Formulas and Tables by Mario F. Triola Copyright 2015 Pearson Education, Inc.

Table A-4 Chi-Square (χ^2) Distribution

Area to the Right of the Critical Value										
Degrees of Freedom	0.995	0.99	0.975	0.95	0.90	0.10	0.05	0.025	0.01	0.005
1			0.001	0.004	0.016	2.706	3.841	5.024	6.635	7.879
2	0.010	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210	10.597
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.345	12.838
4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11,143	13.277	14.860
5	0.412	0.554	0.831	1.145	1.610	9.236	11.071	12.833	15.086	16.750
6	0.676	0.872	1.237	1.635	2.204	10.645	12.592	14.449	16.812	18.548
7	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18.475	20.278
8	1.344	1.646	2.180	2.733	3.490	13.362	15.507	17.535	20.090	21.955
9	1.735	2.088	2.700	3.325	4.168	14.684	16.919	19.023	21.666	23.589
10	2.156	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209	25.188
11	2.603	3.053	3.816	4.575	5.578	17.275	19.675	21.920	24.725	26.757
12	3.074	3.571	4.404	5.226	6.304	18.549	21.026	23.337	26.217	28.299
13	3.565	4.107	5.009	5.892	7.042	19.812	22.362	24.736	27.688	29.819
14	4.075	4.660	5.629	6.571	7.790	21.064	23.685	26.119	29.141	31.319
15	4.601	5.229	6.262	7.261	8.547	22.307	24.996	27.488	30.578	32.801
16 -	5.142	5.812	. 6.908	7.962	9.312	23.542	26.296	28.845	32.000	34.267
17	5.697	6.408	7.564	8.672	10.085	24.769	27.587	30.191	33.409	35.718
18	6.265	7.015	8.231	9.390	10.865	25.989	28.869	31.526	34.805	37.156
19	6.844	7.633	8.907	10.117	11.651	27.204	30.144	32.852	36.191	38.582
20	7.434	8.260	9.591	10.851	12.443	28.412	31,410	34.170	37.566	39.997
21 .	8.034	8.897	10.283	11.591	13.240	29.615	32.671	35.479	38.932	41.401
22	8.643	9:542	10.982	12.338	14.042	30.813	33.924	36.781	40.289	42.796
23	9.260	10.196	11.689	13.091	14.848	32.007	35.172	38.076	41.638	44.181
24	9.886	10.856	12.401	13.848	15.659	33.196	36.415	39.364	42.980	45.559
25	10.520	11.524	13.120	14.611	16.473	34.382	37.652	40.646	44.314	46.928
26	11.160	12.198	13.844	15.379	17.292	35.563	38.885	41.923	45.642	48.290
27	11.808	12.879	14.573	16.151	18.114	36.741	40.113	43.194	46.963	49.645
28	12.461	13.565	15.308	16.928	18.939	37.916	41.337	44.461	48.278	50.993
29	13.121	14.257	16.047	17.708	19.768	39.087	42.557	45.722	49.588	52.336
30	13.787	14.954	16.791	18.493	20.599	40.256	43.773	46.979	50.892	53.672
40	20.707	22.164	24.433	26.509	29.051	51.805	55.758	59.342	63.691	66.766
50	27.991	29.707	32.357	34.764	37.689	63,167	67.505	71.420	76.154	79.490
60	35.534	37.485	40.482	43.188	46.459	74.397	79.082	83.298	88.379	91.952
70	43.275	45.442	48.758	51.739	55.329	. 85.527	90.531	95.023	100.425	104.215
80	51.172	53.540	57.153	60.391	64.278	96.578	101,879	106.629	112.329	116.321
90	59.196	61.754	65.647	69.126	73.291	107.565	113.145	118,136	124.116	128.299
100	67.328	70.065	74.222	77.929 ·	82.358	118.498	124.342	129.561	135.807	140.169

Source: From Donald B. Owen, Handbook of Statistical Tables.

