Απαντήσεις στο δεύτερο σετ εργαστηριακών ασκήσεων

Ον/μο: Μαν Ελευθ	, ' AM:	1047128	Έτος:	50
---------------------	-----------	---------	-------	----

Ασκηση 1

Ερώτηση 1 (Ερωτήματα 1,2,3) Συμπληρώστε τον παρακάτω πίνακα με τα μέτρα απόκρισης συχνότητας των φίλτρων που σχεδιάσατε. Τι παρατηρείτε;

Απάντηση:

Τα μεταβατικά φαινόμενα (περίοδοι) στη τεχνική των Σειρών Fourier είναι μεγαλύτερα σε διάρκεια όμως η ταλάντωση, βάση του δρ, είναι η ελάχιστη μεταξύ των τριών τεχνικών. Η περιοχή διάβασης έχει μεγαλύτερη γρονική διάρκεια συγκριτικά με τις περιοχές των άλλων τεχνικών.

Μέσω της τεχνικής Min-Max παρατηρούμε αρκετά μεγάλη ταλάντωση στη περιοχή διάβασης.

Η Don't Care τεχνική δεν έχει πολύ μεγάλη ταλάντωση, όμως είναι μεγαλύτερη αυτής των Σειρών Fourier αλλά μικρότερη της Min-Max τεχνικής.

Απαντήσεις στο δεύτερο σετ εργαστηριακών ασκήσεων

Ον/μο: Μαντάς Ελευθέριος	AM:	1047128	Έτος:	50
-----------------------------	-----	---------	-------	----

Ερώτηση 2 (Ερώτημα 1,2,3) Χρησιμοποιήστε διαφορετικές τιμές στο όρισμα f_s (π . χ . 4.5KHz, l6KHz) της συνάρτησης $sound(\cdot)$. Τι παρατηρείτε; Με ποιά ιδιότητα του MF θα μπορούσατε να δικαιολογήσετε αυτό που ακούτε;

Απάντηση:

Η συχνότητα δειγματοληψίας επηρεάζει πολύ την ποιότητα του ήχου που ακούμε από το σήμα. Όσο μεγαλύτερη είναι η fs τόσο το δειγματοληφθέν σήμα είναι πιο κοντά στο αρχικό σήμα. Όσο μεγαλώνει η συχνότητα fs, τόσο πιο δυνατός και καθαρός είναι ο ήχος. Η χρονική διάρκεια μεταξύ των 2 χτύπων είναι μικρότερη με μεγάλη fs (16KHz) και μεγαλύτερη με χρήση μικρότερης fs (4.5KHz).

Αυτό οφείλεται στην ιδιότητα αλλαγής κλίμακας στη συχνότητα του MF. Η μεταβολή στη συχνότητα γίνεται πολλαπλασιαστικά ενώ στη χρόνο υπο-πολλαπλασιαστικά (διαιρείται ο χρόνος), επομένως η σχέση αυτή είναι αντιστρόφως ανάλογη.

Ασκηση 2

Ερώτηση 1 Σχεδιάστε τα πρώτα και τελευταία 100 δείγματα ενός εκ των τριών αποθορυβοποιημένων σημάτων που προέκυψαν από την εφαρμογή της **fitfilt(.)** στο σήμα $y_w(n)$ και τα αντίστοιχα του ιδανικού σήματος $y_o(n)$ και σχολιάστε την διάρκεια των μεταβατικών φαινομένων (αν υπάρχουν).

Απάντηση:

Απαντήσεις στο δεύτερο σετ εργαστηριακών ασκήσεων

Ον/μο:	Μαντάς Ελευθέριος	AM:	1047128	Έτος:	50
--------	----------------------	-----	---------	-------	----

Ερώτηση 2 (**Ερωτήματα 1,2,3**) Συμπληρώστε την πρώτη γραμμή του παρακάτω πίνακα με τα σήματα $y_o(n)$, $y_w(n)$ και την δεύτερη γραμμή με το αποθορυβοποιημένο σήμα $y_f(n)$ που προέκυψε από την εφαρμογή καθενός από τα φίλτρα που σχεδιάσατε. (Για κάθε γράφημα σχεδιάστε μόνο τα πρώτα 100 δείγματα από το κάθε ένα ώστε να φαίνονται ευκρινώς οι καμπύλες)

Απάντηση:

Απαντήσεις στο δεύτερο σετ εργαστηριακών ασκήσεων

Ον/μο: Μαντάς Ελευθέριος	AM:	1047128	Έτος:	50
-----------------------------	-----	---------	-------	----

