Fonctions Inverse et Racine carrée

Table des matières

1	Fonction Inverse	1
2	Fonction Racine Carrée	2
3	Compléments sur la racine carré	3

1 **Fonction Inverse**

1.1 Etude de la fonction $x \mapsto \frac{1}{x}$

Définition 1. La fonction inverse est définie sur \mathbb{R}^* par $f(x) = \frac{1}{x}$.

Exemple.

•
$$f(-2) = \frac{1}{-2} = -0.5$$

•
$$f(3) = \frac{1}{3}$$

$$\bullet \ f\left(\frac{5}{3}\right) = \frac{1}{\frac{5}{3}} = \frac{3}{5}$$

•
$$f(10^5) = \frac{1}{10^5} = 10^{-5}$$

•
$$f(5) = 3$$

• $f\left(\frac{5}{3}\right) = \frac{1}{\frac{5}{3}} = \frac{3}{5}$
• $f(10^5) = \frac{1}{10^5} = 10^{-5}$
• $f(10^{-3}) = \frac{1}{10^{-3}} = 10^3$

Mais attention, 0 n'a pas d'image par f.

On dit que x=0 est une **valeur interdite** de la fonction inverse.

Propriété 1. La fonction inverse est

- strictement décroissante sur $]-\infty,0]$
- strictement décroissante sur $]0, +\infty]$

La fonction inverse n'est ni linéaire, ni affine.

l'inverse d'une somme n'est pas la somme des inverses : $\frac{1}{2} + \frac{1}{5} \neq \frac{1}{2+5}$.

^{1.} \mathbb{R}^* est l'ensemble des réels non nuls

1.2 Hyperbole d'équation $y = \frac{1}{x}$

La fonction inverse est représentée par une courbe appelée **hyperbole.** Elle est constituée de tous les points $M\left(x,\frac{1}{x}\right)$, pour $x\neq 0$, et a pour équation $y=\frac{1}{x}$. Comme 0 n'a pas d'image, il n'y a pas de point d'abscisse 0 sur l'hyperbole d'équation $y=\frac{1}{x}$.

Propriété 2.

- L'hyperbole d'équation $y = \frac{1}{x}$ admet l'origine comme centre de symétrie.
- La fonction inverse est impaire sur \mathbb{R}^*

Démonstration.

Pour n'importe quel réel x non nul, on a $\frac{1}{-x} = -\frac{1}{x}$.

Les points $M\left(x;\frac{1}{x}\right)$ et $M'\left(-x;-\frac{1}{x}\right)$ appartiennent tous les deux à la courbe et sont symétriques par rapport à l'origine.

L'origine est donc un centre de symétrie de cette hyperbole.

2 Fonction Racine Carrée

2.1 Etude de la fonction $x \mapsto \sqrt{x}$

Définition 2. Soit x un nombre réel positif ou nul.

La racine carrée de x, notée \sqrt{x} , est l'unique réel positif ou nul qui, élévé au carré, donne x. On a donc, pour tout $x \geq 0$, $\sqrt{x} \geq 0$ et $\sqrt{x}^2 = x$

Définition 3. La fonction racine carrée est définie sur $\mathbb{R}_+ = [0; +\infty[$ par $f(x) = \sqrt{x}.$

Exemple.

- $\sqrt{-2}$ n'est pas défini car -2 < 0.
- $\sqrt{1} = 1$
- $\sqrt{4}=2$ et, pour tout nombre s'écrivant $x=p^2,$ avec $p\geq 0, \sqrt{x}=p$
- $\sqrt{2} \approx 1.41421$
- $\sqrt{100} = 10$
- $\sqrt{1000} \approx 31.623$
- $\sqrt{0.25} = 0.5$

Propriété 3. La fonction racine carrée est strictement croissante sur $[0; +\infty[$

Remarque.

- La fonction racine carrée n'est ni linéaire, ni affine.
- Elle n'est pas non plus paire ou impaire.

2.2 Courbe d'équation $y = \sqrt{x}$

La courbe de la fonction racine carrée est une moitié de parabole qui a subi une rotation de 45°.

Compléments sur la racine carré

Propriétés algébriques

Les racines carrées se simplifient et se transforment dans quelques cas :

Propriété 4. Pour tout réel positif x s'écrivant $x = p^2$ avec $p \in \mathbb{N}$, $\sqrt{x} = p$

Exemple.

$$\sqrt{16} = 4$$

$$\sqrt{30} \approx 5.477$$

Propriété 5.

