2.3 Functions

Section Summary

- Definition of a Function.
 - + Domain, Codomain
 - Image, Preimage
- Injection, Surjection, Bijection
- Inverse Function
- Function Composition
- Graphing Functions
- Floor, Ceiling

Functions

Definition: Let A and B be nonempty sets. A function f from A to B, denoted $f: A \rightarrow B$ is an assignment of each element of A to exactly one element of B.

We write f(a) = b if b is the unique element of B assigned by the function f to the element a of A.

Functions are sometimes called *mappings* or *transformations*.

Functions

- A function $f: A \to B$ can also be defined as a subset of $A \times B$ (a relation). This subset is restricted to be a relation where no two elements of the relation have the same first element.
- Specifically, a function f from A to B contains one, and only one ordered pair (a, b) for every element $a \in A$.

$$\forall x[x \in A \to \exists y[y \in B \land (x,y) \in f]]$$

and

$$\forall x, y_1, y_2[[(x, y_1) \in f \land (x, y_2) \in f] \rightarrow y_1 = y_2]$$

Functions

Given a function $f: A \rightarrow B$:

- We say f maps A to B or f is a mapping from A to B.
- A is called the domain of f.
- B is called the codomain of f.
- If f(a) = b,
 - \blacksquare then b is called the *image* of a under f.
 - a is called the preimage of b.
- The range of f is the set of all images of points in A under f. We denote it by f(A).
- Two functions are equal when they have the same domain, the same codomain and map each element of the domain to the same element of the codomain.

For example,

Suppose that each student in a class is assigned a letter grade from the set $\{A,B,C,D,F\}$. Let G be the function that assigns a grade to a student.

Representing Functions

Functions may be specified in different ways:

- An explicit statement of the assignment Students and grades example.
- A formula

$$f(x) = x + 1$$

• A computer program

A Java program that when given an integer *n*, produces the *n*th Fibonacci Number (covered in the next section and also in Chapter 5).

Definition Let f_1 and f_2 be functions from A to **R**. Then $f_1 + f_2$ and $f_1 f_2$ are also functions from A to **R** defined by

$$(f_1 + f_2)(x) = f_1(x) + f_2(x)$$

 $(f_1f_2)(x) = f_1(x) f_2(x)$

Definition Let f be a function from A to B and let S be a subset of A. The *image* of S is the subset of B that consists of the images of the elements of S. We denote the image of S by f(S), so that

$$f(S) = \{ f(s) \mid s \in S \}$$

Remark:

f(S) denotes a set, and not the value of the function f for the set S.

One-to-one Functions

A function f is one-to-one (denoted 1-1), or injective

$$\forall a \forall b (a \in A \land b \in A \land (f(a) = f(b) \rightarrow a = b))$$

$$\forall a \forall b (a \in A \land b \in A \land (a \neq b \rightarrow f(a) \neq f(b)))$$

Note: Preimages are unique.

Example,

A function f from A to B is called onto, or surjective

$$\forall b(b \in B \to \exists a \ (a \in A \land f(a) = b))$$

Note:

This means that for every b in B there must be an a in A such that f(a) = b. Every b in B has a pre-image.

Example,

One-to-one Correspondence Functions

The function f is a one-to-one correspondence, or a bijection, if it is both one-to-one and onto.

For example,

Note:

Whenever there is a bijection from A to B, the two sets must have the same number of elements or the same *cardinality*.

That will become our *definition*, especially for infinite sets.

Showing that f is one-to-one or onto

Suppose that $f: A \to B$.

To show that f is injective Show that if f(x) = f(y) for arbitrary $x, y \in A$ with $x \neq y$, then x = y.

To show that f is not injective Find particular elements $x, y \in A$ such that $x \neq y$ and f(x) = f(y).

To show that f is surjective Consider an arbitrary element $y \in B$ and find an element $x \in A$ such that f(x) = y.

To show that f is not surjective Find a particular $y \in B$ such that $f(x) \neq y$ for all $x \in A$.

