গুণগত রুমায়ন

- পরমাণু ও তার কণিকাসমূহ
- কোয়ান্টাম সংখ্যা
- ইলেকট্রন বিন্যাসের নীতি
- রাদারফোর্ড পরমাণু মডেল
- বোর পরমাণু মডেল
- তড়িৎ চুম্বকীয় বর্ণালি ²⁰¹⁸
- দ্রাব্যতা
- দ্রাব্যতার গুণফল
- সমআয়ন প্রভাব
- আয়ন শনাক্তকরণ

যে টপিকে যেতে চান সে টপিকে Click করুন

পরমাণু ও তার মূল কণিকাসমূহ

প্রমাণুর মূল কণিকা: যে সকল ক্ষুদ্র কণিকা দ্বারা প্রমাণু গঠিত তাদের মূল কণিকা বলে।
মূল কণিকা ৩ প্রকার। যথা-

- 1. স্থায়ী → ইলেকট্রন, প্রোটন, নিউট্রন
- 2. অস্থায়ী → পাইওন, মিউওন, নিউট্রিনো, অ্যান্টি নিউট্রিনো, মেসন, পজিট্রন
- 3. क्रांकिंग्रे क्रिका \to ডिউটেরন, আলফা (ভারী ক্রিকা)
- > ইলেকট্রন, প্রোটন ও নিউট্রনের মধ্যে তুলনা:

বৈশিষ্ট্য	ইলেকট্রন	প্রোটন	নিউট্রন
প্রতীক	_1e বা, e -	p বা, H ⁺	¹ 0n বা, n
প্রকৃত ভর	$9.11 \times 10^{-31} kg$	$1.672 \times 10^{-27} \ kg$	$1.675 \times 10^{-27} \ kg$
প্রকৃত চার্জ	$-1.6 \times 10^{-19} C/$ $-4.8 \times 10^{-10} esu$	$1.6 \times 10^{-19} C/$ $4.8 \times 10^{-10} esu$	0
প্রোটনের তুলনায় ভর	1 1837	1	1

আবিষ্কারক ইলেকট্রন → জে জে থমসন

প্রোটন → রাদারফোর্ড

নিউট্রন → চ্যাডউইক

মনে রাখার টেকনিক → ইট পড়ে নিচে

<u>আলফা কণিকা:</u> হিলিয়াম পরমাণু হতে দুটি ইলেকট্রন বের করে নিলে যে দ্বিধনাত্মক হিলিয়াম নিউক্লিয়াস অবশিষ্ট থাকে তাকে α কণা বলে।

lpha কণার সংকেত ${}^4_2He^{2+}$ ।

মূচীপত্রে ফেরত

α কণার বৈশিষ্ট্য:

- 1. এটি যৌগিক বা কম্পোজিট কণা।
- 2. এর গতি আলোর গতির 10 গুণ। যা $1.0 \times 10^7~ms^{-1}$ হতে $2.5 \times 10^7~ms^{-1}$ হতে পারে।
- $3. \ \alpha$ কণায় দুটি প্রোটন ও নিউট্রন থাকে।
- $\mathbf{4}$. α কণার আপেক্ষিক ভর $\mathbf{4}$. যা H পরমাণুর চার গুণ।
- 5. ভর বেশি হওয়ায় ভেদন ক্ষমতা কম।
- $6. \alpha$ কণার আপেক্ষিক চার্জ +2.
- 7. চৌম্বক ক্ষেত্র দ্বারা lpha কণার বিচ্যুতি ঘটে।
- 8. α কণার প্রকৃত ভর $6.69 \times 10^{-24} g$ । যা ইলেকট্রনের ভরের 7500 গুণ বেশি। রাদারফোর্ড এর মতে 7000 গুণ।
 - ≽ আইসোটোপ → প্রোটন সংখ্যা সমান।
 - ➤ আইসোবার → ভর সংখ্যা সমান।
 - ৯ আইসোটোন → নিউট্রন সংখ্যা সমান।
 - আইসো ইলেকট্রনিক → ইলেকট্রন সংখ্যা সমান।

আইসোটোপ এর ব্যবহার:

- $1._{27}^{60}Co$ ightarrow ক্যান্সার কোষ ধ্বংস
- $2. {}^{44}_{22}Ti \rightarrow$ রক্তের পরিমাণ নির্ণয়
- $3. {}^{131}_{53}I \rightarrow \overline{
 m D}$ উমার এর চিকিৎসা
- ও থাইরয়েড চিকিৎসা
- $4. {}^{32}_{15}P \rightarrow$ রক্ত স্বল্পতা চিকিৎসা
- 5. Ra 226 → ক্যান্সার নির্ণয়

- $7. \ \mathrm{Tc} 99 \
 ightarrow \ \mathrm{মস্তিঙ্কের টিউমার}$
- $8.~\mathrm{Cs}-137~
 ightarrow$ মৃত্তিকা বিনষ্ট ও ধ্বংসের উৎস
 - 9.~Ni-63
 ightarrow লাইট সেন্সর
 - 10.~U-238 → পাথরের বয়স নির্ণয়
 - $11. Pu 238 \rightarrow$ হার্টে পেসমেকার বসাতে
- 6. P 32 ও C 14 → DNA ও RNA গঠন

- Na ও Au এর একটি মাত্র আইসোটোপ
- $m_e = 9.11 \times 10^{-28} g = 9.11 \times 10^{-31} kg$ $m_p = 1.673 \times 10^{-24} g = 1.673 \times 10^{-27} kg$ $m_p = 1.675 \times 10^{-24} g == 1.675 \times 10^{-27} kg$
- হাইড্রোজেনের তিনটি আইসোটোপঃ ${}^1_1H, {}^2_1H, {}^3_1H$
- C → 3
- 0 → 3
- $Cl \rightarrow 2$
- Ne \rightarrow 2
- প্রাকৃতিক তেজস্ক্রিয় আইসোটোপ → Rn(86), Fr(87), Ra(88), U(92)
- কৃত্রিম তেজস্ক্রিয় আইসোটোপ → Tc(43), Pm(61), Np(93), Og(118)
- α রশ্মি বিকিরণে প্রোটন সংখ্যা 2 এবং ভর সংখ্যা 4 হ্রাস পায়।
- β রশ্মি বিকিরণে প্রোটন সংখ্যা 1 এবং কিন্তু ভর সংখ্যা ঠিক থাকে।
- γ রশ্মির ভর ও তড়িৎ চার্জ থাকে না; এটি তড়িৎ চুম্বকীয় রশ্মি।

নিউট্রন
$$ightarrow$$
 $^{1}_{0}$ n, পজিট্রন $ightarrow$ $^{0}_{-1}$ e

কোয়ান্টাম সংখ্যা

- 1. প্রধান কোয়ান্টাম সংখ্যা n o প্রধান শক্তিন্তর
- 3. চৌম্বকীয় কোয়ান্টাম সংখ্যা m oঅরবিটাল এর দিক s

 - d -2 -1 0 1 2
- 4. ঘূর্ণন কোয়ান্টাম সংখ্যা s ightarrow প্রথমটি $+\frac{1}{2}$, দ্বিতীয়টি $-\frac{1}{2}$ ।
- m ও s এর মানগুলোর পর্যায় ক্রম নিয়ে একটু ঝামেলা আছে। এখানে সবচেয়ে বেশি গ্রহণকৃত ক্রমটি দেখানো হয়েছে।
 - 1. Cu(29) এর সর্ববহিঃস্থ কক্ষের ইলেকট্রনটির চারটি কোয়ান্টাম সংখ্যার মান লিখ:

উ: $Cu(29) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^1$

 \therefore সর্ববহিঃস্থ কক্ষের ইলেকট্রনটি $4s^1$ এ প্রবেশ করে।

$$\frac{1}{4s^1}$$

$$\therefore n = 4, l = 0, m = 0, s = +\frac{1}{2}$$

2. ক্লোরিন এর 14th electron টির চারটি কোয়ান্টাম সংখ্যার মান লিখ:

ਢ:
$$Cl(17)$$
 → $1s^2$ $2s^2$ $2p^6$ $3s^2$ $3p^5$

14~ नং e^- টি $3p^5$ এর মধ্যে অবস্থিত।

3p_x 3p_y 3p_z

14 নং এর জন্য

$$n = 3$$
, $l = 1$, $m = 0$, $s = +\frac{1}{2}$

সূর্চীপত্রে ফেরত

- > কোয়ান্টাম সংখ্যার কোন সেট সম্ভব নির্ণয়ের জন্য Special Tips:
- $1. \ l$ এর মান n এর মানের চেয়ে সবসময় ছোট হবে।
- $2.\ m$ এর মান l এর মানের চেয়ে বড় হতে পারে না (সমান হতে পারে)।
- 3. s এর মান দুটি $+\frac{1}{2}, -\frac{1}{2}$ ।

for MCQ

- ho n তম কক্ষপথে e^- ধারণ ক্ষমতা $=2n^2$ টি।
- ightarrow n তম কক্ষপথে অরবিটাল সংখ্যা $=n^2$ টি।
- ho n তম কক্ষপথে m এর Total মান আছে $=n^2$ টি।
- ightarrow l এর মান: 0 থেকে n-1 পর্যন্ত।
- m এর মান: 0 সহ ±l পর্যন্ত।
- ightrightarrow উপশক্তিস্তরে মোট e^- ধারণ ক্ষমতা =2(2l+1)।
- ightarrow উপশক্তিস্তরে মোট অরবিটাল সংখ্যা =2l+1।
- ho SINCE 2018 ho 1টি অরবিটাল e^- ধারণ ক্ষমতা = 2টি।

'খ' নং এর জন্য একটি গুরুত্বপূর্ণ প্রশ্নের টপিক হলো "কোন অরবিটাল সম্ভব, কোনটি সম্ভব নয়।" যেমন: 2d ও 3f এর মধ্যে কোনটি সম্ভব?

