Листок 02. Прогнозирование

Н.В. Артамонов

11 июня 2024 г.

Содержание

1	Линейная регрессия	1
2	k-NN	6
3	Валидация моделей	11

1 Линейная регрессия

#1. Для набора данных sleep75 рассмотрим линейную регрессию sleep на totwrk, age, south, male.

- 1. Подгоните модель и выведите коэффициенты подогнанной модели
- 2. Рассмотрим трёх людей с характеристиками

index	totwrk	age	south	male
0	2160	32	1	0
1	1720	24	0	1
2	2390	44	0	1

вычислите прогноз sleep

3. На обучающей выборке вычислите метрики подгонки: \mathbb{R}^2 , MSE, MAE, MAPE, RMSE

- #2. Для набора данных sleep75 рассмотрим линейную регрессию sleep на totwrk, age, south, male, smsa, yngkid, marr.
 - 1. Подгоните модель и выведите коэффициенты подогнанной модели
 - 2. Рассмотрим трёх людей с характеристиками

index	totwrk	age	south	male	smsa	yngkid	marr
0	2150	37	0	1	1	0	1
1	1950	28	1	1	0	1	0
2	2240	26	0	0	1	0	0

вычислите прогноз sleep

- 3. На обучающей выборке вычислите метрики подгонки: \mathbb{R}^2 , MSE, MAE, MAPE, RMSE
- #3. Для набора данных wage2 рассмотрим линейную регрессию wage на age, IQ, south, married, urban.
 - 1. Подгоните модель и выведите коэффициенты подогнанной модели
 - 2. Рассмотрим трёх людей с характеристиками

index	age	IQ	south	married	urban
0	36	105	1	1	1
1	29	123	0	1	0
2	25	112	1	0	1

вычислите прогноз wage

- 3. На обучающей выборке вычислите метрики подгонки: \mathbb{R}^2 , MSE, MAE, MAPE, RMSE
- #4. Для набора данных wage2 рассмотрим линейную регрессию $\log(\text{wage})$ на age, IQ, south, married, urban.
 - 1. Подгоните модель и выведите коэффициенты подогнанной модели

2. Рассмотрим трёх людей с характеристиками

index	age	IQ	south	married	urban
0	36	105	1	1	1
1	29	123	0	1	0
2	25	112	1	0	1

вычислите прогноз wage

- 3. На обучающей выборке вычислите метрики подгонки: \mathbb{R}^2 , MSE, MAE, MAPE, RMSE
- #5. Для набора данных wage1 рассмотрим линейную регрессию wage на exper, female, married, smsa.
 - 1. Подгоните модель и выведите коэффициенты подогнанной модели
 - 2. Рассмотрим трёх людей с характеристиками

index	exper	female	married	smsa
0	5	1	1	1
1	26	0	0	1
2	38	1	1	0

вычислите прогноз **wage**

- 3. На обучающей выборке вычислите метрики подгонки: \mathbb{R}^2 , MSE, MAE, MAPE, RMSE
- #6. Для набора данных wage1 рассмотрим линейную регрессию

 $\log(\text{wage})$ на exper, female, married, smsa.

- 1. Подгоните модель и выведите коэффициенты подогнанной модели
- 2. Рассмотрим трёх людей с характеристиками

index	exper	female	married	smsa
0	5	1	1	1
1	26	0	0	1
2	38	1	1	0

вычислите прогноз wage

- 3. На обучающей выборке вычислите метрики подгонки: \mathbb{R}^2 , MSE, MAE, MAPE, RMSE
- #7. Для набора данных Labour рассмотрим линейную регрессию output на capital, labour.
 - 1. Подгоните модель и выведите коэффициенты подогнанной модели
 - 2. Рассмотрим три фирмы с характеристиками

index	capital	labour
0	2.970	85
1	10.450	60
2	3.850	105

вычислите прогноз output

- 3. На обучающей выборке вычислите метрики подгонки: \mathbb{R}^2 , MSE, MAE, MAPE, RMSE
- #8. Для набора данных Labour рассмотрим линейную регрессию log(output) на log(capital), log(labour).
 - 1. Подгоните модель и выведите коэффициенты подогнанной модели
 - 2. Рассмотрим три фирмы с характеристиками

index	capital	labour
0	2.970	85
1	10.450	60
2	3.850	105

вычислите прогноз output

3. На обучающей выборке вычислите метрики подгонки: \mathbb{R}^2 , MSE, MAE, MAPE, RMSE

