DATA ANALYTICS (CS40003)

Group ID - 42 Akash Chandra (16MA20006) Dibya Prakash Das (16MA20017)

Topic - 12

Error Based Classification for Non-Linear SVM

Introduction to Linear SVM:

Support Vector Machine(SVM) is a supervised machine learning algorithm for classification and regression analysis. For classification task, given a set of training examples, with each example class provided, SVM builds a model that assigns new or unseen examples to one category or other.

SVM is generally a non-probabilistic binary linear classifier, although methods such as **Platt Scaling** exists to use SVM in a probabilistic classification setting. And strategies such **One vs One(OvO)** and **One vs Rest(OvA)** exists to apply SVM for multiclass and multilabel classification problems.

A SVM model is a representation of points in space such that a clear gap exists separating both the categories and the objective of Linear SVM is to maximize this gap called **Margin**.

The two hyper-planes drawn with equation

$$H1: w^T x + b = -1$$

$$H2: w^T x + b = +1$$

where **w** refers to weight or coefficients and **b** refers to the intercept of hyperplane, represents two **support hyperplane** and any points in training set passing through hyperplane is referred to as **support vectors**.

Each tuple is denoted by (X_i, Y_i) where $X_i = (X_{i1}, X_{i2}, X_{i3}, ..., X_{im})$ corresponds to the attribute set for the i^{th} tuple (data in m-dimensional space) and Y_i [+, -] denotes the class labels for binary classification.

For a **positive data point** ($Y_i = \{+\}$), x_+ , the hyperplanes should be such that the projection of x_+ i.e. $w^T x_+ + b$ returns a value **greater than or equal to 1**.

$$w^T x_+ + b > = +1$$

For a **negative data point** ($Y_i = \{-\}$), x_- , the hyperplanes should be such that the projection of x_- i.e. $w^Tx_- + b$ returns a value **less than or equal to -1**.

$$w^T x_- + b <= -1$$

We introduce another **variable** y_i , hence simplifying the constraints as

$$y_i(w^Tx + b) >= +1$$

Now the optimization problem we are currently with is given as

$$Margin = \frac{2}{\|w\|}$$

The LinearSVM model objective is to **maximize the margin** between decision boundary(i.e. the two support hyperplane). Such a hyperplane obtained is called **Maximum Margin Hyperplane(MMH)**.

Minimize
$$\frac{\|w\|^2}{2}$$

subject to
$$y_i(w^Tx_+ + b) >= +1$$

We can use **Gradient Descent** to minimize the said objective function, but is is not always guaranteed that we will reach a globally optimal solution, so here we will use the **Lagrangian** to solve for global minimum and this becomes a **convex optimization problem**.

$$L = \frac{1}{2} \|\vec{w}\|^2 - \sum_{i=1}^{n} \alpha_i [y_i(\vec{w} \cdot \vec{x} + b) - 1]$$

Constraints are given by Karush-Kahn-Tucker (KKT) Constraints which are as follows:

$$\frac{\partial L}{\partial w} = \vec{w} - \sum_{i}^{n} \alpha_i y_i x_i = 0$$

$$\vec{w} = \sum_{i}^{n} \alpha_{i} y_{i} x_{i}$$

$$\frac{\partial L}{\partial b} = -\sum_{i}^{n} \alpha_i y_i = 0$$

$$\sum_{i}^{n} \alpha_{i} y_{i} = 0$$

Substituting the above obtained values to the **Lagrangian**, we obtain the corresponding dual equation with the only variable as α (*Lagrangian Multiplier*).

$$L = \sum_{i}^{n} \alpha_{i} - \frac{1}{2} \sum_{i}^{n} \sum_{j}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i} \cdot x_{j}$$

In matrix form, the Lagrangian is given as

Maximize
$$-(1/2)\alpha^{T}(X^{T}X)\alpha + 1^{T}x$$

subject to $y^{T}\alpha = b$
 $\alpha_{i} \le c, i = 1, 2, 3, ..., n$

We use the library **CVXOPT** to solve convex optimization problem.

