$m_b = 2$ (max bins/feqture) (= 2 (classes) $m_c = 2$ (max and inates | partitions) $x_1^2(1,2)$ $x_2^2(2,0)$ $x_1^2(3,4)$ $x_2^2(2,0)$ $x_1^2(2,0)$ $x_1^2(2,0)$

POD
$$(1,3),(1,1)$$
 $(2,0)$ $(2,2),(30)$ $(1,3),(1,1)$ $(2,0),(0,2)$ $(2,4),(2,0)$ $(2,4),(2,0)$ $(2,4),(2,0)$ $(2,4),(2,0)$

The 13:
$$(4, 1.5), (2,0)$$
 $((1,3), (1,1))$ $((2, 1), (0,2))$ $((2, 4), (3,0))$

+1 Lin-e-14-18: (1, (1.5, (2,0))) (1, (2.5, (0,1))) (2, (1, (0,2)) (2, (4, (3,0)))

#Line 19: $\frac{1}{(1.5,(2,0))}$ $\frac{(1.5,(2,0))}{(2.5,(0,1))}$ $\frac{(4,(3,0))}{(3,(1,1))}$ por + 2 $\frac{1}{(3,(1,1))}$ $\frac{1}{(2,0)}$

+) Then for each feature, select the minimum-entropy out point satisfying MDLR criterion -> divide points to (12ft, right)

Then for each feature, select the minimum-entropy out point

Satisfying MDLR criterion

The cursile