

Diplomski studij

Informacijska i komunikacijska tehnologija:

Obradba informacija Telekomunikacije i informatika

Višemedijske komunikacije

4. Informacijska svojstva i kodiranje zvuka

Informacijska svojstva i kodiranje zvuka

- Fizikalne osnove, svojstva i percepcija zvuka
- Digitalni zvuk u umreženom računalnom sustavu
- Kriteriji usporedbe i mjerenje kvalitete kodera
- Kodiranje govora
 - Karakteristike govora važne za kodiranje
 - Koderi govora
 - Koderi valnog oblika: PCM, ADPCM
 - Koderi zasnovani na modelu: LPC, CELP
- Koderi zvuka u frekvencijskoj domeni
 - Osnovni percepcijski koder
 - MPEG audio

Fizikalne osnove zvuka

Longitudinalni val titranja čestica zraka

- Izvor zvuka stvara titranje čestica (promjene tlaka)
- Titranje se širi brzinom $v = \lambda f \approx 340 \text{ m/s}$ (ovisno o temperaturi)
- Lokalno titranje tlaka uzrokuje titranje struktura uha
- Pužnica ima vise od 10000 "detektora" osjetljivih na razne frekvencije; oni pretvaraju zvuk u žičane signale

Fizikalna svojstva zvuka

- Vremenskoj domena: valni oblik
 - amplituda
 - faza
 - frekvencija

- Frekvencijska domena: frekvencijski spektar
 - harmonici (višekratnici osnovne frekvencije f, 2f, 3f, ..)
 - za govor, formanti (rezonantne frekvencije govornog trakta), npr:
 - a F1 660 F2 1700 F3 2400 Hz
 - e F1 530 F2 1850 F3 2500 Hz
 - u F1 300 F2 870 F3 2250 Hz

Percepcija zvuka

- Frekvencija (f) [Hz] → visina: 20 log (f/f_r) [Mel]
 - Jednake rastuće korake frekvencije primjećujemo kao sve manje i manje korake rasta visine zvuka
 - Čujno područje 20 Hz do 20 kHz
- Amplituda (A) [Pa] → Intenzitet (I) [W/m²] → glasnoca: 20 log (I/I_r) [dB] (I_r je granica čujnosti)
 - Jednake rastuće korake amplitude (intenziteta) primjećujemo kao sve manje i manje korake rasta jačine odnosno, glasnoće zvuka
 - granica čujnosti 0 dB (1*10⁻¹² W/m²⁾
 - šapat 25 dB
 - uredska buka 50 dB
 - razgovor 60-65 dB
 - prosječni kućni stereo uređaj ~90 dB
 - granica boli 120 dB
 - ozljeda bubnjića 130dB

dinamički raspon ljudskog sluha 120 dB

Izvori zvuka

- Prirodni analogni
 - ljudski glas (govor, pjevanje)
 - glasanje životinja
 - glazbeni instrumenti
 - prirodni zvukovi, npr. šum mora, vjetar, grmljavina,...

- Digitalni oblik je pogodan za pohranu, obradu i prijenos u računalnim sustavima
- Prirodni zvukovi se stoga digitaliziraju
- Svrha kodiranja digitalnog zvuka: što manji zapis bez osjetnog gubitka kvalitete

Digitalni zvuk u umreženom računalnom sustavu

codec, coder + decoder = uređaj koji kodira i dekodira, odn. komprimira i dekomprimira, audio i video

Postupak digitalizacije zvuka

- 1. uzorkovanje
- 2. kvantizacija
 - više ulaznih vrijednosti preslikava se na istu izlaznu vrijednost čime se gubi mogućnost točne rekonstrukcije
 - razlika stvarne i kvantizirane vrijednosti je kvantizacijska pogreška
 - uz broj bita k dobiva se 2k razina kvantizacije
 - općenito vrijedi: veći broj bita po uzorku → manje izobličenje

linearna kvantizacija

nelinearna kvantizacija

(npr. PCM, A- ili μ-zakon), Manja Kvantizacijska pogreška!

kvantizacija može biti *fiksna* (zadane razine) ili *adaptivna* (adaptivno određene razine kvantizacije)

