PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-305959

(43)Date of publication of application: 01.11.1994

(51)Int.CI.

A61K 31/19 A61K 31/12 A61K 31/215 A61K 31/44

(21)Application number: 04-242051

(71)Applicant: IMUNO JAPAN:KK

(22)Date of filing:

10 09 1992

(72)Inventor: HOSOKAWA TOMOYOSHI

(54) GLYCATION INHIBITOR

(57)Abstract:

PURPOSE: To obtain a new medicine, having inhibiting action on the glycation and useful as a therapeutic agent for diabetic neurosis, diabetic nephropathy and diabetic retinopathy. CONSTITUTION: The inhibitor of the glycation is ascochlorin of the formula {R is H, (CnH2n)-R' [(n) is 1-5; R' is H or COOR" (R" is H or 1-3C alkyl] or COR" (R" is pyridyl, 1-3C substituted amino, etc.)} and its derivative, e.g. 4-O-methylascochlorin. The compound of the formula is obtained as a product of a mold Ascochyta visiae.

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2. **** shows the word which can not be translated.

3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] General formula (I)

[Formula 1]

the inside R of [formula — a hydrogen atom and –(Cn H2n)–R' (n — the integer of 1–5 —) R' — hydrogen atom or basis–COOR" and here — R " — a hydrogen atom or the alkyl group of carbon numbers 1–3 — meaning — or –COR — "' (R — the amino group by which "' was replaced by the pyridyl machine and carbon numbers 1–3 —) a nucleus — a halogen — an atom — having — a phenoxy — an alkyl group — or — a nucleus — a carbon number — one — three — an alkoxy group — or — a carbon number — one — three — alkoxy one — a carbonyl group — having — a phenyl group — meaning —] — expressing — having — ASUKO — a chlorin — and — the — a derivative — one sort or a two or more sort active principle — carrying out — The GURIKEISHON inhibitor to contain.

[Claim 2] The GURIKEISHON inhibitor according to claim 1 for prevention of the disease chosen from the group of diabetes nature neurosis, diabetic nephropathy, and diabetic retinopathy, and medical treatment.

[Translation done.]

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2. **** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention] [0001]

[Industrial Application] this invention relates to the medical supplies which contain the ASUKO chlorin expressed with a general formula (I), and its derivative as one sort or a two or more sort active principle. furthermore, the diabetes nature complication by checking GURIKEISHON in detail — it is especially related with the medical treatment agent of diabetes nature neurosis, diabetic nephropathy, and diabetic retinopathy [0002]

[Description of the Prior Art] It is divided roughly into macro ANJIOPACHII whose symptoms are shown in high rate, micro ANJIOPACHII characteristic of diabetes, i.e., diabetic nephropathy, diabetic retinopathy, and diabetes nature neurosis although a diabetic complication is not characteristic of diabetes. If, as for diabetes, even a complication does not happen, it cannot express on the fearful blood sugar level with which it will say even if not sick, and it tends to change the diabetic degree of serious illness. Sakamoto throws a question, saying "Whether prevention of an onset in control of blood sugar of diabetic complication is possible", and supposes "A hyperglycemia will be considered to continue playing a serious role by no processes to the progress in the miserable last image from the onset of a complication" (Nobuo Sakamoto, "diabetes", 33, 633, 1990). Now, the cure to diabetic complication is the most important technical problem of diabetes treatment, and development of prevention and the therapeutic drug of diabetic complication is expected. [0003] About the onset of diabetic complication, on the basis of the metabolic error based on a hyperglycemia, various factors are considered to involve intricately and are made important [polyol metabolism and GURIKEISHON] about micro ANJIOPACHII especially among those factors. About polyol metabolism, the aldose reductase is activated under a hyperglycemia, a sorbitol is accumulated to an in-house, it is supposed that the role important for the onset of a diabetic neuropathy is played, and the EPARU stat is known as an aldose reductase inhibitor. A still effective treatment agent has come [however,] to be developed about a **GURIKEISHON** inhibitor.

[0004] The saccharification protein with which, as for GURIKEISHON, the Maillard reaction received a word crack and GURIKEISHON is considered to be one of the causes of kidney basement—membrane thickening, and it is thought that the accumulation to the nucleus in the lens of saccharification protein and a coat becomes the important factor of the diabetic cataract. GURIKEISHON makes a Schiff base by the ligation reaction like a non—enzyme of protein and reducing sugar, and it carries out the Amadori rearrangement of it, and it makes a keto amine. The reaction so far is considered to be the initial stage of a Maillard reaction. This AMADORI compound repeats dehydration and a rearrangement reaction slowly, and shifts to a Maillard—reaction later stage. FUROSHIN is known by one of the acidolysis objects of an initial—stage compound. It is reported that in—house contents, such as the sciatic nerve of an experimental diabetes model animal, a kidney, a tendon, and a lens, are increasing FUROSHIN remarkably with the diabetic (Voglt Diabetes, 31, 1123 and 1982, Shogo Masuda, "diabetes", 34, 576, 1991).

[0005]

[Problem(s) to be Solved by the Invention] Although it was thought as prevention and the

therapeutic drug of diabetic complication that a GURIKEISHON inhibitor was useful as mentioned above, the GURIKEISHON inhibitor effective until now was not developed. [0006] this invention checks GURIKEISHON, mitigates accumulation of in-house saccharification protein, and are diabetic complication and the thing which it is specifically going to utilize for prevention and treatment of the diabetes sexual nerosis, diabetic nephropathy, and diabetic retinopathy.

[Means for Solving the Problem] this invention relates to the GURIKEISHON inhibitor of the ASUKO chlorin derivative expressed with a general formula (I). [0008]

the inside R of [formula — a hydrogen atom and —(Cn H2n)—R' (n — the integer of 1–5 —) R' — hydrogen atom or basis—COOR" and here — R " — a hydrogen atom or the alkyl group of carbon numbers 1–3 — meaning — Or —COR"(R" means phenyl group which has alkoxy—group [of carbon numbers 1–3], or alkoxy carbonyl group of carbon numbers 1–3 in pyridyl machine, amino—group [which was replaced by carbon numbers 1–3], phenoxy alkyl group [which has a halogen atom in a nucleus], or nucleus)].

