

O PROBLEMA DA ALTA DIMENSIONALIDADE...

ANÁLISE PCA

O objetivo da análise é encontrar um meio de condensar a informação contida em várias variáveis originais em um conjunto menor de variáveis estatísticas (componentes) com uma perda mínima de informação (Adaptado Operdata - 2019)

https://medium.com/analytics-vidhya/understanding-principle-component-analysis-pca-step-by-step-e7a4bb4031d9

ANÁLISE **PCA**

Transformação Ortogonal dos dados:

ANÁLISE PCA – EXEMPLO

VÍRUS DA CLASSE CORONA

Dataset 1

Seq	Host
ATGTTTGTTTTGCTTGTTGCATATGCCTTGTTGCATATTGCTGGTT ATGTTTTTGATACTTTTAATTTCCTTACCAATGGCTTTTGCTGTTA ATGTTTATTTTCTTATTATTTCTTACTCTCACTAGAGGTAGTGACC ATGACGCCTTTAATTTACTTCTGGTTGTTCTTACCAGTACTTCTAA ATGAAGTCTTTAACTTACTTCTGGTTGTTCTTACCAGTACTTTCAA ATGCAGAGAGCTCTATTGATTATGACCTTACTTTGTCTCGTTCGAG ATGTTTTTGATACTTTTAATTTCCTTACCAACGACTTTTGCTGTTA ATGAAACTTTTTATAGTTTTTGTGCTCCTTTTTAGGGTGTGTTATT ATGTTGGTGAAGTCACTGTTTTTAGTGACTCTTTTTGTTTTGCACTAT ATGTTGGTAACACCTCTTTTATTAGTGACTCTTTTTTTTT	human human porcine porcine porcine bovine bat avian avian

730 rows

. ANÁLISE PCA - EXEMPLO VÍRUS DA CLASSE CORONA

$$P_{xy} = \frac{f_{xy}}{f_x f_y}$$

Where:

- f_x is the frequence of nucleotide x,
- f_v is the frequence of nucleotide y,
- f_{xy} is the frequence of dinucleotide xy.

So, we will have measurements for 16 dinucleotides!!!

And, if we aggregate the frequence of mononucleotides T, C, and G.

ANÁLISE PCA - EXEMPLO

VÍRUS DA CLASSE CORONA

ANÁLISE PCA – EXEMPLO VÍRUS DA CLASSE CORONA

Principal Component Analysis (não supervisionado)

ANÁLISE PCA – EXEMPLO

VÍRUS DA CLASSE CORONA

Principal Component Analysis

Dataset 1

Dataset 1						
	PC 1	PC 2	Host			
0	3.775624	1.613269	human			
36	-1.254264	-3.114602	human			
72	-1.845260	-1.941322	human			
108	-1.657282	-0.982642	human			
144	1.436796	3.099578	human			
180	-1.643563	1.725470	human			
216	-2.941701	1.510518	porcine			
252	-2.935069	1.062321	porcine			
288	-2.914471	0.908152	porcine			
324	-2.912731	0.903012	porcine			
360	4.935531	3.713215	porcine			
396	-2.124629	-2.173583	bovine			
432	-2.178364	-2.104020	bovine			
468	1.622693	3.955135	bat			
504	-1.699718	2.866013	bat			
540	-1.049189	-0.162940	murine			
576	4.694584	-1.157702	avian			
612	4.440957	-1.328387	avian			
648	4.228678	-0.941589	avian			
684	4.290554	-1.297679	avian			
720	4.907956	2.258447	avian			

730 rows x 2 cols

ANÁLISE PCA – EXEMPLO

VÍRUS DA CLASSE CORONA

.REDUÇÃO DE **DIMENSIONALIDADE**

• Análise do Discriminante Linear (LDA) (supervisionado)

good projection: separates classes well

T-SNE: T-Distributed Stochastic Neighbour Embedding

O objetivo t-SNE é endereçar alguns problemas do próprio PCA, tais como:

- Escala não linear para representar mudanças em diferentes níveis de dimensionalidade;
- Separação ideal em 2 dimensões;
- Não-supervisionado (originalmente)
- Distorção do espaço para melhorar visualização

T-SNE: T-Distributed Stochastic Neighbour Embedding

Como Funciona?

Com base na tabela all-vs-all de distâncias de célula a célula em pares

0	10	10	295	158	153
9	0	1	217	227	213
1	8	0	154	225	238
205	189	260	0	23	45
248	227	246	44	0	54
233	176	184	41	36	0

T-SNE: T-Distributed Stochastic Neighbour Embedding

Perplexidade = número esperado de vizinhos dentro de um cluster

Distâncias dimensionadas em relação aos vizinhos de perplexidade

0	4	6	586	657	836
4	0	4	815	527	776
9	3	0	752	656	732
31	28	29	0	4	· 7 •
31	24	25	4	0	7
40	37	32	8	8	0 .

T-SNE: T-Distributed Stochastic Neighbour Embedding

COMO FAZER REDUÇÃO DA DIMENSIONALIDADE ONDE A AMOSTRA DO NOSSO PROBLEMA É UMA IMAGEM?

Multidimensional Data

Data represented best

Slow performance, High Precision

Low Dimensional Data

Reduce Precision

High Performance

An autoencoder neural network is an unsupervised Machine learning algorithm that applies backpropagation, setting the target values to be equal to the inputs.

AUTOENCODERS - **DEFINIÇÃO**

Key Facts about Autoencoders

- It is an unsupervised ML algorithm similar to PCA.
- It minimizes the same objective function as PCA.
- It is a neural network.
- The neural network's target output is its input.

Componentes:

Components of Autoencoders

(02) Code

Encoder

This is the part of the networks that compresses the input into a latent space representation.

Code

This is the part of the network represents the compressed input that is fed to the decoder

Decoder

This part aims to reconstruct the input from the latent space representation.

PROPRIEDADES DOS AUTOENCODERS

PROPRIEDADES DOS AUTOENCODERS

Code Size

Smaller size results in more compression

Number of Layers

The autoencoder can have manu layers

Loss Function

Mean squared error or binary cross entropy

Number of node per layers

Stacked autoencoders look like a sandwich

Bottleneck approach is an approach to for deciding which aspects of observed data are relevant information and what aspects can be thrown away.

- Compactness of representation, measured as the compressibility.
- Representation retains about some behaviourally relevant variables.

Learns to remove noise or reconstruct missing parts

Noisy Version is converted to clean version

The network fills the gaps in the images

- Maps circles and squares from na image to the same image but with Colors
- Purple is formed sometimes because of blend of colors, where network hesitates between circle or square

Demonstração simplificada com dataset MNIST

de Autoencoders

Demonstração remoção de ruídos dataset MNIST

Autoencoders com

OBRIGADO

Copyright © 2020 | Professor Msc. Felipe Teodoro

Todos os direitos reservados. Reprodução ou divulgação total ou parcial deste documento, é expressamente proibido sem consentimento formal, por escrito, do professor/autor.

#