relates to the decomposition methods from Chapter 3. Each of the components we learn then corresponds to one topic, and the coefficients of the components in the representation of a document tell us how strongly related that document is to a particular topic. Often, when people talk about topic modeling, they refer to one particular decomposition method called Latent Dirichlet Allocation (often LDA for short).9

Latent Dirichlet Allocation

Intuitively, the LDA model tries to find groups of words (the topics) that appear together frequently. LDA also requires that each document can be understood as a "mixture" of a subset of the topics. It is important to understand that for the machine learning model a "topic" might not be what we would normally call a topic in everyday speech, but that it resembles more the components extracted by PCA or NMF (which we discussed in Chapter 3), which might or might not have a semantic meaning. Even if there is a semantic meaning for an LDA "topic", it might not be something we'd usually call a topic. Going back to the example of news articles, we might have a collection of articles about sports, politics, and finance, written by two specific authors. In a politics article, we might expect to see words like "governor," "vote," "party," etc., while in a sports article we might expect words like "team," "score," and "season." Words in each of these groups will likely appear together, while it's less likely that, for example, "team" and "governor" will appear together. However, these are not the only groups of words we might expect to appear together. The two reporters might prefer different phrases or different choices of words. Maybe one of them likes to use the word "demarcate" and one likes the word "polarize." Other "topics" would then be "words often used by reporter A" and "words often used by reporter B," though these are not topics in the usual sense of the word.

Let's apply LDA to our movie review dataset to see how it works in practice. For unsupervised text document models, it is often good to remove very common words, as they might otherwise dominate the analysis. We'll remove words that appear in at least 20 percent of the documents, and we'll limit the bag-of-words model to the 10,000 words that are most common after removing the top 20 percent:

In[41]:

```
vect = CountVectorizer(max_features=10000, max_df=.15)
X = vect.fit_transform(text_train)
```

⁹ There is another machine learning model that is also often abbreviated LDA: Linear Discriminant Analysis, a linear classification model. This leads to quite some confusion. In this book, LDA refers to Latent Dirichlet Allocation.

We will learn a topic model with 10 topics, which is few enough that we can look at all of them. Similarly to the components in NMF, topics don't have an inherent ordering, and changing the number of topics will change all of the topics. We'll use the "batch" learning method, which is somewhat slower than the default ("online") but usually provides better results, and increase "max_iter", which can also lead to better models:

In[42]:

Like the decomposition methods we saw in Chapter 3, LatentDirichletAllocation has a components_ attribute that stores how important each word is for each topic. The size of components_ is (n_topics, n_words):

In[43]:

To understand better what the different topics mean, we will look at the most important words for each of the topics. The print_topics function provides a nice formatting for these features:

In[44]:

¹⁰ In fact, NMF and LDA solve quite related problems, and we could also use NMF to extract topics.

Out[45]:

topic 0	topic 1	topic 2	topic 3	topic 4
between young family real performance beautiful work each both director	documentary history new own	funny worst comedy thing guy re stupid actually nothing want	show series episode tv episodes shows season new television years	didn saw am thought years book watched now dvd got
topic 5	topic 6	topic 7	topic 8	topic 9
horror action effects budget nothing original director minutes pretty doesn	kids action animation game fun disney children 10 kid old	cast role john version novel both	jack	house woman gets killer girl wife horror young goes around

Judging from the important words, topic 1 seems to be about historical and war movies, topic 2 might be about bad comedies, topic 3 might be about TV series. Topic 4 seems to capture some very common words, while topic 6 appears to be about children's movies and topic 8 seems to capture award-related reviews. Using only 10 topics, each of the topics needs to be very broad, so that they can together cover all the different kinds of reviews in our dataset.

Next, we will learn another model, this time with 100 topics. Using more topics makes the analysis much harder, but makes it more likely that topics can specialize to interesting subsets of the data:

In[46]:

```
lda100 = LatentDirichletAllocation(n_topics=100, learning_method="batch",
                                   max_iter=25, random_state=0)
document_topics100 = lda100.fit_transform(X)
```

Looking at all 100 topics would be a bit overwhelming, so we selected some interesting and representative topics:

In[47]:

```
topics = np.array([7, 16, 24, 25, 28, 36, 37, 45, 51, 53, 54, 63, 89, 97])
sorting = np.argsort(lda100.components_, axis=1)[:, ::-1]
feature_names = np.array(vect.get_feature_names())
mglearn.tools.print_topics(topics=topics, feature_names=feature_names,
                           sorting=sorting, topics_per_chunk=7, n_words=20)
```