Pour tout
$$a \ge 0$$
, $\sqrt{a^2} = a$.
Pour tout $a \in \mathbb{R}$, $\sqrt{a}^2 = a$.

Propriété 6. Racine carré et produits

Pour tout a et b positifs, on a :

•
$$\sqrt{a \times b} = \sqrt{a} \times \sqrt{b}$$

•
$$\sqrt{a \times b} = \sqrt{a} \times \sqrt{b}$$

• $\sin b \neq 0$ $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$

Exemple.

•
$$\sqrt{400} = \sqrt{4} \times \sqrt{100} = 2 \times 10 = 20$$

• $\sqrt{\frac{1}{16}} = \frac{\sqrt{1}}{\sqrt{16}} = \frac{1}{4}$

$$\sqrt{\frac{1}{16}} = \frac{\sqrt{1}}{\sqrt{16}} = \frac{1}{4}$$

Généralement,
$$\sqrt{a+b} \neq \sqrt{a} + \sqrt{b}$$
 et $\sqrt{a-b} \neq \sqrt{a} - \sqrt{b}$

3.2 Irrationalité de $\sqrt{2}$

Propriété 7. $\sqrt{2} \notin \mathbb{Q}$

Autrement dit, il n'existe aucun couple d'entiers naturels p et q vérifiant $\sqrt{2} = \frac{p}{q}$.

Remarque.

- On peut obtenir une égalité approchée aussi fine que l'on veut de $\sqrt{2}$ par des rationnels.
- On dit que $\sqrt{2}$ est *irrationnel*. Il existe une infinité de nombres irrationnels, comme π ou $\sqrt{3}$ etc.

Démonstration. $\sqrt{2}$ est irrationnel.

Supposons le contraire. Nous allons démontrer que c'est impossible.

On suppose donc disposer de deux entiers naturels p et q vérifiant $\frac{p}{q} = \sqrt{2}$ (E)

On suppose de plus que cette fraction est irreductible. On peut toujours simplifier une fraction jusqu'à ce qu'elle le

D'après ce qu'on a vu plus haut, il est possible d'élever au carré pour simplifier la racine carrée. On élève l'égalité (E) au carré :

$$\left(\frac{p}{q}\right)^2 = \sqrt{2}^2 \Leftrightarrow \frac{p^2}{q^2} = 2 \Leftrightarrow p^2 = 2q^2 \quad (E)$$

Pour démontrer que cette égalité est impossible nous allons nous intéresser au chiffre des unités des deux membres de l'égalité $p^2 = 2q^2$.

Le membre de gauche est un carré.

Le membre de droite est le double d'un carré. On sait déjà que le chiffre des unités du membre de droite est 0,2,4,6ou 8 mais nous allons pousser plus loin ce raisonnement.

Notons u le chiffre des unités du nombre p. On sait donc que p=10a+u où a est un entier.

Par exemple, si $p = 31, p = 10 \times 3 + 1$.

Dans tous les cas, $p^2 = (10a + u)^2 = 100a^2 + 20a \times u + u^2 = 10 \times (10a^2 + 2a \times u) + u^2$ Donc le dernier chiffre de p^2 est le même que le dernier chiffre de u^2 .

u	0	1	2	3	4	5	6	7	8	9
u^2	0	1	4	9	16	25	36	49	64	81
Dernier chiffre de p^2	0	1	4	9	6	5	6	9	4	1

Le raisonnement précédent s'applique aussi au nombre q^2 qui est aussi le carré d'un entier. Nous allons maintenant donner le tableau pour le dernier chiffre du nombre $2q^2$.

En notant v le chiffre des unités de q :

v	0	1	2	3	4	5	6	7	8	9
Dernier chiffre de q^2	0	1	4	9	6	5	6	9	4	1
Dernier chiffre de $2q^2$	0	2	8	8	2	0	2	8	8	2

Revenons maintenant à l'égalité $p^2=2q^2$

On remarque dans le tableau précédent que la seule colonne qui soit possible est celle de 0.

Dans ce cas, le dernier chiffre de p et le dernier chiffre de q doit être égaux à 0.

Cela signifie que p et q se terminent par 0 et sont des multiples de 10. Hors nous avons supposé que la fraction $\frac{p}{q}$

était irreductible, c'est-à-dire que son numérateur et son dénominateur ne peuvent avoir de facteur commun.

Il n'existe donc aucune valeur possible pour l'égalité $p^2=2q^2$. La supposition initiale est fausse.

Nous avons démontré que $\sqrt{2}$ est irrationnel.