.094	0.102	0.109	0.116	0.122
46	0.054	0.065	0.076	0.085	0.094	0.102	0.111	0.118	0.126	0.133
48	0.059	0.071	0.082	0.092	0.102	0.111	0.120	0.128	0.136	0.144
50	0.064	0.077	0.088	0.099	0.110	0.120	0.129	0.138	0.147	0.156
52	0.068	0.082	0.095	0.107	0.118	0.129	0.139	0.149	0.158	0.168
54	0.073	0.088	0.102	0.115	0.127	0.138	0.149	0.160	0.170	0.180
56	0.079	0.095	0.109	0.123	0.136	0.148	0.160	0.171	0.182	0.193
58	0.084	0.101	0.117	0.131	0.145	0.158	0.171	0.183	0.195	0.206
60	0.090	0.108	0.125	0.140	0.155	0.169	0.182	0.195	0.207	0.219
62	0.095	0.115	0.132	0.149	0.165	0.180	0.194	0.207	0.221	0.233
64	0.101	0.122	0.141	0.158	0.175	0.191	0.206	0.220	0.234	0.248
66	0.107	0.129	0.149	0.168	0.185	0.202	0.218	0.233	0.248	0.262
68	0.113	0.136	0.158	0.177	0.196	0.214	0.230	0.247	0.262	0.278
70	0.120	0.144	0.166	0.187	0.207	0.226	0.243	0.261	0.277	0.293
72	0.126	0.152	0.176	0.197	0.218	0.238	0.257	0.275	0.292	0.309
74	0.133	0.160	0.185	0.208	0.230	0.250	0.270	0.289	0.308	0.325
76	0.140	0.168	0.194	0.219	0.242	0.263	0.284	0.304	0.323	0.342
78	0.147	0.177	0.204	0.230	0.254	0.276	0.298	0.319	0.340	0.359
80	0.154	0.185	0.214	0.241	0.266	0.290	0.313	0.335	0.356	0.377
82	0.161	0.194	0.224	0.252	0.279	0.304	0.328	0.351	0.373	0.395
84	0.169	0.203	0.235	0.264	0.292	0.318	0.343	0.367	0.390	0.413
86	0.176	0.212	0.245	0.276	0.305	0.332	0.358	0.384	0.408	0.432
88	0.184	0.222	0.256	0.288	0.318	0.347	0.374	0.401	0.426	0.451
90	0.192	0.231	0.267	0.300	0.332	0.362	0.390	0.418	0.445	0.470
92	0.200	0.241	0.278	0.313	0.346	0.377	0.407	0.436	0.463	0.490
94	0.208	0.251	0.290	0.326	0.360	0.393	0.424	0.454	0.482	0.510
96	0.217	0.261	0.301	0.339	0.375	0.409	0.441	0.472	0.502	0.531
98	0.225	0.271	0.313	0.353	0.390	0.425	0.458	0.491	0.522	0.552
100	0.234	0.282	0.326	0.366	0.405	0.441	0.476	0.510	0.542	0.573
102	0.243	0.293	0.338	0.380	0.420	0.458	0.494	0.529	0.562	0.595
104	0.252	0.303	0.350	0.394	0.436	0.475	0.512	0.549	0.583	0.617
106	0.261	0.314	0.363	0.409	0.452	0.492	0.531	0.569	0.605	0.640
108	0.270	0.326	0.376	0.423	0.468	0.510	0.550	0.589	0.626	0.663
110	0.280	0.337	0.389	0.438	0.484	0.528	0.569	0.610	0.648	0.686
112	0.290	0.349	0.403	0.453	0.501	0.546	0.589	0.631	0.671	0.709
114	0.299	0.361	0.417	0.469	0.518	0.564	0.609	0.652	0.693	0.733
116	0.309	0.373	0.430	0.484	0.535	0.583	0.629	0.674	0.716	0.758
118	0.319	0.385	0.444	0.500	0.552	0.602	0.650	0.696	0.740	0.783
120	0.330	0.397	0.459	0.516	0.570	0.622	0.671	0.718	0.764	0.808
122	0.340	0.410	0.473	0.532	0.588	0.641	0.692	0.741	0.788	0.833
124	0.351	0.422	0.488	0.549	0.606	0.661	0.713	0.764	0.812	0.859
126	0.361	0.435	0.503	0.566	0.625	0.681	0.735	0.787	0.837	0.885
128	0.372	0.448	0.518	0.583	0.644	0.702	0.757	0.811	0.862	0.912
130	0.383	0.462	0.533	0.600	0.663	0.722	0.780	0.835	0.888	0.939
132	0.394	0.475	0.549	0.617	0.682	0.744	0.802	0.859	0.913	0.966
134	0.406	0.489	0.565	0.635	0.702	0.765	0.825	0.884	0.940	0.994
136	0.417	0.502	0.580	0.653	0.721	0.786	0.849	0.908	0.966	1.022
138	0.429	0.516	0.597	0.671	0.742	0.808	0.872	0.934	0.993	1.051
140	0.441	0.531	0.613	0.690	0.762	0.831	0.896	0.959	1.020	1.079
142	0.453	0.545	0.630	0.708	0.782	0.853	0.920	0.985	1.048	1.109
144	0.465	0.560	0.646	0.727	0.803	0.876	0.945	1.012	1.076	1.138
146	0.477	0.574	0.663	0.746	0.824	0.899	0.970	1.038	1.104	1.168

Table-11.1: Metric two-way volume table of *Dalbergia sissoo* (Sissoo) in the cropland

GBH				Volume in	cubic meter	rs for the he	ight in meter	rs		
(cm)	6	8	10	12	14	16	18	20	22	24
40	0.045	0.054	0.062	0.069	0.076	0.082	0.088	0.094	0.100	0.105
42	0.050	0.059	0.068	0.076	0.084	0.091	0.098	0.104	0.111	0.117
44	0.055	0.065	0.075	0.084	0.092	0.100	0.108	0.115	0.122	0.128
46	0.060	0.072	0.082	0.092	0.101	0.110	0.118	0.126	0.134	0.141
48	0.066	0.078	0.090	0.100	0.110	0.120	0.129	0.138	0.146	0.154
50	0.071	0.085	0.098	0.109	0.120	0.130	0.140	0.150	0.159	0.167
52	0.077	0.092	0.106	0.119	0.130	0.141	0.152	0.162	0.172	0.182
54	0.084	0.100	0.115	0.128	0.141	0.153	0.164	0.176	0.186	0.196
56	0.090	0.108	0.124	0.138	0.152	0.165	0.177	0.189	0.201	0.212
58	0.097	0.116	0.133	0.149	0.163	0.177	0.191	0.203	0.216	0.228
60	0.104	0.124	0.142	0.159	0.175	0.190	0.205	0.218	0.231	0.244
62	0.111	0.133	0.152	0.171	0.188	0.204	0.219	0.234	0.248	0.261
64	0.119	0.142	0.163	0.182	0.200	0.217	0.234	0.249	0.265	0.279
66	0.127	0.151	0.174	0.194	0.213	0.232	0.249	0.266	0.282	0.297
68	0.135	0.161	0.185	0.207	0.227	0.247	0.265	0.283	0.300	0.316
70	0.143	0.171	0.196	0.219	0.241	0.262	0.281	0.300	0.318	0.336
72	0.152	0.181	0.208	0.232	0.256	0.278	0.298	0.318	0.338	0.356
74	0.161	0.192	0.220	0.246	0.271	0.294	0.316	0.337	0.357	0.377
76	0.170	0.203	0.232	0.260	0.286	0.310	0.334	0.356	0.378	0.398
78	0.179	0.214	0.245	0.274	0.302	0.328	0.352	0.376	0.398	0.420
80	0.189	0.225	0.258	0.289	0.318	0.345	0.371	0.396	0.420	0.443
82	0.199	0.237	0.272	0.304	0.335	0.363	0.391	0.417	0.442	0.466
84	0.209	0.249	0.286	0.320	0.352	0.382	0.411	0.438	0.464	0.490
86	0.219	0.262	0.300	0.336	0.369	0.401	0.431	0.460	0.488	0.514
88	0.230	0.274	0.315	0.352	0.387	0.420	0.452	0.482	0.511	0.540
90	0.241	0.288	0.330	0.369	0.406	0.440	0.474	0.505	0.536	0.565
92	0.252	0.301	0.345	0.386	0.425	0.461	0.496	0.529	0.561	0.592
94	0.264	0.315	0.361	0.404	0.444	0.482	0.518	0.553	0.586	0.618
96	0.275	0.329	0.377	0.422	0.464	0.503	0.541	0.577	0.612	0.646
98	0.287	0.343	0.393	0.440	0.484	0.525	0.565	0.603	0.639	0.674
100	0.300	0.358	0.410	0.459	0.505	0.548	0.589	0.628	0.666	0.703
102	0.312	0.373	0.427	0.478	0.526	0.571	0.614	0.655	0.694	0.732
104	0.325	0.388	0.445	0.498	0.547	0.594	0.639	0.682	0.723	0.762
106	0.338	0.403	0.463	0.518	0.569	0.618	0.664	0.709	0.752	0.793
108	0.351	0.419	0.481	0.538	0.592	0.642	0.691	0.737	0.781	0.824
110	0.365	0.436	0.500	0.559	0.615	0.667	0.717	0.765	0.812	0.856
112	0.379	0.452	0.519	0.580	0.638	0.693	0.745	0.795	0.843	0.889
114	0.393	0.469	0.538	0.602	0.662	0.718	0.772	0.824	0.874	0.922
116	0.407	0.486	0.558	0.624	0.686	0.745	0.801	0.854	0.906	0.956
118	0.422	0.504	0.578	0.646	0.711	0.772	0.830	0.885	0.939	0.990
120	0.437	0.522	0.598	0.669	0.736	0.799	0.859	0.917	0.972	1.025
122	0.452	0.540	0.619	0.693	0.762	0.827	0.889	0.948	1.006	1.061
124	0.468	0.558	0.640	0.716	0.788	0.855	0.919	0.981	1.040	1.097
126	0.483	0.577	0.662	0.740	0.814	0.884	0.950	1.014	1.075	1.134
128	0.499	0.596	0.684	0.765	0.841	0.913	0.982	1.047	1.111	1.172
130	0.516	0.616	0.706	0.790	0.869	0.943	1.014	1.082	1.147	1,210
132	0.532	0.635	0.729	0.815	0.896	0.973	1.046	1.116	1.184	1,249
134	0.549	0.655	0.752	0.841	0.925	1.004	1.079	1.152	1.221	1,288
136	0.566	0.676	0.775	0.867	0.954	1.035	1.113	1.188	1.259	1.329
138	0.584	0.697	0.799	0.894	0.983	1.067	1.147	1.224	1.298	1.369
140	0.601	0.718	0.823	0.921	1.013	1.099	1.182	1.261	1.337	1.411
142	0.619	0.739	0.848	0.948	1.043	1.132	1.217	1.299	1.377	1.453
144	0.637	0.761	0.873	0.976	1.073	1.165	1.253	1.337	1.417	1.495
146	0.656	0.783	0.898	1.004	1.104	1.199	1.289	1.375	1.459	1.539

Table-11.2: Metric two-way volume table of *Dalbergia sissoo* (Sissoo) in the strip plantation

GBH				Volume in	cubic meter	rs for the he	ight in meter	rs		
(cm)	6	8	10	12	14	16	18	20	22	24
40	0.029	0.045	0.061	0.077	0.093	0.109	0.124	0.140	0.156	0.172
42	0.030	0.047	0.064	0.081	0.098	0.116	0.133	0.150	0.167	0.184
44	0.030	0.049	0.067	0.086	0.105	0.123	0.142	0.160	0.179	0.197
46	0.031	0.051	0.071	0.091	0.111	0.131	0.151	0.171	0.191	0.211
48	0.032	0.053	0.075	0.096	0.118	0.139	0.160	0.182	0.203	0.225
50	0.033	0.056	0.079	0.102	0.125	0.147	0.170	0.193	0.216	0.239
52	0.033	0.058	0.083	0.107	0.132	0.156	0.181	0.205	0.230	0.255
54	0.034	0.061	0.087	0.113	0.139	0.165	0.192	0.218	0.244	0.270
56	0.035	0.063	0.091	0.119	0.147	0.175	0.203	0.231	0.259	0.287
58	0.036	0.066	0.096	0.125	0.155	0.185	0.215	0.244	0.274	0.304
60	0.037	0.069	0.100	0.132	0.163	0.195	0.227	0.258	0.290	0.322
62	0.038	0.072	0.105	0.139	0.172	0.206	0.239	0.273	0.306	0.340
64	0.039	0.075	0.110	0.146	0.181	0.217	0.252	0.288	0.323	0.359
66	0.040	0.078	0.115	0.153	0.190	0.228	0.265	0.303	0.340	0.378
68	0.041	0.081	0.120	0.160	0.200	0.239	0.279	0.319	0.358	0.398
70	0.042	0.084	0.126	0.168	0.210	0.251	0.293	0.335	0.377	0.419
72	0.044	0.088	0.132	0.176	0.220	0.264	0.308	0.352	0.396	0.440
74	0.045	0.091	0.137	0.184	0.230	0.276	0.323	0.369	0.415	0.462
76	0.046	0.095	0.143	0.192	0.241	0.289	0.338	0.387	0.435	0.484
78	0.047	0.098	0.149	0.200	0.251	0.303	0.354	0.405	0.456	0.507
80	0.048	0.102	0.156	0.209	0.263	0.316	0.370	0.423	0.477	0.530
82	0.050	0.106	0.162	0.218	0.274	0.330	0.386	0.442	0.499	0.555
84	0.051	0.110	0.169	0.227	0.286	0.345	0.403	0.462	0.521	0.579
86	0.052	0.114	0.175	0.237	0.298	0.359	0.421	0.482	0.543	0.605
88	0.054	0.118	0.182	0.246	0.310	0.374	0.439	0.503	0.567	0.631
90	0.055	0.122	0.189	0.256	0.323	0.390	0.457	0.524	0.590	0.657
92	0.057	0.127	0.196	0.266	0.336	0.406	0.475	0.545	0.615	0.685
94	0.058	0.131	0.204	0.276	0.349	0.422	0.494	0.567	0.640	0.712
96	0.060	0.136	0.211	0.287	0.362	0.438	0.514	0.589	0.665	0.741
98	0.061	0.140	0.219	0.298	0.376	0.455	0.534	0.612	0.691	0.770
100	0.063	0.145	0.227	0.308	0.390	0.472	0.554	0.636	0.717	0.799
102	0.065	0.150	0.235	0.320	0.405	0.490	0.574	0.659	0.744	0.829
104	0.066	0.155	0.243	0.331	0.419	0.507	0.596	0.684	0.772	0.860
106	0.068	0.160	0.251	0.343	0.434	0.526	0.617	0.708	0.800	0.891
108	0.070	0.165	0.260	0.354	0.449	0.544	0.639	0.734	0.829	0.923
110	0.072	0.170	0.268	0.366	0.465	0.563	0.661	0.759	0.858	0.956
112	0.073	0.175	0.277	0.379	0.480	0.582	0.684	0.786	0.887	0.989
114	0.075	0.181	0.286	0.391	0.496	0.602	0.707	0.812	0.917	1.023
116	0.077	0.186	0.295	0.404	0.513	0.622	0.730	0.839	0.948	1.057
118	0.079	0.192	0.304	0.417	0.529	0.642	0.754	0.867	0.979	1.092
120	0.081	0.197	0.314	0.430	0.546	0.662	0.779	0.895	1.011	1.128
122	0.083	0.203	0.323	0.443	0.563	0.683	0.803	0.924	1.044	1.164
124	0.085	0.209	0.333	0.457	0.581	0.705	0.829	0.953	1.076	1.200
126	0.087	0.215	0.343	0.471	0.598	0.726	0.854	0.982	1.110	1.238
128	0.089	0.221	0.353	0.485	0.616	0.748	0.880	1.012	1.144	1.276
130	0.091	0.227	0.363	0.499	0.635	0.771	0.906	1.042	1.178	1.314
132	0.093	0.233	0.373	0.513	0.653	0.793	0.933	1.073	1.213	1.353
134	0.095	0.240	0.384	0.528	0.672	0.816	0.960	1.105	1.249	1.393
136	0.098	0.246	0.394	0.543	0.691	0.840	0.988	1.136	1.285	1.433
138	0.100	0.253	0.405	0.558	0.711	0.863	1.016	1.169	1.321	1.474
140	0.102	0.259	0.416	0.573	0.730	0.887	1.044	1.202	1.359	1.516
142	0.104	0.266	0.427	0.589	0.750	0.912	1.073	1.235	1.396	1.558
144	0.107	0.273	0.439	0.605	0.771	0.937	1.103	1.269	1.434	1.600
146	0.109	0.280	0.450	0.621	0.791	0.962	1.132	1.303	1.473	1.644

Table-11.3: Metric two-way volume table of *Dalbergia sissoo* (Sissoo) in the embankment

GBH				Volume in	cubic meter	rs for the he	ight in meter	rs		
(cm)	6	8	10	12	14	16	18	20	22	24
40	0.037	0.051	0.065	0.079	0.093	0.108	0.122	0.137	0.152	0.167
42	0.041	0.056	0.072	0.087	0.103	0.119	0.135	0.151	0.167	0.184
44	0.045	0.062	0.078	0.096	0.113	0.130	0.148	0.166	0.184	0.202
46	0.049	0.067	0.086	0.104	0.123	0.142	0.161	0.181	0.200	0.220
48	0.054	0.073	0.093	0.113	0.134	0.155	0.176	0.197	0.218	0.239
50	0.058	0.079	0.101	0.123	0.145	0.168	0.190	0.213	0.236	0.260
52	0.063	0.086	0.109	0.133	0.157	0.181	0.206	0.231	0.255	0.281
54	0.068	0.093	0.118	0.143	0.169	0.195	0.222	0.248	0.275	0.302
56	0.073	0.099	0.127	0.154	0.182	0.210	0.238	0.267	0.296	0.325
58	0.078	0.107	0.136	0.165	0.195	0.225	0.255	0.286	0.317	0.348
60	0.084	0.114	0.145	0.176	0.208	0.241	0.273	0.306	0.339	0.372
62	0.089	0.122	0.155	0.188	0.222	0.257	0.292	0.327	0.362	0.397
64	0.095	0.130	0.165	0.201	0.237	0.273	0.310	0.348	0.385	0.423
66	0.101	0.138	0.175	0.213	0.252	0.291	0.330	0.370	0.410	0.450
68	0.107	0.146	0.186	0.226	0.267	0.308	0.350	0.392	0.435	0.477
70	0.113	0.155	0.197	0.239	0.283	0.327	0.371	0.415	0.460	0.505
72	0.120	0.164	0.208	0.253	0.299	0.345	0.392	0.439	0.487	0.534
74	0.127	0.173	0.220	0.267	0.316	0.365	0.414	0.464	0.514	0.564
76	0.134	0.182	0.232	0.282	0.333	0.384	0.436	0.489	0.542	0.595
78	0.141	0.192	0.244	0.297	0.350	0.405	0.459	0.515	0.570	0.626
80	0.148	0.202	0.256	0.312	0.368	0.425	0.483	0.541	0.599	0.658
82	0.155	0.212	0.269	0.328	0.387	0.447	0.507	0.568	0.630	0.691
84	0.163	0.222	0.282	0.344	0.406	0.468	0.532	0.596	0.660	0.725
86	0.171	0.233	0.296	0.360	0.425	0.491	0.557	0.624	0.692	0.760
88	0.179	0.243	0.310	0.377	0.445	0.514	0.583	0.653	0.724	0.795
90	0.187	0.254	0.324	0.394	0.465	0.537	0.610	0.683	0.757	0.831
92	0.195	0.266	0.338	0.411	0.486	0.561	0.637	0.713	0.791	0.868
94	0.203	0.277	0.353	0.429	0.507	0.585	0.665	0.744	0.825	0.906
96	0.212	0.289	0.368	0.448	0.528	0.610	0.693	0.776	0.860	0.945
98	0.221	0.301	0.383	0.466	0.551	0.636	0.722	0.809	0.896	0.984
100	0.230	0.314	0.399	0.485	0.573	0.662	0.751	0.842	0.933	1.024
102	0.239	0.326	0.415	0.505	0.596	0.688	0.781	0.875	0.970	1.065
104	0.249	0.339	0.431	0.524	0.619	0.715	0.812	0.909	1.008	1.107
106	0.258	0.352	0.448	0.545	0.643	0.743	0.843	0.944	1.047	1.149
108	0.268	0.365	0.464	0.565	0.667	0.771	0.875	0.980	1.086	1.193
110	0.278	0.379	0.482	0.586	0.692	0.799	0.907	1.016	1.126	1.237
112	0.288	0.392	0.499	0.607	0.717	0.828	0.940	1.053	1.167	1.282
114	0.298	0.406	0.517	0.629	0.743	0.858	0.974	1.091	1.209	1.328
116	0.309	0.421	0.535	0.651	0.769	0.888	1.008	1.129	1.251	1.374
118	0.319	0.435	0.553	0.674	0.795	0.918	1.043	1.168	1.294	1.421
120	0.330	0.450	0.572	0.696	0.822	0.949	1.078	1.207	1.338	1.469
122	0.341	0.465	0.591	0.719	0.849	0.981	1.114	1.248	1.382	1.518
124	0.352	0.480	0.610	0.743	0.877	1.013	1.150	1.288	1.428	1.568
126	0.363	0.495	0.630	0.767	0.905	1.046	1.187	1.330	1.474	1.619
128	0.375	0.511	0.650	0.791	0.934	1.079	1.225	1.372	1.520	1.670
130	0.387	0.527	0.670	0.816	0.963	1.112	1.263	1.415	1.568	1.722
132	0.398	0.543	0.691	0.841	0.993	1.147	1.302	1.458	1.616	1.775
134	0.411	0.560	0.712	0.866	1.023	1.181	1.341	1.502	1.665	1.828
136	0.423	0.576	0.733	0.892	1.053	1.216	1.381	1.547	1.714	1.883
138	0.435	0.593	0.755	0.918	1.084	1.252	1.421	1.592	1.765	1.938
140	0.448	0.610	0.776	0.945	1.116	1.288	1.462	1.638	1.816	1.994
142	0.460	0.628	0.798	0.972	1.147	1.325	1.504	1.685	1.867	2.051
144	0.473	0.645	0.821	0.999	1.180	1.362	1.546	1.732	1.920	2.108
146	0.486	0.663	0.844	1.027	1.212	1.400	1.589	1.780	1.973	2.167

Table-12.1: Metric two-way volume table of Albizia procera (Korai) in the cropland

GBH				Volume in	cubic meter	rs for the he	ight in meter	rs		
(cm)	6	8	10	12	14	16	18	20	22	24
40	0.046	0.060	0.073	0.087	0.100	0.112	0.125	0.138	0.150	0.162
42	0.051	0.066	0.081	0.095	0.110	0.124	0.138	0.152	0.165	0.179
44	0.056	0.072	0.089	0.104	0.120	0.136	0.151	0.166	0.181	0.196
46	0.061	0.079	0.097	0.114	0.131	0.148	0.165	0.181	0.198	0.214
48	0.066	0.086	0.105	0.124	0.143	0.161	0.179	0.197	0.215	0.233
50	0.072	0.093	0.114	0.134	0.154	0.174	0.194	0.214	0.233	0.252
52	0.077	0.100	0.123	0.145	0.167	0.188	0.210	0.231	0.252	0.272
54	0.083	0.108	0.132	0.156	0.180	0.203	0.226	0.248	0.271	0.293
56	0.089	0.116	0.142	0.168	0.193	0.218	0.243	0.267	0.291	0.315
58	0.096	0.124	0.152	0.180	0.207	0.234	0.260	0.286	0.312	0.337
60	0.102	0.133	0.163	0.192	0.221	0.250	0.278	0.306	0.333	0.361
62	0.109	0.142	0.174	0.205	0.236	0.266	0.296	0.326	0.356	0.385
64	0.116	0.151	0.185	0.218	0.251	0.283	0.315	0.347	0.378	0.410
66	0.124	0.161	0.197	0.232	0.267	0.301	0.335	0.369	0.402	0.435
68	0.131	0.170	0.208	0.246	0.283	0.319	0.355	0.391	0.426	0.461
70	0.139	0.180	0.221	0.260	0.299	0.338	0.376	0.414	0.451	0.489
72	0.147	0.190	0.233	0.275	0.317	0.357	0.398	0.438	0.477	0.516
74	0.155	0.201	0.246	0.290	0.334	0.377	0.420	0.462	0.504	0.545
76	0.163	0.212	0.259	0.306	0.352	0.397	0.442	0.487	0.531	0.574
78	0.172	0.223	0.273	0.322	0.371	0.418	0.466	0.512	0.559	0.604
80	0.181	0.234	0.287	0.339	0.389	0.440	0.489	0.538	0.587	0.635
82	0.189	0.246	0.301	0.355	0.409	0.462	0.514	0.565	0.616	0.667
84	0.199	0.258	0.316	0.373	0.429	0.484	0.539	0.593	0.646	0.699
86	0.208	0.270	0.331	0.390	0.449	0.507	0.564	0.621	0.677	0.732
88	0.218	0.283	0.346	0.408	0.470	0.530	0.590	0.649	0.708	0.766
90	0.228	0.295	0.362	0.427	0.491	0.554	0.617	0.679	0.740	0.801
92	0.238	0.309	0.378	0.446	0.513	0.579	0.644	0.709	0.773	0.836
94	0.248	0.322	0.394	0.465	0.535	0.604	0.672	0.739	0.806	0.873
96	0.258	0.336	0.411	0.485	0.558	0.629	0.700	0.771	0.840	0.909
98	0.269	0.349	0.428	0.505	0.581	0.655	0.729	0.803	0.875	0.947
100	0.280	0.364	0.445	0.525	0.604	0.682	0.759	0.835	0.911	0.986
102	0.291	0.378	0.463	0.546	0.628	0.709	0.789	0.868	0.947	1.025
104	0.302	0.393	0.481	0.567	0.653	0.737	0.820	0.902	0.984	1.065
106	0.314	0.408	0.499	0.589	0.678	0.765	0.851	0.937	1.021	1.105
108	0.326	0.423	0.518	0.611	0.703	0.794	0.883	0.972	1.060	1.147
110	0.338	0.439	0.537	0.634	0.729	0.823	0.916	1.008	1.099	1.189
112	0.350	0.454	0.556	0.657	0.755	0.852	0.949	1.044	1.138	1.232
114	0.362	0.470	0.576	0.680	0.782	0.883	0.982	1.081	1.179	1.275
116	0.375	0.487	0.596	0.703	0.809	0.913	1.016	1.119	1.220	1.320
118	0.388	0.504	0.617	0.728	0.837	0.945	1.051	1.157	1.261	1.365
120	0.401	0.520	0.637	0.752	0.865	0.976	1.087	1.196	1.304	1.411
122	0.414	0.538	0.658	0.777	0.894	1.009	1.123	1.235	1.347	1.458
124	0.428	0.555	0.680	0.802	0.923	1.042	1.159	1.275	1.391	1.505
126	0.441	0.573	0.702	0.828	0.952	1.075	1.196	1.316	1.435	1.553
128	0.455	0.591	0.724	0.854	0.982	1.109	1.234	1.358	1.480	1.602
130	0.469	0.609	0.746	0.880	1.013	1.143	1.272	1.400	1.526	1.652
132	0.484	0.628	0.769	0.907	1.043	1.178	1.311	1.442	1.573	1.702
134	0.498	0.647	0.792	0.934	1.075	1.213	1.350	1.486	1.620	1.753
136	0.513	0.666	0.815	0.962	1.107	1.249	1.390	1.530	1.668	1.805
138	0.528	0.685	0.839	0.990	1.139	1.286	1.431	1.574	1.716	1.857
140	0.543	0.705	0.863	1.019	1.171	1.322	1.472	1.619	1.766	1.911
142	0.558	0.725	0.888	1.047	1.205	1.360	1.513	1.665	1.816	1.965
144	0.574	0.745	0.912	1.077	1.238	1.398	1.556	1.712	1.866	2.020
146	0.590	0.766	0.937	1.106	1.272	1.436	1.598	1.759	1.918	2.075

Table-12.2: Metric two-way volume table of *Albizia procera* (Korai) in the embankment

GBH				Volume in	cubic meter	rs for the he	ight in meter	rs		
(cm)	6	8	10	12	14	16	18	20	22	24
40	0.039	0.061	0.087	0.117	0.149	0.184	0.222	0.262	0.304	0.349
42	0.042	0.067	0.095	0.127	0.162	0.200	0.241	0.285	0.331	0.380
44	0.046	0.072	0.103	0.137	0.175	0.217	0.261	0.308	0.358	0.411
46	0.049	0.078	0.111	0.148	0.189	0.234	0.282	0.333	0.387	0.444
48	0.053	0.084	0.119	0.159	0.204	0.251	0.303	0.358	0.416	0.478
50	0.057	0.090	0.128	0.171	0.218	0.270	0.325	0.384	0.446	0.512
52	0.061	0.096	0.137	0.183	0.233	0.288	0.347	0.410	0.477	0.548
54	0.065	0.103	0.146	0.195	0.249	0.308	0.371	0.438	0.509	0.584
56	0.069	0.109	0.156	0.208	0.265	0.327	0.394	0.466	0.542	0.622
58	0.074	0.116	0.165	0.221	0.281	0.348	0.419	0.495	0.575	0.660
60	0.078	0.123	0.175	0.234	0.298	0.368	0.444	0.524	0.610	0.700
62	0.083	0.130	0.185	0.247	0.315	0.390	0.470	0.555	0.645	0.740
64	0.087	0.137	0.196	0.261	0.333	0.412	0.496	0.586	0.681	0.782
66	0.092	0.145	0.206	0.275	0.351	0.434	0.523	0.617	0.718	0.824
68	0.097	0.152	0.217	0.290	0.370	0.457	0.550	0.650	0.756	0.867
70	0.102	0.160	0.228	0.304	0.388	0.480	0.578	0.683	0.794	0.911
72	0.107	0.168	0.239	0.319	0.408	0.504	0.607	0.717	0.833	0.956
74	0.112	0.176	0.251	0.335	0.427	0.528	0.636	0.751	0.873	1.002
76	0.117	0.184	0.263	0.350	0.447	0.552	0.666	0.786	0.914	1.049
78	0.122	0.193	0.275	0.366	0.468	0.578	0.696	0.822	0.956	1.097
80	0.128	0.201	0.287	0.383	0.488	0.603	0.727	0.859	0.998	1.146
82	0.133	0.210	0.299	0.399	0.509	0.629	0.758	0.896	1.041	1.195
84	0.139	0.219	0.312	0.416	0.531	0.656	0.790	0.933	1.085	1.246
86	0.145	0.228	0.324	0.433	0.553	0.683	0.823	0.972	1.130	1.297
88	0.150	0.237	0.338	0.450	0.575	0.710	0.856	1.011	1.175	1.349
90	0.156	0.246	0.351	0.468	0.597	0.738	0.889	1.050	1.221	1.402
92	0.162	0.256	0.364	0.486	0.620	0.766	0.923	1.091	1.268	1.456
94	0.168	0.265	0.378	0.504	0.644	0.795	0.958	1.132	1.316	1.510
96	0.175	0.275	0.392	0.523	0.667	0.824	0.993	1.173	1.364	1.566
98	0.181	0.285	0.406	0.542	0.691	0.854	1.029	1.215	1.413	1.622
100	0.187	0.295	0.420	0.561	0.716	0.884	1.065	1.258	1.463	1.679
102	0.194	0.305	0.435	0.580	0.740	0.914	1.102	1.302	1.514	1.737
104	0.200	0.316	0.449	0.600	0.765	0.945	1.139	1.346	1.565	1.796
106	0.207	0.326	0.464	0.620	0.791	0.977	1.177	1.390	1.617	1.855
108	0.214	0.337	0.479	0.640	0.816	1.008	1.215	1.436	1.669	1.916
110	0.220	0.347	0.495	0.660	0.842	1.041	1.254	1.481	1.723	1.977
112	0.227	0.358	0.510	0.681	0.869	1.073	1.293	1.528	1.777	2.039
114`	0.234	0.369	0.526	0.702	0.896	1.106	1.333	1.575	1.831	2.102
116	0.241	0.381	0.542	0.723	0.923	1.140	1.373	1.623	1.887	2.165
118	0.249	0.392	0.558	0.744	0.950	1.174	1.414	1.671	1.943	2,229
120	0.256	0.403	0.574	0.766	0.978	1.208	1.455	1.720	1.999	2.295
122	0.263	0.415	0.591	0.788	1.006	1,243	1.497	1.769	2.057	2.361
124	0.271	0.427	0.607	0.810	1.034	1.278	1.540	1.819	2.115	2.427
126	0.278	0.439	0.624	0.833	1.063	1.313	1.582	1.869	2.174	2.495
128	0.286	0.451	0.641	0.856	1.092	1.349	1.626	1.921	2.233	2.563
130	0.293	0.463	0.659	0.879	1.122	1.385	1.669	1.972	2.293	2.632
132	0.301	0.475	0.676	0.902	1.151	1.422	1.714	2.025	2.354	2.702
134	0.309	0.487	0.694	0.926	1.181	1.459	1.758	2.077	2.416	2.772
136	0.317	0.500	0.711	0.949	1.212	1.497	1.804	2.131	2.478	2.843
138	0.325	0.512	0.729	0.973	1.242	1.535	1.849	2.185	2.540	2.915
140	0.333	0.525	0.748	0.998	1.273	1.573	1.895	2.239	2.604	2.988
142	0.341	0.538	0.766	1.022	1.305	1.612	1.942	2.294	2.668	3.062
144	0.350	0.551	0.785	1.047	1.336	1.651	1.989	2.350	2.732	3.136
146	0.358	0.564	0.803	1.072	1.368	1.690	2.037	2.406	2.798	3.211

Table-12.3: Metric two-way volume table of *Albizia procera* (Korai) in the central parts

GBH				Volume in	cubic meter	rs for the he	ight in meter	rs		
(cm)	6	8	10	12	14	16	18	20	22	24
40	0.043	0.053	0.063	0.073	0.081	0.090	0.099	0.107	0.115	0.122
42	0.047	0.059	0.069	0.080	0.090	0.099	0.108	0.117	0.126	0.135
44	0.052	0.064	0.076	0.087	0.098	0.108	0.119	0.128	0.138	0.147
46	0.056	0.070	0.083	0.095	0.107	0.118	0.129	0.140	0.150	0.161
48	0.061	0.076	0.090	0.103	0.116	0.128	0.140	0.152	0.163	0.174
50	0.066	0.082	0.097	0.112	0.126	0.139	0.152	0.165	0.177	0.189
52	0.072	0.089	0.105	0.121	0.136	0.150	0.164	0.178	0.191	0.204
54	0.077	0.096	0.113	0.130	0.146	0.161	0.176	0.191	0.205	0.219
56	0.083	0.103	0.121	0.139	0.157	0.173	0.189	0.205	0.220	0.235
58	0.088	0.110	0.130	0.149	0.168	0.185	0.203	0.219	0.236	0.252
60	0.094	0.117	0.139	0.159	0.179	0.198	0.216	0.234	0.252	0.269
62	0.101	0.125	0.148	0.170	0.191	0.211	0.231	0.250	0.268	0.287
64	0.107	0.133	0.157	0.181	0.203	0.225	0.245	0.266	0.286	0.305
66	0.114	0.141	0.167	0.192	0.215	0.238	0.260	0.282	0.303	0.324
68	0.120	0.150	0.177	0.203	0.228	0.253	0.276	0.299	0.321	0.343
70	0.127	0.158	0.187	0.215	0.242	0.267	0.292	0.316	0.340	0.363
72	0.135	0.167	0.198	0.227	0.255	0.282	0.308	0.334	0.359	0.383
74	0.142	0.176	0.209	0.240	0.269	0.298	0.325	0.352	0.379	0.404
76	0.149	0.186	0.220	0.252	0.283	0.313	0.343	0.371	0.399	0.426
78	0.157	0.195	0.231	0.265	0.298	0.330	0.360	0.390	0.419	0.448
80	0.165	0.205	0.243	0.279	0.313	0.346	0.378	0.410	0.440	0.470
82	0.173	0.215	0.255	0.292	0.328	0.363	0.397	0.430	0.462	0.493
84	0.182	0.226	0.267	0.306	0.344	0.381	0.416	0.451	0.484	0.517
86	0.190	0.236	0.279	0.321	0.360	0.398	0.436	0.472	0.507	0.541
88	0.199	0.247	0.292	0.335	0.377	0.417	0.455	0.493	0.530	0.566
90	0.208	0.258	0.305	0.350	0.394	0.435	0.476	0.515	0.554	0.591
92	0.217	0.269	0.319	0.366	0.411	0.454	0.497	0.538	0.578	0.617
94	0.226	0.281	0.332	0.381	0.428	0.474	0.518	0.561	0.602	0.643
96	0.235	0.292	0.346	0.397	0.446	0.493	0.539	0.584	0.627	0.670
98	0.245	0.304	0.360	0.413	0.464	0.514	0.561	0.608	0.653	0.697
100	0.255	0.317	0.375	0.430	0.483	0.534	0.584	0.632	0.679	0.725
102	0.265	0.329	0.389	0.447	0.502	0.555	0.607	0.657	0.706	0.754
104	0.275	0.342	0.404	0.464	0.521	0.576	0.630	0.682	0.733	0.783
106	0.285	0.354	0.419	0.481	0.541	0.598	0.654	0.708	0.761	0.812
108	0.296	0.368	0.435	0.499	0.561	0.620	0.678	0.734	0.789	0.842
110	0.307	0.381	0.451	0.517	0.581	0.643	0.702	0.761	0.817	0.873
112	0.317	0.394	0.467	0.536	0.602	0.666	0.727	0.788	0.846	0.904
114`	0.329	0.408	0.483	0.554	0.623	0.689	0.753	0.815	0.876	0.936
116	0.340	0.422	0.500	0.573	0.644	0.713	0.779	0.843	0.906	0.968
118	0.351	0.437	0.517	0.593	0.666	0.737	0.805	0.872	0.937	1.000
120	0.363	0.451	0.534	0.612	0.688	0.761	0.832	0.901	0.968	1.034
122	0.375	0.466	0.551	0.632 0.653	0.711	0.786	0.859	0.930	0.999	1.067
124	0.387	0.481	0.569		0.733	0.811	0.886	0.960	1.031	1.101
126 128	0.399	0.496	0.587	0.673	0.756	0.837	0.914	0.990	1.064	1.136
130	0.411	0.511 0.527	0.605	0.694 0.715	0.780 0.804	0.863 0.889	0.943 0.972	1.021	1.097 1.131	1.172 1.207
130	0.424	0.543	0.642	0.713	0.804	0.889	1.001	1.052 1.084	1.131	1.244
134	0.457	0.543	0.642	0.759	0.828	0.943	1.001	1.084	1.103	1.244
134	0.450	0.539	0.681	0.781	0.852	0.943	1.031	1.116	1.199	1.281
138	0.463	0.575	0.700	0.781	0.877	0.970	1.061	1.148	1.234	1.318
140	0.476	0.592	0.700	0.803	0.903	1.027	1.122	1.181	1.270	1.394
140	0.490	0.608	0.720	0.849	0.928	1.027	1.122	1.215	1.342	1.433
144	0.503	0.623	0.740	0.849	0.934	1.033	1.133	1.249	1.342	1.433
144	0.517	0.643	0.781	0.873	1.007	1.084	1.183	1.283	1.379	1.513
140	0.551	0.000	0./01	0.070	1.00/	1.114	1.41/	1.310	1.410	1.313

Table-12.4: Metric two-way volume table of *Albizia procera* (Korai) in the Home gardens

GBH				Volume in	cubic meter	rs for the he	ight in meter	rs		
(cm)	6	8	10	12	14	16	18	20	22	24
40	0.044	0.053	0.062	0.070	0.078	0.085	0.092	0.099	0.106	0.112
42	0.048	0.058	0.068	0.077	0.085	0.093	0.101	0.108	0.116	0.123
44	0.052	0.063	0.074	0.083	0.093	0.102	0.110	0.118	0.126	0.134
46	0.057	0.069	0.080	0.091	0.101	0.110	0.119	0.128	0.137	0.145
48	0.061	0.075	0.087	0.098	0.109	0.119	0.129	0.139	0.148	0.157
50	0.066	0.080	0.094	0.106	0.118	0.129	0.139	0.150	0.160	0.169
52	0.071	0.086	0.101	0.114	0.126	0.138	0.150	0.161	0.172	0.182
54	0.076	0.093	0.108	0.122	0.136	0.148	0.161	0.173	0.184	0.196
56	0.082	0.099	0.115	0.131	0.145	0.159	0.172	0.185	0.197	0.209
58	0.087	0.106	0.123	0.139	0.155	0.170	0.184	0.197	0.210	0.223
60	0.093	0.113	0.131	0.149	0.165	0.181	0.196	0.210	0.224	0.238
62	0.099	0.120	0.139	0.158	0.175	0.192	0.208	0.223	0.238	0.253
64	0.105	0.127	0.148	0.167	0.186	0.204	0.220	0.237	0.253	0.268
66	0.111	0.135	0.157	0.177	0.197	0.216	0.233	0.251	0.268	0.284
68	0.117	0.142	0.166	0.187	0.208	0.228	0.247	0.265	0.283	0.300
70	0.124	0.150	0.175	0.198	0.220	0.240	0.260	0.280	0.298	0.317
72	0.130	0.158	0.184	0.208	0.231	0.253	0.274	0.295	0.314	0.334
74	0.137	0.166	0.194	0.219	0.243	0.267	0.289	0.310	0.331	0.351
76	0.144	0.175	0.204	0.230	0.256	0.280	0.303	0.326	0.348	0.369
78	0.151	0.184	0.214	0.242	0.268	0.294	0.318	0.342	0.365	0.387
80	0.158	0.192	0.224	0.253	0.281	0.308	0.334	0.358	0.382	0.406
82	0.166	0.201	0.234	0.265	0.295	0.322	0.349	0.375	0.400	0.425
84	0.173	0.211	0.245	0.277	0.308	0.337	0.365	0.392	0.419	0.444
86	0.181	0.220	0.256	0.290	0.322	0.352	0.382	0.410	0.437	0.464
88	0.189	0.230	0.267	0.302	0.336	0.368	0.398	0.428	0.456	0.484
90	0.197	0.239	0.279	0.315	0.350	0.383	0.415	0.446	0.476	0.505
92 94	0.205	0.249	0.290	0.328	0.365	0.399	0.433	0.465	0.496	0.526
96	0.214 0.222	0.260	0.302	0.342	0.380	0.416	0.450	0.484	0.516	0.547
98	0.222	0.270 0.280	0.314 0.326	0.355 0.369	0.395 0.410	0.432 0.449	0.468 0.486	0.503 0.522	0.536 0.557	0.569 0.591
100	0.231	0.280	0.326	0.383	0.410	0.449	0.486	0.542	0.579	0.591
100	0.240	0.302	0.352	0.398	0.420	0.484	0.524	0.563	0.600	0.637
102	0.258	0.302	0.364	0.412	0.458	0.501	0.543	0.583	0.622	0.660
104	0.267	0.313	0.378	0.412	0.474	0.519	0.563	0.604	0.645	0.684
108	0.276	0.336	0.391	0.442	0.491	0.538	0.583	0.626	0.668	0.708
110	0.286	0.348	0.404	0.458	0.508	0.556	0.603	0.647	0.691	0.733
112	0.296	0.359	0.418	0.473	0.526	0.575	0.623	0.669	0.714	0.758
114`	0.306	0.371	0.432	0.489	0.543	0.595	0.644	0.692	0.738	0.783
116	0.316	0.384	0.446	0.505	0.561	0.614	0.665	0.715	0.762	0.809
118	0.326	0.396	0.461	0.521	0.579	0.634	0.687	0.738	0.787	0.835
120	0.336	0.409	0.475	0.538	0.597	0.654	0.708	0.761	0.812	0.861
122	0.347	0.421	0.490	0.555	0.616	0.674	0.731	0.785	0.837	0.888
124	0.357	0.434	0.505	0.572	0.635	0.695	0.753	0.809	0.863	0.915
126	0.368	0.447	0.520	0.589	0.654	0.716	0.776	0.833	0.889	0.943
128	0.379	0.461	0.536	0.606	0.673	0.737	0.799	0.858	0.915	0.971
130	0.390	0.474	0.552	0.624	0.693	0.759	0.822	0.883	0.942	0.999
132	0.401	0.488	0.567	0.642	0.713	0.781	0.846	0.908	0.969	1.028
134	0.413	0.501	0.583	0.660	0.733	0.803	0.870	0.934	0.996	1.057
136	0.424	0.515	0.600	0.679	0.754	0.825	0.894	0.960	1.024	1.087
138	0.436	0.530	0.616	0.697	0.774	0.848	0.918	0.986	1.052	1.116
140	0.447	0.544	0.633	0.716	0.795	0.871	0.943	1.013	1.081	1.147
142	0.459	0.558	0.650	0.735	0.817	0.894	0.968	1.040	1.110	1.177
144	0.471	0.573	0.667	0.755	0.838	0.918	0.994	1.068	1.139	1.208
146	0.484	0.588	0.684	0.774	0.860	0.941	1.020	1.095	1.168	1.240

