Discrete Mathematics

Network Flows — Spring 2025

Konstantin Chukharev

§1 Network Flows

Motivation

TODO: a picture with a graph and a question about the flow in it

Flow Network

Definition 1: A *flow network* is a directed graph $G = \langle V, E \rangle$ with:

- a source $s \in V$, a vertex without incoming edges,
- a $sink \ t \in V$, a vertex without outgoing edges,
- a *capacity* function $c: E \longrightarrow \mathbb{R}_+$ that assigns a non-negative capacity to each edge $e \in E$.

The flow network is denoted as $N = \langle V, E, s, t, c \rangle$.

Note: We require that E never contains both edges (u, v) and (v, u) for any $u, v \in V$.

Note: If $(u, v) \notin E$, then c(u, v) = 0.

Note: The graph is connected, i.e., every node has at least one incident edge.

Flow Network Example

Example: Very meaningful example of a flow network with annotated capacities:

Flow

Definition 2: Given a flow network N, a *flow* is a function $f: E \longrightarrow \mathbb{R}_+$ that satisfies the following *feasibility* conditions:

- **1.** Capacity constraint: $0 \le f(e) \le c(e)$ for each edge $e \in E$.
- **2.** Flow conservation (balance constraint): for each node $v \in V$, except for s and t,

$$\underbrace{\sum_{e \in \operatorname{in}(v)} f(e)}_{\text{flow into } v} = \underbrace{\sum_{e \in \operatorname{out}(v)} f(e)}_{\text{flow out of } v}$$

Note: If $(u, v) \notin E$, then f(u, v) = 0.

Flow Value

Definition 3: The *value* |f| of a flow f is the total amount of flow that leaves the source s:

$$|f| = \sum_{e \in \text{out}(s)} f(e) - \underbrace{\sum_{e \in \text{in}(s)} f(e)}_{\text{commonly } 0}$$

Note: $f^{\text{in}}(v) := \sum_{e \in \text{in}(v)} f(e)$

Note: $f^{\mathrm{out}}(v)\coloneqq \sum_{e\in \mathrm{out}(v)} f(e)$

Definition 4 (Maximum Flow Problem): Given a flow network N, the *maximum flow problem* is to find a flow f that maximizes the value |f|.

Max Flow Example

Example: Yet another meaningful example.

Flow Conservation

Theorem 1: For any feasible flow f, the net flow out of s is equal to the net flow into t:

$$|f| = \sum_{e \in \operatorname{out}(s)} f(e) = \sum_{e \in \operatorname{in}(t)} f(e)$$

Proof: This follows directly from the flow conservation condition.

$$\begin{split} |f| &= \sum_{e \in \operatorname{out}(s)} f(e) = \\ &= \sum_{e \in \operatorname{out}(s)} f(e) - \sum_{v \in V \backslash \{s,t\}} \left[\sum_{e \in \operatorname{in}(v)} f(e) - \sum_{e \in \operatorname{out}(v)} f(e) \right] = \\ &= \sum_{e \in \operatorname{in}(t)} f(e) \end{split}$$

Residual Capacity

Definition 5: The *skew-symmetry* convention defines the flow in the opposite direction of an edge e = (u, v) as f(v, u) = -f(u, v).

Definition 6: Given a flow f in a flow network N, the *residual capacity* c_f of an edge e is the amount of flow that can be sent through the edge in addition to the flow already in it:

$$c_f(e) \coloneqq c(e) - f(e)$$

Residual Network

Definition 7: The *residual network* N_f for a flow f is a flow network with the same vertices as N, constructed as follows:

- Forward edges: For each edge e=(u,v) of N, if f(e)< c(e), add an edge e'=(u,v) to N_f with capacity c(e)-f(e).
- Backward edges: For each edge e=(u,v) in N, if f(e)>0, add a reversed edge e'=(v,u) to N_f with capacity f(e).

In other words, a residual network is a directed graph with *all* edges with *positive* residual capacity.