Degrees of Freedom

<i>n</i> 1	Confidence Interval or Hypothesis Test with a standard deviation or variance
k - 1	Goodness-of-Fit with k categories
, ,, ,	Contingency Table with r rows and c columns

Table A-3 t Distribution: Critical t Values

	0.005	0.01	Area in One Tail 0.025	0.05	0.10	
Degrees of Freedom	0.01	0.02	Area in Two Tails 0.05	0.10	0.20	
1	63.657	31.821	12.706	6.314	3.078	
2	9.925	6.965	4,303	2.920	1.886	
3	5.841	4.541	3.182	2.353	1.638	
4	4.604	3.747	2.776	2.132	1.533	
5	4.032	3.365	2.571	2.015	1.476	
6	3.707	3.143	2.447	1.943	1.440	
7	3.499	2.998	2.365	1.895	1.415	
8	3.355	2.896	2.306	1.860	1.397	
9	3.250	2.821	2.262	1.833	1.383	
10	3,169	2.764	2.228	1.812	1.372	
11	3.106	2.718	2.201	1.796	1.363	
12	3.055	2.681	2.179	1.782	1.356	
13 ·	3.012	2.650	2.160	1.771	1.350	
14	2.977	2.624	2.145	1.761	1.345	
15	2.947	2.602	2.131	1.753	1.341	
16	2.921	2.583	2.120	1.746	1.337	
17	2.898	2.567	2.110	1.740	1.333	
18	2.878	2.552	2.101	1.734	1.330	
19	2.861	2.539	2.093	1.729	1.328	
20	2.845	2.528	2.086	1.725	1.325	
21	2.831	2.518	2.080	1.721	1.323	
22	2.819	2.508	2.074	1.717	1.321	
23	2.807	2.500	2.069	1.714	1.319	
24	2.797	2.492	2.064	1.711	1.318	
25	2.787	2.485	2.060	1.708	1.316	
26	2.779	2.479	2.056	1.706	1.315	
27	2.771	2.473	2.052	1.703	1.314	
28	2.763	2.467	2.048	1.701	1.313	
29	2.756	2.462 2.457	2.045	1.699	1.311 1.310	
30 31	2.750 2.744	2.453	2.042 2.040	1.697 1.696	1.309	
32	2.744	2.449	2.037	1.694	1.309	
33	2.733	2.445	2.035	1.692	1.308	
34	2.728	2.441	2.032	1.691	1.307	
35	2.724	2.438	2.030	1.690	1.306	
36	2.719	2.434	2.028	1.688	1.306	
37	2.715	2.431	2.026	1.687	1.305	
38	2,712	2,429	2.024	1.686	1.304	
39	2.708	2.426	2.023	1.685	1.304	
40	2.704	2,423	2.021	1.684	1.303	
45	2.690	2.412	2.014	1.679	1.301	
50	2.678	2.403	2.009	1.676	1.299	
60	2.660	2.390	2.000	1.671	1.296	
70	2.648	2.381	1.994	1.667	1.294	
80	2.639	2.374	1.990	1.664	1.292	
90	2.632	2.368	1.987	1.662	1.291	
100	2.626	2.364	1.984	1.660	1.290	
200	2,601	2.345	1.972	1.653	1.286	
300 .	2.592	2.339	1.968	1.650	1.284	
400	2.588	2.336	1.966	1.649	1.284	
500	2.586	2.334	1.965	1.648	1.283	
1000	2.581	2.330	1.962	1.646	1.282	
2000	2.578	2.328	1.961	1.646	1.282	
Large	2.576	2.326	1.960	1.645	1.282	

Formulas and Tables by Mario F. Triola Copyright 2015 Pearson Education, Inc.

Ch. 3: Descriptive Statistics

$$\begin{split} \overline{x} &= \frac{\sum x}{n} \quad \text{Mean} \\ \overline{x} &= \frac{\sum (f \cdot x)}{\sum f} \quad \text{Mean (frequency table)} \\ s &= \sqrt{\frac{\sum (x - \overline{x})^2}{n - 1}} \quad \text{Standard deviation} \\ s &= \sqrt{\frac{n(\sum x^2) - (\sum x)^2}{n(n - 1)}} \quad \text{Standard deviation (shortcut)} \\ s &= \sqrt{\frac{n\left[\sum (f \cdot x^2)\right] - \left[\sum (f \cdot x)\right]^2}{n(n - 1)}} \quad \text{Standard deviation (frequency table)} \end{split}$$

