

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE. New Delhi

Academic year 2023-2024 (Odd Sem)

# (OFFLINE CIE-I FOR I SEM PHYSICS CYCLE)

## DEPARTMENT OF CHEMISTRY

| Date    | 22 <sup>nd</sup> November 2023             | Max. Marks  | 50       |
|---------|--------------------------------------------|-------------|----------|
| Course  | Fundamentals of Nanoscience and Technology | Course Code | CHY114AT |
| Sem - I | CIE-I                                      | Duration    | 90 Min   |
|         | EMERGING TECHNOLOG                         | V           |          |

## Instructions- Answer all FIVE questions

|   | Test Questions                                                                                                                                                                                                                              | M  | BTL | CO |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|----|
| 1 | Enumerate and provide concise explanations for the historical progression and advancements in the field of nanomaterials research.                                                                                                          | 10 | 1   | IV |
| 2 | How did ancient Indians employ nanoscale materials and processes in<br>Ayurveda and metallurgy, showcasing their innovative methods within<br>traditional practices? Give pertinent instances to illustrate their creative<br>approach.     | 10 | 3   | 2  |
| 3 | With neat schematic diagram, explain the essential components and working principle of molecular beam epitaxy (MBE). State the advantages and disadvantages of this process.                                                                | 10 | 2   | 4  |
| 4 | Sputtering is a versatile technique for nanomaterial fabrication. Discuss the DC sputtering process with schematic diagram. How it is employed in the top-down approach to create thin films and nanostructures. What are its applications? | 10 | 2   | 3  |
| 5 | Explain the principles and mechanisms of physical vapor deposition (PVD) as a top-down approach for nanomaterial synthesis. Discuss its advantages and limitations.                                                                         | 10 | 4   | 2  |

## BT-Blooms Taxonomy, CO-Course Outcomes, M-Marks

| 40.00                  | Particulars | COI | CO2 | CO3 | CO4 | LI | L2 | L3 | L4 | L5 | L6 |
|------------------------|-------------|-----|-----|-----|-----|----|----|----|----|----|----|
| Marks<br>Distribution  | Max Marks   | 10  | 20  | 10  | 10  | 7  | 29 | 7  | 0  | 7  |    |
| metrocalina parametera | Target      | 10  | 16  | 17  | 7   |    |    |    |    |    |    |

\*\*\*\*\*\*\*\*

Go, change the world

Autonomous Institution Affiliated to Visvesvarsys Technological University, Bolagavi Approved by AICTE, New Delhi

Academic year 2023-2024 (Odd Sem)

# (OFFLINE CIE-II FOR I SEM PHYSICS CYCLE)

## DEPARTMENT OF CHEMISTRY

| Date    | 29 <sup>th</sup> December 2023             | Max. Marks  | 50       |
|---------|--------------------------------------------|-------------|----------|
| Course  | Fundamentals of Nanoscience and Technology | Course Code | CHY114AT |
| Sem - I | CIE-II                                     | Duration    | 90 Min   |
|         | EMERGING TECHNOLOG                         | Y           |          |

## Instructions- Answer all FIVE questions

| Test Questions                                                                                                                                                                                                                                                                                                  | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BTL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Outline the key steps involved in synthesizing nanoparticles using chemical vapor deposition (CVD). Illustrate the process with a neat schematic diagram and discuss the advantages and limitations of this method.                                                                                             | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Briefly explain the principle and instrumentation behind UV-Vis absorption spectroscopy. Explain how UV-Vis spectra can be used to determine the size, shape, and composition of nanoparticles. Discuss the applications and limitations of UV-Vis absorption spectroscopy.                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Describe the working principle of Scanning Electron Microscopy (SEM) and explain how it provides information about the surface morphology and elemental composition of nanomaterials. Draw a neat schematic diagram of SEM.                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Explain the relationship between particle size and surface area in nanomaterials and discuss its influence on reactivity of nanomaterials compared to bulk materials. Discuss the relationship between surface plasmon resonance (SPR) and the size and shape of metallic nanoparticles with specific examples. | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Briefly elaborate the potential applications of nano dimensional materials in agricultural industries and as micronutrients.                                                                                                                                                                                    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                 | Outline the key steps involved in synthesizing nanoparticles using chemical vapor deposition (CVD). Illustrate the process with a neat schematic diagram and discuss the advantages and limitations of this method.  Briefly explain the principle and instrumentation behind UV-Vis absorption spectroscopy. Explain how UV-Vis spectra can be used to determine the size, shape, and composition of nanoparticles. Discuss the applications and limitations of UV-Vis absorption spectroscopy.  Describe the working principle of Scanning Electron Microscopy (SEM) and explain how it provides information about the surface morphology and elemental composition of nanomaterials. Draw a neat schematic diagram of SEM.  Explain the relationship between particle size and surface area in nanomaterials and discuss its influence on reactivity of nanomaterials compared to bulk materials. Discuss the relationship between surface plasmon resonance (SPR) and the size and shape of metallic nanoparticles with specific examples.  Briefly elaborate the potential applications of nano dimensional materials in | Outline the key steps involved in synthesizing nanoparticles using chemical vapor deposition (CVD). Illustrate the process with a neat schematic diagram and discuss the advantages and limitations of this method.  Briefly explain the principle and instrumentation behind UV-Vis absorption spectroscopy. Explain how UV-Vis spectra can be used to determine the size, shape, and composition of nanoparticles. Discuss the applications and limitations of UV-Vis absorption spectroscopy.  Describe the working principle of Scanning Electron Microscopy (SEM) and explain how it provides information about the surface morphology and elemental composition of nanomaterials. Draw a neat schematic diagram of SEM.  Explain the relationship between particle size and surface area in nanomaterials and discuss its influence on reactivity of nanomaterials compared to bulk materials. Discuss the relationship between surface plasmon resonance (SPR) and the size and shape of metallic nanoparticles with specific examples.  Briefly elaborate the potential applications of nano dimensional materials in | Outline the key steps involved in synthesizing nanoparticles using chemical vapor deposition (CVD). Illustrate the process with a neat schematic diagram and discuss the advantages and limitations of this method.  Briefly explain the principle and instrumentation behind UV-Vis absorption spectroscopy. Explain how UV-Vis spectra can be used to determine the size, shape, and composition of nanoparticles. Discuss the applications and limitations of UV-Vis absorption spectroscopy.  Describe the working principle of Scanning Electron Microscopy (SEM) and explain how it provides information about the surface morphology and elemental composition of nanomaterials. Draw a neat schematic diagram of SEM.  Explain the relationship between particle size and surface area in nanomaterials and discuss its influence on reactivity of nanomaterials compared to bulk materials. Discuss the relationship between surface plasmon resonance (SPR) and the size and shape of metallic nanoparticles with specific examples.  Briefly elaborate the potential applications of nano dimensional materials in |

