CoinIn 的板子

目录

CoinIn 的板子	1
基础算法	4
二分	4
mid=I+r>>1	4
mid=I+r+1>>1	4
三分	5
二维前缀和	5
三维前缀和	5
常用公式	6
平方和公式:	6
海伦公式:	7
数据结构	7
单调队列:	7
主席树	8
珂朵莉树	10
启发式合并	14
序列启发式合并	14
树上启发式合并(DSU on tree)	16
可持久化并查集	18
莫队	21
数学知识	23
复数的相关性质	23
FFT	23
欧拉函数:	25
O(logn)(单一欧拉函数):	25
O (nlogn) :	26
O(n)(线筛的思想):	26
逆元:	27
矩阵:	27
大指数欧拉降幂:	29
组合数:	31
卡特兰数:	31

线筛	32
字符串板子	33
马拉车算法	33
字典树板子	34
KMP 算法	35
KMP 循环节	36
完全循环	36
不完全循环	37
KMP 自动机	37
AC 自动机	38
Hash(单模)	40
Hash(双模)	41
图论	42
加边操作	42
LCA(vector)	42
LCA(链式)	43
Tarjan	44
割边判定:	45
割点判定:	46
无向图的双连通分量	48
e-DCC 的求法	48
e-DCC 的缩点	49
v-DCC 的求法	50
v-DCC 的缩点	52
有向图连通性	53
强连通分量判定法则	54
缩点	56
网络流	57
EK 算法 (nm2)	57
Dinic 算法 (n2m)	59
上下界可行流:	62
多源汇	65
关键边	65

	最大流的判定用法	.66
	最大流最小割	.67
	费用流	.68
囟]牙利算法(n2m)	.70
计算	I几何	.72
计算	I几何(nowcoder)	.76
动态	5规划	.98
数	拉位 dp	.98

基础算法

二分

mid=l+r>>1

```
while(l<r)
{
    int mid=l+r>>1;
    if(check(mid)) r=mid;
    else l=mid+1;
}
```

mid=I+r+1>>1

```
while(l<r)
{
    int mid=l+r+1>>1;
    if(check(mid)) l=mid;
    else r=mid-1;
}
```

三分

```
while(r-l>eps)
{
         double lmid=(l+l+r)/3.0;
         double rmid=(l+r+r)/3.0;
         if(f(lmid) < f(rmid)) l=lmid;
         else r=rmid;
}</pre>
```

二维前缀和

```
// 法一: 容斥
for(int i=1;i<=n;i++)
    for(int j=1;j<=n;j++)
        a[i][j]=a[i-1][j]+a[i][j-1]-a[i-1][j-1];

// 法二: 模拟
for(int i = 1; i <= n; i++)
    for(int j = 1; j <= n; j++)
        a[i][j] += a[i-1][j];
for(int i = 1; i <= n; i++)
    for(int j = 1; j <= n; j++)
    a[i][j] += a[i][j-1];
```

三维前缀和

```
// 法一: 容斥

for (int i = 1; i <= n; i++) {

    for (int j = 1; j <= n; j++) {

        for (int k = 1; k <= n; k++) {

            a[i][j][k] += a[i][j][k-1] + a[i][j-1][k] + a[i-1][j][k];

            a[i][j][k] -= a[i][j-1][k-1] + a[i-1][j-1][k] + a[i-1][j][k-1];

            a[i][j][k] += a[i-1][j-1][k-1];
```

```
}
// 法二:模拟
     for (int i = 1; i \le n; i++) {
       for (int j = 1; j \le n; j++) {
          for (int k = 1; k \le n; k++) {
            a[i][j][k] += a[i][j][k-1];
         }
       }
     }
     for (int i = 1; i \le n; i++) {
       for (int j = 1; j \le n; j++) {
          for (int k = 1; k \le n; k++) {
            a[i][j][k] += a[i][j-1][k];
         }
     for (int i = 1; i \le n; i++) {
       for (int j = 1; j \le n; j++) {
          for (int k = 1; k \le n; k++) {
            a[i][j][k] += a[i - 1][j][k];
       }
```

常用公式

平方和公式:

$$1^{2} + 2^{2} + 3^{2} + \cdots + n^{2} = \frac{n(n+1)(2n+1)}{6}$$

海伦公式:

海伦公式

$$S = \sqrt{p(p-a)(p-b)(p-c)}$$
 #\$ $p = \frac{1}{2}(a+b+c)$ #\$\lambda\$

$$S = \frac{1}{4} \sqrt{(a+b+c)(a+b-c)(a+c-b)(b+c-a)}$$

数据结构

单调队列:

```
int main()
{
    int n,m,h,t;
    cin>>n>>m;
    for(int i=1;i<=n;i++) scanf("%d",&(a[i]));
    h=1,t=0;
    for(int i=1;i<=n;i++)//求 m 区间内最小值 以 i 为末尾的 m 区间 维护增队列
    {
        while(h<=t&&a[q[t]]>=a[i]) t--;//删去队尾的无用元素
        q[++t]=i;
        while(i-q[h]+1>=m+1) h++;//队头删去在所需区间外的元素
        if(i>=m)
        ans1[i-m+1]=a[q[h]];
    }
    h=1,t=0;
```

```
for(int i=1;i<=n;i++)//求 m 区间内最大值 以 i 为末尾的 m 区间
{
    while(h<=t&&a[q[t]]<=a[i]) t--;//删去队尾的无用元素
    q[++t]=i;
    while(i-q[h]+1>=m+1) h++;//队头删去在所需区间外的元素
    if(i>=m)
        ans2[i-m+1]=a[q[h]];
}
for(int i=1;i+m-1<=n;i++) printf("%d ",ans1[i]);
cout<<endl;
for(int i=1;i+m-1<=n;i++) printf("%d ",ans2[i]);
cout<<endl;
return 0;
}
```

主席树

(区间第 k 小)

```
struct segment{
    ll lc,rc,sum;
    #define lc(x) tree[x].lc
    #define rc(x) tree[x].rc
    #define sum(x) tree[x].sum
}tree[N];ll idx,root[N];
// build 的作用为初始化,可不写
//ll build(ll l,ll r)
//{
// ll p=++idx;
// if(l==r)
// {
//
       sum(p)=0;
//
        return p;
// }
// ll mid=l+r>>1;
```

```
lc(p)=build(l,mid);rc(p)=build(mid+1,r);
// sum(p)=sum(lc(p))+sum(rc(p));
// return p;
//}
ll insert(ll now,ll l,ll r,ll x)
    ll p=++idx;
    tree[p]=tree[now];
     if(l==r)
          sum(p)++;
         return p;
     ll\ mid=l+r>>1;
     if(x \le mid) lc(p) = insert(lc(now), l, mid, x);
     else rc(p)=insert(rc(now),mid+1,r,x);
     sum(p)=sum(lc(p))+sum(rc(p));
     return p;
//rq,lq,l,r,k
ll ask(ll p,ll q,ll l,ll r,ll k)
     if(l==r) return l;
     ll\ mid=l+r>>1;
     ll\ lcnt=sum(lc(p))-sum(lc(q));
     if(lcnt>=k) return ask(lc(p),lc(q),l,mid,k);
     else return ask(rc(p),rc(q),mid+1,r,k-lcnt);
int main()
     IOS:
  idx=0;
     ll n,q;
     cin>>n>>q;
     vector < ll > a(n+1), v;
     v.push_back(0);
     for(int i=1;i \le n;i++) cin >> a[i],v.push_back(a[i]);
     sort(v.begin()+1,v.end());
```

珂朵莉树

(模板题 CF 896C)

```
#include<bits/stdc++.h>
#define debug cout<<"YES_!\n"
#define IOS ios::sync_with_stdio(false)
#define eps 1e-6

using namespace std;
typedef long long ll;
const ll N = 10010,M=200010;
const int inf=0x3f3f3f3f;
const ll mod=1e9+7;

struct Block
{
int l; //区间左端点(包括)
int r; //区间右端点(不包括)
mutable int v; //区间元素
```

```
// 自定义比较函数, 关键字为区间左端点。
bool operator<(const Block &rhs) const
 return l < rhs.l;
};
set<Block> tree;
typedef set<Block>::iterator iter;
void init(int l, int r, int v)
tree.insert({l, r, v});
// 分裂区块,返回以 x 为左端点的区块的迭代器
// 分裂区块,返回以 x 为左端点的区块的迭代器
iter split(int x)
// 寻找左端点第一个大于等于 x 区块
iter it = tree.lower_bound(\{x,0,0\});
// 如果存在区块正好是左端点,那么就不用分裂,直接返回迭代器即可
if (it != tree.end() && it->l == x)
 return it;
}
// 否则就要退回一个区块
it--;
Block o = *it;
// 删除原来的区块, 插入新的区块即可
tree.erase(it);
tree.insert({o.l, x - 1, o.v});
return tree.insert({x, o.r, o.v}).first;
```

```
// 将区间[l,r]内的元素全部赋值为 v
void assign(int l, int r, int v)
// 切分区间
 iter itr = split(r + 1);
 iter itl = split(l);
 // 删除区间内的所有小区块
 tree.erase(itl, itr);
//插入目标区块
 tree.insert(\{l, r, v\});
// 将区间[l,r]操作
//模板
//void proc(ll l, ll r)
//{
// // 切分区间
// iter itr = split(r + 1);
// iter itl = split(l);
//
// for (iter i = itl; i != itr; i++)
// {
// // TODO 遍历区块
// }
//
// // 删除区间内的所有小区块
// tree.erase(itl, itr);
//
// // 插入目标区块
// tree.insert(Block(l, r, v));
//}
//例子
```

```
//void add(ll l, ll r, int v)
//{
// // 切分区间
// iter itr = split(r + 1);
// iter itl = split(l);
// // 挨个加
// for (iter i = itl; i != itr; i++)
// {
// i->v += v;
// }
//}
//区间块的第 k 大
//int kth(ll l, ll r, int k)
//{
// // 切分区间
// iter itr = split(r + 1);
// iter itl = split(l);
// // 挨个加
// priority_queue<int> pq;
// for (iter i = itl; i != itr; i++)
// {
// pq.push(i->v);
// }
//
// for (int i = 0; i < k - 1; i++)
// {
// pq.pop();
// }
// return pq.top();
//}
signed main()
     IOS;
     return 0;
```

启发式合并

序列启发式合并

思想: 把小序列合并到大序列

模板题: acwing2154: 求序列有多少个颜色段, 可修改

```
#include<bits/stdc++.h>
#define debug cout<<"YES_!\n"
#define IOS ios::sync_with_stdio(false)
#define eps 1e-6
using namespace std;
typedef long long ll;
const ll N = 1000010, M=400010;
const ll inf=0x3f3f3f3f3f3f3f3f3f;
const ll mod=1e9+7;
int ver[N],head[N],Nxt[N],idx;
int Sz[N],a[N];
int ans;
int n,m;
void add(int x,int y)
    ver[++idx]=y;Nxt[idx]=head[x];head[x]=idx;
    Sz[x]++;
}
void merge(int &x,int &y)
{
    if(x==y) return;
    if(Sz[x]>Sz[y]) swap(x,y);
    for(int i=head[x];i;i=Nxt[i])
    {
         int j=ver[i];
         ans-=(a[j-1]==y)+(a[j+1]==y);
    for(int i=head[x];i;i=Nxt[i])
    {
         int j=ver[i];
         a[j]=y;
         if(!Nxt[i])
              Nxt[i]=head[y],
              head[y]=head[x];
              break;
         }
    }
    hand[v]-0.
```

树上启发式合并 (DSU on tree)

