

USER'S MANUAL, FOR

VASCOMP IL

THE V/STOL AIRCRAFT SIZING
AND PERFORMANCE COMPUTER PROGRAM

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

SECONITY CEASSIFICATION OF THIS PAGE (WHEN DATE ENTERED)	
REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1 REPORT NUMBER 2. GOVT ACCESSION NO	3. RECIPIENT'S CATALOG NUMBER,
78-0375 Volume VI	833
4. TITLE (and Subtiste) User's Manual for VASCOMP II The V/STOL Aircraft Sizing and Performance	s. Type of REPORT & PERIOD COVERED Final report for period October 1979 to July 1980
Computer Program - Revision III	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(a)	8. CONTRACT OR GRANT NUMBER(*)
Allen H. Schoen, Harold Rosenstein,	
kaydon Stanzione, John S. Wisniewski	N6226479-C-0706
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Boeing Vertol Company 🗸	AREA & WORK ONLY HOMBERS
P.O. Box 16858	
Philadelphia, Pennsylvania 19142	
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REFORT DATE
Naval Air Development Center	May 1980
Advanced Design Branch	13. NUMBER OF PAGES.
Warminster, Pennsylvania 18974	621
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	15. SECURITY CLASS, (of this report)
	Unclassified
,	ISA. DECLASSIFICATION DOWNGRADING
IS DISTRIBUTION STATEMENT (al Ma Pagen)	And the second s

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from Report)

DELECTE SEP 4 1980

18. SUPPLEMENTARY NOTES

None

19. KEY WORDS (Continue on) verse side if necessary and identify by block number)

V/STOL Aircraft Sizing and Performance Computer Program Fortran

20. ABSTRACT (Continue on reverse side if necessary and identity by vlock number)

This report describes the use of the V/STOL Aircraft Sizing and Performance Computer Program (VASCOMP II). The program is useful in performing aircraft parametric studies in a quick and cost efficient manner. Problem formulation and data development were performed by the Boeing Vertol Company and reflects the present preliminary design technology. The computer program, written in Fortran IV, has a broad range of input parameters, to enable investigation of a wide variety of aircraft.

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) User oriented features of the program include minimized input requirements, diagnostic capabilities, and various options for program flexibility.

UNCLASSIFIED

BOEING VERTOL COMPANY

A DIVISION OF THE BOEING COMPANY

P.O. BOX 16858 • PHILADELPHIA, PENNSYLVANIA 19142

27 August 1980 8-1162-6666

Department of the Navy Naval Air Development Center Warminster, Pennsylvania 18974

Attention:

Code 6051

Subject:

Contract N62269-79-C-0706, "\ASCOMP II Computer Program" - Submittal of VASCOMP II User's Manual

Enclosure:

- (1) VASCOMP II User's Manual (Five Copies)
- (2) DD Form 250, Material Inspection and Receiving Report (One Copy)

Gentlemen:

- 1. In accordance with Data Sequence Item A002 of the subject contract Data Requirements List, Boeing Vertol submits Enclosure (1), the VASCOMP II User's Manual.
- 2. It is requested that you execute the enclosed DD Form 250 and return it to the undersigned at your earliest convenience.
- 3. With this action, all direct activity required under the subject contract is completed and administrative close-out action is being initiated necessary to proparation and submittal of the final invoice

Very truly yours,

R&D Contracts

S. P. Laskus, Manager

WH: kmk

cc: Naval Air Systems Command Washington, D.C. 20361

Attention:

Code 530134B
With Enclosure (1)
(Three Copies)

Naval Air Development Center Warminster, Pennsylvania 18974

Attention:

Code 8131 With Enclosure (1)

(Two Copies)

Defense Documentation Center
Defense Logisitcs Agency Cameron Station Alexandria, VA 22314

With Enclosure (1) (Two Copies)

Naval Air Development Center Warminster, Pennsylvania 18974

Attention:

Code 8131

With Enclosure (1) (Two Copies)

Defense Documentation Center Defense Logisitcs Agency Cameron Station Alexandria, VA 22314

With Enclosure (1) (Two Copies)

VASCOMP II USER'S MANUAL

FOR VASCOMP II. USER'S MANUAL ER PROGRAM. Volume III. Usirs Keursian Developed under CONTRACT No. NAS 2-3142 (Feasibility of V/STOL Concepts for 14) D8-1375-VOL-6-REV-27 Short Haul Transport Aircraft) Revised under CONTRACT No. NAS 2-6107 and No. N6226-79-C-0706 (Study of the Methodology for Evaluation of an Interurban and Intraurban V/STOL Transportation System) (C) N611.67-11-7-0706 NA 52-6201 By A. H. SCHOEN, H. ROSENSTEIN, K. A. STANZIONE and J. S. WISNIEWSKI (Weights) Final Hept. Oct 71-Jul 885 Prepared by *BOEING VERTOL COMPANY* A DIVISION OF THE BOEING COMPANY 40361 P. O. BOX 16858 PHILADELPHIA, PENNSYLVANIA 19142 FOR THE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Ames Research Center, Moffett Field, California 94035

10) Allen H. /-Ehoen Harold / Rosen-Yein

D8:0375 Volume VI

March 1968

First Revision October 1971

Second Revision September 1973

Third Revision May 1980

FOREWORD

VASCOMP, the V/STOL Aircraft Sizing and Performance Computer Program, was originally written during the period June 1966 to March 1967 under NASA Contract NAS2-3142, Mod. 1. From September 1967 to March 1968, a major modification to the computer program led to the development of VASCOMP II under Contract NAS2-3142, Mod. 2. A second modification to the program conducted during the period January 1971 to October 1971 under NASA Contract NAS2-6107, Mod. 1, led to Revision 1 of this document in October 1971.

Past modifications involved updating and expanding the statistical weight trends data and incorporating the weight trends documentation, Reference 2, directly into this document. This revision was conducted under NASA Contract NAS2-6107, Mod. 7, between April and September 1973.

The most recent modifications included a general performance subroutine, a transmission sizing option, accessory horsepower inputs, and additional engine sizing inputs for specified fraction of power and vertical rate of climb.

Numerous comment cards have been added in the Fortran code as an aide to the troubleshooter. Also, where possible, named commons have been used to pass variables among a few subroutines.

Recognizing that in time the program will change to reflect new thinking and grow to include more sophisiticated methods of simulating advanced V/STOL systems, the User's Manual is loose-leaf bound to facilitate updating of the program documentation.

Inquiries regarding the program should be directed to the authors.

CONTENTS

		<u>.</u>	<u>Paqe</u>
	Forward	• • • • • • • • • • •	ii
	List of Illustrations	• • • • • • • • • •	vi ⁻
	List of Tables	• • • • • • • • • • • • • • • • • • • •	ix
1.0	INTRODUCTION	• • • • • • • • • • •	1-1
	1.1 Background		1-1 1-2
2.0	SPECIFICATION OF AIRCRAFT CHARACTERIST	ics	2-1
	2.1 Aircraft Geometry		2-1 2-4 2-4 12-6
3.0	PROGRAM OPERATION	• • • • • • • • • • • • •	3-1
	3.1 General	• • • • • • • • • • •	3-1
	3.1.1 The Option Indicator 3.1.2 Description of Mission Prof 3.1.3 Special Flight Path Control 3.1.4 Propulsive Efficiency	file L Options	3-1 3-2 3-6 3-7
	3.2 Program Options		3-7 3-17
	3.4 Subroutine Cross Reference		_3-22
4.0	DETAILED PROGRAM DESCRIPTION	• • • • • • • • • • • •	4-1
	4.1 Main Control Loop 4.2 Atmosphere Subroutine 4.3 Drag Calculations Subroutine 4.4 Engine Library and Engine Cycle Su 4.5 Propeller Performance Calculations 4.6 Size Trends Subroutine 4.7 Aerodynamics Calculations Subrouti 4.8 Engine Sizing Subroutine 4.9 Weight Trends Subroutine 4.10 Performance Calculations Subprogra	abroutines .	4-1 4-27 4-29 4-31 4-61 4-88 4-109 4-119 4-134 4-185
	4.10.1 Taxi Calculations Subrouti 4.10.2 Takeoff, Hover, and Landin tions Subroutine 4.10.3 Climb Calculations Subrout 4.10.4 Cruise Calculations Subrout 4.10.5 Descent Calculations Subrout 4.10.6 Loiter Calculations Subrout 4.10.7 Change of Weight Subroutin 4.10.8 Transfer Altitude	cine	4-185 4-193 4-207 4-231 4-265 4-293 4-305

				<u>Page</u>
	•	4.10.10 4.10.11 4.10.12 4.10.13 4.10.14	General Performance Function BIV Function PARA Function TABLE Function XLINT Function XLKUP Function XIBIV	 4-326 4-329 4-331 4-334 4-336
5.0	PROG	RAM INPU	T	- 5-1
	5.1	General	information	. 5-1
		5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 5.1.6	General information	• 5-2 • 5-2 • 5-3 • 5-3
	5.2 5.3		en Input Sheets	
	•	5.3.1 5.3.2 5.3.3	Program Variables Program Indicators Fortran Variables	. 5-54
6.0	PROG	RAM OUT	PUT	6-1
	6.1	Descri	otion of Output	6-1
		6.1:1 6.1.2 6.1.3 6.1.4 6.1.5	Input Data	6-1 6-2 6-7
	6.2	List o	f Diagnostic Printouts	6-15
			Errors Related to Tabulated Inputs.	
		6.2.3	Errors Occurring in Performance Calculations	6-21

			Page
7.0	PROGI	RAM UŞAGE	7-1
	7.1	Comments on Program Usage	7-1
		7.1.1 Rules	7-1 7-2
	7.2 7.3	Discussion of Program Tolerances	7-4 7-5
		7.3.1 Lift Fan VTCL Aircraft	7-5 7-55 7-93
REFER	ENCES	••••••	R-1

Ą.

ILLUSTRATIONS

Figure		Page
2-1	Typical Aircraft Geometry	2-2
3-1	Sketch of Program Geometry	3-17
4-1	Main Control Loop, Flow Chart	4-2
4-2	Atmosphere Subroutine, Flow Chart	4-28
4-3	Drag Calculations Subroutine, Flow Chart	4~30
4-4	Typical Reynolds Number Correction Factor for a Turboshaft Engine Cycle	4-37
4-5	Referred N _T as a Function of Mach Number and Temperature	4-39
4-6	Variation of Turbine Temperature vs. Mach Number	4-40
·47	Variation of Rate of Climb vs. Velocity	4-40
4-8	POWAVL Subroutine, Flow Chart	4-42
4-9	POWREQ Subroutine, Flow Chart	4-49
4-10	THRAVL Subroutine, Flow Chart	4-51
4-11	THRREQ Subroutine, Flow Chart	4-55
4-12	ENG I Subroutine, Flow Chart	4-56
4-13	LTHRAV Subroutine, Flow Chart	4-58
4-14	LTHREQ Subroutine, Flow Chart	4-60
4-15	Comparison of "Short Method" and Detailed Calculations for Propeller Cruise Efficiency	4-66
4-16	Comparison of "Short Method" and Detailed Calculations for Propeller Hover Efficiency	467
4-17	THRUST Subroutine, Flow Chart	4-68
4-18	POWER Subroutine, Flow Chart	4-75
4-19	V/STOL Prop for Vertol Model 170-544P	4-82

Figure		Page
4-20	Comparison of "Short Method" vs. Hamilton Standard Red Book Data	4-83
4-21	Performance Predictions of Low Disc/Loading Prop/Rotors	4-84
4-22	Size Trends Subroutine, Flow Chart	4-89
4-23	Definition of Sidewall Control Points for Fuselage Sizing	4-103
4-24	Emperical Relationship for Cabin Radius	4-104
4-25	Comparison of Predicted Body Radius with Actual Body Radius for Six Commercial Aircraft	4-105
4-26	Comparison of Predicted Fuselage Length with Actual Fuselage Length for Six Commercial Aircraft	4-106
4-27	Aerodynamic Calculations Subroutine, Flow Chart	4-115
4-28	Engine Sizing Subroutine, Flow Chart	4-122
4-29	Weight Trend Schematic	4-135
4-30	Weight Trends Subroutine, Flow Chart	4-137
4-31	Rotor Group Weight Trend	4-145
4-32	Wing Weight Trend	4-147
4-33	Horizontal Tail Weight Trend	4-152
4-34	Vertical Tail Weight Trend	4-153
4-35	Radius of Gyration Trend - Pitch	4-154
4-36	Radius of Gyration Trend - Yaw	4-155
4-37	Body Group Weight Trend	4-156
4-38	Cockpit Controls Weight Trend	4-160
4-39	Upper Controls Weight Trend	4-16]
4-40	System and Hydraulics Weight Trend	4-162

Figure		Page
4-41	Tilt-Wing Mechanism Weight Trend	. 4-165
4-42	Engine Nacelle Weight Trend	. 4-169
4-43	Drive System Weight Trend	. 4-171
4-44	Maximum Fuel vs. Unusable Fuel Weight Trend	. 4-175
4-45	Engine Oil Weight Trend	. 4-175
4-46	Performance Calculations Subprogram Flow Chart	. 4-186
4-47	Taxi Calculations Subroutine, Flow Chart	. 4-192
4-48	Takeoff, Hover, and Landing Calculations Subroutine, Flow Chart	. 4-195
4-49	Climb Calculation Subroutine, Flow Chart	. 4-209
4-50	Cruise Calculations Subroutine, Flow Chart	. 4-233
4-51	Descent Boundaries	. 4-267
4-52	Descent Calculations Subroutine, Flow Chart	. 4-269
4-53	Loiter Calculations Subroutine, Flow Chart	. 4-294
4-54	Change of Fuel Weight Subroutine, Flow Chart	. 4-306
4-55	Change of Payload Weight Subroutine, Flow Chart	. 4-307
4-56	Transfer Altitude Subroutine, Flow Chart	. 4-309
4-57	General Performance Subroucine, Flow Chart	. 4-313
4-58	BIV Function, Flow Chart	. 4-327
4-59	PARA Function, Flow Chart	. 4-330
4-60	TABLE Function, Flow Chart	. 4-332
4-61	XLINT Function, Flow Chart	. 4-335
4-62	XLKUP Function, Flow Chart	. 4-337
4-63	XIBIV Function. Flow Chart	4-340

TABLES

Table		Page
2-1	List of Engine Cycles	2-5
3-1	Summary of Subroutines	3-18
4-1	Engine Cycle Data Format	4-32
4-2	VASCOMP II Engine Library	4-33
4-3	Propeller Characteristic Summary	4-62
4-4	Coefficients for Propeller Equivalent Polars	4-80
4-5	Typical Drag Summary	4-112
4-6	Summary of Aerodynamics Input for Aircraft of Table 4-5	4-113
4-7	Weight Summary Form	4-136
4-8	Aircraft Weights Constants Information	4-142
4-9	High-Lift Factors	4-149
4-10	Landing Gear Weights	4-158
4-11	Flight Control Surface Actuation Systems Data	4-164
4-12	Engine Section and Installation Factors	4-167
4-13	Engine Nacelle Factors	4-170
4-14	Fixed Equipment Weights	4-1.73
4-15	Multipicative Factors	4-176
71	Program Tolerances	7-4

NOTE

Section 5.3 contains a definition of program input variables and indicators; section 6.2 lists the major diagnostic error printouts and describes their probable cause. For ease of reference, these sections are printed on blue and green paper, respectively.

1.0 INTRODUCTION

1.1 BACKGROUND

VASCOMP II is an improved version of VASCOMP, the V/STOL Aircraft Sizing and Performance Computer Program, described in Reference 1. The purpose of the program is to aid comparative design studies of V/STOL aircraft systems by rapidly providing airplane size and mission performance data. The program can be used to define design requirements such as weight breakdown, required propulsive power, and physical dimensions of aircraft which are designed to meet specified mission requirements. The program is also useful in sensitivity studies involving both design trade-offs and performance trade-offs.

During formulation of the program, the following guidelines have been followed:

1. Maintain generality and flexibility:

A program of this type must be comprehensive and flexible in order to permit an accurate simulation of virtually any V/STOL configuration. It must be capable of approximating the design process involved in layout and sizing of a wide variety of V/STOL aircraft and synthesizing the performance of these aircraft.

2. The program should be easy to use:

In order to minimize hand computation of input data, the input to the program consists primarily of a series of single point values specifying, for example, the aspect ratio, taper ratio, etc. of the wing and tail surfaces, the geometry of the fuselage, the type of propulsion system, a description of the mission profile, and weights of fixed equipment, fixed useful load and payload. Where necessary to adequately describe certain functional relationships, the input is in tabular form. However, since preparation of data for tabular input is generally more cumbersome and time consuming, this form of input has been kept to a minimum.

3. Minimize computation time:

In order to minimize computation time, the program makes ample use of optional computation

paths. To eliminate large quantities of null arithmetic, the program avoids calculations which do not apply to the particular aircraft being studied. This is accomplished by means of a series of input indicators that specify the calculations to be performed.

4. The program should be well balanced:

The program should not be extremely sophisticated in one detail and yet extremely simple in another. To offset the possibility of this occurrence, great care has been taken to examine methods used to describe the aircraft and its operation. As an example, the program does not calculate actual airplane takeoff performance since too many detailed factors are required for this purpose. Rather, the program calculates the power and fuel flow required to satisfy specified thrust to weight requirements. The thrust to weight required is calculated in a separate program and is dictated by the specific aircraft being considered.

1.2 APPLICATION

The program has two primary independent applications, a third which is a combination of the first two, and a fourth option used for obtaining aircraft weight only. The program may be used for the sizing of aircraft for which the type of aircraft and the mission profile are specified. Alternatively, the program may le used for mission calculations for aircraft for which sizing details (gross weight, fuel available, engine power and fuel consumption, etc.) are known. As a combination of these two capabilities, the program may be used to first size an airplane for a given mission and then calculate the off-design-point performance for other missions. The option of calculation to be used is specified to the program by means of an input "option indicator".

The program has been written in a manner to make it directly applicable to sensitivity studies to determine the effect of variations in weight, drag, engine characteristics, etc. This is accomplished by use of incremental multiplicative and additive factors applied to the gross weight, component drag and fuel required equations. For the most part, the multiplicative factors are nominally equal to unity and the additive factors are nominally equal to zero. However, to determine the effect, for example, of a 10 percent increase in drive system weight, the appropriate multiplicative factor can be set to 1.10 and the sizing program rerun.

The program contains size trends equations which reflect the variation of aircraft dimensions with gross weight, detailed statistical weight trends equations, a routine for sizing of engines to match airframe requirements, a comprehensive library of engine cycle data, and a variety of optional procedures for calculating propeller performance for turboprop airplanes.

The program can be used to study any aircraft which uses fixed wing lift for primary cruise flight. It is not intended to be used for analysis of aircraft which employ rotary wing lift for forward flight.

2.0 SPECIFICATION OF AIRCRAFT CHARACTERISTICS

Specification of aircraft characteristics to the program is made in a variety of ways: through use of input indicators which specify the types of calculations to be made, through use of weights factors and constants, aerodynamics data, propulsion information, and through use of mostly nondimensional geometric information.

2.1 AIRCRAFT GEOMETRY

It is assumed that a typical sizing analysis starts with known payload characteristics, both in terms of payload weight and volume requirements. The volume requirements are usually reflected in length, height, and width of the constant diameter (cabin) section of the airplane. Adding a nose and tail section of reasonable fineness ratio onto the cabin section completes the fuselage geometry and leads to a body of known dimensions. A special option of the program permits the fuselage geometry to be calculated to match known passenger requirements for commercial applications. Wing geometry may be dictated by the requirements to accommodate multiple propellers while maintaining reasonable wing chord to propeller diameter ratios, as in the case of a tilt wing airplane, or it may be dictated by required wing loading-aspect ratio combinations. Tail surface geometry is usually dictated by requirements on tail volume coefficients. Since the fuselage length is generally known and fixed in length, the tail moment arms may be approximated and input as fixed quantities. Alternatively, if the tail surface size is a known value, it may be input to the program as a fixed constant. Primary engine nacelle size is set by type of engine and by engine size (which, in turn, is dictated by power requirements). Lift engine size is set by type of engine, engine size, and by the number of engines which may be clustered together.

Figure 2-1, Parts 1 and 2, of a hybrid V/STOL airplane illustrates the type of information concerning the aircraft geometry which may be required of the user of the program. These data specify nondimensional distances from the aircraft centerline to the engines, to the main gear, and to concentrated loads, propeller overlap and clearance factors, and other parameters which specify the geometric layout of the aircraft. A list of these input variables is included in Section 5.3.1.

2-2

5) Typical Aircraft Geometry (Part 2 of Figure 2-1.

2-3

'n

2.2 PROPULSION SYSTEM

This program permits the use of either a single, primary propulsion system or a combination of a primary system and lift propulsion system. For the primary system, turboshaft, turbofan, turbojet or convertible cycles may be used. Lift fan and lift turbofan cycles are used to represent the lift propulsion system. The program includes a standard library of eighty-one different generalized engine cycles, as shown in Table 2-1. The user of the program may either select the desired engine cycle(s) from the standard library or input the characteristics of any arbitrary engine cycle he may choose.

The library engines are unrestricted in performance over their operating system range (dictated by power setting limits). However, the user, at his discretion, may include limits on engine operation by setting maximum values of fuel flow, torque, or gas generator or power turbine shaft rpm. In addition, nonlinear scaling effects of real engines may be included by input of Reynolds number-based correction factors. Degradation in performance of turbo-shaft engines operating at nonoptimum power turbine speed will be calculated by the program at the option of the user. The library engine cycles may thus be used with no additional input or, by appropriate additional input, may be made to include the effects of multiple operating restrictions and other factors characteristic of real engine cycles.

During a sizing calculation, the engine cycles may be "scaled" or fixed in size. That is, if the user desires, the program will calculate the engine size required to meet the mission requirements, or alternatively, he may input engines of specified size. In the case of aircraft employing multiple propulsion systems, the primary system may be used to provide part of the lift thrust or power, and the lift engines will be sized to provide the remaining required thrust or power.

2.3 AIRCRAFT WEIGHT SUMMARY

A detailed aircraft weight summary is provided by the program through use of statistical weight trend equations. A description of, and justification for, these equations is

TABLE 2-1 LIST OF ENGINE CYCLES

			
	1970	INTERMED- IATE	ADVANCED
PRIMARY PROPULSION	ĺ		
TURBOSHAFT ENGINE PRESS. RATIO	13, 16	19	13, 16, 19, 22
TURB. INLET TEMP.	2600°R	2900°R	3200°R
TURBOJET ENGINE PRESS. RATIO	13, 16	13, 16, 19	13, 16, 19, 22
TURB. INLET TEMP.	2600°R	2900°R	3200°R
TURBOFAN ENGINE PRLSS. RATIO TURB. INLET TEMP.	16, 20 2600°R	16, 20, 24 2900°R	16, 20, 24, 28 3200°R
FAN BYPASS RATIO	2, 4, 6	2, 4, 6	2, 4, 6
LIFT PROPULSION		•	
LIFT ENGINES ENGINE PRESS. RATIO TURB. INLET TEMP. FAN BYPASS RATIO	7 2400°R 2, 4, 6	7 2700°R 2, 4, 6	7 3000°R 2, 4, 6
LIFT FANS ENGINE PRESS. RATIO TURB. INLET TEMP. FAN BYPASS RATIO	13, 16 2600°R 8, 11, 14	13, 16, 19 2900°R 8, 11,	13, 16, 19, 22 3200°R 8, 11,

given in Reference 2. Three major categories of weights are calculated: the propulsion group, the structures group, and the flight controls group. The weight trends subroutine is described in detail in section 4.9.

2.4 AERODYNAMIC CHARACTERISTICS

The aerodynamic data which are calculated by the program are the airplane drag and lift curve slope. The lift curve slope is used for calculation of gust load factor and for calculation of angle of attack required during climb and descent. Drag data may be input to the program in a variety of forms ranging from input of a single point value of either drag coefficient or of flat plate area to input of a detailed drag summary. Scaling effects on drag based upon Reynolds number corrections are included. The program will automatically calculate the compressibility drag rise on the basis of an approximate semi-empirical technique. If the user prefers, he may input tabulated values of the drag rise. Spanwise loading efficiency (Oswald's factor) may be either input to the program or may be internally calculated by the program.

3.0 PROGRAM OPERATION

3.1 GENERAL

3.1.1 The Option Indicator

As previously described, the program has two major options and a third which is a combination of these two. The specific option to be used is selected by means of an input "option indicator" abbreviated OPTIND.

OPTIND = 0

This is an'iterative routine which determines only the aircraft weight, dimensions, and power.

OPTIND = 1

This is an iterative routine which determines the aircraft weight, dimensions and required power to satisfy a prescribed mission flight profile. In addition to the flight profile, certain characteristics describing the type of aircraft are specified such as the wing aspect ratio, thickness ratio, the wing loading or disc loading, the engine cycle, etc.

OPTIND = 2 or 3

These options are used to calculate the flight performance of an aircraft for which the size is fixed. In addition to the aircraft characteristics described above, the power available, aircraft dimensions, etc. are input to the program. A flight profile is also specified. The program then calculates the performance history of the aircraft for the specified mission.

If OPTIND = 2 is selected, the aircraft gross weight is input and the fuel required to fly the specified mission is determined. This option is useful for solving many different performance problems where it is desired to constrain gross weight such as calculating climb performance, cruise performance, or payload-range capability.

If OPTIND = 3 is selected, the operating-weightempty is input and takeoff gross weight and required fuel load is determined. This option is useful for calculating various overload off-design weights and for determining ferry performance.

Combined Option

This option permits the user to size an aircraft for a "design-point" mission and then to calculate the off-design-point performance of the sized aircraft for a variety of additional missions. Basically, this option causes the program to run option number one (OPTIND = 1), save the sizing data generated in that option, and then input this information into the performance option (OPTIND = 2).

3.1.2 <u>Description of Mission Profile</u>

The performance calculation subprogram in VASCOMP II, consisting of nine individual subroutines, permits the simulation of aircraft performance for virtually any mission flight profile. A typical performance analysis is made up of a series of elements which, in building block fashion, allows the user of the program to perform a wide variety of studies. The elements of a typical performance analysis are:

- a. Segment A segment of a mission profile is a unique portion of the mission such as a cruise or a climb. A segment starts with a set of initial conditions of one or more of the variables of state (altitude, range, weight, etc.) and ends when a terminal condition (or conditions) has been satisfied.
- b. Hop A hop is defined as a set of segments ending at some logical terminal locations (such as ground level at the desired range). Thus, a hop might consist of flying from location "A" to location "B" by means of combining the following segments: taxi, takeoff, climb, cruise, descent, landing, and taxi.
- c. <u>Leg</u> A leg of a mission is herein defined as a set of hops ending in a re-fueling of the aircraft. Thus, a leg might consist of flying from location "A" to "B", then to "C", at which point the aircraft is refueled.
- d. <u>Mission</u> A mission is defined in this program as a set of legs (or hops or segments) which satisfy some specific operational requirement. In this program, the mission is the basic element for which the aircroft is sized.

e. <u>Case</u> - A case is a consecutive series of missions for the same aircraft. This program permits the user to analyze a case which consists of a mission for which an aircraft is sized, followed by a different mission which the now-sized aircraft performs, followed by yet additional missions.

The performance calculations subprogram consists of ten individual performance segments, specified by means of an input indicator, SGTIND. The segments are taxi (SGTIND = 1), hover (SGTIND = 2), climb (SGTIND = 3), cruise (SGTIND = 4), descent (SGTIND = 5, loiter (SGTIND = 6), an increment in weight of fuel (SGTIND = 7) or payload (SGTIND = 8), a transfer of altitude (SGTIND = 9), and general performance (SGTIND = 11). The end of the mission is specified by an input SGTIND = 0. An array of segment indicators is input to the program to specify the mission being studied. Thus, a typical array might be:

SGTIND =

At the end of any leg, the sum of segment fuel required to perform that leg is stored in the computer. At the end of the mission, the largest of these stored values is used to determine the aircraft sizing requirements when OPTIND = 1. An end of a case is specified by an input SGTIND = 100. Since an end-of-case is also always an end-of-mission, it is not necessary to end a case by a SGTIND = 0 followed by SGTIND = 100. SGTIND = 100 always takes precedence over SGTIND = 0. The distinction between a mission and a case is most useful when it is desired to size an aircraft for a specified mission followed by analysis of the off-design-point performance of the "sized" aircraft on other missions. As an example, with OPTIND = 1 (sizing option) the following array of SGTIND might be used:

The program will size the aircraft for the first mission and then analyze the performance of the "sized" aircraft for the second, third and fourth missions. Up to 50 consecutive segments may be included in a single case, arranged in any arbitrary series of hops, legs, and missions. Up to 10 of any specific segment may be included in any case. Thus, a case might consist of several missions, each mission having several different cruise segments.

Each segment is a discrete element of the mission, independent of any other segment with the exception of the influence on the altitude, range, weight, and time. That is, the first cruise of a case might be at cruise power at standard atmospheric conditions and the second cruise could be at best specific range for a nonstandard day.

At the start of a case, the user inputs values for initial conditions of altitude, range, weight, and time. The first segment of the case uses these values as initial boundary conditions and the segment ends at a specified terminal condition. The final values of altitude, range, weight, and time then become, in turn, the initial values for the following segment.

The final, or terminal, condition varies depending upon the segment. Terminal conditions for each segment, input by the user, are:

Taxi - increment in time

Takeoff, Hover, and Landing - increment in time

Climb - altitude at end of climb

Descent - altitude at bottom of descent and, for certain options, range at end of descent

Loiter - increment in time

<u>Change of Fuel Weight</u> - increment in weight and increment in time

Change of Payload Weight - increment in weight and increment in time

Transfer Altitude - final altitude

General Performance - increment in velocity

Segments 2 through 6 (takeoff, hover, and landing through loiter) and segment 11 (general performance require, in addition to terminal conditions on one of the variables of state, an input value for the step size to be used in the calculations. The step size specifies both the increment in the primary variable which is used in the calculations and the increment between successive printouts. Printouts occur at even integral multiples of the primary variable. Thus, if an aircraft is required to climb from a starting value of altitude of 6300 feet to a final value of 29,500 feet, and the step size is specified as 1000 feet, the program will calculate and print at 6300 feet, 7000 feet, 8000 feet, - - - - - 28,000 feet, 29,000 feet, 29,500 feet. As the step size is decreased, the program accuracy improves, but the computing time lengthens.

Atmospheric conditions may vary from segment to segment. For example, the first segment, a climb, may be for a standard atmosphere; the second segment, a cruise, may use a constant increment in temperature above standard;

and the third segment, another climb, may use a nonstandard temperature versus altitude table. The third atmosphere option requires a tabular input of temperature ratio versus altitude. Only one nonstandard tabular atmosphere may be used in a single case.

3.1.3 Special Flight Path Control Options

Two special options on flight path control aid in doing certain types of studies. These are:

- a. V_{LIM}IND This limiting-speed indicator will permit the user to fly a mission with a speed constraint such that at altitudes of 10,000 feet or less the airplane is restricted from flying at equivalent airspeeds greater than 250 knots in conformance with federal regulations. The mission may be made up of any arbitrary order of segments such as climb, cruise and descent.
- b. h_{OPT}IND This indicator will permit the user to fly a mission at the optimum altitude for best fuel consumption. The program will automatically determine the best altitude for any cruise segment which is preceded by either a climb segment or a transfer of altitude. If the cruise is preceded by a climb, the program will determine the flight altitude which minimizes the sum of the fuel for climb and cruise. If the cruise is preceded by a transfer altitude, the program will determine the altitude for the best fuel consumption during cruise only.

In addition to specifying that optimum altitude flight is desired during the mission, the user may specify a maximum altitude permitted for each cruise segment. This is specified by means of the h_{MAX} input for the preceding climb or the h_{FINAL} input for the preceding transfer altitude. The maximum altitude specification is useful in studying missions for which some of the cruise segments are to be optimized while other cruise segments are to be flown at known altitude such as the high-low-how-high mission shown on the next page in which the low altitude segments represent sea level dashes. For this mission, the user specified $h_{FINAL} = 0$ for the transfer altitude segment.

3.1.4 Propulsive Efficiency

Propeller efficiency can be calculated in three different ways for aircraft with turboshaft engines. The option chosen is specified by means of a propulsive efficiency indicator, npIND. The options range from (a) input of a set of point values of efficiency to (b) input of a prop map table to (c) automatic calculation of propeller performance. The option chosen will depend on the type of problem being studied as each of the means of calculating prop performance has features which may be desirable under certain conditions. These options are described in more detail in Section 4.5. A fourth propulsive option available to the user is to input a fan map table of Mach number versus thrust for fan propelled aircraft.

A value for the propulsive efficiency may also be input for jet engines during the takeoff, hover, and landing segment (SGTIND = 2). This efficiency may be used to simulate turning efficiency for a jet engine during takeoff. Similarly, a value for efficiency for lift engines in takeoff, hover, or landing may be input. This is discussed in more detail in Section 4.10.2

3.2 PROGRAM OPTIONS

Flexibility of operation and generality of approach have been accomplished by use of many optional computation paths. The path to be used is selected by the user through use of a series of input indicators. Besides the option indicator, previously described, the program indicators fall into seven categories:

propulsion indicators, aerodynamics indicators, size trends indicators, mission performance indicators, flight path control indicators, an atmosphere indicator, and an optional print indicator. The indicators and their use are described below. A summary list of all indicators and their values is included in Section 5.3.2.

3.2.1 <u>Propulsion Indicators</u>

- ENGIND Three different classes of cruise engines are included in the program. They are "horsepower producing" engines, "thrust producing" engines, and convertible engines. The horsepower producing engines which are included in the standard engine library are turboshaft engine cycles. The thrust producing engines in the engine library are either turbojet or turbofan engines. Convertible engine cycles can be simulated by selecting a cruise turbofan cycle, plus properly setting the engine indicator, ENGIND. If ENGIND is input as zero, a power producing cycle is selected. If ENGIND is input as l, a thrust producing cycle is selected. If ENGIND is input as 2, a fan (thrust producing) cycle will be selected and the program flow will simulate operation of a convertible engine cycle.
- b. <u>LFTIND</u> A primary (or cruise) engine cycle is selected for each aircraft. In addition, a lift engine cycle may be selected. The selection of separate lift propulsion is specified to the program by means of the indicator, LFTIND. LFTIND = 0 indicates only cruise propulsion is selected while LFTIND = l indicates both cruise propulsion and lift propulsion systems are included on the aircraft.
- studied in the program may be either "fixed" in size or "rubberized." If the engines are "rubberized," the engine sizing subroutine calculates the maximum power or thrust of the engines required to satisfy certain specified criteria. If the engines are fixed in size, the user inputs the level of maximum power or thrust for the engines and the engine sizing subroutine is bypassed. The user specifies the option of calculation by means of the input indicator, FIXIND. If FIXIND is set to

zero, the engines are fixed in size. If FIXIND is set to unity, the engine sizing subroutine is used to calculate the size of the "rubberized" engines.

- d. ESZIND For aircraft which do not contain separate lift propulsion, the program permits the user to size the primary engines either for takeoff conditions only or for the more critical choice of takeoff or cruise. This is specified by means of the engine sizing indicator, ESZIND. If ESZIND is input to zero, the program will size the engines for takeoff conditions only. If ESZIND is input as unity, the program will size the engines for takeoff, then cross-check the engine size required for cruise conditions, and pick the more critical of the two conditions.
- WDTIND, QIND, NIIND, N10IND, N2IND These indicators specify to the program that the primary engine performance is restricted by a maximum level of fuel flow, torque, gas generator shaft rpm, gas generator referred shaft rpm, or power turbine (output) shaft rpm. An input zero value for these indicators will permit operation restricted only by power setting (turbine temperature) limits. A unity input for any of the indicators will cause the engine operation to also be restricted by a maximum level of the appropriate variable. More than one of these indicators may be set to unity at the same time, thus simulating performance of an engine operating with multiple restrictions. N2IND has a third possible value which the user may input for turboshaft engines, N2IND = 2. This input specifies that the engine is operating a known discrete value of output shaft speed (in general, not the optimum value). If this option is used, the user inputs the level of NII for each flight segment, and the program will calculate the affect on engine performance.
- f. LWDIND, LN1IND, LN2IND These indicators are similar to those described in (e.) above except that they apply to the lift propulsion system. A unity input for any of these indicators will cause the lift engines to be restricted in performance by a maximum level of fuel flow, N_T, or N_{TT}. Since the lift

engines are either lift fans or lift turbofans, they are assumed to always operate at optimum N_{II} , and therefore there is no option for the lift engines similar to the previously described N2IND = 2.

- RNOIND The performance of real engines is sensitive to scaling effects. That is, doubling the maximum static power of the engine at sea level for standard atmospheric conditions by increasing the physical size of the engine will not cause a corresponding doubling of the power at other operating conditions. This nonlinear behavior is due to the influence of variations in the Reynolds' number at the compressor inlet. RNOIND permits these effects to be accounted for on turboshaft engines through use of an input table of a correction factor on power availabla. If the indicator is set to unity, the tabulated correction factor may be input and will be used by the program to account for scaling effects. A zero input for the indicator will cause the program to assume that perfect scaling occurs.
- h. <u>POWIND</u> This indicator specifies the limiting power setting to be used in climb, cruise, and for engine sizing at cruise conditions: maximum (POWIND = 0), military (POWIND = 1), and normal (POWIND = 2). A separate value of this indicator is input with each climb and cruise and for engine sizing.
- η DIND This indicator permits the user to select one of the four different methods for predicting propeller performance for turboprop airplanes. If η_p IND is input equal to zero, the user can specify a set of point value efficiencies for each of takeoff, climb, and descent and a table of efficiency vs. Mach number for cruise and loiter. An input of η pIND = 1 will permit the user to load in a propeller performance map to be used during takeoff, climb, cruise, and loiter while an input of $\eta_DIND = 2$ will permit use of an automatic subroutine within the program for calculating prop performance. For $n_DIND = 3$ the user inputs a fan performance map. It is anticipated that this latter option will be used for the majority of sizing and performance studies. The input prop map

option will typically be used in cases where detailed test data is available on prop performance and it is desired to closely represent a specific propeller. The first option, permitting input of point values, is most useful for sensitivity studies or where propeller choice has not yet been made and only representative values of efficiency are desired. A more detailed discussion of these options is contained in Section 4.5.

3.2.2 Aerodynamics Indicators

- DRGIND The aerodynamics calculations subroutine includes a set of semi-empirical equations to calculate drag rise due to compressibility effects. If specific information about the drag rise of the aircraft being studied is known, this may optionally be input to the program by means of an input table. The method of calculating compressibility drag is specified to the program by means of the indicato: DRGIND. If DRGIND is input as zero, the program uses the semi-empirical equations to calculate an approximate drag rise. If DRGIND is input as unity, the user may input a three-dimensional table of com-. pressibility drag coefficient as a function of lift coefficient and Mach number.
- b. OSWIND The span loading efficiency factor
 (Oswald's efficiency factor) may be calculated
 by the program from an approximate relationship
 as a function of wing aspect ratio. If the
 user prefers, he may input a fixed value of
 the efficiency factor to the program. An input
 of OSWIND = 0 permits the user to input a
 fixed value for efficiency. An input of OSWIND =
 unity will cause the program to use the approximate equation to calculate the value for
 efficiency.

3.2.3 Size Trends Indicators

a. FDMIND - The fuselage dimension indicator permits optional calculations of fuselage dimensions. The user studying an aircraft with known fuselage length and wetted area may input these values to the program by setting FDMIND = 0. However, the user, knowing only

the length of the cabin (or constant diameter) section of the aircraft, may have the program calculate the total aircraft length and wetted area for him by inputting FDMIND = 1 and the values for nose and tail section fineness ratios. A third option, FDMIND = 2, will permit the user to size the fuselage to accommodate known passenger requirements for commercial service. The user inputs the number of passengers, the unit seat width, seat pitch, number of aisles, aisle width, and number of seats abreast for tourist class and also for first class service. He also specifies certain data on galley size and lavatory size requirements by means of the indicators described below.

- b. GALLEY INDICATOR This indicator will permit the user to directly input the galley area required by setting this indicator to 1.0 or will permit use of a trend equation based on number of passengers carried by inputting a value of zero for the indicator. Input of the GALLEY INDICATOR is required only if FDMIND = 2.
- c. LAVATORY INDICATOR This indicator will permit the user to directly specify the number of lavatories (LAVATORY INDICATOR = 1) or to use a trend equation based on number of passengers (LAVATORY INDICATOR = 0). It is assumed by the program that each lavatory is 16 sq ft in floor area. If the user desires smaller lavatores he may represent that by input of a fractional number of lavatories. This indicator is required only when FDMIND = 2.
- d. WDMIND The wing dimension indicator permits the user to calculate wing dimensions in one of two ways. The wing dimensions may be dictated by either input value of wing loading and aspect ratio (WDMIND = 0) or by propeller geometry as in the case of a tilt wing aircraft (WDMIND = 1 or 2).
- e. HTIND, VTIND These indicators permit the user to input fixed-size tail surfaces to the program or, optionally, to have the program calculate the tail surface size based upon input volume coefficients.

If a unity value is input, the program will calculate the size based upon tail volume

coefficient. If either HTIND or VTIND is set to two (2.0), the horizontal or vertical tail (or both) may be input as fixed size surfaces.

f. PDMIND - The prop dimension indicator, PDMIND, permits the user to define the major propeller dimensions - diameter and chord - in various ways. The diameter may be directly input to the program (PDMIND = 1 or 3) or may be calculated from an input of the disc loading (PDMIND = 2 or 4). The chord, represented by activity factor or solidity may be calculated from an input activity factor (PDMIND = 1 or 2) or from an input thrust coefficient to solidity ratio, CT/σ (PDMIND = 3 or 4). Depending upon which of the four values of the indicator is chosen, any combination of the methods for predicting chord and diameter may be selected.

3.2.4 Mission Performance Indicators

- a. SGTIND The mission profile flown by the aircraft may be made up of an arbitrary sequencing of nine discrete profile segments. The segment selected is specified by means of the segment indicator, SGTIND. The segments are: taxi (SGTIND - 1), takeoff, hover and landing (SGTIND = 2), climb (SGTIND = 3), cruise (SGTIND = 4), descent (SGTIND = 5), loiter (SGTIND = 6), a change of fuel weight (SGTIND = 7), a change of payload weight (SGTIND = " 8), a transfer of altitude (SGTIND = 9), and general performance (SGTIND = 11). By appropriate sequencing of the input values for the segment indicator, the mission profile may be made up of any arbitrary combination of these discrete elements. The mission is terminated by an input value for segment indicator = 0.
- b. TOLIND The indicator TOLIND is input with each takeoff, hover, and landing segment and dictates the manner in which power is calculated. TOLIND = 1 may be used with airplanes which have double propulsion systems (primary and lift) or which have primary propulsion alone. A required thrust-weight ratio is input to the program. If the airplane has lift engines, as much thrust as is necessary will be taken from the lift engine system up to maximum thrust level. If maximum lift engine thrust is insufficient, the available lift engine thrust will be augmented with primary engine thrust. TOLIND= 2 may be used only for airplanes which have both primary and lift engine systems. This option is similar to TOLIND = 1 in the sense that a required thrust-weight ratio is input to the program. The

difference lies in the fact that equal percentages of available thrust are taken from primary and lift systems. TOLIND = 3 is used if the user wants to specify the percentage of maximum power being used from the engine system(s). The resultant thrust-weight ratio is calculated by the program.

- c. <u>CLMIND</u> Four types of climb calculations are permitted: maximum rate of climb (CLMIND = 1), constant equivalent airspeed (CLMIND = 2), constant Mach number (CLMIND = 3), and constant true airspeed (CLMIND = 4).
- d. CRSIND Six types of cruise missions are included in the program. They are: cruise at fixed cruise power (CRSIND = 1), cruise at constant true airspeed (CRSIND = 2), cruise at airspeed for best specific range (CRSIND = 3), cruise at the speed for 99% of best specific range (CRSIND = 4), cruise-climb (constant W/δ) at the speed for best specific range (CRSIND = 5), or cruise-climb at the speed for 99% of best specific range (CRSIND = 6).
- e. DESIND Eight different descent paths may be calculated by the program. They are of four types:
 descent at maximum speed, (DESIND = 1,2), descent
 at idle power (DESIND = 3,4), descent at constant
 equivalent airspeed (DESIND = 5,6) and descent at
 constant Mach number (DESIND = 7,8). The oddnumbered values are used when it is desired to
 specify the terminal range at the end of descent,
 the even numbered values when it is not so desired.
- f. LTRIND The loiter segment may be used to simulate an additional requirement for reserve fuel, or may be included as part of the mission fuel. In either case, the fuel required for loiter would be used as part of the total fuel required to size the aircraft. However, if the fuel is to be used for reserve purposes only, the aircraft weight will not be reduced by the amount of loiter fuel. The option is specified to the program by means of the input indicator LTRIND. If LTRIND is input as zero, the program will assume the loiter fuel is part of reserves. If ITRIND is input as unity, the loiter fuel will be included in the mission fuel.

- g. WGTIND The change fuel and change payload segments may be used to simulate refueling, unloading or loading of passengers, or a fuel drop. There is no restriction on the amount of fuel or payload which may be removed at any point in the mission. However, during a sizing run, it would be undesirable to increase the airplane weight (by adding fuel or payload) to a value which exceeds the initial gross weight of the airplane. This is because the design gross weight, upon which the subsystem weights depend, is assumed to be the same as the initial gross weight at the start of the mission. During a performance run (OPTIND = 2) this restriction does not apply and the user is given the option of overloading the airplane at any point of the mission. If WGTIND is input as zero the program will not permit the maximum weight to exceed the design gross weight. This is useful if it is desired to refuel to capacity at some point in the mission. If WGTIND is input as unity (and if the performance option is being run) the program will permit the airplane weight to exceed the design gross weight. This is useful for parametric performance studies. For example, the user can specify an array of SGTIND = 7, 4, 0, 7, 4, 0, 7, 4, 0, ---7, 4, 100.When this is done, the program will calculate the performance in cruise at a series of different aircraft weights. The "7" segment is used to increment the design gross weight to any value of weight desired for the following cruise.
- h. XMSNIND = Indicator that controls drive system transmission sizing. When XMSNIND = 0.0 the transmission will be sized at an input fraction (LOC 0258) of the primary installed power. If XMSIND = 1.0 the transmission is sized at a specified fraction of power required to hover or cruise at design conditions (more critical of the two conditions is selected).

For both XMSNIND conditions the designed transmission torque is used in the weight trends subroutine to determine transmission weight.

3.2.5 Flight Path Control Indicators

a. $V_{\rm LIM}{\rm IND}$ - Setting this indicator to a value of 1.0 will automatically limit the flight speed at altitudes below 10,000 feet to 250 knots EAS or less. If $V_{\rm LIM}{\rm IND}$ is input as zero, no such constraint on equivalent airspeed will occur.

b. hOPTIND - By inputting hOPTIND = 1.0, the program will automatically determine the cruise altitude for minimum fuel consumption for any cruise which is preceded by a climb or a transfer altitude. For cruise segments which are preceded by a climb the program will find the cruise altitude for which the sum of climb fuel and cruise fuel is minimized. The user can also specify a maximum permissible altitude for each cruise segment. If hOPTIND = 0 is input, the program will not do an optimum altitude search for the cruise segments.

3.2.6 Atmosphere Indicator

- ATMIND The atmosphere for each individual mission profile segment and for the engine sizing calculations may be either a standard or nonstandard atmosphere. Thus, the climb may be run on a nonstandard atmosphere followed by a cruise for standard day conditions. Three options (one for standard atmosphere, the other two for a nonstandard atmosphere are available. For the performance calculations, the type of atmosphere to be used is specified to the program by means of the atmosphere indicator, ATMIND. If ATMIND is input as zero, the program will use a standard atmosphere. ATMIND = 1 specifies a nonstandard, constant increment in temperature above standard while ATMIND = 2 specifies a nonstandard atmosphere requiring a tabular input of temperature ratio versus altitude.
- Optional Print Indicator Two different forms of printout are available for the mission performance data. By
 setting OPTIONAL PRINT INDICATOR = 0 a standard printout will occur. This consists of time, range, fuel
 used, aircraft weight, pressure altitude, true airspeed,
 engine turbine temperature, an engine code which
 specifies the condition which is dictating the engine
 operating point, and a power fraction which is the
 instantaneous fraction of maximum power which is being
 used. These data are printed for all performance segments. In addition, depending upon which segment is
 being used, the standard printout will include such
 parameters as rate of climb, equivalent airspeed,
 specific range, flight path angle, etc.

More detailed data may be obtained by setting the OPTIONAL PRINT INDICATOR = 1.0. The data printed will then include airplane lift and drag in pounds, fuel flow rate, actual horsepower or thrust, C_L , C_D , propeller C_P , J, and C_T , etc.

The printout available from the program is described in more detail in Section 6.

PROGRAM FLOW

Figure 3-1 indicates, conceptually, the operation of the program. Program flow is monitored by a general control loop which controls the operation of a series of peripheral programs. These include twelve minor subroutines, four major subroutines, a major subprogram, and a library of engine cycle data. The characteristics of these routines are summarized in Table 3-1.

Figure 3-1. Sketch of Program Geometry.

ROUTINE	CALLED BY	PURPOSE
Main Control Loop		Monitor program operations, check convergence and calculate gross weight during iterative sizing option (OPTIND = 1)
Minor Subroutines: Drag Calculations	Performance Sub- routines with SGTIND = 1-6, and Engine Sizing	Calculate airplane drag coefficient
Atmosphere	Performance sub- routines with SGTIND = 1-6, Engine Sizing, and Size Trends	Calculate atmospheric density, pressure, temperature, and speed of sound
POWAVL	Performance sub- routines with SGTIND = 1-6, Engine Sizing and Size Trends	Calculate power and fuel flow available for turboshaft engines by determining most critical operating restriction
PCWREQ	Same as POWAVL	Calculate fuel flow for turboshaft engines when power required is less than power available.
ENG 1	POWREQ, POWAVI.	Calculate power available for turboshaft engines at any specified turbine temperature including effects of Reynolds' number and operation at nonoptimum NII

ROUTINE	CALEED BY	PURPOSE
Tirave	Same as POWAVI.	Calculate thrust and fuel flow available for turbofan and turbojet engines by determining most critical operating restriction
THRREQ	Same as POWAVL	Calculate fuel flow for turbofan and turbojet engines when thrust required is less than thrust available
LTHRAV	Taxi, Takeoff/Hover/ Land, Engine Sizing, and Size Trends	Same as THRAVL except applies to lift engines
LTHREQ	Same as LTHRAV	Same as THRREQ except applies to lift engines
POWER	Performance subroutines with SCTIND = 2, 3, 4, & 6 and Engine Sizing and Size Trends	Calculate propeller power required when thrust and advance ratio are known
THRUST	Same as POWER	Calculate propeller thrust available when power and advance ratio are known
SCRIBE	Performance subroutines with SGTIND = 3, 4, 5, & 6.	Controls printout when detailed print option is desired (OPTIONAL PRINT INDICATOR = 1.0).

3-19

ROUTINE	CALLED BY	PURPOSE
Major Subroutines: Engine Sizing	Ma in	Calculates engine size (power or thrust) required to meet mission requirement
Weight Trends	Main	Calculates aircraft weight summary including propulsion, structures, flight controls and fuel available
Size Trends	Main	Calculates aircraft dimensions which are required for weight estimate and drag calculation
Aerodynamics	Main	Calculates lift curve slope, spanwise loading efficiency, and a series of coef- ficients which are used by the drag sub- routine to calculate aircraft drag
Maior Subprogram: Performance Calculations	Main	Monitors program flow during calculation of mission performance and calculates total fuel required at end of mission
General Performance Calculations	Performance Subprogram	Calculate power required, fuel flow, and other variables for given aircraft, starting at $V = 0$ to input $V_{\rm max}$
Performance Subroutines: Taxi	Performance Subprogram	Calculate taxi performance
Takeoff, Hover, and Landing	Performance Subprogram	Calculate takeoff, hover, or landing performance

PURPOSE		Calculate cruise performance	Calculate descent performance .	Calculate loiter performance	Add (or subtract) fuel to aircraft	Add (or subtract) payload to aircraft	Changes altitude	
CALLED BY	(continued):	Performance Subprogram	Performance Subprogram	Performance Subprogram	Performance Subprogram	Performarce Subprogram	Performance Subprogram	
ROUTINE	Performance Subroutines (continued):	Cruise	Descent	Loițer	Change Fuel Weight	Change Payload	Transfer Altitude	

3.4 SUBROUTINE CROSS REFERENCE

MAIN:

calls: LOADER ENGSŹ SIZTR WGHTR AERO LOADER

ATMOS

AERO

does not call any other subroutine

ATMOS

does not call any other subroutine

CHGPL

does not call any other subroutine

CHGFW

does not call any other subroutine

CLIMB

calls: AERO DRAG POWAVL

THRUST THRAVL DRAG
POWER POWREQ THRREQ
CRUS 1 CRUS 2 CRUS 3

CRUS 1

calls: ATMOS DRAG POWER

POWAVL POWREQ THRAVL

THRREQ

CRUS 2

calls: ATMOS DRAG POWER POWAVL POWREO THRAVL

POWAVL POWREQ TE

CRUS 3

calls: ATMOS DRAG POWAVL

POWER THRAVL POWREQ

THRREQ

DSCEX

calls: ATMOS DRAG POWAVL THRAVL THRREQ POWREQ

SCRIBE

DSCNT

Calls: ATMOS DRAG POWAVL THRAVL POWRLQ THRREQ

SCRIBE

ENGSZ

calls: ATMOS LIFAVL DRAG

THRAVL POWAVL THRUST

ENG1

does not call any other subroutine

LIFAVL

does not call any other subroutine

LOIT

calls: ATMOS DRAG POWAVL POWER POWREO THRAVL

POWER POWREQ SCRIBE THRREQ

LIFREQ

does not call any other subroutine

PAYL

calls: ENG 1 ENG 2

PLOTXY

calls: LOADER

POWER

calls: POWAVL POWREQ THRUST

PRFRM

calls: LOADER TAXI TOHL
CL1MB CRUS 1,3 DSCNT
DSCEX LOITER CHGFW

CHCPL TRALT PLOT XY

PRFRP

calls: ATMOS THRREQ LIFAVL

POWAVL POWREQ LIFREQ
POWER THRAVL DRAG

CRUS 1, 3 LOITR

SCRIBE

calls: POWAVL POWREQ THRAVL

SIZTR

calls: ATMOS POWAVL THRUST

THRAVL LIFAVL

THRAVL

calls: does not call any other subroutine

TAXI

calls: ATMOS THRAVL THRAVL

POWAVL LIFAVL

THRUST

does not call any other subroutine

TOHL

calls: ATMOS POWAVL POWER THRREQ POWREQ THRAVL

LIFAVL LIFREQ THRUST

TRALT

calls: CRUS 1 CRUS 2 CRUS 3

THRREQ

does not call any other subroutine

WGHTR

does not call any other subroutine

4.0 DETAILED PROGRAM DESCRIPTION

4.0 MAIN CONTROL LOOP

Figure 4-1 is a flow chart of the main control loop for the computer program. For aircraft weights and size data only (OPTIND = 0), the user inputs a gross weight and some preliminary aircraft dimensions. The program will not iterate the weights and size, and no performance data will be printed out. In the sizing routine (OPTIND = 1), the program iterates on the aircraft gross weight until the fuel available and the fuel required are equivalent within a specified tolerance. If OPTIND = 2 or 3, the program bypasses the size trends, engine sizing, and weight trends subroutines. If OPTIND = 3, the program iterates to determine the takeoff weight and fuel required to fly a specified mission.

Figure 4-1. Main Control Loop, Flow Chart (Part 1 of 25)

45!N F6M

ecct 5

4-3

Figure 4-1. Main Control Loop, Flow Chart
(Part 3 of 25)
4-4

Figure 4-1. Main Control Loop, Flow Chart (Part 4 of 25)

Figure 4-1. Main Control Loop, Flow Chart (Part 5 of 25)

Figure 4-1. Main Control Loop, Flow Chart (Part 6 of 25)
4-7

PAGE 7 MSIN FOM

Figure 4-1. Main Control Loop, Flow Chart (Part 7 of 25)

PAGE J MAIN POM

Figure 4-1. Main Control Loop, Flow Chart (Part 8 of 25)

PRGE 3 MRIN PGM

Figure 4-1. Main Control Loop, Flow Chart (Part 9 of 25)

PAGE 11

Figure 4²l. Main Control Loop, Flow Chart (Part 10 of 25)

PAGE 12 MAIN PEM

Figure 4-1. Main Control Loop, Flow Chart (Part 11 of 25)

Figure 4-1. Main Control Loop, Flow Chart (Part 12 of 25) 4-13

Figure 4-1. Main Control Loop, Flow Chart (Part 13 of 25)
4-14

MAIN FON

Figure 4-1. Main Control Loop, Flow Chart (Part 14. of 25)

Figure 4-1. Main Control Loop, Flow Chart (Part 15 of 25)

1)

rigure 4-1. Main Control Loop, Flow Chart (Part 16 of 25)

4-17

PAGE 13 MAIN FOM

Figure 4-1. Main Control Loop, Flow Chart (Part 17 of 25)

Figure 4-1. Main Control Loop, Flow Chart (Part 18 of 25)

PAGE 20 -

Figure 4-1. Main Control Loop, Flow Chart (Part 19 of 25)

PAGE 21 MSIN FGM

Figure 4-1. Main Control Loop, Flow Chart (Part 20 of 25)

Figure 4-1. Main Control Loop, Flow Chart (Part 21 of 25)

Figure 4-1. Main Control Loop, Flow Chart (Part 22 of 25)

4-23

Figure 4-1. Main Control Loop, Flow Chart (Part 23 of 25)

PEGE 20 MGIN PGM

Figure 4-1. Main Control Loop, Flow Chart (Part 24 of 25)

Figure 4-1. Main Control Loop, Flow Chart (Part 25 of 25)
4-26

4.2 ATMOSPHERE SUBROUTINE

The atmosphere subroutine will calculate the atmospheric density, pressure, and temperature as a function of altitude. Three options included below are available. These are specified by means of an input indicator, ATMIND, which is input individually for the performance data and the engine sizing data. Thus, the atmosphere can be calculated differently for each segment of the flight profile and for the engine sizing.

The options are:

ATMIND = 0: Standard atmosphere

ATMIND = 1: Constant increment in temperature above standard temperature

ATMIND = 2: Nonstandard temperature distribution as a function of altitude

The flow chart for the atmosphere subroutine is shown in Figure 4-2.

Figure 4-2. Atmosphere Subroutine, Flow Chart

4.3 DRAG CALCULATIONS SUBROUTINE

The drag calculations subroutine uses the factors althrough a7, as determined by the aerodynamics calculations subroutine, to calculate the drag of the airplane (see Section 4.7). Aircraft CD is calculated as a function of CL and Mach number. Since the calculation of compressibility drag is based upon a semi-empirical technique, it is limited in accuracy to a specific Mach number range. For analysis of aircraft flying at Mach numbers beyond that range, a calculation option is provided. By setting a drag indicator (DRGIND) equal to unity, a tabular compressibility drag (function of CL and M) may be used. This option requires preparation and input of a three-dimensional table. The subroutine flow chart is shown in Figure 4-3.

Figure 4-3. Drag Calculations Subroutine, Flow Chart

4.4 ENGINE LIBRARY AND ENGINE CYCLE SUBROUTINES

The basic cycle performance data consists of tabulated values of four variables:

- 1. referred thrust or horsepower $F_N/\delta F_N^*$ or SHP/ $\delta\sqrt{6}$ SHP* input locations 1326-1373
- 3. referred gas generator shaft RPM $N_{I} / \sqrt{\theta} N_{I}^*$ input locations 1454-1501
- 4. referred power turbine shaft RPM

 NII/ NII*
 input locations 1518-1565

For the primary engine cycles, these tables are functions of Mach number and referred turbine inlet temperature. For lift engine cycles, the tables are functions only of referred turbine inlet temperature. All data are in referred, normalized format as shown in Table 4-1.

The standard engine cycle library consists of Forty-five different generalized engine cycles shown in Table 4-2. The data for each cycle is punched in card form, accessible for input with the remainder of the input data for a given case. Each cycle is numbered; and, to guard against selection of an incorrect cycle, the cycle number is checked against a similar number input to the program by the user.

The fuel flow of the basic engine cycle should correspond to the manufacturer's specification data. Adjustments to the fuel flow level may be made by means of the input multiplier, $K_{\rm FF}$.

Because of the normalized, referred format, all data are valid for any ambient temperature, standard or nonstandard. With the exception of referred power, none of the tables are dependent upon power turbine speed. Usually $N_{\rm II}$ Loc (1238), is set equal

to 1.0 in order to determine $\frac{N_{II}}{N_{II}_{MAX}}$ through the relationship

Table 4.1 Engine Cycle Data Format

VARIABLE	SYMBO	L REFERRED, NORMALIZED FORM
Thrust	F _N	F _N /δF _N *
Power	SHP	SHP/6√0SHP*
Gas Generator rpm	N _I	N _I ∕√⊙N [*]
Power Turbine rpm	N _{II}	N _{II} /√ΘN* _{II}
Fuel Flow	₩ _f	w̄f/δ√ΘF* w̄f/δ√ΘSHP*
Turbine Inlet Temperature	T	T/ 0
Where:	* =	Max. Power Setting, Static, Sea Level, Standard Day
	0 =	Ambient Temperature (°R) Divided by 518.69°R
	δ =	Ambient Pressure (psia) Divided by 14.696 psia

$$\frac{N_{\text{II}}}{N_{\text{II}}_{\text{OPT}}} = 1.0 = \frac{\left(\frac{N_{\text{II}}}{N_{\text{II}}}\right) \cdot \left(\frac{N_{\text{IIMAX}}}{N_{\text{II}}}\right)}{\left(N_{\text{II}}_{\text{OPT}}/N_{\text{II}} * \sqrt{\theta}\right)} = \frac{1}{\sqrt{\theta}}$$

where $\frac{N_{\text{IIMAX}}}{N_{\text{II}}}$ is input into Loc (1223). If $\frac{N_{\text{II}}}{N_{\text{IIMAX}}}$ is determined

to be an unsatisfactory value, greater than 1.0, then set $\frac{N_{II}}{N_{TT}}$ =1.0

for specific segment and calculate N_{II} . Changes in N_{II} N_{II}

directly affect $\frac{N_{II}}{N_{II_{MAX}}}$ and indirectly affect operating tip

speed through

$$v_{\text{T operating}} = \left(\frac{N_{\text{II}}}{N_{\text{II}_{\text{MAX}}}}\right) \left(\frac{N_{\text{II}_{\text{MAX}}}}{N_{\text{II}^*}}\right) v_{\text{T}}$$

_		Engine Cycle Number	Max. Turbine Inlet Temper- ature - °R	Compressor Design Pres- sure Ratio	Fan Bypass Ratio
PRIMARY CRUISE ENGINES	TURBOSHAFT ENGINES	1 2 3 4 5 6 7 8	2600 2600 2900 2900 2900 3200 3200 3200	13 16 13 16 19 13 16	
	TURBOJET ENGINES	9 10 11 12 13 14 15 16	3200 2600 2600 2900 2900 2900 3200 3200	22 13 16 13 16 19 13 16 19	·
	TURBOFAN ENGINES	18 19,20,21 22,23,24 25,26,27 28,29,30 31,32,33 34,35,36 37,38,39 40,41,42 43,44,45	3200 2600 2600 2900 2900 2900 3200 3200 3200	22 .16 20 16 20 24 16 20 24 28	2,4,6 2,4,6 2,4,6 2,4,6 2,4,6 2,4,6 2,4,6 2,4,6 2,4,6
- LIFT ENGINES	INDEPENDENT LIFT ENGINES	46,47,10	2400 2700 3000	7 7 7	2,4,6 2,4,6 2,4,6
	GAS COUPLED LIFT FANS	\$5,56,57 \$8,59,60 61,62,63 64,65,66 67,68,69 70,71,72 73,74,75 76,77,78 79,80,81	2600 2600 2900 2900 2900 3200 3200 3200 3200	13 16 13 16 19 13 16 19	8,11,14 8,11,14 8,11,14 8,11,14 8,11,14 8,11,14 8,11,14 8,11,14

Table 4.2 VASCOMP II Engine Library

where V_T is input Loc (0181). By setting N2IND = 2, Loc (1204), turboshaft engine power at nonoptimum N_{II} will be calculated by the program by multiplying power at optimum N_{II} by a correction factor, K_{PN} , which is a function of N_{II}/N_{II} . The factor K_{PN} is

normally calculated by the program and obeys a second order relationship:

Most, but not all, turboshaft engines will obey this relationship. For engine cycles whose performance is not properly represented by the above curve, the user may input a table of $K_{\rm PN}$ versus $N_{\rm II}/N_{\rm II}_{\rm OPT}$ locations 1238-1257. The program uses input $N_{\rm II}/N_{\rm II}_{\rm MAX}$ for each flight segment and $N_{\rm II}$ / $N_{\rm II}$ * for the engine cycle. The program uses this information to establish the value of $N_{\rm II}/N_{\rm II}_{\rm OPT}$ each point of flight.

By setting N2IND = 0 or 1, the program will assume that the power turbine is always operating at optimum speed and no correction will be applied. N2IND = 0 will simulate an engine cycle which is operating at optimum $N_{\overline{11}}$ and \overline{c} which no upper limit has been placed on $N_{\overline{11}}$. For many applications, this option will be perfectly adequate for preliminary sizing studies. The adequacy of this assumption can be determined by consideration of the following factors:

- It may be desirable (e.g., as in the case of a tiltrotor aircraft) to reduce the main rotor RPM in cruise flight.
- 2. For some applications this may, in turn, force the engine to operate at a very inefficient N_{II} . In general, the optimum N_{II} increases as output power increases relative to the maximum level.

Consider the following case:

Low disc loading aircraft will require a higher percentage of maximum power to fly at a specified airspeed than will high disc loading aircraft, assuming that engine power is dictated by a hover requirement. The low disc loading aircraft, therefore, will require a higher NII for optimum engine performance than will the high disc loading aircraft. As a result, the low disc loading aircraft may be more severely compromised with respect to engine performance if the propeller rpm is reduced.

N2IND = 1 will simulate operation of an engine cycle at optimum N_{II} , but with the restriction of a maximum value for N_{II} . This type of operation is characteristic of airplanes employing fixed pitch propellers. Care should be taken in using this option because it may lead to a significant reduction in power available as shown by the sketch below:

N2IND = 2 is similar to N2IND = 1 except the operational flying point is located at a nonoptimum N_{II} .

Limitations on engine cycle operation may be input to the program on any combination of the following:

- fuel flow WDFIND Loc (1201) = 0. = no fuel flow gutoff 1. = fuel flow cutoff specified by WMAX/NO Loc (1220).
- gas generator speed, N1IND Loc (1202) =

 pu gas generator speed cutoff
 gas generator speed cutoff specified
 by N1 MAX

- gas generator referred RPM, N10IND Loc (1203) = 0. = no referred RPM cutoff 1. = referred RPM cutoff specified by NI √01 NI* Loc (1222)
- - 2. = output shaft speed cutoff specified by nonoptimum $N_{II_{MAX}}$ Loc (1223).
- - 2. = torque limit imposed on auxiliary propulsion transmission specified by $Q_{MAX}/O*$ Loc (1224).

Engine ratings (power settings) are dictated by turbine temperature. Five discrete values of that parameter are input for the primary engine cycles, one for each of the following power settings: maximum, military, normal, flight idle, and ground idle.

The program will print out, during the mission, the value of turbine temperature and a code that designates which condition is governing the engine performance at that point: power or thrust required, turbine temperature, torque limit, $N_{\tilde{I}}$ limit, referred $N_{\tilde{I}}$ limit, $N_{\tilde{I}}$ limit, or fuel flow limit.

Manufacturer's data on some engines show significant variations in both referred power $(shp/\delta\sqrt{\theta})$ and lapse rate with respect to changes in altitude. These variations are due to Reynolds' number effects. It has been found that these effects can be accounted for by means of a multiplicative factor on power available which is a function of the Reynolds number based on compressor inlet conditions, compressor blade geometry, and tip speed. Figure 4-4 shows a typical curve for a real engine. The correction factor K_{PR} is input to the program as a function of the Reynolds' parameter

$$\frac{N_{\underline{I}}}{N_{\underline{I}}^{*}} \frac{D}{\nu_{\underline{I}}}$$

Figure 4-4. Typical Reynolds' Number Correction Factor for a Turboshaft Engine Cycle.

The tabular input of power, fuel flow, N_I, and N_{II} for engines which require Reynolds number corrections should be input to the program at a nominal fixed value of the Reynolds number parameter. The Kp_R correction factor will then give the power at other values of the Reynolds number parameter. In the example shown in Figure 4-4, the nominal value of the parameter was chosen as 9000 seconds/foot.

The referred N_I limit is a constraint on the value of N_I/ θ_1 where θ_1 is the temperature ratio at the compressor face. This limit simulates a restriction on compressor speed. The user inputs a maximum value of N_I/N_I* θ_1 .

The engine dry weight and dimensions are calculated by means of the input parameters k_3 , k_3 , k_4 , k_4 , k_4 , ξ_4 and ξ_4 :

weight (lb) =
$$k_3 \frac{F_N^{\star}}{N_p} + k_4$$
 or $k_3 \frac{SHP^{\star}}{N_p} + k_4$

Primary engines diameter (ft) = $\xi_4 \left[\frac{F_N^{\star}}{N_p} \right]^{1/2}$ or $\xi_4 \left[\frac{SHP^{\star}}{N_p} \right]^{1/2}$
 N_p = number of primary engines diameter (ft) = $k_1 \cdot \frac{F_N^{\star}}{N_L} + k_2$

diameter (ft) = $\xi_1 \left[\frac{F_N^{\star}}{N_L} \right]^{1/2}$

Lift engines length (ft) = $\xi_2 + \xi_3 \left[\frac{F_N^{\star}}{N_L} \right]^{1/2}$
 N_p = number of lift engines

It has been found that the VASCOMP program can react in an extremely sensitive manner to "bumps" in the engine cycle data. Extreme care should be taken to ensure that the engine data which is input is smooth and continuous. In a particular example which was studied extremely erratic climb profiles resulted during maximum rate of climb mission segments. The speed for maximum rate of climb for example, jumped from 200 KTAS at 12,000 feet to 330 KTAS at 13,000 feet, during a climb from sea level to 25,000 feet in 1,000 foot increments. These anomalies were traced to inflections in the engine cycle curves of referred $\rm N_J$ versus turbine temperature and Mach number. (See Figure 4-5).

Note that the program read the input data for N_I as having an inflection. This was due to input error and the curve, in reality, should have been smooth.

Figure 4.5 Referred N_T as a Function of Mach No. and Temperature

The interpolation routine used with the engine data is a second-order curve-fitting method using the point closest to the desired value and the points immediately above and below to generate a second-order curve to obtain the intermediate values. As a result, when the independent variable is in the region of an inflection, a discontinuity occurs in the dependent variable. For example, Figure 4-6 shows the variation of turbine temperature, T, with Mach number, M, as calculated for the referred $N_{\rm I}$ limit at 13,000 feet.

Points 1 through 4 have been calculated using the discrete values of M (M= 0, .4, .6, .8) input to the test case. Curve A is the interpolation curve usings points 1, 2, and 3, while curve B uses 2, 3 and 4. When M becomes greater than about .5, a sudden jump in T results, as curve B is then considered more valid than curve A; M is then closer to 0.6 than to 0.4. The solid line indicates the intended variation of T with M.

Figure 4-6. Variation of Turbine Temperature vs. Mach Number

This sudden change in T causes a corresponding jump in available horsepower and rate of climb. This causes a local peak in the variation of R/C with speed, and can cause an erroneous maximum rate of climb speed. This is because the program is searching for maximum rate of climb by working from high speed $({\rm V}_{\rm MO})$ to lower speeds. In Figure 4-7, we see that at altitudes greater than 13,000 feet

Figure 4-7. Variation of Rate of Climb vs. Velocity

the climb routine would pick up this local peak and we see a dramatic change in speed for a small change in altitude because of engine cycle curves with inflections. Such data may well be incorrect, and may cause inexplicable discontinuities in the output.

Figures 4-8 through 4-14 are flow charts of the engine cycle subroutines. The purpose of these subroutines is described in Table 3-1.

Figure 4-8. POWAVL Subroutine, Flow Chart (Part 1 of 7)

PAGE 2 PGWAYL

Figure 4-8. POWAVL Subroutine, Flow Chart (Part 3 of 7)

4-44

PAGE S PANAVL

Figure 4-8. POWAVL Subroutine, Flow Chart (Part 4 of 7)

4-46

PEGL 7 PCWAYL

Figure 4-8. POWAVL Subroutine, Flow Chart (Part 6 of 7)

PAGE 5 Figure 4-8. POWAVL Subroutine, Flow Chart (Part 7 of 7)

PCHEVL

PERFORMENTS

Figure 4-9. POWREQ Subroutine, Flow Chart (Part 1 of 2)

Figure 4-9. POWREQ Subroutine, Flow Chart (Part 2 of 2)

PCHREG

Figure 4-10. THRAVL Subroutine, Flow Chart (Part 1 of 4)

Figure 4-10. THRAVL Subroutine, Flow Chart (Paic 2 of 4)

Figure 4-10. THRAVL Subroutine, Flow Chart (Part 3 of 4)

Figure 4-10. THRAVL Subroutine, Flow Chart (Part 4 of 4)

PAGE 5 THRAVE

Figure 4-11. THRREQ Subroutine, Flow Chart

Figure 4-12. ENG1 Subroutine, Flow Chart (Part 1 of 2)

Figure 4-12. ENG1 Subroutine, Flow Chart (Part 2 of 2)

Figure 4-13. Lift Available Calculations Subroutine, Flow Chart (Part 1 of 2)

4-5R

Figure 4-13. Lift Available Calculations Subroutine, Flow Chart (Part 2 of 2)

Figure 4-14. Lift Required Subroutine, Flow Chart

4.5 PROPELLER PERFORMANCE CALCULATIONS

Four different options are available for representing the performance of propellers when using turboshaft engines (ENGIND=0). The option to be used is specified to the program by means of a prop efficiency indicator - " $\eta_{\rm pIND}$ ".

npIND=0 The user inputs a set of point values for the properficiency for the performance segments of takeoff, climb, and descent and a table of efficiency as a function of flight Mach number for cruise and loiter. The following input is required:

- np2 The static propeller efficiency (Figure of Merit) to be used in calculation of Takeoff, Hover and Landing (SGTIND=2) is input as a single point value. It should be noted that np2 is also a required input for jet engines (ENGIND=1) or for convertible engines (ENGIND=2). In the former case np2 may be used to represent the turning efficiency of jet engines being used with turning vanes. In the latter case it represents the Figure of Merit of the props or rotors being used with the convertible engines.
- n_{P3} A single point value is input for the properficiency during climb (SGTIND=3).
- np5 A single point value is input representing the prop efficiency during Descent (SGTIND=5).

The primary advantage of this option of propeller performance representation is that it permits rapid evaluation of the sensitivity of aircraft performance and size to changes in propeller performance. For example, a series of runs with different values of np2 and np4 will quickly show the tradeoff between Figure of Merit and cruise efficiency for a family of propellers. It may also prove desirable to use this option in early conceptual studies when a specific prop has not been picked and it is desired to use "reasonable" values of efficiency.

TABLE 4-3
PROPELLER CHARACTERISTIC SUMMARY
ALL PROPELLERS ARE 3-BLADED, CONSTANT SPEED

MANITER	DESIGNATION	INTEGRATED DESIGN CL	ACTIVITY FACTOR PER BLADE	APPLICATION
HARTZELL PROPELLERS, INC.	Т10282Н	0.555	114 (118)*	TWIN OTTER SKYVAN
HARTZELL PROPELLERS, INC.	10173-8	0.62 (0.7)*	104 (107)*	KINGAIR BEECH 99
HAMILTON STANDARD DIVISION, UAC	33LF 1033A-0	0.424	127	HAWK COMMANDER
HAMILTON STANDARD DIVISION, UAC	33LF 1027A-0	0.5	110	
HAMILTON STANDARD DIVISION, UAC	33LF 1013A-0	0.483	97	

VALUES IN PARENTHESES ARE QUOTED BY HARTZELL PROPELLERS. THE VALUES NOT IN PARENTHESES ARE CONSISTENT WITH THE BLADE GEOMETRIC DATA SUPPLIED BY HARTZELL. NOTE:

Table 4.3 Propeller Characteristic Summary

Ì

 η pIND=1 - This option permits the user to input a table representing the performance of the propeller throughout the flight envelope with the exception of DESCENT (SGTIND=5) for which a value of η p5 is input as before. For all other performance segments the table, input in the format of Cp (prop power coefficient) as a function of C_T (prop thrust coefficient) and J (advance ratio), is used. The table which is prepared must include all compressibility losses for the known tip speed at which the propeller is intended to operate. The user is cautioned that the tabular values must be monotonic. That is, the table cannot include the maximum in C_T which reflects blade stall at high values of C_T . This must be faired out as shown in the sketch below:

The advantage of this option is that it permits the user to input the performance of a real propeller as determined from test data.

A previous NASA contract for the modification of VASCOMP II required the preparation of propeller performance data for five general aviation propellers. These data are in the form of card decks and are for use with the $\eta_p IND = 1.0$ option for propeller calculations.

The characteristics and applications of each of these propellers is summarized in Table 4-3. The propeller table number (INPUT LOCATION 0256) to be specified is indicated in the table. These propeller decks are available for use with VASCOMP II. In addition to specifying the "propeller table number" in his input, the user should also indicate on his job required card that the particular propeller deck is required.

Propeller	. Designat	Table Number		
Hartzell	T10282H			10282.3
Hartzell	10173-8			101738.3
Hamilton	Standard	33LF	1033A-0	1033.3
Hamilton	Standard	33LF	1027A-0	1027.3
	Standard			1013.3

In each of the above Table Numbers the 3 after the decimal point indicates that a 3 bladed propeller is represented by the data in the table.

Hover data was previously input by specifying various propeller power coefficients for J=O (Loc 1702) and an input CT (Loc 1723). The current modification enables the user to directly input Figure of Merit for specified CT/ σ and Tip Mach Number. Values of CT/ σ are input locations 2352-2361. M_{Tip} is input locations 2363-2368, and Figure of Merit is tabularized in locations 2369-2428. The user will no longer input the first advance ratio (Loc 1702) as J=O, or an error message will be printed out.

npIND=2 - Through use of this option the program will automatically calculate the performance of a wide variety of V/STOL propellers. The user need only specify the number of blades (3 or 4), the activity factor per blade, and the integrated lift coefficient, C_{Li} . The method used for the calculation of propeller performance is the "short method" originated at the Curtiss-Wright Corporation's Propeller Division (Reference 6). The method involves the use of a set of equations which can be developed from strip theory. These equations permit the propeller performance maps (C_p, C_m, J) to be transformed into an "equivalent" lift-drag polar for the propeller. Conversely, the lift-drag polars, once developed, can be used with the equations to predict the propeller performance. For incompressible flow, the "equivalent" lift-drag polar which is used depends only on the value of CL; being considered. That is, for a given CLi the same polar can be used to accurately represent the performance of props with a wide variation in activity factor and number of blades and for a wide range of Cp and J. For compressible flow conditions, the curves correlate very well on the basis of the value of helical Mach number at the 3/4 radial station. The equivalent liftdrag polars which are contained in the program were developed from detailed strip analysis calculations for cruise and from calculations using an explicit vortexinfluence technique in hover. These detailed calculations covered the following range of parameters:

No. of blades: 3 and 4
Activity factor/blade: 60 + 220
Integrated lift coefficient, CL;: 0.15+0.7

Although the user is permitted to input values of activity factor and CL_i greater than (or less than) those shown above, the level of confidence in the predictions is reduced when values for those parameters are outside the range used in the detailed calculations.

Figures 4-15 and 4-16 are characteristic of the level of accuracy obtained from the short method when compared to the detailed calculations.

This option will calculate the propeller performance for all mission performance segments except Descent (SGTIND=5). For Descent, the user inputs a value for η p5. Figure 4-17 is a flow chart of subroutine THRUST which calculates the propeller thrust available for known values of power and flight speed. Figure 4-18 is a flow chart for subroutine POWER in which the power required for specified thrust and flight speed is calculated. These subroutines make use of propeller equivalent lift-drag polars, as mentioned above, to calculate the performance of the propeller. The polars are developed in the main control loop for the particular value of integrated lift coefficient, $C_{\rm Li}$, being studied from the following equations:

 $\gamma = \tan^{-1} (C_D/C_L) = \text{function of MH, CL, CL}_i$

 $M_{\rm H}$ = helical Mach no. @ 3/4 r/R

CI, = equivalent lift coefficient at which prop is
 operating

CL, = integrated lift coefficient of prop

For cruise

$$\gamma = a_0 + a_1 C_{L_i} + a_2 C_{L_i}^2$$

a_o, a₁, and a₂ are coefficients stored in the program and are functions of MH and C_T.

For hover:

 $\gamma = b_0 + b_1 c_{L_i} + b_2 c_{L_i}^2$

bo, b1, and b2 are coefficients stored in the program and are functions of CL.

The coefficients a_0 , a_1 , a_2 , b_0 , b_1 , b_2 are listed in Table 4-3.

Figure 4-15. Comparison of "Short Method" and Detailed Calculations for Propeller Cruise Efficiency.

Figure 4-16. Comparison of "Short Method" and Detailed Calculation for Propeller Hover Efficiency.

