King Mongkut's University of Technology Thonburi Midterm Examination 2/2007

200

CPE 222 Signals and Systems Date: December 21, 2007

Computer Engineering Department Time: 1:00 - 4:00 p.m.

Instructions:

- 1. Calculator and Ruler with mathematical formula are allowed in the examination room.
- 2. Books, documents, and notes are not allowed in the examination room.
- 3. Do not take the examination sheets out of the examination room.
- 4. This examination has 7 pages (5 problems, 80 marks).
- 1. a). Determine whether these c-t systems are causal, linear, time invariant and have memory. Justify your answers. (7 marks)

i)
$$y(t) = |x(t)| = \begin{cases} x(t) & \text{when } x(t) \ge 0 \\ -x(t) & \text{when } x(t) < 0 \end{cases}$$

ii)
$$y(t) = \int_{0}^{t} (t - \tau)x(\tau)d\tau$$

b). Evaluate the following integral:
$$\int_{-\infty}^{\infty} \delta(t-1)(t^2 + \cos \pi t) dt$$
 (3 marks)

c). Consider three d-t systems S1, S2, and S3 whose respective responses to a complex exponential input $e^{j\pi n/2}$ are specified as:

S1:
$$e^{j\pi n/2}$$
 $\Rightarrow e^{j\pi n/2}u[n],$
S2: $e^{j\pi n/2}$ $\Rightarrow e^{j3\pi n/2},$
S3: $e^{j\pi n/2}$ $\Rightarrow 2e^{j5\pi n/2}.$

S2:
$$e^{j\pi n/2} \Rightarrow e^{j3\pi n/2}$$

S3:
$$e^{j\pi n/2} \Rightarrow 2e^{j5\pi n/2}$$

Determine whether the given information is sufficient to conclude that each (5 marks) system is definitely LTI.

- 2. Consider an LTI system which is causal and has its characteristics defined by the y[n] = 0.25y[n-1] + x[n]. Determine the response of difference equation: (10 marks) this system when the input $x[n] = \delta[n-1]$
- 3. The response of an LTI system to the input signal $x(t) = \delta(t)$ is:

$$y(t) = \delta(t+2) + 2\delta(t+1).$$

Determine the response of this system when the input signal is:

$$x(t) = \begin{cases} t+1 & 0 \le t \le 1 \\ 2-t & 1 \le t \le 2 \\ 0 & \text{otherwise} \end{cases}$$
 (10 marks)

- 4. Consider an LTI system defined as: $y(t) = \int_{t-1}^{t} x(\tau)d\tau$, where x(t) is the input signal and y(t) is the output signal. Determine:
 - a) The impulse response and the frequency response of this system,
 (6 marks)
 - b) The response of this system when the input signal is as defined in Fig. P4,

 (12 marks)
 - c) The response of this system when the input is:

$$x(t) = \cos(\pi t) + \sin(2\pi t + \pi/4).$$
 (12 marks)

Figure P4

5. Determine the impulse response of a system having the frequency response defined as:

(15 marks)

$$H(j\omega) = \frac{(\sin^2(3\omega))\cos\omega}{\omega^2}.$$

Note:

Fourier Series:

$$x(t) = \sum_{k=-\infty}^{\infty} X[k] e^{jk\Omega_0 t} \qquad \text{and} \qquad X[k] = \frac{1}{T} \int_0^T x(t) e^{-jk\Omega_0 t} dt$$

Discrete-Time Fourier Series:

$$x[n] = \sum_{k=0}^{N-1} X[k] e^{jk\omega_0 n} \hspace{1cm} \text{and} \hspace{1cm} X[k] = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-jk\omega_0 n}$$

Fourier Transform:

$$X(j\omega) = \int\limits_{-\infty}^{\infty} x(t)e^{-j\omega t}dt \text{ and } x(t) = \frac{1}{2\pi} \int\limits_{-\infty}^{\infty} X(j\omega)e^{j\omega t}d\omega$$

Discrete-Time Fourier Transform:

$$X(e^{j\omega}) = \sum_{m=0}^{\infty} x[n]e^{-j\omega n} \qquad \text{and} \qquad x[n] = \frac{1}{2\pi} \int_{z}^{\pi} X(e^{j\omega})e^{j\omega n} d\omega$$

