MATH/STAT395: Probability II

Spring 2020

Joint Probability Distributions, Independence

Sections 6.1, 6.2, 6.3 of ASV

Instructor: Vincent Roulet

Teaching Assistant: Zhenman Yuen

1 Multivariate random variables

Definition 1 (Multivariate random variable/Random vector). Given a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, a multivariate random variable or random vector is a vector $X = (X_1, ..., X_n)$, whose components are real-valued random variables on $(\Omega, \mathcal{F}, \mathbb{P})$.

Example 2 (Classic examples).

- 1. (Discrete case) Roll a die 100 times, denote X_1, \ldots, X_6 the number of 1, ..., 6 you got respectively, then $X = (X_1, \ldots, X_6)$ is a random vector
- 2. (Continuous case) Throw a dart uniformly at random on a disc, the coordinates (X,Y) of that throw form a random vector

1.1 Discrete case

1.1.1 Joint probability mass function

Definition 3 (Joint probability mass function). Let X_1, \ldots, X_n be discrete r.v. on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, their **joint probability mass function** is defined as

$$p(k_1, \dots, k_n) = \mathbb{P}(\{X_1 = k_1\} \cap \dots \cap \{X_n = k_n\})$$

$$\triangleq \mathbb{P}(X_1 = k_1, \dots, X_k = k_n)$$

for any $k_1, \ldots, k_n \in X_1(\Omega) \times \ldots \times X_n(\Omega)$ (any values taken by the random vector)

Example 4.

- 1. Roll two dice with 4 faces, denote
 - (i) S the sum of the two dice
 - (ii) Y the indicator variable that you get a pair
- 2. Record which outcomes lead to different values of S, Y
- 3. Compute the corresponding joint probability mass function of S, Y
- 4. Read e.g. P(S = 4, Y = 1) = 1/16

		Y	
		0	1
	2		(1,1)
	3	(1, 2) (2, 1)	
	4	(1, 3) (3, 1)	(2, 2)
S	5	(1, 4) (2, 3) (3, 2) (4, 1)	
	6	(2, 4) (4, 2)	(3, 3)
	7	(3, 4) (4, 3)	
	8		(4, 4)

		Y	
		0	1
	2	0	1/16
	3	1/8	0
	4	1/8	1/16
S	5	1/4	0
	6	1/8	1/16
	7	1/8	0
	8	0	1/16

Lemma 5. Let $g: \mathbb{R}^n \to \mathbb{R}$ and let X_1, \ldots, X_n be discrete r.v. on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with joint probability mass function p, then

$$\mathbb{E}[g(X_1,\ldots,X_n)] = \sum_{k_1,\ldots k_n \in X_1(\Omega) \times \ldots \times X_n(\Omega)} g(k_1,\ldots,k_n) p(k_1,\ldots k_n)$$

Example 6. 1. Roll two dices with 4 faces, denote

- (i) S the sum of the two dices
- (ii) Y the indicator variable that you get a pair
- 2. Score is the sum of the dice, doubled if it is a pair. What is the average score?

Solution. The average score reads

$$\mathbb{E}[g(S,Y)] = \sum_{s=2}^{8} \sum_{y=0}^{1} s(y+1)p(s,y)$$

$$= \sum_{s=2}^{8} sp(s,0) + 2\sum_{s=2}^{8} sp(s,1)$$

$$= \frac{3+4+2\times5+6+7}{8} + 2\times\frac{2+4+6+8}{16} = 25/4 = 6.25$$

1.1.2 Marginal probability mass function

Definition 7. Let $p_{X,Y}$ be the joint probability mass function of two r.v. (X,Y). The probability mass function of X is given by,

$$p_X(k) \triangleq \mathbb{P}(X=k) = \sum_{\ell \in Y(\Omega)} p_{X,Y}(k,\ell)$$

The function p_X is called the marginal probability distribution of X.

