Chapitre 19 : Propagation guidée

Introduction

A) Principe du guidage

On veut imposer à l'onde de se déplacer dans un espace limité

B) Différents types de guide

Les guides dépendent généralement de la pulsation

1) Ondes optiques

On a les fibres optiques:

• A saut d'indice :

• A gradient d'indice :

2) Ondes hertziennes

On utilise des guides métalliques, et un milieu de propagation diélectrique :

C) Hypothèses simplificatrices

On suppose que $\varepsilon_r = 1$, $\mu_r = 1$.

On suppose aussi que le métal est parfait ($\sigma = +\infty$)

Ainsi, il n'y a pas de dissipation d'énergie; dans le métal, on aura $\vec{E} = \vec{0}$ (car le conducteur est parfait), $\vec{B} = \vec{0}$ (statique en fait), et au voisinage $\vec{E} = \frac{\sigma}{\varepsilon_0} \vec{n}$, $\vec{B} = \mu_0 \vec{j}_s \wedge \vec{n}$

I Propagation entre deux plans parallèles infinis

A) Hypothèses de travail

1) Plans conducteurs

On suppose que les plans conducteurs sont infinis, et que ce sont des conducteurs parfaits.

2) Onde propagée

- Elle satisfait l'équation d'onde classique
- On a des conditions aux limites imposées par les plans et la source.

On cherche ici si on peut avoir des ondes de la forme :

$$\vec{E}(\vec{r},t) = \text{Re}(\vec{E}(x)e^{i(kz-\omega t)}), \ \vec{B}(\vec{r},t) = \text{Re}(\vec{B}(x)e^{i(kz-\omega t)})$$

C'est-à-dire des ondes sinusoïdales (par rapport à ω), se propageant selon Oz, avec $k = \alpha + i\beta$

Attention: Ici, on n'a pas des ondes planes.

B) Mise en équation

1) Formalisme complexe

• Pour les champs :

$$\vec{E}(x,z,t) \rightarrow \vec{E}(x)$$
, $\vec{B}(x,z,t) \rightarrow \vec{B}(x)$.

• Pour les opérateurs :

$$\frac{\partial}{\partial t} \rightarrow -i\omega, \ \vec{\nabla} \rightarrow \frac{d}{dx}\vec{u}_x + ik\vec{u}_z$$

2) Equations de Maxwell

Maxwell–Gauss:
$$\frac{d\underline{E}_x}{dx} + ik\underline{E}_z = 0$$
 (1)

Maxwell–Flux :
$$\frac{d\underline{B}_x}{dx} + ik\underline{B}_z = 0$$
 (2)

Maxwell–Faraday:
$$\begin{pmatrix} \frac{d}{dx} \\ 0 \\ ik \end{pmatrix} \wedge \begin{pmatrix} \underline{\underline{E}}_x \\ \underline{\underline{E}}_y \\ \underline{\underline{E}}_z \end{pmatrix} = i\omega \vec{B}, \text{ soit } \begin{cases} -k\underline{\underline{E}}_y = \omega \underline{\underline{B}}_x & (3.1) \\ ik\underline{\underline{E}}_x - \frac{d\underline{\underline{E}}_z}{dx} = i\omega \underline{\underline{B}}_y & (3.2) \\ \frac{d\underline{\underline{E}}_y}{dx} = i\omega \underline{\underline{B}}_z & (3.3) \end{cases}$$

Maxwell–Ampère :
$$\begin{cases} k\underline{B}_{y} = \frac{\omega}{c^{2}}\underline{E}_{x} & (4.1) \\ ik\underline{B}_{x} - \frac{d\underline{B}_{z}}{dx} = -i\frac{\omega}{c^{2}}\underline{E}_{y} & (4.2) \\ \frac{d\underline{B}_{y}}{dx} = -i\frac{\omega}{c^{2}}\underline{B}_{z} & (4.3) \end{cases}$$

3) Equation d'onde

On a avec les opérateurs :
$$\vec{\nabla}^2 + \frac{\omega^2}{c^2} = 0$$
, soit $\frac{d^2}{dx^2} + \frac{\omega^2}{c^2} - k^2 = 0$

Donc pour les champs:

$$\frac{d^2 \vec{\underline{E}}_x}{dx^2} + \left(\frac{\omega^2}{c^2} - k^2\right) \underline{\vec{E}}_x = 0, \quad \frac{d^2 \vec{\underline{B}}_x}{dx^2} + \left(\frac{\omega^2}{c^2} - k^2\right) \underline{\vec{B}}_x = 0 \quad \text{(et la même chose pour }$$

les autres coordonnées)

4) Conditions aux limites

En x = 0 et x = a, on a $\vec{E}_T = \vec{0}$, soit:

$$\underline{E}_{y}(0) = \underline{E}_{y}(a) = 0$$
 (CL1)

Et
$$\underline{E}_z(0) = \underline{E}_z(a) = 0$$
 (CL2)

On a aussi $\vec{B}_N = \vec{0}$, soit $\underline{B}_x(0) = \underline{B}_x(a) = 0$ (CL3)

(Remarque: avec (3.1), les conditions 1 et 3 sont équivalentes)

C) Ondes transverses électromagnétiques (TEM)

On cherche si on peut avoir des ondes transverses électromagnétiques, c'est-à-dire $\underline{E}_z = 0$ et $\underline{B}_z = 0$ pour tout x.

