CAR SALES EDA

```
In [1]: #pip install missinano
In [2]: # Import Libraries
        import numpy as np
                                               # implement multi-dimensional arrays and matrices
        import pandas as pd
                                               # for data manupulation and analysis
        import matplotlib.pyplot as plt
                                               # for data visualization
                                               # provide high_Level of interface for drawing attractive and informative statistics
        import seaborn as sns
        %matplotlib inline
        import missingno as msno
        sns.set()
        from subprocess import check_output # for viewing profile report
        #import warnings to remove all warnings
        #warnings.filterwarnings("ianore")
In [3]: # Load data and view top 5
        carsales = pd.read_excel(r"C:\Users\EZ FARMING\Desktop\Seun Personal Docs\DATA SCIENCE\PYTHON\EXPLORATIVE DATA ANALYSIS\SORAN AUT
        carsales.head()
        4
Out[3]:
                                                 engV engType registration
                                   body mileage
                                                                               model
         0
                    Ford 15500.0 crossover
                                                  2.5
                                                                     yes 2010
                                                                                Kuga
         1 Mercedes-Benz 20500.0
                                             173
                                                  1.8
                                                          Gas
                                                                         2011 E-Class
         2 Mercedes-Benz 35000.0
                                             135
                                                  5.5
                                                         Petrol
                                                                         2008
                                                                               CL 550
         3 Mercedes-Benz 17800.0
                                     van
                                            162
                                                  1.8
                                                         Diesel
                                                                         2012
                                                                                B 180
                                                                                      front
         4 Mercedes-Benz 33000.0
                                   vagon
                                             91
                                                 NaN
                                                         Other
                                                                     yes 2013 E-Class
                                                                                      NaN
        Overview of dataset
In [4]: carsales.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 9576 entries, 0 to 9575
        Data columns (total 10 columns):
             Column
                            Non-Null Count
                                           Dtype
         0
                            9576 non-null
                                             object
             car
         1
             price
                            9576 non-null
                                             float64
                            9576 non-null
                                             object
             body
             mileage
                            9576 non-null
                                             int64
                            9142 non-null
                                             float64
             engV
             engType
                            9576 non-null
                                             object
             registration 9576 non-null
         6
                                             object
             year
                            9576 non-null
         8
                            9576 non-null
             model
                                             object
                            9065 non-null
             drive
                                             object
        dtypes: float64(2), int64(2), object(6)
        memory usage: 748.2+ KB
In [5]: # Dimensionality
        carsales.shape
Out[5]: (9576, 10)
In [6]: # statistical summary of the dataset
        carsales.describe().astype(int)
Out[6]:
                 price mileage engV
                                   year
                              9142
                                   9576
                 9576
                         9576
         count
                15633
                          138
                                 2 2006
         mean
                24106
                           98
                                 5
           std
          min
                   0
                           0
                                 0 1953
          25%
                 4999
                          70
                                 1 2004
          50%
                 9200
                          128
                                 2 2008
          75%
                16700
                          194
                                 2 2012
          max 547800
                          999
                                99 2016
```