Table-13: Metric two-way volume table of *Terminalia arjuna (Arjun)* in the central parts

GBH				Volume in	cubic meter	rs for the he	ight in meter	rs		
(cm)	6	8	10	12	14	16	18	20	22	24
40	0.040	0.049	0.056	0.063	0.070	0.076	0.083	0.088	0.094	0.100
42	0.044	0.053	0.062	0.069	0.077	0.084	0.091	0.097	0.103	0.109
44	0.048	0.058	0.067	0.076	0.084	0.092	0.099	0.106	0.113	0.119
46	0.052	0.063	0.073	0.083	0.091	0.100	0.108	0.115	0.123	0.130
48	0.057	0.069	0.079	0.089	0.099	0.108	0.117	0.125	0.133	0.141
50	0.061	0.074	0.086	0.097	0.107	0.117	0.126	0.135	0.144	0.152
52	0.066	0.080	0.092	0.104	0.115	0.126	0.136	0.145	0.155	0.164
54	0.071	0.086	0.099	0.112	0.124	0.135	0.146	0.156	0.166	0.176
56	0.076	0.092	0.106	0.120	0.133	0.145	0.156	0.167	0.178	0.189
58	0.081	0.098	0.114	0.128	0.142	0.155	0.167	0.179	0.190	0.201
60	0.087	0.105	0.121	0.137	0.151	0.165	0.178	0.191	0.203	0.215
62	0.092	0.112	0.129	0.145	0.161	0.175	0.189	0.203	0.216	0.229
64	0.098	0.118	0.137	0.154	0.171	0.186	0.201	0.216	0.229	0.243
66	0.104	0.126	0.145	0.164	0.181	0.198	0.213	0.229	0.243	0.257
68	0.110	0.133	0.154	0.173	0.192	0.209	0.226	0.242	0.257	0.272
70	0.116	0.140	0.162	0.183	0.202	0.221	0.238	0.255	0.272	0.288
72	0.123	0.148	0.171	0.193	0.213	0.233	0.252	0.270	0.287	0.304
74	0.129	0.156	0.180	0.203	0.225	0.245	0.265	0.284	0.302	0.320
76	0.136	0.164	0.190	0.214	0.237	0.258	0.279	0.299	0.318	0.336
78	0.143	0.172	0.199	0.225	0.248	0.271	0.293	0.314	0.334	0.353
80	0.150	0.181	0.209	0.236	0.261	0.284	0.307	0.329	0.350	0.371
82	0.157	0.190	0.219	0.247	0.273	0.298	0.322	0.345	0.367	0.389
84	0.164	0.198	0.230	0.259	0.286	0.312	0.337	0.361	0.384	0.407
86	0.172	0.207	0.240	0.270	0.299	0.326	0.352	0.377	0.402	0.425
88	0.180	0.217	0.251	0.282	0.312	0.341	0.368	0.394	0.420	0.444
90	0.187	0.226	0.262	0.295	0.326	0.356	0.384	0.411	0.438	0.464
92	0.195	0.236	0.273	0.307	0.340	0.371	0.400	0.429	0.457	0.483
94	0.203	0.246	0.284	0.320	0.354	0.386	0.417	0.447	0.476	0.503
96	0.212	0.256	0.296	0.333	0.368	0.402	0.434	0.465	0.495	0.524
98	0.220	0.266	0.307	0.346	0.383	0.418	0.451	0.484	0.515	0.545
100	0.229	0.276	0.319	0.360	0.398	0.434	0.469	0.502	0.535	0.566
102	0.238	0.287	0.332	0.374	0.413	0.451	0.487	0.522	0.555	0.588
104	0.246	0.297	0.344	0.388	0.429	0.468	0.505	0.541	0.576	0.610
106	0.256	0.308	0.357	0.402	0.445	0.485	0.524	0.561	0.597	0.632
108	0.265	0.319	0.370	0.416	0.461	0.503	0.543	0.581	0.619	0.655
110	0.274	0.331	0.383	0.431	0.477	0.520	0.562	0.602	0.641	0.678
112	0.284	0.342	0.396	0.446	0.493	0.538	0.582	0.623	0.663	0.702
114`	0.293	0.354	0.410	0.461	0.510	0.557	0.601	0.644	0.686	0.726
116	0.303	0.366	0.423	0.477	0.527	0.575	0.622	0.666	0.709	0.750
118	0.313	0.378	0.437	0.493	0.545	0.594	0.642	0.688	0.732	0.775
120	0.323	0.390	0.451	0.509	0.562	0.614	0.663	0.710	0.756	0.800
122	0.334	0.403	0.466	0.525	0.580	0.633	0.684	0.733	0.780	0.825
124	0.344	0.415	0.480	0.541	0.598	0.653	0.705	0.756	0.804	0.851
126	0.355	0.428	0.495	0.558	0.617	0.673	0.727	0.779	0.829	0.877
128	0.365	0.441	0.510	0.575	0.636	0.694	0.749	0.803	0.854	0.904
130	0.376	0.454	0.525	0.592	0.655	0.714	0.771	0.826	0.880	0.931
132	0.387	0.467	0.541	0.609	0.674	0.735	0.794	0.851	0.905	0.958
134	0.399	0.481	0.556	0.627	0.693	0.757	0.817	0.875	0.932	0.986
136	0.410	0.495	0.572	0.645	0.713	0.778	0.840	0.900	0.958	1.014
138	0.421	0.509	0.588	0.663	0.733	0.800	0.864	0.926	0.985	1.043
140	0.433	0.523	0.605	0.681	0.753	0.822	0.888	0.951	1.012	1.072
142	0.445	0.537	0.621	0.700	0.774	0.845	0.912	0.977	1.040	1.101
144	0.457	0.551	0.638	0.719	0.795	0.867	0.937	1.003	1.068	1.130
146	0.469	0.566	0.655	0.738	0.816	0.890	0.961	1.030	1.096	1.160

Table-14.1: Metric two-way volume table of *Samania saman* (Rain Tree) in the embankment

GBH				Volume in	cubic meter	rs for the he	ight in meter	rs		
(cm)	6	8	10	12	14	16	18	20	22	24
40	0.040	0.056	0.073	0.090	0.108	0.127	0.146	0.165	0.185	0.205
42	0.044	0.061	0.080	0.099	0.119	0.139	0.160	0.181	0.203	0.225
44	0.048	0.067	0.087	0.108	0.130	0.152	0.175	0.198	0.222	0.246
46	0.052	0.073	0.095	0.118	0.141	0.165	0.190	0.215	0.241	0.267
48	0.056	0.079	0.103	0.128	0.153	0.179	0.206	0.234	0.261	0.290
50	0.061	0.085	0.111	0.138	0.165	0.194	0.223	0.252	0.282	0.313
52	0.065	0.092	0.120	0.148	0.178	0.209	0.240	0.272	0.304	0.337
54	0.070	0.099	0.128	0.159	0.191	0.224	0.258	0.292	0.327	0.362
56	0.075	0.106	0.138	0.171	0.205	0.240	0.276	0.313	0.350	0.388
58	0.080	0.113	0.147	0.182	0.219	0.256	0.295	0.334	0.374	0.414
60	0.086	0.120	0.157	0.195	0.233	0.273	0.314	0.356	0.399	0.442
62	0.091	0.128	0.167	0.207	0.248	0.291	0.334	0.379	0.424	0.470
64	0.097	0.136	0.177	0.220	0.264	0.309	0.355	0.402	0.450	0.499
66	0.103	0.144	0.188	0.233	0.280	0.327	0.376	0.426	0.477	0.529
68	0.109	0.153	0.199	0.247	0.296	0.347	0.398	0.451	0.505	0.560
70	0.115	0.161	0.210	0.260	0.313	0.366	0.421	0.477	0.534	0.591
72	0.121	0.170	0.221	0.275	0.330	0.386	0.444	0.503	0.563	0.624
74	0.127	0.179	0.233	0.289	0.347	0.407	0.467	0.529	0.593	0.657
76	0.134	0.188	0.245	0.304	0.365	0.428	0.492	0.557	0.623	0.691
78	0.141	0.198	0.258	0.320	0.384	0.449	0.516	0.585	0.655	0.726
80	0.148	0.207	0.270	0.335	0.402	0.471	0.542	0.614	0.687	0.761
82	0.155	0.217	0.283	0.351	0.422	0.494	0.568	0.643	0.720	0.798
84	0.162	0.228	0.296	0.368	0.441	0.517	0.594	0.673	0.753	0.835
86	0.169	0.238	0.310	0.384	0.461	0.540	0.621	0.704	0.788	0.873
88	0.177	0.248	0.324	0.401	0.482	0.564	0.649	0.735	0.823	0.912
90	0.184	0.259	0.338	0.419	0.503	0.589	0.677	0.767	0.858	0.951
92	0.192	0.270	0.352	0.437	0.524	0.614	0.706	0.799	0.895	0.992
94	0.200	0.281	0.367	0.455	0.546	0.639	0.735	0.832	0.932	1.033
96	0.208	0.293	0.381	0.473	0.568	0.665	0.765	0.866	0.970	1.075
98	0.217	0.305	0.397	0.492	0.591	0.692	0.795	0.901	1.008	1.118
100	0.225	0.316	0.412	0.511	0.614	0.719	0.826	0.936	1.048	1.161
102	0.234	0.328	0.428	0.531	0.637	0.746	0.858	0.971	1.087	1.205
104	0.242	0.341	0.444	0.551	0.661	0.774	0.890	1.008	1.128	1.251
106	0.251	0.353	0.460	0.571	0.685	0.802	0.922	1.045	1.170	1.296
108	0.260	0.366	0.477	0.591	0.710	0.831	0.956	1.082	1.212	1.343
110	0.270	0.379	0.493	0.612	0.735	0.861	0.989	1.121	1.254	1.390
112	0.279	0.392	0.511	0.633	0.760	0.890	1.024	1.159	1.298	1.439
114`	0.288	0.405	0.528	0.655	0.786	0.921	1.058	1.199	1.342	1.488
116 118	0.298	0.419	0.546	0.677	0.812 0.839	0.951	1.094	1.239	1.387	1.537
120	0.308	0.433	0.563 0.582	0.699 0.722	0.839	0.983	1.130	1.280	1.433 1.479	1.588
120	0.318	0.447 0.461	0.582	0.722	0.894	1.014 1.047	1.166 1.203	1.321	1.479	1.639
124	0.328	0.461	0.600	0.768				1.363		1.691
124	0.338	0.475	0.619	0.768	0.922 0.950	1.079 1.113	1.241 1.279	1.406 1.449	1.573 1.622	1.744 1.798
128	0.349	0.490	0.657	0.792	0.950		1.279		1.622	1.798
130	0.339	0.520	0.637	0.813		1.146	1.318	1.493	1.721	1.852
130	0.370	0.520	0.677	0.840	1.008 1.037	1.180	1.357	1.537 1.582	1.721	1.963
134	0.381	0.550	0.697	0.889	1.037	1.215 1.250	1.397	1.628	1.771	2.020
134	0.392	0.566	0.717	0.889	1.067	1.285	1.437	1.628	1.822	2.020
138	0.403	0.582	0.758	0.913	1.128	1.285	1.478	1.721	1.874	2.077
140	0.414	0.582	0.738	0.940	1.128	1.321	1.561	1.721	1.926	2.133
140	0.425	0.598	0.779	0.966	1.139	1.358	1.603	1.816	2.033	2.194
144	0.437	0.614	0.800	1.019	1.191	1.393	1.646	1.865	2.033	2.234
144	0.449	0.631	0.843	1.019	1.223	1.432	1.690	1.803	2.143	2.375
140	0.400	0.04/	0.043	1.040	1.233	1.4/0	1.070	1.714	2.143	4.313

Table-14.2: Metric two-way volume table of Samania saman (Rain Tree) in the Home garden

GBH				Volume in	cubic meter	rs for the he	ight in meter	rs		
(cm)	6	8	10	12	14	16	18	20	22	24
40	0.044	0.052	0.060	0.068	0.075	0.082	0.088	0.094	0.100	0.106
42	0.048	0.058	0.066	0.075	0.082	0.090	0.097	0.103	0.110	0.116
44	0.052	0.063	0.073	0.082	0.090	0.098	0.105	0.113	0.120	0.127
46	0.057	0.069	0.079	0.089	0.098	0.107	0.115	0.123	0.130	0.138
48	0.062	0.074	0.086	0.096	0.106	0.116	0.125	0.133	0.142	0.150
50	0.067	0.080	0.093	0.104	0.115	0.125	0.135	0.144	0.153	0.162
52	0.072	0.087	0.100	0.112	0.124	0.135	0.145	0.155	0.165	0.174
54	0.078	0.093	0.107	0.121	0.133	0.145	0.156	0.167	0.177	0.187
56	0.083	0.100	0.115	0.129	0.143	0.155	0.167	0.179	0.190	0.201
58	0.089	0.107	0.123	0.138	0.152	0.166	0.179	0.191	0.203	0.215
60	0.095	0.114	0.131	0.147	0.163	0.177	0.191	0.204	0.217	0.229
62	0.101	0.121	0.140	0.157	0.173	0.189	0.203	0.217	0.231	0.244
64	0.107	0.129	0.149	0.167	0.184	0.200	0.216	0.231	0.245	0.259
66	0.114	0.137	0.158	0.177	0.195	0.212	0.229	0.245	0.260	0.275
68	0.121	0.145	0.167	0.187	0.207	0.225	0.242	0.259	0.275	0.291
70	0.127	0.153	0.176	0.198	0.218	0.238	0.256	0.274	0.291	0.308
72	0.134	0.161	0.186	0.209	0.230	0.251	0.270	0.289	0.307	0.325
74	0.142	0.170	0.196	0.220	0.243	0.264	0.285	0.305	0.324	0.342
76	0.149	0.179	0.206	0.232	0.256	0.278	0.300	0.321	0.341	0.360
78	0.157	0.188	0.217	0.243	0.269	0.292	0.315	0.337	0.358	0.378
80	0.164	0.197	0.228	0.256	0.282	0.307	0.331	0.354	0.376	0.397
82	0.172	0.207	0.239	0.268	0.295	0.322	0.347	0.371	0.394	0.416
84	0.180	0.217	0.250	0.280	0.309	0.337	0.363	0.388	0.412	0.436
86	0.189	0.227	0.261	0.293	0.324	0.352	0.380	0.406	0.431	0.456
88	0.197	0.237	0.273	0.307	0.338	0.368	0.397	0.424	0.451	0.476
90	0.206	0.247	0.285	0.320	0.353	0.384	0.414	0.443	0.471	0.497
92	0.215	0.258	0.297	0.334	0.368	0.401	0.432	0.462	0.491	0.519
94	0.224	0.269	0.310	0.348	0.384	0.418	0.450	0.481	0.511	0.540
96	0.233	0.280	0.322	0.362	0.399	0.435	0.469	0.501	0.532	0.563
98	0.242	0.291	0.335	0.377	0.415	0.452	0.487	0.521	0.554	0.585
100	0.252	0.302	0.349	0.391	0.432	0.470	0.507	0.542	0.576	0.608
102	0.262	0.314	0.362	0.407	0.448	0.488	0.526	0.563	0.598	0.632
104	0.271	0.326	0.376	0.422	0.465	0.507	0.546	0.584	0.620	0.656
106	0.282	0.338	0.390	0.438	0.483	0.525	0.566	0.606	0.643	0.680
108	0.292	0.350	0.404	0.453	0.500	0.544	0.587	0.628	0.667	0.705
110	0.302	0.363	0.418	0.470	0.518	0.564	0.608	0.650	0.691	0.730
112	0.313	0.376	0.433	0.486	0.536	0.584	0.629	0.673	0.715	0.755
114`	0.324	0.389	0.448	0.503	0.555	0.604	0.651	0.696	0.739	0.781
116	0.334	0.402	0.463	0.520	0.573	0.624	0.673	0.719	0.764	0.808
118	0.346	0.415	0.478	0.537	0.592	0.645	0.695	0.743	0.790	0.835
120	0.357	0.429	0.494	0.555	0.612	0.666	0.718	0.768	0.815	0.862
122	0.368	0.442	0.510	0.572	0.631	0.687	0.741	0.792	0.842	0.890
124	0.380	0.456	0.526	0.590	0.651	0.709	0.764	0.817	0.868	0.918
126	0.392	0.470	0.542	0.609	0.672	0.731	0.788	0.843	0.895	0.946
128	0.404	0.485	0.559	0.627	0.692	0.753	0.812	0.868	0.923	0.975
130	0.416	0.499	0.576	0.646	0.713	0.776	0.836	0.894	0.950	1.004
132	0.428	0.514	0.593	0.665	0.734	0.799	0.861	0.921	0.978	1.034
134	0.441	0.529	0.610	0.685	0.755	0.822	0.886	0.948	1.007	1.064
136	0.453	0.544	0.627	0.704	0.777	0.846	0.912	0.975	1.036	1.095
138	0.466	0.560	0.645	0.724	0.799	0.870	0.938	1.003	1.065	1.126
140	0.479	0.575	0.663	0.745	0.821	0.894	0.964	1.030	1.095	1.157
142	0.492	0.591	0.681	0.765	0.844	0.919	0.990	1.059	1.125	1.189
144	0.506	0.607	0.700	0.786	0.867	0.944	1.017	1.087	1.155	1,221
146	0.519	0.623	0.718	0.807	0.890	0.969	1.044	1.117	1.186	1.254

Table-15: Metric two-way volume table of Melia azadarach (Bokain) in the cropland

GBH				Volume in	cubic meter	rs for the he	ight in meter	rs		
(cm)	6	8	10	12	14	16	18	20	22	24
40	0.046	0.053	0.059	0.065	0.070	0.075	0.079	0.084	0.088	0.092
42	0.050	0.058	0.065	0.071	0.077	0.082	0.087	0.092	0.096	0.101
44	0.055	0.063	0.071	0.077	0.084	0.090	0.095	0.100	0.105	0.110
46	0.059	0.069	0.077	0.084	0.091	0.097	0.103	0.109	0.114	0.120
48	0.064	0.074	0.083	0.091	0.099	0.106	0.112	0.118	0.124	0.130
50	0.069	0.080	0.090	0.099	0.107	0.114	0.121	0.128	0.134	0.140
52	0.075	0.086	0.097	0.106	0.115	0.123	0.130	0.137	0.144	0.151
54	0.080	0.093	0.104	0.114	0.123	0.132	0.140	0.148	0.155	0.162
56	0.086	0.099	0.111	0.122	0.132	0.141	0.150	0.158	0.166	0.173
58	0.092	0.106	0.119	0.130	0.141	0.151	0.160	0.169	0.177	0.185
60	0.098	0.113	0.127	0.139	0.150	0.161	0.171	0.180	0.189	0.197
62	0.104	0.121	0.135	0.148	0.160	0.171	0.182	0.192	0.201	0.210
64	0.111	0.128	0.143	0.157	0.170	0.182	0.193	0.203	0.213	0.223
66	0.117	0.136	0.152	0.167	0.180	0.193	0.204	0.216	0.226	0.236
68	0.124	0.144	0.161	0.176	0.190	0.204	0.216	0.228	0.239	0.250
70	0.131	0.152	0.170	0.186	0.201	0.215	0.228	0.241	0.253	0.264
72	0.138	0.160	0.179	0.196	0.212	0.227	0.241	0.254	0.267	0.279
74	0.146	0.168	0.188	0.207	0.223	0.239	0.254	0.268	0.281	0.293
76	0.153	0.177	0.198	0.217	0.235	0.251	0.267	0.281	0.295	0.309
78	0.161	0.186	0.208	0.228	0.247	0.264	0.280	0.296	0.310	0.324
80	0.169	0.195	0.218	0.239	0.259	0.277	0.294	0.310	0.325	0.340
82	0.177	0.204	0.229	0.251	0.271	0.290	0.308	0.325	0.341	0.356
84	0.185	0.214	0.239	0.263	0.284	0.304	0.322	0.340	0.357	0.373
86	0.193	0.224	0.250	0.275	0.297	0.317	0.337	0.355	0.373	0.390
88	0.202	0.234	0.261	0.287	0.310	0.332	0.352	0.371	0.389	0.407
90	0.211	0.244	0.273	0.299	0.323	0.346	0.367	0.387	0.406	0.425
92	0.220	0.254	0.284	0.312	0.337	0.361	0.383	0.404	0.424	0.443
94	0.229	0.265	0.296	0.325	0.351	0.376	0.399	0.420	0.441	0.461
96	0.238	0.275	0.308	0.338	0.365	0.391	0.415	0.437	0.459	0.480
98	0.248	0.286	0.320	0.351	0.380	0.406	0.431	0.455	0.477	0.499
100	0.257	0.297	0.333	0.365	0.395	0.422	0.448	0.473	0.496	0.518
102	0.267	0.309	0.346	0.379	0.410	0.438	0.465	0.491	0.515	0.538
104	0.277	0.320	0.358	0.393	0.425	0.455	0.482	0.509	0.534	0.558
106	0.287	0.332	0.372	0.407	0.441	0.471	0.500	0.528	0.554	0.578
108	0.297	0.344	0.385	0.422	0.456	0.488	0.518	0.546	0.573	0.599
110	0.308	0.356	0.399	0.437	0.472	0.505	0.536	0.566	0.594	0.620
112	0.319	0.368	0.412	0.452	0.489	0.523	0.555	0.585	0.614	0.642
114`	0.329	0.381	0.426	0.468	0.505	0.541	0.574	0.605	0.635	0.664
116	0.340	0.394	0.441	0.483	0.522	0.559	0.593	0.625	0.656	0.686
118	0.352	0.407	0.455	0.499	0.539	0.577	0.612	0.646	0.678	0.708
120	0.363	0.420	0.470	0.515	0.557	0.596	0.632	0.667	0.700	0.731
122	0.374	0.433	0.485	0.531	0.574	0.615	0.652	0.688	0.722	0.754
124	0.386	0.446	0.500	0.548	0.592	0.634	0.673	0.709	0.744	0.778
126	0.398	0.460	0.515	0.565	0.611	0.653	0.693	0.731	0.767	0.802
128	0.410	0.474	0.531	0.582	0.629	0.673	0.714	0.753	0.790	0.826
130	0.422	0.488	0.546	0.599	0.648	0.693	0.735	0.776	0.814	0.851
132	0.434	0.502	0.562	0.617	0.667	0.713	0.757	0.798	0.838	0.875
134	0.447	0.517	0.579	0.634	0.686	0.734	0.779	0.821	0.862	0.901
136	0.460	0.532	0.595	0.652	0.705	0.755	0.801	0.845	0.886	0.926
138	0.472	0.546	0.612	0.671	0.725	0.776	0.823	0.868	0.911	0.952
140	0.486	0.561	0.629	0.689	0.745	0.797	0.846	0.892	0.936	0.978
142	0.499	0.577	0.646	0.708	0.765	0.819	0.869	0.916	0.962	1.005
144	0.512	0.592	0.663	0.727	0.786	0.841	0.892	0.941	0.987	1.032
146	0.526	0.608	0.680	0.746	0.806	0.863	0.916	0.966	1.013	1.059

Table-16: Metric two-way volume table of Accacia nilotica (Babla) in the embankment

GBH				Volume in	cubic meter	rs for the he	ight in meter	rs		
(cm)	6	8	10	12	14	16	18	20	22	24
40	0.050	0.068	0.087	0.106	0.125	0.145	0.165	0.184	0.204	0.225
42	0.055	0.075	0.095	0.116	0.137	0.159	0.180	0.202	0.224	0.246
44	0.060	0.082	0.104	0.127	0.150	0.173	0.197	0.221	0.245	0.269
46	0.065	0.089	0.113	0.138	0.163	0.188	0.214	0.240	0.266	0.292
48	0.071	0.096	0.123	0.150	0.177	0.204	0.232	0.260	0.288	0.317
50	0.076	0.104	0.133	0.162	0.191	0.220	0.250	0.281	0.311	0.342
52	0.082	0.112	0.143	0.174	0.205	0.237	0.270	0.302	0.335	0.368
54	0.088	0.120	0.153	0.187	0.221	0.255	0.290	0.324	0.360	0.395
56	0.094	0.129	0.164	0.200	0.236	0.273	0.310	0.347	0.385	0.423
58	0.101	0.138	0.175	0.214	0.252	0.292	0.331	0.371	0.411	0.452
60	0.108	0.147	0.187	0.228	0.269	0.311	0.353	0.396	0.439	0.482
62	0.114	0.156	0.199	0.242	0.286	0.331	0.375	0.421	0.467	0.513
64	0.121	0.166	0.211	0.257	0.304	0.351	0.399	0.447	0.495	0.544
66	0.129	0.176	0.224	0.272	0.322	0.372	0.422	0.473	0.525	0.577
68	0.136	0.186	0.237	0.288	0.340	0.393	0.447	0.501	0.555	0.610
70	0.144	0.196	0.250	0.304	0.360	0.415	0.472	0.529	0.586	0.644
72	0.152	0.207	0.263	0.321	0.379	0.438	0.498	0.558	0.618	0.679
74	0.160	0.218	0.277	0.338	0.399	0.461	0.524	0.587	0.651	0.715
76	0.168	0.229	0.292	0.355	0.420	0.485	0.551	0.617	0.684	0.752
78	0.176	0.241	0.306	0.373	0.441	0.509	0.578	0.648	0.719	0.790
80	0.185	0.252	0.321	0.391	0.462	0.534	0.607	0.680	0.754	0.828
82	0.194	0.264	0.336	0.410	0.484	0.560	0.636	0.712	0.790	0.868
84	0.203	0.277	0.352	0.429	0.507	0.585	0.665	0.745	0.826	0.908
86	0.212	0.289	0.368	0.448	0.530	0.612	0.695	0.779	0.864	0.949
88	0.221	0.302	0.384	0.468	0.553	0.639	0.726	0.814	0.902	0.991
90	0.231	0.315	0.401	0.488	0.577	0.667	0.757	0.849	0.941	1.034
92	0.240	0.328	0.418	0.509	0.601	0.695	0.789	0.885	0.981	1.077
94	0.250	0.342	0.435	0.530	0.626	0.724	0.822	0.921	1.021	1.122
96	0.260	0.356	0.453	0.551	0.652	0.753	0.855	0.958	1.062	1.167
98	0.271	0.370	0.471	0.573	0.677	0.783	0.889	0.996	1.105	1.214
100	0.281	0.384	0.489	0.595	0.704	0.813	0.923	1.035	1.147	1.261
102	0.292	0.399	0.507	0.618	0.730	0.844	0.958	1.074	1.191	1.308
104	0.303	0.413	0.526	0.641	0.757	0.875	0.994	1.114	1.235	1.357
106	0.314	0.429	0.546	0.665	0.785	0.907	1.030	1.155	1.280	1.407
108	0.325	0.444	0.565	0.688	0.813	0.940	1.067	1.196	1.326	1.457
110	0.337	0.459	0.585	0.712	0.842	0.973	1.105	1.238	1.373	1.508
112	0.348	0.475	0.605 0.626	0.737	0.871	1.006 1.040	1.143 1.182	1.281	1.420	1.560
114` 116	0.360	0.491	0.626	0.762 0.787	0.900 0.930	1.040	1.182	1.324 1.368	1.468 1.517	1.613 1.667
118	0.372	0.524	0.668	0.787	0.930	1.073	1.261	1.413	1.567	1.721
120	0.384	0.524	0.689	0.813	0.961	1.110	1.302	1.413	1.617	1.721
120	0.396	0.541	0.689	0.839	1.023	1.146	1.302	1.505	1.668	1.833
124	0.409	0.538	0.711	0.893	1.023	1.182	1.343	1.552	1.720	1.890
124	0.422	0.576	0.755	0.893	1.033	1.219	1.384	1.599	1.720	1.890
128	0.433	0.593	0.733	0.920	1.120	1.236	1.427	1.647	1.773	2.006
130	0.448	0.611	0.778	0.948	1.120	1.332	1.513	1.696	1.880	2.066
130	0.474	0.648	0.824	1.004	1.186	1.371	1.557	1.745	1.935	2.126
134	0.488	0.666	0.848	1.033	1.221	1.410	1.602	1.795	1.990	2.120
136	0.502	0.685	0.872	1.062	1.255	1.450	1.647	1.846	2.047	2.249
138	0.516	0.704	0.896	1.002	1.290	1.491	1.693	1.898	2.104	2.311
140	0.530	0.723	0.921	1.122	1.325	1.532	1.740	1.950	2.162	2.375
142	0.544	0.743	0.946	1.152	1.361	1.573	1.787	2.002	2.220	2.439
144	0.559	0.763	0.971	1.183	1.398	1.615	1.834	2.056	2.279	2.504
146	0.573	0.783	0.997	1.214	1.434	1.657	1.883	2.110	2.339	2.570
لنب										

Table-17: Metric two-way volume table of *Gmelina arborea* (Gamar) in the plantation

GBH				Volume in	cubic meter	rs for the he	ight in meter	rs		
(cm)	6	8	10	12	14	16	18	20	22	24
40	0.055	0.069	0.082	0.094	0.107	0.118	0.130	0.141	0.152	0.163
42	0.059	0.074	0.089	0.102	0.115	0.128	0.141	0.153	0.165	0.176
44	0.064	0.080	0.096	0.110	0.125	0.138	0.152	0.165	0.178	0.190
46	0.069	0.086	0.103	0.119	0.134	0.149	0.163	0.177	0.191	0.205
48	0.074	0.093	0.110	0.127	0.144	0.160	0.175	0.190	0.205	0.219
50	0.079	0.099	0.118	0.136	0.154	0.171	0.187	0.203	0.219	0.234
52	0.084	0.106	0.126	0.145	0.164	0.182	0.199	0.217	0.233	0.250
54	0.090	0.112	0.134	0.154	0.174	0.193	0.212	0.230	0.248	0.266
56	0.095	0.119	0.142	0.164	0.185	0.205	0.225	0.245	0.264	0.282
58	0.101	0.126	0.150	0.173	0.196	0.217	0.238	0.259	0.279	0.299
60	0.106	0.133	0.159	0.183	0.207	0.230	0.252	0.274	0.295	0.316
62	0.112	0.141	0.168	0.193	0.218	0.242	0.266	0.289	0.311	0.333
64	0.118	0.148	0.177	0.204	0.230	0.255	0.280	0.304	0.328	0.351
66	0.124	0.156	0.186	0.214	0.242	0.269	0.295	0.320	0.345	0.369
68	0.131	0.164	0.195	0.225	0.254	0.282	0.309	0.336	0.362	0.388
70	0.137	0.172	0.204	0.236	0.266	0.296	0.324	0.352	0.380	0.406
72	0.143	0.180	0.214	0.247	0.279	0.310	0.340	0.369	0.397	0.426
74	0.150	0.188	0.224	0.258	0.292	0.324	0.355	0.386	0.416	0.445
76	0.157	0.196	0.234	0.270	0.305	0.338	0.371	0.403	0.434	0.465
78	0.163	0.205	0.244	0.282	0.318	0.353	0.387	0.420	0.453	0.485
80	0.170	0.213	0.254	0.293	0.331	0.368	0.403	0.438	0.472	0.506
82	0.177	0.222	0.265	0.306	0.345	0.383	0.420	0.456	0.492	0.526
84	0.184	0.231	0.275	0.318	0.359	0.398	0.437	0.475	0.511	0.548
86	0.192	0.240	0.286	0.330	0.373	0.414	0.454	0.493	0.531	0.569
88	0.199	0.249	0.297	0.343	0.387	0.430	0.471	0.512	0.552	0.591
90	0.206	0.259	0.308	0.356	0.402	0.446	0.489	0.531	0.572	0.613
92	0.214	0.268	0.320	0.369	0.416	0.462	0.507	0.551	0.593	0.635
94	0.222	0.278	0.331	0.382	0.431	0.479	0.525	0.570	0.615	0.658
96	0.229	0.288	0.343	0.395	0.446	0.496	0.544	0.590	0.636	0.681
98	0.237	0.297	0.354	0.409	0.462	0.513	0.562	0.611	0.658	0.705
100	0.245	0.307	0.366	0.423	0.477	0.530	0.581	0.631	0.680	0.728
102	0.253	0.318	0.378	0.437	0.493	0.547	0.600	0.652	0.703	0.752
104	0.262	0.328	0.391	0.451	0.509	0.565	0.619	0.673	0.725	0.776
106	0.270	0.338	0.403	0.465	0.525	0.583	0.639	0.694	0.748	0.801
108	0.278	0.349	0.415	0.479	0.541	0.601	0.659	0.716	0.771	0.826
110	0.287	0.359	0.428	0.494	0.557	0.619	0.679	0.738	0.795	0.851
112	0.295	0.370	0.441	0.509	0.574	0.638	0.699	0.760	0.819	0.876
114`	0.304	0.381	0.454	0.524	0.591	0.656	0.720	0.782	0.843	0.902
116	0.313	0.392	0.467	0.539	0.608	0.675	0.741	0.804	0.867	0.928
118	0.322	0.403	0.480	0.554	0.625	0.694	0.762	0.827	0.891	0.954
120	0.331	0.414	0.494	0.569	0.643	0.714	0.783	0.850	0.916	0.981
122	0.340	0.426	0.507	0.585	0.660	0.733	0.804	0.874	0.941	1.008
124	0.349	0.437	0.521	0.601	0.678	0.753	0.826	0.897	0.967	1.035
126	0.358	0.449	0.534	0.617	0.696	0.773	0.848	0.921	0.992	1.063
128	0.367	0.460	0.548	0.633	0.714	0.793	0.870	0.945	1.018	1.090
130	0.377	0.472	0.563	0.649	0.733	0.813	0.892	0.969	1.044	1.118
132	0.386	0.484	0.577	0.665	0.751	0.834	0.915	0.994	1.071	1.147
134	0.396	0.496	0.591	0.682	0.770	0.855	0.938	1.018	1.098	1.175
136	0.406	0.508	0.606	0.699	0.789	0.876	0.961	1.043	1.124	1.204
138	0.415	0.521	0.620	0.716	0.808	0.897	0.984	1.069	1.152	1.233
140	0.425	0.533	0.635	0.733	0.827	0.918	1.007	1.094	1.179	1.262
142	0.435	0.545	0.650	0.750	0.846	0.940	1.031	1.120	1.207	1.292
144	0.445	0.558	0.665	0.767	0.866	0.962	1.055	1.146	1.235	1.322
146	0.455	0.571	0.680	0.785	0.886	0.983	1.079	1.172	1.263	1.352

Table-18: Metric two-way volume table of Syzygium grande (Dhakijam) in the plantation

GBH				Volume in	cubic meter	rs for the he	ight in meter	rs		
(cm)	6	8	10	12	14	16	18	20	22	24
40	0.048	0.062	0.076	0.091	0.105	0.119	0.133	0.148	0.162	0.176
42	0.052	0.067	0.082	0.098	0.113	0.129	0.144	0.159	0.175	0.190
44	0.056	0.072	0.089	0.105	0.122	0.139	0.155	0.172	0.188	0.205
46	0.060	0.078	0.095	0.113	0.131	0.149	0.167	0.184	0.202	0.220
48	0.064	0.083	0.102	0.121	0.140	0.159	0.178	0.197	0.216	0.235
50	0.069	0.089	0.109	0.130	0.150	0.170	0.191	0.211	0.231	0.251
52	0.073	0.095	0.117	0.138	0.160	0.181	0.203	0.225	0.246	0.268
54	0.078	0.101	0.124	0.147	0.170	0.193	0.216	0.239	0.262	0.285
56	0.083	0.107	0.132	0.156	0.181	0.205	0.229	0.254	0.278	0.303
58	0.088	0.114	0.140	0.166	0.191	0.217	0.243	0.269	0.295	0.321
60	0.093	0.120	0.148	0.175	0.202	0.230	0.257	0.284	0.312	0.339
62	0.098	0.127	0.156	0.185	0.214	0.243	0.272	0.300	0.329	0.358
64	0.104	0.134	0.165	0.195	0.226	0.256	0.286	0.317	0.347	0.378
66	0.110	0.142	0.174	0.206	0.238	0.270	0.302	0.334	0.366	0.398
68	0.115	0.149	0.183	0.216	0.250	0.284	0.317	0.351	0.385	0.418
70	0.121	0.157	0.192	0.227	0.263	0.298	0.333	0.369	0.404	0.439
72	0.127	0.164	0.201	0.238	0.276	0.313	0.350	0.387	0.424	0.461
74	0.133	0.172	0.211	0.250	0.289	0.328	0.366	0.405	0.444	0.483
76	0.140	0.180	0.221	0.262	0.302	0.343	0.384	0.424	0.465	0.506
78	0.146	0.189	0.231	0.274	0.316	0.359	0.401	0.444	0.486	0.529
80	0.153	0.197	0.241	0.286	0.330	0.375	0.419	0.463	0.508	0.552
82	0.159	0.206	0.252	0.298	0.345	0.391	0.437	0.484	0.530	0.576
84	0.166	0.215	0.263	0.311	0.359	0.408	0.456	0.504	0.552	0.601
86	0.173	0.224	0.274	0.324	0.374	0.425	0.475	0.525	0.575	0.626
88	0.181	0.233	0.285	0.338	0.390	0.442	0.494	0.547	0.599	0.651
90	0.188	0.242	0.297	0.351	0.405	0.460	0.514	0.569	0.623	0.677
92	0.195	0.252	0.308	0.365	0.421	0.478	0.534	0.591	0.647	0.704
94	0.203	0.262	0.320	0.379	0.438	0.496	0.555	0.614	0.672	0.731
96	0.211	0.272	0.332	0.393	0.454	0.515	0.576	0.637	0.698	0.758
98	0.219	0.282	0.345	0.408	0.471	0.534	0.597	0.660	0.723	0.787
100	0.227	0.292	0.357	0.423	0.488	0.554	0.619	0.684	0.750	0.815
102	0.235	0.303	0.370	0.438	0.506	0.573	0.641	0.709	0.776	0.844
104	0.243	0.313	0.383	0.453	0.523	0.593	0.664	0.734	0.804	0.874
106	0.252	0.324	0.397	0.469	0.541	0.614	0.686	0.759	0.831	0.904
108	0.260	0.335	0.410	0.485	0.560	0.635	0.710	0.784	0.859	0.934
110	0.269	0.346	0.424	0.501	0.578	0.656	0.733	0.811	0.888	0.965
112	0.278	0.358	0.438	0.518	0.597	0.677	0.757	0.837	0.917	0.997
114`	0.287	0.369	0.452	0.534	0.617	0.699	0.782	0.864	0.946	1.029
116	0.296	0.381	0.466	0.551	0.636	0.721	0.806	0.891	0.976	1.061
118	0.305	0.393	0.481	0.568	0.656	0.744	0.831	0.919	1.007	1.094
120	0.315	0.405	0.496	0.586	0.676	0.767	0.857	0.947	1.038	1.128
122	0.325	0.418	0.511	0.604	0.697	0.790	0.883	0.976	1.069	1.162
124	0.334	0.430	0.526	0.622	0.718	0.813	0.909	1.005	1.101	1.197
126	0.344	0.443	0.541	0.640	0.739	0.837	0.936	1.034	1.133	1.232
128	0.354	0.456	0.557	0.659	0.760	0.861	0.963	1.064	1.166	1.267
130	0.364	0.469	0.573	0.677	0.782	0.886	0.990	1.095	1.199	1.303
132	0.375	0.482	0.589	0.696	0.804	0.911	1.018	1.125	1.233	1.340
134	0.385	0.495	0.606	0.716	0.826	0.936	1.046	1.156	1.267	1.377
136	0.396	0.509	0.622	0.735	0.849	0.962	1.075	1.188	1.301	1.414
138	0.407	0.523	0.639	0.755	0.871	0.988	1.104	1.220	1.336	1.452
140	0.418	0.537	0.656	0.775	0.895	1.014	1.133	1.252	1.372	1.491
142	0.429	0.551	0.673	0.796	0.918	1.040	1.163	1.285	1.408	1.530
144	0.440	0.565	0.691	0.816	0.942	1.067	1.193	1.318	1.444	1.570
146	0.451	0.580	0.709	0.837	0.966	1.095	1.223	1.352	1.481	1.610

Table-19: Metric two-way volume table of *Tectona grandis* (Teak) in the plantation

