Lab 3: Preparing Development **ERNEST®**

Environment

This lab covers the following topics:

- Building the React and GraphQL stack
- Installing and configuring Node.js
- Setting up a React development environment with webpack, Babel, and other requirements
- Using webpack-bundle-analyzer to check the bundle size

Hint: Use VSCode for all exercises because it supports copy and paste.

The basic setup

The basic setup to make an application work is the logical request flow, which looks as follows:

Lab Solution

Complete solution for this lab is available in the following directory:

cd ~/Desktop/react-graphql-intro/labs/Lab03

Run following command to install all required packages for the solution only:

npm install

Running Solution

Run following command to run application in the Lab01 folder:

npm run client

Note:

- VCode is already installed in the lab environment, you can open solution folder in vscode.
- Use Midori browser installed in the lab environment for accessing application.

Node.js

Let's open a terminal and verify that node is installed:

```
node --version
```

ProTip

The installation of Node.js via the package manager automatically installs npm.

```
npm --version
```

Setting up React

The development environment for our project is ready. In this section, we are going to install and configure React, which is one primary aspect of this course. Let's start by creating a new directory for our project:

```
mkdir ~/graphbook
cd ~/graphbook
```

Our project will use Node.js and many npm packages. Create a [package.json] file to install and manage all of the dependencies for our project.

This stores information about the project, such as the version number, name, dependencies, and much more.

Just run [npm init] to create an empty [package.json] file from inside of the graphbook folder:

```
npm init
```

Npm will ask some questions, such as asking for the package name, which is, in fact, the project name. Enter [Graphbook] to insert the name of your application in the generated [package.json] file.

You can skip all other questions using the *Enter* key to save the default values of npm. Most of them are not relevant because they just provide information such as a description or the link to the repository. We are going to fill the other fields, such as the scripts while working through this course. You can see an example of the command line in the following screenshot:

```
This utility will walk you through creating a package.json file.
It only covers the most common items, and tries to guess sensible defaults.
See `npm help json` for definitive documentation on these fields
and exactly what they do.
Use `npm install <pkg>` afterwards to install a package and
save it as a dependency in the package.json file.
Press ^C at any time to quit.
package name: (graphbook)
version: (1.0.0) 0.0.1
description:
entry point: (index.js)
test command:
git repository:
keywords:
author:
license: (ISC)
About to write to C:\Users\sebig\Desktop\testit\graphbook\package.json:
  "name": "graphbook",
  "version": "0.0.1",
  "description": ""
  "main": "index.js",
  "scripts": {
    "test": "echo \"Error: no test specified\" && exit 1"
  },
  "author": "",
  "license": "ISC"
```

The first and most crucial dependency for this course is React. Use npm to add React to our project:

```
npm install --save react@16.6.3 react-dom@16.6.3

npm install --save-dev webpack@4.26.1 webpack-cli@3.1.2 webpack-dev-server@3.1.10
```

Preparing and configuring webpack

Our browser requests an [index.html] file when accessing our application. It specifies all of the files that are required to run our application. We need to create the [index.html], which we serve as the entry point of our application:

1. Create a separate directory for our [index.html] file:

```
mkdir public cd public
```

```
touch index.html
```

Note: You can also use vscode to create and edit files.

2. Then, save this inside [index.html]:

As you can see, no JavaScript is loaded here. There is only [div] with the [root] id. This [div] tag is the DOMNode in which our application will be rendered by [ReactDOM].

So, how do we get React up and running with this [index.html] file?

To accomplish this, we need to use a web application bundler. It prepares and bundles all our application assets. For our use case, we will use webpack. It is the most common module bundler, which has a large community surrounding it. To bundle our JavaScript code, we need to install webpack and all of its dependencies as follows:

```
cd ~/graphbook

npm install --save-dev @babel/core@7.1.6 babel-eslint@10.0.1 babel-loader@8.0.4
@babel/preset-env@7.1.6 @babel/preset-react@7.0.0 clean-webpack-plugin@1.0.0 css-loader@1.0.1 eslint@5.3.0 file-loader@2.0.0 html-webpack-plugin@3.2.0 style-loader@0.23.1 url-loader@1.1.2 webpack@4.26.1 webpack-cli@3.1.2 webpack-dev-server@3.1.10 @babel/plugin-proposal-decorators@7.1.6 @babel/plugin-proposal-function-sent@7.1.0 @babel/plugin-proposal-export-namespace-from@7.0.0 @babel/plugin-proposal-numeric-separator@7.0.0 @babel/plugin-proposal-throw-expressions@7.0.0 @babel/plugin-proposal-class-properties@7.1.0
```