PAGE 2 THRUST

Figure 4-17. THRUST Subroutine, Flow Chart (Part 1 of 7)

PAGE 4 THRUST

Figure 4-17. THRUST Subroutine, Flow Chart (Part 3 of 7)

PAGE 5

Figure 4-17. THRUST Subroutine, Flow Chart (Part 4 of 7)

-72

Figure 4-17. THRUST Subroutine, Flow Chart (Part 6 of 7)

PAGE 10 THRUST

Figure 4-17. THRUST Subroutine, Flow Chart (Part 7 of 7)

9000 2 9009

Figure 4-18. POWER Subroutine, Flow Chart (Part 1 of 5)

Figure 4-18. POWER Subroutine, Flow Chart (Part 2 of 5)

PRGE 4 PCHCR

Figure 4-18. POWER Subroutine, Flow Chart (Part 3 of 5)

Figure 4-18. POWER Subroutine, Flow Chart (Part 4 of 5)

PAGE 1 PCHER

TABLE 4-4

COEFFICIENTS FOR PROPELLER EQUIVALENT POLARS

							,							42	-		21.948I	36.0000	20.000	n (œ.	16.4063	23.2672	39.117	Ή.	8.1	4.352	ی :	4	.417
													, d	a]	c	40 9515	`	-12 2425	4	410.	ν 8 9	-9.3153	-14.7567	-25.0375	-30.7342	. 221	4.937	.631	145	-77.6449
													, ,	05	90.	11 2227	11 3355	•	•	0.000	2.3802	5.2054	6.1902	8.153	10.1745	13.0822	•	20.8089	25.6453	33.5049
													Σ.	F	6.0	-														→
b3	0	13.5125	8.012	5.8118	4.8132	5.3846	6.8072	9.3267	10.7333	5.	15.5		a		0	86.4731	0.9	35,3636	23.0606	22.002	22.0020	•	۰	۲.	•	30.7056	34.1515	43.697	55.5455	68.2121
b2	0	-5.4836	-2.5393	-2.7523	-3.0648	-4.5374	-6.8293	-10.0965	-12.558	8.5	-19.35	•	aı	*	0	2.4433	-22.6338	-14.9997	-9.9837	-13.0524	10000	12 00 44	77	•	-18.2607	-26.0958	-29.4588	-37.3809	-47.3791	-57.8217
b1	06	89.	.9141	.513	.5304	.9611	. 7089	.8237		.3796	.13	•	a ₀	,	.06	10.2148	8.3106	5.4623	4.0458	3.9439	•	•	•	٠	6.1044	œ	12.2042	17.0398	22.784	28.7851
+								,		-	<u> </u>		π		0.8															>
$^{\mathrm{T}}$	0	.15	.2	۳.	4.	5.	9.	.7	φ.	٠. ن	1.0		a ₂			-	19.2195	8.291	7.0366	7.3774	7,4251	•	; -		n (22.6773	Φ.		.63	26.4923
HOVER:												CRUISE:	al		0	1.9949	-4.1639	-1.7030	-2.5322	-4.5422	-5.4949	6	10001	4 0	7.01	7		-43.061	7.882	-49.6246
COEFFICIENTS FOR HOVER:												COEFFICIENTS FOR CRUISE	a ₀	ŝ	90.	7.0392	4.8350	3.2218	2.7551	2.481	2.4521	2.8149	3 8725	5 6652	0.0000	12.07	52	17.0496	÷,	31./062
FFICI												FICIL	MH		•													_		> -
COE												COEF	$c_{\mathbf{f}}$	c) L	3.	. 10	. I5	07.	r.	4.	5.	9.	7	٠	٠ •	, ,) ·	٦.	·-

The calculations of propeller performance for $\eta_D IND = 1$ and 2 are based on the assumption that the engines are interconnected by a cross shaft. That is, if engines are shut down during cruise and loiter the remaining power is evenly distributed to all of the propellers.

Accuracy of Propeller Performance Calculation for $\eta_p IND = 2.0$

The propeller performance calculation subroutine using the Curtiss-Wright (modified) Short Method has a data base derived from extensive detailed calculations for a family of high disc loading V/STOL propellers. In order to confirm that the subroutine accurately represents the performance of this type of propeller, the comparison of Figure 4-19 was made between the "short method" calculation and detailed calculations for the propeller of the Vertol Model 170-544P tilt wing transport airplane. The prediction is very good and properly reflects the compromise between hover and cruise performance.

Figure 4-20 shows a comparison between the subroutine and a comparable data base for propellers specifically designed for cruise applications. The data were obtained from the Hamilton Standard "Red Book." Such propellers would be designed with a greater amount of twist than a V/STOL propeller and consequently the data base of the propeller calculation subroutine may not be expected to give accurate predictions in this case. However, as shown in Figure 4-20, the subroutine predicts cruise efficiency only slightly lower than the Red Book and exhibits the same trends.

As an additional comparison, the subroutine has been used in an attempt to predict the performance of a low disc loading proprotor. Because of the relatively small amount of blade twist associated with the low disc loading proprotor the data base used in the subroutine does not result in accurate performance predictions. This is shown in Figure 4-21 where the subroutine calculations are compared with detailed calculations. As might be expected, the subroutine underpredicts hover performance and overpredicts the cruise performance for this propeller.

The data base for the subroutine was derived from detailed calculations for a family of moderate to high disc loading V/STOL propellers. A similar set of data could be prepared for other propellers, such as the low disc loading prop-rotor, which would allow accurate performance predictions by the subroutine for these propellers.

Figure 4-19.

V/STOL PROP FOR VERTOL MODEL 170- 544P TILT WING

4 BLADES, ACTIVITY FACTOR * 100/BLADE Figure 4-20. Comparison of Short Method vs Hamilton Standard Red Book Data

Performance Predictions of Low Figure 4-21. Disc/Loading Prop/Rotors

.04

.06

.08 PROPELLER THRUST COEFF., CT $\eta_{\rm p} {\rm IND} = 3.0$ This option allows the user to input a fan performance table similar to the propeller performance table used for $\eta_{\rm p} {\rm IND} = 1.0$. The ducted fan performance is supplied to the program in the form of a table of referred power as a function of forward flight Mach Number and referred thrust: SHP/A $\delta \sqrt{\theta} = (M, TA_2 \delta)$ where A is the annulus area of the fan.

To use the ducted fan option, the user must provide the following inputs:

 η_D IND = 3. in LOCATIONS 0200 in LOCATIONS 1700, 0256 Fan Table Number Number of Mach Numbers in LOCATION 1701 Number of Reffered Thrusts in LOCATION 1722 Tabulated Values of Mach Number in LOCATIONS 1702 through 1721 Tabulated Values of T/A₂δ in LOCATIONS 1723 through 1742 Tabulated Values of SHP/A₂ $\delta\sqrt{\theta}$ in LOCATIONS 1743 through 2142 A zero input of $k_{R/p}$ An appropriate value of kTM in LOCATION 0457 in LOCATION 0408

The above data may be input using the Propeller/Fan data input sheets, and the Weights input sheet provided in Chapter 5.

No changes have been incorporated to caluclate the weight of ducted fan systems and it is considered that the weight equations associated with the propeller inputs would give an inaccurate estimate. To avoid using the propeller weights equations, $k_{R/P}$, LOCATION 0457, should be input as zero. The weight of a ducted fan system can be calculated by use of the variable input k_{TM} , which is nominally the weight factor for the tilt mechanism on a tilt wing or tilt rotor aircraft. This constant calculates a weight which is proportional to the aircraft gross weight. Since the weight of a ducted fan is approximately proportional to the design thrust and the design thrust is determined by a design thrust to weight ratio, choice of a suitable value for k_{TM} allows the user to obtain a reasonable estimate of the weight of the ducted fan system.

In propeller or rotor calculations within VASCOMP, the reference area employed is the total disc area and is calculated from inputs of either disc loading or diameter and the number of propellers or rotors. In order to obtain accurate values of A_2 for ducted fan calculations, the user must either (i) scale the fan performance data so that the reference area is A (the disc area) rather than A_2 , the annulus area, or (ii) use input values of disc loading or diameter that will ensure that the calculated reference area is equal to the annulus area. Two options are available. When PDMIND (Location 0005) is 1 or 3, the user must input a "Diameter" in Location 0226. To make the reference area A (= $N_R\pi D^2/4$) equal to the annulus area of the fan, a value of D = $N(D_T^2-D_R^2)$ must be used, where D_T and D_R are the tip and root diameters of the fan, respectively.

In cases where PDMIND is 2 or 4, the user must input the "fan loading" (= W_G/A_2) in Location 0225 rather than disc loading. The calculated value of diameter will be the effective value, $N(DT^2-DR^2)$.

DISUCSSION OF PROPULSION EFFICIENCY

The final selection of a propeller blade design to best suit a given V/STOL aircraft mission is a rather arduous task because the suboptimization of many considerations such as propeller efficiency, propeller weight, power transmission system weight, powerplant performance, and others is required for each mission segment followed by an overall mission optimization. A single propeller design does not satisfy the requirements for optimum performance in every mission segment. That is, the design optimized for best hovering performance is not also the best climb or cruise segment design.

The basic problem faced in evolving a single propeller design to satisfy all flight conditions is that of achieving the optimum blade loading for each of the flight conditions. This is virtually impossible due to the degree and manner in which thrust required and power available vary with engine and vehicle speeds. From an aerodynamic viewpoint, this basic problem manifests itself in terms of problems associated with blade chord, twist and design $C_{I,i}$ distributions, engine-propeller performance matching, and compressibility.

Propeller blade loading is a function of the spanwise distribution of blade twist, blade chord, and blade section design lift coefficient. These three parameters must be employed so as to yield the optimum propeller performance at a given flight condition. This will occur when each section of the blade is adjusted to operate at or near its maximum lift-drag ratio while maintaining an optimum spanwise load distribution. As the operating conditions vary, the degree to which near optimum conditions can be maintained changes for a fixed blade geometry. Therefore, some compromise must take place, and best efficiency cannot be achieved at each and every operating condition.

As one can appreciate, with fixed blade geometry the attainment of overall propeiler optimization is somewhat limited with regard to what can be aerodynamically achieved with twist, solidity, and design lift coefficient. Furthermore, changing these variables results in variations in blade centrifugal twisting moment, hub centrifugal loads, blade pitch control loads, and numerous other items which result in either operational envelope limitations or weight constraints. Variable blade geometry can result in aerodynamic improvements, but these may well be offset by increased weight and cost. Variable geometry

propeller blade development and application, furthermore, have been quite limited.

The ability to alter propeller speed in cruise with respect to hover will help the designer cope with blade loading problems and result in better mission efficiency. This can be done either by using a multiple speed power transmission system between the engine and propeller or by exercising the variable output shaft speed capability of free turbine powerplant. The former method is generally not used due to weight penalties, while the latter method is extensively employed. Engine-propeller matching, though, is not as simple as it may sound, and transmission torque requirements and weight increase with reduced turbine speed.

The combination of vehicle speed, propeller speed, diameter and altitude produce a constraint in the form of Mach number. Exceeding a helical tip Mach number of about 0.95 appears to significantly raduce propeller efficiency.

Current state of the art regarding propeller aerodynamics appears to permit very accurate appraisal of a given propeller design's performance over most of the flight envelope. Performance prediction capability is generally inadequate in the following areas: (1) static thrust (e.g., relating to the pure hovering flight mode), (2) at moderate to high propeller shaft angles of attack (say 30 to 90 degrees), and (3) under the "mixed" flow conditions where the blade sections are in neither wholly subsonic nor wholly supersonic flows. For purposes of preliminary design, however, the short methods for predicting propeller performance available from propeller manufacturers (e.g., Curtiss-Wright and Hamilton Standard) generally produce acceptable results, and should certainly be given consideration.

Whenever possible, the aircraft designer should consult the propeller manufacturers and his own propeller staffs early in the preliminary design phase. Lacking this, he should freely exercise the methodology published by propeller manufacturers. These methods require only several minutes to manually compute a propeller performance point and are well worth the effort. Too many preliminary aircraft designs have proceeded too far assuming propeller efficiencies in excess of the ideal induced (i.e., zero drag) value.

4.6 SIZE TRENDS SUBROUTINE

The size trends subroutine calculates the trends of the aircraft geometric dimensions as the weight of the aircraft changes throughout the iterative sizing loop. Figure 4-22 displays a flow chart showing the several options available within the size trends subroutine. The first of these is an option concerning the calculation of fuselage dimensions. The fuselage dimension option is specified by means of the input indicator FDMIND, the fuselage dimension indicator. This option permits the user to either input the length and wetted area of the fuselage or to have the program calculate these factors. If FDMIND = 1, the computer program will calculate the length and wetted area of the fuselage based upon input values of the cabin length, the cabin mean diameter, and the fineness ratio of the pilot's section and the tail section. If FDMIND = 0, the length of the fuselage and wetted area are input to the program by the user. This option is included in the program so that the user studying an aircraft of known fuselage dimensions can input the exact dimensions to the program.

If the fuselage dimension indicator is set to 2, the airplane fuselage will be sized to accommodate specified passenger requirements. The user inputs the required number of passengers, seats abreast, number of aisles, unit seat width, seat pitch, and aisle width. This data can be input for both first class and tourist service. Two different options are available for galleys and lavatories. Each is specified by means of an input indicator. Setting the galley indicator and/or lavatory indicator to 1 will permit the user to directly specify the galley area and/or the number of lavatories. A zero (0) input will force the program to use the following built-in trends:

Lavatories

No. of	Passengers	No. of Lavatories
		•
0 +	59	1
60 +	99	2
100 +	139	3
140 +	179	4
-		i
eto	·	etc.

The floor area required for lavatories is calculated at 16 square feet per lavatory.

PEGE 2

Figure 4-22. Size Trends Subroutine, Flow Chart (Part 1 of 13)

Figure 4-22. Size Trends Subroutine, Flow Chart (Part 2 of 13)

PROT 4 SIZTA

Figure 4-22. Size Trends Subroutine, Flow Chart (Part 3 of 13)

PAGE S

Figure 4-22. Size Trends Subroutine, Flow Chart (Part 4 of 13)

Figure 4-22. Size Trends Subroutine, Flow Chart 51273 (Part 5 of 13)

(Part 6 of 13)

FROD S

PAGE 3

Figure 4-22. Size Trends Subroutine, Flow Chart (Part 7 of 13)

PAGE 10 SIZTR

Figure 4-22. Size Trends Subroutine, Flow Chart (Part 8 of 13)

Figure 4-22. Size Trends Subroutine, Flow Chart SIZTE (Part 9 of 13)

PAGE 12 SIZTA

)

Figure 4-22. Size Trends Subroutine, Flow Chart (Part 10 of 13)
4-98

Figure 4-22. Size Trends Subroutine, Flow Chart (Part 11 of 13)

PAGE 14 SIZTR

Figure 4-22. Size Trends Subroutine, Flow Chart (Part 12 of 13)

4-100

Figure 4-22. Size Trends Subroutine, Flow Chart (Part 13 of 13)

Galleys

The floor area required for galleys is 0.27 square feet per tourist passenger and 0.65 square feet per first class passenger.

The body is assumed to be circular in cross-section. The cabin diameter (I.D.) is determined by the number of seats abreast, unit seat width, number of aisles, aisle width, plus a requirement that adequate clearance be maintained between the window seat passenger and the inside cabin wall. The clearance requirements define a set of sidewall control points, shown in Figure 4-23. By using these control points, an empirical equation for the cabin radius has been developed (shown in Figure 4-24). The body radius (O.D.) is calculated from (cabin radius) \div 0.94. A comparison between predicted and actual body radius for six different commercial aircraft is shown in Figure 4-25.

The body length is made up of a nose section, a constant diameter section, and a tail section. The user specifies the fineness ratio of the nose and tail. Typical values for fineness ratios for commercial aircraft are $(\ell/d)_{NOSE}$ = $1.5 \rightarrow 2.0$ and $(\ell/d)_{TATL} = 2.5 \rightarrow 3.5$. The closet floor plan area is calculated by the the program from a trend equation and contributes to the determination of fuselage length. The closet area is 15 square inches per first class passenger and 10 square inches per tourist passenger. The body length is determined by setting the floor plan area required for passengers and services (galleys, lavatories and closets) equal to the area available in nose, tail, and constant diamater sections. The assumption has been made that 1/5th of the nose and tail can be used for passengers and services. A comparison between predicted and actual fuselage length for six different commercial aircraft is shown in Figure 4-26.

An option is available for calculation of wing dimensions. By use of this option the wing dimensions may be dictated by either wing loading or by propeller geometry as in the case of a tilt-wing aircraft. This option is specified to the program by the user through use of a wing dimension indicator, WDMIND. If WDMIND = 1 or 2, the wing geometry is dictated by propeller characteristics. The user inputs a disc loading, a clearance from inboard propeller tip to inboard propeller tip, propeller to propeller overlap, and wing tip position relative to the outboard propeller. If ENGIND = 1.0 (turbofan engine), do not set WDMIND.

Figure 4-23. Definition of Sidewall Control Points for Fuselage Sizing.

Figure 4-24. Empirical Relationship for Cabin Radius.

Figure 4-25. Comparison of Predicted Body Radius with Actual Body Radius for Six Commercial Aircraft.

Figure 4-26. Comparison of Predicted Fuselage Length With Actual Fuselage Length for Six Commercial Aircraft.

If WDMIND = 1, the user also inputs a mean chord to diameter ratio and the program calculates wing loading. If WDMIND = 2, the user inputs wing loading and the program calculates mean chord to diameter ratio. In either case the program calculates the mean chord of the wing, the wing span, the wing area, and the aspect ratio. If WDMIND = 0, the wing geometry is dictated by wing loading. The user inputs a wing loading and aspect ratio of the wing. The program then calculates the wing area, span and mean chord. In addition, if turboshaft or convertible engines (ENGIND = 0, or 2) are used, the program calculates a mean chord-to-diameter ratio.

The important propeller dimensions are the diameter and the blade chord (or activity factor or solidity). The diameter may either be input directly or calculated from an input value for the disc loading. The chord may be specified by an input for the activity factor per blade or calculated from an input thrust coefficient-to-solidity ratio. The following choices are available, specified by an input prop dimension indicator, PDMIND:

PDMIND	Input			
1	Diameter and activity factor			
2	Disc loading and activity factor			
3	Diameter and C_{T}/σ			
4	Disc loading and Cm/o			

These options can only be used if the option indicator, OPTIND = 1. If the option indicator is 2 or 3 and it is desired to calculate the propeller performance by the automatic subroutine option (npIND=2), the user must input the disc loading and activity factor per blade.

The dimensions of the tail surfaces are next calculated. The areas of the horizontal and/or vertical surfaces may be input as fixed constants by setting the indicator HTIND and/or VTIND to 2.0. Otherwise, by inputting the indicator(s) as unity the program will calculate the tail area(s) from input tail volume coefficient(s). The aspect ratio of each tail surface is also input. The program then calculates the span and mean geometric chord of each tail surface.

The dimensions of the lift nacelle and primary nacelle are next calculated. These dimensions are dictated by the thrust or horsepower level of the engines. The size of the lift engine nacelle is assumed to be primarily dependent upon the physical size of the dry lift engines, the number of clusters of engines, and the gap between engines in a cluster (see Figure 2-1). The size of the

primary engine nacelles is more often dictated by the design of the transmission system and less often by the physical size of the dry engines. Separate input constants z_1 , z_2 , and z_3 are used to calculate the size of the primary engine nacelles:

diameter (ft) =
$$z_1 \left[\frac{\text{SHP}^*}{N_p} \right]^{1/2}$$
 or $z_1 \left[\frac{F_N^*}{N_p} \right]^{1/2}$
length (ft) = z_2 + $z_3 \left[\frac{\text{SHP}^*}{N_p} \right]^{1/2}$ or z_2 + $z_3 \left[\frac{F_N^*}{N_p} \right]^{1/2}$

wetted area (ft²) = N_p^{π} (dia.) (length)

Correlation of data for nacelle size, within fixed categories of aircraft, show that this representation gives reasonable accuracy.

4.7 AERODYNAMICS CALCULATIONS SUBROUTINE

The aerodynamics subroutine calculates the lift curve slope and a series of factors which are used for calculation of drag. The drag calculation has been written in the most general manner possible. The drag is assumed to be divided into profile drag, induced drag, and compressibility (wave) drag. The profile drag is further divided into a portion for each component of the aircraft. The wing profile drag is assumed to be a function of lift coefficient, as specified by an input table. The other portions of profile drag are single-value points. The profile drag is input at a reference Reynolds' number of 107, and the program calculates a variation with Reynolds' number. Form factors for each component are input to the program. These factors can also be used to represent interference or for sensitivity studies. The fuselage drag is calculated as the sum of two terms: one proportional to wetted area and one which is constant. Therefore, if a known fuselage is being studied, the constant value can be input and the other term set to zero. Otherwise, the opposite can be done.

The drag is assumed to be equal to:

$$C_{D} = C_{DWi} [f_{W}(Re)] + \left(\frac{.00287 K_{F} S_{F} + \Delta f_{e}}{S_{W}}\right) [f_{F}(Re)]$$

$$Wing Profile Fuselage Profile$$

$$+ K_{VT} \frac{S_{VT}}{S_{W}} C_{DVTi} [f_{VT}(Re)] + K_{HT} \frac{S_{HT}}{S_{W}} C_{DHTi} [f_{HT}(Re)]$$

$$Vert. Tail Profile Hor. Tail Profile$$

$$+ - - - + \Delta C_{D} + K_{W} \Delta C_{DM} + C_{L}^{2}/\pi e \Delta R$$

$$Arbitrary Compressibility Induced$$

The compressibility drag (ΔC_{DM}) is calculated according to a semi-empirical technique. The terms of the drag equation are combined in the following form:

$$C_D = a_5 + a_6 C_{DWi} + K_W \Delta C_{DM} + a_7 C_L^2$$

where

$$a_{5} = \left(\frac{.00287 \text{ K}_{F} \text{ S}_{F} + \Delta f_{e}}{\text{S}_{W}}\right) [f_{F}(\text{Re})]$$

$$+ \text{ K}_{VT} \frac{\text{S}_{VT}}{\text{S}_{W}} C_{DVTi} [f_{VT}(\text{Re})] + - - + - - - + \Delta C_{D}$$

$$a_{6} = \text{ K}_{W} [f_{W}(\text{Re})]$$

$$a_{7} = 1/\pi e R$$

The factors a_5 through a_7 (and a_1 through a_4 , for compressibility drag) are used in the drag calculations subroutine to calculate $C_{\rm D}$ as a function of $C_{\rm L}$ and M.

The terms $f_W(Re)$, $f_F(Re)$, $f_{VT}(Re)$, etc., are Reynolds' number functions for the wing, fuselage, vertical tail, etc., which reflect the variation of skin friction coefficient with Reynolds' number. The function which is used is a normalized form of the Prandtl-Schlichting turbulent flat plate skin friction equation:

$$f(Re) = \frac{C_f}{C_{f_{Re}=10}^7} = [1 + \frac{1}{7} \log_{10} \frac{R_e}{10^7}]^{-2.6}$$

The program user inputs a value for average Reynolds number per foot for the mission and the program then calculates the Reynolds' number for each component of the aircraft and uses the Reynolds' number functions f_W (Re), f_F (Re), etc., to determine the variation in component drag as the aircraft dimensions change during the iteration on gross weight. The individual profile drag coefficients, $C_{\rm DVTi}$, $C_{\rm DHTi}$, etc., are input at a reference Reynolds' number of 10^7 .

The user inputs values for the profile drag coefficients (C_{DVTi} , C_{DWi} , etc.), for the interference factors (K_F , K_W , etc.), for the mean Reynolds' number per foot, (R_e/ℓ), and for the efficiency factor, e (the program will calculate e if OSWIND is input as unity). The program then calculates the values for a_1 through a_7 for use in the drag calculations subroutine. The user also inputs the two dimensional lift curve slope, and the program calculates the three dimensional value for lift curve slope.

The drag routine may be used in many different ways. The four most common applications are:

- Drag Build-up for a New Aircraft Design This is best illustrated by first referring to the complete drag breakdown of a hypothetical airplane shown in Table 4-4. The input CD for each component (CDWi, CDHTi, etc.) may be used to represent the reference Cf at $R_{\rm e} = 10^{7}$ and at the mean flight Mach number. Drag increases above the drag of a flat plate such as three dimensional effects, interference, roughness, and excrescences may be accounted for by the multiplying factors (K_W , $K_{\rm HT}$, etc.). Drag increments which are not proportional to skin friction can be summed and input as ΔC_D . Examples of these increments are cooling momentum, trim, and airconditioning. The K factor for wings and tails should include a factor for relating the wetted area of the surface to the planform area. An example of the program input for the hypothetical airplane of Table 4-5 is shown in Table 4-6.
- 2. Study of the Sensitivity of Aircraft Size with Respect to the Component Drag or the Total Drag about a Certain Drag Level Let the total drag of each component be contained in the drag coefficient of each component, CDWi, CDHTi, CDVTi, etc. The change in drag of each component will then be determined by the values assigned to the component multiplying factor, KW, KHT, KVT, etc. The fuselage drag change, however, will have to be represented by an incremental value of Δf_e.
- 3. Use of Component Drag Data from Wind Tunnel Test Let the drag of each component (including interference) be contained in the component drag coefficient, CDWi, CDHTi, CDVTi, etc. The skin friction drag must first be corrected to Re = 107. The drag increase due to items found only on the full scale airplane would then be represented by the factors and increments. Increases due to excrescences and roughness are represented by the factors, KW, KHT, KVT, etc. Increments such as inlets, cooling, trim, and afterbody drag, can be summed and represented by ΔCD.
- 4. Simplified Drag Model for Parametric Studies The program is often used to study the influence of variations of parameters such as wing loading and disc loading on the size of an aircraft. During these studies, the type of aircraft (such as four propeller tilt wing) is generally held constant. For studies of this type it may be possible to represent the total flat plate area

TABLE 4-5
TYPICAL DRAG SUMMARY

COMPONENT	Wetted Area	c _f	INCREMENT		
			8	Δfe	f _e FT ²
FUSELAGE	2027.	.00185		3.75	7.08
3-Dimensional Effects Excrescences Canopy Afterbody			20.0 7.0 5.0	.75 .31 .22 2.05	
WING	1290.	.00246		3.17	5,25
3-D Effects Excrescences Flaps, Slats, Ailerons, Spoilers Body Interference			33.0 4.0 16.0 7.0	1.05 .17 .63 .23	
HORIZONTAL TAIL	477.	.00258		1.23	
3-D Effects Excrescences Interference			20.6 8.6 10.0	.41 .14 .16	1.94
VERTICAL TAIL	398.	.00235		.94	1.49
3-D Effects Excrescences Interference			33.0 8.6 10.0	.31 .11 .13	
INBOARD NACELLES	286.	.00228		.65	1.72
3-D Effects Excrescences Interference Inlets			35.0 20.0 88.0	.23 .16 .63 .05	
OUTBOARD NACELLES	331.	.00228		.76	1.70
3-D Effects Excrescences Interferences Inlets			35.0 20.0 40.0	.27 .21 .41 .05	
LANDING GEAR POD	338.	.00218		.74	
3-D Effects Excrescences Interference			45.0 10.0 25.0	.34 .11 .27	1.46
Roughness (5.0% of C _f A _{WET}) Cooling Trim Air Conditioning				.56 .50 .30	1.56
TOTALS ft ²	5147.			·	22.20
Notes: (1) Basic $f_e = (C_f^A_W$ (2) Excrescences & i	ET) +			**	L

TABLE 4-6 SUMMARY OF AERODYNAMICS INPUT FOR AIRCRAFT OF TABLE 4-3

GENERAL				
$C_{DWi} = C_{DVTi} = C_{DHTi} = C_{D_N} = C_f = .00287 \ 0 \ R_e = .10^7, M = 0.40$				
$(R_e/_i)_i = 3.0 \times 10^6$				
COMPONENTS	S _F = 2027 fuselage wetted area			
FUSELAGE				
	$\Delta f_e = \frac{.00287}{.00185} (2.05 + .10 + .50 + .20) = 4.417$ body C_f aft body nacelle cooling air inlets conditioning			
WING	K _W = (1.75) {(1 + .33)(1 + .04 + .16 + .07) + .05} = 3.043 excr. roughness flaps, slats ail., spoilers			
TAIL	$K_{HT} = 2.034 \{(1 + .206)(1 + .086 + .10) + .05\} = 3.011$ $K_{VT} = 2.057 \{(1 + .33)(1 + .086 + .10) + .05\} = 3.347$ $\frac{A_{WET}}{S_{VT}}$ 3-D effects excr. interf. roughness			
NACELLES	$K_{N} = (1 + .35) \left[1 + .20 + \frac{(.88 + .40)}{2} + .05 = 2.534 \right]$			
MISC	ΔC_D = .00040 for trim Cooling, air conditioning and nacelle inlets are included in the fuselage Δf_e			

of the family of aircraft as a linear function of the wing area. This representation of drag can be input to the program by three values: $\Delta f_{\rm g}$ representing the drag at zero wing area, $\Delta C_{\rm D}$ representing the slope of the curve, and $K_{\rm W}=1$.

The three dimensional lift curve slope which is calculated is based upon the method of Reference 3, which accounts or aspect ratio, wing sweep, and Mach number effects. For the purpose of this program, the Mach number effects are not included. Rather, the value of lift curve slope is evaluated at a Mach number = .87MMO, which gives a reasonably accurate value for use during climb and descent calculations.

Figure 4-27. is a flow chart of this subroutine.

Figure 4-27. Aerodynamics Subroutine, Flow Chart (Part 1 of 4)

Figure 4-27. Aerodynamics Subroutine, Flow Chartest (Part 2 of 4)

Figure 4-27. Aerodynamics Subroutine, Flow Chart (Part 3 of 4)

4-117

PAGE 5 RERC

Figure 4-27. Aerodynamics Subroutine, Flow Chart (Part 4 of 4)

4.8 ENGINE SIZING SUBROUTINE

The engine cycle performance data included in the engine library consists of detailed performance maps of power (or thrust), fuel flow, $N_{\rm I}$, and $N_{\rm II}$. The data, as shown in Table 4-1, is in normalized, referred format. In particular, horsepower is normalized with respect to the value of power at the maximum static rating at sea level, standard day conditions. Thrust is similarly normalized to the maximum static thrust at sea level, standard day.

The engine sizing subroutine calculates the value of the scaling factors; namely, the maximum static thrust or power (S.L., std.). The user is permitted to bypass this subroutine completely if he desires to study an aircraft with fixed rather than "rubberized" engines. This is accomplished by means of the input indicator FIXIND. If FIXIND = 0, the engine sizing subroutine is bypassed, and the user inputs the maximum power or thrust levels. If FIXIND is input as 1.0, the engine sizing subroutine is entered to calculate these values of maximum power or thrust.

A variety of different criteria are often applied to determine engine size requirements. These criteria, differing as they do, can generally be related by a single factor. For a takeoff condition this factor is the value of equivalent required thrust to weight ratio. Similarly, engine sizing requirements for forward flight can be related to a set of cruise conditions, namely, cruise altitude and true airspeed. Relationships used in this program to size the engines differ depending upon whether or not separate lift propulsion has been selected. Engine sizing requirements for V/STOL aircraft which do not contain separate lift propulsion are generally set by takeoff conditions, and less frequently by forward flight conditions. The program, therefore, permits the user two options of calculation for this type of aircraft. The first option will calculate engine size for takeoff conditions only; the second option will calculate engine size for both takeoff and forward flight conditions, compare the two, and pick the more critical condition. The engines are sized for takeoff to provide a required (input) equivalent thrust to weight ratio with a specified (input) number of engines inoperative.

Additional engine sizing parameters have been added for either the turboshaft (ENGIND = 0.0) or convertible (ENGIND = 2.0) engine. Expanded capabilities include a direct horsepower input to drive accessory options (LOC 0259), primary or lift engine sizing at a specified fraction of power (LOC 0260), and engine sizing for take-off conditions at a specified vertical rate of climb (LOC 0261).

If separate lift propulsion is used, the cruise engines are first sized to meet specified forward flight conditions. The lift engines are then sized to provide sufficient additional thrust to meet the takeoff requirements. The lift engines are sized to provide this additional thrust with either a specified number of primary engines inoperative or a specified number of lift engines inoperative. The program calculates the thrust required to meet each of these conditions, compares them, and picks the more critical condition. Takeoff or cruise conditions or both may be set for standard or nonstandard atmosphere.

Cruise conditions are specified by means of altitude, ambient temperature, and true airspeed. In addition, the user may select the power setting to be used: maximum, military, or normal.

In addition to performing engine sizing, this subroutine calculates the drive system rating. The two options available to the user for this purpose are:

XMSNIND = 0.0 Transmission is sized at a specified (LOC 0257) fraction of primary installed engine power

It should be noted that when FIXIND (LOC 0010) = 0.0, fixed size engines, either transmission sizing option can be used. The Fortran coding that sizes the transmissions with fixed engines is found in the MAIN subprogram. The transmissions can be sized irregardless of the propeller performance option used (npIND LOC 0200). If XMNSD = 1.0 is exercised for fixed size engines, the program will calculate the required powers, and size the transmission even if the required power is greater than the fixed sized input power.

If ENGIND = 0, (LOC 0011), both transmission options are available to the user. For ENGIND = 1, transmission sizing is not possible, thus the program bypasses the transmission sizing inputs. For convertible engines, ENGIND = 2.0, the XMSNIND = 0 option can be used without any constraints. Since convertible engines do not use a transmission for cruise, XMSNIND = 1.0 cannot be used. If ENGIND = 2.0 and XMSNIND = 1.0, the program will automatically apply the transmission limit as a specified fraction of installed takeoff power, and an informative message will be printed out.

The use of separate engines and transmission sizing options provides great flexibility in meeting conflicting engine/drive system requirements. As an example, if XMSNIND = 1.0, it is possible to size an aircraft's engines to meet an engine inoperative in hover requirement while sizing the transmission for the actual power required to hover at that design point, thus effecting a considerable saving in drive system weight. If XMSNIND = 0.0, it is possible to size the engines for cruise at 3000 ft/91.5 F, 250 Kts, but the transmission could be sized at 90% of the cruise power design point.

The transmission designed operating tip speed is passed from the engine sizing subroutine to the weight trend subroutine so that the prop/rotor system and the primary drive system weight reflect the actual operating tip speed.

The drive system ratings determined in the sizing process may be used to limit helicopter performance by setting $Q_{\rm IND}({\rm LOC~1205})=1.0$, and inputting an appropriate value of $Q_{\rm MAX}/Q^*$, LOC 1224. This option imposes a transmission torque limit in the performance calculations.

Figure 4-28 is a flow chart of the Engine Sizing Subroutine

PAGE 2 ENGS/

Figure 4-28. Engine Sizing Subroutine, Flow Chart (Part 1 of 12)

PAGE 3 ENGOZ

Figure 4-28. Engine Sizing Subroutine, Flow Chart (Part 2 of 12)
4-123

PAGE 4 ENGSZ

Figure 4-28. Engine Sizing Subroutine, Flow Chart (Part 3 of 12)

Figure 4-28. Engine Sizing Subroutine, Flow Chart (Part 4 of 12)

PAGE 7 ENGSZ

Figure 4-28. Engine Sizing Subroutine, Flow Chart (Part 5 of 12)

PEDE J

Figure 4-28. Engine Sizing Subroutine, Flow Chart (Part 6 of 12)

Figure 4-28 Engine Sizing Subroutine, Flow Chart (Part 7 of 12)

PRGC 10 ENGSZ

Figure 4-28. Engine Sizing Subroutine, Flow Chart (Part 8 of 12)

PAGE 11 ENGSZ

Figure 4-28. Engine Sizing Subroutine, Flow Chart (Part 9 of 12)

ENGSZ

PAGE 13 ENGSZ

Figure 4-28. Engine Sizing Subroutine, Flow Chart (Part 10 of 12)

RETURN

PAGE 15 ENGGZ

Figure 4-28. Engine Sizing Subroutine, Flow Chart (Part 11 of 12)

, :

PAGE 15 ENGSZ

PAGE 17 ENCSZ

Figure 4-28 Engine Sizing Subroutine, Flow Chart (Part 12 of 12)

4.9 WEIGHT TRENDS SUBROUTINE

The weight trends subroutine calculates the group weights for the propulsion system, the structures system, and the flight control system. These weights are then combined with input values of the weight of fixed useful load, fixed equipment, and payload in order to determine the weight of fuel available (Figure 4-29). The subroutine uses detailed statistical weight equations as used at the Boeing Vertol Company. The group weights are not directly added, but rather are combined by the use of incremental multiplicative and additive weight factors; these factors are useful for sensitivity studies for the aircraft. For example, if it is desired to determine the effect of an additional 300 pounds of propulsion system weight, the factor $\Delta W_{\rm p}$ is input as 300. Similarly, if it is desired to investigate the effect of a 15-percent increase in the weight of the engines, the factor K_5 is input as 1.15.

In order to calculate the weight of the aircraft structure, the weight trends subroutine must determine the limiting design load factor. It does this by comparing the magnitude of the input maneuver load factor with the value calculated for gust load factor. The gust load factor is evaluated at the altitude at which maximum operating equivalent airspeed (v_{MO}) is equal to the speed for maximum operating Mach number (M_{MO}) so long as the altitude falls in the band,

$$0 \le h_{CRIT} \le 20,000 \text{ feet}$$

The gust load factor is calculated at the speed $V_{\rm C}$ (see Reference 4) which is taken to be equal to $V_{\rm MO}/M_{\rm MO}$. Modern aircraft which would be studied by VASCOMP II are seldom, if ever, gust-critical at either the $V_{\rm B}$ or $V_{\rm D}$ (Reference 4) conditions. If the user finds that his aircraft is gust-critical at other than the $V_{\rm C}$ condition, he must manually calculate the expected load factor and insert that value in the program as a dummy maneuver load factor.

4.9.1 Weight Trend Data

The weights subroutine section of VASCOMP presented herein represents one approach for determining the individual and group weights which make up the weight empty of an aircraft. The aircraft weight is divided into the subgroups as shown in Table 4-7 and is in general accordance with the weight and balance data reporting procedures and forms for aircraft and rotorcraft described in Military Standard 1374. A copy of Part I (Group Weight Statement) is included at the end of this section. A flow chart describing the weights subroutine is shown in Figure 4-30.

Figure 4-29. Weight Trends Schematic

WEIGHT SUMMARY - PRELIMINARY DESIGN

		(MIL-STD-1374)
۲		
1	}	
1	1	
		TABLE 4-7
ì	Ì	WEIGHT SUMMARY FORM
1	ł	
l	j	
W NG	1	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	$\frac{1}{2}$	
ROTOR		
TAIL	3	
SURFACES	4	
ROTOR	5	•
BODY	6	
BASIC	7	
		
SECONDARY		**************************************
ALIGHTING GEAR GROUP	9	
ENGINE SECTION	10	
	11	
PROPULSION GROUP	12	
ENGINE INST'L	13	
EXHAUST SYSTEM	14	
COOLING	15	
CONTROLS	16	
STARTING	17	
PROPELLER INST'L	18	
LUBRICATING	19	
FUEL	20	
DRIVE	21	
· · · · · · · · · · · · · · · · · · ·		
FLIGHT CONTROLS	22	
	23	
AUX. POWER PLANT	24	
INSTRUMENTS	25	
HYDR. & PNEUMATIC	26	
ELECTRICAL GROUP	27	
AVIONICS GROUP	28	
ARMAMENT GROUP	29	
FURN. & EQUIP. GROUP	30	
ACCOM, FOR PERSON.	31	
MISC. EQUIPMENT	32	
FURNISHINGS	33	
EMERG. EQUIPMENT	34	
AIR CONDITIONING	35	
ANTI-ICING GROUP	36	
LOAD AND HANDLING GP.	37	
	38	
	39	
	40	
	41	
WEIGHT EMPTY	1	1
CREW		
TRAPPED LIQUIDS	1	
ENGINE OIL		
	· · · · · · · · · · · · · · · · · · ·	
Dace Service Thomas		
Pass. Service Items		
FUEL		
GROSS WEIGHT		

PEGE 2 HONTR

Figure 4-30. Weight Trend Subroutine, Flow Chart (Part 1 of 4)

PAGE 3

Figure 4-30. Weight Trend Subroutine, Flow Chart (Part 2 of 4)

Figure 4-30. Weight Trend Subroutine, Flow Chart (Part 3 of 4)
4-139

Figure 4-30. Weight Trend Subroutine, Flow Chart (Part 4 of 4)
4-140

The trend equations shown on the weights subroutine flow chart and those presented in the text produce the same results, although they are not necessarily written in the same form. The flow chart equations express the text trends in the terms used in other parts of the computer program.

The primary purpose of this weights subroutine is to provide a consistent method for rapidly estimating the operational weight empty and fuel available for the missions of various types of V/STOL aircraft. The results obtained from the trend equations will largely depend on engineering experience and the judgment exercised in selecting the various trend constants presented. The weight trend equations for the rotor, wing, tails, body, drive system, and pitch and yaw radius of gyration were developed by A. H. Schmidt of the Boeing Vertol Company over a span of 10 years. R. H. Swan, Chief Weight Engineer at Boeing Vertol, assisted in developing the rotor and wing equations. Accuracy of the trends is estimated to be within 5 percent of the actual values.

An explanation of the weight trends and instructions for completing the weight input sheet of VASCOMP are included in the text. As an additional aid for filling out the weight input sheet, the page numbers defining the various k terms are included with the respective terms on the weight input sheet. Table 4-8.

Weight trends developed at Boeing Vertol were used to determine the structure weights, Table 4-7, items 1, 3, and 6; flight control weights, item 22; and the propulsion system weights, items 2, 18, and 21. The trends were developed from existing aircraft and use design and geometric parameters to compute the weights of the various components. For aircraft on which limited information is available, such as in the case of the liftfans, jet-lift, tilt-wing, etc., the trend constants have been adjusted to account for the design features typical of the particular configuration. Alighting gear weights are a function of the takeoff weight and are based on statistically derived percentages of the respective gross weights. Engine weights, item 13, were determined from information compiled from engine manufacturers. Engine section and engine installation weights, Table 4-7, items 10, 14, 15, 16, 17, and 19, are expressed as a percentage of the dry engine weight. Fixed equipment weights, items 24 through 41, are discussed later in the text.

Table 4-7 is representative of a typical weight summary form used for military aircraft. For this report the same general form will be used for commercial aircraft, with additions and revisions described in the group in which they occur. Definitions of some of the weight terms used are presented below.

BOEING VERTOL COMPANY VASCOMP II VISTOL AIRCRAFT SIZING AND PERFORMANCE COMPUTER PROGRAM B-93

WHEN OPTIND = 2 OR 3 CONSIDER ONLY THOSE ITEMS IN THE SHADED BLOCKS

SHEET NO.	CASE NO.
OF	

AIRCRAFT WEIGHT INFORMATION

TABLE 4-8

	VARIABLE	LOC	VALUE
ŧ	OWE	0400	Page :4-172
	W _{FE LBS}	0401	Page 4-172
	W _{FUL} LBS	0402	Page 4-172
ŧ	Wel LBS	0493	Page 4-174

INCREMENTAL GROUP WTS. NOM = 0			
VARIABLE	LOC	VALUE	
∆WFC LBS	0417	Page 4-159	
		Page 4-174	
		Page 4-174	

VARIABLE	LOC	VALUE
△P P.S.I.	0450	Page 4-157
WC LBS.		Page 4-146
Yc	0452	Page 4-146

FLIGHT CONTROLS

FLIGHT CONTROLS			
kcc	0404	Page 4-159	
k _{FW}	0405	Page 4-163	
kH	0406	Page 4-159	
ksas	0407	Page 4-163	
kTM	0408	Page 4-163	
kuc	0409	Page 4-159	

GROUP WEIG.IT INFORMATION

STRUCTURAL				
k₽	0420	Page	4-151	
kLES	0421	Page	4-166	
kLG	0422	Page	4-157	
kmg	0423	Page	4-157	
ktL	0424	Page	4-151	
kwe	0425	Page	4-146	
kww	0426	Page	4-146	
ky	0427	Page	4-151	
kz	0428	Page	4-151	
kpes		Page	4-166	
kmT	0430	Page	4-166	
KNAC	0131	Page	4-166	
	1			

PROPULSION

FROFOCSION			
kD\$	0453	Page 4-168	
ķes	0454	Page 4-168	
kLEI	0455	Page 4-166	
kpgi	0456	Page 4-166	
(†)k _{R/P}	0457	Page 4-144	
kvt	0458	Page 4-172	
	kps klei kpei (†)kg/p	kfs 0454 klei 0455 kpei 0456 (†)kg/p 0457	

- OWE IS NOT NECESSARY
 WHEN OPTIND = 1,2
- # WPL IS NOT NECESSARY WHEN OPTIND = 2

- * NOT NECESSARY WHEN LFTIND = 0 ** NOT NECESSARY WHEN ENGIND = 1 (†) INPUT AS 0 IF $\eta_{\rm PIND}$ (LOC 0200) = 3
- TO USE kmt, knac, & Amt input kpes=0
 IF kpes is input as non-zero, kmt. knac,
 and Lmt are not required.

MULTIPLICATIVE FACTORS NOMINALLY = 1.0

K 15	0410	Page	4-176
K 16	0411	Page	4-176
K 17	0412	Page	4-175
K 18	0413	Page	4-176
K 19	0414	Page	4-176
K ₂₀	0415	Page	4-176

Kg	0433	Page 4-176
Kç	0434	Page 4-176
K 10	0435	Paga 6-176
K ₁₁	0436	Page 4-176
K 12	0437	Page 4-176
К 13	6438	Page 4-176
K 14	0439	Page 4-176

LMT

0432 Page 4-166

0459	Page 4-17
0460	Page 4-17
0461	Page 4-17
0462	Page 4-17
0463	Page 4-17
0464	Page 4-17
0465	Page 4-17
	0460 0461 0462 0463 0464

ATMOSPHERE TEMPERATURE

1			
	NO. OF PAIRS	0416	
1			

NOTE: THIS TABLE IS NOT NECESSARY IF ATMIND IS NEVER SET TO 2

Refer to Table 4-15 for a description of the multiplicative factors.

h _{1 FT}	0440	
h _{2 FT}	0441	
h _{3 FT}	0442	
h _{4 FT}	0443	
h _{5 FT}	0444	
h ₆ FT	0445	
h _{7 FY}	0446	
he FT	0447	
h _{9 FT}	0448	
hioft	0449	

θ_1	0466	
θ_2	0467	
θ_3	0468	
€4	0469	
θ_{5}	0470	
<i>⊕</i>	0471	
ر ^ب ۲	0472	
ع-	0473	
Ug	0474	
7 10	0475	

Takeoff Gross Weight

Takeoff gross weight consists of the following subweights:

Weight Empty

Weight empty includes a completely assembled aircraft ready to fly including the fluids required to operate the various systems such as in the transmissions and hydraulic systems. It does not include the trapped and unusable oil in the engine system or the trapped and unusable fuel in the fuel system.

Fixed Useful Load

Crew and crew luggage (includes stewardesses)
Trapped liquids (unusable fuel and oil)
Engine oil
Passenger service items (commercial aircraft)

- Water (wash and drink)
- Beverage
- Galley or coffee bar
- Toilet chemicals
- Food trays
- Emergency equipment (portable oxygen equipment, escape chute, smoke goggles, etc.)

•. Payload

Gross weight less weight empty, fixed useful load, and fuel.

• Fuel

As required for mission.

Operating Weight Empty and Useful Load

Items included in the operating weight empty and the useful load are shown below:

The weight data and trend constants included herein are representative of the 1970-1975 time period. A description and explanation of the weight trends and other data required to complete the weights input portion of VASCOMP, Table 4-8, follow.

Rotors or Propellers

The weight of the rotors or propellers is derived from the following equation:

$$W_{R} = 14.2 \text{ a (k)}^{0.67},$$
where $k = [r]^{0.25} \begin{bmatrix} \frac{HPr}{100} \end{bmatrix}^{0.5} \begin{bmatrix} \frac{Vtl}{100} \end{bmatrix} \begin{bmatrix} \frac{R.b.c.}{10} \end{bmatrix} \begin{bmatrix} \frac{R}{1.6} \\ \frac{R}{100} \end{bmatrix}$

Note: The last term is a droop factor, used only if the result is greater than 1.

Legend

WR = weight of rotor or propeller, pounds

R = rotor radius, feet

b = no. of blades per rotor

c = blade chord (average), feet

 $HP_r = \text{horsepower (xmsn limit per rotor)}$

 V_{t1} = design limit tip speed, feet per second

r = center line of rctation to average blade attachment point, feet

Kd = droop constant

t = blade thickness at 0.25R, feet

In the trend equation the constant 14.2 is the average for the various rotor group weights presented in Figure 4-31. The expression "a" is the adjustment factor for the type of system, i.e., semirigid, pressure cycle, etc. To determine the value of $k_{R/P}$ in the propulsion block of the weight input sheet, multiply the type of system desired "a" by the constant 14.2. Additional penalties must be added to the 14.2 "a" constant when blade folding and blade stowage are required. Increase the 14.2 "a" constant by an additional 50 percent if these features are included.

Wing

The wing group includes the following general groups:

- Basic structure upper and lower surfaces cover material, spars, ribs, joints, splices and fasteners
- Secondary structure fixed leading and trailing edges, tips, nonstructural doors and panels, and wing fold items

Figure 4-31. Rotor Group Weight Trend.

- Control surfaces spoilers and ailerons
- High-lift devices slats, leading and trailing-edge flaps, and boundary-layer-control nozzles and ducting

Wing weights are derived from the following equation:

$$W_W = 220a(k)^{0.585}$$

where
$$k = \left[\frac{\text{RmWx}}{10^4}\right] \left[\frac{\text{Sw}}{10^2}\right] \left[\frac{\text{log}}{\text{B}}\right] \sqrt{\frac{1+\lambda}{2\text{Kr}}} \sqrt{N} \left[\frac{\text{log}}{10^{10}}\right] \left[\frac{\text{log}}{10^{10}}\right] \left[\frac{\text{AR}}{10^{10}}\right] \left[\frac{\text{log}}{10^{10}}\right] \left[\frac{\text{log}}{10^{10}}$$

Legend

Ww = weight of wing, pounds

Sw = planform area of wing (taken from c of aircraft), square feet

b = wingspan, feet

B = maximum fuselage width, feet

 λ = taper ratio

N = ultimate load factor

V_D = dive velocity, knots

AR = aspect ratio

k_r = wing root thickness * root chord

 W_{x} = gross weight less wing and items on/in wing, pounds

 R_{M} = relief term = 1 - $\frac{\text{(dead wt in and on wing)}}{\text{(W}_{G} - \text{wing wt - wing fuel wt)}} \cdot \frac{\text{(d}_{2})}{\text{(d}_{1})}$

 d_1 = spanwise dimension from side of body to wing MAC, feet

 d_2^2 = spanwise dimension from side of body to center of

concentrated load, feet

 W_G = takeoff gross weight, pounds "a" = adjusting factor for type of wing (see Figure 4-32)

This wing weight equation represents the results of the wings analyzed in Figure 4-32. The 220 constant is an average for the spectrum of aircraft presented on the graph. The "a" factor adjusts the trend accordingly for the type of wing configuration being weighed. The value of $k_{W\!W}$ to be placed in the structural box of the weight input sheet is the result of "a" times the constant 220. Typical examples of the value "a" are shown in Figure 4-32. When concentrated loads such as auxiliary fuel tanks, bombs, or other external loads are intended to be suspended from the wing, the $W_{\rm C}$ and $Y_{\rm C}$ portions of the incremental block must be filled in. $W_{\rm C}$ is the total weight of the applied loads and $Y_{\rm C}$ is its distance, in feet, from the side of the body. The $k_{W\!F}$ term on the weight input sheet is included to account for the wing bending relief moment resulting from carrying fuel in the wing. The value of $k_{W\!F}$ will vary between 0 and 0.7 depending on the amount of fuel estimated

igure 4-32. Wing Weight Trend

to be in the wing. The following equation may be used to determine the value of k_{WF} :

$$k_{WF} = \frac{\text{Estimated wing fuel}}{(S_W) 1.5}$$

It should be noted that the program will never permit the fuel carried in the wing to be greater than the total fuel available and therefore, if it is desired to carry all the fuel in the wing, the user should simply input a large value for $k_{\rm WF}$.

Aircraft designed specifically for STOL operation (running takeoff and landing over a 50-foot obstacle within 500 to 2,500 feet) normally require a large number of high-lift devices on the wing. The weight penalty associated with the high-lift devices will vary with the aircraft's performance goals, load factor, speed, and surface area of the lift device being employed. To aid in selecting kww for a STOL configuration, refer to Figure 4-32. This illustration includes and identifies a number of STOL aircraft. Selection of kww should be based on the Figure 4-32 aircraft which most closely compares to the configuration being analyzed. If the wing being analyzed is not similar to one of those on Figure 4-32, the following alternate method can be used: a) Input $k_{ww} = 200$ into location 0426 on the weight input sheets; b) calculate a high lift factor to account for the type of high lift system being used. The high lift factor (HLF), calculated from the following equation, should be input to location 0433 (wing multiplicative factor) on the weight input sheet.

$$HLF = 1 + \frac{S_{HLS}}{S_{W}} \quad (TF)$$

where HLF = high-lift factor

 $s_W = planform$ area of wing taken from \mathfrak{E}

of aircraft, square feet

S_{HLS} = retracted planform area of high-lift surface, square feet

TF = high-lift type factor from Table 4-9

The HLF must be placed in location 0433 (wing multiplicative factor) on the weight input sheet.

Figure 4-32 presents the weights of conventional wings designed primarily by airloads resulting from forward flight. The term RMWx in the trend equation indicates the magnitude of the resultant wing shear and bending loads located at the semispan center of lift in forward flight. In tilt-rotor-type aircraft where the propulsion and dynamic components (engine and prop/rotor installations, drive system, nacelle, etc.) are located at the wingtips, the wing design requirements result from

TABLE 4-9 HIGH-LIFT FACTORS -WING CONTROL SURFACES

Lift Device and Hinge	Type Factor (TF)
Simple flap	0.0
Standard or simple Fowler	0.585
Fowler with variable droop (track + hinge)	0.741
Fixed double slot, simple hinge	0.585
Fixed double slot, extended hinge	0.741
Double slot, 2 simple hinges	0.741
Double slot, track + simple hinge	1.000
Triple slot, track + 2 simple hinges	1.270
Triple slot, 2 tracks + simple hinge	1.460
Slat (with simple track)	. 0.585
Slat with track	0.810
Droop LE, simple hinge	0.490
Spoiler-brake comb., simple hinge	0.390
Krueger, simple hinge	0.490
Krueger, extended hinge (707 type)	0.666
Blown flap-hot, single slot, simple hinge	0.616
For aircraft employing combinations of the the appropriate type factors should be summ	

vertical flight and transitional modes and the term $R_{M}W_{X}$ is interpreted by locating the center of lift at the thrust line of the rotor and W_X is redefined as the aircraft gross weight less the weight of the nacelle and contents. The computer subroutine does not relocate the center of thrust for tilt rotor ty: 3 aircraft. This must be analyzed separately and the wing K adjusted accordingly.

Tails

The weights of the horizontal and vertical tails are determined from the weight trend equations presented below.

Horizontal Tail

$$W_{HT} = 350(k)^{0.54}$$
, where

$$k = \begin{bmatrix} F_H \end{bmatrix} \begin{bmatrix} S_H \\ 10^2 \end{bmatrix} \begin{bmatrix} \frac{\log V_D}{TMA \times t} \end{bmatrix} \text{ and } F_H = \begin{bmatrix} \frac{W_G}{10^4} \end{bmatrix} \begin{bmatrix} \frac{ky}{10} \end{bmatrix} \begin{bmatrix} \frac{b_H}{10} \end{bmatrix} \begin{bmatrix} \frac{1+2\lambda H}{1+\lambda H} \end{bmatrix} \begin{bmatrix} k_{TL} \\ \end{bmatrix} .$$

Vertical Tail

$$W_{VT} = 360(k)^{0.54}$$
, where

$$k = \begin{bmatrix} F_V + \frac{a}{2} & F_H \\ \frac{b_V}{2} & \frac{b_V}{10^2} \end{bmatrix} \begin{bmatrix} \frac{\log V_D}{10^2} \end{bmatrix} \text{ and } F_V = \begin{bmatrix} \frac{W_G}{10^4} \end{bmatrix} \begin{bmatrix} \frac{k_Z}{10} \end{bmatrix} \begin{bmatrix} \frac{b_V}{10} \end{bmatrix} \begin{bmatrix} \frac{1+2\lambda V}{1+\lambda V} \end{bmatrix}.$$

Legend

WG = design gross weight, pounds

k_y = pitch radius of gyration, feet
k_z = yaw radius of gyration, feet

b = tailspan, feet

 λ = taper ratio, (chord at tip) (chord at root)

S = planform area, square feet

F = tail load parameter

 $v_n = dive velocity, knots$

TMA = tail moment arm (measured from wing 1/4 chord to tail 1/4 chord), feet

t = root thickness, feet

a = height of horizontal tail attachment to vertical tail (measured from root of vertical tail), feet

H = subscript H denotes horizontal tail

v = subscript v denotes vertical tail .

kTL = tail load factor

The trends consider the tail loads which are a function of the gross weight, span, radius of gyration, and point of load application (distance of the mean aerodynamic chord from the

point of support). The "a" term in the vertical tail equation accounts for T-tail configurations. Figures 4-33 and 4-34 present the aircraft used to develop the trends. Refer to Figures 4-35 and 4-36 to determine the values of $k_{\rm Y}$ and $k_{\rm Z}$ to be placed in the structural box of the weight input sheet.

The term k_{tl} in the structural box of the weight input sheet is nominally 1. It is included to provide a means for penalizing the weight of the horizontal tail when loads incurred from carrier deck landings become a design consideration. The value of K_{tl} under these conditions would vary between 1.1 and 1.2 depending on the magnitude of the design loads.

Body Group

The weight of the body structure is determined from the following equation:

$$W_{BG} = 124a(k).508$$
, where
$$k = \left[\frac{W_X}{104}\right]^{0.7} \left[\frac{Sf}{103}\right]^{B(Lf + L_{RW})}^{0.5} \left[\frac{Log_{10}}{V_D}\right]^{(\Delta P + 1)}^{0.2} (N)^{0.3}$$

Legend

 W_{BG} = weight of body group, pounds

 \widetilde{W}_{X} = weight of fuselage and contents (includes emperange), pounds

Sf = wetted area of fuselage, square feet.

B = maximum fuselage width, feet

Lf = length of fuselage, feet

LRW = length of ramp well, feet

L_{EB} = length of engine bay (in lieu of or added to L_{RW}, depending on configuration), feet

 V_D = dive velocity, knots

AP = limit differential cabin pressure, pounds per square inch

N = ultimate load factor

"a" = body adjustment factor

Figure 4-37 indicates the relative body weight variation between different families of aircraft. Commercial, military, cargo, carrier-based, and land-based aircraft represent the different families. Other factors which affect the weight of the fuselage include such things as number of cutouts, type of entrance doors and stairs, ramp design, pressurized versus unpressurized, etc.

A mean line of 124 has been selected as an average for all the aircraft shown in Figure 4-37. The body adjustment factor "a" corrects the 124 constant in accordance with the family being

Figure 4-33. Horizontal Tail Weight Trend

FORESCHIPT LAIL WEIGHT - POUNDS

Figure 4-34. Vertical Tail Weight Trend.

Figure 4-35. Radius of Gyration Trend - Pitch.

Figure 4-36. Radius of Gyration Trend - Yaw.

Figure 4-37. Body Group Weight Trend.

configured. For aircraft having engines, gas generators, fans, etc., on top of the fuselage, an additional penalty must be added to the 124 "a" constant to account for the additional supports, fairings, etc., required to support and enclose these components. Refer to Figure 4-37 to determine the "a" factor which best describes the configuration. The revised constant, 124 "a", is the $k_{\rm B}$ term to be inserted in the appropriate box of the weight input sheet. The limit differential cabin pressure (ΔP) must also be placed in the proper location in the incremental block of the weight input sheet.

Alighting Gear

For the normal tricycle gear geometry, the total landing gear weight including the running gear (wheels, tires, brakes, etc.), structure (shock struts, drag struts, support structure, etc.), and controls (retraction, steering, systems, etc.) is expressed as a percentage of the design gross weight where:

$$W_{LG} = (k_{LG}) W_g$$

where W_{LG} = total weight of the landing gear

kLG = landing gear gross weight

 W_{α} = design gross weight

The percentage will vary between 0.015 and 0.080 depending on the complexity and design loads of the system. Conventional landing gear with retracting systems, operating on improved runways, normally run between 0.025 and 0.037. STOL-type systems operating on rough runways require longer and larger alighting gear components to accommodate the aircraft's higher rotational angle and sink speeds required to operate at the shorter field lengths. $k_{\rm LG}$ for the STOL aircraft will normally vary between 0.035 and 0.08. The main gear usually weighs about 80 percent of the total gear weight. The k term in the weight expression above is the value that must be placed in the $k_{\rm LG}$ box of the weight input sheet. The weight of the main gear is included by placing 0.80 in the $k_{\rm MG}$ location on the weight input sheet.

Table 4-10 is included as a guide in selecting $k_{\rm LG}$. It includes the total gear weight as a percentage of the gross weight for a sampling of military, commercial, and VTOL aircraft.

Flight Controls

The weight of the flight controls will vary depending on the type of control system required (manual, power boost, etc.) and the type of aircraft being considered (tilt-wing,

TABLE 4-10 LANDING GEAR WEIGHTS

Gross Weight (1b)	Total Gear Weight (1b)	Percent of Gross Weight
28,500 42,000 46,000 41,000 54,000 107,000 135,000 155,000 185,000 275,000	1,398 1,884 2,626 1,800 2,331 3,895 4,824 4,939 11,700 10,635	0.049 0.045 0.057 0.044 0.043 0.036 0.036 0.032 0.063 0.039
318,000 732,000	10,357 32,711	0.033 0.045
	•	
35,100 49,100 102,000 161,000 184,500 336,000	1,237 2,158 4,372 7,211 6,933 12,982	0.035 0.044 0.043 0.044 0.038
12,500 12,500 12,600 15,980 37,500	482 389 369 449 1,266	0.038 0.031 0.029 0.028 0.034
	28,500 42,000 46,000 41,000 54,000 107,000 135,000 155,000 275,000 318,000 732,000 161,000 161,000 184,500 336,000	Gross Weight (1b) 28,500

tilt-rotor, fixed-wing, etc.). Aircraft control systems requiring power boost and those having high-lift devices and many control surfaces will normally weigh more than those having a manual system and few control surfaces. Consideration must be given to these factors when determining the flight control constants to insert on the weight input sheet.

An equation defining the weight of the flight controls of a tilt-wing configuration is used as a base for the controls of all aircraft since it includes factors which can be isolated and applied to other types of configurations. Values for the various k factors listed below must be inserted in the flight control blocks of the weight input sheet. A description of the items comprising each of the control subgroups is included along with a sample of the k input values. Refer to the referenced trend curves, included for each of the major control groups, as an aid in selecting the respective k values.

Tilt-Wing

1

$$W_{FC} = k_{CC} \left(\frac{W_{G}}{1000}\right)^{0.41} + k_{UC} W_{R_{TOTAL}} + k_{H} \left(\frac{W_{R_{TOTAL}}}{100}\right)^{0.84} + k_{FW} W_{g} + k_{SAS} + k_{TM} W_{g}$$

Legend

k_{CC} = constant for cockpit controls = 26

Cyclic and collective control sticks and linkages, pedals, cables and rods (Figure 4-28).

 $k_{\rm HC}$ = constant for upper controls = 0.30

All components from and including the power actuators up through the pitch links. Major items included are the actuators, swashplate, and pitch links (Figure 4-39).

 $k_{\rm H}$ = constant for systems and hydraulics = 40

All components between the cockpit controls and the rotor controls including actuators, artificial feel system, mechanical programmer, bell-cranks, rods, idlers, etc.

Main hydraulic systems including pumps, reservoirs, accumulators, filters, valves, lines, fluid, and supports (Figure 4-40).

Figure 4-38. Cockpit Controls Weight Trend.

Figure 4-39. Upper Controls Weight Trend.

Figure 4-40. System and Hydraulics Weight Trend.

 k_{FW} = constant for conventional fixed-wing controls = 0.015

All components, actuators, and supports associated with moving the control surfaces - LE umbrellas, flaperons, spoilers, and tail surfaces, 'including variable-incidence horizontal stabilizer), excluding those items common to the system quoted above. The constant for STOL aircraft employing a large number of high-lift devices will vary between 0.02 and 0.04 depending on the size and complexity of the surface (Table 4-11).

k_{SAS} = constant for stability-augmented system and mixing units = 175

Includes black boxes and mechanical mixing units.

 k_{TM} = constant for tilting mechanism = 0.005

All components and supports required to tilt the wing or nacelle including actuators, power control units, mechanical system, fittings, and hardware (Figure 4-41).

Fixed-Wing

When sizing propeller-driven fixed-wing aircraft, use k_{UC} and k_{FW} only.

For aircraft requiring tailfans or rotors for pitch and/or yaw control, delta weight must be added in the incremental group block of the weight input sheet, ΔW_{FC} . Other factors may be taken from the tilt-wing equation as before. An estimate of the weight of the fans or rotors may be made by using the rotor group and drive system trends described on pages 4-144 and 4-168 and adding an additional allowance for the weight of the structure, cross-shaft, and controls necessary to complete the installation. Aircraft requiring reaction controls must also be accounted for in the ΔW_{FC} of the incremental block. No attempt is made to describe the weight of these controls since their weight will depend on the type (puff-pipes, compressors, turbines, etc.) and the amount of control power and response rate necessary to meet specified requirements.

Engines, Gas Generators, and Fans

The weight of the lift engines, cruise engines, gas generators, and lift fans is determined as part of the engine sizing routine considered elsewhere in the program. There is no provision for determining their weights on the weight input sheet. The $\Delta W_{\rm p}$ and k_5 blocks of the input sheet provide a method for adding weight to the engines, etc., if desired. The weights

TABLE 4-11
FLIGHT CONTROL SURFACE
ACTUATION SYST MS DATA

Tilgne Filgne Control Weight (1b) (2 ÷ ①** // (1b) (1b) (2) ÷ ①** // 15,421 552 0.035 28,500 467 0.016 41,000 610 0.023 46,000 1,056 0.023 100,000 2,182 0.022 125,000 2,047 0.016 135,000 1,645 0.012 161,000 2,996 0.019 185,000 1,493 0.008 275,000 1,804 0.009						
552 0.03 467 0.01 610 0.01 1,056 0.02 2,182 0.02 2,047 0.01 1,645 0.01 2,996 0.01 1,493 0.00	* Ailerons	LE Flaps or Slats	TE Flaps	Elevator or UHT	Rudder	Spoiler or Deflector
467 0.01 610 0.01 1,056 0.02 1,009 0.02 2,182 0.01 2,996 0.01 1,493 0.00 2,199 0.01	W	1	W	X	¥	×
610 0.01 1,056 0.02 1,009 0.02 2,182 0.01 2,047 0.01 1,645 0.01 2,996 0.01 1,493 0.00	Σ	1	æ	X	Σ	1
1,056 0.02 1,009 0.02 2,182 0.02 2,047 0.01 1,645 0.01 2,996 0.01 1,493 0.00 2,199 0.00	Σ	ı	Σ	X	Σ	ı
1,009 0.02 2,182 0.02 2,047 0.01 1,645 0.01 2,996 0.01 1,493 0.00 2,199 0.00	н/м	1	Ħ	H/M	H/M	ı
2,182 0.02 2,047 0.01 1,645 0.01 2,996 0.01 1,493 0.00 2,199 0.00	æ	ı	Ħ	H	II	1
2,182 0.02 2,047 0.01 1,645 0.01 2,996 0.01 1,493 0.00 2,199 0.01	æ	1	H	M	W	ı
2,047 0.01 1,645 0.01 2,996 0.01 1,493 0.00 2,199 0.01	H/M	H/E	н/Е	H/M	Ħ	=
1,645 0.01 2,996 0.01 1,493 0.00 2,199 0.01 1,804 0.00	H/M	Ħ	H/E	H/M	W	1
2,996 0.01 1,493 0.00 2,199 0.01 1,804 0.00	×	Ħ	Ħ	н	Ħ	1
1,493 0.00 2,199 0.01 1,804 0.00	H/E	H/E	H/E	H/H	Ħ	æ
2,199 0.01	н/м	1	H	M	¥	ı
1,804 0.00	Σ	н	H/E	X	H/M	Œ
	×	t	H	W	¥	ı
728,000 6,543 0.009	I	Œ	æ	н	Ħ	æ

*Reported flight control weight **This figure to be placed in location 0405 on weight input sheet

M = mechanically operated
H = hydraulically operated
E = electrically operated

Figure 4-41. Tilt-Wing Mechanism Weight Trend.

of the ducting and other items associated with lift-fan aircraft are considered in the lift engine section and lift engine installation ($k_{\rm ES}$ and $k_{\rm LEI}$) blocks of the weight input sheet.

Engine Section and Engine Installation

The engine section and engine installation weights are determined from the dry weight of the engines. The engine section weight is part of the weight empty and appears as item 10 in Table 4-7. It is basically the engine mounts, nacelle structure, firewall, and support pylons or struts. The engine installation weight is also part of weight empty and includes items 14, 15, 16, 17 and 19 in Table 4-6.

The weights of these two groups will vary greatly between air-craft depending on the type and powerplant arrangement of the configuration being sized. No attempt is made here to describe all the various approaches that may be used or to evaluate their weights, but instead a simple method of taking a percentage of the weight of the dry engines and/or fans, generators, etc., is used to define the weight of the engine section and its installation. The percentages applied will depend on the judgment of the user.

Examples of some typical values are presented in Table 4-12 and described as $k_{\rm PES}$ and $k_{\rm PEI}$ for the primary engines, and $k_{\rm LES}$ and $k_{\rm LEI}$ for the lift engines on the weight input sheet. The weights of thrust reversers, deflectors, and/or sound suppression systems are not included in the k factors and, if required, must be added to the multiplicative factor section of the weight input sheet. (K_4 for lift engines and K_5 for primary engines - see Table 4-12.)

A secondary method is included for determining the weight of the engine section. Equations are presented for the mounts, nacelle, and firewall. Pylons or strut weights are not included; these must be estimated and added separately and their weights included in the Δ structure box. $k_{\mbox{MT}},\,k_{\mbox{NAC}}$, and $k_{\mbox{MT}}$ can be determined from the data given below and inserted in the proper location on the weight input sheet.

The weight of the engine section using the secondary method is determined from the following equations:

$$W_{MT} = \frac{W_{D}}{103} (2 + \ell_{m}\ell_{n}) \eta k_{mt}$$

$$W_{NAC} = \frac{1}{2} (Log_{10} V_{D}k_{s}S_{N}k_{NAC})$$

$$W_{FW} = \overline{D}^{2} N_{PE}$$

TABLE 4-12 ENGINE SECTION AND INSTALLATION FACTORS

Turbofan	Turbojet	Turboprop Turbojet	Lift Jet	Lift Fan
Sea Note 1				
$k_{PES} = 0.40$	$k_{PES} = 0.33$	$k_{PES} = 0.45$	k _{LES} = 0.70*	k _{LES} = 0.35
$k_{PEI} = 0.14$	k _{PEI} = 0.14	$k_{PEI} = 0.14$	k _{EEI} = 0.30*	k _{LEI} = 0.25
			*For pod-mou	nted engines
See Note 2				٠
$K_5 = 1.15$	$K_5 = 1.10$	$K_5 = 1.15$	$K_4 = 1.25$	
(Primary engine thrust reverser)	(Primary engine thrust reverser)	(Primary engine thrust reverser)	(Lift engine thrust reverser)	
	K ₅ = 1.03	$K_5 = 1.03$	$K_4 = 1.03$	
	(Primary engine sound sup- pression)	(Primary engine sound sup- pression)	(Lift engine sound sup- pression)	

NOTES:

- These values must be placed in their proper location in the flight control, structure, or propulsion sections of the weight input sheet.
- 2. If thrust reversers and/or sound suppression are required, these values must be placed in the multiplicative factor section of the weight input sheet. When both thrust reversers and sound suppression are required, add the individual values for each together and place the total in the proper box. Example: Turbojet requiring both thrust reversers and sound suppression K5 value would be 1.10 + 0.03 or 1.13.
- All values represent a percentage of the dry engine or fan weights.

Legend

 W_{MT} = weight of engine mounts, pounds

 \overline{W}_{D}^{-} = weight of propulsion group plus upper controls less

fuel system, pounds

 ℓ_m = distance from engine cg to closest structural attachment point between nacelle and wing, as a percentage of nacelle length

η = ultimate load factor

kmt = nacelle type factor - from chart

 V_D = dive velocity, knots

 k_s = nacelle weight factor, from Figure 4-42

S_N = nacelle wetted area per aircraft, square feet

k_{NAC} = factor k_{mt} x k_{dr} from Table 4-13 W_{FW} = weight of firewall, pounds

D = average nacelle diameter or equivalent diameter, feet

NpE = number of primary engines

Fuel System

The weight of the fuel system, defined as k_{fs} in the propulsion block of the weight input sheet, will vary depending on the capacity, type, and complexity of the system required. For commercial aircraft having simple fuel systems in the wing, the value for kfs would range between 0.02 and 0.07; for aircraft requiring self-sealing tanks with more complex systems, the value would range between 0.10 and 0.15.

Drive System

The weight of the drive system including shafting, lubrication, etc., is derived from the following equation:

$$W_{DS} = 300 \text{ a(k)}$$
 where $k = \left[\frac{HP_{Total} \times 1.1}{RPM_{Rotor}}\right]$.

Legend

WDS = weight of drive system, pounds HPTotal = total aircraft horsepower RPMRotor = rotor design rpm = drive system adjustment factor

The factor "a" is an adjustment factor used to account for the type, number of boxes, and special features, etc., included in the drive system. Figure 4-43 gives typical examples of the "a" factor. To determine the $k_{\rm DS}$ value to place on the weight input sheet, multiply the 300 constant by your selection of "a".

Figure 4-42. Engine Nacelle Weight Trend, ks.

TABLE 4-13 ENGINE NACELLE FACTORS

Parameter	Factor
Type of Nacelle Through wing	k _{mt} 0.9
Standard (including pylon type)	1.0
Fanjet = $1 + \frac{\ell_f}{3 \times \ell_n}$	-
Structural nacelle = $1 + \frac{l_s}{l_n}$	-
Type of Engine Jet or fan	k _{et}
Turboprop	1.1
Piston (including vibration absorbers)	1.2
Doors, Cowl Flaps, and Work Platforms Minimum doors	kdr 0.8
Standard	1.0
Radial engine cowl flaps Split and hinged engine cowl	1.1 1.2
Hinged cowl with work platform	1.3
- High wing - Low wing	1.2
These factors should be assessed on basis of size	
cowl versus total nacelle.	

Figure 4-43. Drive System Weight Trend.

The $k_{\mbox{\scriptsize VT}}$ term in the propulsion block of the weight input sheet is provided to allow for variations in the drive system weight when the hover tipspeed and transmission tipspeed or the maximum power and the transmission design power are not the same. The nominal value for $k_{\mbox{\scriptsize VT}}$ is 1 when these parameters are similar. The value of $k_{\mbox{\scriptsize VT}}$ will change accordingly when tip speed and power vary as indicated by the following expression:

$$\left[\begin{array}{c} \underline{\text{Design tipspeed}} \\ \overline{\text{Hover tipspeed}} \end{array} \right] \left[\begin{array}{c} \underline{\text{Maximum power}} \\ \overline{\text{Design power}} \end{array} \right] \; .$$

Fixed Equipment

The weight of the fixed equipment is included in the weight empty and consists of the following groups: auxiliary power-plant, instruments and navigation, electrical, electronics, armament, furnishings and equipment, air conditioning and deicing, photographic, and auxiliary gear (see Table 4-7).

The weight of the fixed equipment will vary with the type and requirements of the aircraft under study. It will weigh more in passenger aircraft than it does in the cargo type; it will be heavier in propeller aircraft than it is in jet-powered aircraft; and in the pressurized aircraft of each type it will be heavier than those that are unpressurized. Table 4-14 gives some typical examples of the fixed-equipment weights for a military cargo aircraft and commercial passenger configurations. The cargo plane would be similar to a C-123; the passenger aircraft is similar to a Boeing 737 or a Douglas DC-9. An airbus version of the passenger aircraft is also included for comparison. The major difference in the airbus configuration is in the weight of the furnishings and equipment group, where passenger comfort level is the predominant factor.

The total weight of the fixed equipment, $W_{\rm FE}$, must be placed in the $W_{\rm FE}$ block of the weight input sheet.

Fixed Useful Load

The weight of the fixed useful load represents a portion of the useful load and includes the crew, trapped liquids, engine oil, and other items that are required, except for fuel, which make the aircraft operational (refer to page 4-143). Typical weights for fixed-useful-load items are listed below. Graphs are included as a guide for determining the weights of the trapped liquids and engine oil. The total weight of the items below must be placed in the $W_{\rm FUL}$ block of the weight input sheet.

WEIGHT SUMMARY - PRELIMINARY DESIGN

				·····
TABLE 4-14 FIXED EQUIPMENT WEIGHTS	Cargo Transport	Commercial Airliner 60 Passengers	Commercial Airbus 60 Passengers	
			- rassengers	
WING	<u> </u>			
ROTOR				
TAIL				
SURFACES				
ROTOR				
800Y;				
BASIC				
SECONDARY		, ,		
ALIGHTING GEAR GROUP				
ENGINE SECTION			· · · · · · · · · · · · · · · · · · ·	·
PROPULSION GROUP				
ENGINE INST'L				
The state of the s	 			
EXHAUST SYSTEM				
COOLING				
CONTROLS	<u> </u>		,	
STARTING				
PROPELLER INST'L				
LUBRICATING				
FUEL		,		
OR: VE				
FLIGHT CONTROLS	-			
Action to the second se	 			
ALLY BOWER DE ANT	200	530		
AUX. POWER PLANT	350	675		
INSTRUMENTS	275		650	
HYDR. & PNEUMATIC		450	392	
ELECTRICAL GROUP	1,000	2,000	1,600	
AVIONICS GROUP	750	750	750	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
ARMAMENT GROUP				
FURN. & EQUIP. GROUP	1,600	5,120	3.054	
WASCOM HOR PERSON.	so where is no dies amon .			
MISC. EQUIPMENT				
FURNISHINGS				
EMERG. EQUIPMENT				
AIR CONDITIONING	1.000	1,370	1,370	
ANTI-ICING GROUP				
LOAD AND HANDLING GP.				
ייים מחום החושבותם שר.				,
	 			
			· · · · · · · · · · · · · · · · · · ·	
FIXED EQPT WEIGHT	5 170	10 005	7 012	
	. 5,1/5	10,895	7,816	
CREW				
TRAPPED LIQUICS				
	T			, , , , , , , , , , , , , , , , , , , ,
ENGINE OIL				,
ENGINE OIL				
ENGINE OIL		, , , , , , , , , , , , , , , , , , ,		
				
ENGINE OIL				

Military

- Crew (200 pounds per crewman)
- Unusable fuel and oil (see Figure 4-44)
- Engine oil (see Figure 4-45)

Commercial

- Crew and crew luggage (200 pounds per crewman)
- Stewardesses and luggage (140 pounds per stewardess)
- Unusable fuel and oil (see Figure 4-44)
- Engine oil (see Figure 4-45)
- Passenger service items (refer to page 4-80 for detailed list of items)

The weight of passenger service items depends on the passenger comfort level desired and the range of the mission. A tabulation of some typical values for various aircraft is shown below. The total weight of the passenger service items is the product of the number of passengers times the selection of the weight per passenger presented below.

Long-Range		Medi	um-Range	Short-Range		
Config	Wt/Pass.	Config	Wt/Pass.	Config	Wt/Pass.	
707-121	37	880	28	727	18	
707-321	36	720	25	BAC-111	14	
VC-10	33	Electra	23	DC-9	12	

Payload

The weight of the payload is determined by the mission requirements. The total weight of the payload must be put in the $W_{\rm PL}$ block of the weight input sheet.

Incremental Group Weights

The incremental group weights section of the weight input sheet is provided to enable the user to add fixed increments of weight where desired. Definitions and values for some of the items in this group have already been discussed. ΔW_{FC} , ΔW_{D} , and ΔW_{ST} represent incremental weights of the flight controls group, propulsion group, and structural group respectively. Any value inserted in the incremental group weight section

Figure 4-44. Maximum Fuel Versus Unusable Fuel Weight Trend.

Figure 4-45. Engine Oil Weight Trend.

TABLE 4-15
MULTIPLICATIVE FACTORS

К	Location	Letter Code	Description
К2	0459	W _{R/P}	Weight of rotors or propellers
к3	0460	WDS	Weight of drive system
К4	0461	$w_{\mathtt{EL}}$	Weight of lift engines
К5	0462	W_{EP}	Weight of primary engines
К6	0463	$w_{ t LEI}$	Weight of lift-engine installation
к ₇	0464	$W_{ t PEI}$	Weight of primary engine installation
К8	0433	w_W	Weight of wing
K ₉	0434	w_{HT}	Weight of horizontal tail
K ₁₀	0435	$w_{ extsf{VT}}$	Weight of vertical tail
K ₁₁	0436	$w_{\mathbf{B}}$	Weight of body
K ₁₂	0437	w_{LG}	Weight of landing gear
к ₁₃	0438	WLES	Weight of lift-engine section
К14	0439	WPES	Weight of primary engine section
K ₁₅	0410	WCC	Weight of cockpit controls
K.16	0411	$w_{\mathtt{UP}}$	Weight of upper controls
K ₁₇	0412	w_{H}	Weight of hydraulics and vertical system
K ₁₈	0413	w_{FW}	Weight of fixed-wing controls
К19	0414	W_{SAS}	Weight of SAS and mixing unit
K ₂₀	0415	W _{TM}	Weight of tilt mechanism
к21	0465	W _{FS}	Weight of fuel system

remains constant regardless of gross weight. The nominal value for any block in this section is 0. All blocks must be filled in.