GBH				Volume in	cubic meter	rs for the he	ight in meter	rs		
(cm)	6	8	10	12	14	16	18	20	22	24
40	0.038	0.053	0.069	0.085	0.102	0.119	0.137	0.155	0.173	0.191
42	0.041	0.058	0.075	0.092	0.111	0.129	0.148	0.167	0.187	0.207
44	0.044	0.062	0.081	0.100	0.119	0.139	0.160	0.181	0.202	0.223
46	0.048	0.067	0.087	0.107	0.128	0.150	0.172	0.194	0.217	0.240
48	0.051	0.072	0.093	0.115	0.137	0.160	0.184	0.208	0.232	0.257
50	0.055	0.076	0.099	0.123	0.147	0.171	0.197	0.222	0.248	0.275
52	0.058	0.081	0.106	0.131	0.156	0.183	0.209	0.237	0.265	0.293
54	0.062	0.087	0.112	0.139	0.166	0.194	0.223	0.252	0.281	0.311
56	0.066	0.092	0.119	0.147	0.176	0.206	0.236	0.267	0.298	0.330
58	0.070	0.097	0.126	0.156	0.187	0.218	0.250	0.283	0.316	0.350
60	0.073	0.103	0.133	0.165	0.197	0.230	0.264	0.299	0.334	0.369
62	0.077	0.108	0.140	0.174	0.208	0.243	0.279	0.315	0.352	0.389
64	0.082	0.114	0.148	0.183	0.219	0.256	0.293	0.332	0.370	0.410
66	0.086	0.120	0.155	0.192	0.230	0.269	0.308	0.349	0.389	0.431
68	0.090	0.126	0.163	0.202	0.241	0.282	0.324	0.366	0.409	0.452
70	0.094	0.132	0.171	0.211	0.253	0.296	0.339	0.383	0.428	0.474
72	0.099	0.138	0.179	0.221	0.265	0.309	0.355	0.401	0.448	0.496
74	0.103	0.144	0.187	0.231	0.277	0.324	0.371	0.420	0.469	0.519
76	0.108	0.151	0.195	0.242	0.289	0.338	0.387	0.438	0.490	0.542
78	0.112	0.157	0.204	0.252	0.302	0.352	0.404	0.457	0.511	0.565
80	0.117	0.164	0.212	0.263	0.314	0.367	0.421	0.476	0.532	0.589
82	0.122	0.170	0.221	0.273	0.327	0.382	0.438	0.496	0.554	0.613
84	0.127	0.177	0.230	0.284	0.340	0.397	0.456	0.515	0.576	0.637
86	0.132	0.184	0.239	0.295	0.353	0.413	0.473	0.535	0.598	0.662
88	0.137	0.191	0.248	0.306	0.367	0.428	0.491	0.556	0.621	0.687
90	0.142	0.198	0.257	0.318	0.380	0.444	0.510	0.576	0.644	0.713
92	0.147	0.205	0.266	0.329	0.394	0.460	0.528	0.597	0.667	0.738
94	0.152	0.213	0.276	0.341	0.408	0.477	0.547	0.618	0.691	0.765
96	0.157	0.220	0.285	0.353	0.422	0.493	0.566	0.640	0.715	0.791
98	0.163	0.228	0.295	0.365	0.437	0.510	0.585	0.662	0.739	0.818
100	0.168	0.235	0.305	0.377	0.451	0.527	0.605	0.684	0.764	0.845
102	0.174	0.243	0.315	0.389	0.466	0.544	0.624	0.706	0.789	0.873
104	0.179	0.251	0.325	0.402	0.481	0.562	0.644	0.728	0.814	0.901
106	0.185	0.258	0.335	0.414	0.496	0.579	0.664	0.751	0.839	0.929
108	0.190	0.266	0.345	0.427	0.511	0.597	0.685	0.774	0.865	0.958
110	0.196	0.274	0.356	0.440	0.527	0.615	0.706	0.798	0.891	0.987
112	0.202	0.283	0.366	0.453	0.542	0.633	0.727	0.821	0.918	1.016
114`	0.208	0.291	0.377	0.466	0.558	0.652	0.748	0.845	0.945	1.045
116	0.214	0.299	0.388	0.480	0.574	0.670	0.769	0.869	0.972	1.075
118	0.220	0.307	0.399	0.493	0.590	0.689	0.791	0.894	0.999	1.105
120	0.226	0.316	0.410	0.507	0.606	0.708	0.813	0.919	1.026	1.136
122	0.232	0.325	0.421	0.520	0.623	0.728	0.835	0.944	1.054	1.167
124	0.238	0.333	0.432	0.534	0.639	0.747	0.857	0.969	1.083	1.198
126	0.245	0.342	0.443	0.548	0.656	0.767	0.879	0.994	1.111	1.229
128	0.251	0.351	0.455	0.563	0.673	0.786	0.902	1.020	1.140	1.261
130	0.257	0.360	0.466	0.577	0.690	0.806	0.925	1.046	1.169	1.293
132	0.264	0.369	0.478	0.591	0.708	0.827	0.948	1.072	1.198	1.326
134	0.270	0.378	0.490	0.606	0.725	0.847	0.972	1.099	1.228	1.358
136	0.277	0.387	0.502	0.621	0.743	0.868	0.995	1.125	1.257	1.392
138	0.283	0.396	0.514	0.636	0.760	0.888	1.019	1.152	1.288	1.425
140	0.290	0.406	0.526	0.651	0.778	0.909	1.043	1.179	1.318	1.458
142	0.297	0.415	0.538	0.666	0.797	0.931	1.067	1.207	1.349	1.492
144	0.304	0.425	0.551	0.681	0.815	0.952	1.092	1.235	1.379	1.527
146	0.311	0.434	0.563	0.696	0.833	0.973	1.117	1.262	1.411	1.561

Table-20.1: Metric two-way volume table of *Dipterocarpus Turbinatus* (Teli Garjan) in the plantation

GBH				Volume in	cubic meter	rs for the he	ight in meter	rs		
(cm)	6	8	10	12	14	16	18	20	22	24
40	0.053	0.065	0.077	0.088	0.100	0.111	0.123	0.134	0.146	0.157
42	0.058	0.071	0.083	0.096	0.108	0.121	0.133	0.146	0.158	0.171
44	0.063	0.076	0.090	0.104	0.117	0.131	0.144	0.158	0.171	0.185
46	0.068	0.082	0.097	0.112	0.126	0.141	0.156	0.170	0.185	0.200
48	0.073	0.089	0.105	0.120	0.136	0.152	0.168	0.183	0.199	0.215
50	0.078	0.095	0.112	0.129	0.146	0.163	0.180	0.197	0.214	0.231
52	0.084	0.102	0.120	0.138	0.156	0.174	0.193	0.211	0.229	0.247
54	0.090	0.109	0.129	0.148	0.167	0.186	0.206	0.225	0.244	0.264
56	0.096	0.116	0.137	0.158	0.178	0.199	0.219	0.240	0.260	0.281
58	0.102	0.124	0.146	0.168	0.190	0.211	0.233	0.255	0.277	0.299
60	0.109	0.132	0.155	0.178	0.201	0.225	0.248	0.271	0.294	0.317
62	0.115	0.140	0.164	0.189	0.213	0.238	0.263	0.287	0.312	0.336
64	0.122	0.148	0.174	0.200	0.226	0.252	0.278	0.304	0.330	0.356
66	0.129	0.156	0.184	0.211	0.239	0.266	0.294	0.321	0.349	0.376
68	0.136	0.165	0.194	0.223	0.252	0.281	0.310	0.339	0.368	0.397
70	0.143	0.174	0.204	0.235	0.265	0.296	0.326	0.357	0.387	0.418
72	0.151	0.183	0.215	0.247	0.279	0.311	0.343	0.376	0.408	0.440
74	0.159	0.193	0.226	0.260	0.294	0.327	0.361	0.395	0.428	0.462
76	0.167	0.202	0.238	0.273	0.308	0.344	0.379	0.414	0.449	0.485
78	0.175	0.212	0.249	0.286	0.323	0.360	0.397	0.434	0.471	0.508
80	0.183	0.222	0.261	0.300	0.338	0.377	0.416	0.455	0.493	0.532
82	0.192	0.233	0.273	0.314	0.354	0.395	0.435	0.476	0.516	0.557
84	0.201	0.243	0.285	0.328	0.370	0.412	0.455	0.497	0.539	0.582
86	0.210	0.254	0.298	0.342	0.386	0.431	0.475	0.519	0.563	0.607
88	0.219	0.265	0.311	0.357	0.403	0.449	0.495	0.541	0.587	0.633
90	0.228	0.276	0.324	0.372	0.420	0.468	0.516	0.564	0.612	0.660
92	0.238	0.288	0.338	0.388	0.438	0.488	0.538	0.588	0.637	0.687
94	0.248	0.300	0.352	0.403	0.455	0.507	0.559	0.611	0.663	0.715
96	0.258	0.312	0.366	0.420	0.474	0.528	0.582	0.636	0.690	0.744
98	0.268	0.324	0.380	0.436	0.492	0.548	0.604	0.660	0.716	0.772
100	0.278	0.336	0.395	0.453	0.511	0.569	0.627	0.686	0.744	0.802
102	0.289	0.349	0.409	0.470	0.530	0.590	0.651	0.711	0.772	0.832
104	0.299	0.362	0.425	0.487	0.550	0.612	0.675	0.737	0.800	0.862
106	0.310	0.375	0.440	0.505	0.570	0.634	0.699	0.764	0.829	0.894
108	0.322	0.389	0.456	0.523	0.590	0.657	0.724	0.791	0.858	0.925
110	0.333	0.402	0.472	0.541	0.610	0.680	0.749	0.819	0.888	0.957
112	0.344	0.416	0.488	0.560	0.631	0.703	0.775	0.847	0.918	0.990
114`	0.356	0.430	0.504	0.579	0.653	0.727	0.801	0.875	0.949	1.023
116 118	0.368	0.445	0.521	0.598	0.674	0.751	0.828	0.904	0.981	1.057
120	0.380	0.459	0.538 0.556	0.617	0.696 0.719	0.775	0.855 0.882	0.934 0.963	1.013 1.045	1.092
120	0.393	0.474	0.556	0.637 0.657	0.719	0.800 0.826	0.882	0.963	1.045	1.127
124	0.405			0.657	0.742	0.826			1.078	1.162
124	0.418	0.505 0.520	0.591 0.609	0.678	0.788	0.851	0.938 0.967	1.025 1.056	1.111	1.198 1.235
128	0.431	0.520	0.628	0.699	0.788	0.877	0.967		1.143	1.233
130	0.444	0.552	0.628	0.720			1.025	1.088 1.120	1.180	
130	0.457	0.552	0.666	0.741	0.836 0.861	0.931 0.958	1.025	1.120	1.213	1.310 1.348
134	0.471	0.585	0.685	0.785	0.885	0.986	1.033	1.133	1.286	1.348
134	0.485	0.585	0.685	0.783	0.883	1.014	1.086	1.186	1.323	1.426
138	0.498	0.602	0.703	0.808	0.911	1.014	1.117	1.220	1.323	1.426
140	0.513	0.636	0.724	0.853	0.936	1.042	1.148	1.234	1.397	1.506
140	0.527	0.653	0.745	0.853	0.982	1.071	1.180	1.324	1.435	1.547
144	0.556	0.633	0.786	0.877	1.015	1.130	1.212	1.359	1.433	1.547
144	0.571	0.671	0.786	0.900	1.013	1.130	1.243	1.395	1.474	1.631
140	0.5/1	0.069	0.007	0.724	1.042	1.100	1.2/8	1.373	1.313	1.031

Table-20.2: Metric two-way volume table of *Dipterocarpus Turbinatus* (Teli Garjan) in the natural forest

GBH				Volume in	auhia mata	rs for the he	ight in meter	ra		
(cm)	6	8	10	12	14	16	18	20	22	24
40	0.052	0.072	0.092	0.113	0.135	0.157	0.179	0.202	0.225	0.248
42	0.052	0.072	0.092	0.113	0.133	0.137	0.179	0.202	0.223	0.248
44	0.030	0.078	0.100	0.123	0.140	0.170	0.194	0.219	0.244	0.209
46	0.065	0.084	0.108	0.133	0.138	0.183	0.210	0.254	0.283	0.290
48	0.003	0.090	0.110	0.143	0.170	0.137	0.242	0.234	0.283	0.312
50	0.075	0.097	0.124	0.153	0.182	0.212	0.242	0.272	0.303	0.358
52	0.073	0.103	0.133	0.104	0.193	0.242	0.239	0.291	0.323	0.382
54	0.085	0.117	0.142	0.175	0.203	0.242	0.270	0.331	0.369	0.407
56	0.083	0.117	0.151	0.180	0.221	0.237	0.294	0.351	0.309	0.432
58	0.095	0.123	0.100	0.197	0.233	0.289	0.312	0.372	0.331	0.457
60	0.101	0.132	0.170	0.209	0.249	0.306	0.349	0.394	0.413	0.484
62	0.107	0.140	0.190	0.233	0.203	0.323	0.369	0.394	0.463	0.511
64	0.112	0.147	0.200	0.246	0.278	0.340	0.389	0.438	0.488	0.538
66	0.112	0.163	0.210	0.259	0.308	0.358	0.409	0.458	0.513	0.566
68	0.118	0.172	0.210	0.272	0.323	0.376	0.430	0.484	0.539	0.595
70	0.124	0.172	0.232	0.272	0.323	0.394	0.451	0.508	0.565	0.624
72	0.136	0.189	0.243	0.298	0.355	0.413	0.472	0.532	0.592	0.653
74	0.143	0.197	0.254	0.312	0.372	0.432	0.494	0.556	0.620	0.684
76	0.149	0.206	0.265	0.326	0.388	0.452	0.516	0.581	0.647	0.714
78	0.156	0.215	0.277	0.341	0.405	0.471	0.539	0.607	0.676	0.746
80	0.162	0.224	0.289	0.355	0.423	0.491	0.561	0.633	0.704	0.777
82	0.169	0.234	0.301	0.370	0.440	0.512	0.585	0.659	0.734	0.810
84	0.176	0.243	0.313	0.385	0.458	0.533	0.609	0.686	0.763	0.842
86	0.183	0.253	0.325	0.400	0.476	0.554	0.633	0.713	0.794	0.876
88	0.190	0.263	0.338	0.415	0.495	0.575	0.657	0.740	0.824	0.910
90	0.197	0.273	0.351	0.431	0.513	0.597	0.682	0.768	0.855	0.944
92	0.204	0.283	0.364	0.447	0.532	0.619	0.707	0.796	0.887	0.979
94	0.212	0.293	0.377	0.463	0.551	0.641	0.732	0.825	0.919	1.014
96	0.219	0.303	0.390	0.479	0.571	0.664	0.758	0.854	0.951	1.050
98	0.227	0.314	0.404	0.496	0.591	0.687	0.785	0.884	0.984	1.086
100	0.234	0.324	0.417	0.513	0.611	0.710	0.811	0.914	1.018	1.123
102	0.242	0.335	0.431	0.530	0.631	0.734	0.838	0.944	1.052	1.160
104	0.250	0.346	0.445	0.547	0.651	0.757	0.865	0.975	1.086	1.198
106	0.258	0.357	0.459	0.565	0.672	0.782	0.893	1.006	1.120	1.236
108	0.266	0.368	0.474	0.582	0.693	0.806	0.921	1.037	1.155	1.275
110	0.274	0.379	0.488	0.600	0.714	0.831	0.949	1.069	1.191	1.314
112	0.282	0.391	0.503	0.618	0.736	0.856	0.978	1.101	1.227	1.354
114`	0.291	0.402	0.518	0.637	0.758	0.881	1.007	1.134	1.263	1.394
116	0.299	0.414	0.533	0.655	0.780	0.907	1.036	1.167	1.300	1.434
118	0.308	0.426	0.548	0.674	0.802	0.933	1.066	1.200	1.337	1.475
120	0.316	0.438	0.564	0.693	0.825	0.959	1.096	1.234	1.375	1.517
122	0.325	0.450	0.579	0.712	0.847	0.985	1.126	1.268	1.413	1.559
124	0.334	0.462	0.595	0.731	0.870	1.012	1.156	1.303	1.451	1.601
126	0.343	0.475	0.611	0.751	0.894	1.039	1.187	1.338	1.490	1.644
128	0.352	0.487	0.627	0.770	0.917	1.067	1.219	1.373	1.529	1.687
130	0.361	0.500	0.643	0.790	0.941	1.094	1.250	1.408	1.568	1.731
132	0.370	0.512	0.660	0.811	0.965	1.122	1.282	1.444	1.608	1.775
134	0.379	0.525	0.676	0.831	0.989	1.150	1.314	1.480	1.649	1.819
136	0.389	0.538	0.693	0.851	1.014	1.179	1.347	1.517	1.690	1.864
138	0.398	0.551	0.710	0.872	1.038	1.207	1.379	1.554	1.731	1.910
140	0.408	0.565	0.727	0.893	1.063	1.236	1.413	1.591	1.772	1.955
142	0.418	0.578	0.744	0.914	1.088	1.266	1.446	1.629	1.814	2.002
144	0.427	0.592	0.761	0.936	1.114	1.295	1.480	1.667	1.857	2.048
146	0.437	0.605	0.779	0.957	1.139	1.325	1.514	1.705	1.899	2.096

Table-21.1: Metric two-way volume table of Artocarpus chaplasha (Chapalish) in the plantation

GBH				Volume in	cubic meter	rs for the he	ight in meter	rs		
(cm)	6	8	10	12	14	16	18	20	22	24
40	0.051	0.063	0.074	0.085	0.095	0.105	0.115	0.124	0.133	0.142
42	0.056	0.069	0.081	0.093	0.104	0.115	0.125	0.135	0.145	0.155
44	0.061	0.075	0.089	0.101	0.113	0.125	0.136	0.147	0.158	0.169
46	0.066	0.081	0.096	0.110	0.123	0.136	0.148	0.160	0.171	0.183
48	0.071	0.088	0.104	0.119	0.133	0.147	0.160	0.173	0.185	0.198
50	0.077	0.095	0.112	0.128	0.143	0.158	0.172	0.186	0.200	0.213
52	0.083	0.102	0.120	0.137	0.154	0.170	0.185	0.200	0.215	0.229
54	0.088	0.109	0.129	0.147	0.165	0.182	0.198	0.214	0.230	0.245
56	0.095	0.117	0.138	0.157	0.176	0.194	0.212	0.229	0.246	0.262
58	0.101	0.125	0.147	0.168	0.188	0.207	0.226	0.244	0.262	0.279
60	0.107	0.132	0.156	0.178	0.200	0.221	0.240	0.260	0.279	0.297
62	0.114	0.141	0.166	0.190	0.212	0.234	0.255	0.276	0.296	0.316
64	0.121	0.149	0.176	0.201	0.225	0.248	0.271	0.292	0.314	0.334
66	0.128	0.158	0.186	0.212	0.238	0.263	0.286	0.309	0.332	0.354
68	0.135	0.167	0.196	0.224	0.251	0.277	0.302	0.327	0.350	0.374
70	0.142	0.176	0.207	0.237	0.265	0.292	0.319	0.344	0.369	0.394
72	0.150	0.185	0.218	0.249	0.279	0.308	0.336	0.363	0.389	0.415
74	0.157	0.194	0.229	0.262	0.293	0.324	0.353	0.381	0.409	0.436
76	0.165	0.204	0.240	0.275	0.308	0.340	0.371	0.400	0.429	0.458
78	0.173	0.214	0.252	0.288	0.323	0.356	0.389	0.420	0.450	0.480
80	0.181	0.224	0.264	0.302	0.338	0.373	0.407	0.440	0.472	0.503
82	0.190	0.235	0.276	0.316	0.354	0.390	0.426	0.460	0.493	0.526
84	0.198	0.245	0.289	0.330	0.370	0.408	0.445	0.481	0.516	0.550
86	0.207	0.256	0.301	0.345	0.386	0.426	0.464	0.502	0.538	0.574
88	0.216	0.267	0.314	0.360	0.403	0.444	0.484	0.523	0.561	0.599
90	0.225	0.278	0.328	0.375	0.420	0.463	0.505	0.545	0.585	0.624
92	0.234	0.289	0.341	0.390	0.437	0.482	0.525	0.568	0.609	0.649
94	0.244	0.301	0.355	0.406	0.454	0.501	0.547	0.591	0.633	0.675
96	0.253	0.313	0.369	0.422	0.472	0.521	0.568	0.614	0.658	0.702
98	0.263	0.325	0.383	0.438	0.490	0.541	0.590	0.637	0.684	0.729
100	0.273	0.337	0.397	0.454	0.509	0.561	0.612	0.661	0.709	0.756
102	0.283	0.350	0.412	0.471	0.527	0.582	0.635	0.686	0.735	0.784
104	0.293	0.362	0.427	0.488	0.547	0.603	0.657	0.710	0.762	0.812
106	0.303	0.375	0.442	0.505	0.566	0.624	0.681	0.736	0.789	0.841
108	0.314	0.388	0.457	0.523	0.586	0.646	0.704	0.761	0.816	0.870
110	0.325	0.401	0.473	0.541	0.606	0.668	0.728	0.787	0.844	0.900
112	0.336	0.415	0.489	0.559	0.626	0.690	0.753	0.814	0.873	0.930
114`	0.347	0.428	0.505	0.577	0.646 0.667	0.713	0.778	0.840	0.901	0.961
116 118	0.358	0.442	0.521 0.538	0.596 0.615	0.689	0.736	0.803 0.828	0.867	0.930	0.992
120	0.369	0.456 0.470	0.554	0.615		0.760	0.828	0.895	0.960	1.023
120	0.381	0.470	0.554	0.653	0.710 0.732	0.783 0.807	0.880	0.923 0.951	1.020	1.055
124	0.392		0.571	0.653	0.754	0.807	0.880			1.088
124	0.404	0.500 0.514	0.589	0.673	0.754	0.832	0.907	0.980 1.009	1.051 1.082	1.121 1.154
128	0.416	0.514	0.624	0.693	0.776	0.881	0.934		1.082	
130	0.428	0.545	0.642	0.713	0.799	0.881	0.989	1.039	1.114	1.188 1.222
130	0.441	0.543	0.642	0.755	0.822	0.932	1.017	1.008	1.146	1.222
134	0.455	0.576	0.678	0.733	0.843	0.932	1.017	1.129	1.178	1.236
136	0.479	0.576	0.678	0.776	0.893	0.985	1.043	1.129	1.211	1.327
138	0.479	0.607	0.097	0.797	0.893	1.011	1.103	1.192	1.243	1.363
140	0.492	0.624	0.716	0.840	0.917	1.038	1.103	1.192	1.312	1.399
140	0.518	0.624	0.754	0.840	0.941	1.038	1.132	1.223	1.312	1.436
144	0.518	0.657	0.734	0.885	0.900	1.000	1.102	1.288	1.347	1.430
146	0.545	0.673	0.774	0.883	1.016	1.121	1.192	1.321	1.417	1.511
170	U.J4J	0.073	0.193	0.707	1.010	1,141	1.443	1.J∠1	1.71/	1.711

Table-21.2: Metric two-way volume table of Artocarpus chaplasha (Chapalish) in the natural forest

GBH				Volume in	cubic meter	rs for the he	ight in meter	rs		
(cm)	6	8	10	12	14	16	18	20	22	24
40	0.066	0.072	0.077	0.081	0.085	0.089	0.092	0.095	0.097	0.100
42	0.074	0.080	0.086	0.090	0.095	0.098	0.102	0.105	0.108	0.111
44	0.081	0.089	0.095	0.100	0.104	0.109	0.112	0.116	0.119	0.122
46	0.089	0.097	0.104	0.110	0.115	0.119	0.124	0.128	0.131	0.135
48	0.098	0.107	0.114	0.120	0.126	0.131	0.135	0.140	0.144	0.147
50	0.107	0.116	0.124	0.131	0.137	0.143	0.148	0.152	0.157	0.161
52	0.116	0.126	0.135	0.142	0.149	0.155	0.161	0.166	0.170	0.175
54	0.126	0.137	0.146	0.154	0.162	0.168	0.174	0.180	0.185	0.189
56	0.136	0.148	0.158	0.167	0.175	0.182	0.188	0.194	0.200	0.205
58	0.147	0.160	0.170	0.180	0.188	0.196	0.203	0.209	0.215	0.221
60	0.158	0.172	0.183	0.193	0.202	0.210	0.218	0.225	0.231	0.237
62	0.169	0.184	0.196	0.207	0.217	0.226	0.234	0.241	0.248	0.254
64	0.181	0.197	0.210	0.222	0.232	0.241	0.250	0.258	0.265	0.272
66	0.193	0.210	0.224	0.237	0.248	0.258	0.267	0.275	0.283	0.291
68	0.206	0.224	0.239	0.252	0.264	0.275	0.284	0.293	0.302	0.310
70	0.219	0.238	0.255	0.269	0.281	0.292	0.303	0.312	0.321	0.329
72	0.232	0.253	0.270	0.285	0.298	0.310	0.321	0.331	0.341	0.350
74	0.246	0.268	0.287	0.302	0.316	0.329	0.341	0.351	0.361	0.371
76	0.261	0.284	0.303	0.320	0.335	0.348	0.361	0.372	0.383	0.393
78	0.276	0.300	0.321	0.338	0.354	0.368	0.381	0.393	0.404	0.415
80	0.291	0.317	0.338	0.357	0.374	0.389	0.402	0.415	0.427	0.438
82	0.307	0.334	0.357	0.376	0.394	0.410	0.424	0.437	0.450	0.462
84	0.323	0.352	0.375	0.396	0.415	0.431	0.446	0.460	0.474	0.486
86	0.340	0.370	0.395	0.417	0.436	0.453	0.469	0.484	0.498	0.511
88	0.357	0.388	0.415	0.437	0.458	0.476	0.493	0.508	0.523	0.537
90	0.374	0.407	0.435	0.459	0.480	0.499	0.517	0.533	0.549	0.563
92	0.392	0.427	0.456	0.481	0.503	0.523	0.542	0.559	0.575	0.590
94	0.410	0.447	0.477	0.503	0.527	0.548	0.567	0.585	0.602	0.618
96	0.429	0.467	0.499	0.527	0.551	0.573	0.593	0.612	0.630	0.646
98	0.449	0.488	0.521	0.550	0.576	0.599	0.620	0.640	0.658	0.675
100	0.468	0.510	0.544	0.574	0.601	0.625	0.647	0.668	0.687	0.705
102	0.489	0.532	0.568	0.599	0.627	0.652	0.675	0.697	0.716	0.735
104	0.509	0.554	0.592	0.625	0.654	0.680	0.704	0.726	0.747	0.766
106	0.530	0.577	0.616	0.650	0.681	0.708	0.733	0.756	0.778	0.798
108	0.552	0.601	0.642	0.677	0.708	0.737	0.763	0.787	0.809	0.830
110	0.574	0.625	0.667	0.704	0.737	0.766	0.793	0.818	0.842	0.863
112	0.596	0.649	0.693	0.731	0.765	0.796	0.824	0.850	0.874	0.897
114`	0.619	0.674	0.720	0.760	0.795	0.827	0.856	0.883	0.908	0.932
116	0.643	0.700	0.747	0.788	0.825	0.858	0.888	0.916	0.942	0.967
118	0.667	0.726	0.775	0.818	0.856	0.890	0.921	0.950	0.977	1.003
120	0.691	0.752	0.803	0.847	0.887	0.922	0.955	0.985	1.013	1.039
122	0.716	0.779	0.832	0.878	0.919	0.955	0.989	1.020	1.049	1.077
124	0.741	0.806	0.861	0.909	0.951	0.989	1.024	1.056	1.086	1.115
126	0.767	0.834	0.891	0.940	0.984	1.023	1.060	1.093	1.124	1.153
128	0.793	0.863	0.922	0.972	1.018	1.058	1.096	1.130	1.162	1.193
130	0.819	0.892	0.953	1.005	1.052	1.094	1.133	1.168	1.202	1,233
132	0.847	0.921	0.984	1.038	1.087	1.130	1.170	1,207	1.241	1,274
134	0.874	0.951	1.016	1.072	1.122	1.167	1.208	1,246	1.282	1.315
136	0.902	0.982	1.049	1.107	1.158	1.204	1.247	1.286	1.323	1.357
138	0.931	1.013	1.082	1.142	1.195	1,242	1.286	1.327	1.365	1.400
140	0.960	1.045	1.116	1.177	1.232	1,281	1.326	1.368	1.407	1.444
142	0.989	1.077	1.150	1.213	1.270	1.321	1.367	1.410	1.450	1.488
144	1.019	1.109	1.185	1.250	1.308	1.361	1.409	1.453	1.494	1.533
146	1.049	1.142	1.220	1.287	1.347	1.401	1.451	1.496	1.539	1.579

Table-22: Metric two-way volume table of Albizia falcataria (Molaccana koroi) in the plantation

40	GBH				Volume in	cubic meter	rs for the he	ight in meter	rs		
42	(cm)	6	8	10	12	14	16	18	20	22	24
44 0.050 0.070 0.090 0.111 0.133 0.155 0.177 0.200 0.223 0.22 46 0.054 0.075 0.096 0.119 0.142 0.165 0.189 0.213 0.228 0.224 48 0.057 0.080 0.103 0.127 0.151 0.176 0.189 0.213 0.224 0.224 0.224 0.225 0.256 0.061 0.085 0.090 0.116 0.143 0.170 0.198 0.227 0.256 0.286 0.225 0.256 0.286 0.23 0.151 0.180 0.210 0.240 0.256 0.286 0.332 0.35 56 0.076 0.106 0.123 0.158 0.019 0.199 0.190 0.222 0.224 0.284 0.337 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33	40	0.044	0.061	0.078	0.096	0.115	0.134	0.153	0.173	0.193	0.213
48	42	0.047	0.065	0.084	0.104	0.124	0.144	0.165	0.186	0.208	0.229
48 0.057 0.080 0.103 0.127 0.151 0.176 0.201 0.227 0.254 0.22 50 0.061 0.085 0.109 0.135 0.161 0.187 0.214 0.224 0.270 0.266 0.33 54 0.068 0.095 0.123 0.151 0.180 0.210 0.240 0.271 0.302 0.33 56 0.072 0.100 0.129 0.159 0.190 0.222 0.254 0.286 0.319 0.35 58 0.076 0.106 0.136 0.168 0.201 0.224 0.264 0.381 0.317 0.33 0.37 0.36 60 0.080 0.111 0.143 0.177 0.211 0.224 0.286 0.333 0.37 0.37 60 0.080 0.111 0.143 0.177 0.211 0.246 0.281 0.331 0.377 0.32 0.333 0.372 0.44 64 0.088 0.122 0.15	44	0.050	0.070	0.090	0.111	0.133	0.155	0.177	0.200	0.223	0.246
50	46	0.054	0.075	0.096	0.119	0.142	0.165	0.189	0.213	0.238	0.263
52 0.064 0.090 0.116 0.143 0.170 0.198 0.227 0.256 0.286 0.3 54 0.068 0.095 0.123 0.151 0.180 0.210 0.240 0.271 0.302 0.33 56 0.072 0.100 0.129 0.159 0.190 0.222 0.254 0.286 0.331 0.33 58 0.076 0.106 0.136 0.168 0.201 0.234 0.267 0.302 0.337 0.35 60 0.080 0.111 0.143 0.177 0.211 0.246 0.281 0.317 0.354 0.36 62 0.084 0.117 0.151 0.186 0.222 0.288 0.296 0.333 0.372 0.44 64 0.088 0.122 0.158 0.155 0.232 0.271 0.310 0.350 0.390 0.44 66 0.090 0.123 0.0123 0.243 0.284 0.326	48	0.057	0.080	0.103	0.127	0.151	0.176	0.201	0.227	0.254	0.280
54 0.068 0.095 0.123 0.151 0.180 0.210 0.240 0.271 0.302 0.33 56 0.072 0.100 0.129 0.159 0.190 0.222 0.254 0.286 0.319 0.33 58 0.076 0.106 0.136 0.168 0.201 0.234 0.267 0.302 0.337 0.37 60 0.080 0.111 0.143 0.177 0.211 0.246 0.281 0.317 0.354 0.32 62 0.084 0.117 0.151 0.186 0.222 0.2271 0.310 0.330 0.34 64 0.088 0.122 0.158 0.165 0.204 0.222 0.2271 0.310 0.330 0.341 66 0.092 0.128 0.165 0.204 0.243 0.284 0.324 0.366 0.339 0.333 0.477 0.47 70 0.101 0.140 0.181 0.223 0.277 <td>50</td> <td>0.061</td> <td>0.085</td> <td>0.109</td> <td>0.135</td> <td>0.161</td> <td>0.187</td> <td>0.214</td> <td>0.242</td> <td>0.270</td> <td>0.298</td>	50	0.061	0.085	0.109	0.135	0.161	0.187	0.214	0.242	0.270	0.298
56 0.072 0.100 0.129 0.159 0.190 0.222 0.254 0.286 0.319 0.3 58 0.076 0.106 0.136 0.168 0.201 0.234 0.267 0.302 0.337 0.33 60 0.089 0.111 0.143 0.177 0.211 0.246 0.281 0.317 0.334 0.33 62 0.084 0.117 0.151 0.186 0.222 0.258 0.296 0.333 0.372 0.4 64 0.098 0.122 0.165 0.204 0.232 0.271 0.310 0.350 0.399 0.43 66 0.092 0.128 0.165 0.224 0.286 0.339 0.383 0.427 0.446 68 0.096 0.134 0.173 0.213 0.254 0.296 0.339 0.383 0.427 0.446 70 0.101 0.140 0.188 0.232 0.277 0.323 0.337	52	0.064	0.090	0.116	0.143	0.170	0.198	0.227	0.256	0.286	0.316
58 0.076 0.106 0.136 0.168 0.201 0.234 0.267 0.302 0.337 0.37 60 0.080 0.111 0.143 0.177 0.211 0.246 0.281 0.317 0.334 0.36 62 0.084 0.117 0.151 0.186 0.222 0.228 0.296 0.333 0.372 0.4 64 0.088 0.122 0.158 0.195 0.232 0.271 0.310 0.350 0.390 0.44 66 0.092 0.128 0.165 0.204 0.243 0.284 0.324 0.366 0.408 0.42 68 0.096 0.134 0.173 0.213 0.254 0.296 0.339 0.383 0.427 0.44 70 0.101 0.140 0.181 0.223 0.227 0.323 0.370 0.417 0.465 0.5 74 0.192 0.152 0.196 0.242 0.289 0.336	54	0.068	0.095	0.123	0.151	0.180	0.210	0.240	0.271	0.302	0.334
60 0.080 0.111 0.143 0.177 0.211 0.246 0.281 0.317 0.354 0.35 62 0.084 0.117 0.151 0.186 0.222 0.258 0.296 0.333 0.372 0.4 64 0.088 0.122 0.158 0.195 0.322 0.271 0.310 0.350 0.370 0.4 66 0.092 0.128 0.165 0.204 0.243 0.284 0.324 0.366 0.408 0.42 68 0.096 0.134 0.173 0.213 0.254 0.296 0.339 0.383 0.427 0.47 70 0.101 0.140 0.181 0.223 0.266 0.310 0.354 0.400 0.446 0.42 72 0.105 0.146 0.188 0.232 0.277 0.323 0.370 0.417 0.465 0.5 74 0.109 0.152 0.196 0.242 0.289 0.336	56	0.072	0.100	0.129	0.159	0.190	0.222	0.254	0.286	0.319	0.353
62 0.084 0.117 0.151 0.186 0.222 0.258 0.296 0.333 0.372 0.4 64 0.088 0.122 0.158 0.195 0.232 0.271 0.310 0.350 0.390 0.44 66 0.092 0.128 0.165 0.204 0.243 0.284 0.324 0.366 0.408 0.42 68 0.096 0.134 0.173 0.213 0.254 0.296 0.339 0.383 0.427 0.47 70 0.101 0.140 0.181 0.223 0.266 0.310 0.334 0.400 0.446 0.447 74 0.109 0.152 0.196 0.232 0.277 0.323 0.370 0.417 0.465 0.52 76 0.114 0.158 0.204 0.252 0.300 0.350 0.401 0.452 0.504 0.52 78 0.118 0.164 0.212 0.262 0.312 0.364	58			0.136			0.234				0.372
64 0.088 0.122 0.158 0.195 0.232 0.271 0.310 0.350 0.390 0.4 66 0.092 0.128 0.165 0.204 0.243 0.284 0.324 0.366 0.408 0.44 68 0.096 0.134 0.173 0.213 0.254 0.296 0.339 0.383 0.427 0.47 70 0.101 0.140 0.181 0.223 0.266 0.310 0.354 0.400 0.446 0.427 72 0.105 0.146 0.188 0.232 0.277 0.323 0.370 0.417 0.465 0.5 74 0.109 0.152 0.196 0.242 0.289 0.336 0.385 0.435 0.485 0.55 76 0.114 0.158 0.204 0.252 0.300 0.350 0.401 0.452 0.55 78 0.118 0.164 0.212 0.262 0.302 0.331 0.346											0.391
66 0.092 0.128 0.165 0.204 0.243 0.284 0.324 0.366 0.408 0.43 68 0.096 0.134 0.173 0.213 0.254 0.296 0.339 0.383 0.427 0.47 70 0.101 0.140 0.181 0.223 0.266 0.310 0.354 0.400 0.446 0.44 72 0.105 0.146 0.188 0.232 0.277 0.323 0.370 0.417 0.465 0.5 74 0.109 0.152 0.196 0.242 0.289 0.336 0.385 0.435 0.485 0.55 76 0.114 0.158 0.204 0.252 0.300 0.350 0.401 0.452 0.504 0.55 78 0.118 0.164 0.212 0.262 0.302 0.312 0.440 0.452 0.504 0.55 80 0.123 0.171 0.221 0.221 0.324 0.378											0.411
68 0.096 0.134 0.173 0.213 0.254 0.296 0.339 0.383 0.427 0.47 70 0.101 0.140 0.181 0.223 0.266 0.310 0.354 0.400 0.446 0.44 72 0.105 0.146 0.188 0.232 0.277 0.323 0.370 0.417 0.465 0.5 74 0.109 0.152 0.196 0.242 0.289 0.336 0.385 0.435 0.485 0.55 76 0.114 0.158 0.204 0.252 0.300 0.350 0.401 0.452 0.504 0.55 78 0.118 0.164 0.212 0.262 0.312 0.364 0.417 0.470 0.552 0.504 0.55 80 0.123 0.171 0.221 0.272 0.324 0.378 0.433 0.488 0.545 0.66 84 0.132 0.184 0.237 0.292 0.349											0.431
70 0.101 0.140 0.181 0.223 0.266 0.310 0.354 0.400 0.446 0.43 72 0.105 0.146 0.188 0.232 0.277 0.323 0.370 0.417 0.465 0.5 74 0.109 0.152 0.196 0.242 0.289 0.336 0.385 0.435 0.485 0.57 76 0.114 0.158 0.204 0.252 0.300 0.350 0.401 0.452 0.504 0.55 78 0.118 0.164 0.212 0.262 0.312 0.364 0.417 0.470 0.524 0.57 80 0.123 0.171 0.221 0.222 0.324 0.378 0.433 0.488 0.545 0.66 82 0.127 0.177 0.229 0.282 0.337 0.392 0.449 0.507 0.56 0.66 84 0.132 0.184 0.237 0.2292 0.3349 0.407											0.451
72 0.105 0.146 0.188 0.232 0.277 0.323 0.370 0.417 0.465 0.5 74 0.109 0.152 0.196 0.242 0.289 0.336 0.385 0.435 0.485 0.55 76 0.114 0.158 0.204 0.252 0.300 0.350 0.401 0.452 0.504 0.57 78 0.118 0.164 0.212 0.262 0.312 0.364 0.417 0.470 0.524 0.57 80 0.123 0.171 0.221 0.272 0.324 0.378 0.433 0.488 0.545 0.66 82 0.127 0.177 0.229 0.282 0.337 0.392 0.449 0.507 0.565 0.66 84 0.132 0.140 0.237 0.292 0.349 0.466 0.525 0.586 0.66 84 0.132 0.199 0.254 0.314 0.374 0.436 0.499											0.472
74 0.109 0.152 0.196 0.242 0.289 0.336 0.385 0.435 0.485 0.57 76 0.114 0.158 0.204 0.252 0.300 0.350 0.401 0.452 0.504 0.57 78 0.118 0.164 0.212 0.262 0.312 0.364 0.417 0.470 0.524 0.57 80 0.123 0.171 0.221 0.272 0.324 0.378 0.443 0.488 0.545 0.66 82 0.127 0.177 0.229 0.282 0.337 0.392 0.449 0.507 0.565 0.66 84 0.132 0.184 0.237 0.292 0.349 0.407 0.466 0.525 0.586 0.66 86 0.137 0.190 0.246 0.303 0.362 0.421 0.482 0.544 0.607 0.66 88 0.142 0.190 0.254 0.314 0.374 0.345	-										0.493
76 0.114 0.158 0.204 0.252 0.300 0.350 0.401 0.452 0.504 0.52 78 0.118 0.164 0.212 0.262 0.312 0.364 0.417 0.470 0.524 0.5° 80 0.123 0.171 0.221 0.272 0.324 0.378 0.433 0.488 0.545 0.66 82 0.127 0.177 0.229 0.282 0.337 0.392 0.449 0.507 0.566 0.66 84 0.132 0.184 0.237 0.292 0.349 0.407 0.466 0.525 0.586 0.66 86 0.137 0.190 0.246 0.303 0.362 0.421 0.482 0.544 0.607 0.66 88 0.142 0.197 0.254 0.314 0.337 0.439 0.450 0.563 0.628 0.66 90 0.147 0.204 0.263 0.324 0.387 0.451											0.514
78 0.118 0.164 0.212 0.262 0.312 0.364 0.417 0.470 0.524 0.57 80 0.123 0.171 0.221 0.272 0.324 0.378 0.433 0.488 0.545 0.66 82 0.127 0.177 0.229 0.282 0.337 0.392 0.449 0.507 0.565 0.66 84 0.132 0.184 0.237 0.292 0.349 0.407 0.466 0.525 0.586 0.66 86 0.137 0.190 0.246 0.303 0.362 0.421 0.482 0.544 0.607 0.66 88 0.142 0.197 0.254 0.314 0.374 0.436 0.499 0.563 0.628 0.66 90 0.147 0.204 0.263 0.324 0.387 0.451 0.516 0.582 0.650 0.7 92 0.151 0.211 0.272 0.335 0.400 0.466											0.535
80 0.123 0.171 0.221 0.272 0.324 0.378 0.433 0.488 0.545 0.66 82 0.127 0.177 0.229 0.282 0.337 0.392 0.449 0.507 0.565 0.66 84 0.132 0.184 0.237 0.292 0.349 0.407 0.466 0.525 0.586 0.66 86 0.137 0.190 0.246 0.303 0.362 0.421 0.482 0.544 0.607 0.6 88 0.142 0.197 0.254 0.314 0.374 0.436 0.499 0.563 0.628 0.69 90 0.147 0.204 0.263 0.324 0.387 0.451 0.516 0.582 0.650 0.7 92 0.151 0.211 0.272 0.335 0.400 0.466 0.533 0.602 0.671 0.7 94 0.156 0.217 0.281 0.346 0.413 0.481											0.557
82 0.127 0.177 0.229 0.282 0.337 0.392 0.449 0.507 0.565 0.66 84 0.132 0.184 0.237 0.292 0.349 0.407 0.466 0.525 0.586 0.66 86 0.137 0.190 0.246 0.303 0.362 0.421 0.482 0.544 0.607 0.66 88 0.142 0.197 0.254 0.314 0.374 0.436 0.499 0.563 0.628 0.69 90 0.147 0.204 0.263 0.324 0.387 0.451 0.516 0.582 0.650 0.77 92 0.151 0.211 0.272 0.335 0.400 0.466 0.533 0.602 0.671 0.79 94 0.156 0.217 0.281 0.346 0.413 0.481 0.551 0.622 0.693 0.76 98 0.166 0.231 0.299 0.368 0.440 0.512											0.579
84 0.132 0.184 0.237 0.292 0.349 0.407 0.466 0.525 0.586 0.66 86 0.137 0.190 0.246 0.303 0.362 0.421 0.482 0.544 0.607 0.66 88 0.142 0.197 0.254 0.314 0.374 0.436 0.499 0.563 0.628 0.69 90 0.147 0.204 0.263 0.324 0.387 0.451 0.516 0.582 0.650 0.7 92 0.151 0.211 0.272 0.335 0.400 0.466 0.533 0.602 0.671 0.7 94 0.156 0.217 0.2281 0.346 0.413 0.481 0.551 0.622 0.693 0.77 98 0.166 0.231 0.299 0.368 0.440 0.512 0.586 0.661 0.715 0.75 98 0.166 0.231 0.299 0.368 0.440 0.512											0.602
86 0.137 0.190 0.246 0.303 0.362 0.421 0.482 0.544 0.607 0.6 88 0.142 0.197 0.254 0.314 0.374 0.436 0.499 0.563 0.628 0.69 90 0.147 0.204 0.263 0.324 0.387 0.451 0.516 0.582 0.650 0.7 92 0.151 0.211 0.272 0.335 0.400 0.466 0.533 0.602 0.671 0.7 94 0.156 0.217 0.281 0.346 0.413 0.481 0.551 0.622 0.693 0.70 96 0.161 0.224 0.290 0.357 0.426 0.497 0.568 0.641 0.715 0.75 98 0.166 0.231 0.299 0.368 0.440 0.512 0.586 0.662 0.738 0.8 100 0.172 0.239 0.308 0.380 0.453 0.528											0.624
88 0.142 0.197 0.254 0.314 0.374 0.436 0.499 0.563 0.628 0.66 90 0.147 0.204 0.263 0.324 0.387 0.451 0.516 0.582 0.650 0.7 92 0.151 0.211 0.272 0.335 0.400 0.466 0.533 0.602 0.671 0.7- 94 0.156 0.217 0.281 0.346 0.413 0.481 0.551 0.622 0.693 0.76 96 0.161 0.224 0.290 0.357 0.426 0.497 0.568 0.641 0.715 0.76 98 0.166 0.231 0.299 0.368 0.440 0.512 0.586 0.662 0.738 0.8 100 0.172 0.239 0.308 0.380 0.453 0.528 0.604 0.682 0.761 0.8 102 0.177 0.246 0.317 0.391 0.467 0.544											0.647
90 0.147 0.204 0.263 0.324 0.387 0.451 0.516 0.582 0.650 0.7 92 0.151 0.211 0.272 0.335 0.400 0.466 0.533 0.602 0.671 0.74 94 0.156 0.217 0.281 0.346 0.413 0.481 0.551 0.622 0.693 0.76 96 0.161 0.224 0.290 0.357 0.426 0.497 0.568 0.641 0.715 0.79 98 0.166 0.231 0.299 0.368 0.440 0.512 0.586 0.662 0.738 0.8 100 0.172 0.239 0.308 0.380 0.453 0.528 0.604 0.682 0.761 0.8 102 0.177 0.246 0.317 0.391 0.467 0.544 0.622 0.702 0.783 0.8 104 0.182 0.253 0.327 0.403 0.480 0.560	-										0.671
92 0.151 0.211 0.272 0.335 0.400 0.466 0.533 0.602 0.671 0.7 94 0.156 0.217 0.281 0.346 0.413 0.481 0.551 0.622 0.693 0.70 96 0.161 0.224 0.290 0.357 0.426 0.497 0.568 0.641 0.715 0.79 98 0.166 0.231 0.299 0.368 0.440 0.512 0.586 0.662 0.738 0.8 100 0.172 0.239 0.308 0.380 0.453 0.528 0.604 0.682 0.761 0.8 102 0.177 0.246 0.317 0.391 0.467 0.544 0.622 0.702 0.783 0.8 104 0.182 0.253 0.327 0.403 0.480 0.560 0.641 0.723 0.806 0.8 106 0.187 0.260 0.336 0.414 0.494 0.576											0.694
94 0.156 0.217 0.281 0.346 0.413 0.481 0.551 0.622 0.693 0.70 96 0.161 0.224 0.290 0.357 0.426 0.497 0.568 0.641 0.715 0.79 98 0.166 0.231 0.299 0.368 0.440 0.512 0.586 0.662 0.738 0.8 100 0.172 0.239 0.308 0.380 0.453 0.528 0.604 0.682 0.761 0.8 102 0.177 0.246 0.317 0.391 0.467 0.544 0.622 0.702 0.783 0.80 104 0.182 0.253 0.327 0.403 0.480 0.560 0.641 0.723 0.806 0.88 106 0.187 0.260 0.336 0.414 0.494 0.576 0.659 0.744 0.830 0.99 108 0.192 0.268 0.346 0.426 0.508 0.592 <td></td> <td>0.718</td>											0.718
96 0.161 0.224 0.290 0.357 0.426 0.497 0.568 0.641 0.715 0.75 98 0.166 0.231 0.299 0.368 0.440 0.512 0.586 0.662 0.738 0.8 100 0.172 0.239 0.308 0.380 0.453 0.528 0.604 0.682 0.761 0.8 102 0.177 0.246 0.317 0.391 0.467 0.544 0.622 0.702 0.783 0.80 104 0.182 0.253 0.327 0.403 0.480 0.560 0.641 0.723 0.806 0.89 106 0.187 0.260 0.336 0.414 0.494 0.576 0.659 0.744 0.830 0.99 108 0.192 0.268 0.346 0.426 0.508 0.592 0.678 0.765 0.853 0.94 110 0.198 0.275 0.355 0.438 0.522 0.609 <td></td> <td>0.742</td>											0.742
98 0.166 0.231 0.299 0.368 0.440 0.512 0.586 0.662 0.738 0.8 100 0.172 0.239 0.308 0.380 0.453 0.528 0.604 0.682 0.761 0.8 102 0.177 0.246 0.317 0.391 0.467 0.544 0.622 0.702 0.783 0.80 104 0.182 0.253 0.327 0.403 0.480 0.560 0.641 0.723 0.806 0.8 106 0.187 0.260 0.336 0.414 0.494 0.576 0.659 0.744 0.830 0.9 108 0.192 0.268 0.346 0.426 0.508 0.592 0.678 0.765 0.853 0.99 108 0.192 0.268 0.346 0.426 0.508 0.592 0.678 0.765 0.853 0.99 110 0.198 0.275 0.355 0.438 0.522 0.609 <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.766</td>	_										0.766
100 0.172 0.239 0.308 0.380 0.453 0.528 0.604 0.682 0.761 0.88 102 0.177 0.246 0.317 0.391 0.467 0.544 0.622 0.702 0.783 0.80 104 0.182 0.253 0.327 0.403 0.480 0.560 0.641 0.723 0.806 0.89 106 0.187 0.260 0.336 0.414 0.494 0.576 0.659 0.744 0.830 0.9 108 0.192 0.268 0.346 0.426 0.508 0.592 0.678 0.765 0.853 0.9 110 0.198 0.275 0.355 0.438 0.522 0.609 0.697 0.786 0.877 0.90 112 0.203 0.283 0.365 0.450 0.537 0.626 0.716 0.808 0.901 0.99 114* 0.209 0.290 0.375 0.462 0.551 0.642											0.790
102 0.177 0.246 0.317 0.391 0.467 0.544 0.622 0.702 0.783 0.88 104 0.182 0.253 0.327 0.403 0.480 0.560 0.641 0.723 0.806 0.89 106 0.187 0.260 0.336 0.414 0.494 0.576 0.659 0.744 0.830 0.99 108 0.192 0.268 0.346 0.426 0.508 0.592 0.678 0.765 0.853 0.94 110 0.198 0.275 0.355 0.438 0.522 0.609 0.697 0.786 0.877 0.90 112 0.203 0.283 0.365 0.450 0.537 0.626 0.716 0.808 0.901 0.99 114' 0.209 0.290 0.375 0.462 0.551 0.642 0.735 0.830 0.925 1.02 116 0.214 0.298 0.385 0.474 0.566 0.6											0.815
104 0.182 0.253 0.327 0.403 0.480 0.560 0.641 0.723 0.806 0.88 106 0.187 0.260 0.336 0.414 0.494 0.576 0.659 0.744 0.830 0.99 108 0.192 0.268 0.346 0.426 0.508 0.592 0.678 0.765 0.853 0.94 110 0.198 0.275 0.355 0.438 0.522 0.609 0.697 0.786 0.877 0.90 112 0.203 0.283 0.365 0.450 0.537 0.626 0.716 0.808 0.901 0.99 114' 0.209 0.290 0.375 0.462 0.551 0.642 0.735 0.830 0.925 1.02 116 0.214 0.298 0.385 0.474 0.566 0.659 0.755 0.851 0.950 1.04 118 0.220 0.306 0.395 0.486 0.580 0.6											0.840
106 0.187 0.260 0.336 0.414 0.494 0.576 0.659 0.744 0.830 0.9 108 0.192 0.268 0.346 0.426 0.508 0.592 0.678 0.765 0.853 0.94 110 0.198 0.275 0.355 0.438 0.522 0.609 0.697 0.786 0.877 0.96 112 0.203 0.283 0.365 0.450 0.537 0.626 0.716 0.808 0.901 0.99 114* 0.209 0.290 0.375 0.462 0.551 0.642 0.735 0.830 0.925 1.02 116 0.214 0.298 0.385 0.474 0.566 0.659 0.755 0.851 0.950 1.04 118 0.220 0.306 0.395 0.486 0.580 0.676 0.774 0.873 0.974 1.07 120 0.225 0.313 0.405 0.499 0.595 0.69											
108 0.192 0.268 0.346 0.426 0.508 0.592 0.678 0.765 0.853 0.94 110 0.198 0.275 0.355 0.438 0.522 0.609 0.697 0.786 0.877 0.90 112 0.203 0.283 0.365 0.450 0.537 0.626 0.716 0.808 0.901 0.90 114' 0.209 0.290 0.375 0.462 0.551 0.642 0.735 0.830 0.925 1.02 116 0.214 0.298 0.385 0.474 0.566 0.659 0.755 0.851 0.950 1.04 118 0.220 0.306 0.395 0.486 0.580 0.676 0.774 0.873 0.974 1.07 120 0.225 0.313 0.405 0.499 0.595 0.694 0.794 0.896 0.999 1.10 122 0.231 0.321 0.415 0.511 0.610 0.7											
110 0.198 0.275 0.355 0.438 0.522 0.609 0.697 0.786 0.877 0.90 112 0.203 0.283 0.365 0.450 0.537 0.626 0.716 0.808 0.901 0.99 114* 0.209 0.290 0.375 0.462 0.551 0.642 0.735 0.830 0.925 1.02 116 0.214 0.298 0.385 0.474 0.566 0.659 0.755 0.851 0.950 1.04 118 0.220 0.306 0.395 0.486 0.580 0.676 0.774 0.873 0.974 1.07 120 0.225 0.313 0.405 0.499 0.595 0.694 0.794 0.896 0.999 1.16 122 0.231 0.321 0.415 0.511 0.610 0.711 0.814 0.918 1.024 1.13 124 0.237 0.329 0.425 0.524 0.625 0.7	_										
112 0.203 0.283 0.365 0.450 0.537 0.626 0.716 0.808 0.901 0.99 114' 0.209 0.290 0.375 0.462 0.551 0.642 0.735 0.830 0.925 1.02 116 0.214 0.298 0.385 0.474 0.566 0.659 0.755 0.851 0.950 1.02 118 0.220 0.306 0.395 0.486 0.580 0.676 0.774 0.873 0.974 1.07 120 0.225 0.313 0.405 0.499 0.595 0.694 0.794 0.896 0.999 1.10 122 0.231 0.321 0.415 0.511 0.610 0.711 0.814 0.918 1.024 1.13 124 0.237 0.329 0.425 0.524 0.625 0.728 0.834 0.941 1.049 1.13 126 0.242 0.337 0.435 0.537 0.640 0.7	_										
114' 0.209 0.290 0.375 0.462 0.551 0.642 0.735 0.830 0.925 1.02 116 0.214 0.298 0.385 0.474 0.566 0.659 0.755 0.851 0.950 1.02 118 0.220 0.306 0.395 0.486 0.580 0.676 0.774 0.873 0.974 1.07 120 0.225 0.313 0.405 0.499 0.595 0.694 0.794 0.896 0.999 1.10 122 0.231 0.321 0.415 0.511 0.610 0.711 0.814 0.918 1.024 1.13 124 0.237 0.329 0.425 0.524 0.625 0.728 0.834 0.941 1.049 1.13 126 0.242 0.337 0.435 0.537 0.640 0.746 0.854 0.964 1.075 1.18 128 0.248 0.345 0.446 0.549 0.655 0.7											
116 0.214 0.298 0.385 0.474 0.566 0.659 0.755 0.851 0.950 1.04 118 0.220 0.306 0.395 0.486 0.580 0.676 0.774 0.873 0.974 1.07 120 0.225 0.313 0.405 0.499 0.595 0.694 0.794 0.896 0.999 1.10 122 0.231 0.321 0.415 0.511 0.610 0.711 0.814 0.918 1.024 1.13 124 0.237 0.329 0.425 0.524 0.625 0.728 0.834 0.941 1.049 1.13 126 0.242 0.337 0.435 0.537 0.640 0.746 0.854 0.964 1.075 1.18 128 0.248 0.345 0.446 0.549 0.655 0.764 0.874 0.986 1.100 1.24 130 0.254 0.353 0.456 0.562 0.671 0.78	_										1.022
118 0.220 0.306 0.395 0.486 0.580 0.676 0.774 0.873 0.974 1.07 120 0.225 0.313 0.405 0.499 0.595 0.694 0.794 0.896 0.999 1.10 122 0.231 0.321 0.415 0.511 0.610 0.711 0.814 0.918 1.024 1.13 124 0.237 0.329 0.425 0.524 0.625 0.728 0.834 0.941 1.049 1.13 126 0.242 0.337 0.435 0.537 0.640 0.746 0.854 0.964 1.075 1.18 128 0.248 0.345 0.446 0.549 0.655 0.764 0.874 0.986 1.100 1.2 130 0.254 0.353 0.456 0.562 0.671 0.782 0.895 1.010 1.126 1.24 132 0.260 0.361 0.467 0.575 0.686 0.800											1.022
120 0.225 0.313 0.405 0.499 0.595 0.694 0.794 0.896 0.999 1.10 122 0.231 0.321 0.415 0.511 0.610 0.711 0.814 0.918 1.024 1.13 124 0.237 0.329 0.425 0.524 0.625 0.728 0.834 0.941 1.049 1.13 126 0.242 0.337 0.435 0.537 0.640 0.746 0.854 0.964 1.075 1.18 128 0.248 0.345 0.446 0.549 0.655 0.764 0.874 0.986 1.100 1.2 130 0.254 0.353 0.456 0.562 0.671 0.782 0.895 1.010 1.126 1.24 132 0.260 0.361 0.467 0.575 0.686 0.800 0.915 1.033 1.152 1.23	_										1.049
122 0.231 0.321 0.415 0.511 0.610 0.711 0.814 0.918 1.024 1.13 124 0.237 0.329 0.425 0.524 0.625 0.728 0.834 0.941 1.049 1.13 126 0.242 0.337 0.435 0.537 0.640 0.746 0.854 0.964 1.075 1.18 128 0.248 0.345 0.446 0.549 0.655 0.764 0.874 0.986 1.100 1.2 130 0.254 0.353 0.456 0.562 0.671 0.782 0.895 1.010 1.126 1.24 132 0.260 0.361 0.467 0.575 0.686 0.800 0.915 1.033 1.152 1.23											1.104
124 0.237 0.329 0.425 0.524 0.625 0.728 0.834 0.941 1.049 1.15 126 0.242 0.337 0.435 0.537 0.640 0.746 0.854 0.964 1.075 1.18 128 0.248 0.345 0.446 0.549 0.655 0.764 0.874 0.986 1.100 1.2 130 0.254 0.353 0.456 0.562 0.671 0.782 0.895 1.010 1.126 1.24 132 0.260 0.361 0.467 0.575 0.686 0.800 0.915 1.033 1.152 1.23	_										1.131
126 0.242 0.337 0.435 0.537 0.640 0.746 0.854 0.964 1.075 1.18 128 0.248 0.345 0.446 0.549 0.655 0.764 0.874 0.986 1.100 1.2 130 0.254 0.353 0.456 0.562 0.671 0.782 0.895 1.010 1.126 1.24 132 0.260 0.361 0.467 0.575 0.686 0.800 0.915 1.033 1.152 1.23	_										1.159
128 0.248 0.345 0.446 0.549 0.655 0.764 0.874 0.986 1.100 1.2 130 0.254 0.353 0.456 0.562 0.671 0.782 0.895 1.010 1.126 1.24 132 0.260 0.361 0.467 0.575 0.686 0.800 0.915 1.033 1.152 1.24	_										1.187
130 0.254 0.353 0.456 0.562 0.671 0.782 0.895 1.010 1.126 1.24 132 0.260 0.361 0.467 0.575 0.686 0.800 0.915 1.033 1.152 1.23											1.216
132 0.260 0.361 0.467 0.575 0.686 0.800 0.915 1.033 1.152 1.2°											1.244
											1.273
יינד אוויס בייס די סביד עס אייס די סביד עס אייס אייס אייס אייס אייס אייס אייס א	134	0.266	0.370	0.477	0.588	0.702	0.818	0.936	1.056	1.178	1.302
 											1.331
 											1.361
											1.390
 	_										1.420
											1.450
 	146										1.480

