EEE 133 Key concepts and Equations

AJ Mesa Jr.

September 16, 2020

Differential Equations

A linear ordinary differential equation of constant coefficients follows the form

$$a_n \frac{\mathrm{d}^n x}{\mathrm{d}t^n} + a_{n-1} \frac{\mathrm{d}^{n-1} x}{\mathrm{d}t^{n-1}} + \dots + a_1 \frac{\mathrm{d}x}{\mathrm{d}t} + a_0 x = f(t)$$
 (1)

A homogenous differential equation is an equation where the independent variable appears to have the same power. Equation (1) is homogenous when f(t)=0.

The solution to the linear ODE in (1) has the form

$$x(t) = x_h(t) + x_n(t) \tag{2}$$

Where $x_h(t)$ is a solution to the homogenous equation while $x_p(t)$ is a solution to the nonhomogenous equation.

A homogenous equation has solutions of the form

$$x_h(t) = \exp(mt) \tag{3}$$

for m is a root of the equation

$$m^{n} + \frac{a_{n-1}}{a_n}m^{n-1} + \ldots + \frac{a_1}{a_n}m + \frac{a_0}{a_n} = 0$$
(4)

If a root m_i is repeated k times, the corresponding solutions are $\exp(m_i t), \; t \exp(m_i t), \; \dots, \; t^{k-1} \exp(m_i t)$

Some common forms (with constant coefficients) and solutions

Equation	Characteristic Equation	Determinant	Solution
$a_1 \frac{\mathrm{d}x}{\mathrm{d}t} + a_0 x = 0$	$a_1 m + a_0 = 0$		$x = C \exp\left(-\frac{a_0}{a_1}t\right)$
$a_2 \frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + a_1 \frac{\mathrm{d}x}{\mathrm{d}t} + a_0 x = 0$	$a_2m^2 + a_1m + a_0 = 0$	$a_1^2 - 4a_2a_0 > 0$	$x(t) = C_1 \exp(m_1 t) + C_2 \exp(m_2 t)$
		$a_1^2 - 4a_2a_0 = 0$	$x(t) = (C_1 x + C_2) \exp(m_1 t)$
		$a_1^2 - 4a_2a_0 < 0$	$x(t) = \exp(\alpha t) \left[C_1 \cos(\beta t) + C_2 \sin(\beta t) \right]$

In the last line, the characteristic equation has solutions $m_1=\alpha+j\beta,\ m_2=\alpha-j\beta$ where $j^2=-1$

Laplace Transforms and Theorems

A Laplace transform of a function f(t) defined for all $t \geq 0$ is the transformation

$$\mathcal{L}[f(t)] = F(s) = \int_{0}^{\infty} f(t) \exp(-st) dt$$

An inverse Laplace transform of a function F(s) is defined as:

$$f(t) = \mathcal{L}^{-1}[F(s)] = \frac{1}{2\pi j} \lim_{T \to \infty} \int_{\gamma - jT}^{\gamma + jT} \exp(st) F(s) \, \mathrm{d}s$$

Common Functional Tranforms

$f(t) = \mathcal{L}^{-1}[F(s)]$	$F(s) = \mathcal{L}[F(s)]$	$f(t) = \mathcal{L}^{-1}[F(s)]$	$F(s) = \mathcal{L}[F(s)]$
$\delta(t)$	1	$\frac{1}{\beta - \alpha} \left(\exp(-\alpha t) - \exp(-\beta t) \right) u(t)$	$\frac{1}{(s+\alpha)(s+\beta)}$
u(t)	$\frac{1}{s}$	$\sin(\omega t)u(t)$	$rac{\omega}{s^2 + \omega^2}$
tu(t)	$\frac{1}{s^2}$	$\cos(\omega t)u(t)$	$\frac{s}{s^2 + \omega^2}$
$\frac{t^{n-1}}{(n-1)!}u(t)$	$\frac{1}{s^n}$	$\sin(\omega t + \theta)u(t)$	$\frac{s\sin(\theta) + \omega\cos(\theta)}{s^2 + \omega^2}$
$\exp(-\alpha t)u(t)$	$\frac{1}{s+\alpha}$	$\cos(\omega t + \theta)u(t)$	$\frac{s\cos(\theta) - \omega\sin(\theta)}{s^2 + \omega^2}$
$t\exp(-\alpha t)u(t)$	$\frac{1}{(s+\alpha)^2}$	$\exp(-\alpha t)\sin(\omega t)u(t)$	$\frac{\omega}{(s+\alpha)^2 + \omega^2}$
$\frac{t^{n-1}}{(n-1)!}\exp(-\alpha t)u(t)$	$\frac{1}{(s+\alpha)^n}$	$\exp(-\alpha t)\cos(\omega t)u(t)$	$\frac{s+\alpha}{(s+\alpha)^2+\omega^2}$

