РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ Факультет физико-математических и естественных наук

Кафедра прикладной информатики и теории вероятностей

Отчёт по лабораторной работе №6 Разложение чисел на множители

Дисциплина: Математические основы защиты информации и информационной безопасности

Студент: Агеева Анастасия Сергеевна, 1032212304

Группа: НФИмд-02-21

Преподаватель: Кулябов Дмитрий Сергеевич,

д-р.ф.-м.н., проф.

Москва 2021

Содержание

1	Цель работы	4
2	Задание	5
3	Теоретическое введение 3.1 ρ -алгоритм Полларда	6 6
4	Выполнение лабораторной работы	8
5	Выводы	10
Сп	исок литературы	11

List of Figures

4.1	Сжимающая функция f	8
4.2	Результаты р-метода Полларда	8
4.3	Результаты р-метода Полларда	9

1 Цель работы

Цель данной лабораторной работы изучение алгоритмов разложения чисел на множители.

2 Задание

1. Реализовать программно алгоритм, реализующий р-метод Полларда.

3 Теоретическое введение

3.1 ρ -алгоритм Полларда

ρ-алгоритм (*ρ*-алгоритм) — предложенный Джоном Поллардом в 1975 году алгоритм, служащий для факторизации (разложения на множители) целых чисел. Данный алгоритм основывается на алгоритме Флойда поиска длины цикла в последовательности и некоторых следствиях из парадокса дней рождения. Алгоритм наиболее эффективен при факторизации составных чисел с достаточно малыми множителями в разложении [1].

Сложность алгоритма оценивается как $O(N^{1/4})$.

ho-алгоритм Полларда строит числовую последовательность, элементы которой образуют цикл, начиная с некоторого номера n, что может быть проиллюстрировано, расположением чисел в виде греческой буквы ho, что послужило названием семейству алгоритмов.

3.1.1 Современная версия

Пусть N составное целое положительное число, которое требуется разложить на множители. Алгоритм выглядит следующим образом: Случайным образом выбирается небольшое число x_0 и строится последовательность $\{x_n\}, n=0,1,2,...$, определяя каждое следующее как $x_{n+1}=F(x_n) \ (\mathrm{mod}\ N).$

Одновременно на каждом i-ом шаге вычисляется $d=\mathrm{GCD}(N,|x_i-x_j|)$ для каких-либо i,j таких, что j< i, например, i=2j. Если d>1, то вычисление заканчивается, и найденное на предыдущем шаге число d является делителем

N. Если N/d не является простым числом, то процедуру поиска делителей продолжается, взяв в качестве N число N'=N/d.

На практике функция F(x) выбирается не слишком сложной для вычисления (но в то же время не линейным многочленом), при условии того, что она не должна порождать взаимно однозначное отображение. Обычно в качестве F(x) выбираются функции $F(x)=x^2\pm 1 ({\rm mod}\, N)$ или $F(x)=x^2\pm a ({\rm mod}\, N)$. Однако функции x^2-2 и x^2 не подходят.

Если известно, что для делителя p числа N справедливо $p\equiv 1\,(\mathrm{mod}\,k)$ при некотором k>2, то имеет смысл использовать $F(x)=x^k+b$.

Существенным недостатком алгоритма в такой реализации является необходимость хранить большое число предыдущих значений x_j .

4 Выполнение лабораторной работы

1. Реализация р-метода Полларда

1. Задам функцию f(), обладающую сжимающими свойствами, в которую буду передавать числа n и x.

```
In [5]: H def f(x, n):
return (x**2 + 5)%n
```

Figure 4.1: Сжимающая функция f

2. Задам функцию pollard(), в которую буду передавать число n, разлагаемое на множители, и начальное значение c. По алгоритму, реализующему р-метода Полларда, осуществляется нахождение нетривиального делителя числа n. В качестве результата возвращается делитель или строка, сообщающая, что он не найден.

```
In [24]: W def pollard(n, c):
    a = c
    b = c
    b = c
    while True:
    a = f(a,n)%n
    b = f(f(b,n),n)%n
    d = euclid(abs(a-b), n)
    pprint(a, b, d)
    if 1 < d < n:
        p = d
    return p
    elif d == n:
    return Пелитель не найден"
```

Figure 4.2: Результаты р-метода Полларда

3. Вызову функцию для чисел n=1359331 и c=1. Алгоритм верно находит нетривиальный делитель числа n=1359331.

Figure 4.3: Результаты р-метода Полларда

5 Выводы

В ходе данной лабораторной работы я реализовала программно р-метода Полларда нахождения нетривиального делителя.

Список литературы

1. Ро-алгоритм Полларда [Электронный ресурс]. Википедия, 2019. URL: https://ru.wikipedia.org/wiki/Po-алгоритм_Полларда.