

### 2 Lot-sizing and Safety Stocks

Prof. Dr. Stefan Minner
Logistics & Supply Chain Management
TUM School of Management



### The Trade-Off

Large Lots reduce the setup costs by requiring less frequent setup

Small Lots reduce inventory by bringing in product closer to the time it is used



## Economic Order Quantity (EOQ) Model

#### **Assumptions**

- 1. Continuous time, infinite planning horizon
- 2. Constant demand rate d (units/time)
- 3. No backorders, no lead time, infinite supply rate
- 4. Inventory holding cost per unit and unit of time: *h*
- 5. Fixed ordering (setup) cost per order/batch: A
- 6. Procurement cost per unit: c
- 7. Orders in constant batches of size Q



Ford Whitman Harris 1877-1962



## Economic Order Quantity (EOQ) Model

- Inventory management of a single item
- Restrictive modeling assumptions
- But, in many practical situations model performs well
- Leads to solution in closed form:
  - Easy to compute
  - Provides managerial insights



# **Economic Order Quantity (EOQ)**







## **Economic Order Quantity (EOQ)**

- Decision variable: Economic order quantity Q
- Average cost formulation



- Total relevant cost:  $TRC(Q) = \frac{d}{Q}A + \frac{h}{2}Q$
- Cost trade-off: Fixed costs per order vs Inventory holding costs



## **Economic Order Quantity (EOQ)**

- Decision variable: Economic order quantity Q
- Average cost formulation

$$C(Q) = \frac{d}{Q}A + \frac{h}{2}Q + cd$$

$$\frac{\mathrm{d}C(Q)}{\mathrm{d}Q} = -\frac{dA}{Q^2} + \frac{h}{2} = 0 \Rightarrow Q^* = \sqrt{\frac{2dA}{h}}$$

$$C(Q^*) = \sqrt{2dAh} + cd$$

Total relevant cost

$$TRC(Q^*) = \sqrt{2dAh}$$



## **Economic order quantity**

- Cost function per time unit
- Optimality condition
- Solution
  - Optimal lot size
  - Optimal order interval
  - Minimal costs per time unit

$$C(Q) = \frac{d}{Q} \cdot A + \frac{h}{2} \cdot Q + c \cdot d$$

$$\frac{dC}{dQ} = -\frac{d}{Q^2} \cdot A + \frac{h}{2} = 0$$

$$Q^* = \sqrt{\frac{2dA}{h}}$$

$$T^* = \sqrt{\frac{2A}{hd}}$$

$$C^* = \sqrt{2dhA} + cd$$



## Example

- Demand of 1000 units/year
- Unit variable cost c = \$250/unit
- Metalworking shop charges a fixed cost of \$ 500 per order
- Interest rate I = 0.1 \$/\$/yr
- Assume that h = Ic

$$Q^* = \sqrt{\frac{2dA}{h}} = \sqrt{\frac{2 \cdot 500 \cdot 1000}{250 \cdot 0.1}} = 200$$

Total relevant cost:

$$TRC(Q *) = \sqrt{2dAh} = \sqrt{2 \cdot 500 \cdot 1,000 \cdot 250 \cdot 0.1} = 5,000$$



# Sensitivity Analysis of EOQ

Assume we set an order quantity Q' that deviates from EOQ

$$Q' = (1+p)Q^*$$

Percentage cost penalty:

$$PCP = \frac{TRC(Q') - TRC(Q^*)}{TRC(Q^*)} \times 100$$
$$= 50 \left(\frac{p^2}{1+p}\right)$$

Example continued: Q'=250

$$\rightarrow$$
 p=0.25  $\rightarrow$  PCP=2.5%





## **Quantity Discount Models**

- All-unit Quantity Discounts
- In this model as the order quantity increases, the unit purchasing cost decreases for every unit purchased.

