Начало работы с ESP8266

Представленный перевод выполнен для личных нужд администратором сайта radiohlam.ru и не является официальным. rhf-admin исправил текст так, как захотел (для себя).

Version 2.0 Copyright © 2016

Об этом руководстве

В качестве примеров по использованию ESP8266 SDK в этом документе используются ESP-LAUNCHER и ESP-WROOM-02.

Структура документа:

Глава	Название	Содержание
Глава 1	Обзор	Общее вступление к процедуре использования SDK и ознакомление с HDK, FW и инструментами для ESP8266
Глава 2	Подготовка «железа»	Вступление к конфигурированию и настройке «железа» перед программированием. Показано на двух примерах: ESP-LAUNCHER и ESP-WROOM-02.
Глава 3	Подготовка «софта»	Вступление к non-OS SDK и RTOS SDK. Информация по инструментам для компиляции SDK и загрузки прошивки.
Глава 4	Карта флэш-памяти	Описание адресации и разметки флеш-памяти для загрузки прошивки. Вступление к прошивкам FOTA и non-FOTA.
Глава 5	Компилирование SDK	Вступление к компилированию SDK с помощью инструментов компиляции
Глава 6	Загрузка прошивки	Вступление к загрузке прошивки с помощью инструментов загрузки
Приложение 1	Конфигурирование режима QIO для ISSI-флеш	Вступление к конфигурированию и режима QIO для ISSI-флеш

Замечания к выпуску

Дата	Версия	Замечания к выпуску
2016.04	V1.3	Первый выпуск

Связанные документы

Ссылки для загрузки связанных документов:

Официальный веб-сайт Espressif: http://www.espressif.com/support/download/documents

Официальная BBS Espressif: http://bbs.espressif.com/viewtopic.php?f=67&t=225

Категория	Документы		
Drugono vomno vo HDV	ESP8266 Hardware Description		
Руководства по HDK	ESP-WROOM-02 Datasheet		
Drygon o worms wo SDV	ESP8266 Non-OS SDK Getting Started Guide		
Руководства по SDK	ESP8266 Non-OS SDK AT Instruction Set		

Содержание

- 1. Обзор
 - 1.1. Обзор методики
 - 1.2. ESP8266 HDK
 - 1.3. ESP8266 SDK
 - 1.3.1. Non-OS SDK
 - 1.3.2. RTOS SDK
 - 1.4. ESP8266 FW
 - 1.5. ESP8266 инструменты
 - 1.5.1. Компилятор
 - 1.5.2. Инструмент загрузки прошивки
 - 1.5.3. Инструмент отладки через последовательный порт
- 2. Подготовка «железа»
 - 2.1. ESP-LAUNCHER
 - 2.2. ESP-WROOM-02
- 3. Подготовка «софта»
 - 3.1. Non-OS SDK
 - 3.2. RTOS SDK
 - 3.3. ESP8266 Инструменты
 - 3.3.1. Компилятор
 - 3.3.2. Инструмент для загрузки прошивок
- 4. Карта флеш-памяти
 - 4.1. Non-FOTA
 - 4.1.1. Карта флеш-памяти
 - 4.1.2. Адреса загрузки
 - 4.2. FOTA
 - 4.2.1. Карта флеш-памяти
 - 4.2.2. Адреса загрузки
- 5. Компилирование SDK
 - 5.1. Подготовка
 - 5.1.1. Модификация файлов SDK
 - 5.1.2. Загрузка файлов SDK
 - 5.2. Компиляция
 - 5.2.1. Компиляция ESP8266_NONOS_SDK_v0.9.5 и более поздних
 - 5.2.2. Компиляция ESP8266 NONOS SDK v0.9.4 и более ранних
- 6. Загрузка прошивки
 - 6.1. Процедура загрузки
 - 6.2. Проверка log-файла
 - 6.2.1. ESP8266_IoT_Demo
 - 6.2.2. ESP8266 AT
 - 6.3. Настройка инициализации RF (опционально)
 - 6.3.1. Настройка опций RF InitConfig
 - 6.3.2. Настройка параметров RF InitConfig
 - 6.3.3. Примеры настройки
- І. Приложение Настройка режима QIO для ISSI-флеш

1.1. Обзор методики

На рисунке 1-1 показан общий обзор процедуры компиляции SDK.

Рисунок 1-1 Обзор процедуры

1.2. ESP8266 HDK

ESP8266 HDK (Hardware Development Kit) включает чип — ESP8266EX, модуль — ESP-WROOM-02 и плату разработки — ESP-LAUNCHER. Пользователи могут загрузить предварительно скомпилированную прошивку используя ESP-WROOM-02 или ESP-LAUNCHER.

Замечания:

- Если вы используете другие платы разработки или модули в которые интегрирован чип ESP8266EX, пожалуйста используйте ПО для разработки, предоставляемое соответствующими производителями.
- Если вы хотите приобрести ESP-WROOM-02 или ESP_LAUNCHER, пожалуйста посетите официальный онлайн-магазин Espressif: https://espressif.taobao.com
- Больше информации о «железе» можно скачать по ссылкам:
 - Официальный веб-сайт Espressif: http://www.espressif.com/support/download/documents
 - Официальная BBS Espressif: http://bbs.espressif.com/viewtopic.php? f=21&t=412&p=1545#p1545

1.3. ESP8266 SDK

ESP8266 SDK (Sotware Development Kit) – это платформа разработки прошивок для IoTустройств, предоставляемая Espressif разработчикам, которая включает базовую платформу и примеры ПО, разработанного для таких устройств как Умный Светильник и Умная Розетка.

В зависимости от того, базируется ли SDK на операционной системе или нет, SDK может быть разделено на две версии: Non-OS SDK и RTOS SDK.

1.3.1. Non-OS SDK

Non-OS SDK не базируется на операционной системе. Этот SDK поддерживает компиляцию IoT_Demo и AT команды. Non-OS SDK использует таймеры и колбэки в качестве главного пути предоставления различных функций — вложенных событий, функций, срабатывающих при возникновении определённых условий. Non-OS SDK использует сетевой интерфейс еspconn; пользователи должны разрабатывать своё ПО в соответствии с правилами использования интерфейса espconn.

1.3.2. RTOS SDK

RTOS SDK базируется на операционной системе FreeRTOS с открытым исходным кодом, выложенным на Github.

- FreeRTOS SDK базируется на FreeRTOS, многозадачной ОС. Вы можете использовать стандартные интерфейсы для управления ресурсами, повторных операций, задержек выполнения, внутризадачных сообщений и синхронизации, а также другие подходы, основанные на задаче-ориентированных процессах. Детальное описание интерфейсных методов можно найти на официальном web-сайте FreeRTOS или в документе «USING THE FreeRTOS REAL TIME KERNEL A Practical Guide».
- Сетевой интерфейс в FreeRTOS SDK это стандартный lwIP API. RTOS SDK предоставляет пакет, который включает интерфейс BSD Socket API. Пользователи могут напрямую использовать socket API для разработки программ, а также портировать программы с других платформ на платформу ESP8266, используя socket API, эффективно уменьшая стоимость обучения, возникающую при переходе на другую платформу.
- RTOS SDK включает библиотеку cJSON, которая содержит функции для легкого распарсивания пакетов JSON
- RTOS совместима с Non-OS SDK в части интерфейсов Wi-Fi, Smart Config, интерфейсов, связанных со сниффером, системных интерфейсов, интерфейса таймера, интерфейсов FOTA и интерфейсов драйвера периферии, но не поддерживает включение AT-команд..

1.4. ESP8266 FW

ESP8266 FW (firmware - прошивка) предоставляется в виде бинарных (.bin) файлов, которые могут быть загружены напрямую в HDK. Пользователи могут выбирать между прошивками FOTA (Firmware Over-The-Air) и Non-FOTA. Более детальную информацию можно найти в Таблице 1-1.

Таблица 1-1. Значения полей в зависимости от размера и карты флеш-памяти (kB)

Бинарный файл	Обязательный или опциональный	Описание	Non-FOTA	FOTA
master_device_key.bin	Опциональный	Скачивается из облака, нужен для работы с облаком Espressif	\checkmark	\checkmark
esp_init_data_default.bin	Обязательный	Параметры системы по- умолчанию, предоставляется SDK	\checkmark	\checkmark
blank.bin	Обязательный	Параметры системы по- умолчанию, предоставляется SDK	\checkmark	\checkmark
eagle.flash.bin	Обязательный	Пользовательская программа, скомпиленная из SDK	\checkmark	×
eagle.irom0text.bin	Обязательный	Пользовательская программа, скомпиленная из SDK	\checkmark	×
user1.bin	Обязательный для первого использования	Пользовательская программа, скомпиленная из SDK	×	\checkmark
user2.bin	Используется для апгрейда	Пользовательская программа, скомпиленная из SDK	×	\checkmark

Замечания:

- Про содержимое SDK подробнее можно почитать в Главе 3 Подготовка софта.
- Про компиляцию SDK подробнее можно почитать в Главе 5 Компилирование SDK.
- Про адреса загрузки бинарных файлов подробнее можно почитать в Главе 4 Карта флеш-памяти

1.5. ESP8266 инструменты

1.5.1. Компилятор

Для компилирования ESP8266 SDK нужна операционная система Linux. Если вы используете OC Windows, мы рекомендуем использовать виртуальную машину с Linux, установленную в VirtualBox. Для упрощения процедуры компиляции мы предоставляем образ с установленными инструментами для компиляции. Пользователи могут импортировать наш образ (OVA) в свою виртуальную машину и сразу начать работать с компилятором.

1.5.2. Инструмент загрузки прошивки

Официальный инструмент загрузки прошивки, разработанный Espressif — это ESP8266 DOWNLOAD TOOL. С его помощью пользователи могут одновременно загрузить все необходимые бинарники в SPI-флеш материнской платы ESP8266 (ESP-LAUNCHER или ESP-WROOM-02) в соответствии с актуальным режимом компиляции и размером флеша.

1.5.3. Инструмент отладки через последовательный порт

Инструмент отладки через последовательный порт может быть использован для прямой связи с модулем ESP8266 через стандартный порт RS-232. Если ПК не имеет физического последовательного порта, то может использоваться виртуальный соm-порт (преобразователь USB-to-serial)

Замечания:

- В качестве средства отладки через последовательный порт (в качестве терминала) мы рекомендуем CoolTerm (для Windows и MacOS) и Minicom (для Linux).
- В качестве USB-to-TTL (USB-to-UART) преобразователя, лично я рекомендую использовать преобразователь RH-003 (https://radiohlam.ru/product/rh-0003/)

2. Подготовка «железа»

В зависимости от того, используете ли вы ESP-LAUNCHER или ESP-WROOM-02, вам понадобится оборудование, перечисленное в Таблице 2-1:

Таблица 2-1. Подготовка «железа»

ESP-LAUNCHER

- 1 ESP-LAUNCHER
- 1 USB cable

ESP-WROOM-02

- 1 ESP-WROOM-02
- 1 USB-to-TTL преобразователь (лично я рекомендую RH-0003)
- 6 проводков-соединителей
- 1 паяльник

1 ПК с предустановленной ОС Windows

Замечание:

Для питания Wi-Fi модуля ESP8266 нужно источник постоянного напряжения 3.3B с минимальным током 500 мA.

2.1. ESP-LAUNCHER

- 1. Подключите ПК к USB-UART интерфейсу платы ESP-LAUNCHER используя USB кабель.
- 2. Переключите ESP-LAUNCHER в режим загрузки.

Шаги Результаты

- Переключите Power Switch в положение ближе к краю платы (состояние «выкл»)
- Переключите переключатель GPIO0 Control в положение дальше от края платы для переключения ESP-LAUNCHER в режим загрузки

Замечание:

Контакты J82 должны быть закорочены джампером, в противном случае программа не сможет быть загружена в плату.

3. Подключите USB-to-TTL преобразователь к ПК.