- #9. Для набора данных Labour рассмотрим линейную регрессию output на capital, labour, wage.
 - 1. Подгоните модель и выведите коэффициенты подогнанной модели
 - 2. Рассмотрим три фирмы с характеристиками

index	capital	labour	wage
0	2.970	85	36.98
1	10.450	60	33.82
2	3.850	105	40.23

вычислите прогноз output

- 3. На обучающей выборке вычислите метрики подгонки: \mathbb{R}^2 , MSE, MAE, MAPE, RMSE
- #10. Для набора данных Labour рассмотрим линейную регрессию log(output) на log(capital), log(labour), log(wage).
 - 1. Подгоните модель и выведите коэффициенты подогнанной модели
 - 2. Рассмотрим три фирмы с характеристиками

index	capital	labour	wage
0	2.970	85	36.98
1	10.450	60	33.82
2	3.850	105	40.23

вычислите прогноз output для каждой

3. На обучающей выборке вычислите метрики подгонки: \mathbb{R}^2 , MSE, MAE, MAPE, RMSE

2 k-NN

#1. Для набора данных sleep75 рассмотрим задачу прогнозирования для переменных

зависимая/target	объясняющая/предикторы/features
sleep	totwrk, age, south, male

1. подгоните на исходном датасете модель k-NN с параметрами

Nº	k	веса
1	5	uniform
2	5	distance
3	10	uniform
4	10	distance

2. Рассмотрим трёх людей с характеристиками

index	totwrk	age	south	male
0	2160	32	1	0
1	1720	24	0	1
2	2390	44	0	1

вычислите прогноз **sleep** по каждой модели

#2. Для набора данных sleep75 рассмотрим задачу прогнозирования для переменных

зависимая/target	объясняющая/предикторы/features
sleep	totwrk, age, south, male, smsa, yngkid, marr

1. подгоните на исходном датасете модель k-NN с параметрами

$N_{\overline{0}}$	k	веса
1	5	uniform
2	5	distance
3	10	uniform
4	10	distance

2. Рассмотрим трёх людей с характеристиками

index	totwrk	age	south	male	smsa	yngkid	marr
0	2150	37	0	1	1	0	1
1	1950	28	1	1	0	1	0
2	2240	26	0	0	1	0	0

вычислите прогноз **sleep** по каждой модели

#3. Для набора данных wage2 рассмотрим задачу прогнозирования для переменных

зависимая/target	объясняющая/предикторы/features
wage	age, IQ, south, married, urban

1. подгоните на исходном датасете модель k-NN с параметрами

$N_{\overline{0}}$	k	веса
1	5	uniform
2	5	distance
3	10	uniform
4	10	distance

2. Рассмотрим трёх людей с характеристиками

index	age	IQ	south	married	urban
0	36	105	1	1	1
1	29	123	0	1	0
2	25	112	1	0	1

вычислите прогноз wage по каждой модели

#4. Для набора данных wage2 рассмотрим задачу прогнозирования для переменных

зависимая/target	объясняющая/предикторы/features
$\log(\text{wage})$	age, IQ, south, married, urban

1. подгоните на исходном датасете модель k-NN с параметрами

Nº	k	веса
1	5	uniform
2	5	distance
3	10	uniform
4	10	distance

2. Рассмотрим трёх людей с характеристиками

index	age	IQ	south	married	urban
0	36	105	1	1	1
1	29	123	0	1	0
2	25	112	1	0	1

вычислите прогноз **wage** по каждой модели

#5. Для набора данных wage1 рассмотрим задачу прогнозирования для переменных

зависимая/target	объясняющая/предикторы/features
wage	exper, female, married, smsa

1. подгоните на исходном датасете модель k-NN с параметрами

$N_{\overline{0}}$	k	веса
1	5	uniform
2	5	distance
3	10	uniform
4	10	distance

2. Рассмотрим трёх людей с характеристиками

index	exper	female	married	smsa
0	5	1	1	1
1	26	0	0	1
2	38	1	1	0

вычислите прогноз **wage** по каждой модели

#6. Для набора данных wage1 рассмотрим задачу прогнозирования для переменных

зависимая/target	объясняющая/предикторы/features
$\log(\text{wage})$	exper, female, married, smsa

