A Vector Space is a set V that contains our vectors, a set F that contains our scalars with a vector addition operation and scalar multiplication operation where the following properties are true for every $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $c, d \in F$.

A Vector Space is a set V that contains our vectors, a set F that contains our scalars with a vector addition operation and scalar multiplication operation where the following properties are true for every $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $c, d \in F$.

1. V is closed under addition:

A Vector Space is a set V that contains our vectors, a set F that contains our scalars with a vector addition operation and scalar multiplication operation where the following properties are true for every $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $c, d \in F$.

1. V is closed under addition:

 $\mathbf{u} + \mathbf{v} \in V$

A Vector Space is a set V that contains our vectors, a set F that contains our scalars with a vector addition operation and scalar multiplication operation where the following properties are true for every $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $c, d \in F$.

- 1. V is closed under addition:
 - $\mathbf{u} + \mathbf{v} \in V$
- 2. Vector addition is commutative:

A Vector Space is a set V that contains our vectors, a set F that contains our scalars with a vector addition operation and scalar multiplication operation where the following properties are true for every $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $c, d \in F$.

- 1. V is closed under addition:
 - $\mathbf{u} + \mathbf{v} \in V$
- 2. Vector addition is commutative:

$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
.

A Vector Space is a set V that contains our vectors, a set F that contains our scalars with a vector addition operation and scalar multiplication operation where the following properties are true for every $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $c, d \in F$.

1. V is closed under addition:

$$u + v \in V$$

2. Vector addition is commutative:

$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
.

3. Vector addition is associative:

A Vector Space is a set V that contains our vectors, a set F that contains our scalars with a vector addition operation and scalar multiplication operation where the following properties are true for every $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $c, d \in F$.

1. V is closed under addition:

$$u + v \in V$$

2. Vector addition is commutative:

$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
.

3. Vector addition is associative:

$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$

A Vector Space is a set V that contains our vectors, a set F that contains our scalars with a vector addition operation and scalar multiplication operation where the following properties are true for every $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $c, d \in F$.

1. V is closed under addition:

$$u + v \in V$$

2. Vector addition is commutative:

$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
.

3. Vector addition is associative:

$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$

4. Additive Identity:

A Vector Space is a set V that contains our vectors, a set F that contains our scalars with a vector addition operation and scalar multiplication operation where the following properties are true for every $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $c, d \in F$.

1. V is closed under addition:

$$u + v \in V$$

2. Vector addition is commutative:

$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
.

3. Vector addition is associative:

$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$

4. Additive Identity:

There exists some $\mathbf{0} \in V$ where $\mathbf{v} + \mathbf{0} = \mathbf{v}$

A Vector Space is a set V that contains our vectors, a set F that contains our scalars with a vector addition operation and scalar multiplication operation where the following properties are true for every $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $c, d \in F$.

1. V is closed under addition:

$$\mathbf{u} + \mathbf{v} \in V$$

2. Vector addition is commutative:

$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
.

3. Vector addition is associative:

$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$

4. Additive Identity:

There exists some $\mathbf{0} \in V$ where $\mathbf{v} + \mathbf{0} = \mathbf{v}$

5. Additive Inverse:

A Vector Space is a set V that contains our vectors, a set F that contains our scalars with a vector addition operation and scalar multiplication operation where the following properties are true for every $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $c, d \in F$.

1. V is closed under addition:

$$\mathbf{u} + \mathbf{v} \in V$$

2. Vector addition is commutative:

$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
.

3. Vector addition is associative:

$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$

4. Additive Identity:

There exists some $\mathbf{0} \in V$ where $\mathbf{v} + \mathbf{0} = \mathbf{v}$

5. Additive Inverse: for each $\mathbf{u} \in V$, there is some

$$-\mathbf{u} \in V$$
 such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$

A Vector Space is a set V that contains our vectors, a set F that contains our scalars with a vector addition operation and scalar multiplication operation where the following properties are true for every $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $c, d \in F$.

6. *V* is closed under scalar multiplication:

1. V is closed under addition:

$$\mathbf{u} + \mathbf{v} \in V$$

2. Vector addition is commutative:

$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
.

3. Vector addition is associative:

$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$

4. Additive Identity:

There exists some $\mathbf{0} \in V$ where $\mathbf{v} + \mathbf{0} = \mathbf{v}$

5. Additive Inverse: for each $\mathbf{u} \in V$, there is some

$$-\mathbf{u} \in V$$
 such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$

A Vector Space is a set V that contains our vectors, a set F that contains our scalars with a vector addition operation and scalar multiplication operation where the following properties are true for every $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $c, d \in F$.

 $1. \ V$ is closed under addition:

$$u + v \in V$$

2. Vector addition is commutative:

$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
.