Showing that f is one-to-one or onto

Example: Let f be the function from $\{a,b,c,d\}$ to $\{1,2,3\}$ defined by f(a) = 3, f(b) = 2, f(c) = 1, and f(d) = 3. Is f an onto function?

Solution: Yes, f is onto since all three elements of the codomain are images of elements in the domain. If the codomain were changed to $\{1,2,3,4\}$, f would not be onto.

Example: Is the function $f(x) = x^2$ from the set of integers onto?

Solution: No, f is not onto because there is no integer x with $x^2 = -1$, for example.

A function is

increasing
$$\forall x \forall y (x < y \rightarrow f(x) \le f(y))$$

strictly increasing
$$\forall x \forall y (x < y \rightarrow f(x) < f(y))$$

decreasing
$$\forall x \forall y (x < y \rightarrow f(x) \ge f(y))$$

strictly decreasing
$$\forall x \forall y (x < y \rightarrow f(x) > f(y))$$

Questions:

- 1. A function that is either strictly increasing or strictly decreasing must be one to one?
- 2. The number of one to one functions form a set S to a set T?

Inverse Functions

Let f be a bijection from A to B. Then the inverse function of f, denoted f $^{-1}$, is the function from B to A defined as

$$f^{-1}(b) = a \text{ iff } f(a) = b$$

Note:

No inverse function exists unless f is a bijection.

The Graphs of Functions

Let f be a function from the set A to the set B. The graph of the function f is the set of ordered pairs

$$\{(a,b) \mid a \in A \text{ and } f(a) = b\}.$$

Graph of
$$f(n) = 2n + 1$$

from Z to Z

Graph of $f(x) = x^2$ from Z to Z

The floor function f(x) is the largest integer less than or equal to x.

Notation: $\lfloor x \rfloor$

For example:

$$\begin{bmatrix}
0.5 \end{bmatrix} = 0 \\
\begin{bmatrix}
1.5 \end{bmatrix} = 1 \\
\begin{bmatrix}
2 \end{bmatrix} = 2 \\
\begin{bmatrix}
-0.5 \end{bmatrix} = -1$$

Graph of Floor Functions

Remark:

The floor function is often also called the *greatest integer function*. It is often denoted by [x].

The ceiling function f(x) is the smallest integer greater than or equal to x.

Notation: [x]

For example:

$$\lceil 0.5 \rceil = 1$$

$$\lceil 1.5 \rceil = 2$$

$$\lceil 2 \rceil = 2$$

$$\lceil -0.5 \rceil = 0$$

Graph of Ceiling Functions

The floor and ceiling functions are useful in wide variety of application.

- Data storage and data transmission
- The pigeonhole principle

Example, Date stored on a computer disk or transmitted over a data network are usually represented as a string of bytes. Each byte is made up of 8 bits. How many bytes are required to encode 100 bits of data?

$$\lceil 100/8 \rceil = \lceil 12.5 \rceil = 13$$

◆Useful Properties of the Floor and Ceiling Functions

- (1a) $\lfloor x \rfloor = n$ if and only if $n \le x < n + 1$ where n is an integer
- (1b) $\lceil x \rceil = n$ if and only if $n-1 < x \le n$ where n is an integer
- $(1c) \lfloor x \rfloor = n$ if and only if $x 1 < n \le x$ where n is an integer
- $(1d) \lceil x \rceil = n$ if and only if $x \le n < x + 1$ where n is an integer
- $(2) \quad x-1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x+1$
- $(3a) \lfloor -x \rfloor = \lceil x \rceil$
- $(3b) \lceil -x \rceil = \lfloor x \rfloor$
- $(4a) \lfloor x + m \rfloor = \lfloor x \rfloor + m$ where m is an integer
- $(4b) \lceil x + m \rceil = \lceil x \rceil + m$ where m is an integer

◆ Prove property (4a)

$$(4a) \lfloor x + m \rfloor = \lfloor x \rfloor + m$$
 where m is an integer

Proof:

Suppose that $\lfloor x \rfloor = n$, where n is a positive integer.

