Grupo I

Relativamente às questões deste grupo, indique, para cada alínea, se a afirmação é verdadeira (V) ou falsa (F), assinalando a opção conveniente.

		V	F
1.	O conjunto $\{(a,b,c)\in\mathbb{R}^3 a+b=c+2\}$ é um subespaço vetorial do espaço vetorial real $\mathbb{R}^3.$		
2.	O subespaço vetorial $\{(x,x,x)\in\mathbb{R}^3 x\in\mathbb{R}\}$ de \mathbb{R}^3 tem dimensão 3.		
3.	Para qualquer espaço vetorial real V e para quaisquer $v_1,v_2,v_3,v\in V$, se $V=< v_1,v_2,v_3>$, então $V=< v_1,v_2,v_3,v>$.		
4.	Para qualquer espaço vetorial real V e para quaisquer $v_1, v_2 \in V$, se $v_1 + v_2 \neq 0_V$, então a sequência (v_1, v_2) é linearmente independente.		
5.	Se v_1 , v_2 , v_3 são vetores de \mathbb{R}^3 tais que (v_1, v_2, v_3) é linearmente independente, então $\mathbb{R}^3 = \langle v_1, v_2, v_3 \rangle$.		
6.	A aplicação $f: \mathbb{R}^4 \to \mathbb{R}^3$ definida por $f(a,b,c,d) = (2a,c+d,0)$, para qualquer $(a,b,c,d) \in \mathbb{R}^4$, é uma aplicação linear.		
7.	Para qualquer endomorfismo f de \mathbb{R}^3 , f é sobrejetiva se e só se $\mathrm{Nuc} f = \{0_{\mathbb{R}^3}\}.$		
8.	Para qualquer endomorfismo f de \mathbb{R}^3 , se $v \in \mathbb{R}^3$ é um vetor próprio de f associado ao valor próprio 3, então $2v$ é um vetor próprio de f associado ao valor próprio 6.		

Grupo II

Resolva cada uma das questões deste grupo na folha de exame. Justifique as suas respostas.

1. Considere no espaço vetorial real \mathbb{R}^3 , os vetores

$$u_1 = (1, 1, 1), u_2 = (0, 1, 3), u_3 = (-3, 0, 6), u_4 = (1, 0, -2)$$

e os subespaços vetoriais $U = \langle u_1, u_2, u_3, u_4 \rangle$ e $W = \{(x, y, 0) \in \mathbb{R}^3 \mid x, y \in \mathbb{R}\}.$

- (a) Determine uma base de U.
- (b) Mostre que $U = \{(x, y, z) \in \mathbb{R}^3 \mid z = -2x + 3y\}.$
- (c) Determine $\dim(W \cap U)$ e $\dim(W + U)$.

2. Considere os espaços vetoriais reais \mathbb{R}^4 e \mathbb{R}^3 , \mathcal{B} a base canónica de \mathbb{R}^4 , \mathcal{B}_1 a base de \mathbb{R}^3 definida por $\mathcal{B}_1 = ((1,1,1),(1,1,0),(1,0,0))$ e a aplicação linear $f: \mathbb{R}^4 \to \mathbb{R}^3$ tal que

$$M(f;\mathcal{B},\mathcal{B}_1) = \left[egin{array}{cccc} 1 & 0 & 0 & -1 \ -1 & 0 & 1 & 1 \ 1 & -1 & -1 & 0 \end{array}
ight].$$

- (a) Mostre que f(x, y, z, w) = (x y, z, x w), para qualquer $(x, y, z, w) \in \mathbb{R}^4$.
- (b) Determine $\dim \operatorname{Im} f$.
- (c) Diga, justificando, se f é sobrejetiva e se é injetiva.
- (d) Sendo \mathcal{B}_2 uma base de \mathbb{R}^4 , \mathcal{B}_3 uma base de \mathbb{R}^3 , $A = M(f; \mathcal{B}, \mathcal{B}_1)$, $B = M(id_{\mathbb{R}^4}; \mathcal{B}_2, \mathcal{B})$ e $C = M(id_{\mathbb{R}^3}, \mathcal{B}_3, \mathcal{B}_1)$, indique, justificando, qual das expressões seguintes define a matriz $M(f; \mathcal{B}_2, \mathcal{B}_3)$:
 - i. CAB. ii. CAB^{-1} . iii. $C^{-1}AB^{-1}$. iv. $C^{-1}AB$. v. BAC.
- 3. Considere o espaço vetorial real \mathbb{R}^3 , \mathcal{B} a base canónica de \mathbb{R}^3 e φ o endomorfismo de \mathbb{R}^3 tal que

$$M(\varphi; \mathcal{B}, \mathcal{B}) = \left[egin{array}{ccc} 2 & 1 & 0 \ 0 & -1 & 0 \ 2 & 1 & 2 \end{array}
ight].$$

- (a) Mostre que -1 e 2 são valores próprios de φ com multiplicidades algébricas 1 e 2, respetivamente.
- (b) Determine o subespaço próprio de φ associado ao valor próprio 2. Justifique que o valor próprio 2 tem multiplicidade geométrica 1.
- (c) Diga, justificando, se φ é diagonalizável.