Intégrales doubles

$$\alpha 20 - MP^*$$

1 Notion d'intégrale double sur un produit d'intervalles

1.1 Formule de Fubini

Soit $f: [a,b] \times [c,d] \xrightarrow{\mathcal{C}^0} \mathbb{C}$, alors:

- 1. $\forall x \in [a, b], \int_c^d f(x, y) dy$ a un sens
- 2. $x \longmapsto \int_{c}^{d} f(x, y) dy$ est C^{0} sur [a, b]
- 3. $\forall y \in [c,d], \int_a^b f(x,y) dx$ a un sens
- 4. $y \longmapsto \int_a^b f(x,y) dx$ est C^0 sur [c,d]
- 5. $\int_a^b \int_a^d f(x,y) dy dx = \int_a^d \int_a^b f(x,y) dx dy$

1.2 Intégrabilité d'une fonction positive

Soient I,J deux intervalles de longueur non vide, $f:I\times J\xrightarrow{\mathcal{C}^0}\mathbb{R}^+$. f est intégrable si $\exists M\in\mathbb{R}$ tel que pour tout couple de segments $(I_0\subset I,J_0\subset J)$, on a :

$$\int \int_{I_0 \times J_0} f(x, y) \mathrm{d}y \mathrm{d}x \leqslant M$$

Dans ce cas, $\int \int_{I \times J} f(x,y) dy dx = \sup \int \int_{I_0 \times J_0} f(x,y) dy dx$. soit I_n une suite croissante exhaustive de segments (SCES) de I, J_n une SCES de J, alors $n \longmapsto \int \int_{I_n \times J_n} f$ croît ; si cette suite est majorée, f est intégrable et $\int \int_{I \times J} f = \lim \int \int_{I_n \times J_n} f$.

Propriété : Soit $f: I \times J \xrightarrow{\mathcal{C}^0} \mathbb{R}^+$. On suppose que :

- 1. $\forall x \in I, y \in J \xrightarrow{\mathcal{C}^0} f(x, y)$ est intégrable
- 2. $F: x \in I \longrightarrow \int_J f(x,y) dy$ est \mathcal{C}_m^0

Alors f est intégrable sur $I \times J$ ssi F l'est sur I et, le cas échéant, $\int \int_{I \times J} f = \int_I F$.

1.3 Cas général

 $f: I \times J \xrightarrow{\mathcal{C}^0} \mathbb{C}; f \text{ est } intégrable \text{ si } |f| \text{ l'est.}$

Si $f: I \times J \xrightarrow{\mathcal{C}^0} \mathbb{R}$ est intégrable, alors f^+ et f^- le sont et : $\iint_{I \times J} f = \iint_{I \times J} f^+ - \iint_{I \times J} f^-$.

Si $f: I \times J \xrightarrow{\mathcal{C}^0} \mathbb{C}$ est intégrable, alors $\operatorname{Re}(f)$ et $\operatorname{Im}(f)$ le sont et : $\iint_{I \times J} f = \iint_{I \times J} \operatorname{Re}(f) + i \iint_{I \times J} \operatorname{Im}(f)$

Propriété : Soit $f: I \times J \xrightarrow{\mathcal{C}^0} \mathbb{C}$ intégrable. On suppose que :

- 1. $\forall x \in I, y \in J \xrightarrow{\mathcal{C}^0} f(x, y)$ est intégrable
- 2. $F: x \in I \longmapsto \int_I f(x,y) dy$ est \mathcal{C}_m^0

Alors f est intégrable sur $I \times J$ ssi F l'est sur I et, le cas échéant, $\iint_{I \times I} f = \iint_{I} F$.

1.4 Propriétés de l'intégrale double

- 1. Linéarité : ($\mathbb{K} = \mathbb{R}$ ou \mathbb{C}) l'ensemble des fonctions $f: I \times J \xrightarrow{\mathcal{C}^{\upsilon}} \mathbb{K}$ intégrables est un sev de $\mathcal{C}^{0}(I \times J, \mathbb{K})$. Sur ce sev, $f \longmapsto \int \int_{I \times J} f$ est linéaire.
- 2. Inégalité triangulaire : Soit $f: I \times J \xrightarrow{\mathcal{C}^0} \mathbb{K}$, alors : $|\int \int f| \leq \int \int |f|$.
- 3. Inégalité de Cauchy-Schwarz : Soit $f,g:I\times J\xrightarrow{\mathcal{C}^0}\mathbb{K}$. Si f^2 et g^2 sont intégrables, alors fg est intégrable et $\iint |fg| \leq \sqrt{\iint |f|^2 \iint |g|^2}$
- 4. Majorations : $f,g:I\times J\xrightarrow{\mathcal{C}^0}\mathbb{K}$. Si $\exists M/\forall (x,y)\in I\times J, |f(x,y)|\leqslant M|g(x,y)|$, alors l'intégrabilité de g implique celle de f et, si g est intégrable, on a : $\int\int |f|\leqslant M\int\int |g|$.

