Predictive modelling

George, John & William

11/17/2021

Data Preparation and cleaning

Getting the missing values percentages

```
Number_Missing Missing_Rate
                                          Variable
## 1
               7087
                         56.53318
                                        enrollment
## 2
               7087
                         56.53318
                                        employment
## 3
               9448
                         75.36694 employment_type
## 4
               9448
                         75.36694 weekly_work_hrs
## 5
                         58.71889
                                        ethnicity
               7361
## 6
               7383
                         58.89438
                                            gender
## [1] 5018
              22
```

missing value treatment

Method I

Treating imbalance classification

```
library(ROSE)
data_pad_balance<-ovun.sample(FI_q28 ~ ., data = data_pad, method = "both", p=0.5,
dim(data_pad_balance)</pre>
```

```
## [1] 5018 22
```

Converting predictors to category

Partitioning data set

```
## [1] 3364 22
## [1] 1654 22
```

The training data has 76 observations with 1887 now (old =1057 when compared) variables. The testing data has 32 observation with 1887 now (old= 1057 when compared) variables.

Model fitting

```
#---- Model building -----
# Create a wrapper function to abstract away the common aspects of model fitting
formula <- FI_q28~.
fit.model <- function(method, tunegrid="", data=NULL, formula=NULL) {</pre>
  data <- training
  if(is.null(formula)) formula<- FI_q28~.</pre>
  # Train the model
  train(
           formula,
           data = data,
           method = method,
           trControl = trainControl(method = "cv", 5),
           preProcess = c("center", "scale"),
           tuneGrid = tunegrid)
# Logistic Regression
log <-train(formula,</pre>
                 data=training,
                 method="glm",
                 family = binomial(link = "logit"),
                trControl = trainControl(method = "cv", 5),
                preProcess = c("center", "scale"))
# LDA
lda <- train(formula,</pre>
                 data=training,
                 method="lda",
                trControl = trainControl(method = "cv", 5),
                preProcess = c("center", "scale"))
#----- Elastic Net Models -----
# fit a LASSO model
lasso <- fit.model("glmnet", expand.grid(.alpha=1, .lambda=seq(0,0.1,0.01)))</pre>
# Fit a Ridge regression model
ridge <- fit.model("glmnet", expand.grid(.alpha=0, .lambda=seq(0,0.1,0.01)))
# Bagging
# bag <- fit.model("rf", data.frame(mtry=11))</pre>
bag <- train(formula,</pre>
                 data=training,
                 method="rf",
                trControl = trainControl(method = "cv", 5),
                preProcess = c("center", "scale"),
                tuneGrid = data.frame(mtry=11),
                ntree = 1000)
```

```
# Random Forest
# rf <- fit.model("rf", data.frame(mtry=1:10))</pre>
# rf <- train(formula,
                    data=training,
#
                   method="rf",
#
                   trControl = trainControl(method = "cv", 5),
#
                   preProcess = c("center", "scale"),
#
                   tuneGrid = data.frame(mtry=1:10),
#
                   ntree = 1000)
# Support Vector Machine with linear kernel
set.seed(125)
trctrl <- trainControl(method = "cv", number=5)</pre>
svc <- train(formula, data = training, method = "svmLinear",</pre>
                     trControl=trctrl, prob.model=T,
                     tuneLength = 10)
# Support Vector Machine with radial kernel
set.seed(125)
trctrl <- trainControl(method = "cv", number=5)</pre>
svmR <- train(formula , data = training, method = "svmRadial",</pre>
                     trControl=trctrl, prob.model=T,
                     tuneLength = 10)
```

Making predictions

```
# pred <- function(model){</pre>
 model <- lasso
    pred.test<- predict(model, testing)</pre>
#
#
    misscal<- round(mean(pred.test != testing$FI_q28),digits = 2)
#
#
    # test_pred_1 <- predict(model, newdata = testing, type= "prob")</pre>
#
    # ROC_SR <- roc(testing$FI_q28, predictor = test_pred_1[,2])</pre>
#
   # # # plot(ROC_SR, col="brown")
#
   # AUC<-round(ROC_SR$auc, digits=4)*100 # AUC
#
    # # text(x=0.4, y=0.25, paste("Area Under Curve = ", AUC, sep=""), col="blue", cex=1.2)
   #AUC = 0
#
  return(list(missclass=misscal))
#}
```

