Métodos de búsqueda

Un algoritmo de búsqueda es aquel que acepta un argumento a e intenta encontrar un registro cuya llave es a. El algoritmo puede retornar todo el registro o, lo que es más frecuente, retorna un apuntador a este registro. Es posible que no tenga éxito la búsqueda de un argumento particular en una tabla; es decir, no hay un registro en la tabla con este argumento como su llave. En este caso, el algoritmo retorna nulo.

Búsqueda Secuencial

El más sencillo de los métodos de búsqueda es la búsqueda secuencial. Esta búsqueda es aplicable a una tabla organizada como un arreglo o como una lista vinculada. Supongamos que k es un arreglo de n llaves, de k(0) a k(n-1), y que r es un arreglo de registros, r(0) a r(n-1), de modo que k(i) es la llave de r(i). También supongamos que key es un argumento de búsqueda. Queremos retornar el entero más pequeño i de modo que k(i) sea igual a key si existe tal i y que sea -1 en caso contrario. el siguiente es el algoritmo para hacer esto:

El algoritmo examina cada llave por turnos. Después de encontrar una que coincida con el argumento de búsqueda, se retorna su índice. Si no se encuentra coincidencia se retorna -1.

Este algoritmo tiene un grave inconveniente: sea cual sea el resultado (existe/no existe el elemento) se recorre el vector completo. El algoritmo tiene una mejora: detectar el momento de localizar el elemento y terminar el bucle. Así, el algoritmo mejorado se

puede realizar con un bucle while o repeat, y utilizando unas banderas (interruptor) que detecten cuando se encuentra el elemento.

Búsqueda Binaria

La búsqueda lineal, por su simplicidad, es buena para listas de datos pequeñas para listas grandes es ineficiente; la búsqueda binaria es el método idóneo. Se basa en el conocido método de divide y vencerás.

Este método tiene una clara expresión en la búsqueda de una palabra en el diccionario. Cuando se busca una palabra no se comienza la búsqueda en la página 1 y se sigue secuencialmente, sino que se abre el diccionario por una página donde aproximadamente se piensa puede estar la palabra, es decir, se divide el diccionario en do partes; al abrir la página se ve si se ha acertado o en qué parte (la primera o la segunda) se encuentra la palabra buscada. Se repite este proceso hasta que por divisiones y aproximaciones sucesivas se encuentra la palabra.

Bibliografias

Luis Joyane Aguilar, Ignacio Zahonero Martínez. (1998). Estructura de datos. España: McGraw-Hill.