思想: 只保留重树, 清空轻树。

模板题: acwing3189: 求子树颜色最多的颜色, 颜色数值和。

```
#include <bits/stdc++.h>
#define IOS ios::sync_with_stdio(false)
using namespace std;
typedef long long ll;
const ll N = 200010,M=400010;
const ll mod=1e9+7;
int son[N],sz[N];
int head[N],Nxt[N],ver[N],tot;
ll color[N],n,ans[N],cnt[N];
ll sum, mx;
void add(int x,int y)
    ver[++tot]=y;Nxt[tot]=head[x];head[x]=tot;
//找重儿子
void dfs_son(int x,int fa)
    sz[x]=1;
    for(int i=head[x];i;i=Nxt[i])
         int y=ver[i];
        if(y==fa) continue;
        dfs_son(y,x);
         sz[x] += sz[y];
        if(sz[y]>sz[son[x]]) son[x]=y;
```

```
//更新数据
void update(int x,int fa,int val,int pson)
    int c=color[x];
    cnt[c]+=val;
    if(cnt[c]>mx)
        sum=c;
        mx=cnt[c];
    else if(cnt[c]==mx)
        sum+=c;
    for(int i=head[x];i;i=Nxt[i])
        int y=ver[i];
        if(y==fa||y==pson) continue;
        update(y,x,val,pson);//pson 不变,因为只用保留最初的子树的重树
void dfs(int x,int fa,int keep)
    //先遍历轻树
    for(int i=head[x];i;i=Nxt[i])
        int y=ver[i];
        if(y==fa||y==son[x]) continue;
        dfs(y,x,0);
    }
    if(son[x]) dfs(son[x],x,1);//有重树即遍历
    update(x,fa,1,son[x]);
    ans[x]=sum;
    if(!keep) update(x,fa,-1,0),sum=mx=0;//如果该树是轻树,则清空
}
```

```
signed main()
{
    scanf("%d",&n);
    for(int i=1;i<=n;i++) scanf("%d",&color[i]);
    for(int i=1;i<n;i++)
    {
        int x,y;scanf("%d %d",&x,&y);
        add(x,y);add(y,x);
    }
    dfs_son(1,-1);
    dfs(1,-1,1);
    for(int i=1;i<=n;i++) printf("%lld ",ans[i]);
    puts("");
}</pre>
```

可持久化并查集

```
#include <bits/stdc++.h>

using namespace std;
typedef long long ll;
const int N=200010;

int n,idx;
struct Segment{
    int root[N],st[N];//根和初始值
    int lc[N*40],rc[N*40],val[N*40];
    int idx;
    int build(int l,int r)
    {
        int p=++idx;
        if(l==r)
        {
            val[p]=st[l];
            return p;
        }
```

```
int mid=l+r>>1;
         lc[p]=build(l,mid);
         rc[p]=build(mid+1,r);
          return p;
     int change(int now,int l,int r,int pos,int x)
     {
         int p=++idx;
         lc[p]=lc[now];rc[p]=rc[now];
          if(l==r)
              val[p]=x;
              return p;
         int mid=l+r>>1;
         if(pos <= mid) \ lc[p] = change(lc[now], l, mid, pos, x);
          else rc[p]=change(rc[now],mid+1,r,pos,x);
          return p;
     int ask(int now,int l,int r,int pos)
          if(l==r)
              return val[now];
          int mid=l+r>>1;
          if(pos<=mid) return ask(lc[now],l,mid,pos);</pre>
          else return ask(rc[now],mid+1,r,pos);
    }
}fa,rk;
int findx(int ti,int x)
     int y=fa.ask(fa.root[ti],1,n,x);
     if(y==x) return x;
     return findx(ti,y);
}
```

```
void merge(int ti,int x,int y)
{
    x=findx(ti,x);
    y=findx(ti,y);
    if(x==y) return;
     int rx=rk.ask(rk.root[ti],1,n,x);
     int ry=rk.ask(rk.root[ti],1,n,y);
     if(rx \le ry)
          fa.root[ti]=fa.change(fa.root[ti],1,n,x,y);
         //以下二选一
         //1. rk 存的 size
         //rk.root[ti]=rk.change(rk.root[ti],1,n,y,ry+rx);
         //2. rk 存的 height
         //if(rx==ry) rk.root[ti]=rk.change(rk.root[ti],1,n,y,ry+1);
     }
     else
     {
         fa.root[ti]=fa.change(fa.root[ti],1,n,y,x);
          //1. rk 存的 size
          //rk.root[ti]=rk.change(rk.root[ti],1,n,x,ry+rx);
}
signed main()
     int m:
     scanf("%d %d",&n,&m);
     for(int i=1;i \le n;i++) fa.st[i]=i;
     fa.root[0] = fa.build(1,n);
     for(int i=1;i \le n;i++) rk.st[i]=1;
     rk.root[0]=rk.build(1,n);
     int op,x,y;
     for(int i=1;i<=m;i++)
```

```
scanf("%d",&op);
         fa.root[i]=fa.root[i-1];
         rk.root[i]=rk.root[i-1];
         if(op==1)
              scanf("%d %d",&x,&y);
              merge(i,x,y);
         else if(op==2)
              scanf("%d",&x);
              fa.root[i]=fa.root[x];
              rk.root[i] = rk.root[x];\\
         }
         else
              scanf("%d %d",&x,&y);
              if(findx(i,x)==findx(i,y)) puts("1");
              else puts("0");
}
```

莫队

```
struct node
{
    int id, l, r;
}q[M];
int a[N], n, m, len, res;
int ans[M], cnt[maxn];
int get(int x)
{
    return (x - 1) / len;
}
//玄学优化 奇偶分开搞
```

```
bool cmp(node x, node y)
 int l = get(x.l), r = get(y.l);
  if (l!=r) return l < r;
  if (1 & 1) return x.r < y.r;
  else return x.r > y.r;
void add(int x)
  if (!cnt[x]) res ++;
  cnt[x] ++;
void del(int x)
  cnt[x] --;
  if (!cnt[x]) res --;
void work()
  cin >> n;
  len = sqrt(n);
  for (int i = 1; i \le n; i ++) cin >> a[i];
  cin >> m;
  for (int i = 0; i < m; i ++)
    int l, r; cin >> l >> r;
    q[i] = \{i, l, r\};
  sort(q, q + m, cmp);
  for (int k = 0, i = 0, j = 1; k < m; k ++ )
    int id = q[k].id, l = q[k].l, r = q[k].r;
    while (i < r) add(a[++i]);
    while (i > r) del(a[i --]);
    while (j < l) del(a[j ++]);
    while (j > l) add(a[--j]);
    ans[id] = res;
```

```
for (int i = 0; i < m; i ++ ) cout << ans[i] << "\n";
}</pre>
```

数学知识

复数的相关性质

设 a,b 为实数, $i^2=-1$; $i^2=-1$,形如 a+bi 的数叫负数,其中 i 被称为虚数单位,复数域是目前已知最大的域

在复平面中,xx 代表实数,yy 轴(除原点外的点)代表虚数,从原点(0,0)到(a,b)的向量表示复数 a+bi

模长: 从原点(0,0)到点(a,b)的距离,即 sqrt(a^2+b^2)

幅角: 假设以逆时针为正方向, 从 x 轴正半轴到已知向量的转角的有向角叫做幅角

加法:

因为在复平面中,复数可以被表示为向量,因此复数的加法与向量的加法相同,都满足平行四边形定则(就是上面那个)

乘法:

几何定义:复数相乘,模长相乘,幅角相加

代数定义:

(a+bi)*(c+di)=(ac-bd)+(bc+ad)i

FFT

```
const int N = 300010;
const double PI = acos(-1);
int n, m;
```

```
struct Complex
  double x, y;
  Complex operator+ (const Complex& t) const
    return \{x + t.x, y + t.y\};
  Complex operator- (const Complex& t) const
    return {x - t.x, y - t.y};
  Complex operator* (const Complex& t) const
    return \{x * t.x - y * t.y, x * t.y + y * t.x\};
a[N], b[N];
int rev[N], bit, tot;
void fft(Complex a[], int inv)
  for (int i = 0; i < tot; i ++)
    if (i < rev[i])
      swap(a[i], a[rev[i]]);
  for (int mid = 1; mid < tot; mid <<= 1)</pre>
    auto w1 = Complex({cos(PI / mid), inv * sin(PI / mid)});
    for (int i = 0; i < tot; i += mid * 2)
      auto wk = Complex(\{1, 0\});
      for (int j = 0; j < mid; j ++, wk = wk * w1)
         auto x = a[i + j], y = wk * a[i + j + mid];
         a[i + j] = x + y, a[i + j + mid] = x - y;
```

```
int main()
{
    scanf("%d%d", &n, &m);
    for (int i = 0; i <= n; i ++ ) scanf("%lf", &a[i]x);
    for (int i = 0; i <= m; i ++ ) scanf("%lf", &b[i]x);
    while ((1 << bit) < n + m + 1) bit ++;
    tot = 1 << bit;
    for (int i = 0; i < tot; i ++ )
        rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (bit - 1));
    fft(a, 1), fft(b, 1);
    for (int i = 0; i < tot; i ++ ) a[i] = a[i] * b[i];
    fft(a, -1);
    for (int i = 0; i <= n + m; i ++ )
        printf("%d", (int)(a[i]x / tot + 0.5));
    return 0;
}</pre>
```

欧拉函数:

O (logn) (单一欧拉函数):

```
int phi(int n)
{
    int ans=n;
    for(int i=2;i<=sqrt(n);i++)
    {
        if(n%i==0)
        {
            ans=ans/i*(i-1);
            while(n%i==0)n/=i;
        }
    }
    if(n>1) ans=ans/n*(n-1);
```

```
return ans;
}
```

O (nlogn):

```
int phi[N];
void euler(int n)
{
    for(int i=2;i<=n;i++) phi[i]=i;
    for(int i=2;i<=n;i++)
    {
        if(phi[i]==i)
            for(int j=i;j<=n;j+=i)
            phi[j]=phi[j]/i*(i-1);
    }
}</pre>
```

O (n) (线筛的思想):

```
{
    //i 有比 prime[j]更小的质因子,或者超出 n 的范围,停止循环
    if(prime[j]>v[i]||prime[j]>n/i) break;
    //prime[j]是合数 i*prime[j]的最小质因子
    v[i*prime[j]]=prime[j];
    phi[i*prime[j]]=phi[i]*(i%prime[j]?prime[j]-1:prime[j]);
}
}
```

逆元:

inv[x]=phi(mod)-1 欧拉函数 phi(x) 为 x 的 欧拉函数

矩阵:

一些递推式可以用矩阵 ksm 去处理

例: **斐波那契数列**

$$\begin{bmatrix} f(n) \\ f(n-1) \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} f(n-1) \\ f(n-2) \end{bmatrix}$$

$$\begin{bmatrix} f(n) \\ f(n-1) \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} f(n-1) \\ f(n-2) \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^2 \begin{bmatrix} f(n-2) \\ f(n-3) \end{bmatrix} = \dots = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^{n-2} \begin{bmatrix} f(2) \\ f(1) \end{bmatrix}$$

```
//矩阵
struct stu {
    int s[110][110];
} ma;
int n,m,p;
```

```
//n*m m*p
stu mul(stu a,stu b) {
     stu c;
     for(int i=1; i<=n; i++) {
          for(int j=1; j<=p; j++) {
               c.s[i][j]=0;
               for(int k=1; k \le m; k++) {
                    c.s[i][j] = c.s[i][j] + a.s[i][k] * b.s[k][j] \% mod;
                    c.s[i][j]\%=mod;
         }
     return c;
}
//n*n
stu~ksm(stu~a,int~k)~\{
     stu res;
  memset(res.s,0,sizeof res.s);
     for(int i=1;i \le n;i++) res.s[i][i]=1;
     while(k) {
         if(k&1) res=mul(res,a);
          a=mul(a,a);
         k>>=1;
     return res;
```

大指数欧拉降幂:

费马小定理:

```
当 a,p\in\mathbb{Z} 且 p 为质数,且 a\not\equiv 0\pmod p 时有: a^{p-1}\equiv 1\pmod p。

所以 a^b\equiv a^{b\bmod (p-1)}\pmod p。

欧拉定理:

当 a,m\in\mathbb{Z},且 \gcd(a,m)=1 时有: a^{\varphi(m)}\equiv 1\pmod m。

这里 \varphi(x) 是数论中的欧拉函数。

所以 a^b\equiv a^{b\bmod \varphi(m)}\pmod m。

扩展欧拉定理:

当 a,m\in\mathbb{Z} 时有: a^b\mod \varphi(m) (\bmod m)。

a^b\equiv a^{b\bmod \varphi(m)+\varphi(m)} a^b\equiv \varphi(m) a^b\equiv a^{b\bmod \varphi(m)} a^b\equiv a^{b\bmod \varphi(m)+\varphi(m)} a^b\equiv \varphi(m) a^b\equiv a^b\pmod p a^b
```

```
while(x)
    {
         if(x\&1) res=res*n\%mod;
         n=n*n%mod;
        x>>=1;
    return res%mod;
}
signed main()
    IOS;
    ll a, mod;
    string s;
    cin>>a>>mod>>s;
    ll elmod=phi(mod);
    ll sum=0;
    bool flag=false;
    for(ll i=0;i < s.size();i++)
        ll x=s[i]-'0';
         sum=sum*10+x;
         if(sum>=elmod)
             flag=true;
             sum%=elmod;
    if(flag) sum+=elmod;
    cout << ksm(a, sum, mod) << "\n";
}
```

