UNIVERSITY OF BRISTOL

January 2019 Examination Period

FACULTY OF ENGINEERING

Third Year Examination for the Degrees of Bachelor of Science Master of Engineering

COMS30009J Types and Lambda Calculus

TIME ALLOWED: 2 Hours

This paper contains *two* questions, answer *both*. Credit will be given for partial or partially correct answers. The maximum for this paper is *50 marks*.

Other Instructions:

You may use any result that you can recall from the lecture notes, as long as it is labelled clearly in your answer.

YOU MAY START IMMEDIATELY

Page 1 of 3

- Q1. (a) For each of the following reduction steps, give the redex that is contracted:
 - i. \underline{id} (pred $\underline{2}$) $\triangleright \underline{id}$ $\underline{1}$
 - ii. \underline{id} (pred $\underline{2}$) \triangleright (pred $\underline{2}$)
 - iii. $\lambda f x$. (S S ($\underline{id} x$)) $\triangleright \lambda f x$. (S S x)

[3 marks]

- (b) For each of the following state whether it is true or false (no justification is necessary).
 - i. M = N implies $M >^* N$
 - ii. $M \triangleright N$ implies $M \triangleright^* N$
 - iii. $M \approx N$ implies $M \triangleright^* N$
 - iv. $M >^* N$ implies $M \approx N$

[4 marks]

- (c) For each of the following, give an example of a closed term M with that property.
 - i. *M* is in normal form.
 - ii. *M* is normalising but *not* strongly normalising.
 - iii. M > M
 - iv. $M >^* MM$

[4 marks]

(d) Prove $N >^* N'$ implies $M[N/x] >^* M[N'/x]$ by induction on M.

[6 marks]

(e) Prove that there cannot be a term M with the property that:

$$M(\lambda z. z(\underline{\mathsf{const}} \underline{\mathsf{id}} \underline{\mathsf{div}}) \underline{\mathsf{div}}) \approx \underline{0}$$
 and $M(\lambda z. z \underline{\mathsf{id}} (\underline{\mathsf{const}} \underline{\mathsf{div}} \underline{\mathsf{id}})) \approx \underline{1}$

[3 marks]

(f) Let M be a *pure* term. Suppose that the equation $MN \approx NMN$ is true for all terms N. Prove that M cannot have a normal form, i.e. if $M \triangleright^* P$ then P is not in normal form.

[5 marks]

[3 marks]

(b) Give an example of a closed term in normal form that is not typable.

[1 mark]

- (c) For each of the following terms M, give a type environment Γ and a type A such that $\Gamma \vdash M : A$ (you need not prove it).
 - i. $(\lambda x. yxz)(\lambda z. z)$
 - ii. $(\lambda xy. yx) x z$

[3 marks]

(d) Prove the following by induction on M. If Γ , $x : B \vdash M : C$ and $\Gamma \vdash N : B$ then $\Gamma \vdash M[N/x] : C$

[7 marks]

- (e) Prove that $a \to (a \to b) \to b$ is the principal type of $\lambda xy.yx$, i.e. that:
 - $\vdash \lambda xy. yx : a \rightarrow (a \rightarrow b) \rightarrow b$
 - and, every type C such that $\vdash \lambda xy.yx: C$ has shape $A \to (A \to B) \to B$ for some types A and B.

[5 marks]

(f) Suppose $M \approx \lambda x. xx$. Prove that M is *not* typable.

[3 marks]

- (g) Give two terms M and N and a type A such that $M \triangleright N$ and, additionally, both of the following are true:
 - There are no proof trees for $\vdash M : A$
 - ullet There are infinitely many proof trees for $\vdash \mathcal{N}: \mathcal{A}$

[3 marks]