Unification & Generalised Modus Ponens

Petros Papapanagiotou

Informatics 2D: Reasoning and Agents

Lecture 12

Universal instantiation (UI)

Every instantiation of a universally quantified formula α is entailed by it:

 $\forall v. a$ $a\{v/g\}$

for any variable v and ground term g

Example: $\forall x. King(x) \land Greedy(x) \Rightarrow Evil(x)$ yields:

- \circ King(John) \wedge Greedy(John) \Rightarrow Evil(John)
- $King(Richard) \land Greedy(Richard) \Rightarrow Evil(Richard)$
- \circ King(Father(John)) \wedge Greedy(Father(John)) \Rightarrow Evil(Father(John))

variables!

Contains no

etc...

Existential instantiation (EI)

For any formula α , variable ν , and some constant symbol k that does not appear elsewhere in the knowledge base:

$$\frac{\exists v. a}{a\{v/k\}}$$

Example. $\exists x. Crown(x) \land OnHead(x,John)$ yields:

 \circ Crown(C₁) \wedge OnHead(C₁,John)

provided C_1 is a new constant symbol, called a Skolem constant

Reduction to propositional inference

Suppose the KB contains just the following:

 $\forall x. \ King(x) \land Greedy(x) \Rightarrow Evil(x)$

King(John)

Greedy(John)

Brother(Richard, John)

Instantiating the universal sentence in all possible ways, we have:

- King(John) ∧ Greedy(John) ⇒ Evil(John)
- King(Richard) ∧ Greedy(Richard) ⇒ Evil(Richard)
- King(John)
- Greedy(John)
- Brother(Richard, John)

Universal sentence can then be discarded!

The new KB is propositionalized: proposition symbols are King(John), Greedy(John), Evil(John), King(Richard), etc.

Not in KB as a fact!

Reduction contd.

Every FOL KB can be propositionalized so as to preserve entailment

A ground sentence is entailed by new KB iff entailed by original KB

Idea: propositionalize KB and query, apply DPLL (or some other complete propositional method), return result

Problem: with function symbols, there are infinitely many ground terms, • e.g., Father(Father(John)))

Reduction contd.

Theorem: Herbrand (1930)

ullet If a sentence α is entailed by a FOL KB, it is entailed by a finite subset of the propositionalized KB

Idea: For n = 0 to ∞ do

- create a propositional KB by instantiating with depth-n terms
- \circ see if α is entailed by this KB

Problem: works if α is entailed, loops forever if α is not entailed

Theorem: Turing (1936), Church (1936).

• Entailment for FOL is semi-decidable (i.e. algorithms exist that say yes to every entailed sentence, but no algorithm exists that also says no to every non-entailed sentence.)

Problems with propositionalization

Propositionalization seems to generate lots of irrelevant sentences.

Example:

$$\forall x. \, \mathsf{King}(x) \land \, \mathsf{Greedy}(x) \Rightarrow \mathsf{Evil}(x) \qquad \mathsf{King}(\mathsf{John})$$

$$\forall y. \, \mathsf{Greedy}(y) \qquad \qquad \mathsf{Brother}(\mathsf{Richard}, \mathsf{John})$$

• It seems obvious that *Evil(John)*, but propositionalization produces lots of facts such as *Greedy(Richard)* that are irrelevant.

With p k-ary predicates and n constants, there are $p \cdot n^k$ instantiations.

Unification

Unification

We can get the inference *immediately* if we can find a substitution θ such that such that King(x) and Greedy(x) match King(John) and Greedy(y).

$$\theta = \{x/John, y/John\}$$

More generally:

$$Unify(\alpha,\beta) = \theta \iff \alpha\theta = \beta\theta$$

α	β	heta
Knows(John, x)	Knows(John, Jane)	
Knows(John, x)	Knows(y, OJ)	
Knows(John, x)	Knows(y, Mother(y))	
Knows(John, x)	Knows(x, Richard)	

α	β	heta
Knows(John, x)	Knows(John, Jane)	{x/Jane}
Knows(John, x)	Knows(y, OJ)	
Knows(John, x)	Knows(y, Mother(y))	
Knows(John, x)	Knows(x, Richard)	

α	β	heta
Knows(John, x)	Knows(John, Jane)	{x/Jane}
Knows(John, x)	Knows(y, OJ)	{x/OJ, y/John}
Knows(John, x)	Knows(y, Mother(y))	
Knows(John, x)	Knows(x, Richard)	

α	$oldsymbol{eta}$	heta
Knows(John, x)	Knows(John, Jane)	{x/Jane}
Knows(John, x)	Knows(y, OJ)	{x/OJ, y/John}
Knows(John, x)	Knows(y, Mother(y))	{y/John, x/Mother(John)}
Knows(John, x)	Knows(x, Richard)	

α	β	heta
Knows(John, x)	Knows(John, Jane)	{x/Jane}
Knows(John, x)	Knows(y, OJ)	{x/OJ, y/John}
Knows(John, x)	Knows(y, Mother(y))	{y/John, x/Mother(John)}
Knows(John, x)	Knows(x, Richard)	Fail!

