Zusammenfassung Stochastik I

© M Tim Baumann, http://timbaumann.info/uni-spicker

Der abstrakte Maßbegriff

Definition. Eine **Ereignisalgebra** oder **Boolesche Algebra** ist eine Menge $\mathfrak A$ mit zweistelligen Verknüpfungen \wedge ("und") und \vee ("oder"), einer einstelligen Verknüpfung $\overline{}$ (Komplement) und ausgezeichneten Elementen $U \in \mathfrak A$ (unmögliches Ereignis) und $S \in \mathfrak A$ (sicheres Ereignis), sodass für $A, B, C \in \mathfrak A$ gilt:

i. $A \wedge A = A$	vii. $A \lor A = A$
ii. $A \wedge B = B \wedge A$	viii. $A \lor S = S$
iii. $A \wedge S = A$	ix. $A \lor U = A$
iv. $A \wedge U = U$	$x. \ A \vee \overline{A} = S$
v. $A \wedge \overline{A} = U$	xi. $A \lor (B \lor C) = (A \lor B) \lor C$
vi. $A \wedge (B \wedge C) = (A \wedge B) \wedge C$	xii. $A \wedge (B \vee C) = (A \wedge B) \vee (A \wedge C)$

Definition. Sei A eine Boolesche Algebra. Dann definiert

$$A < B$$
: $\iff A \land B = B$

eine Partialordnung auf \mathfrak{A} , gesprochen A impliziert B.

Definition. Eine Algebra (auch Mengenalgebra) $\mathfrak{A} \subset \mathcal{P}(\Omega)$ ist ein System von Teilmengen einer Menge Ω mit $\emptyset \in \mathfrak{A}$, das unter folgenden Operationen stabil ist:

- Vereinigung: $A, B \in \mathfrak{A} \implies A \cup B \in \mathfrak{A}$
- Durchschnitt: $A, B \in \mathfrak{A} \implies A \cap B \in \mathfrak{A}$
- Komplementbildung: $A \in \mathfrak{A} \implies A^c := \Omega \backslash A \in \mathfrak{A}$

Satz (Isomorphiesatz von Stone). Zu jeder Booleschen Algebra $\mathfrak A$ gibt es eine Menge Ω derart, dass $\mathfrak A$ isomorph zu einer Mengenalgebra $\mathfrak A$ in $\mathcal P(\Omega)$ ist.

Definition. Eine σ -Algebra ist eine Algebra $\mathfrak{A} \subset \mathcal{P}(\Omega)$, die nicht nur unter endlichen, sondern sogar unter abzählbaren Vereinigungen stabil ist, d. h.

$$(A_n)_{n\in\mathbb{N}}$$
 Folge in $\mathfrak{A} \implies \bigcup_{n=0}^{\infty} A_n \in \mathfrak{A}$.

Bemerkung. Es gilt damit:

- $\Omega = \emptyset^c \in \mathfrak{A}$
- Abgeschlossenheit unter abzählbaren Schnitten:

$$(A_n)_{n\in\mathbb{N}}$$
 Folge in $\mathfrak{A}\implies\bigcap_{n=0}^\infty A_n=\left(\bigcup_{n=0}^\infty (A_n)^c\right)^c\in\mathfrak{A}.$

Definition. Sei $(A_n)_{n\in\mathbb{N}}$ eine Folge in einer σ -Algebra \mathfrak{A} . Dann sind der Limes Superior und Limes Inferior der Folge A_n wie folgt definiert:

$$\limsup_{n \to \infty} A_n := \bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_n \in \mathfrak{A}$$
$$\liminf_{n \to \infty} A_n := \bigcup_{n=1}^{\infty} \bigcap_{m=n}^{\infty} A_n \in \mathfrak{A}$$

Bemerkung. In einer σ -Algebra, in der die Mengen mögliche Ereignisse beschreiben, ist der Limes Superior das Ereignis, das eintritt, wenn unendlich viele Ereignisse der Folge A_n eintreten. Der Limes Infinum tritt genau dann ein, wenn alle bis auf endlich viele Ereignisse der Folge A_n eintreten.

