Single Source Shortest Path Algorithms

- Consider the problem of finding shortest paths between all pairs of vertices in a graph
- Problem might arise in making a table of distances between all pairs of cities for a road atlas
- given a weighted, directed graph G = (V, E) with a weight function w: $E \rightarrow R$ that maps edges to real-valued weights

- We wish to find, for every pair of vertices $u, v \in V$, a shortest (least-weight) path from u to v, where the weight of a path is the sum of the weights of its constituent edges
- We typically want the output in tabular form:
- the entry in u's row and v's column should be the weight of a shortest path from u to v

- We can solve an all-pairs shortest-paths problem by running a single-source shortest-paths algorithm |V| times, once for each vertex as the source.
- If all edge weights are nonnegative, we can use Dijkstra's algorithm

- If the graph has negative—weight edges, we cannot use Dijkstra's algorithm
- Instead, we must run the slower Bellman–Ford algorithm once from each vertex
- The resulting running time is O(V²E), which on a dense graph is O(V⁴)

```
DIJKSTRA(G, w, s)
   INITIALIZE-SINGLE-SOURCE (G, s)
  S = \emptyset
 Q = G.V
   while Q \neq \emptyset
       u = \text{EXTRACT-MIN}(Q)
    S = S \cup \{u\}
    for each vertex v \in G.Adj[u]
8
            RELAX(u, v, w)
```


ν	known	d_{ν}	p_{ν}
v_1	F	0	0
v_2	F	∞	0
ν3	F	∞	0
ν4	F	∞	0
ν ₅	F	∞	0
v_6	F	∞	0
ν7	F	∞	0

Figure 9.21 Initial configuration of table used in Dijkstra's algorithm

Figure 9.20 The directed graph *G* (again)

ν	known	d_{ν}	p_{ν}
v_1	Т	0	0
v_2	F	2	v_1
ν3	F	∞	0
ν4	F	1	v_1
ν ₅	F	∞	0
ν ₆	F	∞	0
ν7	F	∞	0

Figure 9.22 After v₁ is declared *known*

Figure 9.20 The directed graph *G* (again)

ν	known	d_{ν}	p_{ν}
v_1	T	0	0
v_2	F	2	v_1
ν3	F	3	ν4
V4	T	1	v_1
V ₅	F	3	v_4
v ₆	F	9	ν4
ν ₇	F	5	ν ₄

Figure 9.23 After v₄ is declared *known*

Figure 9.20 The directed graph *G* (again)

ν	known	d_{ν}	p_{ν}
v_1	Т	0	0
v_2	T	2	v_1
ν3	F	3	ν ₄
ν4	T	1	ν_1
ν ₅	F	3	ν4
ν ₆	F	9	ν4
ν ₇	F	5	ν ₄

Figure 9.24 After v_2 is declared known

Figure 9.20 The directed graph *G* (again)

ν	known	d_{ν}	p_{ν}
v_1	T	0	0
v_2	T	2	v_1
V3	T	3	ν4
ν ₄	T	1	v_1
ν ₅	T	3	ν4
ν ₆	F	8	ν3
ν ₇	F	5	ν4

Figure 9.25 After v_5 and then v_3 are declared known

Figure 9.20 The directed graph *G* (again)

ν	known	d_{ν}	p_{ν}
v_1	T	0	0
ν2	T	2	ν_1
ν3	T	3	ν ₄
ν4	T	1	v_1
v_5	T	3	v_4
ν ₆	F	6	ν ₇
ν7	T	5	ν ₄

Figure 9.26 After v₇ is declared *known*

Figure 9.20 The directed graph *G* (again)

ν	known	d_{ν}	p_{ν}
v_1	T	0	0
ν2	T	2	ν_1
ν3	T	3	V4
ν4	T	1	v_1
v_5	T	3	ν ₄
ν ₆	T	6	ν ₇
ν7	T	5	ν4

Figure 9.27 After v_6 is declared *known* and algorithm terminates

- Because each vertex $u \in V$ is added to set S exactly once, each edge in the adjacency list Adj[u] is examined in the for loop of lines 7-8 exactly once during the course of the algorithm.
- Since the total number of edges in all the adjacency lists is |E|, this for loop iterates a total of |E| times, and thus the algorithm calls DECREASE–K EY at most |E| times overall

- running time of Dijkstra's algorithm depends on how we implement the min-priority queue
- Case I simply store v.d in the vth entry of an array
- Each INSERT and DECREASE–K EY operation takes O(1) time, and each E XTRACT–M IN operation takes O(V) time
- total time of $O(V^2 + E) = O(V^2)$

- Case II we can improve the algorithm by implementing the min– priority queue with a binary min–heap
- Each EXTRACT-MIN operation then takes time O(lg V)
- time to build the binary min-heap is O(V)
- Each DECREASE –KEY operation takes time O(lg V), and there are still at most |E| such operations
- total running time is therefore O(V + E) lg V) which is O.E lg V/ if all vertices are reachable from the source

