心電信號量測 ECG measurement

摘 要

由於現今人們生活忙碌,各種壓力與疲勞接踵而至,造成許多身體上疾病的發生。然而其中以心臟方面的疾病更是長年高居國人十大死因前幾名,期盼開發出居家用的簡易心臟之心電圖量測裝置,推廣人們時時注意自身有無心臟方面的疾病。心電圖(Electrocardiogram;ECG)是目前醫學界廣為使用在評估心臟功能與疾病的依據,假若能關注自身的心電訊號,也將更加注重本身的健康狀況。

本專題開發一套簡易型、低價位生理訊號量測模組,採用類比訊號測量電路、MSP430 微處理器、藍芽無線傳輸模組所組成,可進行簡易之心電圖擷測。再利用 MSP430 微處理器將擷取到的類比訊號轉為數位訊號及數位濾波,再經藍芽模組回傳至智慧型手機觀看或送至醫療系統判讀,可及時得到心電圖訊號波形,方便測試者觀察。日後在醫療系統上顯示的心電圖,可由專業醫療人員藉由不同的波型來判斷目前的心電狀況,預防心臟疾病的發生。

一、 生理訊號量測硬體架構

1. 心電圖量測系統方塊圖

圖 3-1 量測系統方塊圖

2. AD620介紹

AD620 是一款低成本、高精度儀表放大器,僅需要一個外部電阻來設置增益,增益範圍為 1 至 10000。AD620 採用 8 引腳 SOIC 和 DIP 封裝,尺寸小於分立電路設計,並且功耗更低且非常適合電池供電及便攜式應用。具有高精度、低失調電壓和低失調飄移特性,此外,AD620 還具有低雜訊、低輸入偏移電流和低功耗特性,使之非常適合 ECG 和血壓監測儀等醫療應用。

圖 3-2 AD620 引腳圖

AD620 晶片特性:

- (1)增益通過一個外部電阻設置(增益範圍:1至10000)
- (2) 寬電源電壓範圍(±2.3V 至±18V)
- (3)性能高於3運放分立儀表放大器設計
- (4)採用 8 引腳 DIP 和 SOIC 封裝
- (5)低功耗,最大工作電流 1.3mA
- (6)輸入失調電壓:50 μV(最大值)
- (7)輸入失調飄移: 0.6 μV/°C(最大值)
- (8) 輸入偏移電流:1.0 nA(最大值)
- (9) 共模抑制比:100 dB(最小值,G=10)
- (10) 輸入電壓雜訊:9nV/√Hz (1 kHz)
- (11) 0.28 μV 峰對峰值雜訊(0.1 Hz 至 10 Hz)

- (12) 帶寬: 120 kHz (G = 100)
- (13) 0.01%建立時間: 15 μs

3. MSP430F5529介紹

德州儀器 MSP430F5529 混合訊號微型控制器 (MCU) 是超低功耗 MSP430 微型控制器 系列的一部份。 這些 德州儀器的微型控制器 配置了支持 USB 2.0 的集成式 USB 和 PHY、四個 16 位計時器、一個高性能 12 位 ADC,以及一個有報警功能的實時鬧鐘模塊。德州儀器 MSP430F5528 和 MSP430F5529 微型控制器有同樣的外圍設備,但是有 47 個 I/O 引腳,不同於 MSP430F5529 的 63 個 I/O 引腳。這些德州儀器微型控制器的典型應用包括模擬和數碼感應系統、資料記錄器,以及其他要求可連接不同 USB 主機的應用。

圖 3-3 MSP430F5529 接腳圖

晶片特性:

