AULA PRÁTICA Nº 6 - BLOCOS COMBINATÓRIOS (II)

Tópicos

- Blocos combinatórios elementares: *multiplexers*.
- Síntese de circuitos combinatórios com blocos elementares.
- Simulação com *LogicWorks*.

Exercícios

1 Projecte um sistema de multiplexagem de modo a poder seleccionar uma de 8 palavras de 4 *bits* cada. Utilize como blocos elementares os circuitos da Figura 1.

Figura 1 Multiplexers elementares

Justifique as suas opções e simule o circuito recorrendo aos componentes correspondentes que integram a biblioteca "7400" no ambiente *LogicWorks*. Alternativamente, pode criar os blocos elementares da figura 4 sob a forma de subcircuitos.

2 Repita o problema anterior mas agora considere uma implementação baseada em *buffers* de 3 estados do tipo 74244 e ainda lógica adicional que julgue pertinente utilizar. Compare esta solução com a do problema anterior sob a perspectiva do número de circuitos integrados necessário.

Exercícios Complementares

- 3 Implemente a função $F(A,B,C,D) = A + \overline{C}D + B\overline{D} + \overline{B}D + \overline{B}C$, usando apenas um *multiplexer*, as variáveis independentes (não complementadas) e as constantes "0" e "1".
- 4 Sugira implementações da função $F(A,B,C,D) = \sum m(0,3,5,7,11,12,13,15)$ baseadas em
 - a) Multiplexer 16:1
 - b) Multiplexer 8:1
 - c) Multiplexer 4:1 e lógica elementar adicional.

[Nota: nas alíneas b) e c), admita que dispõe das variáveis também na forma complementada]

5 Pretende-se construir um subsistema computacional com 2 entradas de dados, A e B, e 3 entradas de controlo, C_2 , C_1 e C_0 . A saída do circuito, F, obedece à seguinte a tabela de verdade:

C2	C ₁	C ₀	F
0	0	0	1
0	0	1	A + B
0	1	0	$\overline{A \bullet B}$
0	1	1	$A \oplus B$
1	0	0	$\overline{A \oplus B}$
1	0	1	A ullet B
1	1	0	$\overline{A+B}$
1	1	1	0

Implemente o circuito com base num multiplexer e lógica elementar adicional.