数学分析 (上)

数学学院

靳勇飞

2024年9月

 $x_0 \in \mathbb{R}$, 函数 f 在集合 I 上有定义。

定义 (当 x 趋于 x_0 时函数 f 的极限存在)

存在实数 A, 使得对任意的 $\varepsilon > 0$, 存在 $\delta > 0$, 当 $x \in (x_0 - \delta, x_0 + \delta) \cap I - \{x_0\}$ 时,成立 $|f(x) - A| < \varepsilon$, 称为: 当 x 趋于 x_0 时函数 f 的极限存在

同义词有: $\lim_{x\to x_0} f(x)$ 存在; $\lim_{x\to x_0} f(x)$ 收敛; f(x) 当 x 趋于 x_0 时有极限; f 在 x_0 有极限

 $x_0 \in \mathbb{R}$, 函数 f 在集合 I 上有定义。

定义 (当 x 趋于 x_0 时函数 f 的极限存在)

存在实数 A, 使得对任意的 $\varepsilon > 0$, 存在 $\delta > 0$, 当 $x \in (x_0 - \delta, x_0 + \delta) \cap I - \{x_0\}$ 时,成立 $|f(x) - A| < \varepsilon$, 称为: 当 x 趋于 x_0 时函数 f 的极限存在

同义词有: $\lim_{x\to x_0} f(x)$ 存在; $\lim_{x\to x_0} f(x)$ 收敛; f(x) 当 x 趋于 x_0 时有极限; f 在 x_0 有极限

注意.

- ① x_0 不需要在 f 定义域中, 一般需要是 I 聚点。
- ② $x \in (x_0 \delta, x_0 + \delta) \cap I \{x_0\}$ 常写作: $0 < |x x_0| < \delta$ 且 $x \in I$

定义 (当 x 趋于 x_0 时函数 f 的极限是 A)

对任意的 $\varepsilon > 0$, 存在 $\delta > 0$, 当 $x \in (x_0 - \delta, x_0 + \delta) \cap I - \{x_0\}$ 时,成立 $|f(x) - A| < \varepsilon$, 称为: 当 x 趋于 x_0 时函数 f 的极限是 A

同义词有: $\lim_{x\to x_0} f(x) = A$; $\lim_{x\to x_0} f(x)$ 收敛到 A; f(x) 当 x 趋于 x_0 时有极限 A; f 在 x_0 极限是 A

定义 (当 x 趋于 x_0 时函数 f 的极限是 A)

对任意的 $\varepsilon > 0$, 存在 $\delta > 0$, 当 $x \in (x_0 - \delta, x_0 + \delta) \cap I - \{x_0\}$ 时,成立 $|f(x) - A| < \varepsilon$, 称为: 当 x 趋于 x_0 时函数 f 的极限是 A

同义词有: $\lim_{x\to x_0} f(x) = A$; $\lim_{x\to x_0} f(x)$ 收敛到 A; f(x) 当 x 趋于 x_0 时有极限 A; f 在 x_0 极限是 A

定义 (当 x 趋于 x_0 时函数 f 的极限不是 A)

存在 $\varepsilon > 0$, 对任意的 $\delta > 0$, 存在 $x \in (x_0 - \delta, x_0 + \delta) \cap I - \{x_0\}$, 使得 $|f(x) - A| \ge \varepsilon$, 称为: 当 x 趋于 x_0 时 f(x) 的极限不是 A

定义 (当 x 趋于 x_0 时函数 f 的极限是 A)

对任意的 $\varepsilon > 0$, 存在 $\delta > 0$, 当 $x \in (x_0 - \delta, x_0 + \delta) \cap I - \{x_0\}$ 时,成立 $|f(x) - A| < \varepsilon$, 称为: 当 x 趋于 x_0 时函数 f 的极限是 A

同义词有: $\lim_{x\to x_0} f(x) = A$; $\lim_{x\to x_0} f(x)$ 收敛到 A; f(x) 当 x 趋于 x_0 时有极限 A; f 在 x_0 极限是 A

定义 (当 x 趋于 x_0 时函数 f 的极限不是 A)

存在 $\varepsilon > 0$, 对任意的 $\delta > 0$, 存在 $x \in (x_0 - \delta, x_0 + \delta) \cap I - \{x_0\}$, 使得 $|f(x) - A| \ge \varepsilon$, 称为: 当 x 趋于 x_0 时 f(x) 的极限不是 A

定义 (函数 f 在 x_0 连续)

若 $\lim_{x \to x_0} f(x) = f(x_0)$, 称为: 函数 f 在 x_0 连续。

例

证明:对任意实数 x_0 , $\lim_{x\to x_0} x = x_0$.

例

证明:对任意实数 x_0 , $\lim_{r\to r_0} x = x_0$.

证明.

对任意实数 x_0 , 对任意的实数 $\varepsilon > 0$, 令 $\delta = \varepsilon$, 则 $\delta > 0$, 且当 $x \in (x_0 - \delta, x_0 + \delta) - \{x_0\}$ 时,成立 $|x - x_0| < \varepsilon$, 所以, $\lim_{x \to x_0} x = x_0$.

例

证明:对任意实数 x_0 , $\lim_{r\to r_0} x = x_0$.

证明.

对任意实数 x_0 , 对任意的实数 $\varepsilon > 0$, 令 $\delta = \varepsilon$, 则 $\delta > 0$, 且当 $x \in (x_0 - \delta, x_0 + \delta) - \{x_0\}$ 时,成立 $|x - x_0| < \varepsilon$, 所以, $\lim_{x \to x_0} x = x_0$.

定理

对任意的 $x \in \mathbb{R}$, I(x) = x. 则函数 I 在实数集上每一点连续。

例

证明:对任意实数 x_0 , $\lim_{r\to r_0} x = x_0$.

证明.

对任意实数 x_0 , 对任意的实数 $\varepsilon > 0$, 令 $\delta = \varepsilon$, 则 $\delta > 0$, 且当 $x \in (x_0 - \delta, x_0 + \delta) - \{x_0\}$ 时,成立 $|x - x_0| < \varepsilon$, 所以, $\lim_{x \to x_0} x = x_0$.

定理

对任意的 $x \in \mathbb{R}$, I(x) = x. 则函数 I 在实数集上每一点连续。

交换函数符号与极限符号的次序.

函数 f 在 x_0 连续, 则 $\lim_{x \to x_0} f(x) = f(x_0) = f(\lim_{x \to x_0} x)$,

例

对任意实数 x_0 , 当 x 趋于 x_0 时,狄里克莱 (Dirichlet) 函数 $D(x) = \begin{cases} 1, & x \in \mathbb{Q} \\ 0, & x \notin \mathbb{Q} \end{cases}$ 极限不存在。

例

对任意实数 x_0 , 当 x 趋于 x_0 时,狄里克莱 (Dirichlet) 函数 $D(x) = \begin{cases} 1, & x \in \mathbb{Q} \\ 0, & x \notin \mathbb{Q} \end{cases}$ 极限不存在。

证明.

对任意实数 x_0 , 对任意的实数 A, 对任意的 $\delta > 0$, 区间 $(x_0 - \delta, x_0 + \delta) - \{x_0\}$ 中既存在无理数也存在有理数,因此存在 $x \in (x_0 - \delta, x_0 + \delta) - \{x_0\}$,使得

$$|D(x) - A| = \max\{|A|, |1 - A|\} \ge \frac{|A| + |1 - A|}{2} \ge \frac{|A + 1 - A|}{2} = \frac{1}{2}.$$

所以, 当 x 趋于 x_0 时, D(x) 的极限不是 A.

例

当
$$x$$
 趋于 0 时,函数 $f(x) = xD(x) =$
$$\begin{cases} x, & x \in \mathbb{Q} \\ 0, & x \notin \mathbb{Q} \end{cases}$$
 极限为 0 .

例

当
$$x$$
 趋于 0 时,函数 $f(x) = xD(x) =$
$$\begin{cases} x, & x \in \mathbb{Q} \\ 0, & x \notin \mathbb{Q} \end{cases}$$
 极限为 0 .

证明.

对任意的实数 $\varepsilon > 0$, 令 $\delta = \varepsilon$, 则 $\delta > 0$, 且当 $0 < |x - 0| < \delta$ 时, 成立 $|f(x) - 0| \le |x - 0| < \varepsilon$, 所以, $\lim_{x \to 0} f(x) = 0$.

例

当
$$x$$
 趋于 0 时,函数 $f(x) = xD(x) =$
$$\begin{cases} x, & x \in \mathbb{Q} \\ 0, & x \notin \mathbb{Q} \end{cases}$$
 极限为 0 .

证明.

对任意的实数 $\varepsilon > 0$, 令 $\delta = \varepsilon$, 则 $\delta > 0$, 且当 $0 < |x - 0| < \delta$ 时, 成立 $|f(x) - 0| \le |x - 0| < \varepsilon$, 所以, $\lim_{x \to 0} f(x) = 0$.

事实.

函数在一点的是否有极限是局部性质。

例

对任意实数 x_0 , 当 x 趋于 x_0 时, 黎曼 (Riemann) 函数

$$R(x) = \begin{cases} \frac{1}{p}, & x \in \mathbb{Q}, p = \min\{n \in \mathbb{N}^+ : nx \in \mathbb{Z}\} \\ 0, & x \notin \mathbb{Q} \end{cases}$$
 极限是 0.

例

对任意实数 x_0 , 当 x 趋于 x_0 时,黎曼 (Riemann) 函数

$$R(x) = \begin{cases} \frac{1}{p}, & x \in \mathbb{Q}, p = \min\{n \in \mathbb{N}^+ : nx \in \mathbb{Z}\} \\ 0, & x \notin \mathbb{Q} \end{cases}$$
 极限是 0.

证明.

对任意实数 x_0 , 对任意的实数 $\varepsilon > 0$, 存在自然数 N > 1, 使得 $\frac{1}{N} < \varepsilon$, 则集合 $\left\{x \in (x_0 - 1, x_0 + 1) : D(x) \ge \frac{1}{N}\right\}$ 非空且元素个数不超过 N(N + 1), 令

$$\delta = \min \left\{ |x - x_0| : 0 < |x - x_0| < 1 \, \text{LL} D(x) \ge \frac{1}{N} \right\}$$

则 $1 > \delta > 0$, 当 $x \in (x_0 - \delta, x_0 + \delta) - \{x_0\}$ 时,成立 $|D(x) - 0| = D(x) < \frac{1}{N} < \varepsilon$, 所以,当 x 趋于 x_0 时,D(x) 的极限是 0.

 $x_0 \in \mathbb{R}$, 函数 f 在集合 I 上有定义。

定理 (极限是唯一的)

若
$$\lim_{x\to x_0} f(x) = A$$
,且 $\lim_{x\to x_0} f(x) = B$,则 $A = B$.

 $x_0 \in \mathbb{R}$, 函数 f 在集合 I 上有定义。

定理 (极限是唯一的)

若
$$\lim_{x\to x_0} f(x) = A$$
,且 $\lim_{x\to x_0} f(x) = B$,则 $A = B$.

证明.

对任意的 $\varepsilon > 0$

因为
$$\lim_{x \to x_0} f(x) = A$$
, 存在 $\delta_1 > 0$, 当 $x \in (x_0 - \delta_1, x_0 + \delta_1) \cap I - \{x_0\}$ 时,成立

$$|f(x) - A| < \frac{\varepsilon}{2};$$

又
$$\lim_{x \to x_0} f(x) = B$$
, 存在 $\delta_2 > 0$, 当 $x \in (x_0 - \delta_2, x_0 + \delta_2) \cap I - \{x_0\}$ 时, 成立

$$|f(x) - B| < \frac{\varepsilon}{2}.$$

$$\diamondsuit \delta = \min\{\delta_1, \delta_2\}, \ \emptyset \ (x_0 - \delta, x_0 + \delta) \subset (x_0 - \delta_1, x_0 + \delta_1) \cap (x_0 - \delta_2, x_0 + \delta_2),$$

于是当
$$x \in (x_0 - \delta, x_0 + \delta) \cap I - \{x_0\}$$
 时,成立 $|A - B| \le |f(x) - A| + |f(x) - B| < \varepsilon$. 所

以
$$A = B$$
.

 $x_0 \in \mathbb{R}$, 函数 f 在集合 I 上有定义。

定理 (函数极限的局部有界性)

若 $\lim_{x\to x_0} f(x) = A$, 则存在 $\delta > 0$, 使得 f 在 $(x_0 - \delta, x_0 + \delta) \cap I - \{x_0\}$ 上有界。

 $x_0 \in \mathbb{R}$, 函数 f 在集合 I 上有定义。

定理 (函数极限的局部有界性)

若 $\lim_{x \to x_0} f(x) = A$,则存在 $\delta > 0$,使得 f 在 $(x_0 - \delta, x_0 + \delta) \cap I - \{x_0\}$ 上有界。

证明.

