Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерной техники

Домашняя работа №4

по дисциплине
«Дискретная математика»
Вариант №9

Выполнил:

Студент группы Р3113

Султанов А.Р.

Преподаватель:

Поляков В.И.

г. Санкт-Петербург 2023г.

Оглавление

Оглавление	2
Задание	3

Задание

V/V	e1	e2	e3	e4	e5	e6	e7	e8	e9	e10	e11	e12
e1	0	0	0	1	0	3	0	1	1	1	0	1
e2	0	0	0	1	0	0	0	0	1	0	0	0
e3	0	0	0	0	5	3	1	0	0	4	1	2
e4	1	1	0	0	0	0	0	3	5	0	0	2
e5	0	0	5	0	0	5	2	0	1	5	0	3
e6	3	0	3	0	5	0	0	0	5	4	3	0
e7	0	0	1	0	2	0	0	1	2	3	2	0
e8	1	0	0	3	0	0	1	0	3	2	2	0
e9	1	1	0	5	1	5	2	3	0	0	0	0
e10	1	0	4	0	5	4	3	2	0	0	0	0
e11	0	0	1	0	0	3	2	2	0	0	0	1
e12	1	0	2	2	3	0	0	0	0	0	1	0

Часть 1. Гамильтонов цикл

- 1. Возьмем в S вершину e_1 . $S = \{e_1\}$. Далее будем последовательно включать в S возможные вершины.
- 2. e_4 : $S = \{e_1, e_4\}$
- 3. e_2 : $S = \{e_1, e_4, e_2\}$
- 4. e_9 : $S = \{e_1, e_4, e_2, e_9\}$
- 5. e_5 : $S = \{e_1, e_4, e_2, e_9, e_5\}$
- 6. e_3 : $S = \{e_1, e_4, e_2, e_9, e_5, e_3\}$
- 7. e_6 : $S = \{e_1, e_4, e_2, e_9, e_5, e_3, e_6\}$
- 8. e_{10} : $S = \{e_1, e_4, e_2, e_9, e_5, e_3, e_6, e_{10}\}$
- 9. e_7 : $S = \{e_1, e_4, e_7, e_9, e_5, e_8, e_6, e_{10}, e_7\}$
- 10. e_8 : $S = \{e_1, e_4, e_2, e_9, e_5, e_3, e_6, e_{10}, e_7, e_8\}$
- 11. e_{11} : $S = \{e_1, e_4, e_2, e_9, e_5, e_3, e_6, e_{10}, e_7, e_8, e_{11}\}$
- 12. e_{12} : $S = \{e_1, e_4, e_2, e_9, e_5, e_3, e_6, e_{10}, e_7, e_8, e_{11}, e_{12}\}$

Часть 2. Граф пересечений G'
Пронумеруем вершины так, чтобы ребра гамильтонова цикла были внешними

до	e1	e4	e2	e9	e5	e3	e6	e10	e7	e8	e11	e12
после	e1	e2	e3	e4	e5	e6	e7	e8	e9	e10	e11	e12

Было:

Стало:

Граф после перенумерации:

V/V	e1	e2	e3	e4	e5	e6	e7	e8	e9	e10	e11	e12
e1	0	1	0	1	0	0	3	1	0	1	0	1
e2	1	0	1	5	0	0	0	0	0	3	0	2
e3	0	1	0	1	0	0	0	0	0	0	0	0
e4	1	5	1	0	1	0	5	0	2	3	0	0
e5	0	0	0	1	0	5	5	5	2	0	0	3
e6	0	0	0	0	5	0	3	4	1	0	1	2
e7	3	0	0	5	5	3	0	4	0	0	3	0
e8	1	0	0	0	5	4	4	0	3	2	0	0
e9	0	0	0	2	2	1	0	3	0	1	2	0
e10	1	3	0	3	0	0	0	2	1	0	2	0
e11	0	0	0	0	0	1	3	0	2	2	0	1
e12	1	2	0	0	3	2	0	0	0	0	1	0

V/V	e1	e2	e3	e4	e5	e6	e7	e8	e9	e10	e11	e12
e1	0	X		1			3	1		1		Х
e2		0	X	5						3		2
e3			0	X								
e4				0	X		5		2	3		
e5					0	X	5	5	2			3
e6						0	X	4	1		1	2
e7							0	X			3	
e8								0	X	2		
e9									0	X	2	
e10										0	X	
e11											0	X
e12												0

Определим p_{212} , для чего в матрице R выделим подматрицу R_{212} .

Ребро $(e_{_2}e_{_{12}})$ пересекается с $(e_{_1}e_{_4})$, $(e_{_1}e_{_7})$, $(e_{_1}e_{_8})$, $(e_{_1}e_{_{10}})$

Определим p_{210} , для чего в матрице R выделим подматрицу R_{210} .

Ребро $(e_{_2}e_{_{10}})$ пересекается с $(e_{_1}e_{_4})$, $(e_{_1}e_{_7})$, $(e_{_1}e_{_8})$

Определим p_{410} , для чего в матрице R выделим подматрицу R_{410} .