1. подгоните на исходном датасете модель k-NN с параметрами

No॒	k	веса
1	5	uniform
2	5	distance
3	10	uniform
4	10	distance

2. Рассмотрим трёх людей с характеристиками

index	exper	female	married	smsa
0	5	1	1	1
1	26	0	0	1
2	38	1	1	0

вычислите прогноз **wage** по каждой модели

#7. Для набора данных Labour рассмотрим задачу прогнозирования для переменных

зависимая/target	объясняющая/предикторы/features	
output	capital, labour	

1. подгоните на исходном датасете модель k-NN с параметрами

$N_{\overline{0}}$	k	веса
1	5	uniform
2	5	distance
3	10	uniform
4	10	distance

2. Рассмотрим трёх людей с характеристиками

index	capital	labour
0	2.970	85
1	10.450	60
2	3.850	105

вычислите прогноз output по каждой модели

#8. Для набора данных Labour рассмотрим задачу прогнозирования для переменных

зависимая/target	объясняющая/предикторы/features	
log(output)	$\log(\text{capital}), \log(\text{labour})$	

1. подгоните на исходном датасете модель k-NN с параметрами

$N_{\overline{0}}$	k	веса
1	5	uniform
2	5	distance
3	10	uniform
4	10	distance

2. Рассмотрим трёх людей с характеристиками

index	capital	labour
0	2.970	85
1	10.450	60
2	3.850	105

вычислите прогноз output по каждой модели

#9. Для набора данных Labour рассмотрим задачу прогнозирования для переменных

зависимая/target	объясняющая/предикторы/features
output	capital, labour, wage

1. подгоните на исходном датасете модель k-NN с параметрами

Nº	k	веса
1	5	uniform
2	5	distance
3	10	uniform
4	10	distance

2. Рассмотрим трёх людей с характеристиками

index	capital	labour	wage
0	2.970	85	36.98
1	10.450	60	33.82
2	3.850	105	40.23

вычислите прогноз output по каждой модели

#10. Для набора данных Labour рассмотрим задачу прогнозирования для переменных

зависимая/target	объясняющая/предикторы/features
log(output)	$\log(\text{capital}), \log(\text{labour}), \log(\text{wage})$

1. подгоните на исходном датасете модель k-NN с параметрами

$N_{\overline{0}}$	k	веса
1	5	uniform
2	5	distance
3	10	uniform
4	10	distance

2. Рассмотрим трёх людей с характеристиками

index	capital	labour	wage
0	2.970	85	36.98
1	10.450	60	33.82
2	3.850	105	40.23

вычислите прогноз output по каждой модели

3 Валидация моделей

#1. Набор данных sleep75 разбейте на обучающую и тестовую часть в соотношении 80:20.

Рассмотрим задачу прогнозирования для переменных

зависимая/target	объясняющая/предикторы/features
sleep	totwrk, age, south, male

и следующие модели

Nº	Модель
1	линейная регрессия
2	k-NN с $k = 5$, веса 'uniform'
3	k-NN с $k = 5$, веса 'distance'
4	k-NN с $k = 10$, веса 'uniform'
5	k-NN c $k = 10$, seca 'distance'

Проведите валидацию моделей относительно метрик \mathbb{R}^2 , MSE, MAE, MAPE. Какая модель предпочтительней?

#2. Набор данных sleep75 разбейте на обучающую и тестовую часть в соотношении 80:20.

Рассмотрим задачу прогнозирования для переменных

зависимая/target	объясняющая/предикторы/features
sleep	totwrk, age, south, male, smsa, yngkid, marr

и следующие модели

Nº	Модель
1	линейная регрессия
2	k-NN с $k = 5$, веса 'uniform'
3	k-NN с $k = 5$, веса 'distance'
4	k-NN с $k = 10$, веса 'uniform'
5	k-NN с $k = 10$, веса 'distance'

Проведите валидацию моделей относительно метрик \mathbb{R}^2 , MSE, MAE, MAPE. Какая модель предпочтительней?

