Mathematical & Computational Finance II Lecture Notes

Introduction to Stochastic Calculus

September 29 2015 Last update: January 1, 2018

1 Stochastic Integrals

Last time we discussed the quadratic variation of Brownian Motion and why that means its interesting. Now, we elaborate and move onto stochastic integration.

Definition 1. A simple process H from $[0,T] \times \Omega \to \mathbb{R}$ is such that¹

$$H_t(\omega) = \begin{cases} H_0(\omega) & t \in (t_0, t_1] \\ H_{t_i}(\omega) & t \in (t_i, t_{i+1}] \end{cases}$$

with partition $0 = t_0 \le \cdots \le t_N = T$ of [0, T] where H_{t_i} is \mathcal{F}_{t_i} -measurable (i.e. it's a random variable).

Definition 2. Let $t \in [0, T]$ and consider the partition $0 = t_0 < t_1 < \cdots < t_m = T$. Suppose that $H \in \mathcal{H}_T$ is a simple process with representation

$$H_t(\omega) = \begin{cases} H_0(\omega) & t \in (t_0, t_1] \\ H_{t_i}(\omega) & \text{if } t \in (t_i, t_{i+1}] \end{cases}$$

For Itô integrals we require that our processes be "right continuous", i.e. we have $t \in (t_i, t_{i+1}]$.

with respect to Brownian Motion B_t on a filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, \mathbb{P})$. Consider some random variables $\{H_{t_i}\}_{i=0}^m$ such that each H_{t_i} is \mathcal{F}_{t_i} -measurable and bounded. We define the stochastic integral (Itô integral) with respect to the Brownian motion B_t as

$$W(T) = \int_0^T H_u \, dB_u$$

1.1 Properties

For simple processes H and K and constants α, β

- 1. Linearity: $\int_0^t (\alpha H_u + \beta K_u) dB_u = \alpha \int_0^t H_u dB_u + \beta \int_0^t K_u dB_u$
- 2. $W(t) = \int_0^t H_u dB_u$ is a martingale.
- 3. $\mathbb{E}[(W(t))^2] = \mathbb{E}[(\int_0^t H_u dB_u)^2] = \mathbb{E}[\int_0^t H_u^2 du]$

For some visual intuition of the "simple proof" that integrals of simple processes are linear, let $X_t = H_t + K_t$ then we can see the following

Figure 1: By combining the existing partitions of H and K we can produce a new simple process which has the value of $X_t = H_t + K_t$ at every point t defined for H and K. Clearly we see that scaling H and K by constants α, β produces an analoguous result.

Proof. Proof that $W(t) = \int_0^t H_u dB_u$ is a martingale. By assumption there exists a partition $0 = t_0 \le \cdots \le t_N = T$ such that

$$H_t(\omega) = \begin{cases} H_0(\omega) & t \in (t_0, t_1] \\ H_{t_i}(\omega) & t \in (t_i, t_{i+1}] \end{cases}$$

where $H_{t_i} \in \mathcal{F}_{t_i}$. Suppose $t \in (t_k, t_{k+1}]$ then,

$$W(t) = H_{t_k}(B_t - B_{t_k}) + \sum_{i=1}^{k} H_{t_{i-1}}(B_{t_i} - B_{t_{i-1}})$$

To complete the proof we must show that W(t) is \mathcal{F}_t -measurable, integrable, and satisfies the martingale property: $\mathbb{E}[W(t)|\mathcal{F}_s] = W(s)$. Clearly W(t) is \mathcal{F}_t -measurable since its components

$$H_{t_{i-1}} \in \mathcal{F}_{t_{i-1}} \subset \mathcal{F}_t$$
 and $(B_{t_i} - B_{t_{i-1}}) \in \mathcal{F}_{t_i} \subset \mathcal{F}_t$ and $H_{t_k} \in \mathcal{F}_{t_k} \subset \mathcal{F}_t$ and $(B_t - B_{t_k}) \in \mathcal{F}_{t_k} \subset \mathcal{F}_t$

So every component of W(t) is \mathcal{F}_t -measuable and a sum/product of \mathcal{F}_t -measurable elements is itself \mathcal{F}_t -measurable.² For $0 \le s < t$ and $s \in (t_j, t_{j+1}]$ for j < k, thus s < t, we have

$$\mathbb{E}[W(t)|\mathcal{F}_s] = \mathbb{E}[H_{t_k}(B_t - B_{t_k}) + \sum_{i=1}^k H_{t_{i-1}}(B_{t_i} - B_{t_{i-1}})|\mathcal{F}_s]$$

$$= \mathbb{E}[H_{t_k}(B_t - B_{t_k})|\mathcal{F}_s] + \mathbb{E}[\sum_{i=1}^k H_{t_{i-1}}(B_{t_i} - B_{t_{i-1}})|\mathcal{F}_s]$$

