第9章 (之7)(总第49次)

教学内容: § 9.4.3 二阶线性常系数方程的解法; § 9.4.4 高阶线性常系数微分方程 **1. 设微分方程 y'' + 2y' = f(x),

- (1) 当 f(x) = 4x + 1 时,其一个特解形式为 ;
- (2) 当 $f(x) = e^{2x}$ 时,其一个特解形式为 ;
- (3) 当 $f(x) = \cos x$ 时,其一个特解形式为

解: (1) $y_p = (b_0 x + b_1)x$

- (2) $y_n = e^{2x}b_0$
- (3) $y_p = b_0 \cos x + b_1 \sin x$,
- **2. 微分方程 $y'' + y = x \sin x$ 的一个特解应具有形式 ()
 - (A) $(Ax + B)\sin x$
 - (B) $x(Ax + B)\sin x + x(Cx + D)\cos x$
 - (C) $x(Ax + B)(\cos x + \sin x)$
 - (D) $x(Ax+B)(C\sin x + D\cos x)$

解: (B)

**3. 设 A,B,C,D 是待定常数,则微分方程 $y'' + y = x + \cos x$ 的一个特解应具有形式

()

- (A) $Ax + B + C\cos x$
- (B) $Ax + B + C\cos x + D\sin x$
- (C) $Ax + B + x(C\cos x + D\sin x)$
- (D) $Ax + B + Cx \cos x$

解: (C)

- **4. 求下列非齐次方程的通解
- (1) $y'' + 2y' + y = e^{-x}$.
- 解: : -1 是二重特征根 : 相应齐次方程的通解为 $y_h = (C_1 + C_2 x)e^{-x}$

设特解为
$$y_p = x^2 e^{-x} b_0$$
, $y_p' = 2x e^{-x} b_0 - x^2 e^{-x} b_0$, $y_p'' = 2e^{-x} b_0 - x^2 e^{-x} b_0 - 2x e^{-x} b_0 + x^2 e^{-x} b_0$, 代入 $y'' + 2y' + y = e^{-x}$, 解得: $b_0 = \frac{1}{2}$, 通解为: $y = (C_1 + C_2 x) e^{-x} + \frac{1}{2} x^2 e^{-x}$.

(2)
$$y'' - 6y' + 9y = 25e^x \sin x$$
.

解:特征方程 $r^2-6r+9=0$ 的根为 $r_{1,2}=3$,相应齐次方程的通解为

$$y_h = (C_1 + C_2 x)e^{3x}$$

设特解为 $y_p = e^x (A\cos x + B\sin x)$,代入方程得: A = 4, B = 3 故方程的通解为

$$y = (C_1 + C_2 x)e^{3x} + e^x(4\cos x + 3\sin x)$$

**5. 求微分方程 $y'' - 3y' + 2y = xe^x$ 满足条件 y(0) = y'(0) = 0 的特解.

解:特征方程 $r^2 - 3r + 2 = 0$ 的根为 $r_1 = 1, r_2 = 2$,相应齐次方程的通解为

$$y_h = C_1 e^x + C_2 e^{2x} ,$$

设特解为 $y_p = x(Ax + B)e^x$,代入方程得: $A = -\frac{1}{2}, B = -1$. 故方程的通解为

$$y = C_1 e^x + C_2 e^{2x} - \left(\frac{x^2}{2} + x\right) e^x$$
,

代入条件 y(0) = y'(0) = 0,得 $C_1 = -1, C_2 = 1$,因此所求特解为

$$y = e^{2x} - \left(\frac{x^2}{2} + x + 1\right)e^x$$
.

***6. 已知曲线 $y = y(x)(x \ge 0)$ 过原点,位于 x 轴上方,且曲线上任一点 $M = (x_0, y_0)$ 处切线斜率数值上等于此曲线与 x 轴、直线 $x = x_0$ 所围成的面积与该点横坐标的和,求此曲线方程.

