Métricas de evaluación

- * 1808039 Gómez, Karen
- * 1937881 Villarreal, Cecilia
- * 1741418 Hernández, Emmanuel

Objetivo

Estimar la precisión de la generalización de un modelo sobre los datos futuros (no vistos/fuera de muestra). Así como la descripción de datos para la toma de decisiones

Clasificación

Máquinas de soporte vectorial

Árboles de decisión

Matriz de Confusión

		Valores Predichos	
		Negativo	Positivo
Valores Actuales	Negativo	Verdadero Negativo	Falso Positivo Error Tipo I
	Positivo	Falso Negativo Error Tipo I	Verdadero positivo

Error tipo I

Error tipo II

Tasa de errores

Cociente entre las predicciones incorrectas y el total de predicciones

Tasa de falsos ceros

Proporción entre la frecuencia de valores cero incorrectos y el total de valores cero observados

Tasa de aciertos/ Exactitud.

Cociente entre las predicciones correctas y el total de predicciones

Exhaustividad

Proporción entre las frecuencia, valores uno corrector y el total de valores uno observados

Sensibilidad/ Precisión

Proporción entre la frecuencia de valores uno correctos y el total de valores uno observados

2 x precisión x recall precisión+recall

Puntuación F1

Esta métrica es la combinación de las métricas de precisión y exhaustividad y sirve de compromiso entre ellas. La mejor puntuación F1 es igual a 1 y la peor a 0.

Especificidad

La especificidad es exactamente lo contrario a la sensibilidad.

Curva de ROC

Al trazar la tasa positiva verdadera (sensibilidad) frente a la tasa de falsos positivos (1 - especificidad), se tiene la curva de ROC. Esta curva nos permite visualizar el equilibrio entre la tasa de verdaderos positivos y la tasa falsos positivos

Tipos de curvas ROC

Validación cruzada

Técnica para evaluar los resultados de un analisis cuando el conjunto de datos se divide en una parte para entrenamiento y otra para prueba.

VC de Muestras aleatorias

VC de K iteraciones

VC dejando uno fuera

Predicción

Regresión Lineal

Regresión Bayesiana

Series de tiempo

ERROR CUADRÁTICO MEDIO (MSE)

Calcula el valor medio de la diferencia al cuadrado entre el valor real y el predicho para todos los puntos de datos.

Entre más pequeño mejor se ajusta al modelo

R CUADRADO (R^2)

Determina la proporción de la variable dependiendiente explicada la variable por independiente.

R CUADRADO AJUSTADO

Entre más grande mejor se ajusta al modelo (0 y 1)

MSE =
$$\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

MSE =
$$\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$
 $R^2 = \frac{\sum_{t=1}^{T} (\hat{Y}_t - \overline{Y})^2}{\sum_{t=1}^{T} (Y_t - \overline{Y})^2}$

$$R_a^2 = 1 - \left[\left(\frac{n-1}{n-k-1} \right) \right] * (1-R^2)$$

CONDICIONES DE ESTACIONARIEDAD

NORMALIDAD DE LOS RESIDUOS

SIGNIFICANCIA DE LOS COEFICIENTES

ESTADISTICO AIC MÁS BAJO

> coeftest(fitARIMA) z test of coefficients: Estimate Std. Error z value Pr(>|z|) ar1 -0.509879 0.127604 -3.9958 6.448e-05 *** ma1 -0.261322 0.160306 -1.6301 0.1031 sar1 0.935264 0.022084 42.3511 < 2.2e-16 *** --Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1</pre>

Asociación

Reglas de Asociación

$$\{A\} => \{B\}$$

Patrones Secuenciales

SOPORTE (Pobabilidad de frecuencias)

Soporte
$$\{A\} = \frac{\text{Frecuencia de A}}{\text{Total de transacciones}}$$

Confianza
$$\{A \Rightarrow B\} = \frac{\text{Soporte } \{A \Rightarrow B\}}{\text{Soporte } \{A\}}$$

LIFT Lift
$$\{A \Rightarrow B\} = \frac{\text{Soporte } \{A \Rightarrow B\}}{[\text{Soporte } \{A\} * \text{Soporte } \{B\}]}$$

Agrupamiento

Verificar la agrupación final

Se busca que pueda tener alguna interpretación logica

Verificar la distancia promedio desde el centroide

Bibliografía

• Evaluando el error en los modelos de clasificación - ☑ Aprende IA https://aprendeia.com/evaluando-el-error-en-los-modelos-de-clasificacion-machine-learning/

• SVM

https://www.cienciadedatos.net/documentos/34_maquinas_de_vector_soporte_support_vector_machines

Reglas de asociación

https://www.cienciadedatos.net/documentos/43_reglas_de_asociacion#:~:text=Una%20regla%20de%20asociaci%C3%B3n%20se,hand%2Dside%20(RHS).

Métricas de evaluación

https://www.datasource.ai/es/data-science-articles/metricas-de-evaluacion-de-modelos-en-el-aprendizaje-automatico

KAHOOT

