AE 5335 is taught by Dr. Riggins

Midterm

Propulsion 2

Matt Pahayo

1.0 Results

1.1 question 1

q1	numerical	analytical
P [N]	139527.5698	139568.7153
T [K]	315.5844355	315.593
Pt [N]	140507.529	140548.043
Tt [K]	316.216133	316.224
u [m/s]	35.62415227	35.608
M	0.100041866	0.09995
thrust [N]	58182.05266	58210

1.2 question 2

q2	numerical	analytical
P [N]	74622.2376	74600.60408
T [K]	1210.648204	1210.709
Pt [N]	92112.16809	104190
Tt [K]	1285.719328	1285.824
u [m/s]	388.3527888	388.46228
M	0.556816993	0.55696
thrust [N]	1.352740673	1.775638

1.3 question 3

q3	numerical q = 1/2*pi*ui^2	numerical q = $1/2*p*u^2$	analytical
P [N]	66690.08846	56727.02624	56375.659
T [K]	285.0920682	283.1956849	283.1117
Pt [N]	71055.6416	61868.76996	61549.488
Tt [K]	290.3039376	290.3038291	290.304
u [m/s]	102.3261729	119.5000494	120.2047
M	0.302335537	0.354258111	0.3546
thrust [N]	-3177.491386	-4030.554068	-4060.143

Column 2 uses the dynamic pressure at the inlet and column 1 uses the local dynamic pressure. When the dynamic pressure is set to the inlet dynamic pressure, the results differ from the analytical solution.

1.4 question 4

q4	numerical
P [N]	71044.2156
T [K]	1189.44049
Pt [N]	89209.40268
Tt [K]	1269.388887
u [m/s]	400.7696721
M	0.579720321
thrust [N]	-252.8594539
Qdot _{conv} [J/s]	8196672.491

1.5 question 5

q5	numerical eta = 0.9	numerical eta = 1	analytical
P [N]	11446897.46	19420600.42	19522651.36
T [K]	1288.752531	1294.635272	1294.78848
Pt [N]	11731012.58	19588009.41	19688418.31
Tt [K]	1297.811845	1297.814071	1297.92026
u [m/s]	134.9079724	79.91374038	79.319467
M	0.187476952	0.110800769	0.1099703
thrust [N]	46367.59476	85087.27487	86717.77616

1.6 question 6

q6	numerical eta = 1.07	numerical eta =1	analytical
P [N]	12066.95027	17146.9898	17007
T [K]	163.6311913	173.2803479	172.957
Pt [N]	18656.63837	21693.93375	21658.897
Tt [K]	185.324776	185.3254851	185.328
u [m/s]	208.7640095	157.5463435	157.644
M	0.814174726	0.589543997	0.598
thrust [N]	-5342.672315	-3783.766978	-3802.796

1.7 question 7

_	
q7	numerical
P [N]	8181.861346
T[K]	1187.907233
Pt [N]	180270.2974
Tt [K]	2874.202753
u [m/s]	1840.588954
M	2.664161708
thrust [N]	-354.3399952
Qdot _{conv}	-17579167.38

2.0 Methodology

First off, the problem is to solve a non-linear set of differential equations. The method that will be used to solve the non-linear set is a Newton-Raphson method for multivariable systems.

$$F\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}\right) = \{f\} = \begin{bmatrix} f_1(x_1, x_2, x_3, x_4) = 0 \\ f_2(x_1, x_2, x_3, x_4) = 0 \\ f_3(x_1, x_2, x_3, x_4) = 0 \\ f_4(x_1, x_2, x_3, x_4) = 0 \end{bmatrix}$$

In this case or functions are the differential equations for continuity, momentum, energy, and the equation of state.

$$f_1 = \frac{d\rho}{\rho} + \frac{du}{u} + \frac{dA}{A} = 0$$

$$f_2 = \frac{dP}{\rho} + udu + \frac{\tau_w cdx}{\rho A} - \eta \delta w = 0$$

$$f_3 = C_p dT + udu - \delta q - \delta w = 0$$

$$f_4 = \frac{dP}{P} - \frac{d\rho}{\rho} + \frac{dA}{A} = 0$$

The Jacobian is needed for further calculation and is denoted [J].

