Logic and Computer Design Fundamentals Chapter 5 – Sequential Circuits

Part 1 Storage Elements and Sequential Circuit Analysis

Yueming Wang (王跃明)

ymingwang@zju.edu.cn

2017

College of Computer Science, Zhejiang University
Qiushi Academy for Advanced Studies, Zhejiang University

Overview

- Part 1 Storage Elements and Analysis
 - Introduction to sequential circuits
 - **Types of sequential circuits**
 - **Storage elements**
 - Latches
 - Flip-flops
 - Sequential circuit analysis
 - State tables
 - State diagrams
 - Equivalent states
 - **Moore and Mealy Models**
- Part 2 Sequential Circuit Design

Introduction to Sequential Circuits

Storage

Inputs

Combina-

tional

Logic

State

A Sequential circuit contains:

• Storage elements: Elements
Latches or Flip-Flops

- Combinational Logic:
 - Implements a multiple-output switching function
 - **Inputs** are signals from the outside.
 - Outputs are signals to the outside.
 - Other inputs, <u>State</u> or <u>Present State</u>, are signals from storage elements.
 - The remaining outputs, <u>Next State</u> are inputs to storage elements.

Next

State

Outputs

Introduction to Sequential Circuits

- Output function (Moore)
 Outputs = h(State)
- Output function type depends on specification and affects the design significantly

Types of Sequential Circuits

Depends on the <u>times</u> at which:

- storage elements observe their inputs, and
- storage elements change their state

Synchronous

- Behavior defined from knowledge of its signals at <u>discrete</u> instances of time
- Storage elements observe inputs and can change state only in relation to a timing signal (clock pulses from a clock)

Asynchronous

- Behavior defined from knowledge of inputs an any instant of time and the order in continuous time in which inputs change
- If clock just regarded as another input, all circuits are asynchronous!
- **Nevertheless, the synchronous abstraction makes complex** designs tractable!

A Simple Storage Element

Buffer as a storage

Discrete Event Simulation

In order to understand the time behavior of a sequential circuit we use <u>discrete event</u> simulation.

Rules:

- Gates modeled by an ideal (instantaneous) function and a fixed gate delay
- Any change in input values is evaluated to see if it causes a change in output value
- Changes in output values are scheduled for the fixed gate delay after the input change
- At the time for a scheduled output change, the output value is changed along with any inputs it drives

Information Storage

Example: A 2-Input NAND gate with a 0.5 ns. delay:

- Assume A and B have been 1 for a long time
- At time t=0, A changes to a 0 at t= 0.8 ns, back to 1.

t (ns)	A	В	F(I)	F	Comment	
-∞	1	1	0	0	A=B=1 for a long time	
0	1⇒ 0	1	1← 0	0	F(I) changes to 1	
0.5	0	1	1	1 ← 0	$\leftarrow 0$ F changes to 1 after a 0.5 ns dela	
0.8	1 ← 0	1	1⇒ 0	1	F(Instantaneous) changes to 0	
1.3	1	1	0	1⇒ 0	F changes to 0 after a 0.5 ns delay	

Gate Delay Models

Suppose gates with delay n ns are represented for n = 0.2 ns, n = 0.4 ns, n = 0.5 ns, respectively:

Circuit Delay Model

Storing State

- What if A connected to Y?
- Circuit becomes:
- With function:
 - Y = B for S = 1, and
 Y(t) dependent on
 Y(t 0.9) for S = 0

The simple <u>combinational circuit</u> has now become a <u>sequential circuit</u> because its output is a function of a time sequence of input signals!

Y is stored value in shaded area

Storing State (Continued)

Simulation example as input signals change with time. Changes occur every 100 ns, so that the tenths of ns delays are negligible.

Time	В	S	Y	Comment
	1	0	0	Y "remembers" 0
	1	1	1	Y = B when $S = 1$
	1	0	1	Now Y "remembers" $B = 1$ for $S = 0$
	0	0	1	No change in Y when B changes
	0	1	0	Y = B when $S = 1$
	0	0	0	Y "remembers" $B = 0$ for $S = 0$
1	1	0	0	No change in Y when B changes

Y represent the <u>state</u> of the circuit, not just an output.

