ØV11 — FIR FILTERE

Innleveringsfrist: 13. november 2020.

Ukeoppgavene skal løses selvstendig og vurderes i øvingstimene. Det forventes at alle har satt seg inn i fagets øvingsopplegg og godkjenningskrav for øvinger. Dette er beskrevet påhjemmesiden til IN3190: http://www.uio.no/studier/emner/matnat/ifi/IN3190/h20/informasjon-om-ovingsopplegget/

Oppgave 1— Tema: FIR filter. Exercise 10.28 from Manolakis & Ingle:

2 Points

a

- 28. Design a lowpass FIR filter to satisfy the specifications: $\omega_p = 0.3\pi$, $A_p = 0.5 \, dB$, $\omega_s = 0.5\pi$, and $A_s = 50 \, dB$.
 - (a) Use an appropriate fixed window to obtain a minimum length linear-phase filter. Provide a plot similar to Figure 10.12.
 - (b) Repeat (a) using the Kaiser window and compare the lengths of the resulting filters.

Figure 10.12 Impulse, approximation error, and magnitude response plots of the filter designed in Example 10.2 using a Hamming window to satisfy specifications: $\omega_p=0.25\pi$, $\omega_s=0.35\pi$, $A_p=0.1$ dB, and $A_s=50$ dB.

b) hint: use Matlab to determine the filter order.

Oppgave 2 Points: 3

a) Gitt frekvensresponsen $H_{LP}(w)$ til et ideelt lavpassfilter med kuttfrekvens w_c , vis at

$$h_{LP}[n] = \frac{\sin[w_c n]}{\pi n}, \quad -\infty < n < \infty$$

- **b)** For å få en FIR-tilnærming til det ideelle lavpassfilteret kan man legge på et vindu w[n] med lengde 2M + 1. Utled DTFTen $W_{Rect}(w)$ til et rektangulært vindu av lengde 2M + 1, sentrert om n = 0.
- c) Figuren under viser DTFTen til rektangulært, hann, hamming og blackman vinder for M=15. Med bakgrunn i modulasjonsteoremet (produkt i tid ↔ periodisk konvolusjon i frekvens), gi en kort begrunnelse for fordeler og ulemper ved bruk av de forskjellige vinduene.

Lag to skisser som fremhever forskjellene i DTFT til det avkortede ideelle lavpassfilteret dersom man bruker henholdsvis et rektangulært og et blackman vindu.

Oppgave 3 Points: 3

Oppgave 2 Konstruksjon av FIR-filter

2-a

Et ideelt båndstoppfilter er gitt ved frekvensresponsen

$$H_d\left(e^{j\omega}\right) = \begin{cases} 1 & ; & |\omega| \le \omega_0, |\omega| \ge \omega_1 \\ 0 & ; & \omega_0 < |\omega| < \omega_1 \end{cases}$$

der $0 < \omega_0 < \omega_1 < \pi$, og $|\omega| \le \pi$.

Finn impulsesponsen $h_d[n]$ til dette filteret.

2-b

En M + 1-punkts kausal tilnærming kan lages ved hjelp av et vindu w[n],

$$h[n] = h_d \left[n - \frac{M}{2} \right] w[n]; \ n = 0, \dots, M$$

(idet vi antar at M er et like tall.) Vis hva fasen til et slikt filter blir. Hva blir gruppeforsinkelsen? Lag en skisse av absoluttverdien til frekvensresponsen til et slikt filter der h_d er avledet av frekvensresponsen i oppgave 2-a.

2-c

Knekkfrekvensene skal være $\omega_0 = \pi/3$ og $\omega_1 = 2\pi/3$. Diskuter valg av vinduslengde for rektangulært vindu og Hammingvindu ut fra et krav om god dempning i midten av stoppbåndet.

Oppgave 4 Points: 2

I denne oppgaven skal du designe et enkelt reelt diskret filter som slipper igjennom frekvensen $w = \pi/4$ uten demping og stopper frekvensen $w = \pi/2$.

- a) Hvilke krav gir dette til filterets frekvensrespons, H(w).
- **b)** Bestem filterets systemfunksjon, H(z).
- c) Hva blir filterets impulsrespons, h(n).