BPI-Scratch User Manual

V0.1.0 2015-03-24

Revision History

Revision	Data	Author	Description	
0.1.0	2015-03-24	Alessia	Initial version	

Table of Contents

目录

1.	Installation	
	1.1 Pre-requisites	3
	1.2 Run	4
2.	Scratch Commands	4
	2.1 GPIOs	
	2.1.1 Introduction	4
	2.1.2 Example 1 – GPIO Board	
	2.2 I2C	6
	2.2.1 Introduction	6
	2.2.2 Example 1 – USB Hub	6
	2.3 SPI	8
	2.3.1 Introduction	8
	2.3.2 Example 1 – LNdigital	8
	2.4 LN Digital	
	2.4.1 Introduction	9
	2.4.2 Example 1 – LNIO	9

1. Installation

1.1 Pre-requisites

The Scratch Handler Program: LeScratch is implemented in Python for hardware IO and extensions. It provides the functions to communicate with other boards. Links@GitHub.https://github.com/BPI-SINOVOIP/BPI-Scratch

\$ sudo python setup.py install

\$ sudo python3 setup.py install

\$ python3 setup.py install

Enable the SPI module

The extension boards communicate with the Banana Pi/Pro through the interfaces. The I2C module is included in the latest Banana Pi/Pro distributions and is enabled by default. But the SPI driver should be enabled manually::

\$ sudo modprobe spi-sun7i

And you can permanently enable it by commenting out the ``blacklist spi-sun7i`` line in ``/etc/modprobe.d/bpi-blacklist.conf``.

\$ sudo nano /etc/modprobe.d/bpi-blacklist.conf

Then enable spi modules by adding "spi-sun7i" and "spidev" to "/etc/modules"

\$ sudo nano /etc/modules

Enable the MESH mode for Scratch

Please refer to http://wiki.scratch.mit.edu/wiki/Mesh => 1.3 Mesh by Modification of Scratch for details. Reboot after setting up the above steps.

1.2 Run

The file LeScratch.py can be run independently by either of the following: and it is suggested to start the Mesh mode Scratch first, and then run the python script, such that the connections will be built once the script runs.

\$ sudo python LeScratch.py

or

\$ sudo python3 LeScratch.py

2. Scratch Commands

2.1 GPIOs

2.1.1 Introduction

In the first place, remember to declare which GPIOs are going to be used by broadcast g[num]in and g[num]out, "in" means this GPIO will be the input and "out" means this GPIO will be an output. Then the declared GPIOs can be set to 1 or 0 easily:

Set the GPIO to High/1: g[num]on Set the GPIO to Low /0: g[num]off

Usages of the General Purpose INPUT OUTPUT Controls:

Command Format:	g[num]in	g[num]out	g[num]on	g[num]off
	Input	Output	on/high	off/low

Number out of the List [4, 5, 6, 12, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27]

2.1.2 Example 1 – GPIO Board

Purchase link: http://www.lenovator.com/

The GPIO board can be used to indicate the status of all the 40 pins on Banana Pi/Pro. The switches are related to some GPIO that can be used as input detection.


```
When keyboard Space is pressed
when space key pressed
                                          Declare GPIO 17 as input
broadcast g17in▼
                                          Declare GPIO 4 as output
broadcast g4out▼
                                          While true
forever
                                          Update step
 broadcast update▼
                                          Check
        GPIO-17▼ sensor value = 0
                                          if GPIO 17 = 0
  broadcast g4on▼
                                          Set GPIO 4 to on/high
   wait 1 secs
                                          Wait for 1 second
                                          Set GPIO 4 off/low
   broadcast g4off▼
                                          Wait for 1 second
   wait (1) secs
                                          {Forever loop}
```

2.2 I2C

2.2.1 Introduction

I2C has various address, once you attach an extension board to banana pro/pi, open the terminal and use i2c-tools to detect its address:

```
$ sudo i2cdetect -y 2
```