$$\text{-Purcasing cost} = \begin{cases} C_1 Q \ for \ q_1 \leq Q < q_2 \\ C_2 Q \ for \ q_2 \leq Q < q_3 \\ C_3 Q \ for \ q_3 \leq Q \end{cases}$$







## Algorithm: All-unit discount

Step 1: Calculate EOQ for the discounted price:

$$Q^*_2 = \sqrt{\frac{2dA}{I \cdot C_2}}$$

Note: assumption is that  $h = I \cdot C$ 

I: Interest rate

C: Procurement price

- Step 2: Check if  $Q_2^* \ge q_2$ . Yes? Order  $Q_2^*$ . No? Continue to step 3
- Step 3: Calculate EOQ without discount:

$$Q^*_1 = \sqrt{\frac{2dA}{I \cdot C_1}}$$

- Step 4: Compare  $C(Q_1^*)$  with  $C(q_2)$ . Order  $Q_1^*$  if  $C(Q_1^*) \le C(q_2)$ , else order  $q_2$  Note:  $C(Q) = \frac{d}{Q}A + \frac{IC}{2}Q + Cd$ . Select the right C for each order quantity!



#### **Example (see Silver Pyke Thomas 4.5 p. 158):**

- Consider three components in the below table.
- The supplier offers a **2% discount** on any replenishment of **100 units or higher** of a single item.
- What are the optimal order sizes for item A, B and C?

| Item | D (Units/Year) | v <sub>0</sub> (\$/Unit) | A (\$) | r (\$/\$/Year) |
|------|----------------|--------------------------|--------|----------------|
| Α    | 416            | 14.20                    | 1.50   | 0.24           |
| В    | 104            | 3.10                     | 1.50   | 0.24           |
| С    | 4,160          | 2.40                     | 1.50   | 0.24           |

D: Annual Demand

 $v_0$ : Unit Cost

A: Ordering Cost/Setup Cost

r: Carrying Charge



#### Item A



Step 1 EOQ (discount) = 19 units < 100 units.  
Step 2 EOQ (discount) < 
$$Q_b$$
; therefore, go to Step 3.  
Step 3

TRC(EOQ) = 
$$\sqrt{2 \times 1.50 \times 416 \times 14.20 \times 0.24} + 416 \times 14.20$$
  
= \$5,972.42/year  
TRC( $Q_b$ ) = TRC(100) =  $\frac{100 \times 14.20 \times 0.98 \times 0.24}{2} + \frac{1.50 \times 416}{100} + 416 \times 14.20 \times 0.98$   
= \$5,962.29/year

 $TRC(EOQ) > TRC(Q_b)$ . Therefore, the best order quantity to use is  $Q_b$ , that is, 100 units.



#### Item B



Step 1 EOQ (discount) = 21 units < 100 units.  
Step 2 EOQ (discount) < 
$$Q_b$$
; therefore, go to Step 3.  
Step 3

TRC(EOQ) = 
$$\sqrt{2 \times 1.50 \times 104 \times 3.10 \times 0.24} + 104 \times 3.10$$
  
= \$337.64/year  
TRC( $Q_b$ ) = TRC(100) =  $\frac{100 \times 3.10 \times 0.98 \times 0.24}{2} + \frac{1.50 \times 104}{100} + 104 \times 3.10 \times 0.98$   
= \$353.97/year

 $TRC(EOQ) < TRC(Q_b)$ . Therefore, use the EOQ without a discount; that is,

$$EOQ = \sqrt{\frac{2 \times 1.50 \times 104}{3.10 \times 0.24}} \approx 20 \text{ units}$$



#### Item C



■EOQ C ■ Discount C



## Incremental quantity discounts

 In this model, unit purchasing cost decreases only for units beyond a certain threshold and not for every unit.