1) Structure de l'onde transverse électromagnétique

L'équation (1) donne alors $\underline{E}_x = \text{cte}$, et (2) donne $\underline{B}_x = \text{cte}$. Mais avec la condition (CL3), on a $\underline{B}_x = 0$

Ainsi,
$$\underline{\vec{B}} = \underline{B}_y(x)\vec{u}_y$$

Avec (3.1), on a alors
$$\underline{E}_y = 0$$
, donc $\underline{\vec{E}} = \underline{E}_x \vec{u}_x$ ($\underline{E} = \underline{E}_x = \text{cte}$)

Avec (3.2), on a
$$\underline{B}_y = \frac{k}{\omega} \underline{E}$$

Et avec (4.1),
$$\underline{B}_y = \frac{\omega}{kc^2} \underline{E}$$

Donc
$$\underline{B}_y = \frac{1}{c}\underline{E}$$

Ainsi,
$$\underline{\vec{B}} = \underline{B}_y \vec{u}_y = \underline{B} \vec{u}_y$$
 avec $\underline{B} = \frac{1}{c} \underline{E}$

On a ainsi une structure d'OPPS dans le vide.

2) Propagation

• Relation de dispersion :

Encore avec (3.2) et (4.1), on a $k^2 = \frac{\omega^2}{c^2}$, soit $k = \frac{\omega}{c}$

• Propagation:

On a $k \in \mathbb{R}$, donc il n'y a pas d'atténuation.

Et $v_{\varphi} = \frac{\omega}{k} = c$, donc il n'y a pas non plus de dispersion.

3) Charges et courants superficiels

• Charges:

En
$$x = 0$$
 et $x = a$: $\underline{\vec{E}} = \frac{\underline{\sigma}}{\varepsilon_0} \vec{n}$

Donc en
$$x = 0$$
, $\vec{n} = \vec{u}_x$ et $\underline{\sigma} = \varepsilon_0 \underline{E}$

Soit
$$\sigma = \text{Re}(\underline{\sigma}e^{i(kz-\omega.t)}) = \varepsilon_0 E \cos(\omega.t - kz)$$

En
$$x = a$$
, $\sigma(a) = -\sigma(0)$

• Courants:

En
$$x = 0$$
 et $x = a$, on a $\underline{\vec{B}} = \underline{B}\vec{u}_y = \mu_0 \vec{j}_s \wedge \vec{n}$

Donc en
$$x = 0$$
, $\underline{B}\vec{u}_y = \mu_0 \underline{\vec{j}}_s \wedge \vec{u}_x$

Soit
$$\underline{B}\vec{u}_z = \mu_0 \underline{\vec{j}}_s$$
, puis $\underline{\vec{j}}_s = \frac{\underline{B}}{\mu_0} \vec{u}_z$

Ainsi,
$$\vec{j}_s = \frac{E}{\mu_0 c} \cos(\omega t - kz) \vec{u}_z$$
; on a donc une onde longitudinale

En
$$x = a$$
, $\vec{j}_s(a) = -\vec{j}_s(0)$

Remarque:

On a bien conservation de la charge:

$$\frac{\partial \sigma}{\partial t} + \vec{\nabla} \cdot \vec{j}_s = 0 \Leftrightarrow -i\omega\underline{\sigma} + ik\underline{j}_s = 0 \Leftrightarrow -i\omega\varepsilon_0\underline{E} + ik\frac{\underline{E}}{\mu_0c} = 0, \text{ ce qui est vrai.}$$

D) Ondes transverses électriques (TE)

On cherche des ondes sous la forme $\underline{E}_z = 0$, $\underline{B}_z \neq 0$ (transverses électriques)

1) Champ $\frac{\vec{E}}{}$.

L'équation (1) donne déjà \underline{E}_x = cte

Ensuite, en projetant l'équation d'onde sur \vec{u}_x , on obtient

$$\left(\frac{\boldsymbol{\omega}^2}{c^2} - k^2\right) \underline{E}_x = 0$$

Donc

Soit $k^2 = \frac{\omega^2}{c^2}$, et on peut montrer qu'alors $\underline{B}_z = 0$ (avec les équations et conditions aux limites), ce qui est le cas précédent.

Soit
$$\underline{E}_x = 0$$
.

Donc
$$\underline{\vec{E}} = \underline{E}_y \vec{u}_y = \underline{E}(x) \vec{u}_y$$

2) Champ $\frac{\vec{B}}{}$.

