Solution to Exercise 1 of March 13

金弘义 518030910333

March 17, 2020

Exercise 1. 1) Show that the Cantor Set C is nowhere dense in [0,1].

- 2) Find a meager set T in \mathbb{R} such that $T + T = \mathbb{R}$.
- 3) Show that every subset of the real line \mathbb{R} can be partitioned into two sets, one being of first category and the other being negligible.

Proof. 1) Recall the the explicit closed formulas for the Cantor set are:

$$C = [0,1] \setminus \bigcup_{n=0}^{\infty} \bigcup_{k=0}^{3^{n}-1} (\frac{3k+1}{3^{n+1}}, \frac{3k+2}{3^{n+1}})$$

It's obvious that $(\frac{3k+1}{3^{n+1}}, \frac{3k+2}{3^{n+1}})$ is an open set. Since the union of open sets is an open set, the complement of C is also open, which leads to the fact that C is a closed set. So $\bar{C} = C$.

Note that Cantor set can also be characterized as the set of all number in [0,1] whose base-3 expansion doesn't contain any 1s. Assume there exists an interior point x of C, then there exists a ball B, with radius r>0, which is contained in C. Since $C\subseteq [0,1]$, B is an interval, whose length is 2r. Arbitarily choose $x_1\in B$ and $x_2\in B$ such that $x_1< x_2$ and $x_2-x_1\geq r$. Let $n=\lceil\log_{\frac{1}{3}}r\rceil+2$. Consider $x_3=x_1+(\frac{1}{3})^n, x_4=x_1+2\cdot(\frac{1}{3})^n$. Since $(\frac{1}{3})^n<(\frac{1}{3})^{\log_{\frac{1}{3}}r+1}=\frac{1}{3}r$, $x_3,x_4\in B$. It's obvious that one of them conatins 1 in its base-3 expansion, which means one of them doesn't belong to Cantor set. This leads to a contradiction, or equivalently, that there is no interior point of C.

Now we can safely conclude that C is nowhere dense.

2)Let

$$T(n) = \{a + n | a \in C\}$$
$$T = \bigcup_{n \in \mathbb{Z}} T(n)$$

First We will prove T is a meager set. Since T(n) is constructed by translation of all points in C by n, T(n) is also nowhere dense. This leads to the fact that T is a meager set, because \mathbb{Z} is countable.

Then we prove $T+T=\mathbb{R}$. From C+C=[0,2], we can similarly get T(n)+T(n)=[2n,2n+2]. Note that:

$$\bigcup_{n\in\mathbb{Z}}(T(n)+T(n))\subseteq T+T\subseteq\mathbb{R}$$

However,

$$\bigcup_{n\in\mathbb{Z}}(T(n)+T(n))=\bigcup_{n\in\mathbb{Z}}[2n,2n+2]=\mathbb{R}$$

Now we conclude that $T + T = \mathbb{R}$.

3) Pick an enumeration of \mathbb{Q} , named q_n . Let:

$$I_{i,j} = (q_i - \frac{1}{2^{i+j+2}}, q_i + \frac{1}{2^{i+j+2}})$$

$$A_j = \bigcup_{i \in \mathbb{N}} I_{i,j}$$

$$B = \bigcap_{j \in \mathbb{N}} A_j$$

For any $\epsilon > 0$, exist $j_0 > 0$ such that $\left| \frac{1}{2^{j_0}} \right| < \epsilon$. So we have :

$$|A_j| \le \sum_{i=0}^{\infty} \frac{1}{2^{i+j+1}} = \frac{1}{2^j}$$

 $|B| \le |A_{j_0}| \le \frac{1}{2^{j_0}} < \epsilon$

This leads to that B is negligible. Then we prove B^C is a meager set.

$$B^C = \bigcup_{j \in \mathbb{N}} A_j^C$$

Since $\mathbb{Q} \subseteq A_j$ and \mathbb{Q} is dense, we can know that A_j is dense. A_j is also open because A_j is the union of open intervals. These 2 properties of A_j can lead to that A_j^C is nowhere dense. So B^C is a meager set, which finishes the proof.