Devoir libre no 2

Exercice 1

1. Soient a et b deux réels tels que : $2 \le a \le 5$ et $-4 \le b \le 1$. On pose $A = a^2 - 4b^2 + 2a - 4b - 1$ et $B = \frac{2a - 1}{a + 2}$.

- (a) Encadrer ab.
- (b) Vérifier que $A = (a+1)^2 (2b+1)^2 1$ et $B = 2 \frac{5}{a+2}$
- (c) En utilisant la question précédente , donner un encadrement de A et B.
- 2. Développer $(\sqrt{5}-2\sqrt{3})^2$ puis déduire la valeur de $A=\sqrt{17-4\sqrt{15}}$
- 3. Soient $I =]-\infty; 2[$ et J = [-4; 5[.
 - (a) Représenter I et J sur une même droite graduée.
 - (b) Déterminer $I \cup J$ et $I \cap J$.
- 4. Soient x et y deux réels tels que : $|3x+2| \le 1$ et $\frac{1}{2}$ une valeur approchée par défaut du réel 2y - 1 à $\frac{1}{4}$ prés.

Montrer que : $-1 \le x \le \frac{-1}{3}$ et $\frac{3}{4} \le y \le \frac{7}{8}$.

Exercice 2

Soit 0 < x < 1.On pose $A = \frac{\sqrt{x+1}}{2}$.

- 1. Montrer que $:A 1 = \frac{x 1}{2(1 + \sqrt{x})}$.
- 2. Montrer que :0 < $\frac{1}{1 + \sqrt{x}}$ < 1.
- 3. Montrer que : $|A-1| < \frac{1}{2}|x-1|$.
- 4. Conclure que 1 est une valeur approchée du nombre $\frac{\sqrt{0,8}+1}{2}$ à 10^{-1} prés.

Exercice 3

ABCD est un parallélogramme de centre O.

Soient E et F deux points vérifiant : $\overrightarrow{AE} = \frac{-1}{4}\overrightarrow{AB}$ et $\overrightarrow{AF} = \frac{2}{3}\overrightarrow{AD}$. La droite (AC)coupe (EF) en K. Soient B' et D' les projetées de B et D respectivement sur (AC)parallèlement à (EF).

- 1. Construire une figure.
- 2. Montrer que O le milieu de [B'D'].
- 3. Montrer que : $\overrightarrow{AK} = \frac{-1}{A}\overrightarrow{AB'}$ et $\overrightarrow{AK} = \frac{2}{3}\overrightarrow{AD'}$.
- 4. Exprimer \overrightarrow{AC} en fonction de \overrightarrow{AK} .