Induction Solution

Démontrez par induction sur n que $1*1 + 2*2 + 3*4 + 4*8 + ... + <math>n*2^{n-1} = (n-1)*2^n + 1$ pour tout entier n > 1.

Solution.

Étape de base: n=1.

Côté gauche = 1*1=1. Côté droit = 0*2 + 1 = 1.

Étape inductive.

Supposons que $n \ge 1$ et que $1*1 + 2*2 + 3*4 + 4*8 + ... + n*2^{n-1} = (n-1)*2^n + 1$. À démontrer: $1*1 + 2*2 + 3*4 + 4*8 + ... + n*2^{n-1} + (n+1)*2^n = n*2^{n+1} + 1$. Selon l'hypothèse inductive, côté gauche = $(n-1)*2^n + 1 + (n+1)*2^n = 2n*2^n + 1 = n*2^{n+1} + 1 = côté droit.$

Démontrez par induction simple sur n que $1^3 + 2^3 + ... + n^3 = [n(n+1)]^2/4$ pour tout entier $n \ge 1$.

Réponse : Étape de base : Pour n=1, on a $1^3 = [1(1+1)]^2/4$, donc la proposition est vraie pour n=1. Étape inductive : on suppose que la proposition est vraie pour un certain entier $n \ge 1$, et on veut montrer que cela entraîne la proposition au rang n+1.

$$1^{3} + 2^{3} + \dots + n^{3} + (n+1)^{3} = [n(n+1)]^{2}/4 + (n+1)^{3}$$
$$= (n+1)^{2}[n^{2}/4 + n + 1] = (n+1)^{2}[n^{2} + 4n + 4]/4$$
$$= (n+1)^{2}[n + 2]^{2}/4 = [(n+1)(n+2)]^{2}/4$$

La proposition au rang n implique la proposition au rang n+1. Donc la proposition est vraie pour tout $n \ge 1$.

Démontrer par induction sur n que $(x-1) \times (1+x+x^2+...+x^{n-1}) = x^n - 1$ pour tout entier $n \ge 1$. Utiliser le premier principe (ou principe simple) d'induction.

Solution.

Étape de base: n=1. Côté gauche = x - 1. Côté droit = x - 1.

Étape d'induction. Supposons que $n \ge 1$ et que $(x-1) \times (1+x+x^2+...+x^{n-1}) = x^n - 1$. À démontrer: $(x-1) \times (1+x+x^2+...+x^n) = x^{n+1} - 1$.

Côté gauche = $(x-1) \times (1+x+x^2+...+x^{n-1}) + (x-1) \times x^n = (x^n-1) + (x^{n+1}-x^n) = x^{n+1} - 1 = côté droit.$

Démontrez par induction simple sur n que (n-1)(n+2) est pair pour tout entier $n \ge 1$.

Solution.

Étape de base: n=1. Si n=1, alors (n-1)(n+2)=0, qui est pair.

Étape inductive. Supposons que $n \ge 1$ et que (n-1)(n+2) est pair. À démontrer: n(n+3) est pair. Or $n(n+3)-(n-1)(n+2)=(n^2+3n)-(n^2+n-2)=2n+2$, qui est pair. Donc n(n+3) est la somme de deux entiers pairs et donc est pair.

$$\sum_{i=0}^{n} 3^{i} = \frac{3^{n+1} - 1}{2} \quad \text{pour tout entier } n \ge 0.$$

Étape de base : n=0.

Côté gauche =
$$\sum_{i=0}^{0} 3^{i} = 3^{0} = 1$$
.

Côté droit =
$$\frac{3^{0+1}-1}{2} = \frac{3-1}{2} = 1$$
.

Étape inductive : Supposons que $n \ge 0$ et que $\sum_{i=0}^{n} 3^i = \frac{3^{n+1} - 1}{2}$

À démontrer :
$$\sum_{i=0}^{n+1} 3^i = \frac{3^{n+2}-1}{2}$$

Côté gauche =
$$\sum_{i=0}^{n+1} 3^i = \sum_{i=0}^{n} 3^i + 3^{n+1} = \frac{3^{n+1} - 1}{2} + 3^{n+1} = \frac{3^{n+1} - 1 + 2 \cdot 3^{n+1}}{2} = \frac{3 \cdot 3^{n+1} - 1}{2} = \frac{3^{n+2} - 1}{2} = \text{Côté droit.}$$

Démontrez par induction simple sur n que $1^2 + 2^2 + ... + n^2 \ge n^3/3$ pour tout entier $n \ge 1$.

Solution.

Étape de base: n=1. Côté gauche = 1, côté droit = 1/3 et $1 \ge 1/3$.

Étape inductive. Supposons que $n \ge 1$ et que $1^2 + 2^2 + ... + n^2 \ge n^3/3$. À démontrer: $1^2 + 2^2 + ... + n^2 + (n+1)^2 \ge (n+1)^3/3$.

Côté gauche $\geq n^3/3 + (n+1)^2 = n^3/3 + n^2 + 2n + 1$. Côté droit = $(n^3 + 3n^2 + 3n + 1)/3 = n^3/3 + n^2 + n + 1/3$. Puisque $n \geq 1$, $2n \geq n$. En plus $1 \geq 1/3$. Donc, côté gauche $\geq n^3/3 + n^2 + 2n + 1 \geq$ côté droit, COFT.

Démontrez par induction simple sur n que $1^2 + 2^2 + ... + n^2 = n(n+1)(2n+1)/6$ pour tout entier $n \ge 1$.

Solution. Étape de base: n=1. Côté gauche = $1^2 = 1$ et côté droit = 1(2)(3)/6 = 1.

Étape inductive. Supposons que $n \ge 1$ et que $1^2 + 2^2 + ... + n^2 = n(n+1)(2n+1)/6$. À démontrer: $1^2 + 2^2 + ... + n^2 + (n+1)^2 = (n+1)(n+2)(2n+3)/6$.

Côté gauche = $n(n+1)(2n+1)/6 + (n+1)^2 = [(n+1)/6][n(2n+1) + 6(n+1)] = [(n+1)/6][2n^2 + 7n + 6]$. Côté droit = $[(n+1)/6][(n+2)(2n+3)] = [(n+1)/6][2n^2 + 7n + 6] =$ côté gauche.

Démontrez par induction simple sur n que $n! \le n^n$ pour tout entier $n \ge 1$.

Solution.

Étape de base: n = 1. 1! = 1 et $1^1 = 1$ et $1 \le 1$.

Étape inductive. Supposons que $n \ge 1$ et que $n! \le n^n$. À démontrer: $(n+1)! \le (n+1)^{n+1}$. $(n+1)! = (n+1)n! \le (n+1)n^n$ (puisque $n! \le n^n$ et n+1>0) $\le (n+1)(n+1)^n = (n+1)^{n+1}$.