Cálculo Numérico

Interpolação Polinomial: Fórmula Interpolatória de Newton

Wellington José Corrêa

Universidade Tecnológica Federal do Paraná

20 de julho de 2021

Considere uma função f(x) definida em $x_0, x_1, \ldots, x_n, (n+1)$ pontos distintos de um intervalo [a,b].

Definição

A diferença dividida de ordem 0 de uma função f(x) definida nos pontos $x_i, i=0,1,\ldots,n$ por

(1)
$$f[x_i] = f(x_i), i = 0, 1, \dots n$$

Definição

A diferença dividida de ordem n de uma função f(x) definida nos pontos $x_i, i = 0, 1, \dots, n$ por

(2)
$$f[x_0, x_1, \dots, x_n] = \frac{f[x_1, \dots, x_n] - f[x_0, x_1, \dots, x_{n-1}]}{x_n - x_0}.$$

x	Ordem 0	Ordem 1	Ordem 2
x_0	$f[x_0]$		
		$f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0}$	$f[x_1, x_2] = f[x_2, x_2]$
	$f[x_1]$		$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_0 - x_0}$
		$f[x_1, x_2] = \frac{f[x_2] - f[x_1]}{x_2 - x_1}$	2 20
	$f[x_2]$		$f[x_1, x_2, x_3] = \frac{f[x_2, x_3] - f[x_1, x_2]}{f[x_1, x_2]}$
		$f[x_2, x_3] = \frac{f[x_3] - f[x_2]}{x_2 - x_2}$	Ordem 2 $f[x_0,x_1,x_2] = \frac{f[x_1,x_2] - f[x_0,x_1]}{x_2 - x_0}$ $f[x_1,x_2,x_3] = \frac{f[x_2,x_3] - f[x_1,x_2]}{x_3 - x_1}$
	$f[x_3]$	w3 w2	

x	Ordem 0	Ordem 1	Ordem 2
x_0	$f[x_0]$	6[] 6[]	
	$f[x_0]$	$f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0}$	$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$ $f[x_1, x_2, x_3] = \frac{f[x_2, x_3] - f[x_1, x_2]}{x_3 - x_1}$
x_1	$f[x_1]$		$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$
		$f[x_1, x_2] = \frac{f[x_2] - f[x_1]}{x_2 - x_1}$	
	$f[x_2]$		$f[x_1, x_2, x_3] = \frac{f[x_2, x_3] - f[x_1, x_2]}{x_2 - x_3}$
		$f[x_2, x_3] = \frac{f[x_3] - f[x_2]}{f[x_3] - f[x_2]}$	$x_3 - x_1$
	$f[x_3]$	$x_3 - x_2$	

x	Ordem 0	Ordem 1	Ordem 2
x_0	$f[x_0]$	$f[m_n] = f[m_n]$	
		$f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0}$	
x_1	$f[x_1]$	$f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0}$ $f[x_1, x_2] = \frac{f[x_2] - f[x_1]}{x_2 - x_1}$	$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$
		$f[x_1, x_2] - f[x_1]$	$x_2 - x_0$
		$\int [x_1, x_2] = \frac{1}{x_2 - x_1}$	$f[x_0, x_0] = f[x_1, x_0]$
	$f[x_2]$		$f[x_1, x_2, x_3] = \frac{f[x_2, x_3] - f[x_1, x_2]}{x_3 - x_1}$
		$f[x_2, x_3] = \frac{f[x_3] - f[x_2]}{x_3 - x_2}$	
	$f[x_3]$	$x_3 - x_2$	

x	Ordem 0	Ordem 1	Ordem 2
x_0	$f[x_0]$	$f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_2}$	
x_1	$f[x_1]$	$x_1 - x_0$ $f[x_2] - f[x_1]$	$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$
x_2	$f[x_2]$	$f[x_1, x_2] = \frac{1}{x_2 - x_1}$	$f[x_1, x_2, x_3] = \frac{f[x_2, x_3] - f[x_1, x_2]}{x_3 - x_1}$
	$f[x_3]$	$f[x_2, x_3] = \frac{f[x_3] - f[x_2]}{x_3 - x_2}$	$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$ $f[x_1, x_2, x_3] = \frac{f[x_2, x_3] - f[x_1, x_2]}{x_3 - x_1}$

