Estructura de Computadors

Tema 4 Aritmètica en coma flotant

Índex

- Introducció
 - Mesura de rendiment
- La norma IEEE i la seua implementació en el MIPS
 - Format, valors especials, arrodoniment
 - Visió del programador: banc de registres i moviment de dades
 - Joc d'instruccions de coma flotant
- Operadors de coma flotant
 - Operador de canvi de signe
 - Operadors de conversió de tipus
 - Operador de multiplicació

Bibliografia

- D.L. Patterson, J. L. Hennessy: Estructura y diseño de computadores
 - Ed. Reverté, 2000: volum 1, capítol 4
 - Ed. Reverté, 2011, traducció de la 4a edició en anglés: cap. 3
- W. Stallings: Organización y Arquitectura de Computadores (7a ed.) Prentice Hall, capítol 9

David Goldberg: Computer Arithmetic

- Appèndix H de J. L. Hennessy, D. L. Patterson: Computer Architecture, a Quantitative Approach, 3a edició
- Disponible en castellà en la 1a edició en McGraw-Hill
- David Goldberg: What every computer scientist should know about floating-point arithmetic
 - PDF, (accessible en molts llocs de la web)

L'aritmètica de coma flotant

- Aprofita per a càlculs definits sobre reals (tipus float i double en alt nivell)
- Pot ser que no estiga directament suportada per la ALU
 - no és essencial per al funcionament de la CPU
 - pot ser emulada mitjançant instruccions d'enters
- Evolució
 - Fins a 1985 (aprox) els operadors de CF anaven dins d'un xip opcional que es col·locava al costat de la CPU
 - Des de 1985 en endavant, les CPU de propòsit general inclouen operadors de CF dins de la seua ALU
 - Des de 1990, els adaptadors de vídeo inclouen una GPU (Graphics Processing Unit) amb un nombre creixent d'operadors de CF

- La mesura de prestacions en coma flotant
 - El nombre d'operacions de coma flotant per segon (FLOPS, prefijxe M=10⁶, G=10⁹, T=10¹²) és una mesura de prestacions utilitzada en dos contextos:
 - En el disseny d'operadors de CF és el nombre màxim d'operacions per segon. Ve determinada pel temps d'operació de cada circuit.
 - En les comparatives entre computadors o entre acceleradors gràfics:
 és el nombre d'operacions de CF que executa el dispositiu per segon.
 - Depén del nombre i característiques dels operadors que inclou i de l'ús que se'n fa.
 - Productivitat punta d'un computador o d'un accelerador gràfic: suma de les productivitats dels operadors de CF que conté. Sol ser impossible d'assolir amb l'ús corrent

Productivitats punta

Processador Intel Core2 Duo @2GHz 16 GFLOPS

Processador Intel Core i7 965 XE 70 GFLOPS

GPU ATI Radeon HD4890 2.4 TFLOPS

K Computer (Japó, juny 2011) 10 PFLOPS

La norma IEEE 754 i la seua implementació en el MIPS

- Representació del conjunt R (reals positius i negatius)
 - El conjunt R és un conjunt dens: entre dos nombres reals qualssevol hi ha infinits nombres reals
 - La representació del computador és limitada i no sempre és exacta
 - Amb 32 bits es poden obtenir 2³² paraules diferents. Per tant, com a màxim es poden representar 2³² valors del conjunt R
 - Hi ha nombres reals que tenen representació exacta i altres que no, com ara els nombres amb part decimal periòdica
 - Com codificar un nombre real en una paraula de bits?
 - Aplicant-hi un format arbitrari, com ara el IEEE 754, estructurat en tres camps de bits per al signe, l'exponent i la part significativa (mantissa)
 - El format imposa més restriccions a la representació: hi haurà algunes paraules de bits amb una significació matemàtica especial, com ara el valor infinit o el zero

- Representació del conjunt R (reals positius i negatius)
 - En el computador interessa augmentar
 - La quantitat de nombres representats (densitat)
 - El rang de la representació
 - Aquests dos aspectes depenen dels camps de la part significativa (mantissa) i de l'exponent del format