Group Weight Information

ί

The nominal value for items in this section of the weight input sheet is 0. All blocks must be filled in. Definitions and constants for the various k factors have been previously discussed in the respective subgroup definitions.

Multiplicative Factors

The multiplicative factors described as K_8 thru K_{21} on the weight input sheet provide the capability of performing weight sensitivity studies. The factors are nominally 1. All blocks must be filled in. To vary the weight of any subgroup (K_{CC} , K_B , K_{DS} , etc.), insert the desired value in the appropriate box. Refer to Table 4-15 below to relate the various K factors with their respective groups. Inserting a value of 1.1 would increase the weight of the respective group by 10 percent, a value of 0.9 would decrease it by 10 percent, etc. The values in this group will vary with gross weight.

HIL-STD-1374 PART		Page Medel Report
GROUP	WEIGHT STATEMEN	iT
	AIRCRAFT	
(1)		
·	LUDING ROTORCRAFTI	
	D . CALCULATED . ACTUAL	
(Cross O	ut Those Not Applicable)	
CONTRACT NO.		
AIRCRAFT, GOVERNMENT NO		
AIRCRAFT, GOVERNMENT NO AIRCRAFT, CONTRACTOR NO		
AIRCRAFT, GOVERNMENT NO		
AIRCRAFT, GOVERNMENT NO AIRCRAFT, CONTRACTOR NO MANUFACTURED BY		
AIRCRAFT, GOVERNMENT NO AIRCRAFT, CONTRACTOR NO MANUFACTURED BY		
AIRCRAFT, GOVERNMENT NO AIRCRAFT, CONTRACTOR NO MANUFACTURED BY MANUFACTURED BY MODEL		
AIRCRAFT, GOVERNMENT NO AIRCRAFT, CONTRACTOR NO MANUFACTURED BY		
AIRCRAFT, GOVERNMENT NO AIRCRAFT, CONTRACTOR NO MANUFACTURED BY MANUFACTURED BY MODEL NO.		
AIRCRAFT, GOVERNMENT NO AIRCRAFT, CONTRACTOR NO MANUFACTURED BY MANUFACTURED BY MODEL NO. TYPE		AUX

GROUP WEIGHT STATEMENT WEIGHT EMPTY

MIL	-510-13/4 PART T	₩.	EIGH) EMPIT			Fage _	
Name						Model_	
Date						Report	
						Nepart.	
	WING GROUP						
2	BASIC STRUCTURE - CENTER SECTION						
3	· intermediate panel						
4	- OUTER PANEL						
5	- GLOVE	· · · · · · · · · · · · · · · · · · ·				<u> </u>	
6	SECONDARY STRUCTURE (Incl. Wing Fold Weig	ht.	Lbs.)				
7	AILERONS (Incl. Balance Weight	rpel				,	
	FLAPS - TRAILING EDGE						
9	· LEADING EDGE						
10	SLATS						
11	SPOILERS			1,			
12					·, /•	1	
13							
14	ROTOR GROUP						
15	BLADE ASSEMBLY						,
16	HUB & HINGE linci. Blade fold Weight	ilbsj					
17							
18						,	
19	TAIL GROUP						
20	BASIC & SECOND, RY STRUCT STABILIZER						
21	- FIN (incl. Ders	e l)					
22	VENTRAL	,	. ,	. • •		t)	Ī
23	ELEVATOR Incl. Selence Weight Lb	18.					1
24	RUDDERS (Incl. Balance Weight Lbs.	1		······································		<u> </u>	1
25	TAIL-ROTOK - BLADES						1
26	. HUB & HINGE		.				1
27		·- 					1
28	BODY GROUP						
29	BASIC STRUCTURE - FUSELAGE or HULL		 		· 	T	1
30	. BOOMS]
31	SECONDARY STRUCTURE . FUSELAGE or HULL	······································		······································			1
39	- BOOMS	,					1
33	- SPEEDBRAKES				**************************************		1
34	· DOORS, RAMPS, PA	INELS, & MIC	······				1
35		· · · · · · · · · · · · · · · · · · ·			 		}
36					· · · · · · · · · · · · · · · · · · ·]
37	AUGHTING GEAR GROUP (Types	. 1 .					
38	LOCATION	Running Gear	Arrest Goor"	Structure "	Centrals		1
39		,					
40					 		1
41	a dir. I i i i i i i i i i i i i i i i i i i	المالي المالي	17.000	12 - 1	مر وحول والأو	. ,	1
42							
43	, .						1
44							
45	ENGINE SECTION or NACELLE GROUP						T
46		 	· · · · · · · · · · · · · · · · · · ·	 		1	
47	· EXTERNAL				, , , , , , , , , , , , , , , , , , , 	1	Ì
48	WING - INBOARD					1	1
	- OUTBOARD						1
49 50							1
51			-			1	1
32	AIR INDUCTION SYSTEM				······································	1	1
53	DOORS, PANELS, & MISC.	- w				1	1
53 54				······································		 	1
55		1-1-71-71-71-7-1-1-1-				 	1
56	**************************************					 	1
37	TOTAL STRUCTURE (To 8e Brought Forward)						
							s .

*Change to Floors & Strute for Water Type Goar

GROUP WEIGHT STATEMENT

MIL.	STD-1374 PART I	w	EIGHT EMPTY		•	Page	
Name.						Model_	
Date _						Report	
T T	PROPULSION GROUP		Ana	iliary	Ma	in .	
2	ENGINE INSTALLATION			indiy			
3							
1	ACCESSORY GEAR BOXES & DRIVE						
3							
6	EXHAUST SYSTEM						
7	ENGINE COOLING						
	WATER INJECTION						
9	ENGINE CONTROL						
10	STARTING SYSTEM						
11	PROPELLER INSTALLATION						
12	SMOKE ABATEMENT						
13	LUBRICATING SYSTEM]		
14	FUEL SYSTEM						
15	TANKS - PROTECTED						
16	UNPROTECTED	 		1			l r
17	PLUMBING, etc		<u> </u>				
18	DRIVE SYSTEM		,		$\geq \leq$		
19	GEAR BOXES, LUB SY & ROTOR BRK	,		4	ļ		ļ
20	TRANSMISSION DRIVE					Į	
21	ROTOR SHAFTS		<u> </u>	 			
22	JET DRIVE						ĺ
24	FLIGHT CONTROLS GROUP		·····	<u> </u>	L	<u>L</u> .	
23	COCKPIT CONTROLS (Autopilet	lbs.j					
20	SYSTEMS CONTROLS	resi					ł
27	STSTEMS CONTROLS				<i></i>	 	1
28		······································			, ,	 	
	AUXILIARY POWER PLANT GROUP					<u> </u>	
	INSTRUMENTS GROUP						
	HYDRAULIC & PNEUMATIC GROUP						
32		······································	······				
33	ELECTRICAL GROUP					····	
34						/	
35	AVIONICS GROUP						
36	EQUIPMENT						
37	INSTALLATION					I]
38							<u> </u>
	ARMAMENT GROUP (Incl. Passive Prot.	(bs.)					ļ
	FURNISHINGS & EQUIPMENT GROUP					· · · · · · · · · · · · · · · · · · ·	
42	ACCOMMODATION FOR PERSONNEL					ļ	4
43	MISCELLANEOUS EQUIPMENT FURNISHINGS					 	4
144	EMERGENCY EQUIPMENT	· · · · · · · · · · · · · · · · · · ·					1
45						 	1
	AIR CONDITIONING GROUP						
	ANTI - ICING GROUP						
48		····	······································				
49	PHOTOGRAPHIC GROUP	•					
50							
	LOAD & HANDLING GROUP						
52	AIRCRAFT HAMULING					Ţ	1
53	LOAD HANDLING]
54						L	
55	MANUFACTURING VARIATION						
-	YOTAL PROM *AGE 2						
57	WEIGHT EMPTY						

GROUF WEIGHT STATEMENT USEFUL LOAD AND GROSS WEIGHT

MIL.	310-13/4 PART	1		OUL! OF COM	, A110 CAG	a welgan		Page	
Name.	Medel								
Date .								Report	
					4			Kepon	
$\Box \bot$	LOAD CONDITION								
2			•						
3	CREW INO)							
4	PASSENGERS (No	}							
3	FUEL		Location	Type	Gals,)		
0	UNUSABLE								
7	INTERNAL			**********					
8	· · · · · · · · · · · · · · · · · · ·								
9									
10			·						
1	EXTERNAL								
12	ENIENIAL .								·
13									
13	Oil		<u></u>	L	L	 			
	TRAPPED			····		 			
13					····	ļ			
16	ENGINE		····					}	
17									
18	FUEL PANKS (Location	00	}						
19	WATER INJECTION I	FLUID (Gals.)				<u> </u>		
20									
21	BAGGAGE						` `		
22	CARGO								
23									
24	GUN INSTALLATION	15							
25	GUNS	Lecation	Fix. or Flex	Quantity	Caliber		 		
76				 		i	 		
27					 	 			
28	AMMO.			 		 	****		
29						 	 		
30		 		}	<u> </u>			}	
31	SUPPTS	 		 		 	 		
32	WEAPONS INSTALL	Red Sub-seri		- dablas	L		 	<u> </u>	
33		. pier danuari	na Garaciian ex	Paliagaiasi		 			
34			~~~~~~~~			 	 		
33						ļ	 	 	
36								-	}
37		······································						ļ	
38				-		 			
				 		-	<u> </u>		1
39			·			<u> </u>	-	<u> </u>	
40	,	· ····································	٢,		*				, ,
4		····							
12	<u> </u>					1		1	
43									
44									L
45									
46	EQUIPMENT								
47							1	1	
48	SURVIVAL KITS &	LIFE RAFTS					1	1	1
49						T			T
50	OXYGEN				······································	1	1	1	
51						1	<u> </u>		
52		******	······································				 	 	
53		· 				 		 	
34						 	 	 	
	TOTAL USEFUL TOA	VO.			·	 	 	 	
	WEIGHT EMPTY		, , , , , , , , , , , , , , , , , , , 			 	 	 	
	COOSE WEIGHT					1	1	<u> </u>	<u> </u>

^{*}If Re-ravable and Specified as Uraful Load.
**List Shares, Minaths, Sanabusys, etc. Followed by Backs, Lounthers, Chures, etc. Not Part of Weight Empry.
List Identification, Lokblish, Edd. Qudanty for All Home Shawn Including Installifican.

GROUP WEIGHT STATEMENT DIMENSIONAL AND STRUCTURAL DATA

MIL-STD-1374 PART 1	MENSIONAL	AND STRUCT	URAL DATA		Page	
Name						
Date					Report	
1 WING, ROTOR & TAIL GROUPS	PAN OR BADIUS STI	SPAN AT **** 25% CHORD	THEO SOOT OF CHORD SHIT	MAE THICE **	CHOSO ent	MAR 7844
2 WING	BADIUS ST1	75% CHORD	CHORD IN I	BOOT CHORD SNIT	CHOSD ent	TO CHURT AN
3						
4 MAIN ROTOR (Blades/Rotor)						
5 TAIL ROTOR (Blades/Rotor)						
6 HORIZ TAIL						
7 VERT. TAIL						
8						
9 AREAS - (Sq. Ft.)	Wing	MAIN BOTOS SLADE ASEA	TAR SOTOE	Horiz. Tail	Vert. Tail	Dorsal
10 (Theo for Wing & Rotor, All Others Exposed)						
11	Speed Brks.	flops (L.E.)	Flaps (T.E.)	Slots	Spoilers	Ailerons
12 AREAS - [Sq. Ft.]	1	2 - 1 17:1	100 30 00 1		V-1 (C. 74)	
13 BODY & NACELLE GROUPS	Length (Ft.)	Depth (Ft.)	Width (Ft.)	WITE ARE SO IT!	Vol. (Cu. Ft.)	VOI PRESS CU FT
14 FUSELAGE or HULL 15 BOOMS						
16 NACELLES						
17						
18 1						
19 ALIGHTING GEAR GROUP	Length -	Oleo Ext.	Oleo	Trovel	Length - A	rest Hook
20	**************************************	& Trunnion		ollogued	Hook Trun	
21 LOCATION				T		
22 DIMENSIONS (Inches)						-
23						
24 PROPULSION GROUP						
25 ENGINES	\$1.5 THRUT IN LES -E	NG WITH AFTERSUMMER	S (S TWEUS WITHOUT A	10 (85 (MC 11(08))014(8	MAL 515 SMAFT M7	inal the at make at
26: MAIN						
				1	1	
27 AUXILIARY	-		B. Ob. of A.L.		<u> </u>	
281 ROTOR DRIVE SYSTEM	Design H.P.	Input R.P.M.	Gulbut a F m a r eo toe	M119 60100 69 m	Puresto Gras sorts	
281 ROTOR DRIVE SYSTEM 29						
28 ROTOR DRIVE SYSTEM 29 30	Prot	ected	Unpre	tected	inte	
28 ROTOR DRIVE SYSTEM 29 30 31 FUEL - INTERNAL *** LOCATION						grai Gallens
28 ROTOR DRIVE SYSTEM 29 30 31 FUEL - INTERNAL *** LOCATION 32 WING	Prot	ected	Unpre	tected	inte	
28 ROTOR DRIVE SYSTEM 29 30 31 FUEL - INTERNAL *** LOCATION 32 WING 33 FUSELAGE	Prot	ected	Unpre	tected	inte	
28 ROTOR DRIVE SYSTEM 29 30 31 FUEL - INTERNAL *** LOCATION 32 WING	Prot	ected	Unpre	tected	inte	
28 ROTOR DRIVE SYSTEM 29 30 31 FUEL - INTERNAL *** LOCATION 32 WING 33 FUSELAGE 34 - EXTERNAL ***	Prot	ected Gallons	Unpro No Tanks	tected	inte	
28 ROTOR DRIVE SYSTEM 29 30 31 FUEL - INTERNAL *** LOCATION 32 WING 33 FUSELAGE 34 - EXTERNAL ***	Prot	ected	Unpre	tected	inte	
28 ROTOR DRIVE SYSTEM 29 30 31 FUEL - INTERNAL *** LOCATION 32 WING 33 FUSELAGE 34 - EXTERNAL *** 35 36 OIL	Prot No. Tanks	ected Gallons	Unpro No Tanks	tected	Inte No. Tanks	
28 ROTOR DRIVE SYSTEM 29 30 31 FUEL - INTERNAL *** LOCATION 32 WING 33 FUSELAGE 34 EXTERNAL *** 35 36 OIL 37 ELECTRICAL & LOAD & HANDLING GROUPS 38 39	Proti	Gallons CHARATOR COMMUN DC	Unpre No Tanks	tected	Inte No. Tanks CARGO PLUGS ANA	Gallens
28 ROTOR DRIVE SYSTEM 29 30 31 FUEL - INTERNAL *** LOCATION 32 WING 33 FUSELAGE 34 - EXTERNAL *** 35 36 OIL 37 ELECTRICAL & LOAD & HANDLING GROUPS 38 39 40 STRUCTURAL DATA - CONDITION	Prot No. Tanks	ected Gallons	Unpro No Tanks	tected	Inte No. Tanks	
28 ROTOR DRIVE SYSTEM 29 30 31 FUEL - INTERNAL *** LOCATION 32 WING 33 FUSELAGE 34 EXTERNAL *** 35 36 OIL 37 ELECTRICAL & LOAD & HANDLING GROUPS 38 39 40 STRUCTURAL DATA - CONDITION 41 FLIGHT - MANEUVER	Proti	Gallons CHARATOR COMMUN DC	Unpre No Tanks	tected	Inte No. Tanks CARGO PLUGS ANA	Gallens
28 ROTOR DRIVE SYSTEM 29 30 31 FUEL - INTERNAL *** LOCATION 32 WING 33 FUSELAGE 34 EXTERNAL *** 35 36 OIL 37 ELECTRICAL & LOAD & HANDLING GROUPS 38 39 40 STRUCTURAL DATA - CONDITION 41 FLIGHT - MANEUVER 42 GUST	Proti	Gallons CHARATOR COMMUN DC	Unpre No Tanks	tected	Inte No. Tanks CARGO PLUGS ANA	Gallens
28 ROTOR DRIVE SYSTEM 29 30 31 FUEL - INTERNAL *** LOCATION 32 WING 33 FUSELAGE 34 EXTERNAL *** 35 36 OIL 37 ELECTRICAL & LOAD & HANDLING GROUPS 38 39 40 STRUCTURAL DATA - CONDITION 41 FLIGHT - MANEUVER 42 GUST 43 LANDING	Proti	Gallons CHARATOR COMMUN DC	Unpre No Tanks	tected	Inte No. Tanks CARGO PLUGS ANA	Gallens
28 ROTOR DRIVE SYSTEM 29 30 31 FUEL - INTERNAL *** LOCATION 32 WING 33 FUSELAGE 34 EXTERNAL *** 35 36 OIL 37 ELECTRICAL & LOAD & HANDLING GROUPS 38 39 40 STRUCTURAL DATA - CONDITION 41 FLIGHT - MANEUVER 42 GUST 43 LANDING	Proti	Gallons CHARATOR COMMUN DC	Unpre No Tanks	tected	Inte No. Tanks CARGO PLUGS ANA	Gallens
28 ROTOR DRIVE SYSTEM 29 30 31 FUEL - INTERNAL *** LOCATION 32 WING 33 FUSELAGE 34 EXTERNAL *** 35 36 OIL 37 ELECTRICAL & LOAD & HANDLING GROUPS 38 39 40 STRUCTURAL DATA - CONDITION 41 FLIGHT - MANEUVER 42 GUST 43 LANDING 44 45 MAX GROSS WITH ZERO WING FUEL	Proti	Gallons CHARATOR COMMUN DC	Unpre No Tanks	tected	Inte No. Tanks CARGO PLUGS ANA	Gallens
28 ROTOR DRIVE SYSTEM 29 30 31 FUEL - INTERNAL *** LOCATION 32 WING 33 PUSELAGE 34 EXTERNAL *** 35 36 OIL 37 ELECTRICAL & LOAD & HANDLING GROUPS 38 39 40 STRUCTURAL DATA - CONDITION 41 FLIGHT - MANEUVER 42 GUST 43 LANDING 44 45 MAX GROSS WITH ZERO WING FUEL 46 CATAPULTING	Proti	Gallons CHARATOR COMMUN DC	Unpre No Tanks	tected	Inte No. Tanks CARGO PLUGS ANA	Gallens
28 ROTOR DRIVE SYSTEM 29 30 31 FUEL - INTERNAL *** LOCATION 32 WING 33 FUSELAGE 34 EXTERNAL *** 35 36 OIL 37 ELECTRICAL & LOAD & HANDLING GROUPS 38 39 40 STRUCTURAL DATA - CONDITION 41 FLIGHT - MANEUVER 42 GUST 43 LANDING 44 45 MAX GROSS WITH ZERO WING FUEL 46 CATAPULTING 47 LIMIT LANDING SINK SPEED (Ft /Sec.)	Proti	Gallons CHARATOR COMMUN DC	Unpre No Tanks	tected	Inte No. Tanks CARGO PLUGS ANA	Gallens
28 ROTOR DRIVE SYSTEM 29 30 31 FUEL - INTERNAL *** LOCATION 32 WING 33 FUSELAGE 34 EXTERNAL *** 35 36 OIL 37 ELECTRICAL & LOAD & HANDLING GROUPS 38 39 40 STRUCTURAL DATA - CONDITION 41 FLIGHT - MANEUVER 42 GUST 43 LANDING 44 45 MAX GROSS WITH ZERO WING FUEL 46 CATAPULTING 47 LIMIT LANDING SINK SPEED (FI / Sec.) 48 CONSTRUCTOR OFF	Proti	Gallons CHARATOR COMMUN DC	Unpre No Tanks	tected	Inte No. Tanks CARGO PLUGS ANA	Gallens
28 ROTOR DRIVE SYSTEM 29 30 31 FUEL - INTERNAL *** LOCATION 32 WING 33 FUSELAGE 34 EXTERNAL *** 35 36 OIL 37 ELECTRICAL & LOAD & HANDLING GROUPS 38 39 40 STRUCTURAL DATA - CONDITION 41 FLIGHT - MANEUVER 42 GUST 43 LANDING 44 45 MAX GROSS WITH ZERO WING FUEL 46 CATAPULTING 47 LIMIT LANDING SINK SPEED (FI / Sec.) 48 CONSTRUCTOR OFF	Proti	Gallons CHARATOR COMMUN DC	Unpre No Tanks	State of Gallions	Inte No. Tanks CARGO PLUGS ANA	Gallens
28 ROTOR DRIVE SYSTEM 29 30 31 FUEL - INTERNAL *** LOCATION 32 WING 33 FUSELAGE 34 - EXTERNAL *** 35 36 OIL 37 ELECTRICAL & LOAD & HANDLING GROUPS 38 39 40 STRUCTURAL DATA - CONDITION 41 FLIGHT - MANEUVER 42 - GUST 43 LANDING 44 45 MAX GROSS WITH ZERO WING FUEL 46 CATAPULTING 47 LIMIT LANDING SINK SPEED (F1 / Sec.) 48 (CASSIONED SINK SPEED (F1 / Sec.) 48 (CASSIONED SINK SPEED (F1 / Sec.) 49 STALL SPD LDG CONFIG - POWER OFF	Proti	Gallons CHARATOR COMMUN DC	Unpre No Tanks	tected	Inte No. Tanks CARGO PLUGS ANA	Gallens
28 ROTOR DRIVE SYSTEM 29 30 31 FUEL - INTERNAL *** LOCATION 32 WING 33 FUSELAGE 34 - EXTERNAL *** 35 36 OIL 37 ELECTRICAL & LOAD & HANDLING GROUPS 38 39 40 STRUCTURAL DATA - CONDITION 41 FLIGHT - MANEUVER 42 GUST 43 LANDING 44 45 MAX GROSS WITH ZERO WING FUEL 46 CATAPULTING 47 LIMIT LANDING SINK SPEED (PL/Sec.) 48 GONDOWN DE LIMIT SPEED 49 STALL SPD LDG CONFIG - POWER OFF 50 MILED STALL SPD LDG CONFIG - POWER OFF	Proti No. Tanks DUAN MAIN GENERALOPS BOOT PLOT INT COMITINE (S)	Gallons Gallons CHAING OWN/ DC BRINGS DN 6001	Unpre No Tanks	State of Gallions	Inte No. Tanks CARGO PLUGS ANA	Gallens
28 ROTOR DRIVE SYSTEM 29 30 31 FUEL - INTERNAL *** LOCATION 32 WING 33 FUSELAGE 34 - EXTERNAL *** 35 36 OR 37 ELECTRICAL & LOAD & HANDLING GROUPS 38 39 40 STRUCTURAL DATA - CONDITION 41 FLIGHT - MANEUVER 42 - GUST 43 LANDING 44 45 MAX GROSS WITH ZERO WING FUEL 46 CATAPULTING 47 LIMIT LANDING SINK SPEED (PI /Sec.) 48 UN ASSESSED TO LIDG CONFIG - POWER OFF 50 PILICARD CARP UT DRIVEN 51 ROTOR TIP SPD AT DESIGN LIMIT 52 53 % DESIGN LOAD	Proti	Gallons Gallons CHAING OWN/ DC BRINGS DN 6001	Unpre No Tanks Grintanos Guinar A. Fust on wrocks and Fust on w	State of Gallions	Inte No. Tanks CARGO PLUGS ANA	Gallens
28 ROTOR DRIVE SYSTEM 29 30 31 FUEL - INTERNAL *** LOCATION 32 WING 33 PUSELAGE 34 EXTERNAL *** 35 36 OIL 37 ELECTRICAL & LOAD & HANDLING GROUPS 38 39 40 STRUCTURAL DATA - CONDITION 41 FLIGHT - MANEUVER 42 GUST 43 LANDING 44 45 MAX GROSS WITH ZERO WING FUEL 46 CATAPULTING 47 LIMIT LANDING SINK SPEED (FI /Sec.) 48 (CONDITION OF THE CONDITION	Proti No. Tanks DUAN MAIN GENERALOPS BOOT PLOT INT COMITINE (S)	Gallons Gallons CHRISTON CURPUI DE EMINAL W ON SOOT	Unpre No Tanks Communication	Gallens Gallens Townston	CARGO PILOS AMA GIOSE WICH	Gallens
28 ROTOR DRIVE SYSTEM 29 30 31 FUEL - INTERNAL *** LOCATION 32 WING 33 FUSELAGE 34 - EXTERNAL *** 35 36 OR 37 ELECTRICAL & LOAD & HANDLING GROUPS 38 39 40 STRUCTURAL DATA - CONDITION 41 FLIGHT - MANEUVER 42 - GUST 43 LANDING 44 45 MAX GROSS WITH ZERO WING FUEL 46 CATAPULTING 47 LIMIT LANDING SINK SPEED (PI /Sec.) 48 UN ASSESSED TO LIDG CONFIG - POWER OFF 50 PILICARD CARP UT DRIVEN 51 ROTOR TIP SPD AT DESIGN LIMIT 52 53 % DESIGN LOAD	Proti	Gallons Gallons CHAING OWN/ DC BRINGS DN 6001	Unpre No Tanks Grintanos Guinar A. Fust on wrocks and Fust on w	State of Gallions	CARGO PILOS AMA GIOSE WICH	Gallens

^{**}Note to off top of fuseloge (excluding equipment prohiberences)
**Perfolial to E at E Autroph for Wing & Tool Insert miches from E Rotor for Rotors
***Total Useble Capacity
***Insert inches from E Rotor : Blade Attachment for Rotors

GROUP WEIGHT STATEMENT DESCRIPTION OF DIMENSIONAL AND STRUCTURAL DATA

MIL-STD-1374 PART I

Name		AND STRUCTURAL	DATA .		Model_	····
Date .	· · · · · · · · · · · · · · · · · · ·				Report	
						
14						
2	Refer to Paragraph 5.1.1.4 of		<u> </u>			
3	"Detailed Requirements for Instruct	Sant fair Una	 			
4	Deliging Radinements tor instruct	nons for Use	 			
3			 			
6 7			 			
8			 			·
			 			
9 10						
11			· 	<u> </u>		
12						
13	····				· · · · · · · · · · · · · · · · · · ·	
14	**************************************					
15			 			
10		 -	 			
10	**************************************		 	 	····	
118			 			
18					····	
27			1			
21		94	 		14	F
22			1			
231			1	77		1
22 23 24 25 76 47						
25			 			
76			1			
17						
28				l .		1
29						
30						1
31 32 33 34 35 36 37 38			1	L		
32						
33		,				
34						
35						·
36			: - 	ļ	, L aboratoro, p. 1887 e 188	
37		····	<u> </u>	<u> </u>		
39			!	<u> </u>		
				<u> </u>		
40	and the second of the second of the	<u> </u>	12.5 17	4-1 61 1	<u> </u>	J j
12			+	 		<u>.</u>
13				 -		
1214				 . 		
45			 	 		
46		~~~		 		
			 -	 		
47 48 45 5 5 5 5 7 4 5 5 6 7				 -		
49			 	 		
30			 	 		
31			 	 	 	
57			 	 		
13			 	1		·
14			 	<u> </u>		r *** · · · · · · · · · · · · · · · · ·
35		····	<u> </u>	<u> </u>	-	
56			T	 		-
47						

		GROUP WEIGHT S	STATEMENT	
MIL-STD-1374	PART I			Page
Name				Model
Date				Report
•		AIRFRAME V	WEIGHT	
			٠	
	Stateme from we (CIR) fo subsequ called A	frame Weight to be entered on an int should be derived here in descript empty as required by the correction Aircraft, Missiles, and Spacement revisions thereto. Airframe AMPR and DCPR and is not to be re (WBS) Airframe Cost Definition	tail showing those iten document "Cost Inform Systems" dated 21 Ap e weight is the same a c confused with "Work	ns deducted nation Reports oril,1966, or as previously
		EMPTY T THE FOLLOWING ITEMS ZE)		•
				

AIRFRAME WEIGHT

4.10 PERFORMANCE CALCULATIONS SUBPROGRAM

The flow chart of the control loop for the performance calculations subprogram is shown in Figure 4-46. This routine monitors the flow during calculation of mission performance data and calculates the total fuel required at the end of the mission.

4.10.1 Taxi Calculations Subroutine

The taxi calculations subroutine (specified by SGTIND = 1), calculates the fuel required to taxi at ground idle engine setting for a specified period of time. For aircraft which have independent lift propulsion systems (LFTIND = 1), the program will calculate taxi performance for either primary engines operating alone, or both primary and lift engines operating. This is accomplished by means of the input constant kFL. If kFL is input as 0, the program will consider only primary engines in operation in determining fuel flow rates. If kFL is input as unity, the program will include both primary and lift propulsion systems in calculating the fuel flow rates and the corresponding reduction in aircraft gross weight. Figure 4-47 is a flow chart of this subroutine.

Input to this subroutine consists of the time for taxi, value of k_{FL} , and atmospheric conditions.

PAGE 2

Figure 4-46. Performance Calculations Subroutine, Flow Chart (Part 1 of 6)

Figure 4-46. Performance Calculations Subroutine, Flow Chart (Part 2 of 6)

Figure 4-46. Performance Calculations Subroutine, Flow Chart (Part 3 of 6)

•)

PAGE S

PAGE 7 PRFRM

PAGE 3 PRESM

Figure 4-46. Performance Calculations Subroutine, Flow Chart (Part 4 of 6)

Figure 4-46. Performance Calculations Subroutine, Flow Chart (Part 5 of 6)

PAGE 10 PRESM

Figure 4-46. Performance Calculations Subroutine, Flow Chart (Part 6 of 6)

4-192

4.10.2 Takeoff, Hover, and Landing Calculations Subroutine

The takeoff, hover, and landing calculations subroutine (specified by SGTIND = 2) will calculate the thrust or power required and corresponding fuel flow rates during simulated takeoff/hover/landing operations. Three options are available, specified by the input indicator TOLIND:

- TOLIND = 1 Input required thrust-weight ratio.

 Program will use maximum thrust from lift engines
 before augmenting with primary engines (if necessary).

 If only primary engines are on aircraft (LFTIND = 0),
 required thrust level will be taken from primary
 engines.
- TOLIND = 2 This option must not be used if LFTIND = 0. Input required thrust-weight ratio. Program will take an equal fraction of power available from lift engines and primary engines.
- TOLIND = 3 Input required power fraction (fraction of maximum available power) for primary engines and/or lift engines. Program will calculate thrust-weight ratio.

In all cases, the program will print out the power fraction and thrust-weight ratio. The program will permit operation at power fractions greater than 1.0 (more than 100 percent of available power) in order to make it easier to perform studies in which engine power is being varied parametrically to satisfy specified takeoff or landing requirements at a remote site. The program will, however, print a cautionary note that power fraction exceeds 100 percent.

Propulsive efficiencies for both primary and lift propulsion systems can be input to this subroutine. The value of efficiency relates to the percentage of thrust or power which is doing useful work in the vertical direction. Thus, the primary engine efficiency $n_{\rm p2}$, when used with a thrust producing engine (ENGIND = 1) is interpreted as the ratio of thrust of the primary engines in the vertical direction to total engine thrust, and may be used to simulate a turning efficiency of jet engines being used with turning vanes. Similarly, the lift engine efficiency, $n_{\rm T}$, may be used to simulate the effect of

control losses on lift engine thrust. If the primary engines being used are turboshaft (ENGIND = 0) or convertible (ENGIND = 2) engines, the primary propulsive efficiency, $n_{\rm p2}$, is defined in the more normal manner as a power ratio (rather than a thrust ratio).

Figure 4-48 is a flow chart for this subroutine.

PAGE 2

Figure 4-48. Takeoff, Hover, Land Subroutine Flow Chart (Part 1 of 12)

Figure 4-48. Takeoff, Hover, Land Subroutine, Flow Chart (Part 2 of 12)
4-196

PAGE 4 TOHL

Figure 4-48. Takeoff, Hover, Land Subroutine Flow Chart (Part 3 of 12)

Figure 4-48. Takeoff, Hover, Land Subroutine Flow Chart (Part 4 of 12)

Figure 4-48. Takeoff, Hover, Land Subroutine Flow Chart (Part 5 of 12)

Figure 4-48. Takeoff, Hover, Land Subroutine Flow Chart (Part 6 of 12)

4-200

1)

1 CHL

Figure 4-48. Takeoff, Hover, Land Subroutine Flow Chart (Part 7 of 12)

Figure 4-48. Takeoff, Hover, Land Subroutine Flow Chart (Part 8 of 12)

Figure 4-48. Takeoff, Hover, Land Subroutine Flow Chart (Part 9 of 12)

Figure 4-48. Takeoff, Hover, Land Subroutine Flow Chart (Part 10 of 12)

Figure 4-48. Takeoff, Hover, Land Subroutine Flow Chart (Part 11 of 12)

PAGE 14 TOHL

Figure 4-48. Takeoff, Hover, Land Subroutine Flow Chart (Part 12 of 12)

4.10.3 Climb Calculations Subroutine

The third performance segment is a calculation of climb performance. Four options are available, specified by the indicator CLMIND:

- CLMIND = 1 The program calculates performance of the aircraft in a maximum rate of climb ascent limited by maximum operating airspeed, maximum operating Mach number, and maximum body attitude angle. If, at the conditions for best rate of climb, the attitude angle of the aircraft fuselage is greater than the input maximum, the airspeed is increased until the attitude angle restriction is satisfied. In no event will the aircraft be required to fly at an airspeed greater than the input maximum operating airspeed. In the unlikely event that at V_{MO}, M_{MO}, the aircraft rate of climb is sufficiently high to cause the aircraft fuselage attitude angle to exceed the maximum value, the engine power will be reduced to that level necessary to satisfy the attitude angle constraint. The aircraft will then climb at V_{MO}, M_{MO}, at reduced power rating.
- CLMIND = 2 The program calculates the climb performance of the aircraft at specified constant equivalent airspeed limited, as before, by MMO, VMO, and maximum body attitude angle. If the attitude angle exceeds the input maximum, the power level will be reduced.
- CLMIND = 3 Climb performance is calculated at constant specified Mach number. Otherwise, the option is similar to CLMIND = 2.
- CLMIND = 4 Climb will be calculated at constant true airspeed with the same constraints as for CLMIND = 2.

For all options, the user may input the power setting of the engines which will be considered to be the maximum permissible rating. This is accomplished by means of the indicator POWIND:

POWIND = 0: Maximum
POWIND = 1: Military engine rating
POWIND = 2: Normal

If the limiting speed option (VLIMIND = 1) is used, the climb speed calculated by the program or specified by the user will be automatically monitored by the program to ensure that it does not exceed 250 knots equivalent airspeed at altitudes of 10,000 feet or less.

The climb segment may be used to make energy-maneuverability calculations. To calculate the specific excess power (P_S) at a given value of altitude and true airspeed (or Mach number) and at a desired level of normal load factor, the user may run a climb segment at constant Mach number (CLMIND=3) or constant true airspeed (CLMIND=4). The normal load factor is specified to the program by an input for Δn_{CLIMB} . This input represents the airplane normal load factor in excess of 1 g. For conventional climbs, this parameter should be input as zero. The program printout for rate of climb in feet per minute may be interpreted as the specific excess power (P_S) and converted to units of feet per second, ordinarily used in energy-maneuverability charts.

The user may specify a value for incremental drag coefficient during climb, $\Delta C_{\rm DCLIMB}$ to represent variations in store drag.

The input h_{max} has two applications. If hopTIND = 1 (optimum altitude search) and the climb is followed by a cruise, the input value of h_{max} will be interpreted as the maximum flight altitude for the following cruise. If the optimum cruise altitude is determined by the program to be at an altitude less than h_{max} , the climb will terminate at the lower altitude. If an optimum altitude search is not being used or if the following segment is other than a cruise, the input h_{max} is interpreted as the final altitude for the climb segment.

Figure 4-49 is a flow chart for this subroutine.

Figure 4-49. Climb Subroutine, Flow Chart (Part 1 of 22)

Figure 4-49. Climb Subroutine, Flow Chart (Part 2 of 22)

Figure 4-49. Climb Subroutine, Flow Chart (Part 3 of 22)

211

Figure 4-49. Climb Subroutine, Flow Chart (Part 4 of 22)

Climb Subroutine, Flow Chart (Part 5 of 22) Figure 4-49. 4-213

Figure 4-49. Climb Subroutine, Flow Chart (Part 6 of 22)
4-214

Figure 4-49. Climb Subroutine, Flow Chart (Part 7 of 22)

PAGE 0 CLIMD

Figure 4-49. Climb Subroutine, Flow Chart (Part 8 of 22)

Figure 4-49. Climb Subroutine, Flow Chart (Part 9 of 22)

PAGE 11 CLIME

Figure 4-49. Climb Subroutine, Flow Chart (Part 10 of 22)

Figure 4-49. Climb Subroutine, Flow Chart (Part 11 of 22)

Figure 4-49. Climb Subroutine, Flow Chart (Part 12 of 22)

PGGC 14 CLIM2

Figure 4-49. Climb Subroutine, Flow Chart (Part 13 of 22)
4-221

PAGE 15

1

Figure 4-49. Climb Subroutine, Flow Chart (Part 14 of 22)

Figure 4-49. Climb Subroutine, Flow Chart (Part 15 of 22)

Figure 4-49. Climb Suproutine, Flow Chart (Part 16 of 22)

1-2:1

PAGE 19 CLIMB

Figure 4-49. Climb Subroutine, Flow Chart (Part 17 of 22)

PAGE 21 CLIM3

Figure 4-49. Climb Subroutine, Flow Chart (Part 18 of 22)

Figure 4-49. Climb Subroutine, Flow Chart (Part 20 of 22)

PROE 24 CLIM2

Figure 4-49. Climb Subroutine, Flow Chart (Part 21 of 22)

Figure 4-49. Climb Subroutine, Flow Chart (Part 22 of 22)

4.10.4 Cruise Calculations Subroutine

The fourth performance segment is the calculation of cruise performance. The cruise performance calculation contains six separate options specifying the type of cruise for the aircraft. This option is determined by an input indicator, CRSIND.

- CRSIND = 1 This is a calculation of aircraft cruise performance at a fixed cruise power setting and at a constant altitude, constrained by limiting airspeed and Mach number. This option calculates the true airspeed, Mach number, specific range, and reduction in gross weight during cruise.
- CRSIND = 2 This option will calculate the cruise performance of the aircraft at constant true airspeed, constant altitude, and constrained by cruise power and by limiting airspeed and Mach number. The program will calculate the power setting required, true airspeed, specific range, and corresponding reduction in gross weight of the aircraft during cruise.
- CRSIND = 3 This option calculates the airspeed during cruise required for best specific range, constrained by normal power setting and by limiting airspeed and Mach number. Flight is at constant altitude.
- CRSIND = 4 This option will calculate the "long range cruise" condition that is, cruise at speed for 99% of best specific range. Flight is constrained by normal power setting, limiting airspeed and Mach number and is at constant altitude.
- CRSIND = 5 This option is a calculation for a cruiseclimb at a constant value of W/δ (airplane weight to ambient pressure ratio). The airspeed will be the speed for best specific range.
- CRSIND = 6 This is a calculation for a cruise climb (constant W/δ) at the speed for 99% of best specific range.

Cruise power setting as discussed above is defined by user input to be maximum (POWIND = 0), military (POWIND = 1), or normal (POWIND = 2) engine rating.

This subroutine permits simulation of cruise performance of an aircraft with an arbitrary number of engines shut down. The program user specifies the number of

engines shut down and a corresponding increment in airplane drag coefficient.

The user may also specify a desired value of headwind when CRSIND = 3 through 6.

The input for the subroutine consists of the final range for cruise, the step size (incremental range), number of engines shut down, increment in drag coefficient, atmospheric conditions, required true airspeed (if CRSIND = 2) the headwind (if CRSIND = 3, 4, 5, or 6) and the settings for CRSIND and POWIND. Figure 4-50 is a flow chart of this subroutine.

Figure 4-50a. Cruise Calculations Subroutine, Flow Chart.

PAGE 2 CRUS:

Figure 50B . CRUS1 Calculations Subroutine, Flow Chart (Part 1 of 10)

Figure 50B. CRUS1 Calculations Subroutine, Flow Chart (Part 2 of 10)

CRUSI

Figure 50B. CRUS1 Calculations Subroutine, Flow Chart (Part 3 of 13)

PAGE 4 CRUSI

Figure 50B. CRUS1 Calculations Subroutine, Flow Chart (Part 4 of 10)

Figure 50B. CRUS1 Calculations Subroutine, Flow Chart (Part 5 of 10)

PAGE 7 CRUSI

Figure 50B. CRUS1 Calculations Subroutine, Flow Chart (Part 6 of 10)

Figure 50B

CRUS1 Calculations Subroutine, Flow

,)

Figure 50B. CRUS1 Calculations Subroutine, Flow Chart (Part 8 of 10)

; •

PAGE 11 CRUSI

PAGE 12

Figure 50B. CRUS1 Calculations Subroutine, Flow Chart (Part 9 of 10)

PAGE 14 CRUS1

Figure 50B. CRUS1 Calculations Subroutine, Flow Chart (Part 10 of 10)

PAGE 2 CRUS2

Figure 50C . CRUS2 Calculations Subroutine, Flow Chart (Part 1 of 8)

Figure 50C CRUS2 Calculations Subroutine, Flow Chart (Part 2 of 8)
4-245

Figure 50C. CRUS2 Calculations Subroutine, Flow Chart (Part 3 of 8)

PAGE 5 CRUS2

Figure 50C. CRUS2 Calculations Subroutine, Flow Chart (Part 4 of 8)

Figure 50C, CRUS2 Calculations Subroutine, Tlow Chart (Part 5 of E)

Figure 50C. CRUS2 Calculations Subroutine, Flow Chart (Part 6 of 8)

ALTONOM SELECTION CONTRACTOR CONT

Figure 50C . CRUS2 Calculations Subroutine, Flow Chart (Part 7 of 8)

PAGE 5 CRUSS

PAGE 3 CRUSS

Figure 50C . CRUS2 Calculations Subroutine, Flow Chart (Part 8 of 8)

PEGE 2 CRUS3

Figure 50D. CRUS3 Calculations Subroutine, Flow Chart (Part 1 of 13)

Figure 50D, CRUS3 Calculations Subroutine, Flow Chart (Part 2 of 13)

,1

Figure 50D. CRUS3 Calculations Subroutine, Flow Chart (Part 3 of 13)

CRUS3 Calculations Subroutine, Flow Chart (Part 5 of 13)

4-255

Figure 50D. CRUS3 Calculations Subroutine, Flow Chart (Part 4 of 13)

PAGE 5 CRUS3

PAGE 3 CRUS3

Figure 50D. CRUS3 Calculations Subroutine, Flow Chart (Part 7 of 13)

Figure 50D. CRUS3 Calculations Subroutine, Flow Chart (Part 8 of 13)

PRIGE 11 CRU93

Figure 50D. CRUS3 Calculations Subroutine, Flow Chart (Part 9 of 13)

Figure 50D.

CkUS3 Calculations Subroutine, Flow Chart (Part 10 of 13)

PAGE 13 CRU93

Figure 50D. CRUS3 Calculations Subroutine, Flow Chart (Part 11 of 13)

Figure 50D. CRUS3 Calculations Subroutine, Flow Chart (Part 12 of 13)

PAGE IS

1 1

Figure 50D. CRUS3 Calculations Subroutine, Flow Chart (Part 13 of 13)

4.10.5 Descent Calculations Subroutine

Eight different options for descent performance calculation are available. The options fall into four different categories: maximum speed, idle power, constant EAS, and constant Mach number. In addition, each type of descent may be calculated with or without specification of range at the end of descent. The options, set by the input indicator DESIND, are:

Value of DESIND	Type of Descent	Terminal Range Specified?
1	Maximum Speed	Yes
2	Maximum Speed	No
3	Idle Power	Yes
4	Idle Power	No
5	Constant EAS	Yes
6	Constant EAS	No
7	Constant Mach Number	Yes
8	Constant Mach Number	No

All descents are limited by an input value of maximum negative body attitude angle. For the four categories of descent, the following methods are used to modulate power and/or airspeed:

Maximum speed The aircraft will always descend at maximum permissible airspeed (VMO or MMO). This condition corresponds to maximum rate of sink. The power setting will be flight idle unless the body attitude angle falls below the prescribed minimum, in which case the power will be increased (up to normal power level) to the value required to satisfy the cabin angle restriction.

Idle power The aircraft will always use flight idle power setting. The descent will occur at maximum speed unless the cabin angle limit is violated, in which case the airspeed for descent will be decreased.

Constant EAS and Constant Mach number The aircraft will always fly at the specified equivalent airspeed or Mach number. If terminal range is not specified, the engine setting will be flight idle unless this causes the body angle to become too steep, in which case the power will be set to the required level. If terminal range is specified, the aircraft will fly a straight-line descent path to the required terminal point and will modulate power accordingly. If either body angle becomes too steep or power

required is greater than normal power, the aircraft will fly at the power setting required to satisfy the corresponding limit. The terminal range will not be satisfied and the program, upon reaching the final altitude, will set the range to the required value with the note: "SPIRAL DESCENT PATH REQUIRED". If body angle becomes too steep and the required power setting is greater than normal power, the program will terminate with the note: "DESCENT CONDITION IMPOSSIBLE: DESIRED FLIGHT PATH IS TOO SHALLOW".

Figure 4-51, in which the rate of sink is plotted against airspeed, illustrates the difference between the maximum speed and the flight idle options. The aircraft is able to make a steady-state descent anywhere within the boundaries shown on this figure. The critical boundaries are:

- a. The idle power boundary, defined by the minimum power (flight idle setting) of the aircraft.
- b. The fuselage attitude angle boundary, defined by the most negative permissible body attitude angle $(\theta_{\rm p})$.
- c. The maximum speed boundary, defined by the maximum operating airspeed ($V_{\hbox{MO}}$) or the maximum operating Mach number ($M_{\hbox{MO}}$).

In the general case (Figure 4-5la), a descent at maximum rate of sink (DESIND = 1,2) will occur at point "A" at a power setting somewhat above flight idle. This option will give the fastest descent. A descent at flight idle power setting (DESIND = 3,4) will occur at point "B" at an airspeed somewhat below VMO, MMO. This option will give the descent at minimum power and thus at minimum fuel flow rate. This descent will approximate (although not be exactly equal to) a minimum fuel consumption descent. Possible variations on the general case are shown in Figures 4-51b through 4-5ld. In Figure 4-5lb, the attitude angle restriction is relatively large and the options are the same. is, the aircraft is capable of descending at an airspeed corresponding to $V_{\mbox{\footnotesize{MO}}}\text{,}\ \mbox{$M_{\mbox{\footnotesize{MO}}}$,}\ \mbox{$M_{\mbox{\footnotesize{MO}}}$ and at a flight idle}$ power setting without exceeding the fuselage angle limit. In Figures 4-51c and 4-51d, the airspeed limit has been set higher than the aircraft cruise speed (that is, even at normal power the aircraft will descend). In Figure 4-51d, this airspeed limit has been coupled with an exceedingly severe restriction on $\theta_{\rm F}$ so that, even at cruise power, the aircraft descends with an excessive fuselage angle.

POSSIBLE VARIATIONS:

Figure 4-51. Descent Boundaries.

In the event of this most unlikely circumstance, the program will print out an error message and the case will terminate. For other than this condition (Figure 4-5ld, the program will calculate the true airspeed, rate of sink, fuel consumption, and required power during the descent.

A distinction is made between the first two types of descent (maximum speed, flight idle) and the last two (constant EAS, Mach number) in regard to the range at which the descent starts if terminal range is specified. This distinction should be clearly understood.

- a. If DESIND = 5 or 7, the descent will start at the current value for range and, as previously described, the airplane will fly a straight-line path to the desired terminal point. This may necessitate a "spiral" descent path. The descent may follow any other segment (climb, cruise, etc.) or may start the mission.
- If DESIND = 1 or 3, no spiral descent path is permitted. The program will calculate the value for range at the beginning of the descent which is required to satisfy the terminal condition on range and altitude. In order to do this, the program "backs up" on the previous segment. these options (1 and 3) are used, the descent must be preceded by a cruise segment. The input value for maximum range for the preceding cruise segment is a dummy value and the cruise will actually terminate, in order to begin descent, at an earlier point. It is recommended, however, that when descent options 1 or 3 are to be used, the maximum range during the preceding cruise be input as the same value as the terminal range at the end of the following descent.

Any of the descent options for which the terminal range is not specified may be used at any point in the program, following any other segment or at the beginning of the mission. The descent will start at the current value of range.

An increment in airplane drag coefficient may be input in order to simulate the effects of drag brakes.

Input to the subroutine consists of the limiting body angle, the final altitude, the step size (increment in altitude), the increment in drag coefficient, the setting for DESIND and, if required, the following

data: terminal range, required Mach number, and required EAS.

Figure 4-52 is a flow chart for this subroutine.

Figure 4-52a. Descent Calculations Subroutine, Program Flow

Figure 52B, Descent Calculations Subroutine, Flow Chart (Part 1 of 14)

4-270

Figure 52B. Descent Calculations Subroutine, Flow Chart (Part 2 of 14)

PAGE C

Figure 52B. Descent Calculations Subroutine, Flow Chart (Part 3 of 14)

Figure 52B. Descent Calculations Subroutine, Flow Chart (Part 4 of 14)

Figure 52B. Descent Calculations Subroutine, Flow Chart (Part 5 of 14)

PAGE 3 D3CNT

Figure 52B. Descent Calculations Subroutine, Flow Chart (Part 6 of 14)

PAGE

10

Figure 52B. Descent Calculations Subroutine, Flow Chart (Part 7 of 14)

Figure 52B .

Descent Calculations Subroutine, Flow Chart (Part 8 of 14)

PAGE 10 DSCNT

Figure 52B. Descent Calculations Subroutine, Flow Chart (Part 9 of 14)

Figure 52B. Descent Calculations Subroutine, Flow Chart (Part 10 of 14)

PAGE 14 DSCNT

(1)

Figure 52B. Descent Calculations Subroutine,
FlowChart (Part 11 of 14)
4-286

Figure 52B,

Descent Calculations Subroutine, Flow Chart (Part 12 of 14)

PAGE 16 DSCNT

Figure 52B , Descent Calculations Subroutine, Flow Chart (Part 13 of 14)

PAGE 13 DSENT

Figure 52B. Descent Calculations Subroutine, Flow Chart (Part 14 of 14)

PAGE 19 DSCNT

Figure 52C

DSCEX Calculations Subroutine, Flow Chart (Part 1 of 9)

(')

PRGE 4 DSCEX

Figure 52C, DSCEX Calculation Subroutine, Flow Chart (Part 2 of 9)

Figure 52C. DSCEX Calculations Subroutine. Flow Chart (Part 3 of 9)
4-286

£ 1

Figure 52C.

DSCEX Calculations Subroutine, Flow Chart (Part 4 of 9)

Figure 52C. DSCEX Calculations Subroutine, Flow Chart (Part 6 of 9)

(-

PAGE 10 DSCEX

Figure 52C, DSCEX Calculations Subroutine, Flow Chart (Part 7 of 9)

PAGE 12 DSCEX

PAGE 13 DSCEX

1)

Figure 52C. DSCEX Calculations Subroutine, Flow Chart (Part 9 of 9)

4.10.6 Loiter Calculations Subroutine

The sixth performance segment represents a calculation of aircraft loiter performance. In this subroutine, the aircraft will fly at the airspeed for best endurance. This subroutine calculates the power required and the airspeed to maximize the endurance of the aircraft. It also determines the fuel required to loiter for a specified period of time.

If the limiting speed option ($V_{LIM}IND=1$) is used, the program will monitor the loiter speed at altitudes of 10,000 feet or less to ensure that the speed is less than 250 knots equivalent airspeed.

It is possible to use a loiter segment in the mission profile to account for a reserve fuel requirement (in which case the aircraft weight at the end of loiter is set back to the weight at the beginning of loiter) or as a part of the basic mission (in which case the weight is not reset). In either case, the fuel used during loiter is included in the total fuel required to size the aircraft. A loiter indicator, LTRIND, specifies to the program which option is being used. If LTRIND is input as zero, the loiter fuel will be included as part of the reserve fuel. If LTRIND is input as unity, the loiter fuel will be included as part of the mission fuel.

An engine shutdown during loiter may be simulated by an input for N_{PSD} . One or more engines may be shut down. An increment in drag coefficient (ΔC_D LOITER) may be input to represent drag changes due to external stores or flaps.

Input to this subroutine consists of the value of LTRIND, the time for loiter, step size (incremental time), the incremental drag coefficient, the number of engines shut down, and the atmospheric conditions. A flow chart of this subroutine is shown in Figure 4-53.

Figure 4-53. LOITER Calculations Subroutine, Flow Chart (Part 1 of 11)

PAGE 2 LC179

Figure 4-53. LOITER Calculations Subroutine, Flow Chart (Part 2 of 11)

PAGE 4 LCITA

Figure 4-53. LOITER Calculations Subroutine, Flow Chart (Part 3 of 11)

Figure 4-53. LOITER Calculations Subroutine, Flow Chart (Part 4 of 11)

4-297

PAGE 5 LOITR

PAGE 7 LCITR

(')

Figure 4-53. LOITER Calculations Subroutine, Flow Chart (Part 5 of 11)

Figure 4-53. LOITER Calculations Subroutine, Flow Chart (Part 6 of 11)

Figure 4-53. LOITER Calculations Subroutine, Flow Chart (Part 7 of 11)

LCITP

PAGE 11 LOITE

PAGE 12 LOITE

Figure 4-53. LOITER Calculations Subroutine, Flow Chart (Part .9 of 11)

Figure 4-53. LOITER Calculations Subroutine, Flow Chart (Part 10 of 11)

PAGE 14 LCITE

Figure 4-53. LOITER Calculations Subroutine, Flow Chart (Part 11 of 11)

4.10.7 Change of Weight Subroutines

The seventh and eighth performance segments represent an incremental change in weight of fuel or payload. These options would be used to simulate refueling, unloading or loading of passengers, or a fuel drop. The input to the subroutines consists of the increment in weight and a corresponding increment in time. The fuel or payload weight which is added is not allowed to increase the aircraft weight to a value greater than the gross weight unless a performance case is being run and WGTIND = 1. Inputting a large value for the increment in weight will bring the aircraft weight up to gross weight if WGTIND = 0 or a sizing case is being run. Figures 4-54 and 4-55 are flow charts of these subroutines.

Figure 4-55. Change of Payload Weight Subroutine, Flow Chart

4.10.8 Transfer Altitude

There are many different applications for which a discontinuous change in altitude may be desirable:

- a. The flight profile may require takeoff at hot day, high altitude conditions followed by climb from sea level to specified altitude for standard day conditions.
- b. It may be required that no credit be taken for range, fuel, or distance during descent (for example, Reference 5).
- c. It may be required to study cruise speed at specified power at a series of different altitudes. This can be accomplished by a series of very short cruise segments interspersed with altitude transfers.

For these and other reasons, the program includes a transfer altitude segment, specified by SGTIND = 9. The only required input is the altitude to which the airplane is to be transferred.

Transfer altitude may also be used during an optimum altitude search when it is followed by a cruise. In that case, the altitude which is input represents the maximum altitude permitted for the subsequent cruise.

Figure 4-56 is a flow chart of this subroutine.

Figure 4-56. Transfer Altitude Subroutine, Flow Chart (Part 1 of 3)

Figure 4-56. Transfer Altitude Subroutine, Flow Chart (Part 2 of 3)

Figure 4-56. Transfer Altitude Subroutine, Flow Chart (Part 3 of 3)

4.10.9 General Performance

SGTIND = 11 represents the calculation of aircraft general performance. The general performance calculation is based on gross weight or a change in gross weight as determined by the input indicator GWIND. If

GWIND = 2. - User inputs gross weight into LOC(2211).

The Fortran code of the general performance subroutine has been assembled primarily from existing VASCOMP II coding. The program section for hover utilizes the coding from subroutine TOHL, with a built-in TOLIND value (LOC(0601)) equal to 1.0. In general performance the user inputs required thrust to weight, LOC(2271). The airplane will use maximum power from lift engines before augmenting with primary engines, or will use only primary engines if no lift engines are specified, LOC(0013) = 0.

The cruise section of general performance is similar to the CRUS2 subroutine with CRSIND, LOC(0801) = 2. In general performance each iterative calculation is done at the present constant TAS.

The aircraft performance is calculated and printed out starting with the hover condition, V=0. The second performance set of values corresponds to the velocity, $V_{\rm H}$, at the highest lift coefficient, $C_{\rm LMAX}$, input in locations 0317 - 0324. The third performance set is printed out at the velocity $V_{\rm H}$ rounded up to the next highest tens value. This rounded velocity is referred to as $V_{\rm R}$. Aircraft performance is then calculated and printed out in velocity increments specified in LOC(2291). Performance printed out after $V_{\rm R}$ utilizes the wing lift coefficient $C_{\rm L}$ input LOC(2231). In addition to the above inputs, the program user specified the altitude, temperature, power turbine speed ratio, thrust to weight, and incremental change in drag coefficient.

The general performance mission is usually input after an end of mission segment indicator, SGTIND = 0. A flow chart of the subroutine is shown in Figure 4-57.

PAGE 2

Figure 4-57. General Performance Subroutine, Flow Chart (Part 1 of 13)

Figure 4-57. General Performance Subroutine, Flow Chart (Part 2 of 13)

Figure 4-57. General Performance Subroutine, Flow Chart (Part 3 of 13)

Figure 4-57. General Performance Subroutine, Flow Chart (Part 4 of 13)

1

Figure 4-57. General Performance Subroutine, Flow Chart (Part 5 of 13)

PAGE ?

eule du

4-318

Figure 4-57. General Performance Subroutine, Flow Chart (Part 7 of 13) 4-319

į

PAGE 10 PAFRS

Figure 4-57. General Performance Subroutine, Flow Chart (Part 8 of 13)

Figure 4-57. General Performance Subroutine, Flow Chart (Part 9 of 13)

Figure 4-57. General Performance Subroutine, Flow Chart (Part 10 of 13)

Figure 4-57. General Performance Subroutine, Flow Chart (Part 11 of 13)

Figure 4-57. General Performance Subroutine, Flow Chart (Part 12 of 13)

PAGE IS PRESP

Figure 4-57. Géneral Performance Subroutine, Flow Chart (Part 13 of 13)

4.10.10 Function BIV

Function BIV is a two-dimensional Bivarian table look-up used to interpret values such as referred thrust or horsepower, referred fuel flow, and referred N_{\uparrow} and $N_{\uparrow\uparrow}$. The BIV function performs a linear interpolation between two points on the ordinate and two points on the abscissa. A flow chart of the subroutine is shown in Figure 4-58.

Figure 4-58. BIV Function, Flow Chart (Part 1 of 2)

Figure 4-58. BIV Function, Flow Chart (Part 2 of 2)

4.10.11 Function PARA

PARA is a two-dimensional parabolic interpretation function used periodically throughout VASCOMP. A flow chart of the subroutine is shown in Figure 4-59.

Figure 4-59. PARA Function, Flow Chart

4.10.12 Function Table

TABLE is a fourth-order Lagrangian interpolation function shown flowcharted in Figure 4-60.

Figure 4-60. TABLE Function, Flow Chart (Part 1 of 2)

Figure 4-60. TABLE Function, Flow Chart (Part 2 of 2)

4.10.13 Function XLINT

XLINT performs a two-dimensional linear interpolation between two points. This subroutine is used extensively in subroutines ROTLIM and ROTPOW, and shown in flowchart form in Figure 4-61.

Figure 4-61. XLINT Function, Flow Chart

4.10.14 Function XLKUP

XLKUP is a double table parabolic look-up function. A flowchart of the subroutine is shown in Figure 4-62.

Figure 4-62. XLKUP Function, Flow Chart (Part 1 of 2)

Figure 4-62. XLKUP Function, Flow Chart (Part 2 of 2)

4.10.15 Function XIBIV

XIBIV is an inverse double table parabolic look-up. A schematic of the flowchart is shown in Figure 4-63.

Figure 4-63. XIEIV Function, Flow Chart (Part 1 of 3)

Figure 4-63. XIBIV Function, Flow Chart (Part 2 of 3)

Figure 4-63. XIBIV Function, Flow Chart (Part 3 of 3)

5.0 PROGRAM INPUT

5.1 GENERAL

Input to the program is made by means of a standard set of input sheets. Although there are large quantities of possible input, necessitated by the requirement to keep the program flexible and general, the input sheets have been configured to give maximum visibility and reduce the tediousness of inputting the data. This has been accomplished through several means:

- a. All input of a similar nature has been grouped together. Thus, all dimensional information is on the same input sheet, regardless of whether it is used in the size trends subroutine or elsewhere.
- b. The input sheets have been color-coded to distinguish between the data required in the sizing option (OPTIND = 1) and the much smaller amount of data required for performance calculations (OPTIND = 2 or 3).
- c. Footnotes on the input sheets call attention to input which is not required due to selection of one of the optional paths of computation.
- d. For parametric studies where only one or two variables are being changed from case to case, a special supplementary input sheet may be used, thus reducing the quantity of paper work.

Altogether there are twenty-four different input sheets which can be loosely grouped into six categories: general information, aircraft descriptive information, mission profile information, engine cycle information, propeller data, and supplementary information. A specimen copy of each input sheet is included in this report on pages 5-5 to 5-51. Descriptions of input variables and indicators are given in sections 5.3.1 and 5.3.2. The use of the various input sheets is discussed below in 5.1.1 and 5.1.2.

5.1.1 General Information

Input all primary program indicators (except those for specific mission segments, such as CRSIND), mission

initial conditions, reserve fuel factors, and maneuver load factor.

- 5.1.2 Aircraft Description Information
- 5.1.2.1 <u>Dimensional Information Input characteristic</u> geometric information for aircraft being studied.
- Propulsion Information Input data for propulsive efficiencies, numbers of engines, engine clusters, propellers, etc., and critical engine sizing conditions. There are four different input sheets for propulsion information divided into one sheet for propeller data when using turboshaft engines and one sheet for each of the engine types which may be selected: turboshaft (ENGIND = 0), turbojet or turbofan (ENGIND = 1), and convertible (ENGIND = 2). Thus, the user need select only the input sheet(s) corresponding to the type of engine which he is using.
- 5.1.2.3 <u>Aerodynamics Information</u> Input aircraft drag characteristics and wing section lift characteristics.
- 5.1.2.4 Weight Information Input the factors and constants for weight trends calculations.

5.1.3 Mission Profile Information

There are 8 input sheets for mission profile information. They are:

- a. Taxi Information
- b. Takeoff, Hover, and Landing Information
- c. Climb Information
- d. Cruise Information
- e. Descent Information
- f. Loiter Information
- g. Change of Weight and Transfer Altitude Information (incorporating change of fuel weight, change of payload weight, and transfer altitude)
- h. General Performance

Each input variable on the mission profile sheets is represented by an array of ten input locations. The data for these locations is filled in sequentially by rows as the particular mission segment is used. For example, the first time that taxi is used in a particular case, the required input information is filled in on the first row of the input sheet. Data for the second taxi of a case is filled in on the second row, and so on. Thus, up to ten of any particular segment may be used in a case.

5.1.4 Engine Cycle Information

The engine cycle sheets may be used to input engine cycle data when one of the standard engine cycles is not used. The five engine cycle sheets are divided into standard performance information and nonstandard performance information. The standard performance data, of which there are three sheets (two for primary engines and one for lift engines), represent the performance of idealized engine cycles. These data are unlimited except for the effect of engine ratings, which are dictated by values of turbine temperature. The nonstandard performance represents limiting values of fuel flow, torque, rpm and other nonstandard effects.

5.1.5 Propeller Performance Data

The propeller performance sheets may be used to input a data for a specific propeller when using $\eta_p IND = 1$, or a specific fan using $\eta_p IND = 3$. The data is input as a table of C_p as a function of C_m and J.

5.1.6 Supplementary Information

The supplementary input sheet may be used for the second and subsequent cases of a parametric study. For example, if the user wishes to change both the wing loading (location 0106 - see dimensional information sheet) and the disc loading (location 0225 - see propulsion information sheet), these location3 and their new values may be filled in on the supplementary input sheet.

Two typical problems, from input to output, are discussed in Section 7.3.

VASCOMP II V STOL AIRCRAFT SIZING AND PERFORMANCE COMPUTER PROGRAM B-93

5.2 Specimen Input Sheets

SHEET NO.	CASE	٧0.
9F	1	

GENERAL	. INFORMA	TION		5.2	Specimen Input	She	ets	0F			
TITLE						·					
(72) 7	10		13	16	19 22 25	1	28 - 1 - 1 - 1 - 1 - 1 - 1 - 1	34	37	40 42	
DIGITS;	1 1 1 1 46		49	52	55 58 6:	1	64 1 1 L	1 _1-11	1L_L 73	76 7	
	EN OPTIND				Y		ISSION PROFILE IN AXIMUM OF 50 CON			iTS	
					VALUES OF SGTIND						
PTION	VARIABLE	TINL		VALUE	(1"SIZE AIRCRAFT		END OF MISSION	ND OF CAS	ER		
NDICATOR	OPTIND		0001		2=PERFORMANCE ONLY 3-FUEL ITERATION	2 = 1	TAXI T.O., HOVER, LANE	7=CHANGE FUEL 8=CHANGE PAYLOAD 9=TRANSFER ALTITUDE			
RINT	OPTIONAL PRINT		0002		0-570, PRINT 1-DETAILED PRINT	4=	CLIMB CRUISE DESCENT	10 = X-Y F	LOTTER	OJTPUT REORMANO	
ERO YNAMICS NDICA-	DRGIND		0003		OF PROG CALC COMPRESSORAG		LOC. VALUE	_	Loc.	VALUE	
TORS	OSWIND		0004		O INPUT C] 3 T	0027	26 тн	0052		
1	POMIND		0005		12 INPUT PROP D. A 12 INPUT PROP WG A. A 3 TINPUT PROP D. CT/ CT	2ND	0027	27 TH			
	FDMIND		0006		4=INPUT PROP We/A, CT/(T) C=INPUT FUSELAGE DIMENSION T=PROG.CALC FUS.DIMENSION	5 000	0029	28 TH			
126		SEE OTE 2	0007	······································	12_FUS.SIZED FOR PASSENGERS 10=NO WING/PROP DEPENDENCE		0030	29 11	0055		
REND NDICA-	HTIND	BELOW	0007		1- INPUT TAIL VOL COEFFICIEN	6 1 14	0031	30 7 4	 		
TORS	VTIND		0009		2 INPUT FIXED TAIL AREA	67H	0032	3151	0057		
'			0007		<u>'</u> '	- 7⊺∺	0033	32745	0058		
	FIXIND		00.10	***************************************	0-INPUT FIXED SIZE ENCINES 1 PROGRAM SIZE ENSINES	, 81H	0034	3380			
SION	ENGIND		0011		(0- TURBOSHAFT 1=TURBOJET, TURBOFAN 2- CONVERTIBLE	- Этн	0035	34 ***	0060		
TORS	ESZIND P	SEE NOTE 1 BFLOW	0010		0 - S ZE FOR TAKEOFF ONLY 1 TS.ZE FOR TAKLOFF OR CRI IS	L 10TH	0036	35 * ' '	0061		
	LFTIND		0013		1-LIFT ENGINES	11*н	0037	36 7 14	0062		
	wG.	LBS	0014		GROSS WEIGHT	12 тн	0038	37 ***	0063		
NITIAL	h _o	FT	0015		ALTIT DE	1311	0039	38 ***	0064		
ONDI+	Ro	NM	0016	····	RANGE	14 111	0040	39	0065		
	to	нн	0017		TIME	15111	0041	40	0066		
	·				J T.	16 1 11	0042	4]57	0067		
FLIGHT (PATH CONTROL	hoff IND		0018		UECRUISE & SPECIFIED ALT.	17 ^{гн}	0043	42™⊏	0068		
NDICA- TORS	VLIMIND		0019		0 NO CONSTRAINT ON EAS	¹⁰ 18 ^{тн}	0044	43**	0069		
(M _{MO}		0020		MACH NO.	19 тн	0045	44 · ·	007 პ		
IMITING	V _{MO}	KTS EAS	0021		EAS	20 * **	0046	45 111	0671		
PEED	VDIVE	KTS EAS	0022		1	21-1	0047	46 "	0072		
MANEUVER	\ \		}		ے ا	22ND	0048	47 14	0073		
OAD ACTOR	MLF		0023]	23 R.S	0049	48 111	0074		
(κ,		0024		NOM 1 0	24 111	0050	49 тн	0075		
RESERVE FJEL	8 Wf	LBS	0025		NOM. 0	25 ***	0051	50 ' '	0076		

0026

FLEE FLOW MULTIPLIER NOM 10

FACTORS

 $K_{\underline{F}\underline{F}}$

Note 2 IF WOMIND 1. CHOPT-DIAMETER RATIO IS INPUT, WING PADING IS CALCULATED

BÖEING VERTOL COMPANY PUTER PROGRAM B-93

A	DIVISION	OF	THE	BOEING	COMPANY

COMP II 1/310L AIRCRAFT SIZING AND PERFORMANCE COM	SCOMP II V/3 FOL AIRCRAFT SIZING AND PERFORMANCE	COM
--	--	-----

SHEET NO.	CASE NO.
OF	

AIRCRAFT DIMENSIONAL INFORMATION

NOTE: WHEN OPTIND = 2 CONSIDER ONLY THOSE ITEMS IN THE SHADED BLOCKS

W	ı	N	G

NC	πε	VARIABLE	икіт	LCC.	VALUE
а	1.	. AR		0101	
1	١.	C/D		0102	
		ìψ	OEG	0103	
		(t/c) _R		0104	
		(t/c) _T		0105	
i		W _G /S	PSF	0106	
C	٠.	$\Lambda_{\rm C/4}$	DEG	0107	
		λ		0108	

BODY

	NOTE	VARIABLE	ТІИ	LOC.	VALUE
	d.	hғ	FT	0121	
/	e.	lF	FΤ	0122	
	d.	(l/d)P		0123	
	d.	(l/d)tail		0124	
	d.	lconst. DIA.	۶T	0125	
		l_{RW}	FΤ	0126	
	e.	S _F	FT2	0127	
		WF	FT	0128	

HOR. TAIL

		Æ HT		0109	
ľ		a,		0110	
1		l _{TH}	FT	0111	
		(t/c) _{HT}		0112	
)	j.	\overline{V}_{H}		0113	
		λ_{H}		0114	
1	k.	S _{HT}		0115	

VERT. TAIL

		Æ ₹vt		0129	
1		ltv	FT	0130	
1		(t/c) _{VT}		0131	
{	1.	\overline{V}_{v}		0132	
1		$\lambda_{\mathbf{v}}$		0133	
1	m.	Svr		0134	

PROP.

g.	r		0116	
b .	Усь	FT	0117	
b.	ζ,		0118	
b.	ζ,2		0119	

PRIM. ENG.

MAIN GEAR

ур	0136	

Умс

0135

LIFT ENG.

(f.	УL	0137	
1	f.	ϵ	0138	

GENERAL

∆ Swet/Sw 0120

PRIM. ENGINE NACELLE'

21	0139	
3 /2	0140	
3 3	0141	

NOTE: INPUT NOT NECESSARY WHEN:

- a. WDMIND = 1,2
- e. FDMIND = 1,2
- i. WDMIND = 1
- m. VTIND = 1

- b. WDMIND = 0
- f. LFTIND = 0
- i. HTIND = 2
- n. FDMIND ≃ 0

- c. DRGIND = 1 & OPTIND = 2
- g. ENGIND = 1
- k. hTIND = 1
- o. FDMIND = 2

- d. FDMIND = 0,2
- h. WDMIND = 0,2
- I. VTIND = 25-5

VASCOMP II V/STOL AIRCRAFT SIZING AND PERFORMANCE COMPUTER PROGRAM B-93

CASE NO. SHEET NO.

The second desiration of the second s

\$

PASSENGER DATA REQUIRED FOR FUSELAGE SIZING (FDMIND = 2)

	0 = PROG.CALC.GALL.SIZE 1 = INPUT GALLEY AREA	(SEE NOTE C)
VALUE		
Loc.	1510	0152
VARIABLE	GALLEY INDICATOR	GALLEY AREA (FT2)

	0 = PROG.CALC.NO.OF LAVS. 1 = INPUT NO.OF LAVS.	(SEE NOTE b)
VALUE		
LOC.	0129	0910
VARIABLE	LAVATORY INDICATOR	NO. OF LAVS

1st CLASS SERVICE

5-6

TOURIST SERVICE

TYPICAL	(SEE MOTE C)	·		27"	38"	20"
VALUE						
LOC.	0153	0154	0155	9510	0157	0158
VARIABLE	NO. OF PASSENGERS	SEATS ABREAST	NO.OF AISLES	UNIT SEAT WIDTH (IN.)	SEAT PITCH (IN.)	AISLE WIDTH (IP.)

VARIABLE	"DO"	VALUE	TYPICAL
NO.OF PASSENGERS	1910		(SEE NOTE C)
SEATS ABREAST	0162		
NO. OF AISLES	0163		
UNIT SEAT WIDTH (IN.) 0164	0164		20,,,
SEAT PITCH (IN.)	5910		34"
AISLE WIDTH (IN.)	9910		.,91

а. 6. NOTES:

GALLEY AREA IS NOT REQUIRED WHEN GALLEY INDICATOR = 0. NUMBER OF LAVATORIES IS NOT REQUIRED WHEN LAVATORY INDICATOR = 0. LAVATORY AREA IS CALCULATED @ 16 FT.² PER LAVATORY. TYPICAL VALUES ARE SHOWN FOR GUIDANCE ONLY.

ن.

THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAM

VASCOMP II V/STOL AIRCRAFT SIZING AND PERFORMANCE COMPUTER PROGRAM B-93

CASE NO. SHEET NO 6

The state of the s

AIRCRAFT PROP(:LSION INFORMATION REQUIRED WHEN ENGIND = 0 (TURBOSHAFT ENGINES)

WHEN OPTIND = 2 CONSIDER ONLY THOSE ITEMS IN THE SHADED BLOCKS NOTE.

0201	
PRIMARY ENGINE CYCLE NO.	
A C	Ĺ

VALUE		
Loc.	нР 0202	
TINO	Q.	
NOTE VARIABLE UNIT	SHP*	
NOTE	a	
		_

FRIMARY ENGINE DATA

0204	
L (m)	
zª	
	٦ ز

0206	0257	0258	0259
3			ŭ.
****	XMSNIND	SHP _{XM} /SHP	A SHPACE
	ħ	h	
5	ONA 2	ACC DATA	

	HN = HN ®	ALWAYS REQ'D.	
		~~	*
	· · · ·		
0223	FPS 0224	PSF 0225	FT. 0226
	FPS	PAF	FT.
N R	dl.,	₩.G/A	DIA.
		À	V

PROPELLER

FAN CR

TRANSMISSION SIZING (***) CONDITIONS FOR ENGINE TAKEOFF AND

				_				,	
VALUE									
LOC.	0207	0208	0209	0210	0211	0212	0260	0261	0262
UNIT	FT		e T					T N	
NOTE VARIABLE	h_{TO}	и	∆ Tin _{ro}	(NT MAX)TO	N _{P0}	NLO	sнР _Е ∕sнР *	V _{R/C}	KRC
NOTE				þ	e	е			

*		l	*	
0213	0214	0215	0216	0217
0.	FT 02	ктs 02	0 d do	0
	F	×	۰	
POWIND	h_{c}	۸c	ΔT in $_{f C}$	o (XYMIN)
+	4-	4-	f	9

NOTE:

TRANSMISSION SIZING (††)

AND

CONDITIONS FOR ENGINE

CRUISE

◆ FOR STANDARD ATMOSPHERE, INPUT △ Tin = 0

2 = NORMAL POWER 0 = MAX. POWER I = MIL POWER ** POWIND:

*** THESE LOCATIONS MUST BE INPUT IN FIXIND (LOC 0010) = 0

> a. FIXIND = 1 $\frac{AND}{b}$ PDMIND = 1 OR c. PDMIND = 2 OR 4 INPUT NOT NECESSARY WHEN

NOTE:

INPUT DIA = $(D_T^2 - D_R^2)^{1/2}$ IF η_P IND = 3 t INPUT FAN LOADING IF 7/PIND = 3

d. N2IND = 0,1

XMSNIND = 1 e. FIXIND = 0 f. FIXIND = 0 OR ESZIND = 0 g. NZIND = 0,1 OR FIXIND = 0 OR ESLIND = 0 h. ENGIND = 1

IT THESE LOCATIONS MUST BE INPU! IF

White the second state of the second

A STATE OF THE STA

VASCOMP II V/STOL AIRCRAFT SIZING AND PERFORMANCE COMPUTER PROGRAM B-93

またがからののではないのである。 ないかい はんかい はんしゅう しょうしょう しょうしゅう しゅうしゅう しょうけんけん かいしょうかいしゅんかい しょうしゅうしょ

CASE NO. SHEET NO.

PROPELLER DATA REQUIRED WHEN ENGIND = 0 (TURBOSHAFT ENGINES)

NOTE: WHEN OPTIND = 2 CONSIDER ONLY THOSE ITEMS IN THE SHADED BLOCKS

0245

7P4: CRUISE AND LOITER

٠. ا		20.00			٠.
NO. OF PAIRS IN The TABLE		VALUE			
OF PAIR		Loc.	0235	0236	
ν. O.		., ^\	; :	> <	
					•
ENCY	VALUE				
EFFICI	Loc.	0232	0233	0234	
10 C	TIND				
VALUES OF EFFICIENCY	NOTE VARIABLE UNIT LOC.	7,62	Tp3	7hs	
	NOTE	`			
	TAKEOFF	HOVER,	CLIMB	DESCENT	

1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0235 0236 0237	VALUE	1,35,000 0 0 0 0	Loc. 0246 0247 0248	VALUE
	0238		; ⇒û ↔	0249	
	0240		~O ¾	0251	
1 (7)	0242		704	0253	
1	0244			0255	

VALUE			
Loc.	0227	0228	0229
TINO			
NOTE VARIABLE UNIT LOC.	C₁/♂	ACT. FACTOR PER BLADE	NO. OF BLADES
NOTE	а	q	q
TPIND = 0			

0

****	9	E (LOCS. 1700 → 2142)
023	025	LAB1
ήρ ς	PROP. TABLE NO. (FAN TABLE NO.)	ALSO INPUT PROP/FAN TABLE (LOCS, 1700 → 2142)
		NOTE:

0228 0229

ACT. FACTOR PER BLADE

٩ ۵

5

TPIND = 1,3

1

2 = PROG. CALC. PROP. PERF. (1), (3)

1 = IMPUT PROP. TABLE 3 = INPUT FAN TABLE

0 = INPUT MP'S

0200

GNI di

NO. OF BLADES

@

0227

0229 0230 0234

NO. OF BLADES

7/ps ټې

ALWAYS REG'D. IF OPT IND = 2 OR 3

	0227	0228	
	$C_{T/\mathcal{O}}$	ACT. FACTOR PER BLADE	
	В	ပ	
	$\eta_{\rm p}IND = 2$		
\ -	ti	Ť	

INPUT NOT NECESSARY WHEN NOTE:

a. PDMIND = 1 OR 2 b. PDMIND = 3 OR 4

c. OPTIND = 1 AND PDMIND = 3 OR 4

distribute restaura estrette in Walion IS Saff.

V/STOL AIRCRAFT SIZING AND PERFORMANCE COMPUTER PROGRAM 8-93 VASCOMP II

CARD NO. SHEET NO. ě

distribution of the second

The state of the second second

AIRCRAFT PROPULSION INFORMATION REQUIRED WHEN ENGIND = 1 (TURBOJET OR TURBOFAN ENGINES)

WHEN CPTIND = 2 CONSIDER ONLY THOSE ITEMS IN THE SHADED BLOCKS NOTE:

	VALUE"		
	VAL		
0201	roc.	0203	0204
IJ Z	UNIT	LBS	
PRIMARY ENGINE CYCLE NO.	NOTE VARIABLE UNIT LOC.	* \$	Z. U
ŭ.	NOTE	Ø	
	,	PRIMARY	ENGINE DATA
		g.	<u> </u>

VALUE"			
Loc.	0203	0204	
L IND	LBS		
NOTE VARIABLE	* \$	Z U	
NOTE	ø		
		ت	

	,		
0218	6219	0220	0221
G	937		
LIFT ENGINE CYCLE NO. (NOTE C)	FNL	Z	N _C
200	٩	ပ	ပ

LIFT ENGINE DATA

VALUES OF EFFICIENCY

0231	0232
η,	ηρ2
ر د	
TAKEOFF,	LAND

NOTE: INPUT NOT NECESSARY WHEN

	•
	(
	(
_	
11	
VIND	(
Z	1
ᆿ	ī
×	
H	١
u	
•	
ಶ	_

FIXIND = 1 OR LFTIND = 0 LIFTIND = 0

N2IND = 0,1 OR FIXIND = 0

8 7. e 6. c

FIXIND = 0 FIXIND = 0 OR ESZIND = 0 N2IND = 0,1 OR FIXIND = 0 OR ESZIND = 0

VALUE						
UNIT LOC.	0207	0208	0209	0210	6211	0212
UNIT	FT		٥,			
NOTE VARIABLE	h_{TO}	и	∆ Tin _{TO}	(NII MAX)TO	N _{DO}	NLO
NOTE				σ	မ	e
	_		~~			

TAKEOFF CONDITIONS

FOR ENGINE SIZING

S	DATA IS AL	WAY	S RE Q'D IF	THIS DATA IS ALWAYS REQ'D IF LFTIND = 1:	
	POWIND		0213		*
	$h_{\rm C}$	FŢ	0214		
	۸c	KTS	ктѕ 0215		
	∆ Tin _C	F o	°F 0216		*
	(NII MAX)C		0217		-

FOR ENGINE SIZING CRUISE CONDITIONS

NOTE:

* FOR STANDARD ATMOSPHERE, INPUT ATin=0

** POWIND: 0 = MAX. POWER
1 = MIL POWER
2 = NORMAL POWER

0200	0256
7, P 1 ND	FAN TABLE NO
1 7	FAI

DUCTED FAN DATA

MUST BE INP UT AS 3, ALSO INPUT FAN TABLE (LOCS. 1700 $^{\prime\prime}$ 2142) $k_{R/P}$ (LOC 0457) MUST BE INPUT AS 0

VASCOMP II V/STOL AIRCRAFT SIZING AND PERFORMANCE COMPUTER PROGRAM B-93

SE NO. SHEET NO.

