AutoML: Interpretability

Incumbent Analysis and Local Hyperparameter Importance

Bernd Bischl Frank Hutter Lars Kotthoff <u>Marius Lindauer</u> Joaquin Vanschoren

→ focus on why is the eventually returned configuration a good choice

Local Importance [Biedenkapp et al. 2018]

Source: [Lindauer et al. 2019]

- Typical question of users:
 - ▶ How would the performance change if we change hyperparameter λ_i ?

Local Importance [Biedenkapp et al. 2018]

Source: [Lindauer et al. 2019]

- Typical question of users:
 - How would the performance change if we change hyperparameter λ_i ?
- Problem: Running full study is often too expensive
 - ► Each run of an ML-system is potential expensive

Local Importance [Biedenkapp et al. 2018]

Source: [Lindauer et al. 2019]

- Typical question of users:
 - ▶ How would the performance change if we change hyperparameter λ_i ?
- Problem: Running full study is often too expensive
 - ► Each run of an ML-system is potential expensive
 - Key Ideas:
 - Re-use probabilistic models as trained in BO
 - Plot performance change around $\hat{\pmb{\lambda}}^{(t)}$ along each dimension

Quantifying Local Importance [Biedenkapp et al. 2018]

$$VAR_{\lambda}(i) = \sum_{v \in \Lambda} (\mathbb{E}_{v \sim \Lambda_i}[L(\lambda)] - L(\lambda[\lambda_i := v]))^2$$
(1)

Quantifying Local Importance [Biedenkapp et al. 2018]

$$VAR_{\lambda}(i) = \sum_{v \in \Lambda_i} (\mathbb{E}_{v \sim \Lambda_i}[L(\lambda)] - L(\lambda[\lambda_i := v]))^2$$
(1)

$$LPI(i \mid \boldsymbol{\lambda}) = \frac{VAR_{\boldsymbol{\lambda}}(i)}{\sum_{j} VAR_{\boldsymbol{\lambda}}(j)}$$
 (2)

Quantifying Local Importance [Biedenkapp et al. 2018]

$$VAR_{\lambda}(i) = \sum_{v \in \Lambda_i} (\mathbb{E}_{v \sim \Lambda_i}[L(\lambda)] - L(\lambda[\lambda_i := v]))^2$$
(1)

$$LPI(i \mid \lambda) = \frac{VAR_{\lambda}(i)}{\sum_{j} VAR_{\lambda}(j)}$$
 (2)

While fixing all other hyperparameters to the incumbent value, the hyperparameter with the highest variance is the most important one

- Users often start from some kind of default configuration
 - As given in the documentation
 - Or as always used in the last time

- Users often start from some kind of default configuration
 - As given in the documentation
 - Or as always used in the last time
- Key Idea: Going from the default to the automatically optimized configuration, which choices where important?

$$\lambda^{\text{(start)}} = [1, 1, 0, 100]$$

 $\lambda^{\text{(end)}} = [0.98, 2.42, 1, 42]$

- Users often start from some kind of default configuration
 - As given in the documentation
 - Or as always used in the last time
- Key Idea: Going from the default to the automatically optimized configuration, which choices where important?

$$\lambda^{(\text{start})} = [1, 1, 0, 100]$$

 $\lambda^{(\text{end})} = [0.98, 2.42, 1, 42]$

ullet Cheap approach: Assess $oldsymbol{\lambda}^{(\mathsf{end})}$ with each hyperparameter value from $oldsymbol{\lambda}^{(\mathsf{start})}$

- Users often start from some kind of default configuration
 - As given in the documentation
 - Or as always used in the last time
- Key Idea: Going from the default to the automatically optimized configuration, which choices where important?

$$\lambda^{(\text{start})} = [1, 1, 0, 100]$$

 $\lambda^{(\text{end})} = [0.98, 2.42, 1, 42]$

- ullet Cheap approach: Assess $oldsymbol{\lambda}^{({\sf end})}$ with each hyperparameter value from $oldsymbol{\lambda}^{({\sf start})}$
- Expensive approach: Try all mixtures of $\lambda^{(end)}$ and $\lambda^{(start)}$
 - Only feasible for small spaces and fairly cheap ML systems

