

Academic Year:	2020/2021	Term Exam:	First Term
Department:	MDP	Course Code:	MDP491
Date:	22/12/2020	Course Title:	Comp. Dyn.
Time:	1 hour	Full Mark:	10

For each of the following mechanisms; use the provided table for links' lengths and initial value of generalized coordinates in order to solve these systems as kinematical driven systems.

Requirements:

- 1. The components of the vectors and matrices ($\mathbf{C}, \mathbf{C_q}, \mathbf{C_t}, \mathbf{Q}_d$)
- 2. Fill the values in the tables following each question for positions, velocity and accelerations after 2 seconds.

Note that:

- The frame of each pinned-pinned link is located in its middle. The length of the link i is l^i .
- Driving constraint $\dot{\theta}^2 = \omega^2$

Question (1): [5 Marks]

(1) Offset crank slider mechanism

l^2	0.2 m	h	0.05 m
l^3	0.3 m	ω^2	4 rad/s
R_x^2	0.0968 m	R_x^3	0.344 m
$R_{_{\mathrm{y}}}^{^{2}}$	0.025 m	R_y^3	0.05 m
θ^2	14.48 °	θ^3	0 °
R_x^{-4}	0.494 m		

-	\sim
•	
•	_

 $\mathbf{C}_{\mathbf{q}}$

 \mathbf{C}_{t}

Solution after 2 seconds

R_x^2	\dot{R}_{x}^{2}	\ddot{R}_{x}^{2}	
R_y^2	$ \dot{R}_y^2 $	\ddot{R}_{y}^{2}	
θ^2	$\dot{ heta}^2$	$\ddot{ heta}^2$	
R_x^{3}	\dot{R}_{x}^{3}	\ddot{R}_x^3	
R_y^3	\dot{R}_{y}^{3}	\ddot{R}_{y}^{3}	
θ^3	$\dot{m{ heta}}^3$	$\ddot{\theta}^{\scriptscriptstyle 3}$	
R_x^{-4}	$\dot{R}_{_X}^{4}$	$\ddot{R}_{_X}^{4}$	

Question (2): [5 Marks]

A. ...

B. ...

Question (3): [..... Mark]

A. ...