# Function approximation (Regression)

# Some Common Themes Illustrated through (Generalized) MLR

**Readings/Notation:** I'll closely follow Bishop Ch 3.1, 3.2, which uses machine learning notation: parameters are w's (for weights), dependent variable is "t" for target, and model produces output "y".

# Function Approximation / Regression/Prediction

- A predictive modeling technique
  - Given:
    - A set of input (AI) /independent (math)/ explanatory or predictor (stats) variables X
    - corresponding (set of ) output/dependent/response variables Y
  - Build: a model relating X to Y
    - single value for Y given X (more common)
      - e.g. E[Y|X], the "regression of y on X.
      - Assumes Y = function of X + (zero-mean, symmetric) noise
      - Add Confidence Interval (e.g. based on the Normally distributed noise term in MLR)
    - (Arbitrary) Distribution of Y given X

#### Parametric Models

Determine functional form of model (e.g. polynomials)

- "learn" the parameters (weights) of the model using the training data.
- Example: linear regression
- Generalize: linear combination of basis functions (basis function expansion)

$$y(x, \mathbf{w}) = \sum_{i=0}^{M} w_i \phi_i(x) = \mathbf{w}^{\mathsf{T}} \phi(x)$$

- Special Case: linear regression.
- Special Case: polynomial: (with scalar x)

$$y(x, \mathbf{w}) = w_0 + w_1 x + \ldots + w_M x^M$$

so that the basis functions are given by  $\phi_i(x) = x^i$ 

#### **Polynomial Curve Fitting**



$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^M w_j x^j$$

#### Least Squares

Minimize sum-of-squares error (SSE) (t's are the target values)

nize sum-of-squares error (SSE) (t's are the ta
$$E(\mathbf{w}) = \sum_{n=1}^{N} \{\mathbf{w}^{\mathsf{T}} \boldsymbol{\phi}(x_n) - t_n\}^2$$

Best interpretation? Consider Root Mean Squared Error (RMSE) or



# Least Squares Solution\*

Exact closed-form minimizer (ML solution)

$$\mathbf{w}^* = (\boldsymbol{\Phi}^\mathsf{T} \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^\mathsf{T} \vec{t}$$
where  $\vec{t} = (t_1, \dots, t_N)^\mathsf{T}$ 

$$= \text{"Pseudo-inverse solution"}$$
Takeaway: direction solution involves inversion of an

"Pseudo-inverse solution" and  $\Phi$  is the *design matrix* given by

$$\Phi = \begin{pmatrix} \phi_0(\mathbf{x}_1) & \cdots & \phi_M(\mathbf{x}_1) \\ \phi_0(\mathbf{x}_2) & \cdots & \phi_M(\mathbf{x}_2) \\ \vdots & \vdots & \vdots \\ \phi_0(\mathbf{x}_N) & \cdots & \phi_M(\mathbf{x}_N) \end{pmatrix}$$

(M+1)X(M+1) matrix

Explicitly shows collinearity problem

Multiple outputs?

$$\mathbf{w}_{k}^{*} = \left(\mathbf{\Phi}^{\mathsf{T}}\mathbf{\Phi}\right)^{-1}\mathbf{\Phi}^{\mathsf{T}}\vec{t_{k}}$$

(psuedo-inverse portioned part shared by all outputs; rest de-coupled.)

# Model Complexity and Overfitting

• "Noisy sine" example from Chris Bishop



#### **Over-fitting**



Root-Mean-Square (RMS) Error vs Polynomial order

#### **Data Set Size:**

#### 9<sup>th</sup> Order Polynomial



# Regularization (to avoid overfitting)

- "regularization term" imposes penalty on less desirable solutions
  - Cost =  $MSE + \lambda$  Penalty (f)
  - Regularization Penalty is a functional (maps each function f onto a number)
- Popular Penalties
  - ridge regression (sum squared of weights)
  - Lasso (sum of |w|; for large  $\lambda$  yields sparse models)
    - Elastic net: combines both ridge and Lasso
  - number of non-zero weights
  - smoothness of function

(note: "intercept", i.e.  $w_0$ , not included in penalties)

# Ridge Regression Example

• Discourage large values by adding penalty term to error

$$E(\mathbf{w}) = \sum_{n=1}^{N} \{\mathbf{w}^{\mathsf{T}} \phi(\mathbf{x}_n) - t_n\}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

- Also called shrinkage (stats) or weight decay (neural nets)
- The regularization coefficient  $\lambda$  now controls the effective model complexity
- \*Closed form solution:  $\mathbf{w} = (\lambda \mathbf{I} + \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi})^{-1} \mathbf{\Phi}^{\mathrm{T}} \mathbf{t}$ .
  - Leads to numerical stability as well!