L'équation (4.1) donne alors $\underline{B}_{v} = 0$

Donc
$$\underline{\vec{B}} = \underline{B}_x \vec{u}_x + \underline{B}_z \vec{u}_z$$

Avec (3.1), on obtient : $\underline{B}_x = -\frac{k}{\omega}\underline{E}(x)$

Et (3.3):
$$\underline{B}_z = \frac{1}{i\omega} \frac{d\underline{E}(x)}{dx}$$

Donc $\underline{\vec{B}}$ est orthogonal à $\underline{\vec{E}}$, avec une composante longitudinale et une composante transverse :

On n'a donc plus que $\vec{E}(x)$ à déterminer

3) Modes TE

« Relation de dispersion » :

En projetant l'équation d'onde sur \vec{u}_{v} , on obtient :

$$\frac{d^2 \underline{E}(x)}{dx^2} + \underbrace{\left(\frac{\omega^2}{c^2} - k^2\right)}_{\gamma^2} \underline{E}(x) = 0$$

Donc
$$k^2 = \frac{\omega^2}{c^2} - \gamma^2$$

(On n'a pas une onde plane, donc ce n'est pas une relation de dispersion ; de plus, si on partait de cette relation, on trouverait une équation de Klein-Gordon, et non pas l'équation d'onde)

• Conditions aux limites :

(CL1) donne
$$E(0) = E(a) = 0$$

Ainsi, on a nécessairement $\gamma^2 > 0$ (sinon, on obtient une solution en exponentielle réelle, qui, vues les conditions, est nécessairement nulle)

Ainsi,
$$\underline{E}(x) = E_0 \sin(\gamma x + \varphi)$$

En 0,
$$\sin \varphi = 0$$
 donc $\varphi = 0$ ou π ; on prend 0

En
$$a$$
, $\sin \gamma . a = 0$, donc $\gamma = \frac{m\pi}{a}$ où $m \in \mathbb{N}^*$ (pour $m < 0$, on remplace E_0 par $-E_0$)

On obtient ainsi une famille discrète de solutions,

$$\underline{E}_m(x) = \underline{E}_{0,m} \sin\left(\frac{m\pi}{a}x\right)$$
, solution qu'on note mode TE_m

Et on a
$$\underline{E}(x) = \sum_{m} \underline{E}_{m}(x)$$
, puis $E(x) = \sum_{m} E_{0,m} \sin\left(\frac{m\pi}{a}x\right) \cos(\omega t - kz + \psi_{m})$

Ainsi, à x fixé, on a une propagation dans le plan équi-x.

A z, fixé, on a une onde stationnaire sinusoïdale

- Allure des modes TE_m :
- TE_1 :

- TE_2 :

- TE_m :

On a un nœud de E sur chacun des plans, et m ventres.

- Pulsation de coupure :
- Mode TE_m :

Propagation : il faut que $k \in \mathbb{R}$.

On a
$$k^2 = \frac{\omega^2}{c^2} - \gamma^2 = \frac{\omega^2}{c^2} - \frac{m^2 \pi^2}{a^2} = \frac{\omega^2 - \omega_{c,m}^2}{c^2}$$
 où $\omega_{c,m} = \frac{m \pi . c}{a}$

Ainsi, si $\omega > \omega_{c,m}$, on a une propagation sans atténuation

Si $\omega < \omega_{cm}$, on a une onde évanescente.

- Ensemble des modes TE:

$$\theta_{c1}$$
 θ_{c2} θ_{c3}

Pour ω donné, tous les modes qui ont une pulsation de coupure en dessous vont pouvoir passer, mais pas les autres ; on a donc un filtre passe-haut.

E) Ondes transverses magnétiques (TM)

On cherche ici des solutions pour lesquelles $\underline{B}_z = 0$, $\underline{E}_z \neq 0$.

1) Champ $\frac{\vec{B}}{}$.

L'équation (2) et (CL3) donnent $\underline{B}_x = \text{cte} = 0$ Donc $\underline{\vec{B}} = \underline{B}_y \vec{u}_y = \underline{B}(x) \vec{u}_y$

2) Champ $\frac{\vec{E}}{}$

Avec (3.1), on obtient $\underline{E}_{v} = 0$

Donc
$$\underline{\vec{E}} = \underline{E}_x \vec{u}_x + \underline{E}_z \vec{u}_z$$

Et avec (4.1),
$$\underline{E}_x = \frac{kc^2}{\omega} \underline{B}_y = \frac{kc^2}{\omega} \underline{B}(x)$$

Puis (4.3),
$$\underline{E}_z = -\frac{c^2}{i\omega} \frac{d\underline{B}(x)}{dx}$$

On a donc un champ \vec{B} transverse tangent aux plaques, et \vec{E} orthogonal à \vec{B} .

3) Modes TM

• « Relation de dispersion » :

On projette l'équation d'onde sur \vec{u}_v pour \vec{B} :

$$\frac{d^2 \underline{B}(x)}{dx^2} + \underbrace{\left(\frac{\omega^2}{c^2} - k^2\right)}_{x^2} \underline{B}(x) = 0$$

• Conditions aux limites :

Avec (CL2) et (4.3), on obtient $\frac{d\underline{B}(x)}{dx} = 0$ en x = 0 et a.

Ainsi,
$$\underline{B}(x) = B_0 \cos(\gamma x + \varphi)$$

Donc en
$$x = 0$$
, $\sin \varphi = 0$ soit $\varphi = 0$.

