

भारतीय प्रौद्योगिकी संस्थान पटना Indian Institute of Technology Patna

Navin Government Polytechnic Campus, Patliputra Colony, Patna 800 013

Basic Electrical Science-EE-101 Time: 3 hour, FM=50

Dasic Electrical Science-EE-101 Time: 5 hour, FM-50	
Q-1 answers all parts of the questions.	5
 (a) Represent (123.4)₈ into decimal number and binary number equivalent. (b) Find the value of (1000001-0110111) and (1111101+0110111) (c) Convert (0.513)₁₀ into octal. (d) Get the result in digital form (-15+7) and (-19-17) (e) Defin importance. 	ne gray codes and its
Q2 (a) Show maxterms and minterms for three binary variables by a table and verify by an exa DeMorgans theorems.(b) Simplify the following Boolean expressions to a minimum number of literals	ample that it follows 2 2
(i) ABC+A B+ABC AC (ii) (x+y+z)+(x+z) (e) converts each of the following functions into sum of product and product of sum form (i) (AB+C)(B+C D) (ii) x+x(x+y)(y+z)	2
Q3 Solve the following Boolean functions using Karnaugh maps. (i) $F(A,B,C,D)=\Sigma(4,5,6,7,15)$ (ii) $F(A,B,C,D)=\Sigma(2,3,6,10,12,13,14,15)$; (iii) $F(A,B,C,D)=\Sigma(2,3,6,10,12,13,14,15)$; (iv) $F(A,B,C,D)=\Sigma(2,3,6,10,12,13,14,15)$;	4 D
Q4 Write characteristic table of JK and D flip flops and design asynchronous up counter and synchronic using any 3 flip flops.	ronous down counter 5
Q5 A speaker of 9 Ω is connected to 10 V source via an ideal transformer. The internal resistant Determine the turns ratio of transformer for which the speaker receives maximum power.	ce of source is 1 Ω .
Q6 A 5 kVA, 200/20V (rms) single phase transformer connected to a 200 V (rms) single phase su of $1\angle45^{\circ}$ A (rms). Determine the load impedance Z_2 connected to the secondary of the transformer.	
Q7 A single phase 100 kVA, 1000/100 V transformer gave the following test results: Open-circuit test (HV side open) 100 V, 6.0 A, 400 W Short-circuit test (LV side shorted) 50 V, 100 A, 1800 W Derive an approximate equivalent circuit referred to HV side. Q8 for the given instrumentation amplifier, using two ideal OP-AMPs, verify the	6 following equation.
$v_{0} = \left[1 + \frac{R_{2}}{R_{1}} + \frac{2R_{2}}{R_{3}}\right] (v_{2} - v_{1}) R_{3}$ $R_{2} \qquad R_{1} \qquad R_{2}$	6

Q.-9 Calculate the input impedance, output impedance, voltage gain and current gain for the given circuit in case of BJT AC analysis.

Q.-10(a) Draw the v_0 for the given network where input is indicated,

2+3+3

(b) The Zener diode V_{Z1} given in figure has saturation current of 20 micro ampere and reverse breakdown voltage of 100V where as the corresponding values for diode V_{Z2} are 40 micro ampere and 40V. Determine the current through the circuit.

(c) The BJT in the given circuit has maximum I_{co} =2micro ampere and current amplification factor β_{min} =50, and β_{max} =150. Obtain the value of resistor that can prevent collector voltage falling below 8V.

