Object Detection & Tracking in 4D RADAR for Enhanced Autonomous Vehicle Perception

Presented by Nick Timaskovs

Aims & Objectives

The aim of this thesis is to develop and or implement an **Object Detection** and **Tracking** architecture for 4D RADAR, for enhanced Autonomous vehicle perception.

Create a UI for visualizing the detections during model evaluation.

Preform experiments on various model configurations.

Aims & Objectives

To learn how to use and understand the 4D RADAR point cloud data structure.

Break the barrier to entry, with a plug and play solution improving accessibility.

Contribute to RaTrack with improvements.

Challenges in Autonomous Vehicles

Sensor Fusion and Perception

Clutter, Interference and noise

Detection of Vulnerable Road Users

Safety and Reliability

Data Collection and Processing

Cost and Implementation

Motivations

Personal Experience - wanting to improve road safety

Specialize in computer vision & ML to work in this field

Improve current solutions to help drive innovation in Advanced Driver Assistance Systems (ADAS)

Interest in the automotive industry.

Architecture of RaTrack

Training Results

Evaluation Results on 8 epochs

Segmentation

Metric Run 1 Run 2 **Better Run** 0.915624 0.929237 Run 2 **Accuracy** MIoU 0.588501 0.610672 Run 2 Sensitivity 0.869579 0.884062 Run 2

Scene Flow

Metric	Run 1	Run 2	Better Run
RNE	0.126901	0.274913	Run 1
SAS	0.996817	0.988114	Run 1
EPE	0.299801	0.648234	Run 1

- Run 1: pretrain_epochs = 2
- Run 2: pretrain_epochs = 16

Comparing 8 vs 10 epochs

Segmentation

Metric	10 Epoch	8 Epoch	Better Model
Accuracy	0.902215	0.929237	Epoch 8
MIoU	0.569491	0.610672	Epoch 8
Sensitivity	0.849747	0.884062	Epoch 8

Scene Flow

Metric	10 Epoch	8 Epoch	Better Model
RNE	0.115484	0.274913	Epoch 10
SAS	0.997415	0.988114	Epoch 10
EPE	0.272903	0.648234	Epoch 10

- 10 Epochs: pretrain_epochs = 2
- 8 Epochs: pretrain_epochs = 16

Challenges Faced

Dataset Acquisition

Original implementation was not feasible

Lack of code standards / bad practices

Computational Complexity (1hr per epoch)

Solution Complexity

Steep Learning Curve

Questions?

