SRT 创新计划专项结题报告 倒立摆控制

刘锦坤

2024年5月10日

目录

1	摘 要	2
2	PD 控制参数的理论计算 2.1 动力学方程	2
3	2.2 本征模块	3 4 4
	3.2 xxx 情况下的边界条件和 xx 现象	4
4	实验过程与数据分析 4.1 A. 在 xx 条件下测量 xxx 4.1.1 a1. 计算出 xx 的电阻和电感 4.1.2 a2.Complete by yourself! 4.1.3 a3.Complete by yourself! 4.2 展示一下行间公式 4.2.1 行间公式	4 4 4 4 4 4
5	4.2.2 相对于行内公式	5 5 5
c	5.1.2 实验中的偶然误差	5 5
6	原始数据	6

1 摘要

本文主要总结了本次倒立摆项目中所做的工作。

2 PD 控制参数的理论计算

在本次 SRT 项目中,选用 PD 方法来完成对倒立摆的控制,可以建立动力学模型,对 PD 控制器的参数进行理论计算。

2.1 动力学方程

系统动力学模型示意图如图所示:

图 1: 倒立摆示意图

XYZ 坐标系为固定坐标系,而 xyz 为随着水平杆转动的坐标系。记水平杆的质量 m_1 ,长度 l_1 ,树枝干的质量 m_2 ,长度 l_2 ,水平杆的转动角度为 ϕ ,竖直杆的转动角度 θ ,假设两杆的质量都是均匀分布。电机的驱动力矩为 τ ,重力加速度为 g,下面从第二类 Lagrange 方程出发推倒倒立摆的动力学方程。

水平杆的动能为

$$T_1 = \frac{1}{6}m_1 l_1^2 \dot{\phi}^2 \tag{1}$$

竖直杆的动能为为质心动能和相对之心动能之和,其质心速度为:

$$\vec{v} = -\frac{1}{2}l_2\dot{\phi}\sin\theta\hat{x} + (\dot{\phi}l_1 + \frac{1}{2}l_2\dot{\theta}\cos\theta)\hat{y} - \frac{1}{2}l_2\dot{\theta}\sin\theta\hat{z}$$
 (2)

其中 \hat{x},\hat{y},\hat{z} 为xyz坐标系各个方向的单位矢量,故其质心动能为

$$T_{2c} = \frac{1}{2}m_2\bar{v}^2$$

$$= \frac{1}{2}m_2l_1^2\dot{\phi}^2 + \frac{1}{2}m_2\dot{\phi}\dot{\theta}l_1l_2\cos\theta + \frac{1}{8}m_2l_2^2\dot{\theta}^2 + \frac{1}{8}m_2l_2^2\dot{\phi}^2\sin^2\theta$$
(3)

而竖直杆的相对质心动能为转动贡献,即为

$$T_{2r} = \frac{1}{24} m_2 l_2^2 \dot{\theta}^2 + \frac{1}{24} m_2 l_2^2 \dot{\phi}^2 \sin^2 \theta \tag{4}$$

系统势能为

$$V = \frac{1}{2}m_2gl_2cos\theta \tag{5}$$

系统的 Lagrange 量为

$$L = T - V = T_1 + T_{2c} + T_{2r} - V$$

$$= \frac{1}{6} m_1 l_1^2 \dot{\phi}^2 + \frac{1}{2} m_2 l_1^2 \dot{\phi}^2 + \frac{1}{2} m_2 \dot{\phi} \dot{\theta} l_1 l_2 cos\theta + \frac{1}{8} m_2 l_2^2 \dot{\theta}^2$$

$$+ \frac{1}{8} m_2 l_2^2 \dot{\phi}^2 sin^2 \theta + \frac{1}{24} m_2 l_2^2 \dot{\theta}^2 + \frac{1}{24} m_2 l_2^2 \dot{\phi}^2 sin^2 \theta - \frac{1}{2} m_2 g l_2 cos\theta$$
(6)

保留到二阶小量,可以得到:

$$L = \frac{1}{6}m_1l_1^2\dot{\phi}^2 + \frac{1}{2}m_2l_1^2\dot{\phi}^2 + \frac{1}{2}m_2\dot{\phi}\dot{\theta}l_1l_2 + \frac{1}{8}m_2l_2^2\dot{\theta}^2 + \frac{1}{24}m_2l_2^2\dot{\theta}^2 + \frac{1}{4}m_2gl_2\theta^2$$
 (7)