Holding cost is now:

$$h = I * c(Q)/Q$$

See e.g. Muckstadt & Sapra 2.3.3





## Algorithm: Incremental

 $R_j$  denotes the sum of the terms that are independent of Q in purchasing cost, if  $q_j \le Q < q_{j+1}$  $R_j = C_1 (q_2 - q_1) + C_2 (q_3 - q_2) + \cdots + C_{j-1} (q_j - q_{j-1}), \quad j \ge 2$ 

1) Compute 
$$Q_j^* = \sqrt{\frac{2(R_j - C_j q_j + A)d}{IC_j}}$$
 for all  $j$ 

- 2) Check if  $q_{j+1} > Q_j^* \ge q_j$  and disregard the ones that do not satisfy this inequality
- 3) For each remaining  $Q_j^*$  compute the corresponding costs  $\mathcal{C}(Q_j^*)$ 
  - $Q_j^*$  that produces the least cost is the optimal order quantity



#### Example (see Muckstadt & Sapra 2.3.3 p. 39):

- Consider incremental discount table offered by a supplier
- The retailer sells one product. What are the optimal order sizes for the retailer?

| Quantity (Q)      | Price (C) | Demand<br>(d) | Ordering<br>Cost (A) | Carrying<br>Charge (I%) |  |
|-------------------|-----------|---------------|----------------------|-------------------------|--|
| $0 \le Q < 110$   | \$5       |               |                      |                         |  |
| $110 \le Q < 150$ | \$ 4.75   | 520           | 10                   | 20%                     |  |
| 150 ≤ Q           | \$ 5      |               |                      |                         |  |

1) Compute  $Q_j^*$  for all j

$$Q_1^* = \sqrt{\frac{2(0-0+10)(520)}{(0.2)(5)}} = 101.98,$$

$$Q_2^* = \sqrt{\frac{2(550-(4.75)(110)+10)(520)}{(0.2)(4.75)}} = 202.61,$$

$$Q_2^* = \sqrt{\frac{2(740-(4.5)(150)+10)(520)}{(0.2)(4.75)}} = 204.20$$

$$Q_3^* = \sqrt{\frac{2(740 - (4.5)(150) + 10)(520)}{(0.2)(4.5)}} = 294.39.$$



#### **Example (Cont.):**

| Quantity (Q)      | Price (C) | Demand<br>(d)                            | Ordering<br>Cost (A) | Carrying<br>Charge (I%) |  |  |
|-------------------|-----------|------------------------------------------|----------------------|-------------------------|--|--|
| $0 \le Q < 110$   | \$5       | (d) Cost (A) Charge (I%)  .75 520 10 20% |                      |                         |  |  |
| $110 \le Q < 150$ | \$ 4.75   | 520                                      | 10                   | 20%                     |  |  |
| 150 ≤ Q           | \$ 5      |                                          |                      |                         |  |  |

2) Check if  $q_{j+1} > Q^*_{j} \ge q_{j}$  and disregard the ones that do not satisfy this inequality

- $Q_1^* \in [0, 110)$
- $Q_2^* \notin [110, 150)$  Only  $Q_1^*$  and  $Q_3^*$  are feasible
- $Q_3^* \in [150, \infty)$

3) For  $Q_1^*$  and  $Q_3^*$  compute the corresponding costs  $\mathcal{C}(Q_i^*)$ 

$$C(Q_1^*) = (5)(520) + (0 - 0 + 10) \frac{520}{101.98} + \frac{(0.2)(5)(101.98)}{2} + \frac{(0.2)(0 - 0)}{2}$$

$$= 2701.98,$$

$$C(Q_3^*) = (4.5)(520) + (740 - (4.5)(150) + 10) \frac{520}{294.39} + \frac{(0.2)(4.5)(294.39)}{2} + \frac{(0.2)(740 - (4.5)(150))}{2}$$



 $\therefore$  The retailer should order  $Q_3^* = 294.39$ 



### Power-of-Two Policies

Assume we are interested in the optimal reorder interval rather than the optimal order quantity.

$$T^* = \sqrt{\frac{2A}{hd}}$$

For practical reasons we may need the reorder interval to be an integer multiple of a base planning period

$$T = n T_L$$

In a power-of-two policy, further, n can only be a power of two.

$$T = \{T_L, 2T_L, 4T_L, 8T_L, \dots\}$$

For example, joint ordering of multiple different items.



