REGRESSÃO LOGÍSTICA BINÁRIA

Importando bibliotecas

ANÁLISE INICIAL

Verificando as variáveis carregadas no bando de dados

Base de dados tras a informação de pessoas que receberam o diagnóstico de COVID perfil do paciente e doenças pré existentes.

In [3]:	doenca_pre.head()									
Out[3]:		nome_munic	codigo_ibge	idade	cs_sexo	diagnostico_covid19	data_inicio_sintom			
	0	Carapicuíba	3510609	36.0	FEMININO	CONFIRMADO	2020-07-			
	1	Jacareí	3524402	54.0	FEMININO	CONFIRMADO	2020-07-			
	2	Vargem Grande Paulista	3556453	33.0	FEMININO	CONFIRMADO	2020-07-			
	3	Paulínia	3536505	47.0	FEMININO	CONFIRMADO	2021-01-			
	4	Santo André	3547809	41.0	FEMININO	CONFIRMADO	2021-01-			
	4 (>			

Descrição de variáveis

- codigo_ibge: Código do município no IBGE (7 dígitos) de residência do paciente
- nome_munic: Nome do município de residência do paciente
- idade: Idade do paciente
- cs_sexo: Sexo do paciente
- diagnostico_covid19: Confirmação de COVID-19
- data_inicio_sintomas: Data de início dos sintomas
- obito: Indica se o paciente veio a óbito por COVID-19
- asma: Paciente apresenta esse fator de risco (asma)
- cardiopatia: Paciente apresenta esse fator de risco (cardiopatia)

- diabetes: Paciente apresenta esse fator de risco (diabetes)
- doenca_hematologica: Paciente apresenta esse fator de risco (doença hematológica)
- doenca_hepatica: Paciente apresenta esse fator de risco (doença hepática)
- doenca_neurologica: Paciente apresenta esse fator de risco (doença neurológica)
- doenca_renal: Paciente apresenta esse fator de risco (doença renal)
- imunodepressao: Paciente apresenta esse fator de risco (imunodepressão)
- obesidade: Paciente apresenta esse fator de risco (obesidade)
- outros_fatores_de_risco: Paciente apresenta outros fatores de risco
- pneumopatia: Paciente apresenta esse fator de risco (pneumopatia)
- puerpera: Paciente se encontra nesse estágio (puérpera)
- sindrome_de_down: Paciente apresenta esse fator de risco (síndrome de down)

```
In [4]: doenca_pre.shape
```

Out[4]: (1102362, 20)

1ª Análise: Verificar se existe uma tendência de óbito entre pessoas do sexo feminino e masculino.

```
In [5]: from collections import Counter
```

Fazer contagem por categoria das variáveis

```
In [6]: Counter(doenca_pre.cs_sexo)
```

```
In [7]: doenca_pre['cs_sexo'].value_counts()
```

```
Out[7]: cs_sexo
FEMININO 589810
MASCULINO 509667
INDEFINIDO 2869
IGNORADO 16
Name: count, dtype: int64
```

Como queremos comparar o gênero feminino e masculino iremos desconsiderar as demais classes.

Valores Missing (NAN)

```
In [8]: doenca_pre.isnull().sum()
```

```
Out[8]: nome_munic
                                          0
          codigo_ibge
                                          0
                                       1478
          idade
          cs_sexo
                                          0
          diagnostico_covid19
                                          0
          data_inicio_sintomas
                                      18246
          obito
          asma
                                          0
          cardiopatia
                                          0
                                          0
          diabetes
          doenca_hematologica
                                          0
          doenca_hepatica
                                          0
          doenca_neurologica
                                          1
                                          1
          doenca_renal
          imunodepressao
                                          1
          obesidade
                                          1
          outros_fatores_de_risco
                                          1
          pneumopatia
          puerpera
                                          1
          sindrome_de_down
          dtype: int64
          Excluir valor NAN de cs_sexo
 In [9]:
         doenca_pre.dropna(subset=['cs_sexo'], inplace=True)
          Excluir Ignorado
In [10]:
          relacao = doenca_pre.loc[doenca_pre.cs_sexo != 'IGNORADO']
          Excluir Indefinido
In [11]: relacao = relacao.loc[relacao.cs_sexo != 'INDEFINIDO']
          Verificando as variaveis que ficaram na base de dados
In [12]:
         relacao['cs_sexo'].value_counts()
Out[12]: cs_sexo
          FEMININO
                       589810
                       509667
          MASCULINO
          Name: count, dtype: int64
          Verificando os dados via análise gráfica
In [13]: import plotly.express as px
          px.pie(relacao, names="cs_sexo")
```

Análisando a quantidade de óbitos

```
In [14]: relacao.obito.value_counts()
Out[14]: obito
    0    1067102
    1    32375
    Name: count, dtype: int64
In [15]: px.pie(relacao, names="obito")
```