#3. Набор данных wage2 разбейте на обучающую и тестовую часть в соотношении 80:20.

Рассмотрим задачу прогнозирования для переменных

зависимая/target	объясняющая/предикторы/features
wage	age, IQ, south, married, urban

и следующие модели

Nº	Модель
1	линейная регрессия
2	k-NN с $k = 5$, веса 'uniform'
3	k-NN с $k = 5$, веса 'distance'
4	k-NN с $k = 10$, веса 'uniform'
5	k-NN с $k = 10$, веса 'distance'

Проведите валидацию моделей относительно метрик \mathbb{R}^2 , MSE, MAE, MAPE. Какая модель предпочтительней?

#4. Набор данных wage2 разбейте на обучающую и тестовую часть в соотношении 80:20.

Рассмотрим задачу прогнозирования для переменных

зависимая/target	объясняющая/предикторы/features
$\log(\text{wage})$	age, IQ, south, married, urban

и следующие модели

Nº	Модель
1	линейная регрессия
2	k-NN с $k = 5$, веса 'uniform'
3	k-NN с $k = 5$, веса 'distance'
4	k-NN с $k = 10$, веса 'uniform'
5	k-NN с $k = 10$, веса 'distance'

Проведите валидацию моделей относительно метрик \mathbb{R}^2 , MSE, MAE, MAPE. Какая модель предпочтительней?

#5. Набор данных wage1 разбейте на обучающую и тестовую часть в соотношении $80{:}20$.

Рассмотрим задачу прогнозирования для переменных

зависимая/target	объясняющая/предикторы/features
wage	exper, female, married, smsa

и следующие модели

$N_{\overline{0}}$	Модель
1	линейная регрессия
2	k-NN с $k = 5$, веса 'uniform'
3	k-NN с $k = 5$, веса 'distance'
4	k-NN с $k = 10$, веса 'uniform'
5	k-NN с $k = 10$, веса 'distance'

Проведите валидацию моделей относительно метрик \mathbb{R}^2 , MSE, MAE, MAPE. Какая модель предпочтительней?

#6. Набор данных wage1 разбейте на обучающую и тестовую часть в соотношении 80:20.

Рассмотрим задачу прогнозирования для переменных

зависимая/target	объясняющая/предикторы/features
$\log(\text{wage})$	exper, female, married, smsa

и следующие модели

Nº	Модель
1	линейная регрессия
2	k-NN с $k = 5$, веса 'uniform'
3	k-NN с $k = 5$, веса 'distance'
4	k-NN с $k = 10$, веса 'uniform'
5	k-NN с $k = 10$, веса 'distance'

Проведите валидацию моделей относительно метрик \mathbb{R}^2 , MSE, MAE, MAPE. Какая модель предпочтительней?

#7. Набор данных Labour разбейте на обучающую и тестовую часть в соотношении 80:20.

Рассмотрим задачу прогнозирования для переменных

зависимая/target	объясняющая/предикторы/features
output	capital, labour, wage

и следующие модели

$N_{\overline{0}}$	Модель
1	линейная регрессия
2	k-NN с $k = 5$, веса 'uniform'
3	k-NN с $k = 5$, веса 'distance'
4	k-NN с $k = 10$, веса 'uniform'
5	k-NN с $k = 10$, веса 'distance'

Проведите валидацию моделей относительно метрик \mathbb{R}^2 , MSE, MAE, MAPE. Какая модель предпочтительней?

#8. Набор данных Labour разбейте на обучающую и тестовую часть в соотношении 80:20.

Рассмотрим задачу прогнозирования для переменных

зависимая/target	объясняющая/предикторы/features
log(output)	$\log(\text{capital}), \log(\text{labour}), \log(\text{wage})$

и следующие модели

Nº	Модель
1	линейная регрессия
2	k-NN с $k = 5$, веса 'uniform'
3	k-NN с $k = 5$, веса 'distance'
4	k-NN с $k = 10$, веса 'uniform'
5	k-NN с $k = 10$, веса 'distance'

Проведите валидацию моделей относительно метрик \mathbb{R}^2 , MSE, MAE, MAPE. Какая модель предпочтительней?