#### Power-of-Two Policies

Inventory Management problem under a power of two policy is:

$$\min_{T\geq 0} C(T) = \frac{A}{T} + \frac{1}{2}hdT,$$

$$T=Q/d$$

s.t. 
$$T = 2^l T_L, l = \{0,1,2,3,\dots\}$$

•  $l^*$  is the smallest non-negative integer (including zero) that satisfies

$$C(2^{l^*}T_L) \le C(2^{l^*+1}T_L)$$



## Sensitivity of EOQ with respect to T

- One can show that  $\frac{C(T)}{C(T^*)} = \frac{1}{2} \left( \frac{T^*}{T} + \frac{T}{T^*} \right)$
- From this, and the condition  $C(2^{l^*}T_L) \leq C(2^{l^*+1}T_L)$

it can be shown that 
$$\frac{T^*}{\sqrt{2}} \leq 2^{l^*} T_L \leq T^* \sqrt{2}$$
.

Hint: the solution should satisfy  $\frac{C(T)}{C(T^*)} \le \frac{C(2T)}{C(T^*)}$ .

Thus: 
$$\frac{C(2^{l^*}T_L)}{C(T^*)} \le \frac{1}{2} \left( \frac{1}{\sqrt{2}} + \sqrt{2} \right) \approx 1.06$$

 So, a power-of-two policy leads to at most a 6% cost disadvantage compared to the optimal order interval



## Marketing – Operations Interface

- Sequential marketing-operation decision versus simultaneous planning
- Sequential planning
  - Stage 1: Price optimization

$$\Pi = (p - c)(a - bp), \quad p^* = \frac{a + bc}{2b}$$

Stage 2: Lot-size optimization

$$C(d) = \sqrt{2Ah(a - bp^*)}$$

Simultaneous planning

$$\Pi = (p - c)(a - bp) - \sqrt{2Ah(a - bp)}$$



## Numerical example

| Price response |     |  |
|----------------|-----|--|
| a              | 50  |  |
| b              | 2   |  |
|                |     |  |
| Cost           |     |  |
| С              | 10  |  |
| A              | 450 |  |
| h              | 1   |  |
|                |     |  |

| Sequential          |        | Simultaneous |        |
|---------------------|--------|--------------|--------|
| р                   | 17.50  | р            | 19.83  |
| d (a-bp)            | 15.00  | d            | 10.33  |
| Profit (π-C(d))     | -3.69  | Profit       | 5.17   |
|                     |        |              |        |
| Revenue (p*d)       | 262.50 |              | 204.95 |
| Variable cost (c*d) | 150.00 |              | 103.34 |
| Overhead (C(d))     | 116.19 |              | 96.44  |



## Dynamic single product lot-sizing

- Finite-horizon
- Discrete-time t=1,2,...,T
- Deterministic, non-stationary demand:  $d_t$
- Single product at a single stage
- Other assumptions as in EOQ model
- Planning problem (Wagner/Whitin)
  - Decision variables
    - q<sub>t</sub> Lot-size (Production quantity) in t
    - y<sub>t</sub> Inventory level at the end of period t
    - $\gamma_t$  Setup indicator,  $\gamma_t$ =1 if a lot is placed in period t,  $\gamma_t$ =0 otherwise
  - Cost minimization (fixed order cost A, holding cost h for inventory at the end of a period)
  - Constraints



### Mixed-integer Linear Program

Model

$$\min \sum_{t=1}^{T} (A \cdot \gamma_t + h \cdot y_t)$$

$$y_t = y_{t-1} + q_t - d_t \qquad t = 1, 2, ..., T$$

$$q_t \le M\gamma_t \qquad \qquad t = 1, 2, ..., T$$

$$y_0 = y_T = 0$$

$$q_t, y_t \ge 0, \ \gamma_t \in \{0, 1\} \quad t = 1, 2, ..., T$$

- No fixed order cost: optimal to place an order in every period.
- Positive fixed cost: combine multiple periods' demands into a single order.



