练习3.2.1:

为下面的语言设计一个DFA或者NFA

1) 能被5整除的二进制数

设该DFA有5个状态,分别为\$S_0\$,\$S_1\$,\$S_2\$,\$S_3\$,\$S_4\$,分别表示除以5余数为0、1、2、3、4. 那么假设自二进制高位输入到DFA中,\$S_0\$为接受状态,DFA可以表示为:

2) 以a开头且以a结尾,中间由0个或多个a或b的实例构成的串

利用NFA构造,设该NFA有三个状态\$S_0\$,\$S_1\$,\$S_2\$,其中\$S_2\$为接受状态,则NFA可以表示为:

练习3.2.2:

s算法为:

```
S = \(\epsilon\)c = nextChar();

while(c!=\(\epsilon\)f

S = \(\epsilon\)-closure(move(S,c));

c = nextChar();
}

if(\(\S\)nF!=\(\varneta\)) return "yes";
else return "no";
```

对于该NFA, 首先有

```
S = \{0\}

F = \{3\}
```

那么模拟过程为:

```
c = nextChar() = a
S = \(\varepsilon\)-closure(move(S,c)) = \(\{0\), 1\}
c = nextChar() = a
S = \(\varepsilon\)-closure(move(S,c)) = \(\{0\), 1\}
c = nextChar() = b
S = \(\varepsilon\)-closure(move(S,c)) = \(\{0\), 2\}
c = nextChar() = b
S = \(\varepsilon\)-closure(move(S,c)) = \(\{0\), 2\}
S = \(\varepsilon\)-closure(move(S,c)) = \(\{0\), 2\}
SnF!=\(\varthing\), return "yes"
```

练习3.2.3:

使用算法3.23和3.20将下述正则表达式转换为DFA,并尝试化简该DFA

1. $((\epsilon|a)b^*)^*$

利用算法3.23构造出的NFA如图所示:

利用算法3.20将其转换为DFA:

NFA状态	DFA状态	а	b
{0,1,2,4,5,6,7,9,10}	А	В	С
ε-closure({3})={1,2,3,4,5,6,7,9,10}	В	В	С
ε-closure({8})={1,2,4,5,6,7,8,9,10}	С	В	C

则其DFA为:

1. (a|b)* abb (a|b)*

构造出来的NFA如图所示:

将其转换为DFA,状态转移表为:

NFA状态	DFA状态	а	b
{0,1,2,4,7}	А	В	С
ε-closure({3, 8})={1,2,3,4,6,7,8}	В	В	D
ε-closure({5})={1,2,4,5,6,7}	С	В	С
ε-closure({5,9})={1,2,4,5,6,7,9}	D	В	Е
ε-closure({5,10})={1,2,4,5,6,7,10,11,12,13,14,16,17}	E	F	G
ε-closure({3,8,13})={1,2,3,4,6,7,8,10,11,12,13,14,16,17}	F	F	Н
ε-closure({5,15})={1,2,4,5,6,7,10,11,12,14,15,16,17}	G	F	G
ε-closure({5,9,15})={1,2,4,5,6,7,9,11,12,14,15,16,17}	Н	F	1
ε-closure({5,9,10,15})={1,2,4,5,6,7,9,10,12,12,1,15,16,17}	1	F	G

对于转换出来的DFA:

- 第一次划分将其划分为两个组{A,B,C,D},{E,F,G,H,I}
- 第二次划分将其划分为{A,B,C},{D},{E,F,G,H,I}
- 第三次划分为{A,C}{B}{D}{E,F,G,H,I}

构造出来的DFA如图所示:

练习3.2.4*:

所有能被3整除的正整数的二进制串能否被正则表达式表示?如果能,给出一个正则表达式;如果不能,讨论 其原因。

由第二次作业求得的结果可得:

给出符合题设的DFA, S0为初始状态, S1为模3余1的状态, S2为模3余2的状态。

注意到此时为正整数,即不包括0,所以开始状态需要至少为1,保证至少为11接受,则该NFA转换为RE的表达式即为:

1[(10*1)|(01*0)]*10*