CEFET

Departamento de Engenharia Elétrica - DEPEL

GELE 7163 Eletrônica Digital

Parte # 4 - Máquinas de Estado Finita

Prof. Alessandro Jacoud Peixoto

Referências:

- Notas de Aula.
- Mendonça, Alexandre e Zelenovsky, Ricardo, Eletrônica Digital: Curso Prático e Exercícios, MZ Editora Ltda, 2004, ISBN: 85-87385-10-0.
- Tocci, R.J., Widmer, N.S., Moss, G.L. Sistemas Digitais, Princípios e Aplicações, 10^a Edição, São Paulo: Pearson Prentice Hall, 2007, 804 p., ISBN 9788576050957.
- Ercegovac, Milos , Lang, Tomas Introdução aos Sistemas Digitais Bookman.
- Wakerly, John F., Digital Designs Principles and Practices, 3o edição, Prentice Hall, 1990.

2 - Circuitos Seqüenciais - Sinal de Clock

- Chamados "máquina de estados"
- Usam flip-flops gatilhados pela borda
- Todos os flip-flops são gatilhados pelo mesmo sinal de clock, portanto todos mudam de estado simultaneamente

2 - Máquina de Estado de *Mealy*

Prof. Alessandro Jacoud Peixoto

2 - Máquina de Estado de *Moore*

Prof. Alessandro Jacoud Peixoto

2 - Circuito Síncrono (Clock Único)

- Receita para circuitos seqüenciais robustos
 - As saídas dos circuitos combinacionais são analisadas apenas durante a subida do clock.
 - O período do clock deve ser maior do que qualquer atraso combinacional.
 - Os estados devem mudar apenas depois que todas as transições lógicas forem finalizadas (nível lógico deve estar estável).

2 - Lógica Seqüencial?

 A lógica seqüencial é usada quando precisamos organizar a solução através de uma seqüência de passos.

Exemplo: Como abrir uma fechadura com uma combinação digital. A fechadura possui três botões - "start", "O", "1".

Passo 1: pressione o botão "START"

Passo 2: pressione o botão "O"

Passo 3: pressione o botão "1"

Passo 4: pressione o botão "1"

Passo 5: pressione o botão "O"

O "estado" pode incluir o passo que nós estamos, ou pode incluir resultados dos passos anteriores necessários para completar o passo seguinte

2 - Implementação – Máquina de *Moore*

Diagrama de Estado

obs. verificar que sempre que a chave START é pressionada, a seqüência volta para o estado inicial S.

2 - Diagrama de Estado – *Moore*

codificados por 3 bits

Arcos saindo de um estado devem ser:

- (1) mutuamente exclusivos
 não pode ter duas opções para um mesmo valor de entrada
- (2) coletivamente exaustivo todo estado deve especificar o que acontece para cada entrada possível. "Nada acontece" significa que o arco deve voltar para o mesmo estado.

2 - Tabela de Transição e Saída

Estado atual Q ₀ Q ₁ Q ₂		B 'start"	B 1"	B "0"	Estado seguinte	saída U unlock		
		1			start 000	0		
S start	000	O	O	1	digit1 001	0		
Sstart	000	0	1	0	error 101	0		
S start	000	O	O	0	start 000	0		
D1digit1	001	0	1	0	digit2 010	0		
D1digit1		0	O	1	error 101	0		
D1 _{digit1}	001	0	O	0	digit1 001	0		
D2digit2	010	O	1	0	digit3 O11	O		
D2digit2		0	O	1	error 101	0		
D2digit2	010	0	O	0	digit2 010	0		
D3 digit3	011	O	O	1	unlock 100	0		
D3digit3	O11	O	1	0	error 101	0		
D3digit3	O11	O	O	0	digit3 O11	0		
Uunlock	100	O	1	0	error 101	1		
U unlock	100	O	O	1	error 101	1		
U unlock	100	O	O	0	unlock 100	1		
E error	101	O			error 101	0		

Prof. Alessandro Jacoud Peixoto

2 - Implementação do *Hardware*

Prof. Alessandro Jacoud Peixoto

2 - Mapas de Karnaugh

- Quando o botão "START" for 1, o circuito irá permanecer ou voltar para o estado inicial '000'. Portanto, podemos ligar o botão "START" no botão "RESET" dos flip-flops.
- Usando flip-flop tipo D equação característica → (Q₀ Q₁ Q₂)* = (D₀ D₁ D₂)

Prof. Alessandro Jacoud Peixoto

2 - Diagramas Adjacentes (Alternativos)

Objetivo: Minimizar as equações de excitação das entradas dos flip-flops

 O código de cada estado é escolhido tal que o código dos estados adjacentes devem diferir de apenas 1 bit (código de Gray)

Prof. Alessandro Jacoud Peixoto

2 - Exemplo - Fechadura Digital

A única função deste gráfico é escolher o código de cada estado. Ele não substitui o diagrama de estados pois neste gráfico apenas o percurso principal está indicado.

Dica: O estado inicial deve ser sempre o estado "000" pois desta forma para retornar ao estado inicial basta acionar o reset dos flip-flops.