3. kodiranje

Vrste kodera s obzirom na namjenu

- uskopojasni (telefonski kanal; B = 4 kHz)
 - prikaz zvuka s visokom točnošću:
 f_u = 8 kHz, 16 bita po uzorku (linearno) → 128 kbit/s
 - analogna telefonija: 300 Hz 3400 Hz
 f_u = 8 kHz, 8 bita po uzorku (nelinarno, A/μ) → 64 kbit/s
- širokopojasni (AM radio, ISDN; videokonferencija; B = 7 kHz)
- zvuk visoke kvalitete (FM radio, televizija; B = 15 kHz)
 - kanal 30 Hz 15 kHz $f_u = 32$ kHz, 16 bita po uzorku
- zvuk visoke vjernosti (CD kvaliteta; B = 20 kHz)
 - svaki kanal 20 Hz 20 kHz $f_u = 44.1$ kHz, 16 bita po uzorku

Kriteriji usporedbe codec-a

- brzina, izlaz, bitrate (bit/s)
- kvaliteta
 - objektivna mjerila ("klasične" metode, izobličenje signala i SNR, nisu dobra mjerila za ljudsku percepciju rekonstruiranog signala)
 - subjektivna mjerila (često važnija od objektivnih!)
- kašnjenje
 - algoritamsko kašnjenje u koderu na izvoru koliko traje kodiranje
 - kod dekodiranja koliko traje dekodiranje?
 - sinkronizacija s ostalim medijima u višemedijskoj aplikaciji
- otpornost na gubitke
 - posebno važno za prijenos preko mreže
- primjena na ostale zvukove koji nisu govor, npr. fax i modemske signale, te glazbu
- složenost (hw/sw)
- cijena izvedbe

Subjektivna mjerila kvalitete

- Opća ocjena kvalitete mišljenje korisnika
 - Mean Opinion Score (MOS)
 - Degradation MOS (DMOS)

Ocjena	MOS	DMOS	Procjena napora razumijevanja
5	izvrsno	nečujno pogoršanje	bez napora
4	dobro (toll quality)	čujno pogoršanje, ali ne smeta	bez posebnog napora
3	prihvatljivo	primjetno pogoršanje, malo smeta	osrednji napor
2	slabo	podnošljivo, ali smeta	priličan napor
1	loše	izraženo pogoršanje, jako smeta	neprepoznatljivo bez izrazitog napora

- Ocjena razumljivosti govora
 - dijagnostički testovi s parovima riječi koje slično zvuče, 90% točnost smatra se "toll quality"
 - Dynamic Rhyme Test (DRT) 96 parova engleskih riječi, npr.
 dune/tune, chair/care, moon/noon, .. slušačima se nudi popis i pita ih se koju riječ su čuli

Objektivne metode

- novije objektivne metode temelje se na poznavanju ljudskog slušnog sustava – računaju izobličenje zvučnog signala s percepcijskim težinskim faktorima
 - ideja: izobličenja koje uho "više čuje" ima veći težinski faktor od onog manje primjetnog ili neprimjetnog
- Perceptual Evaluation of Speech Quality (PESQ)
 - ITU-T preporuka P.862
 - metoda procjene subjektivne kvalitete govornih kodeka
 - algorithm predviđa subjektivnu ocjenu kvalitete degradiranog uzorka govora
 - izlaz iz algoritma je procijenjena vrijednost MOS
- Perceptual Evaluation of Audio Quality (PEAQ)
 - ITU-R preporuka BS.1387
 - algoritam za procjenu kvalitete audia

Karakteristike govora važne za kodiranje

- Izvor: ljudski govorni organi
 - Zrak iz pluća prolaskom kroz govorne organe (dušnik, grkljan, glasnice, šupljine usta i nosa) stvara glas
 - zvučni glasovi (zrak izaziva titranje glasnica)
 - bezvučni glasovi (nema titranja glasnica)
 - Frekv. raspon 60 Hz 8 kHz, dinamički raspon 40 dB
- Prijamnik: ljudski slušni organi
 - Čujno područje 20Hz 20 kHz, dinamički raspon 120 dB
 - Za razumljivost najvažnije 2 5 kHz (500-2000Hz)
 - Kvaliteta se ocjenjuje subjektivno
 - Poznata anomalija: efekt maskiranja: jedan zvučni signal prekriva drugi (ovisno o relativnima glasnoćama i frekvencijama)

Maskiranje zvuka

VMK • Informacijska svojstva i kodiranje zvuka

Vremenska analiza govora

Frekvencijska analiza govora (1)

