Supporting Information: Coexistence Calculation Using the Isothermal-Isochoric Integration Method

S. Mostafa Razavi, ^{1, a)} Richard A. Messerly, ^{2, b)} and J. Richard Elliott^{1, c)}

(Dated: 21 December 2018)

¹⁾Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, USA

²⁾ Thermodynamics Research Center, National Institute of Standards and Technology, Boulder, Colorado, 80305, USA

a) Electronic mail: sr87@zips.uakron.edu

b) Electronic mail: richard.messerly@nist.gov

 $^{^{}c)}$ Electronic mail: elliot1@uakron.edu

T	TARLES	\mathbf{OF}	SIMIII.	ATION	RESULTS
1.	TADLES	()I	$\mathbf{SHM}\mathbf{OP}$	AIIOII	TESCETS

TABLE I: Cassandra simulation results of Mie-UA n-dodecane.

[K]	$[g/cm^3]$			$\left[\frac{\text{kcal}}{\text{mol}}\right]$.]	$\left[\frac{\text{kca}}{\text{mo}}\right]$	<u>[</u>]	$\left[\frac{\text{kcal}}{\text{mol}}\right]$]	$\left[\frac{\text{kcal}}{\text{mol}}\right]$]	
T	ρ	Z	±	$E^{ m tot}$	土	E^{bonded}	±	$E^{ m vdw}$	±	$E^{ m intra}$	±	N
546.60	0.5336	-0.0398	0.089	1614.70	5.50	5589.90	7.56	-3632.30	4.32	-484.76	6.11	400
610.38	0.5336	0.9108	0.094	2233.30	8.16	6124.70	4.78	-3548.50	4.36	-482.68	4.64	400
495.91	0.5870	-0.0005	0.045	681.58	10.28	5138.00	6.49	-4079.10	4.45	-490.92	3.25	400
577.42	0.5870	1.6342	0.044	1504.70	8.70	5848.80	8.03	-3966.90	0.86	-486.76	1.75	400
436.90	0.6404	0.1325	0.130	-394.12	13.54	4592.90	10.78	-4575.40	3.31	-488.75	1.42	400
535.33	0.6404	2.8887	0.042	643.98	10.99	5479.10	11.34	-4423.50	4.10	-488.15	1.22	400
370.34	0.6937	0.1328	0.103	-1638.90	10.62	3931.40	6.96	-5124.50	4.23	-483.52	2.48	400
482.23	0.6937	4.8487	0.111	-346.74	6.00	5023.70	5.83	-4924.60	2.33	-493.67	2.21	400
296.98	0.7471	0.2965	0.161	-3051.00	9.35	3162.40	8.34	-5733.10	4.40	-469.28	1.65	400
415.42	0.7471	8.1145	0.085	-1560.10	5.28	4386.80	4.22	-5466.70	3.23	-491.55	3.36	400
592.20	0.0267	0.8048	0.018	5255.40	5.24	6013.70	3.52	-741.05	2.47	-483.94	2.78	400
592.20	0.0356	0.7540	0.034	5163.50	12.60	6008.30	9.02	-821.97	4.64	-485.66	3.10	400
592.20	0.0534	0.6668	0.017	4990.10	6.00	6008.00	6.18	-983.57	6.64	-487.84	7.12	400
592.20	0.1067	0.4015	0.031	4528.80	20.19	5995.90	5.54	-1398.50	18.02	-487.62	1.35	400
691.00	0.0267	0.8805	0.013	6079.90	4.59	6761.80	3.81	-664.73	2.13	-468.63	4.57	400
691.00	0.0356	0.8453	0.033	6019.10	9.25	6769.30	8.45	-727.35	2.17	-471.01	3.61	400
691.00	0.0534	0.7825	0.023	5880.20	8.69	6761.60	7.19	-847.07	1.77	-468.08	2.93	400
691.00	0.1067	0.6130	0.052	5518.10	5.06	6765.20	5.44	-1178.50	1.90	-473.62	3.84	400
691.00	0.2135	0.3825	0.033	4892.50	10.43	6749.70	10.92	-1720.00	3.89	-468.47	3.27	400
691.00	0.3202	0.2588	0.046	4312.60	14.45	6747.30	10.87	-2228.90	4.74	-470.51	4.55	400
691.00	0.4269	0.5845	0.030	3685.90	6.07	6744.70	4.88	-2784.40	1.86	-473.27	6.11	400
691.00	0.5336	1.8125	0.022	2940.00	8.56	6739.50	7.78	-3456.50	2.83	-472.11	3.21	400
691.00	0.5870	3.3110	0.063	2529.40	8.41	6734.50	7.61	-3827.80	2.08	-468.85	4.01	400
691.00	0.6404	5.5492	0.073	2111.10	7.69	6733.00	4.22	-4210.30	4.04	-466.85	2.42	400
691.00	0.6937	9.2005	0.035	1725.20	5.84	6744.00	4.88	-4573.00	1.87	-468.66	3.26	400
691.00	0.7471	14.4300	0.056	1374.50	3.61	6758.30	6.64	-4903.60	3.47	-463.97	2.81	400

TABLE II: Cassandra simulation results of TIP4P/2005 water.