3. Vector addition is associative:

$$(u + v) + w = u + (v + w)$$

4. Additive Identity:

There exists some $\mathbf{0} \in V$ where $\mathbf{v} + \mathbf{0} = \mathbf{v}$

5. Additive Inverse: for each $\mathbf{u} \in V$, there is some

$$-\mathbf{u} \in V$$
 such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$

6. V is closed under scalar multiplication: $c\mathbf{v} \in V$.

A Vector Space is a set V that contains our vectors, a set F that contains our scalars with a vector addition operation and scalar multiplication operation where the following properties are true for every $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $c, d \in F$.

1. V is closed under addition:

$$\mathbf{u} + \mathbf{v} \in V$$

2. Vector addition is commutative:

$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
.

3. Vector addition is associative:

$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$

4. Additive Identity:

There exists some $\mathbf{0} \in V$ where $\mathbf{v} + \mathbf{0} = \mathbf{v}$

5. Additive Inverse: for each $\mathbf{u} \in V$, there is some $-\mathbf{u} \in V$ such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$

- 6. V is closed under scalar multiplication: $c\mathbf{v} \in V$.
- Scalar multiplication distributes over vector addition:

A Vector Space is a set V that contains our vectors, a set F that contains our scalars with a vector addition operation and scalar multiplication operation where the following properties are true for every $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $c, d \in F$.

 $1.\ \ V$ is closed under addition:

$$\mathbf{u} + \mathbf{v} \in V$$

2. Vector addition is commutative:

$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
.

3. Vector addition is associative:

$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$

4. Additive Identity:

There exists some $\mathbf{0} \in V$ where $\mathbf{v} + \mathbf{0} = \mathbf{v}$

5. Additive Inverse: for each $\mathbf{u} \in V$, there is some $-\mathbf{u} \in V$ such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$

- 6. V is closed under scalar multiplication: $c\mathbf{v} \in V$.
- Scalar multiplication distributes over vector addition:

$$c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}.$$

A Vector Space is a set V that contains our vectors, a set F that contains our scalars with a vector addition operation and scalar multiplication operation where the following properties are true for every $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $c, d \in F$.

- 1. V is closed under addition:
 - $\mathbf{u} + \mathbf{v} \in V$
- 2. Vector addition is commutative:

$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
.

3. Vector addition is associative:

$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$

4. Additive Identity:

There exists some $\mathbf{0} \in V$ where $\mathbf{v} + \mathbf{0} = \mathbf{v}$

5. Additive Inverse: for each $\mathbf{u} \in V$, there is some $-\mathbf{u} \in V$ such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$

- 6. V is closed under scalar multiplication: $c\mathbf{v} \in V$.
- Scalar multiplication distributes over vector addition:

$$c(\mathbf{u}+\mathbf{v})=c\mathbf{u}+c\mathbf{v}.$$

A Vector Space is a set V that contains our vectors, a set F that contains our scalars with a vector addition operation and scalar multiplication operation where the following properties are true for every $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $c, d \in F$.

- 1. *V* is closed under addition:
 - $u + v \in V$
- 2. Vector addition is commutative:

$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
.

3. Vector addition is associative:

$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$

4. Additive Identity:

There exists some $\mathbf{0} \in V$ where $\mathbf{v} + \mathbf{0} = \mathbf{v}$

5. Additive Inverse: for each $\mathbf{u} \in V$, there is some $-\mathbf{u} \in V$ such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$

- 6. V is closed under scalar multiplication: $c\mathbf{v} \in V$.
- 7. Scalar multiplication distributes over vector addition:

$$c(\mathbf{u}+\mathbf{v})=c\mathbf{u}+c\mathbf{v}.$$

$$(c+d)\mathbf{v}=c\mathbf{v}+d\mathbf{v}$$

A Vector Space is a set V that contains our vectors, a set F that contains our scalars with a vector addition operation and scalar multiplication operation where the following properties are true for every $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $c, d \in F$.

V is closed under addition:

$$\mathbf{u} + \mathbf{v} \in V$$

2. Vector addition is commutative:

$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
.

3. Vector addition is associative:

$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$

4. Additive Identity:

There exists some $\mathbf{0} \in V$ where $\mathbf{v} + \mathbf{0} = \mathbf{v}$

5. Additive Inverse: for each $\mathbf{u} \in V$, there is some $-\mathbf{u} \in V$ such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$

- 6. V is closed under scalar multiplication: $c\mathbf{v} \in V$.
- Scalar multiplication distributes over vector addition:

$$c(\mathbf{u}+\mathbf{v})=c\mathbf{u}+c\mathbf{v}.$$

8. Scalar multiplication distributes over scalar addition:

$$(c+d)\mathbf{v}=c\mathbf{v}+d\mathbf{v}$$

9. Scalar multiplication is associative:

A Vector Space is a set V that contains our vectors, a set F that contains our scalars with a vector addition operation and scalar multiplication operation where the following properties are true for every $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $c, d \in F$.

- 1. *V* is closed under addition:
 - $\mathbf{u} + \mathbf{v} \in V$
- 2. Vector addition is commutative:

$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
.

