PROJECT MANAGEMENT

- Introduzione
- pianificazione di un progetto e la temporizzazione (scheduling)
- rappresentazioni grafiche della pianificazione di un progetto

Software project management

- Sono le attività necessarie per assicurare che un prodotto software sia sviluppato
 - rispettando le scadenze fissate
 - rispondendo a determinati standard
- Interazione di aspetti economici e tecnici
- Un progetto diretto bene qualche volta fallisce, uno diretto male fallisce sicuramente
- L'importanza dell'esperienza

Che cos'è un progetto...

- Un progetto è un insieme ben definito di attività che
 - ha un inizio
 - ha una fine
 - realizza un obiettivo
 - □ è realizzato da un'equipe di persone
 - utilizza un certo insieme di risorse

I giocatori in campo...

- Business managers
 - definiscono i termini economici del progetto
- Project managers
 - pianificano, motivano, organizzano e controllano lo sviluppo
- Practitioners
 - hanno le competenze tecniche per realizzare il sistema
- Customers
 - specificano i requisiti del software da sviluppare
- End users
 - interagiscono con il sistema una volta realizzato

Le attività del project manager

- Stesura della proposta di progetto
- Stima del costo del progetto
- Pianificazione (planning) e temporizzazione (scheduling)
- Monitoraggio e revisioni del progetto
- Selezione e valutazione del personale
- Stesura di rapporti e presentazioni

Struttura del piano di progetto

- 1. Introduzione
- 2. Organizzazione del Progetto
- 3. Descrizione dei Processi Gestionali
- 4. Descrizione dei Processi Tecnici
- 5. Pianificazione del lavoro, delle risorse umane e del budget.

1. Introduzione

1.1 Overview del Progetto

Descrizione di massima del progetto e del prodotto.

1.2 Deliverables del Progetto

 Tutti gli items che saranno consegnati, con data e luogo di consegna

1.3 Evoluzione del Progetto

Piani per cambiamenti ipotizzabili e non

1.4 Materiale di riferimento

Lista dei documenti cui ci si riferisce nel Piano di Progetto

1.5 Definizioni e Abbreviazioni

2. Organizzazione del progetto

2.1 Modello del Processo

- Relazioni tra le varie fasi del processo
- 2.2 Struttura Organizzativa
 - Gestione interna, carta dell'organizzazione
- 2.3 Interfacce Organizzative
 - Relazioni con altre entità
- 2.4 Responsabilità di Progetto
 - Principali funzioni e attività;
 - Di che natura sono?
 - Chi ne è il responsabile ?

3. Processi gestionali

- 3.1 Obiettivi e Priorità
- 3.2 Assunzioni, Dipendenze, Vincoli
 - Fattori esterni
- 3.3 Gestione dei rischi
 - Identificazione, Valutazione, Monitoraggio dei rischi
- 3.4 Meccanismi di monitoraggio e di controllo
 - Meccanismi di reporting, format, flussi di informazione, revisioni
- 3.5 Pianificazione dello staff
 - Skill necessari (cosa?, quanto?, quando?)

4. Processi tecnici

4.1 Metodi, Strumenti e Tecniche

- Sistemi di calcolo, metodi di sviluppo, struttura del team, ecc.
- Standards, linee guida, politiche.

4.2 Documentazione del Software

□ Piano di documentazione, che deve includere milestones, e revisioni

4.3 Funzionalità di supporto al progetto

- Pianificazione della qualità
- Pianificazione della gestione delle configurazioni

5. Pianificazione del lavoro, delle risorse umane e del budget.

5.1 Work Packages

Il progetto è scomposto in tasks; definizione di ciascun task

5.2 Dipendenze

Relazioni di precedenza tra funzioni, attività e task

5.3 Risorse Necessarie

 Stima delle risorse necessarie, in termini di personale, di tempo di computazione, di hardware particolare, di supporto software ecc.

