Speech Watermarking with AudioSeal (ICML 2024): A Comprehensive Report

Anuj Rajan Lalla (B22AI061) Siddhesh Ayyathan (B22CS016)

CSL7770 : Speech Understanding Date : 02-02-2025

Abstract

This report presents a detailed study of speech watermarking using the **AudioSeal** approach. We discuss the motivation, compare with state-of-the-art methods, outline the AudioSeal generator-detector framework and psychoacoustic masking losses, describe our experiments on two datasets (NPTEL Indian English and Hindi), and provide thorough results and discussion on watermark quality, detection, and robustness.

Contents

1		roduction & Motivation						
	1.1	Watermarking: Why Now?						
	1.2	Relevance in Real-World Applications						
2	Sta	State-of-the-Art Methods						
	2.1	Passive Classifiers						
	2.2	Traditional Watermarking (Time/Frequency Domain)						
	2.3	Deep-Learning Multi-Bit Data Hiding (e.g., WavMark)						
	2.4	- ,						
		marking						
3	The AudioSeal Approach							
	3.1	Overview						
	3.2	Generator Architecture						
	3.3							
	3.4	Perceptual Losses for the Generator						
	3.5	Training Pipeline						
	3.6	Training Data (Original AudioSeal)						
4	Dat	Datasets & Code Organization (Our Setup)						
	4.1	Datasets for Inference						
	4.2	Our Code Structure						
5	Res	vults						
	5.1	Original AudioSeal Results						
		5.1.1 Table 1: Audio Quality Metrics (From Paper)						
		5.1.2 Table 2: Voicebox Classifier vs. AudioSeal						
		5.1.3 Table 3: Robustness to Edits						
		5.1.4 Table 4: Multi-Model Attribution						
	5.2	Our NPTEL & Hindi Results						
		5.2.1 NPTEL (Indian English)						
		5.2.2 Hindi_test (OpenSLR)						
6	Dis	cussion & Open Problems						
7	Cor	nelusion						

1 Introduction & Motivation

1.1 Watermarking: Why Now?

Modern text-to-speech (TTS) and voice-cloning models (e.g., VALL-E, Voicebox) can generate synthetic speech almost indistinguishable from human recordings. This heightens the risk of *deepfake audio*, misinformation, and voice fraud. Audio watermarking is a *proactive* approach to tag AI-generated speech with an *inaudible* signal, allowing reliable detection even after edits or re-encodings.

1.2 Relevance in Real-World Applications

- Deepfake Prevention & Transparency: Watermarking enables quick flagging of AI-generated content on social media or public platforms.
- Regulatory Compliance: Proposed laws (e.g., EU AI Act) often require AI content labeling.
- Attribution & Traceability: Multi-bit watermarking can identify which model or user created the speech.

2 State-of-the-Art Methods

2.1 Passive Classifiers

Approach: Train a discriminative network to label "real vs. synthetic."

Strengths: Easy to set up, no changes to the generation pipeline.

Limitations: Fails if the speech is re-synthesized or if high-quality generation removes typical artifacts.

2.2 Traditional Watermarking (Time/Frequency Domain)

Approach: Embed bits through amplitude or phase changes in the waveform or frequency domain.

Strengths: Well-studied in classical audio watermarking approaches.

Limitations: Generally only a *global* watermark; often vulnerable to pitch shift, timescale modifications, or heavy compression.

2.3 Deep-Learning Multi-Bit Data Hiding (e.g., WavMark)

Approach: Invertible or autoencoder-based networks embed short binary messages in 1-second audio frames.

Strengths: Potentially large capacity.

Limitations: Decoding can be slow (requires repeated synchronization checks), less precise for localizing watermarks in shorter segments.

2.4 AudioSeal (Published in ICML 2024): Localized Zero-Bit/Attribution Watermarking

Approach: A generator-detector architecture with sample-level detection, employing time-frequency psychoacoustic losses.

Strengths:

- Localized detection (sample-level).
- Single-pass, fast detection (no brute-force search).
- High imperceptibility via psychoacoustic masking.