3. Vector addition is associative:

$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$

- 4. Additive Identity:
 - There exists some $\mathbf{0} \in V$ where $\mathbf{v} + \mathbf{0} = \mathbf{v}$
- 5. Additive Inverse: for each $\mathbf{u} \in V$, there is some $-\mathbf{u} \in V$ such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$

- 6. V is closed under scalar multiplication: $c\mathbf{v} \in V$.
- Scalar multiplication distributes over vector addition:

$$c(\mathbf{u}+\mathbf{v})=c\mathbf{u}+c\mathbf{v}.$$

$$(c+d)\mathbf{v}=c\mathbf{v}+d\mathbf{v}$$

- 9. Scalar multiplication is associative:
 - $c(d\mathbf{v}) = (cd)\mathbf{v}$

A Vector Space is a set V that contains our vectors, a set F that contains our scalars with a vector addition operation and scalar multiplication operation where the following properties are true for every $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $c, d \in F$.

- 1. *V* is closed under addition:
 - $\mathbf{u} + \mathbf{v} \in V$
- 2. Vector addition is commutative:

$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
.

3. Vector addition is associative:

$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$

- 4. Additive Identity:
 - There exists some $\mathbf{0} \in V$ where $\mathbf{v} + \mathbf{0} = \mathbf{v}$
- 5. Additive Inverse: for each $\mathbf{u} \in V$, there is some $-\mathbf{u} \in V$ such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$

- 6. V is closed under scalar multiplication: $c\mathbf{v} \in V$.
- Scalar multiplication distributes over vector addition:

$$c(\mathbf{u}+\mathbf{v})=c\mathbf{u}+c\mathbf{v}.$$

$$(c+d)\mathbf{v}=c\mathbf{v}+d\mathbf{v}$$

- 9. Scalar multiplication is associative: $c(d\mathbf{v}) = (cd)\mathbf{v}$
- 10. Multiplicative Identity:

A Vector Space is a set V that contains our vectors, a set F that contains our scalars with a vector addition operation and scalar multiplication operation where the following properties are true for every $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $c, d \in F$.

1. V is closed under addition:

$$\mathbf{u} + \mathbf{v} \in V$$

2. Vector addition is commutative:

$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
.

3. Vector addition is associative:

$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$

4. Additive Identity:

There exists some $\mathbf{0} \in V$ where $\mathbf{v} + \mathbf{0} = \mathbf{v}$

5. Additive Inverse: for each $\mathbf{u} \in V$, there is some $-\mathbf{u} \in V$ such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$

- 6. V is closed under scalar multiplication: $c\mathbf{v} \in V$.
- Scalar multiplication distributes over vector addition:

$$c(\mathbf{u}+\mathbf{v})=c\mathbf{u}+c\mathbf{v}.$$

$$(c+d)\mathbf{v}=c\mathbf{v}+d\mathbf{v}$$

- 9. Scalar multiplication is associative: $c(d\mathbf{v}) = (cd)\mathbf{v}$
- 10. Multiplicative Identity: There exists some $1 \in F$ such that $1\mathbf{u} = \mathbf{u}$.

What are some examples?

$$V = \mathbb{R}^n, F = \mathbb{R}$$
.

What are some examples?

 $V = \mathbb{R}^n$, $F = \mathbb{R}$. See Slide 8 of Lecture slide 3 for properties 2-5 and 7-10.

For properties 1 and 2, we have the definitions of vector addition and scalar multiplication that guarantees this!

 $V = \mathcal{P}_2$ is the set of all polynomials with real coefficients of degree 2 or less.

 $V = \mathcal{P}_2$ is the set of all polynomials with real coefficients of degree 2 or less.

 $V = \mathcal{P}_2$ is the set of all polynomials with real coefficients of degree 2 or less.

1.
$$(a_2x^2 + a_1x + a_0) + (b_2x^2 + b_1x + b_0) =$$

 $(a_2 + b_2)x^2 + (a_1 + b_1)x + (a_0 + b_0)$

 $V=\mathcal{P}_2$ is the set of all polynomials with real coefficients of degree 2 or less.

1.
$$(a_2x^2 + a_1x + a_0) + (b_2x^2 + b_1x + b_0) =$$

 $(a_2 + b_2)x^2 + (a_1 + b_1)x + (a_0 + b_0)$

2.
$$f(x) + g(x) = g(x) + f(x)$$

 $V = \mathcal{P}_2$ is the set of all polynomials with real coefficients of degree 2 or less.

1.
$$(a_2x^2 + a_1x + a_0) + (b_2x^2 + b_1x + b_0) = (a_2 + b_2)x^2 + (a_1 + b_1)x + (a_0 + b_0)$$

- 2. f(x) + g(x) = g(x) + f(x)
- 3. (f(x)+g(x))+h(x) = f(x)+(g(x)+h(x))

 $V=\mathcal{P}_2$ is the set of all polynomials with real coefficients of degree 2 or less.