### Mixed-integer Linear Program

#### Solution Properties

If out of inventory after t-1, then order in t for exactly some number of periods ahead

$$q_{t}^{*} = \begin{cases} \sum_{\tau=t}^{z} d_{\tau} & if \quad y_{t-1}^{*} = 0 \\ 0 & else \end{cases} \qquad t = 1, 2, \dots, T$$

Positive order in period t only if no inventory left at end of t-1

$$q_t^* \cdot y_{t-1}^* = 0$$
  $t = 1, 2, ..., T$ 



- Algorithm guarantees an optimal solution.
- An application of dynamic programming.
- F(t): total costs of the best replenishment strategy that satisfies the demand in periods 1, 2, . . . , t.
- For period t, there are t possible options to evaluate.

| Period | 1   | 2   | 3  | 4   | 5   | 6    |
|--------|-----|-----|----|-----|-----|------|
| Demand | 750 | 100 | 50 | 100 | 400 | 1000 |

$$A=400, h=2$$

- F(1)=A=400
- F(2)=min{Option 1, Option 2}=600
  - Option 1 (Produce in this period)  $\rightarrow$  F(1)+A=800
  - Option 2 (Produce in period 1)  $\rightarrow$  A+h\*100=600

•



| Period | 1   | 2   | 3  | 4   | 5   | 6    |
|--------|-----|-----|----|-----|-----|------|
| Demand | 750 | 100 | 50 | 100 | 400 | 1000 |

A=400, h=2

- F(3)=min{Option 1, Option 2, Option 3}=800
  - Option 1(Produce in this period)  $\rightarrow$  F(2)+A=1000
  - Option 2 (Produce in period 2)  $\rightarrow$  F(1)+A+ h\*50=900
  - Option 3 (Produce in period 1) → A+ h\*100+h\*2\*50=800
- F(4)=min{Option 1, Option 2, Option 3, Option 4}=1200
  - Option 1(Produce in this period)  $\rightarrow$  F(3)+A=1200
  - Option 2 (Produce in period 3)  $\rightarrow$  F(2)+A+ h\*100=1200
  - Option 3 (Produce in period 2)  $\rightarrow$  F(1)+A+h\*50+h\*2\*100=1300
  - Option 4 (Produce in period 1)  $\rightarrow$  A+h\*100+h\*2\*50+h\*3\*100=1400
- Option 4 is actually redundant (no need to compute), since

$$h * 3 * 100 > A$$



- If  $d_i$ , h > A the optimal solution will have a replenishment at the beginning of period j.
- Since  $d_5$ , h > A and  $d_6$ , h > A, for F(5) and F(6), the only meaningful option is the first one (Produce in the period).
- F(5)=F(4)+A=1600
- F(6)=F(5)+A=2000



| Demand      | 750 | 100 | 50   | 100  | 400  | 1000  |
|-------------|-----|-----|------|------|------|-------|
| Make Period | 1   | 2   | 3    | 4    | 5    | 6     |
| 1           | 400 | 600 | 800  | 1400 | 4600 | 14600 |
| 2           |     | 800 | 900  | 1300 | 3700 | 11700 |
| 3           |     |     | 1000 | 1200 | 2800 | 8800  |
| 4           |     |     |      | 1200 | 2000 | 6000  |
| 5           |     |     |      |      | 1600 | 3600  |
| 6           |     |     |      |      |      | 2000  |
| Order       | 850 | 0   | 150  | 0    | 400  | 1000  |