组合数:

这题需要求组合数, 我总结了一下我知道的组合数取模的求法(P1313模板):

- 1. 使用杨辉三角 $C_n^0 = C_n^n = 1$, $C_n^i = C_{n-1}^i + C_{n-1}^{i-1}$ 代码见这里
- 2. **当**p**是质数时**可以得出a的逆元为 a^{p-2} , $C_n^0=1$, $C_n^i=C_n^{i-1}rac{k-i+1}{i}$ 代码见这里
- 3. **当**p**不是质数时**只能用上述方法,筛出质数并约分代码见这里

卡特兰数:

前几项: 1, 1, 2, 5, 14, 42, 132, 429, 1430

应用

- 出栈次序(依次入栈,有多少个出栈队列)
- n 对括号正确匹配数目
- 给定节点组成二叉搜索树
- 在圆上选择 2n 个点,将这些点成对连接起来使得所得到的 n 条线段不相交的方法数

求一个凸多边形区域划分成三角形区域的方法数

$$f(n) = \sum_{i=0}^{n-1} f(i) * f(n-i-1)$$

$$= \frac{C_{2n}^n}{n+1} = C_{2n}^n - C_{2n}^{n-1}$$

递推写法:

$$f(n)=f(n-1)(4(n-2)/(n+1)$$

线筛

```
int v[N],prime[N],m;
void iit(int n)
{
    m=0;
    v[1]=1;
    for(int i=2;i<=n;i++)
    {
        if(v[i]==0)
        {
            v[i]=i;
            prime[++m]=i;
        }
        for(int j=1;j<=m;j++)
        {
            if(prime[j]>v[i]||prime[j]>n/i) break;
            v[i*prime[j]]=prime[j];
        }
    }
}
/// for(int i=1;i<=100;i++) cout<<v[i]<<" ";
}</pre>
```

字符串板子

马拉车算法

```
string tmp;//转换后的字符串
int Len[N<<1];
//转换原始串
int INIT(string st)
   tmp.clear();
 int i,len=st.size();
 tmp.push_back('@');//字符串开头增加一个特殊字符,防止越界
 for(i=1;i<=2*len;i+=2)
   tmp.push_back('#');
   tmp.push_back(st[i/2]);
 tmp.push_back('#');
 tmp.push_back('$');//字符串结尾加一个字符,防止越界
 tmp.push_back(char(0));
 return 2*len+1;//返回转换字符串的长度
//Manacher 算法计算过程
int MANACHER(int len)
  int mx=0,ans=0,po=0;//mx 即为当前计算回文串最右边字符的最大值
  for(int i=1;i<=len;i++)</pre>
   if(mx>i)
   Len[i]=min(mx-i,Len[2*po-i]);//在 Len[j]和 mx-i 中取个小
   Len[i]=1;//如果 i>=mx, 要从头开始匹配
   while(tmp[i-Len[i]]==tmp[i+Len[i]])
```

```
Len[i]++;
if(Len[i]+i>mx)//若新计算的回文串右端点位置大于 mx, 要更新 po 和 mx 的值
{
    mx=Len[i]+i;
    po=i; //回文串的中心
}
    ans=max(ans,Len[i]);
}
//r=po+ls>>1; 回文边界, ls 为回文长度
// l=r-ls+1;
return ans-1;//返回 Len[i]中的最大值-1 即为原串的最长回文子串额长度
}
```

字典树板子

```
namespace Trie{
    int trie[N][26],idx;
    //N 个节点,每个节点后可有 26 个孩子,trie 记录的是 idx;
    void iit()
    {
        idx++; //取值的时候用的++idx, 清空要多清空一个
        memset(trie,0,26*idx*sizeof(int));
        idx=0;
    }
    void insert(string s)
    {
        int len=s.size(),now=0;
        for(int i=0,i<len;i++)
        {
        int k=s[i]-'a';
        if(trie[now][k]==0)
        {
            trie[now][k]=++idx;
        }
        now=trie[now][k];
```

KMP 算法

```
{
    if(j==-1||s1[i]==s2[j])i++,j++;
    else
    {
        j=Nxt[j];
    }
    if(j==s2.size())//完全匹配
    {
        j=0;//不重叠匹配计数 (二选一)
        j=Nxt[j];//重叠匹配计数 (二选一)
        ans++;
    }
}
```

KMP 循环节

完全循环

```
//完全循环 abcabc
void work(string &s)//求前缀中最长的循环节
{
    Get_Nxt(s);
    for(int i=1;i<s.size();i++)
    {
        int len=i+1;
        int mid=len%(len-Nxt[len]);
        if(mid==0&&Nxt[len]!=0)
        {
            int res=len/(len-Nxt[len]);
            cout<<len<<" "<<res<<"\n";
        }
     }
```

}

不完全循环

```
//不完全循环 abca->abcabc 需要补充 bc 才能构成完全循环
void work(string &s) //需要补充多少个才能变成完全循环
{
   Get Nxt(s);
   int n=s.size();
   int len=n;
   int mid=n-Nxt[len];
   if(mid!=n&&n%mid==0)
   {
      cout < < 0 < < "\n";
   }
   else
   {
      cout<<mid-Nxt[len]<<"\n";</pre>
   }
}
```

KMP 自动机

AC 自动机

```
cntword[now]++;
void Get_Fail()
                    //构建失配指针,类似 KMP
                     //Nxt[i]=j 意义: word[j]为 word[i]的最长后缀
    queue<int> q;
    for(int i=0;i<26;i++)
        if(trie[0][i])
            fail[trie[0][i]]=0;
            q.push(trie[0][i]);
    while(q.size())
        int now=q.front();
        q.pop();
        for(int i=0; i<26; i++)
            if(trie[now][i])
            {
                //有该子节点
                //该子节点的失配节点 设为 自己 失配节点 的 'a'+i 子节点
                fail[trie[now][i]] \texttt{=} trie[fail[now]][i];
                 q.push(trie[now][i]);
            }
            else
                //没有该子节点
                 //将该子节点 设为 自己 失配的节点 的 'a'+i 的子节点
                trie[now][i] \hbox{=} trie[fail[now]][i];
            }
```

```
| sint query(string s) //模板串

{
    int now=0,ans=0;
    for(int i=0;i<s.size();i++)
    {
        now=trie[now][s[i]-'a'];
        for(int j=now;j&&cntword[j]!=-1;j=fail[j])
        {
            ans+=cntword[j];
            cntword[j]=-1;
        }
    }
    return ans;
}
```

Hash(单模)

```
const ull P=131;
ull p[N],h[N];
ull get_hash(ll l,ll r)
{
    return h[r]-h[l-1]*p[r-l+1];
}

void iit(string s)
{
    p[0]=1;
    for(ll i=0;i<s.size();i++)
    {
        p[j+1]=p[i]*P;
        h[j+1]=h[j]*P+s[i]-'a'+1;
    }
}</pre>
```

Hash(双模)

```
map<array<ll, 2>,ll> mp;
struct Hash{
  int size, base[2] = { 20023,20011 };
  vector<array<ll, 2>> hash, pow_base;
  Hash(){}
  Hash(const string& s){
    size = s.size();
    hash.resize(size);
    pow_base.resize(size);
    pow_base[0][0] = pow_base[0][1] = 1;
    hash[0][0] = hash[0][1] = s[0];
    for(int i = 1; i < size; i++){
      hash[i][0] = (hash[i-1][0] * base[0] + s[i]) \% mod[0];
      hash[i][1] = (hash[i-1][1] * base[1] + s[i]) % mod[1];
      pow_base[i][0] = pow_base[i-1][0] * base[0] % mod[0];
      pow_base[i][1] = pow_base[i - 1][1] * base[1] % mod[1];
  }
  array<ll, 2> operator[](const array<int, 2>& range)const{
    if(range[0] == 0)return hash[range[1]];
    return { (hash[range[1]][0] - hash[range[0] - 1][0] * pow_base[range[1] - range[0] + 1][0] %
mod[0] + mod[0]) \% mod[0], (hash[range[1]][1] - hash[range[0] - 1][1] * pow_base[range[1] -
range[0] + 1][1] \% mod[1] + mod[1]) \% mod[1] ;
};
    string s;cin>>s;
    Hash h(s);
    array<ll, 2> u=h[{l-1, r-1}];//[l,r]的 hash 值
```

图论

加边操作

LCA(vector)

```
if(d[y]) continue;
                  d[y]=d[x]+1;
                  f[y][0]=x;
                  for(int i=1;i<20;i++)
                        f[y][i] \!=\! f[f[y][i \!-\! 1]][i \!-\! 1];
                  q.push(y);
int lca(int x,int y)
      if(d[x]>d[y]) swap(x,y);
      for(int i=19;i>=0;i--)
            if(d[f[y][i]) >= d[x]) y = f[y][i];
      if(x==y) return x;
      for(int i=19;i>=0;i--)
             \  \, \textbf{if}(f[x][i]! = \! f[y][i]) \,\, x \! = \! f[x][i], y \! = \! f[y][i]; \\
      return f[x][0];
}
```

LCA(链式)

```
int y=ver[i];
               if(d[y]) continue;
               d[y]=d[x]+1;
               dist[y]=dist[x]+edge[i];
               f[y][0]=x;
               for(int j=1; j<20; j++)
                    f[y][j]=f[f[y][j-1]][j-1];
               q.push(y);
         }
     }
int lca(int x,int y)
     if(d[x]>d[y]) swap(x,y);
     for(int i=t;i>=0;i--)
          if(d[f[y][i]) >= d[x]) y = f[y][i];
     if(x==y) return x;
     for(int i=19; i>=0; i--)
     {
          if(f[x][i]!=f[y][i]) x=f[x][i],y=f[y][i];
     }
     return f[x][0];
```

Tarjan

割点: 删去该点, 图分裂成两个子图

割边 (桥): 删去该边, 图分裂成两个子图

时间戳 (dfn): 在图被 dfs 的过程中, 点第一次被访问的顺序

搜索树:在无向连通图中任选一个节点出发进行深度优先遍历,每个点只访问一次,所有发生

递归的边(x,y)构成一棵树, 我们把他称之为"无向连通图的搜索树"

追溯值(low): low[x]为以 x 为 根 节点的 子树 和任意一个到达该子树路径为 1 的点的 dfn 的 最小值。

割边判定:

判定法则: 当且仅当搜索树上存在 x 的一个子节点 y, 满足 dfn[x]<low[y]

```
int dfn[N],low[N],num;
bool bridge[M];
void tarjan(int x,int in_edge)
    dfn[x]=low[x]=++num;
    for(int i=head[x];i;i=Next[i])
         int y=ver[i];
         if(!dfn[y])
         {
              tarjan(y,i);
              low[x] = min(low[x], low[y]);
              if(low[y]>dfn[x])
                   bridge[i]=bridge[i^1]=true;
         }
         else if(i!=(in_edge^1))
              low[x] = min(low[x], dfn[y]);
}
signed main()
    IOS;
    tot=1;
    cin>>n>>m;
    for(int i=1;i<=m;i++)
         int x,y;
         cin>>x>>y;
         add(x,y,1);add(y,x,1);
```

```
for(int i=1;i<=n;i++)
{
      if(!dfn[i]) tarjan(i,0);
}
for(int i=2;i<tot;i+=2)
{
      if(bridge[i])
      {
            cout<<ver[i^1]<<"\n";
      }
}</pre>
```

割点判定:

判定法则:

- 2.若 x 是搜索树的根节点,则 x 是割点当且仅当 x 搜索树上存在至少两个子节点 y1, y2 满足 dfn[x]<=low[y1] && dfn[x]<=low[y2]

```
flag++;
                     if(x! = root | |flag > 1)
                          cut[x]=true;
               }
          }
          else low[x]=min(low[x],dfn[y]);
}
signed main()
     IOS;
     tot=1;
     cin>>n>>m;
     for(int i=1;i \le m;i++)
          int \ x,y;
          cin>>x>>y;
          if(x==y) continue;
          add(x,y,1);add(y,x,1);
     for(int i=1;i<=n;i++)
          if(!dfn[i]) root=i,tarjan(i);
     for(int i=1;i \le n;i++)
          \quad \quad \text{if}(cut[i]) \\
               cout<<i<" ";
     cout << "\n";
```