Análise da classificação dos atributos

Verificando como o Python reconheceu as variáveis

n [16]:	relacao.dtypes	
ut[16]:	nome_munic	object
	codigo_ibge	int64
	idade	float64
	cs_sexo	object
	diagnostico_covid19	object
	data_inicio_sintomas	object
	obito	int64
	asma	object
	cardiopatia	object
	diabetes	object
	doenca_hematologica	object
	doenca_hepatica	object
	doenca_neurologica	object
	doenca_renal	object
	imunodepressao	object
	obesidade	object
	outros_fatores_de_risco	object
	pneumopatia	object
	<pre>puerpera sindrome_de_down</pre>	object object
	dtype: object	object

Renomeando(sobrescrevendo) a variável obito

```
In [17]:
          relacao["obito"] = relacao["obito"].replace({0:"nao", 1:"sim"})
In [18]:
          relacao.head()
Out[18]:
             nome_munic codigo_ibge idade
                                                cs_sexo diagnostico_covid19 data_inicio_sintom
          0
              Carapicuíba
                              3510609
                                         36.0 FEMININO
                                                               CONFIRMADO
                                                                                      2020-07-
          1
                              3524402
                                              FEMININO
                                                               CONFIRMADO
                                                                                      2020-07-
                   Jacareí
                                         54.0
                  Vargem
                                                               CONFIRMADO
          2
                  Grande
                              3556453
                                         33.0 FEMININO
                                                                                      2020-07-
                  Paulista
          3
                              3536505
                                         47.0 FEMININO
                                                                                      2021-01-2
                  Paulínia
                                                               CONFIRMADO
              Santo André
          4
                              3547809
                                        41.0 FEMININO
                                                               CONFIRMADO
                                                                                      2021-01-
In [19]:
          relacao.dtypes
Out[19]:
          nome_munic
                                       object
                                         int64
          codigo_ibge
          idade
                                      float64
          cs_sexo
                                       object
          diagnostico covid19
                                       object
          data_inicio_sintomas
                                       object
          obito
                                       object
          asma
                                       object
          cardiopatia
                                       object
          diabetes
                                       object
          doenca_hematologica
                                       object
          doenca hepatica
                                       object
                                       object
          doenca_neurologica
          doenca_renal
                                       object
          imunodepressao
                                       object
          obesidade
                                       object
          outros_fatores_de_risco
                                       object
          pneumopatia
                                       object
          puerpera
                                       object
          sindrome_de_down
                                       object
          dtype: object
In [20]:
          relacao.obito.value counts()
Out[20]:
          obito
          nao
                 1067102
          sim
                   32375
          Name: count, dtype: int64
          Transformando em variáveis categóricas
          Transformando as variaveis que estão como objetos como categorias.
          relacao['cs_sexo'] = relacao['cs_sexo'].astype('category')
In [21]:
```

```
In [22]: relacao['obito'] = relacao['obito'].astype('category')
```

Modelo 1: Uma variável independente

Queremos entender se a pessoa que foi diagnosticada com COVID, existe uma relação entre o gênero e o óbito.

Logo, teremos o primeiro modelo com uma única variável independente.

Pressupostos:

- Variável dependente binária (dicotômica) -> Variável resposta (Y) dicotômica: Óbito Sim ou Não
- Categorias mutuamente exclusivas a mesma pessoa n\u00e3o pode estar em duas situa\u00e7\u00f3es.
- Independência das observações (sem medidas repetidas) -> a mesma pessoa é analisada uma única vez.

```
In [23]: import statsmodels.api as sm
import statsmodels.formula.api as smf
```

Criação do modelo de Regressão logística

```
In [24]: modelo1 = smf.glm(formula='obito ~ cs_sexo', data=relacao, family = sm.families.
print(modelo1.summary())
```

Generalized Linear Model Regression Results

======================================									
======									
Dep. Variable: 1099477	['obito[nao]'	, 'obito[sir	m]']	No. Ob	servations:				
Model:			GLM	Df Res	siduals:				
1099475 Model Family:		Binor	mial	Df Model:					
1 Link Function:		Lo	ogit	Scale:					
1.0000 Method:							1 1		
498e+05		_	IRLS	LOG-LI	kelihood:		-1.4		
Date: 995e+05	9	Sat, 03 May 2	2025	Deviar	ice:		2.8		
Time:		21:18	3:17	Pearso	on chi2:				
1.10e+06 No. Iterations:			7	Pseudo	R-squ. (CS)	:			
0.001901 Covariance Type:		nonrol	oust						
=======	=========	========	=====	======		=======	====		
	coef	std err		Z	P> z	[0.025			
0.975]									
Intercept 3.785	3.7676	0.009	429	.907	0.000	3.750			
cs_sexo[T.MASCULING -0.497	0.5192	0.011	-45	.310	0.000	-0.542			
=======================================				======		=======	====		
======									

Deviance Residuals

Hipótese Testada:

- H_0 : O modelo ajusta bem os dados.
- H_a : O modelo não ajusta bem os dados.