Out[48]:

topic 7	topic 16	topic 24	topic 25	topic 28
thriller suspense horror atmosphere mystery house director quite bit de performances dark twist hitchcock tension interesting mysterious murder ending creepy	worst awful boring horrible stupid thing terrible script nothing worse waste pretty minutes didn actors actually re supposed mean want	german hitler nazi midnight joe germany years history new modesty cowboy jewish past kirk young spanish enterprise von nazis spock	car gets guy around down kill goes killed going house away head take another getting doesn now night right woman	beautiful young old romantic between romance wonderful heart feel year each french sweet boy loved girl relationship saw both simple
topic 36	topic 37	topic 41	topic 45	topic 51
performance role actor cast play actors performances played supporting director oscar roles actress excellent screen plays award work playing gives	excellent highly amazing wonderful truly superb actors brilliant recommend quite performance performances perfect drama without beautiful human moving world recommended	war american world soldiers military army tarzan soldier america country americans during men us government jungle vietnam ii political against	music song songs rock band soundtrack singing voice singer sing musical roll fan metal concert playing hear fans prince especially	earth space planet superman alien world evil humans aliens human creatures mike monsters apes clark burton tim outer men moon

topic 53	topic 54	topic 63	topic 89	topic 97
scott	money	funny	dead	didn
gary	budget	comedy	zombie	thought
streisand	actors	laugh	доге	wasn
star	low	jokes	zombies	ending
hart	worst	humor	blood	minutes
lundgren	waste	hilarious	horror	got
dolph	10	laughs	flesh	felt
career	give	fun	minutes	part
sabrina	want	ге	body	going
role	nothing	funniest	living	seemed
temple	terrible	laughing	eating	bit
phantom	сгар	joke	flick	found
judy	must	few	budget	though
melissa	reviews	moments	head	nothing
ZOFFO	imdb	guy	gory	lot
gets	director	unfunny	evil	saw
barbra	thing	times	shot	long
cast	believe	laughed	low	interesting
short	am	comedies	fulci	few
serial	actually	isn	ге	half

The topics we extracted this time seem to be more specific, though many are hard to interpret. Topic 7 seems to be about horror movies and thrillers; topics 16 and 54 seem to capture bad reviews, while topic 63 mostly seems to be capturing positive reviews of comedies. If we want to make further inferences using the topics that were discovered, we should confirm the intuition we gained from looking at the highestranking words for each topic by looking at the documents that are assigned to these topics. For example, topic 45 seems to be about music. Let's check which kinds of reviews are assigned to this topic:

In[49]:

```
# sort by weight of "music" topic 45
music = np.argsort(document topics100[:, 45])[::-1]
# print the five documents where the topic is most important
for i in music[:10]:
    # pshow first two sentences
    print(b".".join(text_train[i].split(b".")[:2]) + b".\n")
```

Out[49]:

- b'I love this movie and never get tired of watching. The music in it is great.\n' b"I enjoyed Still Crazy more than any film I have seen in years. A successful band from the 70's decide to give it another try.\n"
- b'Hollywood Hotel was the last movie musical that Busby Berkeley directed for Warner Bros. His directing style had changed or evolved to the point that this film does not contain his signature overhead shots or huge production numbers with thousands of extras.\n'
- b"What happens to washed up rock-n-roll stars in the late 1990's? They launch a comeback / reunion tour. At least, that's what the members of Strange Fruit, a (fictional) 70's stadium rock group do.\n"

- b'As a big-time Prince fan of the last three to four years, I really can\'t believe I\'ve only just got round to watching "Purple Rain". The brand new 2-disc anniversary Special Edition led me to buy it.\n'
- b"This film is worth seeing alone for Jared Harris' outstanding portrayal of John Lennon. It doesn't matter that Harris doesn't exactly resemble Lennon; his mannerisms, expressions, posture, accent and attitude are pure Lennon.\n"
- b"The funky, yet strictly second-tier British glam-rock band Strange Fruit breaks up at the end of the wild'n'wacky excess-ridden 70's. The individual band members go their separate ways and uncomfortably settle into lackluster middle age in the dull and uneventful 90's: morose keyboardist Stephen Rea winds up penniless and down on his luck, vain, neurotic, pretentious lead singer Bill Nighy tries (and fails) to pursue a floundering solo career, paranoid drummer Timothy Spall resides in obscurity on a remote farm so he can avoid paying a hefty back taxes debt, and surly bass player Jimmy Nail installs roofs for a living.\n"
- b"I just finished reading a book on Anita Loos' work and the photo in TCM Magazine of MacDonald in her angel costume looked great (impressive wings), so I thought I'd watch this movie. I'd never heard of the film before, so I had no preconceived notions about it whatsoever.\n"
- b'I love this movie!!! Purple Rain came out the year I was born and it has had my heart since I can remember. Prince is so tight in this movie.\n'
- b"This movie is sort of a Carrie meets Heavy Metal. It's about a highschool guy who gets picked on alot and he totally gets revenge with the help of a Heavy Metal ghost.\n"