But notice

$$\mathbb{E}[H_{t_k}(B_t - B_{t_k})|\mathcal{F}_s] = \mathbb{E}[\mathbb{E}[H_{t_k}(B_t - B_{t_k})|\mathcal{F}_{t_k}]|\mathcal{F}_s] \quad \text{(by the tower property)}$$

$$= \mathbb{E}[H_{t_k}\mathbb{E}[B_t - B_{t_k}|\mathcal{F}_{t_k}]|\mathcal{F}_s] \quad \text{(taking out what's known)}$$

$$= \mathbb{E}[H_{t_k} \cdot 0|\mathcal{F}_s] = 0 \quad \text{(by independent increments with mean 0)}$$

²Is this statement obvious?

³I think we skip the integrability condition and move on directly to the martingale property.

So we're left with

$$\begin{split} \mathbb{E}[W(t)|\mathcal{F}_{s}] &= 0 + \mathbb{E}[\sum_{i=1}^{k} H_{t_{i-1}}(B_{t_{i}} - B_{t_{i-1}})|\mathcal{F}_{s}] \\ &= \mathbb{E}[\sum_{i=1}^{j} H_{t_{i-1}}(B_{t_{i}} - B_{t_{i-1}}) + H_{t_{j}}(B_{s} - B_{t_{j}}) + H_{s}(B_{t_{j+1}} - B_{t_{j}}) + \\ &\sum_{i=j+2}^{k} H_{t_{i-1}}(B_{t_{i}} - B_{t_{i-1}})|\mathcal{F}_{s}] \\ &= \mathbb{E}[W(s) + H_{s}(B_{t_{j+1}} - B_{t_{j}}) + \sum_{i=j+2}^{k} H_{t_{i-1}}(B_{t_{i}} - B_{t_{i-1}})|\mathcal{F}_{s}] \\ &= W(s) + H_{s}\mathbb{E}[B_{t_{j+1}} - B_{t_{j}}|\mathcal{F}_{s}] + \mathbb{E}[\sum_{i=j+2}^{k} H_{t_{i-1}}(B_{t_{i}} - B_{t_{i-1}})|\mathcal{F}_{s}] \\ &= W(s) + H_{s} \cdot 0 + \mathbb{E}[\sum_{i=j+2}^{k} H_{t_{i-1}}(B_{t_{i}} - B_{t_{i-1}})|\mathcal{F}_{t_{i-1}}]|\mathcal{F}_{s}] \\ &= W(s) + \sum_{i=j+2}^{k} \mathbb{E}[\mathbb{E}[H_{t_{i-1}}(B_{t_{i}} - B_{t_{i-1}})|\mathcal{F}_{t_{i-1}}]|\mathcal{F}_{s}] \\ &= W(s) + \sum_{i=j+2}^{k} \mathbb{E}[H_{t_{i-1}} \mathbb{E}[B_{t_{i}} - B_{t_{i-1}}|\mathcal{F}_{t_{i-1}}]|\mathcal{F}_{s}] \\ &= W(s) + \sum_{i=j+2}^{k} \mathbb{E}[H_{t_{i-1}} \cdot 0|\mathcal{F}_{s}] \\ &= W(s) \end{split}$$

We want to extend this definition of the Itô integral to a wider class of integrands. Define a family \mathcal{H}_T of processes H_T on $[0,T] \times \Omega$ such that if $H_T \in \mathcal{H}_T$ then

1. $H_T \in \mathcal{F}_T \quad \forall t \in [0, T] \quad \text{(adapted process)}$

2.
$$\mathbb{E}[\int_0^T (H_u)^2 du] < \infty$$
 (square integrable)

Theorem: We may approximate H_T by a family of simple processes. This is similar to how a Reimann can be approximated with piecewise constant functions.

