Języki formalne i Techniki Translacji Zadanie Domowe

Jakub Musiał 268442

Październik 2023

Lista 1 - Zadanie 1

Podać deterministyczne automaty skończone (DFA) akceptujące następujące języki nad alfabetem 0,1:

- 1. zbiór wszystkich łańcuchów o zakończeniu 101;
- 2. zbiór wszystkich łańcuchów zawierających trzy kolejne jedynki;
- 3. zbiór wszystkich łańcuchów, w których każdy blok złożony z pięciu kolejnych symboli zawiera co najmniej dwa zera;
- 4. zbiór wszystkich łańcuchów zaczynających się od 1, które interpretowane jako binarna reprezentacja liczby całkowitej są wielokrotnością 7;
- 5. zbiór wszystkich łańcuchów, w których piąty symbol od końca jest zerem.

1. Zbiór wszystkich łańcuchów o zakończeniu 101

Automatem akceptującym zadany język jest:

$$M_1 = (\{q_0, q_1, q_2, q_3\}, \{0, 1\}, \delta_1, q_0, \{q_3\})$$

Gdzie $q_i \equiv$ najdłuższy prefix wzorca '101', który znajduje się na końcu tekstu ma długość i, a funkcja przejść δ_1 jest zdefiniowana w następujący sposób:

q	$\delta_1(q,0)$	$\delta_1(q,1)$
q_0	q_0	q_1
q_1	q_1	q_2
q_2	q_0	q_3
q_3	q_2	q_1

Table 1: Funkcja przejść δ_1

Figure 1: Schemat automatu ${\cal M}_1$

2. Zbiór wszystkich łańcuchów zawierających trzy kolejne jedynki

Automatem akceptującym zadany język jest

$$M_2 = (\{q_0, q_1, q_2, q_3\}, \{0, 1\}, \delta_2, q_0, \{q_3\})$$

Gdzie:

- $(\forall i \in \{0,1,2\})(q_i \equiv i \text{ ostatnich wczytanych liter z rzędu to } 1)$
- $\bullet \ q_3 \equiv {\rm znaleziono}$ (w dowolnym miejscu) ciąg co najmniej 3 jedynek

W automacie M_2 stan q_3 jest pochłaniający.

Funkcja przejść δ_2 dla tego automatu jest zdefiniowana w następujący sposób:

q	$\delta_2(q,0)$	$\delta_2(q,1)$
q_0	q_0	q_1
q_1	q_0	q_2
q_2	q_0	q_3
q_3	q_3	q_3

Table 2: Funkcja przejść δ_2

Figure 2: Schemat automatu M_2

3. Zbiór wszystkich łańcuchów, w których każdy blok złożony z pięciu kolejnych symboli zawiera co najmniej dwa zera

Automatem akceptującym zadany język jest

$$M_3 = (Q_3, \{0, 1\}, \delta_3, q_{\epsilon}, F_3)$$

Gdzie:

- $Q_3 = \{q_t\} \cup \{q_b : b \in \{0, 1\}^{\leq 5}\}$
- $\delta_3(q_t, l) = q_t$
- $|b| < 5 \implies \delta_3(q_b, l) = q_{(b|l)}$
- $|b| = 5 \implies \delta_3(q_b, l) = \begin{cases} q_{(b|l)[-5:]} & : c_0(b) \ge 2 \\ q_t & : \text{w przeciwnym przypadku} \end{cases}$
- $F_3 = \{q_b : b \in \{0, 1\}^{\leq 4}\} \cup \{q_b : b \in \{0, 1\}^5 \land c_0(b) \geq 2\}$

Oznaczenia:

- $q_t \equiv \text{stan } \text{śmietnikowy}$
- $\{0,1\}^{\leq n} \equiv \text{ciągi bitowe o długości nie większej niż } n \ (q_{\epsilon} \equiv \text{ciąg bitowy o długości } 0)$
- $l \equiv \text{litera alfabetu binarnego } (l \in \{0, 1\})$
- $(b|l) \equiv \text{konkatenacja ciągu } b$ i litery l
- $b[-n:] \equiv n$ elementowy suffix ciągu b lub cały ciągb, jeśli |b| < 5
- $c_0(b) \equiv \text{liczba zer w ciągu } b$

Uzasadnienie poprawności:

Stany automatu są indeksowane ciągami bitowymi o dlguości ≤ 5 (5 ostatnich wczytanych bitów lub wszystkie wczytane bity, jeśli jest ich mniej niż 5). Automat akceptuje wszystkie ciągi bitów o długości < 5 oraz te ciągi o długości ≥ 5 , w których każda piątka zawiera minimum 2 zera. Wczytanie nowego bitu powoduje przejście do stanu powstałego poprzez dopisanie nowego bitu na koniec aktualnego ciągu indeksującego oraz - jeśli długość pamiętanego ciągu = 5 - usunięcie pierwszego pamiętanego bitu, gdy w pamiętamyn ciągu były minimum 2 zera, lub do stanu śmietnikowego w przeciwnym przypadku (stan śmietnikowy jest pochłaniający, więc jeśli istnieje conjamniej jedna piątka w której nie ma odpowiedniej liczby zer, cały ciąg nie zostanie zaakceptowany).

Figure 3: Schemat automatu ${\cal M}_3$

4. zbiór wszystkich łańcuchów zaczynających się od 1, które interpretowane jako binarna reprezentacja liczby całkowitej są wielokrotnością 7

Automatem akceptującym zadany język jest:

$$M_4 = (\{q_t, q_\epsilon, q_0, q_1, ..., q_6\}, \{0, 1\}, \delta_4, q_\epsilon, \{q_0\})$$

Gdzie:

- $q_t \equiv \text{stan } \text{śmietnikowy}$
- $(\forall r \in \{0,...,6\})(q_r \equiv \text{reszta z dzielenia dotychczasowego ciągu przez 7 jest równa } r)$
- $\delta_4(q_t, l) = q_t : l \in \{0, 1\}$
- $\delta_4(q_{\epsilon},0) = q_t \wedge \delta_4(q_{\epsilon},1) = q_1$
- $(\forall r \in \{0, ..., 6\})(\delta_4(q_r, 0) = q_{2r \mod 7} \land \delta_4(q_r, 1) = q_{(2r+1) \mod 7})$

Uzasadnienie poprawności:

Stany automatu są indeksowane resztami z dzielenia przez 7 $(r\epsilon\{0,...,6\})$. Automat akceptuje wyłącznie stan q_0 - liczby podzielne przez 7 (o reszcie z dzielenia przez 7 równej 0). Wczytanie kolejnego bitu b jest równoznaczne z pomnożeniem liczby (reszty z dzielenia) przez 2, jeśli b=0, natomiast jeśli b=1, jest to równoznaczne z pomnożeniem liczby przez 2 oraz dodaniem 1. Następnie z uzyskanej wartości ponownie należy wziąć resztę z dzielenia przez 7, co daje indeks nowego stanu. Jeśli pierwszym wczytanym bitem jest 0, automat przechodzi do pochłaniającego stanu śmietnikowego, więc automat akceptuje wyłącznie ciągi zaczynające się bitem 1.

Figure 4: Schemat automatu M_4

5. Zbiór wszystkich łańcuchów, w których piąty symbol od końca jest zerem

Automatem akceptującym zadany język jest:

$$M_5 = (\{q_{ijklm}: i, j, k, l, m \in 0, 1\}, \{0, 1\}, \delta_5, q_{00000}, \{q_{0jklm}: j, k, l, m \in \{0, 1\}\})$$

Gdzie:

- $q_{ijklm} \equiv 5$ ostatnich wczytanych bitów to ciąg (i, j, k, l, m) (jeśli, liczba wczytanych bitów jest < 5, to ciąg ten uzupełniamy zerami od przodu)
- $\delta_5(q_{ijklm}, n) = q_{jklmn} : n \in \{0, 1\}$

Uzasadnienie poprawności:

Stany automatu indeksowane są ciągami ostatnich 5 wczytanych bitów. Zatem ze stanu q_{ijklm} po wczytaniu nowego bitu n przechodzimy do stanu q_{jklmn} . Automat akceptuje stany postaci q_{0jklm} , zatem ciąg zostanie zaakceptowany, jeśli 5-tym bitem od końca jest 0. Automat akceptuje również wszystkie ciągi o długości < 5, ponieważ, jesli wczytaliśmy mniej niż 5bitw, to uzupełniamy ciąg zerami od przodu, by uzyckać 5-biotwy indeks.

Figure 5: Schemat automatu M_5