

基于模型匹配的 室内物体重建与追踪

研究背景

研究现状

技术路线

预期成果

研究背景

1

研究背景

2

3

RGB-D Camera

双目立体视觉法

- 原理与人眼类似
- 通过计算空间中同一个物体在 两个相机成像的视差,根据三 角关系计算物体与相机的距离

3D结构光法

- 投射特殊结构的图案 (离散光斑、条 纹光、编码结构光等)
- 使用另外一个相机观察在三维物理表 面成像的畸变情况

飞行时间法 (Time of Flight, ToF)

- 连续发射经过调制的特定频率的光脉冲 (一般为不可见光) 到被观测物体上
- 接收从物体反射回去的光脉冲
- 探测光脉冲的飞行(往返)时间来计算被测物体离相机的距离

	方案	双目	3D结构光	ToF
	基本原理	视差算法	散斑结构光	飞行时间
	光源	无(被动式)	15000个散斑	均匀面光源
	工作距离	≤2m	0.2m-1.2m	0.4m-5m
	低光表现	差	良好 、取决于光源	良好 (红外激光)
	强光表现	良好	差	中等
	深度精度	差 误差5%-10%	高 误差0.1%-0.5%	中 误差0.5%-1%
	平面分辨率	中	高	低
	代表应用	Leap Motion 背景虚化	iPhone X Kinect v1	ASUS Xtion 2 Kinect v2

Table 3.1 Comparison of the main 3D camera commercially available

Device	Technology	Range (m)	Resolution	Frame rate (fps)	Field of view
PMD CamCube 2.0 TM	Time-of-Flight	0–13	200 × 200	80	$40^{\circ} \times 40^{\circ}$
PMD CamBoard TM	Time-of-Flight	0.1-4.0	224 × 171	45	62° × 45°
MESA SR 4000 TM	Time-of-Flight	0.8-8.0	176 × 144	30	69° × 56°
MESA SR 4500 TM	Time-of-Flight	0.8-9.0	176 × 144	30	69° × 55°
ASUS Xtion TM	Structured-light	0.8-4.0	640×480	30	57° × 43°
Occipital TM	Structured-light	0.8-4.0	640×480	30	57° × 43°
Sense 3D scanner TM	Structured-light	0.8-4.0	640×480	30	57° × 43°
Kinect V1 TM	Structured-light	0.8-4.0	640×480	30	57° × 43°
Kinect V2 TM	Time-of-Flight	0.5-4.5	512 × 424	30	$70^{\circ} \times 60^{\circ}$
Creative Senz 3D TM	Time-of-Flight	0.15-1.0	320×240	60	$74^{\circ} \times 58^{\circ}$
SoftKinetic DS325 TM	Time-of-Flight	0.15-1.0	320×240	60	$74^{\circ} \times 58^{\circ}$
Google Tango TM Phone	Time-of-Flight	_	_	_	_
Google Tango TM Tablet	Structured-light	0.5-4.0	160×120	10	_
Orbbec Astra S TM	Structured-light	0.4-2.0	640 × 480	30	60° × 49.5°
Intel SR300 TM	Structured-light	0.2-1.5	640×480	90	$71.5^{\circ} \times 55^{\circ}$
Intel R200 TM	Active stereoscopy	0.5-6.0	640×480	90	$59^{\circ} \times 46^{\circ}$
Intel Euclid TM	Active stereoscopy	0.5-6.0	640×480	90	59° × 46°
Intel D415 TM	Active stereoscopy	0.16-10	1280×720	90	$63.4^{\circ} \times 40.4^{\circ}$
Intel D435 TM	Active stereoscopy	0.2-4.5	1280×720	90	$85.2^{\circ} \times 58^{\circ}$
StereoLabs ZED TM	Passive stereoscopy	0.5–20	4416 × 1242	100	110°(diag.)

Giancola, Silvio, Matteo Valenti, and Remo Sala. A Survey on 3D Cameras: Metrological Comparison of Time-of-Flight, Structured-Light and Active Stereoscopy Technologies. Springer, 2018.

名称	Azure Kinect		
大力	126.00 x 103.00 x 39.00 mm		
重量	440 g		
深度摄像头	100 万像素 ToF		
RGB 摄像头	1200 万像素,卷帘快门 CMOS 传感器		

