

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS

(Universidad del Perú, DECANA DE AMÉRICA)

FACULTAD DE INGENIERÍA DE SISTEMAS E INFORMÁTICA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA DE SOFTWARE

SÍLABO

"Adaptado en el marco de la emergencia sanitaria por el COVID-19"

I. DATOS GENERALES

ASIGNATURA : Física Electrónica

CÓDIGO : 202W0303

NÚMERO DE CRÉDITOS : 5.0

MODALIDAD : Presencial

CICLO : III

SEMESTRE ACADÉMICO : 2023-I

DURACIÓN DEL CURSO : 17 semanas

NÚMERO DE HORAS : 4 TEORÍA : 2 PRACTICA 2

DOCENTE : Fanny Esmeralda Mori Escobar

Fanny.mori@unmsm.edu.pe

II. SUMILLA

Esta asignatura de formación general, de naturaleza teórico practica, tiene el propósito de que los alumnos de ingeniería de software estudien los principios básicos que explican diversos fenómenos eléctricos y magnéticos, así como sus aplicaciones prácticas.

La primera parte comprende el estudio de la electricidad: carga eléctrica, ley de Coulomb, campo electrostático, ley de Gauss, Potencial electrostático, capacitores y materiales dieléctricos.

La Segunda Parte trata la electrodinámica: corriente eléctrica, circuitos de corriente continua, campo magnético, ley de Biot-Savart y sus aplicaciones, ley de Ampere, ley de Faraday-Lenz y sus aplicaciones, inductancia, materiales magnéticos (diamagnéticos, paramagnéticos, ferromagnéticos), magnetización, corriente alterna, circuitos de corriente alterna y ondas electromagnéticas.

III. LOGROS DE APRENDIZAJE (competencias de la asignatura)

Al finalizar esta asignatura, el alumno:

- Comprende y analiza el impacto de las leyes físicas de la electricidad y el magnetismo en su ámbito profesional y su comunidad con facilidad y fluidez.
- > Desarrolla habilidades y destrezas mediante métodos experimentales, para descubrir y comprobar las leyes y procesos que cotidianamente se presentan en la naturaleza.
- Relaciona los conceptos adquiridos y realiza una correcta interpretación física del problema y en consecuencia una acertada solución física matemática del mismo.

IV. CAPACIDADES

El estudiante desarrollará las siguientes capacidades:

- Fundamenta la importancia de los principios que rigen las leyes de la electricidad y el magnetismo en la materia.
- Analiza y comprende las leyes de la física y los procesos que se presentan en la naturaleza.
- Contribuye a la formación ética y valores humanos a través del estudio y reflexión del valor de la ciencia y del desarrollo tecnológico sobre nuestras vidas.

V. PROGRAMACIÓN DE CONTENIDOS

UNIDAD	SEMANA	TEMAS
PRIMERA		Carga Eléctrica y Ley de Coulomb. Introducción. Propiedades fundamentales de los
UNIDAD	1 ^{ra.}	cuerpos electrizados. Ley d Coulomb. Unidades de carga eléctrica. Aplicaciones de la
01(12112	-	Ley de Coulomb en distribuciones de carga discretas y en distribuciones de carga
		continuas. Problemas de aplicaciones. El Campo Electroestático. Introducción. Concepto de campo eléctrico. Definición de
		Intensidad del campo Eléctrico. Unidades de Medida de la Intensidad del Campo
	2 ^{da.}	Eléctrico. Campo eléctrico debido a distribuciones discretas de carga Eléctrica. El
	_	dipolo eléctrico. El dipolo en un campo eléctrico externo. Campo eléctrico de
		distribuciones continuas de carga, Problemas de aplicación.
		Ley de Gauss para el Campo Eléctrico. Introducción. Líneas de fuerza del campo
	3 ^{ra.}	eléctrico y sus propiedades. Definición de flujo eléctrico. Ley de Gauss en su forma
		integral. El campo eléctrico de conductores. Ley de Gauss en su forma diferencial.
CECUNDA		Aplicaciones de la Ley de Gauss. Problemas de aplicación. Potencial Electrostático. Introducción. Potencialidad de campos electrostáticos.
SEGUNDA	440	Diferencia de potenciales. Potencial electrostático debido a una carga puntual.
UNIDAD	4 ^{ta.}	Unidades de medida. Potencial de distribuciones discretas. Potencial de distribuciones
		discretas. Potencial de distribuciones continúas de carga. Problemas de aplicación.
		Energía Potencial Electrostática. Energía potencial de distribuciones de carga
	5 ^{ta.}	discretas y continuas. Superficies equipotenciales. Relación diferencial entre el campo
		electrostático y el potencial. Problemas de aplicación.
	6 ^{ta.}	Capacidad Eléctrica y Condensadores . Introducción. Capacitancia de cuerpos cargados. Capacitancia de condensadores. Unidades de medida. Condensadores en
	0	serie y en paralelo. Problemas de aplicación.
TERCERA		Dieléctricos. Introducción. Fenómenos de polarización eléctrica. Desplazamiento
	7 ma.	eléctrico. Ley de Gauss en su forma general. Energía almacenada en los
UNIDAD	/ ····a:	condensadores. Densidad de energía eléctrica. Los tres vectores eléctricos. Problemas
		de aplicación.
	8 ^{va.}	Examen Parcial
	gna.	Corriente eléctrica. Introducción. Intensidad de densidad de corriente. Velocidad de
	9	arrastre en los conductores. Ley de Ohm. Fuerza electromotriz. Ley de Joule. Resistencias en serie y en paralelo.
		Circuitos de Corriente Eléctrica. Caída de potencial. Leyes de Kirchhoff.
	10 ^{ma.}	Instrumentos de medición. Voltímetro, amperímetro, potenciómetro. Circuitos RC
		simples. Problemas de aplicación.
CUARTA		El Campo Magnético. Introducción. Vector de inducción magnética. Líneas de
UNIDAD	11 ^{va.}	inducción magnética. Fuerza magnética sobre partículas cargadas. Unidades de
UNIDAD	''	medida. Ecuación de Lorente. Fuerza magnética sobre corrientes eléctricas. El dipolo
		magnético. Problemas de aplicación.
		Ley de Bio-Savart. Introducción. Campo magnético generado por una partícula
	12 ^{va.}	cargada en movimiento y por corrientes eléctricas. Cálculo del campo magnético
		producido por configuraciones de corrientes eléctricas. Cálculo del campo magnético
		producido por configuraciones de corrientes eléctricas. Problemas de aplicación. Ley de Ampere en su Forma Integral. Introducción. Aplicaciones de la Ley de
	13 ^{va.}	Ampere. Ley de Ampere en su forma diferencial. Similitudes y diferencias entre el
		campo eléctrico y el campo eléctrico y el campo magnético.
		Inducción Electromagnética. Introducción. Ley de Inducción de Faraday. Ley de
	14 ^{va.}	Lenz. Problemas de aplicación. Inductancia mutua y autoinductancia. Inductores en
		serie y en paralelo. Energía magnética.
	15 ^{va.}	Examen Final
	16 ^{va.}	Entrega de Promedio Final