Et en
$$a$$
, $\sin \gamma . a$, donc $\gamma = \frac{m\pi}{a}, m \in \mathbb{N}^*$

Donc
$$\underline{B}_m = B_{0,m} \cos\left(\frac{m\pi}{a}x\right)$$
, soit $B_m(x,z,t) = B_{0,m} \cos\left(\frac{m\pi}{a}x\right) \sin(\omega t - kz)$

• Pulsation de coupure :

C'est le même principe que pour le mode transverse.

- Allure des modes TM:
- TM_1 :

- TM_2 :

- TM_n :

On aura un ventre sur chacune des plaques, et n nœuds entre les plaques.

F) Propagation du mode TE_1 .

1) Relation de dispersion

• En pulsation :

$$k^2 = \frac{\omega^2 - \omega_c^2}{c^2}$$
, où $\omega_c = \frac{\pi . c}{a}$

• En longueur d'onde :

On a $\lambda_0 = \frac{2\pi .c}{\omega}$ (pour une OPPS dans le vide)

Et
$$\lambda = \frac{2\pi}{k}$$

Donc
$$\frac{1}{\lambda^2} = \frac{1}{\lambda_0^2} - \frac{1}{4a^2}$$

2) Condition de propagation

• Simple:

 $\omega > \omega_{c,1} \Leftrightarrow \lambda_0 < 2a$

• Exclusive:

Si on veut que TE_1 se propage et pas les autres, il faut que $\omega_{c,2} > \omega > \omega_{c,1}$, soit $a < \lambda_0 < 2a$.

3) Vitesse de propagation

• On a
$$v_{\varphi} = \frac{\omega}{k} = \frac{c}{\sqrt{1 - \frac{\omega_{c,1}^2}{\omega^2}}} = \frac{c}{\sqrt{1 - \frac{\lambda_0^2}{\lambda^2}}} > c$$

•
$$v_g = \frac{d\omega}{dk} = c\sqrt{1 - \frac{\omega_{c,1}^2}{\omega^2}} = c\sqrt{1 - \frac{\lambda_0^2}{\lambda^2}} < c$$

G) Propagation d'ondes planes obliques

On admet qu'en combinant les différents modes (TEM, TE, TM), on obtient toutes les solutions possibles.

Peut-on avoir une OPPS dirigée selon \vec{k}_+ ?

1) Condition de propagation

• Réflexions multiples :

L'onde \vec{k}_{+} va se réfléchir et on aura une onde descendante \vec{k}_{-} .

On a
$$\vec{k}_+ = \frac{\omega}{c}\vec{u}_+$$
 avec $\vec{u}_+ = \cos\theta \cdot \vec{u}_x + \sin\theta \cdot \vec{u}_z$

Et
$$\vec{k}_{\perp} = \frac{\omega}{c} \vec{u}_{\perp}$$
 avec $\vec{u}_{\perp} = -\cos\theta . \vec{u}_{x} + \sin\theta . \vec{u}_{z}$

Mais cette onde sera aussi réfléchie.

On aura ainsi une superposition de petites ondes planes montantes et descendantes

• Onde résultante :

On a une résultante $\vec{E}_{+} = \sum_{n=-\infty}^{+\infty} \vec{e}_{+,n}$, et entre deux réflexions, on a un

déphasage :
$$\vec{e}_{n+1} = \vec{e}_n e^{i\varphi}$$

Condition d'interférence constructive :

Si $\varphi = 0$ [2 π], toutes les petites ondes sont en phase, donc on peut avoir un champ résultant.

Si $\varphi = \pi$ [2 π], les termes de la somme s'annulent deux à deux, et on n'aura pas d'onde résultante (ou un infiniment petit)

Si $\varphi = \frac{\pi}{N} [2\pi]$, les ondes n et n+N sont en opposition de phase, et on n'aura pas non plus de propagation.

Pour un réel quelconque non nul modulo 2π , on aura toujours en quelque sorte une annulation, et l'onde ne pourra pas se propager.

• Quantification de l'angle d'incidence θ :

La phase est constante sur le plan $\mathfrak P$ pour chacune des deux ondes, donc on doit avoir $\varphi_n = \varphi_{n+1} [2\pi]$ sur le plan $\mathfrak P$.

On a $\varphi_n(B) = \varphi_n(A) + \vec{k}_+ \cdot \overrightarrow{AB}$ et $\varphi_{n+1}(C) = \varphi_n(A) + \pi + \vec{k}_- \cdot \overrightarrow{AC} + \pi$ (on a un déphasage de π pour chaque réflexion)

Et on doit avoir $\varphi_n(B) = \varphi_{n+1}(B) = \varphi_{n+1}(C) [2\pi]$

Donc $\vec{k}_+ \cdot \overrightarrow{AB} = \vec{k}_- \cdot \overrightarrow{AC} + 2m\pi$, soit $\frac{\omega}{c} AC = \frac{\omega}{c} AB + 2m\pi$ où $m \in \mathbb{N}^*$ (m est non nul car AB > AC)

De plus,
$$AB = AC\cos(\pi - 2\theta) = -AC\cos(2\theta)$$
, et $AC = \frac{a}{\cos\theta}$

Donc
$$\frac{\omega}{c} \frac{a}{\cos \theta} (1 + \cos 2\theta) = 2m\pi$$
, soit $2\frac{\omega}{c} a \cos \theta = 2m\pi$

Et donc
$$\frac{\omega}{c}\cos\theta = m\frac{\pi}{a}$$
.