无向图的双连通分量

点双连通图: 一张无向连通图不存在 割点

边双连通图:一张无向连通图不存在 桥

点双连通子图(v-DCC): 无向图的 极大 点双连通子图

边双连通子图(e-DCC): 无向图的 极大 边双连通子图

双连通分量(DCC): 点双连通子图 以及边双连通子图 二者统称为 双连通分量。

简单环:指的是不自交的环,也就是通常所画的环。

定理:

- 一张无向连通图是"点双连通图",当且仅当满足下列两个条件之一:
 - 1.图的顶点数量不超过2
 - 2.图中的任意两点都同时包含在至少一个简单环中。
- 一张无向连通图是"边双连通图",当且仅当任意一条边都包含在至少一个简单的环中。

e-DCC 的求法

删去所有桥,剩余的每个连通块即为一个 e-DCC

e-DCC 的缩点

```
{
    int x=ver[i^1],y=ver[i];
    if(c[x]==c[y]) continue;
    add_c(c[x],c[y]);
}
printf("缩点之后的森林,点数%d,边数%d(可能有重边)\n",dcc,tc/2);
for(int i=2;i<tc;i+=2)
{
    printf("%d %d\n",vc[i^1],vc[i]);
}
}
```

v-DCC 的求法

整个图被割点划分成若干个连通块,每个连通块就是一个 v-DCC 割点可能属于若干个 v-DCC

```
if(!dfn[y])
          {
              tarjan(y);
              low[x] = min(low[x], low[y]);
              if(low[y] >= dfn[x])
                   flag++;
                   if(x!=root||flag>1)
                        cut[x]=true;
                   cnt++;
                   int z;
                   do{
                        z=stack[top--];
                        dcc[cnt].push\_back(z);
                   }while(z!=y);
                   dcc[cnt].push_back(x);
              }
         }
         else low[x]=min(low[x],dfn[y]);
}
signed main()
    IOS;
     tot=1;
     cin>>n>>m;
     for(int i=1;i<=m;i++)</pre>
         int x,y;
         cin>>x>>y;
         if(x==y) continue;
         add(x,y,1);add(y,x,1);
     for(int i=1;i<=n;i++)
         if(!dfn[i]) root=i,tarjan(i);
     }
```

```
printf("割点有:");
for(int i=1;i<=n;i++)
{
        if(cut[i])
        {
            cout<<i<<"";
        }
}
cout<<"\n";
for(int i=1;i<=cnt;i++)
{
        printf("v-DCC #%d:",i)
        for(int j=0;j<dcc[i],size();j++)
        {
            printf(" %d",dcc[i][j]);
        }
        printf("\n");
}</pre>
```

v-DCC 的缩点

割点单独列出来,dcc 专门缩成一个点。

```
int new_id[N],c[N];
int hc[N],vc[M],nc[M],tc;

void add_c(int x,int y)
{
    vc[++tc]=y,nc[tc]=hc[x],hc[x]=tc;
}

signed main()
{
    IOS;
/*
    v-DCC 的求法
```

```
*/
    // 给每个割点一个新的编号 编号从 cnt+1 开始
    num=cnt;
    for(int i=1;i<=n;i++)
       if(cut[i]) new_id[i]=++num;
    //建新图,从每个 v-DCC 到它包含的所有割点连边
    tc=1;
    for(int i=1;i<=cnt;i++)</pre>
       for(int j=0; j < dcc[i].size(); j++)
           int x=dcc[i][j];
           if(cut[x])
               add_c(i,new_id[x]);
               add_c(new_id[x],i);
           else c[x]=i;//除割点外,其他店仅属于一个dcc
    printf("缩点之后的森林,点数%d,边数%d\n",num,tc/2);
    printf("编号 1~%d 的为原图的 v-DCC,编号 大于%d 的为原图割点\n",cnt,cnt);
    for(int i=2;i<tc;i+=2)
       printf("%d %d\n",vc[i^1],vc[i]);
```

有向图连通性

流图:存在 r,满足从 r 出发能够到达 V 中所有的点,则称 G 是一个"流图" 流图中存在四类边:

```
(x,y)=x ---->y
```

- 1. 树枝边: 指搜索树中的边, 即 x 是 y 的父节点
- 2. 前向边: 指搜索树中 x 是 y 的祖先节点

- 3. 后向边: 指搜索树中 y 是 x 的祖先节点
- 4. 横叉边:指除了以上三种情况之外的边,它一定满足 dfn[y]<dfn[x]

维护某个栈: 当访问到节点 x 时, 栈中保留以下两类节点:

- 1.搜索树上 x 的祖先节点, 记为集合 anc(x)
- 2.已经访问过, 并且存在一条路径到达 anc(x)的节点

追溯值: x 的追溯值 low[x]定义为满足以下条件的节点的最小时间戳(dfn):

- 1.该点在栈中
- 2.存在一条从 subtree(x)出发的有向边, 以该点为终点

追溯值的求法:

- 1.当节点 x 第一次被访问时,把 x 入栈,初始化 low[x]=dfn[x]
- 2.扫描从 x 出发的每条边(x,y):
- a. 若 y 没被访问过,则说明(x,y)是树枝边,递归访问 y,从 y **回溯**之后,令 low[x]=min(low[x],low[y])。
- b. 若 y 被访问过**并且** y 在栈中,则令 low[x]=min(low[x],dfn[y])
- 3.从 x 回溯之前,判断是否有 low[x]=dfn[x]。若成立,则不断从栈中弹出节点,直至 x 出栈

强连通分量判定法则

强连通图: 给定一张有向图。若对于图中任意两个节点 x,y,既存在从 x 到 y 的路径,也存在 y 到 x 的路径,则称该有向图是"强连通图"

强连通分量: 有向图的极大强连通子图被称为"强连通分量", 简记为 SCC

```
#include <bits/stdc++.h>
#define IOS ios::sync_with_stdio(false)
#define debug cout<<"YES____!"

using namespace std;
typedef long long ll;
const ll inf=0x3f3f3f3f3f;
const ll mod=1000000007;</pre>
```

```
const ll N=1000010,M=1000010;
int ver[M],Next[M],head[N],dfn[N],low[N];
int sta[N],ins[N],c[N];
vector<int> scc[N];
int\ n_{\text{\tiny J}}m_{\text{\tiny J}}tot_{\text{\tiny J}}num_{\text{\tiny J}}top_{\text{\tiny J}}cnt;
void add(int x,int y)
     ver[++tot]=y,Next[tot]=head[x],head[x]=tot;
void tarjan(int x)
     dfn[x]=low[x]=++num;
     sta[++top]=x,ins[x]=1;
     for(int i=head[x];i;i=Next[i])
     {
           int y=ver[i];
           if(!dfn[y])
                tarjan(y);
                low[x] = min(low[x], low[y]);
           else if(ins[y])
                low[x] = min(low[x], dfn[y]);
           if(dfn[x]==low[x])
                cnt++;int z;
                do{
                      z=sta[top--],ins[z]=0;
                      c[z]=cnt,scc[cnt].push_back(z);
                }while(x!=z);
           }
```

```
signed main()
{
    scanf("%d %d",&n,&m);
    for(int i=1;i<=m;i++)
    {
        int x,y;
        scanf("%d %d",&x,&y);
        add(x,y);
    }
    for(int i=1;i<=n;i++)
    {
        if(!dfn[i]) tarjan(i);
    }
}</pre>
```

缩点

```
int hc[N],vc[M],nc[M],tc;
void add_c(int x,int y)
{
    vc[++tc]=y,nc[tc]=hc[x],hc[x]=tc;
}
signed main()
{
    /*
    强连通分量的判断
*/
    for(int x=1;x<=n;x++)
    {
        int y=ver[i];
        if(c[x]==c[y]) continue;
        add_c(c[x],c[y]);
    }
```

```
}
```

网络流

EK 算法 (nm2)

tips: tot=1

```
#include <bits/stdc++.h>
#define IOS ios::sync_with_stdio(false)
using namespace std;
typedef long long ll;
const ll N = 200010, M = 400010;
const ll inf=0x3f3f3f3f;
const ll mod=1e9+7;
int ver[M],Next[M],edge[M],head[N],f[M];
int n,m,tot;
//1e6 以上的数据 慎用 vector
void add(int x,int y,int z)
    //tot 从 2 开始
    ver[++tot]=y;edge[tot]=z;Next[tot]=head[x];head[x]=tot;
    ver[\texttt{++tot}] = x; edge[tot] = 0; Next[tot] = head[y]; head[y] = tot;
int v[N],incf[N],pre[N];
bool bfs(int s,int t)
    memset(v,0,sizeof v);
    queue<int> q;
    q.push(s);
```

```
v[s]=1;
     incf[s]=inf;
     while(q.size())
           auto x=q.front();q.pop();
           \begin{array}{l} \text{for}(\text{int } i\text{=}head[x]; i; i\text{=}Next[i]) \end{array}
           {
                if(edge[i] {>} f[i])
                      int y=ver[i];
                      if(v[y]) continue;
                      incf[y]=min(incf[x],edge[i]-f[i]);
                      pre[y]=i;
                      q.push(y);
                      v[y]=1;
                      if(y==t) return true;
                }
           }
     return false;
}
int EK(int s,int t)
{
     int maxflow=0;
     while(bfs(s,t))
           int x=t;
           while(x!=s)
                int i=pre[x];
                f[i]+=incf[t];
                edge[i^{1}]-=incf[t];
                x=ver[i^1];
           }
           maxflow+=incf[t];
     return maxflow;
```

```
signed main()
{
    IOS;
    tot=1;
    int S,T;
    cin>n>>m>>S>>T;
    for(int i=1;i<=m;i++)
    {
        int u,v,c;
        cin>>u>>v>>c;
        add(u,v,c);
    }
    cout<<EK(S,T)<<"\n";
}</pre>
```

Dinic 算法 (n2m)

```
#include <bits/stdc++.h>
#define IOS ios::sync_with_stdio(false)

using namespace std;
typedef long long ll;
const ll N = 200010,M=400010;
const ll inf=0x3f3f3f3f;
const ll mod=1e9+7;
int ver[M],Next[M],edge[M],head[N];
int n,m,tot;

//1e6 以上的数据 慎用 vector
void add(int x,int y,int z)
{
    ver[++tot]=y;edge[tot]=z;Next[tot]=head[x];head[x]=tot;
```

```
ver[++tot]=x;edge[tot]=0;Next[tot]=head[y];head[y]=tot;
}
int d[N],now[M];
int s,t;
bool bfs()
     memset(d, 0, size of d);
     queue<int> q;
     q.push(s);
     d[s]=1;
     now[s]=head[s];
     while(q.size())
         auto x=q.front();q.pop();
         for(int i=head[x];i;i=Next[i])
          {
              int y=ver[i];
              if(edge[i]\&\&!d[y])
                   q.push(y);
                   now[y]=head[y];
                   d[y]=d[x]+1;
                   if(y==t) return true;
         }
     return false;
}
int dfs(int x,int flow)
     if(x==t) return flow;
     int rest=flow,k,i;
     for(i=now[x];i&&rest;i=Next[i])
     \Big\{
```

```
int y=ver[i];
        if(edge[i]\&\&d[y]==d[x]+1)
             k=dfs(y,min(rest,edge[i]));
                                  //剪枝
             if(!k) d[y]=0;
             edge[i]-=k;
             edge[i^1]+=k;
             rest-=k;
        }
        now[x]=i;//当前弧优化(避免重复遍历从 x 出发不可扩展的边)
    return flow-rest;
int dinic()
{
    int flow=0;
    int maxflow=0;
    while(bfs())
        while(flow=dfs(s,inf)) maxflow+=flow;
    return maxflow;
signed main()
    IOS;
    tot=1;
    cin>>n>>m>>s>>t;
    for(int i=1;i<=m;i++)
        int u,v,c;
        cin>>u>>v>>c;
        add(u,v,c);
    cout<<dinic()<<"\n";</pre>
```

```
}
```

上下界可行流:

做法皆为、构建新图、维护流量守恒、将所有问题转化为无源汇可行流做法。

无源汇可行流:

```
signed main()
    IOS;
    tot=1;
    cin>>n>>m;
    s=n+1,t=n+2;
    vector < int > a(n+1), low(m+1);
    for(int i=1;i<=m;i++)
        int u,v,c,cc;
        cin>>u>>v>>c>>c;
        add(u,v,cc-c);
        low[i]=c;
        a[u]-=c;
        a[v]+=c;
 int sum=0;
  for(int i=1;i<=n;i++)
    //维持新图流量守恒
    if(a[i]>0) add(s,i,a[i]),sum+=a[i];//统计源点 s 的出量
    else if(a[i]<0) add(i,t,-a[i]);
    }
    if(dinic()<sum) //是否满流
        cout << "NO \ n";
```

