

IA-Examen-2018.pdf

alberto_fm_

Inteligencia Artificial

2º Grado en Ingeniería Informática

Escuela Técnica Superior de Ingeniería Universidad de Huelva

PIDE UN DESEO Y MS MARVEL TE LO CUMPLE

escribe y compártelo en redes

Examen IA 2018

martes, 22 de junio de 2021

1.- Dado el siguiente código en CLIPS:

(defrule regla

(datos \$?ini ?x \$?fin) -> dado un vector datos con (al menos) un componente X (assert (datos \$?ini \$?fin))) > afi ima un vector datos SIN ese componente X

(deffacts datos (datos 1 2))

Escribir la tabla de seguimiento de su ejecución e indicar los hechos que quedan finalmente

A ejectos praícticos, lo que hace este código es eliminar un elemento del vector hasta que quede vacco.

La table de seguinnents quedonia tal que:

* Al no hacer ningún retract del vector de datos, el motor de inferencia vuelve a coger el vector inicial para aprirable de nuevo la regla y obtener on overoresultado

2.- Dado el siguiente grafo, donde A es el nodo inicial y ses el nodo meta, explorarlo mediante los siguientes métodos:
a) Búsqueda primero el mejor, b) A*.

En ambos casos se pide indicar las listas abiertas y cerradas de los nodos visitados. Indicar explícitamente el camino encontrado y su coste. En igualdad de condiciones, consideraremos el orden alfabético.

a) PRIMERO EL MEZOR

ABIERTOS	CERRAS
A(40)	
ABIERTOS	CERRADOS
B(20) C(100) D(110)	A(40)
ABIERTOS	CERRADOS
C (100) D (110) F (40) E (20)	A(40) B(20)
ABIERTOS	CERRADOS
C (100) D(110) F(40) G(10)	A(40) B(20) E(20)
ABIERTOS	CERRADOS
C(100) D(110) F(40) I (0)	A(40) B(20) E(20) G(20)
ABIERTOS	CERRADOS
C(100) D(110)F(40)	A(40)B(20)E(20)G(10) I(0)

El camino encontrado usardo PRIMERO EL MEJOR es:
$$A o B o E o G o I$$

Tiene coste: $10 + 100 + 25 + 1 = 136$

saboteas a tu propia persona? cómo?? escríbelo **aquí** y táchalo

> manual de instrucciones: escribe sin filtros y una vez acabes, táchalo (si lo compartes en redes mencionándonos, te llevas 10 coins por tu cara bonita)

> > DESFÓGATE CON WUOLAH

b) Algoritmo A*

ABIERTOS	CERRADOS
A(40)	
ABIERTOS	CERRADOS
B(30) C(120) D(130)	A(40)
ABIERTOS	CERRATOS
C (120) D(130) F(60)	A(40) B(30)
ABIERTOS	CERRAS
C(150) D(130) E(150)	A(40) B (30) F (60)
ABIERTOS	CERRADOS
D(130) E(150) G(50)	A(46) B (30) F(66) C(120)
ABIERTOS	CERRAMS
D(130) E(120) I (41)	A, B, F, C, G
ABIERTOS	CERRAGOS
D (130) E(170)	A, B, F, C, 6, I

serás dotado con el superpoder de quitar la publicidad de tus apuntes y del cariño de toda esta gente

3.- Se desea generar un árbol de decisión que clasifique entre células normales y células cancerígenas según los datos de la siguiente tabla:

	3	3	3	2		m=6
Ejemplo	Antenas	Colas	Núcleos	Cuerpo	Clase	N^{s} classo = 2
1	1,	0	2	Rayado	Normal [
2	1,	0	1	Blanco	Cancerígena ¿	
3	1,	2	0	Rayado	Normal	
4	0	2	1	Rayado	Normal	
5	1,	1	1	Rayado	Cancerígena	
6	2	2	1	Rayado	Cancerígena	