Limitations:

- Detector weights must remain private to avoid adversarial removal attacks.
- May require specialized training for cross-lingual or low-resource settings.

3 The AudioSeal Approach

3.1 Overview

Figure 1: High-level illustration of the AudioSeal Generator (left) and Detector (right). The generator processes the input waveform through an encoder–decoder architecture, optionally incorporating multi-bit embeddings. The detector then outputs a sample-level watermark presence probability and can decode bits if needed.

AudioSeal has two key components, trained jointly:

- Generator G produces a watermark signal δ for an audio clip s. The output is $s_w = s + \delta$.
- **Detector** D outputs a watermark presence probability for each sample of an input waveform. In multi-bit mode, it also decodes the embedded bits.

After training, any TTS system can pass its output to G to get watermarked audio; suspicious clips can be checked via D.

3.2 Generator Architecture

Based on EnCodec design:

- *Encoder*: Stacks of convolutional and LSTM blocks to extract features from the raw waveform.
- Message Embedding (for multi-bit): A latent embedding for each bit, combined additively with the encoder features to inject identifying information.
- Decoder: Transposed convolutions reconstruct the watermark δ ; we ensure it remains low amplitude and perceptually masked.

3.3 Detector Architecture

- Similar convolutional + LSTM encoder to generate time-local features.
- A final layer outputs sample-level probabilities $D(x)_t \in [0,1]$.
- Thresholding yields a *local* detection mask; multi-bit watermarking also uses a small readout layer to decode bits.

3.4 Perceptual Losses for the Generator

AudioSeal's generator optimizes several losses to ensure the watermark is both *imperceptible* and *robust*:

1. Time-Frequency Loudness Loss (Psychoacoustic):

- Splits the audio into multiple frequency subbands (band-splitting).
- In each subband, short-time frames are analyzed.
- Computes a loudness difference Δ between δ and s per frame.
- Applies a softmax weighting so large Δ values (potentially audible distortions) are strongly penalized.

2. ℓ_1 Loss on Watermark:

- Directly encourages the watermark amplitude to be small.
- This correlates with a high SNR or low signal distortion.

3. Multi-Scale Spectral Loss:

- Compares the Mel-spectrogram of s_w to s at several scales.
- Helps maintain overall spectral shape and speech formants.

4. Adversarial / Discriminator Loss:

- A small adversarial network (trained to distinguish watermarked vs. original frames).
- Generator learns to fool this discriminator, improving perceptual realism of s_w .

These combined losses help ensure that even if the raw SNR is not maximized, the *subjective* audio quality remains high.

3.5 Training Pipeline

Figure 2: AudioSeal Training Pipeline. The original audio is passed to the Watermark Generator, which produces a watermarked signal. Differentiable augmentations (including masking) are applied, and the Detector then outputs a sample-wise watermark probability. Perceptual losses shape the generator's output, while a localization loss shapes the detector's accuracy.

The overall training loop, illustrated in Fig. 2, optimizes:

$$\mathcal{L} = \mathcal{L}_{perceptual} + \lambda \, \mathcal{L}_{localization}$$

where $\mathcal{L}_{localization}$ is typically a binary cross-entropy (BCE) enforcing correct detection at each sample, and λ balances it with the perceptual losses.

3.6 Training Data (Original AudioSeal)

- A 4.5k-hour subset of VoxPopuli covering diverse languages and conditions.
- Differentiable augmentations: noise, time-stretch, partial masking, compression simulation, etc.
- Joint training of generator and detector for many epochs until a stable watermark emerges.

4 Datasets & Code Organization (Our Setup)

4.1 Datasets for Inference

NPTEL2020-Indian-English-Speech:

- Large variety of Indian English accents from NPTEL lectures.
- Tests watermark resilience across diverse English dialects.

Hindi_test (OpenSLR):

- Hindi speech with multiple speakers and conditions.
- Evaluates cross-lingual performance if the original training was mostly English-based.