In [8]: pip install -U pandas-profiling

```
Requirement already satisfied: pandas-profiling in c:\users\ez farming\anaconda\lib\site-packages (3.6.6)
Requirement already satisfied: ydata-profiling in c:\users\ez farming\anaconda\lib\site-packages (from pandas-profiling) (4.1.
Requirement already satisfied: scipy<1.10,>=1.4.1 in c:\users\ez farming\anaconda\lib\site-packages (from ydata-profiling->pand
as-profiling) (1.9.1)
Requirement already satisfied: matplotlib<3.7,>=3.2 in c:\users\ez farming\anaconda\lib\site-packages (from ydata-profiling->pa
ndas-profiling) (3.5.2)
Requirement already satisfied: statsmodels<0.14,>=0.13.2 in c:\users\ez farming\anaconda\lib\site-packages (from ydata-profilin
g->pandas-profiling) (0.13.2)
Requirement already satisfied: imagehash==4.3.1 in c:\users\ez farming\anaconda\lib\site-packages (from ydata-profiling->pandas
-profiling) (4.3.1)
Requirement already satisfied: visions[type_image_path] == 0.7.5 in c:\users\ez farming\anaconda\lib\site-packages (from ydata-pr
ofiling->pandas-profiling) (0.7.5)
Requirement already satisfied: pydantic<1.11,>=1.8.1 in c:\users\ez farming\anaconda\lib\site-packages (from ydata-profiling->p
andas-profiling) (1.10.7)
Requirement already satisfied: jinja2<3.2,>=2.11.1 in c:\users\ez farming\anaconda\lib\site-packages (from ydata-profiling->pan
das-profiling) (2.11.3)
Requirement already satisfied: numpy<1.24,>=1.16.0 in c:\users\ez farming\anaconda\lib\site-packages (from ydata-profiling->pan
das-profiling) (1.21.5)
Requirement already satisfied: PyYAML<6.1,>=5.0.0 in c:\users\ez farming\anaconda\lib\site-packages (from ydata-profiling->pand
as-profiling) (6.0)
Requirement already satisfied: seaborn<0.13,>=0.10.1 in c:\users\ez farming\anaconda\lib\site-packages (from ydata-profiling->p
andas-profiling) (0.11.2)
Requirement already satisfied: requests<2.29,>=2.24.0 in c:\users\ez farming\anaconda\lib\site-packages (from ydata-profiling->
pandas-profiling) (2.28.1)
Requirement already satisfied: htmlmin==0.1.12 in c:\users\ez farming\anaconda\lib\site-packages (from ydata-profiling->pandas-
profiling) (0.1.12)
Requirement already satisfied: phik<0.13,>=0.11.1 in c:\users\ez farming\anaconda\lib\site-packages (from ydata-profiling->pand
as-profiling) (0.12.3)
Requirement already satisfied: tqdm<4.65,>=4.48.2 in c:\users\ez farming\anaconda\lib\site-packages (from ydata-profiling->pand
as-profiling) (4.64.1)
Requirement already satisfied: typeguard<2.14,>=2.13.2 in c:\users\ez farming\anaconda\lib\site-packages (from ydata-profiling-
>pandas-profiling) (2.13.3)
Requirement already satisfied: pandas!=1.4.0,<1.6,>1.1 in c:\users\ez farming\anaconda\lib\site-packages (from ydata-profiling-
>pandas-profiling) (1.4.4)
Requirement already satisfied: multimethod<1.10,>=1.4 in c:\users\ez farming\anaconda\lib\site-packages (from ydata-profiling->
pandas-profiling) (1.9.1)
Requirement already satisfied: pillow in c:\users\ez farming\anaconda\lib\site-packages (from imagehash==4.3.1->ydata-profiling
->pandas-profiling) (9.2.0)
Requirement already satisfied: PyWavelets in c:\users\ez farming\anaconda\lib\site-packages (from imagehash==4.3.1->ydata-profi
ling->pandas-profiling) (1.3.0)
Requirement already satisfied: networkx>=2.4 in c:\users\ez farming\anaconda\lib\site-packages (from visions[type image path]==
0.7.5->ydata-profiling->pandas-profiling) (2.8.4)
