Teil 7: Chi-Quadrat-Tests

Geschichte

- Im Jahr 1900 schrieb Karl Pearson ein Papier
- "On the Criterion that a given System of Deviations from the Probable in the Case of a Correlated System of Variables is such that it can be reasonably supposed to have arisen from Random Sampling."
- Das Schlüsselkonzept ist Goodness-of-Fit (Anpassungsgüte-Test)

X. On the Criterion that a given System of Deviations from the Probable in the Case of a Correlated System of Variables is such that it can be reasonably supposed to have arisen from Random Sampling. By Karl Pearson, F.R.S., University College, London*.

THE object of this paper is to investigate a criterion of the probability on any theory of an observed system of errors, and to apply it to the determination of goodness of fit in the case of frequency curves.

Englisch: Chi-square oder Chi-squared?

- Dir werden wohl im Englischen beide Varianten begegnen
- Der englische Wikipedia Artikel dazu trägt den Titel "Pearson's Chisquared Test"
- Während Pearson in seinem Artikel die χ^2 -Notation benutzt, ordnet er ihm niemals einen Begriff zu
- Da χ^2 ein einzelner mathematischer Ausdruck Zeichen ist, ist es richtig, im englischen chi-square und nicht chi-squared zu verwenden.

• Der Chi-Quadrat-Test (auch geschrieben als χ^2) wird dazu verwendet zu beurteilen, ob die beobachteten Häufigkeiten sich von denen unterscheiden, die man erwarten würde.

- Zum Beispiel, wenn wir eine Münze 18 Mal werfen und beobachten, dass sie 12 mal auf Kopf landet
- können wir entweder sagen, dass dies ein Zufall ist,
- oder wir nehmen an, dass unsere Münze verzogen ist?

 Die Chi-Quadrat-Formel berücksichtigt die Summe der quadratischen Abstände zwischen den beobachteten Werten O und den erwarteten Werten E, dividiert durch jeden erwarteten Wert:

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

- Für unser Münzbeispiel hatten wir von 18 Würfen 12 Mal Kopf geworfen, mit einer erwarteten Häufigkeit von 9 Mal Kopf (die Hälfte von 18).
- Dies bedeutet, dass die andere Seite (Zahl) 6 Mal, mit einer erwarteten Häufigkeit von 9 Mal auftrat.

Unsere Kalkulation sieht wie folgt aus:

$$\chi^2 = \sum_{E} \frac{(O-E)^2}{E} = \frac{\frac{Kopf}{(12-9)^2}}{9} + \frac{\frac{Zahl}{(6-9)^2}}{9} = 2.0$$

Aber was bedeutet nun der Wert 2,0

$$\chi^{2} = \sum_{E} \frac{(O-E)^{2}}{E} = \frac{(12-9)^{2}}{9} + \frac{(6-9)^{2}}{9} = 2.0$$

Chi-Quadrat-Verteilung

 Die Chi-Quadrat-Verteilung zeigt χ² auf der x-Achse und den P-Wert auf der y-Achse

 χ^2 = Pearson's Cumulative Test Statistic

Chi-Quadrat kritische Werte						
df	0.15	0.10	0.05	0.01	0.005	0.001
1	2.072	2.706	3.841	6.635	7.879	10.828
2	3.794	4.605	5.991	9.210	10.597	13.816
3	5.317	6.251	7.815	11.345	12.838	16.266

Chi-Quadrat-Verteilung

• Ein niedriger χ2 Wert bedeutet eine hohe Korrelation zwischen den beobachteten Werten und den erwarteten Werten.

 χ^2 = Pearson's Cumulative Test Statistic

Chi-Quadrat-Tabelle

- Unser Münzbeispiel hatte einen χ2 Wert von 2,0
- Freiheitsgrade waren (2-1) oder 1
- Unser kritischer Wert mit einem Konfidenzniveau von 95% ist:

	Chi-Quadrat kritische Werte					
df	0.15	0.10	0.05	0.01	0.005	0.001
1	2.072	2.706	3.841	6.635	7.879	10.828
2	3.794	4.605	5.991	9.210	10.597	13.816
3	5.317	6.251	7.815	11.345	12.838	16.266

$$\chi^2_{critical} = 3.841$$

Chi-Quadrat Ergebnis

- Unsere Nullhypothese war, dass bei 18 Würfen 12 mal Kopf fällt, mit 95% Wahrscheinlichkeit statistisch sinnvoll ist.
- Da $\chi^2 = 2,0$ und

$$\chi^2_{critical}$$
 = 3.841

und somit $\chi^2 < \chi^2_{critical}$

Wir verwerfen die Nullhypothese daher nicht.

- Ein Unternehmen betreibt sechs identische Server zur Unterstützung seiner IT-Infrastruktur.
- Logischerweise sollte die Fehlerrate auf allen Servern gleich sein.
- Können wir, basierend auf den folgenden Daten davon ausgehen, dass die Server mit der gleichen Rate ausfallen?