Proof. The events $\{B_{\ell} = \{Y = \ell\}\}_{\ell \in Y(\Omega)}$ form a partition of Ω y definition of a discrete random variable such that

$$\mathbb{P}(X=k) = \mathbb{P}\left(\{X=k\} \cap \bigcup_{\ell=-\infty}^{+\infty} B_{\ell}\right) = \sum_{\ell=-\infty}^{+\infty} \mathbb{P}(X=k,Y=\ell) = \sum_{\ell \in Y(\Omega)} p_{X,Y}(k,\ell)$$

Definition 8. Let p be the joint probability mass function of n discrete r.v. $X_1, \ldots X_n$. The probability mass function of X_j for $j \in \{1, \ldots, n\}$ is given by for any $k \in X_j(\Omega)$,

$$p_{X_j}(k) = \sum_{\substack{\ell_1, \dots, \ell_{j-1}, \ell_{j+1}, \dots, \ell_n \\ \in X_1(\Omega) \times \dots \times X_{j-1}(\Omega) \times X_{j+1}(\Omega) \times \dots \times X_n(\Omega)}} p(\ell_1, \dots, \ell_{j-1}, k, \ell_{j+1}, \dots, \ell_n)$$

The function p_{X_j} is called the marginal probability distribution of X_j .

Previous result generalizes to the joint probability distribution of any subset. For example the joint probability of $X_1, \ldots X_m$ given m < n is

$$p_{X_1,...X_m}(k_1,...,k_m) = \sum_{\substack{\ell_{m+1},....\ell_n \in X_{m+1}(\Omega) \times ... \times X_n(\Omega)}} p(k_1,...,k_m,\ell_{m+1},...\ell_n)$$

Example 9. 1. Roll two dices with 4 faces, denote

- (i) S the sum of the two dices
- (ii) Y the indicator variable that you get a pair
- 2. Compute marginal distribution of Y from the joint p.m.f.

Solution. Sum the columns of p(s,y). So you get $\mathbb{P}(Y=1)=4/16$ and $\mathbb{P}(Y=0)=12/16$

1.1.3 Multinomial distribution

Motivation Consider a trial with r possible outcomes, labeled $1, \ldots, r$. Denote p_j the probability of the outcome j such that $p_1 + \ldots + p_r = 1$. Perform n independent repetitions of this trial. Denote X_j the number of times the outcome j appeared among the n trials.

What is the joint probability mass function of (X_1, \ldots, X_r) ?

Derivation

- 1. Let $k_1, \ldots, k_r \in \mathbb{N}$ such that $k_1 + \ldots + k_r = n$.
- 2. Any outcome that leads to $X_j = k_j$ for all $j \in \{1, ..., r\}$ has proba $p_1^{k_1} ... p_r^{k_r}$.
- 3. The number of such outcomes is given by (in book page 392)

$$\binom{n}{k_1, \dots, k_r} = \frac{n!}{k_1! \dots k_r!}$$

4. Therefore we get $\mathbb{P}(X_1 = k_1, \dots, X_r = k_r) = \binom{n}{k_1, \dots, k_r} p_1^{k_1} \dots p_r^{k_r}$

Definition 10 (Multinomial distribution). Let $n, r \in \mathbb{N}_*$, let $p_1, \ldots, p_r \in (0, 1)$ s.t. $p_1 + \ldots + p_r = 1$, then a r.v. X has a **multinomial distribution** with parameters n, r, p_1, \ldots, p_r if it is defined for any $k_1, \ldots, k_r \in \mathbb{N}$ s.t. $k_1 + \ldots + k_r = n$ with probability

$$\mathbb{P}(X_1 = k_1, \dots, X_r = k_r) = \binom{n}{k_1, \dots, k_r} p_1^{k_1} \dots p_r^{k_r}$$

We denote it $(X_1, \ldots, X_r) \sim \text{Multinom}(n, r, p_1, \ldots, p_r)$.

1.2 Continuous Random Variables

1.2.1 Joint probability density function

Definition 11 (Joint probability density function). Random variables X_1, \ldots, X_n are jointly continuous if there exists a joint probability density function $f : \mathbb{R}^n \to \mathbb{R}$ such that for any $B \subset \mathbb{R}^n$,

$$\mathbb{P}(X_1, \dots, X_n \in B) = \int \dots \int_B f(x_1, \dots, x_n) dx_1 \dots dx_n$$

X and Y have a p.d.f. does not imply that (X,Y) is jointly continuous!