- Patró de la representació dels nombres reals
 - No hi ha valors representats molt a prop del zero
 - Per a un mateix valor d'exponent, els nombres representats estan separats per la mateixa distància
 - Com més gran és l'exponent més distància hi ha entre dos nombres representats consecutius (la densitat de representació disminueix)

Cada grup de valors té el mateix exponent i diferents mantisses

- Els valors prop de zero
 - El format IEEE 754 reserva un subconjunt de paraules de bits per a representar nombres reals prop del zero i que s'interpreten de forma diferent de la resta de valors (valors desnormalitzats)
 - No totes les unitats de coma flotant suporten aquest subconjunt de valors

Abast de la norma

- La norma IEEE 754 (o la seua ampliació a l'aritmètica de punt fix, IEEE 854) especifica:
 - **codificació**: com representar els nombres en diversos formats (precisions simple, doble i estesa, SP DP EP) i el tractament de casos particulars: NaN (*Not a Number*), ±∞ (*infinity*), 0 (*zero*)
 - un conjunt d'**operacions** que es poden implementar en el hardware o en forma de biblioteques
 - uns modes de funcionament (p. ex, el mètode d'arrodoniment aplicable durant els càlculs)
 - el suport que ha de donar el sistema d'excepcions dels processadors (perquè s'hi puguen dissenyar bones biblioteques de càlcul numèric)

La norma IEEE 754 (repàs)

Representació

Símbols: S és el signe i M la magnitud de la mantissa. E és l'exponent

– Formats:

- Simple precisió (SP)
- Doble precisió (DP)

- Valors denormalitzats
 - (SP i DP)

Valors especials (SP i DP)

- Els valors especials
 - Són manipulats per les operacions junt amb els valors corrents
 - Zero i infinit:
 - s'entenen com a límits matemàtics; per això

```
-+\infty++\infty=+\infty; -\infty+-\infty=-\infty; etc.
```

- $-+\infty \times \text{positiu} = +\infty$; $+\infty \times \text{negatiu} = -\infty$; etc.
- positiu / +0 = +∞ ; positiu / –0 = –∞; etc
- comparacions: +0 i –0 són iguals
- Not a number:
 - propagació: qualsevol operació on un operand és NaN donarà com a resultat NaN
 - generació: NaN és el resultat de (+∞) + (-∞), ±0 × ±∞, ±0 / ±0, ±∞ / ±∞ i altres
 - una comparació (=, <, ≥, etc) entre NaN i altre número resulta falsa

- La norma i els llenguatges de programació
 - Els valors especials permeten tractar els incidents del càlcul
 - El desbordament aritmètic produeix un resultat representable

```
x = 0.0
1/x = Infinity
z = -Infinity
1/z = -0.0
x * z = NaN
```

L'arrodoniment

- Situació frequent: una operació genera una mantissa M de longitud més llarga (p bits) que la prevista en el format (m bits)
 - els *m* primers bits de la mantissa M s'anomenen *retingut*s
- Possibilitats:
 - M és representable de forma exacta en el format: els p-m bits no retinguts són 0 i es poden eliminar: 010000 → 0100
 - M es troba entre els dos valors representables M_ i M₊ (M_<M<M₊)
 i cal arrodonir. cal triar-ne un com a representació inexacta de M
- La norma admet quatre modes d'arrodoniment.
 - Cap a +∞
 - Cap a −∞
 - Cap a 0
 - Triar el més pròxim dels dos (esbiaixat al parell; aquest és el mode per omissió)

- L'arrodoniment cap al més pròxim (esbiaixat al parell)
 - La variant per omissió és "tie to even": en cas que M estiga equidistant de M_{_} i M_{_}, cal triar la mantissa representable parella (o siga, la que acabe en 0)
 - Exemple:

M	tria	M resultant
010000	(exacta)	0100
010001	M_ (més propera)	0100
010010	M_ (parella)	0100
010011	M₊ (més propera)	0101
010100	(exacta)	0101
010101	M_ (més propera)	0101
010110	M₊ (parella)	0110
010111	M₊ (més propera)	0110
011000	(exacta)	0110

- El banc de registres
 - Hi ha 32 registres de 32 bits \$£0,\$£1,...,\$£31 per a tipus float
 - Se solen emprar els nombres parells \$f0,\$f2,...,\$f30
 - Emparellables per a formar 16 registres de 64 bits per a tipus double
 - Si \$£0 "conté" un double: \$£0 té la part baixa i \$£1 la part alta (\$£1||\$£0)

Conveni d'ús dels registres

Nom del registre	Utilització
\$f0	Retorn de funció (part real)
\$f2	Retorn de funció (part imaginària)
\$f4,\$f6,\$f8,\$f10	Registres temporals
\$f12,\$f14	Pas de paràmetres a funcions
\$f16,\$f18	Registres temporals
\$f20,\$f22,\$f24,\$f26,\$f28,\$f30	Registres a mantenir entre crides

Intercanvi amb la memòria i amb els registres d'enters

```
instrucció
operació
lectura ft \leftarrow Mem[X+fs]
                                lwc1 $ft,X($rs)
                                                        fs i ft: registres de
escriptura Mem[X+\$rs] \leftarrow \$ft
                                                              coma flotant
                                swc1 $ft,X($rs)
                                                        rs i rt: són registres
transferència $fs ← $rt
                                mtc1 $rt,$fs
                                                              d'enters
transferència \$rt \leftarrow \$fs
                                mfc1 $rt,$fs
         .data
         .float 3.14
x:
         .double 0.1
у:
                                             Les instruccions de CF no
         .text
                                             admeten operands
         la $t0,x
                           # f0 <- x
                                             immediats. Cal ubicar les
         lwc1 $f0,0($t0)
                                             constants en la memòria o
         la $t0,y
                            # f2 <- y
                                             construir-les en els
         lwc1 $f2,0($t0)
         lwc1 $f3,4($t0)
                                             registres d'enters
        mtc1 $0,$f4
                           # f4 < - 0.0
```

- Conversió de formats
 - Els registres de CF poden contenir:

<u>símbol</u>	tipus
S	nombres en coma flotant en SP
D	(per parelles) nombres en coma flotant en DP
W	nombres enters de 32 bits

- La instrucció cvt._._ fd,fs fa les conversions possibles entre els tres tipus
 - Exemple: cvt.d.w \$f4,\$f7 fa la conversió de l'enter contingut en \$f7 a CF en doble precisió contingut en \$f4||\$f5
- En combinació amb les instruccions de transferència amb el banc de registres d'enters, es pot fer aritmètica amb variables de tipus diversos

- Instruccions aritmètiques bàsiques
 - N'hi ha dues versions de cada operació: S (simple precisió) i D (doble precisió)
 - Exemple: add.s \$f0,\$f1,\$f2; add.d \$f2,\$f4,\$f6

operació	instrucció
suma	add fd,fs,ft
resta	<pre>sub fd,fs,ft</pre>
multiplicació	<pre>mul fd,fs,ft</pre>
divisió	div fd,fs,ft
comparació	c.cond fs,ft
copia	mov fd,fs
canvi de signe	neg fd,fs
valor absolut	abs fd,fs

La comparació

- Les instruccions de comparació escriuen un bit implícit *FPc* que codifica cert=1 i fals=0
- Aquest bit es troba en un registre de control del coprocessador i pot ser consultat per les instruccions de salt
- Per a cada tipus de dades, n'hi ha un conjunt de comparacions codificables
- Les més importants: (c.__.s fd,fs o c.__.d fd,fs)

fd>fs	fd=fs	fd <fs< th=""></fs<>
gt	eq	lt
le	neq	ge
fd≤fs	 fd≠fs	fd≥fs

- Control de flux i aritmètica de coma flotant
 - Hi ha dues instruccions de bifurcació associades al bit FPc

```
bclt eti si (FPc == 1) bifurcar a eti
bclf eti si (FPc == 0) bifurcar a eti
```

