NASA TECHNICAL MEMORANDUM

Report No. 53873

OPTIMAL TRANSFER TRAJECTORIES FROM EARTH PARKING ORBIT TO VARIOUS TERMINAL CONIC CONSTRAINTS AND MODIFICATIONS TO THE ROBOT COMPUTER PROGRAM

By Rodney Bradford Program Development

October 1, 1969

NASA

George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama

			REPORT STAND	ARD TITLE PAGE
1. REPORT NO.	2. GOVERNMENT AC	CESSION NO.	3. RECIPIENT'S CA	TALOG NO.
TM X-53873				
4. TITLE AND SUBTITLE			5. REPORT DATE	
Optimal Transfer Trajectories F		-	October 1, 19	
Various Terminal Conic Constrai	nts and Modifica	ations To The	6. PERFORMING ORG	SANIZATION CODE
ROBOT Computer Program	· · · · · · · · · · · · · · · · · · ·		PD-DO-P	
7. AUTHOR(5)			8. PERFORMING ORGA	NIZATION REPORT #
Rodney Bradford				
9. PERFORMING ORGANIZATION NAME AND AD Performance and Flight Mech	DRESS	<u>, </u>	10. WORK UNIT, NO.	İ
Preliminary Design Office	latifics Division	1		
Program Development			11. CONTRACT OR GE	RANT NO.
Marshall Space Flight Center	Alahama 35	812		
	<u> </u>	01 2	13. TYPE OF REPORT	& PERIOD COVERED
12. SPONSORING AGENCY NAME AND ADDRESS			Technical Men	norandum
			14. SPONSORING AG	ENCY CODE
	 			
15. SUPPLEMENTARY NOTES				
				j
16, ABSTRACT				
Reference optimal (minim	num filel consum	intion) transfor tra	iectories were	computed by
		=	=	
the minimum Hamiltonian-steepe				
about the earth to various termin	al conic constra	ints (V, γ, r), (V, γ	γ , r, i), (C_3, C_1)	$(C_3, C_1, i),$
and (C_3, α, δ) .			_	
• • • •				
Townsingle and it and wans	a ainoulan arbi	t at armahmanaya al	4:4.d. 95 000 1-	o alliusia all
Terminal conditions were		•	•	•
orbit with apogee at synchronous	altitude (in-and	-out-of-parking-or	bit-plane), and	an injection
burn into a typical 1973 Mars mis	ssion hyperbolic	orbit. The vehicl	es used to perfo	orm these
transfers were the S-IVB stage a	nd the Command	l Service Module	Also included is	s a typical
ascent trajectory profile utilizing				* *
			cie. Detailed o	roitai and
trajectory profile parameters are	e presented in ta	abular form.		
Modifications made to the	ROBOT-Apollo	and AAP Prelimin	ary Mission Pro	ofile
Optimization computer program a	are also present	ed.		
,		- · •		
17. KEY WORDS		18. DISTRIBUTION STAT	EMENT	
		STAR Annour	ncement	
				~
		, , ,		
		1/1.11		, i
		1168261	1. VEV	· · · · · · · · · · · · · · · · · · ·
		Erich E. Goe	erne#/	
		•	eliminary Des	sion Office
19. SECURITY CLASSIF, (of this report)	20. SECURITY CLAS		21. NO. OF PAGES	22. PRICE
10. 1=11 Carloon (Commercial				
Unclassified	Unclassified	<u>l</u>	135	\$3.00

ACKNOWLEDGMENT

Appreciation is expressed to Mrs. Shirley J. Johnson of the Dynamics Research Corporation for her diligent efforts in programming the modifications to the ROBOT-Apollo and AAP Preliminary Mission Profile Optimization Computer Program.

TABLE OF CONTENTS

		Page
SUMMARY		l
INTRODUCTION	1	1
COMPUTER PR	OGRAM MODIFICATIONS	4
TYPICAL ASCE	ENT TRAJECTORY PROFILES	4
	NSFER TO SYNCHRONOUS ALTITUDE	9
	NSFER TO ELLIPTICAL ORBITS WITH NCHRONOUS ALTITUDE	10
	NSFER TO 1973 MARS MISSION DRBIT	10
CONCLUSIONS		13
APPENDIX A:	OUTPUT FORMAT FOR EACH PRINT TIME INTERVAL AND OPTIONAL SUMMARY PRINT TABLE DESCRIPTION	95
APPENDIX B:	EQUATIONS FOR THE COORDINATE SYSTEM TRANSFORMATION AND COMPUTATION OF ADDITIONAL ORBITAL PARAMETERS	101
APPENDIX C:	ADDITIONAL INPUT VARIABLES REQUIRED AND INPUT DATA LISTINGS	111
APPENDIX D:	UNIVAC 1108 FORTRAN LISTING OF SUBROUTINE APRTN	117
APPENDIX E:	UNIVAC 1108 FOR TRAN LISTING OF SUBROUTINE TRASH	125
REFERENCES		129

LIST OF ILLUSTRATIONS

Figure	Title	Page
1.	Terminal conic injection constraints	3
2.	Inertial Cartesian plumbline coordinate system	5
3.	Geocentric ephemeris coordinate system and orbital geometry and notation	6
4.	Typical Saturn V ascent and circular target orbit injection profile	7
5.	Typical Saturn IB ascent and elliptical target orbit injection profile	8
6.	Circular target orbit velocity increment diagram	11
7.	Hyperbolic injection geometry	12
	LIST OF TABLES	
Table	Title	Page
1.	Saturn IB Ascent Trajectory Profile for a 115-Degree Launch Azimuth	. 14
2.	Saturn IB Ascent Trajectory for a 115-Degree Launch Azimuth	. 15
3.	Optimal Transfer Trajectory Characteristics for the Terminal Conic Constraint (V, γ, r) — Synchronous Altitude Circular Orbit in the Parking Orbit Plane	. 35
4.	Optimal Transfer Trajectory for the Terminal Conic Constraint (V, γ, r)	. 36

LIST OF TABLES (Concluded)

Table	Title	Page
5.	Optimal Transfer Trajectory Characteristics for the Terminal Conic Constraint (V, γ, r, i) — Synchronous Altitude Circular Orbit Inclined at 50 Deg	49
6.	Optimal Transfer Trajectory for the Terminal Conic Constraint (V, γ, r, i)	50
7.	Optimal Transfer Trajectory Characteristics for the Terminal Conic Constraint (C_3 , C_1) — $6588 \times 42~240~\rm km$ Elliptical Orbit in the Parking Orbit Plane	63
8.	Optimal Transfer Trajectory for the Terminal Conic Constraint (C_3, C_1)	64
9.	Optimal Transfer Trajectory Characteristics for the Terminal Conic Constraint (C_3 , C_1 , i) -6588×42240 km Elliptical Orbit Inclined at 50 Deg	. 71
10.	Optimal Transfer Trajectory for the Terminal Conic Constraint (C_3 , C_1 , i)	. 72
11.	Optimal Transfer Trajectory Characteristics for the Terminal Conic Constraint (C_3 , α , δ) — Typical 1973 Mars Mission Hyperbolic Orbit Injection	. 79
12.	Optimal Transfer Trajectory for a Typical 1973 Mars Mission Hyperbolic Orbit Injection	. 80

TECHNICAL MEMORANDUM X-53873

OPTIMAL TRANSFER TRAJECTORIES FROM EARTH PARKING ORBIT TO VARIOUS TERMINAL CONIC CONSTRAINTS AND MODIFICATIONS TO THE ROBOT COMPUTER PROGRAM

SUMMARY

Reference optimal (minimum fuel consumption) transfer trajectories were computed by the minimum Hamiltonian-steepest ascent method for departure from a circular parking orbit about the earth to various terminal conic constraints (V, γ, r) , (V, γ, r, i) , (C_3, C_1) , (C_5, C_1, i) , and (C_3, α, δ) .

Terminal conditions were a circular orbit at synchronous altitude, 35 862 km, an elliptical orbit with apogee at synchronous altitude (in-and-out-of-parking-orbit-plane), and an injection burn into a typical 1973 Mars mission hyperbolic orbit. The vehicles used to perform these transfers were the S-IVB stage and the Command Service Module. Also included is a typical ascent trajectory profile utilizing a two-stage Saturn IB launch vehicle. Detailed orbital and trajectory profile parameters are presented in tabular form.

Modifications made to the ROBOT-Apollo and AAP Preliminary Mission Profile Optimization computer program are also presented.

INTRODUCTION

Reference optimal (minimum fuel consumption) transfer trajectories were computed for the transfer of an S-IVB stage and a Command Service Module (CSM) from a 185.2-km altitude, 37-deg inclined, circular parking orbit about the earth to various terminal conic constraints. The selection of the terminal constraints was based on the criteria of obtaining a reference cross-section of optimally performed orbital operations. The optimization method employed was the minimum Hamiltonian-steepest ascent method as described in Reference 1.

The terminal conic constraints were defined as (V,γ,r) , (V,γ,r,i) , (C_3,C_1) , (C_3,C_1,i) , and $(C_3,\alpha,\delta)^1$. A physical interpretation of these constraints is presented in Figure 1. As shown in this figure the quantities V, γ and r are used to specify a circular orbit, whereas the quantities C_3 and C_1 are used to specify the shape of an elliptical orbit. This distinction was made to facilitate the calculation of the transfer trajectories by the computer program employed. The terminal condition for the constraint (V,γ,r) was an in-parking-orbit-plane circular orbit at synchronous altitude, 35 862 km. The terminal condition for the constraint (V,γ,r,i) was an out-of-parking-orbit-plane circular orbit at synchronous altitude with inclination equal to 50 deg. The terminal conditions for the constraints (C_3,C_1) and (C_3,C_1,i) corresponded to an elliptical orbit with perigee radius equal to r_E (earth radius) + 210 km and apogee radius equal to r_E + 35 862 km. The constraint (C_3,C_1) corresponded to an orbital inclination of 37 deg while the constraint (C_3,C_1,i) corresponded to an inclination of 50 deg.

The terminal constraint (C_3 , α , δ) corresponded to the terminal conditions on a hyperbolic orbit for a typical 1973 Mars mission. For this constraint the date and time of departure were specified along with the right ascension and declination of the outgoing hyperbolic asymptote as measured in an inertial ephermeris coordinate system. The optimization method and computer program employed, as described in Reference 1, were referenced to an inertial plumbline coordinate system. Thus, this terminal constraint necessitated a coordinate transformation to an inertial ephemeris system in the computer program and modification of the input variables. Also, additional orbital parameters were computed, a new output format was designed, and a summary print table option incorporated. All modifications made to the computer program are documented in the appendices.

The detailed ascent trajectory profile presented is for a two-stage Saturn IB launched from Cape Kennedy at an azimuth of 115 deg. The S-IB and S-IVB stages are fueled to capacity and burned to depletion. The CSM propulsion system is then ignited and burned until injected into a 185.2-km altitude, 37-deg inclined, circular parking orbit. At this point of parking orbit injection, an initial state vector was obtained which was used as a departure point to the various terminal constraints.

^{1.} Symbols are defined in Appendices A and B.

Figure 1. Terminal conic injection constraints.

COMPUTER PROGRAM MODIFICATIONS

Various modifications were made to the computer program [Ref. 1] which was used to compute the optimal transfer trajectories. These changes which were made in the program to make it more compatible for orbital operations computations, consisted of the design of a new output format and labeling code, coordinate system transformation, input variable alteration, and the computation and output of additional orbital parameters.

Appendix A gives a description and example of the output format for each print time interval, a definition of the output symbols, and a description of the optional summary print tables incorporated and the variables which must be specified for them. Appendix B gives the equations necessary for the transformation from the inertial plumbline (Fig. 2) to the inertial ephemeris coordinate system (Fig. 3) and equations defining the various orbital parameters included in the output format which were not previously computed in the program. The orbital geometry and notation are also shown in Figure 3.

Appendix C contains a description of the additional input variables necessary and listings of the input data required for computation of the transfer trajectories presented. Appendix D contains a UNIVAC 1108 FORTRAN listing of the subroutine titled APRTN which was modified to perform the coordinate system transformation and the computation of the various additional orbital parameters. The output of these parameters and quantities computed in the original program, in the new output format, is also accomplished by this subroutine. The subroutine, entitled TRASH, encompasses the optional summary print tables. A UNIVAC 1108 FORTRAN listing of the TRASH subroutine is presented in Appendix E.

TYPICAL ASCENT TRAJECTORY PROFILES

A typical three-stage Saturn V ascent trajectory and circular orbit injection profile is presented in Figure 4. As shown, trajectory arc 1 corresponds to the S-IC stage burn; arc 2 to the S-II stage burn; arc 3 to the first S-IVB stage burn to a 185.2-km parking orbit altitude; arc 4 to the parking orbit coast; arc 5 to the second S-IVB stage burn at perigee of the Hohmann transfer ellipse; arc 6 to the transfer coast; and arc 7 to the third S-IVB stage burn at apogee of the transfer ellipse. Detailed tabulations of Saturn V ascent trajectories for various launch azimuths can be found in Reference 2.

Figure 2. Inertial Cartesian plumbline coordinate system.

A typical two-stage Saturn IB ascent trajectory and elliptical target orbit injection profile is presented in Figure 5. As shown, trajectory are 1 corresponds to the S-IB stage burn; are 2 to the S-IVB stage burn; are 3 to the first Command Service Module burn to a 185.2-km parking orbit injection; are 4 to the parking orbit coast; and are 5 to the second CSM burn to injection. A typical Saturn IB ascent trajectory profile for a launch azimuth of 115 deg is presented in Table 1. A detailed tabulation of this trajectory is presented in Table 2. The last entries in this table give the position and velocity of the CSM at parking orbit injection. These values of position and velocity were used as the initial "state" for transfer to the various terminal conic constraints.

Figure 3. Geocentric ephemeris coordinate system and orbital geometry and notation.

- 1. S-IC Burn
- 2. S-II Burn
- 3. First S-IXB Burn to 185.2-km Circular Orbit Altitude
- 4. Parking Orbit Coast
- 5. Second S-IXB Burn (Perigee Burn for Transfer Ellipse)
- 6. Transfer Coast
- 7. Third S-IX B Burn (Apogee Burn for Target Orbit Injection)

Figure 4. Typical Saturn V ascent and circular target orbit injection profile.

- 1. S-IB Burn
- 2. S-IVB Burn
- 3. First CSM Burn to 185.2-km Circular Orbit Altitude
- 4. Parking Orbit Coast
- 5. Second CSM Burn (Injection Burn for Elliptical Target Orbit)

Figure 5. Typical Saturn IB ascent and elliptical target orbit injection profile.

OPTIMAL TRANSFER TO SYNCHRONOUS ALTITUDE CIRCULAR ORBITS

The optimal transfer from the initial state in the parking orbit to the in-parking-orbit-plane synchronous altitude circular orbit corresponding to the terminal conic constraint (V,γ,r) $(V=3.072~\mathrm{km/sec},~\gamma=0~\mathrm{deg},~r=42~240~\mathrm{km})$ required no coast in the parking orbit from the injection point. This condition resulted from the fact that any point in the parking orbit was an optimum departure point for this in-plane target orbit case. Therefore, the S-IVB burn at perigee of the transfer ellipse was specified to occur immediately after parking orbit injection. The optimum burn and transfer time computed is shown in the timing analysis of Table 3. The remaining vehicle mass after satisfaction of the terminal constraint was 50 156.3 kg as compared to an initial vehicle mass of 128 986.8 kg. A detailed tabulation of this trajectory is presented in Table 4.

The optimal transfer to the out-of-parking-orbit-plane terminal conic constraint (V, γ , r, i) (V = 3.072 km/sec, γ = 0 deg, r = 42 240 km, i = 50 deg) required a plane change of approximately 13 deg. For a minimum velocity impulse to perform this plane change, the perigee point of the transfer ellipse is located at one of the nodal points of the parking orbit where only a portion of the total plane change is performed. Therefore, this transfer required a coast in the parking orbit of 268.4 sec.

The parking orbit injection point was located at a latitude (geocentric latitude) of 15.8 deg and a longitude of -55.6 deg. The perigee burn of 263.8 sec duration began at a latitude and longitude of 5.19 deg and -41.6 deg, respectively, and ended at a latitude and longitude of -7.18 deg and -26.44 deg, respectively. Thus, the midpoint of the perigee burn occurred approximately at the equator, adding enough velocity increment to perform a plane change maneuver of 1.16 deg (Δi_1) and modify the S-IVB orbit to that of an ellipse with apogee radius equal to 42 240 km (Hohmann transfer ellipse). The transfer time along this conic was 5.240 hr. With the plane change of 1.16 deg performed at perigee, the plane change required at apogee (Δi_2) was 11.9 deg. These amounts were computed to be the optimum perigee/apogee plane change ratio. The length of the apogee burn was 101.2 sec. A complete timing analysis for

^{2. &}quot;Optimal" in the following discussion will refer to minimum fuel consumption.

this transfer is presented in Table 5. The velocity vector diagrams for both the perigee and apogee burns are shown in Figure 6. A detailed transfer trajectory tabulation is presented in Table 6.

OPTIMAL TRANSFER TO ELLIPTICAL ORBITS WITH APOGEE AT SYNCHRONOUS ALTITUDE

The terminal conic constraint (C_3 , C_1) (C_3 = -16.33 km²/sec², C_1 = 67.40 km²/sec) specified an in-parking-orbit-plane elliptical orbit with perigee altitude equal to 210 km and apogee altitude equal to 35 862 km. A typical elliptical orbit injection profile was shown in Figure 4. Again, because of the in-plane target orbit, no particular point in the parking orbit was an optimum point of departure, and thus the parking orbit injection point was chosen as the departure point. A single burn of the S-IVB stage was required to optimally satisfy the terminal constraint giving an injected mass of 71 361.9 kg as tabulated in the timing analysis of this transfer given in Table 7. Presented in Table 8 is a tabulation of this transfer trajectory.

The analogous out-of-plane terminal conic constraint to the above was (C_3, C_1, i) $(C_3 = -16.33 \, \mathrm{km^2/sec^2}, \, C_1 = 67.40 \, \mathrm{km^2/sec}, \, i = 50 \, \mathrm{deg})$. The optimum coast time in parking orbit was computed to be 216.9 sec, corresponding to a position of 7.26 deg latitude and -44.2 deg longitude, as shown in the timing analysis of Table 9. At this position the single S-IVB stage burn of 316.7 sec duration commenced. The burn ended at the position of -7.14 deg latitude and -29.6 deg longitude, after the energy and momentum constraints were satisfied and the plane change of approximately 13 deg was performed. A final mass of 59 771.5 kg remained at injection. The tabulation of this transfer maneuver is presented in Table 10.

OPTIMAL TRANSFER TO 1973 MARS MISSION HYPERBOLIC ORBIT

The terminal conditions for the injection burn into a typical 1973 Mars mission trajectory were on a specified hyperbolic orbit. The necessary terminal conic constraint consisted of an energy level, C_3 , right ascension, α , and declination, δ , of the outgoing hyperbolic asymptote (C_3 = +18.0 km²/sec², α = 15.55 deg, δ = 31.59 deg) along with a specified launch date

APOGEE INJECTION VELOCITY DIAGRAM

 $\Delta i_2 = 11.90 \text{ deg}$

Ę

Va = 1.593 km/sec

 $V_c = 3.072 \text{ km/sec}$

 $\Delta V_2 = 1.479$ km/sec

PERIGEE INJECTION VELOCITY DIAGRAM

 $\Delta i_1 = 1.160 \text{ deg}$

Vp = 10.25 km/sec

Vc = 7.793 km/sec

 $\Delta V_1 = 2464 \text{ km/sec}$

Figure 6. Circular target orbit velocity increment diagram.

(August 6, 1973) and time (14 hr, 38 min, 15.85 sec Greenwich Mean Time). The hyperbolic injection geometry is illustrated in Figure 7. The right ascension and declination of the outgoing asymptote were referenced to an inertial, geocentric ephemeris coordinate system (Fig. 2) while the equations of motion in the computer program of Reference 1 were referenced to an inertial plumbline coordinate system. Thus a coordinate transformation was performed. The mechanics of this transformation are given in Appendix B.

Figure 7. Hyperbolic injection geometry.

