The Hong Kong University of Science & Technology

MATH243 - Statistical Inference

Final Examination - Fall 08/09

Answer ALL Questions

Date: 12 December 2008 (Fri)

Time allowed: 3 hours

- 1. Assume that we have an i.i.d. random sample $X_1, X_2, ..., X_n$ from a Poisson distribution with mean parameter μ .
 - (a) (1 mark) Find the maximum likelihood estimator of μ^2 .
 - (b) (2 marks) Is the maximum likelihood estimator of μ^2 unbiased?
 - (c) (3 marks) Compute the mean square error of the maximum likelihood estimator in (a). Hint: Find moments from the moment generating function of a Poisson random variable.
 - (d) (2 marks) Find CRLB of all unbiased estimators for μ^2 .
 - (e) (2 marks) Find the UMVUE of μ^2 . Is its variance equal to CRLB in (d)? Explain. No need to find the variance of the UMVUE of μ^2 .
- 2. Suppose X_1 , X_2 , ..., X_n a random sample with Bernoulli (θ), i.e., they are independently and identically distributed and

$$X_i = \begin{cases} 1 & \text{with probability} & \theta \\ 0 & \text{with probability} & 1 - \theta \end{cases}$$

- (a) (2 marks) Show that $X_1 X_2$ is <u>not</u> a complete statistic.
- (b) (2 marks) Find the complete and sufficient statistic for θ . What is its distribution?
- (c) (1 mark) Show that X_1 is an unbiased estimator of θ .
- (d) (2 marks) Rely on the Rao-Blackwell theorem to find a better unbiased estimator of θ than the one considered in (c).
- (e) (3 marks) Find the UMVUE for θ^m , where m is a positive integer less than or equal to n.
- 3. Let $X_1, ..., X_n$ be an i.i.d. random sample from a location distribution family

$$f(x;\theta) = \exp(-(x-\theta))I(x \ge \theta)$$

with $\theta \in R$.

- (a) (1 mark) Find the minimum sufficient statistic of the unknown parameter θ .
- (b) (2 marks) Find the distribution of the minimum sufficient statistic.
- (c) (2 marks) Show that the minimum sufficient statistic is complete.
- (d) (2 marks) Compute mean and variance of the minimum sufficient statistic.
- (e) (1 mark) Find the UMVUE of θ .
- (f) (2 marks) Find the UMVUE of θ^2 .
- 4. (a) Let X_1 , ..., X_n be i.i.d. random variables, each with the Poison distribution of parameter μ .

- (i) **(2 marks)** Show that, by the Neyman-Pearson Theorem, the best test of $H_0: \mu = \mu_0$ against $H_1: \mu = \mu_1 (> \mu_0)$ is $C_1 = \left\{x: \sum_{i=1}^n x_i \ge k\right\}$.
- (ii) (3 marks) By using the central limit theorem to approximate the distribution of $\sum_{i=1}^{n} x_i$, find the smallest value of n required to obtain power at least 0.9 against the alternative $\mu_1 = 1.21$ when $\mu_0 = 1$ and $\alpha = 0.05$.
- (b) Let $X_1,...,X_n$ be i.i.d. r.v.'s from $N(\mu,\theta)$ with μ known.
 - (i) (3 marks) Construct the UMP test for $H_0: \theta = \theta_0$ against $H_1: \theta > \theta_0$ at level of significance α .
 - (ii) (2 marks) Calculate the power at $\theta = 12$ when $\theta_0 = 4$, $\alpha = 0.05$ and n = 25.
- 5. Let $X = (X_1, ..., X_n)$ where X_i denoted as the number of occurrences has multinomial distribution with parameters n, θ_1 , ..., θ_m . Test $H_0: \theta_1 = \theta_{01}$, $\theta_2 = \theta_{02}$, ..., $\theta_m = \theta_{0m}$ against $H_1: (\theta_1, \theta_2, ..., \theta_m)$ takes any other value in $[0,1]^m$ and $\sum_{i=1}^m \theta_i = 1$.
 - (a) **(5 marks)** Find the likelihood ratio and then derive the approximate large sample likelihood ratio test.
 - (b) The following 3839 seedlings are progeny of self-fertilized heterozygotes. Each seedling can be classified as either "Starchy" or "Sugary" and either "Green" or "White":

Numbers of Seedlings	Green	White	Total
Starchy	1997	906	2903
Sugary	904	32	936
Total	2901	938	3839

- (i) (3 marks) Use the result in (a), test the ratios of number of seedlings ("starchy" and "green"; "starchy" and "white"; "sugary" and "green"; "sugary" and "white") are 9:3:3:1 at $\alpha = 0.05$.
- (ii) (2 marks) Re-do the analysis by Pearson goodness of test. Do you get the same conclusion?