$$\text{métito (antenas)} = \frac{4}{6} \cdot \inf \{ \text{or} \left(\frac{2}{4}, \frac{2}{4} \right) + \frac{1}{6} \cdot \inf \{ \text{or} \left(\frac{1}{4}, \frac{0}{4} \right) + \frac{1}{6} \cdot \inf \{ \text{or} \left(\frac{2}{4}, \frac{1}{4} \right) \right) \\
 = \frac{4}{6} \cdot \left(-\frac{2}{4} \cdot \log_2 \left(\frac{2}{4} \right) - \frac{2}{4} \cdot \log_2 \left(\frac{2}{4} \right) \right) + \frac{1}{6} \cdot \left(-1 \cdot \log_2 (1) - 0 \right) + \frac{1}{6} \cdot \left(-1 \cdot \log_2 (1) \right) \\
 = \frac{4}{6} \cdot \left(-1 \cdot \log_2 \left(\frac{3}{4} \right) \right) + \frac{1}{6} \cdot \left(-\log_2 (1) \right) + \frac{1}{6} \cdot \left(-\log_2 (1) \right) \\
 = \frac{4}{6} \cdot \left(-1 \cdot \log_2 \left(\frac{3}{4} \right) \right) + \frac{1}{6} \cdot \left(-\log_2 (1) \right) + \frac{1}{6} \cdot \left(-\log_2 (1) \right) \\
 = \frac{4}{6} \cdot \left(-1 \cdot \log_2 \left(\frac{3}{4} \right) \right) + \frac{1}{6} \cdot \left(-\log_2 (1) \right) + \frac{1}{6} \cdot \left(-\log_2 (1) \right) \\
 = \frac{4}{6} \cdot \left(-1 \cdot \log_2 \left(\frac{3}{4} \right) \right) + \frac{1}{6} \cdot \left(-\log_2 (1) \right) \\
 = \frac{4}{6} \cdot \left(-1 \cdot \log_2 \left(\frac{3}{4} \right) \right) + \frac{1}{6} \cdot \left(-\log_2 (1) \right) \\
 = \frac{4}{6} \cdot \left(-1 \cdot \log_2 \left(\frac{3}{4} \right) \right) + \frac{1}{6} \cdot \left(-\log_2 (1) \right) \\
 = \frac{1}{6} \cdot \left(-1 \cdot \log_2 \left(\frac{3}{4} \right) \right) + \frac{1}{6} \cdot \left(-\log_2 (1) \right) \\
 = \frac{1}{6} \cdot \left(-1 \cdot \log_2 \left(\frac{3}{4} \right) \right) + \frac{1}{6} \cdot \left(-\log_2 (1) \right) \\
 = \frac{1}{6} \cdot \left(-1 \cdot \log_2 \left(\frac{3}{4} \right) \right) + \frac{1}{6} \cdot \left(-\log_2 (1) \right) \\
 = \frac{1}{6} \cdot \left(-1 \cdot \log_2 \left(\frac{3}{4} \right) \right) + \frac{1}{6} \cdot \left(-\log_2 (1) \right) \\
 = \frac{1}{6} \cdot \left(-1 \cdot \log_2 \left(\frac{3}{4} \right) \right) + \frac{1}{6} \cdot \left(-\log_2 (1) \right) \\
 = \frac{1}{6} \cdot \left(-1 \cdot \log_2 \left(\frac{3}{4} \right) \right) \\
 = \frac{1}{6} \cdot \left(-1 \cdot \log_2 \left(\frac{3}{4} \right) \right) \\
 = \frac{1}{6} \cdot \left(-1 \cdot \log_2 \left(\frac{3}{4} \right) \right) \\
 = \frac{1}{6} \cdot \left(-1 \cdot \log_2 \left(\frac{3}{4} \right) \right) \\
 = \frac{1}{6} \cdot \left(-1 \cdot \log_2 \left(\frac{3}{4} \right) \right) \\
 = \frac{1}{6} \cdot \left(-1 \cdot \log_2 \left(\frac{3}{4} \right) \right) \\
 = \frac{1}{6} \cdot \left(-1 \cdot \log_2 \left(\frac{3}{4} \right) \right) \\
 = \frac{1}{6} \cdot \left(-1 \cdot \log_2 \left(\frac{3}{4} \right) \right) \\
 = \frac{1}{6} \cdot \left(-1 \cdot \log_2 \left(\frac{3}{4} \right) \right) \\
 = \frac{1}{6} \cdot \left(-1 \cdot \log_2 \left(\frac{3}{4} \right) \right) \\
 = \frac{1}{6} \cdot \left(-1 \cdot \log_2 \left(\frac{3}{4} \right) \right) \\
 = \frac{1}{6} \cdot \left(-1 \cdot \log_2 \left(\frac{3}{4} \right) \right) \\
 = \frac{1}{6} \cdot \left(-1 \cdot \log_2 \left(\frac{3}{4} \right) \right) \\
 = \frac{1}{6} \cdot \left(-1 \cdot \log_2 \left(\frac{3}{4} \right) \right) \\
 = \frac{1}{6} \cdot \left(-1 \cdot \log_2 \left(\frac{3}{4} \right) \right) \\
 = \frac{1}{6} \cdot \left(-1 \cdot \log_2 \left(\frac{3}{4} \right) \right) \\
 = \frac{1}{6} \cdot \left(-1 \cdot \log_2 \left(\frac{3}{4} \right) \right) \\
 = \frac{1}{6} \cdot \left(-1 \cdot \log_2 \left(\frac{3} \right) \right) \\
 = \frac{1}{6} \cdot \left(-1 \cdot \log_2 \left(\frac{3}{4} \right) \right) \\
 = \frac{1}{$$

