Intraday volatility modelling

Sarahnour Ghaith & Thomas Roiseux

ENSIIE

September 2023 – January 2024

Introduction

Context and goals
Data collection

Pre-processing

Data cleaning and filtering Prices visualization

Intraday volatility estimation

Some reminders
Estimated realized volatility plot

Long-range volatility estimation

Selected data Results Remarks

Microstructure noise analysis

Introduction to microstructure noise Mathematical aspects Results

Table of contents II

Remarks

Estimated daily volatility

roduction Pre-processing Intraday volatility estimation Long-range volatility estimation Microstructure noise analysis Estimated daily volatility O 000 0000 0000 0000 00000 00000

Introduction

Context

Context

Use of high frequency data to provide volatility analysis.

Project goals

- 1. Estimating realized volatility with variable time intervals
- 2. Comparizon with a long-range volatility estimation
- 3. Estimating the size of the mairostructure noise.

roduction Pre-processing Intraday volatility estimation Long-range volatility estimation Microstructure noise analysis Estimated daily volatility O 000 0000 0000 0000 00000 00000

Introduction

Context

Context

Use of high frequency data to provide volatility analysis.

Project goals

1. Estimating realized volatility with variable time intervals.

roduction Pre-processing Intraday volatility estimation Long-range volatility estimation Microstructure noise analysis Estimated daily volatility

Introduction

Context

Context

Use of high frequency data to provide volatility analysis.

Project goals

- 1. Estimating realized volatility with variable time intervals.
- 2. Comparizon with a long-range volatility estimation.

roduction Pre-processing Intraday volatility estimation Long-range volatility estimation Microstructure noise analysis Estimated daily volatility

Introduction

Context

Context

Use of high frequency data to provide volatility analysis.

Project goals

- 1. Estimating realized volatility with variable time intervals.
- 2. Comparizon with a long-range volatility estimation.
- 3. Estimating the size of the mcirostructure noise.

Data collection

Data collection

Chosen dataset

Share S&P values (IVE) tick data, from September 2009 until today.

Data cleaning and filtering

Outliers

Among the whole data set: 9 prices were lower than 10 \$

Dropping outliers

9 values among more than 11 millions: we can easily drop them without taking care of the consequences.

Data cleaning and filtering

Outliers

Among the whole data set: 9 prices were lower than 10 \$.

Dropping outliers

9 values among more than 11 millions: we can easily drop them without taking care of the consequences.

Pre-processing Intraday volatility estimation Long-range volatility estimation Microstructure noise analysis Estimated daily volatility of the color of the colo

Data cleaning and filtering

Outliers

Among the whole data set: 9 prices were lower than 10\$

Dropping outliers

9 values among more than 11 millions: we can easily drop them without taking care of the consequences.

Pre-processing OOO OOO OOOO Microstructure noise analysis Estimated daily volatile ooo OOO OOOO OOOO

Prices plot

Figure: Prices with respect to time

Mathematical definition

$$RV = \sum_{i=1}^{\infty} (X_{t_{i+1}} - X_{t_i})^2$$

with n the number of time sample

Building the time intervals

How to properly select data with respect to time intervals when available data don't have a fixed δ ?

Solution

- ▶ If available, we choose the point that fits the interval.
- ▶ If not, we take the closest neet one.

Mathematical definition

$$RV = \sum_{i=1}^{n} (X_{t_{i+1}} - X_{t_i})^2$$

with n the number of time samples

Building the time intervals

How to properly select data with respect to time intervals when available data don't have a fixed δ ?

Solution

- ▶ If available, we choose the point that fits the interval.
- ▶ If not, we take the closest neet one.

Mathematical definition

$$RV = \sum_{i=1}^{n} (X_{t_{i+1}} - X_{t_i})^2$$

with n the number of time samples

Building the time intervals

How to properly select data with respect to time intervals when available data don't have a fixed δ ?

