9. Элементарные преобразования матриц и их свойства.

К числу элем преобразований матриц относятся:

- 1. умножение строки или столбца матрицы на ненулевое число;
- 2. перестановка местами двух строк или столбцов матрицы;
- 3. прибавление к некоторой строке матрицы другой ее строки, предварительно умноженной на произвольный коэффициент;
- 4. прибавление к некоторому столбцу матрицы другого ее столбца, предварительно умноженного на произвольный коэффициент.

Матрицы можно назвать эквивалентными если одну можно получить с помощью элементарных преобразований другой

10. Ранг матрицы, его вычисление. Теорема о ранге.

Ранг - наивысший порядок минора отличного от нуля

Обозначения: rA, r(A), rang A, Rg A.

Теорема. Ранг матрицы равен числу ее линейно независимых строк и столбцов.

Объекты **линейно зависимы**, если существует их нетривиальная линейная комбинация равная нулю:

$$egin{aligned} \lambda_1 a_1 + \lambda_2 a_2 + ... + \lambda_n a_n &= 0, & \text{не все } \lambda_i &= 0 \ \begin{pmatrix} 1 & 0 & 1 & 0 \ 0 & 1 & 0 & 1 \ 1 & 1 & 2 & 0 \ 0 & 0 & 1 & -1 \end{pmatrix} & a_1 + a_2 - a_3 + a_4 &= 0 \Rightarrow & \text{строки линейно зависимы} \end{aligned}$$

О способах вычисления:

Метод окаймления миноров. Суть этого метода заключается в нахождении миноров, начиная с низших порядков и двигаясь к более высоким. Если минор n-го порядка не равен нулю, а все миноры (n+1)-го равны нулю, то ранг матрицы будет равен n

Канонической матрицей называется матрица, у которой в начале главной диагонали стоят подряд несколько единиц (число которых может равняться нулю), а все остальные элементы равны нулю, например

$$\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

ранг - число единиц на главной диагонали

Ранг ступенчатой матрицы равен количеству её ненулевых строк.(нули на главной диагонали и ниже) 11. Исследование систем линейных уравнений.

Системы линейных уравнений с n неизвестными могут иметь:

- единственное решение;
- бесконечное множество решение (неопределенные СЛУ);
- ни одного решения (несовместные СЛУ).

Исследовать систему значит ответить на следующие вопросы:

- Совместна ли система?
- Если система совместна, то, какое количество решений она имеет одно или несколько?
- Как найти все решения?

Для исследования СЛУ используют теорему Кронекера-Капелли.

хуй знает чо здесь писать еще

12. Теорема Кронекера-Капелли.

Теорема Кронекера-Капелли. Система линейных алгебраических уравнений совместна (имеет хотя бы одно решение) тогда и только тогда, когда ранг матрицы коэффициентов равен рангу расширенной матрицы.

Расширенная матрица - матрица, полученная из матрицы коэффициентов (основной матрицы) дописыванием справа столбца свободных членов.

Если СЛУ совместна и ранг равен числу неизвестных решение одно, если число неизвестных больше - решений бесконечно много.

Примерный алгоритм:

- 1. Найти ранги основной и расширенной матриц системы дабы определить совместность
- 2. Найти какой-либо базисный минор порядка равный рангу(r) (напоминание: минор, порядок которого определяет ранг матрицы, называется базисным). Взять г уравнений, из коэффициентов которых составлен базисный минор (остальные уравнения отбросить). Неизвестные, коэффициенты которых входят в базисный минор, называют главными и оставляют слева, а остальные n r неизвестных называют свободными и переносят в правые части уравнений.
- 3. Найти выражения главных неизвестных через свободные . Получено общее решение системы.
- 4. Придавая свободным неизвестным произвольные значения, получим соответствующие значения главных неизвестных. Таким образом можно найти частные решения исходной системы уравнений

13. Однородные системы.

Однородной системой линейных уравнений называется система, правая часть которой равна нулю.

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0, \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0. \end{cases}$$

Однородная система **всегда совместна**, поскольку любая однородная линейная система имеет по крайней мере одно решение: x1=0, x2=0, ..., xn=0.

Если однородная система имеет единственное решение, то это единственное решение — нулевое, и система называется тривиально совместной. Если же однородная система имеет более одного решения, то среди них есть и ненулевые и в этом случае система называется нетривиально совместной.

Доказано, что при m=n для нетривиальной совместности системы необходимо и достаточно, чтобы определитель матрицы системы был равен нулю.

14. Метод Гаусса для решения систем линейных уравнений.

Процесс решения по методу Гаусса состоит из двух этапов . На первом этапе система приводится к ступенчатому (треугольному) виду с помощью элементарных преобразований. (Ниже главной диагонали матрицы - нули)

На втором этапе идет последовательное определение неизвестных из этой ступенчатой системы.

n - число неизвестных в системе.

Ступенчатая система уравнений, вообще говоря, имеет бесчисленное множество решений. В последнем уравнении. этой системы выражаем первое неизвестное Xk через остальные неизвестные (Xk+I, . . . , Xn). Затем подставляем значение Xk в предпоследнее уравнение системы и выражаем Xk-I через (Xk+I, ... , Xn); затем находим Xk-2, ... , XI Придавая свободным неизвестным (Xk+I, ... , Xn) произвольные значения, получим бесчисленное множество решений системы.