As we can see, this topic covers a wide variety of music-centered reviews, from musicals, to biographical movies, to some hard-to-specify genre in the last review. Another interesting way to inspect the topics is to see how much weight each topic gets overall, by summing the document topics over all reviews. We name each topic by the two most common words. Figure 7-6 shows the topic weights learned:

In[50]:

```
fig, ax = plt.subplots(1, 2, figsize=(10, 10))
topic_names = ["{:>2} ".format(i) + " ".join(words)
               for i, words in enumerate(feature names[sorting[:, :2]])]
# two column bar chart:
for col in [0, 1]:
   start = col * 50
   end = (col + 1) * 50
   ax[col].barh(np.arange(50), np.sum(document topics100, axis=0)[start:end])
   ax[col].set_yticks(np.arange(50))
   ax[col].set_yticklabels(topic_names[start:end], ha="left", va="top")
   ax[col].invert yaxis()
   ax[col].set_xlim(0, 2000)
   yax = ax[col].get yaxis()
   yax.set_tick_params(pad=130)
plt.tight_layout()
```


Figure 7-6. Topic weights learned by LDA

The most important topics are 97, which seems to consist mostly of stopwords, possibly with a slight negative direction; topic 16, which is clearly about bad reviews; followed by some genre-specific topics and 36 and 37, both of which seem to contain laudatory words.

It seems like LDA mostly discovered two kind of topics, genre-specific and rating-specific, in addition to several more unspecific topics. This is an interesting discovery, as most reviews are made up of some movie-specific comments and some comments that justify or emphasize the rating.

Topic models like LDA are interesting methods to understand large text corpora in the absence of labels—or, as here, even if labels are available. The LDA algorithm is randomized, though, and changing the random_state parameter can lead to quite

different outcomes. While identifying topics can be helpful, any conclusions you draw from an unsupervised model should be taken with a grain of salt, and we recommend verifying your intuition by looking at the documents in a specific topic. The topics produced by the LDA.transform method can also sometimes be used as a compact representation for supervised learning. This is particularly helpful when few training examples are available.

Summary and Outlook

In this chapter we talked about the basics of processing text, also known as *natural language processing* (NLP), with an example application classifying movie reviews. The tools discussed here should serve as a great starting point when trying to process text data. In particular for text classification tasks such as spam and fraud detection or sentiment analysis, bag-of-words representations provide a simple and powerful solution. As is often the case in machine learning, the representation of the data is key in NLP applications, and inspecting the tokens and *n*-grams that are extracted can give powerful insights into the modeling process. In text-processing applications, it is often possible to introspect models in a meaningful way, as we saw in this chapter, for both supervised and unsupervised tasks. You should take full advantage of this ability when using NLP-based methods in practice.

Natural language and text processing is a large research field, and discussing the details of advanced methods is far beyond the scope of this book. If you want to learn more, we recommend the O'Reilly book *Natural Language Processing with Python* by Steven Bird, Ewan Klein, and Edward Loper, which provides an overview of NLP together with an introduction to the nltk Python package for NLP. Another great and more conceptual book is the standard reference *Introduction to Information Retrieval* by Christopher Manning, Prabhakar Raghavan, and Hinrich Schütze, which describes fundamental algorithms in information retrieval, NLP, and machine learning. Both books have online versions that can be accessed free of charge. As we discussed earlier, the classes CountVectorizer and TfidfVectorizer only implement relatively simple text-processing methods. For more advanced text-processing methods, we recommend the Python packages spacy (a relatively new but very efficient and well-designed package), nltk (a very well-established and complete but somewhat dated library), and gensim (an NLP package with an emphasis on topic modeling).

There have been several very exciting new developments in text processing in recent years, which are outside of the scope of this book and relate to neural networks. The first is the use of continuous vector representations, also known as word vectors or distributed word representations, as implemented in the word2vec library. The original paper "Distributed Representations of Words and Phrases and Their Compositionality" by Thomas Mikolov et al. is a great introduction to the subject. Both spacy