> কোয়ান্টাম সংখ্যার সাহায্যে ইলেকট্রন সংখ্যা হিসাব:

1	কোয়ান্টাম খ্যা (n)	কো	হকারী য়ান্টাম থ্যা (<i>l</i>)	ম্যাগনেটিক কোয়ান্টাম সংখ্যা (m)	অরবি টাল সংখ্যা	স্পিন কোয়ান্টাম সংখ্যা (s)		ক্ট্রন ংখ্যা
মান	শক্তিস্তর	মান	উপস্তর	মান			উপ স্তর	প্রধান স্তর
		0	3 <i>s</i>	0	1	$+\frac{1}{2},-\frac{1}{2}$	2	
3	M-শেল	1	3 <i>p</i>	-1,0,+1	3	$3\left(+\frac{1}{2},-\frac{1}{2}\right)$	6	18
		2	3 <i>d</i>	-2, -1, 0, +1, +2	5	$5\left(+\frac{1}{2},-\frac{1}{2}\right)$	10	

অরবিটালের আকৃতি:

ightrightarrows S
ightarrowগোলাকৃতি

- ho p o ডাম্বেল আকৃতি
- ho d o ডাবল ডাম্বেল আকৃতি
- ightharpoonup f
 ightarrowজটিল

रेलकप्रेन विनाएमत र्नेजिः

1. আউফবাউ নীতি:

পরমাণুতে বিদ্যমান ইলেকট্রনগুলো প্রথমে সর্বনিম্ন শক্তিসম্পন্ন অরবিটাল পূর্ণ করবে এবং পরে ক্রমান্বয়ে উচ্চতর শক্তিসম্পন্ন অরবিটালে প্রবেশ করে।

ightharpoonupশক্তি মাত্রা নির্ণয় (n+l)

(n+l) এর মান সমান হলে যার n ছোট সেখানে আগে প্রবেশ করবে।

প্রশ্ন: 3d, 4s, 5p, 4f, 6s, 4p অরবিটালগুলোকে শক্তির উচ্চক্রমে সাজাও।

$$3d \rightarrow n + l \rightarrow 3 + 2 = 5$$

$$4s \rightarrow n + l \rightarrow 4 + 0 = 4$$

$$5p \rightarrow n + l \rightarrow 5 + 1 = 6$$

$$4f \rightarrow n + l \rightarrow 4 + 3 = 7$$

উচ্চক্রম: 4s > 3d > 4p > 5p > 6s > 4f

$$6s \rightarrow n + l \rightarrow 6 + 0 = 6$$

$$4p \rightarrow n + l \rightarrow 4 + 1 = 5$$

মূর্চীপত্রে ফেরত

'খ' নং এর জন্য: K এর 19 তম ইলেকট্রনটি 3d তে না গিয়ে 4s এ যায় কেন?

Special Note: ইলেকট্রন প্রবেশের সময় আউফবাউ নীতি অনুসারে প্রবেশ করে কিন্তু বের হওয়ার সময় প্রথমে সর্বশেষ শক্তিস্তর থেকে বের হয়।

> আউফবাউ নীতির ব্যতিক্রম বা সাধারন ইলেকট্রন বিন্যাসের ব্যাতিক্রম: (মোট ১২টি মৌল)

Cr(24), Cu(29), Nb(41), Mo(42), Ru(44), Pd(46), Ag(47), La(57), W(74), Au(79), Ac(89), Th(90)

2. হুন্ডের নীতি:

সমশক্তি সম্পন্ন বিভিন্ন অরবিটালে ইলেকট্রনসমূহ এমনভাবে প্রবেশ করে যেন তারা সর্বাধিক পরিমাণে অযুগ্ম অবস্থায় থাকতে পারে।

3. পলির বর্জন নীতি:

একই পরমাণুতে যেকোনো দুটি ইলেকট্রনের জন্য চারটি কোয়ান্টাম সংখ্যার মান কখনও একই হতে পারে না।

	আবিষ্কারক	মান	তাৎপর্য
প্রধান কোয়ান্টাম সংখ্যা	বোর	<i>n</i> = 1,2,3	আকার (শক্তিস্তর) প্রধান বর্ণালী সংখ্যা
সহকারী কোয়ান্টাম সংখ্যা	সমার ফিল্ড	l=0 থেকে $(n-1)$	• উপশক্তিস্তরের আকৃতি
চৌম্বকীয় কোয়ান্টাম সংখ্যা	জীম্যান	m = 0 সহ $+ l$ থেকে $- l$	উপশক্তিস্তরের বিন্যাস
ঘূর্নন কোয়ান্টাম সংখ্যা	উলেন বেক ও গুল্ড স্মিথ	$+\frac{1}{2},-\frac{1}{2}$	• ঘূর্ণন প্রকৃতি, দিক

রাদারফোর্ড পরমাণু মডেল

১৯১১ সালে lpha কণা বিচ্ছুরণ পরীক্ষার মাধ্যমে রাদারফোর্ড পরমাণুর গঠন সম্পর্কিত যে মডেল প্রকাশ করেন তাকে রাদারফোর্ড পরমাণু মডেল বলে।

α কণা বিচ্ছুরণ পরীক্ষার মাধ্যমে পরমাণুর গঠন বর্ণনা বা রাদারফোর্ড
 মডেল বর্ণনা:

পরীক্ষার বর্ণনা: প্রচন্ড শক্তি সম্পন্ন α কণা সমূহকে একটি 0.004~cm পুরুত্বের সোনার পাতের উপর নিক্ষেপ করা হলো এবং সোনার পাতের পিছনে জিংক সালফাইডের (ZnS)প্রলেপযুক্ত পর্দা রাখা হলো যার উপর α কণা পতিত হলে আলোকচ্ছটা সৃষ্টি করে।

> পর্যবেক্ষণ:

- 1. প্রায় 99% α কণাই পাত ভেদ করে সরাসরি চলে যায় এবং ZnS পর্দাকে আলোকিত করে।
- 2. মাত্র কয়েকটি α কণার পথ বেঁকে যায়।
- 3. প্রায় 20,000 এর মধ্যে 1টি কণা সোজা বিপরীত দিকে ফিরে আসে।

SINCE 2018

≽ সিদ্ধান্ত:

- 1. পরমাণুর অধিকাংশ স্থান ফাঁকা। যেহেতু α কণার তুলনায় e^- এর ভর অতি নগণ্য তাই এসব ফাঁকা স্থানে e^- থাকতে পারে। তবে এরা α কণার গতিবেগের কোনো পরিবর্তন ঘটাতে পারে না।
- 2. যেহেতু কম সংখ্যক α কণা বিপরীত দিকে ফিরে আসে, এতে প্রমাণিত হয় যে, ঐসব α কণা সোজাসুজি এবং বহু ভারী কোনো কিছুর সাথে সংঘর্ষে পতিত হয়। অর্থাৎ পরমাণুর কেন্দ্রে পরমাণুর সকল ভর অতি ক্ষুদ্র জায়গায় থাকে।
- 3. যেহেতু α কণা ধনাত্মক চার্জযুক্ত এবং পরমাণুর কেন্দ্র দিয়ে বিকর্ষিত হয় তাই পরমাণুর কেন্দ্র ধনাত্মক চার্জযুক্ত। ভারী ও ধনাত্মক চার্জযুক্ত এ কেন্দ্রকে নিউক্লিয়াস বলা হয়।
- 4. গতিপথের পরিবর্তন হিসাব করে দেখা যায়, পরমাণুর নিউক্লিয়াসে ধনাত্মক চার্জের পরিমাণ পারমানবিক সংখ্যার সমান।

মূর্চীপত্রে ফেরত

জিজ্ঞাসা: lpha কণা বিচ্ছুরণ পরীক্ষায় ZnS কেন ব্যবহার করা হয়?

