Table des matières

Ι	Probabilités	2
1	Espaces probabilisés dénombrables	2
	Lois usuelles sur $\mathbb N$	2
	Loi géométrique	
	Loi binomiale négative	
	Loi de Poisson	3
2	Espaces probabilisés généraux	4
	Exemples de lois continues	
	Loi normale $\mathcal{N}(0,1)$	
	Loi normale $\mathcal{N}(\mu, \sigma^2)$	
	Loi exponentielle $\mathcal{E}(\lambda)$	
	Loi uniforme sur l'intervalle]a,b[
	Loi uniforme sur un borélien $\mathfrak B$ de $\mathbb R^2$	
	Loi exponentielle	
	Remarque	5
3	Notion d'indépendance	8
4	Fonction de répartition	8
	4.1 Définition générale	8
	4.2 Espérance et variance d'une var	
	Exemples à connaître :	
		11
5	Convergence d'une variable aléatoire	12
	5.1 Convergence en probabilité et presque sûr	12
	5.2 Covariance de deux variables aléatoires réelles	13
	5.3 Les différentes lois des grands nombres	14
	5.4 Convergence en loi	15
6	Vecteurs aléatoires	15
7	Fonctions caractéristiques	18
	Propriétés :	
	Transformée de Laplace d'une v.a.r. positive :	19
		20
8	Conditionnement d'une variable aléatoire, espérance conditionnelle	20
	8.1 Conditionnement d'une v.a. par rapport à une autre	20
	8.2 Espérance conditionnelle de Y sachant X	

Première partie

Probabilités

1 Espaces probabilisés dénombrables

Soit $\Omega = (\omega_n)_{n \geqslant 1}$ un ensemble dénombrable, et soit $f : \Omega \to \mathbb{R}^+$ une fonction.

$$\lim_{n\to +\infty} \sum_{\omega\in F} f(\omega) = \sup\{\sum_{\omega\in F} f(\omega); F\subset \Omega\ et\ F\ fini\} = \sum_{\omega\in \Omega} f(\omega)$$

Définition:

On appelle probablité sur Ω une fonction P définie sur $\mathcal{P}(\Omega)$ et à valeur dans [0,1] tel que :

- 1. $P(\Omega) = 1$
- 2. Pour toute famille dénombrable \mathcal{A} de partie de Ω 2 à 2 incompatibles, on a :

$$P(\bigcup_{A \in \mathcal{A}} A) = \sum_{A \in \mathcal{A}} P(A)$$

Proposition:

Soit \mathbb{P} une fonction définie sur $\mathcal{P}(\Omega)$ à valeur dans \mathbb{R}^+ . \mathbb{P} vérifie la σ -additivité si et seulement si :

- 1. $P(A \cup B) = P(A) + P(B)$ pour tout A et B incompatibles
- 2. Pour toute suite $(A_n)_{n\geqslant 1}$ croissante de parties de Ω ,

$$\mathbb{P}(\bigcup_{n=1}^{+\infty} A_n) = \lim_{n \to +\infty} \mathbb{P}(A_n)$$

Demonstration:

 $\sigma \Rightarrow 1$: évident $\sigma \Rightarrow 2$: Soit $(A_n)_{n\geqslant 1}$ croissante. Posons $B_{k+1} = A_{k+1} \setminus A_k \bigcup_{n\geqslant 1} A_n = \bigcup_{n\geqslant 1} B_n$ et les $(A_n)_{n\geqslant 1}$ sont 2 à 2 incompatibles. D'après la propriété de σ -additivité,

$$P(\bigcup_{n\geqslant 1} A_n) = P(\bigcup_{n\geqslant 1} B_n)$$

$$= \lim_{n\to +\infty} \sum_{p=0}^n P(B_n)$$

$$= \lim_{n\to +\infty} P(A_0) + P(A_n) - P(A_0)$$

$$= \lim_{n\to +\infty} P(A_n)$$

1 et $2 \Rightarrow \sigma$: Soit $(A_n)_{n \geqslant 1}$ 2 à 2 incomptaibles. Posons $B_n = \bigcup_{k=1}^n A_k$ et $\bigcup_{n \geqslant 1} A_n = \bigcup_{n \geqslant 1} B_n$.

$$P(\bigcup_{n\geqslant 1} A_n) = P(\bigcup_{n\geqslant 1} B_n) = \lim_{n\to +\infty} P(B_n) = \lim_{n\to +\infty} P(\bigcup_{k=1}^n A_k)$$
$$= \lim_{n\to +\infty} \sum_{k=1}^n P(A_k) = \sum_{k=1}^{+\infty} P(A_k)$$

Définition:

On appelle espace dénombrable probabilisé un couple (Ω, \mathbb{P}) où Ω est un ensemble dénombrable non vide et \mathbb{P} une mesure de probabilité sur Ω .

Proposition:

Les proproétés 1 à 7 vues dans le cas fini restent vraies. De plus, pour toute famille \mathcal{A} dénombrable d'évènement, on a

$$\mathbb{P}(\bigcup_{A \in \mathcal{A}} A) \leqslant \sum_{A \in \mathcal{A}} \mathbb{P}(A)$$

Remarque : La notion de densité discrète se généralise au cas où Ω est infini dénombrable.

Lois usuelles sur \mathbb{N}

Loi géométrique Pour tout $p \in]0,1[$, la fonction f définie pour tout $k \in \mathbb{N}^*$ par

$$f(k) = (1 - p)^{k - 1}p$$

est une densité de probabilité sur \mathbb{N}^* On appelle la probabilité sur \mathbb{N}^* associée, la loi géométrique de paramètre p et on la note $\mathfrak{G}(p)$.

Loi binomiale négative Pour tout $p \in]0,1[$ et $r \in \mathbb{N}^*$, la fonction f définie pour tout $k \in \mathbb{N}^*$ par

$$f(k) = \begin{pmatrix} k-1 \\ r-1 \end{pmatrix} (1-p)^{k-r} p^r$$

est une densité de probabilité sur \mathbb{N}^* On appelle la probabilité sur \mathbb{N}^* associée, la loi binomiale négative de paramètre r et p et on la note $\mathfrak{BN}(r,p)$.

Remarque : $\mathfrak{BN}(1,p) = \mathfrak{G}(p)$ et f(k)=0 si r>k. Ici, on ne s'intéresse pas au 1^{er} succès mais au r-ième succès.

Loi de Poisson Pour tout $\lambda > 0$, la fonction f définie pour tout $k \in \mathbb{N}$ par

$$f(k) = e^{-\lambda} \frac{\lambda^k}{k!}$$

est une densité de probabilité sur $\mathbb N$ On appelle la probabilité sur $\mathbb N$ associée, la loi géométrique de paramètre λ et on la note $\mathfrak{P}(\lambda)$.

Théorème:

Soit $(p_n)_{n\geqslant 1}$ une suite d'éléments de [0,1] tel que

$$\lim_{n \to +\infty} n p_n = \lambda$$

Alors

$$\lim_{n \to +\infty} \binom{n}{k} p_n^k (1 - p_n)^{n-k} = e^{-\lambda} \frac{\lambda^k}{k!}$$

Demonstration:

 $np_n = \lambda u_n$ avec $\lim_{n \to +\infty} u_n = 1$. Soit $k \in \mathbb{N}$ fixé.

$$\binom{n}{k} p_n^k (1 - p_n)^{n-k} = \frac{n!}{k!(n-k)!} \times \frac{1}{n^k} (\lambda u_n)^k \left(1 - \lambda \frac{u_n}{n}\right)^{n-k}$$

Or, $\left(1-\frac{x}{n}\right)^n \to e^x$ et $\frac{n!}{(n-k)!} \frac{1}{n^k} \to 1$ d'où le résultat.

En pratique, on conviendra que l'approximation d'une binomiale par une loi de Poisson de paramètre np est correcte pour $n \ge 50$, $n \le 0,01$ et $np \le 10$.