[K]	$[g/cm^3]$			$\left[\frac{\text{kcal}}{\text{mol}}\right]$]	$\left[\frac{\text{kcal}}{\text{mol}}\right]$]	$\left[\frac{\text{kca}}{\text{mo}}\right]$	$\frac{1}{1}$	$\left[\frac{\text{kca}}{\text{mc}}\right]$	<u>.l</u>]	
T	ρ	Z	土	$E^{ m tot}$	土	E^{bonded}	±	$E^{ m vdw}$	±	$E^{ m intra}$	±	N
572.01	0.7129	0.0710	0.039	-2241.50	8.50	0.00	0.00	270.58	3.52	0.00	0.00	300
658.57	0.7129	0.4645	0.036	-2074.40	4.51	0.00	0.00	243.86	3.36	0.00	0.00	300
533.15	0.7841	0.0828	0.016	-2433.80	3.68	0.00	0.00	309.05	0.59	0.00	0.00	300
632.05	0.7841	0.6038	0.012	-2226.80	1.15	0.00	0.00	276.31	1.64	0.00	0.00	300
482.75	0.8554	0.0560	0.018	-2651.00	7.53	0.00	0.00	354.98	2.38	0.00	0.00	300
595.22	0.8554	0.7990	0.042	-2395.00	4.70	0.00	0.00	316.58	3.14	0.00	0.00	300
413.24	0.9267	0.0658	0.020	-2932.90	8.09	0.00	0.00	432.75	4.74	0.00	0.00	300
539.29	0.9267	1.0180	0.025	-2606.70	1.56	0.00	0.00	372.09	2.07	0.00	0.00	300
288.64	0.9980	0.0535	0.042	-3470.40	10.99	0.00	0.00	634.65	6.26	0.00	0.00	300
420.77	0.9980	0.9220	0.056	-2977.80	5.65	0.00	0.00	462.91	6.79	0.00	0.00	300
776.00	0.1426	0.5975	0.024	-711.47	6.46	0.00	0.00	74.78	2.98	0.00	0.00	300
776.00	0.2851	0.4625	0.012	-1106.80	8.08	0.00	0.00	113.53	2.81	0.00	0.00	300
776.00	0.4277	0.4790	0.007	-1392.90	4.24	0.00	0.00	146.57	1.09	0.00	0.00	300
776.00	0.5703	0.5763	0.010	-1655.40	4.35	0.00	0.00	180.24	1.05	0.00	0.00	300
776.00	0.7129	0.9113	0.017	-1889.60	3.57	0.00	0.00	230.02	3.21	0.00	0.00	300
776.00	0.7841	1.1960	0.014	-1993.90	3.54	0.00	0.00	263.57	1.08	0.00	0.00	300
776.00	0.8554	1.5645	0.016	-2100.40	3.29	0.00	0.00	305.41	1.18	0.00	0.00	300
776.00	0.9267	2.0420	0.043	-2191.80	4.06	0.00	0.00	355.62	5.31	0.00	0.00	300
776.00	0.9980	2.7380	0.021	-2270.00	3.31	0.00	0.00	428.68	2.89	0.00	0.00	300
776.00	0.0356	0.8560	0.000	-912.83	0.00	0.00	0.00	99.02	0.00	0.00	0.00	1200
776.00	0.0475	0.8140	0.000	-1186.60	0.00	0.00	0.00	127.57	0.00	0.00	0.00	1200
776.00	0.0713	0.7420	0.000	-1681.60	0.00	0.00	0.00	178.48	0.00	0.00	0.00	1200
776.00	0.1426	0.5970	0.000	-2845.40	0.00	0.00	0.00	296.92	0.00	0.00	0.00	1200

TABLE III: Cassandra simulation results of TraPPE-UA methane.

[K]	$[g/cm^3]$			$\left[\frac{\text{kcal}}{\text{mol}}\right]$.]	$\left[\frac{\text{kcal}}{\text{mol}}\right]$]	$\left[\frac{\text{kcal}}{\text{mol}}\right]$.]	$\left[\frac{\text{kca}}{\text{mo}}\right]$	<u>ul</u>]	
\overline{T}	ρ	Z	±	$E^{ m tot}$	±	E^{bonded}	±	$E^{ m vdw}$	±	$E^{ m intra}$	±	N
167.20	0.3179	0.0690	0.025	-1507.30	3.00	0.00	0.00	-1439.50	3.00	0.00	0.00	1200
192.92	0.3179	0.5450	0.027	-1474.90	2.22	0.00	0.00	-1407.10	2.22	0.00	0.00	1200
153.67	0.3496	0.0668	0.006	-1671.80	0.53	0.00	0.00	-1597.20	0.53	0.00	0.00	1200
183.60	0.3496	0.7665	0.029	-1627.50	1.15	0.00	0.00	-1552.90	1.15	0.00	0.00	1200
137.14	0.3814	0.0740	0.023	-1844.50	0.83	0.00	0.00	-1763.20	0.83	0.00	0.00	1200
171.27	0.3814	1.1050	0.023	-1785.20	1.25	0.00	0.00	-1703.90	1.25	0.00	0.00	1200
117.81	0.4132	0.1023	0.014	-2029.80	1.13	0.00	0.00	-1941.70	1.13	0.00	0.00	1200
155.35	0.4132	1.5693	0.020	-1948.70	1.26	0.00	0.00	-1860.60	1.26	0.00	0.00	1200
135.01	0.4450	2.2950	0.026	-2116.40	1.68	0.00	0.00	-2021.50	1.68	0.00	0.00	1200
95.90	0.4450	0.0528	0.022	-2227.90	0.73	0.00	0.00	-2133.00	0.73	0.00	0.00	1200
171.51	0.0159	0.8765	0.001	-374.07	0.53	0.00	0.00	-360.51	0.53	0.00	0.00	4800
171.51	0.0212	0.8365	0.001	-499.01	1.97	0.00	0.00	-480.93	1.97	0.00	0.00	4800
171.51	0.0318	0.7548	0.003	-752.77	1.56	0.00	0.00	-725.65	1.56	0.00	0.00	4800
171.51	0.0636	0.5433	0.001	-1511.00	15.92	0.00	0.00	-1456.70	15.92	0.00	0.00	4800
228.00	0.0159	0.9293	0.001	-325.59	0.38	0.00	0.00	-312.02	0.38	0.00	0.00	4800
228.00	0.0212	0.9068	0.002	-434.57	0.88	0.00	0.00	-416.49	0.88	0.00	0.00	4800
228.00	0.0318	0.8630	0.001	-647.04	1.46	0.00	0.00	-619.91	1.46	0.00	0.00	4800
228.00	0.0636	0.7430	0.002	-1274.30	2.51	0.00	0.00	-1220.10	2.51	0.00	0.00	4800
228.00	0.1271	0.5813	0.012	-609.99	3.25	0.00	0.00	-582.89	3.25	0.00	0.00	1200
228.00	0.1907	0.5100	0.012	-886.99	4.15	0.00	0.00	-846.33	4.15	0.00	0.00	1200
228.00	0.2543	0.6045	0.003	-1157.10	1.27	0.00	0.00	-1102.90	1.27	0.00	0.00	1200
228.00	0.3179	1.0090	0.007	-1434.40	0.81	0.00	0.00	-1366.60	0.81	0.00	0.00	1200
228.00	0.3496	1.4165	0.013	-1568.40	0.22	0.00	0.00	-1493.80	0.22	0.00	0.00	1200
228.00	0.3814	2.0200	0.025	-1694.50	1.64	0.00	0.00	-1613.20	1.64	0.00	0.00	1200
228.00	0.4132	2.8875	0.026	-1803.30	2.42	0.00	0.00	-1715.20	2.42	0.00	0.00	1200
228.00	0.4450	4.0118	0.030	-1893.70	2.60	0.00	0.00	-1798.80	2.60	0.00	0.00	1200

TABLE IV: Cassandra simulation results of TraPPE-UA ethane.