Requirement already satisfied: attrs>=19.3.0 in c:\users\ez farming\anaconda\lib\site-packages (from visions[type_image_path]==
0.7.5->ydata-profiling->pandas-profiling) (21.4.0)
Requirement already satisfied: tangled-up-in-unicode>=0.0.4 in c:\users\ez farming\anaconda\lib\site-packages (from visions[typ
e_image_path]==0.7.5->ydata-profiling->pandas-profiling) (0.2.0)
Requirement already satisfied: MarkupSafe>=0.23 in c:\users\ez farming\anaconda\lib\site-packages (from jinja2<3.2,>=2.11.1->yd
ata-profiling->pandas-profiling) (2.0.1)
Requirement already satisfied: packaging>=20.0 in c:\users\ez farming\anaconda\lib\site-packages (from matplotlib<3.7,>=3.2->yd
ata-profiling->pandas-profiling) (21.3)
Requirement already satisfied: python-dateutil>=2.7 in c:\users\ez farming\anaconda\lib\site-packages (from matplotlib<3.7,>=3.
2->ydata-profiling->pandas-profiling) (2.8.2)
Requirement already satisfied: cycler>=0.10 in c:\users\ez farming\anaconda\lib\site-packages (from matplotlib<3.7,>=3.2->ydata
-profiling->pandas-profiling) (0.11.0)
Requirement already satisfied: fonttools>=4.22.0 in c:\users\ez farming\anaconda\lib\site-packages (from matplotlib<3.7,>=3.2->
ydata-profiling->pandas-profiling) (4.25.0)
Requirement already satisfied: kiwisolver>=1.0.1 in c:\users\ez farming\anaconda\lib\site-packages (from matplotlib<3.7,>=3.2->
ydata-profiling->pandas-profiling) (1.4.2)
Requirement already satisfied: pyparsing>=2.2.1 in c:\users\ez farming\anaconda\lib\site-packages (from matplotlib<3.7,>=3.2->y
data-profiling->pandas-profiling) (3.0.9)
Requirement already satisfied: pytz>=2020.1 in c:\users\ez farming\anaconda\lib\site-packages (from pandas!=1.4.0,<1.6,>1.1-yd
ata-profiling->pandas-profiling) (2022.1)
Requirement already satisfied: joblib>=0.14.1 in c:\users\ez farming\anaconda\lib\site-packages (from phik<0.13,>=0.11.1->ydata
-profiling->pandas-profiling) (1.1.0)
Requirement already satisfied: typing-extensions>=4.2.0 in c:\users\ez farming\anaconda\lib\site-packages (from pydantic<1.11,>
=1.8.1->ydata-profiling->pandas-profiling) (4.3.0)
Requirement already satisfied: urllib3<1.27,>=1.21.1 in c:\users\ez farming\anaconda\lib\site-packages (from requests<2.29,>=2.
24.0->ydata-profiling->pandas-profiling) (1.26.11)
Requirement already satisfied: idna<4,>=2.5 in c:\users\ez farming\anaconda\lib\site-packages (from requests<2.29,>=2.24.0->yda
ta-profiling->pandas-profiling) (3.3)
Requirement already satisfied: certifi>=2017.4.17 in c:\users\ez farming\anaconda\lib\site-packages (from requests<2.29,>=2.24.
0->ydata-profiling->pandas-profiling) (2022.9.14)
Requirement already satisfied: charset-normalizer<3,>=2 in c:\users\ez farming\anaconda\lib\site-packages (from requests<2.29,>
=2.24.0->ydata-profiling->pandas-profiling) (2.0.4)
Requirement already satisfied: patsy>=0.5.2 in c:\users\ez farming\anaconda\lib\site-packages (from statsmodels<0.14,>=0.13.2->
ydata-profiling->pandas-profiling) (0.5.2)
Requirement already satisfied: colorama in c:\users\ez farming\anaconda\lib\site-packages (from tqdm<4.65,>=4.48.2->ydata-profi
ling->pandas-profiling) (0.4.5)
Requirement already satisfied: six in c:\users\ez farming\anaconda\lib\site-packages (from patsy>=0.5.2->statsmodels<0.14,>=0.1
3.2->ydata-profiling->pandas-profiling) (1.16.0)
Note: you may need to restart the kernel to use updated packages.
```

```
In [9]: from pandas profiling import ProfileReport
```

