Appendix: A Full Detailed Wind Farm Model

Zilong Gong, Junyu Mao, Adrià Junyent-Ferré, Senior Member, IEEE, and Giordano Scarciotti, Senior Member, **IEEE**

Nomenclature

Roman symbols

Wind turbine swept surface \boldsymbol{A}

CDC bus capacity

 I_t One-mass wind turbine aggregated inertia

 K_{C_p} Constant tip speed ratio speed control law coefficient

 L_l Inductance of the grid connection impedance

PGenerator pole pairs

 Q_s Generator stator reactive power

RWind turbine radius

 V_{DC} DC bus voltage

 V_{bus} Infinite bus voltage

Aerodynamic power coefficient

System frequency

 f^r Rated frequency

 r_s Resistance of a single phase of the stator windings

Resistance of the grid connection impedance r_l

Rated collection grid voltage

Rated wind turbine output voltage

Wind speed

Greek symbols

 Γ_m Generator torque

 Γ_t Wind turbine torque

β Pitch angle

Flux linkage per rotating speed unit λ_m

Gearbox multiplication ratio

Nominal generator speed ω_{mn}

Generator electrical angle speed ω_r

Wind turbine speed ω_t

Air density ρ

Time constant of the pitch angle controller

 θ_m Generator shaft angular position

Generator rotor electric angle θ_r

Superscripts and Subscripts

Reference value

abcVector of abc components

Vector of qd components qd

Variable related to the generator shaft m

rVariable related to the generator rotor

Variable related to the generator stator s

Variable related to the turbine t

Variable related to the grid connection point z

Zilong Gong, Junyu Mao, Adrià Junyent-Ferré and Giordano Scarciotti are with the Department of Electrical and Electronic Engineering, Imperial College London, London, SW7 2AZ, UK. {zilong.gong18, junyu.mao18, adria.junyentferre, g.scarciotti}@imperial.ac.uk.

A. WIND FARM MODEL

1

In this section, we provide the full model of the wind turbine used in the simulations. The wind turbine model consists of several sub-blocks. We summarise each block in terms of inputs, outputs and detailed equations. The Park and inverse Park transformation of a rotation angle θ are indicated by $T(\theta)$ and $T^{-1}(\theta)$, respectively.

1) Wind turbine dynamics:

Block inputs: θ_m^* , Γ_m and v_w . Block outputs: θ_m and ω_m .

$$\beta(s) = \frac{1}{\tau s + 1} \theta_m^*(s),$$

$$c_p(\Lambda, \beta) = c_1 (c_2 \frac{1}{\Lambda} - c_3 \beta - c_4 \beta^{c_5} - c_6) e^{-c_7 \frac{1}{\Lambda}},$$

$$\Gamma_t = \frac{1}{2} c_p \rho A v_w^3 \frac{1}{\omega_t},$$

$$\omega_t = \frac{1}{I_t} (\Gamma_t + \nu \Gamma_m),$$

$$\dot{\theta}_m = \omega_m = \nu \omega_t,$$

$$(1)$$

where $[c_1\cdots c_9]$ are wind turbine characteristic parameters and Λ is defined as $\frac{1}{\Lambda}=\frac{1}{\lambda+c_8\beta}-\frac{c_9}{1+\beta^3}$ with $\lambda=\frac{\omega_t R}{v_w}$.

2) Wind turbine speed controller:

Block input: ω_m .

Block outputs: Γ_m^* and θ_m^* .

$$K_{C_p} = \frac{1}{2} \rho A R^3 \frac{c_1 (c_2 + c_6 c_7)^3 e^{-\frac{c_2 + c_6 c_7}{c_2}}}{c_2^2 c_7^4}$$

$$\Gamma_m^* = K_{C_p} \omega_m^2,$$

$$\theta_m^*(s) = \frac{K_p s + K_i}{s} (\omega_m(s) - \omega_{mn}).$$
(2)

3) Generator dynamics:

Block inputs: v_s^{qd} and ω_m . Block outputs: i_s^{qd} , i_s^{abc} and Γ_m .

$$v_s^{qd} = \begin{bmatrix} r_s & \omega_r L_d \\ -\omega_r L_q & r_s \end{bmatrix} i_s^{qd} + \begin{bmatrix} L_d & 0 \\ 0 & L_q \end{bmatrix} \frac{d}{dt} i_s^{qd} + \lambda_m \omega_r \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$

$$\Gamma_m = \frac{3}{2} P(\lambda_m i_{sq} + (L_d - L_q) i_{sq} i_{sd}),$$

$$i_s^{abc} = T^{-1}(\theta_r) i_s^{qd},$$
(3)

4) Generator vector controller:

Block inputs: Γ_m^* , i_s^{abc} , ω_m and θ_m . Block outputs: v_s^{qd} and v_s^{abc} .

$$\begin{split} i_{s}^{qd} &= T(\theta_{r})i_{s}^{qbc} \\ i_{sq}^{*} &= \frac{2}{3P} \frac{\Gamma_{m}^{*}}{\lambda_{m}}, \\ i_{sd}^{*} &= \frac{2}{3P} \frac{Q_{s}^{*}}{\omega_{m}\lambda_{m}}, \\ i_{sd}^{*} &= \frac{2}{3P} \frac{Q_{s}^{*}}{\omega_{m}\lambda_{m}}, \\ \hat{v}_{sq} &= \frac{K_{pq}s + K_{iq}}{s} (i_{sq}^{*} - i_{sq}), \\ \hat{v}_{sd} &= \frac{K_{pd}s + K_{id}}{s} (i_{sd}^{*} - i_{sd}), \\ v_{s}^{qd} &= \hat{v}_{s}^{qd} + \begin{bmatrix} 0 & \omega_{r}L_{d} \\ -\omega_{r}L_{q} & 0 \end{bmatrix} i_{s}^{qd} + \lambda_{m}\omega_{r} \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \\ v_{s}^{abc} &= T^{-1}(\theta_{r})v_{s}^{qd}. \end{split}$$

where $\omega_r = P\omega_m$, $\theta_r = P\theta_m$, $v_s^{qd} = [v_{sq}, v_{sd}]^{\mathrm{T}}$, $\hat{v}_s^{qd} = [\hat{v}_{sq}, \hat{v}_{sd}]^{\mathrm{T}}$ and $i_s^{qd} = [i_{sq}, i_{sd}]^{\mathrm{T}}$.