[K]	$[g/cm^3]$			$\left[\frac{\text{kcal}}{\text{mol}}\right]$.]	$\left[\frac{\text{kcal}}{\text{mol}}\right]$]	$\left[\frac{\text{kcal}}{\text{mol}}\right]$.]	$\left[\frac{\text{kca}}{\text{mo}}\right]$	<u>ul</u>]	
T	ρ	Z	±	$E^{ m tot}$	±	E^{bonded}	±	$E^{ m vdw}$	±	$E^{\rm intra}$	±	N
259.42	0.4286	0.0560	0.042	-1305.70	0.49	0.00	0.00	-1271.70	0.49	0.00	0.00	600
301.54	0.4286	0.6645	0.011	-1276.10	0.92	0.00	0.00	-1242.10	0.92	0.00	0.00	600
235.56	0.4714	0.0393	0.047	-1456.30	1.20	0.00	0.00	-1418.80	1.20	0.00	0.00	600
284.78	0.4714	0.9320	0.013	-1416.30	0.51	0.00	0.00	-1378.80	0.51	0.00	0.00	600
207.11	0.5143	0.0235	0.039	-1615.90	0.80	0.00	0.00	-1575.10	0.80	0.00	0.00	600
262.95	0.5143	1.3585	0.028	-1560.20	1.13	0.00	0.00	-1519.30	1.13	0.00	0.00	600
174.46	0.5571	0.0368	0.058	-1784.80	1.37	0.00	0.00	-1740.50	1.37	0.00	0.00	600
235.02	0.5571	2.0335	0.050	-1709.40	1.74	0.00	0.00	-1665.10	1.74	0.00	0.00	600
137.97	0.6000	0.0355	0.031	-1966.70	0.63	0.00	0.00	-1919.10	0.63	0.00	0.00	600
199.49	0.6000	3.0205	0.037	-1867.50	1.04	0.00	0.00	-1819.90	1.04	0.00	0.00	600
274.79	0.0214	0.8710	0.002	-329.87	0.96	0.00	0.00	-323.07	0.96	0.00	0.00	2400
274.79	0.0286	0.8315	0.004	-440.88	1.05	0.00	0.00	-431.79	1.05	0.00	0.00	2400
274.79	0.0429	0.7490	0.004	-664.05	0.64	0.00	0.00	-650.41	0.64	0.00	0.00	2400
274.79	0.0857	0.5315	0.006	-1333.40	16.47	0.00	0.00	-1306.20	16.47	0.00	0.00	2400
360.00	0.0214	0.9258	0.002	-283.85	0.94	0.00	0.00	-277.05	0.94	0.00	0.00	2400
360.00	0.0286	0.9015	0.002	-376.75	2.12	0.00	0.00	-367.66	2.12	0.00	0.00	2400
360.00	0.0429	0.8565	0.004	-563.25	1.06	0.00	0.00	-549.61	1.06	0.00	0.00	2400
360.00	0.0857	0.7373	0.006	-1103.80	4.31	0.00	0.00	-1076.60	4.31	0.00	0.00	2400
360.00	0.1714	0.5763	0.017	-524.24	1.96	0.00	0.00	-510.62	1.96	0.00	0.00	600
360.00	0.2571	0.5178	0.020	-757.74	3.23	0.00	0.00	-737.31	3.23	0.00	0.00	600
360.00	0.3429	0.6870	0.009	-994.67	1.22	0.00	0.00	-967.42	1.22	0.00	0.00	600
360.00	0.4286	1.2093	0.010	-1241.50	0.47	0.00	0.00	-1207.40	0.47	0.00	0.00	600
360.00	0.4714	1.7380	0.018	-1361.30	1.41	0.00	0.00	-1323.80	1.41	0.00	0.00	600
360.00	0.5143	2.5470	0.026	-1475.10	1.17	0.00	0.00	-1434.20	1.17	0.00	0.00	600
360.00	0.5571	3.7083	0.016	-1572.30	0.82	0.00	0.00	-1528.10	0.82	0.00	0.00	600
360.00	0.6000	5.2710	0.052	-1649.60	2.71	0.00	0.00	-1601.90	2.71	0.00	0.00	600

TABLE V: Cassandra simulation results of TraPPE-UA n-dodecane.

[K]	$[\mathrm{g/cm^3}]$			$\left[\frac{\text{kcal}}{\text{mol}}\right]$.]	$\left[\frac{\text{kca}}{\text{mo}}\right]$	<u>l</u>]	$\left[\frac{\text{kcal}}{\text{mol}}\right]$.]	$\left[\frac{\text{kcal}}{\text{mol}}\right]$.]	
T	ρ	Z	土	$E^{ m tot}$	±	E^{bonded}	±	$E^{ m vdw}$	±	$E^{ m intra}$	±	N
546.60	0.5336	-0.0918	0.023	2146.90	7.84	5648.90	9.50	-3377.00	4.68	-397.50	2.00	400
610.38	0.5336	0.7345	0.045	2762.00	4.27	6178.50	5.64	-3291.50	1.47	-388.46	4.40	400
495.91	0.5870	-0.1640	0.015	1297.40	10.02	5209.20	9.31	-3774.20	2.34	-406.11	3.83	400
577.42	0.5870	1.2368	0.035	2102.00	7.98	5906.80	7.01	-3667.30	2.15	-393.19	1.49	400
436.90	0.6404	-0.2223	0.045	279.16	8.16	4644.30	7.28	-4215.10	2.03	-409.62	3.89	400
535.33	0.6404	2.0715	0.076	1322.80	10.84	5544.40	6.88	-4071.60	3.99	-401.14	3.05	400
370.34	0.6937	-0.4023	0.080	-892.69	8.02	3970.80	6.65	-4701.00	1.56	-411.37	1.86	400
482.23	0.6937	3.4830	0.055	413.70	4.70	5078.30	4.79	-4502.10	0.62	-407.61	1.99	400
296.98	0.7471	-0.8395	0.199	-2232.60	9.13	3174.30	5.85	-5231.90	3.51	-400.28	1.80	400
415.42	0.7471	5.4290	0.123	-708.79	4.19	4441.30	5.16	-4975.10	3.99	-411.21	1.63	400
592.20	0.0267	0.8085	0.012	5418.20	5.54	6056.20	7.61	-631.68	2.56	-397.26	1.33	400
592.20	0.0356	0.7620	0.012	5343.40	5.77	6058.80	2.96	-707.07	4.86	-399.08	0.82	400
592.20	0.0534	0.6578	0.023	5177.40	9.08	6052.50	4.87	-862.54	4.36	-398.22	1.16	400
592.20	0.1067	0.3863	0.024	4717.60	27.21	6047.70	7.71	-1305.00	22.52	-395.04	5.35	400
691.00	0.0267	0.8818	0.004	6252.00	7.32	6820.80	7.64	-562.53	1.89	-376.43	3.55	400
691.00	0.0356	0.8308	0.006	6189.10	13.47	6821.70	15.42	-624.30	3.21	-373.12	8.18	400
691.00	0.0534	0.7510	0.013	6056.60	5.95	6813.30	5.89	-744.18	1.48	-370.22	6.53	400
691.00	0.1067	0.6170	0.024	5723.10	12.36	6815.90	4.42	-1067.80	9.95	-375.87	1.72	400
691.00	0.2135	0.3883	0.032	5142.50	23.80	6808.10	7.97	-1615.60	16.05	-375.93	2.30	400
691.00	0.3202	0.2998	0.049	4648.20	1.93	6810.10	4.84	-2087.00	5.97	-375.98	4.16	400
691.00	0.4269	0.5150	0.021	4101.20	5.47	6807.80	5.09	-2606.60	2.18	-374.96	5.37	400
691.00	0.5336	1.4888	0.037	3479.00	3.37	6809.80	3.58	-3205.80	1.29	-368.90	5.79	400
691.00	0.5870	2.6080	0.035	3142.30	7.75	6809.10	10.24	-3529.20	3.50	-370.94	5.43	400
691.00	0.6404	4.3133	0.109	2805.60	16.79	6811.50	16.90	-3855.90	3.06	-373.88	3.96	400
691.00	0.6937	6.8885	0.036	2495.40	6.98	6819.80	7.26	-4161.80	1.50	-365.29	4.97	400
691.00	0.7471	10.4940	0.059	2220.40	10.34	6830.00	12.61	-4434.60	3.27	-364.64	6.13	400

