Classification Of Web Application Attacks

Talha Osman Saraç 150118006 Mehmet Akgün 150119061 Serdar Alsan 150120034 Mehmet Alıcı 150118060

Dataset

CSIC (Spanish National Research Council) 2010 Web Application Attacks

csic_database.csv (29.54 MB)

Detail Compact Column

About this file

This file does not have a description yet.

Δ	=	△ Method	=	≜ content-type	=	≜ connection	=	∆ lenght	=	△ content	=	# classification	=	⇔ URL	=
Normal	59%	GET	71%	[null]	71%	close	71%	[null]	71%	[null]	71%			http://localhost:80	4%
Anomalous	41%	POST	29%	application/x-ww	29%	Connection: close	29%	Content-Length: 4	2%	B2=Vaciar+carrito	2%			http://localhost:80	4%
		Other (397)	1%					Other (16920)	28%	Other (16931)	28%	0	1	Other (56202) 9	92%
Normal		GET				close						0		http://localhost:8 0/tienda1/index.js HTTP/1.1	
Normal		GET				close						0		http://localhost:8 0/tienda1/publico/ adir.jsp? id=3&nombre=Vino+R ja&precio=100&cant ad=55&B1=A%	/an Rio
Normal		POST		application/x-www form-urlencoded	v –	Connection: clos	se	Content-Length:	68	id=3&nombre=Vine ja&precio=100&c ad=55&B1=A%F1ad +carrito	antid	0		http://localhost:8 0/tienda1/publico/ adir.jsp HTTP/1.1	/an
Normal		GET				close						0		http://localhost:8	

Distribution of the dataset

Normal (0): 36,000 entries Anomalous (1): 25,065 entries

Feature extraction

Using Features from URLs as zeros and ones

has_index_jsp	has_percent_login	has_anadir_jsp	has_entrar_login	has_pagar	has_menum	has_titulo	has_miembros	has_estilos	has_imagenes	has_caracter
1	0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	1	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	1	0	0	0	0	0
0	0	0	0	0	0	1	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	1	0	1	0
0	0	0	0	0	0	0	1	0	1	0
0	0	0	0	0	0	0	1	0	1	0

Gaussian Naive Bayes

precision (macro avg)	recall (macro avg)	f1-score (attack)	support (all data)
0.80	0.51	0.05	18320

Decision tree

precision (macro avg)	recall (macro avg)	f1-score (attack)	support (all data)
0.73	0.72	0.70	18320

Logistic Regression

precision (macro avg)	recall (macro avg)	f1-score (attack)	support (all data)
0.64	0.64	0.58	18320

Random Forest

precision (macro avg)	recall (macro avg)	f1-score (attack)	support (all data)
0.73	0.72	0.70	18320

Gradient Boost

precision (macro avg)	recall (macro avg)	f1-score (attack)	support (all data)
0.72	0.71	0.69	18320

Confusion Matrix Analysis LSTM (character-level LSTM-based binary classification model)

precision (macro avg)	recall (macro avg)	f1-score (attack)	support (all data)
0.84	0.85	0.83	18320

Performance Metrics

Comparison of Model Performance Metrics for Anomaly Classification

Model	Precision (macro avg)	Recall (macro avg)	F1-score (Anomaly)
Gaussian Naive Bayes	0.8	0.51	0.05
Logistric Regression	0.64	0.64	0.58
Random Forest	0.73	0.72	0.70
Gradient Boost	0.72	0.71	0.69
LSTM (Character Level)	0.84	0.85	0.83