因为
$$\lim_{x \to x_0} f(x) = A$$
, 存在 $\delta > 0$, 当 $x \in (x_0 - \delta, x_0 + \delta) \cap I - \{x_0\}$ 时,成立 $|f(x) - A| < 1$, 即 $A - 1 < f(x) < A + 1$.

定理

$$A>B, \ \lim_{x\to x_0}f(x)=A, \ \text{\emptyset $\dot{\rho}$ $\dot$$

定理

推论

$$A > 0$$
, $\lim_{x \to x_0} f(x) = A$, \emptyset $f(x) > 0$, $f(x) > \frac{A}{2} > 0$.

推论

$$A < 0$$
, $\lim_{x \to x_0} f(x) = A$, \emptyset $A \in (x_0 - \delta, x_0 + \delta) \cap I - \{x_0\}$ $A \in (x_0 - \delta, x_0 + \delta) \cap I - \{x_0\}$ $A \in (x_0 - \delta, x_0 + \delta) \cap I - \{x_0\}$ $A \in (x_0 - \delta, x_0 + \delta) \cap I - \{x_0\}$ $A \in (x_0 - \delta, x_0 + \delta) \cap I - \{x_0\}$ $A \in (x_0 - \delta, x_0 + \delta) \cap I - \{x_0\}$ $A \in (x_0 - \delta, x_0 + \delta) \cap I - \{x_0\}$ $A \in (x_0 - \delta, x_0 + \delta) \cap I - \{x_0\}$ $A \in (x_0 - \delta, x_0 + \delta) \cap I - \{x_0\}$ $A \in (x_0 - \delta, x_0 + \delta) \cap I - \{x_0\}$ $A \in (x_0 - \delta, x_0 + \delta) \cap I - \{x_0\}$ $A \in (x_0 - \delta, x_0 + \delta) \cap I - \{x_0\}$ $A \in (x_0 - \delta, x_0 + \delta) \cap I - \{x_0 + \delta, x_0 + \delta\}$

推论

$$A > B$$
, $\lim_{x \to x_0} f(x) = A$, $\lim_{x \to x_0} g(x) = B$, 则存在 $\delta > 0$, 当 $x \in (x_0 - \delta, x_0 + \delta) \cap I - \{x_0\}$ 时, $f(x) > g(x)$.

推论

$$A>B$$
, $\lim_{x\to x_0}f(x)=A$, $\lim_{x\to x_0}g(x)=B$, 则存在 $\delta>0$, 当 $x\in (x_0-\delta,x_0+\delta)\cap I-\{x_0\}$ 时, $f(x)>g(x)$.

推论

$$\lim_{x \to x_0} f(x) = A$$
, $\lim_{x \to x_0} g(x) = B$, 且存在 $\delta > 0$, 当 $x \in (x_0 - \delta, x_0 + \delta) \cap I - \{x_0\}$ 时, $f(x) > g(x)$, 则 $A \ge B$.

定理 (函数的控制性收敛定理)

对任意函数 f,g,h, 若存在 r>0, 使得

当
$$0 < |x - x_0| < r$$
 时成立 $f(x) \le g(x) \le h(x)$.

$$\mathbb{H} \lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x) = A, \ \mathbb{M}$$

$$\lim_{x \to x_0} g(x) = \lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x) = A.$$

证明.

对任意的 $\varepsilon > 0$,

由
$$\lim_{x \to x_0} f(x) = A$$
, 存在 $\delta_1 > 0$, 使得

当
$$0 < |x - x_0| < \delta_1$$
 时, $|f(x) - A| < \varepsilon$,则 $f(x) > A - \varepsilon$.

又由
$$\lim_{r\to r_0} h(x) = A$$
, 存在 $\delta_2 > 0$, 使得

当
$$0 < |x - x_0| < \delta_2$$
 时, $|h(x) - A| < \varepsilon$,则 $h(x) < A + \varepsilon$.

令
$$\delta = \min\{\delta_1, \delta_2, r\}$$
, 则 $\delta > 0$ 且

当
$$0 < |x - x_0| < \delta$$
 时, $A - \varepsilon < f(x) \le g(x) \le h(x) < A + \varepsilon$.

所以

$$\lim g(x) = A = \lim f(x) = \lim h(x).$$

例

求
$$\lim_{x\to 0} x \sin \frac{1}{x}$$
.

例

求
$$\lim_{x\to 0} x \sin \frac{1}{x}$$
.

解

对任意的
$$x \neq 0, 0 \leq \left| x \sin \frac{1}{x} \right| \leq |x|$$
, 因为 $\lim_{x \to 0} |x| = 0$, 所以 $\lim_{x \to 0} x \sin \frac{1}{x} = 0$.

f 在集合 I 上有定义,且 x_0 是 I 的一个聚点。

定理 (Heine 定理)

 $\lim_{x\to x_0} f(x) = A$ 的充分必要条件是: 对 I 中任意数列 $\{x_n\}_{n=1}^{+\infty}$,若满足条件 $\lim_{n\to +\infty} x_n = x_0$ 且对任意 $n, x_n \neq x_0$,则 $\lim_{n\to +\infty} f(x_n) = A$

例

求
$$\lim_{x\to 0} \sin \frac{1}{x}$$
.

例

求
$$\lim_{x\to 0} \sin \frac{1}{x}$$
.

例

求
$$\lim_{x\to 0} \sin \frac{1}{x}$$
.

解

对任意的
$$n \in \mathbb{N}^+$$
, 令 $x_{2n} = \frac{1}{2n\pi + \frac{\pi}{2}}$, $x_{2n+1} = \frac{1}{2n\pi - \frac{\pi}{2}}$. 则对任意的 $n \in \mathbb{N}^+$, $x_n \neq 0$, 且 $\lim_{n \to +\infty} x_{2n} = 0$, $\lim_{n \to +\infty} x_{2n+1} = 0$, 于是 $\lim_{n \to +\infty} x_n = 0$. 对任意的 $n \in \mathbb{N}^+$, $\sin \frac{1}{x_n} = (-1)^n$, 所以 $\lim_{n \to +\infty} \sin \frac{1}{x_n}$ 不收敛。由 Heine 定理, $\lim_{n \to +\infty} \sin \frac{1}{x_n}$ 不存在。

f 在集合 I 上有定义,且 x_0 是 I 的一个聚点。

定理 (Heine 定理)

 $\lim_{x\to x_0} f(x) = A$ 的充分必要条件是: 对 I 中任意数列 $\{x_n\}_{n=1}^{+\infty}$,若满足条件 $\lim_{n\to +\infty} x_n = x_0$ 且对任意 $n, x_n \neq x_0$,则 $\lim_{n\to +\infty} f(x_n) = A$

f 在集合 I 上有定义,且 x_0 是 I 的一个聚点。

定理 (Heine 定理)

 $\lim_{x\to x_0} f(x) = A$ 的充分必要条件是: 对 I 中任意数列 $\{x_n\}_{n=1}^{+\infty}$,若满足条件 $\lim_{n\to +\infty} x_n = x_0$ 且对任意 $n, x_n \neq x_0$,则 $\lim_{n\to +\infty} f(x_n) = A$

必要性.

如果 $\lim_{\substack{x \to x_0 \\ x_0 \neq x_0}} f(x) = A$. 对 I 中任意数列 $\{x_n\}_{n=1}^{+\infty}$,若满足条件 $\lim_{n \to +\infty} x_n = x_0$ 且对任意 n, $x_n \neq x_0$. 对任意的 $\varepsilon > 0$,由 $\lim_{\substack{x \to x_0 \\ x \to x_0}} f(x) = A$, 存在 $\delta > 0$,使得当 $0 < |x - x_0| < \delta$ 且 $x \in I$ 时, $|f(x) - A| < \varepsilon$. 因为 $\lim_{\substack{n \to +\infty \\ n \to +\infty}} x_n = x_0$, 存在 N > 0,当 n > N 时, $|x_n - x_0| < \delta$,又对任意 i, $x_i \neq x_0$, $x_n \in I$, 所以 $0 < |x_n - x_0| < \delta$ 且 $x_n \in I$, 于是 $|f(x_n) - A| < \varepsilon$.

函数极限的性质

充分性.

```
如果 \lim_{x \to \infty} f(x) 不收敛到 A, 则存在 \varepsilon_0 > 0, 使得对任意的 \delta > 0, 都存在
x \in (x_0 - \delta, x_0 + \delta) \cap I - \{x_0\}, 使得 |f(x) - A| \ge \varepsilon_0.
对 \delta_1 = 1, 存在 x_1 \in (x_0 - \delta, x_0 + \delta) \cap I - \{x_0\}, 使得 |f(x_1) - A| \ge \varepsilon_0.
\delta_{k+1} = \min\{\frac{1}{k+1}, |x_k - x_0|\}, \, \mathcal{D} \, \delta_{k+1} > 0, \, 存在 x_{k+1} \in (x_0 - \delta_{k+1}, x_0 + \delta_{k+1}) \cap I - \{x_0\}, \, 使得
|f(x_{k+1})-A| \ge \varepsilon_0.
由数学归纳法,存在一个数列 \{x_n\}_{n=1}^{+\infty},使得对任意的 n, 0 < |x_n - x_0| < \frac{1}{n},且
|f(x_n) - A| \ge \varepsilon_0.
即存在数列 \{x_n\}_{n=1}^{+\infty}, 若满足条件 \lim_{n\to+\infty} x_n = x_0 且对任意 n, x_n \neq x_0, 但 \lim_{n\to+\infty} f(x_n) 不
收敛到 A.
```

定理

对任意函数 f, g, 如果 $\lim_{x \to x_0} f(x)$ 存在, $\lim_{x \to x_0} g(x)$ 存在, 则

- ① 对任意的实数 α, β , 都成立 $\lim_{x \to x_0} (\alpha f(x) + \beta g(x)) = \alpha \lim_{x \to x_0} f(x) + \beta \lim_{x \to x_0} g(x)$.

定理

对任意函数 f, g, 如果 $\lim_{x \to x_0} f(x)$ 存在, $\lim_{x \to x_0} g(x)$ 存在, 则

- ① 对任意的实数 $\alpha, \beta,$ 都成立 $\lim_{x \to x_0} (\alpha f(x) + \beta g(x)) = \alpha \lim_{x \to x_0} f(x) + \beta \lim_{x \to x_0} g(x)$.

定理

对任意函数 f,g, 如果 $\lim_{x\to x_0} f(x)$ 存在, $\lim_{x\to x_0} g(x)$ 存在, 且 $\lim_{x\to x_0} g(x) \neq 0$, 则成立

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)}.$$

例

对任意的自然数 $n \in \mathbb{N}$, 对任意实数 x_0 , $\lim_{x \to x_0} x^n = x_0^n$.

例

对任意的自然数 $n \in \mathbb{N}$, 对任意实数 x_0 , $\lim_{x \to x_0} x^n = x_0^n$.

定理

对任意的自然数 $n \in \mathbb{N}$, 定义为对任意的 $x \in \mathbb{R}$, $p(x) = x^n$ 的函数 p 在实数集上每一点连续。

例

对任意的自然数 $n \in \mathbb{N}$, 对任意实数 x_0 , $\lim_{x \to x_0} x^n = x_0^n$.

定理

对任意的自然数 $n \in \mathbb{N}$, 定义为 对任意的 $x \in \mathbb{R}$, $p(x) = x^n$ 的函数 p 在实数集上每一点连续。

定义

函数在定义域内每一点连续称为连续函数。 函数 f 在集合 I 中每一点连续, 称为函数 f 在 I 上连续。

定理

实数 $x_0 \in \mathbb{R}$, 对任意函数 f, g, f 在 x_0 连续, g 在 x_0 连续, 则

- ① 对任意的实数 α , β , 函数 $\alpha f + \beta g$ 在 x_0 连续。
- ② 函数 f·g 在 x₀ 连续。

定理

实数 $x_0 \in \mathbb{R}$, 对任意函数 f, g, f 在 x_0 连续, g 在 x_0 连续, 则

- ① 对任意的实数 α , β , 函数 $\alpha f + \beta g$ 在 x_0 连续。
- ② 函数 $f \cdot g$ 在 x_0 连续。

定理

实数 $x_0 \in \mathbb{R}$, 对任意函数 f,g,f 在 x_0 连续,g 在 x_0 连续,且 $g(x_0) \neq 0$,则 $\frac{f}{g}$ 在 x_0 连续。

事实

定义在一个区间上的连续函数,如果知道了其在有理数点的定义,因为任意无理数都可以写成是一列有理数的极限,根据 Heine 定理,这个函数在无理点的定义就是确定的,从而这个函数就定义好了。

事实

定义在一个区间上的连续函数,如果知道了其在有理数点的定义,因为任意无理数都可以写成是一列有理数的极限,根据 Heine 定理,这个函数在无理点的定义就是确定的,从而这个函数就定义好了。

例

假设函数 f 在实数集上连续,且对任意的 $x,y \in \mathbb{R}$, f(x+y) = f(x) + f(y). 证明:存在实数 c, 使得对任意的 $x \in \mathbb{R}$, 成立 f(x) = cx.

