

NOMBRE:		CALIFICACIÓN:
GRUPO:	_FECHA:	

EXAMEN FINAL CONVOCATORIA ORDINARIA – PRÁCTICA (60%) DESARROLLO E INTEGRACIÓN DEL SOFTWARE

Instrucciones

El razonamiento hasta las soluciones tiene la misma importancia que la propia solución. Se valorará positivamente un razonamiento adecuado. Lee detenidamente todo el ejercicio antes de empezar y con ello elegir el orden en que debes contestar cada apartado.

La duración de esta parte de la prueba es de <mark>90 minutos</mark>. Los alumnos con toda la materia disponen de un tiempo adicional de 30 minutos

Requisitos y pautas generales de trabajo (TODOS):

- 1. Acceder a la URL del GitHub asociada a tu usuario, el que has comunicado a tus profesores y se ha utilizado en las prácticas (grupo B)
- 2. Seguir el procedimiento de Github para la creación de un nuevo repositorio que llamaremos "ExamenFinalOrd"
- 3. Clonar el repositorio anterior a un repositorio local.
- 4. Trabajar en el enunciado del ejercicio en el repositorio en local.
 - 4.a. Es obligatorio realizar al menos un commit cada 15 minutos.
- 5. Una vez dado por concluido el ejercicio, se deberá:
 - 5.a Realizar un commit final
 - 5.b Comprimir la carpeta de trabajo y subirla a la tarea habilitada en el aula virtual para tal fin.

A) Gestión de Repositorios. (ALUMNOS CON EL PRIMER PARCIAL PENDIENTE)

En el punto 3 del apartado anterior debes realizar lo que se solicita a continuación. Todos los comandos y explicaciones asociadas se han de incluir en un fichero que llamaremos " $\underline{\texttt{Git.doc}}$ " que entregarás junto con el resto de documentos que se solicitan.

- **A.1** Crea una nueva rama tanto en tu repositorio local, como en el remoto que llamaremos "Temporal" sobre la que trabajaremos.
- **A.2.** Genera con un editor de textos cualquiera un fichero en el que se incluyan tres líneas y que llamaremos "MisDatos.txt"
 - Línea 1: Tu nombre y apellidos. (Commit "MD1" tanto local como remoto)
 - Línea 2: Tu fecha de nacimiento. (Commit "MD2" tanto local como remoto)
 - Línea 3: Tu lugar de nacimiento. (Commit "MD3" solo local)
- **A.3** En el <u>repositorio local:</u> haz una fusión con la rama principal y elimina de manera definitiva la "Temporal".
 - **A.4** Envía los cambios realizados al remoto y explica qué ha sucedido.
 - A.5 Sincroniza el local y el remoto para garantizar que ambos mantienen el commit "MD3".

B) Frameworks y Lenguajes. (TODOS)

Partimos de un fichero JSON que contiene los datos para la georreferenciación de las IPs de los clientes que han accedido a nuestro servidor. Este fichero ha sido facilitado por nuestro ISP para gestionar algunas políticas de seguridad de red. El documento técnico con las especificaciones de este fichero es el siguiente:

NOMBRE:		CALIFICACION:
GRUPO:	FECHA:	

Name	Туре	Description
ip_from	Long (10) [†] - PK	First IP address in netblock.
ip_to	Long (10)† - PK	Last IP address in netblock.
country_code	CHAR(2)	Two-character country code based on ISO 3166.
country_name	VARCHAR(64)	Country name based on ISO 3166.
region_name	VARCHAR(128)	Region or state name.
city_name	VARCHAR(128)	City name.
latitude	DOUBLE	City latitude. Default to capital city latitude if city is unknown.
longitude	DOUBLE	City longitude. Default to capital city longitude if city is unknown.
zip_code	VARCHAR(30)	ZIP/Postal code.
time_zone	VARCHAR(8)	UTC time zone (with DST supported).
+ IDv4		

† IPv4

Dispones de un fichero con los datos en el aula virtual llamado LocalizaIP.json. Debes tener en cuenta que los campos *ip_from* e *ip_to* representan la transformación de una IP a un número decimal. Por ejemplo, el número "2510811136" representa la IP "149.167.240.0". No hace falta que sepas cómo se hace, en el Anexo 1 tienes las funciones que has de utilizar.

