Chemistry Solutions (Physical)

Section A: Multiple Choice

1. **Answer**: 3/8

Working: 128 (CH₂ClBr) - 14 (from CH₂) = 114 (Cl and Br)

The only way to make 114 from the given masses of CI and Br is

35 + 79

Proportion of ${}^{35}CI = 3/4$ Proportion of ${}^{79}Br = 1/2$

Proportion of both = $\frac{3}{4} * \frac{1}{2} = \frac{3}{8}$

2. Answer: A

Working: Giant covalent structure → high melting/boiling point and no

conduction of electricity (even when molten) → A

(Other options: B is ionic, C is metallic, D is molecular covalent)

3. **Answer:** ClO₃-

Working: CH_3^+ : 3 valence pairs, no lone pairs \rightarrow trigonal planar

SO₃: 3 bonding pairs (all double bonds) → trigonal planar

 ClO_3^- : 4 valence pairs (3 bonding, 1 lone) \rightarrow trigonal pyramidal XeF_4 : 6 valence pairs (4 bonding, 2 lone) \rightarrow square planar

Only ClO₃ is not planar

4. **Answer:** +250 kJ mol⁻¹

Working: Sketching an energy profile for the reaction and marking on the

activation and heat (enthalpy change) energies, Reverse activation energy = -(-100) + 150 = 250. 5. **Answer:** 6z > x + 3y

Working: Bonds broken: $1 \times N = N (x)$ and $3 \times H - H (3y)$

Bonds formed: 6 x N-H (6z)

Since overall change < 0, energy released > energy used

→ bonds formed > bonds broken

 \rightarrow 6z > x + 3y

6. **Answer:** the Cu⁺ ion is acting as a reducing agent.

Working: Glass darkens when equilibrium shifted to the right

Cu⁺ becomes Cu²⁺ so it was oxidised (loss of electrons)

So Cu⁺ was acting as the reducing agent

Ag⁺ becomes Ag so it was reduced (gain of electrons)

So Ag+ was acting as the oxidising agent

7. **Answer:** rate = $k [A] [Fe(CN)_6^{3-}]^2$

Working: Experiments 1 and 2: A x2, catalyst $x3 \rightarrow \text{rate } x2$

 \rightarrow zero order w.r.t. Catalyst, first order w.r.t. A Experiments 2 and 4: A x2, iron... x3 \rightarrow rate x 18

 \rightarrow iron... x3 \rightarrow rate x 9 \rightarrow second order w.r.t. iron...

 \rightarrow rate = k [A] [Fe(CN)₆³⁻]²

8. Answer: B

Working: Arrhenius equation: $k = A \exp(-E_a / RT)$

 \rightarrow approximate shape is k = exp(-1/T) [could use graphical calculator from here]

 \rightarrow k = $1/\exp(1/T)$

 \rightarrow starts off increasing fast, then levels out (verify by building up

sketches of the function)

9. **Answer:** 1 and 2 only

Working: 1: always true

2: true, since a change of state significantly increases entropy

(disorderness of a gas > liquid)

3: Enthalpy of formation of water is more positive than steam Enthalpy change = constant - larger value = smaller value

→ enthalpy change is more negative

10. **Answer:** 2

Working: 2 x Moles of ethanedioic acid = Moles of NaOH

 $2 \text{ x mass/M}_{r} = 0.0025$

Mass = $2.5 \times (15.8/250) = 0.158 \text{ g}$ $0.158/M_r = 0.00125 \rightarrow M_r = 126.4$ $nH_2O = 126.4 - (2 + 24 + 64) = 36.4$ $18n = 36.4 \rightarrow n = 2.022 \rightarrow n = 2$

11. **Answer:** E_{mean} and E_{mp} are both dependent on T

Working: Mode < mean for the Maxwell-Boltzmann distribution

E is dependent on T, and not p or n (essentially the same thing)

