MATE 5201: Tarea 1

Due on 6 de septiembre Prof. Alejandro Vélez , C41, 6 de septiembre

Sergio Rodríguez

Problem 1

(5 puntos) – Demuestre que $\sqrt{n+1} + \sqrt{n-1}$ es un número irracional, para todo $n \in \mathbb{N}$.

Prueba:

Por contradicción, suponga que $\sqrt{n+1} + \sqrt{n-1} \in \mathbb{Q}$. Entonces, $\exists a \in \mathbb{Z} \text{ y } b \in \mathbb{N}$ tal que:

$$\frac{a}{b} = \sqrt{n+1} + \sqrt{n-1} \tag{1}$$

Sin perder la generalidad, suponga que $\frac{a}{b}$ está en su forma más simple. Ahora:

$$\frac{a}{b} = \sqrt{n+1} + \sqrt{n-1}$$

$$\Rightarrow \frac{a^2}{b^2} = 2n + 2\sqrt{n+1}\sqrt{n-1}$$

$$\Rightarrow a^2 = 2n \cdot b^2 + 2\sqrt{n+1}\sqrt{n-1} \cdot b^2$$

$$\Rightarrow a^2 - 2nb^2 = 2\sqrt{n+1}\sqrt{n-1} \cdot b^2$$

$$\Rightarrow a^4 - 4na^2b^2 + 4n^2b^4 = 4(n^2-1)b^4 = 4n^2b^4 - 4b^4$$

$$\Rightarrow a^4 - 4na^2b^2 = -4b^4$$

$$\Rightarrow a^4 = 4na^2b^2 - 4b^4 = 2(2na^2b^2 - 2b^4)$$
(2)

Como $(2na^2b^2-2b^4)\in\mathbb{Z}$, entonces $2\mid a^4$, lo cual implica que $2\mid a$ (porque 2 es primo). Además: $2\mid a\Longrightarrow 4\mid a^4$.

Por otro lado, usando la ecuación 2:

$$a^4 = 4na^2b^2 - 4b^4 \Longrightarrow a^4 + 4b^4 = 4na^2b^2 \Longrightarrow 4b^4 = 4na^2b^2 - a^4$$
 (3)

Como $4 \mid a^2$, entonces $\exists c \in \mathbb{Z}$ tal que $a^2 = 4c$. Sustituyendo:

$$4b^4 = 16nb^2c - 16c^2 \Longrightarrow b^4 = 4nb^2c - 4c^2 = 2(2nb^2c - 2c^2)$$
(4)

Como $(2nb^2c-2c^2)\in\mathbb{Z}$, entonces $2\mid b^4$, lo cual implica que $2\mid b$ (porque 2 es primo). Entonces $2\mid a$ y $2\mid b$, por lo tanto, $\frac{a}{b}$ no está en su forma más simple. \bot

$$\div \sqrt{n+1} + \sqrt{n-1} \notin \mathbb{Q}$$

MEP

Problem 2

(5 puntos) – Sean $A, B \subset \mathbb{R}_+ := \{x \in \mathbb{R} \mid x \geq 0\}$ dos conjuntos acotados superiormente, y sean $\alpha := \sup(A), \beta := \sup(B)$. Sea $C := \{xy \mid x \in A, y \in B\}$. Pruebe que C está acotado superiormente, y que $\sup(C) = \alpha\beta$.

Prueba:

Tome $c \in C$. Entonces $\exists a \in A \text{ y } b \in B \text{ tal que } c = ab$. Como $\alpha = \sup(A) \text{ y } \beta = \sup(B)$, entonces $\alpha \geq a \text{ y } \beta \geq b$. Como $a, b, \alpha, \beta \geq 0$, entonces $\alpha \beta \geq ab = c$. Por lo tanto, $\alpha \beta$ es una cota superior de

C, y C está acotado superiormente. Ahora, por contradicción, suponga que $\alpha\beta \neq \sup(C)$. Entonces $\exists s \in \mathbb{R}$ tal que $c \leq s < \alpha\beta \ \forall c \in C$. Note que:

$$s \ge c \forall c \in C \Longrightarrow ab \forall a \in A, \forall b \in B \tag{5}$$

Esto implica que

Problem 3

(5 puntos) – Sea $P := \{p \text{ primo}\}$. Demuestre que P no está acotado superiormente.

Prueba:

Por contradicción, suponga que P está acotado superiormente, entonces, como $P \neq \emptyset \in \mathbb{R}$, por lo tanto, $\exists s \in \mathbb{R}$ tal que $s = \sup(P)$. Ahora tome

$$p' = \left(\prod_{p \in P}\right) + 1\tag{6}$$

y note que p' no es divisible por algún $p \in P$. Esto quiere decir que p' es primo y por lo tanto, $p' \in P$. Pero p' > s (pues $p > 1 \ \forall p \in P$), entonces $s \neq \sup(P)$. \bot

 \div Pno está acotado superiormente.

MEP

Problem 4

(4 puntos) – Sea $S \subset \mathbb{R}$ un conjunto acotado superiormente, y sea k una cota superior para S. Si $k \in S$, pruebe que $k = \sup(S)$.

Prueba:

Por contradicción, suponga que $k \neq \sup(S)$. Entonces $\exists x \in \mathbb{R}$ tal que $s \leq x < k \ \forall s \in S$. Pero $k \in S$, por lo tanto, $k \leq x < k$. \bot

 $k = \sup(S)$.