1.
$$(a_2x^2 + a_1x + a_0) + (b_2x^2 + b_1x + b_0) = (a_2 + b_2)x^2 + (a_1 + b_1)x + (a_0 + b_0)$$

2.
$$f(x) + g(x) = g(x) + f(x)$$

3.
$$(f(x)+g(x))+h(x) = f(x)+(g(x)+h(x))$$

4.
$$\mathbf{0} = 0x^2 + 0x + 0$$

 $V = \mathcal{P}_2$ is the set of all polynomials with real coefficients of degree 2 or less.

1.
$$(a_2x^2 + a_1x + a_0) + (b_2x^2 + b_1x + b_0) =$$

 $(a_2 + b_2)x^2 + (a_1 + b_1)x + (a_0 + b_0)$

2.
$$f(x) + g(x) = g(x) + f(x)$$

3.
$$(f(x)+g(x))+h(x) = f(x)+(g(x)+h(x))$$

4.
$$\mathbf{0} = 0x^2 + 0x + 0$$

5.
$$-f(x) = -a_2x^2 - a_1x - a_0$$

 $V=\mathcal{P}_2$ is the set of all polynomials with real coefficients of degree 2 or less.

1.
$$(a_2x^2 + a_1x + a_0) + (b_2x^2 + b_1x + b_0) =$$

 $(a_2 + b_2)x^2 + (a_1 + b_1)x + (a_0 + b_0)$

6.
$$cf(x) = ca_2x^2 + ca_1x + ca_0$$

2.
$$f(x) + g(x) = g(x) + f(x)$$

3.
$$(f(x)+g(x))+h(x) = f(x)+(g(x)+h(x))$$

4.
$$\mathbf{0} = 0x^2 + 0x + 0$$

5.
$$-f(x) = -a_2x^2 - a_1x - a_0$$

 $V=\mathcal{P}_2$ is the set of all polynomials with real coefficients of degree 2 or less.

1.
$$(a_2x^2 + a_1x + a_0) + (b_2x^2 + b_1x + b_0) = (a_2 + b_2)x^2 + (a_1 + b_1)x + (a_0 + b_0)$$

2.
$$f(x) + g(x) = g(x) + f(x)$$

3.
$$(f(x)+g(x))+h(x) = f(x)+(g(x)+h(x))$$

4.
$$\mathbf{0} = 0x^2 + 0x + 0$$

5.
$$-f(x) = -a_2x^2 - a_1x - a_0$$

6.
$$cf(x) = ca_2x^2 + ca_1x + ca_0$$

7.
$$c(f(x) + g(x)) = cf(x) + cg(x)$$

 $V=\mathcal{P}_2$ is the set of all polynomials with real coefficients of degree 2 or less.

1.
$$(a_2x^2 + a_1x + a_0) + (b_2x^2 + b_1x + b_0) = (a_2 + b_2)x^2 + (a_1 + b_1)x + (a_0 + b_0)$$

2.
$$f(x) + g(x) = g(x) + f(x)$$

3.
$$(f(x)+g(x))+h(x) = f(x)+(g(x)+h(x))$$

4.
$$\mathbf{0} = 0x^2 + 0x + 0$$

5.
$$-f(x) = -a_2x^2 - a_1x - a_0$$

6.
$$cf(x) = ca_2x^2 + ca_1x + ca_0$$

7.
$$c(f(x) + g(x)) = cf(x) + cg(x)$$

8.
$$(c+d)f(x) = cf(x) + df(x)$$

 $V=\mathcal{P}_2$ is the set of all polynomials with real coefficients of degree 2 or less.

1.
$$(a_2x^2 + a_1x + a_0) + (b_2x^2 + b_1x + b_0) = (a_2 + b_2)x^2 + (a_1 + b_1)x + (a_0 + b_0)$$

2.
$$f(x) + g(x) = g(x) + f(x)$$

3.
$$(f(x)+g(x))+h(x) = f(x)+(g(x)+h(x))$$

4.
$$\mathbf{0} = 0x^2 + 0x + 0$$

5.
$$-f(x) = -a_2x^2 - a_1x - a_0$$

6.
$$cf(x) = ca_2x^2 + ca_1x + ca_0$$

7.
$$c(f(x) + g(x)) = cf(x) + cg(x)$$

8.
$$(c+d)f(x) = cf(x) + df(x)$$

9.
$$c(df(x)) = (cd)f(x)$$

 $V=\mathcal{P}_2$ is the set of all polynomials with real coefficients of degree 2 or less.

1.
$$(a_2x^2 + a_1x + a_0) + (b_2x^2 + b_1x + b_0) = (a_2 + b_2)x^2 + (a_1 + b_1)x + (a_0 + b_0)$$

2.
$$f(x) + g(x) = g(x) + f(x)$$

3.
$$(f(x)+g(x))+h(x) = f(x)+(g(x)+h(x))$$

4.
$$\mathbf{0} = 0x^2 + 0x + 0$$

5.
$$-f(x) = -a_2x^2 - a_1x - a_0$$

6.
$$cf(x) = ca_2x^2 + ca_1x + ca_0$$

7.
$$c(f(x) + g(x)) = cf(x) + cg(x)$$

8.
$$(c+d)f(x) = cf(x) + df(x)$$

9.
$$c(df(x)) = (cd)f(x)$$

10.
$$1f(x) = f(x)$$

Is this a Vector Space?

$$V = \mathbb{R}^3, F = \mathbb{R}$$
 using standard scalar multiplication but $\mathbf{u} + \mathbf{v} = \begin{bmatrix} u_1 + v_2 \\ u_2 + v_2 \\ u_3 + v_3 \end{bmatrix}$

Theorem

If V is a vector space, then the $\mathbf{0}$ element is unique

Theorem

If V is a vector space, then the $\mathbf{0}$ element is unique

Proof.

