# 实验七正余弦旋转变压器实验

## 测定正余弦旋转变压器空载时的输出特性

| 表 1      |       |       |       |       |       |       |       |       |       |       |  |
|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--|
| $\alpha$ | 0°    | 10°   | 20°   | 30°   | 40°   | 50°   | 60°   | 70°   | 80°   | 90°   |  |
| Ur (V)   | 0.207 | 5.94  | 11.20 | 16.22 | 21.27 | 25.23 | 28.40 | 31.07 | 32.53 | 33.01 |  |
| $\alpha$ | 100°  | 110°  | 120°  | 130°  | 140°  | 150°  | 160°  | 170°  | 180°  |       |  |
| Ur (V)   | 32.46 | 30.95 | 28.64 | 25.18 | 21.13 | 16.13 | 11.51 | 5.40  | 0.493 |       |  |

#### 测定正余弦旋转变压器负载时的输出特性

| 表 2       |       |       |       |       |       |       |       |       |       |       |  |
|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--|
| α         | 0°    | 10°   | 20°   | 30°   | 40°   | 50°   | 60°   | 70°   | 80°   | 90°   |  |
| $U_n$ (V) | 0.364 | 3.333 | 6.04  | 9.49  | 13.11 | 17.07 | 20.80 | 23.86 | 25.72 | 26.39 |  |
| $\alpha$  | 100°  | 110°  | 120°  | 130°  | 140°  | 150°  | 160°  | 170°  | 180°  |       |  |
| $U_n$ (V) | 25.82 | 24.12 | 21.20 | 16.67 | 12.58 | 8.74  | 5.25  | 2.20  | 0.514 |       |  |

## 测量二次侧补偿后负载时的输出特性

| 表 3      |       |       |       |       |       |       |       |  |  |  |  |
|----------|-------|-------|-------|-------|-------|-------|-------|--|--|--|--|
| $\alpha$ | -60°  | -50°  | -40°  | -30°  | -20°  | -10°  | 0°    |  |  |  |  |
| Ur (V)   | 16.85 | 14.22 | 11.62 | 8.31  | 5.74  | 2.640 | 0.228 |  |  |  |  |
| $\alpha$ | 10°   | 20°   | 30°   | 40°   | 50°   | 60°   |       |  |  |  |  |
| Ur (V)   | 2.921 | 6.41  | 9.28  | 12.28 | 14.97 | 17.80 |       |  |  |  |  |

## 测量一次侧和二次侧同时补偿后负载时输出特性

| 表 4      |       |       |       |       |       |       |       |       |       |       |  |
|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--|
| $\alpha$ | 0°    | 10°   | 20°   | 30°   | 40°   | 50°   | 60°   | 70°   | 80°   | 90°   |  |
| Ur (V)   | 0.96  | 4.54  | 9.15  | 13.54 | 17.30 | 20.57 | 23.32 | 25.22 | 26.58 | 27.04 |  |
| $\alpha$ | 100°  | 110°  | 120°  | 130°  | 140°  | 150°  | 160°  | 170°  | 180°  |       |  |
| Ur (V)   | 26.74 | 25.52 | 23.50 | 20.61 | 17.19 | 13.87 | 9.13  | 4.57  | 0.223 |       |  |

| 表 5       |       |       |       |       |       |       |       |       |       |       |
|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| $\alpha$  | 0°    | 10°   | 20°   | 30°   | 40°   | 50°   | 60°   | 70°   | 80°   | 90°   |
| $U_n$ (V) | 0.070 | 4.95  | 9.31  | 13.44 | 17.44 | 20.65 | 23.40 | 25.41 | 26.55 | 27.04 |
| $\alpha$  | 100°  | 110°  | 120°  | 130°  | 140°  | 150°  | 160°  | 170°  | 180°  |       |
| $U_n$ (V) | 26.62 | 25.32 | 23.39 | 20.74 | 17.35 | 13.46 | 8.75  | 4.71  | 1.160 |       |

## 实验报告

1. 根据表 7-1、表 7-2、表 7-3 和表 7-4 的数据,在同一图中绘制空载、负载、二次侧补偿后、一次侧补偿后时正余弦旋转变压器空载时输出电压  $U_{r0}$  与转子转角  $\alpha$  的关系曲线,即  $U_{r0}=f(\alpha)$ .



图 1 正余弦旋转变压器输出电压与转子转角关系曲线

2. 根据表 7-5 的实验记录数据,绘制正余弦旋转变压器作线性应用时输出电压 Ur 与转子转角  $\alpha$  的关系曲线,即  $U_r=f(\alpha)$ .



图 2 正余弦旋转变压器线性应用时输出电压与转子转角关系曲线

#### 思考题

1. 试分析旋转变压器一、二次侧补偿的原理.

旋转变压器一次侧补偿通过短接交轴绕组,抵消交轴磁通对输出的影响,从而达到补偿目的. 二次侧补偿则是通过在副边接对称负载,使得输出电压与转角保持严格的正余弦关系,消除交轴磁场.

2. 试分析正余弦旋转变压器作线性变压器的原理.

将正余弦旋转变压器的定子励磁绕组和转子余弦输出绕组串联,并作为励磁的原边. 当  $k\mu\approx0.52$  时,在  $\theta=\pm60$  范围内,输出电压和转角成线性关系,并且与理想直线相比较,误差不超过 0.1%.