Example: Take X any continuous r.v., define Y = X, s.t. $\mathbb{P}(X = Y) = 1$. If (X, Y) had a joint p.d.f. f, denoting $D = \{(x, y) : x = y\}$, we would have

$$\mathbb{P}(X=Y) = \int_{D} \int_{D} f(x,y) dx dy = \int_{-\infty}^{+\infty} \left(\int_{x}^{x} f(x,y) dy \right) dx = 0$$

Lemma 12. Let X_1, \ldots, X_n be n jointly continuous r.v.. Then for any subset $A \subset \mathbb{R}^n$ included in a linear subspace $E \subset \mathbb{R}^n$ of dimension $\dim(E) = m < n$,

$$\mathbb{P}((X_1,\ldots,X_n)\in A)=0$$

¹Think of B as for example $[a,b]^n$. Again a rigorous definition requires B to belong to the Borel algebra of \mathbb{R}^n

Example 13 (Synthetic). Assume X, Y have a joint p.d.f.

$$f(x,y) = \begin{cases} \frac{3}{2}(xy^2 + y) & \text{if } 0 \le x \le 1, \ 0 \le y \le 1\\ 0 & \text{otherwise} \end{cases}$$

- 1. Check that it is a valid joint p.d.f
- 2. Compute $\mathbb{P}(X < Y)$

Solution. 1. We have $f(x,y) \ge 0$ and

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) dx dy = \frac{3}{2} \int_{0}^{1} \left(\int_{0}^{1} xy^{2} + y dx \right) dy$$
$$= \frac{3}{2} \int_{0}^{1} \left(\frac{1}{2} y^{2} + y \right) dy = \frac{3}{2} \left(\frac{1}{6} + \frac{1}{2} \right) = 1$$

2.

$$\mathbb{P}(X < Y) = \frac{3}{2} \int_0^1 \left(\int_0^y (xy^2 + y) dx \right) dy$$
$$= \frac{3}{2} \int_0^1 \left(\frac{1}{2} y^4 + y^2 \right) dy$$
$$= \frac{3}{2} \left(\frac{1}{10} + \frac{1}{3} \right) = 0.65$$

1.2.2 Uniform continuous random variables

Definition 14 (Uniform continuous random variable in dimension 2 or 3). Let D be a bounded subset of \mathbb{R}^2 s.t. Area $(D) < +\infty$. The random point (X,Y) is uniformly distributed on D if its joint p.d.f. reads

$$f(x,y) = \frac{1}{\operatorname{Area}(D)} \mathbf{1}_D(x,y) = \begin{cases} \frac{1}{\operatorname{Area}(D)} & if(x,y) \in D\\ 0 & otherwise \end{cases}$$

Let D be a bounded subset of \mathbb{R}^3 s.t. $\operatorname{Vol}(D) < +\infty$. The random point (X,Y,Z) is uniformly distributed on D if its joint p.d.f. reads

$$f(x, y, z) = \frac{1}{\operatorname{Vol}(D)} \mathbf{1}_D(x, y) \begin{cases} \frac{1}{\operatorname{Vol}(D)} & \text{if}(x, y, z) \in D\\ 0 & \text{otherwise} \end{cases}$$

We denote $(X, Y) \sim \text{Unif}(D)$ or $(X, Y, Z) \sim \text{Unif}(D)$.

Lemma 15. Let $(X,Y) \sim \text{Unif}(D)$ for $D \subset \mathbb{R}^2$, then for any $G \subset D$, (similar for \mathbb{R}^3)

$$\mathbb{P}((X,Y) \in G) = \frac{\operatorname{Area}(G)}{\operatorname{Area}(D)}$$

Proof.

$$\Pr((X,Y) \in G) = \frac{1}{\operatorname{Area}(D)} \int \int \mathbf{1}_G(x,y) \, \mathbf{1}_D(x,y) dx dy = \int \int \mathbf{1}_G(x,y) dx dy = \frac{\operatorname{Area}(G)}{\operatorname{Area}(D)}$$

