ФТОРСОДЕРЖАЩИЕ β-ДИКЕТОНЫ В ПРОЦЕССЕ СОЗДАНИЯ ЛЮМИНЕСЦИРУЮЩИХ НАНОДИСПЕРСИЙ

Грищенко А.С.¹, Парамонов Д.В.², Васильев Н.В.^{1,2}

¹Московский государственный областной университет, ул. Радио, 10-а, Москва, 105005, Россия; e-mail: grisc.alena@gmail.com

²ФГУП Государственный научно исследовательский институт Биологического приборостроения, Волоколамское шоссе, 75, кор. 1, Москва, 125424, Россия; e-mail: nikolai-vasilev@mail.ru

Аннотация: Работа посвящена изучению методов получения активно флуоресцирующих нанодисперсий. Фторсодержащие β-дикетоны 2-нафтоилтрифторацетон, 2-бензофураноилтрифторацетон образуют активно люминесцирующие комплексы с европием, которые использованы для введения в нанодисперсии на основе Аэросила в условиях ультразвуковой дезагрегации. Полученные нанодисперсии после диализной очистки активно люминесцируют в водной фазе, проявляя высокие времена задержки люминесценции Ключевые слова: фторсодержащие β-дикетоны, люминесцирующие наночастицы, ультразвуковое дезагрегирование, нанодисперсии, анализ

Введение

Фторсодержащие β-дикетоны являются одними из лучших лигандов при образовании комплексов с редкоземельными элементами. Как правило, комплексы фторсодержащих β-дикетонов имеют октадентатное строение, при этом только три β-карбонильных фрагмента входят в координационное окружение металла, а еще две координационные вакансии занимает вода или лиганд другого типа[1, 2]. Такая закономерность многократно подтверждена рентгеноструктурными исследованиями, в частности, на примере гидратированного комплекса теноилтрифторацетона с европием состава - [Eu(TTA)₃(H₂O)₂] [1]. В качестве солигандов могут выступать различные комплексоны, в частности, хорошим «вытеснителем» воды является триоктилфосфиноксид (ТОРО) [2, 3].

Комплексы фторсодержащих β -дикетонов с европием, а также некоторыми другими лантаноидами (самарий, тербий), проявляют фотофизические свойства (длинноволновое возбуждение $\approx 330\text{-}400$ нм, долгоживущую люминесценцию $\approx 40\text{-}60$ мкс), определяющие их использование в иммунофлуоресцентном медико-биологическом анализе [2].

Такие свойства как гидрофобность и повышенная кислотность фторсодержащих βдикетонов обусловливают способность к вытеснению из внутренней координационной сферы комплекса молекул воды, которая является известным тушителем люминесценции [3]. Известно, что перспективным направлением иммунофлуоресцентного анализа с временным разрешением является использование нанодисперсий, применение которых в объемных или твердофазных методах анализа на порядки увеличивает чувствительность иммунодиагностики заболеваний и генетических отклонений [3, 4].

Обсуждение результатов исследования.

Настоящая работа разработке получения посвящена методов активно флуоресцирующих нанодисперсий путем сорбционного допирования комплексами фторсодержащих β-дикетонов и европия (III) в условиях ультразвуковой обработки пирогенного кремнезема Аэросил. В качестве лигандов рассматривались следующие фторсодержащие β-дикетоны: 2-нафтоилтрифторацетон 1, широко используемый в технологии DELFIA (усиленного диссоциативного лантанидного анализа перспективный лиганд - 2-безофуранилтрифторацетон 2 [5].

$$CF_3$$

1 2

Рисунок 1. Фторсодержащие 1,3-дикетоны. 1 2-Нафтоилтрифторацетон; 2 2-бензофураноилтрифторацетон

Исследовалось введение европиевых комплексов фторсодержащих дикетонов 1 и 2 в дисперсии на основе Аэросилов 200, 300, 380, (производство «Orisil») в условиях обработки на ультразвуковых установках низкой и высокой мощностей (Elmasonic S10/H и Labsonic 2000, при частотах 37 и 20 кГц и мощностях генератора 60 и 170 Вт, соответственно). Лучшая дезагрегация была достигнута при применении Аэросила 380, дисперсии на основе которого в дальнейшем подвергались изучению. Для приготовления дисперсий использовали 2% дисперсию Аэросила марок (175, 300, 380) в воде или мицеллярной системе - додецилсульфата натрия 0,3 % раствор (SDS) в воде. Для сорбционного допирования использовались комплексы европия: фторсодержащий β-дикетон – Eu (III) – триоктилфосфиноксид (ТОРО), состава 3:1:3.

