

Reinventing DSL with Copper Bonding

ATIS Technology Conference
Telecom 05
October 26, 2005

Reinventing DSL: Higher Speeds

- Competition
 - Cable
 - 3G Wireless

- Migration
 - From 1.5 Mbps to 15 Mbps or more
- Standards
 - Need cost-effective, standard solutions

Bonding Defined

- Inverse Multiplexing
 - Payload Bonding
 - Combining the payloads of 2 or more DSL links into a single "fat pipe"
 - Many Standards available
 - MLPPP (RFC 1990) relies on underlying HDLC
 - IMA Inverse Multiplexing for ATM
 - T1.427, G.998
 - .01/.1: ATM Cell Bonding
 - .02/.2: Ethernet Transport (64/65 TC)
 - .03/.3: Time Division Inverse Multiplexing (TDIM)
 - IEEE 802.3ah Ethernet bonding with SHDSL/VDSL

What Bonding with What DSL?

www.adtran.com

What Bonding with What DSL?

In practice, these mappings are the most common

Beyond Standards

- Multiple Input Multiple Output (MIMO)
 - Can be applied mostly independent of payload bonding method
 - Rates can be boosted through
 - In-Domain Crosstalk Cancellation
 - Out-of-Domain Crosstalk Compensation
 - Pair-diverse Coding
 - Out of domain gains can vary widely
 - Most gain requires large (8-12 pairs) group size
 - Depends on # and type of other system and noise

Panelists

- Jürgen Lison, Alcatel
 - Bonding and ADSL2+
- Rouben Toumani, Ikanos
 - Bonding and VDSL2
- Gary Tennyson, BellSouth
 - Bonding Deployment Considerations

Topics

- Why bond?
 - Capture new customers with extended reach
 - Address business needs with symmetrical services
 - Offer triple play services
- Shannon's Law and market realities
 - Bonded ADSL2+ fills the gaps
- Bonding challenges and solutions
- Summary

How some people bond lines

Key features:

- Poor scalability
- High fixed investment costs
- Safety concerns
- And not very flexible

Why Bond ADSL2+?

- At any REACH Double RATE (DS, US)
- Generally Available and shipping TODAY
- Stable, standard technology
- Chip synergies with legacy ADSL
- Greater range of marketable bandwidths than single pair VDSL/VDSL2

Expanding the customer (and revenue) base for DSL

Extending Reach

- Bonded ADSL2+ doubles data rates at any given reach
- Customers previously unable to qualify for DSL – now qualify

Symmetrical Services

- Double upstream bandwidth
- T1 replacement opportunity
- Target SMB customers
- Competitive positioning over cable

Delivering the Triple Play

How much bandwidth is needed at the home?

Depends on the services offered

- Video
 - High bandwidth and high QOS
 - HD and SD
 - Multiple STBs, DVRs, and PIPs
- Voice
 - Low bandwidth but high QOS
- Data
 - High bandwidth but bursty
 - Some QoS
 - Supply-side product: "If you build it, they will come."

IPTV and interactivity

IPTV drives interactive services

- Multiple Picture-in-picture streams
- Online gaming
- Video on Demand

Services drive more bandwidth

- Multiple HD streams
- Quick response video games

Competition drives more bandwidth

 Cable is and will continue to differentiate on "perceived" data bandwidth

The market requires an access network transformation

Single Pair ADSL or ADSL2+ won't deliver the Triple Play

- Better data rates are possible
- Basic video can be delivered, but HDTV and any cable competition hurts marketability
- DLC loop lengths are \$\frac{\mathbb{g}}{20}\$ not IPTV-enabled with ADSL2+ 20

VDSL2 is one solution

- Enables complete triple play over copper
- Simple approach:
 - One pair
 - Easy management
- New technology
 - Economics of scale
 - Higher impact from interference

Bonded ADSL2+ transforms the copper access plant

- Provides the widest range of options for Triple Play
- Synergies with existing ADSL
 - Chipsets
 - Power profile
- Complexities
 - Multiple pairs not available everywhere
 - Managing data across two pairs
 - B/OSS issues to be resolved

Execution presents challenges...that have solutions!