AIRCRAFT PROPULSION INFORMATION REQUIRED WHEN ENGIND = 2 (CONVERTIBLE ENGINES)

WHEN OPTIND = 2 CONSIDER ONLY THOSE ITEMS IN THE SHADED BLOCKS NOTE:

6201	
PRIMARY ENGINE CYCLE NO.	
2	

.5 .	VALUE			
6201	Loc.	0203	0204	0205
	LIND	r e s		₽ /₽
PRIMARY ENGINE CYCLE NO.	NOTE VARIABLE UNIT LOC.	•2 u.	Z Q	٠ 8
2	NOTE	B		<u> </u>
	****		~	_

PRIMAPY ENGINE DATA

;				
	0206	0257	0258	0259
				±
	. ትև	GNINSWX	SHP _{XM} /SHP	∆SHPACE.
		j		
•		TRANSMISSION	ACC 5	-10

	x a		0223	
	V _T IP	FPS	0224	
þ	¥/9 *	PSF	0225	
ပ	DIA.	FT.	0226	
þ	C _T / σ		6227	
е	ACT. FACTOR PER BLADE		0228	
e	NO. OF BLADES		0229	

PROPELLER

	z		0223	
	V _{TIP}	FPS	0224	FOR
٩	. ₩ _{6/A}	PSF	0225	44 F
ပ	DIA.	FT.	0226	
P	C ₁ / <i>G</i>		6227	
a	ACT. FACTOR PER BLADE		0228	
ø	NO. OF BLADES		0229	
				_

	FOR ROTOR SIZING	ALWAYS REQUIRED IF OPTIND = 2,3					
0223	0224	0225	0226	6227	0228	0229	
	FPS	PSF	FT.				
ĸ	VTIP	¥/9 _#	DIA.	C ₁ / <i>G</i>	ACT. FACTOR PER BLADE	NO. OF BLADES	
		q	၁	P	е	ə	

VALUE OF EFFICIENCY

	0232	
	,	
	702	
TAKEOFF,	HOVER, {	LAND

Z
ш
-
=
-
_
\sim
œ
⋖
S
Ś
ш
$\overline{}$
\sim
ш
z
-
\sim
≅
~
INPUT NOT NECESSARY WHEN:
\supset
Δ.
7
Ö
NOTES:
~~
0
ラ
-

	0R 3
	_
H	Ħ
	PDMIND
α.	ь.

c. PDMIND = 2 OR 4 d. PDMIND = 1 OR 2 e. PDMIND = 3 OR 4

TO THE OWNER OF THE OWNER OWNE

			_			,	_		
VALUE									
Loc.	0207	0208	0209	0210	0211	0212	0260	0261	0262
TINO	FT.		9					Ţ/N N IN	
NOTE VARIABLE	h_{TO}	n	Δ Tin _{TO}	$\left(\frac{NII}{NIIMAX}\right)_{TO}$	N _{PO}	N _{LO}	SHP _E /SHP*	VR/C	KRC
NOTE				4-	б	9			

TRANSMISSION

AND

SIZING (+)

CONDITIONS FOR ENGINE

TAKEOFF

#			#	
0213	0214	0215	0216	0217
	FT.	KTS	о П	
POWIND	$h_{\rm C}$	۸c	$\Delta extsf{Tin}_{ extsf{C}}$	$\binom{NII}{NII MAX}_C$
h	ų.	٦	h	

CONDITIONS FOR ENGINE

SIZING

CRUISE

NOTE:

- # FOR STANDARD ATMOSPHERE, INPUT △ Tin = 0
 - 2 = NORMAL POWER POWIND: 0 = MAX. POWER 1 = MIL POWER
- † THESE LOCATIONS MUST BE INPUT IF FIXIND (LOC 0010) = 0

WUTN
20
7000
NECES
HON
7 -
FIIGN
OTFO.
C

≱	
-	
×	
٩	
?	
ü	
NECESSARY	
ŭ	
Z	11
_	IND
_	Z
2	\mathbf{H}
-	×
_	H
\supset	ш
2	
Z	а.
_	~

g. FIXIND = 0 h. FIXIND = 0 OR ESZIND = 0 i. N2IND = 0,1 OR FIXIND = 0 OR ESZIND = 0 j. ENGIND = 1

VASCOMP II V/STOL AIRCRAFT SIZING AND PERFORMANCE COMPUTER PROGRAM B-93

AIRCRAFT AERODYNAMICS INFORMATION

SHEET NO. CASE NO.

NOTE: WHEN OPTIND = 2 CONSIDER ONLY THOSE ITEMS IN THE SHADED BLOCKS

NOTE	VARIABLE	Loc.	VALUE
	c_{DVTi}	0301	
	Сонті	0302	
	C _{DNi}	0303	
а	CDLNI	0304	
	Δ̈̀ĉό	0305	_
b	е	0306	
	∆f _{e FT2}	0307	

NOTE	VARIABLE	Loc.	VALUE
	KLN	0311	
	Kŵ	0312	, , , , , , , , , , , , , , , , , , ,
	Κ _N	0313	
	КF	0314	
	K _{VT}	0315	
	Кнт	0316	

OTE	VARIABLE	LOC.	VALUE
	(Re/ L) _l	0330	

4	ČŁa Ri	(ò√1	0331	35
	άLô D	ĖĠ	0332	,

c	(x/c) ps	0333	
C	(<i>x/c</i>) max t/c	0334	

WING PROFILE DRAG AS FUNCTION OF CL

NO. OF	LOC.	VALUE
PAIRS IN TABLE	0308	•
114	L	1 -

C _{L.} (1)	0317	
CL. (2)	0318	
C _L (3)	0319	
C _{L (4)}	0320	
C _{L (5)}	0321	
CL. (6)	0322	
C _{L. (7)}	0323	
C _{L.} (8)	0324	

CDWi (1)	0335	
C _{DWi} (2)	0336	
C _{DWi} (3)	0337	
C _{DWi} (4)	0338	
C _{DWi (5)}	0339	
 C _{DWi} (6)	0340	
CDWi (7)	0341	
CDWi (8)	0342	

COMPRESSIBILITY DRAG AS A FUNCTION OF M AND C_L (Note d)

TABLE OF $\triangle C_{DM} = f(M, C_L)$

NUMBER OF M	0309	VALUE
NUMBER OF CL	0310	

<u> </u>	М	
Mi	0325	
М2	0326	
Мз	0327	
M4	0328	
Ms	0329	

VALUES OF CL				
CL (1)	0043			
C _{L (2)} .	0344			
C _L (3)	0345			
C _{L (4)}	0346			
C _{L (5)}	0347			
CF (e)	0348			
C _{L (7)}	0349			

VALUES OF ΔC_{DM}

1. r. mr. m. 6	M1 =		M2 =		Мз =		M4 =		M5 =	****
	Loc	VALUE	LOC	VALUE	LOC	VALUE	Loc	VALUE	LOC	VALUE
Cuij	0350		0357		0364	,	0371		0378	4
CLZ	0351		0358		0365		0372		0379	***************************************
CL3 =	0352		0359		0366		0373		0380	······································
ĆL4=	0353		0360		0367		03.74		0381	
C <u>L</u> 5 ±	0354	-	0361	***	0368	***************************************	0375		0382	**************************************
CL6 =	0355		0362		0369		0376	Titleren del i i i i i i i i i i i i i i i i i i i	0383	****
C _{L7} =	0356	E 1222	0363		0370		0377	***************************************	0384	······································

NOTE: INPUT NOT NECESSARY WHEN:

a. LFTIND = 0

c. DRGIND = 1

BOEING VERTOL COMPANY VASCOMP II V/STOL AIRCRAFT SIZING AND PERFORMANCE COMPUTER PROGRAM B-93

WHEN OPTIND = 2 OR 3 CONSIDER ONLY THOSE ITEMS IN THE SHADED BLOCKS

SHEET NO.	CASE NO.
OF	

AIRCRAFT WEIGHT INFORMATION

	VARIABLE	LOC	VALUE
:	OWE	0400	
	W _{FE LBS}	0401	
	W _{FULLBS}	0402	
ŧ	WPL LBS	0403	

VARIABLE	LOC	VALUE
∆W _{FC} LBS	0417	
∆Wp LBS	0418	

INCREMENTAL GROUP WTS. NOM = 0

VARIABLE	LOC	VALUE
∆P p.s.I.	0450	
MC FR2.	0451	
Yc	0452	

FLIGHT CONTROLS

	FLIGHT CONTROLS				
	kcc	0404			
	k _{FW}	0405			
	kH	0406			
	ksas	0407.			
	ktm	0408			
1	kuc	0409			

GROUP WEIGHT INFORMATION

0419

∆W_{ST} LBS

	PROPULSION				
۱,	kos	0453			
	krs	0454			
*	kLEI	0455			
	kpEI	0456			
*	(†)k _{R/P}	0457			
*	kvr	0458			
			<u> </u>		

OWE IS NOT NECESSARY
WHEN OPTIND = 1,2

W_{PL} IS NOT NECESSARY WHEN OPTIND = 2

	STRUCT	JRAL
ke	0420	
kLES	0421	
kLG	0422	
kmg	0423	
kTL	0424	
kwF	0425	
kww	0426	·
ky	0427	
kz	0428	
kpes	0429	
k _M T	0430	
knac	0431	
LMT	0432	

* NOT NECESSARY WHEN LFTIND = 0 ** NOT NECESSARY WHEN ENGIND = 1 (†) INPUT AS 0 IF η_{PIND} (LOC 0200) = 3

TO USE KMT, KNAC, & LMT INPUT KPES=0 IF KPES IS INPUT AS NON-ZERO, KMT, KNAC. AND ℓ_{MT} ARE NOT REQUIRED.

K 15	0410	
K 16	0411	
K 17	0412	
K 18	0413	
K 19	0414	
K ₂₀	0415	

K ₈	0433	
K ₉	0434	
K 10	0435	
K ₁₁	0436	
K 12	0437	
K 13	0438	
K 14	0439	

0459	
0460	
0461	
0462	
0463	
0464	
0465	
	0460 0461 0462 0463 0464

ATMOSPHERE TEMPERATURE

NO. OF PAIRS	0416

NOTE: THIS TABLE IS NOT NECESSARY IF ATMIND IS NEVER SET TO 2

higr	0440	
h ₂ FT	0441	
ha FT	0442	
h4 FT	0443	
hs et	0444	
he et	0445	
hzer	0446	and see the
ha FT	0447	
h _{9 FT}	0448	
horr	0449	,

θ_1	0466	
θ_2	0467	
θ_3	0468	
$\theta_{\mathbf{A}}$	0469	·
$ heta_{ ilde{\mathbf{s}}}$	Õ470	
θ_{6}	0471	
0,	0472	
<i>θ</i> 8	0473	
θ_{9}	0474	^
θ10	0475	

BOEING VERTOL COMPANY VASCOMP II V/STOL AIRCRAFT SIZING AND PERFORMANCE COMPUTER PROGRAM B-93

A DIVISION OF THE BOEING COMPANY

-		i.			•	^	-			-	-		1
1.	A	X	1	IN	r	U	ĸ	м	A	. II	ľU	т	۹

SHEET NO.	CASE NO.
OF	

SGT IND = 1

٨	Τ	LA	т	N	r
А	ı tı	M	Ŧ	N	L

	LOC	VALUE
15T	0501	,
2 ND	0502	
3 RD	0503	
4 TH	0504	
5тн	Ò505	
6тн	0506	
7тн	0507	
8тн	0508	14.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
9 TH	0509	
10тн	0510	
•	<u></u>	<u> </u>

 $\Delta \operatorname{Ti} n (\circ F)$ (NOTE α)

LOC	VALUE
0521	
0522	
0523	
0524	
0525	
0526	
0527	,
0528	
0529	
0530	

NII /NII MAX

LOC	VALUE
0541	
0542	,
0543	,
0544	
0545	
0546	
0547	
0548	
0549	t.
0550	

0 = STD, ATMOSPHERE

 $1 = STD. + \Delta Tin$

2 = ARBITRARY θ (h)

 $t_{\tau}(HR)$

	LOC	VALUE
] 5T	0511	
2 ND	0512	
3RD	0513	
4 TH	0514	
5 TH	0515	
6 ^{тн}	0516	
7тн	0517	·
8тн	0518	
9тн	0519	
10тн	0520	

k.

	NFL
LOC	VALUE
0531	
0532	
0533	
0534	
0535	
0536	
0537	
0538	
0539	,
0540	

NOTE: a. INPUT NOT NECESSARY WHEN ATMIND = 0, 2

b. INPUT NOT NECESSARY WHEN N2IND = 0, 1

NOTE: WHEN OPTIND = 2 CONSIDER ONLY THOSE ITEMS IN THE SHADED BLOCKS

BOEING VERTOL COMPANY	, ANY	VASCOR	VASCOMP II V/STOL AIRCR TAKE OFF,	RCRAFT :	SIZING AL	AFT SIZING AND PERFORMANCE COMPUTER PROGRAM B-93 HOVER AND LANDING INFORMATION	NCE COM!	PUTER F	ROGRAM B-93	SHEET NO.	, o	7 ASUM 0.
TOL IND		1	ATMIND			$\Delta \operatorname{Tin}({}^{\circ}F)$ (NOTE b)	Į.		#T (NOTE C)		Z S	NIJ/NIMAX (NOTE d)
VALUE LOC.	<u>د</u> —	ij	VALUE		Loc.	ALUE		L0C.	VALUE		Loc.	VALUE
1190	061	-		L	0631		J	0653			6371	
0612	061	12		ا ا	0632			0652			. 0672	
0613	061	6			0633			0653			0673	
190	190	4			0634			0654		·	0674	
0615	190	2			0635			0655		· · · · · · · · · · · · · · · · · · ·	0675	
9190	90	9		L	9636			0656			9290	
10017	061	1		<u> </u>	0637		I	0657		·	2290	
0618	061	œ			9638			0658			8.290	
06190	90	6			6890			6590			6290	
0620	90	2			0640	_		0990			0890	
		١					•			,		

0 = STANDARD ATMOSPHERE 1 = STD. + \triangle Tin 2 = ARBITRARY B(h)

2-14 FINPUT REQ'D #T;

	V _{R/C} (FT/MIN)	VALUE											
	VR	Loc.	2321	2322	2323	2324	2325	2326	2327	2328	2329	2330	
	t _н (нк)	VALUE	, ,	•		•			, ,	•			
		LOC.	0681	0682	0683	0684	0685	9890	.0687	. 0688	6890	0690	
	∆t _H (HR)	VALUE								•	, ,		
	7	Loc.	1990	0662	0663	¥990	0665	9990	0667	8990	6990	07نټ	
	LETF (NOTE e)	VALUE			,					,	•		
ì	٦	Loc.	0641	0642	0643	0644	0645	0646	0647	0648	0649	0650	
אייט זאאאוופאאי ז	PETF OR PEHF (NOTE e)	VALUE			,							•	
	PET	LOC.	0621	0622	0623	0624	0625	0626	0627	0628	0629	0630	
AIRPLANE WILL USE MAX.	POWER FROM LIFT ENGINES BEFORE AUGMENTING WITH PRIMARY ENGINES OR -	WILL USE ONLY PRIMARY ENGINES IF LFTIND = 0.	2 = INPUT REQ'D #T; ST	AIRPLANE WILL TAKE EQUAL FRACTION OF 2ND	PRIMARY ENGINES. 3RD	3 = INPUT REQ'D FRACTION 4TH	(PETF/PEHF AND LETF) 5TH	н19	774	9 T	HT6	10 ₁	

a, do not input telind = 2 if Letind = 0 b, input not necessary when atmind = 0,2 NOTES:

C. INPUT NOT NECESSARY WHEN TOL'IND'= 3 d . INPUT NOT NECESSARY WHEN AZIND = 0 1 e . INPUT NOT NECESSARY WHEN TOL'IND'= 1,2

NOTE: WHEN OPTIND = 2 CONSIDER ONLY : THOSE ITEMS IN THE SHADED BLOCKS

FORM 49751 (5/80)

BOEING VERTOL. COMPANY VASCONPIL V/STOL AIRCRAFT SIZING AND PERFORMANCE COMPUTER PROGRAM B-93

b. INPUT NOT NECESSARY c. INPUT NOT NECESSARY a. INPUT NOT NECESSARY " CLIMB (E-M CALCS) WHEN N2IND = 0,1 WHEN ATMIND = 0,2 WHEN CLAIND = 1 VALUE (NOMINAL ∆n=0) 07.98 NOTES 96/20 0799 0800 0792 0793 0794 0795 7670 079.1 Loc. SHEET NO · NIL/NIIMAX VALUE VALUE ∆ C_D CLIMB (NOTE b) 07.7.1 0773 0820 0620 0772 0785 0786 0788 0789 0774 07.75 9770 3770 0779 **Ó783** 0784 0787 0777 0781 0782 Loc. LOC. VALUE VALUE 2 = NORMAL POWER θ MAX (DEG) POWIND 0 = MAX POWER I = MIL POWER 0751 0754C 0765 69/0 0770 0753 02/0 99/0 89/0 0752 0755 07.56 0757 0758 0759 1970 0762 0763 0764 0767 Loc. Loc. CLIMB INFORMATION SGTIND = 3 VALUE VALUE ∆Tin(°F) h MAX(FT) (NOTE a) 0745 0740 0749 0750 0743 0746 0748 0732 0733 0734 0735 0736 0737 0738 0739 0741 0742 0744 0747 Loć. 0731 Loc. = STANDARD ATMOSPHERE = STD. + \triangle Tin = Arbitrary $\theta(h)$ VALUE VALUE ∆h (FT) ATMIND WHEN OPTIND = 2 CONSIDER ONLY THOSE ITEMS IN THE SHADED BLOCKS 0715 0720 0725 07.18. 97.70 0721 0722 0726 0728 0729 0220 07 13 0714 07.16 0717 0723 0724 0727 0711 0712 1.0C Loc. MACHOREASORTAS (KTS) (NOTE C) 1 = MAX R/C 2 = CONSTANT EAS 3 = CONSTANT MACH 4 = CONSTANT TAS VALUE VALUE CLMIND FORM 49752 (5/80) 0040 H±015-15 0701 1.690 7690 0695 0710 9690 8690 2ND 0702 3RD 0703 2690 ONZ 380 0693 0697 044 0699 **Lo**C. 5TH 0705 9TH 0709 LOC. 4TH 0704 90.ZO HI 9 7TH 0707 8TH 0708 NOTE: 7

THE PERSON NAMED IN

VASCOMP II V/STOL AIRCRAFT SIZING AND PERFORMANCE COMPUTER PROGRAM B-93 BOEING VERTOL COMPANY

THOSE ITEMS IN THE SHADED BLOCKS WHEN OPTIND = 2 CONSIDER ONLY NOTE:

0826 0824 0825 0828 6829 0830 0822 0823 0827 0821 Loc. VALUE CRSIND 6080 0805 .6808 0802 9080 0807 10°C 1080 3RD | 0803 4TH -0804

6 TH 7 TH

5тн

2ND

ST

1 = SPECIFIED POWER
2 = CONSTANT TAS
4 = 95.7 SEST NMPP
5 = 85.5 NMPP
6 = 99.7 SEST NMPP, CONST.W/S
6 = 99.7 SEST NMPP, CONST.W/S 0810 10тн

5-16

9тн (

1 -, 00

Vin or HEADWIND (NOTE d)

VALUE 0813 14.80 08.12 08:14 LOC. 380 2ND 4 TH _s_

0832 0833 0834

0831

08.15 0816 0817 0818 6 тн 7 TH 5 TH 8 TH

0835 0833 0838 0839

61.80

97H

0837

NOTES: INPUT NOT NECESSARY WHEN: a. ATMIND = 0,2 0840 10TH 0820

CRUISE INFORMATION SGTIND = 4

∆Tin(°F)

(NOTE a)

VALUE

ATMIND

VALUE

Loc.

VALUE

Loc.

POWIND

1880 0882 0883 0884 0885 9880 0887 9889 0889 0880

NII / NII MAX. (NOTE C)

AND THE SELECTION OF THE PROPERTY OF THE SELECTION OF THE

Ĺ

SHEET 110.

ö

VALUE 0845 0846 0842 0843 6844 0848 0849 0847 0841 Loc.

0865

9980

0863

0864

0862

0861

0850

0= STANDARD ATMOSPHERE 1= STD. + Δ Tin 2= ARBITRARY θ (h)

RMAX (NM)

VALUE

Loc.

R (NM)

Loc.

0852 0853 0855 0856 0858 0859 0854 0857 0851

0875

9280

0873 0874

NPSDCR

0 = MAX POWER 1 = MIL POWER 2 = NORMAL POWER

6980 0870

0868

0867

VALUE 0872 0871 LOC.

 $\triangle\,C_{\,DCR}$ Loc.

VALUE 0898. 6680 089.5 9680 0892 0893 0894 7680 1680

d. INPUT Vin WHEN CRSIND = 2 INPUT HEADWIND WHEN CRSIND = 3 THRU 6

c. N2IND = 0,1

CRSIND = 3

٠.

:0060

9280

0880

0880

0878

0877

FORM 49753 (5/80)

THE PARTY OF THE PROPERTY OF THE PARTY OF TH

VALUE NII/NII MAX (NOTE C) △ Co DESC. CASE NC. 1000 1660 6660 6660 2660 8660 6660 0985 0660 9660 0982 0983 0984 9860 7860 8860 6850 0992 2660 1860 Loc. Loc. SHEET 110. 6 BOEING VERTOL COMPANY VASCOMP II V/STOL AIRCRAFT SIZING AND PERFORMANCE COMPUTER PROGRAM B-93 VALUE VALUE RMAX (NM) (NOTE b) hmin (FT) 0260 0860 0965 6960 0975 9260 8760 6260 0362 6960 9960 8960 0972 0973 0974 0977 0964 1960 1960 Loc. Loc. 0971 DESCENT INFORMATION VALUE VALUE SGTIND = 5 $\Delta \operatorname{Tin}_{(NOTE\ a)}$ ∆h (FT) 6760 0560 0959 0960 0945 0948 0955 0958 0943 0944 0946 0952 0953 0954 9560 0957 094.1 0942 7760 1360 Loc. Loc. ATMIND = 0,2 = STANDARD ATMOSPHERE = STD. + \triangle Tin = Arbitrary θ (h) VALUE VALUE OMIN (DEG) ATMIND NOTE: WHEN OPTING = 2 CONSIDER THOSE ITEMS IN THE SHADED BLOCKS NOT NECESSARY WHEN: 9260 0630 0933: 0934 0940 0922 0925 0926 0927 0928 1860 0932 0935 9860 0937 0938 0939 0923 0924 Loc. 092.1 Loc. 1,2 = ... AAX
3,4 = IONE POWER
5,6 = CONSTANT RAS
7,8 = CONSTANT MACH
1,3,5,7 = TERMINAL RANGE NOT SPECIFIED
2,4,6,8 = TERMINAL RANGE NOT SPECIFIED
(NOTE d) VALUE INPUT DESTND 10TH 0910 0912 0915 NOTES: 1060 0902 0904 5TH -0905 0907 8060 6060 4TH 0914 0916 09.17 9TH 0919 3RD 0903 9060 HI9 0913 3RD 0913 8TH 0918 10TH 0920 L00. **6**™ 57H 7тн 8 TH 9тн 2ND 4 T H 2ND 7 TH 5-17

= 0,1

DESIND = 1,2,3,4 NZIND . 9

DESIND = 2,4,6,8

FORM 49754 (5/60)

VASCOMP II V/STOL AIRCRAFT SIZING AND PERFORMANCE COMPUTER PROGRAM B-9.3 STIND	THE SKADE BLOCKS SCITIND = 6 NIT/NIT WAX	(· :					(•	
ATMIND ATMIND ATMINCE LOC. VALUE 1041 1042 1043 1043 1044 1044 1044 1044 1044 1048 1049 1049 1050 1051 1051 1052 1053 1053 1054 1055 1055 1055 1056 1057 1056 1057 1056 1057 1056 1057 1058 1059 1059 1059 1059 1059 1059	Name		/ASCOMP I	I v/stol	- AIRCRAFT		PERFOR	RMATION	APUTER PR(JGRAM B-93		SHEET	NO.	
1020 1041 1042 1062 1064 1065 1068 1069	Colored Colo	EN OPTIND = 2 CONSIC	DED BLOCK	S			SGTIND							
1021 1022 1042 1061 1061 1061 1062 1062 1062 1062 106	1000 1001 1002 1002 1003	LTRIND		ATMIN	۵		$\triangle \operatorname{Tin}(^{\circ})$ (NOTE	F)	į	NII/NIL MAX	[
1021 1041 1061 1062 1062 1063 1064 1065 1064 1065 1064 1066	1021 1041 1041 1061 1062 1062 1062 1062 1062 1063 1064 1064 1064 1064 1065 1064 1065 1065 1064 1065 1065 1066		Γο		ALUE	700		ALUE	Γο					
1022 1042 1062 1063 1064 1065 1064 1065 1064 1065 1066 1066 1067 1066 1067 1066 1067 1066 1067	1022 1042 1062 1063 1064 1064 1064 1064 1064 1064 1064 1064 1064 1064 1065 1066 1066 1066 1066 1066 1066 1066 1066 1066 1066 1066 1066 1067	a Lan	102	ŕ		104			106					
1023 1043 1064 1064 1065 1045 1065 1045 1065 1045 1045 1065 1065 1045 1066 1066 1067	1023 1043 1065 1064 1065 1072		102	2		104	2		106	12				
1024 1044 1064 1064 1065 1065 1066 1066 1066 1066 1066 1066 1066 1066 1066 1068 1069	1024 1044 1064 1065 1065 1065 1065 1065 1065 1066 1067 1068 1068 1068 1069 1069 1069 1069 1069 1069 1069 1069 1069 1069 1069 1069 1069 1070 1069 1070 1069 1071 1071 1072	OS	102	3		104	က		106	3				
1026 1045 1066 1067 1068 1068 1069 1069 1069 1069 1069 1069 1069 1069	1025 1045 1046 1066 1067 1068 1068 1068 1068 1068 1068 1069 1069 1069 1069 1069 1069 1069 1069 1069 1069 1069 1069 1069 1069 1069 1069 1070 1069 1070	70	102	¥		104	4		106	4				
1026 1046 1067 1068 1068 1068 1068 1068 1068 1069 1069 1069 1069 1069 1069 1069 1069 1069 1069 1069 1060	1026 1046 1067 1067 1068 1068 1068 1068 1069	05	102	5		104	5		106	ž,				
1028 1047 1068 1068 1069 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1068 1069	1027 1047 1068 1068 1069 1072	90(102	9		104	9		106	9				
1028 1048 1069 1069 1069 1070 1071 (W/S) _{WING}	1028 1029 1069	700	102	7		104	.7		106	12				
1029 1059 1069 1069 1069 1069 1069 1069 1070 1070 1072	1029 1049 1069 1069 1069 1069 1069 1069 1069 106	308	102	8		104	8		106	8.				
1030 1050 1070 0 = STAMOSPHERE 2 = ARBITRARY θ (h) 2 = STAMOSPHERE 1 = STD. + ΔTIM 2 = ARBITRARY θ (h) 2 = ARBITRARY θ (h) 4 + ΔTIM 2 = ARBITRARY θ (h) 4 + ΔTIM 2 = ARBITRARY θ (h) 4 + ΔTIM 4 + LOC. \(\triangle \text{Co}_LOITER \) \(\triangle \text{LOC.}\) \(\triangle \text{VALUE} \) \(\triangle \text{LOC.}\) \(\triangle \text{VALUE} \) \(\triangle	UNED FOR MISSION 0 = STANDARD ATMOSPHERE TO LOC. 1050 1070 1070 LL (HR) 1 = STD. + ∆Tin (HR) LOC. ∨ALUE LOC. ∨ALUE VALUE 1031 LOC. ∨ALUE 1071 VALUE VALUE 1032 LOC. ∨ALUE 1071 VALUE 1032 1033 1053 1072 1073 1034 1035 1055 1074 1075 1036 1036 1056 1077 1077 1039 1039 1059 1079 1079 1040 1040 1060 1079 1080 1040 1040 1060 1060 1080	-600	.102			104	6		106	6:	•			
0 = STANDARD ATMOSPHERE 2 = ARBITRARY & (h.) 3	t _L (HR) = STANDARD ATMOSPHERE A Tin, s = Arbitrarary θ(h) A Description	* 0 K	103	0		105	0:		107	0.				
Δ t _L (HR) t _L (HR) N _{P3DLOITER} ΔC _{DOITER} ΔC _{DOITER} LOC. VALUE 1081 1082 1082 1082 1082 1082 1082 1083 1083 1083 1084 1084 1085 1087 1087 1087 1087 1089 1089 1089 1089 1089 1099	t _L (HR) t _L (HR) N _{PSD_LOITER} ΔC _{D_LOITER} VALUE LOC. VALUE LOC. VALUE 1031 VALUE 1071 LOC. VALUE 1032 1053 1053 1072 1072 1034 1054 1074 1074 1075 1035 1035 1056 1077 1078 1039 1040 1060 1079 1079 1040 1040 1060 1089 1089	UEL REQUIRED FOR MISSIO ESERVE FUEL CALCULATIO	10-11	ANDARD ATN D. $+ \triangle Ti_n$ BITRARY θ	ло з рнеяе (h)		·				!	[(W/S)	(S/M) /	
VALUE LOC. VALUE LOC. VALUE LOC. VALUE LOC. VALUE LOC. VALUE LOC. VALUE 1031 1052 1073 1072 1081 1082 1082 1082 1082 1082 1082 1082 1082 1082 1084 1084 1084 1084 1085 1085 1085 1086 1089 1089 1089 1089 1080	VALUE LOC. VALUE LOG. LOG. <td>Δt_{L} (HR)</td> <td></td> <td>t (H</td> <td>R)</td> <td></td> <td>N_{PSDLC}</td> <td>OITER</td> <td>;</td> <td>△ C_{DLOITER}</td> <td>]</td> <td>\$ LL</td> <td>LAP ("' 3) WING</td> <td>1</td>	Δt_{L} (HR)		t (H	R)		N _{PSDLC}	OITER	;	△ C _{DLOITER}]	\$ LL	LAP ("' 3) WING	 1
1031 1051 1072 1082 1032 1052 1072 1082 1034 1054 1074 1084 1035 1056 1075 1085 1037 1057 1076 1087 1038 1058 1078 1089 1040 1040 1060 1080	1031 1031 1052 1073 1082 1082 1032 1034 1052 1073 1082 1082 1034 1035 1054 1074 1086 1086 1036 1036 1056 1076 1086 1086 1038 1039 1059 1079 1089 1089 1040 1040 1060 1080 1080 1080 1080		LOC		ALUE	ГОС		ALUE	LOC			LOC	VALUE	
1032 1052 1072 1082 1034 1054 1074 1084 1035 1055 1075 1085 1037 1056 1077 1087 1038 1058 1077 1087 1039 1059 1069 1069	1032 1053 1054 1073 1083 1083 1083 1084 1084 1035 1035 1054 1057 1075 1075 1086 1087 1087 1087 1088 1088 1089		103	,		105	1		107			1081		
1034 1054 1074 1083 1034 1054 1064 1035 1055 1075 1085 1036 1056 1077 1087 1038 1058 1078 1089 1039 10690 10690 10690	1034 1054 1064 1034 1054 1074 1084 1035 1055 1075 1085 1036 1056 1076 1086 1037 1057 1078 1087 1038 1059 1079 1089 1040 1060 1060 1090 NOTE: a. Input not necessary when atmind = 0,2 b. Input not necessary when nzind = 2	312	103	2		105	7.		107	.2		1082		
1034 1054 1064 1035 1055 1075 1036 1056 1076 1037 1057 1078 1038 1058 1078 1039 1059 1060	1034 1054 1055 1075 1086 1088 1088 1088 1088 1088 1088 1089 1089 1089 1089 1090 <th< td=""><td>513</td><td>103</td><td>3</td><td></td><td>105</td><td>ည</td><td></td><td>107</td><td>,3</td><td></td><td>1083</td><td></td><td></td></th<>	513	103	3		105	ည		107	,3		1083		
1035 1055 1075 1086 1037 1057 1077 1087 1038 1058 1077 1089 1039 1059 1060	1035 1056 1076 1076 1086 1086 1086 1086 1086 1086 1086 1086 1086 1087 1087 1087 1087 1087 1089 1089 1089 1090 <th< td=""><td>)14</td><td>103</td><td>4</td><td></td><td>105</td><td>7</td><td></td><td>107</td><td>4</td><td></td><td>1084</td><td></td><td></td></th<>)14	103	4		105	7		107	4		1084		
1036 1056 1076 1086 1037 1057 1077 1087 1038 1058 1078 1089 1040 1060 1060	1036 1056 1057 1086 1087 1087 1087 1087 1087 1087 1087 1088 1088 1088 1088 1089 1089 1089 1089 1089 1090 <th< td=""><td>315</td><td>103</td><td>5</td><td></td><td>105</td><td>5</td><td></td><td>107</td><td>'5</td><td></td><td>1085</td><td></td><td></td></th<>	315	103	5		105	5		107	'5		1085		
1037 1057 1077 1087 1038 1058 1078 1089 1040 1060 1060 1080	1037 1058 1058 1078 1078 1089 1039 1060 1060 1080 1090 10	916	103	9		105	9:		107	9,		1086	Á	
1038 1058 1078 1089 1040 1060 1080	1038 1058 1079 1089 1040 1060 1090 NOTE: a. INPUT NOT NECESSARY WHEN ATMIND = 0,2 b. INPUT NOT NECESSARY WHEN N2IND =	117	103	7		105	7.		107	7		1087	·	
1039 1059 1040 1060	1039 1059 1089 1089 1060 1040 1080 1090 2 9 1090	118	103	8		105	80		10,	82		1088	•	
1040	1040 1060 1090 1090 1090 1090 1090 1090 109	611	103	6		105	6		10,	6,		1089		
	NOTE: a. INPUT NOT NECESSARY WHEN ATMIND = 0,2 b. INPUT NOT NECESSARY WHEN N2IND =	020	104	0		106	0		108	06		1090		·

CASE NO.

CHANGE IN PAYLOAD WEIGHT

The second secon

0

SGTIND = 8

FW (HR)

SGTIND = 7

∆ Wf (LBS)

CHANGE IN FUEL WEIGHT

	ls1					,		^	•
∆W _{PL} (LBS)	VALUE		± -		7			:	
Δ1	Loc.	1131	1132	1133	1334	1135	1136	1137	

t pw (HR	VAL										
•	Loc.	1141	711	en!	771	1874	9711	271	8711	6711	1150
,											
∆W _{PL} (LBS)	VALUE							,	•		
۵۱	LOC.	1131	1132	1133	1134	1135	1136	1137	1138	1139	1,140

1125 1126

1105

5TH

1106

6 TH 7тн 8 1 1 9тн 10TH

1124

1122 1123

1102 1103 1:1:04

2ND 380 H T

1101

1sT

Loc.

1121

Loc.

1129 130

1109

0111

1108

1107

1128

1127

CHANGE FUEL OR CHANGE PAYLOAD

WGTIND

LOC

 ∞ 11 SGTIND SGTIND 80

1 = NO WEIGHT RESTRICTION $0 = W + \Delta W \leq W_G$ 1151

WHEN OPTIND = 2 CONSIDER ONLY THOSE ITEMS IN THE SHADED BLOCKS NOTE:

FORM 49756 (5/80)

SGT IND = 9

hFINAL (FT.) (hOPT IND = 0) hMAX (FT.) (hopy IND = 1)

TRANSFER ALTITUDE;

VALUE

Loc.

g

11112 1113

Ts.

5111

5TH 6тн 7 TH

4 TH

380

2ND

11/16

1117

1118 1119 1120

9тн

VASCOMP II V/STOL AIRCRAFT SIZING ALLO PERFORMANCE COMPUTER PROGRAM B-93

GENERAL PERFORMANCE INFORMATION (SGTIND = 11)

ALTITUDE (FT)

VALUE

100

VALUE

LOC 2223

VALUE

LOC

2201

121

GWIND

ATMIND

2243 2244 2245

2223

2222

2202 2203 2204

2nd

3.4

2225

2225

5th 6th

4.5

2206 2207

2226 2227

2224

2242

2241

∆T_{IN}(°F) (Note a)

ALUE VMAX (KTS) SE NO SHEET NO. 9 NII/NII MAX

CATAGORIA CONTRACTOR C

MAX	' \	,,				,				·	
٤	۲٥٦	2301	2302	2303	2304	2305	2306	2307	2308	2309	2310
]											;
AKEOFF	VALUE					4		,			,
V										,	

_	64	6.4	C	C	C		2	2		64
VALUE							,		Δ.	
207	2281	2282	2283	2284	2285	2286	228;	2288	2289	2290
VALUE									-	ì

										دستنا
VALUE						,	,			
LOC	2281	2282	2283	2284	2285	2286	228;	2288	2289	2290
Щ										

					,		,	,	۸		
LOC	2281	2822	2283	2284	2285	2286	228;	2288	2289	2290	
VALUE	,										
LOC	2261	2262	2263	2264	2265	2266	2267	2268	. 2269	2270	

								,			1
LOC	2281	2282	2283	2284	2285	2286	7287	2288	2289	2290	
		L		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			······				•
VALUE									_	,	
TOC	1325	2262	2263	2264	2265	2266	7572	2268	. 2269	2270	

72%	HOSE ITEMS II
7270	WHEN OPTIND = 2 OR 3 CONSIDER ONLY THOSE ITEMS II
	WHEN OPTIND

2249 2250

2248

2228

2209 2210

10th

2208

8th ot h

7th

2246 2247

BLOCKS	
SHADED	
THE	
Z	
ITEMS	
ш	

NI/NII MAX CRUISE	VALU
ÈŪ Z	Loc
Γ	111

∆v (KTS)

VALUE

200 2271.

VALUE

^{∆C}D_{CR}(FT2)

2 = ARB:TRARY 8(h) ATMOSPHERE

0 = S's ANDARD

1 = AGW INPUT 2 = GW INPUT

5-20

2230 2229

2272 2273 2274

∦/⊥

CRUIS E	VALUE			, (,
ز	LOC	2341	2312	2313	2314

VALUE						20		-		
Loc	.2291	2292	2293	2294	2295	2296.	2297	2298	57.59	2300

2275 2276

2316 23.15

2317 2318 2319 2320

	7	27	2	7	73	27	7	7	73	7
GW OR ∆GW(LB) (Note b)	VALUE							ì		
GW OR	207	2211	22.12	2213	2214	2215	2216	2217	2218	2219
)		1st	2nċ	3rd	4th	5th	6 th	7th	8th	914

6th 🎚

•	707	2251	2252	2253	2254	2255	2256	2257	2258	2259	2260
1						[]					
-wing	VALUE	5				٠					
	רסכ	2231	2232	2233	2234	2235	2236	2237	2238	2239	2240

-		'n						
-	2254	2255	2256	2257	2258	2259	2260	
1)
		٠			٠.			
The Party Labor Designation of								

2278

2277

2279 2280

b. INPUT ∆GW WHEN GWIND = 1
INPUT GW WHEN GWIND = 2

FORM 49749 (5/80)

2220

10th

NOTES: a. INPUT NOT NECESSARY WHEN ATMIND = 0, 2

BOEING VERTOL COMPANY VASCOMP II VISTOL AIRCRAFT SIZING AND PERFORMANCE COMPUTER PROGRAM B-93

A DIVISION OF THE BOEING COMPANY

Company of the control of the contro

ENGINE CYCLE DATA; NON-STANDARD PERFORMANCE

PRIMARY ENGINE DATA

VÄRIABLE	LÖC	VALUE
WOTIND	1201	
NIÎND	1202	
NIĜIND	1203	and the second second
NŽIND	1204	
QÌŃĎ	1205	***************************************

WDTIND: {0 = NO FUEL FLOW CU FOFF

10 = NO N1 CUTOFF NIIND:

VARIABLE	LOC	VALUÉ
ŴMAX/Ŵ*	1220	
NIMAX/NI*	1221	
H/G/NI MAX	1222	
N _{IIMAX/N}	1223	
QMAX/Q*	1224	

INPUT IF WDTIND = 1

SHEET NO.

OF

CASE NO.

INPUT IF NIIND

INPUT IF NIOIND = 1

INPUT IF N2IND = 1,2

INPUT IF QIND

(0 = NO N2 CUTOFF; OPTIMUM N2 VARIATION N2IND: ₹ 1 = N2 CUTOFF; OPTIMUM N2 VARIATION

2 = N2 CUTOFF; NON-OPTIMUM N2 VARIATION

10 = NO TORQUE CUTOFF QIND:

N10IND: {0 = NO REFERRED N1 CUTOFF 1 = REFERRED N1 CUTOFF

NOTE: WHEN OPTIND := 2 CONSIDER ONLY THOSE ITEMS IN THE SHADED BLOCKS

VARIABLE	Loc	VALUE
RNOIND	1206	

0= NO REYNOLDS NO. CORRECTIONS = REYNOLDS NO. CORRECTIONS

REYNOLDS NO. CGRRECTION FACTOR

OUTPUT SHAFT SPEED CORRECTION

VALUES	OF	NI.	$\frac{D}{V_1}$
			_

	2 21 MI 1	
roc	VALUE	LOC
1207	,	1225
1208	,	1226
1209		1227
1210		1228
1211		1229
1212		1230
1213		1231
1214		1232
1215		1233
1216	,	1234

VALUES OF KPR

roc	VALUE
1225	
1226	
1227	3
1228	,
1229	
1230	
1231	
1232	
1233	
1234	·

VALUE	VALUES OF NIIOPT				
LOC	VALUE				
1238					
1239					
12/0					
1241					
1242					
1243	42				
1244					
1245					
1246					
1247					

VALUES OF KPN

	LOC	VALUE
	1248	
	1249	
	1250	
	1251	
	1252	
	1253	
	1254	
	1255	
	1256	3
	1257	
•		

INPUT THIS TABLE IF RNOIND = 1

INPUT THIS TABLE IF N2IND = 2 AND NON-STANDARD CORRECTION IS DESIRED

LIFT ENGINE DATA

VARÍABLE	Los	VALUE
L.WDIND	1217) ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
LNIIND	1218	
LN2IND	1219	

VARIABLE	LOC	VALUE
(WMXX/WE)	1235	
(MINAX/NE)E	1236	ar esperimental and a second
(MIMAX/NEX	1237	

INPUT IF LWDIND = 1

INPUT IF LN1IND = 1

INPUT IF LN2IND = 1

LWDIND:

0 = NO FUEL FLOW CUTOFF 1 = FUEL FLOW CUTOFF

5-21

LN2IND: {0 = NO N2 CUTOFF 1 = N2 CUTOFF

0 = NO N1 CUTOFF LNIIND: 2 = N1 CUTOFF

VASCOMP II V/STOL AIRCRAFT SIZING AND PERFORMANCE COMPUTER PROGRAM 9-93

THESE TABLES NOT REQUIRED WHEN STANDARD CYCLE IS SELECTED.

CASE NO. SHEET NO.

è

PRIMARY ENGINE CYCLE INFORMATION (Sheet 1)

NOTE a. VALUE 1303 1302 1301 COC VARIABLE CYCLE NO. æ. 4

	NOTE b .		
VALUE			
၁၀၂	1304	1305	1306
VARIABLE	Š4	TGI (OR)	Trr (°R)

	-	
	1309	TMAX (OR).
	1308	TMIL (OR)
	1307	T.p (0R)
VAKUE	Loc	VARIABLE

ALL TABLES MUST BE AT LEAST 3 x 3 IN SIZE

VALUES OF M

VALUES:OF T/8

1320

1311 1312

Loc

VALUE

100

1321

#2

1322 1323 1324

1313 1314

1319

VALUE

				ALL IA	SLESA	MUSI BE	<u> </u>	IABLES MUSI BE AT LEAST 3 X 3 IN SIZE	2	3175		<u>u</u> /	*	/dHS au	× dry	6
					VALUE	VALUES OF REFERRED THRUST OR HORSEPOWER	EFERA	RED THE	NST (JR HOR	SEPO:	- 1	2 2	N N N N SIEL SIEL OF O		
(1/8) _{1"} (1/9) _{2"})	² (θ/1)	ε		$(T/\theta)_3$ =		= 4 (⊕/1)		(T/θ) ₅ =		(T/O)e=	14	$(T/\theta)_{T}$ =	í	(T//9)g=	
LOC VALUE LOC VAL	VALUE LO	ž	VAL	30.	207	OC VALUE LOC VALUE LOC		VALUE	,.ac	VAL.UE LOC	207	VALUE	LOC	VALUE COC		VALUE
M1 1326 1332		1332			1338		1344		1350		1356		1362		1368	
M2 1327 1333	1333	1333			1339		1345		1351		1357		1363	:	6981	
M _{3.} 1328 1334		1334			1340		1346		1352	4	1358		1364		1370	> .
M4 1329 1335		1335			1341		1347		1353		1359		1365		1371	
		1336			1342		1348		1354		1360		1366		1372	
M ₆ 1331 1337		1337			1343		1349		1355		1361		1367	, ,,	1373	,

WHEN OPTIND = 2 CONSIDER
THOSE ITEMS IN THE SHADED BLOCKS NOTE:

1325

ž

1315 1316 3318

1317

VALUE T/9 1374

	5F ₩	VALUE			,					
2	VALUES OF M	LOC	1384	1385	1386	1387	1388	1389		
-	>		Σ.	* 2	¥3	MA	¥S	¥6		
_									'	
12/2	ALUES.OF T/8	VALUE								

ILUE.							VALUES	3 OF	VALUES OF REFERRED FUEL FLOW (\$\omega_{\ell} \forall \forall \forall \forall \ell \forall \for	ED FU	EL FLO	(ω) M	/SUBF.	OR OP	/8 Фвн	·	
V		(π/θ) ₁ =	1.	$(T/\theta)_{z}$ =		$(T/\partial)_3=$		(T/0) ₄ =	11_	(T/8) _k =		(π/θ) _k =	ű	= ⁴ (θ/1)	Ħ	(π/θ) _β =	
LUE		LOC	LOC VALUE	רסכ	LOC VALUE LOC	707	VALUE	רסכ	VALUE LOC VALUE	۲٥٥	LOC VALUE LOC VALUE	FOC		COC	LOC NALUE LOC		VALUE
	*	1390		13%		1402		1408		1414		1420		1426		1432	
	\$	1391		1397		1403		1409		1415		1421		1427		1433	
	¥	1392		13%8		1402		1410		1416		1422		1428		1434	
	*	1393		1399		1405		1411		1417		1423		1429		1435	
	₹	1394		1400		1406		1412		1418		1424		1430		1436	
	¥.	1395		1401		1407		1413		1419		1425		1431		1437	

 k_4 in LBS; IF ENGIND = 0, k_3 is in LB/HP; IF ENGIND = 1,2, k_3 is in LB/LBTHPUST IF ENGIND = 0, ξ_4 IS IN FT/SHP $\frac{2}{2}$: IF ENGIND = 1,2, ξ_4 IS IN FT/LB THRUST $\frac{1}{2}$ NOTE a.

VASCOMP II V/STOL AIRCRAFT SIZING AND PERFORMANCE COMPUTER PROGRAM B-93

SHEET NO. ir o

1.3

The second secon

このないないないないのであることでいっているのです。

PRIMARY ENGINE CYCLE INFORMATION (Sheet 2)

LOC VALUE	VALUES OF M	LOC VALUE	1 1448	1449	3, 1450	1451	1452	s 1453			
2			M.	S	¥	\$	X X	9			
**************************************	VALUES OF T/8	VALUE									
17.6 1.438	VALUES	LOC	1439	1440	1441	1442	1443	1444	1445	1446	
\$6			,,,,,	2	3	4	لا)	,	7	8	2

(T/B),	LOC	1454	1455	1456	1457	1458	1459
		¥.	M2	¥3	MA	¥.5	¥e
OF ₩	VALUE						
VALUES OF M	TOC	1448	1449	1450	1451	1452	1453
>		M		Ř X	Ã	MS	Z Z
	D1						

VALUE LOC VALUE

VALUES OF REFERRED NI $(N_{\rm I}/\sqrt{J}\vec{\sigma}\,N_{\rm I}^2)$

 $(T/\theta)_{\mathbf{g}}$

(T/0)7=

(T/0)e=

(T/0),=

 $(T/\theta)_2 =$

W.	1459		1465		1471		1477	
		NOTE:	WHEN	OPTINE	O = 2 C IN THE	WHEN OPTIND = 2 CONSIDER ONLY THOSE ITEMS IN THE SHADED BLOCKS	ONLY ONLY	XS

146°

(#NB)
/#N) IIN
REFERRED N
F
VALUES

VALUE

7/6 1502

															. TT., 23,	77.	H. O . /-	Ħ				1
>	VALUES OF $T/ heta$	9/ I 40		VALUES OF M	# ±0		(T/θ) ₁ =		$(T/\theta)_{Z^{\overline{\sigma}}}$		(T/0)3=		=*(0/1)	U	(T/8) ₅ =	L)	= ⁹ (<i>B/</i> 1)		$=^{L}(\theta/1)$		(T/0)8=	
	70 0	LOC VALUE		207	VALUE		707	LOC VALUE LOC	100 V	VALUE LOC VALUE LOC	7 207	ALUE	רסכ <	VALUE LOC VALUE LOC VALUE	,oc v,	T DE T	<u>></u> دود ر	ALUE	7 207	VALUE LOC		VALUE
	1503		Σ	1512		Σ	1518		1524		1530		1536	-	1542		1548		1554		1560	
2	1504		₹2	1513		M2	1519		1525		1531		1537	,—	1543		1549		1555		1561	
3	1505		¥.	1514		æ æ	1520		1526	 	1532		1538	 	1544		1550		1556		1562	
4	1506		₹	1515		ž	1521		1527		1533	 	1539	<u> </u>	1545	 -	1551		1557		1563	
5	1507		ž.	1516		Σ	1522		1528		1534	 	1540	-	1546	 	1552		1558		1564	
9	1508		Σ	1517		Σξ	1523		1529		1535	 	1541	-	1547	 -	1553		1559		1565	
7	1509																					

VALUE

100

CYCLE NO. VAR

LIFT ENGINE CYCLE INFORMATION (NOT REQUIRED WHEN STANDARD CYCLE) (IS SELECTED OR WHEN LFTIND = 0)

NOTE b.

VALUE			
Loc	1604	\$6,91	1606
VAR	\$1	\$2	€3

NOTE a.

1603 1602 1601

> 2 ٠<u>۵۲</u>

PERFORMANCE COMPUTER PROGRAM B-93	NOTE: WHEN OPTIND = 2 OR 3 CONSIDER ONLY THOSE ITEMS IN THE
VASCOMP II V/STOL AIRCRAFT SIZING AND PERFORMANCE COMPUTER PROGRAM B-93	N (NOT REQUIRED WHEN STANDARD CYCLE) (IS SELECTED OR WHEN LFTIND = 0)

CASE NO.

SHEET NO.

C

The second of th

TO ANALYSIA PROPERTY OF THE PARTY OF

SHADED BLCCKS

VALUE	`	
COC	1607	8091
VAR	Ter	TMAX

E. E. IN FT/LB THRUST ! k, IN LB/LBTHRUST \$2 IN FT , #2 IN LBS.; NOTE b: NOTE a:

REFERRED $M_{
m I}$ AS A FUNCTION OF T/heta

REFERRED THRUST AS A FUNCTION OF T/θ

	L				L			
VALUE								
70T	6091	1610	1191	1612	E191	1614	5191	9191
VARIABLE	(π/θ),	(T/0) ₂	(π/θ) ₃	(T/θ)4	ξ(Δ/1) <mark>ς</mark>	• (π/θ)ε	(1/8),	$(1/\theta)_{\rm g}$

VALUE								
TOC T	1617	8191	6191	1620	1621	1622	1623	1624
VARIABLE	(FN /SFNL)1	(F _N /8F _{NL}) ₂	(F _k /8F _{ML}) ₃	(FN / 3FNL) 4	(F _N /SF _{NL})s	(FN/SFNL)6	(F _N /8F _{NL}),	(F _N / SF _{NL}) e

LOC VALUE	1649	1650	1591	1652	· 1653	1654	1655.
VARIABLE	(Nr/Nit (F) 1	$(N_{\underline{x}}/N_{\underline{x}}^*/\overline{\theta})_2$	(NI/NIL (F).3	$(N_{\rm I}/N_{\rm IL}^* \cancel{\oplus})_4$	(N1/NIL (B) 5	(Nz/Nzt 10) 6	(Nr/Nrt (B))
VALUE							

1642 1643

 $(T/\theta)_2$

 $(T/\theta)_3$

1641 Loc

 $(T/\theta)_1$

VARIABLE

1645 1646

 $(T/\theta)_{S}$

1644

 $(T/\theta)_4$

1656

(Nr/Nat. (F))8

1648

 $(T/\theta)_B$

1647

(1/0),

(1/∂) €

REFERGED FUEL FLOW AS A FUNCTION OF T/θ

	L

VALUE

707

1633 1634

VARIABLE	(# /8 JOFn.),	(# /8 JO Fril) 2	(W/8/8Fit.)3	(W/8VOFil)	(W./8-10Fn.)5	(m/8.10Fil.)6	(MYSIBFIL),	(W/8/BFil.)8	
VALUE									
707	1625	1626	1627	1628	1629	1630	1631	1632	108/
VARIABLE	(T/0) ¹ ,	(T/0)2	(π/θ) ₃	(T/6)4	(π/θ) _s	(T/θ)ε	(1/0)	(T/θ) _B .	(18/8) 89/07 MBCB

	5/80)	FORM 49763 (5/80)
<u>:</u>	1632	(T/θ) _B .
	1631	(1 /θ)
_		010

	REFERRED	N _{II} AS ,	REFERRED N _{II} AS A FUNCTION OF T $/ heta$	È	θ
 	VARIABLE	LOC	VALUE		
	(T/0),	1657			Z
 	(1/θ) ₂	1658			Z
	ε(θ/ 1)	1659			Z
	(1/θ) _ζ	1660			Ž
	(π/θ) _s	1661			Ž
	(1/8)e	1662			Z
 	(1/9)	1503			Z
	(1/θ) g	1664			Z

1635

1636

1638 1639 1640

1637

VARIABLE	roc	VALUE
(Nn/Nn/®)	1665	,
(Nu/Nite)2	9991	
(Ntr/Nitr®)3.	1667	
(NIE/Niel)	1668	
(NII/Niil. 16) s	6991	
(NIL/Nille)	1670	
$(N_{II}/N_{II}^*B)_7$	1/91	
(NIL/NILA)	7672	

BOEING VERTOL COMPANY

VASCOMP II V/STOL AIRCRAFT SIZING AND PERFORMANCE COMPUTER PROGRAM B-93

3				
TABLE	NO.	 	 	

HOVER PERFORMANCE MAP

	LOC	VALUE
NO OF CT/O'S	2351	. 10

	LOC	VALUE
NÓ. OF MTÍP'S	2362	3 7 7 3 7 7 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

VALUES OF CT/O

	LOC	VALUE
(C†/σ) ₁	2352	
(C _T /0) ₂	2353	, -
(C _T /σ) ₃	2354	
(C _T /0) ₄	.2355	
(C _T /σ) ₅	2356	
(CT/0)8	2357	
(C _T /σ) ₇	2358	,
(C _T /σ) ₈	2359	-
(C _T /∅) ₉	2360	
(C _T /0) ₁₀	2361	

VALUES OF MTIP

	Loc	VALUE
MT ₁	2363	(144) (14)
MT ₂	2364	14 A
MT3	2365	70 (2) 827 2-3
M _{T4}	2366	
MTs	2367	4 (90)
MTe	2368	· ·

 $C_T/\sigma = THRUST \pi^2 / \rho V_{TIP}^2 \sigma$

INPUT VALUES OF FIGURE OF MERIT FOR COMBINATIONS OF

CT/O and MTIP

	Мт	IP ₁ =	MŢ	P ₂ =	MT	1P3=	MT	IP₄=	МТ	IP ₈ =	Мт	IP ₆ ≒
	Loc	VALUE	LOC	VALUE	LOC	VALUE	LOC	VALUE	LOC	VALUE	LOC	VALUE
(C _T /o) ₁ =	2369		2379	,	2389	,	2399		2409		2419	
(C _T /0) ₂ =	2370		2380		2390		2400		2410		2420	•
(C _T /0) ₃ =	2371		2381	ć	2391		2401		2411		2421	
(C _T /0) ₄ =	2372		2382		2392		2402		2412		2422	a 145
(C _T /o) ₅ =	2373		2383		2393		2403		2413		2423	
(C _T /σ) _e =	2374		2384		2394		2404		2414		2424	1.0
(C _T /0) ₇ =	2375		2385	_	2395		2405		2515		2425	
(C _T /0) ₀ =	2376		2386		2396		2406		2516		2426	
(C _T /o) ₉ =	2377		2387		2397		2407		2517		2427	
(C _T /0) ₁₀ =	2378		2388		2398		2408		2518		2428	

NOTES: a. WHEN OPTIND = 2 OR 3 CONSIDER ONLY THOSE ITEMS IN THE SHADED BLOCKS

b. CT IS IN PROPELLER ROTATION

c. INPUT AT LEAST 3 VALUES OF $C_{\mbox{\scriptsize T}}/\sigma$ AND $M_{\mbox{\scriptsize TIP}}$

BOEING VERTOL COMPANY VASCOMP II VISTOL AIRCRAFT SIZING AND PERFORMANCE COMPUTER PROGRAM B-93

SHEET NO.	CASE NO.
OF	

PROPELLER/FAN PERFORMANCE DATA (Sheet 1 of 3)

THIS SHEET IS REQUIRED WHEN $\eta_{
m p}$ IND = 1 OR 3

NOTE: AT LEAST 3 VALUES OF J OR M AND 3 VALUES OF $\rm C_T$ OR $\rm F_N$ /A $_2\,\delta$ must be used

	Loc.	VALUE
PROP/FAN TABLE NO.	1700	

NOTE: WHEN OPTIND = 2 CONSIDER

THOSE ITEMS IN THE SHADED BLOCKS

	LOC.	VALUE
ND DF ADVANCE RATIOS (J) MACH NUMBER (M)	1701	

	Loc.	VALUE
NO. OF PROF THRUST COEFFICIENTS (C _T) REFERRED THRUST (F _N / A ₂ 8)	1722	· .

VALUES OF J OR MACH NO.

VALUES OF C_T OR F_{N REF}

•	LOC.	VALUE
J ₁ or M ₁	1702	
Je or Me	1703	
Ja or Ma	1704	
J4 or M4	1705	
Js or Ms	1706	
Je or Me	1707	
Jy or My	1708	
Je or Me	1709	
Jg or Mp	1710	
J ₁₀ or M ₁₀	1711	
J ₁₁ or M ₁₁	1712	
J12 or M12	1713	
J ₁₈ or 4 ₁₈	1714	
J ₁₄ or M ₁₄	1715	
, J ₁₆ 0/ M ₁₆	1716	
Jig or Mag	1717	
J ₁₇ or M ₁₇	1718	
J ₁₈ or M ₁₈	1719	_
119 or M10	1720	
120 of W50	1721	

	LOC.	VALUE
G1 or FN1	1723	
Gg or FNg	1724	
Ga or FNs	1725	
G ₄ or FN ₄	1726	
Gs or FNs	1727	
Ga or FNa	1728	
Gy or FNy	1729	
Ga or FNB	1730	1
Gg or FNg.	1731	
G ₁₀ or FN ₁₀	1732	
Gas or FH11	1733	
Gig or FN12	1734	
G ₁₃ or FN ₁₃	1735	
G ₁₄ or FN ₁₄	1736	
G15 or FN15	1737	
G18 or PH10	1738	
Gay or FN17	1739	
Gie or FN18	1740	
'G ₁₉ of FN ₁₉	1741	
G ₂₀ or FN ₂₀	1742	

NOTE: A2 IS THE ANNULUS AREA OF THE FAN

BOEING VERTOL COMPANY VASCOMP II V/STOL AIRCRAFT SIZING AND PERFORMANCE COMPUTER PROGRAM B-93

PROPELLER/FAN PERFORMANCE DATA (Sheet 2 of 3)

THIS SHEET IS REQUIRED WHEN THEND = 1 OR 3

WHEN OPTIND = 2 CONSIDER THOSE ITEMS IN THE SHADED BLOCKS

The state of the s

一、は、一つのことのできないのできないのできないできます。

NOTE:

INPUT VALUES OF PROP OR FAN POWER COEFFICIENT FOR COMBINATIONS OF J OR M AND CT OR FAREF

						۵	PROPELLER OR	ER OR	FAN THRUST		COEFFICIENT	LEN					-	-	
ADVANCE	Cr1/	5	CT 2/	Ст ₃ /		CT 4/	<u> </u>	C _{T s} /	<u> </u>	CT8/		Ct 7/	<u>U</u>	CT 8/	<u></u>	CT 9/	<u> </u>	CT 10/	-,-
RATIO	F _{N1} =	π	FN2 =	II S		FNA =	<u>u</u>	F _{NS} =		FN6 =		FN7 =	<u>"</u>	FN8 =		FN9		FN10 =	
MACH NO.	LOC. VA	VALUE LO	LOC. VALUE		LOC. VALUE	.:	VALUE		VALUE	LOC.	VALUE	-	VALUE	Loc.	VALUE	Loc.	VALUE	LOC. V	VALUE
J ₁ /M ₁ =	17.43	17	1763	1783		1803		1823	`	1843		1863		1883	÷	1903	`	1923	·
J2 /M2 =	1744	7	1764	1784		1804		1824		18.14		1864	33	1884		1904	32 ¹ -32	1924	
J3 /M3 =	1745	12	1765	1785		1805		1825		1845		1865		1885	- NT L	1905		1925	. '
J4 /M4 =	1746	12	1766	1786		1806		1826		1846		1866		1886		1906		1926	, **
Je /Ms =	1747	12	1767	1787		1807		1827		1847		1867		1887		1907		1927	
J ₆ /M ₆ =	1748	12	1768	1788		1808		1828		1848		1868		1888		1908	·	1928	,
J, /M- =	1749	12	1769	1789		1809	,	1829		1849		1869	<i>,</i>	1889		1909		1929	
J _B /M _B =	1750	12	17.70	1790		1810		1830		1850		1870		1890		1910		10261	
Je /Me =	1751	12	1771	1791		1811		1831	-	1851		1871	-	1681		1911		193.1	
J ₁₀ /M ₁₀ =	1752	12	1772	1792		1812		1832		1852		1872		1892		1912		1932	· ``
J ₁₁ /M ₁₁ =	1753	12	1773	1793		1813		1833		1853		1873		1893	- î	1913		1933	
J ₁₂ /M ₁₂ =	17.54	12	1774	1794		1814		1834	æ	1854		1874	·	1894	•	1914	-	1934	
J13/M13=	1755	=	1775	1795		1815		1835	÷	1855		1875		1895		1915		1935	
J14/M14=	1756	12	1776	1796		1816		1836		1856		1876		1896		1916		1936.	
J ₁₅ /M ₁₅ =	1757	12	1777	1797		1817		1837		1857		1877		1897		1917		1937	
J ₁₆ /M ₁₈ =	1758	12	1778	1798		1818		1838		1858		1878		1898		1918		1938	
J27/M17=	1759	12	1779	1799		1819		1839		1859		1879		1899		1919		1939	
J18/M18=	1760	12	1780	1800		1820		1840		1860		1880		1900		1920		1940	
J19/M18=	1761	17	1781	1801		1821		1841		1861		1881		1901		1921		1941	
J20/M20=	1762	14	1782	1802		1822		1842		1862		1882		1902		1922		1942	

NOTE: 1, IF MORE THAN 10 VALUES OF C_{T} OR F_{N} ARE REQUIRED, USE SHEET 3 FOR CONTINUATION OF TABLE.

BOEING VERTOL COMPANY

PROPELLER/FAN PERFORMANCE DATA (Sheet 3 of 3)

THIS SHEET IS REQUIRED WHEN THEND = 1 OR 3

VASCOMPIL V/STOL AIRCRAFT SIZING AND PERFORMANCE COMPUTER PROGRAM B-93

WHEN OPTIND = 2 CONSIDER ONLY THOSE ITEMS IN THE SHADED BLOCKS

NOTE:

INPUT VALUES OF PROP OR FAN POWER COEFFICIENT FOR COMBINATIONS OF J OR M AND CT OR FINREF

PROPELLER OR FAN THRUST COEFFICIENT

SHEET NO.

The second secon

	VALUE	- t - t																·			· .
CT20/ M20 =	Loc.	2123	2124	2125	2126	2127	2128	2129	2130	2131	2132	2133	2134	2135	2136	2137	2138	2139	2140	2141	2142
	VALUE										,										,
CT ₁₉ / M ₁₉ =	Loc.	2103	2104	2105	2106	2107	2108	2109	2110	2117	21.12	2113	2114	21:15	2116	2117	2118	2119	2120	2121	27122
	VALUE																				
CT ₁₈ / M ₁₈ =	LOC.	2083	2084	2085	2086	2087	2088	2089	2090	2091	2002	2093	2094	2095	2096	2097	2098	2090	2100	2101	2102
	VALUE					-			·												
$C_{T_{17}}/M_{17} =$	Loc.	2063	2064	2065	2066	2067	2068	2069	2070	2071	2072	2073	2074	2075	2076	2077	2078	2079	2080	2081	2082
	VALUE		-																		
C _{T16} / M ₁₆ =	├──	2043	7,044	2045	2046	2047	2048	2049	2050	2051	202	2053	2054	2025	2056	2057	2058	2059	2060	2061	2062
	VALUE																				
CT15/ M15 =	Loc.	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	20:38	2039	2040	2041	2042
	VALUE																				
CT14/ M14 =	Loc.	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
	VALUE																				
CT _{13,} / M ₁₃ =	LOC.	1983	1984	1985	1986	1987	1988	6861	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	500.
	VALUE																				
CT12/ M12 =	LOC.	1963	1964	1965	1966	1937	1968	1969	0Z6t	1971	1972	1973	1974	1975	1976	1977	1978	6261	1980	1981	1982
	VALUE								,												
$CT_{11}/M_{11} =$	-	1943	1944	1945	1946	1947	1948	1949	1950	1951	1952	1953	1954	1955	1956	1957	1958	1959	1960	1961	1962
CE .	MACH NO.	J ₁ /M ₁ =	J2 /M2 =	3 /M3 =	J4 /M4 =	Js /Ms =	Je /Me =	J ₇ /M ₇ =	J8 //W8 =	J ₉ /M ₉ =	J ₁₀ /M ₁₀ =	11/M11=	12/M12=	13/M13=	14/M14=	15/M15=	11	17/M17 =	18/M18=	19/M ₁₉ =	J ₂₀ /M ₂₀ =

VASCOMP V/STOL AIRCRAFT SIZING AND PERFORMANCE COMPUTER PROGRAM B-93

SHEET NO.	CASE NO.
OF	

SUPPLEMENTARY INPUT

VARIABLE	LOC	VALUE
-		-
,		
,		
·		
e water		. ago ga Araba de James ago Pagalagaiga, gan di ba' babbalagan
		: 1

(-1

VARIABLE	Foc	VALUE
`		
4	. 15 · · · · · · · · · · · · · · · · · ·	
		
1		
l		
	·	
,		
į		
		~
	***************************************	<u></u>
	_	

VARIABLE	LOC	VALUE
		-
	-	
,		
/ 3 332		* * * * * * * * * * * * * * * * * * * *
	4.4	~ ~ ~

5.3.1 PROGRAM VARIABLES

VARIABLE	LOCATION	FORTRAN NAME	DESCRIPTION
AF	0228	AF	Activity factor (per blade) of propeller
AR	0101	DAM2	Wing aspect ratio
AR _{HT}	0109	ARHT	Horizontal tail aspect ratio
Aisle Width (IN)	Ò158	WAISL1	Width of the aisles in first class
Aisle Width (IN)	0166	WAISLT	Width of the aisle in tourist class
AR _{VT}	0129	ARVT	Vertical tail aspect ratio
a _H	0110	SAH	Height of horizontal tail above top of local fuselage (fraction of vertical tail span)
<u>c∕⊅</u>	0103	DAM3	Mean wing chord to propeller diameter ratio
C _{DHT} i .	0302	CDHTI	Profile drag coefficient of lift engine nacelles at R = 10' (based on total wetted area of nacelle clusters)
^C DI-Ni	0304	CDLNI	Profile drag coefficient of horizontal tail at R = 10 (based on horizontal tail. planform area)
C _{DNi}	0303	CDNI	Profile drag coefficient of primary, engine nacelles at R = 10 (based on wetted area of all nacelles)
C _{DVTi}	0301	CDVII	Profile drag coefficient of vertical tail at R = 10 (based on vertical tail planform area)
C _{DWi}	0335-0342	TBCDWI	Profile drag coefficient of wing at R = 10 (based on wing planform area)

VARIABLE	LOCATION	FORTRAN NAME	DESCRIPTION
ΔCD	0305	DELCD	Profile drag increment (based on wing planform area)
^{AC} DCLIMB	0781-0790	DCLIMB	Profile drag increase during climb.
ΔC _{DCR}	0891-0900	DLCDCR	Profile drag increase during cruise due to engines being shut down (based on wing planform area)
ΔC _{DDESC} .	0991-1000	CLCDDS	Profile drag increase during descent. Used to simulate drag brakes.
∆C _{DDM}	0350-0384	TECDM .	Increase in airplane drag due to Mach number (compressibility effects). Input table as a function of Mach number and lift coefficient (based on wing planform area)
^{AC} DLOITER	1071-1080	DLOITR	Increase in planform drag during loiter
c _{Li}	0230	CLEYE	Propeller integrated design lift coefficient
C £a	0331	CSALF	Two-dimensional lift coefficient slope (Rad1)
$\mathtt{c_i}$	0317-0324	TBCL1	Values of lift coefficients
$\mathtt{c}_{\mathtt{L}}$	0343-0349	TBCL2	Values of lift coefficients
c _p	1723-1742	CPPROP	Propeller power coefficient (550 HP/pq eD5)
$\mathtt{c}_{_{\mathbf{T}}}$	1743-2142	CTPROP	Propeller thrust coefficient (Thrust/ρη ² D ⁴)
c [™] ∕°	0227	CTSIG	Ratio of thrust coefficient to propeller solidity (helicopter C _T = thrust/pAV _{TIP})
DIA	0226	DI	Propeller diameter (ft.)

VARIABLE	LOCATION	FORTRAN NAME	DESCRIPTION
EAS	0911-0920	EASS	Equivalent airspeed required during descent
EAS	0701-0710	EMACH	Equivalent airspeed required during climb
e	0306	DAM10	Span loading efficiency factor (Oswald's efficiency factor)
Δf _e	0307	DELFE .	Increment in equivalent flat plate area parasite drag of fuselage (sq ft)
F _N *	0203	DAM8	Primary engine maximum static thrust at sea level, standard conditions (total thrust for all engines)
Gallery Area (ft ²)	0152	AGLLEY	Total area of the galley(s)
F _{NL} *	0219	DAM9	Lift engine maximum static thrust at sea level, standard conditions (total thrust for all engines)
Headwind	0811-0820	VIN	Headwind during cruise (knots)
h _o	0015	H00	Initial altitude at start of mission
h.c	0214	HC	Cruise altitude for sizing engines (feet)
h _{final} (h _{opt} IND=0)	1111-1120	HFIN(FT)	Final altitude for transfer altitude segment (SGTIND=9)
or hmax(hopt	ND=1)		,
h _{max}	0741-0750	HMAX	Maximum, altitude during climb (feet) or during transfer altitude (feet)
h _{min}	0971 - 0980	HMIN	Minimum altitude during descent (feet)
h _i	0440-0449	TBH	Input altitude for non- standard atmosphere map.

VARIABLE	LOCATION	FORTRAN NAME	DESCRIPTION
K ₁₈	0413	CK18	Fixed wing controls multi- plicative weight factor
K ₁₉	0414	CK19	SAS multiplicative weight factor
K ₂₀	0415	CK20	Tilt mechanism multipli- cative weight factor
K ₂₁	0465	CK21	Fuel system multiplicative weight factor
Kf	0314	CKF	Fuselage multiplicative drag factor
K _{ff}	0026	CKFF	Fuel flow multiplicative drag factor
K _{ht}	0316	CKHT .	Horizontal tail multipli- cative drag factor
K _{ln}	0311	CKLN	Lift nacelle multiplica- tive drag factor
K _n	0313	CKN	Primary nacelle multipli- cative drag factor
K _{pn}	1248-1257	PNZ	Ratio of power available at specified N_{II} to power available at optimum N_{II}
Kpr	1225-1234	RNE	Correction factor for engine power to account for Reynolds' number effects
^K rc	0262	CKRC	Multiplicative constant to be used to calculate takeoff vertical climb power, nomin- ally 2.0 for turboshaft air- craft and lower for high disc loaded aircraft and fans
K _{vt}	0315	CKVT	Vertical tail multiplica- tive drag factor
K _w	0312	CKW	Wing multiplicative drag factor

VARIABLE	LOCATION	FORTRAN NAME	DESCRIPTION
LETF	0641-0650	FLET2	Lift engine thrust fraction. Required when TOLIND = 3
K.	0459	CK2	Propeller group multiplica- tive weight factor
к ₃	0460	СКЗ	Drive system multiplicative weight factor
K _±	0461	CK4	Lift engine multiplicative weight factor
K ₅	0462	CK5	Primary engine multiplica- tive weight factor
^K 6	0463	CK6	Lift engine installation multiplicative weight factor
к ₇	0464	CK7	Primary engine installation multiplicative weight factor
K ₈	0433	CK8	Wing weight multiplicative weight factor
к ₉ .	0434	CK9	Horizontal tail weight mul- tiplicative weight factor
K ₁₀	0435	CK10	Vertical tail weight multi- plicative weight factor
K ₁₁	0436	CK11	Fuselage weight multipli- cative weight factor
K ₁₂	0437	CK12	Landing gear weight multi- plicative weight factor
K ₁₃	0438	CK13	Lift engine section multi- plicative weight factor
K ₁₄	0439	CK14	Primary engine section mul- plicative weight factor
K ₁₅	0410	CK15	Cockpit controls multipli- cative weight factor

VARIABLE	LOCATION	FORTRAN NAME	DESCRIPTION
K ₁₆	0411	CK16	Upper controls multiplica- tive weight factor
K ₁₇	0412	CK17	Hydraulics multiplicative weight factor
KB	0420	SKP	Body group weight adjustment factor
K _{DS}	0453	SKDS	Drive system weight adjustment factor
^K rs	0454	SKFS	Fuel system weight adjustment factor
Klei .	0455	SKLEI	Lift engine installation weight factor
K _{les} .	0421	SKLES	Lift engine section weight factor
K _{lg}	0422	SKLG	Weight of alighting gear as a percentage of gross weight
K _{mg}	0423	SKMG	Ratio of main alighting gear weight to gross weight
K _{mt}	0430	SKMT	Engine nacelle type factor
Knac	0431	SKNAC	Engine nacelle adjustment factor
K _{pei}	0456	SKPEI	Primary engine installation weight factor
K _{pes}	0429	SKPES	Primary Sugine section weight factor
K _{r/p}	0457	·SKRP	Rotor or propeller weight adjustment factor for type of system
K _{sas}	0407	SKSAS	Factor for stability augmented system and mixing units
K _{tl}	0424	SKTL	Tail load adjustment factor
Ktm	0408	sktm	Multiplicative constant for tilting mechanism
		e	

VARIABLE	LOCATION	FORTRAN NAME	DESCRIPTION
K _{uc}	0409	SKUC	Multiplicative constant for upper control mechanicms
K _{vt}	0458	SKVT	Adjustment factor for variations in drive system weight due to nonuniformities in hover and XMSN tipspeeds or maximum and XMSN powers
Kwf	0425	SKWF	Wing bending relief moment adjustment factor
K _{ww} .	0426	SKWW	Wing type weight adjustment factor
ĸy	0427	SKY	Pitch radius of gyration, feet
K _z	0428	SKZ	Yaw radius of gyration, feet
Δh	0721-0730	DELH3	Step size for climb (feet)
Δh	0951-0960	DELHS	Step size for descent (feet)
h _F	0121	HF	Height of fuselage (feet)
h _{TO}	.0207	HES	Takeoff altitude for sizing engines
i _w	0103	EYEW	Wing incidence angle with respect to fuselage (degrees)
k ₁	1602	SK1	(Tifk angines weight factors
k ₂	1603	SK2	{ Lift engines weight factors
k ₃	1302	SK3	(Duineus engine swight featers
k ₄	1303	SK4	{ Primary engine weight factors
K _{FL}	0531-0540	SKFL	Lift engine taxi segment factor (0 = lift engines off during taxi 1 = lift engines operating)
к ₁	0024	CK1	Fuel required multiplicative reserve factor

VARIABLE	LOCATION	FORTRAN NAME	DESCRIPTION
K _{CC}	0404	SKCC	Cockpit controls constant
K _{DS}	0453	SKDS	Drive system weights constant
K _{FS}	0454	SKFS	Fuel system weights constant
K FW	0405	SKFW	Fixed-wing controls constant
КH	0406	SKH	System and hydraulics constant
K _{LEI}	0455	SKLEI	Lift engine installation factor
1 CONSTANT DIA	0125	ELC	Constant diameter section (cabin) length (feet)
1 _F	0122	DAM5	Fuselage length (feet)
1 _{MT}	0432	skimt	Distanct between engine center of gravity and closest structural attachment point between nacelle and wing, ratioed to length of nacelle
1 _{RW}	0126	ELRW	Length of ramp well (feet)
¹ TN	0111	ELTH	Horizontal tail moment arm (feet)
l _{TV}	0130	ELTV	Vertical tail moment arm (feet)
(1/d) _{nose}	0123	ELPD	Fineness ratio airplane nose section
(1/d) _{tail}	0124	ELTD	Fineness ratio airplane tail section
Mach	0701-0710	EAS5	Mach number required during climb
Mach	0911-0920	EMACH	Mach number required during descent
M _{LF}	0023	EMLF	Maneuver load factor (g's)
M _{MO}	0020	EMMO	Maximum operating mach number

VARIABLE	LOCATION	FORTRAN NAME	DESCRIPTION
N _C	0221	ENC	Number of clusters of lift engines
N_L	0220	ENL	humber of lift engines
N _{LO}	0212	ENLO	Number of lift engines inoperative (for engine sizing)
Np	0204	ENP	Number of primary engines
N _{pO}	0211	ENPO	Number of primary engines inoperative (for engine sizing)
N _{PSD} CR	0871-0880	ENPSD	Number of primary engines shut down during cruise
N _{PSD} LOITER	1051-1060	ENPSDL	Number of primary engines shut down during loiter
N _R	0223	ENR	Number of rotors or propellers
(N _{IMAX} /N ₁) _L	1236	Allmax	Gas generator RPM limit - ratio of max gas generator RPM to RPM at maximum static power, sea level, standard for lift engines
(NI _{MAX} /N [*] 1) _L	1221	Almax	Gas generator RPM limit - ratio of max gas generator RPM to RPM at maximum static power, sea level, standard for primary engines
(N _I /√θ/N*) _{MAX}	1222	XAMEA	Gas generator referred RPM limit (θ = temperature ratio @ compression face), this input simulates a restriction on compression speed

VARIABLE	LOCATION	FORTRAN NAME	DESCRIPTION
N _{II} /N _{II_{OPT}}	1238-1247	A2NO	Ratio of operating power turbine speed to optimum power turbine speed (input when N2IND = 2). N _{II} /N _{II} _{OPT}
			is set = 1.0, and N _{II} /N _{IIMAX}
			is determined from
			$\frac{N_{II}}{N_{II_{OPT}}} = \frac{\frac{N_{II}}{N_{IIMAX}} \frac{N_{IIMAX}}{N_{II}^*}}{\frac{N_{II_{OPT}}}{N_{II}^*\sqrt{\theta}}} \frac{1}{\sqrt{\theta}}$
	•		If N _{II} /N _{II MAX} is much greater
			than 1.0, then set N _{II} /N _{II} _{MAX} =1
•		•	and calculate N _{II} /N _{IIOPT}
$(N_I/N_I^*)^{\frac{D}{V_I}}$	1207-1216	PRN	Reynold's number correction for gas generator shaft speed (RPM)
(N _I /N _I *√0) 1	1649-1656	FONE	Values of referred gas gen- erator shaft speed limit ratio, input as a function of referred temperature for lift engines
(N _{II} /N _{II} *√0) ₁	1665-1672	FTWO	Values of referred power turbine speed limit ratio, input as a function of referred temperature for lift engines

VARIABLE	LOCATION	FORTRAN NAME	DESCRIPTION
(N _{II} /N _{II_{MAX}}) 0217 C	AN2CR	Ratio of operating power turbine speed to maximum power turbine speed (input when sizing primary engines for cruise)
			If in cruise the rotor is slowed to a known velocity, NII NII NAX CR can be determined from
	·		$\frac{N_{II}}{N_{II_{MAX}}} = \frac{T_{OPERATING}}{N_{II_{MAX}}}$ $\frac{N_{II_{MAX}}}{N_{II}} = \frac{V_{T_{REF}}}{V_{T_{REF}}}$ where V_{T} is input in Loc (0181), and $\frac{N_{II_{MAX}}}{N_{II}}$ is in Loc (1223).
N _{II} /N _{IIMAX_{TA}}	0591-0550 XI	AN2M1	Ratio of operating power turbine speed to maximum power turbine speed (input for both primary and auxiliary independent engines in performance segement 1, TAXI.
			This value can be altered to obtain the desired operating tip velocity through the correlation VTOPERATING = II
			where $\frac{N_{II}}{N_{II}}$ is input in LOC (1223)

and $V_{\mathbf{T}}$ is input in LOC (0181).