Table-23: Metric two-way volume table of Pinus caribaea (Caribbean pitch pine) in the plantation

GBH				Volume in	cubic meter	rs for the he	ight in meter	rs		
(cm)	6	8	10	12	14	16	18	20	22	24
40	0.043	0.055	0.066	0.077	0.088	0.099	0.109	0.119	0.129	0.138
42	0.047	0.060	0.073	0.085	0.096	0.108	0.119	0.130	0.141	0.152
44	0.052	0.066	0.079	0.092	0.105	0.118	0.130	0.142	0.154	0.165
46	0.056	0.071	0.086	0.100	0.114	0.128	0.141	0.154	0.167	0.180
48	0.061	0.077	0.093	0.109	0.124	0.138	0.153	0.167	0.181	0.195
50	0.066	0.084	0.101	0.117	0.134	0.149	0.165	0.180	0.195	0.210
52	0.071	0.090	0.108	0.126	0.144	0.161	0.177	0.194	0.210	0.226
54	0.076	0.096	0.116	0.136	0.154	0.173	0.190	0.208	0.225	0.242
56	0.081	0.103	0.124	0.145	0.165	0.185	0.204	0.223	0.241	0.259
58	0.087	0.110	0.133	0.155	0.176	0.197	0.218	0.238	0.258	0.277
60	0.092	0.117	0.142	0.165	0.188	0.210	0.232	0.253	0.274	0.295
62	0.098	0.125	0.151	0.175	0.200	0.223	0.246	0.269	0.292	0.314
64	0.104	0.132	0.160	0.186	0.212	0.237	0.262	0.286	0.310	0.333
66	0.110	0.140	0.169	0.197	0.224	0.251	0.277	0.303	0.328	0.353
68	0.117	0.148	0.179	0.208	0.237	0.265	0.293	0.320	0.347	0.373
70	0.123	0.157	0.189	0.220	0.250	0.280	0.309	0.338	0.366	0.394
72	0.130	0.165	0.199	0.232	0.264	0.295	0.326	0.356	0.386	0.415
74	0.136	0.174	0.209	0.244	0.278	0.311	0.343	0.375	0.406	0.437
76	0.143	0.183	0.220	0.257	0.292	0.327	0.361	0.394	0.427	0.459
78	0.151	0.192	0.231	0.269	0.306	0.343	0.378	0.413	0.448	0.482
80	0.158	0.201	0.242	0.282	0.321	0.359	0.397	0.433	0.469	0.505
82	0.165	0.210	0.254	0.296	0.336	0.376	0.415	0.454	0.492	0.529
84	0.173	0.220	0.265	0.309	0.352	0.394	0.435	0.475	0.514	0.553
86	0.181	0.230	0.277	0.323	0.368	0.411	0.454	0.496	0.537	0.578
88	0.189	0.240	0.289	0.337	0.384	0.429	0.474	0.518	0.561	0.603
90	0.197	0.250	0.302	0.352	0.400	0.448	0.494	0.540	0.585	0.629
92	0.205	0.261	0.315	0.367	0.417	0.467	0.515	0.563	0.610	0.656
94	0.213	0.272	0.327	0.382	0.434	0.486	0.536	0.586	0.634	0.683
96	0.222	0.282	0.341	0.397	0.452	0.505	0.558	0.609	0.660	0.710
98	0.231	0.293	0.354	0.412	0.469	0.525	0.580	0.633	0.686	0.738
100	0.239	0.305	0.368	0.428	0.487	0.545	0.602	0.657	0.712	0.766
102	0.248	0.316	0.381	0.444	0.506	0.566	0.625	0.682	0.739	0.795
104	0.258	0.328	0.395	0.461	0.524	0.587	0.648	0.707	0.766	0.824
106	0.267	0.340	0.410	0.478	0.543	0.608	0.671	0.733	0.794	0.854
108	0.276	0.352	0.424	0.494	0.563	0.629	0.695	0.759	0.822	0.885
110	0.286	0.364	0.439	0.512	0.582	0.651	0.719	0.786	0.851	0.915
112	0.296	0.377	0.454	0.529	0.602	0.674	0.744	0.812	0.880	0.947
114`	0.306	0.389	0.469	0.547	0.623	0.696	0.769	0.840	0.910	0.979
116	0.316	0.402	0.485	0.565	0.643	0.719	0.794	0.867	0.940	1.011
118	0.326	0.415	0.501	0.583	0.664	0.743	0.820	0.896	0.970	1.044
120	0.337	0.428	0.517	0.602	0.685	0.766	0.846	0.924	1.001	1.077
122	0.347	0.442	0.533	0.621	0.707	0.790	0.872	0.953	1.032	1.111
124	0.358	0.455	0.549	0.640	0.728	0.815	0.899	0.982	1.064	1.145
126	0.369	0.469	0.566	0.659	0.750	0.839	0.927	1.012	1.097	1.180
128	0.380	0.483	0.583	0.679	0.773	0.864	0.954	1.042	1.129	1.215
130	0.391	0.497	0.600	0.699	0.796	0.890	0.982	1.073	1.162	1.250
132	0.402	0.512	0.617	0.719	0.819	0.916	1.011	1.104	1.196	1.287
134	0.414	0.526	0.635	0.740	0.842	0.942	1.040	1.136	1.230	1.323
136	0.425	0.541	0.653	0.760	0.866	0.968	1.069	1.167	1.265	1.360
138	0.437	0.556	0.671	0.782	0.889	0.995	1.098	1.200	1.300	1.398
140	0.449	0.571	0.689	0.803	0.914	1.022	1.128	1.232	1.335	1.436
142	0.461	0.587	0.707	0.824	0.938	1.049	1.158	1.265	1.371	1.475
144	0.473	0.602	0.726	0.846	0.963	1.077	1.189	1.299	1.407	1.514
146	0.485	0.618	0.745	0.868	0.988	1.105	1.220	1.333	1.444	1.553

Table-24.1: Metric two-way volume table of Aphanamixis polystachya (Pitraj) in the natural forest

GBH				Volume in	cubic meter	rs for the he	ight in meter	rs		
(cm)	6	8	10	12	14	16	18	20	22	24
40	0.060	0.073	0.086	0.097	0.108	0.119	0.129	0.139	0.148	0.158
42	0.066	0.080	0.094	0.107	0.119	0.131	0.142	0.153	0.163	0.173
44	0.072	0.088	0.103	0.117	0.130	0.143	0.155	0.167	0.178	0.190
46	0.078	0.096	0.112	0.127	0.142	0.156	0.169	0.182	0.194	0.207
48	0.085	0.104	0.122	0.138	0.154	0.169	0.183	0.198	0.211	0.224
50	0.092	0.113	0.132	0.150	0.167	0.183	0.199	0.214	0.228	0.243
52	0.099	0.121	0.142	0.161	0.180	0.197	0.214	0.231	0.246	0.262
54	0.107	0.131	0.153	0.174	0.193	0.212	0.230	0.248	0.265	0.282
56	0.115	0.140	0.164	0.186	0.207	0.228	0.247	0.266	0.284	0.302
58	0.123	0.150	0.175	0.199	0.222	0.244	0.265	0.285	0.304	0.323
60	0.131	0.160	0.187	0.213	0.237	0.260	0.282	0.304	0.325	0.345
62	0.140	0.171	0.199	0.227	0.252	0.277	0.301	0.324	0.346	0.368
64	0.148	0.181	0.212	0.241	0.268	0.295	0.320	0.344	0.368	0.391
66	0.158	0.193	0.225	0.256	0.285	0.313	0.340	0.366	0.391	0.415
68	0.167	0.204	0.238	0.271	0.302	0.331	0.360	0.387	0.414	0.440
70	0.176	0.216	0.252	0.287	0.319	0.350	0.380	0.410	0.438	0.465
72	0.186	0.228	0.266	0.303	0.337	0.370	0.402	0.432	0.462	0.491
74	0.196	0.240	0.281	0.319	0.355	0.390	0.424	0.456	0.487	0.518
76	0.207	0.253	0.296	0.336	0.374	0.411	0.446	0.480	0.513	0.545
78	0.218	0.266	0.311	0.353	0.393	0.432	0.469	0.505	0.540	0.573
80	0.228	0.279	0.327	0.371	0.413	0.454	0.492	0.530	0.567	0.602
82	0.240	0.293	0.342	0.389	0.433	0.476	0.517	0.556	0.594	0.632
84	0.251	0.307	0.359	0.408	0.454	0.498	0.541	0.583	0.623	0.662
86	0.263	0.321	0.375	0.427	0.475	0.522	0.566	0.610	0.652	0.693
88	0.275	0.336	0.393	0.446	0.497	0.545	0.592	0.637	0.681	0.724
90	0.287	0.351	0.410	0.466	0.519	0.569	0.618	0.666	0.712	0.756
92	0.299	0.366	0.428	0.486	0.541	0.594	0.645	0.695	0.742	0.789
94	0.312	0.382	0.446	0.507	0.564	0.619	0.673	0.724	0.774	0.822
96	0.325	0.397	0.464	0.528	0.588	0.645	0.701	0.754	0.806	0.857
98	0.338	0.414	0.483	0.549	0.612	0.671	0.729	0.785	0.839	0.891
100	0.352	0.430	0.503	0.571	0.636	0.698	0.758	0.816	0.872	0.927
102	0.365	0.447	0.522	0.593	0.661	0.725	0.788	0.848	0.906	0.963
104	0.379	0.464	0.542	0.616	0.686	0.753	0.818	0.880	0.941	1.000
106	0.394	0.481	0.562	0.639	0.712	0.781	0.848	0.913	0.976	1.037
108	0.408	0.499	0.583	0.662	0.738	0.810	0.880	0.947	1.012	1.076
110	0.423	0.517	0.604	0.686	0.765	0.839	0.911	0.981	1.049	1.114
112	0.438	0.535	0.626	0.711	0.792	0.869	0.944	1.016	1.086	1.154
114`	0.453	0.554	0.647	0.735	0.819	0.899	0.977	1.051	1.124	1.194
116	0.468	0.573	0.670	0.761	0.847	0.930	1.010	1.087	1.162	1.235
118	0.484	0.592	0.692	0.786	0.876	0.961	1.044	1.124	1.201	1.276
120	0.500	0.612	0.715	0.812	0.905	0.993	1.078	1.161	1.241	1.319
122	0.516	0.631	0.738	0.838 0.865	0.934	1.025	1.113	1.198	1.281	1.361
124	0.533	0.652	0.762		0.964	1.058	1.149	1.237	1.322	1.405
126	0.550	0.672	0.786	0.892	0.994	1.091	1.185	1.276	1.363	1.449
128	0.567	0.693	0.810	0.920	1.025	1.125	1.222	1.315	1.406	1.494
130	0.584	0.714	0.835	0.948	1.056	1.159	1.259	1.355	1.448	1.539
132	0.601	0.735	0.860	0.976	1.087	1.194	1.296	1.396	1.492	1.585
134	0.619	0.757	0.885	1.005	1.120	1.229	1.335	1.437	1.536	1.632
136	0.637	0.779	0.911	1.034	1.152	1.265	1.373	1.478	1.580	1.679
138	0.655	0.801 0.824	0.937	1.064	1.185	1.301	1.413	1.521	1.626	1.727
140			0.963	1.094	1.218	1.338	1.453	1.564	1.671	1.776
142	0.693	0.847	0.990	1.124	1.252	1.375	1.493	1.607	1.718	1.826
144	0.711	0.870	1.017	1.155	1.287	1.413	1.534	1.651	1.765	1.876
146	0.731	0.894	1.044	1.186	1.321	1.451	1.575	1.696	1.813	1.926

Table-24.2: Metric two-way volume table of Aphanamixis polystachya (Pitraj) in the Home garden

GBH				Volume in	cubic meter	rs for the he	ight in meter	rs		
(cm)	6	8	10	12	14	16	18	20	22	24
40	0.046	0.052	0.058	0.063	0.068	0.073	0.077	0.081	0.084	0.088
42	0.050	0.058	0.064	0.070	0.075	0.080	0.084	0.089	0.093	0.097
44	0.055	0.063	0.070	0.077	0.082	0.088	0.093	0.097	0.102	0.106
46	0.060	0.069	0.077	0.084	0.090	0.096	0.101	0.106	0.111	0.116
48	0.066	0.075	0.083	0.091	0.098	0.104	0.110	0.116	0.121	0.126
50	0.071	0.081	0.091	0.099	0.106	0.113	0.119	0.126	0.131	0.137
52	0.077	0.088	0.098	0.107	0.115	0.122	0.129	0.136	0.142	0.148
54	0.083	0.095	0.105	0.115	0.124	0.132	0.139	0.146	0.153	0.159
56	0.089	0.102	0.113	0.124	0.133	0.141	0.150	0.157	0.164	0.171
58	0.096	0.109	0.122	0.132	0.142	0.152	0.160	0.169	0.176	0.184
60	0.102	0.117	0.130	0.142	0.152	0.162	0.172	0.180	0.189	0.196
62	0.109	0.125	0.139	0.151	0.163	0.173	0.183	0.192	0.201	0.210
64	0.116	0.133	0.148	0.161	0.173	0.184	0.195	0.205	0.214	0.223
66	0.123	0.141	0.157	0.171	0.184	0.196	0.207	0.218	0.228	0.237
68	0.131	0.150	0.167	0.182	0.195	0.208	0.220	0.231	0.242	0.252
70	0.139	0.159	0.177	0.192	0.207	0.220	0.233	0.245	0.256	0.267
72	0.147	0.168	0.187	0.203	0.219	0.233	0.246	0.259	0.271	0.282
74	0.155	0.177	0.197	0.215	0.231	0.246	0.260	0.273	0.286	0.298
76	0.163	0.187	0.208	0.227	0.244	0.259	0.274	0.288	0.301	0.314
78	0.172	0.197	0.219	0.239	0.256	0.273	0.289	0.303	0.317	0.331
80	0.181	0.207	0.230	0.251	0.270	0.287	0.304	0.319	0.334	0.348
82	0.190	0.218	0.242	0.263	0.283	0.302	0.319	0.335	0.351	0.365
84	0.199	0.228	0.254	0.276	0.297	0.316	0.335	0.352	0.368	0.383
86	0.209	0.239	0.266	0.290	0.311	0.332	0.351	0.368	0.385	0.401
88	0.219	0.250	0.278	0.303	0.326	0.347	0.367	0.386	0.403	0.420
90	0.229	0.262	0.291	0.317	0.341	0.363	0.384	0.403	0.422	0.439
92	0.239	0.273	0.304	0.331	0.356	0.379	0.401	0.421	0.441	0.459
94	0.249	0.285	0.317	0.345	0.372	0.396	0.418	0.440	0.460	0.479
96	0.260	0.298	0.331	0.360	0.387	0.413	0.436	0.458	0.479	0.499
98	0.271	0.310	0.344	0.375	0.404	0.430	0.454	0.477	0.499	0.520
100	0.282	0.323	0.358	0.391	0.420	0.447	0.473	0.497	0.520	0.542
102	0.293	0.336	0.373	0.406	0.437	0.465	0.492	0.517	0.541	0.563
104	0.305	0.349	0.387	0.422	0.454	0.484	0.511	0.537	0.562	0.586
106	0.316	0.362	0.402	0.439	0.472	0.502	0.531	0.558	0.584	0.608
108	0.328	0.376	0.418	0.455	0.489	0.521	0.551	0.579	0.606	0.631
110	0.340	0.390	0.433	0.472	0.508	0.541	0.571	0.601	0.628	0.654
112	0.353	0.404	0.449	0.489	0.526	0.560	0.592	0.622	0.651	0.678
114`	0.365	0.418	0.465	0.507	0.545	0.580	0.613	0.645	0.674	0.703
116	0.378	0.433	0.481	0.524	0.564	0.601	0.635	0.667	0.698	0.727
118	0.391	0.448	0.498	0.543	0.583	0.621	0.657	0.690	0.722	0.752
120	0.405	0.463	0.515	0.561	0.603	0.643	0.679	0.714	0.747	0.778
122	0.418	0.479	0.532	0.580	0.623	0.664	0.702	0.738	0.772	0.804
124	0.432	0.495	0.549	0.599	0.644	0.686	0.725	0.762	0.797	0.830
126	0.446	0.510	0.567	0.618	0.665	0.708	0.748	0.786	0.823	0.857
128	0.460	0.527	0.585	0.638	0.686	0.730	0.772	0.811	0.849	0.884
130	0.474	0.543	0.603	0.658	0.707	0.753	0.796	0.837	0.875	0.912
132	0.489	0.560	0.622	0.678	0.729	0.776	0.821	0.863	0.902	0.940
134	0.504	0.577	0.641	0.698	0.751	0.800	0.846	0.889	0.930	0.968
136	0.519	0.594	0.660	0.719	0.773	0.824	0.871	0.915	0.957	0.997
138	0.534	0.612	0.679	0.740	0.796	0.848	0.896	0.942	0.985	1.027
140	0.549	0.629	0.699	0.762	0.819	0.873	0.922	0.969	1.014	1.056
142	0.565	0.647	0.719	0.784	0.843	0.897	0.949	0.997	1.043	1.087
144	0.581	0.665	0.739	0.806	0.866	0.923	0.975	1.025	1.072	1.117
146	0.597	0.684	0.760	0.828	0.891	0.948	1.003	1.054	1.102	1.148

Table-25: Metric two-way volume table of *Dipterocarpus gracilis* (Dhali garjan) in the natural forest

GBH				Volume in	cubic meter	rs for the he	ight in meter	rs		
(cm)	6	8	10	12	14	16	18	20	22	24
40	0.052	0.076	0.101	0.125	0.149	0.173	0.197	0.220	0.244	0.267
42	0.057	0.084	0.110	0.137	0.163	0.189	0.215	0.241	0.267	0.293
44	0.062	0.091	0.120	0.149	0.178	0.206	0.235	0.263	0.291	0.319
46	0.067	0.099	0.131	0.162	0.193	0.224	0.255	0.286	0.316	0.347
48	0.072	0.107	0.141	0.175	0.209	0.243	0.276	0.309	0.342	0.375
50	0.078	0.116	0.153	0.189	0.226	0.262	0.298	0.334	0.370	0.405
52	0.084	0.124	0.164	0.204	0.243	0.282	0.321	0.359	0.398	0.436
54	0.090	0.134	0.176	0.219	0.261	0.302	0.344	0.385	0.427	0.468
56	0.097	0.143	0.189	0.234	0.279	0.324	0.368	0.412	0.457	0.501
58	0.103	0.153	0.201	0.250	0.298	0.346	0.393	0.440	0.488	0.534
60	0.110	0.163	0.215	0.266	0.317	0.368	0.419	0.469	0.519	0.569
62	0.117	0.173	0.228	0.283	0.337	0.391	0.445	0.499	0.552	0.605
64	0.124	0.183	0.242	0.300	0.358	0.415	0.472	0.529	0.586	0.642
66	0.131	0.194	0.256	0.318	0.379	0.440	0.500	0.560	0.620	0.680
68	0.139	0.205	0.271	0.336	0.401	0.465	0.529	0.593	0.656	0.719
70	0.147	0.217	0.286	0.355	0.423	0.491	0.558	0.626	0.692	0.759
72	0.154	0.228	0.302	0.374	0.446	0.517	0.588	0.659	0.730	0.800
74	0.163	0.240	0.317	0.394	0.469	0.544	0.619	0.694	0.768	0.842
76	0.171	0.253	0.334	0.414	0.493	0.572	0.651	0.729	0.807	0.885
78	0.179	0.265	0.350	0.434	0.518	0.601	0.683	0.766	0.847	0.929
80	0.188	0.278	0.367	0.455	0.543	0.630	0.716	0.803	0.888	0.974
82	0.197	0.291	0.384	0.477	0.568	0.659	0.750	0.840	0.930	1.020
84	0.206	0.305	0.402	0.499	0.594	0.690	0.785	0.879	0.973	1.067
86	0.215	0.318	0.420	0.521	0.621	0.721	0.820	0.918	1.017	1.115
88	0.225	0.332	0.438	0.544	0.648	0.752	0.856	0.959	1.061	1.164
90	0.234	0.346	0.457	0.567	0.676	0.785	0.892	1.000	1.107	1.213
92	0.244	0.361	0.476	0.591	0.704	0.817	0.930	1.042	1.153	1.264
94	0.254	0.376	0.496	0.615	0.733	0.851	0.968	1.084	1.200	1.316
96	0.264	0.391	0.516	0.640	0.763	0.885	1.007	1.128	1.248	1.369
98	0.275	0.406	0.536	0.665	0.793	0.920	1.046	1.172	1.297	1.422
100	0.285	0.422	0.557	0.690	0.823	0.955	1.086	1,217	1.347	1.477
102	0.296	0.438	0.578	0.716	0.854	0.991	1.127	1.263	1.398	1.533
104	0.307	0.454	0.599	0.743	0.886	1.027	1.169	1.309	1.450	1.589
106	0.318	0.470	0.620	0.770	0.918	1.065	1.211	1.357	1.502	1.647
108	0.329	0.487	0.643	0.797	0.950	1.102	1.254	1.405	1.555	1.705
110	0.341	0.504	0.665	0.825	0.983	1.141	1.298	1.454	1.609	1.764
112	0.352	0.521	0.688	0.853	1.017	1.180	1.342	1.504	1.665	1.825
114`	0.364	0.538	0.711	0.881	1.051	1.219	1.387	1.554	1.720	1.886
116	0.376	0.556	0.734	0.911	1.086	1.260	1.433	1.605	1.777	1.948
118	0.388	0.574	0.758	0.940	1.121	1.301	1.479	1.657	1.835	2.011
120	0.401	0.593	0.782	0.970	1.157	1.342	1.527	1.710	1.893	2.076
122	0.413	0.611	0.807	1.000	1.193	1.384	1.574	1.764	1.953	2.141
124	0.426	0.630	0.831	1.031	1.230	1.427	1.623	1.818	2.013	2.207
126	0.439	0.649	0.857	1.062	1.267	1.470	1.672	1.873	2.074	2.273
128	0.452	0.668	0.882	1.094	1.305	1.514	1.722	1.929	2.135	2.341
130	0.465	0.688	0.908	1.126	1.343	1.558	1.772	1.986	2.198	2.410
132	0.479	0.708	0.934	1.159	1.382	1.603	1.824	2.043	2.262	2.480
134	0.492	0.728	0.961	1.192	1.421	1.649	1.876	2.101	2.326	2.550
136	0.506	0.748	0.988	1.225	1.461	1.695	1.928	2.160	2.391	2.622
138	0.520	0.769	1.015	1.259	1.501	1.742	1.981	2.220	2.457	2.694
140	0.534	0.790	1.043	1.293	1.542	1.789	2.035	2.280	2.524	2.767
142	0.549	0.811	1.071	1.328	1.583	1.837	2.090	2.341	2.592	2.842
144	0.563	0.833	1.099	1.363	1.625	1.886	2.145	2.403	2.660	2.917
146	0.578	0.854	1.128	1.399	1.668	1.935	2.201	2.466	2.730	2.993

Table-26: Metric two-way volume table of *Duabanga grandiflora* (Banderhola) in the natural forest

GBH				Volume in	cubic meter	rs for the he	ight in meter	rs		
(cm)	6	8	10	12	14	16	18	20	22	24
40	0.047	0.058	0.069	0.079	0.090	0.100	0.111	0.122	0.132	0.143
42	0.057	0.068	0.080	0.091	0.102	0.114	0.125	0.137	0.148	0.159
44	0.066	0.079	0.091	0.103	0.116	0.128	0.140	0.152	0.165	0.177
46	0.077	0.090	0.103	0.116	0.129	0.143	0.156	0.169	0.182	0.195
48	0.087	0.102	0.116	0.130	0.144	0.158	0.172	0.186	0.200	0.214
50	0.099	0.114	0.129	0.144	0.159	0.174	0.189	0.204	0.219	0.234
52	0.110	0.126	0.142	0.158	0.175	0.191	0.207	0.223	0.239	0.255
54	0.122	0.139	0.157	0.174	0.191	0.208	0.225	0.242	0.260	0.277
56	0.135	0.153	0.171	0.189	0.208	0.226	0.244	0.263	0.281	0.299
58	0.148	0.167	0.186	0.206	0.225	0.245	0.264	0.284	0.303	0.322
60	0.161	0.182	0.202	0.223	0.243	0.264	0.285	0.305	0.326	0.346
62	0.175	0.197	0.219	0.240	0.262	0.284	0.306	0.328	0.349	0.371
64	0.189	0.212	0.235	0.258	0.282	0.305	0.328	0.351	0.374	0.397
66	0.204	0.228	0.253	0.277	0.301	0.326	0.350	0.375	0.399	0.423
68	0.219	0.245	0.271	0.296	0.322	0.348	0.374	0.399	0.425	0.451
70	0.235	0.262	0.289	0.316	0.343	0.370	0.397	0.425	0.452	0.479
72	0.251	0.280	0.308	0.337	0.365	0.394	0.422	0.451	0.479	0.508
74	0.268	0.298	0.328	0.358	0.388	0.417	0.447	0.477	0.507	0.537
76	0.285	0.316	0.348	0.379	0.411	0.442	0.474	0.505	0.536	0.568
78	0.302	0.335	0.368	0.401	0.434	0.467	0.500	0.533	0.566	0.599
80	0.320	0.355	0.389	0.424	0.458	0.493	0.528	0.562	0.597	0.632
82	0.338	0.375	0.411	0.447	0.483	0.520	0.556	0.592	0.628	0.664
84	0.357	0.395	0.433	0.471	0.509	0.547	0.585	0.623	0.660	0.698
86	0.377	0.416	0.456	0.495	0.535	0.575	0.614	0.654	0.693	0.733
88	0.396	0.438	0.479	0.520	0.562	0.603	0.644	0.686	0.727	0.768
90	0.417	0.460	0.503	0.546	0.589	0.632	0.675	0.718	0.761	0.805
92	0.437	0.482	0.527	0.572	0.617	0.662	0.707	0.752	0.797	0.842
94	0.458	0.505	0.552	0.599	0.646	0.692	0.739	0.786	0.833	0.880
96	0.480	0.529	0.577	0.626	0.675	0.723	0.772	0.821	0.870	0.918
98	0.502	0.553	0.603	0.654	0.705	0.755	0.806	0.856	0.907	0.958
100	0.525	0.577	0.630	0.682	0.735	0.788	0.840	0.893	0.945	0.998
102	0.548	0.602	0.657	0.711	0.766	0.821	0.875	0.930	0.985	1.039
104	0.571	0.628	0.684	0.741	0.798	0.854	0.911	0.968	1.024	1.081
106	0.595	0.654	0.712	0.771	0.830	0.889	0.948	1.006	1.065	1.124
108	0.619	0.680	0.741	0.802	0.863	0.924	0.985	1.046	1.107	1.167
110	0.644	0.707	0.770	0.833	0.896	0.959	1.023	1.086	1.149	1.212
112	0.669	0.734	0.800	0.865	0.930	0.996	1.061	1.126	1.192	1.257
114`	0.695	0.762	0.830	0.898	0.965	1.033	1.100	1.168	1.236	1.303
116	0.721	0.791	0.861	0.931	1.000	1.070	1.140	1.210	1.280	1.350
118	0.747	0.820	0.892	0.964	1.036	1.109	1.181	1.253	1.325	1.398
120	0.775	0.849	0.924	0.998	1.073	1.148	1.222	1.297	1.371	1.446
122	0.802	0.879	0.956	1.033	1.110	1.187	1.264	1.341	1.418	1.495
124	0.830	0.909	0.989	1.068	1.148	1.227	1.307	1.386	1.466	1.545
126	0.858	0.940	1.022	1.104	1.186	1.268	1.350	1.432	1.514	1.596
128	0.887	0.972	1.056	1.141	1.225	1.310	1.394	1.479	1.564	1.648
130	0.917	1.004	1.091	1.178	1.265	1.352	1.439	1.526	1.613	1.701
132	0.946	1.036	1.126	1.216	1.305	1.395	1.485	1.574	1.664	1.754
134	0.977	1.069	1.161	1.254	1.346	1.439	1.531	1.623	1.716	1.808
136	1.007	1.102	1.197	1.292	1.388	1.483	1.578	1.673	1.768	1.863
138	1.038	1.136	1.234	1.332	1.430	1.528	1.625	1.723	1.821	1.919
140	1.070	1.171	1.271	1.372	1.472	1.573	1.674	1.774	1.875	1.975
142	1.102	1.205	1.309	1.412	1.516	1.619	1.723	1.826	1.929	2.033
144	1.134	1.241	1.347	1.453	1.560	1.666	1.772	1.879	1.985	2.091
146	1.167	1.277	1.386	1.495	1.604	1.713	1.823	1.932	2.041	2.150

