Central Limit Theorem

Sampling Data | Chance Variability

STAT5002

The University of Sydney

Mar 2025

Sampling Data

Topic 5: Understanding chance and chance simulation

Topic 6: Chance variability

Topic 7: Central limit theorem

Outline

A review of box models

Increasing the sample size

The Central Limit Theorem (CLT)

A review of box models

Single draws from box models

- Suppose we have a "box" containing tickets each bearing a number: $\{x_1,\ldots,x_N\}$.
- ullet The probability a random draw X from the box takes a value is just the *proportion of* x_i *values*
- Recall the example:

if each "ticket" is equally likely, we have

$$P(X=1) = \frac{1}{6}, \quad P(X=2) = \frac{2}{6} = \frac{1}{3}, \quad P(X=3) = \frac{3}{6} = \frac{1}{2}.$$

ightharpoonup the random draw X then has distribution

Expectation and standard error

•
$$\mu = \frac{1}{N}(x_1 + \dots + x_N) = \frac{1}{N} \sum_{i=1}^{N} x_i$$

- the mean of the box,
- ightharpoonup also called E(X), the **expected value** of the random draw X;

$$ullet$$
 $\sigma=\sqrt{rac{1}{N}[(x_1-\mu)^2+\cdots+(x_N-\mu)^2]}$

- → the (population) SD of the box,
- \rightarrow also called SE(X), the **standard error** of the random draw X.

Chance error

The random draw may be "decomposed" into two pieces:

$$X = \underbrace{E(X)}_{\text{mean, not random}} + \underbrace{[X - E(X)]}_{\text{chance error, random}} = E(X) + \varepsilon \,.$$

- The first part $E(X)=\mu$ is not random.
- All randomness is included in the **chance error** ε , which is a random draw from an **error box** $\{x_1-\mu,\ldots,x_N-\mu\}$.
 - The error box has zero mean and its SD is the same as the SD of the original box
 - ightharpoonup the chance error has E(arepsilon)=0 and SE(arepsilon)=SE(X)
- So SE(X) is interpreted as the "likely size" of the chance error ε , i.e. the likely size of the deviation of X from its expected value E(X).

Sum of random draws

Consider the sum of n random draws (which is a sample)

$$S = X_1 + X_2 + \dots + X_n$$

where each X_j is random draw with replacement from a box $\{x_1,\ldots,x_N\}$ with mean μ and SD σ .

Then, the sum S is a single random draw from a much larger box. We have

- $E(S) = n\mu$
- $SE(S) = \sqrt{n}\sigma$

In other words, the box containing all possible sums S has the mean $n\mu$ and the SD $\sqrt{n}\sigma$

Average of random draws

Now consider the sample mean of n random draws

$$ar{X}=rac{1}{n}S=rac{1}{n}(X_1+X_2+\cdots+X_n)$$

Then, the sample mean $ar{X}$ is also a single random draw from a much larger box

- similar to the box of all possible sums, but each ticket is scaled by $\frac{1}{n}$.
- $E(\bar{X}) = \mu$
- $SE(\bar{X}) = \frac{\sigma}{\sqrt{n}}$

In other words, the box containing all possible sample means $ar{X}$ has the mean μ and the SD $\frac{\sigma}{\sqrt{n}}$

Examples: the law of average and MORE

Example: coin tossing in WWII

- John Edmund Kerrich (1903–1985) was a mathematician noted for a series of experiments in probability which he conducted while interned in Nazi-occupied Denmark (Viborg, Midtjylland) in the 1940s.
- Kerrich had travelled from South Africa to visit his in-laws in Copenhagen, and arrived just 2 days after Denmark was invaded by Nazi Germany!

Various "random experiments"

With a fellow internee Eric Christensen, Kerrich set up a sequence of experiments demonstrating the empirical validity of a number of fundamental laws of probability.

- They tossed a (fair) coin 10,000 times and counted the number of heads (5,067).
- They made 5,000 draws from a container with 4 ping pong balls (2x2 different brands), 'at the rate of 400 an hour, with need it be stated periods of rest between successive hours.'
- They investigated tosses of a "biased coin", made from a wooden disk partly coated in lead.

In 1946 Kerrich published his finding in a monograph **An Experimental Introduction to the Theory of Probability**.

Simulating Kerrich's 1st experiment

Each coin flip (assuming the coin is fair) is like a random draw from the "box"

ullet This box has average $\mu=rac{1}{2}$ and also SD

$$\sigma = \sqrt{\mathrm{mean\ square} - (\mathrm{mean})^2} = \sqrt{rac{1}{2} - \left(rac{1}{2}
ight)^2} = \sqrt{rac{1}{4}} = rac{1}{2} \ .$$

- We may then model n "independent" flips X_1, \ldots, X_n as a random sample with replacement of size n from this box.
- The sum $S=X_1+\cdots+X_n$ is the **number** of heads.
- ullet The average $ar{X}=S/n$ is the **proportion** of heads.