2 - Tabela de Transição (Modificada)

Estado atual Q ₀ Q ₁ Q ₂	B 'start"	B 1"	B "0"	Estado seguinte	saída U unlock		
). H=2	1	(#==		start 000	0		
S start 000	O	0	1	digit1 001	0		
S start 000	0	1	O	error 100	0		
S start 000	0	O	O	start 000	0		
D1digit1 001	O	1	O	digit2 O11	O		
D1digit1 001	O	0	1	error 100	O		
D1digit1 001	O	0	O	digit1 001	O		
D2 digit2 O11	0	1	O	digit3 010	O		
D2digit2 O11	O	O	1	error 100	O		
D2digit2 O11	O	O	0	digit2 O11	0		
D3 digit3 010	0	0	1	unlock 110	O		
D3digit3 010	0	1	0	error 100	0		
D3digit3 010	0	O	0	digit3 010	0		
Uunlock 1/10	O	1	O	error 100	1		
Uunlock 1/10	O	0	1	error 100	1		
U unlock 110	0	0	O	unlock 110	1		
E error 100	0			error 100	0		

Prof. Alessandro Jacoud Peixoto

2 - Mapas de *Karnaugh* (Modificados)

• Usando flip-flop tipo D \rightarrow (Q₀ Q₁ Q₂)* = (D₀ D₁ D₂)

$$Q_0^* = D_0 = B1\overline{Q_2} + B0(Q_1 + Q_2) + Q_0$$
 saída $U = unlock = Q_0Q_1$

Equação de excitação ou transição para o caso anterior:

$$Q_0^* = D_0 = B1(\overline{Q_1}\overline{Q_2} + Q_1Q_2) + B0(Q_2 + Q_1) + Q_0$$

2 - Circuito Resultante ENTRADAS ESTADO SEGUINTE D1 Circuito Combinacional U4A Eq Exc D2 Lógica Estado Seguinte ESTADO Q2/ ATUAL.. Memória START, CLOCK

Prof. Alessandro Jacoud Peixoto

2 - Tabela de Excitação para J-K

- Usar a tabela de transição
- Usar a tabela de aplicação para FF JK
 - a tabela de aplicação é construída a partir da equação característica, $Q*=J\bullet \overline{Q}+\overline{K}\bullet Q$
- substituir o par de valores JK correspondente da tabela de aplicação para cada bit de estado na tabela de transição

2 - Tabela de Transição, Excitação e Saída (J-K)

Estado atual .			Transição saída excitação										
Vic	$Q_0 Q_1 Q_2$	B 'start"	B 1"	B "O"	(Q ₀	Q ₁ Q ₂)	·]ບ	Jo	Κo	J ₁	K ₁	J ₂	K_2
5.55		1			start	000	0	a	cio	" nar	res	et	
Sstart	000	0	0	1	digit1	001	0	0	Х	b	Х	1	Х
Sstart	000	0	1	0	error	100	0	1	Х	0	Х	0	Х
S start	000	O	0	0	start	000	0	0	Х	0	Х	0	X
D1digit1	001	0	1	0	digit2	011	0	[0	Х	1	Х	Х	0
D1digit1	001	0	0	1	error	100	0	.1	Χ				
D1 _{digit1}	001	0	O	0	digit1	001	o	[0	Х				
D2 digit2		0	1	0	digit3	010	0	0	Х				
D2digit2		0	O	1	error	100	0	1	Х				
D2digit2	011	0	0	0	digit2	011	0	0	Χ				
D3 digit3	010	O	0	1	unlock	110	0	1	Х				
D3digit3	010	O	1	0	error	100	0	1	Х				
D3digit3	010	O	0	О	digit3	010	0	0	Х				
Uunlock	1 10	O	1	O	error	100	1	Х	0				
U unlock	1 10	0	0	1	error	100	1	Х	0				
U unlock	1 10	O	0	0	unlock	110	1	Х	0				
E error	100	0			error	100	0	X	0	Į.	ă	l	

Prof. Alessandro Jacoud Peixoto

2 - Mapas de *Karnaugh* (J-K)

Usando flip-flop tipo JK → calcular equações de excitação para J₀
 K₀ J₁ K₁ J₂ K₂

$$J_0 = B1\overline{Q_2} + B0(Q_1 + Q_2) + Q_0$$

 $K_0 = 0$

saída
$$U = unlock = Q_0Q_1$$

neste caso não houve simplificação em relação ao flip-flop tipo D a equação de excitação é a mesma

2 - Implementação - Máquina de *Mealy*

Å = nenhuma chave pressionada

obs. verificar que sempre que a chave START é pressionada, a seqüência volta para o estado inicial **S**.

2 - Equivalência

Os diagramas são diferentes?

De forma alguma! Externamente eles são idênticos.

MEF são equivalentes se para todas as seqüência de entrada a seqüência de saída gerada for a mesma

Objetivo da engenharia:

- construir uma MEF que funciona ...
- querer a mais simples (portanto a mais barata) MSE equivalente