Mikroişlemcili Sistemler ve Laboratuvarı

8051 Ailesi

Sakarya Üniversitesi Bilgisayar Mühendisliği Bölümü Yrd.Doç.Dr. Murat İSKEFİYELİ

İçerik

- 8051 mikrodenetleyicisinin tarihçesi
- 8051 mikrodenetleyicisinin mimari yapısı
- 8051 mikrodenetleyicisinin fiziksel özellikleri
- 8051 mikrodenetleyicisinin içyapısı

Bu sunumdaki şekiller "C ile 8051 Mikrodenetleyici Uygulamaları, A.T.Özcerit, M.Çakıroğlu, C.Bayılmış, Papatya Yayınları" kitabından alınmıştır.

MCS-51 Ailesi

- INTEL firması tarafından 1976 yılında üretilen ilk mikrodenetleyici 8048 mikrodenetleyicisidir.
- 17,000 transistörün kullanıldığı 8048 yoğun talep görmesiyle endüstride yaygın olarak kullanılmıştır.
- Talep görmesinin ardından yapılan gelişmelerle 1980 yılında MCS-51 mikrodenetleyici ailesinin ilk üyesi 8051 mikrodenetleyicisi piyasaya çıkmıştır.
- Üretiminde yaklaşık 60,000 transistör kullanılmıştır ki bu değer, 8048'de kullanılanın yaklaşık 4 katı kadardır.
- INTEL firmasından üretim lisansı alan firmalar 8051 ve kendilerine has versiyonlarını üretmektedir.

8051 tabanlı µdenetleyiciler ve özellikleri

	Model	Veri Belleği		Kod Belleği			Haberleşme Protokolü				7.00		100	ъ.
		RAM	XRAM	ROM	EEPROM	FLASH	UART	I2C	CAN	SPI	Z/S	WD	ADC	Port
A T M E L	T80C51	128	-	4K	-		Var		-		2	-	-	32
	T83C51RB2	256	256	16K			Var				3	Var	-	32
	T89C51RC2	256	1K	-		32K	Var	-	-	Var	3	Var	-	48
	AT89S4D12	256				132K	Var		-	Var	3	-	-	40
	T89C51CC01	256	IK		2K	32K	Var		Var	Var	3	Var	10-bit	53
I N T	80C31	128	-			-	Var	-			3		-	32
	80/87C51	128		4K			Var		-		3	-	-	32
E L	80C52	128	-	8K	-	-	Var	-	-	-	3	-	-	32
P	80C528	256	256	-	-	-	Var	-	-	-	3	Var	-	48
H I L	80C557	256	1792		-		Var	· · ·		- ·	3	-	10-bit	40
	87C591	256	256	-	16K	-	Var	Var	Var	×-×	3	Var	10-bit	32
I	89C668	256	8K			64K	Var	Var	-	Var	3	-	-	40
P S	8xC51RD2	256	768		•	64K	Var		-	Var	3	Var	-	32
D	DS5000(T)	128	32K			-	Var	-			2		-	32
A	DS5002(FP)	128	128K				Var		-		2	-	-	32
L L	DS83C520	256	IK	16K		-	Var				3	Var	-	32
A	DS80C390	256	4K	-		-	Var	-			3	Var	-	32
S	DS89C420	256	1K			16K	Var				3	Var	-	32
C	C8051F005	256	2K		-	32k	Var	Var	-	Var	4		12-bit	64
y g n A	C8051F020	256	4K	-	-	64K	Var	Var	-	Var	5	-	12-bit	64
	C8051F300	256	-	1	-	8K	Var		-	Var	3	-	8-bit	32

8051'in Genel Yapısı

- Kontrol uygulamalarına yönelik 8 bit CPU
- Mantıksal işlemci (Bit bazlı işlemler)
- 64 KB program hafıza ve veri hafıza adres alanı
- 4K ROM (standart hali), (o-64K arasında)
- 128 Bayt RAM (standart hali), (256 bayt'a çıkabilir)
- 4 tane 8-bit Giriş/Çıkış portu (32 uç)
- 2 tane 16-bit zamanlayıcı/sayıcı
- Full duplex UART (Universal Asynchronous Receiver Transmitter)
- İki öncelik seviyesine sahip 6-kaynak/5 vektörlü kesme donanım yapısı

8051 μdenetleyicisinin Uç Fonksiyonları

 8051 mikrodenetleyicisinin standartta 8-bitlik dört adet giriş/çıkış portu bulunmaktadır.

