WHAT IS CLAIMED IS:

1	1. A gas distribution face plate comprising:
2	a face plate body having a thickness defining a number of inlet orifices having
3	a width and a depth, at least one of the number, the width, and the depth configured to create
4	a uniform pressure drop of between about 0.8 and 1 Torr across edge and center regions of
5	the faceplate as gas is flowed through the inlet orifices, whereby a thickness of material
6	deposited at an edge of a wafer varies by 3% or less from a thickness of material deposited at
7	a center of the wafer, when the wafer is separated from the face plate by a gap of between
8	about 75 and 450 mils.
1	2. The face plate of claim 1 wherein the orifice width comprises between
2	about 0.010" and 0.018".
1	3. The face plate of claim 1 wherein the number comprises between about
2	2000 and 17500 orifices.
1	4. The faceplate of claim 3 wherein the number comprises about 10000
1	and the face plate is configured to process a wafer having a diameter of about 300 mm.
2	and the face plate is configured to process a water having a diameter of about 500 mm.
1	5. The faceplate of claim 3 wherein the number comprises about 5000
2	and the face plate is configured to process a wafer having a diameter of about 200 mm.
1	6. A method of depositing on a semiconductor wafer, a layer of material
2	having a center-to-edge thickness variation of 3% or less, the method comprising:
3	providing a gas distribution faceplate having a thickness and defining a
4	number of inlet orifices having a width and a depth, at least one of the orifice number, width,
5	and depth configured to create a uniform pressure drop of between about 0.8 and 1 Torr as
6	gas is flowed through edge and center regions of the faceplate;
7	providing a semiconductor wafer separated from the gas distribution faceplate
8	by a gap; and
9	flowing a gas through the faceplate body and across the gap to deposit the
10	layer of material on the wafer.
1	7. The method of claim 6 wherein the semiconductor wafer is provided at
2.	a gap of between about 75 and 450 mils.

- 1 8. The method of claim 6 wherein the faceplate body is provided with orifices having a width of between about 0.010" and 0.018". 2 9. 1 The method of claim 6 wherein the face plate body is provided with 2 between about 2000 and 17500 orifices. 1 10. The method of claim 9 wherein a 300 mm diameter wafer is provided, 2 and the faceplate is provided with about 10000 orifices. 11. The method of claim 9 wherein a 200 mm diameter wafer is provided, 1 2 and the faceplate is provided with about 5000 orifices. 1 12. A method of promoting deposition of material of uniform center-to-2 edge thickness on a semiconductor wafer, the method comprising: 3 constricting a flow of deposition gas through a gas distribution faceplate, such 4 that a resulting pressure drop across the faceplate creates a low pressure region over a wafer, 5 gas velocities in the low pressure region over a wafer center and a wafer edge sufficiently 6 uniform to result in deposition of a layer of material having a center-to-edge thickness 7 variation of 3% or less. 1 13. The method of claim 12 wherein the resulting pressure drop is between 2 about 0.8 and 1.0 Torr. 1 14. The method of claim 12 wherein the semiconductor wafer is provided 2 at a gap of between about 75 and 450 mils from the faceplate. 15. 1 The method of claim 12 wherein the deposition gas flow is constricted 2 by faceplate orifices having a width of between about 0.010" and 0.018". 1 16. The method of claim 12 wherein the deposition gas flow is constricted by faceplate orifices numbering between about 2000 and 17500. 2 1 17. The method of claim 16 wherein the deposition gas flow is constricted 2 by about 10000 orifices and the material is deposited on a 300 mm diameter wafer.
 - 19

by about 5000 orifices and the material is deposited on a 200 mm diameter wafer.

The method of claim 16 wherein the deposition gas flow is constricted

1

2

18.