CS & IT

Database Management System

Relational model and Normal forms

DPP: 1

Q1 Consider the student relation shown below with schema stud (Sname, Sage, Smail, Smarks),

Stud

Sname	Sage	Smail	Smarks
Rohit	28	R@pw.live	68
Kanika	25	K@pw.live	75
Pankaj	25	K@pw.live	75
Rohit	28	R@pw.live	88
Anjali	26	A@pw.live	75

For the above given instance how many set of attributes of size two can determine each row uniquely?

Q2 Consider a relation schema R(A, B, C, D, E, F, H) with the given Functional dependency set:

$$\{A \rightarrow BC, C \rightarrow AD, DE \rightarrow F, C \rightarrow F\}$$

The attribute closure that contains all the attributes of the relation R is?

- (A) AE+
- (B) CE+
- (C) AEH+
- (D) All of the above
- Q3 Consider the following set of FD's:

 $\{V \rightarrow W, W \rightarrow XZ, X \rightarrow YZ\}$ for relation

R(V, W, X, Y, Z)

Then the attribute closure of YZ+ contains how many elements?

- (A) 0
- (B) 1
- (C) 2
- (D) 3
- **Q4** For the given FD set: $\{P \rightarrow QT, Q \rightarrow SU, V \rightarrow U\}$ of a relation R(P, Q, T, S, U, V). Find the set of attributes that is Super key but not a Candidate key?
 - (A) PTQ
- (B) PV
- (C) PQV
- (D) QV

- **Q5** Choose the correct statement from the following.
 - (A) The cardinality is defined as the number of attributes in a relation.
 - (B) Degree of the relation is the number of tuples in the relation.
 - (C) Relation instance is the set of tuples of a relation at a particular instance of time.
 - (D) All of the above
- Q6 Choose the correct statement from the following:
 - (A) There can be many primary keys for a relation.
 - (B) There can be many alternate keys for a relation.
 - (C) All the candidate keys are also super keys.
 - (D) All the super keys are also the candidate keys.
- **Q7** Consider the following statements:

S₁: A key in DBMS is an attribute (or a set of attributes) that helps in uniquely identifying each tuple (or row) in a relation (or table).

S₂: There should be only one candidate key in relation, which is chosen as the primary key.

- (A) Only S₁ is true.
- (B) Only S₂ is true.
- (C) Both S_1 and S_2 are true.
- (D) Neither S₁ nor S₂ is true.
- **Q8** Consider the following statements:

S₁: Primary key has no duplicate values it has only unique values.

 S_2 : Primary key is not necessarily formed using a single column of the table, more than one column of the table can also be used to form a primary key of the table.

- (A) Only S₁ is true.
- (B) Only S₂ is true.
- (C) Both $S_1 \& S_2$ are true.
- (D) Neither S_1 nor S_2 are true.

iOS App

<u>PW Website</u>

- **Q9** Assume a relation R (P, Q, R, S, T). If PR and RT are the only candidate keys of the relation R, then how many total super keys exist in relation R.
- Q10 Assume a relation R (P, Q, R, S, T, U, V).

 If PQ, RS, and TU are the only three candidate keys of relation R, then how many total super keys exist in relation R?

2 of 4 06/08/24, 18:00

Answer Key

Q1	1	Q6	(B, C)
Q2	(C)	Q7	(B, C) (A) (C)
Q3	(C)	Q8	(C)
Q4	(C)	Q9	12
Q5	(C)	Q10	74

Hints & Solutions

Q1 Text Solution:

We can clearly observe that none of the attribute can determine a tuple uniquely (Single attribute), if we check for 2-attribute set then only (Sname, Smarks)

can determine a row uniquely for the instance. So, the answer is 1

Q2 Text Solution:

The attribute closure $AE+ = \{A, B, C, D, E, F\}$. The attribute closure $CE+ = \{C, E, A, B, D, F\}$. But the attribute H is missing from the closure. The attribute closure $AEH+ = \{A, B, C, D, E, F, H\}$. Therefore, C is the correct answer.

Q3 Text Solution:

The attribute closure of $YZ + = \{Y, Z\}$ no other attribute can be determined by YZ+ . Therefore only 2 elements that is Y and Z are in the YZ+ closure.

Q4 Text Solution:

The key for the given FD set.

$$\{P \rightarrow QT, Q \rightarrow SU, V \rightarrow U\}$$

$$PV+ = \{P, Q, T, V, U, S\}$$

$$PVQ+ = \{P, Q, T, V, U, S\}$$

$$PTQ+=\{P, T, Q\}$$

$$QV + = {Q, V, S, U}$$

we have PV+ as the candidate key and also it is the super key. PVQ+

is the super key but it is not a Candidate Key (not minimal set)

Q5 Text Solution:

- Cardinality is defined as the number of tuples in a relation.
- Degree is defined as the number of attributes in a relation.
- Relation instance is the set of tuples of a relation at a particular instance of time.

Q6 Text Solution:

I. There exists exactly at most one primary key for any relational table while there can be multiple alternate keys for a relation.

II. All the candidate keys are super keys, but it is not compulsory that all super key are candidate keys.

NOTE: A candidate key is minimal set of that determine relational table uniquely. Also, every candidate key is a Super key but every Super key need not be Candidate.

Q7 Text Solution:

S₁: True: A key in DBMS is an attribute (or) a set of attributes that help to uniquely identify a tuple (or row) in a relation (or table).

S2: False: There can be more than one candidate key in relation out of which one can be chosen as primary key.

Q8 Text Solution:

- Primary key has no duplicate values it has only unique values. Hence S₁ is true.
- Primary key is not necessarily to be a single column more than one column can also be a primary key for the table. Hence S2 is true.

Q9 **Text Solution:**

PR RT Common
$$\downarrow \qquad \downarrow \qquad \downarrow$$
• $2^{5-2} + 2^{5-2} - 2^{5-3}$
• $2^3 + 2^3 - 2^2$

 $8 + 8 - 4 \Rightarrow 16 - 4 = 12$

Q10 Text Solution:

PQ

Common between

two keys $2^{\overset{\downarrow}{7-2}}+2^{\overset{\downarrow}{7-2}}+2^{\overset{\downarrow}{7-2}}+-(2^{7-2}+2^{\overset{\downarrow}{7-4}}+2^{7-4})$

Common between all three keys

iOS App