Complex Analysis: Lecture-03

MA201 Mathematics III

MGPP, AC, ST, SP

IIT Guwahati

Topic 02: Learning Outcome

We learn

- Complex Functions and its visualization
- Limits of Functions
- Point at Infinity (∞), Extended Complex Plane and Riemann Sphere
- Limits involving ∞
- Continuity
- Properties of Continuous Functions
- Differentiation
- Properties of Differentiable Functions
- Cauchy Riemann Equations
- Analytic Functions
- Properties of Analytic Functions
- Harmonic Functions
- Finding Harmonic Conjugate

Complex Functions

Definition

A complex valued function f of a complex variable is a rule that assigns to each complex number z in a set $D \subseteq \mathbb{C}$ one and only complex value w. We write w = f(z) and call w the image of z under f. The set D is called the domain of the definition of f and the set of all images $R = \{w = f(z) : z \in D\}$ is called the range of f.

Usually, the real and imaginary parts of z are denoted by x and y, and those of the image point w are denoted by u and v respectively, so that w = f(z) = u + iv, where $u \equiv u(z) = u(x, y)$ and $v \equiv v(z) = v(x, y)$ are real valued functions of z = x + iy. Example: Consider the function $f(z) = z^2$ for $z \in \mathbb{C}$. This function assigns to each complex number z in \mathbb{C} one and only complex value $w = z^2$. The real and imaginary parts of f(z) are given by

$$\Re(f(z)) = u(x, y) = x^2 - y^2$$
 $\Im(f(z)) = v(x, y) = 2xy$.

Visualizing Complex Functions

In order to investigate a complex function w = f(z), it is necessary to visualize it. We view z and its image w as points in the complex plane, so that f becomes a transformation or mapping from D in the z-plane (xy-plane) on to the range R in the w-plane (xy-plane).

Limits of functions

Definition

Let w = f(z) be a complex function of a complex variable z that is defined for all values of z in some neighborhood of z_0 , except perhaps at the point z_0 . We say that f has the limit w_0 as z approaches z_0 if **for each** positive number $\epsilon > 0$, there exists a $\delta > 0$ such that

$$|f(z) - w_0| < \epsilon$$
 whenever $0 < |z - z_0| < \delta$.

We write it as $\lim_{z \to z_0} f(z) = w_0$.

- Geometrically, this says that for each ϵ -neighborhood $B_{\epsilon}(w_0) = \{w \in \mathbb{C} : |w w_0| < \epsilon\}$ of the point w_0 in the w-plane, there exists a deleted or punctured δ -neighborhood $B_{\delta}^*(z_0) = \{z \in \mathbb{C} : 0 < |z z_0| < \delta\}$ of z_0 in the z-plane such that $f(B_{\delta}^*(z_0)) \subset B_{\epsilon}(w_0)$.
- In case of functions $f : \mathbb{R} \to \mathbb{R}$, the variable x approaches the point x_0 in only two directions, either right or left. But, in the complex case, z can approach z_0 from any direction. That is, for the limit $\lim_{z \to z_0} f(z)$ to exist, it is required that f(z) must approach the same value no matter how z approaches z_0 .

Example 1: If f(z) = 2i/z then examine the existence of $\lim_{z \to i} f(z)$.

Example 2: If $f(z) = \overline{z}$ then examine the existence of $\lim_{z \to (1+2i)} f(z)$.

Example 3: If $f(z) = \Re(z)/|z|$ then examine the existence of $\lim_{z\to 0} f(z)$.

Example 4: If $f(z) = \overline{z}/z$ then examine the existence of $\lim_{z \to 0} f(z)$. Also examine the existence of $\lim_{z \to z_0} f(z)$ if $z_0 \neq 0$.

