Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерной техники

Лабораторная работа №2

Синтез помехоустойчивого кода

Вариант №69

Выполнил

Макогон Ярослав Вадимович

Номер группы: Р3118

Проверила

Малышева Т. А.

Содержание

Задание	3
Основные этапы вычислений	4
Заключение	13
Список использованных источников	14

Задание

Обязательное задание:

- 1. Построить схему декодирования классического кода Хэмминга (7;4). Показать имеются ли в принятом сообщении ошибки, и если имеются, то какие. Подробно прокомментировать и записать правильное сообщение:
 - A. 51 1010011
 - B. 88 0100110
 - C. 13 1101000
 - D. 10 1010000
- 2. Построить схему декодирования классического кода Хэмминга (15;11), которую представить в отчёте в виде изображения. Показать имеются ли в принятом сообщении ошибки, и если имеются, то какие. Подробно прокомментировать и записать правильное сообщение.
 - A. 69 001110001010100
- 3. Сложить номера всех 5 вариантов заданий. Умножить полученное число на 4. Принять данное число как число информационных разрядов в передаваемом сообщении. Вычислить для данного числа минимальное число проверочных разрядов и коэффициент избыточности.

Дополнительное задание:

Написать программу на любом языке программирования, которая на вход получает набор из 7 цифр «0» и «1», записанных подряд, анализирует это сообщение на основе классического кода Хэмминга (7,4), а затем выдает правильное сообщение (только информационные биты) и указывает бит с ошибкой при его наличии.

Основные этапы вычислений

Обязательное задание:

Схема декодирования для классического кода Хэмминга (7;4):

Рисунок 1.Схема декодирования для классического кода Хэмминга (7;4)

Схема декодирования для классического кода Хэмминга (15;11):

Рисунок 2. Схема декодирования для классического кода Хэмминга (15;11) - Часть 1

Рисунок 3. Схема декодирования для классического кода Хэмминга (15;11) - Часть 2

Задание №1

A. 51 – 1010011

	1	2	3	4	5	6	7	
Пример полученного сообщения	1	1	1	0	0	0	1	
2 ^x	<i>r</i> ₁	r ₂	i ₁	<i>r</i> ₃	i ₂	i ₃	i ₄	S
1	Χ		Х		Х		Х	S ₁
2		Х	Х			Х	Х	S ₂
4				Х	Х	Х	Х	S ₃

Рисунок 4. Таблица кода Хэмминга (7;4)

$$s_1 = r_1 \oplus i_1 \oplus i_2 \oplus i_4 = 1 \oplus 1 \oplus 0 \oplus 1 = 1$$

$$s_2 = r_2 \oplus i_1 \oplus i_3 \oplus i_4 = 0 \oplus 1 \oplus 1 \oplus 1 = 1$$

$$s_3 = r_3 \oplus i_2 \oplus i_3 \oplus i_4 = 0 \oplus 0 \oplus 1 \oplus 1 = 0$$

$$S(1,1,0) => 011_2 = 3_{10}$$
, значит ошибка в i_1 .

B. 88 - 0100110

	1	2	3	4	5	6	7	
Пример полученного сообщения	1	1	1	0	0	0	1	
2 ^x	<i>r</i> ₁	r ₂	i ₁	<i>r</i> ₃	i ₂	i ₃	i ₄	S
1	Х		Х		Х		Х	S ₁
2		X	X			X	X	S ₂
4				Х	Х	Х	Х	S ₃

Рисунок 5. Таблица кода Хэмминга (7;4)

$$s_1=r_1\oplus i_1\oplus i_2\oplus i_4=0\oplus 0\oplus 1\oplus 0=1$$
 $s_2=r_2\oplus i_1\oplus i_3\oplus i_4=1\oplus 0\oplus 1\oplus 0=0$ $s_3=r_3\oplus i_2\oplus i_3\oplus i_4=0\oplus 1\oplus 1\oplus 0=0$ $S(1,0,0)=>001_2=1_{10},$ значит ошибка в $r_1.$

C. 13 - 1101000

	1	2	3	4	5	6	7	
Пример полученного сообщения	1	1	1	0	0	0	1	
2 ^x	$r_{_1}$	r ₂	i ₁	r ₃	i ₂	i ₃	i ₄	S
1	Χ		Х		Х		Х	S ₁
2		Х	Х			Х	Х	S ₂
4				Х	X	Х	Х	S ₃

Рисунок 6. Таблица кода Хэмминга (7;4)

$$\begin{split} s_1 &= r_1 \oplus i_1 \oplus i_2 \oplus i_4 = 1 \oplus 0 \oplus 0 \oplus 0 = 1 \\ s_2 &= r_2 \oplus i_1 \oplus i_3 \oplus i_4 = 1 \oplus 0 \oplus 0 \oplus 0 = 1 \\ s_3 &= r_3 \oplus i_2 \oplus i_3 \oplus i_4 = 1 \oplus 0 \oplus 0 \oplus 0 = 1 \\ S(1,1,1) &=> 111_2 = 7_{10}, \text{ значит ошибка в } i_4. \end{split}$$

D. 10 - 1010000

	1	2	3	4	5	6	7	
Пример полученного сообщения	1	1	1	0	0	0	1	
2 ^x	$r_{_1}$	r ₂	i ₁	r_3	i ₂	i ₃	i ₄	S
1	Х		Х		Х		Х	S ₁
2		X	X			X	Х	S ₂
4				Х	Х	Х	Х	S ₃

Рисунок 7. Таблица кода Хэмминга (7;4)

$$s_1 = r_1 \oplus i_1 \oplus i_2 \oplus i_4 = 1 \oplus 1 \oplus 0 \oplus 0 = 0$$

$$s_2 = r_2 \oplus i_1 \oplus i_3 \oplus i_4 = 0 \oplus 1 \oplus 0 \oplus 0 = 1$$

$$s_3=r_3\oplus i_2\oplus i_3\oplus i_4=0\oplus 0\oplus 0\oplus 0=0$$

$$S(0,1,0) => 010_2 = 2_{10}$$
, значит ошибка в r_2 .