- Combinades amb les instruccions de comparació, permeten bifurcar amb condicions aritmètiques complexes
- Cada condició permet dues implementacions
 - Exemple en simple precisió: si (\$f0 > \$f2) bifurcar a eti

Operadors de coma flotant

Operadors de coma flotant

Introducció

- Prenen com a entrada un o dos operands en un format de CF donat
- El seu resultat és un operand de CF codificat segons la norma
 - excepte els operands de comparació
- El seu disseny és complexe perquè, a més de fer l'operació definida, s'han d'ocupar de certs detalls:
 - Han de subministrar el resultat correctament <u>normalitzat</u> segons la precisió amb què treballen
 - Han de gestionar els valors especials definits en la norma
 - Si escau, han d'arrodonir el resultat segons el mode programat
 - Han de senyalar les excepcions previstes per la norma
- Estudiarem l'estructura bàsica d'alguns operadors i veurem, en casos seleccionats, com resolen els detalls

Operadors de coma flotant

- Exemples d'operadors
 - NEG.S i NEG.D (canvi de signe)
 - Estructura
 - CVT.D.S (conversió de simple a doble precisió)
 - Estructura bàsica
 - Detall: tractament dels valors especials
 - CVT.S.D (conversió de doble a simple precisió)
 - Estructura bàsica
 - Detall: l'arrodoniment
 - CVT.D.W (conversió d'enter a CF doble precisió)

- Estructura bàsica
- Detall: la normalització
- MULT.S i MULT.D (multiplicació)
 - Estructura bàsica
 - Detall: la renormalització

El canvi de signe

- L'operador bàsic
 - Dues versions:
 - Simple precisió:
 - Entrada: S_A (1 bit), E_A (8 bits) i M_A (23 bits)
 - Eixida: S_R (1 bit), E_R (8 bits) i M_R (23 bits)
 - Doble precisió:
 - Entrada: S_A (1 bit), E_A (11 bits) i M_A (52 bits)
 - Eixida: S_R (1 bit), E_R (11 bits) i M_R (52 bits)
 - Canvia el signe: S_R = not S_A
 - Copia l'exponent: $E_R = E_A$
 - Copia la mantissa: M_R = M_A

Emulació del canvi de signe

```
float x = 1.0;
x = -x;
```

```
x: .float 1.0

lwc1 $f2, x  # $f2 <- x (1.0)

mfc1 $t0,$f2  # $t0 <- $f2

lui $t1, 0x8000  # $t1 <- 0x80000000

xor $t0, $t0, $t1  # $t0 <- -1.0

mtc1 $t0, $f2  # $f2 <- $t0

swc1 $f2, x  # x <- $f2 (-1.0)</pre>
```

Conversió de simple a doble precisió (cvt.d.s)

Especificació de l'operador:

- Entrada: S_A (1 bit), E_A (8 bits) i M_A (23 bits)
- Eixida: S_R (1 bit), E_R (11 bits) i M_R (52 bits)
- El signe no canvia: S_R = S_A
- Exponent: cal canviar d'excés 127 a excés 1023
 - $E_R = E_A + 896$
- Mantissa: cal afegir 52–23=29 zeros a la dreta
 - $M_R = M_A \parallel 00....0$
- Detall: tractament correcte dels valors especials:

E,	A	S_R	E_R	M_{R}
zero i subnormal: 00	00000002	SA	000000000000 ₂	M _A 000
±∞ i NaN: 11	1111111 ₂	$S_{\mathbf{A}}$	1111111111 ₂	$M_A \parallel 000$
valors corrents: (re	esta de valors)	S_A	E _A + 896	$M_A \parallel 000$

Conversió de simple a doble precisió (cvt.d.s)

- L'operador bàsic
 - No tracta els valors especials

Conversió de simple a doble precisió

- Tractament dels valors especials
 - Detall del càlcul de l'exponent

Conversió de doble a simple precisió (cvt.s.d)