5.4 Allocazione del Budget e delle Risorse

Associa ad ogni funzione, attività o task il costo relativo

5.5 Pianificazione

Deadlines e Milestones

Funzioni

- Attività o insiemi di attività che coprono tutta la durata del progetto
 - Project management
 - Configuration Management
 - Documentation
 - Quality Control (Verifica e validazione)
 - Training

Scheduling di progetto

- Divide il progetto in attività e mansioni (tasks) e stima il tempo e le risorse necessarie per completare ogni singola mansione
- Organizza le mansioni in modo concorrente, per ottimizzare la forza lavoro
- Minimizza la dipendenza tra le singole mansioni per evitare ritardi dovuti all'attesa del completamento di un'altra mansione
- Sono necessari intuito ed esperienza

Processo di scheduling del progetto

Problemi nello scheduling

- E' difficile stimare la difficoltà dei problemi ed il costo di sviluppo di una soluzione
- La produttività non è proporzionale al numero di persone che lavorano su una singola mansione
- Aggiungere personale in un progetto in ritardo può aumentare ancora di più il ritardo
- Imprevisti succedono sempre...

Grafo delle attività (PERT), grafico a barre e diagramma di Gannt

- Diversi tipi di rappresentazione grafica dello scheduling del progetto
- Mostrano la suddivisione del lavoro in mansioni. Le mansioni non devono essere troppo piccole (una settimana o due di lavoro)
- Il grafo delle attività (PERT) evidenzia le dipendenze e il cammino critico
- Il grafico a barre mostra lo scheduling come calendario lavori
- Il diagramma di Gannt esprime la temporizzazione

Network delle attività

Diagramma di PERT

- ES: earliest start time:
 - il minimo giorno di inizio dell'attività, a partire dal minimo tempo necessario per le attività che precedono
- EF: earliest finish time:
 - dato ES e la durata dell'attività, il minimo giorno in cui l'attività può terminare
- LF: latest finish time:
 - il giorno massimo in cui quel job deve finire senza che si crei ritardo per i job che dipendono da lui
- LS: latest start time:
 - dato LF e la durata del job, il giorno massimo in cui quel job deve iniziare senza provocare ritardo per i job che dipendono da lui

Cammino critico

Mansioni: durata e dipendenze

Mansioni	Durata (giorni)	Dipendenze	
T1	8		
T2	15		
Т3	15	T1	
T4	10		
T5	10	T2, T4	
Т6	5	T1, T2	
T7	20	T1	
Т8	25	T4	
Т9	15	T3, T6	
T10	15	T5, T7	
T11	7	Т9	
T12	10	T11	

Network delle attività

Diagramma di Gannt

Allocazione della forza lavoro

ESERCIZIO

 Disegnare il diagramma delle attività e il diagramma di Gannt relativo alle attività mostrate nella slide successiva con le relative durate e dipendenze

Mansioni: durata e dipendenze

Mansioni	Durata (giorni) Dipendenz		
T1	10	_	
T2	15	T1	
T3	10	T1,T2	
T4	20		
T5	10		
T6	15	T3, T4	
T7	20	T3	
T8	35	T7	
T9	15	T3, T6	
T10	5	T5, T9	
T11	10	T9	
T12	20	T10	
T13	35	T3,T4	
T14	10	T8,T9	
T15	20	T9,T14	
T16	10	T15	

Esercizio

Supponendo che si verifichi un problema inaspettato che prolunghi il task T5 da 10 a 40 giorni, rivedere il diagramma delle attività evidenziando il nuovo cammino critico. Disegnare il nuovo diagramma di Gannt per mostrare come il progetto potrebbe essere riorganizzato.