解:由己知
$$y(0) = 0$$
,且 $y' = \int_0^x y \, dx + x$, $y'(0) = 0$,将此方程关于 x 求导得

$$y'' = y + 1$$

其通解为:
$$y = C_1 e^x + C_2 e^{-x} - 1$$
,

代入初始条件
$$y(0) = 0$$
, $y'(0) = 0$, 得 $C_1 = C_2 = \frac{1}{2}$,

故所求曲线方程为:
$$y = \frac{1}{2}(e^x + e^{-x}) - 1 = \operatorname{ch} x - 1$$
.

***7. 一质量为 m 的潜水艇在水面从静止状态开始下降,所受阻力与下降速度成正比(比例系数为 k>0),浮力为常数 B,求潜水艇下降深度 x 与时间 t 之间的函数关系.

解:
$$F_{\pm} - F_{\mathrm{H}} - B = ma$$
, a 为加速度,

$$mg - kv - B = ma$$
, v为下降速度,

因为
$$v = \frac{dx}{dt}$$
, $a = \frac{dv}{dt} = \frac{d^2x}{dt^2}$, 所以 $mg - k\frac{dx}{dt} - B = m\frac{d^2x}{dt^2}$, 即

$$\frac{d^2x}{dt^2} + \frac{k}{m}\frac{dx}{dt} = g - \frac{B}{m} \quad ,$$

其特征方程为: $\lambda^2 + \frac{k}{m}\lambda = 0$, 解得特征根为 $\lambda_1 = 0$, $\lambda_2 = -\frac{k}{m}$.

所以对应的齐次方程的通解为: $x_h = c_1 e^{-\frac{k}{m}t} + c_2$.

由于0是特征方程的单根,故设其特解为: $x_1 = b_0 t$,

代入方程有:
$$\frac{k}{m}b_0 = g - \frac{B}{m}$$
, 得 $b_0 = \frac{mg - B}{k}$.

所以微分方程的通解为: $x = c_1 e^{-\frac{k}{m}t} + c_2 + \frac{mg - B}{k}t$,

因为初始位置为0,初始速度为0,所以有初始条件x(0)=0,x'(0)=0,

代入微分方程有: $\begin{cases} c_1 + c_2 + 0 = 0 \\ -\frac{k}{m}c_1 + \frac{mg - B}{k} = 0 \end{cases}$

求得:
$$c_1 = \frac{m^2 g - Bm}{k^2}, \quad c_2 = \frac{Bm - m^2 g}{k^2},$$

所以
$$x$$
与 t 的关系可表示为:
$$x = \frac{Bm - m^2 g}{k^2} \left(1 - e^{-\frac{k}{m}t} \right) + \frac{mg - B}{k} t.$$

***8. 求下列方程的通解:

(1)
$$y^{(4)} - 2y''' + y'' = 0$$
;

解:
$$\lambda^4 - 2\lambda^3 + \lambda^2 = 0$$
, $\lambda^2(\lambda^2 - 2\lambda + 1) = 0$, $\lambda^2(\lambda - 1)^2 = 0$, 所以通解为 $y = c_1 + c_2 x + (c_3 + c_4 x) e^x$.

(2)
$$y^{(4)} + 5y'' - 36y = 0$$
.

解:
$$\lambda^4 + 5\lambda^2 - 36 = 0$$
, $(\lambda - 2)(\lambda + 2)(\lambda^2 + 9) = 0$,
所以通解为 $y = c_1 e^{2x} + c_2 e^{-2x} + c_3 \cos 3x + c_4 \sin 3x$.

