ИКОНОМИЧЕСКИ УНИВЕРСИТЕТ - В А Р Н А Ф А К У Л Т Е Т "ИНФОРМАТИКА"

КАТЕДРА "СТАТИСТИКА И ПРИЛОЖНА МАТЕМАТИКА"

УТВЪРЖДАВАМ: Ректор:

(Проф. д-р Пл. Илиев)

УЧЕБНА ПРОГРАМА

по дисциплината: "МАТЕМАТИЧЕСКИ АНАЛИЗ";

ЗА СПЕЦ: Всички специалности от ПН 4.6 "Информатика и компютърни науки";

ОКС "бакалавър"

КУРС НА ОБУЧЕНИЕ: 1; СЕМЕСТЪР: 2;

ОБЩА СТУДЕНТСКА ЗАЕТОСТ: 270 ч.; в т.ч. аудиторна 75 ч.

кредити: 9

РАЗПРЕДЕЛЕНИЕ НА СТУДЕНТСКАТА ЗАЕТОСТ СЪГЛАСНО УЧЕБНИЯ ПЛАН

ОБЩО(часове)	СЕДМИЧНА НАТОВАРЕНОСТ (часове)
45	3
30	2
195	-
	45 30

Изготвили програмат	a:
1.	
	(доц. д-р Тодор Стоянов)
2.	 (доц. д-р Теодора Запрянова)
	:тика" (проф. д-р Росен Николаев)

І. АНОТАЦИЯ

Изучаването на дисциплината се базира на знанията на студентите, получени от средното образование по математика и дисциплината $ЛАА\Gamma$.

Дисциплината "Математически анализ" има за цел да запознае студентите с някои основни математически действия, използвани във висшата математика, като: граничен преход, диференциране на функции на една и повече променливи, търсене на локален и глобален екстремум на функции на една и повече променливи, интегриране на функция на една променлива, сумиране на безкрайни редици от числа и функции, криволинейни интеграли, двойни интеграли, тройни интеграли. Разглеждат се и приложения на споменатите действия.

П. ТЕМАТИЧНО СЪДЪРЖАНИЕ

No. по	наименование на темите и подтемите	БРОЙ ЧАСОВЕ)BE
ред		Л	C3	ЛУ
	ТЕМА 1. РЕАЛНИ ЧИСЛА. ЧИСЛОВИ РЕДИЦИ.	3	2	010
1	ГРАНИЦА. ТЕОРЕМИ ЗА СХОДЯЩИТЕ РЕДИЦИ	3	4	
1.1	Въвеждане на понятието реално число.			
1.2	Редици от реални числа. Сходящи редици. Монотонни редици.	3	2	
	ТЕМА 2. ФУНКЦИЯ. ОБРАТНИ ФУНКЦИИ. ЕЛЕМЕНТАРНИ ФУНКЦИИ	3	2	
2.1	Дефиниция на понятието функция. Ограничени и монотонни функции. Обратна функция.			
	Основни елементарни функции – Показателна функция, Лога-			
2.2	ритмична функция, Степенна функция, Тригонометрични фун-			
	кции, Обратни тригонометрични функции.			
	ТЕМА 3. ГРАНИЦА И НЕПРЕКЪСНАТОСТ НА ФУНКЦИЯ. ТЕОРЕМИ ЗА НЕПРЕКЪСНАТИТЕ	3	2	
2.1	ФУНКЦИИ			
3.1	Дефиниция за граница на функция по Хайне и по Коши.			
3.2	Определение за непрекъснатост на функция. Точки на пркъс-			
	ване на функция и тяхната класификация.			
3.3	Локални и глобални свойства на непрекъснатите функции. Теореми на Вайерщрас, Болцано – Коши и др			
	тема 4. производна и диференциал	3	2	
		3	4	
4.1	Понятие за производна. Геометричен смисъл на производната.			
4.2	Производна на сложна и обратна функция. Производна на сума, разлика, произведение и частно.			
4.3	Пресмятане на производните на основните елементарни функ-			
	Пифоролиция на функция Пофункция на произродия от на			
	Диференциал на функция. Дефиниране на производна от повисок ред, n – ти производни на някои функции. Формула на			
4.4	Лайбниц за п – та производни на произведение на две функ-			
	ции.			
	ТЕМА 5. ТЕОРЕМИ ЗА ДИФЕРЕНЦИРУЕМИТЕ	3	2	
	ФУНКЦИИ	3	<u> </u>	
5.1	Теореми на Рол, Лагранж. Следствия от теоремата на Лагранж.			
J.1	Теорема на Коши			
5.2	Правило на Лопитал. Разкриване на неопределености $\frac{0}{0}$, $\frac{\infty}{\infty}$,			
٥.۷	0. ∞ и други видове неопределеност.			

