Homework 6(Trayectoria Circular en eje XZ)

Miguel Tlapa Juárez 17/03/2014

This document describes the system architecture and design about the body controller module, it's have block diagram and flowchart to describe software and hardware architecture.

Revision History			
Date	Revision Number	Author/Editor	Modifications
January 2014	0.1	Miguel Tlapa	Created file

Disclaimers

1. Explanation

Exercise 9

Exercise 13

La longitud de la trayectoria es:

L = vi*vi/g (Sen(teta) + Cos*Cos(teta)* In (1 + Sen(teta)/Cos(teta))

Exercise 14

Movimiento Circular no Uniforme Desplazamiento Angular se define como : Teta = Wi*t + ½ a* t*t

Se deriva de la ec. De distancia: S = Vi*t + ½*a*t*t

Caso 1: Suponemos que la Acelaracion es Constante y la velocidad es Variable

```
CPU
                         CALCULOS
                                Posicion Inicial
                                    Xf = i
                                                    1
                                    Yf = 0
                                                    0
                                  Zf = zi + k
                                                    -2
                              Variables Fisicas
Vectores Unitarios
                            float wr = w * 2.0 *
        i = 1
                           float Ar = rev * 2 *
       j = -1
        k= 1
                           float A = Ar * 180 /
                           float s = r * Ar;
  Variables Fisicas
                           float a = 2 * (Ar - (wr * t)) / pow(t, 2);
       W = 0
      t = 5.0
                           float Wr = wr + (a * t);
     Rev = 2.0
                           float W = Wr * 60 / (2 * 111);
      R = 1.5
    Width = 800
                           Tiempos de Movimiento
   Height = 600
                            int divs = ((t * FPS) + 0.5);
                            float tm = t * 1000;
  Posicion Inicial
       Xi = 0
                            float incT = (float) s / divs;
       Yi = 0
                            float delaym = (float) incT * tm / s;
       Zi = -5
                            float delays = delaym / 1000;
Frame x Segundo
      FPS = 60
                            float *incC = anguloC(divs, wr, a, delays);
                                  Cosenos Directores
                            Vec = (sqrt(pow(xf-xi,2) + pow(yf-yi,2) + pow(zf-zi,2))) 1.41 m
                            Alf = acos((xf-xi)/vec)
                                                            45.26 g
                            Bet = acos((yf-yi)/vec)
                                                            89.95g
                            Gam= acos((zf-zi)/vec)
                                                            45.26 g
                                  Display
                                                                            GPU
                              // Dibujar la Primitiva
setColor(0.0, 0.0, 1.0); drawSphere(x, y, z, 0.1);
                             // Determinacion de la Posicion en Funcion del Tiempo if ( cuenta < divs )
                                  x = i * r * cos(angulo);
                                   z = -5 + k * r * sin(angulo);
```