## **Lot-sizing heuristics**

#### **Algorithm:**

Successive extension of a lot by a future demand until termination criterion fulfilled





## **Lot-sizing heuristics**

• Average demand  $\bar{d} = \frac{1}{T} \sum_{t=0}^{T} d_{t}$ 

$$\bar{d} = \frac{1}{T} \sum_{t=1}^{T} d_t$$

- Economic order interval (EOI) heuristic
  - Combine demands of EOI periods

$$EOI = \sqrt{\frac{2A}{\bar{d}h}}$$

$$EOI = \sqrt{\frac{2A}{\bar{d}h}}$$
  $r = \max\{1; \text{round}(EOI)\}$ 

$$q_t = \begin{cases} \sum_{\tau=t}^{t+r-1} d_{\tau} & t = k \cdot r + 1, k = 0,1,2,\dots \\ 0 & else \end{cases}$$

- Economic order quantity heuristic
  - Combine demands until lot-size comes closest to EQQ

$$EOQ = \sqrt{\frac{2\bar{d}A}{h}} \qquad z(t) := \operatorname{argmin} \left\{ i = t, t+1, \dots, T \left| \sum_{\tau=t}^{i} d_{\tau} - EOQ \right| \right\} \qquad q_t = \sum_{\tau=t}^{z(t)} d_{\tau}$$



## **Lot-sizing heuristics**

- Least unit cost (LUC)
  - Extend z, until average cost per unit increases  $(k_{t,z+1}>k_{tz})$

$$k_{tz} = \frac{A + h \cdot \sum_{\tau=t}^{z} (\tau - t) \cdot d_{\tau}}{\sum_{\tau=t}^{z} d_{\tau}}$$

- Silver-Meal (SM)
  - Extend z, until average cost per period increases  $(k_{t,z+1}>k_{tz})$

$$k_{tz} = \frac{A + h \cdot \sum_{\tau=t}^{z} (\tau - t) \cdot d_{\tau}}{z - t + 1}$$

- Part period balancing (PP)
  - Extend z, until fixed cost and cumulative holding costs are (almost)  $A \ge h \cdot \sum_{i=1}^{n} (\tau t) \cdot d_{\tau}$ equal

$$A \ge h \cdot \sum_{\tau=t}^{z} (\tau - t) \cdot d_{\tau}$$

$$A < h \cdot \sum_{\tau=t}^{2+1} (\tau - t) \cdot d_{\tau}$$



## Example Silver-Meal (SM)

| Period | 1   | 2   | 3  | 4   | 5   | 6    |
|--------|-----|-----|----|-----|-----|------|
| Demand | 750 | 100 | 50 | 100 | 400 | 1000 |

Include  $d_2$  when producing in period 1?

• 
$$k_{11} = A = 400, \ k_{12} = \frac{A + h * 100}{2} = 300$$



• 
$$k_{12} < k_{11}$$

Include  $d_3$  when producing in period 1?



$$k_{tz} = \frac{A + h \cdot \sum_{\tau=t}^{z} (\tau - t) \cdot d_{\tau}}{z - t + 1}$$

• 
$$k_{13} = \frac{A+h*100+2*h*50}{3} = 266.67$$

•  $k_{13} < k_{12}$ 

Include  $d_4$  when producing in period 1?

• 
$$k_{14} = \frac{A+h*100+2*h*50+3*h*100}{4} = 350$$



• 
$$k_{14} > k_{13}$$



## Example Silver-Meal (SM) continued

- So, produce in period 1 for periods 1,2, and 3.
- Start again in period 4:
  - $\circ$  Include  $d_5$  when producing in period 4?

$$0 k_{44} = A = 400, k_{45} = \frac{A + h * 400}{2} = 600$$



- Start again in period 5:
  - $\circ$  Include  $d_6$  when producing in period 5?

