FACULDADE DE TECNOLOGIA DE SÃO JOSÉ DOS CAMPOS FATEC PROFESSOR JESSEN VIDAL

BRUNA DOS SANTOS DIAS

SISTEMAS DE NUMERAÇÃO

BRUNA DOS SANTOS DIAS

SISTEMAS DE NUMERAÇÃO

Trabalho de Graduação apresentado à Faculdade de Tecnologia de São José dos Campos, como parte dos requisitos necessários para a obtenção do título de Tecnólogo em análise e desenvolvimento de sistemas.

Orientador: Antonio Egydio

São José dos Campos 2021

Dados Internacionais de Catalogação-na-Publicação (CIP) Divisão de Informação e Documentação

DIAS, Bruna Sistemas de Numeração. São José dos Campos, 2021. 35f.

Trabalho Semestral – Curso de Tecnologia em Análise e Desenvolvimento de Sistemas. FATEC de São José dos Campos: Professor Jessen Vidal, 2021. Orientador Interno ou Principal: Mestre, Antonio Egydio.

1. Sistemas de Numeração. 2. Conversões. 3. Comunicação Digital. I. Faculdade de Tecnologia. FATEC de São José dos Campos: Professor Jessen Vidal. Divisão de Informação e Documentação. II. Título

REFERÊNCIA BIBLIOGRÁFICA

DIAS, Bruna. **Sistemas de Numeração.** 2021. 35f. Trabalho de Graduação - FATEC de São José dos Campos: Professor Jessen Vidal.

CESSÃO DE DIREITOS

NOME(S) DO(S) AUTOR(ES): Bruna dos Santos Dias TÍTULO DO TRABALHO: Sistemas de Numeração TIPO DO TRABALHO/ANO: Trabalho Semestral/2021.

É concedida à FATEC de São José dos Campos: Professor Jessen Vidal permissão para reproduzir cópias deste Trabalho e para emprestar ou vender cópias somente para propósitos acadêmicos e científicos. O autor reserva outros direitos de publicação e nenhuma parte deste Trabalho pode ser reproduzida sem a autorização do autor.

Bruna dos Santos Dias Rua Cosmos, 103 – Jardim América 12235-440, São José dos Campos – SP

BRUNA DOS SANTOS DIAS

SISTEMAS DE NUMERAÇÃO

Trabalho de Graduação apresentado à Faculdade de Tecnologia de São José dos Campos, como parte dos requisitos necessários para a obtenção do título de Tecnólogo em análise e desenvolvimento de sistemas.

Mestre, Antonio Egydio – FATEC

____/___/____

DATA DA APROVAÇÃO

RESUMO

O presente trabalho consiste na origem e explicação dos atuais sistemas numéricos usados na comunicação digital. A autora tem como objetivo ensinar como, e o porquê desses sistemas (decimal, binário, octal e hexadecimal) existirem além de explicar como fazer as conversões de uma base para outra. A metodologia utilizada, foi a metodologia de Gantt, ou seja, foi feita uma visão macro do projeto e a partir desta, as tarefas foram catalogadas com fases de desenvolvimento, data de começo e término da atividade na intenção de obter maior planejamento, controle de prazo e de fácil visualização. Os resultados apresentados foram a resolução de uma tabela de exercícios acerca das conversões de bases numéricas. E por fim, a conclusão apresenta o porquê desses sistemas e suas aplicações dos sistemas.

Palavras-Chave: Comunicação digital; Sistemas Numéricos; Gantt.

ABSTRACT

The present work consists of the origin and explanation of the current numerical systems used in digital communication. The author aims to teach how and why these systems (decimal, binary, octal and hexadecimal) exist, in addition to explaining how to convert from one base to another. The methodology used was the Gantt methodology, that is, a macro view of the project was made and from this, the tasks were cataloged with development phases, start and end date of the activity in order to obtain greater planning, control of term and easy to view. The results presented were the resolution of a table of exercises about the conversions of numerical bases. And finally, the conclusion presents why these systems and their systems applications.

Keywords: Digital communication; Numerical Systems; Gantt.

