Trabajo Práctico "Disipadores"

Curso 2023 - Tecnología de los Materiales Electrónicos

1st Ramiro Belsito

Estudiante
Instituto Tecnológico de Buenos Aires
Buenos Aires, Argentina
rabelsito@itba.edu.ar

2nd Facundo Caviglia

Estudiante

Instituto Tecnológico de Buenos Aires

Buenos Aires, Argentina
fcaviglia@itba.edu.ar

Resumen—En el siguiente informe se analizará la utilidad de dos disipadores proveídos por la cátedra para el buen funcionamiento de un regulador de tensión con encapsulado TO220.

I. INTRODUCTION

Se analizará la resistencia térmica de estos por medio de la práctica y se comparará con los valores obtenidos por medio de las ecuaciones teóricas y la hoja de datos del fabricante. Con estos datos se realizará el circuito térmico equivalente y se intentará realizar simulaciones para poder contrastar los resultados obtenidos empíricamente. Además se estudiará la influencia del posicionamiento del disipador, frente a la posición óptima.

II. FORMA Y DIMENSIONES

Figura 1. Plano del disipador 1

Figura 2. Plano del disipador 2

Ambos disipadores son estampados sobre una plancha de aluminio anodizado, y luego tratado con otros procesos mecánicos para obtener la forma de cada uno. Por su método de fabricación cada disipador es una pieza única, a diferencia de los fabricados por extrusión, que son piezas continuas cortadas a la medida requerida

III. CÁLCULOS TEÓRICOS

La resistencia térmica de un disipador dada por convección natural se calcula mediante la siguiente ecuación:

$$R_{sa} = \frac{1}{1.34 \cdot A_s} \cdot \left(\frac{d_v}{\Delta T}\right)^{\frac{1}{4}} \tag{1}$$

Donde A_s es la superficie de contacto entre el disipador y el aire, d_v es la distancia vertical.

III-A. Disipador 1

La temperatura de trabajo máxima del LM317 se encuentra en 150°C, y la temperatura ambiente se presume a 25°C. Obteniendo asi $\Delta T=125$ °C. Meidante la función de análisis de propiedades físicas del modelado en SolidWorks, se obtuvieron los datos pertinentes al cálculo de la resistencia: $A_d=6915,40\ mm^2\ d_v=25,55\ mm.$

$$R_{sa} = \frac{1}{1,34 \cdot 6915,40mm^2} \cdot \left(\frac{25,55mm}{150-25}\right)^{\frac{1}{4}} = 12,9C/W$$

III-B. Disipador 2

Utilizando la misma metodología que en el Disipador 1 y frente a las mismas condiciones, se obtuvieron los siguientes datos: $A_d = 1196,35 \ mm^2 \ d_v = 9,67 \ mm$.

CHEQUEAR ESTE RESULTADO

$$R_{sa} = \frac{1}{1,34 \cdot 1196,35mm^2} \cdot \left(\frac{9,67mm}{150 - 25}\right)^{\frac{1}{4}} = 58,5C/W$$

DIBUJAR CIRCUITO

IV. MEDICIONES EXPERIMENTALES

A continuación pueden observarse las mediciones llevadas a cabo en el laboratorio. Se analizaron distintas posiciones para cada disipador y se concluirá su posición más eficiente para la convección natural. Se estudiará la corriente en la salida del LM317 y su tensión, así teniendo idea de la

potencia que está disipando el componente. Además, se analiza el comportamiento del disipador con la presencia de grasa siliconada.

Cuadro I MEDICIONES SOBRE LOS DISIPADORES

Mediciones	Número de Disipador		
de Laboratorio	Sin Disipador	Disipador 1	Disipador 2
I_{min} (sin grasa)	0,21A	0,9A	0,45A
I_{mix} (con grasa)	-	1,11A	0,52A
V	12v	11,96v	12v
Q (sin grasa)	2,52W	10,76W	5,4W
Q (con grasa)	-	13,28W	6,24W

realizar analisis del cuadro 1

Cuadro II Diferencias entre las posiciones del Disipador

Mediciones	Número de Disipador		
de Laboratorio	Disipador 1	Disipador 2	
I_{min} (posicion 1)	0,9A	0,45A	
I_{min} (posicion 2)	0,82A	0,43A	
I_{min} (posicion 3)	0,85A	0,44A	

realizar analisis del cuadro 2

V. VENTILACIÓN FORZADA

VI. CONCLUSIONES