

			Draagbare rekenaar:	Grafiekpapier:
Oopboek-eksamen:	Oopbo	×	Nie-programmeerbare sakrekenaar:	Multikeusekaarte:
			tel:	nodigdhede vir hierdie vraestel:

SEMESTERTOETS / SEMESTER TEST:

N

MODULE CODE:

MODULE BESKRYWING/ SUBJECT:

BEHEERTEORIE II CONTROL THEORY II

EKSAMINATOR(E)/ EXAMINER(S):

MODERATOR:

DR. KR UREN

EERI418

PROF. G VAN SCHOOR

KWALIFIKASIE/ QUALIFICATION:

BING

DUUR/ DURATION: 1 ½ UUR / 1 ½ HOURS

MAKS / MAX:

 $^{\omega}$

DATUM / DATE:

15-04-2014

TYD / TIME

07:30

<u>ത</u>

VRAAG 1 / QUESTION 1

Determine the z-transform, in closed form, of the following signal: Bepaal die z-transform in geslote vorm van die volgende sein: /

$$E(s) = \frac{2(1 - e^{-0.5s})e^{-1.1s}}{s(s+1)}, \quad T = 0.5s$$

VRAAG 2 / QUESTION 2

Bepaal die geslotelusoordragsfunksie $(rac{C(z)}{R(z)})$ vir die stelsel in figuur 1. /

<u></u>

Determine the closed loop transfer function $(rac{C(z)}{R(z)})$ for the system in figure 1.

Figuur / Figure 1

Figuur / Figure 2

Beskou die stelsel in figuur 2. / Consider the system in figure 2.

3.1 Bepaal die stelseloordragsfunksie
$$(rac{ heta(z)}{R(z)})$$
 in terme van $G(z)$. /

Determine the system transfer function
$$(rac{ heta(z)}{R(z)})$$
 in terms of G(z).

 Ξ

- 32 Bepaal die oordragsfunksie vir K = 20 en T = 0.03 s. Wat is die tipe van die stelsel? / Determine the transfer function for K = 20 and T = 0.03 s. Find the system type
- ω Bepaal die bestendige toestand fout van die diskrete stelsel vir 'n eenheidstrapsinset. / Determine the steady state error of the discrete system for a unit step input.

<u>4</u>

ග

<u>ග</u>

- ω 4 Bepaal die natuurlike frekwensie en die tydkonstante van die diskrete stelsel. / Determine the natural frequency and the time constant of the discrete system.
- 3.5 diskretiseringsfout sal minimeer, maar nie die modelleringstyd onnodig sal verleng nie Spreek jou uit oor die sinvollheid van die keuse van die monstertempo. Wat sal die effek van 'n hoër monstertempo op die respons van die stelsel wes. Maak 'n aanbeveling oor die monstertempo wat die

Discuss the meaningfulness of the choice of the sampling rate. What will the effect of a higher sampling rate be on the response of the system Make a recommendation on the sampling rate that would minimise the discretisation error without unnecessarily increasing the modelling time.

(5)

TOTAAL/TOTAL [34]

TABLE 2-2 PROPERTIES OF THE z-TRANSFORM

Final value: $e(\infty) = \lim_{z \to \infty} (z - 1)E(z)$, if $e(\infty)$ exists	Initial value: $e(0) = \lim_{z \to \infty} E(z)$	$e_1(k) = \sum_{n=0}^{\infty} e(n) \qquad \qquad E_1$	$e_1(k) * e_2(k)$	ke(k)	$e^{ak}e(k)$	$e(k+n)u(k); n \ge 1$ $z^n \Big[E$	$e(k-n)u(k-n); n \ge 0$		e(k) $E($	Sequence	
z), if $e(\infty)$ exists		$E_1(z) = \frac{z}{z-1}E(z)$	$E_1(z)E_2(z)$	$-z\frac{dE(z)}{dz}$	E(26-0)	$z^{n} \left[E(z) - \sum_{k=0}^{n-1} e(k) z^{-k} \right]$	$z^{-n}E(z)$	$a_1 E_1(x) + a_2 E_2(x)$	$E(z) = \sum_{k=0}^{\infty} e(k)z^{-k}$	Transform	
	a* cos bk	$a^k \sin bk$	cos ak	sin <i>ak</i>	ka^k	ر الم الم	,	ж)s	Sequence	

a* cos bk	$a^k \sin bk$	cos ak	sin ak	ka^k	a_{\star}	بج	አ	₩	$\delta(k-n)$	Sequence	IABLE 2-3
$\frac{z^2 - az \cos b}{z^2 - 2az \cos b + a^2}$	$\frac{az \sin b}{z^2 - 2az \cos b + a^2}$	$\frac{z(z-\cos a)}{z^2-2z\cos a+1}$	$\frac{z \sin a}{z^2 - 2z \cos a + 1}$	$\frac{az}{(z-a)^2}$	11 11	$\frac{z(z+1)}{(z-1)^3}$	$(z-1)^2$	tu tu	2-4	z-Transform	z-TRANSFORMS