Если ступенчатая система оказывается **треугольной**, т. е. k = n, то исходная система имеет единственное решение. Из последнего уравнения находим X n , из предпоследнего уравнения X n -l, далее поднимаясь по системе вверх, найдем все остальные неизвестные (Xn-2, ..., XI).

15. Геометрический вектор. Линейные операции над векторами и их свойства.

Вектор - это направленный прямолинейный отрезок, т. е. отре-

зок, имеющий определенную длину и определенное направление. Под **линейными операциями** над векторами понимают операции сложения и вычитания векторов, а также умножение вектора на число.

Правила сложения векторов:

Треугольника

Парралелограмма

Многоугольника (для трех векторов и более)

Для нахождения **разности** можно воспользоваться правилом параллелограмма. Вектор - диагональ параллелограмма выходящий из начала - есть сумма векторов, другая диагональ - их разность.

Произведением вектора на скаляр (число) называется вектор который имеет длину равную произведению длины вектора на это число (по модулю), который коллинеарен первоначальному и имеет его направление, если число на которое умножается положительно и противоположное направление если число отрицательно.

16. Проекция вектора на ось и на вектор.

Проекцией вектора \overline{AB} на ось l называется длина отрезка A_1B_1 , взятая со знаком "+", если направление $\overline{A_1B_1}$ совпадает с направлением вектора \overline{e} , и со знаком "-", если направление $\overline{A_1B_1}$ противоположно направлению единичного вектора оси l.

Рис. 1

На рисунке вектор \overline{AB} и некоторая ось l с единичным вектором \bar{e} . Точки A_1 и B_1 - проекции точек A и B на ось l соответственно.

Проекция вектора \bar{a} на ось l равна произведению модуля этого вектора на косинус угла между ним и положительным направлением оси на некоторую ось l:

$$\mathsf{\Pi} \mathsf{p}_l \bar{a} = |\bar{a}| \cos(\bar{a}; l)$$

Проекцией $\Pi p_{\bar{b}}\bar{a}$ вектора a на направление вектора \bar{b} , называется число, которое равно величине проекции вектора a на ось l, проходящую через второй вектор \bar{b} .

Проекция вектора a на направление вектора \bar{b} равна скалярному произведению этих векторов, деленному на длину вектора \bar{b} :

$$\Pi p_{\bar{b}} \bar{a} = \frac{\left(\bar{a}, \ \bar{b}\right)}{|\bar{b}|}$$

Скалярное произведение векторов равно сумме произведений соответствующих координат векторов-сомножителей.

Ну или

$$\bar{a} \cdot \bar{b} = |\bar{a}| \cdot |\bar{b}| \cdot \cos \varphi,$$

Учитывая формулу для проекций

$$\bar{a}\bar{b} = |\bar{a}| \cdot \operatorname{np}_{\bar{a}} \bar{b} = |\bar{b}| \cdot \operatorname{np}_{\bar{b}} \bar{a},$$

17. Линейная зависимость векторов. Понятие базиса.

Определение 1. Линейной комбинацией векторов $a_1, a_2,...,a_n$ называется сумма произведений этих векторов на скаляры $\lambda_1, \ \lambda_2,...,\lambda_n$.

$$\lambda_1 \overrightarrow{a_1} + \lambda_2 \overrightarrow{a_2} + \dots + \lambda_n \overrightarrow{a_n}$$

Определение 2. Система векторов $\overline{a_1}, \overline{a_2}, ..., \overline{a_n}$ называется линейно зависимой системой, если линейная комбинация их обращается в нуль:

$$\lambda_1 \overrightarrow{a_1} + \lambda_2 \overrightarrow{a_2} + \dots + \lambda_n \overrightarrow{a_n} = 0$$

причем среди чисел $^{\lambda_1}, \ ^{\lambda_2}, ..., ^{\lambda_n}$ существует хотя бы одно, отличное от нуля.

Определение 3. Векторы $\overline{a_1}, \overline{a_2}, ..., \overline{a_n}$ называются линейно независимыми, если их линейная комбинация (2.8) обращается в нуль лишь в случае, когда все числа $\lambda_1 = \lambda_2 = ... = \lambda_n = 0$.

Понятие базиса.

Определение 1. Пара векторов называется упорядоченной, если указано, какой вектор этой пары считается первым, а какой вторым.

Определение 2. Упорядоченная пара e_1 , e_2 неколлинеарных векторов называется базисом на плоскости, определяемой заданными векторами.

Теорема раз: Всякий вектор \overrightarrow{a} на плоскости может быть представлен как линейная комбинация базисной системы векторов $\overrightarrow{e_1}$. $\overrightarrow{e_2}$:

$$\vec{a} = a_1 \vec{e_1} + a_2 \vec{e_2}$$

и это представление единственно.

Теорема два: Любой вектор \overrightarrow{a} может быть представлен как линейная комбинация базисной системы векторов $\overrightarrow{e_1}$, $\overrightarrow{e_2}$, e_3 :

$$\vec{a} = a_1 \vec{e_1} + a_2 \vec{e_2} + a_3 \vec{e_3}$$

и это представление также единственно.