4주차 2차시 OSI-7계층

[학습목표]

1. OSI-7계층의 개념을 설명할 수 있다.

2. OSI-7계층별로 구분하여 설명할 수 있다.

학습내용1 : OSI-7 계층의 개요

〈국제표준화기구 (ISO: International Organization for Standardization)는 다양한 네트워크의 호환을 위해 OSI 7계층이라는 표준 네트워크 모델을 만듦〉

7계층	응용 프로그램 계층(Application Layer)	
6계층	표현 계층(Persentation Layer)	
5계층	세션 계층(Session Layer)	
4계층	전송 계층(Transport Layer)	IP 주소를 통해 원거리 시스템간 통신이 가능하게 함
3계층	네트워크 계층(Network Layer)	포트를 이용해 시스템 내의 응용 프로그램 간 통신을 가능하게 함.
2계층	데이터 링크 계층(Data Link Layer)	물리 장치의 고유 주소인 MAC을 이용한 로컬 통신이 가능하게 함
1계층	물리 계층(Physical Layer)	신호를 전달하기 위한 물리적인 연결

학습내용2 : OSI-7 계층의 이해

1. 물리 계층(1계층)

〈인터넷 이용시의 랜 케이블, 전화선, 동축 케이블 또는 광 케이블 등의 시스템간의 물리적인 연결매체〉

1) [표 3-1] CAT별 특성

구분	최대 속도	용도
CAT 1	1Mbps 미만	 아날로그 음성(일반적인 전화 서비스) ISDN 기본률 접속(Basic Rate Interface) Doorbell Wiring
CAT 2	4Mbps	• 주로 IBM의 토큰링 네트워크에 사용됨
CAT 3	16Mbps	• 10BASE-T 이더넷상의 데이터 및 음성
CAT 4	20Mbps	• 16Mbps 토큰 링에서 사용 많이 사용되지는 않음

구분	최대 속도	용도
CAT 5	100 Mbps	・옥내 수평 및 간선 배선망(100MHz) ・4/16Mbps 토큰 링(IEEE 802,5) ・10/100 BASE-T(IEEE 802,3) ・155Mbps ATM

	구분	최대 속도	용도
C	CAT 6	250 Mbps	 옥내 수평 및 간선 배선망(250MHz) 4/16Mbps 토큰 링(IEEE 802.5) 10/100/1000 BASE-T(IEEE 802.3) 155/622Mbps ATM Gb 이더넷
C	CAT 7	10Gbps	• 10Gb 이더넷

2) [표 3-2] 케이블 선의 분류

구분	내용
UTP(Unshielded Twisted Pair)	제품 전선과 피복만으로 구성되어 있으며, 두 선 사이의 전자기 유도를 줄이기 위해 절연의 구리선이 서로 꼬여 있음
FTP(Foil Screened Twisted Pair Cable)	알루미늄 은박이 4가닥의 선을 감싸고 있으며, UTP보다 절연 기능이 탁월해 공장 배선용으로 많이 사용됨

구분	내용
STP(Shielded Twisted Pair Cable)	연선으로 된 전선 겉에 외부 피복 또는 차폐재 가 추가된 케이블(쉴드 처리)임 이때 차폐재는 접지의 역할을 하므로 외부의 노이즈를 차단하거나 전기적 신호의 간섭에 탁월함

- 일반적으로 인터넷에 쓰는 랜 케이블은 UTP 케이블 중 CAT 5 또는 CAT 6에 해당되는 10/100/1000 BASE-T(IEEE 802.3) 선에 RJ 45 커넥터를 사용

2. 데이터 링크 계층(2계층)

- 2계층인 데이터 링크 계층은 두 포인트(Point to Point) 간 신뢰성 있는 전송을 보장하기 위한 계층
- 상호 통신을 위해 MAC 주소를 할당받는데, MAC 주소는 ipconfig /all 명령을 실행해 확인할 수 있음
- 1) [그림 3-3] MAC 주소의 확인

* MAC 주소는 총 12개의 16진수 숫자로 구성 : 앞쪽 6개의 16진수는 네트워크 카드를 만든 회사를 나타내는 것으로 OUI(Organizational Unique Identifier)라고 함