x	Ordem 0	Ordem 1	Ordem 2
x_0	$f[x_0]$	$f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{f[x_0, x_1]}$	
x_1	$f[x_1]$	$x_1 - x_0$ $f[x_0] = f[x_1]$	$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$
x_2	$f[x_2]$	$f[x_1, x_2] = \frac{f[x_2] - f[x_1]}{x_2 - x_1}$	$f[x_1, x_2, x_3] = \frac{f[x_2, x_3] - f[x_1, x_2]}{x_1 - x_2}$
	$f[x_3]$	$f[x_2, x_3] = \frac{f[x_3] - f[x_2]}{x_3 - x_2}$	$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$ $f[x_1, x_2, x_3] = \frac{f[x_2, x_3] - f[x_1, x_2]}{x_3 - x_1}$

x	Ordem 0	Ordem 1	Ordem 2
x_0	$f[x_0]$	$\int_{f[x_0, x_1]} f[x_1] - f[x_0]$	
x_1	$f[x_1]$	$f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0}$	$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$
		$f[x_1, x_2] = \frac{f[x_2] - f[x_1]}{x_1 - x_2}$	
x_2	$f[x_2]$		$f[x_1, x_2, x_3] = \frac{f[x_2, x_3] - f[x_1, x_2]}{x_3 - x_1}$
x_3	$f[x_3]$	$f[x_2, x_3] = \frac{f[x_3] - f[x_2]}{x_3 - x_2}$	

x	Ordem 0	Ordem 1	Ordem 2
x_0	$f[x_0]$	f[m] = f[m]	
		$f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0}$	
x_1	$f[x_1]$		$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$
		$f[x_1, x_2] = \frac{f[x_2] - f[x_1]}{x_2 - x_1}$	$x_2 - x_0$
		$\int [x_1, x_2] = \frac{1}{x_2 - x_1}$	$f[x_0, x_0] = f[x_1, x_0]$
x_2	$f[x_2]$		$f[x_1, x_2, x_3] = \frac{f[x_2, x_3] - f[x_1, x_2]}{x_3 - x_1}$
		$f[x_2, x_3] = \frac{f[x_3] - f[x_2]}{x_3 - x_2}$	
x_3	$f[x_3]$	$x_3 - x_2$	

x	Ordem 0	Ordem 1	Ordem 2
x_0	$f[x_0]$	$f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{f[x_0, x_1]}$	
x_1	$f[x_1]$	$x_1 - x_0$	$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$
	er 1	$f[x_1, x_2] = \frac{f[x_2] - f[x_1]}{x_2 - x_1}$	$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$ $f[x_1, x_2, x_3] = \frac{f[x_2, x_3] - f[x_1, x_2]}{x_3 - x_1}$
x_2	$f[x_2]$	$f[x_2, x_3] = \frac{f[x_3] - f[x_2]}{f[x_2, x_3]}$	$f[x_1, x_2, x_3] = \frac{f[x_2, x_3] - f[x_1, x_2]}{x_3 - x_1}$
x_3	$f[x_3]$	$x_3 - x_2$	

x	Ordem 0	Ordem 1	Ordem 2
x_0	$f[x_0]$	$f[r_1] = f[r_0]$	
		$f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0}$	er 1 er 1
x_1	$f[x_1]$		$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$
		$f[x_1, x_2] = \frac{f[x_2] - f[x_1]}{x_2 - x_1}$	
x_2	$f[x_2]$	$f[x_1, x_2] = \frac{f[x_2] - f[x_1]}{x_2 - x_1}$	$f[x_1, x_2, x_3] = \frac{f[x_2, x_3] - f[x_1, x_2]}{x_3 - x_1}$
		$f[x_2, x_3] = \frac{f[x_3] - f[x_2]}{x_3 - x_2}$	$x_3 - x_1$
x_3	$f[x_3]$	$x_3 - x_2$	

Exemplo

Para a seguinte função tabelada

construa a tabela de diferenças finitas.

x	Ordem 0	Ordem 1	Ordem 2	Ordem 3	Ordem 4
-2	-2	29 - (-2)			
-1	29	$\frac{29 - (-2)}{-1 - (-2)} = 31$	$\frac{1-31}{2} = -15$		
		$\frac{30 - 29}{0 - (-1)} = 1$	$\frac{1-31}{0-(-2)} = -15$ $\frac{1-1}{1-(-1)} = 0$ $\frac{31-1}{2-0} = 15$	$\frac{0 - (-15)}{1 - (-2)} = 5$	
0	30	$\frac{31 - 30}{1 - 0} = 1$	$\frac{1-1}{1-(-1)} = 0$	15 – 0	$\frac{5-5}{2-(-2)} = 0$
1	31	$\frac{1}{1-0} = 1$	$\frac{31 - 1}{2 - 0} = 15$	$\frac{1}{2 - (-1)} = 5$	
2	62	$\frac{62 - 31}{2 - 1} = 31$	2 — 0		UNIVERSIDADE TECNOLOGICA FEDERAL DO PARA

\boldsymbol{x}	Ordem 0	Ordem 1	Ordem 2	Ordem 3	Ordem 4
-2	-2	20 (2)			
		$\frac{29 - (-2)}{-1 - (-2)} = 31$	1 — 31		
-1	29		$\frac{1-31}{0-(-2)} = -15$		
		$\frac{30 - 29}{0 - (-1)} = 1$	$\frac{1-31}{0-(-2)} = -15$ $\frac{1-1}{1-(-1)} = 0$ $\frac{31-1}{2-0} = 15$	$\frac{0-(-15)}{1-(-2)}=5$	
0	30		$\frac{1-1}{1-1} = 0$	1 (2)	$\frac{5-5}{2} = 0$
		$\frac{31 - 30}{1 - 0} = 1$	1 - (-1)	15 - 0	2 - (-2)
		$\frac{1}{1-0} = 1$	31 – 1	$\frac{1}{2-(-1)} = 3$	
1	31	62 _ 31	$\frac{31 - 1}{2 - 0} = 15$		I III
		$\frac{62 - 31}{2 - 1} = 31$			UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARA
2	62				

x	Ordem 0	Ordem 1	Ordem 2	Ordem 3	Ordem 4
-2	-2	20 (2)			
-1	29	$\frac{29 - (-2)}{-1 - (-2)} = 31$	$\frac{1-31}{0-(-2)} = -15$		
0	30	$\frac{30 - 29}{0 - (-1)} = 1$	$\frac{1-1}{1-(-1)} = 0$	$\frac{0 - (-15)}{1 - (-2)} = 5$	$\frac{5-5}{2-(-2)} = 0$
1	31	$\frac{31 - 30}{1 - 0} = 1$ $62 - 31$	$\frac{31-1}{2-0} = 15$	$\frac{13-6}{2-(-1)} = 5$	UTEPE
2	62	$\frac{62 - 31}{2 - 1} = 31$			UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARA

:	x	Ordem 0	Ordem 1	Ordem 2	Ordem 3	Ordem 4
_	-2	-2	$\frac{29 - (-2)}{-1 - (-2)} = 31$			
-	-1	29		$\frac{1-31}{0-(-2)} = -15$		
			$\frac{30 - 29}{0 - (-1)} = 1$	1-1	$\frac{0 - (-15)}{1 - (-2)} = 5$	$\frac{5-5}{2-(-2)} = 0$
	0	30	$\frac{31 - 30}{1 - 0} = 1$	$\frac{1-1}{1-(-1)} = 0$	$\frac{15 - 0}{2 - (-1)} = 5$	$\frac{1}{2 - (-2)} = 0$
	1	31		$\frac{31 - 1}{2 - 0} = 15$	2 - (-1)	1.00
	2	62	$\frac{62 - 31}{2 - 1} = 31$			UIPR UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARA

x	Ordem 0	Ordem 1	Ordem 2	Ordem 3	Ordem 4
-2	-2	Ordem 1 $\frac{29 - (-2)}{-1 - (-2)} = 31$ $\frac{30 - 29}{0 - (-1)} = 1$ $\frac{31 - 30}{1 - 0} = 1$			
-1	29	-1 - (-2)	$\frac{1-31}{0-(-2)} = -15$	- ()	
	20	$\frac{30 - 29}{0 - (-1)} = 1$	1-1	$\frac{0 - (-15)}{1 - (-2)} = 5$	5 – 5
0	30	$\frac{31-30}{1-30}=1$	$\frac{1 - (-1)}{1 - (-1)} = 0$	$\frac{15-0}{2}=5$	$\frac{1}{2 - (-2)} = 0$
1	31	1-0	$\frac{31 - 1}{2 - 0} = 15$	2 - (-1)	1.00
2	62	$\frac{62 - 31}{2 - 1} = 31$			UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARAMA

x	Ordem 0	Ordem 1	Ordem 2	Ordem 3	Ordem 4
$\overline{-2}$	-2	$\frac{29 - (-2)}{-1 - (-2)} = 31$			
-1	29	30 – 20	$\frac{1-31}{0-(-2)} = -15$	0 — (—15)	
0	30	$\frac{30 - 23}{0 - (-1)} = 1$	$\frac{1-31}{0-(-2)} = -15$ $\frac{1-1}{1-(-1)} = 0$ $\frac{31-1}{2-0} = 15$	$\frac{6 + (10)}{1 - (-2)} = 5$	$\frac{5-5}{}$ = 0
0	30	$\frac{31-30}{1-0}=1$	1 - (-1)	$\frac{15-0}{2-(-1)}=5$	2 - (-2)
1	31	69 21	$\frac{31 - 1}{2 - 0} = 15$	2 (1)	
2	62	$\frac{62 - 31}{2 - 1} = 31$			UNIVERSIDADE TECNOLOGICA FEDERAL DO PARANA

x	Ordem 0	Ordem 1	Ordem 2	Ordem 3	Ordem 4
_	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\frac{29 - (-2)}{-1 - (-2)} = 31$			
_	1 29		$\frac{1-31}{0-(-2)} = -15$	0 (15)	
		$\frac{30 - 29}{0 - (-1)} = 1$	1 – 1	$\frac{1}{1-(-2)} = 5$	5 – 5
0	30	31 - 30	$\frac{1-1}{1-(-1)} = 0$	15 - 0 ₋	$\frac{3}{2 - (-2)} = 0$
1	31	$\frac{31 - 30}{1 - 0} = 1$	$\frac{31 - 1}{2 - 0} = 15$	$\frac{1}{2 - (-1)} = 5$	
J		$\frac{62 - 31}{2 - 1} = 31$	2 - 0		UTFPR WASAN TOO GO A FORM OF ANALY
;	2 62	2-1			UNIVERSIDADE TECNOLOGICA FEDERAL DO PARANA

x	Ordem 0	Ordem 1	Ordem 2	Ordem 3	Ordem 4
-2	-2	$\frac{29 - (-2)}{-1 - (-2)} = 31$			
-1	29		$\frac{1-31}{0-(-2)} = -15$	0 (15)	
0		$\frac{30 - 29}{0 - (-1)} = 1$	1-1	$\frac{1}{1-(-2)} = 5$	5 – 5
0	30	$\frac{31 - 30}{1 - 0} = 1$	$\frac{1-1}{1-(-1)} = 0$	$\frac{15-0}{}=5$	$\frac{1}{2 - (-2)} = 0$
1	31	1-0	$\frac{31-1}{2-0} = 15$	2 - (-1)	
0	0.0	$\frac{62 - 31}{2 - 1} = 31$	2 – 0		UIFPR UNIVERSIDADE TECNOLOGICA FEDERAL DO PARAMA
2	62				

x	Ordem 0	Ordem 1	Ordem 2	Ordem 3	Ordem 4
-2	-2				
		$\frac{29 - (-2)}{-1 - (-2)} = 31$	$\frac{1-31}{0-(-2)} = -15$ $\frac{1-1}{1-(-1)} = 0$ $\frac{31-1}{2-0} = 15$		
-1	29		$\frac{1}{0-(-2)} = -15$		
		$\frac{30-29}{0-(-1)}=1$	0 - (-2)	$\frac{0-(-15)}{1-(-2)}=5$	
0	30		$1 - 1$ _ 0	1 (2)	$5-5$ _ 0
U	30	91 90	$\frac{1}{1-(-1)}=0$	15 0	$\frac{1}{2-(-2)} = 0$
		$\frac{31-30}{1}=1$		$\frac{15-0}{2}=5$	
1	0.1	1 - 0	31 - 1	2 - (-1)	
1	31	60 21	$\frac{1}{2-0} = 15$		
		$\frac{62 - 31}{2 - 1} = 31$			UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ
2	62	2 - 1			

