Modelo conceptual de clases

Modelo de clases -1

Modelo conceptual de clases

- Tres perspectivas o niveles para el modelado de clases:
 - Conceptual: conceptos del dominio del problema
 - Especificación: estructura de software
 - Coincide con el diagrama de clases de diseño en la asignatura
 - Implementación: implementación real
- Modelo conceptual
 - Diag. de estructura estática de la información (E/R)
 - Punto de partida para el diagrama de clases de diseño
 - No es descripción de diseño (p.ej., clases Java y C++)

Clases (I)

- Clases:
 - Bloque básico de sistemas OO
- Clase:
 - Descripción de conjunto de objetos que comparten atributos, operaciones, relaciones y semántica
- Nombre:
 - Simple: expresión (nombre: "cliente")

Cliente

- Camino: paquete :: expresión

- Extraído del vocabulario del problema

TPV::cliente

Modelo de clases -3

Clases (II)

- Atributo:
 - Propiedad de una clase identificada con un nombre, compartida por todos los objetos
 - Describe rango de valores: tipo
 - Una clase puede tener 0, 1 o varios atributos
 - Especificación:
 - Nombre: si hay varias palabras, iniciales en mayúscula
 - Tipo: primitivo o definido
 - Valor inicial
 - Otras características

Cliente

nom bre
dirección
fecha Nacimiento
estado: Integer = 0
sal do: Float

Clases (III)

- Responsabilidades:
 - Contrato u obligación de una clase
 - Los atributos y las operaciones son el medio para cumplir las responsabilidades de la clase
 - Una clase puede tener cualquier número, incluso ninguna, y no demasiadas
 - Se deducirán de análisis
 - Especificación
 - · Texto libre

Cliente

Almacenar su estado y saldo
Supervisar su estado

Modelo de clases -5

Relaciones entre clases

- En general, muy pocas clases están aisladas
- Tres tipos de relaciones:
 - Asociaciones:
 - Relaciones estructurales
 - Generalizaciones:
 - Abstracciones/especializaciones
 - -También dependencias:
 - •Pero no aparecen en modelo conceptual, sí en el diagrama de clases de diseño

1... 1... Baja()

1 el

EjemplarObra Titulo : String

Asociación (I)

- · Asociación: relación estructural
 - Objetos de una clase conectados a los de otra
 - Puede ser reflexiva
 - Normalmente binaria: se admiten n-arias
- Especificación
 - Nombre (y flecha de lectura)
 - Rol de cada clase (cómo se presenta la clase a la/s otra/s)
 - Multiplicidad, mínima y máxima: 0, 1, * (y nº exacto o lista de valores).

Asociación (II)

- Agregación: relación "todo/parte" o "tiene un"
 - Asociación entre iguales (existencia independiente)
 - Sólo distingue el todo de la parte, no liga la existencia del todo y sus partes

- Composición: agregación fuerte
 - La clase "parte" solo puede pertenecer a un "todo" y siempre debe pertenecer a él (cardinalidad 1..1)
 - Las "partes" viven y mueren con el "todo", borrado en cascada

Asociación (III)

- Interpretación práctica:
 - Una relación de asociación con una semántica del tipo 'está formado por' pasa a ser de agregación
 - Una relación de agregación con cardinalidad 1:1 en la parte del 'todo' pasa a ser de composición
- Asociaciones n-arias
 - Se representa con un rombo
 - En binaria y en n-aria puede haber clase de relación

Modelo de clases -9

Asociación (IV) • Clase de asociación: - Sirve para añadir atributos, operaciones, etc. Persona • Asociacion binaria Or - Exclusividad de relación Modelo de clases -10

Generalización (I)

- Generalización:
 - Relación entre un elemento general y un caso específico
 - Relación "es un tipo de"
 - El hijo hereda atributos y operaciones
 - UML permite herencia simple y múltiple
 - Puede tener nombre (es raro)
 - Se permiten ciertas restricciones: solapada/disjunta, total/parcial

Circulo

Modelo de clases -11

Generalización (II)

- Relaciones de herencia:
 - Buscar responsabilidades y atributos comunes
 - Elevar/factorizar lo común a clase general
 - Especificar lo concreto a la clase específica
- Niveles:
 - Posibilidad de más de uno
 - Polimorfismo de operaciones: implementación concretas en niveles inferiores de operaciones definidas en niveles superiores