Definition. Ein Ring $\mathfrak{A} \subset \mathcal{P}(\Omega)$ ist ein System von Teilmengen einer Menge Ω mit $\emptyset \in \mathfrak{A}$, das unter folgenden Operation stabil ist:

- Vereinigung: $A, B \in \mathfrak{A} \implies A \cup B \in \mathfrak{A}$
- Differenz: $A, B \in \mathfrak{A} \implies B \setminus A = B \cap A^c \in \mathfrak{A}$

Ein Ring, der nicht nur unter endlicher, sondern sogar unter abzählbarer Vereinigung stabil ist, heißt σ -Ring.

Bemerkung. $\mathfrak{A}(\sigma)$ Algebra $\iff \mathfrak{A}(\sigma)$ Ring und $\Omega \in \mathfrak{A}$.

Satz. Sei $(\mathfrak{A}_i)_{(i\in I)}$ eine Familie von $(\sigma$ -) Ringen / $(\sigma$ -) Algebren über einer Menge Ω . Dann ist auch $\cup_{i\in I}\mathfrak{A}_i$ ein $(\sigma$ -) Ring / eine $(\sigma$ -) Algebra über Ω .

Satz. Sei \Re ein Ring und μ ein Inhalt. Es gelten für $n \in \mathbb{N}$ und $A_1, ..., A_n \in \Re$ die Ein- und Ausschlussformeln

$$\mu(A_1 \cup ... \cup A_n) = \sum_{k=1}^n (-1)^{k-1} \sum_{1 \le i_1 < ... < i_k \le n} \mu(A_{i_1} \cap ... \cap A_{i_k}),$$

$$\mu(A_1 \cap \dots \cap A_n) = \sum_{k=1}^n (-1)^{k-1} \sum_{1 \le i_1 < \dots < i_k \le n} \mu(A_{i_1} \cup \dots \cup A_{i_k}).$$

Satz. Sei $A_1, A_2, ...$ eine Zerlegung von Ω und $B \in \mathfrak{A}$. Dann gilt

$$\mathbb{P}(B) = \sum_{n=1}^{\infty} \mathbb{P}(B \mid A_n) \mathbb{P}(A_n) \quad \text{(Formel der totalen Wkt.)}$$

$$\mathbb{P}(A_n \mid B) = \frac{\mathbb{P}(B \mid A_n) \cdot \mathbb{P}(A_n)}{\mathbb{P}(B)} \quad \text{(Formel von Bayes)}$$

Definition. Zwei Ereignisse $A, B \in \mathfrak{A}$ heißen (stochastisch) (\mathbb{P} -)unabhängig, falls

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B).$$

Satz. A, B unabhängig $\iff \mathbb{P}(B \mid A) = \mathbb{P}(B)$.

Definition. Eine Familie $A_i)_{i\in I}\subset\mathfrak{A}$ (I endlich, abzählbar oder überabzählbar) heißt vollständig unabhhängig, falls

$$\mathbb{P}(A_{i_1} \cap A_{i_2} \cap \dots \cap A_{i_m}) = \mathbb{P}(A_{i_1}) \cdot \mathbb{P}(A_{i_2}) \cdots \mathbb{P}(A_{i_n})$$

für beliebige $i_1,...,i_n \in I, 2 \le n < \infty$ und paarweise unabh., falls

$$\mathbb{P}(A_i \cap A_j) = \mathbb{P}(A_i) \cdot \mathbb{P}(A_j) \text{ für } i, j \in I, i \neq j.$$

Achtung. Aus paarweiser Unabhängigkeit folgt nicht vollständige Unabhängigkeit (Gegenbeispiel: Bernsteins Tetraeder).

Definition. Sei $(\Omega, \mathfrak{A}, \mathbb{P})$ ein Wahrscheinlichkeitsraum und $\mathfrak{A}_1, \mathfrak{A}_2 \subset \mathfrak{A}$ zwei Ereignissysteme. Dann sind \mathfrak{A}_1 und \mathfrak{A}_2 unabhängig, falls $\mathbb{P}(A_1 \cap A_2) = \mathbb{P}(A_1) \cdot \mathbb{P}(A_2)$ für alle $A_1 \in \mathfrak{A}_1, A_2 \in \mathfrak{A}_2$.

Satz. Seien $\mathfrak{A}_1, \mathfrak{A}_2$ zwei unabhängige Ereignisalgebren. Dann sind die σ -Algebren $\tilde{\mathfrak{A}}_1 = \sigma(\mathfrak{A}_1)$ und $\tilde{\mathfrak{A}}_2 = \sigma(\mathfrak{A}_2)$ unabhängig.