Condição de Aceitação/Rejeição:

- A deviance total é comparada com uma distribuição qui-quadrado com n p graus de liberdade, onde n é o número de observações e p é o número de parâmetros no modelo.
- **Aceitação de H_0**: Se o valor p calculado a partir da deviance é maior que α , aceitamos H_0 e concluímos que o modelo ajusta bem os dados.
- **Rejeição de H_0**: Se o valor p é menor que lpha, rejeitamos H_0 e concluímos que o modelo não ajusta bem os dados.

```
In [25]: import statsmodels.formula.api as smf
import matplotlib.pyplot as plt
from scipy.stats import chi2, chisquare
```

```
from statsmodels.graphics.regressionplots import abline_plot
import scipy.stats as stats # Importando o módulo stats da biblioteca SciPy

# Teste de Deviance para os Resíduos
deviance_test_statistic = modelo1.deviance
deviance_df = modelo1.df_resid
deviance_p_value = 1 - stats.chi2.cdf(deviance_test_statistic, deviance_df)

print("Teste de Deviance para os Resíduos:")
print("Estatística de teste:", deviance_test_statistic)
print("Graus de liberdade:", deviance_df)
print("Valor p:", deviance_p_value)
```

Teste de Deviance para os Resíduos: Estatística de teste: 289952.06753829453 Graus de liberdade: 1099475 Valor p: 1.0

Testes de adequação do modelo

1. Pearson Chi-Square Test

Hipótese Testada:

- H_0 : O modelo ajusta bem os dados.
- H_a : O modelo não ajusta bem os dados.

Condição de Aceitação/Rejeição:

- Calcula-se a estatística do teste qui-quadrado de Pearson, que segue uma distribuição qui-quadrado com n-p graus de liberdade.
- **Aceitação de H_0**: Se o valor p é maior que lpha, aceitamos H_0 e concluímos que o modelo ajusta bem os dados.
- **Rejeição de H_0**: Se o valor p é menor que lpha, rejeitamos H_0 e concluímos que o modelo não ajusta bem os dados.

```
In [26]: # Obtendo os resíduos de Pearson
    residuos_pearson = modelo1.resid_pearson

# Teste de Pearson para os Resíduos
    pearson_test_statistic = np.sum(residuos_pearson**2)
    pearson_df = len(residuos_pearson) - modelo1.df_model - 1 # Graus de Liberdade
    pearson_p_value = 1 - stats.chi2.cdf(pearson_test_statistic, pearson_df)

print("\nTeste de Pearson para os Resíduos:")
    print("Estatística de teste:", pearson_test_statistic)
    print("Graus de liberdade:", pearson_df)
    print("Valor p:", pearson_p_value)
```

Teste de Pearson para os Resíduos:

Estatística de teste: 1099477.0000049898

Graus de liberdade: 1099475 Valor p: 0.49928258328631003

In [27]: modelo1.params

Out[27]: Intercept 3.767615 cs_sexo[T.MASCULINO] -0.519236

dtype: float64

Observação: como vimos, a regressão logística retornará a probabilidade de sucesso (1), logo neste caso estamos analisando a probabilidade de ocorrencia do óbito.

Porém iremos verificar se ralmente é isso que ocorre:

In [28]: modelo_prova = smf.glm(formula='cs_sexo ~ obito', data=relacao, family = sm.fami
print(modelo_prova.summary())

Generalized Linear Model Regression Results

.=========

Dep. Variable: ['cs_sexo[FEMININO]', 'cs_sexo[MASCULINO]'] No. Observation

s: 1099477

Model: GLM Df Residuals:

1099475

Model Family: Binomial Df Model:

1

Link Function: Logit Scale:

1.0000

Method: IRLS Log-Likelihood:

-7.5813e+05

Date: Sat, 03 May 2025 Deviance:

1.5163e+06

Time: 21:18:34 Pearson chi2:

1.10e+06

No. Iterations: 4 Pseudo R-squ. (C

S): 0.001901

Covariance Type: nonrobust

______ P>|z| coef std err [0.025 0.9751 Z ______ 0.000 0.1613 0.157 Intercept 0.002 83.042 0.165 obito[T.sim] -0.5192 0.011 -45.310 0.000 -0.542 -0.497 ______

Invertemos a variavel dependente com independente para verificar qual o Python está

selecionando no modelo

In [29]: print(modelo1.summary())

Generalized Linear Model Regression Results

=======================================	=========	========	=====	======	:=======	======	====
======							
Dep. Variable: 1099477	<pre>['obito[nao]', 'obito[sim]']</pre>			No. Observations:			
Model:	GLM			Df Residuals:			
1099475							
Model Family:		Bino	mial	Df Mod	lel:		
1							
Link Function:		L	ogit	Scale:			
1.0000							
Method:	IRLS			Log-Likelihood:			-1.4
498e+05							
Date:	9	at, 03 May	2025	Devian	ice:		2.8
995e+05							
Time:		21:1	8:35	Pearso	n chi2:		
1.10e+06							
No. Iterations:			7	Pseudo	R-squ. (CS)	:	
0.001901							
Covariance Type:		nonro	bust				
=======================================	========	========	=====	======	========	======	====
======					5 1 1	FO 005	
0.0753	coet	std err		Z	P> z	[0.025	
0.975]							
Intercept	2 7676	0.009	420	.907	0.000	3.750	
3.785	3.7070	0.009	423	. 507	0.000	3.730	
cs sexo[T.MASCULINC	1] _0 5102	0 011	_15	310	0 000	-0.542	
-0.497	-0.5132	0.011	-43	. 710	0.000	-0.542	
-0.437					.========		====
======							

Como conseguir tirar alguma informação, interpretação do modelo?

