LICENCE EEA 1 - Introduction

Systemes Numeriques & ROCESSEURS EMBARQUES

Julien DENOULET

julien.denoulet@sorbonne-universite.fr L3 EEA - LU3EE100

SU - LIP6

Système Numérique?

Un exemple d'aujourd'hui...

iPad Pro 12.9" (2015)

C1

What's inside?

Micro Dalle LCD Camera **Haut Parleur** Logic Board **Antennes Batteries**

C1

iPad Pro Logic Board

4

Au cœur du système...

Processeur A9X (fabriqué par TSMC)

Source: Techgrapple.com	А9Х
CPU	2x ARMv8-A (64 bits)
CPU Clockspeed	2.26GHz
GPU	PVR 12 Cluster Series7
RAM	4GB LPDDR4
Memory Bus Width	128-bit
Memory Bandwidth	51.2GB/sec
L2 Cache	ЗМВ
L3 Cache	None
Sensor features	M9 Motion coproc
Manufacturing Process	TSMC 16nm FinFET

iPad... version années 80

TEXAS INSTRUMENTS LES JEUX DE LA CONNAISSANCE

What's inside?

Ecran Haut-Parleur Microcontrôleur Synthèse 128 kbits Vocale Energizer. **Piles** Source: datamath.org

C1

Au cœur du système...

- Microcontrôleur Texas Instruments
 - Processeur 4 bits
 - Fréquence 300 kHz
 - Mémoire interne
 - 1ko ROM
 - 32 bits RAM

C1

How did we get here?

Flot de Conception

Principales étapes

- Modélisation de l'architecture
 - Avec un langage de description matériel (VHDL)
- Synthèse:
 - Détermine si la description HDL est "traduisible" en cellules de base dans la technologie visée
 - Génération d'une netlist
- Placement/Routage
 - Répartition des cellules de base dans le circuit
 - Interconnexion des cellules
- Vérification
 - Analyse temporelle
 - Règles de dessin...

C1

Systèmes numériques actuels

- Enormément de ressources disponibles
 - Circuits de plusieurs milliards de transistors
 - Processeur AMD Epyc Rome (64 cores) :
 - 39,5.10⁹ transistors
 - Association sur un même circuit de composants variés
 - Processeurs
 - Mémoire
 - Blocs matériels dédiés (périphériques)
 - Composants mixtes / analogiques
 - ...
 - > SYSTÈME SUR PUCE (SoC)

C₁

Un système plus modeste...

Mini-projet de l'UE 2EE299

- Pilotage d'un accéléromètre pour une mini-console de jeux
- Implémenté sur un circuit programmable FPGA

De quoi avait-on besoin?

- Ressources de calcul
 - Additionneurs, comparateurs...
- Ressources de mémorisation
 - Bascules, registres...
- Structures combinatoires et séquentielles élémentaires

- Capacité de contrôle limitée
 - "L'intelligence" du système se trouve ailleurs

C1

Objectif UE LU3EE100

 Donner de l'intelligence à un système numérique

 Pour être en mesure de réaliser des applications plus complexes

C1

Une application "complexe"

Standing at the crossroads...

C1

Contrôle de l'application

- Une même séquence d'entrées ne produit pas forcément le même comportement en sortie
- La sortie dépend (aussi) de l'état dans lequel se trouve le système
 - > Suis-je en feu rouge, vert, orange?
 - Depuis combien de temps?
 - > Etc...
- Pour des applications un peu plus complexes, le système doit se doter d'un organe de contrôle pour gérer toutes ces situations

C₁

Comment fait-on?

- Architecture séparée en deux blocs
 - Partie Opérative (centre de calcul & mémorisation)
 - Partie Contrôle (centre de décision)

Application

PARTIE OPERATIVE PARTIE CONTRÔLE

C1

Partie Opérative

- Ressources de calcul
 - Opérateurs arithmétiques
 - Look-up Tables (LUTs)
 - Comparateurs
 - Compteurs
 - ____

- Ressources de mémorisation
 - Bascules/Registres
 - Mémoires
 - Stockage des données

Partie Contrôle

Machine à états

- Dispositif (électronique) donnant l'ensemble des états possibles d'un système ainsi que leur séquencement
- Centre de décision du système
- Basée sur une représentation en graphe d'états

 Peut être complétée par d'autres modules (compteur)

C1

Système Numérique

- Chaque partie possède ses E/S
 - Entrées/Sorties de données
 - Entrées/Sorties de contrôle

C1

Système Numérique

- Communication entre les deux parties
 - PC→PO: Donne le mode de fonctionnement des registres/opérateurs
 En fonction de l'état actuel du système

C1

Système Numérique

- Communication entre les deux parties
 - PO→PC: Renseigne la partie contrôle sur la valeur d'une donnée, d'un résultat Pour déterminer l'évolution de l'état du système

C1

Processeur

- L'intelligence peut être contenue dans un programme à exécuter par un processeur
- La plupart des systèmes numériques actuels incluent un (ou plusieurs) processeur(s)
 - Architecture électronique d'un processeur
 - Des portes logiques au processeur
 - Programmation d'un processeur
 - Du programme C
 à l'exécution sur le processeur

Processeur LC-3

Processeurpédagogique(Patt & Patel - 2003)

