

沈阳工业大学 电子技术教研室

1.1 概述

数字量和模拟量

变化在时间上和数量上都是离散的,不连续的

变化在时间上和数量上 都是连续的。数字量以 外的物理量。

工作信号,研究的对象,分析/设计方法以及所用的数学工具都有显著的不同

1.2 几种常用的数制

数制

- · 每一位的构成
- 从低位向高位的进位规则

常用到的:十进制,二进制,八进制,十六进制

一十进制, 二进制, 八进制, 十六进制

◆ A binary digit has only 2 possibilities

逢八进一

逢二进一

An octal digit has 8 possibilities

逢十进一 A decimal digit has 10 possibilities

A hexadecimal (hex) digital has 16 possibilities

逢十六进-

不同进制数的对照表

十进制数	二进制	八进制	十六进制
00	0000	00	0
01	0001	01	1
02	0010	02	2
03	0011	03	3
04	0100	04	4
05	0101	05	5
06	0110	06	6
07	0111	07	7
08	1000	10	8
09	1001	11	9
10	1010	12	A
11	1011	13	B
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F

1.3不同数制间的转换

一、二-十转换

$$\mathbf{D} = \sum \mathbf{K}_i 2^i \qquad \mathbf{K} \in (0,1)$$

例:

$$(1011.01)_2 = 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 + 0 \times 2^{-1} + 1 \times 2^{-2}$$

= $(11.25)_{10}$

二、十-二转换

整数部分:
$$(S)_{10} = k_n 2^n + k_{n-1} 2^{n-1} + k_{n-2} 2^{n-2} \cdots + k_1 2^1 + k_0 2^0$$

= $2(k_n 2^{n-1} + k_{n-1} 2^{n-2} + \cdots + k_1) + k_0$

同理

$$k_n 2^{n-1} + k_{n-1} 2^{n-2} + \dots + k_1 = 2(k_n 2^{n-2} + k_{n-1} 2^{n-3} + \dots + k_2) + k_1$$

2
$$21$$
······余数= $1=k_3$

$$1\cdots$$
 余数=1= k_7

二、十-二转换

1.000

 \times 2整数部分= 1 = k_{-4}

三、二-十六转换

例: 将(01011110.10110010)2化为十六进制

四、十六 - 二转换

例: 将(8FAC6)16化为二进制

五、八进制数与二进制数的转换

例:将(52.43)8化为二进制

六、十六进制数与十进制数的转换

十六进制转换为十进制

$$\mathbf{D} = \sum \mathbf{K}_i 16^i \qquad \mathbf{K} \in (0, 1 \cdots 15)$$

十进制转换为十六进制:通过二进制转化

1.4二进制运算

1.4.1 二进制算术运算的特点

算术运算: 1: 和十进制算数运算的规则相同

2: 逢二进一

特点:加、减、乘、除全部可以用移位和相加这两种操作实现。简化了电路结构

所以数字电路中普遍 采用二进制算数运算

1.4二进制数运算

1.4.2 反码、补码和补码运算

二进制数的正、负号也是用0/1表示的。 在定点运算中,最高位为符号位(0为正,1为负)

如
$$+89 = (0 1011001)$$

 $-89 = (1 1011001)$

二进制数的补码:

- 最高位为符号位(0为正,1为负)
- 正数的补码和它的原码相同
- 负数的补码 = 数值位逐位求反(反码) + 1
 如 +5 = (0 0101)
 -5 = (1 1011)

• 通过补码,将减一个数用加上该数的补码来实现

1.5几种常用的编码

一、十进制代码

几种常用的十进制代码

十进制数	8421码	余3码	2421码	5211码	余3循环码
0	0000	0011	0000	0000	0010
1	0001	0100	0001	0001	0110
2	0010	0101	0010	0100	0111
3	0011	0110	0011	0101	0101
4	0100	0111	0100	0111	0100
5	0101	1000	1011	1000	1100
6	0110	1001	1100	1001	1101
7	0111	1010	1101	1100	1111
8	1000	1011	1110	1101	1110
9	1001	1100	1111	1111	1010

二、格雷码

特点: 1.每一位的状态变化都按一定的顺序循环。

2.编码顺序依次变化,按表中顺序变化时,相邻代码只有一位改变状态。

应用:减少过渡噪声

编码 顺序	二进制	格雷码	编码顺序	二进制码	格雷码
0	0000	0000	8	1000	1100
1	0001	0001	9	1001	1101
2	0010	0011	10	1010	1111
3	0011	0010	11	1011	1110
4	0100	0110	12	1100	1010
5	0101	0111	13	1101	1011
6	0110	0101	14	1110	1001
7	0111	0100	15	1111	1000

三、美国信息交换标准代码 (ASCII)

应用: 计算机和通讯领域

知识小结

知识要点: 熟悉常用进制及其相互转换关系

能力要点: 能够将进制转换和运算应用于计算机功能设计

素质要点:深刻认识数制和码制在现代数字系统中的基础作用,

树立踏实稳重的良好性格