If we only take the lowest order effects of the motion of mass sources into account and neglect stresses, then we can define two vector fields, \vec{E} and \vec{B} , which are similar to the electric and magnetic field. We can define $A_{\mu} = -\frac{1}{4}c_0\bar{h}_{0\mu} = (\varphi/c_0, \vec{A})$, then A_{μ} , which are similar to the electromagnetic 4-potential, will satisfy

$$\partial^{\nu}\partial_{\nu}A_{\mu} = -\frac{4\pi G_0}{c_0^2}J_{\mu}, \quad \partial^{\mu}A_{\mu} = 0, \tag{1}$$

where $J_{\mu}=-c_0T_{0\mu}/c_0^2=(c_0\rho,\vec{j})=\rho(c_0,\vec{v})$ is 4-momentum density. If we define $\vec{E}=-\vec{\nabla}\varphi-\frac{\partial}{\partial t}\vec{A},\,\vec{B}=\vec{\nabla}\times\vec{A},\,$ and $\varepsilon_{\rm G0}=\frac{1}{4\pi G_0},\,\mu_{\rm G0}=\frac{4\pi G_0}{c_0^2},\,$ then there will be

$$\begin{cases} \vec{\nabla} \cdot (\varepsilon_{G0}\vec{E}) = \rho, \\ \vec{\nabla} \cdot \vec{B} = 0, \\ \vec{\nabla} \times \vec{E} = -\frac{\partial}{\partial t}\vec{B}, \\ \vec{\nabla} \times (\mu_{G0}^{-1}\vec{B}) = \vec{j} + \frac{\partial}{\partial t}(\varepsilon_{G0}\vec{E}), \end{cases}$$
(2)

and the acceleration of mass particle \vec{a} will satisfy

$$\vec{a} = -\vec{E} - 4\vec{v} \times \vec{B}.\tag{3}$$

Since (??) are identical to Maxwell's equations, and (??) is identical to the Lorentz force equation except for an overall minus sign and a factor of 4 in the "magnetic force" term, we assume that the constants $\varepsilon_{\rm G0}$ and $\mu_{\rm G0}$ can simply vary as constants $\varepsilon_{\rm 0}$ and $\mu_{\rm 0}$ in electromagnetic theories, which means, (??) is still valid and (??) becomes

$$\begin{cases} \vec{\nabla} \cdot \vec{D} = \rho, \\ \vec{\nabla} \cdot \vec{B} = 0, \\ \vec{\nabla} \times \vec{E} = -\frac{\partial}{\partial t} \vec{B}, \\ \vec{\nabla} \times \vec{H} = \vec{j} + \frac{\partial}{\partial t} \vec{D}, \end{cases}$$

$$(4)$$

where $\vec{D} = \varepsilon_{\rm G} \vec{E}$, $\vec{B} = \mu_{\rm G} \vec{H}$. Also, we define $c = \frac{1}{\sqrt{\varepsilon_{\rm G} \mu_{\rm G}}}$, $G = \frac{1}{4\pi\varepsilon_{\rm G}}$, together with $\vec{E} = -\vec{\nabla}\varphi - \frac{\partial}{\partial t}\vec{A}$, $\vec{B} = \vec{\nabla}\times\vec{A}$, and $\bar{h}_{0\mu} = -4A_{\mu}/c = -4(\varphi/c,\vec{A})/c$. We assume that the source of GW is located in a spherical coordinate origin

We assume that the source of GW is located in a spherical coordinate origin and $c=c(r),\ G=G(r)$, We suppose that $\bar{h}_{0\mu}(\rho,\vec{j};c_0,G_0)$ is the solution of $\bar{h}_{0\mu}$ when ρ and \vec{j} are assumed and $c\equiv c_0,\ G\equiv G_0$ everywhere, then if $c\equiv c_{\rm s},\ G\equiv G_{\rm s}$, where $c_{\rm s}$ and $G_{\rm s}$ are two constants, within a region $r\leq R$, then $\bar{h}_{0\mu}(\rho,\vec{j};c_{\rm s},G_{\rm s})$ can be a solution of $\bar{h}_{0\mu}$ within the region $r\leq R$, and now we can solve the equations

$$\begin{cases} \vec{\nabla} \cdot \vec{D} = 0, \\ \vec{\nabla} \cdot \vec{B} = 0, \\ \vec{\nabla} \times \vec{E} = -\frac{\partial}{\partial t} \vec{B}, \\ \vec{\nabla} \times \vec{H} = +\frac{\partial}{\partial t} \vec{D}, \end{cases}$$
(5)

with the boundary conditions $\vec{E}|_{r=R} = \vec{E}(\rho, \vec{j}; c_{\rm s}, G_{\rm s}), \ \vec{B}|_{r=R} = \vec{B}(\rho, \vec{j}; c_{\rm s}, G_{\rm s}),$ where $\vec{E}(\rho, \vec{j}; c_{\rm s}, G_{\rm s})$ and $\vec{B}(\rho, \vec{j}; c_{\rm s}, G_{\rm s})$ can be derived from $\bar{h}_{0\mu}(\rho, \vec{j}; c_{\rm s}, G_{\rm s})$.

We can use the Liénard–Wiechert potentials formula to calculate the \vec{E} and \vec{B} field produced by a moving particle, whose position is \vec{r}' , in vacuum, and the results are

$$\vec{E} = \frac{m}{4\pi\varepsilon_{G0}} \left[\frac{(\vec{n}' - \vec{\beta})}{(1 - \vec{\beta} \cdot \vec{n}')^3 \gamma^2 r'^2} + \frac{\vec{n}' \times \{(\vec{n}' - \vec{\beta}) \times \dot{\vec{\beta}}\}}{(1 - \vec{\beta} \cdot \vec{n}')^3 c_0 r'} \right]_{\text{ret}}, \vec{B} = \left[\frac{\vec{n}' \times \vec{E}}{c_0} \right]_{\text{ret}},$$
(6)

where $r' = |\vec{r}'|$, $\vec{n}' = \vec{r}'/r'$, $\vec{\beta} = \dot{\vec{r}}'/c_0$, $\gamma = 1/\sqrt{1 - |\vec{\beta}|^2}$, and "ret" denotes that the fields are "retarded fields".