LISTA DE FIGURAS

Figura 1 - Exemplo de conversão decimal para binário	. 13
Figura 2 - 946 para binário	. 14
Figura 3 - 1024 para binário	. 14
Figura 4 - Exemplo de conversão decimal para hexadecimal	. 15
Figura 5 - 946 para hexadecimal	
Figura 6 - 1024 para hexadecimal	
Figura 7 - Exemplo de conversão decimal para octal	. 16
Figura 8 - 946 para octal	.17
Figura 9 - 1024 para octal	.17
Figura 10 - Exemplo de conversão binário para decimal	.18
Figura 11 - 101010 para decimal	. 19
Figura 12 - Exemplo de conversão binária para hexadecimal	. 19
Figura 13 - 101010 para hexadecimal	
Figura 14 - Exemplo de conversão binário para octal	.20
Figura 15 - 101010 para octal	.21
Figura 16 - Exemplo de conversão hexadecimal para decimal	.22
Figura 17 - ABC para decimal	.22
Figura 18 - 2F5AB para decimal	.23
Figura 19 - Exemplo de conversão hexadecimal para binário	.23
Figura 20 - ABC para binário	.24
Figura 21 - 2F5AB para binário	. 24
Figura 22 - Exemplo de conversão hexadecimal para octal	.24
Figura 23 - ABC para octal	.25
Figura 24 - 2F5AB para octal	.26
Figura 25 - Exemplo de conversão octal para decimal	.27
Figura 26 - 777 para decimal	
Figura 27 - Exemplo de conversão octal para binário	.28
Figura 28 - 777 para binário	
Figura 29 - Exemplo de conversão octal para hexadecimal	.29
Figura 30 - 777 para hexadecimal	.29
Figura 31 - Cronograma Fase 1, 2 e 3	.35
Figura 32 - Cronograma Fase 3	
Figura 33 - Cronograma Fase 4 e 5	.36

LISTA DE TABELAS

Tabela 1 - Problemática	11
Tabela 2 - Resultados sistema decimal	30
Tabela 3 - Resultados sistema binário	30
Tabela 4 - Resultados sistema hexadecimal	30
Tabela 5 - Resultados sistema octal	31

SUMÁRIO

1. INTRODUÇÃO	11
1.1. Conteúdo do Trabalho	11
2. FUNDAMENTAÇÃO TEÓRICA	12
2.1. Cronograma de Gantt	12
2.2. Apostila Técnica – Colégio Joseense	
3. DESENVOLVIMENTO	13
3.1. Sistema Indo-arábico (Decimal)	13
3.1.1. Decimal para Binário	
3.1.1.1 Decimal para Binário – 946	14
3.1.1.2 Decimal para Binário – 1024	
3.1.2. Decimal para Hexadecimal	
3.1.2.1 Decimal para Hexadecimal – 946	
3.1.3. Decimal para Octal	
3.1.3.1 Decimal para Octal – 946	
3.1.3.2 Decimal para Octal – 1024	
3.2. Sistema Binário	18
3.2.1. Binário para Decimal	
3.2.1.1 Binário para Decimal – 101010	
3.2.2. Binário para Hexadecimal	
3.2.2.1 Binário para Hexadecimal – 101010	
3.2.3. Binário para Octal	
3.2.3.1. Binário para Octal – 101010	
3.3.1. Sistema Hexadecimal para Decimal	
3.3.1.1. Sistema Hexadecimal para Decimal – ABC	
3.3.1.2. Sistema Hexadecimal para Decimal – 2F5AB	
3.3.2. Sistema Hexadecimal para Binário	
3.3.2.1. Sistema Hexadecimal para Binário – ABC	24
3.3.2.2. Sistema Hexadecimal para Binário – 2F5AB	
3.3.3. Sistema Hexadecimal para Octal	
3.3.3.1. Sistema Hexadecimal para Octal – ABC	
3.4. Sistema Octal	
3.4.1. Sistema Octal para Decimal	
3.4.1.1 Sistema Octal para Decimal – 777	27
3.4.2. Sistema Octal para Binário	
3.4.2.1. Sistema Octal para Binário – 777	28
3.4.3. Sistema Octal para Hexadecimal	
3.4.3.1. Sistema Octal para Hexadecimal – 777	29
4. RESULTADOS	30
4.1. Sistema Decimal	30
4.2. Sistema Binário	
4.3. Sistema Hexadecimal.	
4.4. Sistema Octal	
5. CONSIDERAÇÕES FINAIS	
•	
REFERÊNCIAS	33

1. INTRODUÇÃO

A problemática principal desse estudo tem como base a resolução da figura a seguir (Figura 1). Para isso no atual trabalho será feito uma explicação de como efetuar os cálculos das conversões e em seguida a resolução dos exercícios da Figura 1.