[0009] An ASUKO chlorin is Mold Ascochyta by this invention persons. It is the antibiotic found out from the product of visiae (refer to the patent No. 585252 specification). About the derivative, the blood sugar fall operation is indicated by the process row at JP,3-6138,B at the JP,1-41624,B row. this invention person is in about the GURIKEISHON inhibitory action excellent in the compound which shows in the above-mentioned general formula (I) as a result of examining the derivative in an ASUKO chlorin row to diabetic complication in the inhibitory action of GURIKEISHON which is involving relatively [state / hyperglycemia] independently deeply. vivo and in It discovered in the vitro experiment.

[0010] The compounds shown by the general formula (I) are specifically the following compounds.

[0011] [Formula 3]

[0007]

	illiaia oj	
	OHC OH	OR (1)
	R =	
1	-н	アスコクロリン
2	- С Н ₃	4-0-メチルアスコクロリン
3	-сн₂ соон	4 − 0 − カルボキシメチルアスコクロリン (AS−6)
4	-СН ₂ СООСН ₃	4 - 0 - メトキシカルポニルオキシアスコクロリン
5	- сн -сн ₃	4-0-(2-エトキシカルボニルオキシ) エチルアスコクロリン

In order to examine the effect over acidolysis product FUROSHIN generation of the GURIKEISHON reactant keto amine of the derivative in these ASUKO chlorin rows of this invention While adding the derivative to the reaction mixture of a cow serum albumin and a glucose as an invitro experiment at an ASUKO chlorin row, cultivating for a long period of time and examining the effect over FUROSHIN generation in The effect of AS-6 to medication and FUROSHIN generation [in / each organization / for an ASUKO chlorin derivative 4-0-carboxymethyl ASUKO chlorin (AS-6)] was examined for one month to the streptozotocin-induced-diabete rat as a vivo experiment. Consequently, AS-6 are in. vivo, in The vitro experiment suppressed FUROSHIN generation and GURIKEISHON reaction inhibitory action was accepted in AS-6. Thereby, prevention of AS-6 to diabetic complication, for example, the diabetes sexual nerosis, diabetic nephropathy, and diabetic retinopathy and a curative effect are expected.

[0012] Moreover, as a result of carrying out internal use of the 4-0-methyl ASUKO chlorin to the diabetic who showed the symptoms of diabetic complication for 12 weeks, diabetic nephropathy and the diabetes sexual nerosis have been improved remarkably. [0013] In the case of 5-100mg per one adult day, and internal use, in the case of 30-3000mg and a suppository, the medicinal dosage of this invention can attain the purpose in 50-1000mg, when it is injection although it changes with the kind of symptoms, symptoms, etc. for example. Although the compound of this invention may be used independently, it is desirable to manufacture medicine as dosage forms which usually neutralize with alkali, dissolve in water, or are mixed with suspension, an excipient, or other adjuvants, and are suitable for parenteral administration and internal use. As a desirable tablet, the injection, powder material, a granule, a tablet, a sugar-coated pill, a round tablet, a capsule, a suppository, etc. are mentioned, for example. As an excipient or an adjuvant, these tablets use two or more sorts of such mixture etc. for a lactose, a sucrose, various starch, grape sugar, a cellulose, a methyl cellulose, a carboxymethyl cellulose, a magnesium stearate, a lauryl sulfate, talc, vegetable oil, and a lecithin row, and are manufactured by the conventional method. [0014]

[Example] After the fixed quantity of FUROSHIN added 0.1ml 40% trichloroacetic acid to the 0.4ml blood serum and carried out centrifugal separation to it, it ****(ed) precipitate twice by 2ml 8% trichloroacetic acid, and performed 95 degrees C and 30-hour hydrolysis. After removing an extract, the organization homogenized in the chloroform-methanol mixture, 6-N hydrochloric acid was added, and made it react for 30 hours, and poured 10-20micro of 95 degrees C of the reaction mixture I into the high performance chromatography. The high performance chromatography used TOSOH HLC-803D, and the column used ODS-80T (TOSOH). When 7mM phosphoric acid was used as the solvent and having been measured by rate-of-flow 1 ml/min and 280nm, FUROSHIN was detected in 2.7 minutes after pouring, and the amount of FUROSHIN was displayed in the area (old ******, diabetes, 28, 1119, 1985). [0015] Although the example of this invention is shown below, this invention is not limited to these examples at all.

[0016] [Example 1] The glucose of 400mM(s) was added to the 25mg [/ml] cow serum albumin, and FUROSHIN which added at a rate of 1.2mg/ml in the ASUKO chlorin row, cultivated the derivative for 37 degrees C and ten days in it, and generated it in it was measured by the high performance chromatography. The result was shown in Table 1. [0017]

[Table 1]

<u> </u>	
	フロシン
対 照 群	401523±16192
アスコクロリン	285606±19159
	-28.9% **
4-0-メチルアスコクロリン	303766±19210
	-24.3% **
4-0-ニコチノイルアスコクロリン	328446±16233
	-18.2% *
4-0-カルボキシメチルアスコクロリン	276427±17352
(AS-6)	-31. 2% **
平均値±標準誤差 * p<0.05	** p<0.01

As shown in Table 1, as for the result, each of the derivative suppressed generation of FUROSHIN intentionally in the ASUKO chlorin row.

[0018] [Example 2] Adding the glucose of 400mM(s) to the 25mg [/ml] cow serum albumin, it dissolved in DMSO, 1mg /added ml, and AS-6 measured FUROSHIN cultivated and generated by the high performance chromatography for 37 degrees C and 5 or 10 days. The result was shown in Table 2.

[0019] [Table 2]

	フロシン
5日目	
無添加群	387325± 7586
A S - 6	292779±14159
	-24.4% **
10日日	
無添加群	549598 ± 28869
A S $-$ 6	435365±38178
	-20.8% **
平均值土標準誤差 *	* p<0.01

As shown in Table 2, as for the result, AS-6 suppressed generation of FUROSHIN intentionally.

[0020] [Example 3] Adding the glucose of 400mM(s) to the 25mg [/ml] cow serum albumin, it dissolved in DMSO and AS-6 measured FUROSHIN cultivated and generated at 0.1, 0.4 or 1.6mg [/ml] addition, and 37 degrees C by the high performance chromatography. The result was shown in Table 3.

[0021] [Table 3]

Liable 3	<u>'</u>			
				フロシン
7日目				
	無添加群			225688± 9402
	A S - 6	1.	$6\mathrm{mg/ml}$	170368±14937
				-24.5% **
		0.	4	176715± 8412

平均值土標準誤差 ** p<0.01

The result suppressed FUROSHIN generation intentionally by AS-6 and the concentration of 0.4mg/ml or more on the 14th on the 7th, as shown in Table 3.

[0022] [Example 4] Oui, 55mg (STZ) /of streptozotocins was administered intravenously to the star rat kg, and 0.1% mixed feed of AS-6 was simultaneously given for one month, it bred, and FUROSHIN was measured during the organization in the row in blood. The result was shown in Table 4.

[0023]

[Table 4]

中フル	中フルクトサミン	自中フロッン	座骨神経フロシン	腎臓フロシン
) <u>m</u> 21	Lmole/8	面積/町	面積/嘔	面積/鳴
18.	18, 1±5, 3	113272±3014	14843 ± 615	12492 ± 730
8 3	3±4.9	88611 ± 2526	11394±578	8652 ± 959
16.	* %0	-21.8% **	-23. 2% **	-30.7% **
31.	6±2. 1	42086 ± 2111	2205±185	2702±259
39.	39, 7% **	-62.8% **	-85, 1% **	-78.4% **

	日日	自中グルコース	43
		ng / d 1	
STZ-対照群	604.	8±11.5	73
STZ-AS-6	492.	6±35.3	-
	-18.	* * %9	ŀ
正常一的照群	119.	4 ± 6.6	-
	-80.3%	3% **	1
平均值土標準誤差	*	p<0.01	

Although the blood sugar level of a STZ medication control group rose by 5.1 times compared with the normal control group as the result was shown in Table 4, the blood sugar level fell 19% by AS-6 medication, and although the fructosamine value rose 66%, it fell 16% by AS-6 medication. Although the FUROSHIN value in blood of a STZ medication control group rose by 2.7 times compared with the normal control group, it fell 22% by AS-6 medication. Among the sciatic nerve of a STZ medication control group, although the amount of FUROSHIN in a kidney increased by 6.7 times and 4.6 times compared with the normal control group, respectively, it decreased 31% 23% by AS-6 medication, respectively.

[0024] [Example 5] 16 diabetics (among these, a neurosis subjective symptom there being (neuralgia, imperception, etc.): with 12 persons and no subjective symptom: four persons) were medicated with 4–0-methyl ASUKO chlorin 120mg for 12 weeks 3 times after every meal, and the improvement effect over neurosis was examined. The result was shown in Table 5.

[0025] [Table 5]

[. 45.0 0]				
	0 週	4週	8週	12週
症状なし	4	9	10	1 4
症状あり	1 2	7	6	2

The subjective symptom of neurosis has been improved with time by 4-0-methyl ASUKO chlorin medication, and, 12 weeks after, "those with a symptom" decreased from 12 persons to two persons by it.

[0026] [Example 6] 30 diabetics were medicated with 4-0-methyl ASUKO chlorin 120mg for 12 weeks 3 times after every meal, urinary biochemical inspection was conducted and the improvement effect over a nephropathy was examined. The result was shown in Table 6. [0027]

[Table 6]

			投与	护前		投 与 後	
尿论	七査	•	陽性	5例	消失	2例、改善	3例
尿蚤	長白	+++		1例		0例	
		++		3例		2例	
		+		7 (9)		5例	
		±		0例		2例	
		-		0例		2例	
多	尿	症状なし		0例	2	991	
		症状あり	3	30例		1例	

The nephropathy has been remarkably improved by the 12 week medication of 4-0-methyl ASUKO chlorins.

[0028]

[Effect of the Invention] Since the compound expressed with the aforementioned general formula (I) shows the outstanding GURIKEISHON reaction inhibitory action, it is useful as the prophylactic to diabetic complication or therapeutic drugs, such as diabetes sexual nerosis, diabetic nephropathy, and diabetic retinopathy.

[Translation done.]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-305959

(43)公開日 平成6年(1994)11月1日

(51)Int.CL ⁵		識別記号	,庁内整理番号	FI	技術表示箇所
A 6 1 K	31/19	ADP	9283-4C		
	31/12	ACV	9283-4C		
	31/215	AAB	9283-4C		
	31/44	ABL	7431-4C		

審査請求 有 請求項の数2 OL (全 14 頁)

(21)出顯番号 特顯平4-242051

平成 4 年(1992) 9 月10日

(71)出題人 391039391

株式会社イムノ・ジャパン

東京都杉並区荻窪 4丁目28番14-701号

(72)発明者 細川 知良

神奈川県横浜市港北区菊名6-10-18

(74)代理人 弁理士 湯浅 恭三 (外6名)

(54)【発明の名称】 グリケイション阻害剤

(57)【要約】

【構成】 一般式(I)

* 【化1】

[式中Rは水素原子、- (Cn H2n) - R' (nは1~5の整数、R'は水素原子又は基-COOR"、ここで R"は水素原子又は炭素数1~3のアルキル基を意味する)か、又は-COR'''(R'''はピリジル基、炭素数1~3で置換されたアミノ基、核にハロゲン原子を有するフェノキシアルキル基又は核に炭素数1~3のアルコキシカルボニル基※

※を有するフェニル基を意味する)〕で表されるアスコクロリン及びその誘導体を1種又は2種以上有効成分として含有するグリケイション阻害剤。

【効果】 上記一般式 (I) で示される化合物は糖尿病性神経症、糖尿病性腎症、糖尿病性網膜症等の糖尿病性合併症に対する予防薬あるいは治療薬として有用である。

1

【特許請求の範囲】 【請求項1】 一般式(I) *【化1】

〔式中Rは水素原子、一(Cn Hzn) -R'(nは1~5の整数、R'は水素原子又は基-COOR"、ここで R"は水素原子又は炭素数1~3のアルキル基を意味する)か、又は-COR''(R''はピリジル基、炭素数1~3で置換されたアミノ基、核にハロゲン原子を有するフェノキシアルキル基又は核に炭素数1~3のアルコキシ基あるいは炭素数1~3のアルコキシカルボニル基を有するフェニル基を意味する)〕で表されるアスコクロリン及びその誘導体を1種又は2種以上有効成分として含有するグリケイション阻害剤。

【請求項2】 糖尿病性神経症、糖尿病性腎症、糖尿病性網膜症の群から選ばれる疾患の予防及び治療のための 請求項1記載のグリケイション阻害剤。

【発明の詳細な説明】

[0001]