TABLE VI: Cassandra simulation results of TraPPE-UA isobutane.

[K]	$[g/cm^3]$			$\left[\frac{\text{kcal}}{\text{mol}}\right]$		$\left[rac{ ext{kcal}}{ ext{mol}} ight]$.]	$\left[\frac{\text{kcal}}{\text{mol}}\right]$]	$\left[\frac{\text{kca}}{\text{mo}}\right]$	<u>al</u>]	
T	ρ	Z	±	$E^{ m tot}$	±	E^{bonded}	±	E^{vdw}	±	$E^{ m intra}$	±	N
348.59	0.4784	0.0640	0.026	-648.13	1.79	320.04	1.20	-935.53	0.60	0.00	0.00	300
407.15	0.4784	0.7205	0.021	-571.51	1.86	375.48	1.52	-914.35	0.79	0.00	0.00	300
316.83	0.5263	0.0003	0.031	-794.08	2.13	291.04	1.56	-1049.20	1.06	0.00	0.00	300
384.63	0.5263	1.0867	0.033	-700.22	3.67	355.19	2.12	-1019.50	1.61	0.00	0.00	300
278.44	0.5741	0.0153	0.056	-955.54	1.17	253.28	1.27	-1169.70	1.51	0.00	0.00	300
354.93	0.5741	1.6015	0.017	-845.51	0.84	324.37	1.13	-1130.70	0.63	0.00	0.00	300
233.85	0.6220	-0.0460	0.050	-1131.80	1.60	213.25	1.16	-1302.60	0.88	0.00	0.00	300
316.47	0.6220	2.4330	0.046	-999.43	1.31	290.60	0.53	-1247.60	0.91	0.00	0.00	300
183.51	0.6698	-0.3825	0.054	-1326.60	1.05	166.73	0.88	-1447.70	0.55	0.00	0.00	300
266.92	0.6698	3.5745	0.065	-1175.40	0.28	244.25	1.29	-1373.90	1.28	0.00	0.00	300
367.02	0.0240	0.8690	0.008	272.88	2.02	335.93	1.56	-61.41	0.53	0.00	0.00	300
367.02	0.0319	0.8198	0.013	251.89	0.77	335.50	0.69	-81.43	1.00	0.00	0.00	300
367.02	0.0478	0.7368	0.010	210.47	1.07	335.89	1.00	-122.16	1.00	0.00	0.00	300
367.02	0.0957	0.4943	0.014	82.98	2.48	337.26	1.39	-247.75	2.68	0.00	0.00	300
489.36	0.0240	0.9308	0.006	403.51	3.17	454.84	3.29	-49.69	0.21	0.00	0.00	300
489.36	0.0319	0.9030	0.006	385.51	2.48	454.77	2.06	-67.08	0.49	0.00	0.00	300
489.36	0.0478	0.8640	0.005	352.29	3.16	454.44	3.20	-98.88	0.61	0.00	0.00	300
489.36	0.0957	0.7608	0.005	254.98	3.30	455.63	3.38	-194.12	1.05	0.00	0.00	300
489.36	0.1914	0.6015	0.024	71.69	3.17	455.41	2.16	-370.66	1.51	0.00	0.00	300
489.36	0.2871	0.5430	0.024	-94.27	2.31	455.56	2.62	-530.23	1.16	0.00	0.00	300
489.36	0.3827	0.7328	0.013	-273.46	1.82	455.96	2.08	-703.31	1.61	0.00	0.00	300
489.36	0.4784	1.3948	0.022	-464.47	1.79	455.17	2.57	-887.00	1.25	0.00	0.00	300
489.36	0.5263	2.0635	0.062	-558.36	3.54	456.48	2.20	-978.94	2.33	0.00	0.00	300
489.36	0.5741	3.1127	0.029	-647.51	1.32	456.85	0.93	-1065.20	0.55	0.00	0.00	300
489.36	0.6220	4.5415	0.044	-732.74	4.05	454.80	3.21	-1145.10	1.37	0.00	0.00	300
489.36	0.6698	6.5442	0.041	-797.36	2.40	456.93	1.27	-1208.60	1.96	0.00	0.00	300

TABLE VII: Cassandra simulation results of TraPPE-UA isohexane.

