
CM 01 - Introduction

Plan

1. Définitions

2. Représentations d'un graphe

- a. Matrice d'adjacence
- b. Listes de successeurs/prédécesseurs

3. Premier aperçu (rapide) de problèmes résolus par les graphes

- a. Parcours Eulérien
- b. Coloration des sommets d'un graphe

Définition 1.

- Un graphe est un ensemble de points et de lignes reliant certains de ces points.
- Un sommet du graphe est un point du graphe. Le nombre de sommets est l'ordre du graphe.
- Une arête du graphe est une ligne reliant deux sommets. Une boucle est une arête reliant un sommet à lui-même.
- Un sommet est isolé lorsque aucune arête de le relie aux autres sommets.
- Un graphe simple est un graphe sans boucle tel que, entre deux sommets, il y ait au plus une arête. Deux sommets reliés par une arête sont adjacents.
- Un graphe orienté est un graphe dont les arêtes sont orientées.
 Une arête orientée va d'un sommet vers un autre sommet, elle est représentée par une flèche.
- Le degré d'un sommet est égal au nombre d'arêtes dont ce sommet est une extrémité.

Exemple cas non orienté:

Le graphe 1 est un graphe simple d'ordre 5, de sommets A, B, C, D et E. Les sommets A et B sont adjacents, A et C ne le sont pas, E est un sommet isolé.

Un graphe est connexe lorsque, pour chaque paire de sommets, il existe au moins une chaîne reliant les deux sommets.

Graphe 1 n'est pas connexe car il possède un sommet isolé E

Définition 1.

- Un graphe est un ensemble de points et de lignes reliant certains de ces points.
- Un sommet du graphe est un point du graphe. Le nombre de sommets est l'ordre du graphe.
- Une arête du graphe est une ligne reliant deux sommets. Une boucle est une arête reliant un sommet à lui-même.
- Un sommet est isolé lorsque aucune arête de le relie aux autres sommets.
- Un graphe simple est un graphe sans boucle tel que, entre deux sommets, il y ait au plus une arête. Deux sommets reliés par une arête sont adjacents.
- Un graphe orienté est un graphe dont les arêtes sont orientées. Une arête orientée va d'un sommet vers un autre sommet, elle est représentée par une flèche.
- Le degré d'un sommet est égal au nombre d'arêtes dont ce sommet est une extrémité.

Exemple cas orienté :

Graphe 2

Le graphe 2 est un graphe orienté ayant 7 arcs.

Le sommet E est de degré 3 avec

- degré entrant 2
- degré sortant 1

Théorème 1. La somme des degrés de tous les sommets d'un graphe est égal au double du nombre total d'arêtes.

Exemple cas non orienté:

Il y a 5 arêtes.

La somme des degrés est $2 + 3 + 2 + 3 + 0 = 2 \times 5$

Exemple cas orienté:

Graphe 2

Il y a 7 arcs.

La somme des degrés est $4 + 3 + 2 + 2 + 3 = 2 \times 7$

Quelle intuition pour démontrer théorème 1?

Définition 2. Un graphe complet est un graphe simple dont tous les sommets sont adjacents les uns avec les autres

Exemple.

Le graphe 3 est un graphe complet d'ordre 5.

Dans le graphe complet d'ordre n:

- $\bullet\,$ le degré de chacun des sommets est n-1
- $\bullet\,$ le nombre d'arêtes est $\frac{n(n-1)}{2}$

Le graphe 3 possède $(5 \times 4) / 2 = 10$ arêtes

En effet,

- A est relié à 4 sommets,
- B est relié à 3 autres sommets,
- Cà 2 autres
- D à un seul autre.

Un graphe complet d'ordre n est aussi appelé clique d'ordre n

Définition 3. Cas non orienté:

Une chaîne est une suite d'arêtes mises bout à bout reliant deux sommets du graphe.

Un cycle est une chaîne dont les extrémités coïncident, composée d'arêtes toutes distinctes.

A-D-B-C-D est une chaîne. B-C-D-A-B est un cycle.

Définition 3. Cas orienté:

Un chemin est une suite d'arcs mis bout à bout reliant deux sommets du graphe.

Un circuit est un chemin dont les extrémités coïncident, composée d'arcs tous distincts.

B-A-C-A-D est un chemin.

A-C-A est un circuit.

2. Représentations d'un graphe

(Extrait du Cours d'Algo en L2-INFO d'Etienne Grandjean)

Matrice d'adjacence

On représente un graphe G = (S, A) à n sommets avec une matrice M carrée $n \times n$

$$M[i,j] = \left\{ \begin{array}{ll} 1 & \text{si } i \to j \in A \\ 0 & \text{sinon} \end{array} \right..$$
 Si le graphe est non orienté la matrice est symétrique.

