第九周作业

1. 求微分方程组 dxtt) = Axtt) 的一般解。

(1)
$$A = \begin{pmatrix} -5 & 1 & 4 \\ -12 & 3 & 8 \\ -6 & 1 & 5 \end{pmatrix}$$
; (2) $A = \begin{pmatrix} 4 & 2 & 2 \\ -2 & 0 & -4 \\ 0 & 0 & 4 \end{pmatrix}$

- 2. 说 A E Mn(C), 证明:
 - (1) $\cos A = \frac{1}{2} (e^{iA} + e^{-iA})$, $\sin A = \frac{1}{2i} (e^{iA} e^{-iA})$
 - $(2) \cos^2 A + \sin^2 A = I_n.$
- (提示: cosA, eiA, e-iA 按幂级数展开比较, (2)由(1)可得)
- 3. 计算 $Sin(e^{CIn})$ 和 $cos(e^{CIn})$,其中 C是非零常数。 (提示: $e^{CIn} = e^{c} \cdot I_n$)
- 4. 在 \mathbb{R}^2 中, $\forall \vec{a} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$, $\vec{b} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$ 定义二元函数 $f(\vec{a}, \vec{\beta}) = a_1b_1 a_2b_2 a_2b_1 + 2a_2b_2$ 判断 f 是否 \mathbb{R}^2 上一个内积 ?
- 5. C^3 中取标准内积,设 $\vec{a} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\vec{a} = \begin{pmatrix} 1 \\ i \end{pmatrix}$, $\vec{k} \vec{\beta} \in C^3$ 满足 $\vec{\beta} \perp \vec{a}$,且 $\vec{\beta}$ 是 \vec{a} , , \vec{a} 的线性组合, $|\vec{\beta}| = 1$.

- 6. 设 V 是内积空间, \vec{a} , $\vec{\beta} \in V$. 证明. $|\vec{a} + \vec{\beta}|^2 + |\vec{a} \vec{\beta}|^2 = 2|\vec{a}|^2 + 2|\vec{\beta}|^2$.
- 7. 设 V 是 n 维内积空间, $\{\vec{e}_i, ..., \vec{e}_n\}$ 是 -组基. 设 $\vec{a}_i, \vec{b}_i \in V$,若 $(\vec{a}_i, \vec{e}_i) = (\vec{b}_i, \vec{e}_i)$ i=1,...,n 证明: $\vec{a}_i = \vec{b}_i$.
- 8. 设 $V = \mathbb{R}^n$,取标准内积, $\{\vec{e}_i, ..., \vec{e}_i\}$ 是一组基. $C_i, ..., C_n \in \mathbb{R}$,求证: 存在唯一的 $\vec{a} \in V$,使 $(\vec{a}_i, \vec{e}_i) = C_i$ i = 1, ..., n. (提示: 设 $\vec{a} = x_1 \vec{e}_i + ... + x_n \vec{e}_n$, $(\vec{a}_i, \vec{e}_i) = C_i$ 将给出一个 线性方程组,证明系数矩阵可能,又存在 ⇒ 此方程组有解)