2 Espaces probabilisés généraux

Définition:

Soit Ω un ensemble quelconque non vide. Une tribu $\mathfrak F$ sur Ω est un ensemble de parties de Ω vérifiant :

- 1. $\Omega \in \mathfrak{F}$
- 2. \mathfrak{F} stable par complémentaire
- 3. F stable par union dénombrable

Le couple (Ω, \mathfrak{F}) est appelé espace probabilisable. Un élément de \mathfrak{F} est appelé évenement.

Définition :

On appelle tribu borélienne de \mathbb{R}^d et on note $\mathfrak{B}(\mathbb{R}^d)$ la tribu engendrée par l'ensemble des ouverts de \mathbb{R}^d , c'est-à-dire la plus petite tribu qui contient l'ensemble des ouverts de \mathbb{R}^d .

Définition:

On appelle mesure de probabilité ou loi de probabilité sur l'espace mesurable (ou probabilisable) (Ω, F) une application définie sur \mathcal{F} et à valurs dans \mathbb{R}^+ tel que :

- 1. $\mathbb{P}(A) \in [0,1] \forall A \in \mathcal{F}$
- 2. $\mathbb{P}(\Omega) = 1$
- 3. Pour toute famille \mathcal{A} dénombrable d'éléments deux à deux incompatibles de \mathcal{F} , on a

$$\mathbb{P}(\bigcup_{A \in \mathcal{A}} A) = \sum_{A \in \mathcal{A}} \mathbb{P}(A)$$

Définition:

On appelle densité de probabilité (continue) sur \mathbb{R} (ou sur \mathbb{R}^d) une fonction f continue par morceaux à valeurs positives et tel que

$$\int_{\mathbb{R}} f(x)dx = 1$$

(ou $\int_{\mathbb{R}^d} f(x)dx = 1$).

Théorème :

Si f est une densité de probabilité sur \mathbb{R} (ou \mathbb{R}^d) alors il existe une unique mesure de probabilité \mathbb{P} sur $(\mathbb{R}, \mathfrak{B}(\mathbb{R}))$ (ou sur $(\mathbb{R}^d, \mathfrak{B}(\mathbb{R}^d))$ tel que pour tout intervalle]a,b[(ou tout cylindre] $a_1, b_1[\times ... \times] a_n, b_n[$) on ait :

$$\mathbb{P}(]a,b[) = \int_{a}^{b} f(x)dx \ ou \ \mathbb{P}(]a_{1},b_{1}[\times ... \times]a_{n},b_{n}[) = \int_{a_{1}}^{b_{1}} ... \int_{a_{n}}^{b_{n}} f(x)dx$$

Exemples de lois continues

Loi normale $\mathcal{N}(\mathbf{0,1})$ $X \hookrightarrow \mathcal{N}(0,1)$

$$f_X(x) = \frac{1}{\sqrt{2\pi}} e^{\frac{-x^2}{2}}$$

$$F_X(x) = \int_{-\infty}^{+\infty} f_X(t) dt$$

$$\mathbb{P}(a \le X \le b) = \int_a^b f_X(t) dt$$

Loi normale $\mathcal{N}(\mu, \sigma^2)$ $X \hookrightarrow \mathcal{N}(\mu, \sigma^2)$

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

Loi exponentielle $\mathcal{E}(\lambda)$ $X \hookrightarrow \mathcal{E}(\lambda)$

$$f_X(x) = \lambda e^{-\lambda x} 1_{\mathbb{R}_+^*}(x)$$

Loi uniforme sur l'intervalle [a,b[$X \hookrightarrow \mathcal{U}([a,b[)$

$$f_X(x) = \frac{1}{b-a} 1_{]a,b[}(x)$$

Loi uniforme sur un borélien $\mathfrak B$ de $\mathbb R^2$ $X \hookrightarrow \mathcal U(B)$ avec $B \in \mathfrak B(\mathbb R^2)$ fixé

$$\forall A \in \mathfrak{B}(\mathbb{R}^2), \, \mathbb{P}(X \in A) = \frac{\lambda_2(A \cap B)}{\lambda_2(B)}$$

$$f_X(x) = \frac{1}{\lambda_2(B)} \ 1_B(x)$$

Autres lois : Gamma, Bêta, de Student, du χ^2 , de Fisher...

Définition:

On appelle v.a. réelle (ou d-dimensionnelle) à valeur dans un borélien E une application mesurable X définie sur Ω à valeurs dans E, ie

$$\forall A \in \mathfrak{B}(E)\{x \in A\} = X^{-1}(A) \in \mathcal{F}$$

Si E= \mathbb{R} , on dit que X est une v.a. réelle

Si $E=\mathbb{R}^d$, on dit que X est un vecteur aléatoire réel

Proposition: 1. La somme et le produit d'un nombre fini de v.a.r. est une v.a.r.

2. Si $(X_n)_{n\geq 1}$ est une suite de v.a.r. tel que $X_n(\omega) \xrightarrow[n\to+\infty]{} X(\omega)$ pour tout $\omega\in\Omega$ alors l'application X est une v.a.r

Définition:

Soit X une v.a.r. à valeur dans $E \in \mathfrak{B}(\mathbb{R})$. L'application Q définie pour tout $B \in \mathfrak{B}(\mathbb{R})$ par

$$Q(B) = \mathbb{P}(X \in B)$$

est une mesure de probabilité. On l'appelle loi de probabilité sur E de la v.a. X.

Loi exponentielle Soit $\lambda > 0$. On dit qu'une var X suit la loi exponentielle de paramètre $\lambda > 0$ si

$$\forall 0 < a < b, \mathbb{P}(X \in [a, b]) = \int_{a}^{b} \lambda e^{-\lambda x}$$

On note alors $X \hookrightarrow \mathcal{E}(\lambda)$

Remarque : $\mathbb{P}(X \in]0, +\infty[) = 1$ et donc nécessairement, $\mathbb{P}(X \leq 0) = 0$.

Proposition:

Si $X \hookrightarrow \mathcal{E}(\lambda)$ avec $\lambda > 0$, alors $aX \hookrightarrow \mathcal{E}(\frac{\lambda}{a}), \forall a > 0$. En particulier, $\lambda X \hookrightarrow \mathcal{E}(1)$

Demonstration:

La fonction de répartition de $\mathcal{E}(\lambda)$ est

$$F_X(x) = (1 - e^{-\lambda x}) 1_{\mathbb{R}_+^*}(x)$$

Posons Y=aX.

$$F_Y(x) = \mathbb{P}(Y \le x)$$

$$= \mathbb{P}\left(X \le \frac{x}{a}\right)$$

$$= F_X\left(\frac{x}{a}\right)$$

$$= \left(1 - e^{-\frac{\lambda}{a}x}\right) 1_{\mathbb{R}^*_+}(x)$$

Il s'agit de la fonction de répartition de la loi $\mathcal{E}(\frac{\lambda}{a})$

Proposition:

Pour rappel, [X]=E(X) (partie entière de X). Si $X \hookrightarrow \mathcal{E}(\theta)$, alors $[X] + 1 \hookrightarrow \mathcal{G}(1 - e^{-\theta})$

Demonstration:

On pose Z=[X]+1. On a $Z(\Omega) = \mathbb{N}^*$. Soit $k \in \mathbb{N}^*$.

$$\begin{split} \mathbb{P}(Z=k) &= \mathbb{P}([X]=k-1) \\ &= \mathbb{P}(k-1 \leq X < k) \\ &= \int_{k-1}^{k} \theta e^{-\theta x} dx \\ &= \left[-e^{-\theta x} \right]_{k-1}^{k} \\ &= e^{-(k-1)\theta} - e^{-k\theta} \\ &= e^{-\theta(k-1)} \left(1 - e^{-\theta} \right) \end{split}$$

En posant $p = 1 - e^{-\theta}$, $\mathbb{P}(Z = k) = (1 - p)^{k-1}p$. Donc $[X] + 1 \hookrightarrow \mathcal{G}(1 - e^{-\theta})$.

