Lesson 5: Heaps

CSC325 - ADVANCED DATA STRUCTURES & ALGORITHMS | SPRING 2022

DR. ANDREY TIMOFEYEV

OUTLINE

- •Introduction.
- •Heap structure.
- •Building a heap.
- •Heapsort.

INTRODUCTION

- •Heap complete (semi-)ordered tree that satisfies heap property:
 - Max (largest-on-top) heap every node is >= all its children (if any).
 - For any given node C, if P is a parent node of C, then the value of P is >= to the value of C.
 - Min (smallest-on-top) heap every node is <= all its children (if any).
 - For any given node C, if P is a parent node of C, then the value of P is <= to the value of C.
- •In heap highest/lowest element is always at the top (root).
- •Conceptually:
 - **Heap** tree that is **full on all levels** (except possibly the lowest level) and filled in from **left to right.**
- •Heap use cases:
 - Repeatedly removing object with the highest/lowest value (priority).
 - Insertions are combined with removals of the root node.

HEAP STRUCTURE

- Heap complete tree -> convenient to store in an array.
- •When heap stored in an array, indexes of parent & children nodes are computed as follows:
 - leftChildIndex = 2 x parentIndex + 1
 - rightChildIndex = 2 x parentIndex + 2
 - parentIndex = (childIndex 1) // 2
- Not every node has two or one child.
 - If left/rightChildIndex >= heap size -> leaf node.
- •All nodes except root node have parents.
- •**Height** of heap storing n nodes: $h = \lfloor \log n \rfloor$

Sample heap

Heap represented as array

BUILDING A HEAP (1)

- •Heaps are built based on their type:
 - Max heap largest on top, by sift-up process.
 - Min heap smallest on top, by sift-down process.

Building largest-on-top heap:

- Sequence of values is added into the heap in provided order.
- Each subsequent value after root is sifted up into its final location.
- Sift-up process:
 - Compute index of a parent node and compare values.
 - If value is greater than value at parent node -> swap values.
 - Repeat until root is reached (index 0) or node is in proper location (no swap needed).

BUILDING A HEAP (2)

•Example of building a heap: [71, 15, 36, 57, 101].

BUILDING A HEAP (3)

•Example of building a heap: [71, 15, 36, 57, 101].

HEAPSORT

Heapsort algorithm consists of two phases:

- Phase I.
 - Adding values to the heap & "heapifying" them.
- Phase II.
 - **Removing** values from the top (root) of the heap.
 - "Re-heapifying" the rest of the values in the heap.

Phase II applied on the max (largest on top) heap:

- Place largest value at the end of the heap data list (correct position).
 - Swap root with last value in the heap.
- Decrease size of the heap by 1.
- Root now does not comply with heap properties -> sift it down to the correct position.
 - Keep swapping with the largest child until it is in the correct position, or no children left (becomes leaf).

HEAPSORT: EXAMPLE

- •Heapsort example: [10, 30, -100, 50, 20, 30, -40, 70, 5, 50].
 - After adding values to the heap & "heapifying" in Phase I:
 - Data = [70, 50, 30, 30, 50, -100, -40, 10, 5, 20]
 - Phase II applied on [70, 50, 30, 30, 50, -100, -40, 10, 5, 20]

HEAPSORT COMPLEXITY

Heapsort complexity.

- Complexity of Phase I.
 - Adding items to the heap takes O(logn) and performed for each element n, thus O(nlogn) time.
- Complexity of Phase II.
 - Sifting root down into correct position after swapping performed n-1 times, thus O(nlogn) time.
- Overall heapsort complexity is O(nlogn).

Comparisons to quicksort.

- Both heapsort & quicksort operate in O(nlogn) time.
 - Quicksort values are always moved toward their final location.
 - **Heapsort** values are moved to a heap, then moved again to arrive at their final location.
- Quicksort >> heapsort even though they have the same computational complexity.