(: · ·

【産業上の利用分野】本発明は一般式(I)で表されるアスコクロリン及びその誘導体を1種又は2種以上有効成分として含有する医薬品に関する。更に詳しくは、グリケイションを阻害することによる糖尿病性合併症、殊に、糖尿病性神経症、糖尿病性腎症、糖尿病性網膜症の治療剤に関する。

[0002]

【従来の技術】糖尿病の合併症は糖尿病に特徴的ではないが、高率に発症するマクロアンジオパチイと糖尿病に 特徴的なミクロアンジオパチイすなわち糖尿病性腎症、 糖尿病性網膜症、糖尿病性神経症に大別される。糖尿病 は合併症さえ起こらなければ恐い病気ではないとさえ言 われており、糖尿病の重症度は変動しやすい血糖レベル では表現できない。坂本は「血糖のコントロールで糖尿 病性合併症の発症の予防は可能か」と疑問を投げかけ、

「合併症の発症から悲惨な最終像への進展まで、総てのプロセスに高血糖が重大な役割を果たし続けているとは 40 考えられない」としている(坂本信夫,「糖尿病」,33,633,1990)。現在、糖尿病性合併症に対する対策が糖尿病治療の最も重要な課題であり、糖尿病性合併症の予防・治療薬の開発が期待されている。

【0003】糖尿病性合併症の発症に関しては高血糖に基づく代謝異常を基本に種々の要因が複雑に関与するものと考えられており、それらの要因のうち特に、ミクロ※

※アンジオパチイに関してはポリオール代謝とグリケイシ の ョンが重要であるとされている。ポリオール代謝に関し では、そのアルドース還元酵素が高血糖下で活性化され 組織内にソルビトールが蓄積し糖尿病性神経障害の発症 に重要な役割を果たしているとされており、アルドース 還元酵素阻害剤としてエパルスタットが知られている。 しかし、グリケイション阻害剤については未だ有効な治 療剤は開発されるには至っていない。

2

【0004】 グリケイションはメイラード反応とも言わ れ、グリケイションを受けた糖化蛋白は腎基底膜肥厚の 原因の一つと考えられており、糖化蛋白のレンズ内の 核、皮膜への蓄積は糖尿病性白内障の重要な要因になる と考えられている。グリケイションは蛋白と還元糖との 非酵素的な結合反応によりシッフ塩基を作り、それがア マドリ転位してケトアミンを作る。ここまでの反応はメ イラード反応の初期段階と考えられている。このアマド リ化合物はゆっくりと脱水、転位反応を繰り返し、メイ ラード反応後期段階へ移行する。初期段階化合物の酸加 水分解物の一つにフロシンが知られている。フロシンは 糖尿病患者と実験的糖尿病モデル動物の座骨神経、腎 臓、腱、水晶体等の組織内含量が著しく増加しているこ とが報告されている (Voglt Diabetes, 31,1123,1982,增田省吾,「糖尿病」,3 4, 576, 1991).

[0005]

【発明が解決しようとする課題】上述したように、糖尿病性合併症の予防及び治療薬として、グリケイション阻害剤は有用であると考えられるが、これまでに有効なグリケイション阻害剤は開発されていなかった。

[0006] 本発明はグリケイションを阻害し組織内糖 化蛋白の蓄積を軽減し糖尿病性合併症、具体的には糖尿 病性神経症、糖尿病性腎症、糖尿病性網膜症の予防及び 治療に役立たせようとするものである。

[0007]

【課題を解決するための手段】本発明は一般式(I)で 表されるアスコクロリン誘導体のグリケイション阻害剤 に関する。

[0008] [化2]

[式中Rは水素原子、-(Cn Hzn)-R'(n は $1\sim$ 5の整数、R' は水素原子又は基-COOR''、ここで R'' は水素原子又は炭素数 $1\sim$ 3のアルキル基を意味する)か、又は-COR'''(R''' はピリジル基、炭素数 $1\sim$ 3で置換されたアミノ基、核にハロゲン原子を有するフェノキシアルキル基又は核に炭素数 $1\sim$ 3のアルコキシ基あるいは炭素数 $1\sim$ 3のアルコキシカルボニル基を有するフェニル基を意味する)〕。

【0009】アスコクロリンは本発明者らによって糸状菌Ascochyta visiaeの生産物より見いだされた抗生物質である(特許第585252号明細書参照)。その誘導体に関しては製法ならびに血糖低下作*

*用が特公平1-41624号公報ならびに特公平3-6 138号公報に記載されている。本発明者は糖尿病性合 併症に対して高血糖状態とは相対的に独立して、深く関 10 与しているグリケイションの阻害作用をアスコクロリン ならびにその誘導体について検討を行った結果、上記一 般式(I)に示す化合物に優れたグリケイション阻害作 用をin vivo及びin vitro実験において 発見した。

【0010】一般式(I)で示される化合物は具体的には以下の化合物である。

[0011] [化3]

本発明のこれらのアスコクロリンならびにその誘導体のグリケイション反応物ケトアミンの酸加水分解産物フロシン生成に対する効果を検討するためにinvitro実験として牛血清アルブミンとグルコースの反応液にアスコクロリンならびにその誘導体を添加して長期間培養し、フロシン生成に対する効果を検討するとともに、invivo実験としてストレプトゾトシン糖尿病ラットにアスコクロリン誘導体4-0-カルボキシメチルアスコクロリン(AS-6)を1カ月間投与、各組織にお※50

(Te

※けるフロシン生成に対するAS-6の効果を検討した。 その結果、AS-6はin vivo,in vitr o実験ともにフロシン生成を抑制し、AS-6にグリケ イション反応阻害作用が認められた。これにより糖尿病 性合併症、例えば糖尿病性神経症、糖尿病性腎症、糖尿 病性網膜症に対するAS-6の予防、治療効果が期待さ れる。