Metrics

```
library(mlr3measures)
# Create a custom confusion matrix with performance metrics
metrics <- function(model_object, response="", test_data=NULL) {
    # response = "FI_q28"
    # model_object <- log
    #
    if(is.null(test_data)) test_data <- testing</pre>
```

```
# make predictions
prediction <- predict(model_object, test_data)

target <- test_data[, response]

cmat <- confusionMatrix(prediction, target, mode = "prec_recall")

misscal <- round(mean(prediction != target), digits = 2)

# Returned outputs
return(list(
    accuracy = (1-misscal),
    mcr = misscal,
    sens = round(cmat$byClass[1],2),
    spec = round(cmat$byClass[2],2),
    fbeta = round(cmat$byClass[7],2)

))
}</pre>
```

```
metric_log <- metrics(lasso, response = "FI_q28")</pre>
#---- Compute performance metrics for the full models ----
log.metric <- metrics(log, response = "FI_q28")</pre>
lda.metric <- metrics(lda, response = "FI_q28")</pre>
# knn.metric <- metrics(knn)</pre>
lasso.metric <- metrics(lasso, response = "FI_q28")</pre>
ridge.metric <- metrics(ridge, response = "FI_q28")</pre>
bag.metric <- metrics(bag, response = "FI_q28")</pre>
# rf.metric <- metrics(rf)</pre>
svc.metric <- metrics(svc, response = "FI_q28")</pre>
# sumP.metric <- metrics(sumP)</pre>
svmR.metric <- metrics(svmR, response = "FI_q28")</pre>
mod.sum <- data.frame(rbind(</pre>
                                                                                                       c("Logistic", log.metric$mcr, log.metric$accuracy, log.metric$sens, log.metri
                                                                                                       c("LDA", lda.metric$mcr, lda.metric$accuracy, lda.metric$sens, lda.metric$sp
                                                                                                       c("LASSO", lasso.metric$mcr, lasso.metric$accuracy, lasso.metric$sens, lasso.metric$sens,
                                                                                                       c("Ridge", ridge.metric$mcr, ridge.metric$accuracy, ridge.metric$sens, ridge.metric$sens,
                                                                                                       c("Bagging", bag.metric$mcr, bag.metric$accuracy, bag.metric$sens, bag.metric
                                                                                                       c("SVC", svc.metric$mcr, svc.metric$accuracy, svc.metric$sens, svc.metric$sp
                                                                                                       c("SVM (Radial Kernel)", svmR.metric$mcr, svmR.metric$accuracy, svmR.metric$s
names(mod.sum) <- c("Model", "Misclassification Rate", "Accuracy", "Sensitivity", "Specificity", "fbeta
kable(mod.sum, align = "lccccc", caption = "Table : Evaluation metrics for Housing Insecurity with Perm
       kable_paper("hover", full_width = F)%>%
```

Base on our table of results SVM with radial basis function is the best

kable_styling(font_size = 12)

```
Var <- varImp(svmR, scale = FALSE)
plot(Var)</pre>
```

Table 1: Table : Evaluation metrics for Housing Insecurity with Permanent Address as a response

Model	Misclassification Rate	Accuracy	Sensitivity	Specificity	fbeta
Logistic	0.12	0.88	0.88	0.88	0.88
LDA	0.13	0.87	0.85	0.9	0.87
LASSO	0.12	0.88	0.88	0.88	0.88
Ridge	0.12	0.88	0.86	0.89	0.87
Bagging	0.07	0.93	0.95	0.91	0.93
SVC	0.13	0.87	0.85	0.9	0.87
SVM (Radial Kernel)	0.08	0.92	0.93	0.9	0.92