Замечание:

Убедитесь, что соответствующий драйвер для USB-to-TTL преобразователя установлен и правильно распознан компьютером.

- 4. Запитайте ESP-LAUNCHER переключив Power Switch в положение дальше от края платы.
- 5. Запитайте чип, переключив Chip Switch в положение ближе к краю платы.
- 6. Загрузите прошивку во флеш с помощью ESP8266 DOWNLOAD TOOL.

Замечание:

Как и куда заливать прошивку читайте в Главах 4 и 6

- 7. После загрузки, переключите GPIO0 Control в положение ближе к краю платы для включения рабочего режима ESP-LAUNCHER.
- 8. Сбросьте и снова запитайте чип с помощью переключателя Chip Switch и чип начнёт читать и выполнять программу из флеш-памяти.

Больше информации про ESP-LAUNCHER можно найти в документе *ESP8266 Hardware Description*.

2.2. ESP-WROOM-02

1. Припаяйте выводы для подключения в соответствии с Таблицей 2-2

Таблица 2-2. Выводы ESP-WROOM-02

Пин	Подключение пина	Картинка
EN	Подтянуть к питанию	
3V3	Подтянуть к питанию	(N)
IO15	Подтянуть к земле	343
IO0	Режим загрузки: подтянуть к земле Рабочий режим: подтянуть к питанию или оставить неподключенным	TOUT 1014 1012 1012 1012 1012 1013 1013 1014 1015 1015 1015 1015 1015 1015 1015
GND	GND	RXD 100
RxD	Подтянуть к питанию	104 GND 104
TxD	Подтянуть к питанию	

2. Подключите ESP-WROOM-02 к USB-to-TTL преобразователю, используя проводкисоединители как показано на Рисунке 2-1

Рисунок 2-1. Подключение ESP-WROOM-02 в режиме загрузки

- 3. Подключите USB-to-TTL преобразователь к ПК
- 4. Загрузите прошивку во флеш при помощи ESP8266 DOWNLOAD TOOL.

Замечание:

Как и куда заливать прошивку читайте в **Главе 4 – Карта флеш-памяти и в Главе 6 –** Загрузка прошивки

- 5. После загрузки переключите ESP-WROOM-02 в рабочий режим, оставив IO0 неподключенным или подтянув к питанию.
- 6. Переподключите питание на ESP-WROOM-02 и чип начнёт читать и выполнять программу из флеш-памяти.

Замечание:

Пин IO0 имеет встроенную подтяжку к питанию через резистор. Больше информации по этому поводу можно найти в документах ESP8266 Hardware Description и ESP-WROOM-02 Datasheet.

3. Подготовка «софта»

3.1. Non-OS SDK

Пользователи могут загрузить Non-OS SDK (включая примеры программ) по следующим ссылкам:

- Официальный сайт Espressif http://www.espressif.com/en/support/download/sdks-demos
- Официальная BBS Espressif http://bbs.espressif.com/viewtopic.php?f=46&t=851

На Рисунке 3-1 показана структура папок Non-OS SDK.

Рисунок 3-1. Структура папок Non-OS SDK

- *арр*: главная рабочая директория, которая содержит файлы с исходными кодами и хидерами для компиляции.
- *bin*: скомпилированные бинарники для загрузки во флеш
- documents: связанные с SDK документы и ссылки
- driver lib: библиотека файлов для работы с периферией, такой как UART, I2C и GPIO
- examples: примеры кодов для вторичной разработки, например, IoT Demo
- *include*: файлы хидеров преинсталированные в SDK. Файлы содержат соответствующие API функции и другие макроопределения. Пользователям не нужно менять эти файлы.
- *ld*: файлы для подключения программного обеспечения SDK. Мы рекомендуем пользователям не модифицировать их без особой необходимости.
- *lib*: файлы библиотек, предоставленных SDK
- *tools*: инструменты, необходимые для компилирования бинарников. Пользователям не нужно модифицировать их.

3.2. RTOS SDK

Пользователи могут загрузить RTOS SDK с примерами использующих этот SDK программ (ESP8266_IOT_PLATFORM) по следующим ссылкам:

- RTOS SDK https://github.com/espressif/ESP8266 RTOS SDK
- ESP8266 IOT PLATFORM https://github.com/espressif/ESP8266 IOT PLATFORM

Рисунок 3-2. Структура папок RTOS SDK

- *bin*: скомпилированные бинарники для загрузки во флеш
- documents: связанные с SDK документы и ссылки
- *examples*: примеры кодов для вторичной разработки
 - *examples/driver_lib*: библиотека файлов для работы с периферией, такой как UART, I2C и GPIO
 - examples/project template: шаблон папки проекта

Замечание:

Пользователи могут скопировать **project template** в любую папку, например ~/workspace.

- examples/smart config: примеры кодов, связанных со Smart Config
- examples/spiffs_test: примеры кодов, связанных со SPIFFS
- examples/websocket demo: примеры кодов, связанных с веб-сокетами
- extra include: файлы хидеров, предоставляемые Xtensa
- *include*: файлы хидеров, преинсталлированные в SDK. Файлы содержат соответствующие API функции и другие макроопределения. Пользователям не нужно менять эти файлы.
- *ld*: файлы для подключения программного обеспечения SDK. Мы рекомендуем пользователям не модифицировать их без особой необходимости.
- *lib*: файлы библиотек, предоставленных SDK
- *third party*: библиотечный файл third party с открытым исходным кодом
- *tools*: инструменты, необходимые для компилирования бинарников. Пользователям не нужно модифицировать их.

3.3. ESP8266 инструменты

3.3.1. Компилятор

Скачайте VirtualBox по ссылке:

https://www.virtualbox.org/wiki/Downloads

Замечание:

Пожалуйста выбирайте правильную версию VirtualBox, соответствующую установленной на вашей хост-машине OC.