Residual Network Example

- Remaining capacity: If f(e) < c(e), add edge e to N_f with capacity c(e) f(e).
- Can erase up to f(e) capacity: If f(u,v) > 0, add reversed edge (v,u) to N_f with capacity f(e).

Augmenting Paths

Definition 8: An *augmenting path* in the residual network N_f is an s-t path (a path from s to t) such that all edges in the path have positive capacity. The *bottleneck* of an augmenting path is the minimum capacity of the edges in the path.

Theorem 2: If *bottleneck* is positive, then the flow can be increased by that amount along the path.

Ford-Fulkerson Algorithm

```
INPUT: A flow network N with source s and sink t.

OUTPUT: Maximum flow f from s to t.

1 Initialize f(e) = 0 for all e \in E

2 while there is an augmenting path P in the residual network N_f do

3 Let b = \min_{e \in P} c'(e) in N_f along P

4 for each edge e \in P do

5 Lupdate flow: f(e) := f(e) + b

6 Rebuild the residual network N_f

7 return f
```

Example

Networks (above) and residual networks (below) after pushing the flow with |f|=2 along the path s-b-c-t (left), and then after pushing the flow with |f|=3 along the path s-a-c-b-d-t (right).

Cuts

Definition 9: An s-t cut is a set of edges whose removal disconnects t from s.

Formally, a *cut* is a partition of the vertices $V = A \cup B$ such that $s \in A$ and $t \in B$. The edges of the cut are the edges that go from A to B.

Definition 10: The *capacity* of a cut (A, B) is the sum of the capacities of the edges leaving A.

$$c(A,B) = \sum_{a \in A, b \in B} c(a,b)$$

Definition 11: Given a flow f in N, the *net flow* across a cut (A, B) is defined as

$$f(A,B) = \sum_{e \in \text{out}(A)} f(e) - \sum_{e \in \text{in}(A)} f(e)$$

Cut Theorem 1

Theorem 3: Let f be a flow and (A, B) be an s-t cut. Then:

$$f(A,B) = |f|$$

Cut Theorem 2

Theorem 4: Let f be a flow and (A, B) be an s-t cut. Then:

$$f(A,B) \leq c(A,B)$$

Proof:

$$f(A, B) = f^{\text{out}}(A) - f^{\text{in}}(A)$$

$$\leq f^{\text{out}}(A)$$

$$= \sum_{e \in \text{out}(A)} f(e)$$

$$\leq \sum_{e \in \text{out}(A)} c(e)$$

$$= c(A, B)$$

Max-Flow Min-Cut Theorem

Theorem 5: Given a flow network N and a flow f, the following are equivalent:

- 1. f is a maximum flow in N.
- **2.** There is no augmenting path in the residual network N_f .
- 3. |f| = c(A, B) for some s-t cut (A, B) in N.

If one (and hence all) of these conditions hold, then (A, B) is a *minimum cut*.

Proof $(1 \to 2)$: An augmenting path in the residual network N_f would allow us to increase the flow f.

Proof $(3 \rightarrow 1)$: No flow can exceed the capacity of a cut (by <u>Theorem 4</u>)

Proof $(2 \to 3)$: Let S be the set of vertices reachable from s in the residual network N_f . Since there is no augmenting path in N_f , S does not contain t. Then (S,T) is a cut of N, where $T=V\setminus S$. Moreover, for any $u\in S$ and $v\in T$, the residual capacity $c_f(e)$ must be zero (otherwise, the path $s\rightsquigarrow u$ in N_f could be extended to a path $s\rightsquigarrow u\to v$ in N_f). Thus, $f(S,T)=f^{\mathrm{out}}(S)-f^{\mathrm{in}}(S)=f^{\mathrm{out}}(S)-0=c(S,T)$.

Max-Flow Min-Cut Theorem [2]

- Cut (S, T) with $s \in S$, $t \in T$.
- Blue edges must be saturated.
- Red edges must be empty (zero).