(a) 低電源電壓範圍:1.8 伏至 3.6 伏

(b) 超低功耗

(c) 頻率:25 兆赫

(d) 閃存: 128 KB

(e) 從待機模式到喚醒狀態需時少於 5 微秒

(f) 16 位 RISC 架構,擴展內存,最高至 25 兆赫系統時鐘,靈活的電源管理系統,統一時鐘系統

(g) 16 位 Timer TAO, Timer_A 附帶五個捕捉/比較寄存器

(h) 16 位 Timer TA1, Timer_A 附帶三個捕捉/比較寄存器

(i) 16 位 Timer TA2, Timer_A 附帶三個捕捉/比較寄存器

表 3-1 MSP430F5529 腳位定義表

腳位名稱	NO.	I/O	說明
P6.4/CB4/A4	1	I/O	GPIO Pin/比較器 B CB4 輸入/ 類比輸入 A4-ADC
P6.5/CB5/A5	2	I/O	GPIO Pin/比較器 B CB5 輸入/ 類比輸入 A5-ADC
P6.6/CB6/A6	3	I/O	GPIO Pin/比較器 B CB6 輸入 類比輸入 A6-ADC
P6.7/CB7/A7	4	I/O	GPIO Pin/比較器 B CB7 輸入/ 類比輸入 A7-ADC
P7.0/CB8/A12	5	I/O	GPIO Pin/比較器 B CB8 輸入/ 類比輸入 A12-ADC
P7.1/CB9/A13	6	I/O	GPIO Pin/比較器 B CB9 輸入/ 類比輸入 A13-ADC
P7.2/CB10/A14	7	I/O	GPIO Pin/比較器 B CB10 輸入/ 類比輸入 A14-ADC
P7.3/CB11/A15	8	I/O	GPIO Pin/比較器 B CB11 輸入/ 類比輸入 A15-ADC

P5.0/A8/VREF+/	9	I/O	GPIO Pin/類比輸入 A8-ADC
VeVREF+			/正極電壓輸出供 ADC 參考/
			外部正極電壓供 ADC 參考
P5.1/A9/VREF-/	10	I/O	• • •
VeVREF-			/負極電壓輸出供 ADC 參考/
ATTOCA			內部負極電壓供 ADC 參考
AVCC1	11		類比電源供應
P5.4/XIN	12	I/O	GPIO Pin/振盪器 XT 輸入端
P5.5/XOUT	13	I/O	GPIO Pin/振盪器 XT 輸出端
AVSS1	14		類比接地供應
P8.0	15	I/O	GPIO Pin
P8.1	16	I/O	GPIO Pin
P8.2	17	I/O	GPIO Pin
DVCC1	18		數位電源供應
DVSS1	19		數位接地供應
VCORE	20		核心穩壓電源輸出(僅限內部使用,無需外部電流負載)
P1.0/TA0CLK/	21	I/O	GPIO Pin/
ACLK			Timer_A0 Clock TACLK 輸入
			/ACLK 輸出
P1.1/TA0.0	22	I/O	GPIO Pin/
			Timer_A0 CCR0A:CCI0A 輸入,
			比較:Out0 輸出
P1.2/TA0.1	23	I/O	GPIO Pin/
			Timer_A0 CCR1A:CCI1A 輸入,
D1 2/FA 0 2	2.4	T/0	比較:Out1 輸出
P1.3/TA0.2	24	I/O	GPIO Pin/
			Timer_A0 CCR2A:CCI2A 輸入, 比較:Out2 輸出
P1.4/TA0.3	25	I/O	GPIO Pin/
11.7/1/10.3	23	1/0	Timer_A0 CCR3A:CCI3A 輸入,
			比較:Out3 輸出
P1.2/TA0.4	26	I/O	GPIO Pin/
			Timer_A0 CCR4:CCI4A 輸入,
			比較:Out4 輸出

P1.2/TA1CLK/	27	I/O	GPIO Pin/
CBOUT			Timer_A1 Clock TACLK 輸入/
CBOCI			比較器B輸出
P1.7/TA1.0	28	I/O	GPIO Pin/
			Timer_A1 CCR0A:CCI0A 輸入,
			比較:OutO 輸出
P2.0/TA1.1	29	I/O	GPIO Pin/
			Timer_A1 CCR1A:CCI1A 輸入,
			比較:Out1 輸出
P2.1/TA1.2	30	I/O	GPIO Pin/
			Timer_A1 CCR2A:CCI2A 輸入,
			比較:Out2 輸出
P2.2/TA2CLK/	31	I/O	
SMCLK			Timer_A1 Clock TACLK 輸入/
			SMCLK 信號輸出
P2.3/TA2.0	32	I/O	GPIO Pin/
			Timer_A2 CCR0A:CCI0A 輸入,
			比較:OutO 輸出
P2.4/TA2.1	33	I/O	
			Timer_A2 CCR1A:CCI1A 輸入,
			比較:Out1 輸出
P2.5/TA2.2	34	I/O	
			Timer_A2 CCR2A:CCI2A 輸入,
			比較:Out2 輸出
P2.6/RTCCLK/	35	I/O	
DMAE0			DMA 外部觸發輸入
P2.7/UCB0STE/	36	I/O	GPIO Pin/USCI_B0 SPI 模式/
UCA0CLK			信號輸入-USCI_A0 SPI 從屬模式
			信號輸出 - USCI_A0 SPI 主模式
P3.0/UCB0SIMO/	37	I/O	
UCB0CSDA			數據 - USCI_B0 I2C 模式
P3.1/UCB0SOMI/	38	I/O	GPIO Pin/ USCI_B0 SPI 模式/
UCB0SCL			I2C 時鐘 - USCI_B0 I2C 模式
P3.2/UCB0TXD/	39	I/O	GPIO Pin/
UCA0STE			信號輸入 - USCI_BO SPI 從模式
			信號輸出 - USCI_BO SPI 主模式
			/從屬發送允許 USCI_A0 SPI 模式
P3.3/UCA0TXD/	40	I/O	GPIO Pin/發送數據 - USCI_A0
UCA0SIMO			UART 模式 /USCI_A0 SPI 模式
			•