$$[J] = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \frac{\partial f_1}{\partial x_3} & \frac{\partial f_1}{\partial x_4} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \frac{\partial f_2}{\partial x_3} & \frac{\partial f_2}{\partial x_4} \\ \frac{\partial f_3}{\partial x_1} & \frac{\partial f_3}{\partial x_2} & \frac{\partial f_3}{\partial x_3} & \frac{\partial f_3}{\partial x_4} \\ \frac{\partial f_4}{\partial x_1} & \frac{\partial f_4}{\partial x_2} & \frac{\partial f_4}{\partial x_3} & \frac{\partial f_4}{\partial x_4} \end{bmatrix}$$
$$[J]^k \{ \Delta x \}^k = -\{ f \}^k \quad (1)$$

At the first iteration $\{x\}$ is the values at the inlet. To get the solution vector for equation 1, use an algorithm for solving linear equations. It was chosen that a Gauss elimination algorithm ought to be used. Alternatively, the built-in function in MATLAB may be used instead (linsolve uses LU factorization algorithm).

After solving equation 1, we can get the next value of $\{x\}$.

$$\{\Delta x\}^{k+1} = \{\Delta x\}^k + \{\Delta x\}^k$$
 (2)

The exit criteria are the L2 norm of the current iteration of $\{f\}$ scaled with the L2 norm of $\{f\}$ at the original guess/inlet conditions. To exit this must be less than a tolerance value (ϵ) . Epsilon was chosen as 10^-5. By decreasing epsilon more accurate results are found at the expense of computation time.

$$\frac{\|\{f\}^k\|}{\|\{f\}^0\|} < \epsilon$$

The amount that the steps are preformed are dependent on the step size used. Since a step size of 10000 was used, the number of times the Newton-Raphson algorithm is 10000. For each step, the $\{x\}$ vector found at the end of the previous step is the initial guess of the next step.

3.0 Appendix

3.1 IM.m

```
% Iterative Methods class
% used to solve linear and non-linear systems iteratively
classdef IM
  methods (Static)
% Gauss-Seidel Method
%=================%
function [x,w] = gauSei(A,b,n,x,imax,es,lambda)
  for i = 1:n
     dum = A(i,i);
     for j = 1:n
        A(i,j) = A(i,j)/dum;
      end
     b(i) = b(i)/dum;
  end
   for i = 1:n
     sum = b(i);
     for j = 1:n
        if i~= j
           sum = sum - A(i,j) *x(j);
```

```
end
           x(i) = sum;
   end
   iter = 1;
   sen = 0;
   L2norm 0 = norm(b-A*x);
   while sen == 0
       sen = 1;
       for i = 1:n
          old = x(i);
           sum = b(i);
           for j = 1:n
              if i~= j
                  sum = sum - A(i,j)*x(j);
           end
           x(i) = lambda*sum + (1-lambda)*old;
           L2norm = norm(b-A*x);
           if sen == 1 && x(i) \sim= 0
              ea = abs(L2norm/L2norm 0)/1;
              if ea > es
                  sen = 0;
              end
           end
       end
       iter = iter + 1;
       if iter >= imax
          break
       end
   end
   w = [lambda iter];
%==================%
               % Newton-Raphson Method
%===================%
function [q] = newRap(f,q,p,kmax)
   % f is the 'A' matrix
   % q is the 'b' vector
   % p is the precision goal
   % kmax is the maximum allowable iterations
   syms x1 x2 x3 x4
   fp(x1, x2, x3, x4) = jacobian(f, [x1 x2 x3 x4]);
   b = transpose(double(f(q(1),q(2),q(3),q(4))));
   b 0 = b;
   k = 0;
    while (norm(b)/norm(b\ 0)) > 10^p \&\& k < kmax
       A = double(fp(q(1),q(2),q(3),q(4)));
       b = transpose(double(f(q(1),q(2),q(3),q(4))));
       del = gauss(A,-b); % gauss elimination algorithm
       a = a+del;
       k = k + 1;
    end
end
```