Iremos utilizar o que chamamos como razão de chance com Intervalo de confiança de 95%:

• exponencial do coeficiente.

```
In [30]: razao = np.exp(modelo1.params[1])
    razao
```

Out[30]: 0.5949749678615635

Considerando o Odds Ratio, podemos dizer que a chance de um homem vir a falecer é 0.59 menor comparada a uma mulher.

ROC Curve and AUC

Avalia a capacidade do modelo de discriminar entre as classes.

Curva ROC: Traça a taxa de verdadeiros positivos (sensibilidade) contra a taxa de falsos positivos (1 - especificidade) para vários limiares de classificação.

AUC (Área Sob a Curva): Um valor próximo de 1 indica excelente discriminação, enquanto um valor próximo de 0.5 indica discriminação aleatória. -

Avaliação do Modelo: Um modelo com AUC maior é considerado melhor em discriminar entre as classes.

```
In [31]: from sklearn.metrics import roc_curve, auc

y = relacao["obito"].replace({"nao":0, "sim":1})

# ROC Curve
fpr, tpr, _ = roc_curve(y, modelo1.fittedvalues)
roc_auc = auc(fpr, tpr)

plt.figure()
plt.plot(fpr, tpr, color='blue', lw=2, label='ROC curve (area = %0.2f)' % roc_au
plt.plot([0, 1], [0, 1], color='red', lw=2, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curve')
plt.legend(loc="lower right")
plt.show()
```



```
In [32]: # Residuos deviance
    residuos_deviance = modelo1.resid_deviance

# Residuos de Pearson
    residuos_pearson = modelo1.resid_pearson
```

```
import matplotlib.pyplot as plt
import statsmodels.api as sm

# Resíduos vs. valores ajustados
valores_ajustados = modelo1.fittedvalues
plt.scatter(valores_ajustados, residuos_deviance, alpha=0.7)
plt.axhline(0, color='red', linestyle='--')
plt.title("Resíduos Deviance vs. Valores Ajustados")
plt.xlabel("Valores Ajustados")
plt.ylabel("Resíduos Deviance")
plt.show()
```

Resíduos Deviance vs. Valores Ajustados


```
In [33]: plt.scatter(range(len(residuos_deviance)), residuos_deviance, alpha=0.7)
    plt.axhline(0, color='red', linestyle='--')
    plt.xlabel('Índice')
    plt.ylabel('Resíduos de Deviance')
    plt.title('Resíduos de Deviance vs. Índice')
```

Out[33]: Text(0.5, 1.0, 'Resíduos de Deviance vs. Índice')

Resíduos de Deviance vs. Índice

Modelo 2: Mais de uma variável independente

Agora queremos modelar o óbito relacionado a pessoa ter diabetes e seu gênero.

```
import statsmodels.api as sm
In [34]:
         import statsmodels.formula.api as smf
In [35]:
         relacao['diabetes'].value_counts()
Out[35]:
          diabetes
          IGNORADO
                      1003275
          SIM
                        67108
          NÃO
                        29094
          Name: count, dtype: int64
In [36]: import plotly.express as px
         px.pie(relacao, names="diabetes")
```

Observa-se um número alto de ignorado. Nestes casos devemos tomar muito cuidado, pois temos muitos dados faltantes.

Sempre é necessário avaliar se ao excluir esses dados massivos não iremos alterar a proporção do conjunto de dados.

```
In [37]: relacao2 = relacao.loc[relacao.diabetes != 'IGNORADO']
In [38]: px.pie(relacao2, names="diabetes")
```

Analisando a proporção do óbito **antes** da exclusão de ignorados em diabetes

In [39]: px.pie(relacao, names="obito")

