Afshar - Q3

```
این سوال در مورد عملکرد
```

ftt and conv function

در قسمت اول زمان محاسبه اف اف تي بر حسب طول سيگنال ورودي به آن بدست آمده است كه نمودار آن در خروجي چاپ شده

```
1 #part 1 and 2
 2 import numpy as np
 3 from scipy.fftpack import fft
 4 import time
 5
 6 N values = np.arange(1, 51)
 7
   times = np.zeros(len(N_values))
8
9 for i, N in enumerate(N values):
10
        x = np.random.rand(N)
        start_time = time.time()
11
12
        fft(x, N)
        times[i] = time.time() - start_time
13
14
15 # Plot the results
16 import matplotlib.pyplot as plt
   plt.figure()
17
18 plt.plot(N_values, times)
19 plt.xlabel('Length of signal')
20 plt.ylabel('Time for running FFT')
21 plt.show()
22
```


part3

به ازای طول سیگنال هایی که توانی از دو هستند عملکرد بهینه تری خواهد داشت

part4

در این قسمت تابع کانوولوشن بررسی شده است. یکبار با استفاده از این تابع و بار دیگر با استفاده از توابع

fft and ifft

بررسی شده است و خروجی ها به صورت زیر میباشند

```
1 def conv_python(x, h):
2    N1 = len(x)
3    N2 = len(h)
4    N = N1 + N2 - 1
```

```
y = np.zeros(N)
       for n in range(N):
 6
 7
          for k in range(N1):
               if (n-k) < N2 and (n-k) >= 0:
 8
 9
                    y[n] += x[k]*h[n-k]
10
       return y
11
 1 import numpy as np
 2 from scipy.fftpack import fft, ifft
 3 import time
 5 L_values = [50, 1000]
 6
 7 for L in L_values:
 8
       x = np.random.normal(0, 1, L)
 9
       h = np.random.uniform(0, 1, L)
10
11
       # Using numpy.convolve function
       start_time = time.time()
12
13
       conv_numpy = conv_python(x, h)
       time_numpy = time.time() - start_time
14
15
       # Using FFT method
16
       N = int(2**np.ceil(np.log2(L + L - 1)))
17
18
       start time = time.time()
19
       conv_fft = ifft(fft(x, N) * fft(h, N))
20
       time_fft = time.time() - start_time
21
       print("For L = {}:".format(L))
22
       print("Time for numpy.convolve function: {:.6f} s".format(time_numpy))
23
24
       print("Time for FFT method: {:.6f} s".format(time_fft))
25
       print()
26
    For L = 50:
    Time for numpy.convolve function: 0.007992 s
    Time for FFT method: 0.000000 s
    For L = 1000:
    Time for numpy.convolve function: 1.618336 s
```

Time for FFT method: 0.000998 s