[K]	$[g/cm^3]$			$\left[\frac{\text{kcal}}{\text{mol}}\right]$	-]	$\left[\frac{\text{kcal}}{\text{mol}}\right]$]	$\left[\frac{\text{kcal}}{\text{mol}}\right]$]	$\left[\frac{\text{kcal}}{\text{mol}}\right]$]	
T	ho	Z	±	$E^{ m tot}$	±	E^{bonded}	土	$E^{ m vdw}$	土	$E^{ m intra}$	±	N
421.04	0.5093	-0.0243	0.031	-246.92	4.12	682.75	2.57	-897.34	1.57	-51.92	0.97	200
476.00	0.5093	0.6258	0.058	-133.79	1.82	776.31	0.88	-877.78	1.14	-47.94	2.55	200
382.27	0.5602	-0.0418	0.089	-420.59	3.18	618.74	2.94	-1003.80	1.39	-51.31	0.69	200
450.19	0.5602	0.9870	0.110	-276.88	2.98	736.47	2.12	-977.79	0.97	-48.50	2.24	200
336.12	0.6112	-0.1500	0.029	-619.26	1.38	539.81	1.43	-1120.30	0.81	-53.51	0.95	200
416.52	0.6112	1.5350	0.093	-444.33	3.01	679.94	1.11	-1085.50	2.26	-51.02	0.19	200
283.16	0.6621	-0.2815	0.058	-840.16	2.70	449.29	2.21	-1247.40	0.79	-54.55	0.79	200
373.26	0.6621	2.5400	0.091	-634.88	2.97	604.34	1.94	-1197.20	1.68	-51.90	0.47	200
223.97	0.7130	-0.4680	0.063	-1083.00	0.45	346.21	0.50	-1384.00	0.69	-55.19	0.71	200
317.89	0.7130	3.9067	0.080	-857.42	1.81	507.50	0.99	-1319.70	0.90	-53.86	0.82	200
447.93	0.0255	0.8523	0.009	2484.60	7.36	2927.10	6.84	-436.04	0.69	-199.34	1.92	800
447.93	0.0340	0.8020	0.010	2408.00	2.83	2928.70	3.58	-512.07	1.42	-199.11	0.37	800
447.93	0.0509	0.7063	0.009	2245.50	8.17	2928.60	5.51	-670.21	3.86	-200.15	1.92	800
447.93	0.1019	0.4858	0.016	1774.30	20.05	2923.50	8.40	-1123.30	18.23	-198.57	1.31	800
547.47	0.0255	0.9068	0.006	3189.50	0.42	3570.40	2.25	-374.42	2.02	-177.17	0.80	800
547.47	0.0340	0.8780	0.005	3117.60	2.56	3566.40	1.05	-440.13	1.77	-180.69	0.74	800
547.47	0.0509	0.8243	0.006	2996.60	5.22	3572.90	5.49	-563.37	0.31	-183.15	2.70	800
547.47	0.1019	0.6748	0.009	2623.60	5.88	3570.60	3.72	-921.09	3.57	-180.24	3.61	800
547.47	0.2037	0.4728	0.023	486.46	1.61	892.03	2.67	-392.64	2.78	-45.15	1.84	200
547.47	0.3056	0.4145	0.049	336.87	2.16	890.49	2.70	-534.22	2.37	-45.02	0.78	200
547.47	0.4074	0.5418	0.046	182.00	3.93	892.48	3.37	-684.62	1.39	-44.17	2.70	200
547.47	0.5093	1.2415	0.033	4.26	4.36	891.45	3.71	-854.86	1.49	-42.82	1.22	200
547.47	0.5602	1.9972	0.030	-86.21	2.99	891.50	3.91	-942.15	1.13	-44.38	1.86	200
547.47	0.6112	3.1675	0.096	-176.90	6.71	891.86	4.99	-1030.00	2.10	-44.27	1.08	200
547.47	0.6621	4.8715	0.037	-257.62	1.92	894.60	0.63	-1110.20	1.50	-44.57	0.88	200
547.47	0.7130	7.3948	0.112	-326.69	3.55	894.79	1.87	-1176.20	3.75	-43.86	2.56	200

TABLE VIII: GROMACS simulation results of TraPPE-UA ethane

[K]	$[\mathrm{g/cm^3}]$		$\left[\frac{\text{kcal}}{\text{mol}}\right]$	$\left[\frac{\text{kcal}}{\text{mol}}\right]$	$\left[\frac{\text{kcal}}{\text{mol}}\right]$	$\left[\frac{\text{kcal}}{\text{mol}}\right]$	
\overline{T}	ρ	Z	$E^{ m tot}$	E^{bonded}	$E^{ m vdw}$	$E^{ m intra}$	N
259.38	0.4286	0.0646	-1306.40	0.00	-1272.34	0.00	600
301.48	0.4286	0.6455	-1276.91	0.00	-1242.85	0.00	600
235.32	0.4714	0.0435	-1455.46	0.00	-1417.99	0.00	600
284.78	0.4714	0.9208	-1416.45	0.00	-1378.99	0.00	600
207.11	0.5143	0.0324	-1615.47	0.00	-1574.60	0.00	600
262.94	0.5143	1.3748	-1560.07	0.00	-1519.20	0.00	600
174.46	0.5571	0.0494	-1784.86	0.00	-1740.59	0.00	600
235.11	0.5571	2.0381	-1709.51	0.00	-1665.24	0.00	600
138.01	0.6000	0.0024	-1967.50	0.00	-1919.82	0.00	600
199.47	0.6000	3.0080	-1867.76	0.00	-1820.08	0.00	600
274.75	0.0214	0.8648	-494.67	0.00	-484.46	0.00	3600
274.81	0.0286	0.8252	-662.24	0.00	-648.60	0.00	3600
274.79	0.0429	0.7465	-988.74	0.00	-968.28	0.00	3600
274.77	0.0857	0.5281	-1985.60	0.00	-1944.73	0.00	3600
359.97	0.0214	0.9237	-422.31	0.00	-412.11	0.00	3600
359.95	0.0286	0.8981	-563.63	0.00	-549.99	0.00	3600
359.98	0.0429	0.8554	-843.19	0.00	-822.73	0.00	3600
359.99	0.0857	0.7379	-1647.05	0.00	-1606.19	0.00	3600
360.11	0.1714	0.5735	-522.35	0.00	-508.72	0.00	600
359.93	0.2571	0.5198	-757.14	0.00	-736.71	0.00	600
359.98	0.3429	0.6569	-994.61	0.00	-967.35	0.00	600
359.84	0.4286	1.2086	-1240.44	0.00	-1206.37	0.00	600
359.99	0.4714	1.7497	-1360.83	0.00	-1323.36	0.00	600
360.01	0.5143	2.5589	-1473.55	0.00	-1432.68	0.00	600
359.88	0.5571	3.7067	-1571.94	0.00	-1527.67	0.00	600
360.05	0.6000	5.2765	-1648.66	0.00	-1600.97	0.00	600

TABLE IX: GROMACS simulation results of TraPPE-UA is obutane $\,$

[K]	$[\mathrm{g/cm^3}]$				
T	ρ	Z	$U^{ m dep}$	N	
184.00	0.6734	-0.2603	-13.67	300	
267.00	0.6734	3.7086	-8.94	300	
232.00	0.6253	-0.1424	-9.78	300	
315.00	0.6253	2.4430	-6.90	300	
276.00	0.5772	-0.0698	-7.39	300	
353.00	0.5772	1.6294	-5.58	300	
315.00	0.5291	-0.0271	-5.81	300	
383.00	0.5291	1.0644	-4.64	300	
347.00	0.4810	0.0107	-4.71	300	
406.00	0.4810	0.7182	-3.93	300	
489.00	0.0962	0.7376	-0.69	300	
489.00	0.1924	0.5767	-1.31	300	
489.00	0.2886	0.5474	-1.90	300	
489.00	0.3848	0.7335	-2.51	300	
489.00	0.4810	1.4208	-3.16	300	
489.00	0.5291	2.0977	-3.49	300	
489.00	0.5772	3.1310	-3.80	300	
489.00	0.6253	4.6048	-4.09	300	
489.00	0.6734	6.6846	-4.31	300	

TABLE X: GROMACS simulation results of TraPPE-UA n-dodecane.

