

Politechnika Wrocławska

Wydział Elektroniki, Fotoniki i Mikrosystemów

Sterowanie Procesami Ciągłymi

Sprawozdanie nr 1 Charakterystyki częstotliwościowe

Prowadzący: dr hab. inż. Grzegorz Mzyk

> Wykonała: Zuzanna Mejer, 259382

> > Termin zajęć: czwartek TP, 9:15

Spis treści

1	Cel ćwiczenia	2
2	Zależność charakterystyki czasowej układu od wartości pulsacji pobudzenia sinusoidalnego	2
	2.1 Odpowiedź systemu na pobudzenie sinusoidalne, gdy pulsacja $\omega=0,1$	2
	2.2 Odpowiedź systemu na pobudzenie sinusoidalne, gdy pulsacja $\omega=1$	3
	2.3 Odpowiedź systemu na pobudzenie sinusoidalne, gdy pulsacja $\omega = 10$	4
	2.4 Porównanie	4
3	Badania w dziedzinie częstotliwościowej	4
	3.1 Charakterystyka amplitudowo-fazowa	4
	3.2 Analiza charakterystyki częstotliwościowej układu opóźniającego z inercją	4
4	Podsumowanie i wnioski	4

1 Cel ćwiczenia

Głównymi celami ćwiczenia było: zbadanie zależności odpowiedzi systemu w dziedzinie czasu od pulsacji pobudzenia sinusoidalnego; zapoznanie się z różnymi rodzajami charakterystyk częstotliwościowych oraz zbadanie wpływu wartości parametrów układu opóźniającego z inercją na charakterystykę częstotliwościową układu.

2 Zależność charakterystyki czasowej układu od wartości pulsacji pobudzenia sinusoidalnego

Badany jest asymptotycznie stabilny układ liniowy o zadanej transmitancji:

$$K(s) = \frac{1}{s^2 + 0, 1s + 1},\tag{1}$$

który pobudzany jest sygnałem sinusoidalnym o ogólnym wzorze:

$$u(t) = \sin(\omega t),\tag{2}$$

gdzie ω to pulsacja. Odpowiedź układu liniowego na pobudzenie sinusoidalne w stanie ustalonym ma postać:

$$y_{ust}(t) = A \cdot \sin(\omega t + \phi), \tag{3}$$

gdzie: A to amplituda, ω to pulsacja oraz ϕ to przesunięcie fazowe. Wiedząc, że pulsacja odpowiedzi systemu ω jest identyczna jak pulsacja sygnału wejściowego, zbadano jaka jest zależność między pulsacją sygnału wejściowego a amplitudą A i przesunięciem fazowym ϕ odpowiedzi systemu. Do badań przyjęto 3 wartości pulsacji: $\omega=0,1,\,\omega=1,\,\omega=10$, co oznacza, że układ o transmitancji 1 pobudzono kolejno: $u_1(t)=\sin(0,1t),\,u_2(t)=\sin(1t)$ oraz $u_3(t)=\sin(10t)$. Zbudowano następujący schemat w Simulinku:

Rysunek 1: Schemat w Simulinku do badania odpowiedzi układu na pobudzenie sinusoidalne

2.1 Odpowiedź systemu na pobudzenie sinusoidalne, gdy pulsacja $\omega=0,1$

Pobudzono układ sygnałem $u_1(t) = sin(0,1t)$. Poniżej przedstawiono porównanie pobudzenia sinusoidalnego (kolor czarny na wykresie) z odpowiedzią systemu (kolor czerwony na wykresie).

Rysunek 2: Odpowiedź systemu o transmitancji K(s) na pobudzenie $u_1(t) = \sin(0, 1t)$

przesuniecie fazowe i amplituda; oznaczyc? opisac?

2.2 Odpowiedź systemu na pobudzenie sinusoidalne, gdy pulsacja $\omega=1$

Pobudzono układ sygnałem $u_2(t) = sin(1t)$. Poniżej przedstawiono porównanie pobudzenia sinusoidalnego (kolor czarny na wykresie) z odpowiedzią systemu (kolor czerwony na wykresie).

Rysunek 3: Odpowiedź systemu o transmitancji K(s) na pobudzenie $u_2(t) = sin(1t)$

przesuniecie fazowe i amplituda; oznaczyc? opisac?

2.3 Odpowiedź systemu na pobudzenie sinusoidalne, gdy pulsacja $\omega = 10$

Pobudzono układ sygnałem $u_3(t) = sin(10t)$. Poniżej przedstawiono porównanie pobudzenia sinusoidalnego (kolor czarny na wykresie) z odpowiedzią systemu (kolor czerwony na wykresie).

Rysunek 4: Odpowiedź systemu o transmitancji K(s) na pobudzenie $u_3(t) = sin(10t)$

przesuniecie fazowe i amplituda; oznaczyc? opisac?

2.4 Porównanie

- 3 Badania w dziedzinie częstotliwościowej
- 3.1 Charakterystyka amplitudowo-fazowa
- 3.2 Analiza charakterystyki częstotliwościowej układu opóźniającego z inercją
- 4 Podsumowanie i wnioski