뒤쪽 6개의 16진수는 각 회사에서 임의로 붙이는 일종의 시리얼을 나타내는 것으로 Host Identifier라고 함

2) 1계층과 2계층만을 사용하는 네트워크 통신

3) 패킷의 흐름을 다시 OSI 7계층에 따른 패킷의 흐름으로 나타내 보자

4) ①, ②, ③ 각 단계에서 흘러가는 패킷은 다음과 같은 구조를 가짐

	0100110101000101010100101		출발지 MAC 주소	목적지 MAC 주소
—	3계층까지의 패킷 정보	→	2계층의	패킷 정보

- 5) 스위치의 동작 원리
- * 스위치에 안방 컴퓨터만이 연결되어 있을 경우

1번 포트	
2번 포트	안방 컴퓨터의 MAC 주소
3번 포트	
4번 포트	

* 스위치에 작은방의 컴퓨터를 연결할 경우

1번 포트	
2번 포트	안방 컴퓨터의 MAC 주소
3번 포트	작은방 컴퓨터의 MAC 주소
4번 포트	

* 일반적으로 잘못 이해할 수 있는 스위치의 메모리 구조

1번 포트	
192,168,0,100	안방 컴퓨터의 MAC 주소
192,168,0,101	작은방 컴퓨터의 MAC 주소
4번 포트	

3. 네트워크 계층(3계층)

- 3계층인 네트워크 계층은 여러 개의 노드를 거칠 때마다 경로를 찾아주는 역할을 하는 계층
- 다양한 길이의 데이터를 네트워크를 통해 전달하며 그 과정에서 라우팅, 흐름 제어,

세그멘테이션(segmentation/desegmentation), 오류 제어 등을 수행

- 네트워크 계층에서 여러 개의 노드를 거쳐 경로를 찾기 위한 주소는 IP로 대표됨
- 1) [그림 3-7] ipconfig/all 명령을 실행한 결과

- * IP주소는 8비트의 수 4개로 구성
- 32 자리의 2 진수로 8 자리마다 점을 찍어 구분)
- 11000000 . 10101000 . 00000000 . 00001000

2) IP주소는 A,B,C,D,E 클래스로 구분

① A 클래스 : 첫 번째 자리가 네트워크 주소, 나머지 세 자리가 호스트 주소

② B 클래스 : 두 번째 자리까지가 네트워크 주소, 나머지 두 자리가 호스트 주소

③ C 클래스: 세 번째 자리까지가 네트워크 주소, 나머지 한 자리가 호스트 주소

93	8비트	8비트	8비트	8비년
A 클래스	네트워크 주소	호스트	트 주소	
B 클래스	네트워크 주	F소	호스트 주소	
C 클래스		네트워크 주소	호스트 주	소

3) [표 3-3] 네트워크 클래스의 구분

시작 주소	구분	내용
0	A 클 래스	 00000000번부터 01111111(127)번까지의 네트워크 A 클래스는 모두 2⁷(128)개가 가능하고, 하나의 A 클래스 안에 256³(16,777,216)개의 호스트가 존재할 수 있음
10	B 클 래스	 10000000(128)번부터 10111111(191)번까지의 네트워크 B 클래스는 2⁶*256(16,384)개가 가능하고, 하나의 B 클래스 안에 256²(66,536)개의 호스트가 존재할 수 있음

시작 주소	구분	내용		
C 클 래스		 11000000(192)번부터 11011111(223)번까지의 네트워크 C 클래스는 2⁵*256¹(2,097,152)개가 가능하고, 하나의 B 클래스 안에 256개의 호스트가 존재할 수 있음 		
1110	D 클 래스	 11100000(224)번부터 1110111(239)번까지의 네트워크 멀티미디어 방송을 할 때 자동으로 부여됨 		

시작 주소 구분	내용
E 클래스	 11110000(240)번부터 1111111(255)번까지의 네트워크 테스팅을 위한 주소 대역으로, 사용하지 않음

4) [표 3-4] 클래스별 네트워크 범위

구분	지정된 사설 네트워크		
A 클래스	10.0.0.0 ~ 10.255,255,255		
B 클래스	172.16,0,0 ~ 172.31,255,255		
C 클래스	192.168.0.0 ~ 192.168.255.255		