Загрузите образ с установленным компилятором *ESP8266 lubuntu 20141021.ova* по ссылке:

Baidu: https://pan.baidu.com/share/init?shareid=3541602653&uk=190196792&third=15

Пароль: qudl

Google: https://drive.google.com/folderview?

id=0B5bwBE9A5dBXaExvdDExVFNrUXM&usp=sharing

Шаги Результаты 1. Запуск ОС Windows и установка виртуальной машины

Двойной клик по VirtualBox-5.0.16. 105871-Win.exe и устанавливаем VirtualBox

Замечание:

Существуют различные версии VirtualBox. Мы используем для примеров версию Windows V5.0.16

 Двойной клик по Oracle_VM_VirtualBox.exe для запуска программы и система покажет главное меню →

The Machine Help Welcome to VirtualBox! Welcome to VirtualBox! Welcome to VirtualBox! The left part of the windows a let of all virtual machines on your computer. The let is empty now because you haven't created day or that machines yet. In order to proceed are one what machine, yet pass the files fulfation in the own to box located of the let port file window. Wo can prese the Tiles to get present begin with the work of the letter of should be readow.

Совет:

Виртуальная машина для ESP8266 занимает много места, пожалуйста зарезервируйте для неё достаточное место.

2. Настройка папки VirtualBox

- Создайте новую папку, например, *C:\VM*
- Выберите *File* -> *Preferences*, система покажет лиалоговое окно \rightarrow
- Выберите *General*, установите созданную папку (*C:\VM*) в качестве расположения по умолчанию (*Default Machine Folder*)

3. Импорт файла образа

- Выберите *File* -> *Import Appliance*, система покажет диалоговое окно \rightarrow
- Выберите нужный файл образа, например,
 C:\ESP8266_lubuntu_20141021.ova, и нажмите Next.
- Нажмите *Import* чтобы принять настройки

4. Запуск виртуальной машины

- После импортирования вы увидите виртуальную машину с именем ESP8266 lubuntu →
- Дважды кликните *ESP8266_lubuntu* или *Start* для запуска виртуальной машины

- После запуска, система покажет виртуальную машину ESP8266 lubuntu →
- Если всплывет показанное ниже диалоговое окно – введите пароль espressif.

5. Создание расшаренной папки

- Создайте в хостовой системе новую папку, с именем: *C:\VM\share*
- Выберите *Machine -> Settings -> Shared Folders...*, после чего вам будет показано диалоговое окно, такое как справа →
- Выберите созданную (общую для хоста и виртуальной машины) папку *C\MVshare*

3.3.2. Инструмент для загрузки прошивок

Пользователи могут скачать ESP8266 DOWNLOAD TOOL по адресу:

http://www.espressif.com/support/download/other-tools

4. Карта флеш-памяти

В этой главе рассказано о картах распределения памяти прошивок FOTA и Non-FOTA в чипах флеш-памяти различной ёмкости. Пользователи могут модифицировать карту при необходимости.

Карты памяти показаны на рисунке 4-1

Non-FOTA

Рисунок 4-1. Карты памяти

Замечание:

О прошивке ESP8266 читайте в **1.3 ESP8266 FW**.

- *System Program*: в этой области хранится прошивка, необходимая для запуска системы.
- *User Data*: если системные данные не занимают всю флеш-память, то оставшиеся области могут использоваться для хранения данных пользователя.
- *User Param*: адрес этой области могут определять пользователи. В IoT_Demo под область пользовательских параметров отведены четыре сектора, начинающиеся с 0x3C000. Пользователи могут назначать для этой области любые свободные адреса.

- *master_device_key.bin*: в IoT_Demo этот файл расположен в третьем секторе области пользовательских параметров
- *System Param*: эта область занимает последние 4 сектора флеш-памяти
 - *blank.bin*: адрес загрузки второй с конца сектор флеш-памяти
 - esp_init_data_default: адрес загрузки четвертый с конца сектор флеш-памяти
- **Boot Data**: располагается в Partition 1 прошивки FOTA и хранит данные связанные с FOTA
- *Reserved*: зарезервированная область в Partition 2 прошивки FOTA, соответствует области *Boot Data* в Partition 1 прошивки FOTA.

Замечания:

- Каждый сектор флеш-памяти имеет размер 4 КВ (0х1000).
- Детальное описание адресов смотрите в главах 4.1.1 Карта флеш-памяти и 4.2.2 Карта флеш-памяти

4.1. Non-FOTA

4.1.1. Карта флеш-памяти

Для чипов флеш-памяти различных размеров, предельный объем памяти для сохранения **eagle.irom0text.bin** составляет 200 kB. Пользователи могут изменить предельный объём, модифицировав файл *ESP8266_NONOS_SDK/ld/eagle.app.v6.ld*.

Вы можете модифицировать поле len в irom0_0_seg как показано на рисунке 4-2.

Рисунок 4-2. Расположение поля len

Замечание:

 len – это просто размер области в 16-ричном виде, так, например, 0x32000=204800 байт = 204800/1024 = 200 килобайт.

В Таблице 4-1 даны предельные размеры *eagle.irom0text.bin* при различных размерах len.

Таблица 4-1. Карта памяти Non-FOTA (единицы измерения: kB)

Ёмкость флеша	eagle.flash.bin	eagle.irom0text.bin	User data	len	User/System Param
512	≤ 64	≤ 240	≥176	0x3C000	16
1024	≤ 64	≤ 752	≥176	0xBC000	16
2048	≤ 64	≤ 768	≥176	0xC0000	16
4096	≤ 64	≤ 768	≥176	0xC0000	16

Замечание:

В настоящее время максимальный размер области System Param для ESP8266 может составлять только 1024 kB.

4.1.2. Адреса загрузки

В Таблице 4-2 перечислены адреса загрузки для прошивки Non-FOTA.

Таблица 4-2. Адреса загрузки для прошивки Non-FOTA (единицы измерения: kB)

F × 1.×	Адреса загрузки для флеш-памяти разного размера					
Бинарный файл	512	1024	2048	4096		
master_device_key.bin	0x3E000					
esp_init_data_default.bin	0x7C000	0xFC000	0x1FC000	0x3FC000		
blank.bin	0x7E000	0xFE000	0x1FE000	0x3FE000		
eagle.flash.bin	0x00000					
eagle.irom0text.bin	0x40000					

4.2. FOTA

4.2.1. Карта флеш-памяти

В Таблице 4-3 показаны размеры различных частей прошивки FOTA.

