Lecture 30: Confidence Intervals for σ^2

Today we will discuss the material in Section 7.4.

Let $X_1, X_2, ..., X_n$ be a random sample from a normal population with mean μ and variance σ^2 .

$$X \sim N(\mu, \sigma^2) \qquad - - - - - > X_1, X_2, \dots, X_n$$

In this lecture we want to construct a $100(1-\alpha)\%$ confidence for σ^2 . We recall that S^2 is a point estimator for σ^2 .

What is new here is that we are going to note a "multiplicative confidence interval".

Here is the idea.

We want a random interval that has the point estimator S^2 in the interior Now given a number x there are two ways to make an interval I(x) that has x in its interior.

1. The additive method

Choose two positive numbers c_1 and c_2 . Put $I(x) = (x - c_1, x + c_2)$.

2. The multiplicative method

Choose a number $c_1 < 1$ and another number $c_1 > 1$. Put

$$I(x)=(c_1x,c_2x).$$

We will use the second method now. The clue to why we do this is that $S^2 > 0$. First we need to know the probability distribution of the point estimator S^2 . We have already seen this

Theorem A (pg 278)

$$V = \left(\frac{n-1}{\sigma^2}\right) S^2 \sim \chi^2(n-1) \tag{*}$$

Now we can give the confidence interval.

Theorem B

The random interval $\left(\frac{n-1}{\chi^2_{\alpha/2,n-1}}S^2, \frac{n-1}{\chi^2_{1-\alpha/2,n-1}}S^2\right)$ is a $100(1-\alpha)\%$ confidence random interval for the population variance σ^2 from a normal population.

Remark

It must be true (see page 2) that

$$c_1 = \frac{n-1}{\chi^2_{\alpha/2,n-1}} < 1$$
 and $c_2 = \frac{n-1}{\chi^2_{1-\alpha/2,n-1}} > 1$.

I have never checked this.

Now we prove Theorem B. We must prove

$$\begin{split} P\bigg(\sigma^2 \in & \left(\frac{n-1}{\chi^2_{\alpha/2,n-1}} S^2, \frac{n-1}{\chi^2_{1-\alpha/2,n-1}} S^2\right) \bigg) = 1 \\ LHS &= P\bigg(\frac{n-1}{\chi^2_{\alpha/2,n-1}} S^2 < \sigma^2, \ \sigma^2 < \frac{n-1}{\chi^2_{1-\alpha/2,n-1}} S^2\bigg) \end{split}$$

Remark

Now we manipulate the two resulting inequalities to get V so we can sue (*)

$$P\left(\underbrace{\frac{n-1}{\chi^2_{\alpha/2,n-1}}}S^2 < \widehat{\sigma^2}\right), \quad \left(\widehat{\sigma^2}\right) < \underbrace{\frac{n-1}{\chi^2_{1-\alpha/2,n-1}}}S^2\right)$$

Swap and make a V

$$= P\left(\frac{n+1}{\sigma^2}\right)^{2} < \chi^{2}_{\alpha/2, n-1}, \quad \chi^{2}_{1-\alpha/2, n-1} < \frac{n+1}{\sigma^2}\right)^{2}$$

$$= P\left(V < \chi^{2}_{\alpha/2, n-1}, \quad \chi^{2}_{1-\alpha/2, n-1} < V\right)$$

$$= P\left(\chi^{2}_{1-\alpha/2, n-1} < V < \chi^{2}_{\alpha/2, n-1}\right)$$

MAKE A PICTURE

= the shaded area

Remark (Cont.)

$$= 1 - (+)$$

Now

and

$$= 1 - (\alpha/2 + \alpha/2) = 1 - \alpha$$

Question

Why do we need the strange $\chi^2_{1-\alpha/2}$, n-1? This is because the χ^2 density curve does not have the symmetry that the z-density and t-densities did. In all three coses we need something that cut off $\alpha/2$ on the <u>left</u> under the density curve so $1-\alpha/2$ on the right. For the z-curve $-z_{\alpha/2}$ did the job.

