LEInf 3/fevereiro/2023 [Duração: 1 H45 M]

Cálculo para Engenharia – Exame de Recurso

Nome completo::

Dep. de Matemática

Número::

Assinale a prova que realiza: Exame Parte 1 () Parte 2 (

Os estudantes que **realizam o Exame** devem responder às questões assinaladas com (**E**). Assinale, no caso de realizar a prova, para melhoria de classificação: MELHORIA ()

 $Parte 1_1$

Grupo I (12 valores): Justifique convenientemente todas as suas respostas.

- 1. (6 valores) Considere a função, real de variável real, definida por $h(x) = \frac{1}{\sqrt[3]{r^2} 2}$.
 - (a) Determine o domínio de h.
 - (b) Indique duas funções f e g, diferentes da identidade e tais que $h=f\circ g$.
 - (c) Calcule, se existirem,

c.1)
$$\lim_{x \to 0} h(x)$$
.

c.1)
$$\lim_{x\to 0} h(x)$$
. **E c.2)** $\lim_{x\to \sqrt{8}^+} h(x)$.

c.3)
$$\lim_{x \to -\infty} h(x)$$
.

- (\mathbf{E}) (d) Identifique e classifique os pontos críticos de h.
 - (e) Defina, se existir, a função inversa h^{-1} .
- **2.** (2 valores) Prove que

$$\cosh \frac{x}{2} = \sqrt{\frac{1}{2} \left(\cosh x + 1\right)}.$$

- **3.** (1,5 valores) Determine as constantes reais A e B, tais que a função f, real de variável real, (E)definida por $f(x) = \begin{cases} 3x, & x < 2 \\ A, & x = 2 \\ Bx^2 - 2, & 2 < x \end{cases}$ é contínua quando x = 2.
 - **4.** (2,5 valores) Considere a *lemniscata*, da figura, definida pela equação $8(x^2 + y^2)^2 = 100(x^2 y^2)$.

- (a) Use derivação implícita para definir a reta tangente à lemniscata, no ponto de coordenadas (3, 1).
- **(b)** Qual das abcissas x_0 , x_1 ou x_2 pode ser, nesta lemniscata, igual a 3?

v.s.f.f.

¹As cotações das questões (E) são, nesta parte, 0.5 + 1.5 + 1.5 + 1.5 valores, respetivamente.

Grupo II (4 valores): Em cada uma das questões seguintes, assinale se a afirmação	é
verdadeira (V) ou falsa (F). Não deve apresentar qualquer justificação.	
Cada resposta certa vale 1 valor e cada resposta errada desconta 0.5 valores	

	V	F
1. A equação $y=\sqrt{2-x^2}$, com $x\in[-1,1]$ define uma semi-circunferência.	\bigcirc	\bigcirc
2. A função definida por $h(x) = \frac{1}{\operatorname{sen} x + 3}$ é par.	\circ	\circ

E 3. Se
$$\lim_{x\to 0} \left(\frac{f(x)}{x}\right)$$
 existe, então $\lim_{x\to 0} f(x) = 0$.

4.
$$y=1+\frac{x}{4}$$
 define a reta tangente à curva definida por $f(x)=\sqrt{x}$, quando $x=4$.

Grupo III (4 valores): Em cada uma das questões seguintes, assinale a única afirmação verdadeira. Não deve apresentar qualquer justificação.

Cada resposta certa vale 1 valor e cada resposta errada desconta 0,25 valores.

- 1. Se $n \in \mathbb{N}$, então $\lim_{x \to +\infty} x^{-n}$

 - não existe.○ Nenhuma das anteriores.
- **E 2.** Se f, função real de variável real, é definida por $f(x) = \begin{cases} -1, & x < 0 \\ 0, & x = 0 \\ 1, & x > 0 \end{cases}$
 - $\bigcirc \ f \ {\rm \acute{e}} \ {\rm deriv\acute{a}vel} \ {\rm em} \ x={\rm 0}. \\ \\ \bigcirc \ f \ {\rm \acute{e}} \ {\rm cont\'inua} \ {\rm em} \ x={\rm 0}.$
 - \bigcirc f admite uma tangente vertical em x = 0. \bigcirc Nenhuma das anteriores.
- **(E)** 3. Se f e g são duas funções reais de variável real, definidas em \mathbb{R} , tais que f'(x) > g'(x) e f(0) = g(0), então
 - $\bigcirc f(x) < g(x)$, para $x \in]-\infty, 0[$. $\bigcirc f(x) < g(x)$, para $x \in]0, +\infty[$.
 - (x) > g(x), para $x \in]-\infty, 0[$. (x) > g(x) Nenhuma das anteriores.
 - **4.** Uma curva definida por $y=A+B\cos\left(2x\right)$ tem um ponto de inflexão no ponto de coordenadas $\left(\frac{\pi}{4},1\right)$, quando
 - $\bigcirc A = 1$ e B é um número real qualquer. $\bigcirc A = 1$ e B = 1.
 - \bigcirc A é um número real qualquer e B=1. \bigcirc Nenhuma das anteriores.