উত্তর: রাদারফোর্ড α কণা বিচ্ছুরণ পরীক্ষায় একটি পাতলা সোনার পাতের উপর α কণা সমূহকে নিক্ষেপ করা হয়।

এই সোনার পাতের উপর α কণার আলোকচ্ছটা দেখার জন্য ZnS এর প্রলেপ দেওয়া হয়। কারণ ZnS হলো অনুপ্রভা সৃষ্টিকারী পদার্থ। যেসকল পদার্থ বিভিন্ন শক্তির ফোটন শোষণ করে পরে তা দৃশ্যমান আলোর পরিসরে বিকিরণ করে তাদের অনুপ্রভা সৃষ্টিকারী পদার্থ বলে। তাই α কনার আলোকচ্ছটা দেখার জন্য সোনার পাতের উপর ZnS ব্যবহার করা হয়।

> রাদারফোর্ড পরমাণু মডেলের প্রস্তাবসমূহ:

- 1. পরমাণুর কেন্দ্রে ধনাত্মক চার্জযুক্ত একটি ভারী বস্তু রয়েছে। একে নিউক্লিয়াস বলা হয়।
- 2. নিউক্লিয়াসের ভিতরে প্রোটন ও বাইরে ইলেকট্রন অবস্থান করে।
- 3. নিউক্লিয়াস অত্যন্ত ক্ষুদ্র এবং পরমাণুর ভেতরে বেশিরভাগ জায়গায় ফাঁকা।
- 4. ইলেকট্রনের আপেক্ষিক ভর শূন্য তাই নিউক্লিয়াসের ভর কোনো মৌলের মোট ভর।
- 5. গ্রহগুলো সূর্যকে কেন্দ্র করে বিভিন্ন কক্ষপথে যেভাবে ঘুরে ইলেকট্রনগুলোও নিউক্লিয়াসকে কেন্দ্র করে সেভাবে ঘুরছে।
- 6. নিউক্লিয়াসের ভেতরে যতগুলো ধনাত্মক চার্জ যুক্ত প্রোটন রয়েছে বাইরেও সেই পরিমাণ ঋণাত্মক চার্জ যুক্ত ইলেকট্রন রয়েছে। তাই সামগ্রিকভাবে পরমাণু চার্জ শূন্য।

একে সৌরজগতের সাথে তুলনা করা হয় তাই একে সোলার সিস্টেম মডেল বা সৌর মডেল বলে।

সীমাবদ্ধতাঃ

- গ্রহণ্ডলোর সাথে ইলেকট্রনের তুলনা সঠিক হয় নি।
- পরমাণুর স্থায়িত্ব ব্যাখ্যা করতে পারে না।
- বর্ণালী সম্পর্কে ধারনা দিতে পারে না।
- আকার ও আকৃতি সম্পর্কে ধারনা দিতে পারে না।
- একাধিক e^- থাকলে কিভাবে পরিভ্রমণ করবে তা বলে নি ৷

সফলতাঃ

 ত্রিমাত্রিক গঠন সম্পর্কে ধারণা প্রদান করে।

বার পরমাণু মডেল/কোয়ান্টাম মডেলঃ

প্রস্তাবনা

- স্থির কক্ষপথ বা অরবিট বা শক্তিস্তরের ধারনা
- $mvr = \frac{nh}{2\pi}$, $h = 6.626 \times 10^{-34} JS$
- বর্ণালী সৃষ্টির ধারনা।

সফলতাঃ

- মৃখ্য কোয়ান্টাম সংখ্যার (n) ধারণা পাওয়া যায়।
- $R_H = 109678 \ cm^{-1} = 1.09678 \times 10^{-2} \ nm^{-1}$
- এক e^- বিশিষ্ট প্রমানু H বা আয়ন যেমনঃ He^+, Li^{2+}, Be^{3+} এর বর্নালী।

সীমাবদ্ধতাঃ

- একাধিক e[−] বিশিষ্ট প্রমাণুর বর্ণালি ব্যাখ্যা করতে পারে না।
- মৌলের পর্যায়বৃত্তিক ধর্ম সম্পর্কে কোনোরূপ ধারণা প্রদান করতে পারে নি।
- বর্ণালি রেখার তীব্রতা এই মডেলের সাহায্যে ব্যাখ্যা করা যায় না।
- আপেক্ষিকতা তত্ত্ব মেনে চলে না।
- দ্বিমাত্রিক।

পারমানবিক বর্ণালী রেখার বিভক্তিঃ

- চুম্বক ক্ষেত্রের প্রভাবে → জিম্যান প্রভাব
- তড়িৎ ক্ষেত্রের প্রভাবে → স্টার্ক প্রভাব
- ইলেকট্রন যে আকর্ষণ কমায় → শিল্ডিং প্রভাব

বোর পরমাণু মডেল থেকে সকল সূত্রসমূহ

1.
$$mvr = \frac{nh}{2\pi}$$

2.
$$r_n = \frac{n^2 h^2}{4\pi^2 Z e^2 m}$$

3.
$$E_n = -\frac{2\pi^2 m Z^2 e^4}{n^2 h^2}$$

4.
$$V_n = \frac{2\pi Z e^2}{nh}$$

5.
$$\Delta E = E_1 - E_2 = hv = \frac{hc}{\lambda}$$

$$r_n = a_0 \times \frac{n^2}{Z}$$

$$E_n = E_0 \times \frac{Z^2}{n}$$

$$V_n = V_0 \times \frac{Z}{n}$$

$$V_n = V_0 \times \frac{Z}{n}$$

- ho h o প্লাক্ষের ধ্রুবক $= 6.626 imes 10^{-34} \ Js$
- ho $e o ইলেকট্রনের আধান = 1.602 imes 10^{-19} C$ বা, $4.8 imes 10^{-10} \ esu$
- ightarrow m
 ightarrow ইলেকট্রনের ভর $= 9.11 imes 10^{-31} \ kg$
- ightharpoonup c
 ightharpoonup আলোর বেগ এবং v= কম্পাঙ্ক
- ightarrow $a_0
 ightarrow$ প্রথম কক্ষপথের ব্যাসার্ধ $= 5.292 imes 10^{-11}~m$
- ightarrow $E_0
 ightarrow$ প্রথম কক্ষপথের শক্তি $= -2.18 imes 10^{-18} J$
- ho $V_0
 ightarrow$ প্রথম কক্ষপথের বেগ = $2.19 imes 10^6~ms^{-1}$

Type-1

(1) কোনো পরমাণুর K শক্তিস্তরে একটি ইলেকট্রন রয়েছে। তার কৌণিক ভরবেগ নির্ণয় কর।

সমাধান:

আমরা জানি,

কৌণিক ভরবেগ,
$$mvr=\frac{nh}{2\pi}$$

$$=\frac{1\times6.626\times10^{-34}}{2\times3.1416}$$

$$=1.055\times10^{-34}~kgm^2s^{-1}$$

(2) একটি পরমাণুর চতুর্থ শক্তিস্তরের ব্যাসার্ধ $8.5 imes 10^{-8}\ cm$ হলে ঐ শক্তিস্তরে গতিবেগ গণনা করো।

সমাধান:

আমরা জানি,

$$mvr = \frac{nh}{2\pi}$$

$$\therefore v = \frac{nh}{2\pi mr}$$

$$= \frac{4 \times 6.626 \times 10^{-34}}{2 \times 3.1416 \times 9.11 \times 10^{-31} \times 8.5 \times 10^{-10}}$$

$$= 5.45 \times 10^5 \ ms^{-1}$$

(3) হাইড্রোজেন পরমাণুর ইলেকট্রনটি শক্তি শোষণ করে নিউক্লিয়াস থেকে 477.09~pm দূরত্বে থেকে 7.2839×10^5 বেগে কোনো কক্ষপথে ঘুরছে। কক্ষপথটি নির্ধারণ করো।

সমাধান:

আমরা জানি,

$$mvr = \frac{nh}{2\pi}$$

$$mvr \times$$

$$\therefore n = \frac{mvr \times 2\pi}{h}$$

$$= \frac{9.11 \times 10^{-31} \times 477.09 \times 10^{-12} \times 7.2839 \times 10^{5} \times 2\pi}{6.624 \times 10^{-34}}$$
$$= 3$$

দেওয়া আছে,
$$r=477.09~pm$$
 $=477.09\times 10^{-12}~m$ $V=7.2839\times 10^{5}$ $n=?$

Type-2

(1) Li পরমাণুর ২য় বোর কক্ষের ব্যাসার্ধ নির্ণয় কর।

সমাধান:

আমরা জানি.

$$r_n = \frac{n^2 h^2}{4\pi^2 Z e^2 m}$$

$$= \frac{2^2 \times (6.626 \times 10^{-34})^2}{4 \times (3.1416)^2 \times 3 \times (1.602 \times 10^{-19})^2 \times m_e}$$

$$= 7.056 \times 10^{-1} m$$

Type-3

(1) H প্রমাণুর সক্রিয় অবস্থায় K শেলের ইলেকট্রনটি প্রয়োজনীয় তাপ শোষণ করে N শেলের স্থায়ী কক্ষপথে আবর্তন করতে থাকে। এ অবস্থায় ইলেকট্রনের মোট শক্তি কত?

সমাধান:

আমরা জানি.

আমরা জানি,
$$E_n = -\frac{2\pi^2 m Z^2 e^4}{n^2 h^2} \quad [n=4]$$

$$= -1.67 \times 10^{-39} J$$
 SINCE 2018

Type-4

(1) Li পরমাণুর চতুর্থ কক্ষপথে পরিভ্রমণকারী একটি ইলেকট্রনের বেগ কত?