\boldsymbol{x}	Ordem 0	Ordem 1	Ordem 2	Ordem 3	Ordem 4
-2	-2				
		$\frac{29 - (-2)}{-1 - (-2)} = 31$	1 01		
-1	29		$\frac{1-31}{0-(-2)} = -15$ $\frac{1-1}{1-(-1)} = 0$		
		$\frac{30 - 29}{0 - (-1)} = 1$		$\frac{0-(-15)}{1-(-2)}=5$	
0	30	0 (1)	$\frac{1-1}{1-(-1)} = 0$	1 (2)	$\frac{5-5}{2-(-2)} = 0$
		$\frac{31 - 30}{1 - 0} = 1$	1 - (-1)	$\frac{15-0}{}=5$	2 - (-2)
1	0.1	1 - 0	31 – 1	2-(-1)	
1	31	62 - 31	$\frac{31-1}{2-0} = 15$		ΙΠ Γ DD
0	60	$\frac{62 - 31}{2 - 1} = 31$			UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ
2	62				

a	Ordem 0	Ordem 1	Ordem 2	Ordem 3	Ordem 4
_	- -	20 (2)			
		$\frac{29 - (-2)}{-1 - (-2)} = 31$	$\frac{1-31}{0-(-2)} = -15$ $\frac{1-1}{1-(-1)} = 0$ $\frac{31-1}{2-0} = 15$		
_	1 29		$\frac{1-31}{0-(-2)} = -15$		
		$\frac{30-29}{1}=1$		$\frac{0 - (-15)}{} = 5$	
		0 - (-1)	1-1	1 - (-2)	5-5
(30	21 20	$\frac{1-(-1)}{1-(-1)}=0$	15 0	$\frac{1}{2 - (-2)} = 0$
		$\frac{31-30}{1-0}=1$		$\frac{15-0}{2-(-1)}=5$	
	31		$\frac{31-1}{2} = 15$	2 (1)	
		62 - 31	2 - 0		Пгрр
		$\frac{62 - 31}{2 - 1} = 31$			UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ
	$2 \mid 62$				

A seguir, temos o seguinte teorema:

Teorema

Seja f(x) uma função contínua (n+1) vezes diferenciável definida no intervalo [a,b].

Sejam
$$x_0, x_1, \ldots, x_n, (n+1)$$
 points distints de $[a, b]$. Então,
$$f[x_0, x_1, \ldots, x_n] = \sum_{k=0}^{n} \frac{f[x_k]}{\prod_{j=0}^{n} (x_k - x_j)} = \frac{f[x_0]}{(x_0 - x_1)(x_0 - x_2)\dots(x_0 - x_n)}$$

$$+ \frac{f[x_1]}{(x_1 - x_0)(x_1 - x_2)\dots(x_1 - x_n)}$$

$$+ \ldots + \frac{f[x_n]}{(x_n - x_0)(x_n - x_1)\dots(x_n - x_{n-1})}$$

Cálculo Numérico Wellington José Corrêa

Este teorema fornece os seguintes corolários:

Corolário

Temos que

$$f[x_0, x_1, \dots, x_n] = f[x_{i0}, x_{i1}, \dots, x_{in}]$$

onde (j_0, j_1, \ldots, j_n) é qualquer permutação dos inteiros positivos $0, 1, \ldots, n$.

Corolário

Observação

Este corolário nos diz que a diferença dividida de f(x) independe da ordem dos pontos $x_0, x_1, \ldots x_n$.