As tabulated in the timing analysis of Table 11 the optimum parking orbit coast time computed for the transfer was 1587.6 sec, which positioned the spacecraft at -36.3 deg latitude and 39.1 deg longitude. From this position a burn of 455.1-sec duration of the CSM propulsion system was required to insert the vehicle into the specified hyperbolic orbit. The vehicle mass injected into this orbit was 4817.3 kg compared with an initial vehicle mass of 18 029.7 kg. A detailed trajectory tabulation is presented in Table 12.

CONCLUSIONS

The transfer trajectories presented above provide somewhat of a reference cross-section of optimally performed orbital operations. Profiles and detailed trajectories were presented for the optimal transfer of (a) an S-IVB stage vehicle from a parking orbit about the earth to circular orbits at synchronous altitude and elliptical orbits with apogee at synchronous altitude (in-and-out-of-parking-orbit-plane), (b) a Command Service Module from an earth parking orbit to a typical 1973 Mars mission hyperbolic orbit. The parking orbit about the earth was a 100-nautical-mile, 37-deg-inclined circular orbit. An example of the utilization of these type transfer trajectories might be in the support of high-energy missions by the ILRV (Integral Launch and Reentry Vehicle). For instance, some of these proposed missions could involve the delivery of propulsive stages and payloads into low earth orbit for subsequent transfer to synchronous orbit.

The input data listings presented should serve as examples for similar runs to be made on the ROBOT computer program. Also, the vehicle roll and pitch programs tabulated in the trajectory tables should be of future use as initial estimates for similar runs. The modifications made to the ROBOT computer program (ephemeris coordinate system transformation, computation of additional orbital parameters, new output format, and inclusion of optional, publishable, summary print tables) make it much more compatible for orbital operations computations.

TABLE 1. SATURN IB ASCENT TRAJECTORY PROFILE FOR A 115-DEGREE LAUNCH AZIMUTH

	Time	We	Weight	Altitude	Velocity	Lat b	Long.
Thrust Event	(sec)	(kg)	(qI)	(km)	(km/sec)	(deg)	(deg)
Lift⊸ff	000.000	564 621	1 244 777	000.000	0.409	28.361	-80.561
Jettison weight (launch escape system)	70.00	499	1 100				
S-IB cutoff	133,61	191 031	421 151	52.69	2,221	28,140	-80.041
		373 590	823 626				
b, S-IB jettison weight		19 764	109 711				_
S-17B ignition	139.11	141 267	311 440	57,71	2, 199	28, 105	-79.959
S-IVB cutoff	566.47	36 941	81440	178.97	7,082	21.458	-67.117
a. S-IVB propellant consumed		104 326	230 000				
b. S-IVB jettison weight		14 133	31 157				
CSM first ignition	566.47	22 808	50 283	178.97	7.082	21.458	-67.117
CSM first cutoff	731.32	18 030	39 749	185.22	7.792	15.756	-58.264
CSM propellant consumed		4 778	10 534				

^aInertial velocity.

^bGeocentric latitude.

^cWest longitude from Greenwich.

d parking orbit insertion (185,2-km altitude circular orbit).

TABLE 2. SATURN IB ASCENT TRAJECTORY FOR A 115-DEGREE LAUNCH AZIMUTH

	TIME	INFRIAL	VELACITY	RELATIVE	VELOCITY	THETA S	THETA R
	SEC	M/SEC	FT/SEC	M/SEC	FT/SEC	1	1
LIFT-8FF	0.000	8.9	41.7	0.0	0.0	00000	90.006
	5.000	28	342.	m	53.54	2.285	•
	10.000	410.356	31	4.36	~	4.804	6
	15.000	2	356.7	90	77.3	5	· • I
	20.000	17	1378,538	75.463	7.5	•32	•
	25.000	430.679	1412.990	S	25.2	13,262	•
	30.000	445.132	0+	5.7	12.	16.191	80.665
	35.000	453.732	521.	S	6	090	6
	40.000	486.637	1596.579	ന	12.9	1.819	65
	45.000	514.132	1686.786	221.976	28.2	4.412	73.184
	45.328	516,111	1693.276	224.4614	736.234	575	m
	50.000	546.208	1792,023	ഹ	55.0	6.82	71.046
	55.000	587.451	1927.332	302.794	93.4	4	7.56
	000 • 09	632,305	2074.492	346.086	35.4	5.46	5
	65.000	683.478	2242.383	394.497	7.5	C • 1 E	- 23
10 KMS.	65.654	690.714	2266.123	401.311	1316.637	C.25	60.122
	10.000	742.136	2434.628	9	415.3	C•61	.17
DRØP WT 1	70.000	742.136	2434.328	9.6	475.3	C • 6 1	57.175
Q MAXIMUM	72.768	778.102	2552.826	83.	() ()	30.147	17
	75.000	œ	2653.884	12.5	681.5	C.EC	5
14 KMS.	76.067	824.211	2704.104	26.9	728.8	C • E 1	52.
	80.000	33	2859.724	2	913.6	C . 7E	•
	8>•000	751.157	3173.068	2.3	172.5	C . 5E	35.
,	000.06	7		750.060	46C•E	C • 23	5.21
	65.000	1159.984	5805.723	846.363		11.5	42.660
	100.000	87	166.2	2.7	125.5	5.23	0
	105.000	389.0	557.	68.3	505°C	ۥ63	5 5 4
	110.000	518.02	80.3	93.8	916.9	e.01	6.67
	115.000		7.75	ů	364.1	27.381	3 5 €
	120.000	508.13	2.1	78.C	345.5	6.75	
	125.000	571.52		8.5	375.8	6.13	2,CC
- 1	130.000	2148.133	7047.681	1813.130	48.5	5.55	0.72
	130.606	11	21.3	35.	021.3		30.586
ENC DECAY	130.606	170.58	7121.340	1835.316	-	• 4E	

TABLE 2. (Continued)

	177.1	TOTOT	24176.777		VEL ACTTV	TUETA	THETA
	SEC	M/SEC	FT/SEC	M/SEC	FT/SEC	CEG	DEG
BEGIN DECAY	•	221.047	7286.901	1884.050	6181.266	24.999	29.681
SEPARATION	133,606	2221.047	86.90	1884.050	81.26	556. 42	33.6
END CHAST		2198.753	7213,755	1857,882	6095.415	23.844	28.582
,	9.1	2198.753	13.75	1857.882	095.41	22.844	8 . F.
IGNITION	139,106	2198.753	13,75	1857.882	-	23.644	8.58
ENC BUILDUP	139.461	2198.636	13,37	1857.548	~	23.778	8.50
	õ	2231.124	19.96	1865.178	v	22.251	6.67
	159,000	2268.557	42.7	1917,978	292.57	20.783	4 • E
		2309.409	76.30	1954.655	~	15.325	3.02
	179.000	2353.649	21.94	1955.156	ω,	17.523	1.25
		2401.247	78.	2039.426	ויי	16.556	9.65
	0.65	2452-174	45.19	2087.412	S	15.318	8 · C E
	209.000	2506.408	23.	2139.063	2	14.101	W)
	219,000	2563.932	11.	156.4613	4	12.945	
	229. COC	2624.733	11.	2253.178	~	11.848	3
	239,000	2688.610	21.	2315,572	2	10.612	ω.
	249.000	2756.166	42.	2381.490	ω	5.834	ر د
	259.000	2626.816	274.	2450.920	7	6.915	52
	269.000	2500.783	9517.004	2523.861	ш	E • C 5 2	9.265
	279.000	2578.100	77C.	26CC-324	4	7.245	C)
	289.000	3058.812	035.	2680.334	4	6.452	4
	269.000	3142.976	311.	2763.527	ပ	5.791	Š
	303.636	3230.662	9859	2651.137	w	5.141	3
	319.000	3321.952	0888	2942.091	(7	4.541	1,
	329.00C	3416.944	11216.447	3036.812	σ	3.988	4 8
	339.000	3515.751	1534.	3135.420	-	3.481	
	349,000	3618.500	1871.	2236.C33	3.46	3.019	
	59.0	3725.338	2222	3344.756	3.71	2.600	ŝ
:	369.000	3836.432	2586.	3455.842	8.C6	2.252	4
		3551.969	965.77	3571.375	7 . 10	1.864	2.CE5
	389.000	4C72.158	1336C.099	3691.590	1.51	1.585	14
		4197.238	770.	3816.72C	2.04	1.323	
		4327.473	14197.747	3947.024	12945.555	1.CSE	(7)
	419.000	4463.161	642.	4082.796) ()	2 3 S • 3	

TABLE 2. (Continued)

	TIME	INERTIAL	VELBCITY	RELATIVE	VELECITY	THETA S	THETA R
	SEC	M/SEC	FT/SEC	F/SEC	FT/SE	. CFG	CEC
	429.000	604.63	15167.073	4224.365	13855.466	C.751	
	439.000	7		372.10	344.1	\$ 55	6 E
	449.030	57.905	£097.42	220.4	ď,	in in	34.
	459.CCC	C6 7.7E	62	687.8	2	47	- 2
	333.63+	136.67	718C.U3	8.958	4	•44	15.
	479.000	413.78	Ą	034.C	5	74.	647
The second secon	200.684	533.662	6372.15	220.2	÷.	14.	5.5
THRUST SHIFT	455.042	743.53	-3ec€. 0	568.9	~	.51	54
	200.65+	786.77	.6363	7.1.34	Ż) 5 •	M I
	60	953.44	1532.2	575.9	ري	•45	41
	13	127.75	0164.2	746.4	4)	.51	6.547
	529.000	310.44	C7 C3. S	931.1	~	55.	0.586
	9.5	502.11	1332.4	122.8	2	. ¢ 1	e s
	49.	703.65	1993.6	524.4	Y	65	
	6.4	915.95	2696	3 € 6 E	7	38.	£ 4
ENG CUTZFF	.6.	032.21	3235.2	703.1	5	8.8	75
SEPARATION	65.	632.21	3235.5	700.1	O.	ς. ·	6,4
IGNITIEN	Jec. 435	32.21	3235.5	703.1	υ _ν	52	75
	376.00C	117.96	3352.8	730.8	i	E	٤٤
	000.000	155.14	3478.1	777.0	4	.73	:
	996. CUU	195.01	3605.7	9.01€	٠	• 65	ý
	000.000	634.60	1735.	6:3.5	ب	٠ ٢	7
	016.000	58.472	3867.7	ω • B B B B	17	5.	4
	C26.CAC	315.89	4002.4	950.9	ايسا	74.	4.7
	03c. CUC	30.165	+135.1	910.6	ų.	35.	4 C
	045.000	400.00	4278.4	C21.1	,	23	7:
	000.000	443.23	4420°0	064.3)	12.	5.7
	6.5	487.14	4564.11	10c.2		. 22	7.7
	676.000	331.72	471C.	152.9	_		1 5
	000•asa	577.17	65-6587	198.4	۳	14	7.1
	35	623.31	501C.87	244.5	9	. 10	. 1
	200°607	7070.213	4. 24	7291.523	23924.384	C.C71	0.074
	15.	717.57	2351.12	2.568	O,	• 04	• (4
	726.000	36.00	148C. 0	187.7	9	.C.	7

TABLE 2. (Continued)

						8	ם ו
	TIME	INERTIAL VELBCITY	VELBCITY	RELATIVE	RELATIVE VELØCITY	THETA S THETA R	THETAR
) II.	M/SFC	FT/SEC	M/Sec	FT/SEC	DEG	DEG
	2 1						
ENG CUTBER	731,322	7792.402	7792.402 25565.025	7413.852	7413.852 24323.650	-0.004 -0.004	-0.004

a. THETA S is the flight path angle as measured from the local horizontal to the inertial velocity vector. b. THETA R is the flight path angle as measured from the local horizontal to the relative velocity vector.

TABLE 2. (Continued)

	3711	WACE		\ \ \ \ \	11343	V 1 7 1 V	_ <u> </u> -	(14)
	SEC SEC	τ	DEG	CEG		LEC	CEC	LEC
				,				•
L1F1-0FF	202.0	000		 			-	-
	5.000	.047).cc	£.36	8 C • 2 is	Ú	0000	<u>.</u>
	10.000	653.	0.01	E . 36	8 C . 5	ָר כ	0.00	<u>ي</u>
	15.000	.156	50.0	8.36	56	11	£5°L	2)•
	20.000	.219	35.0	E . 36	8 C. 56	17	5.67	0
	25.000	.290	59.0	6.36	80.56	5.1	3.51	3)•
	300.05	.369	1.20	8.36	85.58	2.2	1.74)
	35.000	.45E	1.84	8.36	8(.55	1.84	37.5	<u>.</u>
	700.04	.557	2.58	8.35	C. 55	ύć	7.62	5
	45.000	.668	3.34	8.35	8C.55	25.5	2.5.2	35 . 5
	45.328	.676	3.39	E • 37	EC.55	1.52	2503	• 66
	50.000	(.7955	54.183	28.356	-86.551	46.164	73.452	U
	55.000	.940	5.42	8.35	8f.54	CC	7.33	C • 17
	200.03	.097	5.69	8.35	95.7B	S	3.85	50.0
	65.000	.284	3 . C.2	8.34	F (. 53	Ú	52.0	7
10 KMS.	65.654	.311	510	95.8	66.53))	6.84	000
	202.07	.506	15.6	8.24	E(•52		6.87	7
DREP WT 1	70.00	. 50£	1:08	7E • 3	85.52	Ü	6.87	• 0.
G FAXIPUP	72.768	.645	5.11	t.34	£ C.51		50.5	5
	75.000	.763	(.0.71	S 2 . 3	8(.51))	54.5	• 10
14 KMS.	76.067	· c21	55 . 00	8 63	8 C . 3 C	\mathcal{L}	2.51	-
	300.08	040	02.00	8.33	5 5 • J ii	22	37.0	• 14
	85.CCC	.354	(3.23	6.32	5 C . 47	U	35.1	1,5
	222•25	.569	64.32	8.31	S+ 0 3	$\frac{1}{2}$	13.7	
	303.55	.857	55.44	8.3C	86.42	\mathcal{L}	2 € 5	• ¿€
	100.000	.175	(6.41	6.29	8 C • 3 8	S	3) ·)) : ·
	105.000	.514	22.13	E.27	86.38	S	1.57	.33
	110.000	. 862	53.83	52.3	EC.33	J	€ • € 3	• 3 E
	115.000	.223	C8.82	8.23	8 C • 27	\mathcal{L}	4.26	3.5
	120.000	. 599	54.63	E • 21	8C.22	S	5.64	17.
	125.CCC	900.	10.10	£ • 15	EC.16	ی	1.16	£ 7 •
	13C.CCC	655.	u v	E • 16	50.03	\ddot{c}	5.81	77.
	120.606	.563	10.72	8.15	30°3	닔	59.6	٠, د
ENE CECAY	130.606	. 563	.72	ۥ15	80.08	Ü	5.65	, t

TABLE 2. (Continued)

	3411	MACH	AZ.S	LATITUDE	LØNGITUDE	ALPHA	CHIP	X1HD
> V U B O W I U B B B B B B B B B B B B B B B B B B		6 7630	110 '906	20 17.0	-80.04.1		1 0	2 6
4	133,606		10.80	71 - 8	0 0	• •	0	•
END CBAST	139, 106	5.8187		28.105	6.6	000.0	2 4	0.503
END ATMBS	139, 106	8	96.0	28.105	49.9		49	
	139, 106	5.8187	110.945	28.105	6	0.000	38.765	202.2
ENC BUILDUP	139.461	5.8177	3.95	28.102	-79.954	•	38.746	•
	149.000	5,9042	111.166	28.04C	-75.811	•	37.55	0.000
	159,000	0	111.391	27.973	-79.656		37.129	•
	169.CCC	€.121€	111.613	27.903	-75.457	•	36.251	0.000
	179.000	• 2	1.83	27.830	~		5.44	222.2
	189,000	6.3873	2.05	27.755	-79.164	•	34.587	222.2
	000*661	6.5376		27.677	6 3	222.5	33.720	222.3
	209.000	6.6993	112.452	27.556	-		32.644	222.2
	219.000	6.8724	112.709	27.513	-78.625		31.558	2020
	229.000	7.0567	112.926	27.426	-78.435	•	31.066	0000
	239.000	7.2522	3.	27.336	-76.236		30,151))))))
	245.000	7.4586	3.3	27.243	-76.036	•	25.23))))))
	259,000	7.6761	3.5	27.146	-77.826	•	105.35	333.3
	269.00C	7.9045	113.788	27.046	-77.613	•	27.355	0000
	279.CCC	~	S	26.942	56.1		504.95	222.3
	269.CCC	£.3546	114.218	26.835	-77.164	•	55,435	(• (((
	259.COC	E. 6564	64.43	26.723	£6.3	•	135.25)))))
	300.608	σi	4.64	26.6CE	6.6	•	23.470	0000
	319.000	5.2144	4 • 8	26.488	-16.435	•	55.465))))
	329°CCC	വ	15.CE	26,363	-76.182	• !	21.48	2220
	339.000	€.819€	• 25	26.234	.91	•	2C • 411	2020
	349.00C		5.51	26.100	-75.646	• 1	15.374	0000
	355.000	.47	15.7	25.961	•		16.216)))•)
	369.000	1C.8234	115,955	25.617	-75.C76		17.245	(•(((
	379.000	11.1852	• 17	25.667	~	٠.	16.160))))))
	389.000	11.5617	116,359	25.512	-74.47C	님	15.060	3
	333.658	11,9536	• 62	25.350	-	222.2	4	(*(((
	465.000	- -1	116.648	25.182	8	심	12.817	0.000
	419.COC	12.7869	117.074	2.5 · CCE	-73.49C	222	11.674	0000

TABLE 2. (Continued)

	1186	MACH	AZ.S	LATITUDE	LONGITUDE	ليب ر	CH1P	CHIV
	SEC		DEG	DEG	DEG	DEC	DEC	DEC
	429.000	13,23	17.30	.82	73.1	000.0	10.516	
	439,000	13.6	17.53	4.63	72.78	임	.34	ខ
	449.000	1 4.1	91	77.7	72.41	0	• 15	00.
	459.000	14.6	17.99	4.23	72.03	9	• 95	20.
	000.694	15.2	.23	4.02	71.63	0	• 74	00.
	479,000	15.7	18.47	3.80	71.23	়	.51	3
	489.000	16.3	18.71	3.57	70.81	0	• 26	00.
THRUST SHIFT	496.642	16.0	18.9C	3.39	70.48	익	30	0)•
	000.664	16•3	18.95	3.33	76.37	ပ္	00.	00.
	509 <u>.</u> 000	17.4	9.15	3.08	66.63	٠,	27	
	519.000	16.0	19.42	5.62	65.47	٠	C . 54	00.
	529.CCC	16.5	19.66	2.55	6 5 ° 0 C	٠,	1.84	2
	539.000	15.1	19,90	2.27	68.51	٠ •	3.15	20.
	549.C00	15.8	20.15	1.59	68.02	익	4.48	<u>ي</u>
	559.COC	2C.4	50.35	1.69	67.5C	٠,	• £ 1	٠ د د
ENG CUTRFF	566.465	2 C • 9	0.58	1.45	67.11	٥,	6.81	2
SEPARATION	566.465	2C•9	20.58	1.45	67.11	္	• £ 1	5
IGNITIEN	566.465	2C.9	20.58	1.45	67.11	ပ	6.61	2
	576.000	21.1	0.76	1.15	66.61	ပ္	• 1C))
	586.000	21.2	20.68	0.83	66.07	익	5.47	
	596.000	21.3	21.2C	16.3	65.54	်	10.84	33.
	906.000	2 i . 4	1.41	C.18	65.C1	٧,	12.22	3
	616.000	2.1	121.617	19.653	ω,	222.2	-13.609	222.2
	626. CCC	21.7	1.81	9.51	63.94	٠,	15.00	2
	030.959	21.8	2.C1	• 17	63.41	ن	16.40	٠ د د
	646.CCC	21.9	2.21	E = 83	62.87	9	17.EC	2
	656.000	22.1	2.40	•49	52.34	٠	15.51	٠ د د
	666.CCC	22.2	2.5E	14	6 1.8C	익	20.62	2
	000.910	22.4	2.17	ဃ	51.26	٠.	52.04	٠ د
	686.CCC	22.5	2.55	.42	50.72	٠	23.45	3
	000 959	22.6	3.13		6C.18	٠.	24.87	٠ د د
	7C6.C00	22.0	3 · 3C	.70	59.64	익	26.2E	5
	716.000	22.9	3.48	• 33	29.09	ပ	51.69	222.5
	726.000	23.1	3.64		55.55	9	35°58	0000
ENG CUTTE	731.322	23.2	3.73	15.756	Ų,	ပ	1 • E C	73377