Solution

- ▶ If available, we choose the point that fits the interval.
- ▶ If not, we take the closest neet one.

Mathematical definition

$$RV = \sum_{i=1}^{n} (X_{t_{i+1}} - X_{t_i})^2$$

with n the number of time samples

Building the time intervals

How to properly select data with respect to time intervals when available data don't have a fixed δ ?

Solution

- If available, we choose the point that fits the interval.
- ▶ If not, we take the closest neet one.

Mathematical definition

$$RV = \sum_{i=1}^{n} (X_{t_{i+1}} - X_{t_i})^2$$

with n the number of time samples

Building the time intervals

How to properly select data with respect to time intervals when available data don't have a fixed δ ?

Solution

- ▶ If available, we choose the point that fits the interval.
- ▶ If not, we take the closest neet one.

Mathematical definition

$$RV = \sum_{i=1}^{n} (X_{t_{i+1}} - X_{t_i})^2$$

with n the number of time samples

Building the time intervals

How to properly select data with respect to time intervals when available data don't have a fixed δ ?

Solution

- ▶ If available, we choose the point that fits the interval.
- ▶ If not, we take the closest neet one.

n Pre-processing Intraday volatility estimation Long-range volatility estimation Microstructure noise analysis Estimated daily volatility

OO OOO OOO

Estimated realized volatility plot

Figure: Estimated realized volatility with several time intervals

Essing Intraday volatility estimation OO● Long-range volatility estimation Microstructure noise analysis Estimated daily volatility OOOO OOOO

Estimated realized volatility plot

- Volatility decreases when time interval grows.
- Explained by less selected price variations.
- 3. The larger the time interval is, the fewer selected prices are.

Estimated realized volatility plot

- 1. Volatility decreases when time interval grows.
- Explained by less selected price variations.
- The larger the time interval is, the fewer selected prices are.

Estimated realized volatility plot

- 1. Volatility decreases when time interval grows.
- 2. Explained by less selected price variations.
- 3. The larger the time interval is, the fewer selected prices are.

Estimated realized volatility plot

- 1. Volatility decreases when time interval grows.
- 2. Explained by less selected price variations.
- 3. The larger the time interval is, the fewer selected prices are.

Selected data

Chosen time line

To compute the daily realized volatility: selection of the same month as before

Reminder of goal

Comparizon between estimated relazied volatility and long range daily volatility.

ntraday volatility estimation Long-range volatility estimation Microstructure noise analysis Estimated daily volatility

Selected data

Chosen time line

To compute the daily realized volatility: selection of the same month as before

Reminder of goal

Comparizon between estimated relazied volatility and long range daily volatility.

Prices overview

Figure: Prices used for comparing. Flat curves correspond to closed mark

Pre-processing Intraday volatility estimation Long-range volatility estimation Microstructure noise analysis Estimated daily volatility

Comparizon results

Figure: Long range volatility over the month

- 1. Dynamics are different
 - 1.1 Decresing for intraday.
 - 1.2 No one for long range.
- For high freuency data: long range volatility is not useful, as transactions are concluded within a second.
- Compared to prices graph: the long range volatility tends to show no remarkable variation, which contrasts with all the small ones on that graph.

1. Dynamics are different:

1. Dynamics are different:

- 1.1 Decresing for intraday.
- 1.2 No one for long range.
- For high freuency data: long range volatility is not useful, as transactions are concluded within a second.
- Compared to prices graph: the long range volatility tends to show no remarkable variation, which contrasts with all the small ones on that graph.

- 1. Dynamics are different:
 - 1.1 Decresing for intraday.
 - 1.2 No one for long range.

- 1. Dynamics are different:
 - 1.1 Decresing for intraday.
 - 1.2 No one for long range.
- 2. For high freuency data: long range volatility is not useful, as transactions are concluded within a second.

