Weights and shapes: {m, b}, {n, it}. Features: • full set of f-ligatures;

- No SMALL CAPS—better to use another Times package for text;
- monospaced lining figures 0123456789;
- taboldstyle (monospaced) figures 0123456789 are available only through textcomp commands; • vast number of math glyphs available, but not all are accessible using LATEX.
- Typical invocation:

\usepackage[lcgreekalpha]{stix} %[notext], and load another package for text? \usepackage{textcomp}

Package name: stix (STIX)

Derived from: Times

Example using this preamble:

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac

turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at,

mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum. The typeset math below follows the ISO recommendations that only variables be set in italic. Note the use of

upright shapes for d, e and π . (The first two are entered as \mathrm{d} and \mathrm{e}, and in fonts derived from STIX, the latter is entered as \mathrm{\pi}, which works only if you set the option lcgreekalpha, which makes lower case Greek letters respond to alphabet changes such as \mathrm and \mathbf.)

Simplest form of the Central Limit Theorem: Let X_1, X_2, \cdots be a sequence of iid random variables with mean 0 and variance 1 on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Then

$$\mathbb{P}\left(\frac{X_1 + \dots + X_n}{\sqrt{n}} \le y\right) \to \mathfrak{N}(y) \coloneqq \int_{-\infty}^{y} \frac{\mathrm{e}^{-t^2/2}}{\sqrt{2\pi}} \, \mathrm{d}t \quad \text{as } n \to \infty,$$

or, equivalently, letting
$$S_n := \sum_{1}^{n} X_k$$
,
$$\mathbb{E} f\left(S_n/\sqrt{n}\right) \to \int_{-\infty}^{\infty} f(t) \frac{\mathrm{e}^{-t^2/2}}{\sqrt{2\pi}} \, \mathrm{d}t \quad \text{as } n \to \infty, \text{ for every } f \in \mathrm{b}\mathscr{C}(\mathbb{R}).$$