PSALTer results panel

$$S = \frac{1}{1} \int \int \left(\frac{1}{6} \left(2\left(t_{1}^{2}-2t_{3}^{2}\right) \mathcal{A}^{\alpha_{1}} \mathcal{A}^{\beta_{1}} + 6 \mathcal{A}^{\alpha\beta\chi} \mathcal{A}^{\beta_{1}} + 6 f^{\alpha\beta} \right) \left(\Delta + \mathcal{K}\right)_{\alpha\beta} - 4t_{1}^{2} \mathcal{A}^{\beta_{1}} \mathcal{A}^{\beta_{1}} + 8t_{3}^{2} \mathcal{A}^{\beta_{1}} \partial_{\beta} \mathcal{A}^{\beta_{1}} - 6r_{1}^{2} \partial_{\beta} \mathcal{A}^{\beta_{1}} \partial_$$

Wave operator $\begin{smallmatrix} 0^{\star}\mathcal{A} & & 0^{\star}f^{\parallel} & 0^{\star}f^{\perp} & 0^{\star}\mathcal{A} \end{smallmatrix}$

_	· <i>9</i> 1"	•) "	• /	· <i>9</i> 4"										
⁰ ⁺Æ [∥] †		$-i \sqrt{2} kt$	0	0										
^{0⁺} f [∥] †	$i\sqrt{2} kt$	$2k^2t$.	0	0										
${\stackrel{0^+}{\cdot}}f^\perp$ †	Θ	0	0	0										
^{⊙-} Æ [∥] †	0	0	0	-t. 1	${}^{1^{\scriptscriptstyle +}}_{^{\scriptscriptstyle +}}\mathcal{A}^{\parallel}{}_{lphaeta}$	${}^{1^+}_{\bullet}\mathcal{A}^{\perp}{}_{\alpha\beta}$	$\frac{1}{\cdot}^{\cdot}f^{\parallel}_{\alpha\beta}$	${}^{1^{-}}_{\bullet}\mathcal{H}^{\parallel}_{\alpha}$	${}^{1^{-}}_{}\mathcal{H}^{^{\perp}}_{\alpha}$	$\frac{1}{\bullet}f^{\parallel}_{\alpha}$	$\int_{\bullet}^{1} f^{\perp}_{\alpha}$			
				${\stackrel{1^{\scriptscriptstyle +}}{\cdot}} \mathscr{A}^{\parallel} \stackrel{\alpha\beta}{+}$	$k^2 r_1 - \frac{t_1}{2}$	$-\frac{t_{\frac{1}{1}}}{\sqrt{2}}$	$-\frac{ikt_{\frac{1}{2}}}{\sqrt{2}}$	0	0	0	0			
				${}^{1^{\scriptscriptstyle +}}_{\:\raisebox{1pt}{\text{\circle*{1.5}}}}\mathcal{R}^{\scriptscriptstyle \perp}\mathop{\dagger}^{\alpha\beta}$		0	0	0	0	0	Θ			
				$f^{\parallel} \uparrow^{\alpha\beta}$	$\frac{i k t_{\frac{1}{2}}}{\sqrt{2}}$	0	0	0	0	0	0			
				$^{1}_{\bullet}\mathcal{A}^{\parallel}\dagger^{lpha}$	0	0	Θ	$\frac{1}{6}\left(t_{1}+4t_{3}\right)$	$\frac{t \cdot -2t}{\frac{1}{3}}$	0	$\frac{1}{3} i k \left(t_{\cdot \cdot} - 2 t_{\cdot \cdot} \right)$			
				$^{1}_{\bullet}\mathcal{H}^{\perp}\dagger^{\alpha}$	0	0	Θ	$\frac{t_{1}-2t_{3}}{3}$ $\sqrt{2}$	$\frac{t.+t.}{\frac{1}{3}}$	0	$\frac{1}{3} i \sqrt{2} k \left(t_1 + t_3\right)$			
				$\frac{1}{\bullet}f^{\parallel}\uparrow^{\alpha}$	0	0	0	0	0	0	Θ			
				$f^{\perp}f^{\perp}$	0	0	0	$-\frac{1}{3} i k \left(t_{1} - 2 t_{3}\right)$	$-\frac{1}{3} i \sqrt{2} k \left(t_1 + t_3\right)$	0	$\frac{2}{3} k^2 \left(t_{1} + t_{3} \right)$	$\mathcal{A}^{0}_{\alpha\beta} \mathcal{A}^{0}_{\alpha\beta} \mathcal{A}^{0}_{\alpha\beta}$	$_{3}^{2^{-}}\mathcal{A}^{\parallel}_{\alpha\beta\chi}$	
											${}^{2^{+}}_{\bullet}\mathcal{A}^{\parallel}$ † lphaeta	$\frac{t}{\frac{1}{2}} - \frac{i k t}{\sqrt{2}}$	0	
											$f^{2} f^{\parallel} \uparrow^{\alpha\beta}$	$\frac{i kt_{\cdot}}{\sqrt{2}} k^2 t_{\cdot}$	0	
											${}^{2^{-}}_{\bullet}\mathcal{A}^{\parallel}\uparrow^{lphaeta\chi}$	0 0	$k^2 r_1 + \frac{t_1}{2}$	