Table-27.1: Metric two-way volume table of Bombax ceiba (Simul) in the natural forest

GBH				Volume in	cubic meter	rs for the he	ight in meter	rs		
(cm)	6	8	10	12	14	16	18	20	22	24
40	0.006	0.007	0.008	0.009	0.010	0.011	0.012	0.012	0.013	0.014
42	0.008	0.009	0.011	0.012	0.013	0.014	0.015	0.016	0.016	0.017
44	0.009	0.011	0.013	0.014	0.016	0.017	0.018	0.019	0.020	0.021
46	0.011	0.014	0.016	0.017	0.019	0.020	0.022	0.023	0.024	0.026
48	0.015	0.017	0.020	0.022	0.024	0.026	0.028	0.030	0.031	0.033
50	0.016	0.019	0.022	0.024	0.026	0.028	0.030	0.032	0.034	0.035
52	0.018	0.022	0.025	0.028	0.030	0.033	0.035	0.037	0.039	0.041
54	0.021	0.025	0.028	0.032	0.034	0.037	0.040	0.042	0.044	0.047
56	0.024	0.028	0.032	0.036	0.039	0.042	0.045	0.048	0.050	0.053
58	0.027	0.032	0.036	0.040	0.044	0.047	0.051	0.054	0.057	0.059
60	0.030	0.035	0.040	0.045	0.049	0.053	0.057	0.060	0.063	0.066
62	0.033	0.039	0.045	0.050	0.055	0.059	0.063	0.067	0.070	0.074
64	0.036	0.044	0.050	0.055	0.060	0.065	0.069	0.074	0.078	0.081
66	0.040	0.048	0.055	0.061	0.066	0.071	0.076	0.081	0.085	0.090
68	0.044	0.052	0.060	0.066	0.073	0.078	0.084	0.089	0.093	0.098
70	0.048	0.057	0.065	0.072	0.079	0.085	0.091	0.097	0.102	0.107
72	0.052	0.062	0.071	0.079	0.086	0.093	0.099	0.105	0.111	0.116
74	0.056	0.067	0.077	0.085	0.093	0.100	0.107	0.114	0.120	0.126
76	0.061	0.072	0.083	0.092	0.100	0.108	0.116	0.123	0.129	0.136
78	0.065	0.078	0.089	0.099	0.108	0.116	0.124	0.132	0.139	0.146
80	0.070	0.084	0.095	0.106	0.116	0.125	0.134	0.142	0.149	0.157
82	0.075	0.090	0.102	0.114	0.124	0.134	0.143	0.152	0.160	0.168
84	0.080	0.096	0.109	0.121	0.133	0.143	0.153	0.162	0.171	0.179
86	0.085	0.102	0.116	0.129	0.141	0.152	0.163	0.173	0.182	0.191
88	0.091	0.108	0.124	0.138	0.150	0.162	0.173	0.184	0.193	0.203
90	0.096	0.115	0.131	0.146	0.159	0.172	0.184	0.195	0.205	0.215
92	0.102	0.122	0.139	0.155	0.169	0.182	0.195	0.206	0.218	0.228
94	0.108	0.129	0.147	0.164	0.179	0.193	0.206	0.218	0.230	0.242
96	0.114	0.136	0.156	0.173	0.189	0.204	0.218	0.231	0.243	0.255
98	0.120	0.144	0.164	0.182	0.199	0.215	0.229	0.243	0.256	0.269
100	0.127	0.151	0.173	0.192	0.210	0.226	0.242	0.256	0.270	0.283
102	0.133	0.159	0.182	0.202	0.221	0.238	0.254	0.269	0.284	0.298
104	0.140	0.167	0.191	0.212	0.232	0.250	0.267	0.283	0.298	0.313
106	0.147	0.175	0.200	0.223	0.243	0.262	0.280	0.297	0.313	0.328
108	0.154	0.184	0.210	0.233	0.255	0.275	0.293	0.311	0.328	0.344
110	0.161	0.192	0.220	0.244	0.267	0.288	0.307	0.326	0.343	0.360
112	0.168	0.201	0.230	0.255	0.279	0.301	0.321	0.341	0.359	0.377
114`	0.176	0.210	0.240	0.267	0.291	0.314	0.336	0.356	0.375	0.394
116	0.184	0.219	0.250	0.278	0.304	0.328	0.350	0.371	0.391	0.411
118	0.191	0.229	0.261	0.290	0.317	0.342	0.365	0.387	0.408	0.428
120	0.199	0.238	0.272	0.302	0.330	0.356	0.380	0.403	0.425	0.446
122	0.208	0.248	0.283	0.315	0.344	0.371	0.396	0.420	0.443	0.464
124	0.216	0.258	0.294	0.327	0.357	0.385	0.412	0.437	0.460	0.483
126	0.224	0.268	0.306	0.340	0.371	0.401	0.428	0.454	0.478	0.502
128	0.233	0.278	0.318	0.353	0.386	0.416	0.444	0.471	0.497	0.521
130	0.242	0.289	0.330	0.366	0.400	0.432	0.461	0.489	0.515	0.541
134	0.251	0.299	0.342 0.354	0.380	0.415 0.430	0.448 0.464	0.478 0.495	0.507 0.525	0.534	0.561 0.581
									0.554	
136 138	0.269	0.321 0.332	0.367 0.380	0.408 0.422	0.445 0.461	0.480	0.513 0.531	0.544 0.563	0.574 0.594	0.602
140	0.278	0.332	0.393	0.422	0.461	0.497	0.549	0.582	0.594	0.623
140	0.288	0.344	0.393	0.457	0.477	0.514	0.568	0.582	0.635	0.666
144	0.298	0.367	0.400	0.466	0.493	0.549	0.587	0.622	0.656	0.688
144	0.318	0.367	0.419	0.481	0.526	0.549	0.606	0.642	0.677	0.088
140	0.510	0.377	U. 1 33	0.401	0.540	0.507	0.000	0.042	0.077	0./10

Table-27.2: Metric two-way volume table of Bombax ceiba (Simul) in the Home garden

GBH				Volume in	cubic meter	rs for the he	ight in meter	rs		
(cm)	6	8	10	12	14	16	18	20	22	24
40	0.053	0.058	0.062	0.065	0.068	0.071	0.074	0.076	0.078	0.080
42	0.059	0.064	0.069	0.072	0.076	0.079	0.082	0.084	0.087	0.089
44	0.065	0.071	0.076	0.080	0.084	0.087	0.090	0.093	0.096	0.098
46	0.072	0.078	0.083	0.088	0.092	0.096	0.099	0.102	0.105	0.108
48	0.079	0.086	0.091	0.096	0.101	0.105	0.109	0.112	0.115	0.118
50	0.086	0.093	0.100	0.105	0.110	0.114	0.118	0.122	0.126	0.129
52	0.093	0.101	0.108	0.114	0.120	0.124	0.129	0.133	0.137	0.140
54	0.101	0.110	0.117	0.124	0.130	0.135	0.140	0.144	0.148	0.152
56	0.109	0.119	0.127	0.134	0.140	0.146	0.151	0.156	0.160	0.164
58	0.118	0.128	0.137	0.144	0.151	0.157	0.163	0.168	0.172	0.177
60	0.126	0.138	0.147	0.155	0.162	0.169	0.175	0.180	0.185	0.190
62	0.136	0.148	0.158	0.166	0.174	0.181	0.187	0.193	0.199	0.204
64	0.145	0.158	0.169	0.178	0.186	0.194	0.201	0.207	0.213	0.218
66	0.155	0.169	0.180	0.190	0.199	0.207	0.214	0.221	0.227	0.233
68	0.165	0.180	0.192	0.202	0.212	0.220	0.228	0.235	0.242	0.248
70	0.176	0.191	0.204	0.215	0.225	0.234	0.243	0.250	0.258	0.264
72	0.186	0.203	0.217	0.229	0.239	0.249	0.258	0.266	0.273	0.281
74	0.198	0.215	0.230	0.242	0.254	0.264	0.273	0.282	0.290	0.297
76	0.209	0.228	0.243	0.257	0.269	0.279	0.289	0.298	0.307	0.315
78	0.221	0.241	0.257	0.271	0.284	0.295	0.306	0.315	0.324	0.333
80	0.233	0.254	0.271	0.286	0.300	0.312	0.323	0.333	0.342	0.351
82	0.246	0.268	0.286	0.302	0.316	0.329	0.340	0.351	0.361	0.370
84	0.259	0.282	0.301	0.318	0.332	0.346	0.358	0.369	0.380	0.390
86	0.272	0.296	0.317	0.334	0.350	0.364	0.376	0.388	0.399	0.410
88	0.286	0.311	0.333	0.351	0.367	0.382	0.395	0.408	0.419	0.430
90	0.300	0.327	0.349	0.368	0.385	0.401	0.415	0.428	0.440	0.451
92	0.314	0.342	0.366	0.386	0.404	0.420	0.435	0.448	0.461	0.473
94	0.329	0.358	0.383	0.404	0.423	0.440	0.455	0.469	0.483	0.495
96	0.344	0.375	0.400	0.422	0.442	0.460	0.476	0.491	0.505	0.518
98	0.360	0.392	0.418	0.441	0.462	0.480	0.497	0.513	0.528	0.541
100	0.376	0.409	0.437	0.461	0.482	0.502	0.519	0.536	0.551	0.565
102	0.392	0.427	0.456	0.481	0.503	0.523	0.542	0.559	0.575	0.590
104	0.408	0.445	0.475	0.501	0.524	0.545	0.565	0.582	0.599	0.614
106	0.425	0.463	0.494	0.522	0.546	0.568	0.588	0.606	0.624	0.640
108	0.443	0.482	0.515	0.543	0.568	0.591	0.612	0.631	0.649	0.666
110	0.460	0.501	0.535	0.565	0.591	0.615	0.636	0.656	0.675	0.693
112	0.478	0.521	0.556	0.587	0.614	0.639	0.661	0.682	0.701	0.720
114`	0.497	0.541	0.577	0.609	0.638	0.663	0.687	0.708	0.728	0.747
116	0.515	0.561	0.599	0.632	0.662	0.688	0.713	0.735	0.756	0.776
118	0.535	0.582	0.621	0.656	0.686	0.714	0.739	0.762	0.784	0.804
120	0.554	0.603	0.644	0.680	0.711	0.740	0.766	0.790	0.813	0.834
122	0.574	0.625	0.667	0.704	0.737	0.766	0.793	0.818	0.842	0.864
124	0.594	0.647	0.691	0.729	0.763	0.793	0.821	0.847	0.871	0.894
126	0.615	0.669	0.715	0.754	0.789	0.821	0.850	0.877	0.902	0.925
128	0.636	0.692	0.739	0.780	0.816	0.849	0.879	0.907	0.932	0.957
130	0.657	0.715	0.764	0.806	0.844	0.877	0.908	0.937	0.964	0.989
132	0.679	0.739	0.789	0.833	0.872	0.906	0.938	0.968	0.996	1.021
134	0.701	0.763	0.815	0.860	0.900	0.936	0.969	1.000	1.028	1.055
136	0.724	0.788	0.841	0.888	0.929	0.966	1.000	1.032	1.061	1.089
138	0.746	0.813	0.868	0.916	0.958	0.997	1.032	1.064	1.095	1.123
140	0.770	0.838	0.895	0.944	0.988	1.028	1.064	1.097	1.129	1.158
142	0.793	0.864	0.922	0.973	1.018	1.059	1.097	1.131	1.163	1.194
144	0.817	0.890	0.950	1.003	1.049	1.091	1.130	1.165	1.199	1.230
146	0.842	0.916	0.978	1.032	1.080	1.124	1.163	1.200	1.234	1.266

Table-28: Metric two-way volume table of *Mangifera sylvatica* (Uriam) in the natural forest

GBH				Volume in	cubic meter	rs for the he	ight in meter	rs		
(cm)	6	8	10	12	14	16	18	20	22	24
40	0.093	0.114	0.133	0.151	0.168	0.184	0.200	0.215	0.230	0.244
42	0.103	0.126	0.147	0.167	0.186	0.204	0.221	0.238	0.254	0.270
44	0.114	0.139	0.162	0.184	0.205	0.225	0.244	0.262	0.280	0.298
46	0.125	0.153	0.178	0.202	0.225	0.247	0.268	0.288	0.308	0.327
48	0.137	0.167	0.195	0.221	0.246	0.269	0.292	0.315	0.336	0.357
50	0.149	0.182	0.212	0.240	0.267	0.293	0.318	0.342	0.366	0.388
52	0.161	0.197	0.230	0.261	0.290	0.318	0.345	0.372	0.397	0.422
54	0.175	0.213	0.249	0.282	0.314	0.344	0.374	0.402	0.429	0.456
56	0.188	0.230	0.268	0.304	0.339	0.371	0.403	0.433	0.463	0.492
58	0.203	0.247	0.289	0.327	0.364	0.400	0.433	0.466	0.498	0.529
60	0.217	0.265	0.310	0.351	0.391	0.429	0.465	0.500	0.535	0.568
62	0.233	0.284	0.331	0.376	0.418	0.459	0.498	0.536	0.572	0.608
64	0.249	0.303	0.354	0.402	0.447	0.490	0.532	0.572	0.611	0.649
66	0.265	0.323	0.378	0.428	0.477	0.523	0.567	0.610	0.652	0.692
68	0.282	0.344	0.402	0.456	0.507	0.556	0.604	0.649	0.694	0.737
70	0.300	0.366	0.427	0.484	0.539	0.591	0.641	0.690	0.737	0.782
72	0.318	0.388	0.452	0.513	0.571	0.627	0.680	0.731	0.781	0.830
74	0.336	0.410	0.479	0.543	0.605	0.663	0.720	0.774	0.827	0.878
76	0.355	0.434	0.506	0.574	0.639	0.701	0.761	0.818	0.874	0.928
78	0.375	0.458	0.534	0.606	0.675	0.740	0.803	0.864	0.923	0.980
80	0.395	0.483	0.563	0.639	0.711	0.780	0.846	0.910	0.973	1.033
82	0.416	0.508	0.593	0.673	0.749	0.821	0.891	0.958	1.024	1.087
84	0.438	0.534	0.624	0.707	0.787	0.863	0.937	1.008	1.077	1.143
86	0.460	0.561	0.655	0.743	0.827	0.907	0.984	1.058	1.131	1.201
88	0.482	0.589	0.687	0.779	0.867	0.951	1.032	1.110	1.186	1.260
90	0.505	0.617	0.720	0.817	0.909	0.997	1.081	1.163	1.243	1.320
92	0.529	0.646	0.753	0.855	0.951	1.043	1.132	1.218	1.301	1.382
94	0.553	0.675	0.788	0.894	0.995	1.091	1.184	1.274	1.360	1.445
96	0.578	0.705	0.823	0.934	1.039	1.140	1.237	1.331	1.421	1.510
98	0.603	0.736	0.859	0.975	1.085	1.190	1.291	1.389	1.484	1.576
100	0.629	0.768	0.896	1.017	1.131	1,241	1.347	1.448	1.547	1.643
102	0.656	0.800	0.934	1.060	1.179	1.293	1.403	1.509	1.612	1.713
104	0.683	0.833	0.972	1.103	1.228	1.347	1.461	1.572	1.679	1.783
106	0.710	0.867	1.012	1.148	1.277	1.401	1.520	1.635	1.747	1.855
108	0.738	0.901	1.052	1.193	1.328	1.457	1.580	1.700	1.816	1.929
110	0.767	0.936	1.093	1.240	1.380	1.513	1.642	1.766	1.887	2.004
112	0.796	0.972	1.135	1.287	1.432	1.571	1.705	1.834	1.959	2.081
114`	0.826	1.009	1.177	1.336	1.486	1.630	1.769	1.902	2.032	2.159
116	0.857	1.046	1.221	1.385	1.541	1.690	1.834	1.973	2.107	2.238
118	0.888	1.084	1.265	1.435	1.597	1.751	1.900	2.044	2.184	2.319
120	0.919	1.122	1.310	1.486	1.653	1.814	1.968	2.117	2.261	2.402
122	0.952	1.161	1.356	1.538	1.711	1.877	2.037	2.191	2.340	2.486
124	0.984	1.201	1.402	1.591	1.770	1.942	2.107	2.266	2.421	2.571
126	1.018	1.242	1.450	1.645	1.830	2.007	2.178	2.343	2.503	2.658
128	1.052	1.283	1.498	1.700	1.891	2.074	2.251	2.421	2.586	2.747
130	1.086	1.326	1.547	1.755	1.953	2.142	2.324	2.500	2.671	2.837
132	1.121	1.368	1.597	1.812	2.016	2.211	2.399	2.581	2.757	2.929
134	1.157	1.412	1.648	1.870	2.080	2.282	2.476	2.663	2.845	3.022
136	1.193	1.456	1.699	1.928	2.145	2.353	2.553	2.747	2.934	3.116
138	1.230	1.501	1.752	1.988	2.212	2.426	2.632	2.831	3.024	3.212
140	1.267	1.547	1.805	2.048	2.279	2.500	2.712	2.917	3.116	3.310
142	1.305	1.593	1.859	2.109	2.347	2.574	2.793	3.005	3.210	3.409
144	1.344	1.640	1.914	2.172	2.416	2.650	2.876	3.093	3.304	3.510
146	1.383	1.688	1.970	2.235	2.487	2.728	2.959	3.183	3.401	3.612

Table-29: Metric two-way volume table of *Schima wallichii* (Kanak) in the natural

GBH				Volume in	cubic meter	rs for the he	ight in meter	rs		
(cm)	6	8	10	12	14	16	18	20	22	24
40	0.058	0.078	0.099	0.119	0.139	0.160	0.180	0.200	0.221	0.241
42	0.060	0.081	0.102	0.123	0.144	0.165	0.187	0.208	0.229	0.250
44	0.062	0.084	0.106	0.128	0.150	0.172	0.194	0.216	0.237	0.259
46	0.064	0.087	0.109	0.132	0.155	0.178	0.201	0.224	0.247	0.269
48	0.066	0.089	0.113	0.137	0.161	0.185	0.208	0.232	0.256	0.280
50	0.068	0.093	0.117	0.142	0.167	0.192	0.216	0.241	0.266	0.291
52	0.070	0.096	0.122	0.147	0.173	0.199	0.225	0.251	0.276	0.302
54	0.072	0.099	0.126	0.153	0.180	0.207	0.233	0.260	0.287	0.314
56	0.074	0.102	0.130	0.158	0.186	0.214	0.242	0.270	0.298	0.326
58	0.077	0.106	0.135	0.164	0.193	0.223	0.252	0.281	0.310	0.339
60	0.079	0.110	0.140	0.170	0.201	0.231	0.262	0.292	0.322	0.353
62	0.082	0.113	0.145	0.177	0.208	0.240	0.272	0.304	0.335	0.367
64	0.084	0.117	0.150	0.183	0.216	0.249	0.282	0.315	0.348	0.381
66	0.087	0.121	0.156	0.190	0.225	0.259	0.293	0.328	0.362	0.397
68	0.090	0.126	0.162	0.197	0.233	0.269	0.305	0.341	0.376	0.412
70	0.093	0.130	0.167	0.205	0.242	0.279	0.317	0.354	0.391	0.429
72	0.096	0.135	0.173	0.212	0.251	0.290	0.329	0.368	0.407	0.446
74	0.099	0.139	0.180	0.220	0.261	0.301	0.342	0.382	0.423	0.463
76	0.102	0.144	0.186	0.228	0.271	0.313	0.355	0.397	0.439	0.481
78	0.105	0.149	0.193	0.237	0.281	0.325	0.368	0.412	0.456	0.500
80	0.109	0.154	0.200	0.246	0.291	0.337	0.382	0.428	0.474	0.519
82	0.112	0.160	0.207	0.255	0.302	0.349	0.397	0.444	0.492	0.539
84	0.116	0.165	0.214	0.264	0.313	0.363	0.412	0.461	0.511	0.560
86	0.119	0.171	0.222	0.273	0.325	0.376	0.427	0.479	0.530	0.582
88	0.123	0.176	0.230	0.283	0.337	0.390	0.443	0.497	0.550	0.604
90	0.127	0.182	0.238	0.293	0.349	0.404	0.460	0.515	0.571	0.626
92	0.131	0.189	0.246	0.304	0.362	0.419	0.477	0.534	0.592	0.650
94	0.135	0.195	0.255	0.315	0.375	0.434	0.494	0.554	0.614	0.674
96	0.139	0.201	0.264	0.326	0.388	0.450	0.512	0.574	0.637	0.699
98	0.143	0.208	0.273	0.337	0.402	0.466	0.531	0.595	0.660	0.724
100	0.148	0.215	0.282	0.349	0.416	0.483	0.550	0.617	0.684	0.751
102	0.152	0.222	0.291	0.361	0.430	0.500	0.569	0.639	0.708	0.778
104	0.157	0.229	0.301	0.373	0.445	0.517	0.589	0.661	0.733	0.805
106	0.162	0.236	0.311	0.386	0.460	0.535	0.610	0.685	0.759	0.834
108	0.167	0.244	0.321	0.399	0.476	0.554	0.631	0.708	0.786	0.863
110	0.172	0.252	0.332	0.412	0.492	0.572	0.653	0.733	0.813	0.893
112	0.177	0.260	0.343	0.426	0.509	0.592	0.675	0.758	0.841	0.924
114`	0.182	0.268	0.354	0.440	0.526	0.612	0.697	0.783	0.869	0.955
116	0.187	0.276	0.365	0.454	0.543	0.632	0.721	0.810	0.899	0.988
118	0.192	0.284	0.376	0.468	0.561	0.653	0.745	0.837	0.929	1.021
120	0.198	0.293	0.388	0.483	0.579	0.674	0.769	0.864	0.959	1.054
122	0.204	0.302	0.400	0.499	0.597	0.695	0.794	0.892	0.990	1.089
124	0.209	0.311	0.413	0.514	0.616	0.718	0.819	0.921	1.023	1.124
126	0.215	0.320	0.425	0.530	0.635	0.740	0.845	0.950	1.055	1.160
128	0.221	0.330	0.438	0.546	0.655	0.763	0.872	0.980	1.089	1.197
130	0.227	0.339	0.451	0.563	0.675	0.787	0.899	1.011	1.123	1.235
132	0.233	0.349	0.464	0.580	0.696	0.811	0.927	1.042	1.158	1.273
134	0.240	0.359	0.478	0.597	0.716	0.836	0.955	1.074	1.193	1.312
136	0.246	0.369	0.492	0.615	0.738	0.861	0.984	1.106	1.229	1.352
138	0.253	0.379	0.506	0.633	0.759	0.886	1.013	1.140	1.266	1.393
140	0.259	0.390	0.521	0.651	0.782	0.912	1.043	1.173	1.304	1.434
142	0.266	0.401	0.535	0.670	0.804	0.939	1.073	1.208	1.342	1.477
144	0.273	0.412	0.550	0.689	0.827	0.966	1.104	1.243	1.381	1.520
146	0.280	0.423	0.565	0.708	0.850	0.993	1.136	1.278	1.421	1.563

Table-30: Metric two-way volume table of Shorea robusta (Sal) in the natural forest

GBH				Volume in	cubic meter	rs for the he	ight in meter	rs		
(cm)	6	8	10	12	14	16	18	20	22	24
40	0.044	0.054	0.064	0.073	0.082	0.090	0.099	0.107	0.114	0.122
42	0.049	0.060	0.071	0.081	0.091	0.100	0.109	0.118	0.126	0.135
44	0.053	0.066	0.078	0.089	0.099	0.110	0.120	0.129	0.139	0.148
46	0.058	0.072	0.085	0.097	0.109	0.120	0.131	0.142	0.152	0.162
48	0.064	0.079	0.093	0.106	0.119	0.131	0.143	0.154	0.166	0.177
50	0.069	0.085	0.101	0.115	0.129	0.142	0.155	0.168	0.180	0.192
52	0.075	0.093	0.109	0.125	0.140	0.154	0.168	0.182	0.195	0.208
54	0.081	0.100	0.118	0.135	0.151	0.166	0.182	0.196	0.210	0.224
56	0.087	0.108	0.127	0.145	0.162	0.179	0.195	0.211	0.227	0.242
58	0.093	0.116	0.136	0.156	0.174	0.192	0.210	0.227	0.243	0.259
60	0.100	0.124	0.146	0.167	0.187	0.206	0.225	0.243	0.261	0.278
62	0.107	0.132	0.156	0.178	0.200	0.220	0.240	0.260	0.279	0.297
64	0.114	0.141	0.166	0.190	0.213	0.235	0.256	0.277	0.297	0.317
66	0.122	0.150	0.177	0.203	0.227	0.250	0.273	0.295	0.316	0.337
68	0.129	0.160	0.188	0.215	0.241	0.266	0.290	0.313	0.336	0.358
70	0.137	0.169	0.200	0.228	0.256	0.282	0.308	0.332	0.357	0.380
72	0.145	0.179	0.211	0.242	0.271	0.299	0.326	0.352	0.378	0.403
74	0.153	0.190	0.223	0.256	0.286	0.316	0.344	0.372	0.399	0.426
76	0.162	0.200	0.236	0.270	0.302	0.333	0.364	0.393	0.422	0.449
78	0.171	0.211	0.249	0.284	0.319	0.352	0.383	0.414	0.444	0.474
80	0.180	0.222	0.262	0.299	0.335	0.370	0.404	0.436	0.468	0.499
82	0.189	0.234	0.275	0.315	0.353	0.389	0.424	0.459	0.492	0.524
84	0.199	0.245	0.289	0.331	0.370	0.409	0.446	0.482	0.517	0.551
86	0.208	0.257	0.303	0.347	0.389	0.429	0.468	0.505	0.542	0.578
88	0.218	0.270	0.318	0.363	0.407	0.449	0.490	0.529	0.568	0.605
90	0.228	0.282	0.333	0.380	0.426	0.470	0.513	0.554	0.594	0.634
92	0.239	0.295	0.348	0.398	0.446	0.492	0.536	0.579	0.622	0.663
94	0.250	0.308	0.363	0.416	0.466	0.514	0.560	0.605	0.649	0.692
96	0.260	0.322	0.379	0.434	0.486	0.536	0.585	0.632	0.678	0.723
98	0.272	0.336	0.396	0.452	0.507	0.559	0.610	0.659	0.707	0.754
100	0.283	0.350	0.412	0.471	0.528	0.583	0.635	0.687	0.736	0.785
102	0.295	0.364	0.429	0.491	0.550	0.606	0.661	0.715	0.767	0.817
104	0.306	0.379	0.446	0.510	0.572	0.631	0.688	0.743	0.798	0.850
106	0.319	0.394	0.464	0.531	0.594	0.656	0.715	0.773	0.829	0.884
108	0.331	0.409	0.482	0.551	0.617	0.681	0.743	0.803	0.861	0.918
110	0.343	0.424	0.500	0.572	0.641	0.707	0.771	0.833	0.894	0.953
112	0.356	0.440	0.519	0.593	0.665	0.733	0.800	0.864	0.927	0.989
114`	0.369	0.456	0.538	0.615	0.689	0.760	0.829	0.896	0.961	1.025
116	0.383	0.473	0.557	0.637	0.714	0.788	0.859	0.928	0.996	1.062
118	0.396	0.490	0.577	0.660	0.739	0.816	0.889	0.961	1.031	1.099
120	0.410	0.507	0.597	0.683	0.765	0.844	0.920	0.995	1.067	1.137
122	0.424	0.524	0.617	0.706	0.791	0.873	0.952	1.029	1.103	1.176
124	0.438	0.542	0.638	0.730	0.818	0.902	0.984	1.063	1.140	1.216
126	0.453	0.559	0.659	0.754	0.845	0.932	1.016	1.098	1.178	1.256
128	0.467	0.578	0.681	0.779	0.872	0.962	1.049	1.134	1.216	1.297
130	0.482	0.596	0.703	0.804	0.900	0.993	1.083	1.170	1.255	1.338
132	0.498	0.615	0.725	0.829	0.928	1.024	1.117	1.207	1.295	1.381
134	0.513	0.634	0.747	0.855	0.957	1.056	1.152	1.245	1.335	1.423
136	0.529	0.653	0.770	0.881	0.987	1.088	1.187	1.283	1.376	1.467
138	0.545	0.673	0.793	0.907	1.016	1.121	1.223	1.321	1.417	1.511
140	0.561	0.693	0.817	0.934	1.046	1.155	1.259	1.361	1.459	1.556
142	0.577	0.713	0.841	0.962	1.077	1.188	1.296	1.400	1.502	1.602
144	0.594	0.734	0.865	0.989	1.108	1.223	1.333	1.441	1.546	1.648
146	0.611	0.755	0.890	1.017	1.140	1.257	1.371	1.482	1.589	1.695

Table-31: Metric two-way volume table of *Swintonia floribunda* (Civit) in the natural forest

GBH				Volume in	cubic meter	rs for the he	ight in meter	rs		
(cm)	6	8	10	12	14	16	18	20	22	24
40	0.063	0.080	0.096	0.112	0.127	0.142	0.157	0.171	0.185	0.199
42	0.069	0.088	0.105	0.123	0.139	0.156	0.171	0.187	0.202	0.218
44	0.075	0.095	0.115	0.133	0.152	0.169	0.187	0.204	0.220	0.237
46	0.081	0.103	0.124	0.145	0.164	0.183	0.202	0.221	0.239	0.257
48	0.088	0.112	0.134	0.156	0.177	0.198	0.219	0.238	0.258	0.277
50	0.095	0.120	0.145	0.168	0.191	0.213	0.235	0.257	0.278	0.299
52	0.102	0.129	0.155	0.181	0.205	0.229	0.253	0.276	0.298	0.321
54	0.109	0.138	0.166	0.193	0.220	0.245	0.271	0.295	0.320	0.343
56	0.116	0.148	0.178	0.207	0.235	0.262	0.289	0.315	0.341	0.367
58	0.124	0.157	0.189	0.220	0.250	0.279	0.308	0.336	0.364	0.391
60	0.132	0.167	0.201	0.234	0.266	0.297	0.328	0.357	0.387	0.416
62	0.140	0.178	0.214	0.249	0.282	0.315	0.348	0.379	0.411	0.441
64	0.148	0.188	0.226	0.263	0.299	0.334	0.368	0.402	0.435	0.467
66	0.157	0.199	0.239	0.278	0.316	0.353	0.389	0.425	0.460	0.494
68	0.166	0.210	0.253	0.294	0.334	0.373	0.411	0.449	0.486	0.522
70	0.175	0.221	0.266	0.310	0.352	0.393	0.433	0.473	0.512	0.550
72	0.184	0.233	0.280	0.326	0.370	0.414	0.456	0.498	0.539	0.579
74	0.193	0.245	0.295	0.343	0.389	0.435	0.479	0.523	0.566	0.608
76	0.203	0.257	0.309	0.360	0.409	0.456	0.503	0.549	0.594	0.638
78	0.212	0.270	0.324	0.377	0.428	0.478	0.527	0.576	0.623	0.669
80	0.222	0.282	0.339	0.395	0.448	0.501	0.552	0.603	0.652	0.701
82	0.233	0.295	0.355	0.413	0.469	0.524	0.578	0.630	0.682	0.733
84	0.243	0.308	0.371	0.431	0.490	0.547	0.603	0.658	0.712	0.766
86	0.254	0.322	0.387	0.450	0.511	0.571	0.630	0.687	0.744	0.799
88	0.264	0.335	0.404	0.469	0.533	0.596	0.657	0.716	0.775	0.833
90	0.275	0.349	0.420	0.489	0.555	0.620	0.684	0.746	0.807	0.868
92	0.287	0.364	0.437	0.509	0.578	0.646	0.712	0.777	0.840	0.903
94	0.298	0.378	0.455	0.529	0.601	0.671	0.740	0.807	0.874	0.939
96	0.310	0.393	0.473	0.550	0.624	0.697	0.769	0.839	0.908	0.976
98	0.321	0.408	0.491	0.571	0.648	0.724	0.798	0.871	0.942	1.013
100	0.333	0.423	0.509	0.592	0.672	0.751	0.828	0.903	0.978	1.051
102	0.346	0.439	0.528	0.613	0.697	0.778	0.858	0.936	1.013	1.089
104	0.358	0.454	0.546	0.635	0.722	0.806	0.889	0.970	1.050	1.128
106	0.371	0.470	0.566	0.658	0.747	0.835	0.920	1.004	1.087	1.168
108	0.383	0.486	0.585	0.681	0.773	0.864	0.952	1.039	1.124	1.208
110	0.396	0.503	0.605	0.704	0.799	0.893	0.984	1.074	1.162	1.249
112	0.410	0.520	0.625	0.727	0.826	0.923	1.017	1.110	1.201	1.291
114`	0.423	0.537	0.646	0.751	0.853	0.953	1.050	1.146	1.240	1.333
116	0.436	0.554	0.666	0.775	0.880	0.983	1.084	1.183	1.280	1.375
118	0.450	0.571	0.687	0.799	0.908	1.014	1.118	1.220	1.320	1.419
120	0.464	0.589	0.709	0.824	0.936	1.046	1.153	1.258	1.361	1.463
122	0.478	0.607	0.730	0.849	0.965	1.077	1.188	1.296	1.402	1.507
124	0.493	0.625	0.752	0.874	0.994	1.110	1.223	1.335	1.444	1.552
126	0.507	0.644	0.774	0.900	1.023	1.142	1.259	1.374	1.487	1.598
128	0.522	0.662	0.797	0.926	1.052	1.175	1.296	1.414	1.530	1.644
130	0.537	0.681	0.819	0.953	1.082	1.209	1.333	1.454	1.574	1.691
132	0.552	0.700	0.842	0.980	1.113	1.243	1.370	1.495	1.618	1.739
134	0.567	0.720	0.866	1.007	1.144	1.277	1.408	1.537	1.663	1.787
136	0.583	0.739	0.889	1.034	1.175	1.312	1.447	1.578	1.708	1.836
138	0.598	0.759	0.913	1.062	1.206	1.347	1.485	1.621	1.754	1.885
140	0.614	0.779	0.937	1.090	1.238	1.383	1.525	1.664	1.800	1.935
142	0.630	0.799	0.962	1.118	1.271	1.419	1.565	1.707	1.847	1.985
144	0.646	0.820	0.986	1.147	1.303	1.456	1.605	1.751	1.895	2.036
146	0.663	0.841	1.011	1.176	1.336	1.493	1.645	1.795	1.943	2.088

Table-32: Metric two-way volume table of *Terminalia bellerica* (Bahera) in the natural forest

GBH				Volume in	cubic meter	rs for the he	ight in meter	rs		
(cm)	6	8	10	12	14	16	18	20	22	24
40	0.069	0.083	0.096	0.107	0.118	0.128	0.138	0.147	0.156	0.165
42	0.076	0.091	0.104	0.117	0.129	0.140	0.150	0.161	0.171	0.180
44	0.082	0.098	0.113	0.127	0.140	0.152	0.164	0.175	0.185	0.196
46	0.089	0.107	0.123	0.137	0.151	0.164	0.177	0.189	0.201	0.212
48	0.096	0.115	0.132	0.148	0.163	0.177	0.191	0.204	0.216	0.229
50	0.103	0.124	0.142	0.159	0.175	0.191	0.205	0.219	0.233	0.246
52	0.111	0.133	0.152	0.171	0.188	0.205	0.220	0.235	0.250	0.264
54	0.118	0.142	0.163	0.183	0.201	0.219	0.236	0.252	0.267	0.282
56	0.126	0.151	0.174	0.195	0.215	0.233	0.251	0.268	0.285	0.301
58	0.135	0.161	0.185	0.208	0.229	0.249	0.268	0.286	0.303	0.320
60	0.143	0.171	0.197	0.221	0.243	0.264	0.284	0.304	0.322	0.340
62	0.152	0.181	0.209	0.234	0.257	0.280	0.301	0.322	0.342	0.361
64	0.160	0.192	0.221	0.247	0.272	0.296	0.319	0.341	0.362	0.382
66	0.169	0.203	0.233	0.261	0.288	0.313	0.337	0.360	0.382	0.403
68	0.179	0.214	0.246	0.276	0.304	0.330	0.355	0.379	0.403	0.425
70	0.188	0.225	0.259	0.290	0.320	0.348	0.374	0.400	0.424	0.448
72	0.198	0.237	0.272	0.305	0.336	0.365	0.393	0.420	0.446	0.471
74	0.208	0.249	0.286	0.321	0.353	0.384	0.413	0.441	0.468	0.495
76	0.218	0.261	0.300	0.336	0.370	0.402	0.433	0.463	0.491	0.519
78	0.228	0.273	0.314	0.352	0.388	0.421	0.454	0.485	0.514	0.543
80	0.239	0.286	0.329	0.368	0.406	0.441	0.475	0.507	0.538	0.568
82	0.249	0.299	0.343	0.385	0.424	0.461	0.496	0.530	0.562	0.594
84	0.260	0.312	0.358	0.402	0.442	0.481	0.518	0.553	0.587	0.620
86	0.272	0.325	0.374	0.419	0.461	0.502	0.540	0.577	0.612	0.646
88	0.283	0.339	0.389	0.436	0.481	0.523	0.563	0.601	0.638	0.673
90	0.294	0.353	0.405	0.454	0.500	0.544	0.586	0.625	0.664	0.701
92	0.306	0.367	0.422	0.472	0.520	0.566	0.609	0.650	0.690	0.729
94	0.318	0.381	0.438	0.491	0.541	0.588	0.633	0.676	0.717	0.758
96	0.330	0.396	0.455	0.510	0.561	0.610	0.657	0.702	0.745	0.786
98	0.343	0.410	0.472	0.529	0.582	0.633	0.682	0.728	0.773	0.816
100	0.355	0.425	0.489	0.548	0.604	0.656	0.707	0.755	0.801	0.846
102	0.368	0.441	0.507	0.568	0.625	0.680	0.732	0.782	0.830	0.876
104	0.381	0.456	0.525	0.588	0.647	0.704	0.758	0.809	0.859	0.907
106	0.394	0.472	0.543	0.608	0.670	0.728	0.784	0.837	0.889	0.938
108	0.408	0.488	0.561	0.629	0.692	0.753	0.810	0.866	0.919	0.970
110	0.421	0.504	0.580	0.650	0.716	0.778	0.837	0.894	0.949	1.002
112	0.435	0.521	0.599	0.671	0.739	0.803	0.865	0.924	0.980	1.035
114`	0.449	0.537	0.618	0.692	0.763	0.829	0.892	0.953	1.012	1.068
116	0.463	0.554	0.637	0.714	0.787	0.855	0.920	0.983	1.044	1.102
118	0.477	0.571	0.657	0.736	0.811	0.882	0.949	1.014	1.076	1.136
120	0.492	0.589	0.677	0.759	0.836	0.908	0.978	1.044	1.109	1.171
122	0.506	0.606	0.697	0.781	0.861	0.936	1.007	1.076	1.142	1.206
124	0.521	0.624	0.718	0.804	0.886	0.963	1.037	1.107	1.175	1.241
126	0.536	0.642	0.738	0.828	0.911	0.991	1.067	1.139	1.209	1.277
128	0.552	0.660	0.759	0.851	0.937	1.019	1.097	1.172	1.244	1.313
130	0.567	0.679	0.781	0.875	0.964	1.048	1.128	1.205	1.279	1.350
132	0.583	0.698	0.802	0.899	0.990	1.077	1.159	1.238	1.314	1.387
134	0.599	0.717	0.824	0.924	1.017	1.106	1.190	1.272	1.350	1.425
136	0.615	0.736	0.846	0.948	1.044	1.135	1.222	1.306	1.386	1.463
138	0.631	0.755	0.868	0.973	1.072	1.165	1.254	1.340	1.422	1.502
140		0.775	0.891	0.999	1.100	1.196	1.287	1.375	1.459	1.541
142	0.664	0.795 0.815	0.914	1.024	1.128	1.226	1.320	1.410	1.497	1.580
144	0.681		0.937	1.050	1.156	1.257	1.353	1.446	1.534	1.620
146	0.698	0.835	0.960	1.076	1.185	1.289	1.387	1.482	1.573	1.661

Table-33: Metric two-way volume table of *Tetrameles nudiflora* (Chundul) in the natural forest