Ребро $(e_{_4}e_{_{10}})$ пересекается с $(e_{_1}e_{_7})$, $(e_{_1}e_{_8})$

Определим p_{49} , для чего в матрице R выделим подматрицу R_{49} . Ребро $(e_4 e_9)$ пересекается с $(e_1 e_7)$, $(e_1 e_8)$

Определим p_{512} , для чего в матрице R выделим подматрицу R_{512} .

Ребро $(e_5^{}e_{12}^{})$ пересекается с

 $(e_{1}e_{7}), (e_{1}e_{8}), (e_{1}e_{10}), (e_{2}e_{10}), (e_{4}e_{7}), (e_{4}e_{9}), (e_{4}e_{10})$

Определим p_{59} , для чего в матрице R выделим подматрицу R_{59} . Ребро

 $(e_5^{}e_9^{})$ пересекается с $(e_1^{}e_7^{})$, $(e_1^{}e_8^{})$, $(e_4^{}e_7^{})$

Определим p_{58} , для чего в матрице R выделим подматрицу R_{58} . Ребро

 $(e_{\scriptscriptstyle 5}e_{\scriptscriptstyle 8})$ пересекается с $(e_{\scriptscriptstyle 1}e_{\scriptscriptstyle 7})$, $(e_{\scriptscriptstyle 4}e_{\scriptscriptstyle 7})$

Определим p_{612} , для чего в матрице R выделим подматрицу R_{612} .

Ребро $(e_6 e_{12})$ пересекается с

 $(e_{1}e_{7}), (e_{1}e_{8}), (e_{1}e_{10}), (e_{2}e_{10}), (e_{4}e_{7}), (e_{4}e_{9}), (e_{4}e_{10}), (e_{5}e_{7}), (e_{5}e_{8}), (e_{5}e_{9})$

Определим p_{611} , для чего в матрице R выделим подматрицу R_{611} .

Ребро $(e_6 e_{11})$ пересекается с

 $(e_1^{}e_7^{}), (e_1^{}e_8^{}), (e_1^{}e_{10}^{}), (e_2^{}e_{10}^{}), (e_4^{}e_7^{}), (e_4^{}e_9^{}), (e_4^{}e_{10}^{}), (e_5^{}e_7^{}), (e_5^{}e_8^{}), (e_5^{}e_9^{})$

Остановимся.

		e2e12	e1e4	e1e7	e1e8	e1e10	e2e10	e4e10	e4e9	e5e12	e4e7	e5e9	e5e8	e6e12	e5e7	e6e11
	V/V	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
e2e12	1	1	1	1	1	1										
e1e4	2	1	1				1									
e1e7	3	1		1			1	1	1	1		1	1	1		1
e1e8	4	1			1		1	1	1	1		1		1		1
e1e10	5	1				1				1				1		1
e2e10	6		1	1	1		1			1				1		1
e4e10	7			1	1			1		1				1		1
e4e9	8			1	1				1	1				1		1
e5e12	9			1	1	1	1	1	1	1	1					
e4e7	10									1	1	1	1	1		1
e5e9	11			1	1						1	1		1		1
e5e8	12			1							1		1	1		1
e6e12	13			1	1	1	1	1	1		1	1	1	1	1	
e5e7	14													1	1	1
e6e11	15			1	1	1	1	1	1		1	1	1		1	1

Часть 3. Семейство ψG

В первой строке матрицы находим номер нулевых элементов.

Составляем список $J(j) = \{6, 7, 8, 9, 10, 11, 12, 13, 14, 15\}$

1. Для первого нулевого элемента составляем дизъюнкцию

$$M_{1-6} = r_1 \vee r_6 = 1111111001000101$$

2. В строке M_{1-6} находим нулевые элементы и составляем список:

$$J'(j') = \{7, 8, 10, 11, 12, 14\}$$
. Берем r_7 :

$$M_{1-6-7} = M_{1-6} \lor r_7 = 1111111101000101$$

3. В строке M_{1-6-7} находим нулевые элементы и составляем список:

$$J'(j') = \{8, 10, 11, 12, 14\}$$
. Берем r_8 :

$$M_{1-6-7-8} = M_{1-6-7} \vee r_8 = 1111111111000101$$

4. В строке $M_{1-6-7-8}$ находим нулевые элементы и составляем список:

$$J'(j') = \{10, 11, 12, 14\}$$
. Берем r_{10} :

5. В строке $M_{1-6-7-8-10}$ находим нулевые элементы и составляем список: $J'(j')=\{14\}$. Берем r_{14} :

$$M_{1-6-7-8-10-14} = M_{1-6-7-8-10} \lor r_{14} = 111111111111111111$$

- 6. В строке все "1". Построено $\psi_1 = \{e_2 e_{12}, e_2 e_{10}, e_4 e_{10}, e_4 e_9, e_4 e_7, e_5 e_7\}$
- 7. Возвращаемся назад, берем r_{11} :

8. В строке $M_{1-6-7-8-11}$ находим нулевые элементы и составляем список: $J'(j')=\{12,14\}$. Берем r_{12} :

