

PROGRAM'S ANATOMY

THE LIFI-PROJECT

DISCLAIMER

The following slides are for presentation purposes only. They contain mostly visuals and are not meant to as a script for studying. Please always watch the video or listen to the audio along with these slides and read the respective lessons in the <u>online script</u>.

Please consider the environment before printing these slides.

Always use the <u>link to the original slides</u> to access the latest version. The slides are likely to change during a semester.

Python

Programming Language

API

IDE

- ✓ Syntax Highlighting
- ✓ Code Completion
- ✓ Debugging
- ✓ Warnings / Errors
- Code formatting

GUI

File Extension

File Path

Folder

Operating System (OS)

PROGRAM'S ANATOMY

Can you approximate the square root of a given positive number?

EXPLAIN HOW!

A finite-length rule consisting of individual instructions is called an **algorithm**.

Source: Vornberger, O., Algorithms and Data Structures, Lecture Notes (http://www-lehre.inf.uos.de/ \sim ainf/2013/PDF/skript.pdf) Translated from German using DeepL

ALGORITHM

PROBLEM-SOLVING

FROM ALGORITHM TO PROGRAM

DEFINITION

Algorithm = Procedure description for solving a problem.

Program = Algorithm formulated in a programming language.

Algorithm

A recipe to solve a problem

- 1. Get a number X from user
- 2. Check if X is positive
- 3. Set A = x/2 and B = x/A
- 4. Repeat until 1A-B1 is less than 0.00001

4a. Set
$$A = (A+B)/2$$

5. Give A as the result

Program

Implementation in a programming language

```
examples > 💠 square_root.py > ...
 import sys
print("I can calculate square roots!")
number = input("A number, please: ")
number = int(number)
if number < 0:
     print("Cannot extract roots from negative numbers.")
     sys.exit()
a = number / 2
b = number / a
while(abs(a - b) > 0.00001):
     a = (a + b) / 2
    b = number / a
print(f"The square root of { number } is { a }")
```

- 1. Commands
- 2. Variables
- 3. Loops
- 4. Control Structures
- 5. Functions

Internal or built-in functions

Functions from external modules

User-defined functions

LOOPS (3/5)

5 TYPES OF INSTRUCTIONS

CONTROL STRUCTURES (4/5)

Code block we can reuse by its name

Optional parameters and return value

Instructions in action to solve a problem

Program