NOTE :: We haven't been taught in any course how to solve quadratic optimization problem, so we use the corresponding library.

Linear SVM with Multiclass labels:

There are cases where we have to classify among more than 2 classes. It then becomes a problem of multi-class classification. We have two strategies we can follow to tackle this.

- One-vs-One (OvO): We train an SVM classifier for each pair of classes. And the class chosen by maximum number of SVMs is the correct one. The number of classifiers in this case is C_2^n . Time complexity increases exponentially with number of classes.
- One-vs-All (OvA): We have N binary classifiers for N-classes and each of these
 classifiers tells apart one class from the rest of the classes. Also called One-vs-Rest
 Classifiers. OvA requires unanimity among all SVMs: a data point would be classified
 under a certain class if and only if that class classifier accepted the data point and rest
 all classifiers rejected that data point.

Introduction to Non-Linear SVM:

In Non-Linear SVM, the trick is to transform the non-linearly separable data into higher dimension linearly-separable data. This transformation is referred to as **non-linear mapping** Or **attribute transformation**.

KERNEL TRICK

The convex objective function is of the form

Classifier :
$$\delta(X) = \sum_{i=1}^{n} \lambda_i.Y_i.K(X_i,X) + b$$

Learning : maximize $\sum_{i=1} \lambda_i - \frac{1}{2} \sum_{i,j} \lambda_i.\lambda_j Y_i Y_j.K(X_i.X_j)$

Subject to $\lambda_i \geq 0$ and $\sum_{i=1}^{n} \lambda_i.Y_i = 0$

In matrix form, the Lagrangian is given as

Maximize
$$-(1/2)\alpha^T Q\alpha + 1^T x$$

where, $Q_{ij} \equiv y_i y_j K(x_i, x_j)$
subject to $y^T \alpha = b$
 $\alpha_i \le c, i = 1, 2, 3, ..., n$

We use the library **CVXOPT** to solve convex optimization problem.

NOTE :: We haven't been taught in any course how to solve quadratic optimization problem, so we use the corresponding library.

Our Approach towards solution:

STEP-エ (Visualizing the dataset and applying appropriate scaling techniques along with Label Encoding of the Target variable)

IMPORTANT CONCLUSIONS FROM DATASET (GLASS.CSV)

- Total no of data points 214
- There is no missing attribute in the dataset
- First five rows of data are as (9 attributes and 1 target variable)

	0	1	2	3	4	5	6	7	8	9	10
0	1	1.52101	13.64	4.49	1.10	71.78	0.06	8.75	0.0	0.0	1
1	2	1.51761	13.89	3.60	1.36	72.73	0.48	7.83	0.0	0.0	1
2	3	1.51618	13.53	3.55	1.54	72.99	0.39	7.78	0.0	0.0	1
3	4	1.51766	13.21	3.69	1.29	72.61	0.57	8.22	0.0	0.0	1
4	5	1.51742	13.27	3.62	1.24	73.08	0.55	8.07	0.0	0.0	1

• Number of target-labels is **SIX** with counts as

LABEL-ENCODING

Transformation of target-labels using custom build LabelEncoder class.

old_class_name	new_class_name
1	0
2	1
3	2
5	3
6	4
7	5

SCALING-ATTRIBUTES

data.describe()

	1	2	3	4	5	6	7	8	9
count	214.000000	214.000000	214.000000	214.000000	214.000000	214.000000	214.000000	214.000000	214.000000
mean	1.518365	0.402684	2.684533	1.444907	0.507310	0.497056	0.382802	0.175047	0.057009
std	0.003037	0.122798	1.442408	0.499270	0.138312	0.652192	1.526170	0.497219	0.097439
min	1.511150	0.000000	0.000000	0.290000	0.000000	0.000000	-3.399464	0.000000	0.000000
25%	1.516523	0.327444	2.115000	1.190000	0.441071	0.122500	-0.386059	0.000000	0.000000
50%	1.517680	0.386466	3.480000	1.360000	0.532143	0.555000	0.000000	0.000000	0.000000
75%	1.519157	0.465414	3.600000	1.630000	0.585268	0.610000	0.613941	0.000000	0.100000
max	1.533930	1.000000	4.490000	3.500000	1.000000	6.210000	8.139410	3.150000	0.510000

For attribute 2 and 5, we apply MinMaxScaler, to scale the columns in the feature range of [0, 1].