В процессе ультразвукового дезагрегирования и «in situ» допирования комплексами фторсодержащих дикетонов 1 и 2 образовывались частицы различных размеров (табл. 1). Размер полученных наночастиц оценивался по спектрам мутности, согласно методике [6]. Полученные нанофазы обладают агрегативной устойчивостью, по крайней мере, в течение нескольких недель, после чего частично седиментируют со снижением люминесценции в объеме, однако достаточно легко ресуспензируются при озвучивании в течение короткого периода времени (0,5-1 мин), люминесцентные свойства при этом восстанавливаются.

В таблице 1 представлены экспериментальные данные по исследованию полученных нанодисперсий, в том числе, и их люминесцентно-спектральные свойства. Дисперсии изучались при возбуждении на длинах волн 340 нм и 360 нм, для комплексов дикетонов 1 и 2, в соответствии с максимумами поглощения комплексов. При этом допирование флуоресцентными комплексами наночастиц проводилось в воде и в присутствии SDS (додецилсульфат натрия) с концентрацией - 0,3%, которая обеспечивала мицеллообразование.

Таблица 1. Характеристики нанодисперсий (НЧ), полученных ультразвуковым допированием Аэросила 380 комплексами европия с фторсодержащими дикетонами 1 и 2 (разведение в 10 раз) в сравнении с растворами этих комплексов.

	НЧ-1	Комплекс	HЧ-2 (SDS 0,3%)	Комплекс (SDS 0,3%)	НЧ-3	Ком- плекс	HY-4 (SDS 0,3%)	Комплекс (SDS 0,3%)
Дикетон	1	1	1	1	2	2	2	2
ω (аэросила), %	0,02	-	0,02	-	0,02	-	0,02	-
C(Eu ³⁺), моль/л	1,02·10 ⁻⁴	1,04·10-4	1,01·10-4	1,06.10-4	1,04·10 ⁻⁴	1,02·10 ⁻⁴	1,05·10-4	1,01·10 ⁻⁴
D, нм	111	-	803	-	270	-	366	-
λ возб.(нм)	340	340	340	340	356	356	356	356
I _{люм.} отн. ед.	8,74	2,35	70,74	10,61	12,11	8,92	35,74	8,06
$I_{\scriptscriptstyle ЛЮМ}/C_{Eu}$	8,56·10 ⁴	$2,25 \cdot 10^4$	$7,00\cdot 10^{5}$	1,00·10 ⁵	1,16·10 ⁵	$8,74 \cdot 10^4$	$3,40\cdot10^{5}$	$7,98 \cdot 10^4$
I _{люм} (отн. ед) На одну частицу	7,53·10 ⁻¹¹	-	5,70· 10 ⁻⁹	-	1,19· 10 ⁻¹¹	-	3,57· 10 ⁻¹¹	-

Уровни люминесценции полученных дисперсий достаточно высоки и превышают люминесценцию соответствующих комплексов фторсодержащих дикетонов **1,2**, не содержащих нанофазу и исследованных для сравнения в тех же концентрациях. Этот факт свидетельствует об изоляции комплексов в результате их сорбции в разветвленной системе

пор дезагрегированного Аэросила. Люминесценция существенно выше в мицеллярных условиях в присутствии додецилсульфата натрия, в которых комплексы дополнительно изолированы от тушащего влияния воды, но при этом образующиеся частицы имеют больший размер. Комплексы фторсодержащих дикетонов достаточно прочно удерживаются в основном в внутрипоровом объеме наночастиц, а не на их поверхности, что подтверждается экспериментами при диализе дисперсий против воды, проводимом в течение нескольких суток. В результате такого диализа люминесценция нанодисперсий сохраняется на уровне ≈70-90% от исходного.

Таким образом, несмотря на неорганическую природу поверхности исходного силикатного матрикса, нами зафиксирована высокая сорбируемость комплексов европия с фторированными дикетонами в порах наночастиц. Полученные данные позволяют сделать вывод о перспективности дальнейшего исследования в качестве люминесцирующих реагентов для иммуноанализа на основе силикатных наночастиц дезагрегированных и допированных в условиях ультразвуковой обработки.