Analisando a proporção do óbito **depois** da exclusão de ignorados em diabetes

```
In [40]: # Depois da exclusão de ignorados em diabetes
    px.pie(relacao2, names="obito")
```

```
In [41]:
         relacao2.dtypes
Out[41]: nome_munic
                                        object
                                         int64
          codigo_ibge
          idade
                                       float64
          cs_sexo
                                      category
                                        object
          diagnostico_covid19
          data_inicio_sintomas
                                        object
          obito
                                      category
                                        object
          asma
          cardiopatia
                                        object
          diabetes
                                        object
          doenca_hematologica
                                        object
                                        object
          doenca hepatica
                                        object
          doenca_neurologica
          doenca_renal
                                        object
          imunodepressao
                                        object
                                        object
          obesidade
          outros_fatores_de_risco
                                        object
          pneumopatia
                                        object
          puerpera
                                        object
          sindrome\_de\_down
                                        object
          dtype: object
In [42]: relacao2['diabetes']
```

```
Out[42]: 11
                     SIM
          13
                     NÃO
          18
                     SIM
          39
                     SIM
          106
                     SIM
          1102303
                     SIM
                     NÃO
          1102313
                     NÃO
          1102317
                     SIM
          1102318
          1102361
                     SIM
          Name: diabetes, Length: 96202, dtype: object
In [43]: relacao2['diabetes'] = relacao2['diabetes'].astype('category')
         #relacao2.loc[:, 'diabetes'] = relacao2['diabetes'].astype('category').copy()
In [44]:
         relacao2.dtypes
Out[44]: nome munic
                                        object
                                         int64
          codigo_ibge
                                       float64
          idade
          cs_sexo
                                      category
                                        object
          diagnostico_covid19
          data_inicio_sintomas
                                        object
          obito
                                      category
          asma
                                        object
          cardiopatia
                                        object
          diabetes
                                     category
          doenca_hematologica
                                        object
          doenca_hepatica
                                        object
          doenca_neurologica
                                        object
          doenca_renal
                                        object
          imunodepressao
                                        object
                                        object
          obesidade
          outros_fatores_de_risco
                                        object
          pneumopatia
                                        object
                                        object
          puerpera
          sindrome de down
                                        object
          dtype: object
```

Criação do modelo 2

Análise do modelo:

- Verificar a significancia dos coeficintes:
 - Estatisticamente significativo: p <= 0,05
 - Estatisticamente não é significativo: p > 0,05
- Análise da Ausência de outliers e pontos de alavancagem
 - Deve estar entre -3 e 3
- Ausência de Multicolinearidade entre as variáveis independentes

```
In [45]: modelo2 = smf.glm(formula='obito ~ cs_sexo + diabetes', data=relacao2, family = print(modelo2.summary())
```

Generalized Linear Model Regression Results

```
______
      Dep. Variable: ['obito[nao]', 'obito[sim]'] No. Observations:
      96202
      Model:
                                       GLM Df Residuals:
      96199
      Model Family:
                                   Binomial Df Model:
      Link Function:
                                     Logit Scale:
      1.0000
      Method:
                                      IRLS Log-Likelihood:
      -48162.
      Date:
                             Sat, 03 May 2025 Deviance:
      96323.
      Time:
                                   21:20:07 Pearson chi2:
      9.60e+04
      No. Iterations:
                                        5 Pseudo R-squ. (CS):
      0.03069
      Covariance Type:
                                  nonrobust
      ______
      ======
                         coef std err z P>|z| [0.025]
      0.975]
                  0.9563 0.016 60.604 0.000 0.925
      Intercept
      0.987
      -0.293
                                        50.074
                       0.8201
                                0.016
                                                 0.000
                                                          0.788
      diabetes[T.SIM]
      0.852
In [46]: # Resíduos deviance
       residuos_deviance = modelo2.resid_deviance
       # Resíduos de Pearson
       residuos_pearson = modelo2.resid_pearson
       # Resíduos vs. valores ajustados
       valores_ajustados = modelo2.fittedvalues
       plt.scatter(valores_ajustados, residuos_deviance, alpha=0.7)
       plt.axhline(0, color='red', linestyle='--')
       plt.title("Resíduos Deviance vs. Valores Ajustados")
       plt.xlabel("Valores Ajustados")
       plt.ylabel("Resíduos Deviance")
       plt.show()
```



```
In [47]: plt.scatter(range(len(residuos_deviance)), residuos_deviance, alpha=0.7)
    plt.axhline(0, color='red', linestyle='--')
    plt.xlabel('indice')
    plt.ylabel('Residuos de Deviance')
    plt.title('Residuos de Deviance vs. indice')
```

Out[47]: Text(0.5, 1.0, 'Resíduos de Deviance vs. Índice')

Índice

Deviance Residuals

Hipótese Testada:

- H_0 : O modelo ajusta bem os dados.
- H_a : O modelo não ajusta bem os dados.

Condição de Aceitação/Rejeição:

- A deviance total é comparada com uma distribuição qui-quadrado com n p graus de liberdade, onde n é o número de observações e p é o número de parâmetros no modelo.
- **Aceitação de H_0**: Se o valor p calculado a partir da deviance é maior que α , aceitamos H_0 e concluímos que o modelo ajusta bem os dados.
- **Rejeição de H_0**: Se o valor p é menor que α , rejeitamos H_0 e concluímos que o modelo não ajusta bem os dados.

```
In [48]: # Teste de Deviance para os Resíduos
    deviance_test_statistic = modelo2.deviance
    deviance_df = modelo2.df_resid
    deviance_p_value = 1 - stats.chi2.cdf(deviance_test_statistic, deviance_df)

print("Teste de Deviance para os Resíduos:")
    print("Estatística de teste:", deviance_test_statistic)
    print("Graus de liberdade:", deviance_df)
    print("Valor p:", deviance_p_value)
```

```
Teste de Deviance para os Resíduos:
Estatística de teste: 96323.38508958579
Graus de liberdade: 96199
Valor p: 0.387832545997736
```

Pearson Chi-Square Test

Hipótese Testada:

- H_0 : O modelo ajusta bem os dados.
- H_a : O modelo não ajusta bem os dados.

