Pineapple Cakes In the Plate

Team ID: 8

Team Member: B04705043 B04705031 B04705003

1. Topic

Dynamic Programing

Description

In this question, you will need to help John to count how many pineapple cakes in the plate.

For example, We will give you a matrix composed of 0 and 1, your mission is to count how many submatrix is in the given matrix . A submatrix is only composed by 1, for example:

1100

1100

0000

0000

the above matrix is composed by four 1*1 matrices and one 2*2 matrix. So the pineapple cakes in the plate will be 5.

Another example:

111

111

111

the above matrix is composed by nine 1*1 matrices, four 2*2 matrices and one matrix. So the pineapple cakes in the plate will be 14.

3. Input and output format

The first line is $T(1 \le T \le 10)$, which stands for the number of test cases below. Then the follow number N($1 \le N \le 1000$) represent that there is a N *N matrix in the plate. For the following N lines, each line will contain N numbers, which is 1 or 0 with no whitespace.

Input:

```
T
N<sub>1</sub>
m<sub>11</sub> m<sub>12</sub> m<sub>13</sub> m<sub>14</sub>.....m<sub>1n</sub>
m<sub>21</sub> m<sub>22</sub> m<sub>23</sub> m<sub>24</sub>.....m<sub>2n</sub>
```

```
\begin{array}{l} \dots \dots \\ m_{n1} \; m_{n2} \; m_{n3} \; m_{n4} \dots m_{nn} \\ N_2 \\ m_{11} \; m_{12} \; m_{13} \; m_{14} \dots m_{1n} \\ m_{21} \; m_{22} \; m_{23} \; m_{24} \dots m_{2n} \\ \dots \dots \\ m_{n1} \; m_{n2} \; m_{n3} \; m_{n4} \dots m_{nn} \\ \dots \end{array}
```

....

Constraints:

1≤N ≤1000

1≤T ≤10

Output:

The number of pineapple in the plate.

4. Sample input and output

Input:

1

4

1110

1110

1110

0000

Output:

14

Input:

2

3

111

111

111

2

10

11

Output:

14

3