TABLE 1 PROPERTIES OF THE FOURIER TRANSFORM

Property	Aperiodic Signal	Fourier Transform
	x(t), y(t), h(t)	$X(j\Omega), Y(j\Omega), H(j\Omega)$
Linearity	ax(t) + by(t)	$aX(j\Omega) + bY(j\Omega)$
Time Shifting	$x(t-t_0)$	$e^{-j\Omega t_0}X(j\Omega)$
Frequency Shifting	$e^{j\Omega_0 t} x(t)$	$X(j(\Omega-\Omega_0))$
Conjugation	x*(t)	$X^*(-j\Omega)$
Time Reversal	x(-t)	$X(-j\Omega)$
Time and Frequency Scaling	x(at)	$\frac{1}{\mid a\mid} X\bigg(\frac{j\Omega}{a}\bigg)$
Convolution	x(t) * y(t)	$X(j\Omega)Y(j\Omega)$
Multiplication	x(t)y(t)	$\frac{1}{2\pi}\int_{-\infty}^{\infty}X(j\theta)Y(j(\Omega-\theta))d\theta$
Differentiation in Time	$\frac{dx(t)}{dt}$	$\mathrm{j}\Omega\mathrm{X}(\mathrm{j}\Omega)$
Integration	$\int\limits_{-\infty}^{t}x(\tau)d\tau$	$\frac{1}{\mathrm{j}\Omega}X(\mathrm{j}\Omega)+\pi X(0)\delta(\Omega)$
Differentiation in Frequency	t x(t)	$\mathrm{j}\frac{\mathrm{d}}{\mathrm{d}\Omega}\mathrm{X}(\mathrm{j}\Omega)$
Conjugate Symmetry for Real Signals	x(t) real	$\begin{cases} X(j\Omega) = X^*(-j\Omega) \\ \Re\{X(j\Omega)\} = \Re\{X(-j\Omega)\} \\ \Im\{X(j\Omega)\} = -\Im\{X(-j\Omega)\} \\ X(j\Omega) = X(-j\Omega) \\ \blacktriangleleft X(j\Omega) = \blacktriangleleft X(-j\Omega) \end{cases}$
Symmetry for Real and Even Signals	x(t) real and even	$X(j\Omega)$ real and even
Symmetry for Real and Odd Signals	x(t) real and odd	$X(j\Omega)$ purely imaginary and odd
Even-Odd Decomposition for Real Signals	$x_e(t) = Ev\{x(t)\} [x(t)]$ real]	$\Re e\{X(j\Omega)\}$

$$xo(t) = Od\{x(t)\} [x(t) j\Im m\{X(j\Omega)\}$$

real]

Parseval's Relation for Aperiodic Signal

$$\int_{-\infty}^{\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(j\Omega)|^2 d\Omega$$

TABLE 2 BASIC FOURIER TRANSFORM PAIRS

Signal	Fourier Transform	Fourier Series Coefficients (if periodic)
$\sum_{k=-\infty}^{\infty}a_ke^{jk\Omega_0t}$	$2\pi \sum_{k=-\infty}^{\infty} a_k \delta(\Omega - k\Omega_0)$	$\mathbf{a_k}$
$e^{j\Omega_0 t}$	$2\pi\delta(\Omega$ - $\Omega_0)$	$a_1 = 1$ $a_k = 0$, Otherwise
$\cos(\Omega_0 t)$	$\pi[\delta(\Omega-\Omega_0)+\delta(\Omega+\Omega_0)]$	$a_1 = a_{-1} = \frac{1}{2}$ $a_k = 0, Otherwise$
$\sin(\Omega_0 t)$	$\frac{\pi}{j}[\delta(\Omega-\Omega_{_{0}})-\delta(\Omega+\Omega_{_{0}})]$	$a_1 = -a_{-1} = \frac{1}{2j}$ $a_k = 0, Otherwise$
x(t) = 1	$2\pi\delta(\Omega)$	$a_0 = 1$, $a_k = 0$, $k \neq 0$ (This is the Fourier series representation for any choice at $T > 0$)
Periodic square wave $x(t) = \begin{cases} 1 & t \le T_1 \\ 0 & T_1 < t \le \frac{T}{2} \end{cases}$ and $x(t+T) = x(t)$	$\sum_{k=-\infty}^{\infty} \frac{2\sin k\Omega_0 T_1}{k} \delta(\Omega - k\Omega_0)$	$\frac{\Omega_0 T_1}{\pi} \sin c \left(\frac{k\Omega_0 T_1}{\pi}\right) = \frac{\sin k\Omega_0 T_1}{k\pi}$
$\sum_{n=-\infty}^{\infty} \delta(t-nT)$	$\frac{2\pi}{T}\sum_{k=-\infty}^{\infty}\delta\left(\Omega-\frac{2\pi k}{T}\right)$	$a_k = \frac{1}{T}$ for all k