3.2 Gauss elimination algorithm

```
function [x] = gauss(a,b)
% gauss elimination
n = length(a);
k = 1;
p = k;
big = abs(a(k,k));
% pivoting portion
for ii=k+1:n
  dummy = abs(a(ii,k));
  if dummy > big
    big = dummy;
    p = ii ;
  end
end
if p \sim = k
  for jj = k:n
     dummy = a(p,jj);
     a(p,jj) = a(k,jj);
     a(k,jj) = dummy;
  end
  dummy = b(p);
  b(p) = b(k);
  b(k) = dummy;
end
% elimination step
for k=1:(n-1)
  for i=k+1:n
     factor = a(i,k)/a(k,k);
    for j=k+1:n
       a(i,j) = a(i,j) - factor*a(k,j);
    b(i) = b(i) - factor*b(k);
  end
end
8**********
% back substitution
x(n,1) = b(n)/a(n,n);
for i = n-1:-1:1
  sum = b(i);
  for j = i + 1:n
```

```
sum = sum - a(i,j)*x(j,1);
end
x(i,1) = sum/a(i,i);
end
end
```

3.3 main.m

```
clc
clear all
close all
format longg
syms x1 x2 x3 x4
% x1 is P; x2 is rho; x3 is T; x4 is u
p = -5.5;
R = 287;
gam = 1.4;
kmax = 1000;
rho = 1.225;
T = 288;
T0 = T;
P = 101325;
P0 = P;
rho0 = rho;
cp = 1004.5;
1 = 1;
M = .2;
M0 = M;
u = M*sqrt(gam*R*T);
u0 = u;
cf = 0.08;
Tw = 3000;
eta = 0;
w = 0;
h = 0;
A = .1*ones(1,100);
% for convective heat transfer set ht to 1 else set it to 0
ht = 1;
mdot = rho*u*A(1);
for i = 1: length(A) - 1
    D = sqrt(A(i)/pi*4);
    c = pi*D;
    f = e(x_1, x_2, x_3, x_4) ([(x_2-rho)/x_2+(x_4-u)/x_4+(A(i+1)-A(i))/A(i))/x_4+(A(i+1)-A(i))/A(i))
P)/x2+x4*(x4-u)+1/2*cf*rho0*u0^2*c*(1/length(A))/rho/A(i)-eta*w/length(A) ...
         cp*(x3-T)+x4*(x4-u)-ht*2*cp*cf*(Tw-T*(1+(gam-
1)/2*M^2) *1/length (A) /D- (h/length (A)) - (w/length (A)) (x3-T)/x3+(x2-rho)/x2-
(x1-P)/x1);
    q = transpose([P,rho,T,u]);
    [q] = IM.newRap(f,q,p,kmax);
    P = q(1)
```

```
rho = q(2)
    T = q(3)
    u = q(4)
    M = u/sqrt(gam*R*T)
end
Tt2 = T*(1+(gam-1)/2*M^2);
Pt2 = P*(1+(gam-1)/2*M^2)^(gam/(gam-1));
thrust = P/R/T*u*A(end)*(u-u0)+P*A(end)-P0*A(1);
Т
Pt2
Tt2
u
Μ
thrust
if ht ==1
    Qdot = mdot*(cp*(Tt2-T0*(1+(gam-1)/2*M0^2))-w)
end
```