2 Intégrales doubles sur des compacts élémentaires

2.1 Définitions

On appelle compact élémentaire (CE) de \mathbb{R}^2 une partie de \mathbb{R}^2 définie de deux façons par un système d'inéquations :

$$\begin{aligned} a \leqslant x \leqslant b \\ \forall x \in [a,b], \varphi_1(x) \leqslant y \leqslant \varphi_2(x) \end{aligned}$$

et:

$$c \leqslant y \leqslant d$$
$$\forall y \in [c, d], \psi_1(y) \leqslant x \leqslant \psi_2(y)$$

où les fonctions $\varphi_1, \varphi_2, \psi_1, \psi_2$ sont continues sur leur intervalle de définition.

2.2 Propriétés

Soit C un CE de \mathbb{R}^2 , et $f: C \xrightarrow{C^0} \mathbb{C}$, alors:

$$\int_a^b \left(\int_{\varphi_1(x)}^{\varphi_2(x)} f(x, y) dy \right) dx = \int_c^d \left(\int_{\psi_1(x)}^{\psi_2(x)} f(x, y) dx \right) dy$$

La valeur de ces deux termes est par définition : $\iint_C f(x,y) dx dy$.

2.3 Cas d'une réunion de compacts élémentaires

 $C \subset \mathbb{R}^2$ est un compact usuel (CU) si on peut l'écrire $C = \bigcup_{k=1}^n C_k$ où les $(C_k)_{1 \leqslant k \leqslant n}$ sont des CE vérifiant $\forall i \neq j, \, \mathring{C}_i \cap \mathring{C}_j = \varnothing$.

Dans ce cas, on a : $\iint_C f = \sum_{k=1}^n \iint_{C_i} f$.

2.4 Changement de variables

Soient Ω et Ω' deux ouverts de \mathbb{R}^2 , $\varphi:\Omega\longrightarrow\Omega'$ un \mathcal{C}^1 – difféomorphisme, $C\subset\Omega$ un CU. On suppose que $\varphi(C)=C'$ est encore un CU. Soit $f:C'\xrightarrow{\mathcal{C}^0}\mathbb{C}$. Alors :

 $\int \int_{C'} f = \int \int_{C} f \circ \varphi \times |\det J\varphi|$

3 Passage en coordonnées polaires

3.1 Cas d'un produit d'intervalles

Soit $f: \mathbb{R}^2 \xrightarrow{C^0} \mathbb{C}$; on pose $g: \mathbb{R}^+ \times [0, 2\pi] \xrightarrow{C^0} \mathbb{C}$ telle que $g(r, \theta) = f(r\cos\theta, r\sin\theta)$. Alors f est intégrable ssi g l'est, et dans ce cas

$$\int \int_{\mathbb{R}^2} f(x, y) \mathrm{d}x \mathrm{d}y = \int \int_{\mathbb{R}^+ \times [0, 2\pi]} g(r, \theta) r \mathrm{d}r \mathrm{d}\theta$$

3.2 Cas d'un compact usuel

Soit C un CU inclus dans $\mathbb{R}^+ \times [\alpha, \alpha + 2\pi]$, on suppose que $C' = \{(r\cos\theta, r\sin\theta)/(r,\theta) \in C\}$ est un CU de \mathbb{R}^2 . Si $f: C' \longrightarrow \mathbb{C}$ est continue, alors :

 $\int \int_{C'} f = \int \int_{C} f(r\cos\theta, r\sin\theta) r dr d\theta.$

4 Notion d'aire

4.1 Aire d'un compact usuel

L'aire d'un CU C est par définition $\int \int_C 1 \cdot dx dy$.

4.2 Aires gauches

Soit E un espace affine euclidien orienté (de dimension 3). Soit une surface S de classe $\mathbb{C}^{k\geqslant 1}$, définie par $\varphi:\Omega\subset\mathbb{R}^2\longrightarrow E$. Si C est un CU inclus dans Ω , on définit l'aire de $\varphi(C)$ comme :

$$\int \int_C \|\frac{\partial \varphi}{\partial u} \wedge \frac{\partial \varphi}{\partial v}\| \mathrm{d}u \mathrm{d}v$$

3