Uniform Law of Large Numbers

Tianwei Gao

January 21, 2025

1 Uniform Law of Large Numbers

1.1 Main theorem

Definition 1.1. Fix a probability space $(\mathcal{X}, \Omega, \mathbb{P})$, and \mathcal{F} a class of integrable functions, $\{X_i\}$ are i.i.d. random variables following distribution F.

1. We define $||F_n - F||_{\mathcal{F}}$ to be the random variable

$$||F_n - F||_{\mathcal{F}} := \sup_{f \in \mathcal{F}} |\frac{1}{n} \sum_{i=1}^n f(X_i) - f(X)|.$$

2. Denote by $\mathcal{F}(x_1^n)$ the subset

$$\mathcal{F}(x_1^n) := \{ (f(x_1), f(x_2), \dots, f(x_n)) \in \mathbb{R}^n | f \in \mathcal{F} \} \subset \mathbb{R}^n,$$

we define the empirical Radamacher complexity to be

$$\mathcal{R}(\mathcal{F}(x_1^n)/n)$$

where \mathcal{R} is the usual Rademacher complexity.

3. The Rademacher complexity of function class \mathcal{F} is defined by

$$\mathcal{R}_n(\mathcal{F}) = \mathbb{E}_X[\mathcal{R}(\mathcal{F}(x_1^n)/n)].$$

4. We say that \mathcal{F} is a Glivenko-Cantelli class for the distribution F if

$$||F_n - F||_{\mathcal{F}} \to 0 \text{ as } n \to \infty,$$

in probability.

Remark 1.1. When the \mathcal{F} has one single function, then this is just a common convergence law. When proving some technical lemma, we can always take this as a starting point.

Lemma 1.1. The following inequalities holds,

1.

$$\sup_{f \in \mathcal{F}} \mathbb{E}_X[f(X)] \le \mathbb{E}[\sup_f f(X)].$$

2. For any non-decrease and convex function Φ , we have

$$\sup_{f \in \mathcal{F}} \Phi(\mathbb{E}[f(X)]) \leq \mathbb{E}[\Phi(\sup_f f(X))]$$

Proof. We prove 2 here. For any $f \in \mathcal{F}$,

$$\begin{split} \Phi(\mathbb{E}[f(X)]) &\leq \mathbb{E}[\Phi(f(X))] \\ &\leq \mathbb{E}[\Phi(\sup_{f} f(X))]. \end{split}$$

Taking sup on both sides leads to the inequality.

To bound $||F_n - F||_{\mathcal{F}}$, we first bound the expectation

$$\mathbb{E}_X[||F_n - F||_{\mathcal{F}}]$$

as follows:

Lemma 1.2.

$$\mathbb{E}_X[||F_n - F||_{\mathcal{F}}] \le 2\mathcal{R}_n(\mathcal{F})$$

Proof. Consider $\{Y_i\}_{i=1}^n$ are i.i.d also follows F and independent of X_1^n , then

$$\mathbb{E}_{X_1^n} \left[\sup_f \left| \frac{1}{n} \sum_{i=1}^n f(X_i) - \mathbb{E}f(X) \right| \right] = \mathbb{E}_{X_1^n} \left[\sup_f \left| \frac{1}{n} \sum_{i=1}^n f(X_i) - \mathbb{E}_{Y_1^n} \left(\frac{1}{n} \sum_{i=1}^n f(Y_i) \right) \right| \right]$$

$$\leq \mathbb{E}_{X_i, Y_i} \left[\frac{1}{n} \sup_f \left| \sum_{i=1}^n (f(X_i) - f(Y_i)) \right| \right]$$

$$= \mathbb{E}_{X_i, Y_i, \varepsilon_i} \left[\frac{1}{n} \sup_f \left| \sum_{i=1}^n \varepsilon_i (f(X_i) - f(Y_i)) \right| \right]$$

$$= 2\mathbb{E}_{X_i, \varepsilon_i} \left[\frac{1}{n} \sup_f \left| \sum_{i=1}^n \varepsilon_i (f(X_i)) \right| \right]$$

$$= 2\mathcal{R}_n(\mathcal{F})$$

Now we come to the proof of the following main theorem:

Theorem 1.3. Assume that \mathcal{F} is uniformly bounded by b > 0, for any $\delta > 0$,

$$\mathbb{P}(\|F_n - F\|_{\mathcal{F}} \ge 2\mathcal{R}_n(\mathcal{F}) + \delta) \le \exp(-\frac{n\delta^2}{2h^2}).$$

Proof. With the above lemma, we only need to prove the concentration part. We set $G(x_i^n): \mathbb{R}^d \to \mathbb{R}$ to be

$$G(x_1^n) = \sup_{f} |\frac{1}{n} \sum_{i=1}^n f(x_i) - \mathbb{E}f(x)|,$$

we can see that, for $x_1^n, y_1^n \in \mathbb{R}^n$, we have

$$\left| \frac{1}{n} \sum_{i=1}^{n} f(x_i) - \mathbb{E}f(x) \right| - G(y_1^n) \le \left| \frac{1}{n} \sum_{i=1}^{n} f(x_i) - \mathbb{E}f(x) \right| - \left| \frac{1}{n} \sum_{i=1}^{n} f(y_i) - \mathbb{E}f(X) \right|$$

$$\le \frac{1}{n} \sum_{i=1}^{n} |f(x_i) - f(y_i)|$$

$$\le 2b,$$

thus

$$G(x_1^n) - G(y_1^n) \le 2b,$$

by symmetrization,

$$|G(x_1^n) - G(y_1^n)| \le 2b,$$

thus we have the concentration formula for the bounded random variable $G(X_1^n)$

$$\mathbb{P}(G(X_1^n) - \mathbb{E}G(X_1^n) \ge \delta) \le \exp(-\frac{n\delta^2}{2h^2}).$$

Now with $\mathbb{E}G(X_1^n) \leq 2\mathcal{R}_n(\mathcal{F})$, we finished the proof.

1.2 Rademacher Complexity and VC dimension

To make the bound obtained in main theorem meaningful, we need to bound $\mathcal{R}_n(\mathcal{F})$.

Intuitively speaking, for a random variable X and its i.i.d samples X_1^n , the larger the set $\mathcal{F}(X_1^n)$ is, the larger the complexity is.

Here is a first thought based on this intuition:

Proposition 1.4. Assume that we have some p > 0, such that for any $x_1^n \in \mathbb{R}^n$,

$$\mathcal{F}(x_1^n) \subset B(0, D),$$

$$\#(\mathcal{F}(x_1^n)) \le (n+1)^p.$$

Then

$$\mathcal{R}(\mathcal{F}(x_1^n)/n) \le \frac{C_1 D}{n} \sqrt{p \log(n+1)}$$

Proof. After rescaling, we can see that this amounts to say that a set $T \subset B(0,1)$ with $\#(T) \leq (n+1)^p$,

$$\mathcal{R}(T) \leq C_1 \sqrt{p \log(n+1)}$$
.

Note that

$$\mathcal{R}(T) = \mathbb{E}_{\varepsilon} \sup_{\theta \in T} \langle \epsilon, \theta \rangle$$
$$= \mathbb{E}_{\varepsilon} \max_{\theta \in T} Y_{\theta},$$

where $Y_{\theta} := \langle \varepsilon, \theta \rangle$ is a random variable defined on \mathbb{H}^n . Note that by the following lemma, Y_{θ} are zero-mean, bound, 1-sub-gaussian variables.

Lemma 1.5. \mathbb{Y}_{θ} is 1-sub-gaussian.

Proof.

$$\mathbb{E}[\exp(\lambda Y_{\theta})] = \prod_{i=1}^{n} \mathbb{E}[\exp(\lambda \theta_{i} \varepsilon_{i})]$$

$$\leq \prod_{i=1}^{n} \exp(\frac{\lambda^{2} \theta^{2}}{2})$$

$$= \exp(\frac{\lambda^{2}}{2}).$$

П

Now the result follows from a concentration argument.

For function class satisfies the condition

$$\#\mathcal{F}(x_1^n) \le (n+1)^p$$
,

the function class \mathcal{F} is said to have polynomial discrimination of order p.

Definition 1.2. 1. Given a binary-valued function class \mathcal{F} , we say that (x_1, \ldots, x_n) is shattered by \mathcal{F} if

$$\#(\mathcal{F}(x_1^n)) = 2^n$$
.

