

Multi-Path RDMA

Elad Raz Mellanox Technologies

Agenda

- Motivation
- Introducing Multi-Path RDMA
- Design
- Status and initial results
- Next steps
- Conclusions

MP-RDMA Motivation (1)

3

- Failovers and High Availability Support
- Bandwidth Aggregation
- L3 datacenter support

MP-RDMA Motivation (2)

Transparent migration

What is Multi-Path RDMA?

MP-RDMA Operation

MP-RDMA Comparison

	Automatic Path Migration	RoCE-LAG	MP-RDMA
Multi-Port failover	✓	✓	✓
Bandwidth aggregation	✓	✓	✓
Application agnostic		✓	✓
L3 session			✓
Multi-device failover			•
Migration support			✓

MP-RDMA and MP-TCP

	МР-ТСР	MP-RDMA
MP Messages	TCP options	CMA MADs (private data)
Address management	Add/remove addresses	Add/remove CMA address
Flow management	Add/remove TCP sub-flows	Establish/migrate/teardown QPs
Communication endpoint	TCP socket	MP RDMA device
Data sequencing	Byte-stream divided between sub-flows Flow + session based sequencing	QP and actual HW WQEs (performance)
Sub-flow address combinations	Any IP interface to any peer IP interface, subject to middle-boxes (e.g., firewalls, NAT)	Any RDMA addressing to any peer RDMA addressing, subject to the same Technology (IB, RoCE, iWARP)

MP-RDMA Design

- User/kernel mp-rdma driver
 - Device instance hosting MPcapable resources
 - Implements resource virtualization and connection failover
 - Uses underlying physical devices transparently
- RDMACM/CMA support
 - MP capability negotiation

Policies

 Active backup QP1 QP1' **RDMA RDMA** QP2 QP2' Dev 0 Dev 1 QP3 QP3' Load Balancing **QP40** QP8 **RDMA RDMA** QP1 **QP93** Dev 0 Dev 1 **QP74** QP4 Efficiency **MR16 RDMA** QP82 **QP61** Dev 0 QP1 **SRQ13 CQ42** QP2

Virtual Namespaces

Resource Creation

Data Path

14

- Translate MRs:
 - ibv_post_send
 - ibv_post_recv
- Translate QPs:
 - ibv_poll_cq
- Monitor WQs:
 - PSN
 - Completed

Status and Initial Results

- User-space driver progressing nicely
 - Resource management
 - Connection management
 - Failover
 - Data path for RC send-receive operations
- Encouraging initial results

Next Steps

- Kernel MP-RDMA driver and connection model
- Dynamic device removal notifications
- RDMA and Atomic support
- Datagram and Multicast support
- Consider future standardization
 - IBTA CM extensions
 - RFC
- Open-source the code

Conclusions

- MP-RDMA solves multiple requirements
 - Multi-devices failovers
 - Transparent BW aggregation
 - Transparent RDMA migration
 - Multi-homed hosts
- Modeled over MP-TCP
- Promising initial results

Thank You