Tabela 1 - Problemática

	Binario	Octal	Decimal	Hexadecimal
946			X	
ABC				X
101010	X			
777		X		
1024			X	
2F5AB				х

Fonte: Professor Egydio (2021).

1.1. Conteúdo do Trabalho

O presente trabalho está estruturado em cinco capítulos, cujo conteúdo é sucintamente apresentado a seguir:

No Capítulo 2 é feita a fundamentação teórica, as referências nas quais as pesquisas foram baseadas.

O Capítulo 3 apresenta o desenvolvimento da solução da problemática, os cálculos das conversões.

No Capítulo 4 são apresentados os resultados da problemática proposta na Introdução do trabalho.

O Capítulo 5 apresenta as considerações finais deste trabalho a partir da análise dos resultados obtidos.

2. FUNDAMENTAÇÃO TEÓRICA

Este capítulo foi dividido em dois subtítulos principais que se fizeram necessárias as pesquisas para elaboração e produção deste trabalho semestral.

2.1. Cronograma de Gantt

Em tempos digitais, em que a tecnologia vem sendo cada vez mais frequente no cotidiano da sociedade, a autora viu a necessidade de adotar uma metodologia em que se é possível a fácil adaptação e que consiga ser dinâmica. Logo, como já detinha conhecimento de um tipo de metodologia, foi optado por usar o cronograma de Gantt por ser de fácil utilização e melhor organização e planejamento das tarefas.

2.2. Apostila Técnica – Colégio Joseense

A autora utilizou a apostila de Introdução ao Hardware/Montagem e Manutenção de Computadores/Sistemas Operacionais do curso técnico em informática do Colégio Joseense, como base para o desenvolvimento das explicações das conversões de bases decimais, binárias, hexadecimais e octais.

3. DESENVOLVIMENTO

3.1. Sistema Indo-arábico (Decimal)

O sistema de numeração que ainda usamos tem alguns ajustes na grafia das letras, mas torna muito fácil realizar as operações básicas e a escrita. Este sistema também é conhecido como sistema de numeração decimal ou sistema de posição decimal. Existem 10 símbolos para representar os números 0-9.

Entre eles, a posição do número é muito importante, o valor do número da frente é 10 vezes o valor do número anterior. É a divisão como uma unidade como a conhecemos, dez, cem etc. Recebeu o nome após aceitar as contribuições dessas duas nações, indo-árabes. O primeiro se deve à sua invenção e organização, o segundo, esses números foram ajustados e divulgados através das empresas.

3.1.1. Decimal para Binário

Números Decimais – Base 10.

Números Binários - Base 2.

Para fazer a conversão, o número decimal é dividido por 2 até obtivermos o número 0 embaixo da chave, como é exemplificado na Figura 2.

Figura 1 - Exemplo de conversão decimal para binário

Fonte: Artigo Conversões entre bases numéricas (2015).

3.1.1.1 Decimal para Binário – 946

Figura 2 - 946 para binário

1170170010

Fonte: Compilação do autor (2021).

3.1.1.2 Decimal para Binário – 1024

Figura 3 - 1024 para binário

3.1.2. Decimal para Hexadecimal

Para converter um número decimal em hexadecimal realiza-se a divisão sucessiva por 16 (base do sistema hexadecimal), semelhante à conversão de decimal para binário. Por exemplo, vamos converter o número 438 em hexadecimal:

Figura 4 - Exemplo de conversão decimal para hexadecimal

Fonte: Embarcados (2016).

O resultado é lido da direita para a esquerda a partir do último quociente. Assim. 438 é igual a 1B6₍₁₆₎. Note que o resto da segunda divisão foi o número 11, que corresponde ao número B em Hexadecimal.

