Investigating Set Pieces With Tracking Data

S.Gonzalez, R. Coke.

What do I need to know about soccer to understand this project?

Field Terminology

Set Pieces

Events occuring after a stoppages in play ("dead balls") such as:

Ball going out of bounds

A foul being committed

Goalie making a "save"

Set Pieces

General definition includes:

Free Kicks

Goal Kicks

Corner Kicks

Penalty Kicks

Throw-ins

Soccer is cool! Now tell me about your data...

(Free) Event Tracking Data

Emphasis on *events:* discrete occurrences in match that include passes, shots, fouls, duels, etc...

Lazio - Internazionale, May 20, 2018

	id	Event Id	Sub-Event Id	tags	Player Id	positions	Match Id	Team Id	Match Period	event Sec
	•••	•••			•••			•••	•••	•••

Quirks About Data

No tracking of players, only the ball.

Description of events can be very specific.

Automated Set Piece Scout

Why use data to analyze set pieces?

Problem: How to leverage this vast amount of data to help teams win games.

Set pieces provide special scoring opportunities for teams.

The chances of scoring off of a free kick by the goal was 50% higher than that of normal play in the 2018 WC. Though figure is usually around 25%.

Discrete "bursts" of events that are easier to analyze with ML.

Generalizer of Set Piece Strategy

MVP/POC Solution: Take the context and spatial information provided by the event tracking data set and determine if it is possible to algorithmically determine and differentiate between the strategies employed on set pieces despite only having the limited information of the free data set.

If so, then this system can be applied and adapted towards a plethora of specific use-cases.

How did you decide to model this data?

Data Preprocessing Pipeline

Clustering, clustering

POC is *complete* if we are able to achieve good *clustering* results.

MVP potentially could be achieved by a *simple* clustering model. Implement *K-means*.

Leicester City v. Tottenham Hotspur; May 13, 2018.

Game Context

Final match of the season for both clubs.

High stakes involved:

3rd-Place finish in EPL Table with victory.

End losing streak team had headed into the match.

Example Set Piece Sequences From Match

Example Set Piece Sequences From Match

What results did you get?

Clustering in Feature Space

Clustering in Feature Space

Data points that are closest to the centroids of the clusters:

	match_time	is_goalie	is_mid	is_def	is_foward	num_attacking_events	score_diff	pos_delta_diff	to_goal_delta_diff	delta_max_avg
0	0.609782	0.000000	0.384615	0.461538	0.153846	0.863101	-1.0	24.575367	-6.281971	30.674985
1	0.517418	0.250000	0.250000	0.250000	0.250000	0.937500	0.0	42.043327	2.559252	77.375635
2	0.386678	0.666667	0.000000	0.333333	0.000000	0.888889	0.0	55.273207	-37.486577	20.992771
3	0.360201	0.333333	0.333333	0.000000	0.333333	0.911111	0.0	85.818990	34.076722	93.830101
4	0.725466	0.000000	0.375000	0.500000	0.125000	0.949212	2.0	25.257262	-5.262720	32.806684
5	0.469464	0.000000	0.200000	0.500000	0.200000	0.840676	0.0	20.932159	-5.491030	28.432100

Cluster Investigation I.

Cluster Investigation I.

Key cluster characteristics:

Initiating team is losing

No goalie involvement

Relatively low possession rate

Little advancement towards goal

Mainly simple passes

Cluster Investigation II.

Cluster Investigation II.

Key cluster characteristics:

Tied match

Soon after halftime

Highest rate of shot attempts

Passes played out of attacking half

Cluster Investigation III.

Cluster Investigation III.

Key cluster characteristics:

Tied match

Early in the match

Many long passes

Not much progress towards goal

Many goal kicks

Cluster Investigation IV.

Cluster Investigation IV.

Key cluster characteristics:

Tied match

Early in the match

Highest rate of forward initiation

Similar to second cluster

Best advancement towards goal

Cluster Investigation V.

Cluster Investigation V.

Key cluster characteristics:

Initiating team has a big lead

Late in the match

No goalie involvement

Highest possession rate

Similar to first cluster

Cluster Investigation VI.

Cluster Investigation VI.

Key cluster characteristics:

Tied match

Mostly passes and duels

Right before halftime

Minimal advancement towards goal

POC? MVP?

K-Means model was able to make clear cluster distinctions using given data!

Plus, simple models allows for easy interpretation. Clusters given make sense and are informative.

Easily scalable!

What's next?

Assess Performance in New Use Cases

Investigate model behavior on subsets of the data partitioned on set piece type

Analyze model predictions on a team-by-team basis as a consistency check.

Build code infrastructure to handle full event tracking data.

References

- 1. https://www.nature.com/articles/s41597-019-0247-7#Tab2
- 2. https://figshare.com/collections/Soccer match event dataset/4415000
- 3. https://en.wikipedia.org/wiki/K-means clustering
- 4. https://www.washingtonpost.com/news/fancy-stats/wp/2018/06/20/why-set-pieces-are-dominating-scoring-so-far-at-the-world-cup/

Questions?