1.2.3 Marginal Probability Density Function

Definition 16 (Marginal probability density function). Let X, Y be jointly continuous r.v. and denote $f_{X,Y}$ their joint p.d.f. then the p.d.f. of X exists and is given by

$$f_X(X) = \int_{-\infty}^{+\infty} f_{X,Y}(x,y) dy$$

Proof. We have by definition of the joint p.d.f. an expression of the c.d.f. of X as

$$F_X(t) = \mathbb{P}(X \le t) = \mathbb{P}(X \le t, -\infty \le Y \le +\infty) = \int_{-\infty}^{t} \int_{-\infty}^{+\infty} f_{X,Y}(x, y) dy dx$$

Therefore $f_X(x) = F_X'(x) = \int_{-\infty}^{+\infty} f_{X,Y}(x,y)$

Definition 17 (Marginal probability density function). Let $X_1, \ldots X_n$ be jointly continuous and denote f their joint p.d.f..

Then for any $j \in \{1, ... n\}$, X_j is a continuous random variable with p.d.f.

$$f_{X_j}(x) = \int_{-\infty}^{+\infty} \dots \int_{-\infty}^{+\infty} f(x_1, \dots, x_{j-1}, x, x_{j+1}, \dots, x_n) dx_1 \dots dx_{j-1} dx_{j+1} \dots dx_n$$
(n-1 integrals)

Example 18. Consider a disk of radius r, $D_r = \{(x, y) : x^2 + y^2 \le r\}$ and $(X, Y) \sim \text{Unif}(D_r)$. What is the marginal p.d.f. of X?

Solution. Joint p.d.f. is $f_{X,Y}(x,y) = \frac{1}{\pi r^2} \mathbf{1}_{D_r}(x,y)$ where $D_r = \{(x,y) : x^2 + y^2 \le r^2\}$ Marginal density is then $f_X(x) = 0$ for |x| > r, and for $|x| \le r$,

$$f_X(x) = \int_{-\infty}^{+\infty} f_{X,Y}(x,y) dy = \frac{1}{\pi r^2} \int_{-\sqrt{r^2 - x^2}}^{\sqrt{r^2 - x^2}} dy = \frac{2}{\pi r^2} \sqrt{r^2 - x^2}$$

1.3 Joint cumulative distribution

Definition 19 (Joint cumulative distribution). The **joint cumulative distribution** of r.v. X_1, \ldots, X_n is defined as

$$F(t_1, \dots, t_n) = \mathbb{P}(\{X_1 \le t_1\} \cap \dots \cap \{X_n \le t_n\})$$

$$\triangleq \mathbb{P}(X_1 \le t_1, \dots, X_n \le t_n)$$

Lemma 20. 1. If (X,Y) are jointly continuous with joint p.d.f. f,

$$F(t,s) = \int_{-\infty}^{t} \int_{-\infty}^{s} f(x,y) dx dy$$

2. If (X,Y) are jointly continuous (i.e. there exists a joint p.d.f.) with joint c.d.f. F

$$\frac{\partial^2}{\partial t \partial s} F(t,s) \Big|_{s=x,t=y} = f(x,y)$$

$\mathbf{2}$ Joint Probability Distributions and Independence

Independence of random variables 2.1

Definition 21 (Independent random variables). Random variables X_1, \ldots, X_n on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ are independent if for any subsets $B_1, \ldots, B_n \subset \mathbb{R}$,

$$\mathbb{P}(X_1 \in B_1, \dots, X_n \in B_n) = \mathbb{P}(X_1 \in B_1) \dots \mathbb{P}(X_n \in B_n)$$

or equivalently if their joint c.d.f. F factorizes into the marginal c.d.f. as

$$F(t_1, \ldots, t_n) = F_{X_1}(t_1) \ldots F_{X_n}(t_n)$$

2.2Discrete case

Lemma 22. Let $X_1, \ldots X_n$ be n discrete random variables on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. $X_1, \ldots X_n$ are independent if and only if their joint p.m.f. p factorizes into the marginals p_{X_i} ,