- Pulsation de coupure :
- Expression:

On a
$$\cos \theta < 1$$
, donc $\omega > \frac{m\pi . c}{a} = \omega_{c,m}$

- Interprétation :

 $\phi = \varphi_{n+1} - \varphi_n$ est une fonction décroissante de θ , puisqu'on a :

$$\phi = \varphi_{n+1} - \varphi_n = 2m\pi = 2\frac{\omega}{c}a\cos\theta$$

On note δ la distance qu'a parcourue l'onde à partir d'un point pour se retrouver dans le plan de phase :

Ainsi, $\delta = 2a\cos\theta$, et δ est une fonction décroissante de θ , toujours inférieure à 2a.

Sous forme d'image :

On imagine une double file d'élèves qui se déplacent « en phase » (on suppose la file infinie), c'est-à-dire l'un à côté de l'autre. On demande à la file de droite, quand elle touche (2), de « se réfléchir », atteindre (1), se réfléchir à nouveau.

Le but ici est de trouver un angle pour lequel après la double réflexion subie par les élèves de la file de droite, ceux-ci continuent quand même d'avancer « à côté » (mais plus éloigné) d'un autre élève de la file de gauche, c'est-à-dire qu'il y en a un qui avance dans la même direction que lui à sa gauche :

2) Propagation des champs

Pour le champ \vec{E} total, on a $\vec{E} = \vec{E}_+ + \vec{E}_-$

- Pour $\vec{E}_{\scriptscriptstyle +}$: on suppose que $\vec{E}_{\scriptscriptstyle +}$ est polarisé selon $\vec{u}_{\scriptscriptstyle y}$.

Ainsi,
$$\vec{E}_{+} = \underline{\vec{E}}_{+} e^{i(\vec{k}_{+} \cdot \vec{r} - \omega t)}$$
, et $\vec{k}_{+} = \frac{\omega}{c} (\cos \theta \cdot \vec{u}_{x} + \sin \theta \cdot \vec{u}_{z})$

Donc
$$\vec{E}_{+} = \underline{E}_{+}e^{i(\frac{\omega}{c}(x\cos\theta + z\sin\theta) - \omega.t)}\vec{u}_{y}$$

-
$$\vec{E} = \vec{E} e^{i(\frac{\omega}{c}(-x\cos\theta + z\sin\theta) - \omega.t)}$$

Conditions aux limites:

On a $\vec{E} = \vec{0}$ en x = 0 et x = a. Donc $\underline{\vec{E}}_{-} = -\underline{E}_{+}\vec{u}_{y}$

- Ainsi, $\vec{E} = 2i\underline{E}_{+} \sin(\frac{\omega}{c}\cos\theta.x)e^{i(\frac{\omega}{c}z\sin\theta-\omega.t)}\vec{u}_{y}$

Or,
$$\frac{\omega}{c}\cos\theta = m\frac{\pi}{a}$$
, donc $\frac{\omega}{c}\sin\theta = \sqrt{\frac{\omega^2}{c^2} - \frac{m^2\pi^2}{a^2}} = k$

Donc $\vec{E} = 2E_{+,0}\sin(\frac{m\pi}{a}x)\cos(\omega t - kz - \frac{\pi}{2})\vec{u}_y = 2E_{+,0}\sin(\frac{m\pi}{a}x)\sin(\omega t - kz)\vec{u}_y$ On a donc un mode transverse électrique.

3) Vitesse de phase, vitesse de groupe

• Vitesse de phase :

On a
$$v_{\phi} = \frac{c}{\sin \theta} = \frac{\omega}{k} = \frac{\omega}{\sqrt{\frac{\omega^2}{c^2} - \frac{m^2 \pi^2}{a^2}}} = \frac{c}{\sqrt{1 - \frac{\omega_{c,m}^2}{\omega^2}}}$$

• Vitesse de groupe :

Donc $v_g = c \sin \theta$.

II Propagation dans un guide de section rectangulaire

A) Hypothèses de travail

1) Guide

On suppose que $a \ge b$ et qu'on a une paroi conductrice parfaite

2) Champ électromagnétique

On cherche un champ électromagnétique sous la forme $\vec{E} = \text{Re}(\vec{E}(x, y)e^{i(kz-\alpha t)})$, $\vec{B} = \text{Re}(\vec{B}(x, y)e^{i(kz-\alpha t)})$

B) Mise en équation

1) Formalisme complexe

$$\frac{\partial}{\partial t} \leftrightarrow -i\omega, \ \vec{\nabla} \leftrightarrow ik\vec{u}_z + \underbrace{\frac{\partial}{\partial x}\vec{u}_x + \frac{\partial}{\partial y}\vec{u}_y}_{\vec{\nabla}_T} = ik\vec{u}_z + \vec{\nabla}_T$$