Ch. 4: Probability

$$P(A \text{ or } B) = P(A) + P(B) \quad \text{if } A, \quad \text{Bre mutually exclusive}$$

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

$$\text{if } A, B \text{ are not mutually exclusive}$$

$$P(A \text{ and } B) = P(A) \cdot P(B) \quad \text{if } A, B \text{ are independent}$$

$$P(A \text{ and } B) = P(A) \cdot P(B \mid A) \quad \text{if } A, B \text{ are dependent}$$

$$P(A) = 1 - P(A) \quad \text{Rule of complements}$$

$${}_{n}P_{r} = \frac{n!}{(n-r)!} \quad \text{Permutations (no elements alike)}$$

$$\frac{n!}{n_{1}! \; n_{2}! \; \cdots \; n_{k}!} \quad \text{Permutations } (n_{1} \text{ alike, } \dots)$$

$${}_{n}C_{r} = \frac{n!}{(n-r)! \; r!} \quad \text{Combinations}$$

Ch. 5: Probability Distributions

$$\mu = \sum [x \cdot P(x)] \quad \text{Mean (prob. dist.)}$$

$$\sigma = \sqrt{\sum [x^2 \cdot P(x)] - \mu^2} \quad \text{Standard deviation (prob. dist.)}$$

$$P(x) = \frac{n!}{(n-x)! \, x!} \cdot p^x \cdot q^{n-x} \quad \text{Binomial probability}$$

$$\mu = n \cdot p \qquad \qquad \text{Mean (binomial)}$$

$$\sigma^2 = n \cdot p \cdot q \qquad \qquad \text{Variance (binomial)}$$

$$\sigma = \sqrt{n \cdot p \cdot q} \qquad \qquad \text{Standard deviation (binomial)}$$

Ch. 6: Normal Distribution

$$z=rac{x-\mu}{\sigma}$$
 or $rac{x-ar{x}}{s}$ Standard score $\mu_{ar{x}}=\mu$ Central limit theorem $\sigma_{ar{x}}=rac{\sigma}{\sqrt{n}}$ Central limit theorem (Standard error)

Ch. 7: Confidence Intervals (one population)

$$\hat{p} - E
$$\text{where } E = z_{\alpha/2} \sqrt{\frac{\hat{p}\hat{q}}{n}}$$

$$\overline{x} - E < \mu < \overline{x} + E \quad \text{Mean}$$

$$\text{where } E = t_{\alpha/2} \frac{s}{\sqrt{n}} \quad (\sigma \text{ unknown})$$

$$\text{or } E = z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \quad (\sigma \text{ known})$$

$$\frac{(n-1)s^2}{\chi_R^2} < \sigma^2 < \frac{(n-1)s^2}{\chi_L^2} \quad \text{Variance}$$$$

Ch. 7: Sample Size Determination

$$n = \frac{\left[z_{d/2}\right]^2 0.25}{E^2} \quad \text{Proportion}$$

$$n = \frac{\left[z_{d/2}\right]^2 \hat{p} \hat{q}}{E^2} \quad \text{Proportion } (\hat{p} \text{ and } \hat{q} \text{ are known})$$

$$n = \left[\frac{z_{d/2} \sigma}{E}\right]^2 \quad \text{Mean}$$

Ch. 9: Confidence Intervals (two populations)

$$(\hat{p}_1 - \hat{p}_2) - E < (p_1 - p_2) < (\hat{p}_1 - \hat{p}_2) + E$$
 where $E = z_{\alpha/2} \sqrt{\frac{\hat{p}_1 \hat{q}_1}{n_1} + \frac{\hat{p}_2 \hat{q}_2}{n_2}}$

$$(\bar{x}_1 - \bar{x}_2) - E < (\mu_1 - \mu_2) < (\bar{x}_1 - \bar{x}_2) + E$$
 (Independent)
where $E = t_{\alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$ (df = smaller of $n_1 - 1, n_2 - 1$)

(σ_1 and σ_2 unknown and not assumed equal) –

$$E = t_{\alpha/2} \sqrt{\frac{s_p^2}{n_1} + \frac{s_p^2}{n_2}} \quad (df = n_1 + n_2 - 2) \blacktriangleleft$$

$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{(n_1 - 1) + (n_2 - 1)}$$

(σ_1 and σ_2 unknown but assumed equal) -

$$E = z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

$$(\sigma_1, \sigma_2 \text{ known})$$

$$\overline{d}-E<\mu_d<\overline{d}+E$$
 (Matched pairs) where $E=t_{\alpha/2}\frac{s_d}{\sqrt{n}}$ (df = $n-1$)

Formulas and Tables by Mario F. Triola Copyright 2015 Pearson Education, Inc.

