

Hyperparameter Tuning with Python

Mentor: Pararawendy Indarjo

Hey I'm, **Pararawendy Indarjo**

I am a,

- CURRENTLY | Senior DS at Bukalapak
- 19 20 | Data Analyst at Eureka.ai

BSc Mathematics

MSc Mathematics

Outline

- What are hyperparameters?
 - Why optimizing them?
- Cross Validation
- Tuning penalized regression
- Tuning K-nearest neighbors
- Tuning K-means clustering
- Tuning Random Forest

What are hyperparameters?

- Hyperparameters are parameters whose values are specified by the modeller in advance (before training the model)
- In contrast: usual model parameter values are derived (learned) via model training
- Sample of hyperparameters:
 - Lambda (regularization parameter) in Ridge/LASSO
 - K (number of clusters) in K-Means algorithm, and K-Nearest Neighbors
 - Number of ensembled trees in Random Forest model
 - o **Etc**

Why Optimizing Hyperparameters?

To Avoid Overfitting

- The most complex model is not always better
- Our ultimate goal is to have a model that performs well on unseen data (test data)

To Get Best of The Best Model

- Good data scientist NEVER build only a single model
- Build multiple models instead!
 - And choose the best one

Recall: Our Strategy to Train Penalized Regression

Model 2 (lambda = 1)

Model 3 (lambda = 10)

Training

Validation

Testing

Train multiple models with different lambdas

• Model 1 (lambda = 0.1)

Felians Evaluate the best lambda

Evaluate the best model

Lambda = 1 is

best (Model 2)

Report metrics of

Model 2

Cross Validation

Final evaluation

Test data

K-Fold Cross Validation

- We separate the training data to become K parts (folds) with the same size
- For each split, we train the model on all K-1 folds (green folds)
 - And validate the model on the last fold that remains (blue fold)
 - i.e. compute evaluation metrics on the blue fold (can be seen as validation data)
- After done with all splits (combination of K-1 training Split 3 parts and 1 validation part)
 - Average out all of K evaluation metrics to become the final metric
 - As basis to choose the best hyperparameter
- What number is K?
 - 5 is a good default
 - o 3 is minimum, 10 when your machine allows

+/- of Cross Validation

More robust results

- By validating the trained model multiple times, we will get more stable results
- And hence the correctness of the optimal hyperparameters chosen

Help maximizing data size value

- Cross validation is extremely helpful when our dataset is not too big
 - i.e. < 100K rows
- In a way, it gives us a free validation data

Heavier computation

 Since it takes K times training processes to finish one complete round of model training with a specific hyperparameter value

Penalized Regression

We will tune **lambda**, which regulates the level of regularization of the regression

Ridge

Lambda effect to the model coefficients

- Coeff will become smaller (larger lambda == smaller coeff)
- Yet they all never be exactly zero

LASSO

Lambda effect to the model coefficients

- Coeff will become smaller (larger lambda == smaller coeff)
- Some of them will be <u>exactly zero</u> (eliminated from the model)

We'll use GridSearchCV function

- GridSearchCV is a function from sklearn library to do hyperparameter tuning based on Cross Validation
- Essentially, what it does is to try every combination of the specified hyperparameter values
- Example on the left:
 - There will be 5 times the program will do K-fold cross validation

If > 1 types of hyperparameter

- GridSearchCV will try every combination pair of the specified hyperparameter values
- Example on the left:
 - Hyperparameter 1: 10 distinct values
 - Hyperparameter 2: 8 distinct values
 - So there are 10 x 8 = 80 times K-fold cross validation!

Tuning Penalized Regression

For Ridge (LASSO is quite similar)

```
from sklearn.linear model import Ridge
from sklearn.model selection import GridSearchCV
parameters = {
   'alpha': (0.000001,0.00001,0.0001, _______ tested lambda values
           0.01, 0.1, 1, 5, 10, 20)
ridge reg gridcv = GridSearchCV(ridge reg, parameters, cv=5, ------> 5-fold CV
                          scoring='neg root mean squared error')
ridge reg gridcv.fit(X train, y train)
```


Tuning Penalized Regression

The results

```
retain_cols = ['params','mean_test_score','rank_test_score']
cv_result = pd.DataFrame(ridge_reg_gridcv.cv_results_)
cv_result[retain_cols]
```

	params	mean_test_score	rank_test_score
0	{'alpha': 1e-06}	-55.972086	7
1	{'alpha': 1e-05}	-55.972086	6
2	{'alpha': 0.0001}	-55.972083	5
3	{'alpha': 0.001}	-55.972053	4
4	{'alpha': 0.01}	-55.971757	3
5	{'alpha': 0.1}	-55.969020	2
6	{'alpha': 1}	-55.959424	1

