Data Scientist Exercise

This dataset consists of approximately 1.5 million beer reviews from Beer Advocate. Please use this dataset to answer the following questions.

- 1. Which brewery produces the strongest beers by ABV%?
- 2. If you had to pick 3 beers to recommend using only this data, which would you pick?
- 3. Which of the factors (aroma, taste, appearance, palette) are most important in determining the overall quality of a beer?
- 4. Lastly, if I typically enjoy a beer due to its aroma and appearance, which beer style should I try?

```
In [1]: # import necessary packages
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
```

```
In [2]: # read data into the beer data file
beers = pd.read_csv('beer_reviews.csv')
```

```
In [3]: # copy the original file to a file I can manipulate without losing original data
beers_clean = beers.copy()
```

```
In [4]: # drop review time from the dataset, it has significance in my investigation
    beers_clean = beers_clean.drop('review_time', axis=1)
```

```
In [5]: beers_clean.head()
```

Out[5]:

	brewery_id	brewery_name	review_overall	review_aroma	review_appearance	review_profilename
0	10325	Vecchio Birraio	1.5	2.0	2.5	stcules
1	10325	Vecchio Birraio	3.0	2.5	3.0	stcules
2	10325	Vecchio Birraio	3.0	2.5	3.0	stcules
3	10325	Vecchio Birraio	3.0	3.0	3.5	stcules
4	1075	Caldera Brewing Company	4.0	4.5	4.0	johnmichaelsen

```
In [6]: # check for duplicated rows in the data
sum(beers_clean.duplicated())
```

```
In [7]: beers_clean.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 1586614 entries, 0 to 1586613
         Data columns (total 12 columns):
                        1586614 non-null int64
         brewery_id
                             1586599 non-null object
1586614 non-null float64
         brewery_name
         review_overall
         review_aroma
                              1586614 non-null float64
         review_appearance 1586614 non-null float64
         review_profilename 1586266 non-null object
         beer_style 1586614 non-null object
review_palate 1586614 non-null float64
review_taste 1586614 non-null float64
         beer_name
                              1586614 non-null object
                              1518829 non-null float64
         beer_abv
         beer_beerid
                               1586614 non-null int64
         dtypes: float64(6), int64(2), object(4)
         memory usage: 145.3+ MB
 In [8]: # remove duplicate rows from the data
         beers_clean.drop_duplicates(inplace = True)
 In [9]: # check row counts to make sure I deleted 774 rows
         beers_clean.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 1585840 entries, 0 to 1586613
         Data columns (total 12 columns):
         brewery_id 1585840 non-null int64
                              1585825 non-null object
         brewery_name
                             1585840 non-null float64
         review_overall
                              1585840 non-null float64
         review_aroma
         review_appearance 1585840 non-null float64
         review_profilename 1585493 non-null object
                            1585840 non-null object
1585840 non-null float64
         beer_style
         review_palate
review_taste
                              1585840 non-null float64
         beer_name
                              1585840 non-null object
         beer_abv
                              1518078 non-null float64
         beer_beerid
                               1585840 non-null int64
         dtypes: float64(6), int64(2), object(4)
         memory usage: 157.3+ MB
In [10]: # check for null values in the dataset
         beers_clean.isnull().values.any()
Out[10]: True
```

I will remove all null values from the dataset. With 1.5M data points it will not affect any resuls in a statistically significant manner

```
In [11]: # remove all rows that contain null values. With 1.5M rows of data this will not h
    ave a significant affect on calculated numbers
    beers_clean = beers_clean.dropna(how='any',axis=0)
```

```
<class 'pandas.core.frame.DataFrame'>
             Int64Index: 1517728 entries, 0 to 1586613
             brewery_name 1517728 non-null int64 brewery_name 1517728 non-null int64
             Data columns (total 12 columns):
            prewery_name 1517728 non-null int64
review_overall 1517728 non-null float64
review_aroma 1517728 non-null float64
             review_aroma 1517728 non-null float64 review_appearance 1517728 non-null float64
            review_appearance review_profilename 1517728 non-null float64 review_profilename 1517728 non-null object review_palate 1517728 non-null float64 review_taste 1517728 non-null float64
             beer_name
                                           1517728 non-null object
             beer_abv
                                           1517728 non-null float64
             beer_beerid
                                           1517728 non-null int64
             dtypes: float64(6), int64(2), object(4)
             memory usage: 150.5+ MB
In [13]: # view the cleaned dataset
             beers_clean.head()
```