12. **Answer:** Tests **1** and **3** only

Working: Strong acid: fully dissociates \rightarrow lots of ions

1: The strong acid would react faster since more H⁺ ions in solution

2: Same moles of acid in each case so no difference in titre

3: The strong acid would conduct electricity better since more ions

available/dissociated to carry charge

13. **Answer:** 1 only

Working: 1: Yes (to return any reagents splashed onto the side of the flask

back in)

2: No (should rinse burette with what will go in it; HCl)

Working:
$$CrO_2F_2$$
: $Cr + 2(-2) + 2(-1) = 0 \rightarrow Cr = +6$

$$K_2Mn_2O_7$$
: +2 + 2(Mn) + 7(-2) = 0 \rightarrow 2 Mn = 12 \rightarrow Mn = +6

BaTiO₃: $+2 + Ti + 3(-2) = 0 \rightarrow Ti = +4$

15. **Answer:**
$$\Delta G^{\circ} = -RT \ln K_{c}$$

Working: K_c expression: $K_c = [C]/[A]^2[B]$

Let forward and backward rate constants be $\mathbf{k_1}$ and $\mathbf{k_2}$

Using rate equations,

Rate (forward) = $k_1[A]^2[B]$, rate (back) = $k_2[C]$

Since at equilibrium, forward rate = backward rate:

 $k_1[A]^2[B] = k_2[C]$

Divide both sides by LHS \rightarrow 1 = $k_2[C]/k_1[A]^2[B]$

Replace K_c expression: $1 = k_2/k_1 * K_c \rightarrow K_c = k_1/k_2$

Using Arrhenius,

 $K_c = A \exp(-E_{forward}/RT) / A \exp(-E_{backward}/RT)$

 $K_c = \exp(E_{backward}/RT - E_{forward}/RT)$

RT In $K_c = E_{backward} - E_{forward}$

-RT In $K_c = E_{forward} - E_{backward}$

Considering the energy profile diagrams,

$$E_{backward} = E_{forward} - \Delta H$$

-RT In
$$K_c = E_{forward} - E_{forward} + \Delta H$$

Equilibrium \rightarrow no net entropy change $\rightarrow \Delta G = \Delta H$

$$ightarrow \Delta G$$
 = -RT In K_c

Section B: Standard Questions

16.

- a. Sample of X is dissolved in a volatile solvent in a hypodermic needle connected to a high voltage supply and is ejected as a fine mist/aerosol
 [1 mark]
 - Each sample particle **gains a proton** as it leaves the needle [1 mark] lons accelerated by uniform electric field to **constant kinetic energy** [1 mark] lons drift / fly through the tube, **lighter ions reach the detector first** [1 mark] lons **gain an electron/discharge** at the detector, creating a current The results are plotted on a **mass spectrum** [1 mark]
- b. Deduces that time is proportional to square root of mass $E_k = 1/2 \text{ mv}^2$ and $v = d/t \rightarrow E_k = 1/2 \text{ m}(d/t)^2 \rightarrow E_k = 1/2 \text{ md}^2/t^2 \rightarrow t^2 = \text{m}(d^2/2E_k)$ (since d, E_k are constants) \rightarrow t = k $\sqrt{\text{m}}$ [3 marks] 2.446 x 10⁻⁴ = k $\sqrt{(185 + 1)} \rightarrow \text{k} = 1.7935 \text{ x } 10^{-5}$ [1 mark] Time = 1.7935 x 10⁻⁵ * $\sqrt{(187 + 1)} = 2.459 \text{ x } 10^{-5} \text{ s } [2 \text{ marks}]$
- c. $A_r = (0.63 \times 187) + (0.37 \times 185) = 186.3 [1 \text{ mark}]$ Closest match on periodic table is **rhenium (Re)** [1 mark]
- d. **Other isotopes of hydrogen** gained from the electrospray solvent [1 mark]