TABLE AS-1 LAPLACE TRANSFORM PROPERTIES

	COLUMN TO CARTA TA CARTA TO CA
Name	Theorem
Derivative	$\mathcal{L}\left[\frac{df}{dt}\right] = sF(s) - f(0^{-})$
nth-order derivative	$\mathscr{L}\left[\frac{d^n f}{dt^n}\right] = s^n F(s) - s^{n-1} f(0^+)$
Integral	$\mathscr{L}\left[\int_{0}^{r}f(\tau)d\tau\right]=\frac{F(s)}{s}$
Shifting	$\mathscr{Z}[f(t-t_0)u(t-t_0)]=e^{-t_0x}F(s)$
Initial value	$\lim_{t \to 0} f(t) = \lim_{t \to \infty} sF(s)$
Final value	$\lim_{t\to\infty} f(t) = \lim_{s\to -0} sF(s)$
Frequency shift	$\mathscr{Z}[e^{-at}f(t)] = F(s+a)$
Convolution integral	$\mathscr{L}^{-1}[F_1(s)F_2(s)] = \int_0^t f_1(t-\tau)f_2(\tau) d\tau$
	$= \int_{0}^{\tau} f_{1}(\tau) f_{2}(t-\tau) d\tau$

Optimum coefficients of T(s) Based on the ITAE Criterion for a Step Input

$$s + \omega_{n}$$

$$s^{2} + 1.4\omega_{n}s + \omega_{n}^{2}$$

$$s^{3} + 1.75\omega_{n}s^{2} + 2.15\omega_{n}^{2}s + \omega_{n}^{3}$$

$$s^{4} + 2.1\omega_{n}s^{3} + 3.4\omega_{n}^{2}s^{2} + 2.7\omega_{n}^{3}s + \omega_{n}^{4}$$

$$s^{5} + 2.8\omega_{n}s^{4} + 5.0\omega_{n}^{2}s^{3} + 5.5\omega_{n}^{3}s^{2} + 3.4\omega_{n}^{4}s + \omega_{n}^{5}$$

$$s^{6} + 3.25\omega_{n}s^{5} + 6.60\omega_{n}^{2}s^{4} + 8.60\omega_{n}^{3}s^{3} + 7.45\omega_{n}^{4}s^{2} + 3.95\omega_{n}^{5}s + \omega_{n}^{6}$$