TABLE 2. (Continued)

	TWIT	A I	AI TITIIDE	INCLINATION	G NAC	DESCUIPE
	SEC	Σ	FT	DEG	KG/(M)SC	LB/(FT) SQ
LIFT-0FF	00000	00.0	0.0	28.361	00000	0.00
	5.000	39.85	130.8	8		28
	10.000	165.89	544.3	28 • 361	70.227	38
	15.000	386.33	1267.5	æ	C • 38	4.
	20.000	709.12	2526.5	28.362	322.120	65.575
	25.000	1143,46	3751.5	28.368	6.86	
	30.000	1700.10	5577.8	28 • 38 4	613,549	166.628
	35.000	2388.11	7335.0	28.415	1150.952	235.742
	4 C. C.C.C		10550.8	23.467	154C.873	315,556
	45.000	4199.84	13779.0	28.538	1566.849	462.842
	45.328	4269.94	14009.0	28.543	1555.021	408.735
	200 05	5345.81	17538.8	26.638	24CE • 2E2	352*255
	55. COC	6661.18	21854.3	28.826	2635.241	58C . 7C3
	000°09	8138.31		29.068	3168.051	648.876
	65.COC	9773.87	32066.5	25.371	3435.565	764.549
10 KMS.	65.654	55°6556		25.415	3465.736	716.658
	7C.CC0	11575.92	37978.8	25.731	3619.534	741.339
DREP WT 1	70.000	11575.52		25.731	3619.534	741.339
O MAXIMUM	72.708	12648.67	41498.3	25.552	3651.228	747.830
	75.000	13554 • CC	•	3C.139	3628.524	743.180
14 KMS.	76.067	14 CCO • CC	45931.8	3C • 230	360C • 654	737.472
	80.000	15717.70	51567.3	30.577	2257.811	125.369
	65.CCC	18075.63	59303.3	31.032	2521.468	558.368
	<u> </u>	20635.34	67701.3	31.438	924.652	456.622
	5. C	23404.45	76786.3	31,935	1914.428	352.1CE
		26390.19	86582.0	32,365	1495.828	36€.376
	105.CCC	29 599 • 66	97111.8	32.771	1125.741	232.616
	110.000	33040.4C		33.151	534.453	176,510
	115.C00	36721.54	120477.5	32.505	597.261	122.349
	120.000	40653.84		32.833	416.566	. 85.729
ı	125.CCC	44850.25	147146.5	34 • 137	265.275	56.548
	130.000	49327.16	•	34.419	7	46.173
ENG CUTRFF	130,606	49889•44	163579.3	34.452	150.867	35 • CBC
ENC CECAY	130.606	49889.44	163679.3	34.452	190.807	3)•5

TABLE 2. (Continued)

	TIME	ALTI	AL TI TUDE	I NCL I NAT I 3%	DYN.	PRESSURE
	SEC	Σ	FT	DEG	KG/(M)SC	LB/(FT)50
BEGIN DECAY	133.606	2692.3	72	4.53		9.54
SEPARATION	133.606	269	2875.	4.53	44.2	• 54
END COAST	139,106	9	325.	S		15.773
END ATMOS	139,106		93	4.53	(D)	.77
IGNITION	139.106	7706.6	326.	4.53		.77
END BUILDUP	139,461	3021.	559.	4.53	0	.76
	149,000	5265.8	17407.	4.50	\sim	• 24
	159,000	74500.28	4	• 08	\circ	16.810
	169,000		270094.0	34.754	85.242	17.455
	179.C00	747.1	94440.	• £2	ധ	~
	189.000	5.1	17507.	4.69	~	33.5
	199,000	19.7	39303.	4.56	N	5.51
	209.000	9686.5	59864	5.03) • ? J	2C • 5C E
	219.000	5585.1	75216.	5.10	₹	2.CC
	\sim	1124.1	57389.	5.16	l (V	₹.19
	239.000	2 • 4	14410.	35.229	43	4.5C
	6	1158.7	30311.	5.29	LC V	15.5
	259.000	5672.7	45120.	5.25	L	1.14
	269.000	9553.5	58870.	5.41		5.10
	00	6.0	71591.	5.47) • E	363.05
	269.000	7314.7	£3316.	5.53	7.0	23.5
	299.000	1:0595.13	94		4.)) (
	00	3592.6	C3913.	5.64	1.3	7.14
	0	6318.4	12355.	5.70	53.1	5.55
	20.6	8783.5	20843.	35.756	CE • 7	2.1
	339.000	1.6660	28214.	5.50	15.3	25.
	7	2979.3	34709.	5.86	5 • E E	
	•	4734.9	40469.	5.51	48.6	1.12
	369.000	166279.83	45537.	95.5	66.4	73.
	379.000	167628.11	46561.	€ • C1	84.5	€.28
	389.000	3754.3	53787.	90.9	C4.C	12.
	369.000	169794.10	57067.	6 . 1	25.C	66.567
-	00	170643.50	,	6.15	١٤)	71.189
	419.C00		62204.	2	71.9	76.171

TABLE 2. (Continued)

may may 1 to 1 t	TIME	ALTI	ALTITUCE	INCLINATION		PRESSURE -
-	SEC	2.	FT	CEG	KG / (M) SC	GU
	000.624	171961.61	564178.5	36.247	356.139	1.54
	439.000	7246	65840.		26.47	545.13
	445.000	96	6725	2	57.I	53.62
	459.000	73280.C	E504.	~	3	100.420
	469.000	3631.7	565658.0	7	26.2	07.15
	0	173980.51	570803.5	9	65.3	3.5
	469.000	174355.43	572032.3	9	667.576	124.523
THRUST SHIFT	456.642	174677.37	573088.5	3	643.125	1.72
		174782.68	573434.0	4	(52.323	33.6
	0	175227.55	514895.C	7	653.176	
	515.000	175689.69	3.604915	3	137.237	15(• 698
	529.C00	176193.68	576063.3	S	164.853	160.751
	539.000	176768.61	578949.5	٥	£36.42C	171.312
	549.000	177444.88	582158.3	6.	E G Z • 4 C 4	162.179
	555.000	178255.88	584 829 . C	\approx	Ç53.351	155.262
ENG CUTBEF	566.465	178970.10	587172.3	2	1662.466	205.220
◂	566.465	178970.10	587172.3	2	1002.460	205.220
IGNITION	566.465	178970.10	587172.3	2	1662.466	205.320
	576.000	179504.24	£90237.0	75	1012.163	207.516
	586.000	160788.23	593137.3	16	1624.657	205.675
	596.000	161573.26	595729.3	2	1636.451	212,250
	200-309	162278.55	59EC26.8	11	1646.570	214.764
	616.CCC	162893.49	600044.3	7	1666.939	217.257
	526.00C	163426.89	601794.3	9.	1673.662	215.691
	636.000	183885.25	603291.5	10	1CE6.565	256.546
	545.CCC	184267.07	€04500.8	52	16.50	225.26:
	656.CCC	164582.15	6C5584.5	9	1113.411	228.(45
	6 C	164833.39	6(6406.8	3	~	230.891
	676.000	185024.88	667637.0	<u>.</u>	.5	233.EC3
	656.000	165161.35	667484.8	3	1156.071	236.782
	656.000	165247.15	667766.3	2	ئ	. 235,836
	7C 6 . COC	165287.23	6C7397.8	3	86.1	545.545
	71c.00C	165286.C1	£C7393.8	31		246.139
	726.000	185248.52	£C7770.8	Ξ.	17.6	245.462
ENG CUTRFF		185220.63	£€7079.3	(1)	26 • 3	251.167

TABLE 2. (Continued)

	TIMI	NACC	IHCIUM	THRUST	15	LØNGIT. ACC	ELEKAT 10N
	SEC	KGS	LBS	2	LBS	M/(SEC) SQ FT/(SEC) SQ	1/(550)50
I FET-OFF	000	554621.2	1244775.7	7295683.4	1040300.0	12,83	42.10
	5.000		13645	7298997.3	1646580.0	•	43.42
	10.000	536379.3	1182514.0	7311284.7	1643542.2	13.57	44.51
	15.000	<u>ار</u> ا	1151382.6	43	8397	13.90	45.59
	20,000	538137.4	1120251.2	36263	1655166•i	14.32	46.97
	25.006		1039:19.9	401836.	•	14.74	46.36
	30,000	479895.5	1057938.5	7449721.		15.19	49.83
	35.000	452774.5	1026557.2	7505375.	7.75.		51.43
	40.000	451653.5	995725.6	7567549.		7	33.14
	45.000	437532.7	9.496496	634650.		15.76	24.97
	45.32b	430605.1	362549.5	6391		5	55.10
	50,000	423411.7	933453.1			17.35	5¢•53
	55,000	4062605	902331.7	775739		~	57.82
	000.09	395169.8	£71200.4	7844499.		17.71	۳. س س
	65.000	391048.9	640069.0	79C887C.		w	
10 KMS.	£5.624	379201.3	635995.9	7916881.		(I)	
	70,000	260928.C	ECE937.7	75£72±6•4		5	uı
DREP WI 1	70.000	360425.0	867337.7	79£72룕4		\circ	65.64
O MAXIMUM	12.768	258611.0	79C L 02 • 0	7556412.		اد	67.19
	75.000	352306.1	776706.3	8017973		1.2	65.64
14 KMS.	16.067	49293	770060.5	5C27t4C•?		1.4	7(.51
	000.08	33187	745075 C	8055474		2.5	73.57
	85.000	24066	714+45.6	_		ω. Ε	07.37
	300.06	303945.2	683312.2	8113305.	1023543.5	25.25	E3.17
	95.000	95524	6.52100.9		1	ξ· ξ	: 6.15
	100.000	31703	621,49.5	_	_	(i) • 4	7.0
	105.000	57582	သ	_	1	3C•13	65.84
	110.000	53461	58786.	_	_	1.5	104.19
	115.000	3934C	527655.4	_		5	1 . 2
	120.000	25219	5¢ 524 .	154CC7.	3638	36.11	7.
	125,000	11098	465392.7	154986.	33313.	38.56	126.52
	130.000	77696	34201.	71.	1411	41.35	ī. 6
ENG CUTBEE	130.606	6	436490.1	15	1333457.2	41.72	136.87
ENC CECAY	130.606	267	430-90.1	• 21	1	Ç	£ • 7

TABLE 2. (Continued)

	TIME	MASS	hE 1GHT	TERUST	!	•	ACCELERATION
	SEC	KGS	r BS	۷	res	/(SEC)\$	/ (SEC) S &
BEGIN CECAY	133.606	191030.7	211			0.0	-0.02
SEPARATION	133.606	141266.7	1143	•	•	٧	-(•(3
ENC COAST	m	141266.7	1143	၁•၁)• <u>)</u>	£0.0-	-(•16
ENC ATMOS	139,106	141266.7	311439.7	•	•	-C.C.	-(.16
IGNITIEN	139.106	141266.7	311439.7	0.0-	٠,))*)-	-C•C1
ENC BUILDUP	139.461	141230.6	7	1050385.3		7.43	"
	149.000	138824.3	306055.2	1050365.3	23€13€•€	7.5€	-
	159,000	136301.7	3CC 493.8	1050385.3	•	7.76	55.26
	169,000	133775.1	294932.4	1050385.3	•	7.84	-
	179,000	131256.5	289371.1	1650385.7		55.7	
	189,000	128733.9	263309.7	1050385.3	•	ي. د - ا	•
	199.000	126211.3	278248.3	1050385.3		6,31	13.13
	209.000	123688.7	272686.9	1050385.3	41.1	34.3	
	219.COC	121166.1	247125.6	1050385.3		€•€€	
	229.000	118643.5	261554.2	1050385.3	4.5	£ • £ 4	•
	239,000	116120.9	256002.8	1050365.3	41	£0°5	43.53
	249.000	113596.3	250441.4	1050385.3		52.5	36.30
	259,000	111075.7	244880.1	1050385.3	4.1	75.6	36.59
	269,000	108553.1	235310.7	1050385.3	41	9•66	£1.70
	279,000	106030.5	233757.3	1050385.3		53.6	35.46
	289,000	103507.5	226195.9	1050385.3		10.13	33 • 52
	255.000	100985.3	222034.6	1050385.3	4.1	10.39	34.68
	309.000	98462.7	217073.2	1050385.2	41	10.65	55.75
	319,000	9594C.1	2115115	1050365.3	411	10.93	۳
	329,000	93417.5	205950.4	1050385.3	226136 • C	11.23	36.83
	339.000	5 * 56806	2CC389.1	1050385.3	- I	11.54	۳
	349.000	88372.3	154627.7	1050365.3	41	11.67	Ų.
	359,000	85845.6	189266.3	1056385.3	413	12.22	٧
	369.000	83327.2	183704.9	1050385.3	41	12.58	41.23
	379.CCC	80004.6	178143.6	1050365.3	41	12.98	
	389,000	78282.C	172582.2	1050385.2	•	13.39	
	399.000	75759.4	167020.8	1050385.3	23¢13¢•C	13,84	7 .
	000 • 604	73236.8	161459.4	1050365.3	•		
	419.000	70714.2	155898.1	1050365.3	•	ထ	46.63

TABLE 2. (Continued)

	1186	MASS	METCH!	TERIST		I PACITA ACC	ELERITION
	SEC	KGS	185	2	LES	P/(SEC) \$C FT/(SEC) \$6	1/(SEC)SE
	000 004	48191.4	156236.7	r Tuebabit	236136	15.31	£C • 73
	439.000	65665°C	775.	0385	36	5	2 . 3
	449°CCC		~	365.	CAL	16.60	54.45
	459.000		133652.6	33£5.	36.	17.28	56.71
	469,000	58101.2	128091.2	0385.	36.	1 E • C 3	55.16
	479.000		122529.8	0365	3.6 •	ဆ	_
	489.000	53056.C	116568.4	33.55	M)	15.74	64.17
THRUST SHIFT	456.642	51126.2	112718.3	1663	192136	• 6	
	499.000	50649.1	111662.1	54663.	36	16.82	66.17
	509.000		107182.3	54663.	3€.	-	1.4
	519.000	•	102702.6	54663.	36	16.28	·
	529.000		9.52335	54663.	36	1.5	
	539,000	42521.2	53743.1	54663.	2	2C.C2	13.53
	549.000		89263.4	54663.	CI	1.C	ů
	559,000	38457.2	64783.6	54663.	36.	52.15	٠,
ENG CUTRFF	566.465		E1439.7	54663.	3 €	23°C3	u i
SEPARATION	566,465	_	50282.7	Ç.)•)-	-C.15	-C.48
IGNITIEN	566,465	22807.8	50282.7	964.	S	3.90	•
	576,000	_	45073.4	8964	• 0000	2.55	12.54
	556.000		45034.4	8964.	• 3000	7) • 6	13.11
	556.000	-	46395.5	£3564.4	Ç	4 ° C 5	13.28
	000.309		47756.5	8554	• 2353	4.10	13.46
	616.CCC		47117.5	8564.	\mathbf{c}	4.16	12.65
	056.000	۱ ـ	46478.5	E8564.4	2222	4.22	13.83
	936.000	20792.5	45339.5	2564.	• 0000	2	14.03
	946.000	_	45200.6	ന	0000	75.4	14.22
	656,000	20212.8	44561.6	£8964.4	0000	7.	14.43
	000.999	-	43922.6	* 1,362	• 2222	4.46	
	676.000	_	43283.6	w	2000C • C	4.53	14.85
	686.000		42644.7	6964	• 0000	• 6	15.68
	696.000	19053.5	42005.7	£3564.4	O	4.67	15.31
	706.000	763.	41366.7	35640	Ų	•	15.54
	716.000	18473.6	40727.7	E85641.4	ئ	4.81	15.79
	726.000	18183.9	40088.7	£8564.4	•	4 • 8 5	16.04
ENG CUTOFF	731.322	18029.7	39748.7	88964,4	2000000	0,93	16.17

TABLE 2. (Continued)

	TIME	XXX		YYY			177
	SEC	5	FT	Σ	FT	3 .	F
LIFI-OFF	00000	0.0	0.0	0.0	0.0		ပံ
	5.000	1853.2	6080.2	39.7.	130.2	اد	-2835.2
	10.000	2	12160.1	.*	540.5	1728.	5670.
	15.000	5561.5	18246.5	ces	258	•	65
	20.000	429.	24375.8	03.	309	3456.	~
	25.000	9322.3	30585.0	:0	3724.6	-4320.5	
	30.000	1254.	36924.5	۳.	539	5164.	-17009.7
	55.000	13239.5	45456.7	2371.7	7:1	C48.	3844°
	40.000	5291.	53167.6	9	10405.7	6915.	22675.
	45.000	7423.	57163.8	-	136-7.3	778	5518.
	45,328	17566.8	57633.9	4241.6	13915.8	7835	25705.
	20.000	19651.6	64475.8	531C.5	17422.8	8645	3363.
	25.000	22006.3	72205.6	0617.2	21710.0	u١	-31226.2
	000°09	24533.3	€C≖89•6	8084.2	26523.1	C 3 E 6	-34C77.C
	65.006	27255.1	85419.6	9707.9	31646.9	557	-36553.6
10 KMS.	65.654	27627.5	90641.5	3635.2	32565.9	7	-373CT.4
	70.000	30205.4	95112.3	1495.	37715.7	127	-35786-9
DR2P WI 1	70°C00	30205.4	55112.3	1495.	37715.7	121	-35788.5
O PAKIPUM	72,768	31956.2	104353.2	2555.	41205.6	5092	-41366.5
	75.CuC	33435.4	165:96.2	3456.	44149.E	厉	-42642.2
14 KMS.	75.067	3416343	112034.3	3886	1.55364		1.03254-
!	300.08	35975.1	121309.5	<u>56€</u> €	51162.4		-45451.1
	000.53	40871.7	134093.4	7933.	58838.1		2.35.34-
	<u> </u>	45165.7	146194.5	C464.	67139.E		-51175.4
	26.000	49915.1	163763.6	3.19163	76168.4	-16461.C	54006.
	100.000	55154.9	180554.5	6146.	85762.5		-56821.C
	105.000	66936.9	159924.4	.1626	1915196		-55636.5
	116.000	731C.	220835.2	2675.	107202.3		-62432.5
	115.000	4327.	243656.9	6275.	119C2E.C		-6521207
	120.C00	2042.	255169.6	c115.	131624.9		7575.
	125.000	0515.	296967.1	42C3.	145054.8		_
	130.000	981C.	327462.C	8545.	159268.7	3.63	-73435.1
ENG CUTUFF	130.606	100995.6	331550.3	306	161053.8	23422	-73762.7
	130,606	0995.	331350.3	٠	00	-22482.5	-73762.1

TABLE 2. (Continued)