By property (1a), it follows that if $n \le x < n + 1$.

Then $n + m \le x + m < n + m + 1$.

Using property (1a) again, we see that $\lfloor x + m \rfloor = n + m = \lfloor x \rfloor + m$.

Example, Prove that if x is a real number, then

$$\lfloor 2x \rfloor = \lfloor x \rfloor + \lfloor x + 1/2 \rfloor$$
.

Hint:

The floor function:

Let $x=n+\varepsilon$, where $n=\lfloor x\rfloor$ is an integer, and ε , the fractional part of x, $0 \le \varepsilon < 1$.

The ceiling function:

Let $x=n-\varepsilon$, where $n=\lceil x\rceil$ is an integer, and $0 \le \varepsilon < 1$.

Example, Prove that if x is a real number, then

$$\lfloor 2x \rfloor = \lfloor x \rfloor + \lfloor x + 1/2 \rfloor$$
.

Solution: Let $x = n + \varepsilon$, where n is an integer and $0 \le \varepsilon < 1$.

Case 1: $\varepsilon < \frac{1}{2}$

$$2x = 2n + 2\varepsilon$$
 and $\lfloor 2x \rfloor = 2n$, since $0 \le 2\varepsilon < 1$.

$$[x + 1/2] = n$$
, since $x + 1/2 = n + (1/2 + \varepsilon)$ and $0 \le 1/2 + \varepsilon < 1$.

Hence,
$$[2x] = 2n$$
 and $[x] + [x + 1/2] = n + n = 2n$.

Case 2: $\varepsilon \geq \frac{1}{2}$

$$2x = 2n + 2\varepsilon = (2n + 1) + (2\varepsilon - 1)$$
 and $[2x] = 2n + 1$, since $0 \le 2\varepsilon - 1 < 1$.

$$[x + 1/2] = [n + (1/2 + \varepsilon)] = [n + 1 + (\varepsilon - 1/2)] = n + 1 \text{ since } 0 \le \varepsilon - 1/2 < 1.$$

Hence,
$$[2x] = 2n + 1$$
 and $[x] + [x + 1/2] = n + (n + 1) = 2n + 1$.

2.4 Sequences and Summations

Introduction

- ◆Sequences are ordered lists of elements.
 - 1, 2, 3, 5, 8
 - 1, 3, 9, 27, 81,
- ◆Sequences arise throughout mathematics, computer science, and in many other disciplines
 - Sequences can be used to represent solutions to certain counting problems.
 - Sequence is also an important data structure in computer science

Sequences

Definition: A *sequence* is a function from a subset of the integers (usually either the set $\{0, 1, 2, 3, 4, \ldots\}$ or $\{1, 2, 3, 4, \ldots\}$) to a set S.

The notation a_n is used to denote the image of the integer n. We can think of a_n as the equivalent of f(n) where f is a function from $\{0,1,2,\ldots\}$ to S.

We call a_n a **term** of the sequence.

Notation for sequence: $\{a_n\}$

Sequences

Example1: Consider the sequence $\{a_n\}$ where $a_n = \frac{1}{n}$.

The sequence can be described by listing the terms of the sequence in order of increasing subscripts.

The list of the terms of this sequence, beginning with a_1 , namely,

$$a_1, a_2, a_3, a_4, \dots$$

starts with

$$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots$$

Some Familiar Sequences

Definition: A *geometric progression* is a sequence of the form:

$$a, ar, ar^2, \ldots, ar^n, \ldots$$

where the *initial term a* and the *common ratio r* are real numbers.

Definition: A *arithmetic progression* is a sequence of the form:

$$a, a+d, a+2d, \ldots, a+nd, \ldots$$

where the *initial term a* and the *common difference d* are real numbers.

Definition: A *string* is a finite sequence of characters from a finite set (an alphabet).

Note:

- This string is also denoted by $a_1 a_2 ... a_n$
- Sequences of characters or bits are important in computer science.
- The *length* of a string is the number of terms in this string.
 - -The string abcde has length 5.
- The *empty string* is represented by λ .