- a. i) KMnO₄ [1 mark]
 - ii) Reduction of manganate ions: $MnO_4^- + 8 H^+ + 5 e^- \rightarrow Mn^{2+} + 4 H_2O$ Oxidation of ethanedioate ions: $C_2O_4^{2-} \rightarrow 2 CO_2 + 2 e^-$ Overall: $2 MnO_4^- + 5 C_2O_4^{2-} + 16 H^+ \rightarrow 2 Mn^{2+} + 8 H_2O + 10 CO_2$
- b. Deduces an acid-base reaction [1 mark] $H_2C_2O_4 + 2 OH^- \rightarrow C_2O_4^{2-} + 2 H_2O$ [1 mark]
- c. Moles of $MnO_4^{-1} = 26.5 * 0.02 / 1000 = 5.3 \times 10^{-4} [1 \text{ mark}]$ Moles in 25 cm³ sample / pipette $C_2O_4^{2-}$ (from acid and salt): $5.3 \times 10^{-4} * 5/2 = 1.325 \times 10^{-3} [1 \text{ mark}]$ Moles of NaOH = $10.45 * 0.1 / 1000 = 1.045 \times 10^{-3} [1 \text{ mark}]$ So moles of $C_2O_4^{2-}$ from acid in 25 cm³ / pipette is $1.045 \times 10^{-3} / 2 = 5.225 \times 10^{-4} [1 \text{ mark}]$ So the moles of $C_2O_4^{2-}$ in sodium ethanedioate in 25 cm³ is $(1.325 * 10^{-3}) (5.225 * 10^{-4}) = 8.025 * 10^{-4} [1 \text{ mark}]$ So in the original sample of sodium ethanedioate, $= 8.025 \times 10^{-4} * 10 = 8.025 \times 10^{-3} [1 \text{ mark}]$ Mass of $Na_2C_2O_4 = 8.025 \times 10^{-3} * 134 = 1.0754 [1 \text{ mark}]$ Percentage = 1.0754/1.9 * 100 = 56.6% (3 s.f.) [1 mark]

18.

- a. i) $Na_2S_2O_3$ (aq) + 2 HCl (aq) \rightarrow 2 NaCl (aq) + S (s) + SO₂ (g) + H₂O (l) [1 mark for identifying NaCl and S, 1 mark for SO₂]
 - ii) Place the reaction flask on a marked XThe X will become obscured by the precipitate [1 mark]

- b. Any 6 points from:
 - 1. Measure 10 cm³ of hydrochloric acid and 10 cm³ of sodium thiosulfate in separate clean measuring cylinders. (Volumes may differ but must be sensible)
 - 2. Put the solutions in separate test tubes / boiling tubes
 - 3. Incubate the boiling tubes in a water bath at a particular temperature (e.g. 60 °C)
 - 4. Place conical flask on the centre of the large marked cross
 - 5. Add the thiosulfate solution first followed by the acid
 - 6. Start the stopwatch and swirl the conical flask
 - 7. Stop the stopwatch when the cross is no longer visible through the flask and record the time taken
 - 8. Repeat at different temperatures / wait for reagents to cool to a lower temperature
 - 9. Plot a graph of rate (1/time) against temperature

19.

```
a. At T = 273 + 25 = 298: k = A exp(-50000/8.31*298) = A exp(-20.19)

= 1.7 x 10^{-9} A [2 marks]

At T = 273 + 35 = 308: k = A exp(-50000/8.31*308) = A exp(-19.54)

= 3.3 x 10^{-9} A [1 mark]

Ratio = (3.3 x 10^{-9} A) / (1.7 x 10^{-9} A) = 1.94 (approximately 2 / doubles) [1 mark]
```

b. At temperature T: k = A exp(-50000/8.31*T) = A exp(-6017/T) [1 mark]
 At temperature T+10: k = A exp(-50000/8.31(T+10)) = A exp(-6017/(T+10))
 [1 mark]
 Set ratio to 1.5: exp(-6017/(T+10)) / exp(-6017/T) = 1.5 [1 mark]
 exp(6017/T - 6017/(T+10)) = 1.5