4.2 Our Code Structure

Main Evaluation (Cell 1):

- 1. **Sample Extraction**: Randomly picks WAV files from the dataset.
- 2. Watermark Embedding: Uses the pretrained AudioSeal generator on each sample.
- 3. Quality Metrics: Computes SI-SNR, PESQ, STOI, plus the detector output.
- 4. Random Masking: Overwrites a portion of the watermarked audio with the original to simulate partial removal.
- 5. **Reporting**: Logs results per sample and aggregates means.

Visualization & Playback (Cell 2):

- 1. **File Selection**: User picks one processed sample.
- 2. Waveform Plotting: Shows original, watermarked, masked signals + detection probabilities (per-frame or per-sample).
- 3. Audio Playback: For subjective listening tests and quick manual checks.

5 Results

We first recap the *original AudioSeal* results from the paper, then present *new evaluations* on NPTEL/Hindi datasets.

5.1 Original AudioSeal Results

5.1.1 Table 1: Audio Quality Metrics (From Paper)

Discussion: Although WavMark has a higher SI-SNR, **AudioSeal** achieves superior *perceptual* scores (PESQ, MUSHRA), indicating fewer audible artifacts.

Method	SI-SNR (dB)	PESQ	STOI	ViSQOL	MUSHRA
WavMark	38.25	4.302	0.997	4.730	71.52 ± 7.18
${f Audio Seal}$	26.00	4.470	0.997	4.829	77.07 ± 6.35

Table 1: Comparison of Audio Quality Metrics from the original AudioSeal paper. Higher PESQ, MUSHRA, ViSQOL are better.

5.1.2 Table 2: Voicebox Classifier vs. AudioSeal

	AudioSeal	Voicebox Classif.
Original vs. AI (30–90% mask)	1.0 / 1.0 / 0.0	1.0 / 1.0 / 0.0
Re-synth vs. AI (30–90% mask)	$1.0 \ / \ 1.0 \ / \ 0.0$	$0.700.91 \ / \ 0.680.94 \ / \ 0.110.19$

Table 2: Detection accuracy (Acc./TPR/FPR) comparing AudioSeal to a passive classifier.

Discussion: Under *re-synthesis*, the *passive* classifier fails more often, but AudioSeal remains unaffected (TPR=1.0, FPR=0.0).

5.1.3 Table 3: Robustness to Edits

Edit	AudioSeal	[WavMark	
	Acc. TPR/FPR	AUC	Acc. TPR/FPR	AUC
None	1.00 1.00/0.00	1.00	1.00 1.00/0.00	1.00
Highpass	$0.61 \ 0.82/0.60$	0.61	1.00 1.00/0.00	1.00
Lowpass	0.99 0.99/0.00	0.99	$0.50 \ 1.00/1.00$	0.50
White noise	$0.91 \ 0.86/0.04$	0.95	$0.50 \ 0.54/0.54$	0.50
Fast $(1.25x)$	0.99 0.99/0.00	1.00	$0.50 \ 0.01/0.00$	0.15
EnCodec	$0.98 \ 0.98 / 0.01$	1.00	$0.51 \ 0.52/0.50$	0.50
(Avg)	0.96	0.97	0.85	0.84

Table 3: Detection performance under various edits (time-stretch, noise, compression).

Discussion: Overall, AudioSeal has higher *average* robustness (AUC=0.97). It excels in the presence of noise, time-scale changes, and advanced codecs.

5.1.4 Table 4: Multi-Model Attribution

Discussion: AudioSeal yields higher accuracy for attributing to the correct generator among many potential sources. However, its false attribution rate can be higher at large N.

$\overline{\mathbf{N}}$	FAR (%)		Accuracy (%)		
	WavMark	AudioSeal	WavMark	AudioSeal	
1	0.0	0.0	58.4	68.2	
10	0.20	2.52	58.2	$\boldsymbol{65.4}$	
10^{2}	0.98	6.83	57.4	61.4	
10^{3}	1.87	8.96	56.6	59.3	
10^{4}	4.02	11.84	54.4	56.4	

Table 4: Attribution performance among N possible watermarks.

