Regular Exprossions

Definition 1.11 Let Σ be an alphabet. A **regular expression** (RE) R over the alphabet Σ describes a language L(R) over Σ . It is inductively defined such that R is RE if R is

- 1. a for some $a \in \Sigma$, with $L(a) = \{a\}$
- 2. ε , with $L(\varepsilon) = \{\varepsilon\}$
- 3. \emptyset , with $L(\emptyset) = \emptyset$
- 4. $(R_1 \cup R_2)$ $(R_1,\,R_2$ REs), with $L(R_1 \cup R_2) = L(R_1) \cup L(R_2)$
- 5. $(R_1 \circ R_2)$ $(R_1, R_2 \text{ REs})$, with $L(R_1 \circ R_2) = L(R_1) \circ L(R_2)$
- 6. (R_1^*) , $(R_1 \text{ RE})$, with $L(R_1^*) = L(R_1)^*$

Parentheses in an RE can be omitted. Then, evaluation is done in the precedence order *, \circ , \cup . If clear from the context, the concatenation operator \circ does not have to be written down. Moreover, " $R_1 = R_0$ " means $L(R_1) = L(R_0)$.

$$(0 \cup 1)0^*$$

 $L(0^*10^*) = \left\{ w \in \Sigma^* | w \text{ has exactly a single } 1 \right\}.$

Theorem 1.5 A language is regular if and only if some regular expression describes it.

1 Reading and understanding regular expressions

Let the alphabet $\Sigma = \{0,1\}$ be given. We consider the regular expressions

- $R_1 = \Sigma \Sigma^*$, and
- $R_2 = 0\Sigma^*0 \cup 1\Sigma^*1 \cup 0 \cup 1$.
- 1. Are the strings 101, 100, ε contained in the languages described by these regular expressions?
- Give the languages described by these regular expressions.

1. 1)
$$R_3$$
: 107 \in $L(R_3)$ \ 100 \in $L(R_3)$ \ \in \notin $L(R_4)$ \ 00 \in $L(R_2)$?

2. 1) $L(R_1) = \{ w \in \mathbb{Z}^4 \mid w \text{ string of Length of Least } 1 \}$

$$L(R_2) = \{ w \in \mathbb{Z}^6 \mid w \text{ string of Length of Least } 2 \}$$

$$L(R_2) = \{ w \in \mathbb{Z}^6 \mid w \text{ starts and ends with } 2 \}$$

the sum osymbol }
$$L(\phi \circ R) = \phi \qquad \qquad l_1 \circ l_2 = \{w_1 w_2 \mid w_1 < l_1 \text{ and } w_2 \in l_2\}$$

$$L(\varepsilon \circ R)$$

Lemma 1.1 If a language is described by a regular expression, then it is regular.

Definition 1.11 Let Σ be an alphabet. A **regular expression** (RE) R over the alphabet Σ describes a language L(R) over Σ . It is inductively defined such that R is RE if R is

- 1. a for some $a \in \Sigma$, with $L(a) = \{a\}$
- 2. ε , with $L(\varepsilon) = \{\varepsilon\}$
- ∅, with L(∅) = ∅
- 4. $(R_1 \cup R_2)$ $(R_1, R_2 \text{ REs})$, with $L(R_1 \cup R_2) = L(R_1) \cup L(R_2)$
- 5. $(R_1 \circ R_2)$ $(R_1, R_2 \text{ REs})$, with $L(R_1 \circ R_2) = L(R_1) \circ L(R_2)$
- 6. (R_1^*) , $(R_1 \text{ RE})$, with $L(R_1^*) = L(R_1)^*$

Parentheses in an RE can be omitted. Then, evaluation is done in the precedence order *, \circ , \cup . If clear from the context, the concatenation operator \circ does not have to be written down. Moreover, " $R_1 = R_2$ " means $L(R_1) = L(R_2)$.

2 From RE to NFA

You are given the following regular expression over $\Sigma \equiv \{0,1\}$.

$$R = 1^* \cup 00$$

Use exactly the construction of the proof for Lemma 1.1 to build an NFA that recognizes L(R).

$\textbf{Lemma 1.2} \quad \text{If a language is regular, then it is decribed by a regular *\texttt{rexpression}.$

Definition 1.12 A generalized nondeterministic finite automaton (GNFA), $(O, \sum_{i=1}^{n} \delta_{i} a_{i} + a_{i} a_{i})$ is a 5 tuple with

 $(Q, \Sigma, \delta, q_{start}, q_{accept})$, is a 5-tuple, with

- 1. ${\cal Q}$ is the finite set of states,
- 2. Σ is the finite input alphabet,
- 3. $\delta: Q \times Q \to \mathcal{R}$ (\mathcal{R} : set of all REs over Σ), where $\delta(q, q_{start})$ and $\delta(q_{accept}, q)$ are undefined for all $q \in Q$.
- 4. $q_{start} \in Q \setminus \{q_{accept}\}\$ is the start state, and
- 5. $q_{accept} \in Q \setminus \{q_{start}\}$ is the accept state.

Definition 1.13 A GNFA $G = (Q, \Sigma, \delta, q_{start}, q_{accept})$ accepts a string $w \in \Sigma^*$, if there exists a decomposition $w = w_1 w_2 \cdots w_k$ ($w_i \in \Sigma^*$) and a sequence of states q_0, q_1, \ldots, q_k such that

- 1. $q_0 = q_{start}$ is the start state
- 2. $q_k = q_{accept}$ is the accept state, and
- 3. for each i = 1, ..., k we have $w_i \in L(R_i)$, where $R_i = \delta(q_{i-1}, q_i)$.

Otherwise w is rejected. L(G) is the language recognized by G.

Lemma 1.3 For each FA M, there is a GNFA G, such that L(G) = L(M).

3 From FA to RE

Let the FA M be given by its STD:

- 1. Convert M to a GNFA G with L(G) = L(M) using exactly the construction in the proof of Lemma 1.3
- 2. Convert G to a RE R with L(R) = L(G) using exactly the construction in the proof of Lemma 1.4.

Lemma 1.4 For each GNFA G, there is a regular expression R, such L(R) = L(G).


```
1: function CONVERT(G = (Q, \Sigma, \delta, q_{start}, q_{accent}))
           k \leftarrow |Q|
           if k=2 then
                return \delta(q_{start}, q_{accept})
           else
                if k > 2 then:
                     select q_{rip} \in Q \setminus \{q_{start}, q_{accept}\}\
                     Q' \leftarrow Q \setminus \{q_{rip}\}
                     for all q_i \in Q' \setminus \{q_{accept}\}, q_i \in Q' \setminus \{q_{start}\} do
                           R_1 \leftarrow \delta(q_i, q_{rip})
10:
                           R_2 \leftarrow \delta(q_{rin}, q_{rin})
11:
                          R_3 \leftarrow \delta(q_{rip}, q_i)
12:
                           R_4 \leftarrow \delta(q_i, q_j)
13:
                          \delta'(q_i, q_i) \leftarrow (R_1)(R_2)^*(R_3) \cup (R_4)
14:
                     end for
15:
                     G' \leftarrow (Q', \Sigma, \delta', q_{start}, q_{accent})
16:
                     return CONVERT(G')
17:
18:
                end if
           end if
19:
20: end function
```

3 From FA to RE (cont.)

2. Convert G to a RE R with L(R) = L(G) using exactly the construction in the proof of Lemma 1.4.

{0"1" | n 3,1} = L not regular L(00*11*) } (a = a) V - . -