	-	ATURE KINEST DK	MANEGE FOR MUNICIPALITY	
FEATURE		AZURE KINECT DK	KINECT FOR WINDOWS V2	
Audio	Details	7-mic circular array	4-mic linear phased array	
Motion sensor	Details	3-axis accelerometer + 3-axis	3-axis accelerometer	
		gyro		
RGB Camera	Details	3840 x 2160 px @30 fps	1920 x 1080 px @30 fps	
Depth Camera	Method	Time-of-Flight	Time-of-Flight	
	Resolution/FOV	640 x 576 px @30 fps	512 x 424 px @ 30 fps	
		512 x 512 px @30 fps		
		1024x1024 px @15 fps		
Connectivity	Data	USB3.1 gen 1 with Type-C	USB 3.1 gen 1	
		connector		
	Power	External PSU or USB-C	External PSU	
Synchronization		RGB & Depth and IMU internal,	RGB & Depth internal only	
		external device-to-device		
Mechanical	Dimensions	103 x 39 x 126 mm	249 x 66 x 67 mm	
	Mass	440 g	970 g	
	Mounting	One ¼-20 UNC	One ¼-20 UNC	
		Four internal screw points		

SLAM

- Simultaneous Localization and Mapping
- 同时定位与地图构建
- 它是指搭载特定**传感器**的主体,在**没有环境 先验信息**的情况下,于**运动过程中**建立**环境** 的模型,同时估计自己的**运动**

视觉SLAM

- 传感器主要为相机
 - 单目相机 (Monocular)
 - 双目相机 (Stereo)
 - ・ 深度相机 (RGB-D)
 - 室内场景

回环检测

判断机器人是否曾经到达过先前的位置。如果 检测到回环,则把信息提供给后端进行处理。

前端

视觉里程计

建立 非线性优化 地图

传感器信息读取

在视觉SLAM中主要 为相机图像信息的 读取和预处理。

视觉里程计

估算相邻图像间相 机的运动,以及局 部地图的样子。 视觉里程计 (Visual Odometry, VO)又 称为前端 (Front End)。

后端优化

后端

接受不同时刻VO测 量的相机位姿,以 及回环检测的信息, 对它们进行优化, 得到全局一致的轨 迹和地图。由于接 在VO之后, 又称为 后端 (Back End)。

根据估计的轨迹, 建立与任务要求对 应的地图。

建图

ORB-SLAM2

研究背景

- ORB (Oriented FAST and Rotated BRIEF) 是一种快速特征点提取和描述的算法,具有旋转和尺度不变性,并且能够迅速地提取特征并进行匹配
- 基于单目、双目以及RGB-D的完整开源方案
- 支持地图重用、回环检测和重新定位
- 能够在标准的CPU上进行实时工作
- 包含了一个轻量级的定位模型,能够利用视觉里程计来追踪未建图的区域并且匹配特征点
- 由三个并行的线程组成
 - 跟踪:通过每一帧图像定位相机,选择是否加入关键帧
 - 局部建图:处理新的关键帧,完成重建
 - 回环检测:对新加入的关键帧进行回环检测

Fast Alignment of 3D Geometrical Models and 2D **Color Images using 2D Distance Maps**

Figure 9. 2D-3D registration of simulation images.

- [Yumi Iwashita et. 2005]
- 基于2D图像与3D模型的轮廓线进行匹配
- 使用主动轮廓线模型 (Active Contour Model) 提取2D图像轮廓线
- 需要手动标记初始轮廓线
- 只能对齐与图像对应的模型
- 只适用于不规则模型
- 无法应用于实时场景

Aligning 3D Models to RGB-D Images of Cluttered Scenes

3D reasoning by initial 2D processing and then 'lifting' to 3D

Learning from synthetic data and generalizing to real data

Starting with weak annotation (instance segmentation) able to produce a much richer output

3 layer CNN on **normal images** trained on **synthetic** data Search over scale,
placement and sub-type
to minimize
re-projection error

Aligning 3D Models to RGB-D Images of Cluttered Scenes

Coarse Pose Estimation

- Train on synthetic data (pose aligned CAD models [Wu et al.] rendered in scales and positions they occur in scenes)
- Input representation
 - HHA (depth, height above ground, angle with gravity) images don't have azimuth information
 - Normal Images
- Desirable to be robust to occlusion
- Depth images are 'simpler', so we use a shallow network

Use a shallow 3 layer fully convolutional network (average pooling to predict)

Aligning 3D Models to RGB-D Images of Cluttered Scenes

Fine Pose Estimation

- Start with a model M, at scale s, an initial pose estimate R
 - Iterative Closest Point (ICP) to optimize for R, t (that aligns best to data)
 - Render model, use visible points, run ICP between these points, and points in the segmentation mask, re-estimate R, t, repeat
- Pick best model M*, scale s* and pose R*, t* based on fit to the data

Works reasonably well even though

- Inaccurate models
- Imperfect segmentation masks

Scan2CAD: Learning CAD Model Alignment in RGB-D Scans

Scan2CAD: Learning CAD Model Alignment in RGB-D Scans

- ↘ RGB-D相机
- ↘ SLAM (稠密重建)
- \ 点云分割
- ↘ 基于点云的模型匹配与追踪

- ↘ RGB-D相机
- ✓ SLAM (仅重建特征点用于定位)
- ↘ 基于RGB-D图像的特征提取
- ↘ 模型匹配与追踪

研究背景

THANKS