Lineare Algebra SS2018

Dozent: Prof. Dr. Arno Fehm

14. Juni 2018

In halts verzeichn is

1	Endomorphismen	1										
II	Skalarprodukte	2										
	1 Quadriken	3										
Ш	Dualität											
	1 Das Lemma von Zorn	8										
	2 Der Dualraum	11										
IV	Moduln	13										
An	hang	15										
A	Listen	15										
	A.1 Liste der Theoreme											
	A.2 Liste der benannten Sätze	16										
Ind	ex	16										
Ind	ex	17										

Kapitel I

Endomorphismen

Kapitel II

Skalar produkte

1. Quadriken

Sei $n \in \mathbb{N}$.

Definition 1.1 (Quadrik)

Eine Quadrik ist eine Teilmenge von \mathbb{R}^n mit

$$Q = \{ x \in \mathbb{R}^n \mid x^t A x + 2b^t x + c = 0 \}$$

mit $A \in \operatorname{Mat}_n(\mathbb{R})$ symmetrisch, $b^t \in \mathbb{R}^n$ und $c \in \mathbb{R}$.

▶ Bemerkung 1.2

- $Q = \{x \in \mathbb{R}^n \mid \sum_{i,j=1}^n a_{ij} x_i y_j + 2 \sum_{i=1}^n b_i x_i + c = 0\}$ also Q ist die Nullstellenmenge eines quadratischen Polynoms in $x_1, ..., x_n$
- Q bestimmt A, b, c nicht eindeutig, da $Q(A, b, c) = Q(\lambda A, \lambda b, \lambda c)$
- Man kann A, b, c so normieren, dass c = 0 oder c = 1

▶ Bemerkung 1.3

Seien A, b, c wie in Definition 1.1, so schreiben wir

$$\tilde{A} = \begin{pmatrix} A & b \\ b^t & c \end{pmatrix}$$

$$\tilde{x} = \begin{pmatrix} x \\ 1 \end{pmatrix}$$

Dann ist $Q = \{x \in \mathbb{R}^n \mid \tilde{x}^t \tilde{A} \tilde{x} = 0\}$. Wir schreiben (A, b) für

$$\begin{pmatrix} A & b \end{pmatrix} \in \operatorname{Mat}_{n,n+1}(\mathbb{R})$$

Es gilt $\operatorname{rk}(A) \leq \operatorname{rk}(\tilde{A})$.

▶ Bemerkung 1.4 (Wiederholung)

Seien V, W K-Vektorräume. $f: V \to W$ heißt affin, wenn $\exists g \in \operatorname{Hom}_K(V, W)$ mit $f(v) = g(v) + w_0$ $\forall v \in V$. Ist f affin und bijektiv, so ist f^{-1} affin, d.h. $\operatorname{Aff}_K(V) = \{f: V \to V \mid f \text{ affin und bijektiv}\}$. Im Fall von $V = \mathbb{R}^n$, $K = \mathbb{R}$ ist

$$\operatorname{Aff}_{\mathbb{R}}(\mathbb{R}^n) = \{ f = \tau_z \circ f_T \mid T \in \operatorname{GL}_n(\mathbb{R}), z \in \mathbb{R}^n \}$$

mit $f_T(x) = Tx$ und $\tau_z(x) = x + z$.

Lemma 1.5

Ist $Q \subseteq \mathbb{R}^n$ eine Quadrik, so ist f(Q) eine Quadrik, für $f \in \mathrm{Aff}_{\mathbb{R}}(\mathbb{R}^n)$.

Beweis. $f = \tau_z \circ f_T$ mit $T \in GL_n(\mathbb{R})$ und $z \in \mathbb{R}^n$. Schreibe $S = T^{-1} \in GL_n(\mathbb{R})$, $\tilde{S} = \begin{pmatrix} S & 0 \\ 0 & 1 \end{pmatrix}$. Es gilt $\tilde{S}\tilde{x} = \widetilde{S}x$.