# Regularized M = 9 Polynomial





# Regularized Parameters

• First col is the unregularized solution

|                          | $\ln \lambda = -\infty$ | $\ln \lambda = -20$ | $\ln \lambda = 0$ |
|--------------------------|-------------------------|---------------------|-------------------|
| $w_0^{\star}$            | 0.35                    | 0.35                | 0.1273            |
| $w_1^{\star}$            | 232.37                  | 5.56                | -0.0459           |
| $w_2^{\bar{\star}}$      | -5321.83                | -12.27              | -0.0578           |
| $w_3^{\overline{\star}}$ | 48568.31                | 19.01               | -0.0460           |
| $w_{4}^{\star}$          | -231639.30              | -82.58              | -0.0321           |
| $w_5^{\star}$            | 640042.26               | 46.49               | -0.0201           |
| $w_{6}^{\star}$          | -1061800.52             | 141.84              | -0.0104           |
| $w_{7}^{\star}$          | 1042400.18              | -29.57              | -0.0028           |
| $w_8^{\star}$            | -557682.99              | -231.55             | 0.0032            |
| $w_9^{\star}$            | 125201.43               | 142.98              | 0.0080            |

#### Generalization

• Noisy sine problem



### Ridge vs. Lasso

• HTF figs 3.7, 3.9: Prostate Cancer example. Red line chosen by Cross-validation



Effect on values of coefficients as "effective degrees of freedom (DOF)" is increased for (a) Ridge regression (left) and (b) Lasso (Right).

High  $\lambda$  translates to low DOF, so  $\lambda$  is being progressively decreased from left to right along the x-axis.

#### Evaluation

- Quality criterion for regression
  - Mean squared error (MSE) or equivalent, e.g. SSE, RMSE
    - true vs. empirical
    - normalized (R<sup>2</sup> value = % of variance explained)
    - Adjusted R<sup>2</sup>

# Estimating True Performance (Data Driven)

- enough data? Use "holdout" to estimate
- Moderately large? Use k-fold cross-validation
  - extreme case (small dataset) : Leave One Out (LOO)

K = 4 example



#### Bias-Variance Dilemma

Usually *measured* output is not a deterministic function of *given* inputs Assume: t = h(x) + zero-mean noise

• your model gives y (x). The expected squared loss,

$$\mathbb{E}[L] = \int \{y(\mathbf{x}) - h(\mathbf{x})\}^2 p(\mathbf{x}) d\mathbf{x} + \iint \{h(\mathbf{x}) - t\}^2 p(\mathbf{x}, t) d\mathbf{x} dt$$

- best predictor:  $\mathbb{E}[t \mid x] = h(x)$ ;
  - $MSE_{opt}$  = variance of the noise inherent in the random variable t. (2<sup>nd</sup> term on RHS)
- What does the first term comprise of?

# The Bias-Variance Decomposition

- Suppose we were given multiple data sets, each of size N. Any particular data set, D, will give a particular function y(x;D).
- For any x, The expected loss (over datasets of size N) is

$$\mathbb{E}_{\mathcal{D}} \left[ \{ y(\mathbf{x}; \mathcal{D}) - h(\mathbf{x}) \}^{2} \right]$$

$$= \underbrace{\{ \mathbb{E}_{\mathcal{D}} [y(\mathbf{x}; \mathcal{D})] - h(\mathbf{x}) \}^{2}}_{\text{(bias)}^{2}} + \underbrace{\mathbb{E}_{\mathcal{D}} \left[ \{ y(\mathbf{x}; \mathcal{D}) - \mathbb{E}_{\mathcal{D}} [y(\mathbf{x}; \mathcal{D})] \}^{2} \right]}_{\text{variance}}.$$

(try to express both terms in words)

# The Bias-Variance Decomposition II

Considering all possible values of x, we can write

where 
$$\operatorname{expected\ loss} = (\operatorname{bias})^2 + \operatorname{variance} + \operatorname{noise}$$

$$(\operatorname{bias})^2 = \int \{\mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] - h(\mathbf{x})\}^2 p(\mathbf{x}) \, d\mathbf{x}$$

$$\operatorname{variance} = \int \mathbb{E}_{\mathcal{D}}\left[\{y(\mathbf{x}; \mathcal{D}) - \mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})]\}^2\right] p(\mathbf{x}) \, d\mathbf{x}$$

$$\operatorname{noise} = \iint \{h(\mathbf{x}) - t\}^2 p(\mathbf{x}, t) \, d\mathbf{x} \, dt$$

Bias: how good the average model is;

Variance: how sensitive the model is to variations in data.