Odsječak 30 ms bezvučni suglasnik "s"

VMK • Informacijska svojstva i kodiranje zvuka

Frekvencijska analiza govora (2)

- Odsječak 30 ms zvučni suglasnik "n"
- Uočljive rezonantne frekvencije formanti

VMK • Informacijska svojstva i kodiranje zvuka

Model govora u vremenu

- model govora u vremenu može se opisati "on-off" modelom
- intervali govora prosječno traju 800 ms 1.2 s
- intervali tišine (između pojedinih glasova, riječi i rečenica) prosječno traju 1 – 1.6 s

 ako se na izlaz kodera ne šalje ništa u intervalima tišine, može se uštedjeti do 40%

Vremenska svojstva govornog signala

 govorni signal je nestacionaran (mijenja se u vremenu), ali <u>u manjim vremenskim odsječcima</u> (okvirima od 20 - 30 ms) može se promatrati kao stacionaran

govorni kodeci koriste to svojstvo za kompresiju okvir-po-okvir

algoritamsko kašnjenje

Ideje za konstrukciju codeca

- Svojstvo govornog signala je da ima veću vjerojatnost poprimanja manjih vrijednosti nego većih vrijednosti
 - Uniformna kvantizacija nije optimalna
 - "isplati se" točnije kodirati manje vrijednosti od većih nelinearna kvantizacija daje bolju kvalitetu uz jednak broj bita po uzorku
- Postoji visoka korelacija između uzastopnih uzoraka i uzastopnih okvira
 - Uklanjanjem redundancije u signalu može se sažeti zapis
- Na temelju poznavanja svojstava govora, tj. fizioloških karakteristika govornog trakta, može se napraviti model
 - Parametri modela se računaju na temelju stvarnih uzoraka
 - Prenose se samo parametri, a govor se rekonstruira (sintetizira) na temelju modela
 - U najnovijim koderima (npr. MPEG-4 SA) ova ideja proširuje se i na druge zvukove

Koderi govora

Koderi valnog oblika

- Veće brzine, dobra kvaliteta, razvijeni za fiksnu i (kasnije dorađeni) za mobilnu telefoniju
- Pulsno-kodna modulacija (PCM)
 - preporuka ITU-T G.711 Pulse Code Modulation for voice frequencies (PCM)
- Adaptivni diferencijalni PCM (ADPCM)
 - preporuka ITU-T G.726 Adaptive Differential Pulse Code Modulation (ADPCM); sadrži zastarjelu preporuku G.721 (originalna norma)
 - proširenje je ITU-T G.727 5-, 4-, 3- and 2 bits per sample
 embedded Adaptive Differential Pulse Code Modulation (ADPCM)

PCM

- Uzorkovanje na 8 kHz, nelinearna kvantizacija po logaritamskoj karakteristici prema A-zakonu (Europa) ili μzakonu (SAD, Japan)
- Prednosti:
 - jednostavan
 - visoka kvaliteta (MOS 4.3)
 - malo kašnjenje (1 uzorak)
- Nedostaci:
 - 64 kbit/s nije malo
 - nema mehanizme za kontrolu i ispravljanje pogrešaka (nije dobar kandidat za internetsku telefoniju)
- Primjena: već desetljećima u uporabi u fiksnoj telefonskoj mreži

Princip diferencijalnog kodera (ADPCM)

KODER

DEKODER

- x ulazni signal
- d signal razlike
- d'- kvantizirani signal razlike
- x '- rekonstruirani signal
- p predvidjeni signal

- **Q** fiksna ili adaptivna kvantizacija
- **Q**⁻¹ inverzna kvantizacija
- P linearna predikcija (fiksni ili adaptivni koeficijenti
- A postupci adaptacije

$$p_n = a_1 x'_{n-1} + a_2 x'_{n-2} + \dots + a_k x'_{n-k}$$

U koderu je sadržan dekoder, te se računa razlika izmedju signala kojeg bi dekoder predvidio i stvarnog signala; ova razlika se kvantizira i šalje dekoderu.

