proyecto.

Infraestructura Viva

> S A N D R A G O N Z Á L E Z julio 2025

ARQUITECTURA

Documento de Arquitectura

1. Descripción General de la Solución

La propuesta "Infraestructura Viva" busca modernizar el entorno on-premise de la empresa ficticia "Soluciones Digitales ACME", migrando hacia una arquitectura cloud robusta, escalable y segura utilizando los servicios gratuitos de AWS Free Tier y recursos complementarios de AWS Academy. Esta solución responde a seis problemáticas clave identificadas por el área de Innovación Tecnológica, abarcando cómputo, almacenamiento, bases de datos, red, monitoreo y notificación.

2. Justificación de Servicios y Recursos Utilizados

2.1 Cómputo

- Amazon EC2: Utilizado para desplegar una aplicación web en una instancia t2.micro bajo el nivel gratuito. Se configuró una VPC con subredes y se permitió el acceso mediante HTTP/SSH. Justificación: alto control, flexibilidad y compatibilidad con el entorno de desarrollo.
- Balanceador de carga (ELB): Distribuye el tráfico hacia las instancias EC2 en distintas zonas de disponibilidad, mejorando la disponibilidad. Justificación: tolerancia a fallos y escalabilidad.

2.2 Bases de Datos

- Amazon RDS (MySQL): Implementado como base de datos relacional gestionada. Configurado con backups automáticos y métricas CloudWatch. Justificación: integridad de datos, facilidad de gestión, alta disponibilidad.
- Amazon DynamoDB: Base NoSQL utilizada para almacenar datos semiestructurados con acceso rápido. Justificación: baja latencia, escalabilidad horizontal y simplicidad.
- SQLiteOnline: Herramienta utilizada para realizar consultas SQL como parte del prototipo y pruebas. Justificación: entorno liviano y sin instalaciones.

2.3 Almacenamiento

• Amazon S3: Se configuraron 2 buckets: uno para archivos estáticos y otro con clase Glacier para archivos de respaldo. Justificación: durabilidad, costo reducido, escalabilidad automática.

• Política de ciclo de vida: Establecida para migrar automáticamente archivos antiguos a Glacier. Justificación: optimización de costos a largo plazo.

2.4 Red en la Nube

- Amazon VPC: Se diseñó una red privada virtual con dos subredes públicas y una privada, tabla de enrutamiento, gateway de internet y grupos de seguridad personalizados.
- Security Groups y NACLs: Configurados para permitir tráfico HTTP, SSH y restringir accesos no deseados. Justificación: control detallado de seguridad.

2.5 Monitoreo y Notificaciones

- Amazon CloudWatch: Se monitorearon métricas de CPU, red y disco. Se implementaron alarmas para detectar saturación de recursos.
- Amazon SNS: Integrado con CloudWatch para recibir alertas por correo.
- Amazon SQS: Configurado como canal de mensajería para simulación de comunicación entre microservicios.

2.6 Herramientas de Apoyo

- Visual Studio Code: Utilizado para desarrollo y edición de archivos HTML/CSS.
- GitHub: Repositorio público donde se alojó el código fuente.

3. Diagrama Representativo de la Arquitectura

4. Conclusión

La arquitectura propuesta cumple con los requerimientos del proyecto "Infraestructura Viva" permitiendo una transición eficiente desde un entorno on-premise hacia la nube. Aprovecha el nivel gratuito de AWS y recursos educativos de AWS Academy, con un enfoque modular, seguro y escalable.

La integración entre componentes asegura disponibilidad, aislamiento de cargas, respaldo de información, y monitoreo proactivo ante incidentes. Esta arquitectura puede ser desplegada fácilmente y ajustada a necesidades futuras sin aumentar costos innecesarios.