Le système solaire

Dans ce projet, nous allons étudier le mouvement des planètes autour du soleil. Ce mouvement est gouverné par une loi de la forme

$$\boldsymbol{F} = -\frac{G \ m_1 m_2}{|\boldsymbol{r}_1 - \boldsymbol{r}_2|^{\beta}} \boldsymbol{e}_{12}$$

- 1. Pour un β fixé, écrire un programme qui intègre l'équation du mouvement pour une planète sous l'influence de la gravitation du soleil du temps t_{max} au temps t_{max} en utilisant un pas de temps τ . Enregistrer la position, la vitesse, l'énergie cinétique, l'énergie potentielle et l'énergie totale en tant que fonctions du temps.
- 2. Déterminer une valeur raisonnable pour le pas de temps τ . Pour la Terre et en utilisant $\beta=2$, optimiser τ en utilisant la conservation de l'énergie totale (calculez le changement d'énergie sur une orbite et tracez-le en fonction de τ). Commenter.
- 3. Vérifiez la troisième loi de Kepler pour toutes les planètes avec des orbites presque circulaires. Comment de choisir les conditions initiales pour obtenir des orbites circulaires ?
- 4. Étudiez ce qui se passerait si la loi de la force avait un exposant $\beta \neq 2$. Considérons le mouvement de la planète Mercure pour $\beta = 3$, 2.5, 2.1 et 2.01. Pour mieux illustrer l'effet, prendre une orbite elliptique.
- 5. Généralisez votre programme pour simuler pour le système Terre, Jupiter, Soleil et étudiez l'influence de Jupiter sur l'orbite terrestre. Que se passerait-il si la masse de Jupiter était de 10, 100 ou 1000 fois supérieure à sa masse réelle?

Données:

planet	mass(kg)	radius (AU)	eccentricity
Mercury	2.4×10^{23}	0.39	0.206
Venus	4.9×10^{24}	0.72	0.007
Earth	6.0×10^{24}	1.00	0.017
Mars	6.6×10^{23}	1.52	0.093
Jupiter	1.9×10^{27}	5.20	0.048
Saturn	5.7×10^{26}	9.54	0.056
Uranus	8.8×10^{25}	19.19	0.046
Neptune	1.0×10^{26}	30.06	0.010
Pluto	1.3×10^{22}	39.26	0.248
Sun	2.0×10^{30}		