Jeu d'instructions simplifié

Programmable enC ou en assembleur

30

Autres thèmes abordés

- Modélisation d'un système numérique
 - Langage VHDL

C1

Autres thèmes abordés

Questions abordées en cours

- Qu'est-ce qu'un système numérique?
 - Partie contrôle / Machine à états
- Comment décrit-on un système numérique?
 - VHDL
- Sur quelles technologies les implémente-t-on?
 - Circuits programmables
 - Mémoires
- Comment fonctionne un microprocesseur?
 - Architecture
 - Programmation

C1

Contenu du cours

- Introduction Rappels (2h C)
- VHDL (4h C 8h TD sur machine)
- Machines à état (6h C 6h TD)
- **Mémoires** (2h C 2h TD)
- Architecture processeur (6h C 6h TD dont 4h sur machine)
- Circuits Programmables Conclusion (2h C)

Formats des TD

- 11 Séances de TD
 - TD sur machine
 - Séances 1→4, 9-10
 - TD sur papier
 - Séances 5→8, 11
- Enoncés papier distribués lors du TD1

Cı

TD sur Machine

- Réalisés sur des outils en ligne
 - Pas d'installation d'outil(*) ou de problèmes d'OS
 - (*) sauf Java Runtime Environment pour un TD

- Les TD se feront en salle classique
 - Vous pourrez travailler sur votre machine
 - Pensez à charger vos PC!
 - Pour ceux qui n'ont pas d'ordinateur, l'écran de l'enseignant sera projeté au tableau.

C1

TD sur Machine

- TD 1→4 VHDL
 - EDA Playground
 - https://www.edaplayground.com/
 - Tutoriel vidéo et PDF disponible sur Moodle
 - Merci de vous créer un compte d'ici au TD1
 - AVEC ADRESSE MAIL SORBONNE UNIVERSITE
 - Des liens vers des logiciels de simulation VHDL plus complets sont disponibles sur Moodle
 - Modelsim Student Edition
 - Lien + Tutoriel PDF sur Moodle

C1

TD sur Machine

- TD $9 \rightarrow 10$ Architecture des Processeurs
 - Simulateur Processeur LC-3
 - http://lc3tutor.org/
 - Tutoriel vidéo sur Moodle
 - Notice d'utilisation dans les énoncés de TD
 - Complété par un simulateur graphique du LC-3 (application Java)
 - Récupérable sur Moodle (Section TD)

 Des outils complémentaires (Windows only...) peuvent aussi être récupérés via Moodle

C1

TD sur Papier

Business as usual...

C1

39

Source: Bill Watterson

TP – Mini Projet

- 16h de TP (8x2h) Mini Projet
 - Réalisation d'une console de jeux vidéo
 - Conception VHDL
 - Implémentation sur carte FPGA

Projet sructuréen 4 tâches(+ améliorations)

40

TP: Cartes FPGA, Binômes...

- Le TP pourra être réalisé sur 2 types de cartes FPGA
 - Cartes Nexys: dispos en salles de TP
 - Cartes Basys: Prêtées pour le semestre
- Le passage d'une carte à l'autre se fait très simplement sur Vivado

- Les formalités du prêt vous seront communiquées dès que possible
- Un tutoriel d'installation de Vivado sera disponible sur Moodle

Les scénarios du semestre...

- Plan A → Tout en présentiel
- Plan B → On s'adapte...
 - Cours en vidéo en pédagogie inversée
 - TD en hybride ou à distance
 - TP en binôme hybride

Intendance...

- Documents
 - Online: Moodle → Site UE LU3EE100
 - Ceux qui ont pu être inscrits... ont été inscrits...
 - Abonnement libre
 - https://moodle-sciences.upmc.fr/moodle-2021/
 - Faire une recherche de l'UE sur Moodle
 - Des versions papier vous seront données pour:
 - Enoncés de TD
 - Documents de cours (Bréviaire VHDL, LC-3 Digest)
- Emploi du Temps
 - Secrétariat L3 EEA(Couloir 55-65)
 - Site de vie de la L3 EEA sur Moodle

C1

Evaluation(*)

- 2 Examens Répartis
 - 30% pour chaque écrit réparti.

- TP
 - Contrôle de TP (20%)
 - Mini-Projet (20%) (avancement + soutenance)

(*) La barème et les modalités d'évaluation peuvent être amenées à évoluer selon l'évolution sanitaire...

Reader's Digest

Electronique Numérique

Cours 2E200/LU2EE299 (Bertrand Granado) http://bertrand.granado.free.fr/LE201/LE201/Cours.html

■ Bibliothèque...

C1

Reader's Digest

VHDL

- The Designer's Guide to VHDL, (P.Ashenden), Elsevier
- The Student's Guide to VHDL, (P.Ashenden), Elsevier
- FPGA Prototyping by VHDL Examples (P.Chu), Wiley Interscience

Cours VHDL Alain Vachoux (EPFL)

http://bertrand.granado.free.fr/Sysprog/SysProg/Cours_files/vachoux-partie1_1.pdf http://bertrand.granado.free.fr/Sysprog/SysProg/Cours_files/vachoux-partie2.pdf

Ressources

http://tams-www.informatik.uni-hamburg.de/vhdl/vhdl.html

C₁

Reader's Digest...

Architecture des Processeurs

Introduction to Computing Systems:
 From Bits and Gates to C and Beyond, 2ème Ed.
 (Y.Patt & S.Patel), McGraw-Hill

C1

Computer Architecture a quantitative approach, 5th Ed.
 (J.Hennessy & D.Patterson), Morgan & Kaufmann