Risk management

- Risk management is concerned with identifying risks and drawing up plans to minimise their effect on a project.
- A risk is a probability that some adverse circumstance will occur.
 - Project risks: affect schedule or resources
 - Product risks: affect the quality or performance of the software being developed
 - Business risks: affect the organisation developing or procuring the software

Software risks

Risk	Risk type	Description
Staff turnover	Project	Experienced staff will leave the
		project before it is finished.
Hardware unavailability	Project	Hardware which is essential for the
		project will not be delivered on
		schedule.
Requirements change	Project and	There will be a larger number of
	product	changes to the requirements than
		anticipated.
Specification delays	Project and	Specifications of essential interfaces
	product	are not available on schedule
Size underestimate	Project and	The size of the system has been
	product	underestimated.
CASE tool under-	Product	CASE tools which support the
performance		project do not perform as anticipated
Technology change	Business	The underlying technology on which
		the system is built is superseded by
		new technology.
Product competition	Business	A competitive product is marketed
		before the system is completed.

The risk management process

Risk identification

- Technology risks
- People risks
- Organisational risks
- Tools risks
- Requirements risks
- Estimation risks

Risks and risk types

Risk type	Possible risks
Technology	The database used in the system cannot process as
	many transactions per second as expected.
	Software components which should be reused contain
	defects which limit their functionality.
People	It is impossible to recruit staff with the skills required.
	Key staff are ill and unavailable at critical times.
	Required training for staff is not available.
Organisational	The organisation is restructured so that different
	management are responsible for the project.
	Organisational financial problems force reductions in the
	project budget.
Tools	The code generated by CASE tools is inefficient.
	CASE tools cannot be integrated.
Requirements	Changes to requirements which require major design
	rework are proposed.
	Customers fail to understand the impact of requirements
	changes.
Estimation	The time required to develop the software is
	underestimated.
	The rate of defect repair is underestimated.
	The size of the software is underestimated.

Risk analysis

- Assess probability and seriousness of each risk
- Probability may be very low, low, moderate, high or very high
- Risk effects might be catastrophic, serious, tolerable or insignificant

Risk analysis

Risk	Probability	Effects
Organisational financial problems force	Low	Catastrophic
reductions in the project budget.		
It is impossible to recruit staff with the skills	High	Catastrophic
required for the project.		
Key staff are ill at critical times in the project.	Moderate	Serious
Software components which should be reused	Moderate	Serious
contain defects which limit their functionality.		
Changes to requirements which require major	Moderate	Serious
design rework are proposed.		
The organisation is restructured so that different	High	Serious
management are responsible for the project.		
The database used in the system cannot process	Moderate	Serious
as many transactions per second as expected.		
The time required to develop the software is	High	Serious
underestimated.		
CASE tools cannot be integrated.	High	Tolerable
Customers fail to understand the impact of	Moderate	Tolerable
requirements changes.		
Required training for staff is not available.	Moderate	Tolerable
The rate of defect repair is underestimated.	Moderate	Tolerable
The size of the software is underestimated.	High	Tolerable
The code generated by CASE tools is inefficient.	Moderate	Insignificant

Risk planning

- Consider each risk and develop a strategy to manage that risk
- Avoidance strategies
 - The probability that the risk will arise is reduced
- Minimisation strategies
 - The impact of the risk on the project or product will be reduced
- Contingency plans
 - If the risk arises, contingency plans are plans to deal with that risk

Risk monitoring

- Assess each identified risks regularly to decide whether or not it is becoming less or more probable
- Also assess whether the effects of the risk have changed
- Each key risk should be discussed at management progress meetings

Riferimenti

- Software Project Management Technology Report, STSC Technical Report, 2000 http://www.stsc.hill.af.mil/index.asp
- A. Alessandroni, "La stima dei costi dei sistemi informativi automatizzati", AIPA, http://www.aipa.it
- B. Boehm e altri, "Cost Models for Future Software Life Cycle Processes: CoCoMo II", Centre for Software Engineering, http://sunset.usc.edu/
- Standish Group, "The CHAOS Report", http://www.pm2go.com/sample_research/index.asp