2) Equations de Maxwell

A partir des équations de Maxwell-Ampère et Maxwell-Faraday, on a :

$$(A) \quad \underline{\vec{E}}_T = \frac{-1}{\frac{i\omega}{c^2} \left(1 - \frac{k^2 c^2}{\omega^2} \right)} \left(\vec{\nabla}_T \underline{B}_z \wedge \vec{u}_z + \frac{k}{\omega} \vec{\nabla}_T \underline{E}_z \right)$$

$$(B) \ \vec{\underline{B}}_{T} = \frac{1}{i\omega \left(1 - \frac{k^{2}c^{2}}{\omega^{2}}\right)} \left(\vec{\nabla}_{T} \underline{E}_{z} \wedge \vec{u}_{z} + c^{2} \frac{k}{\omega} \vec{\nabla}_{T} \underline{B}_{z}\right)$$

3) Equation d'onde

$$\vec{\nabla}^2 + \frac{\omega^2}{c^2} = 0$$

$$\frac{\partial^2}{\partial x^2} \vec{\underline{E}} + \frac{\partial^2}{\partial v^2} \vec{\underline{E}} + \left(\frac{\omega^2}{c^2} - k^2\right) \vec{\underline{E}} = \vec{0} \text{, et on a la même chose pour } \vec{\underline{B}} \text{.}$$

4) Conditions aux limites

• Pour
$$\vec{E}$$
:

$$\underline{E}_{y}(0, y) = \underline{E}_{y}(a, y) = 0 \quad (CL1)$$

$$\underline{E}_x(x,0) = \underline{E}_x(x,b) = 0$$
 (CL2)

• Pour \vec{B} :

$$\underline{B}_x(0,y) = \underline{B}_x(a,y) = 0 \quad (CL3)$$

$$\underline{B}_{y}(x,0) = \underline{B}_{y}(x,b) = 0 \quad (CL4)$$

C) Mode transverse électromagnétique?

Peut on avoir des solutions pour lesquelles $\underline{E}_z = 0$, $\underline{B}_z = 0$?

1) Relation de dispersion

Avec (A), (B), il faut que le dénominateur soit nul pour avoir $\underline{\vec{B}}_T \neq \vec{0}$ ou

$$\underline{\vec{E}}_T \neq \vec{0}$$
, c'est-à-dire $\frac{k^2c^2}{\omega^2} = 1$, ou $k^2 = \frac{\omega^2}{c^2}$

2) Impossibilité du mode TEM

• Equation d'onde :

On a alors
$$\frac{\partial^2}{\partial x^2} \vec{\underline{E}} + \frac{\partial^2}{\partial y^2} \vec{\underline{E}} = \vec{0}$$

Donc
$$\frac{\partial^2}{\partial x^2} \underline{E}_x + \frac{\partial^2}{\partial v^2} \underline{E}_x = 0$$

• A $x = x_0$, on a donc:

$$\frac{d^2 \underline{E}_x(x_0, y)}{dy^2} = 0$$

Donc
$$\underline{E}_x(x_0, y) = \alpha \cdot y + \beta$$

Et la condition (CL1) impose alors que $\underline{E}_x(x_0, y) = 0$

Et donc
$$\underline{E}_x = 0$$

Puis de même $\underline{E}_y = 0$.

Remarque:

Ceci s'applique à n'importe quel guide cylindrique creux.

(Un coaxial n'est pas creux)

D) Modes transverses électriques

On cherche des solutions telles que $\underline{E}_z = 0$, $\underline{B}_z \neq 0$ Les équations (A) et (B) indiquent qu'avec le calcul de \underline{B}_z , on peut ensuite trouver

Les equations (A) et (B) indiquent qu'avec le calcul de \underline{B}_z , on peut ensuite trouver $\underline{\vec{B}}_T$, $\underline{\vec{E}}_T$.

1) Equation de Helmholtz

On a avec l'équation d'onde :

$$\frac{\partial^2 \underline{B}_z}{\partial x^2} + \frac{\partial^2 \underline{B}_z}{\partial y^2} + \gamma^2 \underline{B}_z = 0$$
Où $\gamma^2 = \frac{\omega^2}{c^2} - k^2$

2) Séparation des variables

On cherche une solution sous la forme $\underline{B}_z(x, y) = f(x)g(y)$

On a alors
$$\frac{f''(x)}{f(x)} + \frac{g''(y)}{g(y)} + \gamma^2 = 0$$

Donc $\frac{f''(x)}{f(x)} = \text{cte} = -\alpha^2$, $\frac{g''(y)}{g(y)} = \text{cte} = -\beta^2$ avec $\gamma^2 = \alpha^2 + \beta^2$

3) Conditions aux limites

D'après (A),
$$\underline{E}_x = 0 \Leftrightarrow \frac{\partial \underline{B}_z}{\partial y} = 0$$
, et $\underline{E}_y = 0 \Leftrightarrow \frac{\partial \underline{B}_z}{\partial x} = 0$.
Donc avec (CL1): $\frac{\partial \underline{B}_z}{\partial x} = 0$ en $x = 0$ et $x = a$, soit $f'(0) = f'(a) = 0$
Et avec (CL2), $g'(0) = g'(b) = 0$

4) Modes TE

Les conditions aux limites imposent que $\alpha^2 > 0$ et $\beta^2 > 0$ (c'est-à-dire qu'on a des solutions en exponentielle imaginaire)