Таблица 4-3. Карта памяти FOTA (единицы измерения: kB)

Ёмкость флеша	boot	user1.bin	user2.bin	User/System Param	User data
512	4	≤ 236	≤ 236	16	≥ 0
1024	4	≤ 492	≤ 492	16	≥ 0
2048 (Раздел 1 = 512)	4	≤ 492	≤ 492	16	≥ 1024
2048 (Раздел 1 = 1024)	4	≤ 1004	≤ 1004	16	≥ 0
4096 (Раздел 1 = 512)	4	≤ 492	≤ 492	16	≥ 3072
4096 (Раздел 1 = 1024)	4	≤ 1004	≤ 1004	16	≥ 2048

4.2.2. Адреса загрузки

В Таблице 4-4 перечислены адреса загрузки для прошивки FOTA.

Таблица 4-2. Адреса загрузки для прошивки FOTA (единицы измерения: kB)

	Адреса загрузки для флеш-памяти разного размера						
Бинарный файл	512	1024	2048		4096		
	512	1024	512+512	1024+1024	512+512	1024+1024	
master_device_key.bin	0x3E000	0x7E000	0x7E000	0xFE000	0x7E000	0xFE000	
esp_init_data_default.bin	0x7C000	0xFC000	0x1FC000		0x3FC000		
blank.bin	0x7E000	0xFE000	0x1FE000		0x3FE000		
boot.bin			0x	00000			
user1.bin			0x	01000			
user2.bin	0x41000	0x81000	0x81000	0x101000	0x81000	0x101000	

Замечания:

- В случае с прошивкой FOTA нет необходимости загружать файл user2.bin, он предназначен для обновления прошивки через облачный сервер.
- Детали функционирования прошивки FOTA можно найти в документе ESP8266 Non-OS SDK Upgrade Guide.

5. Компилирование SDK

Замечания:

- В этой главе описано, как скомпилировать SDK на примере проекта ESP8266_NONOS_SDK/examples/IoT_Demo.
- Проект IoT_Demo может быть настроен в качестве одного из трех устройств: Умный Светильник, Умная Розетка или Датчик. Настройка задаётся в файле /examples/IoT_Demo/include/user_config.h. В одно и то же время может быть выбрано только какое-то одно устройство. По умолчанию выбран Умный Светильник.

5.1. Подготовка

5.1.1. Модификация файлов SDK

Замечание:

Пользователям необходимо модифицировать файлы SDK при использовании прошивки FOTA.

- 1. Запустите OC Windows
- 2. Модифицируйте файлы в *ESP8266_NONOS_SDK/examples/IoT_Demo/include* в соответствии с размером вашей флеш-памяти.
 - Модифицируйте #define PRIV_PARAM_START_SEC в файлах user_light.h и user plug.h.

Модифицируйте #define ESP_PARAM_START_SEC в файле user_esp_platform.h.

В Таблице 5-1 перечислены значения, которые нужно вписать.

Таблица 5-1. Значения для указанных выше файлов (единицы измерения: kB)

Значение по		Адреса загрузки для флеш-памяти разного размера						
умолчанию	512	2 1024	20	2048		4096		
(512)	(512)	1024	512+512	1024+1024	512+512	1024+1024		
0x3C	-	0x7C	0x7C	0xFC	0x7C	0xFC		
0x3D	-	0x7D	0x7D	0xFD	0x7D	0xFD		

Замечание:

Пользователям, использующим флеш-память, объёмом 512 kB не нужно модифицировать файлы SDK.

5.1.2. Загрузка файлов SDK

1. Запустите ОС Linux.

C\VM\share.

- 2. Запустите LXTerminal на рабочем столе виртуальной машины.
- 3. Скопируйте файлы, которые нужно скомпилировать в расшаренную папку.

Шаги

- Копируем папку *ESP8266_NONOS_SDK* в расшаренную папку, например,
- Копируем папку *IoT_Demo* в
 C:\VM\share\ESP8266_NONOS_SDK, как
 показано на рисунке справа →.

Результаты p_iot_sdk ▶ app ▶

4. Загрузите расшаренную папку.

Шаги

- Выполните ./mount.sh
- Введите пароль espressif. Загрузка расшаренных файлов завершена.
- Откройте расшаренную папку ESP8266_NONOS_SDK в виртуальной машине и убедитесь, что загрузка успешно завершена
 - \circ если всё в порядке папка содержит файлы как на картинке справа \rightarrow
 - если нет папка будет пустой и нужно будет повторить шаг загрузки ещё раз

Замечание:

Если вы используете RTOS SDK, пожалуйста продолжайте выполнять следующие шаги; если вы используете Non-OS SDK, пропустите шаг 5.

5. Пропишите переменные среды РАТН для указания на SDK и бинарники

export SDK_PATH=~/share/ESP8266_RTOS_SDK export BIN_PATH=~/share/ESP8266_RTOS_SDK/bin

Замечание:

Вы можете добавить эти пути в файл .bashrc, в противном случае вам нужно будет повторять шаг 5 каждый раз после перезагрузки компилятора.

5.2. Компиляция

5.2.1. Компиляция ESP8266 NONOS SDK v0.9.5 и более поздних

Перейдите в папку /share/ESP8266_NONOS_SDK/app в терминале
 cd /home/esp8266/Share/ESP8266_NONOS_SDK/app
 ./gen_misc.sh

Система покажет следующую информацию.

gen_misc.sh version 20150511
Please follow below steps(1-5) to generate specific bin(s):

2. Выберите требуемые опции как показано на рисунке 5-1

Рисунок 5-1. Компиляция SDK

Замечания:

- Опции, используемые в примере, помечены зелёным. Пользователи могут выбрать правильные опции, если это необходимо.
- Подробнее о прошивках FOTA и Non-FOTA читайте в 1.4 ESP8266 FW.
- Опции 5 и 6 в шаге 5 поддерживаются только sdk_v1.1.0 + boot 1.4 + flash download tool v1.2 и выше.
- После компиляции user1.bin сначала выполните make clean для удаления временных файлов, сгенерированных при компиляции, и только потом компилируйте user2.bin
- По поводу карты флеш-памяти для шага 5 читайте **Главу 4 Карта флеш**памяти
- 3. В результате компиляции будут сгенерированы бинарники и на экране будет написан адрес, куда эти бинарники надо загрузить (лог сообщений показан ниже)

Generate user1.2048.new.3.bin successfully in folder bin/upgrade.
boot.bin----->0x00000
user1.2048.new.3.bin--->0xSupport boot_v1.2 and +
01000
!!!