#### BT-Blooms Taxonomy, CO-Course Outcomes, M-Marks

| Marks<br>Distribution | Particulars | CO1 | CO2 | CO3 | CO4 | LI | 1.2 | L3 | 14 | L5     | L6 |
|-----------------------|-------------|-----|-----|-----|-----|----|-----|----|----|--------|----|
|                       | Max Marks   | 10  | 20  | 10  | 10  | 7  | 29  | 7  | 0  | 7      |    |
| Distribution          | Target      | 10  | 16  | 17  | 7   |    |     |    |    | 7 - 10 |    |

\*\*\*\*\*\*\*\*



Approximates transcent Affiliand to Vercenteral Technological University Belegan Approved by AICTE. New Debt

Academic year 2023-2024 (Odd Sem)

## (OFFLINE CIE-II FOR I SEM PHYSICS CYCLE)

#### DEPARTMENT OF CHEMISTRY

| Date    | 24th January 2024                          | Max. Marks  | 50       |
|---------|--------------------------------------------|-------------|----------|
| Course  | Fundamentals of Nanoscience and Technology | Course Code | CHY114AT |
| Sem - 1 | CIE-III                                    | Duration    | 90 Min   |
|         | EMERGING TECHNOLOG                         | Y           |          |

### Instructions- Answer all FIVE questions

|   | Test Questions                                                                                                                                                                                                                                                                                                       | M  | BTL | CO |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|----|
| 1 | Elaborate on the principles and mechanisms involved in Chemical Vapor Deposition (CVD) for the synthesis of nanomaterials. How does it differ from the precipitation method and electrochemical method in terms of fabrication processes and applications? Illustrate the CVD process with a neat schematic diagram. | 10 | 1   |    |
| 2 | Explain the principles behind Physical Vapor Deposition (PVD) and Molecular Beam Epitaxy (MBE) techniques in the fabrication of nanomaterials. Compare and contrast these two methods, highlighting their applications in the field of nanotechnology.                                                               | 10 | 3   | 2  |
| 3 | Explain the mechanism of target material ejection in DC and RF sputtering with neat sketches.                                                                                                                                                                                                                        | 10 | 2   | 4  |
| 4 | Discuss the unique properties of nanomaterials that make them suitable for applications in display technology and light weighting components for automobiles. Provide examples and elaborate on the advantages they offer over conventional materials.                                                               | 10 | 2   |    |
| 5 | Explain the role of nanomaterials in energy production and storage. Discuss specific examples of nanomaterials used in batteries, solar cells, and other energy-related applications.                                                                                                                                | 10 | 4   | 2  |

#### BT-Blooms Taxonomy, CO-Course Outcomes, M-Marks

| Marks<br>Distribution | Particulars | COI | CO2 | CO3 | CO4 | LI | L2 | 1.3 | 1.4 | L5 | 1.6 |
|-----------------------|-------------|-----|-----|-----|-----|----|----|-----|-----|----|-----|
|                       | Max Marks   | 10  | 20  | 10  | 10  | 7  | 29 | 7   | 0   | 7  |     |
|                       | Target      | 10  | 16  | 17  | 7   |    |    | 150 |     |    |     |