Satz (von Lusin). $f:([a,b], \mathfrak{L}([a,b])) \to (\mathbb{R}^1, \mathfrak{L}(\mathbb{R}^1))$ ist Borel-messbar $\iff \forall \epsilon > 0: \exists K\epsilon \subset [a,b]$ abgeschlossen mit $\lambda_1(\mathbb{R}^1 \setminus K_{\epsilon})$ und $f|_{K_{\epsilon}}$ stetig.

Satz. Folgerung: Es sind messbar

- monotone Funktionen
- Funktionen mit endlicher Variation
- Càdlàg-Funktionen, das sind Funktionen $f:[a,b]\to\mathbb{R}$ mit $\lim_{\epsilon \downarrow 0} f(x+\epsilon) = f(x)$ für alle $x\in [a,b[$.

Lemma (Borel-Cantelli). Sei $(A_n)_{n\in\mathbb{N}}$ eine Folge von Ereignissen über $(\Omega,\mathfrak{A},\mathbb{P})$. Dann gilt für $A=\limsup$

$$\sum_{n=1}^{\infty} \mathbb{P}(A_n) < \infty \implies \mathbb{P}(A) = 0.$$

Falls die Ereignisse $(A_n)_{n\in\mathbb{N}}$ unabhängig sind, so gilt

$$\sum_{n=1}^{\infty} \mathbb{P}(A_n) = \infty \implies \mathbb{P}(A) = 1.$$

Definition. Sei $(\mathfrak{A}_n)_{n\in\mathbb{N}}$ Folge von σ -Algebren über Ω . Dann ist

$$\mathcal{T}_{\infty} = \bigcap_{n=1}^{\infty} \mathcal{T}_n \quad \text{mit} \quad \mathcal{T}_n := \sigma \left(\bigcup_{k=n}^{\infty} \mathfrak{A}_k \right)$$

die terminale σ -Algebra von $(\mathfrak{A}_n)_{n\in\mathbb{N}}$.

Satz (Null-Eins-Gesetz von Kolmogorow). Sei $(\mathfrak{A}_n)_{n\in\mathbb{N}}$ eine Folge von unabhängigen Unter- σ -Algebren in einem W-Raum $(\Omega,\mathfrak{A},\mathbb{P})$. Dann gilt $\mathbb{P}(A)\in\{0,1\}$ für alle Ereignisse $A\in\mathcal{T}_\infty$ der terminalen σ -Algebra.

Definition. Eine \mathfrak{A} -messbare numerische Funktion X über einem Wahrscheinlichkeitsraum $(\Omega, \mathfrak{A}, \mathbb{P})$ heißt **Zufallsgröße** (ZG) oder **Zufallsvarjable**.

Definition. Die durch die ZG X auf $(\mathbb{R}^1,\mathfrak{L}(\mathbb{R}^1))$ induzierte Bildmaß P_X

$$P_X(B) = \mathbb{P}(X^{-1}(B)) = \mathbb{P}(\{\omega \in \Omega \mid X(\omega) \in B\})$$

heißt Verteilung der ZG X.

$$F_X(x) = P_X(]-\infty, x]) = \mathbb{P}(\{\omega \in \Omega \mid X(\omega) \le x\})$$

heißt die Verteilungsfunktion (VF) der ZG X.

 ${\bf Satz.}\ F$ sei eine VF auf $\mathbb{R}^1.$ Dann existiert ein Wahrscheinlichkeits-Raum $(\Omega,\mathfrak{A},\mathbb{P}$ und eine ZG Xderart, dass

$$F_X(x) = F(x) \text{ für } x \in \mathbb{R}^1$$

Notation. Sei X eine Zufallsgröße und $B \in \mathfrak{L}(\overline{\mathbb{R}}^1)$. Dann schreibe

$${X \in B} = X^{-1}(B).$$

Definition. Eine endliche Familie von Zufallsgrößen $X_1, ..., X_n$ heißt stochastisch unabhängig, falls

$$\mathbb{P}(\bigcap_{i=1}^{n} \{X_i \in B_i\}) = \prod_{i=1}^{n} \mathbb{P}(\{X_i \in B_i\}) \text{ für alle } B_i \in \mathcal{L}(\overline{R}^1), i = 1, ..., n.$$

Satz. Seien $X_1,...,X_n$ unabhängige Zufallsgrößen über $(\Omega,\mathfrak{A},\mathbb{P})$ von $g_1,...,g_n$ Borel-messbare Funktionen von \mathbb{R}^1 nach \mathbb{R}^1 . Dann sind auch die Zufallsgrößen $Y_i := g_i \circ X_i$ unabhängig über $(\Omega,\mathfrak{A},\mathbb{P})$.