[K]	$[\mathrm{g/cm^3}]$				
\overline{T}	ρ	Z	U^{dep}	N	
546.61	0.5336	-0.1193	-7.13	400	
610.26	0.5336	0.7008	-6.24	400	
495.80	0.5870	-0.1642	-8.90	400	
577.29	0.5870	1.1938	-7.42	400	
436.81	0.6404	-0.2707	-11.40	400	
535.32	0.6404	2.0699	-8.97	400	
370.40	0.6937	-0.4648	-15.11	400	
482.25	0.6937	3.4362	-11.11	400	
297.12	0.7471	-0.7890	-21.19	400	
415.49	0.7471	5.4379	-14.33	400	
592.19	0.0267	0.7787	-0.50	800	
592.21	0.0356	0.7105	-0.66	800	
592.19	0.0534	0.6150	-0.97	800	
592.32	0.1067	0.3710	-1.85	800	
691.06	0.0267	0.8393	-0.34	800	
690.96	0.0356	0.8043	-0.46	800	
691.14	0.0534	0.7456	-0.68	800	
691.10	0.1067	0.5513	-1.26	800	
691.18	0.2135	0.3253	-2.29	400	
690.90	0.3202	0.2555	-3.22	400	
690.90	0.4269	0.4966	-4.24	400	
691.12	0.5336	1.4953	-5.37	400	
691.00	0.5870	2.5720	-6.01	400	
691.00	0.6404	4.3033	-6.60	400	
690.74	0.6937	6.8075	-7.20	400	
691.11	0.7471	10.4604	-7.71	400	

II. TABLES OF EXAMPLE SIMULATIONS RESULTS

TABLE XI: Mie-UA n-dodecane

	[K		[M	Pa]	$[g/cm^3]$	[g/c	$ m cm^3]$	[kJ/ı	mol]
$T_{\rm r}^{\rm sat}$	T^{sat}	土	$P^{ m sat}$	±	$ ho_{ m liq}$	$ ho_{ m vap}$	±	$\Delta H_{ m v}$	<u>±</u>
0.84	555.05	0.46	0.3789	0.0035	0.5336	0.01647	0.00017	39.12	0.03
0.76	498.11	0.74	0.1163	0.0021	0.5870	0.00512	0.00009	45.39	0.03
0.67	439.23	0.27	0.0222	0.0002	0.6404	0.00106	0.00001	51.37	0.02
0.56	368.94	0.22	0.0013	0.0000	0.6937	0.000070	0.0000008	57.37	0.04
0.45	296.11	0.61	0.0000097	0.0000005	0.7471	0.00000067	0.00000004	64.11	0.04

TABLE XII: TIP4P/2005 water

	[K]		[MPa]		$[\mathrm{g/cm^3}]$	$[\mathrm{g/cm^3}]$		$[\mathrm{kJ/mol}]$	
$T_{ m r}^{ m sat}$	T^{sat}	土	P^{sat}	土	$ ho_{ m liq}$	$ ho_{ m vap}$	±	$\Delta H_{ m v}$	±
0.87	562.08	1.29	4.2904	0.0765	0.7129	0.02007	0.00032	33.76	0.04
0.81	524.66	0.73	2.3085	0.0308	0.7841	0.01113	0.00015	36.65	0.04
0.74	476.44	0.64	0.8604	0.0126	0.8554	0.00421	0.00006	40.32	0.03
0.63	408.18	0.60	0.1336	0.0025	0.9267	0.00072	0.00001	44.33	0.03
0.46	296.42	0.22	0.0007	0.0000	0.9980	0.000005	0.000000	50.40	0.01

TABLE XIII: TraPPE-UA methane

	[K]	[MPa]		$[g/cm^3]$	$[\mathrm{g/cm^3}]$		$[\mathrm{kJ/mol}]$	
$T_{ m r}^{ m sat}$	T^{sat}	土	P^{sat}	±	$ ho_{ m liq}$	$ ho_{ m vap}$	±	$\Delta H_{ m v}$	±
0.88	167.56	0.18	2.1791	0.0154	0.3179	0.036	0.000	5.41	0.01
0.80	152.49	0.14	1.1963	0.0075	0.3496	0.0185	0.0001	6.44	0.00
0.71	135.76	0.08	0.5344	0.0024	0.3814	0.0084	0.0000	7.26	0.00
0.61	116.03	0.11	0.1532	0.0012	0.4132	0.00266	0.00002	7.95	0.00
0.50	95.35	0.06	0.0228	0.0002	0.4450	0.00047	0.00000	8.55	0.00

TABLE XIV: TraPPE-UA ethane

	[K]		[MPa]		$[\mathrm{g/cm^3}]$	$[{ m g/cm^3}]$		$[\mathrm{kJ/mol}]$	
$T_{ m r}^{ m sat}$	T^{sat}	土	$P^{ m sat}$	土	$ ho_{ m liq}$	$ ho_{ m vap}$	土	$\Delta H_{ m v}$	土
0.85	259.10	0.12	2.002000	0.006116	0.4286	0.03791500	0.00014413	9.594	0.007
0.77	234.56	0.09	1.016900	0.002912	0.4714	0.01853900	0.00005394	11.252	0.002
0.68	206.81	0.07	0.392300	0.001143	0.5143	0.00744330	0.00002068	12.625	0.001
0.57	173.63	0.07	0.083227	0.000328	0.5571	0.00177920	0.00000645	13.798	0.001
0.45	137.54	0.05	0.005918	0.000026	0.6000	0.00015609	0.00000064	14.852	0.001

TABLE XV: TraPPE-UA n-dodecane

	[K]	[MPa]		$[g/cm^3]$	[g/c	cm^3]	$[\mathrm{kJ/mol}]$	
$T_{ m r}^{ m sat}$	T^{sat}	土	$P^{ m sat}$	土	$ ho_{ m liq}$	$ ho_{ m vap}$	土	$\Delta H_{ m v}$	±
0.84	555.32	0.25	0.4842	0.0048	0.5336	0.0222	0.0003	34.48	0.17
0.77	505.25	0.13	0.1875	0.0015	0.5870	0.0084	0.0001	40.29	0.16
0.68	445.13	0.28	0.0397	0.0005	0.6404	0.0019	0.0000	45.65	0.08
0.58	379.79	0.29	0.0044	0.0001	0.6937	0.00024	0.00000	50.70	0.03
0.47	309.17	0.31	0.000101	0.000002	0.7471	0.0000067	0.0000001	55.22	0.02

