INF3105 – 2019A / Examen 1 (27 octobre 2019) / Partie A	
	9
	9 Nom et prénom :
	9
	9
Remplissez les cases correspondant aux bonnes réponses. Les questions marquées d'un 🌲 peuvent avoir zéro, une ou plusieurs bonnes réponses. Chaque question vaut 2 points pour un total de 60 points.	
Question 1 ♣ Cochez les mots qui sont des mots- clés (keywords ou mots réservés) du langage C/C++.	Question 8 L'exécution de ./progB < test2.txt affiche sur le deuxième ligne :
return sqrt string delete while unsigned new cin istream short char do	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Question 2 ♣ En C/C++, la signature d'une fonction est définie par son :	Question 9 Quelle est la complexité temporelle (pire cas) du programme progB.cpp? Supposez <i>n</i> phrases, <i>m</i> mots par phrase et <i>k</i> mots différents.
nombre de paramètres. type de retour. type des paramètres. nom.	
Question 3 Cochez le ou les énoncés illégaux (ayant au moins une erreur).	Question 10 ♣ Cochez les expressions de complex-
int *p, *q, **r=&q	ité grand-O qui sont simplifiées. Notez que k , m et n sont des variables indépendantes.
string n, *p=0;	•
<pre>int p; int& q=p; double k; int* p = &k</pre>	$ \begin{array}{c cc} $
Question 4 Le programme progA.cpp laisse objets de type int non libérés sur le tas (heap).	Question 11 ♣ Cochez les énoncés vrais. Les symboles < et > signifient moins et plus complexe que.
$\begin{bmatrix} 7 & & 16 & & 2 & & 64 \\ 8 & & 0 & & 128 & & 24 \\ & 6 & & 5 & & 36 & & 4 \end{bmatrix}$	$\mathcal{O}(n!) > \mathcal{O}(2^n) \qquad \qquad \mathcal{O}(3n) > \mathcal{O}(2n)$ $\mathcal{O}(2^n) > \mathcal{O}(n^5)$ $\mathcal{O}(5n^2 + 9n) < \mathcal{O}(n^3)$
Question 5 Le programme progA.cpp affiche sur la première ligne (fonction f1):	Question 12 L'ajout à la fin d'un tableau dy-
P12P34G_r_p12p34p12p34 P12P34G_r_p34p12p43p21	namique a une complexité temporelle amortie delorsque la politique d'agressissement augmente la capacité de 1.
P12P34G_r_p34p12r_p34p12p34p12	•
P21P34G_r_p43p21r_p12p34p12p34 P12P34G_P00P00R_r_p43p21r_p43p21p43p21	$\begin{array}{c cccc} & \mathcal{O}(\log n) & & & \mathcal{O}(1) \\ \hline & \mathcal{O}(n\log n) & & & & \mathcal{O}(n^2) \\ \hline & & \mathcal{O}(n) & & & \end{array}$
Question 6 Le programme progA.cpp affiche sur la deuxième ligne (fonction f2):	Question 13 L'ajout à la fin d'un tableau dy- namique a une complexité temporelle amortie de
R_P00P00R_P00P00G_P34P12p34p12p12p34r_ P00P00R_P00P00R_P34P12G_r_p12p12p34p34	lorsque la politique d'agressissement double la capacité.
P00P00R_P00P00R_P34P12G_r_p34p12p12p34 R_P00P00R_P00P00G_P34P12p12p12p34p34r_	
P00P00R_P00P00R_	Question 14 L'insertion dans un arbre binaire de recherche équilibré a une complexité temporelle de :
Question 7 L'exécution de ./progB < test1.txt affiche sur la première ligne :	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Question 15 Le test d'équivalence (operator ==) pour un arbre binaire de recherche équilibré a une complexité temporelle de Supposez la meilleure implémentation possible de cet opérateur.	Question 23 Durant l'enlèvement d'un élément dans un arbre AVL, combien de rotation(s) peut-on avoir dans le pire cas? Une double rotation compte pour 2 rotations. Supposez que l'arbre a une hauteur de h . Choisissez la réponse la plus proche. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$
a une complexité temporelle de Supposez la meilleure implémentation possible de cet opérateur.	ment dans un arbre AVL. L'ordre est aléatoire. Combien d'arbres différents (structure) peut on obtenir ?
Question 17 \clubsuit On ajoute, dans un ordre arbitraire, n entiers différents dans 2 arbres, l'un AVL et l'autre rouge-noir. Les 2 arbres ont une hauteur de h_1 (AVL) et h_2 (R-N). On peut conclure avec certitude :	Question 25 On insère les entiers 0 à 63 (incl.), dans un ordre aléatoire, dans un arbre AVL. Quel est le plus petit entier pouvant se retrouver à la racine ?
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$h_1 \le 1.5 \log_2 n + 1$ $h_1 \le 2 \log_2 n + 1$ $h_2 \le 2 \log_2 n + 1$ $h_2 \ge \lceil \log_2 n \rceil$	Question 26 On insère les entiers 0 à 63 (incl.), dans un ordre aléatoire, dans un arbre R-N. Quel est le plus petit entier pouvant se retrouver à la racine ?
Question 18 La meilleure implémentation possible d'une copie profonde d'un arbre AVL (constructeur par copie et operator=) a une complexité temporelle de dans le pire cas.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Question 27 🌲 Dans quel ordre doit-on insérer les nombres 1 à 3 dans un arbre AVL pour provoquer une double-rotation ?
Question 19 La meilleure implémentation possible d'une copie profonde d'un arbre rouge-noir (constructeur par copie et operator=) a une complexité temporelle de dans le pire cas.	3 1 2 2 3 1 2 3 2 2 3 1 3 2 1 2 1 3 2 2 3 1 3 2 1 2 1
	hauteur de cet arbre ? 4 2 5 1 3 6 7 2 1 4 5 3 6 7
Question 20 L'insertion dans un arbre AVL a une complexité temporelle de dans le pire cas.	1234567 7654321 2435716 3521647
$ \begin{array}{c ccc} & \mathcal{O}(n^2) & & \mathcal{O}(n) \\ & \mathcal{O}(n\log n) & & \mathcal{O}(\log n) \\ & & \mathcal{O}(1) \end{array} $	Question 29 Dans un arbre rouge-noir, (avant et après les opérations d'insertion et d'enlèvement):
Question 21 La meilleure implémentation possible de l'enlèvement dans un arbre binaire de recherche (pas forcément équilibré) a une complexité temporelle de dans le pire cas.	 □ la racine est rouge. □ les sentinelles sont à profondeur noire égale. □ les feuilles sont à profondeur noire égale. □ la hauteur = la profondeur noire des sentinelles.
	Question 30 Quelle est la profondeur noire des sentinelles après l'insertion des entiers 1 à 5 inclusivement dans un arbre Rouge-Noir?
Question 22 Durant l'insertion d'un élément dans un arbre AVL, combien de rotation(s) peut-on avoir dans le pire cas? Une double rotation compte pour 2 rotations. Supposez que l'arbre contient <i>n</i> éléments.	■ 3 □ 1 □ 4 □ 0 □ 5 □ 2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	