

Aprendizado de Máquina Aula 5.2 - Outras tarefas de classificação

Adriano Rivolli

rivolli@utfpr.edu.br

Especialização em Inteligência Artificial

Universidade Tecnológica Federal do Paraná (UTFPR) Câmpus Cornélio Procópio Departamento de Computação

Conteúdo

- 1 Classificação Hierárquica
- 2 Classificação Multirrótulo

Classificação Hierárquica

Classificação hierárquica

- Nesta tarefa as classes estão organizadas de modo hierárquico
 - Taxonomia
 - Ontologia
- Há uma relação <mark>é-um</mark> entre as classes
 - Classificação biológica dos seres vivos
 - Áreas do conhecimento (sistema CAPES)
 - Categorias e subcategorias

Exemplo de taxonomia

Como explorar a estrutura das classes

- Classificadores local (top down)
 - Usa um conjunto de modelos
 - Existem diferentes abordagens para organizá-los
- Global
 - Um único modelo considera toda a hierarquia de classes
- Ignorar a hierarquia (*Flat*)
 - Normalmente considera apenas as folhas

Usando apenas as folhas

Classificação Flat

- Simples de implementar
- Pode usar um classificador multi-classe ou vários classificadores binários
- Ignora a hierarquia das classes

Global

Classificação Global

- Preserva as restrições naturais dos relacionamentos das classes
- Há um único modelo, que pode ser complexo
- Não pode ser incremental
- Completamente dependente da estrutura

Local por nó (LCN)

Local por nó pai (LCPN)

Local por nível (level) (LCL)

Classificação Local

- Simples e naturalmente multirrótulo
- Utiliza um classificador binário para cada modelo
- Grande número de classificadores
- Está sujeito a inconsistências

Tipos de erros

Fonte: Kosmopoulos, A. et. al., 2015. Evaluation measures for hierarchical classification: a unified view and novel approaches. Data Mining and Knowledge Discovery.

×

Classificação Multirrótulo

Classificação Multirrótulo (multi-label)

- A predição não é restrita a uma única classe
 - Neste contexto a classe é chamado rótulo (label)
- É possível explorar a relação/dependência dos rótulos
- Neste contexto os rótulos possuem a mesma importância (estão no mesmo nível)

Características dos dados

- Cardinalidade
 - O número médio de rótulos por instância
- Densidade
 - A cardinalidade dividido pelo número de rótulos
- Diversidade
 - A proporção de combinações distintas dos rótulos em relação ao número de instâncias

Exemplo

Instance	Label Set
1	$\{\lambda_2,\lambda_3\}$
2	$\{\lambda_1\}$
3	$\{\lambda_1,\lambda_2,\lambda_3\}$
4	$\{\lambda_2,\lambda_4\}$

■ Cardinalidade: 2

■ Densidade: 0.5

■ Diversidade: 1

2

Tarefas Multirrótulos

- Classificação
 - ▶ Define quais rótulos pertencem a uma instância
- Ranqueamento
 - ▶ Define qual a ordem os rótulos devem ser organizados
- Ranqueamento da classificação
 - Define quais rótulos pertencem a uma instância e qual a ordem de relevância destes rótulos

Abordagens

- Transformação do problema
 - ► Ajusta os dados para usar os algoritmos tradicionais
- Adaptação do algoritmo
 - Ajusta os algoritmos para se adaptar aos dados com múltiplos rótulos

Métodos de transformação

- Binary Relevance
- Classifier Chains / Ensemble of Classifier Chains
- Stacking (BR+, DBR, Meta-BR)
- HOMER (hierárquico)
- Random k-Label-set (multi-classe)

Fonte: Rivolli, A. et. al., 2020. An empirical analysis of binary transformation strategies and base algorithms for multi-label learning. Machine Learning.

Binary Relevance

1	Mul	tirrótulo
1	Attr	Rótulos
1	X_1	A, B, C
\prod	X_2	Α
П	<i>X</i> ₃	B, C
\prod	X_4	B, C
	<i>X</i> ₅	A, B
П	X_6	A, C
\prod	X ₇	Ċ

Rótulo A			
Attr	Classe	0	
X_1	1		
X ₂	1		
<i>X</i> ₃	0		
$ X_{\Delta}$	0		
X ₅	1		
<i>X</i> ₆	1		
X_7	0	Ī	

Rótulo B				
Attr	Classe			
X_1 X_2	1	1		
X_2	0			
<i>X</i> ₃	1			
<i>X</i> ₄	1]		
<i>X</i> ₅	1	1		
X ₆	0]		
X ₇	0	1		

Rótulo C			
Attr	Classe		
X_1	1		
X_2	0		
<i>X</i> ₃	1		
X_4	1		
X_5	0		
<i>X</i> ₆	1		
X ₇	1		

Medidas de avaliação

- Baseados em exemplos
 - Acerto parcial / acerto completo / top-k
- Baseados em rótulos
 - ► Macro / micro
- Para a tarefa de classificação
 - Medidas tradicionais
- Para a tarefa de ranqueamento
 - Medidas de qualidade do ranqueamento

×