**NOTE**: the bias and variance concepts here apply to a predictive model, rather than to an estimator of a specific value.

#### Bias-Variance Tradeoff

- Change model type? Affect bias
- More training data: decrease variance
  - "consistent estimators" converge to ideal solution as  $|D| \rightarrow$  infinity
  - For small data sets, lower complexity models may be preferred.
- Ideal solution: suitable model type & complexity



Figure 2.11: Test and training error as a function of model complexity.

# Effect of Regularization on Bias-Variance

• Bishop 06, fig 3.5. Model is sum of 24 gaussians, with ridge regression



# Bias-Variance vs. Regularization Amount

 What happens to the curves as amount of training data increases?



# Extras

# Geometry of Least Squares\*

#### Consider

$$\mathbf{y} = \mathbf{\Phi}\mathbf{w}_{\mathrm{ML}} = \left[oldsymbol{arphi}_{1}, \ldots, oldsymbol{arphi}_{M}
ight]\mathbf{w}_{\mathrm{ML}}.$$
  $\mathbf{y} \in \mathcal{S} \subseteq \mathcal{T}$   $\mathbf{t} \in \mathcal{T}$   $igwedge_{N ext{-dimensional}}^{N ext{-dimensional}}^{N ext{-dimensional}}$ 

- •S is spanned by  $\varphi_1, \dots, \varphi_M$
- •w<sub>ML</sub> minimizes the distance between t and its orthogonal projection on S, i.e. y.



# Comparing Shrinkage Methods B06: fig 3.4

- ridge regression (Regularization Penalty = sum squared of weights)
   vs
- Lasso ((Regularization Penalty = sum of |w|)
  red: constant penalty contour; blue: unregularized error contours



#### Estimating True Performance (Formula Driven)\*

- true mean squared error (MSE = SSE/N) = empirical error + complexity term
  - complexity term = f (model type, # of parameters, # of training points)
    - e.g. linear regression with N samples, P parameters
       Akaike's Final Prediction error = MSE <sub>empirical</sub> (N+P) / (N P)
    - for nonlinear models, find "effective number of parameters" and plug into linear formulae

Takeaway: Formula Driven Estimates of True Performance specialized for linear models. Not so relevant in data mining context

# Least Angle Regression (LAR; HTF 3.4.4)\*

- Takeaway: Efficient procedure for fitting an entire lasso sequence with the cost of a single least squares fit.
- R code: lar Algorithm 3.2 Least Angle Regression.
  - Standardize the predictors to have mean zero and unit norm. Start with the residual r = y − ȳ, β<sub>1</sub>, β<sub>2</sub>, . . . , β<sub>p</sub> = 0.
  - Find the predictor x<sub>i</sub> most correlated with r.
  - Move β<sub>j</sub> from 0 towards its least-squares coefficient ⟨x<sub>j</sub>, r⟩, until some other competitor x<sub>k</sub> has as much correlation with the current residual as does x<sub>j</sub>.
  - 4. Move β<sub>j</sub> and β<sub>k</sub> in the direction defined by their joint least squares coefficient of the current residual on (x<sub>j</sub>, x<sub>k</sub>), until some other competitor x<sub>l</sub> has as much correlation with the current residual.
  - Continue in this way until all p predictors have been entered. After min(N − 1, p) steps, we arrive at the full least-squares solution.

# Group Lasso for Sparse Learning\*

- SLEP package
  - http://www.public.asu.edu/~jye02/Software/SLEP/overview.htm
- $\ell_1$ -Regularized (Constrained) Sparse Learning
- $\ell_1/\ell_q$ -Regularized Sparse Learning (q>1)
- Fused Lasso
- Sparse Inverse Covariance Estimation
- Sparse Group Lasso
- Tree Structured Group Lasso
- Overlapping Group Lasso
- Takeaway: A variety of methods exist to shrink parameters in different ways