- Case III achieve a running time of O(V lg V + E) by implementing the min-priority queue with a Fibonacci heap
- The amortized cost of each of the |V| EXTRACT –M IN operations is O(lg V), and each DECREASE –K EY call, of which there are at most |E|, takes only O(1) amortized time

- We allow negative—weight edges, but we assume for the time being that the input graph contains no negative—weight cycles.
- Time Complexity of Dijkstra's Algorithm is O (V²) but with min–priority queue it drops down to O (V + E l o g V)

- Like other Dynamic Programming Problems, the algorithm calculates shortest paths in a bottom—up manner
- It first calculates the shortest distances which have at—most one edge in the path.
- Then, it calculates the shortest paths with at—most 2 edges, and so on

- After the i-th iteration, the shortest paths with at most i edges are calculated
- There can be maximum |V| 1 edges in any simple path, that is why the outer loop runs |v| 1 times

- Solves the single—source shortest—paths problem in which edge weights may be negative
- Given a weighted, directed graph G = (V, E) with source s and weight function $w : E \to R$, the Bellman-Ford algorithm returns a boolean value indicating whether or not there is a negative—weight cycle that is reachable from the source.
- If there is such a cycle, the algorithm indicates that no solution exists.

- No such cycle, the algorithm produces shortest paths and their weights
- The algorithm relaxes edges, progressively decreasing an estimate v.d on the weight of a shortest path from the source s to each vertex v $\boldsymbol{\epsilon}$ V until it achieves the actual shortest—path weight δ (s,v)
- The algorithm returns TRUE if and only if the graph contains no negative—weight cycles that are reachable from the source.

```
BELLMAN-FORD(G, w, s)
  INITIALIZE-SINGLE-SOURCE (G, s)
2 for i = 1 to |G.V| - 1
       for each edge (u, v) \in G.E
           RELAX(u, v, w)
   for each edge (u, v) \in G.E
       if v.d > u.d + w(u, v)
           return FALSE
   return TRUE
```


Edge Name	Old Cost	Updated Cost
S	0	0
t	∞	
X	∞	∞
y	∞	
Z	∞	

(t, x)			

Edge Name	Old Cost	Updated Cost
S	0	0
t	∞	
X	∞	∞
y	∞	∞
Z	∞	

(t, x) (t, y)	
---------------	--

Edge Name	Old Cost	Updated Cost
S	0	0
t	∞	
X	∞	∞
y	∞	∞
Z	∞	∞

(t, x) (t, y)	(t, z)						
---------------	--------	--	--	--	--	--	--

Edge Name	Old Cost	Updated Cost
S	0	0
t	∞	∞
X	∞	∞
y	∞	∞
Z	∞	∞

(t, x) (t, y) (t, z) (x, t)

Edge Name	Old Cost	Updated Cost
S	0	0
t	∞	∞
X	∞	∞
y	∞	∞
Z	∞	∞

(t, x) (t, y)	(t, z)	(x, t)	(y, x)					
---------------	--------	--------	--------	--	--	--	--	--

Edge Name	Old Cost	Updated Cost
S	0	0
t	∞	∞
X	∞	∞
y	∞	∞
Z	∞	∞

(t, x) (t, y) (t,	z) (x, t)	(y, x) (y,z)		
-------------------	-----------	--------------	--	--

Edge Name	Old Cost	Updated Cost
S	0	0
t	∞	∞
X	∞	∞
y	∞	∞
Z	∞	∞

(t, x) (t, y) (t, z) (x, t) (y, x)	(y,z) (z, x)
------------------------------------	--------------

Edge Name	Old Cost	Updated Cost
S	0	0
t	∞	∞
X	∞	∞
y	∞	∞
Z	∞	∞

(t, x) (t, y) (t, z)	(x, t)	(y, x)	(y,z)	(z, x)	(z,s)		
----------------------	--------	--------	-------	--------	-------	--	--

Edge Name	Old Cost	Updated Cost
S	0	0
t	∞	6
X	∞	∞
y	∞	∞
Z	∞	∞

(t, x)	(t, y)	(t, z)	(x, t)	(y, x)	(y,z)	(z, x)	(z,s)	(s,t)	

Edge Name	Old Cost	Updated Cost
S	0	0
t	∞	6
X	∞	∞
y	∞	7
Z	∞	∞

(t, x)	(t, y)	(t, z)	(x, t)	(y, x)	(y,z)	(z, x)	(z,s)	(s,t)	(s,y)