z-transforms Laplace ganstorm

	$\frac{1}{s(s+a)(s+b)}$		$\frac{a^2+b^2}{s[(s+a)^2+b^2]}$	$\frac{s+a}{(s+a)^2+b^2}$	$\frac{1}{(s+a)^2+b^2}$	2 - C - C - C - C - C - C - C - C - C -	S. + C.	$\frac{b-a}{(s+a)(s+b)}$	$\frac{a^2}{s(s+a)^n}$	$\frac{a}{s^{*}(s+a)}$	s(s+a)	$\frac{(k-1)!}{(s+a)^k}.$	$(s+a)^{-1}$	s + a	$\frac{(k-1)!}{s^x}$	^C ₹. }•	⁶ 3, +~	. ↓ ↓ ·	Laplace transform $E(s)$
$+\frac{e^{-3\alpha}}{b(b-a)}$	$\frac{1}{ab} \cdot \frac{e^{-at}}{a(a-b)}$		$1 - e^{-at} \left(\cos bt + \frac{a}{b} \sin bt \right)$	e ^{-ar} cos. <i>bt</i>	$\frac{1}{b}e^{-\omega}\sin bc$	cos(at)	sin (u)	±, -4 → 6. → 7	$1-(1+u)\epsilon^{-u}$	1 1 - 6 - 4		* 4 Et - 194	18	<u>ب</u> - ق	£*-1	(1) <i>7</i>),	**	u(t)	Time function $e(t)$
	$B = e^{-2aT} + e^{-aT} \left(\frac{a}{b} \sin bT - \cos bT \right)$ $\frac{(Az + B)z}{(z - e^{-aT})(z - e^{-aT})(z - 1)}$	$A = 1 - e^{-aT} \left(\cos bT + \frac{a}{b} \sin bT \right)$	$\frac{z(Az+B)}{(z-1)(z^2-2ze^{-az}\cos bT-e^{-2az})}$	$\frac{z^2 - 2e^{-aT}\cos bT}{z^2 - 2ze^{-aT}\cos bT + e^{-aT}}$	$\frac{1}{b} \left[\frac{2e^{-aT}\sin bT}{z^2 - 2ze^{-aT}\cos(bT) + e^{-2aT}} \right]$	$\frac{z(z-\cos(aT))}{z^2-2z\cos aT+1}$	$\frac{z\sin(aT)}{z^2-2z\cos(aT)+1}$	$\frac{(z-e^{-nt})(z-e^{-nt})}{(z-e^{-nt})z}$	$\frac{z}{z-1} - \frac{z}{z-e^{-at}} - \frac{aTe^{-aT}z}{(z-e^{-at})^2}$	$\frac{z[(aT-1+e^{-aT})z+(1-e^{-aT}-aTe^{-aT})]}{a(z-1)[(z-e^{-aT})]}$	$\frac{z(1-e^{-df})}{(z-1)(z-e^{-df})}$	$(-1)^k \frac{\partial^k}{\partial a^k} \left[\frac{z}{z - e^{-zt}} \right]$	$\frac{T_2e^{-ax}}{(z-e^{-ax})^2}$	2 - 6.27	$\lim_{s\to 0} (-1)^{s-1} \frac{\partial^{s-1}}{\partial a^{s-1}} \left[\frac{z}{z-e^{-sr}} \right]$	$\frac{T^2z(z+1)}{2(z-1)^5}$	$\frac{Tz}{(z-1)^2}$	2 1	z-Transform E(z)
$B = \frac{ae^{-at}(1 - e^{-at}) - be^{-at}(1 - e^{-at})}{ab(b - a)}$	$\frac{-\frac{\pi}{5}\left(e^{-mr}\left[z\sin bmT - e^{-aT}\sin\left(1 - m\right)bT\right]\right\}}{z^{2} - 2ze^{-aT}\cos bT + e^{-aT}}$ $A = \frac{b(1 - e^{-aT}) - a(1 - e^{-bT})}{ab(b - a)}$	$\frac{e^{-am^2}[z\cos bmT + e^{-aT}\sin(1-m)bT]}{z^2 - 2ze^{-aT}\cos bT + e^{-3aT}}$: :	$\frac{e^{-anT}[z\cos bmT + e^{-aT}\sin(1-m)bT]}{z^2 - 2ze^{-aT}\cos bT + e^{-2aT}}$	$\frac{1}{b} \left[\frac{\epsilon^{-amT} [2\sin bmT + \epsilon^{-aT} \sin (1-m)bT]}{z^2 - 2z\epsilon^{-aT} \cos bT + \epsilon^{-2zT}} \right]$	$\frac{z\cos(a\pi T) - \cos(1-m)aT}{z^2 - 2z\cos(aT) + 1}$	$\frac{z\sin(\omega mT) + \sin(1-m)aT}{z^2 - 2z\cos(aT) + 1}$	$\frac{x - e^{-\alpha x_{\perp}}}{e^{-\alpha x_{\perp}}} = \frac{x - e^{-x_{\perp}}}{e^{-\alpha x_{\perp}}}$	$\frac{1}{z-1} - \left[\frac{1 + amT}{z - e^{-aT}} + \frac{aTe^{-aT}}{(z - e^{-aT})^2} \right] e^{-anT}$	$\frac{T}{(z-1)^2} + \frac{amT-1}{a(z-1)} + \frac{e^{-amT}}{a(z-e^{-aT})}$	$\frac{1}{2-1} - \frac{e^{-anT}}{2-e^{-aT}}$	$(-1)^{\epsilon} \frac{\partial^{\delta}}{\partial a^{\epsilon}} \left[\frac{e^{-smY}}{z - e^{-stY}} \right]$	$\frac{Te^{-anf}[e^{-af} + m(z - e^{-af})]}{(z - e^{-af})^{\frac{1}{2}}}$	C-ant	$\lim_{s \to 0} (-1)^{s-1} \frac{\partial^{s-1}}{\partial a^{k-1}} \left[\frac{e^{-aar}}{2 - e^{-ax}} \right]$	$\frac{T^2}{2} \left[\frac{m^2}{z-1} + \frac{2m+1}{(z-1)^2} + \frac{2}{(z-1)^3} \right]$	$\frac{mT}{z-1} - \frac{T}{(z-1)^2}$	2 -1	Modified z-transform $E(z,m)$