It is done by following equation:

$$X_{scaled} = scale * X + min - X_{min}$$

 $where scale = \frac{(max - min)}{(X_{max} - X_{min})}$

```
class MinMaxScaler:
   def __init__(self, feature range=(0, 1)):
       self.feature range = feature range
   def fit(self, X):
       data min = np.nanmin(X, axis=0)
       data max = np.nanmax(X, axis=0)
       self.data range = (data max - data min)
       self.scale_ = (self.feature_range[1] - self.feature_range[0]) / data_range
       self.min = self.feature range[0] - data min * self.scale
       self.data min = data min
       self.data max = data max
   def transform(self, X):
       X = np.asarray(X, dtype=np.float64)
       X *= self.scale
       X += self.min
       return X
```

For attribute 7, Robust Scaling (RobustScaler) was applied, as it is robust to outliers and noise.

It is done by the following equation:

$$X_{norm} = \frac{X - Q_1(x)}{Q_3(x) - Q_1(x)}$$

Code Snippet

```
class RobustScaler:
    def init (self, with centering=True, with scaling=True,
quantile range=(25.0, 75.0)):
       self.with centering = with centering
        self.with scaling = with scaling
        self.quantile range = quantile range
    def fit(self, X):
        q min, q max = self.quantile range
        self.center = np.nanmedian(X, axis=0) if self.with centering else None
        if self.with scaling:
           quantiles = []
            for feature idx in range(X.shape[1]):
                column data = X[:, feature idx]
                quantiles.append(np.nanpercentile(column data, self.quantile range))
            quantiles = np.transpose(quantiles)
            self.scale = quantiles[1] - quantiles[0]
        else:
           self.scale = None
        return self
    def transform(self, X):
       X = np.asarray(X, dtype=np.float64)
        if self.with centering:
           X -= self.center
        if self.with scaling:
           X /= self.scale
        return X
```

Now the updated descriptive statistics after scaling is

```
data.describe()
```

	1	2	3	4	5	6	7	8	9
count	214.000000	214.000000	214.000000	214.000000	214.000000	214.000000	214.000000	214.000000	214.000000
mean	1.518365	0.402684	2.684533	1.444907	0.507310	0.497056	0.382802	0.175047	0.057009
std	0.003037	0.122798	1.442408	0.499270	0.138312	0.652192	1.526170	0.497219	0.097439
min	1.511150	0.000000	0.000000	0.290000	0.000000	0.000000	-3.399464	0.000000	0.000000
25%	1.516523	0.327444	2.115000	1.190000	0.441071	0.122500	-0.386059	0.000000	0.000000
50%	1.517680	0.386466	3.480000	1.360000	0.532143	0.555000	0.000000	0.000000	0.000000
75%	1.519157	0.465414	3.600000	1.630000	0.585268	0.610000	0.613941	0.000000	0.100000
max	1.533930	1.000000	4.490000	3.500000	1.000000	6.210000	8.139410	3.150000	0.510000

STEP-II (Splitting the data into train and test set and applying Stratified 10-fold Cross Validation)

SPLITTING THE DATASET INTO TRAIN AND TEST

The data is split into train and test in the ratio 9:1, where $Num_{train} = 0.9 * len(data)$ is the number of data points in the training set and $Num_{test} = 0.1 * len(data)$ is the number of data points in the test set.

```
X, y, X_test, y_test = train_test_split(X, y, test_size=0.1, shuffle=True)
```