***9. 求以 $y_1 = x^2$, $y_2 = e^x \cos \sqrt{2}x$ 为特解的最低阶常系数线性齐次方程.

解:由
$$y_1 = x^2$$
, $y_2 = e^x \cos \sqrt{2}x$ 是特解可得至少有 5 个特征值: $\lambda_{1,2,3} = 0$, $\lambda_{4,5} = 1 \pm \sqrt{2}i$ 对应特征方程: $\lambda^3 (\lambda^2 - 2\lambda + 3) = 0$

所以所求最低阶常系数线性齐次方程为 $y^{(5)} - 2y^{(4)} + 3y^{(3)} = 0$

第9章 (之8) (总第50次)

教学内容: § 9.7 差分方程

*1. 已知 $y_t = 3e^t$ 是二阶差分方程 $y_{t+1} + ay_{t-1} = e^t$ 的一个特解,求 a .

解:
$$a = \frac{e}{3}(1-3e)$$
.

**2. 求下列差分方程的一般解:

(1)
$$2y_t + 7y_{t-1} = 0$$
;

解:
$$y_t = C(-\frac{7}{2})^t$$

(2)
$$y_t - 3y_{t-1} = -4$$
;

解:
$$y_t = C3^t + 2$$

(3)
$$2y_{t+1} + 10y_t - 5t = 0$$
;

$$\mathbf{M}: \quad \mathbf{y}_t = C(-5)^t + \frac{5}{12}(t - \frac{1}{6})$$

(4)
$$y_{t+1} - 4y_t = 2^{2t}$$
;

解:
$$y_t = C4^t + t4^{t-1}$$

(5)
$$y_{t+1} - y_t = t \cdot 2^t$$
.

解:
$$y_t = C + (t-2)2^t$$

**3. 写出下列差分方程的一个特解形式:

(1)
$$y_{t+1} - y_t = \sin t$$
;

解:
$$Y_t = B_1 \sin t + B_2 \cos t$$

(2)
$$y_{t+1} + y_t = -3\cos \pi t$$
.

解:
$$Y_t = t(B_1 \cos \pi t + B_2 \sin \pi t)$$

**4. 设 y_t 为第 t 期国民收入, C_t 为第 t 期消费, I 为每期投资(I 为常数). 已知 y_t , C_t , I 之间有关系 $y_t = C_t + I$, $C_t = \alpha y_{t-1} + \beta$, 其中 $0 < \alpha < 1$, $\beta > 0$, 试求 y_t , C_t .

解: y_t 满足: $y_t - \alpha y_{t-1} = I + \beta$,

解得
$$y_t = C\alpha^t + \frac{\beta + I}{1 - \alpha}$$
, 从而 $C_t = y_t - I = C\alpha^t + \frac{\beta + \alpha I}{1 - \alpha}$.

***5. 已知差分方程 $(a+by_t)y_{t+1}=cy_t$, 其中 a , b , c 为正的常数. 设初始条件 $y(0)=y_0>0$, 证明:

- (1) 对任意 $t = 1, 2, \dots$, 有 $y_t > 0$;
- (2) 在变换 $u_t = \frac{1}{y_t}$ 之下,原差分方程可化为有关 u_t 的线性差分方程,写出该线性差分方程并求其一般解;
- (3) 求方程 $(1+2y_t)y_{t+1} = y_t$ 的满足初始条件 $y_0 = 2$ 的解.

解: (1) 归纳法证明.

(2)
$$\Leftrightarrow u_t = \frac{1}{y_t}, \quad \text{Iff } y_t = \frac{1}{u_t}, \quad y_{t+1} = \frac{1}{u_{t+1}},$$

则原方程化为线性差分方程

$$cu_{t+1} - au_t = b ,$$

其一般解为
$$c \neq a$$
时, $u_t = C\left(\frac{a}{c}\right)^t + \frac{b}{c-a}$; $c = a$ 时, $u_t = C + b$.

$$(3)$$
 令 $u_{t} = \frac{1}{y_{t}}$,原方程化为 $u_{t+1} - u_{t} = 2$,一般解为 $u_{t} = C + 2$,

所以原方程的一般解为
$$y_t = \frac{1}{u_t} = \frac{1}{C+2}$$
,代入 $y_0 = 2$,得 $C = -\frac{3}{2}$,

所以 特解为 $y_t = 2$.