সমাধান:

আমরা জানি,

$$V_n = \frac{2\pi Z e^2}{nh}$$

$$= \frac{2\times 3.1416\times 3\times (4.8\times 10^{-10} \ esu)^2}{4\times 6.626\times 10^{-27}} \ cms^{-1}$$

$$= 1.6\times 10^8 \ cms^{-1}$$

Type-5

(1) কোনো পরমাণুর দুটি শক্তিস্তরে একটি ইলেকট্রনের শক্তি যথাক্রমে $6.3 \times 10^{-19} J$ এবং $9.8 \times 10^{-19} J$ । যদি উচ্চ শক্তিস্তর থেকে নিম্ন শক্তিস্তরে ইলেকট্রনটি স্থানান্তরিত হয়, তবে বিকিরিত রশ্মির কম্পাঙ্ক ও তরঙ্গ দৈর্ঘ্য কত?

সমাধান:

আমরা জানি,

$$\Delta E = hv$$

$$v = \frac{\Delta E}{h} = \frac{9.8 \times 10^{-19} - 6.3 \times 10^{-19}}{6.626 \times 10^{-34}}$$
$$= 5.282 \times 10^{14} \, Hz$$

আবার, তরঙ্গ দৈর্ঘ্য,
$$\lambda=\frac{c}{v}$$

$$=\frac{3\times10^8}{5.282\times10^{14}}$$

$$=5.697\times10^{-7}~m$$

Type-6: ডি ব্রগলির সমীকরণ:

$$\lambda = rac{h}{mv}$$
 $v =$ রৈখিক বেগ

PAR'S

SINCE 2018

(1) কক্ষপথে আবর্তনরত ইলেকট্রনের তরঙ্গদৈর্ঘ্য 30.2 nm হলে ইলেকট্রনটির ভরবেগ কত?

সমাধান:

আমরা জানি,

$$\lambda = \frac{h}{mv}$$

$$\therefore mv = \frac{h}{\lambda}$$

$$= \frac{6.626 \times 10^{-34}}{30 \times 10^{-9}}$$

$$= 2.2086 \times 10^{-26} \, kgms^{-1}$$

হাইজেনবার্গ এর অনিশস্য়তা নীতিঃ

 e^- এর কৌণিক ভরবেগ ও অবস্থানের মান একই সময়ে সঠিকভাবে নির্ণয় করা সম্ভব

নয়।
$$\Delta x imes \Delta p \ \geq rac{h}{4\pi}$$

স্রোডিঞ্জারের তরঙ্গ সমীকরণ (ত্রিমাত্রিক):

$$\frac{d^2\psi}{dx^2} + \frac{d^2\psi}{dx^2} + \frac{d^2\psi}{dx^2} + \frac{8\pi^2m}{h^2}(E - u)\psi = 0$$

প্লাঙ্কঃ

$$E = hv$$

$$\int_0^\infty \psi^2 = 1$$

কোনো চলমান কণার দ্বৈত ধর্ম (ডি ব্রগলী)

$$hv = mc^2$$

$$E = hv(1)$$

$$\frac{h}{\lambda^2} = mc^2$$

$$E = mc^2 \dots \dots (2)$$

$$\therefore mc^2 = \frac{h}{\lambda}$$

> দৃশ্যমান আলোর তরঙ্গদৈর্ঘ্য:(মুখস্থ)

বেগুনি	নীল	আসমানি	সবুজ	হলুদ	কমলা	লাল
380 -	424 –	450 —	500 –	575 –	590 –	647 –
424	450	500	575	590	647	780

- বেগুনি বর্ণের তরঙ্গদৈর্ঘ্য সবচেয়ে কম কিন্তু বিকিরণ সবচেয়ে বেশি।
- 🗲 লাল বর্ণের তরঙ্গদৈর্ঘ্য সবচেয়ে বেশি কিন্তু বিকিরণ সবচেয়ে কম।
- 🗲 বিদ্যুৎ চৌম্বকীয় বিকিরণের তরঙ্গদৈর্ঘ্য ও ব্যবহার উল্লেখ কর। [জবি (ক ইউনিট) ১৮-১৯]

তড়িৎ চুম্বকীয় বিকিরণ	তরঙ্গদৈর্ঘ্য	গুরুত্বপূর্ণ ব্যবহার
মহাজাগতিক রশ্মি	$< 0.00005 \ nm$	
γ-রশ্মি	$0.0005 - 0.10 \ nm$	দেহ অভ্যন্তরে ক্যান্সার আক্রান্ত কোষ ধ্বংসে এবং খাদ্য প্রক্রিয়াজাতকরণে অণুজীব ধ্বংসে ব্যবহৃত হয়।
X-রশ্মি	$0.1 - 10 \ nm$	চিকিৎসাবিজ্ঞানে, শরীরের অভ্যন্তরে হাড়ের প্রতিচ্ছবি নিরূপণে।
অতিবেগুনি রশ্মি	10 – 380 nm	জাল টাকা, পাসপোর্ট সনাক্তকরণে ও গবেষণায়।
দৃশ্যমান আলো	380 – 780 <i>nm</i>	দেখা, বিশ্লেষণী রসায়নে পদার্থের পরিমাণ নির্ণয়।
অবলোহিত রশ্মি	780 nm – 1 mm	রিমোট কন্ট্রোল, ফিজিও থেরাপি, অপটিক্যাল ফাইবারের মাধ্যমে যোগাযোগ প্রযুক্তিতে।
মাইক্রোওয়েভ	1 mm – 1 m	রান্না, মোবাইল ফোনের মাধ্যমে তথ্য আদান-প্রদান।
রেডিও ও টেলিভিশন	1 mm - 10km	টিভি, সিগনাল, MRI

- > তরঙ্গদৈর্ঘ্য সবচেয়ে কম কিন্তু বিকিরণ সবচেয়ে বেশি → মহাজাগতিক রশ্মির।
- ightarrow তরঙ্গদৈর্ঘ্য সবচেয়ে বেশি কিন্তু বিকিরণ সবচেয়ে কম ightarrow রেডিও ও টেলিভিশনের।
- ightarrow দৃশ্যমান আলোর তরঙ্গ দৈর্ঘ্যের সীমা ightarrow 380~nm-780~nm প্রায়।
- তড়িৎচুম্বকীয় বিকিরণের ক্রমবর্ধমান তরঙ্গদৈর্ঘ্য (λ):
 কসমিক রশ্মি < γ রশ্মি < X রশ্মি < UV রশ্মি < দৃশ্যমান রশ্মি < IR রশ্মি
 মাইক্রোতরঙ্গ < বেতার তরঙ্গ।

ightarrow
ightar

টেকনিক	সিরিজ	বৰ্নালী অঞ্চল
লাল	লাইম্যান	অতিবেগুনী
বেনারশি	বামার	দৃশ্যমান
পড়ে	প্যাশ্চেন	Near IR
বৌমা	ব্রাকেট	অবলোহিত IR
পালালো	ফুন্ড	অবলোহিত IR
হাই	হামফ্রিস	

প্রশ্ন: IR রশ্মি কাকে বলে? উহা কত প্রকার ও কি কি?

উত্তর: Infrared radiation বা অবলোহিত রিশা এক ধরনের তড়িৎ চুম্বকীয় বিকিরন, যার তরঙ্গ দৈর্ঘ্য দৃশ্যমান আলোর চেয়ে বেশি। IR রিশা তিন শ্রেণিতে বিভক্ত। যেমন- (i) Near-IR, (ii) Middle-IR ও (iii) Far-IR রিশা । Far-IR রিশার তরঙ্গদৈর্ঘ্য $5.6 \times 10^{-6} \, m$ থেকে $10^{-4} \, m$ হওয়ায় এটি ত্বকে তাপীয় অনুভূতি জাগায় এটি রক্তের শ্বেতকণিকা বৃদ্ধি ও রোগ প্রতিরোধক শক্তি বৃদ্ধিতে সহায়তা করে

প্রশ্ন: (i) Near IR, (ii) Middle-IR 3 (iii) Far-IR রশ্মির ব্যবহার লিখ।

উত্তর: (i) Near IR: মস্তিষ্কের রক্তের হিমোগ্লোবিনে শোষিত অক্সিজেনের পরিমাণ পরিমাপের মাধ্যমে মস্তিষ্কের রোগ নির্ণয়ে। মাথার খুলির কার্যপদ্ধতি নির্ণয়ে। সিটি স্ক্যানিং কাজে

- (ii) Middle-IR জৈব যৌগের কার্যকরী মূলক শনাক্তকরণে।
- (iii) Far-IR রশ্মি রক্তের শ্বেত রক্তকণিকা ও রোগ প্রতিরোধক শক্তি বৃদ্ধিতে ব্যথা-বেদনা উপশ্যে।

CO, HF, HCl, NO
ightarrow ডাইপোল থাকায় IR সক্রিয়।

 $N_2, O_2, H_2
ightarrow$ ডাইপোল থাকায় IR নিদ্ধিয়।

চিকিৎসা ক্ষেত্রে এর ব্যবহার নিম্নরূপ:

- ১. ব্রেস্ট ক্যন্সার শনাক্তকরণে।
- ২. স্নায়ু ও পেশির শৈথিলতা সম্পর্কিত রোগ নির্ণয়ে।
- ৩. মস্তিষ্কের রোগ নির্ণয়ে।
- ৪. থাইরয়েড গ্রন্থির টিউমার নির্ণয়ে।
- c. IR থেরাপি রক্তের সঞ্চালন ও পরিবহন নিয়ন্ত্রণ করে।
- ৬. IR থেরাপি ক্ষতিগ্রস্ত টিস্যুতে অক্সিজেন সরবরাহ করে।
- ৭. রক্তের চাপ নিয়ন্ত্রিত রাখতে।
- ৮. রক্তের গাঢ়ত্ব বজায় রাখতে।
- ৯. হৃদস্পন্দন সংখ্যা ঠিক রাখতে।
- ১০. হাড় ভাঙা বা জোড়া স্থানে প্রশান্তির জন্য।

ন্তির জন্য। নিউক্লিয় বিক্রিয়া SINCE 2018

১। ট্রান্সম্যুটেশনঃ

কোনো মৌলের স্থায়ী নিউক্লিয়াসকে উচ্চ গতিশীল নিউট্রন, প্রোটন অথবা আলফা কণা অথবা পরমাণুর নিউক্লিয়াস দ্বারা আঘাত

$$^{45}{}_{21}Sc + {}^{1}{}_{0}n \rightarrow {}^{45}{}_{20}Ca + {}^{1}{}_{1}H$$

২। ফিশান
$$ightarrow$$
 বৃহৎ থেকে ছোট $^{235}_{92}U+^{1}_{0}n \stackrel{8~{
m MeV}}{
ightarrow} ^{141}_{56}Ba+^{92}_{36}Kr+^{3}_{0}n$ (200 MeV); এটম বোমা, পারমানবিক চুল্লি

ত। ফিউশান ightarrow ছোট থেকে বড় বোমার শক্তি এবং সূর্যের শক্তির উৎস $^2_1 H + ^1_1 H \qquad \stackrel{10^3 K}{\longrightarrow} \qquad ^3_2 H + \gamma + Energy$

ফসফোর : (230 nm - 375 nm)

কারেন্সি নোটে secuirity device রূপে ,অপটিকাল সেন্সর রূপে

প্রতিপ্রভা :

 $(10^{-4}-10^{-8})_{\rm S}$ পর্যন্ত আলো বিকিরণ করে Ba, Na, Ca, U, ${\rm I_2}$ বাষ্প, এরিথ্রেসিন, ডাইফিনাইল হেক্সাট্রাইন, লুসিফার

অনুপ্রভা :

 $(10^{-4}-10^{-8})$ s পর্যন্ত আলো বিকিরণ করে CaS, MgS, SrS, BaS

সঃপ্রভাঃ

যেসব পদার্থ সাধারণভাবে আলোক রাসায়নিক বিক্রিয়ায় অংশগ্রহণ করে না।
Ra , ZnS এর মিশ্রণ

ক্যান্সার কোষ → γরশ্মি

জাল টাকা \rightarrow UV রশ্মি

MRI (Magnetic Resonance Imaging)

মানবদেহের বিভিন্ন তন্ত্রের টিস্যুর অস্বাভাবিক বৃদ্ধিজনিত টিউমার, রক্তনালিকা মস্তিষ্কের টিউমার ও কোমল টিস্যু যেমন মেরুমজ্জার টিউমার

UV Ray \rightarrow টাকা শনাক্তকরণ (320-375)

তড়িৎ চুম্বর্কীয় বর্ণালি

$${f 1}$$
 . বর্ণালি সংখ্যা $=rac{(n_2-n_1)(n_2-n_1+1)}{2}$

$$2. \ \lambda = \frac{c}{v}$$

$$3.\overline{v}=\frac{1}{\lambda}^{2}v=$$
 তরঙ্গ সংখ্যা

$$oldsymbol{4}.~rac{1}{\lambda}=R_H\left(rac{1}{n_I^2}-rac{1}{n_b^2}
ight)$$
 এখানে, $R_H\left($ রিডবার্গ ধ্রুবক $ight)=1.09678 imes 10^{-2}~nm^{-1}$

Type-1

হাইড্রোজেন পরমাণুর ইলেকট্রন ৬ষ্ঠ থেকে ২য় বোর কক্ষপথে এলে কতটি বর্ণালি রেখা পাওয়া সম্ভব হবে?

সমাধান:

আমরা জানি,

বৰ্ণালি সংখ্যা
$$= \frac{(n_2-n_1)(n_2-n_1+1)}{2}$$
 $= \frac{(6-2)(6-2+1)}{2}$
 $= 10$ টি

PAR'S

SINCE 2018

Type-2

কোন উৎস থেকে বিকিরিত বেগুনি রশ্মির তরঙ্গ দৈর্ঘ্য $420 \ nm$ । কম্পাঙ্ক ও তরঙ্গ সংখ্যা কত?

সমাধান:

আমরা জানি,

$$v = \frac{c}{\lambda}$$
$$= \frac{3 \times 10^8}{420}$$

এখানে, $c = 3 \times 10^8 ms^{-1}$ $\lambda = 420 nm$ $\overline{v} = ?$ v = ?

$$=\frac{3\times10^8\times10^9\ nms^{-1}}{420\ nm}$$

$$v = 7.14 \times 10^{14} \, s^{-1}$$

তরঙ্গ সংখ্যা,

$$\overline{v} = \frac{1}{\lambda}$$

$$= \frac{1}{420 \times 10^{-9}}$$

$$= 2.38 \times 10^6 m^{-1}$$

Type-3

(1) অবলোহিত অঞ্চলে সৃষ্ট H-পরমাণুর রেখা বর্ণালীর দীর্ঘতম তরঙ্গ দৈর্ঘ্য ন্যানোমিটারে কত হবে, যখন, $n_1=3$ হয়?

সমাধান:

আমরা জানি,

 $\frac{1}{\lambda} = R_H \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$

এখানে,

$$R_H = 1.09678 \times 10^{-2} \ nm^{-1}$$

এক্ষেত্রে অবলোহিত অঞ্চলে সৃষ্ট H-পরমাণু তিনটি সিরিজ রয়েছে। $n_1=3$ হলে প্যাশ্চেন সিরিজ হয় এবং দীর্ঘতম তরঙ্গ দৈর্ঘ্যের বর্ণালীর জন্য $n_2=4$ হতে হয়।

$$\therefore \frac{1}{\lambda} = R_H \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$

$$= 1.09678 \times 10^{-2} \times \left[\frac{1}{(3)^2} - \frac{1}{(4)^2} \right]$$

 $\therefore \lambda = 1876 \, nm.$

(2) অবলোহিত অঞ্চলে সৃষ্ট H-পরমাণুর রেখা বর্ণালীর হ্রস্বতম তরঙ্গ দৈর্ঘ্য ন্যানোমিটারে কত হবে, যখন, $n_1=3$ হয়?

সমাধান:

আমরা জানি,

$$\frac{1}{\lambda} = R_H \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$

এখানে,

$$n_1 = 3$$

$$n_2 = \infty$$

$$R_H = 1.09678 \times 10^{-2} \ nm^{-3}$$

$$\lambda = ?$$

এখানে, H-পরমাণুর বর্ণালী $n_1=3$ হলে, বর্ণালী সিরিজটি প্যাশ্চেন সিরিজ হয় এবং হ্রাস দৈর্ঘ্য বর্ণালীর জন্য $n_2=\infty$ হয়।

(3) H-পরমাণু উত্তেজিত ইলেকট্রনটি N শেল থেকে L শেলে স্থানান্তরিত হলে বিকিরিত ফোটনের তরঙ্গ দৈর্ঘ্য, বর্ণালীর বর্ণ ও বর্ণালী সিরিজ নির্ণয় কর।

সমাধান:

আমরা জানি,

$$\overline{v} = \frac{1}{\lambda} = R_H \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$
$$= 1.09678 \times 10^{-2} \times \left[\frac{1}{(2)^2} - \frac{1}{(4)^2} \right]$$

এখানে,

$$n_1 = 2$$

 $n_2 = 4$
 $R_H = 1.09678 \times 10^7$
 $c = 3 \times 10^8 \, ms^{-1}$

$$\lambda = 4.86 \times 10^{-7} \ m$$
= 486.27 nm , যা আসমানী বর্ণের ও বামার সিরিজ ভুক্ত।

(4) Li-পরমাণু উত্তেজিত ইলেকট্রনটি N শেল থেকে K শেলে স্থানান্তরিত হলে বিকিরিত ফোটনের তরঙ্গ দৈর্ঘ্য, বর্ণালীর বর্ণ ও বর্ণালী সিরিজ নির্ণয় কর।

এখানে,

সমাধান:

আমরা জানি,

$$\overline{v} = \frac{1}{\lambda} = R_H \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$

$$= 1.09678 \times 10^7 \times (3)^2 \times \left(1 - \frac{1}{16} \right)$$

$$\therefore \lambda = 1.0806 \times 10^{-8} m$$

$$= 10.806 nm$$

$$n_1 = 1$$

$$n_2 = 4$$

$$R_H = 1.09678 \times 10^7 m^{-1}$$

$$c = 3 \times 10^8 m s^{-1}$$

$$z = 3$$

তরঙ্গ দৈর্ঘ্যে 10.806 হওয়ায়, এটি UV পরিসরে $(10\ nm-380\ nm)$ এর মধ্যে, তাই খালী চোখে দেখা যাবে না। লাইম্যান সিরিজ ভুক্ত।

দাব্যতা

দ্রবণ: দ্রব + দ্রাবক

দ্রাবক: দ্রবণের মধ্যে যা বেশি পরিমাণে থাকে।

দ্রব: দ্রবণের মধ্যে যা কম পরিমাণে থাকে।

দ্রবণের ভর = দ্রব এর ভর + দ্রাবকের ভর

দ্রবণের প্রকারভেদ

- অসম্পৃক্ত দ্রবণ (Unsatuarted solution)
- সম্পৃক্ত দ্রবণ (saturated solution)
- অতিপ্ক দ্রবণ (Supersaturated solution)
- 1. অসম্পৃক্ত: সর্বাধিক দ্রব > পাত্রে দ্রব
- 2. সম্পৃক্ত: সর্বাধিক দ্রব = পাত্রে দ্রব SINCE 2018
- 3. অতিপৃক্ত : সর্বাধিক দ্রব < পাত্রে দ্রব

Note: সর্বোচ্চ যে পরিমাণ দ্রব দ্রবীভূত থাকতে পারে তা তাপমাত্রার ওপর নির্ভরশীল।

দ্রাব্যতা
কোনো নির্দিষ্ট তাপমাত্রায় 100 g দ্রাবকে সর্বোচ্চ যে পরিমাণ দ্রব দ্রবীভূত অবস্থায় থাকতে
পারে, দ্রবের সে ভর-সংখ্যাকে ঐ তাপমাত্রায় ঐ দ্রবণের দ্রাব্যতা বলে।

Note: দ্রাব্যতা কেবল সম্পুক্ত দ্রবণেই নির্ণয় করা যায়।

কোনো নির্দিষ্ট তাপমাত্রায় 1L সম্পৃক্ত দ্রবণে যত মোল দ্রব দ্রবীভূত অবস্থায় থাকে তাকে ঐ তাপমাত্রায় ঐ সম্পৃক্ত দ্রবণের দ্রাব্যতা বলে।

$$S = \frac{n}{V(L)}$$

দ্রাব্যতার নির্ভরশীলতা

- হাজারী স্যার → ৩টি

 1. ৩৷শশাঞা
 2. দ্রবের প্রকৃতি
 3. দ্রাবকের প্রকৃতি
 4. চাপ(only for gas , out of syllabus)
- 😕 কঠিন ও তরল দ্রবের দ্রাব্যতা চাপের উপর নির্ভর করে না। কিন্তু গ্যাসীয় দ্রবের দ্রাব্যতা চাপের উপর নির্ভর করে।
- 🗲 তাপমাত্রার উপর নির্ভরশীলতা: তাপমাত্রা বাড়লে দ্রাব্যতা বাড়ে।
- > Special Case-1: (তাপ উৎপাদী দ্রব) তাপমাত্রা বাড়লে দ্রাব্যতা কমে।
- Special Case-2: (তাপহারী দ্রব) তাপমাত্রা বাড়লে দ্রাব্যতা বাড়ে।
- Special Case-3: (এমন দ্রব যাদের সাথে পানি যুক্ত থাকে) যতক্ষণ পানি থাকবে ততক্ষণ তাপমাত্রা বৃদ্ধি করা হলে দ্রাব্যতা বাড়বে।

SINCE 2018

দ্রাব্যতা সম্পর্কিত সমস্যা

1.
$$S = \frac{100m}{M-m}$$

S = দ্রাব্যতা m= দ্রবের ভর M = দ্রবণের ভর

প্রশ্ন:১ কক্ষতাপমাত্রায় NaCl এর 75 g ভরের একটি সম্পৃক্ত দ্রবণে 20 g NaCl দ্রবীভূত আছে। এ তাপমাত্রায় NaCl এর দ্রাব্যতা কত?

সমাধান:

$$NaCl$$
 (দ্রব) এর ভর, $m=20\ g$ $NaCl$ এর সম্পৃক্ত দ্রবণের ভর, $M=75\ g$

$$NaCl$$
 এর দ্রাব্যতা, $S=?$
দ্রাব্যতা, $S=\frac{m}{M-m}\times 100$

$$=\frac{20}{75-20}\times 100$$

$$=36.36$$

প্রশ্ন:২ 40° ে তাপমাত্রায় তুঁতের দ্রাব্যতা 25 হলে এ তাপমাত্রার 250~g তুঁতের সম্পুক্ত দ্রবণ প্রস্তুত করতে কত গ্রাম তুঁতের প্রয়োজন?

সমাধান:

আমরা জানি.

$$S = \frac{100 \times m}{M - m}$$

বা,
$$25 = \frac{100 \, m}{250 - m}$$

বা,
$$100 m + 25 m = 250 \times 25$$

বা,
$$125 m = 6250$$

বা,
$$m=50~g$$

এখানে, S = 25 $M = 250 \ g$ m = ?

প্রশ্ন:৩ 25°C ও 35°C তাপমাত্রায় কোনো দ্রব্যের দ্রাব্যতা যথাক্রমে 40 ও 60। 35°C তাপমাত্রায় 100~g সম্পৃক্ত দ্রবণকে 25° ে তাপমাত্রায় শীতল করলে কত গ্রাম দ্রব কেলাসিত হবে?

সমাধান:

35°C তাপমাত্রায় দ্রবণটির দ্রাব্যতা S = 60

$$S = \frac{100m}{M - m}$$

বা,
$$60 = \frac{100 \, m}{100 - m}$$

বা,
$$6000 - 60 m = 100 m$$

বা,
$$160 m = 6000$$

বা,
$$m = 37.5 g$$

SINCE 2 চিন্রাব্যতা, S=60দ্রবণের ভর, $M = 100 \ g$ দ্রবের ভর, m=?

: দ্রব
$$37.5~g$$

: দ্রাবক $(100-37.5)=62.5~g$
আবার, 25° C তাপমাত্রায় দ্রাব্যতা $S=40$
 $S=\frac{100m}{M-m}$
বা, $40=\frac{100~m}{62.5}$

$$\therefore m = 25 g$$

$$\therefore$$
 কেলাসিত হবে = $(37.5 - 25)g$
= $12.5 g$

প্রশ্ন: $8 \ 25^{\circ}$ ে তাপমাত্রায় 25g অসম্পৃক্ত দ্রবনকে বাষ্পীভূত করে 5g দ্রব পাওয়া গেল। 100g অসম্পৃক্ত দ্রবণটি সম্পৃক্ত করতে কত গ্রাম দ্রব যোগ করতে হবে? 100g তাপমাত্রায় দ্রবণটির দ্রাব্যতা 100g

সমাধান:

অসম্পৃক্ত দ্রবণের ভর = 25g

দ্রবের ভর = 5g

- \therefore দ্রাবকের ভর (25-5)=20g 25g অসম্পৃক্ত দ্রবণে দ্রব আছে 5g
- $\therefore 1g$ অসম্পৃক্ত দ্রবণে দ্রব আছে $rac{5}{25}g$
- $\therefore 100g$ অসম্পৃক্ত দ্রবণে দ্রব আছে $rac{5 imes 100}{25}g=20g$
- ∴ দ্রব্যের পরিমাণ 20g
- \therefore দ্রাবকের পরিমাণ (100-20)=80g

যেহেতু, দ্রাব্যতা S=40

$$\therefore S = \frac{100m}{M - m}$$

বা, $40 = \frac{100 \, m}{80}$

বা, 100m = 3200

APAR'S

SINCE 2018

$$\therefore$$
 m = 32 g

 \therefore দ্রবণটিকে সম্পৃক্ত করতে দ্রব যোগ করতে হবে (32-20)=12g

দ্রাব্যতার পুণফল (Solubility Product)

