

PSPICE Logiciel de simulation de circuits électroniques

Alexandre Condette 2023-2024

Infos

Alexandre CONDETTE

- ALUMNI IPSA Toulouse Promo 2020 Major ELSS
- Ingénieur développement logiciel chez Spacebel
- Gestion Opérationnelle des Simulateurs Numériques de satellites en orbite basse au CST (CNES) de Toulouse
- Astrophysique, Electronique, Python, C / C++, Linux, Shell, TCL, SQL, Bases de données

Contact

- <u>alexandre.condette@spacebel.fr</u>
- alexandre.condette.external@cnes.fr
- <u>alexandre2.condette@ipsa.fr</u>

Introduction

✓ Installation

✓ Création d'un projet : choisir et placer les composants

✓ Lancer une simulation

✓ Exporter les résultats

Installation

Téléchargez le fichier compressé sur IPSA Sharepoint → Logiciels IPSA

Installation

• Décompressez le fichier (clic droit → *Extraire tout*...)

Installation

• Double-cliquez sur *setup* pour commencer l'installation.

Lancez l'application **Capture CIS Lite** (double-clic sur l'icône associée au programme)

Lancez l'application **Capture CIS Lite** (double-clic sur l'icône associée au programme)

La fenêtre suivante (onglet **Start Page**) s'affiche : Grant Capture - Lite - [Start Page] cadence® - @ × # 마 셔 # 문 등 등 함 를 든 꼭 극 과 와 ㄲ া : [] [Start Menu Getting Started Your Software # de 1.+ Latest: Undetermined 才华 + 16 -0 1 () () () () () UltraBOM for Recent Files 百品 Digi-Key Created Date 眼岛 Search, Download, and Buythe gp_bachelor1_electronique.op 06/23/2022 03:33:53 pm parts you need all without leaving 30 tp1_exo5.opj 06/23/2022 03:18:10 pm 45 mg tp1_exo4.opj 4 E tp1_exo3.opj 06/23/2022 02:01:51 pm tp1_exo2.opi 06/23/2022 11:48:19 am INI File Location: C:\SPB_DATA\cdssetup\OrCAD_Capture/17.2.0/Capture.ini

- → New Project
- → Choisir le nom (*Name*) et le type de votre projet (*Create a New Project Using : PSpice Analog or Mixed A/D*).
- → Modifiez le chemin
- → ATTENTION: n'enregistrez pas vos fichiers dans l'emplacement par défaut à l'intérieur du programme Orcade mais créez un dossier de travail (par exemple : El111_PSpice, sans accent ni espace).

→ A la fenêtre suivante, cochez *Create a blank project*.

A la création du projet, le programme ajoute à la fenêtre précédente 2 onglets :

• le gestionnaire de projet Q OrCAD Capture - Lite - IC\Users\FARIANI PC\OneDrive - IPSA\Documents\IPSA\2022-2023\FORMATION PSPICE\TP1 EXERCICE1 on 國際하는 다 # 말 목 # 문 등 등 등 말 때 문 두 구고 와 파 터 [] [6] Atpl exercicel.ds nclude Files Model Libraries Simulation Profile 百品

• la page de saisie du schéma (qui est nommée par défaut PAGE1).

Plusieurs icônes doivent être actives pour pouvoir commencer notre projet, sur la palette d'outils en haut

N	New Simulation Profile : permet de créer le profil de la simulation.
18	Voltage/Level Marker : permet de relever le potentiel à la sortie ou à l'entrée d'un dipôle
R	Voltage/Differential Marker(s): permet de relever différence de potentiel (tension) aux bornes d'un dipôle
B	Courrent Marker : permet de relever le courant
13	Power Dissipation Marker : permet de relever la puissance consommée

	Place/Part : permet de choisir les composants dans une bibliothèque et de les placer sur le schéma
1	Place Bus (B): fil de connexion, permet de lier deux composants
\$	Place ground (G): permet de placer la masse Alexandre Condette

2023-2024

Pour choisir les composants, vous pouvez :

- Soit double-cliquer sur l'icône correspondante (si présente sur la palette d'outils)
- Soit à partir du menu Place/Part. Si cette option est choisie, la fenêtre ci-dessous apparaît à côté de la page du schéma.