Let $\mathbf{w} \in V$ such that for every $\mathbf{u} \in V$ we have

$$\mathbf{w} + \mathbf{u} = \mathbf{u} + \mathbf{w} = \mathbf{u}$$

Theorem

If V is a vector space, then the $\mathbf{0}$ element is unique

Proof.

Let $\mathbf{w} \in V$ such that for every $\mathbf{u} \in V$ we have

$$\mathbf{w} + \mathbf{u} = \mathbf{u} + \mathbf{w} = \mathbf{u}$$

By taking $\mathbf{u} = \mathbf{0}$, we have:

Theorem

If V is a vector space, then the $\mathbf{0}$ element is unique

Proof.

Let $\mathbf{w} \in V$ such that for every $\mathbf{u} \in V$ we have

$$\mathbf{w} + \mathbf{u} = \mathbf{u} + \mathbf{w} = \mathbf{u}$$

By taking $\mathbf{u} = \mathbf{0}$, we have:

$$\mathbf{0} + \mathbf{w} = \mathbf{0}$$

Theorem

If V is a vector space, then the $\mathbf{0}$ element is unique

Proof.

Let $\mathbf{w} \in V$ such that for every $\mathbf{u} \in V$ we have

$$\mathbf{w} + \mathbf{u} = \mathbf{u} + \mathbf{w} = \mathbf{u}$$

By taking $\mathbf{u} = \mathbf{0}$, we have:

$$0 + w = 0$$
$$w + 0 = w$$

Theorem

If V is a vector space, then the $\mathbf{0}$ element is unique

Proof.

Let $\mathbf{w} \in V$ such that for every $\mathbf{u} \in V$ we have

$$\mathbf{w} + \mathbf{u} = \mathbf{u} + \mathbf{w} = \mathbf{u}$$

By taking $\mathbf{u} = \mathbf{0}$, we have:

$$0 + w = 0$$

$$w + 0 = w$$

Thus, we see that $\mathbf{w} = \mathbf{0}$

Theorem

If V is a vector space, then for every $\mathbf{u} \in V$, we have that $-\mathbf{u}$ is unique.

Theorem

If V is a vector space, then for every $\mathbf{u} \in V$, we have that $-\mathbf{u}$ is unique.

Proof.

Theorem

If V is a vector space, then for every $\mathbf{u} \in V$, we have that $-\mathbf{u}$ is unique.

Proof.

$$\mathbf{u} + (-\mathbf{u}_1) = 0 \rightarrow -\mathbf{u}_2 + (\mathbf{u} + (-\mathbf{u}_1)) = -\mathbf{u}_2$$

Theorem

If V is a vector space, then for every $\mathbf{u} \in V$, we have that $-\mathbf{u}$ is unique.

Proof.

$$\mathbf{u} + (-\mathbf{u}_1) = 0 \rightarrow -\mathbf{u}_2 + (\mathbf{u} + (-\mathbf{u}_1)) = -\mathbf{u}_2 \rightarrow (-\mathbf{u}_2 + \mathbf{u}) + -\mathbf{u}_1 = -\mathbf{u}_2$$

Theorem

If V is a vector space, then for every $\mathbf{u} \in V$, we have that $-\mathbf{u}$ is unique.

Proof.

$$\mathbf{u} + (-\mathbf{u}_1) = 0 \rightarrow -\mathbf{u}_2 + (\mathbf{u} + (-\mathbf{u}_1)) = -\mathbf{u}_2 \rightarrow (-\mathbf{u}_2 + \mathbf{u}) + -\mathbf{u}_1 = -\mathbf{u}_2$$

$$\rightarrow -\textbf{u}_1 = -\textbf{u}_2$$

Vector Space Practice

Work with your neighbors to determine if the following spaces are vector spaces $V = \mathbb{R}^3$, $F = \mathbb{R}$ with the usual vector addition

and
$$c\mathbf{u} = \begin{bmatrix} -cu_1 \\ -cu_2 \\ -cu_3 \end{bmatrix}$$
.

 $V = \mathbb{R}^{3\times3}, F = \mathbb{R}$ with the standard operations.