Storing State (Continued)

Suppose we place an inverter in the "feedback path."

The following behavior results:

- The circuit is said to be <u>unstable</u>.
- For S = 0, the circuit has become what is called an oscillator. Can be used as crude clock.

В	S	Y	Comment
0	1	0	Y = B when $S = 1$
1	1	1	
1	0	1	Now Y "remembers" B
1	0	0	Y, 1.1 ns later
1	0	1	Y, 1.1 ns later
1	0	0	Y, 1.1 ns later

Basic (NOR) S – R Latch

- Cross-coupling two
 NOR gates gives the
 S R Latch:
- Which has the time

sequence

behavior:

S = 1, R = 1 is forbidden as input pattern R (reset)

S (set)

Time	R	S	Q	$\overline{\mathbf{Q}}$	Comment
	0	0	?	?	Stored state unknown
is	0	1	1	0	"Set" Q to 1
	0	0	1	0	Now Q "remembers" 1
S	1	0	0	1	"Reset" Q to 0
n	0	0	0	1	Now Q "remembers" 0
	1	1	0	0	Both go low
*	0	0	?	?	Unstable!

Basic (NAND) $\overline{S} - \overline{R}$ Latch

Time

- "Cross-Coupling" two NAND gates gives the \$\bar{S}\$ -\$\bar{R}\$ Latch:
- Which has the time sequence behavior:

S' = 0, R' = 0 is forbidden as input pattern

R'	S'	Q	$ar{f Q}$	Comment
1	1	?	?	Stored state unknown
1	0	1	0	"Set" Q to 1
1	1	1	0	Now Q "remembers" 1
0	1	0	1	"Reset" Q to 0
1	1	0	1	Now Q "remembers" 0
0	0	1	1	Both go high
1	1	?	?	Unstable!

Clocked S - R Latch

Adding two NAND gates to the basic S-R NAND latch gives the clocked S-R latch:

Has a time sequence behavior similar to the basic S-R latch except that the S and R inputs are only observed when the line C is high.

C means "control" or "clock".-

C	S	R	Q(t+1)	Comment
0	X	X	No change	No change
1	0	0	No change	No change
1	0	1	0	Clear Q
1	1	0	1	Set Q
1	1	1	???	Indeterminate

D Latch

• Adding an inverter Deto the S-R Latch, gives the D Latch: Co

Note that there are no "indeterminate" states!

C	D	Q	Comment
0	X	No change	No change
1	0	0	Clear Q
1	1	1	Set Q

The graphic symbol for a

D Latch is:

Flip-Flops

- The latch timing problem
- Master-slave flip-flop
- Edge-triggered flip-flop
- Standard symbols for storage elements
- Direct inputs to flip-flops

The Latch Timing Problem

- In a sequential circuit, paths may exist through combinational logic:
 - From one storage element to another
 - From a storage element back to the same storage element
- The combinational logic between a latch output and a latch input may be as simple as an interconnect
- For a clocked D-latch, the output Q depends on the input D whenever the clock input C has value 1

The Latch Timing Problem (continued)

Consider the following circuit:

• Suppose that initially Y = 0.

- As long as C = 1, the value of Y continues to change!
- The changes are based on the delay present on the loop through the connection from Y back to Y.
- This behavior is clearly unacceptable.
- Desired behavior: Y changes only once per clock pulse

The Latch Timing Problem (continued)

- A solution to the latch timing problem is to break the closed path from Y to Y within the storage element
- The commonly-used, path-breaking solutions replace the clocked D-latch with:
 - a master-slave flip-flop
 - an edge-triggered flip-flop

S-R Master-Slave Flip-Flop

- Consists of two clocked S-R latches in series with the clock on the second latch inverted
- The input is observed by the first latch with C = 1

- The output is changed by the second latch with C = 0
- The path from input to output is broken by the difference in clocking values (C = 1 and C = 0).
- The behavior demonstrated by the example with D driven by Y given previously is prevented since the clock must change from 1 to 0 before a change in Y based on D can occur.