As you can see in the preceding code, we also installed eslint, which goes through our code on the fly and checks it for errors. We need an [eslint] configuration file. The following handy shortcut installs the [eslint] configuration created by the people at Airbnb, including all peer dependencies. Execute it straight away:

```
npx install-peerdeps --dev eslint-config-airbnb@17.1.0
```

Create a [.eslintrc] file in the root of your project folder to use the [airbnb] configuration:

```
"extends": ["airbnb"],
"env": {
    "browser": true,
    "node": true
},
```

```
"rules": {
    "react/jsx-filename-extension": "off"
}
```

In short, this [.eslinrc] file loads the [airbnb] config; we define the environments where our code is going to run, and we turn off one default rule.

Let's create a [webpack.client.config.js] file in the root folder of your project to setup webpack.

Enter the following:

```
const path = require('path');
const HtmlWebpackPlugin = require('html-webpack-plugin');
const CleanWebpackPlugin = require('clean-webpack-plugin');
const outputDirectory = 'dist';
module.exports = {
   mode: 'development',
   entry: './src/client/index.js',
   output: {
       path: path.join( dirname, outputDirectory),
       filename: 'bundle.js'
   },
   module: {
       rules: [
         {
           test: /\.js$/,
           exclude: /node modules/,
           use: {
             loader: 'babel-loader'
           }
          },
           test: /\.css$/,
           use: ['style-loader', 'css-loader']
       ]
   },
   devServer: {
       port: 3000,
       open: 'midori'
   },
   plugins: [
       new CleanWebpackPlugin([outputDirectory]),
       new HtmlWebpackPlugin({
         template: './public/index.html'
        })
};
```

The webpack configuration file is just a regular JavaScript file in which you can require [node_modules] and custom JavaScript files. This is the same as everywhere else inside Node.js.

Let's move on. We are missing the [src/client/index.js] file from our webpack configuration, so let's create it as follows:

```
mkdir src
mkdir src/client
touch ./src/client/index.js
```

You can leave this file empty for the moment. It can be bundled by webpack without content inside. We are going to change it later in this lab.

To spin up our development webpack server, we add a command to [package.json], which we can run using [npm].

Add this line to the [scripts] object inside [package.json] from the graphbook directory:

```
"client": "webpack-dev-server --devtool inline-source-map --hot --config webpack.client.config.js"
```

Now execute <code>npm run client</code> in your console, and watch how a new browser window opens. We are running [webpack-dev-server] with the newly created configuration file.

```
cd ~/graphbook

npm run client
```

```
ntrypoint main =
0] multi (webpack)-dev-server/client?http://localhost:3000 (webpack)/hot/dev-server.js ./src/client/index.js 52 byte
./node_modules/ansi-html/index.js] 4.16 KiB {main} [built]
./node_modules/ansi-regex/index.js] 135 bytes {main} [built]
./node_modules/loglevel/lib/loglevel.js] 9.34 KiB {main} [bu
/node_modules/strip-ansi/index.js] 161 bytes {main} [built]
/node_modules/url/url.js] 22.8 KiB {main} [built]
            modules/webpack-dev-server/client/index.js?http://localhost:3000] (webpack)-dev-server/client?http://localhost
./node_modules/webpack-dev-server/client/overlay.js] (webpack)-dev-server/client/overlay.js 3.58 KiB {main} [built]
./node_modules/webpack-dev-server/client/socket.js] (webpack)-dev-server/client/socket.js 1.05 KiB {main} [built]
./node_modules/webpack/hot sync ^\.\/log$] (webpack)/hot sync nonrecursive ^\.\/log$ 170 bytes {main} [built]
./node_modules/webpack/hot/dev-server.js] (webpack)/hot/dev-server.js 1.61 KiB {main} [built]
./node_modules/webpack/hot/emitter.js] (webpack)/hot/emitter.js 77 bytes {main} [built]
./node_modules/webpack/hot/log-apply-result.js] (webpack)/hot/log-apply-result.js 1.27 KiB {main} [built]
./node_modules/webpack/hot/log.js] (webpack)/hot/log.js 1.11 KiB {main} [built]
./src/client/index.js] 0 bytes {main} [built]
+ 14 hidden modules
+ 15 hidden modules
+ 16 hidden modules
+ 17 hidden modules
+ 18 hidden modules
  /node_modules/webpack-dev-server/client/overlay.js] (webpack)-dev-server/client/overlay.js 3.58 KiB <mark>{mai</mark>n} [huilt]
mild html-webpack-plugin for "index.html":
     Entrypoint undefined = index.html
      [./node_modules/html-webpack-plugin/lib/loader.js!./public/index.html] 506 bytes {0} [built]
       ./node_modules/lodash/lodash.js] 531 KiB {0} [built]
[./node_modules/webpack/buildin/global.js] (webpack)/buildin/global.js 472 bytes {0} [built]
[./node_modules/webpack/buildin/module.js] (webpack)/buildin/module.js 519 bytes {0} [built]
           : Compiled successfully
       mj: Compiling...
mj: Hash: bd27f8526e89dbc44696
 rsion: webpack 4.26.1
 ilt at: 12/08/2021 4:44:48 PM
                                                                    Asset
                                                                                             Size Chunks
                                                                                                                                                   Chunk Names
```