Recurrence Relations

Definition: A *recurrence relation* for the sequence $\{a_n\}$ is an equation that expresses a_n in terms of one or more of the previous terms of the sequence, namely, a_0 , a_1 , ..., a_{n-1} , for all integers n with $n \ge n_0$, where n_0 is a nonnegative integer.

- A sequence is called a *solution* of a recurrence relation if its terms satisfy the recurrence relation.
- The *initial conditions* for a sequence specify the terms that precede the first term where the recurrence relation takes effect.

Questions about Recurrence Relations

Example 2: Let $\{a_n\}$ be a sequence that satisfies the recurrence relation $a_n = a_{n-1} + 3$ for n = 1,2,3,4,... and suppose that $a_0 = 2$. What are a_1 , a_2 and a_3 ?

[Here $a_0 = 2$ is the initial condition.]

Solution: We see from the recurrence relation that

$$a_1 = a_0 + 3 = 2 + 3 = 5$$

$$a_2 = 5 + 3 = 8$$

$$a_3 = 8 + 3 = 11$$

Questions about Recurrence Relations

Example 3: Let $\{a_n\}$ be a sequence that satisfies the recurrence relation $a_n = a_{n-1} - a_{n-2}$ for n = 2,3,4,... and suppose that $a_0 = 3$ and $a_1 = 5$. What are a_2 and a_3 ?

[Here the initial conditions are $a_0 = 3$ and $a_1 = 5$.]

Solution: We see from the recurrence relation that

$$a_2 = a_1 - a_0 = 5 - 3 = 2$$

$$a_3 = a_2 - a_1 = 2 - 5 = -3$$

Fibonacci Sequence

Definition: Define the *Fibonacci sequence*, f_0 , f_1 , f_2 , ..., by:

- Initial Conditions: $f_0 = 0$, $f_1 = 1$
- Recurrence Relation: $f_n = f_{n-1} + f_{n-2}$

Example: Find f_2, f_3, f_4, f_5 and f_6 .

Answer:

$$f_2 = f_1 + f_0 = 1 + 0 = 1,$$

 $f_3 = f_2 + f_1 = 1 + 1 = 2,$
 $f_4 = f_3 + f_2 = 2 + 1 = 3,$
 $f_5 = f_4 + f_3 = 3 + 2 = 5,$
 $f_6 = f_5 + f_4 = 5 + 3 = 8.$

Solving Recurrence Relations

- ◆ Finding a formula for the *n*th term of the sequence generated by a recurrence relation is called *solving the recurrence relation*.
- Such a formula is called a *closed formula*.
- ◆ Various methods for solving recurrence relations will be covered in Chapter 8 where recurrence relations will be studied in greater depth.
- ◆ Here we illustrate by example the method of iteration in which we need to guess the formula. The guess can be proved correct by the method of induction (Chapter 5).

Iterative Solution Example

Method 1: Working upward, forward substitution

Let $\{a_n\}$ be a sequence that satisfies the recurrence relation $a_n = a_{n-1} + 3$ for $n = 2, 3, 4, \ldots$ and suppose that $a_1 = 2$.

Iterative Solution Example

Method 2: Working downward, backward substitution

Let $\{a_n\}$ be a sequence that satisfies the recurrence relation $a_n = a_{n-1} + 3$ for n = 2,3,4,... and suppose that $a_1 = 2$.

$$a_{n} = a_{n-1} + 3$$

$$= (a_{n-2} + 3) + 3 = a_{n-2} + 3 \cdot 2$$

$$= (a_{n-3} + 3) + 3 \cdot 2 = a_{n-3} + 3 \cdot 3$$

$$\vdots$$

$$\vdots$$

$$= a_{2} + 3(n-2) = (a_{1} + 3) + 3(n-2) = 2 + 3(n-1)$$

Homework:

SE: P.153 12,40, 56, 72, 76

P.168 15

EE: P.153 12,42, 58, 74, 78

P.178 15