Challenges

 Finding additional copper pair between subscriber and DSLAM

Most homes have two pair for legacy POTS requirements

Solutions

 System level bonding eliminates DSLAM rewiring: use the next pair, regardless of position

- New "Bonding-ready" CPE required
- OSS systems not currently supporting bonding

 IPTV: New CPE will be required regardless ERDSL: New customers need CPE

- OSS is already designed to support two lines per customers
- Element management tools enable efficient bonding management within current operations practices and systems

Integrated bonding with service provider's NMS/OSS systems

- Operations procedures are the <u>SAME</u> as currently employed
 - TL1 upstream interface for flow through provisioning, performance monitoring, and alarm surveillance
 - Tools to examine equipment inventory and customer status
 - Easy to use GUI for troubleshooting, and maintenance purposes
- Simplicity of system-level bonding
 - OSS does not have to worry about "which two lines to pair"
 - "Any line" to "any line" capability
 - Integration into existing element management

Summary

Bonding Copper Pairs

- Enables triple play services over copper and node/curb distances
- Provides means to expand residential DSL customer base
- Allows competitive SMB service offerings

Operational challenges have clear solutions

All of this is available - TODAY

BROADEN YOUR LIFE

www.alcatel.com

Reinventing DSL: Delivering 25Mbps & Beyond Over Existing Copper Pairs

Rouben Toumani, PhD. Ikanos Communications

Overview

- The copper access network is evolving driven by new applications and services
- » DSL technologies have evolved to meet the need
 - ADSL -> ADSL2+ -> VDSL -> VDSL2
 - VDSL2 has emerged as a universal DSL technology to serve multiple deployment options in the access network
 - From Dial-up to Fiber-Fast Broadband Performance
 - From FTTP to Exchange-Based distances
- » Promising new technologies on the horizon
 - Bonding of two or more pairs of copper
 - Great performance enhancement with existing technologies
 - Applies to multiple physical layers (ADSL to VDSL2)
 - Dynamic Spectrum Management (DSM)
 - Noise cancellation techniques (MIMO)
 - Dynamic Noise Management

Fiber/Copper Deployment Scenarios

Ikanos Confidential

Telco Access Evolution

100M/100M 25M/5M

25M/2M

8M/800K

56K/28K

30 MHz

VDSL, VDSL2 **Broadband**

- Interactive Broadband
- Triple-Play + 2.2 MHz

Gen 2 (ADSL2+)

Broadband

- Streaming audio and video
- Enhanced peer-peer sharing

1.1 MHz

Gen 1 (ADSL) **Broadband**

- Enhanced web access
- Streaming audio

Basic web access

4 kHz

Narrowband

Dialup

• Email

1995 2000 2005

Interactive Broadband: The Next Wave

Online games

12 Mbps/channel HDTV Interactive Features, Personalized Services

Wideband VolP

Fiber Fast[™] Broadband

Web Access,
Remote
Access
of
Home PC

4x-10x Faster

4 Mbps bi-directional

Video Conferencing

Enhanced Video + Audio, Video Surveillance

Multi-media Streaming video and audio

Peer to Peer File Sharing

Video Blogging, Video Upload, Digital Photo Upload

VDSL2: The Universal DSL Technology

- » Cost-effective fiber bandwidth over copper
 - Capability to deliver 100 Mbps symmetric services
 - Supports triple-play
 - Supports interactive services (enhanced upstream)
 - Designed for integration with IP packet based networks
- » Built on solid, proven DMT technology
 - 100 Million lines and counting!
 - Seamless multi-mode (ADSL/ADSL2/ADSL2+/VDSL/VDSL2)
- » Key technology enhancements
 - Wider spectrum utilization up to 30 MHz
 - Trellis Coded Modulation (TCM)
 - Deployment-optimized implementations: Profiles
 - PSD shaping for co-existence with the deployed services
 - Optional U0 band expanded to 276 kHz for long reach

Technology Enhancements Bonded VDSL2

- » VDSL2 Copper Pair Bonding
 - Standards (ITU-T G.998 / ATIS T1.427 series) compliant
 - Packet (Ethernet): Seamless integration into IP based networks
 - Also ATM for legacy networks and TDIM for DS3 transport
 - Data aggregation protocol above the Physical Layer
 - Offers greatest flexibility / optimized implementations
- » Market Drivers for Bonded VDSL2
 - Ensure ubiquitous service offering / geographic footprint
 - Commercial MTU's, Residential MDU's
 - Business: High reliability, guaranteed symmetric rates
 - Avoids copper ownership / building access issues
 - Single Family Residential
 - Consumer: Offer the highest broadband rates available
 - Perfect for deep fiber / PON network architectures

Bonding 2 pairs of VDSL2

Technology Enhancements: DSM (Dynamic Spectrum Management)