- Assume that we have two independent samples, Y_{11} , ..., Y_{1n} and Y_{21} , ..., Y_{2n} , such that Y_{1i} has $N(\gamma_{10} + \gamma_{11}(x_{1i} \overline{x_1}), \sigma^2)$ distribution and Y_{2i} has $N(\gamma_{20} + \gamma_{21}(x_{2i} \overline{x_2}), \sigma^2)$ distribution, respectively, where x_{1i} and x_{2i} are fixed values. The data analyst has to decide whether the coefficients of x_{1i} and x_{2i} are equal, i.e., $H_0: \gamma_{11} = \gamma_{21} = \gamma$.
 - (a) **(3 marks)** Find the maximum likelihood estimators for unknown parameters under the alternative hypothesis, i.e., γ_{10} , γ_{11} , γ_{20} , γ_{21} and σ^2 . Write down maximum likelihood estimators of γ_{10} , γ_{11} , γ_{20} and γ_{21} in terms of \overline{y}_i , \overline{x}_i , $S_{y_ix_i}$ and $S_{x_ix_i}$; maximum likelihood estimator of σ^2 in terms of $S_{y_iy_i}$, $S_{y_ix_i}$, $S_{x_ix_i}$ and/or maximum likelihood estimators of γ_{11} and γ_{21} , where $\overline{y}_i = \sum_{j=1}^n y_{ij}/n$, $\overline{x}_i = \sum_{j=1}^n x_{ij}/n$, $S_{y_iy_i} = \sum_{j=1}^n (y_{ij} \overline{y}_i)^2$, $S_{y_ix_i} = \sum_{j=1}^n (x_{ij} \overline{x}_i)(y_{ij} \overline{y}_i)$ and $S_{x_ix_i} = \sum_{j=1}^n (x_{ij} \overline{x}_i)^2$ for i = 1, 2.
 - (b) (3 marks) Find the maximum likelihood estimators for unknown parameters under the null hypothesis, i.e., γ_{10} , γ_{20} , γ and σ^2 . Write down maximum likelihood estimators of γ_{10} , γ_{20} , γ in terms of \bar{y}_i , \bar{x}_i , $S_{y_ix_i}$ and $S_{x_ix_i}$; maximum likelihood estimator of σ^2 in terms of $S_{y_iy_i}$, $S_{y_ix_i}$, $S_{x_ix_i}$ and/or maximum likelihood estimator of γ , where $\bar{y}_i = \sum\limits_{j=1}^n y_{ij}/n$, $\bar{x}_i = \sum\limits_{j=1}^n x_{ij}/n$, $S_{y_iy_i} = \sum\limits_{j=1}^n (y_{ij} \bar{y}_i)^2$, $S_{y_ix_i} = \sum\limits_{j=1}^n (x_{ij} \bar{x}_i)(y_{ij} \bar{y}_i)$ and $S_{x_ix_i} = \sum\limits_{j=1}^n (x_{ij} \bar{x}_i)^2$ for i = 1, 2.
 - (c) (1 mark) Construct the likelihood ratio for testing $H_0: \gamma_{11} = \gamma_{21} = \gamma$ against $H_1: \gamma_{11} \neq \gamma_{21}$.
 - (d) (3 marks) Derive the approximate large sample likelihood ratio test. Perform the hypothesis testing for the data below and make your conclusion.
 - (e) (Bonus: 4 marks) Construct the exact likelihood ratio test with level of significance α . Do you get the same conclusion on the data as part (d)?

$$\begin{array}{lll} \underline{\text{Data:}} & n=10 \\ \overline{x_1} = 9.3, & \overline{y_1} = 5.3, & S_{x_1x_1} = 204.1, & S_{x_1y_1} = 152.1, & S_{y_1y_1} = 194.1 \\ \overline{x_2} = 12.9, & \overline{y_2} = 12.3, & S_{x_2x_2} = 140.9, & S_{x_2y_2} = 168.3, & S_{y_2y_2} = 460.1 \end{array}$$

***** END *****