Introduction (recap)

Ádám T. Kocsis (adam.kocsis@fau.de)

Schedule

	Monday	Tuesday	Wednesday	Thursday	Friday
Instructor	Adam	Sebastian & Chris	Adam	Adam	Adam
Where	Henkestr.	Tennenlohe	Henkestr.	Henkestr.	Henkestr.
Morning	9:00-12:00	9:00-12:00	9:00 – 10:45 11:00 – 12:30 Msc Welcome event @ GeoZentrum!	9:00-12:00	9:00-12:00
Afternoon	13:00-15:00 15:15-16:00: Paleo MSc	13:00-16:00	13:15-17:00	13:00-16:00	13:00-16:00

https://tinyurl.com/4nfsuehb

Objectives

- 1. Confidence with files, directories and paths
- 2. Experience with raster and vector graphics
- 3. Essential of the BASH Shell/Language
- 4. Better understand **programming** (FOSS)
- 5. Execute, understand, and modify **R scripts**
- 6. Write **basic R code**, see the capabilities

Discussions

1. What do we/you use computers for?

Discussions

1. What do we/you use computers for?

2. In (geo)sciences what do you use computers

for? What kind of software?

Discussions

1. What do we/you use computers for?

2. In (geo)sciences what do you use computers

for? What kind of software?

Presentation
Publishing, Typesetting
Multimedia consumption
Internet Browsing
Email, Communication
Graphics Vector, Raster, 3D
Software Development
Data Processing/Analysis
Statistical Analysis and Modelling
Computation
GIS
Web Design
File management

Files and directories

The practical point of view

(Almost) everything that you work on is in a file.

Avoid this!

Solution: hierarchy

- Regular file: cannot contain other files
- Directory: special file, does not store anything but other files (can be empty)
- Directories do not actually contain data, this is just an abstract representation, just references to other files
- Copying vs Moving (renaming) speed difference!

Exercise

Program/degree

• Create a directory that represents this semester of your studies!

 Make directories for every class that you will have this semester! (including this)

Exercise

Program/degree

• Create a directory that represents this semester of your studies!

 Make directories for every class that you will have this semester! (including this)

Where did you create this?

The file's path

The file's path

Note: Things are easier if this does not have any spaces!

No Spaces?

- Systematic rules to represent text with one word
- Variable/Object names Language dependent conventions

Naming Convention

Pascal Case

Camel Case

Snake Case

Kebab Case

Flat Case

Upper Flat Case

Pascal Snake Case

Camel Snake Case

Screaming Snake Case

Train Case

Cobol Case

Example Format

PascalCase

camelCase

snake_case

kebab-case

flatcase

UPPERFLATCASE

Pascal_Snake_Case

camel_Snake_Case

SCREAMING_SNAKE_CASE

Train-Case

COBOL-CASE

Exercise

Rename your class directories to match one of your preferred cases! (e.g. snake case)

The file's extension

a)The file extension indicates to the operating system (and you!) how to handle the file.

b) This is not a hard constraint! Changing the extension will not make the file's contents different in any way!

Windows - files

- Files are data items on storage devices
- Multiple roots e.g. C:, each correspond to a partition
- Paths use the characteristic backslash \ character to depict nestedness
- Directories are called "Folders"
- Executables: filename.exe
- Total path to "Branding":
- C:\Windows\Branding
- Case insensitive!
- FAT32 and NTFS

Windows - files

- Paths Always present, if you don't see it
- To make the directory hierarchy novice-friendly, Windows creates "aliases" that look nice, but are not functional!
- User's home directory is by default: C:\Users\<Username>\
- Desktop: C:\Users\<Username>\Desktop
- The program to view files is "Explorer.exe"

UNIX File system

- Shared for UNIX and UNIX-like systems (GNU/Linux, macOS, Android)
- More abstract: everything in the computer is represented by a file
- Standard directory names
- Nestedness coded with forward slash : /
- File can be anything
- Executables don't have extensions
- Complete path to "bar"
- /home/mthomas/class_stuff/bar
- Case sensitive!

Archives

Excellent for storing and transmitting files – entire directory structures Two processes:

- a) creating an **archive**: one file from multiple files
- b) employing **lossless compression**: algorithm to make decrease the size of a file

Examples: zip, rar, gzip, bzip2, tgz (e.g. .tar.gz)

Compression is everywhere!

