1 Quasi-Succinct Indexing

1.1 Index Compression

- Instantaneous codes storage of integers is proportional to size of integer
 - smaller numbers use fewer bits
- Gap encoding turns lists of increasing numbers into lists of smaller integers
 - smaller integers being the gaps between successive values

1.2 Brief Overview of Unary-Code

Unary code represents a natural number n as

- n 1's followed by a 0 for n non-negative, or
- n-1 1's followed by a 0 for n strictly positive.

We can exchanges 0's and 1's without loss of generality. The flipped version is often called negated unary code. Example: $5 \rightarrow 111110$ or 000001

1.3 Representation of a Monotone Sequence

Suppose we have the following monotone sequence for $x_i \in \mathbb{N}$:

$$x_0 \le x_1 \le \ldots \le x_{n-1} \le u,$$

where u is some upper bound. A question to consider: what is the most effective way to choose u? Two possible options are to choose u s.t. (1) $\log u \in \mathbb{N}$, or (2) $u = x_{n-1} + 1$.

- We store the sequence in a "high/low bit representation" using two bit-arrays.
 - The lower $l = \max\{0, \lfloor \log \frac{u}{n} \rfloor\}$ bits of each x_i are stored *explicitly* and *contiguously* in a **lower-bits array**.
 - The remaining upper-bits are stored as a sequence of *unary code gaps* in an **upper-bits** array.
 - * difference in upper bits = $\lfloor \frac{x_i}{2^l} \rfloor \lfloor \frac{x_{i-1}}{2^l} \rfloor$.
 - * For the sake of completeness, let $x_{-1} = 0$.
- This representation uses at most $2 + \lceil \log \frac{u}{n} \rceil$ bits **per element** meaning that this representation is **quasi-succinct**.

Proof. Each unary encoding uses 1 stop bit, and each other written bit increases the value of the upper bits by 2^l . This cannot happen more than $\left|\frac{x_{n-1}}{2^l}\right|$ times. This leads us to the following:

$$\left| \frac{x_{n-1}}{2l} \right| \le \left| \frac{u}{2l} \right| \le \frac{u}{2l} \le 2n.$$

Unless $\frac{u}{n}$ is a power of 2, we have

$$\left\lceil \log \frac{u}{n} \right\rceil = \left\lfloor \log \frac{u}{n} \right\rfloor + 1.$$

If $\frac{u}{n}$ is a power of 2, then

$$\left\lceil \log \frac{u}{n} \right\rceil = \log \frac{u}{n},$$

but the previous equation is bounded by n instead of 2n. The informational-theoretial limit is

$$\left\lceil \log \binom{u+n}{n} \right\rceil \approx n \log \left(\frac{u+n}{n} \right),$$

so we conclude that this representation is close to succinct.

1.4 Example

Suppose we have a list [5, 8, 8, 15, 32] with u = 36. We compute $l = \lfloor \log \frac{36}{5} \rfloor = 2$. Split the lower l bits of the binary representation of each element of the list.

5	8	8	15	32
++	++	++	++	++
1 01	10 00	10 00	11 11	1000 00
++	++	++	++	++

The lower-bits array:

To compute the upper-bits array, we find the difference between each of the upper bits and then convert to unary code.

5	8	8	15	32
++	++	++	++	++
1 01	10 00	10 00	11 11	1000 00
++	++	++	++	++
1	1	1	1	1
I	1	1	1	1
v	v	v	V	V
1	2	2	3	8

Recall that we choose $x_{-1}=0$ for consistency. The upper-bits array:

1.5 Recovering x_i

- Perform i unary code reads in the upper-bits array to p^{th} bit position
 - The value of the upper bits is exactly p-i
 - Example: To read the upper bits of 15, we perform 4 unary code reads to position 7 of the upper-bits array. Thus, the value of the upper bits of 15 is 7 4 = 3.
- Extract lower bits with random access at position il in the lower-bits array

1.6 Some Optimizations for Accessing

1.6.1 Forward Pointers

- Choose a quantum q.
- Store forward pointers at positions that we would reach after kq unary code reads.
 - This is the position immediately after kq 1 bits.
- Retrieve x_i by simulatinging $q \mid \frac{i}{q} \mid$ reads then $i \mod q$ sequential reads.
- On average, recovering x_i takes constant time.
- Memory wise, recovery takes at most 3q bits.
- A smaller q takes less reads, but requires more space.

1.6.2 Skip Pointers

- Store positions reached at negated unary code bits.
 - In other words, store pointers to the positions of each 1 in the upper-bits array.

A similar analysis of time and space complexity can be done, but I don't really feel like doing that right now. This method may not even be that helpful for what I want.

1.7 Quasi-Succinct Bitstream

1.7.1 Bitstream Layout

The desired Bitstream Layout is

```
+-----+
| metadata | p_0 | ... | p_{s-1} | 1_0 | ... | 1_{n-1} | u ... |
+-----+

Bitstream Layout
```

- n: number of elements
- u: upper bound of x_i
- $l = \max\{0, \lfloor \log \frac{u}{n} \rfloor\}$: number of bits of each element stored in lower-bits array
- q: arbitrary quantum
- $m = n + \lfloor \frac{u}{2^l} \rfloor$: maximum length of the upper-bits array
- $w = \lceil \log (m+1) \rceil$: width of the pointers
 - If u is not known, then the metadata must contain data to compute w.
- $s = \left| \frac{n}{q} \right|$: number of forward pointers
 - $-s \le \left\lfloor \frac{m}{q} \right\rfloor$ for skip pointers that point to negated unary codes
- d + sw: beginning position of lower-bits array
- sw + nl + d: beginning position of upper-bits array

1.7.2 Information in the Metadata

We want to store n, l, q, and w in the metadata in some order. Order does not matter, as long as, it is consistent and clearly marked in the implementation.