দ্রাব্যতা → সম্পুক্ত দ্রবণে

দ্রাব্যতার গুণফল $(K_{SD})
ightarrow$ সম্পৃক্ত দ্রবণে

আয়নিক গুণফল $(K_{ip}) o$ যেকোনো দ্রবণে

 $K_{ip} < K_{sp}
ightarrow$ অধঃক্ষেপ পড়বে না।

 $K_{ip}=K_{sp}$ ightarrow সম্পৃক্ত ightarrow অধঃক্ষেপ পড়বে না।

 $K_{ip} > K_{sp}
ightarrow$ অধঃক্ষেপ পড়বে।

মূর্চীপত্রে ফেরত

> বিভিন্ন লবণের দ্রাব্যতা ও দ্রাব্যতা গুণফলের সম্পর্ক

স্বল্প দ্রবণীয় লবণ	সম্পৃক্ত দ্রবণে স্বল্প দ্রবণীয় লবণের সাম্যাবস্থা	লবণের দ্রাব্যতা গুণফল (K_{sp})
AgCl	$AgCl \rightleftharpoons Ag^+ + Cl^-$	$K_{sp} = [Ag^+] \times [Cl^-]$ = $S \times S = S^2$
PbI_2	$PbI_2 \rightleftharpoons Pb^{2+} + 2I^-$	$K_{sp} = [Pb^{2+}] \times [I^{-}]^{2}$ = $S \times (2S)^{2} = 4S^{3}$
$Mg(OH)_2$	$Mg(OH)_2 \rightleftharpoons Mg^{2+} + 2OH^-$	$K_{sp} = [Mg^{2+}] \times [OH^{-}]^{2}$ = $S \times (2S)^{2} = 4S^{3}$
Ag_2CO_3	$Ag_2CO_3 \rightleftharpoons 2Ag^+ + CO_3^{2-}$	$K_{sp} = [Ag^+]^2 \times [CO_3^{2-}]$ = $(2S)^2 \times S = 4S^3$
Fe(OH) ₃	$Fe(OH)_3 \rightleftharpoons Fe^{3+} + 3OH^-$	$K_{sp} = [Fe^{3+}] \times [OH^{-}]^{3}$ = $S \times (3S)^{3} = 27S^{4}$
$Al(OH)_3$	$Al(OH)_3 \rightleftharpoons Al^{3+} + 3OH^-$	$K_{sp} = [Al^{3+}] \times [OH^{-}]^{3}$ = $S \times (3S)^{3} = 27S^{4}$
$Ca_3(PO_4)_2$	$Ca_3(PO_4)_2 \rightleftharpoons 3Ca^{2+} + 2PO_4^{3-}$	$K_{sp} = [Ca^{2+}]^3 \times [PO_4^{3-}]^2$ = $(3S)^3 \times (2S)^2 = 108S^5$

 25° ে তাপমাত্রায় AgCl এর দ্রাব্যতা $2.25 \times 10^{-3}~gL^{-1}$ হলে এর দ্রাব্যতা গুণফল কত?

সমাধান:

 $AgCl(aq) \rightleftharpoons Ag^{+}(aq) + Cl^{-}(aq)$ দাব্যতা, S হলে,

$$\therefore K_{sp} = [Ag^+] \times [Cl^-] = S^2$$
$$= \left(\frac{2.25 \times 10^{-3}}{143.5}\right)^2 = 2.465 \times 10^{-10}$$

 $rac{$ প্রস্না:২ $}{}$ 30° C এ $CaCO_3$ এর দ্রাব্যতা গুণফল $8.85 imes 10^{-8}$ হলে তখন $CaCO_3$ এর gL^{-1} ও $molL^{-1}$ দ্রাব্যতা কত হবে?

সমাধান:

 $CaCO_3(aq) \rightleftharpoons Ca^{2+}(aq) + CO_3^{2-}(aq)$

ধরি, $CaCO_3$ এর দ্রাব্যতা, $S molL^{-1}$

তাহলে,

$$[Ca^{2+}] \times [CO_3^{2-}] = K_{sp}$$

বা, $S^2 = 8.85 \times 10^{-8}$

SINCE 2018

$$\therefore S = 2.98 \times 10^{-4} \, molL^{-1}$$

$$= 2.98 \times 10^{-2} \ gL^{-1}$$
 [: $mCaCO_3 = 100$]

উত্তর: $2.98 \times 10^{-4} \; molL^{-1}$ এবং $2.98 \times 10^{-2} \; gL^{-1}$ ।

 ${ rac{ f 27^{\circ}C}{ orall}} \ 25^{\circ}C$ এ $Al(OH)_3$ এর দ্রাব্যতা গুণফল $3.7 imes 10^{-15}$ হলে ঐ দ্রবণে Al^{3+} ও OH^- এর ঘনমাত্রা ও $Al(OH)_3$ এর দ্রাব্যতা কত হবে?

সমাধান:

$$Al(OH)_3 \rightleftharpoons Al^{3+} + 3OH^-$$

দেওয়া আছে, $Al(OH)_3$ এর $K_{sp}=3.7 \times 10^{-15}$

ধরি, $Al(OH)_3$ এর দ্রাব্যতা = $S mol L^{-1}$

$$\therefore [Al^{3+}] = S \, mol L^{-1}$$

$$[OH^-] = 3S \ mol L^{-1}$$

$$\therefore K_{sp} = [Al^{3+}] \times [OH^-]^3$$

$$= S \times (3S)^3$$

$$= 27S^4$$

মূর্চীপত্রে ফেরত

বা,
$$27S^4 = K_{sp}$$
বা, $27S^4 = 3.7 \times 10^{-15}$
বা, $S = 1.08 \times 10^{-4} \ molL^{-1}$
 $\therefore Al(OH)_3$ এর দাব্যতা $1.08 \times 10^{-4} \ molL^{-1}$ । এবং দ্রবণে,
$$[Al^{3+}] = S \ molL^{-1}$$

$$= 1.08 \times 10^{-4} \ molL^{-1}$$

$$= 3 \times 1.08 \times 10^{-4} \ molL^{-1}$$

$$= 3.24 \times 10^{-4} \ molL^{-1}$$

 $m ag{218:8} 0.02M~CaCl_2$ এর দ্রবণে $0.003M~Na_2SO_4$ দ্রবণ সম আয়তনে মিশ্রিত করা হলো। এর ফলে মিশ্রণে $CaSO_4$ এর অধ্যক্ষেপ পড়বে কিনা গাণিতিকভাবে ব্যাখ্যা কর। $CaSO_4$ এর $K_{sp}=2.4 imes 10^{-5}$

সমাধান:

ধরি, $CaCl_2$ এবং Na_2SO_4 প্রত্যেকের আয়তন =V দ্রবণের মোট আয়তন, V+V=2V $CaCl_2+Na_2SO_4\to CaSO_4+2$ NaCl since 2018 $CaSO_4\rightleftharpoons Ca^{2+}+SO_4^{2-}$ মিশ্রণে Ca^{2+} এর ঘনমাত্রা $[Ca^{2+}]=\frac{0.02\times V}{2V}=0.01M$ মিশ্রণে SO_4^{2-} এর ঘনমাত্রা $[SO_4^{2-}]=\frac{0.0003\times V}{2V}=0.00015M$ দ্রবণে $CaSO_4$ এর আয়নিক গুণফল, $K_{ip}=[Ca^{2+}]\times[SO_4^{2-}]=0.01\times0.00015=0.01\times0.00015$

যেহেতু, $K_{in} < K_{sn}$, তাই অধঃক্ষেপ পড়বে না।

মমআয়ন পুভাব

$$PbI_2 \rightleftharpoons Pb^{2+} + 2I^-$$
 [সাম্যাবস্থা] $HI \rightleftharpoons H^+ + I^-$

প্রথমে পাত্রে PbI_2 ছিল। ইহা বিয়োজিত হয়ে Pb^{2+} ও I^- এ পরিণত হয়। পরবর্তীতে HI পাত্রে যোগ করা হলে সেখানে H^+ ও I^- তৈরি হয়। ফলে $Net\ I^-$ এর পরিমাণ বেড়ে যায়। ফলে রাসায়নিক সাম্যাবস্থা সাময়িকের জন্য ক্ষুপ্ত হয়। অতঃপর লা-শাতেলিয়ারের নীতি অনুসারে এই বেড়ে যাওয়া I^- এর পরিমাণুকে কমাতে প্রথমের বিক্রিয়াটির সাম্যাবস্থাকে বাম দিকে অগ্রসর করা হবে। এর ফলে প্রথম তড়িৎ বিশ্লেষ্যের বিয়োজন ক্ষমতা কমে যায়। একে সময়ায়ন প্রভাব বলে।

প্রশ:১ 25°C তাপমাত্রায় AgCl এর $K_{sp}=1.8 imes 10^{-10}$ ।

- (ক) বিশুদ্ধ পানিতে দ্রাব্যতা কত?
- (খ) 0.1 M NaCl দ্রবণে এর দ্রাব্যতা কত?