VARIABLE	LOCATION	FORTRAN NAME	DESCRIPTION
N _{II} N _{II} MAX _{TAKEOFF}	0671-0680	AN2M2	Ratio of operating power tur- bine speed to maximum power turbine speed (input for both primary and auxiliary indepen- dent engines in performance segment 2, TAKEOFF, HOVER, LAND
NII NII _{MAX} CLIMB	0771-0780	AN2M3	Ratio of operating power tur- bine speed to maximum power turbine speed (input for both primary and auxiliary indepen- dent engines in performance segement 3, CLIMB
N _{II} N _{II} MAX _{CRUISE}	0881-0890	AN2M4	Ratio of operating power tur- bine speed to maximum power turbine speed (input for both primary and auxiliary indepen- dent engines in performance segement 4, CRUISE
NII NII MAX DESC	0981-0990	AN2M5	Ratio of operating power tur- bine speed to maximum power turbine speed (input for both primary and auxiliary indepen- dent engines in performance segement 5, DESCENT
N _{II} N _{II} MAX _{LOITER}	1061-1070	AN2M6	Ratio of operating power tur- bine speed to maximum power turbine speed (input for both primary and auxiliary indepen- dent engines in performance segement 6, LOITER
NII MAX _{TO}	0201	ANZTO	Ratio of operating power tur- bine speed to maximum power turbine speed (input when sizing primary engines for takeoff).
•	·		This value is set to obtain the desired operating tip velocity at takeoff from the equation. V_T
		5-41	NII* TREE

VARIABLE	LOCATION	FORTRAN NAME	DESCRIPTION
N _{II_{MAX}/N_{II}*}	1223	A2MAX	Power turbine speed limit ratio of maximum power turbine speed to power turbine speed at maximum static power, sea level, standard for the primary engines.
N _{IIMAX} /N _{II} *	1237	AL2MAX	Power turbine speed limit ratio of maximum power turbine speed to power turbine speed at maximum static power, sea level, standard.
Number of Advance Ratios (J)	1701	XPXNO	Number of advance ratio values in locations 1702-1721
Atmosphere Temp. No. of Pairs	0416	THN	Number of temperature pairs in locations 0440-0449 & 0466-0475
No. of Aisles	0155	AN1SL1	Number of aisles in the first class section
No. of Aisles	0163	ANISLT	Number of aisles in the tourist class section
No. of Blades	0229	BLDN	Number of blades on prop/rotor
No. of Lavs.	0160	ANLAVS	Number of lavatories onboard
No. of CL.	0310	TCLZN	Number of CL values in locations 0343-0349
No. of M	1319	ums	Number of mach number values in locations 1320-1325
No. of M	1383	UMW	Number of mach number values in locations 1384-1389
No. of M	1447	UNM1	Number of mach number values in locations 1448-1453
No. of M	1551	UNM2	Number of mach number values in locations 1512-1517

VARIABLE	LOCATION	FORTRAN NAME	DESCRIPTION
No. of M	0309	TENN	Number of mach numbers
No. of Pairs in Table	0308	TLLN	Number of pairs in $C_L \sim C_{Di}$ table
No. Pairs np4 Table	0245	ETAP4N	Number of η_{p4} pairs in locations 0235-0255
No. of Passengers	0153	ANPX1	Number of passengers in the first class section of the aircraft
No. of Passengers	0161	ANPXT	Number of passengers in the tourist class section of the aircraft
No. of Prop Thrust Coef- ficients (C _T)	1722	CPPNO	Number of prop thrust coef- ficients in locations 1723- 1742
No. of T/8	1310	UNTS	Number of refered temperatures in locations 1311-1318
No. of T/8	1374	UNTW	Number of refered temperatures in locations 1375-1382
No. of T/8	1438	UNT1	Number of refered tempera- tures in locations 1439-1446
No. of T/8	1502	UNT2	Number of refered temperatures in locations 1503-1510
n _T	0651 - 0660	ENT	Thrust-to-weight ratio during takeoff (Takeoff, Hover, and Landing Calculations Subroutine)
n	0208	SENE	Thrust-to-weight ratio for engine sizing
ΔNC _{LIMB}	0791-0800	ENCLIMB	Incremental normal load factor for energy-maneuverability calculations
OWE	0400	OWE1	Operating Weight Empty (pounds)
PETF or PEHF	0621-0630	PFET2	Primary engine power (or thrust) fraction. Required when TOLIND = 3

VARIABLE	LOCATION	FORTRAN NAME	DESCRIPTION .
$^{\Delta P}_{ t PSI}$	0450	DELP	Limit differential cabin pressure (PSI)
Q _{MAX} /Q*	1224	QMAX	Ratio of maximum torque limit to torque developed at sea level static standard day conditions. See engine and transmission sizing for the options available.
Ro	0016	ROO	Initial range at start of mission (nautical miles)
RMAX CRUISE	0851-0860	RMAX	Range at end of cruise (nautical miles)
RMAX DESC.	0961-0970	RMAX5	Range at end of descent (nautical miles)
ΔR	0831-0840	DELR	Step size for cruise (nautical miles)
Re/lz	0330	RECI	Mean Reynold's number per foot for mission
r	0116	SR	Propeller blade attachment distance from hub center line (fraction of propeller radius)
s _F	0127	DAM6	Fuselage wetted area (FT2)
SHT	0115	AAW11	Area or horizontal tail. Used when HTIND = 2.
s _{VT}	0134	AAW12	Area of vertical tail. Used when VTIND = 2.
Seats Abreast	0162	ANABT	Seats abreast in tourist
Seats Abreast	0154	ANAB1	Seats abreast in first class
Seat Pitch	0157	PSEAT1	Seat pitch in first class
Seat Pitch	0165	PSEATT	Seat pitch in tourist

VARIABLE	LOCATION	FORTRAN NAME	DESCRIPTION
SHP*	0202	DAM7	Primary engine maximum static horsepower at sea level standard conditions (total power for all engines)
shp _e /shp*	0260	SHPTO	Fraction of power input for sizing engines; nominally input as 1.0
shp _{xm} /shp*	0258	X'ISMRT	Fraction of power for transmission sizing
∆s _{wet} ∕s _w	0120	DLSWSW	Incremental wetted area of airplane ratioed to wing planform area
sw _F	0025	DELWF	Reserve fuel factor
to	0017	STOO	Initial time at start of mission hours
(t/c)HT	0112	TLCT	Horizontal tail mean thick- ness/chord ratio
(t/c)R	0104	TCR	Wing root thickness to chord ratio
(t/c)T	0105	TCT	Wing tip thickness chord ratio
(t/c)VT	0131	TCVT	Vertical tail mean thickness chord ratio
T _{FI} (°R)	1306	TFI	Turbine inlet temperature at flight idle power setting primary engines
T _{GI} (°R)	1305	TGI	Turbine inlet temperature at ground idle power setting primary engines
^T GI	1607	TLGI	Lift engine turbine inlet temperature at ground idle
^t H	0681-0690	STH	Incremental time for houer (HR)
Δt _H	0661-0670	DELTH	Step size for houer (Hours)

VARIABLE	LOCATION	FORTRAN NAME	DESCRIPTION
t _{FW}	1121-1130	STFW	Incremental time for change of fuel weight
ΔTin _{TAXI} (°F)	0521-0530	TINI	Increment in ambient temperature for engine sizing at TAXI conditions (°R)
ΔTin _{T/O} (°F)	0631-0640	TIN2	Increment in ambient temperature for engine sizing at takeoff conditions (°R)
ΔTin _{CLIMB} (°F)	0731-0740	TIN3	Increment in ambient temperature for engine sizing at CLIMB conditions (°R)
ΔTin _{CRUISE} (°F)	0631-0640	TIN4	Increment in ambient temperature for engine sizing at CRUISE conditions (°R)
ΔTin _{DESCENT} (°F)	0941-0950	TIN5	Increment in ambient temperature for engine sizing at DESCENT conditions (°R)
ATin _{LOITER} (°F)	0041-1050	TIN6	Increment in ambient temperature for engine sizing at LOITER conditions (°R)
ΔTin _{TO} (°F)	0209	TINY	Increment in ambient temperature for engine sizing at takeoff conditions (°R)
ΔTin _C (°F)	0216	ATMIY	Increment in ambient temperature for engine sizing at cruise conditions (°R)
t _L (HR)	1031-1040		Incremental time for loiter (HRS)
Δt _L	1011-1020	DELST	Step size for loiter (HRS)
TMAX	1608	TLMAX	Turbine inlet temperature (maximum power setting), or input on engine cycle sheets for lift engines
T _{MAX} (°R)	1309	TMAX	Turbine inlet temperature (maximum power setting), or input on engine cycle sheets

VARIABLE	LOCATION	FORTRAN NAME	DESCRIPTION
T _{MIL} (°R)	1308	TMIL	Turbine inlet temperature (military power setting), or input on engine cycle sheets
T _{NP} (°R)	1307	TNRP	Turbine inlet temperature (normal power setting), or input on engine cycle sheets
t _{pw} (HR)	1141-1150	STPW	Incremental time for change of payload weight (HRS)
t _T (HR)	0511-0520	DELTT	Incremental time for taxi (hours)
T/θ (Primary Engine Cycle No.)	1311-1318	TSHP .	Referred turbine temperature (°R)
T/0 (Primary Engine Cycle No.)	1375-1382	TWD ·	Referred turbine temperature (°R)
T/θ (Primary Engine Cycle No.)	1439-1446	TN1	Referred turbine temperature (°R)
T/θ (Primary Engine Cycle No.)	1503-1510	TN2	Referred turbine temperature (°R)
Unit Seat Width	0156	WSEAT1	Input width of the seats in first class
Unit Seat Width	0164	WSEATT	Input width of the seats in tourist class
Values of np4	0246-0255	TB8AP4	Values of ETAPU in locations 0246-0255
Values of KpR	1225-1234	RNE	Table of KpR values
Values of M	0235-0244	TBEM5	Table of mach numbers for M-n _{p4} pairs for turboshaft engines

VARIABLE	LOCATION	FORTRAN NAME	DESCRIPTION
Values of M	1320-1325	AMSHP	Values of mach number for the referred thrust table
Values of M	1384-1389	AMWD .	Values of mach number for the referred fuel flow table
Values of M	1448-1453	AM1	Values of mach number for the referred gas generator RPM limit
Values of M	1512-1517	AM2	Values of mach number for the referred power turbine RPM limit table
Values of N_{I}	1454-1501	AONE	Values of referred power generator RPM speed limit
Values of N_{II}	1518-1565	ATWO	Values of refered power turbine RPM speed limit
Values of Refered Thrust (F _N /SF _{NL} *) ₁	1609-1616	TF	Referred fuel flow as a function of $(T/0)$ for . lift engines
Values of Refered Fuel Flow	1625-1632	TFW	function of (T/0)
Values of Refered N _I	1641-1648	TF1	Referred N, as a function of (T/θ) for lift engines
Values of Refered N _{II}	1657-1664	TF2	Referred N_{II} as a function of (T/θ) for lift engines
Values of Refered Thrust or Horsepower	1326-1373	SHPAV	Table of power available referred to T/θ
Values of Fuel Flow	1390-1437	WDOT	Values of fuel flow as a function of (T/θ)

		700mn111	
VARIABLE	LOCATION	FORTRAN NAME	DESCRIPTION
Values of M	0325-0329	TBEM	Table of mach numbers used in generating compressibility effect
V _{R/C}	2321-2330	VRCTO	Vertical rate of climb in FT/MIN for takeoff, hover, and landing segment
V _{R/CTAKEOFF}	0261	VRCRC	Vertical rate of climb in FT/MIN for engine sizing for takeoff
V _{TIP}	0224	VT	Propeller tip speed (fps) Note: for ENGIND = 0 this is the tip speed correspond- ing to N _{II} = N* _{II}
$\overline{\mathbf{v}}_{\mathbf{v}}$	0132	VBARV	Vertical tail volume coefficient
w _c	0451	WC	Weight of concentrated load
W _{FE}	0401	WFE	Weight of fixed equipment
W _{FUL}	0402	WFUL	Weight fixed useful load
₩go	0014	WGOO	Initial gross weight at start of mission (pounds)
Wg/A	0225	WGA	DISC loading (psf)
WPL	0403	WPL	Weight of payload (pounds)
w _g /s	0106	DAM4	Wing loading (psf)
ΔW _{FC}	0417	DELWFZ	Flight controls group incremental weight (pounds)
ΔW _F	1101-1110	DLTAUF	Increment in fuel weight during change of fuel weight subroutine (pounds)
ΔW _P	0418	DELWP	Propulsion group incremen-

	•		
VARIABLE	LOCATION	FORTRAN NAME	DESCRIPTION
Values of J	1702-1721	XPJ	Table of prop advance ratio
v _c	0215	VC	True airspeed for engine sizing at cruise conditions
V _{DIVE}	0022	VDIV	Dive speed (knot gas)
V _{IN}	0811-0820	VIN	True airspeed for cruise during cruise segment with CRSIND = 2 (knots)
^V MO	0021	VMO	Maximum operative equivalent airspeed (knots)
⊽ _H .	0113	VBARH	Horizontal tail volume coefficient
ΔW _{PL}	1131-1140	DELWPL	Increment in payload weight during change of payload weight subroutine (pounds)
ΔW _{ST}	0419	DELWST	Structures group incremental weight (LBS)
w _F	0128	SWF	Width of fuselage
₩ _{MAX} /₩	1220	WMAX	Referred fuel flow cutoff for primary engines

VARIABLE	LOCATION	FORTRAN NAME	DESCRIPTION
[*] MAX [∕] ^W L	1235	WLMAX	Referred fuel flow cutoff for lift engines
₩ _f /6√0F*	1633-1640	FWDOT	Referred fuel flow rate for lift engines (lbs/hr/lb F*NL)
W _f /ô√0Fn W _f /ô√0SHP*	1390-1437	WDOT	Referred fuel flow rate for primary engines (lbs/hr/lb F _N or lbs/hr/SHP*)
(W/S Wing & Flap/(W/S) Wing	1081-1090	RSW	Wing area increase due to flap extension
Yc	0452	YC .	Position of concentrated load outboard from air-craft £ (fraction of wing semi span)
Y _u	0117	YCL	Clearance from inboard propeller tip to inboard propeller tip across fuselage (feet)
Y ₁	9137	YL	Mean position of lift engines outboard from aircraft g (fraction of wing semi span)
Ymg	0135	YMG	Position of main landing gear outboard from side of body (fraction of wing semi-span)

5-51

VARIABLE	LOCATION	FORTRAN NAME	DESCRIPTION
Ϋ́p	0136	YP	Mean position of primary engines outboard from airplane & (fraction of wing semi span)
z ₁	0139	AZETA1	
z ₂	0140	AZETA2	Primary engine nacelle dimensional factors
z ₃	0141	AZETA3	Idetois
αLO	0332	ALPHL	Angle of attack where zero lift occurs
β	020 s	BETA	Conversion ratio for convertible engines (lbs/hp)
8	0138	EPSLON	Life engine cluster gap factor (see Section 2.1)
ζ	0118	ZETA1	Propeller over pro- peller overlap fraction of radius

VARIABLE	LOCATION	FORTRAN NAME	DESCRIPTION
ξ	0119	ZETA2	Propeller over wingtip overlap (fraction of radius)
$\eta_{\mathbf{L}}$	0231	ETAC	Lift engine efficiency for Takeoff, Hover, and Landing Calculations Subroutine
η _{P2}	0232	ETAP2	Primary engine propulsive efficiency for SGTIND = 2
η ₂₃	0233	ETAP3	Primary engine propulsive efficiency for SGTIND = 3
η _{P5}	0234	ETAP5	Primary engine propulsive efficiency for SGTIND = 5
η _T ·	0206	ETAT	Transmission efficiency
6	0466-0475	TBTHE	Ambient tempeture ratio, tabular function of altitude
θ _{max} (OEG)	0761-0770	THEMAX	Maximum body attitude angle, climb (degrees)
emin(DEG)	0931-0940	THEMIN	Minimum body attitude angle, descent (degrees)
Λ c/4	0104	DLMC4	Sweep angle of wing quarter chord (degree)
λ	0108	SLM	Taper ratio of wing
λĤ	0114	SLMH	Taper ratio of horizontal tail
λv	0133	SLMV	Taper ratio of vertical tail
<u>ξ</u> 1	1604	XI1	,
ξ2	1605	XI2	Lift engine dimensional factors
ξ 3	1606	XI3	
ξ4	1304	XI4	Primary engine dimensional factor
	•	5-53	

5.3.2 <u>Program Indicators</u>

Option Indicators

VARIABLE	LOCATION	FORTRAN NAME	DESCRIPTION
OPTIND	0001	OPTIND	1 = size aircraft
			<pre>2 = calculate performance (specify initial gross weight)</pre>
			<pre>3 = calculate performance (specify operating weight empty)</pre>
OPTIONAL PRINT	0002	TNIRPK	0 = Standard print
			1 = Detailed print
Propulsion Ind	licators		
ENGIND	0011	ENGIND	0 = turboshaft (power producing) engine
	٠		<pre>1 = turbofan or turbojet (thrust producing) engine</pre>
			2 = convertible engine
LFTIND	0013	DNITFL	<pre>0 = no lift propulsion engine selected</pre>
,			<pre>1 = lift propulsion engine selected</pre>
FIXIND	·0010	FIXIND	0 = "fixed" size engines. User inputs maximum power or thrust.
	,		<pre>1 = "rubberized" engines. Program will calculate maximum power or thrust.</pre>

VARIABLE	LOCATION	FORTRAN NAME	DESCRIPTION
The following	five indicate	ors are for	primary engines:
WDTIND	.1201	WGTIND	<pre>0 = no fuel flow limit</pre>
			1 = fuel flow limit
. QIND	1205	QIND	0 = no torque limit
	•		1 = torque limit
NIIND .	.1202	AN1 IND	0 = no N _I limit
		•	1 = N _I limit
NIGIND	1203	ans ind	$0 = \text{no N}_{\text{I}}/\sqrt{\theta_1} \text{ limit}$
•		٩	$1 - N_I / \sqrt{\theta_1}$ limit
N2IND	1,204	AN2IND	0 = no N _{TI} limit. Engine operating at optimum N _{II}
	·		<pre>1 = N_{II} limit. Engine operating at optimum N_{II}</pre>
			<pre>2 = N_{TT} limit. Engine operating at known value of N_{TT} (in general, non-optimum)</pre>
The following	four indicate	ors are for	: lift engines:
LWDIND	1217	VWDIND	0 = no fuel flow limit
			1 = fuel flow limit
LNIND	1218	VN1 IND	0 = no N _I limit
			1 = N _I limit
LN2 IND	1219	VN2 IND	0 = no N _{II} limit
			1 = N _{II} limit
RNOIND	1206	RNOIND	0 = no Reynolds' number corrections
		5-55	for Primary Engines

VARIABLE		LOCATION	FORTRAN NAME	DESC	CRIPTION
POWIND		0751-0760	POWCLI	1 =	Reynolds' number corrections
POWIND	or	0861-0870 0213	POWCRI POWESI	0 =	maximum engine rating
				1 =	military engine rating
					normal engine rating
		(The indicational only if LF			ow is applicable (XIND = 1)
ESZIND		0012	ESZIND	0 =	program will size engines for takeoff only
			,	1 =	program will size engines for more critical choice of takeoff or cruise
Aerodynamics	In	dicators			•
DRGIND	•	0003	DRGIND	0 =	program calculates compressibility drag coefficient
•				1 =	user inputs table of compressibility drag coefficient as a function of Mach number and lift coefficient

VARIABLE	LOCATION	FORTRAN NAME	DESCRIPTION
OSWIND	0004	OSWIND	<pre>0 = user inputs Oswald's efficiency (e)</pre>
	•		<pre>1 = program calculates Oswald's efficiency</pre>
Size Trends Ind	licators		·
FDMIND	0006	FOMIND	<pre>0 = user inputs fuselage length and wetted area</pre>
	•		<pre>1 = user inputs constant diameter (cabin) length, nose and tail fineness ratios. Program calculates total length and wetted area.</pre>
	•		2 = user inputs (2/d) NOSE' (2/d) TAIL', and passenger data. Program calculates fuselage dimensions required to accommodate passengers.
WDMIND .	0007	WDMIND	<pre>0 = user inputs wing loading and aspect ratio</pre>
•			<pre>1 = user inputs chord to diameter ratio and disc loading. Program calculates wing loading and aspect ratio.</pre>
			<pre>2 = user inputs wing loading and disc loading. Program calculates chord to diameter ratio and aspect ratio.</pre>
HTIND	0008	HŢIŅD	<pre>1 = input horizontal tail volume coefficient and moment arm. Program calculates tail area.</pre>
•			2 = input tail area

•			•
VARIABLE	LOCATION	FORTRAN NAME	DESCRIPTION
VTIND .	0009	VTIND	<pre>1 = input vertical tail volume coefficient and moment arm. Program calculates tail area.</pre>
			2 = input tail area
PDMIND	0005	PDMIND	<pre>1 = input prop diameter and activity factor per blade</pre>
			<pre>2 = input prop disc loading and activity factor per blade</pre>
•	,		<pre>3 = input prop diameter and thrust coefficient to solidity ratio</pre>
			<pre>4 = input prop disc loading and thrust coefficient to solidity ratio</pre>
XSMNIND	0218	XMSND	<pre>0 = aircraft transmission sized at a specified fraction (LOC 0258) of installed power</pre>
			<pre>1 = aircraft transmission sized at a specified fraction (LOC 0258) of power required to hover or cruise power required, whichever is most critical.</pre>
GALLERY INDICATOR	0151	DNI1GN	0 = program calculates galley area by trend equation
			1 = user inputs galley area
LAVATORY	0159	DNIVAL	<pre>0 = program calculates number of lavatories by trend equation</pre>
•			1 = user inputs number of lavatories

Flight Path Control Indicators

VARIABLE	LOCATION	FORTRAN NAME	DESCRIPTION
A _{opt} IND	0018	Hoptind	<pre>0 = cruise segments performed at specified altitude</pre>
	•		<pre>1 = cruise segments preceded by climb or transfer altitutde are performed at optimum altitude, constrained by an input maximum altitude.</pre>
VLIMIND	0019	VEMIND	<pre>0 = no constraint or equi- valent airspeed</pre>
		•	<pre>1 = equivalent airspeed constrained to be less than or equal to 250 knots at altitudes of 10,000 feet or less</pre>
Mission Perform	ance Indicat	ors	•
SGTIND	0027-0076	SGTIND	0 = end of mission
			1 = taxi
		•	2 = takeoff, hover and landing
			3 = climb
			4 = cruise
			5 = descent
			6 = loiter
•			7 = change of fuel weight
			8 = change of payload weight
			9 = transfer altitude
,		•	10 = X-Y Plotter output
•	•		11 = general performance
	-		100 = end of case

VARIABLE	LOCATION	FORTRAN NAME	DESCRIPTION
TOLIND	0601-0610	TOLIND	<pre>1 = input required thrust-weight ratio. Airplane will use maximum power from lift engines before augmenting with primary enginesor- will use only primary engines if LIFTIND = 0.</pre>
			<pre>2 = input required thrust-weight ratio. Airplane will use equal percentages of power from lift and primary engines.</pre>
•	•	•	<pre>3 = input required fraction of maximum power</pre>
CLMIND	0691-0700	CLMIND	1 = maximum rate of climb
•			2 = climb at constant EAS
	•		<pre>3 = climb at constant Mach , number</pre>
			4 = climb at constant true airapeed
CRSIND	0801-0810	CRSIND.	1 = cruise at cruise power
			2 = craise at constant true airspeed
			<pre>3 = cruise at speed for best specific range</pre>
			4 = cruise at speed for 99% of best specific range
			<pre>5 = cruise-climb (constant W/δ) at speed for best specific range</pre>
		•	<pre>6 = cruise-climb (constant W/ô) at speed for 99% of best specific range</pre>

VARIABLE	LOCATION	FORTRAN NAME	DESCRIPTION
DESIND	ó901 - 0910	DESIND	<pre>1 = descend at maximum speed, terminal range specified</pre>
			2 = descend at maximum speed, terminal range not specified
			<pre>3 = descend at idle power, terminal range specified</pre>
			4 = descend at idle power, terminal range not specified
	•		<pre>5 = descend at constant EAS, terminal range specified</pre>
			6 = descend at constant EAS, terminal range not specified
·		~	<pre>7 = descend at constant Mach number, terminal range specified</pre>
•	٠	•	8. = descend at constant Mach number terminal range not specified
LTRIND	1001-1010	DNIRTL	<pre>c = loiter mission used for reserve fuel calculation (gross weight reset following loiter)</pre>
	٠		<pre>1 = loiter mission used as part of basic mission profile (gross weight not reset)</pre>
WGTIND	1151	WGTIND	<pre>0 = restriction on maximum airplane weight. Weight cannot exceed gross weight.</pre>
		ı	<pre>1 = no restriction on air- plane weight (will only apply when running performance)</pre>

Atmosphere Indicator

VARIABLE	LOCATION	FORTRAN NAME	DESCRIPTION
ATMIND	0501-0510	ATMIN1	0 = standard atmosphere
	0611-0620	ATMIN2	1 = non-standard atmosphere.
	07110720	11-0720 ATMINS value fo	User inputs single point value for increment in
	0821-0830	ATMIN4	ambient temperature above standard day value.
	0921-0930	ATMIN5	2 = non-standard atmosphere.
•	1021-1030	ATMIN6	User inputs table of temperature ratio as a
	2221-2230	ATMIN7	function of altitude.

5.3.3 FORTRAN VARIABLES

FORTRAN VARIABLE	PROGRAM VARIABLE	INPUT LOCATION
Ällmäx	(N _I MAX/)L	1236
AIMAX	NI MAX/NI*	1221
.A2MAX	NIIMAK/	1223
A2NO	N _{II} N _{II} OPT	1238 - 1247
XAMEA	$(N_1/\theta_1/N*_1)MAX$	1222
AAW11	SHT	0115
AAW1Z	S _{VT}	0134
AF	ACTIVITY FACTOR PER BLAD	E 0228
AGLLEY	GALLEY AREA (FT ²)	0152
AL2MAX	(N _{II_{MAX}/N*_{II})_L}	1237
ALPHL	α _{LO} (DEG)	0332
AM1	VALUES OF M	1448 - 1453
AM2	VALUES OF M	1512 - 1517
AMSHP	VALUES OF M	1320 - 1325
AMWD	VALUES OF M	1384 - 1389
ANIIND	NIIND	1202
AN2CR	(NII)NII,MAX)C	0217
AN2IND	NZIND	1204
ĄŅŽM1	NII/NII _{MAX} - TAXI	0541 - 0550
AN2M2	NII/NII _{MAX} - TAKEOFF	0671 - 0680
AŅ2M3	NII/NII _{MAX} - CLIMB	0771 - 0780
AN2M4	N _{II} /N _{II_{MAX} - CRUISE}	0881 - 0890
AN2M5	NII/NII _{MAX} - DESCENT	0981 - 0990
AN2M6	NII/NII _{MAX} - LOITER	1061 - 1070

FÓRTRAN VÁRIÁBLE		T LOCATION
AN2M7	NII/NII _{MAX} - T/O GEN. PERF.	2281
AN2M8	NII/NII _{MAX} - CR. GEN. PERF.	2311
AN2TO	(NII/NII _{MAX})TO	0210
ANSIND	NIGIND	1203
ANAB1 .	SEATS ABREAST	0154
AŅABT	SEATS ABREAST	0162
ANISL1	NO. OF AISLES	0155
Anislt	NO. OF ALCLES	0163
ANLAVS	NO. OF LAVATORIES	0160
ANPX1	NO. OF PASSENGERS	0153
ANPXT	NO. OF PASSENGERS	0161
ACNE .	VALUES OF REFERRED NI	1454 - 1501
ARHT	AR _{HT}	0109
ARVT	AR _{VT}	0129
ATMINI	ATMIND '	0501 - 0510
ATMIN2	ATMIND	0611 - 0620
ATMINS	ATMIND	0711 - 0720
ATMIN4	ATMIND	0821 - 0830
ATMIN5	ATMIND	0921 - 0930
ATMIN6	ATMIND	1021 - 1030
ATMIY	ΔTin _c	0216
ÓWTĄ	VALUES OF REFERRED NII	1518 - 1565
AXETA1	η_1	0139
AZETA2	ή ₂	0140
AZETA3	η3	0141

FORTRAN VARIABLE	PROGRAM VARIABLE	INPUT LOCATION
BETA	β	0205
BLDN	NO. OF BLADES	.0229
CDHTI	C _{DHTi}	0302
CDLNI	CDLNi	0304
CONI	CDNi	0303
CDVTI	C _{DVTi}	0301
CK1	к ₁	0024
CK10	K ₁₀	0435
CK11	K ₁₁	· 0436
CK12	K ₁₂	0437
CK13	K ₁₃	0438
CK14	K ₁₄	0439
CK15	. K ₁₅	0410
CK16	^K 16	0411
CK17	K ₁₇	0412
CK18	K ₁₈	0413
CK19	K ₁₉	0414
CK2	K ₂	0459
CK20	K ₂₀	0415
CK21	K ₂₁	0465
CK3	K ₃	0460
CK4	K ₄	0461
CK5	К _Š	0462
CK6	к ₆	0463 °
CK7	к ₇ .	0464

a supplied the state of the sta

FORTRAN VARIABLE	PROGRAM VARIABLE	INPUT LOCATION
CK8	K ₈	0433
CK9	K ₉	0434
CKF	K _F	0314
CKFF	K _{FF}	0026
CKHT	K _{HT}	0315
CKLN	K _{LN}	0311
CKN	K _N	0313
CKRC	K _{R/C}	0262
CKVT	K _{VT}	0315
CKW	K _W	0312
CLEYE	c _L	0230
CLMIND	CLMIND	· 0691 - 0700
CPPNO .	NO.OF PROP TRUST CO-	1722
. •	EFFICIENTS (C _T)	
CPPROP	VALUES OF $C_{\overline{\mathbf{T}}}$	1723 - 1742
CRSIND	CRSIND	0801 - 0810
CSALF	$\dot{C}_{L\alpha}$ (RAD ⁻¹)	0331
CTPROP	VALUES OF PROPELLER	1743 - 2142
	POWER COEFFICIENT	
CTSIG	C _T ∕σ	0227
CYCLFL	CYCLE NO.	1601
CYCLFP	LIFT ENGINE CYCLE NO.	0218
CYCPRL	CYCLE NO.	1301
CYCPRP	PRIMARY ENGINE CYCLE NO.	0201
CYPROP	PROPELLER TABLE NO.	0256

•	,	*• <i>(</i>
FORTRAN VARTABLE	PROGRAM VARTABLE	INPUT LOCATION
D1	DIA.	0226
DAMLO	e 3	0306
DAM2	AR	0101
DÁM3	C/D	C102
DAM4	W /s.	0106
DAM5	1F	0122
DAM6	S _F	0127
DAM7	SHP#	. 0202
DAM8	F [*] N	0203
DAM9	F _{NL}	0219
DCLIMB	ACD CLIMB	0781 - 0790
DELICD	ΔCD	0305
DELFE	Δfe (FT ²)	0307
DELH3	Δh (FT)	0721 - 0730
DELH5	Δh (FT)	0951 - 0960
DELP	ΔP (P.S.I.)	0450
DELR .	AR (NM)	0831 + 0840
DELST	Δt _L (HR)	1011 - 1020
Delth	Δt _H (HR)	0661 - 0670
DELTT	$\Delta t_{\widehat{\mathbf{T}}}$ (HR)	0511 - 0520
DELWE	∆ ₩£	0025
DELWFZ	AW _{FC} (LBS)	0417
DEÉWP	ΔW _p (LBS)	0418
DÉLWPL.	ΔW _{PL} (LBS)	1131 - 1140
DELWST	ΔW _{ST} (LBS)	0419

FORTRAN VARIABLE	PROGRAM VARIABLE	INPUT LOCATION
DESIND	DESIND	0901 - 0910
DLCDCR	ΔC _D CR	0891 - 0900
DLCDDS	ΔC _D DESC.	. 0991 - 1000
DLMCH	Ac/4	0107
DLOITR	ΔC _D LOITER	1071 - 1080
DLSWSW	ΔS _{WET} /S _W	0120
DLTAWF	ΔW _F (LBS)	1101 - 1110
DNILGN	GALLEY INDICATOR	0151
DNIRTL	LTRIND	1001 - 1010
DNITFL	LFTIND	0013
DNIVAL	LAVATORY INDICATOR	0159
DRGIND	DRGIND	0003
DSHPAC .	ΔSHP _{acc}	0259
EAS5	MACH OR EAS (KTS)	0911 - 0920
ELC .	LCONST. DIA.	0125
ELPD	(L/d) Nose	0123
ELRW	1 RW	0126
ELTD	(L/d) _{TAIL}	0124
ELTH	l _{TH}	0111
ELTV	1 _{TV}	0130
ÉMACH	MACH OR EAS (KTS)	0701 - 0710
ĖMLĖ	M _{LF}	. 0023
EMMO	M _{MO}	0020
ENC	N _C	0221
ENCLÍMB	Δ_n CLIMB (E-M CALCS)	0791 - 0800
EYEW	i _w .	0103

FORTRAN VARIABLE	PROGRAM VARIABLE	INPUT LOCATION
ENGIND	ENGIND	0011
ENL	$ ilde{ extbf{N}}_{ extbf{L}_{-}}$	0220
ENLO	N _{LO}	. 0212
ËNP	NP	020 4
ENP0	N _P 0	0211
ENPSD	N _{PSD} CR	0871 - 0880
ENR	N _R	· 0223
ÈNPSDL	N _{PSĎ} LOITER	1051 - 1060
ENT	$\mathbf{n}_{\mathbf{T}}$	0651 - 0660
EPSLON	ε	0138
ESZIND	ESZIND	0012
ETAIND	n _P IND	0200
ETAL	$\eta_{\mathbf{L}}$	0231
ETAP2	η _{P2} ·	0232
ETAP3	η _{P3} .	0233
ETAP4N	NO. OF PAIRS IN np4 TABLE	0245
ETAP5	^₀ ¶ _{₽5,}	0234
FAVL	(F _N /F _{NL}) ₁	1617 - 1624
FOMIND	FDMIND	0006
FIXIND	FIXIND	0010
FLET2	Lete	0641 - 0650
FONE	(N _I /N _{IL} /0)1	1649 - 1656
FTWO	$(N_{II}/N_{II}^{*}\sqrt{\theta})1$	1665 - 1672
FWDOT	(W _f /6/0F _{NL})1	1633 - 1640

FORTRAN VARIABLE	PROGRAM . VARIABLE	INPUT LOCATION
HC	h _c	0214
HES	h _{TO}	0207
HF	$\mathtt{h}_{\mathbf{F}}^{}$	0121
HFIN	h _{FINAL} (FT)(h _{OPT} IND=0)	1111 - 1120
0	R h _{MAX} (FT)(h _{OPT} IND=1)	•
HMAX	h _{MAX} (FT)	0741 - 0750
HMIN	h _{MIN} (FT)	0971 - 0980
H00	h ₀ .	0015
HOPTIN	h _{OPT} IND	0018
HTIND	HTIND	0008
OPTIND	OPTIND	0001
OSWIND	OSWIND	0004
OWE1 .	OWE '	0400
PDMIND	PDMIND	0005
PFET2	PETF OR PEHF	0621 - 0630
PN2	K _{PN}	1248 - 1257
POWCLI	P'OWIND	0751 - 0760
POWCRI	POWIND .	0861 - 0870
POWESI	POWIND	0213
PRN	$(N_{1}/N_{1}^{*})(D/V_{1})$	1207 - 1216
PROPCY	PROP. TABLE NO.	1700
PSEAT1	SEAT PITCH (IN)	0157
PSEATT	SEAT PITCH (IN)	0165

FORTRAN VARIABLE	PROGRAM VARIABLE	INPUT LOCATION
QIND	QIND	1205
XAMQ	Q _{MAX} /Q*	1224
RELI	Re/li	0330
RMAX	R _{MAX} (NM)	0851 - 0860
RMAX5	R _{MAX} (NM)	0961 - 0970
RNE	VALUES OF KPR	1225 - 1234
RNOIND	RNOIND	1206
ROO	Ro	0016
RSW	(^(W/S) WING+FLAP/ ^(W/S) WING	1081 - 1090
SAH	aH	0110
- SENE	n ·	0208
SGTIND	SGTIND	0027 - 0076
SHPAV	VALUES OF REFERRED THRUST	
	OR HORSEPOWER	
SHPTO	shp _e /shp*	0260
ŠK1	k ₁	1602
SK2	k ₂	1603
SK3	k ₃	1302
SK4	k ₄	1303
SKCC	kcc .	0404
SKDS	^k Dš	0453
SKFL	k _{FL}	0531 - 0540
SKFS	k _{FS}	0454
SKFW	k _{FW}	0 4 Ò5
SKH	k _H	0406
SKĹEI	k _{lei}	0455
	E 71	

FORTRAN VARIABLE	PROGRAM VARTABLE	INPUT LOCATION
SKLES	^k les	0421
SKLG	k LG	0422
SKLMT	1 _{MT}	0432
SKMG	k _{mg}	0423
SKMŢ.	k _{MT}	. 0430
ŚKNAC	k _{NAC}	0431
SKP	k _B	0420
SKPEI	^k pei	0456 ,
SKPES	^k pes	0429
SKRP	k _{R/P}	0457
SKSAS	ksas	0407
SKTL	k _{TL}	0424
SKTM	k _{TM}	0408
SKUC	k _{uc}	0409
SKVT	k _{VT}	0458
SKWF	k _{wf}	0425
SKWW	k _{ww}	0426
SKY ·	ĸ _Y `	0427
SKZ	k _Z	0428
SLM	λ	0108
SLMH	λ _H	. 0114
SLMV	$\lambda_{\mathbf{V}}$	0133
.\$R	r,	0116
ŠTÕO	t ₀	, 0017
STFW	t _{FW} (HR)	1121 - 1130

FÜRTRAN VARTABLE	PROGRAM VARIÀBLE INPU	T LOCATION
STH	t _H (ĤR)	0681 - 0690
ŠTL	t _L (HR)	1031 - 1040
STPW	t _{PW} (HR)	1141 - 1150
SWF	F	0128
TB8AP4	VALUES OF np4	0246 - 0255
TECDM	VALUES OF CDM	0350 - 0384
TBCDWI	VALUES OF CDWI	0335 - 0342
TBCL1	VALUES OF CL	0317 - 0324
TBCL2	VALUES OF CL	0343 - 0349
TBEM	VALUES OF M	0325 - 0329
TBEM5	VALUES OF M	0235 - 0244
TBH	h ₁ (FT)	0440 - 0449
THN	ATMOSPHERE TEMP NO. OF PAIRS	0416
TRTHE	⁶ 1	0466 - 0475
TCLIN	number of c _L	0310
TCLN .	NO. OF PAIRS IN TABLE	0308
TCR	(t/c) _g	0104
TCT	$(t/c)_{f T}$	0105
TCVT	(t/c) _{VI}	0131
TENN	NUMBER OF M	0309
TF	REFERRED THRUST AS A	1609 - 1616
	FUNCTION OF (T/0)	
TF1	REFERRED N ₁ As A FUNCTION	1641 - 1648
	OF (T/0)	
TF2	REFERRED NII AS A FUNCTION	1657 - 1664
	OF (T/θ)	

FORTRAN VARIABLE	PROGRAM VARIABLE	INPUT LOCATION
TFI	T _F (°R)	1306
TFW	REFERRED FUEL FLOW AS A	1625 - 1632
	FUNCTION OF (T/0)	
TGI	T _G (°R)	1305
THEMAX	θMAX (DEG)	0761 - 0770
THEMIN	^θ MIN (DEG)	0931 - 0940
TIN1	ΔTin (°F) (TAXI)	0521 - 0530
TIN2	ΔTin (°F) (TO, HOVER AND	0631 - 0640
	LANDING)	
TIN3	ATin (°F) (CLIMB)	0731 - 0740
TIN4	ΔTin (°F) (CRUISE)	0841 - 0850
TIN5	ΔTin (°F) (DESCENT)	0941 - 0950
TING	ΔTin (°F) (LOITER)	1041 - 1050
TIN7	ΔTin (°F) (GENERAL PERF.) 2241 - 2250
TINY	ΔTin (°F) (TO)	0209
TLCT	(t/c) _{HT}	0112
TLGI	T _{GI}	1607
TLMAX	^T MAX	1603
TMAX	T _{MAX} (°R)	1309
TMIL	T _{MIL} (°R)	1308
TN1	T/0 (PRIMARY ENGINE CYCL	E NO.)1439 - 1446
TN2	T/0 (PRIMARY ENGINE CYCL	E NO.)1503 - 1510
TNIRPK	OPTIONAL PRINT	0002
TNRP	T _{NP} (°R)	1307
TOLIND	TCLIND	0601 - 0610

FORTRAN VARIABLE	PROGRAM VARIABLE INPU	T LOCATION
TSHP	T/0 PRIMARY ENGINE CYCLE	1311 - 1318
TWD	T/0 PRIMARY ENGINE CYCLE	1375 - 1382
ums	NO. OF M	1319.
UMW	NO. OF M	1383
UNML	NO. OF M	1447
UNM2	NO. OF M	1511
UNT1	NO. OF T/8	1438
UNT2 ·	NO. OF T/8	1502
unts	NO. OF T/8	1310
UNTW	NO. OF T/8	1374
VBARH	v _H	0113
VBARV	v_{v}	0132
VC	vc	0215
ADIA	VDIVE	0022
vin .	VIN OR HEADWIND	0811 - 0820
VLMIND	V _{LIM} IND	0019
VM0	V _{MO} .	0021
VNIIND	LN1 (ND	1218
Vn2 ind	LN2IND	1219
VRCRC	V _{R/C}	0261
VRĆTO	V _{R/C} - TAKEOFF	2321 - 2330
VI	V _{TIP}	0224
VTIND	VTIND	0009
VWDIND	LWD IND.	1217
WAISL1	AISLE WIDTH (IN.)	0158
WAISLT	AISLE WIDTH (IN.)	0166

FORTRAN VARIABLE	PROGRAM VARIABLE INPU	T LOCATION
WC	W _C (LBS)	0451
WDMIND	WDMIND	0007
WDOT	VALUES OF REFERRED FUEL FLOW	1390 - 1437
WDTIND	WDTIND	1201
WFE	W _{FE} (LBS)	0401
WFUL	W _{FUL} (LBS)	0402
WGA	W _G /A	0225
WG00	W _G ₀	0014
WGTIND	WGTIND	1151
WLMAX	([*] MAX/ [*] *)L	1235
WMAX	([*] MAX/ [*] *)L ([*] MAX/ [*] *)	1220
WPL	W _{PL} (LBS)	0403
WSEAT1	UNIT SEAT WIDTH (IN)	0156
WSEATT	UNIT SEAT WIDTH (IN)	0164
XCPS	(X/C)	0333
XCTCM	(X/C) _{max t/c}	0334
XII	ξ ₁	1604
XI2	ξ ₂	1605
XI3	£ 3	1606
XI4	ξ ₄	1304
XMSMRT	SHP _{Xm} /SHP*	0258
XMSND	XMSNDIND	0257
XPJ	VALUES OF J	1702 - 1721
XPXNC	NO. OF ADVANCE RATIOS (J)	1701

FORTRAN	PROGRAM	•	
VARIABLE	VARIABLE	INPUT LOCATION	
YC	Y _C	0452	
YCL	Y _{Cl}	0117	
Ar	Y ₁	0137	
ÝMG	YMG	0135	
YP	Yp	0136	
ZETA1	η	0118	
ZETA2	ηο	0119	

6.0 PROGRAM OUTPUT

A reproduction of the program output for two sample cases is included in Section 7.0. The following discussion describes the program printout in general and lists the diagnostic error printouts which are possible.

6.1 DESCRIPTION OF PRINTOUT

The printout for VASCOMP II consists of four types of information:

- a. General
- b. Input Data
- c. Sizing Data (program output)
- d. Mission Performance Data (for the "sized" airplane)

The general information (item a) is printed out at the beginning of each new case. Each of the other groupings (input, sizing data, and performance data) starts on a new page. For cases with OPTIND = 2 or 3 (performance only), the sizing data is not printed out. The printout is described in detail below.

6.1.1 General Printout

6.1.1.1 Fixed Heading:

VASCOMP II

V/STOL AIRCRAFT SIZING AND PERFORMANCE COMPUTER PROGRAM

6.1.1.2 Arbitrary Heading

An arbitrary heading may be input by the user on a title card (see Section 5.2, input sheet for general information).

6.1.2 Input Data

All program input data is printed out as it appears on the data cards. Seven columns are printed. These correspond to the first location on the card, the number of variables on the card (from 1 to 5), and the values of these variables. With this information and a copy of the input sheets it is possible to determine the input value for any variable.

6.1.3 Sizing Data

This group is printed out only if OPTIND = 1. The data is represented by a symbol, followed by a written description, followed by the value with the units. For example:

WG/A

DISC LOADING

45.0 LB/SQFT

The data is printed out in groups, each group having a heading. The specific variables which are printed out will depend upon certain options chosen. Notations are made in the following list to show where this occurs.

6.1.3.1 Dimensional Data

Fuselage:

Wing:

AR,
$$S_W$$
, b, C_W , $\Lambda_{C/4}$, λ , $(t/c)_R$, $(t/c)_T$, W_G/S , $\overline{C/D}$ (print $\overline{C/D}$ only if WDMIND = 1, 2 or ENGIND = 0, 2)

Horizontal Tail:

$$AR_{HT}$$
, S_{HT} , b_{HT} , c_{HT} , $(t/c)_{HT}$, ℓ_{TH}
(print ℓ_{TH} only if HTIND = 1)

Vertical Tail:

$$AR_{VT}$$
, S_{VT} , b_{VT} , c_{VT} , $(t/c)_{VT}$, ℓ_{TV}

(print
$$\ell_{TV}$$
 only if VTIND = 1)

Primary Engine Nacelle:

$$\ell_{N}$$
, \overline{d}_{N} , s_{N}

Lift Engine Nacelle:

- i.) If LFTIND = 1 print: ℓ_{LN} , \overline{d}_{LN} , S_{LN}
- ii.) If LFTIND = 0 print: NO LIFT PROPULSION SELECTED

1

Propeller:

- i.) If ENGIND = 0 or 2 print: D, $\sigma_{R/P}, W_G/A, C_T/\sigma, N_R, No. Blades$
- ii.) If ENGIND = 1 print: NO PROPELLER ON THIS AIRCRAFT

Passenger Sizing Data:

If FDMIND = 2, print the following data:

	TOURIST	FIRST CI	ASS	
NO. OF PASS.	XX.	YY.		
NO. ABREAST	XX.	YY.		
NO. OF AISLES	XX.	YY.		
UNIT SEAT WIDTH	XX. IN.	YY.	IN.	
SEAT PITCH	XX. IN.	YY.	IN.	
AISLE WIDTH	XX. IN.	YY.	IN.	•
NUMBER OF L	AVATORIES	22.22		
GALLEY AREA		ZZ.Z	SQ.	FT.
CLOSET AREA		22.Z	SQ.	FT.
CABIN DIAME	TER	ZZ.Z	IN.	***
BODY DIAMET	ER	ZZ.Z	IN.	***
NOSE SECTIO	N LENGTH	. ZZ. Z	FT.	
TAIL SECTIO		ZZ.Z		
CONST. DIA.		ZZ.Z	FT.	
	AGE LENGTH	ZZ.Z	FT.	

*** Adjacent to CABIN DIAMETER and BODY DIAMETER will be printed the words:

TOURIST CLASS CRITICAL

or

FIRST CLASS CRITICAL

This will designate which class of service determined the body diameter.

6.1.3.2. Weights Data

First print G_{LF} , then print:

PROPULSION GROUP

K₂W_{R/P}, K₃W_{DS}, K₄W_{EL} K₅W_{EP}, K₆W_{LEI}

K7WPEI, K21WFS, AWp, Wp

STRUCTURES GROUP

 $\kappa_8 w_W$, $\kappa_9 w_{HT}$, $\kappa_{10} w_{VT}$, $\kappa_{11} w_B$, $\kappa_{12} w_{LG}$

K13WLES' K14WPES' AWST' WST

FLIGHT CONTROLS GROUP

K15WCC, K16WUC, K17WH, K18WFW, K19WSAS

K20WTM, AWFC, WFC

WEIGHT EMPTY

WE

FIXED USEFUL LOAD

 W_{FUL}

OPERATING WEIGHT EMPTY

OWE

PAYLOAD

WPL

FUEL

(Wf)A, WfW

GROSS WEIGHT

 W_{G}

6.1.3.3 Propulsion Data

The type of propulsion data to be printed is dependent upon the type of engines selected and certain input indicators.

6.1.3.3.1	Primary Engine Data
	Print the following:
	PRIMARY PROPULSION CYCLE NO.
	XXXXX ENGINE
	(XXXXX will be either TURBOFAN, TURBOJET, OR TURBOSHAFT)
	XXX ENGINES (XXX will be the number of primary engines, N_p)
	F*N = (If ENGIND = 1 or 2)
	SHP* = (If ENGIND = 0 or 2)
	After this data has been printed out, one of the following four statements should be printed:
	1. ENGINE SIZED FOR TAKEOFF AT T/W =, PERCENT, * POWER SETTING VERTICAL RATE OF CLIMB = FT/MIN, H = FT., TEMPERATURE = °F AND ENGINES INOPERATIVE
	*MAXIMUM, MILITARY, OR NORMAL
	2. Print the same as 1, then print:
	NO CRUISE CONDITION SPECIFIED
	3. ENGINE SIZED FOR CRUISE AT VC = KNOTS, HC = FT., TEMPERATURE =

The statement which will be printed out depends upon the following logic:

4. ENGINE SIZE WAS FIXED BY INPUT

6.1.3.3.2 Lift Engine Data

If LFTIND = 0 print the following:

NO LIFT ENGINE CYCLE SELECTED

Otherwise (if LFTIND = 1) print the following:

LIFT ENGINE CYCLE NO.

XXXXX ENGINE

(XXXXX will be either LIFT FAN OR LIFT TURBOFAN)

XXX ENGINES IN YYY CLUSTERS (XXX will be the number of lift engines, $\rm N^{}_L$ and YYY will be the number of clusters, $\rm N^{}_C)$

F*NL =

After this data has been printed out one of the following three statements should be printed:

1.	ENGINE SIZED FOR TAKEOFF WITH T/W =	
	PERCENT POWER	
	AUGMENTED BY PRIMARY PROPULSION OF	·
	CRITICAL SIZING CONDITION IS PRIMARY	
	ENGINES INOPERATIVE.	

2.	ENGINE SIZED FOR TAKEOFF WITH T/W =	
	PERCENT POWER	
	AUGMENTED BY PRIMARY PROPULSION OF	8.
	CRITICAL SIZING CONDITION IS LI	FT
	ENGINES INOPERATIVE.	

3. ENGINE SIZE WAS FIXED BY INPUT.

6.1.3.4 Aerodynamics Data

The following data is printed:

fe, Swer, Cf

If OPTIND = 1, this is followed by:

DRAG BREAKDOWN:

WING FE =

FUSELAGE FE =

VERTICAL TAIL FE' =

HORIZONTAL TAIL FE =

PRIM. ENGINE NACELLE FE =

LIFT ENGINE NACELLE FE =

If DRGIND = 0, the following data is then printed:

 a_1 , a_2 , a_3 , a_4

This is followed by:

a5, a6, a7

Then print the following:

OSWALD'S FACTOR =

THREE DIMENSIONAL LIFT COEFFICIENT SLOPE =

6.1.4 Mission Performance Data

Two types of output are possible. If the OPTIONAL PRINT INDICATOR is input as O a standard printout will occur. If the indicator is input as 1 a detailed printout will occur. This will include all data printed in the standard printout plus additional information.

6.1.4.1 Standard Printout

The mission performance data is printed out by segment in chronological sequence. Up to fifteen columns of data are printed out depending upon the segment. For all segments, the following information is printed: t: time in hours

R: range in nautical miles

Wf: weight of fuel used in pounds

W: airplane weight in pounds

h: altitude in feet

TAS: the true airspeed in knots

T: the engine turbine temperature

ENGINE CODE: a code letter which designates the

condition governing the engine

performance:

P = power (or thrust) required

W = fuel flow limit

N1 = gas generator shaft rpm limit

 $C = compressor (N_T / \sqrt{\theta_1}) limit$

N2 = output shaft rpm limit

Q = torque limit

PETF or PEHF: the primary engine thrust fraction or horsepower fraction. This is the ratio of thrust or power being used at any altitude, Mach number condition to the maximum thrust, or power available at that condition.

In addition, the following data is printed out in different segments:

T/W: The thrust-weight ratio. (Printed out in takeoff, hover and landing.)

LETF: The lift engine thrust fraction. (Printed out in taxi and takeoff, hover and landing.)

EAS: The equivalent airspeed in knots. (Printed out in climb, cruise, descent, and loiter.)

MACH: The Mach number. (Printed out in climb,

cruise, descent, and loiter.)

MACH DIV: The Mach number for drag divergence.

(Printed out in climb, cruise, and descent.)

GAMMA: The flight path angle in degrees. (Printed

out in climb and descent.)

THETA F: The fuselage attitude angle in degrees.

(Printed out in climb and descent.)

R/C: Rate of climb in feet per minute.

(Printed out in climb.)

NMPP: The specific range in nautical miles per

pound. (Printed out in cruise.)

R/S: Rate of sink in feet per minute.

(Printed out in descent.)

FUEL RATE: Time rate of fuel consumption in pounds

per hour. (Printed out in loiter.)

ETAP PROP: Propeller efficiency. (Printed out in

takeoff/hover/landing, cruise; and loiter.)

CT: Propeller thrust coefficient

CP: Propeller power coefficient

VTIP: Prop tip speed (feet/sec)

Printed out in takeoff, hover, and landing

6.1.4.2 Detailed Printout

In addition to the data printed above, the following data will be printed in climb, cruise, descent, and loiter segments if the OPTIONAL PRINT indicator = 1:

CL: Lift coefficient

CD: Drag coefficient

L/D: Lift to drag ratio

LIFT: Total lift in pounds

DRAG: Total drag in pounds

FUEL FLOW: Pounds per hour of fuel consumption

BHP: Horsepower being used THRUST: Pounds of engine or propeller thrust CP: Propeller power coefficient CT: Propeller thrust coefficient J: Propeller advance ratio Tip speed of the propeller in feet per VTIP: second ETAP: Propeller efficiency 6.1.4.3 Headings At the beginning of each segment, a printout will identify the segment data which follows. The following messages can be printed: TAXI FOR HRS. AT GROUND IDLE ENGINE RATING TAKEOFF, HOVER, OR LAND AT T/W = FOR HRS. or: TAKEOFF, HOVER, OR LAND AT PETF = ____, LETF = FOR HRS. c. CLIMB TO FT. WITH MAX R/C AT ENGINE RATING CLIMB TO FT. WITH CONSTANT EAS AT ENGINE RATING CLIMB TO FT. WITH CONST. MACH NO. AT ENGINE RATING CLIMB TO FT, WITH CONSTANT TAS AT ENGINE RATING CLIMB TO OPT. ALT. FOR NEXT CRUISE WITH MAX. R/C AT ENGINE RATING, MAXIMUM ALT. FT. CLIMB TO OPT. ALT. FOR NEXT CRUISE WITH CONSTANT EAS AT ENGINE RATING, MAXIMUM ALT. FT. CLIMB TO OPT. ALT. FOR NEXT CRUISE WITH CONST. MACH NO. AT ENGINE RATING, MAXIMUM ALT. FT. CLIMB TO OPT. ALT. FOR NEXT CRUISE WITH CONSTANT TAS AT ENGINE RATING, MAXIMUM ALT. FT.

b.

6-10

CRUISE AT KNOTS TAS LIMITED BY ENGINE RATING

d. CRUISE AT ENGINE RATING

	CRUISE AT BEST RANGE SPEED WITH HEADWIND OF KNOTS
	CRUISE AT SPEED FOR 99 PERCENT BEST RANGE WITH HEADWIND OF KNOTS
	CRUISE AT BEST RANGE SPEED WITH HEADWIND OF KNOTS, CONSTANT W/DELTA =
e.	DESCEND TO H= FT AT MAX SPEED
	DESCEND TO H=FT, R=NM AT MAX SPEED
	DESCEND TO H=FT AT FLIGHT IDLE ENGINE RATING
	DESCEND TO H= FT, R= NM AT FLIGHT IDLE ENGINE RATING
	DESCEND TO H= FT AT CONSTANT EAS
	DESCEND TO H= FT, R= NM AT CONSTANT EAS
	DESCEND TO H=FT AT CONSTANT MACH NO.
	DESCEND TO H=FT, R=NM AT CONSTANT MACH NO.
f.	LOITER FOR HRS.
	LOITER FOR HRS. FOR RESERVE FUEL
g.	CHANGE FUET, ADDLB
	CHANGE FUEL REMOVE LB
h.	CHANGE PAYLOAD, ADDLB
	CHANGE PAYLOAD, REMOVELB
i.	TRANSFER ALTITUDE TOFT
Afte the	er the complete mission history has been printed, following fuel summary will be printed:
	MISSION FUEL REQUIRED =
	RESERVE FUEL REQUIRED =
	TOTAL FUEL REQUIRED =

6.1.5 General Performance

At the top of each general performance segment, the following data will be printed out:

GROSS WEIGHT = LB W/DELTA = LI
ALTITUDE = FT DELTRTH =
TEMPERATURE = DEG.,F. DELTA =
THETA =

where W = aircraft weight DELTA = δ = pressure ratio THETA = θ = temperature ratio DELTRTH = $\delta\sqrt{\theta}$

In addition to the above data, general performance mission data will also be printed out and consists of:

TAS: True Airspeed

CL: Wing Lift Coefficient

TOTAL FUEL FLOW: Primary and Lift Engine Fuel Flow

CD: Aircraft Drag Coefficient

L/D: Lift to Drag Ratio

THRUST TO WEIGHT: Total Thrust to Aircraft Weight

LIFT: Lift Produced by Wings and/or Engines

EAS: Estimated Airspeed DRAG: Total Aircraft Drag

FUEL FLOW PRIM. ENG: PRIMARY FUEL FLOW IN LBS/HR FUEL FLOW LIFT ENG: LIFT ENGINE FUEL FLOW IN LBS/HR

TURB. TEMP. (R): ENGINE TURBINE TEMPERATURE IN DEGREES R

J: ADVANCE RATIO = $\frac{5.30615 \text{ (AIRCRAFT VELOCITY-KTS)}}{V_{\text{TIP}}}$ OPERATING

PETF OR PEHF: PRIMARY ENGINE THRUST OR HORSEPOWER FRACTION

LETF: LIFT ENGINE THRUST FRACTION

MACH: AIRCRAFT MACH NUMBER

CP: POWER COEFFICIENT = $\frac{550 \text{ (HORSEPOWER) } \pi^3}{(V_{\text{TIP}ODER})^3 \text{ (DIAMETER)}^2}$

MACH DIV: MACH DIVERGENCE NUMBER

CT: THRUST COEFFICIENT = $\frac{(\text{THRUST}) \pi^2}{(V_{\text{TIP}_{\text{OPER}}})^2 \text{(DIAMETER)}}$

OR CT =
$$\frac{\text{CP}(\text{PROP EFFICIENCY})}{\text{ADVANCE RATIO}}$$

SPEC. RANGE (NMPP): SPECIFIC RANGE = $\frac{\text{VELOCITY}}{\text{FUEL FLOW}}$ IN

NAUTICAL MILES PER POUND

VTIP: PROPELLER OPERATING TIP SPEED IN FEET PER

SECOND

BHP: ENGINE BRAKE HORSEPOWER

$$[BHP]_{T/0} = \frac{\text{THRUST}}{\text{WEIGHT}} GW \sqrt{\text{DISC LOADING}} + \Delta SHP_{ACCESSORY}$$

$$550 \sqrt{2\rho} \eta_{T} \eta_{P}$$

$$[BHP]_{CR} = \frac{CD (WING AREA) (1/2 \rho V^2) V}{550 \eta_T \eta_P} + \Delta SHP_{ACCESSORY}$$

NET THRUST: NET PRIMARY AND LIFT ENGINE THRUST

FM: FIGURE OF MERIT = $\frac{0.798(CT^{1.5})}{CP}$

ETAP PROP: PROPELLER EFFICIENCY IN CRUISE FLIGHT

Main transmission torque limit messages will be printed out after the performance calculation for V_{MAX} . One of the following messages will be printed depending on the options chosen by the user:

- MAIN TRANSMISSION TORQUE LIMIT NOT APPLIED
- MAIN TRANSMISSION TORQUE LIMIT NOT EXCEEDED AT THESE FLIGHT CONDITIONS
- MAIN TRANSMISSION TORQUE LIMIT (ALL ENGINES OPERATING)
 OCCURS AT

V = KTAS

MAIN ROTOR VIIP = FT/SEC

MAIN ROTOR RPM = SHP

TORQUE = FT-LB

A summary of the aircraft's velocity as a function of power, and corresponding specific range and engine code is printed out after the transmission torque limit message. The following is an example:

**V(MAX PWR)	=	KTAS	SPEC.	RANGE	=	NM/LB	*
**V(MIL PWR)	=	KTAS	SPEC.	RANGE	=	NM/LB	*
**V(NRP)	=	KTAS	SPEC.	RANGE	=	NM/LB	*
V(BEST RANGE)	=	KTAS	SPEC.	RANGE	=	NM/LB	*
V(99 PERCENT BR)	=	KTAS	SPEC.	RANGE	=	NM/LB	*
V (BFST ENDURANCE)	=	KTAS	FUEL	FLOW	=	LB/HR	*

**In the event that cruise is not possible at any one of these power conditions the following message will be printed:

INSUFFICIENT POWER AVAILABLE FOR CRUISE AT ENGINE RATING

Where MAXIMUM, MILITARY, or NORMAL ENGINE RATING will be printed.

^{*}SIGNIFIES ENGINE OPERATING CODE

6.2 LIST OF DIAGNOSTIC ERROR PRINTOUTS

- 6.2.1 Errors Affecting Main Control Loop
- 6.2.1.1 *** ERROR THE USER REQUESTED PRIMARY ENGINE
 CYCLE NO. XXX BUT THE INPUT DECK WAS SET UP TO USE
 NO. YYY

The operator used an engine cycle whose identification number differed from that requested by the user (LOC. 0201).

REMEDY: Use correct engine cycle.

6.2.1.2 *** ERROR THE USER REQUESTED LIFT ENGINE CYCLE
NO. XXX BUT THE INPUT DECK WAS SET UP TO USE
NO. YYY

The operator used an engine cycle whose identification number differed from that requested by the user (LOC. 0218).

REMEDY: Use correct engine cycle.

6.2.1.3 *** ERROR THE USER REQUESTED PROP TABLE NO. XXX BUT THE INPUT DECK WAS SET UP TO USE NO. YYY

The operator used a propeller table whose identification number differed from that requested by the user (LOC. 0256).

REMEDY: Use correct propeller table.

- 6.2.1.4 ERROR *** THE FIRST SEGMENT INDICATOR OF A MISSION CANNOT BE 0., 100., or 5. (DESIND = 1, 3) SEE USERS MANUAL
 - a. Segment indicators 0., 100, represent the end of a mission calculation and the end of a particular case respectively. Either of these indicators at the beginning of a set would be meaningless.
 - b. Descent options 1 and 3 must be preceded by a cruise segment.

REMEDY: Rewrite segment indicator list (Starts at LOC. 0027) 6-15

6.2.1.5 ERROR *** DESCENT 1 or 3 MUST BE PRECEDED BY A CRUISE See 6.2.1.4 (b)

REMEDY: Redefine the mission with a different sequence of segment indicators.

6.2.1.6 *** ERROR FUEL AVAILABLE AND FUEL REQUIRED DO NOT CONVERGE AT A POSITIVE GROSS WEIGHT

This indicates that the performance requirements are too stringent or that the weight is excessive. This may be due to pessimistic weight input constants or drag characteristics, or it may be that the mission required cannot be flown by any airplane sized by VASCOMP. It may require some novel design considerations.

6.2.1.7 *** ERROR WFR WEIGHT OF FUEL REQUIRED IS LESS THAN OR EQUAL TO ZERO.

This message can occur only if negative values of reserve fuel factors are input (LOC. 0024, 5, 6)

REMEDY: Correct reserve fuel factors.

6.2.1.8 ******** THIS AIRCRAFT HAS NOT CONVERGED AFTER
25 ATTEMPTS. THE WEIGHT OF FUEL AVAILABLE (WFA) = XXX
THE WEIGHT OF FUEL REQUIRED (WFR) = YYY (WFA) MUST
BE WITHIN ZZZ OF (WFR) FOR THE AIRCRAFT TO CONVERGE.
THIS TOLERANCE IS SET IN THE MAIN PROGRAM UNDER THE
NAME TOL.

If this message occurs it is probable that the mission required cannot be flown by an aircraft of the type specified by the input data. A possible cause may be unrealistic input values of the reserve fuel factors or weights constants.

6.2.1.9 *** ERROR - NO TITLE CARD AFTER SEVEN CARD, COLUMNS
1 THRU 6 ON TITLE CARD MUST BE BLANK OR THERE WAS A
6 IN COLUMN 5 OF AN INPUT CARD

This message is printed if the input card deck is improperly set up. No output is generated.

REMEDY: Examine input deck for errors indicated in message and correct them.

6.2.1.10 ERROR, THE NUMBER OF ITERATIONS IN THE SIZTR ROUTINE EXCEEDED 25, CASE TERMINATED.

This message will be printed if the SIZE TRENDS subroutine is unable to determine the engine size to satisfy the takeoff conditions specified in LOC. 0207 through 0212. This is due to the non-linear scaling of the engine that results when Reynolds Number effects are included.

REMEDY: Correct the table of Reynolds Number correction factor on the Non-standard Engine Cycle Data Input Sheet (LOC. 1206 through 1257) or select a new engine cycle.

6.2.1.11 ERROR, THE NUMBER OF ITERATIONS IN THE ENGINE SIZING ROUTINE EXCEEDED 25, CASE TERMINATED

This message will be printed if the ENGINE SIZING subroutine is unable to determine the engine size to satisfy the engine sizing conditions (takeoff and/or cruise) as specified in LOC. 0207 through 0217. This may be due to an error in the Reynolds Number correction factor table (LOC. 1206 through 1234).

REMEDY: Correct the Reynolds Number correction factor table or select a new engine cycle.

- 6.2.1.12 (a) J OR M DOES NOT CONVERGE IN 25 ITERATIONS SUBROUTINE POWER
 - (b) CT OR F_N DOES NOT CONVERGE IN 25 ITERATIONS SULROUTINE POWER

These messages are printed if a match cannot be found between propeller/fan thrust and available power. Message (a) is printed in forward flight calculations and (b) is printed in static (Take-off, hover or landing) calculations.

REMEDY: Increase engine power, reduce drag or modify propeller related inputs.

6.2.1.13 GAMMA FAILED TO CONVERGE IN 20 ITERATIONS - SUBROU-TINE THRUST

This message will be printed if the propeller thrust calculation routine cannot converge on a thrust and efficiency that will match the required thrust. Such an error is unlikely and would occur only in cases involving extreme thrust requirements.

REMEDY: Review input data that specifies propeller requirements.

6.2.1.14 ***ERROR*** TORQUE LIMIT OPTION USED NOT APPLICABLE TO CONVERTIBLE ENGINES. PROGRAM APPLIED XMSN LIMIT AS SPECIFIED FRACTION OF INSTALLED TAKEOFF POWER.

This message is printed if ENGIND = 2.0 and XMSNIND = 1.0. Converticle engines can only be torque limited in the hover condition.

REMEDY: Change XMSIND (LOC 0257) TO EQUAL 0.

6.2.1.15 ***WARNING*** CONVERTIBLE ENGINE SIZED FOR CRUISE.
XMSN TORQUE LIMIT OPTION INPUT IGNORED.

This message is printed if the convertible engine was sized for the cruise installed power which was more critical than the hover condition.

REMEDY: Program applies correction by bypassing torque limit option.

6.2.2 Errors Related to Tabulated Inputs

6.2.2.1 Two Dimensional Tables

ERROR THE FOLLOWING VALUES MAY NOT BE ACCURATE. THE INDEPENDENT VARIABLE WAS OUT OF RANGE OF THE TABLE. THESE VALUES WERE CALCULATED USING THE YYYYY VALUE GIVEN IN THE TABLE. THIS ERROR IS IN THE XXXXX TABLE.

This message occurs whenever the computer is required to look up a value in a table of input quantities at a calculated value of the independent variable which lies outside the range of the input values of the independent variable.

If the calculated independent variable is below the lowest value of the input table, the computer uses the first value in the table and YYYYY in the message reads FIRST. If it lies above the highest value, the last value in the table is used and YYYYY becomes LAST.

XXXXX in the last line of this message identifies the table in which the error occurs. The tables in which this could occur are shown below. The third column indicates the part of the message which is shown above as XXXXX.

INDEPENDENT VARIABLE	DEPENDENT VARIABLE	XXXXX
м	ⁿ p4	M, ETAP4
c _L	$\mathtt{c}_{\mathtt{D_{Wi}}}$	CL, CDWI
h	θ	H-THETA
$(\mathbf{F_N/\delta} \ \mathbf{F_N^*})_{\mathbf{L}}$	T/9	LIFT ENGINE POWER
(ŵ/6 √0 F _N) _L	T/O	LIFT ENGINE FUEL FLOW
N _I √√ΘN [*]	T/O	LIFT ENGINE NSUB1
$N_{II}/\sqrt{\theta}N_{II}$	T/O	LIFT ENGINE NSUB2
N _{II} /N _{IIOPT}	K _{PŅ}	NSUB2 CORRECTION FACTOR
$(N_{I}/N_{I}^{*})(D/v_{1})$	KpR	REYNOLDS NUMBER
. Q/Q*	T/O	TORQUE LIMIT LOOK UP
(SHP/ð√0SHP*)	T/O	POWER REQUIRED LOOK UP
C _L	Υ	PROPELLER EQUIVALENT LIFT DRAG POLAR+
$\mathtt{c}_{\mathtt{Ti}}$	c _p	CTI - CP

[†] Strictly speaking, this table is not an input. The table is calculated in the main control loop using BLOCK DATA and the input value of INTEGRATED LIFT COEFFICIENT (LOC. 0230) The error message indicates that the value of C_L used was above the maximum value in the table. This will occur only if an unusual combination of high power coefficient and low propeller activity factor exists. In such a case the user should change the propeller input parameters to obtain a propeller that more closely matches the performance requirements.

6.2.2.2 Three Dimensional Tables

ERROR THE FOLLOWING VALUES MAY NOT BE ACCURATE.
THE AAA INDEPENDENT VARIABLE IS OUT OF RANGE OF THE
TABLE. THE PROGRAM USED THE BBB VALUE IN TABLE TO
CALCULATE. THIS ERROR IS IN THE XXXX PART OF THE YYYYY
TABLE.

This message is printed whenever one of the calculated independent variables lies outside the range of the independent variables defining the table input by the user.

The XXXX and YYYYY parts of the message respectively name the independent variable and the table in which the error occurred. AAA stands for FIRST or SECOND, BBB stands for FIRST or LAST.

The tables in which this error could arise are shown below. The items in parentheses show the variables as they appear in the error message.

Dependent Variable	INDEPENDENT VARIABLES (XXXX)	NAME OF TABLE (YYYYY)
ΔC _{DM}	$C_{\mathtt{L}}(\mathtt{CL})$, M	COMPRESSIBILITY DRAG
f _n ∕ô fặ	T/8 (T), M	REFERPED THRUST
SHP/6 √ 8SHP*	T/0 (T), M	REFERRED POWER
w/6√6SHP* or w/6√6FN	T/9 (T), M	REFERRED FUEL FLOW
$N_{I}/\sqrt{8}N_{I}^{*}$	T/θ (T), M	REFERRED NSUB1
$N_{II}/\sqrt{\theta}N_{II}^*$	T/0 (T), M	REFERRED NSUB2
$C_{\mathbf{T}}$	$C_{\mathbf{P}}(C\mathbf{P})$, M	PROPELLER POWER COEFFICIENT

REMEDY: Rewrite the input table so that the independent variable that was previously out of range will fall into the range of the new table. 6.2.2.3 MACH NUMBER OUT OF RANGE FOR DRAG CALCULATIONS SET DRGIND = 1

This message indicates that the current value of M is outside the range of Mach Number in which a calculation of ΔC_{DM} can be performed by the program.

REMEDY: Set DRGIND = 1. (LOC. 0003), input a table of ΔC_{DM} versus C_L , M in the Aerodynamics Information Input Sheet.

- 6.2.3 Errors Occurring In Performance Calculations
- 6.2.3.1 a. CAUTION ** PEHF IS GREATER THAN 1.
 - b. CAUTION ** PETF IS GREATER THAN 1.

These messages indicate a condition for which greater than 100 percent of maximum power or thrust was required during takeoff, hover, or landing.

REMEDY: Increase engine power available or decrease required thrust-weight for hover.

6.2.3.2 CAUTION, STATIC THRUST NOT INCLUDED IN PROP DECK, LOWEST ADVANCE RATIO USED

This message is printed during execution of the TAKEOFF, HOVER or LANDING SUBROUTINE if the propeller input table does not include static performance data (J=0). The table should include static performance data if accurate answers are required for hover performance.

REMEDY: Rewrite the propeller table to include static performance data.

6.2.3.3 TAKEOFF AND LANDING OPTION NO. 2 IS NOT PERMITTED IF ENGIND = 0, 2 OF LFTIND = 0

TOLIND (LOC. 0601 through 0610) = 2. requires that equal amounts of power are drawn from primary and lift-engines. If ENGIND (LOC. 0011) = 0. or 2., or if LFTIND (LOC. 0013) = 0., no lift engines are specified so execution of the program calculation is terminated.

REMEDY: Specify Lift Engine Cycle and LFTIND if required or change TOLIND array to eliminate 2.'s in LOC. 0601 through 0610.

6.2.3.4 ERROR * INSUFFICIENT POWER AVAILABLE FOR CLIMB

The message is printed if the engine thrust or power input by the user is insufficient to allow the aircraft to climb.

- REMEDY: (a) Increase the engine power or thrust, whichever is appropriate, or (b) inspect the inputs which determine CD and adjust them if they appear to give a grossly overrated value of CD.
- 6.2.3.5 ERROR * INSUFFICIENT POWER AVAILABLE FOR CRUISE AT V
 GREATER THAN 150 KTS

This message will be printed if the thrust or power available at the required altitude is less than the minimum thrust or power required for steady level flight, that is, if the aircraft is above its absolute ceiling.

- REMEDY: If OPTIND = 1, check to find if one of the cruise segments of the mission makes a demand inconsistent with the engine sizing criteria (LOC, 0213 through 0217). If OPTIND = 2 or if FIXIND = 0, it may be that engine power or thrust is unreasonably low or the drag excessive. Check the inputs in LOC. 0202 or 0203 and those on AIRCRAFT AERODYNAMICS INFORMATION input sheet.
- 6.2.3.6 ERROR ***** INSUFFICIENT POWER AVAILABLE FOR CRUISE AT DESIRED SPEED

This message will be printed during cruise if CRSIND = 2 (cruise at specified true airspeed) and insufficient power is available to maintain steady level flight at the desired speed. The remaining cruise calculations will be at constant power setting.

REMEDY: Increase engine power, decrease drag level, or decrease required cruise speed.

6.2.3.7 CAUTION SPEED LIMITED BY POWER/THRUST AVAILABLE AT SPECIFIED POWER SETTING

This message will be printed when power or thrust available is insufficient to allow the aircraft to cruise at speed for 99% best range as specified by selecting CRSIND = 4. or 6. (LOC. 0801 through 0810) 6-22

6.2.3.8 ERROR INSUFFICIENT POWER AVAILABLE FOR CRUISE AT V
GREATER THAN 100 KTS

This message will be printed during cruise if CRSIND = 3, 4, 5 or 6 and insufficient thrust or power is available to maintain steady level flight at speeds greater than 100 knots TAS.

REMEDY: Increase engine power or reduce drag level.

6.2.3.9 DESCENT CONDITION IMPOSSIBLE R/S IS LESS THAN OR EQUAL TO 0.

The reason for this printout is that the flight path angle necessary to maintain the required body inclination has become positive.

REMEDY: Make the quantity $(\theta_{min} - \alpha LO + i_w)$ more negative (See LOC. 0931 through 0940, 0332, and 0103).

6,2.3.10 DESCENT CONDITION IMPOSSIBLE DESIRED FLIGHT PATH IS TOO SHALLOW

This message will be printed out during descent at constant EAS or constant Mach number (DFSIND = 5, 6, 7, 8). There are two possible sources for this error message:

- a. The terminal range with DESIND = 5,7 is at such a great distance from the initial condition of descent that an extremely shallow flight path is required. This source of error is unlikely since it implies that insufficient power is available for cruise.
- b. The required flight path angle is extremely shallow due to the restriction on minimum body attitude angle. Insufficient power is available to maintain flight at the required flight path angle.

REMEDY: Check θ_{min} (LOC. 0931 through 0940), R_{max} (LOC. 0961 through 0970), and power available.

6.2.3.11 **ERROR*** THE RANGE NECESSARY TO DESCEND IS GREATER
THAN THE RANGE OF THE TABLE CALCULATED IN CRUISE. THIS
MAY BE DUE TO A DELTA R IN CRUISE WHICH IS TOO SMALL.

The computer saves the last ten points of the cruise from R_{max} backward so that an iteration can be carried out to find the correct point to start the descent when DESIND = 1,3. This error message is printed if the stored values do not cover a sufficient range back from R_{max} . Either ΔR is too small or the angle of descent is very small.

REMEDY: Check ΔR (LOC. 0831 through 0840), θ_{min} (LOC. 0931 through 0940), α_{LO} (LOC. 0332) and i_w (LOC. 0103).

6.2.3.12 INSUFFICIENT POWER FOR STEADY LEVEL FLIGHT

This message appears during the loiter segment calculations.

REMEDY: Check power available and drag level.

6.2.3.13 THIS ERROR IS IN THE XXXX PART OF THE FIGURE OF MERIT TABLE.

XXXX IS EITHER CT/SIGMA OR MACH No.

This error message refers to the table look-up of figure of merit, FM, found in table locations 2351 to 2432. FM is a function of CT/SIGMA and MACH NUMBER.

REMEDY: Check to make sure that the number of table inputs for CT/SIGMA and MACH NO. matches the No. of Values in table input locations 2351 and 2362, respectively.

5.2.3.14 THE NUMBER OF ITERATIONS FOR TRANSMISSION SIZING FOR FIXED SIZE ENGINES EXCEEDED 25, SUBROUTINE MAIN, CASE TERMINATED

This error message is printed out only if FIXIND = 0.0 and XMSNIND = 1.0. This is due to the inability of the program to converge at a specified cruise power required, which depends on the η_{PIND} chosen.

REMEDY: Possible choices are to reduce the power

requirements, change η_{PIND} to 0.0, or set XMSNIND = 0.0.

6.2.3.15 ***ERROR*** TORQUE LIMIT OPTION USED NOT APPLICABLE TO CONVERTIBLE ENGINES. PROGRAM APPLIED XMSN LIMIT AS SPECIFIED FRACTION OF INSTALLED TAKEOFF POWER.

This message appears during engine sizing and is generated when ENGIND = 2.0, and XMSNIND = 1.0.

REMEDY: Set XMSNIND = 0.0.

6.2.3.16 ***WARNING*** CONVERTIBLE ENGINE SIZED FOR CRUISE. XMSN TORQUE LIMIT OPTION IGNORED

This message is printed during engine sizing if ENGIND = 2.0, XMSNIND = 0.0, and ESZIND = 1.0 where the engine is sized for cruise.

REMEDY: If it is desired to size transmission at specified power, the user should minimize cruise requirements.

7.0 PROGRAM USAGE

7.1 COMMENTS ON PROGRAM USAGE

Following are a list of rules and suggestions for using the program:

7.1.1 Rules

- 7.1.1.1 Do not use descent options 1 or 3 unless preceded by a cruise.
- 7.1.1.2 Do not input a turboshaft engine cycle (cycles 1-9) if LFTIND = 1.
- 7.1.1.3 Do not input WDMIND = 1 or 2 if ENGIND = 1.
- 7.1.1.4 If OPTIND = 2, the airplane profile drag coefficient should be divided into two terms. The wing profile drag coefficient is input to the table of C_{DWi} versus C_L , and all other component contributions are input by means of the term ΔC_D (LOC. 0305). The terms C_D , C_D , C_D , and Δf_e and the factors C_D VTi C_D HTi

 K_{LN} , K_{N} , K_{F} , K_{Vm} , and K_{Hm} , are not used in OPTIND = 2.