3.1.2.1 Decimal para Hexadecimal – 946

Figura 5 - 946 para hexadecimal

CS Digitalizado com CamScanner

3.1.2.2 Decimal para Hexadecimal – 1024

Figura 6 - 1024 para hexadecimal

Fonte: Compilação do autor (2021).

3.1.3. Decimal para Octal

Para converter um número decimal em octal realiza-se a divisão sucessiva por 8 (base do sistema octal), semelhante às conversões apresentadas para os sistemas binário e hexadecimal.

Por exemplo, vamos converter o número 246 para octal:

Figura 7 - Exemplo de conversão decimal para octal

Fonte: Embarcados (2016).

O resultado é lido da direita para a esquerda a partir do último quociente. Assim, 246 é igual a $366_{(8)}$.

3.1.3.1 Decimal para Octal - 946

Figura 8 - 946 para octal

CS Digitalizado com CamScanner

Fonte: Compilação do autor (2021).

3.1.3.2 Decimal para Octal - 1024

Figura 9 - 1024 para octal

3.2. Sistema Binário

O sistema binário é um sistema de numeração em que todas as quantidades que se representam com base em dois números, com o que se dispõe das cifras: zero e um (0 e 1).

Em computadores digitais trabalham internamente com dois níveis de tensão, pelo que o seu sistema de numeração natural é o sistema binário. Com efeito, em um sistema simples como este é possível simplificar e calcular, com o auxílio da lógica booleana. Em computação, chama-se um dígito binário (0 ou 1) de bit. Um agrupamento de 8 bits corresponde a um byte.

3.2.1. Binário para Decimal

O sistema binário só possui 2 algarismos. Cada posição tem um peso de uma potência de 2 (base do sistema binário). Sendo assim, para se converter um número de binário para decimal, deve-se multiplicar cada bit pela potência de sua posição e somar os resultados.

Por exemplo, a conversão do número 1011₍₂₎ para decimal é feita da seguinte forma:

Binário 1 0 1 1 Valor da posição 1×2^{3} 0×2^{2} 1×2^{1} 1×2^{0} 8 0 2 1 Resultado 8+0+2+1=11 decimal

Figura 10 - Exemplo de conversão binário para decimal

Fonte: Embarcados (2016).

3.2.1.1 Binário para Decimal – 101010

Figura 11 - 101010 para decimal

5 Digitalizado com CamScanner

Fonte: Compilação do autor (2021).

3.2.2. Binário para Hexadecimal

Para converter um número binário para hexadecimal, basta separar o número binário da direita para a esquerda em grupos de quatro bits em seguida, converter cada conjunto em um algarismo hexadecimal correspondente, se não for possível formar um grupo de quatro bits, completa-se o grupo com zero na esquerda, ou seja, por exemplo o número 11010 ficará 00011010.

Figura 12 - Exemplo de conversão binária para hexadecimal

Fonte: Canal Matemática – Prof. Reginaldo Moraes (2018).

3.2.2.1 Binário para Hexadecimal – 101010

Figura 13 - 101010 para hexadecimal

Fonte: Compilação do autor (2021).

3.2.3. Binário para Octal

Para conversão de binário em octal, faz-se o processo inverso, ou seja, separa-se o número em grupo de 3 bits (a partir da direita) e converte cada grupo no octal correspondente.

Figura 14 - Exemplo de conversão binário para octal

Fonte: Canal Matemática – Prof. Reginaldo Moraes (2018).

3.2.3.1. Binário para Octal – 101010

Figura 15 - 101010 para octal

CS Digitalizado com CamScanner

Fonte: Compilação do autor (2021).

3.3. Sistema Hexadecimal

O Hexadecimal é o sistema de numeração muito utilizado na programação de microprocessadores, em especial nos equipamentos e máquinas de estudo e sistemas de desenvolvimento. Trata-se de um sistema de numeração posicional que representa os números em base 16, sendo assim, utilizando 16 símbolos. Este sistema utiliza os símbolos 0, 1, 2, 3, 4, 5, 6, 7, 8 e 9 do sistema decimal, além das letras A, B, C, D, E e F.