Out[13]:

In [12]: beers_clean.info()

	brewery_id	brewery_name	review_overall	review_aroma	review_appearance	review_profilename
0	10325	Vecchio Birraio	1.5	2.0	2.5	stcules
1	10325	Vecchio Birraio	3.0	2.5	3.0	stcules
2	10325	Vecchio Birraio	3.0	2.5	3.0	stcules
3	10325	Vecchio Birraio	3.0	3.0	3.5	stcules
4	1075	Caldera Brewing Company	4.0	4.5	4.0	johnmichaelsen

With the cleaned date I will explore Question 1

Which brewery produces the strongest beers by ABV%?

```
In [14]: # group by brewery name and calculate the mean of all numerical columns
beers_brewgroup = beers_clean.groupby('brewery_name').mean()
```

In [15]: # sort the new table by ABV% to determine highest alcohol content
beers_brewgroup.sort_values(by='beer_abv', ascending=False)

	brewery_id	review_overall	review_aroma	review_appearance	review_palate	
brewery_name						
Schorschbräu	6513.0	3.411765	3.529412	3.558824	3.470588	
Shoes Brewery	14060.0	3.000000	3.000000	3.750000	3.500000	
Rome Brewing Company	2873.0	4.100000	3.600000	3.800000	3.900000	
Hurlimann Brewery	736.0	3.805556	4.333333	3.916667	4.083333	
Alt-Oberurseler Brauhaus	10038.0	4.000000	4.500000	4.000000	4.500000	
Rascal Creek Brewing Co.	21755.0	5.000000	5.000000	5.000000	5.000000	
Monks Porter House	24215.0	3.833333	4.000000	3.833333	3.833333	
Brasserie Grain d' Orge (Brasserie Jeanne d'Arc SA)	36.0	3.229299	3.466561	3.652866	3.485669	
Tugboat Brewing Company	3452.0	3.500000	3.625000	3.687500	3.437500	
United Brands Company	21678.0	1.884615	2.307692	2.846154	2.057692	
Morgan Street Brewery	593.0	3.850000	3.700000	3.950000	3.750000	
Snowy Mountain Brewery	19602.0	4.250000	4.250000	3.750000	3.500000	
Rinkukių Aluas Darykla	23345.0	3.136364	3.545455	3.136364	2.954545	
Brauerei Schloss Eggenberg	285.0	3.595552	3.824547	3.754256	3.820977	
Etna Brewery	8540.0	4.250000	4.250000	4.375000	4.250000	
Nasu Kogen Beer Co. Ltd.	5040.0	4.500000	4.250000	4.500000	4.000000	
Brasserie Dubuisson Frères sprl	604.0	3.714949	3.908542	3.881151	3.846797	
Kuhnhenn Brewing Company	2097.0	3.964975	4.161008	3.922802	4.009292	
Main Street Brewery / Turoni's Pizza	639.0	3.916667	3.750000	3.916667	3.750000	
Water Street Brewing & Ale House	10226.0	2.500000	2.500000	4.000000	4.000000	
Wibblers	10191.0	4.000000	3.500000	4.000000	4.000000	
7220 8 1	10262.0	4.000000	4.000000	4.000000	4.000000	_

In [16]: beers_clean[beers_clean['beer_abv'] == beers_clean['beer_abv'].max()]