- » Four Levels of DSM
 - Level 0: Nothing "hogs" the available wire line spectrum
 - In use today: Spectrum Management Rules (T1.417)
 - Systems shall not cause each other "significant degradation"
 - Level 1: Politeness = Near transmitter "speaks softly"
 - Transmits only the power needed for service offering
 - Especially useful for "near-far" problem
 - Level 2: Spectrum Balancing
 - Adaptively determines PSDMASK
 - Shorter loop uses higher frequencies with less penalty
 - Level 3: Vectoring = Intelligent Service Provider Network
 - Active management of both CO and CPE modems
 - Serious number crunching gains serious performance

Technology Enhancements: MIMO (Multiple Input Multiple Output)

- » Technology used in wireless networks
- » Now being introduced for copper bonded systems
 - Intra-network transport (Cell site backhaul, T1/T3 gap)
 - 12+ pairs bonded in end-to-end system, vector managed
- » The ultimate Level 3 DSM
 - Vectoring = true mitigation of NEXT and FEXT crosstalk
 - MIMO NEXT mitigation: US is easier
 - Co-located receivers seeking common enemy exploits the alien crosstalk correlation across lines
 - Useful to create greater rate symmetry (better US)
 - DS more complex:
 - Must use transmitter pre-compensation
 - Pre-comp is based on data of varying accuracy

Summary

- » Drivers of copper access network evolution include:
 - Triple Play / HDTV delivery
 - Peer-to-peer applications requiring greater upstream
- » DSL technologies have evolved to meet the need
 - Bonding provides additional coverage
 - DSM & MIMO: active noise mitigation is the next step
- » VDSL2:
 - VDSL2 has arrived as the universal DSL technology
 - Ready to implement future technology enhancements

>> Building a Competitive Broadband Network

- New distribution areas Fiber To The Curb (FTTC)
- Base of existing distribution areas –
 Fiber To The Node (FTTN)
- Both drive fiber deeper into the loop network

>> Fiber To The Curb

- Telephony and DSL service is supported, not an overlay
- Fiber placed throughout a serving area as it is developed
- Optical Network Units (ONU) provide for conversion from an optical to an electrical interface
 - Maximum Distance from ONU to a subscriber's residence/business is 500 feet
 - Short drop allows us to take advantage of the very high data rates offered by VDSL

>> Fiber To The Node

- New platforms will support the existing base of DSL lines
 - Large existing base of remote DSLAM's could create a complex spectrum management problem in an overlay network
 - Multi-mode ports to support existing DSL
- Initial focus on ADSL2plus
- Planning to use VDSL2 as we move forward
- Bonding

>> What is Bonding?

- Provides for summing the capacity of two or more DSL lines
 - Involves multiple physical-layer transceivers
 - One data stream 'seen' by the user
- Provides for greater data rates and/or operation on longer loops
- Needed with ADSL2plus for data rates greater than about 12 – 18 Mbps in a multipair environment
- Not unique to ADSL2plus

>> Why Choose Bonded DSL?

- Decision requires insight into several areas:
 - DSL Rate/Reach
 - Distribution of loop lengths
 - Availability of vacant pairs
- What is the targeted maximum data rate?
- What is the targeted coverage, i.e., what percent of loops should be capable of supporting the targeted data rate?

>> DSL Reach Depends on the Targeted Data Rate

- Need to consider different disturber types
 - Repeatered T1, for example
 - Self-FEXT not typically seen as a limiting factor at lower data rate and frequencies; more impact at higher data rates and frequencies
 - Existing DSL transferred to new platform common launch level
- Bridge Taps
- Gauge coarse gauge may not provide the improvement that you would expect

>> Distribution of Loop Lengths

>> Loop Reach Impacts Costs

- Shorter loop reach => More nodes
 - Per site costs
 - Cabinets
 - Power
 - Interconnection
 - Easement costs
 - Are interconnection points available?
 - Existing DLC RT's power, pad, and interconnection are available
 - Existing FDI's interconnection is available
 - Re-sectionalized plant
- Bonding provides tradeoff between pair availability and the number of nodes

>> Planning Considerations

- Unequal data rates
 - Two DSL's cannot simultaneously be experiencing the worst-case crosstalk
 - Bonding will support unequal data rates to take advantage of this
- Are vacant pairs available in the serving terminals?
- Two lines are needed from the DSLAM to the CPE modem
 - New drop will often be needed (buried/aerial)
 - New Inside Wire may be needed
 - Truck roll

>> Operational Considerations

- System-wide bonding vs. card-level bonding
 - System-wide bonding allows bonding of a new line to an existing line without a transfer
 - Card-level bonding can require a transfer
- The second line may not have an underlying POTS line
 - Loop testing without a telephone number ?
 - Sealing Current ?
- Bonding-capable CPE is required