A nomenclatura "hexadecimal" é usada devido aos termos "hexa" que significa "6" e "deci" que representa "10", portanto indicando a base 16. Cada número hexa significa quatro bits de dados binários. Um byte é criado por 8 bits e é representado por dois dígitos hexa. A grande vantagem de utilizar o sistema hexadecimal torna-se clara à medida que os números vão se tornando maiores.

Este sistema é muito utilizado para demonstrar números binários de uma forma mais compacta, visto ser muito mais fácil converter hexadecimal em binários e vice-versa.

3.3.1. Sistema Hexadecimal para Decimal

Para converter um número hexadecimal para decimal, basta multiplicar cada digito pelo seu valor de posição e somar os resultados.

Figura 16 - Exemplo de conversão hexadecimal para decimal

Hexadecimal	1	А	8	2
Valor de Posição	16³	16²	16¹	16º
Calculo	1 x 16 ³ = 4096 A x 16 ² = 2560		8 x 16¹ = 128	2 x 16° = 2
Valor Final	4096 + 2560 + 128 + 2 = 6786 (Decimal)			

Fonte: Mecaweb (2019).

3.3.1.1. Sistema Hexadecimal para Decimal - ABC

Figura 17 - ABC para decimal

ABC
$$\begin{array}{c|c}
Lo 12 \times 16^{\circ} = 12 \\
\hline
0.11 \times 16^{\circ} = 176 \\
\hline
0.10 \times 16^{\circ} = 2560
\end{array}$$

$$\begin{array}{c|c}
2560 \\
176 \\
\hline
12+ \\
2748
\end{array}$$

CS Digitalizado com CamScar

3.3.1.2. Sistema Hexadecimal para Decimal – 2F5AB

Figura 18 - 2F5AB para decimal

3.3.2. Sistema Hexadecimal para Binário

Para converter números hexadecimais em binários, decompõem-se o número hexadecimal diretamente em binários de 4 dígitos. Os zeros mais à esquerda do resultado binário podem ser omitidos:

0+0+2+0=20x20 1x23 1x22 1x21 1x20 0x23 0x22 1x21 Auran A

Figura 19 - Exemplo de conversão hexadecimal para binário

Fonte: Apostila Colégio Joseense (2018).

3.3.2.1. Sistema Hexadecimal para Binário – ABC

Figura 20 - ABC para binário

Fonte: Compilação do autor (2021).

3.3.2.2. Sistema Hexadecimal para Binário – 2F5AB

Figura 21 - 2F5AB para binário

Fonte: Compilação do autor (2021).

3.3.3. Sistema Hexadecimal para Octal

Para converter um número hexadecimal em octal, transforma-se primeiro o hexadecimal em binário e em seguida o binário em octal:

Figura 22 - Exemplo de conversão hexadecimal para octal

CS Digitalizado com CamScanne

Fonte: Apostila Colégio Joseense (2018).

3.3.3.1. Sistema Hexadecimal para Octal – ABC

Figura 23 - ABC para octal

3.3.3.2. Sistema Hexadecimal para Octal – 2F5AB

2F5AB(16) = 1011110101101010101010(2)

Figura 24 - 2F5AB para octal

572653

Fonte: Compilação do autor (2021).

3.4. Sistema Octal

Sistema Octal é um sistema de numeração cuja base é 8, ou seja, utiliza 8 símbolos para a representação de quantidade. No ocidente, estes símbolos são os algarismos arábicos: 0 1 234567.

O octal foi muito utilizado em informática como uma alternativa mais compacta ao binário na programação em linguagem de máquina. Hoje, o sistema hexadecimal é mais utilizado como alternativa ao binário.

Este sistema também é um sistema posicional e a posição de seus algarismos determinada em relação à virgula decimal. Caso isso não ocorra, supõe-se implicitamente colocada à direita do número.

A aritmética desse sistema é semelhante à dos sistemas decimal e binário, o motivo pelo qual não será apresentada.

3.4.1. Sistema Octal para Decimal

A conversão de números octais em decimais é obtida através da soma dos dígitos do número octal multiplicados pela base 8 elevada à posição colunar do dígito, começando em 0 da direita para a esquerda:

Figura 25 - Exemplo de conversão octal para decimal

<u>ي</u>	3	1	
3 x8²	3 x8 ¹	1x8º	

4 5
4x8¹ 5x8⁰
32 + 5 = 37

Fonte: Apostila Colégio Joseense (2018).