有源汇最大流:

```
signed main()
    IOS;
    tot=1;
    int S,T;
    cin>>n>>m>>S>>T;
    s=n+1,t=n+2;
    vector < int > a(n+1), low(m+1);
    for(int i=1;i<=m;i++)
         int u,v,c,cc;
         cin>>u>>v>>c>;
        add(u,v,cc-c);
        low[i]=c;
         a[u]-=c;
         a[v]+=c;
 int sum=0;
  for(int i=1;i<=n;i++)
```

```
//维持新图流量守恒
if(a[i]>0) add(s,i,a[i]),sum+=a[i];//统计源点 s 的出量
else if(a[i] < 0) add(i,t,-a[i]);
add(T,S,inf);//维护流量守恒
if(dinic()<sum) //是否满流
{
   cout<<"No Solution\n";</pre>
}
else
   int res=edge[tot];//求新图中可行流中 s->t 的流量
    edge[tot-1]=edge[tot]=0;//删边 t->s,inf 的边
   s=S,t=T;
   cout<<res+dinic()<<"\n";//榨干 s->t 的流量
```

有源汇最小流:

```
signed main()
{
    IOS;
    tot=1;
    int S,T;
    cin>>n>>m>>S>>T;
    s=n+1,t=n+2;
    vector<int> a(n+1),low(m+1);
    for(int i=1;i<=m;i++)
    {</pre>
```

```
int u,v,c,cc;
      cin>>u>>v>>c>
      add(u,v,cc-c);
      low[i]=c;
      a[u]-=c;
      a[v]+=c;
int sum=0;
for(int i=1;i<=n;i++)
  //维持新图流量守恒
  if(a[i]>0) add(s,i,a[i]),sum+=a[i];//统计源点 s 的出量
  else if(a[i]<0) add(i,t,-a[i]);
  add(T,S,inf);//维护流量守恒
  if(dinic()<sum) //是否满流
      cout<<"No Solution\n";</pre>
  else
      int res=edge[tot];//求新图中可行流 s->t 的流量
      edge[tot-1]=edge[tot]=0;//删 t->s,inf 的边
      s=T,t=S;//最大化 t->s 的流量, 即最小化 s->t 的流量
      cout<<res-dinic()<<"\n";//榨干 t->s 的流量
  }
```

多源汇

建立超级源汇点, 超级源点连接源点, 汇点连接超级汇点

关键边

搜每一条正边,如果为0,增加权值,跑增广路,如果 true 即为关键边

最大流的判定用法

```
//1e6 以上的数据 慎用 vector
void add(int x,int y,int z)
     //此题为双向边
     ver[++tot]=y;edge[tot]=z;Next[tot]=head[x];head[x]=tot;
     ver[++tot]=x;edge[tot]=z;Next[tot]=head[y];head[y]=tot;
     ver[++tot]=y;edge[tot]=z;Next[tot]=head[x];head[x]=tot;
     ver[++tot]=x;edge[tot]=0;Next[tot]=head[y];head[y]=tot;
     这种写法找一个临界点
     add(a,b,c)
     add(b,n+i,c)
     add(n+i,a,c)
     */
}
int K,f[M];
bool check(int mid)
     for(int i=1;i<=m;i++)
         if(edge[i << 1]>mid) edge[i << 1]=0;
         else edge[i<<1]=1;</pre>
         if(edge[i << 1|1] > mid) edge[i << 1|1] = 0;
         else edge[i<<1|1]=1;
     return dinic()>=K;
signed main()
     IOS;
     tot=1;
     cin>>n>>m>>K;
     s=1;t=n;
     for(int i=1;i<=m;i++)
```

```
{
    int x,y,z;cin>>x>>y>>z;
    add(x,y,z);
}

int l=1,r=1e6;
memcpy(f,edge,M);//复制
while(l<r)
{
    int mid=l+r>>1;
    if(check(mid)) r=mid;
    else l=mid+1;
    memcpy(edge,f,M);
}

cout<<l<<"\n";
}
```

最大流最小割

最大流最小割: 任何网络中最大流的流量都等于最小割的容量。

割:指网络中节点的划分,它把网络中的所有节点都划分成 S 和 T 的集合,源点 $s \in S$,汇点 $t \in T$,记为 CUT(S,T),就像一条切割线把图中的节点切割成 S 和 T 两部分。

割的净容量 f(S,T):指切割线切中的边中,从S到T的边的流量减从T到S的边的流量。

割的容量 c(S,T): 指切割线切中的边中,从S到T的边的 **容量** 之和,最小割指**容量**最小的割。

最小割: 指容量最小的割。

tips:割的容量不计算 T 到 S 的边。

引理 1: 若 f 是网络 G 的一个流,CUT(S,T)是 G 的任意一个割,则 f 的流值等于割的净流量 f(S,T)。

f(S,T) = |f|

推论 1: 若 f 是网络 G 的一个流,CUT(S,T)是 G 的任意一个割,则 f 的流值不超过割的容量 c(S,T)

 $| f | \le c(S,T)$

最大流最小割定理: 若 f 是网络中的最大流,CUT(S,T)是 G 的最小割,则最大流 f 的值等于 最小割的容量 c(S,T)。

最大权闭合图:

建图 tips:源点连正向收益点、负向收益点连汇点、正向收益及负向收益按关系连边

费用流

最大费用最大流算法

- a. 求最大费用路
- b. 沿最大费用路增流

```
int ver[M],Next[M],edge[M],head[N];
int n,m,tot;
int cost[M];
//1e6 以上的数据 慎用 vector
void add(int x,int y,int z,int c)
    ver[++tot]=y;edge[tot]=z;cost[tot]=c;Next[tot]=head[x];head[x]=tot;
    ver[++tot]=x;edge[tot]=0;cost[tot]=-c;Next[tot]=head[y];head[y]=tot;
}
int v[N],incf[N],pre[N],d[N];
int s,t,maxflow,ans,k;
bool spfa()
{
    queue<int> q;
    memset(d,0xcf,sizeof d); //-inf
    memset(v,0,sizeof v);
    q.push(s);d[s]=0;v[s]=1;
    incf[s]=1 << 30;
    while(q.size())
    {
        int x=q.front();v[x]=0;q.pop();
        for(int i=head[x];i;i=Next[i])
```

```
{
             if(!edge[i]) continue;
             int y=ver[i];
             if(d[y] < d[x] + cost[i])
             {
                 d[y]=d[x]+cost[i];
                 incf[y]=min(incf[x],edge[i]);
                 pre[y]=i;
                 if(!v[y])v[y]=1,q.push(y);
             }
        }
    }
    if(d[t]==0xcfcfcfcf) return false;
    return true;
}
void update()
{
    int x=t;
    while(x!=s)
    {
        int i=pre[x];
        edge[i]-=incf[t];
        edge[i^1]+=incf[t];
        x=ver[i^1];
    }
    maxflow+=incf[t];
    ans+=d[t]*incf[t];
}
int f(int i,int j,int k)
{
    return (i-1)*n+j+k*n*n;
```

```
}
signed main()
{
    IOS;
    tot=1;
    cin>>n>>k;
    s=1,t=2*n*n;
    for(int i=1;i<=n;i++)
    {
        for(int j=1; j < =n; j++)
         {
             int c;cin>>c;
             add(f(i,j,0),f(i,j,1),1,c);\\
             add(f(i,j,0),f(i,j,1),k-1,0);
             if(j < n) add(f(i,j,1),f(i,j+1,0),k,0);
             if(i < n) add(f(i,j,1),f(i+1,j,0),k,0);
        }
    while(spfa()) update(); //计算最大费用最大流
    cout < < ans < < "\n";
}
```

匈牙利算法 (n2m)

```
using namespace std;
typedef long long II;
const II N = 1010,M=5010;
const II inf=0x3f3f3f3f3f3f3f3f3f;
const II mod=1e9+7;
```

```
II ver[M],Next[M],head[N];
Il n,m,tot;
//1e6 以上的数据 慎用 vector
void add(ll x,ll y)
{
    ver[++tot]=y;Next[tot]=head[x];head[x]=tot;
}
int match[N],v[N];
bool maxmatch(int x)
{
    for(int i=head[x];i;i=Next[i])
    {
        int y=ver[i];
        if(!v[y])
        {
            v[y]=1;
            if(!match[y]||maxmatch(match[y]))
                match[y]=x;
                return true;
            }
        }
    }
    return false;
}
signed main()
{
    IOS;
```

```
while(cin>>n>>m)
    {
        tot=0;
        memset(match,0,sizeof match);
        memset(head,0,sizeof head);
        for(int i=1;i <= n;i++)
        {
            int cnt;
            cin>>cnt;
            for(int j=1;j < =cnt;j++)
            {
                int x;cin>>x;
                add(i,x+n);
                add(x+n,i);
            }
        }
        int ans=0;
        for(int i=1;i < =n;i++)
        {
            memset(v,0,sizeof v);
            if(maxmatch(i))ans++;
        }
        cout < < ans < < "\n";
    }
}
```

计算几何

```
#include <bits/stdc++.h>

#define debug cout<<"YES___!"

#define IOS ios::sync_with_stdio(false)
```

```
constexpr double eps=1e-8;
constexpr double PI=3.1415926535897932384l;
using namespace std;
//点类|线段类
template <typename T> struct Point
    Tx,y;
    bool operator ==(const Point &a) const{ return (abs(x-a.x)<=eps && abs(y-a.y)<=eps);}
    bool operator <(const Point &a) const {if (abs(x-a.x)<=eps) return y<a.y-eps; return x<a.x-
eps;}
    Point operator +(const Point &a) const{return {x+a.x,y+a.y};}
    Point operator -(const Point &a) const {return {x-a.x,y-a.y};}
    Point operator -() const{return {-x,-y};}
    Point operator *(const T k)const {return {k*x,k*y};}
    Point operator / (const T k) const {return{x/k,y/k};}
    T operator*(const Point &a)const {return x*a.x+y*a.y;} //点积
    T operator^(const Point &a)const {return x*a.y-y*a.x;}
    int toleft(const Point &a) const{const auto t=(*this)^a;return (t>eps)-{t<-eps);} //toleft 检验
    T len2() const {return (*this)*(*this);}
                                          //模长的平方
    T dis2(const Point &a) const{return (a-(*this)).len2();} //距离的平方
    double len() const {return sqrt(len2());}
                                                 //模长
    double dis(const Point &a) const{return sqrt(dis2(a));} //距离
    double ang(const Point &a) const {return acos(max(-1.0,min(1.0,((*this)*a)/len()*a.len())));}
//两线段的夹角
    Point rot(const double rad) const {return {x*cos(rad)-y*sin(rad),x*sin(rad)+y*cos(rad)};}
    //逆时针选转 rad 度的向量
};
//直线类
template <typename T> struct Line
    Point<T> p,v;
                      //p+tv
    bool operator ==(const Line &a) const{return v.toleft(a.v)==0&&v.toleft(p-a.p)==0;}
    int toleft (const Point <T> &a) const{return v.toleft(a-p);}
    Point<T> inter(const Line &a) const{return p+v*((a.v^(p-a.p))/(v^a.v));} //两直线交点
```

```
double dis(const Point<T> &a) const{return abs(v^{(a-p)}/v.len();}
                                                                                //点到线的距
离
    Point<T> proj(const Point<T> &a)const{return p+v*((v*(a-p))/(v*v));}
                                                                                //点到线的垂
足
};
//多边形类
template<typename T> struct Polygon
    vector< Point<T> >p;
    inline size_t nxt(const size_t i) const{return i==p.size()-1?0:i+1;}
    inline size_t pre(const size_t i) const{return i==0?p.size()-1:i-1;}
    pair<bool,int> winding(const Point<T> &a) const
                                                          //回转数 站在 a 点
                                                               //True|False 表示是否在边上
                                                               //cnt 表示回转数,回转数为0
         int cnt=0;
点在外部
         for(size_t i=0;i<p.size();i++)</pre>
             PointT> u=p[i],v=p[nxt(i)];
             if(abs((a-u)^(a-v))<=eps&&(a-u)*(a-v)<=eps) return {true,0};//判断是否在边上
             if(abs(u.y-v.y)<=eps) continue;</pre>
             Line<T> uv=\{u,v-u\};
             if(u.y<v.y-eps &&uv.toleft(a)<=0) continue;</pre>
             if(u.y>v.y+eps \&\&uv.toleft(a)>=0) continue;
                                                     //逆时针
             if(u.y < a.y - eps &&v.y > = a.y - eps) cnt++;
             if(u.y \ge a.y-eps \& v.y < a.y-eps) cnt--;
                                                    //顺时针
         return {false,cnt};
    double circ()const
                         //周长
         double sum=0;
         for(size_t i=0;i<p.size();i++)</pre>
             sum+=p[i].dis(p[nxt(i)]);
```

```
return sum;
    Tarea2() const
                         //面积
        T sum = 0;
         for(size_t i=0;i< p.size();i++)
             sum+=p[i]^p[nxt(i)];
         return abs(sum);
};
using point=Point<double>;
using line=Line<double>;
using polygon=Polygon<double>;
//极角序
//(1) 常熟略大
struct argcmp
    bool operator()(const point&a,const point&b)const
        //下半区<原点<x 正半轴<上半区<x 负半轴
         //逆时针排序
         const auto quad=[](const point &a)
             if(a.y<-eps) return 1;</pre>
             if(a.y>eps) return 4;
             if(a.x<-eps) return 5;</pre>
             if(a.x>eps) return 3;
             return 2;
        };
         const int qa=quad(a),qb=quad(b);
         if(qa!=qb) return qa<qb;</pre>
         const auto t=a^b;
```

```
if(abs(t)<=eps) return a*a<b*b-eps;</pre>
         return t>eps;
};
//(2)用 atan2(y,x)函数 (精度误差)
//用法如下:
//bool operator<(const Point &x)const
//{
// return rad<x.rad;//rad=atan2(y,x);</pre>
//}
//判断直线 l 是否穿过 a,b 之间.
inline bool is_inter(line l,point a,point b)
{
    return l.toleft(a)*l.toleft(b)<=0;</pre>
int main()
    return 0;
```