- Often part of I/O (input/output)
- Multimedia (codecs)

Exercise

Go to this page

- Download data.zir
- Uncompress the fi

Computers in geosciences

Material for the Computers in Geosciences course (2023)

Material for the Computers in Geosciences course (2023)

Schedule

Day	Topic	Instructor
October 9 (Monday)	Introduction, Files and BASH essential	Kocsis
October 10 (Tuesday)	Raster and Vector Image processing	Teichert, Schulbert
October 11 (Wednesday)	Open Source software, Programming basics. R as a calculator.	Kocsis
October 12 (Thursday)	R basic features (script reading and modification)	Kocsis
October 13 (Friday)	R basic features (script reading and modification)	Kocsis

 Copy contents into a new directory (e.g. day_1) in this class' directory!

Hints and tips for file management

- Keep all your stuff together (separate partition!)
- Logical hierarchy
- Make it portable (Windows!)
- Regularly spend time on organizing and cleaning files
- Naming and grouping: self-explanatory make it for somebody else (you!)
- Avoid spaces in paths
- Cloud backups!

Novice- vs Expert-friendly tools

No program is perfectly user-friendly! Depending on the task at hand:

Novice-friendly

- Graphical User Interface (GUI)
- No or very basic training
- Quick learning
- Lower final efficiency
- Visually appealing

Expert-friendly

- Command Line Interpreter (CLI) or Text-based interface
- Education/training is necessary
- Eventually higher efficiency
- Visuals: usually invisible!
- Programmable

Working with text is essential

Recommendation: get a code editor!

Working with text is essential

Recommendation: get a code editor!

Exercise: install VS Studio Code!

Working with text is essential

Recommendation: learn to touch type, if you don't know

Loads of resources available online!

e.g. https://keybr.com

R consolidation course!

Enter data < Write instructions

Why text? Universal language

Easy to connect processes / programs

Why text? Text is actually numbers

Perfect balance between simplicity and complexity

 Text can be represented with numbers, e.g. ASCII: https://www.ascii-code.com/

DEC	ост	HEX	BIN	Symbol	HTML Number	HTML Name	Description
32	040	20	00100000	SP			Space
33	041	21	00100001	į	!	!	Exclamation mark
34	042	22	00100010		"	"	Double quotes (or speech marks)
35	043	23	00100011	#	& #35;	#	Number sign
36	044	24	00100100	\$	\$	\$	Dollar
37	045	25	00100101	%	%	%	Per cent sign
38	046	26	00100110	&	&	&	Ampersand
85	125	55	01010101	U	U	55.4	Uppercase U
86	126	56	01010110	V	V		Uppercase V
87	127	57	01010111	W	W		Uppercase W
88	130	58	01011000	X	X		Uppercase X
89	131	59	01011001	Υ	Y		Uppercase Y
90	132	5A	01011010	Z	Z		Uppercase Z
91	133	5B	01011011]	[[Opening bracket
92	134	5C	01011100	\	\	\	Backslash
93	135	5D	01011101]]]	Closing bracket
94	136	5E	01011110	٨	^	^	Caret - circum flex
95	137	5F	01011111	_	_	_	Underscore
96	140	60	01100000	•	`	`	Grave accent
97	141	61	01100001	a	a		Lowercase a
98	142	62	01100010	6 h	b·		I owercase h
		Bı	nary code	: U and :	1		

Why binary?

Simplest way to record information

- As type of data: True: (1) and False (0)
- Basis of scientific hypothesis testing Hypothesis is a statement about reality, that can be answered with true or false. e.g.
- It is raining outside. (TRUE/FALSE?)
- Boolean Algebra (Logic)
- Easy to make machines the process information

George Boole

The logical AND operation

Input 1	Input 2	operation	Result
True	True	AND (&)	True
True	False	AND (&)	False
False	True	AND (&)	False
False	False	AND (&)	False

George Boole

A: True

B: False

A&B=?

The logical OR operation

Input 1	Input 2	operation	Result
True	True	OR ()	True
True	False	OR ()	True
False	True	OR ()	True
False	False	OR (I)	False

George Boole

A: True

B: False

 $A \mid B = ?$

The logical OR operation

Input 1	Input 2	operation	Result
True	True	OR ()	True
True	False	OR ()	True
False	True	OR ()	True
False	False	OR (I)	False

George Boole

A: True

B: False

 $A \mid B = ?$

C: True

(A & B) | C = ?