Ainsi,
$$f(x) = A\cos(\alpha x + \varphi) = A\cos\left(\frac{m\pi}{a}x\right)$$
 où $m \in \mathbb{N}$.
Et $g(y) = B\cos\left(\frac{n\pi}{b}y\right)$, où $n \in \mathbb{N}$.
Ainsi, $\underline{B}_z = \underline{B}_0\cos\left(\frac{m\pi}{a}x\right)\cos\left(\frac{n\pi}{b}y\right)$, mode $TE_{m,n}$

Si
$$n = 0$$
: $\underline{B}_z = \underline{B}_0 \cos\left(\frac{m\pi}{a}x\right)$, donc $TE_{m,0} \equiv TE_m$
(remarque: dire que $n = 0$ revient à dire que $b \to +\infty$)

5) Pulsation de coupure

Condition de propagation du mode $TE_{m,n}$:

On doit avoir $Re(k) \neq 0$.

Mais
$$k^2 = \frac{\omega^2}{c^2} - \gamma^2$$
, donc $k^2 \in \mathbb{R}$; il faut donc $k \in \mathbb{R}$

C'est-à-dire que
$$\frac{\omega^2}{c^2} > \gamma^2$$

Ainsi,
$$\omega^2 > c^2 \pi^2 \left(\frac{m^2}{a^2} + \frac{n^2}{b^2} \right)$$

On note
$$\omega_{c,m,n} = \pi \cdot c \sqrt{\frac{m^2}{a^2} + \frac{n^2}{b^2}}$$

• Sélection du mode $TE_{1,0}$:

On suppose a > b. Ainsi, inf $\omega_{c,m,n} = \omega_{c,1,0}$

Si $\omega < \omega_{c.1.0}$, il n'y aura aucune propagation ($\lambda_0 > 2a$)

Si $\omega_{c,1,0} < \omega < \inf(\omega_{c,0,1}, \omega_{c,2,0})$, seul le mode $TE_{1,0}$ peut se propager (on a alors $\sup(a,2b) < \lambda_0 < 2a$)

E) Etude du mode $^{TE_{1,0}}$.

1) Champs

- \vec{B} :
 Longitudinal:

$$\vec{B}_z = \text{Re}(\underline{B}_0 \cos(\frac{\pi}{a} x) e^{i(kz - \omega .t)}) \vec{u}_z$$
$$= B_0 \cos(\frac{\pi}{a} x) \cos(\omega .t - kz) \vec{u}_z$$

Avec
$$k^2 = \frac{\omega^2}{c^2} - \frac{\pi^2}{a^2}$$
.

Transverse:

Avec l'équation (B), on a
$$\underline{\vec{B}}_T = i \frac{ka}{\pi} B_0 \sin \frac{\pi . x}{a} \vec{u}_x$$

Donc
$$\vec{B}_T = \frac{ka}{\pi} B_0 \sin \frac{\pi x}{a} \sin(\omega t - kz) \vec{u}_x$$
, polarisé sur \vec{u}_x

- Total:

• Champ \vec{E} :

D'après (A), on a
$$\underline{\vec{E}}_T = -ia \frac{\omega}{\pi} \underline{B}_0 \sin \frac{\pi . x}{a} \vec{u}_y$$

Soit
$$\vec{E}_T = -a\frac{\omega}{\pi}B_0\sin\frac{\pi x}{a}\sin(\omega t - kz)\vec{u}_y = E_0\sin\frac{\pi x}{a}\sin(\omega t - kz)\vec{u}_y$$

Avec
$$E_0 = -a \frac{\omega}{\pi} B_0$$
.

Ainsi, \vec{E}_T , \vec{B}_T , \vec{k} forme un trièdre direct.

2) Propagation de l'énergie

• Vecteur de Poynting :

On a
$$\vec{\pi} = \frac{1}{\mu_0} \vec{E} \wedge \vec{B}$$

Donc
$$\langle \vec{\pi} \rangle = \frac{1}{2\mu_0} \operatorname{Re}(\underline{\vec{E}} \wedge \underline{\vec{B}}^*) = \frac{1}{2\mu_0} \operatorname{Re}\begin{pmatrix} 0 \\ \underline{E}_y \\ 0 \end{pmatrix} \wedge \begin{pmatrix} \underline{B}_x \\ 0 \\ \underline{B}_z \end{pmatrix}$$

Mais \underline{B}_z est en déphasage de i avec les autres composantes, donc n'intervient pas dans la partie réelle du produit.

Donc
$$\langle \vec{\pi} \rangle = \frac{1}{2\mu_0} \frac{k}{\omega} E_0^2 \sin^2 \frac{\pi \cdot x}{a} \vec{u}_z$$

Ainsi, l'énergie se propage selon \vec{u}_z .

$$\langle \vec{\pi} \rangle \cdot \vec{u}_z$$

On trouve une forme semblable au profil de vitesse de l'eau dans un canal, plus important au centre et tendant vers 0 aux bords.