5) DC bus dynamics:

Block inputs: i_l^{abc} , v_l^{abc} , i_s^{abc} and v_s^{abc} .

Block outputs: V_{DC} and i_{DCm} .

$$\frac{d}{dt}V_{DC} = \frac{1}{C}(i_{DCm} - i_{DCl}),$$

$$\{v_l^{abc}\}^{\mathrm{T}}i_l^{abc} = V_{DC}i_{DCl},$$

$$\{v_s^{abc}\}^{\mathrm{T}}i_s^{abc} = V_{DC}i_{DCm}.$$

6) Grid side system dynamics:

Block inputs: v_z^{abc} and v_l^{abc} .

Block output: $i_l^{\tilde{a}bc}$.

$$v_l^{abc} = r_l i_l^{abc} + L_l \frac{d}{dt} i_i^{abc} + v_z^{abc}.$$
 (6)

7) Grid side controller:

Block inputs: V_{DC} and i_{DCm} .

Block output: i_{DCl}^* .

$$i_{DCl}^* = \frac{K_{pg}s + K_{ig}}{s} (V_{DC}^* - V_{DC}) + i_{DCm}$$
 (7)

8) Grid current controller

Block inputs: V_{DC} , i_{DCl}^* , v_z^{abc} and i_l^{abc} .

Block output: v_l^{abc} .

$$i_{lq}^{*} = \frac{2}{3} \frac{V_{DC}}{v_{zq}} i_{DCl}^{*},$$

$$i_{ld}^{*} = 0,$$

$$\hat{v}_{lq} = \frac{K_{pc}s + K_{ic}}{s} (i_{lq}^{*} - i_{lq}),$$

$$\hat{v}_{ld} = \frac{K_{pc}s + K_{ic}}{s} (i_{ld}^{*} - i_{ld}),$$

$$v_{lq} = v_{zq} - 2\pi f i_{ld} L_{l} - \hat{v}_{lq},$$

$$v_{ld} = 2\pi f i_{lq} L_{l} - \hat{v}_{ld},$$

$$\hat{\omega} = \frac{s + 0.129}{s} v_{zd},$$

$$i_{l}^{qd} = T(2\pi f t - \hat{\omega} t) i_{l}^{abc},$$

$$v_{l}^{qd} = T(2\pi f t - \hat{\omega} t) v_{l}^{abc}.$$
(8)

where $i_l^{qd} = [i_{lq}, i_{ld}]^{\mathrm{T}}$, $v_l^{qd} = [v_{lq}, v_{ld}]^{\mathrm{T}}$ and $v_z^{qd} = [v_{zq}, v_{zd}]^{\mathrm{T}}$.

B. MODEL PARAMETERS

In this section we summarise the parameters used in the simulation.

- 1) Wind turbine: $c_1=1$, $c_2=39.52$, $c_6=2.04$, $c_7=14.47$, $c_3=c_4=c_5=c_8=c_9=0$, $R=40\mathrm{m}$, $A=5026.5\mathrm{m}^2$, $\rho=1.225\mathrm{kg/m}^3$, $\nu=90$, $I_t=4\mathrm{kg}\cdot\mathrm{km}^2$, $\tau=0.1\mathrm{s}$ and $v_w=7\mathrm{m/s}$.
- 2) Wind turbine speed controller: $\omega_{mn} = 1602 \text{rpm}$, $K_p = 0.1^{\circ} \cdot s/\text{rad}$ and $K_i = 0.02^{\circ}/\text{rad}$.
- 3) Generator: 2 pairs of poles, $r_s=15{\rm m}\Omega,$ $\lambda_m=2.35{\rm V\cdot s/rad},$ $L_q=0.12732{\rm mH}$ and $L_d=0.12764{\rm mH}.$
- 4) Generator vector controller: $Q_s^*=10 {
 m VAr},~K_{pq}=0.0637 {
 m V/A},~K_{iq}=7.5 {
 m V/(A\cdot s)},~K_{pd}=0.0638 {
 m V/A}$ and $K_{id}=7.5 {
 m V/(A\cdot s)}.$
- 5) DC bus: $C = 10 \text{mF} \text{ and } V_{DC}^* = 2.6 \text{kV}.$
- 6) Grid side system: $r_l=20\mathrm{m}\Omega$, $L_l=1\mathrm{mH}$, $U_w^r=0.97\mathrm{kV}$, $U_g^r=66\mathrm{kV}$ and $f^r=50\mathrm{Hz}$.
- 7) Grid side controller: $K_{pg} = 0.6032 \text{A/V}$ and $K_{ig} = 14.2122 \text{A/(V} \cdot \text{s)}$.
- 8) Grid current controller: $K_{pc} = 0.2803 \text{V/A}$ and $K_{ic} = 10 \text{V/(A} \cdot \text{s})$.