Best model

Tuning Penalized Regression

The best model obtained

```
# best model
ridge reg gridcv.best estimator
# the coefficients of the best estimator (exclude intercept)
ridge reg gridcv.best estimator .coef
array( 0.14269511, -22.80861461,
                                    5.90541998, 1.19867986,
        -1.07900835, 0.62662466,
                                    0.3774738 , 9.77013169,
       60.79394666, 0.21396887])
# the intercept of the best estimator
ridge reg gridcv.best estimator .intercept
-319.81247103842134
```


- Open today's Jupyter notebook on your Google Colab!
- Make sure you have uploaded the required CSV files to your google drive
 - Remember the file path!

K-Nearest Neighbors Classifier

- Recall: KNN classifies the label of a data point based on the majority label of its K nearest neighbors
- Naturally, we can tune K
 - i.e. the number of neighbors we want to look at
- Pattern
 - Smaller K: higher variance
 - more likely to overfitting
 - Vice versa

Tuning KNN

```
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model selection import GridSearchCV
knn clf = KNeighborsClassifier()
parameters = {
    'n neighbors': (2,3,4,5,6,7,8) — tested number of considered neighbors
knn clf gridcv = GridSearchCV(knn clf, parameters,
                              cv=5, scoring='accuracy')
knn clf gridcv.fit(X train, y train)
```

Evaluation metric used

(Note: can be adjusted based on condition)

Tuning KNN

The results

```
# the compact results
cv_result = pd.DataFrame(knn_clf_gridcv.cv_results_)
retain_cols = ['params','mean_test_score','rank_test_score']
cv_result[retain_cols]
```

	params	mean_test_score	rank_test_score
0	{'n_neighbors': 2}	0.682092	6
1	{'n_neighbors': 3}	0.665248	7
2	{'n_neighbors': 4}	0.694681	4
3	{'n_neighbors': 5}	0.686259	5
4	{'n_neighbors': 6}	0.715514	1
5	{'n_neighbors': 7}	0.711436	2
6	{'n_neighbors': 8}	0.707181	3

Tuning KNN

Evaluating the best model obtained

```
# classification report
from sklearn.metrics import classification_report
y_pred = knn_clf_gridcv.best_estimator_.predict(X_test)
print(classification_report(y_test, y_pred))
```

	precision	recall	f1-score	support
0	0.57	0.80	0.67	35
1	0.36	0.16	0.22	25
accuracy			0.53	60
macro avg	0.47	0.48	0.44	60
weighted avg	0.48	0.53	0.48	60

- Open today's Jupyter notebook on your Google Colab!
- Make sure you have uploaded the required CSV files to your google drive
 - Remember the file path!

K-Means Clustering

- Recall: K Means algorithm is a unsupervised model to find K similar groups in data
- The relevant metric is Sum of Squared Error
 - The "error" refers to the deviation/distance between a data point and its centroid.
- Naturally, we can tune K
 - i.e. the number of clusters we want to have

Tuning K-Means Algorithm

- NO, we won't use GridSearchCV
- Instead, we will use the Elbow Method
 - We plot the sum of squared errors (SSE) for various K values
 - Choose the K value at which the SSE decline slopes change significantly (forming an "elbow" shape)

Tuning K-Means Algorithm

```
from sklearn.cluster import KMeans
# track sum of squared error
sse =
for k in range(1,11):
                                      tested k = [1,2,3,...,10]
    kmeans = KMeans(n clusters=k)
    kmeans.fit(X)
    sse.append(kmeans.inertia)
```

Sum of Squared Error

Tuning K-Means Algorithm

```
# draw the SSE decline progression
import matplotlib.pyplot as plt
plt.figure(figsize = (12,8))
plt.plot(range(1,11), sse)
plt.xticks(range(1,11))
plt.xlabel("Number of Clusters")
plt.ylabel("Sum of Squared Error")
plt.show()
```


- Open today's Jupyter notebook on your Google Colab!
- Make sure you have uploaded the required CSV files to your google drive
 - Remember the file path!