带入第二类 Lagrange 方程,得到

$$\begin{cases} \frac{1}{3}m_1l_1\ddot{\phi} + m_2l_1\ddot{\phi} + \frac{1}{2}m_2l_1l_2\ddot{\theta} = \tau \\ \frac{1}{2}m_2l_1\ddot{\phi} + \frac{1}{3}m_2l_2\ddot{\theta} - \frac{1}{2}m_2g\theta = 0 \end{cases}$$
 (8)

记 $\boldsymbol{q} = [\phi, \theta]^T$,有

$$M\ddot{q} + Kq = \tau \tag{9}$$

其中

$$\mathbf{M} = \begin{bmatrix} \frac{1}{3}m_1l_1 + m_2l_1 & \frac{1}{2}m_2l_1l_2 \\ \frac{1}{2}m_2l_1 & \frac{1}{3}m_2l_2 \end{bmatrix}, \mathbf{K} = \begin{bmatrix} 0 & 0 \\ 0 & \frac{1}{2}m_2g \end{bmatrix}, \boldsymbol{\tau} = \begin{bmatrix} \boldsymbol{\tau} \\ 0 \end{bmatrix}$$
(10)

这就是倒立摆的动力学方程。

2.2 本征模块

我们先分析系统的本征模块,设其一个本征模块为 $q(t) = \eta e^{\lambda t}$,代入方程 $M\ddot{q} + Kq = 0$ 得到特征方程:

$$\det(\lambda^2 \mathbf{M} + \mathbf{K}) = 0 \tag{11}$$

且对应的

$$(\lambda^2 M + K) \tag{12}$$

3 实验原理

3.1 xxx 方程

在 xx, xxx, xxxx 条件下, 考察条件为 xx 的 xx 的情况, 利用 xxxx 定律在无位移的水平方向和有位移的竖直方向分别列出以下方程:

$$\begin{cases}
T_2 cos \alpha_2 - T_1 cos \alpha_1 = 0 \\
T_2 sin \alpha_2 - T_1 sin \alpha_1 = \rho dx \frac{\partial^2 y}{\partial x^2}
\end{cases}$$
(13)

3.2 xxx 情况下的边界条件和 xx 现象

xxxx 时发生 xxxx 现象。由 xxx 方程可知,xxx 波形为 $y^+ = f(vt+x)$,xxx 波形为 $y^- = f(vt-x)$ 。

3.3 xx 在 xxx 条件下的 xxx 现象

Complete by yourself!

4 实验过程与数据分析

4.1 A. 在 xx 条件下测量 xxx

4.1.1 *a*1. 计算出 xx 的电阻和电感

在 xx 上将 xx 的两端串联 xx 和 xx 相连,将 xx 的两端串联进 xx,分别将 xx 接在 L_1 , L_2 ,xx 的两端测量 xx 并记录。

4.1.2 a2.Complete by yourself!

Complete by yourself!

4.1.3 *a*3.Complete by yourself!

实验得到的数据如下:

线圈名称	$R'(\Omega)$	Va(V)	V(V)	Vr'(V)	Vo(V)
线圈 1(空气芯)	123	456	789	012	345
线圈 2(空气芯)	123	456	789	012	345
线圈 3(铝芯)	123	456	789	012	345
线圈 4(铝芯)	123	456	789	012	345

4.2 展示一下行间公式

4.2.1 行间公式

这是一个不确定度计算。

$$U_k = tinv(x, y) \times s_k = xxx$$

4.2.2 相对于行内公式

这是一个不确定度计算: $U_k = tinv(x, y) \times s_k = xxx$

5 分析与讨论

5.1 误差分析

5.1.1 实验中的系统误差

来自 xxx 的精度影响。 受空间内 xx 与 xx 的干扰。

5.1.2 实验中的偶然误差

接线时可能有 xxx 情况,导致 xxx。xx 上的 xx 在某情况下有 xx 的问题存在,经反复调整后得以正常测量。

5.2 实验后的思考

可说明自己做本实验的总结、收获和体会,对实验中发现的问题提出自己的建议。

6 原始数据

Change the picture by yourself!