Artificial Intelligence MSc

– Exam Sample Answers –

Werner Nutt 2002/2003

Answers 1: Propositional Logic

(a)

A formula is

- satisfiable if there is a truth assignment that makes it true;

(1 Point)

- falsifiable if there is a truth assignment that makes it false;

(1 Point)

- unsatisfiable if every truth assignment makes it false;

(1 Point)

- valid if every truth assignment makes it true.

(1 Point)

(b)

- (i) Below are the truth tables for the three formulas
 - 1. $p \land \neg q$

p	q	$\neg q$	$p \land \neg q$
F	F	T	F
F	Т	F	F
Т	F	T	T
T	Т	F	F

(1 Point)

2. $p \land \neg p$

p	$\neg p$	$p \land \neg p$
F	T	F
T	F	F

(1 Point)

3. $(p \land \neg p) \rightarrow (p \lor q)$

p	q	$p \land \neg p$	$p \lor q$	$(p \land \neg p) \to (p \lor q)$
F	F	F	F	T
F	Т	F	Т	Т
Т	F	F	Т	Т
Т	Т	F	Т	Т

(1 Point)

- (ii) Based on the truth tables, we find that the formulas have the following properties
 - 1. $p \wedge \neg q$: satisfiable, falsifiable, not unsatisfiable, not valid

(1 Point)

2. $p \wedge \neg p$: not satisfiable, falsifiable, unsatisfiable, not valid

(1 Point)

3. $(p \land \neg p) \rightarrow (p \lor q)$: satisfiable, not falsifiable, not unsatisfiable, valid

(1 Point)

(c)

(i) We let the proposition ${\tt s}$ stand for "the sun shines", ${\tt h}$ for "we go for a hike", ${\tt m}$ for "we go to the museum".

Then we can write the four sentences as follows:

$$S_1$$
: $s \to h$

(1 Point)

$$S_2$$
: $\neg h \rightarrow m$

(1 Point)

$$C_1 \colon \neg \mathtt{m} \to \mathtt{s}$$

(1 Point)

$$C_2$$
: $(s \lor \neg m) \to h$

(1 Point)

- (ii) One can check either one of the following
 - $-(S_1 \wedge S_2) \to C$ is valid
 - $-\neg (S_1 \wedge S_2) \wedge \neg C$ is unsatisfiable

(2 Points)

(iii) We check whether $F = (S_1 \wedge S_2) \to C_1$ is valid. To this end, we set up a truth table for

$$F = ((\mathtt{s} \to \mathtt{h}) \land (\lnot\mathtt{h} \to \mathtt{m})) \to (\lnot\mathtt{m} \to \mathtt{s})$$

S	h	m	$\mathtt{s} o \mathtt{h}$	$\neg h \to m$	$(\mathtt{s} \to \mathtt{h}) \land (\neg \mathtt{h} \to \mathtt{m})$	$\neg \mathtt{m} \to \mathtt{s}$	F
F	F	F	Т	F	F	F	T
F	F	T	Т	T	Т	T	T
F	Т	F	Т	T	T	F	F
F	Т	Т	Т	T	T	T	Т
Т	F	F	F	F	F	T	Т
Т	F	Т	F	T	F	T	Т
Т	Т	F	Т	T	T	T	Т
Т	Т	Т	Т	Т	Т	T	T

The third line has the truth value F. Therefore, F is not valid and C_1 does not follow from S_1 and S_2 .

(4 Points)

(iv) We check whether $F = (S_1 \wedge S_2) \to C_2$ is valid. That is, whether

$$F = ((\mathtt{s} \to \mathtt{h}) \land (\lnot\mathtt{h} \to \mathtt{m})) \to ((\mathtt{s} \lor \lnot\mathtt{m}) \to \mathtt{h})$$

is valid.

This can be checked using a truth table. It can also be checked using equivalence transformations if we transform F into T.

