オペレーティングシステム 第4章 スケジューリング

https://github.com/tctsigemura/OSTextBook

評価基準

- スループット (Throughput)
- ターンアラウンド時間(Turnaround time)
- レスポンス時間(Response time)
- 締め切り (Deadline)
- その他 (公平性, 省エネ, 予測性など)

スケジューリングの目標

 コンピュータの種類	重視する性能
メインフレーム(バッチ処理)	スループット,ターンアラウンド時間
ネットワークサーバ	レスポンス時間,スループット
デスクトップパソコン	レスポンス時間
モバイルデバイス	レスポンス時間,省エネルギー
組込み制御	締め切り

CPUバウンドプロセス

(a) CPUバウンド (CPU-bound) プロセス

- 動画圧縮の例
- I/O バウンドプロセス (エクセル)

1/0 バウンドプロセス

(b) I/Oバウンド(I/O-bound)プロセス

• スプレッドシートの例

FCFS スケジューリング(1)

P_1 0 100	プロセス	到着時刻	CPU バースト時間 (ms)
	P_1	0	100
P_2 0 20	P_2	0	20
P_3 0 10	P_3	0	10

	P_1	P_2	1	D ₃	
C	1	00	120	13	0

- *P*₁, *P*₂, *P*₃ の順に実行
- 平均ターンアラウンド時間((100+120+130)/3=117 ms)

FCFS スケジューリング(2)

プロセス	到着時刻	CPU バースト時間 (ms)	
P_1	0	100	_
P_2	0	20	
P_3	0	10	
	P_2 P_3	P_1	
0	20 3	0	130

- P₂, P₃, P₁の順に実行
- 平均ターンアラウンド時間 ((20+30+130)/3=60 ms)

SJF スケジューリング

プロセス	到着時刻	CPU バースト時間 (ms)	
P_1	0	100	-
P_2	0	20	
P_3	0	10	
P_3	P_2	P_1	
0	10 30)	130

• 平均ターンアラウンド時間 ((10+30+130)/3=57 ms)

SJF スケジューリング(比較のため)

プロセス	到着時刻	CPU バースト時間 (ms)	
P_1	0	60	
P_2	10	40	
P_3	60	30	

	P_1	P_3		P_2	
((30	90		130

- SJF はプリエンプションなし
- 平均ターンアラウンド時間 (((60-0)+(90-10)+(130-60))/3=70 ms)

SRTF スケジューリング

プロセス	到着時刻	CPU バースト時間 (ms)
P_1	0	60
P_2	10	40
P_3	60	30

	P_1	F	\mathcal{P}_2	P_1	P_3			P_1	
C) 1	0	5	0 6	0	9	0	13	30

- SRTF はプリエンプションあり
- 平均ターンアラウンド時間 (((130-0)+(50-10)+(90-60))/3=67 ms)

RRスケジューリング(1)

プロセス	到着時刻	CPU バースト時間 (ms)
P_1	0	60
P_2	10	40
P_3	60	30

	P_1	P_2	P_1	P_2	P_1	P_2	P_1	P_3	P_2	P_1	P_3	P_1	P_3	
C) 1	.0 2	20 3	0 4	0 5	0 6	0 7	0 8	0 9	0 10	00 1:	10 12	20 13	30

- クォンタムタイム= 10ms
- 平均ターンアラウンド時間 (((120-0)+(90-10)+(130-60))/3=90)

RRスケジューリング(2)

プロセス	到着時刻	CPU バースト時間 (ms)
P_1	0	60
P_2	10	40
P_3	60	30

	P_1	P_2	P_1	P_3	
C	50		0 1	00 1	.30

- クォンタムタイム= 50ms
- 平均ターンアラウンド時間 (((100-0)+(90-10)+(130-60))/3=83 ms)

優先度順スケジューリング

- 静的・動的
- スタベーション
- ・エージング

FB スケジューリング

• エージング

TacOS のスケジューラ

```
// プロセスキューで p1 の前に p2 を挿入する p2 -> p1
void insProc(PCB p1, PCB p2) {
 p2.next=p1;
 p2.prev=p1.prev;
 p1.prev=p2;
 p2.prev.next=p2;
// プロセススケジューラ:プロセスを優先度順で readyQueue に登録する
// (カーネル外部からも呼び出されるのでここで割込み禁止にする)
public void schProc(PCB proc) {
 int r = setPri(DI|KERN):
                                        // 割り込み禁止、カーネル
 int enice = proc.enice;
                                        // 実行可能列から
 PCB head = readyQueue.next;
                                        // 優先度がより低い
 while (head.enice<=enice)
                                        // プロセスを探す
   head = head.next:
                                        // 見つけたプロセスの
 insProc(head,proc);
                                        // 直前に挿入する
 setPri(r):
                                        // 割り込み状態を復元する
```

TacOS の実行可能列(参考)

- yield
- dispatch
- 実行可能列