Ερώτηση 3 Υπολογίστε τον μέσο τετραγωνικό σφάλμα (MSE) για κάθε ένα από τα αποθορυβοποιημένα σήματα. Αξιολογήστε την απόδοση κάθε φίλτρου. Είναι αυτή η απόδοση σε πλήρη συμφωνία με αυτό που ακούτε; Πού αποδίδετε την ασυμφωνία (αν υπάρχει);

Απάντηση:

Το μέσο τετραγωνικό σφάλμα (MSE) για κάθε μία από τις τεχνικές είναι:

Σειρές Fourier: 0.1184

Don't Care: 0.1234

Min-Max: 0.1276

Οι Σειρές Fourier έχουν τη καλύτερη απόδοση, καθώς έχουν το ελάχιστο σφάλμα αποθορυβοποίησης, άρα το νέο σήμα είναι πιο κοντά στο αρχικό από τα υπόλοιπα.

Ο ήχος που ακούμε με την sound() μετά την αποθορυβοποίηση προφανώς δεν είναι ίδιος σε σχέση με αυτόν του αρχικού σήματος. Υπάρχει θόρυβος ακόμα κάτι που είναι αναμενόμενο αφού η αποθορυβοποίηση έχει σφάλμα, επομένως αυτή η ασυμφωνία είναι φυσιολογική. Οι διαφορές μεταξύ των τριών τεχνικών δεν είναι πολύ καλά ευδιάκριτες, καθώς οι διαφορές στα σφάλματα είναι μικρές.

Άσκηση 3

Ερώτηση 1 Καταγράψτε τα πιθανά είδη θορύβου που έχουν κατά τη γνώμη σας μολύνει το σήμα εισόδου.

Απάντηση:

Ένα πιθανό είδος θορύβου είναι ο θόρυβος που προκαλεί η διέλευση του σήματος από το κανάλι επικοινωνίας. Θα μπορούσε να είναι ο λευκός προσθετικός θόρυβος.

Ερώτηση 2 Αιτιολογήστε την επιλογή της κατηγορίας του φίλτρου που επιλέξατε να χρησιμοποιήσετε.

Απάντηση

Παρατηρώντας με τη συνάρτηση freqz() παρατηρούμε πως στο 0.34-0.41 υπάρχει λευκός θόρυβος. Έτσι, το φίλτρο που θα κατασκευάσουμε θα είναι FIR Least-Squared Bandstop φίλτρο για να αποκόψουμε αυτές τις συχνότητες. Μετά την εφαρμογή του φίλτρου ακούμε ένα μουσικό κομμάτι (κιθάρα).

Απαντήσεις στο δεύτερο σετ εργαστηριακών ασκήσεων

Ον/μο:	Μαντάς λευθέριος	AM:	1047128	Έτος:	50
--------	---------------------	-----	---------	-------	----

Ερώτηση 3 Υπολογίστε την ενέργεια του σήματος θορύβου. Καθώς και την κατανομή της στο πεδίο της συχνότητας. Αιτιολογήστε την απάντησή σας.

Απάντηση:

Στην επόμενη γραφική παράσταση φαίνεται η κατανομή του συχνοτικού περιεχομένου της ενέργειας του σήματος θορύβου.

Από τη γραφική παράσταση φαίνεται πως το περιεχόμενο είναι στις συχνότητες 1500Hz και 6670Hz

Ερώτηση 4 Σχεδιάστε, με την βοήθεια της συνάρτησης $plot(\cdot)$, την κυματομορφή (τμήμα διάρκειας 250 δειγμάτων μετά τα μεταβατικά φαινόμενα) του θορύβου που είχε μολύνει το σήμα και καταγράψτε τις απαραίτητες τιμές των παραμέτρων του.

Απάντηση:

Για να απαντήσουμε αυτό το ερώτημα αφαιρέσαμε από το αρχικό σήμα yw το αποθορυβοποιημένο σήμα f, και απομένει μόνο ο θόρυβος. Κάνουμε λοιπόν plot στα πρώτα 250 δείγματα.

Απαντήσεις στο δεύτερο σετ εργαστηριακών ασκήσεων

Ον/μο: Μαντάς Ελευθέριο	AM:	1047128	Έτος:	50
----------------------------	-----	---------	-------	----

Ερώτηση 5 Σχεδιάστε, με την βοήθεια της συνάρτησης $plot(\cdot)$, την κυματομορφή (τμήμα διάρκειας των τελευταίων 250 δειγμάτων της μόνιμης κατάστασης) του αποθορυβοποιημένου σήματος.

Απάντηση:

Για να απαντηθεί αυτό το ερώτημα βρέθηκε το τέλος της μόνιμης κατάστασης στο σημείο όπου το σήμα f μηδενίζει. Αυτό συμβαίνει περίπου στη χρονική στιγμή 989857. Επομένως το plot () έγινε από τη στιγμή 989607 έως 989857.