o 
$$k_{55} = A = 400$$
,  $k_{56} = \frac{A + h * 1000}{2} = 1200$ 



• So, produce in period 1 for periods 1,2, and 3; produce in period 4 for period 4; produce in period 5 for period 5; produce in period 6



## All heuristic solutions to this example

Demands over the next 6 months

750, 100, 50, 100, 400, 1000

• Setup cost: *A*=400

Inventory holding cost per unit and month: h=2

Results of the heuristics

|         | 1   | 2   | 3   | 4   | 5   | 6    | Cost |
|---------|-----|-----|-----|-----|-----|------|------|
| EOI     | 750 | 100 | 50  | 100 | 400 | 1000 | 2400 |
| EOQ     | 750 | 250 | 0   | 0   | 400 | 1000 | 2100 |
| LUC     | 750 | 150 | 0   | 500 | 0   | 1000 | 2500 |
| SM      | 900 | 0   | 0   | 100 | 400 | 1000 | 2000 |
| PP      | 900 | 0   | 0   | 100 | 400 | 1000 | 2000 |
| Optimal | 850 | 0   | 150 | 0   | 400 | 1000 | 2000 |

See the Excel file!



#### A rolling-horizon & Demand Uncertainty: Why to use heuristics?

| Rank     | Rule                            | Mean         | Std. Dev. | Rank | Rule                    | Mean  | Std. Dev. |  |
|----------|---------------------------------|--------------|-----------|------|-------------------------|-------|-----------|--|
| 1        | ww                              | 0            | 0         | 1    | PPB                     | -0.67 | 4.91      |  |
| <b>2</b> | $\mathbf{GMR}$                  | $2 \cdot 24$ | 2.47      | 2    | WMR3                    | -0.57 | 4.94      |  |
| 3        | SM                              | 3.06         | 3.83      | 3    | WMR2                    | -0.26 | 4.95      |  |
| 4        | WMR1                            | 3.34         | 2.85      | 4    | OM                      | -0.25 | 4.25      |  |
| 5        | PPB w. LA-LB                    | 4.09         | 3.70      | 5    | WW                      | 0     | 0         |  |
| 6        | WMR3                            | 4.89         | 5.06      | 6    | <b>≠</b> EOQ            | 0.19  | 9.24      |  |
| 7        | OM                              | 4.93         | 5.10      | 7    | WMRI                    | 1.24  | 4.17      |  |
| 8        | PPB                             | 5.74         | 5.18      | 8    | EOQ-D                   | 1.27  | 8-41      |  |
| 9        | WMR2                            | 5.78         | 4.87      | 9    | GMR                     | 1.45  | 4.34      |  |
| 10       | $\mathbf{POQ}$                  | 10.72        | 9.35      | 10   | PPB w. LA-LB            | 1.73  | 4.39      |  |
| 11       | $\mathbf{EOQ}	ext{-}\mathbf{D}$ | 13.06        | 12.69     | / 11 | $\mathbf{POQ}$          | 2.58  | 5.29      |  |
| 12       | LÜC                             | 17.16        | 18.02     | 12   | $\mathbf{SM}^{\bullet}$ | 2.71  | 5.89      |  |
| 13       | $\mathbf{EOQ}$                  | 33.87        | 29.53     | 13   | $\mathbf{LUC}$          | 6.02  | 14.59     |  |
| 14       | LFL                             | 108.27       | 97.57     | 14   | $\mathbf{LFL}$          | 63.71 | 69.70     |  |

Mean and Std of relative cost increase (%) when forecast errors are zero

- OO. Baried Onder Overtite
- SM: Silver-Meal Procedure

WW: Wagner-Whitin Algorithm

- PPB w. LA-LB: Part Period Balancing with
   Look-Ahead & Look-Back
- POQ: Period Order Quantity
- EOQ: Economic Order Quantity
- EOQ-D: Discrete Economic Order Quantity
- OM: Order Moment Procedure
- · PPB: Part Period Balancing
- LUC: Least Unit Cost
- LFL: Lot-for-Lot

GMR: Groff Method

Mean and Std of relative cost increase (%) when forecast errors are present

- WMR1: Wemmerloev Method 1
- WMR2: Wemmerloev Method 2
- WMR3: Wemmerloev Method 3

If uncertainty and a rolling schedule are present, it is no longer obvious that WW should be used as a reference rule

Wemmerlöv, U., & Whybark, D. C. (1984). Lot-sizing under uncertainty in a rolling schedule environment. The International Journal Of Production Research, 22(3), 467-484.