Flip-Flop Problem

- The change in the flip-flop output is delayed by the pulse width which makes the circuit slower or
- S and/or R are permitted to change while C = 1
 - Suppose Q = 0 and S goes to 1 and then back to 0 with R remaining at 0
 - The master latch sets to 1
 - A 1 is transferred to the slave
 - Suppose Q = 0 and S goes to 1 and back to 0 and R goes to 1 and back to 0
 - The master latch sets and then resets
 - A 0 is transferred to the slave
 - This behavior is called 1s catching

Flip-Flop Solution

- Use edge-triggering instead of master-slave
- An edge-triggered flip-flop ignores the pulse while it is at a constant level and triggers only during a transition of the clock signal
- Edge-triggered flip-flops can be built directly at the electronic circuit level, or
- A master-slave D flip-flop which also exhibits edge-triggered behavior can be used.

Edge-Triggered D Flip-Flop

The edge-triggered D flip-flop is the same as the masterslave D flip-flop

- It can be formed by:
 - Replacing the first clocked S-R latch with a clocked D latch or
 - Adding a D input and inverter to a master-slave S-R flip-flop
- The delay of the S-R master-slave flip-flop can be avoided since the 1s-catching behavior is not present with D replacing S and R inputs
- The change of the D flip-flop output is associated with the negative edge at the end of the pulse
- It is called a negative-edge triggered flip-flop

Positive-Edge Triggered D Flip-Flop

Formed by adding inverter to clock input

- Q changes to the value on D applied at the positive clock edge within timing constraints to be specified
- Our choice as the <u>standard flip-flop</u> for most sequential circuits

Standard Symbols for Storage Elements

Direct Inputs

- At power up or at reset, all or part of a sequential circuit usually is initialized to a known state before it begins operation
- This initialization is often done outside of the clocked behavior of the circuit, i.e., asynchronously.

- Direct R and/or S inputs that control the state of the latches within the flip-flops are used for this initialization.
- For the example flip-flop shown
 - 0 applied to R resets the flip-flop to the 0 state
 - 0 applied to \overline{S} sets the flip-flop to the 1 state

Sequential Circuit Analysis

- General Model **Inputs Outputs** Current State Combinaat time (t) is tional **Storage** stored in an Logic **Elements** array of Next flip-flops. State **State** • Next State at time (t+1) is a Boolean function of CLK State and Inputs.
 - Outputs at time (t) are a Boolean function of State (t) and (sometimes) Inputs (t).

Example 1 (from Fig. 5-15)

- Input: x(t)
- Output: y(t)
- State: (A(t), B(t))
- What is the <u>Output</u> Function?

What is the Next State Function?

Example 1 (from Fig. 5-15) (continued)

Boolean equations for the functions:

- A(t+1) = A(t)x(t) + B(t)x(t)
- $B(t+1) = \overline{A}(t)x(t)$
- $y(t) = \overline{x}(t)(B(t) + A(t))$

Example 1(from Fig. 5-15) (continued)

Where in time are inputs, outputs and states defined?

State Table Characteristics

- State table a multiple variable table with the following four sections:
 - Present State the values of the state variables for each allowed state.
 - *Input* the input combinations allowed.
 - Next-state the value of the state at time (t+1) based on the <u>present state</u> and the <u>input</u>.
 - Output the value of the output as a function of the <u>present state</u> and (sometimes) the <u>input</u>.
- From the viewpoint of a truth table:
 - the inputs are Input, Present State
 - and the outputs are Output, Next State

Example 1: State Table (from Fig. 5-15)

The state table can be filled in using the next state and output equations:

$$A(t+1) = A(t)x(t) + B(t)x(t)$$

 $B(t+1) = A'(t)x(t)$
 $y(t) = x'(t)(B(t) + A(t))$

Present State	Input	Next	State	Output
A(t) B(t)	x(t)	A(t+1)	B(t+1)	y(t)
0 0	0	0	0	0
0 0	1	0	1	0
0 1	0	0	0	1
0 1	1	1	1	0
1 0	0	0	0	1
1 0	1	1	0	0
1 1	0	0	0	1
1 1	1	1	0	0

Example 1: Alternate State Table

2-dimensional table that matches well to a K-map.
 Present state rows and input columns in Gray code order.