事实

定义在一个区间上的连续函数,如果知道了其在有理数点的定义,因为任意无理数都可以写成是一列有理数的极限,根据 Heine 定理,这个函数在无理点的定义就是确定的,从而这个函数就定义好了。

例

假设函数 f 在实数集上连续,且对任意的 $x,y \in \mathbb{R}$, f(x+y) = f(x) + f(y). 证明:存在实数 c, 使得对任意的 $x \in \mathbb{R}$, 成立 f(x) = cx.

证明要点.

令 c = f(1). 由 f(0) = f(0+0) = f(0) + f(0), 可得 $f(0) = 0 = c \cdot 0$. 再证对任意的正整数 n, f(n) = nf(1) = cn; 再证对任意的整数 n, f(n) = nf(1) = cn; 再证对任意的有理数 x, f(x) = cx; 最后再由连续性证对任意的实数 n, f(x) = cx.

思考讨论

- ① 假设函数 f 在实数集上连续,且对任意的 $x,y \in \mathbb{R}$, f(x+y) = f(x) + f(y). 证明:存在实数 c, 使得对任意的 $x \in \mathbb{R}$, 成立 f(x) = cx.
- ② 假设函数 f 在实数集上连续, $f(0) \neq 0$ 且对任意的 $x, y \in \mathbb{R}$, f(x + y) = f(x)f(y). 证明: 存在实数 $c \neq 0$, 使得对任意的 $x \in \mathbb{R}$, 成立 $f(x) = c^x$.

定理

实数 $x_0 \in \mathbb{R}$, 对任意函数 f,g,g 的定义域为 I_g,f 的定义域为 $I_f,g(I_g) \subset I_f(f$ 在 g 的 值域有定义),若 f 在 g_0 连续,g 在 x_0 连续,且 $g(x_0) = g_0$,则函数 $f \circ g$ 在 x_0 连续。

定理

实数 $x_0 \in \mathbb{R}$, 对任意函数 f,g,g 的定义域为 I_g,f 的定义域为 $I_f,g(I_g) \subset I_f(f$ 在 g 的 值域有定义), 若 f 在 g_0 连续, g 在 x_0 连续, 且 $g(x_0) = g_0$, 则函数 $f \circ g$ 在 x_0 连续。

证明.

对任意的 $\varepsilon>0$, 因为 f 在 g_0 连续,存在 $\eta>0$, 当 $t\in (g_0-\eta,g_0+\eta)\cap I_f$ 时,成立 $|f(t)-f(g_0)|<\varepsilon$.

因为 g 在 x_0 连续,存在 $\delta > 0$,当 $x \in (x_0 - \delta, x_0 + \delta) \cap I_g$ 时,成立 $|g(x) - g(x_0)| < \eta$,则 $g(x) \in (g_0 - \eta, g_0 + \eta) \cap g(I_g) \subset (g_0 - \eta, g_0 + \eta) \cap I_f$.

$$|(f \circ g)(x) - f(g(x_0))| = |f(g(x)) - f(g_0)| < \varepsilon.$$

定理

实数 $x_0 \in \mathbb{R}$, 对任意函数 f,g,g 的定义域为 I_g,f 的定义域为 $I_f,g(I_g) \subset I_f(f$ 在 g 的 值域有定义), 若 f 在 g_0 连续, g 在 x_0 连续, 且 $g(x_0) = g_0$, 则函数 $f \circ g$ 在 x_0 连续。

定理

连续函数的复合是连续函数。

定理

实数 $x_0 \in \mathbb{R}$, 对任意函数 f,g,g 的定义域为 I_g,f 的定义域为 $I_f,g(I_g) \subset I_f(f$ 在 g 的 值域有定义), 若 f 在 g_0 连续, g 在 x_0 连续, 且 $g(x_0) = g_0$, 则函数 $f \circ g$ 在 x_0 连续。

定理

连续函数的复合是连续函数。

交换函数符号与极限符号的次序.

函数 f 在 $\lim_{x \to x_0} g(x)$ 连续, 函数 g 在 x_0 连续, 则

$$\lim_{x \to x_0} f(g(x)) = f(\lim_{x \to x_0} g(x)) = f(g(\lim_{x \to x_0} x)).$$

a < b

定理

对任意函数 f, 若 f 在闭区间 [a,b] 上是严格单调增加的连续函数, $\alpha = f(a)$, $\beta = f(b)$, 则函数 f 的反函数 f^{-1} 在 $[\alpha,\beta]$ 上是严格单调增加的连续函数。

a < b

定理

对任意函数 f, 若 f 在闭区间 [a,b] 上是严格单调增加的连续函数, $\alpha = f(a)$, $\beta = f(b)$,则函数 f 的反函数 f^{-1} 在 $[\alpha,\beta]$ 上是严格单调增加的连续函数。

引理

对任意函数 f, 若 f 在闭区间 [a,b] 上是严格单调增加的连续函数, $\alpha = f(a)$, $\beta = f(b)$, 则函数 f 的反函数 f^{-1} 在 $[\alpha,\beta]$ 上有定义。

a < b

定理

对任意函数 f, 若 f 在闭区间 [a,b] 上是严格单调增加的连续函数, $\alpha = f(a)$, $\beta = f(b)$,则函数 f 的反函数 f^{-1} 在 $[\alpha,\beta]$ 上是严格单调增加的连续函数。

引理

对任意函数 f, 若 f 在闭区间 [a,b] 上是严格单调增加的连续函数, $\alpha = f(a)$, $\beta = f(b)$, 则函数 f 的反函数 f^{-1} 在 $[\alpha,\beta]$ 上有定义。

引理

对任意函数 f, 若 f 在闭区间 [a,b] 上是严格单调增加的连续函数, $\alpha = f(a)$, $\beta = f(b)$,则函数 f 的反函数 f^{-1} 在 $[\alpha,\beta]$ 上是严格单调增加的。

引理

若函数 f 在闭区间 [a,b] 上是严格单调增加的连续函数, $\alpha = f(a)$, $\beta = f(b)$,则函数 f 的反函数 f^{-1} 在 $[\alpha,\beta]$ 上有定义。

引理

若函数 f 在闭区间 [a,b] 上是严格单调增加的连续函数, $\alpha=f(a),\beta=f(b)$,则函数 f 的反函数 f^{-1} 在 $[\alpha,\beta]$ 上是严格单调增加的。

引理

若函数 f 在闭区间 [a,b] 上是严格单调增加的连续函数, $\alpha = f(a)$, $\beta = f(b)$, 则函数 f 的反函数 f^{-1} 在 $[\alpha, \beta]$ 上是严格单调增加的。

证明.

对任意的 $v_1, v_2 \in [\alpha, \beta]$, 设 $v_1 < v_2$. 令 $x_1 = f^{-1}(v_1)$, $x_2 = f^{-1}(v_2)$.

① 若 $x_1 > x_2$. 则由 f 严格单调增加可得

$$y_1 = f(f^{-1}(y_1)) = f(x_1) > f(x_2) = f(f^{-1}(y_2)) = y_2.$$

② 若 $x_1 = x_2$, 则由 f 严格单调增加可得

$$y_1 = f(f^{-1}(y_1)) = f(x_1) = f(x_2) = f(f^{-1}(y_2)) = y_2.$$

都与 $v_1 < v_2$ 矛盾。因此必有 $f^{-1}(v_1) = x_1 < x_2 = f^{-1}(v_2)$.

定理

对任意函数 f, 若 f 在闭区间 [a,b] 上是严格单调增加的连续函数, $\alpha = f(a)$, $\beta = f(b)$, 则函数 f 的反函数 f^{-1} 在 $[\alpha,\beta]$ 上是严格单调增加的连续函数。

定理

对任意函数 f, 若 f 在闭区间 [a,b] 上是严格单调增加的连续函数, $\alpha = f(a)$, $\beta = f(b)$,则函数 f 的反函数 f^{-1} 在 $[\alpha,\beta]$ 上是严格单调增加的连续函数。

证明.

对任意函数 f, 若 f 在闭区间 [a,b] 上是严格单调增加的连续函数, $\alpha = f(a)$, $\beta = f(b)$,由前面的引理,则函数 f 的反函数 f^{-1} 在 $[\alpha,\beta]$ 上是严格单调增加的函数。 对任意的 $y_0 \in [\alpha,\beta]$,记 $x_0 = f(y_0)$,则 $x_0 \in [a,b]$. 对任意的 $\varepsilon > 0$,记 $y_1 = f(\min\{b, x_0 + \varepsilon\})$, $y_2 = f(\max\{a, x_0 - \varepsilon\})$,令

则 $\delta > 0$. 且当 $|y - y_0| < \delta$ 且 $y \in [\alpha, \beta]$ 时, $|f^{-1}(y) - f^{-1}(y_0)| < \varepsilon$.

初等函数的连续性

- ① 函数 I(x) = x 的连续性由定义已经证得
- ❷ 整数次幂函数(含常数函数)的连续性由极限的乘法运算可以得到
- **⑤** 开整数次幂的函数的连续性可由反函数的连续性可以得到
- 有理数次幂函数的连续性可由极限的乘法除法运算得到
- **②** 超越函数 $(e^x, \sin x, \cos x)$ 的连续性将在函数定义的时候保证(不使用任何依赖 他们的性质得到结论)
- 对数函数,反三角函数的连续性由反函数的连续性得到
- 初等函数的连续性由极限的四则运算、复合函数的连续性得到

定理

所有初等函数在定义域上连续。

初等函数的连续性

例

求
$$\lim_{x\to 1} \frac{x^3-1}{x^2-1}$$
.

初等函数的连续性

例

$$\vec{x} \lim_{x \to 1} \frac{x^3 - 1}{x^2 - 1}.$$

解

$$\lim_{x \to 1} \frac{x^3 - 1}{x^2 - 1} = \lim_{x \to 1} \frac{(x - 1)(x^2 + x + 1)}{(x - 1)(x + 1)} = \lim_{x \to 1} \frac{x^2 + x + 1}{x + 1} = \frac{3}{2}.$$

作业

● 由函数

对任意的
$$x \in [0, +\infty)$$
, $s(x) = x^2$

在 $[0,+\infty)$ 上严格单调增加且连续,模仿反函数连续性的证明过程,证明: 开方函数 $\sqrt{\cdot}$ 作为 s 的反函数在 $[0,+\infty)$ 上有定义严格单调增加且连续。

- ② 证明: 绝对值函数 |.| 连续。
- ◎ 课本第 72 页习题 1(1)(3), 2(1)(3)(4)(5)(6), 8
- 课本第83页习题5

思考讨论

- 课本第 72 页习题 9
- ② 课本第 83 页习题 3. 4. 6

$$\lim_{x \to 0} \frac{\sin x}{x} = 1.$$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1.$$

定理

$$\lim_{x \to 0} \frac{\sin x}{x} = 1.$$

若
$$\lim_{x \to x_0} f(x) = 0$$
, 且当 $x \neq x_0$ 时, $f(x) \neq 0$, 则

$$\lim_{x \to x_0} \frac{\sin f(x)}{f(x)} = 1.$$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1.$$

定理

$$\lim_{x \to 0} \frac{\sin x}{x} = 1.$$

例

求
$$\lim_{x\to 0} \frac{\sin 2x}{x}$$
.

定理

$$\lim_{x \to 0} \frac{\sin x}{x} = 1.$$

例

求
$$\lim_{x\to 0} \frac{\sin 2x}{x}$$
.

