## Rapport:

# Conception d'un Système Automatisé Mise en oeuvre Step7 / FluidSim

Projet: Station de Voitures Automatisée

#### Réalisé par:

- ELMADI Choaib
- ELHAZMIRI Ayoub

Filière: SEECS - 1

#### **Encadré par:**

• M. A. TAJER

#### I. Explication du projet:

L'idée principale est de développer un système automatisé pour réguler efficacement le flux de véhicules entrant et sortant d'une station. L'objectif principal est d'améliorer l'efficacité et de réduire les interventions manuelles, en offrant une solution pratique pour la gestion des stations de voitures.

#### II. Cahier de charge:

Le projet vise à concevoir une station de gestion du flux de voitures entrant et sortant d'une station. Une représentation globale du système est décrite ci-dessous.



Le système est constitué des éléments suivants:

- Une barrière d'entrée controllée par un vérin **M1**. Les commandes du vérin sont **M1+** et **M1-** et ses positions sont **eb** et **eh**.
- Une barrière de sortie controllée par un vérin M2. Les commandes du vérin sont M2+ et
   M2- et ses positions sont sb et sh.
- Deux détecteurs de présence **e1** et **e2** à l'entrée.
- Deux détecteurs de présence **s1** et **s2** à la sortie.
- Deux lampes **Lev** et **Ler** à l'entrée pour visualiser la possibilité d'entrer à la station. La lampe verte **Lev** est allumée si la barrière est ouverte en totalité, et la lampe rouge **Ler** est allumée si la barrière n'est pas ouverte ou la station est pleine.
- Deux lampes **Lsv** et **Lsr** à la sortie pour visualiser la possibilité de sortir de la station. La lampe verte **Lsv** est allumée si la barrière est ouverte en totalité, et la lampe rouge **Lsr** est allumée si la barrière n'est pas ouverte.

## III. Cycle de fonctionnement:

- Les voitures arrivent à l'entrée de la station.
- Une fois une voiture est détectée par **e1**, à condition que **M1** est dans la position **eh** et à condition que la station n'est pas pleine, le vérin **M1** va à la position **eb** par l'action **M1**-.
- La lampe **Ler** est initialement activée. Maintenant, elle est désactivée et la lampe **Lev** est activée. Une voiture entre.
- Le capteur **e2** détecte l'entrée d'une voiture. **Lev** est désactivée et **Ler** est activée. **M1** va à la position **eh** par l'action **M1+**. Le compteur des voitures entrées est incrémenté.
- Meme logique à la sortie de la station, cette fois, le compteur est décrémenté à chaque sortie de voiture.

On considère qu'on a un bouton **dcy** pour commencer le cycle.

## IV. Conception du système:

#### 1. Les entrées et les sorties:

Les entrées: Les sorties:

Bouton DCY Les vérins: m1+, m1-, m2+, m2-

Capteurs de position: e1, e2, s1, s2 Les lampes: Ler, Lev, Lsr, Lsv

Capteurs de position: eb, eh, sb, sh

#### 2. Les grafcets:



## 3. Circuit sur FluidSim:

\* FluidSim In: (Recevoir les commandes)



## \* FluidSim Out: (Envoyer les commandes)



\* Les vérins: (Visualiser les changements du système)



#### et voici le circuit final:



## 4. Programmation sur Step7:

## \* Mnémoniques:

|    | Etat | Mnémonique A     | Opé | rande | Type de do | Commentaire                                    |
|----|------|------------------|-----|-------|------------|------------------------------------------------|
| 1  | Liui | btn arret        | E   | 0.1   | BOOL       | Arreter le cycle                               |
| 2  |      | btn dcy          | E   | 0.0   | BOOL       | Commencer le cycle                             |
| 3  |      | COMPLETE RESTART | ОВ  | 100   | OB 100     | Complete restart                               |
| 4  |      | e1               | E   | 0.4   | BOOL       | Detection de voiture en entrée (à l'exterieur) |
| 5  |      | e2               | E   | 0.5   | BOOL       | Detection de voiture en entrée (à l'interieur) |
| 6  |      | eb               | E   | 0.6   | BOOL       | Vérin d'entrée à la position basse             |
| 7  |      | eh               | Е   | 0.7   | BOOL       | Vérin d'entrée à la position haute             |
| 8  |      | ler              | Α   | 0.5   | BOOL       | Lampe d'entrée rouge                           |
| 9  |      | lev              | Α   | 0.4   | BOOL       | Lampe d'entrée verte                           |
| 10 |      | Isr              | Α   | 0.7   | BOOL       | Lampe de sortie rouge                          |
| 11 |      | Isv              | Α   | 0.6   | BOOL       | Lampe de sortie verte                          |
| 12 |      | m1-              | Α   | 0.1   | BOOL       | Reculer le vérin d'entrée                      |
| 13 |      | m1+              | Α   | 0.0   | BOOL       | Avancer le vérin d'entrée                      |
| 14 |      | m2-              | Α   | 0.3   | BOOL       | Reculer le vérin de sortie                     |
| 15 |      | m2+              | Α   | 0.2   | BOOL       | Avancer le vérin de sortie                     |
| 16 |      | s1               | E   | 0.2   | BOOL       | Detection de voiture en sortie (à l'interieur) |
| 17 |      | s2               | E   | 0.3   | BOOL       | Detection de voiture en sortie (à l'exterieur) |
| 18 |      | sb               | E   | 1.0   | BOOL       | Vérin de sortie à la position basse            |
| 19 |      | sh               | E   | 1.1   | BOOL       | Vérin de sortie à la position haute            |
| 20 |      | x0               | M   | 0.0   | BOOL       |                                                |
| 21 |      | x1               | M   | 0.1   | BOOL       |                                                |
| 22 |      | x100             | M   | 0.2   | BOOL       |                                                |
| 23 |      | x101             | M   | 0.3   | BOOL       |                                                |
| 24 |      | x102             | M   | 0.4   | BOOL       |                                                |
| 25 |      | x103             | M   | 0.5   | BOOL       |                                                |
| 26 |      | x200             | M   | 0.6   | BOOL       |                                                |
| 27 |      | x201             | М   | 0.7   | BOOL       |                                                |
| 28 |      | x202             | M   | 1.0   | BOOL       |                                                |
| 29 |      | x203             | М   | 1.1   | BOOL       |                                                |
| 30 |      | x300             | М   | 1.2   | BOOL       |                                                |
| 31 |      | x301             | М   | 1.3   | BOOL       |                                                |
| 32 |      | x302             | М   | 1.4   | BOOL       |                                                |
| 33 |      | x400             | М   | 1.5   | BOOL       |                                                |
| 34 |      | x401             | М   | 1.6   | BOOL       |                                                |
| 35 |      | x402             | M   | 1.7   | BOOL       |                                                |

## \* Traduction du grafcet de controle:

```
FC5 : Grafcet de controle
Traduction du grafcet de controle
⊞ Réseau 1 : Commencer le cycle
                 E0.0
               Commencer
    MO.0
               le cycle
                                           M0.1
     "x0"
               "btn dey"
                                           "x1"
                                           -(s)-----|
                                           MO.0
                                           "x0"
                                           -( R)-----|
☐ Réseau 2: Arreter le cycle
                 E0.1
                Arreter
               le cycle
                                           MO.0
    MO.1
                "btn
     "x1"
                arret"
                                            "x0"
                                           -(s)-----|
                                           M0.1
                                           "x1"
                                           -(R)-----|
```

\* Merci de consulter la simulation (video):

# Merci pour votre attention