সমাধান:(ক)

$$S = \sqrt{1.8 \times 10^{-10}}$$
$$= 1.3416 \times 10^{-5} \, mloL^{-1}$$

APAR'S

SINCE 2018

সমাধান:(খ)

$$0.1\ M\ NaCl$$
 এ $[Cl]=0.1\ M$
মিশ্রণে, $AgCl(aq)=[Ag^+]\times [Cl^-]$
 $=S\times (S+0.1)$
 $K_{sp}=S\times (S+0.1)$
বা, $1.8\times 10^{-10}=S\times 0.1$
 $\therefore S=1.8\times 10^{-9}$ (দ্রাব্যতা কমে)

 $\underline{\mathfrak{Ag}_3PO_4}$ এর অধঃক্ষেপ শুরু হবে? $K_{sp}(Ag_3PO_4)=1.3 imes 10^{-20}$

সমাধান:

$$AgNO_3 \rightleftharpoons Ag^+ + NO_3^-$$
$$0.1M \qquad 0.1M$$

$$Ag_3PO_4 \rightleftharpoons 3Ag^+ + PO_4^{3-}$$

$$K_{sp} = [Ag^+]^3 [PO_4^{3-}]$$

 $\exists 1.3 \times 10^{-20} = (0.1)^3 [PO_4^{3-}]$

বা,
$$1.3 \times 10^{-20} = 0.001 [PO_4^{3-}]$$

$$\boxed{1}$$
, $[PO_4^{3-}] = 1.3 \times 10^{-17} M$

সুতরাং, $[PO_4^{3-}]=1.3 imes 10^{-17} M$ হলে Ag_3PO_4 এর অধঃক্ষেপণ শুরু হবে।

প্রস্নাত $10 \mathrm{mL}~0.01 M~CaCl_2$ দ্রবণের সঙ্গে 5 mL~0.1 M পটাশিয়াম ক্রোমেটের দ্রবণ মিশ্রিক করলে কোনো অধঃক্ষেপ উৎপন্ন হবে কিনা-বিশ্লেষণ করো। $K_{sp}(CaCrO_4)=2.3 imes 10^{-2}$

সমাধান:

$$CaCl_2 \rightarrow Ca^{2+} + 2Cl^{-}$$

 $10 \text{mL } 0.01 M \; CaCl_2 \equiv 10 mL \; 0.01 M \; Ca^{2+}$ ে E মিশ্রণে Ca^{2+} এর প্রকৃত ঘনমাত্রা:

$$V_2S_2 = V_1S_1$$

বা,
$$S_2 = \frac{V_1 S_1}{V_2} = \frac{10 \times 0.01}{15} = 0.006M$$

$$K_2CrO_4 \rightarrow 2K^+ + CrO_4^{2-}$$

 $5mL\ 0.1M\ K_2CrO_4 \equiv 5mL\ 0.1M\ CrO_4^{2-}$

মিশ্রণে CrO_4^{2-} এর প্রকৃত ঘনমাত্রা:

$$V_2S_2 = V_1S_1$$

$$\overline{A}$$
, $S_2 = \frac{V_1 S_1}{V_2} = \frac{5 \times 0.1}{15} = 0.03M$

$$K_{ip} = [Ca^{2+}][CrO_4^{2-}]$$

$$= 0.006 \times 0.03$$

$$= 2.0 \times 10^{-4}$$

যেহেতু, $K_{ip} < K_{sp}$, সুতরাং অধঃক্ষেপ পড়বে না।

এখানে,

প্রাথমিক আয়তন, $V_1=10\ ml$ প্রাথমিক ঘনমাত্রা, $S_1=0.01M$ প্রাথমিক আয়তন, $V_2=15\ ml$ প্রাথমিক ঘনমাত্রা, $S_2=?$

এখানে, প্রাথমিক আয়তন, $V_1=5\ ml$ প্রাথমিক ঘনমাত্রা, $S_1=0.1M$ প্রাথমিক আয়তন, $V_2=15\ ml$ প্রাথমিক ঘনমাত্রা, $S_2=?$ MRI এর মূলনীতি: হাইড্রোজেন পরমাণুযুক্ত যৌগকে কোন শক্তিশালী চুম্বক ক্ষেত্রে স্থাপন করলে দুটি শক্তিস্তরে H-নিউক্লিয়াসগুলো বিন্যুস্ত হয়। চৌম্বক ক্ষেত্র বরাবর যে শক্তিস্তর বিন্যুস্ত হয় সেটির মান নিম্ন থাকে এবং চৌম্বক ক্ষেত্রের বিপরীত স্তরকে উচ্চ শক্তিস্তর বলা হয়। স্বাভাবিক কারণে নিম্নস্তরে অধিক H-নিউক্লিয়াস অবস্থান করে। এ পরীক্ষায় নমুনার মধ্য দিয়ে বৈদ্যুতিক চুম্বকীয় বিকিরণ প্রবাহিত করলে নিম্ন শক্তিস্তরের H-নিউক্লিয়াস শক্তি শোষণ করে উচ্চ স্তরে স্থানান্তরিত হয় এবং অণুরণন প্রতিষ্ঠার মাধ্যমে একটি সিগন্যাল দেয় এবং তা থেকে প্রতিচ্ছবি তৈরি করা হয়।

MRI এর ব্যবহার: চিকিৎসাক্ষেত্রে নিম্নোক্ত সমস্যার ক্ষেত্রে MRI (চৌম্বকীয় অনুরণন প্রতিচ্ছবিকরণ) বা Magnetic Resonance Imaging ব্যবহৃত হয়।

- ১. বিভিন্ন তন্ত্রের টিস্যুর (মস্তিষ্ক, মেরুমজ্জা) টিউমার
- ২. আঘাতজনিত অভ্যন্তরীণ রক্তক্ষরণ
- ৩. রক্ত নালিকা সংক্রান্ত রোগ
- ৪. জীবাণু সংক্রমণজনিত সমস্যা
- ৫. হাইড্রো সেফালাস বা মস্তিষ্কের অস্বাভাবিক বৃদ্ধি 🔾 E 2018

শিখা পরীক্ষা: লবণে ধাতব মূলকের উপস্থিতি শনাক্তকরণের জন্য আমরা শিখা পরীক্ষা করে থাকি। এ পরীক্ষায় একটি পরিষ্কার প্লাটিনাম বা নিক্রোম (Ni — Cr সংকর) তার গাঢ় HCl-এ ভিজিয়ে পরীক্ষণীয় লবণের একটি দানা তাতে লাগিয়ে বুনসেন দীপের জারণ শিখায় ধরলে বিভিন্ন ধাতুর জন্য শিখায় বৈশিষ্ট্যমূলক বর্ণ সৃষ্টি হয়। নমুনায় একাধিক ধাতুর লবণ থাকলে একটি ধাতুর বর্ণ অন্য ধাতুর বর্ণ দ্বারা আবৃত হয়ে যায়। এ জন্য দীপ শিখার বর্ণ কোবাল্ট গ্লাস (ব্লু গ্লাস) দিয়ে পরীক্ষা করা হয় যাতে প্রত্যেক ধাতুর বর্ণ পরিষ্কার বোঝা যায়।

<u>মৌলের বর্ণ:</u> খালি চোখে বা শিখা পরীক্ষায়-

ক্ষার	া ধাতু	মৃৎক্ষার ধাতু		
Li	উজ্জ্বল লাল	Be, Mg	বৰ্ণ দেয় না	
Na	সোনালী হলুদ	Ва	কাঁচা আপেলের মত	
K	বেগুনী	Са	ইটের ন্যায় লাল	
Rb	লালচে বেগুনী	Sr	টকটকে লাল	
Cs	নীল	Ra	লাল	

দ্রবণে আয়ন শনাক্তকারী পরীক্ষার ছক:

আয়ন	পরীক্ষার বিকারক	প্রাপ্ত অধঃক্ষেপ	বৰ্ণ
Cu ²⁺	NH ₄ OH	টেট্রা অ্যামিন কপার (II) আয়ন	গাঢ় নীল
Cu	পটাশিয়াম ফেরোসায়ানাইড	কপার ফেরো সায়ানাইড	লালচে বাদামি
	পটাশিয়াম আয়োডাইড	কিউপ্রাস আয়োডাইড	সাদা
Fe ²⁺	NH_4OH	ফেরাস হাইড্রোক্সাইড	সবুজ
	পটাশিয়াম ফেরিসায়ানাইড	ফেরাস ফেরিসায়ানাইড	গাঢ় নীল বৰ্ণ
	NH_4OH	ফেরিক হাইড্রোক্সাইড	বাদামি
Fe ³⁺	পটাশিয়াম ফেরিসায়ানাইড	ফেরিক ফেরিসায়ানাইড	বাদামি
	অ্যামোনিয়াম থায়োসায়ানেট	ফেরিক থায়োসায়ানেট	গাঢ় লাল (রক্তবর্ণ) দ্রবণ
Al^{3+}	NH_4OH	অ্যালুমিনিয়াম হাইড্রোক্সাইড	সাদা বর্ণের জেলির মতো ভাসমান অধঃক্ষেপ

Zn^{2+}	NH ₄ OH	জিংক হাইড্রোক্সাইড	সাদা অধঃক্ষেপ
	পটাশিয়াম ফেরোসায়ানাইড	জিংক ফেরোসায়ানাইড	সাদা অধঃক্ষেপ
<i>Cα</i> ²⁺	NH_4OH	ক্যালসিয়াম হাইড্রোক্সাইড	সাদা বর্ণের সূক্ষ গুড়ার ভাসমান অধঃক্ষেপ
	অ্যামোনিয়াম অক্সালেট	ক্যালসিয়াম অক্সালেট	সাদা অধঃক্ষেপ
Na ⁺	পটাশিয়াম পাইরো অ্যান্টিমোনেট $(K_2H_2Sb_2O_7)$	সোডিয়াম পাইরো অ্যান্টিমোনেট	সাদা অধঃক্ষেপ
NH_4^+	নেসলার দ্রবণ	অ্যামিনো মারকিউরিক আয়োডাইড	বাদামি অধঃক্ষেপ

