Prop1	Prop2	Conjunção	Disjunção	Negação	Implicação	Equivalência
р	q	pΛq	pvq	~ p	p→q	
٧	٧	٧	٧	F	٧	
٧	F	F	٧	F	F	
F	٧	F	٧	٧	V	
F	F	F	F	٧	٧	

Aula03: Equivalência

Disciplina: Matemática Discreta

Profa. Kênia Arruda kenia.costa@uniube.br

≝Uniube **–** Equivalência

- Observe a tabela verdade abaixo:
 - As colunas das formulas H: (p→q) e G:(¬p ∨ q) são idênticas.
 - Ou seja, as formulas H e G são equivalentes.

p	q	¬p	$p \rightarrow q$	pvq	
V	٧	F	٧	V	
٧	F	F	F	F	
F	٧	٧	٧	V	
F	F	٧	V	٧	

Uniube - Equivalência Semântica

- Sejam H e G duas fórmulas Proposicional
- H e G são semanticamente equivales, se e somente se, para toda interpretação I, I[H] = I[G].
- \bigcirc H equivale a G $\Leftrightarrow \forall$ int, I, I[H] = I[G]

р	q	- <i>p</i>	$p \rightarrow q$	-p v q	
٧	V	F	٧	٧	
٧	F	F	F	F	
F	٧	٧	٧	V	
F	F F		V	٧	

Uniube - Propriedades da equivalência

- É imediato que a relação de equivalência lógica entre as fórmulas da lógica proposicional goza das propriedades reflexivas, simétrica e transitiva.
 - H equivale a H Reflexiva
 - Se H equivale a G, então G equivale a H Simétrica
 - Se H equivale a G e G equivale a E, então H equivale a E -Transitiva.

_ Uniube _ Equivalência

Onsidere as fórmulas na tabela. Analise as relação de equivalência:

p	q	-,p	$p \rightarrow p \land q$	$p \rightarrow q$
٧	٧	V	V	V
٧	F	٧	F	F
F	٧	F	V	٧
F	F	F	V	V

- $\bullet \quad A: (p \rightarrow p \land q)$
- o B: $(p \rightarrow q)$
- \circ I[A] \Leftrightarrow I[B]
- $(p \rightarrow p \land q) \Leftrightarrow (p \rightarrow q)$

Uniube = Equivalência

Onsidere as fórmulas na tabela. Análise as relações de equivalência entre as formulas.

p*	q	p↔q	$p \rightarrow q$	$q \rightarrow p$	$(p \rightarrow q) \land (q \rightarrow p)$
٧	٧	V	V	٧	V
٧	F	F	F	V	F
F	٧	F	V	F	F
F	F	V	V	٧	V

$$\circ$$
 A: $(p \leftrightarrow q)$

• B:
$$(p \rightarrow q) \land (q \rightarrow p)$$

$$\circ$$
 I[A] \Leftrightarrow I[B]

$$(p \leftrightarrow q) \Leftrightarrow (p \rightarrow q) \land (q \rightarrow p)$$

Uniube - Tautologia e equivalência

- Dadas duas fórmulas H e G, temos:
 - H equivale a G, se, e somente se, $(H \leftrightarrow G)$ é tautologia.
- H equivale a G
 - ⇔ para toda linha da tabela verdade associada a H e G, as colunas coincidem,
 - ⇔ para toda linha da tabela verdade associada a H e G, H e G são interpretadas igualmente.
 - ⇔ para toda linha da tabela verdade associada a H e G, H → G é interpretada como sendo verdadeira.
 - \Leftrightarrow (H \rightarrow G) é tautologia.
- H equivale a G
 - $\bigcirc \Leftrightarrow \forall \text{ int I, I[H] = I[G]}$
 - ⇔ ∀ int I. I[H ↔G] = V
 - ⇔ ∀ I[H ↔G) é tautologia

Uniube - Tautologia e equivalência

⊙ Considere as fórmulas α :p → (q ∧ r) e β:(p → q) ∧ (p → r). Demonstre que $\alpha \equiv \beta$

Uniube - Tautologia e equivalência

⊙ Considere as fórmulas α:p → (q Λ r) e β:(p → q) Λ (p \rightarrow r). Demonstre que $\alpha \equiv \beta$

	р	q	r	(p∨ q)	α	(p → r)	(q → r)	β	α→β	α∧(¬β)	β→α	β∧(¬α)	α↔β
I ₁	v	v	v	v	v	v	v	v	v	f	v	f	v
I ₂	v	v	f	v	f	f	f	f	v	f	v	f	v
I ₃	v	f	v	v	v	v	v	v	v	f	v	f	v
I ₄	v	f	f	v	f	f	v	f	v	f	v	f	v
I ₅	f	v	v	v	v	v	v	v	v	f	v	f	v
I ₆	f	v	f	v	f	v	f	f	v	f	v	f	v
I ₇	f	f	V	f	v	v	v	v	v	f	v	f	v
I ₈	f	f	f	f	v	v	v	v	v	f	v	f	v

□ Uniube - Tautologia e equivalência

- O Dadas as formulas $H = \neg(p \lor q) \in G = (\neg p \land \neg q)$.
- Mostre que, se H equivale a G, então H G é uma tautologia.

□ Uniube - Tautologia e equivalência

- Dadas as formulas $H = \neg(p \lor q) \in G = (\neg p \land \neg q)$.
- Mostre que, se H equivale a G, então H G é uma tautologia.

р	q	-(p ∨ q)	p ∧q
٧	٧	F	F
٧	F	F	F
F	٧	F	F
F	F	V	V

 $(H \leftrightarrow G)$ é uma tautologia, pois de acordo com a tabela para toda interpretação I, $I[H \leftrightarrow G] = V$.