Proof. If $H \in \mathcal{H}_T$ then there exists a sequence of simple process $\{H^m\} \in \mathcal{H}_T$ (by definition all simple process are elements of \mathcal{H}_T) such that

$$\lim_{m\to\infty} \|H - H^m\|_2 = 0 \quad \text{where}$$

$$\|H\|_2 = \left(\mathbb{E}\left[\int_0^T (H_u)^2 du\right]\right)^{1/2}$$

So $L^2([0,T] \times \Omega, \mathcal{B}(\mathbb{R}) \times \mathcal{F}, dx \times \mathbb{P})$ is a complete⁴ space. Letting $\pi_n = \{0 = t_0 \leq \cdots \leq t_n = T\}$ and $\{\pi\}_{n=0}^{\infty}$ be a sequence of refinements⁵ on our partition of [0,T] (i.e. if $p \in \pi_n \implies p \in \pi_{n+1}$) with $|\pi_n| \longrightarrow 0$ associated with a sequence of simple processes $\{H_n\}_{n=1}^{\infty}$ with limit $H^n \longrightarrow H$ a.s. Then,

$$\mathbb{E}\left[\left(\int_{0}^{T} H_{u}^{m} dB_{u} - \int_{0}^{T} H_{u}^{n} dB_{u}\right)^{2}\right] = \mathbb{E}\left[\left(\int_{0}^{T} \left(H_{u}^{m} - H_{u}^{n}\right) dB_{u}\right)^{2}\right] \text{ (linearity)}$$

$$= \mathbb{E}\left[\int_{0}^{T} \left(H_{u}^{m} - H_{u}^{n}\right)^{2} du\right] \text{ (Itô isometry)}$$

$$= \mathbb{E}\left[\int_{0}^{T} \left(H_{u}^{m} + H_{u} - H_{u} - H_{u}^{n}\right)^{2} du\right]$$

$$\leq 2\mathbb{E}\left[\int_{0}^{T} \left(H_{u}^{m} - H_{u}\right)^{2} du\right] + 2\mathbb{E}\left[\int_{0}^{T} \left(H_{u}^{n} - H_{u}\right)^{2} du\right]$$

$$\text{(by } (a + b)^{2} \leq 2a^{2} + 2b^{2}\text{)}$$

And so we should see

$$2\mathbb{E}\left[\int_0^T \left(H_u^m - H_u\right)^2 du\right] + 2\mathbb{E}\left[\int_0^T \left(H_u^n - H_u\right)^2 du\right] \longrightarrow 0 \quad \text{as } m, n \longrightarrow \infty$$

That is, $\{\int_0^T H_u^n dB_u\}_{n=1}^{\infty}$ is a Cauchy sequence. Hence, $\lim_{n\to\infty} \int_0^T H_u^m dB_u$ exists and we define $\int_0^T H_u dB_u = \lim_{n\to\infty} \int_0^T H_u^n dB_u$. "This converges in $L^2(\Omega, \mathcal{F}, \mathbb{P})$."

If for $t \in [0,T]$ we wish to define $\int_0^t H_u^n dB_u$, note that if $H \in \mathcal{H}_T$ then $H_{(\cdot)} \mathbb{1}_{[0,t]}(\cdot) \in \mathcal{H}_T$, so

- 1. Take $H^n \longrightarrow H$
- 2. $H_{(\cdot)} \mathbb{1}_{[0,t]}(\cdot) \in \mathcal{H}_T$

and proceed the same way to define your integral $\int_0^t H_u dB_u$

1.2 Some Properties for $H^1, H^2 \in \mathcal{H}_T$

- 1. $I(t) = \int_0^t H_u dB_u$ is a continuous process.
- 2. Linearity: $\int_0^t (\alpha H_u^1 + \beta H_u^2) dB_u = \alpha \int_0^t H_u^1 dB_u + \beta \int_0^t H_u^2 dB_u$
- 3. I(t) is \mathcal{F}_t -measurable (adapted).

⁴1. Any Cauchy sequence has a limit in the space, 2. Any convergent sequence is a Cauchy sequence.

⁵That is, we increase the granularity of our partition, keeping all the previous partitions from the previous steps when adding new partitions.

4. I(t) is a $(\mathcal{F}_t, \mathbb{P})$ -martingale:

$$\mathbb{E}\left[\int_0^t H_u \, dB_u | \mathcal{F}_s\right] = \int_0^s H_u \, dB_u \quad 0 \le s \le t \le T$$

5. Itô isometry holds:

$$\mathbb{E}\left[\left(\int_0^t H_u \, dB_u\right)^2\right] = \mathbb{E}\left[\int_0^t H_u^2 \, du\right]$$

As an example we can consider H to be a Brownian Motion. Let $H_u = B_u$ and use the definitions to calculate $\int_0^t H_u \, dB_u$.

$$\int_0^t B_u dB_u = \cdots$$

$$\vdots \quad \text{(steps discussed at a later date)}$$

$$= \frac{1}{2}B_t^2 - \frac{t}{2}$$

To show this is so we need a convergent process and apply the definitions above. The $-\frac{t}{2}$ term comes from the nonzero quadratic variation of B_t .