α	β	heta
Knows(John, x)	Knows(John, Jane)	{x/Jane}
Knows(John, x)	Knows(y, OJ)	{x/OJ, y/John}
Knows(John, x)	Knows(y, Mother(y))	{y/John, x/Mother(John)}
Knows(John, x)	Knows(x, Richard)	Fail!

Standardizing variables apart eliminates overlap of variables

e.g. change Knows(x, Richard) to $Knows(z_{17}, Richard)$ and then we succeed the last case with

 $\theta = \{z_{17}/John, x/Richard\}$

MGU

Unifying Knows(John, x) and Knows(y, z)

$$\theta = \{y/John, x/z\}$$
 or $\theta = \{y/John, x/John, z/John\}$

The first unifier is more general than the second.

FOL: There is a **single** most general unifier (MGU) that is unique up to renaming of variables.

$$MGU = \{y/John, x/z\}$$

Can be viewed as an equation solving problem.

• i.e. solve $Knows(John, x) \stackrel{?}{=} Knows(y, z)$

MGU Examples

	MGU
$Loves(John, x) \stackrel{?}{=} Loves(y, Mother(y))$	
$Loves(John, Mother(y)) \stackrel{?}{=} Loves(y, y)$	

MGU Examples

	MGU
$Loves(John, x) \stackrel{?}{=} Loves(y, Mother(y))$	{x/Mother(John), y/John}
$Loves(John, Mother(y)) \stackrel{?}{=} Loves(y, y)$	

MGU Examples

	MGU
$Loves(John, x) \stackrel{?}{=} Loves(y, Mother(y))$	{x/Mother(John), y/John}
$Loves(John, Mother(y)) \stackrel{?}{=} Loves(y, y)$	Fail!

Finding the MGU

Can be broken-down into a series of steps

- Decomposition
- Conflict
- Eliminate
- Delete
- Switch
- Coalesce
- Occurs Check

Other presentations of algorithm are possible (see R&N)

$$f(s_1, ..., s_n) \stackrel{?}{=} f(t_1, ..., t_n)$$

$$s_1 \stackrel{?}{=} t_1, ..., s_n \stackrel{?}{=} t_n$$

Example

Given

 $Knows(John, x) \stackrel{?}{=} Knows(y, z)$

Replace with

John
$$\stackrel{?}{=} y$$
, $x \stackrel{?}{=} z$

Decomposition

$$f(s_1, ..., s_n) \stackrel{?}{=} g(t_1, ..., t_n)$$
 where $f \neq g$

Fail!

Example

Given

 $Knows(John, x) \stackrel{\cdot}{=} Greedy(y)$

fail

Conflict

P, $x \stackrel{?}{=} t$ where x occurs in P but not in t, and t is not a variable

Replace with

 $P\{x/t\}$ and $x \stackrel{?}{=} t$

Example

Given

 $Knows(John, x) \stackrel{.}{=} Knows(y, z), z \stackrel{.}{=} Richard$

Replace with

 $Knows(John, x) \stackrel{\cdot}{=} Knows(y, Richard), z \stackrel{\cdot}{=} Richard$

Eliminate

$$P, s \stackrel{?}{=} s$$

Replace with

P

Example

Given

 $z \stackrel{?}{=} Richard$, $Greedy(John) \stackrel{?}{=} Greedy(John)$

Replace with

$$z \stackrel{?}{=} Richard$$

Delete

P, $s \stackrel{?}{=} x$ where x is a variable and s is not

Replace with

P and $x \stackrel{?}{=} s$

Example

Given

 $Knows(John, x) \stackrel{?}{=} Knows(y, z)$, $Richard \stackrel{?}{=} z$

Replace with

 $Knows(John, x) \stackrel{\cdot}{=} Knows(y, z), z \stackrel{\cdot}{=} Richard$

Switch

 $P, x \stackrel{?}{=} y$ where x, y variables occurring in P

Replace with

$$P\{x/y\}$$
 and $x \stackrel{?}{=} y$

Example

Given

 $Knows(John, x) \stackrel{?}{=} Knows(y, z), y \stackrel{?}{=} z$

Replace with

 $Knows(John, x) \stackrel{?}{=} Knows(z, z), y \stackrel{?}{=} z$

Coalesce

 $x \stackrel{?}{=} s$ where x **occurs** in s and s not a variable

Fail!

