Artificial Intelligence Chapter 3: Solving Problems by Searching

Problem Solving Agents

- Problem solving agent
 - A kind of "goal based" agent
 - Finds <u>sequences of actions</u> that lead to desirable states.
- The algorithms are uninformed
 - No extra information about the problem other than the definition
 - No extra information
 - No heuristics (rules)

Goal Based Agent

Goal Based Agent

Function Simple-Problem-Solving-Agent (percept) returns action Inputs: percept a percept Static: seq an action sequence initially empty state some description of the current world goal a goal, initially null problem a problem formulation state <- UPDATE-STATE(state, percept)</pre> if seq is empty then do goal <- FORMULATE-GOAL(state)</pre> problem <- FORMULATE-PROBLEM(state, goal)</pre> seq <- SEARCH(problem)</pre> # SEARCH action <- RECOMMENDATION (seq)</pre> # SOLUTION seq <- REMAINDER(seq)</pre> return action # EXECUTION

Goal Based Agents

- Assumes the problem environment is:
 - Static
 - The plan remains the same
 - Observable
 - Agent knows the initial state
 - Discrete
 - Agent can enumerate the choices
 - Deterministic
 - Agent can plan a sequence of actions such that each will lead to an intermediate state
- The agent carries out its plans with its eyes closed
 - Certain of what's going on
 - Open loop system

Well Defined Problems and Solutions

- A problem
 - Initial state
 - Actions and Successor Function
 - Goal test
 - Path cost

- Given a 4 gallon bucket and a 3 gallon bucket, how can we measure exactly 2 gallons into one bucket?
 - There are no markings on the bucket
 - You must fill each bucket completely

Initial state:

- The buckets are empty
- Represented by the tuple (00)

Goal state:

- One of the buckets has two gallons of water in it
- Represented by either (x 2) or (2 x)

Path cost:

1 per unit step

- Actions and Successor Function
 - Fill a bucket
 - (x y) -> (3 y)
 - (x y) -> (x 4)
 - Empty a bucket
 - (x y) -> (0 y)
 - (x y) -> (x 0)
 - Pour contents of one bucket into another
 - $(x y) \rightarrow (0 x+y) \text{ or } (x+y-4, 4)$
 - $(x y) \rightarrow (x+y 0) \text{ or } (3, x+y-3)$

AI: Chapter 3: Solving Problems by Searching

Example: Eight Puzzle

States:

 Description of the eight tiles and location of the blank tile

Successor Function:

Generates the legal states from trying the four actions {Left, Right, Up, Down}

Goal Test:

Checks whether the state matches the goal configuration

Path Cost:

- Each step costs 1

7	2	4
5		6
8	3	1

1	2	3
4	5	6
7	8	

Example: Eight Puzzle

- Eight puzzle is from a family of "sliding block puzzles"
 - NP Complete
 - -8 puzzle has 9!/2 = 181440 states
 - − 15 puzzle has approx. 1.3*10¹² states
 - -24 puzzle has approx. $1*10^{25}$ states

Example: Eight Queens

- Place eight queens on a chess board such that no queen can attack another queen
- No path cost because only the final state counts!
- Incremental formulations
- Complete state formulations

Example: Eight Queens

States:

- Any arrangement of 0 to 8 queens on the board
- Initial state:
 - No queens on the board
- Successor function:
 - Add a queen to an empty square
- Goal Test:
 - 8 queens on the board and none are attacked
- 64*63*...*57 = 1.8*10¹⁴ possible sequences
 - Ouch!

Example: Eight Queens

• States:

 Arrangements of n queens, one per column in the leftmost n columns, with no queen attacking another are states

Successor function:

- Add a queen to any square in the leftmost empty column such that it is not attacked by any other queen.
- 2057 sequences to investigate

Other Toy Examples

- Another Example: Jug Fill
- Another Example: Black White Marbles
- Another Example: Row Boat Problem
- Another Example: Sliding Blocks
- Another Example: Triangle Tee

Example: Map Planning

AI: Chapter 3: Solving Problems by Searching

- Initial State
 - e.g. "At Arad"
- Successor Function
 - A set of action state pairs
 - S(Arad) = {(Arad->Zerind, Zerind), ...}
- Goal Test
 - -e.g. x ="at Bucharest"
- Path Cost
 - sum of the distances traveled

 Having formulated some problems...how do we solve them?