Out[16]:

	brewery_id	brewery_name	review_overall	review_aroma	review_appearance	review_profiler
12919	6513	Schorschbräu	4.0	4.0	4.0	kappldav123

In [17]: # sort the original sheet by ABV% to determine which brewery the single beer with t
 he most alcohol
 beers.sort_values(by='beer_abv', ascending=False)

	brewery_id	brewery_name	review_time	review_overall	review_aroma	review_appearance
12919	6513	Schorschbräu	1316780901	4.0	4.0	4.0
12939	6513	Schorschbräu	1309974178	4.0	4.0	3.5
12940	6513	Schorschbräu	1274469798	3.5	4.0	4.0
746385	16315	BrewDog	1285808609	3.5	4.0	4.0
746387	16315	BrewDog	1285274059	3.0	3.0	3.0
746386	16315	BrewDog	1285665487	2.5	3.0	3.5
746384	16315	BrewDog	1288121648	2.0	3.0	2.5
746358	16315	BrewDog	1307999104	3.0	2.5	3.0
746359	16315	BrewDog	1307202043	4.5	5.0	4.5
746360	16315	BrewDog	1307142237	1.0	3.5	2.0
746365	16315	BrewDog	1302716098	5.0	5.0	4.5
746366	16315	BrewDog	1301350582	3.5	4.0	4.5
740057	10015	D D	1000770700	<u> </u>	-	

Schorschbräu brewery has both the highest alcohol content by volume across all beers produced at 19.22% and the beer with the single highest alchol content with the Schorschbräu Schorschbock at 57%

If you had to pick 3 beers to recommend using only this data, which would you pick?

I tend to prefer an ale over most other beer types. I'll query the data frame and build a new dataset that only contains Ale's. Once I do that I can group the data by the beer name, calculate the mean reviews across all categories and sort the information based on the returned data.

```
In [18]: beer_ale = beers_clean[beers_clean['beer_style'].str.contains("Ale")]
In [19]: # build a new data file grouped by beer_name
         beers_choice = beer_ale.groupby('beer_name').mean()
In [20]: # create a total_review column that includes all rating categories
         beers_choice['tot_review'] = ((beers_choice['review_overall'] + beers_choice['revie
         w_aroma'] + beers_choice['review_appearance'] + beers_choice['review_palate'] + bee
         rs_choice['review_taste'])/5)
In [21]: beers_choice.info()
         <class 'pandas.core.frame.DataFrame'>
         Index: 14977 entries, ! (Old Ale) to ÜberSun (Imperial Summer Wheat Beer)
         Data columns (total 9 columns):
         brewery_id
                            14977 non-null float64
         review overall
                            14977 non-null float64
                            14977 non-null float64
         review_aroma
                            14977 non-null float64
         review_appearance
         review_palate
                             14977 non-null float64
         review_taste
                             14977 non-null float64
         beer abv
                            14977 non-null float64
         beer_beerid
                            14977 non-null float64
                            14977 non-null float64
         tot_review
         dtypes: float64(9)
         memory usage: 1.1+ MB
```

In [22]: # sort new data sheet for the highest total_review
beers_choice.sort_values(by='tot_review', ascending=False)