- Users often start from some kind of default configuration
 - As given in the documentation
 - Or as always used in the last time
- Key Idea: Going from the default to the automatically optimized configuration, which choices where important?

$$\lambda^{(\text{start})} = [1, 1, 0, 100] \\ \lambda^{(\text{end})} = [0.98, 2.42, 1, 42]$$

- Cheap approach: Assess $\lambda^{(end)}$ with each hyperparameter value from $\lambda^{(start)}$
- ullet Expensive approach: Try all mixtures of $oldsymbol{\lambda}^{(ext{end})}$ and $oldsymbol{\lambda}^{(ext{start})}$
 - Only feasible for small spaces and fairly cheap ML systems
- ullet Trade-off: Find a way from $oldsymbol{\lambda}^{(start)}$ to $oldsymbol{\lambda}^{(end)}$ in a greedy fashion [Fawcett and Hoos. 2016]

Given:

$$m{\lambda}^{(extsf{start})} = [1, 1, 0, 100] \qquad L_{ extsf{start}} = 20\% \ m{\lambda}^{(ext{end})} = [0.98, 2.42, 1, 42] \quad L_{ ext{end}} = 4\%$$

Given:

$$m{\lambda}^{({\sf start})} = [1, 1, 0, 100] \qquad L_{{\sf start}} = 20\% \ m{\lambda}^{({\sf end})} = [0.98, 2.42, 1, 42] \qquad L_{{\sf end}} = 4\%$$

$$\lambda^{(1)} = [0.98, 1, 0, 100] \quad L_1 = 19\%$$

Given:

$$m{\lambda}^{(extsf{start})} = [1, 1, 0, 100] \qquad L_{ extsf{start}} = 20\% \ m{\lambda}^{(ext{end})} = [0.98, 2.42, 1, 42] \quad L_{ ext{end}} = 4\%$$

$$\lambda^{(1)} = [0.98, 1, 0, 100] \quad L_1 = 19\%$$

 $\lambda^{(2)} = [1, 2.42, 0, 100] \quad L_2 = 20\%$

Given:

$$m{\lambda}^{(extsf{start})} = [1, 1, 0, 100] \qquad L_{ extsf{start}} = 20\% \ m{\lambda}^{(ext{end})} = [0.98, 2.42, 1, 42] \quad L_{ ext{end}} = 4\%$$

$$\lambda^{(1)} = [0.98, 1, 0, 100] \quad L_1 = 19\%$$
 $\lambda^{(2)} = [1, 2.42, 0, 100] \quad L_2 = 20\%$
 $\lambda^{(3)} = [1, 1, 1, 100] \quad L_3 = 7\%$

Given:

$$m{\lambda}^{(extsf{start})} = [1, 1, 0, 100] \qquad L_{ extsf{start}} = 20\% \ m{\lambda}^{(ext{end})} = [0.98, 2.42, 1, 42] \quad L_{ ext{end}} = 4\%$$

$$\lambda^{(1)} = [0.98, 1, 0, 100] \quad L_1 = 19\%$$
 $\lambda^{(2)} = [1, 2.42, 0, 100] \quad L_2 = 20\%$
 $\lambda^{(3)} = [1, 1, 1, 100] \quad L_3 = 7\%$
 $\lambda^{(4)} = [1, 1, 0, 42] \quad L_4 = 16\%$

Given:

$$m{\lambda}^{({
m start})} = [1, 1, 0, 100] \qquad L_{{
m start}} = 20\% \ m{\lambda}^{({
m end})} = [0.98, 2.42, 1, 42] \qquad L_{{
m end}} = 4\%$$

1st Iteration:

$$\lambda^{(1)} = [0.98, 1, 0, 100] \quad L_1 = 19\%$$
 $\lambda^{(2)} = [1, 2.42, 0, 100] \quad L_2 = 20\%$
 $\lambda^{(3)} = [1, 1, 1, 100] \quad L_3 = 7\%$
 $\lambda^{(4)} = [1, 1, 0, 42] \quad L_4 = 16\%$

 \rightsquigarrow 1st step: λ_2 – flipping hyperparameter 3

Given:

$$m{\lambda}^{(ext{start})} = [1, 1, 0, 100] \qquad L_{ ext{start}} = 20\% \ m{\lambda}^{(s1)} = [1, 1, 1, 100] \qquad L = 7\% \ m{\lambda}^{(ext{end})} = [0.98, 2.42, 1, 42] \qquad L_{ ext{end}} = 4\%$$