Code Snippet

```
def train_test_split(X, y, test_size=0.2, shuffle=True):
    n_samples = X.shape[0]
    if shuffle:
        indices = np.arange(n_samples)
        random.shuffle(indices)
        X, y = X[indices], y[indices]
    test_samples = int(n_samples * test_size)
    return X[:-test_samples], y[:-test_samples], X[-test_samples:],
y[-test_samples:]
```

UTILITY CODE FOR PERFORMING STRATIFIED K-FOLD CROSS VALIDATION

```
class StratifiedKFold(BaseKFold):
    def init (self, n splits=10, shuffle=True):
        super().__init_ (n splits, shuffle)
    def split(self, X, y):
        for train, test in super().split(X, y):
            yield train, test
    def iter test masks(self, X, y):
        test folds = self. make test folds(X, y)
        for i in range(self.n splits):
            yield test folds == i
    def _make_test_folds(self, X, y):
        , y idx, y inv = np.unique(y, return index=True, return inverse=True)
        , class perm = np.unique(y idx, return inverse=True)
        y encoded = class perm[y inv]
       n classes = len(y idx)
       y counts = np.bincount(y encoded)
       min groups = np.min(y counts)
       y order = np.sort(y encoded)
        allocation = np.asarray([np.bincount(y order[i::self.n splits],
minlength=n classes) for i in range(self.n splits)])
        test folds = np.empty(len(y), dtype='i')
        for k in range(n classes):
            folds for class = np.arange(self.n splits).repeat(allocation[:, k])
            if self.shuffle:
                random.shuffle(folds for class)
            test folds[y encoded == k] = folds for class
        return test folds
```

Code Snippet

```
for i, (train_index, val_index) in
enumerate(StratifiedKFold(n_splits=10).split(X, y)):
    X_train, X_val, y_train, y_val = X[train_index], X[val_index],
y[train_index], y[val_index]
    model = SVC(C=0.5, kernel='poly', coef0=1.0, degree=5, gamma='scale')
    classifiers = model.fit(X_train, y_train)
    y_pred = model.predict(X_val)
    y_train_pred = model.predict(X_train)
    print("Train Accuracy :: ", accuracy_score(y_train, y_train_pred))
    print(classification_report(y_val, y_pred))
```

STEP-III (Validating the Non-Linear SVM model for different kernels)

VARIOUS KERNELS USED FOR NON-LINEAR SVM

• **Linear Kernel** - It is the simplest type of kernel function and prediction of new inputs take place using the dot product between the input(x) and $support\ vector\ (x_i)$.

$$K(x_i, x_i) = \langle x_i, x_i \rangle$$

Code Snippet

```
def linear_kernel(x, y, **kwargs):
    return np.dot(x, y)
```

 Polynomial Kernel - It is a non-stationary kernel. Polynomial kernels are well-suited for problems where all the training data is normalized.

$$K(x_i, x_j) = (\gamma * < x_i, x_j > + r)^d$$

```
def polynomial_kernel(x, y, **kwargs):
    degree = kwargs['degree']
    gamma = kwargs['gamma']
    coef0 = kwargs['coef0']
    return (coef0 + gamma * np.dot(x, y)) ** degree
```

• Gaussian Radial Basis Function (RBF) - When training an SVM with the Radial Basis Function Kernel (RBF), two parameters C and γ are important. Parameter C common to all the SVM kernels, is a tradeoff between misclassification of training examples against simplicity of the decision surface.

