Q6 c) Let $\{[y^{(n)}]\}_{k\in\mathbb{N}} \in X^{n}$ be Cauchy in (X^*, Δ)

Fix $n_0:=0$ Λ $n_{i+1}=\inf\{n7ni:(\forall 1.i. \forall n:p(y_1,y_2,y_3)<2^{-i.t.})\}$ which early since the set is non-empty since such $y^{(n)}$ is Cauchy. note that by construction, $\{ni\}$ is strictly inexacting.

We can now consider a sequence in such class which is a "xproutable" of that day i.e. define $z_i^k:=y_{n_i}^k$. Then $\{z_i^k\}_{i\in N}\in [y^k]$.

We have that $\forall k,j \in \mathbb{N}: \forall m,n \ni j: p(z_m^k,z_n^k) < 2^{-d-k}$ $\forall 1 \ni k: p(z_1^k,z_1^k) \ni 2^{-k}.$

Next, define $x_k := z_k^k$

$$\forall k \in J: p(x_{k,1}x_{l}) = p(z_{k}^{k}, z_{l}^{l}) \stackrel{\leq}{=} \underbrace{\rho(z_{k,1}^{k}, z_{l}^{k})}_{\leq 2^{-l-k}} \stackrel{\leq}{=} \underbrace{A([z_{k}][z_{l}^{l}])}_{\leq 2^{-k}}$$

which give we that $\{x_k\}$ is causely so $\{[y^{(n)}]\}_{k\in\mathbb{N}}$ converge. $\Rightarrow (x^m, \Delta)$ in complete.

a) Considu the map $\mathscr{Q}: X \longrightarrow X^*$ $p \longmapsto p_p$

where Pp = {P3 new the constant sequence which is clearly Carety.

Then $\Delta(P_{\rho}, P_{\alpha}) = \lim_{n \to \infty} d(P_{n}, q_{n}) = \lim_{n \to \infty} d(P_{n}, q_{n}) = d(P_{n}, q_{n})$.

-then ℓ is an isometry which gives us an embedding $\times \hookrightarrow \times^*$

e) we need to show that for any $[x] \in X^*$, we can construct a sequence $\{x_n\}_{n \in \mathbb{N}}$ $x_n \in X$ such that $\{\phi(x_n)\}_{n \in \mathbb{N}}$.

Let $(x^{3} \in x^{*})$ and show a member of the emirature design that $[x] = [\{x_{n}\}_{n \in \mathbb{N}}] \in x^{*}$.

Then $\lim_{m\to\infty} \Delta(\phi(x_m), (\{x_m\}_{n\in\mathbb{N}})) = \lim_{n\to\infty} \rho(x_m, x_n) = 0.$

Since $\{xn\}n\in \mathbb{N}$ is causely. $\Rightarrow \phi(xm) \rightarrow [\{xn\}n\in \mathbb{N}]$ in (x^*, Δ) : $[\{xn\}n\in \mathbb{N}]$ is an authorized point g g(x) : $g(x) = x^*$.