Common Operational Transforms

Operation	f(t)	F(s)
Multiplication by constant	cf(t)	cF(s)
Addition	$f_1(t) + f_2(t) - f_3(t) + \dots$	$F_1(s) + F_2(s) - F_3(s) + \dots$
First time derivative	$\frac{\mathrm{d}f(t)}{\mathrm{d}t}$	$sF(s) - f(0^-)$
Second time derivative	$\frac{\mathrm{d}^2 f(t)}{\mathrm{d}t^2}$	$s^2 F(s) - s f(0^-) - \frac{\mathrm{d}f(0^-)}{\mathrm{d}t}$
nth time derivative	$\frac{\mathrm{d}^n f(t)}{\mathrm{d}t^n}$	$s^n F(s) - \sum_{i=1}^n s^{n-1} \frac{\mathrm{d}^{i-1} f}{\mathrm{d}t^{i-1}}$
Time integral	$\int_{0}^{t} f(x) \mathrm{d}x$	$\frac{F(s)}{s}$

Translation in time	$f(t-a)u(t-a), \ a>0$	$\exp(-as)F(s)$
Translation in frequency	$\exp(-at)f(t)$	F(s+a)
Scale change	f(at), a > 0	$\frac{1}{a}F\left(\frac{s}{a}\right)$
First frequency derivative	tf(t)	$\frac{\mathrm{d}F(s)}{\mathrm{d}s}$
nth frequency derivative	$t^n f(t)$	$(-1)^n \frac{\mathrm{d}^n F(s)}{\mathrm{d} s^n}$
Frequency integral	$\frac{f(t)}{t}$	$\int_{0}^{\infty} F(u) \mathrm{d}u$

1 Passive components

Current and Voltage for Passive Components:

Component	Current	Voltage	Energy
Resistor R	$i = \frac{v}{R}$	v = iR	$w_R = \int iv \mathrm{d}t$
Capacitor C	$i(t) = C \frac{\mathrm{d}v}{\mathrm{d}t}$	$v(t) = v(t_0) + \frac{1}{C} \int_{t_0}^t i(t) dt$	$w_C(t) = \frac{1}{2}Cv^2(t)$
Inductor L	$i(t) = i(t_0) + \frac{1}{L} \int_{t_0}^t v(t) dt$	$v(t) = L \frac{\mathrm{d}i}{\mathrm{d}t}$	$w_L(t) = \frac{1}{2}Li^2(t)$

Combination of passive components:

Component	Series	Parallel
Resistor R	$R_{eq} = \sum_{i} R_{i}$	$\frac{1}{R_{eq}} = \sum_{i} \frac{1}{R_{i}}$
Capacitor C	$\frac{1}{C_{eq}} = \sum_{i} \frac{1}{C_{i}}$	$C_{eq} = \sum_{i} C_{i}$
Inductor L	$L_{eq} = \sum_{i} L_{i}$	$rac{1}{L_{eq}} = \sum_i rac{1}{L_i}$

1.1 Equilibrium Equations

1. Loop Current formulation:

- number of unknown currents equal number of loops
- KVL equation for each loop

2. Node Voltage formulation:

- number of unknown voltage equal number of nodes except reference
- KCL equation for each node

Figure 1: Op Amp Differentiator

Figure 2: Op Amp Integrator

$$v_o(t) = -R_2 C_1 \frac{\mathrm{d}v_s}{\mathrm{d}t}$$

$$v_o(t) = -\frac{1}{R_1 C_2} \int_0^t v_s(t') dt'$$

1.2 First Order Circuits

- 1. first order circuits are any circuit with a single energy storage element, an arbitrary number of sources and resistors
- 2. any current or voltage in such circuit is a solution to a first order differential equation

2 First order Unforced Response

Network	Current	Voltage	Time Constant	DC Steady State
Sourcefree RL	$i_L(t) = I_0 \exp\left(-\frac{R}{L}t\right)$	$v_L = -RI_0 \exp\left(-\frac{R}{L}t\right)$	$\tau = \frac{L}{R}$	$v_L = 0$
Sourcefree RC	$i_C(t) = -\frac{V_0}{R} \exp\left(-\frac{1}{RC}t\right)$	$v_c = V_0 \exp\left(-\frac{1}{RC}t\right)$	$\tau = RC$	$i_C = 0$

Typical time constant for RL is in ms, for RC in μ s. For general RL and RC circuits, find the equivalent resistance as seen by the inductor/capacitor.

