Permutation Groups & Burnside's Lemma

Scribe: Sharath Byakod

Date: 29, April, 2019

1 Permutation Groups

Let S be a set. Let G be a group of permutations, Π , acting on elements of S. Consider an element of

$$\Pi_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 5 & 4 \end{pmatrix}$$

where Π_1 (1) = 3, Π_1 (4) = 5, and so on. We can also write Π as a product of cycles, for example Π_1 = (13) (2) (45). This is called the **cycle decomposition**.

Theorem 1.1. Every permutation can be written as a product of cycles. This is unique up to rotations or the reordering of cycles.

Example 1.1. $\Pi_1 = (2)(54)(13)$

Permutations can also be composed:

$$\Pi_1\Pi_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \end{pmatrix} = e \rightarrow : \Pi_1 = \Pi_1^{-1}$$

Thus, $G = \{e, \Pi_1\}$ is a permutation group since it satisfies the following 4 requirements: closure, identity existence, inverse existence, & associativity.

Example 1.2. Consider the permutation group Π_1 of square ABCD. The 4 permutations in the group of rotations (closed):

$$\begin{array}{c|ccc} e & 0^{\circ} & ABCD \\ \Pi_1 & 90^{\circ} & DABC \\ \Pi_2 & 180^{\circ} & CDAB \\ \Pi_3 & 270^{\circ} & BCDA \end{array}$$

This group is generated by the Π_1 or Π_3 turns $\to \Pi = \{\Pi_1, \Pi_2, \Pi_3, e\}$. It is also important to notice that S_4 is a **symmetric group** containing all 24 permutations of square ABCD.

Example 1.3. Consider all symmetries of ABCD: $\{e, r_{90}, r_{180}, r_{270}, V, H, L, R\}$, where V is a vertical reflection, H is a horizontal reflection, L is a left diagonal reflection.

	e	r_{90}	r_{180}	r_{270}	V	Н	L	R
e	е	r_{90}	r_{180}	r_{270}	V	Н	L	R
r_{90}	r_{90}	r_{180}	r_{270}	е	R	L	V	Н
r_{180}	r_{180}	r_{270}	е	r_{180}	Н	V	R	L
r_{270}	r_{270}	е	r_{90}	r_{180}	L	R	H	V
\overline{V}	V	L	Н	R	е			
H	H	R	V	L		е		
L	L	Н	R	V			e	
R	R	V	L	Н				е

The leftmost column shows the first operation followed by the operation in the topmost row. This is known as the dihedral group on 4 elements $\to D_4$. Here $|D_4|=8$, which generalizes to $|D_n|=2n$. It is important to note that the dihedral group is a subgroup of the set of all possible permutations.

Example 1.4. Below is a table of decomposed operations for square ABCD, shown in terms of permutations:

$$\begin{array}{c|cccc} e & e & \\ r_{90} & (ADCB) & \\ r_{180} & (AC) (DB) & r_{20}^2 \\ r_{270} & (ABCD) & r_{90}^3 \\ H & (AD) (BC) & \\ V & (AB) (CD) & \\ L & (BD) & \\ R & (AC) & \\ \end{array}$$