$$p(k_1, \ldots, k_n) = p_{X_1}(k_1) \ldots p_{X_n}(k_n)$$

Proof. If X_1, \ldots, X_n are independent the result comes from the definition. If the joint p.m.f. factorizes into the marginal distributions, then

$$\mathbb{P}(X_1 \in B_1, \dots, X_n \in B_n) = \sum_{k_1 \in B_1, \dots, k_n \in B_n} p(k_1, \dots, k_n)
= \sum_{k_1 \in B_1, \dots, k_n \in B_n} p_{X_1}(k_1) \dots p_{X_n}(k_n)
= \left(\sum_{k_1 \in B_1} p_{X_1}(k_1)\right) \dots \left(\sum_{k_n \in B_n} p_{X_n}(k_n)\right) = \prod_{i=1}^n \mathbb{P}(X_i \in B_i)$$

1. Roll two dices with 4 faces, denote

Example 23.

- (i) S the sum of the two dices
- (ii) Y the indicator variable that you get a pair
- 2. Are S, Y independent?

		Y	
		0	1
	2	0	1/16
	3	1/8	0
	4	1/8	1/16
S	5	1/4	0
	6	1/8	1/16
	7	1/8	0
	8	0	1/16

0.14

0.12

0.10

0.08

<u>4</u> 36

<u>3</u>

<u>2</u> 36

Solution. Check for example $\mathbb{P}(S=2,Y=0)=0\neq\mathbb{P}(S=2)\,\mathbb{P}(Y=0)>0$

Note: one counterexample suffices to show that S, Y are dependent,

but to prove independence one would need to show the equality for all values of S, Y

Roll repeatedly a pair of dice. Denote N the number of rolls until the sum of the dice is 2 or a 6

1. What is the distribution of N? Example 24.

²Again a formal definition requires these subsets to be Borel subsets of \mathbb{R}^n

Solution. 1. Let Y_i be the sum of the two dice at the ith roll.

We have $\mathbb{P}(Y_i \in \{2,6\}) = 1/36 + 5/36 = 1/6$ and so $N \sim \text{Geom}(1/6)$

2.
$$\mathbb{P}(N=n,X=6) = \mathbb{P}(Y_1 \notin \{2,6\},\dots,Y_{n-1} \notin \{2,6\},Y_n=6) = \left(\frac{5}{6}\right)^{n-1} \frac{5}{36}$$
 Therefore $\mathbb{P}(X=6) = \sum_{n=1}^{+\infty} \left(\frac{5}{6}\right)^{n-1} \frac{5}{36} = \frac{5/36}{1-5/6} = 5/6$

So
$$\mathbb{P}(N=n, X=6) = (\frac{5}{6})^{n-1} \frac{1}{6} \frac{5}{6} = \mathbb{P}(N=n) \mathbb{P}(X=6)$$

Same argument shows $\mathbb{P}(N=n,X=2) = \mathbb{P}(N=n)\,\mathbb{P}(X=2)$

 $\rightarrow N$ and X are independent

2.3 Continuous case

Lemma 25. Let X_1, \ldots, X_n be n r.v. on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Assume that for $j \in \{1, \ldots, n\}$, the rv. X_j has p.d.f. f_{X_j} .

1. If X_1, \ldots, X_n have a joint p.d.f. that factorizes in the marginal p.d.f. as

$$f(x_1, \dots, x_n) = f_{X_1}(x_1) \dots f_{X_n}(x_n)$$

then X_1, \ldots, X_n are independent.

2. Conversely if X_1, \ldots, X_n are independent then they are jointly continuous with joint p.d.f.

$$f(x_1, \ldots, x_n) = f_{X_1}(x_1) \ldots f_{X_n}(x_n)$$

Proof. For n=2 with two r.v. (X,Y), denote $A,B\subset\mathbb{R}$,

$$\mathbb{P}(X \in A, Y \in B) = \int_{A} \int_{B} f_{X,Y}(x, y) dx dy = \int_{A} \int_{B} f_{X}(x) f_{Y}(y) dx dy$$
$$= \int_{A} f_{X}(x) dx \int_{B} f_{Y}(y) dy = \mathbb{P}(X \in A) \mathbb{P}(X \in B)$$