	brewery_id	review_overall	review_aroma	review_appearance	review_palate	review_ta
beer_name						
Great Lakes Truth Justice And The American Ale	73.0	5.000000	5.000000	5.000000	5.000000	5.000000
Edsten Triple-Wit	387.0	5.000000	5.000000	5.000000	5.000000	5.000000
Engelbert Moonbeam	642.0	5.000000	5.000000	5.000000	5.000000	5.000000
Lips Of Faith - Eric's Ale (Bourbon Barrel Aged)	192.0	5.000000	4.750000	4.750000	5.000000	5.000000
Opus Altar Boy	30.0	5.000000	5.000000	5.000000	5.000000	4.500000
Dry Hopped Abominable Ale	16353.0	5.000000	5.000000	5.000000	4.500000	5.000000
De Dolle Stille Nacht Special Reserva 2008	201.0	5.000000	5.000000	5.000000	5.000000	4.500000
Tetley's Mild	8535.0	5.000000	5.000000	5.000000	4.500000	5.000000
Love Child Belgiweizen	17282.0	5.000000	4.750000	4.750000	5.000000	5.000000
Divine Vamp 3	3599.0	5.000000	4.500000	4.750000	4.750000	5.000000
Dark Funk	9139.0	5.000000	5.000000	4.500000	4.500000	5.000000
Red, Wheat, And Blue	1709.0	4.500000	5.000000	5.000000	4.500000	5.000000
Leaf	18189.0	5.000000	4.500000	5.000000	4.500000	5.000000
Cascade Straight Bourbonic	2391.0	4.750000	4.875000	4.750000	4.875000	4.750000
Red Truck Ale	6508.0	5.000000	4.500000	5.000000	5.000000	4.500000
Hops Bandit	7402.0	5.000000	5.000000	5.000000	4.500000	4.500000
Bruno	23476.0	4.500000	5.000000	5.000000	5.000000	4.500000

After the manipulation is complete, we only end up with 3 beers at the top with a total_review rating of 5 across all categories. These are the beers I would recommend trying.

Great Lakes Truth Justice And The American AleEdsten Tripl Wit and Engelbert Moonbeam

Which of the factors (aroma, taste, appearance, palette) are most important in determining the overall quality of a beer?

In [24]: # create a correlation matrix that includes values and coloring for heatmap corr = corr_test.corr() corr.style.background_gradient(cmap='coolwarm')

Out[24]:

	review_overall	review_aroma	review_taste	review_appearance	review_palate
review_overall	1	0.612669	0.787111	0.498401	0.698925
review_aroma	0.612669	1	0.714677	0.558925	0.614781
review_taste	0.787111	0.714677	1	0.544432	0.73211
review_appearance	0.498401	0.558925	0.544432	1	0.564407
review_palate	0.698925	0.614781	0.73211	0.564407	1

This heatmap shows the relationship of the variables to each other. Reading the top row we gain the knowledge we need. From shades of blue to red, we see all these variables are positively correlate with review_overall. Taste has the highest coefficient at .79. All of these values however are higher than one might typically see.

It will be interesting to see how these interact with each other. I will use R to explore those relationships

Lastly, if I typically enjoy a beer due to its aroma and appearance, which beer style should I try?

```
In [25]: # create new dataset for beer preference
    beers_pref = beers_clean[['brewery_name', 'beer_style', 'beer_name', 'review_aroma'
    , 'review_appearance', 'review_overall']]
```

In [26]: #view new datasheet to cofirm accuracy beers_pref.head()

Out[26]:

	brewery_name	beer_style	beer_name	review_aroma	review_appearance	review_overall
0	Vecchio Birraio	Hefeweizen	Sausa Weizen	2.0	2.5	1.5
1	Vecchio Birraio	English Strong Ale	Red Moon	2.5	3.0	3.0
2	Vecchio Birraio	Foreign / Export Stout	Black Horse Black Beer	2.5	3.0	3.0
3	Vecchio Birraio	German Pilsener	Sausa Pils	3.0	3.5	3.0
4	Caldera Brewing Company	American Double / Imperial IPA	Cauldron DIPA	4.5	4.0	4.0

In [27]: # sort new dataset descending by aroma, appearance then review_overall beers_pref1 = beers_pref.groupby('beer_style').mean()

In [28]: #view new datasheet to cofirm accuracy beers_pref1.head()

Out[28]:

	review_aroma	review_appearance	review_overall
beer_style			
Altbier	3.635412	3.815662	3.832017
American Adjunct Lager	2.478577	2.785754	3.010280
American Amber / Red Ale	3.653032	3.829129	3.802779
American Amber / Red Lager	3.220063	3.533167	3.577330
American Barleywine	4.022201	4.040175	3.898819

