India

National Olympiad

1992

- 1 In a triangle ABC, $\angle A = 2 \cdot \angle B$. Prove that $a^2 = b(b+c)$.
- 2 If $x, y, z \in \mathbb{R}$ such that x + y + z = 4 and $x^2 + y^2 + z^2 = 6$, then show that each of x, y, z lies in the closed interval $\left[\frac{2}{3}, 2\right]$. Can x attain the extreme value $\frac{2}{3}$ or 2?
- $\boxed{3}$ Find the remainder when 19^{92} is divided by 92.
- 4 Find the number of permutations $(p_1, p_2, p_3, p_4, p_5, p_6)$ of 1, 2, 3, 4, 5, 6 such that for any $k, 1 \le k \le 5$, (p_1, \ldots, p_k) does not form a permutation of $1, 2, \ldots, k$.
- Two circles C_1 and C_2 intersect at two distinct points P, Q in a plane. Let a line passing through P meet the circles C_1 and C_2 in A and B respectively. Let Y be the midpoint of AB and let QY meet the circles C_1 and C_2 in X and Z respectively. Show that Y is also the midpoint of XZ.
- 6 Let f(x) be a polynomial in x with integer coefficients and suppose that for five distinct integers a_1, \ldots, a_5 one has $f(a_1) = f(a_2) = \ldots = f(a_5) = 2$. Show that there does not exist an integer b such that f(b) = 9.
- 7 Let $n \geq 3$ be an integer. Find the number of ways in which one can place the numbers $1, 2, 3, \ldots, n^2$ in the n^2 squares of a $n \times n$ chesboard, one on each, such that the numbers in each row and in each column are in arithmetic progression.
- 8 Determine all pairs (m,n) of positive integers for which $2^m + 3^n$ is a perfect square.
- 9 Let A_1, A_2, \ldots, A_n be an n-sided regular polygon. If $\frac{1}{A_1 A_2} = \frac{1}{A_1 A_3} + \frac{1}{A_1 A_4}$, find n.
- 10 Determine all functions $f: \mathbb{R} [0, 1] \to \mathbb{R}$ such that

$$f(x) + f\left(\frac{1}{1-x}\right) = \frac{2(1-2x)}{x(1-x)}.$$