Замечание:

Скомпилированные бинарники находятся в папке /home/esp8266/Share/ESP8266 NONOS SDK/bin

5.2.2. Компиляция ESP8266_NONOS_SDK_v0.9.4 и более ранних

Для ESP8266_NONOS_SDK_v0.9.4 и предыдущих версий процесс компилирования проводится так, как описано ниже:

- **1.** Выполните ./gen_misc_plus.sh 1 для генерирования файла *user1.bin* в папке /*ESP8266 NONOS SDK/bin/upgrade*
- **2.** Выполните make clean для удаления временных файлов, сгенерированных при компиляции.
- 3. Выполните ./gen_misk_plus.sh 2 для генерирования *user2.bin* в папке /*ESP8266 NONOS SDK/bin/upgrade*

Замечания:

- Детальное описание функционала FOTA читайте в документе ESP8266 Non-OS SDK Upgrade Guide
- ESP8266 NONOS SDK v0.7 и более ранние не имеют варианта FOTA

6. Загрузка прошивки

6.1. Процедура загрузки

- 1. Запустите OC Windows
- 2. Дважды кликните ESP_DOWNLOAD_TOOL.exe чтобы запустить утилиту загрузки

Рисунок 6-1. ESP8266 DOWNLOAD TOOL - SPIDownload

SPIDownload	Для загрузки в SPI-флеш
HSPIDownload	Для загрузки в HSPI-флеш
RFConfig	Настройки для инициализации RF
MultiDownload	Для мультиматеринских плат

- 3. Дважды кликните в панели *Download Path Config* чтобы выбрать бинарники для загрузки. Установите соответствующие адреса загрузки в *ADDR*.
- 4. Сконфигурируйте страницу SPIDownload.

Замечание:

Бинарники для загрузки и соответствующие адреса меняются в зависимости от размера SPI флеш-памяти и фактических требований. Детали читайте в **Главе 4 – Карта флеш-памяти**.

Таблица 6-1. SPIDownload Configuration

Элемент настройки	Описание				
	SPI FLASH CONFIG				
CrystalFreq	Выбор частоты кварца в соответствии с используемым кварцем				
CombineBin	Объединить выбранные бинарники в target.bin с адресом 0x0000				
Default	Установить для SPI флеш-памяти настройки по умолчанию				
SPI SPEED	Выбор скорости чтения/записи по SPI (максимум 80 MHz)				
SPI MODE	Выбор режима SPI в соответствии с используемой SPI флеш- памятью. Если используемая флеш-память поддерживает режим Dual SPI — выберите <i>DIO</i> или <i>DOUT</i> . Если флеш-память поддерживает режим Quad SPI — выберите <i>QIO</i> или <i>QOUT</i>				
	Замечание: Если вы используете ISSI флеш-память — читайте Appendix — Configure ISSI Flash QIO Mode				
FLASH SIZE	Выбор размера флеш-памяти в соответствии с используемым чипом				
SpiAutoSet	Мы рекомендуем не использовать <i>SpiAutoSet</i> , а конфигурировать настройку флеш-памяти вручную при необходимости. Если пользователи выберут <i>SpiAutoSet</i> , бинарники будут загружены в соответствии с картой памяти по-умолчанию. Карты памяти для флешек 16 Mbit и 32 Mbit будут 512 Kbyte + 512 Kbyte				
DoNotChgBin	 Если пользователи выберут <i>DoNotChgBin</i>, то используемая рабочая частота флеш-памяти, режим и карта флеш-памяти будут основаны на конфигурации при компиляции Если пользователи не выберут <i>DoNotChgBin</i>, то используемая рабочая частота флеш-памяти, режим и карта флеш-памяти будут основаны на конфигурации, указанной в компиляторе 				
	Download Panel				
START	Кликните <i>START</i> для начала загрузки. Когда загрузка завершится – в зелёной области слева появится надпись <i>FINISH</i>				
STOP	Кликните <i>STOP</i> чтобы прервать загрузку				
MAC Address	Если загрузка успешна, система покажет MAC-адреса ESP8266 STA (станции) и ESP8266 AP (точки доступа)				
COM PORT	Выбор com-порта для загрузки данных в ESP8266				
BAUDRATE	Выбор скорости загрузки. Значение по умолчанию 115200.				

5. После загрузки, переключите GPIO0 Control на ESP-LAUNCHER в положение ближе ко внешней стороне платы и запитайте плату для включения рабочего режима.

6.2. Проверка log-файла

После загрузки прошивки, вы можете проверить лог, выведенный на терминал с помощью инструмента отладки через последовательный порт

Вы должны сконфигурировать следующие опции инструмента отладки через последовательный порт

Таблица 6-2. Настройка инструмента отладки через последовательный порт

Элемент настройки	Описание настройки	
Protocol	Последовательный порт	
Port Number	Установите номер порта в соответствии с подключенным устройством	
Baud rate	Скорость на которой запущено устройство, в соответствии с частотой кварца • 69120 (24 М кварц) • 74880 (26 М кварц) • 115200 (40 М кварц) Пример ESP8266 AT поддерживает по умолчанию скорость 115200. Пользователи не могут её изменять. Пример ESP8266 IOT Demo поддерживает по умолчанию скорость 74880. Пользователи могут её изменять.	
Data bit	8	
Calibration	None	
Flow control	None	

6.2.1. ESP8266 IoT Demo

Если загружена прошивка ESP8266 IOT Demo, система в рабочем режиме покажет инициализационную информацию, включая версию SDK и т.д. «Finish» означает, что прошивка работает правильно.