	TIME	***					727
	SEC	M.	FT	Σ	1	£	FT
× 200 N 1 200	133 606	136060 0	250086.1	51706.0	169937.3	£ 3707£	-75381.7
	133,606	136980-0	350984.1	ه اه	9937	• •	•
END COAST	139, 106	118099.0	387464.0	56619.9	135750.7	-23878.9	(1)
	139, 106	3099	387464.0			-23876.9	42.
_	139,106	118099.0	387464.0	56619.9	18576C.7	-23676.9	-78342.8
END BUILDUP	139,461	118817.6	399321.6	56921.6	18675C.8	-23537.2	34.
	149.000	138352.7	453946.0	647e1.2	212526.8	-25465-	-83660.4
	159,000	159415.2	523615.9	2535.	237578.2	-27134°C	•
,	169.000	191058.0	594022.2	19756.1	261756.2	-28764.4	-94371.3
	179,000	203306.2	667015.2	E6564.2	284CC3.2	5*35£3£-	
	189.000	226175.9	742047.0	52841.7	304558.7	-32C12.1	-105626.7
	199.000	249683.5	815171.6	58625.9	323588.9	-33629.1	-110331.8
	209.000	273846.1	898445.4	103925.7	340576.8	-35241.2	-11562C.5
	219.000	298631.6	616856.6	168741.7	356764.1	-36848.2	
	229.000	324208.4	1063576.0	113056.	270951.5	-28449.5	
	239, 000	350445.9	1149756.8	116932.4	383537.9	-40046.1	•
	249.COC	377414°C	1238235.0	12025C • C	394521.0	-41636.4	.,
	259,000	405133.b	1325179.0	123107.	403857.0	-43550.5	٠
	269.000	433626.9	1422060.4	125474.1	4116cC•5	-44759.1	ů
	279.000	462916.2	1518753.9	127346.7	417604.2	-46376.5	-152125.6
	289.000	493025.4	1617537.5	128722.5	422315.2	-47536.2	-
	259.000	523975.5	1715092.7	129535.4	425154.8	9.45454-	4.
	309.000	555804.3	1823505.0	125572.2	426418.C	-51046.1	
	319.000	588527.3	1930865.8	129836.5	425573.8	-52550.2	-172540.2
	329.COG	£22177.C	2041263.1	129157.5	423844.7	-54127.C	7582.
	339,000	656783.4	15450	128019.4	420C11.C	-55656.1	2558.
	349.000	692378.2	2271582.1	126324.4	41445C.C	-57177.4	5
	359,000	728994.6	2391714.8	124095.1	407136.2	7*35785-	-192554.5
!	369.COC	156667.8	2515314.2	121322.0	398641.2	-60155.6	,,
	379,000	£05434.6	2642502.0	117596.1	387132.5	-61652.1	-2024(1.5
	389.000	645334.4	2773406.7	114105.7	374375.7	-631EC.C	263.
	399.000	686408.5	2906154.5	109645.7	597	-64658.5	-212135.6
	4C9.000	701.	20	104592.5	•	-66128.5	-216556.2
	415.000	572255.4	3185827.4	9 • 36585	324591.5	-67589.5	-221756.4

TABLE 2. (Continued)

4 4 4	010						
4 4	אבר	Σ	- -	2.	-	•	, \d-
4 4	29.000	C17132	37050.	52658.2	3556	£5646.	226511.
7	39.000	C63375	4887		81305.	7C4E2.	3124
	200°54	111043	645156.		56453.	71514.	235536.
7	59.000	160195	EC6430.		29365.	3335	240602.
7	69.000	506012	572801.		9956C	4747.	245233.
7	79.000	253245	144506.		68145.	€14€.	533673
7	89.000	317284	321800.		25.	900	554361
THRUST SHIFT 4	96.642	359782	461251.		05841.	8553°	25785
7	99.000	1373101.7	926		1339	651	-258917.2
Ñ	000.60	43051E	693301.		7172.	£C2	263407
ū	19.000	489486	BEE 773.		4553.	£1643.	9319
5	29.000	55 CCBC	0 8 5 5 6 6 •		31054.	£255C.	272276
5	39.000	612369	289924.		<u>5</u> .	£4354.	76655
Ċ	900.64	676434	5CC112.		132C4C.	E 5 6 4 7 .	355387
7	55.000	742364	716420.	55115	87662.	£6528•	352582
ENG CUTØFF 5	66.465	792853	E82065.		31568.	£752£.	388460
SEPARATIEN	66.465	792853	E82065.		231568.	£752E.	2884EC
IGNITIEN	66.465	1792853.5	5882065.3	-70562.C	31568.	اند	88460
0	76.000	E58125	. 96 210.		296463.	£8153°	392516
•	80.COU		321197.		355136.	£ C 4 3 1 •	531952
3	96.000	868365	546582.		422566.	51762.	BOCEEI
ō	000 •00	C64211	772:42.		434CC5.	92955	04571
3	10.000	133132	. 994855		568185.	64165.	308640
9	26.000	202156	224923.		645570.	52455	13665
9	36.000	271276	451694.		726176.	96999	3776
ò	46.000	2340485.3	678 157.		10032.	57637.	205E7
0	56.CCC	409776	•680905		697154.	• 52255	324662.
Ý	66.000	479141	133666.		87555.	CC157.	26732.
9	76.000	548	361463.		813¢6.	101357.	332537.
۵	86.000	£18065 •	589455.		178492.	25C3.	36257.
Ç	300.45	ç	817016.		19006	3635.	4CC1C•
7	000.90	757196.	045920.		938	104753.	-343677.5
7	16.000	826818.	274340.		1490316.	5856.	347257.
7	726.000	968	502846.		•	945.	50E7C.

TABLE 2. (Continued)

777	-	-352751.9
7	Σ.	-107518.3
·	L	3 -1661555.6 -107518.8 -352751.9
AAA	Σ	-506451.3
	FT	9624495.4
XXX	5	2933546.5
TIME	SEC	731, 322
		ENG CUTBEE

defined in Reference 2. Transformation from this coordinate system to the geocentric inertial These quantities represent position coordinates in a topocentric plumbline coordinate system plumbline coordinate system (XP, YP, ZP) shown in Figure 2 is accomplished as follows:

$$XP = XXX + XP(0)$$
$$YP = YYY + YP(0)$$

$$ZP = ZZZ + ZP(0)$$

where XP(0), YP(0), ZP(0) are the coordinates of the origin of the XP, YP, ZP system at the center of the earth as defined by

$$XP(0) = R(\theta) \sin K \sin \beta_0$$

 $YP(0) = R(\theta) \cos \beta_0$
 $ZP(0) = -R(\theta) \cos K \sin \beta_0$

$$YP(0) = R(\theta) \cos \beta_0$$

$$(2P(0) = -R(\theta) \cos K \sin \theta)$$

where β_0 is the difference between the geodetic and geocentric latitude of the launch site,

$$K=\frac{3\pi}{2}-\sigma_L$$
 (launch azimuth), and $R(\theta)$ is the radius of the earth (considered to be an ellipsoid) computed as a function of the geocentric colatitude (θ) of the launch site by $R(\theta)=(1-f)R_{\theta}/\sqrt{(1-f)^2\sin^2\theta+\cos^2\theta}$ where the flattering, f, is 1/298.3 and R_{θ} is the equatorial radius of the earth.

TABLE 2. (Continued)

	TIME		DXP		DVP	I	DZP
	SEC	4/SEC	FT/SEC	M/SEC	FT/SEC	MISEC	FT/SEC
LIFT-3FF	0.00	370.651	1216.045	0.00	060 • 0	-172,837	-567,051
	5.000	70.64	0.0	10.190	53.116	-172,834	
	10.000	370.622	1215.951	34.105	111 • 592	-172,625	-567.C11
	15.000	1	6•6	9.	176.052	L.	95.
	20.000	375.529	1232.374	74.768	245.30C	-172.808	-566.954
	25.000	382.094	253,58	8.12	321,318	2.£6	6.54
	300.00	391.257	1283.653	123.276	404 • 44E	-172.810	-566.562
	35.000	\sim	1322.763	50.41	493.501	. £2	7.(1
	40.000	417.926	1371.14/	179.655	589.421	-172.653	-567,162
	45.COC	35.54	1428.945	11.C	515.263	3.47	65.14
	45.328	436.362	1422.077	213,191	639.446	-173.562	65.43
	000 *05	456.156	1456.700	1.	€03.11€	4 • C	1.15
	O	487.466	1555.100	277.864	511.627	-174.143	-571.326
	\mathbf{c}	523.555	1717,700	3(8,823	1013.158	4.15	٦.
	65.CCC	566.311	1657.97	340.766	1117,555	-174.1C7	-571.218
IO KMS.	w	2.45	1678.115	345.074	1132.134	4	-571.186
	70.000	£16.627	2023.056	374.511	1226.709	4 . C C	-57C.EE1
DREP WT 1	10°CCC	£1¢•6£7	2023.05e	v	1228.765	4.00	-570.681
O PAXIPUR	\sim	c48•0C6	2126.003	354°CE8	1292.846	3.51	-576.555
	75.000	675.162	2215.099	410,199	1345.759	3.63	-576.318
14 KMS.		135.746	2255.605	416.032	1371.457	-173.767	-57C.166
	000°03	742.164	2434.920	447.468	1458.071	-173.584	• 5 9 5
		£17.94C	2683,531	٤	1595.015	-173.248	بد
		505.756	Ú	556.193	1726.356	-172.818	ćć.
	C 3	546.945	327C . 80c	67.4	1661.680	-172.284	-565.237
	ျပ	1100.565	3610.791	8*5)	2000-101	-171.640	563.
	105.000	1213.885	35	653.276	2143.295	-170.678	-560.623
	S.		367.4	· 1 5	315 * 5822	525*531-	557.70
	115.000	1471.337	827.2	44.1	441.	-168,563	-554.34C
	120-000	1616.754	304.31	C1	598.4	-167.788	-550.486
	125. CCC	1774.456	5821.538	342.127	2752.83	-166.451	-546.(58
	ာ • ၁	545	3.95	55.45	5966.	-164.533	-541.12C
	120.606	1557.586	455.	Cl•ć1	58°C	-164.736	-54C.474
ENC CECAY	9 ° C		455.33	961,612	ე• გ	-164.736	-540.414

TABLE 2. (Continued.)

	TIME		DXP		DYP		DZP
	Sëc	W/SEC	FT/SEC	MISEC	FT/SEC	M/SEC	FT/SEC
BEGIN DECAY	133.606	2022.294	634.82	903.551	2964-439	-164.180	-538.649
FND CMACT	133,000	2021-035	4630.697		7504	163.	38.07
		2021.035	30.	.31	2769.750	m	8.02
IGNITION	139.106	2021.055	630.39	850.316	789.	13	38.02
END BUILDUP	139.461	2022.002	6633.865	047.715	2781.218	-163.978	-537.986
	149,000	2070-237	6811.801	600.239	2625.457	-163.628	5
	159,000	2134.512	7002,991	750.728	2452.953	-163.236	-535.559
	169,000	2134.290	7199,11+	701.391	2301.153	-162.627	-534.208
	179.000	2255.523	7400.354	6.52 - 256	2139.447	-162,393	-532,784
	189.000	2310.584	7606.935	6.03.257	1979.222	-161.937	, 28
	199,000	2333.221	7818.967	554.389	1818.361	-161.459	-529.720
	209.000	2449.504	3036.755	505.584	553	-150.959	-528.080
	219,000	2517.302	8250.504	456.315	1+94.736	-160,437	-526.369
	229.000	2537.487	9490.444	408.040	1558.714	-159.894	-524.587
	259,000	2559.940	8726.530	554.215	1173,526	-159,330	-522.735
		2734.039	8969.942	310.296	13.	-158.744	-520.812
	259.000	2 01 0 0 2 7 4	9220.055	261•236	857°°13	-159.136	-518.820
	269,000	2 6 8 8 • 7 3 5	04477.480	211.994	695.486	-157,508	~
	279.000	2959.524	9742.532	162.493	533.093	-156.858	-514.627
	000.683	5052.742	10015.55 #	112.091	559.723	-155.186	->12.428
	_	1135.504	10290.930	52.534	205.166	-155,496	-510,159
	000.605	3226.329	2	11. 355	59.217	-154.784	-507.822
		3515.148	10360.312	-39,123	-128.357	-154.C51	-505-417
	9	3412.247	20	-90.767	-297,791	-153.297	•
	339.000	3539.526	11514.195	-145.056	-469.044	-152,523	۰l
	349.000	366.9Coc	31	-135.077	-643.236	-151-728	-497.796
	359.000	3713.881	12184.64	-249.919	-519.945	-150.913	-495.121
1	C	3821.359	537.29	-304.633	-499.016	-150.077	
	379.000	3 43 2 . 5 6 4	02.44	-360,475	-1142.659	-149.221	-489.571
	389.000	4047.991	13280.812	-417.411	-1369.457	-148.345	-486.597
	\sim	4157.595	13673.21,	•	-1550.440	-147.449	기
	409.000	31.74	30.52	-535.248	-1756.362	•	0.7
	419.000	4420.732	~	-596.439	-1956.720	-145.597	-477.080

TABLE 2. (Concluded)

	TIME SEC	4/SEC	DXP FT/SEC	M/SEC	DYP FT/SEC	M/SEC	DZP FT/SEC
	429.030	4554.886	14943.852	-659,365	-2163.272	-144.641	-474.544
	439.000	4694.568	402.1		2376.	-14	-471.344
	449.000	4340.182	86	-791.187	-2595.759	-142.6	-468.030
	459.000	4932,178	16378,536	-860.519	-2823.224	-14	-464.752
	469.000	5151.066	16899.82	-932,465	-3059.267	Į	-461.362
	479,000	5317.419		-1007-319	-3304 • 852	-139,571	-457.909
	489.000	5491.892		-1085.411	-3561.059	-138.499	-454.354
THRUST SHIFT	496.642	5631.160	 	-1147,499	-3764.762	-127.668	-451.667
	499.000	5666.122		-1167.453	-3830.226	-137.410	-45C. E19
	202.634	5 8 1 8 • 2 4 3		-1254-170	-4114.732	-136.301	-447.183
	519.000	5576.938		-1344,517	-4411.146	-125.175	-443.467
	529.000	6142.751		-1438.866	-4720.687	-134.C31	-435.733
	539,000	6316,295	ı	-1537,631	-5044.722	-132.869	-435.551
	272 654	6498.287		-1641.295	-5384.825	-131.685	-432.(51
	559.000	6689.54C		-1750.435	-5742.658	-13C.493	-426.125
ENG CUTAFF	565.465	6633.922		-1835,772	-6022.673	-129.586	-425.158
SEPARATION	566.465	6538.922		-1835,772	-6(22.873	-125.586	-425.158
IGNITIEN	566.465	6.633.922	22437.406	-1835.772	-6022.573	-125.568	-425,158
	276.000	6851.331		-1925.662	-6317.785	-128.42C	-421.225
	586.000	6665.770		-2020,661	- 6629 • 265	-127.178	-417.251
	396.00C	6E75.6C4		-2116.245	-6543.061	-125.520	-413.124
	202•529	5580.817		-2212.614	-7259.231	-124.646	-408.545
	010.000	5597.351		-2309.776	-7577 . 642	-123.256	-404-712
	526.000	608.7653		-2467.662	-7698.556	-122.CEC	-400.428
	c36.000	5516.550		-2506.259	- 6222.633	-12C.725	-396.052
	246.000	3525.056		-2605.715	-6548.634	-115.352	-391.766
	£56.000	6532.926		-2705.989	-6877.517	-118.040	-387.269
	066.000	6540.020		-2807.058	-5209.64C	-116.672	-382.782
	576.00C	5946.357		-2369.055	-5244.15E	-115.285	-376.246
	966.000	6551.915		-3011.888	125 1835-	-113.892	-373.661
	986.000	6550.672		-3115.6CC	-10221.785	-112.480	9 5 9 C
	705.000	909°0959		-3250.212	٠	-1111.053	"
	716.000	6593.659	22646.785	-3355.738	-10911.214	-165.613	55.6
	726.000	6565.925	22854.084	34	-11266.477	<u>-1(§.15§</u>	354 • €
ENG CUTOFF	731.322	6966,323	22855,392	-3490,034	-11450.242	2-197.378	-352.289

ORBIT IN THE PARKING ORBIT PLANE (V = 3.072 km/sec, γ = 0 deg, r = 42 240 km) TERMINAL CONIC CONSTRAINT (V, γ, r) — SYNCHRONOUS ALTITUDE CIRCULAR TABLE 3. OPTIMAL TRANSFER TRAJECTORY CHARACTERISTICS FOR THE

Long.	(deg)	-55.636		-55.636	-39.880	52.308		52.150
Lat	(deg)	15.762		15.762	-3.925	-9.956		-9. 780
Velocity	(km/sec)	7.792		7.792	10.198	1.595		3.072
Altitude	(km)	185.3		186.3	247.3	35 363.5		35 861.8
Weight	(1b)	284 169		284 169	157 499	157 499		110 576
We	(kg)	128 897		128 897	71 440	71 440		50 157
Time	(hr)	0.028		0.028	0.101	5.388	ti T	5.415
Thmist Room	TILLUSC EVOIL	Parking orbit injection	End parking orbit coast and ignition for perigee	S-1 vB burn (fixed coast time)	S-IVB cutoff and begin transfer coast	End transfer coast and begin apogee S-IVB burn	Apogee S-IVB burn cutoff (terminal	constraint satisfied)

a Inertial velocity.

bGeocentric latitude.

 $^{\rm c}{
m West}$ longitude from Greenwich.

TABLE 4. OPTIMAL TRANSFER TRAJECTORY FOR THE TERMINAL CONIC CONSTRAINT (V, γ , r)

- a. PARKING ORBIT COAST
- b. PERIGEE BURN
- c. CONIC CONDITIONS AFTER PERIGEE BURN
- d. TRANSFER COAST
- e. APOGEE BURN
- f. CONIC CONDITIONS AFTER APOGEE BURN

BEGIN COAST		*E16HT# •12889675+06 KGS	K G S	PARK • 2	PARKING ORBIT COAST 2841&870+n6 LBS	OAST LBS		
7 I ME SEC	COAST TIME SEC	Σ¥	INER	INER VELOCITY KM/SEC	AZIMUTH S DEG	P T H D E G	LATITUDE DEG	LONG1 TUDE Deg
100.000 END COAST	000•	6563.418		7.792	123.774	• 050	15.762	-55.636
BEGIN COAST	MEIGHT# .1	*EIGHT# •12889675+06 KGS	K G S	PARKI • 28	PARKING CRBIT COAST	A S T 6 S		
TIME SEC	COAST TIME SEC	L E		γ × σ ε	¢ ï	DXP KM/SEC	DYF KM/SEC	02P KM/SFC
100.000	• 000	2941.137	Š	5866.843	-91.242	6.966	-3.490	107
ENC COAST								

BEGIN BURN	WEIGHTE .1	HTE .12869675+G6	K 6 S		PERIGEE B 841&870+n6 L	บห _ณ 8 S		
11ME - SEC	BURN TIME	æ ¥	INER	VELOC1TY KM/SEC	AZIMUTH S DEG	P T T T S S S S S S S S S S S S S S S S	LATI1UDE Deg	LUNGITUDE Deg
100.000	202.	6563.418		• 7 9	3.77	. 624	15.762	5 • 6 3
100.000	• 000	6563.418		7.792	123.774	•020	15.762	-55.636
150.000	600°08	6563.729			124.535	.119	13.868	-52.866
160.000	•	463.93		8 . 239	4.6	9119	1	-52,302
170.066	70.000	6564.247		.3	Ŧ	.251	12.969	73
180.000	60.000	6564.675		٠,	124.953	.338	12.572	-51.162
190.000	300.96	565.24		3.481	5.08	964°	12.149	-50.586
200.002	100-001	5.97		F-545	5.21	.552	11.721	00
210,000	•			÷	ŝ	.681	11.267	42
226.003	120.000	568.04		.,	5 - 46	. 823	10.848	.83
230.000	136.000	4569.423		1.824		.980	10.463	-48.242
240.000	•	571.07			5 . 69	1 - 1 5 1	9.953	7.64
250.000	150.000	6573.014		•	5.79	1.336	954.6	• O •
260.000	160.003	575.2		001.6	06.5	1.535	9.034	6.43
270.003	176.060	05.77.5		-	9.00	~	8.507	.82
280.000	160.001	586.90		. 2	600.9	1.976	8.093	_
290.000	186.680	4584.326		5.393	6 • 1	2.221	•	4.59
300.000	200.00%	9		20404	6.27	52402	7.129	-43.965
310.000	210-00	4592.553		9.599	6.3	2.753	6.638	-43.334
320.000	•	540165		. 7	6.43	3.041	0 • 1 4 1	. 69
330.030	230.005	2.		7.814	•	3.344	63	2.0
340.000	240.000	408.8		5.	99.9	• 66	12	1 • 40
350.000	250.00B	6615.556		10.041	9 • 9	3.596	•	-40.753
360.000	260.000	452.9		15-159	94.	46.	60	60.0
363-227	263.227	6425.422		10-198	126.694	794.4	3.925	

END BURN

TABLE 4b. (Continued)