MEP

Problem 5

(3 puntos c.u.) – Sea b > 1 un número real fijo.

a) Sean $m,p\in\mathbb{Z},n,q\in\mathbb{N}$. Si $r=\frac{m}{n}=\frac{p}{q}$, pruebe que $(b^m)^{\frac{1}{n}}=(b^p)^{\frac{1}{q}}$. Entonces definimos $b^r=(b^m)^{\frac{1}{n}}$.

Prueba:

Por contradicción, suponga que $(b^m)^{\frac{1}{n}} \neq (b^p)^{\frac{1}{1}}$. Sin pérdida de generalidad, suponga que $(b^m)^{\frac{1}{n}} > (b^p)^{\frac{1}{q}}$. Entonces:

$$(b^{m})^{\frac{1}{n}} > (b^{p})^{\frac{1}{q}}$$

$$\Rightarrow b^{m} > \left((b^{p})^{\frac{1}{q}}\right)^{n}$$

$$\Rightarrow b^{mq} > \left(\left((b^{p})^{\frac{1}{q}}\right)^{n}\right)^{q}$$

$$\Rightarrow b^{mq} > \left(\left((b^{p})^{\frac{1}{q}}\right)^{q}\right)^{n}$$

$$\Rightarrow b^{mq} > (b^{p})^{n}$$

$$\Rightarrow b^{mq} > b^{pn}$$

$$\Rightarrow mq > pn$$

$$\Rightarrow \frac{m}{n} > \frac{p}{q}$$

$$\Rightarrow \frac{p}{q}$$

 \perp

 b^r está bien definido.

MEP

b) Demuestre que $b^{r+s} = b^r b^s \ \forall r, s \in \mathbb{Q}$.

Prueba:

Si $r = \frac{m}{n}$ y $s = \frac{p}{q}$ para $m, p \in \mathbb{Z}$ y $n, q \in \mathbb{N}$, entonces:

$$b^{r+s} = b^{\frac{m}{n} + \frac{p}{q}}$$

$$= b^{\frac{m}{n}} b^{\frac{p}{q}}$$

$$= b^{\frac{mq+np}{nq}}$$

$$= \left(b^{\frac{1}{nq}}\right)^{mq+np}$$

$$= \left(b^{\frac{1}{nq}}\right)^{mq} \left(b^{\frac{1}{nq}}\right)^{np}$$

$$= b^{\frac{m}{n}} b^{\frac{p}{q}}$$

$$= b^{r} b^{s}$$

$$(8)$$

MEP

c) Dado $x \in \mathbb{R}$, definimos $K_x := \{b^t \mid t \in \mathbb{Q}, t < x\}$. Demuestre que si $r \in \mathbb{Q}$, entonces $b^r = \sup(K_r)$. Luego, definimos $b^x = \sup(K_x)$.

Prueba:

d) Pruebe que $b^{x+y} = b^x b^y \ \forall x, y \in \mathbb{R}$.

Prueba:

Considere el conjunto $K_xK_y=\left\{\alpha\beta\mid\alpha\in K_x,\beta\in K_y\right\}$ y note que:

$$\sup(K_x K_y) = \sup(K_x) \sup(K_y) \tag{9}$$

por el resultado demostrado en clase. Además:

$$\begin{split} K_{x}K_{y} &= \left\{b^{t}b^{s} \mid t, s \in \mathbb{Q}, t < x, s < y\right\} \\ &= \left\{b^{t+s} \mid t, s \in \mathbb{Q}, t < x, s < y\right\} \\ &= \left\{b^{t+s} \mid t, s \in \mathbb{Q}, t + s < x + y\right\} \\ &= \left\{b^{r} \mid r \in \mathbb{Q}, r < x + y\right\} \\ &= K_{x+y} \end{split} \tag{10}$$

(todo racional se puede expresar como la suma de dos racionales).

Por lo tanto:

$$b^{x+y} = \sup(K_{x+y})$$

$$= \sup(K_x K_y)$$

$$= \sup(K_x) \sup(K_y)$$

$$= b^x b^y$$
(11)

MEP

Problem 6

(4 puntos) – $Si x, y \in \mathbb{C}$, pruebe que $||x| - |y|| \le |x - y|$.

Prueba:

$$|x-y|^{2} = (x-y)\overline{(x-y)}$$

$$= (x-y)(\overline{x}-\overline{y})$$

$$= x\overline{x} - y\overline{x} - \overline{y}x + y\overline{y}$$

$$= |x|^{2} - y\overline{x} - \overline{y}\overline{x} + |y|^{2}$$

$$= |x|^{2} - 2\Re(y\overline{x}) + |y|^{2}$$

$$\geq |x|^{2} - 2|y\overline{x}| + |y|^{2}$$

$$= |x|^{2} - 2|x||y| + |y|^{2}$$

$$= (|x| - |y|)^{2}$$

$$\Rightarrow (|x| - |y|)^{2} \le |x - y|^{2}$$

$$\Rightarrow ||x| - |y|| < |x - y|$$
(13)

MEP

Problem 7

(5 puntos) – Sea $z \in \mathbb{C}$, tal que |z|=1. Calcule el valor de $|1+z|^2+|1-z|^2$. Justifique completamente su respuesta.

Cálculo:

$$|1+z|^{2} + |1-z|^{2} = (1+z)\overline{(1+z)} + (1-z)\overline{(1-z)}$$

$$= (1+z)(1+\overline{z}) + (1-z)(1-\overline{z})$$

$$= 1+\overline{z} + z + z\overline{z} + 1 - \overline{z} - z - z\overline{z}$$

$$= 2 + 2z\overline{z} = 2 + 2|z|^{2} = 2 + 2(1)^{2} = 4$$
(14)

$$|1+z|^2 + |1-z|^2 = 4$$

MEP