☞ Baccalauréat C juin 1982 Nancy-Metz ∾

Exercice 1 4 points

1. Résoudre dans \mathbb{Z}^2 l'équation

$$17q - 11p = 2$$
.

2. On désigne par \overline{n} la classe d'équivalence modulo 187 de l'entier $n \in \mathbb{Z}$. Résoudre dans $\mathbb{Z}/187\mathbb{Z}$ l'équation $x^2 - \overline{1} = 0$.

EXERCICE 2 4 points

1. Résoudre dans C l'équation

$$z^{2} - [(1+2i)u + 1]z + (-1+z)u^{2} + iu = 0$$

oô z est l'inconnue complexe et u un paramètre complexe.

On appellera z' la racine qui est un polynôme du premier degré en u et dont le coefficient de u est (1+i), z'' l'autre racine.

2. Dans le plan affine euclidien, on appelle P le point d'affixe u, M' celui d'affixe z', M'' celui d'affixe z''.

Par quelles transformations du plan passe-t-on de P à M'? (On appellera T_1 cette transformation et on explicitera ses éléments géométriques). Puis de P à M''? (On appellera T_2 cette transformation et on explicitera ses éléments géométriques.)

3. Par quelle transformation T passe-t-on alors de M' à M''? Donner les éléments caractérisant T.

PROBLÈME 12 points

Partie A

On considère la fonction numérique de la variable réelle f définie par

$$f(x) = \frac{1}{1+x}.$$

- 1. Étudier la continuité et la dérivabilité de f.
- **2.** Déterminer une fonction polynôme P, de degré inférieur ou égal à 3, qui a même valeur et même nombre dérivé que *f* en 0 et 1.
- 3. Soit k la fonction numérique définie par

$$k(x) = \frac{1}{1+x} + \frac{1}{4}x^3 - \frac{3}{4}x^2 + x - 1.$$

Factoriser k et en déduire la position relative de \mathscr{C}_f et \mathscr{C}_P courbes représentatives respectives de f et P dans un même repère $\left(O; \overrightarrow{\iota}, \overrightarrow{J}\right)$ orthonormé du plan. Tracer soigneusement \mathscr{C}_f et \mathscr{C}_P . Faire figurer les tangentes aux points communs.

Terminale C A. P. M. E. P.

4. À l'aide d'un encadrement de 1 + x pour $x \in [0; 1]$, montrer que

$$\frac{1}{240} < \int_0^1 k(x) \, \mathrm{d}x < \frac{1}{120}.$$

- 5. Calculer $\int_0^1 k(x) dx$ et $\int_0^1 P(x) dx$.
- **6.** Déduire des résultats précédents la valeur de $n \in \mathbb{N}$ telle que

$$\frac{n}{240} < \text{Log } 2 < \frac{n+1}{240}.$$

Partie B

On désigne par E l'espace vectoriel sur constitué par la fonction nulle et les fonctions polynômes, à coefficients réels, de degré inférieur ou égal à 3.

Soit h un réel strictement positif et φ l'application de E vers \mathbb{R}^4 telle que

$$\varphi(P) = (P(0), P'(0), P(h), P'(h).$$

- 1. Quelle est la dimension de E? Montrer que φ est une application linéaire bijective de E sur \mathbb{R}^4 .
- **2.** Soit φ^{-1} , la bijection réciproque de φ . Déterminer $P_3 = \varphi^{-1}((0, 0, 1, 0))$ et $P_4 = \varphi^{-1}((0, 0, 0, 1))$.
- **3.** Soit $P_1 = 1 P_3$, et P_2 défini par $P_2(X) = -P_4(h x)$. Vérifier que $P_1 = \varphi^{-1}((1, 0, 0, 0))$ et $P_2 = \varphi^{-1}((0, 1, 0, 0))$.
- **4.** Calculer pour *i* élément de {1, 2, 3, 4} l'intégrale $\int_0^h P_i(t) dt$.
- **5.** Montrer que tout élément P de E s'écrit comme une combinaison linéaire de P₁, P₂, P₃ et P₄. En déduire la relation, pour P élément de E,

$$\int_0^h P(t) dt = \frac{h}{2} (P(0) + P(h)) + \frac{h^2}{12} (P'(0) - P'(h)).$$

Partie (

Soit a un réel strictement positif et g une application de [0; a] vers \mathbb{R} possédant des dérivées continues au moins jusqu'à l'ordre 4 sur [0; a]. Soit $h \in]0; a]$, et Q_h l'élément de E ayant même valeur et même nombre dérivé que g en 0 et h.

1. Montrer que g est intégrable sur [0;h] et, en utilisant les résultats de la partie B, qu'on a la relation

$$\int_0^h g(t) dt - \int_0^h Q_h(t) dt = \int_0^h g(t) dt - \frac{h}{2} (g(0) + g(h)) - \frac{h^2}{12} (g'(0) - g'(h)).$$

2. Pour tout u de [0; a], on pose

$$\Psi(u) = \int_0^u g(t) dt - \frac{u}{2} (g(0) + g(u)) - \frac{u^2}{12} (g'(0) - g'(u)).$$

Montrer que l'application Ψ ainsi définie est dérivable au moins jusqu'à l'ordre 3 sur [0; a], que

$$\Psi(0) = \Psi'(0) = \Psi''(0) = 0$$

et que
$$(\forall u \in [0; a]), \quad \left(\Psi^{(3)}(u) = \frac{u^2}{12}g^{(4)}(u)\right).$$

Terminale C A. P. M. E. P.

3. On pose $M = \sup_{t \in [0;a]} |g^{(4)}(t)|$. Montrer successivement que

$$\forall x \in [0; a], \quad \left| \Psi''(x) \right| \leq M \frac{x^3}{36},$$

$$\forall y \in [0; a], \quad \left| \Psi'(y) \right| \leq M \frac{y^4}{144},$$

$$\forall z \in [0; a], \quad \left| \Psi(z) \right| \leq M \frac{z^5}{720}.$$

4. Montrer en utilisant les questions précédentes que

$$\int_0^a g(t) \, \mathrm{d}t = \frac{a}{2} (g(0) + g(a)) + \frac{a^2}{12} (g'(0) - g'(a)) + \mathbb{R},$$
 avec $\mathbb{R} \leqslant \frac{a^5}{720} \mathrm{M}.$