If the option indicator is 1, all terms and factors may be used. However, if it is desired to minimize input, the technique described above may also be used when OPTIND = 1. The major disadvantage is a slight reduction in accuracy since the term ΔC_D is not modified by the Reynolds' number functions and therefore would not reflect aircraft growth.

- 7.1.1.5 If cruise is followed by descent with DESIND = 1 or 3, the cruise step size (LOC. 0831 0840) should not be less than 10 to 15 nautical miles. This is necessitated by the fact that a table of cruise conditions is compiled during cruise to use in the determination of the starting point for descent. This table consists of 10 points. The cruise step size therefore must be sufficiently large to ensure that the total of nine steps in range is greater than the range required for the following descent. A cruise step size which is too small will lead to termination of the case with the printout:
- 7.1.1.6 If $n_pIND = 1.0$, the first value of advance ratio J should correspond to at most the forward flight stall speed, and should never equal zero.

*** ERROR *** THE RANGE NECESSARY TO DESCEND IS GREATER THAN THE RANGE OF THE TABLE CALCULATED IN CRUISE. THIS MAY BE DUE TO A DELTA R IN CRUISE. WHICH IS TOO SMALL.

- 7.1.1.7 At present do not use SGTIND = 7 with OPTIND = 1 unless a sufficiently large ΔW_f is input to completely refuel the aircraft. This rule will be eliminated by future modifications to the program. For the present, missions employing change of fuel can be analyzed by running separate cases, a new case each time the fuel is changed. The aircraft can be separately sized for each case and compared manually.
- 7.1.1.8 The value for payload which is input (LOC. 0403) should be the payload at initial takeoff.
- 7.1.1.9 To calculate a conventional climb path, input Δn_{CLIMB} into LOC. 0791 0800. The airplane lift to weight ratio will be correctly calculated by the program as L/W = cos γ . To calculate energy-maneuverability data, input $\Delta n_{CLIMB} \neq 0$. The airplane lift to weight ratio will be calculated as L/W = 1 + Δn_{CLIMB} . In order to calculate energy maneuverability at L/W = 1, input Δn_{CLIMB} as a small non-zero number (for example 0.001).
- 7.1.1.10 Do not use transmission sizing option XMSNIND = 1.0 when employing convertible engines (LOC 0011 = 2.0), as convertible engines do not use a transmission for cruise flight.

7.1.2 Suggestions

- 7.1.2.1 If nonstandard atmosphere is required only for constant altitude segments, such as loiter, cruise, and takeoff, the table of temperature ratio versus altitude need not be filled in. The nonstandard atmosphere may be obtained by use of ATMIND = 1.
- 7.1.2.2 If it is desired to run OPTIND = 2 for an aircraft which has previously been sized in a separate case, the drag will be represented correctly if the output values of a₅ and a₆ from the sizing case are input for the OPTIND = 2 case to CD (LOC. 0305) and KW (LOC. 0312) respectively, and if the CDWi table is filled in identically to the sizing case.
- 7.1.2.3 To represent engines which are buried in the fuselage, input K_N (LOC. 0313) or K_{LN} (LOC. 0311) or both as zero. The component drag will then be zero and calculation of engine dimensions will be bypassed.

- 7.1.2.4 The order in which segments 7 and 8 are used is important due to the fact that the program will not permit the aircraft weight, during a change of weight segment, to exceed gross weight. As an example, to simulate adding 200 pounds of payload, followed by refueling back to gross weight limits, the eighth performance segment (change of payload weight) should be entered first with an input of $\Delta W_{\rm PL}$ (LOC. 1131 through 1140) of 200. Then, the change of fuel weight segment can be entered with a large number input for the $\Delta W_{\rm F}$ quantity.
- 7.1.2.5 The weights factors K2 through K21 (LOC. 0410, 0415, 0422-0439, 0459-0465) have a nominal value of 1.0 assigned to them by the program. These factors need not be input unless a nonunity value is desired. Similarly, the incremental group weights, ΔW_{FC} (LOC. 0417), ΔW_{P} (LOC. 0418), and ΔW_{ST} (LOC. 0419), are nominally zero and need not be input unless a nonzero value is desired. The reserve fuel factors K1 (LOC. 0024) and δW_{f} (LOC. 0025) are nominally unity and zero respectively. The fuel flow multiplier KFF (LOC. 0026) is nominally 1.0.
- 7.1.2.6 A cruise may be run with a headwind for cruise options 3 through 6 by input of the headwind in knots in locations 0811 through 0820. For cruise option 2 (specified constant true airspeed), the user can simulate cruise with a headwind by inputting an "equivalent" value for Rmax (loc. 0851 0860), obtained by adjusting the true ground range desired by the ratio airspeed ÷ ground speed. The program output values for range must then be readjusted by the inverse of this ratio to obtain the correct ground range.
- 7.1.2.7 When a vertical rate of climb at takeoff is warranted for either engine sizing or performance calculations it is suggested that the constant K_{R/C/}LOC (0262), be input as follows:

If ENGIND = 0
$$K_{R/C} = 1.5 - 2.0$$

If ENGIND = 1 $K_{R/C}$ NOT APPLICABLE
If ENGIND = 2 $K_{R/C} = 1.0 - 1.4$

7.1.2.8 Consider an aircraft configured with turbofan/jet primary engines, and lift engines. If takeoff with a specified vertical rate of climb is warranted solely from the lift engines, it is suggested the user inputs a T/W that would correspond to the additional thrust above hover necessary to achieve the specified vertical rate of climb.

7.2 <u>DISCUSSION OF PROGRAM TOLERANCES</u>

The tolerances tabulated below represent the accuracy required of iterated values calculated at certain points in the program. Whenever the values of the quantities named in the table below become less than the value quoted, the iterating calculation is terminated.

TABLE 7-1
PROGRAM TOLERANCES

SYMBOL	VALUE	VARIABLE BEING CALCULATED	SITUATION IN PROGRAM	FUNCTION OF TOLERANCE
TOL	.01	W _G , Gross Weight	Main Control Loop	When the quantity The Toll the feel required and available are considered to be sufficiently close and the sizing calculation is terminated.
Δγ	.1°	Y, Flight Path Angle	Climb & De- scent Sub- routines	Determines flight path angle to within .1°
ΔBHP	10.НР	BHP _R Power Re- quired	Cruise	The cruise speed is set when BHPR is within 10 HP of EHPA
ΔT	10.LB	T _R Thrust Re- quired	Subroutine .	The cruise speed is set when T_R is within 10 lb. of T_A
ΔΒ	.01	$\frac{B_1 - B_2}{B_2} ,$	CRSIND = 1	$\frac{B_1-B_2}{B_2}$ is used to adjust $\frac{B_2-B_2}{B_2}$ over the computation. If $\frac{B_1-B_2}{B_2}$ becomes less than $^{\Delta}B$, ^{BHP}R
4T1	.01	$\frac{\mathbf{T_1} - \mathbf{T_2}}{\mathbf{T_2}}$		always exceeds BHP _A $\frac{T_1 - T_2}{T_2} \text{is used to adjust}$ $\frac{T_1 - T_2}{T_2} \text{always}$ computation. If $\frac{T_1 - T_2}{T_2}$
				becomes less than $^{\Delta}T_1$, T_R always exceeds T_A
R _{TOL}	5.n.m.	R, Range	Descent Sub- routine	If the range at the end of descent is within RTOL n.m. of Rmax the calculation terminates.

7.3 SAMPLE CASES

To illustrate the use of the program, three sample cases have been run and the output included here.

The first case is for a 60-passenger commercial lift fan VTOL aircraft similar to that shown in NASA CR-743. This case illustrates the use of dual propulsion (lift and primary), the sizing of a fuselage for specified passenger requirements and the automatic observance of speed restrictions at altitudes below 10,000 feet. The engines are sized to meet specified takeoff and cruise requirements. Runs 2 and 3 illustrate the use of standard printout and weights data, respectively.

The second case is for a military high-performance COIN turboprop. It illustrates the use of the automatic propeller performance subroutine, the study of a mission which is partly at optimum altitude and partly at specified altitude, and the determination of energy-maneuverability performance. The engine size is fixed for this case, but the transmission is sized for specified fraction of installed power in Run 1, and for a specified fraction of either hover or cruise power required (chooses the most critical condition).

The third case calculates sizing and performance data for a tilt-rotor aircraft. It illustrates the use of the general performance subroutine, figure of merit hover map, and engine sizing for; specified power fraction, vertical rate of climb, and accessory horsepower.

7.3.1 Lift Fan VTOL Aircraft

All inputs are discussed for this case. A complete copy of the program printout is shown following the description of the input. The design mission profile is shown below:

VASCOMP II - DESCRIPTION OF SAMPLE CASE 1

VARIABLE	LOCATION	VALUE ASSIGNED	REMARKS	
Run 1				
General Inform	ation Shee	<u>t</u>		
OPTIND	0001	1.0	Sizing run	
TNIRPK	0002	1.0	Print indicator-opt:	ional print
DRGIND	0003	0.0	Program calculates drag	compressibility
OSWIND	0904	1.0	Program calculates : factor	induced drag
FDMIND	0006	2.0	Size fuselage for parequirements	assenger
WDMIND	0007	0.0	Wing not dependent size .	on propeller
HTIND	0008	1.0	Input tail volume c	oefficients
VTIND	0009 .	1.0	imput tair voiume c	OEITICIENCS
FIXIND	0010	1.0	Program sizes engin	es .
ENGIND	0011	1.0	Turbo fan primary e	ngines
wg _o	0014	70000.	1st guess at design	gross weight
h _o	0015	0.	Start altitude	Normally 0. except for
Ro	0016	0.	Starting range	partial mission
to	0017	0.	Starting time	analysis
HOPTIN	0018	1.0	Cruise desired at o altitude	ptimum
VLMIND	0019	1.0	Airspeed limited to EAS at altitude of or less	
M _{mo}	0020	0.83	Maximum operating m	ach number
V _{mo}	0021	400	Maximum operating E	AS knots
VDIVE	0022	450	Design dive speed	

VARIABLE	LOCATION	VALUE ASSIGNED	REMARKS
$^{ exttt{M}}_{ exttt{LF}}$	0023	2.5	Maneuver load factor
K ₁	0024	1.0	Factor on mission fuel burned to give reserve fuel, i.e. 1.1 would give 10% reserve
sw _F	0025	0.	Fixed fuel increment for reserves or other use
K _{FF}	0026	1.0	Use nominal engine fuel
SGTIND	0027 0028 0029 0030 0031 0032	1. 2. 3. 4. 5. 60.	TAXI TAKEOFF CLIMB CRUISE SEQUENCE DESCEND OR LOITER (Reserve fuel DESIGN in this case) MISSION APPROACH AND LAND
	003 4 0035	1. 100.	TAXI END OF CASE
Aircraft Dimen	sional She	et	•
AR	0101	3.2	Wing aspect ratio
i _w	0103	2.0	. Wing incidence angle to fuselage horizontal datum (degrees)
(L/ _C) _R	0104	.145	Root thickness-chord ratio
(L/ _C) _T	0105	.1	Tip thickness-chord ratio
W _G / _S	0106	75.	Wing loading at design gross weight
Λc/ 4	0107	35.	Quarter chord mean sweep angle, degrees
λ	0108	.23	Taper ratio (tip chord/root chord
AR _{HT}	0109	3.3	Horizontal tail aspect ratio
^a H	0110	0.	Vertical position of horizontal tail on vertical tail, spans above vertical tail root chord. Valve is 0. on or below root chord, 1.0 for "T" tail

Ĭ.

VARIABLE	LOCATION	VALUE ASSIGNED	REMARKS
1 _{TH}	0111	36.	Horizontal tail arm, FT
(t/c)HT	0112	.1	Horizontal tail mean thickness/ chord ratio
$\overline{\mathtt{v}}_{\mathtt{H}}$	0113	.6	Horizontal tail volume coefficient
$^{\lambda}_{ exttt{H}}$	0114	.45	Horizontal tail taper ratio
ΔS _{WET} /S _W	0120	0.	Increment in wetted are a for landing gear or other protusions
(1/d)nose	0123	1.85	Fineness ratio of nose
(l/d)tail	0124	2.5	Fineness ratio of tail
1 _{RW}	0126	0.	Length of ramp well or other strengthened fuselage portion (e.g., rear engine attachments). Used to compute fuselage weight penalty.
AR _{VT} .	0129	1.5	Vertical tail aspect ratio
¹ TV	0130	32.5	Vertical tail arm
(t/c)VT	0131	.1	Vertical tail thickness/chord ratio
$\overline{\mathbf{v}}_{\mathbf{v}}$	0132	.1	Vertical tail volume ratio
$^{\lambda}\mathbf{v}$	0133	.45	Vertical tail taper ratio
Ymg	0135	0.0	Spanwise distance of landing
Yp	0136	48	gear from mean spanwise distance of cruise engine from wing root in semispans. Used in wing relief term.
Y _L	0137	0.	Mean spanwise distance of lift propulsion system from wing root in semispans. Taken as 0. here since fans are inboard on the wing and gas generator, etc. are in the fuselage.

VARIABLE	LOCATION	VALUE ASSIGNED	REMARKS			
ε	0138	-2.	Length of lift engine nacelle over and above engine diameters (see figure 2~1). This would not be used if K _{IW} (LOC. 0311) were 0 because the lift nacelle dimension calculation would be bypassed (see figure 4-12). However, we wanted the fan diameter to be printed out in the lift engine nacelle mean diameter location. Therefore \$\varepsilon\$ was set to -2. to give the wetted area of the nonexsistent lift nacelles			
			$s_W = 2 \overline{d}_{LN} (N_L + \varepsilon N_C) 1_{LM}$			
			as zero, and therefore give 0 nacelle drag, but allow			
			$d = \frac{(T_L^*)^{\frac{2}{2}}}{N}$			
			to be printed out. ξ, has been			
			chosen in the engine library information to make \overline{d}_{LN} equal to the fan diameter.			
z_1 ·	0139	.0334				
z ₂ .	0140	0. }	Primary engine sizing constants			
² 3	0141	.1105	•			
Passenger Data Required For Fuselage Sizing						
Gallery Indicator	0151	0.	The program will use a trend equation to determine gally size			
No. of Passengers	0153	60.				
Seats Abreast	0154	5.	Data required for determining			
No. of Aisles	0155	1.	Data required for determining fuselage size this aircraft has a single class service.			
Unit Seat Width	0156	22. ,	The data was input as first information, and the tourist data was zeroed out.			
Seat Pitch	0157	36.	anom nam mampana anar			
Aisle Width	0158	18.				

VARIABLE	LOCATION	VALUE ASSIGNED	REMARKS				
Lavatory Indicator	0159	0.	The program will use a trend equation to determine the number of lavatories				
No. of Passengers	0161	0.					
Seats Abreast	0162	0.	Tourist class inputs zeroed, because aircraft is single service, and necessary information was input as first class information				
No. of Aisles	0163	0.					
Unit Seat Width	0164	0.					
Seat Pitch	0165	0.					
Aisle Width	0166	0.					
Aircraft Propulsion Information Required When Using Turbo Fan/Jet Engines - Primary Engine							
Cycle No.	0201	22.	Cruise engine selection				
N _D	0204 .	4.	Number of cruise engines				
h _{TO}	0207	0.	Takeoff pressure altitude for engine sizing				
n	0208	1.04	Takeoff thrust/weight ratio 1.0 is required in this case but .04 has been added to allow for control and trim				
$OTHI^{T\Delta}$	0209	27.	<pre>Takeoff ambient temperature = 86°F (27.° above standard)</pre>				
N _{po}	0211	0.	Number of cruise engines inop- erative in hover. In this case we know the lift engine out condition is critical.				
N _{LO}	0212	0.7	Number of lift engines inoperative. Actually 1.0 in this case but reduced to .7 because of 1.1 emergency rating or equivalent of 3.3 engines operating				
POWIND	, 0213	2.0	Engine sizing will be done at normal power				

VARIABLE	LOCATION	VALUE ASSIGNED	REMARKS	
h _c	0214	30000.	Cruise engine sizing altitude, feet	
v _c	0215	466.	Cruise engine sizing speed, knots TAS	
Tin _C	0216	0	Zero indicates standard atmos- phere nonstandard increment in temperature would be entered in °F.	
Lift Engine Cycle No.	0218	55.	Lift fan and gas generator Selected	
NL	0220	4.	Number of lift fans	
и ^Г	0221	2.	Number of lift fan clusters chosen to give zero lift nacelle wetted area (see explanation for location 0138)	
η _L		1.1	Lift engine hover efficiency normally used for turning nozzle or similar losses. Here it is used to account for the fact that one gas generator inoperative out of four does not depreciate thrust by .75 but B $(0.75^{2/3} (0.75)^{2/3}/.75 = 1$ all four fans are operating due to cross ducting.	
η _{P2}	0232	.96	Cruise engine hover efficiency. 4 percent loss assumed for turning nozzles	
SHP _E /SHP*	0260	1.0	Engine sized at 100% power	
V _{R/C}	0261	0.0	Engine sized at 0 ft/min vertical rate of climb	
Aircraft Aerodynamics Information Sheet				
C _{DUTi}	0301	.005	Profile drag coefficient of vertical tail at $R_e = 10^7$	
C _{DHTi}	0302	.005	Profile drag coefficient of horizontal tail at $R_e = 10^7$	
C _{DNi}	0303	.0025	Profile drag coefficient of primary engine nacelle at $R_e = 10^7$	

VARIABLE	LOCATION	VALUE ASSIGNED	REMARKS
C _{DLNi}	0304	0.0	Profile drag coefficient lift engine nacelles at R _e = 10
$\Delta C_{\overline{D}}$	0305	.001	Profile drag increment
Δfe FT ²	0307	0.0	Increment in equivalent flat plat area parasite drag of fuselage (ft ²)
No. of Pairs in Table	0308	8.0	Number of C _L -C _{DWi} Pairs in locations 317-330 and 335-342
K _{LN}	0311	1.0	Lift nacelle multiplicative drag factor
K _W	0312	1.2	Wing multiplicative drag factor
K _N	0313	2.5	Primary nacelle multiplicative drag factor
K _F	0314	1.3	Fuselage multiplicative drag factor
K _{VT}	0315	1.5	Vertical tail multiplicative drag factor
K _{HT}	0316	1.5	Horizontal tail multiplicative drag factor
c _{L1}	0317	0.0	
c _{L2}	0318	0.2	
c _{L3}	0319	0.4	Table of lift coefficients used in the development of
C _{L4}	0320	0.6	wing profile drag.
C _{L5}	0321	0.8	
c _{re}	0322	1.0	
c _{L7}	0323	1.2	
c ^{r8}	0324	1.4	
(R _e / ₁) _i	0330	2.0x10 ⁶	Mean Reynolds number per foot for mission
$c_{l\alpha} RAD^{-1}$	0331	6.28	Two dimensional wing lift coefficient slope

VARIABLE	·LOCATION	VALUE ASSIGNED	REMARKS
α_{LO}^{DEG} .	0332	-3.0	Angle of attack where the lift equals zero
(X/c) _{ps}	0333	0.3	Position of peak suction location on wing
(X/ _C) _{max} _{C/C}	0334	0.35	Position of maximum thickness on wing
C _{DWi} (1)	0335	.0066	
C _{DWi} (2)	0336	. 0063	
C _{DWi} (3)	0337	.0065	
C _{DWi} (4)	0338	.0072	Table of wing induced drag coefficients.
C _{DWi} (5)	0339	.0088	COEII 2016HCS.
C _{DWi} (6)	0340	.010	
C _{DWi} (7)	0341	.0128	
C _{DWi} (8)	0342	.0156 ·	
Aircraft Weigh	t Informat	ion Sheet	•
W _{FE} LBS	0401	11040.	Weight of fixed equipment, in LBS.
W _{FUL} LBS	0402	1450.	Weight of fixed useful load in LBS.
W _P .LBS	0403	13200.	Weight of payload in LBS.
Kcc	0404	26.0	Cockpit controls weight factor
K _{FW}	0405	.015	Fixed wing controls weight factor
K _H	0406	40.0	Constant for flight control hydraulics
K _{SAS}	0407	175.0	Stability augmentation system (SAS) weight factor, usually in range of 20-100 LBS
K _{TM}	0408	0.0	Tilt mechanism weight factor
KUC	0409	0.0	Upper control weight factor

VARIABLE	LOCATION	VALUE ASSIGNED	REMARKS
ΔW _{FC} LBS	0417	500.0	Flight controls increment of 500 lb. for VTOL phasing and mixing
$\Delta W_{\mathbf{p}}$	0418	0.0	Incremental propulsion group weight
${ t T}^{{ t W}}$	0419	0.0	Structures group incremental weight, in LBS
K _{LES}	0421	0.0	Lift engine section added to fuselage weight
K _{LG}	0422	.043	Landing gear weight factor, percentage of gross weight
K _{MG}	0423	.8	Main landing gear weight factor
K _{TL}	0424	1.0	Tail load factor
K _{WF}	0425	.314	Wing binding relief moment
·K _{WW}	0426	291.0	Detailed wing weight factor, adjusts the constant 220 in
•			$W_W = 220a (k)^{.582}$ depending
	•	•	on the complexity of the con- trol surfaces
K _Y	0427	.190	Pitch radius of gyration, feet
K _Z	0428	.280	Yaw radius of gyration, feet
K _{PES}	0429	.342	Primary engine section factor
ΔP _{PSI}	0450	7.5	Cabin pressure differential limit (psi)
W _c lbs	0451	0.0	Weight of concentrated load
^ү с	0452	0 0	Position of concentrated load outboard from $\mathbf{C}_{\mathbf{L}}$ in wing semispans
K _{FS}	0454	.07	Fuel system weights factor
K _{LEI}	0455	.250	Lift engine installation, used to account for reaction control system
K _{PEI}	0456	.400	Primary engine weight factor

VARIABLE	LOCATION	VALUE ASSIGNED	REMARKS			
Taxi Information Sheet						
ATMIN1	0501	0.0	Taxi out standard day			
ATMIN2	0502	0.0	Taxi in standard day			
t _T (HR) 1st	0511	.0333	Taxi out 2 minutes			
t _T (HR) 2nd	0512	.0333	Taxi in 2 minutes			
K _{FL}	0531	1.0	Taxi out lift system running			
K _{FL}	0532	0.	Taxi in lift system inoperative			
Takeoff, Hover	and Landi	ng Informa	tion Sheet			
TOLIND	0601 0602	2.0	Takeoff and land sharing equal fraction of thrust from primary and lift engines			
ATMIND	0611	0.	Takeoff standard day			
ATMIND	0612	0.	Landing standard day .			
n _T	0651	1.	Takeoff mean $T/W = 1$.			
n _T	0651	1.	Landing T/W would normally be a mean value of .43. It has been increased to 1.0 to account for the go-around required in the reserves.			
∆t _H	0661	.0167	Takeoff compute in 1 minute increments			
Δt _H	0662	.0167	Landing compute in 1 minute increments			
t _H	0681	.0167	Takeoff in 1 minute			
^t H	0682	.0875	Landing in 5.25 minutes			
V _{R/C}	2321 2322	0.0	No vertical rate of climb specified			
Climb Informat	ion Sheet					
CLMIND	0691	1.0	Climb at speed for max. R/C			
ATMIND	0711	0.0	Climb standard day			
Δh	0721	1000.0	Compute in 1000. foot increments			

VARIABLE	LOCATION	VALUE ASSIGNED	REMARKS
h _{MAX} FT	0741	50000.	The airplane will climb to altitude for minimum fuel consumed during climb and cruise so long as the altitude is below 50,000 ft.
POWIND	0751	1.0	Climb at mil power
^θ MAX	0761	12.0	Maximum cabin angle, degrees
${}_{\nabla C}^{D}^{CLIWB}$	0781	0.0	No drag increment required
$^{\Delta n}$ CLIMB	0791	0.0	Nominally zero
Cruise Informa	tion Sheet		
CRSIND	0801	6.000	Cruise climb (constant W/δ at speed for 99% of best range)
HEADWIND	0811	0.0	Headwind for airplane is zero in this case, input is read as headwind when CRSIND is equal to 3 thru 6.
ATMIND	0821	0.0	Cruise @ standard day
ΔR	0831	25.0	Increment for calculations
R _{MAX}	0851	434.	Range at end of cruise calculations. Cruise is followed by a descent. The descent terminates at R = 434 n.m.
CNIWO	0861	2.0	Cruise limited by normal power
N _{PSD} CR	0871	0.0	No cruise engines inoperative during cruise
ΔC _{DCR}	0891	0.0	No drag increment (for shutdown engine)
Descent Inform	ation Shee	<u>t</u>	
DESIND	0901	3.0	Descent at idle power
ATMIND	0921	0.0	Descent standard day
^T MIN	0931	-6.0	Cabin angle not to exceed six degree, nose down

VARIABLE	LOCATION	VALUE ASSIGNED	REMARKS			
Δh	0951	1000.	Compute in 1000. FT increments			
R _{MAX}	0961	434.	Terminate descent at R = 434 nmi.			
h _{MIN}	0971	0.0	Altitude at completion of descent			
$^{\Delta C}$ DDESC $_{CR}$	0991	0.0	No drag incrent used			
Loiter Informa	tion Sheet	:				
LTRIND	1001	2.0	Loiter indicator, fuel is for reserves and will not be printed out in the mission data			
$\Delta \mathtt{t}_{\mathtt{L}}$	1011	0.10	Compute loiter in 6 MIN (.1HR) increments			
ATMIND	1021	0.0	Loiter standard day			
t _L	1031	.5	Loiter for 1/2 hour			
N _{PSD} LOITER	1051	0.0	Number of engines inoperative			
AC _D LOITER •	1071	0.0	No drag increment used (for shutdown engines)			
Primary Engine	<u>Data</u>					
WDTIND	1201	1.0	Engine is flat rated by fuel flow restriction			
w _{max} /w	1220	.8	Maximum fuel flow is 80% of fuel flow at maximum static thrust, sea level standard			
Primary Engine	Primary Engine Cycle Information Sheet Number 1					
Cycle No.	1301	22.	Primary engine cycle number			
к ₃	1302	.122	Primary engine weights multi- plicative factor			
К4	1303	95.	Primary engine weights addi- tional factors			
T _{GI} (°R)	1305	1417	Turbine inlet temperature, ground idle power setting			

VARIABLE	LOCATION	VALUE ASSIGNED	REMARKS
T _{FI} (°R)	1306	1776	Turbine inlet temperature, flight idle power setting
T _{NP} (°R)	1307	2340	Turbine inlet temperature. normal power setting. When this power setting is desired the input temperature is referred for the given altitude. The referred temperature, T/0 is used in the table lookup for referred fuel flow, Gas generator RPM limit, and power turbine limit.
T _{MIL} (°R)	1308	1444	Tubine inlet temperature, military power setting when this setting is desired the temperature is referred for the given altitude. The referred temperature, T/θ , is used in the beforementioned table lookups.
T _{MAX} (°R)	·1309	2600.00	Turbine inlet temperture, maximum power setting when this power setting is specified the input temperature is referred for the given altitude. The referred temperature, T/θ , is used in the beforementioned table lookup.
No. of T/θ	1310	4.0	Number of referred temperatures in locations 1311-1318
Values of T/θ	1311 1312 1313 1314	1339.0 2080. 2600. 3458	Values of referred temperatures for the referred thrust or horsepower tables
No. of M.	1319	6.0	Number of mach numbers in locations 1320-1325
Values of M.	1320 1321 1322 1323 1324 1325	0.0 .2 .4 .6 .8	Values of mach number for the referred thrust or horsepower tables

VARIABLE	LOCATION	VALUE ASSIGNED	REMARKS
Referred, Thrust or Horsepower	1326 1327 1328 1329 1330	0.0 04 09 185 33 49	Values of referred thrust or horsepower corresponding to T/θ location 1311 and mach number found in locations 1320 - 1325
•	1332 1333 1334 1335 1336 1337	.55 .445 .375 .315 .240	Values of referred thrust or horsepower corresponding to T/θ location 1312 and mach number found in locations 1320 - 1325
	1338 1339 1340 1341 1342	.980 .860 .750 .700 .650	Values of referred thrust or horsepower corresponding to T/θ location 1313 and mach number found in locations 1320 - 1325
	1344 1345 1346 1347 1348 1349	1.70 1.58 1.46 1.375 1.265	Values of referred thrust or horsepower corresponding to T/θ location 1314 and mach number found in locations 1320 - 1325
No. of T/θ	1374	4.0	Number of referred temperatures in location 1375 - 1382
Values of T/0	1375 1376 1377 1378	1339. 2080. 2600. 3458.	Values of referred temperatures for the referred fuel flow table
No. of M.	1383	6.	Number of mach numbers in locations 1384 - 1389
Values of M	1384 1385 1386 1387 1388 1389	0. .2 .4 .6 .8 1.0	Values of mach number for the referred fuel flow table

VARIABLE	LOCATION	VALUE ASSIGNED	REMARKS
	1390 1391 1392 1393 1394 1395	.013 .013 017 079 205 390	Values of referred fuel flow correspond to the T/θ location 1375 and mach numbers in locations 1384 - 1389
	1396 1397 1398 1399 1400	.26 .265 .210 .270 .222	Values of referred fuel flow correspond to the T/θ location 1376 and mach numbers in locations 1384 - 1389
	1402 1403 1404 1405 1406 1407	.530 .540 .550 .571 .572	Values of referred fuel flow correspond to the T/0 location 1377 and mach numbers in locations 1384 - 1389
	1408 1409 1410 1411 1412 1413	1.040 1.072 1.105 1.170 1.211 1.345	Values of referred fuel flow correspond to the T/0 location 1378 and mach numbers in locations 1384 - 1389
Primary Engine	Cycle Inf	ormation S	Sheet Number 2
No. of T/8	1438 1439 1440 1441 1442 1443 1444 1445	8.0 1300. 1560. 1820. 2080. 2340. 2600. 3120. 3640.	Values of referred temperatures for the referred gas generator RPM
No. of M.	1447	6.0	Number of mach numbers in locations 1448 - 1453
Value of M.	1448 1449 1450 1451 1452 1453	0.0 0.2 0.4 0.6 0.8 1.0	Values of mach number for the referred gas generator RPM

VARIABLE	LOCATION	VALUE ASSIGNED	REMARKS .
Referred Gas Generator RPM	1454 1455 1456 1457 1458 1459	.679 .678 .677 .676 .675	Values of referred gas generator RPM limit corresponding to T/θ location 1439 and mach number locations 1448 - 1453
	1460 1461 1462 1463 1464 1465	.740 .7385 .737 .735 .732	Values of referred gas generator RPM limit corresponding to T/0 location 1440 and mach number locations 1448 - 1453
	1466 1467 1468 1469 1470	.804 .802 .799 .797 .794 .789	Values of referred gas generator RPM limit corresponding to T/θ location 1441 and mach number locations 1448 - 1453
•	1472 1473 1474 1475 1476 1477	.868 .865 .8625 .860 .855	Values of referred gas generator RPM limit corresponding to T/0 location 1442 and mach number locations 1448 - 1453
·	1478 1479 1480 1481 1482 1483	.934 .931 .928 .925 .918	Values of referred gas generator RPM limit corresponding to T/0 location 1443 and mach number locations 1448 - 1453
	1484 1485 1486 1487 1488 1489	1.0 .997 .9945 .992 .983	Values of referred gas generator RPM limit corresponding to T/0 location 1444 and mach number locations 1448 - 1453
	1490 1491 1492 1493 1494 1495	1.145 1.140 1.136 1.131 1.119	Values of referred gas generator RPM limit corresponding to T/3 location 1445 and mach number locations 1448 - 1453

VARIABLE	LOCATION	VALUE ASSIGNED	REMARKS
	1496 1497 1498 1499 1500	1.292 1.286 1.281 1.276 1.263 1.250	Values of referred gas generator RPM limit corresponding to T/θ location 1445 and mach number locations 1448 - 1453
No. of T/θ	1502	8.0	Number of referred temperatures in locations 1503 - 1511
Values of T/θ	1503 1504 1505 1506 1507 1508 1509	1300. 1560. 1820. 2080. 2340. 2500. 3120.	Values of referred temperature for the referred power turbine speed limit ratio
No. of M	1511	6.	Number of mach numbers in locations 1512 - 1517
Values of M	1512 1513 1514 1515 1516 1517	0.0 0.2 0.4 0.6 0.8 1.0	Values of mach number for the referred power turbine speed limit ratio
Referred Power Turbine Limit Table		.12 .17 .22 .272 .352 .412	Values of referred power turbine speed limit corresponding to T/0 location 1503 and mach number locations 1512 - 1517
	1524 1525 1526 1527 1528 1529	.382 .419 .455 .499 .549	Values of referred power turbine speed limit corresponding to T/0 location 1504 and mach number locations 1512 - 1517
	1530 1531 1532 1533 1534 1535	.601 .626 .650 .680 .712	Values of referred power turbine speed limit corresponding to T/θ location 1505 and mach number locations 1512 - 1517

112 D Y 2 D I 97	LOCAMICN	VALUE	DEMARKS
VARIABLE	LOCATION	ASSIGNED	REMARKS
	1536	.774	
	1537	:788	Values of referred power turbine
	1538	.801	speed limit corresponding to T/θ
	1539	.820	location 1506 and mach number
	1540	.847	locations 1512 - 1517
	1541	.880	
	1542	.900	
	1543	.912	Values of referred power turbine
	1544	.924	speed limit corresponding to T/0
	1545	.940	location 1507 and mach number
	1546	960	locations 1512 - 1517
	1547	.988	
	1548	1.00	
,	1549	1.01	Values of referred power turbine
	1550	1.02	speed limit corresponding to T/0
	1551	1.032	location 1508 and mach number
	1552	1.049	locations 1512 - 1517
	1553	1.073	
	1554	1.16	· ·
	1555	1.166	Values of referred power turbine
	1556	1.172	speed limit corresponding to T/0
	1557	1.180	location 1509 and mach number
	1558	1.190	locations 1512 - 1517
	1559	1.204	
	1560	1.261	
	1561	1.264	Values of referred power turbine
	1562	1.266	speed limit corresponding to T/0
	1563	1.275	location 1510 and mach number
	1564	1.280	locations 1512 - 1517
	1565	1.284	
Lift Engine Cy	<u>ycle</u>		
Cycle No.	1601	55.	Lift engine cycle number
к ₁	1602	.157	Lift engine weights multipli- cative factors
K ₂	1603	-610.	Lift engine weights additional factors
ξ ₁	1604	.0512	
[§] 2	1605	0.0 }	Lift engine dimensional factors
[§] 3	1606	.0855	

VARIABLE	LOCATION	VALUE ASSIGNED	REMAPKS
^T GI	1607	1331.	Turbine inlet temperature at ground idle power setting, °R
TMAX	1608	2600.	Turbine inlet temperature at max. power setting
Values of T/θ	1609 1610 1611 1612 1613 1614 1615 1616	1300. 1560. 1820. 2080. 2340. 2600. 3120. 3458.	Values of referred temperature for the referred thrust tables
Referred Thrust Table	1617 1618 1519 1620 1621 1622 1623 1624	0.0 .180 .372 .575 .702 1.00 1.433 1.710	Values of referred thrust corresponding to T/θ locations 1609 - 1616
Values of T/θ	1625 1626 1627 1628 1629 1630 1631	1300. 1560. 1820. 2080. 2340. 2600. 3120. 3458.	Values of referred temperature for the referred fuel flow table
Table of Referred Fuel Flow	1633 1634 1635 1636 1637 1638 1639 1640	.0379 .0682 .127 .199 .235 .379 .5837	Values of referred fuel flow corresponding to T/θ locations 1625 - 1632
Values of T/0	1641 1642 1643 1644 1645 1646 1647 1648	1200. 1440. 1680. 1920. 2160. 2400. 2880. 3360.	Values of referred temperature for referred gas generator RPM table

VARIABLE	LOCATION	VALUE ASSIGNED	REMARKS
Referred Gas Generator RPM Table	1649 1650 1651 1652 1653 1654 1655	.679 .740 .804 .868 .934 1.000 1.145 1.292	Values of referred gas generator RPM corresponding to T/θ Loca- tions 1641 - 1649
Values of T/θ	1657 1658 1659 1660 1661 1662 1663 1664	1200. 1440. 1680. 1920. 2160. 2400. 2880. 3240.	Values of referred temperature for referred power turbine speed unit
Referred Power Turbine Limit Table	1666 1667 1668	.1200 .382 .001 .774 .90 1.0 1.16 1.261	Values of referred power turbine limit corresponding to T/0 locations 1657 - 1664
Run 2	•		
KPRINT	0002	0.0	Standard printout
Run 3			
OPTIND	0001	0.0	Weights data only
End of Data			

V/STOL AIRCRAFT SIZING & PERFORMANCE COMPUTER PROGRAM B-93

		VALG	2600.0 3458.0 - 900006-01 - 44500 - 98500 1 . 26500 - 170006-01 - 17006-01 - 1700
THIS CASE	(MAX. =5)	VAL3	2644.0 2600.0 .150000 [
THE INPUT DECK FOR	HEET S STARTING WITH LOS. +0001 +0002	VALZ	234.000 2080.0
NRD REPRODUCTION OF	R GIVEN ON INPUT SENTIAL IMPUT VALUE RESPONDING TO LOC. RESPONDING TO LOC. RESPONDING TO LOC.	VALI	13.220 13.36.0 13.39.0 13.35.000 1.58.000 1.58.000 1.58.000 1.59.000 1.59.000 1.59.000 1.59.000 1.59.000 1.59.000 1.59.000 1.59.000 1.59.000 1.50.000
G IS A CARD BY CA	TO LOCATION NUMBE HE NUMBER OF SEQU FOR VARIABLE COR COR	VAL	22.000 1417.000 6.00000 6.00000 1.375000 1.775000 6.00000 6.00000 1.775000 1.37500 1.37500 1.0000 1.0000 1.2510 1.
OF LOWING	SPONDS S FOR I S VALUE VALUE	MUN	ងាមាខាមាខាមាខាមាខាមាខាមាខាមាខាមាខាមាខាមា
THE F	LOC. CORRENUM STAND VAL EQUAL VALI VALZ	.001	

1.2640 1560.0 1560.0 1570.0 1270.0 1270.0 1270.0 1270.0 1440.0 1920.0 1.0000	1.0000	5.0000	00009.	. 45000	36.000		.100005-02 1.5000 .60000
1.2610 1.2840 1.51200E-01 1300.0 25700 1.7100 2340.0 1.58370 1.920.0 1.680.0 3240.0	1.0000 1.9000	4.0000 100.00 75.000	. 10000.	. 10000	22.000	9 .	.0 1.3000 .40000 1.4000
1.2040 1.2800 -610.00 2600.0 2340.0 1.8000 1.4330 2080.0 37900 37900 1680.0 33400 1440.0 2880.0	. 0 0000 . 0 . 6450. 00	1.0600 3.0000 1.0000	36.000	.11050	1.0000	27.000	.25000E-02 2.5000 .20000 1.2000
1.1990 1.2750 1.2750 1.331.0 2081.0 8450 1.4680 1.2680 1.2680 1.2680 1.2680 1.2680 1.2680 1.2680 1.2680 1.2680 1.2680	. 261 . 000 . 000 . 000	. 0 2.0000 2.0000 . 14500	2.5000	32.500 -2.0000 ·	5.0660	. 040 7000 0000	2.0000
1.1800 1.2600 1.2600 .85.000 .85500 .1820.0 .1820.0 .1990.0 .1990.0 .2600.0 .2600.0 .3620.0	- · · · · · · · · · · · · · · · · · · ·		2300 • 300 • 850 850	· · · · · · · · · · · · · · · · · · ·	00.00	2.00 .000 0 .000 5.00	4.0008 1.1000 .50000E-02 .0 1.4000 1.5000
ស្នាល់ស្នាល់ស្នាល់ស្នាល់ស្នាល់ស្នាល់	พระกาศราชกา	⊣ ₩₩4₩₩		๚๛๚๚๗ฅฅ	പ രിപ്പെരുപ		๙๗๗๗๗๗๖
11111111111111111111111111111111111111	6 uuuus	00000	もりまるなっ	10mmmmu	() () () () () () () () ()	000444	220 231 301 307 311 316 321

```
.88000E-02
                                                                                                                                                                                                                                          1.0000
                                                                                                                                                               0
                                                                                  .72000E-02
                                                                                                                                                                                                                                          80000
                                                                                                                                                             175.00
                                                                                  .65000E-02
.15600E-01
13200.
40.000
                                                                                                                                                                                                                .0
.43000E-01
.19000
.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           0.0
0.106524E+05
0.113911E+05
                                                                                                                                                                                                                                                                                                                                 .33300E-01
                              -3.0000
.35000
.63000E-02
.12900E-01
1450.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     1.0000
.15700E-01
.87500E-01
                                                                                                                                                                                                                                                                                                                                                                                                     2.0000
.0
1.7
                                                                                                                                                                                                              .0
291.00
.25000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         0011111
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           XXXX
XXX
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           0.0
0.682529E+04
0.962225E+04
    6.2800

5.2800

5.0000

10000

10000

11040

25.000

5000

125.00

125.00

7.5000

7.5000
                                                                                                                                                                                                                                                                                                                                                                           33300 E-01

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   -6.0000
1000.0
434.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    2.0000
.10000
.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 1.0000
.80000
1.0000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    50000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           WE WE A
33.0

33.1

33.3

33.3

33.3

33.3

33.3

33.3

33.3

33.3

33.3

33.3

33.3

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4

40.4
```

Ø PAGE

V A S C O M P II V/STOL AIRCRAFT SIZING & PERFORMANCE COMPUTER PROGRAM

B-93

D A T A THIS RUN CONVERGED IN 3 ITERATIONS

SIZE

GROSS WEIGHT = 80166. LB

FT FT SQFT	SQFT FT FT DEG LB/SQF:	\$QFT FT FT	50FT FT FT	FT FT SQRI	F1 F1 SQF1
83.2 11.4 2496.	3.20 1068.9 58.5 18.3 35.0 0.230 0.145 75.0	3.30 325.6 32.8 9.9 0.100	1.50 192.3 17.0 11.3 6.100 32.5	9.4 2.8 337.2	1.2 7.7 6.
LENGTH WIDIH WETTED AREA	ASPECT RATIO AREA SPAN GEOM. MEAN CHORD QUARTER CHORD SWEEP TAPER RATIO ROOT THICKNESS TIP THICKNESS WING LOADING	ASPECT RATIO AREA SPAN MEAN CHORD THICKNESS / CHORD MOMENT ARM	ASPECT RATIO AREA SPAN MEAN CHORD THICKNESS / CHORD	LE LENGTH MEAN DIAMETER WETTED AREA	LENGTH DEPTH MEAN DIAMETER WETTED AREA
FUSELAGE LF WF SF	MING AR SU SU CBARW CAMBDA (17C) R (17C) T MG/SW	HOR. TAIL ARHT SHT BHT CBARHT (1/C)HT LTH	VERT: TAIL ARVT SVT BVT CBARVT (T/C)VT	PRIMARY ENG. NACELLE LN DBARN SN M	LIFT ENG. NACELLE LNG LLN DDARLN SLN

NO PROPELLER ON THIS AIRCRAFT

PROPELLER

7-30

*** FIRST CLASS CRITICAL *** FIRST CLASS CRITICAL

2.00 39.0 SQ. FT. 6.3 SQ. FT. 129.1 IN.

NUMBER OF LAVATORIES GALLEY AREA CLOSET AREA CABIN DIAMETER BODY DIAMETER

21.2 FT. 28.6 FT. 33.4 FT. 83.2 FT.

NOSE SECTION LENGTH TAIL SECTION LENGTH CONST. DIA. LENGTH TOTAL FUSELAGE LENGTH

ì

FIRST CLASS TOURIST

NO. GF PASS. NO. ABREAST NO. OF AISLES UNIT SEAT WIDTH SEAT PITCH AISLE WIDTH

DAT O Z H 7 -S œ w G z w S Ś

A A

B-93 V A S C O M P II V/STOL AIRCRAFT SIZING & PERFORMANCE COMPUTER PROGRAM

PACE 50 PASSENGER LIFT FAN SHORT HAUL VIUL RUN 1 SAMPLE CASE NO.1

VTOL
HAUL
SHORT
FAN
LIFT
PASSENGER
20
1
RUN 1
E NO.1
CAS
SAMPLE CASE

PAGE

	B-93
4 P II	CE COMPUTER PROGRAM
VASCOMP	& PERFORMANCE CON
	V/STOL AIRCRAFT SIZING &
	V/STOL

PROFULSION DATA PRIMARY PROPULSION CYCLE NO. 22.000 TURBOFAN ENGINE

4. ENGINES

T*P MAX. STANDARD S.L. STATIC THRUST 29160. LB ENGINE SIZED FOR CRUISE AT VC = 466. KNOTS, HC = 30000. FT, TEMPERATURE = -47.98 DEG F.

LIFT ENGINE CYCLE NO. 55.000

LIFT FAN ENGINE

4. ENGINES IN 2. CLUSTERS

T*L MAX. STANDARD S.L. STATIC THRUST

ENGINE SIZED FOR TAKEOFF WITH T/W = 1.04., 100.0 PERCENT PCWER, AUGMENTED BY PRIMARY PROPULSION OF 80.PER CENT

LB

75327.

CRITICAL SIZING CONDITION IS 0.700 LIFT ENGINES INDPERATIVE

B-93	2.654	5948. 1183. 715. 9832. 3447. 1347.	9386. 3937. 2347. 1575. 832. 18078.	157. 0. 0. 1202. 175. 500.	11040.	53623.	1450.	55073.	13200.	11893.	80166.
S	IN LBS GUST LOAD FACTOR	WING HOR. TAIL VERI. TAIL FUSELAGE LANDING GEAR LIFT ENGINE SECTION PRIMARY ENCINE SECTION STRUCTURE WEIGHT TOTAL STRUCTURE WEIGHT	ROTOR OR PROPDRIVE SYSTEM LIFT ENGINES LIFT ENGINES LIFT ENGINE INSTALLATION PRIMARY ENGINE INSTALLATION FUEL SYSTEM PROPULSION GROUP WEIGHT	GROUP COCKPIT CONTROLS UPPER CONTROLS HYDRAULICS FIXED WING CONTROLS SAS TILT MECHANISM CONTROL WEIGHT INCREMENT	WEIGHT OF FIXED EQUIPMENT	WEIGHT EMPTY	FIXEN USEFUL LOAD	OPERATING WEIGHT EMPTY	PAYLOAD	FUEL .	GROSS WEIGHT
V/STOL AIRCRAFT	WEIGHTS DATA GLF	STRUCTURES GROUP K8 WL1 K9 WHT K10 WVT K11 NB K12 WLG K13 WLES K15 WPES DELTA WST	PROPULSION GROUP K2 WR/P K3 WDS K4 WEL K5 WEP K5 WEP K5 WEP K7 WPEI K7 WPEI K7 WPEI WPS DELTA WP	FLIGHT CONTROLS GI K15 WCC K16 WUC K17 WH K18 WFW K19 WSAS K20 WTM DELTA WFC	BIR	WE	WFUL	OWE	WPL	(WF)A	MS

10973.

(WF)W

SAMPLE CASE NO.1 RUN 1 - 50 PASSENGER LIFT FAN SHORT HAUL VIGL

PAGE

V A S C O M P II V/STOL AIRCRAFI SIZING & PERFORMANCE COMPUTER PROGRAM B-93

SQFT SQFT		PER RADIAN
19.489 5693. 0.003424	6.923 6.131 1.268 2.191 1.906 1.069	0.83950 -0.13007 0.02221 0.09636 0.01176 0.98140 0.11831 3.72296
A T A TOTAL EFFECTIVE FLATPLATE AREA TOTAL WETTED AREA MEAN SKIN FRICTION COEFF.	IN SQFT WING FE FUSELAGE FE VERT. TAIL FE HOR. TAIL FE PRIMARY ENG. NACELLE FE LIFT ENG. NACELLE FE INCREMENTAL FE	C O E F F . 3-D LIFT SLOPE 0SWALD FACTOR
A E R O D Y N A M I C S D A T A FE TOTAL SWET TOTAL CBARF MEAN	DRAGBREAKDOWN FELA FELA FELA FELT FENT FELN FELN DELTAFE	A E R O D Y N A M I C C O B A A A A A A A A A A A A A A A A A A

V A S C D M P II V/STOL AIRCRAFT SIZING & PERFORMANCE COMPUTER PROGRAM B-93 MISSION PERFORMANCE DATA

				VTIP (FPS)			R/C (FPM)		3232,	3019.	3045.	3071.	3096.	3057.	2980.	2903.	2824.
				10			THETA -F (DEG)	ETAP	1.7	7.1	7.1	7.0	7.0	6.8	1.000	6.3	6.0
				внР		FT.	GAMMA (DEG)	VTIP	7.3	6.7	6.7	6.7	6.6	6.4	6.2	5.9	5.7
				Ξ	0.960	. 50000.	MACH DIV	7	0.794 *****	0.794	0.794	0.794 *****	0.794 *****	0.794 *****	0.794 *****	0.794 ******	0.794
			_	THRUST TO WEIGHT	1.000	ALT	МАСН	C1	0.378 *****	0.385 *****	0.392 *****	0.399	0.407	0.414	0.422	0.430 *****	0.438
0 DEG.F	LETF	0.021		 	0.757	NG, MAXIMUM	EAS	c _P	250.0 *****	250.0	250.0 *****	250.0 *****	250.0 x****	250.0 *****	250.0 *****	250.0 ****	250.0
E = 59.	PETF OR PEHF	0.067	DEG.F	PETF OR PEHF	0.757	INE RATING,	PETF OR PEHF	THRUST	0.0	1.000	1.000	1.000	1.000	0.988	0.970	0.952	0.934
TEMP ERATURE	ENG.		59.0 D	ENG.	<u>د</u> د	r. ENGIN	ENG. CODE		3	3	3	3	₃ .	-	-	-	-
TEMP	TURB. TEMP.	1417.0 1417.0	11	TURB. TEMP. (R)	2165.2	MILITARY	TURB. TEMP.	M BHP	2377.5	2391.9 0.	2407.0	2422.7 0.	2438.2 0.	2444.0	2444.0	2444.0 0.	2444.0
NG.	TAS	0.0	7.HRS. TEMPERA		0.0	I R/C AT	TAS (KTS)	FUEL FLOI	250.0 2 12364.	253.7 12364.	257.5 12364.	261.3 12364.	265.3 12364.	269.3 12217.	273.4 11987.	277.7	282.0
ENGINE RATI	PRES. ALT.	-	FOR 0.01	PRES. ALT. (FT)	00	MAXIMUM	PRES. ALT. (FT)	٠,		10ng. 7343.	2000.	3000.	4000.	5000.	6000.	7000.	8000.
GROUND IDLE EN	IGH	80166. 80035.	.W = 1.000	IGH BS.	80035.	CRUISE MITH	WEIGHT (LBS.)	LIFT	79543. 78892.	79479.	79411. 78868.	79343. 78807.	7,3276.	79209.	79142.	79075. 78653.	79008.
HES. AT GRO	FUEL	000	LAND AT T	FUEL USED (185)	300	FOR NEXT C	FUEL USED (LBS)	(7)	623.3 10.737	687.0 10.749	755.3	823.0 10.748	890.1 10.747	956.6	1023.3	1090.3	1157.8
0.033	ш		HOVER, OR Rate of C	ш.	00	OPT. ALT.	RANGE (N.M.)	CD	0.0	1.28	2.67	4.07	5.48	6.90	8.36	9.88	11.47
TAXI FOR	TIME		TAMEDFF, VERTICAL	IME	0.050	CLIMB TO	2-2 CHRS)	ಕ 1	0.050	0.055 0.348	0.061	0.066 0.348	0.072	0.077	0.347	0.038	0.094

	₽¥.	61.	44.	34.	. 44.	52.	61.	67.	75.	80.	\$5.	89.	93.	95.	.60	70.	07.	11.	98.	88.
1.000	.8 27 1.000	.5 26 1.000	1.000	1.000	1.000 25	1.000	.7 23 1.00c	1.000 22	1.000 21	.4 20 20 I.000	3 19	1,000	1.0001	9 1000.1	9 16	.9 15 1.000	00015	.0 14 1.000	1,000.1	.7 10
0.0	5.4 5	5.2 5.	5.2 4	4.6 4.	4.4	4.2 3 0.0	4.0 3	3.8 3	3.6 3	3.4 3	3.2 3	3.1 3	2.9 3	2.7 2	2.5 2	2.5 2	2.4 3	2.2 3	1.9 2	1.7 2
****	.794	.794 ****	* * * * * * * * * * * * * * * * * * *	.801 ***	.801 ***	0 × × × ×	.799	.799	.798 ****	.798 ****	.797	.796	.796	.795 ****	.794	.793	. 792 ****	.791 ****	.790	.739
* ***	0.447 0 ** ****	0.456 0 *****	0.506 0.506 0.506	0.513 0 *****	0.519 0 *****	0.526 0 *****	0.533 0 *****	0.540 0 *****	0.547 0 *****	0.554 0 *****	0.561 0 *****	0.569 0 *****	0.576 0 *****	0.584 0 *****	0.592 0 *****	0.597 0 *****	0.601 0 ******	0.605 0 *****	0.613 0 ******	0.621 0
* ***	250.0 *****	250.0 *****	272.4 *****	270.5 *****	268.6 *****	266.7 *****	264.8 *****	262.9 *****	261.0 *****	259.0 *****	257.1 *****	255.2 *****	253.2 *****	251.2 *****	249.1 ******	246.0 *****	242.3 *****	238.5 *****	236.3 *****	234.2
15967.	0.917 15613.	0.899	0.888	0.870	0.855	0.856	0.857 13409.	0.858 13102.	0.859 12797.	0.860	0.861	0.862 11902.	0.863 11610.	0.864	0.865	0.866 10762.	0.867 10495.	0.859 10230.	0.871	0.872
	-	-	-	-	F	-	۳.	-	-	ب .	-	⊢	- .	-	بـ		-	-		-
0	2444.0	2444.0	2444.0	2444.0	2444.0	2444.0	2444.0	2444.0	2444.0	2444.0	2444.0	2444.0	2444.0	2444.0	2444.0	2444.0	2444.0	2444.0	2444.0	2444.0
11529.	286.4	290.9 11075.	322.1 10944.	324.9 10711.	327.9 10480.	330.8 10251.	333.8 10025.	336.9 9801.	340.0 9579.	343.1 9360.	346.3 9143.	349.6 8929.	352.8 8718.	356.2 8509.	359.3 8302.	361.1 8095.	362. n 7886.	362.6 7677.	365.8	369.1
7318.	9000.	10000.	11000.	12000. 7528.	13000.	14000. 7469.	15000.	16000. 7414.	17000. 7388.	18000.	19000.	20000.	21000.	22000. 7274.	23000.	24000. 7229.	25000. 7207.	26n00. 7190.	27000. 7180.	28000.
78621.	78940. 78586.	78871. 78549.	78802. 78480.	78740. 78487.	78672. 78441.	78603. 78393.	78534. 78342.	78463. 78289.	78391. 78234.	78317. 78177.	78242. 78117.	78165. 78054.	78087. 77988.	78006. 77919.	77922. 77846.	77836.	77750.	77663.	77572. 77531.	77468.
10.744	1225.8 10.743	1294.5 10.742	1363.9 10.383	1425.8 10.426	1493.6 10.462	1562.2 10.496	1631.9 10.529	1702.7 10.560	1774.7	1848.1 10.618	1923.1 10.644	1999.9 10.669	2078.7 10.692	2159.7 10.712	2243.4 10.733	2329.4 10.757	2415.4 10.779	2502.6 10.794	2593.3 10.798	2697.2
0.0323	13.13 0.0323	14.86 0.0323	16.68 0.0281	18.49 0.0284	20.54 0.0287	22.69 0.0290	24.93 0.0293	27.28 0.0296	29.76 0.0299	32.36 0.0303	35.11 0.0306	38.01 0.0310	41.09 0.0314	44.37 0.0318	47.87 0.0323	51.59 0.0330	55.43 0.0339	59.43 0.0349	63.71 0.0355	68.80
6.347	0.100	0.106	0.112 0.292	0.118 0.296	0.124 0.3n0 ·	0.131 0.304	0.137 0.308	0.144 0.313	0.152 0.317	0.159 0.321	0.167 0.326	0.176 0.331	0.185 0.336	0.194 0.341	0.204	0.214 0.355	0.225	0.236 0.377	0.248 0.383	0.262

	954.	824.	716.	611.														
1.000	2.5	2.4	2.2	2.1		ETAP PROP		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
0.0	1.4	1.2	1.1	0.9	DEG.F	SPEC. RANGE (HMPP)	VTIP (FPS)	07760	.07763	.07794	.07825	.07856	.07887	.07918	.07949	0.040.0	.08010	.08013
****	0.788 *****	0.788 *****	0.787 *****	0.787 *****	-55.1	MACH	7	0.803	0.803 *****	0.803 *****	0.803	0.803	0.804 *****	0.804 *****	0.804 ****	0.804 *****	0.804 *****	0.80¢ ****
* * * * * * * * * * * * * * * * * * *	0.631 *****	0.642 *****	0.654 *****	0.666 *****	ATURE =	МАСН	CT	0.797	0.797	0.799	0.801	0.803 ****	0.805 ****	908.0	0.808 *****	0.810	0.811 *****	0.811 *****
***	232.6 *****	231.5 *****	230.4	229.2 *****	TEMPER	EAS	S B	274.4 *****	274.3 *****	274.4	, 274.6 *****	274.7	274.8 *****	274.6 *****	274.7 *****	274.9	274.7 *****	274.7 *****
9668.	0.874 9385.	0.876 9099.	0.878 8816.	0.880 8539.		PETF OR PEHF	_	0.802 7480.	0.802	0.802	0.802	0.802	0.802 7396.	0.802	0.802	0.803	0.803	0.803 7316.
	-	-	-	-	KNOTS	ENG. CODE	(OWER S	-	· -	- .	-	-	-	-	-	~	-
0.	2444.0	2444.0 0.	2444.0	2444.0	0F 0.0	TURB. TEMP.	ВНР	TFIED P 2340.0 0.	2340.0	2340.0	2340.0	2340.0	2340.0	2340.0	2340.0	2340.0	2340.0	2340.0
7270.	373.3 7072.	378.5 6879.	383.7	388.9 6506.	EADWIND	TAS (KTS)	E 2	.E AT SPECT 465.5 2 5997	465.5 5996.	466.5 5984.	467.5 5972.	468.5 5961.	469.5 5949.	470.0 5936.	471.0 5924.	472.0 5913.	472.5 5900.	472.6 5899.
7171.	29000. 7163.	30000.	31000.	32000. 7133.	GE WITH H 89.	PRES. ALT. (FT)	DRAG (LBS)	AVAILABL 32000. 7483.	32009. 7480.	32059.	32190. 7441.	32280. 7422.	32371. 7402.	32461. 7378.	32551. 7360.	32641. 7342.	32732. 7318.	32741. 7317.
77435.	77356.	77233.	77094.	76938. 76929.	T BEST RANG TA = 28398	WEIGHT (LBS.)	LIFT (LBS)	BY THRUST 76938. 76938.	76907.	76585. 76585.	76264. 76264.	75944.	75626. 75626.	75309.	74993.	74679.	74365.	74335. 74335.
10.798	2808.6	2932.1 10.795	3071.2 10.792	3227.1 10.786	FOR 99 PER CENT CONSTANT W/DELT/	FUEL USED (LBS)	1/0	EED LIMITED 3227.1 10.282	3258.2 10.282	3580.3 10.266	3901.0 10.249	4220.5 10.233	4538.7 10.216	4855.7 10.207	5171.5	5486.0 10.172	5799.3 10.161	5829.8 10.160
0.0361	74.46	80.98 0.0368	88.64 0.0371	97.58 0.0375	AT SPEED FOR CLIMB AT CONS	RANGE (N.M.)	QΩ	AUTION - SPE 97.58 0.0274	100.00	125.00 0.0273	150.00	175.00	200.00 0.0270	225.00 0.0270	250.00 0.0269	275.00 0.0268	300.00 0.0268	302.45 0.0268
0.390	0.277	0.294	0.315	0.338	CRUISE AT	TIME (HRS)	ರ	*** C 0.538 0.282	- 0.343 90.282	0.397	0.450	0.504	0.557	0.610	0.664	0.717	0.770	0.775

R/S (FPM)		6666.	5768.	5499.	5316.	4663.	4592.	4160.	3810.	3753.	3683.	3392.	3458.	3329.	3178.	3146.	3096.	3026.	2908.
THETA -F (DEG)	ETAP	0.0	-6.2	0.0	0.0	-6.3	9.9-	-6.3	0.0	-6.2	-6.2 0.0	-6.0 0.0	-6.2 0.0	-6.2	-6.1 0.0	-6.1 0.0	-6.2	-6.2 0.0	-6.1 0.0
GAMNA (DEG)	VIIP	n m -	-10.8 0.0	-9.5	-8.6 0.0	$^{-7.1}_{0.0}$	-6.7	-5.8 0.0	-5.2	-5.0	-4.8 0.0	-4.4 0.0	0.0	-4.2 0.0	-4.0	-4.0 0.0	-4.0 0.0	-3.9	-3.8 0.0
MACH DIV	ד	0.738 *****	0.758 *****	0.772 *****	0.783 *****	0.790 *****	0.796 *****	0.801 *****	0.80¢ *****	0.807 *****	0.809 *****	0.811	8.813 ****	0.814 *****	0.815 *****	8.815 ****	0.816 *****	0.816	0.817 *****
МАСН	CI	0.473 *****	0.517 *****	0.558 *****	0.594 *****	0.626 *****	0.654 *****	0.676 *****	0.693 *****	0.707	0.718 *****	0.723 *****	0.727	0.727	0.724 *****	0.720 *****	0.714 *****	0.706	0.697
EAS	СР	160.1	179.2 *****	197.7	215.6 *****	232.2 ****	248.0 *****	262.3 *****	275.0 *****	286.7 *****	297.3 *****	306.1 *****	314.3	321.2 *****	326.7 *****	331.5 *****	335.6 *****	538.9 ****	341.2 *****
PETF OR PEHF	THRUST	0.377 3870.	0.368 3832.	0.359	0.349	0.342	0.334	0.324	0.314	0.304 3538.	0.293	0.284 3464.	0.275	0.266	0.259	0.253	0.246 3404.	0.241	0.236
ENG. CODE		-	-	-	- -	-	-	; -	-	-	-	-	-	-	- -	-	}	 -	j -m
TURB. TEMP.	A BHP	1776.0 0.	1776.0	1776.0	1776.0 0.	1776.0	1776.0	1776.0	1776.0	1776.0	1776.0	1776.0	1776.0	1776.0	1776.0	1776.0 0.	1776.0	1776.0	1776.0
1AS (KTS)	FUEL FLOW	275.5 2592.	392.6 2664.	327.7 2721.	350.9 2765.	371.0 2779.	389.1 2785.	404.2 2789.	416.3 2794.	426.3 2797.	434.4 2799.	439.5	443.5 2813.	445.5 2825.	445.6	444.6 2868.	442.6 2896.	439.6 2929.	435.4 2971.
PRES. ALT. (FT)	RAG	32741. 8516.	31741.	30741.	29741.	28741. 6831.	27741. 6917.	26741. 7088.	25741. 7297.	24741. 7532.	23741.	22741. 8004.	21741.	20741.	19741. 8619.	18741. 8779.	17741.	16741. 9036.	15741.
WEIGHT (LBS.)	IFT	74335. 72193.	74328. 72998.	74321. 73285.	74312.	74304.	74294.	74284. 75899.	74272.	74260.	74248.	74235.	74221.	74208. 74013.	74193. 74011.	74179. 73997.	74163.	74148.	74131. 73972.
FUEL USED (LBS)	d/1	5829.7	5836.2 9.564	5843.9 10.306	5852.1 10.700	5860.8 10.794	5870.7 10.667	5880.8 10.426	5892.0 10.136	5904.2 9.823	5916.6 9.513	5929.3 9.246	5943.1 8.989	5956.6 8.769	5970.8 8.588	5985.7 8.428	6000.9	6016.5 8.187	6032.6
RANGE (N.M.)	CD	302.45	303.12 0.0656	303.98 0.0502	304.96 0.0407	306.04 0.0350	307.36 0.0310	308.76 0.0284	310.38 0.0266	312.19 0.0253	314.08 0.0243	316.04 6.0236	318.19 0.0230	320.33 0.0226	322.55 0.0223	324.88 0.0220	327.23 0.0219	329.61	332.03 0.0216
TIME (HRS)	CL	0.775	0.777	0.780	0.783	0.786	0.790	0.794	1 0.798 1 0.270	0.802	0.806	0.811	0.816	0.821	0.826	0.831	0.856	0.842	0.847

. 2016		2793.	2804.	2702.	2687.	204.	707.	681.	656.	633.	612.	592.	573.	554.	535.	523.				
- Y	.0	-6.1	-6.1	-6.1	-6.1	0.0	-1.4	-1.4	-1.3	-1.3	-1.3	-1.3	-1.3	-1.3	-1.2	-1.2		ETAP PROP	TAP	1.000
7 1-	.0	-3.7	-5.8	-3.7	-3.7	0.0	-1.4	-1.4	-1.3	-1.3	-1.3	-1.3	-1.2	-1.2	-1.2	-1.2		FUEL RATE (LB-HR)	VTIP (FPS)	\0
2	** ** ** **	0.817 *****	0.817	0.817	0.818 *****	0.797	0.797	0.797	0.797	0.797	0.797 *****	0.797	0.798 *****	0.798	0.798 *****	0.798 *****		MACH	٦ ا	*** *** ***
×	* * * * * * * * * * * * * * * * * * *	0.675 *****	0.665 *****	0.653 *****	U.642 *****	0.453 *****	0.445	0.436	0.428	0.420	0.412	0.405 *****	0.397 *****	0.390 *****	0.383	0.378 *****		MACH	CT	0.515 ******
63	* * * * * * * * * * * * * * * * * * *	344.1 *****	345.7 *****	346.5 *****	347.3 *****	250.0 *****	250.0 *****	250.0 *****	250.0 *****	250.0 *****	250.0 ****	250.0 *****	250.0 *****	250.0 *****	250.0	250.0 ****		EAS	CP	202 *** **
٠ ۲	3463.	0.228	0.229	0.230 3546.	0.231	0.287	0.289	0.290	0.292 5010.	0.293	0.295 5086.	0.296 5118.	0.296	0.298 5182.	0.298	0.299 5230.	EG.F	PETF OR PEHF	THRUST (LBS)	3.7 86
F -	-	 	 	}	-	 	 -	-	j)	}	-	-	-	-	 	59.0 D	ENG.	1	<u>a.</u>
1776 0	:	1776.0	1776.0	1776.0	1776.0	1776.0	1776.0	1776.0	1776.0	1776.0	1776.0	1776.0	1776.0 U.	1776.0	1776.0	1776.0	TURE =	TURB. TEMP.	ВНР	1833.1 0.
2	3022.	425.0 3073.	420.2 3124.	414.5	408.9 3245.	289.7 3756.	285.2 3796.	280.9 3820.	276.6 3847.	272.4 3871.	268.3 3892.	264.3	260.3	256.5 3962.	252.7 3993.	250.0	TEMPERAL	1AS (KTS)	FUEL FLOW (LBS/HR)	208.8 4743.
763	9170.	13) 11. 9224.	12741.	11741.	10741.	9741. 6953.	8741.	7741.	6741. 6913.	5741. 6906.	4/41. 6898.	3741. 6890.	2741.	1741. 6873.	741.	0. 6856.		PATS. ALT. (FT)	DRAG (LBS)	
2112	73962.	74096.	74078. 73925.	74059. 73906.	74040.	74020.	73712.	73623	73529.	73431. 73413.	73330.	73224.	73114.	72999. 72983.	72880. 72865.	72788.	ESERVE FUEL	WEIGHT (LBS.)	LIFT (LBS)	27
0 %	8.066	6067.6	6085.9 7.966	6104.5	6124.1	6144.3	6451.9 10.637	6541.2 10.635	6634.7 10.633	6732.3 10.630	6834.2 10.628	6940.2	7059.2	7164.4	7283.8	7375.8	HRS. FOR R	FUEL USEL (LBS)	١/١	7375.8
2	0.0216	337.08 0.0215	339.61 0.0214	342.11 0.0214	344.66 0.0214	347.19 0.0307	370.94 0.0306	377.66 0.0306	384.54 0.0305	391.56 0.0305	398.73 0.0305	406.04 0.0304	413.48	421.05 0.0303	428.78 0.0303	434 61 0.0303	FOR 0.500	RANGE (N.M.)	CD	434.61 0.0435
¢	0.174	0.859	0.865	0.871	0.877	0.883	0.965	0.988	1.613	2-7 1.033 0.324	1.065	1.092	1.120	1.149	1.179	1.202	LOITER	TIME (HRS)	CL	1.202

•

	$\hat{}$
٥.	S
m	<u>د</u>
-	جنا
>	$\overline{}$

							77 74)
1.000	1.000	1.000	1.000	1.000	1.000		
4711. 0.0	4679.	4648.	4617. 0.0	4586.	4586. 0.0		요 범 없
0.780	0.780 *****	0.780 *****	0.779 *****	0.780 *****	0.780 *****		FA HII DO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.315 *****	0.314 *****	0.312 *****	0.311 *****	0.311 *****	0.311 *****		THRUST TO TO TO TO TO TO TO TO TO TO TO TO TO
208.8 ***: **	207.8 ****	206.8 ****	205.8 ****	205.8 *****	205.8 ****		LEFF 0.689 0.685 0.685 0.673 0.669 0.667 1.0 DEG.F LETF
0 3/1	6773	0.366 6732.	0.364 6693.	0.361	0.361 6641.	DEG.F	PETF PEHF 0.689 0.682 0.673 0.669 0.667 0.667 PETF PETF 0.067
۵	ů.	c	a.	۵,	۵.	59.0 E	B. ENG. 1 P 1 P 1 P 2 P 2 P 3 P 1 P 6 D 6 D 6 D 7 CODE
	1327.5	1824.7	1821.9 0.	1819.1 0.	1819.1 0.	11	TURB. (R) (R) 2095.1 2087.1 2087.1 2083.2 2075.3 2075.3 2075.3 TEMP. (R) (R)
208.8	207.8	206.8 4648.	205.8 4617.	205.8 4586.	205.8 4586.	7.HRS. Temperaturė	TAS (KTS) (C.0 0.0 0.0 0.0 1AS (KTS) (KTS)
0. 6813.	6773.	6732.	. 66993.	. 1699	6641.	FOR 0.087	PRES. ALT: (F1) 0. 0. 0. 0. 0. ENGINE RATING ALT: (F1) 0.
72314.	71842.	71375.	70910. 70910.	70448.	70448. 70448.	1/W = 1.000 0.0 FT/MIN	WEIGHT (LBS.) 6 72788. 72375. 8 71965. 7 71557. 8 70751. 6 70522. GROUND IDLE EN WEIGHT (LBS.) 6 70522.
7850.1 10.614	8321.2 10.608	8789.1 10.602	9253.9 10.595	9715.6 10.608	9715.6 10.608	OR LAND AT F CLIMB =	FUEL USED (LBS) 9715.6 10128.6 10558.8 10956.2 11350.8 11752.7 11981.6 HRS. AT GR FUEL USED (LBS) 11981.6
434.61 0.0431	434.61	434.61 0.0435	434.61 0.0436	434.61 0.0433	634.61 0.0433	HOVER, Rate of	RANGE (N.M.) 434.61 434.61 434.61 434.61 434.61 6N.M.) (N.M.)
1.302	1.402	1.502	1.602	1.702	1.702	TAKEOFF, Vertical	TIME (HRS) 1.202 1.202 1.234 1.249 1.261 1.290 TAXI FOR TIME (HRS) 1.290

FUEL REQUIRED = 9672.14 FUEL REQUIRED = 2339.94 FUEL REQUIRED = 12012.08 MISSION R RESERVE F TOTAL

B-93 V A S C J M P II V/STOL AIRCRAFT SIZING & PERFORMANCE COMPUTER PROGRAM

THE FOLLOWING IS A CARD BY CARD REPRODUCTION OF THE INPUT DECK FOR THIS CASE

=5) CORRESPONDS TO LOCATION NUMBER GIVEN ON INPUT SHEET
STANDS FOR THE NUMBER OF SEQUENTIAL INPUT VALUES STARTING WITH LOC. CMAX.
EQUALS VALUE FOR VARIABLE CORRESPONDING TO LOC.
VALUE
VALUE
VALUE
VALUE
VALUE

VALUE LOC. HUN VAL VALI

VAL 2 0.120121E+05 0.106524E+05 0.113911E+05 VALI 11 11 11 WFR WFR WFR .0 WFA = 0.118927E+05 WFA = 0.682529E+09 WFA = 0.962225E+09 VAL 0.700000E+05 0.700000E+05 0.754672E+05 NUM 100. 11 11 11 222 203

VALG

VALS

7-40

)

ì

PROPELLER

PAGE 2

1

V A S C O M P II V/STOL AIRCRAFT SIZING & PERFORMANCE COMPUTER PROGRAM B-93

RUN 2

SAMPLE CASE NO.1

S I Z E D A T A THIS RUN CONVERGED IN 3 ITERATIONS

GR055 WEIGHT = 80166. LB

83.2 FT 11.4 FT 2496. SQFT	3.20 1068.9 SQFT 58.5 FT 18.3 FT 35.0 DEG 0.230 0.145 0.100 LB/SQFT	3.30 325.6 32.8 9.9 0.100 36.0 FT	1.50 192.3 17.0 11.3 6.100 32.5 FT	9.4 FT 2.8 FT 337.2 SQRT	0.0 FT 1.2 FT 7. FT 9. SOFT
LENGTH WIDTH WETTED AREA	ASPECT RATIO AREA. SPAN GEOM. MEAN CHORD QUARTER CHORD SWEEP TAPER RATIO ROOT THICKNESS TIP THICKNESS WING LOADING	ASPECT RATIO AREA SPAN MEAN CHORD THICKNESS / CHORD MONENT ARM	ASPECT RATIO AREA SPAK MEAN CHORD THICKNESS / CHORD	LE LENGTH MEAN DIAMETER WETTED AREA	LENGTH DEPTH MEAN DIAMETER WETTED AREA
FUSELAGE LF WF SF	MING AR SW SW CBARW CAMBDA C/4 LAMBDA (T/C)T MG/SW	HOR. TAIL ARHT SHT 2HT CBARHT (17C) HT LTH	VERT: TAIL ARVT SVT BVT CBARVT (T/C)VT LTV	PRIMARY ENG. NACELLE LN DBARN SN M	LIFT ENG. NACELLE LNG LLN DBARLN SLN

V/STOL AIRCRAFT SIZING & PERFORMANCE COMPUTER PROGRAM B-93

PASSENGER SIZING DATA

FIRST CLASS	60. 1 5. 1 22. IN. 36. IN.
TOURIST	 XXII
	NO. OF PASS. NO. ABREAST NO.OF AISLES UNIT SEAT MIDTH SEAT PITCH AISLE MIDTH

	*** FIRST CLASS CRITICAL
2.00 39.0 SQ. FT.	129.1 IN. **
NUMBER OF LAVATORIES GALLEY AREA CLOSET AREA	CABIN DIAMETER BODY DIAMETER

		33.4 FT.	
SECTION	TAIL SECTION LENGTH	CONST. DIA. LENGTH	w

7-	43

	2.654	5948. 1183. 715. 9832. 3447. 1347.	0. 0. 39386. 3937. 2347. 1575. 832. 18078.	157. 0. 0. 1202. 175. 0. 500.	11040.	53623.	1450.	55073.	13200.
IN LBS	GUST LOAD FACTOR	WING HOR. TAIL VERT. TAIL FUSELAGE LANG GEAR LIFT ENGINE SECTION PRIMARY ENGINE SECTION STRUCTURE WEIGHT TOTAL STRUCTURE WEIGHT	ROTOR OR PROP DRIVE SYSTEM LIFT ENGINES PRIMARY ENGINE INSTALLATION PRIMARY ENGINE INSTALLATION FUEL SYSTEM PROPULSION GROUP WEIGHT INCREMENT	GROUP COCKPIT CONTROLS UPPER CONTROLS HYDRAULICS FIXED WING CONTROLS SAS TILT MECHANISM CONTROL WEIGHT INCREMENT	WEIGHT OF FIXED EQUIPMENT	WEIGHT EMPTY	FIXED USEFUL LOAD	OPERATING WEIGHT EMPTY	PAYLOAD
WEIGHIS DATA	GLF	S.RUCTURES GROUP KB WW K9 WHT K10 WVT K11 WB K12 WLG K12 WLG K13 WLES K14 WPES DELTA WST	PROPULSION GROUP K2 WR/P K3 WDS K4 WEL K5 WEP K6 WLEI K7 UPEI K21 WFS DEITA WP	FLIGHT CONTROLS G K15 WCC K16 WUC K17 WH K13 UFW K19 WSAS K20 WTM DELTA WFC	N. B.	WE	WFUL	OWE	WPL

PAGE

4

B-93

V A S C O M P II V/STOL AIRCRAFT SIZING & PERFORMANCE COMPUTER PROGRAM

P.UN 2 SAMPLE CASE NO.1

.

10973.

(MF)W

11893. 80166.

GROSS WEIGHT

FUEL

(MF)A

9

2
RUN
NO.1
CASE N
ш
SAMPL

PAGE

	B-93		
A A S C U FI P II	V/SIOL AIRCRAFI SIZING & PERFORMANCE COMPUTER PROGRAM		
	OL AIRCRAFT SIZING #		
)TS/\		

PROPULSION DATA
PRIMARY PROPULSION CYCLE NO. 22.000
TURBOFAN ENGINE

4. ENGINES

T*P MAX. STANDARD S.L. STATIC THRUET 29160. LB ENGINE SIZED FOR CRUISE AT VC = 466. KNOTS, HC = 30000. FT, TEMPERATURE = -47.98 DEG F.

LIFT ENGINE CYCLE NO. 55.000 LIFT FAN ENGINE 4. ENGINES IN 2. CLUSTERS T*L MAX. STANDARD S.L. STATIC THRUST 75327.

LB

ENGINE SIZED FOR TAKEOFF WITH T/W = 1.64., 100.0 PERCENT POWER, AUGMENTED BY PRIMARY PROPULSION OF 80.PER CENT ' CRITICAL SIZING CONDITION IS 0.700 LIFT ENGINES INOPERATIVE

PER RADIAN SQFT 19.489 5693. 0.003424 0.83950 -0.13007 0.02221 0.09636 0.01176 0.91140 0.11831 3.72296 6.923 6.131 1.268 2.191 1.906 0.0 A T A TOTAL EFFECTIVE FLATPLATE AREA TOTAL WETTED AREA MEAN SKIN FRICTION COEFF. WING FE IN 347.
FUSELAGE FE
VERT. TAIL FE
HOR. TAIL FE
RIMARY ENG. NACELLE FE
LIFT ENG. NACELLE FE
INCREMENTAL FE IN SQFT 3-D LIFT SLOPE OSWALD FACTOR щ Ω z 0 3 ပ S E A K D O FEW FEVT FEWT FEHT FEN FELN DELTA FE ပ A2 A3 A5 A6 CL ALPHA AMIC DYNAMI FE SWET CBARF z œ . Ω æ 0 0 ပ œ 4 w œ ш 4 Ω <

PAGE

۵.