Proposition:

De la même manière, on peut montrer que :

Soit
$$X \hookrightarrow \mathcal{E}(\theta)$$
 et $(N_n)_{n\geq 0} \in (\mathbb{R}_+^*)^{\mathbb{N}}$ tel que $N_n \xrightarrow[n \to +\infty]{} +\infty$.

- 1. Pour tout $n \ge 0$, $[N_n X] \hookrightarrow \mathcal{G}\left(1 e^{-\frac{\theta}{N_n}}\right)$
- 2. $\lim_{n \to +\infty} \frac{[N_n X]}{N_n} = X$ de façon presque sûr (ie $\mathbb{P}\left(\left\{\omega \in \Omega | \lim_{n \to +\infty} \frac{[N_n X](\omega)}{N_n} = X(\omega)\right\}\right) = 1$)

Théorème:

Soit X une v.a. à valeurs dans \mathbb{R}^+ . Les propriétés suivantes sont équivalentes :

- 1. X est une v.a. de loi exponentielle
- 2. Pour tout réel t>0, $\mathbb{P}(X > t) \neq 0$ et

$$\forall s > 0, \mathbb{P}(X > t + s | X > t) = P(X > s)$$

(Propriété sans mémoire)

Demonstration (de la première implication):

t > 0 et s > 0

$$\mathbb{P}(X > t + S | X > t) = \frac{\mathbb{P}((X > t + s) \cap (X > t))}{\mathbb{P}(X > t)} = \frac{\mathbb{P}(X > t + s)}{\mathbb{P}(X > t)}$$

$$= \frac{1 - F_X(s + t)}{1 - F_X(x)}$$

$$= \frac{e^{-\theta(s + t)}}{e^{-\theta}t} = e^{-\theta s}$$

$$= 1 - F_X(s)$$

$$= \mathbb{P}(X > s)$$

Théorème :

Soit X une v.a. à valeurs dans $\mathbb{N}^*.$ Il t a équivalence entre :

- 1. X est une v.a. de loi géométrique
- 2. $\forall n \in \mathbb{N}, \mathbb{P}(X > n) \neq 0, \text{ et} :$

$$\forall k \in \mathbb{N}, \mathbb{P}(X > n + k | X > n) = \mathbb{P}(X > k)$$

3 Notion d'indépendance

Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace probabilisé.

Définition:

- 1. On dit que deux évenements A et B sont indépendants s'ils vérifient $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$.
- 2. Soit $(A_i)_{i\in I}$ une famille quelconque d'évenements. On dit que les $(A_i)_{i\in I}$ sont mutuellement indépendants si pour tout ensemble fini d'indices distincts $\{i_1,...,i_n\}\subset I$, on a

$$\mathbb{P}(A_{i_1} \cap ... \cap A_{i_k}) = \mathbb{P}(A_{i_1})...\mathbb{P}(A_{i_k})$$

Soient $(\Omega_1, \mathcal{F}_1, \mathbb{P}_1)$ et $(\Omega_2, \mathcal{F}_2, \mathbb{P}_2)$ deux espaces probabilisés. Considérons l'espace probabilisable (Ω, \mathcal{F}) où $\Omega = \Omega_1 \times \Omega_2$ et $\mathcal{F} = \mathcal{F}_1 \otimes \mathcal{F}_2$ (produit tensoriel) est la tribu engendrée par les parties de Ω de la forme $A_1 \times A_2$ avec $A_1 \in \mathcal{F}_1$ et $A_2 \in \mathcal{F}_2$.

Proposition:

 $\exists ! \mathbb{P} \text{ sur } (\Omega, \mathcal{F}) = (\Omega_1 \times \Omega_2, \mathcal{F}_1 \otimes \mathcal{F}_2) \text{ tel que } :$

$$\forall A_1 \in \mathcal{F}_1, \forall A_2 \in \mathcal{F}_2, \mathbb{P}(A_1 \times A_2) = \mathbb{P}_1(A_1)\mathbb{P}_2(A_2)$$

 \mathbb{P} s'appelle le produit tensoriel de \mathbb{P}_1 et \mathbb{P}_2 et on note $\mathbb{P} = \mathbb{P}_1 \otimes \mathbb{P}_2$.

Soient $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé. On note X et Y deux variables aléatoires définies sur $(\Omega, \mathcal{A}, \mathbb{P})$ tel que X soit à valeur dans un espace mesurable (E, \mathcal{E}) et Y à valeur dans un espace mesurable (F, \mathcal{F}) .

Définition:

On dit que X et Y sont indépendantes (et on note X \perp Y) si pour tout $A \in \mathcal{E}$ et tout $B \in \mathcal{F}$ les évenements $\{X \in A\}$ et $\{Y \in B\}$ sont indépendants.

De même, soit $(X_i)_{i\in I}$ une famille de v.a. dans les espaces mesurables $((E_i, \mathcal{E}_i))_{i\in I}$. On dit que les $(X_i)_{i\in I}$ sont indépendantes entre elles si pour toute famille $(B_i)_{i\in I}$ d'éléments de $(\mathcal{E}_i)_{i\in I}$, les éléments $\{X_i\in B_i\}_{i\in I}$ sont mutuellement indépendants.

Proposition:

- 1. $X \perp \!\!\!\perp Y \Rightarrow f(X) \perp \!\!\!\perp g(Y)$ pour tout f et g mesurables
- 2. Si la loi du couple (X,Y) admet une densité, alors

$$X \perp \!\!\!\perp Y \Leftrightarrow f_{(X,Y)}(x,y) = f_X(x)f_Y(y)$$

4 Fonction de répartition

4.1 Définition générale

Définition:

– Pour toute mesure de probabilité μ sur $(\mathbb{R}, B_{\mathbb{R}})$, on apelle fonction de répartition de μ , notée F_{μ} , et définie pour tout $x \in \mathbb{R}$ par :

$$F_{\mu}(x) = \mu(] - \infty, x])$$

– Soit X une v.a. réelle définie sur $(\Omega, \mathcal{F}, \mathbb{P})$. On parlera alors de fonction de répartition de la v.a. X au lieu de la fonction de répartition de la loi μ_X de X. On notera $F_{\mu} = F_X$ et on aura donc :

$$F_X(x) = \mu_X(]-\infty,x]) = \mathbb{P}(X \le x)$$

- Plus généralement, si $X=(X_1,...,X_d)$ est un vecteur aléatoire de \mathbb{R} , alors la fonction de répartition F_X de X est définie pour tout $\mathbf{x}=(x_1,...,x_d)\in\mathbb{R}^d$ par

$$F_X(x) = \mathbb{P}(X \le x)\mathbb{P}(X_1 < x_1, ..., X_d < x_d)$$

Théorème (admis):

Deux mesures de probabilité sur $(\mathbb{R}, B_{\mathbb{R}})$ sont égales ssi elles ont même fonction de répartition.

Proposition (de la f.d.r):

Soit X une v.a. définie sur $(\Omega, \mathcal{F}, \mathbb{P})$ et soit F_X sa f.d.r.

