Práctica 3

Evaluación del rendimiento en entornos distribuidos utilizando la plataforma de simulación SIMCAN

Grupo2:

- -Álvaro Martín Otero
- -David Ortiz Fernández

Transferencia de ficheros en entornos distribuidos

Entorno con 1 cliente y 1 servidor

En este primer apartado hemos añadido una red de 100GB y un disco nuevo.

	Eth 100MB	Eth 1GB	Eth 10GB	Eth 100GB
Disk500_A	243.381914169986	69.341063858	51.9369868312	50.19657924448
Disk500_B	231.953325509994	57.912492418	40.5084153912	38.76800780448
Disk500_C	220.048514485995	46.007730514	28.6036534872	26.86324590048
Disk500_D	220.048514485995	46.007730514	28.6036534872	26.86324590048

En la gráfica podemos observar que la restricción del sistema que limita el rendimiento es la red, ya que a pesar de usar discos de mayores velocidades el cambio es mínimo, en cambio en la red hasta 10 Gb se realiza un cambio notorio. A partir de 10 Gb ya no resulta tan interesante seguir aumentando la red, ya que las diferencias son muy pequeñas para el sobrecoste que puede suponer en la instalación. En los discos pasa esto, pero en menor medida, las diferencias son algo más grandes entre discos.

Por tanto, a partir de 10 Gb sería más interesante modificar los discos que seguir aumentando la velocidad de la red, aunque igualmente, como hemos dicho, la mejora sería mínima.

Entorno con 32 clientes y 1 varios servidores

En el segundo apartado hemos añadido un disco más (Disk500_B), con lo que hemos aumentado el número de experimentos a 16.

Los resultados de la simulación se muestran en la siguiente tabla:

	Server 2Blades	Server 4Blades	Server 8Blades	Server 16Blades
Disk500_C	6.715765	3.3558068	1.679400	1.540918
Disk500_D	4.919423	2.459897	1.540001	1.540784
Disk500_E	4.129163	2.064767	1.539939	1.540725
Disk500_B	11.307551	5.653961	2.827346	1.541267

En la gráfica podemos apreciar que los servidores por más que los aumentemos no se nota un gran aumento en el rendimiento, el único aumento interesante sería pasar de 2 a 4 blades, el resto no compensará teniendo en cuenta el sobrecoste. Y esto se debe al stride size, que al ser de un tamaño tan pequeño (64 Kb) por más que enviemos la red (red Ethernet 10 Gbps, tanto para las conexiones internas de los racks) no se ve saturada en ningún momento.

Con los discos en cambio sí se nota gran diferencia según vamos aumentando la velocidad, el rendimiento claramente va mejorando, esto se aprecia mejor al poner un disco más lento (Disk500_B).

Por tanto en este sistema lo más interesante sería aumentar los blades del servidor hasta 4, ya que más no compensa la inversión con el rendimiento obtenido, y realizar los cambios en los discos, que según se aumenta la velocidad va mejorando el rendimiento, siendo por tanto siempre mejor opción cambiar los discos.

Modelado de aplicaciones MPI en entornos altamente distribuidos

Esta primera gráfica del apartado 3 está realizada con los datos por defecto:

	2 Servidores	4 Servidores	8 Servidores	16 Servidores
SingleCore	611.633745777954	606.970123736725	606.797212597855	606.790099003044
DualCore	181.291058499796	177.490655765148	175.260243259524	175.165793850942
QuadCore	50.61241601721	46.343753674207	44.192670425433	43.624539006473
OctaCore	32.317227607807	27.685447218992	25.359277244668	24.773615360311

Observamos que aumentar el número de cores produce un gran aumento de rendimiento, sobretodo hasta llegar a QuadCore. En cambio, de QuadCore a OctaCore se produce un cambio mínimo a pesar de duplicar la cantidad de cores, por tanto, no resulta muy interesante aumentar a más de 4 cores por CPU, siendo la mejora más significativa de SingleCore a DualCore.

Fijándonos en la gráfica podemos concluir que el sistema escala bien si nos fijamos en el procesador ya que se va produciendo un aumento de rendimiento según vamos aumentando los cores, pero escala muy mal si nos fijamos en los servidores.

Aquí hemos cambiado el disco a uno más lento, e internamente las conexiones dentro del rack en 10MB

	2 Servidores	4 Servidores	8 Servidores	16 Servidores
SingleCore	3355.20945110829	2887.813414251346	2886.084885839929	2886.153008635067
DualCore	1431.370473126821	1061.682536444868	827.535848671346	826.285588585148
QuadCore	1045.438782967316	600.497345498259	373.330622832821	256.376427420658
OctaCore	991.744630228475	522.459050046695	287.262974133979	171.852059364426

Analizando detenidamente los resultados del experimento podemos observar que al cambiar el disco a uno más lento y reducir las conexiones se produce una bajada de rendimiento muy grande. Al ser tan lenta la conexión en los servidores ahora conseguimos que el sistema si escale bien respecto a los servidores, y necesitando más para evitar que se congestione la red.

Como conclusión podemos decir que no necesitamos los mejores componentes para este sistema, con 4 cores es suficiente y si en el servidor tenemos un disco rápido, con una conexión razonable entre los nodos del rack, no necesitaremos aumentar el número de servidores.