计算几何 (nowcoder)

```
#include <bits/stdc++.h>
using namespace std;

using point_t=long double; //全局数据类型,可修改为 long long 等

constexpr point_t eps=1e-8;
constexpr long double PI=3.1415926535897932384l;

// 点与向量
template<typename T> struct point
{
```

```
T x, y;
  bool operator==(const point &a) const {return (abs(x-a.x)<=eps && abs(y-a.y)<=eps);}
  bool operator<(const point &a) const {if (abs(x-a.x)<=eps) return y<a.y-eps; return x<a.x-eps;}
  bool operator>(const point &a) const {return !(*this<a || *this==a);}
  point operator+(const point &a) const {return {x+a.x,y+a.y};}
  point operator-(const point &a) const {return {x-a.x,y-a.y};}
  point operator-() const {return {-x,-y};}
  point operator*(const T k) const {return {k*x,k*y};}
  point operator/(const T k) const {return \{x/k,y/k\};}
  T operator*(const point &a) const {return x*a.x+y*a.y;} // 点积
  T operator^(const point &a) const {return x*a.y-y*a.x;} // 叉积,注意优先级
  int toleft(const point &a) const {const auto t=(*this)^a; return (t>eps)-(t<-eps);} // to-left 测试
  Tlen2() const {return (*this)*(*this);} // 向量长度的平方
  T dis2(const point &a) const {return (a-(*this)).len2();} // 两点距离的平方
  // 涉及浮点数
  long double len() const {return sqrtl(len2());} // 向量长度
  long double dis(const point &a) const {return sqrtl(dis2(a));} // 两点距离
  long double ang(const point &a) const {return acosl(max(-
1.0l,min(1.0l,((*this)*a)/(len()*a.len()))));} // 向量夹角
  point rot(const long double rad) const {return {x*cos(rad)-y*sin(rad),x*sin(rad)+y*cos(rad)};}
// 逆时针旋转(给定角度)
  point rot(const long double cosr,const long double sinr) const {return {x*cosr-
y*sinr,x*sinr+y*cosr};} // 逆时针旋转(给定角度的正弦与余弦)
};
using Point=point<point_t>;
//极角排序
struct argcmp
  bool operator()(const Point &a,const Point &b) const
    const auto quad=[](const Point &a)
```

```
if (a.y<-eps) return 1;
     if (a.y>eps) return 4;
     if (a.x<-eps) return 5;
     if (a.x>eps) return 3;
     return 2:
   };
   const int qa=quad(a),qb=quad(b);
   if (qa!=qb) return qa<qb;
   const auto t=a^b;
   // if (abs(t)<=eps) return a*a<b*b-eps; // 不同长度的向量需要分开
   return t>eps;
 }
};
//直线
template<typename T> struct line
  point<T>p,v; //p为直线上一点,v为方向向量
  bool operator==(const line &a) const {return v.toleft(a.v)==0 && v.toleft(p-a.p)==0;}
  int toleft(const point<T> &a) const {return v.toleft(a-p);} // to-left 测试
  bool operator<(const line &a) const // 半平面交算法定义的排序
   if (abs(v^a.v) \le eps \&\& v^a.v = -eps) return toleft(a.p) = -1;
   return argcmp()(v,a.v);
  }
  // 涉及浮点数
  point<T> inter(const line &a) const {return p+v*((a.v^(p-a.p))/(v^a.v));} // 直线交点
 long double dis(const point<T>&a) const {return abs(v^(a-p))/v.len();} // 点到直线距离
  point<T> proj(const point<T> &a) const {return p+v*((v*(a-p))/(v*v));} // 点在直线上的投影
};
using Line=line<point_t>;
//线段
template<typename T> struct segment
```

```
point<T> a,b;
bool operator<(const segment &s) const {return make_pair(a,b)<make_pair(s.a,s.b);}
// 判定性函数建议在整数域使用
// 判断点是否在线段上
//-1点在线段端点 | 0点不在线段上 | 1点严格在线段上
int is_on(const point<T> &p) const
 if (p==a || p==b) return -1;
 return (p-a).toleft(p-b)==0 && (p-a)*(p-b)<-eps;
// 判断线段直线是否相交
//-1直线经过线段端点 | 0线段和直线不相交 | 1线段和直线严格相交
int is_inter(const line<T> &l) const
 if (l.toleft(a)==0 || l.toleft(b)==0) return -1;
 return l.toleft(a)!=l.toleft(b);
}
// 判断两线段是否相交
//-1在某一线段端点处相交 | 0 两线段不相交 | 1 两线段严格相交
int is_inter(const segment<T> &s) const
 if (is\_on(s.a) || is\_on(s.b) || s.is\_on(a) || s.is\_on(b)) return -1;
 const lineT > l\{a,b-a\}, ls\{s.a,s.b-s.a\};
 return l.toleft(s.a)*l.toleft(s.b)==-1 && ls.toleft(a)*ls.toleft(b)==-1;
}
// 点到线段距离
long double dis(const point<T> &p) const
 if ((p-a)*(b-a)<-eps || (p-b)*(a-b)<-eps) return min(p.dis(a),p.dis(b));
 const line<T> l{a,b-a};
```

```
return l.dis(p);
  }
 // 两线段间距离
 long double dis(const segment<T>&s) const
   if (is_inter(s)) return 0;
    return min({dis(s.a),dis(s.b),s.dis(a),s.dis(b)});
 }
};
using Segment=segment<point_t>;
// 多边形
template<typename T> struct polygon
  vector<point<T>> p; // 以逆时针顺序存储
  size_t nxt(const size_t i) const {return i==p.size()-1?0:i+1;}
  size_t pre(const size_t i) const {return i==0?p.size()-1:i-1;}
  //回转数
  //返回值第一项表示点是否在多边形边上
  // 对于狭义多边形,回转数为0表示点在多边形外,否则点在多边形内
  pair<bool,int> winding(const point<T> &a) const
    int cnt=0;
    for (size_t i=0; i< p.size(); i++)
      const point<T> u=p[i],v=p[nxt(i)];
     if (abs((a-u)^{(a-v)}) \le eps && (a-u)^{*}(a-v) \le eps) return {true, 0};
     if (abs(u.y-v.y)<=eps) continue;</pre>
     const Line uv={u,v-u};
     if (u.y<v.y-eps && uv.toleft(a)<=0) continue;
     if (u.y>v.y+eps && uv.toleft(a)>=0) continue;
     if (u.y < a.y-eps && v.y > = a.y-eps) cnt++;
     if (u.y \ge a.y - eps \&\& v.y < a.y - eps) cnt--;
```

```
return {false,cnt};
  // 多边形面积的两倍
  //可用于判断点的存储顺序是顺时针或逆时针
  Tarea() const
    T sum = 0:
    for (size_t i=0;i<p.size();i++) sum+=p[i]^p[nxt(i)];
    return sum;
  // 多边形的周长
  long double <a href="circ(">circ()</a> const
    long double sum=0;
    for (\text{size\_t i=0}; i < p.size(); i++) \text{ sum+=p[i].dis}(p[nxt(i)]);
    return sum;
};
using Polygon=polygon<point_t>;
//凸多边形
template<typename T> struct convex: polygon<T>
  // 闵可夫斯基和
  convex operator+(const convex &c) const
    const auto &p=this->p;
    vector<Segment> e1(p.size()),e2(c.p.size()),edge(p.size()+c.p.size());
    vector<point<T>> res; res.reserve(p.size()+c.p.size());
    const auto cmp=[](const Segment &u,const Segment &v) {return argcmp()(u.b-u.a,v.b-v.a);};
    for (size_t i=0; i< p.size(); i++) e1[i]=\{p[i], p[this->nxt(i)]\};
    for (size_t i=0; i< c.p.size(); i++) e2[i]=\{c.p[i], c.p[c.nxt(i)]\};
    rotate(e1.begin(),min_element(e1.begin(),e1.end(),cmp),e1.end());
```

```
rotate(e2.begin(),min_element(e2.begin(),e2.end(),cmp),e2.end());
    merge(e1.begin(),e1.end(),e2.begin(),e2.end(),edge.begin(),cmp);
    const auto check=[](const vector<point<T>> &res,const point<T> &u)
     const auto back1=res.back(),back2=*prev(res.end(),2);
     return (back1-back2).toleft(u-back1)==0 && (back1-back2)*(u-back1)>=-eps;
    };
    auto u=e1[0].a+e2[0].a;
    for (const auto &v:edge)
     while (res.size()>1 && check(res,u)) res.pop_back();
     res.push_back(u);
     u=u+v.b-v.a;
    if (res.size()>1 && check(res,res[0])) res.pop_back();
    return {res};
  // 旋转卡壳
  // func 为更新答案的函数,可以根据题目调整位置
  template<typename F> void rotcaliper(const F &func) const
    const auto &p=this->p;
    const auto area=[](const point<T> &u,const point<T> &v,const point<T> &w){return (w-
u)^{(w-v);};
    for (size_t i=0,j=1;i< p.size();i++)
      const auto nxti=this->nxt(i);
     func(p[i],p[nxti],p[j]);
     while (area(p[this->nxt(j)],p[i],p[nxti])>=area(p[j],p[i],p[nxti]))
       j=this->nxt(j);
        func(p[i],p[nxti],p[j]);
```

```
// 凸多边形的直径的平方
 T diameter2() const
   const auto &p=this->p;
   if (p.size()==1) return 0;
   if (p.size()==2) return p[0].dis2(p[1]);
   T ans=0;
   auto func=[&](const point<T> &u,const point<T> &v,const point<T>
&w)\{ans=max(\{ans,w.dis2(u),w.dis2(v)\});\};
   rotcaliper(func);
   return ans;
 // 判断点是否在凸多边形内
 // 复杂度 O(logn)
 //-1点在多边形边上 | 0点在多边形外 | 1点在多边形内
 int is_in(const point<T> &a) const
   const auto &p=this->p;
   if (p.size()==1) return a==p[0]?-1:0;
   if (p.size()==2) return segment<T>\{p[0],p[1]\}.is_on(a)?-1:0;
   if (a==p[0]) return -1;
   if ((p[1]-p[0]).toleft(a-p[0])==-1 || (p.back()-p[0]).toleft(a-p[0])==1) return 0;
   const auto cmp=[&](const Point &u,const Point &v){return (u-p[0]).toleft(v-p[0])==1;};
   const size_t i=lower_bound(p.begin()+1,p.end(),a,cmp)-p.begin();
   if (i==1) return segment<T>{p[0],p[i]}.is_on(a)?-1:0;
   if (i=p.size()-1 \&\& segment< T>\{p[0],p[i]\}.is_on(a)) return -1;
   if (segmentT>{p[i-1],p[i]}.is_on(a)) return -1;
   return (p[i]-p[i-1]).toleft(a-p[i-1])>0;
 }
 // 凸多边形关于某一方向的极点
 // 复杂度 O(logn)
 //参考资料: https://codeforces.com/blog/entry/48868
 template<typename F> size_t extreme(const F &dir) const
   const auto &p=this->p;
```

```
const auto check=[&](const size_t i){return dir(p[i]).toleft(p[this->nxt(i)]-p[i])>=0;};
    const auto dir0=dir(p[0]); const auto check0=check(0);
    if (!check0 && check(p.size()-1)) return 0;
    const auto cmp=[&](const Point &v)
     const size_t vi=&v-p.data();
     if (vi==0) return 1;
     const auto checkv=check(vi);
     const auto t=dir0.toleft(v-p[0]);
     if (vi==1 && checkv==check0 && t==0) return 1;
     return checkv^(checkv==check0 && t<=0);</pre>
   };
   return partition_point(p.begin(),p.end(),cmp)-p.begin();
  //过凸多边形外一点求凸多边形的切线,返回切点下标
  // 复杂度 O(logn)
  // 必须保证点在多边形外
  pair<size_t,size_t> tangent(const point<T> &a) const
    const size_t i=extreme([&](const point<T> &u){return u-a;});
   const size_t j=extreme([&](const point<T> &u){return a-u;});
    return {i,j};
  // 求平行于给定直线的凸多边形的切线,返回切点下标
  // 复杂度 O(logn)
  pair<size_t,size_t> tangent(const line<T> &a) const
    const size_t i=extreme([&](...){return a.v;});
   const size_t j=extreme([&](...){return -a.v;});
   return {i,j};
};
using Convex=convex<point_t>;
```

```
// 圆
struct Circle
  Point c;
  long double r;
  bool operator==(const Circle &a) const {return c==a.c && abs(r-a.r)<=eps;}
  long double circ() const {return 2*PI*r;} // 周长
  long double area() const {return PI*r*r;} // 面积
  // 点与圆的关系
  //-1 圆上 | 0 圆外 | 1 圆内
  int is_in(const\ Point\ \&p)\ const\ \{const\ long\ double\ d=p.dis(c);\ return\ abs(d-r)<=eps?-1:d< r-eps;\}
  // 直线与圆关系
  //0相离 | 1相切 | 2相交
  int relation(const Line &l) const
    const long double d=l.dis(c);
    if (d>r+eps) return 0;
    if (abs(d-r)<=eps) return 1;</pre>
    return 2;
  //圆与圆关系
  //-1相同 | 0相离 | 1外切 | 2相交 | 3内切 | 4内含
  int relation(const Circle &a) const
    if (*this==a) return -1;
    const long double d=c.dis(a.c);
    if (d>r+a.r+eps) return 0;
    if (abs(d-r-a.r)<=eps) return 1;</pre>
    if (abs(d-abs(r-a.r))<=eps) return 3;</pre>
    if (d<abs(r-a.r)-eps) return 4;</pre>
    return 2:
  }
```

```
// 直线与圆的交点
vector<Point> inter(const Line &l) const
  const long double d=l.dis(c);
  const Point p=l.proj(c);
  const int t=relation(l);
  if (t==0) return vector<Point>();
  if (t==1) return vector<Point>{p};
  const long double k=sqrt(r*r-d*d);
  return vector<Point>{p-(l.v/l.v.len())*k,p+(l.v/l.v.len())*k};
//圆与圆交点
vector<Point> inter(const Circle &a) const
  const long double d=c.dis(a.c);
  const int t=relation(a);
  if (t==-1 || t==0 || t==4) return vector<Point>();
  Point e=a.c-c; e=e/e.len()*r;
  if (t==1 || t==3)
    if (r*r+d*d-a.r*a.r>=-eps) return vector<Point>{c+e};
    return vector<Point>{c-e};
  const long double costh=(r*r+d*d-a.r*a.r)/(2*r*d),sinth=sqrt(1-costh*costh);
  return vector<Point>{c+e.rot(costh,-sinth),c+e.rot(costh,sinth)};
}
//圆与圆交面积
long double inter_area(const Circle &a) const
  const long double d=c.dis(a.c);
  const int t=relation(a);
  if (t==-1) return area();
  if (t<2) return 0;
  if (t>2) return min(area(),a.area());
  const long double costh1=(r*r+d*d-a.r*a.r)/(2*r*d),costh2=(a.r*a.r+d*d-r*r)/(2*a.r*d);
```

```
const long double sinth1=sqrt(1-costh1*costh1),sinth2=sqrt(1-costh2*costh2);
  const long double th1=acos(costh1),th2=acos(costh2);
  return r*r*(th1-costh1*sinth1)+a.r*a.r*(th2-costh2*sinth2);
}
// 过圆外一点圆的切线
vector<Line> tangent(const Point &a) const
  const int t=is_in(a);
  if (t==1) return vector<Line>();
  if (t==-1)
  {
    const Point v = \{-(a-c).y, (a-c).x\};
    return vector<Line>{{a,v}};
  Point e=a-c; e=e/e.len()*r;
  const long double costh=r/c.dis(a),sinth=sqrt(1-costh*costh);
  const Point t1=c+e.rot(costh,-sinth),t2=c+e.rot(costh,sinth);
  return vector<Line>{{a,t1-a},{a,t2-a}};
// 两圆的公切线
vector<Line> tangent(const Circle &a) const
  const int t=relation(a);
  vector<Line> lines;
  if (t==-1 || t==4) return lines;
  if (t==1 || t==3)
    const Point p=inter(a)[0],v=\{-(a.c-c).y,(a.c-c).x\};
    lines.push_back({p,v});
  }
  const long double d=c.dis(a.c);
  const Point e=(a.c-c)/(a.c-c).len();
  if (t \le 2)
  {
    const long double costh=(r-a.r)/d,sinth=sqrt(1-costh*costh);
```

```
const Point d1=e.rot(costh,-sinth),d2=e.rot(costh,sinth);
    const Point u1=c+d1*r,u2=c+d2*r,v1=a.c+d1*a.r,v2=a.c+d2*a.r;
    lines.push\_back({u1,v1-u1}); lines.push\_back({u2,v2-u2});
  if (t==0)