- F_X est croissante tel que $\lim_{x\to +\infty} F_X(x)=1$ et $\lim_{x\to -\infty} F_X(x)=0$
- $-F_X$ est "Cadlag" (continue à droite et limité à gauche) et pour tout $\alpha \in \mathbb{R}$ on a :

$$F_x(\alpha^-) = \lim_{\substack{x \to \alpha \\ x < \alpha}} F_X(x) = \mathbb{P}(X < \alpha)$$

$$\forall \alpha \in \mathbb{R}, \mathbb{P}(X = \alpha) = F_X(\alpha) - F_X(\alpha^-)$$

Demonstration (de la dernière propriété):

$$F_X(\alpha) - F_X(\alpha^-) = \lim_{n \to +\infty} \mathbb{P}(X \le \alpha) - \mathbb{P}(X \le \alpha - \frac{1}{n})$$

$$= \lim_{n \to +\infty} \mathbb{P}(\alpha - \frac{1}{n} < X \le \alpha)$$

$$= \lim_{n \to +\infty} \mathbb{P}(X \in]\alpha - \frac{1}{n}, \alpha])$$

$$= \mathbb{P}(X \in \bigcap_n \alpha - \frac{1}{n}, \alpha])$$

$$= \mathbb{P}(X = a)$$

Proposition:

Soit X une variable aléatoire réelle de densité f_X . La f.d.r. F_X de X vérifie :

- $\forall x \in \mathbb{R}, F_X(x) = \int_{-\infty}^x f_X(t)dt$
- F_X continue sur \mathbb{R}
- Si f_X est continue en $x_0 \in \mathbb{R}$ alors F_X est dérivable et $F'(x_0) = f(x_0)$

Proposition:

On suppose que la f.d.r. F_X de la var X est \mathcal{C}^1 par morceaux au sens suivant :

- F_X continue sur \mathbb{R} sauf éventuellement en un nombre fini de points $a_1 < a_2 < ... < a_n$.
- Sur chacun des des intervalles $]-\infty, a_1[,]a_n, +\infty[$ et $]a_i, a_{i+1}[$ pour tout $1 \le i \le n-1$, la dérivée f de F_X est continue.

Alors X a pour densité f

4.2 Espérance et variance d'une var

Définition:

Soit X une var définie sur l'espace probabilisé $(\Omega, \mathcal{F}, \mathbb{P})$. On appelle espérance de la v.a. X et on note E(X) l'intégrale (au sens de Lebesgue)

$$\int_{\Omega} X(\omega) d\mathbb{P}(\omega)$$

lorsque celle-ci est bien définie.

Si E(|X|) est un nombre fini, on dit que la v.a. X est intégrable.

Remarque:

Posons $X^+ = \sup(X,0)$ et $X^- = \inf((-X),0)$. $(X^+ \ge 0$ et $X^- \ge 0$ p.s.) Les intégrales $\int_{\Omega} X^+ d\mathbb{P}$ et $\int_{\Omega} X^- d\mathbb{P}$ ont toujours un sens. Comme $X = X^+ + X^-$ on pose

$$\int_{\Omega} X d\mathbb{P} = \int_{\Omega} X^{+} d\mathbb{P} + \int_{\Omega} X^{-} d\mathbb{P}$$

Théorème : 1. Si $X(\Omega)$ dénombrable, alors :

$$E(X) = \sum_{k \in X(\Omega)} k \mathbb{P}(X = k)$$

et pour toute fonction g définie sur $X(\Omega)$ à valeur dans \mathbb{R} :

$$E(g(X)) = \sum_{k \in X(\Omega)} g(k) \mathbb{P}(X = k)$$

2. Si la loi de X admet une densité f_X alors

$$E(X) = \int_{\mathbb{R}} x f_X(x) dx$$

et plus généralement, si g est une fonctions mesurable sur $\mathbb R$ à valeur dans $\mathbb R$ alors :

$$E(g(X)) = \int_{\mathbb{R}} g(x) f_X(x) dx$$

Proposition:

Soient X et Y deux v.a.r.

- 1. $\forall a, b \in \mathbb{R}, E(aX + bY) = aE(X) + bE(Y)$
- 2. Si $X \geq 0$ p.s. alors $E(X) \geq 0$
- 3. Si $X \geq Y$ p.s. alors $E(X) \geq E(Y)$
- 4. $|E(X)| \leq E(|X|)$ et plus généralement, si ϕ est une fonction convexe, alors

$$\phi(E(X)) \le E(\phi(X))$$

(inégalité de Jensen)

Théorème (de la convergence dominée de Lebesgue) :

Soit $(X_n)_{n\geq 1}$ une suite de v.a.r. qui converge p.s. vers une v.a.r. X. S'il existe une v.a. Y intégrable tel que $|X_n|\leq Y$ p.s. $\forall n\geq 1$ alors

$$E(X) = \lim_{n \to +\infty} E(X_n)$$

Proposition (Inégalité de Markov) :

Soit X est une v.a.r. définie sur $(\Omega, \mathcal{F}, \mathbb{P})$

Si $X \ge 0$ p.s. alors

$$\forall \lambda > 0, \mathbb{P}(X > \lambda) \le \frac{E(X)}{\lambda}$$

Demonstration:

$$\begin{split} \forall A \in \mathcal{F}, \ \mathbb{P}(A) &= \int_A d\mathbb{P} = \int 1_A d\mathbb{P} = E(1_A) \\ \mathbb{P}(X \leq \lambda) &= E(1_{\{X \leq \lambda\}}) = \int_\Omega 1_{\{X \leq \lambda\}} d\mathbb{P} \\ &\leq \int_\Omega \frac{X}{\lambda} 1_{\{X \leq \lambda\}} d\mathbb{P} \\ &\leq \int_\Omega \frac{X}{\lambda} d\mathbb{P}(\operatorname{car} X \geq 0 \ p.s.) \\ &\leq \frac{1}{\lambda} \int_\Omega X d\mathbb{P} \\ &\leq \frac{E(X)}{\lambda} \end{split}$$

Définition:

Pour toute v.a.r. X, on appelle variance de X le nombre (s'il existe)

$$V(X) = E((X - E(X))^{2}) = E(X^{2}) - (E(X))^{2}$$

Proposition (Inégalité de Bienaymé-Tcheychev) :

$$\forall \lambda > 0, \mathbb{P}(|X - E(X)| > \lambda) \le \frac{V(X)}{\lambda^2}$$

Demonstration:

$$\begin{split} \mathbb{P}(|X - E(X)| > \lambda) &= \mathbb{P}\left((X - E(X))^2 > \lambda^2\right) \\ &\leq \frac{E\left((X - E(X))^2\right)}{\lambda^2} \\ &\leq \frac{V(X)}{\lambda^2} \end{split}$$

 $-V(X) \ge 0 \ (\text{car } E(X)^2 \le E(X^2) \)$ Proposition:

- Si la loi de X d
met une densité d_x alors

$$V(X) = \int_{\mathbb{R}} x^2 f_X(x) dx - \left(\int_{\mathbb{R}} x f_X(x) dx \right)^2$$

- $\forall (a,b) \in \mathbb{R}^2, \ V(aX+b) = a^2V(X)$
- Considérons la fonction

$$g: \mathbb{R} \to \mathbb{R}^+$$

 $a \mapsto E((X-a)^2)$

alors

$$\underset{a \in \mathbb{R}}{\operatorname{argmin}} \ g(a) = E(X) \ et \ \underset{a \in \mathbb{R}}{\min} \ g(a) = V(X)$$

$$-X \perp \!\!\!\perp Y \Rightarrow V(X+Y) = V(X) + V(Y)$$

Exemples à connaître :

- $-X \hookrightarrow \mathcal{B}(p)$ alors E(X)=p et V(X)=p(1-p)
- $X \hookrightarrow \mathcal{B}(p, n)$ alors E(X) = np et V(X) = np(1-p)- $X \hookrightarrow \mathcal{G}(p)$ alors $E(X) = \frac{1}{p}$ et $V(X) = \frac{1-p}{p^2}$ $X \hookrightarrow \mathcal{P}(\lambda)$ alors $E(X) = V(X) = \lambda$

- $\begin{array}{l} -X \hookrightarrow \mathcal{U}(]a,b[) \text{ alors } \mathrm{E}(\mathrm{X}) = \frac{a+b}{2} \text{ et } \mathrm{V}(\mathrm{X}) = \frac{(b-a)^2}{12} \\ -X \hookrightarrow \mathcal{E}(\theta) \text{ alors } \mathrm{E}(\mathrm{X}) = \frac{1}{\theta} \text{ et } \mathrm{V}(\mathrm{X}) = \frac{1}{\theta^2} \\ -X \hookrightarrow \mathcal{N}(\mu,\sigma^2) \text{ alors } \mathrm{E}(\mathrm{X}) = \mu \text{ et } \mathrm{V}(\mathrm{X}) = \sigma^2 \end{array}$

5 Convergence d'une variable aléatoire

5.1 Convergence en probabilité et presque sûr

Définition:

Soit $(Y_n)_{n\geq 1}$ une suite de v.a.r. et soit Y une v.a.r.

