Simulazione di Elaborazione di segnali e immagini

Università degli Studi di Verona

15 Gennaio 2021

1 Esercizio

Siano $x\left(t\right)$ e $y\left(t\right)$ due segnali di durata indefinita i cui spettri analitici $X\left(\mu\right)$ e $Y\left(\mu\right)$ sono rappresentati in figura 1 e figura 2 rispettivamente.

Descrivere analiticamente, nel tempo ed in frequenza i segnali $X(\mu)$ ed $Y(\mu)$.

Inoltre, descrivere analiticamente e graficamente, in frequenza, i segnali a(t), b(t), c(t), d(t), e(t) ottenuti come descritto nel sistema in figura 3.

Fig.3

2 Esercizio

Sia $g\left(t\right)$ un segnale di durata indefinita la cui funzione nel tempo è definita come:

$$g\left(t\right)=20\mathrm{sinc}\left(10t\right)+30\mathrm{sinc}\left(30t\right)e^{-j2\pi45t}+30\mathrm{sinc}\left(30t\right)e^{j2\pi45t}$$

Descrivere analiticamente e graficamente, in frequenza, il segnale $G(\mu)$.

Inoltre, descrivere:

- Analiticamente, in frequenza e nel tempo
- Graficamente, in frequenza

Le elaborazioni a cui il segnale g(t) è sottoposto se ad esso vengono applicate in sequenza le operazioni schematizzate nel sistema sottostante.

3 Esercizio

Siano $x\left(t\right)$ e $h\left(t\right)$ i due segnali nel dominio continuo del tempo raffigurati in figura 4.

- Si descriva analiticamente e graficamente il segnale $y\left(t\right)$ ottenuto eseguendo la convoluzione $y\left(t\right)=x\left(t\right)*h\left(t\right);$
- Si raffiguri graficamente il segnale $w\left(t\right)=\Pi\left(\frac{t-1.5}{3}\right)-y\left(t\right)$

Facendo attenzione in entrambi i casi ad indicare attentamente tempo di inizio e fine del segnale, e il suo sviluppo nelle ordinate.

4 Esercizio

Eseguire l'operazione di equalizzazione della seguente matrice 4×4 :

0	0	1	3
1	0	4	5
7	2	0	6
7	4	7	7