Occurs Check

Example

Given

P(x), $x \stackrel{?}{=} Father(x)$

Fail (else Eliminate will loop)

P(Father(Father(...))))

Decompose

John $\stackrel{?}{=} y$, $x \stackrel{?}{=} Mother(y)$

Switch

 $y \stackrel{?}{=} John, x \stackrel{?}{=} Mother(y)$

Eliminate

 $y \stackrel{?}{=} John, x \stackrel{?}{=} Mother(John)$

Example

Generalised Modus Ponens

Modus Ponendo Ponens

Latin for "method of putting by placing" - "way that affirms by affirming"

$$\frac{P \qquad P \Longrightarrow Q}{Q}$$

$$P$$
, $P \Longrightarrow Q \vdash Q$

Generalized Modus Ponens (GMP)

$$\frac{p_1',p_2',...,p_n' \quad (p_1 \land p_2 \land ... \land p_n \Longrightarrow q)}{q\theta} \text{ where } p_i'\theta \equiv p_i\theta$$

```
Example: \forall x. King(x) \land Greedy(x) \Rightarrow Evil(x)
                            p'_1 is King(John)
                                                                          p_1 is King(x)
                            p_2' is Greedy(y)
```

 p_2 is Greedy(x)

 θ is {x/John, y/John} q is Evil(x)

 $q\theta$ is Evil(John)

GMP used with KB of definite clauses (exactly one positive literal)

All variables assumed universally quantified

Soundness of GMP

Need to show that

$$p'_1, p'_2, \dots, p'_n, (p_1 \land p_2 \land \dots \land p_n \Rightarrow q) \vDash q\theta$$

provided that $p_i'\theta = p_i\theta$ for all i

Lemma: For any sentence p, we have $p \models p\theta$ by UI

- 1. $(p_1 \land p_2 \land ... \land p_n \Rightarrow q) \models (p_1 \land p_2 \land ... \land p_n \Rightarrow q)\theta = (p_1 \theta \land p_2 \theta \land ... \land p_n \theta \Rightarrow q\theta)$
- 2. $p'_1, p'_2, ..., p'_n \models p'_1 \land p'_2 \land ... \land p'_n \models (p'_1 \land p'_2 \land ... \land p'_n) \theta$ = $p'_1 \theta \land p'_2 \theta \land ... \land p'_n \theta = p_1 \theta \land p_2 \theta \land ... \land p_n$

3. From 1 and 2, $q\theta$ follows by ordinary Modus Ponens

New Example KB

Example Knowledge Base

It is known in The Hundred-Acre Wood that if someone who is very fond of food gives a treat to one of their friends, they are really generous.

Eeyore, the sad donkey, has some hunny that he has received for his birthday from Winnie-the-Pooh, who, as we know, is very fond of food.

Prove that Winnie-the-Pooh is generous.

Formalisation

if someone who is very fond of food gives a treat to one of their friends, they are really generous

• $VeryFondOfFood(x) \land Treat(y) \land Friend(z) \land Gives(x, y, z) \Rightarrow Generous(x)$

Eeyore (...) has some hunny

• $\exists x. Owns(Eeyore, x) \land Hunny(x)$ or after El: $Owns(Eeyore, H_1) \land Hunny(H_1)$

that he has received for his birthday from Winnie-the-Pooh

• $Hunny(x) \land Owns(Eeyore, x) \Rightarrow Gives(Pooh, x, Eeyore)$

Hunny is a treat.

• $Hunny(x) \Rightarrow Treat(x)$

Residents of the the Hundred-Acre Wood are friends.

• $Resident(x, HundredAcreWood) \Rightarrow Friend(x)$

Eeyore is a resident of the Hundred-Acre Wood.

• Resident(Eeyore, HundredAcreWood)

Pooh is very fond of food.

VeryFondOfFood(Pooh)

Why?

Setting the scene for inference & resolution.

Linked to logic programming.

Meta-theory.

...but more in the next lecture!