1. On dit que $(Y_n)_{n\geq 1}$ converge en probabilité vers Y si :

$$\forall \varepsilon > 0, \mathbb{P}(|Y_n - Y| \ge \epsilon) \xrightarrow[n \to +\infty]{} 0$$

On note

$$Y_n \xrightarrow[n \to +\infty]{\mathbb{P}} Y$$

2. On dit que $(Y_n)_{n\geq 1}$ converge presque-sûrement vers Y si :

$$\mathbb{P}(\{\omega \in \Omega | \lim_{n \to +\infty} Y_n(\omega) = Y(\omega)\}) = 1$$

On note

$$Y_n \xrightarrow[n \to +\infty]{p.s.} Y$$

Proposition:

La convergence p.s. entraı̂ne la convergence en probabilité.

Demonstration:

A reprendre

Proposition:

Soient Y et $(Y_n)_{n\geq 1}$ des v.a.r. telles que

$$\forall \varepsilon > 0, \sum_{n \geq 1} \mathbb{P}(|Y_n - Y| > \varepsilon) < +\infty$$

alors

$$Y_n \xrightarrow[n \to +\infty]{p.s.} Y$$

Demonstration:

Posons $B_{n,\varepsilon} = \{|Y_n - Y| > \varepsilon\}$ et $A_{\varepsilon} = \overline{\lim}_{n \to +\infty} B_{n,\varepsilon}$

D'après le lemme de Borel-Cantelli :

$$\mathbb{P}(A_{\varepsilon}) = 0 \ \forall \varepsilon > 0$$

Or,
$$A_{\varepsilon} = \bigcap_{k \geq 1} \bigcup_{k \geq n} B_{k,\varepsilon}$$
 et $\overline{A_{\varepsilon}} = \bigcup_{k \geq 1} \bigcap_{k \geq n} \overline{B_{k,\varepsilon}}$
On a $\mathbb{P}(\overline{A_{\varepsilon}}) = 1 \ \forall \varepsilon > 0$. Posons $E = \bigcap_{s \in \mathbb{N}^*} \overline{A_{\frac{1}{s}}}$

$$\mathbb{P}(\overline{E}) = \mathbb{P}(\bigcap_{s \in \mathbb{N}^*} A_{\frac{1}{s}}) \le \sum_{s \in \mathbb{N}^*} \mathbb{P}(A_{\frac{1}{s}}) = 0$$

D'où $\mathbb{P}(E) = 1$

$$\begin{split} \omega \in E &\iff \forall s \in \mathbb{N}^*, \omega \in \overline{A_{\frac{1}{s}}} \\ &\Leftrightarrow &\forall s \in \mathbb{N}^*, \exists n > 1, \forall k \geq n, \omega \in B_{k,\frac{1}{s}} \\ &\Leftrightarrow &\forall s \in \mathbb{N}^*, \exists n > 1, \forall k \geq n, |Y_k(\omega) - Y(\omega)| \leq \frac{1}{s} \\ &\Leftrightarrow &\forall \varepsilon > 0, \exists n > 1, \forall k \geq n, |Y_k(\omega) - Y(\omega)| \leq \varepsilon \\ &\Leftrightarrow &Y_k \xrightarrow[k \to +\infty]{} Y \end{split}$$

5.2 Covariance de deux variables aléatoires réelles

Définition:

Soient X et Y deux v.a.r.

La covariance de X et Y, notée cov(X,Y) est définie par :

$$cov(X,Y) = E((X - E(X)(Y - E(Y)))$$
$$= E(XY) - E(X)E(Y)$$

Si cov(X,Y)=0, on dit que X et Y sont non corrélées.

Théorème (Inégalité de Cauchy-Schwarz):

Soient X et Y deux v.a.r. On a :

$$|\text{cov}(X,Y)| \le \sqrt{V(X)}\sqrt{V(Y)}$$

et

$$cov(X,Y)^2 = V(X)V(Y) \Leftrightarrow \exists (\alpha,\beta,\gamma) \neq (0,0,0); \alpha X + \beta Y = \gamma \ p.s.$$

Demonstration:

Considérons le prolynôme P défini pour tout $\lambda \in \mathbb{R}$ par :

$$P(\lambda) = V(X + \lambda Y) = V(X) + \lambda^2 V(Y) + 2\lambda \operatorname{cov}(X, Y) > 0$$

Par conséquent :

$$\Delta = 4 \operatorname{cov}^{2}(X, Y) - 4V(X)V(Y) \leq 0$$

$$\Leftrightarrow \operatorname{cov}^{2}(X, Y) \leq V(X)V(Y)$$

$$\Leftrightarrow |\operatorname{cov}(X, Y)| \leq \sqrt{V(X)}\sqrt{V(Y)}$$

Supposons: $\exists (\alpha, \beta, \gamma) \neq (0, 0, 0); \alpha X + \beta Y = \gamma$ p.s. On peut supposer $\alpha \neq 0$

$$X = \frac{\gamma}{\alpha} - \frac{\beta}{\alpha}Y$$

$$Cov(X,Y) = Cov(\frac{\gamma}{\alpha},Y) - \frac{\beta}{\alpha}cov(Y,Y)$$

$$= 0 - \frac{\beta}{\alpha}V(Y)$$

$$\Rightarrow Cov^{2}(X,Y) = \frac{\beta^{2}}{\alpha^{2}}V(Y) = V\left(\frac{\beta}{\alpha}Y\right)V(Y)$$

$$= V\left(\frac{\gamma}{\alpha} - \frac{\beta}{\alpha}Y\right)V(Y)$$

$$= V(X)V(Y)$$

Réciproquement, si $cov(X,Y)^2 = V(X)V(Y)$ alors $\Delta = 0$ et P admet une racine réelle (double) λ_0

$$P(\lambda_0) = V(X + \lambda_0 Y) = 0$$

$$\Leftrightarrow E\left(((X + \lambda_0 Y) - E((X + \lambda_0 Y))^2\right) = 0$$

$$\Leftrightarrow X + \lambda_0 Y = E((X + \lambda_0 Y))$$

Autrement dit, $X + \lambda_0 Y = c$ p.s.

Lemme:

Si $X \ge 0$ p.s. tel que E(X)=0 alors X=0 p.s.

Demonstration:

D'après l'inégalité de Markov :

$$\forall \varepsilon > 0, 0 \le \mathbb{P}(X \ge \varepsilon) \le \frac{E(X)}{\varepsilon} = 0$$

$$\Rightarrow \forall n \in \mathbb{N}^*, \mathbb{P}\left(X \ge \frac{1}{n}\right) = 0$$

$$\Rightarrow \mathbb{P}\left(\bigcup_{n \in \mathbb{N}^*} \left\{X \ge \frac{1}{n}\right\}\right) \le \sum_{n \ge 1} \mathbb{P}\left(X \ge \frac{1}{n}\right) = 0$$

$$\Rightarrow \mathbb{P}\left(\bigcap_{n \in \mathbb{N}^*} \left\{X \le \frac{1}{n}\right\}\right) = 1 = \mathbb{P}(X = 0)$$

$$\Rightarrow X = 0 \ p.s.$$

Proposition: 1. cov(X,Y)=cov(Y,X)

- 2. $cov(aX+bY,Z)=a cov(X,Z)+b cov(Y,Z), \forall (a,b) \in \mathbb{R}^2$
- 3. cov(X,X)=V(X)
- 4. V(X+Y)=V(X)+V(Y)+2cov(X,Y)
- 5. $X \perp \!\!\!\perp Y \Rightarrow cov(X,Y)=0$ (Réciproque fausse)

5.3 Les différentes lois des grands nombres

Théorème (Loi faible des grands nombres):