    const long double costh=(r+a.r)/d,sinth=sqrt(1-costh*costh);
    const Point d1=e.rot(costh,-sinth),d2=e.rot(costh,sinth);
    const Point u1=c+d1*r,u2=c+d2*r,v1=a.c-d1*a.r,v2=a.c-d2*a.r;
    lines.push_back({u1,v1-u1}); lines.push_back({u2,v2-u2});
  return lines;
//圆的反演
tuple<int,Circle,Line> inverse(const Line &l) const
  const Circle null_c=\{\{0.0,0.0\},0.0\};
  const Line null_l=\{\{0.0,0.0\},\{0.0,0.0\}\};
  if (l.toleft(c)==0) return {2,null_c,l};
  const Point v=l.toleft(c)==1?Point{l.v.y,-l.v.x}:Point{-l.v.y,l.v.x};
  const long double d=r*r/l.dis(c);
  const Point p=c+v/v.len()*d;
  return \{1,\{(c+p)/2,d/2\},null_l\};
tuple<int,Circle,Line> inverse(const Circle &a) const
  const Circle null_c = \{\{0.0,0.0\},0.0\};
  const Line null_l={{0.0,0.0},{0.0,0.0}};
  const Point v=a.c-c:
  if (a.is_in(c)==-1)
    const long double d=r*r/(a.r+a.r);
    const Point p=c+v/v.len()*d;
    return {2,null_c,{p,{-v.y,v.x}}};
  if (c==a.c) return \{1,\{c,r*r/a.r\},null_l\};
```

```
const long double d1=r*r/(c.dis(a.c)-a.r), d2=r*r/(c.dis(a.c)+a.r);
    const Point p=c+v/v.len()*d1,q=c+v/v.len()*d2;
    return \{1, \{(p+q)/2, p.dis(q)/2\}, null_l\};
};
// 圆与多边形面积交
long double area_inter(const Circle &circ,const Polygon &poly)
  const auto cal=[](const Circle &circ,const Point &a,const Point &b)
    if ((a-circ.c).toleft(b-circ.c)==0) return 0.0l;
    const auto ina=circ.is_in(a),inb=circ.is_in(b);
    const Line ab={a,b-a};
    if (ina && inb) return ((a-circ.c)^(b-circ.c))/2;
    if (ina &&!inb)
      const auto t=circ.inter(ab);
      const Point p=t.size()==1?t[0]:t[1];
      const long double ans=((a-circ.c)^(p-circ.c))/2;
      const long double th=(p-circ.c).ang(b-circ.c);
      const long double d=circ.r*circ.r*th/2;
      if ((a-circ.c).toleft(b-circ.c)==1) return ans+d;
      return ans-d;
    if (!ina && inb)
      const Point p=circ.inter(ab)[0];
      const long double ans=((p-circ.c)^(b-circ.c))/2;
      const long double th=(a-circ.c).ang(p-circ.c);
      const long double d=circ.r*circ.r*th/2;
      if ((a-circ.c).toleft(b-circ.c)==1) return ans+d;
      return ans-d;
    const auto p=circ.inter(ab);
    if (p.size()==2 \&\& Segment\{a,b\}.dis(circ.c) <= circ.r + eps)
      const long double ans=((p[0]-circ.c)^{(p[1]-circ.c)})/2;
```

```
const long double th1=(a-circ.c).ang(p[0]-circ.c),th2=(b-circ.c).ang(p[1]-circ.c);
      const long double d1=circ.r*circ.r*th1/2,d2=circ.r*circ.r*th2/2;
      if ((a-circ.c).toleft(b-circ.c)==1) return ans+d1+d2;
      return ans-d1-d2;
    }
    const long double th=(a-circ.c).ang(b-circ.c);
    if ((a-circ.c).toleft(b-circ.c)==1) return circ.r*circ.r*th/2;
    return -circ.r*circ.r*th/2;
  };
  long double ans=0;
  for (size_t i=0; i < poly.p.size(); i++)
    const Point a=poly.p[i],b=poly.p[poly.nxt(i)];
    ans+=cal(circ,a,b);
  return ans;
// 点集的凸包
// Andrew 算法, 复杂度 O(nlogn)
Convex convexhull(vector<Point> p)
  vector<Point> st;
  if (p.empty()) return Convex{st};
  sort(p.begin(),p.end());
  const auto check=[](const vector<Point> &st,const Point &u)
    const auto back1=st.back(),back2=*prev(st.end(),2);
    return (back1-back2).toleft(u-back1)<=0;</pre>
  for (const Point &u:p)
    while (st.size()>1 && check(st,u)) st.pop_back();
    st.push_back(u);
  size_t k=st.size();
```

```
p.pop_back(); reverse(p.begin(),p.end());
  for (const Point &u:p)
    while (st.size()>k && check(st,u)) st.pop_back();
    st.push_back(u);
  st.pop_back();
  return Convex{st};
// 半平面交
// 排序增量法, 复杂度 O(nlogn)
//输入与返回值都是用直线表示的半平面集合
vector<Line> halfinter(vector<Line> l, const point_t lim=1e9)
  const auto check=[](const Line &a,const Line &b,const Line &c){return a.toleft(b.inter(c))<0;};
  // 无精度误差的方法,但注意取值范围会扩大到三次方
  /*const auto check=[](const Line &a,const Line &b,const Line &c)
    const Point p=a.v^*(b.v^*c.v), q=b.p^*(b.v^*c.v)+b.v^*(c.v^*(b.p-c.p))-a.p^*(b.v^*c.v);
    return p.toleft(q)<0;</pre>
  };*/
  l.push\_back(\{\{-lim,0\},\{0,-1\}\}); l.push\_back(\{\{0,-lim\},\{1,0\}\});
  l.push\_back(\{\{lim,0\},\{0,1\}\}); l.push\_back(\{\{0,lim\},\{-1,0\}\});
  sort(l.begin(),l.end());
  deque<Line> q;
  for (size_t i=0; i< l.size(); i++)
    if (i>0 \&\& l[i-1].v.toleft(l[i].v)==0 \&\& l[i-1].v*l[i].v>eps) continue;
    while (q.size()>1 &\& check(l[i],q.back(),q[q.size()-2])) q.pop_back();
    while (q.size()>1 && check(l[i],q[0],q[1])) q.pop_front();
    if (!q.empty() && q.back().v.toleft(l[i].v)<=0) return vector<Line>();
    q.push_back(l[i]);
  while (q.size()>1 \&\& check(q[0],q.back(),q[q.size()-2])) q.pop_back();
  while (q.size()>1 \&\& check(q.back(),q[0],q[1])) q.pop_front();
  return vector<Line>(q.begin(),q.end());
```

```
// 点集形成的最小最大三角形
// 极角序扫描线,复杂度 O(n^2logn)
// 最大三角形问题可以使用凸包与旋转卡壳做到 O(n^2)
pair<point_t,point_t> minmax_triangle(const vector<Point> &vec)
     if (\text{vec.size}() \leq 2) \text{ return } \{0,0\};
     vector<pair<int,int>> evt;
     evt.reserve(vec.size()*vec.size());
      point_t maxans=0,minans=numeric_limits<point_t>::max();
      for (size_t i=0; i < vec.size(); i++)
           for (\text{size\_t } j=0; j<\text{vec.size}(); j++)
           {
                if (i==j) continue;
                if (vec[i]==vec[j]) minans=0;
                else evt.push_back({i,j});
          }
      sort(evt.begin(),evt.end(),[&](const pair<int,int> &u,const pair<int,int> &v)
           const Point du=vec[u.second]-vec[u.first],dv=vec[v.second]-vec[v.first];
          return argcmp()({du.y,-du.x},{dv.y,-dv.x});
     });
     vector<size_t> vx(vec.size()),pos(vec.size());
      for (size_t i=0; i < vec.size(); i++) vx[i]=i;
      sort(vx.begin(),vx.end(),[&](int x,int y){return vec[x]<vec[y];});</pre>
      for (size_t i=0;i<vx.size();i++) pos[vx[i]]=i;
      for (auto [u,v]:evt)
           const size_t i=pos[u],j=pos[v];
          const size_t l=min(i,j),r=max(i,j);
          const Point vecu=vec[u],vecv=vec[v];
           if (l>0) minans=min(minans,abs((vec[vx[l-1]]-vecu)^(vec[vx[l-1]]-vecv)));
          if (r<vx.size()-1) minans=min(minans,abs((vec[vx[r+1]]-vecu)^(vec[vx[r+1]]-vecv)));</pre>
           maxans = max(\{maxans,abs((vec[vx[0]]-vecu)^(vec[vx[0]]-vecv)\},abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx.back()]-vecv)),abs((vec[vx
```

```
vecu)^(vec[vx.back()]-vecv))});
            if (i < j) swap(vx[i],vx[j]),pos[u]=j,pos[v]=i;
     return {minans,maxans};
// 判断多条线段是否有交点
// 扫描线, 复杂度 O(nlogn)
bool segs_inter(const vector<Segment> &segs)
      if (segs.empty()) return false;
      using seq_t=tuple<point_t,int,Segment>;
      const auto seqcmp=[](const seq_t &u, const seq_t &v)
            const auto [u0,u1,u2]=u;
            const auto [v0,v1,v2]=v;
            if (abs(u0-v0) \le eps) return make_pair(u1,u2) \le make_pair(v1,v2);
            return u0<v0-eps;
      };
      vector<seq_t> seq;
      for (auto seg:segs)
            if (seg.a.x>seg.b.x+eps) swap(seg.a,seg.b);
            seq.push_back({seg.a.x,0,seg});
           seq.push_back({seg.b.x,1,seg});
      sort(seq.begin(),seq.end(),seqcmp);
      point_t x_now;
      auto cmp=[&](const Segment &u, const Segment &v)
            if (abs(u.a.x-u.b.x) \le eps || abs(v.a.x-v.b.x) \le eps) return u.a.y \le v.a.y = eps;
             return ((x\_now-u.a.x)*(u.b.y-u.a.y)+u.a.y*(u.b.x-u.a.x))*(v.b.x-v.a.x)<((x\_now-v.a.x)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.y)*(v.b.y-u.a.
v.a.y)+v.a.y*(v.b.x-v.a.x))*(u.b.x-u.a.x)-eps;
      multiset<Segment,decltype(cmp)> s{cmp};
      for (const auto [x,o,seg]:seq)
      {
```

```
x_now=x;
    const auto it=s.lower_bound(seg);
    if (o==0)
      if (it!=s.end() && seg.is_inter(*it)) return true;
      if (it!=s.begin() && seg.is_inter(*prev(it))) return true;
      s.insert(seg);
    else
      if (next(it)!=s.end() && it!=s.begin() && (*prev(it)).is_inter(*next(it))) return true;
      s.erase(it);
 return false;
// 多边形面积并
// 轮廓积分, 复杂度 O(n^2logn), n 为边数
// ans[i] 表示被至少覆盖了 i+1 次的区域的面积
vector<long double> area_union(const vector<Polygon> &polys)
  const size_t siz=polys.size();
 vector<vector<pair<Point,Point>>> segs(siz);
  const auto check=[](const Point &u,const Segment &e){return !((u<e.a && u<e.b) || (u>e.a &&
u > e.b));};
  auto cut_edge=[&](const Segment &e,const size_t i)
    const Line le{e.a,e.b-e.a};
    vector<pair<Point,int>> evt;
    evt.push_back({e.a,0}); evt.push_back({e.b,0});
    for (size_t j=0;j<polys.size();j++)</pre>
      if (i==j) continue;
      const auto &pj=polys[j];
      for (size_t k=0; k < pj.p.size(); k++)
```

```
const \ Segment \ s = \{pj.p[k], pj.p[pj.nxt(k)]\};
       if (le.toleft(s.a)==0 \&\& le.toleft(s.b)==0)
         evt.push_back({s.a,0});
         evt.push_back({s.b,0});
       else if (s.is_inter(le))
         const Line ls{s.a,s.b-s.a};
         const Point u=le.inter(ls);
         if (le.toleft(s.a)<0 \&\& le.toleft(s.b)>=0) evt.push_back(\{u,-1\});
         else if (le.toleft(s.a) \ge 0 \&\& le.toleft(s.b) < 0) evt.push_back(\{u,1\});
  sort(evt.begin(),evt.end());
  if (e.a>e.b) reverse(evt.begin(),evt.end());
  int sum=0;
  for (size_t i=0;i<evt.size();i++)</pre>
    sum+=evt[i].second;
    const Point u=evt[i].first,v=evt[i+1].first;
    if (!(u==v) \&\& check(u,e) \&\& check(v,e)) segs[sum].push_back(\{u,v\});
    if (v==e.b) break;
 }
};
for (size_t i=0;i<polys.size();i++)</pre>
  const auto &pi=polys[i];
  for (size_t k=0;k<pi.p.size();k++)</pre>
    const Segment ei={pi.p[k],pi.p[pi.nxt(k)]};
    cut_edge(ei,i);
  }
vector<long double> ans(siz);
```

```
for (size_t i=0; i < siz; i++)
    long double sum=0;
    sort(segs[i].begin(),segs[i].end());
    int cnt=0;
    for (size_t j=0;j<segs[i].size();j++)</pre>
      if (j>0 \&\& segs[i][j]==segs[i][j-1]) segs[i+(++cnt)].push_back(segs[i][j]);
      else cnt=0,sum+=segs[i][j].first^segs[i][j].second;
    ans[i]=sum/2;
  }
  return ans;
//圆面积并
// 轮廓积分, 复杂度 O(n^2logn)
// ans[i] 表示被至少覆盖了 i+1 次的区域的面积
vector<long double> area_union(const vector<Circle> &circs)
  const size_t siz=circs.size();
  using arc_t=tuple<Point,long double,long double,long double>;
  vector<vector<arc_t>> arcs(siz);
  const auto eq=[](const arc_t &u,const arc_t &v)
    const auto [u1,u2,u3,u4]=u;
    const auto [v1,v2,v3,v4]=v;
    return u1==v1 \&\& abs(u2-v2) <=eps \&\& abs(u3-v3) <=eps \&\& abs(u4-v4) <=eps;
  };
  auto cut_circ=[&](const Circle &ci,const size_t i)
    vector<pair<long double,int>> evt;
    evt.push_back({-PI,0}); evt.push_back({PI,0});
    int init=0;
    for (size_t j=0;j<circs.size();j++)</pre>
```

```
if (i==j) continue;
      const Circle &cj=circs[j];
      if (ci.r<cj.r-eps && ci.relation(cj)>=3) init++;
      const auto inters=ci.inter(cj);
      if (inters.size() == 1) \ evt.push\_back(\{atan2l((inters[0]-ci.c).y,(inters[0]-ci.c).x),0\});\\
      if (inters.size()==2)
         const Point dl=inters[0]-ci.c,dr=inters[1]-ci.c;
         long double argl=atan2l(dl.y,dl.x),argr=atan2l(dr.y,dr.x);
         if (abs(argl+PI)<=eps) argl=PI;</pre>
         if (abs(argr+PI)<=eps) argr=PI;</pre>
         if (argl>argr+eps)
           evt.push_back({argl,1}); evt.push_back({PI,-1});
           evt.push_back({-PI,1}); evt.push_back({argr,-1});
         }
         else
           evt.push_back({argl,1});
           evt.push_back({argr,-1});
    sort(evt.begin(),evt.end());
    int sum=init;
    for (size_t i=0;i<evt.size();i++)</pre>
      sum+=evt[i].second;
      if (abs(evt[i].first-evt[i+1].first)>eps)
arcs[sum].push_back({ci.c,ci.r,evt[i].first,evt[i+1].first});
      if (abs(evt[i+1].first-PI)<=eps) break;</pre>
    }
  };
  const auto oint=[](const arc_t &arc)
    const auto [cc,cr,l,r]=arc;
    if (abs(r-l-PI-PI)<=eps) return 2.0l*PI*cr*cr;
```

```
return \ cr^*cr^*(r\text{-}l) + cc.x^*cr^*(\sin(r)\text{-}\sin(l)) - cc.y^*cr^*(\cos(r)\text{-}\cos(l));
};
for (size_t i=0; i < circs.size(); i++)
  const auto &ci=circs[i];
  cut_circ(ci,i);
vector<long double> ans(siz);
for (size_t i=0; i < siz; i++)
  long double sum=0;
  sort(arcs[i].begin(),arcs[i].end());
  int cnt=0;
  for (size_t j=0; j<arcs[i].size(); j++)
    if \ (j>0 \ \&\& \ eq(arcs[i][j],arcs[i][j-1])) \ arcs[i+(++cnt)]. \\ push\_back(arcs[i][j]);
    else cnt=0,sum+=oint(arcs[i][j]);
  }
  ans[i]=sum/2;
return ans;
```