3.4 work for q1-q7

Monday, April 5, 2021 11:22 PM

Monday, April 5, 2021 11:22 PM

$$\frac{dP}{P} + \frac{dV}{u} + \frac{dA}{A} = 0$$

$$\frac{dP}{P} + u du = -Tw c dA + 728 w$$

$$\frac{dP}{P} + u du = 64 + 8 w$$

$$\frac{dP}{P} + \frac{dP}{P} +$$

$$\frac{dP}{di} \Rightarrow \frac{di-fin}{di} + \frac{ui-ui-u}{ui} + \frac{Ni-Ai-u}{Ai} = 0$$

$$\frac{dP}{di} \Rightarrow \frac{di-fin}{di} + \frac{ui(ui-ui-i)}{di} = \frac{-Ewc(Ni-Ni-i)}{di} + \frac{Niw}{di}$$

$$C_{P}(ii-(i-1)) = \frac{Ai-Ai-u}{di} + \frac{Ti-Ti-u}{Ai}$$

$$Pi = \frac{Pi-Ai-u}{Pi} = \frac{-(Ai-Ai-u)}{Ai}$$

$$Pi = \frac{Pi}{Ti}$$

$$T = \frac{Ai}{A} + Tk$$

$$Quess = Seidel$$

Solve D with gauss-Scidel

$$\frac{A_1}{A^{+}} \stackrel{\cdot}{\cdot} \stackrel{A_2}{\longrightarrow} \frac{A_1}{A^{+}} \stackrel{A_1}{\longrightarrow} \frac{A_1}{A^{+}}$$

$$\frac{df}{d} + \frac{du}{u} + \frac{dA}{A} = 0$$

Monday, April 12, 2021 3:05 PM

$$\frac{df}{f} + \frac{du}{u} + \frac{dA}{A} = 0$$

$$\frac{df}{f} + udu = 0$$

$$C_p dT + udu = 0$$

$$\frac{dP}{P} = \frac{dS}{S} + \frac{dT}{T} \qquad \frac{(dM_a^2)}{dM_i^2} \frac{Ae}{A_i} = > Me$$

$$T_{+;}^{i} = \left(1 + \frac{T_{-1}}{2} M_{1}^{2}\right) T_{+;}^{i} = 316.224 \text{ k}$$

$$P_{+;}^{i} = \left(1 + \frac{T_{-1}}{2} M_{1}^{2}\right) P_{i}^{i} = 140548.043 \text{ pa}$$

$$P_{+;}^{i} = \left(1 + \frac{T_{-1}}{2} M_{1}^{2}\right) P_{i}^{i} = 140548.043 \text{ pa}$$