 $\begin{array}{l} \mathbf{Satz.} \ \, \mathrm{Sei} \ \, 0 \leq f_1 \leq f_2 \leq \dots \ \, \mathrm{eine} \ \, \mathrm{isotone} \ \, \mathrm{Folge} \ \, \mathrm{elementarer} \\ \mathrm{Funktionen} \ \, \mathrm{\ddot{u}ber} \ \, (\Omega,\mathfrak{A}). \ \, \mathrm{Dann} \ \, \mathrm{gilt} \ \, \mathrm{f\ddot{u}r} \ \, \mathrm{jede} \ \, \mathrm{elementare} \ \, \mathrm{Funktion} \ \, f \\ \mathrm{mit} \ \, f \leq \sup_{n \in \mathbb{N}} f_n \ \, \mathrm{die} \ \, \mathrm{Ungleichung} \ \, \int\limits_{\Omega} f \, \mathrm{d}\mu \leq \sup_{n \in \mathbb{N}} \int\limits_{\Omega} f_n \, \mathrm{d}\mu. \end{array}$

Satz. Seien $(f_n)_{n\in\mathbb{N}}$ und $(g_n)_{n\in\mathbb{N}}$ isotone Folgen elementarer Funktionen mit $\sup_{n\in\mathbb{N}} f_n = \sup_{n\in\mathbb{N}} g_n$. Dann ist $\sup_{n\in\mathbb{N}} \int f_n \,\mathrm{d}\mu = \sup_{n\in\mathbb{N}} \int g_n \,\mathrm{d}\mu$.

Satz. Sei $f:(\Omega,\mathfrak{A},\mu)\to(\overline{R}^1,\mathfrak{L}(\mathbb{R}^1))$ sein \mathfrak{A} -messbar, numerisch. Dann sind äquivalent:

- f ist μ -integrierbar
- f^+ und f^- sind μ -integrier bar mit $\int\limits_{\Omega}f^\pm\,\mathrm{d}\mu<\infty$
- $\int_{\Omega} |f| \, \mathrm{d}\mu < \infty$
- $\bullet \int\limits_{\Omega} g \, \mathrm{d}\mu < \infty$ für eine $\mathfrak{A}\text{-messbare},$ numerische Funktion mit $|f| \leq g$

Satz. Seien $f,g:(\Omega,\mathfrak{A},\mu)\to (\mathbb{R}^1,\mathfrak{L}(\mathbb{R}^1))$ μ -integrierbar. Dann sind $f\pm g,\ f\vee g,\ f\wedge g$ und $\alpha\cdot f$ für $\alpha\in\mathbb{R}^1$ μ -integrierbar und es gilt

$$\int_{\Omega} \alpha \cdot f + \beta \cdot g \, d\mu = \alpha \int_{\Omega} f \, d\mu + \beta \int_{\Omega} g \, d\mu, \quad \left| \int_{\Omega} f \, d\mu \right| \le \int_{\Omega} |f| \, d\mu,$$
$$f \le g \implies \int_{\Omega} f \, d\mu \le \int_{\Omega} g \, d\mu$$

Definition. Mit $L^p(\mu) = L^p(\Omega, \mathfrak{A}, \mu)$ bezeichnen wir den normierten Vektorraum der aus den Funktionen $f: (\Omega, \mathfrak{A}, \mu) \to (\mathbb{R}^1, \mathfrak{L}(\mathbb{R}^1))$ mit $\int\limits_{\Omega} |f|^p \, \mathrm{d}\mu < \infty$ für $1 \le p \le \infty$ besteht. Die Norm in diesem Raum wird durch

$$||f||_p := \left(\int_{\Omega} |f|^p \,\mathrm{d}\mu\right)^{1/p}$$

definiert. Es kann gezeigt werden, dass die Normeigenschaften erfüllt sind.