3.4.1.1 Sistema Octal para Decimal – 777

Figura 26 - 777 para decimal

CS Digitalizado com CamScanne

Fonte: Compilação do autor (2021).

3.4.2. Sistema Octal para Binário

Para converter números octais em binários, decompõem-se o número octal diretamente em binários de 3 dígitos. Os zeros mais à esquerda do resultado binário podem ser omitidos:

	1			2			3	and agreement of the second of
0 +	0 + 0 + 1 = 1		0+2+0=2		0+	2 + 1	=15	
0 x2²	0 x2 ¹	1 x2º	0 x2²	1 x2 ¹	0 x2°	1 x2 ²	1x2 ¹	1 x2⁰
0	0	1	0	1	0	0	1	1
		1	0	1	0	0	1	1

Figura 27 - Exemplo de conversão octal para binário

Fonte: Apostila Colégio Joseense (2018).

3.4.2.1. Sistema Octal para Binário – 777

Figura 28 - 777 para binário

CS Digitalizado com CamScanner

Fonte: Compilação do autor (2021).

3.4.3. Sistema Octal para Hexadecimal

Para converter um número octal em decimal, transforma-se primeiro o octal em binário e em seguida o binário em hexadecimal:

Figura 29 - Exemplo de conversão octal para hexadecimal

Fonte: Apostila Colégio Joseense (2018).

3.4.3.1. Sistema Octal para Hexadecimal – 777

Figura 30 - 777 para hexadecimal

4. RESULTADOS

Nesta fase será realizada uma análise crítica dos resultados obtidos, comparando com os esperados e os visualizados na Fundamentação Teórica.

Em relação a formatação, deve seguir o padrão das instruções apresentadas ao final deste documento.

4.1. Sistema Decimal

Tabela 2 - Resultados sistema decimal

	Decimal ₍₁₀₎
946 ₍₁₀₎	946
ABC ₍₁₆₎	2748
101010(2)	42
777 ₍₈₎	511
1024 ₍₁₀₎	1024

4.2. Sistema Binário

Tabela 3 - Resultados sistema binário

	Binário ₍₂₎
946 ₍₁₀₎	1110110010
ABC ₍₁₆₎	101010111100
101010(2)	101010
777 ₍₈₎	111111111
1024 ₍₁₀₎	1000000000
2F5AB ₍₁₆₎	101111010110101011

4.3. Sistema Hexadecimal

Tabela 4 - Resultados sistema hexadecimal

	Hexadecimal ₍₁₆₎
946 ₍₁₀₎	3B2
ABC ₍₁₆₎	ABC

	Hexadecimal ₍₁₆₎
101010(2)	2A
777 ₍₈₎	1FF
1024 ₍₁₀₎	400
2F5AB ₍₁₆₎	2F5AB

4.4. Sistema Octal

Tabela 5 - Resultados sistema octal

	Octal ₍₈₎
946 ₍₁₀₎	1662
ABC ₍₁₆₎	5274
101010(2)	52
777 ₍₈₎	777
1024 ₍₁₀₎	2000
2F5AB ₍₁₆₎	5274

5. CONSIDERAÇÕES FINAIS

É indiscutível a importância da matemática para computação, logo, por meio desse trabalho a autora quis explicar sobre a importância da conversão entre bases numéricas, os dois níveis mais baixos de linguagens de programação mostrar isso, Linguagem de Máquina e a Linguagem Hexadecimal, ambas são tipos de bases numéricas, Linguagem de Máquina é baseada no sistema binário, base 2, e Linguagem Hexadecimal é baseada no sistema Hexadecimal, base 16, Linguagens com essa são consideradas de baixo nível ou seja programas são executados com maior velocidade de processamento e ocupam menos espaço na memória, características vantajosas para o computador.

Durante o desenvolvimento do problema percebi a importância das bases numéricas, como podemos representar um número com menos ou mais caracteres, algo que para computação é importante.

REFERÊNCIAS

BEDIN, Yan. Alternativa à metodologia de Gantt: ganhe mais eficiência com a Prevision.