#### A rolling-horizon & Demand Uncertainty: Why to use heuristics?

Percentage Deviation from Optimality Uniform Distribution,  $P_t = .2$ , Set-Up Cost = 800

|        |       | R=    | = 0   |       |       | R = 35 |       |       | R = 75 |       |       | R = 150 |       |       |       |       |
|--------|-------|-------|-------|-------|-------|--------|-------|-------|--------|-------|-------|---------|-------|-------|-------|-------|
| Window | ww    | MSM   | SM    | PP    | ww    | MSM    | SM    | PP    | ww     | MSM   | SM    | PP      | ww    | MSM   | SM    | PP    |
| 2      | 25.04 | 25.04 | 25.04 | 25.04 | 25.61 | 25.61  | 25.61 | 25.61 | 26.55  | 26.55 | 26.55 | 26.55   | 29.74 | 29.74 | 29.74 | 29.74 |
| 3      | 5.29  | 5.29  | 5.29  | 5.29  | 5.70  | 5.70   | 5.70  | 5.70  | 6.50   | 6.50  | 6.50  | 6.50    | 9.26  | 9.32  | 9.32  | 9.26  |
| 4      | 3.34  | 3.99  | 3.99  | 3.34  | 3.70  | 4.05   | 4.05  | 3.70  | 4.49   | 3.72  | 3.72  | 4.49    | 7.30  | 4.40  | 4.40  | 7.26  |
| 5      | 6.81  | 2.46  | 3.99  | 4.44  | 6.74  | 2.18   | 4.05  | 4.65  | 6.27   | 2.02  | 3.61  | 5.27    | 6.93  | 2.48  | 3.49  | 7.42  |
| 6      | 3.72  | 1.40  | 3.99  | 4.67  | 3.90  | 1.37   | 4.05  | 5.09  | 4.27   | 1.59  | 3.61  | 5.74    | 3.89  | 1.90  | 3.35  | 7.58  |
| 7      | 2.00  | 1.40  | 3.99  | 4.93  | 1.56  | 1.35   | 4.05  | 5.26  | 1.59   | 1.46  | 3.61  | 5.96    | 1.85  | 1.81  | 3.27  | 7.76  |
| 8      | 1.23  | 1.31  | 3.99  | 4.93  | 1.31  | 1.28   | 4.05  | 5.26  | 1.34   | 1.48  | 3.61  | 5.96    | 1.22  | 1.77  | 3.27  | 7.76  |
| 9      | .56   | 1.31  | 3.99  | 4.93  | 1.03  | 1.34   | 4.05  | 5.26  | .85    | 1.46  | 3.61  | 5.96    | .67   | 1.71  | 3.27  | 7.76  |
| 10     | .66   | 1.32  | 3.99  | 4.93  | .57   | 1.35   | 4.05  | 5.26  | .64    | 1.51  | 3.61  | 5.96    | .68   | 1.76  | 3.27  | 7.76  |

<sup>•</sup> WW: Wagner-Whitin Algorithm / MSM: Modified Silver-Meal Procedure / SM: Silver-Meal Procedure / PPB w. LA-LB: Part Period Balancing

- With short forecast horizons, SM heuristics outperform WW
- While heuristics may provide less effective than WW in a static framework, their myopia reduces the amount of schedule instability in a rolling-horizon.