Bemerkung. Der $L^p(\mu)$ ist ein vollständiger normierter Raum, d.h. jede Cauchy-Folge bzgl. der Norm $\|\cdot\|_p$ ist auch konvergent. Im Spezialfall p=2 heißt $L^p(\mu)$ Hilbertraum der quadratisch integrierbaren Funktionen mit Skalarprodukt $\langle f,g\rangle=\int\limits_{\Omega}f\cdot g\,\mathrm{d}\mu$. Es

gilt in diesem Fall außerdem die Cauchy-Schwarz-Bunjakowski-Ungleichung:

$$||f \cdot g||_1 \le ||f||_2 \cdot ||g||_2$$

Höldersche Ungleichung:

$$||f \cdot g||_1 \le ||f||_p \cdot ||g||_q$$

wobei $p, q \in [1, \infty]$ mit $\frac{1}{p} + \frac{1}{q} = 1$.

Satz. Sei $f_n: (\Omega, \mathfrak{A}, \mu) \to (\mathbb{R}^1, \mathfrak{L}(\mathbb{R}^1))$ \mathfrak{A} -messbar und $0 \le f_1 \le f_2 \le \dots$ Dann gilt

$$\int_{\Omega} \sup_{n \in \mathbb{N}} f_n \, \mathrm{d}\mu = \sup_{n \in \mathbb{N}} \int_{\Omega} f_n \, \mathrm{d}\mu$$

Satz (von Beppo Levi). Sei $(f_n)_{n\in\mathbb{N}}$ eine Folge monotoner nichtnegativer, \mathfrak{A} -messbarer, numerischer Funktionen auf $(\Omega, \mathfrak{A}, \mu)$. Dann gilt:

$$\int_{\Omega} \sum_{n=1}^{\infty} f_n \, \mathrm{d}\mu = \sum_{n=1}^{\infty} \int_{\Omega} f_n \, \mathrm{d}\mu$$

Satz. f sei \mathfrak{A} -messbar, nichtnegativ und μ -integrierbar. Dann ist

$$\nu(A) := \int_A f \, \mathrm{d}\mu = \int_\Omega f \cdot \chi_A \, \mathrm{d}\mu$$

ein endliches Maß auf (Ω, \mathfrak{A}) .

Satz (Lemma von Fatou). Sei $f_n: (\Omega, \mathfrak{A}, \mu) \to (\mathbb{R}^1, \mathfrak{L}(\mathbb{R}^1))$ eine Folge \mathfrak{A} -messbarer, nichtnegativer Funktionen. Dann gilt:

$$\int_{\Omega} \liminf_{n \to \infty} f_n \, \mathrm{d}\mu \le \liminf_{n \to \infty} \int_{\Omega} f_n \, \mathrm{d}\mu$$

Satz. Seien $(\Omega, \mathfrak{A}, \mu)$ ein Maßraum, (Ω', \mathfrak{A}') ein messbarer Raum und $f: \Omega' \to \Omega$ messbar. Bezeichne mit $\mu' := \mu \circ f^{-1}$ das Bildmaß von μ unter f. Dann gilt für alle μ' -integrierbaren Funktionen $g: \Omega' \to \mathbb{R}$:

$$\int_{\Omega'} g \, \mathrm{d}\mu' = \int_{\Omega} g \circ f \, \mathrm{d}\mu$$

Satz (Transformations satz). Sei $U,\widetilde{U} \subseteq \mathbb{R}^d$ und sei $\phi: U \to \widetilde{U}$ ein \mathcal{C}^1 -Diffeomorphismus. Dann ist eine Funktion $f:\widetilde{U} \to \overline{\mathbb{R}}$ genau dann auf \widetilde{U} Lebesgue-Borel-integrierbar, wenn $(f \circ \phi) \cdot |\det(D\phi)| : U \to \overline{\mathbb{R}}$ auf U Lebesgue-Borel-interierbar ist. In diesem Fall gilt

$$\int\limits_{U} (f \circ \phi) \cdot |\mathrm{det}(D\phi)| \; \mathrm{d}\mu_{LB} = \int\limits_{\phi(U)} f \, \mathrm{d}\mu_{LB} = \int\limits_{\widetilde{U}} f \, \mathrm{d}\mu_{LB}.$$

Obige Gleichung ist auch erfüllt, wenn lediglich $f \geq 0$ gilt (also $f \in \overline{\mathbb{E}}(\widetilde{U}, \mathfrak{B}(\widetilde{U}))$; dann kann das Integral auch den Wert ∞ annehmen).

