

123456789101112 O O O O O O O

... ACCATCACCACATAAATCACTGCCTATCCTGTG.

FIG. 2C

CACCACATAAATCACTGCCTATCC CACCACATAGATCACTGCCTATCC CACCACATAACTCACTGCCTATCC CACCACATAAATAACTGCCTATCC CACCACATAAATCAATGCCTATCC CACCACATAAATCACTTCCTATCC R21A R21B R21C R21D

FIG. 2D1

R21 R21 R21A R21B R21C R21D R21E Gfi-1 - + + + + + +

FIG. 2D2

FIG. 2E

FIG. 2D3

MENTE	010	THE WEST	THE PROPERTY OF
-------	-----	----------	-----------------

Promoter		% of Consensus	Gfi-1 consensus TAAATCACATGCA (Sequence I.D. No. 2)	Promoter		% of Consensus	Gfi-1 consensus TAAATCACATGCA (Sequence I.D. No. 2)
Ι 1α	Human	80	CAAATCAATAAC (Sequence I.D. No. 15)	TNF - α	Human	85	CAAATCCCCGCC (Sequence I.D. No. 43)
IL-1 <i>β</i>	Human	98	TAAATCTGTGTG (Sequence I.D. No. 16)			80	CAAATCAGTCAG (Sequence I.D. No. 44)
	Mouse Mouse	80	GAAATCAGTTAA (Sequence I.D. No. 17)	·	Mouse	8	CTAATCATTGTC (Sequence I.D. No. 45)
IL - 4	Human	87	GAAATCAGACCA (Sequence I.D. No. 18)		Rabbit	98	GAAATCAGAGGG (Sequence I.D. No. 46)
	Mouse	87	GAAATCAGTTAA (Sequence I.D. No. 19)			-	CAAATCCGGGTC (Sequence I.D. No. 47)
IL - 5	Human	68	TCAATCACTGTC (Sequence I.D. No. 20)		- Hamster	98	GAAATCAGAGAG (Sequence I.D. No. 48)
		85	AAAATCCCTGTT	c-mos	Mouse	06	TAAATCACTCCC (Sequence I.D. No. 49)
		78	(Sequence I.D. No. 21) AAAATCAGAAAA (Sequence I.D. No. 22)	c-abl	Mouse	86	TTAATCACAGTC (Sequence I.D. No. 50)
JF - 9	Human	85	TAAATCTTTGTT (Sequence I.D. No. 23)	c-erb82	Hurnan	88	GGAATCACAGGA (Sequence I.D. No. 51)
7		7		† 		7	T

FIG. 5A

10	JC .	
12	e ^c)	No.
0	" " " " " " " " " " " " " " " " " " "	\$
	Mg.	<i>3</i>
	FAER	- · ·

2)	(,						1,
TAAATCATCGCA (Sequence I.D. No. 52)	AAAATCAGGGGA (Sequence I.D. No. 53)	GAAATCAGACCC (Sequence I.D. No. 54)	AAAATCAGTAAA (Sequence I.D. No. 55)	GAAATCAGGCCA (Sequence I.D. No. 56)	AAAATCAGTAAA (Sequence I.D. No. 57)	(Sequence I.D. No. 58)	CCAATCACAGGA (Sequence I.D. No. 59)	AAAATCAAAGCA (Sequence I.D. No. 60)		
06	98	85	2	84	18	06	88	93		
Human	Human	Hurnan		Mouse		Mouse	Mouse	Human		
c-myc	N-myc	c-N-ras				8QO	Thy-a	Histone H1A		
CAAATCTGTGTT (Sequence I.D. No. 24)	AAAATCTAAGTT (Sequence I.D. No. 25)	TAAATCAAAGTT (Sequence I.D. No. 26)		GAAATCAGTAGT (Sequence I.D. No. 27)	AAAATCTGAGCT (Sequence I.D. No. 28)	CAAATCAGACCC (Sequence I.D. No. 29)	CAAATCAGACAA	(Sequence I.D. No. 30) AAAATCTTAGGC (Sequence I.D. No. 31)	TAAATCCTGGGT (Sequence I.D. No. 32)	
98	84	91		79	88	87	84	80	80	,
Human		Mouse		Human	Rat				n a-	
IFNα				IFN <i>y</i>	IGF 11					- ~ _}

FIG. 5B

10	JC .	
10	TO STATE OF THE ST	100
10	0, .	S S S S S S S S S S S S S S S S S S S
	tipe .	
	-NEW!	/ . }

,		,	((
)	Human	98	TTAATCACGGTT (Sequence I.D. No. 33)	LTR	ΛIH	82	CCAATCAGGGAA (Sequence I.D. No. 61)
		84	CAAATCCGAGTT (Sequence I.D. No. 34)	MIE	HCMV	80	AAAATCAACGGG (Sequence I.D. No. 62)
CSF - 1	Human	68	CAAATCTTAGCA (Sequence I.D. No. 35)	MIE	HCMV	61	GAAATCCCCGTG (Sequence I.D. No. 63)
		79		IEgpUS3	HCMV	<i>L</i> 8	GAAATCACCGTG
	-		GAAATCACCCTG (Sequence I.D. No. 36)			87	(Sequence n.D. No. 04) GAAATCCCAGTA
	Mouse	68	CAAATCTTAGCA				(Sequence I.D. No. 65)
			(Sequence I.D. No. 37)	early	HCIMV	83	CTAATCACGGAC
		79	GAAATCACCCTG	2.2kb			(Sequence I.D. No. oo)
			(Sequence I.D. No. 38)				
G - CSF	Human	61	TAAATCCTGGGA	early	HCIMV	84	AAAATCAGTCCG
				Z./KD			(Schacife I.D. 140. 07)
	Mouse	79	(Sequence I D. No. 30)	NL36	HCIMV	80	GAAATCGCGGGC
	1:						(Sequence 1.D. No. 00)
C-Sis	Rabbit	84	GAAATCAGGCCA	bb65	HCIMV	81	CAAATCCACGCT
TNFB	Hııman	83	CAAATCATACTT			70	(Sequence I.D. 190, 03)
		}	(Sequence I.D. No. 43)			·	AAAATCGGTGGT
	! ! ! ! ! !		T!				(acadeciice 1.0: 140: 10)
	Rabbit	92	CAAATCAGGGCT				
			(Sequence I.D. No. 42)				
				÷			

FIG. 5C