Matriz de Adjacência

Definição: Dado um grafo simples G=(V,E) com n vértices e n arestas, a matriz de adjacêcia de G é uma matriz $n \times n$, denotada por:

$$A=(a_{ij}), \ \ 1\leq i,j\leq n$$

Onde a_{ij} 's satisfazem:

 $\begin{cases} 1 \ existe \ aresta \\ 0 \ n\~{a}o \ existe \ a. \end{cases}$

	0	1	2	3	4	5
0	0	1	1	1	1	0
1	1	0	0	1	0	0
2	1	0	0	1	1	1
3	1	1	1	0	0	1
4	1	0	1	0	0	0
5	0	0	1	1	0	0

Propriedades Básicas:

- O grau de cada vértice é a soma da coluna (ou linha) correspondente.
- Em grafos NÃO-DIRECIONADOS a matriz de adjacência é simétrica
- Em grafos SIMPLES (não tem loops), a diagonal da matriz de adjacência é 0.

Loops

Def: Para G=(V,E) (não necessariamente simples) de n vértices, a matriz de adjacência $A=(a_{ij})$ de G é tal que:

 a_{ij} = quantidade de arestas entre v_i e v_j onde, quando i=j é considerado que cada loop conta 2 vezes.

Teorema para quantidade de caminhos

Se A é a matriz de adjacência de um grafo simples G, então a entrada ij de A^n é a quantidade de caminhos de v_i a v_j , onde $i \neq j$ e $n \in \mathbb{N}$ (arbitrário)

Matriz de Incidência

Definição: Seja G um grafo com n vértices e m arestas, a matriz de incidência de G é a matriz $n \times m$, denotada por:

Propriedades Básicas:

- Cada coluna soma 2, exceto as colunas correspondentes aos laços que somam 1.
- Se o grafo não possui laços então a soma das entradas de cada linha coincide com o grau do vértice correspondente.

Grafos desconexos

Se G é desconexo, então existe um ordenamento dos vértices G tal que a matriz de incidência de G tem uma estrutura de bloco da forma:

