Дискретная математика

ДЗ 20

Гольдберг Дмитрий Максимович

Группа БПМИ248

Задание 1

Является ли полной система функций $\{0, 1, \wedge, EV\}$, где EV(x, y, z) = 0 тогда и только тогда, когда количество единиц среди x, y, z чётно?

Решение:

Воспользуемся критерием Поста. $1 \notin T_0, 0 \notin T_1$, EV $\notin M$ (так как EV(1,0,0) = 1, EV(1,1,0) = 0, (1,0,0) < (1,1,0)), $\land \notin S$ (так как $\neg 0 \land \neg 1 \neq \neg (0 \land 1)$), $\land \notin S$

L(так как многочлен Жегалкина для конъюнкции имеет вид xy, а это не линейная функция) \Rightarrow по критерию Поста система функций является полной.

Ответ:

да

Задание 2

При каких $n \geqslant 2$ является полной система функций, состоящая из одной функции

$$1 \oplus \bigoplus_{1 \leqslant i < j \leqslant n} x_i \wedge x_j?$$

Решение:

Заметим, что в выражении $1+\sum_{i=1}^{n-1}n-i=\frac{n\cdot(n-1)}{2}+1$ слагаемых и n переменных. Функция не сохранять единицу, если в ней чётное число слагаемых, то есть $\frac{n\cdot(n-1)}{2}$ должно быть нечётным. Это происходит при $n\equiv 2;3\pmod 4$. Далее считаем, что в выражении чётное число слагаемых. Упорядочим переменные по возрастанию индекса. Функция не является монотонной, так как f(0,0,...,0)=1, f(0,...,1,1)=0 (одно из слагаемых с переменными равно 1, остальные 0), (0,...,0)<(0,...,1,1). Функция является самодвойственной при $n\equiv 3\pmod 4$, так как $f(0,...,0,...,1)=1, \neg f(1,...,1,...,0)=1$ (так как n-1 чётное и всего n-1 слагаемых с последней переменной, которые занулятся, останется чётное число единиц в итоговой сумме, а это ноль, при инвертировании 1). Функция не является самодвойственной при $n\equiv 2\pmod 4$, так как $f(0,...,0,...,1)=1, \neg f(1,...,1,...,0)=0$ (аналачно с предыдущем рассуждением, n-1 нечётное и в итоговой останется нечётное число единиц, а это 1, при инвертировании 0). Функция не является линейной по определению. По критерию Поста система является полной.

Ответ:

при $n \equiv 2 \pmod{4}$

Задание 3

Докажите, что $\{1, \oplus\}$ является базисом для L.

Решение:

Заметим, что только единицами не выразить все линейные функции, также через \oplus нельзя выразить все линейные функции, так как единица не выражается через \oplus (\oplus многих переменных на присваивании, где все переменными 0, даст 0). Через 1 и \oplus можно выразить все линейные функции, так как 0 выражается как $1 \oplus 1$, тогда по определению линейных функций их все можно выразить через $1, 0, \oplus$.

Ответ:

ч.т.д