【0012】また、4-0-メチルアスコクロリンを糖 尿病性合併症を発症した糖尿病患者に12週間経口投与 5

した結果、糖尿病性腎症、糖尿病性神経症が著しく改善 された。

【0013】本発明の医薬の用量は病態の種類、症状等 によって異なるが例えば、注射の場合は成人1日1人当 たり5~100mg、経口投与の場合には30~3000 mg、坐薬の場合には50~1000mgで目的を達するこ とができる。本発明の化合物は単独で用いても良いが、 通常はアルカリで中和して水に溶解したり、懸濁液、賦 形剤又はその他の補助剤と混合して非経口投与及び経口 しい製剤としては、例えば注射剤、粉剤、顆粒剤、錠 剤、糖衣錠、丸錠、カプセル剤、坐剤等が挙げられる。 これらの製剤は常法により、例えば賦形剤又は補助剤と して、乳糖、蔗糖、種々の澱粉、ぶどう糖、セルロー ズ、メチルセルローズ、カルボキシメチルセルローズ、 ステアリン酸マグネシウム、ラウリル硫酸塩、タルク、 植物油、レシチンならびにこれらの2種以上の混合物等 を用いて製造される。

[0014]

【実施例】フロシンの定量は0.4mlの血清に0.1ml 20 の40%トリクロロ酢酸を加えて、遠心分離した後、沈*

6

*殿物を2mlの8%トリクロール酢酸で2回洗淨し、95 ℃、30時間加水分解を行った。組織はクロロホルムー メタノール混液にてホモジナイズし、抽出液を除去後、 6 N塩酸を加え95℃、30時間反応させ、その反応液 10~20 μ 1を高速液体クロマトグラフィーに注入し た。高速液体クロマトグラフィーは東ソーHLC-80 3D、カラムはODS-80T (東ソー) を用いた。7 mMリン酸を溶媒とし、流速1ml/min , 280nmで測定 すると、フロシンは注入後2.7分に検出され、フロシ 投与に適する剤形として製剤することが好ましい。好ま 10 ン量はその面積で表示した(老籾宗忠、糖尿病、28, 1119, 1985).

> 【0015】以下に本発明の実施例を示すが、本発明は これらの実施例に何ら限定されるものではない。

【0016】 (実施例1) 25mg/mlの牛血清アルブミ ンに400mMのグルコースを加え、アスコクロリンなら びにその誘導体を1.2mg/mlの割合で添加し、37 ℃、10日間培養し、生成したフロシンを高速液体クロ マトグラフィーで測定した。結果は表1に示した。

[0017]

【表1】

	フロシン
対 照 群	401523±16192
アスコクロリン	285606±19159
	-28.9% **
4-0-メチルアスコクロリン	303766±19210
	-24.3% ** :
- 4-0-ニコチノイルアスコクロリン	328446±16233
	-18.2% *
4 - 0 - カルポキシメチルアスコクロリン	276427±17352
(AS-6)	-31. 2% **
平均値±標準誤差 * p<0.05	** p<0.01

結果は表1に示すようにアスコクロリンならびにその誘 導体はいずれもフロシンの生成を有意に抑制した。

【0018】 (実施例2) 25mg/mlの牛血清アルブミ ンに400mのグルコースを加え、AS-6はDMSO に溶解して1mg/ml添加し、37℃、5,10日間培 ※40

※養、生成したフロシンを高速液体クロマトグラフィーで 測定した。結果は表2に示した。

[0019]

【表2】

		フロシン
5日日		
	無添加群	387325± 7586
	A S - 6	292779±14159
		-24.4% **
10日目		
	無添加群	549598±28869
	A S - 6	435365±38178
		-20.8% **

結果は表2に示すようにAS-6はフロシンの生成を有意に抑制した。

[0020] (実施例3) 25mg/mlの牛血清アルブミンに400mMのグルコースを加え、AS-6はDMSOに溶解して0.1,0.4,1.6mg/ml添加、37℃*

*で培養し、生成したフロシンを高速液体クロマトグラフィーで測定した。結果は表3に示した。

8

【0021】 【表3】

7日目 (大阪加群 225688± 9402 AS-6 1. 6 mg/ml 170368±14937 -24. 5% ** 0. 4 176715± 8412 -21. 7% ** 0. 1 195972±12144 ns 14日目 (無添加群 373437±20444 AS-6 1. 6 mg/ml 284977±24765

無添加群 373437±20444 AS-6 1. 6 mg/ml 284977±24765 -23. 7% ** 0. 4 287363±13195 -23. 0% ** 0. 1 329003±20911

n s

平均值土標準誤差 ** p<0.

結果は表3に示したように7日目、14日目ともにAS -6、0.4 mg/ml以上の濃度でフロシン生成を有意に抑制した。

【0022】 (実施例4) ウイスターラットにストレプ トゾトシン (STZ) を55mg/kg静脈内投与し、同時※ 「※にAS-6の0.1%混合飼料を1カ月間与えて飼育 し、血中ならびに組織中フロシンを測定した。結果は表 4に示した。

【0023】 【表4】

	自中	コグルコース	血中フル	血中フルクトサミン	血中フロシン	座骨神経フロシン	耳臓フロンン
	2	ng / di	n n	unole/8	面積/町	面積/168	面養/108
STZ-X 照 群	604.	8±11.5	ŀ	1±5.3	21.8, 1±5, 3 113272±3014	14843±615	12492±730
STZ-AS-6	492.	6±35.3	183.	3±4.9	88611±2526	11394±578	8652±959
	- 18.	* %9	-16.	* * %	-21.8% **	-23, 2% **	-30.7% **
日 第一处 照 群	119.	4± 6.6	131.	6±2. 1	42086±2111	2205±185	2702±259
	-80.	** %8	-39.	** %2	-62.8% **	-85.1% **	-78.4% **
平均值土領準誤差	*	p<0.01					

結果は表4に示したようにSTZ投与対照群の血糖値は 正常対照群に比べて5.1倍に上昇したが、AS-6投 与により血糖値は19%低下し、フルクトサミン値は6 6%上昇したが、AS-6投与により16%低下した。 STZ投与対照群の血中フロシン値は正常対照群に比べ て2. 7倍に上昇したが、AS-6投与により22%低 ン量は正常対照群に比べてそれぞれ6.7倍,4.6倍 に増加したが、AS-6投与によりそれぞれ23%,3 1%減少した。

【0024】〔実施例5〕4-0-メチルアスコクロリ ン120mgを毎食後3回、糖尿病患者16人(このうち 神経症自覚症状(神経痛、知覚低下等)あり:12人、 下した。STZ投与対照群の座骨神経中、腎臓中フロシ 50 自覚症状なし:4人)に12週間投与し、神経症に対す 11

る改善効果を検討した。結果は表5に示した。

[0025]

.\

(* 34°

*【表5】

 0週
 4週
 8週
 12週

 症状なし
 4
 9
 10
 14

 症状なり
 12
 7
 6
 2

4-0-メチルアスコクロリン投与によって神経症の自 覚症状は経時的に改善され、"症状あり"は12人から 12週後には2人に減少した。 ※投与し、尿の生化学検査を行い腎症に対する改善効果を 検討した。結果は表6に示した。

12

[0027]

[0026] [実施例6] 4-0-メチルアスコクロリ 10 【表6】

ン120mgを毎食後3回、糖尿病患者30人に12週間※

		投与	前		投	与	後	
尿沈査		陽性	5例	消失	2	例、	善	3 例
尿蛋白	+++		1例		0	例		
	++		3例		2	例		
	+		7例		5	M		
-	±		0 例		2	<i>(</i> 7)		
			0例		2	94		
多 尿	症状なし		0 例	2	9	<i>9</i> Y		
	症状あり	3	30例		1	例		

4-0-メチルアスコクロリン12週間投与によって腎症は著しく改善された。

[0028]

【発明の効果】前記一般式(I)で表される化合物は、★

★優れたグリケイション反応阻害作用を示すので、糖尿病性神経症、糖尿病性腎症、糖尿病性網膜症等の糖尿病性 合併症に対する予防薬あるいは治療薬として有用である。

☆け、「合併症の発症から悲惨な最終像への進展まで、す

【手統補正書】

【提出日】平成4年12月18日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】発明の詳細な説明

【補正方法】変更

【補正内容】

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は一般式(I)で表されるアスコクロリン及びその誘導体を1種又は2種以上有効成分として含有する医薬品に関する。更に詳しくは、グリケイションを阻害することによる糖尿病性合併症、殊に、糖尿病性神経症、糖尿病性腎症、糖尿病性網膜症の治療剤に関する。

[0002]

【従来の技術】糖尿病の合併症は糖尿病に特徴的ではないが、高率に発症するマクロアンジオパチイと糖尿病に特徴的なミクロアンジオパチイすなわち糖尿病性腎症、糖尿病性網膜症、糖尿病性神経症に大別される。糖尿病は合併症さえ起こらなければ恐ろしい病気ではないとさえ言われており、糖尿病の重症度は変動しやすい血糖レベルでは表現できない。坂本は「血糖のコントロールで糖尿病性合併症の発症の予防は可能か」と疑問を投げか☆

べてのプロセスに髙血糖が重大な役割を果たし続けると は考えられない」としている(坂本信夫、「糖尿病」、 33,633,1990)。また、「糖尿病性合併症の 発症・進展を血糖を厳格にコントロールすることによっ て抑制しうるという確実な証拠のない現在、低血糖発症 の危険性を無視してまで血糖値を健常人に近づけようと するのは無謀でさえある」との意見もみられる(Sip erstein, [N. Engl. J. Med. 129 6,1060,1977)。血糖管理と糖尿病性合併症 の発症・進展に関する研究が幅広く進められているが、 入院のうえ頻回のインスリン注射療法による厳格な血糖 制御を行っても、糖尿病性腎症では尿細管機能への関与 は少なく、糖尿病性神経症についても自律神経機能の改 善はみられず、糖尿病性網膜症に対してはインスリン1 日1回投与では改善例はみられずむしろ悪化する例が多 く、インスリン頻回注射群でも改善例よりも悪化する例 の方が多数であったと報告している(河盛隆造、「医学

【0003】糖尿病性合併症の発症に関しては高血糖に

のあゆみ」、156, 1034, 1991)。現在、糖

尿病性合併症に対する対策が糖尿病治療の最も重要な課

題であり、糖尿病性合併症の予防・治療薬の開発が期待

されている。

基づく代謝異常を基本に種々の要因が複雑に関与するものと考えられており、それらの要因のうち特に、ミクロアンジオパチイに関してはポリオール代謝とグリケイションが重要であるとされている。ポリオール代謝に関しては、そのアルドース還元酵素が髙血糖下で活性化され組織内にソルビトールが蓄積し糖尿病性神経障害の発症に重要な役割を果たしているとされており、アルドース還元酵素阻害剤としてエパルスタットが知られている。しかし、グリケイション阻害剤については未だ有効な治療剤は開発されるには至っていない。

【0004】グリケイションはメイラード反応とも言わ れ、グリケイションを受けた糖化蛋白は腎基底膜肥厚の 原因の一つと考えられており、糖化蛋白のレンズ内の 核、皮膜への蓄積は糖尿病性網膜症の重要な要因になる と考えられている。グリケイションは蛋白と還元糖との 非酵素的な結合反応によりシッフ塩基を作り、それがア マドリ転位してケトアミンを作る。ここまでの反応はメ イラード反応の初期段階と考えられている。このアマド リ化合物はゆっくりと脱水、転位反応をを繰り返し、メ イラード反応後期段階へ移行する。初期段階化合物の酸 加水分解物の一つにフロシンが、後期段階化合物の一つ にペントシジンが知られている。フロシンは糖尿病患者 と実験的糖尿病モデル動物の座骨神経、腎臓、腱、水晶 体等の組織内含量が著しく増加していることが報告され ている (Volgt,「Diabetes」、31,1 123,1982、増田省吾、「糖尿病」、34,57 6,1991)。ペントシジンは糖尿病患者の皮膚コラ ーゲンならびに水晶体の組織内含量が増加していること* *が報告されている(Monnier、「Proc. Natl. Acad. Sci.」、81,583,1984,Sell.「J. Clin. Invest.」、85,380,1990)。グリケイション反応産物の初期段階化合物の一部は、治療による血糖値の低下に伴って正常化するが、後期段階化合物は高血糖状態が改善されてもグリケイション反応産物は正常化しないとされており(Brownlee、「N. Engl. J. Med.」、318,20,1988)、非可逆的なグリケイション反応産物の組織内への蓄積は糖尿病性合併症の発症・進展に関与しているとされている。

[0005]

【発明が解決しようとする課題】上述したように、糖尿病性合併症の予防及び治療薬として、グリケイション阻害剤は有用であると考えられるが、これまでに有効なグリケイション阻害剤は開発されていなかった。

【0006】本発明はグリケイションを阻害し組織内糖 化蛋白の蓄積を軽減し糖尿病性合併症、具体的には糖尿 病性神経症、糖尿病性腎症、糖尿病性網膜症の予防及び 治療に役立たせようとするものである。

[0007]

