Лекции по модальной логике

Лекция 10. Каноническая модель PDL

А. М. Миронов

Содержание

1	PDL-непротиворечивые и PDL-полные множества	1
2	Определение канонической модели PDL	2
3	Свойства канонической модели PDL	2

1 *PDL*-непротиворечивые и *PDL*-полные множества

Определения PDL-непротиворечивого и PDL-полного множества полностью совпадают с соответствующими определениями в мономодальном случае.

Подмножество U множества Fm формул PDL называется PDL—непротиворечивым, если для каждого конечного подмножества $\{A_1, \ldots, A_n\}$ множества U ($n \geq 0$) имеет место соотношение: $\neg (A_1 \& \ldots \& A_n) \notin PDL$ (если n = 0, то знакосочетание $A_1 \& \ldots \& A_n$ по определению совпадает с формулой \top).

Подмножество U множества Fm формул PDL называется PDL—полным, если

- 1. U является PDL-непротиворечивым,
- 2. для каждой формулы $A \in Fm$ либо $A \in U$, либо $\neg A \in U$.

Можно доказать, что совокупность всех формул, выводимых в PDL, является PDL-непротиворечивым множеством, и что каждое PDL-непротиворечивое множество содержится в некотором PDL-полном множестве (это доказывается так же, как соответствующий факт в мономодальном случае).

2 Определение канонической модели PDL

Канонической моделью *PDL* называется динамическая модель

$$\mathcal{M}_{PDL} \stackrel{\text{def}}{=} (W_{PDL}, \{R_{\alpha} \mid \alpha \in Pg\}, \varphi_{PDL}),$$

компоненты которой определяются следующим образом:

- 1. W_{PDL} есть совокупность всех PDL-полных множеств,
- 2. для каждого $\alpha \in Pg$

$$R_{\alpha} \stackrel{\text{def}}{=} \{(x,y) \in W^2_{PDL} \mid \forall A \in Fm([\alpha]A \in x \Rightarrow A \in y)\}$$

3. $\forall A \in Fm \quad \varphi_{PDL}(A) \stackrel{\text{def}}{=} \{x \in W_{PDL} \mid A \in x\}$ (отметим, что данное определение является аналогом утверждения теоремы о канонической модели в мономодальном случае)

3 Свойства канонической модели PDL

Теорема.

 \mathcal{M}_{PDL} является динамической моделью, и, кроме того, удовлетворяет следующему условию: $\forall \alpha \in Pg \quad (R_{\alpha})^* \subseteq R_{\alpha^*}.$

Для некоторых программ $\alpha \in Pg$ имеет место соотношение $(R_{\alpha})^* \neq R_{\alpha^*}$. Доказательство:

$arphi_{PDL}$ сохраняет булевские и модальные операции:

Сохраняемость булевских операций вытекает из соответствующих свойств PDL-полных множеств (которые доказываются так же как в мономодальном случае), а именно:

- 1. $\forall x \in W_{PDL} \quad \top \in x$, поэтому $\varphi_{PDL}(\top) = W$,
- 2. $\forall x \in W_{PDL} \quad \bot \notin x$, nontomy $\varphi_{PDL}(\bot) = \emptyset$,
- 3. $\forall x \in W_{PDL}, \forall A, B \in Fm$ $A \& B \in x \Leftrightarrow A \in x$ и $B \in x$, поэтому $\varphi_{PDL}(A \& B) = \varphi_{PDL}(A) \cap \varphi_{PDL}(B),$
- 4. и т.д.

Покажем, что φ_{PDL} сохраняет и модальные операции, т.е. $\forall \alpha \in Pg, \forall A \in Fm$ имеет место соотношение

$$\varphi_{PDL}([\alpha]A) = [\alpha](\varphi_{PDL}(A)).$$

Данное соотношение эквивалентно соотношению

 $x \in \varphi_{PDL}([\alpha]A) \Leftrightarrow R_{\alpha}(x) \subseteq (\varphi_{PDL}(A))$, которое, в свою очередь, эквивалентно соотношению $[\alpha]A \in x \Leftrightarrow \forall y(y \in R_{\alpha}(x) \Rightarrow A \in y).$

Импликация $[\alpha]A \in x \Rightarrow \forall y(y \in R_{\alpha}(x) \Rightarrow A \in y)$ непосредственно вытекает из определения отношения R_{α} .