Condição de Aceitação/Rejeição:

- Calcula-se a estatística do teste qui-quadrado de Pearson, que segue uma distribuição qui-quadrado com n-p graus de liberdade.
- **Aceitação de H_0**: Se o valor p é maior que α , aceitamos H_0 e concluímos que o modelo ajusta bem os dados.
- **Rejeição de H_0**: Se o valor p é menor que lpha, rejeitamos H_0 e concluímos que o modelo não ajusta bem os dados.

```
In [49]: # Obtendo os resíduos de Pearson
         residuos_pearson = modelo2.resid_pearson
         # Teste de Pearson para os Resíduos
         pearson_test_statistic = np.sum(residuos_pearson**2)
         pearson_df = len(residuos_pearson) - modelo2.df_model - 1 # Graus de Liberdade
         pearson_p_value = 1 - stats.chi2.cdf(pearson_test_statistic, pearson_df)
         print("\nTeste de Pearson para os Resíduos:")
         print("Estatística de teste:", pearson_test_statistic)
         print("Graus de liberdade:", pearson_df)
         print("Valor p:", pearson_p_value)
        Teste de Pearson para os Resíduos:
        Estatística de teste: 96035.52099281568
        Graus de liberdade: 96199
        Valor p: 0.6448276665303063
In [50]: modelo2.params
Out[50]: Intercept
                                  0.956310
         cs sexo[T.MASCULINO]
                                 -0.324520
         diabetes[T.SIM]
                                  0.820126
         dtype: float64
In [51]: np.exp(modelo2.params[2])
Out[51]: 2.2707855496469618
```

Comparação de modelos

```
In [52]: # Calcular a diferença nos log-likelihoods
diff_ll = modelo2.llf - modelo1.llf

# Calcular o número de graus de liberdade (número de parâmetros adicionais em mo
df = modelo2.df_model - modelo1.df_model

# Realizar o teste de razão de verossimilhança
p_value = 1 - stats.chi2.cdf(diff_ll, df)

# Imprimir o resultado do teste
print("Teste de Razão de Verossimilhança:")
print("Estatística de teste:", diff_ll)
print("Graus de liberdade:", df)
print("Valor p:", p_value)
```

Teste de Razão de Verossimilhança: Estatística de teste: 96814.34122435428 Graus de liberdade: 1 Valor p: 0.0

ROC Curve and AUC

Avalia a capacidade do modelo de discriminar entre as classes.

Curva ROC: Traça a taxa de verdadeiros positivos (sensibilidade) contra a taxa de falsos positivos (1 - especificidade) para vários limiares de classificação.

AUC (Área Sob a Curva): Um valor próximo de 1 indica excelente discriminação, enquanto um valor próximo de 0.5 indica discriminação aleatória. -

Avaliação do Modelo: Um modelo com AUC maior é considerado melhor em discriminar entre as classes.

```
In [53]: from sklearn.metrics import roc_curve, auc

y = relacao2["obito"].replace({"nao":0, "sim":1})

# ROC Curve
fpr, tpr, _ = roc_curve(y, modelo2.fittedvalues)
roc_auc = auc(fpr, tpr)

plt.figure()
plt.plot(fpr, tpr, color='blue', lw=2, label='ROC curve (area = %0.2f)' % roc_au
plt.plot([0, 1], [0, 1], color='red', lw=2, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curve')
plt.legend(loc="lower right")
plt.show()
```


Modelo 3: Variável independente numérica

Relação da pessoa ir a óbito com sua idade Vamos fazer uma análise para a cidade de Santos e testar em outra cidade

In [54]:	relacao3 = doenca_pre.loc[doenca_pre.nome_munic == 'Santos']									
In [55]:	relacao3.head()									
Out[55]:		nome_munic	codigo_ibge	idade	cs_sexo	diagnostico_covid19	data_inicio_sin			
	43	Santos	3548500	42.0	MASCULINO	CONFIRMADO	2020			
	47	Santos	3548500	43.0	MASCULINO	CONFIRMADO	2020			
	53	Santos	3548500	51.0	MASCULINO	CONFIRMADO	2020			
	206	Santos	3548500	23.0	FEMININO	CONFIRMADO	2020			
	267	Santos	3548500	46.0	MASCULINO	CONFIRMADO	2020			
	4						>			
	Verificando as dimensões da nossa tabela de dados									

vermeando as annensoes da nossa tabela de dado.