To specify the address, use the following formats:

```
Command "i2"+ "address 0x(20-27)" + "a" + "bit (0 to 7)" for Port A Command "i2"+ "address 0x(20-27)" + "b" + "bit (0 to 7)" for Port B Command "bit"+ "address 0x(20-27)" + "a" + "bit (7 to 0)" for Port A Command "bit"+ "address 0x(20-27)" + "b" + "bit (7 to 0)" for Port B
```

Examples:

```
i221a1 => i2c \text{ address } 0x21 \text{ Port A bit } 1 \text{ ON} 
i222b4 => i2c \text{ address } 0x22 \text{ Port B bit } 4 \text{ ON} 
bit22b01010101 => \text{ address } 0x22 \text{ port B from bit } 7 \text{ to } 0, \text{ output } => 0b01010101 
bit21a01010101 => \text{ address } 0x21 \text{ port A from bit } 7 \text{ to } 0, \text{ output } => 0b01010101 
bit21aon => \text{ address } 0x21 \text{ Port A all ON, } 0b11111111 
bit21boff => \text{ address } 0x21 \text{ Port B all OFF/clear, } 0b00000000 
bit22aoff => \text{ address } 0x22 \text{ Port A all OFF/clear}
```

2.2.2 Example 1 – USB Hub

The USB Hub extension board has (4 Port USB Hub & 23017 x2 32GPIO) use I2C communication with banana pro/pi such that Scratch can control the extended functions.

Purchase link: http://www.lenovator.com/

2.3 SPI

2.3.1 Introduction

LN Digital has one 16 bits mcp23s17 that communicates with banana pro using SPI. Mcp23s17 has 8 various addresses that allow extending 8 boards at the same time.

```
Command "sp"+ "address (0-7)" + "a" + "bit (0 to 7)" for Port A
Command "sp"+ "address (0-7)" + "b" + "bit (0 to 7)" for Port B
Command "bits"+ "address (0-7)" + "a" + "bit (7 to 0)" for Port A
Command "bits"+ "address (0-7)" + "b" + "bit (7 to 0)" for Port B

Examples: (address 0-7 = 0x40-4E)
sp0a1 => spi address 0x40 Port A bit 1 ON
sp1b4 => spi address 0x42 Port B bit 4 ON
bits2b01010101 => address 0x44 port B from bit 7 to 0, output => 01010101
bits3a01010101 => address 0x46 port A from bit 7 to 0, output => 01010101
bits4aon => address 0x48 Port A all ON, 0b11111111
bits5boff => address 0x4B Port A all OFF/clear, 0b000000000
bits6aoff => address 0x4B Port A all OFF/clear
```

2.3.2 Example 1 – LNdigital

LNdigital can use general SPI format commands to control or use LNIO commands as it will be explained in the next part.

2.4 LN Digital

2.4.1 Introduction

LN Digital has one 16 bits mcp23s17 that can be configured as 8 bits port A and port B or 16 bits. Each port (A/B) can be configured as either input or output. By default it is configured as port A – output (1 to 8), port B – input (1 to 8).

LNDI[num]in LNDI[num]out LNDI[num]on LNDI[num]off Number (1 to 8)

Set the output to High/1: LNDI [num]on Set the output to Low /0: LNDI [num]off

2.4.2 Example 1 – LNIO

The extension board LN Digital use SPI communication with banana pro / pi such that Scratch can access the following:

- 8 Open-Collector Outputs
- **8 LED Indicators**
- 8 Digital Inputs
- 4 Tactile Switches (The interrupt event is set to listen on the 4 inputs switch.)
- 2 Changeover Relays (Port A output bit1 relay 1, Port A output bit2 relay 2.)

Purchase link: http://www.lenovator.com/LN-Digital%28PCBA%29

When space is pressed
LNDI1out, LNDI2out, LNDI3out,
Declare LNDI1in,
While true
Update info
If LNDI1in is detected as input button
pressed

Set LNDI1, 3 out to on/high Set LNDI2 out to off/low Else (no input is detected)

Set LNDI1, 3 out to off/low Set LNDI2 out to on/high