$$A(t+1) = A(t)x(t) + B(t)x(t)$$

•
$$B(t+1) = A'(t)x(t)$$

•
$$y(t) = x'(t)(B(t) + A(t))$$

Present	Next	Output		
State	$\mathbf{x}(\mathbf{t}) = 0 \qquad \mathbf{x}(\mathbf{t}) = 1$		$\mathbf{x}(\mathbf{t})=0$	x(t)=1
A(t) B(t)	A(t+1)B(t+1)	$\mathbf{A}(t+1)\mathbf{B}(t+1)$	y(t)	y(t)
0 0	0 0	0 1	0	0
0 1	0 0	1 1	1	0
1 0	0 0	1 0	1	0
1 1	0 0	1 0	1	0

State Diagrams

- The sequential circuit function can be represented in graphical form as a state diagram with the following components:
 - A circle with the state name in it for each state
 - A directed arc from the Present State to the Next State for each state transition
 - A label on each <u>directed arc</u> with the <u>Input</u> values which causes the state transition, and
 - A label:
 - On each <u>circle</u> with the <u>output</u> value produced, or
 - On each <u>directed arc</u> with the <u>output</u> value produced.

State Diagrams

- Label form:
 - On <u>circle</u> with output included:
 - state/output
 - Moore type output depends only on state
 - On directed arc with the output included:
 - input/output
 - Mealy type output depends on state and input

Example 1: State Diagram

- Which type?
- Diagram gets confusing for large circuits

For small circuits, usually easier to understand than the state table

Mealy

Equivalent State Definitions

- Two states are *equivalent* if their response for each possible input sequence is an identical output sequence.
- Alternatively, two states are equivalent if their outputs produced for each input symbol is identical and their next states for each input symbol are the same or equivalent.

Equivalent State Example

- Text Figure 5-17(a):
- For states S3 and S2,
 - the output for input
 0 is 1 and input 1 is 0, 0/1
 and
 - the next state for input
 0 is S0 and for input
 1 is S2.
 - By the alternative definition, states S3 and S2 are equivalent.

Equivalent State Example

Replacing S3 and S2 by a single state gives state diagram:

 Examining the new diagram, states S1 and S2 are equivalent since

- their outputs for input 0 is 1 and input 1 is 0, and
- their next state for input
 0 is S0 and for input
 1 is S2,
- Replacing S1 and S2 by a single state gives state diagram:

Moore and Mealy Models

- Sequential Circuits or Sequential Machines are also called *Finite State Machines* (FSMs). Two formal models exist:
 - Moore Model
 - Named after E.F. Moore
 - Outputs are a function ONLY of <u>states</u>
 - Usually specified on the states.

- Mealy Model
 - Named after G. Mealy
 - Outputs are a function of <u>inputs</u> AND <u>states</u>
 - Usually specified on the state transition arcs.

Moore and Mealy Example Diagrams

 Mealy Model State Diagram maps <u>inputs</u> and state to <u>outputs</u>

to outputs x=1/y=0 x=0/y=0

 Moore Model State Diagram maps <u>states</u> to <u>outputs</u>

Mixed Moore and Mealy Outputs

In real designs, some outputs may be Moore type and other outputs may be Mealy type.

Example: Figure 5-17(a) can be modified to

illustrate this

• State 00: Moore

• States 01, 10, and 11: Mealy

Simplifies output specification

Example 2: Sequential Circuit Analysis

Example 2: Flip-Flop Input Equations

- Variables
 - Inputs: None
 - Outputs: Z
 - State Variables: A, B, C
- Initialization: Reset to (0,0,0)
- Equations
 - A(t+1) = BC Z = A
 - B(t+1) = B'C + BC'
 - C(t+1) = A'C'

Example 2: State Table

X' = X(t+1)

ABC	A'B'C'	Z
0 0 0	0 0 1	0
0 0 1	0 1 0	0
0 1 0	0 1 1	0
0 1 1	1 0 0	0
1 0 0	0 0 0	1
1 0 1	0 1 0	1
1 1 0	0 1 0	1
1 1 1	1 0 0	1

Example 2: State Diagram

Assignment

- **5-2** 5-4
- **5-6**, 5-9, 5-11, 5-12,