C:\Users\EZ FARMING\AppData\Local\Temp\ipykernel_15868\2274191625.py:1: DeprecationWarning: `import pandas_profiling` is going
to be deprecated by April 1st. Please use `import ydata_profiling` instead.
 from pandas_profiling import ProfileReport

```
In [10]: carsales_profile = ProfileReport(carsales, title='carsales_before_data_cleaning')
carsales profile
```

Summarize dataset: 100%

36/36 [00:14<00:00, 3.40it/s, Completed]

Generate report structure: 100%

1/1 [00:04<00:00, 4.83s/it]

Render HTML: 100%

1/1 [00:07<00:00, 7.20s/it]

Overview

υa	taset	stat	ISUCS

Number of variables	10
Number of observations	9576
Missing cells	945
Missing cells (%)	1.0%
Duplicate rows	110
Duplicate rows (%)	1.1%
Total size in memory	748.2 KiB
Average record size in memory	80.0 B

Variable types

Categorical	4
Numeric	4
Boolean	1
Unsupported	1

Alerts

Dataset has 110 (1.1%) duplicate rows	Duplicates
can has a high cardinality: 87 distinct values	High cardinality
price is highly overall correlated with year	High correlation
mileage is highly overall correlated with year	High correlation
year is highly overall correlated with price and 1 other fields (price, mileage)	High correlation
car is highly overall correlated with drive	High correlation
body is highly overall correlated with drive	High correlation

Out[10]:

Data Cleaning

Out[11]:

car	price	body	mileage	engV	engType	registration	year	model	drive
0 Ford	15500.0	crossover	68	2.5	Gas	yes	2010	Kuga	full
1 Mercedes-Benz	20500.0	sedan	173	1.8	Gas	ves	2011	E-Class	rear

Rename column names

```
In [12]: carsales.columns
dtype='object')
carsales.head(2)
Out[13]:
               car band
                        price
                                body mileage engineValues engineType registration
                                                                        vear
                                                                             model drive
         0
                  Ford 15500.0 crossover
                                                   2.5
                                                                                     full
                                        68
                                                           Gas
                                                                     yes 2010
                                                                              Kuga
         1 Mercedes-Benz 20500.0
                                        173
                                                   1.8
                                                           Gas
                                                                     yes 2011 E-Class
                               sedan
                                                                                    rear
        Handling Duplicates
In [14]: carsales.duplicated().sum()
Out[14]: 113
In [15]: # drop duplicate rows
        carsales.drop duplicates(inplace=True)
In [16]: carsales.shape
Out[16]: (9463, 10)
 In [ ]:
        Handling missing values
        Type Markdown and LaTeX: \alpha^2
In [17]: # filling missing values for drive
        # find the mode
        carsales["drive"].mode()
Out[17]: 0
            front
        Name: drive, dtype: object
In [18]: #fill missing values with the mode "front"
        carsales["drive"] = carsales["drive"].fillna('front')
In [19]: #fill missing values for engineValue with the median
        carsales["engineValues"] = carsales.groupby(['car_band', 'body'])['engineValues'].transform(lambda x: x.fillna(x.median()))
In [20]: #Let's see what we did
        carsales.isna().sum()
Out[20]: car_band
                        0
        price
                        a
        body
                        0
        mileage
        engineValues
                       10
        engineType
                        0
        {\it registration}
                        0
                        0
        year
        model
                        0
        drive
                        0
        dtype: int64
In [21]: #drop the remaining NaN values
        carsales.dropna(subset=['engineValues'],inplace=True)
        carsales.isnull().sum()
Out[21]: car_band
                       0
        price
                       0
                       0
        body
        mileage
                       0
        engineValues
        engineType
                       0
        registration
                       0
        year
                       a
        model
                       0
        drive
        dtype: int64
```

Post profiling

Render HTML: 100%

```
In [25]: carsales_profile2 = ProfileReport(carsales, title='carsales_after_data_cleaning')
carsales profile2

Summarize dataset: 100%

35/35 [00:06<00:00, 3.85it/s, Completed]

Generate report structure: 100%

1/1 [00:04<00:00, 4.29s/it]
```

1/1 [00:01<00:00, 1.59s/it]

Overview

Dataset statistics					
Number of variables	10				
Number of observations	9215				
Missing cells	0				
Missing cells (%)	0.0%				
Duplicate rows	24				
Duplicate rows (%)	0.3%				
Total size in memory	1.0 MiB				
Average record size in memory	116.7 B				

Variable types

Categorical	4
Numeric	4
Boolean	1
Unsupported	1

Alerts

Dataset has 24 (0.3%) duplicate rows	Duplicates
car_band has a high cardinality: 84 distinct values	High cardinality
price is highly overall correlated with year	High correlation
mileage is highly overall correlated with year	High correlation
year is highly overall correlated with price and 1 other fields (price, mileage)	High correlation
car_band is highly overall correlated with drive	High correlation
body is highly overall correlated with drive	High correlation

Out[25]:

In []:

Questions:

- · Which type of cars are sold maximum?
- What is the correlation between price and mileage?
- · How many cars are registered?
- Does the registeration status influence car price?
- What is the car price distribution based on Engine Value?
- · Which car type has the highest pricing?