The logical NOT operation

Input 1	Input 2	operation	Result
True	False	NOT (!)	False
False	True	NOT (!)	True

George Boole

A: True

!A = ?

B: True

C: True

!(A & B) | C = ?

Digitial vs Analgue information

Used to build up elementary building blocks of computers

Computing and programming

The concept of calculation: how much is 651/7?

You have 651 balls.

- 1. You go through them one-by one.
- 2. You put every 7th ball in a bin.
- 3. After done, count the balls. (divisor)

Computing and programming

 The concept of calculation: how much is 651/7?

You have 651 balls.

- 1. You go through them one-by one.
- 2. You put every 7th ball in a bin.
- 3. After done, count the balls. (divisor)

You can do this with electricity

Logic Gates

Boolean algebra is relatively simple to implement with physics

True: Electricity!

False: No electricity.

George Boole

https://www.youtube.com/watch?

v= ldfWkZgX1Y

Logic Gates

Used to build up elementary building blocks of computers

Computing and programming

 The concept of calculation: how much is 651/7?

You have 651 balls.

- 1. You go through them one-by one.
- 2. You put every 7th ball in a bin.
- 3. After done, count the balls. (divisor)
- You can do this with electricity

Building up more complex things

Structured text data types

List of entries

- The simplest thing ever
- Convention is to use .txt
- Entries are separated by new lines
- coral_genera.txt

Structured text data types

(csv) Comma-Separated Values

- Frequently used to represent tabular data
- Rows in lines
- Values separated by commas
- Example: corals.csv

```
."","","601","Phacops sp.","genus","21701","","Phacops","genus","21701","Pragian","","410.8","407.6","60918"
."","","602","Proetida indet.","order","21062","","Proetida","order","21062","Pragian","","410.8","407.6","27289"
                              "", "602", "Phacops sp.", "genus", "21701", "", "Phacops", "genus", "21701", "Pragian", "", "410.8", "407.6", "27289"
                         "","","602","Leonaspis sp.","genus","19814","","Leonaspis","genus","19814","Pragian","","410.8","407.6","27289"
                              "","605","Dalmanites sp.","genus","21523","","Dalmanites","genus","21523","Emsian","","407.6","393.3","60970"
                         "","","605","Phacops sp.","genus","21701","","Phacops","genus","21701","Emsian","","407.6","393.3","60970"
                              ,"","606","Leonaspis sp.","qenus","19814","","Leonaspis","qenus","19814","Emsian","","407.6","393.3","60984"
                        , "", "", "606", "Phacopida indet.", "order", "21421", "" "Phacopida", "order", "21421", "Emsian", "", "407.6", "393.3", "60984"
                         "","","606","Dechenella sp.","genus","21144","","Dechenella","genus","21144","Emsian","","407.6","393.3","60984"
                              "Basidechenella ? sp.","genus","21087","","Basidechenella","genus","21087","Emsian","","407.6","393.3","60984,
                              "", "607", "Otarion sp.", "genus", "21275", "", "Otarion", "genus", "21275", "Emsian", "", "407.6", "393.3", "60984"
                        ,"","","607","Proetida indet.","order","21062","","Proetida","order","21062","Emsian","","407.6","393.3","60984"
,"","","607","Terataspis sp.","genus","19765","","Terataspis","genus","19765","Emsian","","407.6","393.3","60984"
,"","","607","Leonaspis sp.","genus","19814","","Leonaspis","genus","19814","Emsian","","407.6","393.3","60984
                         "","","608","Phacops sp.","genus","21701","","Phacops","genus","21701","Emsian","","407.6","393.3","13441"
10631, Oct; ", ", "060, Finacops sp.", genus , 21701, ", "nacops , 21701, ", Emslan", ", 407.0, 393.3", 13441
"10683", "occ; "", "", "612", "Phacopida ? indet.", "order", "21421", "", "Phacopida", "order", "21421", "Eifelian", "", "393.3", "387.7", "17056"
"10704", "occ", "", "", "613", "Phacopida ? indet.", "order", "21421", "", "Phacopida", "order", "21421", "Eifelian", "", "393.3", "387.7", "61511"
"10716", "occ", "", "", "614", "Otarion sp.", "genus", "1275", "", "Otarion", "genus", "12814", "Eifelian", "", "393.3", "387.7", "61110"
"10745", "occ", "", "", "616", "Leonaspis sp.", "genus", "19814", "", "Leonaspis", "genus", "19814", "Eifelian", "", "393.3", "387.7", "61110"
                        , "","","616", Feonetus sp.", "genus", "3014, ", Levinaspis", "genus", "21327", "Eifelian", ", 393.3", 387.7", "61110", "",","","616", "Proetus sp.", "genus", "21327", "", "Proetus", "genus", "21275", "Eifelian", "Givetian", "393.3", "382.7", "61512", "","","","619", "Otarion", "genus", "21275", "Eifelian", "Givetian", "393.3", "382.7", "61512", "",",","621", "Proetida ? indet.", "order", "21062", "", "Proetida", "order", "21062", "Eifelian", "Givetian", "393.3", "382.7", "61512", "", "", "622", "Dechenella sp.", "genus", "21144", "", "Dechenella", "genus", "21144", "Eifelian", "Givetian", "393.3", "382.7", "61512", "", "", "G27", "Dechenella sp.", "genus", "21144", "", "Dechenella", "genus", "21144", "Givetian", "", "387.7", "382.7", "841"
                        "", "632", "Proetus sp. ", "genus", "21327", "", "Proetus", "genus", "21327", "Frasnian", "", "382.7", "372.2", "61501"
 "11099","occ","","","640","Trimerocephalus sp.","genus","21804","","Trimerocephalus","genus","21804","Late Devonian","","382.7","358.9","60994"
```