Desta forma, podemos escrever as diferenças divididas em qualquer ordem como segue:

$$f[x_0, x_1] = f[x_1, x_0]$$

$$f[x_0, x_1, x_2] = f[x_1, x_0, x_2] = f[x_1, x_2, x_0] = \dots$$

Cálculo Numérico Wellington José Corrêa

Corolário

Temos que

$$f[x_0, x_1, x_2, \dots, x_n] = \frac{f[x_0, x_1, \dots, x_{j-1}, x_{j+1}, \dots, x_n] - f[x_0, x_1, \dots, x_{k-1}, x_{k+1}, \dots, x_n]}{x_k - x_j}$$

onde $k \neq j$.

Este resultado nos afirma que podemos retirar quaisquer dois pontos para construir a diferença dividida, não somente x_0 e x_2 .

Corolário

Temos que

$$f[x_0,x_1,x_2,\dots,x_n] = \frac{f[x_0,x_1,\dots,x_{j-1},x_{j+1},\dots,x_n] - f[x_0,x_1,\dots,x_{k-1},x_{k+1},\dots,x_n]}{x_k - x_j}$$

onde $k \neq j$.

Este resultado nos afirma que podemos retirar quaisquer dois pontos para construir a diferença dividida. não somente x_0 e x_n .

Cálculo Numérico Wellington José Corrêa

Munidos destes resultados, podemos determinar a chamada fórmula de Newton.

De fato, considere uma função contínua f(x) definida em $x_0, x_1, \ldots, x_n, (n+1)$ pontos distintos de um intervalo [a,b].

Para os pontos x_0 e x, temos

$$f[x_0, x] = \frac{f[x] - f[x_0]}{x - x_0}, x \neq x_0$$

OU

(4)
$$f[x] = f[x_0] + (x - x_0) f[x_0, x].$$

Munidos destes resultados, podemos determinar a chamada fórmula de Newton.

De fato, considere uma função contínua f(x) definida em $x_0,x_1,\ldots,x_n,\,(n+1)$ pontos distintos de um intervalo [a,b].

Para os pontos x_0 e x, temos

$$f[x_0, x] = \frac{f[x] - f[x_0]}{x - x_0}, x \neq x_0$$

ou

(4)
$$f[x] = f[x_0] + (x - x_0) f[x_0, x].$$

Da mesma forma, considerando os pontos x_0, x_1 e x, tendo em mente o corolário 1.2, vem que

$$f[x_0, x_1, x] = \frac{f[x_0, x] - f[x_0, x_1]}{x - x_1}, x \neq x_1,$$

ou ainda

(5)
$$f[x_0, x_1, x](x - x_1) = f[x_0, x] - f[x_0, x_1].$$

Da mesma forma, considerando os pontos x_0, x_1 e x, tendo em mente o corolário 1.2, vem que

$$f[x_0, x_1, x] = \frac{f[x_0, x] - f[x_0, x_1]}{x - x_1}, x \neq x_1,$$

ou ainda

(5)
$$f[x_0, x_1, x](x - x_1) = f[x_0, x] - f[x_0, x_1].$$

Da mesma forma, considerando os pontos x_0, x_1 e x, tendo em mente o corolário 1.2, vem que

$$f[x_0, x_1, x] = \frac{f[x_0, x] - f[x_0, x_1]}{x - x_1}, x \neq x_1,$$

ou ainda,

(5)
$$f[x_0, x_1, x](x - x_1) = f[x_0, x] - f[x_0, x_1].$$

Multiplicando (5) por $(x - x_0)$, vem que

(6)
$$(x-x_0)(x-x_1) f[x_0,x_1,x] = (x-x_0) f[x_0,x] - (x-x_0) f[x_0,x_1].$$

Em seguida, substituindo (4) em (6), obtemos

(7)
$$f[x] = f[x_0] + (x - x_0) f[x_0, x_1] + (x - x_0) (x - x_1) f[x_0, x_1, x].$$

Cálculo Numérico Wellington José Corrêa

Multiplicando (5) por $(x - x_0)$, vem que

(6)
$$(x-x_0)(x-x_1)f[x_0,x_1,x] = (x-x_0)f[x_0,x] - (x-x_0)f[x_0,x_1].$$

Em seguida, substituindo (4) em (6), obtemos:

(7)
$$f[x] = f[x_0] + (x - x_0) f[x_0, x_1] + (x - x_0) (x - x_1) f[x_0, x_1, x].$$