Limit of f(z) and Limit of $\Re(f(z))$ and $\Im(f(z))$

Theorem

Let f(z) = u(x, y) + i v(x, y) be a complex function that is defined in some neighborhood of z_0 , except perhaps at $z_0 = x_0 + i y_0$. Then

$$\lim_{z \to z_0} f(z) = w_0 = u_0 + i \, v_0$$

if and only if

$$\lim_{(x, y)\to(x_0, y_0)} u(x, y) = u_0 \quad \text{and} \quad \lim_{(x, y)\to(x_0, y_0)} v(x, y) = v_0.$$

Example: Let $f(z) = z^2$. Then, f(z) = u(x, y) + i v(x, y) where $u(x, y) = x^2 - y^2$ and v(x, y) = 2xy. Using above theorem, show that

$$\lim_{z \to (1+2i)} z^2 = -3 + 4i.$$

Limit of Functions and Algebraic Operations

Theorem

If
$$\lim_{z\to z_0}f(z)=A$$
 and $\lim_{z\to z_0}g(z)=B$ then
$$\lim_{z\to z_0}k\,f(z)=k\,A\,,\quad \text{where k is a complex constant}\,,$$

$$\lim_{z\to z_0}(f(z)+g(z))=A+B\,,$$

$$\lim_{z\to z_0}(f(z)-g(z))=A-B\,,$$

$$\lim_{z\to z_0}f(z)g(z)=AB\,,$$

$$\lim_{z\to z_0}\frac{f(z)}{g(z)}=\frac{A}{B}\quad \text{provided $B\neq 0$}\,.$$

Point at Infinity ∞ and the Extended Complex Plane

It is convenient to include with the complex number system \mathbb{C} one ideal element, called point at infinity, denoted by the symbol ∞ . Then the set $\widehat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ is called the extended complex plane and satisfies the following properties.

• For
$$z \in \mathbb{C}$$
,
$$z + \infty = \infty + z = z - \infty = \infty, \qquad \text{and} \qquad \frac{z}{\infty} = 0 \ .$$

• For $z \in \mathbb{C} \setminus \{0\}$, $z \cdot \infty = \infty \cdot z = \infty, \qquad \text{and} \qquad \frac{z}{0} = \infty \ .$

 \bullet $\infty \cdot \infty = \infty$.

Expressions such as $\infty + \infty$, $\infty - \infty$, $0 \cdot \infty$, ∞ / ∞ are not defined since they do not lead to meaningful results.

Riemann Sphere and Stereographic Projection

- Join the North Pole N = (0, 0, 1) with the complex number z = x + iy by a straight line L which pierce the sphere at Z.
- The mapping $z \mapsto Z$ gives one-to-one correspondence between $S \setminus \{N\}$ and \mathbb{C} .
- As |z| approaches ∞ (along any direction in the plane), the corresponding point Z on S approaches N.
- Associate the North Pole N with the point at infinity ∞ .
- $|z| > 1 \mapsto \text{Upper hemisphere of } S \cdot |z| < 1 \mapsto \text{Lower hemisphere of } S \cdot |z| = 1 \mapsto \text{Equator of$
- S is called the Riemann sphere. This bijection between S and $\widehat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ is called the Stereographic Projection.

Limits involving infinity

Let $f: D \subseteq \mathbb{C} \to \mathbb{C}$. Let z_0 be a limit point of D. Then, $\lim_{z \to z_0} f(z) = \infty$ if for each $\epsilon > 0$, there exists a $\delta > 0$ such that

$$0 < |z - z_0| < \delta \implies |f(z)| > 1/\epsilon$$
.

Let $f: D \subseteq \mathbb{C} \to \mathbb{C}$. Let ∞ be a limit point of D. Then, $\lim_{z \to \infty} f(z) = w_0$ if for each $\epsilon > 0$, there exists a $\delta > 0$ such that

$$|z| > 1/\delta \implies |f(z) - w_0| < \epsilon$$
.

Let $f: D \subseteq \mathbb{C} \to \mathbb{C}$. Let ∞ be a limit point of D. Then, $\lim_{z \to \infty} f(z) = \infty$ if for each $\epsilon > 0$, there exists a $\delta > 0$ such that

$$|z| > 1/\delta \implies |f(z)| > 1/\epsilon$$
.