Soit $(X_k)_{k\geq 1}$ une suite de v.a.r. de même loi tel que $E(X_1^2)<+\infty$ et deux à deux non corrélées. Alors

$$\frac{1}{n} \sum_{k=1}^{n} X_k \xrightarrow[n \to +\infty]{\mathbb{P}} E(X_1)$$

Demonstration:

Posons $S_n = \sum_{k=1}^n X_k$.

$$\frac{S_n}{n} \xrightarrow[n \to +\infty]{\mathbb{P}} E(X_1) \Leftrightarrow \forall \varepsilon > 0, \mathbb{P}\left(\left|\frac{S_n}{n} - E(X_1)\right| > \varepsilon\right) \xrightarrow[n \to +\infty]{} 0$$

Soit $\varepsilon > 0$ fixé. On a

$$E(S_n) = \sum_{k=1}^{n} E(X_k) = nE(X_1)$$

$$\mathbb{P}\left(\left|\frac{S_n}{n} - E(X_1)\right| > \varepsilon\right) = \mathbb{P}\left(|S_n - nE(X_1)| > n\varepsilon\right) \\
\leq \frac{V(S_n)}{(n\varepsilon)^2}$$

Or,

$$V(S_n) = V(\sum_{k=1}^n X_k)$$

$$= \sum_{k=1}^n V(X_k) (car X_k \ 2 \ à \ 2 \ non \ correlées)$$

$$= nV(X_1) (car X_k \ identiquement \ distribuées)$$

$$\Rightarrow \mathbb{P}\left(\left|\frac{S_n}{n} - E(X_1)\right| > \varepsilon\right) \le \frac{V(X_1)}{n\varepsilon^2} \xrightarrow[n \to +\infty]{} 0$$

avec $V(X_1)$ fini car $E(X_1^2)<+\infty.$ D'où

$$\frac{1}{n} \sum_{k=1}^{n} X_k \xrightarrow[n \to +\infty]{\mathbb{P}} E(X_1)$$

Théorème (loi forte des grands nombres - admis) :

Soit $(X_k)_{k>1}$ une suite de v.a.r. i.i.d.

$$E(|X_1|) < +\infty \Rightarrow \frac{1}{n} \sum_{k=1}^n X_k \xrightarrow[n \to +\infty]{p.s.} E(X_1)$$

5.4 Convergence en loi

Définition:

Soient Y et $(Y_n)_{n\geq 1}$ des v.a.r.

On dit que la suite $(Y_n)_{n\geq 1}$ converge en loi vers la v.a. Y si :

$$F_{Y_n}(x) \xrightarrow[n \to +\infty]{} F_Y(x)$$

pour tout point de continuité x de F_Y (avec F_X f.d.r. de la v.a. X)

On note alors:

$$Y_n \xrightarrow[n \to +\infty]{\mathcal{L}} Y$$

Remarque : — Convergence p.s. ⇒ Convergence en proba ⇒ Convergence en loi — La convergence en loi n'est pas stable pour la somme des variables aléatoires :

$$Y_n \xrightarrow[n \to +\infty]{\mathcal{L}} Y \text{ et } Z_n \xrightarrow[n \to +\infty]{\mathcal{L}} Z \not\Rightarrow Y_n + Z_n \xrightarrow[n \to +\infty]{\mathcal{L}} Y + Z_n \xrightarrow[n \to +\infty]{\mathcal{L}} Y$$

Théorème (Central limit):

Soit $(X_k)_{k\geq 1}$ une suie de v.a.r., iid et de carré intégrable (ie $E(X_1^2)<+\infty$). On a alors :

$$W_n \frac{1}{\sigma \sqrt{n}} \sum_{k=1}^{n} (X_k - \mu) \xrightarrow[n \to +\infty]{\mathcal{L}} N$$

où $\mu = E(X_1), \ \sigma^2 = V(X_1) > 0 \text{ et } N \hookrightarrow \mathcal{N}(0, 1)$

On a donc:

$$\forall x \in \mathbb{R}, \mathbb{P}(W_n \le x) \xrightarrow[n \to +\infty]{} \mathbb{P}(N \le x) = F_N(x)$$

avec

$$F_n(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{\frac{-t^2}{2}} dt$$

Ce qui équivaut à :

$$\forall a < b, \mathbb{P}(a \le W_n \le b) \xrightarrow[n \to +\infty]{} \sqrt{2\pi} \int_{a}^{b} e^{\frac{-t^2}{2}} dt$$

6 Vecteurs aléatoires

Définition:

Soit $X=^t(X_1,...,X_d)$ un vecteur aléatoire de dimension $d \in \mathbb{N}$. On appelle espérance de X le vecteur

$$E(X) = {}^{t} (E(X_1), ..., E(X_d))$$

Proposition : – Si $X=^t(X_1,...,X_d)$ et $Y=(Y_1,...,Y_d)$ sont deux vecteurs aléatoires de dimension d, alors

$$E(X+Y) = E(X) + E(Y)$$

- Si M est une matrice de nombres réels et si X est un vecteur aléatoire tel que MX soit bien défini, alors $E(MX) = M \times E(X)$
- Si $\phi: \mathbb{R}^d \to \mathbb{R}$ est convexe alors $\phi(E(X)) \leq E(\phi(X))$ (Inégalité de Jensen)

Définition:

Soit $X=^t(X_1,...,X_d)$ tel que X_i soit de carré intégrable pour tout $1 \le i \le d$. On appelle matrice de covariance (ou matrice de dispersion) du vecteur aléatoire X, la matrice :

$$V(X) = E((X - E(X))^{t}(X - E(X))$$

= $(cov(X_{i}, X_{j}))_{1 \le i, j \le d}$

Proposition : 1. Si b= $(b_1,...,b_d)$ est un vecteur constant et si X= $(X_1,...,X_d)$ est un vecteur aléatoire alors V(X+b)=V(X)

2. Si M est une matrices de nombres réels tel que MX soit bien défini, alors

$$V(MX) = E((MX - E(MX))^{t}(MX - E(MX)))$$

$$= E(M(X - E(X))^{t}(M(X - E(X))))$$

$$= E(M(X - E(X))^{t}(X - E(X))^{t}M)$$

$$= MV(X)^{t}M$$

3. V(X) est une matrice symétrique semi-définie positive. Autrement dit, pour tout vecteur Y non nul, on a ${}^tYV(X)Y \ge 0$, ou encore, toutes les valeurs propres de V(X) sont positives ou nulles.

Définition (Vecteurs alétoires gaussiens):

On dit que le vecteur alétoire $X = t(X_1, ..., X_d)$ de \mathbb{R}^d est gaussien si pour toute application linéaire $u : \mathbb{R}^d \to \mathbb{R}$, la variable aléatoire u(X) est une v.a. réelle gaussienne.

Remarque:

 $\forall 1 \leq i \leq d$, considérons l'application linéaire

$$u_i : \mathbb{R}^d \to \mathbb{R}$$

 $(x_1, ..., x_d) \mapsto x_i$

Ainsi, $X_i = u_i(X)$, avec X vecteur aléatoire gaussien. Donc, par définition, X_i est une v.a. gaussienne sur \mathbb{R} .

La réciproque est fausse.

Proposition:

La loi d'un vecteur aléatoire gaussien $X=^t(X_1,...,X_d)$ est caractérisée par son vecteur espérance

$$m = {}^{t} (E(X_1), ..., E(X_d))$$

et sa matrice de dispersion

$$\Gamma = (cov(X_i, X_j)_{1 \le i, j \le d})$$

La loi de X est notée $\mathcal{N}_i(m,\Gamma)$

Proposition:

Soient X et Y deux v.a. réelles indépendantes dont les lois admettent des densités de probabilité f_X et f_Y respectivement.

Alors la loi de Z=X+Y admet également une densité de probabilité f_Z définie pour tout $x \in \mathbb{R}$ par

$$f_Z(x) = (f_X * f_Y)(x) = \int_{\mathbb{R}} f_X(t) f_Y(x - t) dt$$

Demonstration:

 $X \perp \!\!\!\perp Y$, Z=X+Y.

