Контрольная работа по курсу «Сети ЭВМ и телекоммуникации

Студент Dudin Nikita Гр. 320201

Вариант 8

Часть I. Планирование адресного пространства IPv6

Задание 1.1:: Представить сокращенную запись адреса сети IPv6, который сформирован следующим образом:

- 1. Префикс глобальной маршрутизации установлен в соответствии с рекомендациями http://tools.ietf.org/html/rfc3849
- 2. Идентификатор подсети установлен в соответствии с номером Вашей учебной группы, который интерпретируется как десятичное число.
- 3. Старшие 5 байтов идентификатора интерфейса установлены кодами ASCII (http://ascii.org.ru/) первых пяти букв Вашего имени (в латинице).
- 4. Остальные позиции адреса установлены нулевыми значениями.

Решение 1.1 (макс. 20 баллов):

Сеть IPv6 | 2001:db8:0:4ee9:4e69:6b69:7400:0/102

Задание 1.2: разбить сеть из п.1.1 на 4 одинаковых по размеру подсетей МАКСИМАЛЬНОЙ ДЛИНЫ и указать префиксы первой и последней подсетей.

Решение 1.2 (макс. 20 баллов):

Префикс $N_{\text{С\'{\Gamma}C},}$	2001: db8: 0: 4ee9: 4e69: 6b69: 7400: 0/104
Префикс $N_{\rm C,PePS}$	2001:db8:0:4ee9:4e69:6b69:7700:0/104

Часть II. Планирование адресного пространства IPv4

X0 = целая часть (N*16)/256+10 = целая часть (8*16)/256+10 = 10

 $X1={f octatok}$ от деления $(N*16)/256={f octatok}$ от деления (8*16)/256=128

Дано: Сеть 10.128.0.0/12

Задание 2.1.1: разбить сеть на 128 подсетей, указать для первых 5 подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.1.1(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	10	128	U	U
Адрес сети	00001010	10000000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Чтобы разбить адрес сети на нужное количество подсетей, необходимо заимствовать 4 бит из 3-го октета и 3 бит из 2-го октета.

3. Итого, получается, что сеть 10.128.0.0/12 мы разбили на 128 подсети, в каждой из которых по 8190 узлов, указываем первые 5 подсетей:

	10	128	0	0
Адрес сети дв.с	00001010	10000000	00000000	00000000
Маска дв.с	11111111	11111111	11100000	00000000
	255	255	224	0

200	224
10.128.0.0	/19
10.128.0.1	
10.128.31.	254
10.128.31.	255
10.128.32.	0/19
10.128.32.	1
10.128.63.	254
10.128.63.	255
10.128.64.	0/19
10.128.64.	1
10.128.95.	254
10.128.95.	255
10.128.96.	0/19
10.128.96.	1
10.128.127	7.254
10.128.12	7.255
10.128.128	8.0/19
10.128.128	3.1
10.128.159	9.254
10.128.159	9.255
	10.128.0.0 10.128.0.1 10.128.31. 10.128.32. 10.128.63. 10.128.63. 10.128.64. 10.128.95. 10.128.95. 10.128.96. 10.128.123. 10.128.123. 10.128.123. 10.128.123.

Дано: Сеть 10.128.0.0/12

Задание 2.1.2: разбить сеть на 31 подсетей, указать для первой и последней подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.1.2(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

2. Чтобы разбить данную сеть на $(31\leqslant 2^5=32)$ подсетей необходимо заимствовать 4 бит из 3-го октета и 1 бит из 2-го октета (получается, что сеть можно разбить на 32 подсетей: $2^5=32$; оставшиеся 15 бит идут под узлы: $2^{15}-2=32766$ в каждой подсети).

3. Указываем первую и последнюю подсети:

$igcap$ Адрес сети $N_1/$ Префикс N_1	10.128.0.0/17
Адрес первого узла N_1	10.128.0.1
Адрес последнего узла N_1	10.128.127.254
Широковещательный адрес N_1	10.128.127.255
$igcap_{A$ дрес сети $N_2/$ Префикс N_2	10.143.0.0/17
$egin{aligned} { m Aдреc} \ { m сети} \ N_2/\ { m Префикс} \ N_2 \ \\ { m Aдреc} \ { m первого} \ { m узла} \ N_2 \ \end{aligned}$	10.143.0.0/17 10.143.0.1
,	,

Задание 2.2.1: разбить сеть на подсети, чтобы в каждой было по 512 узла (с учетом адресов сети и directed broadcast), указать для ПОСЛЕДНИХ 5 подсетей:

- адрес подсети;
- адрес первого узла;

- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.1(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	10	128	0	0
Адрес сети	00001010	10000000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n - кол-во «узловых» бит. В нашем случае n=9, т.к. $2^9-2=510$. Т.е. нужно выбрать такую маску, которря выделит ровно 9 бит для адресов узлов. Таким образом, исходную сеть мы сможем разбить на $2^{11}=8192$ подсетей по 510 узла(ов) в каждой.