Simulating 1st experiment: chance error in sums

```
1 flips = sample(c(0, 1), size = 10000, replace = T) # 'box' is c(0,1)
2 cumulative.sums = cumsum(flips)
3 n = 1:10000
4 ES = n/2
5 plot(n, cumulative.sums - ES, type = "l")
6 abline(h = 0, col = "red")
```


chance error in averages (cumulative proportion)

```
1 cumulative.propns = cumulative.sums/n # remember n = 1:10000 is a vector!
2 plot(n, cumulative.propns, type = "l", ylim = c(0, 1))
3 abline(h = 0.5, col = "red")
```


Logarithmic scale

```
par(mfrow = c(1, 2))
plot(log(n, base = 10), cumulative.sums - ES, type = "l")
abline(h = 0, col = "red")
plot(log(n, base = 10), cumulative.propns, type = "l", ylim = c(0, 1))
abline(h = 0.5, col = "red")
```


Size of chance errors as n increases

It seems that

- The size of the chance error in the **sums increases**;
- The size of the chance error in the proportion decreases;

This makes perfect sense, because

• The "likely size" of the chance error for the **sum**, i.e.

$$SE(S) = \sigma \sqrt{n} \to \infty$$

as
$$n o \infty$$

• The "likely size" of the chance error for the **proportion**, i.e.

$$SE(\bar{X}) = \frac{\sigma}{\sqrt{n}} \to 0$$

as
$$n o \infty$$
.

Law of Averages

ullet For the sample mean $ar{X}$ from any box model,

$$SE(\bar{X}) = \frac{\sigma}{\sqrt{n}} \to 0$$

as $n o \infty$.

- ullet So the likely size of the chance error between $ar{X}$ and $E(ar{X})=\mu$ gets smaller and smaller as n increases.
- In other words, as the sample size n increases, the distribution of a sample mean $ar{X}$ gets "more concentrated" about the "population mean" μ .
- This "phenomenon" is (loosely) known as the "Law of Averages" or the "Law of Large Numbers".

Demonstration

ullet We can determine the box of all possible sums for small values of n:

• We can iterate this procedure to get all sums for n=3:

```
1 s3 = as.vector(outer(box, s2, "+")) # each sum for n=3 adds 0 or 1 to each sum in s2
2 s3
[1] 0 1 1 2 1 2 2 3
```

• Again, for n=4:

```
1 s4 = as.vector(outer(box, s3, "+")) # each sum for n=4 adds 0 or 1 to each sum in s3
2 s4
[1] 0 1 1 2 1 2 2 3 1 2 2 3 2 3 3 4
```

• Again, for n=5:

```
1  s5 = as.vector(outer(box, s4, "+"))  # each sum for n=5 adds 0 or 1 to each sum in s4
2  s5
[1] 0 1 1 2 1 2 2 3 1 2 2 3 2 3 3 4 1 2 2 3 2 3 3 4 2 3 3 4 3 4 4 5
```

• Again, for n=6:

```
1 s6 = as.vector(outer(box, s5, "+")) # each sum for n=6 adds 0 or 1 to each sum in s5 2 s6

[1] 0 1 1 2 1 2 2 3 1 2 2 3 2 3 3 4 1 2 2 3 2 3 3 4 2 3 3 4 3 4 4 5 1 2 2 3 2 3 [39] 3 4 2 3 3 4 3 4 4 5 2 3 3 4 3 4 4 5 5 5 6
```

All possible sums to all possible averages

```
n = 2
  1 m2 = as.vector(s2)/2
  2 m2
[1] 0.0 0.5 0.5 1.0
n=3,4,\ldots
  1 m3 = s3/3
  2 m3
[1] 0.0000000 0.3333333 0.3333333 0.6666667 0.3333333 0.6666667 0.6666667
[8] 1.0000000
  1 \text{ m4} = \text{s4/4}
  2 m5 = s5/5
  3 \text{ m6} = \text{s6/6}
  4 s7 = as.vector(outer(box, s6, "+"))
  5 m7 = s7/7
  6 means = list(n=2 = m2, n=3 = m3, n=4 = m4, n=5 = m5, n=6 = m6, n=7 = m7)
```