	0.Z.P	KM/SFC	107	107	- 105	105	- 105	+01.	+010-	103	103	102	102	101	101-	101	••100	- 100	660.	660 • •	•	860*=	097	097	960	960	560
	DYP	KM/SEC	-3.490	-3.490	090.4-	-4.261	-4,322	Ŧ	• 56	-4.691	-4.816	. 94	-5.069	• 1.9	.32	•	• 56		-5.856	•	• 13	• 27	. 4	ŝ	-6.699	. 8 4	-6.855
ر ج ج	e x o	KM/SEC	996.9	996.9	7.068	7.087	7.107	.12	¥ •	7 . 165	. 18	• 20	. 2	• 5 4	• 26	. 2	.30	.32	• 34	7.364	.38	. 40	3	7 • 455	.47	• 50	7.513
PERIGEE BUR. .28416870+06 LBS	42		-91.242	-91.242	195.96-	-97.614	-98.664	-99.708	-100.748	-101-783	-102-814	-103.840	104.86	-105.879	106.8	107.8	-108.902	-109.899	-110.892	-111.880	-112.863	-113.842	-114.815	-115.783	-116.747	-117.705	-118.013
	<u>م</u>	£	5866.843	5866.643	5677.666	.26	5593.651	549.82	504.7	458.48	410.9	362.16	5312+113	260.78	5208-171	5154.258	099.03	042.48	984.5	25 • 35	•73	802.74	39.34	4674.518	4608.254	0.52	4518+359
.12889675+0 6 KGS	ď		2941.137	2941.137	3292.009	3362.784	43	504.9	576.2	647.	3719.580	3791.518	63.65	3935.975	008.49	081 + 21	154.12	227.24	300.56	4374 • 101	3	4521.812	4296.004	70.43	0	4420.018	4844.247
MEIGHT	BUKN TIME	SEC	000	• 000	50.00	00.0	70.000	80.000	000.06	100.000	110.000	120.000	130.000	140.000	00.0	00.	170.000	180.000	190.000	- 3	210.000	220+000	230.000	Ŧ	S	00.0	263.227
BEGIN BURN	TIME	SEC	100.000	100.000	150.000	160.000	170.000	180,000	190.000	200.000	210.000	220.000	230.000	240.000	250.000	260.000	270.000	280.000	290.000	300.000	310.000	320.000	330.000	340.000	350.060	360.000	363.227

END BURN

ENC BURN

TABLE 4b. (Concluded)

			-	
TIME SEC	BURN TIME SEC	DDXP KM/SEC(SQ)	DDYP KM/SEC(SQ)	DDZP KM/SEC(SQ
100.000	000•	+00	• 008	000•
100.000	00	• 002	012	000•
150.000	20.000	• 002	012	000
160.000	000.09	• 002	012	000.
170.000	70.000	•005	012	000
180.000	90.000	• 002	012	000
	0.0	• 005		000
0	100,000	• 002	012	000
210.000	့	• 002	013	000
0	120.000	• 005	013	000.
	130,000	• 002	013	000
	140,000	• 005	013	000.
	150.000	• 005	013	000
9	160.000	• 005	013	000
270.000	170.000	• 005	013	000.
280.000	180.000	• 005	013	000
0	ŝ	• 002	7.00.	000
300.000	200.000	• 005	014	000•
310.000	•	.002	+10.	000
320.000	20.0	• 002	*10	000
30	0	•005	1001	000
40.	240.000	• 005	+10.	000
5.0	50.0	•003	015	000
9	•	.003	015	000•
	1		1	

ORBITAL ELEMENTS

-	16	67360.44	6736C+44 (KM)SW/SEC	ANGULAR MOMENTUM PER UNIT MASS
امع د		-16.3788	-16.3288 (KM/SEC)SW	TWICE THE TOTAL ENERGY PER UNIT MASS
	14	.730535		ECCENTRICITY
, α Σ	65	Z4411-01 KM	Σ. Σ.	SEMI MAJOR AXIS OF CONIC
. ∀	n	6577.92 KM	Æ ¥	RADIUS AT PERI-CENTER
APO	H	42244.U9 KM	Σ ¥	RADIUS AT APO-CENTER
	Ħ	16.875574 DEG	DEG.	INCLINATION
A P. C	Ħ	10.57453 086	UFG	TRUE ANOMALY
11 C	11	162.67545 DEG	DEC DEC	ARGUMENT OF PERI-CENTER
EH10D#	#	37956.67 SEC	SEC	PERIOD OF CONIC

TABLE 4d.

TRANSFER COAST

BEGIN COAST	WEIGHT	. = .71440244+05 KG	-05 KG	. 1574	. 15749878 +0 6 LB	_	
TIME	COAST TIME SEC	R KM	INER VELOCITY KM/SEC	AZIMUTH S DEG	TH S PTH DEG	H LATITUDE 3 DEG	E LONGITUDE DEG
363,227	000.	6625.422	10.198	126, 696	96 4.462	3.925	-39.880
19397, 546	19034.320	42241.630	1.595	54.309	9 -1.026	9: 6- 9:	52,308
END COAST							
				TRAN	TRANSFER COAST	T	
BEGIN COAST	WEIGHT =	= .71440244+05 KG	05 KG	. 15	. 15749878+06 LB	ГВ	
TIME SEC	COAST TIME SEC	XP KM	YP KM	ZP KM	$\frac{\mathrm{DXP}}{\mathrm{KM/SEC}}$	$\begin{array}{c} \text{DYP} \\ \text{KM/SEC} \end{array}$	DZP KM/SEC
363, 227	000.	4844.247	4518,359 -	-118,013	7.513	-6.895	095
19397,546	19034.320	-25298.468	-33821.294	680.719	-1.260	876.	.017
END COAST							

BEGIN BURN	WEIGHT =	.71440244+05 KG	. KG		APOGEE B . 15749878+06 LB	APOGEE BURN 878+06 LB	
TIME SEC	BURN TIME SEC	R	INER VELOCITY KM/SEC	AZIMUTH S DEG	PTH DEG	LATITUDE DEG	LONGITUDE DEG
19397, 546	000.	42241.630	1,595	54.309	- 1.026	-9,956	52.308
19407.547	10.000	42241,358	1.724	54.300	268	-9.943	52.285
19417.000	19,454	42241, 106	1.851	54.293	- 774	-9.930	52.264
19427,000	29,454	42240,874	1.989	54.285	629	-9.915	52.244
19437,000	39,454	42240,653	2, 131	54.278	. 550	-9.898	52.225
19447,000	49,454	42240,462	2.279	54.270	448	-9.881	52.208
19457,000	59,454	42240,300	2,432	54.263	- ,349	-9.862	52.193
19467.000	69,454	42240.170	2.591	54.255	254	-9.842	52.179
19477.000	79.454	42240.069	2,756	54.248	162	-9.821	52.167
19487.000	89.454	42240.008	2.928	54.240	072	-9.799	52.157
19495.054	97.507	42239.998	3.072	54.234	000	-9.780	52.150

END BURN

TABLE 4e. (Continued)

	DZP KM/SEC	.017	.018	.020	.021	.022	.024	.025	.027	.029	030	.032
RN	$\begin{array}{c} \text{DYP} \\ \text{KM/SEC} \end{array}$.978	1.055	1, 130	1.212	1.296	1.384	1.474	1,568	1.666	1,768	1,853
APOGEE BURN . 15749878+06 LB	$_{ m DXP}$ KM/SEC	-1.260	-1.364	-1.466	-1.577	-1.692	-1,811	-1.934	-2.062	-2.195	-2.334	-2.450
<i>}</i> 15749	ZP KM	680.719	680.897	681.077	681.281	681,498	681,731	681,978	682.241	682.520	682.815	683.066
5 KG	YP KM	-33821.294	-33811.130	-33800.805	-33789.100	-33776.564	-33763.169	-33748.883	-33733.673	-33717.503	-33700,335	-33685.755
= .71440244+05 KG	XP KM	-25298.468	-25311.583	-25324.956	-25340,166	-25356,505	-25374.014	-25392.734	-25412.710	-25433,992	-25456.631	-25475.890
WEIGHT =	BURN TIME SEC	000.	10.000	19,454	29,454	39,454	49,454	59,454	69,454	79,454	89.454	97.507
BEGIN BURN	TIME SEC	19397,546	19407.547	19417.000	19427,000	19437,000	19447,000	19457,000	19467.000	19477,000	19487,000	19495.054

END BURN

TABLE 4e. (Continued)

BEGIN BURN	WEIGHT =	= .71440244+05 KG	5 KG	<i>}</i> . 15749	APOGEE BURN . 15749878+06 LB	URN	
TIME SEC	BURN TIME SEC	MASS KGS	WEIGHT LBS	CHI P DEG	CHI Y DEG	ALPHA N DEG	ALPHA W DEG
19397, 546	000.	71440.244	157498.780	-54,661	. 588	85.544	1, 142
19407.547	10.000	69257,465	152686.570	-54,633	. 588	181,438	-64,475
19417.000	19,454	67193.951	148137,300	-54,607	. 588	181.572	-67.955
19427,000	29.454	65011,173	143325.510	-54.579	.587	181.773	-71.524
19437.000	39,454	62828.396	138512,900	-54,551	. 587	182, 146	-75.602
19447.000	49,454	60645.618	133700,700	-54,523	. 586	182.912	-79.986
19457,000	59,454	58462,840	128888.850	-54,495	. 586	185.161	-84,653
19467,000	69,454	56280.062	124076,300	-54.467	. 585	229.045	-89,396
19477.000	79,454	54097.284	119264.100	-54.439	. 585	-5.242	-85.246
19487,000	89,454	51914.506	114451.900	-54.111	. 585	-2.383	-79.997
19495.054	97.507	50156.613	110576.400	-54.389	. 584	-1.496	-74.692
אמזים מאנו							

END BURN

TABLE 4e. (Concluded)

APOGEE BURN 9878+06 LB	DDZP KM/SEC(SQ)	000	000.	000.	000.	000.	000.	000.	000.	000.	000.	000.
.1574	$\begin{array}{c} \text{DDYP} \\ \text{KM/SEC(SQ)} \end{array}$	800.	800.	800.	800.	600.	600.	600.	.010	.010	.010	.011
WEIGHT = .71440244+05 KG	$\begin{array}{c} \text{DDXP} \\ \text{KM/SEC(SQ)} \end{array}$	010	011	011	011	012	012	013	013	014	014	015
WEIGHT	BURN TIME SEC	000	10.000	19,454	29,454	39,454	49,454	59,454	69,454	79,454	89,454	97.507
BEGIN BURN	TIME	19397.546	19407.547	19417,000	19427,000	19437,000	19447.000	19457,000	19467,000	19477.000	19487.000	19495.054

END BURN

TABLE 4f.

CONIC CONDITIONS AFTER APOGEE BURN

ORBITAL ELEMENTS

ANGULAR MOMENTUM PER UNIT MASS	TWICE THE TOTAL ENERGY PER UNIT MASS	ECCENTRICITY	SEMI MAJOR AXIS OF CONIC	RADIUS AT PERICENTER	RADIUS AT A POCEN TER	INCLINATION	TRUE ANOMALY	ARGUMENT OF PERICENTER	PERIOD OF CONIC
129757,46 (KM) SQ/SEC	-9.4366 (KM/SEC) SQ	.000211	42239.99 KM	42231.07 KM	42248.93 KM	36, 906335 DEG	-93,013808 DEG	74,413136 DEG	86396.34 SEC
n	u	11	11	u	II	11	1!	u	н
Ċ.	ັ້ນ	ECC	$\overline{\mathrm{SMA}}$	RCA	RAPO	INC.	TANO	ARPG	DERIOD

CONIC CONSTRAINT (V, γ , r, i) — SYNCHRONOUS ALTITUDE CIRCULAR ORBIT INCLINED AT 50 DEG (V = 3.072 km/sec, γ = 0 deg, r = 42 240 km, i = 50 deg) TABLE 5. OPTIMAL TRANSFER TRAJECTORY CHARACTERISTICS FOR THE TERMINAL

Transf Drowt	Time	Wei	Weight	Altitude	Velocity	Latitude	Longitude
inrust Event	(hr)	(kg)	(Ib)	(kzm)	(km/sec)	(deg)	(deg)
Parking orbit injection	0.028	128 897	284 169	185.3	7.792	15.762	-55.636
End parking orbit coast and ignition for perigee S-IVB burn	0.102	128 897	284 169	186.1	7.791	5.185	-41.600
S-IVB cutoff and begin transfer coast	0.176	71 324	157 243	248.2	10.197	-7.182	-26.442
End transfer coast and begin apogee S-IVB burn	5.415	71 324	157 243	35.862.1	1.595	0.692	66.360
Apogee S-IVB burn cutoff (terminal constraint satisfied)	5,443	49 243	108 562	35 861.8	3.071	0.915	66.156

a Inertial velocity.

b Geocentric latitude.

^cWest longitude from Greenwich.

TABLE 6. OPTIMAL TRANSFER TRAJECTORY FOR THE TERMINAL CONIC CONSTRAINT (V, γ , r, i)

a. PARKING ORBIT COAST

b. PERIGEE BURN

c. CONIC CONDITIONS AFTER PERIGEE BURN

d. TRANSFER COAST

e. APOGEE BURN

f. CONIC CONDITIONS AFTER APOGEE BURN

TABLE 6a.

14 44 44	COAST TIME	d.	Q. >	d 2	a X	0 7 8	920
SEC	i	Σ	£	¥	KM/SEC		KM/SEC
100.000	000	2941,137	5866 • 843	-91-242	996.9	-3.490	107
150.000	50.000	3284.067	5692 108	26+·+45	6 • 7 4 7	-3.897	-101
200.000	100.000	3615.427	5477.355	-101-312	6.504	-4.291	+60
250+000	150+000	3934.051	5253,306	-105+821	6.238	699*4-	086
300.000	200.000	4238.816	5010.751	-109 • 956	5.945	-5.031	079
350 • 000	250.000	4528,651	4750.547	-113+704	5 • 6 4 1	-5,375	071
3684 109	268.409	63	4650.479	-114.984	5.522	-5.497	068
BEGIN COAST MEIGHT		•12889625±16	PARR KGS	PARKING ORBIT CO *28416870+06 L	COAST		:
TIME	COAST LIME	¥	INER VELOCITY	AZIMUTH S	P T	LATITUDE	LONGITUDE
SEC	SEC	¥	KM/SEC	DEG	DEG	DEG	DEG
100.000	•000	6563:418	7,192	123,774	•026	15,762	-55.636
150.000	50.000	6563.593	7.192	124.518	• 025	13.853	-52.933
200.000	100.000	6563.764	7.192	125.156	•025	11.909	-50.279
250 + 000	150.000	6563.930	7.192	125.691	• 024	9.938	-47.666
300.000	200.000	6564.090	7.792	126.125	.023	7.943	-45.086
350 • 000	250.000	442.4959	7.791	126.458	•022	5.930	-42.534
368.409	268.409	6564.300	7.191	126.556	• 022	5 185	-41.600

BEGIN BURN	WEIGHT1	12889675+06	K 6.5	•	90.00/00170	547		
TIME	BURN TIME SEC	at at	INER	VELOCITY KM/SEC	AZIMUTH S DEG	PTH	LATITUDE DEG	LONGITUDE DEG
368.479	000•	30		.79	6.55	2	-	-41.600
400.000	31.591	6564,386			126.832	040.	3.883	~
410.000	165414	564.46		60.	6.91	7	4	9 + 45
420+030	51.591	564.60		. 17	6.98	7	0	8.93
430.030	165.19	8		. 24	7.05	8	•	æ
440.000	71.591	565113		. 32	7.12	Ġ.	-	7.86
450.010	81.591	5.5		.40	7.19	4		,
460.000	1.5	566.15		40	7.24	3	7	6.77
470.090	165-101	6566.983		.57	7,30	•	.828	6.22
480.000	1111.591	80		99.	7.35	0	.372	5.67
490.000	121.591	569.		.74	7.39	.838	690	S
\$00.000	131.591	570:41		. 83	4.4	•	Ġ	¥ 5 ° +
510.000	141.591	6572.093		. 92	7 . 47	7	0	3.97
520.010	151.591	40.			7.50	1 • 357	-1.501	3,39
530.000	161.591	576:37		-	7.53	S	1.9	2.80
540.000	171.591	579.03		0	7.54	• 77	4	-32.216
550 • 000	181.591	582.08		.30	7.56	00.	٠.	1.61
560.000	145:141	585:55		. 40	7.57	- 25	*	1.01
570.030	165.102	589.48		. 50	7.57	.51	٠.	-30.404
580.000	211.591	6593.901			7.57	78	4	• 78
- 590.000	221.591	598.84		.71	7.56	.07	•	9.1
600.009	31.5	604.34		.82	7.54	.38	3	8.52
610.000	241.591	610.45		. 93	7.52	.70	•	7.88
60.	1651152	617.20		• 05	7.49	• 0 •	5	7.24
630.000	261.591	ø		+17		4.393	-7.066	-26.585
	63.7	625.34		• 1 •	7.44	. 47	-	26.44

TABLE 6b. (Continued)

1111	BURN TIME	ж	d. >	42	O X O	DYP	420
SEC	SEC	ĭ	X X	ĭ	KH/SEC	KM/SEC	KH/SE(
368.409	000.	4631.399	4650.479	-114.984	5.522	-5.497	890
400.000	31.591	4804.977	70.9		4	.86	045
410.000	41.591	85945		•	* #	-5.987	
420.000	51.591	•	4351.243	-117.542	. 43	-6.107	031
430.000	61.591	96	•	-117.809	_	. 22	023
****	71.591	022.1	75.		Ť	-6+348	-510.
450.000	81.591	075	4162.610	-118.110	•	1	007
460.000	91.591	2	7.29	-118.142	۳.	-6,593	.001
470.000	101-591	182.98		-118.091	M		\$00 *
480.000	•	236	2	S	5 • 309		.018
490.000		5289.170	3893,932	.74	5.288	96	•05
500.000	-		4		56	9	\$60.
510.999	141,591	394.50	752.0	3	24		***
520.000		446.	67	-116.563	5.223	•	.053
530.000	141.591	- 596*8645-	2+0	-115+941	20	• 47	• 062
540.000	171.591	Ę	529.6	٠.	5.179	-7.611	.071
550 • 000	181.591	5602+539	452.8	-114.565	5 156		.091
560,000	•	653.9	37	-113,708	• 13	.87	+04
570.000	201.591	C	5.31	-112.75.2	5 • 1 1 1	0	101.
580.000	•	-	214.49	-111.696	.08	• 15	
590,000	-	806.9	132.2	-110.530	2.067	. 29	121
000.009	231.591	œ	048.69	.27	•04	-8.43!	.132
610.000	241.591	07.8	2963,675	-107+897	5.022	• 57	. 1 4 3
20.2	· •	5.7	2877,209	-106.414	8	9 + 7 20	-+5+.
630.000	261,591	07.8	2789.276	-104.817	4.979	-8.867	• 165
632.168	263.759	_		-104-456	4.674	006.8-	. 168

END BURN

54

TABLE 6b. (Concluded)

TIME	BURN TIME	9X00	DD 4 P	D02P
SEC	SEC	KM/SEC(SQ)	KM/SEC(SQ)	KM/SECISO
368.409	• 000	302	012	100
400.000	31+591	002	012	100.
410.000-	41.591	002	012	100.
420,000	51.591	002	012	100.
430,000	61.591	002	012	100
440.000	71.591	200	012	- 1001
450.000	81.591	002	210	.00
460.000	91.591	002	012	100.
	101.591	005	012	• 001
480.000	111.591	-+002	012	100.
490.000	121.591	-• 005	013	100•
\$60.000	1310591	002	· • 6 1 0 • •	100
510.000	141.591	002	013	100.
520.000	151.591	002	••013	100
530.000	161.591	002	013	1001
540.040	171.591	092	£10	• 001
550,000	181.591	002	••013	100
\$60.00g	191:591	002	013	• 001
570,000	201.591	002	+10	• 001
580.000	211.591	-•002	* 10 · •	100•
\$90.006	221.591	**005	+10**	
000.009	231.591	-•005	+10	100.
610.000	241.591	002	*10	.001
620.039	251.591	-1005	5161	
630+0HB	261.591	0 2	015	• 001
632.168	763.759	. 0	510.0	100

END BURN

CONIC. COMPITIONS AFIER PERIGEE BURN

CI = 67363.12 (KM)59/5EC ANGULAR MOMENTUM PER UNIT MASS CI = -16.3299 (KM/5EC)59
(KM) SQ/SEC (KM/SEC) SQ (KM) KM KM DEG DEG
67363.12 (KM - 16.3299 (KM - 730489 24409.42 KM 6578.62 KM 42240.22 KM 42240.22 KM 38.026780 DEG 178.88951 DEG 178.88951 DEG
and the second s

TABLE 6d.