- Zunächst treffen wir einige Annahmen:
 - 1. Wenn ein Server ausfällt, wirkt sich dies **nicht** auf die Wahrscheinlichkeit aus, dass der Server erneut ausfällt oder andere Server ausfallen
 - 2. Ein Server fällt entweder aus oder nicht, es gibt also keinen "Fehlergrad" zu berücksichtigen

• Aufzeichnungen:

Server	Observed
Α	46
В	36
С	52
D	26
Е	42
F	38

Server Ausfälle

• Summiere die Beobachtungen auf:

	Server	Observed
e e	Α	46
Ausi	В	36
server Ausialle	С	52
Ser	D	26
	Е	42
	F	38
	Σ	240

• Berechne nun die erwarteten Werte:

	* 0 3 3	 B

	Server	Observed	Erwartet
älle	Α	46	40
Ausfä	В	36	40
Server Ausfälle	С	52	40
Ser	D	26	40
	Е	42	40
	F	38	40
	Σ	240	

Da wir erwarten, dass jeder Server die gleiche Ausfallwahrschein-lichkeit hat, teilen wir die Anzahl der Beobachtungen durch die Anzahl der Server auf, um eine erwartete Fehlerrate von 240 ÷ 6 = 40 für jeden Server zu erhalten.

• Verwende nun die Chi-Quadrat-Formel:

Se	rver	Observed	Erwartet
	Α	46	40
	В	36	40
	С	52	40
	D	26	40
	Е	42	40
	F	38	40
	Σ	240	

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

Server Ausfälle

• Subtrahiere, dann setze ins Quadrat und dann teile:

Server	Observed	Erwartet	(O-E)	$(\mathbf{O}-\mathbf{E})^2$	$(O-E)^2/E$
А	46	40	6	36	0.9
В	36	40	-4	16	0.4
С	52	40	12	144	3.6
D	26	40	-14	196	4.9
Е	42	40	2	4	0.1
F	38	40	-2	4	0.1
Σ	240				

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

Jetzt nur noch das letzte Feld:

	Server	Observed	Erwartet	(O-E)	$(\mathbf{O}-\mathbf{E})^2$	$(O-E)^2/E$
)	Α	46	40	6	36	0.9
5	В	36	40	-4	16	0.4
;	С	52	40	12	144	3.6
)	D	26	40	-14	196	4.9
	Е	42	40	2	4	0.1
	F	38	40	-2	4	0.1
	Σ	240			Σ	10.0

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

$$\chi^2 = 10.0$$

Server Ausfälle

• Ermittle unseren kritischen Wert:

Server	Observed
Α	46
В	36
С	52
D	26
Е	42
F	38

$$\alpha = 0.05$$
 $df = (6 - 1) = 5$

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

$$\chi^2 = 10.0$$

Server Ausfälle

Chi-Quadrat-Tabelle

	Chi-Quadrat kritische Werte					
	P	robability	of exceed	ling the cr	ritical valu	е
df	0.15	0.10	0.05	0.01	0.005	0.001
1	2.072	2.706	3.841	6.635	7.879	10.828
2	3.794	4.605	5.991	9.210	10.597	13.816
3	5.317	6.251	7.815	11.345	12.838	16.266
4	6.745	7.779	9.488	13.277	14.860	18.467
5	8.115	9.236	11.070	15.086	16.750	20.515

In Excel...

• Um einen kritischen Wert für ein Konfidenzniveau von 95% und 5 Freiheitsgrade in Excel zu finden:

```
=CHISQ.INV.RT(0.05,5) (engl.)
```

=CHIQU.VERT.RE(0.05,5) (de.)

11.0705

In Python...

• Um einen kritischen Wert für ein Konfidenzniveau von 95% und 5 Freiheitsgrade in Python zu finden:

```
>>> from scipy.stats import chi2
>>> chi2.isf(0.05,5)
11.070497693516353
```

Ermittle unseren kritischen Wert:

Server	Observed
Α	46
В	36
С	52
D	26
Е	42
F	38

$$\alpha = 0.05$$
 $df = (6 - 1) = 5$
 $\chi^{2}_{critical} = 11.070$

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

$$\chi^2 = 10.0$$

Weil $\chi^2 < \chi^2_{critical}$ verwerfen wir die Nullhypothese nicht.

Obwohl Server C doppelt so oft ausfiel wie Server D, zeigen die Ergebnisse, dass dies immerhin in 5% der Zeit passieren kann!

Server Ausfälle

Wann ist der Chi-Quadrat nicht geeignet

- Chi-Quadrat funktioniert nicht, wenn die erwarteten Häufigkeiten zu gering sind
- der Wert in jeder Zelle muss größer als 5 sein

Lasst uns ein paar Übungen machen!

• Sammle ein wenig Übung durch eine bewertete Aufgabe!