Definition

A subspace of a vector space V is a subset H of V ($H \subseteq V$) that has the following properties (using the same vector addition, scalar multiplication, and F)

Definition

A subspace of a vector space V is a subset H of V ($H \subseteq V$) that has the following properties (using the same vector addition, scalar multiplication, and F)

1. The $\mathbf{0}$ from V is in H.

Definition

A subspace of a vector space V is a subset H of V ($H \subseteq V$) that has the following properties (using the same vector addition, scalar multiplication, and F)

- 1. The $\mathbf{0}$ from V is in H.
- 2. *H* is closed under vector addition: for each $\mathbf{u}, \mathbf{v} \in H$, we have $\mathbf{u} + \mathbf{v} \in H$.

Definition

A subspace of a vector space V is a subset H of V ($H \subseteq V$) that has the following properties (using the same vector addition, scalar multiplication, and F)

- 1. The $\mathbf{0}$ from V is in H.
- 2. *H* is closed under vector addition: for each $\mathbf{u}, \mathbf{v} \in H$, we have $\mathbf{u} + \mathbf{v} \in H$.
- 3. *H* is closed under scalar multiplication: for each $c \in F$ and $\mathbf{v} \in H$, we have $c\mathbf{v} \in H$.

Is it a Subspace?

Determine with your neighbors if each of the following sets are subspaces of $V = \mathbb{R}^3$.

$$H = \left\{ \mathbf{v} \in \mathbb{R}^3 \,\middle|\, \mathbf{v} = \begin{bmatrix} 3a+b \\ a+5 \\ 2a-5b \end{bmatrix} \text{ for } a,b \in \mathbb{R} \right\} \qquad H = \left\{ \mathbf{v} \in \mathbb{R}^3 \,\middle|\, \mathbf{v} = \begin{bmatrix} a \\ 0 \\ b \end{bmatrix} \text{ for } a,b \in \mathbb{R} \right\}$$

$$H = \left\{ \mathbf{v} \in \mathbb{R}^3 \,\middle| \mathbf{v} = egin{bmatrix} a \ 0 \ b \end{bmatrix} \; ext{for } a,b \in \mathbb{R}
ight\}$$

Spanning Sets and Subspaces

Let $\mathbf{v}_1, \dots, \mathbf{v}_p$ denote a set of p vectors in V. Then $\mathrm{Span}(\mathbf{v}_1, \dots, \mathbf{v}_p)$ is a subspace of V.

Spanning Sets and Subspaces

Let $\mathbf{v}_1, \dots, \mathbf{v}_p$ denote a set of p vectors in V. Then $\mathrm{Span}(\mathbf{v}_1, \dots, \mathbf{v}_p)$ is a subspace of V.

1. Span $(\mathbf{v}_1, \dots, \mathbf{v}_p)$ is the subspace spanned by $\mathbf{v}_1, \dots, \mathbf{v}_p$

Spanning Sets and Subspaces

Let $\mathbf{v}_1, \dots, \mathbf{v}_p$ denote a set of p vectors in V. Then $\mathrm{Span}(\mathbf{v}_1, \dots, \mathbf{v}_p)$ is a subspace of V.

- 1. Span $(\mathbf{v}_1, \dots, \mathbf{v}_p)$ is the subspace spanned by $\mathbf{v}_1, \dots, \mathbf{v}_p$
- 2. Given any subspace H of V, a spanning set for H is a set $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ of vectors in H such that $H = \operatorname{Span}(\mathbf{v}_1, \dots, \mathbf{v}_p)$

Determine if
$$H = \left\{ A \in \mathbb{R}^{3 \times 3} \middle| A = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}, a+b+c=0 \right\}$$
 is a subspace of $\mathbb{R}^{3 \times 3}$ and if so, give a spanning set for H .

Determine if
$$H = \left\{ A \in \mathbb{R}^{3 \times 3} \middle| A = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}, a+b+c=0 \right\}$$
 is a subspace of $\mathbb{R}^{3 \times 3}$ and if

so, give a spanning set for H. Show that $\mathbf{0} \in \overline{H}$, Show that we are closed under "vector" addition, and show we are closed under scalar multiplication.

Determine if
$$H = \left\{ A \in \mathbb{R}^{3 \times 3} \middle| A = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}, a+b+c=0 \right\}$$
 is a subspace of $\mathbb{R}^{3 \times 3}$ and if

so, give a spanning set for H. Show that $\mathbf{0} \in H$, Show that we are closed under "vector" addition, and show we are closed under scalar multiplication.

1. Set a = b = c = 0, clearly a + b + c = 0 and then we have the 0 matrix!

Determine if
$$H = \left\{ A \in \mathbb{R}^{3 \times 3} \middle| A = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}, a+b+c=0 \right\}$$
 is a subspace of $\mathbb{R}^{3 \times 3}$ and if

so, give a spanning set for H. Show that $\mathbf{0} \in H$, Show that we are closed under "vector" addition, and show we are closed under scalar multiplication.

