Vorlesung 1: Was ist lineare Algebra?

26.10.2022

Was ist lineare Algebra?

Was ist lineare Algebra?

"Lineare Algebra ist die Theorie linearer Gleichungen."

Identitäten

Beispiele

■ Für den Umfang U eines Kreises vom Radius R gilt $U = 2\pi R$.

Identitäten

Beispiele

- Für den Umfang U eines Kreises vom Radius R gilt $U = 2\pi R$.
- Für ein rechtwinkliges Dreieck mit Kathetenlängen a, b und Hypothenusenlänge c gilt der Satz von Pythagoras $a^2 + b^2 = c^2$.

Identitäten

Beispiele

- Für den Umfang U eines Kreises vom Radius R gilt $U = 2\pi R$.
- Für ein rechtwinkliges Dreieck mit Kathetenlängen a, b und Hypothenusenlänge c gilt der Satz von Pythagoras $a^2 + b^2 = c^2$.
- Für die Zahlen $0,1,e,\pi$ und die imaginäre Einheit i gilt die Eulersche Identität $e^{\pi i}+1=0$.

Beispiele

1 Die Gleichung $x^2 = 2$ hat

Beispiele

- 1 Die Gleichung $x^2 = 2$ hat
 - **keine Lösung** in der Grundmenge der natürlichen Zahlen $\mathbb{N} = \{1, 2, 3, \ldots\},$

Beispiele

- 1 Die Gleichung $x^2 = 2$ hat
 - **keine Lösung** in der Grundmenge der natürlichen Zahlen $\mathbb{N} = \{1, 2, 3, \ldots\},$
 - aber die Lösungen $+\sqrt{2}$ und $-\sqrt{2}$ in der Grundmenge $\mathbb R$ der reellen Zahlen.

Beispiele

- - **keine Lösung** in der Grundmenge der natürlichen Zahlen $\mathbb{N} = \{1, 2, 3, \ldots\},$
 - aber die Lösungen $+\sqrt{2}$ und $-\sqrt{2}$ in der Grundmenge $\mathbb R$ der reellen Zahlen.
- 2 $x^2 + y^2 = 1$ gilt genau für alle Punkte (x, y) auf dem Kreis mit Radius 1 und Zentrum (0, 0) in der xy-Ebene.

10 × 40 × 40 × 40 × 40 ×

Lineare Gleichungen

Beispiel: eine Gerade in der Ebene

$$x + y = 2$$
.

verschiedene Fälle

noch mehr Fälle

Beispiel: 3 Unbekannte: Ebenen im Raum

$$x + y + z = -6$$
 (1)
 $x + 2y + 3z = -10$. (2)

Lösungsmenge \mathcal{L} : alle Tripel (x,y,z), die (simultan) beide Gleichungen erfüllen

Lösungsmenge \mathcal{L} : alle Tripel (x, y, z), die (simultan) beide Gleichungen erfüllen Lösungsmenge (algebraisch) = Schnittgerade (geometrisch)

Lösungsmenge \mathcal{L} :

alle Tripel (x, y, z), die (simultan) beide Gleichungen erfüllen

 $L\"{o}sungsmenge \ (algebraisch) = Schnittgerade \ (geometrisch)$

Parametrisierung:

$$\mathcal{L} = \{(t-2, -2t-4, t) \mid t \text{ eine beliebige reelle Zahl}\}.$$

Herleitung der Parametrisierung

Verallgemeinerung: "Viele" Variablen

Verallgemeinerung: "Viele" Variablen

Die Verallgemeinerung von Ebene und Raum:

Sei n eine beliebige natürliche Zahl.

Der reelle **Standardraum** \mathbb{R}^n ist die Menge aller reellen *n*-Tupel,

$$\mathbb{R}^n = \{(x_1,\ldots,x_n) \mid x_1,\ldots,x_n \in \mathbb{R}\}.$$

Die allgemeine Form eines LGS

Ein lineares Gleichungssystem (LGS)

mit m Gleichungen und n Unbestimmten x_1, \ldots, x_n hat die Form:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

 $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$
 \vdots \vdots \vdots \vdots \vdots \vdots $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$

Die allgemeine Form eines LGS

Ein lineares Gleichungssystem (LGS)

mit m Gleichungen und n Unbestimmten x_1, \ldots, x_n hat die Form:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

 $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$
 \vdots \vdots \vdots \vdots \vdots \vdots \vdots $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$

gegeben: **Koeffizienten** a_{ij} , b_i (reelle Zahlen). gesucht: **Unbestimmte** (oder **Variablen**) x_1, \ldots, x_n

weitere Definitionen

das LGS heißt **homogen** wenn alle $b_i = 0$, sonst **inhomogen**.

Lösungsmenge des LGS = Teilmenge \mathcal{L} von \mathbb{R}^n bstehend aus allen n-Tupeln (x_1, \ldots, x_n) , die alle m Gleichungen simultan erfüllen.

Fragen

Wann ist ein LGS lösbar?

Wie löst man ein (allgemeines) LGS?

Fragen

Wann ist ein LGS lösbar?

Wie löst man ein (allgemeines) LGS?

■ Werkzeug: spezielle Umformungen der Gleichungen

Fragen

Wann ist ein LGS lösbar?

Wie löst man ein (allgemeines) LGS?

- Werkzeug: spezielle Umformungen der Gleichungen
- Methode: Algorithmus von Gauß

Elementar-Operationen für ein LGS sind:

Elementar-Operationen für ein LGS sind:

■ (I) Vertauschen von zwei Gleichungen.

Elementar-Operationen für ein LGS sind:

- (I) Vertauschen von zwei Gleichungen.
- (II) Ersetzen einer Gleichung durch ihr λ -faches mit $\lambda \in \mathbb{R}$ und $\lambda \neq 0$.

Elementar-Operationen für ein LGS sind:

- (I) Vertauschen von zwei Gleichungen.
- (II) Ersetzen einer Gleichung durch ihr λ -faches mit $\lambda \in \mathbb{R}$ und $\lambda \neq 0$.
- (III) Ersetzen der *i*-ten Gleichung durch die Summe der *i*-ten und dem λ -fachen der *j*-ten Gleichung ($i \neq j, \lambda \in \mathbb{R}$).

Wozu sind Elementar-Operationen gut?

Satz 3.4

Die Lösungsmenge $\mathcal L$ eines LGS wird bei einer bzw. endlich vielen Elementar-Operation nicht geändert.

Beweis von Satz 3.4

Beweis von Satz 3.4

Zusammenfassung

- Lineare Gleichungssysteme
- Umformungen durch Elementar-Operationen

Vorlesung 2: Wie man ein LGS systematisch lösen kann

28.10.2022

Als Vorbereitung lesen Sie bitte im Skript: Seiten 10-17