In [56]: relacao3.shape

Out[56]: (21728, 20)

Verificar como reconheceu a idade

```
relacao3.dtypes
In [57]:
Out[57]: nome_munic
                                       object
          codigo_ibge
                                        int64
          idade
                                      float64
          cs_sexo
                                       object
          diagnostico_covid19
                                       object
          data_inicio_sintomas
                                       object
          obito
                                        int64
          asma
                                       object
          cardiopatia
                                       object
          diabetes
                                       object
          doenca_hematologica
                                       object
          doenca_hepatica
                                       object
          doenca_neurologica
                                       object
          doenca_renal
                                       object
          imunodepressao
                                       object
          obesidade
                                       object
          outros_fatores_de_risco
                                       object
                                       object
          pneumopatia
          puerpera
                                       object
          sindrome_de_down
                                       object
          dtype: object
          Valores Missing (NAN)
         relacao3.isnull().sum()
In [58]:
                                        0
Out[58]: nome_munic
          codigo_ibge
                                        0
          idade
                                       11
          cs sexo
                                        0
                                        0
          diagnostico_covid19
          data_inicio_sintomas
                                      145
          obito
                                        0
          asma
                                        0
          cardiopatia
                                        0
                                        0
          diabetes
          doenca_hematologica
                                        0
          doenca_hepatica
                                        0
          doenca neurologica
          doenca_renal
                                        0
          imunodepressao
                                        0
          obesidade
                                        0
          outros_fatores_de_risco
                                        0
                                        0
          pneumopatia
          puerpera
                                        0
          sindrome de down
                                        0
          dtype: int64
          Excluir valores missing
In [59]:
         relacao3.dropna(subset=['idade'], inplace=True)
          Verificando a relação entre idade e obito com um gráfico de dispersão
In [60]:
          import matplotlib.pyplot as plt
          plt.scatter(relacao3.cs_sexo,relacao3.obito)
```

```
plt.xlabel('IDADE')
plt.ylabel('ÓBITO')
plt.grid(False)
plt.show()
```


Correlação

Criação do modelo 3 com StatsModels

```
In [62]: import statsmodels.api as sm
import statsmodels.formula.api as smf

In [63]: modelo3 = smf.glm(formula='obito ~ idade', data=relacao3, family = sm.families.B
print(modelo3.summary())
```

Generalized Linear Model Regression Results

```
______
                                      21717
Dep. Variable:
                obito No. Observations:
Model:
                 GLM Df Residuals:
                                      21715
              Binomial Df Model:
Model Family:
                                        1
Link Function:
                Logit Scale:
                                     1.0000
                 IRLS Log-Likelihood:
Method:
                                     -1799.5
         Sat, 03 May 2025 Deviance:
21:20:18 Pearson chi2:
Date:
                                     3599.0
Time:
                                    1.81e+04
                  8 Pseudo R-squ. (CS):
No. Iterations:
                                     0.07611
          nonrobust
Covariance Type:
______
       coef std err z P>|z| [0.025 0.975]
______
Intercept -10.2259 0.243 -42.104 0.000 -10.702
                                     -9.750
idade 0.1114
             0.003
                  33.260 0.000
                               0.105
                                      0.118
______
```

```
In [64]: # Residuos deviance
    residuos_deviance = modelo3.resid_deviance

# Residuos de Pearson
    residuos_pearson = modelo3.resid_pearson

# Residuos vs. valores ajustados
    valores_ajustados = modelo3.fittedvalues
    plt.scatter(valores_ajustados, residuos_deviance, alpha=0.7)
    plt.axhline(0, color='red', linestyle='--')
    plt.title("Residuos Deviance vs. Valores Ajustados")
    plt.xlabel("Valores Ajustados")
    plt.ylabel("Residuos Deviance")
    plt.show()
```



```
In [65]: plt.scatter(range(len(residuos_deviance)), residuos_deviance, alpha=0.7)
    plt.axhline(0, color='red', linestyle='--')
    plt.xlabel('indice')
    plt.ylabel('Residuos de Deviance')
    plt.title('Residuos de Deviance vs. indice')
```

Out[65]: Text(0.5, 1.0, 'Resíduos de Deviance vs. Índice')

Análise do modelo:

- Verificar a significancia dos coeficintes (Teste de Wald):
 - Estatisticamente significativo: p <= 0,05
 - Estatisticamente não é significativo: p > 0,05
- Análise de Resíduos

Deviance Residuals

Hipótese Testada:

- H_0 : O modelo ajusta bem os dados.
- H_a : O modelo não ajusta bem os dados.

Condição de Aceitação/Rejeição:

- A deviance total é comparada com uma distribuição qui-quadrado com n p graus de liberdade, onde n é o número de observações e p é o número de parâmetros no modelo.
- **Aceitação de** H_0 : Se o valor p calculado a partir da deviance é maior que α , aceitamos H_0 e concluímos que o modelo ajusta bem os dados.
- **Rejeição de H_0**: Se o valor p é menor que α , rejeitamos H_0 e concluímos que o modelo não ajusta bem os dados.

```
In [66]: deviance_test_statistic = modelo3.deviance
    deviance_df = modelo3.df_resid
    deviance_p_value = 1 - stats.chi2.cdf(deviance_test_statistic, deviance_df)

print("Teste de Deviance para os Resíduos:")
    print("Estatística de teste:", deviance_test_statistic)
    print("Graus de liberdade:", deviance_df)
    print("Valor p:", deviance_p_value)
```

Teste de Deviance para os Resíduos: Estatística de teste: 3598.977837680794 Graus de liberdade: 21715 Valor p: 1.0

Pearson Chi-Square Test

Hipótese Testada:

- H_0 : O modelo ajusta bem os dados.
- H_a : O modelo não ajusta bem os dados.