$e^{-at}u(t)$, $Re\{a\} > 0$	$\frac{1}{a+j\Omega}$	
$x(t) = \begin{cases} 1 & t < T_1 \\ 0 & t > T_1 \end{cases}$	$\frac{2\sin\Omega T_{_{1}}}{\Omega}$	
sin Wt πt	$X(j\Omega) = \begin{cases} 1 & \Omega < W \\ 0 & \Omega > W \end{cases}$	
$\delta(t)$	1	
u(t)	$\frac{1}{\mathrm{j}\Omega} + \pi\delta(\Omega)$	
$(t+1) e^{-at}u(t), Re{a} > 0$	$\frac{1}{(a+j\Omega)^2}$	
$\frac{t^{n-1}}{(n-1)!}e^{-at}u(t), Re\{a\} > 0$	$\frac{1}{(a+j\Omega)^n}$	

TABLE 3 BASIC DISCRETE-TIME-FOURIER TRANSFORM PAIRS

Signal	Fourier Transform	Fourier Series Coefficients (if periodic)
$\sum_{k=} a_k e^{jk(2\pi/N)n}$	$2\pi \sum_{k=-\infty}^{\infty} a_k \delta \left(\omega - \frac{2\pi k}{N} \right)$	a _k
e ^{jω_on}	$2\pi\sum_{l=-\infty}^{\infty}\delta(\omega-\omega_0-2\pi l)$	(a) $\omega_0 = \frac{2\pi m}{N}$
		$a_k = \begin{cases} 1 & k = m, m \pm N, m \pm 2N \\ 0 & \text{otherwise} \end{cases}$
		(b) $\frac{\omega_0}{2\pi}$ irrational \rightarrow The signal is aperiodic.
$\cos(\omega_0 n)$	$\pi \sum_{l=-\infty}^{\infty} \{\delta(\omega - \omega_0 - 2\pi l) +$	(a) $\omega_0 = \frac{2\pi m}{N}$
	$\delta(\omega+\omega_0-2\pi l)\}$	

		$a_k = \begin{cases} \frac{1}{2} & k = m, m \pm N, m \pm 2N. \\ 0 & \text{otherwise} \end{cases}$ (b) $\frac{\omega_0}{2\pi}$ irrational \rightarrow The signal is aperiodic.
sin(ω ₀ n)	$\frac{\pi}{j} \sum_{l=-\infty}^{\infty} \left\{ \delta(\omega - \omega_0 - 2\pi l) - \delta(\omega + \omega_0 - 2\pi l) \right\}$	(a) $\omega_0 = \frac{2\pi m}{N}$ $a_k = \begin{cases} \frac{1}{2j} & k = m, m \pm N, m \pm 2N, m \pm $
x[n] = 1	$2\pi\sum_{l=-\infty}^{\infty}\delta(\omega-2\pi l)$	$a_k = \begin{cases} 1 & k = 0, \pm N, \pm 2N \dots \\ 0 & \text{otherwise} \end{cases}$
Periodic square wave $x[n] = \begin{cases} 1 & n \le N_1 \\ 0 & N_1 < n \le N/2 \end{cases}$ and $x[n+N] = x[n]$	$2\pi \sum_{k=-\infty}^{\infty} a_k \delta\left(\omega - \frac{2\pi k}{N}\right)$	$a_{k} = \frac{\sin[2\pi/N)(N_{1} + 1/2)}{N\sin[2\pi k/2N]},$ $k \neq 0, \pm N, \pm 2N,$ $a_{k} = \frac{2N_{1} + 1}{N}, k = 0, \pm N, \pm 2N,$
$\sum_{k=-\infty}^{\infty} \delta[n-kN]$	$\frac{2\pi}{N} \sum_{k=-\infty}^{\infty} \delta \left(\omega - \frac{2\pi k}{N} \right)$	$a_k = \frac{1}{N}$ for all k
$a^n u[n], \qquad a < 1$	$\frac{1}{1-ae^{-j\omega}}$	
$\mathbf{x}[\mathbf{n}] = \begin{cases} 1 & \mathbf{n} \le \mathbf{N}_1 \\ 0 & \mathbf{n} > \mathbf{N}_1 \end{cases}$	$\frac{\sin[\omega(N_1+1/2)]}{\sin(\omega/2)}$	
$\frac{\sin Wn}{\pi n} = \frac{W}{\pi} \sin c \left(\frac{Wn}{\pi}\right)$ $0 < W < \pi$	$X(e^{j\omega}) = \begin{cases} 1 & 0 \le \omega \le W \\ 0 & W < \omega \le \pi \end{cases}$ $X(e^{j\omega}) \text{ periodic with }$ $\text{period 2}.$	

$\delta[n]$	1	
u[n]	$\frac{1}{1-e^{j\omega}} + \sum_{k=-\infty}^{\infty} \pi \delta(\omega - 2\pi k)$	
$(n+1)a^nu[n], a < 1$	$\frac{1}{(1-ae^{-j\omega})^2}$	
$\frac{(n+r-1)!}{n!(r-1)!}a^{n}u[n], a <1$	$\frac{1}{(1-ae^{-j\omega})^r}$	