Prevision. Disponível em: https://www.prevision.com.br/blog/alternativa-a-metodologia-degantt/>. Acesso em: 28 out. 2021.

CONVERSÕES ENTRE BASES NUMÉRICAS APLICADOS EM INTELIGÊNCIAS ARTIFICIAIS. [s.l.: s.n., s.d.]. Disponível em:

https://docs.academicoo.com/user/gsansigolo/conversoes-entre-bases-numericas-aplicados-em-inteligencias-artificiai.pdf>. Acesso em: 28 out. 2021.

RODRIGUES, Raul. Sistemas de numeração: o que são, tipos, exemplos. Mundo

Educação. Disponível em: https://mundoeducacao.uol.com.br/matematica/sistema-numeracao.htm. Acesso em: 28 out. 2021.

FÁBIO SOUZA. **Aprenda a fazer conversão entre sistemas de numeração**. Embarcados - Sua fonte de informações sobre Sistemas Embarcados. Disponível em:

https://www.embarcados.com.br/conversao-entre-sistemas-de-numeracao/. Acesso em: 28 out. 2021.

S.LOPES. O que é o Sistema Binário. Oficina da Net. Disponível em:

https://www.oficinadanet.com.br/artigo/1347/o_sistema_binario. Acesso em: 28 out. 2021.

REDAÇÃO. O que é sistema hexadecimal? Canaltech. Disponível em:

https://canaltech.com.br/produtos/O-que-e-sistema-hexadecimal/. Acesso em: Acesso em: 28 out. 2021.

MecaWeb - Conversão Hexadecimal Binário - Binário Hexadecimal. Mecaweb.com.br.

Disponível em: http://www.mecaweb.com.br/eletronica/content/e_hexadecimal_binario. Acesso em: 28 out. 2021.

MecaWeb - Conversão Hexadecimal Decimal - Decimal Hexadecimal. Mecaweb.com.br.

Disponível em: http://www.mecaweb.com.br/eletronica/content/e_hexadecimal_decimal.

Acesso em: 28 out. 2021.

MATEMÁTICA - PROF REGINALDO MORAES. BINÁRIO para OCTAL | SISTEMA de NUMERAÇÃO. Disponível em:

https://www.youtube.com/watch?v=qf5NJmnWqtw&t=355s. Acesso em: 28 out. 2021.

MATEMÁTICA - PROF REGINALDO MORAES. HEXADECIMAL para BINÁRIO | SISTEMA de NUMERAÇÃO. Disponível em:

https://www.youtube.com/watch?v=1DkNZDrFjEc. Acesso em: 28 out. 2021.

MATEMÁTICA - PROF REGINALDO MORAES. BINÁRIO para HEXADECIMAL | SISTEMA de NUMERAÇÃO. Disponível em: https://www.youtube.com/watch?v=u2z-iCyLzm4&t=323s. Acesso em: 28 out. 2021.

APÊNDICE A – CRONOGRAMA

Figura 31 - Cronograma Fase 1, 2 e 3

GRÁFICO DE GANTT

SISTEMAS NÚMERICOS
BRUNA DOS SANTOS DIAS

TÓPICOS	TÍTULO DA TAREFA			DURAÇÃO (DIAS)	% DA TAREFA CONCLUÍDA			FAS	E1			FASE 2										
		DATA DE INÍCIO	DATA DE CONCLUSÃO			SEMANA 1						SEMANA 2					SEMANA 3					
						s	ı	q		Q :	s	3 1	Q	Q	s	s	Т	Q	Q s	s		
1	Elaboração e início do projeto																					
1.1	Definição de tópicos	13/10/21	14/10/21	1	100 %	П			Т					T								
1.2	Definição da metodologia utilizada	14/10/21	15/10/21	1	100 %																	
1.3	Definição do material a ser lido para fundamentação téorica	15/10/21	18/10/21	3	100 %																	
1.4	Início do projeto	20/10/21	22/10/21	2	100 %																	
2	Desempenho do projeto / monitoramen	to																				
2.1	Folha de Aprovação	21/10/21	22/10/21	0	100 %	Г									П							
2.2	Resumo	27/10/21	28/10/21	0	100 %																	
2.3	Cronograma de Gantt	28/10/21	28/10/21	0	100 %																	
2.4	Abstract	28/10/21	28/10/21	0	100 %																	
3	Desenvolvimento																					
3.1	Introdução	28/10/21	29/10/21	1	100 %																	
3.2	Sistema decimal	28/10/21	30/10/21	2	100 %																	
3.3	Sistema decimal para binario	28/10/21	30/10/21	2	100 %																	
3.4	946(dec) -> bin	28/10/21	30/10/21	2	100 %																	
3.5	1024(dec) -> bin	28/10/21	30/10/21	2	100 %																	
3.6	Decimal para Hexa	28/10/21	30/10/21	2	100 %																	
3.7	946(dec) -> hex	28/10/21	30/10/21	2	100 %																	
3.8	1024(dec) -> hex	28/10/21	30/10/21	2	100 %																	