5) 2, 3계층에서의 패킷의 흐름

6) 패킷의 흐름을 OSI 7계층에서 살펴보자

7) 네트워크 계층에서의 패킷 전달 구조

- * 예시) 2, 3계층 에서의 패킷의 흐름 예
- 패킷 송신 시스템의 IP: 172.16.0.100
- 라우터의 랜쪽 포트의 IP(게이트웨이): 172.16.0.1
- 패킷 송신 시스템의 MAC 주소: AA-AA
- 라우터의 랜쪽 포트의 MAC 주소(게이트웨이) : BB-BB
- 라우터의 인터넷쪽 포트의 MAC 주소: CC-CC
- 스위치의 메모리에 존재하는 MAC 주소 테이블

1번 포트	BB-BB(라우터 케이블 연결 포트)
2번 포트	AA-AA(컴퓨터 연결 포트)
3번 포트	
4번 포트	

* 인터넷에 전송하는 패킷의 기본 구조

	01001101010001010101010101	출	발지 MAC 주소	목적지 MAC 주소
-	3계층까지의 패킷 정보	→ ←	2계층의	패킷 정보

① 출발지의 IP와 MAC 주소가 기록됨

② 목적지 IP 주소 입력

- ③ 목적지 MAC 주소에는 랜을 벗어나기위한
- 가장 일차적인 목적지 : 즉 게이트웨이의 MAC 주소 입력 (ARP 프로토콜 이용)

④ 라우터에서 사용한2계층 정보를 벗겨냄

⑤ 다음 라우터까지의 2계층 정보를 패킷에 덧씌움

4. 전송 계층(4계층)

- 4계층인 전송 계층은 양 끝단(End to end)의 사용자들이 신뢰성 있는 데이터를 주고받을 수 있도록 함으로써, 상위 계층들이 데이터 전달의 유효성이나 효율성을 신경 쓰지 않도록 해줌
- 가장 잘 알려진 전송 프로토콜은 TCP(Transmission Control Protocol)
- MAC 주소가 네트워크 카드의 고유 식별자이고 IP가 시스템의 주소라면, 포트는 시스템에 도착한 후 패킷이 찾아갈 응용 프로그램과 통하는 통로 번호라 생각할 수 있음

1) [그림 3-11] 포트의 개념

〈시스템에서 구동되는 응용 프로그램들은 네트워킹을 하기 위해 자신에게 해당되는 패킷을 식별할 필요가 있음〉

- 이때 사용하는 것이 포트이며, 포트는 0번부터 65,535(2')번까지 존재함
- 4계층까지 생각한 패킷의 구조

01001010101	출발지	목적지	출발지	목적지	출발지	목적지
	포트	포트	IP	IP	MAC	MAC
← 5계층까지의 패킷 정보→	← 4계층 파	킷 정보→	←3계층 파	킷 정보→	← 2계층 파	Ⅰ킷 정보ㅡ

- * 출발지 포트는 운영체제나 응용 프로그램마다 조금씩 다르나 보통 1,025번부터 65,535번 사이의 포트 중에 서용하지 않는 임의의 포트를 응용 프로그램별로 할당하여 사용, 웹 서버의 서비스 포트는 보통 80번이니 패킷의 구조가 다음과 같음
- 출발지 포트는 시스템에서 임의로 정해짐
- 3,000번 대의 임의 포트가 할당되면 다음과 같을 수 있음

2) [표 3-5] 주요 포트와 서비스

	포트 번호	서비스	설명	
20 FTP · File Transfer Protocol-Datagram · FTP 연결 시 실제로 데이터를 전송함				
	21	21 FTP · File Transfer Protocol-Control · FTP 연결 시 인증과 제어를 함		
	23 Telnet · 텔넷 서비스로, 원격지 서버의 실행창을 얻어냄		・ 텔넷 서비스로, 원격지 서버의 실행창을 얻어냄	
	25 SMTP · Simple Message Transfer Protocol • 메일을 보낼 때 사용함			
53 DNS · Domain Name Service • 이름을 해석하는 데 사용함				

포트 번호	서비스 설명		
69 TFTP · Trivial File Transfer Protocol • 인증이 존재하지 않는 단순한 파일 전송에 사용함			
80	НТТР	Hyper Text Transfer Protocol 웹 서비스를 제공함	
110	POP3	・ Post Office Protocol ・ 메일 서버로 전송된 메일을 읽을 때 사용함	
111 RPC · Sun의 Remote Procedure Call · 원격에서 서버의 프로세스를 실행할 수 있		・ Sun의 Remote Procedure Call ・ 원격에서 서버의 프로세스를 실행할 수 있게 함	