2.1 Application of Laplace Transform

2.1.1 Method 1

- 1. Write the differential equations for the unknown function x(t)
- 2. Apply Laplace transform on the equation
- 3. Use algebraic manipulation for X(s)
- 4. Apply inverse Laplace transform to get x(t)

2.1.2 Method 2

- 1. Apply Laplace transform on each element
- 2. Use DC circuit analysis techniques to write the s-domain equations involving X(s)

3. Apply inverse Laplance transform to get x(t)

Examples

1. Resistors: $v = iR \iff V = IR$, where $V = \mathcal{L}\{v\}, \ I = \mathcal{L}\{i\}$

2. Inductors:
$$v = L \frac{\mathrm{d}i}{\mathrm{d}t} \Longleftrightarrow V = L \left[sI - i(0^-) \right] = sLI - LI_0$$

3. Capacitors:
$$i = C \frac{\mathrm{d}v}{\mathrm{d}t} \Longleftrightarrow I = C \left[sV - v(0^{-}) \right] = sCV - CV_0$$

3 First order Forced Response

Consider a series RL circuit with voltage $v(t) = V_0 u(t)$. We have the following KVL equation of current

$$i(t) = 0$$

$$Ri + L\frac{\mathrm{d}i}{\mathrm{d}t} = V_0$$

$$t > 0$$

This differential equation gives a solution of

$$i(t) = \underbrace{\left[\frac{V_0}{R} - \underbrace{\left(\frac{V_0}{R} - I_0\right) \exp\left(-\frac{R}{L}t\right)}_{\text{forced response}} - \underbrace{\left(\frac{V_0}{R} - I_0\right) \exp\left(-\frac{R}{L}t\right)}_{\text{natural response}}\right] u(t)$$
 (5)

- 1. Forced response
 - · dependent on forcing function
 - steady state response $t\gg au$
- 2. Natural response
 - · similar to source-free circuit
 - · dependent on initial values and forcing function
 - transient response

Generalization:

$$i_L(t) = \left[I_f - (I_f - I_i) \exp\left(-\frac{t}{\tau}\right) \right] u(t) \tag{6}$$

$$v_c(t) = \left[V_f - (V_f - V_i) \exp\left(-\frac{t}{\tau}\right) \right] u(t) \tag{7}$$

Note that equation (7) is for the voltage across the capacitor in an RC circuit.

3.1 Square Waves and Sequentially Switched Circuits

Now consider the series RL circuit with voltage $v(t) = V_0 u(t) - V_0 u(t-t_0)$ and $I_0 = 0$. We can apply superposition to find the current:

$$i(t) = i_1(t) + i_2(t)$$

$$i(t) = \underbrace{\left[\frac{V_0}{R}\left(1 - \exp\left(-\frac{R}{L}t\right)\right)\right]u(t)}_{\text{caused by }V_0u(t) \text{ alone}} - \underbrace{\left[\frac{V_0}{R}\left(1 - \exp\left(-\frac{R}{L}(t - t_0)\right)\right)\right]u(t - t_0)}_{\text{caused by }V_0u(t - t_0) \text{ alone}}$$

For sequentially switched circuits, we consider the pulse width (PW) and period (T) of the pulsing.

Condition	Output	Condition	Output
$PW \gg \tau$	time enough to fully charge	T - W $\gg \tau$	time enough to fully discharge
$PW \ll \tau$	time NOT enough to fully charge	T - W $\ll \tau$	time NOT enough to fully discharge

3.2 Laplace Transform Applications

3.2.1 $v(t) = V_0 u(t)$

- 1. Find the equivalent circuit using the Laplace equivalent of the circuit
- 2. Solve for V(s). May involve partial fraction decomposition. This is a nice guide
- 3. Use Inverse Laplace transform to get v(t)

Transfer function. The *s*-domain ratio of the output to input signal.

$$H(s) = \frac{Y(s)}{X(s)} \tag{8}$$

		H(s) of series RL
Input is $V(t)$	Output is $i(t)$	$H(s) = \frac{1}{R + sL}$
	Output is $v(t)$	$H(s) = \frac{sL}{R + sL}$

3.2.2
$$v(t) = V_0 \cos(\omega t)$$

The response has the form $i(t) = I_1 \cos(\omega t) + I_2 \sin(\omega t)$. Exploit the transfer function of the circuit.

- 4 Modeling of Electromechanical Systems
- **5 Second order Unforced Responses**
- 6 Second order Forced Responses