TABLE XVI: TraPPE-UA isobutane

	[K]]	[MPa]		$[\mathrm{g/cm^3}]$	[g/c]	cm^3]	[kJ/mol]	
$T_{ m r}^{ m sat}$	T^{sat}	土	P^{sat}	±	$ ho_{ m liq}$	$ ho_{ m vap}$	±	$\Delta H_{ m v}$	\pm
0.85	348.50	0.12	1.4228	0.0051	0.4784	0.0375	0.0002	14.326	0.019
0.78	317.29	0.13	0.7225	0.0027	0.5263	0.0186	0.0001	16.663	0.005
0.68	278.17	0.10	0.2476	0.0008	0.5741	0.0067	0.0000	18.731	0.002
0.58	234.94	0.11	0.0482	0.0002	0.6220	0.00146	0.00001	20.590	0.001
0.46	188.68	0.04	0.0031	0.0000	0.6698	0.000117	0.000000	22.348	0.001

TABLE XVII: TraPPE-UA isohexane

	[K]	[MPa]		$[g/cm^3]$	$[\mathrm{g/cm^3}]$		[kJ/mol]	
$T_{ m r}^{ m sat}$	T^{sat}	土	P^{sat}	±	$ ho_{ m liq}$	$ ho_{ m vap}$	土	$\Delta H_{ m v}$	±
0.86	426.63	0.42	1.1097	0.0118	0.5093	0.03588	0.00057	19.16	0.07
0.78	386.02	0.77	0.4994	0.0081	0.5602	0.01540	0.00025	22.63	0.02
0.69	342.25	0.20	0.1704	0.0013	0.6112	0.00548	0.00005	25.57	0.02
0.58	289.73	0.22	0.0290	0.0003	0.6621	0.00105	0.00001	28.17	0.01
0.46	230.63	0.15	0.0012	0.0000	0.7130	0.000054	0.000001	30.70	0.01

TABLE XVIII: TraPPE-UA ethane (Gromacs)

	[K]	[MPa]	$[\mathrm{g/cm^3}]$	$[\mathrm{g/cm^3}]$	[kJ/mol]
$T_{ m r}^{ m sat}$	$T^{ m sat}$	$P^{ m sat}$	$ ho_{ m liq}$	$ ho_{ m vap}$	$\Delta H_{ m v}$
0.85	259.46	2.0250	0.4286	0.03935	9.47
0.77	234.86	1.0187	0.4714	0.01865	11.23
0.68	206.51	0.3850	0.5143	0.00730	12.64
0.57	173.49	0.0817	0.5571	0.00174	13.81
0.45	137.98	0.0061	0.6000	0.00016	14.86

TABLE XIX: TraPPE-UA is obutane (Gromacs) $\,$

	[K]	[MPa]	$[\mathrm{g/cm^3}]$	$[\mathrm{g/cm^3}]$	[kJ/mol]
$T_{ m r}^{ m sat}$	$T^{ m sat}$	$P^{ m sat}$	$ ho_{ m liq}$	$ ho_{ m vap}$	$\Delta H_{ m v}$
0.86	350.57	1.4574	0.4810	0.0381	14.40
0.78	317.87	0.7209	0.5291	0.0185	16.74
0.68	278.73	0.2486	0.5772	0.0067	18.82
0.58	235.22	0.0477	0.6253	0.0015	20.68
0.46	187.41	0.0028	0.6734	0.0001	22.43

TABLE XX: TraPPE-UA n-dodecane (Gromacs)

	[K]	[MPa]	$[\mathrm{g/cm^3}]$	$[\mathrm{g/cm^3}]$	[kJ/mol]
$T_{ m r}^{ m sat}$	$T^{ m sat}$	$P^{ m sat}$	$ ho_{ m liq}$	$ ho_{ m vap}$	$\Delta H_{ m v}$
0.85	557.28	0.4853	0.5336	0.0220	33.99
0.77	505.15	0.1844	0.5870	0.0083	39.48
0.68	446.23	0.0447	0.6404	0.0021	44.59
0.58	380.32	0.00476	0.6937	0.00026	49.48
0.47	307.34	0.000093	0.7471	0.000006	54.69

III. FIGURES OF EXAMPLE SIMULATIONS

FIG. 1: Mie-UA n-dodecane

FIG. 2: TIP4P/2005 water

FIG. 3: TraPPE-UA methane

FIG. 4: TraPPE-UA n-dodecane

FIG. 5: TraPPE-UA *n*-dodecane (Gromacs)

FIG. 6: TraPPE-UA ethane

FIG. 7: TraPPE-UA ethane (Gromacs)

FIG. 8: TraPPE-UA isobutane

FIG. 9: TraPPE-UA isobutane (Gromacs)

FIG. 10: TraPPE-UA isohexane (Gromacs)

FIG. 11: TraPPE-UA isobutane (Gromacs)

FIG. 12: TraPPE-UA 1-naphthalenyl,4-phenanthrenyl butane (GOMC). Linear extrapolation of red (X) symbols in Z vs. 1000/T plot were used to obtain initial $T^{\rm sat}$ values at each isochore.

IV. OTHER FIGURES AND TABLES

TABLE XXI: Accuracy of the ITIC method for n-dodecane when third virial coefficient is used. Deviations are calculated using $\frac{\text{ITIC-REFPROP}}{\text{REFPROP}} \times 100$

[K]		[K]	[MPa]	%	$[g/cm^3]$	%	$[\mathrm{g/cm^3}]$	%	[kJ/mol]	%
$T_{ m est}^{ m sat}$	$T_{ m r}^{ m sat}$	T^{sat}	$P^{ m sat}$	Dev.	$ ho_{ m liq}$	Dev.	$ ho_{ m vap}$	Dev.	$\Delta H_{ m v}$	Dev.
657.25	0.99	649.9	1.5262975	-6.22	0.3202	-6.50	0.078805	-35.14	15.53	19.29
647.87	0.97	640.99	1.3893581	-3.77	0.3736	-0.39	0.072524	-23.21	18.87	11.45
632.18	0.94	619.68	1.0590791	-1.53	0.4269	-0.05	0.054218	-8.35	24.14	3.98
606.45	0.90	588.97	0.6797089	-0.30	0.4803	0.05	0.032526	-1.60	30.45	2.19
602.79	0.83	548.84	0.3474356	-0.01	0.5336	0.19	0.015668	-0.19	36.80	1.59
546.57	0.76	497.84	0.1233584	0.10	0.5870	0.16	0.005536	0.10	42.94	1.15
479.80	0.67	437.25	0.0242641	0.08	0.6404	0.14	0.001167	0.09	48.85	0.76
404.91	0.56	369.29	0.0016902	0.36	0.6937	0.13	0.000094	0.36	54.83	0.47
325.82	0.45	297.52	0.0000171	0.83	0.7471	0.13	0.000001	1.02	61.34	0.19

TABLE XXII: Accuracy of the ITIC method for n-dodecane when third virial coefficient is not used. For $T_{\rm r}^{\rm sat}>0.9$ the fixed-point iteration does not converge.