- 1. Dynamics are different:
 - 1.1 Decresing for intraday.
 - 1.2 No one for long range.
- For high freuency data: long range volatility is not useful, as transactions are concluded within a second.
- 3. Compared to prices graph: the long range volatility tends to show no remarkable variation, which contrasts with all the small ones on that graph.

Preliminaries

Definition

Can be defined as the result of the ask & bid mechanism. Provides interferences in prices.

Why estimating it?

Noise has impact on prices: estimating it leads to better models.

Estimation

Very easy to estimate.

Definition

Preliminaries

Definition

Why estimating it?

Noise has impact on prices: estimating it leads to better models.

Preliminaries

Definition

Why estimating it?

Noise has impact on prices: estimating it leads to better models.

Estimation

Very easy to estimate.

Methodology

Constructing the estimator

We know that, with η such estimator

$$\frac{RV}{n} \xrightarrow[n \to \infty]{\mathbb{P}} 2\eta^2 \iff \sqrt{\frac{RV}{2n}} \xrightarrow[n \to \infty]{\mathbb{P}} \eta$$

Computing the estimator

We need to use a large sample of size $n \to \infty$ to have best results for η , the micro-structure noise size estimator.

Methodology

Constructing the estimator

We know that, with η such estimator:

$$\frac{RV}{n} \xrightarrow[n \to \infty]{\mathbf{p}} 2\eta^2 \iff \sqrt{\frac{RV}{2n}} \xrightarrow[n \to \infty]{\mathbf{p}} \eta$$

Computing the estimator

We need to use a large sample of size $n \to \infty$ to have best results for η , the micro-structure noise size estimator.

Methodology

Constructing the estimator

$$\frac{RV}{n} \xrightarrow[n \to \infty]{\mathbf{p}} 2\eta^2 \iff \sqrt{\frac{RV}{2n}} \xrightarrow[n \to \infty]{\mathbf{p}} \eta$$

Computing the estimator

We need to use a large sample of size $n \to \infty$ to have best results for η , the micro-structure noise size estimator.

Figure: Daily microstructure noise

Autocorrelation method

Figure: Micro structure noise after autocorrelation

Introduction Pre-processing Intraday volatility estimation Long-range volatility estimation Microstructure noise analysis Estimated daily volatility

Some remarks

- Both previous graphs shows that microstructure noise exists among our data set.
- The autocorrelation allows us to see how it impacts the prices (positively or negatively).

ion Long-range volatility estimation Microstructure noise analysis Estimated daily volatility

- Both previous graphs shows that microstructure noise exists among our data set.
- The autocorrelation allows us to see how it impacts the prices (positively or negatively).

Some remarks

- ▶ Both previous graphs shows that microstructure noise exists among our data set.
- ▶ The autocorrelation allows us to see how it impacts the prices (positively or negatively).

Computed estimated daily volatility

Figure: Estimated daily volatility over the last year (green is the aver

A few words to conclude

- 1. Alaysis of realized volatility is quite easy to implement.
- Difficulties when time interval between returns decreases.
- Overnight returns: neglecting them leads to underestimate volatility. Our data wasn't accurate enough.
- 4. Various other methods developped to mitigate the microstructure noise

- 1. Alaysis of realized volatility is quite easy to implement.
- Difficulties when time interval between returns decreases
- Overnight returns: neglecting them leads to underestimate volatility. Our data wasn't accurate enough.
- 4. Various other methods developped to mitigate the microstructure noise

- 1. Alaysis of realized volatility is quite easy to implement.
- Difficulties when time interval between returns decreases.

A few words to conclude

- 1. Alaysis of realized volatility is quite easy to implement.
- Difficulties when time interval between returns decreases.
- 3. Overnight returns: neglecting them leads to underestimate volatility. Our data wasn't accurate enough.

- 1. Alaysis of realized volatility is quite easy to implement.
- Difficulties when time interval between returns decreases.
- 3. Overnight returns: neglecting them leads to underestimate volatility. Our data wasn't accurate enough.
- 4. Various other methods developed to mitigate the microstructure noise.