Обратная импликация доказывается "от противного".

А именно, пусть соотношение $[\alpha]A \in x$ не имеет места. В этом случае множество $S\stackrel{\mathrm{def}}{=}\{B\mid [\alpha]B\in x\}\cup \{\neg A\}$ будет PDL-непротиворечивым (это доказывается так же как соответствующий факт в мономодальном случае), и поэтому существует PDL-полное множество y, содержащее S.

Нетрудно установить, что $y \in R_{\alpha}(x)$ и $A \notin y$.

 $rac{R_{lpha\circeta}=R_lpha\circ R_eta}{\Pi$ окажем, что $\forall x,y\in W_{PDL}$ имеет место эквиваленция

$$(x,y) \in R_{\alpha \circ \beta} \Leftrightarrow \exists z \in W_{PDL} : (x,z) \in R_{\alpha}, (z,y) \in R_{\beta}$$

т.е. эквивалентны следующие условия:

A: $\forall A \in Fm([\alpha \circ \beta]A \in x \Rightarrow A \in y)$

$$\begin{array}{ll} \mathbf{B:} \ \exists z \in W_{PDL}: \ \forall B \in Fm([\alpha]B \in x \Rightarrow B \in z) \\ \mathbf{m} \ \forall C \in Fm([\beta]C \in z \Rightarrow C \in y) \end{array}$$

Отметим, что ввиду схемы аксиом Comp соотношение $[\alpha \circ \beta]A \in x$ эквивалентно соотношению $[\alpha][\beta]A \in x$.

Доказательство $(A) \Rightarrow (B)$:

Отметим, что соотношение $\forall C \in Fm([\beta]C \in z \Rightarrow C \in y)$ эквивалентно соотношению $\forall C \in Fm(C \in y \Rightarrow \langle \beta \rangle C \in z)$.

Пусть символ U обозначает следующее множество формул PDL:

$$U \stackrel{\text{def}}{=} \{B \mid [\alpha]B \in x\} \cup \{\langle \beta \rangle C \mid C \in y\}.$$

Докажем, что множество *U* является *PDL*-непротиворечивым. Пусть множество U является PDL-противоречивым, т.е. в PDLвыводима формула

$$\neg (B_1 \& \ldots \& B_m \& \langle \beta \rangle C_1 \& \ldots \& \langle \beta \rangle C_n)$$

где $m,n\geq 0, \forall i=1,\ldots,m \ \ [lpha]B_i\in x, \forall j=1,\ldots,n \ \ C_j\in y.$ Отсюда следует, что в PDL выводима формула

$$(B_1 \& \ldots \& B_m) \rightarrow ([\beta](\neg C_1) \lor \ldots \lor [\beta](\neg C_n)).$$

Из выводимости в K формулы $(\Box p_1 \lor \ldots \lor \Box p_n) \to \Box (p_1 \lor \ldots \lor p_n)$ вытекает выводимость в РДС формулы

$$([\beta](\neg C_1) \vee \ldots \vee [\beta](\neg C_n)) \to [\beta]((\neg C_1) \vee \ldots \vee (\neg C_n)).$$

Применяя правило силлогизма, заключаем, что в PDL выводима формула

$$(B_1 \& \ldots \& B_m) \rightarrow [\beta]((\neg C_1) \lor \ldots \lor (\neg C_n)).$$

Применяя допустимое правило вывода

$$\frac{(A_1 \& \dots \& A_n) \to B}{([\alpha]A_1 \& \dots \& [\alpha]A_n) \to [\alpha]B}$$

к данной формуле, заключаем, что в PDL выводима формула

$$([\alpha]B_1 \& \ldots \& [\alpha]B_m) \to [\alpha][\beta]((\neg C_1) \lor \ldots \lor (\neg C_n)).$$

Следовательно, последняя формула принадлежит множеству x.

Ввиду того, что ($[\alpha]B_1 \& \dots \& [\alpha]B_m$) $\in x$ (так как по предположению $\forall i=1,\ldots,m \ [\alpha]B_i\in x$), заключаем, что $[\alpha][\beta]((\neg C_1) \vee \ldots \vee (\neg C_n)) \in x.$

Так как имеет место А, то из последнего соотношения вытекает соотношение $((\neg C_1) \lor \ldots \lor (\neg C_n)) \in y$, откуда ввиду PDL-полноты множества y следует, что $\exists y \in \{1,\ldots,n\}: \neg C_i \in y$. Данное соотношение противоречит соотношению $C_i \in y$.

