PROJECT

Getting Ready for Physics Class

You are a physics teacher preparing for the upcoming semester. You want to provide your students with some functions that will help them calculate some fundamental physical properties.

If you get stuck during this project or would like to see an experienced developer work through it, click "**Get Unstuck**" to see a **project walkthrough video**.

Tasks

13/13 Complete

Mark the tasks as complete by checking them off

Turn up the Temperature

1.

Write a function called f_{to_c} that takes an input f_{temp} , a temperature in Fahrenheit, and converts it to c_{temp} , that temperature in Celsius.

It should then return c_temp.

The equation you should use is:

```
Temp (C) = (Temp (F) - 32) \times 5/9
```

Hint

To define a function with an input, use this syntax:

```
def your_function(your_input):
    ... # do something with the input
    return some_final_value
```

2.

Let's test your function with a value of 100 Fahrenheit.

Define a variable f100_in_celsius and set it equal to the value of f_to_c with 100 as an input.

Hint

To call a function use the syntax:

returned_value = your_function(your_input)

3.

Write a function called c_{to}_f that takes an input c_{temp} , a temperature in Celsius, and converts it to f_{temp} , that temperature in Fahrenheit.

It should then return f_temp.

The equation you should use is:

Temp (F) = Temp (C) * (9/5) + 32

4.

Let's test your function with a value of 0 Celsius.

Define a variable co_in_fahrenheit and set it equal to the value of c_to_f with o as an input.

Hint

You can print() the value of co_in_fahrenheit to check that it equals 32.0.

Use the Force

5.

Define a function called get_force that takes in mass and acceleration. It should return mass multiplied by acceleration.

6.

Test get_force by calling it with the variables train_mass and train_acceleration.

Save the result to a variable called train_force and print it out.

Hint

train_mass and train_acceleration have been defined for you at the top of **script.py**.

If you've set up get_force() correctly, train_force should equal 226800.

7

Print the string "The GE train supplies X Newtons of force.", with x replaced by train_force.

8.

Define a function called get_energy that takes in mass and c.

c is a constant that is usually set to the speed of light, which is roughly 3×10^8 . Set c to have a default value of 3*10**8.

get_energy should return mass multiplied by c squared.

9.

Test get_energy by using it on bomb_mass, with the default value of c. Save the result to a variable called bomb_energy.

Hint

10.

Print the string "A 1kg bomb supplies X Joules.", with x replaced by bomb_energy.

Do the Work

11.

Define a final function called get_work that takes in mass, acceleration, and distance.

Work is defined as force multiplied by distance. First, get the force using get_force, then multiply that by distance. Return the result. Hint

To call get_force, use mass and acceleration as inputs. Do this inside the get_work function.

12.

Test get_work by using it on train_mass, train_acceleration, and train_distance. Save the result to a variable called train work.

13.

Print the string "The GE train does X Joules of work over Y meters.", with x replaced with train_work and Y replaced with train_distance. Hint

Remember to cast train_work and train_distance to strings using str() before concatenating.

The GE train does 22680000 Joules of work over 100, by the way.

script.py

```
# Uncomment this when you reach the "Use the Force" section
train_mass = 22680
train_acceleration = 10
train_distance = 100
bomb_mass = 1

# Write your code below:
def f_to_c(f_temp):
    c_temp = (f_temp - 32) * 5/9
    return c_temp

f100_in_celsius = f_to_c(100)
print(f100_in_celsius)
```

```
def c_to_f(c_temp):
  f_{temp} = (c_{temp} * 9/5) + 32
  return f_temp
c0_in_fahrenheit = c_to_f(0)
print(c0_in_fahrenheit)
def get_force(mass, acceleration):
 return mass * acceleration
train_force = get_force(train_mass, train_acceleration)
print(train_force)
print("The GE train supplies " + str(train_force) + " Newtons of force.")
def get_energy(mass, c = 3*10**8):
 return mass * c**2
bomb_energy = get_energy(bomb_mass)
print("A 1Kg bomb supplies " + str(bomb_energy) + " Joules")
def get_work(mass, acceleration, distance):
  return get_force(mass, acceleration) * distance
train_work = get_work(train_mass, train_acceleration, train_distance)
print("The GE train does " + str(train_work) + " Joules of work over " + str(trai
n distance) + " meters.")
```