5.2 Our NPTEL & Hindi Results

We tested 16 samples per dataset with the official AudioSeal pretrained weights:

5.2.1 NPTEL (Indian English)

==== Average Metrics (16 Samples) =====

WATERMARKED AUDIO:

SI-SNR: 27.91 dB PESQ: 4.44 STOI: 0.998 DetectorScore: 1.000

MASKED AUDIO:

SI-SNR: 30.03 dB PESQ: 4.49 STOI: 0.999 DetectorScore: 0.686

Attribution Hamming Distance: 0.000

Generation Time: ~14-15s/clip Detection Time: ~0.6s/clip

Interpretation:

- Watermarked PESQ=4.44, STOI=0.998 \rightarrow near-invisible watermarking.
- Detector Score=1.0 for watermarked vs. 0.686 if partially masked, indicating partial but not total watermark removal.
- Perfect multi-bit extraction (Hamming=0.0).

5.2.2 Hindi_test (OpenSLR)

==== Average Metrics (16 Samples) ===== WATERMARKED AUDIO:

SI-SNR: 28.32 dB PESQ: 4.45 STOI: 0.998 DetectorScore: 1.000

MASKED AUDIO:

SI-SNR: 30.25 dB PESQ: 4.49 STOI: 0.999 DetectorScore: 0.682

Attribution Hamming Distance: 0.000

Generation Time: ~14s/clip Detection Time: ~0.6s/clip

Interpretation:

• Even in Hindi, the watermark remains imperceptible (PESQ=4.45, STOI=0.998).

- Detector is perfect on unmasked clips (score=1.0).
- Partial masking reduces detection score to 0.682, reflecting partial watermark destruction.

6 Discussion & Open Problems

- 1. Adversarial Removal: If attackers have the *detector* weights, they can craft noise to remove the watermark. Future work may employ adversarial training or conceal the detection model.
- 2. Extreme Compression: Surviving ultra-low bitrates (e.g., 2–3 kbps) remains challenging.
- 3. **Cross-Lingual**: While Hindi results are promising, more diverse languages and code-switching can be tested to confirm broad generalization.
- 4. **Security vs. Transparency**: Publishing the generator code is beneficial, but the detector must be kept private to maintain watermark integrity.

7 Conclusion

We presented a thorough overview of the **AudioSeal** watermarking approach—a generator–detector framework with psychoacoustic masking and adversarial/perceptual losses for *robust*, *localized*, and *fast* watermark detection. Key takeaways:

- Imperceptibility: PESQ ≥ 4.4 , STOI ≥ 0.998 in our tests, indicating near-transparent watermark insertion.
- **Robust Detection:** Survives real-life audio edits (time-stretch, noise, compression) with near-1.0 TPR and low FPR.
- Cross-lingual Feasibility: Maintains high performance on Indian English (NPTEL) and Hindi, despite training primarily on VoxPopuli.
- Future Challenges: Adversarial resilience, streaming usage, multi-lingual expansions, and large-scale attribute-based watermarking.

References

[1] R. Schmucker, H. Elsahar, and P. Faure, "Proactive Detection of Voice Cloning with Localized Watermarking," arXiv preprint arXiv:2401.17264, 2024. Code available at: https://github.com/facebookresearch/audioseal

[2] Python Libraries:

- PyTorch & torchaudio: https://pytorch.org/
- numpy: https://numpy.org/
- scikit-learn: https://scikit-learn.org/
- pesq: https://pypi.org/project/pesq/
- pystoi: https://pypi.org/project/pystoi/

Installation: !pip install audioseal torchaudio numpy scikit-learn pesq pystoi

- [3] NPTEL Indian English Speech Dataset (NPTEL2020), https://github.com/AI4Bharat/NPTEL2020-Indian-English-Speech-Dataset, Accessed 2020.
- [4] OpenSLR (Hindi_test), http://www.openslr.org/, Accessed 2023.