Devoir à la maison n° 18

À rendre le 02 mai

On désigne par \mathbb{K} le corps \mathbb{R} ou \mathbb{C} .

Soit n un entier naturel non nul et soit $E = \mathbb{K}^n$.

Pour tout endomorphisme u de E, on note Ker(u) le noyau de u et Im(u) l'image de u.

1) Soit u et v deux endomorphismes de E qui commutent. Démontrer que Ker(u) et Im(u) sont stables par v.

Dans la suite de l'exercice, u désigne un endomorphisme de E tel que $u^2=0$.

- 2) Démontrer que Im(u) est inclus dans Ker(u).
- 3) Quelle inégalité obtient-on sur le rang de u? On citera précisément le théorème utilisé.
- 4) On suppose ici que n=2, soit $E=\mathbb{K}^2$. On suppose ici u non nul.
 - a) Démontrer qu'il existe une droite D de E telle que Ker(u) = Im(u) = D.
 - b) Soit v un endomorphisme de E tel que $v^2 = 0$ et $u \circ v = v \circ u$.
 - i) Démontrer que $v(D) \subset D$.
 - ii) Démontrer que $u \circ v = 0$.
 - c) Soit v et w deux endomorphismes de E tels que $v^2 = 0$, $w^2 = 0$, $u \circ v = v \circ u$ et $u \circ w = w \circ u$.

Démontrer que $v \circ w = 0$.

5) On revient au cas général. Soit $m \ge 2$ un entier naturel. Soit u_1, \ldots, u_m des endomorphismes de E tels que :

$$\forall (i,j) \in \{1,\ldots,m\}^2, \ u_i^2 = 0 \ \text{et} \ u_i \circ u_j = u_j \circ u_i.$$

On pose $F_1 = \text{Im}(u_1)$ et, pour chaque entier $2 \leq i \leq m$,

$$F_i = \operatorname{Im}(u_1 \circ u_2 \circ \cdots \circ u_{i-1} \circ u_i).$$

- a) Démontrer que, pour tout entier $1 \le i \le m-1$, F_i est un sous-espace vectoriel de E, stable par u_{i+1} .
- b) En déduire que, pour tout entier $1 \le i \le m$, F_i est de dimension au plus $\frac{n}{2^i}$.
- c) Dans le cas où $n < 2^m$, démontrer que $u_1 \circ u_2 \circ \cdots \circ u_m = 0$.

— FIN —