포트 번호	서비스	설명	
138	NetBI OS	・ Network Basic Input Output Service ・ 윈도우에서 파일을 공유할 수 있게 함	
143	IMAP	・ Internet Message Access Protocol ・ POP3와 기본적으로 같으나, 메일이 확인된 후에도 서버에 남는다는 것이 다름	
SNMP · Simple Network Management Protocol · 네트워크 관리와 모니터링을 위해 사용함			

3) 3계층과 4계층의 정보는 netstat -an 명령으로 쉽게 확인할 수 있음

4) netstat -an 명령을 실행한 결과는 각각 다음의 정보를 담고 있음

5) '3-웨이 핸드셰이킹(3-way handshaking)'

- ① 두 시스템이 통신을 하기 전에, 클라이언트는 포트가 닫힌 Closed 상태, 서버는 해당 포트로 항상 서비스를 제공할 수 있는 Listen 상태
- ② 처음 클라이언트가 통신을 하고자 하면, 임의의 포트 번호가 클라이언트 프로그램에 할당되고 클라이언트는 서버에 연결하고 싶다는 의사 표시로 SYN Sent 상태가 됨
- ③ 클라이언트의 연결 요청을 받은 서버는 SYN Received 상태가 되고 클라이언트에게 연결을 해도 좋다는 의미로 SYN+ACK 패킷을 보냄
- ④ 마지막으로 클라이언트는 연결을 요청한 것에 대한 서버의 응답을 확인했다는 표시로 ACK 패킷을 서버에 보냄

6) TCP 세션의 종료

- ① 통신을 하는 중에는 클라이언트와 서버 모두 Established 상태
- ② 통신을 끊고자 하는 클라이언트가 서버에 FIN 패킷을 보내며, 이때 클라이언트는 Close Wait 상태가 됨
- ③ 서버는 클라이언트의 연결 종료 요청을 확인하고 클라이언트에게 응답으로 ACK 패킷을 보냄 : 서버도 클라이언트의 연결을 종료하겠다는 의미로 FIN 패킷을 보내고 Close Wait 상태가 됨
- ④ 마지막으로 클라이언트는 연결 종료를 요청한 것에 대한 서버의 응답을 확인했다는 의미로 ACK 패킷을 서버에 보내
- 7) TCP와 UDP
- ① TCP
- 연결 지향형 프로토콜로서 수신측이 데이터를 흘려버리지 않게 데이터 흐름 제어(Flow Control)와 전송 중 에러가 발생할 경우 자동으로 재전송하는 에러 제어(Error Control) 등의 기능을 통해 데이터의 확실한 전송을 보장함

- 하지만 완전하지는 않아 해커들에게 많은 공격을 받게 됨
- ② UDP(User Datagram Protocol)
- TCP와는 달리 데이터의 신뢰성 있는 전송을 보장하지는 않음
- 그러나 신뢰성이 매우 높은 회선을 사용하거나 데이터의 확실한 전송을 요구하지 않는 통신을 하거나 한 번에 많은 상대에게 메시지를 전송하고자 하는 경우에는 전송 경로 확립을 위한 번잡함을 생략하고 시간을 절약할 수 있어 UDP가 더 효과적임

5. 세션 계층(5계층)

- 5계층인 세션 계층은 양 끝 단의 응용 프로세스가 통신을 관리하기 위한 방법을 제공
- 전송 계층이 종단간에 논리적인 설정을 담당한다면 세션 계층은 이런 연결에 정보 교환을 효과적으로 할 수 있게 추가 서비스를 함

6. 표현 계층(6계층)

- 6계층인 표현 계층은 코드 간의 번역을 담당
- 즉 사용자 시스템에서 데이터의 구조를 하나의 통일된 형식으로 표현함으로써, 응용 계층의 데이터 형식 차이로 인한 부담을 덜어줌

7. 응용 프로그램 계층(7계층)

- 7계층인 응용 프로그램 계층은 사용자나 응용 프로그램 사이에 데이터의 교환이 가능하게 하는 계층
- 예를들어 HTTP, FTP, 터미널 서비스, 메일 프로그램, 디렉터리 서비스 등을 제공

[학습정리]

- 1. OSI-7계층은 컴퓨터 네트워크 프로토콜 디자인과 통신을 계층으로 나누어 설명한 것이다.
- 2. OSI-7계층은 물리계층, 데이터링크계층, 네트워크계층, 전송계층, 세션계층, 표현계층, 응용프로그램 계층으로 나눈다.