Bezpieczeństwo protokołów sieciowych, ćwiczenia 5

Maciej Grześkowiak

14 stycznia 2021

Algorytm podpisu RSA, Generowanie kluczy

- **1** Losuje liczby pierwsze $p, q, p \neq q$,
- ② Oblicza n = pq oraz $\varphi(n) = (p-1)(q-1)$,
- **3** Losuje $e < \varphi(n)$, $(e, \varphi(n)) = 1$,
- **4** Oblicza d takie, że $ed = 1 \pmod{\varphi(n)}$,
- **1** Ustala $K_A = (n, e)$ klucz publiczny do weryfikacji
- **1** Ustala $k_A = (n, d)$ klucz tajny do podpisu,

Algorytm podpisu RSA, Podpisywanie

Dane $k_A = (n, d)$ - klucz tajny, H - funkcja hashująca.

- Ustala M,
- Oblicza h = H(M),
- Podpis Alice pod M, to s,
- Wysyła M, s do Boba.

Algorytm podpisu RSA, Weryfikacja

BOB $K_A = (n, e)$ - klucz publiczny, M, s, H - funkcja hashująca.

- Oblicza h' = H(M),
- **3** Bob akceptuje podpis jeśli h = h'.

BOB $K_B = (n, e)$ - klucz publiczny, $k_B = (n, d)$ klucz tajny do podpisu, H - funkcja hashująca.

BOB

1. Wysyła $K_B = (n, e)$ do Alice

ALICE *M* - wiadoność *H* - funkcja hashująca.

- 2. Odbiera $K_B = (n, e)$ od Boba
- 3. Losuje k, (k, n) = 1,
- 4. Oblicza h = H(M),
- 5. Zakrywa h, tzn. oblicza $y = hk^e \pmod{n}$,
- 6. Wysyła y do Boba,

BOB $K_B = (n, e)$ - klucz publiczny, $k_B = (n, d)$ klucz tajny do podpisu, H - funkcja hashująca.

- 7. Odbiera y od Alice,
- 8. Ślepo podpisuje y, tzn. oblicza $z = y^d \pmod{n}$
- 9. Wysyła z do Alice.

ALICE *M* - wiadoność *H* - funkcja hashująca.

- 10. Odbiera z od Boba,
- 11. Odkrywa podpis Boba, tzn. oblicza $s = zk^{-1} \pmod{n}$,
- 12. Weryfikuje podpis [M, s],
- 13. Jeśli weryfikacja jest poprawna, to s jest ślepym podpisem Boba pod M.

ad 2-6, Algorytm ślepego podpisu RSA

ALICE *M* - wiadoność *H* - funkcja hashująca.

- 2. Przygotowuje M_i , $i = 1, \ldots, 100$
- 3. Losuje k_i , $(k_i, n) = 1$, i = 1, ..., 100
- 4. Oblicza $h_i = H(M_i), i = 1, ..., 100$
- 5. Zakrywa h_i , tzn. oblicza $y_i = h_i k_i^e \pmod{n}$,
- 6. Wysyła y_i do Boba, i = 1, ..., 100

```
BOB K_A = (n, e) - klucz publiczny, k_A = (n, d) klucz tajny do podpisu, H - funkcja hashująca.
```

- 6.1. Odbiera y_i od Alice, i = 1, ..., 100
- 6.2. Losuje $j \in \{1, 2, \dots, 100\}$
- 6.3. Wysyła j do Alice

ad 2-6, Algorytm ślepego podpisu RSA

ALICE *M* - wiadoność *H* - funkcja hashująca.

- **6.4**. Odbiera *j*
- 6.5. Wysyła $M_i, k_i, i=1,\ldots,100, i \neq j$ do Boba

```
BOB K_A = (n, e) - klucz publiczny, k_A = (n, d) klucz tajny do podpisu, H - funkcja hashująca.
```

- 6.6. Odbiera M_i , k_i , od Alice, i = 1, ..., 100,
- 6.7. Oblicza $h'_i = H(M_i), i = 1, ..., 100, i \neq j$
- 6.8. Oblicza $h_i = y_i(k_i^e)^{-1} \pmod{n}$, i = 1, ..., 100, $i \neq j$,
- 6.9. Jeśli $h_i'=h_i,\ i=1,\dots,100,\ i\neq j$, to Bob przechodzi do kroku 8 z $y=y_j$,