Экспериментальная часть.

Реактивы и растворы

В процессах дезагрегирования изучались Аэросилы 200, 300, 380, производства «Orisil». Дезагрегированию подвергались 0,2% суспензии аэросилов в воде (бидистиллят) или в растворе додецилсульфата натрия (0,3%) (SDS) (Acros). Для синтеза и введения люминесцентной метки использовали нитрат европия (III) шестиводный (марки "ХЧ", Новосибирский завод химреактивов), 2-нафтоилтрифторацетон 1 – NTA (Aldrich), 2-бензофураноилтрифторацетон 2, полученный по методике [5], триоктилфосфиноксид – ТОРО (Aldrich, 99%), DMF (марки "ХЧ", ГОСТ 20289-74).

Оборудование

Дезагрегирование и сорбционное допирование производили в ультразвуковых ваннах Elmasonic S10 / Н (Германия) и Labsonic 2000 (Германия), при частотах 37 и 20 кГц и мощностях генератора 60 и 170 Вт соответственно. Люминесценция нанодисперсий и комплексов с ионом европия регистрировалась на спектрофлуориметре Флюорат-02 «Панорама» производства ООО ««Люмэкс»» (временная задержка 100 мкс и время интегрирования 1000 мкс).

Типовая методика синтеза допированных нанодисперсий НЧ 1-4

Предварительно готовили комплекс лиганд + Eu^{3+} + $TO\Phi O$ в соотношении 3:1:3 при перемешивании смеси в диметилформамиде 0,1 мл при концентрации Eu^{3+} - 1,61 10^{-2} моль/л.

Навеску аэросила 0,2 г помещали в круглодонную колбу, вносили дистиллированную воду или раствор ДДС Na 0,3 % (10 мл), в течение 10 минут вели механическое перемешивание на магнитной мешалке, после чего в дисперсию медленно, при интенсивном перемешивании вводили раствор комплекса. Затем дисперсию помещали в ультразвуковую установку и подвергали дезагрегации при применении малой мощности (60 Вт) 4 часа, а при применении ультразвука высокой мощности (170 Вт) 10 минут.

Измерение люминесцентно-спектральных свойств проводили при разведении дисперсии в 10 раз.

Благодарности

Работа выполнена при поддержке Фонда содействия инноваци (Грант 12287/2017).

Литература

- 1. K. Binnemans K.A. Gschneidner, J.-C.G. Bünzli and V.K. Pecharsky, Elsevier, Rare-Earth beta-diketonates from Handbook on the Physics and Chemistry of Rare Earths, **2005**, 35, ed. by 2005.
- 2. Yuan J., Matsumoto K. Fluorescence enhancement by electron-withdrawing groups on β -diketones in Eu(III)- β -diketonato-topo ternary complexes// Anal. Sci. **1996**, 12, 31-36.
- 3. Кострюкова Т.С., Логинова О.Д., Влияние фосфорсодержащих синергистов на люминесценцию комплексов европия и их устойчивость во времени// Вестник Московского государственного областного университета. Серия «Естественные науки». **2014**, 5, 80-85.
- 4. I. Hemmila, S. Dakubu, V.M. Mukkala, H. Siitari, T. Lövgren, Europium as a label in time-resolved immunofluorometric assays//Anal. Biochem., **1984**, 137, 335-343.
- 5. M. Tan, G. Wang, X. Hai, Z. Ye, J. Yuan, Development of functionalized fluorescent europium nanoparticles for biolabeling and time-resolved fluorometric applications // J Mater Chem. **2004**, 14, 2896–2901.
- 6. N.S. Osin, V.G. Pomelova Multi-array immunophosphorescence technology for the detection of pathogens. In: Frontiers in research //National Institute of Allergy and. Infectious Diseases, NIH. **2008**, 233-240.
- 7. Д. В. Романов, А. И. Лямин, Н. П. Ивановская, А. Е. Жедулов, Н. С. Осин, Н. В. Васильев, Патент РФ № 2373200, **2009**.
- 8. В.И. Кленин, С.Ю. Щеголев, Определение размера и показателя преломления частиц из спектра мутности дисперсных систем // Оптика и спектроскопия. **1971**, 31(5), 794-802.