$$f_T(Q) = \{ Tx \in \mathbb{R}^n \mid \tilde{x}^t \tilde{A} \tilde{x} = 0 \}$$

$$= \{ y \in \mathbb{R}^n \mid (\tilde{S} \tilde{y})^t \tilde{A} \tilde{S} \tilde{y} = 0 \}$$

$$= \{ y \in \mathbb{R}^n \mid \tilde{y}^t \qquad \tilde{\underline{S}}^t \tilde{A} \tilde{\underline{S}} \qquad \tilde{y} = 0 \}$$

$$\begin{pmatrix} S^t A S & S^t b \\ b^t S & c \end{pmatrix}$$

Jetzt für τ_z . Sei $U_z = \begin{pmatrix} \mathbb{1} & z \\ 0 & 1 \end{pmatrix}$. $U_z \tilde{x} = \tilde{\tau}_z(x)$. Man folgert analog, dass

$$\tau_z(Q) = \{ y \in \mathbb{R}^n \mid \tilde{y}^t \qquad \underbrace{U_z^t \tilde{A} U_z}_{z^t A + b} \qquad \tilde{y} = 0 \}$$

$$\begin{pmatrix} A & Az + b \\ z^t A + b & z^t Az + b^t z + z^t b + c \end{pmatrix}$$

Definition 1.6 (Typen von Quadriken)

Sei Q gegeben durch (A, b, c) wie in Definition 1.1. Q heißt

- vom kegeligen Typ, wenn $\operatorname{rk}(A) = \operatorname{rk}(A,b) = \operatorname{rk}(\tilde{A})$
- eine Mittelpunktsquadrik, wenn $\mathrm{rk}(A) = \mathrm{rk}(A,b) < \mathrm{rk}(\tilde{A})$
- vom parabolischen Typ, wenn rk(A) < rk(A, b)

Lemma 1.7

Ist $Q \subseteq \mathbb{R}^n$ eine Quadrik, $f \in \mathrm{Aff}_{\mathbb{R}}(\mathbb{R}^n)$. Von dem Typ, von dem Q ist, ist auch f(Q).

Beweis. $f = f_{S^{-1}}, S \in GL_n(\mathbb{R})$. Da \tilde{S} invertierbar ist, ist $\operatorname{rk}(\tilde{A}) = \operatorname{rk}(\tilde{S}^t \tilde{A} \tilde{S})$, analog auch $\operatorname{rk}(S^t A S) = \operatorname{rk}(A)$. $(S^t A S, S^t b) = S^t(A, b) \begin{pmatrix} S & 0 \\ 0 & 1 \end{pmatrix} \Rightarrow \operatorname{rk}(S^t A S, S^t b) = \operatorname{rk}(A, b)$. Für $f = \tau_z$ analog.

Definition 1.8 (Isometrie)

Eine Isometrie des \mathbb{R}^n ist $f \in \mathrm{Aff}_{\mathbb{R}}(\mathbb{R}^n)$ mit

$$f(x) = Ax + b$$

mit $b \in \mathbb{R}^n$ und $A \in \mathrm{GL}_n(\mathbb{R})$ ist orthogonal.

▶ Bemerkung 1.9

 $f: \mathbb{R}^n \to \mathbb{R}^n$ ist eine Isometrie genau dann, wenn ||f(x) - f(y)|| = ||x - y|| für alle $x, y \in \mathbb{R}^n$.

Theorem 1.10 (Klassifikation bis auf Isometrien)

Sei Q eine Quadrik. Es gibt eine Isometrie $f \in \mathrm{Aff}_{\mathbb{R}}(\mathbb{R}^n)$ mit f(Q), die eine der folgenden Formen annimmt:

$$f(Q) = \left\{ x \in \mathbb{R}^n \mid \sum_{i=1}^k \left(\frac{x_i}{a_i}\right)^2 - \sum_{i=k+1}^n \left(\frac{x_i}{a_i}\right)^2 = 0 \right\} \quad k \ge r - k$$

$$f(Q) = \left\{ x \in \mathbb{R}^n \mid \sum_{i=1}^k \left(\frac{x_i}{a_i}\right)^2 - \sum_{i=k+1}^n \left(\frac{x_i}{a_i}\right)^2 = 1 \right\}$$

•
$$f(Q) = \left\{ x \in \mathbb{R}^n \mid \sum_{i=1}^k \left(\frac{x_i}{a_i} \right)^2 - \sum_{i=k+1}^n \left(\frac{x_i}{a_i} \right)^2 - 2x_{r+1} = 0 \right\} \quad k \ge r - k, r < n$$

mit $a_1, ..., a_r \in \mathbb{R}_{>0}$ und $0 \le k \le r \le n$

Beweis.

