Дисципліна «Методи штучного інтелекту»

Лабораторна робота №1

Тема: «Розробка програмного забезпечення для реалізації двошарового персептрону з сигмоїдальною функцією активації»

Теоретичні відомості: лекції №1-4.

Література: навч. посібник «Штучні нейронні мережі» Руденко О.Г., Бодянський ε .В. – стор. 25-34, 61-66, 83-100.

Виконання лабораторної роботи розділяється на три частини.

Частина 1

Завдання: розробити програмне забезпечення для реалізації класичного нейрону (мову програмування студент обирає самостійно). Передбачити режим навчання класичного нейрону на одному навчальному прикладі та режим розпізнавання.

Навчання класичного нейрону:

Схема алгоритму навчання класичного нейрону:

i=0

навчальний приклад X_0 , X_1 , X_2 , X_3 ->Yr допустима похибка - dd вагові коефіцієнти – w0, w1, w2, w3

i=1

A:

$$x_S(i) = \sum_{n=0}^{N} (x_n w_n(i-1))$$

$$y(i)=1/(1+\exp(-x_S(i)))$$

$$dn(i)=Abs((Yr-y(i))/Yr)$$

if $dn(i) \le dd$ then {echo (w0, w1, w2, w3)) stop} else

$$q(i)=y(i)*(1-y(i))*(Yr-y(i))$$

$$dw_0(i) = x_0 * q(i)$$

$$w_0(i) = w_0(i-1) + dw_0(i)$$

. . . .

• Провести навчання елементарного класичного нейрону. Початкові умови (i=0):

- Навчальний приклад

\mathbf{x}_0	X ₁	X ₂	X ₃	y _r
1	3	5	7	0,3

- вагові коефіцієнти ініціалізовані випадково
- допустима помилка dd=0,1
- Передбачити режим розпізнавання нейроном вхідного образу.
- Оформити звіт, в якому відобразити:
 - Постановку завдання.
 - Короткі теоретичні відомості.
 - Код програми із коментарями.
 - Результати роботи програми (на кожній ітерації навчання відобразити y(i) та dn(i)).
 - Висновки.

Частина 2

Завдання: розробити програмне забезпечення для реалізації елементарного двошарового персептрону із структурою 1-1-1. Передбачити режим навчання на одному навчальному прикладі та режим розпізнавання.

Деталізована схема алгоритму зворотнього розповсюдження помилки (для елементарного двошарового персептрону із структурою 1-1-1)

навчальний приклад X->Yr допустима похибка - dd вагові коефіцієнти — $w_{1,2}(i)$ $w_{2,3}(i)$

i=1

A:

$$x_{2,s}(i)=w_{1,2}(i-1)*x_2$$
 $y_2(i)=1/(1+exp(-x_{2,s}(i)))$
 $x_{3,s}(i)=w_{2,3}(i-1)*x_3$ $y_3(i)=1/(1+exp(-x_{3,s}(i)))$

$$dn(i)=Abs((Yr-y_3(i))/Yr)$$

if $dn(i) \le dd$ then $\{echo(w_{1,2}(i-1), w_{2,3}(i-1)) \text{ stop}\}\ else$

$$\begin{array}{ll} q_3(i) = y_3(i) * (1 - y_3(i)) * (Yr - y_3(i)) & \Delta w_{2,3}(i) = q_3(i) * y_2(i) \\ q_2(i) = y_2(i) * (1 - y_2(i)) * (q_3(i) * w_{2,3}(i-1)) & \Delta w_{1,2}(i) = q_2(i) * X \end{array}$$

$$w_{2,3}(i) = w_{2,3}(i-1) + \Delta w_{2,3}(i)$$
 $w_{1,2}(i) = w_{1,2}(i-1) + \Delta w_{1,2}(i)$ $i = i+1$ goto A

Оформити звіт, в якому відобразити:

- Постановку завдання.
- Короткі теоретичні відомості.
- Код програми із коментарями.
- Результати роботи програми (на кожній ітерації навчання відобразити y(i) та dn(i)).
- Висновки.

Частина 3

Завдання: розробити програмне забезпечення для реалізації двошарового персептрону із структурою 2-3-1. Передбачити режим навчання «ON-LINE» та режим розпізнавання.