8051 μdenetleyicisinin Uç Fonksiyonları

- 805ı'in ayak bağlantıları
 - Besleme uçları
 - 805ı'in VCC (40) ve GND (20) ucları besleme uçlarıdır. 5 V'luk bir DC kaynak yeterlidir.
 - Kontrol uçları
 - Programlanabilir Giriş/Çıkış uçları

- Kontrol hatları, mikrodenetleyicinin dışarıdaki bir durumu ya da devreyi kontrol etmesini sağlar.
- 8051 mikrodenetleyicisinin 5 adet kontrol ucu bulunmaktadır.
 - PSEN
 - ALE
 - EA
 - RESET
 - Osilatör girişleri

Kontrol Uçları

PSEN(Program Store Enable)

- Harici program (kod) belleğini yetkilendirmek için kullanılan kontrol sinyalidir.
- Harici bellek okumalarında aktif yapılırken, dahili ROM'dan bir program çalıştırıldığında ise pasiftir.

ALE(Adress Latch Enable)

- Mikrokontrolörün Po portundaki bilginin veri ya da adres olup olmadığı ayrımını yapmakta kullanılır.
- Port o'a adres bilgisi aktarıldığında ALE ucu (lojik 'ı') olur.
- Port o'da veri bilgisi aktarıldığında ise bu uc (lojik 'o') olur.

Kontrol Uçları

EA(External Access)

- Harici kod bellek alanına erişim için kullanılır.
- Logic 'ı' ya da Logic 'o' yapılarak (+5v'luk **besleme gerilimine** ya da **şaseye**) bağlanarak kontrol yapılır.
- +5v'a bağlandığında dahili ROM'daki programlar, GND'ye bağlandığında harici bellekten çalışır.

PSEN, ALE ve EA Uçlarının Kullanımı

Kontrol Uçları

RESET

- 8051'i yeniden başlatmak için kullanılan en yüksek öncelikli kesme sinyalidir.
- yüksek seviye (lojik '1') yapıldığında reset işleminin gerçekleştirilmesi için en az 2 makine saykılının geçmesi gerekmektedir.
- Dahili kaydedicilerin içerikleri başlangıç durumundaki değerler ile yenilenir.

RESET

• El ile (manual) ve otomatik (power on) olmak üzere iki şekilde gerçekleştirilir.

Kontrol Uçları

Osilatör Girişleri

- 8051'in XTAL1 ve XTAL2 olmak üzere 2 adet osilatör girişi vardır.
- Bu girişlere içerisindeki osilatörlere kaynak teşkil edecek şekilde bir rezonans devresi bağlanır.
- Genellikle bir kristal bu görevi yerine getirir.
- MCS-51 ailesindeki çoğu mikrodenetleyicinin nominal kristal frekansları 12 MHz'dir.

Osilatör Girişleri

 Kondansatörlerin değeri kritik değildir. 27-47 pF arasında seçilebilir, ancak genellikle 30 pF kullanılır.

Giriş/Çıkış Uçları

Port o (Po)

- SFR'de 8oh adresindedir.
- Port o, çift görevli kullanılabilen **8 pin'den** oluşan bir porttur.
- Küçük çaplı sistem tasarımında genel amaçlı G/Ç portu olarak, kullanılırken, büyük çaplı tasarımlarda hem veri hem de adres yolu olarak kullanılır.
- Genel amaçlı G/Ç portu olarak kullanıldığında, açık savak (drain) olduğundan çekme dirençleri (pull-up resistor) kullanılmalıdır.

P0.7 P0.0 0x80 87 86 85 84 83 82 81 80 P0

Giriş/Çıkış Uçları

Port 1 (P1)

P1.7 P1.0 0x90 97 96 95 94 93 92 91 90 P1

- SFR'de oxooh adresindedir.
- Sadece genel amaçlı G/Ç hattı olarak kullanılır. Çift yönlüdür.
- Port ı'in pinleri P1.0, P1.7 gibi ifade edilir.
- Giriş olarak kullanım için tüm bitleri '1' yapılır (P1=oxFF)

Port 2 (P2)

P2.7 P2.0 0xA0 A7 A6 A5 A4 A3 A2 A1 A0 P2

- SFR'de Aoh adresindedir.
- İki amaçlı kullanıma sahip olan P2, harici belleğe ihtiyaç duyulduğunda **adresin yüksek değerlikli 8 hattını** (A8-A15)
- Harici belleğe gerek duyulmadığında genel amaçlı G/Ç hattı gibi kullanılabilir.
- Giriş olarak kullanım için tüm bitleri '1' yapılır (P2=0xFF)

Giriş/Çıkış Uçları

Port 3 (P3)

P3.7 P3.0 OxBO B7 B6 B5 B4 B3 B2 B1 B0

- SFR'de Boh adresindedir
- Çift göreve sahip bir porttur.
- Genel amaçlı (G/Ç) olarak kullanılabilirken, aşağıdaki tabloda her bir pininin sahip olduğu extra özellikleri de çeşitli uygulamalarda kullanılabilir.

