Brzozowski's algorithm (co)algebraically.

Helle Hvid Hansen and Alexandra Silva

Radboud Universiteit Nijmegen and CWI

Coalgebraic Logics, 9 Oct 2012

Motivation

- duality between reachability and observability (Arbib and Manes 1975): beautiful, not very well-known.
 - Bidoit&Hennicker&Kurz. On the duality between observability and reachability (2001)
- combined use of algebra and coalgebra.
- our understanding of automata is still very limited;
 cf. recent research: universal automata, àtomata, weighted automata (Sakarovitch, Brzozowski, . . .)
- joint work with Bonchi, Bonsangue, Rutten (Dexter's festschrift 2012) and Hansen, Panangaden and Bezhanishvilli, Kozen, Kupke.

Brzozowski algorithm (by example)

- initial state: x final states: y and z
- $L(x) = \{a, b\}^* a$
- X is reachable but not minimal: $L(y) = \varepsilon + \{a, b\}^* a = L(z)$

Reversing the automaton: rev(X)

- transitions are reversed
- initial states ⇔ final states
- rev(X) is non-deterministic

Making it deterministic again: det(rev(X))

- new state space: $2^X = \{V \mid V \subseteq \{x, y, z\}\}$
- $V \xrightarrow{a} W$ $W = \{w \mid v \xrightarrow{a} w, v \in V\}$
- initial state: $\{y, z\}$ final states: all V with $x \in V$

The automaton det(rev(X)) . . .

ullet . . . accepts the reverse of the language accepted by X:

$$L(det(rev(X))) = a\{a,b\}^* = reverse(L(X))$$

• . . and is observable!

Today's Theorem

```
If: a deterministic automaton X is reachable and accepts L(X) then: det(rev(X)) is minimal and L(det(rev(X))) = reverse(L(X))
```

Taking the reachable part of det(rev(X))

• reach(det(rev(X))) is reachable (by construction)

Repeating everything, now for reach(det(rev(X)))

- . . . gives us reach(det(rev(reach(det(rev(X))))))
- ullet which is (reachable and) minimal and accepts $\{a,b\}^*$ a.

All in all: Brzozowski's algorithm

- X is reachable and accepts $\{a, b\}^*$ a
- reach(det(rev(reach(det(rev(X)))))) also accepts $\{a,b\}^*$ a
- . . . and is minimal!!

Goal of the day

- Correctness of Brzozowski's algorithm (co)algebraically
- Generalizations to other types of automata

Deterministic Automata are Algebras and Coalgebras

$$(1 = \{0\})$$

$$1$$

$$X$$

$$\downarrow t$$

$$X^{A}$$

$$+ A \times X$$

$$\downarrow [i,t]$$

$$X \to X^{A}$$

$$\downarrow (f,t)$$

$$X \to X^{A}$$

initial state, transitions
$$1+A imes (-)$$
-algebra

 $A \rightarrow (X \rightarrow X)$

output, transitions $2 \times (-)^A$ -coalgebra

Initial Algebras and Final Coalgebras

For all $a \in A, w \in A^*$:

$$\begin{array}{lll} \alpha(w)(a) &=& wa & \text{(append a)} \\ \zeta(S)(a) &=& \{w \in A^* \mid aw \in S\} = a^{-1}S & \text{(left a-derivative)} \\ \\ r(w) &=& t(i)(w) & \text{(state reached on input } w) \\ o(x) &=& \{w \in A^* \mid f(t(x)(w)) = 1\} & \text{(language acepted by } x) \end{array}$$

Reachability, Observability, Minimality

Def. (Arbib & Manes)

Automaton $\langle X, t, i, f \rangle$ is ...

- reachable if *r* is surjective (no algebraic redundancy).
- observable if o is injective (no coalgebraic redundancy).
- minimal if it is reachable and observable.

(Contravariant) Powerset construction

$$2^{(-)}:$$
 g
 W
 2^V
 2^g
 W
 2^W

where
$$2^V=\{S\mid S\subseteq V\}$$
 and, for all $S\subseteq W$,
$$2^g(S)=\ g^{-1}(S)\quad (=\ \{v\in V\mid \ g(v)\in S\}\,)$$

• Note: if g is surjective, then 2^g is injective.

Reversing an Automaton

• 2⁽⁻⁾ reverses transitions and determinises:

$$\begin{array}{c|cccc}
X & X \times A & 2^{X \times A} & (2^X)^A \\
\downarrow & \downarrow & \downarrow^{2^{(-)}} & \uparrow & 2^t \uparrow \\
X^A & X & 2^X & 2^X
\end{array}$$

Reversed transitions: $S \xrightarrow{a} t_a^{-1}(S)$ (a-predecessors of S)

• initial becomes final:

$$i: 1 \to X \quad \longmapsto \quad 2^i: 2^X \to 2^1 = 2$$

In reversed automaton: S is final iff $i \in S$.

• final becomes initial:

$$f: X \to 2 = 2^1 \longmapsto f: 1 \to 2^X$$

In reversed automaton: initial state is set of final states f.

