AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions and listings of claims in the applications.

LISTING OF CLAIMS:

(currently amended) A piezoelectric ceramic composition comprising:

a phase comprising, as a main component, lead zirconate titanate having a perovskite structure; and

an Al-containing phase,

wherein:

said main component is represented by a composition formula of $Pb_{\alpha}[(Mn_{1/3}Nb_{2/3})_xTi_yZr_z]O_3$ (wherein 0.97 $\leq \alpha <$ 1.00, 0.04 $\leq x \leq$ 0.16, 0.50 $< y \leq$ 0.58, 0.32 $\leq z \leq$ 0.41) and said piezoelectric ceramic composition comprises Al_2O_3 in an amount of 0.15 0.6 to 15.0 wt%.

Claims 2 and 3 (cancelled).

4. (original) The piezoelectric ceramic composition according to claim 1, wherein:

said Al-containing phase comprises Al₂O₃.

5. (original) The piezoelectric ceramic composition according to claim 1, wherein: said piezoelectric ceramic composition is composed of a sintered body comprising grains and grain boundaries exist between said grains; and

 $\mbox{Al}_2\mbox{O}_3$ is contained in said grains and is precipitated in said grain boundaries.

Claim 6 (cancelled).

7. (original) The piezoelectric ceramic composition according to claim 1, wherein:

 $|\Delta F_0|$ which is the absolute value of the rate of change in oscillation frequency F_0 thereof, before and after application of a thermal shock, is 0.10% or less; and the three-point flexural strength σ_{b3} thereof is 160 N/mm² or more.

8. (currently amended) A piezoelectric ceramic
composition comprising:

a main component represented by the formula of $Pb_{\alpha}[\ (Mn_{1/3}Nb_{2/3})_xTi_yZr_z]O_3, \ wherein \ \alpha, \ x, \ y \ and \ z \ fall \ within the ranges of <math>\frac{0.97}{0.97} \frac{1.0}{1.0} \le \alpha \le 1.01, \ 0.04 \le x \le 0.16, \ 0.48 \le y \le 0.58 \ and \ 0.32 \le z \le 0.41, \ respectively; \ and$

as an additive, Ga, in an amount of 0.01 to 15.0 wt% in terms of an oxide thereof.

(original) The piezoelectric ceramic composition according to claim 8, wherein:

said piezoelectric ceramic composition has $\alpha,~x,~y$ and z of said main component falling within the range of 0.98 $\leq \alpha$ < 1.00, 0.06 $\leq x \leq$ 0.14, 0.49 $\leq y \leq$ 0.57 and 0.33 $\leq z \leq$ 0.40, respectively.

10. (original) The piezoelectric ceramic composition according to claim 8, wherein:

said piezoelectric ceramic composition has α , x, y and z of said main component falling within the range of 0.99 \leq α < 1.00, 0.07 \leq x \leq 0.11, 0.50 \leq y \leq 0.55 and 0.34 \leq z \leq 0.39, respectively.

11. (previously presented) The piezoelectric ceramic composition according to claim 8, wherein:

said piezoelectric ceramic composition further comprises Al as an additive in an amount of 0.05 to 5.0 wt% in terms of Al $_2$ O $_3$.

12. (previously presented) The piezoelectric ceramic composition according to claim 8, wherein:

said piezoelectric ceramic composition further comprises Al as an additive in an amount of 0.15 to 1.5 wt% in terms of Al $_2$ O $_3$.

13. (original) The piezoelectric ceramic composition according to claim 8, wherein:

said piezoelectric ceramic composition comprises Si in an amount of 0.005 to 0.15 wt% in terms of SiO_2 .

14. (original) The piezoelectric ceramic composition according to claim 8, wherein:

the electric property Q_{max} (Q_{max} = tan θ : θ is a phase angle) thereof is 30 or more;

 $|\Delta k_{15}|$ which is the absolute value of the rate of change in electromechanical coupling factor k_{15} thereof, before and after application of a thermal shock, is 4% or less;

 $|\Delta$ F₀ (-40°C)| which is the absolute value of the rate of change in oscillation frequency F₀ thereof at -40°C, with reference to 20°C, is 0.4% or less; and

 $|\Delta\ F_0\ (85^\circ C)|$ which is the absolute value of the rate of change in oscillation frequency F_0 thereof at $85^\circ C$, with

reference to 20°C, is 0.4% or less.

15. (currently amended) A The piezoelectric ceramic composition according to claim 8 comprising a sintered body comprising; as a main component, a perovskite compound having mainly Pb, Zr, Ti, Mn and Nb; and as an additive, Ge, wherein:

the electric property Q_{max} (Q_{max} = tan θ : θ is a phase angle) thereof is 100 or more;

 $|\Delta k_{15}|$ which is the absolute value of the rate of change in electromechanical coupling factor k_{15} thereof, before and after application of a thermal shock, is 2% or less;

 $|\Delta$ F₀ (-40°C)| which is the absolute value of the rate of change in oscillation frequency F₀ at -40°C thereof, with reference to 20°C, is 0.2% or less; and

 $|\Delta\ F_0\ (85^\circ C)|$ which is the absolute value of the rate of change in oscillation frequency F_0 at 85°C thereof, with reference to 20°C, is 0.2% or less.

16. (previously presented) The piezoelectric ceramic composition according to claim 15, wherein:

said sintered body further comprises Al₂O₃.

Claim 17 (cancelled).

Claim 18 (cancelled).

19. (previously presented) The piezoelectric ceramic composition according to claim 1, wherein:

said piezoelectric ceramic composition comprises Al $_2\text{O}_3$ in an amount of 0.6 to 5.0 wt%.

20. (previously presented) The piezoelectric ceramic composition according to claim 1, wherein:

said piezoelectric ceramic composition comprises Al_2O_3 in an amount of 0.6 to 1.5 wt%.