∨ PRACTICE-4:

Design a model to predict the housing price from Boston Dataset using Linear Regression

```
import matplotlib.pvplot as plt
     import pandas as pd
     import seaborn as sns
     %matplotlib inline
      from google.colab import drive
      drive.mount('/content/drive')
→ Mounted at /content/drive
     import io
     import pandas as pd
     df=pd.read_csv('/content/drive/MyDrive/Data Sets/BostonHousing.csv')
     df.head()
₹
            crim zn indus chas nox rm age dis rad tax ptratio
                                                                                                 b 1stat medv
      0 0.00632 18.0 2.31 0 0.538 6.575 65.2 4.0900 1 296 15.3 396.90 4.98 24.0
      1 0.02731 0.0 7.07 0 0.469 6.421 78.9 4.9671 2 242 17.8 396.90 9.14 21.6
      2 0.02729 0.0 7.07 0 0.469 7.185 61.1 4.9671 2 242 17.8 392.83 4.03 34.7
      3 0.03237 0.0 2.18 0 0.458 6.998 45.8 6.0622 3 222 18.7 394.63 2.94 33.4
      4 0.06905 0.0 2.18 0 0.458 7.147 54.2 6.0622 3 222 18.7 396.90 5.33 36.2
1 df.info()
Class 'pandas.core.frame.DataFrame'>
RangeIndex: 506 entries, 0 to 505
Data columns (total 14 columns):
# Column Non-Null Count Dtype
                     506 non-null
506 non-null
506 non-null
          crim
           zn
indus
                     506 non-null
506 non-null
506 non-null
506 non-null
506 non-null
                                        int64
float64
float64
float64
           chas
nox
           rm
           age
           dis
                                        float64
     11 b 596 non-null
12 lstat 596 non-null
13 medv 596 non-null
13 medv 596 non-null
dtypes: float64(11), int64(3)
memory usage: 55.5 KB
          ptratio 506 non-null
                                        float64
                                         float64
                                        float64
```

1 df.describe()

₹		crim	zn	indus	chas	nox	rm	age	dis	rad	tax	ptratio	b	lstat	medv
	count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000
	mean	3.613524	11.363636	11.136779	0.069170	0.554695	6.284634	68.574901	3.795043	9.549407	408.237154	18.455534	356.674032	12.653063	22.532806
	std	8.601545	23.322453	6.860353	0.253994	0.115878	0.702617	28.148861	2.105710	8.707259	168.537116	2.164946	91.294864	7.141062	9.197104
	min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.900000	1.129600	1.000000	187.000000	12.600000	0.320000	1.730000	5.000000
	25%	0.082045	0.000000	5.190000	0.000000	0.449000	5.885500	45.025000	2.100175	4.000000	279.000000	17.400000	375.377500	6.950000	17.025000
	50%	0.256510	0.000000	9.690000	0.000000	0.538000	6.208500	77.500000	3.207450	5.000000	330.000000	19.050000	391.440000	11.360000	21.200000
	75%	3.677083	12.500000	18.100000	0.000000	0.624000	6.623500	94.075000	5.188425	24.000000	666.000000	20.200000	396.225000	16.955000	25.000000

```
1 #let's plot all the columns to look at their distributions
```

² for i in df.columns:

plt.figure(figsize=(7,4))

sns.histplot(data=df,x=i,kde=True)

plt.show()

¹ plt.figure(figsize=(12,8))

² cmap=sns.diverging_palette(230,20,as_cmap=True)
3 sns.heatmap(df.corr(),annot=True,fmt='.2f',cmap=cmap)