Agora, tendo em mente novamente o corolário (1.2) para

$$f[x_0, x_1, x_2, \dots, x_n, x] = \frac{f[x_0, x_1, x_2, \dots, x_{n-1}, x] - f[x_0, x_1, \dots, x_n]}{x - x_n}, \ x \neq x_n$$

 ϵ

$$\begin{cases}
f(x) = f[x_0] + (x - x_0) f[x_0, x_1] + (x - x_0) (x - x_1) f[x_0, x_1, x_2] \\
+ \dots + (x - x_0) (x - x_1) \dots (x - x_{n-1}) f[x_0, x_1, \dots, x_n]
\end{cases} = P_n(x)$$

$$+ \underbrace{(x - x_0) (x - x_1) \dots (x - x_n) f[x_0, x_1, \dots, x_n, x]}_{P_n(x)}$$

Observe que $R_n(x) = f(x) - P(x)$ é uma nova expressão para o erro E(x) (Você verá no conteúdo "Erro na Interpolação" a devida análise sobre o erro E(x))

Cálculo Numérico Wellington José Corrêa

Agora, tendo em mente novamente o corolário (1.2) para

$$f[x_0, x_1, x_2, \dots, x_n, x] = \frac{f[x_0, x_1, x_2, \dots, x_{n-1}, x] - f[x_0, x_1, \dots, x_n]}{x - x_n}, \ x \neq x_n$$

 ϵ

$$f(x) = f[x_0] + (x - x_0) f[x_0, x_1] + (x - x_0) (x - x_1) f[x_0, x_1, x_2] + \dots + (x - x_0) (x - x_1) \dots (x - x_{n-1}) f[x_0, x_1, \dots, x_n]$$

$$+ \underbrace{(x - x_0) (x - x_1) \dots (x - x_n) f[x_0, x_1, \dots, x_n, x]}_{P_n(x)}$$

Agora, tendo em mente novamente o corolário (1.2) para

$$f[x_0, x_1, x_2, \dots, x_n, x] = \frac{f[x_0, x_1, x_2, \dots, x_{n-1}, x] - f[x_0, x_1, \dots, x_n]}{x - x_n}, \ x \neq x_n$$

 ϵ

$$f(x) = f[x_0] + (x - x_0) f[x_0, x_1] + (x - x_0) (x - x_1) f[x_0, x_1, x_2] + \dots + (x - x_0) (x - x_1) \dots (x - x_{n-1}) f[x_0, x_1, \dots, x_n]$$

$$+ \underbrace{(x - x_0) (x - x_1) \dots (x - x_n) f[x_0, x_1, \dots, x_n, x]}_{P_n(x)}$$

Agora, tendo em mente novamente o corolário (1.2) para

$$f[x_0, x_1, x_2, \dots, x_n, x] = \frac{f[x_0, x_1, x_2, \dots, x_{n-1}, x] - f[x_0, x_1, \dots, x_n]}{x - x_n}, x \neq x_n$$

 ϵ

$$f(x) = f[x_0] + (x - x_0) f[x_0, x_1] + (x - x_0) (x - x_1) f[x_0, x_1, x_2] + \dots + (x - x_0) (x - x_1) \dots (x - x_{n-1}) f[x_0, x_1, \dots, x_n]$$

$$+ \underbrace{(x - x_0) (x - x_1) \dots (x - x_n) f[x_0, x_1, \dots, x_n, x]}_{x - x_0}$$

Agora, tendo em mente novamente o corolário (1.2) para

$$f[x_0, x_1, x_2, \dots, x_n, x] = \frac{f[x_0, x_1, x_2, \dots, x_{n-1}, x] - f[x_0, x_1, \dots, x_n]}{x - x_n}, \ x \neq x_n$$

 ϵ

$$f(x) = f[x_0] + (x - x_0) f[x_0, x_1] + (x - x_0) (x - x_1) f[x_0, x_1, x_2] + \dots + (x - x_0) (x - x_1) \dots (x - x_{n-1}) f[x_0, x_1, \dots, x_n]$$

$$+ \underbrace{(x - x_0) (x - x_1) \dots (x - x_n) f[x_0, x_1, \dots, x_n, x]}_{:=R_n(x)}$$