P3.4/UCA0CRXD/ UCA0SOMI	41	I/O	GPIO Pin/接收數據 - USCI_A0 UART 模式 /USCI_A0 SPI 模式
P3.5/TB0.5	42	I/O	GPIO Pin/Timer_B0CCR5A: CCI5A 輸入,比較:Out5 輸出
P3.6/TB0.6	43	I/O	GPIO Pin/ Timer_B0 CCR6A:CCI6A 輸入, 比較:Out6 輸出
P3.7/TB0OUTH/ SVMOUT	44	I/O	GPIO Pin/將所有 PWM 數位輸出 設為高阻抗-Timer_B TB0-TB6/ SVM 輸出
P4.0/PM_UCB1STE/ PM_UCA1CLK	45	I/O	GPIO Pin/ USCI_B1 SPI 模式 PM_UCA1CLK / 信號輸入 - USCI_A1 SPI 從模式 信號輸出 - USCI_A1 SPI 主模式
P4.1/PM_UCB1SIMO/ PM_UCB1SDA	46	I/O	GPIO Pin/ USCI_B1 SPI 模式 / I2C 數據 - USCI_B1 I2C 模式
P4.2/PM_UCB1SIMO/ PM_UCB1SCL	47	I/O	GPIO Pin/ USCI_B1 SPI 模式 / I2C 時鐘 - USCI_B1 I2C 模式
P4.3/PM_UCB1CLK/ PM_UCA1STE	48	I/O	GPIO Pin/ 信號輸入 - USCI_B1 SPI 從模式 信號輸出 - USCI_B1 SPI 主模式 /USCI_A1 SPI 模式
DVSS2	49		數位電源供應
DVCC2	50		數位接地供應
P4.4/PM_UCA1TXD/ PM_UCA1SIMO	51	I/O	GPIO Pin/ 發送數據 - USCI_A1 UART 模式 / USCI_A1 SPI 模式
P4.5/PM_UCA1RXD/ PM_UCA1SOMI	52	I/O	GPIO Pin/ 接收數據 - USCI_A1 UART 模式 USCI_A1 SPI 模式
P4.6/PM_NONE	53	I/O	GPIO Pin/預設:無二次函數。
P4.7/PM_NONE	54	I/O	GPIO Pin/預設:無二次函數。

P5.6/TB0.0	55	I/O	GPIO Pin/ Timer_B0CCR0A :CCI0A 輸入,比較:Out0 輸出
P5.7/TB0.1	56	I/O	GPIO Pin/ Timer_B0CCR1A :CCI1A 輸入,比較:Out1 輸出
P7.4/TB0.2	57	I/O	GPIO Pin/Timer_B0CCR2A :CCI2A 輸入,比較:Out2 輸出
P7.5/TB0.3	58	I/O	GPIO Pin/Timer_B0CCR3A :CCI3A 輸入,比較:Out3 輸出
P7.6/TB0.4	59	I/O	GPIO Pin/Timer_B0CCR4A :CCI4A 輸入,比較:Out4 輸出
P7.7/TB0CLK/MCLK	60	I/O	GPIO Pin/ Timer_B0 Clock TACLK 輸入/MCLK 輸出
VCCU	61		USB PHY 接地
PU.0/DP	62	I/O	GPIO Pin/USB 數據終端 DP
PUR	63	I/O	GPIO Pin/USB 上電阻引腳(開路)
PU.1/DM	64	I/O	GPIO Pin/USB 數據終端 DM
VBUS	65		USB LDO 輸入
VUSB	66		USB LDO 輸出
V18	67		USB 穩壓電源
AVSS2	68		類比接地供應
P5.2/XT2IN	69	I/O	GPIO Pin/振盪器 XT1 輸入端
P5.3/XT2OUT	70	I/O	GPIO Pin/振盪器 XT1 輸出端
TEXT/SBWTCK	71	I/O	測試模式引腳 - 選擇四線 JTAG 操作。
PJ.0/TDO	72	I/O	GPIO Pin/ JTAG 數據輸出端
PJ.1/TDI/TCLK	73	I/O	GPIO Pin/ JTAG 數據輸入與 Clock 輸入端
PJ.2/TMS	74	I/O	GPIO Pin/ JTAG 模式選擇
PJ.3/TCK	75	I/O	GPIO Pin/ JTAG Clock
RST/NMI/SBWTDIO	76	I/O	非屏蔽中斷輸入/數據輸入/輸出