V A S C O M P II V/STOL AIRCRAFT SIZING & PERFORMANCE COMPUTER PROGRAM

SAMPLE CASE NO.1 RUN

N

V A S C D M P II V/SIOL AIRCRAFT SIZING & PERFORMANCE COMPUTER PROGRAM B-93 MISSION PERFORMANCE DATA

			VIIP (FPS)		7
			. CT		HT O C C C C C C C C C C C C C C C C C C
GROUND IDLE ENGINE RATING TEMPERATURE = 59.0 DEG.F	LETF 0.021 0.021		вна	FT.	00 EMC 000000000000000000000000000000000000
			FM 0.960 0.960	50000.	MACH DIV 0.794 0.794 0.794 0.794 0.794 0.794 0.795 0.796 0.796 0.796 0.796 0.796 0.796
		THRUST TO WEIGHT 1.000	MAXIMUM ALT.	### ##################################	
		LETF 0.757 0.752	ING, MAX	E S S S S S S S S S S S S S S S S S S S	
	PETF 0R PEHF 0.067	EG. F	PETF OR PEHF 0.757 0.752	INE RAT	PE
	ENG. CODE	59.0 D	ENG. COUE P	ENG	m. 00 01 02 02 03 04 04 04 04 04 04 04 04
	TURB. TEMP. (R) 1417.0	TURE =	TURB. TEMP. (R) 2165.2 2160.5	MILITARY	TURB
	TAS (KTS) 0.0	'.HRS. TEMPERAT	TAS (KTS) 0.0	R/C AT	CT
	PRES. ALT. (FT) 0.	FOR 3.01	PRES. ALT. (FT) 0.	MAXIMUM	APRES (FTT). 1000. 22000. 112000. 112000. 112000. 112000. 112000. 112000. 112000. 112000. 112000. 112000. 220000. 225000. 2250000. 225000. 225000. 225000. 225000. 225000. 225000. 22500000. 22500000. 2250000. 2250000. 2250000. 2250000. 2250000. 2250000. 22500000. 2250000. 2250000. 2250000. 2250000. 2250000. 2250000. 22500000. 2250000. 2250000. 2250000. 2250000. 2250000. 2250000. 22500000. 2250000. 2250000. 2250000. 2250000. 2250000. 2250000. 22500000. 2250000. 22500000. 22500000. 22500000. 22500000. 22500000. 22500000. 22500000. 22500000. 22500000. 22500000. 22500000. 22500000. 22500000. 22500000. 22500000. 22500000. 22500000. 225000000. 225000000. 22500000. 22500000. 22500000. 22500000. 225000000
	WEIGHT (LBS.) 80166. 80035.	1/W = 1.000 0.0 FI/MIN	WEIGHT (LBS.) 80035.	CRUISE WITH	MEIGHT 79479. 79479. 79543. 79543. 792763. 79209. 788002. 788740. 788502. 7885672. 788162. 789162. 778563. 778563.
HRS. AT GRO	FUEL USED (LBS) 130.8	LAND AT	FUEL USED (LBS) 130.8 623.3	FOR NEXT	HUSEL (LSEEL 10.00) (1.
0.033	RANGE (N.M.) 0.0	HOVER, OR	RANGE (N.M.) 0.0	OPT. ALT.	RANNS
TAXI FOR	TIME (HRS) 0.0	TAKEOFF, VERTICAL	TIME (HRS) 0.033	CLIMB TO	141 141 141 141 141 141 141 141

 8440H		
108 958 71 61		スしゅちらみみなるまちょちさささいこここここここここここここここここここここここことできるちょうというこうできるらってきてもってもなるというない。またものでもものもってもなるというない。
000000 72401	PRTAPRO 10000000000000000000000000000000000	#
1.7 1.4 1.2 1.1 0.9	SPEC. RANGE (NNPP) .07760 .07763 .07764 .07825 .07825 .07826 .07918 .07949 .07918	AC 8 8 2 0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
0.789 0.788 0.788 0.787 0.787	MACH DINCH D	DAY O O O O O O O O O O O O O O O O O O O
0.621 0.631 0.642 0.654 0.666	MACH 0.797 0.799 0.801 0.805 0.806 0.806 0.810 0.811	A A C C C C C C C C C C C C C C C C C C
234.2 232.6 231.5 230.4 229.2 TEMPER	EAS 274.4 274.5 274.6 274.6 274.6 274.8 274.9	E A S S S S S S S S S S S S S S S S S S
0.872 0.874 0.876 0.878 0.880	PER PORT PORT PORT PORT PORT PORT PORT POR	00000000000000000000000000000000000000
KNO1S	CODE CODE TITITITITITITITITITITITITITITITITITITI	国・ 00 よままままままままままままままままままままままままままままままままま
2444.0 2444.0 2444.0 2444.0 2444.0 2444.0	TURB. TEMP. (R) 2340.0 2340.0 2340.0 2340.0 2340.0 2340.0 2340.0 2340.0 2340.0	TEMR 11776
369.1 373.3 378.5 383.7 388.9	TAS (KTS) E AT SPE 465.5 466.5 466.5 469.5 470.0 472.0 472.0 472.0	746 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
28000. 29000. 30000. 31000. 32000. 889.	PRES. ALT. (FT) AVAILABL 32000. 32009. 32190. 32371. 32461. 32551. 32551. 32741.	APRILL 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
77468. 77356. 77233. 77094. 76938. T BEST RA	WEIGHT (LBS.) BY THRUS 76938. 76907. 76264. 75926. 75509. 74993. 74579. 74355.	WEIGHT (LBS.) (76835) (76835) (768312) (763328) (763321) (763321) (762364) (762364) (76236) (76236) (76236) (76236) (7636
2697.2 2808.6 2932.1 3071.2 3227.1 R 99 PER CEN	FUEL USED (LBS) (LBS) EED LINITE 3227.11 3258.2 3580.3 3901.0 4538.7 4855.7 4855.7 5171.5 5171.5 5171.5 5171.5 5171.5	CLUCK CONTRACTOR CONTR
68 80 74.46 80.98 88.64 97.58 AT SPEED FOR	RANGE (N.M.) AUTION 97.58 100.00 125.00 175.00 225.00 225.00 225.00 225.00 300.00 300.45	~~
0.262 0.277 0.294 0.315 0.338 CRUISE	11ME HRS) 6.338 6.338 0.343 0.550 0.55	11.00 98679476 11.00 9867971

573. 554. 525.		•		VIIP (FPS)
1111 2000 2000		PROPPROPUL. 0000		5
2222		FUEL RATE (LB-HR) 4743. 4711. 4671 4648. 4617. 4586.		B : :
0.798 0.798 0.798 0.798		MACH DIV 0.780 0.780 0.780 0.780 0.780 0.780		T FR FR 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.397 0.390 0.383 0.378		MACH 0.315 0.315 0.315 0.316 0.311		148US1 1001 1.0001 1.0001 1.0001 1.0001
250.0 250.0 250.0		EAS 2008.8 2005.8 2005.8 2005.8		LETF 0.689 0.685 0.685 0.673 0.669 0.667 0.667 0.667 0.00 0.0
0.296 0.298 0.298 0.299	EG.F	PETF OR PEHF 0.374 0.356 0.366 0.366	EG.F	PETF 0.689 0.685 0.683 0.673 0.667 0.667 E = 59. PETF PETF 0.067
	59.0 D	CONG CONG CONG CONG CONG CONG CONG CONG	59.0 D	ENG. CODE PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP
1/76.0 1776.0 1776.0 1776.0	TURE. =	TURB. TEMP. (R) 1833.1 1830.3 1826.7 1824.7 1819.1	ATURE =	TURB. (R) (R) 2095.1 2087.1 2087.1 2083.2 2075.3 2075.3 TEMPI TURB. TEMP. (R) (R)
260.3 256.5 252.7 250.0	TEMPERAL	TAS (KTS) 208.8 208.8 207.8 205.8 205.8	7.HRS. TEMPERA	TAS (KTS) 0.0 0.0 0.0 0.0 TAS (KTS) (KTS)
2741. 1741. 741. 0.		ALRES 00.00.00.00.00.00.00.00.00.00.00.00.00.	FOR 0.087	PRES. ALT. (FT) 0.0 0.0 0.0 GINE RAT PRES. ALT. (FT) (FT)
73114. .72999. 72880. 72788.	ESERVE FUEL	WEIGHT (LBS.) 72788. 72314. 71842. 71372. 70910.	/W = 1.000 .0 FT/MIN	WEIGHT (LBS.) 72788.72783.72375.71555.71557.71557.71557.71557.71557.70522.7052.705
7050.2 7164.4 7283.8 7375.8	HRS. FOR R	FUEL USED (LBS) 7375.8 7850.1 8789.1 9253.9 9715.6	LAND AT T LIMB = 0	FUEL USED (185) 9715-10128-110953-111350-111352-111981-1850-11981-
413.48 421.05 428.78 434.61	FOR 0.500	RANGE (N.) (N.) (434.61 (434.61 (434.61 (434.61 (434.61	HOVER, OR RATE OF C	RANGE (N.M.) 434.61 434.61 434.61 434.61 434.61 434.61 434.61 434.61 434.61 434.61 434.61 434.61
1.120 1.149 1.179 1.202	LOITER	TIME HRS) 1.202 1.502 1.502 1.602 1.702	TAKEOFF, VERTICAL	11.202 1.202 1.203 1.203 1.203 1.203 1.203 1.203 1.203 1.203 1.303 1.303 1.303 1.303

SUCCESSFUL CASE 96 CND

Charles

	B-93
•	PROGRAM
VASCOMP II	COMPUTER
VASC	PERFORMANCE COMPUTER PROGRAM
	ZING *
	AFT SIZ
	AIRCRA
	V/STOL AIRCRAFT SIZING

THE FOLLOWING IS A CARD BY CARD REPRODUCTION OF THE IMPUT DECK FOR THIS CASE

CORRESPONDS TO LOCATION NUMBER GIVEN ON INPUT SHEET
STANDS FOR THE NUMBER OF SEQUENTIAL INPUT VALUES STARTING WITH LOC. (MAX. =5)
EQUALS VALUE FOR VARIABLE CORRESPONDING TO LOC.
VALUE
VALUE
CORRESPONDING TO LOC.+0001
VALUE LOC. NUM VAL VAL1 VAL2

ETC.

VAL MUN

LOC.

VAL 1

VAL2

VAL3

VALS

.0 WFA = 0.118927E+05 WFR = 0 120121E+05 MG = 0.700000E + 05

B-93 V A S C O M P II V/STOL AIRCRAFT SIZING & PERFORMANCE COMPUTER PROGRAM

D A T A THIS RUN CONVERGED IN 0 ITERATIONS SIZE

, GROSS WEIGHT = 70000, LB

FT 50FT	SQFT FT FT DE'. LB/SQFT	5 11 11 11	2021 111 111 111 111 111 111 111 111 111	FT FT SQRT	F1 F1 F1 SQF1	
83.2 11.4 2496.	3,20 933.3 54.7 17.1 35.0 0.25.0 0.145 0.100	3.30 265.7 29.6 9.0 0.100 36.0	1.50 156.9 15.3 10.2 0.100 32.5	8.9 2.7 297.7	0.0 1.1 7.	
				•		
LENGTH WIDTH WETTED AREA	ASPECT RATIO AREA SPAN GEOM. MEAN CHORD QUARTER CHORD SWEEP TAPER RATIO ROOT THICKNESS TIP THICKNESS WING LOADING	ASPECT RATIO AREA SPAN MEAN CHORD THICKNESS / CHORD	ASPECT RATIO AREA SPAN MEAN CHORD THICKNESS / CHORD MÖMENT ARM	LE LENGTH MEAN DIAMETER WETTED AREA	LENGTH DEPIH METTED AREA	
FUSELAGE LF WF SF	WING AR SW B CBARW LAMBDA (TC)R (TC)R WG/SW	HOR. TAIL ARHT SHT BHT CBARHT (T/C)HT LTH	VERT, TAIL ARVT SVT SVT BVT CBAFVT (I/C)VT	PRIMARY ENG. NACELLE LN DBARN M SN W	LIFT ENG. NACFLLE LNG LLN DBARLN SLN	PROPELLER

7-50

MO PROPELLER ON THIS AIRCRAFT

SAMPLE CASE NO.1 RUN 3

B-93			FIRST CLASS CRITICAL. FIRST CLASS CRITICAL	·
IPUTER PROGRAM	FIRST CLASS	60. 5. 12. 36. IN. 18. IN.	## ** ** **	
RFORMANCE COP			2.00 39.0 SQ. 6.3 SQ. 129.1 IN. 137.4 IN.	21.2 FT. 23.6 FT. 33.4 FT. 83.2 FT.
V/STOL AIRCRAFT SIZING & PERFORMANCE COMPUTER PROGRAM	ASSENGER SIZING DATA	NO. OF PASS. NO. ABREAST NC.OF AISLES UNIT SEAT WIDTH SEAT PITCH AISLE WIDTH O. IN.	NUMBER OF LAVATORIES GALLEY AREA CLOSET AREA CABIN DIAMFTER BODY DIAMETER	NOSE SECTION LENGTH TAIL SECTION LENGTH COMST. DIA. LENGTH TGTAL FUSELAGE LENGTH

m
RUN
0.1
CASE NO
SAMPLE

PAGE 4

B-93	2.666	5049. 985. 586. 9552. 3010. 1223. 20406.	0. 7778. 3576. 1946. 1430. 478.	148. 0. 0. 1050. 175. 500.	11040.	48525.	1450.	49975.	13200.	6825.	70000.
V A S C O M P II SIZING & PERFORMANCE COMPUTER PROGRAM IN LBS	GUST LOAD FACTOR	WING HOR. TAIL VERT. TAIL FUSELAGE LANDING GEAR LIFT ENGINE SECTION PRIMARY ENGINE SECTION STRUCTURE WEIGHT	JP .ROTOR OR PROP DRIVE SYSTEM LIFT ENGINES PRIMARY FUGINES LIFT ENGINE INSTALLATION PRIMARY ENGINE INSTALLATION FUEL SYSTEM PROPULSION GROUP WEIGHT	SROUP COCKPIT CONTROLS UPPER CONTROLS HYDRAULICS FIXED WING CONTROLS SAS TILT MECHANISM CONTROL WEIGHT INCREMENT	WEIGHT OF FIXED EQUIPMENT	WEIGHT EMPTY	FIXED USEFUL LOAD	OPERATING WEIGHT EMPTY	PAYLOAD	FUEL	GROSS WEIGHT
V/STOL AIRCRAFT SIZING & WEIGHTS DATA IN LBS		STRUCTURES GROUP K8 11M K9 WHT K10 WVT K11 WB K12 WLG K12 WLG K12 WLES K14 WPES DELTA WST	PROPULSION GROUP K2 WR/P K3 WDS K4 WEL K5 WEP K5 WEE K7 WPEI K21 WFS DELTA WP	FLIGHT CONTROLS G K15 WCC K16 WUC K17 WH K18 WFW K19 WSAS K20 WTM DELTA WFC	WFE	WE	WFUL	OWE	WPL	(WF)A	ме

I

(ME)W

RUN 3 SAMPLE CASE NO. 1

ß PAGE

B-93 V A S C O M P II V/SIOL AIRCRAFI SIZING & PERFORMANCE COMPUTER PROGRAM

22.000 PROPULSION DATA PRIMARY PROPULSION CYCLE NO. TURBOFAN ENGINE

4. ENGINES

26194. MAX. STANDARD S.L. STATIC THRUST ENGINE SIZED FOR CRUISE AT VC = 466. KNOTS, HC = 30000. FT, TEMPERATURE = -47.98 DEG F.

LB

LIFT ENGINE CYCLE ND. 55.000 LIFT FAN ENGINE 4. ENGINES IN 2. CLUSTERS T*L MAX. STANDARD S.L. STATIC THRUST

80.PER CENT ENGINE SIZED FOR TAKEOFF WITH T/W = 1.04., 100.0 PERCENT POWER, AUGMENTED BY PRIMARY PROPULSION OF 80.PER

F B

65080.

CRITICAL SIZING CONDITION IS 0.700 LIFT ENGINES INDPERATIVE

] 1

I

7-53

V A S C O M P II V/STOL AIRCRAFT SIZING & PERFORMANCE COMPUTER PROGRAM B-93

SQFT SQFT		PER RADIAN
17.739 5214. 0.003402	6.107 5.131 1.051 1.816 1.700 0.0	0.84039 -0.13007 0.02205 0.09594 0.09146 0.99140 0.11831 3.72296
S D A T A TOTAL EFFECTIVE FLATPLATE AREA TOTAL WETTED AREA MEAN SKIN FRICTION COEFF,	D W N MING FE FUSELAGE FE VERLAGE FE VERL TAIL FE HOR. TAIL FE PRIMARY ENG. NACELLE FE INCREMENTAL FE	C O E F F . 3-D LIFT SLOPE OSWALD FACTOR
A E R O D Y N A M I C S FE SWET CBARF	D R A G B R E A K D O W N FEM FEF FEVT FEHT FEN FELN FELN FELN FELN	A E R O D Y N A M I C A2 A3 A4 A5 A6 A6 A7 CL ALPHA
		7-54

7.3.2 High-Performance COIN Turboprop

Only those inputs which are of prime interest are discussed below. A copy of the cutput follows the input. The design mission profile is illustrated below. The case was set up so that following the sizing the program would calculate the specific excess power $(P_{\rm S})$ of the airplane at a given altitude and airspeed.

VASCOMP II - DESCRIPTION OF SAMPLE CASE 2

VARIABLE	LOCATION	VALUE ASSIGNED	REMARKS	
General Inform	ation Shee	<u>t</u>		
OPTIND	0001	1.0	Sizing run	
TNIRPK	0002	1.0	Print indicator-opti	ional print
DRGIND	0003	0.0	Program calculates of drag	compressibility
OSWIND	0004	1.0	Program calculates in factor	induced drag
FDMIND	0006	0.0	Size fuselage for parequirements	assenger
WDMIND	0007	2.0	Wing not dependent of size	on propeller
HTIND .	0008	2.0	Innut toil volume of	nofficients
VTIND ·	0009	2.0	Input tail volume coefficients	
FIXIND	0010	0.0	Program sizes engine	es
ENGIND	0011	0.0	Turboshaft primary e	engines
LFTIND	0013	0.0	No lift engines spec	cified
WGo	0014	20000.	1st guess at design	gross weight
h _o	0015	0.	Start altitude	Normally 0. except for
R _o	0016	0.	Starting range	partial mission
to	0017	0.	Starting time	analysis
HOPTIN	0018	1.0	Cruise desired at op altitude	ptimum
VLMIND	0019	0.0	Airspeed limited to EAS at altitude of 3 or less	
M _{mo}	0020	0.667	Maximum operating ma	ach number
V _{mo}	0021	400.	Maximum operating EA	AS knots
V _{DIVE}	0022	450.	Design dive speed	

<u>VARIABLE</u>	LOCATION	VALUE ASSIGNED	REMARKS	
$\mathtt{M_{LF}}$	0023	7.33	Maneuver load factor	
к ₁	0024	1.0	Factor on mission fuel be to give reserve fuel, i. would give 10% reserve	
$sw_{_{\mathbf{F}}}$	0025	0.	Fixed fuel increment for reserves or other use	•
K _{FF}	0026	1.05	Use nominal engine fuel	
SGTIND	0027 0028 0029 0030 0031 0032 0033 0034 0035 0036 0037 0038	2. 3. 4. 9. 4. 2. 4. 3. 4. 0. 9. 3. 100.	TAKEOFF CLIMB CRUISE TRANSFER ALTITUDE CRUISE TAKEOFF CRUISE CLIMB CRUISE END OF MISSION TRANSFER ALTITUDE CLIMB END OF CASE	SEQUENCE OR DESIGN MISSION
Aircraft Dimer	sional She	et		•
1 _w	0103	2.0	Wing incidence angle to horizontal datum (degree	
(L/ _C) _R	0104	.17	Root thickness-chord rat	io
(L/ _C) _T	0105	.13	Tip thickness-chord rati	.0
W _G /s	0106	50.	Wing loading at design of weight	jross
ΛC// ₂	0107	0.	Quarter chord mean sweep degrees	angle,
λ	0108	.5	Taper ratio (tip chord/)	coot chord)
AR _{HT}	0109	4.65	Horizontal tail aspect 1	ratio
^a H	0110	0.405	Vertical position of hor tail on vertical tail, s above vertical tail root Valve is 0. on or below chord, 1.0 for "T" tail	spans chord.

VARIABLE	LOCATION	VALUE ASSIGNED	REMARKS
¹ TH	0111	23.	Horizontal tail arm, FT
(t/c)HT	0112	.12	Horizontal tail mean thickness/ chord ratio
λ _H	0114	.4	Horizontal tail taper ratio
S _{HT}	0115	128.	Area of horizontal tail
Γ	0116	.075	Prop blade attachment distance from centerline of hob (fraction of prop radius)
YCL	0117	8.3	Clearance from inboard prop tip to inboard prop tip across fuse- lage (feet)
^ζ 1	0118	1.0	Prop over prop overlap (fraction of radius)
^ζ ₂	0119	-2.0	Prop over wing tip overlap (fraction of radius)
ΔS _{WET} /S _W	0120	0.	Increment in wetted are a for landing gear or other protusions
¹ f	0122	46	Fuselage length (feet)
1 _{RW}	0126	0.	Length of ramp well or other strengthened fuselage portion (e.g., rear engine attachments). Used to compute fuselage weight penalty.
S _F	0127	530.	Fuselage wetted area (square feet)
^ω F	0128	4.3	Width of fuselage (feet)
$\mathtt{AR}_{\mathbf{VT}}$	0129	1.8	Vertical tail aspect ratio
1 _{TV}	0130	22.	Vertical tail arm
(t/c)VT	0131	.12	Vertical tail thickness/chord ratio
$\lambda_{\mathbf{v}}$	0133	.3	Vertical tail taper ratio
SVT	0134	90.	Area of vertical tail

VARIABLE	LOCATION	VALUE ASSIGNED	REMARKS
\mathbf{Y}_{mg}	0135	.29	Spanwise distance of landing gear from mean spanwise distance
Y _p	0136	.29-	of cruise engine from wing root in semispans. Used in wing relief term.

Aircraft Propulsion Information Required When Using Turboshaft Engines - Primary Engine $\eta_{P}IND$ 0200 2.0 Program calculates prop performance Cycle No. Cruise engine selection 0201 4. 10000. SHP 0202 Maximum static sea level horsepower N 0204 2. Number of cruise engines . 98 $^{\eta}\mathbf{T}$ 0206 Transmission efficiency $^{\rm h}$ TO ٥. 0207 Takeoff pressure altitude for engine sizing N_{R} 0223 2. Number of rotors $\mathbf{v}_{\mathtt{TIP}}$ 0224 1013.5 Prop tip speed DIA 0226 11.5 Prop diameter AF 0228 125. Activity factor per blade BLDN 0229 Number of blades 4.0 $^{\mathtt{c}_{\mathtt{L}_{\mathtt{i}}}}$ Induced lift coefficient of 0230 .46 wing XMSNIND 0257 0.0 Size transmission at specified fraction of installed power SHP_{XM}/SHP* 0258 0.9 Size transmission at 90% installed power ΔSHP_{ACC} No accessory horsepower added 0259 0.0 SHP_E/SHP* Engines sized at 100% power 0260 1.0 0261 0.0 No vertical rate of climb speci-V_{R/C}

fied for engine sizing

VARIABLE	LOCATION	VALUE ASSIGNED	REMARKS
K _{R/C}	0262	2.0	Constant used to calculate additional horsepower necessary to climb at the specified vertical rate of climb. This value is based on momentum theory, and is used in the following equation:
			$\Delta SHP_{R/C} = \frac{(Gross Weight) V_{R/C}}{33000. \times K_{R/C}}$
Aircraft Aerod	ynamics In	formation	Sheet
ΔCD	0305	.01	Profile drag increment
Δίε FT ²	0307	7.0	Increment in equivalent flat plat area parasite drag of fuselage (ft ²)
No. of Pairs in Table	0308	2.0	Number of C _L -C _{DWi} Pairs in locations 317-330 and 335-342
K _W	0312	1.0	Wing multiplicative drag factor
c _{I1}	0317	0.0	Wing lift coefficient
c _{L2}	0318	0.4	wing lift coefficient
(R _e /i)i	0330	.215x10 ⁶	Mean Reynolds number per foot for mission
$c_{1\alpha}^{-1}$	0331	6.28	Two dimensional wing lift coefficient slope
α _{LO} DEG.	0332	-1.0	Angle of attack where the lift equals zero
(X/ _c) _{ps}	0333	0.35	Position of peak suction location on wing
(X/c) _{maxc/c}	0334	. 4	Position of maximum thickness on wing
C _{DWi} (1)	0335	Ο.	wing indused dang apperions
C _{DWi} (2)	0336	0.	Wing induced drag coefficient
Aircraft Weigh	nt Informat	cion Sheet	
$w_{ m FE}^{}$ LBS	0401	4000.	Weight of fixed equipment, in LBS.

VARIABLE	LOCATION	VALUE ASSIGNED	REMARKS
W _{FUL} LBS	0402	550.	Weight of fixed useful load in LBS.
W _{PL} LBS	0403	5000.	Weight of payload in LBS.
Kcc	0404	0.	Cockpit controls weight factor
K _{FW}	0405	.024	Fixed wing controls weight factor
KH	0406	0.	Constant for flight control hydraulics
K _{SAS}	0407	0.	Stability augmentation system (SAS) weight factor, usually in range of 20-100 LBS
K _{TM}	0408	0.0	Tilt mechanism weight factor
KUC	0409	.2	Upper control weight factor
$\Delta W_{\mathbf{p}}$	0418	75.	Incremental propulsion group weight
$^{\Delta W}$ ST .	0419	350.	Structures group incremental weight, in LBS
K _{LG}	C422	.05	Landing gear weight factor, percentage of gross weight
K _{MG}	0423	.8	Main landing gear weight factor
K _{TL}	0424	1.0	Tail load factor
K _{WW}	0426	205.	Detailed wing weight factor, adjusts the constant 220 in
			$W_W = 220a (k)^{.582}$ depending
			on the complexity of the con- trol surfaces
ĸ _Y	0427	.16	Pitch radius of gyration, feet
K _Z	0428	.24	Yaw radius of gyration, feet
K _{PES}	0429	.55	Primary engine section factor
ĸ ₈	0433	.9	Wing weight multiplicative factor

VARIABLE	LOCATION	VALUE ASSIGNED	REMARKS
K _{DS}	C453	300.	Drive system weights constant
K _{FS}	0454	.33	Fuel system weights factor
K _{PEI}	0456	.3	Primary engine weight factor
Takeoff, Hover	and Landi	ng Informa	tion Sheet
TOLIND	0601 0602	3 <i>.</i> 3.	Takeoff and land sharing equal fraction of thrust from primary ard lift engines
ATMIND	0611	0.	Takeoff standard day
ATMIND	0612	0.	Landing standard day
PEHF	0621	1.0	Takeoff engine fractional power = 1.0
PEHF	0622	.714	Engine fractonal power = .714
Δt _H	0661	.0167	Takeoff compute in 1 minute increments
, ^{Δt} H	0662	.0167	Landing compute in 1 minute increments
N _{II} /N _{IIMAX}	0671	1.0	Power turbine speed ratio - takeoff
N _{II} /N _{IIMAX}	0672	1.0	Power turbine speed ratio - land
t _H	0681	.0167	Takeoff in 1 minute
$^{t}_{\mathrm{H}}$	0682	.0833	Landing in 5.0 minutes
v _{R/C}	2321 2322	0.0	No vertical rate of climb specified
Climb Informat	tion Sheet		
CLMIND	0691 0692 0693	1.0 1.0 4.0	Climb at speed for max. R/C Climb at speed for max. R/C Climb at constant TAS
TAS	0703	300.	Climb at constant TAS = 300 knots

VARIABLE	LOCATION	VALUE ASSIGNED	REMARKS
ATMIND	0711 0712 0713	0. 0. 0.	Standard atmosphere
Δh	0721 0722 0723	1000. 1000. 20.	Print climb data in specified intervals
h _{MAX} FT	0741 0742 0743	50000. 50000. 1020.	The airplane will climb to altitude for minimum fuel consumed during climb and cruise so long as the altitude is below 50,000 ft.
POWIND	0751 0752 0753	1.0 1.0 0.0	Climb at mil power Climb at maximum power
XAM ^θ	0761 0762 0763	40. 40. 40.	Maximum cabin angle, degrees
XAMII ^N II	0771 0772 0773	1.0 1.0 1.0	Power turbine speed ratio
^{An} CLIMB	0791 0792 0793	0.0 0.0 2.0	Incremental normal load factor
Cruise Informa	tion Sheet		
CRSIND	0801 0802 0803 0809	3.0 1.0 1.0 3.0	Cruise indicator
ATMIND	0821 0822 0823 0824	0.0 0.0 0.0 0.0	Cruise @ standard day
ΔR	0831 0832 0833 0834	20.0 20.0 20.0 20.0	Increment for calculations
^R max	0851 0852 0853 0854	150. 250. 350. 500.	Range at end of cruise calcu- lations.

VARIABLE	LOCATION	VALUE ASSIGNED	REMARKS
POWIND	0862 0863	2.0 }	Cruise limited by normal power
N _{PSD} CR	0871 0872 0873 0874	0.0 0.0 0.0 1.0	Number of cruise engines inoperative during cruise
N _{II} /N _{IIMAX}	0881 0882 0883 0884	0.7 1.0 0.7 1.0	Power turbine operating ratio
Transfer Altit	ude Sheet		
h final	1111 1112	0.0 1000.0	Transfer aircraft to specified altitude
Primary Engine	Data Info	rmation	
WDTIND	1201	1.0	Fuel flow cutoff
Nlind	1202	0.0	No gas generator cutoff
N10IND	1203	0.0	No referred gas generator cutoff
N2IND	1204	2.0	Non-optimum power turbine variation
QIND	1205	0.0	No torque cutoff
RNOIND	1206	0.0	No Reynolds No. correction
w _{MAX} /w*	1220	.906	Fuel flow cutoff at 90.6% of maximum sea level fuel flow
N _{IIMAX} /N _{II} *	1223	.888	Power turbine cutoff at 88.8% of maximum sea level turbine power
Run 2			
η _{PIND}	0200	. 0.0	Input efficiency values
XMSNIND	0257	1.0	Transmission sized for either hover or cruise power required (the most critical condition is chosen)

VARIABLE	LOCATION	VALUE ASSIGNED	REMARKS
SHP _{XM} /SHP*	0258	0.9	Transmission sized at 90% of chosen power required
η _{P2}	0232	.93	Input hover efficiency
η _{P3}	0233	.93	Input climb efficiency
η _{P5}	0234	. 93	Input descent efficiency
No. of Pairs in $\eta_{ extbf{P}}$ Table	0245	2.0	Number of Mach number vs. Cruise efficiency pairs
Values of M	0235 02 4 7	0.0	Values of Cruise Efficiencies

The following inputs for transmission sizing are necessary to determine the power required for takeoff:

h _{TO}	0207	0.0	Takeoff altitude
n	0208	.631	Takeoff T/W
^{ΔT} in _{TO}	0209	0.0	Standard atmosphere for takeoff
N _{II} /N _{IIMAXTO}	0210	1.0	Power turbine referred operating speed for takeoff

The following inputs for transmission sizing are necessary to determine the power required for cruise:

h _C	0214	0.0	Cruise altitude
v _C	0215	225.0	Cruise velocity in knots
ΔT _{in} _{CR}	0216	0.0	Standard atmosphere for cruise
N _{II} /N _{IIMAX_{CR}}	0217	1.0	Power turbine referred operating speed for takeoff

End of Data

B-93 V A S C O M P II V/SIOL AIRCRAFT SIZING & PERFORMANCE COMPUTER PROGRAM

THE FOLLOWING IS A CARD BY CARD REPRODUCTION OF THE INPUT DECK FOR THIS CASE

	VALG	2900.0 3200.0 . 25000.0 . 705000 1.325000 2.3100 3200.0 . 500000 . 46100 . 70500 . 96500 . 59400 . 59400 . 59400 . 59400 . 596000 . 32000 . 32000 . 32000 . 1280 . 1280 . 1280 . 1280 . 1280 . 1280 . 1280 . 1280 . 1280
(MAX. =5)	VAL3	2726.0 2600.0 -33500 -33500 -60000 -1.6300 -1.6300 -1.5000 -1.5000 -1.5000 -2.5
T TARTING WITH LOC. 01 02	VAL2	107.00 2610.00 2000.00 .35500 .34000 1.4250 1.7850 2000.00 .850000 .850000 .750000 .75000
GIVEN ON INPUT SHEE TIAL IMPUT VALUES S SPONDING TO LOC. SPONDING TO LOC. +00 SPUNDING TO LOC. +00	VALI	. 76200E-01 1650.0 1.0000 12500 24500 1.7200 3.4950 1.7200 3.4950 1.7200 1.7200 1.72500 1.
O LOCATION NUMBER E NUMBER OF SEQUENFOR VARIABLE CORRECORRE	VAL	4.0090 1975.0 5.0000 6.0000 1.2600 1.2600 1.2600 6.0000 6.0000 6.0000 1.1040 6.0000 1.1040 6.0000 1.1040 1.1040 1.1040 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 79900 6.0000 6.0000 1.3400 1.3460
ESPONDS TO DS FOR THE LS VALUE WALUE VALUE	hörl	๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛
LOC. CORRENUM STAND VAL EQUAL VALZ ETC.	LOC.	

1.0000	. 0 450.00 2.0000 9.0000	0 1200 .000	22.000			c	.	00004.	.24000E-01					
1.0000	. 0 430.00 1.0500 4.0000	50.000 23.000 8.3000	1.8000	.29000		•	0000	.35000	0.000.	. 55000		٠		3.0000
. 2.0000	0.00	1300 1300 4050 7500	4.3000	.29000		00095.		-1.0000	5000.0	165.00 1.0000 24000	1.0000		4.0000	. 0 20.000 1020.0 40.000 1.0000 2.0000
1.4250 1.0000 2.0000	0 000	100.00 100.00 178.00 128.00	530.00	90.000 10000.	1013.5	225.00	, e.	90	550.00	350.00 .80000 .16000	.33000 15.500 3.0000	. 71460 . 16670E-01 1.0000 . 83300E-01	1.0000	. 0 1000. 0 50000. 1.0000 1.0000 1.0000
1.3600 1.0000	0000	23.0000 24.0000 24.0000 20.0000 20.0000	00.00	4M	0000	25.0	999	. 0 6 0 2 2 5 0	000	5000 5000 5000	000 .	1.0000 1.6670E-01 1.0000 1.6670E-01	. 0 1.0000 300.00	000000
<i>ស</i> សស <i>•</i>	⊶លសល់	០សាមាមាស	1 ~ Kn •	ゴウ ひまま		-ಆಗ	ภ๚๚๙	୴ଊ୲ୠ	<i>0</i> 100	тюмч	๚๛๛๛	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	MW-	Т ммммммч
		'MOOM'	1001	1M000,	よころの	こるここ	2000	~~ ~~ ~~ :	300	ころこ	2000	6662	200	7.27 7.21 7.51 7.71 8.01

0.

.0 20.00° 500.00 1.0000 .70000 2.0000

of the transfer of the transfe

N. Marin

N			FT FT SQFT	SQFT FT FT DE3	LB/SQFT	60 1 1 1 1 1	SQFT FT FT	ft ft sqrt	FT LB/5QFT
PAGE	B-93		46.0 4.3 530.	5.46 540.55 10.0 10.0 10.0 10.0	0.150 50.6 0.866	4.65 128.0 24.4 5.2		9 0 0 0 0 0	11.5 0.204 130.1 0.0 2.006
MANCE COIN TURBOPROP	THIS RUM CONVERGED IN 3 ITER	GROSS WEIGHT = 27025. LB	FUSELAGE LF LENGTH WF WIDTH SF WETTED AREA	MING AR AREA SM CBARW CBARW CBARW CBARW CBARW CBARW CBARW CBARW CBARW CAMBDA TAPER TA	Q	HOR, TAIL ARHI SKT SKT BHT CBARHI (I/C)HT	VERT. TAIL ASPECT RATIO ARUT SVT RVT SPAN CBARVT MEAN CHORD (T/C)VT THICKNESS CHORD	PRIMARY ENG. NACELLE LENGTH LENGTH DBARN MEAN DIAMETER SN LIFT ENG. NACELLE	PROPELIER DIAMETER SOLIDITY WG/A CI/SIGMA THRUST COEFF. / SOLIDITY NR NO. OF PROPELLER; NO. BLADES

TURBOPROP
COIN
PERFORMANCE
HIGH
ı
-
RUN
23
23

PAGE

	B-93
	ER PROGRAM
VASCOMP II	OMPUT
VASC	PERFORMANCE C
	•ĕ
	T SIZING
	//STOL AIRCRAFT
	V/STOL

B-93		4.136	3223. 3553. 2553. 1949. 1351. 537. 8011.	792. 1361. 0. 576. 293. 1280. 75.	158. 649. 0. 0. 807.	4000.	17596.	550.	13146.	5000.	3879.	27025.
AIRCRAFT SIZING & PERFORMANCE COMPUTER PROGRAM	IN LBS	GUST LOAD FACTOR .	GROUP MING HOR. TAIL HOR. TAIL FUSELAGE LANDING GEAR LIFT ENGINE SECTION S PRIMARY ENGINE SECTION STRUCTURE WEIGHT TOTAL STRUCTURE WEIGHT	COUP RCTOR OR PROP DRIVE SYSTEM LIFT ENGINES PRIMAPY ENGINE INSTALLATION PRIMARY ENGINE INSTALLATION FUEL SYSTEM PROPULSION GROUP WEIGHT INCREMENT	LS GROUP COCKPIT CONTROLS UPPER CONTROLS HYDRAULICS FIXED WING CONTROLS SAS TILT MECHANISM CONTROL WEIGHT INCREMENT TOTAL CONTROL WEIGHT	WEIGHT OF FIXED EQUIPMENT	WEIGHT EMPTY	FIXED USEFUL LOAD	OPERATING WEIGHT EMPTY	PAYLOAD	FUEL	GROSS WEIGHT
V/STOL AIRCE	EIGHTS DATA	GLF	SIRUCTURES GRO K8 WW K9 WHT K10 UVT K11 WB K12 WLG K13 WLES K14 WPES DELTA WST	PROPULSION GROUP K2 WR/P K3 WDS K4 WEL K5 WEP K5 WEE K6 WLEI K7 WPEI K7 WPEI K21 WFS DELTA WP	FLIGHT CONTROLS C K15 MCC K16 WUC K17 WH K13 WFW K19 WSAS K20 WTM DELTA WFC	WFE	WE	UFUL	OWE	MPL	(MF)A	мG
	3			770								

(WF)W

SAMPLE CASE NO.2 RUN 1 - HIGH PERFORMANCE COIN TURBOPROP

No.

PAGE

V A S C O M P II V/STOL AIRCRAFT SIZING & PERFORMANCE COMPUTER PROGRAM B-93

PROPULSION DATA
PRIMARY PROPULSION CYCLE NO. 4.000
TURBOSHAFT ENGINE

2. ENGINES

BHP*P MAX. STANDARD S.L. STATIC H.P.

H.P.

100001

ENGINE SIZE WAS FIXED BY INPUT

NO LIFT ENGINE CYCLE SELECTED

XMSN SIZED AT 90. PERCENT OF TOTAL PRIMARY ENGINE INSTALLED POWER (MAX.STANDARD S.L. STATIC H.P.),100.0 PERCENT HOVER RPM

,

V A S C O M P II V/STO: AIRCRAFT SIZING & PERFORMANCE COMPUTER PROGRAM B-93

SQFT SQFT		PER RADIAN
12.417 1991. 0.006237	0.0 7.013 0.0 0.0 0.0 0.0	0.71001 -0.09923 0.06623 0.11567 0.02297 1.29876 0.07318 6.97113
D A T A TOTAL EFFECTIVE FLATPLATE AREA TOTAL WETTED AREA MEAN SKIN FRICTION COEFF.	MING FE FUSELAGE FE VERT. TAIL FE HORM. TAIL FE FURM. FE FUSELE FE LIFT ENG. NACELLE FE INCREMENTAL FE	EFF
A C R O D Y N A M I C S D FE SWET CBARF	DRAGBREAK 70WN FEW FEF FEYT FEYT FEYT FENT FENT FENT FENT FEN FEN FELN FELN	A E R O D Y N A M I C C O A A 3 A 4 A 4 A 4 A 4 A 4 A 4 A 4 A 4 A 4 A 4

PLE CASE NO.2 RUN 1 - HIGH PERFORMANCE COIN TURBOPROP

PAGE 6

V A S C O M P II V/STOL AIRCRAFT SIZING & PERFORMANCE COMPUTER PROGRAM B-93 MISSION PERFORMANCE DATA

	VTIP (FPS)	900.		R/C (FPM)		6589.	6261.	6106.	5958.	5826.	5421.	5386.	5491.	5305.	5197.	5042.
	СТ	. 0.3210 . 0.3210		THETA -F (DEG)	ETAP	19.1 0.786	18.1	17.6	17.1	16.6 0.788	15.2	14.9 0.795	15.2	14.8 0.796	14.5	14 2 0.796
	внР	1 8834 1 8834	. FT.	GAMMA (DEG)	TIP	18.3 900.0	17.2 900.0	16.7	16.1 900.0	15.5 900.6	14.2 900.0	13 9 900.0	14.1 900.0	13.6	13.2	12.8
	Æ	0.45 0.45	50000	MACH DIV	7	0.678	0.677	0.677	0.676	0.675	0.67	0.676	0.675	0.674	0.673	0.672
	22 H	00	MUM ALT.	МАСН	13	0.313	0.316	0.320	0.324	0.328	0.335 0.2143	6.341	0.344	0.2170	0,350	0.352
	LETF	0.0	NG, MAXIMUM	EAS.	CP	206.8 0.3272	205.4 0.3314	204.1 0.3354	202.8 0.3395	201.4 0.3434	202.4 0.3478	202.3 0.3520	199.9 0.3554	198.0 0.3589	195.7 0.3622	193.4
DEG. F	PETF OR PEHF	1.000	ENGINE RATING	PLIF CR PEHF	THRUST	1.004	0.977	0.951 10363.	0.927 10100.	0.897	0.8.8	0.865	0.866	0.868 8798.	0.871 8576.	0.874 8353.
HRS. 59.0 D	ENG. CODE	33	r ENG	ENG.		-		}	-	}-	۳ ,	-	-	-	-	-
. 017 E =	TURB. TEMP.	2758.9 2758.9	MILITAR	TURB. YEMP.	л ВнР	2726.0 8973.	2726.0 8323.	2726.0 8672.	2726.0 8518.	2726.0 8352.	272v.0 8219.	2726.0 8067.	2726.0 7901.	2726.0 7735.	2726.0 7569.	2726.0 7401.
0.0 FOR 0 TEMPERATUR	S	0.0	M R/C AT	TAS (KTS)	FUEL FLOV	206.8 2 3998.	208.5	213.2 3820.	212.0 3733.	213.7 3647.	218.0 3567.	221.2 3486.	222.1 3402.	223.3 3319.	224.2 32.8.	225.1
LETF = (PRES. ALT. (FI)		MAXIMUP	PRES. ALT. (FT)	,		1000.	2000.	3000. 2378.	4000. 2366.	5000. 2386.	6000.	7000.	8000.	9000. 2324.	10000.
ETF = 1.000 0. FT/MIN		27025.	CRUISE MITH	WEIGHT (LBS.)	LIFT	26959. 25593.	26949. 25738.	26939. 25808.	26928. 25873.	26918. 25926.	26907. 26085.	26896. 26109.	26886 26073.	26875. 26126.	26865. 26152.	26290.
AT P	FVEL USED (185)	65.3	FCR NEXT C	FUEL USED (LB ²)	מיז	65.5	75.7	86.1 10.805	96.5 10.880	106.9 10.956	117.4	128.3 10.959	139.1	149.4	159.9	1/0.3
HOVER, OR LAND RATE OF CLIMB	RANGE	0.0	OPT. ALT.	RANGE (H.M.)	CD	0.0	0.56	1.03	1.58	2.15 0.0318	2.74	3.39	4.05	4.71	5.39 0.0331	6.09
TAKEOFF, Vertical	TIME (HRS)	0.0.	CLIMB TO	TIME (HRS)	70	1 0.017 1 0.326	0.015	0.022 0.338	0.025	0.027	0.430 u.348	. 0.033 0.348	0.036 0.356	0.039	0.043	0.046 0.382

4895.	4743.	4593.	4442.	4285.	4130.	3972.	3819.	3682.	3521.	3363.	3203.	3046.	2885.	2721.					•
13.9	13.5	13.2	12.9	12.6	12.3	12.0 0.796	11.7 n.796	11.5	11.2	11.0	10.7	10.5	10.2	10.0		ETAP PRGP		0.855	0.855
12.3 900.0	11.9 900.0	11.5	11.0	10.6 900.0	10.2 900.0	9.006	9.3	9.0	8.5	$\begin{smallmatrix}8&1\\9&0&0\\0&0\end{smallmatrix}$	900.006	7.3	6.9	6.5		SPEC. RANGE (NMPP)	TPS	24509	.24562 630.0
0.671	0.670	0.669	0.668	0.667	0.666	0.665	0.664	0.662	0.661	0.660	0.658	0.657	0.655	0.654 1.408		MACH DIV	7	0.664	0.664
0.355	0.358	0.361	0.364	0.367	0.370	0.373	0.376	0.378	0.381 0.2262	0.384	0.387	0.390	0 393	0.396 0.2268	G. FI	MACH	CT	0.438	0.438
191.2	188.9 0.3717	186.7 v.3747	184.4 0.3776	122.2	180.0 0.3832	177.8 0.3858	175.6 0.3884	173.3	170.9	168.6 0.3955	166.4	164.1 0.3999	161.9	159.8 0.4040	-30.1 DE	EAS	CP	176.5 0.5101	176.5
0.876 8132.	0.878 7911.	0.881	0.883	0.885	0.887	0.890	0.892 6625.	0.894 6421.	0.896 6219.	0.897	0.899 5823.	0.901 5628.	0.903 5435.	0.905 5244.	ATURE = .	PETF OR PEHF	28.0	0.455 2225.	0.453
-	-	-	-	-	- -	-	-	-	-	-	b	-	۲	-	I EMP ER	ENG. CODE		۵.	۵
2726.0 7233.	2726.0 7065.	2726.0 6898.	2726.3 6730.	2726.0 6564.	2726.0 6398.	2726.0 6234.	2726.0	2726.9	2726.0 5745.	2726.0 5585.	2726.0	2726.0 5270.	2726.0 5116.	2726.0 4965.		TUEB. TEMP. (R)	и внР	2033.6 2150.	2032.1
226.0 3079.	226.9 3002.	227.9 2925.	228.8 2850.	229.7 2777.	23p.7 2704.	231.7 2633.	232.6 2564.	233.4 2495.	234.2 2427.	235.0 2361.	235.8 2296.	236.7 2233.	237.7 2170.	238.8 2110.	0 KNOTS	TAS (KTS)	~ 0	263.6	263.6 1073.
11000.	12000.	13000.	14000.	15000.	16000.	17000.	18000.	19000.	20000.	21000. 2180.	22000.	23000.	24000.	25000.	0F 0.	PRES. ALT. (FT)	RAG	25000 2224.	250J0. 2219.
26844. 26224.	26834. 26257.	26823. 26287.	26812. 26316.	2680C. 26344.	26791.	26780. 26394.	26769.	26758. 26432.	26747.	26735.	26723. 26 482.	26711. 26495.	26699.	26687.	TH HEADWIND	WEIGHT	IFT	26687.	26609. 26609.
180.7	191.2	201.7	212.3	223.0 11.804	233.8 11.876	244.8 11.941	255.8 12.000	247.0 12.054	278.3 12.101	289.8	301.5	313.4	325.6	338.2 12.196	E SPEED WITH	FUEL USED (185)	1/10	338.2	416.0 11.991
6.82	7.57	8.35 0.0354	9.16	10.00	10.88	11.80	12.76	13.76 n.0399	14.80 0.0408	15.90 0.0418	17.05	18.27	19.56	20.92	T BEST RANGI	RANGE (N.M.)	CD	20.92	43.00 0.0389
0.049	0.053 0.401	0.056	0.060	0.063	0.067	0.071	0.076	0.080	0.984	0.039	0.094	0.099	0.105	0.111	CRUISE AT	TIME (HRS)	บ่	0.111	0.183 0.466

,

ŧ,

0.855	0.856	0.856	0.856	0.856	0.856				ETAP PROP		0.826	0.826	0.826	0.825	0.825	0.825	0.825	
.24617	245 30.	.24729	.24784 630.0	24839	.2+867				SPEC. RAMGE (NNPP)	م د	.09601 900.0	.09602	.09603	.09604	.09605	09606	0.006	
6.664	.66	0.664	0.664	0.664	0.664				MACH DIV	ה	0.700	0.700	0.700	0.701	0.701	0.701	0.731	
0.436	0.43 .194	0.436	0.436	0.436	0.436				МАСН	cr	0.579	0.579	0.579	0.580 0.1232	0.580	0.530	0.530	
175.8	75.8	175.8	175.8	175.8 0.4993	175.8 0.4986				EAS	CP	383.3 0.3373	383.3 0.3373	383.4 0.3373	383.5 0.3373	383.5 0.3373	383.6 0.3374	383.6 0.3374	
0.450	449	0.448 2200.	n 446 . 2195.	0.445	0.445				PETC OR PEHF	THRUST	0.95 6357.	0.995 6356.	0.995	0.995	0.995 6353.	0.995 6352	0.795	!
۵.	a.	۵	۵.	٥.	٥.			EG.F	ENG. CODE		-	-	-	-	-	-	- -	HR3.
2028.2	6.	2025.1 2116.	2023:5 2110.	2022.0 2105.	2021.2 2102.			59.0 DE	TURB. TEMP.	₩ BHP	2610.0 9248.	2510.0	2610.0 9249.	2610.0 9249.	2610.¢ 925¢.	26:0.0 9251.	2610.0 9251.	0.083 H
262.6	62. 064	262 1062.	262.1 1060.	262.6 1057.	. 262.6 1056.			ERATURE =	TAS (KTS)	FUEL FLO	383.3 2 3942.	383.3 3992.	383.4 3993.	385.5	383.5 3993.	383.6 3993.	333.6 3993.	. 0 . FOR
25006.	200	25000.	25000.	25000. 2188.	25000.		PRES. ALT: (FT) 25000.	TEMP	FRES. ALT. (FT)	DRAG	72	6371.	6370.	6369.	0. 6368.	6367.	6366.	LETF = 0
26527.	9449	26365. 26365.	26284. 26284.	26203. 26203.	26163. 26163.	FT.	WEIGHT (LBS.) 26163.	RATING	WEIGHT (LBS.)	IFT	26163. 26163.	26059. 26059.	25851. 25851.	25642. 25642.	25434. 25434.	25226. 25226.	25122. 25122.	F = 0.714
497.5	573. 1.99	659.8 11.987	/40.6 11.981	821.3 11.974	861.6 11.970	TO 0.	FUEL USED (LBS) 861.6 861.6	ENGINE R	FUEL VSED (LBS)	L/10	861.6 4.106	965.7	1174.0	1382.3	1590.6	1798.8	1912.9	LAND AT PETE
60.30	00	100.00	120.00	140.00 0.0386	150.00	ALTITUDE T	RANGE (N.M.) 150.C0 150.00	HORMAL	RANGE	CD	150.00 0.0237	160.00 0.0237	180.00 0.0236	200.00 0.0236	220.00 0.0236	240.00 0.0236	250.00 0.0236	HOVER, OR I
0.259	33	0.411	0.487	0.563	0.601	TRANSFER	TIME (HRS) 0.601 0.601	cRUISE AT	- 75 TIME (HRS)	10	0.601	0.628	0.680	0.732	0.784	3.836 0.094	0.862	TAKEOFF,

Total .

0.0 FUK 0.083 HK3. TEMPERATURE ≈ 59.0 DEG.F 0.0 FIZMIN VERTICAL MATE OF CLINB =

VTIP (FPS) 900. 900. 900. 900.												R/C (FPM)		/589.	7262.	7098.	5897.
0.2985 0.2985 0.2985 0.2985 0.2985 0.2985		ETAP PROP		0.825	0.825	0.825	0.825	0.825	0.825	0.825		HETA -F R DEG) (TAP	21.7 0.785	20.7 7 0.785	20.1 785	19.5 0.785
BHP 6307. 6307. 6307. 6307. 6307.		SPEC. RANGE (NMPP)	9 1 3	000	0.006	0.006	0.09611	.09612	.09613	.09613 900.0	FT.	GAMMA (DEG) (TIP E	21.4 900.0	20.3	19.7 900.0	18.9 900.0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		MACH DIV	7	0.701	0.701	0.701	0.701	0.701	0.701	0.701	50000.	MACH DIV	7	0.682	0.681	0.680	1.237
THRUST 10 WEIGHT 0.613 0.614 0.617 0.618	•	МАСН	CT	0.580	0.580	0.580	0.580	9.580 0.1230	0.580	0.580	IMUM ALT.	МАСН	13	0.310	0.313	0.317	0.320 0.2152
LETF 0.0 0.0 0.0 0.0		EAS	CP	383.7 0.3374	383.7 0.3374	383.8 0.3374	383.8 0.3374	383.9 0.3375	383.9	384.0 0.3375	ING, MAXI	EAS	CP	205.4	203.7	202.0	200.6
PETF 0R PEHF 0.714 0.714 0.714 0.714		PETF 0R PEHF	<u>ت</u> م	995 350	0.995	0.995 6349.	0.995	0.995 6347.	6346.	0.995 6345.	INE RATI	PETF OR PEHF	RU.	1.003 1.0928.	0.976	0.950	0.926 10159,
COOC COOC EEEEE EEEEE	EG.F	ENG. CODE		 -	-)	-	-			Y ENG	ENG.			-	- -	_
TURB. TEMP. (R) 2522.0 2522.0 2522.0 2522.0 2522.0	59.0 D	TURB. TEMP. (R)	M BHP	2610.0 9252.	2610.0 9252.	2610.0 9252.	2610.0 9253.	2610.0 9253.	2610.0 9254.	2610.0 9254.	MILITAR	TURB. TEMP.	A BHP	2726.0 8964.	2726.0 8813.	2726.0	2726.0 8505.
TAS (KTS) 0.0 0.0 0.0 0.0	ERATURE =	TAS (KTS)	T 7	383.7	383.7 3993.	383.8 3994.	383.8	383.9 3994.	383.9	384.0 3994.	M R/C AT	TAS (XTS)	TT (205.4 3995.	206.7	208.1 5817.	209.7 3729.
PRES. (FT) 0.00.00.00.00.00.00.00.00.00.00.00.00.0	TENPER	PRES. ALT. (FT)	DRAG) W	6365.	6364.	6363.	6362.	6361.	6360.	MAXIMUM	PRES. ALT. (FT)		2242.	1006. 2224.	2000.	3000.
WEIGHT (LBS.) 25122. 25070. 25019. 24967. 24967. 24865.	RATING	WEIGHT (LBS.)	THI	24865. 24365.	24760. 24760.	24552. 24552.	24344. 24344.	24136. 24136.	23928. 23928.	23824. 23824.	CRUISE WITH	WEIGHT (LBS.)	IFT	23824. 22184.	23815.	23806. 22417.	23797. 22509.
FUEL USED (LBS) 1902.9 1954.4 2005.9 2005.9 2103.9	ENGINE R	FUEL USED (LBS)	1/0	2160.3	2264.3	2472.5	2680.6 3.826	2888.7	3096.8	3200.8	FOR NEXT C	FUEL USED (LBS)	[/2	3200.8 9.894	3209.6 10.045	3218.6 10.159	3227.5 10.261
RANGE (N.M.) 250.00 250.00 250.00 250.00	r Normal	RANGE (N.M.)	CD	250.00 0.0236	260.00 0.0236	280.00 0.0236	300.00 0.0236	329.00 0.0236	340.00 0.0235	350.00 0.0235	OPT. ALT.	RANGE (N.M.)	co	350.00 0.0290	350.42 0.0293	350.87 0.0295	351.33 0.0297
TIME (HRS) 0.852 0.879 0.912 0.912 0.969	RUISF AT	TIME (HRS)	ว	0.946 3.092	0.972 0.r92	1.624	1.076	1.128	1.180 0.039	1.206	LIMB TO	TIME (HRS)	70	1.206	1.208	1.211	1.213 0.305

	6739.	526.	5935.	.366.	.209.	.048.	5882.	5747.	5544.	5380.	5197.	.041.	875.	4709.						,
*	18.9 0.786	18.2 6 0.787	16.0	17.2 6 0.793	16.8 0.793	16.4 .6 0.793	16.0 E	15.8	15.3	14.9	14.5	14.1 5 0.793	13.8 4	13.5		ETAP PROP		0.860	0.860	0.860
	18.3 900.0	17.6 900.0	15.5 900.0	16.6 900.0	16.1 900.0	15.6 900.0	15.1 900.0	14.7 900.0	14.1 900.0	13.6	13.1 900.0	12.7 930.0	12.2 900.0	900.0		SPEC. RANGE (NMPP)	P S	630.0	.27187 630.0	.27248 630.0
	0.679	0.679	0.680	0.679	0.678	0.677	0.676	0.675	0.674	0.673	0.672	0.671	0.670	0.669		MACH DIV	77	0.662	0.663	0.663
	0.324	0.328 0.2166	0.339	0.341	0.344	0.346	0.349	0.351	0.354	0.356 0.2235	0.359	0.362	0.365	0.368	EG. F	МАСН	CT	0.344	0.344	0.344 0.1314
	199.3 0.3428	198.2 0.3468	200.7 0.3516	198.4	196.1 0.3584	193.7 0.3617	191.4 0.3649	188.9 0.3679	186.7 0.3710	184.4 0.3739	182.3 6.3768	180.0 0.3796	177.8	175.5	-1.6 DE	EAS	CP	164.1	164.1 0.2757	164.1 0.2750
	0.896 9899.	0.876 9631.	0.863	0.866 9064.	0.868 8841.	0.871 8619.	0.873	0.876 8181.	0.878 7961.	0.881	0.883	0.885	0.887	0.890 6882.	ATURE =	PETF OR PEHF	28.	0.522	0.521 1962.	0.519
	· - -	 	-	}-	-	þ. •	-	-	-	}	-	-	-	 	TEMP ER	ENG. CODE		٥	٥	a.
(2726.0 8349.	2726.0 8193.	2726.0 8058.	2726.0 7892.	2726.0 7725.	2726.0 7557.	2726.0 7389.	2726.0 7219.	2726.0 7051.	2726.0 6883.	2726.0 6717.	2726.0 6550.	2726.0 6384.	2726.0 6219.		TURB. TEMP. (R)	м внР	2203.2 1532.	2201.5 1528.	2199.7 1524.
	211.4	213.6	219.5	220.4	221.2	222.0 3234.	222.8 3154.	223.3 3075.	224. 2 2997.	225.1 2921.	226.1 2846.	227.0 2772.	227.8 2700.	228. 6 2628.	0 KNOTS	TAS (KTS)	FLO	213.8	213.8 786.	213.8 785.
	4000. 2181.	5000. 2172.	6000.	7000.	8000.	9000. 2135.	10000.	11000.	12000. 2072.	13000.	14000.	15000.	16000.	17000.	0F 0.	PRES. ALT. (FT)	W H	17000.	17000.	17000.
	23788. 22581.	23779.	23770. 22909.	23760.	23751. 22822.	23743. 22868.	23734. 22914.	23725.	23716.	23707. 23038.	23698.	23689.	23679.	23670.	ТН НЕАБЫТИВ	WEIGHT (LBS.)	IFT	23670.	23596. 23596.	23522. 23522.
	3236.5 10.355	3245.6 10.436	3254.6 10.383	3264.4 10.438	3273.3 10.575	3282.2 10.709	3291.1 10.840	3300.1 10.975	3309.0 11.097	3318.0 :1.215	3327.0 11.324	3336.2 11.430	3345.3 11.533	3354.6	E SPEED WI	FUEL USED (LBS)	L/D	3354.6 12.049	3428.7 12.043	3502.2 12.037
*	351.81 0.0300	352.30 0.0302	352.82 0.0299	353.42 0.0302	353.97 0.0306	354.54 0.0310	355.13 0.0315	355.74 0.0320	356.37 0.0325	357.02 0.0330	357.70 0.0335	358.41 0.0340	359.14 0.0346	359.90 0.0353	T BEST RANG	RANGE (N.M.)	CD	359.90 0.0398	380.30 0.0397	400.00 0.0396
	1.215 0.310	1.218	1.220	1.223	1.226	1.229	1.231	1.234	1.237	1.240	1.243	1.246	1.250	1.253	RUISE A1	TIME (HRS)	CL	1.253	1.347	1.441

0.860	0.860	0.860	0.860	0.360	0.860
.27309 630.0	.27370 630.0	.27432 630.0	.27493	.27555 630.0	.27555 630.0
0.662	0.663	0.663	0.663	0.663	0.663
163.3 0.342 0.2726 0.1308	163.3 0.342 0.2719 0.1305	163.3 0.342 0.2712 0.1302	163.3 0.342 0.663 0.2704 0.1298 1.792	163.3 0.342 0.663 0.2697 0.1295 1.792	163.3 0.342 0.2697 0.1295
			163.3		163.3 0.2697
0.515	0.514	0.512	0.511	0.510	0.510 1 1928. 0
۵	œ.	۰	٥	۵	٥.
2194.8	2193.0 1507.	2191.3 1503.	212.8 2189.6 774. 1459.	2187.9	2187.9
212.8	212.8	212.8	212.8	212.8	212.8
17000.	17000.	17000.	17000.	17000.	17000.
23449.	23376.	23303.	23230.	23157.	23157.
3575.6 12.049	3648.9 12.043	3721.9 12.037	3794.9 12.031	3867.6 12.025	3867.6 12.025
420.00 0.0398	440.00 0.0397	460.00 0.0396	480.00 0.0395	500.00 0.0394	500.00
1.534	1.628	1.722	1.816	1.910	1.910

MISSION FUEL REQUIRED = 3867.60
RESERVE FUEL REQUIRED = 0.0
TOTAL FUEL REQUIRED = 3867.60

HIGH PERFORMANCE COIN TURBOPROP RUN LE CASE NO.2

PAGE

B-93 V A S C O M P II V/STOL AIRCRAFT SIZING & PERFORMANCE COMPUTER PROGRAM

MISSION PERFORMANCE DATA

1000. FT. TRANSFER ALTITUDE TO

1000. WEIGHT (LBS.) 27025. 27025. FUEL USED (LBS) 0.0 RANGE (N.M.) 0.0 TIME (HRS) 0.0

AT MAXIMUM ENGINE RATING CONSTANT TAS FT. WITH 1020. 10 CL IMB

VTIP (FPS) 3.5 900.0 $\frac{3.5}{900.0}$ GAMMA (DEG) 0.660 MACH 0.455 0.455 MACH CT 295.5 0.3457 295.6 0.3455 EAS ن THRUST (LBS) 1.000 8329. PETF OR PEHF 1.000 ENG. CODE TURB. TEMP. (R) BHP FUEL FLOW (LBS/HR) 300.0 20393. 300.0 3993. TAS (KTS) DRAG (LBS) 1000. 6683. PRES. ALI. (FI) 1020. (185) 2.025. 2.975. 27024. 26974. WEIGHT (LBS.) 0.0 0.7 4.037 FUEL USED (LBS) 2 0.0 0.05 RANGE (H.M.) g 0.000TIME (HRS) $0.0 \\ 0.168$ C

R/C (FPM)

THETA -F (DEG)

ETAP

1854.

2.4

1852.

0.72 $\mathbf{H}^{-}\mathbf{H}^{-}\mathbf{H}$ REQUIRED REQUIRED REQUIRED FUEL FUEL FUEL MISSION R RESERVE F TOTAL

CASE SUCCESSFUL

9

V A S C O M P II V/STOL ATRCRAFT SIZING & PERFORMANCE COMPUTER PROGRAM B-93

THE FOLLOWING IS A CARD BY CARD REPRODUCTION OF THE INPUT DECK FOR THIS CASE

	:5)				
	CMAX.				
	LOC.				
	ITH				
	ING L				
CORRESPONDS TO LOCATION NUMBER GIVEN ON INPUT SHEET	LUES START	.oc.	.OC.+0001	CORRESPONDING TO LOC. +0002	
IMP	nt V	01	10	10	
NO N	INP	DING	DING	DING	
GIVE	YTIAL	ESPON	ESPON	ESPON	
UMBER	SEQUE	CORRE	CORRI	CORRI	
N NOI	2 OF	IABLE			
0CAT3	UMBER	VAR			
TO L	Z H	FOR			
ONDS	FOR 1	VALUE	VALUE	VALUE	
CORRESP	STANDS.	EQUALS			()
				VALZ	

	VALG	e.
	VAL3	1.0000
	VAL2	. 93000
	VALI	.90000 .93000 .85000 .63100 .225.00 WFR = 0.718750E+00 WFR = 0.342134E+04
	VAL	.0 1.0000 .93000 2.0000 .70000 .0 .0 WFA = 0.387924E+04 WFA = 0.451210E+03 WFA = 0.276318E+04
4 4 1 0 1	NUM	1 2 3 3 1 1 2 5 4 4 6 6 6 6 7 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 1 9 1 9 1
ETC.	100.	200 232 232 245 246 246 246 214 214 216 3 216 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

V A S C O M P II V/STOL AIRCRAFT SIZING & PERFORMANCE COMPUTER PROGRAM B-93

DATA THIS RUN CONVERGED IN 3 ITERATIONS

ш

Z I S

GR055 WEIGHT = 26221. LB

FT FT SQFT	\$951 F1 PEG	LB/SQFT	898 17 17	80 FT FT FT	FT FT SQRT		FT LB/SQFT
46.0 4.3 530.	55.25 56.25 56.34 56.34 56.00	0.130 50.0 0.840	4.65 128.0 24.4 5.2 0.120	1.80 90.0 12.7 7.1 0.120	000		11.5 0.204 126.2 0.160 2.000 4.000
LENGTH MIDTH WETTED AREA	ASPECT RATIO AREA SPAN GEOM. MEAN CHORD QUARTER CHORD SWEEP	KUON HILCKNESS JIP THICKNESS WING LOADING MEAN CHORD / PROP. DIA.	ASPECT RATIO AREA SPAN MEAN CHORD THICKNESS / CHORD	ASPECT RATIO AREA SPAN MEAN CHORD THICKNESS / CHORD	LLE LENGTH MEAN DIAMETER WETTED AREA	NO LIFT PROPULSION SELECTED	DIAMETER SOLIDITY DISC LOADING THRUST COEFF. / SOLIDITY NO. OF PROPELIERS NO. OF BLADES/PROP
FUSELAGE LF WF SF	MING AR SW B CB4RW LAMBDA LAMBDA	(1/C)K (1/C)T WG/SW C BAR / D	HOR. FAIL ARHI SHT BHT CBARHT (T/C)HT	VERT: TAIL ARVI SVI BVI CBARVI (T/C)VI	PRIMARY ENG. NACELLE LN DBARN SH SH W	LIFT ENG. NACELLE	PROPELLER D SIGNA R/P MG/A CI/SIGMA NR NO. BLADES

PAGE	
RUN 2	
SAMPLE CASE NO.2	
٧,	

B-93		4.186	3192: 349. 251. 1938. 1311. 0. 537. 350.	792. 689. 0. 976. 293. 1273. 75.	158. 0. 629. 0. 0. 788.	4000.	16814.	550.	17364.	5000.	3258.	26221.
V A S C O M P II V/STOL AIRCRAFT SIZING & PERFORMANCE COMPUTER PROGRAM	WEIGHTS DATA INLBS	GLF GUST LOAD FACTOR	STRUCTURES GRGUP KB MW K9 WHT HOR. TAIL K10 MVT VERT. TAIL K11 NB FUSELAGE K12 MLG LANDING GEAR K13 WLES LIFF ENGINE SECTION K14 WPES PRIMARY ENGINE SECTION DELTA WST STRUCTURE WEIGHT TOTAL STRUCTURE WEIGHT	ROPULSION GROUP K2 UR/P K3 WDS K4 WEL LIFT ENGINES K5 WEP K5 WLEI LIFT ENGINE INSTALLATION K7 WFI K7 WFI K7 WFI FUEL SYSTEM K7 WFI FOR OUR WEIGHT INCREMENT NPOPULSION GROUP WEIGHT	KIS WCC COCKPIT CONTROLS KIS WCC UPPER CONTROLS KIT WC UPPER CONTROLS KIT WAS WAS FIXED WING CONTROLS KIT WAS SAS TILT MECHANISM DELTA WFC CONTROL WEIGHT INCREMENT	WFE WEIGHT OF FIXED EQUIPMENT	WE WEIGHT EMPTY	WFUL FIXED USEFUL LOAD	OWE OPERATING WEIGHT EMPTY	WPL PAYLOAD	(WF)A FUEL	WG GROSS WEIGHT
				7-82								

Ċ.

(ME)W

SAMPLE CASE NO.2 RUN 2

PAGE

V A S C O M P II V/STOL AIRCRAFT SIZING & PERFORMANCE COMPUTER PROGRAM B-93

P R O P U L S I O N D A T A PRIMARY PROPULSION CYCLE NO. 4.000 TURBOSHAFT ENGINE

2. ENGINES

BHP*P MAX. STANDARD S.L. STATIC H.P.

н.Р.

10000.

ENGINE SIZE WAS FIXED BY INPUT

NO LIFT ENGINE CYCLE SELECTED

XMSN SIZED AT 90. PERCENT OF ROTOR HOVER POWER REQUIRED AT H= 0. FT,TEMP= 59.00 DEG.F.,100.0 PERCENT HOVER RPM

7-83

V A S C O M P II V/STOL AIRCRAFT SIZING & PERFORMANCE COMPUTER PROGRAM B-93

SQFT SQFT		PER RADIAN
12.257 1961. 0.006252	0.0 7.013 0.0 0.0 0.0 5.244	0.70996 -0.09922 0.0625 0.11567 0.01337 1.30578 0.07127 5.03255
A T A 10TAL EFFECTIVE FLATPLATE AREA 10TAL WETTED AREA MEAN SKIN FRICTION COEFF	IN SQFT WING FE FUSELAGE FE VERT. TAIL FE PRIMARY ENG. NACELLE FE LIFT ENG. NACELLE FE INCREMENTAL FE	EFF. 3-D LIFT SLOPE 0SWALD FACTOR
A Ľ R O D Y N A M I C S D FE SWET CBARF	DRAGBREAKDOWN FEWFFEVT FENT FENT FENT FENT FENT FENT FENT FEN	A E R O D Y N A M I C C O A A A A A A A A A A A A A A A A A

MPLE CASE NO.2 RUN 2

PAGE

V A S C D M P II V/STOL AIRCRAFT SIZING & PERFORMANCE COMPUTER PROGRAM B-93

MISSION PERFORMANCE DATA

	VTI (FP	9		R/C (FPM)		9018.	8929.	8788.	8629.	8448.	8263.	8056.	7842.	7622.	7412.	7117.
	CT CT	0.5197		THETA -F (DEG)	ETAP	40.0 0.330	40.0	40.0 0.930	40.0 0.930	40.0 0.930	40.0 0.930	40.0 0.930	40.0	40.0 0.930	40.0	40.0
	BH 88.2	8821	. FT.	GAMMA (DEG)	VTIP	36.9	36.6 900.0	36.3 900.0	36.0 900.0	35.5 900.0	35.1 900.0	34.6 900.0	34.1 900.0	33.5 900.0	32.9 900.0	32.2
	FM 0.93	0.93	50000	MACH DIV	7	0.657	0.654	0.651	0.648	0.644	0.640	0.636	0.631	0.626	0.621	0.615
	THRUST TO WEIGHT	1.025	MUM ALT.	МАСН	СX	0.224	0.224	0.223	0.221	0.220	0.218	0.216	0.214	0.212	0.210	0.208
		0.0	ING, MAXIMUM	EAS	CP CP	148.2 0.3168	145.4	142.1 0.3236	138.7	135.1	131.6	128.0 0.3358	124.4	120.9	117.7	114.3
DEG. F		1.000	INE RATII	PETF OR PEHF	THRUST	0.974 17394.	0.948 17148.	0.922 16961.	0.894 16788.	0.872 16629.	0.859 16465.	0.862 16316.	0.865 16161.	0.868 16001.	0.871	0.873 15645.
HRS. 59.0 DE	ENG. CODE	:3	ENG	ENG. CODE		-	;	_	-	 	-	- -	;-	;	⊢.	-
017	TURB TEMP (R)	2758.9	MILITARY	TURB. TEMP.	BHP	2726.0 8686.	2726.0 8528.	2726.0 8367.	2726.0 8202.	2726.0 8035.	2726.0 7867.	2726.0 7697.	2726.0 7526.	2726.0 7354.	2726.0 7183.	2726.0 7011.
TEMPERATURE	TAS (KTS)	0	I R/C AT	TAS (KTS)	FUEL FLOW	148.2 2 3915.	147.6 3825.	146.4 3735.	145.0 3645.	143.4 3557.	141.8 3469.	140.0 3383.	138.2 3297.	136.4	134.8 3130.	133.0 3048.
LETF = 0	PRES. ALT. (FT)		MAXIMUM	PRES. ALT. (FT)	,		1000.	2000.	3006.	4000. 1775.	5000.	6000. 1839.	7000.	8000.	9000. 1994.	10000.
ETF = 1.000 0.0 FI/MIN	WEIGHT (LBS.)	เก	CRUISE MITH	WEIGHT (LBS.)	LIFT	26156. 20916.	26148. 20979.	26141. 21061.	26134. 21154.	26127. 21259.	26120. 21370.	26113. 21496.	26106. 21630.	26099. 21773.	26092. 21917.	26085. 22079.
OR LAND AT PE CLIMB = 0		65.5	FOR NEXT C	FUEL USED (LBS)	1/1	65.5 12.204	72.8 12.159	79.9 12.125	87.0 12.066	94.0 11.978	101.1	108.1	115.1	122.1	129.1 10.994	136.1 10.691
HOVER, OR RATE OF CL	RANGE (N.M.)	•	OPT. ALT.	RANGE (N.M.)	CD	0.0	0.22	0.44	0.66	0.89	1.12	1.36	1.59	1.84	2.09	2.34 0.0889
TAKEOFF, Verfical	TIME (HRS)	0.017	CLIMB TO	TIME (HRS)	าว	0.017	0.019	0.020	0.022	0.024	0.026	0.028	0.030	0.032	0.035	n.037 0.951

7-85

ここのない はっている かない

951.	717.	094.	565.	438.	283.	103.	916.	726.	535.	343.	151.	962.	768.	634.	371.	184.	031.	851.	674.
40.0 6.	40.0 6.930	27.4 5	27.6 5. 0.930	25.9 5. 0.930	24.5 0.930	23.2 5.00.930	22.0 4	20.8 4	19.8 0.930	18.8 0.930	17.9 4	17.0 3	16.2 3	15.7 3.00.930	14.7 3	13.9 3 0.930	13.3 3	12.7 2.00.930	12.1 2 0.930
31.5	30.7 900.0	19.8 900.0	20.7°	19.4 900.0	18.2 900.0	17.0 903.0	16.0 900.0	14.9 900.0	14.0	13.1 900.0	12.2 900.0	11.4	10.6 900.0	10.0 900.0	9.1	8.4	7.8	900.0	9.006
9.609	0.602	0.621	0.625	0.628	0.629	0.631	0.632	0.633	0.633	0.634	0.634	0.635	0.635	0.635	0.635	0.636	0.636	0.636	1.346
0.207	0.205	0.235	0.247	0.258	0.267	0.276	0.285	0.293	0.3227	0.310	0.318	0.3088	0.335	0.3014	0.351	0.360	0.369	0.378	0.387
111.2 0.3486	108.1 0.3509	121.6 0.3564	125.5	128.3	130.3	131.9	133.3	134.4	135.3	136.1 0.3821	136.8	137.4	137.9	137.8	138.4	139.1 0.3990	139.3	139.5	139.7 0.4072
0.876	0.879	0.881	0.883 12235.	0.886	0.888 10888.	0.890 10324.	0.892 9805.	0.894 9322.	0.896	0.898 8444.	0.900 8040.	0.902 7658.	0.904	0.905 6968.	0.907 6624.	0.909 6295.	0.910 5994.	0.912	0.913 5430.
 	 	-	-	-	}- -	-	-	-	-	-	-	-	-	-	-	-	-	 	-
2/26.0	2726.0 6669.	.2726.0 6560.	2726.0 6418.	2726.0 6273.	2726.0 6126.	.2726.0 5979.	2726.0 5832.	2726.0 5686.	2726.0 5540.	2726.0 5396.	2726.0 5253.	2726.0 5112.	2726.0 4972:	2726.0	2726.0 4697.	2726.0 4565.	2726.0	2726.0	2726.0
131.4	129.8 2838.	148.4	155.7 2754.	161.7	167.0 2617.	171.9	176.5 2484.	181.0 2419.	185.4 2355.	189.7	193.9	198.1	202.4 2116.	205.8 2058.	210.5	215.3	219.6 1899.	223.9	228.3
11000. 2140.	12008.	13090.	14089. 2122.	15000.	16000.	17000.	18000.	19000.	20000.	21000.	22000.	23000.	24000. 2156.	25000.	26000.	2700 0. 2164.	28000. 2165.	29000.	30000.
26078. 22243.	26071.	26064.	26054. 24380.	26046.	26038. 24737.	26030. 24887.	26021. 25019.	26013. 25135.	26004. 25236.	25996. 25324.	25987.	25978. 25467.	25969. 25527.	25960. 25562.	25950. 25624.	25940. 25662.	25930. 25688.	25920. 25714.	25909. 25735.
143.2	150.3	157.5	166.7	175.0	183.2 11.640	191.5	199.8	208.2	216.7	225.4	234.2 11.815	243.2	252.3 11.838	261.7 11.817	271.1 11.840	281.0 11.861	291.2 11.863	301.7 11.866	312.5
2.60	2.87	3.15	3.61	4.04	4.51	5.01	5.55	6.12	6.74	7.40	8.11	8.87	9.69	10.57	11.50	12.53	13.65	14.84 0.0626	16.14
0.039	0.042	0.044	0.047	0.050	0.053	0.057	0.060	0.063	1 0.775	0.070 0.769	0.074	0.078	0.082	0.087	0.091	0.096	0.102	0.107	0.113

7-86

2508.																			
11.6		ETAP PROP		0.790	0.790	0.790	0.790	0.789	0.790	0.790	0.789	0.789				ETAP PROP		0.808	0.808
6.1 900.0		SPEC. RANGE (NNPP)	IP	30	.25520	.25585	.25649	.25713 630.0	.25778 630.0	.25841 630.0	.25905	.25937 630.0			•	SPEC. RANGE (NMPP)	d d	500	.09578
0.636		MACH DIV	7	0.659	0.659	0.659	0.659	0.659	0.660	0.660	0.660	0.660				MACH DIV	7	0.700	0.700
0.396	EG. F	МАСН	CT	0.2332	0.478	0.478	0.2319	0.476	0.478	0.478	0.476	0.476				МАСН	CI	$0.577 \\ 0.1209$	0.577
139.7	-51.5 DE	EAS	CP	168.4 0.6977	168.4 0.6975	168.4 0.6956	168.4 0.6937	167.8 0.6891	168.4 0.6900	168.4 0.6882	167.8 0.6836	167.8 0.6827				EAS	C.P	382.0 0.3368	382.0
0.915 5170.	ATURE =	PETF OR PEHF	200	0.606	0.606 2125.	0.604	0.603	0.599	0.599	0.598 2096.	0.594	0.594				PETF OR PSHF	2 4	0.994 6236.	0.994
- -	T EMP ER,	ENG.		۵.	۵.	۵.	۵	۵.	۵.	۵.	۵.	۵.			EG.F	ENG. CODE		-	-
2726.0 4053.		TURB. TEMP. (R)	1 CHF	2168.4	2168.1 2365.	2165.9 2559.	2163.6	2158.8 2337.	2159.2 2340.	2157.0	2152.2	2151.1 2315.	•		59.0 D	TURB. TEMP. (R)	J BHP	2610.0 9236.	2610.0
232.7 1750.	0 KNOTS	TAS (Kfs)	U	280.5 1100.	280.5 1099.	280.5 1096.	280.5 1094.	279.5 1087.	280.5 1088.	280.5	279.5 1079.	279.5			ERATURE =	TAS (KTS)	FUEL FLOW	3989.	382.0
31000.	0F 0.	PRES. ALT. (FT)	nRAG	31000.	31000.	31000.	31000.	31006.	31000.	31000.	31000.	31000.		PRES. ALT. (FT) 31000.	TEMP	PRES. ALT. (FT)	DRAG	10-	.0
25897. 25751.	TH HEADWIND	WEIGHT (LBS.)	IFT	25897. 25897.	25888. 25888.	25810. 25810.	25731. 25731.	25653. 25653.	25576. 25576.	25498. 25498.	25421. 25421.	25382. 25382.	FT.	WEIGHT (LBS.) 25382. 25382.	RATING	WEIGHT (LBS.)	LIFT	25382. 25382.	25278.
323.7 11.865	SPEED WITH	FUEL USED (LBS)	1/10	323.7 12.178	333.3 12.178	411.6 12.174	489.8 12.170	567.8 12.175	645.6 12.161	723.1 12.156	800.5	839.1 12.160	0.	FUEL USED (LBS) 839.1	ENGINE R	FUEL USED (LBS)	1/1	839.1	943.6
17.56 0.0625	BEST RANGE	RANGE (N.M.)	CD	17.56	20.00 0.0421	40.00 0.0420	60.00	80.00	100.00	120.00	140.00 9.0417	150.00	ALTITUDE TO	RANGE (N.M.) 156.00 150.00	NORMAL	RANGE (N.M.)	CD	150.00	160.00
0.119	CRUISE AT	TIME (HRS)	CL	0.119	0.128	0.199	0.271	0.342	0.413	0.485 0.506	0.556	0.592	TRANSFER	TIME (HRS) 0.592 0.592	CRUISE AT	TIME (HRS)	CL	0.592	0.618

1,000 1,00								TIP	900. 900. 900. 900.	,				•						
180 10 10 10 10 10 10 10		.80	.80	.80	.80	.80			24444 111111111111111111111111111111111		RO		.80	.80	.80	.80	.80	.80	.80	,
180 180	00.	0957	0958 00.0	0958 00.0	0958 00.0	0958		=	000000 000000 000000		PEC. ANGE NIIPP	TIP	0958 00.0	0958 00.0	0958 00.0	0.00	0959 00.0	0959 00.0	0959	
180 180	.25	.25	. 25	.25	.25	.25			0000		⋖∺	•7	.25	. 25	.70	. 25	. 25	. 25	.25	
180,000 112,000 112,000 125,	.120	0.57	0.57	0.57	0.57	0.57		HRUS TO	7000000 7000000 7000000000000000000000		MACH	CT	0.57	0.57	0.57	0.57	120	0.57	0.57	
180 180	.336.	82.1	82.2	82.3	82.3	82.4 .336		E		•	⋖	d d	82.5	32.5	82.6	82.6	82.7	82.8	82.8	
10.0240	23	. 99	. 99	. 59	. 99	. 99	EG.	ET OR		!	EH EH	HRUS	. 994 . 994 6233	. 99	.99	. 99	.99	.99	. 99	
180.00		J		- -	-	-	RS. 9.0	NO	233333		ဖြေ		-	-	-	-	-	-	- -	
180 115, 4 25069 6241 3989 6260 180 3821 382 3	23	610. 923	610. 923	610.	610.	610. 923	0.083 URE =	URB	5225. 5222.	39.0 D	URB EMP R)	Δ	2610. 924	610. 924	610. 924	610. 924	610. 924	610. 924	610. 924	
180.00 1152.4 25069. 6241. 180.00 1152.4 25069. 6240. 180.00 13.954 24860. 6239. 220.00 13.954 24651. 6239. 220.00 1569.9 24651. 6239. 240.00 1778.7 24442. 6238. 250.00 1778.7 24442. 6238. 250.00 1778.7 24442. 6238. 250.00 1883.0 24338. 6238. 250.00 1883.0 24338. 6238. 250.00 1934.5 24235. 00. 250.00 2037.5 24132. 00. 250.00 2037.5 24132. 00. 250.00 2037.5 24132. 00. 250.00 2037.5 24132. 00. 250.00 2037.5 24132. 00. 250.00 2037.5 24132. 00. 250.00 2037.5 24132. 00. 250.00 2037.5 24132. 00. 250.00 2037.5 24132. 00. 250.00 2244.7 23976. 6237. 250.00 2244.7 23976. 6237. 280.00 2653.3 23559. 6236. 280.00 2653.3 23559. 6236. 320.00 2661.9 23559. 6236. 320.00 3.778 23559. 6236. 320.00 3079.1 23142. 6235. 350.00 3079.1 23142. 6235. 350.00 3083.4 23038. 6234. 350.00 3083.4 23038. 6234.	98	82. 989	82. 989	82.	82.	32. 990	.0 FOR TEMPERA	AS	x	RATURE	AS KTS	EL FL	382.5 3990.	82.	82.	82.	82. 991	82.	82.	
0.0240 4.050 25278. 180.00 1152.4 25069. 200240 1561.2 24860. 2220.00 1561.2 24860. 2220.00 1561.2 24860. 2240.00 1778.7 24452. 250.00 1778.7 24442. 250.00 1778.7 24442. 250.00 1883.0 24338. 250.00 1883.0 24338. 250.00 1956.0 24338. 250.00 2037.5 24387. 250.00 2037.5 24387. 250.00 2037.5 24387. 250.00 2040.4 24338. 250.00 2244.7 23376. 260.00 2244.7 23376. 260.00 2463.3 23768. 260.00 2463.3 23768. 260.00 2453.3 23768. 260.00 2463.3 23768. 260.00 2245.3 23768. 260.00 2245.3 23768. 260.00 2245.3 23768. 260.00 2245.3 23768. 260.00 2245.3 23768. 260.00 2245.3 23768. 260.00 2245.3 23768. 260.00 2245.3 23768. 260.00 2245.3 23768. 260.00 2661.9 23559. 260.00 2661.9 23559. 250.00 2870.5 233142.	24	240	23	23	238	238	ETF = (RES LT.		TEMPE	PRES. ALT. (FT)	90	37	237	236	236	235	235	234	
180.00 1152.4 0.0240 4.017 0.0240 3.951.2 0.0240 3.951.2 0.0240 3.951.2 0.0240 3.951.2 0.0240 3.951.2 0.0240 3.951.2 0.0240 3.951.2 0.0240 3.951.2 0.0240 3.951.2 0.0240 3.951.2 0.0240 3.951.2 0.0240 3.951.2 0.0240 1934.5 0.250.00 1934.5 0.250.00 2037.5 0.250.00 2037.5 0.250.00 2140.4 0.0240 3.861.9 0.0240 3.78 0.0240 3.861.9 0.0240 3.78 0.0240 3.78 0.0240 3.78 0.0240 3.78 0.0240 3.77 0.0240 3.77 0.0240 3.77 0.0240 3.77 0.0240 3.77 0.0240 3.77 0.0240 3.77 0.0240 3.77 0.0250 3.77 0.0250 3.77 0.0250 3.77 0.0250 3.77 0.0250 3.77 0.0250 3.77 0.0250 3.77 0.0250 3.77 0.0250 3.77 0.0250 3.77 0.0250 3.77 0.0250 3.77 0.0250 3.77 0.0250 3.77 0.0250 3.77 0.0250 3.77 0.0250 3.77 0.0250 3.77 0.0250 3.77	5278	5069 5069	4860	4651 4651	4442	4338 4338	TF = 0.71 .0 FT/MIN	EIGH	LBS.) 24238 24238 24235 24132	ATING	£	IFT	4081 4081 4081	3976 3976	3768 3768	3559 3559	3351 3351	3142 3142	3038 3038	
180.00 1.80.00 0.0240 0.0239	. 05	152. 4.01	561. 3.98	569. 3.95	778. 3.91	3.90	LAND AT P IMB =	UEL	8883. 9883. 986. 087.	INER	EL BS		140. 3.86	244. 3.84	453. 3.81	661. 3.77	870. 3.74	079. 3.71	183. 3.69	
A	.024	80.0 .024	00.0	20.0 .024	40.0 .024	50 0 .024	OVER, OR ATE OF C	ANGE	250.00.00.00.00.00.00.00.00.00.00.00.00.0		ANGE N.M.	CD	50.0 .024	60.0	80.0 .024	00.0	20.0	40.0	50.0 .023	
7-88	50	67 09	72 09	77	82 09	85 09	AKEOFF ERTICA	IME	0.853 0.853 0.887 0.987 0.920	CRUISE A	TIME (HRS)	ರ	93 09	96	001	90	12 09	17 08	19 08	·

	C (b)		. 68	12.	87.	29,	53.	73.	. 92	57.	32.	02.	. 99	24.	74.	33.	. 99	07.	38.
	25		102	102	100	66	97	95	93	91	8	87	84	82	79	77	74	72	6 9
	THETA _F (DEG)	ETAP	40.0	40.0	40.0	40.0 0.930	40.0 0.930	40.0 0.930	40.0 0.930	40.0 0.930	40.0	40.0	40.0	40.0	40.0 0.930	40.0	40.0 0.930	40.0 0.930	40.0
TT.	GAMMA (DEG)	VIIP		38.5 900.0	38.2 900.0	38.0	37.7	37.4 900.0	37.0 900.0	36.6 900.0	36.2	35.7	35.2 900.0	34.7 900.0	34.1 900.0	33.5	32.7 900.0	32.0 900.0	31.2 900.0
. 50000	MACH DIV	7	0.672	0.670	0.668 9.948	0.666	0.663	0.660	0.657	0.654	0.650	0.646	0.641	0.636	0.631	0.626 0.816	0.620	0.613	0.606
MUM ALT	MACH	CT	0.246	0.246	0.245	0.243	0.241 0.3328	0.239	0.237	0.235	0.232	0.229	0.227	0.224	0.222	0.219	$0.217 \\ 0.4130$	0.214	0.212
:G, MAXIMUM	EAS	CP	152.6 0.3189	159.6 0.3225	156.1 0.3258	152.3 0.3290	148.3 0.3321	144.4 0.3351	140.4	136.3 0.3406	132.3	128.3 0.3457	124.4 0.3481	120.6 0.3504	116.9 0.3525	113.4	109.8	106.5 0.3585	103.2 0.3603
NE RATIEG	PETF OR PEHF	⊃a	981 962	0.954 15731.	0.928 15548.	0.903 15393.	0.875 15250.	0.859 15101.	0.862 14965.	0.865 14842.	0.868 14714.	0.871 14582	0.873 14447.	0.876	0.879 14164.	0.881 13999.	0.884 13850.	0.886 13679.	0.888 13506.
r ENGINE	ENG. CODE		- -)	 -	-	 -	-	 	-	-	-	-	-	-	-	-	-	-
MILITARY	TURB. TEMP. (R)	1 BHP	2726.0 8745.	2726.0 8587.	2726.0 8424.	2726.0 8257.	2726.0 8088.	2726.0 7917.	2726.0 7745.	2726.0 7571.	2726.0 7397.	2726.0 7223.	2726.0 7048.	2726.0 6874.	2726.0 6701.	2726.0 6528.	2726.0 6356.	2726.0 6185.	2726.0 6016.
M R/C AF	TAS (KTS)	FUEL FLOW	162.6 3932.	162.0 3841.	160.8	159.2 3660.	157.4 3570.	155.6 3482.	153.6 3395.	151.4 3309.	149.2 3224.	147.0 3140.	144.8	142.6 2975.	140.4 2895.	138.4 2816.	136.2 2738.	134.2 2662.	132.2 2586.
MAXIMU	PRES. ALT. (FT)	DRAG	591	1000.	2000.	3000. 1549.	4000.	5000. 1531.	6000. 1529.	7000.	8900. 1542.	9000. 1559.	10000.	11000.	12000. 1658.	13000.	14000. 1767.	15000.	16000.
CRUISE WITH	WEIGHT (LBS.)	IFT	23038. 17995.	23031. 18034.	23025. 18083.	23019. 18143.	23013. 18210.	23007. 18281.	23001. 18360.	22995. 18451.	22989. 18548.	22983. 18653.	22977. 18766.	22971.	22964. 19019.	22958.	22952. 19305.	22946. 19459.	22940. 19624.
FOR NEXT C	FUEL USED (LBS)	1/10	3183.4	3189.7	3196.0	3202.2 11.712	3208.3 11.845	3214.4	3220.5 12.009	3226.5 12.045	3232.5 12.032	3238.6 11.967	3244.6 11.851	3250.6 11.685	3256.6 11.469	3262.7 11.207	3268.7 10.924	3274.9 10.590	3281.0 10.227
OPT. ALT.	RANGE (H.M.)	CD	350.00 0.0338	350.21 0.0348	350.41 0.0361	350.62 0.0376	350.83 0.0393	351.05 0.0413	351.26 0.0436	351.48 0.0464	351.70	351.92 0.0532	352.15 0.0575	352.39 0.0625	352.62 0.0683	352.87 0.0747	353.12 0.0824	353.37	353.63 0.1014
CLIMB TO	TIME (HRS)	บ	1.198	1.200	1.261	1.203	1.205	1.206	1.208	0.558 0.558	1.212	1.214	1.215	1.217	1.219	1.222	1.224	1.226	1.228
									7-0	, ,						_			

Wanger!