$$=-\frac{4}{6} \cdot \log_2(\frac{2}{4}) = \frac{4}{6} = \frac{3}{3} = 0.66$$

meribo (colas) =
$$\frac{2}{6}$$
 infor $(\frac{1}{2}, \frac{1}{2}) + \frac{3}{6}$ infor $(\frac{2}{3}, \frac{1}{3}) + \frac{1}{6}$ infor $(\frac{0}{4}, \frac{1}{4}) = \frac{2}{6}$. $(-\frac{1}{2} \cdot \log_2(\frac{1}{2}) - \frac{1}{2} \cdot \log_2(\frac{1}{2})) + \frac{3}{6} \cdot (-\frac{2}{8} \cdot \log_2(\frac{2}{3}) - \frac{1}{3} \cdot \log_2(\frac{1}{3})) + \frac{1}{6} \cdot (-\frac{2}{8} \cdot \log_2(\frac{2}{3}) - \frac{1}{3} \cdot \log_2(\frac{1}{3})) + \frac{1}{6} \cdot (-\frac{2}{8} \cdot \log_2(\frac{2}{3}) - \frac{1}{3} \cdot \log_2(\frac{1}{3})) = \frac{1}{6} \cdot (-\frac{2}{8} \cdot \log_2(\frac{2}{3}) - \frac{1}{8} \cdot \log_2(\frac{1}{3})) = \frac{1}{6} \cdot (-\frac{2}{8} \cdot \log_2(\frac{2}{3}) - \frac{1}{8} \cdot \log_2(\frac{1}{3})) = \frac{1}{6} \cdot (-\frac{2}{8} \cdot \log_2(\frac{2}{3}) - \frac{1}{8} \cdot \log_2(\frac{1}{3})) = \frac{1}{6} \cdot (-\frac{2}{8} \cdot \log_2(\frac{1}{3}) - \frac{1}{8} \cdot \log_2(\frac{1}{3})) = \frac{1}{6} \cdot (-\frac{2}{8} \cdot \log_2(\frac{1}{3}) - \frac{1}{8} \cdot \log_2(\frac{1}{3})) = \frac{1}{6} \cdot (-\frac{2}{8} \cdot \log_2(\frac{1}{3}) - \frac{1}{8} \cdot \log_2(\frac{1}{3})) = \frac{1}{6} \cdot (-\frac{2}{8} \cdot \log_2(\frac{1}{3}) - \frac{1}{8} \cdot \log_2(\frac{1}{3})) = \frac{1}{6} \cdot (-\frac{2}{8} \cdot \log_2(\frac{1}{3}) - \frac{1}{8} \cdot \log_2(\frac{1}{3})) = \frac{1}{6} \cdot (-\frac{2}{8} \cdot \log_2(\frac{1}{3}) - \frac{1}{8} \cdot \log_2(\frac{1}{3})) = \frac{1}{6} \cdot (-\frac{2}{8} \cdot \log_2(\frac{1}{3}) - \frac{1}{8} \cdot \log_2(\frac{1}{3})) = \frac{1}{6} \cdot (-\frac{2}{8} \cdot \log_2(\frac{1}{3}) - \frac{1}{8} \cdot \log_2(\frac{1}{3})) = \frac{1}{6} \cdot (-\frac{2}{8} \cdot \log_2(\frac{1}{3}) - \frac{1}{8} \cdot \log_2(\frac{1}{3})) = \frac{1}{6} \cdot (-\frac{2}{8} \cdot \log_2(\frac{1}{3}) - \frac{1}{8} \cdot \log_2(\frac{1}{3})) = \frac{1}{6} \cdot (-\frac{2}{8} \cdot \log_2(\frac{1}{3}) - \frac{1}{8} \cdot \log_2(\frac{1}{3})) = \frac{1}{6} \cdot (-\frac{1}{8} \cdot \log_2(\frac{1}{3}) - \frac{1}{8} \cdot \log_2(\frac{1}{3})) = \frac{1}{6} \cdot (-\frac{1}{8} \cdot \log_2(\frac{1}{3}) - \frac{1}{8} \cdot \log_2(\frac{1}{3})) = \frac{1}{6} \cdot (-\frac{1}{8} \cdot \log_2(\frac{1}{3}) - \frac{1}{8} \cdot \log_2(\frac{1}{3})) = \frac{1}{6} \cdot (-\frac{1}{8} \cdot \log_2(\frac{1}{3}) - \frac{1}{8} \cdot \log_2(\frac{1}{3})) = \frac{1}{6} \cdot (-\frac{1}{8} \cdot \log_2(\frac{1}{3}) - \frac{1}{8} \cdot \log_2(\frac{1}{3})) = \frac{1}{6} \cdot (-\frac{1}{8} \cdot \log_2(\frac{1}{3}) - \frac{1}{8} \cdot \log_2(\frac{1}{3})) = \frac{1}{6} \cdot (-\frac{1}{8} \cdot \log_2(\frac{1}{3}) - \frac{1}{8} \cdot \log_2(\frac{1}{3})) = \frac{1}{6} \cdot (-\frac{1}{8} \cdot \log_2(\frac{1}{3}) - \frac{1}{8} \cdot \log_2(\frac{1}{3})) = \frac{1}{6} \cdot (-\frac{1}{8} \cdot \log_2(\frac{1}{3}) - \frac{1}{8} \cdot \log_2(\frac{1}{3})) = \frac{1}{6} \cdot (-\frac{1}{8} \cdot \log_2(\frac{1}{3}) - \frac{1}{8} \cdot \log_2(\frac{1}{3})) = \frac{1}{6} \cdot (-\frac{1}{8} \cdot \log_2(\frac{1}{3}) - \frac{1}{8} \cdot \log_2(\frac{1}{3})) = \frac{1}{6} \cdot (-\frac{1}{8} \cdot \log_2(\frac{1}{3}) - \frac{1}{8} \cdot \log_2(\frac{1}{3})) = \frac{1}{6} \cdot (-\frac{1}{8} \cdot \log_2$