Conversely, if X, Y are independent

$$\mathbb{P}\big(X\in A,Y\in B\big)=\mathbb{P}\big(X\in A\big)\,\mathbb{P}\big(X\in B\big)=\int_{A}\int_{B}f_{X}(x)f_{Y}(y)dxdy$$

Example 26. Consider X, Y with p.d.f. $f(x,y) = \frac{1}{\lambda} \frac{e^x}{\sqrt{y+1}} \mathbf{1}_W(x,y)$ for $\lambda = 2(\sqrt{2} - 1)(e - e^{-1})$ where $W = \{(x,y) : -1 \le x \le 1, 0 \le y \le 1\}$.

- 1. Are X, Y independent?
- 2. What consequences it had when computing the probability to get the target $T = \{(x, y): -0.1 \le x \le 0.1, 0.4 \le y \le 0.6\}$?

Solution. 1. Note that $\mathbf{1}_{W}(x,y) = \mathbf{1}_{[-1,1]}(x) \mathbf{1}_{[0,1]}(y)$,

then one has
$$f_X(x) = \frac{1}{e-e^{-1}} e^x \mathbf{1}_{[-1,1]}(x), f_Y(y) = \frac{1}{2(\sqrt{2}-1)\sqrt{y+1}} \mathbf{1}_{[0,1]}(y)$$

So X, Y are independent

2. $\mathbb{P}((X,Y) \in T) = \mathbb{P}(X \in [-0.1,0.1]) \mathbb{P}(Y \in [0.4,0.6])$ where $\mathbb{P}(X \in [-0.1,0.1])$, $\mathbb{P}(Y \in [0.4,0.6])$ can be computed from f_X , f_Y respectively.

3 Borel Algebra*

Until now, we defined probate distributions on any $B \subset \mathbb{R}^n$ for n=1 or n>1. Formal definitions require to restrict our focus to subsets $B \subset \mathbb{R}^n$ that form a σ -algebra \mathcal{B}

Definition 27 (σ -algebra). Let Ω be a set, a σ -algebra \mathcal{F} on Ω is a subset of $2^{\Omega} = \{B \subset \Omega\}$ such that

- 1. $\Omega \in \mathcal{F}$
- 2. (Stable by complementarity) For any $A \in \mathcal{F}$, $A^c \triangleq \Omega \setminus A \in \mathcal{F}$
- 3. (Stable by countable union) For any $A_1, A_2, \ldots \in \mathcal{F}$, $\bigcup_{i \in \mathbb{N}} A_i \in \mathcal{F}$

Why introducing σ -algebra?

You want the probability measure to satisfy that

- the measure is non-negative
- the measure of the union of disjoint sets is the sum of the measure of union sets

Then you can build a union of sets V_k (see e.g. Vitali set on Wikipedia) s.t.

$$[0,1] \subset \bigcup_{k=1}^{+\infty} V_k \subset [-1,2]$$
 $\mathbb{P}(V_k) = \lambda \ge 0$ for all k

which leads to $1 \leq \sum_{k=1}^{+\infty} \mathbb{P}(V_k) \leq 3$ which is impossible Formally, we restrict our focus on the Borel algebra of \mathbb{R}^n

Definition 28 (Borel algebra in \mathbb{R}^n). The Borel algebra in \mathbb{R}^n , denoted \mathcal{B}_n , is the smallest σ -algebra (in terms of inclusion) that contains

• all product of intervals $[a_1, b_1] \times ... \times [a_n, b_n]$ for $a_i \leq b_i \in \mathbb{R}$

or equivalently defined as the smallest σ -algebra that contains

• all product of intervals of the form $(-\infty, a_1] \times ... \times (-\infty, a_n]$ for $a_i \in \mathbb{R}$.

Consequence

- 1. If we can measure all intervals of the form $(-\infty, a_1] \times ... \times (-\infty, a_n]$ for $a_i \in \mathbb{R}$, then we can measure all subsets of interests, i.e. all $B \in \mathcal{B}_n$,
 - \rightarrow we know all the information necessary to describe the proba distribution
- 2. All the information necessary to describe any r.v. is contained in its c.d.f.