Dada una IP, por lo tanto, debemos identificar entre qué valores *ip_from* e *ip_to* se encuentra y obtener sus datos de georreferenciación asociados. Mediante el framework Vaadin, realiza un formulario que permita mostrar estos datos a partir de una IP facilitada por el usuario. <u>Los datos del fichero json puedes almacenarlos previamente en una lista de longitud variable en memoria, o bien, en una base de datos H2.</u>

Requisitos y pautas del desarrollo

- 1. Aplicación web Java utilizando el framework Vaadin.
- 2. Generar un proyecto Maven con el siguiente arquetipo

```
groupId: com.vaadin artifactId: vaadin-archetype-application version: 14.4.6
```

3. Añadir las dependencias para incluir el API GSON.

```
groupId: com.google.code.gson
artifactId: gson
version: 2.8.6
```

- 4. Si fuera necesario, añadir las dependencias para gestionar la base de datos y Spring.
- 5. Definir el Group ID del proyecto a "ufv.dis.final2021" y el Artifact ID con las iniciales de tu nombre.

C) Test Driven Design (Junit). (TODOS)

Deberán generarse las siguientes pruebas unitarias con la librería indicada.

- IPv4 inexistente, es decir, dato no facilitado
- IPv4 fuera de rango por arriba. (*IP máx 255.255.255.255*)
- IPv4 fuera de rango por abajo. (IP mín. 0.0.0.0)

Requisitos y pautas TDD

1. **Dependencia requerida**

groupId: junit
artifactId: junit
Version: 4.11

NOMBRE:		CALIFICACIÓN:
GRUPO:	FECHA:	

D) Despliegue (Heroku). (TODOS, opcional para subir nota)

La aplicación deberá ser desplegada en Heroku a partir del repositorio GitHub.

Requisitos y pautas TDD

En el fichero Heroku.doc debes incluir todas las evidencias del proceso de despliegue y las explicaciones o aclaraciones que consideres necesarias sobre esta prueba. Texto, pantallazos, etc.... La URL de Heroku ha de incluirse en este documento. Este fichero debes subirlo a la plataforma junto con el resto.

Entregables

- 1. Ficheros del proyecto y la carpeta. git
- 2. Alumnos con el primer parcial, añadir "Git.doc"
- 3. Código del proyecto alojado en el repositorio de Github, incluidos los casos de prueba.
- 4. Fichero Heroku.doc con la URL donde esté desplegada la aplicación en Heroku

Comprime todos los estos ficheros en un archivo zip : TuApellidoNombre.zip que es el que deberás subir finalmente a la plataforma.

Calificación del ejercicio

• Alumnos con toda la materia.

Apartado	Α	В	С	D
Puntuación	2,5	5	2	0,5

Resto de alumnos

Apartado	Α	В	С	D
Puntuación	-	6	3	1

	Universidad Francisco de Vitoria UFV Madrid
--	--

NOMBRE:		CALIFICACIÓN:
GRUPO:	FECHA:	

ANEXO 1

```
import ...
// Class...
 //ip = 3232235778 \rightarrow 192.168.1.2
 public String longToIp(long ip) {
    StringBuilder result = new StringBuilder(15);
    for (int i = 0; i < 4; i++) {
        result.insert(0,Long.toString(ip & 0xff));
        if (i < 3) {
            result.insert(0,'.');
        ip = ip >> 8;
    return result.toString();
 }
  // dottedIP = 192.168.1.2 → 3232235778
  public static Long Dot2LongIP(String dottedIP) {
   String[] addrArray = dottedIP.split("\\.");
   long num = 0;
   for (int i=0;i<addrArray.length;i++) {</pre>
       int power = 3-i;
       num += ((Integer.parseInt(addrArray[i]) % 256) *
              Math.pow(256, power));
   return num;
  }
```