1 means \$`n=2` [1] 0.0 0.5 0.5 1.0 \$`n=3` [1] 0.0000000 0.3333333 0.3333333 0.6666667 0.3333333 0.6666667 0.6666667 [8] 1.0000000 \$`n=4` [1] 0.00 0.25 0.25 0.50 0.25 0.50 0.50 0.75 0.25 0.50 0.50 0.75 0.50 0.75 [16] 1.00 \$`n=5` [1] 0.0 0.2 0.2 0.4 0.2 0.4 0.4 0.6 0.2 0.4 0.4 0.6 0.4 0.6 0.6 0.8 0.2 0.4 0.4 [20] 0.6 0.4 0.6 0.6 0.8 0.4 0.6 0.6 0.8 0.6 0.8 0.8 1.0 \$`n=6` [1] 0.0000000 0.1666667 0.1666667 0.3333333 0.1666667 0.3333333 0.3333333 [8] 0.5000000 0.1666667 0.3333333 0.3333333 0.5000000 0.3333333 0.5000000 [15] 0.5000000 0.6666667 0.1666667 0.3333333 0.3333333 0.5000000 0.3333333 [22] 0.5000000 0.5000000 0.6666667 0.3333333 0.5000000 0.5000000 0.6666667

All possible averages for $n=2,\ldots,7$

All possible averages for $n=8,\ldots,13$

All possible averages for $n=14,\ldots,19$

All possible averages for $n=20,\dots,25$

...and so on...

Two important things

- In this example it is very clear that TWO important things are happening:
 - 1. The spread of the distribution of all possible averages/proportions is getting more concentrated about $\mu=0.5$ as n increases;
 - 2. The shape of the histogram of all possible averages/proportions is becoming "normal-shaped".
- The normal shape means we can approximate probabilities, knowing only $E(ar{X})=\mu$ and $SE(ar{X})=rac{\sigma}{\sqrt{n}}$
- Is the "normal shape" due to something special about this particular simple box?
 - → Not really!

Example: rolling a 6-sided die

- Suppose we are interested in rolling a 6-sided die n times. How does the sum of the rolls behave?
- ullet This is like taking a random sample of size n from the box

- This box has
 - \rightarrow mean $\mu=3.5=rac{7}{2}$
 - \rightarrow mean square $\frac{1+4+9+16+25+36}{6} = \frac{91}{6}$

$$\sigma = \sqrt{\frac{91}{6} - \left(\frac{7}{2}\right)^2} = \sqrt{\frac{182 - (3 \times 49)}{12}} = \sqrt{\frac{35}{12}} \approx 1.708.$$

```
1 box = 1:6
2 box

[1] 1 2 3 4 5 6

1 s2 = as.vector(outer(box, box, "+"))
2 s3 = as.vector(outer(s2, box, "+"))
3 s4 = as.vector(outer(s3, box, "+"))
4 s5 = as.vector(outer(s4, box, "+"))
5 s6 = as.vector(outer(s5, box, "+"))
6 sums.rolls = list(box, s2, s3, s4, s5, s6)
```

Histograms of all possible sums-of-n-rolls

For n=6 this is normal-shaped too!

Histograms of all possible average-of-n-rolls

Same shape, but different scaling.

Asymmetric example

- Instead of the sum of the rolls, how about the number of $\boxed{6}$ s we get out of n rolls?
- the original box for the die

can be converted to a new box representing if we get a $\boxed{6}$ (1) or not (0)

- The number of 6s we get in n rolls is just like the sum S when we take a random sample of size n from this new box.
- This new box has
 - \rightarrow mean $\mu=rac{1}{6}$
 - \rightarrow mean square $\frac{1}{6}$

SD
$$\sigma = \sqrt{\frac{1}{6} - \left(\frac{1}{6}\right)^2} = \sqrt{\frac{6-1}{36}} = \frac{\sqrt{5}}{6} \approx 0.373$$
.

Histograms of all possible no.s-of-6s

Not looking very normal-shaped...what about if we let $m{n}$ get larger?

We get a normal shape, but only for larger n

- So although the histograms of all possible sums ("no.s-of-times-we-roll- $\boxed{6}$ ") are not normal-shaped for smaller n, as n increases the shape gets closer to a normal.
- By the time n>100, the shape is quite normal.
- It turns out that for essentially any box, we get the same phenomenon occuring:
 - \rightarrow as n gets larger and larger, the box of all possible sums gets a "more normal" shape.

The Central Limit Theorem

Most important result in Statistics

- This phenomenon can be mathematically proven to hold for any finite box.
- This result is a special case of the **Central Limit Theorem**.
 - It is a "limit theorem" because it describes what happens "in the limit" as $n \to \infty$.
 - "Central" here means "most important".
- ullet For the standard normal curve, we have P(Z < z) given in R by ${ t pnorm(z)}$.
- ullet A remark: P(Z < z) is often called the CDF of "standard normal" denoted by $\Phi(z)$.