$$\begin{cases}
\hat{R}_{z} = i \\
\hat{R}_{z} = i
\end{cases}$$

$$\begin{cases}
\hat{R}_{z} = i \\
\hat{R}_{z} = i
\end{cases}$$

$$\begin{cases}
\hat{R}_{z} = i \\
\hat{R}_{z} = i
\end{cases}$$

$$\begin{cases}
\hat{R}_{z} = i \\
\hat{R}_{z} = i
\end{cases}$$

$$\begin{cases}
\hat{R}_{z} = i \\
\hat{R}_{z} = i
\end{cases}$$

$$\begin{cases}
\hat{R}_{z} = i \\
\hat{R}_{z} = i
\end{cases}$$

$$\begin{cases}
\hat{R}_{z} = i \\
\hat{R}_{z} = i
\end{cases}$$

$$\begin{cases}
\hat{R}_{z} = i \\
\hat{R}_{z} = i
\end{cases}$$

$$\begin{cases}
\hat{R}_{z} = i \\
\hat{R}_{z} = i
\end{cases}$$

$$\begin{cases}
\hat{R}_{z} = i \\
\hat{R}_{z} = i
\end{cases}$$

$$\begin{cases}
\hat{R}_{z} = i \\
\hat{R}_{z} = i
\end{cases}$$

$$\begin{cases}
\hat{R}_{z} = i \\
\hat{R}_{z} = i
\end{cases}$$

$$\begin{cases}
\hat{R}_{z} = i \\
\hat{R}_{z} = i
\end{cases}$$

$$\begin{cases}
\hat{R}_{z} = i \\
\hat{R}_{z} = i
\end{cases}$$

$$\begin{cases}
\hat{R}_{z} = i \\
\hat{R}_{z} = i
\end{cases}$$

$$\begin{cases}
\hat{R}_{z} = i \\
\hat{R}_{z} = i
\end{cases}$$

$$\begin{cases}
\hat{R}_{z} = i \\
\hat{R}_{z} = i
\end{cases}$$

$$\begin{cases}
\hat{R}_{z} = i \\
\hat{R}_{z} = i
\end{cases}$$

$$\begin{cases}
\hat{R}_{z} = i \\
\hat{R}_{z} = i
\end{cases}$$

$$\begin{cases}
\hat{R}_{z} = i \\
\hat{R}_{z} = i
\end{cases}$$

$$\begin{cases}
\hat{R}_{z} = i \\
\hat{R}_{z} = i
\end{cases}$$

$$\begin{cases}
\hat{R}_{z} = i \\
\hat{R}_{z} = i
\end{cases}$$

$$\begin{cases}
\hat{R}_{z} = i \\
\hat{R}_{z} = i
\end{cases}$$

$$\begin{cases}
\hat{R}_{z} = i \\
\hat{R}_{z} = i
\end{cases}$$

$$\begin{cases}
\hat{R}_{z} = i \\
\hat{R}_{z} = i
\end{cases}$$

$$\begin{cases}
\hat{R}_{z} = i \\
\hat{R}_{z} = i
\end{cases}$$

$$\begin{cases}
\hat{R}_{z} = i \\
\hat{R}_{z} = i
\end{cases}$$

$$\begin{cases}
\hat{R}_{z} = i \\
\hat{R}_{z} = i
\end{cases}$$

$$\begin{cases}
\hat{R}_{z} = i \\
\hat{R}_{z} = i
\end{cases}$$

$$\begin{cases}
\hat{R}_{z} = i \\
\hat{R}_{z} = i
\end{cases}$$

$$\begin{cases}
\hat{R}_{z} = i \\
\hat{R}_{z} = i
\end{cases}$$

$$\begin{cases}
\hat{R}_{z} = i \\
\hat{R}_{z} = i
\end{cases}$$

$$\begin{cases}
\hat{R}_{z} = i \\
\hat{R}_{z} = i
\end{cases}$$

$$\begin{cases}
\hat{R}_{z} = i \\
\hat{R}_{z} = i
\end{cases}$$

$$\begin{cases}
\hat{R}_{z} = i \\
\hat{R}_{z} = i
\end{cases}$$

$$\begin{cases}
\hat{R}$$

New Section 1 Page

$$\frac{df}{f} + udu = -\frac{2u \cdot k}{g \cdot A} + \frac{2u}{g \cdot A}$$

$$C_{p} dT + udu = f_{q} + \xi_{p}$$

$$C_{p} dT + udu = f_{q} + udu = f_{q} + \xi_{p}$$

$$C_{p} dT + udu = f_{q} + udu = f_{q} + \xi_{p}$$

$$C_{p} dT + udu = f_{q} + ud$$

5-1.775638 N Hwrust

$$\frac{df}{f} + \frac{du}{u} + \frac{dA}{A} = 0$$

$$\frac{df}{f} + udu = -\frac{2w}{f} \cdot \frac{e}{dx} + \frac{2w}{f} \cdot \frac{e}{dx}$$

$$C_{p} dT + udu = f_{f} \cdot \frac{e}{f} \cdot \frac{dx}{dx}$$

$$\frac{dP}{P} = \frac{df}{f} \cdot \frac{dT}{T}$$

$$f_{v}(M_{v}^{2}) = \frac{Y+1}{2} \ln \left[\frac{1+\frac{Y+1}{2} M_{v}^{2}}{M_{v}^{2}} \right] \cdot \frac{1}{M_{v}^{2}} = -2[.128]$$

$$8 C_{f} \int_{D} L + f_{v} = f_{v} \cdot \frac{1}{2} \int_{A} \frac{1}{M_{v}^{2}} dx = \frac{1}{2} \int_{A$$

$$T_{1} = \frac{T_{+2}}{(1+\frac{\gamma-l}{2}M_{*}^{2})} = \frac{120.304}{1+.2\cdot.3564^{2}} = 283.117k$$

thrust = - [m (42-41) + (P2-P1) 12] · [8.3345 (/20.2047 -68.0348) * (56375.659-101325).0.1) =4060.134 N