【課題を解決するための手段】本発明は一般式(I)で表されるアスコクロリン誘導体のグリケイション阻害剤 に関する。

[0008]

【化2】

$$\begin{array}{c|c} & OHC \\ & \\ H_3 & C \\ & \\ \hline \end{array} \begin{array}{c} OHC \\ OR \\ \hline \end{array} \begin{array}{c} OHC \\ OHC \\$$

[式中Rは水素原子、一(Cn Hzn) -R'(nは1~5の整数、R'は水素原子又は基一COOR"、ここで R"は水素原子又は炭素数1~3のアルキル基を意味する)か、又は一COR'''(R'''はピリジル基、炭素数1~3で置換されたアミノ基、核にハロゲン原子を有するフェノキシアルキル基又は核に炭素数1~3のアルコキシ基あるいは炭素数1~3のアルコキシカルボニル基を有するフェニル基を意味する)〕。

【0009】アスコクロリンは本発明者らによって糸状菌Ascochyta visiaeの生産物より見いだされた抗生物質である(特許第585252号明細書参照)。その誘導体に関しては製法ならびに血糖低下作用が特公平1-41624号公報ならびに特公平3-6※

※138号公報に記載されている。本発明者は糖尿病性合併症に対して高血糖状態とは相対的に独立して、深く関与しているグリケイションの阻害作用をアスコクロリンならびにその誘導体について検討を行った結果、上記一般式 (I) に示す化合物に優れたグリケイション阻害作用をin vivo及びin vitro実験において発見した。

【0010】一般式 (I) で示される化合物は具体的には以下の化合物である。

[0011]

[化3]

本発明のこれらのアスコクロリンならびにその誘導体の グリケイション反応物ケトアミンの酸加水分解産物フロ シン生成に対する効果を検討するためにinvitro 実験として牛血清アルブミンとグルコースを含む反応液 にアスコクロリンならびにその誘導体を添加して長期間 培養し、フロシン量を測定するとともに、in viv o実験としてストレプトントシン糖尿病ラットにアスコ クロリン誘導体4-0-カルポキシメチルアスコクロリ ン(AS-6)を1カ月間投与、各組織におけるフロシ ン量を測定した。また、ペントシジン生産に対する影響 を検討するためにリポース、アルギニン、リジンを含む 反応液にアスコクロリンならびにその誘導体を添加して 4または8日間培養しペントシジン量を測定した。その 結果、アスコクロリンならびにその誘導体はフロシンお よびペントシジンの生産を抑制しグリケイション反応阻 害作用が認められた。これにより糖尿病性合併症、例え ば糖尿病性神経症、糖尿病性腎症、糖尿病性網膜症に対 するアスコクロリンならびにその誘導体の予防・治療効 果が期待される。

【0012】また、4-0-メチルアスコクロリンを糖 尿病性合併症を発症した糖尿病患者に12週間経口投与 した結果、糖尿病性腎症、糖尿病性神経症が著しく改善 された。

【0013】本発明の医薬の用量は病態の種類、症状等によって異なるが例えば、注射の場合は成人1日1人当たり5~100mg、経口投与の場合には30~3000mg、坐薬の場合には50~1000mgで目的を達するこ

とができる。本発明の化合物は単独で用いても良いが、通常はアルカリで中和して水に溶解したり、懸濁液、賦形剤又はその他の補助剤と混合して非経口投与及び経口投与に適する剤形として製剤することが好ましい。好ましい製剤としては、例えば注射剤、粉剤、顆粒剤、錠剤、糖衣錠、丸錠、カプセル剤、坐剤等が挙げられる。これらの製剤は常法により、例えば賦形剤又は補助剤として、乳糖、蔗糖、種々の澱粉、ぶどう糖、セルローズ、メチルセルローズ、カルボキシメチルセルローズ、ステアリン酸マグネシウム、ラウリル硫酸塩、タルク、植物油、レシチンならびにこれらの2種以上の混合物等を用いて製造される。

[0014]

【実施例】フロシンの定量は0.4mlの血清に0.1mlの40%トリクロロ酢酸を加えて、遠心分離した後、沈殿物を2mlの8%トリクロロ酢酸で2回洗浄し、95℃、30時間加水分解を行った。組織はクロロホルムーメタノール混液にてホモジナイズし、抽出液を除去後、6N塩酸を加え95℃、30時間反応させ、その反応液10~20μlを高速液体クロマトグラフィーは東ソーHLC-803D、カラムはODS-80T(東ソー)を用いた。7mlリン酸を溶媒とし、流速1ml/min、280mで測定するとフロシンは注入後4.2分に検出され、フロシン量はその面積で表示した(老籾宗忠、糖尿病、28,1119,1985)。ペントシジンの定量はリボース、アルギニン、リジンを含む反応液にアス

コクロリンならびにその誘導体を添加し4または8日間 培養した。反応終了後にその $10\mu1$ を高速液体クロマトグラフィーに注入した。測定機器、カラム、溶媒はフロシン定量と同様で検出は蛍光(Exc.335nm, Emi.385nm) で測定した。ペントシジンは注入後14分後に検出され、ペントシジン量はその面積で表示した(Gradhee.J.Biol.Chem.266,11649,1991)。

【0015】以下に本発明の実施例を示すが、本発明は*

*これらの実施例に何ら限定されるものではない。

【0016】 (実施例1) 25mg/mlの牛血清アルブミンに400mMのグルコースを加え、アスコクロリンならびにその誘導体を1.2mg/mlの割合で添加し、37℃、10日間培養し、生成したフロシンを高速液体クロマトグラフィーで測定した。結果は表1に示した。

[0017]

【表1】

• -	フロンン
対 照 群	401523±16192
アスコクロリン	285606±19159
	-28.9% **
4-0-メチルアスコクロリン	303766±19210
	-24. 3% **
4-0-ニコチノイルアスコクロリン	328446±16233
	-18.2% *
4-0-カルポキシメチルアスコクロリン	276427±17352
(AS-6)	-31. 2% **
平均值土標準誤差 * p<0.05	** p<0.01

The state of the s

結果は表1に示すようにアスコクロリンならびにその誘 導体はいずれもフロシンの生成を有意に抑制した。

7-25

[0018] (実施例2) 25mg/mlの牛血清アルブミンに400mMのグルコースを加え、AS-6はDMSOに溶解して1mg/ml添加し、37℃、5,10日間培 ※