Saturated propagator

	°• σ	$\Theta^+_{\bullet} \tau^{\parallel}$	$^{0^+}\tau^{\perp}$	${}^{0^-}\sigma^{\parallel}$										
[⊙] ⁺ σ †	$\frac{1}{\left(1+2k^2\right)^2t_{3}}$	$-\frac{i \sqrt{2} k}{(1+2 k^2)^2 t}$	0	0										
^{⊙⁺} τ [∥] †	$\frac{i \sqrt{2} k}{\left(1+2 k^2\right)^2 t}$	$\frac{2 k^2}{\left(1+2 k^2\right)^2 t_{3}}$	0	0										
${\overset{0^+}{\scriptstyle{\bullet}}} au^\perp \dagger$	0	0	0	0										
⁰⁻ σ †	0	0	0	$-\frac{1}{t}$	$^{1^{+}}_{\bullet}\sigma^{\parallel}_{\alpha\beta}$	$^{1^{+}}\sigma^{\perp}_{\alpha\beta}$	$\left. \begin{smallmatrix} 1^+ \\ \bullet \end{smallmatrix} \tau \right _{\alpha\beta}$	$^{1}_{\bullet}\sigma^{\parallel}{}_{\alpha}$	$^{1}_{\bullet}\sigma^{\perp}{}_{\alpha}$	$\begin{bmatrix} 1^- \\ \bullet \end{bmatrix}^{-} \alpha$	$1^ \tau^{\perp}_{\alpha}$			
				$1^{+}_{\bullet}\sigma^{\parallel} + ^{\alpha\beta}$	0	$-\frac{\sqrt{2}}{t + k^2 t}$	$-\frac{i\sqrt{2}k}{t\cdot +k^2t\cdot 1}$	Θ	0	0	Θ			
							$-\frac{i\left(2k^{3}r_{1}-kt_{1}\right)}{\left(1+k^{2}\right)^{2}t_{1}^{2}}$		0	0	0			
				$^{1^{+}}_{\bullet}\tau^{\parallel}$ † $^{\alpha\beta}$	$\frac{i \sqrt{2} k}{t \cdot k^2 t}$	$\frac{i\left(2k^3r_{1}-kt_{1}\right)}{\left(1+k^2\right)^2t_{1}^{2}}$	$\frac{-2 k^4 r \cdot + k^2 t}{(1+k^2)^2 t \cdot \frac{1}{1}}$	Θ	0	0	0			
				$^{1^{-}}\sigma^{\parallel}$ †		0	0		$-\frac{\sqrt{2} \left(t_{1}-2 t_{3}\right)}{3 \left(1+2 k^{2}\right) t_{1} t_{3}}$		$-\frac{2ikt4ikt.}{3}$ $3t.t.+6k^{2}t.t.$ 1 3			
				$\frac{1}{\cdot}\sigma^{\perp}\uparrow^{\alpha}$		Θ	0	$-\frac{\sqrt{2} \left(t_{1}-2 t_{3}\right)}{3 \left(1+2 k^{2}\right) t_{1} t_{3}}$	$\frac{t_{1}+4t_{3}}{3(1+2k^{2})^{2}t_{1}t_{3}}$	0	$\frac{i \sqrt{2} k \left(t_{1} + 4 t_{3}\right)}{3 \left(1 + 2 k^{2}\right)^{2} t_{1} t_{3}}$			
				$1^{-}\tau^{\parallel}\uparrow^{\alpha}$	0	0	0	0	0	0	0			
				$\frac{1}{\cdot}\tau^{\perp}\uparrow^{\alpha}$	Θ	0	0	$\frac{2ikt4ikt.}{3}$ 3t.t.+6k ² t.t.	$-\frac{i\sqrt{2} k(t_1+4t_3)}{3(1+2k^2)^2 t_1 t_3}$	0	$\frac{2 k^2 \left(t_1 + 4 t_3\right)}{3 \left(1 + 2 k^2\right)^2 t_1 t_3}$	$2^{+}_{\bullet}\sigma^{\parallel}_{\alpha\beta}$	$2^+_{\bullet} \tau^{\parallel}_{\alpha\beta}$	$^{2^{-}}\sigma^{\parallel}_{\alpha\beta\chi}$
											$^{2^{+}}_{\bullet}\sigma^{\parallel}$ † $^{\alpha\beta}$	$\frac{2}{\left(1+2k^2\right)^2t}$	$-\frac{2 i \sqrt{2} k}{(1+2 k^2)^2 t}$	0
											$2^+\tau^{\parallel} \uparrow^{\alpha\beta}$	$\frac{2 i \sqrt{2} k}{\left(1+2 k^2\right)^2 t}$	$\frac{4 k^2}{\left(1+2 k^2\right)^2 t}$	0

Source constraints

Spin-parity form	Covariant form	Multiplicities			
^{Θ+} τ [⊥] == Θ	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta+\mathcal{K}\right)^{\alpha\beta} == 0$	1			
$-2 i k \cdot \sigma^{\parallel} + \cdot \tau^{\parallel} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} = \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\alpha} + 2 \partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha}_{\alpha}^{\beta}$	1			
$2 i k \frac{1}{\cdot} \sigma^{\perp}^{\alpha} + \frac{1}{\cdot} \tau^{\perp}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}_{\tau}\left(\Delta+\mathcal{K}\right)^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta\tau}\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + 2\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$	3			
1- ₁ ^{\alpha} == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}_{\tau}\left(\Delta+\mathcal{K}\right)^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta\tau}\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3			
$i k \frac{1}{\cdot} \sigma^{\perp} \alpha^{\beta} + \frac{1}{\cdot} \tau^{\parallel} \alpha^{\beta} = 0$	$\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + 2\ \partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} = =$	3			
	$\partial_{\chi}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau \left(\Delta + \mathcal{K}\right)^{\beta\alpha} + 2 \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$				
$-2 i k \frac{2^{+}}{\cdot \sigma} \ ^{\alpha \beta} + \frac{2^{+}}{\cdot \tau} \ ^{\alpha \beta} = 0$	$-i\left(4\;\partial_{\delta}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\tau\;(\Delta+\mathcal{K})^{\chi\delta}+2\;\partial_{\delta}\partial^{\delta}\partial^{\beta}\partial^{\alpha}\tau\;(\Delta+\mathcal{K})^{\chi}_{\;\;\chi}-3\;\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau\;(\Delta+\mathcal{K})^{\beta\chi}-3\;\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau\;(\Delta+\mathcal{K})^{\chi\beta}-1\right)$	5			
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} _{\tau} \left(\Delta + \mathcal{K} \right)^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} _{\tau} \left(\Delta + \mathcal{K} \right)^{\chi \alpha} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} _{\tau} \left(\Delta + \mathcal{K} \right)^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} _{\tau} \left(\Delta + \mathcal{K} \right)^{\beta \alpha} + \\$				
	$4 i k^{X} \partial_{\epsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta}_{\delta} = 6 i k^{X} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\delta \beta \epsilon} = 6 i k^{X} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\delta \alpha \epsilon} + 6 i k^{X} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \beta \delta} +$				
	$6 \ i \ k^{\chi} \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \alpha \delta} + 2 \ \eta^{\alpha \beta} \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau \left(\Delta + \mathcal{K} \right)^{\chi \delta} - 2 \ \eta^{\alpha \beta} \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau \left(\Delta + \mathcal{K} \right)^{\chi}_{\chi} - 4 \ i \ \eta^{\alpha \beta} \ k^{\chi} \ \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta}_{\delta} \stackrel{\epsilon}{\delta} \right) == 0$				
Total expected gauge generators:					

 $^{2^{-}}\sigma^{\parallel}\uparrow^{lphaeta\chi}$

Massive spectrum

. .. | 1

Pole residue:	$-\frac{1}{r_{i}} > 0$
Square mass:	$-\frac{\frac{t}{1}}{2r} > 0$
Spin:	2
Parity:	Odd

Massless spectrum

(No particles)

Unitarity conditions

 $r_{\cdot} < 0 \&\& t_{\cdot} > 0$