New Section 1 Page 8

Q4

Tuesday, April 13, 2021 4:06 PM

$$\frac{df}{f} + \frac{du}{u} + \frac{dA}{A} = 0$$

$$\frac{df}{f} + udu = -\frac{2w}{f} + \frac{dx}{A} + 2f^{2} + 2f^{2}$$

$$\frac{df}{f} + udu = f_{f} + 2w$$

$$\frac{df}{f} = \frac{df}{f} + \frac{df}{f} = \frac{df}{f} + \frac{df}{f}$$

$$\frac{df}{f} + \frac{du}{u} + \frac{dA}{A} = 0$$

$$\frac{df}{f} + udu = -\frac{2w}{f} = dx$$

$$C_{p} dT + udu = fg = 2c_{p}C_{f} (Tw - T_{+}) \frac{dx}{dx}$$

$$\frac{df}{f} = df + dT$$

No work interaction or Area variation

New Section 1 Page 9

Tuesday, April 13, 2021 4:04 PM

$$\frac{df}{f} + \frac{du}{u} + \frac{dA}{A} = 0$$

$$\frac{df}{f} + udu = \chi \delta w , \chi = 1$$

$$\frac{T_{\tau \nu}}{\tau_{i,i}} = 1 + \frac{W_{1 \to 2}}{C_{p} T_{+i}} \cdot T_{+1} = T_{1} \left(1 + \frac{\gamma - 1}{L} M_{1}^{2} \right) : \left(1 + .2 \cdot .5^{2} \right) \cdot 288 = 302.4 \, \text{k}$$

$$\frac{T_{+2}}{T_{T_1}} = 1 + \frac{10e4}{1004.5(302.4)} = 4.2921 \implies T_{\tau_2} = 1297.92026 \text{ K}$$

$$P_{2} = \frac{P_{+2}}{(1 + \frac{Y-1}{2} M_{2})} r / r - \frac{1}{2} 19522651.36 pa}$$

$$T_{1} = \frac{1}{1 + r} = \frac{1294,78848 \text{ K}}{(1 + \frac{r^{2} - 1}{4} M_{2}^{2})}$$

-(8.334(79.319467 -170.87)+ 19640903.66 (.005)-101325*.1)=-86717.77616 N

$$\frac{df}{f} + udu = -\frac{2u}{dA} + \frac{dA}{A} = 0$$

$$\frac{df}{f} + udu = -\frac{2u}{dA} + \frac{dA}{A} = 0$$

$$\frac{df}{f} + udu = -\frac{2u}{dA} + \frac{dA}{A} = 0$$

$$\frac{df}{f} + udu = -\frac{2u}{dA} + \frac{dA}{A} = 0$$

$$\frac{df}{f} = \frac{df}{f} + \frac{dT}{T}$$

$$\frac{df}{f} = \frac{df}{f} + \frac{dT}{f} + \frac{dT}$$

mcp (+, -+,) =

=> in(p (T+=-T+1)

4:06 PM

$$\frac{df}{f} + \frac{du}{u} + \frac{dA}{A} = 0$$

$$\frac{df}{f} + udu = -\frac{2w}{f} + \frac{dx}{A} + \frac{2w}{f} + \frac{dx}{A}$$

$$C_{p}dT + udu = 2c_{p}C_{f} (T_{w} - T_{+}) \frac{dx}{d} + \delta u$$

$$\frac{df}{f} = \frac{df}{f} + \frac{df}{f}$$

Work interaction with area variation with irreversibility with convective heat transfer, i.e., all the terms

$$C_{p}dT_{+} = q + w$$

$$q = C_{p}dT_{+} - w$$

$$\dot{Q} = [C_{p}dT_{+} - w] \dot{M}$$