Metody optymalizacji

Zestaw nr 1

Tomasz Jankowiak 249006

03.04.2023

1 Wstep

Celem było zapoznanie się z pakietem GLPK (GNU Linear Programming Kit), przeznaczonym do rozwiązywania problemów programowania liniowego oraz rozwiązanie kilku takich problemów, co przedstawiono w następnych rozdziałach.

2 Macierz Hilberta

Macierz Hilberta została wprowadzona w 1894 roku przez niemieckiego matematyka Davida Hilberta. Jest to macierz kwadratowa z elementami danymi wzorem $h_{i,j}=\frac{1}{i+j-1}$. Przykładowo macierz Hilberta 5x5 jest

postaci: $\begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} \\ \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} & \frac{1}{8} & \frac{1}{9} \end{bmatrix}$. Wykorzystuje się ją m.in. w następującym teście na dokładność i odporność $\begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} \\ \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} & \frac{1}{8} & \frac{1}{9} \end{bmatrix}$.

Minimalizujemy następującą funkcję celu:

$$a_{i,j} = \frac{1}{i+j-1}, \quad i,j = 1,...,n,$$

min
$$c^T x$$
, przy warunkach $Ax = b$, $x \ge 0$, gdzie $a_{i,j} = \frac{1}{i+j-1}$, $i, j = 1, ..., n$, $c_i = b_i = \sum_{j=1}^n \frac{1}{i+j-1}$, $i = 1, ..., n$.

Rozwiązaniem tego zagadnienia jest wektor kolumnowy $x_i=1, i=1,...,n$. Występująca w tym teście macierz Hilberta A powoduje złe uwarunkowanie zagadnienia nawet dla niedużych n.

Model zapisano w języku GNU Math Prog
. Liczono błąd względny $||x-\hat{x}||_2/||x||_2 = \frac{\sqrt{\sum_{i=1}^n (x_i-\hat{x_i})^2}}{\sqrt{\sum_{i=1}^n x_i^2}} = \frac{\sqrt{\sum_{i=1}^n (x_i-\hat{x_i})^2}}{\sqrt{\sum_{i=1}^n x_i^2}}$

 $\frac{\sqrt{\sum_{i=1}^{n}(1-\hat{x_i})^2}}{\sqrt{n}}$, gdzie $\hat{\mathbf{x}}$ - rozwiązanie obliczone, x - rozwiązanie dokładne (równe 1). Wyniki przedstawiono

n	błąd względny
2	$5,66 \cdot 10^{-16}$
3	$3,11\cdot 10^{-15}$
4	$1,88 \cdot 10^{-13}$
5	$3,09 \cdot 10^{-12}$
6	$1,85 \cdot 10^{-10}$
7	$9,93 \cdot 10^{-9}$
8	0,73
9	0,59
10	0,73
11	0,92
12	0,95

Rzeczywiście nawet niewielka macierz Hilberta powoduje złe uwarunkowanie zagadnienia. Wraz z rosnącym n złośliwość tej macierzy również rośnie. Znaczący rozmiar błędu pojawia się od n=8. Dla $n \leq 7$ można jeszcze rozwiązać problem z dokładnością do co najmniej 2 cyfr.

3 Problem przemieszczania dźwigów

W pewnej firmie budowlanej występuje problem niedoboru i nadmiaru dźwigów samojezdnych w siedmiu różnych miastach. Należy ustalić optymalny plan przemieszczania kamperów pomiędzy miastami, minimalizując koszty transportu, zależne od standardu typu dźwigu i odległości między miastami.

	Niedobór		Nadmiar	
Miejscowości	typ I	typ II	typ I	typ II
Opole	_	2	7	_
Brzeg	10	_	_	1
Nysa	_	_	6	2
Prudnik	4	_	_	10
Strzelce Opolskie	_	4	5	_
Koźle	8	2	_	_
Racibórz	_	1	_	_
Razem	22	9	18	13

Dane wejściowe: odległości pomiędzy poszczególnymi miastami (ustalone na podstawie map Google), liczby nadmiarów i niedoborów poszczególnych typów dźwigów w poszczególnych miastach, koszt transportu dźwigów danego typu. Dźwig typu 2 może zastąpić dźwig typu 1. Koszt transportu dźwigu typu 1 jest proporcjonalny do odległości, a koszt transportu dźwigu typu 2 jest o 20% wyższy.