Montrons que la loi de Z admet une densité de probabilité f_Z définie pour tout $x \in \mathbb{R}$ par

$$f_Z(x) = (f_X * f_Y)(x)$$

Tout d'abord, comme X et Y sont indépendantes, la loi du couple (X,Y) admet une densité de probabilité $f_{(X,Y)}$ définie pour tout $(x,y) \in \mathbb{R}^2$ par

$$f_{(X,Y)}(x,y) = f_X(x)f_Y(y)$$

Soit $h: \mathbb{R} \to \mathbb{R}$ mesurable.

$$\begin{split} E(h(Z)) &= E(h(\phi(X,Y))) \ ou \ \phi(X,Y) = X + Y \\ &= E(\tilde{h}(X,Y)) \ ou \ \tilde{h} = h \circ \phi \\ &= \int \int_{\mathbb{R}^2} \tilde{h}(x,y) f_{(X,Y)}(x,y) dx dy \\ &= \int \int_{\mathbb{R}^2} h(x+y) f_X(x) f_Y(y) dx dy \\ &= \int_{\mathbb{R}} \left(\int_{\mathbb{R}} h(x+y) f_X(x) dx \right) f_Y(y) dy \end{split}$$

Posons $u = x + y \Rightarrow du = dx$.

$$E(h(Z)) = \int \int_{\mathbb{R}^2} h(u) f_X(u - y) f_Y(y) du dy$$
$$= \int_{\mathbb{R}} h(u) \left(\int_{\mathbb{R}} f_X(u - y) f_Y(y) dy \right) du$$

On a donc:

$$f_Z(u) = \int_{\mathbb{R}} f_X(u - y) f_Y(y) dy$$
$$= (f_X * f_Y)(u)$$

Corollaire:

La somme de deux v.a. gaussiennes indépendantes est encore une v.a; gaussienne.

Demonstration:

Soient $X \hookrightarrow \mathcal{N}(0,1)$ et $Y \hookrightarrow \mathcal{N}(0,1)$ tel que $X \perp \!\!\! \perp Y$ Montrons que $Z = X + Y \hookrightarrow \mathcal{N}(0,2)$

$$f_{Z}(x) = \int_{\mathbb{R}} f_{X}(t) f_{Y}(x-t) dt$$

$$= \int_{\mathbb{R}} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^{2}}{2}} \times \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-t)^{2}}{2}} dt$$

$$= \frac{1}{2\pi} \int_{\mathbb{R}} e^{-\frac{t^{2}}{2}} e^{-\frac{1}{2}(x^{2}-2xt+t^{2})} dt$$

$$= \frac{1}{2\pi} \int_{\mathbb{R}} e^{-(\frac{x^{2}}{2}-xt+t^{2})} dt$$

$$= \frac{1}{2\pi} e^{-\frac{x^{2}}{4}} \int_{\mathbb{R}} e^{-(\frac{x^{2}}{4}-xt+t^{2})} dt$$

$$= \frac{1}{2\pi} e^{-\frac{x^{2}}{4}} \int_{\mathbb{R}} e^{-(\frac{x}{2}-t)^{2}} dt$$

$$= \frac{1}{2\pi} e^{-\frac{x^{2}}{4}} \int_{\mathbb{R}} e^{-\frac{(t-\mu)^{2}}{2\sigma^{2}}} dt \quad ou \ \mu = \frac{x}{2}, \ \sigma^{2} = \frac{1}{2}$$

$$= \frac{1}{2\pi} e^{-\frac{x^{2}}{4}} \times \sqrt{2\pi} \frac{1}{\sqrt{2}}$$

$$= \frac{1}{2\sqrt{\pi}} e^{-\frac{x^{2}}{4}}$$

D'où $Z \hookrightarrow \mathcal{N}(0,2)$

Théorème (admis):

Soit $X=(X_1,...,X_d)$ i, vecteur aléatoire gaussien de moyenne $m=(m_1,...,m_d)$ et de matrice de covariance Γ (on note $X\hookrightarrow \mathcal{N}_d(m,\Gamma)$)

Si Γ est inversible alors la loi de X admet une densité de probabilité f_X définie pour tout $x=(x_1,...,x_d)\in\mathbb{R}^d$ par :

$$f_X(x) = \frac{1}{(2\pi)^{\frac{d}{2}}\sqrt{|det(\Gamma)|}} \exp\left(-\frac{1}{2} < x - m, \Gamma^{-1}(x - m) > \right)$$

Remarque:

Si d=1, on retourve la densité de la loi $\mathcal{N}(m, \sigma^2)$

7 Fonctions caractéristiques

Définition : — On appelle fonction caractéristique d'une v.a.r. X l'application ϕ_X définie sur \mathbb{R} et à valeur dans le disque unité fermé du plan complexe par :

$$\forall t \in \mathbb{R}, \phi_X(t) = E(e^{itX}) = E(\cos(tX)) + iE(\sin(tX))$$

- Si la v.a. est à valeur dans \mathbb{R}^d ($d \in \mathbb{N}^*$), la fonction caractéristique (de la loi) de X, notée encore ϕ_X , est l'application définie sur \mathbb{R}^d et à valeurs dans le disque unité fermé du plan complexe par :

$$\forall t \in \mathbb{R}, \phi_X(t) = E(e^{i < t, X >}) = E(\cos(< t, X >)) + iE(\sin(< t, X >))$$

Remarque: 1. Si $X(\Omega) \subset \mathbb{Z}$ alors

$$\forall t \in \mathbb{R}, \phi_X(t) = \sum_{k \in \mathbb{Z}} \mathbb{P}(X = k)e^{itk}$$

2. Si la loi de X admet une densité de probabilité f_X sur \mathbb{R}^d $(d \in \mathbb{N}^*)$ alors

$$\forall t \in \mathbb{R}^d, \phi_X(t) = \int_{\mathbb{R}} e^{i < t, X >} f_X(t) dt$$

Il s'agit de la transformée de Fourier de f_X

3. Si $X \hookrightarrow \mathcal{N}(0,1)$, alors $\forall t \in \mathbb{R}, \phi_X(t) = e^{-\frac{t^2}{2}}$ (Réciproque vraie)

Propriétés:

1. $\forall a, b \in \mathbb{R}, \forall t \in \mathbb{R}, \phi_{aX+b}(t) = e^{itb}\phi_X(at)$

2. Si $X(\Omega) \subset \mathbb{R}^d$, alors pour toute matrice A réelle $n \times d$ et tout matrice B réelle $n \times 1$:

$$\phi_{AX+B}(t) = e^{i < t,B > \phi_X(t^t A t)}, \ \forall t \in \mathbb{R}^d$$

3. $\phi_X(0) = 1$ et $\phi_{-X}(t) = \phi_X(-t) = \overline{\phi_X(t)}$

4. Si X est une v.a.r. intégrable alors ϕ_X est de classe \mathcal{C}^1 et :

$$\forall t \in \mathbb{R}, \phi_X'(t) = iE(Xe^{itX})$$

En particulier, si t=0, on obtient $\phi_X'(t) = iE(X)$

Plus généralement, si X est p-intégrable (ie $E(|X|^p) < \infty$) avec $p \in \mathbb{N}^*$, alors ϕ_X est de classe \mathcal{C}^p et pour tout $t \in \mathbb{R}$

$$\phi_X^{(p)}(t) = i^p E(X^p e^{itX})$$

En particulier, $\phi_X^{(p)}(0) = i^p E(X^p)$

Si $X(\Omega) \subset \mathbb{R}^d$ et si X est d-intégrable, ϕ_X est de clsse \mathcal{C}^{α} et pour tout $p = (p_1, ..., p_d) \in \mathbb{N}^d$; $p_1 + ... + p_d \leq \alpha$, on a :

$$\frac{\partial^{p_1+\ldots+p_d}}{\partial t_1^{p_1}\ldots\partial t_d^{p_d}}\phi_X(0)=i^{p_1+\ldots+p_d}E(X_1^{p_1}\ldots X_d^{p_d})$$

5. Si X et Y sont deux v.a.r. indépendantes :

$$\phi_{X+Y}(t) = \phi_X(t)\phi_Y(t)$$

Théorème:

Deux v.a.r. (ou d-dimensionnelle) ont même loi si et seulement si elles ont même fonction caractéristique.