解

$$\lim_{x \to 0} \frac{\sin 2x}{x} = \lim_{x \to 0} \frac{\sin 2x}{2x} \cdot 2 = 2$$

例

$$\alpha \neq 0 \text{ } \lim_{x \to 0} \frac{\sin \alpha x}{x} = \lim_{x \to 0} \frac{\sin \alpha x}{\alpha x} \cdot \alpha = \alpha.$$

例

$$\alpha \neq 0, \beta \neq 0, \ \ \ \ \lim_{x \to 0} \frac{\sin \alpha x}{\sin \beta x}.$$

例

$$\alpha \neq 0 \text{ Pr}, \lim_{x \to 0} \frac{\sin \alpha x}{x} = \lim_{x \to 0} \frac{\sin \alpha x}{\alpha x} \cdot \alpha = \alpha.$$

例

$$\alpha \neq 0, \beta \neq 0, \ \ \ \ \lim_{x \to 0} \frac{\sin \alpha x}{\sin \beta x}.$$

解

$$\lim_{x \to 0} \frac{\sin \alpha x}{\sin \beta x} = \lim_{x \to 0} \frac{\sin \alpha x}{\alpha x} \cdot \frac{\alpha x}{\beta x} \cdot \frac{\beta x}{\sin \beta x} = \frac{\alpha}{\beta}$$

例

$$\vec{x} \lim_{x \to 0} \frac{\arcsin x}{x}$$

$$\lim_{x \to 0} \frac{\arcsin x}{x} = \lim_{x \to 0} \frac{\arcsin x}{\sin(\arcsin x)} = 1.$$

求
$$\lim_{x\to 0} \frac{1-\cos x}{x^2}$$
.

例

$$\Re \lim_{x\to 0} \frac{1-\cos x}{x^2}.$$

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{2 \sin^2 \frac{x}{2}}{4 \left(\frac{x}{2}\right)^2} = \frac{1}{2}$$

$$\vec{x} \lim_{x \to \pi} \frac{\sin x}{x - \pi}.$$

例

$$\vec{\Re} \lim_{x \to \pi} \frac{\sin x}{x - \pi}.$$

$$\lim_{x \to \pi} \frac{\sin x}{x - \pi} = \lim_{t \to 0} \frac{\sin(t + \pi)}{t} = \lim_{t \to 0} \frac{-\sin t}{t} = -1.$$

定理

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1.$$

定理

若
$$\lim_{x \to x_0} f(x) = 0$$
, 且当 $x \neq x_0$ 时, $f(x) \neq 0$, 则

$$\lim_{x \to x_0} \frac{e^{f(x)} - 1}{f(x)} = 1.$$

例

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} \stackrel{t = \ln(1+x)}{=} \lim_{t \to 0} \frac{t}{e^t - 1} = 1.$$

例

$$\Re \lim_{x\to 0} (1+x)^{\frac{1}{x}}.$$

$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = \lim_{x \to 0} e^{\frac{\ln(1+x)}{x}} = e^{\lim_{x \to 0} \frac{\ln(1+x)}{x}} = e^{1} = e.$$

例

$$\lim_{x \to 0} (\cos x)^{\frac{1}{\sin^2 x}} = \lim_{x \to 0} e^{\frac{\ln(\cos x)}{\sin^2 x}} = e^{\frac{\lim_{x \to 0} \frac{\ln(1 + (\cos x - 1))}{\cos x - 1} \cdot \frac{\cos x - 1}{-\frac{x^2}{2}} \cdot \frac{x^2}{\sin^2 x} \cdot \frac{1}{-2}} = e^{-\frac{1}{2}}.$$

$$\alpha \neq 0, \; \vec{x} \colon \lim_{x \to 0} \frac{(1+x)^{\alpha} - 1}{x}.$$

例

$$\alpha \neq 0, \; \vec{\mathfrak{R}} \colon \lim_{x \to 0} \frac{(1+x)^{\alpha}-1}{x}.$$

$$\lim_{x \to 0} \frac{(1+x)^{\alpha} - 1}{x} = \lim_{x \to 0} \frac{e^{\alpha \ln(1+x)} - 1}{x}$$

$$= \lim_{x \to 0} \frac{e^{\alpha \ln(1+x)} - 1}{\alpha \ln(1+x)} \cdot \frac{\alpha \ln(1+x)}{x}$$

$$= \alpha.$$

图:
$$y = [x]$$

 $x_0 \in \mathbb{R}$, 函数 f 在集合 I 上有定义。

定义 (当 x 趋于 x_0 时 f(x) 的极限是 A)

对任意的 $\varepsilon > 0$,存在 $\delta > 0$,当 $x \in (x_0 - \delta, x_0 + \delta) \cap I - \{x_0\}$ 时,成立 $|f(x) - A| < \varepsilon$,称为: 当 x 趋于 x_0 时 f(x) 的极限是 A. 记为 $\lim_{x \to x_0} f(x) = A$

 $x_0 \in \mathbb{R}$, 函数 f 在集合 I 上有定义。

定义 (当 x 趋于 x_0 时 f(x) 的极限是 A)

对任意的 $\varepsilon > 0$, 存在 $\delta > 0$, 当 $x \in (x_0 - \delta, x_0 + \delta) \cap I - \{x_0\}$ 时,成立 $|f(x) - A| < \varepsilon$, 称为: 当 x 趋于 x_0 时 f(x) 的极限是 A. 记为 $\lim_{x \to x_0} f(x) = A$

定义 (当 x 趋于 x_0 时 f(x) 的右极限是 A)

对任意的 $\varepsilon > 0$, 存在 $\delta > 0$, 当 $x \in (x_0, x_0 + \delta) \cap I$ 时,成立 $|f(x) - A| < \varepsilon$, 称为: 当 x 趋于 x_0 时 f(x) 的右极限是 A. 记为 $\lim_{x \to x_0^+} f(x) = A$

 $x_0 \in \mathbb{R}$, 函数 f 在集合 I 上有定义。

定义 (当 x 趋于 x_0 时 f(x) 的极限是 A)

对任意的 $\varepsilon > 0$, 存在 $\delta > 0$, 当 $x \in (x_0 - \delta, x_0 + \delta) \cap I - \{x_0\}$ 时,成立 $|f(x) - A| < \varepsilon$, 称为: 当 x 趋于 x_0 时 f(x) 的极限是 A. 记为 $\lim_{x \to x_0} f(x) = A$

定义 (当 x 趋于 x_0 时 f(x) 的右极限是 A)

对任意的 $\varepsilon>0$,存在 $\delta>0$,当 $x\in (x_0,x_0+\delta)\cap I$ 时,成立 $|f(x)-A|<\varepsilon$,称为:当 x 趋于 x_0 时 f(x) 的右极限是 A. 记为 $\lim_{x\to x_0^+}f(x)=A$

定义 (当 x 趋于 x_0 时 f(x) 的左极限是 A)

对任意的 $\varepsilon > 0$, 存在 $\delta > 0$, 当 $x \in (x_0 - \delta, x_0) \cap I$ 时,成立 $|f(x) - A| < \varepsilon$, 称为: 当 x 趋于 x_0 时 f(x) 的左极限是 A. 记为 $\lim_{x \to x_0^-} f(x) = A$

(函数 f 在 x_0 两侧有定义。)

定理

f 在 x_0 极限存在的充分必要条件是 f 在 x_0 左极限、右极限都存在且相等。

定理

f 在 x_0 连续的充分必要条件是 f 在 x_0 左连续且右连续。

如果函数表达式是分段函数,或使用了分段函数,讨论的点正好是分段点的话,考虑连续性时就应该考虑左右极限。

讨论函数
$$f(x) = \begin{cases} e^x, & x \ge 0 \\ x^2 + 1, & x < 0 \end{cases}$$
 的连续性。

如果函数表达式是分段函数,或使用了分段函数,讨论的点正好是分段点的话,考虑连续性时就应该考虑左右极限。

例

讨论函数
$$f(x) = \begin{cases} e^x, & x \ge 0 \\ x^2 + 1, & x < 0 \end{cases}$$
 的连续性。

解

当
$$x > 0$$
 时, $f(x) = e^x$. 故 f 在 $(0, +\infty)$ 连续。当 $x < 0$ 时, $f(x) = x^2 + 1$. 故 f 在 $(-\infty, 0)$ 连续。因为 $\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} x^2 + 1 = 1$,

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} e^x = 1 = \lim_{x \to 0^-} f(x) = f(0)$$

所以, f在0连续。

所以, f 在 $(-\infty, +\infty)$ 连续。

```
\lim_{x \to x_0} f(x) = \square
                                     存在 \delta > 0. 当 0 < |x - x_0| < \delta 时,
                                     存在 \delta > 0, 当 0 < x - x_0 < \delta 时,
\lim_{x \to x_0^+} f(x) = \square
                                     存在 \delta > 0, 当 0 < x_0 - x < \delta 时,
\lim f(x) = \square
x \rightarrow x_0^-
                                     存在 N > 0, 当 x > N 时,
\lim_{x \to +\infty} f(x) = \square
                                     存在 N > 0. 当 x < -N 时,
\lim_{x \to -\infty} f(x) = \square
                                     存在 N > 0. 当 |x| > N 时,
\lim_{x \to \infty} f(x) = \square
                    对任意 \varepsilon > 0,
                                                                             ,成立 |f(x) - A| < \varepsilon
\lim f(x) = A
                                                                              ,成立 |f(x)| > M
\lim f(x) = \infty
                   对任意 M > 0.
                    对任意 M > 0.
                                                                              ,成立 f(x) > M
\lim f(x) = +\infty
                   对任意 M > 0.
\lim f(x) = -\infty
                                                                               ,成立 f(x) < -M
```

$$\lim_{x \to 0^+} \ln x = -\infty$$

例

$$\lim_{x \to 0^+} \ln x = -\infty$$

例

 $\lim_{x\to\infty}e^x$ 不存在。

注意.

提到函数的极限时,应当写清楚极限过程!

注意.

提到函数的极限时,应当写清楚极限过程!

事实.

不管是哪种极限过程,均有类似的唯一性、保序性、四则运算、复合、控制性收敛定理、Heine 定理等结论,证明过程也都类似。

函数极限也有相应的无穷大量、无穷小量、待定型的概念,以及相应的运算性质。

求:
$$\lim_{x\to\infty}\frac{\sin x}{x}$$
.

$$\vec{x} : \lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x$$

例

$$\Re: \lim_{x\to\infty} \left(1+\frac{1}{x}\right)^x.$$

解 (错误解答)

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = \left(\lim_{x \to \infty} \left(1 + \frac{1}{x} \right) \right)^{\lim_{x \to \infty} x} = 1^{\lim_{x \to \infty} x} = \lim_{x \to \infty} 1^x = 1.$$

例

求:
$$\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^x$$
.

解 (错误解答)

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = \left(\lim_{x \to \infty} \left(1 + \frac{1}{x} \right) \right)^{\lim_{x \to \infty} x} = 1^{\lim_{x \to \infty} x} = \lim_{x \to \infty} 1^x = 1.$$

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = \lim_{t \to 0} (1 + t)^{\frac{1}{t}} = e.$$

定义

f 在 x_0 不连续, 亦称 f 在 x_0 间断, 此时, x_0 称为 f 的不连续点或间断点。

定义

f 在 x_0 不连续, 亦称 f 在 x_0 间断, 此时, x_0 称为 f 的不连续点或间断点。

间断点的分类.

- f 在 x₀ 左右极限存在。这类间断点称为第一类间断点。
 - f 在 x_0 左右极限存在且相等。此时,f 在 x_0 左右极限不等于 $f(x_0)$ 或者 f 在 x_0 无定义。这类间断点称为可去间断点。例如:0 是 $\frac{\sin x}{2}$ 的可去间断点。
 - ② f 在 x₀ 左右极限存在但不相等。这类间断点称为跳跃间断点。例如: 0 是符号函数 sgn 的跳跃间断点。
- ② f 在 x_0 左右极限至少有一个不存在。这类间断点称为第二类间断点。根据导致极限不存在的方式,可称为无穷间断点、振荡间断点等。例如: 0 是 $\frac{1}{x}$ 的无穷间断点,0 是 $\sin\frac{1}{x}$ 的振荡间断点。

事实.

若 f 的定义域是 I, x_0 是 f 的可去间断点,则存在一个函数 \hat{f} 在 $I \cup \{x_0\}$ 上有定义, \hat{f} 在 x_0 连续,且对任意的 $x \in I - \{x_0\}$, $\hat{f}(x) = f(x)$.

事实.

若 f 的定义域是 I, x_0 是 f 的可去间断点,则存在一个函数 \hat{f} 在 $I \cup \{x_0\}$ 上有定义, \hat{f} 在 x_0 连续, 且对任意的 $x \in I - \{x_0\}, \hat{f}(x) = f(x)$.