If $S=X_1+\cdots+X_n$ is the sum of random sample (with replacement) of size n from a box with mean μ and SD σ , then for large n,

$$P(S \le s) = P\left(\frac{S - n\mu}{\sigma\sqrt{n}} \le \frac{s - n\mu}{\sigma\sqrt{n}}\right) \approx \Phi\left(\frac{s - n\mu}{\sigma\sqrt{n}}\right)$$

Deconstructing the Central Limit Theorem

ullet Note that the desired sum value $oldsymbol{s}$ being considered here, when converted into standard units is

$$z_s = rac{s - E(S)}{SE(S)} = rac{s - n\mu}{\sigma\sqrt{n}}\,,$$

which is the ratio inside the $\Phi(\cdot)$.

Therefore, converting to R code, we have

$$P(S \leq s) pprox exttt{pnorm((}s-n\mu)/(\sigma\sqrt{n}) exttt{)} = exttt{pnorm(}s exttt{,m=}n\mu exttt{,s=}\sigma\sqrt{n} exttt{)}$$
 .

ullet The theorem equally applies to the sample mean $ar{X}$. Let s=nx

$$P(ar{X} \leq x) = Pigg(rac{ar{X} - \mu}{\sigma/\sqrt{n}} \leq \underbrace{rac{x - \mu}{\sigma/\sqrt{n}}}_{z- ext{score of }x}igg) = \Big(rac{s - n\mu}{\sqrt{n}\sigma}\Big)$$

Example: Roulette

- A roulette wheel has slots numbered 1 to 36, plus 1 (or more) slots marked 0.
 - half the positive numbers are coloured black;
 - the remaining positive numbers are coloured red;
 - the zero slots are coloured green (two of them, "0" and "00").
- If you bet on either "red" or "black",
 - you double your money if the ball lands in a slot of your colour
 - you lose your money otherwise.
- ullet Suppose each slot is equally likely and a player bets \$1 on "red" for n consecutive spins.

The Roulette Box

- ullet Let S denote the total winnings after n spins. We want to approximate P(S>0) for n=5,25,125,625.
- There are 38 slots in total, 18 of which are red. If the ball
 - → lands in a red slot the player wins \$1;
 - → does **not** land in a red slot, the player loses \$1, i.e. they win -\$1.
- Use the following box:

$$\begin{array}{|c|c|c|c|c|c|c|}
\hline
-1 & \cdots & -1 \\
\hline
20 \text{ of these} & \hline
18 \text{ of these} \\
\end{array}$$

- \rightarrow mean $\mu = \frac{-2}{38} = -\frac{1}{19}$;
- mean square 1

SD
$$\sigma = \sqrt{1 - \left(\frac{1}{19}\right)^2} = \sqrt{\frac{360}{361}} \approx 0.9986.$$

Exact answers

- It is possible to work out the exact probabilities (using the "binomial distribution", more on this later if we have time).
- These are

Normal approximation

ullet According to the Central Limit Theorem, for "large $oldsymbol{n}$ ",

$$P(S>0)=1-P(S\leq 0)=1-P(S\leq 0)pprox 1-\Phi\left(z_0
ight)=1- exttt{pnorm}\left(rac{\sqrt{361n}}{19\sqrt{360}}
ight)$$

where z_0 is the z-score of 0

$$z_0 = \frac{0 - n\mu}{\sqrt{n}\sigma} = \frac{0 - \left(-\frac{n}{19}\right)}{\sqrt{\frac{360n}{361}}} = \frac{\sqrt{361n}}{19\sqrt{360}}$$

This gives

- 1 1 pnorm(sqrt(361 * n)/(19 * sqrt(360)))
- [1] 0.45309281 0.39607370 0.27784490 0.09381616
- These are quite good approximations (even for n=5)!
- Makes sense, because the box is reasonably symmetric (not that different in shape to Kerrich's box).

Final comments

When we take a random sample of size n (with replacement) from a box with mean μ and SD σ , the box of all possible sums

- ullet Has mean equal to $E(S)=n\mu$;
- Has SD equal to $SE(S) = \sigma \sqrt{n}$;
- Is (approx.) normal-shaped for "large enough n".

For such n we can approximate probabilities for the random sum S or average $ar{X}=S/n$, using pnorm().

ullet We don't need to know the exact contents of the box, as long as we have $E(X)=\mu$ and $SE(X)=\sigma$

How large is "large enough n"? It depends on the original box. If the original box is

- ullet Reasonably symmetric (without too many outliers), n=5 or 10 may do;
- ullet Very skewed, we may need n>100 before the box of all possible sums has a nice, symmetric normal shape.