Таким образом, множество *U* является *PDL*-непротиворечивым.

Как уже было отмечено выше, каждое PDL-непротиворечивое множество (в частности, множество U) содержится в некотором PDLполном множестве. В качестве искомого z можно взять произвольное PDL-полное множество, содержащее U.

Соотношения $\forall B \in Fm \ ([\alpha]B \in x \Rightarrow B \in z)$

и $\forall C \in Fm \ ([eta]C \in z \Rightarrow C \in y)$ вытекают из определения множества U и из того, что $U \subseteq z$.

Доказательство (B) \Rightarrow (A):

$$[\alpha][\beta]A \in x \Rightarrow [\beta]A \in z \Rightarrow A \in y.$$

 $rac{R_{lphaeeeta}=R_lpha\cup R_eta}{\Pi$ окажем, что $orall x,y\in W_{PDL}$ имеет место эквиваленция

$$(x,y) \in R_{\alpha \vee \beta} \Leftrightarrow (x,y) \in R_{\alpha}$$
, или $(x,y) \in R_{\beta}$

т.е. эквивалентны следующие условия:

A: $\forall A \in Fm([\alpha \vee \beta]A \in x \Rightarrow A \in y)$

B: $\forall A \in Fm([\alpha]A \in x \Rightarrow A \in y)$ или $\forall A \in Fm([\beta]A \in x \Rightarrow A \in y)$

Заметим, что из того, что x и y содержат формулу $[\alpha \lor \beta]A \leftrightarrow [\alpha]A \& [\beta]A$ (являющуюся частным случаем схемы аксиом Un), вытекает, что $[\alpha \lor \beta]A \in x \Leftrightarrow [\alpha]A \in x$ и $[\beta]A \in x$, а также $[\alpha \lor \beta]A \in y \Leftrightarrow [\alpha]A \in y \text{ in } [\beta]A \in y.$

Теперь докажем эквивалентность двух приведённых выше условий.

Доказательство $(A) \Rightarrow (B)$:

Пусть (A) имеет место, а (B) – нет, т.е. $\exists B \in Fm : [\alpha]B \in x, B \notin y$ и $\exists C \in Fm : [\beta]C \in x, C \not\in y.$

Обозначим символом A формулу $B \vee C$.

Нетрудно установить, что формула $(\Box p \lor \Box q) \to \Box (p \lor q)$ выводима в K (так как она истинна в каждой модели Крипке). Поэтому формулы $([\alpha]B \vee [\alpha]C) \rightarrow [\alpha](B \vee C)$ и $([\beta]B \vee [\beta]C) \rightarrow [\beta](B \vee C)$ выводимы в PDL, и, следовательно, принадлежат множеству x.

По предположению, $[\alpha]B \in x$ и $[\beta]C \in x$. Используя вышесказанное, заключаем, что имеют место соотношения $[\alpha](B \lor C) \in x$ и $[\beta](B \vee C) \in x.$

Таким образом, имеют место соотношения

- 1. $[\alpha \vee \beta](B \vee C) \in x$, так как $([\alpha](B \vee C) \& [\beta](B \vee C) \leftrightarrow [\alpha \vee \beta](B \vee C)) \in x$,
- 2. $(B \vee C) \not\in u$. так как $B \not\in y$ и $C \not\in y$.

Это противоречит (А).

Доказательство $(B) \Rightarrow (A)$:

Пусть (B) имеет место, a(A) – нет,

T.e. $\exists A \in Fm : [\alpha \vee \beta] A \in x, A \notin y$.

Как уже было отмечено выше, из $[\alpha \lor \beta]A \in x$ вытекает $[\alpha]A \in x$, откуда по предположению следует $A \in y$, что противоречит соотношению $A \notin y$.