例

对任意的
$$x \neq 0$$
, $f(x) = \frac{\sin x}{x}$

对任意的
$$x \neq 0$$
, $f(x) = \frac{\sin x}{x}$.
若对任意的实数 x , 定义 $\hat{f}(x) = \begin{cases} f(x), & x \neq 0 \\ 1, & x = 0 \end{cases}$.

则 \hat{f} 在 0 连续,且对任意的 $x \neq 0$, $\hat{f}(x) = f(x)$.

定理

区间上的单调函数在区间上没有第二类间断点。

函数的间断点

定理

区间上的单调函数在区间上没有第二类间断点。

定理

设 f 是定义在 I 上的一个单调增加的函数, $x_0 \in I$, 若存在 $a \in I$ 使得 $(a, x_0) \subset I$, 则 f 在 x_0 有左极限。

函数的间断点

定理

设 f 是定义在 I 上的一个单调增加的函数, $x_0 \in I$,若存在 $a \in I$ 使得 $(a, x_0) \subset I$,则 f 在 x_0 有左极限,且左极限小于等于函数值 $f(x_0)$.

证明.

设 $a \in I$ 使得 $(a, x_0) \subset I$. 对任意的 $x \in (a, x_0) \cap I$, 由 f 是单调增加的, $f(x) \leq f(x_0)$,所以集合 $R_{x_0} = \{f(x): x \in (a, x_0) \cap I\}$ 有上界 $f(x_0)$,由确界存在定理,集合 R_{x_0} 有上确界,记为 α ,即 $\alpha = \sup R_{x_0}$. 因 $f(x_0)$ 是 R_{x_0} 的上界, $\alpha \leq f(x_0)$. 对任意的 $\varepsilon > 0$, $\alpha - \varepsilon$ 不是 R_{x_0} 的上界,因此必存在 $y' \in R_{x_0}$,使得 $y' > \alpha - \varepsilon$,所以存在 $x' \in (a, x_0) \cap I$,使得 $y' = f(x') > a - \varepsilon$. 令 $\delta = x_0 - x'$,则 $\delta > 0$,当 $0 < x_0 - x < \delta$ 时且 $x \in I$, $x' = x_0 - \delta < x < x_0$,由 f 是单调增加的,

$$\alpha - \varepsilon < f(x') \le f(x) \le \alpha$$

所以 $|f(x) - \alpha| < \varepsilon$. 因此 $\lim f(x) = \alpha$, f 在 x_0 有左极限。

函数的间断点

定理

区间上的单调函数在区间上没有第二类间断点。

推论

单调函数在定义域内没有可去间断点。

推论

单调函数的不连续点最多有可数多个。

函数的极限

作业

- 课本第 83 页习题 7(1)(3)
- ② 课本第 58 页习题 1(1)(3)(5)
- 3 课本第 84 页习题 8(2)(7),9
- ① 设 f 是定义在 I 上的一个单调增加的函数, $x_0 \in I$,存在 $b \in I$ 使得 $(x_0,b) \subset I$,证明: f 在 x_0 有右极限。

思考讨论

- ① 设 f 是定义在 I 上的一个单调减少的函数, $x_0 \in I$,存在 $a \in I$ 使得 $(a, x_0) \subset I$,证明: f 在 x_0 有左极限。
- ② 设 f 是定义在 I 上的一个单调减少的函数, $x_0 \in I$,存在 $b \in I$ 使得 $(x_0, b) \subset I$,证明: f 在 x_0 有右极限。

定义 (高阶无穷小量, 低阶无穷小量)

 $\lim_{x \to x_0} u(x) = 0$, $\lim_{x \to x_0} v(x) = 0$, 如果 $\lim_{x \to x_0} \frac{u(x)}{v(x)} = 0$, 称当 x 趋于 x_0 时,u 是 v 的高阶无穷小量,当 x 趋于 x_0 时,v 是 u 的低阶无穷小量。表示为

$$u(x) = o(v(x))(x \to x_0)$$

或者

当
$$x$$
 趋于 x_0 时, $u(x) = o(v(x))$.

由
$$\lim_{x\to 0} \frac{\sin x - x}{x} = \lim_{x\to 0} \frac{\sin x}{x} - 1 = 0$$
 可得当 x 趋于 0 时, $\sin x - x = o(x)$.

例

由
$$\lim_{x\to 0} \frac{\sin x - x}{x} = \lim_{x\to 0} \frac{\sin x}{x} - 1 = 0$$
 可得当 x 趋于 0 时, $\sin x - x = o(x)$.

曲
$$\lim_{x\to 0} \frac{e^x - 1 - x}{x} = \lim_{x\to 0} \frac{e^x - 1}{x} - 1 = 0$$
 可得当 x 趋于 0 时, $e^x - 1 - x = o(x)$.

例

由
$$\lim_{x\to 0} \frac{\sin x - x}{x} = \lim_{x\to 0} \frac{\sin x}{x} - 1 = 0$$
 可得当 x 趋于 0 时, $\sin x - x = o(x)$.

例

曲
$$\lim_{x\to 0} \frac{e^x - 1 - x}{x} = \lim_{x\to 0} \frac{e^x - 1}{x} - 1 = 0$$
 可得当 x 趋于 0 时, $e^x - 1 - x = o(x)$.

$$m > n$$
, 由 $\lim_{x \to 1} \frac{(x-1)^m}{(x-1)^n} = \lim_{x \to 1} (x-1)^{m-n} = 0$ 可得当 x 趋于 1 时, $(x-1)^m = o((x-1)^n)$.

注意.

- 高阶无穷小量的表示中用的是等号, 因此可以用在等式中
- ② 用高阶无穷小量符号 o(v(x)) 表示时,只关注这个式子除以 v(x) 的极限是 0 这个性质,不关注其它的性质
- ⑤ 为了叙述方便,用 o(1)表示(某极限过程下的)一个无穷小量

Е

注意.

- 高阶无穷小量的表示中用的是等号, 因此可以用在等式中
- ② 用高阶无穷小量符号 o(v(x)) 表示时,只关注这个式子除以 v(x) 的极限是 0 这个性质,不关注其它的性质
- ⑤ 为了叙述方便,用 o(1)表示(某极限过程下的)一个无穷小量

例

 $\lim_{x \to x_0} f(x) = A$ 也可表示为当 x 趋于 x_0 时, f(x) - A = o(1).

例

某定理叙述为:设f在 x_0 处有n阶导数,则当x趋于 x_0 时,

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + o((x - x_0)^n).$$

含义就是: 假设 f 在 x_0 处有 n 阶导数,则

$$\lim_{x \to x_0} \frac{f(x) - \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k}{(x - x_0)^n} = 0.$$

定义 (有界量, 同阶无穷小量)

 $\lim_{x \to x_0} u(x) = 0, \ \lim_{x \to x_0} v(x) = 0.$

如果存在 A > 0, 及 $\delta > 0$, 使得当 $0 < |x - x_0| < \delta$ 时, $\left| \frac{u(x)}{v(x)} \right| < A$, 称当 x 趋于 x_0 时,

 $\frac{u(x)}{v(x)}$ 是有界量。表示为

$$u(x) = O(v(x))(x \rightarrow x_0)$$

或者: 当 x 趋于 x_0 时, u(x) = O(v(x)).

如果存在 a > 0, A > 0, 及 $\delta > 0$, 使得当 $0 < |x - x_0| < \delta$ 时, $a < \left| \frac{u(x)}{v(x)} \right| < A$, 称当 x 趋于 x_0 时, $u \neq v$ 的同阶无穷小量。

定义 (k 阶无穷小量)

$$\lim_{x\to x_0}u(x)=0,\,k>0.$$

如果
$$\lim_{x \to x_0} \frac{u(x)}{(x-x_0)^k} = c \neq 0$$
, 称当 x 趋于 x_0 时, u 是关于无穷小量 $x-x_0$ 的 k 阶无穷小量。

定义 (k 阶无穷小量)

$$\lim_{x \to x_0} u(x) = 0, \ k > 0.$$

如果
$$\lim_{x \to x_0} \frac{u(x)}{(x - x_0)^k} = c \neq 0$$
, 称当 x 趋于 x_0 时, u 是关于无穷小量 $x - x_0$ 的 k 阶无 穷小量。

由
$$\lim_{x\to\pi}\frac{\sin x}{x-\pi}=-1$$
,当 x 趋于 π 时, $\sin x$ 是关于无穷小量 $x-\pi$ 的 1 阶无穷小量。

定义 (k 阶无穷小量)

$$\lim_{x \to x_0} u(x) = 0, \ k > 0.$$

如果
$$\lim_{x \to x_0} \frac{u(x)}{(x - x_0)^k} = c \neq 0$$
,称当 x 趋于 x_0 时, u 是关于无穷小量 $x - x_0$ 的 k 阶无穷小量。

例

由
$$\lim_{x\to\pi}\frac{\sin x}{x-\pi}=-1$$
, 当 x 趋于 π 时, $\sin x$ 是关于无穷小量 $x-\pi$ 的 1 阶无穷小量。

由
$$\lim_{x\to 0} \frac{1-\cos x}{x^2} = \frac{1}{2}$$
,当 x 趋于 0 时, $1-\cos x$ 是关于无穷小量 x 的 2 阶无穷小量。

定义 (等阶无穷小量)

$$\lim_{x \to x_0} u(x) = 0, \ \lim_{x \to x_0} v(x) = 0.$$

如果 $\lim_{x\to x_0} \frac{u(x)}{v(x)} = 1$, 称当 x 趋于 x_0 时, u 是 v 的等阶无穷小量。表示为

$$u(x) \sim v(x)(x \to x_0)$$

或者

当
$$x$$
 趋于 x_0 时, $u(x) \sim v(x)$.

常见的等阶无穷小量.

当 x 趋于 0 时, 有下列常见的等价无穷小量:

- \circ $\sin x \sim x$
- **6** $e^x 1 \sim x$
- **1** $\ln(1+x) \sim x$
- **1** $-\cos x \sim \frac{1}{2}x^2$
- \bigcirc tan $x \sim x$
- \bigcirc arctan $x \sim x$
- **8** $(1+x)^{\alpha} 1 \sim \alpha x$

定理

假设当 x 趋于 x_0 时, $u(x) \sim v(x)$, 那么

- ① 当 $\lim_{x\to x_0} v(x)w(x) = A$ 时, $\lim_{x\to x_0} u(x)w(x) = A$;

定理

假设当 x 趋于 x_0 时, $u(x) \sim v(x)$, 那么

- ① 当 $\lim_{x \to x_0} v(x)w(x) = A$ 时, $\lim_{x \to x_0} u(x)w(x) = A$;
- 2 $\stackrel{\smile}{=} \lim_{x \to x_0} \frac{w(x)}{u(x)} = A$ $\stackrel{\smile}{=} H$, $\lim_{x \to x_0} \frac{w(x)}{v(x)} = A$.

$$\lim_{x \to 0} \frac{\ln(1+x^2)}{(e^{2x}-1)\tan x} = \lim_{x \to 0} \frac{x^2}{2x \cdot x} = \frac{1}{2}.$$

例

$$\ddot{\mathbb{R}} \lim_{x \to 0} (\cos x)^{\frac{1}{x^2}}.$$

解 (课本第 90 页, 例 3.3.12)

$$\lim_{x \to 0} (\cos x)^{\frac{1}{x^2}} = \lim_{x \to 0} (1 - (1 - \cos x))^{\frac{1}{x^2}} = \lim_{x \to 0} \left(1 - \frac{x^2}{2} \right)^{\frac{1}{x^2}} = \lim_{x \to 0} \left[\left(1 - \frac{x^2}{2} \right)^{-\frac{2}{x^2}} \right]^{-\frac{1}{2}} = e^{-\frac{1}{2}}.$$

例

求
$$\lim_{x\to 0}(\cos x)^{\frac{1}{x^2}}$$
.

