DMCalc: Tutorial

Pratik Tarafdar & M. A. Krishnakumar

- Pulsar signals are dispersed Thanks to free electrons in ISM
- The delay is a strong function of frequency $\sim v^{-2}$
- Dispersion Measure (DM) is the integrated column density of electrons between pulsar and observer

$$DM = \int_0^d n_e dl \text{ pc cm}^{-3}$$

- Pulsar signals are dispersed -Thanks to free electrons in ISM
- The delay is a strong function of frequency $\sim v^{-2}$
- Quantified as

$$\Delta t = 4.15 \times 10^6 \times (\nu_1^{-2} - \nu_2^{-2}) \times DM(ms)$$

DM - a measure of electron density

- Pulsar signals are dispersed -Thanks to free electrons in ISM
- The delay is a strong function of frequency $\sim v^{-2}$
- Quantified as

$$\Delta t = 4.15 \times 10^6 \times (\nu_1^{-2} - \nu_2^{-2}) \times DM(ms)$$

DM - a measure of electron density

- Pulsar signals are dispersed -Thanks to free electrons in ISM
- The delay is a strong function of frequency $\sim v^{-2}$
- Quantified as

$$\Delta t = 4.15 \times 10^6 \times (\nu_1^{-2} - \nu_2^{-2}) \times DM(ms)$$

- DM a measure of electron density
- Correct for the delay dedispersion

- Pulsar signals are dispersed -Thanks to free electrons in ISM
- The delay is a strong function of frequency $\sim v^{-2}$
- Quantified as

$$\Delta t = 4.15 \times 10^6 \times (\nu_1^{-2} - \nu_2^{-2}) \times DM(ms)$$

- DM a measure of electron density
- Correct for the delay dedispersion

DM variations affecting ToAs

- LOFAR observations (120 190 MHz) of PSR J2145-0750
- ToAs follow DM variation very well
- Change in pulsar period (dP/dt) also show similar trend
- DM correction will help model the other pulsar parameters better
- And ultimately useful for PTAs to detect GWs

DM variations affecting ToAs

- LOFAR observations (120 190 MHz) of PSR J2145-0750
- ToAs follow DM variation very well
- Change in pulsar period (dP/dt) also show similar trend
- DM correction will help model the other pulsar parameters better
- And ultimately useful for PTAs to detect GWs

Lower frequency - better precision

- Since DM delay scales as v^{-2} lower frequency wide-band receivers improve precision
- Combining different telescope's data across frequencies improves it further (plot shows data from LOFAR (120 - 190 MHz) - uGMRT (300 - 500 MHz) - NRT (1250 - 1750 MHz)
- Not all pulsars are visible below ~200 MHz
 Importance of uGMRT bands

Different ways to measure DM

- Classically, Use 2-3 widely separated narrowband profiles
- Maximising the S/N Not accurate as profiles are complex.
- Narrowband timing DM and its variation

With wide-band receivers:

- Use of frequency resolved templates (Liu et al. 2014; Tiburzi et al. 2019)
 - o 2D templates
 - Improved accuracy
 - Takes care of intrinsic profile evolution
- Use of wide-band technique (Pennucci et al. 2019; Alam et al. 2021)
 - o 2D templates
 - PCAs to model the profile evolution
 - One ToA/band/observation reduces data volume for PTA analysis

DMCalc

- A Python
- Dependen
- What it do
 - Find/m
 - Reject
 - Fit for
- Products
 - DM tim
 - Analys
 - ToAs wconstra

Source: PSR J1909-3744; MJD: 59370.8375; Prefit Wrms: 7.48 μ s; Postfit Wrms: 4.66 μ s Median ToA Err: 2.44 μ s; DM: 10.390974 \pm 0.000031 pc cm $^{-3}$; Reduced χ^2 : 1.59

kit-learn, etc.

dent DM

Over to Pratik for the Hanus-on exercise...