Mathematical Logic (MATH6/70132; P65), Problem Sheet 1

- [1] Let p denote 'I will pass this course,' q denote 'I do my homework regularly' and r denote 'I am lucky.' Express in symbolic form each of the following propositions:
- (a) I will pass this course only if I do my homework regularly.
- (b) Doing homework regularly is a necessary condition for me to pass this course.
- (c) If I do my homework regularly and I do not pass this course then I am unlucky.
- (d) If I do not do my homework regularly and I pass this course then I am lucky.
- [2] Show that ϕ and ψ are logically equivalent if and only if $(\phi \leftrightarrow \psi)$ is a tautology.
- [3] Suppose ϕ and ψ are logically equivalent propositional formulas whose propositional variables are amongst p_1,\ldots,p_n . Let η_1,\ldots,η_n be formulas and let θ and χ be the formulas obtained by replacing each occurrence of p_i by η_i in ϕ and ψ respectively. Show that θ and χ are logically equivalent.
- [4] Suppose p, q, r are propositional variables. For each of the following formulas find a formula in disjunctive normal form (- see 1.1.9 in notes) which is logically equivalent to it.
- (a) $((p \rightarrow q) \rightarrow ((\neg p) \land q))$.
- (b) $(\neg((p \rightarrow q) \rightarrow r))$.
- (a) Show that this connective is adequate.
- (b) Show that | and the NOR connective \downarrow are the only binary connectives which are adequate.
- [6] How many truth functions f of n propositional variables are there with the property that $f(T,T,\ldots,T)=T$? Can all of these be expressed as the truth function of a formula of n variables using only the connectives \wedge, \vee ? Explain your answer.
- [7] (i) For which values of the propositional variables p_1, p_2, p_3 does the following propositional formula θ have truth value F:

$$((p_1 \to ((\neg p_2) \to p_3)) \to ((p_3 \to p_2) \to p_1))?$$

Find a formula in disjunctive normal form which is logically equivalent to $(\neg \theta)$.

- (ii) Find a formula χ with three propositional variables p_1, p_2, p_3 whose truth value is T if and only if p_1, p_2, p_3 have truth values T, F, T (respectively). Justify your answer.
- [8] Below is the start of a proof that if ϕ , ψ are propositional formulas, then $((\neg \psi) \to (\psi \to \phi))$ is a theorem (of L). Write this out again, but at each stage give the reasoning, and then complete the proof:
- 1. $((\neg \psi) \rightarrow ((\neg \phi) \rightarrow (\neg \psi)))$
- 2. $(((\neg \phi) \rightarrow (\neg \psi)) \rightarrow (\psi \rightarrow \phi))$

Denote this formula by χ

3. $(\chi \to ((\neg \psi) \to \chi))$