- 1. Set a = b = c = 0, clearly a + b + c = 0 and then we have the 0 matrix!
- 2. Let $A, B \in H$. See that

$$A+B=egin{bmatrix} a_1+a_2 & 0 & 0 \ 0 & b_1+b_2 & 0 \ 0 & 0 & c_1+c_2 \end{bmatrix}$$

Determine if
$$H = \left\{ A \in \mathbb{R}^{3 \times 3} \middle| A = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}, a+b+c=0 \right\}$$
 is a subspace of $\mathbb{R}^{3 \times 3}$ and if

so, give a spanning set for H. Show that $\mathbf{0} \in H$, Show that we are closed under "vector" addition, and show we are closed under scalar multiplication.

- 1. Set a = b = c = 0, clearly a + b + c = 0 and then we have the 0 matrix!
- 2. Let $A, B \in H$. See that

$$A+B=egin{bmatrix} a_1+a_2 & 0 & 0 \ 0 & b_1+b_2 & 0 \ 0 & 0 & c_1+c_2 \end{bmatrix}$$

and
$$(a_1 + a_2) + (b_1 + b_2) + (c_1 + c_2) = a_1 + b_1 + c_1 + a_2 + b_2 + c_2$$

Determine if
$$H = \left\{ A \in \mathbb{R}^{3 \times 3} \middle| A = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}, a+b+c=0 \right\}$$
 is a subspace of $\mathbb{R}^{3 \times 3}$ and if

so, give a spanning set for H. Show that $\mathbf{0} \in H$, Show that we are closed under "vector" addition, and show we are closed under scalar multiplication.

- 1. Set a = b = c = 0, clearly a + b + c = 0 and then we have the 0 matrix!
- 2. Let $A, B \in H$. See that

$$A+B=egin{bmatrix} a_1+a_2 & 0 & 0 \ 0 & b_1+b_2 & 0 \ 0 & 0 & c_1+c_2 \end{bmatrix}$$

and
$$(a_1 + a_2) + (b_1 + b_2) + (c_1 + c_2) = a_1 + b_1 + c_1 + a_2 + b_2 + c_2 = 0 + 0 = 0$$
, so $A + B \in H$.

Determine if
$$H = \left\{ A \in \mathbb{R}^{3 \times 3} \middle| A = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}, a+b+c=0 \right\}$$
 is a subspace of $\mathbb{R}^{3 \times 3}$ and if so, give a spanning set for H .

Determine if
$$H = \left\{ A \in \mathbb{R}^{3 \times 3} \middle| A = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}, a+b+c=0 \right\}$$
 is a subspace of $\mathbb{R}^{3 \times 3}$ and if

so, give a spanning set for H.

3. let $x \in \mathbb{R}$. See that

$$xA = \begin{bmatrix} xa & 0 & 0 \\ 0 & xb & 0 \\ 0 & 0 & xc \end{bmatrix}$$

Determine if
$$H = \left\{ A \in \mathbb{R}^{3 \times 3} \middle| A = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}, a+b+c=0 \right\}$$
 is a subspace of $\mathbb{R}^{3 \times 3}$ and if so, give a spanning set for H .

3. let $x \in \mathbb{R}$. See that

$$xA = \begin{bmatrix} xa & 0 & 0 \\ 0 & xb & 0 \\ 0 & 0 & xc \end{bmatrix}$$

And

$$xa + xb + xc = x(a+b+c)$$

Determine if
$$H = \left\{ A \in \mathbb{R}^{3 \times 3} \middle| A = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}, a+b+c=0 \right\}$$
 is a subspace of $\mathbb{R}^{3 \times 3}$ and if

so, give a spanning set for H. 3. let $x \in \mathbb{R}$. See that

$$xA = \begin{bmatrix} xa & 0 & 0 \\ 0 & xb & 0 \\ 0 & 0 & xc \end{bmatrix}$$

And

$$xa + xb + xc = x(a + b + c) = x \cdot 0 = 0$$

Determine if
$$H = \left\{ A \in \mathbb{R}^{3 \times 3} \middle| A = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}, a+b+c=0 \right\}$$
 is a subspace of $\mathbb{R}^{3 \times 3}$ and if so, give a spanning set for H .

3. let $x \in \mathbb{R}$. See that

$$xA = \begin{bmatrix} xa & 0 & 0 \\ 0 & xb & 0 \\ 0 & 0 & xc \end{bmatrix}$$

And

$$xa + xb + xc = x(a + b + c) = x \cdot 0 = 0$$

So, H is a subspace of \mathbb{R}^3 !

See that our "vectors" are 3×3 matrices, so our spanning set will have these kinds of matrices!