Results related Limits involving Infinity

$$\lim_{z \to z_0} f(z) = \infty \iff \lim_{z \to z_0} \frac{1}{f(z)} = 0.$$

2

$$\lim_{z \to \infty} f(z) = w_0 \iff \lim_{z \to 0} f(1/z) = w_0.$$

(3)

$$\lim_{z \to \infty} f(z) = \infty \iff \lim_{z \to 0} \frac{1}{f(1/z)} = 0.$$

Exercises: Find (i) $\lim_{z \to \infty} \frac{4z^2}{(z-1)^2}$, (ii) $\lim_{z \to 1} \frac{1}{(z-1)^3}$, (iii) $\lim_{z \to \infty} \frac{z^2+1}{z-1}$.

(ii)
$$\lim_{z \to 1} \frac{1}{(z-1)^3}$$

(iii)
$$\lim_{z \to \infty} \frac{z^2 + 1}{z - 1}$$

Continuous functions

Definition

Let f(z) be a complex function of a complex variable z that is defined for all values of z in some neighborhood of z_0 . We say that f is continuous at z_0 if for each $\epsilon > 0$, there exists a $\delta > 0$ such that

$$|z-z_0|<\delta \qquad \Longrightarrow \qquad |f(z)-f(z_0)|<\epsilon \ .$$

Equivalently, f(z) is continuous at the point z_0 if $\lim_{z\to z_0} f(z)$ exists and is equal to $f(z_0)$.

Let $f:D\subseteq\mathbb{C}\to\mathbb{C}$. We say that f is continuous in the set D if f is continuous at each point of D.

Geometrical Interpretation of Continuity

To be continuous at z_0 , the function f should map Near by points of z_0 in to Near by points of $f(z_0)$.

Near by concept is written in terms of neighborhood.

The continuity of f(z) at a point z_0 can be interpreted geometrically as for each ϵ -neighborhood $B_{\epsilon}(f(z_0)) = \{w \in \mathbb{C} : |w - f(z_0)| < \epsilon\}$ of the point $f(z_0)$ in the w-plane, there exists a δ -neighborhood $B_{\delta}(z_0) = \{z \in \mathbb{C} : |z - z_0| < \delta\}$ of z_0 in the z-plane such that the function f(z) maps $B_{\delta}(z_0)$ inside $B_{\epsilon}(f(z_0))$.

Example: Let $f(z) = z^2$. Then,

$$\lim_{z \to (1+2i)} f(z) = \lim_{z \to (1+2i)} z^2 = (1+2i)^2 = -3+4i = f(1+2i).$$

Therefore, the function f(z) is continuous at the point (1 + 2i).

Example: Let $f(z) = \Re(z)/|z|$ for $z \neq 0$ and f(0) = 1. The function f(z) is **not** continuous at 0, since $\lim_{z\to 0} \frac{\Re(z)}{|z|}$ does not exist.

Example: Let $f(z) = \Re(z)/|1+z|$ for $z \neq 0$ and f(0) = 1. The function f(z) is **not** continuous at 0, since $\lim_{z\to 0} \frac{\Re(z)}{|1+z|} = 0$ which is not equal to f(0) = 1.

Results on Continuity

Theorem

Let f(z) = u(x, y) + i v(x, y) be defined in some neighborhood of $z_0 = x_0 + i y_0$. Then, f is continuous at z_0 if and only if u(x, y) and v(x, y) are continuous at (x_0, y_0) .

Theorem

Suppose that the functions f and g are continuous at z_0 . Then, the following functions are continuous at z_0 : (i) f(z) + g(z), (ii) f(z) - g(z), (iii) f(z)g(z) and (iv) $\frac{f(z)}{g(z)}$ provided that $g(z_0) \neq 0$.

Theorem

Suppose that f is continuous at z_0 and g(z) is continuous at $f(z_0)$. Then, the composition function $h = g \circ f = g(f(z))$ is continuous at z_0 .

Results on Continuity (continuation...)

Theorem

Suppose that f(z) is continuous at z_0 . Then, |f(z)| and $\overline{f(z)}$ are continuous at z_0 .

Theorem

Let $f: D \subseteq \mathbb{C} \to \mathbb{C}$. If D is a connected set and f is continuous in D then the set f(D) is a connected set. That is, Continuous image of connected set is connected.

Theorem

Let $f: D \subset \mathbb{C} \to \mathbb{C}$. If D is a compact set and f is continuous in D then the set f(D) is a compact set. That is, Continuous image of compact set is compact. Further |f| attains its maximum and minimum values in D.