Port 3'ün alternatif fonksiyonları

Uç	İsim	Bit Adresi	İşlevi				
P3.0	RxD	В0Н	Seri kanal veri girişi				
P3.1	TxD	B1H	Seri kanal veri çıkışı				
P3.2	INT0	В2Н	Harici kesme 0 girişi				
P3.3	INT1	ВЗН	Harici kesme 1 girişi				
P3.4	Т0	В4Н	Zamanlayıcı/sayıcı 0 harici girişi				
P3.5	T1	В5Н	Zamanlayıcı/sayıcı 1 harici girişi				
P3.6	WR	В6Н	Harici belleğe yazma işareti çıkışı				
P3.7	RD	В7Н	Harici bellekten okuma işareti çıkışı				

Program (Kod) Hafızası

- Mikrodenetleyicinin çalıştıracağı programın makine kodlarını bulunduran bellek birimidir.
- Standard 8051 mikrodenetleyicisinde 4KBayt kod hafıza bulunmaktadır.
- Dahili Kod hafızanın bulunmadığı ya da yetersiz kaldığı durumlarda harici kod hafıza kullanmak mümkündür.
- Harici ya da dahili kod <u>ha</u>fizadan hangisinin kullanılacağını 8051'in EA (External Access) belirlemektedir.

Program (Kod) Hafızası

Harici kod hafıza bağlantısı

Veri Hafızası

- 8051 mikrodenetleyicisi dahili (çip içi) veri hafıza birimi içermektedir.
- Standart 8051'de 128 bayt olan hafıza birimi bazı 8051 türevlerinde 256 bayt büyüklüğünde olabilmektedir.
- Dahili veri hafızanın yetmediği durumlarda harici veri hafıza kullanmak mümkündür.
- 8051 mikrodenetleyicisindeki veri bellek türleri
 - Dahili Veri belleği
 - Alt (Lower) RAM
 - Üst (Upper) RAM
 - Özel Fonksiyon Kaydedicileri
 - Harici veri belleği
 - XRAM (Genişletilmiş RAM Bellek)

Dahili RAM Belleği (IRAM) 3 bölümden meydana gelir. FFH FFH Özel Fonksiyon Kayıtçıları Üst RAM (Upper RAM) MOV R0, #0x90 (SFR -Special MOV 0x90,#0x07 Function Sadece Dolaylı MOV @R0,#0x05 (indirect) erişim Registers) Sadece dolaysız (direct) erişim 80H 7FH Alt RAM (Lower RAM) MOV 0x30,#0x05 Dolaylı veya Dolaysız erişim 00H

Üst RAM (Upper RAM)

- Bütün 8051 ailelerinde mevcut olmayabilir (80C31 gibi).
- Bu bölge daha çok genel amaçlı olarak kullanılır ve 80h adresinden başlar, FFh adresinde son bulur.
- Bu alana sadece **dolaylı** (indirect) yolla erişilebilir.

Üst RAM (Upper RAM)

Örnek

- 80H adresi hem üst RAM'in hem de SFR'nin başlangıç adresleridir. Her iki hafıza bölgesinin başlangıç adresine FFH değerini yükleyelim.
- SFR
 - MOV \$80h,#0FFh ;SFR'deki 80h adresine 0FFh değerini at
- Üst RAM
 - MOV Ro,#8oh ;Ro kaydedicisine 8oh değerini at
 - MOV @Ro,#oFFh ;Ro'ın gösterdiği adrese(Üst RAM'deki 80h'a FFh değerini at)

Özel Fonksiyon Kaydedicileri (SFR)

- Çip içi hafızadaki SFR kayıtçıları 80H-FFH adresleri arasında yer alırlar.
- Fonksiyonel birimlere ait kayıtçıları içerir
 - İşlemci çekirdeğine
 - Kesme birimi
 - Giriş-çıkış portları
 - Zamanlayıcı/sayıcı birimi
 - Haberleşme birimleri ve diğer birimler
- Mikrodenetleyicilerin SFR belleğini oluşturan 128 baytın tamamı dolu değildir. Bazı adresler ileride kullanılmak üzere boş bırakılmıştır.