Edge Name	Old Cost	Updated Cost
S	0	0
t	6	
X	∞	11
y	7	
Z	∞	

Edge Name	Old Cost	Updated Cost
S	0	0
t	6	
X	∞	11
y	7	14 7
Z	∞	

(t, x) (t, y)								
---------------	--	--	--	--	--	--	--	--

Edge Name	Old Cost	Updated Cost
S	0	0
t	6	
X	∞	11
y	7	14 7
Z	∞	2

(t, x) (t, y)	(t, z)							
---------------	--------	--	--	--	--	--	--	--

Edge Name	Old Cost	Updated Cost
S	0	0
t	6	9-6
X	∞	11
y	7	14 7
Z	∞	2

(t, x) (t, y)	(t, z) (x	x, t)			
---------------	-----------	-------	--	--	--

Edge Name	Old Cost	Updated Cost
S	0	0
t	6	9—6
X	11	4
y	7	14 7
Z	∞	2

(t, x) (t, y)	(t, z) (x	x, t) (y, x)			
---------------	-----------	--------------	--	--	--

Edge Name	Old Cost	Updated Cost
S	0	0
t	6	9-6
X	11	4
y	7	14 7
Z	∞	16 2

(t, x) (t,	y) (t, z)	(x, t)	(y, x)	(y,z)				
------------	-----------	--------	--------	-------	--	--	--	--

Edge Name	Old Cost	Updated Cost
S	0	0
t	6	9—6
X	11	9 4
y	7	14 7
Z	∞	16 2

(t, x) (t, y) (t, z) (x, t) (y,	(y,z) (z, x)
---------------------------------	--------------

Edge Name	Old Cost	Updated Cost
S	0	0
t	6	9-6
X	11	9 4
y	7	14 7
Z	∞	16 2

(t, x) (t, y) (t, z) ((x, t) (y, x) (y	y,z) (z, x) (z,s)
------------------------	------------------	------------------	---

Edge Name	Old Cost	Updated Cost
S	0	0
t	6	9-6
X	11	9 4
y	7	14 7
Z	∞	16 2

(t, x) (t, y) (t, z) (x, t) (y, x) (y,z) (z, x) (z,s) (s,t)

Edge Name	Old Cost	Updated Cost
S	0	0
t	6	9—6
X	11	9 4
y	7	14 7
Z	∞	16 2

(t, x)	(t, y)	(t, z)	(x, t)	(y, x)	(y,z)	(z, x)	(z,s)	(s,t)	(s,y)
--------	--------	--------	--------	--------	-------	--------	-------	-------	-------

Edge Name	Old Cost	Updated Cost
S	0	0
t	6	6
X	4	11-4
y	7	7
Z	2	2

|--|

Edge Name	Old Cost	Updated Cost
S	0	0
t	6	6
X	4	11-4
y	7	14-7
Z	2	2

(t, x) (t, y)						
---------------	--	--	--	--	--	--

Edge Name	Old Cost	Updated Cost
S	0	0
t	6	6
X	4	11-4
y	7	14-7
Z	2	2

(t, x) (t, y)	(t, z)			
---------------	--------	--	--	--

Edge Name	Old Cost	Updated Cost
S	0	0
t	6	2
X	4	11-4
y	7	14-7
Z	2	2

	(t, x)	(t, y)	(t, z)	(x, t)						
--	--------	--------	--------	--------	--	--	--	--	--	--

Edge Name	Old Cost	Updated Cost
S	0	0
t	6	2
X	4	11-4
y	7	14- 7
Z	2	2

(t, x)	(t, y)	(t, z)	(x, t)	(y, x)			

Edge Name	Old Cost	Updated Cost
S	0	0
t	6	2
X	4	11-4
y	7	14-7
Z	2	16- 2

(t, x)	(t, y)	(t, z)	(x, t)	(y, x)	(y,z)		
							,

Edge Name	Old Cost	Updated Cost
S	0	0
t	6	2
X	4	11-4
y	7	14-7
Z	2	16- 2

(t, x) (t, y) (t, s	z) (x, t) ((y, x) (y,z)	(z, x)	
---------------------	-------------	--------------	--------	--

Edge Name	Old Cost	Updated Cost
S	0	0
t	6	2
X	4	11-4
y	7	14-7
Z	2	16- 2

(t, x)	(t, y)	(t, z)	(x, t)	(y, x)	(y,z)	(z, x)	(z,s)	

Edge Name	Old Cost	Updated Cost
S	0	0
t	6	2
X	4	11-4
y	7	14-7
Z	2	16- 2

Edge Name	Old Cost	Updated Cost
S	0	0
t	6	2
X	4	11-4
y	7	14-7
Z	2	16- 2

(t, x)	(t, y)	(t, z)	(x, t)	(y, x)	(y,z)	(z, x)	(z,s)	(s,t)	(s,y)

Edge Name	Old Cost	Updated Cost
S	0	
t	2	
X	4	7-4
y	7	
Z	2	

(t, x)		