Tableau des listes de successeurs

On représente un graphe G = (S, A) à n sommets avec un tableau de n listes chaînées: la i-ème liste est la liste des successeurs du sommet i.

Tableau des listes de prédécesseurs

Autres points (traités par la suite du cours)

- Complexité spatiale de chacune des deux représentations
- Complexité temporelle induite par chacune des représentations
- Pour un problème donné, comment choisir la « bonne » représentation?

 $Exemple.\ S=\{0,1,2,3,4,5\},\ A=\{(0,1),(1,4),(2,5),(4,0),(4,3),(4,5),(5,2)\}$

	0	1	2	3	4	5
0	0	1	0	0	0	0
1	0	0	0	0	1	0
2	0	0	0	0	0	1
3	0	0	0	0	0	0
4	1	0	0	1	0	1
5	0	0	1	0	0	0

Graphe non orienté : $S = \{0,1,2,3,4,5\},\, A = \{\{0,2\},\{0,4\},\{1,2\},\{2,4\},\{3,5\}\}$

	0	1	2	3	4	5
0	0	0	1	0	1	0
1	0	0	1	0	0	0
2	1	1	0	0	1	0
3	0	0	0	0	0	1
4	1	0	1	0	0	0
5	0	0	0	1	0	0

3. Parcours Eulérien

Définitions 4.

Soit G = (V, E) un graphe connexe non-orienté.

Un cycle eulérien de G est un cycle passant une fois et une seule par chacune des arêtes de E.

Une chaîne eulérienne de G est une chaîne passant une fois et une seule par chacune des arêtes de E.

G possède un parcours eulérien s'il possède une chaîne eulérienne ou un cycle eulérien.

Théorème d'EULER (graphe non-orienté)

Soit G = (V, E) un graphe connexe non-orienté.

- si tous les sommets de G sont de degré pair, alors le parcours est un cycle
- si seuls 2 sommets (x, y) sont de degré impair, alors le parcours est une chaîne de x à y (ou de y à x)
- dans tous les autres cas, il n'existe pas de parcours eulérien de G.

Applications : distribution du courrier, collecte des ordures ménagères

Théorème d'EULER (graphe non-orienté)

Soit G = (V, E) un graphe connexe non-orienté.

- si tous les sommets de G sont de degré pair, alors le parcours est un cycle
- si seuls 2 sommets (x, y) sont de degré impair, alors le parcours est une chaîne de x à y (ou de y à x)
- dans tous les autres cas, il n'existe pas de parcours eulérien de G.

Chacun des graphes ci-dessous possède-t-il ou non un parcours eulérien ? Si oui, indiquer s'il s'agit d'un cycle ou d'une chaîne.

Quelle intuition pour démontrer le théorème d'EULER (graphe orienté)?

Quid du passage au cas orienté?

4. Coloration des sommets d'un graphe

Exemple. Cinq étudiants doivent passer des écrits d'examen :

- Maxime en Anglais, Physique, Math
- Aude en Espagnol, Biologie, Math
- Marion en Math, Français, Anglais
- Amélie en Anglais, Biologie
- Laurent en Physique, Français

Chaque examen nécessitant une 1/2 journée, quelle est la durée minimale de la période des examens ?

Modélisation sous forme d'un problème de coloration.

- sommets = {Anglais, Physique, Math, Espagnol, Biologie, Français}
- arête entre 2 sommets i et j ssi il existe au moins un étudiant devant passer à la fois l'examen i et l'examen j
- 2 sommets adjacents ne peuvent être colorés de la même couleur.

Ci-dessous une solution avec 4 couleurs :

Définitions 5.

- Une k-coloration est une coloration des sommets utilisant k couleurs différentes, sachant que 2 sommets adjacents ne peuvent être colorés de la même couleur.
- Le nombre chromatique d'un graphe est le plus petit entier k pour lequel il existe k-coloration.

Reprenons la solution avec 4 couleurs :

Déterminer le nombre chromatique

Théorème : Pour colorer les sommets d'une k-clique, il faut utiliser k couleurs différentes.

- (a) Les sommets Anglais, Math, Physique et Français forment une 4-clique.
 - → le nombre chromatique est supérieur ou égal à 4.
- (b) La solution obtenue utilise 4 couleurs.
 - → le nombre chromatique est inférieur ou égal à 4.
 - (a) et (b) \rightarrow le nombre chromatique est égal à 4.