COMP.SGN.100 Signaalinkäsittelyn perusteet, Harjoitus 1, 15.-16.3.2021

- (Kynä & paperi) Analoginen signaali koostuu yksittäisestä siniaallosta, jonka taajuus on 1000 Hz. Signaalista otetaan näytteitä 0.0006 sekunnin välein.
 - (a) Tapahtuuko laskostumista?
 - (b) Jos vastauksesi on myönteinen, miksi taajuudeksi em. sinisignaali tulkitaan, ts. mille taajuudelle se laskostuu?
 - (c) Mikä olisi riittävä näytteenottotaajuus laskostumisen estämiseksi?

(%)	laskastuminen tapahtuu kun näytteenoton Veli on lilan iso.	
	eli Fo pita olla 2 kertoo suurenpi kuin signealin togi	nes
	Fs = 0,0006 = 1666,67 < 20 1000	
· b).	Fo/2 on Nyquistin togues joka pitaz olla suurenpi kuin	No.
	mitartavas tasjuutta silloin laskastuminen si tapahalu.	
	1 askostunut = fs-1000 Hz = 666, 67 Hz.	
(0)	Fs/2=1000Hz > Fs=2000Hz	

- 2. (Kynä & paperi) Tarkkaan ottaen Nyquistin rajataajuus ei riitä laskostumisen välttämiseksi. Tarkastellaan tällaista tilannetta tässä tehtävässä.
 - (a) Signaalista $x(t) = \sin(20\pi t)$ otetaan näytteitä 0.05:n sekunnin välein alkaen hetkestä t=0 s. Määritä viiden ensimmäisen näytteen arvo. Voidaanko alkuperäinen signaali rekonstruoida näistä näytearvoista?
 - (b) Millaiset näytteet saadaan jos näytteenotto aloitetaan hetkellä t = 0.025 s? Mitkä näytearvot tällöin saadaan? Voidaanko alkuperäinen signaali rekonstruoida näistä näytearvoista, vai voisivatko nämä näytteet esittää jotain muutakin samantaajuista signaalia?

a) f = f = 0,05 = 1 = 20 HZ = F8	b) t=0,0253. Fs = 40Hz
t = 0 × (t) = 0	t=0 /(+)=4
t=0,05 x(1) < sin(7) = 0	t=0,025 X(t)=1
t=0, X(2) = sin(271) =0	t=0,05 x(t)=0 t=0,075 x(t)=1
$t = 0, 15$ $\times (3) = 5/7 (371) = 0$	1=0, X(+)=0
$t = 0.2$ $\times (4) = 9i \cdot (4\pi) = 0$ $t = 0.25 \times (5) = 3i \cdot (5\pi) = 0$	Fs/2 > f=10Hz eli
alkuperainen: $W = \frac{2\pi}{3} = 20\pi$	rekonstru
T = 200 = 10 f = = 10 Hz	Myquistin teajuus onnistuur.
kylla pystyy, Fg/2 > f	