Analysis of Algorithms

An **algorithm** is a step-by-step procedure for solving a problem in a finite amount of time.

Running Time (§3.1)

- Most algorithms transform input objects into output objects.
- The running time of an algorithm typically grows with the input size.
- Average case time is often difficult to determine.
- We focus on the worst case running time.
 - Easier to analyze
 - Crucial to applications such as games, finance and robotics

Experimental Studies

- Write a program implementing the algorithm
- Run the program with inputs of varying size and composition
- Use a method like System.currentTimeMillis() to get an accurate measure of the actual running time
- Plot the results

Limitations of Experiments

- It is necessary to implement the algorithm, which may be difficult
- Results may not be indicative of the running time on other inputs not included in the experiment.
- In order to compare two algorithms, the same hardware and software environments must be used

Theoretical Analysis

- Uses a high-level description of the algorithm instead of an implementation
- Characterizes running time as a function of the input size, n.
- Takes into account all possible inputs
- Allows us to evaluate the speed of an algorithm independent of the hardware/software environment

Pseudocode (§3.2)

- High-level description of an algorithm
- More structured than English prose
- Less detailed than a program
- Preferred notation for describing algorithms
- Hides program design issues

Example: find max element of an array

Algorithm arrayMax(A, n)
Input array A of n integers
Output maximum element of A

 $\begin{array}{l} \textit{currentMax} \leftarrow A[0] \\ \textit{for } i \leftarrow 1 \; \textit{to} \; n-1 \; \textit{do} \\ \textit{if } A[i] > \textit{currentMax} \; \textit{then} \\ \textit{currentMax} \leftarrow A[i] \\ \textit{return } \textit{currentMax} \end{array}$

Pseudocode Details

- Control flow
 - if ... then ... [else ...]
 - while ... do ...
 - repeat ... until ...
 - for ... do ...
 - Indentation replaces braces
- Method declaration

```
Algorithm method (arg [, arg...])
Input ...
```

Output ...

- Method call
 var.method (arg [, arg...])
- Return value return expression
- Expressions
 - ← Assignment (like = in Java)
 - = Equality testing
 (like == in Java)
 - n² Superscripts and other mathematical formatting allowed

The Random Access Machine (RAM) Model

◆ A CPU

An potentially unbounded bank of **memory** cells, each of which can hold an arbitrary number or character

Memory cells are numbered and accessing any cell in memory takes unit time.

Seven Important Functions (§3.3)

- Seven functions that often appear in algorithm analysis:
 - Constant ≈ 1
 - Logarithmic $\approx \log n$
 - Linear $\approx n$
 - N-Log-N $\approx n \log n$
 - Quadratic $\approx n^2$
 - Cubic $\approx n^3$
 - Exponential $\approx 2^n$
- In a log-log chart, the slope of the line corresponds to the growth rate of the function

Primitive Operations

- Basic computations performed by an algorithm
- Identifiable in pseudocode
- Largely independent from the programming language
- Exact definition not important (we will see why later)
- Assumed to take a constant amount of time in the RAM model

- Evaluating an expression
- Assigning a value to a variable
- Indexing into an array
- Calling a method
- Returning from a method

Counting Primitive Operations (§3.4)

By inspecting the pseudocode, we can determine the maximum number of primitive operations executed by an algorithm, as a function of the input size

```
Algorithm arrayMax(A, n) # operations currentMax \leftarrow A[0] for i \leftarrow 1 to n-1 do

if A[i] > currentMax then

currentMax \leftarrow A[i] 2(n-1)

{ increment counter i } 2(n-1)

return currentMax 1
```

Estimating Running Time

- Algorithm arrayMax executes 8n 2 primitive operations in the worst case. Define:
 - a = Time taken by the fastest primitive operation
 - b = Time taken by the slowest primitive operation
- Let T(n) be worst-case time of arrayMax. Then $a(8n-2) \le T(n) \le b(8n-2)$
- lacktriangle Hence, the running time T(n) is bounded by two linear functions

Growth Rate of Running Time

- Changing the hardware/ software environment
 - Affects T(n) by a constant factor, but
 - Does not alter the growth rate of T(n)
- The linear growth rate of the running time T(n) is an intrinsic property of algorithm arrayMax

Constant Factors

- The growth rate is not affected by
 - constant factors or
 - lower-order terms
- Examples
 - $10^2 n + 10^5$ is a linear function
 - $10^5 n^2 + 10^8 n$ is a quadratic function

Big-Oh Notation (§3.4)

Given functions f(n) and g(n), we say that f(n) is O(g(n)) if there are positive constants c and n_0 such that

$$f(n) \le cg(n)$$
 for $n \ge n_0$

- Example: 2n + 10 is O(n)
 - $2n + 10 \le cn$
 - $(c-2) n \ge 10$
 - $n \ge 10/(c-2)$
 - Pick c = 3 and $n_0 = 10$

Big-Oh Example

- **Example:** the function n^2 is not O(n)
 - $n^2 \le cn$
 - $n \leq c$
 - The above inequality cannot be satisfied since c must be a constant

More Big-Oh Examples

- ♦ 7n-2
 - 7n-2 is O(n) $need\ c>0\ and\ n_0\geq 1\ such\ that\ 7n-2\leq c\bullet n\ for\ n\geq n_0$ this is true for c=7 and $n_0=1$
- $3n^3 + 20n^2 + 5$ $3n^3 + 20n^2 + 5$ is $O(n^3)$ need c > 0 and $n_0 \ge 1$ such that $3n^3 + 20n^2 + 5 \le c \cdot n^3$ for $n \ge n_0$ this is true for c = 4 and $n_0 = 21$
- 3 log n + 5