2nd Iteration:

$$\boldsymbol{\lambda}^{(1)} = [0.98, 1, 1, 100] \quad L_1 = 6\%$$

Given:

$$m{\lambda}^{(ext{start})} = [1, 1, 0, 100] \qquad L_{ ext{start}} = 20\% \ m{\lambda}^{(s1)} = [1, 1, 1, 100] \qquad L = 7\% \ m{\lambda}^{(ext{end})} = [0.98, 2.42, 1, 42] \qquad L_{ ext{end}} = 4\%$$

2nd Iteration:

$$\lambda^{(1)} = [0.98, 1, 1, 100]$$
 $L_1 = 6\%$
 $\lambda^{(2)} = [1, 2.42, 1, 100]$ $L_2 = 7\%$

Given:

$$\begin{array}{lll} \pmb{\lambda}^{(\mathsf{start})} &= [1, 1, 0, 100] & L_{\mathsf{start}} = 20\% \\ \pmb{\lambda}^{(s1)} &= [1, 1, 1, 100] & L = 7\% \\ \pmb{\lambda}^{(\mathsf{end})} &= [0.98, 2.42, 1, 42] & L_{\mathsf{end}} = 4\% \\ \end{array}$$

2nd Iteration:

$$\lambda^{(1)} = [0.98, 1, 1, 100]$$
 $L_1 = 6\%$
 $\lambda^{(2)} = [1, 2.42, 1, 100]$ $L_2 = 7\%$
 $\lambda^{(3)} = [1, 1, 1, 42]$ $L_3 = 5\%$

 \rightsquigarrow 2nd step: λ_3 – flipping hyperparameter 4

Given:

$$\begin{array}{lll} \pmb{\lambda}^{(\mathsf{start})} &= [1, 1, 0, 100] & L_{\mathsf{start}} = 20\% \\ \pmb{\lambda}^{(s1)} &= [1, 1, 1, 100] & L = 7\% \\ \pmb{\lambda}^{(s2)} &= [1, 1, 1, 42] & L = 5\% \\ \pmb{\lambda}^{(\mathsf{end})} &= [0.98, 2.42, 1, 42] & L_{\mathsf{end}} = 4\% \\ \end{array}$$

3rd Iteration:

$$\lambda^{(1)} = [0.98, 1, 1, 100]$$
 $L_1 = 4\%$
 $\lambda^{(2)} = [1, 2.42, 1, 100]$ $L_2 = 5\%$

 \rightsquigarrow 2nd step: λ_3 – flipping hyperparameter 1

Ablation Path:

$$\begin{split} \pmb{\lambda}^{(\mathsf{start})} &= [1, 1, 0, 100] & L_{\mathsf{start}} = 20\% \\ \pmb{\lambda}^{(s1)} &= [1, 1, 1, 100] & L = 7\% \\ \pmb{\lambda}^{(s1)} &= [1, 1, 1, 42] & L = 5\% \\ \pmb{\lambda}^{(s3)} &= [0.98, 1, 1, 42] & L = 4\% \\ \pmb{\lambda}^{(s4)} &= [0.98, 2.42, 1, 42] & L = 4\% \\ \pmb{\lambda}^{(\mathsf{end})} &= [0.98, 2.42, 1, 42] & L_{\mathsf{end}} = 4\% \end{split}$$

Algorithm 1 Greedy Ablation

Input: Algorithm \mathcal{A} with configuration space Λ , start configuration $\lambda^{(\text{start})}$. end configuration $\lambda^{(end)}$ cost metric c

$$\lambda \leftarrow \lambda^{(\text{start})};$$
 $P \leftarrow [];$

Algorithm 2 Greedy Ablation

Input: Algorithm $\mathcal A$ with configuration space $\mathbf \Lambda$, start configuration $\mathbf \lambda^{(\mathsf{start})}$, end configuration $\mathbf \lambda^{(\mathsf{end})}$, cost metric c

```
oldsymbol{\lambda} \leftarrow oldsymbol{\lambda}^{(\mathsf{start})}; \ P \leftarrow [] \ ; \ \mathbf{foreach} \ t \in \{1 \dots |oldsymbol{\Lambda}|\} \ \mathbf{do}
```