Задание №2

A. 69 - 001110001010100

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
2 ^x	<i>r</i> ₁	r ₂	i ₁	<i>r</i> ₃	i ₂	i ₃	i ₄	$r_{_4}$	i ₅	i ₆	i ₇	i ₈	i ₉	i ₁₀	i ₁₁	S
1	Χ		Х		Х		Χ		Х		Χ		Х		Х	S ₁
2		Х	Х			X	Х			Х	Х			Х	Х	S ₂
4				Х	Х	Х	Х					Х	Х	Х	Х	S ₃
8								Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	S ₄

Рисунок 8. Таблица кода Хэмминга (15;11)

$$s_1 = r_1 \oplus i_1 \oplus i_2 \oplus i_4 \oplus i_5 \oplus i_7 \oplus i_9 \oplus i_1 = 0 \oplus 1 \oplus 1 \oplus 0 \oplus 1 \oplus 1 \oplus 1 \oplus 0 = 1$$

$$s_2 = r_2 \oplus i_1 \oplus i_3 \oplus i_4 \oplus i_6 \oplus i_7 \oplus i_{10} \oplus i_{11} = 0 \oplus 1 \oplus 0 \oplus 0 \oplus 0 \oplus 0 \oplus 1 \oplus 0 \oplus 0 = 0$$

$$s_3 = r_3 \oplus i_2 \oplus i_3 \oplus i_4 \oplus i_8 \oplus i_9 \oplus i_{10} \oplus i_{11} = 1 \oplus 1 \oplus 0 \oplus 0 \oplus 0 \oplus 1 \oplus 0 \oplus 0 = 1$$

$$s_4 = r_4 \oplus i_5 \oplus i_6 \oplus i_7 \oplus i_8 \oplus i_9 \oplus i_{10} \oplus i_{11} = 0 \oplus 1 \oplus 0 \oplus 1 \oplus 0 \oplus 1 \oplus 0 \oplus 0 = 1$$

$$S(1,0,1,1) => 1101_2 = 13_{10}, \text{ значит ошибка в } i_9.$$

Исходное сообщение: 001110001010000

Задание №3

$$(51+88+13+10+69)*4=924 \implies i=924$$
 - число информационных разрядов $2^r \ge i+r+1 \implies r_{min}=10$ - минимальное число проверочных разрядов $\mathbf{k}=\frac{r_{min}}{r_{min}+i}=\frac{10}{934}\approx 0.010707$ - коэффициент избыточности

Дополнительное задание:

C++17

```
#include <iostream>
#include <string>
void drop input error() {
        std::cout << "Incorrect input format.";</pre>
        exit(0);
}
signed main() {
        std::cout << "Enter a message: ";</pre>
        std::string input;
        std::cin >> input;
        if (input.size() != 7) {
               drop input error();
       bool message[7];
        for (int i = 0; i < 7; ++i) {</pre>
                if (input[i] != '0' && input[i] != '1') {
                        drop input error();
               message[i] = (input[i] == '0' ? false : true);
       bool s1 = message[0] xor message[2] xor message[4] xor message[6],
                 s2 = message[1] xor message[2] xor message[5] xor message[6],
                 s3 = message[3] xor message[4] xor message[5] xor message[6];
        int mistake index = s1 + s2 * 2 + s3 * 4 - 1;
        std::string correct message = input;
        if (mistake index == -1) {
                std::cout << "Message is correct.\n";</pre>
        else {
                std::string output list[7] = {
"r 1", "r 2", "i 1", "r 3", "i 2", "i 3", "i 4" };
               correct message[mistake index] =
(correct message[mistake index] == '1' ? '0' : '1');
                std::cout << "Error in " << output list[mistake index] <</pre>
".\nIndex of incorrect bit in message: " << mistake index + 1 << '\n';
        std::string output;
        output.push back(correct message[2]);
        output.push back(correct message[4]);
        output.push_back(correct_message[5]);
        output.push back(correct message[6]);
        std::cout << "Information bits in correct message: " << output;</pre>
```

Пример вывода программы:

Enter a message: 0001000

Error in r_3.

Index of incorrect bit in message: 4

Information bits in correct message: 0000

Рисунок 9. Пример работы программы

Заключение

- Был изучен принцип работы кода Хэмминга.
- Проведены вычисления для выявления ошибок в сообщениях разной длинны.
- Написана программа на языке программирования С++, которая выявляет ошибку в сообщении, анализируя его по на основе классического кода Хэмминга (7,4), а затем выдает правильное сообщение (только информационные биты) и указывает бит с ошибкой при его наличии.

Список использованных источников

- 1. Статья "Код Хэмминга. Пример работы алгоритма" URL: https://habr.com/ru/articles/140611/
- 2. Статья "Избыточное кодирование, код Хэмминга" URL: https://clck.ru/3DozQW