6017/T - 6017/(T+10) = 0.4055 → 6017(1/T - 1/(T+10)) = 0.4055 → 1/T - 1/(T+10) = 6.738 x
$$10^{-5}$$
 → 10 = 6.738 x 10^{-5} T(T+10)

$$\rightarrow$$
 (6.738 x 10⁻⁵) T² + (6.738 x 10⁻⁴) T - 10 = 0

$$\rightarrow$$
 T = -390 or T = 380

Since T is in Kelvin, T > 0 \rightarrow T = 380 K or 107 °C [4 marks for solving correct equation by any valid method]

- c. i) $CH_3CHO \rightarrow CH_4 + CO [1 mark]$
 - ii) rate = $k[CH_3CHO]^{1.5}$ [1 mark]

iii)

[1 mark for correct CH₃, 1 mark for correct CHO. Accurate molecular geometry not required]

iv) •CH₃ + CH₃CHO \rightarrow CH₄ + CH₃CO• [1 mark]

[1 mark]

[Dots and crosses may be allocated in any consistent arrangement]

- v) $CH_3CO \rightarrow CH_3 + CO [1 mark]$
- d. i) Single step reactions \rightarrow reaction order = number of molecules Initiation step: rate = k_i [CH₃CHO] [1 mark]

 Termination step: rate = k_t [•CH₃]² [1 mark]

 Rates are equal $\rightarrow k_i$ [CH₃CHO] = k_t [•CH₃]² [1 mark] $\rightarrow k_i$ [CH₃CHO] k_t [•CH₃]² = 0 [1 mark]
 - ii) k_i [CH₃CHO] = k_t [•CH₃]² Square root of both sides $\rightarrow k_i^{1/2}$ [CH₃CHO]^{1/2} = $k_t^{1/2}$ [•CH₃] [1 mark] [•CH₃] = $(k_i^{1/2} / k_t^{1/2})$ [CH₃CHO]^{1/2} k are constants so [•CH₃] is proportional to [CH₃CHO]^{1/2} [1 mark]

iii) From first propagation step, ${}^{\bullet}CH_3 + CH_3CHO \rightarrow CH_4 + CH_3CO^{\bullet}$ Rate = k_p [${}^{\bullet}CH_3$][CH₃CHO] [1 mark] Since [${}^{\bullet}CH_3$] is proportional to [CH₃CHO]^{1/2}, Rate = $k[CH_3CHO]^{1/2}$ [CH₃CHO] = $k[CH_3CHO]^{3/2}$ [2 marks] \rightarrow order = 3/2 = 1.5 [1 mark]

20.

- a. i) Either $NaOH (aq) + CO_2 (g) \rightarrow NaHCO_3 (aq)$ or $NaOH (aq) + CO_2 (g) \rightarrow NaHCO_3 (s)$ or $NaOH (s) + CO_2 (g) \rightarrow NaHCO_3 (s) [1 mark]$ [cannot have NaOH (s) and NaHCO₃ (aq)]
 - ii) The gaseous carbon dioxide is removed from the products [1 mark]
- b. Balanced equation:

```
C_xH_y (g) + (x + y/4) O_2 (g) \to x CO_2 (g) + (y/2) H_2O (g) [1 mark] NaOH removes CO_2 \to v volume of CO_2 = 30 cm³ (from contraction) [1 mark] pV = nRT \to 0.000030 = (moles CO_2)*8.31*T/p Moles CO_2 = (3.608 \times 10^{-6}) p/T [1 mark] Moles C_xH_y = pV/RT = p*0.000010 / 8.31*T = 1.203 \times 10^{-6} p/T [1 mark] Ratio = x = [(3.608 x 10^{-6}) p/T] / [1.203 x 10^{-6} p/T] = 3 [1 mark] Volume of C_xH_y consumed = 10 cm³ Volume of oxygen consumed = 10(x + y/4) = 10(3 + y/4) = 30 + 5y/2 cm³ [1 mark] Volume of products = 5 + volume of reactants (from expansion) 30 + 5y = 5 + 10 + 30 + 5y/2 [1 mark] \to 5y = 15 + 5y/2 \to 5y/2 = 15 \to y = 6 \to hydrocarbon is C_3H_6 [1 mark]
```