Assignment-4

Roll No. : FWC22038

PROBLEM:

ABCD,DCFE and ABFE are parallelograms. Show that ar(ADE) = ar(BCF)

Theory: Parallelograms on the same base and in between the same parallels are equal in area.

Given: ABCD,DCFE and ABFE are parallelograms.

Solution Statement:

We can see that the sides of a triangle ADE and BCF are also the opposite sides of a given parallelogram. Now we can show both the triangles are congruent using congruency property. We know that congruent triangles are equal areas.

SOLUTION:

parallelogram ABCD lies between same parallel lines AD and BC $\,$

$$\therefore$$
 AD = BC.....(1)

parallelogram DECF lies between same parallel lines DE and CF

$$\therefore$$
 DE = CF.....(2)

parallelogram ABEF lies between same parallel lines AE and FB

Hence, Proved

Termux commands:

The input parameters for this construction are

Symbol	Value	Description
a	4.5	EA
b	4.5	BC
С	10	CD
d	2.5	DE
θ_1	$25\pi/180$	∠BC
θ_2	$120\pi/180$	∠DE
θ_3	$2\pi/3$	∠AE
θ_4	$35\pi/180$	∠CD
Е	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	Point E

To Prove:

$$Ar(ADE) = Ar(BCF)$$
 (1)

$$\mathbf{v1} = \mathbf{A} - \mathbf{D} \tag{2}$$

$$\mathbf{v2} = \mathbf{D} - \mathbf{E} \tag{3}$$

Area of the triangle ΔADE is given by

$$Ar(\Delta ADE) = 1/2 \times ||V1 \times V2||$$

$$\mathbf{v3} = \mathbf{B} - \mathbf{C} \tag{4}$$

$$\mathbf{v4} = \mathbf{C} - \mathbf{F} \tag{5}$$

Area of the triangle $\triangle BCF$ is given by

$$Ar(\Delta BCF) = 1/2 \times \|\mathbf{V3} \times \mathbf{V4}\|$$

$$\mathbf{Ar}(\mathbf{ADE}) = \mathbf{Ar}(\mathbf{BCF}) \tag{6}$$

0.1 Construction

Figure of Construction

The below python code realizes the above construction: https:

//github.com/9705701645/FWC/blob/main/lines4.py