Supplementary Problems

Let (X_1, \ldots, X_n) be a random sample of a Bernoulli r.v. X with pmf

$$f(x; p) = p^{x}(1-p)^{1-x}$$
 $x = 0, 1$

where it is known that 0 . Let

$$H_0: p = \frac{1}{2}$$

 $H_1: p = p_1 (<\frac{1}{2})$

and n = 20. As a decision test, we use the rule to reject H_0 if $\sum_{i=1}^{n} x_i \le 6$.

(a) Find the power function g(p) of the test.

(b) Find the probability of a Type I error α.

(c) Find the probability of a Type II error β (i) when $p_1 = \frac{1}{4}$ and (ii) when $p_1 = \frac{1}{10}$.

Ans. (a)
$$g(p) = \sum_{k=0}^{6} {20 \choose k} p^{k} (1-p)^{20-k} \qquad 0$$

(b) $\alpha = 0.0577$; (c) (i) $\beta = 0.2142$, (ii) $\beta = 0.0024$

8.18. Let (X_1, \ldots, X_n) be a random sample of a normal r.v. X with mean μ and variance 36. Let

$$H_0$$
: $\mu = 50$
 H_1 : $\mu = 55$

As a decision test, we use the rule to accept H_0 if $\bar{x} < 53$, where \bar{x} is the value of the sample mean.

(a) Find the expression for the critical region R_1 .

(b) Find α and β for n = 16.

Ans. (a)
$$R_1 = \{(x_1, ..., x_N); \bar{x} \ge 53\}$$
 where $\bar{x} = \frac{1}{n} \sum_{n=1}^{n} x_n$

(b) $\alpha = 0.0228$, $\beta = 0.0913$

Let $(X_1, ..., X_n)$ be a random sample of a normal r.v. X with mean μ and variance 100. Let 8.19.

$$H_0$$
: $\mu = 50$
 H_1 : $\mu = 55$

As a decision test, we use the rule that we reject H_0 if $\bar{x} \ge c$. Find the value of c and sample size n such that $\alpha = 0.025 \text{ and } \beta = 0.05.$

Ans. c = 52.718, n = 52

8.20. Let X be a normal r.v. with zero mean and variance σ^2 . Let

$$H_0: \quad \sigma^2 = 1$$

$$H_1: \quad \sigma^2 = 4$$

Determine the maximum likelihood test.

Ans.
$$|x| \gtrsim 1.36$$

Consider the binary decision problem of Prob. 8.20. Let $P(H_0) = \frac{1}{3}$ and $P(H_1) = \frac{1}{3}$. Determine the MAP 8.21.

Ans.
$$|x| \gtrsim 1.923$$