In other words

Lemma

$$z_{1-\alpha/2}=-z_{\alpha/2}$$

Proof.

so $-z_{\alpha/2}$ cots off $1-\alpha/2$ to the right to $-z_{\alpha/2}=z_{1-\alpha/2}$

The Upper-Tailed $100(1-\alpha)\%$ Confidence Interrol for σ^2

Theorem

$$\left(\frac{n-1}{\chi^2_{\alpha, n-1}}S^2, \infty\right)$$
 is a 100(1 – α)% confidence interrol for σ^2

Proof.

If could be on the final - do it yourself.

Remark

As used we took the lower limit from the two-sided interval and changed $\alpha/2$ to α .

The Lower-Tailed $100(1-\alpha)\%$ Confidence Interval for σ^2

Since S^2 is always positive $PCS^2 \in (-\infty, 01) = 0$ so the negative axis will not appear.

Lower tailed multiplication intervals go down to 0 not $-\infty$. Another (philosophical) way to look at it is.

$$\underbrace{ \begin{pmatrix} (-\infty,\infty) \\ \text{additive world} \end{pmatrix}} \quad \underbrace{ \begin{matrix} \theta^x \\ \text{multiplicative group of of positive} \\ \text{numbers, } (0,\infty) \end{matrix}}_{\text{multiplicative world}}$$

We are in the multiplicative world.

Theorem

 $\left(0, \frac{n-1}{\chi^2_{1-\alpha,n-1}}S^2\right)$ is a $100(1-\alpha)\%$ confidence interval for σ^2 .

Proof.

Do it yourself

Remark

$$\left(-\infty, \frac{n-1}{\chi^2_{1-\alpha, \, n-1}} S^2\right) \text{ is also a } 100(1-\alpha)\% \text{ confidence interval for } \sigma^2 \text{ but the } (-\infty, 0) \text{ is "wasted space", Remember, small intervals or better.}$$

Confidence Intervals for the standard Deviation

Note that if a > 0, b > 0 and x > 0 then

$$a \le x \le b \leftrightarrow \sqrt{a} \le \sqrt{x} \le \sqrt{b}$$

SO

$$\frac{n-1}{\chi^2_{\alpha/2, n-1}} S^2 \le \sigma^2 \le \frac{n-1}{\chi^2_{1-\alpha/2, n-1}} S^2$$

$$\Leftrightarrow \sqrt{\frac{n-1}{\chi^2_{\alpha/2, n-1}}} S \le \sigma \le \sqrt{\frac{n-1}{\chi^2_{1-\alpha/2, n-1}}} S$$

Hence

$$\left(\sqrt{\frac{n-1}{\chi^{2}_{\alpha/2,n-1}}}S < \sigma < \sqrt{\frac{n-1}{\chi^{2}_{1-\alpha/2,n-1}}}S\right) = P\left(\frac{n-1}{\chi^{2}_{\alpha/2,n-1}}S^{2} \le \sigma^{2} \le \frac{n-1}{\chi^{2}_{1-\alpha/2,n-1}}S^{2}\right)$$
from pg3
$$= 1 - \alpha$$

In other words

$$P\left(\sigma \in \left(\sqrt{\frac{n-1}{\chi^{2}_{\alpha/2, \ n-1}}}S, \ \sqrt{\frac{n-1}{\chi^{2}_{1-\alpha/2, \ n-1}}}S\right)\right) = 1 - \alpha$$

and we have

Theorem

The random interval

$$\left(\sqrt{\frac{n-1}{\chi^{2}_{\alpha/2, n-1}}}S, \sqrt{\frac{n-1}{\chi^{2}_{1-\alpha/2, n-1}}}S\right)$$

is a $100(1-\alpha)\%$ confidence interval for the standard deviation σ in a normal population.

Problem

Write down the upper and lower-tailed confidence intervals for σ . (hint: just take the square notes of the end points of those for σ^2)