2.2 Propriedades da Transformada de Fourier de Tempo Discreto

Alguns pares transformados podem ser obtidos facilmente a partir da definição da Transformada de Fourier de Tempo Discreto (TFTD) e da TFTD inversa, ou seja,

$$x(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega \longleftrightarrow X(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} x(n) e^{-j\omega n}.$$

Exemplos desse caso são os pares transformados da Tabela 1. Outros pares transformados porém, são mais facilmente obtidos a partir das propriedades da TFTD. Na Tabela 2 são resumidas as principais propriedades da TFTD decorrentes da simetria de x(n).

Tabela 1: Pares transformados da TFTD.

x(n)	\longleftrightarrow	$X(e^{j\omega})$	
$\delta(n-\Delta)$	\longleftrightarrow	$e^{-j\omega\Delta}$	
$a^n \ u(n)$ $(a < 1)$	\longleftrightarrow	$\frac{1}{1 - ae^{-j\omega}}$	
$\sum_{k=L_1}^{L_2} \delta(n-k)$	\longleftrightarrow	$\begin{cases} -L_1 + L_2 + 1, \\ \frac{\sin(\omega(L_2 - L_1 + 1)/2)}{\sin(\omega/2)} e^{-j\omega(L_2 + L_1)/2}, \end{cases}$	se $\omega = 2\pi k$ se $\omega \neq 2\pi k$

Tabela 2: Propriedades da TFTD decorrentes da simetria de x(n).

$x^*(n)$	\longleftrightarrow	$X^*(e^{-j\omega})$
x(-n)	\longleftrightarrow	$X(e^{-j\omega})$
$x^*(-n)$	\longleftrightarrow	$X^*(e^{j\omega})$
$x_{\mathrm{par}}(n)$	\longleftrightarrow	$\operatorname{Re}\{X(e^{j\omega})\}$
$x_{impar}(n)$	\longleftrightarrow	$j \operatorname{Im}\{X(e^{j\omega})\}$

As demonstrações das propriedades da Tabela 2 são relativamente triviais. Para ilustrar o procedimento, será feita a demonstração da propriedade da inversão do eixo do tempo, ou seja, $y(n) = x(-n) \longleftrightarrow Y(e^{j\omega}) = X(e^{-j\omega})$.

$$\begin{split} y(n) &= x(-n) \, \longleftrightarrow \, Y(e^{j\omega}) = X\left(e^{-j\omega}\right). \\ \mathbf{Prova:} \ Y(e^{j\omega}) &= \sum_{n=-\infty}^{\infty} x(-n)e^{-j\omega n} = \sum_{m=-\infty}^{\infty} x(m)e^{j\omega m} = X\left(e^{-j\omega}\right). \blacktriangleleft \end{split}$$

Na Tabela 3 são mostradas as principais propriedades da TFTD. A seguir é feita a demonstração de algumas dessas propriedades.

Tabela 3: Propriedades fundamentais da TFTD.

1) Deslocamento no tempo:	$x(n-n_0) \longleftrightarrow e^{-j\omega n_0} X(e^{j\omega})$
2) Deslocamento na frequência:	$e^{j\Delta n}x(n)\longleftrightarrow X(e^{j(\omega-\Delta)})$
3) Derivada na frequência:	$n \ x(n) \longleftrightarrow j \frac{dX(e^{j\omega})}{d\omega}$
4) Convolução no tempo:	$\sum_{\ell=-\infty}^{+\infty} x(\ell)y(n-\ell) \longleftrightarrow X(e^{j\omega})Y(e^{j\omega})$
5) Multiplicação no tempo:	$x(n)y(n) \longleftrightarrow \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\theta}) Y(e^{j(\omega-\theta)}) d\theta$
6) Igualdade de Parseval:	$\sum_{n=-\infty}^{+\infty} x(n) ^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) ^2 d\omega$

1) Propriedade do deslocamento no tempo: $x(n-n_0) \longleftrightarrow e^{-j\omega n_0}X(e^{j\omega})$

Prova:

$$TFTD\{x(n-n_0)\} = \sum_{n=-\infty}^{+\infty} x(n-n_0)e^{-j\omega n}$$

$$= \sum_{m=-\infty}^{+\infty} x(m)e^{-j\omega(m+n_0)}$$

$$= e^{-j\omega n_0} \sum_{m=-\infty}^{+\infty} x(m)e^{-j\omega m}$$

$$= e^{-j\omega n_0} X(e^{j\omega}). \blacktriangleleft$$

3) Propriedade da diferenciação na frequência: $nx(n) \longleftrightarrow j \frac{dX(e^{j\omega})}{d\omega}$

