Fundamentos de Redes de Computadores

Etapa 6 - Sistemas de Numeração

Prof^a Natália Oliveira natalia.qoliveira@prof.infnet.edu.br

Sistemas de Numeração

- Nos sistemas digitais/computação é frequente recorrer-se a diferentes sistemas de numeração para proceder à representação da informação digital
- Notação para representar números
- Definido por uma base
- Base -> quantidade de algarismos disponíveis num sistema de numeração

Sistemas de Numeração

Sistema Numérico Decimal

- Sistema universal
- Natural para os seres humanos
- Símbolos: {0,1,2,3,4,5,6,7,8,9}
- Base: 10

Sistema Numérico Binário

- Base para álgebra booleana e eletrônica digital
- Símbolos: {0,1}
- Base: 2

Sistemas de Numeração

Sistema Numérico Octal

- Compacta significativamente a representação de números binários
- Símbolos: {0,1,2,3,4,5,6,7}
- Base: 8

Sistema Numérico Hexadecimal

- Usado para programação de baixo nível
- Números não ficam tão extensos (menos dígitos) como no sistema binário
- Símbolos: {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}
- Base: 16

Conversões dos Sistemas de Numeração

Conversão Decimal -> Binário

• Utilizar as divisões sucessivas por 2 e a escrita de modo inverso dos restos de cada divisão até que o quociente 0 seja obtido.

Conversão de Decimal para Binário

$$15(10) = ?(2)$$

1111(2)

11011111(2)

Conversão Decimal -> Octal

· Também utiliza-se o método das divisões sucessivas, só que agora a base é 8

Conversão de Decimal para Octal

412(8)

235(8)

Conversão Decimal -> Hexadecimal

· Da mesma forma utiliza-se o processo de divisões sucessivas, na base 16

Tabela 1.2: Algarismos da base 16.

Número	Algarismo	Número	Algarismo		
0 0		8	8		
1	1 1		9		
2 2 3 4 4 5 5		10	A		
		11	В		
		12	C D		
		13			
6	6	14	E		
7	7	15	F		

Conversão de Decimal para Hexadecimal

Conversão Binário -> Decimal

 Devemos considerar os valores posicionais na base 2 e fazer a soma das potências dos bits em "1"

Conversão de Binário para Decimal

$$1101(2) = ?(10)$$

13(10)

58(10)

Conversão Binário -> Octal

- A conversão de números binários inteiros para octais inteiros se dá substituindo o conjunto de cada 3 binários pelo octal equivalente
- Esta divisão divisão deverá ser feita da direita direita (LSB) para esquerda (MSB); se faltar bits à esquerda preencher com zeros

Tabela comparativa

```
BIN OCT

000 = 0

001 = 1

010 = 2

011 = 3 números

100 = 4 octais

101 = 5

110 = 6

111 = 7
```

Conversão de Binário para Octal

$$110000111(2) = ?(8)$$

607(8)

$$011100(2) = ?(8)$$

34(8)

Conversão Binário -> Hexadecimal

· Análogo à conversão Binário -> Octal, só que agrupando 4 dígitos ao invés de 3

Hexadecimal	Binário
0	0000
1	0001
3	0010
3	0011
<u>4</u> 5	0100
	0101
6	0110
7	0111
8	1000
9	1001
Α	1010
В	1011
С	1100
D	1101
D E F	1110
F	1111

· Conversão de Binário para Hexadecimal

6E(16)

1F(16)

Conversão Octal -> Binário

 A principal vantagem do sistema octal é a transcrição de cada dígito octal para binário, sem a necessidade de cálculos

Ex 1:
$$472_{(8)} = [100][111][010]$$

 $472_{(8)} = 100111010_{(2)}$

Ex 2:
$$5431_{(8)}[101][100][011][001]$$

 $5431_{(8)} = 101100011001_{(2)}$

OCTAL	BINÁRIO
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

Conversão de Octal para Binário

110000111(2)

001011(2)

	,
OCTAL	BINÁRIO
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

Conversão Octal -> Decimal

Iremos utilizar as potências com base 8 (valores posicionais)

$$135_{(8)} = 1x8^2 + 3x8^1 + 5x8^0$$
$$= 64 + 24 + 5$$
$$= 93$$

$$1523_{(8)} = 1x8^{3} + 5x8^{2} + 2x8^{1} + 3x8^{0}$$
$$= 512 + 320 + 16 + 3$$
$$= 851$$