Se detallan las actividades sincrónicas y asincrónicas que se realizarán durante cada unidad, teniendo en cuenta que la actividad sincrónica está en relación con el desarrollo de los contenidos conceptuales y las actividades asincrónicas con relación a los contenidos procedimentales de la asignatura.

Unidades	Actividades	Recursos	Estrategias
Primera Unidad	ACTIVIDADES ASINCRONICA Revisión del silabo Elección de delegado ACTIVIDADES SINCRONICAS Videoconferencia utilizando la Plataforma de Google Meet. Desarrollo de la clase participativa. Videoconferencia Revisión de avance de proyecto de investigación	 Rubrica Sílabo Normas de participación Presentación del material Formulario ppt Simuladores: Phet, Vascak Videos Plataforma virtual de Google Meet Rubricas 	 Revisión de la presentación de los contenidos. Exposición Conformación de grupos de estudiantes y asignación de tareas a las cuales accederán en forma virtual. Asignación individual de tareas y cuestionarios (tests) las cuales accederán en forma virtual.
Segunda Unidad	ACTIVIDADES ASINCRÓNICAS Revisión de comunicados, mensajes. Revisión foros y tareas. Revisión de la presentación de los contenidos y la agenda de la sesión. ACTIVIDADES SINCRÓNICAS Videoconferencia utilizando la Plataforma de Google Meet Desarrollo de la clase participativa e inmediata. Revisión de avance de proyecto de investigación	Quizizz Simuladores: Phet, Vascak, decaclab Videos Plataforma virtual de Google Meet Rubricas.	 Evaluación de entrada Quizizz Revisión de la presentación de los contenidos. Conformación de grupos de estudiantes y asignación de tareas las cuales accederán en el aula virtual. Asignación individual de tareas sin y con cuestionarios, que accederán en el aula virtual. Desarrollar una práctica calificada individual con rubrica
Tercera Unidad	ACTIVIDADES ASINCRÓNICAS Revisión de material para examen parcial Revisión foros y tareas ACTIVIDADES SINCRÓNICAS Videoconferencia utilizando la Plataforma de Google Meet	 Quizizz Plataforma virtual de Google Meet Simuladores: Phet Vascak, decaclab Videos Formulario Plataforma gather Rubricas 	 Revisión de la presentación de los contenidos. Conformación de grupos de estudiantes y asignación de tareas las cuales accederán en forma virtual. Desarrollar un examen parcial individual con rubrica. Asignación individual de tareas y cuestionarios (tests) las cuales accederán en forma virtual.

