UNISONIC TECHNOLOGIES CO., LTD

18NM65-SH Power MOSFET

18A, 650V N-CHANNEL SUPER-JUNCTION MOSFET

DESCRIPTION

The UTC 18NM65-SH is a high voltage super junction MOSFET and is designed to have better characteristics.

The UTC 18NM65-SH Utilizing an advanced charge-balance technology, enhance system efficiency, improve EMI and reliability, such as low gate charge, low on-state resistance and have a high power density and high rugged avalanche characteristics. This super junction MOSFET usually used at AC/DC power conversion, and industrial power applications.

FFATURES

- * $R_{DS(ON)}$ < 0.35 Ω @ V_{GS} =10V, I_{D} =9A
- * Fast Switching Capability
- * Avalanche Energy Specified
- * Improved dv/dt Capability, High Ruggedness

SYMBOL

ORDERING INFORMATION

Ordering Number		Dookogo	Pin Assignment			Dooking	
Lead Free	Halogen Free	Package	1	2	3	Packing	
18NM65L-TA3-T	18NM65G-TA3-T	TO-220	G	D	S	Tube	
18NM65L-TF1-T	18NM65G-TF1-T	TO-220F1	G	D	S	Tube	
18NM65L-TF2-T	18NM65G-TF2-T	TO-220F2	G	D	S	Tube	
18NM65L-TF3-T	18NM65G-TF3-T	TO-220F	G	D	S	Tube	
18NM65L-TM3-R	18NM65G-TM3-R	TO-251	G	D	S	Tape Reel	
18NM65L-TN3-R	18NM65G-TN3-R	TO-252	G	D	S	Tape Reel	

Note: Pin Assignment: G: Gate D: Drain S: Source

www.unisonic.com.tw 1 of 5

MARKING

18NM65-SH Power MOSFET

■ ABSOLUTE MAXIMUM RATINGS (T_C =25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V_{DSS}	650	V
Gate-Source Voltage		V_{GSS}	±30	V
Continuous Drain Current		I _D	18	Α
Pulsed Drain Current		I _{DM}	45	Α
Avalanche Current		I _{AR}	18	Α
Avalanche Energy	Single Pulsed	E _{AS}	500 (Note 3)	mJ
Peak Diode Recovery dv/dt		dv/dt	6	V/ns
Power Dissipation	TO-220		235	W
	TO-220F/ TO-220F1 TO-220F2	P_{D}	390	W
	TO-251/TO-252		357	W
Junction Temperature		T_J	150	°C
Storage Temperature		T _{STG}	-55 ~ +150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. Repetitive Rating: Pulse width limited by maximum junction temperature
- 3. L=150mH, I_{AS} =3.6A, V_{DD} =50V, R_{G} =25 Ω , Starting T_{J} =25 $^{\circ}$ C
- 4. $I_{SD} \le 18A$, di/dt $\le 200A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25^{\circ}C$
- 5. Drain current limited by maximum junction temperature

■ THERMAL DATA

PARAMETER		SYMBOL	RATINGS	UNIT
Junction to Ambient	TO-220/TO-220F TO-220F1/TO-220F2	θ_{JA}	62.5	°C/W
	TO-251/TO-252		110	°C/W
Junction to Case	TO-220		0.53	°C/W
	TO-220F/TO-220F1 TO-220F2	θЈС	5	°C/W
	TO-251/TO-252		1.79	°C/W

■ ELECTRICAL CHARACTERISTICS (T_J =25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS MIN TYP		MAX	UNIT			
OFF CHARACTERISTICS								
Drain-Source Breakdown Voltage	BV_{DSS}	V _{GS} =0V, I _D =250μA	650			V		
Drain-Source Leakage Current	I_{DSS}	V _{DS} =650V, V _{GS} =0V			25	μΑ		
Gate-Body Leakage Current	I_{GSS}	V_{DS} =0V, V_{GS} =±30V			±100	nA		
ON CHARACTERISTICS								
Gate Threshold Voltage	$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	2.5		4.5	V		
Static Drain-Source On-Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =9A (Note)			0.35	Ω		
DYNAMIC PARAMETERS								
Input Capacitance	C_{ISS}			1100		pF		
Output Capacitance	Coss	V_{DS} =25V, V_{GS} =0V, f=1MHz		750		pF		
Reverse Transfer Capacitance	C_{RSS}			65		pF		
SWITCHING PARAMETERS								
Total Gate Charge	Q_{G}	\(-10\(\) \(-50\(\)		190		nC		
Gate Source Charge	Q_GS	V _{GS} =10V, V _{DS} =50V _{DSS} , -I _D =1.3A, I _G =100µA		11		nC		
Gate Drain Charge	Q_GD	ID-1.3A, IG-100μA		36		nC		
Turn-ON Delay Time	$t_{D(ON)}$			86		ns		
Turn-ON Rise Time	t_R	V_{GS} =10V, V_{DS} =30 V_{DSS} ,		190		ns		
Turn-OFF Delay Time	$t_{D(OFF)}$	I_D =0.5A, R_G =25 Ω (External)		250		ns		
Turn-OFF Fall-Time	t _F			185		ns		
SOURCE- DRAIN DIODE RATINGS AN	ID CHARACT	ERISTICS	-	ā.	-			
Maximum Continuous Drain-Source	I _S				18	Α		
Diode Forward Current								
Maximum Pulsed Drain-Source Diode	I_{SM}				54	Α		
Forward Current			1					
Drain-Source Diode Forward Voltage	V _{SD}	I _F =I _S ,V _{GS} =0V			1.5	V		
Reverse Recovery Time	t _{rr}	_V _{GS} =0V, dI _F /dt=100A/μs,		420		ns		
Reverse Recovery Charge	Q_RR	I _S =18A, V _R =100V		7		μC		

Notes: 1. Pulse Test : Pulse width ≤ 300µs, Duty cycle ≤ 2%.

^{2.} Essentially independent of operating ambient temperature.

18NM65-SH Power MOSFET

■ TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.