Folgerung 1.11

Sei $Q \subseteq \mathbb{R}^n$ eine Quadrik. Es gibt eine invertierbare affine Abbildung $f \in \mathrm{Aff}_{\mathbb{R}}(\mathbb{R}^n)$ für die f(Q) eine der folgenden 3 Formen annimmt:

•
$$f(Q) = \left\{ x \in \mathbb{R}^n \mid \sum_{i=1}^k x_i^2 - \sum_{i=k+1}^r x_i^2 = 0 \right\}$$
 $k \ge r - k$

•
$$f(Q) = \left\{ x \in \mathbb{R}^n \mid \sum_{i=1}^k x_i^2 - \sum_{i=k+1}^r x_i^2 = 1 \right\}$$

•
$$f(Q) = \left\{ x \in \mathbb{R}^n \mid \sum_{i=1}^k x_i^2 - \sum_{i=k+1}^r x_i^2 - 2x_{r+1} = 0 \right\}$$
 $k \ge r - k, r < n$

■ Beispiel 1.12

 $Q\subseteq\mathbb{R}^2$

•
$$-k = 2, r = 2 : \left\{ x \in \mathbb{R}^2 \mid \left(\frac{x_1}{a_1}\right)^2 + \left(\frac{x_2}{a_2}\right)^2 = 0 \right\}$$

$$k = 1, r = 2 : \left\{ x \in \mathbb{R}^2 \mid \left(\frac{x_1}{a_1}\right)^2 - \left(\frac{x_2}{a_2}\right)^2 = 0 \right\}$$

•
$$-k = 2, r = 2 : \left\{ x \in \mathbb{R}^2 \mid \left(\frac{x_1}{a_1} \right)^2 + \left(\frac{x_2}{a_2} \right)^2 = 1 \right\}$$

$$-k = 1, r = 2 : \left\{ x \in \mathbb{R}^2 \mid \left(\frac{x_1}{a_1} \right)^2 - \left(\frac{x_2}{a_2} \right)^2 = 1 \right\}$$

$$-k = 1, r = 1 : \left\{ x \in \mathbb{R}^2 \mid \left(\frac{x_1}{a_1} \right)^2 - \left(\frac{x_2}{a_2} \right)^2 = 1 \right\} = \emptyset$$

$$-k = 0, r = 2 : \left\{ x \in \mathbb{R}^2 \mid -\left(\frac{x_1}{a_1} \right)^2 - \left(\frac{x_2}{a_2} \right)^2 = 1 \right\} = \emptyset$$

$$-k = 0, r = 1 : \left\{ x \in \mathbb{R}^2 \mid \left(\frac{x_1}{a_1} \right)^2 - \left(\frac{x_2}{a_2} \right)^2 = 1 \right\} = \emptyset$$

$$-k = 1, r = 1 : \left\{ x \in \mathbb{R}^2 \mid \left(\frac{x_1}{a_1} \right)^2 - 2x_2 = 0 \right\}$$

▶ Bemerkung 1.13

- Ist $Q \subseteq \mathbb{R}^2$ eine Quadrik, $U \subseteq V$ affiner Untervektorraum, so ist $Q \cap U$ eine Quadrik in dem Sinne, dass $\exists f$ Isometrie : $f(U) = \mathbb{R}^k$ und $f(Q \cap U)$ ist eine Quadrik.
- Ebene Quadriken sind im wesentlichen Kegelschnitte, $Q' = \{x \in \mathbb{R}^3 \mid x_1^2 + x_2^2 = x_3^2\}$, außer 2c und 2d in Beispiel 1.12

Folgerung 1.14

Sei Q eine Quadrik, dann existiert eine lineare affine Abbildung f mit: f(Q) ist vom Typ 1, 2 oder 3.

