Образец статьи «Компьютерные науки и информационные технологии»

Aвтор И.О.¹, Coaвтор И.О.² ¹ author1@site.ru, ² author2@site.ru ¹ Организация, Город, Страна; ²

Данный текст является образцом оформления статьи. Аннотация кратко характеризует основную цель работы, особенности предлагаемого подхода и основные результаты.

Ключевые слова: образец, пример, оформление

Введение

После аннотации, но перед первым разделом, может идти неформальное введение, описание предметной области, обоснование актуальности задачи, краткий обзор известных результатов, и т. п. В любом случае, структура статьи остается прерогативой авторов.

1. Название раздела

Данный документ демонстрирует оформление статьи, подаваемой на международную конференцию.

Название параграфа.

Нет никаких ограничений на количество разделов и параграфов в статье.

Теоретическую часть работы (если таковая имеется) желательно структурировать с помощью окружений Def, Axiom, Hypothesis, Problem, Lemma, Theorem, Corollary, State, Example, Remark.

Определение 1. Математический текст хорошо структурирован, если в нём выделены определения, теоремы, утверждения, примеры, и т. д., а неформальные рассуждения (мотивации, интерпретации) вынесены в отдельные параграфы.

Утверждение 1. Мотивации и интерпретации наиболее важны для понимания сути работы.

Теорема 1. Не менее 90% коллег, заинтересовавшихся Вашей статьёй, прочитают в ней не более 10% текста, причём это будут именно те разделы, которые не содержат формул.

Замечание 1. Выше показано применение окружений Def, Theorem, State, Remark.

2. Некоторые формулы

Образец формулы: $f(x_i, \alpha^{\gamma})$.

Образец выключной формулы без номера:

$$y(x,\alpha) = \begin{cases} -1, & \text{если } f(x,\alpha) < 0; \\ +1, & \text{если } f(x,\alpha) \geqslant 0. \end{cases}$$

Образец выключной формулы с номером:

$$F(\mathbf{p}) \to \min, \quad F(\mathbf{p}) = \begin{cases} f(\mathbf{p}, \mathbf{s}_0), & \mathbf{p} \in \Omega_p^{(st)}(\mathbf{s}_0), \\ +\infty, & \mathbf{p} \notin \Omega_p^{(st)}(\mathbf{s}_0), \end{cases}$$
(1)

Образец выключной формулы, разбитой на две строки с помощью окружения multline:

$$\psi(x,y,t) = \frac{(t-t_2)(t-t_3)(t-t_4)}{(t_1-t_2)(t_1-t_3)(t_1-t_4)} f_1(x,y) + \frac{(t-t_1)(t-t_3)(t-t_4)}{(t_2-t_1)(t_2-t_3)(t_2-t_4)} f_2(x,y) + \frac{(t-t_1)(t-t_2)(t-t_4)}{(t_3-t_1)(t_3-t_2)(t_3-t_4)} f_3(x,y) + \frac{(t-t_1)(t-t_2)(t-t_3)}{(t_4-t_1)(t_4-t_2)(t_4-t_3)} f_4(x,y).$$
 (2)

Образец набора нумерованных формул, выровненных с помощью окружения align:

$$\vartheta_{H1}(t) = \left(0.85 \frac{\rho_1(t)}{\rho_0}\right)^{k-1} \vartheta_0,\tag{3}$$

$$\vartheta_{H2}(t) = \left(0.85 \frac{\rho_2(t)}{\rho_1}\right)^{k-1} \vartheta_{H1},\tag{4}$$

$$\vartheta_{H3}(t) = \left(0.85 \frac{\rho_3(t)}{\rho_2}\right)^{k-1} \vartheta_{H2}.\tag{5}$$

Образец набора формул под одним номером, выровненных с помощью окружения gathered

$$(1 + \gamma \lambda)u''''(x, \lambda) + a_x[(m_2 + 1 - x)u'(x, \lambda)]' + \lambda^2 u(x, \lambda) = -\delta_j^1 - \delta_j^3 x,$$

$$u(0, \lambda) = 0; \quad u'(0, \lambda) = 0; \quad u(1, \lambda) = \delta_i^2; \quad u'(1, \lambda) = \delta_i^4; \quad j = 1, 2, 3, 4.$$
(6)

