COS210 - Theoretical Computer Science Proofs (Part 2)

Non-Constructive Proofs

Remember:

In a constructive proof, we construct an object O and show that O satisfies a property P

In contrast,

- in a *non-constructive proof* we **only** show that an object with property *P* exists,
- but we do not **construct** the specific object *O*.

Non-Constructive Proofs: Example

Theorem

There exist irrational numbers x and y such that x^y is rational.

Proof:

Pigeon Hole Principle

Definition (Pigeon Hole Principle)

If n + 1 or more objects are placed into n boxes, then there is at least one box that contains two or more objects.

The pigeon hole principle can used as an argument in proofs

Pigeon Hole Principle: Application

Theorem

Let S be a square with diameter d. For any five points p_1, \ldots, p_5 within S, there will be at least two points with a distance of at most d/2.

Proof:

Proof by Contrapositive

The following conditional theorems are equivalent

Theorem (X)

$$A \rightarrow B$$

Theorem (Y)

$$\neg B \rightarrow \neg A$$

• Argumentation:

$$(A \rightarrow B) = \neg A \lor B = B \lor \neg A = \neg(\neg B) \lor \neg A = (\neg B \rightarrow \neg A)$$

- Theorem Y is the *contrapositive* of Theorem X
- If we directly prove Theorem Y, then we prove Theorem X by contrapositive

Proof by Contrapositive: Example

In some cases a proof by contrapositive can be easier than a direct proof

Theorem (X)

$$(x^4 - x^3 + x^2 \neq 1) \rightarrow (x \neq 1)$$

Theorem (Y)

$$(x = 1) \rightarrow (x^4 - x^3 + x^2 = 1)$$

Proof of Y:

$$x = 1$$

$$\rightarrow x^4 - x^3 + x^2 = (1)^4 - (1)^3 + (1)^2 = 1 \square$$

Proof by Induction

Proof technique for mathematical statements that hold for all natural numbers n = (0), 1, 2, 3, ...

Theorem

For all natural numbers $n \ge 1$:

The statement S(n) holds.

Inductive Proof:

- Base case: Prove S(1)
- Inductive step: Prove $S(k) \rightarrow S(k+1)$ for an arbitrary k If S(k) holds (Hypothesis), then S(k+1) holds as well
- Theorem then follows from proven base case and step

Note that the range of n may not always start with the number 1

Proof by Induction: Domino Illustration

Base case:

Inductive step:

Conclusion:

Proof by Induction: Example

Theorem

For all
$$n \ge 1$$
:

$$S(n)$$
: $\sum_{i=1}^{n} i (= 1 + 2 + 3 + \cdots + n) = \frac{n(n+1)}{2}$