45. *Velocity* The graph shows the velocity, in feet per second, of a car accelerating from rest. Use the graph to estimate the distance the car travels in 8 seconds.

Figure for 45

Figure for 46

46. *Velocity* The graph shows the velocity of a car as soon as the driver applies the brakes. Use the graph to estimate how far the car travels before it comes to a stop.

Writing About Concepts

- 47. State the Fundamental Theorem of Calculus.
- 48. The graph of f is given in the figure.
 - (a) Evaluate $\int_{1}^{7} f(x) dx$.
 - (b) Determine the average value of f on the interval [1, 7].
 - (c) Determine the answers to parts (a) and (b) if the graph is translated two units upward.

Figure for 48

Figure for 49-54

In Exercises 49–54, use the graph of f shown in the figure. The shaded region A has an area of 1.5, and $\int_0^6 f(x) dx = 3.5$. Use this information to fill in the blanks.

49.
$$\int_0^2 f(x) dx =$$
 50. $\int_2^6 f(x) dx =$ **51.** $\int_0^6 |f(x)| dx =$ **52.** $\int_0^2 -2f(x) dx =$ **53.** $\int_0^6 [2 + f(x)] dx =$

54. The average value of f over the interval [0, 6] is

55. *Respiratory Cycle* The volume *V* in liters of air in the lungs during a five-second respiratory cycle is approximated by the model

$$V = 0.1729t + 0.1522t^2 - 0.0374t^3$$

where t is the time (in seconds). Approximate the average volume of air in the lungs during one cycle.

56. Blood Flow The velocity v of the flow of blood at a distance r from the central axis of an artery of radius R is

$$v = k(R^2 - r^2)$$

where k is the constant of proportionality. Find the average rate of flow of blood along a radius of the artery. (Use 0 and R as the limits of integration.)

57. Modeling Data A radio-controlled experimental vehicle is tested on a straight track. It starts from rest, and its velocity ν (in meters per second) is recorded in the table every 10 seconds for 1 minute.

t	0	10	20	30	40	50	60
v	0	5	21	40	62	78	83

(a) Use a graphing utility to find a model of the form

$$v = at^3 + bt^2 + ct + d$$

for the data.

- (b) Use a graphing utility to plot the data and graph the model.
- (c) Use the Fundamental Theorem of Calculus to approximate the distance traveled by the vehicle during the test.

J	58.	Modeling Data A department store manager wants to
		estimate the number of customers that enter the store
		from noon until closing at 9 P.M. The table shows the
		number of customers N entering the store during a
		randomly selected minute each hour from $t-1$ to t ,
		with $t = 0$ corresponding to noon.

t	1	2	3	4	5	6	7	8	9
N	6	7	9	12	15	14	11	7	2

- (a) Draw a histogram of the data.
- (b) Estimate the total number of customers entering the store between noon and 9 P.M.
- (c) Use the *regression* feature of a graphing utility to find a model of the form

$$N(t) = at^3 + bt^2 + ct + d$$

for the data.

(d) Use a graphing utility to plot the data and graph the model.