Course Code	Course Name	Teaching Scheme (Contact Hours)				Credits Assigned			
		Theory	ry Pract.		Tut.	Theory	Tut.	Pract.	Total
FEC103	Engineering Chemistry-I	02	19	-	-	02	-	ŀ	2
Course Code		Examination Scheme							
	Course Name	Theory							Total
		Internal Assessment End				Exam.	Term	Pract.	
		Test1	Test 2	Avg.	Sem. Exam.	Duration (in Hrs)		/oral	13111
FEC103	Engineering Chemistry-I	15	15	15	60	2			75

Objectives

1. The concepts developed in this course will aid in quantification as well as understand the applications of several concepts in Chemistry that have been introduced at the 10 + 2 levels in schools.

Outcomes: Learners will be able to...

- 1. Explain the concept of microscopic chemistry in terms of atomic and molecular orbital theory and relate it to diatomic molecules.
- 2. Describe the concept of aromaticity and interpret it with relation to specific aromatic systems.
- 3. Illustrate the knowledge of various types of intermolecular forces and relate it to real gases.
- 4. Interpret various phase transformations using thermodynamics.
- Illustrate the knowledge of polymers, fabrication methods, conducting polymers in various industrial fields.
- 6. Analyze the quality of water and suggest suitable methods of treatment.

Module	Detailed Contents	Hrs.
01	Atomic and Molecular Structure Atomic orbitals (s,p,d,f) orbital shapes, Electronic Configuration, Molecular orbital theory (MOT), bonding and anti-bonding orbitals, Molecular orbital diagrams of Homonuclear and Heteronuclear diatomic molecules-Be ₂ , O ₂ , CO, NO their bond order and magnetic properties,	04
02	Aromatic systems &their molecular structure Define Aromaticity, Huckel's rule, Structure and bonding of benzene and pyrrole.	02
03	Intermolecular Forces & Critical Phenomena Ionic, dipolar and Vander Waal's interactions, Equations of state of real gases and critical phenomena	03
04	Phase Rule-Gibb's Phase Rule Statement of Gibbs' Phase Rule, Terms involved with examples, One Component System (Water), Reduced Phase Rule, Two Component System (Pb-Ag), Advantages and Limitations of Phase Rule. Numerical problems on Phase Rule.	05
05	Polymers Introduction: Definition- Polymer, polymerization, Properties of Polymers-Molecular weight (Number average and Weight average), Numerical problems on molecular weight, effect of heat on polymers (glass transition temperature),	05

	Viscoelasticity, Conducting Polymers, Classification-Thermoplastic and Thermosetting polymers; Compounding of plastic, Fabrication of plastic by Compression, Injection, Transfer and Extrusion moulding, Preparation, properties and uses of PMMA and Kevlar.	
06	Water Introduction - Impurities in water, hardness of water- units (no conversions), types and numerical problems, determination of hardness of water by EDTA method and numerical problems. Softening of water by Ion Exchange process and numerical problems, BOD, COD- definition, significance and Numerical problems. Water purification-membrane technology- Electrodialysis, Reverse osmosis, and Ultra filtration.	05

Assessment

Internal Assessment Test

Assessment consists of two class tests of 15 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 35% syllabus is completed. Duration of each test shall be one hour.

End Semester Examination

In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

- 1. Question paper will comprise of 6 questions, each carrying 15 marks.
- 2. Question number 1 will be compulsory and based on maximum contents of the syllabus
- 3. Remaining questions will be mixed in nature (for example, if Q.2 has part (a) from module 3 then part (b) will be from other than module 3)
- 4. Total four questions need to be solved.

References

- 1. Engineering Chemistry Jain & Jain (DhanpatRai)
- 2. Engineering Chemistry Dara &Dara (S Chand)
- 3. Engineering Chemistry Wiley India (ISBN 9788126519880)
- 4. A Text Book of Engineering Chemistry ShashiChawla (DhanpatRai)
- 5. Engineering Chemistry Payal Joshi & Shashank Deep (Oxford University Press)
- 6. Concise Inorganic Chemistry J D LEE
- 7. Essentials of Physical Chemistry—B S BahlArunBahl G D Tuli.

The final certification and acceptance of TW ensures the satisfactory performance of laboratory work and minimum passing in the TW.

Course Code	Course Name	Teaching Scheme (Contact Hours)				Credits Assigned			
		Theory	y Pra	act.	Tut.	Theory	Tut.	Pract.	Total
FEL102	Engineering Chemistry-I	I.	0	1		ē	-	0.5	0.5
	Course Name	Examination Scheme							
		Theory							
Course Code		Internal Assessment En			End	Exam.	Term	Pract.	Total
		Test1	Test 2	Avg.	Sem. Exam.	Duration (in Hrs)	Work	/oral	1 otal
FEL102	Engineering Chemistry-I	-					25		25

Outcomes: Learners will be able to...

- 1. Determine Chloride content and hardness of water sample
- 2. Determine free acid ph of different solutions
- 3. Determine metal ion concentration
- 4. Synthesize polymers, biodegradable plastics.
- 5. Determine Viscosity of oil

Suggested Experiments:

- To determine Chloride content of water by Mohr's Method.
- To determine total, temporary and permanent hardness of water sample by EDTA method.
- 3. To determine free acid pH of different solutions using pH meter
- 4. To determine metal ion concentration using colorimeter.
- 5. Removal of hardness using ion exchange column.
- 6. Molecular weight determination of polymers by Oswald Viscometer.
- 7. Synthesis of UF, PF, Nylon 66.
- 8. Determination of COD
- 9. Synthesis of biodegradable polymer using corn starch or potato starch
- 10. Determination of Viscosity of oil by Redwood Viscometer

Term work:

Term Work shall consist of minimum five experiments.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments and Journal): 10 marks
 Assignments and Viva on practicals: 10 marks
 Attendance (Theory and Tutorial): 05 marks

The final certification and acceptance of TW ensures the satisfactory performance of laboratory work and minimum