GBH				Volume in	cubic meter	rs for the he	ight in meter	rs		
(cm)	6	8	10	12	14	16	18	20	22	24
40	0.078	0.095	0.111	0.126	0.140	0.154	0.167	0.179	0.191	0.203
42	0.086	0.104	0.122	0.138	0.153	0.168	0.182	0.196	0.209	0.222
44	0.093	0.114	0.133	0.150	0.167	0.183	0.199	0.214	0.228	0.242
46	0.101	0.124	0.144	0.163	0.182	0.199	0.216	0.232	0.248	0.263
48	0.110	0.134	0.156	0.177	0.196	0.215	0.234	0.251	0.268	0.285
50	0.118	0.144	0.168	0.191	0.212	0.232	0.252	0.271	0.289	0.307
52	0.127	0.155	0.181	0.205	0.228	0.250	0.271	0.291	0.311	0.330
54	0.136	0.166	0.194	0.220	0.244	0.268	0.291	0.312	0.334	0.354
56	0.146	0.178	0.207	0.235	0.261	0.287	0.311	0.334	0.357	0.379
58	0.156	0.190	0.221	0.251	0.279	0.306	0.332	0.357	0.381	0.404
60	0.166	0.202	0.236	0.267	0.297	0.326	0.353	0.380	0.405	0.430
62	0.176	0.215	0.250	0.284	0.316	0.346	0.375	0.403	0.431	0.457
64	0.187	0.228	0.266	0.301	0.335	0.367	0.398	0.428	0.457	0.485
66	0.198	0.241	0.281	0.319	0.354	0.389	0.421	0.453	0.484	0.514
68	0.209	0.255	0.297	0.337	0.375	0.411	0.445	0.479	0.511	0.543
70	0.221	0.269	0.314	0.355	0.395	0.433	0.470	0.505	0.539	0.573
72	0.232	0.283	0.330	0.375	0.416	0.456	0.495	0.532	0.568	0.603
74	0.245	0.298	0.348	0.394	0.438	0.480	0.521	0.560	0.598	0.635
76	0.257	0.313	0.365	0.414	0.460	0.505	0.547	0.588	0.628	0.667
78	0.270	0.329	0.383	0.434	0.483	0.529	0.574	0.617	0.659	0.700
80	0.283	0.344	0.402	0.455	0.506	0.555	0.602	0.647	0.691	0.733
82	0.296	0.361	0.420	0.477	0.530	0.581	0.630	0.677	0.723	0.768
84	0.309	0.377	0.440	0.498	0.554	0.607	0.659	0.708	0.756	0.803
86	0.323	0.394	0.459	0.520	0.579	0.634	0.688	0.740	0.790	0.838
88	0.337	0.411	0.479	0.543	0.604	0.662	0.718	0.772	0.824	0.875
90	0.351	0.428	0.499	0.566	0.630	0.690	0.748	0.805	0.859	0.912
92	0.366	0.446	0.520	0.590	0.656	0.719	0.779	0.838	0.895	0.950
94	0.381	0.464	0.541	0.614	0.682	0.748	0.811	0.872	0.931	0.989
96	0.396	0.483	0.563	0.638	0.709	0.778	0.843	0.907	0.968	1.028
98	0.412	0.502	0.585	0.663	0.737	0.808	0.876	0.942	1.006	1.068
100	0.427	0.521	0.607	0.688	0.765	0.839	0.910	0.978	1.044	1.109
102	0.443	0.540	0.630	0.714	0.794	0.870	0.944	1.015	1.083	1.150
104	0.459	0.560	0.653	0.740	0.823	0.902	0.978	1.052	1.123	1.192
106	0.476	0.580	0.676	0.767	0.852	0.934	1.013	1.089	1.163	1.235
108	0.493	0.600	0.700	0.794	0.882	0.967	1.049	1.128	1.204	1.279
110	0.510	0.621	0.724	0.821	0.913	1.001	1.085	1.167	1.246	1.323
112	0.527	0.642	0.749	0.849	0.944	1.035	1.122	1.206	1.288	1.368
114`	0.545	0.664	0.774	0.877	0.975	1.069	1.159	1.247	1.331	1.413
116	0.562	0.685	0.799	0.906	1.007	1.104	1.197	1.287	1.375	1.459
118	0.580	0.708	0.825	0.935	1.040	1.140	1.236	1.329	1.419	1.506
120	0.599	0.730	0.851	0.965	1.073	1.176	1.275	1.371	1.464	1.554
122	0.617	0.753	0.877	0.995	1.106	1.212	1.315	1.413	1.509	1.602
124	0.636	0.776	0.904	1.025	1.140	1.249	1.355	1.457	1.555	1.651
126	0.655	0.799	0.931	1.056	1.174	1.287	1.396	1.501	1.602	1.701
128	0.675	0.823	0.959	1.087	1.209	1.325	1.437	1.545	1.650	1.751
130	0.695	0.847	0.987	1.119	1.244	1.364	1.479	1.590	1.698	1.802
132	0.714	0.871	1.015	1.151	1.280	1.403	1.521	1.636	1.746	1.854
134	0.735	0.895	1.044	1.183	1.316	1.442	1.564	1.682	1.796	1.906
136	0.755	0.920	1.073	1.216	1.352	1.483	1.608	1.729	1.846	1.959
138	0.776	0.946	1.102	1.250	1.390	1.523	1.652	1.776	1.896	2.013
140	0.797	0.971	1.132	1.283	1.427	1.564	1.696	1.824	1.947	2.068
142	0.818	0.997	1.162	1.318	1.465	1.606	1.742	1.872	1.999	2.123
144	0.839	1.023	1.193	1.352	1.503	1.648	1.787	1.922	2.052	2.178
146	0.861	1.050	1.224	1.387	1.542	1.691	1.833	1.971	2.105	2.235

Table-34: Metric two-way volume table of *Sonneratia apetala* (Keora) in the coastal plantation

GBH				Volume in	cubic meter	rs for the he	ight in meter	rs		
(cm)	6	8	10	12	14	16	18	20	22	24
30	0.004	0.009	0.014	0.019	0.024	0.029	0.034	0.039	0.044	0.050
32	0.006	0.012	0.017	0.023	0.029	0.035	0.041	0.046	0.052	0.058
34	0.008	0.015	0.021	0.028	0.034	0.041	0.047	0.054	0.060	0.067
36	0.010	0.018	0.025	0.032	0.040	0.047	0.054	0.062	0.069	0.076
38	0.013	0.021	0.029	0.037	0.046	0.054	0.062	0.070	0.078	0.087
40	0.016	0.025	0.034	0.043	0.052	0.061	0.070	0.079	0.088	0.097
42	0.018	0.028	0.038	0.048	0.058	0.068	0.078	0.088	0.098	0.108
44	0.021	0.032	0.043	0.054	0.065	0.076	0.087	0.098	0.109	0.120
46	0.024	0.036	0.048	0.060	0.072	0.084	0.096	0.108	0.120	0.132
48	0.027	0.041	0.054	0.067	0.080	0.093	0.106	0.119	0.132	0.145
50	0.031	0.045	0.059	0.073	0.088	0.102	0.116	0.130	0.144	0.158
52	0.034	0.050	0.065	0.080	0.096	0.111	0.126	0.142	0.157	0.172
54	0.038	0.054	0.071	0.088	0.104	0.121	0.137	0.154	0.170	0.187
56	0.042	0.059	0.077	0.095	0.113	0.131	0.148	0.166	0.184	0.202
58	0.046	0.065	0.084	0.103	0.122	0.141	0.160	0.179	0.198	0.217
60	0.050	0.070	0.090	0.111	0.131	0.152	0.172	0.192	0.213	0.233
62	0.054	0.075	0.097	0.119	0.141	0.163	0.184	0.206	0.228	0.250
64	0.058	0.081	0.104	0.128	0.151	0.174	0.197	0.221	0.244	0.267
66	0.062	0.087	0.112	0.137	0.161	0.186	0.211	0.235	0.260	0.285
68	0.067	0.093	0.119	0.146	0.172	0.198	0.224	0.251	0.277	0.303
70	0.072	0.099	0.127	0.155	0.183	0.211	0.238	0.266	0.294	0.322
72	0.076	0.106	0.135	0.165	0.194	0.223	0.253	0.282	0.312	0.341
74	0.081	0.113	0.144	0.175	0.206	0.237	0.268	0.299	0.330	0.361
76	0.087	0.119	0.152	0.185	0.218	0.250	0.283	0.316	0.349	0.381
78	0.092	0.126	0.161	0.195	0.230	0.264	0.299	0.333	0.368	0.402
80	0.097	0.133	0.170	0.206	0.242	0.279	0.315	0.351	0.388	0.424
82	0.103	0.141	0.179	0.217	0.255	0.293	0.331	0.370	0.408	0.446
84	0.108	0.148	0.188	0.228	0.268	0.308	0.348	0.388	0.428	0.468
86	0.114	0.156	0.198	0.240	0.282	0.324	0.366	0.408	0.450	0.492
88	0.120	0.164	0.208	0.252	0.296	0.340	0.384	0.427	0.471	0.515
90	0.126	0.172	0.218	0.264	0.310	0.356	0.402	0.448	0.494	0.539
92	0.132	0.180	0.228	0.276	0.324	0.372	0.420	0.468	0.516	0.564
94	0.139	0.189	0.239	0.289	0.339	0.389	0.439	0.489	0.539	0.590
96	0.145	0.197	0.250	0.302	0.354	0.406	0.459	0.511	0.563	0.615
98	0.152	0.206	0.261	0.315	0.370	0.424	0.478	0.533	0.587	0.642
100	0.158	0.215	0.272	0.329	0.385	0.442	0.499	0.555	0.612	0.669
102	0.165	0.224	0.283	0.342	0.401	0.460	0.519	0.578	0.637	0.696
104	0.172	0.234	0.295	0.356	0.418	0.479	0.540	0.602	0.663	0.724
106	0.179	0.243	0.307	0.371	0.434	0.498	0.562	0.625	0.689	0.753
108	0.187	0.253	0.319	0.385	0.451	0.517	0.584	0.650	0.716	0.782
110	0.194	0.263	0.331	0.400	0.469	0.537	0.606	0.674	0.743	0.812
112	0.202	0.273	0.344	0.415	0.486	0.557	0.628	0.700	0.771	0.842
114	0.209	0.283	0.357	0.430	0.504	0.578	0.652	0.725	0.799	0.873
116	0.217	0.294	0.370	0.446	0.522	0.599	0.675	0.751	0.828	0.904
118	0.225	0.304	0.383	0.462	0.541	0.620	0.699	0.778	0.857	0.936
120	0.233	0.315	0.397	0.478	0.560	0.642	0.723	0.805	0.887	0.968
122	0.242	0.326	0.410	0.495	0.579	0.664	0.748	0.832	0.917	1.001
124	0.250	0.337	0.424	0.511	0.599	0.686	0.773	0.860	0.947	1.035
126	0.258	0.348	0.438	0.528	0.618	0.709	0.799	0.889	0.979	1.069
128	0.267	0.360	0.453	0.546	0.639	0.732	0.824	0.917	1.010	1.103
130	0.276	0.372	0.467	0.563	0.659	0.755	0.851	0.947	1.042	1.138
132	0.285	0.384	0.482	0.581	0.680	0.779	0.878	0.976	1.075	1.174
134	0.294	0.396	0.497	0.599	0.701	0.803	0.905	1.007	1.108	1.210
136	0.303	0.408	0.513	0.618	0.722	0.827	0.932	1.037	1.142	1.247

Table-35: Metric two-way volume table of Avicennia officinalis (Baen) in the coastal plantation

GBH				Volume in	cubic meter	rs for the he	ight in meter	rs		
(cm)	6	8	10	12	14	16	18	20	22	24
30	0.006	0.010	0.015	0.020	0.025	0.030	0.034	0.039	0.044	0.049
32	0.008	0.013	0.018	0.024	0.029	0.035	0.040	0.046	0.051	0.057
34	0.010	0.016	0.022	0.028	0.034	0.041	0.047	0.053	0.059	0.065
36	0.012	0.019	0.026	0.033	0.040	0.047	0.053	0.060	0.067	0.074
38	0.014	0.022	0.030	0.037	0.045	0.053	0.061	0.068	0.076	0.084
40	0.017	0.025	0.034	0.042	0.051	0.060	0.068	0.077	0.085	0.094
42	0.019	0.029	0.038	0.048	0.057	0.067	0.076	0.085	0.095	0.104
44	0.022	0.032	0.043	0.053	0.064	0.074	0.084	0.095	0.105	0.115
46	0.025	0.036	0.048	0.059	0.070	0.082	0.093	0.104	0.116	0.127
48	0.028	0.040	0.053	0.065	0.077	0.090	0.102	0.114	0.127	0.139
50	0.031	0.045	0.058	0.071	0.085	0.098	0.111	0.125	0.138	0.151
52	0.034	0.049	0.063	0.078	0.092	0.107	0.121	0.136	0.150	0.165
54	0.038	0.053	0.069	0.085	0.100	0.116	0.131	0.147	0.163	0.178
56	0.041	0.058	0.075	0.092	0.108	0.125	0.142	0.159	0.175	0.192
58	0.045	0.063	0.081	0.099	0.117	0.135	0.153	0.171	0.189	0.207
60	0.049	0.068	0.087	0.107	0.126	0.145	0.164	0.184	0.203	0.222
62	0.053	0.073	0.094	0.114	0.135	0.155	0.176	0.197	0.217	0.238
64	0.057	0.079	0.101	0.122	0.144	0.166	0.188	0.210	0.232	0.254
66	0.061	0.084	0.108	0.131	0.154	0.177	0.201	0.224	0.247	0.271
68	0.065	0.090	0.115	0.139	0.164	0.189	0.214	0.238	0.263	0.288
70	0.070	0.096	0.122	0.148	0.174	0.201	0.227	0.253	0.279	0.305
72	0.074	0.102	0.130	0.157	0.185	0.213	0.240	0.268	0.296	0.324
74	0.079	0.108	0.137	0.167	0.196	0.225	0.255	0.284	0.313	0.342
76	0.084	0.115	0.145	0.176	0.207	0.238	0.269	0.300	0.331	0.362
78	0.089	0.121	0.154	0.186	0.219	0.251	0.284	0.316	0.349	0.381
80	0.094	0.128	0.162	0.196	0.231	0.265	0.299	0.333	0.367	0.402
82	0.099	0.135	0.171	0.207	0.243	0.279	0.315	0.351	0.386	0.422
84	0.104	0.142	0.180	0.217	0.255	0.293	0.331	0.368	0.406	0.444
86	0.110	0.149	0.189	0.228	0.268	0.307	0.347	0.386	0.426	0.466
88	0.115	0.157	0.198	0.239	0.281	0.322	0.364	0.405	0.446	0.488
90	0.121	0.164	0.208	0.251	0.294	0.337	0.381	0.424	0.467	0.511
92	0.127	0.172	0.217	0.263	0.308	0.353	0.398	0.444	0.489	0.534
94	0.133	0.180	0.227	0.274	0.322	0.369	0.416	0.463	0.511	0.558
96	0.139	0.188	0.237	0.287	0.336	0.385	0.434	0.484	0.533	0.582
98	0.145	0.196	0.248	0.299	0.350	0.402	0.453	0.504	0.556	0.607
100	0.151	0.205	0.258	0.312	0.365	0.419	0.472	0.526	0.579	0.633
102	0.158	0.214	0.269	0.325	0.380	0.436	0.492	0.547	0.603	0.658
104	0.165	0.222	0.280	0.338	0.396	0.454	0.511	0.569	0.627	0.685
106	0.171	0.231	0.291	0.351	0.412	0.472	0.532	0.592	0.652	0.712
108	0.178	0.240	0.303	0.365	0.428	0.490	0.552	0.615	0.677	0.739
110	0.185	0.250	0.315	0.379	0.444	0.509	0.573	0.638	0.703	0.767
112	0.192	0.259	0.326	0.393	0.460	0.528	0.595	0.662	0.729	0.796
114	0.200	0.269	0.338	0.408	0.477	0.547	0.616	0.686	0.755	0.825
116	0.207	0.279	0.351	0.423	0.495	0.567	0.638	0.710	0.782	0.854
118	0.214	0.289	0.363	0.438	0.512	0.587	0.661	0.735	0.810	0.884
120	0.222	0.299	0.376	0.453	0.530	0.607	0.684	0.761	0.838	0.915
122	0.230	0.309	0.389	0.468	0.548	0.628	0.707	0.787	0.866	0.946
124	0.238	0.320	0.402	0.484	0.566	0.649	0.731	0.813	0.895	0.977
126	0.246	0.331	0.415	0.500	0.585	0.670	0.755	0.840	0.925	1.009
128	0.254	0.341	0.429	0.517	0.604	0.692	0.779	0.867	0.954	1.042
130	0.262	0.352	0.443	0.533	0.623	0.714	0.804	0.894	0.985	1.075
132	0.271	0.364	0.457	0.550	0.643	0.736	0.829	0.922	1.016	1.109
134	0.279	0.375	0.471	0.567	0.663	0.759	0.855	0.951	1.047	1.143
136	0.288	0.387	0.485	0.584	0.683	0.782	0.881	0.980	1.079	1.178

Table-36: Metric two-way volume table of *Mangifera indica* (Am) in the Home garden

GBH				Volume in	cubic meter	rs for the he	ight in meter	rs		
(cm)	6	8	10	12	14	16	18	20	22	24
40	0.047	0.054	0.061	0.067	0.073	0.078	0.083	0.088	0.092	0.097
42	0.052	0.060	0.067	0.074	0.080	0.086	0.091	0.097	0.102	0.106
44	0.056	0.066	0.074	0.081	0.088	0.094	0.100	0.106	0.111	0.116
46	0.062	0.072	0.080	0.088	0.096	0.103	0.109	0.116	0.121	0.127
48	0.067	0.078	0.087	0.096	0.104	0.112	0.119	0.126	0.132	0.138
50	0.073	0.084	0.095	0.104	0.113	0.121	0.129	0.136	0.143	0.150
52	0.078	0.091	0.102	0.113	0.122	0.131	0.139	0.147	0.155	0.162
54	0.084	0.098	0.110	0.121	0.131	0.141	0.150	0.158	0.166	0.174
56	0.091	0.105	0.118	0.130	0.141	0.151	0.161	0.170	0.179	0.187
58	0.097	0.113	0.127	0.140	0.151	0.162	0.173	0.182	0.192	0.201
60	0.104	0.121	0.136	0.149	0.162	0.173	0.184	0.195	0.205	0.214
62	0.111	0.129	0.145	0.159	0.173	0.185	0.197	0.208	0.218	0.229
64	0.118	0.137	0.154	0.169	0.184	0.197	0.209	0.221	0.233	0.243
66	0.125	0.146	0.164	0.180	0.195	0.209	0.222	0.235	0.247	0.259
68	0.133	0.154	0.174	0.191	0.207	0.222	0.236	0.249	0.262	0.274
70	0.141	0.164	0.184	0.202	0.219	0.235	0.250	0.264	0.277	0.290
72	0.149	0.173	0.194	0.214	0.232	0.248	0.264	0.279	0.293	0.307
74	0.157	0.182	0.205	0.225	0.244	0.262	0.279	0.294	0.309	0.324
76	0.165	0.192	0.216	0.238	0.257	0.276	0.294	0.310	0.326	0.341
78	0.174	0.202	0.227	0.250	0.271	0.291	0.309	0.326	0.343	0.359
80	0.183	0.213	0.239	0.263	0.285	0.305	0.325	0.343	0.361	0.377
82	0.192	0.223	0.251	0.276	0.299	0.321	0.341	0.360	0.379	0.396
84	0.201	0.234	0.263	0.289	0.314	0.336	0.357	0.378	0.397	0.415
86	0.211	0.245	0.275	0.303	0.328	0.352	0.374	0.396	0.416	0.435
88	0.221	0.256	0.288	0.317	0.344	0.368	0.392	0.414	0.435	0.455
90	0.231	0.268	0.301	0.331	0.359	0.385	0.409	0.433	0.455	0.476
92	0.241	0.280	0.315	0.346	0.375	0.402	0.428	0.452	0.475	0.497
94	0.251	0.292	0.328	0.361	0.391	0.419	0.446	0.471	0.495	0.518
96	0.262	0.304	0.342	0.376	0.408	0.437	0.465	0.491	0.516	0.540
98	0.273	0.317	0.356	0.392	0.425	0.455	0.484	0.512	0.538	0.563
100	0.284	0.330	0.371	0.408	0.442	0.474	0.504	0.532	0.559	0.585
102	0.295	0.343	0.385	0.424	0.459	0.492	0.524	0.553	0.582	0.609
104	0.307	0.356	0.400	0.440	0.477	0.512	0.544	0.575	0.604	0.632
106	0.318	0.370	0.416	0.457	0.495	0.531	0.565	0.597	0.627	0.657
108	0.330	0.384	0.431	0.474	0.514	0.551	0.586	0.619	0.651	0.681
110	0.342	0.398	0.447	0.492	0.533	0.571	0.608	0.642	0.675	0.706
112 114	0.355	0.412 0.427	0.463 0.480	0.509 0.527	0.552 0.572	0.592 0.613	0.630 0.652	0.665 0.689	0.699 0.724	0.732 0.758
114	0.380	0.427	0.480	0.546	0.572	0.634	0.632	0.889	0.749	0.784
118	0.380	0.442	0.496	0.564	0.592	0.656	0.673	0.713	0.749	0.784
120	0.393	0.437	0.513	0.583	0.612	0.638	0.698	0.762	0.773	0.811
120	0.420	0.472	0.548	0.583	0.653	0.700	0.721	0.782	0.801	0.866
124	0.420	0.488	0.566	0.622	0.633	0.700	0.743	0.787	0.827	0.894
124	0.433	0.520	0.584	0.642	0.696	0.723	0.794	0.839	0.881	0.894
128	0.461	0.526	0.602	0.662	0.718	0.770	0.794	0.865	0.909	0.922
130	0.475	0.553	0.621	0.683	0.718	0.770	0.819	0.892	0.937	0.981
132	0.490	0.569	0.640	0.704	0.763	0.818	0.870	0.919	0.966	1.011
134	0.505	0.586	0.659	0.725	0.786	0.842	0.896	0.946	0.995	1.041
136	0.520	0.604	0.678	0.746	0.809	0.867	0.922	0.974	1.024	1.072
138	0.535	0.621	0.698	0.768	0.832	0.893	0.949	1.003	1.054	1.103
140	0.550	0.639	0.718	0.790	0.856	0.918	0.976	1.032	1.084	1.135
142	0.566	0.657	0.739	0.812	0.881	0.944	1.004	1.061	1.115	1.167
144	0.581	0.676	0.759	0.835	0.905	0.970	1.032	1.090	1.146	1.199
146	0.597	0.694	0.780	0.858	0.930	0.997	1.060	1.120	1.178	1.232
	2.071	/	2., 00	2.020	,-0					

Table-37: Metric two-way volume table of Lannea coromandelica (Badi) in the Home garden

GBH				Volume in	cubic meter	rs for the he	ight in meter	rs		
(cm)	6	8	10	12	14	16	18	20	22	24
40	0.047	0.055	0.062	0.069	0.075	0.081	0.086	0.092	0.097	0.102
42	0.051	0.060	0.068	0.076	0.083	0.089	0.095	0.101	0.107	0.112
44	0.056	0.066	0.075	0.083	0.091	0.098	0.105	0.111	0.117	0.123
46	0.062	0.073	0.082	0.091	0.099	0.107	0.115	0.122	0.128	0.135
48	0.067	0.079	0.090	0.099	0.108	0.117	0.125	0.132	0.140	0.147
50	0.073	0.086	0.097	0.108	0.118	0.127	0.136	0.144	0.152	0.159
52	0.079	0.093	0.105	0.117	0.127	0.137	0.147	0.156	0.164	0.172
54	0.085	0.100	0.114	0.126	0.137	0.148	0.158	0.168	0.177	0.186
56	0.092	0.108	0.122	0.136	0.148	0.159	0.170	0.181	0.191	0.200
58	0.098	0.116	0.131	0.145	0.159	0.171	0.183	0.194	0.205	0.215
60	0.105	0.124	0.141	0.156	0.170	0.183	0.196	0.208	0.219	0.230
62	0.113	0.132	0.150	0.166	0.182	0.196	0.209	0.222	0.234	0.246
64	0.120	0.141	0.160	0.177	0.194	0.209	0.223	0.237	0.250	0.262
66	0.128	0.150	0.170	0.189	0.206	0.222	0.237	0.252	0.266	0.279
68	0.136	0.160	0.181	0.200	0.219	0.236	0.252	0.267	0.282	0.296
70	0.144	0.169	0.192	0.213	0.232	0.250	0.267	0.283	0.299	0.314
72	0.152	0.179	0.203	0.225	0.245	0.265	0.283	0.300	0.317	0.333
74	0.161	0.189	0.215	0.238	0.259	0.280	0.299	0.317	0.335	0.351
76	0.170	0.200	0.226	0.251	0.274	0.295	0.315	0.335	0.353	0.371
78	0.179	0.210	0.239	0.264	0.288	0.311	0.332	0.353	0.372	0.391
80	0.188	0.221	0.251	0.278	0.304	0.327	0.350	0.371	0.392	0.411
82	0.198	0.233	0.264	0.292	0.319	0.344	0.368	0.390	0.412	0.432
84	0.208	0.244	0.277	0.307	0.335	0.361	0.386	0.410	0.432	0.454
86	0.218	0.256	0.291	0.322	0.351	0.379	0.405	0.429	0.453	0.476
88	0.228	0.268	0.304	0.337	0.368	0.397	0.424	0.450	0.475	0.498
90	0.239	0.281	0.318	0.353	0.385	0.415	0.444	0.471	0.497	0.522
92	0.250	0.294	0.333	0.369	0.402	0.434	0.464	0.492	0.519	0.545
94	0.261	0.307	0.348	0.385	0.420	0.453	0.484	0.514	0.542	0.569
96	0.272	0.320	0.363	0.402	0.438	0.473	0.505	0.536	0.566	0.594
98	0.284	0.333	0.378	0.419	0.457	0.493	0.527	0.559	0.590	0.619
100	0.295	0.347	0.394	0.436	0.476	0.513	0.549	0.582	0.614	0.645
102	0.307	0.361	0.410	0.454	0.496	0.534	0.571	0.606	0.639	0.671
104	0.320	0.376	0.426	0.472	0.515	0.556	0.594	0.630	0.665	0.698
106	0.332	0.391	0.443	0.491	0.535	0.577	0.617	0.655	0.691	0.726
108	0.345	0.406	0.460	0.510	0.556	0.600	0.641	0.680	0.717	0.753
110	0.358	0.421	0.477	0.529	0.577	0.622	0.665	0.706	0.744	0.782
112 114	0.371	0.437 0.452	0.495	0.549 0.569	0.598 0.620	0.645	0.689 0.715	0.732	0.772 0.800	0.811
114	0.385	0.452	0.513	0.589	0.620	0.669	0.715	0.758	0.800	0.840 0.870
118	0.398	0.469	0.531 0.550	0.589	0.642	0.692	0.740	0.785 0.813	0.829	0.870
120	0.412	0.483	0.569	0.610	0.688	0.717	0.792	0.813	0.887	0.932
120	0.427	0.502	0.588	0.652	0.688	0.742	0.792	0.869	0.887	0.932
124	0.441	0.519	0.588	0.632	0.711	0.767	0.819	0.898	0.917	0.963
124	0.430	0.554	0.628	0.696	0.759	0.792	0.874	0.898	0.948	1.028
128	0.471	0.534	0.648	0.090	0.783	0.845	0.874	0.928	1.011	1.028
130	0.480	0.571	0.669	0.718	0.783	0.843	0.903	0.988	1.043	1.095
130	0.517	0.590	0.690	0.741	0.834	0.871	0.960	1.019	1.043	1.129
134	0.533	0.627	0.090	0.788	0.859	0.833	0.990	1.019	1.108	1.164
136	0.549	0.646	0.711	0.788	0.885	0.920	1.020	1.082	1.142	1.104
138	0.566	0.665	0.754	0.836	0.883	0.983	1.050	1.115	1.176	1.235
140	0.582	0.685	0.734	0.861	0.912	1.012	1.081	1.113	1.211	1.272
142	0.599	0.705	0.770	0.885	0.966	1.041	1.113	1.148	1.246	1.309
144	0.616	0.705	0.799	0.883	0.993	1.041	1.115	1.215	1.282	1.346
146	0.634	0.745	0.845	0.937	1.022	1.101	1.177	1.249	1.318	1.384
140	0.034	0.743	U.04J	U.73 /	1.044	1.101	1,1//	1.449	1.310	1.304

Table-38: Metric two-way volume table of Syzygium cumuni (Jam) in the Home garden

GBH				Volume in	cubic meter	rs for the he	ight in meter	rs		
(cm)	6	8	10	12	14	16	18	20	22	24
40	0.050	0.056	0.061	0.065	0.069	0.073	0.077	0.080	0.083	0.086
42	0.055	0.061	0.067	0.072	0.077	0.081	0.085	0.088	0.092	0.095
44	0.060	0.067	0.074	0.079	0.084	0.089	0.093	0.097	0.101	0.104
46	0.066	0.074	0.080	0.086	0.092	0.097	0.102	0.106	0.110	0.114
48	0.072	0.080	0.088	0.094	0.100	0.106	0.111	0.115	0.120	0.124
50	0.078	0.087	0.095	0.102	0.109	0.115	0.120	0.125	0.130	0.135
52	0.084	0.094	0.103	0.111	0.118	0.124	0.130	0.135	0.141	0.146
54	0.091	0.102	0.111	0.119	0.127	0.134	0.140	0.146	0.152	0.157
56	0.097	0.109	0.119	0.128	0.136	0.144	0.151	0.157	0.163	0.169
58	0.105	0.117	0.128	0.138	0.146	0.154	0.162	0.169	0.175	0.181
60	0.112	0.125	0.137	0.147	0.157	0.165	0.173	0.180	0.187	0.194
62	0.120	0.134	0.146	0.157	0.167	0.176	0.185	0.193	0.200	0.207
64	0.127	0.143	0.156	0.168	0.178	0.188	0.197	0.205	0.213	0.221
66	0.135	0.152	0.166	0.178	0.190	0.200	0.209	0.218	0.227	0.235
68	0.144	0.161	0.176	0.189	0.201	0.212	0.222	0.232	0.241	0.249
70	0.152	0.171	0.187	0.201	0.213	0.225	0.236	0.246	0.255	0.264
72	0.161	0.181	0.198	0.212	0.226	0.238	0.249	0.260	0.270	0.279
74	0.170	0.191	0.209	0.224	0.238	0.251	0.263	0.275	0.285	0.295
76	0.180	0.201	0.220	0.237	0.252	0.265	0.278	0.290	0.301	0.311
78	0.189	0.212	0.232	0.249	0.265	0.279	0.293	0.305	0.317	0.328
80	0.199	0.223	0.244	0.262	0.279	0.294	0.308	0.321	0.333	0.345
82	0.209	0.235	0.256	0.276	0.293	0.309	0.324	0.337	0.350	0.363
84	0.220	0.246	0.269	0.289	0.307	0.324	0.340	0.354	0.368	0.381
86	0.230	0.258	0.282	0.303	0.322	0.340	0.356	0.371	0.385	0.399
88	0.241	0.270	0.295	0.317	0.337	0.356	0.373	0.389	0.404	0.418
90	0.252	0.283	0.309	0.332	0.353	0.372	0.390	0.407	0.422	0.437
92	0.264	0.296	0.323	0.347	0.369	0.389	0.408	0.425	0.441	0.457
94	0.275	0.309	0.337	0.362	0.385	0.406	0.426	0.444	0.461	0.477
96	0.287	0.322	0.352	0.378	0.402	0.424	0.444	0.463	0.481	0.497
98	0.299	0.335	0.366	0.394	0.419	0.441	0.463	0.482	0.501	0.518
100	0.312	0.349	0.382	0.410	0.436	0.460	0.482	0.502	0.522	0.540
102	0.324	0.363	0.397	0.427	0.454	0.478	0.501	0.523	0.543	0.562
104	0.337	0.378	0.413	0.444	0.472	0.497	0.521	0.543	0.564	0.584
106	0.350	0.393	0.429	0.461	0.490	0.517	0.541	0.564	0.586	0.607
108	0.364	0.408	0.445	0.479	0.509	0.536	0.562	0.586	0.609	0.630
110	0.377	0.423	0.462	0.497	0.528	0.556	0.583	0.608	0.631	0.654
112	0.391	0.438	0.479	0.515	0.547	0.577	0.605	0.630	0.655	0.678
114	0.405	0.454	0.496	0.533	0.567	0.598	0.626	0.653	0.678	0.702
116	0.420	0.470	0.514	0.552	0.587	0.619	0.649	0.676	0.702	0.727
118	0.434	0.487	0.532	0.572	0.608	0.641	0.671	0.700	0.727	0.752
120	0.449	0.503	0.550	0.591	0.628	0.663	0.694	0.724	0.752	0.778
122	0.464	0.520	0.568	0.611	0.650	0.685	0.718	0.748	0.777	0.804
124	0.480	0.538	0.587	0.631	0.671	0.708	0.741	0.773	0.803	0.831
126	0.495	0.555	0.606	0.652	0.693	0.731	0.766	0.798	0.829	0.858
128 130	0.511 0.527	0.573	0.626 0.646	0.673 0.694	0.715	0.754	0.790 0.815	0.824	0.855 0.882	0.886
130	0.527	0.591			0.738	0.778	0.815	0.850		0.913
134		0.609 0.628	0.666 0.686	0.716 0.737	0.761 0.784	0.802 0.827		0.876 0.903	0.910	0.942 0.971
-	0.560						0.866		0.938	
136	0.577	0.647	0.707 0.728	0.760 0.782	0.808 0.832	0.851 0.877	0.892	0.930	0.966 0.995	1.000
140	0.594	0.666 0.686	0.728	0.782	0.856	0.877	0.919 0.946	0.958 0.986	1.024	1.030
140	0.612	0.686	0.749	0.803	0.881	0.902	0.946	1.014	1.024	1.000
142	0.629	0.705	0.771	0.828	0.881	0.928	1.000	1.014	1.053	1.121
-										
146	0.665	0.746	0.815	0.876	0.931	0.982	1.028	1.072	1.114	1.153

Table-39: Metric two-way volume table of Anthocephalus chinensis (Kadam) in the Home garden