We have accomplished including our empty <code>index.js</code> file with the bundle and can serve it to the browser. Next, we'll render our first React component inside our template [index.html] file.

Render your first React component

First, copy uploads folder from ~/Desktop/react-graphql-intro/labs and paste in ~/graphbook folder.

Our index.js file is the main starting point of our front end code, and this is how it should stay. Do not include any business logic in this file. Instead, keep it as clean and slim as possible.

The index.js file should include this code:

```
import React from 'react';
import ReactDOM from 'react-dom';
import App from './App';

ReactDOM.render(<App/>, document.getElementById('root'));
```


Create the [App.js] file next to your index.js file, with the following content:

This class is exported and then imported by the index.js file. As explained before, we are now actively using [ReactDOM.render] in our index.js file.

Let's create a [.babelrc] file in the root folder with this content:

```
"plugins": [
    ["@babel/plugin-proposal-decorators", { "legacy": true }],
    "@babel/plugin-proposal-function-sent",
    "@babel/plugin-proposal-export-namespace-from",
    "@babel/plugin-proposal-numeric-separator",
    "@babel/plugin-proposal-throw-expressions",
    ["@babel/plugin-proposal-class-properties", { "loose": false }]
],
    "presets": ["@babel/env","@babel/react"]
}
```

Important!

You have to stop and start the server again because the [.babelrc] file is not reloaded when changes happen to the file. After a few moments, you should see the standard [Hello World!] message in your browser.

Output

Rendering arrays from React state

A social network such as Facebook or Graphbook, which we are writing at the moment, needs a news feed and an input to post news. Let's implement this.

For the simplicity of the first lab, we do this inside [App.js].

We should work with some fake data here since we have not yet set up our GraphQL API. We can replace this later with real data.

Define a new variable above your [App] class like this:

```
const posts = [{
 id: 2,
 text: 'Lorem ipsum',
 user: {
   avatar: '/uploads/avatar1.png',
   username: 'Test User'
  }
},
{
 id: 1,
 text: 'Lorem ipsum',
 user: {
   avatar: '/uploads/avatar2.png',
   username: 'Test User 2'
 }
}];
```

We now render these two fake posts in React.

Replace the current content of your [render] method with the following code:

```
const { posts } = this.state;
return (
 <div className="container">
   <div className="feed">
     {posts.map((post, i) =>
       <div key={post.id} className="post">
        <div className="header">
          <img src={post.user.avatar} />
          <h2>{post.user.username}</h2>
         </div>
         {post.text}
         </div>
     ) }
   </div>
 </div>
)
```

We iterate over the [posts] array with the [map] function, which again executes the inner callback function, passing each array item as a parameter one by one. Everything returned from the [map] function is then rendered by React.

As you can see in the preceding code, we are extracting the posts we want to render from the component's state with a destructuring assignment. This data flow is very convenient because we can update the state at any point later in our application and the posts will rerender.

To get our posts into the state, we can define them inside our class with **property initializers**. Add this to the top of the [App] class:

```
state = {
  posts: posts
}
```

Upon initialization of the [App] class, the posts will be inserted into its state and rendered. It is vital that you run [super] before having access to [this].