Rozwiązano problem, zapisując go w języku *GNU MathProg*. Sparametryzowano zapis modelu i oddzielono model od danych. Otrzymane wyniki przedstawiono poniżej:

```
Move 4 Type1 cranes from Opole to Brzeg
Move 3 Type1 cranes from Opole to Kozle
Move 1 Type2 cranes from Brzeg to Brzeg
Move 2 Type2 cranes from Nysa to Opole
Move 5 Type1 cranes from Nysa to Brzeg
Move 1 Type1 cranes from Nysa to Prudnik
Move 3 Type2 cranes from Prudnik to Prudnik
Move 4 Type2 cranes from Prudnik to Strzelce
Move 2 Type2 cranes from Prudnik to Kozle
Move 1 Type2 cranes from Prudnik to Raciborz
Move 5 Type1 cranes from Strzelce to Kozle
```

Typ dźwigu	Liczba dźwigów	Z (miasto początkowe)	Do (miasto docelowe)
1	3	Opole	Koźle
1	5	Nysa	Brzeg
1	1	Nysa	Prudnik
1	5	Strzelce Opolskie	Koźle
2	1	Brzeg	Brzeg
2	2	Nysa	Opole
2	3	Prudnik	Prudnik
2	4	Prudnik	Strzelce Opolskie
2	2	Prudnik	Koźle
2	1	Prudnik	Racibórz

Transport dźwigu do tego samego miasta należy interpretować jako zastąpienie dźwigu typu 1 dźwigiem typu 2. Całkowity koszt wszystkich operacji wyniósł 1387.2 (koszt transportu dźwigu typu 1 ustalono na 1/km.

Po usunięciu warunku całkowitoliczbowości zmiennych decyzyjnych wynik pozostał taki sam, zatem założenie to nie było konieczne.

4 Optymalizacja produkcji

Na schemacie przedstawiono wydajności procesów rafinerii. Chcemy zminimalizować koszty produkcji, przy zachowaniu odpowiednich ograniczeń i warunków.

Zmienne decyzyjne

- B1 liczba ton ropy B1
- B2 liczba ton ropy B2
- destylat_B1_krak ilość destylatu z ropy B1 do krakowania
- destylat_B2_krak ilość destylatu z ropy B2 do krakowania
- $olej_B1_domowe$ ilość oleju z ropy B1 do domowych paliw olejowych
- olej_B2_domowe ilość oleju z ropy B2 do domowych paliw olejowych

Ograniczenia

• Składniki produktów końcowych:

```
\begin{aligned} \text{paliwa silnikowe} &\leqslant 0.15 \cdot B1 + 0.1 \cdot B2 + 0.5 \cdot (destylat\_B1\_krak + destylat\_B2\_krak) \\ \text{domowe paliwa olejowe} &\leqslant olej\_B1\_domowe + olej\_B2\_domowe + 0.2 \cdot (destylat\_B1\_krak + destylat\_B2\_krak) \\ \text{ciężkie paliwa olejowe} &\leqslant 0.15 \cdot B1 + 0.25 \cdot B2 + 0.06 \cdot (destylat\_B1\_krak + destylat\_B2\_krak) + \\ &\quad + (0.15 \cdot B1 - destylat\_B1\_krak) + (0.2 \cdot B2 - destylat\_B2\_krak) + \\ &\quad + (0.4 \cdot B1 - olej\_B1\_domowe) + (0.35 \cdot B2 - olej\_B2\_domowe) \end{aligned}
```

• Wymagana produkcja (w tonach):

```
paliwa silnikowe \geqslant 200000 domowe paliwa olejowe \geqslant 400000 cieżkie paliwa olejowe \geqslant 250000
```

• Zawartość siarki w domowym paliwie olejowym:

```
olej\_B1\_domowe\cdot 0,002+olej\_B2\_domowe\cdot 0,012+destylat\_B1\_krak\cdot 0,003+destylat\_B2\_krak\cdot 0,025 \\ \leqslant 0,005\cdot domowe\_paliwa\_oliwowe
```

Funkcja celu

Minimalizacja kosztów produkcji (w dolarach):

```
\min 1300 \cdot B1 + 1500 \cdot B2 + 10 \cdot (B1 + B2) + 20 \cdot (destylat\_B1\_krak + destylat\_B2\_krak)
```

Tona ropy B1 kosztuje 1300\$, a tona ropy B2 kosztuje 1500\$. Koszty destylacji wynoszą 10\$ za tonę, a koszty obróbki destylatów w próżni w jednostce krakowania są równe 20\$ za tonę.

Rozwiązanie

Do rozwiązania zagadnienia użyto solvera glpk. Zmienne decyzyjne są następujące:

- B1 = 1026030
- $B2 = 0 \pm 165$
- $destylat_B1_krak = 92\ 190.9$
- $destylat_B2_krak = 0$
- \bullet $olej_B1_domowe = 381 562$
- $\bullet \ \mathit{olej_B2_domowe} = 0$

Interpretacja

Żeby zminimalizować koszt produkcji surowców, trzeba przetworzyć 1 026 030 ton ropy B1, pomijając ropę B2, której w ogóle nie opłaca się przetwarzać. Do krakowania należy przeznaczyć 92 190.9 ton destylatu, a resztę, czyli 61 713.7 ton do produkcji ciężkich paliw olejowych. Olej należy rozdzielić między domowe i ciężkie paliwa olejowe, przeznaczając im odpowiednio 381 562 i 28 850.3 ton. Koszt tego procesu w rozpatrywanej jednostce czasu wyniósł 1 345 943 601 \$.