***6. 已知某人欠有债务 25000 元, 月利率为 1%, 计划在 12 个月内用等额分期付款的方法还清债务, 求每月还款额 P.

解:设x,为第t个月还款后的剩余债务,据题意有,

$$x_{t+1} = 1.01x_t - P$$
, $x_0 = 25000$, $x_{12} = 0$

齐次线性差分方程 $x_{t+1} - 1.01x_t = 0$ 的通解为 $x_t = C(-1.01)^t$,

非齐次线性差分方程 $x_{t+1} - 1.01x_t = -P$ 的一个特解 $x_t^* = A$,代入方程可得 $A = \frac{P}{0.01}$,

所以原方程通解为: $x_t = C(-1.01)^t + \frac{P}{0.01}$

代入
$$x_0 = 25000$$
, $x_{12} = 0$ 得
$$\begin{cases} C + \frac{P}{0.01} = 25000 \\ C(1.01)^{12} + \frac{P}{0.01} = 0 \end{cases}$$

解得: $C \approx -197122.17$, $P \approx 2221.22$ (元).

第 10 章 (之1)(总第 51 次)

教学内容: § 10.1 向量及其运算

* 1.
$$\[|\vec{a}| = 2, \quad |\vec{b}| = 2\sqrt{3}, \quad |\vec{a} + \vec{b}| = 2, \quad |\vec{a}, \vec{b}| = \underline{\qquad} \]$$

答: $\frac{5\pi}{6}$.

- ** 2. 设向量 \vec{a} 与 \vec{b} 不平行, $\vec{c} = \vec{a} + \vec{b}$,则 $(\bar{a}, \bar{c}) = (\bar{b}, \bar{c})$ 的充分必要条件为______.
- 答: $|\bar{a}|=|\bar{b}|$.
- ** 3. 设直线 L 经过点 P_0 且平行于向量 a,点 P_0 的径向量为 r_0 ,设 P 是直线 L 的任意一点,试用向量 r_0 , a 表示点 P 的径向量 r .

解:
$$\overrightarrow{P_0P} \parallel \vec{a}$$
, $\overrightarrow{P_0P} = t\vec{a}$, $\overrightarrow{m} \vec{r} = \vec{r_0} + \overrightarrow{P_0P}$,

$$\therefore \vec{r} = \vec{r}_0 + t\vec{a}$$

 \therefore P 点的径向量为 $\vec{r_0} + t\vec{a}$.

** 4. 设
$$\bar{a} = 2, \bar{b} = 3$$
, $\bar{a} = 5$ 的夹角等于 $\frac{2}{3}\pi$, 求:

(1)
$$\vec{a} \cdot \vec{b}$$
;

(2)
$$(3\vec{a}-2\vec{b})\cdot(\vec{a}+2\vec{b})$$
;

$$(3) (\vec{a})_{\vec{b}};$$

$$(4) \left| 3\vec{a} - 2\vec{b} \right|.$$

解: (1)
$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos\langle \vec{a}, \vec{b}\rangle = 2 \times 3 \times \cos \frac{2}{3}\pi = -3$$
.

(2)
$$(3\vec{a} - 2\vec{b}) \cdot (\vec{a} + 2\vec{b}) = 3|\vec{a}|^2 - 4|\vec{b}|^2 + 4\vec{a}\vec{b}$$

= $3 \times 2^2 - 4 \times 3^2 + 4 \times (-3) = -36$.

(3)
$$(\bar{a})_{\bar{b}} = \frac{\bar{a} \cdot \bar{b}}{|\bar{b}|} = \frac{-3}{3} = -1$$
.

(4)
$$|3\vec{a} - 2\vec{b}|^2 = (3\vec{a} - 2\vec{b}) \cdot (3\vec{a} - 2\vec{b}) = 9|\vec{a}|^2 + 4|\vec{b}|^2 - 12\vec{a}\vec{b}$$

 $= 9 \times 2^2 + 4 \times 3^2 - 12 \times (-3) = 108$,
 $|3\vec{a} - 2\vec{b}| = \sqrt{108} = 6\sqrt{3}$.