After doing the changes, your App.js file should like this:

```
import React, { Component } from 'react';

const posts = [{
   id: 2,
   text: 'Lorem ipsum',
   user: {
     avatar: '/uploads/avatar1.png',
     username: 'Test User'
   }
},
{
   id: 1,
   text: 'Lorem ipsum',
   user: {
```

```
avatar: '/uploads/avatar2.png',
  username: 'Test User 2'
}
}];
export default class App extends Component {
 state = {
   posts: posts
  render() {
   const { posts } = this.state;
   return (
     <div className="container">
       <div className="feed">
        {posts.map((post, i) =>
          <div key={post.id} className="post">
            <div className="header">
              <img src={post.user.avatar} />
              <h2>{post.user.username}</h2>
            </div>
            {post.text}
            </div>
         ) }
       </div>
     </div>
   )
 }
}
```

The preceding method is much cleaner, and I recommend this for readability purposes. When saving, you should be able to see rendered posts. They should look like this:

Test User

Lorem ipsum

Test User 2

Lorem ipsum

CSS with webpack

The posts from the preceding picture have not been designed yet. I have already added CSS classes to the HTML our component returns.

What we've already done in our [webpack.client.config.js] file is to specify a CSS rule, as you can see in the following code snippet:

```
test: /\.css$/,
use: ['style-loader', 'css-loader'],
},
```

The [style-loader] injects your bundled CSS right into the DOM. The [css-loader] will resolve all [import] or [url] occurrences in your CSS code.

Create a [style.css] file in [./assets/css] and fill in the following:

```
body {
background-color: #f6f7f9;
 margin: 0;
 font-family: 'Courier New', Courier, monospace
}
p {
 margin-bottom: 0;
}
.container {
 max-width: 500px;
 margin: 70px auto 0 auto;
}
.feed {
 background-color: #bbb;
 padding: 3px;
 margin-top: 20px;
.post {
 background-color: #fff;
 margin: 5px;
.post .header {
 height: 60px;
.post .header > * {
 display: inline-block;
 vertical-align: middle;
.post .header img {
 width: 50px;
 height: 50px;
 margin: 5px;
.post .header h2 {
 color: #333;
 font-size: 24px;
 margin: 0 0 0 5px;
.post p.content {
 margin: 5px;
 padding: 5px;
```

```
min-height: 50px;
}
```

Refreshing your browser leaves you with the same old HTML as before.

This problem happens because webpack is a module bundler and does not know anything about CSS; it only knows JavaScript. We must import the CSS file somewhere in our code.

Instead of using [index.html] and adding a [head] tag, we can use webpack and our CSS rule to load it right in [App.js]. This solution is very convenient, since all of the required CSS throughout our application gets minified and bundled. Webpack automates this process.

In your [App.js] file, add the following behind the React [import] statement:

```
import '../../assets/css/style.css';
```

Webpack magically rebuilds our bundle and refreshes our browser tab.

You have now successfully rendered fake data via React and styled it with bundled CSS from webpack. It should look something like this:

The output looks very good already.

Event handling and state updates with React

At the beginning of this project, it would be great to have a simple [textarea] where you can click a button and then have a new post added to the static [posts] array we wrote in the [App] class.

Add this above the [div] with the [feed] class:

```
<div className="postForm">
  <form onSubmit={this.handleSubmit}>
    <textarea value={postContent} onChange={this.handlePostContentChange}</pre>
```

```
placeholder="Write your custom post!"/>
    <input type="submit" value="Submit" />
    </form>
</div>
```

```
⊈ Ⅲ …
                                                      B .babelrc
                                                                    JS App.js
rc > client > 🥦 App.js > 😭 App > 😭 render > 😭 posts.map() callback
      render() {
        const { posts, postContent } = this.state;
          <div className="container">
            <div className="postForm">
            <form onSubmit={this.handleSubmit}>
              <textarea value={postContent} onChange={this.handlePostContentCh</pre>
                placeholder="Write your custom post!"/>
              <input type="submit" value="Submit" />
             <div className="feed">
60
               {posts.map((post, i) =>
                <div key={post.id} className="post">
                  <div className="header":
                    <img src={post.user.avatar} />
                    <h2>{post.user.username}</h2>
                   {post.text}
               ))}
```

You can use forms in React without any problems. React can intercept the submit event of requests by giving the form an [onSubmit] property, which will be a function to handle the logic behind the form.

We are passing the [postContent] variable to the [value] property of [textarea] to have what's called a **controlled component**.