Edge Name	Old Cost	Updated Cost
S	0	
t	2	
X	4	7-4
y	7	10 -7
Z	2	

(t, x)	(t, y)				

Edge Name	Old Cost	Updated Cost
S	0	
t	2	
X	4	7-4
у	7	10 -7
Z	2	- 2

(t, x) (t, y) (t, z)	
----------------------	--

Edge Name	Old Cost	Updated Cost
S	0	
t	2	2
X	4	7-4
у	7	10 -7
Z	2	- 2

(t, x) (t, y)	(t, z) ((x, t)		

Edge Name	Old Cost	Updated Cost
S	0	
t	2	2
X	4	7-4
y	7	10- 7
Z	2	-2

(t, x) (t, y) (t, z) (x, t) (y, x)

Edge Name	Old Cost	Updated Cost
S	0	
t	2	2
X	4	7-4
y	7	10 -7
Z	2	16 –2

(t, x) (t, y) (t, z) (x, t) (y, x)	(y,z)
------------------------------------	-------

Edge Name	Old Cost	Updated Cost
S	0	
t	2	2
X	4	7-4
у	7	10- 7
Z	2	16 –2

(t, x) (t, y) (t, z) (x, t) (y,	(y,z) (z, x)
---------------------------------	--------------

Edge Name	Old Cost	Updated Cost
S	0	
t	2	2
X	4	7-4
у	7	10 -7
Z	2	16 –2

(t, x)	(t, y)	(t, z)	(x, t)	(y, x)	(y,z)	(z, x)	(z,s)	

Edge Name	Old Cost	Updated Cost
S	0	
t	2	2
X	4	7-4
у	7	10 -7
Z	2	16 –2

(t, x)	(t, y)	(t, z)	(x, t)	(y, x)	(y,z)	(z, x)	(z,s)	(s,t)	

Edge Name	Old Cost	Updated Cost
S	0	
t	2	2
X	4	7-4
y	7	10- 7
Z	2	16 –2

(t, x)	(t, y)	(t, z)	(x, t)	(y, x)	(y,z)	(z, x)	(z,s)	(s,t)	(s,y)

Bellman–Ford algorithm – Check for Cycles

Edge Name	Old Cost	Updated Cost
S	0	
t	2	
X	4	7-4
y	7	
Z	-2	

(t, x)		

Bellman–Ford algorithm – Check for Cycles

Edge Name	Old Cost	Updated Cost
S	0	
t	2	
X	4	7-4
y	7	10 -7
Z	-2	

(t, x) (t, y)						
---------------	--	--	--	--	--	--

Bellman–Ford algorithm – Check for Cycles

Edge Name	Old Cost	Updated Cost
S	0	
t	2	
X	4	7-4
y	7	10 -7
Z	-2	-2

(t, x) (t, y)	(t, z)			
---------------	--------	--	--	--

Edge Name	Old Cost	Updated Cost
S	0	
t	2	2
X	4	7-4
y	7	10 -7
Z	-2	- 2

(t, x)	(t, y)	(t, z)	(x, t)			

Edge Name	Old Cost	Updated Cost
S	0	
t	2	2
X	4	7-4
y	7	10 -7
Z	-2	-2

(t, x) (t, y) (t, z) (x, t) (y, x)

Edge Name	Old Cost	Updated Cost
S	0	
t	2	2
X	4	7-4
y	7	10 -7
Z	-2	-2

(t, x) (t, y)	(t, z) (x, t)	(y, x) (y	y,z)		
---------------	---------------	-----------	------	--	--

Edge Name	Old Cost	Updated Cost
S	0	
t	2	2
X	4	7-4
y	7	10 -7
Z	-2	16 –2

(t, x) (t, y) (t, z) (x, t)	(y, x) (y,z)	(z, x)	
-----------------------------	--------------	--------	--

Edge Name	Old Cost	Updated Cost
S	0	
t	2	2
X	4	7-4
y	7	10 -7
Z	-2	16 –2

(t, x) (t, y) (t, z) (x	(x, t) (y, x) (y,z)	(z, x) (z,s)
-------------------------	---------------------	--------------

Edge Name	Old Cost	Updated Cost
S	0	
t	2	2
X	4	7-4
y	7	10 -7
Z	- 2	16 –2

(t, x)	(t, y)	(t, z)	(x, t)	(y, x)	(y,z)	(z, x)	(z,s)	(s,t)	

Edge Name	Old Cost	Updated Cost
S	0	0
t	2	2
X	4	7-4
y	7	10 -7
Z	-2	16 –2

(t, x)	(t, y)	(t, z)	(x, t)	(y, x)	(y,z)	(z, x)	(z,s)	(s,t)	(s,y)

Bellman-Ford algorithm

• time complexity of Bellman-Ford is O(VE), which is more than Dijkstra.