P6.0/CB0/A0	77	I/O	GPIO Pin/比較器 B CBO 輸入 比輸入 A0 - ADC
P6.1/CB1/A1	78	I/O	GPIO Pin/比較器 B CB1 輸入 比輸入 A01- ADC
P6.2/CB2/A2	79	I/O	GPIO Pin/比較器 B CB2 輸入 比輸入 A2- ADC
P6.3/CB3/A3	80	I/O	GPIO Pin/比較器 B CB3 輸入 比輸入 A3 - ADC

二、電路製作與量測結果

1. 系統流程圖

圖 4-1 流程圖

2. 人體量測電路圖

第一顆 AD620 因為它具有高的高共模訊號拒斥比(Common-Mode Rejection Ratio, CMRR),此電路多加右腳補償,由 R1 與 R2 將共模電壓引入 OP07CP 裡,由於皮膚上的阻抗很大所以要加上一個較大的電阻,加上電容防止漏電流流進人體,藉此消除人體的雜訊,也使電路穩定,最後一級為非反向的放大器。

圖 4-2 心電量測電路

3. 量測結果

由於人體擷取到的訊號為類比訊號,在送達手機前必先經過一道類比轉數位的手續,而轉換後的訊號仍相當粗糙,所以我們再使用數位濾波將其線條美化,令結果更好看且更容易辨識。在進行人體量測前,我們先使用訊號產生器模擬心電訊號,分別給電路輸入方波和三角波,並擷取類比轉數位和濾波兩階段的波形。

(1) 示波圖量測結果:

(a) 無右腳補償

圖 4-3 示波圖量測結果(無右腳補償)

(b) 有右腳補償

圖 4-4 示波圖量測結果(有右腳補償)

(2)經微處理器量測結果:

(a) ACD測試取樣結果(輸入方波)

圖 4-5 ADC 取樣圖(方波)

(b) ACD測試取樣結果(輸入三角波)

圖 4-6ADC 取樣圖(三角波)

(c) ACD 測試取樣結果(人體量測,輸入無右腳補償)

圖 4-7ADC 取樣圖(人體量測,輸入無右腳補償)

(d) ACD 測試取樣結果(人體量測,有右腳補償)

圖 4-8ADC 取樣圖(人體量測,輸入有右腳補償)

(e) 數位濾波量測結果(輸入方波)

圖 4-9 濾波取樣圖(方波)

(f) 數位濾波量測結果(輸入三角波)

圖 4-10 濾波取樣圖(三角波)

(g) 數位濾波量測結果(人體量測,輸入無右腳補償)

圖 4-11 數位濾波量測結果(人體量測,輸入無右腳補償)

(h) 數位濾波量測結果(人體量測,有右腳補償)

圖 4-12 數位濾波量測結果(人體量測,有右腳補償)

(3) 經藍芽傳至智慧型手機顯示量測結果:

圖 4-13 經藍芽傳至智慧型手機顯示量測結果

4. 示波器顯示結果

接著我們進行類比電路的測試,在麵包版上接好電路後由測試者 貼上電極貼片當作訊號輸入,電源由 3V 電池供應,輸出接至示波器, 結果如圖 4-8 所示。我們可以清楚看到一個正常心電圖應該出現的波形, 且我們使用 layout 軟體製作電路板,可大大減少電路的體積,更符合 居家用心電量測儀器的目標。

圖 4-14 實際測量位置

圖 4-15 實際測得波形

5. 手機端顯示結果

最終,我們的目的就是要讓使用者能在手機上觀看自己的心電圖,但是直接由電路擷取而來的訊號屬於類比訊號,因此仍需藉由 MSP430 微控器來進行類比轉數位的動作,而藍芽模塊則是負責將轉換後的訊號傳至手機,這三者便組成了我們的心電量測裝置,之後配合手機程式,便可以得到如圖 4-9 之顯示結果。日後使用透過本裝置以及智慧型手機即可快速觀看自身的心電圖。

圖 4-16 實體裝置量測圖

圖 4-17 手機端顯示畫面