Образец сложного многострочного набора формул под одним номером

$$J_{0}\ddot{\beta}_{0} = -p_{1}\dot{\beta}_{0} - p_{2}\beta_{0} + \mathbf{S}(\beta_{1} + \beta_{2}), \quad m_{1}\ddot{y}_{1} = (1 + m_{1} + m_{2})\beta_{0} + P_{1} - F_{e},$$

$$J_{0}\ddot{\beta}_{0} + J_{1}\ddot{\beta}_{1} = M_{1}, \quad m_{2}[(1 + a)\ddot{\beta}_{1} + \ddot{y}_{1} + \ddot{y}_{2}] = P_{2} + a_{x}m_{2}\beta_{2},$$

$$J_{2}(\ddot{\beta}_{1} + \ddot{\beta}_{2}) = M_{2} - aP_{2}, \quad \mathbf{S}(.) = p_{3}d()/dt + p_{4} \cdot () + p_{5} \int_{0}^{t} () dt,$$

$$\ddot{u} + u'''' + \gamma \dot{u}'''' + a_{x}[(m_{2} + (1 - x))u']' = -\ddot{y}_{1} - x\ddot{\beta}_{1}, \quad ()' = \partial()/\partial x,$$

$$u(0, t) = 0; \quad u'(0, t) = 0, \quad u(1, t) = y_{2}(t), \quad u'(1, t) = \beta_{2}(t),$$

$$M_{1} = u''(0, t) + \gamma \dot{u}''(0, t), \quad P_{1} = -u'''(0, t) - \gamma \dot{u}'''(0, t),$$

$$M_{2} = -u''(1, t) - \gamma \dot{u}''(1, t), \quad P_{2} = u'''(0, t) + \gamma \dot{u}'''(0, t),$$

$$\beta_{0}(0) = \beta_{1}(0) = \beta_{2}(0) = \dot{\beta}_{0}(0) = \dot{\beta}_{1}(0) = \dot{\beta}_{2}(0) = y_{1}(0) =$$

$$= y_{2}(0) = \dot{y}_{1}(0) = \dot{y}_{2}(0) = 0, \quad u(x, 0) = \dot{u}(x, 0) = 0.$$

Образцы ссылок: формулы (1), (2) и система (7).

3. Таблицы

Пример таблицы.

Прогноз Верхняя граница Нижняя граница ШагkU(k)t $Y_{\rm p}(N+k)$ $Y_{\rm p}(N+k) - U(k)$ $Y_{\rm p}(N+k) + U(k)$ 88.3303 92.3923 10 90.3613 2.0310 1 94.82782 90.5290 11 92.67842.1494 3 92.7140 97.2768 12 94.99542.281413 4 97.3125 2.424894.8877 99.7373 $\overline{102.207}$ 3 14 5 99.6296 2.577797.0518

Таблица 1. Нумерованная таблица

Еще один пример: таблица без номера (допускается только в случае, когда в статье только одна таблица).

Стадии

1. Обоснование создания Научно-технический отчет

2. Техническое задание

3. Технический проект Документы спецификаций вариантов использования, модель данных и БД, модель пользовательского интерфейса, сценарии тестов

4. Рабочая документация Комплект пользовательской документации АИС

5. Ввод в действие Готовая АИС

Таблица без номера

Заключение

Если этот раздел присутствует, то он не должен дословно повторять аннотацию. Обычно здесь отмечают, каких результатов удалось добиться, какие проблемы остались открытыми.

Список литературы

- [1] Author N. Paper title // 10-th Int'l. Conf. on Anyscience, 2009. Vol. 11, No. 1. Pp. 111–122.
- [2] Aвтор И. О. Название книги. Город: Издательство, 2009. 314 с.
- [3] Автор И. О. Название статьи // Название конференции или сборника, Город: Изд-во, 2009. С. 5-6.
- [4] Автор И. О., Советор И. О. Название статьи // Название журнала. 2007. Т. 38, № 5. С. 54-62.
- [5] www.site.ru Название сайта 2007.
- [6] $Boponyo \in K.B.$ LATEX $2_{\mathcal{E}}$ в примерах. -2006. http://www.ccas.ru/voron/latex.html.
- [7] Львовский С. М. Набор и вёрстка в пакете ЕТЕХ. 3-е издание. Москва: МЦНМО, 2003. 448 с.