题目3.6.3:

问题、无论是利用命题3.6.1来证明不可约性,还是利用定理3.6.3来证明稳定分布,都是 假定Q是保守全稳定而且Q过程唯一。两个条件缺一不可。

定理3.6.2(b):

 $\lim p_{ii}(t)$ 的存在性是要说明的!

 $\stackrel{t\to\infty}{\text{问题}}$ 一致连续性并不能推出 $\lim_{t\to\infty} p_{ii}(t)$ 的存在性。简单的反例就是 $\sin(t)$ 在 $[0,+\infty)$ 上 一致收敛但 $\lim \sin(t)$ 不存在。

问题二、对任意h, $\lim_{n\to\infty} p_{ii}(nh)$ 的存在性并不能推出 $\lim_{t\to\infty} p_{ii}(t)$ 的存在性。简单的反例:

$$f(t) = \begin{cases} 0 & t \to \pi = 0 \\ 1 & t \to \pi = 0 \end{cases}, \ \forall t_0 > 0 \text{ and } \lim_{n \to \infty} f(nt_0) = \begin{cases} 0 & t \to \pi = 0 \\ 1 & t \to \pi = 0 \end{cases}, \ \text{$d \lim_{t \to \infty} f(t)$ 不存在。}$$

参考答案: 定理3.2.2已经证明 $\lim_{t\to\infty}p_{ii}(t)$ 的存在性。 【如果不记得这个是哪个定理,只需说明(但一定要说)"由定理知 $\lim_{t\to\infty}p_{ii}(t)$ 存在"。】

因此
$$\forall h > 0$$
, $\lim_{n \to \infty} p_{ii}(nh) = \lim_{n \to \infty} p_{ii}(t)$

因此 $\forall h > 0$, $\lim_{n \to \infty} p_{ii}(nh) = \lim_{t \to \infty} p_{ii}(t)$ 因此 $\forall h > 0$, $\lim_{n \to \infty} p_{ii}(nh) > 0$ 当且仅当 $\lim_{t \to \infty} p_{ii}(t) > 0$

再由定理2.5.1【离散时间马氏链中,非/零常返状态当且仅当 $\lim_{n \to \infty} p_{ij}(nh) = 0$ 】知 $\forall h > 0$,连续时间马氏链正常返当且仅当h-骨架链正常返。

思考题、

参考答案:

【注】假设Q过程唯一,不唯一我暂时还没想出答案。

对于任意 $i \neq j$,若 $q_{ij} > 0$,

則由
$$\lim_{t\to 0^+} \frac{p_{ij}(t)}{t} = q_{ij}$$
知 $\exists \delta_{ij} > 0$, $\forall t \in (0, \delta_{ij}), \frac{p_{ij}(t)}{t} \ge \frac{q_{ij}}{2}$ 即 $p_{ij}(t) \ge \frac{q_{ij}t}{2} > 0$ 一、 当 $i = j$ 时,由定理 $3.2.1$ 知 $\forall t > 0$, $p_{ij}(t) > 0$

二、当 $i \neq j$ 时,

若 $\exists t_0, p_{ij}(t_0) > 0$,则由命题3.6.1【用到Q过程唯一】知 $i \xrightarrow{Q} i$,

即
$$\exists i_0, \dots, i_n \in E$$
使 $q_{i_k i_{k+1}} > 0, k = 0, 1, \dots, n-1$,其中 $i_0 = i, i_n = j_\circ$

$$\diamondsuit \delta = \min \{ \delta_{i_0 i_1}, \dots, \delta_{i_{n-1} i_n} \},$$

当 $t \in (0,\delta)$ 时,由上面的证明知 $p_{i_k i_{k+1}}(t) > 0, k = 0, 1, \dots, n-1$

因此
$$p_{ij}(nt) \ge \prod_{k=0}^{n-1} p_{i_k i_{k+1}}(t) > 0$$

也就是 $\forall t \in (0, n\delta), p_{ij}(t) > 0$ 。

再由引理3.6.1知 $\forall t > 0, p_{ij}(t) > 0$ 。