解

$$\lim_{x \to 0} (\cos x)^{\frac{1}{x^2}} = \lim_{x \to 0} e^{\frac{1}{x^2} \ln \cos x} = e^{\lim_{x \to 0} \frac{1}{x^2} \ln \cos x} = e^{\lim_{x \to 0} \frac{\ln(1 + (\cos x - 1))}{x^2}}$$
$$= e^{\lim_{x \to 0} \frac{\cos x - 1}{x^2}} = e^{\lim_{x \to 0} \frac{-\frac{x^2}{2}}{x^2}}$$
$$= e^{-\frac{1}{2}}.$$

定理

● 对任意的 $x \in \mathbb{R}$,

$$e^x = \sum_{n=0}^{+\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + \dots$$

② 对任意的 $x \in \mathbb{R}$,

$$\sin x = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \dots$$

③ 对任意的 $x ∈ \mathbb{R}$,

$$\cos x = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots$$

定理(续)

① 对任意的 $x \in (-1,1]$,

$$\ln(1+x) = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{n+1}}{n+1} = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^n \frac{x^{n+1}}{n+1} + \dots$$

② 对任意的 $x \in (-1,1)$,

$$(1+x)^{\alpha} = \sum_{n=0}^{+\infty} C_{\alpha}^{n} x^{n} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!} x^{2} + \frac{\alpha(\alpha-1)(\alpha-2)}{3!} x^{3} + \dots + C_{\alpha}^{n} x^{n} + \dots$$

特别的 对任意的 $x \in (-1,1)$,

$$\frac{1}{1+x} = (1+x)^{-1} = \sum_{n=0}^{+\infty} (-1)^n x^n = 1 - x + x^2 - x^3 + \dots + (-1)^n x^n + \dots$$

当 x 趋于 0 时.

•
$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + o(x^n)$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+2})$$

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!}x^2 + \frac{\alpha(\alpha-1)(\alpha-2)}{3!}x^3 + \dots + C_{\alpha}^n x^n + o(x^n)$$

例

$$\Re \lim_{x \to 0} \frac{x - \sin x}{x^3}$$

错误解法.

$$\lim_{x \to 0} \frac{x - \sin x}{x^3} = \lim_{x \to 0} \frac{x - x}{x^3} = \lim_{x \to 0} \frac{0}{x^3} = 0.$$

例

$$\Re \lim_{x \to 0} \frac{x - \sin x}{x^3}$$

错误解法.

$$\lim_{x \to 0} \frac{x - \sin x}{x^3} = \lim_{x \to 0} \frac{x - x}{x^3} = \lim_{x \to 0} \frac{0}{x^3} = 0.$$

错误解法.

$$\lim_{x \to 0} \frac{x - \sin x}{x^3} = \lim_{x \to 0} \frac{x - \left(x - \frac{x^3}{3!}\right)}{x^3} = \lim_{x \to 0} \frac{\frac{x^3}{3!}}{x^3} = \frac{1}{6}.$$

例

$$\Re \lim_{x \to 0} \frac{x - \sin x}{x^3}$$

错误解法.

$$\lim_{x \to 0} \frac{x - \sin x}{x^3} = \lim_{x \to 0} \frac{x - \left(x - \frac{x^3}{3!}\right)}{x^3} = \lim_{x \to 0} \frac{\frac{x^3}{3!}}{x^3} = \frac{1}{6}.$$

正确解法.

$$\lim_{x \to 0} \frac{x - \sin x}{x^3} = \lim_{x \to 0} \frac{x - \left(x - \frac{x^3}{3!} + o(x^3)\right)}{x^3} = \lim_{x \to 0} \frac{\frac{x^3}{3!} + o(x^3)}{x^3} = \lim_{x \to 0} \left(\frac{1}{3!} + \frac{o(x^3)}{x^3}\right) = \frac{1}{6}.$$

数学学院 靳勇飞

数学分析(上)

定义(高阶无穷大量,低阶无穷大量)

 $\lim_{x \to x_0} u(x) = \infty$, $\lim_{x \to x_0} v(x) = \infty$, 如果 $\lim_{x \to x_0} \frac{u(x)}{v(x)} = \infty$, 称当 x 趋于 x_0 时,u 是 v 的高阶 无穷大量,当 x 趋于 x_0 时,v 是 u 的低阶无穷大量。

定义 (有界量,同阶无穷大量)

 $\lim_{x \to x_0} u(x) = \infty, \ \lim_{x \to x_0} v(x) = \infty.$

如果存在 A>0, 及 $\delta>0$, 使得当 $0<|x-x_0|<\delta$ 时, $\left|\frac{u(x)}{v(x)}\right|< A$, 称当 x 趋于 x_0 时,

 $\frac{u(x)}{v(x)}$ 是有界量。表示为

$$u(x) = O(v(x))(x \rightarrow x_0)$$

或者: 当 x 趋于 x_0 时, u(x) = O(v(x)).

如果存在 a > 0, A > 0, 及 $\delta > 0$, 使得当 $0 < |x - x_0| < \delta$ 时, $a < \left| \frac{u(x)}{v(x)} \right| < A$, 称当 x 趋于 x_0 时, $u \neq v$ 的同阶无穷大量。

定义 (k 阶无穷大量)

$$\lim_{x \to x_0} u(x) = \infty, \ \lim_{x \to x_0} v(x) = \infty, \ k > 0.$$

如果
$$\lim_{x \to x_0} \frac{u(x)}{v^k(x)} = c \neq 0$$
,称当 x 趋于 x_0 时, u 是关于无穷大量 $v(x)$ 的 k 阶无穷大量。

定义 (k 阶无穷大量)

 $\lim u(x) = \infty, \lim v(x) = \infty, k > 0.$

如果 $\lim_{x\to x_0} \frac{u(x)}{v^k(x)} = c \neq 0$, 称当 x 趋于 x_0 时, u 是关于无穷大量 v(x) 的 k 阶无穷大量。

定义 (等阶无穷大量)

 $\lim u(x) = \infty$, $\lim v(x) = \infty$.

如果 $\lim_{x\to x_0} \frac{u(x)}{v(x)} = 1$, 称当 x 趋于 x_0 时, u 是 v 的等阶无穷大量。表示为

$$u(x) \sim v(x)(x \rightarrow x_0)$$

或者

当 x 趋于 x_0 时, $u(x) \sim v(x)$.

由
$$\lim_{n \to +\infty} \left(\sum_{k=1}^{n} \frac{1}{k} - \ln n \right) = \gamma$$
, 可知

$$\lim_{n \to +\infty} \frac{\sum_{k=1}^{n} \frac{1}{k} - \ln n}{\ln n} = \lim_{n \to +\infty} \frac{\gamma}{\ln n} = 0$$

因此
$$\lim_{n\to+\infty} \frac{\sum_{k=1}^n \frac{1}{k}}{\ln n} = 1$$
, 所当 n 趋于 $+\infty$ 时, $\sum_{k=1}^n \frac{1}{k}$ 是 $\ln n$ 的等价无穷大量,即

$$\sum_{k=1}^{n} \frac{1}{k} \sim \ln n \ (n \to +\infty)$$

事实

前面关于无穷大量无穷小量的比较的定义,稍加修改即适用于极限过程: $x \to x_0^+$, $x \to x_0^-$, $x \to +\infty$, $x \to -\infty$, $x \to \infty$, $x \to +\infty$ 等等。

事实

前面关于无穷大量无穷小量的比较的定义,稍加修改即适用于极限过程: $x \to x_0^+$, $x \to x_0^-$, $x \to +\infty$, $x \to -\infty$, $x \to \infty$, $n \to +\infty$ 等等。

例

对任意的 $\varepsilon > 0$,由 $\lim_{n \to +\infty} \frac{\ln n}{n^{\varepsilon}} = 0$,可知当 n 趋于 $+\infty$ 时, $\ln n$ 是关于无穷大量 n 的任意阶的低阶无穷大量。

事实

前面关于无穷大量无穷小量的比较的定义,稍加修改即适用于极限过程: $x \to x_0^+$, $x \to x_0^-$, $x \to +\infty$, $x \to -\infty$, $x \to \infty$, $n \to +\infty$ 等等。

例

对任意的 $\varepsilon > 0$,由 $\lim_{n \to +\infty} \frac{\ln n}{n^{\varepsilon}} = 0$,可知当 n 趋于 $+\infty$ 时, $\ln n$ 是关于无穷大量 n 的任意阶的低阶无穷大量。

例

a>1,对任意的 k>0,由 $\lim_{n\to+\infty}\frac{n^k}{a^n}=0$,可知当 n 趋于 $+\infty$ 时, a^n 是关于无穷大量 n 的任意阶的高阶无穷大量。

例

 $m, n \in \mathbb{N}^+, \perp m > n, a_m \neq 0, a_n \neq 0.$

$$\lim_{x \to 0} \frac{\sum_{k=n}^{m} a_k x^k}{x^n} = \lim_{x \to 0} \frac{a_n x^n + a_{n+1} x^{n+1} \cdots + a_m x^m}{x^n} = \lim_{x \to 0} (a_n + a_{n+1} x \cdots + a_m x^{m-n}) = a_n$$

当 x 趋于 0 时, $\sum_{k=n}^{m} a_k x^k \sim a_n x^n$.

$$\lim_{x \to \infty} \frac{\sum_{k=n}^{m} a_k x^k}{x^m} = \lim_{x \to \infty} \frac{a_n x^n + a_{n+1} x^{n+1} \cdots + a_m x^m}{x^m}$$

$$= \lim_{x \to \infty} \left(a_n \frac{1}{x^{m-n}} + a_{n+1} \frac{1}{x^{m-n-1}} \cdots + a_m \right) = a_m$$

当 x 趋于 ∞ 时, $\sum_{k=n}^{m} a_k x^k \sim a_m x^m$.

定理

当 x 趋于 0 时,

- **①** 若 m > n > 0, 则 $o(x^m) + o(x^n) = o(x^n)$;
- ② 若 m, n > 0, 则 $o(x^m)o(x^n) = o(x^{m+n})$;
- **③** 若 |f| < M, 则 f(x)o(x) = o(x);
- **③** 若 m, n > 0, 则 $x^m o(x^n) = o(x^{m+n})$;
- **5** m > 0, $o(x^m) o(x^m) = o(x^m)$;
- **6** -o(x) = o(x);
- o(x) = O(x).

例

当 x 趋于 0 时, $e^x \sin x - x$ 是关于无穷小量 x 的多少阶无穷小量?

例

当 x 趋于 0 时, $e^x \sin x - x$ 是关于无穷小量 x 的多少阶无穷小量?

解

当
$$x$$
 趋于 0 时, $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + o(x^3)$, $\sin x = x - \frac{x^3}{3!} + o(x^3)$,所以
$$e^x \sin x - x = \left(1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + o(x^3)\right) \left(x - \frac{x^3}{3!} + o(x^3)\right) - x$$
$$= x + x^2 + o(x^2) - x$$

当 x 趋于 0 时, $e^x \sin x - x$ 是关于无穷小量 x 的 2 阶无穷小量。

 $=x^2 + o(x^2)$

例

$$\stackrel{\underline{}_{1}}{\underline{}}$$
 $x \to 0$ 財, $(1+x)^{\frac{1}{2}} = 1 + \frac{1}{2}x + \frac{\frac{1}{2}(\frac{1}{2}-1)}{2!}x^2 + \frac{\frac{1}{2}(\frac{1}{2}-1)(\frac{1}{2}-2)}{3!}x^3 + o(x^3)$

例

$$\stackrel{\underline{\mathsf{u}}}{=} x \to 0 \ \text{fr}, \ (1+x)^{\frac{1}{2}} = 1 + \frac{1}{2}x + \frac{\frac{1}{2}(\frac{1}{2}-1)}{2!}x^2 + \frac{\frac{1}{2}(\frac{1}{2}-1)(\frac{1}{2}-2)}{3!}x^3 + o(x^3)$$

解

当
$$x$$
 趋于 $+\infty$ 时,
$$\sqrt{x+1} = \sqrt{x} \left(1 + \frac{1}{x}\right)^{\frac{1}{2}} = \sqrt{x} \left(1 + \frac{1}{2} \frac{1}{x} - \frac{1}{8} \frac{1}{x^2} + o(\frac{1}{x^2})\right) = x^{\frac{1}{2}} + \frac{1}{2} \frac{1}{x^{\frac{1}{2}}} - \frac{1}{8} \frac{1}{x^{\frac{3}{2}}} + o\left(\frac{1}{x^{\frac{3}{2}}}\right)$$

$$\sqrt{x-1} = \sqrt{x} \left(1 - \frac{1}{x}\right)^{\frac{1}{2}} = \sqrt{x} \left(1 - \frac{1}{2} \frac{1}{x} - \frac{1}{8} \frac{1}{x^2} + o(\frac{1}{x^2})\right) = x^{\frac{1}{2}} - \frac{1}{2} \frac{1}{x^{\frac{1}{2}}} - \frac{1}{8} \frac{1}{x^{\frac{3}{2}}} + o\left(\frac{1}{x^{\frac{3}{2}}}\right)$$
所以当 x 趋于 $+\infty$ 时, $x^{\frac{3}{2}} \left(\sqrt{x+1} + \sqrt{x-1} - 2\sqrt{x}\right) = -\frac{1}{4} + x^{\frac{3}{2}} o\left(\frac{1}{x^{\frac{3}{2}}}\right)$,
所以 $\lim_{x \to +\infty} x^{\frac{3}{2}} \left(\sqrt{x+1} + \sqrt{x-1} - 2\sqrt{x}\right) = -\frac{1}{4}$.