Algorithm 3 Greedy Ablation

Input: Algorithm $\mathcal A$ with configuration space $\mathbf \Lambda$, start configuration $\mathbf \lambda^{(\mathsf{start})}$, end configuration $\mathbf \lambda^{(\mathsf{end})}$, cost metric c

```
\begin{split} \boldsymbol{\lambda} &\leftarrow \boldsymbol{\lambda}^{(\mathsf{start})}; \\ P &\leftarrow [] \ ; \\ \textbf{foreach} \ t \in \{1 \dots |\boldsymbol{\Lambda}|\} \ \textbf{do} \\ & \begin{vmatrix} \boldsymbol{\lambda}_{\delta}' \leftarrow \mathsf{apply} \ \delta \ \mathsf{to} \ \boldsymbol{\lambda}; \\ \mathsf{evaluate} \ c(\boldsymbol{\lambda}_{\delta}'); \end{vmatrix} \end{split}
```

Algorithm 4 Greedy Ablation

```
Input: Algorithm \mathcal A with configuration space \pmb \Lambda, start configuration \pmb \lambda^{(\mathsf{start})} end configuration \pmb \lambda^{(\mathsf{end})}, cost metric c
```

```
\lambda \leftarrow \lambda^{(\text{start})}:
   P \leftarrow []:
   foreach t \in \{1 \dots |\Lambda|\} do
        foreach \delta \in \Delta(\lambda, \lambda^{(end)}) do
                \lambda'_{\delta} \leftarrow \text{apply } \delta \text{ to } \lambda;
                 evaluate c(\lambda'_{\delta});
         Determine most important change \delta^* \in \arg\min_{\delta \in \Delta(\boldsymbol{\lambda}, \boldsymbol{\lambda}^{(\text{end})})} c(\boldsymbol{\lambda}_{\delta});
           \lambda \leftarrow \text{apply } \delta^* \text{ to } \lambda:
            P.append(\delta^*):
```

Algorithm 5 Greedy Ablation

```
Input: Algorithm {\mathcal A} with configuration space {\mathbf \Lambda}, start configuration {\mathbf \lambda}^{(\mathsf{start})}
              end configuration \lambda^{(end)}, cost metric c
```

```
\lambda \leftarrow \lambda^{(\text{start})}:
   P \leftarrow []:
   foreach t \in \{1 \dots |\Lambda|\} do
         foreach \delta \in \Delta(\lambda, \lambda^{(end)}) do
                \lambda'_{\delta} \leftarrow \text{apply } \delta \text{ to } \lambda;
             evaluate c(\lambda'_{\delta});
         Determine most important change \delta^* \in \arg\min_{\delta \in \Delta(\boldsymbol{\lambda}, \boldsymbol{\lambda}^{(\text{end})})} c(\boldsymbol{\lambda}_{\delta});
           \lambda \leftarrow \text{apply } \delta^* \text{ to } \lambda:
            P.append(\delta^*):
```

return Ablation path P

 \bullet Even this greedy ablation requires $\mathcal{O}(n^2)$ steps

- \bullet Even this greedy ablation requires $\mathcal{O}(n^2)$ steps
- We can also speedup that up by using surrogate models [Biedenkapp et al. 2017]

- ullet Even this greedy ablation requires $\mathcal{O}(n^2)$ steps
- We can also speedup that up by using surrogate models [Biedenkapp et al. 2017]
 - Common observations:
 - lacksquare Some hyperparameters might not matter ($oldsymbol{\lambda}_2$ in the example)

- ullet Even this greedy ablation requires $\mathcal{O}(n^2)$ steps
- We can also speedup that up by using surrogate models [Biedenkapp et al. 2017]
- Common observations:
 - **①** Some hyperparameters might not matter (λ_2 in the example)
 - Often only a few of the hyperparameters have an big impact

- ullet Even this greedy ablation requires $\mathcal{O}(n^2)$ steps
- → We can also speedup that up by using surrogate models
 [Biedenkapp et al. 2017]
 - Common observations:
 - **①** Some hyperparameters might not matter (λ_2 in the example)
 - Often only a few of the hyperparameters have an big impact
 - You have plateaus in your ablation path because of interaction effects