9. В строке $M_{1-6-7-8-11-12}$ находим нулевые элементы и составляем список: $J'(j')=\{14\}$. Берем r_{14} :

$$M_{_{1-6-7-8-11-12-14}} = M_{_{1-6-7-8-11-12}} \vee r_{_{14}} = 111111111111111111$$

10. В строке все "1". Построено

$$\Psi_2 = \{e_2 e_{12}, e_2 e_{10}, e_4 e_{10}, e_4 e_9, e_5 e_9, e_5 e_8, e_5 e_7\}$$

По такому же принципу проходимся до конца первой строки, "поднимаясь" и "опускаясь" по вариантам нулевых элементов. Далее делаем то же самое для остальных строк. В итоге получаем:

$$\psi_1 = \{e_2^{}e_{12}^{}, e_2^{}e_{10}^{}, e_4^{}e_{10}^{}, e_4^{}e_9^{}, e_4^{}e_7^{}, e_5^{}e_7^{}\}$$

$$\begin{split} & \psi_2 = \{e_2 e_{12}, e_2 e_{10}, e_4 e_{10}, e_4 e_9, e_5 e_9, e_5 e_8, e_5 e_7\} \\ & \psi_3 = \{e_2 e_{12}, e_5 e_{12}, e_5 e_9, e_5 e_8, e_5 e_7\} \\ & \psi_4 = \{e_2 e_{12}, e_5 e_{12}, e_6 e_{12}, e_6 e_{11}\} \\ & \psi_5 = \{e_1 e_4, e_1 e_7, e_1 e_8, e_1 e_{10}, e_4 e_7, e_5 e_7\} \\ & \psi_6 = \{e_1 e_4, e_1 e_8, e_1 e_{10}, e_5 e_8, e_5 e_7\} \\ & \psi_7 = \{e_1 e_4, e_1 e_{10}, e_4 e_{10}, e_4 e_9, e_4 e_7, e_5 e_7\} \\ & \psi_8 = \{e_1 e_4, e_1 e_{10}, e_4 e_{10}, e_4 e_9, e_5 e_9, e_5 e_8, e_5 e_7\} \\ & \psi_9 = \{e_1 e_4, e_5 e_{12}, e_5 e_9, e_5 e_8, e_5 e_7\} \\ & \psi_{10} = \{e_1 e_4, e_5 e_{12}, e_6 e_{12}, e_6 e_{11}\} \\ & \psi_{11} = \{e_1 e_{10}, e_2 e_{10}, e_4 e_{10}, e_4 e_9, e_5 e_9, e_5 e_8, e_5 e_7\} \\ & \psi_{12} = \{e_1 e_{10}, e_2 e_{10}, e_4 e_{10}, e_4 e_9, e_5 e_9, e_5 e_8, e_5 e_7\} \\ \end{split}$$

Для каждой пары множеств вычислим значение критерия

$$\alpha_{ab} = |\psi_a| + |\psi_b| - |\psi_a \cap \psi_b|$$

И запишем в матрицу $A = ||\alpha_{ab}||$

	1	2	3	4	5	6	7	8	9	10	11	12
1	0	8	9	9	10	10	8	10	10	10	7	9
2		0	8	10	12	10	10	9	9	11	9	8
3			0	7	10	8	10	9	6	8	10	9
4				0	10	9	10	11	8	5	10	11
5					0	7	8	10	9	9	9	11
6						0	8	8	7	8	9	9
7							0	8	9	9	7	9
8								0	8	10	9	8
9									0	7	10	9
10										0	10	11
11											0	8
12												0

$$max \alpha_{ab} = \alpha_{2-5} = 12$$

Возьмем множества $\psi_2 = \{e_2^{}e_{12}^{}, e_2^{}e_{10}^{}, e_4^{}e_{10}^{}, e_4^{}e_9^{}, e_5^{}e_9^{}, e_5^{}e_8^{}, e_5^{}e_7^{}\},$

$$\Psi_5 = \{e_1 e_4, e_1 e_7, e_1 e_8, e_1 e_{10}, e_4 e_7, e_5 e_7\}$$

Проводим внутри гамильтонова цикла ребра ψ_2 , а вне него – ребра ψ_5 , получаем:

Удалим из $\psi G'$ рёбра, вошедшие в ψ_2 и ψ_5 :

$$\psi_1 = \{\}$$

$$\psi_2 = \{\}$$

$$\psi_3 = \{e_5 e_{12}^{}\}$$

$$\Psi_4 = \{e_5 e_{12}, e_6 e_{12}, e_6 e_{11}\}$$

$$\psi_5 = \{\}$$

$$\psi_6 = \{\}$$

$$\psi_7 = \{\}$$

$$\begin{split} & \psi_8 = \{\} \\ & \psi_9 = \{e_5 e_{12}\} \\ & \psi_{10} = \{e_5 e_{12}, e_6 e_{12}, e_6 e_{11}\} \\ & \psi_{11} = \{\} \\ & \psi_{12} = \{\} \end{split}$$

Возьмем $\psi_4 = \{e_5 e_{12}, e_6 e_{12}, e_6 e_{11}\}$ и $\psi_1 = \{\}$:

Теперь все ребра реализованы.