5.3	Формула на Тейлър. Формула на Маклорен. Развитие в рд на			
	Маклорен на функциите e^x , $\sin x$, $\cos x$ и други.	3	2	
<i>C</i> 1	ТЕМА 6. ИЗСЛЕДВАНЕ НА ФУНКЦИЯ	3	Z	
6.1	Достатъчни условия за екстремум на функция. Изпъкналост и вдъбнатост на функция. Инфлексни точки.			
6.3	Асимптоти.			
	МА 7. ФУНКЦИИ НА ДВЕ И ПОВЕЧЕ ПРОМЕНЛИВИ	3	2	
7.1	Понятие за функция на две и повече променливи.		2	
	Граница и непрекъснатост на функция на две и повече промен-			
7.2	ливи.			
7.3	Частни производни на функция на две и повече променливи,			
7.5	диференциал, производна по посока, градиент.			
	тема 8. ЕКСТРЕМУМ НА ФУНКЦИЯ НА ДВЕ	_		
	ПРОМЕНЛИВИ. МЕТОД НА НАЙ-МАЛКИТЕ КВАДРАТИ	3	2	
8.1	Понятие за екстремум на функция на две променливи. Необхо-			
	димо условие за екстремум.			
8.2	Достатъчно условие за екстремум на функция на две променливи.			
8.3	Метод на най-малките квадрати.			
0.0	ТЕМА 9. НЕОПРЕДЕЛЕН ИНТЕГРАЛ	3	2	
	Понятие за примитивна функция и неопределен интеграл. Ос-		_	
9.1	новни свойства на неопределения интеграл. Таблица на основ-			
	ните неопределени интеграли.			
	Основни методи за интегриране. Интегриране на рационални			
9.2	функции, интегриране по части, интегриране чрез смяна на			
	променливите.			
10.1	ТЕМА 10. ОПРЕДЕЛЕН ИНТЕГРАЛ	3	2	
10.1	Дефиниция на определен интеграл.			
10.2				
10.3	Основна формула на интегралното смятане – формула на Нютон- Лайбниц.			
10.4	Несобствен интеграл			
Т	ЕМА 11. ЧИСЛОВИ РЕДОВЕ. СТЕПЕННИ РЕДОВЕ	3	2	
	Основни понятия Суонимост из попожителни редове с пос			
11.1	тоянни членове. Признаци на Коши, Даламбер и Раабе.			
11.2	Степенни редове.			
	ТЕМА 12. РЕДОВЕ НА ФУРИЕ	3	2	
12.1	Ортонормирани системи.			
12.2				
	ТЕМА 13. КРИВОЛИНЕЙНИ ИНТЕГРАЛИ	3	2	
13.1	Определение за криволинейния интеграл от първи тип. При-			
13.1	веждане към обикновен определен интеграл.			
13.2	Съществуване и прсмятане на криволинеен интеграл от втори			
	тип. ТЕМА 14. ДВОЕН ИНТЕГРА Л	3	2	
14.1	Определение и елементарни свойства на двойните интеграли.	3	<i>-</i>	
	Свемпане на пройния интеграл или порторен в спуцая на или-			
14.2	волинейна област. Смяна на променливите.			
	ТЕМА 15. ТРОЕН ИНТЕГРАЛ. ПОВЪРХНИННИ	3	2	
	ИНТЕГРАЛИ	<u> </u>	4	
	Т			
15.1	Троен интеграл . Смяна на променливите. Пресмятане на обеми.			

15.2	(лицеви) интеграли.	45	20	
15.2	Понятие за повърхнина и лице на повърхнина. Повърхнинни			

III. <u>ФОРМИ НА КОНТРОЛ:</u>

No. по ред	ВИД И ФОРМА НА КОНТРОЛА	Брой	ИАЗ ч.
1.	Семестриален (текущ) контрол		
1.1.	Домашни работи по всяка тема	14	50
1.2.	Контролни работи	2	30
1.3.	Защита на курсова работа	1	45
Общо за семестриален контрол:			125
2.	Сесиен (краен) контрол		
2.1.	Изпит-писмен изпит с 4 задачи и 2 теоретични въпроса лотарийно изтеглени	1	70
	Общо за сесиен контрол:	1	70
	Общо за всички форми на контрол:	18	195

IV. <u>ЛИТЕРАТУРА</u>

ЗАДЪЛЖИТЕЛНА (ОСНОВНА) ЛИТЕРАТУРА:

- 1. Стоянов, Т., Математически анализ, "Наука и икономика", ИУ-Варна, 2012
- 2. Стоянов, Т., Каракулаков, М., Мирянов, Р., Математически анализ ръководство, Наука и икономика", ИУ-Варна, 201

ПРЕПОРЪЧИТЕЛНА (ДОПЪЛНИТЕЛНА) ЛИТЕРАТУРА:

- 1. Дочев, Д., Николаев, Р., Математически анализ, "Наука и икономика", ИУ-Варна, 2007
- 2. Дочев, Д., Николаев, Р., Милкова Т., Петков Й., Сборник от задачи по математически анализ, Наука и икономика", ИУ-Варна, 2007
- 3. Фихтенгольц, Г.М., Курс дифференциального и интегрального исчисления, І, ІІ, ІІІ т. ,Москва, 1970
- 4. Илин, В.А., Садовничи, В.А., Сендов, Б.Х., Математически манализ "Наука и изкуство"-София, 1979

Декември, 2017 г.