Линейная регрессия. Задача 2

Ильичёв А.С., 693

```
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
%matplotlib inline
```

1. Теоретическое введение.

Имеем задачу $X_i=\beta_1+i\beta_2+\varepsilon_0+\cdots+\varepsilon_i,\ i=0,1,\ldots,n,$ ε_i независимы и распределены по $N(0,\sigma^2)$. Эта задача сводится к линейной модели следующим образом:

$$X_0 = eta_1 + arepsilon_0 \ X_i - X_{i-1} = eta_2 + arepsilon_i, \ \ i = 1, \dots, n$$

В этом случае целевая переменная (наблюдение) Y и матрица весов Z примут вид:

$$Y = \left(egin{array}{c} X_0 \ X_1 - X_0 \ dots \ X_n - X_{n-1} \end{array}
ight), \;\; Z = \left(egin{array}{c} 1 & 0 \ 0 & 1 \ dots \ 0 & 1 \end{array}
ight)$$

(всего n+1 строк).

2. Считаем данные и проведем их обработку.

```
df = pd.read_csv('Regression.csv', names=['x'])
df.head()
```

	x
0	63.5725
1	72.9531
2	83.6808
3	96.2717
4	103.2173

Создадим вектор Y, как описано выше.

Создадим матрицу Z. Здесь m=n+1, где n - из условия.

4.222797059623577

3. Найдем оценки наименьших квадратов для β_1 и β_2 , а также несмещенную оценку для σ^2 .

Имеем $(\hat{\beta}_1,\hat{\beta}_2)^T=\hat{\theta}=(Z^TZ)^{-1}Z^TY$, $\hat{\sigma}^2=\frac{1}{m-k}\|Y-Z\hat{\theta}\|$, где m = размер наблюдения, k - количество столбцов в Z.

```
k = Z.shape[1]

t = np.dot((np.linalg.inv(Z.T @ Z) @ Z.T), Y)

t

array([63.5725  , 9.96734144])

sigma2 = np.sum((Y - Z @ t) ** 2) / (m - k)
sigma2
```

В теоретической задаче 8.2 были получены аналитические формулы для оцениваемых параметров:

$$\begin{pmatrix} \hat{\beta}_1 \\ \hat{\beta}_2 \end{pmatrix} = \begin{pmatrix} X_0 \\ \frac{1}{n}(X_n - X_0) \end{pmatrix}, \quad \hat{\sigma}^2 = \frac{1}{n-1} \left(\sum_{i=1}^n (X_i - X_{i-1})^2 - \frac{1}{n} (X_n - X_0)^2 \right).$$

Подставим в них наши значения.

```
n = m - 1
b1 = Y[0]
b1
```

63.5725

```
b2 = (df.x.iloc[n] - Y[0]) / n
b2
```

9.967341441441441

```
sigma2\_theor = (np.sum(Y[1:] ** 2) - n * b2 ** 2) / (n - 1) 
 <math>sigma2\_theor
```

4.222797059623573

Очевидно, значения совпадают с полученными первым способом (в последнем разряде уже влияют ошибки округления).

4. Найдем оценку дисперсии отсчета времени.

По условию $arepsilon_i=arepsilon_i^teta_2$, откуда $Darepsilon_i^t=rac{Darepsilon_i}{eta_2^2}$. Такое же соотношение по теореме о наследовании сходимости верно для оценок: $\hat{\sigma}_t^2=rac{\hat{\sigma}^2}{\hat{eta}_2^2}$

```
sigma2_t = sigma2 / b2 ** 2
sigma2_t
```

0.04250514862126407

5. Вывод

Оценка по методу наименьших квадратов в нашем случае совпадает с выборочным средним (ОМП). Можно сделать вывод, что данная задача хорошо описывается линейной

регрессионной моделью. Оценки, полученные численным расчетом через матрицы и аналитическим выводом, совпадают.