Daje helme &: 15/10/2012. Liphe 15mly problems.

Poliff. operatives

M. Jahdy Co. | Pm=f

B(rn)=h. Ellophe Budy problems. $\gamma_{n} = \begin{pmatrix} n_0 \\ i_{m-1} \end{pmatrix}, \begin{pmatrix} i_{\nu} \end{pmatrix} n h_{\lambda}.$ $N_0 \in \mathcal{A}^{m-2}(\partial \mathcal{R}), \quad n_i \in \mathcal{A}^{m-1-2}(\partial \mathcal{R}).$ Note: We let P ho a lift op, but why
nut Pseudo? Inturriyly Thre is not a
good Theory, pseudo-diff. good don't respect.
Thirty well. (P,B) is an elliptic boundary problem of $\frac{\beta(r_n)}{\beta(r_n)} = \left(\begin{array}{c} \sum_{j=0}^{m-1} \beta_{i,j} n_j \\ \sum_{j=0}^{m-1} \beta_{r,j} n_j \end{array}\right).$ Bij E F * OM), MuEH m-k-2; Bin MuEH Si. deg Bin= m-h-t-si. Goal. féli; hi & \$i(Ds), nont to fins.

(essenially) smigne soli.

	E, Ho (m) c. (ker r;).
THE PERSON NAMED IN COLUMN 2 IS NOT THE OWNER, THE PERSON NAMED IN COLUMN 2 IS NOT THE OWNER, THE PERSON NAMED IN COLUMN 2 IS NOT THE OWNER, THE PERSON NAMED IN COLUMN 2 IS NOT THE OWNER, THE PERSON NAMED IN COLUMN 2 IS NOT THE OWNER, THE PERSON NAMED IN COLUMN 2 IS NOT THE OWNER, THE	Wedle frombater: Au = f, ron = leo.
AT THE REAL PROPERTY AND ADDRESS OF THE PARTY	The H' , respect $f \in H'(M)$. If $u, v \in M$ $(\nabla u, \nabla v) = (\Delta u, v) + \int W_{0} u U, v $. $M = M'$
The state of the s	(On, OV) = ((), v) + () (ron 16, v).
West-order order or the second order or	$\langle \Delta_n, \Delta_n \rangle = \langle \Delta_n, \nu \rangle + \int_{2m} \sum_{n=0}^{\infty} n_n \nu_n - \nu_n \nu_n$
Annual Property and Property an	Jam Jam
ANTARO EL PROPERTO EL PROPERTO DE PORTO	νεc ^ω (m). (η, Δν)= < f,ν>+ Sun (hon,-n,ν»).
THE PERSON NAMED IN THE PE	It VEH'S (or VEC (M), 15=0) . mm.
resentation and the comment of the c	(n, DV)= -(1, v)+ Shov Writ perme his form
edimental proportion of the proportion of the second of th	Model Buther.
THE CANADACTOR OF THE PROPERTY	$\sum_{x,y} D_{x,y}^2 + 1 = \Delta + 1.$
AND THE STREET SHE ASSESSMENT SHE SHE SHE SHE SHE SHE SHE	$(\Delta+1)n=f: \text{ in } \mathbb{R}^n_+.$ $N_0=h: \text{ in } \mathbb{R}^{n-1}.$
Any projection of the Assessment of the Assessme	morh. m. Rut.

•

-

٠

-

•

-

$$\chi = (\kappa_1, ..., \kappa_n, \kappa_n) = (\gamma_1 \epsilon).$$

$$(-\partial_t^2 + \Delta_{\eta} + 1) n = f.$$

$$(-\partial_t^2 + \Delta_{\eta} + 1) n = f$$

2) $\frac{1}{2}$ for $\frac{1}{2}$ $\frac{1}{2}$

	Soch Comes in bescome me get o at t=0.
	30, G(E, E, M)= P & FAIHME lowh 1 HTHING. t < E.
	Sinh (£ VI+1412) e- 6 1 + 1412. t> €.
	General Mathod: Pr=f B(m)=h.
	B(rn)=h.
	Ram C M' dord wild.
angga dingkani, salar salar salar 1944 di mengga dinan fisi kelapadah keri terbanyan kerina	por 101 custo cosper.
	On TR,
	On PR, put ni hox had schurfy states to it it inide
	tank T.
	Extend Pt Pm M. Chest of downer,
	Extend Pt Pm M Lett of chorus, but happy too be module co.
	Exhaul f to f' on M'.
	Sohre P'n'= +' m M'.
	Problem. n' is not gimes to believe night holy conditions.
	Liver 1.