** 5. 设 $\vec{a} = 4, \vec{b} = 5$, $\vec{a} = 5$ 的夹角等于 $\frac{1}{3}\pi$, 求:

(1)
$$(\vec{a} + \vec{b})_{\vec{a} - \vec{b}}$$
;

(2)
$$5\bar{a} + 2\bar{b}$$
 与 $\bar{a} - \bar{b}$ 的夹角.

解: (1)
$$|\vec{a} - \vec{b}|^2 = (\vec{a} - \vec{b}) \cdot (\vec{a} - \vec{b})$$

$$= |\vec{a}|^2 + |\vec{b}|^2 - 2\vec{a}\vec{b} = 4^2 + 5^2 - 2 \times 4 \times 5\cos\frac{\pi}{3} = 21,$$

$$\therefore |\vec{a} - \vec{b}| = \sqrt{21},$$

$$\left(\vec{a} + \vec{b}\right)_{\vec{a} - \vec{b}} = \frac{\left(\vec{a} + \vec{b}\right) \cdot \left(\vec{a} - \vec{b}\right)}{\left|\vec{a} - \vec{b}\right|} = \frac{\left|\vec{a}\right|^2 - \left|\vec{b}\right|^2}{\sqrt{21}} = \frac{4^2 - 5^2}{\sqrt{21}} = -\frac{3\sqrt{21}}{7}.$$

(2)
$$(5\vec{a} + 2\vec{b}) \cdot (\vec{a} - \vec{b}) = 5|\vec{a}|^2 - 2|\vec{b}|^2 - 3\vec{a}\vec{b}$$

= $5 \times 4^2 - 2 \times 5^2 - 3 \times 4 \times 5\cos\frac{\pi}{3} = 0$,

∴向量
$$5\bar{a}+2\bar{b},\bar{a}-\bar{b}$$
垂直,夹角为 $\frac{\pi}{2}$.

** 6. 若 \bar{a} , \bar{b} 为非零向量,且 $|\bar{a}+\bar{b}|=|\bar{a}-\bar{b}|$,试证 $\bar{a}\perp\bar{b}$.

解:
$$\left| \vec{a} + \vec{b} \right| = \left| \vec{a} - \vec{b} \right|$$
, $\qquad \therefore \left| \vec{a} + \vec{b} \right|^2 = \left| \vec{a} - \vec{b} \right|^2$,

$$\therefore (\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{b}) = (\vec{a} - \vec{b}) \cdot (\vec{a} - \vec{b}),$$

$$\label{eq:decomposition} \begin{split} \therefore \left| \vec{a} \right|^2 + \left| \vec{b} \right|^2 + 2 \vec{a} \vec{b} = \left| \vec{a} \right|^2 + \left| \vec{b} \right|^2 - 2 \vec{a} \vec{b} \end{split} \; ,$$

$$\vec{\cdot} \cdot \vec{a} \cdot \vec{b} = 0 , \qquad \vec{\cdot} \cdot \vec{a} \perp \vec{b} .$$

***7. 用向量的方法证明半圆的圆周角必是直角.

解:如图所示,AC为直径,B为圆周上任一点,

$$\overrightarrow{OA} = -\overrightarrow{OC}$$
, $|\overrightarrow{OB}| = |\overrightarrow{OA}| = |\overrightarrow{OC}|$,

则有
$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$$
,

$$\overrightarrow{CB} = \overrightarrow{OB} - \overrightarrow{OC} = \overrightarrow{OB} + \overrightarrow{OA},$$

$$\overrightarrow{AB} \cdot \overrightarrow{CB} = (\overrightarrow{OB} - \overrightarrow{OA}) \cdot (\overrightarrow{OB} + \overrightarrow{OA}) = |\overrightarrow{OB}|^2 - |\overrightarrow{OA}|^2 = 0$$
,

: 半圆的圆周角必为直角.

