Assignment 1

1 Practice: Fast API Implementation

In Module 2 we used the **spacy** library to implement word embedding functionality. Add the embedding functionality to the API implemented as part of Module 1 setup. Docker deployment is optional, but if you want to implement it, you can reference Module 3 Class Activity. Commit your code to GitHub.

2 Theory: Rules of Probability

Notation

- $A \cap B$ (intersection): "A AND B" both events occur simultaneously Set interpretation: elements that belong to both set A and set B
- $A \cup B$ (union): "A OR B" at least one of the events occurs Set interpretation: elements that belong to either set A or set B (or both)
- A' or A^c (complement): "NOT A" event A does not occur Set interpretation: elements that do not belong to set A
- P(A|B) (conditional): "probability of A given B" probability of A when we know B occurred

Probability Rules

- Independence: $P(A \cap B) = P(A) \times P(B)$ if A and B are independent
- Addition Rule: $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- Conditional Probability: $P(A|B) = \frac{P(A \cap B)}{P(B)}$
- Bayes' Rule: $P(A|B) = \frac{P(B|A) \times P(A)}{P(B)}$
- Law of Total Probability: $P(B) = P(B|A) \times P(A) + P(B|A') \times P(A')$ Equivalently: $P(B) = P(B \cap A) + P(B \cap A')$

Expected Value and Variance

- Expected Value: $E[X] = \sum x \cdot P(X = x)$
- Variance: $Var(X) = E[X^2] (E[X])^2$
- Linearity of Expectation: E[aX + b] = aE[X] + b

Information Theory

- Entropy: $H(X) = -\sum P(X = x) \log P(X = x)$
- Cross Entropy: $H(p,q) = -\sum p(X=x) \log q(X=x)$

3 Problems

Note: Please show your work for all calculations. You may either write out the mathematical steps or provide Python code with results.

Question 1

Events A and B are independent, with P(A) = 0.4 and P(B) = 0.3. Calculate:

- (a) $P(A \cap B)$
- (b) $P(A \cup B)$

Question 2

Suppose P(A) = 0.5, P(B) = 0.4, and P(A|B) = 0.7. Are events A and B independent? Explain clearly.

Question 3

Use Bayes' Rule to solve the following: Given P(A) = 0.6, P(B|A) = 0.5, and P(B|A') = 0.2, calculate P(A|B).

Question 4

A medical test for a disease is 95% accurate for detecting the disease when a person actually has it (true positive rate), and it correctly gives a negative result for 90% of the healthy people (true negative rate). If the probability of having the disease is 2%, calculate the probability that a person who tests positive actually has the disease. (Use Bayes' Rule).

Question 5

A discrete random variable X represents exam scores with the following probability distribution:

X	85	90	95	100
P(X=x)	0.375	0.375	0.125	0.125

(a) Calculate the expected value E[X].

- (b) Calculate the variance $Var(X) = E[X^2] (E[X])^2$.
- (c) The following sample was drawn from this distribution: {85, 90, 85, 95, 90, 85, 100, 90}. Calculate the sample mean and compare it with the expected value from part (a).

Question 6

A communication system transmits one of four possible messages with the following probabilities:

Message	A	В	С	D
Probability	0.4	0.3	0.2	0.1

- (a) Calculate the entropy H(X) of this message distribution in bits (use log_2).
- (b) If we could redesign the system to have equal probabilities for all messages, what would be the new entropy?