BEGIN COAST	WEIGHT =	= .71324047+05 KGS	5 KGS	31.	TRANSFEF . 15724260+06 LBS	TRANSFER COAST 60+06 LBS	
TIME SEC	COAST TIME SEC	R KM	INER VELOCITY KM/SEC	Y AZIMUTH S DEG	HS PTH DEG	H LATITUDE	CONGITUDE DEG
632, 168	000.	6626, 344	10.197	127.444	4 4.472	2 -7.182	-26.442
19494,969	18862,801	42240.230	1.595	51.979	9034	4 .692	66,360
END COAST							
BEGIN COAST	WEIGHT	= .71324047+05 KGS	5 KGS	. 15	TRANSFER . 15724260+06 LBS	TRANSFER COAST 60+06 LBS	
TIME	COAST TIME SEC	XP KM	YP KM	ZP KM	DXP KM/SEC	$rac{ ext{DYP}}{ ext{KM/SEC}}$	DZP KM/SEC
632, 168	000.	6018.683	2770.015	-104.456	4.974	-8.900	. 168
19494.969	18862,801	-34467.718	-24404.628	792.288	921	1.302	023
END COAST							

TABLE 6e.

BEGIN BURN	WEIGHT	WEIGHT = ,71324047+05 KGS	+05 KGS	APOGEE B 15724260+06 LBS	APOGEE BURN 260+06 LBS		
TIME	BURN TIME SEC	R KM	INER VELOCITY KM/SEC	AZIMUTH S DEG	PTH DEG	LATITUDE DEG	LONGITUDE DEG
19494,969	000.	42240,230	1.595	51.979	034	. 692	99. 360
19504.970	10.000	42240.220	1.714	50, 191	054	. 706	66, 335
19514.000	19,031	42240.199	1.826	48.738	790	.720	66.314
19524.000	29.031	42240.170	1.956	47.284	920	.737	66.291
19534.000	39,031	42240.150	2.091	45.970	080 -	.756	66.270
19543,999	49.031	42240.119	2.231	44.778	820	.776	66. 249
19554.000	59,031	42240.089	2.378	43.692	072	. 799	66.229
19564.000	69.031	42240.059	2.531	42.698	062	.823	66.210
19574.000	79.031	42240.028	2.691	41.785	047	.849	66. 192
19584.000	89.031	42240.018	2.859	40.943	028	.878	66. 175
19594.000	99,031	42240.008	3.034	40, 165	- ,005	806.	66. 159
19596.130	101,160	42240.008	3.072	40.006	000	.915	66. 156

END BURN

TABLE 6e. (Continued)

APOGEE BURN . 1572426006 LBS	ZP DXP DYP DZP KM/SEC KM/SEC	628 792,288921 1,302023	133 791, 781 - ,989 1,398 - ,078	108 790,842 -1.052 1.487130	727 789, 252 -1, 124 1, 589 - , 188	308 787,066 -1,198 1,695 - ,249	815 784, 261 -1.275 1,804 - ,312	208 780,818 -1,355 1,918 - ,377	147 776.710 -1.438 2.035445	185 771.914 -1.524 2.158515	276 766.400 -1,614 2,285588	766 760.138 -1.707 2.418665	
POGEE BURN (+06 LBS													-1 728 9. 447
A) . 1572426	ZP KM	792,288	791, 781	790.842	789.252	287,066	784.261	780.818	776.710	771.914	766.400	760, 138	758 705
05 KGS	Y P KM	-24404,628	-24391, 133	-24378, 108	-24362,727	-24346.308	-24328.815	-24310.208	-24290.447	-24269.485	-24247.276	-24223,766	-24218 585
. 71324047+05 KGS	NP KM	-34467,718	-34477, 264	-34486, 476	-34497,350	-34508,956	-34521, 318	-34534, 465	-34548, 425	-34563, 230	-34578.914	-34595.516	-34599 174
WEIGHT	BURN TIME SEC	000.	10.0 0 0	19,031	29.031	39.031	49.031	59,031	69,031	79.031	89.031	99,031	101, 160
BEGIN BURN	TIME	19494,969	19504,970	19514,000	19524,000	19534.000	19543.999	19554.000	19564.000	19574.000	19584,000	19594,000	19596, 130

END BURN

TABLE 6e. (Continued)

				AP	APOGEE BURN	z	
BEGIN BURN	WEIGHT	WEIGHT = .71324047+05 KGS	+05 KGS	.15724260+06 LBS	06 LBS		
TIME	BURN TINE SEC	MASS KGS	WEIGHT LBS	CHI P DEG	CHI Y DEG	ALPHA N DEG	ALPHA W DEG
19494, 969	000	71324.047	157242.600	-36.246	-25.142	121.900	2.641
19504,969	10,000	69141.269	152430.400	-36.216	-25.142	183.210	-65.475
19514,000	19,031	67170.107	148084.740	-36. 189	-25.143	183.593	-69.056
19524,000	29.031	64987,330	143273.530	-36, 159	-25.143	184.083	-72.358
19534.000	39,031	62804.552	138460.330	-36.129	-25.144	184.923	-76.065
19543,000	49.031	60621.774	133648, 130	-36.098	-25.145	186.396	-79.795
19554,000	59.031	58438,996	128835.930	-36.068	-25,145	189.572	-83,509
19564.000	69.031	56256.218	124023.730	-36.038	-25.146	200.840	-87.122
19574.000	79.031	54073.440	119211.530	-36.008	-25.146	-45.231	-88,633
19584.000	89.031	51890.662	114399.330	-35.978	-25.147	-11.481	85.374
19554,000	99.031	49707.884	109587.130	-35.948	-25.147	- 6.232	-81,953
19596, 130	101.160	49242.979	108562, 180	-35.941	-25.148	- 4.159	-78.626

END BURN

TABLE 6e. (Concluded)

BEGIN BURN	WEIGH	WEIGHT = .71324047+05 KGS	raca, s KGS	APOGEE BURN .15724260+06 LBS
TIME	BURN TIME SEC	DDXP KM/SEC(SQ)	$\begin{array}{c} \text{DDYP} \\ \text{KM/SEC(SQ)} \end{array}$	$rac{ ext{DDZP}}{ ext{KM/SEC(SQ)}}$
19494,969	000.	200	600.	005
19504.970	10.000	007	.010	900
19514.000	19.031	200	.010	900
19524,000	24.031	700	.010	900
19534,000	39.031	800	.011	900° -
19544,000	49.031	800	.011	900
19554,000	59,031	800	.012	900
19564,000	69.031	800	.012	700
19574,000	79.031	600	.012	700
19584.000	89.031	600	.013	700
19594,000	99,031	010	.014	800
19596.130	101,160	010	.014	008
END BURN				

CONIC CONDITIONS AFTER APOGEE BURN

ORBITAL ELEMENTS

ANGULAR MOMENTUM PER UNIT MASS	TWICE THE TOTAL ENERGY PER UNIT MASS	ECCENTRICITY	SEMI MAJOR AXIS OF CONIC	RADIUS AT PERICENTER	RADIUS AT APOCENTER	INCLINATION	TRUE ANOMALY	ARGUMENT OF PERICENTER	PERIOD OF CONIC
129757, 43 (KM) SQ/SEC	-9.4366 (KM/SEC) SQ	.000211	42239,98 KM	42231.05 KM	42248.91 KM	49,999999 DEG	-140,30661 DEG	140.39682 DEG	86396.28 SEC
11	H	11	11	11	11	H	Н	II	11
2	్ చ	ECC	SMA	RCA	RAPO	INC	TANO	ARPG	PERIOD

TABLE 7. OPTIMAL TRANSFER TRAJECTORY CHARACTERISTICS FOR THE TERMINAL CONIC CONSTRAINT (C_3 , C_4) — 6588 x 42 240 km ELLIPTICAL ORBIT IN THE PARKING ORBIT PLANE (C_3 = -16.33 km²/sec², C_1 = 67.40 km²/sec)

Thrist Event	Time	We	Weight	Altitude	Velocity	b Latitude	Longitude
	(hr)	(kg)	(qI)	(km)	(km/sec)		(deg)
Parking orbit injection	0.028	128 897	284 169	185.3	7.792	15.762	-55.636
End parking orbit coast and ignition for S-IVB burn	0.028	128 897	284 169	135.3	7.792	15.762	-55.636
End S-IVB burn (terminal constraint satisfied)	0.101	71 362	157 326	257.0	10.189	3,925	-39,880

anertial velocity.

b Geocentric latitude. ^cWest longitude from Greenwich.

TABLE 8. OPTIMAL TRANSFER TRAJECTORY FOR THE TERMINAL CONIC CONSTRAINT (C₃, C₁)

a. PARKING ORBIT COAST

b. FIRST BURN

c. CONIC CONDITIONS AFTER FIRST BURN

TABLE 8a.

SEC COAST TIME SEC SEC 100.000 .000							
	* *	·	g E	7 X	DXP KH/SEC	DYP KA/SEC	DZP KM/SEC
END COAST	2941.137		5866.843	-91,242	996.9	-3.490	107
BEGIN COAST WEIGHT# .	*12889675+D6 KGS	¥ GS	P	PARKING ORBIT COAST •28416870+06 LBS	AST 85		
TIME COAST TIME SEC SEC	2 Y	& 12 12	INER VELOCITY KM/SEC	AZIMUTH S DEG	P T H DEG	LATITUDE Deg	LONG1TUDE Deg
100.	6563.418	:	7.792	123.774	.026	15,762	-55,636

SEGIN BURN	*EIGHT# .	2889675+06	×65	.28416870+06 LE	8.2		
	200	•	-	V	T L	LATITIDE	A CIT T SNO I
SEC	SEC	: ¥	KM/SEC	DEG	DEG	DEG	DEG
100.001	000.	5.6	.79	3.7	~		5.63
100.000	000.	_	79	123.77	0	76	
150.030	996.05	564+54	. 16	124.53	33	.80	2.86
160.000	ò	565.0	. 23	4.6	7	3	2.30
170.000	70.000	565.7	.31	124,81	~	66.	1.73
180.000	900.08	5	• 39	124,95	3	• 57	1.16
190,000	90,000	547.6	. 47	125,08	S	• 15	0.58
200.000	100.000	9.94	• 56	125.21	88	.72	0.00
210.000	- 10	570.	49.	125.33	~	. 28	9.42
220.000	120.000	571.98	. 73	125.45	.17	• 85	.83
230.000		73,90	. 8 1	125.57	3	.40	8.24
240.000	- 1	576,10	• 90	125.68	•50	. 95	• 65
250.000	150.000	578.60	00.	125.79	.68	.50	
260.000	•	2	40.	5.	87	*0	4
270.000	170.000	584.57	. 18	126.00	.07	• 57	• 45 • 836
280,000	180.000	588.09	, 28	126.09	. 29	. 10	
290.000	190.000	592.00	.38	126.18	.51	.62	.60
300.000	290,000	596.32	40	124.27	.74	.13	
310.000	210.000	60109	.58	126.35	.98	.64	. 34
320.000	•	606.30	• 69	126,42	.23	• 15	.71
330.000		12.	.80	6 + + 9	449	• 65	2.07
340.000	240,000	618.25	-	126.56	.76	÷ :-	. 42
350.000	•	25.04	10,02	126.623	• 0.4	.63	.77
360.000	260.000	632.4	* - •	126.67	.33	= :	0.11
747.584	243.544	435.21	10.18	64.4	7	. 92	8

FND BURN

TABLE 8b. (Continued)

	(1999067E106 VCC	:		: : 0		
BEGIN BOAN		CDW 00+0106887	•	28416870-F06 LBS	o		
TIME	BURN TIME	a ×	a		Q X Q	O Y O	020
SEC	SEC	£	£	7 ¥	KM/SEC	KM/SEC	KM/SEC
00.001	006.	941.13	5866.843	-91,242	9 0	-3.490	107
100+001	.000		866.	-91.242	996.9	-3.490	107
150.000	000 • 05 · · ·	292.37	9.39	6.57	.08	• 05	-106
160,000	60.000	363,30	637.28	-97.634	01.	4 - 1 6 9	
170.000	70,007	434.44	595.01	-08.139	.12	. 28	
190.000	90¢ •0¢	505-41	551,55	49.739		. 40	
190.000	000.06	57	, 9	-100.787	-	-4.525	105
200.002	100.000	649.18	461.05	1.83		• 64	+01.
210+000	110+000	721.17	413,98	-102.870	. 2	.76	+010-
220,000	120.000	793.37	365.66	3.00	• 2	• 8 9	103
230.000	130,000	845.78	316.10	-104.936	.2	• 02	103
240.000	140,900	938.38	265,27	-105,963	7	Ŧ	
250.000	150.000	011-18	213.15		7	.27	
260.000	160.000	4.18	159.74	-108.003	•	-5.407	102
270 -088	170+000	157.36	105.00	-109.016	۳.	5 4	
280.000	180.000	230.74	048,92	-110.023	~	.67	101
290.000	190,000	04.31	401.4	-111.026	•	.81	001
300.000	200.000	78.07	32.68	-112,023	• 3₽	. 95	660*-
310.000	210.000	4452.024	4A72.472	-113,015	₹.	• 0 •	660
320.000	220 • 100	4526+158	10.83	-114.001	• 42	.23	860
330+040-	230.000	4600.479	47,75	Œ		6,38	860
340.000	240.000		83.20	-115.956	. 46	.53	
350.000	250.000	9.68	17,15		7.479	99.	097
360.000		•	46 · D	-117.8.97	64.	-6.835	960
363.586	263.586	4851.465	4524.967	-118.230	7.505	-6.891	960

END BURN

HADE BURN

TABLE 8b. (Concluded)

				FIRST BURN-
BEGIN BURN	MF1GHT# .12	WEIGHT . 12889675+06 KGS	. 284168	. 28416870+06 LBS
7 1 1 1 1	BURN TIME	a X Q Q	DOYP	9200
SEC	235	KM/SEC(SO)	KM/SEC(SQ)	KM/SEC (SQ
100•000	000+	+00	4.009	000
100.000	.000	• 002	••011	000•
150.000	50.000	.002	012	000*
160.090	60.00n	· 002	- 012	000•
170.000	70.100	*005	012	000.
180.000				000
190,000	90°400	• 00.2	210	000
200,000	100,000	• 002	012	• 000
210,000	110.000	• 005	- 1015	000
220,000	120.000	• 00 5	013	000.
230,000	130.000	*00	013	000•
	140.000			000
250,000	150.000	• 005	013	• 000
260.000	160.000	• 002	013	000
270,000	170 -000	.002	E 10 * =	.000
280.000	180.000	•005	+10	000
290.000	190.000	• 002	+10	• 000
300.000		*00*	+ 1 O • =	000
310.000	210+900	• 002	+10·=	0u0•
320.000	220,000	• 0 11 2	† 1 U • ■	000•
330,000	230,000	.002	-•015	000•
340.000	240.000	*00	510	• 000
350.000	250,000	• 002	5 i u • -	000
360.000	260.000	• 005	-1916	. 000
363.586	263.586	·002	910	000

COMIC CONDITIONS AFTER FIRST BURN

-ORBITAL ELEMENTS

10	- 67404.6	67404.60 (KM)50/SEC	AUGULAR MOMENTUM PER UNIT MASS
C 3		C3	TWICE THE TOTAL ENERGY PER UNIT MASS
ECC	* .730154	4	ECCENTRICITY
SMA	# 24413.95 KM	N XX	SEMI MAJOR AXIS OF CONIC
₩C.₩	# 00 4588.00 KM	D 75	RADIUS AT PERI-CENTER
RAPO	# 42239.91 KM	2 X T	RADIUS AT APO-CENTER
J N C	a 36.873734 DEG	4 DEG	INCLINATION
TANO	* 10,53607 DES	7 DEG	TOUR ANOMALY
ARPG #	* 162,91395 DEG	5 0 5 6	ARGUMENT OF PERI-CENTER
PER100#	# 37963.53 SEC	3 SEC	PERIOD OF CONIC

TABLE 9. OPTIMAL TRANSFER TRAJECTORY CHARACTERISTICS FOR THE TERMINAL CONIC CONSTRAINT (C₃, C₁, i) — 6588 km \times 42 240 km ELLIPTICAL ORBIT INCLINED AT 50 DEG (C₃ = -16.33 km²/sec², C₁ = 67.40 km²/sec, i = 50 deg)

7	Time	We	Weight	Altitude	Velocity	Latitude	Longitude
Turust Event	(hr)	(kg)	(qI)	(km)			(geb)
Parking orbit injection	0.028	128 897	284 169	185.3	7.792	15.762	-55,636
End parking orbit coast and ignition for S-IVB burn	0.088	128 897	284 169	186.0	7.792	7.263	-44,220
End S-IVB burn (terminal constraint satisfied)	0.176	59 771	131 774	274.3	10.173	-9.312	-27.857

anertial velocity.

b Geocentric latitude. ^cWest longitude from Greenwich.

TABLE 10. OPTIMAL TRANSFER TRAJECTORY FOR THE TERMINAL CONIC CONSTRAINT (C3, C1, i)

a. PARKING ORBIT COAST

b. FIRST BURN

c. CONIC CONDITIONS AFTER FIRST BURN

TABLE 10a.

BEGIN COAST	ST WEIGHT	11	. 1288967 5+ 06 KGS	3.	PARKING OI . 28416870+06 LBS	PARKING ORBIT COAST 3870+06 LBS	AST
TIME	COAST TIME SEC	R KM	INER VELOCITY KM/SEC	AZIMUTH S DEG	PTH DEG	LATITUDE DEG	LONGITUDE DEG
100.000	000.	6563,418	7.792	123.774	. 026	15.762	-55.636
150.000	50,000	6563.593	7,792	124.518	. 025	13,853	-52.933
200.000	100.000	6563,764	7.792	125, 156	. 025	11,909	-50.279
250.000	150.000	6563,930	7.792	125,691	.024	9.938	-47.666
300.000	200,000	6564.090	7.792	126.125	. 023	7.943	-45.086
316.929	216.929	6564.143	7.792	126.249	.023	7.263	-44.220

73

END COAST

TABLE 10a. (Concluded)

AST	m DZP $ m KM/SEC$	107	101	094	980. –	620. –	920
PARKING ORBIT COAST 3870+06 LBS	$rac{ ext{DYP}}{ ext{KM/SEC}}$	-3.490	-3.897	-4.291	-4.669	-5.031	-5.149
PARKING OF 28416870+06 LBS	m DXP $ m KM/SEC$	996.9	6.747	6.504	6.238	5.949	5.847
2.	ZP KM	- 91.242	- 96.447	-101.312	-105,821	-109,956	-111.269
5+06 KGS	YP KM	5866.843	5682, 108	5477.355	5253,306	5010.751	4924.583
WEIGHT = , 12889675+06 KGS	XP KM	2941, 137	3284.067	3615.427	3934.051	4238.816	4338.672
WEIGHT	COAST TIME SEC	000°	50.000	100.000	150.000	200.000	216.929
BEGIN COAST	TIME	100.000	150,000	200,000	250,000	300,000	316,929

END COAST

TABLE 10b.

