CS 241 Homework 4

Christian Gutierrez Spring 2022

Theorem 1. Let n be an integer such that $n \geq 2$. Either n is prime, or n can be expressed as a unique product of primes.

Proof. Let P(n) where n is either prime or can be expressed as a unique product of primes

P(n) holds all integers where $n \geq 2$

Base: P(2) is true because 2 is a number.

Induction: Let P(k) be true for all integers k with $2 \le k \le n$

Consider n+1. It is either prime or divisible by some number between 2 and n. If n+1 is prime, then P(n+1) is true.

If n+1 is divisible by some number, then suppose n+1=k*m where k and m are integers between 2 and n.

As a result, P(k) and P(m) are true by the Inductive Hypothesis.

Then k and m are a product of primes or are prime.

So $k = p_1 * ... * p_r$ and $m = q_1 * ... q_s$ where p_i and q_i are prime, and $r, s \ge 1$.

So $n+1=k*m=p_1*\ldots*p_r*q_1*\ldots*Q_s$ so n+1 is a product of primes. Q.E.D.

Therefore, P(n) is true for all $n \geq 2$

Theorem 2. Let $A \subseteq \mathbb{N}$ and $a \neq \phi$. $\exists a_{min} \in A | \forall a \neq a_{min} \in A, a_{min} < a$

Proof. Base: n=1. If $1\in A,$ then 1 is the smallest element.

Induction: Assume $P(1), \ldots, P(k), \ldots, P(n)$ and P(n+1)

Suppose set $A \subset N$ where A is non empty and contains n+1 as an element.

So either some number from $1, \ldots, n \in A$ or not.

If k is in A where $1 \le k \le n$ then A is true by the Inductive Hypothesis

As a result, A has a minimum element.

Q.E.D.