SDK version:X.X.X(e67da894)

IOT VERSION = v1.0.5t45772(a)

reset reason: 0

PWM version: 00000003

mode: sta(18:fe:34:a4:8c:a3) + softAP(1a:fe:34:a4:8c:a3)

add if0 add if1

dhcp server start:(ip:192.168.4.1,mask:255.255.255.0,gw:192.168.4.1)

bcn 100 finish

6.2.2. ESP8266 AT

Если загружена прошивка ESP8266 AT или прошивка по умолчанию в ESP-LAUNCHER или ESP-WROOM-02, система напишет «Ready» в конце загрузки в рабочем режиме. Если ввести в терминале «AT», то система ответит «ОК», что означает, что система работает правильно.

Замечание:

Скорость в прошивке АТ принудительно сконфигурирована на 115200, а скорость ESP8266 по-умолчанию равна 74880. По этой причине в самом начале информация о инициализации системы будет отображаться как кракозябры. Это нормальный феномен, но в конце концов (после инициализации правильной скорости обмена) система должна показать «Ready». Больше информации по АТ командам можно найти по ссылке *ESP8266 AT Commands*.

6.3. Настройка инициализации RF (опционально)

Перед заливкой бинарников во флеш-память, пользователи могут модифицировать настройки инициализации RF в таблице *RF InitConfig*. Новый сгенерированный файл *esp_init_data_setting.bin* может быть загружен во флеш-память вместо *esp_init_data_default.bin*. Пользователи могут менять опции и параметры в настройках RF.

Рисунок 6-2. ESP8266 DOWNLOAD TOOL – RF InitConfig

6.3.1. Настройка опций RF InitConfig

Опции *RF InitConfig* перечислены в верхней части Рисунка 6-2. Описание опций приводится в Таблице 6-3.

Таблица 6-3. Настройка опций RF InitConfig

Опция	Описание		
TxTargetPowerConfi g	Пользователям не нужно настраивать эту опцию, она связана с опциями в LowPowerMode		
LowPowerMode	 Настраивает режим низкого энергопотребления: LowPowerEn: включить режим низкого энергопотребления, установить значение мощности сигнала для всех скоростей передачи PowerLimitEn: установить предел выходной мощности сигнала BackOffEn: установить значение мощности сигнала в отвале (при отсутствии связи) для каждой скорости передачи данных 		
	Замечание: Нельзя настроить LowPowerEn и PowerLimitEn в одно и то же время		
	Выбор частоты генератора в соответствии с используемым кварцем		
CrystalFreq	Замечание: Если при загрузке выбрать другую опцию, то конфигурация будет перезаписана (то есть вот этот выбор будет затёрт)		
TOUT PinConf	 Настройка пина TOUT в соответствии с актуальным статусом пина. Мы рекомендуем дефолтное значение. • TOUT_ADC_EN: когда пин TOUT подключается ко внешнему контуру и измеряет внешнее напряжение с помощью встроенного АЦП. • TOUT_VDD_EN: когда пин TOUT не подключен (висит в воздухе) и через него можно измерить напряжение VDD33 с помощью функции uint16 system_get_vdd33(void) 		
	 Замечания: Нельзя выбрать одновременно TOUT_ADC_EN и TOUT_VDD_EN Когда используется TOUT_ADC_EN, вы должны подключить актуальное напряжение к VDD3P3 пинам 3 и 4. 		
FreqOffset	 SetFreqEnable: установка сдвига частоты вручную PracticalFreqOffset: опция доступна при выборе SetFreqEnable. AutoCalEn: установка частоты сдвига автоматически 		
RFInt mode	 Пользователи могут выбрать режим инициализации RF: LoadRFCalParam: во время инициализации RF, данные RF загружаются напрямую из флеш-памяти, без какой-либо калибровки. Это занимает около 2 мс и требует минимального начального тока. ТхРwrCtrl in init: во время инициализации RF поризводится только калибровка мощности Тх (передатчика), а другие данные загружаются из флеш-памяти. Это занимает около 20 мс и требует небольшого начального тока. FullRFCal in RFInit: во время инициализации RF калибруется всё. Это занимает 200 мс и требует большого начального тока. 		

6.3.2. Настройка параметров RF InitConfig

Параметры *RF InitConfig* перечислены в нижней части Рисунка 6-2. Описание параметров приводится в Таблице 6-4.

Таблица 6-4. Настройка параметров RF InitConfig

Параметр	Описание		
A	Байт в $esp_init_data_setting.bin$ (0 \sim 127 байт). Например, A=0 соответствует байту 0 в $esp_init_data_setting.bin$		
В	Имя параметра. Пользователи не могут менять имя, если оно помечено как Reserved.		
C	Имя параметра. Пользователи не могут менять имя, если оно помечено как Reserved.		
D	Тип данных параметра конфигурации, включая знаковые и беззнаковые типы данных.		
E	Шестнадцатиричное значение параметра конфигурации		

Замечание:

Пожалуйста не модифицируйте параметры, помеченные как Reserved.

Ниже описано, как модифицировать параметры, хранящиеся в байтах со 112-го по 114-й. На Рисунке 6-3 перечислены начальные значения.

A	В	С	D	E	F
112	tx_param42	freq_correct_en	unsigned	0	bit[0]:0->do not correct fre
113	tx_param43	force_freq_offset	unsigned	0	signed, unit is 8khz
114	tx_param44	rf_cal_use_flash	unsigned	0	0: RF init no RF CAL, using

Рисунок 6-3. 112-й ~ 114-й байты параметров

Модифицирование параметров инициализации RF

Байт 114 предназначен для управления инициализацией RF после включения питания ESP8266. Различные варианты его значений перечислены в Таблице 6-5.

Замечание:

Поддерживается SDK версий ESP8266_NONOS_SDK_V1.5.3 и ESP8266 RTOS SDK V1.3.0 и более поздними.

Таблица 6-5. Модификация параметров RF InitConfig

Параметр	Описание		
114-й байт = 0	Во время инициализации RF происходит только калибровка VDD33. Это занимает около 2 мс и требует минимального начального тока.		
3начение по умолчанию равно 1. Во время инициализации RF происходит калибровка VDD33 мощности передатчика. Это занимает около 18 мс и требует небольшого тока инициализации.			
114-й байт = 2	Аналогично случаю, когда 114-й байт = 0		
114-й байт = 3	Во время инициализации RF происходит калибровка всего. Это занимает около 200 мс и требует большого тока инициализации.		

Модифицирование Frequency Offset (смещения частоты)

112-й и 113-й байты служат для того, чтобы назначить смещение частоты. Параметры конфигурации описаны в Таблице 6-6.

Замечание:

Поддерживается SDK версий ESP8266_NONOS_SDK_V1.5.3 и ESP8266 RTOS SDK V1.3.0 и более поздними.

Таблица 6-6. Модификация параметров Frequency Offset

Параметр	аметр Описание		
112-й байт, значение по умолчанию = 3			
bit 0	 Высший приоритет bit 0 = 0: не изменять frequency offset bit 0 = 1: изменять frequency offset 		
bit 1	Значение 0 означает, что bbpll = 168 М. Пользователи могут менять смещение в обе стороны, как в положительную, так и в отрицательную. Это действие может влиять на производительность цифровой периферии, так что мы не рекомендуем его использовать. Значение 1 означает, что bbpll = 160 М. Пользователи могут менять смещение в положительную сторону.		
{bit 3, bit2}	Значение 0 означает, что чип будет отслеживать и назначать смещение частоты автоматически. Начальное значение смещения частоты равно 0. Значение 1 означает, что чип будет принудительно назначать значение смещения частоты равным значению байта 113, и не будет отслеживать и назначать смещение частоты автоматически. Значение 2 означает, что чип будет отслеживать и назначать смещение частоты автоматически. Начальное значение смещения частоты равно значению байта 113.		
113-й байт, значение по умолчанию = 3			
113-й байт	Значение смещения частоты для принудительной коррекции или значение начального смещения частоты для автоматической коррекции. Тип данных – signed int8 (знаковое целое, 8 бит), единицы измерения (шаг) = 8 кГц.		

6.3.3. Примеры конфигурации

Конфигурация байтов 112 и 113 зависят от специфических требований пользователя. Ниже мы предоставляем несколько примеров для справки:

- 1. Модуль работает при постоянной температуре и не нуждается в подстройке частоты.
 - Установите 112-й байт = 0, 113-й байт = 0
- 2. Модуль работает при постоянной температуре и не нуждается в отслеживании и автоматической подстройке смещения частоты, но смещение частоты большое. В этом случае, мы рекомендуем принудительно задать смещение частоты.
 - Если смещение частоты составляет $+160 \text{ к}\Gamma\text{ц}$ (при постоянной температуре), можно установить 112-й байт = 0×07 , 113-й байт = $(256 160/8) = 236 = 0 \times \text{EC}$

- Если смещение частоты составляет -160 кГц (при постоянной температуре), можно установить 112-й байт = 0x05, 113-й байт = 160/8 = 20 = 0x14. Это действие может влиять на производительность цифровой периферии, так что мы не рекомендуем его использовать.
- 3. Модуль работает при температурах от -40 °C до 125 °C как Умный Светильник и нуждается в отслеживании и автоматической подстройке частоты. Смещение частоты при постоянной температуре мало и пользователям не нужно задавать начальное смещение.
 - Установите 112-й байт = 0х03, 113-й байт = 0
- 4. Модуль работает при температурах от -40 °C до 125 °C как Умный Светильник и нуждается в отслеживании и автоматической подстройке частоты. Смещение частоты при постоянной температуре большое и пользователям нужно задавать начальное смещение.
 - Если смещение частоты составляет $+160 \text{ к}\Gamma\text{ц}$ (при постоянной температуре), можно установить 112-й байт = 0x0B, 113-й байт = (256 160/8) = 236 = 0xEC
 - Если смещение частоты составляет -160 кГц (при постоянной температуре), можно установить 112-й байт = 0x09, 113-й байт = 160/8 = 20 = 0x14. Но это действие может влиять на производительность цифровой периферии, так что мы не рекомендуем его использовать.

Мы рекомендуем пользователям ссылаться на пример 3.

Когда настройка инициализации RF будет закончена – кликните кнопку *GenInitBin* для генерирования файла *esp init data setting.bin*.

Дополнительно пользователи могут кликнуть кнопку *Default* чтобы установить значение по умолчанию или кликнуть кнопку *LoadInitBin* чтобы импортировать двоичный файл конфигурации.

І. Приложение – настройка режима QIO для ISSI-флеш

Замечание:

При загрузке нужно выбирать режим DIO или DOUT, иначе могут произойти ошибки.

При использовании для ISSI-флеш режима QIO, вы должны изменить первые два байта в файле *blank.bin* как показано в Таблице I-I. Во время инициализации ESP8266 автоматически проверит первые два байта файла *blank.bin* и переключится в режим QIO для чтения ISSI-флеш. Структура файла *blank.bin* показана ниже.

```
strcut boot_hdr{
    char user_bin:2; //low_bit
    char boot_status:1;
    char to_qio:1;
    char reverse:4;
    char version:5; //low bit
    char test_pass_flag:1;
    char test_start_flag:1;
    char enhance_boot_flag:1;
}
```

Таблица I-I. Конфигурация blank.bin

Параметр	Описание
Без вторичного бут-загрузчика	Измените значение to_qio на 0
Со вторичным бут-загрузчиком	Измените значение use_bin на 0 и to_qio на 0. Измените версию на текущую версию бута. Примеры:
	Если вы используете вторичный <i>boot_v1.5.bin</i> , измените первые два байте FF FF в файле <i>blank.bin</i> на F4 E5.

Замечание:

Вам не нужно модифицировать бинарники при использовании режимов ISSI-флеш DIO или DOUT.