Some structured text "languages"

(csv) Comma-Separated Values (variants)

- Separator can be different (e.g. semicolon (;) or whitespace (\t, \s)
- Semicolon-separated example: stages.csv
- Tab-delimited: penguins.tab

Structured text data types

(JSON) JavaScript Object Notation

Text-based format of key-value

pairs

```
{
    "firstname": "Adam",
    "lastname": "Kocsis
}
```


(JSON) JavaScript Object Notation

- Text-based format of key-value pairs
- Allows hierarchical structuring, multiple values/keys ('array')
- Can be made complicated, but very straightforward

```
"firstName": "John",
"lastName": "Smith",
"isAlive": true,
"age": 27,
"address": {
  "streetAddress": "21 2nd Street",
  "city": "New York",
  "state": "NY",
  "postalCode": "10021-3100"
"phoneNumbers": [
    "type": "home",
    "number": "212 555-1234"
    "type": "office",
    "number": "646 555-4567"
"children": [
    "Catherine",
    "Thomas",
    "Trevor"
"spouse": null
```


(YAML) Yet Another Markup Language

- Similar Text-based format that allows hierarchical structuring
- Key-value pairs
- Similar to JSON

```
name: Computers in Geosciences
nickname: Computers in Geosciences
ref: computers
group:
  - kev
  - wahl
short: "Usually just called the '<i>computers course
note: "As many other courses in the Paleobiology ma
more: "Essential tasks on the computer including image
evaluation: "Attendance and participation is require
administrator: kocsis
instructors:
  - kiessling
  - teichert
  - kocsis
ects: 5
campo: "https://www.campo.fau.de:443/qisserver/pages
studon: "https://www.studon.fau.de/crs1321742.html"
photos:
thumbnail: "images/courses/thumbnails/computers.jpg"
image:
  title: "images/courses/big/computers.jpg"
form: "1 week block course."
type: "practical"
```

HTML (Hypertext Markup Language)

- Used to structure webpages, based on 'tags'
- Also used for interface development

CSS (Cascading Style Sheets)

 Adding formatting to webpages

WITH CSS

WITHOUT CSS

XML (eXtensible Markup Language)

- Storing Arbitrary Data
- Very similar to HTML
- Many file formats are based on this (OOXML, e.g. MS Office)

TeX/LaTeX

- Markup language for typesetting documents (e.g. creating .pdf files)
- LaTeX is a generalized implementation
- Excellent for mathematical expressions

Programs: MikTex, Tex Live

Markdown

- Developed for easier web development
- Very clean and easy syntax
- Frequently used in 'literate programming'*
- Various flavors (e.g. R-markdown)