```
% Output argument is:
% xyout: The values of x and y at x=a, x=(a+b)/2, and x=b
% listed in a 3 by 2 matrix.

x=linspace(a,b,100);
y=feval(Fun,x);  Using the imported function to calculate f(x) at 100 points.

xyout(1,1)=a; xyout(2,1)=(a+b)/2; xyout(3,1)=b;

xyout(1,2)=y(1);

xyout(2,2)=feval(Fun,(a+b)/2);  Using the imported function to calculate f(x) at the midpoint.

plot(x,y)
xlabel('x'), ylabel('y')
```

Passing a user-defined function into another function by using a string expression:

The following demonstrates how to pass a user-defined function into a function function by typing the name of the imported function as a string in the input argument. The function $f(x) = e^{-0.17x}x^3 - 2x^2 + 0.8x - 3$ from Section 7.9.1, created as a user-defined function named Fdemo, is passed into the user-defined function funplots. Note that the name Fdemo is typed in a string for the input argument Fun in the user-defined function funplots.

```
>> ydemoS=funplotS('Fdemo', 0.5, 4)

ydemoS =

0.5000    -2.9852

2.2500    -3.5548

4.0000    0.6235

The name of the imported function is typed as a string.
```

In addition to the display of the numerical output in the Command Window, the plot shown in Figure 7-3 is displayed in the Figure Window.

7.10 SUBFUNCTIONS

A function file can contain more than one user-defined function. The functions are typed one after the other. Each function begins with a function definition line. The first function is called the primary function and the rest of the functions are called subfunctions. The subfunctions can be typed in any order. The name of the function file that is saved should correspond to the name of the primary function. Each of the functions in the file can call any of the other functions in the file. Outside functions, or programs (script files), can call only the primary function. Each of the functions in the file has its own workspace, which means that in each the variables are local. In other words, the primary function and the subfunctions cannot access each other's variables (unless variables are

7.10 Subfunctions 241

declared to be global).

Subfunctions can help in writing user-defined functions in an organized manner. The program in the primary function can be divided into smaller tasks, each of which is carried out in a subfunction. This is demonstrated in Sample Problem 7-4.

Sample Problem 7-4: Average and standard deviation

Write a user-defined function that calculates the average and the standard deviation of a list of numbers. Use the function to calculate the average and the standard deviation of the following list of grades:

80 75 91 60 79 89 65 80 95 50 81

Solution

The average x_{ave} (mean) of a given set of *n* numbers $x_1, x_2, ..., x_n$ is given by:

$$x_{ave} = (x_1 + x_2 + \dots + x_n) / n$$

The standard deviation is given by:

$$\sigma = \sqrt{\frac{\sum_{i=1}^{i=n} (x_i - x_{ave})^2}{n-1}}$$

A user-defined function, named stat, is written for solving the problem. To demonstrate the use of subfunctions, the function file includes stat as a primary function, and two subfunctions called AVG and StandDiv. The function AVG calculates x_{ave} , and the function StandDiv calculates σ . The subfunctions are called by the primary function. The following listing is saved as one function file called stat.

The user-defined function stat is then used in the Command Window for calculating the average and the standard deviation of the grades: