Cấu trúc dữ liệu và giải thuật

CÁC CHIỂN LƯỢC TÌM KIẾM

Văn Chí Nam – Nguyễn Thị Hồng Nhung – Đặng Nguyễn Đức Tiến Vũ Thanh Hưng

Nội dung trình bày

Giới thiệu

Tìm kiếm tuần tự

Tìm kiếm nhị phân

Tìm kiếm theo bảng băm

Tổng kết

Có cách nào để chi phí tìm kiếm là O(1)?

1	1161002	An	17	1161044	Hồ	33	1161116	Tâm
2	1161008	Trâm Anh	18	1161047	Hòa	34	1161123	Thái
3	1161009	Bách		1161052		35	1161125	Thành
	1161010					36	1161141	Tình
			20			37	1161145	Trang
- 5	1161011	Binh	21	1161061	Huy	38	1161147	Triết
6	1161012	Bình	22	1161063	Khải	39	1161149	Trường
7	1161015	Châu	23	1161065	Khánh		1161150	
8	1161020	Đại	24	1161071	Kiện	41	1161154	Tự
9	1161023	Đăng	25	1161079	Lực	42	1161156	Tùng
10	1161028	Định	26	1161086	Nam	43	1161159	Tuyên
11	1161031	Đức	27	1161088	Năng	44	1161164	Vinh
12	1161032	Dung		1161089		45	1161167	Vű
	1161033			1161096		46	1161169	Vương
التربيق	TIUIUJJ	OUL		エエロエロフロ				

1161098 Phong

1161102 Phúc

1161107 Quang

30

1161034 Duy

1161037 Hà

16 1161040 Hiện

47 1161171 Tú

50 1161176 Tiên

49

1161173 Nhân

1161174 Thám

Khái quát về hash

Biến đổi khóa K (MSSV) thành địa chỉ mảng:

Cấu trúc dữ liệu và giải thuật - HCMUS 2011

Tìm kiểm theo bảng băm

Hash Table

Khái quát về hash

- Vấn đề: Cho trước 1 tập S gồm các phần tử được đặc trưng bởi giá trị khóa K. Trên giá trị các khóa này có quan hệ thứ tự. Tổ chức S như thế nào để tìm kiếm 1 phần tử có khóa k cho trước có độ phức tạp ít nhất trong giới hạn bộ nhớ cho phép?
- Ý tưởng: Biến đổi khóa k thành một số (bằng hàm hash) và sử dụng số này như là địa chỉ để tìm kiếm trên bảng dữ liệu.

Hàm băm (hash function)

 Định nghĩa: là hàm biến đối khóa k của phần tử thành địa chỉ trong bảng băm.

Ví dụ:
$$H(\text{"VCNam"}) = 406$$

 $H(\text{"NTHNhung"}) = 1000$
 $H(\text{"DNDTien"}) = 2$

 Tổng quát về phép biến đổi khóa: Là 1 ánh xạ thích hợp từ tập các khóa U vào tập các địa chỉ A.

H:
$$U \rightarrow A$$

 $k \rightarrow a = h(k)$

Ví dụ về một bảng băm không nguyên

 Khi các khóa ở dạng chuỗi -> chuyển thành mã ASCII và băm nguyên bình thường

Độ phức tạp

Chi phí tìm kiếm trung bình: O(1)

Khó khăn của hàm băm

- Tập các giá trị khóa (U) có thể lớn hơn rất nhiều so với số khóa thực tế (K) rất nhiều.
- Ví dụ: Khoa CNTT quyết định sử dụng cấu trúc hash table để quản lý không chỉ 11CK mà cả 10CK cũng với hàm hash:

 $H(K) = K \mod 1000$

Chuyện gì sẽ xảy ra?

Nếu U = {11CK}

Sự đụng độ (collision)

 \bullet $\exists k_1, k_2 \in K$:

Cấu trúc dữ liệu và giải thuật - HCMUS 2011

Các phương pháp xử lý đụng độ

- Phương pháp nối kết (chaining)
- Phương pháp địa chỉ mở (Open-addressing)

Phương pháp nối kết

- Ứng với mỗi địa chỉ của bảng, ta có một danh sách liên kết chứa các phần tử có khóa khác nhau mà có cùng địa chỉ đó.
- Ta sẽ có danh sách (bảng băm) gồm M phần tử chứa địa chỉ đầu của các danh sách liên kết.