First, we apply $\neg p \to q \equiv \neg q \to p$ to $\neg h \to m$. This yields

$$F \equiv ((\mathtt{s} \to \mathtt{h}) \land (\neg \mathtt{m} \to \mathtt{h})) \to ((\mathtt{s} \lor \neg \mathtt{m}) \to \mathtt{h})$$

Then we apply $p \to q \equiv \neg p \lor q$, which yields

$$F \equiv ((\neg \mathtt{s} \vee \mathtt{h}) \wedge (\neg \neg \mathtt{m} \vee \mathtt{h})) \rightarrow (\neg (\mathtt{s} \vee \neg \mathtt{m}) \vee \mathtt{h})$$

Then we apply $\neg(p \lor q) \equiv \neg p \land \neg q$, which yields

$$F \equiv ((\neg \mathtt{s} \vee \mathtt{h}) \wedge (\neg \neg \mathtt{m} \vee \mathtt{h})) \rightarrow ((\neg \mathtt{s} \wedge \neg \neg \mathtt{m}) \vee \mathtt{h})$$

Then we apply the distributive law $(p \land q) \lor r \equiv (p \lor r) \land (p \lor r)$, which yields

$$F \equiv ((\neg s \vee h) \wedge (\neg \neg m \vee h)) \rightarrow ((\neg s \vee h) \wedge (\neg \neg m \vee h))$$

Then we apply $p \to p \equiv T$, which yields

$$F \equiv T$$

(5 Points)

Answers 2: Resolution and Prolog

(a)

The steps are

- eliminate implications using the equivalence $p \to q \equiv \neg p \lor q$;
- push negations downward using using De Morgan's laws $\neg(p \land q) \equiv \neg p \lor \neg q, \neg(p \lor q) \equiv \neg p \land \neg q$ and the double negation law $\neg \neg p \equiv p$;
- push disjunctions downward using the distributive law $p \lor (q \land r) \equiv (p \land q) \lor (p \land r)$ and the identity laws $p \lor \neg p \equiv T$ and $T \lor p \equiv T$.

(3 Points)

(b)

The conjunctive normal forms can be derived as follows:

(i)

$$\neg(a \to (b \lor c)) \land (b \to (a \land c))$$

$$\equiv \neg(\neg a \lor (b \lor c)) \land (\neg b \lor (a \land c))$$

$$\equiv (\neg \neg a \land \neg(b \lor c)) \land (\neg b \lor (a \land c))$$

$$\equiv (a \land (\neg b \land \neg c)) \land (\neg b \lor (a \land c))$$

$$\equiv (a \land \neg b \land \neg c \land (\neg b \lor a) \land (\neg b \lor c))$$

(3 Points)

(ii)

$$(a \land (a \rightarrow b)) \rightarrow b$$

$$\equiv \neg (a \land (\neg a \lor b)) \lor b$$

$$\equiv (\neg a \lor \neg (\neg a \lor b)) \lor b$$

$$\equiv (\neg a \lor (\neg \neg a \land \neg b)) \lor b$$

$$\equiv (\neg a \lor (a \land \neg b)) \lor b$$

$$\equiv ((\neg a \lor a) \land (\neg a \lor \neg b)) \lor b$$

$$\equiv ((\neg a \lor a \lor b) \land (\neg a \lor \neg b \lor b))$$

$$\equiv ((\mathsf{T} \lor b) \land (\neg a \lor \mathsf{T}))$$

$$\equiv \mathsf{T} \land \mathsf{T} \equiv \mathsf{T}$$

(5 Points)

(c)

(i) We let the proposition v stand for "Joe has made a vacation trip", t for "Joe has got a tan", m for "Joe was in the mountains", b for "Joe was at the beach".

This information can be captured in the formula:

$$(\mathtt{v} \to \mathtt{b} \lor \mathtt{m}) \land (\neg \mathtt{t} \to \neg \mathtt{b}) \land (\mathtt{m} \to \mathtt{t}) \land \neg \mathtt{t}$$

(2 Points)

(ii) The conjunctive normal form of that formula is

$$(\neg v \lor b \lor m) \land (t \lor \neg b) \land (\neg m \lor t) \land \neg t$$

(1 Point)

(iii) We write the above formula as a collection of clauses and apply resolution:

We have derived the clause $\neg v$. Hence, Joe has not made a vacation trip.

(2 Points)

(iv) Since resolution is a sound inference rule, all the clauses we have derived represent logical consequences of our original information.

(1 Point)

(d)

The predicates can be defined as follows

```
mother(X) :- female(X), parent(X,Y).
brother(X,Y) :- parent(X,Z), parent(Y,Z), male(X).
uncle(X,Y) :- brother(X,Z), parent(Z,Y).
granddaughter(X,Y) :- parent(Y,Z), parent(Z,X), female(X).
(8 Points)
```