Algorithm To Decide Whether CFL Is Finite

Theory of Automata & Computation

Context Free Language-

Before you go through this article, make sure that you have gone through the previous article on **Context Free Language**.

We have discussed-

- Context free language is generated using a context free grammar.
- Each context free language is accepted by a Pushdown automaton.

In this article, we will discuss a decision algorithm of CFL.

Algorithm To Decide Whether CFL Is Finite Or Not-

For a given CFG, there exists an algorithm to decide whether its language is finite or not.

Step-01:

Reduce the given grammar completely by-

- Eliminating ∈ productions
- · Eliminating unit productions
- Eliminating useless productions

Also Watch- How To Reduce Grammar?

Step-02:

• Draw a directed graph whose nodes are variables of the given grammar.

• There exists an edge from node A to node B if there exists a production of the form A $\rightarrow \alpha B\beta$.

Now, following 2 cases are possible-

Case-01:

- Directed graph contains a cycle.
- In this case, language of the given grammar is infinite.

Case-02:

- Directed graph does not contain any cycle.
- In this case, language of the given grammar is finite.

Also Read- Algorithm To Decide Whether CFL Is Empty

PRACTICE PROBLEMS BASED ON DECIDING WHETHER CFL IS FINITE-

Problem-01:

Check whether language of the following grammar is finite or not-

 $S \rightarrow AB/a$

 $A \rightarrow BC/b$

 $B \rightarrow CC/c$

Solution-

Step-01:

The given grammar is already completely reduced.

Step-02:

We will draw a directed graph whose nodes will be S, A, B, C.

Now,

- Due to the production $S \to AB$, directed graph will have edges $S \to A$ and $S \to B$.
- Due to the production A → BC, directed graph will have edges A → B and A
 C.
- Due to the production B \rightarrow CC, directed graph will have edge B \rightarrow C.

The required directed graph is-

Directed Graph

Clearly,

- The directed graph does not contain any cycle.
- Therefore, language of the given grammar is finite.

Problem-02:

Check whether language of the following grammar is finite or not-

 $X \rightarrow YZ$

Y → ab

 $Z \rightarrow XY$

Solution-

Step-01:

The given grammar is already completely reduced.

Step-02:

We will draw a directed graph whose nodes will be S, X, Y, Z.

Now,

- Due to the production S \rightarrow XS / b, directed graph will have edges S \rightarrow X and S \rightarrow S.
- Due to the production $X \to YZ$, directed graph will have edges $X \to Y$ and X Z.
- Due to the production Z \rightarrow XY, directed graph will have edges Z \rightarrow X and Z Y.

The required directed graph is-

Clearly,

The directed graph contain cycles.

Therefore, language of the given grammar is infinite.