SUMMER-2015

UNIT 1

i. Tautology ii. Contradiction iii. Equivalent formulas (8)

b) Obtain the principle disjunctive normal form of

$$(P \wedge Q) \vee (\neg P \wedge Q) \vee (Q \wedge R). \tag{6}$$

Q2. a) Show the following equivalences,

Q2. a) Show the following equivalences,
i.
$$A \to (P \lor C) \Leftrightarrow (A \land \neg P) \to C$$
 ii. $(P \to C) \land (Q \to C) \Leftrightarrow (P \lor Q) \to C$ (8)

b) Obtain the principal conjunctive normal form of $\neg (P \lor Q)$ \Leftrightarrow (P \land Q). (6)

UNIT 2

Q3. a) Determine whether the conclusion C follows logically from the premises H_1 and H_2 :

i.
$$H_1: P \rightarrow Q \quad H_2: \neg P \qquad C: Q$$
 ii. $H_1: \neg P \quad H_2: P \Leftrightarrow Q \quad C: \neg (P \wedge Q)$ (8)

- **b)** Show that $(\exists x)M(x)$ follows logically from the premises $(x)(H(x) \rightarrow M(x))$ and $(\exists x)H(x)$. **(7)**
- **Q4. a)** Show that $S \vee R$ is tautological implied by $(P \vee Q) \wedge P$ $(P \rightarrow R) \land (Q \rightarrow S).$ (7)
- **b)** Symbolize the following statements
 - i. Some cats are black. ii. All Indians are brave (6)

UNIT 3

Q5. a) Explain with example:

ii. Subset iii. Equality of set i. Set iv. Empty set (6)

b) Show that
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
 (7)

By i. Formal proof. ii. Venn diagram

Q6. a) Let $X = \{1, 2, 3, 4, 5, 6, 7\}$ and $R = (\langle x, y \rangle | x - y)$ is divisible by 3. Show that R is an equivalent relation. Draw the graph of R. **(7)**

b) Let $X = \{1, 2, 3\}$ and f, g, h and s be the functions from X to X given by,

$$f = \{<1, 2>, <2, 3>, <3, 1>\} \qquad g = \{<1, 2>, <2, 1>, <3, 3>\}$$

find f,g g.f, f.h.g, g.s f.s and s.s.

(7)

UNIT 4

ii. Subgroup **Q7.** a) Explain: i. Group **(7)**

b) Convert the following infix expressions to prefix and postfix,

i.
$$(A + B)/(C - D)$$
 ii. $(A * B) + (C * (D/F))$ (6)

Q8. a) What is coset? Find the coset of {[0], [3]} in the group $\langle z_6, +_6 \rangle$ **(7)**

b) Write down the composition table for

Q9. a) Expand the following functions into their sum-ofproduct form:

i.
$$f(x, y, z) = xy' + y'z'$$
 ii. $f(w, x, y, z) = xy + w'yz$ (8)

b) In any Boolean algebra, show that

i.
$$a = b \Leftrightarrow ab' + a'b = 0$$
 ii. $a = 0 \Leftrightarrow ab' + a'b = b$ (6)

Q10. a) Draw the diagram of the lattice $\langle S_n, D \rangle$ for n = 4, 12, 15, 60. (5)

b) Use the K-map representation to find a minimal sum-ofproducts expression for the following functions:

i) f (a, b, c) =
$$\Sigma(0, 1, 4, 6)$$
 ii) f (a, b, c, d) = $\Sigma(0, 5, 7, 8, 12, 14)$ (8)

UNIT 6

Q11. a) Explain with example,

WWW.SQIIIA

- i. Graph ii. Indegree and outdegree iii. Tree. (6)
- **b)** Show that in a complete binary tree the total number of edges is given by $2(n_t 1)$, where n_t is the number of terminal nodes. (7)
- Q12. a) Obtain adjacency matrix and path matrix of the digraph given below, (7)

b) Give the directed tree representation of the following formula $(P \lor (\neg P \land Q)) \land (\neg P \land Q) \land \neg R)$ (6)