Ej 1.3) Sean $e \ y \ e'$ dos elementos neutros de un grupo G. Luego sea $x \in G$

Sabemos xe = ex = x = e'x = xe' por lo que ex = e'x

Sabiendo que existe inverso tenemos $exx^{-1} = e'xx^{-1}$

Y suponiendo que $xx^{-1} = e$ luego ee = e'e

i F
nalmente considerando que $e,e'\in G$ y que un elemento de $g\in G$ operado con un elemento neutro da el mismo elemento g tenemos e=e'

Ej 1.8) Sale por inducción primero probas $a^{n+1} = a^n a^1$ y despues salen los otros dos Ej 1.9)

Veamos que L_g es biyectiva.

Inyectividad: Sean $x, x' \in G$ tal que qx = f(x) = f(x') = qx'

Luego como $g \in G$ existe elemento inverso y elemento neutro

Luego $g^{-1}gx = g^{-1}gx' \Rightarrow ex = ex'$ entonces x = x'

Suryectividad: Sea $r \in G$ ahora queremos ver si r = gx con $g \in G$ tiene solución.

Por ejericio 1.4) sabemos que tiene y que es única además $g^{-1}r = x$ y como $g^{-1} \in G$ y $g \in G$ y la operación de G es cerrada luego $x \in G$

Luego r tiene pre imagen $\forall r \in G$

Ambos procesos son se usan de forma análoga para probar la otra biyección Ei 1.23)

- Sabemos que $e \in Z(G)$ por que ex = x = xe luego ex = xe $\forall x \in G$
- Sea $r \in Z(G)$ sabemos que $rh = hr \quad \forall h \in G$

Luego como $r \in G$ tiene inverso, usémos
lo para multiplicar ambos lados varias veces con el inverso
 r^{-1}

$$r^{-1}rh = r^{-1}hr \Rightarrow r^{-1}rhr^{-1} = r^{-1}hrr^{-1} \Rightarrow hr^{-1} = r^{-1}h \quad \forall h \in G$$

Finalmente $r^{-1} \in Z(G)$

• Sea $r \in Z(G)$ $r_1 \in Z(G)$ entonces tenemos rh = hr y $r_1h = hr_1$ $\forall h \in G$

Luego multiplicando convenientemente sabiendo que existe inverso

$$h = r^{-1}hr$$
 y tambié $r_1hr_1^{-1} = h$ por lo tanto $r^{-1}hr = r_1hr_1^{-1} \quad \forall h \in G$

Devuelta multiplicando $hr = rr_1hr_1^{-1} \Rightarrow hrr_1 = rr_1h \quad \forall h \in G$

Luego
$$rr_1 \in Z(G)$$

Ej 1.24)

- Sabemos que $e \in C_G(g)$ $\forall g \in G$ por que ge = eg
- Sea $r \in C_G(g)$ entonces gr = rg

Luego como $r \in G$ tiene inverso

Por lo tanto
$$g = rgr^{-1} \Rightarrow r^{-1}g = gr^{-1} \Rightarrow gr^{-1} = r^{-1}g$$

Entonces $r^{-1} \in C_G(g)$

• Sean $r, r_1 \in C_G(g)$ luego gr = rg y tambien $gr_1 = r_1g$ ahora multiplicando estratégicamente por inversos llegamos a $r^{-1}gr = g$ y por otro lado $g = r_1gr_1^{-1}$ Entonces tenemos $r^{-1}gr = r_1gr_1^{-1} \Rightarrow gr = rr_1gr_1^{-1} \Rightarrow grr_1 = rr_1g$ Luego $rr_1 \in C_G(g)$