▶ Bemerkung 1.15

Die Situation wird deutlich übersichtlicher, wenn man den affinen Raum \mathbb{R}^n durch Hinzunahme von Punkten im Unendlichen zum projektiven Raum $\mathbb{P}^n(\mathbb{R})$ vervollstädigt und den Abschluss der Quadriken darin betrachtet. Es stellt sich dann heraus, dass vom projektiven Standpunkt aus die meisten ebenen Quadriken ähnlich aussehen. (Siehe Vorlesung *Elementare Algebraische Geometrie*)

Kapitel III

$Dualit \ddot{a}t$

1. Das Lemma von Zorn

Sei K ein Körper und U, V, W seien K-Vektorräume. Zudem sei X eine Menge.

Definition 1.1 (Relation)

Eine Relation ist eine Teilmenge $R \subseteq X \times X$. Man schreibt $(x, x') \in R$ als xRx'. R heißt

- reflexiv, wenn $\forall x \in X$: xRx
- transitiv, wenn $\forall x, y, z \in X$: xRy und $yRz \Rightarrow xRz$
- symmetrisch, wenn $\forall x, y \in X : xRy \Rightarrow yRx$
- antisymmetrisch, wenn $\forall x, y \in X : xRy \text{ und } yRx \Rightarrow y = x$
- total, wenn $\forall x, y \in X : (x, y) \notin R \Rightarrow (y, x) \in R$

Definition 1.2 (Äquivalenzrelation)

Eine Äquivalenzrelation ist eine reflexive, transitive und symmetrische Relation.

Definition 1.3 (Halbordnung)

Eine <u>Halbordnung</u> ist eine reflexiv, transitive und antisymmetrische Relation. Eine totale Halbordnung heißt Totalordnung oder lineare Ordnung

■ Beispiel 1.4

- Die natürliche Ordnung auf \mathbb{R} , \mathbb{Q} , \mathbb{Z} und \mathbb{N} .
- Teilbarkeit ist eine Halbordnung auf \mathbb{N} , aber Teilbarkeit ist keine Halbordnung auf \mathbb{Z} , da 1|-1 und -1|1, aber $1 \neq -1$!
- $\mathcal{P}(X)$ ist die Potenzmenge. " \subseteq " ist eine Halbordnung auf \mathcal{P} , aber für |X| > 1 ist " \subseteq " keine Totalordnung.
- Sei (X, \leq) eine Halbordnung, sei $Y \subseteq X$, so ist $(Y, \subseteq |_Y)$ eine Halbordnung.

Definition 1.5 (Kette)

Sei (X, \leq) eine Halbordnung, $Y \subseteq X$. Y heißt Kette, wenn $(Y, \leq |_Y)$ total ist.

 $x \in Y$ heißt ein minimales Element von Y, wenn $\forall x' \in Y : x < x'$.

 $x \in Y$ heißt untere Schranke von Y, wenn $\forall y \in Y : y \ge x$.

 $x \in Y$ heißt kleinstes Element von Y,wenn xuntere Schranke von Yist.

Analog: maximales Element, obere Schranke, größtes Element.

 $Y = \{2^n \mid n \in \mathbb{N}\}$ ist eine Kette

▶ Bemerkung 1.6

- Hat Y ein kleinstes Element, so ist dies eindeutig bestimmt. Ein kleinstes Element ist minimal.
- Jede endliche Halbordnung hat minimale Elemente. Jede endliche Totalordnung hat ein kleinstes Element. Analog für maximale Elemente und größtes Element.

■ Beispiel 1.7

 (\mathbb{N}, \leq) hat als kleinstes Element die 1, aber kein größtes Element oder maximale Elemente.

■ Beispiel 1.8

 $V = \mathbb{R}^3$, \mathcal{X} die Menge der Untervektorräume des \mathbb{R}^3 . (\mathcal{X}, \leq) ist eine Halbordnung auf $Y \subseteq X$ mit $Y = \{U \in \mathcal{X} \mid \dim_{\mathbb{R}}(U) \leq 2\}$.

- Y hat ein kleinstes Element: $\{0\}$.
- ullet Es gibt unendlich viele maximale Elemente in Y, nämlich die Untervektorräume von V, die die Dimension 2 haben. Es gibt also kein größtes Element.
- \bullet V ist die obere Schranke von Y.

Theorem 1.9 (Das Lemma von Zorn)

Sei (X, \leq) eine Halbordnung, die nicht leer ist. Wenn jede Kette eine obere Schranke hat, dann hat X ein maximales Element.