Conversão de Octal para Decimal

9(10)

532(10)

Conversão Hexadecimal -> Binário

 Assim como na conversão octal para binário, utilizamos a substituição de cada dígito hexadecimal para seu correspondente binário

$$9F2_{(16)} = [1001][1111][0010]$$

 $9F2_{(16)} = 1001111110010_{(2)}$

Hexadecimal	Binário
0	0000
1	0001
1 2 3 4 5	0010
3	0011
4	0100
	0101
6	0110
7 8	0111
8	1000
9	1001
Α	1010
В	1011
С	1100
D	1101
C D E	1110
F	1111

Conversão de Hexadecimal para Binário

$$AB(16) = ?(2)$$

10101011(2)

$$6B49(16) = ?(2)$$

0110101101001001(2)

Hexadecimal	Binário
0	0000
1	0001
2	0010
2 3 4 5	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
Α	1010
В	1011
С	1100
C D E	1101
E	1110
F	1111

Conversão Hexadecimal -> Decimal

Iremos utilizar as potências com base 16 (valores posicionais)

Conversão de Hexadecimal para Decimal

$$7D(16) = ?(10)$$

125(10)

$$ABCD(16) = ?(10)$$

43981(10)

Conversão Bases Numéricas - Resumo

Endereços Binários e IPv4

- Os endereços IPv4 são binários, uma série de apenas 1s e 0s
- É importante compreender o binário porque hosts, servidores e dispositivos de rede usam esse tipo de endereçamento
- Cada endereço é composto por uma string de 32 bits dividida em quatro seções, chamadas octetos
- Cada octeto tem 8 bits (ou 1 byte) separados por um ponto

Notação Posicional

- Notação posicional significa que um dígito representa valores diferentes, dependendo da posição que ocupa na sequência de números
- Você já conhece o sistema numérico mais conhecido, o decimal (base 10)
- O sistema de notação posicional decimal opera como descrito na tabela abaixo

Raiz	10	10	10	10
Posição no número	3	2	1	0
Cáculo	(10 ³)	(10 ²)	(10 ¹)	(10 ⁰)
Valor da posição	1000	100	10	1

- → Em um sistema de notação posicional, a base do número é chamada de Raiz
- → No sistema com base dez, a raiz é 10
- → Posição no número considera a posição do número decimal começando com, da direita para a esquerda, 0 (1ª posição), 1 (2ª posição), 2 (3ª posição), 3 (4ª posição)
- → Esses números também representam o valor exponencial usado para calcular o valor posicional
- → O valor da posição representa as unidades de milhares, centenas, dezenas e unidades

Notação Posicional Binária

- Para entender a operação dos dispositivos na rede, precisamos ver os endereços e outros dados da forma que os dispositivos fazem – em notação binária
- No sistema binário usamos uma raiz de 2

Raiz	2	2	2	2	2	2	2	2
Posição no número	7	6	5	4	3	2	1	0
Cáculo	(2 ⁷)	(2 ⁶)	(2 ⁵)	(2 ⁴)	(2 ³)	(2 ²)	(2 ¹)	(2 ⁰)
Valor da posição	128	64	32	16	8	4	2	1

- → A notação binária é baseada em 2, portanto a raiz é 2
- → Posição em número considera a posição do número binário começando com, da direita para a esquerda, 0 (1ª posição), 1 (2ª posição), 2 (3ª posição), 3 (4ª posição). Esses números também representam o valor exponencial usado para calcular o valor posicional na quarta linha.
- → A linha 3 calcula o valor posicional pegando a raiz e aumentando-a pelo valor exponencial de sua posição na linha 2
- → Linha 4 valor posicional representa unidades de um, dois, quatro, oito, etc.

Notação Posicional Binária

Valor Posicional	128	64	32	16	8	4	2	1
Número binário (11000000)	1	1	0	0	0	0	0	0
Cáculo	1 x 128	1 x 64	0 x 32	0 x 16	0 x 8	0 x 4	0 x 2	0 x 1
Adicione-os	128	+ 64	+ 0	+ 0	+ 0	+ 0	+ 0	+ 0
Resultado	192							