 $rac{R_{A?}=\{(x,x)\mid x\in arphi_{PDL}(A)\}}{\Pi$ окажем, что $\forall x,y\in W_{PDL}$ имеет место эквиваленция

$$(x,y)\in R_{A?}\Leftrightarrow x=y$$
 in $x\in arphi_{PDL}(A)$

Левую часть в данной эквиваленции можно переписать следующим образом: $\forall B \in Fm([A?]B \in x \Rightarrow B \in y)$, или (учитывая аксиому Test) — $\forall B \in Fm((A \to B) \in x \Rightarrow B \in y).$

Правую часть в данной эквиваленции можно переписать (учитывая определение отображения φ_{PDL}) следующим образом: x = y и $A \in x$.

Таким образом, надо доказать, что эквивалентны следующие условия:

A:
$$\forall B \in Fm((A \rightarrow B) \in x \Rightarrow B \in y)$$

B:
$$x = y$$
 if $A \in x$

Доказательство $(A) \Rightarrow (B)$:

Для доказательства соотношения x=y достаточно доказать включение $x\subseteq y$ (так как ситуация, когда одновременно $x\subseteq y$ и $x\neq y$, невозможна ввиду того, что x и y-PDL-полные множества).

Если $B \in x$, то $(A \to B) \in x$ (так как x содержит тавтологию $B \to (A \to B)$). Согласно \mathbf{A} , из $(A \to B) \in x$ следует, что $B \in y$. Таким образом, $\forall B \in Fm(B \in x \Rightarrow B \in y)$, т.е. $x \subseteq y$.

Соотношение $A \in x$ обосновывается следующим образом. Если в $\mathbf A$ в качестве формулы B взять формулу A, то импликация в $\mathbf A$ примет вид $(A \to A) \in x \Rightarrow A \in y$. Посылка данной импликации истинна, т.к. формула $A \to A$ является тавтологией. Поэтому имеет место соотношение $A \in y$. Учитывая доказанное выше равенство x = y, получаем: $A \in x$.

Доказательство $(B) \Rightarrow (A)$:

Из
$$A \in x$$
 и $A \to B \in x$ следует, что $B \in x$.

$(R_{\alpha})^* \subseteq R_{\alpha^*}$:

Для доказательства включения $(R_{\alpha})^* (= Id_{W_{PDL}} \cup R_{\alpha} \cup (R_{\alpha})^2 \cup \ldots) \subseteq R_{\alpha^*}$ достаточно доказать, что

- 1. $Id_{W_{PDL}} \subseteq R_{\alpha^*}$
- 2. и $R_{\alpha} \circ R_{\alpha^*} \subseteq R_{\alpha^*}$.

Доказательство включения $Id_{W_{PDL}} \subseteq R_{\alpha^*}$:

Надо доказать, что $\forall x \in W_{PDL} \ (x, x) \in R_{\alpha^*}$, т.е. $\forall x \in W_{PDL}, \forall A \in Fm([\alpha^*]A \in x \Rightarrow A \in x)$.

Данное соотношение вытекает из того, что x содержит формулу $[\alpha^*]A \to (A \& [\alpha][\alpha^*]A)$ являющуюся частным случаем схемы аксиом Mix.

Доказательство включения $R_{\alpha}\circ R_{\alpha^*}\subseteq R_{\alpha^*}$:

Надо доказать, что из $(x,z)\in R_{\alpha}$ и $(z,y)\in R_{\alpha^*}$ следует, что $(x,y)\in R_{\alpha^*}$, т.е. из

- 1. $\forall A \in Fm([\alpha]A \in x \Rightarrow A \in z)$, и
- 2. $\forall B \in Fm([\alpha^*]B \in z \Rightarrow B \in y)$

следует, что $\forall C \in Fm([\alpha^*]C \in x \Rightarrow C \in y)$.

Если $[\alpha^*]C\in x$, то, учитывая аксиому Mix, заключаем, что $[\alpha][\alpha^*]C\in$

Согласно (1), из $[\alpha][\alpha^*]C \in x$ следует $[\alpha^*]C \in z$, откуда согласно (2) следует, что $C \in y$.

 $rac{orall \pi \in \Pi V - (R_\pi)^*
eq R_{\pi^*}}{\Pi ext{vcts } U ext{ есть следующее множество формул } PDL$:

$$U \stackrel{\text{def}}{=} \{ \langle \pi^* \rangle p, \neg p, [\pi] \neg p, [\pi^2] \neg p, \dots, [\pi^k] \neg p, \dots \}$$

(где $p \in PV$, $\pi \in \Pi V$, $\forall k > 1$ $\pi^k = \pi \circ \ldots \circ \pi$ (k pas)).