In [30]: #sort datasheet to findest beer with the higest values
 beers_pref1.sort_values(['review_overall','review_aroma', 'review_appearance'], asc
 ending=False)

	review_aroma	review_appearance	review_overall
beer_style			
American Wild Ale	4.134354	4.010932	4.100018
Gueuze	4.116157	4.037312	4.087034
Quadrupel (Quad)	4.133515	4.119829	4.073141
Lambic - Unblended	4.126564	3.918191	4.060635
American Double / Imperial Stout	4.161199	4.164013	4.030252
Russian Imperial Stout	4.077615	4.212620	4.024439
Weizenbock	4.049476	4.013302	4.011139
American Double / Imperial IPA	4.099739	4.080414	3.999935
Flanders Red Ale	4.045718	4.003505	3.995733
Rye Beer	3.907953	4.013913	3.988838
Keller Bier / Zwickel Bier	3.689478	3.848335	3.987670
Eisbock	4.157348	3.962977	3.975444
American IPA	3.901598	3.973841	3.971846
Saison / Farmhouse Ale	3.935383	4.002434	3.965143
Belgian IPA	3.984351	4.081147	3.963471
Gose	3.780581	3.905963	3.961774
Baltic Porter	3.947894	4.040809	3.957308
Hefeweizen	3.782597	3.851052	3.953560
Oatmeal Stout	3.863330	4.020571	3.951972
Roggenbier	3.853165	3.834177	3.950633
American Black Ale	3.933901	4.115964	3.934753
Dubbel	3.906931	4.008503	3.928987
English Porter	3.844733	3.937301	3.921067
Tripel	3.916956	3.956684	3.917723
Belgian Strong Dark Ale	3.972578	4.010457	3.914133
American Porter	3.847471	3.965436	3.908985
Flanders Oud Bruin	3.939616	3.902387	3.904325
Old Ale	4.008995	3.942790	3.899435
American Barleywine	4.022201	4.040175	3.898819
Belgian Strong Pale Ale	3.912220	3.962177	3.895648
Sahti	3.837151	3.652390	3.697211
Irish Red Ale	3.425632	3.770677	3.690294
English Pale Ale	3.423185	3.698856	3.689955
Scottish Gruit / Ancient Herbed Ale	3.742946	3.646940	3.689813

```
R code is copied and paste below:
title: "Untitled"
author: "Whitmire"
date: "March 15, 2019"
output: html document
editor options:
 chunk output type: console
```{r echo=FALSE, load packages}
#load packages need for analysis
library(ggplot2)
library(GGally)
library(scales)
library(memisc)
library(lattice)
library(MASS)
library(car)
library(reshape)
library(plyr)
library(dplyr)
title: "Untitled"
author: "Whitmire"
date: "March 15, 2019"
output: html document
editor_options:
 chunk_output_type: console
```{r setup, include=FALSE}
knitr::opts chunk$set(echo = TRUE)
```{r echo=FALSE, unpack file}
Need to untar the file to extract the data for working
untar("beer reviews.tar.gz",list=TRUE)
untar("beer reviews.tar")
"\"{r echo=FALSE, Load the Data}
read the file into the directory and add columns as needed
beers <- read.csv("beer reviews.csv")
beers$total_review <- (beers$review_overall + beers$review_aroma + beers$review_appearance + beers
$review palate + beers$review taste)/5
#create new dataset to work with
beers clean <- beers[-c(3)]
```{r}
ggplot(aes(x = review taste, y = review palate, color = review overall), data = beers) +
 geom point(alpha = .2, position = 'jitter') +
   ggtitle('Palate/Taste ~ Overall Rating')
```{r}
ggplot(aes(x = review taste, y = review aroma, color = review overall), data = beers) +
 geom point(alpha = .2, position = 'jitter') +
 ggtitle('Aroma/Taste ~ Overall Rating')
```