Reversing the entire automaton

- Initial and final are exchanged . . .
- transitions are reversed . . .
- and the result is again deterministic!

Our previous example

• Note that X has been reversed and determinized:

$$2^X = \det(rev(X))$$

Proving today's Theorem

If: a deterministic automaton X is reachable and accepts L(X)

then:
$$2^X$$
 (= $det(rev(X))$) is observable and

$$L(2^X) = reverse(L(X))$$

Proof: by reversing $A^* \xrightarrow{r} X$

- X becomes 2^X
- initial automaton A* becomes (almost) final automaton 2^{A*}
- r is surjective \Rightarrow 2^r is injective

Reachable becomes observable

- If r is surjective then $(2^r \text{ and hence}) rev \circ 2^r$ is injective.
- That is, 2^X is observable.

Summarizing

- If: X is reachable, i.e., r is surjective
 then: rev ∘ 2^r is injective, i.e., 2^X is observable.
- And: $rev(2^r(f)) = rev(o(i))$, i.e., $L(2^X) = reverse(L(X))$

Corollary: Brzozowski's algorithm

- X becomes 2^X , accepting reverse(L(X))
- take reachable part: $Y = reachable(2^X)$
- Y becomes 2^Y, which is minimal and accepts

$$reverse(reverse(L(X))) = L(X)$$

Generalizations

• A Brzozowski minimization algorithm for *Moore* automata.

$$B^X = \{ \phi \mid \phi \colon X \to B \}$$
 $B^f(\phi) = \phi \circ f$

Brzozowski for Weighted Automata

Weighted Automata

Weighted languages

Brzozowski for Weighted Automata

Weighted Automata

Weighted languages

Brzozowski for Weighted Automata

Brzozowski for weighted languages: given a weighted automaton we want a **canonical** representative of the image in the final coalgebra – Moore automaton.

Brzozowski for weighted automata

Weighted automaton which recognizes $\sigma \colon A^* \to \mathbb{S}$:

"Reverse and determinize" (Worthington):

"Reverse and determinize" for Moore automata (using B^-):

Example

$$X = \{x, y, z\}, i = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, f = \begin{pmatrix} 1 & 2 & 2 \end{pmatrix}$$

$$t_{a} = \begin{pmatrix} 0 & 0 & 0 \\ \frac{1}{2} & 0 & 0 \\ \frac{1}{2} & 0 & 0 \end{pmatrix} \qquad t_{b} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$ab \mapsto \begin{pmatrix} 1 & 2 & 2 \end{pmatrix} \times \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 0 & 0 & 0 \\ \frac{1}{2} & 0 & 0 \\ \frac{1}{2} & 0 & 0 \end{pmatrix} \times \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = 2$$

$$L(x) = \{ \varepsilon \mapsto 1, ab^* \mapsto 2 \}$$

Reversing the automaton (Worthinghton)

Moore automaton that recognizes the reverse weighted language. Initial vector: $f^T = \begin{pmatrix} 1 & 2 & 2 \end{pmatrix}^T$, final vector: $i^T = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix}$ and transition function is **transposed**.

$$t_{a}^{T} = \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad t_{b}^{T} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$t^{T} \colon V(X) \to V(X)^{A}$$

Reachable automaton from $\mathbf{x} = f^T$:

$$\mathbf{x}/1$$
 a
 $\mathbf{y}/2$
 a,b
 $\mathbf{0}/0$
 a,b

$$L(\mathbf{x}) = \{ \varepsilon \mapsto 1; b^* a \mapsto 2 \} = rev(L(\mathbf{x}))$$

Part II: Brzozowski's algorithm via adjunctions

Part II: Brzozowski's algorithm via adjunctions

Motivation: Gain deeper understanding of

- the construction/algorithm,
- relation to similar constructions,
- uniform proofs.

Overview:

- Categories of automata.
- Adjunction of automata via reversal.
- Brzozowski, functorially.
- Generalisations to Moore and weighted automata.
- Generalised dual adjunction.
- Related work.

Categories of Automata

Aut = category of all deterministic automata, and automaton morphisms:

Note:

- Automaton morphisms preserve language.
- No initial object, no final object in Aut.

The Category Aut(L)

Aut(L) = subcategory of Aut of automata accepting L.

Initial and final objects regained:

Automaton $\langle X, t, i, f \rangle$ in Aut(L) is ...

- reachable if initial morphism *r* is surjective.
- observable if final morphism o is injective.

