Chapitre 2

Statistique à deux variables

I. Nuage de points

1) Point moyen

Définition:

Sur une population donnée, on s'intéresse à deux caractères.

Pour chacun des n individus de cette population, notons x_i et y_i les valeurs prises par chacun de ces caractères $(1 \le i \le n)$.

Les *n* couples $(x_i; y_i)$ forment une **série statistique à deux variables**.

Exemple:

On mesure le poids x_i (en kg) et la tension artérielle systolique y_i (en mmHg) de 7 individus du même âge.

On a donc la série statistique à deux variables :

X_i	55	75	60	85	70	80	65
y_i	12	14	11	12	15	15	12

Définition:

Dans un repère orthogonal, l'ensemble des points $M_i(x_i; y_i)$ est appelé le **nuage de points** associé à cette série statistique à deux variables.

Exemple:

Le graphique ci-contre représente le nuage de points associé à la série statistique de l'exemple précédent.

Définition:

Le point G de coordonnées $(\overline{x}; \overline{y})$ avec :

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 et $\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$

est appelé le point moyen du nuage de points associé à cette série statistique à deux variables.

Exemple:

Le point moyen du nuage ci-dessus est : G(70; 13)

2) Covariance

Définition:

On appelle **covariance** de x et y le nombre C_{xy} ou cov(x, y), et défini par :

$$C_{xy} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})$$

Remarques:

- La **variance** $V(X) = \frac{1}{n} \sum_{i=1}^{n} (x_i \overline{x})^2$ qui sert à caractériser la dispersion d'un échantillon (et à calculer l'**écart type** $\sigma = \sqrt{V}$) vérifie donc $V(X) = C_{xx}$.
- La covariance est un nombre permettant d'évaluer le sens de variation (et ainsi la dépendance) de deux variables statistiques.

Exemple:

Dans le cas de la série statistique de l'exemple :

• Pour la série « poids » $X = \{55, 75, 60, 85, 70, 80, 65\}$ on a :

 $\overline{x} = 70$; V(X) = 100; $\sigma_x = 10$

- Pour la série « tension artérielle » $Y = \{12; 14; 11; 12; 15; 15; 12\}$ on a : $\overline{y} = 13;$ $V(Y) \approx 2,29;$ $\sigma_v \approx 1,51$
- Pour la série à deux variables X et Y: $C_{xy} = \frac{50}{7} \approx 7,14$

3) Ajustement

Lorsque deux variables X et Y sont liées l'une à l'autre, l'étude de la forme du nuage de points permet de modéliser cette relation.

Pas de relation

Relation affine

Relation exponentielle

Définition:

Effectuer un **ajustement de** y en x d'un nuage de points consiste à trouver une fonction f telle que la courbe d'équation y = f(x) passe « le plus près possible » des points du nuage.

Remarque:

Pour les statisticiens, une formule telle que y=f(x) est appelé un **modèle** (permettant d'étudier les relations entre les variables) : x est la variable explicative et y la variable expliquée.

II. Méthode des moindres carrés

1) Introduction

Définition:

Effectuer un ajustement d'un nuage de points $(x_i; y_i)$ par la **méthode des moindres carrés** consiste à trouver une fonction f qui **minimise** la somme des carrés des écarts entre les valeurs y_i observées et les valeurs $f(x_i)$ données par le modèle.

La fonction f doit donc minimiser l'expression $\sum_{i=1}^{n} [y_i - f(x_i)]^2$.

Interprétation graphique :

 \mathcal{C}_f est la courbe représentative de la fonction f.

 $M_i(x_i; y_i)$ est un point du nuage et $P_i(x_i; f(x_i))$ est un point de \mathcal{C}_f .

Alors $M_i P_i = |y_i - f(x_i)|$ et $(M_i P_i)^2 = (y_i - f(x_i))^2$.

Donc C_f est la courbe qui minimise $\sum_{i=1}^n (M_i P_i)^2$, la somme des carrés des distances « verticales ».

Intérêt:

Pour une valeur donnée x_0 de la variable X, la fonction f permet de prévoir approximativement la valeur correspondante de Y (en calculant $f(x_0)$).

- Si x_0 appartient à l'intervalle d'observation des valeurs de X, on parle d'**interpolation**.
- Si x_0 n'appartient pas à l'intervalle d'observation des valeurs de X, on parle d'**extrapolation** (on suppose alors que le modèle est encore valable à l'extérieur de l'intervalle).

2) Ajustement affine par moindres carrés

Propriété (admise):

Lors d'un ajustement affine de y en x par la méthode des moindres carrés, la droite d qui représente, dans un repère, la fonction f obtenue a pour coefficient directeur :

$$a = \frac{C_{xy}}{V(X)} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2} \text{ et passe par le point moyen } G = (\overline{x}; \overline{y})$$

Remarque:

• La droite *d* est appelée la droite d'ajustement de *y* en *x* par la méthode des moindres carrés. Une équation de *d* est :

$$y = a(x - \overline{x}) + \overline{y}$$

• On démontre que d est la seule droite pour laquelle la somme $\sum_{i=1}^{n} [y_i - (a x_i + b)]^2$ est minimale.

Exemple:

Pour la série:

x_i	55	75	60	85	70	80	65
y_i	12	14	11	12	15	15	12

On a donc:

$$a = \frac{C_{xy}}{V(X)} = \frac{\frac{50}{7}}{100} = \frac{50}{700} \approx 0,0714$$

et nous avions G(70; 13).

La droite d'ajustement par la méthode des moindres carrés a pour équation :

$$y = \frac{50}{700}(x-70)+13 = \frac{5}{70}x+8$$

Utilisation de la calculatrice :

L1	RegLin(ax+b) L1, L2	RegLin 9=ax+b a=.0714285714 b=8	Y1=.07142857142857X+8
Stats 2-Var L1,L	Stats 2-Var	Stats 2-Var ↑n=7 9=13 Σ9=91 Σ9²=1199 S9=1.632993162 ↓σ9=1.511857892	Stats 2-Var Τσy=1.511857892 Σχy=6420 minX=55 maxX=85 minY=11 maxY=15