Search through a state space

 Use a search tree that is generated with an initial state and successor functions that define the state space

- A **state** is (a representation of) a physical configuration
- A <u>node</u> is a data structure constituting part of a search tree
 - Includes parent, children, depth, path cost
- States do not have children, depth, or path cost
- The EXPAND function creates new nodes, filling in the various fields and using the SUCCESSOR function of the problem to create the corresponding states


```
initialize the search tree using the initial state of problem
loop do
   if there are no candidates for expansion then return failure
   choose a leaf node for expansion according to strategy
   if the node contains a goal state then return the corresponding solution
   else expand the node and add the resulting nodes to the search tree
end
```

function TREE-SEARCH(problem, strategy) returns a solution, or failure

```
function TREE-SEARCH(problem, fringe) returns a solution, or failure
   fringe \leftarrow Insert(Make-Node(Initial-State[problem]), fringe)
   loop do
       if fringe is empty then return failure
        node \leftarrow Remove-Front(fringe)
       if GOAL-TEST[problem] applied to STATE(node) succeeds return node
       fringe \leftarrow InsertAll(Expand(node, problem), fringe)
function EXPAND( node, problem) returns a set of nodes
   successors \leftarrow the empty set
   for each action, result in Successor-Fn[problem](State[node]) do
        s \leftarrow a \text{ new Node}
        Parent-Node[s] \leftarrow node; Action[s] \leftarrow action; State[s] \leftarrow result
        PATH-Cost[s] \leftarrow PATH-Cost[node] + Step-Cost(node, action, s)
        Depth[s] \leftarrow Depth[node] + 1
        add s to successors
   return successors
```

Uninformed Search Strategies

- Uninformed strategies use only the information available in the problem definition
 - Also known as blind searching
- Breadth-first search
- Uniform-cost search
- Depth-first search
- Depth-limited search
- Iterative deepening search

Comparing Uninformed Search Strategies

- Completeness
 - Will a solution always be found if one exists?
- Time
 - How long does it take to find the solution?
 - Often represented as the number of nodes searched
- Space
 - How much memory is needed to perform the search?
 - Often represented as the maximum number of nodes stored at once
- Optimal
 - Will the optimal (least cost) solution be found?

Comparing Uninformed Search Strategies

- Time and space complexity are measured in
 - b maximum branching factor of the search tree
 - m maximum depth of the state space
 - d depth of the least cost solution

 Recall from Data Structures the basic algorithm for a breadth-first search on a graph or tree

• Expand the *shallowest* unexpanded node

 Place all new successors at the end of a FIFO queue

Properties of Breadth-First Search

- Complete
 - Yes if b (max branching factor) is finite
- Time
 - $-1 + b + b^2 + ... + b^d + b(b^{d-1}) = O(b^{d+1})$
 - exponential in d
- Space
 - $O(b^{d+1})$
 - Keeps every node in memory
 - This is the big problem; an agent that generates nodes at 10 MB/sec will produce 860 MB in 24 hours
- Optimal
 - Yes (if cost is 1 per step); not optimal in general

Lessons From Breadth First Search

 The memory requirements are a bigger problem for breadth-first search than is execution time

 Exponential-complexity search problems cannot be solved by uniformed methods for any but the smallest instances

Depth-First Search

 Recall from Data Structures the basic algorithm for a depth-first search on a graph or tree

Expand the <u>deepest</u> unexpanded node

 Unexplored successors are placed on a stack until fully explored

Depth-First Search

Depth-First Search

Complete

- No: fails in infinite-depth spaces, spaces with loops
 - Modify to avoid repeated spaces along path
- Yes: in finite spaces
- Time
 - $O(b^m)$
 - Not great if m is much larger than d
 - But if the solutions are dense, this may be faster than breadthfirst search
- Space
 - O(bm)...linear space
- Optimal
 - No

