Stat261 - Spring 2018

Assignment #2 - due Thursday, January 18 in class Neatly hand write your solutions - marks will be assigned for presentation

- 1. Suppose that diseased trees are distributed randomly and uniformly throughout a large forest with an average of λ per acre. Let X denote the number of diseased trees in a randomly chosen one-acre plot with range, $\mathcal{X} = \{0, 1, 2, ...\}$.
 - i (a) What distribution can we use to model X? Write down its probability mass function (p.m.f.).
 - (b) Suppose that we observe the number of diseased trees on n randomly chosen one-acre parcels, $X_1, X_2, ..., X_n$. The random variables $X_1, X_2, ..., X_n$ can be assumed to be independent. Write down the JOINT probability mass function for $X_1, X_2, ..., X_n$. Simplify this expression which is a function of λ and the X's.
- λ (c) We are going to use the Method of Maximum Likelihood to estimate λ . Write down the Likelihood function $L(\lambda)$.
- (d) Write down the Log-likelihood function $\ell(\lambda)$.
- \mathfrak{A} (e) Write down the Score Function $S(\lambda)$.
- 2 (f) Derive the maximum likelihood estimate of λ .
- (g) Write down the Information Function $I(\lambda)$.
- i (h) Use the second derivative test to show that you have found a maximum.
- Suppose that the numbers of diseased trees observed in eight randomly chosen one-acre parcels were: 5, 8, 9, 2, 10, 7, 6, 10. Compute the maximum likelihood estimate of λ using this data.
- 3 (j) Suppose that the unit of measure was a five-acre plot, i.e. we found the same number of diseased trees in eight randomly chosen five-acre plots, but λ is still the mean number per one acre. What is the maximum likelihood estimate of λ now?
- 2. According to genetic theory, there are three blood types MM, NM and NN which should occur in a very large population with probabilities, θ^2 , $2\theta(1-\theta)$ and $(1-\theta)^2$, where θ is the (unknown) gene frequency, $0 \le \theta \le 1$.
 - (a) Suppose that in a random sample of size n = 10 from the population, there are f_1 , f_2 , and f_3 of types MM, NM and NN respectively. What distribution can we assume for the frequencies, f_1 , f_2 , and f_3 ? Write down its probability mass function.

Blood Type	MM	NM	NN	Total
Observed frequency	f_1	f_2	f_3	n = 100
Probability	$p_1 = \theta^2$	$p_2 = 2\theta(1-\theta)$	$p_3 = (1 - \theta)^2$	1

(b) What are the assumptions required for the distribution you assume in part (a)?

 λ

- \mathcal{Q} (c) Write down the Log-likelihood function as a function of θ , $\ell(\theta)$. Write down the Score function, $S(\theta)$.
- \Im (d) Find an expression for the maximum likelihood estimate of θ .
- \mathfrak{Z} (e) Suppose that $f_1=3,\,f_2=4,\,$ and $f_3=3.$ Compute the maximum likelihood estimate of $\theta.$
- Compute the estimated probabilities for p_1,p_2 and p_3 under this model. i.e. $p_i(\hat{\theta}),\ i=1,2,3.$
- 3 (g) Compute the estimated expected frequencies under this model $np_i(\hat{\theta})$ and compare them with the observed frequencies.

33 + a presentation.

1. (a) X~PDISSON (x) since diseased trees occur randomly over space (one acre) $f(x;\lambda) = \frac{\lambda^{2} e^{-\lambda}}{x!} x^{2} 0, \dots \lambda^{70}, \lambda = mean^{\#} diseased$ x! x! x! x! x! x! x!(b) 1, x2, ... xn 11th Poisson (x) 2:0,1,2,... $f(x_1, x_2, \dots, x_n; \lambda) = f(x_1; \lambda) \times f(x_2; \lambda) \times \dots \times f(x_n; \lambda)$ $= \prod_{i=1}^n f(x_i; \lambda) = \prod_{i=1}^n \sum_{i=1}^n \sum_{j=1}^n \sum_{j=1}^n \sum_{j=1}^n \sum_{j=1}^n \sum_{j=1}^n \sum_{j=1}^n \sum_{i=1}^n \sum_{j=1}^n \sum_{j=$ (c) $L(\lambda) = \lambda^{2} e^{-n\lambda}$ (d) $l(\lambda) = (\frac{2}{2}\lambda) \ln \lambda - n\lambda$ (e) $S(\lambda) = l'(\lambda) = \frac{2}{2}\lambda$ (f) $S(\hat{\lambda}) = 0 = \frac{\xi_{\chi_i}}{\lambda}$ $n \Rightarrow \hat{\lambda} = \frac{\xi_{\chi_i}}{\lambda}$ Sample mean. (g) $T(x) = -\frac{d^2l}{dx^2} = \frac{2}{3}\frac{2}{x^2}$ 70. When not all $\pi_{i} = 0$ $T(\hat{\lambda}) > 0$, therefore we have a maximum. $\hat{\lambda} = 57/8 = 7.128$ $f(x_1, x_2, x_n; \lambda) = \frac{\pi}{\pi} \frac{(5\lambda)^2 e^{-5\lambda}}{x_i!} \frac{\xi_{ni} - 5n\lambda}{\lambda} e^{-\frac{5n\lambda}{2}} \frac{\xi_{ni}}{x_i!}$ L(X) = \(\lambda \times \) = \(\sigma \) = \(\sigma \) = \(\sigma \) $\ell(\lambda) = \left(\frac{\lambda}{2} + i\right) \ell_{\lambda} \lambda - 5n\lambda$

$$S(\lambda) = \frac{\hat{\Sigma}_{\chi_i}}{\lambda} = \frac{\hat{\Sigma}_{\chi_i}}{\hat{\Sigma}_{\eta_i}}$$

$$\frac{1}{1}$$
, $\frac{2}{1}$ = $\frac{57}{10}$ = $\frac{1.425}{10}$

$$P(f, f_2, f_3; \theta) = (f, f_2f_3) P_1(\theta)^{f_1} P_2(\theta)^{f_2} P_3(\theta)^{f_3}$$

(b) - n subjects are independent

- randomly chosen subjects have constant purb. of blood types mm, Nm, NN.

(c)
$$L(9) = p_1(9)^{\frac{1}{2}} p_2(9)^{\frac{1}{2}} p_3(9)$$

$$= [0^2]^{\frac{1}{2}} [20(1-9)]^{\frac{1}{2}} [(1-9)^2]^{\frac{1}{3}}$$

$$= 2^{\frac{1}{2}} + \frac{1}{2}$$

$$= 2 0 \qquad (1-9)$$

$$= 2^{\frac{1}{2}}$$

$$l(9) = (2f_1 + f_2) ln 9 + (f_2 + 2f_3) ln (1-9)$$

$$S(9) = 2f_1 + f_2 \qquad (f_1 + 2f_3)$$

$$S(9) = 2f_1 + f_2 - (f_2 + 2f_3)$$

$$0 \qquad 1 - 9$$

(d)
$$S(\hat{9}) = 0$$
 $\hat{\theta} = 2f_1 + f_2$ $n = f_1 + f_2 + f_3$.

Est exp frog. 2.5 5. 2.5

The observed are reasonably close to the estimated expected frequencies.