	LONGITUDE DEG	-44.219	-42.530	-39.976	-37,418	-34,849	-32,260	-29.642	-27.857
	LATITUDE DEG	7.263	5,896	3,682	1.283	-1.313	-4.116	-7.143	-9.312
URN LBS	PTH DEG	.023	060.	.373	.892	1.667	2,723	4.086	5.189
FIRST BURN . 284186870+06 LBS	AZIMUTH S DEG	126.249	127.711	129.884	132,007	134.077	136.093	138,059	139,355
12889675+06 KGS	INER VELOCITY KM/SEC	7.792	7.960	8,239	8,553	8,909	9,319	9.799	10.174
•	R KM	6564.143	6564,364	6565.873	6570.367	6579,959	6597.240	6625,423	6652,496
WEIGHT =	BURN TIME SEC	000.	33,071	83.071	133,071	183.071	233.071	283,071	316.685
BEGIN BURN	TIME	316,929	350,000	400,000	450,000	500,000	550,000	000.009	633.614

75

END BURN

TABLE 10b. (Continued)

	m DZP $ m KM/SEC$	920 -	. 101	. 391	. 711	1,065	1,463	1.914	2,257
BURN LBS	$\begin{array}{c} \text{DYP} \\ \text{KM/SEC} \end{array}$	-5.149	-5.484	-5.996	-6.519	-7.056	-7.615	-8.207	-8.633
FIRST BURN . 28416870+06 LBS	DXP KM/SEC	5.847	5.768	5.636	5.491	5.334	5.169	5.000	4.888
•	ZP KM	-111.269	-110.884	- 98.680	- 71.250	- 26.996	36.006	120.165	190,172
+06 KGS	YP KM	4924.583	4748.771	4461.810	4148.990	3809,694	3443.023	3047.630	2764.676
WEIGHT = , 12889675+06 KGS	XP KM	4338.672	4530.758	4815.933	5094,166	5364.827	5627.422	5881,646	6047.819
WEIGHT	BURN TIME SEC	000.	33.071	83.071	133.071	183.071	233.071	283.071	316,685
BEGIN BURN	TIME	316.929	350,000	400.000	450,000	500,000	550,000	600.000	633.614

END BURN

TABLE 10b. (Concluded)

FIRST BURN 16870+06 LBS	CHI Y DEG	45,563	45.860	46.215	46.452	46.571	46.574	46.461	46.323	
FIRST BURN . 28416870+06 LBS	CHI P DEG	129.341	131.728	135.373	139.026	142.679	146.324	149.947	152.336	
06 KGS	WEIGHT	284168.690	268254.240	244193.240	220132.230	195071.220	172010.210	147949.210	13,1773,580	
WEIGHT = ,12889675+06 KGS	MASS KGS	128896.750	121678.080	110764.190	99850,301	88936,411	78022,521	67108,633	59771,490	
WEIGH	BURN TIME SEC	000.	33.071	83.071	133.071	183.071	233,071	283.071	316,685	
BEGIN BURN	TIME	316,929	350,000	400.000	450.000	200,000	550,000	600.000	633,614	

END BURN

CONIC CONDITIONS AFTER FIRST BURN

ORBITAL ELEMENTS

ANGULAR MOMENTUM PER UNIT MASS	TWICE THE TOTAL ENERGY PER UNIT MASS	ECCENTRICITY	SEMIMAJOR AXIS OF CONIC	RADIUS AT PERICENTER	RADIUS AT APOCENTER	INCLINATION	TRUE ANOMALY	PERIOD OF CONIC
67404.50 (KM) SQ/SEC	-16.3272 (KM/SEC) SQ	730144	24416.21 KM	6588.85 KM	42243.56 KM	49,999970 DEG	12.22194 DEG	37968.80 SEC
11	IJ	II	11	11	11	В	11	II
5	ປັ ປັ	ECC	SMA	RCA	RAPO		TANO	PERIOD

TABLE 11. OPTIMAL TRANSFER TRAJECTORY CHAEACTERISTICS FOR THE TERMINAL CONIC CONSTRAINT (C₃, α , δ) — TYPICAL 1973 MARS MISSION HYPERBOLIC ORBIT INJECTION (C₃ = 18.0 km²/sec², α = 15.55 deg, δ = 31.59 deg)

The second	Time	Wei	Weight	Altitude	Velocity	Latitude	Longitude
THEAST EVENT	(hr)	(kg)	(1b)	(Jsm)	(km/sec)	(deg)	(deg)
Parking orbit injection	000.0	18 030	39 749	185.3	7.792	15.762	-55.636
End parking orbit coast and ignition for second CSM burn	0.441	18 030	39 749	186.7	7.791	-36.347	39.086
End second CSM burn (terminal constraint							
satisfied)	0.567	4 817	10 620	425.6	11.626	-31.990	81.564

a Inertial velocity. b Geocentric latitude.

 $^{\mathrm{c}}$ West longitude from Greenwich.

TABLE 12. OPTIMAL TRANSFER TRAJECTORY FOR A TYPICAL 1973 MARS MISSION HYPERBOLIC ORBIT INJECTION

a. PARKING ORBIT COAST

b. FIRST BURN

c. CONIC CONDITIONS AFTER FIRST BURN

TABLE 12a.

EGIN COAST	●FIGHT■ • 1	8029707+05	K G S	PARK .3	KING_DRBIT_CO 39748699+05 L	AST		
TINE SEC	COAST TIME Sec	δ	INER	VELOCITY KM/SEC	AZIHUTH S	. E O	LATITUDE DEG	LONGITURE DEG
	S		i	, ,	21.77		5.76	62
֓֞֞֜֜֜֞֜֜֞֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜	• ;	200000000000000000000000000000000000000		70	7	. ~	3.85	
	000.001	65634764		7.792	125,156	.025	11.909	4
		201647		7.9	25.69	~	9.93	.24
	. 00	564.09		.79	26.12	~	. 94	44.66
00+05	50.5	564.24		.79	24.45	0.2	.93	42.11
0.0	•	564,39		. 7	4.69	~	.90	39.58
50.00	50	564.53		• 19	26.83	~	• 8 6	37.06
90.00	00	564.66		4.79	26.87	-	• 17	1,55
50.05	50.	564.79		• 19	26.81	-	2.21	32,04
00.00	00	264.90		.79	26.66	0	• 2 4	29.52
50.06	50.	565.01		. 79	26.40	0	• 50	. 98
00.00	00	565.11		.79	26.05	0	.27	24.43
50.05	50.	565.20		.79	25.60	-	10.26	21.85
90.00	00	565.28		179	25 + 05	0	12.23	1.23
50.07	50.	565.35		.79	4.40	0	14.17	16.57
00.00	00	565,41		. 79	23.64	00	16.07	3.86
50.00	50.	565.46		+74	2 - 77	00	17.93	.00
00.00	00	565,49		.79	21.78	00	9.75	.26
50.05	50.	565.52		.79	69.0	0	21.51	.37
000.00	00	565.53		• 19	19.48	00	.22	2.40
50.07	50.	565.54		.79	8 1 5	• 00	24.85	• 65
100.01	00	565.53		• 19	6.70	0	6.42	78
50.06	50.	565,51		179	5.13	00	27.91	7.01
00.00	00	565.48		. 79	オナ・の	00	9.31	0,33
50.00	50.	565.44		. 79	11.63	00	30.61	3.75
00.00	00	565,39		• 19	01.6	• 00	- 8 -	7,26
50.00	50.	565,33		• 19	7.66	-	32.90	0.86
00.00	00	565.26		• 10	5 . 51	•	.87	4 , 55
0.00	50.	565.18	,	+79	3.27	-	4 - 72	. 33
00.00	• 00	565.08		• 19	0.93	- 0	4.	2 • 18
50.05	50.	564.98		• 19	8 • 5 2		9.00	6 . 10
587,58	A7.			4	46.674	4.017	-36.347	39+086

TABLE 12a. (Continued)

THE COAST TIME							
\$\text{A}\$ \text{C}\$ \text	DAST TIM			7	×	>	. 1
000 50.000 3284.067 547.355 -101.242 000 100.000 3284.067 547.355 -101.312 000 200.000 3284.061 5427 547.355 -101.312 000 200.000 3284.061 520.07 -103.212 000 200.000 4228.651 4750.547 -110.026 000 300.000 5288.651 4750.541 -117.052 000 300.000 5288.650 4186 528.450 -127.424 000 520.000 5298.660 3873.506 -127.622 000 520.000 5298.660 3873.508 -128.472 000 520.000 5298.660 3873.508 -128.472 000 520.000 5218.136 2873.508 -128.472 000 620.000 620.081 2155.087 -128.472 000 620.000 620.081 2155.087 -128.472 000 620.000 620.081 216.864 -127.713 000 620.000 620.084 -127.713 000 620.000 620.084 -127.713 000 100.000 620.084 -127.713 000 100.000 620.084 -127.713 000 1150.000 620.084 -127.713 000 1150.000 620.084 -127.070 01550.000 620.084 -127.070 01550.000 620.084 -127.070 01550.000 620.084 -128.318 000 1150.000 620.084 -128.084 -128.080	SEC		£	_		KM/SEC	KM/SEC
9000 1000000 3284,067 5682,108 -96,447 6000 1000,000 3915,427 55477,355 -100,5312 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	767	• 13	86698	91.24	96.	. 49	0
000 3615,427 5477,355 =101,312 000 250,000 4238,651 47010,751 =103,954 000 250,000 4528,651 47010,751 =113,704 000 250,000 4602,536 4473,611 =117,052 000 350,000 5288,640 3473,505 =122,501 000 460,000 5750,155 3518,866 =124,582 000 570,013 358,873,989 =127,424 000 550,000 570,216 3518,886 =127,424 000 570,000 570,216 32873,989 =127,424 000 560,000 570,216 3218,886 =127,424 000 560,000 570,000 570,000 570,000 600 600 600 600 600 600 600 600 600 600 600 600 600 620 620 600 600 620 620 620 600 </td <td>328</td> <td>90</td> <td>682,10</td> <td>44.96</td> <td></td> <td>~</td> <td>101.</td>	328	90	682,10	44.96		~	101.
0000 2500.000 4238.816 5253.306 -105.821 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	361	. 42	477.35	101+31	• 50	• 29	•0•
0000 2500.0000 4238.816 4750.51 =109.956 5000 2500.000 4528.651 4723.51 =117.052 500 4528.651 4723.51 =117.052 500 600 5000 5059.507 4180.920 =117.052 500 600 600 600 500 500 500 500 500 500	50.000 393	• 05	253,30	105.82	.23	99.	8
000	423	-8	010,75	109.95	• 94	5.03	0
900 900 4902,536 4473,611 -117,052 4180,920 -119,988 4000 90	452	• 65	750.54	113.70	• 64	5.37	~
9000 350.000 5059.507 4180.920 -119.988 440.000 400.000 5298.660 3873.505 -122.501 44.000 5219.155 3552.450 -124.582 12.000 5210.000 5770.216 3218.886 -124.582 12.000 5770.000 6200.000 6200.001 215.989 -127.424 32.000 6200.000 6200.001 215.989 -127.424 32.000 6200.000 6200.001 215.989 -127.424 32.000 700.000 6200.001 215.989 -127.713 22.000 6200.000 6259.642 2518.318 -127.713 17.000 9500.000 6559.642 2518.318 -127.713 11.000 9500.000 6559.642 2518.318 -127.713 11.000 9500.000 6559.642 2518.318 -127.713 11.000 9500.000 6543.045 -1300.021 -118.004 -120.803 -120.800 1150.000 6543.045 -1300.921 -118.004 -118.004 -119.000 6218.728 -118.004	4.60	.53	473.61	117.05	.31	.70	063
0000 400.000 5519.155 3552.450 -122.501 49.000 0000 5519.155 3518.886 -124.582 3518.886 -124.582 3518.886 -124.582 3518.886 -126.225 3518.886 -126.225 3518.886 -126.225 3518.982 -126.225 3518.982 -126.225 3518.982 -126.225 3518.982 -126.225 3518.982 -128.173 2518.982 -128.173 2518.982 -128.173 2518.982 -128.173 2518.982 -128.173 2518.982 -128.182 2518.982 -128.182 2518.982 -128.182 2518.982 -128.182 2518.982 -128.182 2518.982 -128.182 2518.982 -128.182 2518.982 -128.182 2518.982 -128.182 2518.982 -128.182 2518.982 -128.182 2518.982 -128.182 2518.982 -128.182 2518.982 -128.182 2518.982 -128.182 2518.982 -128.182 2518.982 -128.182 2518.982 -128.182 2518.982 2518.982 -128.182 2518.982	505	.50	180.92	119.98	.96	00.	LD.
0000 \$519,155 3552,450 -124,582 0000 \$720,216 3218,886 -126,225 000 \$60,000 \$61,278 2813,989 -127,424 000 \$60,000 \$610,278 2518,972 -128,173 000 \$60,000 \$617,057 1783,615 -128,118 000 750,000 \$611,794 1405,864 -127,713 1 000 750,000 \$641,725 248,318 -126,658 1 000 850,000 \$643,299 \$646,864 -127,713 1 000 850,000 \$643,099 -126,658 1 000 856,289 \$64,864 -127,713 1 000 856,289 \$65,864 -127,713 1 000 856,289 \$64,864 -127,713 1 000 856,289 \$64,864 -127,713 1 000 850,000 \$64,402 -126,840 -127,804 000 854,869 -136,840	00*00u 529	.66	873+50	122.50	•59	.28	40
000 5720.216 3218.886 -126.225 000 5901.136 2873.989 -127.424 000 600.000 601.278 2518.972 -128.173 2 000 600.000 6200.081 2155.087 -128.472 2 000 600.000 6411.794 1405.864 -127.713 1 000 6411.794 1405.864 -127.713 1 000 6411.794 1405.864 -127.713 1 000 6411.794 1405.864 -125.658 1 000 650.000 643.299 643.862 -125.164 -125.164 -125.164 000 6552.894 -141.099 -123.216 -125.164 -123.216 000 6552.894 -141.099 -123.216 -123.216 -123.216 000 6562.894 -141.009 -123.216 -1300.804 -114.804 -116.804 000 100 6543.045 -2419.603 -1118.804 -125.046 -125.046	50.000 551	. 15	552.45	124.58	.21	6.55	03
.000 \$50,000 \$901,136 \$2873,989 -127,424 .000 \$600,000 \$600,000 \$200,000 </td <td>00.000 572</td> <td>.21</td> <td>218.88</td> <td>126.22</td> <td>.82</td> <td>.78</td> <td>02</td>	00.000 572	.21	218.88	126.22	.82	.78	02
000 600.000 6061.278 2518.972 -128.173 2 000 650.000 6200.081 2155.087 -128.472 2 2 000 700.000 6411.794 1405.864 -127.713 1 1 7 8 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20.000 590	. 13	873.98	127.42	- # •	• 00	5
.000 650.000 6317.057 1783.615 -128.472 2 .000 750.000 6411.794 1405.864 -127.713 1 .000 750.000 6483.959 636.862 -125.157 -126.658 1 .000 850.000 6559.642 248.318 -123.216 -123.216 .000 900.000 6559.642 248.318 -123.216 -1 .000 950.000 6559.642 248.318 -123.216 -1 .000 950.000 6559.642 248.318 -123.216 -1 .000 950.000 6543.045 -141.099 -120.840 -1 .000 1050.000 6434.402 -1300.903 -114.824 -1 .000 1150.000 6345.243 -2053.486 -102.900 -2 .000 1250.000 6345.243 -2053.486 -102.900 -1 .000 1350.000 65773.248 -3124.991 -87.576 -4 .000 1	909 000 00	.27	518.97	128.17	.99	7.19	5
.000 700.000 6411.794 1783.615 -127.713 1 .000 750.000 6483.959 636.864 -127.713 1 .000 800.000 6559.642 248.318 -125.157 -125.157 .000 900.000 6559.642 248.318 -123.216 -123.216 .000 900.000 6562.894 -141.099 -120.840 -171.009 .000 950.000 6543.045 -530.021 -118.0040 -111.00.840 .000 1150.000 6434.402 -1300.903 -111.020.840 -111.020.840 .000 1250.000 6345.992 -1480.452 -114.824 -111.020.803 .000 1250.000 6345.992 -1360.452 -107.192 -1 .000 1250.000 6345.992 -1499.459 -92.956 -2 .000 1250.000 6345.946 -2777.179 -92.956 -3 .000 1400.000 5577.806 -3786.426 -75.729 -4994.586 -499.46 <td>50.000 620</td> <td>• 0 8</td> <td>155.08</td> <td>128.47</td> <td>.55</td> <td>7.35</td> <td></td>	50.000 620	• 0 8	155.08	128.47	.55	7.35	
0000 6411.794 1405.864 -127.713 1 0000 6483.959 636.862 -125.157 1 000 850.000 6559.642 248.318 -123.216 000 900.000 6562.894 -141.099 -120.840 000 950.000 6543.045 -530.021 -118.040 000 1000.000 6434.402 -1710.076 -114.824 -1 000 1100.000 6434.402 -1300.903 -111.020.40 -111.020.40 000 1150.000 6434.402 -1300.903 -111.020.40 -111.020.40 000 1250.000 6345.243 -2053.48 -107.192 -1 000 1250.000 6235.243 -2053.48 -102.900 -2 000 1350.000 5773.248 -2119.591 -92.956 -3 000 1400.000 5577.806 -3124.991 -87.576 -4 000 1450.000 5362.727 -3786.426 -75.762 -62.966 <td>169 000.0</td> <td>, n5</td> <td>783.61</td> <td>128.31</td> <td>=</td> <td>. 49</td> <td>00</td>	169 000.0	, n5	783.61	128.31	=	. 49	00
0000 800.000 6483.959 1023.164 -126.658 1 000 850.000 6559.642 248.318 -123.216 000 900.000 6562.894 -141.099 -120.840 000 950.000 6543.045 -530.021 -118.040 000 1000.000 6434.402 -917.076 -114.824 -1 000 1150.000 6434.402 -1300.903 -111.020.40 -1 000 1150.000 6434.402 -1300.903 -111.020.40 -1 000 1200.000 6434.402 -1300.903 -111.020.40 -1 000 1250.000 6345.243 -2053.486 -107.192 -1 000 1250.000 6102.546 -2419.5591 -98.052.95 -2 000 1450.000 5362.727 -3786.426 -75.782 -4 000 1500.000 5128.76 -4097.720 -62.965 -5 000 1500.000 5128.76 -4097.720 -62.9	0.000	• 79	405.84	127.71	.67	7.60	-
0000 850.000 6559.642 248.318 -123.216 000 900.000 6562.894 -141.099 -123.216 000 950.000 6543.045 -248.318 -120.840 000 1000.000 6543.045 -917.076 -118.040 000 1100.000 6434.402 -917.076 -111.020.40 000 1150.000 6434.402 -1300.903 -111.020.40 000 1250.000 6345.943 -2053.486 -102.803 000 1250.000 6102.546 -2419.591 -92.956 -3 000 1350.000 5948.367 -2777.179 -92.956 -3 000 1450.000 5577.806 -3124.991 -87.533 -3 000 1450.000 5362.727 -3786.426 -75.782 -4 000 1500.000 5128.769 -4097.720 -62.965 -6 000 1550.000 4876.753 -4994.586 -75.782 -4994.586 -75.782	8#9 UUD*0	9.95	023.16	126.65	. 21	1.69	02
000 900.000 6559.642 248.318 -123.216 000 950.000 6543.045 -141.099 -120.840 000 1000.000 6543.045 -530.021 -118.040 000 1050.000 6434.402 -1300.903 -111.204 000 1150.000 6345.992 -1680.152 -111.204 000 1250.000 6345.992 -1680.152 -107.192 000 1250.000 6535.243 -2053.486 -102.803 -2 000 1350.000 5573.248 -3124.991 -87.533 -3 000 1400.000 5572.806 -3461.802 -81.802 000 1500.000 5362.727 -3786.426 -75.782 000 1500.000 5362.727 -4097.720 -62.965 -5	50.000 653	• 29	436+86	125+15	75	• 75	03
.000 950.000 6543.045 -141.099 -120.840 -100.000 6543.045 -530.021 -118.040 -118.040 -1100.000 6434.402 -1300.903 -111.204 -118.040 -1100.000 6434.402 -1300.903 -111.204 -118.040 1200.000 6345.992 -1480.486 -102.803 -2.000 1250.000 6235.243 -2053.486 -102.803 -2.000 1250.000 5577.846 -2419.591 -87.533 -3.000 1350.000 5577.806 -3461.802 -81.802 -4.000 1500.000 5362.727 -3786.426 -75.782 -4.000 1500.000 5362.727 -4097.720 -62.965 -5.000 1500.000 5362.727 -4097.720 -62.965 -5.000 1500.000 5128.769 -4097.720 -62.965 -5.000 1500.000	559 000*00	+9 •	248,31	123.21	58	7.78	40
.000 1000.000 6543.045 -530.021 -118.040 -100.000 6500.164 -917.076 -114.824 -11.00.000 6434.402 -1300.903 -111.204 -1.000 1150.000 6345.992 -14.680.152 -107.192 -1.000 1250.000 6235.243 -2053.486 -102.803 -2.000 1250.000 5773.248 -3124.991 -87.533 -3.000 1450.000 5362.727 -3786.426 -75.782 -4.000 1550.000 5362.727 -4097.720 -62.965 -6.000 1550.000 6362.727 -4097.720 -62.965 -6.000 1550.000 6362.727 -4097.720 -62.965 -6.000 1550.000 6362.727 -4097.720 -62.965 -6.000 1550.000 6362.727 -4097.720 -62.965 -62	50.000 656	. 89	141.09	120.84	• 16	. 78	5
.000 1050.000 6434.402 -1300.903 -111.204 -100.000 6345.992 -14680.152 -1017.192 -11150.000 6345.992 -14680.152 -1017.192 -1120.000 6235.243 -2053.486 -102.803 -2.000 1250.000 5102.546 -2419.591 -98.052 -2.000 1350.000 55773.248 -3124.991 -87.533 -3.000 1400.000 5342.727 -3461.802 -81.802 -4.000 1500.000 5342.727 -3784.426 -75.782 -4.000 1550.000 5128.769 -4097.720 -62.965 -5.000 1550.000 5128.769 -4097.720 -62.965 -5.000 1550.000 6128.769 -4097.720 -62.965 -5.000 1550.000 6128.769 -4097.720 -62.965 -5.000 1550.000 6128.769 -4097.720 -62.965 -5.000 1550.000 6128.769 -4097.720 -62.965 -5.000 1550.000 6128.769 -4097.720 -62.965 -5.000 1550.000 6128.769 -4097.720 -62.965 -5.000 6128.769 -4097.720 -62.965 -5.000 6128.769 -4097.720 -62.965 -5.000 6128.769 -4097.720 -62.965 -5.000 6128.769 -4097.720 -62.965 -5.000 6128.769 -4097.720 -62.965 -5.000 6128.769 -4097.720 -62.965 -5.000 6128.769 -4097.720 -62.965 -5.000 6128.769 -62.965 -5.000 6128.769 -62.965 -5.000 6128.769 -62.965 -62	#59 u00*00	+0+	530.02	118.04	.62	7.76	•
.000 1100.000 6434.402 -1300.903 -111.204 -1 .000 1200.000 6345.992 -1680.152 -107.192 -1 .000 1200.000 6235.243 -2053.486 -102.803 -2 .000 1250.000 6102.546 -2419.591 -98.052 -2 .000 1350.000 55773.248 -3124.991 -87.533 -3 .000 1400.000 5362.727 -3786.426 -75.782 -4 .000 1500.000 5128.76 -4097.720 -62.965 -5 .000 1550.000 6128.76 -4097.720 -62.965 -5	50.000 650	. 16	917.07	114.82	1.08	.71	90
.000 1150.000 6345.9921680.152107.192 .000 1200.000 6235.2432053.486102.8032 .000 1250.000 6102.5462419.59198.0522 .000 1350.000 5773.2483124.99187.5333 .000 1400.000 5342.7273784.42675.7824 .000 1500.000 5342.7273784.42675.7824 .000 1550.000 4876.7534394.58662.9655	00.000	. 40	1300.90	111.20	1.54	7.63	0
.000 1250.000 6235.243 -2053.486 -102.803 -2.000 1250.000 6102.546 -2419.591 -98.052 -2.000 1350.000 5948.347 -2777.179 -92.956 -3.000 1350.000 5342.727 -3461.802 -81.802 -4.000 1500.000 5342.727 -3786.426 -75.782 -4.000 1500.000 5128.769 -40394.586 -62.965 -5.000 1550.000 4876.753 -40394.586 -62.965 -5.000 1550.0000 1550.000 1550.000 1550.000 1550.000 1550.000 1550.000 1550.0000 1550.000 1550.000 1550.000 1550.000 1550.000 1550.000 1550.0000 1550.000 1550.000 1550.000 1550.000 1550.000 1550.000 1550.0000 1550.	50.000 634	66.	1-680-15	107-19	1.99	7.53	80
-000 1250-000 6102-546 -2419-591 -98-052 -2 -000 1350-000 5948-347 -2777-179 -92-956 -3 -000 1350-000 5773-248 -3124-991 -87-533 -3 -000 1400-000 5342-727 -3461-802 -81-802 -4 -000 1500-000 5342-727 -3786-426 -75-782 -4 -000 1550-000 5128-769 -4097-720 -62-965 -5	623	. 2 4	2053.48	102 • 80	2,43	7,39	60
0.000 1550.000 5948.367 -2777.179 -92.956 -3 0.000 1350.000 5773.248 -3124.991 -87.533 -3. 0.000 1450.000 5362.727 -3786.426 -75.782 -4. 0.000 1550.000 5128.769 -4097.720 -69.496 -4.	019 U00+05	.54	2419.59	98.05	2.87	• 5 4	•
50.000 1350.000 5773.248 -3124.991 -87.533 -3.00.000 1400.000 5577.806 -3461.802 -81.802 -4.50.000 1450.000 5362.727 -3786426 -75.782 -4.00.000 1550.000 5128,769 -4.0097.720 -69.496 -4.50.000 1550.000 4876.753 -4.394.586 -62.965 -5.50.000 1550.000 4876.753 -4.394.586 -62.965 -5.50.000 1550.000 4876.753 -4.394.586 -62.965 -5.50.000 155	465 000.00	.36	2777-17	92.95	3.29	• 0 5	2
00.000 1400.000 5577.806 -3461.802 -81.802 -4.50.000 1450.000 5362.727 -3786.426 -75.782 -4.00.000 1550.000 5128.769 -4.097.720 -69.496 -4.00.000 1550.000 4876.753 -4.394.586 -62.965 -5.000 1550.000 4876.753 -4.394.586 -62.965 -5.000 1550.000 4876.753 -4.394.586 -62.965 -5.000 1550.000 4876.753 -4.394.586 -62.965 -5.000 1550.000 4876.763 -6.000 1550.000 4876.763 -6.000 1550.000 4876.763 -6.000 1550.000 4876.763 -6.000 1550.000 4876.763 -6.000 1550.000 4876.763 -6.000 1550.000 4876.763 -6.000 1550.000 4876.763 -6.000 1550.000 4876.763 -6.000 1550.000 4876.763 -6.000 1550.000 4876.763 -6.000 1550.000 4876.763 -6.000 1550.000 15	50.000 577	.24	3124.99	87.53	3.70	6.85	-
\$0.000 1450.000 5362.727	00.00	. 80	3461.80	81.80	4.10	6.61	~
50.000 1550.000 5128,769 -4097.720 -69.496 -4	50.000 534	.72	3786+42	75.78	4.49	.36	N
50.000 1550.000 4876.753 -4394.586 -62.965 -5.	00.000 512	,76	4097.72	64.69	4.86	90.9	~
the state of the s	50.000 487	• 75	4364.58	62.96	5.21	78	.133
+5R5 158/+585 4673+955 -46U7+41257+989	87.585 467	. 95	• 6 1	+90	. 1	• 54	+136