Princip diferencijalnog kodera (ADPCM)

DEKODER

d - signal razlike

d'- kvantizirani signal razlike

x'- rekonstruirani signal

p - predvidjeni signal

Q – fiksna ili adaptivna kvantizacija

Q-1 – inverzna kvantizacija

P – linearna predikcija (fiksni ili adaptivni koeficijenti)

A – postupci adaptacije

$$p_n = a_1 x'_{n-1} + a_2 x'_{n-2} + \dots + a_k x'_{n-k}$$

U koderu je sadržan dekoder, te se računa razlika izmedju signala kojeg bi dekoder predvidio i stvarnog signala; ova razlika se kvantizira i šalje dekoderu.

ADPCM - svojstva

- osim tipične brzine od 32 kbit/s, ovisno o broju bita za kodiranje greške, norma specificira i brzine 40 kbit/s (5 bita), 24 kbit/s (3 bita), 16 kbit/s (2 bita)
- prednosti:
 - nema algoritamskog kašnjenja
 - prenosi i modemske i fax signale bez degradacije
- nedostaci:
 - visoka brzina (postoje bolja rješenja na manjim brzinama), osjetljiv na gubitke
- primjena: kućni bežični telefon norma DECT (Digital European Cordless Telephony)
- primjena i u širokopojasnom koderu; preporuka ITU-T G.722 Wideband (7 kHz) audio codec by Subband ADPCM (SB-ADPCM)
 - 64 (56, 48) kbit/s
 - primjena: ISDN aplikacije, telekonferencija

Koderi zasnovani na modelu

- Ideja: koder i dekoder imaju isti (parametrizirani) model govornog trakta
 - Parametri modela se računaju za okvire uzoraka govora
 - Dekoderu se prenose parametri modela (a ne uzorci govora) te se govor sintetizira na odredištu
 - Princip analize/sinteze
- postižu se vrlo male brzine
- prvi koderi, npr. LPC-10, su bili lošije kvalitete, razvijeni za sustave ograničene namjene, npr. robotika, sigurna telefonija
- noviji koderi, npr. CELP na malim brzinama postižu dobru kvalitetu, ali su računski složeniji

Malo povijesti

- Kempelen Farkas / Wolfgang von Kempelen (1734-1804)
 - "govorni stroj" govorni trakt simuliran pomoću cijevi
 - Prvi zabilježeni pokušaj umjetne proizvodnje govora
- Homer Dudley, Bell Labs, 1939
 - "Channel vocoder" (voice coder)
 - Model govornog trakta s filterima
 - Prethodnik današnjih kodera govora, postavlja osnovne principe

Ljudski govorni organi

VMK • Informacijska svojstva i kodiranje zvuka

Model proizvodnje govora

a) blok dijagramljudskihgovornih organa

b) blok dijagramdekoderazasnovanogna modelu

(LPC - Linear Predictive Coder)

Model govornog trakta

- Govorni trakt se modelira linearnim filtrom s nizom koeficijenata
- Signal se može prikazati kao izlaz linearnog filtra uz zadanu pobudu

Koder izračunava parametre filtra i pobude i šalje ih dekoderu

Linear Predictive Coding (LPC)

- Pobuda: periodički impulsni signal
- Parametri modela:
 - Frekvencija pobude
 - Jačina pobude
 - Zvučni/bezvučni glas
 - Koeficijenti filtra

- 6 bita
- 5 bita
- 1 bit
- 42 bita (10 koeficijenata)
- Npr, LPC-10 na 2.4 kbit/s
 - Frekvencija uzorkovanja: 8kHz
 - Duljina okvira: 180 uzoraka = 22.5 ms

LPC - računanje parametara modela

- Frekvencija pobude
 - Average Magnitude Difference Function (AMDF)

$$AMDF(P) = \frac{1}{N} \sum_{i=k_0+1}^{k_0+N} |y_i - y_{i-P}|$$

- AMDF izračunava prosjek razlika signala u zvučnom okviru udaljenih za neki period P
- Zvučni/bezvučni glas
 - AMDF nema jasnih minimuma za bezvučne glasove
 - Bezvučni glasovi: manja amplitude signala
- Jačina pobude
 - korijen srednje vrijednosti kvadrata signala
- Koeficijenti filtra
 - Metoda najmanjeg kvadrata pogreške

Code Excited Linear Prediction (CELP)

- Zajednički rječnik kodova (code-book) u koderu i dekoderu
- Dekoderu se šalje indeks (kôd) pobude
- Analiza-sintezom služi za određivanje pobude
 - pretražuje se skup mogućih pobuda i za svaku provodi sinteza
 - računa se percepcijska greška