动态规划

数位 dp

工具需要检测的号码特征有两个:号码中要出现至少3个相邻的相同数字;号码中不能同时出现8和4。号码必须同时包含两个特征才满足条件。满足条件的号码例如:13000988721、2333333333、14444101000。而不满足条件的号码例如:1015400080、10010012022。

手机号码一定是 11 位数,前不含前导的 0。工具接收两个数 L 和 R,自动统计出 [L,R] 区间内所有满足条件的号码数量。 L 和 R 也是 11 位的手机号码。

输入格式

输入文件内容只有一行,为空格分隔的2个正整数L,R。

输出格式

输出文件内容只有一行,为1个整数,表示满足条件的手机号数量。

输入输出样例

输入 #1	复制	输出 #1	复制
12121284000 12121285550		5	

代码:

```
for(int i=0;i<10;i++)
     {
          if(!issmall&&i>v[len]) break;
          res+=dfs(len-
1, is small || (i < v[len]), i, last 1, ok || (last 1 == last 2 &\& i == last 1), eight || (i == 8), four || (i == 4));
     return f[len][issmall][last1][last2][ok][eight][four]=res;
}
ll work(ll n)
     cnt=0;
     if(n<1e10) return 0;
     while(n)
         v[++cnt]=n\%10;
         n/=10;
     memset(f,-1,sizeof f);
// ll sum=0;
     ll res=0;
     for(int i=1;i \le v[cnt];i++)
          res=res+dfs(cnt-1,i< v[cnt],i,-1,0,i==8,i==4);
     return res;
signed main()
     IOS;
     ll n,m;
     cin>>n>>m;
     cout << work(m)-work(n-1);
}
```