Condição de Aceitação/Rejeição:

- Calcula-se a estatística do teste qui-quadrado de Pearson, que segue uma distribuição qui-quadrado com n-p graus de liberdade.
- **Aceitação de H_0**: Se o valor p é maior que lpha, aceitamos H_0 e concluímos que o modelo ajusta bem os dados.
- **Rejeição de H_0**: Se o valor p é menor que α , rejeitamos H_0 e concluímos que o modelo não ajusta bem os dados.

```
In [67]: # Obtendo os resíduos de Pearson
    residuos_pearson = modelo3.resid_pearson

# Teste de Pearson para os Resíduos
    pearson_test_statistic = np.sum(residuos_pearson**2)
    pearson_df = len(residuos_pearson) - modelo3.df_model - 1 # Graus de Liberdade
    pearson_p_value = 1 - stats.chi2.cdf(pearson_test_statistic, pearson_df)

    print("\nTeste de Pearson para os Resíduos:")
    print("Estatística de teste:", pearson_test_statistic)
    print("Graus de liberdade:", pearson_df)
    print("Valor p:", pearson_p_value)
```

Teste de Pearson para os Resíduos: Estatística de teste: 18102.517494491673 Graus de liberdade: 21715 Valor p: 1.0

Interpretação dos coeficientes

ROC Curve and AUC

Avalia a capacidade do modelo de discriminar entre as classes.

Curva ROC: Traça a taxa de verdadeiros positivos (sensibilidade) contra a taxa de falsos positivos (1 - especificidade) para vários limiares de classificação.

AUC (Área Sob a Curva): Um valor próximo de 1 indica excelente discriminação, enquanto um valor próximo de 0.5 indica discriminação aleatória. -

Avaliação do Modelo: Um modelo com AUC maior é considerado melhor em discriminar entre as classes.

```
In [72]: y = relacao3["obito"].replace({"nao":0, "sim":1})
# ROC Curve
fpr, tpr, _ = roc_curve(y, modelo3.fittedvalues)
roc_auc = auc(fpr, tpr)
```

```
plt.figure()
plt.plot(fpr, tpr, color='blue', lw=2, label='ROC curve (area = %0.2f)' % roc_au
plt.plot([0, 1], [0, 1], color='red', lw=2, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curve')
plt.legend(loc="lower right")
plt.show()
```


Criação do modelo 3 com Sklearn

In [73]:	<pre>from sklearn.linear_model import LogisticRegression</pre>									
In [74]:	relacao3.head()									
Out[74]:		nome_munic	codigo_ibge	idade	cs_sexo	diagnostico_covid19	data_inicio_sin			
	43	Santos	3548500	42.0	MASCULINO	CONFIRMADO	2020			
	47	Santos	3548500	43.0	MASCULINO	CONFIRMADO	2020			
	53	Santos	3548500	51.0	MASCULINO	CONFIRMADO	2020			
	206	Santos	3548500	23.0	FEMININO	CONFIRMADO	2020			
	267	Santos	3548500	46.0	MASCULINO	CONFIRMADO	2020			
	4						•			

Existe uma diferença na estruturação das informações nas bibliotecas Sklearn e Statsmodels.

No Statsmodels colocamos a formula : $Y \sim X$ Já no Sklearn temos que criar as variáveis independentes e dependentes.

e neste caso ainda temos que realizar um transformação na variável X, para matriz.

```
In [75]: x = relacao3.iloc[:, 2].values
          y = relacao3.iloc[:, 6].values
In [76]: x
Out[76]: array([42., 43., 51., ..., 36., 75., 37.])
In [77]: y
Out[77]: array([0, 0, 0, ..., 0, 0, 0], dtype=int64)
          Transformando X para matriz :
In [78]: x = x.reshape(-1,1)
Out[78]: array([[42.],
                 [43.],
                 [51.],
                 . . . ,
                 [36.],
                 [75.],
                 [37.]])
          Ajustando o modelo
In [79]: modelo3s = LogisticRegression()
         modelo3s.fit(x, y)
Out[79]: ▼ LogisticRegression
          LogisticRegression()
          Verificando o coeficiente do modelo
In [80]: modelo3s.coef_
Out[80]: array([[0.11138135]])
          Verificando o intercepto
In [81]: modelo3s.intercept_
Out[81]: array([-10.22562903])
```

Razão de chance com Intervalo de confiança de 95%

CONCLUSÃO:

Para cada ano mais velho, o indivíduo aumenta em 1,12 a chance de ir a óbito

Fazendo o gráfico com a função sigmoide

```
In [84]: plt.scatter(x, y)
# Geração de novos dados para gerar a função sigmoide
x_teste = np.linspace(0, 120, 100)

def model(w): # função sigmoide
    return 1 / (1 + np.exp(-w))
# Geração de previsões (variável r) e visualização dos resultados
previsao = model(x_teste * modelo3s.coef_ + modelo3s.intercept_).ravel()
plt.plot(x_teste, previsao, color = 'red');
```