Dans la fenêtre Place/Part, vous pouvez rechercher un composant en tapant son nom, ou la première lettre du nom (ci-dessous l'exemple pour une résistance).

Création d'un projet : placer une masse

Pour placer la masse double-cliquez sur l'icône 🐞 et ensuite sur « OK ».

Création d'un projet : placer une source

Les générateurs appartiennent à la bibliothèque **SOURCE**. Dans la fenêtre **Place/Part**, vous pouvez rechercher le générateur en tapant son nom (**VDC pour une source continue**).

Les paramètres peuvent être modifiés par un double-clique sur la zone de texte

Création d'un projet : placer une source

Les générateurs appartiennent à la bibliothèque **SOURCE**. Dans la fenêtre **Place/Part**, vous pouvez rechercher le générateur en tapant son nom (**VSIN pour une source sinusoïdale**).

Les paramètres peuvent être modifiés par un double-clique sur la zone de texte

Création d'un projet : placer un composant

Pour placer le composant, double-cliquez sur le nom choisi, placez le composant sur le schéma et appuyez sur Esc (pour éviter d'en placer plusieurs).

Le composant est caractérisé par une valeur par défaut : la valeur par défaut de la résistance est $1000~\Omega$ (1k).

Alexandre Condette 2023-2024

Pour modifier la valeur, double-cliquez sur la zone de texte (« 1k »).

Création d'un projet : placer un composant

La fenêtre *Display Properties* apparaît. Dans le champ *Value* vous pouvez mettre la valeur que vous voulez. Pour les multiples de 10, la lettre correspondante (G ou g : giga ; MEG ou meg : méga ; k ou K : kilo ; m ou M : milli ; u ou U :micro ; n ou N : nano ; p ou P : pico ; f ou F : femto) doit suivre la valeur sans espace.

cadence® - 8 × **☆ □ □ □ ペペペペ □ ▼ □ ▼ □ ★ 達 △ Ⅲ 吐 썇** ■ □ + + = ■ □ + □ 및 ☑ ☑ □ □ 표 등 곡 글 쇼 와 ㄲ !!! □ ┗. Place Part Start Page TP1_EXER..* PAGE1* Part List: QZP10MEG/XTAI Display Properties QZP1MEG/XTAL Name: Value Arial 7 (default) O Do Not Display CEX O Value Only O Name and Value C. X Name Only P 4 Both if Value Exists Value if Value Exists P 93 BB MS abs OK 4 E Normal Convert Search for Part Path C:\Cadence\SPB_17.2\tools\captur Select the library to add Alexandre Condette 2023-2024 Scale=156% X=3.00 V=3.70

Création d'un projet : placer un composant

Pour orienter le composant, sélectionnez-le et appuyez sur \mathbf{r} (ou clic droit et *Rotate*): le composant subira une rotation en sens antihoraire de 90° .

Faites attention aux pôles : lorsqu'une rotation, vérifiez que le pôle *Number1* soit toujours le pôle d'entrée et le pôle *Number2* celui de sortie

Création d'un projet : rélier deux composants

Pour placer un fil de connexion entre composants vous pouvez :

- cliquer sur l'icône *Place wire*

- ou appuyer sur la touche **w**

Le curseur de la souris devient une croix : positionnez la croix sur le pôle d'un composant et « tirer » le fil vers le pôle du composant que vous voulez connecter : les deux composants sont connectés quand le point rouge s'affiche.

Alexandre Condette 2023-2024

Pour supprimer un fil, cliquez sur le fil et appuyez sur la touche Suppr (ou Del).