求极限步骤.

- 看极限过程
- ② 判断所求的极限的地方是否是函数的连续点,如果是,直接代入函数
- ③ 把不是趋于 0 的过程, 通过变换化为趋于 0 的过程: $x \to x_0$ 时用 $t = x x_0$; $x \to \infty$ 时用 $t = \frac{1}{x}$
- 化简
- ⑤ 判断 0 是否是函数的连续点,如果是,直接代入函数
- ◎ 用等价无穷小量替换其中的因子,或者带 o 的等式替换其中较复杂的式子
- 化筒
- ❸ 判断 0 是否是函数的连续点,如果是,直接代入函数
- ◎ 用等价无穷小量替换其中的因子,或者带 o 的等式替换其中较复杂的式子
- **.**

例

当
$$x \to 0$$
 时, $(1+x)^{\frac{1}{2}} = 1 + \frac{1}{2}x + \frac{\frac{1}{2}(\frac{1}{2}-1)}{2!}x^2 + \frac{\frac{1}{2}(\frac{1}{2}-1)(\frac{1}{2}-2)}{3!}x^3 + o(x^3)$

例

$$\stackrel{\underline{\mathsf{M}}}{=} x \to 0 \ \text{Fig.} \ (1+x)^{\frac{1}{2}} = 1 + \frac{1}{2}x + \frac{\frac{1}{2}(\frac{1}{2}-1)}{2!}x^2 + \frac{\frac{1}{2}(\frac{1}{2}-1)(\frac{1}{2}-2)}{3!}x^3 + o(x^3)$$

解

$$\lim_{x \to +\infty} x^{\frac{3}{2}} \left(\sqrt{x+1} + \sqrt{x-1} - 2\sqrt{x} \right) \xrightarrow{t=\frac{1}{x}} \lim_{t \to 0^{+}} \frac{\sqrt{\frac{1}{t}+1} + \sqrt{\frac{1}{t}-1} - 2\sqrt{\frac{1}{t}}}{t^{\frac{3}{2}}}$$

$$= \lim_{t \to 0^{+}} \frac{\sqrt{1+t} + \sqrt{1-t} - 2}{t^{2}} = \lim_{t \to 0^{+}} \frac{\left(1 + \frac{1}{2}t - \frac{1}{8}t^{2} + o(t^{2})\right) + \left(1 - \frac{1}{2}t - \frac{1}{8}t^{2} + o(t^{2})\right) - 2}{t^{2}}$$

$$= \lim_{t \to 0^{+}} \frac{-\frac{1}{4}t^{2} + o(t^{2})}{t^{2}} = -\frac{1}{4}$$

例

$$\stackrel{\text{\tiny \perp}}{=}$$
 x → 0 $\stackrel{\text{\tiny \perp}}{=}$ ln(1 + x) = x - $\frac{1}{2}$ x² + $\frac{1}{3}$ x³ - ··· + (-1)ⁿ $\frac{1}{n+1}$ xⁿ⁺¹ + o(xⁿ⁺¹)

例

$$\stackrel{\text{\tiny \perp}}{=}$$
 $x \to 0$ 时, $\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \dots + (-1)^n \frac{1}{n+1}x^{n+1} + o(x^{n+1})$

解

$$\lim_{n \to +\infty} \left(n - n^2 \ln \left(1 + \frac{1}{n} \right) \right) = \lim_{n \to +\infty} \left(n - n^2 \left(\frac{1}{n} - \frac{1}{2} \left(\frac{1}{n} \right)^2 + \frac{1}{3} \left(\frac{1}{n} \right)^3 + o\left(\left(\frac{1}{n} \right)^3 \right) \right) \right)$$

$$= \lim_{n \to +\infty} \left(\frac{1}{2} + n^2 o\left(\left(\frac{1}{n} \right)^2 \right) \right)$$

$$= \frac{1}{2}$$

作业

- 课本第 73 页习题 2(7)(8)(9)(10), 6(1)(4)
- ② 课本第 91 页习题 3(1)(3)(5)(7)(9)(11)
- 3 课本第 183 页习题 6(1)(2)

例

a > 0, $a \ne 1$, 求当 $x \rightarrow 0$ 时, $a^x - 1$ 的等价无穷小量.

例

a > 0, $a \ne 1$, 求当 $x \rightarrow 0$ 时, $a^x - 1$ 的等价无穷小量.

例

a > 0, $a \ne 1$, 求当 $x \to 0$ 时, $\log_a(1+x)$ 的等价无穷小量.

函数极限的 Cauchy 收敛原理

 $x_0 \in \mathbb{R}$, 函数 f 在集合 I 上有定义。

定理

当 x 趋于 x_0 时 f(x) 收敛的充分必要条件是: 对任意的 $\varepsilon > 0$, 存在 $\delta > 0$, 使得对任意的 $x', x'' \in (x_0 - \delta, x_0 + \delta) \cap I - \{x_0\}$ 时,成立 $|f(x') - f(x'')| < \varepsilon$.

定理

当 x 趋于 ∞ 时 f(x) 收敛的充分必要条件是: 对任意的 $\varepsilon>0$, 存在 M>0, 使得当 |x'|>M, |x''|>M 时,成立 $|f(x')-f(x'')|<\varepsilon$.

定理 (有界性定理)

闭区间上的连续函数有界。

定理 (有界性定理)

闭区间上的连续函数有界。

用闭区间套定理证明的思路.

假设函数在闭区间上无界。把区间等分为两个,则函数在其中至少有一个上面是无界的,选择一个其中无界的一个。把区间等分为两个,则函数在其中至少有一个上面是无界的,选择一个其中无界的一个……,构造出一个闭区间套,找到区间端点的极限,然后利用极限的局部有界性,说明区间套中从某个区间开始,函数在上面是有界的,产生矛盾。

定理 (有界性定理)

闭区间上的连续函数有界。

用闭区间套定理证明的思路.

假设函数在闭区间上无界。把区间等分为两个,则函数在其中至少有一个上面是无界的,选择一个其中无界的一个。把区间等分为两个,则函数在其中至少有一个上面是无界的,选择一个其中无界的一个......,构造出一个闭区间套,找到区间端点的极限,然后利用极限的局部有界性,说明区间套中从某个区间开始,函数在上面是有界的,产生矛盾。

用 Bolzano-Weierstrass 定理证明的思路.

假设函数在闭区间上无界。利用无界的定义,在区间中找一个点列使得这个点列上的函数值趋于无穷。由 Bolzano-Weierstrass 定理,这个点列应该有收敛子列,这个收敛子列的函数值应该是收敛的,从而是有界的,与函数值点列趋于无穷矛盾。 □

定理 (最值定理)

闭区间上的连续函数在闭区间上可以取到最大值。

定理(最值定理)

闭区间上的连续函数在闭区间上可以取到最大值。

用 Bolzano-Weierstrass 定理证明的思路.

由有界性定理先说明函数是有界的,从而是有上确界的。利用上确界的定义,在区间中找一个点列使得这个点列上的函数值趋于这个上确界。由 Bolzano-Weierstrass 定理,这个点列应该有收敛子列,这个收敛子列的函数值应该是收敛的,收敛的值就是上确界,函数在这个收敛子列的极限点的地方取到最大值。

定理 (零点存在定理)

闭区间上的连续函数在闭区间的两个端点符号相反,则该函数在闭区间内有零点。

定理 (零点存在定理)

闭区间上的连续函数在闭区间的两个端点符号相反,则该函数在闭区间内有零点。

由确界存在定理证明的思路.

考虑区间中函数取值小于 0 的点构成的集合,尝试证它的上确界的函数值为 0. 这个上确界的点作为函数值小于 0 的点的上确界,函数值小于 0 的集合中存在收敛到这点的点列,从而由函数连续性及极限保号性,得出在上确界的函数值小于等于 0。如果函数值小于 0,根据连续的保号性可以找到它右侧有点的函数值也小于 0,从而与它是上确界矛盾。

定理 (零点存在定理)

闭区间上的连续函数在闭区间的两个端点符号相反,则该函数在闭区间内有零点。

由确界存在定理证明的思路.

考虑区间中函数取值小于 0 的点构成的集合,尝试证它的上确界的函数值为 0. 这个上确界的点作为函数值小于 0 的点的上确界,函数值小于 0 的集合中存在收敛到这点的点列,从而由函数连续性及极限保号性,得出在上确界的函数值小于等于 0。如果函数值小于 0,根据连续的保号性可以找到它右侧有点的函数值也小于 0,从而与它是上确界矛盾。

用闭区间套定理证明的思路.

把区间等分为两个,考虑中点的符号,如果中点值为 0,则找到 0 点。如果中点不为 0,选择与区间端点符号相反的那个端点与中点组成新的区间。把区间等分为两个,考虑中点的符号,如果中点值为 0,则找到 0 点。如果中点不为 0,选择与区间端点符号相反的那个端点与中点组成新的区间。……,构造出一个闭区间套,找到区间端点的极限,这极限作为两个端占的极限。对应的函数值的符号相反。只能是取值为 0。

定理 (零点存在定理)

闭区间上的连续函数在闭区间的两个端点符号相反,则该函数在闭区间内有零点。

定理(介值(中间值)定理)

闭区间上的连续函数在闭区间上可取到最大值最小值之间的所有值。

例

函数 f 在闭区间 [a,b] 上连续,且 $f([a,b]) \subset [a,b]$,则存在 $\xi \in [a,b]$,使得 $f(\xi) = \xi$.

例

函数 f 在闭区间 [a,b] 上连续,且 $f([a,b]) \subset [a,b]$,则存在 $\xi \in [a,b]$,使得 $f(\xi) = \xi$.

证明.

对任意的 $x \in [a,b]$, 定义 g(x) = f(x) - x. 则由函数 f 在闭区间 [a,b] 上连续, 可得函数 g 在闭区间 [a,b] 上连续, 且

$$g(a)g(b) = (f(a) - a)(f(b) - b) \le 0$$

所以存在 $\xi \in [a,b]$, 使得 $g(\xi) = 0$, 此时 $f(\xi) = \xi$.

7

定理 (连续保持紧性)

闭区间上的连续函数把闭区间映为闭区间。

定理 (连续保持连通性)

连续函数把区间映为区间。

定义 (一致连续)

函数 f 在集合 I 上有定义,如果对任意的 $\varepsilon > 0$,都存在 $\delta > 0$,使得对集合 I 中任意 两点 x,x',只要 $|x-x'|<\delta$,就有 $|f(x)-f(x')|<\varepsilon$,就称 f 在 I 上一致连续。

定义 (一致连续)

函数 f 在集合 I 上有定义,如果对任意的 $\varepsilon>0$,都存在 $\delta>0$,使得对集合 I 中任意 两点 x,x',只要 $|x-x'|<\delta$,就有 $|f(x)-f(x')|<\varepsilon$,就称 f 在 I 上一致连续。

定理

在集合1上一致连续的函数在集合1上连续。

定义 (一致连续)

函数 f 在集合 I 上有定义,如果对任意的 $\varepsilon > 0$,都存在 $\delta > 0$,使得对集合 I 中任意 两点 x,x',只要 $|x-x'| < \delta$,就有 $|f(x)-f(x')| < \varepsilon$,就称 f 在 I 上一致连续。

定理

在集合1上一致连续的函数在集合1上连续。

证明.

对任意在 I 上一致连续的函数 f, 对任意的 $x_0 \in I$, 对任意的 $\varepsilon > 0$, 因为 f 在 I 上一致连续,存在 $\delta > 0$,使得对集合 I 中任意两点 x, x',只要 $|x - x'| < \delta$,就有 $|f(x) - f(x')| < \varepsilon$,则当 $0 < |x - x_0| < \delta$ 且 $x \in I$ 时, $|f(x) - f(x_0)| < \varepsilon$,因此 f 在 x_0 连续。所以 f 在集合 I 上连续。

例

 $\frac{1}{x}$ 在集合 (0,1] 上不一致连续。

例

 $\frac{1}{x}$ 在集合 (0,1] 上不一致连续。

f 在集合 I 不一致连续的定义.