Create an empty string variable at the [state] property initializer, as follows:

```
state = {
  posts: posts,
  postContent: ''
}
```

Then, extract this from the class state inside the [render] method:

```
const { posts, postContent } = this.state;
```

Now, the new state variable stays empty, although, you can write inside [textarea]. This issue occurs because you are directly changing the DOM element but did not bind the change event to an existing React function. This function has the task of updating the React internal state that is not automatically connected to the browser's DOM state.

In the preceding code, we already passed the update function called [this.handlePostContentChange] to the [onChange] property of [textarea].

The logical step is to implement this function:

```
handlePostContentChange = (event) => {
  this.setState({postContent: event.target.value})
}
```

Look at your browser again. The form is there, but it is not pretty, so add this CSS:

```
form {
  padding-bottom: 20px;
}

form textarea {
  width: calc(100% - 20px);
  padding: 10px;
  border-color: #bbb;
}

form [type=submit] {
  border: none;
  background-color: #6ca6fd;
  color: #fff;
  padding: 10px;
  border-radius: 5px;
  font-size: 14px;
  float: right;
}
```

The last step is to implement the [handleSubmit] function for our form:

```
handleSubmit = (event) => {
  event.preventDefault();
  const newPost = {
    id: this.state.posts.length + 1,
    text: this.state.postContent,
    user: {
      avatar: '/uploads/avatar1.png',
      username: 'Fake User'
    }
};
this.setState((prevState) => ({
    posts: [newPost, ...prevState.posts],
    postContent: ''
}));
}
```

We need to run [event.preventDefault] to stop our browser from actually trying to submit the form and reload the page.

Next, we save our new post in the [newPost] variable that we want to add to our feed. The text for our new post comes from the [postContent] variable from the component state.

Finally, we update the component state again. This is where it gets a bit complicated. We are not passing an object as if we are doing it inside the [handlePostContentChange] function; we are passing an [update] function.

Now go ahead and play with your working React form. Do not forget that all posts you create do not persist since they are only held in the local memory of the browser and not saved to a database. Consequently, refreshing deletes your posts.

Controlling document heads with React Helmet

React Helmet is a great package that offers you to control document heads, including overriding multiple headers and server-side rendering.

Install it with the following command:

```
npm install --save react-helmet@5.2.0
```

You can add all standard HTML headers with React Helmet.

I recommend keeping standard [head] tags inside your template. They have the advantage that, before React has rendered, there is always the default document head. For our case, you can directly apply a title and description in [App.js].

Import [react-helmet] at the top of the file:

```
import { Helmet } from 'react-helmet';
```

Add [Helmet] itself directly above [postForm] [div]:

```
<Helmet>
  <title>Graphbook - Feed</title>
  <meta name="description" content="Newsfeed of all your friends on
        Graphbook" />
</Helmet>
```

If you reload the browser and watch the title on the tab bar of your browser carefully, you will see that it changes from [Graphbook] to [Graphbook - Feed]. This behavior happens because we already defined a title inside [index.html]. When React finishes rendering, the new document head is applied.

Note: After doing all the changes, your App.js file should like this: ~/Desktop/react-graphql-intro/labs/Lab03/src/client/App.js

Production build with webpack

The last step for our React setup is to have a production build. Until now, we were only using [webpack-dev-server], but this naturally includes an unimproved development build. Furthermore, webpack automatically spawns a web server. In a later lab, we introduce Express.js as our web server so we won't need webpack to host it.

A production bundle does merge all JavaScript files, but also CSS files into two separate files. Those can be used directly in the browser. To bundle CSS files, we will rely on another webpack plugin, called [MiniCss]:

```
npm install --save-dev mini-css-extract-plugin@0.4.5
```

We do not want to change the current [webpack.client.config.js] file, because it is made for development work. Add this command to the [scripts] object of your [package.json]:

```
"client:build": "webpack --config webpack.client.build.config.js"
```

This command runs webpack using an individual production webpack config file. Let's create this one. First, clone the original [webpack.client.config.js] file and rename it [webpack.client.build.config.js].

Change the following things in the new file:

- 1. The [mode] needs to be [production], not [development].
- 2. Require the [MiniCss] plugin:

```
const MiniCssExtractPlugin = require('mini-css-extract-plugin');
```

3. Replace the current CSS rule:

```
test: /\.css$/,
use: [{ loader: MiniCssExtractPlugin.loader,
   options: {
    publicPath: '../'
   }
}, 'css-loader'],
},
```

We no longer use the [style-loader] but instead use the [MiniCss] plugin. The plugin goes through the complete CSS code, merges it in a separate file, and removes the [import] statements from the [bundle.js] we generate in parallel.

