Added Wednesday, 9/22:

Problem 1: Let $f: \mathbb{C} \to \mathbb{C}$ be the conjugation function with $f(z) = \overline{z}$. Explain geometrically why f is differentiable nowhere. (*Hint*: Think about orientations.)

Added Friday, 9/24:

Problem 2: Suppose that $f: U \to \mathbb{C}$ is a function where U is an open disk (i.e., $U = N(w, \varepsilon)$ for some $w \in \mathbb{C}$ and $\varepsilon > 0$). Prove that if f is holomorphic on U and real-valued (i.e., $f(z) \in \mathbb{R}$ for all $z \in U$), then f is constant.

Problem 3: Suppose that $f: \mathbb{C} \to \mathbb{C}$ is a function. Prove that if both f and \overline{f} are entire, then f is constant.