(GBH) (cm) 6 8 8 10 12 14 16 18 20 22 24 40 0.043 0.052 0.0661 0.0569 0.076 0.094 0.0701 0.097 0.104 0.110 0.110 0.043 0.052 0.0661 0.0569 0.076 0.084 0.0991 0.0999 0.1066 0.114 0.121 0.124 0.131 0.051 0.062 0.072 0.082 0.0991 0.100 0.0999 0.1066 0.114 0.121 0.131 0.050 0.065 0.0675 0.0884 0.0991 0.100 0.0999 0.1066 0.114 0.121 0.131 0.144 0.051 0.056 0.073 0.085 0.0966 0.107 0.1170 0.127 0.136 0.134 0.145 0.000 0.073 0.085 0.0966 0.107 0.1170 0.127 0.136 0.134 0.145 0.000 0.073 0.085 0.0966 0.107 0.117 0.127 0.136 0.144 0.155 0.000 0.073 0.085 0.0969 0.1076 0.1170 0.127 0.136 0.144 0.155 0.1060 0.0999 0.0144 0.115 0.126 0.134 0.147 0.156 0.166 0.152 0.0999 0.0144 0.0998 0.111 0.124 0.133 0.147 0.157 0.168 0.156 0.156 0.166 0.167 0.0998 0.111 0.124 0.135 0.147 0.157 0.168 0.166 0.166 0.167 0.0998 0.111 0.124 0.135 0.147 0.157 0.168 0.166 0.166 0.167 0.099 0.0991 0.105 0.119 0.132 0.145 0.155 0.168 0.189 0.0997 0.113 0.127 0.142 0.155 0.168 0.189 0.199 0.190 0.191	GBH				Volume in	o cubic meter	rs for the he	eight in meter	re		
40		6	Q	10		T				22	24
44	` /										
44											
46											
188 0.060 0.073 0.085 0.096 0.107 0.117 0.127 0.136 0.145 0.166											
S0 0.065 0.079 0.091 0.104 0.115 0.126 0.135 0.147 0.156 0.168 0.178											
S2											
S4											
58 0.080 0.097 0.113 0.127 0.142 0.155 0.168 0.180 0.192 0.204 58 0.085 0.013 0.120 0.136 0.151 0.165 0.179 0.192 0.205 0.218 60 0.090 0.110 0.128 0.145 0.161 0.166 0.191 0.205 0.218 0.222 62 0.096 0.117 0.136 0.154 0.171 0.187 0.020 0.221 0.230 0.246 0.261 64 0.102 0.124 0.131 0.152 0.172 0.191 0.202 0.224 0.246 0.266 0.266 0.266 0.266 0.266 0.266 0.286 0.275 0.292 0.221 0.244 0.260 0.277 0.244 0.260 0.284 0.266 0.286 0.305 0.324 70 0.120 0.146 0.169 0.192 0.213 0.233 0.361 0.337 0.363											
S8											
60 0.090 0.110 0.128 0.145 0.161 0.176 0.191 0.205 0.218 0.232 62 0.096 0.117 0.136 0.154 0.171 0.187 0.202 0.217 0.232 0.246 0.261 64 0.102 0.124 0.163 0.181 0.198 0.214 0.230 0.246 0.261 66 0.107 0.131 0.152 0.172 0.191 0.209 0.227 0.244 0.260 0.276 68 0.114 0.138 0.161 0.182 0.202 0.221 0.234 0.266 0.286 0.302 0.277 0.201 0.121 0.233 0.283 0.280 0.301 0.321 0.301 0.321 0.331 0.337 0.337 0.337 0.331 0.335 0.321 0.331 0.337 0.357 8 0.146 0.178 0.202 0.224 0.266 0.286 0.330 0.337 0.337 0.381											
62 0.096 0.117 0.136 0.154 0.171 0.187 0.202 0.217 0.232 0.246 64 0.102 0.124 0.144 0.163 0.181 0.198 0.214 0.230 0.246 0.261 66 0.107 0.131 0.152 0.172 0.191 0.209 0.227 0.244 0.266 0.276 68 0.114 0.138 0.161 0.182 0.202 0.221 0.240 0.258 0.275 0.292 70 0.120 0.146 0.169 0.192 0.213 0.233 0.253 0.272 0.290 0.307 72 0.126 0.1153 0.161 0.188 0.212 0.236 0.288 0.280 0.301 0.321 0.340 76 0.133 0.169 0.197 0.223 0.248 0.280 0.301 0.337 0.363 0.337 80 0.153 0.186 0.216 0.245 0.27											
64 0.102 0.124 0.144 0.163 0.181 0.198 0.214 0.230 0.246 0.261 66 0.107 0.131 0.152 0.172 0.191 0.209 0.227 0.244 0.260 0.276 68 0.114 0.138 0.161 0.182 0.202 0.221 0.240 0.258 0.275 0.292 70 0.120 0.146 0.169 0.192 0.213 0.233 0.253 0.272 0.290 0.307 72 0.126 0.153 0.178 0.202 0.224 0.246 0.266 0.286 0.303 0.321 0.344 74 0.133 0.161 0.178 0.202 0.224 0.226 0.228 0.280 0.301 0.331 0.353 78 0.146 0.178 0.207 0.2234 0.260 0.224 0.308 0.331 0.353 80 0.153 0.186 0.215 0.275 0.27											
66 0.107 0.131 0.152 0.172 0.191 0.209 0.227 0.244 0.260 0.276 68 0.114 0.138 0.161 0.182 0.202 0.221 0.240 0.258 0.275 0.290 70 0.120 0.146 0.169 0.192 0.213 0.233 0.253 0.272 0.204 0.258 0.275 0.290 0.307 72 0.126 0.153 0.178 0.202 0.224 0.246 0.266 0.286 0.305 0.324 74 0.133 0.161 0.188 0.212 0.248 0.271 0.294 0.316 0.331 0.331 0.337 78 0.146 0.178 0.207 0.224 0.260 0.284 0.308 0.331 0.333 0.337 80 0.160 0.186 0.216 0.245 0.228 0.312 0.338 0.331 0.333 0.347 0.304 82 0.160											
68 0.114 0.138 0.161 0.182 0.202 0.221 0.240 0.258 0.275 0.292 70 0.120 0.146 0.169 0.192 0.213 0.233 0.272 0.290 0.305 0.334 72 0.126 0.133 0.161 0.188 0.212 0.236 0.258 0.280 0.301 0.321 0.340 74 0.133 0.161 0.188 0.212 0.236 0.258 0.280 0.301 0.321 0.340 76 0.139 0.169 0.197 0.223 0.248 0.271 0.294 0.316 0.337 0.357 80 0.153 0.186 0.216 0.245 0.222 0.228 0.323 0.347 0.370 0.393 82 0.160 0.195 0.226 0.256 0.285 0.312 0.338 0.363 0.387 0.418 84 0.167 0.221 0.247 0.280 0.324											
70 0.120 0.146 0.169 0.192 0.213 0.233 0.253 0.272 0.290 0.307 72 0.126 0.153 0.178 0.202 0.224 0.246 0.266 0.286 0.305 0.321 0.340 74 0.133 0.161 0.188 0.212 0.236 0.288 0.280 0.301 0.321 0.340 76 0.139 0.169 0.197 0.223 0.248 0.271 0.294 0.316 0.337 0.357 78 0.146 0.178 0.027 0.2234 0.260 0.284 0.308 0.331 0.353 0.377 80 0.153 0.166 0.216 0.245 0.272 0.298 0.333 0.363 0.337 0.363 80 0.155 0.226 0.256 0.285 0.312 0.338 0.363 0.337 0.405 0.429 86 0.175 0.203 0.231 0.286 0.23											
72 0.126 0.153 0.178 0.202 0.224 0.246 0.266 0.286 0.305 0.324 74 0.139 0.169 0.188 0.212 0.236 0.288 0.280 0.301 0.321 0.340 76 0.139 0.169 0.197 0.223 0.248 0.271 0.294 0.316 0.337 0.357 78 0.146 0.178 0.207 0.234 0.260 0.284 0.308 0.331 0.353 0.375 80 0.153 0.186 0.216 0.245 0.272 0.298 0.323 0.347 0.370 0.393 82 0.160 0.195 0.226 0.256 0.285 0.312 0.338 0.363 0.337 0.401 84 0.167 0.203 0.237 0.268 0.298 0.332 0.337 0.402 86 0.175 0.212 0.247 0.280 0.311 0.340 0.339 0.359											
74 0.133 0.161 0.188 0.212 0.236 0.258 0.280 0.301 0.321 0.340 76 0.139 0.169 0.197 0.223 0.248 0.271 0.294 0.316 0.337 0.357 78 0.146 0.178 0.207 0.234 0.260 0.284 0.308 0.331 0.353 0.375 80 0.153 0.186 0.216 0.2245 0.272 0.298 0.323 0.347 0.370 0.393 82 0.160 0.195 0.226 0.256 0.285 0.312 0.338 0.363 0.387 0.411 84 0.160 0.195 0.226 0.256 0.285 0.312 0.338 0.363 0.387 0.411 84 0.160 0.195 0.226 0.256 0.285 0.312 0.338 0.363 0.387 0.411 84 0.162 0.221 0.258 0.292 0.324 0.35											
76 0.139 0.169 0.197 0.223 0.248 0.271 0.294 0.316 0.337 0.357 78 0.146 0.178 0.207 0.234 0.260 0.284 0.308 0.331 0.353 0.357 80 0.153 0.186 0.216 0.245 0.272 0.298 0.323 0.347 0.370 0.393 82 0.160 0.195 0.226 0.256 0.285 0.312 0.338 0.363 0.387 0.411 84 0.167 0.203 0.237 0.268 0.298 0.326 0.333 0.363 0.387 0.415 86 0.175 0.212 0.247 0.280 0.311 0.340 0.369 0.396 0.423 0.448 88 0.182 0.221 0.247 0.280 0.311 0.352 0.384 0.413 0.441 0.468 90 0.190 0.231 0.269 0.304 0.338 0.37											
78 0.146 0.178 0.207 0.234 0.260 0.284 0.308 0.331 0.353 0.375 80 0.153 0.186 0.216 0.245 0.272 0.298 0.323 0.347 0.370 0.393 82 0.160 0.195 0.226 0.256 0.285 0.312 0.338 0.363 0.387 0.405 84 0.167 0.203 0.237 0.268 0.298 0.326 0.353 0.379 0.405 0.429 86 0.175 0.212 0.247 0.280 0.311 0.340 0.369 0.396 0.423 0.448 88 0.182 0.221 0.2258 0.292 0.324 0.355 0.384 0.413 0.441 0.468 80 0.190 0.231 0.228 0.331 0.332 0.364 0.401 0.430 0.439 0.507 94 0.206 0.290 0.321 0.332 0.366 0.40											
80 0.153 0.186 0.216 0.245 0.272 0.298 0.323 0.347 0.370 0.393 82 0.160 0.195 0.226 0.256 0.285 0.312 0.338 0.363 0.387 0.411 84 0.167 0.203 0.237 0.268 0.298 0.326 0.353 0.379 0.405 0.423 86 0.175 0.212 0.247 0.280 0.311 0.340 0.369 0.396 0.423 0.448 88 0.182 0.221 0.258 0.292 0.324 0.355 0.384 0.413 0.441 0.468 90 0.190 0.231 0.269 0.304 0.338 0.370 0.401 0.430 0.459 0.487 92 0.198 0.240 0.280 0.317 0.352 0.385 0.417 0.448 0.479 0.528 96 0.214 0.260 0.302 0.342 0.380 0.416											
82 0.160 0.195 0.226 0.256 0.285 0.312 0.338 0.363 0.387 0.411 84 0.167 0.203 0.237 0.268 0.298 0.326 0.353 0.379 0.405 0.429 86 0.175 0.212 0.247 0.280 0.311 0.340 0.369 0.396 0.423 0.448 88 0.182 0.221 0.258 0.292 0.324 0.355 0.384 0.413 0.441 0.468 90 0.190 0.231 0.269 0.304 0.338 0.370 0.401 0.430 0.459 0.487 92 0.198 0.240 0.280 0.317 0.352 0.388 0.417 0.448 0.478 0.502 94 0.206 0.250 0.291 0.329 0.366 0.400 0.434 0.466 0.497 0.528 96 0.214 0.260 0.302 0.342 0.380 0.416											
84 0.167 0.203 0.237 0.268 0.298 0.326 0.353 0.379 0.405 0.429 86 0.175 0.212 0.247 0.280 0.311 0.340 0.369 0.396 0.423 0.448 88 0.182 0.221 0.258 0.292 0.324 0.355 0.384 0.413 0.441 0.468 90 0.190 0.231 0.269 0.304 0.338 0.370 0.401 0.430 0.459 0.487 92 0.198 0.240 0.280 0.317 0.352 0.385 0.417 0.448 0.478 0.507 94 0.206 0.250 0.291 0.329 0.366 0.400 0.434 0.466 0.497 0.528 96 0.214 0.260 0.302 0.342 0.380 0.416 0.451 0.484 0.517 0.528 96 0.214 0.260 0.320 0.342 0.385 0.342											
86 0.175 0.212 0.247 0.280 0.311 0.340 0.369 0.396 0.423 0.448 88 0.182 0.221 0.258 0.292 0.324 0.355 0.384 0.413 0.441 0.468 90 0.190 0.231 0.269 0.304 0.338 0.370 0.401 0.430 0.459 0.487 92 0.198 0.240 0.280 0.317 0.352 0.388 0.417 0.448 0.478 0.507 94 0.206 0.250 0.291 0.329 0.366 0.400 0.434 0.466 0.497 0.528 96 0.214 0.260 0.302 0.342 0.380 0.416 0.451 0.484 0.517 0.528 96 0.214 0.260 0.302 0.342 0.380 0.416 0.451 0.484 0.517 0.528 98 0.222 0.270 0.314 0.355 0.395 0.432											
88 0.182 0.221 0.258 0.292 0.324 0.355 0.384 0.413 0.441 0.468 90 0.190 0.231 0.269 0.304 0.338 0.370 0.401 0.430 0.459 0.487 92 0.198 0.240 0.280 0.317 0.352 0.385 0.417 0.448 0.478 0.507 94 0.206 0.250 0.291 0.332 0.360 0.416 0.431 0.466 0.497 0.528 96 0.214 0.260 0.302 0.342 0.380 0.416 0.431 0.484 0.517 0.548 98 0.222 0.270 0.314 0.355 0.395 0.432 0.468 0.503 0.537 0.570 100 0.230 0.280 0.326 0.369 0.410 0.449 0.486 0.522 0.557 0.591 102 0.239 0.290 0.338 0.382 0.425 0.4											
90 0.190 0.231 0.269 0.304 0.338 0.370 0.401 0.430 0.459 0.487 92 0.198 0.240 0.280 0.317 0.352 0.385 0.417 0.448 0.478 0.507 94 0.206 0.250 0.291 0.329 0.366 0.400 0.434 0.466 0.497 0.528 96 0.214 0.260 0.302 0.342 0.380 0.416 0.451 0.484 0.517 0.548 98 0.222 0.270 0.314 0.355 0.395 0.432 0.468 0.503 0.537 0.570 100 0.230 0.280 0.326 0.369 0.410 0.449 0.486 0.522 0.557 0.591 102 0.239 0.290 0.338 0.382 0.425 0.465 0.504 0.541 0.578 0.613 104 0.247 0.301 0.350 0.396 0.440 0.											
92 0.198 0.240 0.280 0.317 0.352 0.385 0.417 0.448 0.478 0.507 94 0.206 0.250 0.291 0.329 0.366 0.400 0.434 0.466 0.497 0.528 96 0.214 0.260 0.302 0.342 0.380 0.416 0.451 0.484 0.517 0.548 98 0.222 0.270 0.314 0.355 0.395 0.432 0.468 0.503 0.537 0.570 100 0.230 0.280 0.326 0.369 0.410 0.449 0.486 0.522 0.557 0.591 102 0.239 0.290 0.338 0.382 0.425 0.465 0.504 0.541 0.578 0.613 104 0.247 0.301 0.350 0.396 0.440 0.482 0.522 0.561 0.599 0.635 106 0.256 0.311 0.363 0.410 0.456 0											
94 0.206 0.250 0.291 0.329 0.366 0.400 0.434 0.466 0.497 0.528 96 0.214 0.260 0.302 0.342 0.380 0.416 0.451 0.484 0.517 0.548 98 0.222 0.270 0.314 0.355 0.395 0.432 0.468 0.503 0.537 0.570 100 0.230 0.280 0.326 0.369 0.410 0.449 0.486 0.522 0.557 0.591 102 0.239 0.290 0.338 0.382 0.425 0.465 0.504 0.541 0.578 0.613 104 0.247 0.301 0.350 0.396 0.440 0.482 0.522 0.561 0.5799 0.635 106 0.256 0.311 0.363 0.410 0.456 0.499 0.541 0.581 0.620 0.658 108 0.265 0.322 0.375 0.425 0.472 <th< td=""><td></td><td></td><td>0.231</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>			0.231								
96 0.214 0.260 0.302 0.342 0.380 0.416 0.451 0.484 0.517 0.548 98 0.222 0.270 0.314 0.355 0.395 0.432 0.468 0.503 0.537 0.570 100 0.230 0.280 0.326 0.369 0.410 0.449 0.486 0.522 0.557 0.591 102 0.239 0.290 0.338 0.382 0.425 0.465 0.504 0.541 0.578 0.613 104 0.247 0.301 0.350 0.396 0.440 0.482 0.522 0.561 0.599 0.635 106 0.256 0.311 0.363 0.410 0.456 0.499 0.541 0.581 0.620 0.658 108 0.265 0.322 0.375 0.425 0.472 0.516 0.560 0.601 0.641 0.681 110 0.274 0.333 0.388 0.439 0.488 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>											
98 0.222 0.270 0.314 0.355 0.395 0.432 0.468 0.503 0.537 0.570 100 0.230 0.280 0.326 0.369 0.410 0.449 0.486 0.522 0.557 0.591 102 0.239 0.290 0.338 0.382 0.425 0.465 0.504 0.541 0.578 0.613 104 0.247 0.301 0.350 0.396 0.440 0.482 0.522 0.561 0.599 0.635 106 0.256 0.311 0.363 0.410 0.456 0.499 0.541 0.581 0.620 0.658 108 0.265 0.322 0.375 0.425 0.472 0.516 0.560 0.601 0.641 0.681 110 0.274 0.333 0.388 0.439 0.488 0.534 0.579 0.622 0.663 0.704 112 0.283 0.345 0.401 0.454 0.504 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
100 0.230 0.280 0.326 0.369 0.410 0.449 0.486 0.522 0.557 0.591 102 0.239 0.290 0.338 0.382 0.425 0.465 0.504 0.541 0.578 0.613 104 0.247 0.301 0.350 0.396 0.440 0.482 0.522 0.561 0.599 0.635 106 0.256 0.311 0.363 0.410 0.456 0.499 0.541 0.581 0.620 0.658 108 0.265 0.322 0.375 0.425 0.472 0.516 0.560 0.601 0.641 0.681 110 0.274 0.333 0.388 0.439 0.488 0.534 0.579 0.622 0.663 0.704 112 0.283 0.345 0.401 0.454 0.504 0.552 0.598 0.643 0.686 0.727 114 0.293 0.356 0.414 0.469 0.538 <											
102 0.239 0.290 0.338 0.382 0.425 0.465 0.504 0.541 0.578 0.613 104 0.247 0.301 0.350 0.396 0.440 0.482 0.522 0.561 0.599 0.635 106 0.256 0.311 0.363 0.410 0.456 0.499 0.541 0.581 0.620 0.658 108 0.265 0.322 0.375 0.425 0.472 0.516 0.560 0.601 0.641 0.681 110 0.274 0.333 0.388 0.439 0.488 0.534 0.579 0.622 0.663 0.704 112 0.283 0.345 0.401 0.454 0.504 0.552 0.598 0.643 0.686 0.727 114 0.293 0.356 0.414 0.469 0.521 0.570 0.618 0.664 0.708 0.751 116 0.302 0.367 0.428 0.484 0.538 <	98	0.222	0.270	0.314	0.355	0.395	0.432	0.468	0.503	0.537	0.570
104 0.247 0.301 0.350 0.396 0.440 0.482 0.522 0.561 0.599 0.635 106 0.256 0.311 0.363 0.410 0.456 0.499 0.541 0.581 0.620 0.658 108 0.265 0.322 0.375 0.425 0.472 0.516 0.560 0.601 0.641 0.681 110 0.274 0.333 0.388 0.439 0.488 0.534 0.579 0.622 0.663 0.704 112 0.283 0.345 0.401 0.454 0.504 0.552 0.598 0.643 0.686 0.727 114 0.293 0.356 0.414 0.469 0.521 0.570 0.618 0.664 0.708 0.751 116 0.302 0.367 0.428 0.484 0.538 0.589 0.638 0.685 0.731 0.776 118 0.312 0.379 0.441 0.500 0.555 <		0.230	0.280	0.326			0.449			0.557	0.591
106 0.256 0.311 0.363 0.410 0.456 0.499 0.541 0.581 0.620 0.658 108 0.265 0.322 0.375 0.425 0.472 0.516 0.560 0.601 0.641 0.681 110 0.274 0.333 0.388 0.439 0.488 0.534 0.579 0.622 0.663 0.704 112 0.283 0.345 0.401 0.454 0.504 0.552 0.598 0.643 0.686 0.727 114 0.293 0.356 0.414 0.469 0.521 0.570 0.618 0.664 0.708 0.751 116 0.302 0.367 0.428 0.484 0.538 0.589 0.638 0.685 0.731 0.776 118 0.312 0.379 0.441 0.500 0.555 0.608 0.658 0.707 0.754 0.800 120 0.322 0.331 0.469 0.531 0.590 <	102	0.239	0.290	0.338	0.382	0.425	0.465	0.504	0.541	0.578	0.613
108 0.265 0.322 0.375 0.425 0.472 0.516 0.560 0.601 0.641 0.681 110 0.274 0.333 0.388 0.439 0.488 0.534 0.579 0.622 0.663 0.704 112 0.283 0.345 0.401 0.454 0.504 0.552 0.598 0.643 0.686 0.727 114 0.293 0.356 0.414 0.469 0.521 0.570 0.618 0.664 0.708 0.751 116 0.302 0.367 0.428 0.484 0.538 0.589 0.638 0.685 0.731 0.776 118 0.312 0.379 0.441 0.500 0.555 0.608 0.658 0.707 0.754 0.800 120 0.322 0.391 0.455 0.515 0.572 0.627 0.679 0.729 0.778 0.825 122 0.331 0.403 0.469 0.531 0.590 <	104	0.247	0.301	0.350	0.396	0.440	0.482	0.522	0.561	0.599	0.635
110 0.274 0.333 0.388 0.439 0.488 0.534 0.579 0.622 0.663 0.704 112 0.283 0.345 0.401 0.454 0.504 0.552 0.598 0.643 0.686 0.727 114 0.293 0.356 0.414 0.469 0.521 0.570 0.618 0.664 0.708 0.751 116 0.302 0.367 0.428 0.484 0.538 0.589 0.638 0.685 0.731 0.776 118 0.312 0.379 0.441 0.500 0.555 0.608 0.658 0.707 0.754 0.800 120 0.322 0.391 0.455 0.515 0.572 0.627 0.679 0.729 0.778 0.825 122 0.331 0.403 0.469 0.531 0.590 0.646 0.700 0.752 0.802 0.851 124 0.341 0.415 0.483 0.547 0.608 <	106	0.256	0.311	0.363	0.410	0.456	0.499	0.541	0.581	0.620	0.658
112 0.283 0.345 0.401 0.454 0.504 0.552 0.598 0.643 0.686 0.727 114 0.293 0.356 0.414 0.469 0.521 0.570 0.618 0.664 0.708 0.751 116 0.302 0.367 0.428 0.484 0.538 0.589 0.638 0.685 0.731 0.776 118 0.312 0.379 0.441 0.500 0.555 0.608 0.658 0.707 0.754 0.800 120 0.322 0.391 0.455 0.515 0.572 0.627 0.679 0.729 0.778 0.825 122 0.331 0.403 0.469 0.531 0.590 0.646 0.700 0.752 0.802 0.851 124 0.341 0.415 0.483 0.547 0.608 0.665 0.721 0.774 0.826 0.877 126 0.352 0.428 0.498 0.563 0.626 <	108	0.265	0.322	0.375	0.425	0.472	0.516	0.560	0.601	0.641	0.681
114 0.293 0.356 0.414 0.469 0.521 0.570 0.618 0.664 0.708 0.751 116 0.302 0.367 0.428 0.484 0.538 0.589 0.638 0.685 0.731 0.776 118 0.312 0.379 0.441 0.500 0.555 0.608 0.658 0.707 0.754 0.800 120 0.322 0.391 0.455 0.515 0.572 0.627 0.679 0.729 0.778 0.825 122 0.331 0.403 0.469 0.531 0.590 0.646 0.700 0.752 0.802 0.851 124 0.341 0.415 0.483 0.547 0.608 0.665 0.721 0.774 0.826 0.877 126 0.352 0.428 0.498 0.563 0.626 0.685 0.742 0.797 0.851 0.903 128 0.362 0.440 0.512 0.580 0.644 <	110	0.274	0.333	0.388	0.439	0.488	0.534	0.579	0.622	0.663	0.704
116 0.302 0.367 0.428 0.484 0.538 0.589 0.638 0.685 0.731 0.776 118 0.312 0.379 0.441 0.500 0.555 0.608 0.658 0.707 0.754 0.800 120 0.322 0.391 0.455 0.515 0.572 0.627 0.679 0.729 0.778 0.825 122 0.331 0.403 0.469 0.531 0.590 0.646 0.700 0.752 0.802 0.851 124 0.341 0.415 0.483 0.547 0.608 0.665 0.721 0.774 0.826 0.877 126 0.352 0.428 0.498 0.563 0.626 0.685 0.742 0.797 0.851 0.903 128 0.362 0.440 0.512 0.580 0.644 0.705 0.764 0.821 0.876 0.929 130 0.372 0.453 0.527 0.597 0.663 <	112	0.283	0.345	0.401	0.454	0.504	0.552	0.598	0.643	0.686	0.727
118 0.312 0.379 0.441 0.500 0.555 0.608 0.658 0.707 0.754 0.800 120 0.322 0.391 0.455 0.515 0.572 0.627 0.679 0.729 0.778 0.825 122 0.331 0.403 0.469 0.531 0.590 0.646 0.700 0.752 0.802 0.851 124 0.341 0.415 0.483 0.547 0.608 0.665 0.721 0.774 0.826 0.877 126 0.352 0.428 0.498 0.563 0.626 0.685 0.742 0.797 0.851 0.903 128 0.362 0.440 0.512 0.580 0.644 0.705 0.764 0.821 0.876 0.929 130 0.372 0.453 0.527 0.597 0.663 0.725 0.786 0.844 0.901 0.956 132 0.383 0.466 0.542 0.613 0.681 <	114	0.293	0.356	0.414	0.469	0.521	0.570	0.618	0.664	0.708	0.751
120 0.322 0.391 0.455 0.515 0.572 0.627 0.679 0.729 0.778 0.825 122 0.331 0.403 0.469 0.531 0.590 0.646 0.700 0.752 0.802 0.851 124 0.341 0.415 0.483 0.547 0.608 0.665 0.721 0.774 0.826 0.877 126 0.352 0.428 0.498 0.563 0.626 0.685 0.742 0.797 0.851 0.903 128 0.362 0.440 0.512 0.580 0.644 0.705 0.764 0.821 0.876 0.929 130 0.372 0.453 0.527 0.597 0.663 0.725 0.786 0.844 0.901 0.956 132 0.383 0.466 0.542 0.613 0.681 0.746 0.808 0.868 0.927 0.983 134 0.394 0.479 0.557 0.631 0.700 <	116	0.302	0.367		0.484	0.538	0.589	0.638	0.685	0.731	0.776
122 0.331 0.403 0.469 0.531 0.590 0.646 0.700 0.752 0.802 0.851 124 0.341 0.415 0.483 0.547 0.608 0.665 0.721 0.774 0.826 0.877 126 0.352 0.428 0.498 0.563 0.626 0.685 0.742 0.797 0.851 0.903 128 0.362 0.440 0.512 0.580 0.644 0.705 0.764 0.821 0.876 0.929 130 0.372 0.453 0.527 0.597 0.663 0.725 0.786 0.844 0.901 0.956 132 0.383 0.466 0.542 0.613 0.681 0.746 0.808 0.868 0.927 0.983 134 0.394 0.479 0.557 0.631 0.700 0.767 0.831 0.893 0.952 1.010 136 0.404 0.492 0.572 0.648 0.720 <	118	0.312	0.379	0.441	0.500	0.555	0.608	0.658	0.707	0.754	0.800
124 0.341 0.415 0.483 0.547 0.608 0.665 0.721 0.774 0.826 0.877 126 0.352 0.428 0.498 0.563 0.626 0.685 0.742 0.797 0.851 0.903 128 0.362 0.440 0.512 0.580 0.644 0.705 0.764 0.821 0.876 0.929 130 0.372 0.453 0.527 0.597 0.663 0.725 0.786 0.844 0.901 0.956 132 0.383 0.466 0.542 0.613 0.681 0.746 0.808 0.868 0.927 0.983 134 0.394 0.479 0.557 0.631 0.700 0.767 0.831 0.893 0.952 1.010 136 0.404 0.492 0.572 0.648 0.720 0.788 0.854 0.917 0.979 1.038 138 0.415 0.505 0.588 0.666 0.739 <	120	0.322	0.391	0.455	0.515	0.572	0.627	0.679	0.729	0.778	0.825
126 0.352 0.428 0.498 0.563 0.626 0.685 0.742 0.797 0.851 0.903 128 0.362 0.440 0.512 0.580 0.644 0.705 0.764 0.821 0.876 0.929 130 0.372 0.453 0.527 0.597 0.663 0.725 0.786 0.844 0.901 0.956 132 0.383 0.466 0.542 0.613 0.681 0.746 0.808 0.868 0.927 0.983 134 0.394 0.479 0.557 0.631 0.700 0.767 0.831 0.893 0.952 1.010 136 0.404 0.492 0.572 0.648 0.720 0.788 0.854 0.917 0.979 1.038 138 0.415 0.505 0.588 0.666 0.739 0.809 0.877 0.942 1.005 1.066 140 0.426 0.519 0.604 0.683 0.759 <	122	0.331	0.403	0.469	0.531	0.590	0.646	0.700	0.752	0.802	0.851
128 0.362 0.440 0.512 0.580 0.644 0.705 0.764 0.821 0.876 0.929 130 0.372 0.453 0.527 0.597 0.663 0.725 0.786 0.844 0.901 0.956 132 0.383 0.466 0.542 0.613 0.681 0.746 0.808 0.868 0.927 0.983 134 0.394 0.479 0.557 0.631 0.700 0.767 0.831 0.893 0.952 1.010 136 0.404 0.492 0.572 0.648 0.720 0.788 0.854 0.917 0.979 1.038 138 0.415 0.505 0.588 0.666 0.739 0.809 0.877 0.942 1.005 1.066 140 0.426 0.519 0.604 0.683 0.759 0.831 0.900 0.967 1.032 1.095 142 0.438 0.532 0.620 0.701 0.779 <	124	0.341	0.415	0.483	0.547	0.608	0.665	0.721	0.774	0.826	0.877
130 0.372 0.453 0.527 0.597 0.663 0.725 0.786 0.844 0.901 0.956 132 0.383 0.466 0.542 0.613 0.681 0.746 0.808 0.868 0.927 0.983 134 0.394 0.479 0.557 0.631 0.700 0.767 0.831 0.893 0.952 1.010 136 0.404 0.492 0.572 0.648 0.720 0.788 0.854 0.917 0.979 1.038 138 0.415 0.505 0.588 0.666 0.739 0.809 0.877 0.942 1.005 1.066 140 0.426 0.519 0.604 0.683 0.759 0.831 0.900 0.967 1.032 1.095 142 0.438 0.532 0.620 0.701 0.779 0.853 0.924 0.993 1.059 1.124 144 0.449 0.546 0.636 0.720 0.799 <	126	0.352	0.428	0.498	0.563	0.626	0.685	0.742	0.797	0.851	0.903
132 0.383 0.466 0.542 0.613 0.681 0.746 0.808 0.868 0.927 0.983 134 0.394 0.479 0.557 0.631 0.700 0.767 0.831 0.893 0.952 1.010 136 0.404 0.492 0.572 0.648 0.720 0.788 0.854 0.917 0.979 1.038 138 0.415 0.505 0.588 0.666 0.739 0.809 0.877 0.942 1.005 1.066 140 0.426 0.519 0.604 0.683 0.759 0.831 0.900 0.967 1.032 1.095 142 0.438 0.532 0.620 0.701 0.779 0.853 0.924 0.993 1.059 1.124 144 0.449 0.546 0.636 0.720 0.799 0.875 0.948 1.018 1.087 1.153	128	0.362	0.440	0.512	0.580	0.644	0.705	0.764	0.821	0.876	0.929
134 0.394 0.479 0.557 0.631 0.700 0.767 0.831 0.893 0.952 1.010 136 0.404 0.492 0.572 0.648 0.720 0.788 0.854 0.917 0.979 1.038 138 0.415 0.505 0.588 0.666 0.739 0.809 0.877 0.942 1.005 1.066 140 0.426 0.519 0.604 0.683 0.759 0.831 0.900 0.967 1.032 1.095 142 0.438 0.532 0.620 0.701 0.779 0.853 0.924 0.993 1.059 1.124 144 0.449 0.546 0.636 0.720 0.799 0.875 0.948 1.018 1.087 1.153	130	0.372	0.453	0.527	0.597	0.663	0.725	0.786	0.844	0.901	0.956
136 0.404 0.492 0.572 0.648 0.720 0.788 0.854 0.917 0.979 1.038 138 0.415 0.505 0.588 0.666 0.739 0.809 0.877 0.942 1.005 1.066 140 0.426 0.519 0.604 0.683 0.759 0.831 0.900 0.967 1.032 1.095 142 0.438 0.532 0.620 0.701 0.779 0.853 0.924 0.993 1.059 1.124 144 0.449 0.546 0.636 0.720 0.799 0.875 0.948 1.018 1.087 1.153	132	0.383	0.466	0.542	0.613	0.681	0.746	0.808	0.868	0.927	0.983
138 0.415 0.505 0.588 0.666 0.739 0.809 0.877 0.942 1.005 1.066 140 0.426 0.519 0.604 0.683 0.759 0.831 0.900 0.967 1.032 1.095 142 0.438 0.532 0.620 0.701 0.779 0.853 0.924 0.993 1.059 1.124 144 0.449 0.546 0.636 0.720 0.799 0.875 0.948 1.018 1.087 1.153	134	0.394	0.479	0.557	0.631	0.700	0.767	0.831	0.893	0.952	1.010
140 0.426 0.519 0.604 0.683 0.759 0.831 0.900 0.967 1.032 1.095 142 0.438 0.532 0.620 0.701 0.779 0.853 0.924 0.993 1.059 1.124 144 0.449 0.546 0.636 0.720 0.799 0.875 0.948 1.018 1.087 1.153	136	0.404	0.492	0.572	0.648	0.720	0.788	0.854	0.917	0.979	1.038
142 0.438 0.532 0.620 0.701 0.779 0.853 0.924 0.993 1.059 1.124 144 0.449 0.546 0.636 0.720 0.799 0.875 0.948 1.018 1.087 1.153	138	0.415	0.505	0.588	0.666	0.739	0.809	0.877	0.942	1.005	1.066
144 0.449 0.546 0.636 0.720 0.799 0.875 0.948 1.018 1.087 1.153	140	0.426	0.519	0.604	0.683	0.759	0.831	0.900	0.967	1.032	1.095
	142	0.438	0.532	0.620	0.701	0.779	0.853	0.924	0.993	1.059	1.124
146 0.461 0.560 0.652 0.738 0.820 0.897 0.972 1.045 1.114 1.182	144	0.449	0.546	0.636	0.720	0.799	0.875	0.948	1.018	1.087	1.153
	146	0.461	0.560	0.652	0.738	0.820	0.897	0.972	1.045	1.114	1.182

Table-40: Metric two-way volume table of Artocarpus heterophyllus (Kanthal) in the Home garden

GBH				Volume in	cubic meter	rs for the he	ight in meter	rs		
(cm)	6	8	10	12	14	16	18	20	22	24
40	0.046	0.056	0.065	0.073	0.082	0.090	0.097	0.104	0.112	0.118
42	0.050	0.061	0.071	0.080	0.089	0.098	0.106	0.114	0.122	0.129
44	0.054	0.066	0.077	0.087	0.097	0.106	0.115	0.124	0.132	0.141
46	0.059	0.071	0.083	0.095	0.105	0.115	0.125	0.134	0.144	0.152
48	0.063	0.077	0.090	0.102	0.114	0.124	0.135	0.145	0.155	0.165
50	0.068	0.083	0.097	0.110	0.122	0.134	0.145	0.156	0.167	0.177
52	0.073	0.089	0.104	0.118	0.131	0.144	0.156	0.168	0.179	0.190
54	0.078	0.096	0.111	0.126	0.140	0.154	0.167	0.180	0.192	0.204
56	0.084	0.102	0.119	0.135	0.150	0.165	0.178	0.192	0.205	0.218
58	0.089	0.109	0.127	0.144	0.160	0.175	0.190	0.204	0.218	0.232
60	0.095	0.116	0.135	0.153	0.170	0.186	0.202	0.217	0.232	0.246
62	0.101	0.123	0.143	0.162	0.180	0.198	0.214	0.231	0.246	0.262
64	0.106	0.130	0.151	0.172	0.191	0.209	0.227	0.244	0.261	0.277
66	0.113	0.137	0.160	0.182	0.202	0.221	0.240	0.258	0.276	0.293
68	0.119	0.145	0.169	0.192	0.213	0.234	0.253	0.273	0.291	0.309
70	0.125	0.153	0.178	0.202	0.225	0.246	0.267	0.287	0.307	0.326
72	0.132	0.161	0.187	0.213	0.236	0.259	0.281	0.302	0.323	0.343
74	0.138	0.169	0.197	0.223	0.248	0.272	0.295	0.318	0.339	0.360
76	0.145	0.177	0.207	0.234	0.261	0.286	0.310	0.333	0.356	0.378
78	0.152	0.186	0.217	0.246	0.273	0.299	0.325	0.349	0.373	0.396
80	0.159	0.194	0.227	0.257	0.286	0.314	0.340	0.366	0.391	0.415
82	0.167	0.203	0.237	0.269	0.299	0.328	0.356	0.382	0.408	0.434
84	0.174	0.212	0.248	0.281	0.312	0.342	0.371	0.399	0.427	0.453
86	0.182	0.222	0.258	0.293	0.326	0.357	0.388	0.417	0.445	0.473
88	0.189	0.231	0.269	0.305	0.340	0.372	0.404	0.434	0.464	0.493
90	0.197	0.241	0.281	0.318	0.354	0.388	0.421	0.452	0.483	0.513
92	0.205	0.250	0.292	0.331	0.368	0.404	0.438	0.471	0.503	0.534
94	0.213	0.260	0.304	0.344	0.383	0.420	0.455	0.489	0.523	0.555
96	0.222	0.270	0.315	0.358	0.398	0.436	0.473	0.508	0.543	0.577
98	0.230	0.281	0.327	0.371	0.413	0.453	0.491	0.528	0.564	0.598
100	0.239	0.291	0.339	0.385	0.428	0.469	0.509	0.547	0.585	0.621
102	0.247	0.302	0.352	0.399	0.444	0.486	0.528	0.567	0.606	0.643
104	0.256	0.312	0.364	0.413	0.460	0.504	0.546	0.588	0.628	0.666
106	0.265	0.323	0.377	0.428	0.476	0.522	0.566	0.608	0.650	0.690
108	0.274	0.334	0.390	0.442	0.492	0.539	0.585	0.629	0.672	0.713
110	0.284	0.346	0.403	0.457	0.509	0.558	0.605	0.650	0.695	0.738
112	0.293	0.357	0.417	0.472	0.525	0.576	0.625	0.672	0.718	0.762
114	0.302	0.369	0.430	0.488	0.543	0.595	0.645	0.694	0.741	0.787
116	0.312	0.381	0.444	0.503	0.560	0.614	0.666	0.716	0.765	0.812
118	0.322	0.393	0.458	0.519	0.577	0.633	0.687	0.738	0.789	0.837
120	0.332	0.405	0.472	0.535	0.595	0.653	0.708	0.761	0.813	0.863
122	0.342	0.417	0.486	0.551	0.613	0.672	0.729	0.784	0.838	0.889
124	0.352	0.429	0.501	0.568	0.632	0.693	0.751	0.808	0.863	0.916
126	0.362	0.442	0.516	0.585	0.650	0.713	0.773	0.831	0.888	0.943
128	0.373	0.455	0.530	0.601	0.669	0.733	0.795	0.855	0.914	0.970
130	0.384	0.468	0.545	0.619	0.688	0.754	0.818	0.880	0.940	0.998
132	0.394	0.481	0.561	0.636	0.707	0.775	0.841	0.904	0.966	1.026
134	0.405	0.494	0.576	0.653	0.727	0.797	0.864	0.929	0.992	1.054
136	0.416	0.507	0.592	0.671	0.746	0.818	0.888	0.955	1.019	1.082
138	0.427	0.521	0.608	0.689	0.766	0.840	0.911	0.980	1.047	1.111
140	0.439	0.535	0.624	0.707	0.787	0.862	0.935	1.006	1.074	1.141
142	0.450	0.549	0.640	0.726	0.807	0.885	0.960	1.032	1.102	1.170
144	0.461	0.563	0.656	0.744	0.828	0.908	0.984	1.058	1.130	1.200
146	0.473	0.577	0.673	0.763	0.849	0.930	1.009	1.085	1.159	1.231

Table-41: Metric two-way volume table of Azadirachta indica (Neem) in the Home garden