Grupo I (12 valores): Justifique convenientemente todas as suas respostas.

- 1. (3 valores) Calcule
 - (a) se existir, $\lim_{x \to +\infty} \left[x^{1/(1+\ln x)} \right]$
- **(b)** $\int \frac{e^x e^{-x}}{e^x + e^{-x}} dx$.
- **E 2. (**2 **valores)** Calcule o comprimento da curva definida por $y = \cosh x$, entre x = 0 e $x = \ln 2$. Apresente a sua resposta na forma de um número racional.
 - **3.** (1,5 valores) Na figura [ABC] é um triângulo retângulo em C.

Sabendo que a região sombreada denota um segmento circular delimitado pela corda [AB] e por uma circunferência unitária cujo centro é a origem do referencial, exprima, quando $\theta=\frac{\pi}{4}$ e usando integrais adequados, a área do segmento circular sombreado na figura.

Nota:: Não calcule este integral.

- **4.** (3 valores) Considere a sucessão definida por $a_n = \frac{1}{n} \int_1^n \frac{1}{x} dx$.
 - (a) Calcule a_3 .
- **(b)** Calcule, se existir, $\lim_{n\to+\infty} a_n$.
- **(E)** (c) Analise a convergência da série $\sum_{n=1}^{+\infty} a_n$.
- **5.** (2,5 valores) Considere a dízima infinita periódica d = 1,3636(36).
 - (a) Expresse d na forma de uma série, usando a notação 'sigma' (isto é, \sum).
- (\mathbf{E}) **(b)** Expresse d na forma de uma fracção.

Grupo II (4 valores): Em cada uma das questões seguintes, assinale se a afirmação o
verdadeira (V) ou falsa (F). Não deve apresentar qualquer justificação.
Cada resposta certa vale 1 valor e cada resposta errada desconta 0.5 valores.

							\
\	1 (م المرابع المرابع المرابع	do Toulos	da audama O	marada mala funcca	سمما طم يرمينفريما سمما	

1. O polinómio de Taylor, de ordem 2, gerado pela função, real de variável real, definida por
$$f(x) = \ln(\cos x)$$
, em torno de $x = 0$ é $P_{2,0}(x) = \frac{-x^2}{2}$.

2. Se
$$f:[a,b]\subset\mathbb{R}\longrightarrow\mathbb{R}$$
 é uma função contínua e $u:\mathbb{R}\longrightarrow[a,b]$ e $v:\mathbb{R}\longrightarrow[a,b]$ são diferenciáveis, então $\frac{d}{dx}\int_{u(x)}^{v(x)}f(t)\,dt=f\left(v(x)\right)\frac{dv}{dx}+f\left(u(x)\right)\frac{du}{dx}$

$$3. \int_{1}^{+\infty} e^{-x^2} dx \leq \frac{1}{e}$$

4. A série
$$\sum_{n=0}^{+\infty} \left((-1)^n \frac{5}{4^n} \right)$$
 é geométrica.

Grupo III (4 valores): Em cada uma das questões seguintes, assinale a única afirmação verdadeira. Não deve apresentar qualquer justificação.

Cada resposta certa vale 1 valor e cada resposta errada desconta 0,25 valores.

- 1. Para uma função, real de variável real, estritamente decrescente num dado intervalo, a soma de Riemann à direita, com um determinado número de subdivisões, é sempre
 - menor do que a soma inferior.
- menor do que a soma superior.

o igual à soma à esquerda.

- Nenhuma das anteriores.
- **2.** Se f é uma função racional própria definida por $f(x) = \frac{p(x)}{q(x)}$, então $\int f(x) dx = \int \frac{A+Bx}{q(x)} dx$, onde A, B, números reais, quando q(x) for
 - um produto de dois factores lineares distintos.
- um produto de dois factores lineares repetidos

F

- for um polinómio quadrático irredutível.
- Nenhuma das anteriores.

(E) 3. Para |x| < 1,

$$\bigcap \int \frac{1}{\sqrt{x^2 - 1}} dx = \operatorname{argcosh}(-x) + \mathcal{C}.$$

$$\bigcap \int \frac{1}{\sqrt{x^2 - 1}} dx = \operatorname{argcosh}(x) + \mathcal{C}.$$

Nenhuma das anteriores.

E) **4.** A série de potências definida por
$$\sum_{n=0}^{+\infty} \frac{x^n}{2^n}$$

$$\bigcirc$$
 converge para $x = -1$ e diverge para $x = 3$.

$$\bigcirc$$
 converge para $x = -1$ e para $x = 3$.

$$\bigcirc$$
 diverge para $x = -1$ e converge para $x = 3$.