PREPA INTERNATIONALE DEPARTEMENT DE MATHEMATIQUES

Classe : **1ère Année** Année académique : **2020-2021**

ANALYSE Durée : 1 heure

(Samedi 15 mai 2021)

Par Dr Hugue Tchantcho

Exercice 1/5points

L'exercice comporte 5 affirmations. Pour chaque affirmation, répondre en cochant uniquement la case par "VRAI" ou "FAUX" dans la grille-réponse : réponse juste = 1pt, mauvaise réponse = -0,5pt et sans réponse = 0pt.

Soit la suite (I_n) définie par $I_n = \int_0^1 \frac{1}{(1+x^2)^n} dx$

- **Q1** La suite (I_n) est une suite strictement croissante
- **Q2** Pour tout $n \in \mathbb{N}$, on a $I_{n+1} = \frac{1}{n2^{n+1}} + \frac{2n-1}{2n}I_n$
- **Q3** On a $I_3 = \frac{3\pi}{32} \frac{1}{4}$
- **Q4** Pour tout $n \in \mathbb{N}$, on a $\frac{1}{2^n} \le I_n \le 1$
- **Q5** La suite (I_n) est une suite convergente

GRILLE-REPONSE (reproduire sur la feuille de composition puis cocher sans surcharge)

Q1	Q2	Q3	Q4	Q5

Exercice 2/5points

On considère la fonction numérique f de la variable réelle x, définie par $f(x) = \arctan \sqrt{\frac{1-\sin x}{1+\sin x}}$.

- 1) Déterminer l'ensemble de définition D_f de f.
- 2) Montrer que f est 2π –périodique et que $\forall x \in D_f, f(\pi x) = f(x)$. **0,75pt**
- 3) a) Montrer que $\forall x \in]-\frac{\pi}{2}, \frac{\pi}{2}], \frac{1-\sin x}{1+\sin x} = \tan^2(\frac{x}{2} \frac{\pi}{4}).$ 1pt
 - b) En déduire que $\forall x \in]-\frac{\pi}{2}, \frac{\pi}{2}], f(x) = \frac{\pi}{4} \frac{x}{2}.$ **0,75pt**
- c) Montrer que $\forall x \in [\frac{\pi}{2}, \frac{3\pi}{2}], f(x) = \frac{x}{2} \frac{\pi}{4}.$ 0,75pt
- 4) Représenter graphiquement *f*. **0,75pt**