Corn 6	GBH				Volume in	cubic meter	s for the he	ight in meter	rs		
42		6	8	10	12	14	16	18	20	22	24
42	40	0.042	0.052	0.061	0.069	0.077	0.085	0.092	0.100	0.107	0.114
44 0.050 0.062 0.073 0.083 0.093 0.102 0.111 0.119 0.128 0. 46 0.055 0.067 0.079 0.090 0.101 0.111 0.120 0.131 0.141 0.151 0. 48 0.060 0.073 0.086 0.098 0.109 0.120 0.131 0.141 0.152 0.163 0.06 50 0.064 0.079 0.093 0.166 0.118 0.130 0.141 0.152 0.163 0.76 0.152 0.163 0.76 0.163 0.76 0.183 0.109 0.115 0.131 0.144 0.150 0.163 0.167 0.188 0.202 0.5 56 0.080 0.098 0.115 0.131 0.146 0.161 0.175 0.188 0.202 0.262 0.090 0.123 0.140 0.156 0.177 0.187 0.201 0.216 0.210 0.201 0.226 0.001 0.201 0.201	42										0.125
48											0.136
48 0.060 0.073 0.086 0.098 0.109 0.120 0.131 0.141 0.151 0.63 50 0.064 0.079 0.093 0.106 0.118 0.130 0.141 0.152 0.163 0. 52 0.099 0.088 0.100 0.114 0.127 0.140 0.152 0.164 0.175 0. 54 0.074 0.091 0.107 0.122 0.136 0.150 0.163 0.176 0.188 0.20 56 0.080 0.0115 0.131 0.140 0.156 0.172 0.187 0.201 0.216 0. 60 0.091 0.112 0.131 0.149 0.166 0.183 0.199 0.215 0.230 0.216 0.20 0.222 0.245 0.23 0.245 0.26 0.099 0.212 0.222 0.243 0.260 0. 0.66 0.103 0.126 0.148 0.166 0.189 0.219 0.225 <td></td> <td>0.148</td>											0.148
50											0.160
52 0.069 0.085 0.100 0.114 0.127 0.140 0.152 0.164 0.175 0. 54 0.074 0.091 0.107 0.122 0.136 0.150 0.163 0.176 0.188 0.202 0. 56 0.080 0.098 0.115 0.131 0.140 0.161 0.175 0.188 0.202 0. 58 0.085 0.105 0.123 0.140 0.156 0.172 0.187 0.201 0.216 0.2 60 0.097 0.119 0.133 0.149 0.166 0.183 0.199 0.215 0.230 0.6 64 0.103 0.126 0.148 0.168 0.188 0.207 0.225 0.243 0.260 0.2 66 0.109 0.134 0.157 0.178 0.199 0.219 0.238 0.257 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275											0.173
54 0.074 0.091 0.107 0.122 0.136 0.150 0.163 0.176 0.188 0.22 56 0.080 0.098 0.115 0.131 0.146 0.161 0.175 0.188 0.202 0.2 58 0.085 0.105 0.123 0.140 0.156 0.172 0.187 0.201 0.216 0.0 60 0.091 0.112 0.131 0.149 0.166 0.183 0.199 0.215 0.230 0.2 62 0.097 0.119 0.139 0.159 0.177 0.195 0.212 0.228 0.245 0.6 64 0.103 0.126 0.148 0.168 0.188 0.207 0.225 0.243 0.260 0.2 66 0.109 0.134 0.157 0.178 0.199 0.219 0.238 0.257 0.275 0.275 0.275 0.2 0.238 0.252 0.245 0.267 0.287 0.238											0.187
56 0.080 0.098 0.115 0.131 0.146 0.161 0.175 0.188 0.202 0.2 58 0.085 0.105 0.123 0.140 0.156 0.172 0.187 0.201 0.216 0.2 60 0.091 0.112 0.131 0.149 0.166 0.183 0.199 0.215 0.230 0.2 62 0.097 0.119 0.139 0.159 0.177 0.195 0.212 0.228 0.245 0.0 64 0.103 0.126 0.148 0.168 0.188 0.207 0.225 0.243 0.260 0.0 66 0.109 0.134 0.157 0.178 0.199 0.219 0.238 0.252 0.272 0.291 0.2 70 0.122 0.149 0.175 0.199 0.223 0.245 0.267 0.287 0.308 0.2 72 0.128 0.157 0.185 0.210 0.235											0.200
58 0.085 0.105 0.123 0.140 0.156 0.172 0.187 0.201 0.216 0.26 60 0.091 0.112 0.131 0.149 0.166 0.183 0.199 0.215 0.230 0.2 64 0.103 0.126 0.148 0.168 0.188 0.207 0.225 0.243 0.260 0.2 66 0.109 0.134 0.157 0.178 0.199 0.219 0.238 0.257 0.275 0.2 68 0.115 0.141 0.166 0.189 0.211 0.232 0.252 0.277 0.275 0.2 70 0.122 0.149 0.175 0.185 0.210 0.235 0.258 0.287 0.303 0.325 0.277 70 0.122 0.149 0.175 0.185 0.210 0.235 0.258 0.281 0.330 0.325 0.274 74 0.135 0.166 0.195 0.222											0.215
60 0.091 0.112 0.131 0.149 0.166 0.183 0.199 0.215 0.230 0.2 62 0.097 0.119 0.139 0.159 0.177 0.195 0.212 0.228 0.245 0.2 64 0.103 0.126 0.148 0.168 0.188 0.207 0.225 0.243 0.260 0.2 66 0.109 0.134 0.157 0.178 0.199 0.223 0.252 0.2272 0.291 0.2 68 0.115 0.141 0.166 0.189 0.211 0.232 0.252 0.272 0.291 0.2 70 0.122 0.149 0.175 0.199 0.223 0.245 0.267 0.287 0.303 0.325 0.277 72 0.128 0.157 0.185 0.222 0.247 0.272 0.296 0.319 0.342 0.3 76 0.142 0.174 0.205 0.233 0.260											0.229
62 0.097 0.119 0.139 0.159 0.177 0.195 0.212 0.228 0.245 0.26 64 0.103 0.126 0.148 0.168 0.188 0.207 0.225 0.243 0.260 0.0 66 0.109 0.134 0.157 0.178 0.199 0.219 0.238 0.257 0.275 0.0 68 0.115 0.141 0.166 0.189 0.211 0.232 0.252 0.272 0.291 0.2 70 0.122 0.149 0.175 0.199 0.223 0.245 0.267 0.287 0.308 0.2 72 0.128 0.157 0.185 0.210 0.235 0.288 0.281 0.303 0.325 0.2 74 0.135 0.166 0.195 0.222 0.247 0.272 0.296 0.311 0.336 0.359 0.2 78 0.149 0.183 0.215 0.2245 0.273											0.245
64 0.103 0.126 0.148 0.168 0.188 0.207 0.225 0.243 0.260 0.26 66 0.109 0.134 0.157 0.178 0.199 0.219 0.238 0.257 0.275 0.0 68 0.115 0.141 0.166 0.189 0.211 0.232 0.252 0.272 0.291 0.2 70 0.122 0.149 0.175 0.199 0.223 0.245 0.267 0.287 0.308 0.2 72 0.128 0.157 0.185 0.210 0.235 0.258 0.281 0.303 0.325 0.2 74 0.135 0.166 0.195 0.222 0.247 0.272 0.296 0.319 0.342 0.2 76 0.142 0.174 0.205 0.233 0.260 0.286 0.311 0.336 0.359 0.2 80 0.156 0.192 0.225 0.257 0.287 0.315											0.260
66 0.109 0.134 0.157 0.178 0.199 0.219 0.238 0.257 0.275 0.2 68 0.115 0.141 0.166 0.189 0.211 0.232 0.252 0.272 0.291 0.2 70 0.122 0.149 0.175 0.199 0.223 0.245 0.267 0.287 0.308 0.2 72 0.128 0.157 0.185 0.210 0.235 0.258 0.281 0.303 0.325 0.2 74 0.135 0.166 0.195 0.222 0.247 0.272 0.296 0.319 0.342 0.2 76 0.142 0.174 0.205 0.233 0.260 0.286 0.311 0.336 0.359 0.2 78 0.149 0.183 0.215 0.245 0.237 0.315 0.333 0.360 0.339 0.327 0.353 0.378 0.4 80 0.156 0.1902 0.225											0.276
68 0.115 0.141 0.166 0.189 0.211 0.232 0.252 0.272 0.291 0.27 70 0.122 0.149 0.175 0.199 0.223 0.245 0.267 0.287 0.308 0.2 72 0.128 0.157 0.185 0.210 0.235 0.258 0.281 0.303 0.325 0.2 74 0.135 0.166 0.195 0.222 0.247 0.272 0.296 0.319 0.342 0.2 76 0.142 0.174 0.205 0.233 0.260 0.286 0.311 0.336 0.359 0.3 78 0.149 0.183 0.215 0.245 0.273 0.301 0.327 0.353 0.378 0.3 80 0.156 0.192 0.225 0.257 0.287 0.315 0.343 0.370 0.396 0.4 84 0.172 0.211 0.247 0.282 0.314 0.346											0.270
70 0.122 0.149 0.175 0.199 0.223 0.245 0.267 0.287 0.308 0.27 72 0.128 0.157 0.185 0.210 0.235 0.258 0.281 0.303 0.325 0.1 74 0.135 0.166 0.195 0.222 0.247 0.272 0.296 0.319 0.342 0.1 76 0.142 0.174 0.205 0.233 0.260 0.286 0.311 0.336 0.352 0.2 78 0.149 0.183 0.215 0.245 0.273 0.301 0.327 0.353 0.378 0.2 80 0.156 0.192 0.225 0.257 0.287 0.315 0.343 0.370 0.396 0.2 82 0.164 0.201 0.236 0.269 0.300 0.331 0.360 0.388 0.415 0.4 84 0.172 0.221 0.259 0.294 0.329 0.362											0.310
72 0.128 0.157 0.185 0.210 0.235 0.258 0.281 0.303 0.325 0.274 74 0.135 0.166 0.195 0.222 0.247 0.272 0.296 0.319 0.342 0.2 76 0.142 0.174 0.205 0.233 0.260 0.286 0.311 0.336 0.359 0.2 80 0.149 0.183 0.215 0.245 0.273 0.301 0.327 0.353 0.378 0.9 80 0.156 0.192 0.225 0.257 0.287 0.315 0.343 0.370 0.396 0.9 82 0.164 0.201 0.236 0.269 0.300 0.331 0.360 0.388 0.415 0.4 84 0.172 0.211 0.247 0.282 0.314 0.346 0.376 0.406 0.434 0.2 86 0.179 0.220 0.259 0.294 0.329 0.362											0.310
74 0.135 0.166 0.195 0.222 0.247 0.272 0.296 0.319 0.342 0.276 76 0.142 0.174 0.205 0.233 0.260 0.286 0.311 0.336 0.359 0.2 78 0.149 0.183 0.215 0.245 0.273 0.301 0.327 0.353 0.378 0.4 80 0.156 0.192 0.225 0.257 0.287 0.315 0.343 0.370 0.396 0.28 82 0.164 0.201 0.236 0.269 0.300 0.331 0.360 0.388 0.415 0.282 84 0.172 0.211 0.247 0.282 0.314 0.346 0.376 0.406 0.434 0.24 86 0.179 0.220 0.259 0.294 0.329 0.362 0.394 0.424 0.454 0.6 88 0.187 0.230 0.270 0.308 0.343 0.378											
76 0.142 0.174 0.205 0.233 0.260 0.286 0.311 0.336 0.359 0.278 78 0.149 0.183 0.215 0.245 0.273 0.301 0.327 0.353 0.378 0.4 80 0.156 0.192 0.225 0.257 0.287 0.315 0.343 0.370 0.396 0.4 82 0.164 0.201 0.236 0.269 0.300 0.331 0.360 0.388 0.415 0.282 84 0.172 0.211 0.247 0.282 0.314 0.346 0.376 0.406 0.434 0.24 86 0.179 0.220 0.259 0.294 0.329 0.362 0.394 0.424 0.454 0.4 88 0.187 0.230 0.270 0.308 0.343 0.378 0.411 0.443 0.474 0.2 90 0.196 0.240 0.282 0.321 0.358 0.394											0.345 0.364
78 0.149 0.183 0.215 0.245 0.273 0.301 0.327 0.353 0.378 0.28 80 0.156 0.192 0.225 0.257 0.287 0.315 0.343 0.370 0.396 0.28 82 0.164 0.201 0.236 0.269 0.300 0.331 0.360 0.388 0.415 0.28 84 0.172 0.211 0.247 0.282 0.314 0.346 0.376 0.406 0.434 0.4 86 0.179 0.220 0.259 0.294 0.329 0.362 0.394 0.424 0.454 0.4 88 0.187 0.230 0.270 0.308 0.343 0.378 0.411 0.443 0.474 0.2 90 0.196 0.240 0.282 0.321 0.358 0.394 0.429 0.462 0.495 0.2 92 0.204 0.250 0.294 0.335 0.374 0.411											0.383
80 0.156 0.192 0.225 0.257 0.287 0.315 0.343 0.370 0.396 0.482 82 0.164 0.201 0.236 0.269 0.300 0.331 0.360 0.388 0.415 0.281 84 0.172 0.211 0.247 0.282 0.314 0.346 0.376 0.406 0.434 0.286 86 0.179 0.220 0.259 0.294 0.329 0.362 0.394 0.424 0.454 0.488 8.8 0.187 0.230 0.270 0.308 0.343 0.378 0.411 0.443 0.474 0.29 90 0.196 0.240 0.282 0.321 0.358 0.394 0.429 0.462 0.495 0.29 92 0.204 0.250 0.294 0.335 0.374 0.411 0.447 0.482 0.516 0.3 94 0.212 0.261 0.306 0.348 0.389 0.428 <td></td>											
82 0.164 0.201 0.236 0.269 0.300 0.331 0.360 0.388 0.415 0.284 84 0.172 0.211 0.247 0.282 0.314 0.346 0.376 0.406 0.434 0.282 86 0.179 0.220 0.259 0.294 0.329 0.362 0.394 0.424 0.454 0.6 88 0.187 0.230 0.270 0.308 0.343 0.378 0.411 0.443 0.474 0.2 90 0.196 0.240 0.282 0.321 0.358 0.394 0.429 0.462 0.495 0.3 92 0.204 0.250 0.294 0.335 0.374 0.411 0.447 0.482 0.516 0.3 94 0.212 0.261 0.306 0.348 0.389 0.428 0.466 0.502 0.537 0.3 98 0.230 0.282 0.331 0.377 0.421 0.463											0.402
84 0.172 0.211 0.247 0.282 0.314 0.346 0.376 0.406 0.434 0.486 86 0.179 0.220 0.259 0.294 0.329 0.362 0.394 0.424 0.454 0.288 88 0.187 0.230 0.270 0.308 0.343 0.378 0.411 0.443 0.474 0.294 90 0.196 0.240 0.282 0.321 0.358 0.394 0.429 0.462 0.495 0.294 92 0.204 0.250 0.294 0.335 0.374 0.411 0.447 0.482 0.516 0.2 94 0.212 0.261 0.306 0.348 0.389 0.428 0.466 0.502 0.537 0.2 96 0.221 0.271 0.318 0.363 0.405 0.445 0.485 0.522 0.559 0.5 98 0.230 0.282 0.331 0.377 0.421 0.463											0.422
86 0.179 0.220 0.259 0.294 0.329 0.362 0.394 0.424 0.454 0.48 88 0.187 0.230 0.270 0.308 0.343 0.378 0.411 0.443 0.474 0.399 90 0.196 0.240 0.282 0.321 0.358 0.394 0.429 0.462 0.495 0.394 92 0.204 0.250 0.294 0.335 0.374 0.411 0.447 0.482 0.516 0.394 94 0.212 0.261 0.306 0.348 0.389 0.428 0.466 0.502 0.537 0.394 96 0.221 0.271 0.318 0.363 0.405 0.445 0.485 0.522 0.559 0.394 98 0.230 0.282 0.331 0.377 0.421 0.463 0.504 0.543 0.582 0.594 100 0.239 0.293 0.344 0.392 0.437 0.481											0.442
88 0.187 0.230 0.270 0.308 0.343 0.378 0.411 0.443 0.474 0.39 90 0.196 0.240 0.282 0.321 0.358 0.394 0.429 0.462 0.495 0.394 92 0.204 0.250 0.294 0.335 0.374 0.411 0.447 0.482 0.516 0.394 94 0.212 0.261 0.306 0.348 0.389 0.428 0.466 0.502 0.537 0.394 96 0.221 0.271 0.318 0.363 0.405 0.445 0.485 0.522 0.559 0.331 98 0.230 0.282 0.331 0.377 0.421 0.463 0.504 0.543 0.582 0.3 100 0.239 0.293 0.344 0.392 0.437 0.481 0.523 0.564 0.604 0.0 102 0.248 0.304 0.357 0.407 0.454 0.500 <td></td> <td>0.462</td>											0.462
90 0.196 0.240 0.282 0.321 0.358 0.394 0.429 0.462 0.495 0.39 92 0.204 0.250 0.294 0.335 0.374 0.411 0.447 0.482 0.516 0.3 94 0.212 0.261 0.306 0.348 0.389 0.428 0.466 0.502 0.537 0.3 96 0.221 0.271 0.318 0.363 0.405 0.445 0.485 0.522 0.559 0.3 98 0.230 0.282 0.331 0.377 0.421 0.463 0.504 0.543 0.582 0.3 100 0.239 0.293 0.344 0.392 0.437 0.481 0.523 0.564 0.604 0.0 102 0.248 0.304 0.357 0.407 0.454 0.500 0.543 0.586 0.627 0.0 104 0.257 0.316 0.370 0.422 0.471 0.518											0.483
92 0.204 0.250 0.294 0.335 0.374 0.411 0.447 0.482 0.516 0.5 94 0.212 0.261 0.306 0.348 0.389 0.428 0.466 0.502 0.537 0.2 96 0.221 0.271 0.318 0.363 0.405 0.445 0.485 0.522 0.559 0.2 98 0.230 0.282 0.331 0.377 0.421 0.463 0.504 0.543 0.582 0.0 100 0.239 0.293 0.344 0.392 0.437 0.481 0.523 0.564 0.604 0.0 102 0.248 0.304 0.357 0.407 0.454 0.500 0.543 0.586 0.627 0.0 104 0.257 0.316 0.370 0.422 0.471 0.518 0.564 0.608 0.651 0.0 106 0.266 0.327 0.384 0.437 0.488 0.537											0.505
94 0.212 0.261 0.306 0.348 0.389 0.428 0.466 0.502 0.537 0.5 96 0.221 0.271 0.318 0.363 0.405 0.445 0.485 0.522 0.559 0.5 98 0.230 0.282 0.331 0.377 0.421 0.463 0.504 0.543 0.582 0.6 100 0.239 0.293 0.344 0.392 0.437 0.481 0.523 0.564 0.604 0.6 102 0.248 0.304 0.357 0.407 0.454 0.500 0.543 0.586 0.627 0.6 104 0.257 0.316 0.370 0.422 0.471 0.518 0.564 0.608 0.651 0.6 106 0.266 0.327 0.384 0.437 0.488 0.537 0.585 0.630 0.675 0.7 108 0.276 0.339 0.398 0.453 0.506 0.557											0.527
96 0.221 0.271 0.318 0.363 0.405 0.445 0.485 0.522 0.559 0.59 98 0.230 0.282 0.331 0.377 0.421 0.463 0.504 0.543 0.582 0.6 100 0.239 0.293 0.344 0.392 0.437 0.481 0.523 0.564 0.604 0.0 102 0.248 0.304 0.357 0.407 0.454 0.500 0.543 0.586 0.627 0.0 104 0.257 0.316 0.370 0.422 0.471 0.518 0.564 0.608 0.651 0.0 106 0.266 0.327 0.384 0.437 0.488 0.537 0.585 0.630 0.675 0.7 108 0.276 0.339 0.398 0.453 0.506 0.557 0.606 0.653 0.699 0.7 110 0.286 0.351 0.412 0.469 0.524 0.576											0.549
98 0.230 0.282 0.331 0.377 0.421 0.463 0.504 0.543 0.582 0.0 100 0.239 0.293 0.344 0.392 0.437 0.481 0.523 0.564 0.604 0.0 102 0.248 0.304 0.357 0.407 0.454 0.500 0.543 0.586 0.627 0.0 104 0.257 0.316 0.370 0.422 0.471 0.518 0.564 0.608 0.651 0.0 106 0.266 0.327 0.384 0.437 0.488 0.537 0.585 0.630 0.675 0. 108 0.276 0.339 0.398 0.453 0.506 0.557 0.606 0.653 0.699 0. 110 0.286 0.351 0.412 0.469 0.524 0.576 0.627 0.676 0.724 0. 112 0.296 0.363 0.426 0.485 0.542 0.596											0.572
100 0.239 0.293 0.344 0.392 0.437 0.481 0.523 0.564 0.604 0.604 102 0.248 0.304 0.357 0.407 0.454 0.500 0.543 0.586 0.627 0.0 104 0.257 0.316 0.370 0.422 0.471 0.518 0.564 0.608 0.651 0.0 106 0.266 0.327 0.384 0.437 0.488 0.537 0.585 0.630 0.675 0.7 108 0.276 0.339 0.398 0.453 0.506 0.557 0.606 0.653 0.699 0.7 110 0.286 0.351 0.412 0.469 0.524 0.576 0.627 0.676 0.724 0.7 112 0.296 0.363 0.426 0.485 0.542 0.596 0.649 0.699 0.749 0.7 114 0.306 0.376 0.441 0.502 0.560 0.617 <td></td> <td>0.595</td>											0.595
102 0.248 0.304 0.357 0.407 0.454 0.500 0.543 0.586 0.627 0.6 104 0.257 0.316 0.370 0.422 0.471 0.518 0.564 0.608 0.651 0.6 106 0.266 0.327 0.384 0.437 0.488 0.537 0.585 0.630 0.675 0.7 108 0.276 0.339 0.398 0.453 0.506 0.557 0.606 0.653 0.699 0.7 110 0.286 0.351 0.412 0.469 0.524 0.576 0.627 0.676 0.724 0.7 112 0.296 0.363 0.426 0.485 0.542 0.596 0.649 0.699 0.749 0.7 114 0.306 0.376 0.441 0.502 0.560 0.617 0.671 0.723 0.774 0.3 118 0.316 0.388 0.455 0.519 0.579 0.637											0.619
104 0.257 0.316 0.370 0.422 0.471 0.518 0.564 0.608 0.651 0.0 106 0.266 0.327 0.384 0.437 0.488 0.537 0.585 0.630 0.675 0.7 108 0.276 0.339 0.398 0.453 0.506 0.557 0.606 0.653 0.699 0.7 110 0.286 0.351 0.412 0.469 0.524 0.576 0.627 0.676 0.724 0.7 112 0.296 0.363 0.426 0.485 0.542 0.596 0.649 0.699 0.749 0.7 114 0.306 0.376 0.441 0.502 0.560 0.617 0.671 0.723 0.774 0.8 116 0.316 0.388 0.455 0.519 0.579 0.637 0.693 0.747 0.800 0.3 120 0.337 0.414 0.486 0.553 0.618 0.679											0.643
106 0.266 0.327 0.384 0.437 0.488 0.537 0.585 0.630 0.675 0.7 108 0.276 0.339 0.398 0.453 0.506 0.557 0.606 0.653 0.699 0.7 110 0.286 0.351 0.412 0.469 0.524 0.576 0.627 0.676 0.724 0.7 112 0.296 0.363 0.426 0.485 0.542 0.596 0.649 0.699 0.749 0.7 114 0.306 0.376 0.441 0.502 0.560 0.617 0.671 0.723 0.774 0.8 116 0.316 0.388 0.455 0.519 0.579 0.637 0.693 0.747 0.800 0.3 118 0.326 0.401 0.470 0.536 0.598 0.658 0.716 0.772 0.827 0.8 120 0.337 0.414 0.486 0.553 0.618 0.679											0.668
108 0.276 0.339 0.398 0.453 0.506 0.557 0.606 0.653 0.699 0.724 110 0.286 0.351 0.412 0.469 0.524 0.576 0.627 0.676 0.724 0.7 112 0.296 0.363 0.426 0.485 0.542 0.596 0.649 0.699 0.749 0.7 114 0.306 0.376 0.441 0.502 0.560 0.617 0.671 0.723 0.774 0.3 116 0.316 0.388 0.455 0.519 0.579 0.637 0.693 0.747 0.800 0.3 118 0.326 0.401 0.470 0.536 0.598 0.658 0.716 0.772 0.827 0.3 120 0.337 0.414 0.486 0.553 0.618 0.679 0.739 0.797 0.853 0.9 122 0.348 0.427 0.501 0.571 0.637 0.701 <td></td> <td>0.693</td>											0.693
110 0.286 0.351 0.412 0.469 0.524 0.576 0.627 0.676 0.724 0.7 112 0.296 0.363 0.426 0.485 0.542 0.596 0.649 0.699 0.749 0.7 114 0.306 0.376 0.441 0.502 0.560 0.617 0.671 0.723 0.774 0.8 116 0.316 0.388 0.455 0.519 0.579 0.637 0.693 0.747 0.800 0.8 118 0.326 0.401 0.470 0.536 0.598 0.658 0.716 0.772 0.827 0.3 120 0.337 0.414 0.486 0.553 0.618 0.679 0.739 0.797 0.853 0.9 122 0.348 0.427 0.501 0.571 0.637 0.701 0.763 0.822 0.880 0.9 124 0.359 0.440 0.517 0.589 0.657 0.723											0.718
112 0.296 0.363 0.426 0.485 0.542 0.596 0.649 0.699 0.749 0.749 114 0.306 0.376 0.441 0.502 0.560 0.617 0.671 0.723 0.774 0.8 116 0.316 0.388 0.455 0.519 0.579 0.637 0.693 0.747 0.800 0.3 118 0.326 0.401 0.470 0.536 0.598 0.658 0.716 0.772 0.827 0.3 120 0.337 0.414 0.486 0.553 0.618 0.679 0.739 0.797 0.853 0.9 122 0.348 0.427 0.501 0.571 0.637 0.701 0.763 0.822 0.880 0.9 124 0.359 0.440 0.517 0.589 0.657 0.723 0.787 0.848 0.908 0.9 126 0.370 0.454 0.533 0.607 0.677 0.745 <td></td> <td>0.744</td>											0.744
114 0.306 0.376 0.441 0.502 0.560 0.617 0.671 0.723 0.774 0.8 116 0.316 0.388 0.455 0.519 0.579 0.637 0.693 0.747 0.800 0.3 118 0.326 0.401 0.470 0.536 0.598 0.658 0.716 0.772 0.827 0.8 120 0.337 0.414 0.486 0.553 0.618 0.679 0.739 0.797 0.853 0.9 122 0.348 0.427 0.501 0.571 0.637 0.701 0.763 0.822 0.880 0.9 124 0.359 0.440 0.517 0.589 0.657 0.723 0.787 0.848 0.908 0.9 126 0.370 0.454 0.533 0.607 0.677 0.745 0.811 0.874 0.936 0.9											0.770
116 0.316 0.388 0.455 0.519 0.579 0.637 0.693 0.747 0.800 0.3 118 0.326 0.401 0.470 0.536 0.598 0.658 0.716 0.772 0.827 0.3 120 0.337 0.414 0.486 0.553 0.618 0.679 0.739 0.797 0.853 0.9 122 0.348 0.427 0.501 0.571 0.637 0.701 0.763 0.822 0.880 0.9 124 0.359 0.440 0.517 0.589 0.657 0.723 0.787 0.848 0.908 0.9 126 0.370 0.454 0.533 0.607 0.677 0.745 0.811 0.874 0.936 0.9											0.797
118 0.326 0.401 0.470 0.536 0.598 0.658 0.716 0.772 0.827 0.8 120 0.337 0.414 0.486 0.553 0.618 0.679 0.739 0.797 0.853 0.9 122 0.348 0.427 0.501 0.571 0.637 0.701 0.763 0.822 0.880 0.9 124 0.359 0.440 0.517 0.589 0.657 0.723 0.787 0.848 0.908 0.9 126 0.370 0.454 0.533 0.607 0.677 0.745 0.811 0.874 0.936 0.9											0.824
120 0.337 0.414 0.486 0.553 0.618 0.679 0.739 0.797 0.853 0.9 122 0.348 0.427 0.501 0.571 0.637 0.701 0.763 0.822 0.880 0.9 124 0.359 0.440 0.517 0.589 0.657 0.723 0.787 0.848 0.908 0.9 126 0.370 0.454 0.533 0.607 0.677 0.745 0.811 0.874 0.936 0.9											0.852
122 0.348 0.427 0.501 0.571 0.637 0.701 0.763 0.822 0.880 0.908 124 0.359 0.440 0.517 0.589 0.657 0.723 0.787 0.848 0.908 0.908 126 0.370 0.454 0.533 0.607 0.677 0.745 0.811 0.874 0.936 0.908											0.880
124 0.359 0.440 0.517 0.589 0.657 0.723 0.787 0.848 0.908 0.9 126 0.370 0.454 0.533 0.607 0.677 0.745 0.811 0.874 0.936 0.9											0.908
126 0.370 0.454 0.533 0.607 0.677 0.745 0.811 0.874 0.936 0.9											0.937
 											0.966
1 100 1 0 201 1 0 400 1 0 640 1 0 606 1 0 600 1 0 606											0.996
 	128	0.381	0.468	0.549	0.625	0.698	0.768	0.835	0.901	0.964	1.026
 									0.927		1.056
 											1.087
											1.119
136 0.427 0.525 0.615 0.701 0.783 0.861 0.937 1.010 1.081 1.	136	0.427	0.525	0.615	0.701	0.783	0.861	0.937	1.010	1.081	1.151
	138	0.439	0.539	0.633		0.805	0.885	0.963	1.038	1.112	1.183
		0.451	0.554	0.650	0.741	0.827	0.910	0.990	1.067	1.142	1.216
142 0.463 0.569 0.668 0.761 0.849 0.934 1.016 1.096 1.173 1.2	142	0.463	0.569	0.668	0.761	0.849	0.934	1.016	1.096	1.173	1.249
144 0.476 0.585 0.686 0.781 0.872 0.959 1.044 1.125 1.205 1.2	144	0.476	0.585	0.686	0.781	0.872	0.959	1.044	1.125	1.205	1.282
146 0.488 0.600 0.704 0.802 0.895 0.985 1.071 1.155 1.237 1.3	146	0.488	0.600	0.704	0.802	0.895	0.985	1.071	1.155	1.237	1.316

Table-41: Metric two-way volume table of **Mixed Species** in the Natural Forest.

GBH				Volume in	cubic meter	rs for the he	ight in meter	rs .		
(cm)	6	8	10	12	14	16	18	20	22	24
40	0.074	0.098	0.120	0.143	0.165	0.187	0.209	0.231	0.252	0.274
42	0.080	0.105	0.130	0.154	0.178	0.202	0.226	0.249	0.273	0.296
44	0.087	0.113	0.140	0.166	0.192	0.218	0.243	0.269	0.294	0.319
46	0.093	0.122	0.150	0.178	0.206	0.234	0.261	0.288	0.315	0.342
48	0.099	0.130	0.161	0.191	0.221	0.250	0.279	0.308	0.337	0.366
50	0.106	0.139	0.172	0.204	0.235	0.267	0.298	0.329	0.360	0.391
52	0.113	0.148	0.183	0.217	0.251	0.284	0.317	0.350	0.383	0.416
54	0.120	0.157	0.194	0.230	0.266	0.302	0.337	0.372	0.407	0.442
56	0.127	0.167	0.206	0.244	0.282	0.320	0.357	0.394	0.431	0.468
58	0.134	0.176	0.217	0.258	0.298	0.338	0.378	0.417	0.456	0.495
60	0.142	0.186	0.229	0.272	0.315	0.357	0.399	0.440	0.481	0.522
62	0.150	0.196	0.242	0.287	0.332	0.376	0.420	0.464	0.507	0.550
64	0.157	0.206	0.254	0.302	0.349	0.396	0.442	0.488	0.534	0.579
66	0.165	0.217	0.267	0.302	0.366	0.415	0.464	0.512	0.560	0.608
68	0.173	0.227	0.280	0.332	0.384	0.436	0.487	0.537	0.588	0.638
70	0.173	0.238	0.293	0.348	0.402	0.456	0.510	0.563	0.615	0.668
72	0.190	0.249	0.307	0.364	0.402	0.477	0.533	0.589	0.644	0.699
74	0.198	0.249	0.320	0.380	0.421	0.477	0.557	0.569	0.672	0.730
76	0.198	0.200	0.320	0.397	0.440	0.498	0.581	0.641	0.702	0.750
78	0.207	0.271	0.348	0.397	0.439	0.542	0.606	0.669	0.702	0.701
80	0.216	0.283	0.348	0.414	0.478	0.542	0.630	0.696	0.761	0.794
82	0.224	0.294	0.303	0.431	0.498	0.587	0.656	0.090	0.792	0.820
84										
	0.243	0.318	0.392	0.465	0.538	0.610	0.681	0.752	0.823	0.893
86	0.252	0.330	0.407	0.483	0.559	0.633	0.707	0.781	0.854	0.927
88	0.261	0.342	0.422	0.501	0.579	0.657	0.734	0.810	0.886	0.962
90	0.271	0.355	0.438	0.520	0.601	0.681	0.761	0.840	0.918	0.997
92	0.280	0.368	0.453	0.538	0.622	0.705	0.788	0.870	0.951	1.032
94	0.290	0.380	0.469	0.557	0.644	0.730	0.815	0.900	0.984	1.068
96	0.300	0.393	0.485	0.576	0.666	0.755	0.843	0.931	1.018	1.105
98	0.310	0.406	0.501	0.595	0.688	0.780	0.871	0.962	1.052	1.142
100	0.320	0.420	0.518	0.614	0.710	0.805	0.900	0.993	1.086	1.179
102	0.331	0.433	0.534	0.634	0.733	0.831	0.928	1.025	1.121	1.217
104	0.341	0.447	0.551	0.654	0.756	0.857	0.958	1.057	1.156	1.255
106	0.351	0.461	0.568	0.674	0.779	0.884	0.987	1.090	1.192	1.294
108	0.362	0.475	0.585	0.695	0.803	0.910	1.017	1.123	1.228	1.333
110	0.373	0.489	0.603	0.715	0.827	0.937	1.047	1.156	1.264	1.372
112	0.384	0.503	0.620	0.736	0.851	0.965	1.078	1.190	1.301	1.412
114	0.395	0.517	0.638	0.757	0.875	0.992	1.108	1,224	1.339	1.453
116	0.406	0.532	0.656	0.778	0.900	1.020	1.140	1.258	1.376	1.493
118	0.417	0.546	0.674	0.800	0.925	1.048	1.171	1,293	1.414	1.535
120	0.428	0.561	0.692	0.822	0.950	1.077	1.203	1.328	1.453	1.576
122	0.440	0.576	0.711	0.844	0.975	1.105	1.235	1.363	1.491	1.618
124	0.451	0.591	0.729	0.866	1.001	1.134	1.267	1.399	1.530	1.661
126	0.463	0.607	0.748	0.888	1.026	1.164	1.300	1.435	1.570	1.704
128	0.475	0.622	0.767	0.911	1.053	1.193	1.333	1.472	1.610	1.747
130	0.486	0.638	0.786	0.933	1.079	1.223	1.366	1.509	1.650	1.791
132	0.498	0.653	0.806	0.956	1.105	1.253	1.400	1.546	1.691	1.835
134	0.511	0.669	0.825	0.980	1.132	1.284	1.434	1.583	1.732	1.879
136	0.523	0.685	0.845	1.003	1.159	1.314	1.468	1.621	1.773	1.924
138	0.535	0.701	0.865	1.027	1.187	1.345	1.503	1.659	1.815	1.969
140	0.547	0.717	0.885	1.050	1.214	1.376	1.538	1.698	1.857	2.015
142	0.560	0.734	0.905	1.074	1.242	1.408	1.573	1.737	1.899	2.061
144	0.573	0.750	0.926	1.099	1.270	1.440	1.608	1.776	1.942	2.108
146	0.585	0.767	0.946	1.123	1.298	1.472	1.644	1.815	1.985	2.154

Table 42. One and two way volumes in cubic meter for Rajkoroi (*Albizia richardiana* King and Prain) growing in the Southern Part of Bangladesh

	One way volume						Tw	o way vo	lume tab	ole					
GBH (cm)	table					V	olume i	n cubic n	eter for	height o	f				
(cm)	Volume (cum)	8	10	12	14	16	18	20	22	24	26	28	30	32	34
40	0.067	0.057	0.068	0.079	0.089	0.100	0.110	0.119	0.129	0.139	0.148	0.157	0.166	0.175	0.184
42	0.075	0.062	0.074	0.086	0.097	0.108	0.119	0.130	0.140	0.150	0.161	0.171	0.180	0.190	0.200
44	0.083	0.067	0.080	0.093	0.105	0.117	0.129	0.140	0.152	0.163	0.174	0.185	0.195	0.206	0.216
46	0.092	0.072	0.086	0.100	0.113	0.126	0.139	0.151	0.164	0.176	0.187	0.199	0.211	0.222	0.233
48	0.101	0.077	0.093	0.107	0.122	0.136	0.149	0.163	0.176	0.189	0.202	0.214	0.226	0.239	0.251
50	0.110	0.083	0.099	0.115	0.131	0.146	0.160	0.174	0.189	0.202	0.216	0.229	0.243	0.256	0.269
52	0.121	0.088	0.106	0.123	0.140	0.156	0.171	0.187	0.202	0.216	0.231	0.245	0.259	0.273	0.287
54	0.131	0.094	0.113	0.131	0.149	0.166	0.183	0.199	0.215	0.231	0.246	0.262	0.277	0.292	0.306
56	0.143	0.100	0.120	0.140	0.158	0.176	0.194	0.212	0.229	0.245	0.262	0.278	0.294	0.310	0.326
58	0.154	0.107	0.128	0.148	0.168	0.187	0.206	0.225	0.243	0.260	0.278	0.295	0.312	0.329	0.346
60	0.166	0.113	0.135	0.157	0.178	0.198	0.218	0.238	0.257	0.276	0.294	0.313	0.331	0.349	0.366
62	0.179	0.119	0.143	0.166	0.188	0.210	0.231	0.251	0.272	0.292	0.311	0.331	0.350	0.369	0.387
64	0.192	0.126	0.151	0.175	0.199	0.221	0.244	0.265	0.287	0.308	0.329	0.349	0.369	0.389	0.409
66	0.206	0.133	0.159	0.185	0.209	0.233	0.257	0.280	0.302	0.324	0.346	0.368	0.389	0.410	0.431
68	0.221	0.140	0.167	0.194	0.220	0.245	0.270	0.294	0.318	0.341	0.364	0.387	0.409	0.431	0.453
70	0.235	0.147	0.176	0.204	0.231	0.258	0.284	0.309	0.334	0.359	0.383	0.406	0.430	0.453	0.476
72	0.251	0.154	0.184	0.214	0.243	0.270	0.298	0.324	0.350	0.376	0.401	0.426	0.451	0.475	0.499
74	0.267	0.161	0.193	0.224	0.254	0.283	0.312	0.340	0.367	0.394	0.421	0.447	0.472	0.498	0.523
76	0.283	0.169	0.202	0.235	0.266	0.296	0.326	0.355	0.384	0.412	0.440	0.467	0.494	0.521	0.547
78	0.300	0.176	0.211	0.245	0.278	0.310	0.341	0.371	0.401	0.431	0.460	0.488	0.517	0.545	0.572
80	0.318	0.184	0.221	0.256	0.290	0.323	0.356	0.388	0.419	0.450	0.480	0.510	0.539	0.569	0.597
82	0.336	0.192	0.230	0.267	0.303	0.337	0.371	0.404	0.437	0.469	0.501	0.532	0.563	0.593	0.623
84	0.355	0.200	0.240	0.278	0.315	0.351	0.387	0.421	0.455	0.489	0.522	0.554	0.586	0.618	0.649
86	0.374	0.208	0.249	0.289	0.328	0.366	0.403	0.439	0.474	0.509	0.543	0.577	0.610	0.643	0.675
88	0.394	0.216	0.259	0.301	0.341	0.380	0.419	0.456	0.493	0.529	0.565	0.600	0.634	0.668	0.702
90	0.414	0.225	0.270	0.313	0.354	0.395	0.435	0.474	0.512	0.550	0.587	0.623	0.659	0.694	0.730
92	0.435	0.233	0.280	0.325	0.368	0.410	0.451	0.492	0.531	0.570	0.609	0.647	0.684	0.721	0.757
94	0.457	0.242	0.290	0.337	0.382	0.425	0.468	0.510	0.551	0.592	0.632	0.671	0.709	0.748	0.786
96	0.479	0.251	0.301	0.349	0.396	0.441	0.485	0.529	0.571	0.613	0.655	0.695	0.735	0.775	0.814
98	0.501	0.260	0.312	0.361	0.410	0.457	0.503	0.548	0.592	0.635	0.678	0.720	0.762	0.803	0.843
100	0.525	0.269	0.322	0.374	0.424	0.473	0.520	0.567	0.612	0.657	0.702	0.745	0.788	0.831	0.873
102	0.549	0.278	0.333	0.387	0.438	0.489	0.538	0.586	0.633	0.680	0.726	0.771	0.815	0.859	0.903
104	0.573	0.287	0.345	0.400	0.453	0.505	0.556	0.606	0.655	0.703	0.750	0.796	0.842	0.888	0.933
106	0.598	0.297	0.356	0.413	0.468	0.522	0.574	0.626	0.676	0.726	0.775	0.823	0.870	0.917	0.963
108	0.624	0.306	0.367	0.426	0.483	0.539	0.593	0.646	0.698	0.749	0.800	0.849	0.898	0.947	0.995
110	0.650	0.316	0.379	0.440	0.498	0.556	0.612	0.666	0.720	0.773	0.825	0.876	0.927	0.977	1.026
112	0.677	0.326	0.391	0.453	0.514	0.573	0.631	0.687	0.742	0.797	0.851	0.903	0.956	1.007	1.058
114	0.704	0.336	0.403	0.467	0.530	0.590	0.650	0.708	0.765	0.821	0.876	0.931	0.985	1.038	1.090
116	0.733	0.346	0.415	0.481	0.546	0.608	0.669	0.729	0.788	0.846	0.903	0.959	1.014	1.069	1.123
118	0.761	0.356	0.427	0.495	0.562	0.626	0.689	0.751	0.811	0.871	0.929	0.987	1.044	1.100	1.156
120	0.791	0.366	0.439	0.510	0.578	0.644	0.709	0.772	0.835	0.896	0.956	1.016	1.074	1.132	1.190
122	0.820	0.377	0.452	0.524	0.594	0.663	0.729	0.794	0.859	0.922	0.984	1.045	1.105	1.165	1.223
124	0.851	0.387	0.465	0.539	0.611	0.681	0.750	0.817	0.883	0.947	1.011	1.074	1.136	1.197	1.258
126	0.882	0.398	0.477	0.554	0.628	0.700	0.770	0.839	0.907	0.973	1.039	1.104	1.167	1.230	1.292
128	0.914	0.409	0.490	0.569	0.645	0.719	0.791	0.862	0.932	1.000	1.067	1.133	1.199	1.264	1.327
130	0.946	0.420	0.504	0.584	0.662	0.738	0.812	0.885	0.956	1.027	1.096	1.164	1.231	1.297	1.363
132	0.979	0.431	0.517	0.599	0.679	0.757	0.834	0.908	0.982	1.054	1.124	1.194	1.263	1.331	1.399
134	1.013	0.442	0.530	0.615	0.697	0.777	0.855	0.932	1.007	1.081	1.154	1.225	1.296	1.366	1.435
136	1.047	0.453	0.544	0.631	0.715	0.797	0.877	0.956	1.033	1.108	1.183	1.256	1.329	1.401	1.472
138	1.082	0.465	0.557	0.646	0.733	0.817	0.899	0.980	1.059	1.136	1.213	1.288	1.362	1.436	1.508

	One way						Tw	o way vo	lume tab	ole					
GBH	volume table					V	olume i	n cubic n	neter for	height o	f				
(cm)	Volume (cum)	8	10	12	14	16	18	20	22	24	26	28	30	32	34
140	1.118	0.476	0.571	0.662	0.751	0.837	0.921	1.004	1.085	1.164	1.243	1.320	1.396	1.471	1.546
142	1.154	0.488	0.585	0.679	0.769	0.858	0.944	1.028	1.111	1.193	1.273	1.352	1.430	1.507	1.584
144	1.191	0.500	0.599	0.695	0.788	0.878	0.966	1.053	1.138	1.221	1.304	1.385	1.465	1.544	1.622
146	1.228	0.511	0.613	0.711	0.806	0.899	0.989	1.078	1.165	1.250	1.335	1.417	1.499	1.580	1.660
148	1.267	0.523	0.628	0.728	0.825	0.920	1.013	1.103	1.192	1.280	1.366	1.451	1.534	1.617	1.699
150	1.305	0.535	0.642	0.745	0.844	0.941	1.036	1.129	1.220	1.309	1.397	1.484	1.570	1.654	1.738
152	1.345	0.548	0.657	0.762	0.864	0.963	1.060	1.154	1.247	1.339	1.429	1.518	1.606	1.692	1.778
154	1.385	0.560	0.671	0.779	0.883	0.984	1.083	1.180	1.275	1.369	1.461	1.552	1.642	1.730	1.818
156	1.426	0.572	0.686	0.796	0.903	1.006	1.107	1.206	1.304	1.399	1.494	1.586	1.678	1.768	1.858
158	1.467	0.585	0.701	0.814	0.922	1.028	1.132	1.233	1.332	1.430	1.526	1.621	1.715	1.807	1.899
160	1.509	0.598	0.717	0.831	0.942	1.050	1.156	1.259	1.361	1.461	1.559	1.656	1.752	1.846	1.940
162	1.552	0.610	0.732	0.849	0.962	1.073	1.181	1.286	1.390	1.492	1.592	1.691	1.789	1.886	1.981
164	1.595	0.623	0.747	0.867	0.983	1.095	1.206	1.313	1.419	1.524	1.626	1.727	1.827	1.925	2.023
166	1.639	0.636	0.763	0.885	1.003	1.118	1.231	1.341	1.449	1.555	1.660	1.763	1.865	1.965	2.065
168	1.684	0.649	0.778	0.903	1.024	1.141	1.256	1.368	1.479	1.587	1.694	1.799	1.903	2.006	2.107
170	1.730	0.662	0.794	0.921	1.044	1.164	1.281	1.396	1.509	1.619	1.728	1.836	1.942	2.047	2.150
172	1.776	0.676	0.810	0.940	1.065	1.188	1.307	1.424	1.539	1.652	1.763	1.873	1.981	2.088	2.193
174	1.822	0.689	0.826	0.958	1.087	1.211	1.333	1.452	1.570	1.685	1.798	1.910	2.020	2.129	2.237
176	1.870	0.703	0.843	0.977	1.108	1.235	1.359	1.481	1.600	1.718	1.833	1.947	2.060	2.171	2.281
178	1.918	0.716	0.859	0.996	1.129	1.259	1.386	1.510	1.631	1.751	1.869	1.985	2.100	2.213	2.325
180	1.967	0.730	0.875	1.015	1.151	1.283	1.412	1.539	1.663	1.785	1.905	2.023	2.140	2.255	2.369
182	2.016	0.744	0.892	1.035	1.173	1.307	1.439	1.568	1.694	1.818	1.941	2.061	2.180	2.298	2.414
184	2.066	0.758	0.909	1.054	1.195	1.332	1.466	1.597	1.726	1.853	1.977	2.100	2.221	2.341	2.460
186	2.117	0.772	0.925	1.073	1.217	1.357	1.493	1.627	1.758	1.887	2.014	2.139	2.263	2.385	2.505
188	2.169	0.786	0.942	1.093	1.239	1.381	1.520	1.657	1.790	1.921	2.051	2.178	2.304	2.428	2.551
190	2.221	0.800	0.960	1.113	1.262	1.407	1.548	1.687	1.823	1.956	2.088	2.218	2.346	2.472	2.597
192	2.274	0.815	0.977	1.133	1.284	1.432	1.576	1.717	1.855	1.991	2.125	2.258	2.388	2.517	2.644
194	2.327	0.829	0.994	1.153	1.307	1.457	1.604	1.747	1.888	2.027	2.163	2.298	2.430	2.561	2.691
196	2.382	0.844	1.012	1.173	1.330	1.483	1.632	1.778	1.922	2.062	2.201	2.338	2.473	2.606	2.738
198	2.437	0.858	1.029	1.194	1.353	1.509	1.660		1.955					2.652	2.786
200	2.492	0.873	1.047	1.214	1.377	1.535	1.689	1.840	1.989	2.135	2.278	2.420	2.560	2.698	2.834
202	2.549	0.888	1.065	1.235	1.400	1.561	1.718	1.872	2.023	2.171	2.317	2.461	2.603	2.744	2.882
204	2.606	0.903	1.083	1.256	1.424	1.587	1.747	1.903	2.057	2.208	2.356	2.503	2.647	2.790	2.931
206	2.664	0.918	1.101	1.277	1.448	1.614	1.776	1.935	2.091	2.244	2.396	2.544	2.691	2.836	2.980
208	2.722	0.933	1.119	1.298	1.472	1.640	1.805	1.967	2.126	2.282	2.435	2.587	2.736	2.883	3.029
210	2.781	0.949	1.137	1.319	1.496	1.667	1.835	1.999	2.161	2.319	2.475	2.629	2.781	2.931	3.079
212	2.841	0.964	1.156	1.341	1.520	1.694	1.865	2.032	2.196	2.357	2.515	2.672	2.826	2.978	3.129
214	2.902	0.979	1.175	1.362	1.544	1.722	1.895	2.064	2.231	2.395	2.556	2.715	2.871	3.026	3.179
216	2.963	0.995	1.193	1.384	1.569	1.749	1.925	2.097	2.266	2.433	2.596	2.758	2.917	3.074	3.230
218	3.025	1.011	1.212	1.406	1.594	1.777	1.955	2.130	2.302	2.471	2.637	2.801	2.963	3.123	3.281
220	3.088	1.027	1.231	1.428	1.619	1.804	1.986	2.164	2.338	2.510	2.679	2.845	3.010	3.172	3.332
222	3.151	1.043	1.250	1.450	1.644	1.832	2.017	2.197	2.374	2.549	2.720	2.889	3.056	3.221	3.384

Table 43. Conversion factor to estimate the underbark volumes to different top end girth of Rajkoroi (Albizia richardiana King and Prain)

GBH (cm)	$\mathbf{F_{UB}}$	F_{30}	F ₃₅	F_{40}	F ₄₅	FBranches
40	0.878	0.668	0.613	0.537	0.457	0.108
42	0.881	0.754	0.675	0.598	0.472	0.115
44	0.884	0.762	0.684	0.609	0.488	0.122
46	0.887	0.770	0.693	0.620	0.503	0.129
48	0.890	0.777	0.703	0.630	0.518	0.136
50	0.892	0.785	0.712	0.641	0.533	0.142
52	0.894	0.793	0.721	0.651	0.548	0.149
54	0.897	0.800	0.730	0.662	0.562	0.156
56	0.899	0.807	0.739	0.672	0.576	0.162
58	0.900	0.815	0.748	0.682	0.590	0.169
60	0.902	0.822	0.757	0.692	0.604	0.175
62	0.904	0.829	0.766	0.702	0.617	0.181
64	0.905	0.836	0.775	0.712	0.630	0.188
66	0.907	0.844	0.784	0.722	0.643	0.194
68	0.908	0.851	0.792	0.732	0.656	0.200
70	0.910	0.857	0.801	0.742	0.669	0.206
72	0.911	0.864	0.809	0.752	0.681	0.212
74	0.912	0.871	0.818	0.761	0.693	0.218
76	0.913	0.878	0.826	0.771	0.705	0.224
78	0.914	0.885	0.834	0.780	0.716	0.230
80	0.916	0.891	0.842	0.789	0.718	0.235
82	0.917	0.898	0.850	0.799	0.739	0.241
84	0.917	0.898	0.858	0.799	0.750	0.247
86	0.917	0.904	0.866	0.808	0.760	0.247
88	0.918	0.917	0.874	0.817	0.771	0.258
90	0.919	0.917	0.882	0.835	0.771	0.263
90	0.920	0.924	0.890	0.833	0.781	0.269
94	0.921	0.924	0.898		0.791	0.209
	0.922			0.853		
96 98		0.924	0.898	0.861	0.810	0.279 0.284
	0.923	0.924	0.898	0.870	0.819	
100	0.924	0.924	0.898	0.878	0.828	0.290
102	0.925	0.924	0.898	0.887	0.837	0.295
104	0.925	0.924	0.898	0.887	0.846	0.300
106	0.926	0.924	0.898	0.887	0.854	0.305
108	0.927	0.924	0.898	0.887	0.862	0.309
110	0.927	0.924	0.898	0.887	0.870	0.314
112	0.928	0.924	0.898	0.887	0.870	0.319
114	0.928	0.924	0.898	0.887	0.870	0.324
116	0.929	0.924	0.898	0.887	0.870	0.328
118	0.930	0.924	0.898	0.887	0.870	0.333
120	0.930	0.924	0.898	0.887	0.870	0.337
122	0.931	0.924	0.898	0.887	0.870	0.342
124	0.931	0.924	0.898	0.887	0.870	0.346
126	0.932	0.924	0.898	0.887	0.870	0.350
128	0.932	0.924	0.898	0.887	0.870	0.355
130	0.932	0.924	0.898	0.887	0.870	0.359
132	0.933	0.924	0.898	0.887	0.870	0.363
134	0.933	0.924	0.898	0.887	0.870	0.367
136	0.934	0.924	0.898	0.887	0.870	0.371
138	0.934	0.924	0.898	0.887	0.870	0.375
140	0.935	0.924	0.898	0.887	0.870	0.379
142	0.935	0.924	0.898	0.887	0.870	0.383

GBH (cm)	F_{UB}	F ₃₀	F ₃₅	F ₄₀	F ₄₅	FBranches
144	0.935	0.924	0.898	0.887	0.870	0.386
146	0.936	0.924	0.898	0.887	0.870	0.390
148	0.936	0.924	0.898	0.887	0.870	0.394
150	0.937	0.924	0.898	0.887	0.870	0.397
152	0.937	0.924	0.898	0.887	0.870	0.401
154	0.937	0.924	0.898	0.887	0.870	0.404
156	0.938	0.924	0.898	0.887	0.870	0.407
158	0.938	0.924	0.898	0.887	0.870	0.411
160	0.938	0.924	0.898	0.887	0.870	0.414
162	0.939	0.924	0.898	0.887	0.870	0.417
164	0.939	0.924	0.898	0.887	0.870	0.420
166	0.939	0.924	0.898	0.887	0.870	0.423
168	0.940	0.924	0.898	0.887	0.870	0.426
170	0.940	0.924	0.898	0.887	0.870	0.429
172	0.940	0.924	0.898	0.887	0.870	0.432
174	0.941	0.924	0.898	0.887	0.870	0.435
176	0.941	0.924	0.898	0.887	0.870	0.437
178	0.941	0.924	0.898	0.887	0.870	0.440
180	0.941	0.924	0.898	0.887	0.870	0.443
182	0.942	0.924	0.898	0.887	0.870	0.445
184	0.942	0.924	0.898	0.887	0.870	0.448
186	0.942	0.924	0.898	0.887	0.870	0.450
188	0.943	0.924	0.898	0.887	0.870	0.452
190	0.943	0.924	0.898	0.887	0.870	0.455
192	0.943	0.924	0.898	0.887	0.870	0.457
194	0.943	0.924	0.898	0.887	0.870	0.459
196	0.944	0.924	0.898	0.887	0.870	0.461
198	0.944	0.924	0.898	0.887	0.870	0.463
200	0.944	0.924	0.898	0.887	0.870	0.465
202	0.944	0.924	0.898	0.887	0.870	0.467
204	0.945	0.924	0.898	0.887	0.870	0.469
206	0.945	0.924	0.898	0.887	0.870	0.471
208	0.945	0.924	0.898	0.887	0.870	0.472
210	0.945	0.924	0.898	0.887	0.870	0.474
212	0.946	0.924	0.898	0.887	0.870	0.476
214	0.946	0.924	0.898	0.887	0.870	0.477
216	0.946	0.924	0.898	0.887	0.870	0.479
218	0.946	0.924	0.898	0.887	0.870	0.480
220	0.946	0.924	0.898	0.887	0.870	0.481