Giải quyết đụng độ với phương pháp nối kết

Cấu trúc dữ liệu và giải thuật - HCMUS 2011

Phương pháp địa chỉ mở

- Tên gọi khác:
 - Phương pháp dò
 - Phương pháp thử
- Ý tưởng:
 - Khi đụng độ xảy ra, ta sẽ thử tìm đến vị trị kế tiếp nào đó trong bảng cho đến khi tìm thấy vị trí nào còn trống.

Các cách thực hiện

- Phương pháp dò tuyến tính (Linear probing)
- Phương pháp dò bậc 2 (Quadratic probing)
- Phương pháp băm kép (Double hashing)

Ý tưởng: H(k, i) = (h(k) + i) mod M, ở đây i là giá
 trị thử 0, 1, ...

NTHNhung

1	
2	

 405
 NTHNhung
 9345678

 406
 407

 408
 408

	•	
999		
1000		

Ý tưởng: H(k, i) = (h(k) + i) mod M, ở đây i là giá
 trị thứ 0 1

trị thứ 0, 1,			
	1		
NTHNhung	2		
NTHNhung		•	
VCNam	405	NTHNhung	9345678
	406	VCNam	2345678
	407		
	408		

	•	
999		
1000		

Ý tưởng: H(k, i) = (h(k) + i) mod M, ở đây i là giá
 trị thứ 0 1

uj uu U, I,			
	1		
NTHNhung	2		
		•	
VCNam	405	NTHNhung	9345678
	406	VCNam	2345678
ĐTMHậu	407	ĐTMHậu	6543210
	408		
		•	
	999		
	1000		

Ý tưởng: H(k, i) = (h(k) + i) mod M, ở đây i là giá
 trị thử 0, 1, ...

ı İ		
2		

VCNam

Tim?

405	NTHNhung	9345678
406	VCNam	2345678
407	ĐTMHậu	6543210
408		

	•	
999		
1000		

Ý tưởng: H(k, i) = (h(k) + i) mod M, ở đây i là giá
 trị thử 0, 1, ...

1	
2	

Tìm?

ĐTMHậu

405	NTHNhung	9345678
406	VCNam	2345678
407	ĐTMHậu	6543210
408		

999

Phương pháp dò bậc 2 và băm kép

Phương pháp dò bậc 2:

$$H(k, i) = (h(k) + i^2) \mod M$$

• Phương pháp băm kép:

$$H(k, i) = (h_1(k) + i*h_2(k)) \mod M$$

Ưu thế của phương pháp địa chỉ mở so với phương pháp nối kết

- Đơn giản khi cài đặt.
- Phương pháp địa chỉ mở giải quyết được đụng độ nhưng lại có thể gây ra đụng độ mới.
- Phương pháp nối kết không bị ảnh hưởng về tốc độ khi mảng gần đầy.
- Ít tốn bộ nhớ khi mảng thưa (ít phần tử).

Những yêu cầu đối với hàm băm

Cấu trúc dữ liệu và giải thuật - HCMUS 2011

Thiết kế hàm băm

1. Thiết kế hàm băm cho ứng dụng tra ứu từ điển Anh – Việt.

Bài tập

- 1. Cho bảng băm có kích thước M = 11. Hàm băm: h(k) = k mod M. Dùng phương pháp địa chỉ mở. Cho biết kết quả sau khi thêm vào bảng băm các khóa 10, 22, 31, 4, 15, 28, 17, 88, 59, với 3 phương pháp xử lý đụng độ:
 - a. Dò tuyến tính.
 - b. Dò bậc 2.
 - c. Băm kép $h_2(k) = (k \text{ mod } 19)+1.$

Bài tập

2. Cho từ điển Anh – Việt có 15.000 từ, hãy tổ chức cấu trúc dữ liệu bảng băm và cho biết hàm băm thích hợp giúp cho việc tra từ hiệu quả nhất.

Hởi và Đáp