merito (núcleos) =
$$\frac{1}{6}$$
 infor $(\frac{1}{4}, \frac{3}{4}) = \frac{4}{6}$ (núcleos) = $\frac{4}{6}$ ($-\frac{1}{4}$ · log₂ $(\frac{1}{4})$ - $\frac{3}{4}$ · log₂ $(\frac{3}{4})$) = $[0.5408]$

mérito (cuerpo) =
$$\frac{5}{6}$$
. infor $(\frac{3}{5}, \frac{2}{5}) + \frac{1}{6}$ infor $(\frac{5}{1}, \frac{1}{1}) = \frac{5}{6}$. $(-\frac{3}{5}, \log_2(\frac{3}{5}) - \frac{2}{5}, \log_2(\frac{2}{5})) = [0, 809]$

El atributo que más información puede ofrecer es el de los nócleos

Ejemplo	Antenas	Colas	Núcleos	Cuerpo	Clase
1	1	0	2	Rayado	Normal
2	1	0	1	Blanco	Cancerígena
3	1	2	0	Rayado	Normal
4	0	2	1	Rayado	Normal
5	1	1	1	Rayado	Cancerígena
6	2	2	1	Rayado	Cancerígena

Nos quedoita la signiente tabla de ejemplos:

Ejemplo	Α	Co	Cu	Cl
2	1	0	В	\subset
4	0	2.	R	N
5	1	1	R	C
6	2	2	R	\subset
1				

Aplicanos de nuevo el algoritmo ID3 a la nueva tabla reducida:

merito (antenas) =
$$\frac{3}{4}$$
 infor $(\frac{0}{2}, \frac{3}{2}) + \frac{1}{4}$ infor $(\frac{1}{1}, \frac{0}{1}) + \frac{1}{4}$ infor $(\frac{1}{7}, \frac{1}{4}) =$

mérito (Colas) =
$$\frac{1}{4}$$
 infor $(\frac{1}{2}, \frac{1}{4}) + \frac{1}{4}$ infor $(\frac{1}{2}, \frac{1}{2})$
= $\frac{1}{2} \cdot (-\frac{1}{2} \cdot \log_2(\frac{1}{2}) - \frac{1}{2} \cdot \log_2(\frac{1}{2})) = \frac{1}{2} \cdot (-\log_2(\frac{1}{2})) =$
= 0.5

Mérilo (Cuerpo) =
$$\frac{1}{4}$$
 infor $(\frac{1}{4}) + \frac{3}{4}$ infor $(\frac{1}{3}, \frac{2}{3}) = \frac{3}{4} \cdot (-\frac{1}{3}, \log(\frac{1}{3}) - \frac{2}{3}, \log(\frac{2}{3})) = \frac{3}{4} \cdot (-\frac{1}{3}, \log(\frac{1}{3}) - \frac{2}{3}, \log(\frac{1}{3})) = \frac{3}{4} \cdot (-\frac{1}{3}, \log($

El atributo que proporciona más información y, por tauto el que menor entro púa tiene es el atributo ANTENAS. Por lo que el árbar nos queda:

Este sevia el resultado Jinel al apura el algoritmo ID3 a los datos del ejemplo.

4.- Dada la red bayesiana adjunta, junto con los datos expuestos en las tablas que a continuación se exponen:

P(+c a, b)	+a	-a
+b	0.99	0.9
-b	0.8	0.001

P(+d c)	+c	-c
+d	0.99	0.9

Calcular: a) P(+a| +c, -b),

a)
$$P(a|c,b) = \frac{P(a,c,b)}{P(c,b)} = \frac{P(a) \cdot P(b) \cdot P(c|a,b)}{P(a,c,b)} = \frac{O(01 \cdot (1-0,006) \cdot 0.8}{(0,01) \cdot (1-0,006) \cdot 0.8} + \frac{O(01) \cdot (1-0,006) \cdot 0.001}{(0,01) \cdot (1-0,006) \cdot 0.8} + \frac{O(01) \cdot (1-0,006) \cdot 0.001}{(0.01) \cdot (1-0,006) \cdot 0.001}$$

b)
$$P(c|d,a,b) = \frac{P(c,a,a,b)}{P(d,a,b)} = \frac{P(a).P(b).P(d|c).P(c|a,b)}{P(d,a,b,c)} = \frac{P(a).P(b).P(d|c).P(c|a,b)}{P(d,a,b,c)}$$

= P(a) .P(b).P(d(c).P(c|a,b) P(a).P(b).P(d(c).P(c|a,b)+P(a).P(b).P(d(c). h-P(c|a,b)

= 0.01.(1-0.006).0,99.0,8 0.01.(1-0.006).0,99.0,8 + 0.01.(1-0,006).0,9.(1-0,99)

= 7.872.16°8 7,872:10°3+ 1,7892:10°3

5. Dado el anbal

0-MAX

Donde los valores numéricos que aparecen en los nodos hoja corresponden a estimaciones de lo prometedoras que son para el jugador MAX las situaciones de la partida representadas por dichos nodos. Describir paso a paso el comportamiento de la estrategia de poda alfa-beta en función de los valores de los números reales "a" y "b", suponiendo que el nodo raíz es un nodo MAX y el recorrido se realiza de izquierda a derecha. Por otra parte, ¿cuál es la decisión o jugada más acertada para MAX en cada caso?

 $\max \rightarrow \alpha = -\infty$ $\min \rightarrow \beta = +\infty$

β=+00

(a) = 1

(b) = 400

(c) = 400

(d) = 2

(d) = 2

(d) = 3

(e) = 400

(e) = 6

(f) = 6

La poda 1 se producirá si a>2 La poda 2 se producirá siempre

Para cualquier valor de a y b, MAX se decontora por el

WUOLAH