⁴ plt.show()

```
crim
                     -0.20
                             0.41
                                      -0.06 0.42
                                                       -0.22 0.35 -0.38
                                                                                         0.58
                                                                                                 0.29
                                                                                                                  0.46
                                      -0.04
                                                       0.31
                                                                                 -0.31 -0.31
                                                                                                          0.18
                                                                                                                           0.36
       Z
            -0.20
       snpu
                                      0.06
                                                                                                 0.38
                                                                                                          -0.36
             0.41
                                                                                                                                                0.6
       chas
             -0.06
                     -0.04
                              0.06
                                              0.09
                                                       0.09
                                                                0.09
                                                                        -0.10
                                                                                 -0.01
                                                                                        -0.04
                                                                                                  -0.12
                                                                                                          0.05
                                                                                                                  -0.05
                                                                                                                           0.18
       NOX
             0.42
                                      0.09
                                                       -0.30
                                                                                                  0.19
                                                                                                          -0.38
                                                                                                                  0.59
                                                                                                                                                0.4
                      0.31
                                              -0.30
                                                                -0.24
                                                                        0.21
                                                                                 -0.21
                                                                                                          0.13
             -0.22
                                      0.09
                                                                                         -0.29
                                                                                                  -0.36
       ٤ -
                                                                                                                                                0.2
       age
             0.35
                                                       -0.24
                                                                                                                           -0.38
                                      0.09
                                                                                                  0.26
                                                                                                          -0.27
       dis
             -0.38
                                      -0.10
                                                       0.21
                                                                                                  -0.23
                                                                                                          0.29
                                                                                                                           0.25
                                                                                                                                                0.0
       rad
                                                                                                                           -0.38
                     -0.31
                                      -0.01
                                                       -0.21
                                                               0.46
                                                                                                  0.46
                                                                                                                  0.49
                     -0.31
                                      -0.04
                                                       -0.29
                                                                0.51
       tax
             0.58
                                                                                                  0.46
                                                                                                                   0.54
                                                                                                                                                -0.2
       ptratio
             0.29
                              0.38
                                      -0.12
                                              0.19
                                                       -0.36
                                                                0.26
                                                                        -0.23
                                                                                 0.46
                                                                                         0.46
                                                                                                          -0.18
                                                                                                                  0.37
                                                                                                                                                -0.4
                      0.18
                             -0.36
                                      0.05
                                              -0.38
                                                       0.13
                                                               -0.27
                                                                        0.29
                                                                                                 -0.18
                                                                                                                  -0.37
                                                                                                                           0.33
       stat
             0.46
                                                                                 0.49
                                                                                                          -0.37
                                      -0.05
                                              0.59
                                                                                         0.54
                                                                                                 0.37
                                                                                                                                                -0.6
                                                                -0.38
                                                                        0.25
                                                                                 -0.38
       4
 1 Y=df['medv']
 2 X=df.drop(columns={'medv'})
1 #splitting the data in 70:30 ratio of train to test data 2 from sklearn.model_selection import train_test_split
 3 X_train, X_test, y_train, y_test=train_test_split(X,Y,test_size=0.30,random_state=1)
 1 print(X_train.shape)
 2 print(X_test.shape)
 3 print(y train.shape)
 4 print(y_test.shape)
→ (354, 13)
     (152, 13)
(354,)
(152,)
1 from sklearn.linear_model import LinearRegression 2 from sklearn.metrics import mean_squared_error
 3 lin_model=LinearRegression()
 4 lin_model.fit(X_train,y_train)

▼ LinearRegression

       \blacksquare
 1 b=lin model.coef
 2 m=lin_model.intercept_
→ array([-9.85424717e-02, 6.07841138e-02, 5.91715401e-02, 2.43955988e+00,
              -2.14699650e+01, 2.79581385e+00, 3.57459778e-03, -1.51627218e+00, 3.07541745e-01, -1.12800166e-02, -1.00546640e+00, 6.45018446e-03, -5.68834539e-01])
→ 46.396493871823864
1 from sklearn.metrics import r2_score 2 #model evaluation for training set '
 3 y_train_predict=lin_model.predict(X_train)
4 rmse=(np.sqrt(mean_squared_error(y_train,y_train_predict)))
 5 r2=r2_score(y_train,y_train_predict)
 7 print("The model performance for training set")
8 print("-----9 print('RMSE is {}'.format(rmse))
10 print('R2 score is {}'.format(r2))
11 print("\n")
\rightarrow The model performance for training set
      RMSE is 4.849055005805464
      R2 score is 0.7103879080674731
```

```
1 from sklearn.metrics import r2_score
2 mmodel evaluation for training set '
3 y_test_predict=lin_model.predict(X_test)
4 rmse=(np.sqrt(mean_squared_error(y_test,y_test_predict)))
5 r2=r2_score(y_test,y_test_predict)
6
7 print("The model performance for training set")
8 print("The model performance for training set")
9 print('RNSE is {}'.format(rmse))
10 print('RNSE is {}'.format(r2))
11 print("\n")
12
13
The model performance for training set

RMSE is 4.453237437198149
R2 score is 0.7836295385076292
```

HW:

- 1.Write the regression equation ypred=m+b0x1+b1x2+-----b12x13
- 2. Select one datasample from the dataset
- 3.find ypred value
- 4.find the absolute error for ypred and yactual

```
1 1=[]
2 l=list(df.iloc[3])
3 b=list(b)
4 print(1)
5 print(b)
6
7

[0.03237, 0.0, 2.18, 0.0, 0.458, 6.998, 45.8, 6.0622, 3.0, 222.0, 18.7, 394.63, 2.94, 33.4]
[-0.09854247168320542, 0.060784113842432486, 0.05917154006562941, 2.4395598751549907, -21.469964963213876, 2.7958138545358477, 0.0035745977759409353, -1.516272184239845, 0.307541745464

1 ypred=m
2 for i in range(len(b)):
3 ypred=ypred+(b[i]*1[i])
4 print(ypred)
```