Sentiment Analysis Using Artificial Neural Networks

Team Members:

Seyed Mohammad Hamidi Amirreza Azadnik Reza Shahriari Beny Tiba Tabshiri Namin

Dr. Farzane Abdollahi

03 | Models

Classic Models Depp NNs Bert Model

05 Conclusion

Comparing Models

OIntroduction

What is sentiment analysis?

04 | Realtime Answering

What is the sentiment of this sentence?

02 PreProcessing

Normalizing Data Tokenization Word Embedding Introducing Data 06 | Challenges & Future Works

Computations were eye watering ...

Sentiment Analysis

Sentiment analysis is one of NLP applications and its purpose is to detect a sentence sentiment.

It has straight procedure:

- Normalizing sentences
- Tokenizing each sentence
- Word embedding
- Learning model using preprocessed data

Sentiment Analysis

Positive 73%

I like my major!

Negative 27%

03 | Models

Classic Models Depp NNs Bert Model

05 Conclusion

Comparing Models

O Introduction

What is sentiment analysis?

04 | Realtime Answering

What is the sentiment of this sentence?

02 PreProcessing

Normalizing Data Tokenization Word Embedding Introducing Data 06 | Challenges & Future Works

Computations were eye watering ...

Where it all started ...

Normalizing

Any sentence gathered in dataset from all comments has its own extra parts 2

Tokenizing

In order to asign values to a sentence, we need to split it into words

3

Word Embedding

Assigning numerical values to each word using pretrained embedding models

Normalizing

حالم از این زندگی بهم میخوره (۱۹۲۵) حالم از این زندگی بهم میخوره.

حالم از این زندگی بهم میخوره.

[' حالم', از ', این ', زندگی ', نبهم', میخوره', ']

Normalizing Word Embedding **Tokenizing**

Word Embedding

3 Word Embedding

['.', این', ' زندگی', ' بهم', ' میخوره', '.']

3D Matrix of numbers

Our Work

Approach 1

- Normalizing data with hazm
- Tokenizing normalized data with hazm
- Using facebook model to embed words

Approach 2

- Normalizing data with hazm
- Tokenizing normalized data with hazm
- Using hazm model to embed words

Approach 3

- Using Bag of words of TF-IDF vectorizer to preprocess data(used for classic models)
- Frequency Based Models

Differences Between Word Embedding Models

	Context	Relatio n btw Words	Pos of Words	Output Dims	semantic meaning & syntactic structure of words
FaceBook	+	+	+	3D	+
Hazm	+	+	+	3D	+
Bag of Words	_	_	_	2D	_
TF-IDF	_	_	_	2D	_

Our Data

Raw_Dataset_97P_107.csv

Digikala + SnappFood + Pars-ABSA

97% Data will be covered by 107
Tokens

Max Number of Tokens

11.6 MB

Text Data

37000 + 37000

9.5 GB

PreProcessed Data

03 | Models

Classic Models Depp NNs Bert Model

05 Conclusion

Comparing Models

O Introduction

What is sentiment analysis?

04 | Realtime Answering

What is the sentiment of this sentence?

02 PreProcessing

Normalizing Data Tokenization Word Embedding Introducing Data 06 | Challenges & Future Works

Computations were eye watering ...

03 Models

Just learned a few models ...

Models

Classic Models

SVM ,Naïve Bayes

Model 1: Naïve Baves

Model 2: SVM

Notations:

- SF: Small Data + FaceBook Model
- SH: Small Data + Hazm Model
- LF: Large Data + FaceBook Model
- LH: Large Data + Hazm Model

Model 3: LSTM + FC

Model 3: LSTM + FC - SF

Model 3: LSTM + FC - SH

Model 3: LSTM + FC - LF

Model 3: LSTM + FC - LH

Model 4: CNN + FC

Model 4: CNN + FC + SF

Model 4: CNN + FC + SH

Model 4: CNN + FC + LF

Model 4: CNN + FC + LH

Model 5: CNN + LSTM + FC

Model 5: CNN + LSTM + FC - SF

Model 5: CNN + LSTM + FC - SH

Model 5: CNN + LSTM + FC - LF

Model 5: CNN + LSTM + FC - LH

Model 6: Bert-Mini

- Bert-Mini model contains 4 layers
- Constructing Data Loader
- Fine Tunning
- Accuracy: 85%

Model 6: Bert-Mini

03 | Models

Classic Models Depp NNs Bert Model

05 Conclusion

Comparing Models

O Introduction

What is sentiment analysis?

04 | Realtime Answering

What is the sentiment of this sentence?

02 PreProcessing

Normalizing Data Tokenization Word Embedding Introducing Data 06 | Challenges & Future Works

Computations were eye watering ...

05 Conclusion

Let's compare!

Conclusion

	Train Loss	Validation Loss	Train Accuracy %	Validation Accuracy %	Description
NB	-	-	-	82	-
SVM	-	-	-	80	-
LSTM	0.48	0.48	81	80	SF
LSTM	0.45	0.47	84	83.5	SH
LSTM	0.45	0.43	81	81	LF
LSTM	0.42	0.37	83	85	LH
CNN	0.25	0.52	98	79	SF
CNN	0.26	0.55	98	84	SH

Conclusion

	Train Loss	Validation Loss	Train Accuracy	Validation Accuracy	Description
CNN	0.29	0.39	92	85	LF
CNN	0.26	0.37	92	86.7	LH
LSTM + CNN	0.26	0.51	90.4	79.3	SF
LSTM + CNN	0.32	0.44	87.5	82.5	SH
LSTM + CNN	0.36	0.35	84.4	84.5	LF
LSTM + CNN	0.31	0.34	86.8	85.5	LH
Model Bert	0.29	₩. <u>-</u>	-	85	Fine Tune (complete data)

03 | Models

Classic Models Depp NNs Bert Model

05 Conclusion

Comparing Models

OIntroduction

What is sentiment analysis?

04 | Realtime Answering

What is the sentiment of this sentence?

02 PreProcessing

Normalizing Data Tokenization Word Embedding Introducing Data 06 | Challenges & Future Works

Computations were eye watering ...

Almost there ...

"Computations were

EYE WATERING"

—Sam Altman

Future Works

- Design transformers models instead of CNN and RNN
- Fine tune on Bert base-uncased instead of Bert-mini

THANKS!

Do you have any questions?