Pour configurer le profil de simulation, cliquez sur l'icône , définissez le nom de votre analyse et appuyez sur *Create*.

La fenêtre Simulation Settings associée à votre simulation s'affiche.

Le menu déroulant *Analysis Type* permet de choisir le type de simulation à effectuer.

- - **DC Sweep**: Analyse en fonction d'un paramètre variable (tension, courant, résistance,).
 - **AC Sweep**: Analyse fréquentielle (balayage en fréquence).
- Le paramètre *Run to time* permet de définir la durée de la simulation (valeur maximale de l'abscisse).
- Pour les autres paramètres, vous pouvez garder les valeurs par défaut.

Pour lancer la simulation cliquez sur l'icône

(PSpice/Run).

Si aucune erreur n'a été rencontrée, la simulation s'exécute et la fenêtre où l'on peut visualiser les signaux s'affiche.

Visualisation des résultats

Pour visualiser les résultats vous pouvez :

- les **ajouter manuellement** avec l'icône ou le menu **Trace/Add Trace**. Une fois la fenêtre ouverte, vous pouvez cliquer sur les signaux que vous voulez afficher en fonction du temps.

Visualisation des résultats

Pour visualiser les résultats vous pouvez :

- **placer des sondes** (A A A) sur le schéma pour définir les signaux à visualiser et lancer la simulation. Les résultats de simulation s'affichent automatiquement, en conséquences des sondes placées.

Sonde simple et sonde différentielle

Une **sonde simple de potentiel** donne la **tension** par rapport à la masse 0 V (potentiel).

Une **sonde différentielle** donne la **différence de potentiel** entre deux points quelconques du circuit (tension). Placer une sonde dans un circuit génère automatiquement le traçage des courbes.

Exporter les résultats en format texte

Les résultats peuvent être exportés en format texte :

Exporter les résultats en format texte

Donner un nom au fichier dans *File name*. Le fichier se trouvera dans votre dossier de travail et contiendra 3 colonnes : temps, tension, intensité de courant.

Exporter les résultats sous forme d'image

Les résultats peuvent être exportés sous forme d'image en fond blanc.

Dans la barre d'outils, cliquez sur Windows/Copy to Clipboard

puis cliquez sur **OK** (gardez les paramètres par défaut).

La fenêtre peut être directement copiée dans un fichier Word avec Ctrl+V

Sauvegarde du projet

Pour sauvegarder le projet cliquez sur **File/Save** ensuite **File/Exit** et sur la fenêtre **Save File** in **Project** cliquez sur **Yes All.**

Etapes création projet

- 1. Création d'un projet « new project »
- 2. Réalisation d'un circuit
- 3. Création d'un nouveau profil de simulation « new simulation profile »
- 4. Définition des paramètres du profil de simulation « edit simulation profil »
- 5. Compilation de la simulation (RUN)
- 6. Affichage des résultats (sous forme d'étiquettes et/ou courbes)
- 7. Sauvegarde du projet

Exercice

- Construire un circuit composé par un générateur de tension continue de 250 V et deux résistances de 100 Ω et 200 Ω en série.
- Lancer une simulation de 100 s
- Afficher les étiquettes de tension, courant et puissance sur le circuit
- Vérifier les valeurs obtenues par les calculs
- Afficher la tension aux bornes de la résistance R1, de la résistance R2 et des la résistance équivalente.
- Exporter les données dans un fichier texte

Exercice: correction

$$R_1 + R_2 = 300 \Omega$$

$$I = \frac{V}{R_1 + R_2} = \frac{250}{300} = 0.833 \text{ A}$$

$$U_1 = I \cdot R_1 = 83.3 \ V (\sim 250V - 166.6V)$$

$$U_2 = I \cdot R_2 = 166.6 \ V$$

$$P_1 = U_1 \cdot I = 69.38 \ W$$

$$P_2 = U_2 \cdot I = 138,77 \ W$$

Exercice: correction

