Pseudo Code for Repair Algorithm

Arthur Feng

April 5, 2019

1 Introduction

In this section, we define some important definitions and algorithms....

Definition 1.1. (Mixed Integer Programming)

In this report we consider a generic mixed-integer programming problem (MIP) in the following form

(MIP) min
$$c^T x$$

 $s.t.$ $Ax \ge b$
 $x_j \in \mathbb{Z} \quad \forall j \in \mathcal{I}$
 $x_j \in \mathbb{R} \quad \forall j \in \mathcal{N} \setminus \mathcal{I}$

where the vector $b \in \mathbb{R}^m$ and the vector $c \in \mathbb{R}^n$ are input vectors. A is a input matrix of size $m \times n$, the variable input set $\mathcal{I} \subseteq \mathcal{N} = \{1, 2, \dots, n\}$. We denote \mathcal{P} for this problem, which called a mixed-integer programming problem (MIP) with minimize objective function $c^T x$ subject to the constraints $Ax \geq b$. Besides, some variables are restricted to integer values while the else of are restricted to real value. S is a set of feasible solution if S satisfy all the constraints in the problem. A vector s^* with $s^* \in S$ is called optimal solution when $c^T x_{s^*} \leq c^T x_s$ for $\forall s \in S$. When all of the variables are restricted to integer, the problem is called pure integer linear program (IP) for $\mathcal{I} = \mathcal{N}$. If there is no integrality constraint, the program is called linear program

(MIP)
$$\min c^T x$$

 $s.t.$ $Ax \ge b$
 $x_j \in \mathbb{R} \quad \forall j \in \mathcal{N}$

Definition 1.2. (LP-relaxation)

Lp relaxation is obtained by removing all integrity constraints $\mathcal{I} \leftarrow \emptyset$. LP-relaxation is the foundation of LP-based branch-and-bound technology. As the searching space is increase by removing integrity restrictions, the optimal solution in MIP problem could not better than LP-relaxation, which is $s_{MIP}^* \geq s_{LP}^*$. This means the optimal solution found in LP problem could provide a lower or prime bound for MIP problem.

2 Input

- A MIP problem \mathcal{P}^0 with n variables x, constraint set C^0 with an optimal solution s^0 , where s^0 is a n-vector.
- A MIP problem \mathcal{P}^1 with n variables x, constraint set C^1 , such that $C^0 \subsetneq C^1$.

3 Output

• An optimal solution s^1 to \mathcal{P}^1 , where s^1 is a n-vector too.

4 Pseudo Code

Algorithm 1: Solving Problem with Reoptimization

```
Input: \mathcal{P}^1 where C^0 \subseteq C^1 and s^0, k
    Output: optimal solution s^* to \mathcal{P}^1
 1 begin
         if s^0 is feasible to \mathcal{P}^1 then
 \mathbf{2}
              return s^0
 3
 4
              \alpha \longleftarrow c^T s^0 \times k
 \mathbf{5}
               for i in \mathcal{I} do
                    \mathcal{P}^2 \leftarrow create new variables y_i with objective value \alpha and add it to \mathcal{P}^1:
 7
                                                                                                        // add new variables
                   \mathcal{P}^2 \longleftarrow \text{ add new constraints to } \mathcal{P}^2: y_i \geq x_i - s_i^0
\mathcal{P}^2 \longleftarrow \text{ add new constraints to } \mathcal{P}^2: y_i \geq s_i^0 - x_i
                                                                                                     // add new constraints
 8
 9
               end
10
               enable Reoptimization Feature
11
               stop gap \leftarrow 0.5
12
              j \leftarrow number of variables in y
13
               coefs [] \leftarrow array of coefficients for all variables in \mathcal{P}^2
14
              if the sense of \mathcal{P}^2 is minimize then
15
                   the sense of \mathcal{P}^2 \longleftarrow minimize
16
              end
17
              r \longleftarrow 1
18
               while k > 0 do
19
                    solving the sub-MIP problem in r-th iteration to stop criterion
\mathbf{20}
                    frees branch and bound tree and all solution process data
\mathbf{21}
                    k \longleftarrow k-1
22
                    \alpha \longleftarrow \alpha \times k
23
                    change the last j coefficients in coefs[] \leftarrow \alpha
\mathbf{24}
                    r \longleftarrow r + 1
25
               end
26
              stop gap \leftarrow 0.0
27
               s^* \leftarrow solve the sub-MIP problem in the last interation
\mathbf{28}
              if s^* is feasiable to \mathcal{P}^1 then
29
                   return s^*
30
              end
31
         \quad \mathbf{end} \quad
32
33 end
```