存在 $\varepsilon > 0$, 使得对任意的 $\delta > 0$, 在集合 I 中存在两点 $x, x' \in I$, 使得 $|x - x'| < \delta$, 且 $|f(x) - f(x')| > \varepsilon$.

例

 $\frac{1}{x}$ 在集合 (0,1] 上不一致连续。

图: $y = \frac{1}{x}$

例

 $\frac{1}{x}$ 在集合 (0,1] 上不一致连续。

证明.

$$(\varepsilon = \frac{1}{2},)$$
 对任意的 $\delta > 0$, 存在 $N > 1$, 使得 $\frac{1}{N(N+1)} < \delta$, 令 $x_1 = \frac{1}{N}, x_2 = \frac{1}{N+1}, 则$ $x_1, x_2 \in (0,1], 且 |x_1 - x_2| = \frac{1}{N(N+1)} < \delta$, 且

$$\left|\frac{1}{x} - \frac{1}{x'}\right| = 1 \geqslant \frac{1}{2}.$$

所以 $\frac{1}{r}$ 在集合 (0,1] 上不一致连续。

定理

函数 f 在集合 I 上有定义。

f 在 I 上不一致连续的充要条件是:存在 $\varepsilon > 0$,及 I 中两个点列 $\{x'_n\}_{n=1}^{+\infty}, \{x''_n\}_{n=1}^{+\infty}$,使 得 $\lim_{n \to +\infty} |x'_n - x''_n| = 0$,但是对任意的 n, $|f(x'_n) - f(x''_n)| > \varepsilon$.

定理 (Cantor 定理)

闭区间上连续函数是一致连续的。

定义

函数 f 在集合 I 上有定义,存在 L>0,对集合 I 中任意两点 x',x'',成立

$$\left| f(x') - f(x'') \right| \le L \left| x' - x'' \right|$$

就称 f 在 I 上满足 Lipschitz 条件。

定义

函数 f 在集合 I 上有定义,存在 L>0,对集合 I 中任意两点 x',x'',成立

$$\left| f(x') - f(x'') \right| \le L \left| x' - x'' \right|$$

就称 f 在 I 上满足 Lipschitz 条件。

定理

f 在 I 上满足 Lipschitz 条件则 f 在集合 I 上一致连续。

定义

函数 f 在集合 I 上有定义,存在 L>0,对集合 I 中任意两点 x',x'',成立

$$\left| f(x') - f(x'') \right| \le L \left| x' - x'' \right|$$

就称 f 在 I 上满足 Lipschitz 条件。

定理

f 在 I 上满足 Lipschitz 条件则 f 在集合 I 上一致连续。

证明.

设 f 在 I 上满足 Lipschitz 条件,则存在 L > 0,对集合 I 中任意两点 x',x'',成立 $|f(x') - f(x'')| \le L|x' - x''|$.

对任意的 $\varepsilon > 0$, 令 $\delta = \frac{1}{L}\varepsilon$, 则 $\delta > 0$, 且对集合 I 中任意两点 x', x'', 只要 $|x' - x''| < \delta$, 就有 $|f(x') - f(x'')| \le L|x' - x''| < \varepsilon$. 所以 f 在集合 I 上一致连续。 \square

例

证明: $\sin x$ 在集合 \mathbb{R} 上一致连续。

例

证明: $\sin x$ 在集合 \mathbb{R} 上一致连续。

证明.

对任意两个实数 $x', x'' \in \mathbb{R}$,

$$\left|\sin x' - \sin x''\right| = \left|2\sin\frac{x' - x''}{2}\cos\frac{x' + x''}{2}\right| \leqslant \left|2\sin\frac{x' - x''}{2}\right| \leqslant 2\left|\frac{x' - x''}{2}\right| = \left|x' - x''\right|.$$

sin x 在 ℝ 上满足 Lipschitz 条件, 所以 sin x 在集合 ℝ 上一致连续。

定理

f 在集合 I 上一致连续, I' ⊂ I, 则 f 在集合 I' 上一致连续。

定理

f 在有限开区间 (a,b) 上连续,则 f 在 (a,b) 上一致连续的充要条件是 $\lim_{x\to a^+} f(x)$, $\lim_{x\to b^-} f(x)$ 都存在。

充分性.

设
$$\lim_{x \to a^+} f(x)$$
, $\lim_{x \to b^-} f(x)$ 都存在。定义 \hat{f} 为: $\hat{f}(x) = \begin{cases} \lim_{x \to a^+} f(x), & x = a \\ f(x), & x \in (a,b), \text{ 由 } f \text{ 在 } f \end{cases}$

限开区间 (a,b) 上连续,及当 $x \in (a,b)$ 时, $\hat{f}(x) = f(x)$,所以 \hat{f} 在 (a,b) 连续,而 $\lim_{x \to a^+} \hat{f}(x) = \lim_{x \to a^+} \hat{f}(x) = \hat{f}(a)$, $\lim_{x \to b^-} \hat{f}(x) = \lim_{x \to b^-} f(x) = \hat{f}(b)$,所以 \hat{f} 在 [a,b] 连续,由 Cantor 定理, \hat{f} 在 [a,b] 是上一致连续,所以 \hat{f} 在 (a,b) 是上一致连续。

定理

f 在有限开区间 (a,b) 上连续,则 f 在 (a,b) 上一致连续的充要条件是 $\lim_{x\to a^+} f(x)$, $\lim_{x\to b^-} f(x)$ 都存在。

必要性.

假设 $\lim_{x \to a^+} f(x)$ 不存在,由 Cauchy 收敛原理,存在 $\varepsilon > 0$,对任意的 $\delta > 0$,存在 $x', x'' \in (a,b)$,使得 $0 < |x'-a| < \delta$, $0 < |x''-a| < \delta$,但是 $|f(x')-f(x'')| \ge \varepsilon$. 因而 对任意的 $n \in \mathbb{N}^+$, $\frac{1}{n} > 0$,存在 $x'_n, x''_n \in (a,b)$,使得 $0 < |x'_n-a| < \frac{1}{n}$, $0 < |x''_n-a| < \frac{1}{n}$, $0 < |x''_n-a| < \frac{1}{n}$, $0 < |x''_n-a| < \frac{1}{n}$, $0 < |x''_n-a| < \frac{1}{n}$, $0 < |x''_n-a| < \frac{1}{n}$, $0 < |x''_n-a| < \frac{1}{n}$, $0 < |x''_n-a| < \frac{1}{n}$, $0 < |x''_n-a| < \frac{1}{n}$, $0 < |x''_n-a| < \frac{1}{n}$, $0 < |x''_n-a| < \frac{1}{n}$, $0 < |x''_n-a| < \frac{1}{n}$, $0 < |x''_n-a| < \frac{1}{n}$, $0 < |x''_n-a| < \frac{1}{n}$, $0 < |x''_n-a| < \frac{1}{n}$, $0 < |x''_n-a| < \frac{1}{n}$, $0 < |x''_n-a| < \frac{1}{n}$, $0 < |x''_n-a| < \frac{1}{n}$, $0 < |x''_n-a| < \frac{1}{n}$, $0 < |x''_n-a| < \frac{1}{n}$, $0 < |x''_n-a| < \frac{1}{n}$, $0 < |x''_n-a| < \frac{1}{n}$, $0 < |x''_n-a| < \frac{1}{n}$, $0 < |x''_n-a| < \frac{1}{n}$, $0 < |x''_n-a| < \frac{1}{n}$, $0 < |x''_n-a| < \frac{1}{n}$, $0 < |x''_n-a| < \frac{1}{n}$, $0 < |x''_n-a| < \frac{1}{n}$, $0 < |x''_n-a| < \frac{1}{n}$, $0 < |x''_n-a| < \frac{1}{n}$, $0 < |x''_n-a| < \frac{1}{n}$, $0 < |x''_n-a| < \frac{1}{n}$, $0 < |x''_n-a| < \frac{1}{n}$, $0 < |x''_n-a| < \frac{1}{n}$, $0 < |x''_n-a| < \frac{1}{n}$, $0 < |x''_n-a| < \frac{1}{n}$, $0 < |x''_n-a| < \frac{1}{n}$, $0 < |x''_n-a| < \frac{1}{n}$, $0 < |x''_n-a| < \frac{1}{n}$, $0 < |x''_n-a| < \frac{1}{n}$, $0 < |x''_n-a| < \frac{1}{n}$, $0 < |x''_n-a| < \frac{1}{n}$, $0 < |x''_n-a| < \frac{1}{n}$, $0 < |x''_n-a| < \frac{1}{n}$, $0 < |x''_n-a| < \frac{1}{n}$, $0 < |x''_n-a| < \frac{1}{n}$, $0 < |x''_n-a| < \frac{1}{n}$ $0 < |x''_n-a| < \frac{1}$

定理

f 在有限开区间 (a,b) 上连续,则 f 在 (a,b) 上一致连续的充要条件是 $\lim_{x\to a^+} f(x)$, $\lim_{x\to b^-} f(x)$ 都存在。

必要性(续).

假设 $\lim_{x\to b^-} f(x)$ 不存在,由 Cauchy 收敛原理,存在 $\varepsilon > 0$,对任意的 $\delta > 0$,存在 $x', x'' \in (a,b)$,使得 $0 < |x'-b| < \delta$, $0 < |x''-b| < \delta$,但是 $|f(x')-f(x'')| \ge \varepsilon$. 因而 对任意的 $n \in \mathbb{N}^+$, $\frac{1}{n} > 0$,存在 $x'_n, x''_n \in (a,b)$,使得 $0 < |x'_n-b| < \frac{1}{n}$, $0 < |x''_n-b| < \frac{1}{n}$, $0 < |x''_n-b| < \frac{1}{n}$, $0 < |x''_n-b| < \frac{1}{n}$, $0 < |x''_n-b| < \frac{1}{n}$, $0 < |x''_n-b| < \frac{1}{n}$, $0 < |x''_n-b| < \frac{1}{n}$, $0 < |x''_n-b| < \frac{1}{n}$, $0 < |x''_n-b| < \frac{1}{n}$, $0 < |x''_n-b| < \frac{1}{n}$, $0 < |x''_n-b| < \frac{1}{n}$, $0 < |x''_n-b| < \frac{1}{n}$, $0 < |x''_n-b| < \frac{1}{n}$, $0 < |x''_n-b| < \frac{1}{n}$, $0 < |x''_n-b| < \frac{1}{n}$, $0 < |x''_n-b| < \frac{1}{n}$, $0 < |x''_n-b| < \frac{1}{n}$, $0 < |x''_n-b| < \frac{1}{n}$, $0 < |x''_n-b| < \frac{1}{n}$, $0 < |x''_n-b| < \frac{1}{n}$, $0 < |x''_n-b| < \frac{1}{n}$, $0 < |x''_n-b| < \frac{1}{n}$, $0 < |x''_n-b| < \frac{1}{n}$, $0 < |x''_n-b| < \frac{1}{n}$, $0 < |x''_n-b| < \frac{1}{n}$, $0 < |x''_n-b| < \frac{1}{n}$, $0 < |x''_n-b| < \frac{1}{n}$, $0 < |x''_n-b| < \frac{1}{n}$, $0 < |x''_n-b| < \frac{1}{n}$, $0 < |x''_n-b| < \frac{1}{n}$, $0 < |x''_n-b| < \frac{1}{n}$, $0 < |x''_n-b| < \frac{1}{n}$, $0 < |x''_n-b| < \frac{1}{n}$, $0 < |x''_n-b| < \frac{1}{n}$, $0 < |x''_n-b| < \frac{1}{n}$, $0 < |x''_n-b| < \frac{1}{n}$, $0 < |x''_n-b| < \frac{1}{n}$, $0 < |x''_n-b| < \frac{1}{n}$, $0 < |x''_n-b| < \frac{1}{n}$, $0 < |x''_n-b| < \frac{1}{n}$, $0 < |x''_n-b| < \frac{1}{n}$ $0 < |x''_n-b| < \frac{1}{n}$ 0

作业

- 写出 x 趋于 x_0^+ 时函数极限存在的 Cauchy 收敛原理, x 趋于 x_0^- 时函数极限存在的 Cauchy 收敛原理, x 趋于 $+\infty$ 时函数极限存在的 Cauchy 收敛原理, x 趋于 $-\infty$ 时函数极限存在的 Cauchy 收敛原理。
- 用 Bolzano-Weierstrass 定理证明: 闭区间上的连续函数在闭区间上可以取得最小值。
- 3 课本第 99 页习题 4, 7, 8(1)(3),15

思考讨论

● 课本第 99 页习题 2,3,6,9,13,14

