Desafío de lA Generativa de Stori

Planteamiento del Problema

Necesito un sistema de preguntas y respuestas rápido, económico y de alta calidad sobre una base de conocimiento muy reducida (un PDF de 20 páginas). Las restricciones incluyeron:

- Volumen: Solo un único PDF de ~20 páginas (opcionalmente otros).
- Latencia: No crítica; búsquedas vectoriales y llamadas al LLM aceptables en cientos de milisegundos.
- Costo: Sin límite, pero optimizado para un gasto por solicitud económico.
- Extensibilidad: Debe poder ejecutarse tanto localmente (Docker) como de forma serverless en AWS.

El principal desafío: respuestas precisas y fundamentadas en el contexto, sin construir una infraestructura de recuperación masiva.

Soluciones propuestas

- Generación Aumentada por Recuperación (RAG)
 - Fragmentación (Chunking): Dividir el PDF en fragmentos superpuestos de ~512 tokens para preservar la coherencia semántica.
 - Embeddings: Generar vectores de 1 536 dimensiones con text-embedding-3-small de OpenAl para búsquedas de similitud eficientes en coste.
 - Almacén Vectorial: Usar Chroma (local, basado en archivos) para indexar los embeddings; ideal para bases de datos pequeñas.
 - Cadena de Chat: Utilizar ConversationalRetrievalChain de LangChain con ChatOpenAl(gpt-4o-mini-2024-07-18) para generar respuestas, alimentando los k=3 fragmentos más relevantes.
- Alternativa: Base de Datos de Grafos + RAG

Para escenarios con múltiples documentos o entidades, almacenar entidades y relaciones del PDF en una base de grafos (p. ej. Amazon Neptune, Neo4j) y enriquecer la recuperación mediante recorridos relacionales antes de la búsqueda

semántica.

• Híbrido grafo+vector: combina razonamiento estructurado con contexto de texto libre.

Pila Tecnológica y Justificación

Сара	Tecnología	¿Por qué?		
Ingestión de PDF	PyMuPDF	Ligero y extracción de texto precisa		
Fragmentación (Chunking)	Long Chain Recursive Character Text Splitter	Mantiene límites semánticos; solapa configurable		
Embeddings	OpenAI text-embedding-3-small	1 536 dimensiones; menor coste que modelos más grandes		
Almacén Vectorial	Chroma	Basado en archivos; sin servicio externo, perfecto para este caso		
APILLM	OpenAI gpt-4o-mini-2024-07-18	Variante "mini" de alta calidad y baja latencia		
Capa de API	FastAPI	Rendimiento ASGI, documentación automática, fácil de contener		
Orquestación local	Docker Compose	Entorno reproducible de desarrollo		
CI/CD e Infraestructura	AWS CDK	Infraestructuras como código; despliegue en Lambda, ECS, SageMaker		
Inferencia serverless	AWS Lambda + API Gateway	Autoscaling y pago por uso		
Vector DB (cloud)	Amazon OpenSearch (plugin k-NN)	k-NN gestionado; escala más allá de lo local		
Integración Bedrock	Amazon Bedrock	Endpoints LLM gestionados; modelos del marketplace		
Ajuste fino	Amazon SageMaker JumpStart	Low-code para fine-tuning y hosting		

Sugerencias de Mejoras Futuras

Integración de Memoria en LangChain

Aprovechar los módulos de memoria incorporados (por ejemplo, ConversationBufferMemory, ConversationSummaryMemory) para que la cadena persista y recupere intercambios previos, eliminando la necesidad de pasar todo el historial en cada solicitud.

Servicio de Gestión de Sesiones

Construir una capa ligera de gestión de sesiones (p. ej. con Redis o DynamoDB) que almacene el estado de la conversación en servidor. Los clientes solo enviarían un ID de sesión; el servicio cargaría y actualizaría el historial automáticamente.

• Híbrido Grafo | Vector

Integrar un grafo de propiedades (Neptune/JanusGraph) para el enlace de entidades y recuperación basada en rutas.

Ajuste Fino (Fine-Tuning)

Utilizar SageMaker para afinar un modelo base más pequeño con el contenido del PDF, logrando inferencia on-premise más rápida y económica.

Métricas y Mediciones

Preguntas de Prueba

1. ¿Qué condiciones políticas y sociales propiciaron la aparición de los "Clubes Liberales" alrededor de 1900?

- 2. ¿Cómo influyó la publicación del periódico Regeneración en la radicalización de los hermanos Flores Magón y en la conformación del Partido Liberal Mexicano (PLM)?
- 3. ¿Cuál fue el papel del Congreso Liberal de 1902 en San Luis Potosí y quiénes encabezaron su organización?

Pregunt a	Variante	Tiempo (s)	Tokens de entrada	Tokens de salida	Tokens totales	Costo (USD)
1	Modelo bruto	24.29	30	670	700	\$0.4065
	Modelo RAG	16.87	33	149	182	\$0.0919
2	Modelo bruto	13.30	43	662	705	\$0.4037
	Modelo RAG	14.77	46	184	230	\$0.1139
3	Modelo bruto	9.68	31	340	371	\$0.2087
	Modelo RAG	7.87	34	95	129	\$0.0596

- Latencia: RAG añade un pequeño sobrecoste de recuperación pero supera al modelo bruto en 2 de 3 consultas (promedio ≈ 13.17 s vs. 15.75 s).
- Eficiencia de tokens: RAG reduce el conteo de tokens de salida en ~75-80 %, disminuyendo drásticamente el coste por consulta.
- Ahorro de costos: RAG ofrece una reducción de ~75-85 % en coste, permitiendo realizar
 ~4× más consultas con el mismo presupuesto.
- Calidad de las respuestas: Más allá de métricas, las respuestas RAG fueron más concisas, precisas e incluyeron citas explícitas por fragmento, mejorando la confianza y trazabilidad.

Conclusión de las Pruebas

- Costo drásticamente menor: Anclando respuestas a una base relevante pequeña, RAG reduce el consumo de tokens (y por ende el gasto API) en torno al 80 %.
- Latencia comparable o mejor: Incluso con la búsqueda vectorial adicional, los tiempos de respuesta oscilan entre 7–17 s, aceptables para casos no en tiempo real.
- Mayor precisión y trazabilidad: RAG proporciona respuestas fundamentadas con citas por fragmento, evitando respuestas genéricas o parcialmente incorrectas del modelo bruto.
- Ideal para POCs a pequeña escala: Con un corpus limitado (20 páginas), la búsqueda vectorial local + un modelo "mini" de alta calidad (gpt-4o-mini-2024-07-18) ofrece un equilibrio óptimo entre rapidez, coste y precisión.