The VC-dimension of \mathcal{F} is to be the largest k such that there is a set of cardinal k, that is shattered by \mathcal{F} , we denote this number by $\nu(\mathcal{F})$.

2. For a general function class \mathcal{F} , we define its VC dimension to be the VC dimension of \mathcal{F}_{sub} , where

$$\mathcal{F}_{sub} = \{ \mathbf{1}_{f < 0}, \ f \in \mathcal{F} \}.$$

Remark 1.2. Indeed, the definition can be generalized to $x_i \in \mathcal{X}$ for general space \mathcal{X} .

Now we state the Vapnik-Chervonenkis theorem, it states that \mathcal{F} has finite VC-dimension would imply polynomial discrimination or order $\nu(\mathcal{F})$.

Theorem 1.6. Assume that $\nu(\mathcal{F}) = k < \infty$, then

$$\#\mathcal{F}(x_1^n) \le \sum_{j=0}^k C_n^j.$$

Corollary 1.7.

$$\#(\mathcal{F}(x_1^n)) \le (n+1)^{\nu(\mathcal{F})}$$

Proof. This follows from the main theorem, and the following identity:

$$\sum_{j=0}^{k} C_n^j \le \sum_{j=0}^{k} n^j \le \sum_{j=0}^{k} n^j C_k^j = (n+1)^k.$$

With the above discussion, we are able to prove one version of uniform law of large numbers.

Corollary 1.8 (Classical Glivenko–Cantelli theorem). Let $\mathcal{F} := \{\mathbf{1}_{(-\infty,t]:t\in\mathbb{R}}\}$, then its VC-dimension is 1, hence By the proposition and theorem, we have

$$\mathcal{R}(\mathcal{F}(x_1^n)/n) \le \frac{C_1}{n} \sqrt{\log(n+1)},$$

and

$$\mathcal{R}_n(\mathcal{F}) \le \frac{C_1}{n} \sqrt{\log(n+1)}.$$

Now by the concentration theorem of $||F_n - F||_{\mathcal{F}}$, we have

$$\mathbb{P}\bigg(\|F_n - F\|_{\mathcal{F}} \ge 2\frac{C_1}{n}\sqrt{\log(n+1)}\bigg) \le \exp(-\frac{n\delta^2}{2b^2}).$$

Note that $||F_n - F||_{\mathcal{F}}$ can be written as

$$||F_n - F||_{\mathcal{F}} = \sup_{t} |\frac{1}{n} \sum_{i=1}^n \mathbb{I}(X_i \le t) - P(X \le t)|$$

= $||\hat{F}_n - F||_{\infty}$,

where \hat{F}_n is the empirical density function and $\|\cdot\|_{\infty}$ is the supreme norm. This shows that

$$\|\hat{F}_n - F\|_{\infty} \to 0, a.s.$$

Now we present a criterion on the finiteness of VC-dimension.

Proposition 1.9. Let \mathcal{G} be a vector space of functions $g : \mathbb{R}^d \to \mathbb{R}$, then the VC-dimension of \mathcal{G} is at most $\dim(\mathcal{G})$.

Proof. If not, assume $\dim(\mathcal{G}) = k$, $P = \{x_1, \dots, x_n\}$ is a set of n points that can be shattered by \mathcal{G} while n > k.

In the following, for simplicity we write $i \in S$ for $x_i \in S$.

Assume g_1, \ldots, g_k form a basis of \mathcal{G} , denote this vector by v_g and denote by

$$v_i := (g_j(x_i))_{j=1}^k,$$

WLOG, we assume that $v_n = \sum_{i=1}^{n-1} c_i v_i$. Now, we construct a set S as follows:

- 1. For each $i \in [1, n-1], i \in S$ if $c_i > 0$,
- 2. For $i = n, i \notin S$.

Assume that $g = \sum_{j=1}^k b_j g_j = \langle v_g, b \rangle$ satisfies:

$$g(x_i \le 0) \Leftrightarrow i \in S,$$

then $c_i \langle v_i, b \rangle \leq 0$ for $i \in [0, n-1]$, which means

$$g(x_n) = \sum_{i=1}^{n-1} c_i \langle v_i, b \rangle \le 0 \Rightarrow n \in S,$$

this gives contradiction.

Example 1.1. From the above proposition, we can see the VC-dimension of family of d-dimensional spheres is 1.