Uniform-Cost Search

- Same idea as the algorithm for breadthfirst search...but...
 - Expand the <u>least-cost</u> unexpanded node
 - FIFO queue is ordered by cost
 - Equivalent to regular breadth-first search if all step costs are equal

Uniform-Cost Search

- Complete
 - Yes if the cost is greater than some threshold
 - step cost >= ϵ
- Time
 - Complexity cannot be determined easily by d or d
 - Let C* be the cost of the optimal solution
 - $O(b^{ceil(C*/\epsilon)})$
- Space
 - $O(b^{ceil(C*/\epsilon)})$
- Optimal
 - Yes, Nodes are expanded in increasing order

Depth-Limited Search

- A variation of depth-first search that uses a depth limit
 - Alleviates the problem of unbounded trees
 - Search to a predetermined depth ℓ ("ell")
 - Nodes at depth ℓ have no successors

- Same as depth-first search if $\ell = \infty$
- Can terminate for failure and cutoff

Depth Limited Search

Depth-Limited Search

Recursive implementation:

```
function DEPTH-LIMITED-SEARCH(problem, limit) returns soln/fail/cutoff
   Recursive-DLS(Make-Node(Initial-State[problem]), problem, limit)
function Recursive-DLS(node, problem, limit) returns soln/fail/cutoff
   cutoff\text{-}occurred? \leftarrow \mathsf{false}
   if Goal-Test[problem](State[node]) then return node
   else if Depth[node] = limit then return cutoff
   else for each successor in Expand(node, problem) do
       result \leftarrow \text{Recursive-DLS}(successor, problem, limit)
       if result = cutoff then cutoff-occurred? \leftarrow true
       else if result \neq failure then return result
   if cutoff-occurred? then return cutoff else return failure
```

Depth-Limited Search

- Complete
 - Yes if ℓ < d
- Time
 - $-O(b^{\ell})$
- Space
 - $-O(b\ell)$
- Optimal
 - No if $\ell > d$

- Iterative deepening depth-first search
 - Uses depth-first search
 - Finds the best depth limit
 - Gradually increases the depth limit; 0, 1, 2, ... until a goal is found

```
function Iterative-Deepening-Search(problem) returns a solution inputs: problem, a problem for depth \leftarrow 0 to \infty do result \leftarrow \text{Depth-Limited-Search}(problem, depth) if result \neq \text{cutoff then return } result end
```


- Complete
 - Yes
- Time
 - $-O(b^d)$
- Space
 - -O(bd)
- Optimal
 - Yes if step cost = 1
 - Can be modified to explore uniform cost tree

Lessons From Iterative Deepening Search

- Faster than BFS even though IDS generates repeated states
 - BFS generates nodes up to level d+1
 - IDS only generates nodes up to level d

 In general, iterative deepening search is the preferred uninformed search method when there is a large search space and the depth of the solution is not known

Avoiding Repeated States

- Complication of wasting time by expanding states that have already been encountered and expanded before
 - Failure to detect repeated states can turn a linear problem into an exponential one
- Sometimes, repeated states are unavoidable
 - Problems where the actions are reversable
 - Route finding
 - Sliding blocks puzzles

- Bidirectional search algorithm runs two simultaneous searches, one form initial state called as forward-search and other from goal node called as backward-search, to find the goal node.
- Bidirectional search replaces one single search graph with two small subgraphs in which one starts the search from an initial vertex and other starts from goal vertex.
- The search stops when these two graphs intersect each other.
- Bidirectional search can use search techniques such as BFS, DFS, DLS, etc.

Advantages:

- Bidirectional search is fast.
- Bidirectional search requires less memory

Disadvantages:

- Implementation of the bidirectional search tree is difficult.
- In bidirectional search, one should know the goal state in advance.

- Completeness: Bidirectional Search is complete if we use BFS in both searches.
- Time Complexity: Time complexity of bidirectional search using BFS is O(b^{d/2}).
- Space Complexity: Space complexity of bidirectional search is O(b^{d/2}).
- Optimal: Bidirectional search is Optimal.