DL 5 - vacances d'Octobre

Exercice 1 (Esc 2005)

Une urne contient initialement trois boules indiscernables au toucher: • deux boules rouges

une boule bleue

On appelle « épreuve » la séquence suivante. On tire une boule de l'urne, puis :

- ▶ si la boule tirée est **bleue**, on la remet dans l'urne.
- ▶ si la boule tirée est **rouge**, alors : on ne la remet **pas** dans l'urne
 - mais on remet une boule **bleue** dans l'urne à sa place.

L'expérience aléatoire consiste à effectuer une succession illimitée d'épreuves.

Pour $n \ge 1$, on note : $Y_n = 1$ le nombre de boules rouges dans l'urne suite à la $n^{\text{ème}}$ épreuve.

- $R_n =$ « À la $n^{\text{ème}}$ épreuve on tire de l'urne une boule **rouge**. »
- ▶ $B_n =$ « À la $n^{\text{ème}}$ épreuve on tire de l'urne une boule **bleue**. »
- **1.** Donner la loi de probabilité de Y_1 .
- **2. a)** Quelles sont les valeurs possibles de Y_n dans le cas où $n \ge 2$?
 - **b)** Pour $n \ge 1$ un entier, justifier que : $\mathbb{P}(Y_n = 2) = \frac{1}{3^n}$.
- **3.** Pour tout entier $n \ge 1$, on pose : $u_n = \mathbb{P}(Y_n = 1)$.
 - a) Rappeler la valeur de u_1 et montrer que $u_2 = \frac{2}{3}$.
 - **b)** Par la formule des probabilités totales sur Y_n , montrer : $\forall n \ge 2$, $u_{n+1} = \frac{2}{3} \cdot u_n + \frac{2}{3^{n+1}}$. Cette relation reste-t-elle valable lorsque n = 1?

Pour $n \ge 1$ entier, on pose : $v_n = u_n + \frac{2}{3^n}$.

- c) Montrer que la suite $(v_n)_{n \in \mathbb{N}^*}$ est géométrique. En déduire v_n en fonction de n et de v_1 . Établir enfin que pour $n \ge 1$, on a : $u_n = 2 \cdot \left(\frac{2}{3}\right)^n \frac{2}{3^n}$.
- **d)** Déduire des résultats précédents, pour $n \neq 0$, la probabilité $\mathbb{P}(Y_n = 0)$.
- **4.** Calculer l'espérance de Y_n .
- **5.** On note *Z* la variable aléatoire égale au numéro de l'épreuve amenant la dernière boule rouge.
 - a) Donner l'ensemble des valeurs possibles $Z(\Omega)$.
 - **b)** Soit un entier $k \ge 2$. Exprimer l'événement [Z = k] en fonction des variables Y_k et Y_{k-1} .
 - c) En déduire la loi de Z.

Exercice 2 (Esc 2008)

On note \mathcal{C} la base canonique de \mathbb{R}^3 et, pour $y \in \mathbb{R}$, on définit les matrices :

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad N = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \quad P_y = \begin{bmatrix} 0 & 2 & 1 \\ 4 & 0 & y \\ 4 & 2 & 0 \end{bmatrix} \quad A = \begin{bmatrix} 3 & 1 & -1 \\ 1 & 1 & 1 \\ 2 & 0 & 2 \end{bmatrix}$$

On note : f l'endomorphisme de \mathbb{R}^3 de matrice A dans la base canonique C, et

- ▶ Id l'endomorphisme identité de \mathbb{R}^3 .
- **1. a)** Calculer $(A-2I)^2$, puis vérifier que $(A-2I)^3=0_3$ (la matrice nulle de $\mathcal{M}_3(\mathbb{R})$.)
 - **b)** Pour $\vec{v} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3$, montrer l'équivalence : $A\vec{v} = 2\vec{v} \iff \vec{v} \in \text{Ker}(A-2I)$. Résoudre cette équation. On écrira l'ensemble des solutions sous la forme $\vec{v} \in \text{Vect}(\vec{v}_0)$.
 - c) Quelle est la dimension de ce sous-espace vectoriel des solutions?
- **2.** Montrer par la méthode du pivot que P_y est inversible si et seulement si $y \neq -1$.
- **3.** On note dans toute la suite les vecteurs $\vec{u}_1 = \begin{pmatrix} 0 \\ 4 \\ 4 \end{pmatrix}$ et $\vec{u}_2 = \begin{pmatrix} 2 \\ 0 \\ 2 \end{pmatrix}$.
 - **a)** Déterminer l'unique vecteur \vec{u}_3 de la forme $\vec{u}_3 = \begin{pmatrix} 1 \\ y \\ 0 \end{pmatrix}$ tel que : $f(\vec{u}_3) = \vec{u}_2 + 2\vec{u}_3$.
 - **b)** Donner la matrice de passage P de la base C à la famille $\mathcal{B}' = (\vec{u}_1, \vec{u}_2, \vec{u}_3)$. Montrer à l'aide de la question **2.** que P est inversible puis justifier que la famille \mathcal{B}' est une base de \mathbb{R}^3 .
 - c) Exprimer $f(\vec{u}_1)$ en fonction de \vec{u}_1 , puis $f(\vec{u}_2)$ en fonction de \vec{u}_1 et \vec{u}_2 . En déduire que la matrice T de l'endomorphisme f dans la base \mathcal{B}' est T = 2I + N. Justifier en une seule ligne, la relation $A = PTP^{-1}$.

Soit *S* l'ensemble des endomorphismes h de \mathbb{R}^3 vérifiant la relation : $f \circ h = h \circ f$. (**R**)

- **4. a)** On note M' la matrice de l'endomorphisme h dans la base \mathcal{B}' . Montrer l'équivalence $(\mathbf{R}) \iff [N \cdot M' = M' \cdot N]$.
 - **b)** En posant $M' = \begin{bmatrix} a & a' & a'' \\ b & b' & b'' \\ c & c' & c'' \end{bmatrix}$, montrer l'équivalence : $(\mathbf{R}) \Longleftrightarrow M' = \begin{bmatrix} a & a' & a'' \\ 0 & a & a' \\ 0 & 0 & a \end{bmatrix}$.
 - c) Calculer la matrice N^2 et en déduire que $S = \text{Vect}(\text{Id}, f 2\text{Id}, (f 2\text{Id})^2)$.
- **5.** On considère les deux familles : $\mathcal{G} = (I, N, N^2)$,

$$\mathcal{F}' = (\mathrm{Id}_{f}, f^2).$$

- a) Montrer que \mathcal{G} est libre et en déduire la dimension de S.
- **b)** Montrer que \mathcal{F}' est une base de S.