5290.	5652.	5536.	5363.	5169.	4963.													
27.8	27.4	25.8	24.3	22.9	21.7		ETAP PROP		0.769	0.769	0.769	0.769	0.769	0.769	0.769	0.759	0.769	0.769
20.4 900.0	20.7	19.5	18.2 900 J	17.0	15.9 900.0		SPEC. RANGE (NMPP)	I P	30	.27368	.27438 630.0	.27508 630.0	.27578 630.0	.27646 630.0	.27715 630.0	.27784 630.0	.27852 630.0	.27852 630.0
0.622	0.627	0.629	0.631	0.633	0.634 1.058		MACH DIV	っ	0.659	0.659	0.659	0.659	0.660	0.660	0.660	0.660	0.660	0.660
0.241	0.254	0.266 0.3582	0.276	0.285	0.3351	EG. F	МАСН	CT	0.368	0.368	0.368 0.1489	0.368	0.368	0.368	0.368	0.368	0.368	0.368
114.9	119.0	121.7	123.7	125.3	126.6 0.3812	-19.5 D	EAS	CP	158.4 0.3675	158.4	158.4 0.3662	158.4 0.3652	158.4 0.3642	158.4 0.3632	158.4 0.3621	158.4 0.3611	158.4 0.3601	158.4 0.3601
0.890	0.892 10858.	0.895 10186.	0.897	0.899	0.900 8602.	tature =	PETF OR PEHF	2.5	0.680 1879.	0.679	0.677	0.675	0.574	0.672	0.670	0.668	0.666	0.666 1842.
-	-	-	 	-	· 	FEMPER	ENG. CODE		٥	۵.	۵.	۵	۵	۵	۵	۵	۵	۵.
2726.0	2726.0 5767.	2726.0 5626.	2726.0 5484.	2726.0 5342.	2726.0 5201.	·	TURB. TEMP.	A BHP	2350.7	2350.2 171\$.	2347.6	2345.0	2342.5	2340.0	2337.5	2335.0 1690.	2332.5	2332.5 1685.
149.7 2528.	157.6	163.9	169.5	174.6 2275.	179.5	0 KNOTS	TAS (KTS)	، ب	224.6 821	224.6	224.6	224.6	224.6	224.6	224.6	224.6 808.	224.6 806	224.6 806.
17000. 1852.	18000. 1847.	19000.	20000.	21000.	22000.	0F 0.	PRES. ALT. (FT)	RAG	22000. 1880.	22000.	22000.	22000.	22000.	22000. 1858.	22000.	22000.	22000.	22000. 1843.
22934.	22926. 21443.	22919. 21609.	22911. 21766.	22904. 21905.	22897. 22026.	WITH HEADWIND	WEIGHT (LBS.)	IFT.	(LBS) 22897. 22897.	22883. 22883.	22810. 22810.	22737. 22737.	22665. 22665.	22592. 22592.	22520. 22520.	22448.	22376. 22376.	22376. 22376.
3287.2 11.608	3295.2 11.610	3302.5 11.684	3309.7 11.741	3316.9	3524.3	SPEED	FUEL USED (LBS)	L/D	3324.3	3337.8	3410.9	3483.8 12.168	3556.5 12.163	3629.0 12.158	3701.4 12.154	3773.5	3845.5 12.144	3845.5 12.144
353.91 0.0789	354.35	354.78 0.0702	355.25 0.0681	355.75 0.0666	356.29 0.0654	T BEST RANGE	RANGE (N.M.)	CD	356.29 0.0421	360.00 0.0421	380.00 0.0420	400.00 0.0419	420.00	440.00 0.0416	460.00	480.00	500.00	500.00 0.0413
1.231	1.234	1.237	1.240	1.243	1.246	CRUISE AT	TIME (HRS)	CL	1.246	1.265 0.513	1.352	1.441	1.530	1.619	1.708	1.797	1.886	1.836

8-93 V A S C O M P II V/STOL AIRCRAFT SIZING & PERFORMANCE COMPUTER PROGRAM

MISSION PERFORMANCE DATA

Ë
1000.
10
FITUDE
AL
RANSFER
₽

		R/C (FPM)		3050.	3052.
		THETA -F (DEG)	ш	4.7	4.7
		GAMMA (DEG)	VTIP (FPS)	5.8	5.8
		MACH DIV	7	0.660	0.660
		МАСН	CT	0.455	295.5 0.455 0.660 0.3457 0.1818 1.769
		EAS	c _P	295.6 0.3455 f	295.5 0.3457
		PETE OR PEHF	THRUST	1.000	1.000
	NG	ENG. CODE		3	3
	KIMUM ENGINE RATING	TURB. TEMP.	A BHP	2691.9 9199.	2692.4
	IMUM EN	TAS (KTS)	FUEL FLOS	300.0 2691.9 3993. 9199	300.0 3993.
PRES. ALT. (FT) 1000.	AT MAX	PRES. ALT. (FT)		1000.	1020. 6469.
MEIGHT (LBS.) 26221. 26221.	CONSTANT TAS	WEIGHT (LBS.)	LIFT	26221. 26089.	26221. 26088.
FUEL USED (LBS) 0.0	FT. WITH	FUEL USED (LBS)	27	0.0	4.033
KANGE (N.M.) 0.0	1020.	RANGE (N.M.)	CD	0.0	0.03
T.) ME (HRS.) 0.0 0.0	CL 148 TO	TIME (HRS)	ಕ	0.0	000.0 7-92

MISSION FUEL REQUIRED = RESERVE FUEL REQUIRED = TOTAL

SUCCESSFUL

CASE 0 H END

Only those inputs which are of prime interest are discussed below. This sample case illustrates the use of the General Performance option (SGTIND=11.), and the Figure of Merit map. A copy of the output follows the input.

VASCOMP II - DESCRIPTION OF SAMPLE CASE 3

VARIABLE	LOCATION	VALUE ASSIGNED	REMARKS	
General Inform	ation Shee	<u>t</u>		
OPTIND	0001	1.0	Sizing run	
TNIRPK	0002	1.0	Print indicator-opti	onal print
DRGIND	0003	0.0	Program calculates c	compressibility
OSWIND	0004	1.0	Program calculates i factor	nduced drag
FDMIND	0006	0.0	Size fuselage for parequirements	ssenger
WDMIND	0007	0.0	Wing not dependent o	n propeller
HTIND	8000	1.0	Input tail volume co	officients
VTIND	0009 .	1.0	input tail volume co	efficients
FIXIND	0010	1.0	Program sizes engine	·s
ENGIND	0011	0.0	Turboshaft primary e	ngines
LFTIND	0013	0.0	No lift engines spec	ified
WGo	0014	35000.	1st guess at design	gross weight
h _o	0015	0.0		Normally 0. except for
R _o	0016	0.0	Starting range	partial mission
to	0017	0.0	Starting time	analysis
HOPTIN	0018	0.0	Cruise desired at sp altitude	ecified
VLMIND	0019	0.0	Airspeed limited to EAS at altitude of l or less	
M _{mo}	0020	0.681	Maximum operating ma	ch number
v_{mo}	0021	450.	Maximum operating EA	AS knots
V _{DIVE}	0022	450.	Design dive speed	

VARIABLE	LOCATION	VALUE ASSIGNED	REMARKS	
M _{LF}	0023	3.0	Maneuver load factor	
к ₁	0024	1.0	Factor on mission fuel b to give reserve fuel, i. would give 10% reserve	
$sw_{\mathtt{F}}$	0025	0.	Fixed fuel increment for reserves or other use	•
K _{FF}	0026	1.068	Use nominal engine fuel	
SGTIND	0027 0028 0029 0030 0031 0032 0033 0034 0035 0036 0037 0038 0039 0040 0041	2. 4. 9. 2. 8. 9. 4. 6. 0. 4. 0. 9. 4. 11. 100.	TAKEOFF CRUISE TRANSFER ALTITUDE TAKEOFF CHANGE PAYLOAD TRANSFER ALTITUDE CRUISE LOITER END OF MISSION CRUISE END OF MISSION TRANSFER ALTITUDE CRUISE END OF MISSION TRANSFER ALTITUDE CRUISE END OF MISSION GENERAL PERFORMANCE END OF CASE	SEQUENCE OR DESIGN MISSION
Aircraft Dimer	0101	<u>eet</u> 6.0	Wing aspect ratio	
1 _w	0103	0.0	Wing incidence angle to horizontal datum (degree	
(L/ _C) _R	0104	.18	Root thickness-chord rat	io
(L/ _C) _T	0105	.18	Tip thickness-chord rati	.0
W _G /s	0106	100.	Wing loading at design gweight	ross
Λ c/4	0107	0.	Quarter chord mean sweep degrees	angle,
λ	0108	1.0	Taper ratio (tip chord/r	coot chord)
$^{ m AR}_{ m HT}$	0109	4.0	Horizontal tail aspect r	atio

VARIABLE	LOCATION	VALUE ASSIGNED	REMARKS
^a H	0110	.15	Vertical position of horizontal tail on vertical tail, spans above vertical tail root chord. Valve is 0. on or below root chord, 1.0 for "T" tail
1 _{TH}	0112	22.67	Horizontal tail arm, FT
(t/c)HT	0112	.15	Horizontal tail mean thic ness/chord ratio
$\overline{\mathtt{v}}_{\mathtt{H}}$	0113	1.05	Horizontal tail volume coefficient
$^{\lambda}$ H	0114	.4	Horizontal tail taper ratio
Γ	0116	.1	Prop blade attachment distance from centerline of hob (fraction of prop radius)
YCL	0117	9.1666	Clearance from inboard prop tip to inboard prop tip across fuse-lage (feet)
ζ ₁	0118	٥	Prop over prop overlap (fraction of radius)
ξ ₂	0119	1.0	Prop over wing tip overlap (fraction of radius)
∆s _{wet} ∕s _w	0120	0.	Increment in wetted are a for landing gear or other protusions
l _f .	0122	46.5	Fuselage length (feet)
1 _{RW}	0126	15.	Length of ramp well or other strengthened fuselage portion (e.g., rear engine attachments). Used to compute fuselage weight penalty.
s _F	0127	999.4	Fuselage wetted area (square feet)
^ω F	0128	7.1666	Width of fuselage (feet)
$\mathtt{AR}_{\mathbf{VT}}$	0129	1.153	Vertical tail aspect ratio
l _{TV}	0130	20.	Vertical tail arm
(t/c)VT	0131	.15	Vertical tail thickness/chord ratio

VARIABLE	LOCATION	VALUE ASSIGNED	REMARKS						
$\overline{\nabla}_{V}$	0132	.128	Vertical tail volume coefficient						
ν λ _v	0133	.325	Vertical tail taper ratio						
Y Mg	0135	0.	Spanwise distance of landing						
A D MG	0136	.904	gear from mean spanwise distance of cruise engine from wing root in semispans. Used in wing relief term.						
z ₁	0139	0.0	Primary engine nacelle constants						
z ₂	0140	0.0							
Aircraft Propu Engines - Prim	dsion Info ary Engine	rmation Re	quired When Using Turboshaft						
η_{P}^{IND}	0200	0.0	Program calculates prop per- formance						
Cycle No.	0201	1.82	Cruise engine selection						
знр*	0202	10000.	Maximum static sea level horsepower						
иp	0204	4	Number of cruise engines						
η _T	0206	.97	Transmission efficiency						
h _{TO}	0207	0.	Takeoff pressure altitude for engine sizing						
n	0208	1.1955	Thrust to weight for engine sizing - takeoff condition						
ΔTin _{TO}	0209	30.8	Increase in temperature above standard for engine sizing						
N _{II} /N _{IIMAX}	0210	.943	Power turbine operating speed for engine sizing						
N _{PO}	0211	0.0	Number of primary engines shut down during engine sizing						
N _{LO}	0212	0.0	Number of lift engines shut down during engine sizing						
N _R	0223	2.	Number of rotors						

The same

VARIABLE	LOCATION	VALUE ASSIGNED	REMARKS
V _{TIP}	0224	775.18	Prop tip speed
W _{G/A}	0225	15.0	Disc loading
DIA .	0226	35.0	Prop diameter
AF	0228	95.02	Activity factor per blade
BLDN	0229	3.0	Number of blades
c _L i	0230	.46	Induced lift coefficient of wing
n_{P2}	0232	.736	Takeoff, hover, land efficiency
η _{P3}	0233	.837	Climb efficiency
n _{P4}	0234	.700	Descent efficiency
No. Pairs n _{P4} Table	0245	9.0	Number of pairs in η_{P4} efficiency table
	0235 1236 1237 0238 0239 0240 0241 0242 0243	0.0 0.1 0.2 0.3 0.4 } 0.5 0.6 0.7	Values of mach number
n _{P4}	0246 0247 0248 0249 0250 0251 0252 0253 0254	0.672 0.700 0.718 0.738 0.750 } 0.760 0.765 0.758 0.751	Values of η_{P4}
XMSNIND	0257	1.0	Transmission sized at either hover or cruise power required (the most critical is chosen)
SHP _{XM} /SHP*	0258	0.95	Transmission sized at 95% power chosen
∆SHP _{ACC}	0259	200.0	Accessory horsepower

VARIABLE	LOCATION	VALUE ASSIGNED	REMARKS						
SHP _E /SHP*	0260	0.9	Engine sized for 90% power; oversized by factor of 1/.9 = 1.111						
V _{R/C}	0261	500.0	Engine sized at 500 ft/min vertical rate of climb						
K _{RC}	0262	2.0	Vertical climb constant choosen for this tilt rotor aircraft						
Aircraft Aerod	lynamics In	formation	Sheet						
C _{DVTi}	0301	0.0	Profile drag of vertical tail						
C _{DHTi}	0302	0.0	Profile drag of horizontal tail						
$c_{ extsf{DNi}}$	0303	0.0	Profile drag of primary engine nacelles						
^C DLNi	0304	0.0	Profile drag of life engine nacelles						
ΔCD	0305	.16205	Profile drag increment						
Δfe FT ²	0307	6.4151	Increment in equivalent flat plat area parasite drag of fuselage (ft ²)						
No. of Pairs in Table	0308	2.0	Number of C _L -C _{DWi} Pairs in locations 317-330 and 335-342						
K _{LN}	0311	0.0	Lift engine nacelle multiplicative drag factor						
$K_{\mathbf{W}}$	0312	1.0	Wing multiplicative drag factor						
K _{HT}	0316	0.0	Horizontal tail multiplicative drag factor						
c _{L1}	0317	0.0	Wing lift goofficient						
C _{L2}	0318	10.	Wing lift coefficient						
(R _e / _l) _i	0330	.215x10 ⁶	Mean Reynolds number per foot for mission						
$c_{1\alpha}^{-1}$	0331	6.28	Two dimensional wing lift coefficient slope						

VARIABLE	LOCATION	VALUE ASSIGNED	REMARKS
α _{LO} DEG.	0332	-2.8	Angle of attack where the lift equals zero
(X/c) _{ps}	0333	0.45	Position of peak suction location on wing
(X/c) _{max} c/c	0334	.45	Position of maximum thickness on wing
C _{DWi} (1)	0335	0.	Wing induced drag coefficient
C _{DWi} (2)	0336	0.	
Aircraft Weigh	t Informat	ion Sheet	
W _{FE} LBS	0401	5622.	Weight of fixed equipment, in LBS.
W _{FUL} LBS	0402	1550.	Weight of fixed useful load in LBS.
$\mathtt{W}_{\mathtt{PL}}\mathtt{LBS}$	0403	5630.	Weight of payload in LBS.
Kcc	0404	26.	Cockpit controls weight factor
K _{FW}	0405	.012	Fixed wing controls weight factor
K _H	0406	40.	Constant for flight control hydraulics
K _{\$A\$}	0407	75.	Stability augmentation system (SAS) weight factor, usually in range of 20-100 LBS
K _{TM}	0408	.015	Tilt mechanism weight factor
Kuc	0409	. 3	Upper control weight factor
K ₁₅	0410	1.0	Cockpit controls weight factor
K ₁₆	0413	1.206	Upper controls weight factor
K ₁₇	0412	1.25	Hydraulics weights factor
K ₁₈	0413	1.0	Fixed wing controls weight factor
к ₁₉	0414	1.0	SAS weights factor
K ₂₀	0415	1.0	Tilt mechanism weights factor ·

VARIABLE	LOCATION	VALUE ASSIGNED	REMARKS							
$^{\Delta W}$ FC	0417	0.0	Flight controls incremental group weight							
$\Delta W_{\mathbf{p}}$	0418	100.	Incremental propulsion group weight							
ΔW _{S'} r	0419	1300.	Structures group incremental weight, in LBS							
KB	0420	170.0	Body weight factor							
K _{LG} .	0422	.04	Landing gear weight factor, percentage of gross weight							
K _{MG}	0423	.8	Main landing gear weight factor							
K _{TL}	0424	1.15	Tail load factor							
$\kappa_{\overline{WW}}$	0426	220.	Detailed wing weight factor, adjusts the constant 220 in							
		•	W _W = 220a (k): 582 depending on the complexity of the con- trol surfaces							
κ _Υ	0427	. 18	Pitch radius of gyration, feet							
KZ	0428	.28	Yaw radius of gyration, feet							
к ₈	0433	1.02	Wing weight multiplicative factor							
к ₉	0434	0.85	Horizontal tail weight factor							
K ₁₀	0435	0.85	Vertical tail weight factor							
K _{DS}	0453	238.6	Drive system weights constant							
K _{FS}	0454	.15	Fuel system weights factor							
K _{PEI}	0456	.37 .	Primary engine weight factor							
K _{R/P}	0457	12.71	Prop/Rotor weights factor							
K _{VT}	0458	0.9675	Adjustment for variations in drive system weight							
к ₂	0459	0.92	Prop group weight factor							
к ₃	0460	0.93	Drive system weight factor							

VARIABLE	LOCATION	VALUE ASSIGNED	REMARKS						
Takeoff, Hover	and Landi	ng Informa	tion Sheet						
TOLIND	0601 0602	3.	Takeoff and land sharing equal fraction of thrust from primary and lift engines						
ATMIND	0611	0.	Takeoff standard day						
ATMIND	0612	1.	Landing standard day						
PEHF	0621	1.0	Takeoff engine fractional power = 1.0						
ΔT _{in}	0632	43.2	Incremental temperature above standard						
$n_{\mathbf{T}}$	0652	1.1221	Thrust to weight						
Δt _H	0661	.02083	Takeoff compute in 2 minute increments						
Δt _H	0662	.0167	Landing compute in 1 minute increments						
N _{II} /N _{IIMAX}	0671	. 943	Power turbine speed ratio - takeoff						
N _{II} /N _{IIMAX}	0672	. 943	Power turbine speed ratio - land						
t _H	0681	.041667	Takeoff in 2.5 minutes						
^t H	0682	.0333	Landing in 2.0 minutes						
V _{R/C}	2321 2322	500.0 300.0	Takeoff, hover, or land at specified vertical rate of climb						
Cruise Informa	tion Sheet	,							
CRSIND	0801 0802 0803 0809	4. 4. 1.0 4.0	Cruise indicator						
Headwind -	0811 0812 0813 0814	0.0 0.0 0.0 0.0	Cruise headwind						

VARIABLE	LOCATION	VALUE ASSIGNED	REMARKS
ATMIND	0821 0822 0823 0824	0.0 0.0 0.0 0.0	Cruise @ standard day
ΔR	0831 0832 0833 0834	40. 40. 1.	Increment for calculations
R _{MAX}	0851 0852 0853 0854	200. 400. 1.0	Range at end of cruise calcu- lations.
POWIND	0861 0862 0863 0864	2.0 2.0 2.0 2.0	Cruise limited by normal power
N _{PSD} CR	0871 0872 0873 0874	0.0 0.0 0.0 0.0	Number of cruise engines inoperative during cruise
N _{II} /N _{IIMAX}	0881 0882 0883 0884	.6601 .6601 .6601	. Power turbine operating ratio
ΔC _D CRUISE	0891 0892 0893 0894	0.0 0.0 0.0	No additional aircraft drag during cruise
Loiter Informa	tion Sheet	;	
LTRIND	1001	2.0	Loiter for reserve fuel calcu- lation
$^{\Delta t_L}$	1011	0.111	Calculate performance in 0.111 hours
ATMIND	1021	0.0	Standard atmosphere
t _L	1031	0.333	Loiter for .333 hours
N _{PSD}	1051	0.0	Loiter with U engines inopera- tive

		VALUE										
VARIABLE	LOCATION	ASSIGNED	REMARKS									
N _{II} /N _{IIMAX}	1061	0.6601	Power turbine operating speed									
ΔC^{D}	1071	0.0	No additional aircraft drag during loiter									
Transfer Altit	ude Sheet		·									
h _{final}	1111 1112 1113	3000. 0.0 20000.	Transfer aircraft to specified altitude									
Change in Fayl	oad Weight	Sheet										
$\Delta W_{ t PL}$	1131	-5520.	Remove 5520 pounds from aircraft									
^t pw	1141	.00833	Remove weight in 30 seconds									
General Perfor	mance Info	rmation Sh	eet									
GWIND	2201	1.0	Input A gross weight									
ΔGW	2211	0.0	Aircraft performanced based on gross weight									
ATMIND	2221	0.0	Standard atmosphere									
C _{LWING}	2231	0.8	Wing lift coefficient									
ΔC _D CRUISE	2251	0.005	Additoinal drag coefficient added to baseline aircraft									
ALT.	2261	1000.	Altitude in feet									
T/W	2271	1.122	Thrust to weight ratio									
OT (XAMII ^N II ^N)	2281	1.0	Power turbine operating speed for takeoff									
ΔV	2291	20.0	Performance velocity printout in knots									
V _{MAX}	2301	225.0	Maximum cruise velocity in knots									
(N _{II} /N _{IIMAX}) _{CR}	2311	1.0	Power turbine operating speed for cruise									

VARIABLE	LOCATION	VALUE ASSIGNED	REMARKS							
Run 2			J							
η _P IND	0200	1.0	Input propeller map							
No. of $C_{\overline{\mathbf{T}}}/\sigma$.	2351	8.0	Number of C_{T}/σ in Figure of Merit table							
C _T /σ	2352 2353 2354 2355 2356 2357 2358 2359	0.0 0.0756 0.1667 0.3044 0.5322 0.7611 1.333 1.944	Values of $C_{ m T}/\sigma$							
No. of M _{TIP}	2362	3.0	Number of M_{TIP} in Figure of Merit table							
M _{TIP}		0.5 0.7 0.9	Values of M _{TIP}							
FMER	2369 2370 2371 2372 2373 2374 2375	0.0 0.107 0.267 0.458 0.686 0.753 0.721 0.500	Values of FM corresponding to M _{TIP} = 0.5							
	2379 2380 2381 2382 2383 2384 2385 2386	0.0 0.107 0.267 0.458 0.686 0.753 0.721	Values of FM corresponding to M _{TIP} = 0.7							
	2389 2390 2391 2392 2393 2394 2395 2396	0.0 0.107 0.267 0.450 0.686 0.753 0.721 0.500	Values of FM corresponding to M _{TIP} = 0.9							

			VALG		11
	HIS CASE	(MAX. =5)	VAL3		04400000000000000000000000000000000000
ROGRAM B-93	PROGRAM B-93 THE INPUT DECK FOR T FFT	T TARIING WITH LOC. 01 02	VAL2	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
V A S C O M P III CRAFT SIZING & PERFORMANCE COMPUTER IS A CARD BY CARD REPRODUCTION OF T	GIVEN ON INPUT SHEE NIIAL INPUT VALUES SEPONDING 10 LOC. ESPONDING 10 LOC.+00 ESPONDING 10 LOC.+00	VALI	20000 20000 20000		
	O LOCATION NUMBER E NUMBER OF SEQUE FOR VARIABLE CORRE CORRE CORRE	VAL	66000000000000000000000000000000000000	11. 388000 11. 388000 12. 388000 13. 388000 14. 388000 16. 388000 16. 388000 17. 388000 18. 388000 18. 388000 19. 388000 19. 388000 19. 388000 19. 388000 19. 3880000 19. 38800000000000000000000000000000000000	
V/STOL AIR	FOLLOWING	SPONDS T S FOR TH S VALUE VALUE	NUM	ប ^{ុក} សលសលសលសល	្តាសាស្ត្រស្ត្រស្ត្រស្ត្រស្ត្រស្ត្រស្ត្រ
\ \	THE F	LOC. CORRE NUM STAND VAL EQUAL VALI VALZ	.001	**************************************	

1.1540 2150.0 3550.0	0655	5900 7480	9100	.019	.155	274	0000.	0 6	0 0 0	2.0000				. 15000	0.	20.000					0.	.66010		.50000))	.75000	500.00	.16205	0.	c			
1.1540 1900.0 3200.0	400044490	5900	766U 9050	.014 .087	145	.250	0000	5000	.000	0000.6	. 000			4,0000	000	1.1530					. 94300	35.000		.40000)))	.73800	0006	0.	0.	00083			
1.1540 1750.0 2900.0	2000	5900	7613	.009	138	240	0		.000	4.0000	.000		1800	1.0000		7.1666	3250	0.			30.800	150.00	7 0 0	3000	.80000	71800	0.0	0.	0.1			563J.0	
1.1540 8.0000 2650.0	٥ . 000		756U 8950	.004	106	230	. 000 0		50.0					00	.1666	99.4	. 12800	0			1.1955	75.1	3.0000	2000	. 70000	.70000	500	0	1.0000	9 0	9	1550.0 .12000E-01	
1.1540 1.1540 2400.0	.0007	900	7520 8900	9320	1000	. 220	000.		50.0	.068	4.0000	000		00.0	10000	5.00	1500 0	٥. ٥	.823	970	9,0	.000	5.0	1000	00009.	6720					0.20	5622.0 26.000	
សហហ	លល	មេម	ບາ ເນ	សេយ	ı ry n	ក ភេះ	nu nu	າທເ	n in	ហ	ነልነ	2 -	147	W 4	· W r	4 KD :	m (4	M -	l r-1 r	-	ru —	ነ የህ ላት	NM) ក្រ បា) KG	1 W V	ተጥተ	- ₹2 (N 170 W	י איי)I	mα	
1496 1501 1506	25	522	5 5 5 5	54	101	56	~- ~	7;	16 21	26	36	J C	0	0~	• (S	50 50	MC	90	> •	0~	- C	OF	1 KM KM	ケセ	744	י מו ה	400	200	4 M) M	3 M.	30	

Vices

1.0000 2.0000 2.0000 2.0000 1.0000		0 .
.30000 1.0000 1.1500 1.0000 .15000 .15000 1.0000	4.0000 .0 .0 1.0000 2.0000 .6000 .6010	2.0000
.15000E-01 1.0000 1300.0 .80000 .23000 1.0000 238.60 .96750 1.0000	1.0000 .0 .0 1.0000 2.0000 .66010	20000. .0 72.000
75.000 1.2500 100.00 .40000E-01 .85000 .85000 .10000E+06 12.710 1.0000 1.0000	.16660E-01, .94300 .33300E-01 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 1.4100 .11520 WFR = 0.0 WFR = 0.112963E+05 WFR = 0.112963E+05 WFR = 0.112963E+05
0.00 2.206 0.00 0.00 0.000 0.000 0.000 0.000	1.1221 .20833E-01 .41667E-01 300.00 .0 .0 .0 .0 .0 .0 .0 .0	<4<4 ₩₩₩₩₩₩
መመ ፋ መጭ ማቀት ተመመ መመ ቀመ መ		1 1 1 1 3 3 5 1 1 350000E+05 WF 431246E+05 WF 431246E+05 WF 565112E+05 WF
321000000000000000000000000000000000000		

RUN
M
9
CASE
SAMPLE
IASCOMP

PAGE

	PROGRAM
II	ER.
VASCOMP	E COMPUTER P
ပ	ij
S	ž
4	ЖM
	PERFORMANCE
	*
	SIZING
	AIRCRAFT SIZING
	V/3T0L

B-93

S I Z E D A T A THIS RUN CONVERGED IN 4 ITERATIONS

GROSS WEIGHT = 57881. LB

46.5 FT 7.2 FT 999. SQFT	6.00 578.8 58.9 7.8 9.8 1.000 0.180 0.180 0.281	4.00 263.3 32.5 8.1 6.150 22.7 FT	1.15 218.3 15.9 13.8 6.150 20.0	0.0 FT 0.0 FT 0.0 SQRT	35.0 FF 0.116 30.1 0.500 2.000 3.000
LENGTH WIDTH WETTED AREA	ASPECT RATIO AREA SPAN GEOM. MEAN CHORD GEOMTER CHORD SWEEP TAPER RATIO ROOT THICKNESS TIP THICKNESS WING LOADING MEAN CHORD / PROP. DIA.	ASPECT RATIO AREA SPAN MEAN CHORD THICKNESS / CHORD	ASPECT RATIO AREA SPAN MEAN CHURD THICKNESS / CHORD	LE LENGTH MEAH DIAMETER WETTED AREA	NO LIFT PROPULSION SELECTED DIAMETER SOLIDITY DISC LOADING THRUST COEFF. / SOLIDITY NO. OF PROPELLERS NO. OF BLADES/PROP
FUSELAGE LF WF SF	MING AR SU CBARW CAMBDA C/4 LAMBDA (1/C)R (1/C)T WG/SW C BAR / D	HOR. TAIL ARHT SHT BHT CBARHT (1/C)HT LTH	VERT. TAIL ARVI SVI BNI CBARVI (I/C)VI	PRIMARY ENG. NACELLE LN DBARN SN	LIFF ENG. NACELLE PROPELLER D SIGMA R/P MG/A CT/SIGMA NR NR NO. BLADES

VASCOMP SAMPLE CASE NO. 3 RUN I

I G H T S D A T A IN LBS GLF STRUCTURES GROUP KR WHI KR WH	

15881.

(ME)W

VASCOMP SAMPLE CASE NO. 3 RUN 1

PAGE 4

er jan

V A S C O M P II V/STOL AIRCRAFT SIZING & PERFORMANCE COMPUTER PROGRAM B-93

PROPULSION DATA
PRIMARY PROPULSION CYCLE NO. 1.820
TURBOSHAFT ENGINE

4. ENGINES

BHP×P

MAX. STANDARD S.L. STATIC H.P.

H.P.

21611.

ENGINE SIZED FOR TAKEOFF AT T/W = 1.20 90.0 PERCENT, MILITARY POWER SETTING VERTICAL RATE OF CLIMB = 500.0 FT/MIN H = 0. FT, TEMPERATURE = 89.80 DEG F, AND 0.0 ENGINES INOPERATIVE.

NO LIFT ENGINE CYCLE SELECTED

XMSN SIZED AT 95. PERCENT OF ROTOR HOVER POWER REQUIRED AT H= 0. FT, TEMP= 89.80 DEG.F., 100.0 PERCENT HOVER RPM

B-93 V A S C O M P II V/STOL AIRCRAFT SIZING & PERFORMANCE COMPUTER PROGRAM

SQFT SQFT		PER RADIAN
100.210 3050. 0.032858	6.0 6.415 0.0 0.0 0.0 0.0	0.67820 -0.06600 0.08608 0.13500 0.17313 1.30180 0.06734 5.20400
A E R O D Y N A M I C S D A T A TOTAL EFFECTIVE FLATPLATE AREA SWET TOTAL WETTED AREA CBARF MEAN SKIN FRICTION COEFF.	DRAGBREAKDOWN WING FE FEW WING FE FUSELAGE FE FEVT VERT. TAIL FE FENT PRIMARY ENG. NACELLE FE FELN LIFT ENG. NACELLE FE	A E R O D Y N A M I C C O E F F . A 2 A 3 A 4 A 5 A 6 A 7 CL ALPHA 3-D LIFT SLOPE E 0 SWALD FACTOR

7-112

PAGE

V A S C O M P II V/STOL AIRCRAFT SIZING & PERFORMANCE COMPUTER PROGRAM' B-93 VTIP (FPS) 750. 750. 750.

MISSION PERFORMANCE DATA

-													
	CT	0.2376 0.2376 0.2376 0.2376		ETAP PROP		0.730	0.730	0.730	0.729	0.728	0.728	0.728	
	вир	19129. 19129. 19129. 19129.	DEG. F	SPEC. RANGE (NMPP)		. 02647 525. 3	.02678 525.0	.02706 525.0	.02739 525.0	.02775 525.0	.02808 525.0	.02808	
	F	0.736 0.736 0.736 0.736	59.0 DE	MACH DIV	7	0.613	0.614	0.615	0.616	0.616 1.683	0.616	0.616 1.663	
	THRUST	1.363 1.367 1.372 1.372	ATURE =	МАСН	CT	0.260	0.258	0.258	0.255	0.252	0.249	0.249	
	LETF	0000	TEMPERATUR	EAS	C.P	172.0	171.6	170.5 0.1982	169.0	166.5 0.1844	164.5	164.5	
DEG. F	PETF OR	1.000 1.000 1.000 1.000		PETF OR PEHF	THRUST	6.801 14145.	0.781	0.766	0.743	0.713	0.687	0.687	
HRS. 59.0 DI	FNG. CODE	9999	KNOTS	ENG. CODE		·a_	د	٠,	<u>ن</u>	<u>م</u>	٥.	هـ	
843	TURB.	2526.6 2526.6 2526.6 2526.6	0F 9.0	TURB. TEMP.	м внР	2236.6 1055į.	2225.6 10293.	2217.1 10495.	2204.4	2187.5 9391.	2173.3 9052.	2173.3	
(1.9 FOR 0.TEMPERATURE		20000	HEADWIND (TAS (KTS)	FUEL FLOI	172.0 172.0 6503.	171.0 6391.	170.5	169.0	166.5 6004.	164.5 5862.	164.5 5862.	
LETF = (PRES.		WITH	PRES. ALT. (FT)	DRAG	non	13611.	13380.	13078.	12706.	12376.	12376.	
F = 1.000 0 FT/MIN	WEIGHT	57881. 57881. 57680. 57480.	IT BEST RANGE	WEIGHT (LBS.)	LIFT	57480. 57480.	55969.	54475.	52997. 52997.	51537.	50095. 50095.	50095.	FT.
AND AT PETF MB = 300.0	FUEL USED	200.1 400.2 400.2	99 PER CENT	FUEL USED (LBS)	6/1	400.2	1913.5	3405.3	4883.2 4.052	6343.6 4.056	7785.2	7785.2	3000.
HOVER, OR LAND RATE OF CLIMB =	RANGE		SPEED FOR	RANGE (N.M.)	аs	0.0	40.00 0.2372	80.00 0.2345	126.00	160.00	200.00 0.2331	200.00	ALTITUDE TO
TAKEOFF, VERTICAL	TIME	(HKS) 0.0 0.021 0.042 0.042	CRUISE AT	TIME (HRS)	75	7-13	0.975	0.508	0.743	0.979	1.220	1.220	TRANSFER

TIME RANGE USED WEIGHT ALT. (HRS) (N.M.) (LBS) (LBS.) (FT) (FT) 1.220 200.00 7785.2 50095. 3000.

TAKEOFF, HOVER, OR LAND AT T/W = 1.122 FOR 0.033.HRS.

ASCOMP SAMPLE CASE NO. 3 RUN 1

	VIIP (FPS) 750. 750. 750.																	
	Ci 0.2008 0.2003 0.1997	•					ETAP PROP		0.726	0.725	0.725	0.725	0.725	0.724	0.724		ETAP PROP	,
	BHP 15376. 15376. 15376.					EG.F	SPEC. RANGE (NMPP)	H D	. 02948 525.0	.02981 525.0	.03013 525.0	.03045 525.0	.03075 525.0	.03106	.03106 525.0		FUEL RATE (18-up)	
	FM 0.736 0.736					59.0 DE	MACH DIV	~	0.619	0.620	0.621	0.622	0.623	0.624	0.624		MACH DIV	
	THRUST 10 WEIGHT 1.122 1.122					TURE =	МАСН	CT	0.239	0.237	0.236	0.234	0.233	0.232	0.232		MACH	
	1 ETF					TEMPERATUR	EAS	CP	158.0 0.1551 (157.0 0.1510	156.0 0.1470 (155.0 0.1431	154.5 0.1402 0	153.5 0.1365 (153.5 0.1365 0		EAS	
DEG. F	PE1F OR PEHF 0.951 0.951				•	•	PETF OR PEHF	ng.	0.599 11464.	0.584 11229.	n.568 10997.	0.553	0.542	0.528	0.528 10364.	EG. F	PETF OR PEHF	
91.5 DE	ENG. CODE P				•	KNOTS	ENG.		۵	۵	۵	۵	۵	۵	Q -	59.0 DE	ENG.	
rure =	TURB. TEMP. (R) 2608.6 2608.6 2608.6					0F 9.0	TURB. TEMP. (R)	1 BHP	2119.8 7901.	2109.0 7693.	2098.3 7490.	2087.8	2079.9	2069.7	2069.7	URE =	TURB. TEMP.	
TEMPERATUR	TAS (KTS) 0.0 0.0					HEADWIND C	TAS (KTS)		158.0 158.0 5364.	157.0 5272.	156.0 5182.	155.0	154.5 5029.	153.5	153.5	TEMPERAT	TAS (KTS)	
	PRES. ALT. (FT) 3000. 3000.		PRES. (FT) 3000.		PRES. ALT. (FT) 3000.	WITH	PRES. ALT. (FT)	DRAG	11180.	10942.	10701	0.	0. 10292.	10071.	10071.		PRES. ALT. (FT)	
.0 FIZMIN	WEIGHT (LBS.) 50095. 49860. 49824.	20. LB.	WEIGHT (LBS.) 49824. 44304.	FT.	WEIGHT (LBS.) 44304. 44304.	NT BEST RANGE	WEIGHT (LBS.)	IFT	44304.	42947.	41605. 41605.	40277. 40277.	38964. 38964.	37663.	37663. 37663.	ESERVE FUEL	WEIGHT (LBS.)	
CLIMB = 0	FUEL USED (LBS) 7785.2 7920.9 8056.5	EMOVE 55	FUEL USED (LBS) 8056.5 8056.5	.0	FUEL USED (LBS) 8056.5 8056.5	99 PER CENT	FUEL USED (LBS)	6/1	8056.5	9413.5	10755.5	12083.1	13396.6 3.786	14697.6	14697.6 3.740	HRS. FOR RI	FUEL USED (LBS)	
RATE OF	RANGE (N.M.) 200.00 200.00 200.00	AYLOAD, R	RANGE (H.11.) 200.00 200.00	ALTITUDE T	RANGE (N.M.) 200.00 200.00	T SPEED FOR	RANGE (N.M.)	CD	200.00	240.00	260.00	320.00 0.2223	300.00	400.00	400.00	FOR 0.333	RANGE (N.M.)	1
VERTICAL	TIME (HRS) 1.220 1.236 1.253	CHANGE P	TIME (HRS) 1.253	TRANSFER	TIME (HRS) 1.261	CRUISE A	L TIME	ರ 114	1.261	1.514	1.769	2.026	2.284	2.543	2.543	LOITER	TIME (HRS)	

ETAP	0.705	0.705	0.704	0.704	0.704
VTIP	(FPS) 3633. 525.0	3614. 525.0	3595. 525.0	3577. 525.0	3577. 525.0
7)	0.494	0.496	0.494	0.496	0.496
CT	0.125	83.0 0.125 0.496 0.0717 0.0602 0.839	82.0 0.124 0.0706 0.0600	82.0 0.124 0.496 0.0695 0.0591 0.829	0.124 0.496 0.0591 0.829
CP	83.0 0.0728	83.0	82.0	82.0 0.0695	82.0
THRUST	(LBS) 0.281 9938.	0.277	0.273	0.269	0.269 9606.
	۵	۵.	۵.	۵.	۵.
A BHP	1883.8 3706.	83.0 1880.8 3614. 3650.	1877.9 3596.	1875.0 3541.	1875.0 3541.
FUEL FLOR	(LB5/HK) 83.0 1 3633.	83.0	82.0 3595.	82.0 3577.	82.0 3577.
DRAG	6406.	9256.	9218.	9068	9068
LIFT	37663. 37563.	37260. 37260.	36858.	36459.	36459.
1.7D	14697.6 4.004	15100.9 4.025	15502.1	15901.2 4.020	15961.2
CD	400.00 0.6958	400.00	400.00 0.6986	400.00 0.6873	400.00
าว	2.543	2.654	2.765	2.876 2.763	2.876

MISSION FUEL REQUIRED = 14697.63 RESERVE FUEL REQUIRED = 1203.60 TOTAL FUEL REQUIRED = 15901.23

V A S C O M P II V/STOL AIRCRAFT SIZING & PERFORMANCE COMPUTER PROGRAM B-93

MISSION PERFORMANCE DATA

	ETAP PROP	72.0	967.9	0.736
	SPEC. RANGE (NMPP)	VIIP (FPS)	525.0	.02503 525.0
	MACH DIV	J 624	1.946	0.626 1.946
	МАСН		0.0979	192.5 0.291 0.2588 0.0979
	EAS	1927 1927	0.2588	192.5
	PETF OR PEHF	THRUST (LBS)	15920.	1.000
FG. F	ENG. CODE	o	,	œ
59.0 DE	TURB. TEMP. (R)	BHP 2349.7	13181.	2349.7
TEMPERATURE =, 59.0 DEG.F	TAS (KTS)	FUEL FLOW (LBS/HR)	7693.	192.5 7693.
TEMP	PRES. ALT. (FT)	DRAG (LBS) 0.	15695.	15693.
RATING	UEIGHT (LBS.)	LIFT (185) 57881.	57881.	57841. 57841.
ENGINE R	FUEL USED (LBS)	1/1	3.688	40.0 3.686
-NORMAL	RANGE (N.M.)	0.0	0.2158	1.00
CRUISE AT .NORMAL	TIME (HRS)	0.0	0.796	0.005

39.96 0.0 39.96

MISSION FUEL REQUIRED = RESERVE FUEL REQUIRED = TOTAL

1

1

V A S C O M P II V/STOL AIRCRAFT SIZING & PERFORMANCE COMPUTER PROGRAM MISSIOG PERFORMANCE DATA

B-93

₹	F1.
אייייייייייייייייייייייייייייייייייייי	20000
	10
TECTON TOWNS DATA	ALTITUDE
•	TRANSFER

PRES. ALT. (FT) 20000.

WEIGHT (185.) 57881.

FUEL USED (LBS) 0.0

> RANGE (N.M.) 0.0

TIME (HRS)

	ETAP PROP		3.741	0.741	0.741	
7F.G. F.	SPEC. RANGE	VIIP (FPS)	.03427	.03429	.03429 525.0	
TEMPERATURE = -12.3 DFG F	MACH	"	0.585	0.585	0.585	
RATURE =	MACH	CI	0.321	0.321	0.321	
TEMPER	EAS	ຸ	144.2 0.321 0.3982 0.1477	144.2 0.321 0.3982 0.1477	144.2 0.321 0.3982 0.1477	
	PETF OR PEHF	THRUST (LBS)	0.941 12801. 0	0.941	0.941 12801.	
0.6 KNOTS	ENG. CODE	WER SET	-	;	-	
	TURB. TEMP. (R)	P BHP FIED PO	2522.0 10808.	2522.0 10808.	2522.0 10808.	
EADWIND (TAS (KTS)	FUEL FLOW (LBS/HR) AT SPECI	197.5 5774.	197.5	197.5 5774.	
IGE WITH H	PRES. ALT. (FT)	DRAG FUEL FLOW BHP (LBS) (LBS/HR) AVAILABLE AT SPECIFIED POWER S	20000. 12592.	20000. 12587.	20000. 12587.	
BEST RA	WEIGHT (LBS.)	LIFT (LBS) BY POWER	57881.	57851. 57851.	57851. 57851.	
CRUISE AT SPEED FOR 99 PER CENT BEST RANGE WITH HEADWIND OF	FUEL USED (LBS)	CAUTION - SPEED LIMITED BY POWER A	4.596	29.2 4.596	29.2 4.596	į
AT SPEED FI	RANGE (N.M.)	CAUTION - S	0.3088	1.00 0.3086	1.00	
CRUISE	TIME (HRS)	CL ***	1.419	1.419	0.005 1.419	

MISSION FUEL REQUIRED = 29.18 RESERVE FUEL REQUIRED = 0.0 TOTAL FUEL REQUIRED = 29.18

VASCOMP SA	SAMPLE CASE N	NO. 3 RUN	# *				PAG
	1015/1		AIRCRAFT SIZING & P	V A S C Performance		O M P II COMPUTER PROGRAM	B-9
	MISSIM	PERFORMANCE	NCE DATA				
	GROSS WEIGHT AUTITUDE TEMPERATURE	AEIGHT = DE = ATURE =	57881. LB 1000.0 FT 55.434 DEG.,F	u.	WZDELTA DELTRTH DELTA THETA	=.60018. = 0.961 = 0.964 = 0.993	LB
TAS (KTS)	TOTAL FUEL FLOW (LBS/HR)		THRUST TO WEIGHT	EAS (KTS)	FUEL FLOW- PRIM. ENG (LBS/HR)	TURB. TEMP. (R)	PETF OR PEHF
ರ	αo	1/1	LIFT (LBS)	DRAG (LBS)	FUEL FLOW LIFT ENG. (LBS/HR)	"J	LETF
0.0	8000.9	} ! !	1.122.57881.	0.0		2394.7	0.720
7-11 ⁸	6508.6	1.447	57881.	54.3	6508.6	2247.6 0.368	0.514
60.0 8.437	6243.7 4.9720	1.69,7	57881.	59.1	6243.7	2220.9 0 400	0.476
30.0 4.746	5601.7 1.6950	2.800	57881.	78.8	5601.7	2155.4 0.534	0.383
100.0	5381.3	3.800	57881.	98.5	5381.3	2132.0 0.667	0.351
120.0	5435.2 0.4778	4.415	57881.	118.3	5435.2	2137.7 0.801	0.360
140.0	5708.7 0.3399	4.560	57881.	138.0	5708.7 0.0	2166.0 0.934	0.402
•				1	6	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	767

E

BHP

SPEC. RANGE (NMPP)

MACH

MACH

PAGE

B-93

NET THRUST

VTIP (FPS)

<u>C</u>

S C

14342. 0. 10236.

795.3

0.678

.008469

0.018

0.084 0.0614

0.736 0.695 0.697 0.704 0.709 0.720 0.738 0.742 9484. 0. 11592. 7635. 6996. 0. 7164. 8005. 9478. 0. 14374. 17908. IRONO. .009610 795.3 795.3 795.3 795.3 795.3 023654 025969 025195 .025806 .024524 795.3 023200 0.365 0.539 0.576 0.478 0.0446 0.600 0.616 0.121 0.628 0.121 0.243 0.152 0.182 0.212 0.273 0.303 0.091 0.720 0.0 0.0 0.0 0.476 0.0 0.351 0.402 0.0 0.402 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.949 2216.2 1.067 2288.8 1.201 2385.0 1.334 2499.4 1.468 2534.9 6200.2 6931.4 7938.1 0.0 9.00.7 9698.4 216.8 18875. 57.7 177.4 197.1 221.7 57881. 57881. 57881. 57881 4.347 3,950 3.500 3.067 6200.2 6931.4 7938.1 0.2170 9300.7 9658.4 200.0 180.0 0.937 220.0 0.628

CASE SUCCESSFUL <u>n</u> 유 7-119

H H H H SPEC.RANGE SPEC.RANGE SPEC.RANGE SPEC.RANGE SPEC.RANGE FUEL FLOW 227.7 222.7 222.1 173.0 107.5 V(MAX PUR)
V(NIL PUR)
V(NRP)
V(BEST RANGE)
V(99 PERCENT BR)
V(BEST ENDURANCE)

0.0

1.501

0.0

19523.

57881.

2.965

0.2024

0.600

MAIN TRANSMISSION TORQUE LIMIT (ALL ENGINES ORERATING) GCCURS AT

V
= 227.7 KTAS
MAIN ROTOR VIIP = 795.3 FT/SEC
MAIN ROTOR RPM = 434.0
POWER = 19956. SHP
TORQUE = 241501. FT-LB

241501. FT-LB

0.1133

0.0561

795.3

V A S C O M P II V/STOL AIRCRAFT SIZING & PERFORMANCE COMPUTER PROGRAM B-93

			VALG		.53220	00989.	.68600	.68600	2.0000	.47900E-01	.82000E-02	.20600E-01 .10550	.36800E-01	.62300E-01	.10530	.14950	.17980
ć	X X	,	VAL3		.30440	.45810	.45810	.45810	1.5000	.27400E-01	.65000E-02	.15600E-01	.28000E-01	.46900E-01	.79500E-01	.11350	.13680
AFT SIZING & PERFORMANCE COMPULEK PRUGKAM – 6-93 S A CARD BY CARD REPRODUCTION OF THE INPUT DECK FOR THIS	ARTING WITH LOC.	2	VALZ		.16670	.90000	.26700	.26700	3.5000	.15000E-01	.48000E-02	.10700E-01	.18500E-01	.31400E-01	.53500E-01	.76900E-01	.93200E-01
	T SHEE LUES S OC. +00	000+.	VAL1 .		.75600E-01 1.3330	.10700	.10700	.72110	3.0000	.68000E-02	.60000 .41000E-02 .15500E-61	.79000E-02	.12000E-01	.18400E-01	.30500E-01	.44200E-01	.54200E-01
	S A CAKU B LOCATION N NUMBER OF R VARIABLE	CORRESP	VAL		7611	5000	7550	7530 403.	11.000 .10000E-01 2.5000 9.0000	2.00 1400 6350	1/500 39000 11000E	42000 263000	4750 4750 1750 1750 1750 1750 1750 1750 1750 1	7900	1220	1871	7040 2460 2246
OL AIRC	ONDS TO FOR THE VALUE FO	_	NUM	pol pol pol	i W ⊘ ⊷	4 W W (NΝ	ภขอน	W W +		איטיטיא	- w w -	មលល់	⊶ លេ ហៈ	⊣ហហៈ	 ໝ ທ •	⊣សហ
> ,	INE FUL LOC. CORRESPI NUM STANDS VAL ÉQUALS VALI	VAL2 ETC.	.207	220	3 KM	386	37	3 2 3 5 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1	1701	722	7447	2661	782	288	288 200	2441	888

.16080	.20800	.26600	.34800 1.1130	.46100	
.11050	.14480	.19150	.25600	.34250	
.64900E-01	.87000E-01	.12800	.68900	.90000	WFR = 0.291773E+02 WFR = 0.873029E+04 WFR = 0.169162E+05 WFR = 0.15752E+05
.90600 .31500E-01 .26270 1.0980	.46000E-01 .33800 1.3900	.75000E-01 .44000 1.8200	.11700 .56750 2.1000	.16600 .74600 2.4300	WFA = 0.158807E+05 WFA = 0.959688E+03 WFA = 0.792232E+04 WFA = 0.122040E+05
1873 1883 1888 1893	1903 1908 1913	1923 1928 1933	1943 1948 1953	1963 1968 1973	WG = 0.350000E+05 WG = 0.350000E+05 WG = 0.461008E+05 WG = 0.530510E+05

.21070 .72350 .93300 .35000 1.2320 .45300 1.5230

1

2
RUN
m.
NO.3
CASE
SAMPLE
SAM
VASCOMP

8

PAGE

B-93
I Program
O M P II
V A S C O M P 'II : & Performance computer program
T SIZING
V/STOL AIRCRAFT
V/STOL

							•				CHENN	
)	B-93		2,985	3157. 574. 3865. 1818. 1300.	2666. 5038. 2851. 1055. 1868.	35 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	5622.	33826.	35376	5630	12454.	53461.
	V A S C O M P II V/STOL AIRCRAFT SIZING & PERFORMANCE COMPUTER PROGRAM	EIGHTS DATA IN LBS	GLF GUST LOAD FACTOR	STRUCTURES GROUP K8 MW HOR. TAIL K10 MVT K11 MB FUSELAGE K12 MLG K13 MLES LIFT SECTION K14 WPES PRIMARY ENGINE SECTION DELTA MST TOTAL STRUCTURE WEIGHT	PROPULSION GROUP K2 WR/P K3 WDS DRIVE SYSTEM K4 WE LIFT ENGINES K6 WLEI LIFT ENGINE K7 WPEI R7 WPEI R7 WPEI R21 WFS FUEL SYSTEM K21 WFS FUEL SYSTEM NP FROPULSION GROUP WEIGHT INCREMENT NP TOTAL PROPULSION GROUP WEIGHT	FLIGHT CONTROLS GROUP KIS WCC COCKPIT CONTROLS KI6 WUC HYDRAULICS KI8 WFW FIXED WING CONTROLS KI9 WSAS SSAS K20 WIN DELTA WFC CONTROL WEIGHT WFC	WEIGHT OF FIXED EQUIPMENT WE WEIGHT EMBTY	WFUL FIXED USEFUL LOAD	OWE OPERATING WEIGHT EMPTY	LIPL PAYLOAD .	(WF)A FUEL	MG GROSS WEIGHT

PAGE

RUN 2

VASCOMP SAMPLE CASE NO.3

3

V A S C O M P II V/STOL AIRCRAFT SIZING & PERFORMANCE COMPUTER PROGRAM

U L S I O N D A T A PRIMARY PROPULSION CYCLE NO. TURBOSHAFT ENGINE 9 ه ح

ENGINES

MAX. STANDARD S.L. STATIC H.P. BHP*P

н.Р.

22252.

ENGINE SIZED FOR TAKEOFF AT 1/W = 1.20 90.0 PERCENT, MILITARY POWER SETTING VERTICAL RATE OF CLIMB = 500.0 FT/MIN H = 0. FT, TEMPERATURE = 89.80 DEG F, AND 0.0 ENGINES INOPERATIVE.

NO LIFT ENGINE CYCLE SELECTED :

XMSN SIZED AT 95. PERCENT OF ROTOR HOVER POWER REQUIRED AT H= 0. FI, TEMP= 89.80 DEG.F., 100.0 PERCENT HOVER RPM

. the toke to a near

V A S C O M P II V/STOL AIRCRAFT SIZING & PERFORMANCE COMPUTER PROGRAM B-93

93.049 SQFT 2856. SQFT 0.032580	0.0 6.415 0.0 0.0 0.0 0.0 86.633	0.67820 0.06600 0.08608 0.13500 1.31108	5.20400 PER RADIAN 0.78782 .
93.23	3,00000	900	22.2
		9999946	, ru a
A E R O D Y N A M I C S D A T A FFECTIVE FLATPLATE AREA SWET TOTAL WETIED AREA CBARF MEAN SKIN FRICTION COEFF.	DRAGBREAKDOWN WING FE FEW FUSELAGE FE FEVT VERT. TAIL FE FEHT HOR. TAIL FE FEN PRIMARY ENG. NACELLE FE FELN LIFT ENG. NACELLE FE DELTA FE INCREMENTAL FE		CL ALPHA 3-D LIFT SLOPE E OSWALD FACTOR •

B-93	
V/STOL AIRCRAFT SIZING & PERFORMANCE COMPUTER PROGRAM	MISSION PERFORMANCE DATA

	11	750. 750. 750. 750.										VIIP (FPS) 750. 750.			
	CT	0.2193 0.2193 0,2193 0.2193		ETAP PROP		0.898	0.898	0.898		•		CT 0.2124 0.2118 0.2113			
	ВНР	19692. 19692. 19692. 19692.	Б. П	SPEC. RANGE (NMPP)	41	90.	.02866 795.3	.02866 795.3				BHP 15663. 15602.			
	Æ	0.633 0.633 0.633 0.633	59.0 DE	MACH	"	. 338	. 338	. 338				FM 0.633 0.633			
	THRUST TO LICET CUT	1.361 1.367 1.372 1.372	TURE =	МАСН	CT	0.303 0	0.303 0	0.303 0				THRUST TO WEIGHT 1.122 1.122 1.122			
	LETF	0.000	TEMPERATUR	EAS	G.	200.5 0.0636 0	200.5 0.0635 0	200.5 0.0635 0				LETF 0.0 0.0			
EG. F	ET	1.000 1.000 1.000		PETF OR PEHF	2.5	15930.	0.549 15923.	0.549			EG. F	PETF OR PEHF 0.941 0.937			
HRS. 59.0 D	ENG. CODE	0000	KNOTS	ENG.		٥.	۵	۵			91.5 D	ENG. CODE P			
0.342 TURE =	TURB.	2526.6 2526.6 2526.6 2526.6 2526.6	0F 0.0	о н	TURB. TEMP.	A BRP	2265.1 11258.	2264.5 11253.	2264.9 11253.	•		TURE =	TUPB. TEMP. (R) 2602.5 2600.3		
.0 FOR (TEMPERATUR		00000 00000	HEADWIND	TAS (KTS)	5	(LBS/HK) 200.5 2: 7001.	200.5	200.5			33.HRS. TEMPERATI	TAS (KTS) 0.0 0.0			
LETF = 0	PRES.	(F1) 0. 0.	WITH	PRES. ALT. (FT)	DRAG	(LBS) 0. 15647.	0.	15640.		PRES. ALT. (F;) 3000.	FOR 0.03	PRES. ALT. (FT) 3000. 3000.		PRES.	
TF = 1.000 .0 FT/MIN	WEIGHT	(LBS.) 53461. 53255. 53049. 53049.	CENT BEST RANGE	WEIGHT (LBS.)	LIFT	(185) 53049. 53049.	52979. 52979.	52979. 52979.	FT.	WEIGHT (LBS.) 52979.	T/W = 1.122 0.0 FT/MIN	WEIGHT (LBS.) 52979. 52340. 52702.	.20. LB.		
LAND AT PETF IMB = 300.0	FUEL USED	(LBS) 0.0 206.0 412.0 412.1	99 PER CE	FUEL USED (LBS)	2	412.1 3.390	481.9 3.387	481.9	0 3000.	FUEL USED (LBS) 481.9	OR LAND AT T	FUEL USED (LBS) 481.9 620.6 758.9	REMOVE 55	FUEL	
HOVER, OR LAND RATE OF CLIMB	RANGE	Z. Z. C.	SPEED FOR	RANGE (N.M.)	a	0.0	2.00	2.00	ALTITUDE TO	RANGE (N.M.) 2.00 2.00	HOVER, OR RATE OF CL	RANGE (N.M.) 2.00 2.00 2.00	PAYLOAD, RE		
TAKEOFF, VERTICAL	TIME	(HRS) 0.0 0.021 0.042 0.042	CRUISE AT	TIME (HRS)	J	0.042	0.052	0.052	TRANSFER	TIME (HRS) 0.052	TAKEOFF,	TIME (HRS) 0.052 0.068	HANGE PA		

			DEG.F	SPEC. RANGE (NMPP)	0. 0	. 03297 525.0	.03325	.03352 525.0	.03378 525.0	.03403	.03428	.03456 525.0	.03480 525.0	.03504 525.0	.03527 525.0	.03550 525.0	.03550 525.0	
			59.0 D	MACH DIV	7	0.621	0.622	0.623	0.624	0.625	0.626	0.627	0.628	0.629	0.631	0.632	0.632	
			ATURE =	MACH	CT	0.261	0.260	0.259	0.258	0.258	0.257	0.255	0.255	0.254	0.253	0.252	0.252	,
			TEMPERATURE	EAS	GP	173.0 0.1479	172.0 0.1446	171.5 0.1421	171.0 0.1396	170.5	170.0	169.0 0.1318	168.5 0.1296	168.0 0.1274	167.5 0.1253	167.0 0.1232	167.0 0.1232	
				PETF OR PEHF	THRUST	0.555 12538.	0.543 12328.	0.533 12153.	0.524 11980.	0.515	0.506	0.495	0.486 11284.	0.478	0.470	0.462 10824.	0.462 10824.	DEG. F
			KNOTS	ENG. CODE		۵.	٥.	۵	۵	٥.	٥.	۵.	.	۵۰	G .	٥.,	٠ .	59.0 DI
·			0F 0.0	TURB. TEMP. (R)	W · BHP	2088.7 7535.	2079.9 7365.	2073.2 7238.	2066.7	2060.3 6991.	.2054.0 6872.	2045.5	2039.4 6599.	2033.5 6489.	2027.6 6380.	2021.9 6275.	2021.9 6275.	н
			HEADWIND	TAS (KTS)	FUEL FLOW	173.0 5251.	172.0 5176.	171.5	171.0 5067.	170.5 5014.	170.0	169.0 4894.	168.5 4845.	168.0 4798.	167.5	167.0	167.0 4708.	TEMPERATURE
ALT. (FT) 3000. 3000.		PRES. ALT: (FT) 3000.	WITH	PRES. ALT. (FT)			11993.	11817.	11643.	11474.	11307.	0. 11102.	10942.	10785.	10630.	10479.	10479.	
WEIGHT (LBS.) 52702. 47182.	FT.	WEIGHT (LBS.) 47182. 47182.	NT BEST RANGE	WEIGHT (LBS.)	LIFT	47182. 47182.	46030.	44827. 44827.	43633. 43633.	42449.	41274.	40107.	38949. 38949.	37800. 37800.	36658. 36658.	35524. 35524.	35524. 35524.	
USED (LBS) 758.9 758.9	0 0.	FUEL USED (LBS) 758.9 758.9	99 PER CENT	FUEL USED (LBS)	1/D	758.9 3.866	1911.3	3114.3	4307.7	5492.0	6667.4 3.650	7834.1	8991.5	10149.9	11282.5	12416.6 3.390	12416.6 3.390	HRS.
RANGE (N.M.) 2.00 2.00	ALTITUDE T	RANGE (N.M.) 2.00 2.00	T SPEED FOR	RANGE (N.M.)	a	2.00	40.00 0.2237	80.00 0.2217	120.00 0.2197	160.00 0.2178	200 90 0.2159	240.00 0.2145	280.00 0.2126	320.00 0.2108	360.00 0.2090	400.00	400.00 0.2073	FOR 0.010
TIME (HRS) 0.085	TRANSFER	TIME (HRS) 0.093	CRUISE A	TIME (HRS)	CL	0.093	0.313	0.545	0.779	1.013	1.247	1.483	1.719	1.957	2.195 0.721	2.434	2.434	LOITER
			_					7-	-127 			-	•••					

0.912

0.912

0.912

0.912

0.912

0.911

0.911

ETAP PROP

0.912

0.912

0.912

0.912

0.912

LOITER FOR 0.010 HRS.

ETAP PROP	ETAP	0.760	0.761
FUEL RATE (LB-HR)	VTIP	(FPS) 4304. 795.3	4303. 795.3
MACH DIV	7	0.507	0.511
МАСН		0.131	
EAS	CP CP	87.0	88.0 0.0188
PETF OR PEHF	THRUST	0.163 9202.	0.163 9099.
ENG. CODE		۵	<u>a</u>
TURB. TEMP.		1967.6 3336.	1967.3 3331.
TAS (KTS)	FUEL FLOW	. 87.0 1 4304.	88.0 4303.
PRES. ALT. (FT)	DRAG	8651.	8553,
WEIGHT (LBS.)	LIFT (LBS)	35524.	35481. 35481.
FUEL USED (185)	d/1	12416.6 4.106	12459.6 4.148
RANGE (N.M.)	CD	400.00 0.6306	400.00 (2 0.6094
TIME (HRS)	บี	2.589	2.528

MISSION FUEL REQUIRED = 12459.62 RESERVE FUEL REQUIRED = 0.0 TOTAL FUEL REQUIRED = 12459.62

7-128

一年、東京の大学 大学の大学工

T.

V A S C O M P II V/STOL AIRCRAFT SIZING & PERFORMANCE COMPUTER PROGRAM B-93

MISSION PERFORMANCE DATA

	ETAP PROP		0.900	0.900	
	SPEC. RANGE (NMPP)	VTIP (FPS)	.02768	.02769 525.0	
	MACH DIV	7	0.638	0.638	
	МАСН	CI	0.331	0.331	
	EAS	CP	219.1	219.1	
	PETF OR PEHF	THRUST	1.000	1.000	
я. я.	ENG. CODE		•	œ	
59.0 DEG.F	TURB. TEMP. (R)	вне	2348.6 13572.	2348.6 13572.	
TEMPERATURE =	TAS (KTS)	FUEL FLOW	219.1 2348.6 7915. 13572	219.1 2348.6 7915. 13572.	
TEMP	PRES: ALT. (FT)	DRAG	17356.	17355.	
RATING	WEIGHT (LBS.)	LIFT	53461. 53461.	53425. 53425.	
ENGINE R	FUEL USED (LBS)	1/1	3.080	36.1	
NORMAL	RANGE (N.M.)	CD	0.0	1.00	¢
CRUISE AT	TIME (HRS)	10	0.0	0.005	

MISSION FUEL REQUIRED = 36.12 RESERVE FUEL REQUIRED = 0.3 TOTAL FUEL REQUIRED = 36.12

V A S C O M P II W/STOL AIRCRAFT SIZING & PERFORMANCE COMPUTER PROGRAM B-93 MISSION PERFORMANCE DATA

TRANSFER ALTITUDE TO 20030. FT.

	DEG.F	SPEC. RANGE (NMPP)	VIIP	(FPS) .04281 525.0	.04283	.04283
	: -12.3	MACH DIV	ה	0.590	9.590	
	TEMPERATURE = -12.3 DEG.F	МАСН	C1	0.331	0.331	148.5 0.331 0.3225 0.1390
	TEMPER	EAS	S S	148.5		148.5
		PETF OR PEHF	THRUST	0.739	0.739	0.739 12044.
	KNOTS	ENG.		۵.	۵.	۵.
	0F 0.0	TURB. TEMP.	A BHP	2260.0 8757.	2259.6 8754.	2259.6 8754.
	HEADWIND	TAS (KTS)	FUEL FLOI	203.5 226 4757. 8	203.5	203.5 4755.
PRES. ALT. (FT) 20000.	NGE WITH P	PRES. ALT. (FT)		20000.	20000.	20000.
WEIGHT (LBS.) 53461. 53461.	IT BEST RA	WEIGHT (LBS.)	LIFT (LBS)	53461. 53461.	53438. 53438.	53438. 53438.
FUEL USED (LBS) 0.0	Ç.	FUEL USED (LBS)	1/10	0.0 4.541	23.4	23.4
RANGE (N.M.) 0.0	CRUISE AT SPEED FOR	RANGE (N.M.)	6	2944	1.00	1.00
TIME (HAS) .	CRUISE AT	TIME (HRS)	ಕ ೈ	1.337	0.005	0.005

0.886

0.836

ETAP PROP 0.886

MISSION FUEL REQUIRED = 23.36 RESERVE FUEL REQUIRED = 0.0 TOTAL FUEL REQUIRED = 23.36

VASCOMP SAMPLE CASE NO.3 RUN 2

PAGE 9

V A S C O M P II V/STOL AIRCRAFT SIZING & PERFORMANCE COMPUTER PROGRAM B-93 MISSION PERFORMANCE DATA

	£	ETAP PROP	0.633	0.637	0.685	0.800	0.839	0.861	0.877	0.887	0.892	0.898	0.904	!
	внР	NET THRUST	14805.	10325.	8939. 0.	6245.	5515. 0.	5554. 0.	6138.	7250.	8874.	11011.	13699. 0.	14461.
	SPEC. RANGE (NMPP)	VIIP ((FPS)	795.3	.008318 795.3	.009768	.015384	.020250 795.3	.024250 795.3	.027188	.028894	.029629 795.3	.029395	.028347	.027985
	масн DIV	CI	0.678	0.018	0.121	0.365 0.05úl	0.478	0.539	0.576	0.600	0.616 0.0395	0.628	0.637	0.639
	МАСН	CP	0.0 0.0849	0.084 0.0619	0.091 0.0536	0.121	0.152	0.182	0.212	0.243	0.273	0.303	0.334	0.341
LB	PETF OR PEHF	LETF	0.722	0.504	0.436	0.305	0.269	0.271	0.299	0.353	0.433	0.537	0.668	0.705
= 55435. = 0.961 = 0.964 = 0.993	TURB. TEMP. (R)	7	2395.8	2240.3 0.368	2192.7 0.400	2092.9 0.534	2060.9 0.667	2062.0 0.801	2086.3	2131.5 1.067	2185.7 1.201	2256.8 1.334	2346.7 1.468	2372.2
W/DELTA DELTRTH DELTA THETA	FUEL FLOW PRIM. ENG (LBS/HR)	FUEL FLOW LIFT ENG. (LBS/HR)	8250.5 0.0	6626.6	6142.4	5200.1	4938.3 0.0	4948.5	5149.2 0.0	5537.5 0.0	6075.0	6803.8	7761.0	8040.0
щ.	EAS (KTS)	DRAG (LBS)	0.0	54.3	59.1	78.8 19103.	98.5 14086.	118.3	138.0	157.7	177.4	197.1	216.8 17512.	221.7
53461. LB 1000.0 FT 55.434 DEG.,F.	THRUST TO WEIGHT	LIFT (LBS)	1.122 53461.	53461.	53461.	53461.	53461.	53.61.	53461.	53461.	53461.	53461.	53461.) ; !
EIGHT = E TURE =		L/D) 	1.446	1.697	2.799	3.795	4.407	4.548	4.333	3.935	3.485	3.053	
GROSS WEIGHT ALTITUDE TEMPERATURE	TOTAL FUEL FLOW (LBS/HR)	СД	8250.5	6626.6 6.9109	6142.4	5200.1 1.6959	4938.3 0.8003	4948.5 0.4787	5149.2 0.3408	5537.5 0.2739	6075.0 0.2382	6803.8 0.2179	7761.0 0.2056	8040.0
	TAS (KTS)	C	0.0	55.1	131	80.0	100.0	120.0	140.0 1.550	160.0	180.0	200.0	220.0	225.0

7-131

MAIN TRANSMISSION TORQUE LIMIT (ALL ENGINES OPERATING) OCCURS AT

V = 255.9 KTAS

MAIN ROTOR VTIP =, 795.3 F1/SEC

MAIN ROTOR RPM = 434.0

POWER = 20548. SHP

TORQUE = 248665. FT-LB

00-110 SPEC.RANGE = 0.0244 N SPEC.RANGE = 0.0244 N SPEC.RANGE = 0.0249 N SPEC.RANGE = 0.0289 N SPEC.RANGE = 0.0288 N FUEL FLOW = 5009. 1 255.9 255.9 250.5 185.0 106.7 V(MIL PWR)
V(MIL PWR)
V(NRP)
V(BEST RANGE)
V(99 PERCENT BR)
V(BEST ENDURANGE) CASE SUCCESSFUL 96 END

ins a stable of material to the residence of

REFERENCES

- 1. Schoen, A.H., <u>User's Manual for VASCOMP</u>, <u>The V/STOL Aircraft Sizing and Performance Computer Program</u>, Boeing Company, Vertol Division, Report D8-0375, Volume IV.
- Wisniewski, John S., Weight Trends Data for VASCOMP, The V/STOL Aircraft Sizing and Performance Computer Program, Boeing Company, Vertol Division, Report D8-0375, Volume V.
- Douglas Aircraft Co., Inc., <u>USAF</u> Stability and Control <u>DATCOM</u>, Flight Control Division, Air Force Flight Dynamics Laboratory, Wright-Patterson Air Force Base, Ohio, October 1960, Revised November 1965.
- 4. Federal Aviation Regulations, Part 25, Airworthiness
 Standards: Transport Category Airplanes, Federal Aviation
 Agency, Washington, D.C.
- 5. MIL-C-5011A, Military Specification: Charts; Standard Aircraft Characteristics and Performance, Piloted Aircraft, November 5, 1961.
- 6. Borst, H.V., A Short Method to Propeller Performance, Curtiss-Wright Corporation, Propeller Division.
- 7. Davis, S.J., Rosenstein, H., Stanzione, K.A., Wisniewski, J.S., User's Manual for HESCOMP, The Helicopter Sizing and Performance Computer Program, Boeing Vertol Company, U.S. Navy Contract N62269-79-C-0217, Second Revision October, 1979