※養、生成したフロシンを高速液体クロマトグラフィーで 測定した。結果は表2に示した。

【0019】 【表2】

•		ファシン
5日目	•	
	無添加群	387325± 7586
	A 8 - 6	292779±14159
		-24.4% **
10日目		
	無添加群	549598±28869
	A S - 6	435365 ± 38178
		-20.8% **
平均值土標	遊誤差 **	p < 0. 01

結果は表2に示すようにAS-6はフロシンの生成を有意に抑制した。

[0020] [実施例3] 25mg/mlの牛血清アルブミンに400mMのグルコースを加え、AS-6はDMSOに溶解して0.1,0.4,1.6mg/ml添加、37℃★

★で培養し、生成したフロシンを高速液体クロマトグラフィーで測定した。 結果は表3に示した。

【0021】 【表3】

			フロシン
7日目			
•	無添加群		225688± 9402
	A S - 6	1. 6mg/ml	170368±14937
			-24.5% **
		0. 4	176715± 8412
			-21.7% **
		0. 1	195972±12144
			n s
14日目			
	無添加群		373437±20444
	A S - 6	1. 6mg/ml	284977±24765
			-23.7% **
•		0. 4	287363±13195
			-23.0% **
		0. 1	329003±20911
			n s
亚佐侑十起		** n<0	0.1

結果は表3に示したように7日目、14日目ともにAS -6、0.4 mg/ml以上の濃度でフロシン生成を有意に 抑制した。

【0022】 (実施例4) ウイスターラットにストレプ トゾトシン (STZ) を55mg/kg静脈内投与し、同時 にAS-6の0.1%混合飼料を1カ月間与えて飼育

し、血中ならびに組織中フロシンを測定した。結果は表 4に示した。 [0023]

【表4】

	血中グルコース	血中フルクトサミン	任中レロツン	医骨神経フロシン	腎臓フロシン
	1 p / 8m	µnole/8	面徴/町	国 横 / 昭	面積/腎
甜蛋 校-ZTS	604.8±11.5	218.1±5.3	113272±3014	14843±615	12492±730
STZ-AS-6	492. 6±35. 3	183. 3±4. 9	88611±2526	11394±578	8652±959
	-18.6% **	-16.0% **	-21.8% **	-23.2% **	-30.7% **
群 照 女一笑 田	119.4± 6.6	131, 6±2, 1	42086±2111	2205±185	2702±259
	-80.3% **	-39.7% **	-62.8% **	-85.1% **	-78. 4% **
17.42亿十四级出外	3 4				

結果は表4に示したようにSTZ投与対照群の血糖値は正常対照群に比べて5.1倍に上昇したが、AS-6投与により血糖値は19%低下し、フルクトサミン値は66%上昇したが、AS-6投与により16%低下した。STZ投与対照群の血中フロシン値は正常対照群に比べて2.7倍に上昇したが、AS-6投与により22%低下した。STZ投与対照群の座骨神経中、腎臓中フロシン量は正常対照群に比べてそれぞれ6.7倍,4.6倍

に増加したが、AS-6投与によりそれぞれ23%,3 1%減少した。

【0024】 [実施例5] 各10mMのリボース、アルギニン、リジンを含む反応液にアスコクロリンならびにその誘導体1mg/mlを添加して、8日間培養し、生成したペントシジンを高速液体クロマトグラフィーで測定した。結果は表5に示した。

[0025]

【表5】

	ペントシジン
対照群	608457±24314
アスコクロリン	0
4-〇-メチルアスコクロリン	119248±4821
	-80.4% **
4-0-カルボキシメチルアスコクロリン	0
(AS-6)	

平均值±標準誤差 **p<0.01

結果は表5に示すように、アスコクロリンとAS-6はペントシジンの生成を100%抑制し、4-0-メチルアスコクロリンは80.4%抑制した。

【0026】 [実施例6] 10mMのリボース、アルギニン、リジンを含む反応液に4-0-カルボキシメチルアスコクロリン(AS-6)を1000,500,20*

*0,20 μ 1 / m 1 添加して、4,8 日間培養し、高速 液体クロマトグラフィーで生成したペントシジンを測定 した。結果は表6に示した。

【0027】 【表6】

		ペントシ	ジン
		4日	8日
対照群		310249±6061	507788±18683
AS-6	$1000 \mu\mathrm{g/ml}$	0	0
	$500 \mu \text{g/ml}$	0	_ 0
	$100 \mu \text{g/ml}$	70743±1191	65840±2382
		-77.2% **	-87.0% **
	$20 \mu \mathrm{g/ml}$	232877±17514	301744±21269
		<u>-24.9% **</u>	-40.6% **

平均值±標準誤差 **p<0.01

表6から明らかなように、AS-601000, 500 μ g/m l添加では4日目、8日目ともにペントシジンの生成を100%抑制した。100, 20 μ g/m l添加でも有意に抑制した。

[0028] [実施例7] 4-O-メチルアスコクロリン120mgを毎食後3回、糖尿病患者16人(このう※

※ち神経症自覚症状(神経痛、知覚低下等)あり:12 人、自覚症状なし:4人)に12週間投与し、神経症に 対する改善効果を検討した。結果は表7に示した。

[0029]

【表7】

	0週	4週	8週	12週
症状なし	4	9	10	14
症状あり	1.2	7	6	2

4-O-メチルアスコクロリン投与によって神経症の自 覚症状は経時的に改善され、"症状あり"は12人から 12週後には2人に減少した。

【0030】 [実施例8] 4-0-メチルアスコクロリン120mgを毎食後3回、糖尿病患者30人に12週★

★間投与し、尿の生化学検査を行い腎症に対する改善効果 を検討した。結果は表8に示した。

[0031] ...

【表8】

			前		投与後		
尿沈渣		陽性	5例	消失	2例、	改善	3 例
尿蛋白	+++		1例		0例		

++	3例	2例	
+	7例	5例	
±	0例	2例	
_	0例	2例	
多 尿 症状なし	O例	29例	
症状あり	30例	1例	

4-〇-メチルアスコクロリン12週間投与によって腎症は著しく改善された。

[0032]

【発明の効果】前記一般式(I)で表される化合物は、

優れたグリケイション反応阻害作用を示すので、糖尿病 性神経症、糖尿病性腎症、糖尿病性網膜症等の糖尿病性 合併症に対する予防薬あるいは治療薬として有用であ る。