Prova:
$$\frac{dX(e^{j\omega})}{d\omega} = \sum_{n=-\infty}^{+\infty} x(n) \frac{de^{-j\omega n}}{d\omega}$$
$$= -j \sum_{n=-\infty}^{+\infty} nx(n)e^{-j\omega n}$$
$$= -j \text{ TFTD}\{nx(n)\}. \blacktriangleleft$$

Exemplo de aplicação: $x(n) = (n+1)a^n u(n) \ (|a| < 1) \ \longleftrightarrow \ X(e^{j\omega}) = ?$

$$X(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} na^n u(n) e^{-j\omega n} + \sum_{n=-\infty}^{+\infty} a^n u(n) e^{-j\omega n}$$

$$= j \frac{d}{d\omega} \left(\frac{1}{1 - ae^{-j\omega}} \right) + \frac{1}{1 - ae^{-j\omega}}$$

$$= j(-1) \frac{-ae^{j\omega}(-j)}{(1 - ae^{-j\omega})^2} + \frac{1}{1 - ae^{-j\omega}}$$

$$= \frac{ae^{-j\omega}}{(1 - ae^{-j\omega})^2} + \frac{1}{1 - ae^{-j\omega}} = \frac{1}{(1 - ae^{-j\omega})^2}. \blacktriangleleft$$

4) Propriedade da convolução no tempo: $x_1(n) * x_2(n) \longleftrightarrow X_1(e^{j\omega})X_2(e^{j\omega})$

$$TFTD\{x_1(n) * x_2(n)\} = \sum_{n=-\infty}^{+\infty} \left[\sum_{k=-\infty}^{+\infty} x_1(k) x_2(n-k) \right] e^{-j\omega n}$$

$$= \sum_{k=-\infty}^{+\infty} x_1(k) e^{-j\omega k} \sum_{n=-\infty}^{+\infty} x_2(n-k) e^{-j\omega(n-k)}$$

$$= \left[\sum_{k=-\infty}^{+\infty} x_1(k) e^{-j\omega k} \right] \left[\sum_{m=-\infty}^{+\infty} x_2(m) e^{-j\omega m} \right] = X_1(e^{j\omega}) X_2(e^{j\omega}). \blacktriangleleft$$

5) Propriedade da multiplicação no tempo (convolução periódica na frequência):

$$x(n)y(n) \longleftrightarrow \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\theta}) Y(e^{j(\omega-\theta)}) d\theta$$

Prova:

$$\begin{aligned} \text{TFTD}\{x(n)y(n)\} &= \sum_{n=-\infty}^{+\infty} \left[\frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\theta}) e^{j\theta n} \, d\theta \right] y(n) e^{-j\omega n} \\ &= \frac{1}{2\pi} \int_{-\pi}^{\pi} \underbrace{\left[\sum_{n=-\infty}^{+\infty} y(n) e^{-j(\omega-\theta)n} \right]}_{=Y(e^{j(\omega-\theta)})} X(e^{j\theta}) \, d\theta. \blacktriangleleft \end{aligned}$$

Na Figura 1 é ilustrado um exemplo gráfico das etapas da convolução periódica de dois espectros $X(e^{j\omega})$ e $Y(e^{j\omega})$. Note que o resultado da convolução em um período $-\pi \le \omega \le \pi$ para uma dada frequência angular normalizada é a área da função marcada em verde no último gráfico da Figura 1.

6) Igualdade de Parseval:
$$\sum_{n=-\infty}^{+\infty}|x(n)|^2=\frac{1}{2\pi}\int_{-\pi}^{\pi}|X(e^{j\omega})|^2\,d\omega$$

Prova:

$$\sum_{n=-\infty}^{+\infty} |x(n)|^2 = \sum_{n=-\infty}^{+\infty} x(n)x^*(n) = \sum_{n=-\infty}^{+\infty} x(n)\frac{1}{2\pi} \int_{-\pi}^{\pi} X^*(e^{j\omega})e^{-j\omega n} d\omega$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} X^*(e^{j\omega}) \underbrace{\sum_{n=-\infty}^{+\infty} x(n)e^{-j\omega n}}_{=X(e^{j\omega})} d\omega = \frac{1}{2\pi} \int_{-\pi}^{\pi} |X(e^{j\omega})|^2 d\omega. \blacktriangleleft$$

Obviamente a Igualdade de Parseval se aplica apenas a sinais de energia finita. Note que $|X(e^{j\omega})|$ é a densidade espectral de energia, informa como a energia do sinal x(n) está distribuída nas suas componentes em frequência.

Figura 1: Exemplo de convolução periódica.