- Puissance transmise :
- Expression:

$$P = \iint \langle \vec{\pi} \rangle \cdot d\vec{S}$$
, et $d\vec{S} = dxdy\vec{u}_z$

Donc
$$P = \int_{x=0}^{a} \int_{y=0}^{b} \frac{1}{2\mu_0} \frac{k}{\omega} E_0^2 \sin^2 \frac{\pi \cdot x}{a} dy dx = \frac{1}{2\mu_0} \frac{k}{\omega} E_0^2 \frac{ab}{2}$$

Soit
$$P = \frac{ab}{4\mu_0} \frac{k}{\omega} E_0^2.$$

Avec
$$\lambda_0 = \frac{2\pi \cdot c}{\omega}$$
, $k = \sqrt{\frac{\omega^2}{c^2} - \frac{\pi^2}{a^2}} = \frac{2\pi}{\lambda}$, on a:

$$P = \frac{ab}{4\mu_0 c} E_0^2 \sqrt{1 - \frac{\lambda_0^2}{4a^2}}$$

- Valeurs limites:

On doit avoir $\lambda_0 < 2a$.

(1) Si
$$\lambda_0 = 2a$$
, $P = 0$

(2) Si
$$\lambda_0 = 0$$
, $P = \frac{ab}{4\mu_0 c} E_0^2 = P_{\text{max}}$

(3) Si
$$\lambda_0 = a$$
, $P = P_{\text{max}} \frac{\sqrt{3}}{2} \approx 0.87 P_{\text{max}}$

Ainsi, sélectionner exclusivement le mode $TE_{1,0}$ ($a < \lambda_0 < 2a$) permet quand même d'atteindre 87% de la puissance maximale transmise.

- Ordres de grandeur :

Avec
$$v = 3\text{GHz}$$
, $\lambda_0 = \frac{c}{v} = 10^{-1} \text{ m} = 10 \text{ cm}$

- (1) Il faut $\sup(a,2b) < \lambda_0 < 2a$. On peut prendre a = 9cm, b = 4cm
- (2) Si *E* est trop important, on aura une décharge (« champ disruptif », à cause de l'ionisation des molécules de l'air)

Pour l'air, le champ disruptif est de 30000V.cm⁻¹

(C'est-à-dire $E_{\text{max}} = 3.10^6 \text{ V.m}^{-1}$)

A 3GHz (en régime sinusoïdal), $E_{\text{max}} = 10^8 \text{ V.m}^{-1}$

On prend donc par exemple $E_0 = 10^6 \text{ V.m}^{-1}$.

On a alors $P = 2.10^6 \,\text{W}$

Remarque :

On aura des courants surfaciques d'intensité $I \sim 100-1000 A$

III Atténuation dans un guide d'onde de conductivité finie

A) Structure des ondes

1) Propagation dans le vide intérieur

- L'onde satisfait toujours l'équation d'onde classique. Mais on a des conditions aux limites différentes.
- L'onde est amortie :

On aura une onde en $e^{i(kz-\omega t)}$ où $k=\alpha+i\beta$, $\alpha=\frac{2\pi}{\lambda}$, $\beta=\frac{1}{d}$.

Pour un bon métal, $d \gg \lambda$

• Sur une distance $\Delta z << d$, on peut négliger l'amortissement, et donc pour $\lambda << \Delta z << d$, on se retrouve dans le cas précédent.

2) Propagation dans le métal

- Les champs \vec{E} et \vec{B} pénètrent dans le métal
- \vec{E}_T est continu, et \vec{B} est totalement continu.

On n'a donc pas forcément un nœud pour \vec{E} ou \vec{B}_{T} (idem pour les ventres)

- Propagation:
- Propagation longitudinale:

$$k_z = \alpha + i\beta$$

- Propagation transversale:

$$k_T = \frac{1+i}{\delta}$$
 où $\delta = \sqrt{\frac{2}{\mu_0 \sigma_0 \omega}}$

On a donc une longueur d'onde $2\pi\delta$, une distance d'atténuation δ . L'onde est donc atténuée en environ une longueur d'onde.

- On a $e^{i(\vec{k}\cdot\vec{r}-\omega t)} = e^{-x/\delta}e^{-z/d}e^{i(\frac{x}{\delta}+\frac{2\pi z}{\lambda}-\omega t)}$
- Ordres de grandeur :
- (1) Pour v = 1GHz, on a $\lambda_0 = 0.3$ m
- (2) $\sigma = 10^7 \Omega^{-1} \text{.m}^{-1}$, donc $\delta = 5 \mu \text{m}$
- (3) En mode $TE_{1.0}$, $d \sim 400$ m

On a donc bien $\delta \ll \lambda_0 \ll d$

B) Atténuation

1) Origine

L'atténuation est due à l'effet Joule

2) Bilan énergétique

On a
$$\oiint < \vec{\pi} > \cdot d\vec{S} = 0$$

• On a $P \propto \vec{E} \wedge \vec{B}$

Et $dP \propto Pdz$ (plus la puissance est importante, plus les pertes sont importantes), donc dP = -KPdz, soit $P = P_0e^{-K.z}$.

• Champs:

Ainsi, E^2 décroît en e^{-Kz} , donc E décroît en $e^{-\frac{K}{2}z}$, et on retrouve $\beta = \frac{K}{2}$.