	 Desarrollo de la clase participativa e inmediata. Revisión de avance de proyecto de investigación ACTIVIDADES ASINCRÓNICAS 	Quizizz Plataforma virtual de Google Meet	Revisión de las tareas grupales asignadas. Desarrollar una práctica
Cuarta Unidad	 Revisión de comunicados, mensajes. Revisión foros y tareas. Revisión de la presentación de los contenidos y la agenda de la sesión. 	 Rubricas Classroom Formulario Simuladores: Phet Vascak, decaclab Videos 	calificada individual con rubrica. • Asignación de tareas con cuestionarios (tests) las cuales accederán en forma virtual. • Desarrollar un examen final individual con rubrica. • Síntesis • Formulación de preguntas
	 ACTIVIDADES SINCRÓNICAS Videoconferencia utilizando la Plataforma de Google Meet Desarrollo de la clase participativa. Evaluación de Proyecto de investigación 		

VI. ESTRATEGIAS DIDÁCTICAS (metodología)

La parte teórica del curso se desarrollará, mediante videoconferencias en **Google Meet**, con la participación de los alumnos y se desarrollarán prácticas dirigidas expositivas y grupales con participación de los alumnos. Se realizarán clases virtuales utilizando la plataforma **Google Classroom**, donde además se sugerirán lecturas y videos sobre los temas tratados de manera que el estudiante se vea motivado a conocer más sobre el curso, y sobre el desarrollo científico por el que ha venido atravesando la humanidad.

En todo momento se proporcionará continua motivación para estimular en los educandos mecanismos de abstracción y razonamiento que permitan correlacionar los fenómenos naturales con las leyes que los gobiernan.

Las estrategias por utilizar durante el desarrollo de la asignatura serán las siguientes:

- Aprendizaje basado en problemas.
- Método de casos.
- Trabajo colaborativo.
- Aula invertida.

VII. EVALUACIÓN DEL APRENDIZAJE

La evaluación del aprendizaje esta adecuado a la modalidad no presencial, considerando las capacidades y desempeños descritos para cada unidad. Se evalúa antes, durante y al finalizar el proceso, considerando la aplicación de los instrumentos de evaluación pertinentes.

Unidades de aprendizaje	Procedimentales	Instrumentos de evaluación	Pesos	SUM
	Examen Parcial individual (EP)	cuestionario	80 %	
1 – 2 - 3	Practica Dirigida 01: trabajo en clases grupal - PD01 (EVP)	Rubrica	10 %	N_1
	Tarea domiciliaria individual 01 - TD01 (EVP)	Rubrica	10%	
	Examen Final individual (EF)	cuestionario	80 %	
2 4	Practica Dirigida 02: trabajo en clases grupal – PD02 (EVP)	Rubrica	10 %	N_2
3 – 4	Tarea domiciliaria individual 02 - PD02 (EVP)	Rubrica	10%	_
	Laboratorio - L (EVP)	Rubrica	50 %	
1-2-3-4	Trabajo de Investigación aplicativo grupal – TI (EVP)	Rubrica	50 %	<i>N</i> ₃

Evaluación de Proceso o Continua (EVP): prácticas calificadas, participación en foros, trabajos en equipo, lecturas, tareas sin y con cuestionario.

Actitudinales

Interviene en clase y expresa sus puntos de vistas con orden y claridad.

Aprecia y comprende la importancia de cada uno de los temas desarrollados y muestra interés por comprender las leyes de la física.

Muestra interés en aplicar los conceptos desarrollados en las sesiones de aprendizaje.

Presenta los trabajos en el tiempo señalado y trabaja en equipo.

Cálculo de la nota N_1 :

$$N_1 = (0.8 * EP + 0.1 * PD01 + 0.1 * TD01)$$

Cálculo de la nota N2:

$$N_2 = (0.8 * EF + 0.1 * PD02 + 0.1 * TD02)$$

Cálculo de la nota N_3 :

$$N_3 = (0.5 * L + 0.5 * TI)$$

La nota final promedio del curso se obtendrá de la siguiente manera:

NOTA FINAL =
$$0.2*N_1 + 0.2*N_2 + 0.6*N_3$$

Este ultimo cálculo es realizado automáticamente por el Sistema Único de Matricula (SUM-UNMSM)

VIII. REFERENCIAS BIBLIOGRAFÍCAS

- SEARS, F; SEMANSKY, M. YOUNG, H y FREEDMAN. R. Física Universitaria V.2. Addison Wesley Longman 2006, 12ava. Edición
- SERWAY, R; FAUGHN, J; Fundamentos de Física V.2. Sexta Edición. Thomson Learning 2005.
- GIANCOLI, DOUGLAS. Física. 3ra Edición. Prentice Hall Hispanoamericana 1994
- FEYNMANN, RICHARD y LEIGHTON, ROBERT. Física Vol II. Electromagnetismo y Meteria. Addison-Wesley Iberoamericana. S. A 1987.
- WILSON, J; BUFFA, A. Física. Quinta edición. Pearson Educación. 2003.
- ALONSO, MARCELO y FINN, EDWARD. Física. Vol 2. Addison Wesley Iberoamericana
- MILFORD, REITZ. Fundamentos de la teoría Electromagnética.
- TIPPLER y MOSCA. Física para Ciencia y Tecnología. Vol. II. Reverté. 2007.
- HEWITT, PAUL G. Física Conceptual. Pearson Addison Wesley Longman. México. 1999