[K]		[K]	[MPa]	%	$[g/cm^3]$	%	$[\mathrm{g/cm^3}]$	%	[kJ/mol]	%
$T_{ m est}^{ m sat}$	$T_{\rm r}^{\rm sat}$	T^{sat}	$P^{ m sat}$	Dev.	$ ho_{ m liq}$	Dev.	$ ho_{ m vap}$	Dev.	$\Delta H_{ m v}$	Dev.
606.45	0.90	589.18	0.7107295	4.25	0.4803	0.05	0.040963	23.92	28.88	-3.08
602.79	0.83	548.85	0.3501108	0.76	0.5336	0.19	0.016114	2.65	36.67	1.22
546.57	0.76	497.84	0.1234819	0.20	0.5870	0.16	0.005554	0.43	42.93	1.12
479.80	0.67	437.25	0.0242654	0.09	0.6404	0.14	0.001167	0.10	48.85	0.76
404.91	0.56	369.29	0.0016902	0.36	0.6937	0.13	0.000094	0.36	54.83	0.47
325.82	0.45	297.52	0.0000171	0.83	0.7471	0.13	0.000001	1.02	61.34	0.19

FIG. 13: The $T^{\rm sat}$ iteration compared to n-Dodecane coexistence curves. ITIC results (circles) are obtained using NIST REFPROP¹ values for $U^{\rm dep}$ and Z, when virial expansion in is truncated at B_2 . Solid line represents true NIST REFPROP VLE data. The inital estimate of saturation temperature $T^{\rm sat}_{\rm est}$ is represented by black X symbols and red X symbols are the $(T^{\rm sat}, \rho)$ points showing the convergence path. The ITIC method generally converges fast especilly at low temperatures.

FIG. 14: In Section 3, the sensitivity of the ITIC method to $T_{\rm est}^{\rm sat}$ was investigated using REFPROP data. This figure investigates this sensitivity by applying simulation data for TraPPE ethane. The y-axis represents deviations from REFPROP data. Lines are GCMC results² and circles are ITIC results when $T_{\rm est}^{\rm sat}$ are taken from REFPROP. Triangles pointing up or down represent ITIC results when $T_{\rm est}^{\rm sat}$ is increased or decreased by the percentage shown in the legend, respectively. Accuracy of ITIC saturation properties does not significantly depend on $T_{\rm est}^{\rm sat}$ deviations.

TABLE XXIII: Compressibility factor and uncertainty at low densities. STD_1 represents the average of four relative standard deviations each calculated during the corresponding individual runs, while STD_2 is the relative standard deviation of Z from four separate runs.

		N=	120	N=	400	N=1	1600	N=3200	
Method	$\rho [{\rm g/cm^3}]$	$STD_1\%$	$STD_2\%$	$STD_1\%$	$\mathrm{STD}_2\%$	$STD_1\%$	$STD_2\%$	$STD_1\%$	$STD_2\%$
MC-rigid	0.0214	1.05	0.10	0.62	0.05	0.46	0.05	-	-
MC-rigid	0.0286	1.27	0.11	0.69	0.06	0.55	0.06	_	-
MC-rigid	0.0429	1.60	0.17	0.96	0.00	0.76	0.11	_	-
MC-rigid	0.0857	2.54	0.23	1.59	0.08	1.38	0.17	-	-
MC-rigid	0.1714	4.54	0.26	3.16	0.26	2.91	0.30	_	-
MC-rigid	0.2571	6.55	0.60	4.62	0.63	4.32	0.25	_	-
MD-rigid	0.0214	11.71	0.94	6.31	0.72	3.20	2.41	2.30	0.10
MD-rigid	0.0286	13.56	1.02	7.33	0.16	3.80	4.78	2.60	0.11
MD-rigid	0.0429	17.30	0.76	9.46	0.53	4.79	2.45	3.23	0.20
MD-rigid	0.0857	28.35	1.14	15.01	0.36	7.49	0.39	5.15	0.36
MD-rigid	0.1714	49.89	1.53	25.46	1.73	13.56	0.55	9.15	0.64
MD-rigid	0.2571	65.65	2.44	35.96	0.75	18.38	0.52	12.57	0.47
MD-flexible	0.0214	106.25	1.39	59.51	0.88	29.67	0.78	19.12	0.56
MD-flexible	0.0286	113.52	2.01	61.35	0.45	30.83	0.66	20.39	0.59
MD-flexible	0.0429	129.34	3.16	65.61	0.71	35.84	0.32	22.10	0.34
MD-flexible	0.0857	152.29	2.52	83.85	1.15	42.60	1.20	27.49	0.33
MD-flexible	0.1714	196.67	2.49	101.51	2.90	53.94	0.82	38.10	0.46
MD-flexible	0.2571	227.96	0.94	125.42	1.28	58.77	1.60	42.61	0.87

FIG. 15: Virial contributions to compressibility factor for harmonic bond TraPPE-UA ethane (N=3200). The intermolecular contribution to the virial is approaching zero as expected, but the bonded contribution deviates significantly from its steady approach to -1 as the density approaches zero. The discrepancy is magnified in the computation of $(Z-1)/\rho$ owing to the division by density. The bonded contribution to the virial is a quantity reported by LAMMPS with little recourse for user intervention. Presumably, the problem is the small number of intermolecular collisions at low density relative to the large number of intramolecular collisions, inhibiting the equilibration of the various components of momentum. To illustrate one manner of correcting for this deficiency, we used a linear extrapolation of the intramolecular virial, enforcing a value of -1 at zero density. Then we recomputed the total virial. This procedure reduces the problem, but requires considerably more effort than switching to fixed bond lengths.

REFERENCES

¹E. W. Lemmon and M. L. Huber, Energy & Fuels **18**, 960 (2004), https://doi.org/10.1021/ef0341062.

²V. Shen, D. Siderius, W. Krekelberg, and H. E. Hatch, "NIST Standard Reference Simulation Website," (2008).