Agora, tendo em mente novamente o corolário (1.2) para

$$f[x_0, x_1, x_2, \dots, x_n, x] = \frac{f[x_0, x_1, x_2, \dots, x_{n-1}, x] - f[x_0, x_1, \dots, x_n]}{x - x_n}, x \neq x_n$$

6

$$f(x) = f[x_0] + (x - x_0) f[x_0, x_1] + (x - x_0) (x - x_1) f[x_0, x_1, x_2] + \dots + (x - x_0) (x - x_1) \dots (x - x_{n-1}) f[x_0, x_1, \dots, x_n]$$

$$+ \underbrace{(x - x_0) (x - x_1) \dots (x - x_n) f[x_0, x_1, \dots, x_n, x]}_{:=R_n(x)}$$

Teorema

Seja f(x) uma função contínua definida em $x_0,x_1,\ldots,x_n,$ (n+1) pontos distintos de um intervalo [a,b]. O polinômio de grau $\leq n$ baseado nas diferenças divididas é dado por

(8)
$$P(x) = f[x_0] + (x - x_0) f[x_0, x_1] + (x - x_0) (x - x_1) f[x_0, x_1, x_2] + \dots + (x - x_0) (x - x_1) \dots (x - x_{n-1}) f[x_0, x_1, \dots, x_n]$$

interpola f(x) nos pontos x_0, x_1, \ldots, x_n .

Cálculo Numérico Wellington José Corrêa

Exemplo

Exemplo

A função Gama foi definida por Euler por meio da integral

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt.$$

Com respeito a função Gama, temos a tabela:

Usando a fórmula de Newton, calcule $\Gamma(1,01)$ e $\Gamma(1,03)$.

Cálculo Numérico Wellington José Corrêa

Solução: Note que n=2 e o polinômio interpolador é dado por:

$$P_2(x) = f[x_0] + (x - x_0) f[x_0, x_1] + (x - x_0) (x - x_0) (x - x_1) f[x_0, x_1, x_2].$$

Temos a seguinte tabela de diferenças finitas

	Ordem 0	Ordem 1	Ordem 2
1	1		
1,02		-0,56	1
1,04	0,9784	-0,52	

Logo, o polinômio interpolador é

$$P_2(x) = 1 + (x - 1) \cdot (-0,56) + (x - 1) \cdot (x - 1,02) \cdot 1$$

= $x^2 - 2,58x + 2,58$

donde, $f(1,01) \approx P_2(1,01) = 0.9943$ e, $f(1,03) \approx P_2(1,03) = 0.9835$.

Solução: Note que n=2 e o polinômio interpolador é dado por:

$$P_2(x) = f[x_0] + (x - x_0) f[x_0, x_1] + (x - x_0) (x - x_0) (x - x_1) f[x_0, x_1, x_2].$$

Temos a seguinte tabela de diferenças finitas:

x	Ordem 0	Ordem 1	Ordem 2
1	1		
1,02	0,9888	- 0,56	1
1,04	0,9784	-0,52	

Logo, o polinômio interpolador é

$$P_2(x) = 1 + (x - 1) \cdot (-0,56) + (x - 1) \cdot (x - 1,02) \cdot 1$$

= $x^2 - 2,58x + 2,58$

donde. $f(1.01) \approx P_2(1.01) = 0.9943$ e. $f(1.03) \approx P_2(1.03) = 0.9835$.

Solução: Note que n=2 e o polinômio interpolador é dado por:

$$P_2(x) = f[x_0] + (x - x_0) f[x_0, x_1] + (x - x_0) (x - x_0) (x - x_1) f[x_0, x_1, x_2].$$

Temos a seguinte tabela de diferenças finitas:

x	Ordem 0	Ordem 1	Ordem 2
1	1		
		-0,56	_
1,02	0,9888	-0,52	1
1,04	0,9784	0,02	

Logo, o polinômio interpolador é

$$P_2(x) = 1 + (x - 1) \cdot (-0, 56) + (x - 1) \cdot (x - 1, 02) \cdot 1$$

= $x^2 - 2,58x + 2,58$

donde, $f(1,01) \approx P_2(1,01) = 0.9943$ e, $f(1,03) \approx P_2(1,03) = 0.9835$.