Definition. Für eine ZG $X:(\Omega,\mathfrak{A},\mathbb{P})\to(\overline{\mathbb{R}}^1,\mathcal{L}(\overline{\mathbb{R}}^1))$ heißt die Zahl

$$\mathbb{E}X := \int_{\Omega} X \, \mathrm{d}\mathbb{P} = \int_{\mathbb{R}^1} \mathrm{id} \, \mathrm{d}P_X$$

der Erwartungswert der ZG X, wobei $P_X = \mathbb{P} \circ X^{-1}$.

Korollar. Sei $g: \mathbb{R}^1 \to \mathbb{R}^1$ Borel-messbar und P_X -integrierbar. Dann gilt

$$\mathbb{E}g(X) = \int_{\mathbb{R}^1} g \, dP_X = \int_{-\infty}^{\infty} g(x) \, dF_X(x),$$

wobei das rechte Integral das uneigentliche Riemann-Stieltjes-Integral bzgl. F_X ist.

Definition. Für Zufallsvektoren $X=(X_1,...,X_k)$ mit Werten in \mathbb{R}^k ist

$$\mathbb{E}X = (\mathbb{E}X_1, ..., \mathbb{E}X_k)$$

Sei $g: \mathbb{R}^k \to \mathbb{R}$ Borel-messbar und $P_{(X_1, \dots, X_k)}$ -integrierbar. Dann ist

$$\mathbb{E}g(X_1,...,X_k) = \int_{\mathbb{R}^k} g(x_1,...) \, dP_{(X_1,...,X_k)} = \int_{-\infty}^{\infty} g(x_1,...,x_k) \, dF_X(x_1,...,x_k)$$

 $F = F_X$ sei die VF einer ZG $X : (\Omega, \mathfrak{A}, \mathbb{P}) \to (\mathbb{R}^1, \mathcal{L}(\mathbb{R}^1), P_X)$

Definition. • F_X heißt diskret, falls F_X höchstens abzählbar viele Sprünge $x_1, x_2, \ldots \in \mathbb{R}$ mit $p_k := F(x_k) - \lim_{x \uparrow x_k} F(x) > 0$ mit

$$\sum\limits_{k=1}^{\infty}p_k=1$$
besitzt (dann ist $F_X)$ zwischen den Sprüngen konstant) item

- F_X heißt stetig (diffus, atomlos), wenn F_X in jedem Punkt stetig ist. Dann gilt $P_X(\{X=x\})=0$.
- F_X heißt **absolut stetig** (totalstetig), wenn es für alle $\epsilon > 0$ ein $\delta > 0$ gibt, sodass für abzählbare viele, disjunkte Intervalle $I_k =]a_k, b_k]$ mit $\sum\limits_k (b_k a_k) < \delta$ sich $\sum\limits_k (F_X(b_k) F_X(a_k)) \le \epsilon$ ergibt.
- singulärstetig (stetig, aber nicht absolutstetig), wenn die Wachstumspunkte VF F_X eine Lebesgue-Nullmenge bilden, also

$$\lambda_1(\{x \in \mathbb{R}^2 \mid \forall \epsilon > 0 : F(x+\epsilon) - F(x-\epsilon) > 0\}) = 0$$

Satz. $F'_X(x)$ existiert für Lebesgue-fast-alle $x \in \mathbb{R}^1$.

Satz. Jede VF F auf \mathbb{R}^1 besitzt eine eindeutige Zerlegung (Lebesgue-Zerlegung) als konvexe Linearkombination einer diskreten, singulär-stetigen und absolut-stetigen VF:

$$F = \alpha_d F_d + \alpha_s F_s + \alpha_a F_a$$

mit $\alpha_d, \alpha_s, \alpha_a \ge 0$ und $\alpha_d + \alpha_s + \alpha_a = 1$.

Definition. Falls F_X absolut-stetig, dann heißt die nichtnegative, Lebesgue-messbare Funktion

$$ff_X(x) := \begin{cases} F_X'(x) & \text{falls Ableitung ex.} \\ 0 & \text{sonst,} \end{cases}$$
 welche $\int_{\mathbb{R}^1} f_X \, \mathrm{d}\lambda_1 = 1$ erfüllt, die W-Dichte von F_X .