Beweis. Dieses Theorem ist äquivalent zum Auswahlaxiom. \odot . Wir wollen zumindest die Hinrichtung zeigen, d.h. aus dem Lemma von Zorn folgt das Auswahlaxiom.

Folgerung 1.10 (Auswahlaxiom)

Zu jeder Familie (x_i) , nicht leer, gibt es eine Auswahlfunktion, das heißt eine Abbildung:

$$f: I \to \bigcup_{i \in I} X_i \text{ mit } f(i) \in X_i \quad \forall i$$

Beweis. Sei \mathcal{F} die Menge der Paare (J,f) bestehend aus einer Teilmenge $J\subseteq I$ und einer Abbildung $f:I\to\bigcup_{i\in I}X_i$ mit $f(i)\in X_i$ $\forall i\in J$. Definieren wir $(J,f)\le (J',f')\iff J\subseteq J'$ und $f'|_J=f$, so ist \le eine Halbordnung auf \mathcal{F} . Da $(\emptyset,\emptyset)\in\mathcal{F}$ ist \mathcal{F} nichtleer. Ist $\mathcal{G}\subseteq\mathcal{F}$ eine nichtleere Kette, so wird auf $J':=\bigcup_{(J,f)\in\mathcal{G}}J$ durch f'(j)=f(j) falls $(J,f)\in\mathcal{G}$ und $j\in J$ eine wohldefinierte Abbildung $f':J\to\bigcup_{i\in J}X_i$ mit $f'(i)\in X_i$ $\forall i\in J'$ gegeben. Das Paar (J',f') ist eine obere Schranke der Kette \mathcal{G} . Nach dem Lemma von Zorn besitzt \mathcal{F} ein maximales Element (J,f). Wir behaupten, dass J=I. Andernfalls nehmen wir ein $i'\in I\setminus J$ und ein $x'\in X_{i'}$ und definieren $J':=U\cup\{i'\}$ und $f':J'\to\bigcup_{i\in J'}X_i,\,j\mapsto\begin{cases}f(j)&j\in J\\x'&j=i'\end{cases}$. Dann ist $(J',f')\in\mathcal{F}$ und (J,f)<(J',f') im Widerspruch zur Maximalität von (J,f).

Folgerung 1.11 (Basisergänzungssatz)

Sei V ein K-Vektorraum. Jede linear unabhängige Teilmenge $X_0 \subseteq V$ ist in einer Basis von V enthalten.

Beweis. Sei $\mathcal{X} = \{X \subseteq V \mid X \text{ ist linear unabhängig, } X_0 \subseteq X\}$ geordnet durch Inklusion. Dann ist $X_0 \in \mathcal{X}$, also $\mathcal{X} \neq \emptyset$. Ist \mathcal{Y} eine nichtleere Kette in \mathcal{X} , so ist auch $Y = \bigcup \mathcal{Y} \subseteq V$ linear unabhängig. Sind $y_1, ..., y_n \in Y$ paarweise verschieden, so gibt es $Y_1, ..., Y_n \in \mathcal{Y}$ mit $y_i \in Y_i$ für i = 1, ..., n. Da \mathcal{Y} total geordnet ist, besitzt $\{Y_1, ..., Y_n\}$ ein größtes Element, o.E. Y_1 . Also sind $y_1, ..., y_n \in Y_1$ und somit linear unabhängig. Folglich ist $Y_1 \in \mathcal{X}$ eine obere Schranke von \mathcal{Y} . Nach dem Lemma von Zorn besitzt \mathcal{X} ein maximales Element X. Das heißt, X ist eine maximal linear unabhängige Teilmenge von V, nach LAAG1 II.3.5 also eine Basis von V.

2. Der Dualraum

Sei V ein K-Vektorraum.

Definition 2.1 (Dualraum)

Der Dualraum zu V ist der K-Vektorraum

$$V^* = \operatorname{Hom}_K(V, K) = \{ \varphi : V \to K \text{ linear} \}$$

Die Elemente von V^* heißen Linearformen auf V.

■ Beispiel 2.2

Ist $V = K^n = \operatorname{Mat}_{n \times 1}(K)$, so wird $V^* = \operatorname{Hom}_K(V, K)$ durch $\operatorname{Mat}_{1 \times n}(K) \cong K^n$. Wir können also die Elemente von V als Spaltenvektoren und die Linearformen auf V als Zeilenvektoren auffassen.