Myhill-Nerode via Aut(L)

Characterisation:

- $o(w) = \{u \in A^* \mid wu \in L\} = w^{-1}L$
- $\ker(o)$ is Myhill-Nerode-equivalence: $w \equiv_L v$ iff $\forall u \in A^* : wu \in L \iff vu \in L$
- img(o) is set of left-quotients of L.
- $|\operatorname{img}(o)| = \operatorname{index}(\equiv_L)$

Adjoint Automata: Main tools

Adjunction of state spaces:

$$\underbrace{\mathsf{Set}^{2^{(-)}}}_{2^{(-)^{\mathrm{op}}}} \underbrace{\mathsf{Set}^{\mathrm{op}}}_{\mathbf{Z}^X \to Y} \quad \mathsf{in} \; \mathsf{Set}^{\mathrm{op}}$$

• Exponential transpose:

$$\frac{g\colon X\to 2^Y\quad \text{in Set}}{\theta(g)\colon Y\to 2^X\quad \text{in Set}}$$

Transpose lemma:

$$\theta(X \xrightarrow{h} Y \xrightarrow{f} 2^{Z}) = Z \xrightarrow{\theta(f)} 2^{Y} \xrightarrow{2^{h}} 2^{X}$$

Reversing an Automaton

Reversal is Functorial

Theorem:

- $L(\overline{2}(\mathcal{X})) = rev(L(\mathcal{X})).$
- Reversing is functor $\overline{2}$: Aut \to Aut $^{\mathrm{op}}$.
- Reversing is functor $\overline{2}$: Aut(L) \rightarrow Aut(rev(L)) op .

Adjunction of Automata

Theorem: Reversal lifts dual adjunction on Set to dual adjunction of automata:

Corollary (duality): Let \mathcal{A} be initial object in $\operatorname{Aut}(L)$, \mathcal{Z} the final object in $\operatorname{Aut}(rev(L))$, and let \mathcal{X} be an automaton in $\operatorname{Aut}(L)$.

$$r \colon \mathcal{A} \twoheadrightarrow \mathcal{X} \qquad \stackrel{\overline{2}}{\longmapsto} \qquad o \colon \overline{2}(\mathcal{X}) \rightarrowtail \overline{2}(\mathcal{A}) = \mathcal{Z}$$
 $\mathcal{X} \text{ reachable} \qquad \Longrightarrow \qquad \overline{2}(\mathcal{X}) \text{ observable}$

Brzozowski's algorithm, functorially

- Let: $\mathsf{rAut}(L) = \mathsf{reachable}$ automata accepting L, $\mathsf{oAut}(L) = \mathsf{observable}$ automata accepting L, $\mathsf{mAut}(L) = \mathsf{minimal}$ automata accepting L.
- Reachability is functor R: Aut(L) → rAut(L) (coreflector).
 Restricts to R: oAut(L) → mAut(L).
- Brzozowski's algorithm is $R \circ \overline{2}^{op} \circ R^{op} \circ \overline{2}$:

Brzozowski for Moore Automata, revisited

Adjunction of Moore Automata:

- $L: A^* \to B$ (B-weighted language), $rev(L)(w) = L(w^R)$.
- Reversal functor $B^{(-)} = Set(-, B)$.
- Brzozowski minimization, functorially √

Brzozowski for Weighted Automata

Weighted Automaton in Set

Moore Automaton in SMod

- \mathbb{S} is a commutative semiring $(S, +, \cdot, 0, 1)$.
- $\bullet \ \mathsf{SMod} = \mathbb{S}\text{-semimodules and }\mathbb{S}\text{-linear maps}$
- $V(X) = \{s_1x_1 + \ldots + s_nx_n \mid s_i \in \mathbb{S}, x_i \in X\}$ (free on X)

Brzozowski for Weighted Automata, revisited

Adjunction of Moore Automata over SMod:

- $L: A^* \to \mathbb{S}$ (formal power series), $rev(L)(w) = L(w^R)$.
- Reversal functor: $(-)^* = \mathbb{S}^{(-)} = \mathsf{SMod}(-,\mathbb{S})$ (dual space)
- Note: $V(X)^* = V(X^*)$ for finite X.

Brzozowski for WAut via Brzozowski for Moore

Brzozowski for WAut in SMod

Note:

- reachability "illegal operation" in $Moore_{SMod}(L)$.
- $A \longrightarrow Q(X)$ (image/quotient of initial object?).
- Q(X) finitely generated if S Noetherian.

Generalised Duality

Assume **C**, **D** have products.

Moore automaton over C:

state space: $C \in \mathbf{C}$ initial state: $i: 1 \rightarrow UC$

transitions: $t_a: C \to C, a \in A$

output: $f: C \to D_0^{\Phi'1}$

Example: Quantum Automata

Cf. Bart Jacobs, Frank Roumen.

Brzozowski minimization? Finitely generated resulting automaton?

Related Work

 Bezhanishvili, Kupke, Panangaden (WoLLIC 2012): minimisation via dual equivalence coalgebra-algebra (deterministic, linear weighted, belief automata).

(Both left and right adjoint must preserve epis.)

 Arbib, Manes, Gehrke, Pin, König, Hülsbusch, Milius, Adamek, Myers, Worthington,...

Conclusion

Summary:

- Brzozowski algorithm via dual adjunction of automata.
- Duality: state and observations.
- Generalisations: given Moore/nondeterm/weighted automaton accepting L, construct minimal Moore automaton accepting L (language equivalence!).
- Future work: other automaton types (probabilistic, multi-sorted, ...), combination with generalised powerset construction, algebraic-coalgebraic automata theory.

Message:

- duality → algorithms.
- categories → generalisations, clarification.