Random Forest

- Recall: Random Forest is a group of decision trees that predict target variable
 by taking majority votes among them
- There are several things that can be optimized:
 - number of trees in the "forest"
 - max tree depth
 - max number of leafs for each tree
 - o etc


```
from sklearn.ensemble import RandomForestClassifier
from sklearn.model selection import GridSearchCV
rf clf = RandomForestClassifier(random state=42)
parameters = {
   'max depth':(1,2,3,4,5)
                                 → Hyperparam 2: max tree depth
# Cross Validation
rf clf gridcv = GridSearchCV(rf clf, parameters, cv=5,
                                                      Evaluation metric used
                        scoring='recall')
rf clf gridcv.fit(X train, y train)
```


The results

```
# the results
cv_result = pd.DataFrame(rf_clf_gridcv.cv_results_)
retain_cols = ['params','mean_test_score','rank_test_score']
cv_result[retain_cols].sort_values('rank_test_score')
```

Sorted from the best model

	params	mean_test_score	rank_test_score
12	{'max_depth': 3, 'n_estimators': 30}	0.761905	1
24	{'max_depth': 5, 'n_estimators': 50}	0.746667	2
11	{'max_depth': 3, 'n_estimators': 20}	0.745714	3
22	{'max_depth': 5, 'n_estimators': 30}	0.732381	4
19	{'max_depth': 4, 'n_estimators': 50}	0.719048	5
17	{'max_depth': 4, 'n_estimators': 30}	0.719048	5
23	{'max_depth': 5, 'n_estimators': 40}	0.718095	7

RandomizedSearchCV

```
parameters = {
    'n_estimators': (10,20,30,40,50),
    'max_depth':(1,2,3,4,5)
}

There are 5 x 5 = 25 combinations!
Can be long to run (compute)!
```

In such cases, we may use **RandomizedSearchCV**

• It only considers a **subset of random combinations** of hyperparameter values

Hyperparameter 1


```
# using random search CV
from sklearn.model selection import RandomizedSearchCV
parameters = {
    'n estimators': (10,20,30,40,50),
    'max depth':(1,2,3,4,5)
rf clf randomcv = RandomizedSearchCV(rf clf, parameters, cv=5,
                                      scoring='recall', n iter=10) \rightarrow Number of pairs tested
rf clf randomcv.fit(X train, y train)
```


The results using RandomizedSearchCV

```
cv_result = pd.DataFrame(rf_clf_randomcv.cv_results_)
retain_cols = ['params','mean_test_score','rank_test_score']
cv_result[retain_cols].sort_values('rank_test_score')
```

	params	mean_test_score	rank_test_score
0	{'n_estimators': 30, 'max_depth': 3}	0.761905	1
3	{'n_estimators': 50, 'max_depth': 4}	0.719048	2
5	{'n_estimators': 30, 'max_depth': 4}	0.719048	2
9	{'n_estimators': 10, 'max_depth': 5}	0.689524	4
6	{'n_estimators': 50, 'max_depth': 3}	0.648571	5
2	{'n_estimators': 30, 'max_depth': 2}	0.620952	6
7	{'n_estimators': 50, 'max_depth': 2}	0.591429	7

→ Same as GridSearchCV

Evaluating the best model obtained

```
# classification report
from sklearn.metrics import classification_report
y_pred = rf_clf_randomcv.best_estimator_.predict(X_test)
print(classification_report(y_test, y_pred))
```

	precision	recall	f1-score	support	
0	0.73	0.94	0.83	35	
1	0.87	0.52	0.65	25	→ Better than KNN
accuracy			0.77	60	
macro avg	0.80	0.73	0.74	60	
weighted avg	0.79	0.77	0.75	60	

- Open today's Jupyter notebook on your Google Colab!
- Make sure you have uploaded the required CSV files to your google drive
 - Remember the file path!

Assignment

- What to submit? Google colab link (don't forget to share access to me: pararawendy19@gmail.com)
 - Format notebook name: HW_HPTUNING_<YOUR
 COMPLETE NAME>

Problem

- Load churn.csv as DataFrame
- Basic data cleaning (missing values, duplicates) (10 points)
- Split the data: training & testing (10 points)
- Multicollinearity study (10 points)
 - And feature selection (if any)
 - Recall: the threshold is at least 0.8 (absolute value)
- Handle categorical data (20 points)
 - \circ Column with 2 distinct values \rightarrow convert to binary numeric $\{0,1\}$
 - \circ Else \rightarrow One Hot Encode
- Choose the appropriate metric for fitting the model (10 points)
- Train any classification model you'd prefer (30 points)
 - YET please ensure you do hyperparameter tuning
- Evaluate the model on test data (10 points)

Thank you

