```
StormData <- read.csv("repdata_data_StormData.csv")

dim(data)

## NULL

colnames(data)

## NULL
```

Clean Data

Event titles have multinames for the same event. Clean data to have unified event names.

```
StormData$EVTYPE <- as.character(StormData$EVTYPE)
StormData$EVTYPE[grepl("/ & and", StormData$EVTYPE,ignore.case = TRUE)] <- "
Multiple Event"
StormData$EVTYPE[grepl("volc", StormData$EVTYPE,ignore.case = TRUE)] <- "Volc
StormData$EVTYPE[grepl("wind wnd", StormData$EVTYPE,ignore.case = TRUE)] <-
"Wind"
StormData$EVTYPE[grepl("funnel|tornado", StormData$EVTYPE,ignore.case = TRUE)]
<- "Tornado"
StormData$EVTYPE[grepl("glaze", StormData$EVTYPE,ignore.case = TRUE)] <- "Gla
ze"
StormData$EVTYPE[grepl("hail", StormData$EVTYPE,ignore.case = TRUE)] <- "Hail"
StormData$EVTYPE[grepl("dust", StormData$EVTYPE,ignore.case = TRUE)] <- "Du
st"
StormData$EVTYPE[grepl("flood", StormData$EVTYPE,ignore.case = TRUE)] <- "Flo
od"
StormData$EVTYPE[grepl("ic(e|y)", StormData$EVTYPE,ignore.case = TRUE)] <- "Ice"
StormData$EVTYPE[grepl("fire smoke", StormData$EVTYPE,ignore.case = TRUE)] <-
StormData$EVTYPE[grepl("thunder", StormData$EVTYPE,ignore.case = TRUE)] <- "
Thunder Storm"
```

```
StormData$EVTYPE[grepl("slide eros", StormData$EVTYPE,ignore.case = TRUE)] <-
"Erosion"

StormData$EVTYPE[grepl("rain", StormData$EVTYPE,ignore.case = TRUE)] <- "Rain"

StormData$EVTYPE[grepl("freez cold snow chill winter", StormData$EVTYPE,ignore.c ase = TRUE)] <- "Cold Weather"

StormData$EVTYPE[grepl("TROPICAL.STORM", StormData$EVTYPE,ignore.case = TRUE)] <- "Tropical Store"

StormData$EVTYPE[grepl("heat", StormData$EVTYPE,ignore.case = TRUE)] <- "Heat"

StormData$EVTYPE[grepl("(hurri opal)", StormData$EVTYPE,ignore.case = TRUE)] <- "Hurricane"
```

Isolate Needed Data

Create two unique sub-datasets for health and economy

```
StormData_Health <- StormData[,(c(8,23:24))]

StormData_Economy <- StormData[,c(8,25:28)]

colnames(StormData_Health)

## [1] "EVTYPE"  "FATALITIES" "INJURIES"

colnames(StormData_Economy)

## [1] "EVTYPE"  "PROPDMG"  "PROPDMGEXP" "CROPDMG"  "CROPDMGE XP"
```

Focus on health data

Continue to clean data

```
library(dplyr)

##

## Attaching package: 'dplyr'

## The following objects are masked from 'package:stats':
##
```

```
## filter, lag

## The following objects are masked from 'package:base':

##

## intersect, setdiff, setequal, union

StormData_Health_Aggre <- aggregate(cbind(FATALITIES,INJURIES) ~ EVTYPE, dat

a = StormData_Health, sum, na.rm=TRUE)

StormData_Health_Aggre <- arrange(StormData_Health_Aggre, desc(FATALITIES+INJURIES))

StormData_Health_Aggre_top <- StormData_Health_Aggre[1:10,]
```

Visualize results for health data

head(Si	head(StormData_Health_Aggre_top)							
##	EVTYPE FATALITIES INJURIES							
## 1	Tornado	5633	91368					
## 2	Wind	1207	11299					
## 3	Heat	3119	9224					
## 4	Flood	1486	8 <i>5</i> 82					
## 5	LIGHTNING	816	5230					
## 6 (Cold Weather	605	3205					
library((ggplot2)							

qplot(EVTYPE, FATALITIES+INJURIES, data = StormData_Health_Aggre_top, main =

"Impact of Weather Events on Health Damange")

Focus on economy data

Clean economy data for analysis

```
StormData_Economy$CROPDMGCALC [StormData_Economy$CROPDMGEXP=="H"| S tormData_Economy$CROPDMGEXP=="h"]<- StormData_Economy$CROPDMGEXP=="h"|StormData_Economy$CROPDMGEXP=="h"]*100
```

 $StormData_Economy\$PROPDMGCALC\ [StormData_Economy\$PROPDMGEXP=="K"]\ S$ $tormData_Economy\$PROPDMGEXP=="k"]<-\ StormData_Economy\$PROPDMGEXP=="k"]\$tormData_Economy\$PROPDMGEXP=="k"]\$100$ O

StormData_Economy\$CROPDMGCALC [StormData_Economy\$CROPDMGEXP=="K"| S tormData_Economy\$CROPDMGEXP=="k"]<- StormData_Economy\$CROPDMGEXP=="k"|StormData_Economy\$CROPDMGEXP=="k"]*100 0

StormData_Economy\$PROPDMGCALC [StormData_Economy\$PROPDMGEXP=="M"| S tormData_Economy\$PROPDMGEXP=="m"]<- StormData_Economy\$PROPDMG[Storm Data_Economy\$PROPDMGEXP=="M"|StormData_Economy\$PROPDMGEXP=="m"]*10 00000

StormData_Economy\$CROPDMGCALC [StormData_Economy\$CROPDMGEXP=="M"| S tormData_Economy\$CROPDMGEXP=="m"]<- StormData_Economy\$CROPDMG[Storm Data_Economy\$CROPDMGEXP=="M"|StormData_Economy\$CROPDMGEXP=="m"]*10 00000

StormData_Economy\$PROPDMGCALC [StormData_Economy\$PROPDMGEXP=="B"| S tormData_Economy\$PROPDMGEXP=="b"]<- StormData_Economy\$PROPDMGEXP=="b"]*100

0000000

StormData_Economy\$CROPDMGCALC [StormData_Economy\$CROPDMGEXP=="B"| S tormData_Economy\$CROPDMGEXP=="b"]<- StormData_Economy\$CROPDMGEXP=="B"|StormData_Economy\$CROPDMGEXP=="b"]*100 0000000

StormData_Economy_Aggre <- aggregate(cbind(PROPDMGCALC,CROPDMGCALC)~E VTYPE, data = StormData_Economy, sum, na.rm=TRUE)

StormData_Economy_Aggre <- arrange(StormData_Economy_Aggre, desc(PROPDMG CALC+CROPDMGCALC))

StormData_Economy_Aggre_top <- StormData_Economy_Aggre[1:10,]

head(StormData_Economy_Aggre_top) ## EVTYPE PROPDMGCALC CROPDMGCALC ## 1 Flood 167004467270 12170542100 ## 2 Multiple Event 80750771250 4202571910 Tornado 56942011330 364958360 ## 3 ## 4 STORM SURGE 43323536000 5000 ## 5 Wind 17456763670 1963516550 ## 6 Hail 15974043220 3021882450 qplot(EVTYPE, PROPDMGCALC+CROPDMGCALC, data = StormData_Economy_Aggr

e_top, main = "Impact of Weather Events on Economic Damange")