Lemma 2.3

Ist $B(x_1)_{i\in I}$ eine Basis von V, so gibt es zu jedem $i\in I$ genau $x_i^*\in V^*$ mit $x_i^*(x_j)=\delta_{ij} \quad \forall j\in I$.

Beweis. Siehe LAAG1 III.5.1, angewandt auf die Familie $(y_j)_{j\in I}, y_j\delta_{i,j}$ in W=K.

Satz 2.4

Ist $B = (x_1)_{i \in I}$ eine Basis von V, so ist $B^* = (x_i^*)_{i \in I}$ linear unabhängig. Ist I endlich, so ist B^* eine Basis von V^* .

Beweis. Ist $\varphi = \sum_{i \in I} \lambda_i x_i^*$, $\lambda_i \in K$, fast alle gleich 0, so ist $\varphi(x_j) = \sum_{i \in I} \lambda_j x_i^*(x_j) = \lambda_j$ für jedes $j \in I$. Ist also $\varphi = 0$, so ist $\lambda_j = \varphi(x_j) = 0 \quad \forall j \in I$, B^* ist somit linear unabhängig.

Ist zudem I endlich und $\psi \in V^*$, so ist $\psi = \psi' = \sum_{i \in I} \psi(x_i) x_i^*$, denn $\psi'(x_j) = \sum_{i \in I} \psi(x_i) x_i^* (x_j) = \psi(x_i) \quad \forall j \in I$, und somit ist B^* ein Erzeugendensystem von V^* .

Definition 2.5 (duale Basis)

Ist $B = (x_i)_{i \in I}$ eine endliche Basis von V, so nennt man $B^* = (x_i^*)_{i \in I}$ die zu B duale Basis.

Folgerung 2.6

Zu jeder Basis B von V gibt es einen eindeutig bestimmtem Monomorphismus

$$f_V \to V^* \text{ mit } f(B) = B^*$$

Ist $\dim_K(V) < \infty$, so ist dieser ein Isomorphismus.

Folgerung 2.7

Zu jedem = $0 \neq x \in V$ gibt es eine Linearform $\varphi \in V$ mit $\varphi(x) = 1$.

Beweis. Ergänze $x_1 = x$ zu einer Basis $(x_i)_{i \in I}$ von V (Folgerung 1.11) und $\varphi = x_1^*$.

■ Beispiel 2.8

Ist $V = K^n$ mit Standardbasis $\mathcal{E} = (e_1, ..., e_n)$, so können wir V^* mit dem Vektorraum der Zeilenvektoren identifizieren, und dann ist

$$e_i^* = e_i^t$$

Definition 2.9 (Bidualraum)

Der Bidualraum zu V ist der K-Vektorraum

$$V^{**} = (V^*)^* = \text{Hom}_K(V^*, K)$$

Satz 2.10

Die kanonische Abbildung

$$\iota: \begin{cases} V \to V^{**} \\ x \to \iota_x \end{cases} \text{ wobei } \iota_x(\varphi) = \varphi(x)$$

ist ein Monomorphismus. Ist $\dim_K(V)<\infty,$ so ist ι ein Isomorphismus.

Kapitel IV

Moduln

Anhang A: Listen

A.1. Liste der Theoreme

Theorem 1.10: Klassifikation bis auf Isometrien		 		•					٠	•		•	5
Theorem 1.9: Das Lemma von Zorn													ç

A.2. Liste der benannten Sätze

\mathbf{Index}

Äquivalenzrelation, 8	lineare Ordnung, 8
Auswahlfunktion, 10	Linearformen, 11
duale Basis, 11 Dualraum, 11 Halbordnung, 8 Isometrie, 4	projektiven Raum, 7 Quadrik, 3 kegeligen Typ, 4 Mittelpunktsquadrik, 4 parabolischen Typ, 4
Kette, 8 größtes Element, 8 kleinstes Element, 8 maximales Element, 8 minimales Element, 8 obere Schranke, 8	Relation, 8 antisymmetrisch, 8 reflexiv, 8 symmetrisch, 8 total, 8 transitiv, 8
untere Schranke 8	Totalordning 8