Ch. 8: Test Statistics (one population)

$$z = \frac{\hat{p} - p}{\sqrt{\frac{pq}{n}}} \quad \text{Proportion—one population}$$

$$t = \frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}}} \quad \text{Mean—one population } (\sigma \text{ unknown})$$

$$z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}} \quad \text{Mean—one population } (\sigma \text{ known})$$

$$\chi^2 = \frac{(n-1)s^2}{\sigma^2} \quad \text{Standard deviation or variance—one population}$$

Ch. 9: Test Statistics (two populations)

$$z = \frac{(\hat{p}_1 - \hat{p}_2) - (p_1 - p_2)}{\sqrt{\frac{\bar{p} \ \bar{q}}{n_1} + \frac{\bar{p} \ \bar{q}}{n_2}}} \quad \text{Two proportions}$$

$$t = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \quad \text{df = smaller of} \quad n_1 - 1, \quad 2^{n-1}$$

Two means—independent; σ_1 and σ_2 unknown, and not — assumed equal.

$$t = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_p^2}{n_1} + \frac{s_p^2}{n_2}}} \quad (df = n_1 + n_2 - 2)$$

$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

-Two means—independent; σ_1 and σ_2 unknown, but assumed equal.

$$z = \frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \quad \text{Two means—independent;}$$

$$\sigma_1, \sigma_2 \text{ known.}$$

$$t = \frac{\overline{d} - \mu_d}{\frac{s_d}{\sqrt{n}}}$$
 Two means—matched pairs (df = $n-1$)

Ch. 10: Linear Correlation/Regression

Correlation
$$r = \frac{n\sum xy - (\sum x)(\sum y)}{\sqrt{n(\sum x^2) - (\sum x)^2}\sqrt{n(\sum y^2) - (\sum y)^2}}$$

or $r = \frac{\sum (z_x z_y)}{n-1}$ where $z_x = z$ score for x $z_y = z$ score for y

$$b_1 = \frac{n\sum xy - (\sum x)(\sum y)}{n(\sum x^2) - (\sum x)^2}$$
or $b_1 = r^{\frac{5y}{2}}$

y-Intercept:

$$b_0 = \bar{y} - b_1 \bar{x} \text{ or } b_0 = \frac{(\sum y)(\sum x^2) - (\sum x)(\sum xy)}{n(\sum x^2) - (\sum x)^2}$$

$$\hat{y} = b_0 + b_1 x \text{ Estimated eq. of regression line}$$

$$r^2 = \frac{\text{explained variation}}{\text{total variation}}$$

$$r_s = 1 - \frac{6\Sigma d^2}{n(n^2 - 1)}$$
 Rank correlation

$$\left(\text{critical values for } n > 30: \frac{\pm z}{\sqrt{n-1}}\right)$$

Ch. 11: Goodness-of-Fit and Contingency Tables

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$
 Goodness-of-fit (df = k - 1)

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$
 Contingency table [df = (r - 1)(c - 1)]
where $E = \frac{\text{(row total)(column total)}}{\text{(grand total)}}$

$$\chi^2 = \frac{(|b-c|-1)^2}{b+c}$$
 McNemar's test for matched pairs (df = 1)

Ch. 11: One-Way Analysis of Variance

Procedure for testing H_0 : $\mu_1 = \mu_2 = \mu_3 = \cdots$

- 1. Use software or calculator to obtain results.
- 2. Identify the P-value.
- 3. Form conclusion:

If *P*-value $\leq \alpha$, reject the null hypothesis of equal means.

If P-value $> \alpha$, fail to reject the null hypothesis of equal means.