Піддослідна функція х1+х2=у

Навчання двошарового персептрону:

i=0

навчальний приклад - (x_1,x_2) ->Yr допустима похибка - dd вагові коефіцієнти — $w_{0,1}^{(1)}(i), \ w_{1,1}^{(1)}(i), \ w_{2,1}^{(1)}(i), \dots$ $w_{0,1}^{(2)}(i), \ w_{1,1}^{(2)}(i), \ w_{2,1}^{(2)}(i), \ w_{3,1}^{(2)}(i)$

i=1

A:

$$\begin{split} x_{1,s}^{(1)}(i) &= w_{0,1}^{(1)}(i-1) * x_0 + w_{1,1}^{(1)}(i-1) * x_1 + w_{2,1}^{(1)}(i-1) * x_2 & y_1^{(2)}(i) = 1/(1 + exp(-x_{1,s}^{(1)}(i))) \\ x_{2,s}^{(1)}(i) &= w_{0,2}^{(1)}(i-1) * x_0 + w_{1,2}^{(1)}(i-1) * x_1 + w_{2,2}^{(1)}(i-1) * x_2 & y_2^{(2)}(i) = 1/(1 + exp(-x_{2,s}^{(1)}(i))) \\ x_{3,s}^{(1)}(i) &= w_{0,3}^{(1)}(i-1) * x_0 + w_{1,3}^{(1)}(i-1) * x_1 + w_{2,3}^{(1)}(i-1) * x_2 & y_3^{(2)}(i) = 1/(1 + exp(-x_{3,s}^{(1)}(i))) \\ x_{1,s}^{(2)}(i) &= w_{0,1}^{(2)}(i-1) * x_0 + w_{1,1}^{(2)}(i-1) * y_1^{(2)}(i) + w_{2,1}^{(2)}(i-1) * y_2^{(2)}(i) + w_{3,1}^{(2)}(i-1) * y_3^{(2)}(i) \\ y_1^{(3)}(i) &= 1/(1 + exp(-x_{1,s}^{(2)}(i))) \end{split}$$

if
$$dn(i) \le dd$$
 then $\{echo(w_{0,1}^{(1)}(i), \dots w_{3,1}^{(2)}(i))\}$ stop $\}$ else
$$q_1^{(3)}(i) = y_1^{(3)}(i)^*(1-y_1^{(3)}(i))^*(Yr-y_1^{(3)}(i))$$

$$b_{0,1}^{(2)}(i) = q_1^{(3)}(i)^*x_0 \qquad b_{1,1}^{(2)}(i) = q_1^{(3)}(i)^*y_1^{(2)}(i)$$

$$b_{2,1}^{(2)}(i) = q_1^{(3)}(i)^*y_2^{(2)}(i) \qquad b_{3,1}^{(2)}(i) = q_1^{(3)}(i)^*y_3^{(2)}(i)$$

$$w_{0,1}^{(2)}(i) = w_{0,1}^{(2)}(i-1) + b_{0,1}^{(2)}(i) \qquad w_{1,1}^{(2)}(i) = w_{1,1}^{(2)}(i-1) + b_{1,1}^{(2)}(i)$$

$$w_{2,1}^{(2)}(i) = w_{2,1}^{(2)}(i-1) + b_{2,1}^{(2)}(i) \qquad w_{3,1}^{(2)}(i) = w_{3,1}^{(2)}(i-1) + b_{3,1}^{(2)}(i)$$
 //розрахунок помилки 1-го нейрону СШН, корегування ваг 1-го нейрону СШН
$$q_1^{(2)}(i) = y_1^{(2)}(i)^*(1-y_1^{(2)}(i))^*(q_1^{(3)}(i)^*w_{1,1}^{(2)}(i-1))$$

$$b_{0,1}^{(1)}(i) = q_1^{(2)}(i)^*x_0 \qquad b_{1,1}^{(1)}(i) = q_1^{(2)}(i)^*x_1 \qquad b_{2,1}^{(1)}(i) = q_1^{(2)}(i)^*x_2$$

$$w_{0,1}^{(1)}(i) = w_{0,1}^{(1)}(i-1) + b_{0,1}^{(1)}(i) \qquad w_{1,1}^{(1)}(i) = w_{1,1}^{(1)}(i-1) + b_{1,1}^{(1)}(i) \qquad w_{2,1}^{(1)}(i-1) + b_{2,1}^{(1)}(i)$$

$$i = i+1 \text{ goto } A$$

Оформити звіт, в якому відобразити:

- Постановку завдання.
- Короткі теоретичні відомості.
- Код програми із коментарями.
- Результати роботи програми (на кожній ітерації навчання відобразити y(i) та dn(i)).
- Висновки.