 γ decides how much influence a single training example has, the larger values of γ implies closer data points must be affected.

$$K(x_i, x_j) = exp(-\gamma * ||x_i - x_j||^2)$$

Code Snippet

```
def gaussian_kernel(x, y, **kwargs):
    gamma = kwargs['gamma']
    return np.exp(-gamma * (np.linalg.norm(x-y)**2))
```

UTILITY CODE TO SOLVE THE CONVEX OPTIMIZATION PROBLEM

The convex optimization problem is in the form of

Minimize
$$(1/2)x^T P x + q^T x$$

subject to $Gx \le h$
 $Ax = b$

```
h = cvxopt.matrix(np.hstack((tmp1, tmp2)))
# solve QP problem
solution = cvxopt.solvers.qp(P, q, G, h, A, b)
```

Results:

F1-SCORE USING STRATIFIED 10-FOLD CROSS VALIDATION ON TRAIN DATA

• Linear Kernel (C = 1.0)

```
accuracy: 61.078947 (+/-8.997114)
macro average f1 – score: 45.147540 (+/-10.434229)
weighted average f1 – score: 56.677573 (+/-9.008458)
```

• Polynomial Kernel (C = 0.5, coef0 = 1.0, degree = 5, gamma = 'scale')

```
accuracy: 64.342105 (+/-9.212970)
macro average f1 – score: 54.161567 (+/-10.905636)
weighted average f1 – score: 62.116334 (+/-9.257801)
```

• RBF Kernel (C = 0.5, gamma = 'scale')

```
accuracy: 62.789474 (+/- 11.450967)

macro average f1 - score: 45.782323 (+/- 12.266286)

weighted average f1 - score: 58.362990 (+/- 11.140270)
```

CONFUSION MATRIX, CLASSIFICATION REPORT FOR TEST DATA

• Linear Kernel (C = 1.0)

Confusion Matrix

[[8 5 0 0 0 0] [2 1 0 0 0 0] [0 1 0 0 0 0] [0 0 0 1 0 0] [0 2 0 0 0 0] [0 0 0 1 0 0]]

Classification Report

	precision	recall	fl-score	support	
Θ	0.80	0.62	0.70	13	
1	0.11	0.33	0.17	3	
2	0.00	0.00	0.00	1	
3	0.50	1.00	0.67	1	
4	0.00	0.00	0.00	2	
5	0.00	0.00	0.00	1	
accuracy			0.48	21	
macro avg	0.24	0.32	0.25	21	
weighted avg	0.53	0.48	0.49	21	

• Polynomial Kernel (C = 0.5, coef0 = 1.0, degree = 5, gamma = 'scale')

Confusion Matrix

Classification Report

58	precision	recall	f1-score	support
Θ	0.86	0.92	0.89	13
1	0.67	0.67	0.67	3
2	0.00	0.00	0.00	1
3	0.50	1.00	0.67	1
4	1.00	1.00	1.00	2
5	0.00	0.00	0.00	1
accuracy			0.81	21
macro avg	0.50	0.60	0.54	21
weighted avg	0.74	0.81	0.77	21

• RBF Kernel (C = 0.5, gamma = 'scale')

Confusion Matrix

[[9 4 0 0 0 0] [1 2 0 0 0 0] [0 1 0 0 0 0] [0 0 0 1 0 0] [1 0 0 0 1 0] [0 0 0 1 0 0]

Classification Report

	precision	recall	f1-score	support
Θ	0.82	0.69	0.75	13
1	0.29	0.67	0.40	3
2	0.00	0.00	0.00	1
3	0.50	1.00	0.67	1
4	1.00	0.50	0.67	2
5	0.00	0.00	0.00	1
accuracy			0.62	21
macro avg	0.43	0.48	0.41	21
weighted avg	0.67	0.62	0.62	21

ROC, AUC for test data

• Linear Kernel (C = 1.0)

• Polynomial Kernel (C = 0.5, coef0 = 1.0, degree = 5, gamma = 'scale')

• RBF Kernel (C = 0.5, gamma = 'scale')

Conclusions:

For each kernel, using Stratified 10-fold cross validation best values of hyperparameters such as C, γ , degree, coef0 were found and later f1-score, $confusion\ matrix$ and $classification\ report$ were found on the test data which was separated initially and consisted of $0.1*n_{samples}$ data points.

After that from ROC curve, again on test data, we can see that RBF-kernel and Poly-kernel have similar performance thus get good performance with the two kernels, with the calculated hyperparameters.