 $3 \log n + 5 \text{ is O}(\log n)$ need c > 0 and $n_0 \ge 1$ such that $3 \log n + 5 \le c \bullet \log n$ for $n \ge n_0$ this is true for c = 8 and $n_0 = 2$

Big-Oh and Growth Rate

- The big-Oh notation gives an upper bound on the growth rate of a function
- The statement "f(n) is O(g(n))" means that the growth rate of f(n) is no more than the growth rate of g(n)
- We can use the big-Oh notation to rank functions according to their growth rate

	f(n) is $O(g(n))$	g(n) is $O(f(n))$
g(n) grows more	Yes	No
f(n) grows more	No	Yes
Same growth	Yes	Yes

Big-Oh Rules

- If is f(n) a polynomial of degree d, then f(n) is $O(n^d)$, i.e.,
 - Drop lower-order terms
 - 2. Drop constant factors
- Use the smallest possible class of functions
 - Say "2n is O(n)" instead of "2n is $O(n^2)$ "
- Use the simplest expression of the class
 - Say "3n + 5 is O(n)" instead of "3n + 5 is O(3n)"

Asymptotic Algorithm Analysis

- The asymptotic analysis of an algorithm determines the running time in big-Oh notation
- To perform the asymptotic analysis
 - We find the worst-case number of primitive operations executed as a function of the input size
 - We express this function with big-Oh notation
- Example:
 - We determine that algorithm arrayMax executes at most 8n-2 primitive operations
 - We say that algorithm arrayMax "runs in O(n) time"
- Since constant factors and lower-order terms are eventually dropped anyhow, we can disregard them when counting primitive operations

Computing Prefix Averages

- We further illustrate asymptotic analysis with two algorithms for prefix averages
- The *i*-th prefix average of an array X is average of the first (*i* + 1) elements of X:

$$A[i] = (X[0] + X[1] + ... + X[i])/(i+1)$$

Computing the array A of prefix averages of another array X has applications to financial analysis

Prefix Averages (Quadratic)

The following algorithm computes prefix averages in quadratic time by applying the definition

Algorithm <i>prefixAverages1(X, n)</i>	
Input array X of n integers	
Output array A of prefix averages of	of X #operations
$A \leftarrow$ new array of n integers	n
for $i \leftarrow 0$ to $n-1$ do	n
$s \leftarrow X[0]$	n
for $j \leftarrow 1$ to i do	1+2++(n-1)
$s \leftarrow s + X[j]$	1+2++(n-1)
$A[i] \leftarrow s / (i+1)$	n
return A	1

Arithmetic Progression

- The running time of prefixAverages1 is O(1 + 2 + ... + n)
- The sum of the first n integers is n(n + 1) / 2
 - There is a simple visual proof of this fact
- Thus, algorithm prefixAverages1 runs in O(n²) time

Prefix Averages (Linear)

The following algorithm computes prefix averages in linear time by keeping a running sum

Algorithm prefixAverages2(X, n)	
Input array X of n integers	
Output array A of prefix averages of X	#operations
$A \leftarrow$ new array of n integers	n
$s \leftarrow 0$	1
for $i \leftarrow 0$ to $n-1$ do	n
$s \leftarrow s + X[i]$	n
$A[i] \leftarrow s/(i+1)$	n
return A	1

 \bullet Algorithm *prefixAverages2* runs in O(n) time

Math you need to Review

- Summations
- Logarithms and Exponents

Basic probability

properties of logarithms:

$$log_b(xy) = log_bx + log_by$$

$$log_b(x/y) = log_bx - log_by$$

$$log_bxa = alog_bx$$

$$log_ba = log_xa/log_xb$$

properties of exponentials:

$$a^{(b+c)} = a^b a^c$$
 $a^{bc} = (a^b)^c$
 $a^b / a^c = a^{(b-c)}$
 $b = a^{\log_a b}$
 $b^c = a^{c*\log_a b}$

Relatives of Big-Oh

big-Omega

f(n) is Ω(g(n)) if there is a constant c > 0
 and an integer constant n₀ ≥ 1 such that
 f(n) ≥ c•g(n) for n ≥ n₀

big-Theta

f(n) is Θ(g(n)) if there are constants c' > 0 and c"
 > 0 and an integer constant n₀ ≥ 1 such that c'•g(n) ≤ f(n) ≤ c"•g(n) for n ≥ n₀

Intuition for Asymptotic Notation

Big-Oh

f(n) is O(g(n)) if f(n) is asymptotically
 less than or equal to g(n)

big-Omega

• f(n) is $\Omega(g(n))$ if f(n) is asymptotically greater than or equal to g(n)

big-Theta

• f(n) is ⊕(g(n)) if f(n) is asymptotically equal to g(n)

Example Uses of the Relatives of Big-Oh

f(n) is $\Omega(g(n))$ if there is a constant c > 0 and an integer constant $n_0 \ge 1$ such that $f(n) \ge c \cdot g(n)$ for $n \ge n_0$ let c = 5 and $n_0 = 1$

f(n) is $\Omega(g(n))$ if there is a constant c > 0 and an integer constant $n_0 \ge 1$ such that $f(n) \ge c \cdot g(n)$ for $n \ge n_0$ let c = 1 and $n_0 = 1$

■ $5n^2$ is $\Theta(n^2)$

f(n) is $\Theta(g(n))$ if it is $\Omega(n^2)$ and $O(n^2)$. We have already seen the former, for the latter recall that f(n) is O(g(n)) if there is a constant c > 0 and an integer constant $n_0 \ge 1$ such that $f(n) \le c \cdot g(n)$ for $n \ge n_0$

Let
$$c = 5$$
 and $n_0 = 1$