Fonte: Compilação do autor (2021).

Figura 32 - Cronograma Fase 3

3.9	Sistema Decimal para Octal	28/10/21	30/10/21	2	100 %	
3.10	946(dec) -> oct	28/10/21	30/10/21	2	100 %	
3.11	1024(dec) -> oct	28/10/21	30/10/21	2	100 %	
3.12	Sistema binário	28/10/21	30/10/21	2	100 %	
3.13	Binario para Decimal	28/10/21	30/10/21	2	100 %	
3.14	101010(bin) -> dec	28/10/21	30/10/21	2	100 %	
3.15	Binario para Hexadecimal	28/10/21	30/10/21	2	100 %	
3.16	101010(bin) -> hex	28/10/21	30/10/21	2	100 %	
3.17	Binário para Octal	28/10/21	30/10/21	2	100 %	
3.18	101010(bin) -> oct	28/10/21	30/10/21	2	100 %	
3.19	Sistema hexadecimal	28/10/21	31/10/21	3	100 %	
3.20	Hexadecimal para Decimal	28/10/21	31/10/21	3	100 %	
3.21	ABC(hex) -> dec	28/10/21	31/10/21	3	100 %	
3.22	2F5AB(hex) -> dec	28/10/21	31/10/21	3	100 %	
3.23	Hexadecimal para Binario	29/10/21	01/11/21	3	100 %	
3.24	ABC(hex) -> bin	29/10/21	01/11/21	3	100 %	
3.25	2F5AB(hex) -> bin	29/10/21	01/11/21	3	100 %	
3.26	Hexadecimal para Octal	29/10/21	01/11/21	3	100 %	
3.27	ABC(hex) -> oct	29/10/21	01/11/21	3	100 %	
3.28	2F5AB(hex) -> oct	29/10/21	01/11/21	3	100 %	
3.29	Sistema octal	29/10/21	01/11/21	3	100 %	
3.30	Octal para Decimal	29/10/21	01/11/21	3	100 %	
3.31	777(oct) -> dec	29/10/21	01/11/21	3	100 %	
3.32	Octal para Binário	29/10/21	01/11/21	3	100 %	
3.33	777(oct) -> bin	29/10/21	01/11/21	3	100 %	
3.34	Octal para Hexadecimal	29/10/21	01/11/21	3	100 %	
3.35	777(oct) -> hex	29/10/21	01/11/21	3	100 %	

Figura 33 - Cronograma Fase 4 e 5

3.36	Atualização da formatação	29/10/21	01/11/21	3	100%		T			T	Ī	1	1
	(legenda das figuras e fonte)					1				 1			H
4	Considerações Finais												
4.1	Resultados	01/11/2021	03/11/21	2	100 %								
4.2	Conclusão	01/11/21	03/11/21	2	100%								
4.3	Referencias bibliograficas	01/11/2021	03/11/21	2	100%								
4.4	Fundamentação teorica	01/11/2021	03/11/21	2	100%								
4.5	Apendice A - Cronograma	01/11/2021	03/11/21	2	100%								
4.6	Lista de figuras	01/11/2021	03/11/21	2	100%								
4.7	Sumario	01/11/2021	03/11/21	2	100%								
4.8	Referencia bibliografica autoral & catalogação (num paginas)	01/11/2021	03/11/21	2	100%								
5	Entrega do trabalho												
5.1	Entrega do trabalho	02/11/21	30/11/21	0	100%								