Primjeri kodera zasnovanih na modelu (1)

- preporuka ITU-T G.728 Low Delay CELP (LD-CELP)
 - 16 kbit/s, MOS 4, algoritamsko kašnjenje samo 0,625 ms
- preporuka ITU-T G.729 Conjugate Structure Algebraic CELP (CS-ACELP)
 - 8 kbit/s, MOS 4, kašnjenje 15 ms
- preporuka ITU-T G.723.1 Dual rate speech coder for multimedia communications transmitting at 5.3 and 6.3 kbit/s
 - 5.3 i 6.3 kbit/s, MOS 3.8
 - pogodan za internetsku telefoniju

Primjeri kodera zasnovanih na modelu (2)

- ETSI GSM 06.10: Full Rate codec na 13 kbit/s
 - u uporabi u većini GSM 900 and PCS 1800 mreža
 - Regular Pulse Excitation LPC with Long Term Prediction (RPE-LTP) koder
- ETSI GSM 06.60: GSM Enhanced Full Rate na 12.2 kbit/s
 - Algebraic Code-Excited Linear Prediction (ACELP)
 - osnova i za sjevernoamerički TDMA IS-136, kao i za ITU-T G.729
- ETSI GSM 06.20: GSM Half Rate na 5.6 kbit/s
 - Vector-Sum Excited Linear Prediction (VSELP)

Koderi zvuka u frekvencijskoj domeni

- Koderi zvuka u frekvencijskoj domeni nisu ograničeni na govor; imaju dobra svojstva za bilo kakve zvukove npr. glazbu
 - Koriste pod-pojasno kodiranje (podjela na frekvencijske pod-pojase prije kodiranja)
- Koriste efekt maskiranja
 - uz jaki signal na nekoj frekvenciji uho ne može čuti slabiji signal na bliskoj frekvenciji
 - osim u zadanom trenutku, maskiranje ima utjecaj i u vremenu (prije/poslije)

Osnovni percepcijski koder

Shema kodera

Shema dekodera

MPEG Audio

- MPEG Moving Picture Expert Group (ISO/IEC JTC1/SC29/WG11)
- MPEG-1
 - Dva audio kanala
 - fu = 44.1 kHz (isto kao CD), 32 kHz, 48 kHz (isto kao DAT)
 - Brzine od 8-16 kbit/s do 320 kbit/s
 - MPEG Audio Layer I, II, III: razine kodiranja rastuće složenosti
 - Koristi se percepcijsko kodiranje

MPEG-2

- Isti osnovni koder kao MPEG-1
- Pet audio kanala + niskofrekventni kanal
- Uz MPEG-1 još i fu = 16 kHz, 22.05 kHz, 24 kHz
- AAC Advanced Audio Codec, dodan kasnije

MPEG-4

AAC, dva kodera za govor, strukturirani audio, ...

MPEG Audio Layer 3 – MP3 koder

 Literatura: K. Brandenburg "MP3 and AAC Explained", AES 17th international conference on High Quality Audio Coding, Florence, Italy, September 1999.

Pregled kodera govora i zvuka

Kodiranje	kb/s	MOS	uporaba
LPC-10	2.4	2.3	robotika, sigurna telefonija
G.711	64.0	4.5	telefonija (A, u-law)
G.722	64.0		7kHz codec (subband)
G.723.1	5.3/6.3	3.8	videotelefon (ostatak kanala za video)
G.726	16-40	ovisi	niska kompleksnost (ADPCM)
G.726	32	4.1	niska kompleksnost (ADPCM)
G.728	16.0	4.0	malo kašnjenje
G.729	8.0	4.0	mobilna telefonija
GSM	13.0	3.5	GSM (mobilna telefonija, Europa)
GSM EFR	12.2	4.0	GSM 2.5G
GSM HR	5.6	3.5	GSM 2.5G
IS 54/136	7.95	3.5	TDMA (Sj. Amerika mobile (stari std.))
IS 641	7.4	4.0	TDMA (Sj. Amerika mobile (novi std.))
MPEG L3	56-128.0	N/A	CD stereo
DVI	32.0	toll-quality	(Intel, Microsoft)
16 bit/44.1 kHz	1411		compact disc

LPC demo

Pokazati na predavanju