- Estructura de l'operador
 - El signe no canvia
 - Exponent: cal canviar d'11 bits en excés 1023 a 8 bits en excés 127
 - pot donar-se desbordament
 - Mantissa: cal eliminar 29 bits per la dreta i arrodonir

L'arrodoniment

Circuit per a l'arrodoniment al més pròxim

Conversió d'enter a doble precisió (cvt.d.w)

Filosofia de l'operador

- Si és positiu, un enter W de 32 bits es pot escriure com +0.Wx2³²
- Si és negatiu, W es rescriu com –0.(–W) x2³²
- La mantissa W comença per una sèrie de Z zeros (0 ≤ Z ≤ 32)
- Caldrà normalitzar la mantissa desplatzant-la Z+1 posicions cap a l'esquerra (eliminant el bit enter) i restar Z+1 a l'exponent

Especificació

- Entrada de l'operador: W (32 bits)
- Eixida de l'operador: S_R (1 bit), E_R (11 bits) i M_R (52 bits)
- $-S_R = Signe(W)$
- MR = |W| << Z+1 (desplaçament)</p>
 - Si W<0, cal fer W = -W
- $E_R = 1023 + 32 Z 1$

Conversió d'enter a doble precisió (cvt.d.w)

Esquema

- La normalització ha de comptar el nombre Z de bits a zero per l'esquerra (fins el primer 1)
- Ha de deplaçar la mantissa Z posicions cap a l'esquerra
 - L'exponent que cal representar serà 31–Z
 - Afegint l'excés, tenim E = 1023
 + 31 –Z
- Cal completar la mantissa amb zeros

La normalització

Circuit de normalització

- Un codificador prioritari (que codifica l'entrada de menor índex amb un 1) calcula Z
- Un barrel shifter desplaça la mantissa cap a l'esquerra i elimina els ceros sobrants
- Cal descartar el bit implícit

Codificador prioritari

$W_{31}W_{30}W_{29}W_{28}$				₉ W ₂₈	$W_1 W_0$	Z	
	1	X	X	X		XX	00000
	0	1	X	X		XX	00001
	0	0	1	X		XX	00010
	0	0	0	0		0 1	 11111

La multiplicació (mul.s y mul.d)

Especificació

- Dos versions: simple precisió i doble precisió
- Dues entrades (A i B):
 - S_A (1 bit), E_A (8/11 bits) i M_A (23/52 bits)
 - S_B (1 bit), E_B (8/11 bits) i M_B (23/52 bits)
- Eixida: S_R (1 bit), E_R (8/11 bits) i M_R (23/52 bits)
- Càlcul del signe: S_R = S_A xor S_B
- Càlcul de l'exponent: cal sumar compensant l'excés
 - Simple precisió E_R = E_A + E_B 127
 - Doble precisió $E_R = E_A + E_B 1023$
- Càlcul de la mantissa:
 - Cal multiplicar 1.M_A x 1.M_B (tot considerant el bit implícit)
 - El multiplicador depén de la precisió: 24x24 bits o 53x53 bits
 - Caldrà renormalitzar (llevant el bit implícit) i arrodonir la mantissa resultant deixant-la en 23/52 bits

La multiplicació (mul.s)

- Operador (SP)
 - Dos sumadors per a sumar els exponents representats en excés 127
 - Multiplicador per a les mantisses
 - Opera amb el bit implícit afegit: 24x24 bits
 - Caldrà renormalitzar el resultat (ara ho veurem) i llevar el bit implícit
 - potser caldrà incrementar l'exponent
 - El resultat ocuparà 47 bits i caldrà arrodonir-lo a 23
 - potser caldrà incrementar l'exponent

La renormalització

- Renormalització després d'un producte
 - Si la mantissa del producte comença per 0:
 - Desplaçar a l'esquerra una posició
 - Si comença per 1:
 - Cal incrementar l'exponent en 1
 - En qualsevol cas:
 - Eliminar el bit enter implícit

