8. Let $f(X) \in k[X]$ be a polynomial of degree n. Let K be its splitting field. Show that [K:k] divides n!.

Proof. Induct on n. This is trivial if n = 0, since the splitting field of the constant polynomial is k, which has degree 1, and 1 divides 0! = 1. So suppose n > 0 and the proposition holds for all polynomials of degree at most n. Let f have degree n + 1.

If f is irreducible, then E = k[X]/(f(X)) has degree n+1 over k, and f has at least one linear factor $X - \alpha$ over E, where $\alpha = \overline{X}$. By induction, the splitting field of $\frac{f(X)}{X - \alpha}$ over E (which equals that of f over k) is an extension of degree dividing n!, since $\frac{f(X)}{X - \alpha}$ has degree at most n. Thus, the degree of K over k divides (n+1)!.

Suppose now that f is reducible, meaning f(X) = h(X)g(X) where $\deg(h) = r$ and $\deg(g) = s$. By induction, the splitting field K_h of h over k has degree dividing r!, and the splitting field of g over K_h has degree dividing the degree of g over K_h , which is less than s, so the degree of K_g over K_h divides s!. This latter extension gives the field K, however. So the degree of K_g over K_h divides of the original polynomial f was f(x) = f(x) + f(x) +

9. Find the splitting field of $X^{p^8} - 1$ over the field $\mathbf{Z}/p\mathbf{Z}$.

Proof. This is simply \mathbb{F}_p , since $X^{p^8}-1=(X-1)^{p^8}$ splits completely over this field. In the case where p is odd, this factorization holds because $(-1)^{p^8}=-1$. If p=2, then -1=1 in \mathbb{F}_p . So this factorization holds for all p.

- 10. Let α be a real number such that $\alpha^4 = 5$.
 - (a) Show that $\mathbf{Q}(i\alpha^2)$ is normal over \mathbf{Q} .

Proof. The minimal polynomial of $i\alpha^2$ over \mathbf{Q} is $X^2 + 5$, which splits completely as $(X + i\alpha^2)(X - i\alpha^2)$ over this extension. Since this polynomial is irreducible, it does not split over any smaller extension (the only other is \mathbf{Q}), so this is the splitting field of $X^2 + 5$, hence is normal.

(b) Show that $\mathbf{Q}(\alpha + i\alpha)$ is normal over $\mathbf{Q}(i\alpha^2)$.

Proof. $\alpha + i\alpha$ satisfies $X^4 + 20$, since $(\alpha + i\alpha)^4 = \alpha^4(1+i)^4 = -20$. However, over $\mathbf{Q}(i\alpha^2)$ this has a factor of $X^2 + 2i\alpha^2$, which is the minimal polynomial of $\alpha + i\alpha$ over $\mathbf{Q}(i\alpha^2)$. However, this polynomial is irreducible, so $\mathbf{Q}(\alpha + i\alpha)$ is the splitting field of $X^2 + 2i\alpha^2$ over $\mathbf{Q}(i\alpha^2)$.

(c) Show that $\mathbf{Q}(\alpha + i\alpha)$ is not normal over \mathbf{Q} .

Proof. The minimum polynomial of $\alpha + i\alpha$ over \mathbf{Q} is $X^4 + 20$, whose roots are $\pm \alpha \pm i\alpha$. However, $\mathbf{Q}(\alpha + i\alpha)$ does not contain $\alpha - i\alpha$. If it did, then it would also contain α , and thus i as well. Since α has degree 4 over \mathbf{Q} , $\alpha \in \mathbf{Q}(\alpha + i\alpha)$ would mean $\mathbf{Q}(\alpha) = \mathbf{Q}(\alpha + i\alpha)$, and so $i \in \mathbf{Q}(\alpha) \subseteq \mathbf{R}$, a contradiction. So this extension is not normal.

11. Describe the splitting fields of the following polynomials over \mathbf{Q} , and find the degree of each such splitting field.

I will give the splitting fields as subfields of **C**.

- (a) $X^2 2$ $\mathbf{Q}(\sqrt{2})$, degree 2.
- (b) $X^2 1$ **Q**, degree 1.
- (c) $X^3 2$ $\mathbf{Q}(\sqrt[3]{2}, \omega) \text{ where } \omega = \frac{-1 + \sqrt{-3}}{2}, \text{ degree 6}.$

Proof. The roots are $\sqrt[3]{2}$, $\sqrt[3]{2}\omega$, and $\sqrt[3]{2}\omega^2$. X^3-2 is irreducible over \mathbf{Q} , so $\mathbf{Q}(\sqrt[3]{2})$ has degree 3. The minimum polynomial for ω is X^2+X+1 , which is also irreducible over $\mathbf{Q}(\sqrt[3]{2})$, and so the total extension has degree $2 \cdot 3 = 6$.

(d) $(X^3 - 2)(X^2 - 2)$ $\mathbf{Q}(\sqrt{2}, \sqrt[3]{2}, \omega)$, degree 12.

Proof. This is simply the compositum of the fields from (a) and (c). Since $\sqrt{2} \notin \mathbf{Q}(\sqrt[3]{2}, \omega)$, the total degree must be $2 \cdot 6 = 12$.

(e) $X^2 + X + 1$ $\mathbf{Q}(\omega)$, degree 2.

Proof. The only roots are $\pm \omega$, which are not in **Q**.

(f) $X^6 + X^3 + 1$ $\mathbf{Q}(\zeta_9) \text{ where } \zeta_9 = e^{\frac{2\pi i}{9}}, \text{ degree } 6.$

Proof. The roots of this polynomial are the primitive 9th roots of unity, which are ζ_9^k for k relatively prime to 9. This is because each of these cubes to a primitive cube root of unity, and $X^6 + X^3 + 1 = (X^3)^2 + (X^3) + 1$.

(g) $X^5 - 7$ $\mathbf{Q}(\sqrt[5]{7}, \zeta_5), \zeta_5 = e^{\frac{2\pi i}{5}}, \text{ degree } 20.$

Proof. The roots are $\zeta_5^k \sqrt[5]{7}$ for $0 \le k \le 4$. $\sqrt[5]{7}$ has degree 5 over \mathbf{Q} and ζ_5 has degree 4. For $1 \le k \le 4$, $\zeta_5^k \notin \mathbf{R}$, so this element has degree 4 over $\mathbf{Q}(\sqrt[5]{7})$ as well. Thus, the extension has degree $4 \cdot 5 = 20$.

12. Let K be a finite field with p^n elements. Show that every element of K has a unique p-th root in K.

Proof. This is simply a restatement of the fact that the Frobenius endomorphism φ is an automorphism. Recall that $(\alpha+\beta)^p = \alpha^p + \beta^p$ in K (prove using the binomial theorem, p divides $\binom{p}{m}$ if $1 \leq m \leq p-1$). Obviously $(\alpha\beta)^p = \alpha^p\beta^p$. Since $1 \mapsto 1$, the kernel is nonzero. So this map is an embedding. Since K is finite, it is an isomorphism.

13. If the roots of a monic polynomial $f(X) \in k[X]$ in some splitting field are distinct, and form a field, then char(k) = p and $f(X) = X^{p^n} - X$ for some $n \ge 1$.

Proof. Let K be the field formed by these roots. K must be finite, since f has finitely many roots. By the uniqueness of finite fields, $K = \mathbb{F}_{p^n}$ for some $n \ge 1$ and some p, which is its characteristic. We know then that

$$f(X) = \prod_{\alpha \in K} (X - \alpha) = \prod_{\alpha \in \mathbb{F}_{p^n}} (X - \alpha) = X^{p^n} - X.$$