See that our "vectors" are 3×3 matrices, so our spanning set will have these kinds of matrices! Define

$$\mathbf{v}_1 = \begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

See that our "vectors" are 3×3 matrices, so our spanning set will have these kinds of matrices! Define

$$\mathbf{v}_1 = \begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

See that

$$\mathsf{Span}\left(\mathbf{v}_{1},\mathbf{v}_{2},\mathbf{v}_{3}\right)=\left\{ A\in\mathbb{R}^{3\times3}\left|A=a\mathbf{v}_{1}+b\mathbf{v}_{2}+c\mathbf{v}_{3},\text{ for }a,b,c\in\mathbb{R}\right\} \right.$$

See that our "vectors" are 3×3 matrices, so our spanning set will have these kinds of matrices! Define

$$\mathbf{v}_1 = \begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

See that

$$\mathsf{Span}\left(\mathbf{v}_{1},\mathbf{v}_{2},\mathbf{v}_{3}\right)=\left\{ A\in\mathbb{R}^{3\times3}\left|A=a\mathbf{v}_{1}+b\mathbf{v}_{2}+c\mathbf{v}_{3},\;\mathsf{for}\;a,b,c\in\mathbb{R}\right\} \right.$$

And

$$a\mathbf{v}_1 + b\mathbf{v}_2 + c\mathbf{v}_3 = a \begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} + b \begin{bmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{bmatrix} + c \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

$$a\mathbf{v}_1 + b\mathbf{v}_2 + c\mathbf{v}_3 = a \begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} + b \begin{bmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{bmatrix} + c \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
$$= \begin{bmatrix} 2a - b - c & 0 & 0 \\ 0 & -a + 2b - c & 0 \\ 0 & 0 & -a - b + 2c \end{bmatrix}$$

Where

$$2a - b - c + (-a + 2b - c) + (-a - b + 2c)$$

$$a\mathbf{v}_1 + b\mathbf{v}_2 + c\mathbf{v}_3 = a \begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} + b \begin{bmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{bmatrix} + c \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
$$= \begin{bmatrix} 2a - b - c & 0 & 0 \\ 0 & -a + 2b - c & 0 \\ 0 & 0 & -a - b + 2c \end{bmatrix}$$

Where

$$2a - b - c + (-a + 2b - c) + (-a - b + 2c) = 0$$

Definition

Basis: A basis of a vector space V is a set of $v_1, \ldots, v_p \in V$ such that

Definition

Basis: A basis of a vector space V is a set of $v_1, \ldots, v_p \in V$ such that

1. Span
$$(v_1, ..., v_p) = V$$

Definition

Basis: A basis of a vector space V is a set of $v_1, \ldots, v_p \in V$ such that

- 1. Span $(v_1,\ldots,v_p)=V$
- 2. v_1, \ldots, v_p are linearly independent

Definition

Basis: A basis of a vector space V is a set of $v_1, \ldots, v_p \in V$ such that

- 1. Span $(v_1,\ldots,v_p)=V$
- 2. v_1, \ldots, v_p are linearly independent

Example

$$\mathbf{v}_1 = egin{bmatrix} 2 & 0 & 0 \ 0 & -1 & 0 \ 0 & 0 & -1 \end{bmatrix}, \mathbf{v}_2 = egin{bmatrix} -1 & 0 & 0 \ 0 & 2 & 0 \ 0 & 0 & -1 \end{bmatrix}, \mathbf{v}_3 = egin{bmatrix} -1 & 0 & 0 \ 0 & -1 & 0 \ 0 & 0 & 2 \end{bmatrix}$$

Definition

Basis: A basis of a vector space V is a set of $v_1, \ldots, v_p \in V$ such that

- 1. Span $(v_1,\ldots,v_p)=V$
- 2. v_1, \ldots, v_p are linearly independent

Example

$$\mathbf{v}_1 = egin{bmatrix} 2 & 0 & 0 \ 0 & -1 & 0 \ 0 & 0 & -1 \end{bmatrix}, \mathbf{v}_2 = egin{bmatrix} -1 & 0 & 0 \ 0 & 2 & 0 \ 0 & 0 & -1 \end{bmatrix}, \mathbf{v}_3 = egin{bmatrix} -1 & 0 & 0 \ 0 & -1 & 0 \ 0 & 0 & 2 \end{bmatrix}$$

is a basis of

$$H = \left\{ A \in \mathbb{R}^{3 \times 3} \left| A = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}, a+b+c = 0 \right\}$$

Length of Basis and Dimension of Vector Space

Theorem

All bases of a vector space V have the same number of elements

Length of Basis and Dimension of Vector Space

Theorem

All bases of a vector space V have the same number of elements

Definition

The dimension of a vector space, denoted $\dim(V)$ is the length of a basis of V.

Spanning and Independent List of Correct Size is a Basis

Theorem

Let V be a vector space with $n = \dim(V)$. Then, any linearly independent list of n vectors, $\mathbf{v}_1, \ldots, \mathbf{v}_n \in V$ forms a basis of V.

Spanning and Independent List of Correct Size is a Basis

Theorem

Let V be a vector space with $n = \dim(V)$. Then, any linearly independent list of n vectors, $\mathbf{v}_1, \ldots, \mathbf{v}_n \in V$ forms a basis of V.

Theorem

Let V be a vector space with $n = \dim(V)$. Then, any spanning of n vectors, $\mathbf{v}_1, \dots, \mathbf{v}_n \in V$ such that $\operatorname{Span}(\mathbf{v}_1, \dots, \mathbf{v}_n) = V$ is also a basis of V.