Câu 1

Trong các ánh xạ dưới đây, ánh xạ nào là đơn ánh?

A. $f: \mathbb{R} \to \mathbb{R}, f(x) = x^4$.

B. $f: \mathbb{R} \to \mathbb{R}, f(x) = x^2 - 5x$.

C. $f:(0,+\infty)\to\mathbb{R}$, $f(x)=\ln x$.

C. $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \cos x$.

 \mathbf{D} : $(0,+\infty) \to \mathbb{R}$, $f(x) = \ln x$.

Câu 2

Tìm hàm Boole F(x,y) trong $\,B_2$ nhận giá trị 1 khi và chỉ khi x, y đồng thời nhận giá trị 1 hoặc 0

A. $F(x,y) = (x \wedge y) \vee (x' \wedge y)$.

B. $F(x,y) = (x \lor y) \lor (x \land y)$.

 $\mathbf{C.} F(x,y) = (x \wedge y) \vee (x' \wedge y').$

D. $F(x,y) = (x \lor y) \land (x \land y \lor)$

Câu 3

Công thức nào dưới đây là rút gọn của công thức

$$z \wedge [y \vee (z \wedge y')] \wedge [x \vee (y \wedge x')]$$

A. $(x \lor y) \land z$.

B. $(x \wedge y') \vee z$.

C. $(x \wedge z') \vee y$.

D. $(x \wedge z) \vee (x' \wedge y)$.

Câu 4

Cho a,b là hai phần tử của một đại số Boole. Khẳng định nào dưới đây **không đúng**

 $\mathbf{A}.\,a\vee(a\wedge b)=a$

B. $a \lor 1 = 1$

D. $a \wedge a = a$.

Câu 5

Cho A,B là hai tập con của tập E . Khẳng định nào dưới đây **không đúng?**

$$\mathbf{A}.B \subset A \Leftrightarrow \overline{A} \subset \overline{B}$$

B.
$$B \subset A \Leftrightarrow A \cup B = A$$
.

$$(A \cup B = E) \Rightarrow (A = \overline{B}).$$

D.
$$(A \setminus B) \cap (B \setminus A) = \emptyset$$
.

Câu 6

Tập hợp các véc tơ có dạng nào dưới đây là không gian véc tơ con của $\,\mathbb{R}^3\,$

A. Các véc tơ (x,y,z) thoả mãn $\,x\geq y\geq z\,.$

B. Các véc to (x, y, z) thoả mãn yz = 0.

C. Các véc to (x,y,z) thoả mãn 2x+3y-5z=0 .

D. Các véc tơ (x, y, z) thoả mãn $z = x^2$.

Câu 7

Phát biểu nào dưới đây không đúng.

A. Hệ 2 véc tơ là độc lập tuyến tính khi và chỉ khi 2 véc tơ này không tỉ lệ.

B. Hệ phụ thuộc tuyến tính không tồn tại hệ con độc lập tuyến tính tối đại.

C. Hệ chứa véc tơ 0 là hệ phụ thuộc tuyến tính.

D. Một hệ véc tơ là phụ thuộc tuyến tính khi và chỉ khi có một véc tơ là tổ hợp tuyến tính của các véc tơ còn lai.

Câu 8: Gọi A là ma trận của hệ véc tơ sau trong cơ sở chính tắc của \mathbb{R}^3 .

$$v_1 = (0, -2, 5), \ v_2 = (5, -4, 0), \ v_3 = (1, 3, -5).$$

Khẳng định nào dưới đây đúng

A.
$$T = \begin{bmatrix} 0 & -2 & 5 \\ 5 & -4 & 0 \\ 1 & 3 & -5 \end{bmatrix}$$
.

$$\mathbf{B.} \ T = \begin{bmatrix} 0 & 5 & 1 \\ 2 & -4 & 3 \\ 5 & 0 & -5 \end{bmatrix}.$$

$$\mathbf{D.} \ T = \begin{bmatrix} 0 & -5 & 1 \\ 2 & -4 & 3 \\ -5 & 0 & -5 \end{bmatrix}.$$

Câu 9

Hệ véc tơ nào dưới đây là **hệ sinh** của \mathbb{R}^3

A.
$$u = (5,0,1), v = (2,7,4).$$

B.
$$u = (5,1,6), v = (9,0,2).$$

C.
$$u = (3,1,4), v = (2,-3,5), w = (5,-2,9)$$

C.
$$u = (3,1,4), v = (2,-3,5), w = (5,-2,9).$$

D. $u = (2,1,-3), v = (3,2,-5), w = (1,-1,1).$

Câu 10.

Giả sử $\left\{\,e_1,...,e_n^{}\right\}$ là một cơ sở của V . Khẳng định nào dưới đây **không đúng**:

A. V có thể có nhiều cơ sở.

$$\mathbf{B}$$
 $\left\{e_1,...,e_n\right\}$ là một hệ độc lập tuyến tính nhưng không phải là hệ sinh.

C. Số phần tử của mọi cơ sở của V đều bằng nhau.

D. Mọi hệ n véc tơ độc lập tuyến tính của V là cơ sở của V.