Théorème:

Si X est une v.a. d-dimensionnelle et si

$$\int_{\mathbb{R}^d} |\phi_X(t)| dt_1 ... dt_d < \infty$$

alors X admet une densité de probabilité f_X continue sur \mathbb{R}^d définie pour tout $x \in \mathbb{R}^d$ par :

$$f_X(x) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} \phi_X(t) e^{-i\langle t, X \rangle} dt$$

Transformée de Laplace d'une v.a.r. positive :

Lorsque X est positive p.s., on peut utiliser la transformée de Laplace.

Définition :

Soit X une v.a.r. positive p.s. On appelle transformée de Laplace de la loi de X la fonction :

$$L_X : \mathbb{R}^+ \to [0,1]$$

 $\lambda \mapsto E(e^{-\lambda X})$

8 Conditionnement d'une variable aléatoire, espérance conditionnelle

Soient X et Y deux v.a. réelles définies sur un espace probabilisé $(\Omega, \mathcal{F}, \mathbb{P})$.

8.1 Conditionnement d'une v.a. par rapport à une autre

Théorème (de Doob):

Il existe une application:

$$q: \mathcal{B}(\mathbb{R}) \times \mathbb{R} \rightarrow [0,1]$$

 $(B,x) \mapsto q(B,x)$

vérifiant :

- 1. Pour tout $B \in \mathcal{B}(\mathbb{R})$, l'application $q(B, \bullet)$ est mesurable.
- 2. $\forall x \in \mathbb{R}$, l'application $q(\bullet, x)$ est une probabilité sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$
- 3. Pour tout $A \in \mathcal{B}(\mathbb{R}^2)$ on a :

$$\mu_{(X,Y)}(A) = E(1_A(X,Y))$$
$$= \iint_{\mathbb{R}^2} 1_A(x,y)q(dy,x)d\mu_X(x)$$

avec $\mu_{(X,Y)}$ et μ_X les lois de probabilité du vecteur aléatoire (X,Y) et de la variable aléatoire X respectivement.

Définition:

L'application q est appellée "loi conditionnelle de Y sachant X"

Conséquence:

Pour toute fonction $\mu_{(X,Y)}$ -intégrable $f:\mathbb{R}^2\to\mathbb{R}$ (ie $\iint_{\mathbb{R}^2}|f(x,y)|d\mu_{(X,Y)}(x,y)<\infty$) on a :

$$E(f(X,Y)) = \iint_{\mathbb{R}^2} f(x,y)q(dy,x)d\mu_X(x)$$

Remarque:

On montre que q du théorème ci-dessus est unique dans le sens suivant :

Si \tilde{q} est une autre loi conditionnelle de Y sachant X alors il existe un borelien μ_X -négligeable N de \mathbb{R} (ie : $N \in \mathcal{B}(\mathbb{R})$ et $\mu_X(N) = 0$) tel que :

$$\forall x \in \mathbb{R} \backslash N, \ \forall B \in \mathcal{B}(\mathbb{R}), \ q(B, x) = \tilde{q}(B, x)$$

Définition:

Pour tout $x \in \mathbb{R}$ on note

$$q(\bullet, x) = \mathbb{P}(\bullet | X = x)$$

et $q(\bullet, x)$ est appelée "loi conditionnelle de Y sachant X".

Attention : Pour tout $B \in \mathcal{B}(\mathbb{R})$, $\mathbb{P}(B|X=x) = q(B, \bullet)$ est classe d'équivalence par l'égalité μ_X -p.s. de fonctions mesuablres de \mathbb{R} dans [0,1].

Par conséquent, pour un $x \in \mathbb{R}$ particulier tel que $\mu_X(\{x\}) = 0$ (ie $\mathbb{P}(X = x) = 0$), l'expression $\mathbb{P}(B|X = x)$ n'a pas de sens.

On détermine en général q par identification à l'aide des points 1, 2 et 3 du théorème de Doob. Cependant, il y a au moins 3 cas où l'on a un résultat explcite :

1er cas : Si μ_X est discrète alors pour tout $x \in \mathbb{R}$ tel que $\mathbb{P}(X = x) > 0$ alors :

$$q(B,x) = \mathbb{P}(B|X=x) = \frac{\mathbb{P}(B \cap \{X=x\})}{\mathbb{P}(X=x)}$$

2eme cas : Si le couple de v.a. (X,Y) admet une densité de probabilité $f_{(X,Y)}$ alors, pour μ_X -presque tout $x \in \mathbb{R}$ tel que $f_X(x) \neq 0$:

$$\forall B \in \mathcal{B}(\mathbb{R}), q(B, x) = \int_{B} \frac{f_{(X,Y)}(x, y)}{f_{X}(x)} dy$$

3eme cas : Si les v.a. X et Y sont indépendantes, alors, pour μ_X -presque tout $x \in \mathbb{R}$, on a $q(\bullet, x) = \mu_Y$

(ie la loi conditionnelle de Y sachant X = x ne dépend pas de x)

8.2 Espérance conditionnelle de Y sachant X

On suppose que Y est intégrable. On montre à l'aide du théorème de Radon-Nikodyn qu'il existe une unique classe d'équivalence pour l'égalité \mathbb{P} -p.s. de la v.a. Z à valeur dans \mathbb{R} vérifiant :

- 1. Z est $\sigma(X)$ -mesurable ie : $\forall A \in \mathcal{B}(\mathbb{R}), \ Z^{-1}(A) \in \sigma(X) = X^{-1}(\mathcal{B}(\mathbb{R}))$
- 2. $\forall A \in \sigma(X)$:

$$\int_{A} Z d\mathbb{P} = \int_{A} Y d\mathbb{P}$$

Définition:

La classe d'équivalence de v.a. Z ainsi définie est appelée "espérance conditionnelle de Y sachant X" (ou encore "epsérance conditionnelle de Y sachant la tribu $\sigma(X)$ "). Elle est notée E(Y|X).

On détermine E(Y|X) par identification à l'aide de 1 et 2.

D'autre part, on peut vérifier que si q est la loi conditionnelle de Y sachant X, alors l'application:

$$\begin{array}{ccc} \Omega & \to & \mathbb{R} \\ \omega & \mapsto & \int_{\mathbb{R}} y \ q(dy, X(\omega)) \end{array}$$

est une version de E(Y|X).

Plus généralement, pour toute application mesurable f tel que f(Y) soit intégrable $\omega \mapsto \int_{\mathbb{R}} f(y) \, q(dy, X(\omega))$ est une version de $\mathrm{E}(\mathrm{f}(Y)|X)$

Remarque:

E(Y|X) est une fonction $\sigma(X)$ -mesurable. D'après un (autre) théorème de Doob, il existe une fonction $\phi: \mathbb{R} \to \mathbb{R}$ mesurable tel que :

$$E(X|Y) = \phi(X)$$

 ϕ est notée $\phi(x)=E(Y|X=x)$ mais il faut faire attention au fait que ϕ n'est définie que modulo l'égalité μ_X -ps.

On a alors pour tout $h: \mathbb{R} \to \mathbb{R}$ mesurable :

$$E(h(Y)|X=x) = \int_{\mathbb{R}} h(y) \ q(dy,x)$$

pour μ_X -presque tout $x \in \mathbb{R}$

Remarque:

Pour tout $B \in \mathcal{B}(\mathbb{R})$:

$$E(1_B(Y)|X=x) = q(B,x) = \mathbb{P}(Y \in B|X=x)$$

pour μ_X -presque tout $x \in \mathbb{R}$