3. Указываем последние 5 подсетей:

$oxedsymbol{A}$ дрес сети $N_1/$ Префикс N_1	10.143.246.0/23
Адрес первого узла N_1	10.143.246.1
Адрес последнего узла N_1	10.143.247.254
Широковещательный адрес N_1	10.143.247.255
$oxed{A}$ дрес сети $N_2/$ Префикс N_2	10.143.248.0/23
Адрес первого узла N_2	10.143.248.1
Адрес последнего узла N_2	10.143.249.254
Широковещательный адрес N_2	10.143.249.255
$oxed{A}$ дрес сети $N_3/$ Префикс N_3	10.143.250.0/23
Адрес первого узла N_3	10.143.250.1
Адрес последнего узла N_3	10.143.251.254
Широковещательный адрес N_3	10.143.251.255

$oxed{\mathrm{A}}$ дрес сети $N_4/$ Префикс N_4	$\fbox{10.143.252.0/23}$
Адрес первого узла N_4	10.143.252.1
Адрес последнего узла N_4	10.143.253.254
Широковещательный адрес N_4	10.143.253.255
Адрес сети $N_5/$ Префикс N_5	10.143.254.0/23
Адрес первого узла N_5	10.143.254.1
Адрес последнего узла N_5	10.143.255.254
Широковещательный адрес N_5	10.143.255.255

Задание 2.2.2: разбить сеть на подсети, чтобы в каждой было не менее 100 АКТИВНЫХ узлов, указать для первой и последней подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.2(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	10	128	0	0
Адрес сети	00001010	10000000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n - кол-во «узловых» бит. В нашем случае n=7, т.к. $2^7-2=126 \geqslant 100$.

	10	128	U	U
Адрес сети дв.с	00001010	10000000	00000000	00000000
Маска дв.с	11111111	11111111	11111111	10000000
	255	255	255	128

3. Указываем первую и последнюю подсети

$oxedsymbol{\mathrm{A}}$ дрес сети $N_1/$ Префикс N_1	10.128.0.0/25
Адрес первого узла N_1	10.128.0.1
Адрес последнего узла N_1	10.128.0.126
Широковещательный адрес N_1	10.128.0.127

Адрес сети $N_2/$ Префикс N_2	10.143.255.128/25
Адрес первого узла N_2	10.143.255.129
Адрес последнего узла N_2	10.143.255.254
Широковещательный адрес N_2	10.143.255.255

Задание 2.2.3: разбить сеть на подсети, чтобы в каждой было не менее 40 АКТИВНЫХ узлов, указать для ПОСЛЕДНИХ 5 подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.3 (макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	10	128	0	0
Адрес сети	00001010	10000000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n- кол-во «узловых» бит. В нашем случае n=6, т.к. $2^6-2=62$.

	10	128	0	0
Адрес сети дв.с	00001010	10000000	00000000	00000000
Маска дв.с	11111111	11111111	11111111	11000000
	255	255	255	192

3. Указываем последние 5 подсетей:

Адрес сети $N_1/$ Префикс N_1	$ \boxed{ 10.143.254.192/26 } $		
${ m A}$ дрес первого узла N_1	10.143.254.193		
Адрес последнего узла N_1	10.143.254.254		
Широковещательный адрес N_1	10.143.254.255		
Λ дрес сети $N_2/$ Префикс N_2	10.143.255.0/26		
${ m A}$ дрес первого узла N_2	10.143.255.1		
Адрес последнего узла N_2	10.143.255.62		
Широковещательный адрес N_2	10.143.255.63		

Λ дрес сети $N_3/$ Префикс N_3	$\fbox{10.143.255.64/26}$
Адрес первого узла N_3	10.143.255.65
Адрес последнего узла N_3	10.143.255.126
Широковещательный адрес N_3	10.143.255.127
$oxedsymbol{\Lambda}$ дрес сети $N_4/$ Префикс N_4	10.143.255.128/26
Адрес первого узла N_4	10.143.255.129
Адрес последнего узла N_4	10.143.255.190
Широковещательный адрес N_4	10.143.255.191
$oxedsymbol{A}$ дрес сети $N_5/$ Префикс N_5	$\boxed{10.143.255.192/26}$
Адрес первого узла N_5	10.143.255.193
Адрес последнего узла N_5	10.143.255.254
Широковещательный адрес N_5	10.143.255.255