Покажем, что множество U является PDL-непротиворечивым.

 Π усть это не так, т.е. существует некоторое конечное подмножество $U' \subset U$, такое, что формула, являющаяся отрицанием конъюнкции формул из множества U' (обозначим данную формулу знакосочетанием $\neg(\&U')$) выводима в PDL.

Пусть N есть такое натуральное число, что $\forall n \geq N \pmod{\pi^n} \neg p \notin U'$ (такое N существует ввиду того, что множество U' конечно).

Определим тройку $(W, \{S_{\gamma} \mid \gamma \in \Pi V\}, \psi)$ следующим образом:

- 1. $W \stackrel{\text{def}}{=} \{0, 1, 2, \ldots\}$ (множество всех натуральных чисел),
- 2. $S_{\pi} \stackrel{\text{def}}{=} \{(k, k+1) \mid k > 0\}$: отношение перехода для всех остальных программных переменных произвольно,
- 3. $\psi(p) \stackrel{\text{def}}{=} \{N+1, N+2, \ldots\};$ значение отображения ψ на всех остальных пропозициональных переменных произвольно.

Как уже было отмечено выше, данную тройку можно доопределить до некоторой правильной динамической модели $(W, \{R_{\alpha} \mid \alpha \in Pg\}, \varphi)$.

Нетрудно доказать, что в точке 0 этой модели истинны все формулы из множества U', и, следовательно, формула $\neg (\&U')$ в точке 0 данной модели ложна.

Но если формула $\neg(\&U')$ выводима в PDL, то она истинна в каждой правильной динамической модели. Поэтому формула $\neg(\&U')$ истинна в точке 0 вышеуказанной модели, что невозможно.

Таким образом, множество *U* является *PDL*-непротиворечивым, и, следовательно, существует некоторое PDL-полное множество x, содержашее U.

Так как $\neg[\pi^*]\neg p (=\langle \pi^*\rangle p) \in U \subseteq x$ и $[\pi^*]\top \in x$ (так как эта формула является аксиомой нормальности), то $[\pi^*](\top \to \neg p) \not\in x$.

Действительно, если $[\pi^*](\top \to \neg p) \in x$, то (ввиду того, что $[\pi^*](\top \to \neg p) \to ([\pi^*] \top \to [\pi^*] \neg p) \in x$) заключаем, что $([\pi^*] \top \to [\pi^*] \neg p) \in x$, откуда (ввиду того, что $[\pi^*] \top \in x$) следует: $[\pi^*] \neg p \in x$, что противоречит соотношению $\neg [\pi^*] \neg p \in x$.

Из соотношения $[\pi^*](\top \to \neg p) \not\in x$ следует, что $\exists y \in R_{\pi^*}(x)$: $(\top \to \neg p) \not\in y$. (Это доказывается так же как импликация $\Box A \not\in x \Rightarrow \exists y \in R(x) : A \not\in y$ для канонической модели произвольной мономодальной логики.)

Из соотношения $(\top \to \neg p) \not\in y$ следует, что $\neg p \not\in y$ (так как если $\neg p \in y$, то, ввиду того, что y содержит тавтологию $\neg p \to (\top \to \neg p)$, получаем, что $(\top \to \neg p) \in y$).

Из $\neg p \not\in y$ следует, что $p \in y$.

Покажем, что $(x,y) \notin (R_{\pi})^*$, т.е. $\forall k \geq 0 \quad (x,y) \notin (R_{\pi})^k$.

Так как $\neg p \in U \subseteq x$ и $p \in y$, то $x \neq y$, т.е. $(x,y) \notin Id_{W_{PDL}} (= (R_{\pi})^0)$.

Если $\exists k \geq 1 : (x,y) \in (R_{\pi})^k \ (=R_{\pi^k})$, то, ввиду того, что $[\pi^k] \neg p \in U \subseteq x$, получаем соотношение $\neg p \in y$, которое противоречит установленному выше соотношению $p \in y$.

Таким образом,

- 1. $(x,y) \notin (R_{\pi})^*$,
- $2.\ (x,y)\in R_{\pi^*}$ (это следует из определения y),

и, следовательно, множества $(R_{\pi})^*$ и R_{π^*} не совпадают, что и требовалось доказать.