In []: L

EDA

```
In [26]: # 1. Which type of cars are sold most?

In [27]: carsales['car band'].value counts().head(1)

Out[27]: Volkswagen 899
    Name: car_band, dtype: int64

In [28]: # 2. What is the correlation between price and mileage?

In [29]: carsales['price'].corr(carsales['mileage'])

Out[29]: -0.3267339848197728

In [30]: # 3. How manv cars are reaistered?

In [31]: len(carsales[carsales['registration'] == 'ves'])

Out[31]: 8661

In [32]: # 4. Does the registration status influence car price?.

In [33]: sns.boxplot(x="registration", y="price", data=carsales)

Out[33]: <AxesSubplot:xlabel='registration', ylabel='price'>
```



```
In [34]: # separate data by registration status
    registered = carsales[carsales['registration'] == 'yes']
    not_registered = carsales[carsales['registration'] == 'no']

# plot scatter plot with different colors for each registration status
plt.scatter(registered['mileage'], registered['price'], color='blue', label='Registered')
plt.scatter(not_registered['mileage'], not_registered['price'], color='orange', label='Not Registered')

# set x and y labels
plt.xlabel('Mileage')
plt.ylabel('Price')

# set title and legend
plt.title('Scatter plot of Price vs Mileage by Registration Status')
plt.legend()

# display plot
plt.show()
```

Scatter plot of Price vs Mileage by Registration Status Registered Not Registered 500000 400000 300000 200000 100000 0 0 200 400 600 800 1000 Mileage

In [35]: # 5. What is the car price distribution based on Engine Value?

```
In [36]: # Group the data by Engine Value and calculate the mean price
         engine_groups = carsales.groupby('engineValues')['price'].mean()
         # Create a scatter plot with Engine Value on x-axis and Price on y-axis
         plt.scatter(x=carsales['engineValues'], y=carsales['price'], c=carsales['engineValues'], cmap='viridis', alpha=0.5)
         # Add a horizontal line for the mean price of each Engine Value group
         for engine_value, mean_price in engine_groups.iteritems():
             plt.axhline(mean_price, color='gray', linestyle='dashed', linewidth=1)
         # Set the axis LabeLs and title
         plt.xlabel('Engine Value')
         plt.ylabel('Price')
         plt.title('Car Price Distribution by Engine Value')
         plt.show()
```



```
In [37]: engine_price_dist = carsales.groupby('engineValues')['price'].describe()
         engine price dist
```

50%

75%

may

	count	mean	Stu		2070	30 /0	1370	IIIux
engineValues								
0.10	1.0	54000.000000	NaN	54000.0	54000.0	54000.0	54000.0	54000.0000
0.11	2.0	16700.000000	1414.213562	15700.0	16200.0	16700.0	17200.0	17700.0000
0.14	1.0	24300.000000	NaN	24300.0	24300.0	24300.0	24300.0	24300.0000
0.60	17.0	3870.529412	692.821957	2300.0	3450.0	3999.0	4200.0	5500.0000
0.65	1.0	38888.000000	NaN	38888.0	38888.0	38888.0	38888.0	38888.0000
	•••			•••	•••	•••	•••	
74.00	1.0	7500.000000	NaN	7500.0	7500.0	7500.0	7500.0	7500.0000
75.00	1.0	11350.000000	NaN	11350.0	11350.0	11350.0	11350.0	11350.0000
85.00	1.0	2800.000000	NaN	2800.0	2800.0	2800.0	2800.0	2800.0000
90.00	1.0	6100.000000	NaN	6100.0	6100.0	6100.0	6100.0	6100.0000

etd

min

25%

99.99 119 rows × 8 columns

27.0

count

mean

5546.866319 3987.433118

Out[37]:

```
In [38]: carsales.columns
Out[38]: Index(['car_band', 'price', 'body', 'mileage', 'engineValues', 'engineType',
                 'registration', 'year', 'model', 'drive'],
               dtype='object')
In [39]: # 6. Which car type has the highest pricing?
```

550.0 2700.0 4600.0 7850.0 15195.3906

```
In [40]: # Assuming the car sales data is stored in a DataFrame called 'carsales'
           car_type_prices = carsales.groupby('body')['price'].mean().sort_values(ascending=False)
highest_priced_car_type = car_type_prices.index[0]
           print(f"The car type with the highest pricing is {highest_priced_car_type}")
           The car type with the highest pricing is crossover
 In [ ]: L
```