

Automatic Monte Carlo Methods for Bayesian Inference

Noah Grudowski

Applied Mathematics, Illinois Institute of Technology

Bayesian Statistics

- Model parameters are random
- Prior distribution, π , reflects beliefs about the parameters
- Sampling yields a likelihood function, L
- Posterior density: product of the prior and the likelihood
- Estimates involve integrals, e.g.

$$\hat{eta}_j = rac{\int_{\mathbb{R}^{d+1}} b_j L(oldsymbol{b}) \pi(oldsymbol{b}) doldsymbol{b}}{\int_{\mathbb{R}^{d+1}} L(oldsymbol{b}) \pi(oldsymbol{b}) doldsymbol{b}} =: rac{\mu_j}{oldsymbol{\mu}} ext{ for } j = 0, 1, 2, \dots, d$$

Quasi-Monte Carlo Cubature

Approximates integrals:

$$\int_{[0,1]^{d+1}} f(\mathbf{x}) d\mathbf{x} \approx \frac{1}{n} \sum_{i=0}^{n-1} f(x_i)$$

where $\{x_i\}_{i=1}^{\infty}$ is a low-discrepancy sequence

 A low-discrepancy sequence is a correlated sequence whose empirical distribution matches the target distribution better than an IID sequence

Model Problem

- Bayesian inference is applied to logistic regression.
- $t_i \sim \mathsf{Ber}\left(\frac{\exp\left(eta_0 + \sum_{j=1}^d eta_j s_{ij}\right)}{1 + \exp\left(eta_0 + \sum_{j=1}^d eta_j s_{ij}\right)}\right)$, for $i = 1, 2, \ldots, M$
- Standard norm prior for β

$$\pi(oldsymbol{b}) = rac{\exp\left(-rac{1}{2}oldsymbol{b}^Toldsymbol{b}
ight)}{\sqrt{(2\pi)^{d+1}}}$$

ullet Posterior mean estimates of eta

$$\hat{eta}_j = rac{\int_{\mathbb{R}^{d+1}} b_j L(oldsymbol{b}) \pi(oldsymbol{b}) doldsymbol{b}}{\int_{\mathbb{R}^{d+1}} L(oldsymbol{b}) \pi(oldsymbol{b}) doldsymbol{b}} =: rac{\mu_j}{oldsymbol{\mu}}, ext{ for } j=0,1,2,\ldots,d$$

A special appreciation and thank you to the IIT College of Science for providing the funding behind this research project.

Choice of Density for Integration

- μ_i/μ cannot be calculated analytically
- Rewrite μ as (similarly for μ_i):

$$m{\mu} = \int_{\mathbb{R}^{d+1}} L(m{b}) \pi(m{b}) dm{b} = \int_{\mathbb{R}^{d+1}} rac{L(m{b}) \pi(m{b})}{
ho(m{b})}
ho(m{b}) dm{b} = \int_{[0,1]^{d+1}} f(m{x}) dm{x},$$
 where $f(m{x}) = f(m{R}(m{b})) = rac{L(m{b}) \pi(m{b})}{
ho(m{b})}$

- and $ho(m{b}) = |dm{R}/dm{b}|$ for some suitable $m{R}: \mathbb{R}^{d+1}
 ightarrow [0,1]^{d+1}$
- Now, μ_j/μ can be approximated by sampling from $\rho(\boldsymbol{b})$ and applying quasi-Monte Carlo cubature
- We made the following choices for $\rho(\boldsymbol{b})$:

 $1) \rho = \pi$

 $2) \ \rho = \rho_{\rm MLE} = {\rm Gaussian\ approximation\ to\ the}$ likelihood

3) $\rho \propto \pi \cdot \rho_{\mathsf{MLE}}$

New MATLAB Function

- Developed function BayesianInference that automatically estimates the unknown parameters $\hat{\beta}$ using GAIL (Choi Et al, 2015)
- User inputs error tolerance, d, $\rho(b)$, and more

Uniform s-Data

Normal s-Data

M = 100; % number of s-Data values s = 2.*randn(1,M)+2; % s-Data normal with mean and sd 2 dim=2; absTol=0.0005; n=5;

Conclusions

- Each density choice was successful in approximating posterior mean estimates within the desired tolerance level
- The choice of density directly affects the time taken
- Further work should be done to improve the run time of BayesianInference and generalize the function to solve a greater variety of problems
- These results will be compared in detail to other methods used today, specifically Markov Chain Monte Carlo

References

- Choi, S.C.T., Ding, Y., Hickernell, F.J., Jiang, L., Jimenez Rugama, Ll.A., Tong, X., Zhang, Y., Zhou, X. GAIL: Guaranteed Automatic Integration Library (version 2.1), MATLAB software, 2015.
- Hickernell, F.J., Jimenez Rugama, Ll.A., Li, D.
 Contemporary Computational Mathematics A
 Celebration of the 80th Birthday of Ian Sloan. Adaptive
 Quasi-Monte Carlo Methods for Cubature. pages 597-619,
 Springer-Verlag, 2018.