4. Lastly, add the plugin to the plugins at the bottom of the configuration file:

```
new MiniCssExtractPlugin({
  filename: 'bundle.css',
})
```

5. Remove the entire [devServer] property.

Note: After doing the changes, your webpack.client.build.config.js file should like this: ~/Desktop/react-graphql-intro/labs/Lab03/webpack.client.build.config.js

When running the new configuration, it won't spawn a server or browser window; it only creates a production JavaScript and CSS bundle, and requires them in our [index.html] file. According to our [webpack.client.build.config.js] file, those three files are going to be saved to the [dist/client] folder.

You can run this command by executing $\ensuremath{\,\text{npm}\,}$ run client:build.

```
File Edit Tabs Help
 oot@2f293137be18:~# cd ~/graphbook/
root@2f293137be18:~/graphbook# npm run client:build
 graphbook@1.0.0 client:build /root/graphbook
  webpack --config webpack.client.build.config.js
clean-webpack-plugin: /root/graphbook/dist has been removed.
Hash: fee02a511e528c901027
Version: webpack 4.26.1
Time: 1923ms
Built at: 12/08/2021 6:33:25 PM
                 Size Chunks
1 KiB 0
     Asset
                                                    Chunk Names
 oundle.css
bundle.js 147 KiB 0 [emitt
index.html 397 bytes [emitt
Entrypoint main = bundle.css bundle.j
                                      [emitted]
[6] (webpack)/buildin/global.js 472 bytes {0} [built]
[23] ./assets/css/style.css 39 bytes {0} [built]
[42] ./src/client/index.js + 1 modules 7.7 KiB {0} [built]
      | ./src/client/index.js 181 bytes [built]
     | ./src/client/App.js 7.5 KiB [built]
+ 41 hidden modules
Child html-webpack-plugin for "index.html":
     1 asset
     Entrypoint undefined = index.html
     [0] ./node_modules/html-webpack-plugin/lib/loader.js!./public/index.html 506 bytes {0} [built]
    [2] (webpack)/buildin/global.js 472 bytes {0} [built]
[3] (webpack)/buildin/module.js 519 bytes {0} [built]
          + 1 hidden module
Child mini-css-extract-plugin node_modules/css-loader/index.js!assets/css/style.css:
     Entrypoint mini-css-extract-plugin =
     [0] ./node_modules/css-loader!./assets/css/style.css 1.22 KiB {0} [built]
         + 1 hidden module
 oot@2f293137be18:~/graphbook#
```

Look in the [dist] folder, and you will see three files. You can open the [index.html] in Midori browser. The images are broken because the image URLs are not right anymore. We accept this for the moment because it will be automatically fixed when we have a working back end.

You are now finished with the basic setup of React.

Analyzing bundle size

In webpack, there is a simple solution for analyzing our bundle. This solution is called [webpack-bundle-analyzer], and it does exactly what it sounds like.

Install this with the following:

```
npm install --save-dev webpack-bundle-analyzer@3.0.3
```

You then need to add two commands to the [scripts] object in the [package.json]:

- "stats": "webpack --profile --json --config webpack.client.build.config.js > stats.json"
- "analyze": "webpack-bundle-analyzer stats.json"

The first command creates a production build as well as a [stats.json] file in the root folder. This file holds the information we need.

The [analyze] command spins up the [webpack-bundle-analyzer], showing us how our bundle is built together and how big each package that we use is.

Do this as follows:

```
npm run stats
npm run analyze
```

Open http://localhost:8888 in Midori browser after running above command.

You can visually see our bundle and package sizes. Remove unnecessary packages in your projects and see how your bundle is reorganized. You can take an example from the following screenshot:

This diagram looks a lot like WinDirStat which is a software to display the disk usage of your computer. We can identify the packages that make up the majority of our bundle.

Summary

In this lab, we completed a working React setup. This is a good starting point for our front end. We can write and build static web pages with this setup.

The next lab primarily focuses on our setup for the back end. We will configure Express.js to accept our first requests and pass all GraphQL queries to Apollo. Furthermore, you will also learn how to use Postman to test your API.