

· lout losange peut être inclus dans un couré si $d_{lorancze} < c_{couri} <=> |a|+|y| < max (|a|, |y|)$ Gn pose G>0, <=> G(|a|+|y|) < G. man(|a|, |y|) $\forall x,y \in \hat{\mathcal{E}},$ $\langle = \rangle |x| + |y| \leq C_4 (|x| + |y|) \leq C_4 \cdot \max(|a|, |y|)$ car Cy est une quantité positive. $\iff N_{1}(n,y) \leqslant C_{1} N_{\infty}(n,y)$

· Tout cavée peut être inclus dans un losange si la diagonale du cové équivalant à cV2 est inférieure ou égale au côté du losange valent /x/+/y/.

Autrement dit, cV2 < |r/+ /y/ ¥ x,y € E <=> V2. man (|n|, |y|) { |x| + |y|

(in pose C2>0, <=> C2 × V2. man (|n|, |y|) < C2 (|a|+|y|) (=) man (|x|, |y|) < C2. V2. man (|x|, |y|) < C2 (|x|+|y|)

 $\langle = \rangle$ $N_{\infty}(x,y) \leq C_{2} \cdot N_{1}(x,y)$.

Donc $\forall x,y \in E$, $\begin{cases} N_1(x,y) \leqslant C_1 \cdot N_{\infty}(x,y) \\ N_{\infty}(x,y) \leqslant C_2 \cdot N_1(x,y) \end{cases}$ équivant à dère que N, (n, y) et N, (n, y) sont équivalentes.

Deunièmement, on souhaite montrer que $N_{\alpha}(n,y) = Vn^2 + y^2$ et $N_{\infty}(n,y) = man(lnl,lyl)$ sont équivalentes.

On trace les mormes Nos (n,y) = man (In1, 1y1) $V_{\infty}(n,y) = man(lnl, lyl)$ et $V_{2}(n,y) = \sqrt{n^{2} + y^{2}}$

- · Tout corcle pout être inclus dans un covré ni le diamètre du corcle noté D est inférieure ou égale au côté c du covré. Vr, y c E, Autrement det, 2 Vaz+yz' < man (Inl, lyl) on pose Cy >0, == 2, C, V2+y2 (Cy. man (121, 141) (=> \n2+y2 \le 2. Cq. \n2+y2 \le Cq. man (|a|, |y|) $\iff \mathcal{N}_{2}(n,y) \leqslant C_{1} \cdot \mathcal{N}_{\infty}(n,y)$
- · Tout carré peut être inclus dans un corcle si la moitié de la diagonale du carré est inférieure on Égale au rayon du orde.

Autrement dit, eV2 < Vx2+ y2 Va, y ∈ € <=> V2 × man(|a|, |y|) < Va²+y² an pore C2>0, <=> C2 × V2 x moon (|x|, |y|) < C2 Vx²+y² <=> max (|n|, |y|) < Q. VE. max (|n|, |y|) < Ce Va2+y2 <=> N∞ (n,y) < C2. N₂ (n,y).

Done $\forall x, y \in E$, on a $\begin{cases} N_2(x,y) < C_1 \cdot N_{\infty}(x,y) \\ N_{\infty}(x,y) < C_2 \cdot N_2(x,y) \end{cases}$

Ainsi les normes N_2 (n, y) et N_∞ (n, y) sont Équivalentes.

Croisiemement, on souhaite montrer que $N_2(n,y) = \sqrt{n^2 + y^2}$ et $N_2(n,y) = |n| + |y|$ sont Equivalentes.

· Tout œr cle pout être inclus dans un tosange, si le rayon r du cercle est inférieure ou égale à la moitié du côté du losange. Autrement dit, $x < \frac{1}{2}c$

 $\forall x,y \in E$, $\Rightarrow \sqrt{r^2 + y^2} \le \frac{1}{2} (|x| + |y|)$ on pose G>0, 00 C1 « Vn2+y2 (C1 (|x1+|y1)

(=> N2 (n,y) < C, M(n,y)

· Tout losange peut être inclus dans un losange, ni la diagonale du losange cV2 est inférieure ou égale au rayon R du arele.

Autrement dit, cV2 < R Va,y∈E, => V2 (lal+ly1) < V22+y2'. on pose G>0, => G-V2 (lal+lyl) < G.Va2+y2'

(=> Ny (ny) (C2. N2 (ny).

Donc $\forall a, y \in E$, $\begin{cases} N_2(x,y) \leq C_1 \cdot N_1(x,y) \\ N_2(x,y) \leq C_2 \cdot N_2(x,y) \end{cases}$ Ainsi N et Ne sont équivalentes.

En résumé, en a demontré que $N_{s}(x,y)$ et $N_{s}(x,y)$ sont équivalentes, puis $N_{s}(x,y)$ et $N_{so}(x,y)$ le sont aussi, puis N_{s} et N_{s} de même.

 $\begin{array}{lll} & (x) & (x) & (y) &$

6) [6]