Baseline Model
Optimising Strategy So Far
Factorization
Distillation
Further Optimization
Conclusion

Optimizing Accuracy/Score Tradeoff: Final Presentation

Mehdi BERRADA & Selim ZIGHED

26/03/2025

Overview

- Baseline Model
- Optimising Strategy So Far
- 3 Factorization
 - Depthwise Separable Convolutions
 - Grouped Convolutions
- 4 Distillation
- 5 Further Optimization
- 6 Conclusion

Baseline Model

- The baseline model used in this project is the *ResNet-18*.
- Model Hyperparameters
 - *Epochs* : 200
 - Batch Size: 128
 - Loss Function : Cross-entropy
 - Optimizer : SGD
 - Learning Rate: 0.01, Momentum: 0.9,
 - Weight Decay: 5.10⁻⁴, Scheduler: CosineAnnealingLR

Baseline Model

- The baseline model used in this project is the *ResNet-18*.
- Model Hyperparameters :
 - \bullet Epochs: 200
 - Batch Size: 128
 - Loss Function : Cross-entropy
 - Optimizer : SGD
 - Learning Rate: 0.01, Momentum: 0.9,
 - Weight $Decay: 5.10^{-4}$, Scheduler: Cosine Annealing LR

Baseline Model's Performance

- *Total Parameters*: 11173962 params
- *FLOPs* : 556651520 operations
- Average Inference Latency: 0.002321 sec
- Score to be optimized: 3.98778

Optimising Strategy

- Structured Pruning \rightarrow 9 models (different pruning amounts).
- Unstructured Pruning → Applied to each structured pruned model, generating 36 models.
- Quantization \rightarrow Applied FP16 to each pruned model.

Results for Pruning and Quantization

Figure – Trade-off Plot for Pruned and Quantized models

Depthwise Separable Convolutions

Depthwise Separable Convolutions decompose a standard convolution operation into two smaller steps :

- Depthwise Convolution: Applies a single filter to each input channel independently.
- Pointwise Convolution (1x1 Conv.): Combines the outputs from the depthwise convolution across all channels.

Depthwise Separable Convolutions

Models	Baseline	DSC Factorized
Parameters	11173962	1439626
FLOPs	556651520	74277888
Accuracy	93.60%	91.93%
Score	3.98778	0.522354

Table – Before vs After Comparison

Grouped Convolutions

- Instead of using a single convolution across all input channels, the channels are divided into groups.
- Each group has its own set of filters, reducing the number of computations.

Grouped Convolutions: Varying Groups (G)

Models	Baseline	G=2	G=8
Parameters	11173962	5681226	1561674
FLOPs	556651520	282973184	77714432
Accuracy	93.60%	93.15%	90.31%
Score	3.98778	2.025123	0.556422

Table – Before vs After Comparison

After fp16 Quantization, the score drops by half with almost no impact on the precision, as the following plot shows.

Factorization Results

Figure - Trade-off Plot for Factorized Models

Knowledge Distillation

- Transfers useful knowledge from a powerful teacher to a lightweight student.
- Used the ResNet-18 baseline as the teacher and some of our models as students.

Knowledge Distillation Setup

- Teacher Model: Our Baseline ResNet18 (The teacher is Pretrained)
- The input data are the same for both teacher and students
- **Epochs** : 30
- Loss: Cross Entropy + KL divergence

Further Optimization

Our main goal for now is to push some of our models closer to an ideal trade-off (90% accuracy while further reducing computational cost). The strategy is as follows:

- Distilling some already pruned models that don't reach 90% accuracy.
- Pruning and distilling when the accuracy is higher than 90%.

Pruned DSC Factorized Models

Figure – Pruned DSC Factorized Models Performances

Pruned DSC Factorized Models

Pruning Amount	Accuracy	Score
0.1	90.64%	0.221828
0.2	90.71%	0.18726
0.3	89.63%	0.155024
0.5	87.40%	0.098265
0.7	82.28%	0.051471

Table – Recap Performance Table of the Pruned DSC Factorized Models

Distillation Impact on Pruned DSC Factorized Models

- Given that the 0.1 and 0.2 times pruning already lead a good score/accuracy trade-off, and that the 0.7x pruned model is far from the condition of 90% accuracy, we will focus on the two remaining models.
- We use the baseline model to distill the 0.3 and the 0.5 times pruned ones, results are as follows:

Distillation Impact on Pruned DSC Factorized Models

Figure – Distillation Impact on Pruned DSC Factorized Models

Distillation Impact on Pruned DSC Factorized Models

• We managed to reach the 90% accuracy barrier with distillation for both the two models.

Pruning	Accuracy	New Accuracy	Score	New Score
0.3	89.63%	90.83%	0.155024	0.170323
0.5	87.40%	90.09%	0.098265	0.110921

Table – Distillation Impact on the Pruned DSC Factorized Models

• The slight Score Increase can be explained by the readjustement of some pruned weights, yet the trade-off is still very good.

Pruning and Distillation at once

The below described process will be followed on different student models, mainly the ones that have undergone Different Factorization Techniques

- Load the teacher and the student models
- Prune the student model
- Start the training with the distillation loss
- Remove the pruned weights to make sure they are not readjusted

Pruning and Distillation Experiments

Figure – Distilling and Pruning factorized models

Trade-off Recap

Model	Accuracy	Score
G = 8, 0.6 pruning and distillation	89.96%	0.078058
G = 8, 0.5 pruning and distillation	90.64%	0.104438
Distilled $DSC, 0.5$ pruning	90.09%	0.110921
G = 8, 0.4 pruning and distillation	90.50%	0.133548
Distilled $DSC, 0.3$ pruning	90.83%	0.170323

Table – Generated Models Performance Table (from lowest score on)

New Test: Ensemble Method

How it works:

- Multiple optimized models make independent predictions.
- The final classification is determined by majority voting.
- Can be applied to a diverse set of models (e.g., pruned, quantized, factorized).

Ensemble Method

Advantages :

- Improves prediction stability and generalization.
- Reduces reliance on a single highly compressed model.
- Allows leveraging different trade-offs between accuracy and efficiency.

• Project wise Limitation

• Calculation of the Score to optimize

Ensemble Method Test

- We used the five models in the last table
- The best of these models reaches 90.83% accuracy
- Results :
 - 93.47% Accuracy
 - As per the score, the most logical hypothesis is to sum the scores of the involved models, in this case, we get 0.597288, which is a great trade-off.

Trade-off Plot

 $Figure-Trade-Off\ Plot_{\tiny \square} + \tiny {\tiny \square