TABLE 12a. (Concluded)

PARKING DEBIT COAST .3974869905 LBS

WEIGHT# . 18029707+05 KGS

BEGIN COAST

7 3 X E	COAST TIME	×	>	7	×Q		
SEC		Σ ¥	X Z	X X	KM/SEC	KM/SEC	KM/SEC
• 000	0	3094.44	506.73	782.91	6.22	2 • 1 4	4 . 16
0.00	00.00	3400.06	389,87	571.49	5.99	.52	4 . 28
100.001	100.000	-3693,699	5254,029	1354.533	-5.746	8	-4.389
50.00	50.00	3974.32	199,67	132,80	5.47	3.26	4.47
00.00	00.00	4240.94	927,35	07,08	5.18	3 • 62	4.54
50.00	50.00	4492.63	737.68	78.17	4.87	96.	99.
00.00	00.00	4728.49	531,32	46.86	4.55	4.28	49.4
S	0.00	4947.70	309,00	13,98	.21	4.60	• 66
00.00	00.00	5149.49	071+59	19.61	3.85	4.89	4.67
50.00	50.00	5333.14	R19.67	253.20	3.48	5 • 17	4.66
00.00	00.00	5498.02	554,39	485,87	3.10	5 • 43	4.63
50+00	50.00	5643453	276.59	716.83	• 71	2.67	65.4
00.00	00.00	5769.18	987,26	945,26	2.31	5 . 8 9	4.53
50.00	50.00	5874.51	687.41	1170.37	1.90	60.9	4.46
00.00	00.00	5959.16	378.10	1391.36	1.48	6.27	4.37
50,00	50.00	6022.84	060.42	1607.45	1.06	6 + 43	4.26
00.00	00.00	6065.31	735.48	1817.88	63	95.9	4 4
50.00	50.00	6086.43	404.43	2021.91	• 20	4.67	4.01
0.00	00.00	6086,13	1068.44	18.82	.22	• 76	3.86
50.00	50.00	6064.40	728.69	2407.92	• 64	6.82	3.69
00.00	00.00	6021,32	86.38	2588.55	.07	6.86	3.52
50,00	50.0n	5957,05	42.70	2760.07	• 49	6.87	3.33
00.00	00.00	5871.81	301.11	2921.87	. 91	6.87	3.13
50.00	20.00	5765.91	643.BA	3073.38	• 32	6.83	2.92
00.00	00.00	5639.70	984.38	3214.08	.72	6.77	2.70
50,00	50.00	5403.65	1321.41	3343.46	= :	69.	2 . 47
00.00	00 00	5328.25	1653+80	3461.07	. 49	6.59	2,23
50,00	50.0n	5144.10	1980.34	3566.50	.86	94.9	1.98
0	00.00	4941.94	99.95	659.38	22	.31	.73
50.00	50,00	4722.18	5611.44	3739.37	• 56	9.14	3.46
00.00	00.00	4485.90	2913.74	3806.20	. 88	5 • 9 4	1.20
00.00	50.00	4233.82	3205.78	3859.62	• 1 9	5 • 7 3	. 93
87.58	87.5A	4034.47	417+93	890.84	4 4	5 • 5 5	.72
1							

	S
	Œ
<u>ح</u>	ı
2	_
8	
_	Ö
	•
8	5
Œ	69
_	8
u .	4
	7
	0
	ň

WEIGHT# +18029707+05 KGS

REGIN BURN

Σ	œ	FLOC	\supset	-	LATITUDE	
SEC	Σ	KM/SEC	0 E G	DEG	DEG	
87.58	364.90	. 79	4.67		36 • 34	90.6
600.00	564.84	• 85	4009	• 05	36.44	0.08
610.00	564.74	- 97	5.53	• n 8	36.51	0.89
20.05	564.62	• 95	5.02	0	6.57	1 + 70
630.00	564.48	00.	4.50	• 0 9	36.63	2:52
640 • PF	564.35	• D •	3.97	• 0.8	36.68	3.35
650.00	564.24	. 1.1	3.44	•	36.72	4.19
940.nc	564.16	.17	2.90	40	36.76	5.03
670.00	564.13	.22	2.36	00	36.80	5 . 89
680.00	564.16	.28	1 . 82	40	36.82	4.4
690.nn	564,28	+ 34	1.27	0.	36.84	7.61
700.007	564.49	• 40	0.72	8	36.86	8 • 48
710.00	564.81	• 46	0.16	26	36.86	9:36
720.00	545.27	.52	09.6	35	36.86	0.24
730.00	565.AB	• 5 A	9.03	4	36.85	1 . 13
740.00	566,66	• 64	8 • 46	57	36.83	2.03
750.00	567.62	.7.	7.88	7.0	36,81	2.93
760.0n	568.80	. 7 A	7.31	4	36.78	3.84
770.00	570.21	• 8 +	6.73	66	36.74	4,76
780.00	571.87	.91	6.14	. 15	36.69	5 • 68
790.00	573.81	.98	5.55	.32	36.63	6.61
800.0n	576.04	• 05	4.96	.51	36.57	7.54
810.0n	578.59	.13	4.37	• 70	36.50	8 • 48
820.00	581.49	• 2 <u>0</u>	3.78	. 91	36.41	9.43
830.00	584.77	. 28	3.18		36.32	0.38
840.00	588.44	.36	2.58	.37	36.22	1 • 34
850,00	592.53	4 4 4	1.98	• 62	6 • 1 1	2.30
860.00	597.09	• 52	1.38	8 છે•	35.99	3.26
870.05	602.12	9.	0.77	• 15	35.86	4.23
90.0	6607.681	6 6 6 6 5	80.172	3.442	-35.730	65.211
890.00	613.78	. 78	95.6	.74	35.58	61.9
000,006	20.46	.87	8 • 9 6	• 05	35.42	7 - 17

TABLE 12b. (Continued)

FIRST BURN

LONGITUPE Deg	8 - 1 6	69 • 150 70 • 145	1 . 1 4	2.14	3.14	4 . 15	5.16	6.17	7.19	8.21	9.23	0.25	1 • 28	81,564
LATITUDE DEG	35 • 25	-35.077	34.68	4.47	34.25	34.02	33.78	3,52	3	2.98	2.69	32.39	2.07	-31.990
PTH OEG	.38	4.723	T	.83	. 23	+9 •	• 07	• 52	• 98	• 46	8 • 9 6 5	. 47	• 0 1	10.160
AZIMUTH S Deg	35		53	.93	, 32	.72	12	52	.92	, 33	.74	1.15	95+0	70.404
INER VELOCITY KM/SEC	4.97	10.067 10.167	.27	10.378	. 49	.60	~	.85	10,983	11.121	-	- + -	e Sa	~
ж ж 2	627.75	6635.709 6644.350	653,72	3.86	674.43	99.9	04 669	6713,116	7.84		6760.623	79	8.26	6803.779
TIME	1910.000	1920•000 1930•000	40.	1950.000	1960.000	000.0791	1980,000	1990,000	2000 • 000	2010.000	2020.000	2030.000	2040,000	2042+715

FND BURN

TABLE 12b. (Continued)

FIRST BURN

1 1 M F	ď	d >	42	OXP	DYP	920
SEC		Σ	Σ ¥	KM/SEC	KM/SEC	KM/SE(
000-010	2356.810	-6194.557	• 25.	-9.019	4	.152
000.0141	765.	-6236.814	8	-9.145	4.2	.152
000-066	173.	427	.2€	-9.274	+91.4-	• 152
000-0861	2080.495	632	-5,693	904.6-	-4.123	.151
000.006		-6361.122	-4.182	-9.540	-4.083	.151
000.0961	1889.682	-6401.758	-2.676	-9.678	110.11	.150
000.0791	1792.204	-6442.008	-1-177	-9.819	900.4-	. 15g
1980.000	1693,298	-6481.882	.315	496.6-	-3.969	641.
000.0661	1592,922	-6521.390	1 • 800	-10.113	-3.933	. 148
00000000	1491.027	-6560+547	3.275	-10.267	-3.899	-147
2010-010	1387.566	-6599.366	4 - 7 4 1	-10.427	-3.866	941.
000.0202	7	37.	6 • 195	-10.592	-3.834	. 145
2030.000	4	•	7.637	-10.765	90	17 11 .
2040.000	-	713.97	9.00.6	946.01-	-3.778	.142
3042.715	٠ ٢٠	677	1	-10.997	17	.142

CND BURN

WF1GHT# .18029707+05 KGS

BEGIN BURN

FIRST BURN . 39748699+05 LBS

Σ	×	>	2		ÞQ	
SEC	ĭ		ĭ	KM/SEC	•	KM/SEC
87.58	4034.47	3417.93	3890.84	4	5 • 5 5	.72
00.00	966,55	486.78	899.46	• 52	5,53	99.
10.00	3910.79	3542.04	905.80	.62	5,52	9
20.00	854.09	3597.17	3911.59	.71		• 55
30.00	3796,44	3452,11	3916.83	.81	5.48	4
40.00	737,85	3706.87	921.51	.90	2.46	4
50.00	3678.32	3761.46	925.64	• 00	5.44	38
60.00	617,84	3815.85	3929.21	• 0 •	5,43	32
70.00	3556,42	870.04	932.21	• 1 9	5 + 4 1	27
00.089	494.05	3924.08	3934.65	.28	5 • 3 9	.21
00.069	3430.73	3977.89	936.51	.37	5.37	5
700.00	366.46	4031.51	3937.81	• 47	5 • 35	• 10
710.00	301.24	4084,93	3938.52	• 57	5 • 33	• n4
720.00	235,05	4138.13	938.65	• 66	5 • 3 1	01
30,00	167,92	191.13	3938.20	.76	5.28	-
740.00	3099.81	4243.92	937.16	. 85	5.26	13
750.00	3030.75	4296.49	3935.53	. 95	5.24	1 9
760.00	12.096	348.84	3933.30	\$0.	5.22	52
770.00	2889.70	4400.98	3930 . 48	• 15	5.20	31
00.00	2817.71	4452.89	3927.05	• 2 4	5.18	37
90.00	744.74	504.58	923.01	• 34	• 15	43
00.00	2670.78	4556.05	3918.36	* *	5.13	t O
10,00	2595.83	607,29	3913,10	• 54		52
20.00	2519.87	4658.32	3907-22	• 6 4	5 • 0 9	-
30.00	2442.90	709.11	3900.72	.74	• 0 •	89
40.00	2364.91	159,69	3893.59	. 85	5.04	7
50.00	285.90	810.05	3885.82	9.5	5.02	80
0U•U9	205.84	860.18	877.42	• 05	5.00	87
70,00	124.74	910.10	868.38	• 16	96.	93
	42,5	4959.8	3858	8.270	•	1001
90.00	959.34	009.30	848.36	.37	•	90
00.00	875.01	5058.59	3837.37	4.00	4.91	~

TABLE 12b. (Continued)

FIRST BURN

.39748699+05 LBS

.18029707+05 KGS

TIME	*	>-	2	×o	↓ 0	20
SEC	¥	Σ	Σ	KM/SFC	KM/SEC	KM/SF(
	89.57	5107.69	3825.71	• 60	4.90	0
1920.000	1703.01	156,59	813.39	.71	-4.881	•
1930,000	15.30	5205.30	800.39	8.829	9	33
1940,000	• 42	253,84	786.71	. 94	24845	1.402
1950,000	36,35	5302.21	772.34	9.068	~	1
1960.000	5.06	5350.43	757.27	. 19	-	1
1970,000	52.51	398.50	3741.50	.31	.80	.61
1980,000	8.68	5446.44	3725.01	1 1 .	30	89
000.0661	3.53	5494.27	3707.79	• 5.8	7	• 75
2000.000	96	5542.0	0	9.722	077.4-	
2010.000	69.07	589.67	671.13	989	• 76	0
2020.000	69.66	5637.28	3651.66	- -	. 75	1.986
2030.000	68.72	684.87	631.41	.17	ŝ	• 0 6
2040.000	66.19	5732.46	. 35	10.337	-4.760	2.146
2042.715	38.06	5745,38	64.40		• 76	. 16

FND BURN

TABLE 12b. (Continued)

			FIRST BURN	RN		1
BEGIN BURN	WEIGHI = .18029707+05	7+05 KGS	.39748699+05	IBS		
3	<	WEIGHT	I	I I	0_	ALPHA
SEC	KGS	LBS	DEG	DEG	DEG	DEG
	029.	39748.699	30.06	~ ~	-87.151	1.422
00	_	38954 - 171	-51.417	.305	+83.999	1.348
10.04	-17379.016	38314+171	-51+962	•	-82+662	1.314
20.00	_	37674.171	2,30		-81.504	1.287
30.00	16798.417	37034-170	-52,755	'n		1.260
40.00	508,11	6394.17	3.20		9.4.20	1.232
00.0	16217.819	35754 . 171	-53.649	-	-78.065	1.204
60.00	92	35114 • 171	-54.097	• 200	~	1.176
70.00	63		755.55	183	-75-801	851 -1
80.00	15346,922	33834 • 171	-54.995	• 166	-74.678	1.119
90.00	56.6		F55 + 444	. 148	• 56	1.00.1
00.00	~	32554,171	*55.893	+131	3	1.062
0.00	14476,025	31914.171	-56+343	.114	-71.342	1.033
20.00		31274.171	-54,793	.097	•	1.004
30.00	895.42		-57+244	080		
40.00	05.1	66	-57.694	.063	-6.8 • 0 • 0	946.
50.00	31	3	8 . 1 4	3	.97	.916
60.00	024,5	4	8.59	d		
00.0	734.2	8074.1	-59.045	.013	-64.833	.857
80.00	7	~	•	+00.	.77	.827
90.00	5	47	546.65-	021	-62.714	. 797
0.00	86		-60.396			.767
10.00	73,03	55	-60.845	••054	•	.737
20.00	282.7	#	+67+19+			101.
30.00	992.4	42	-61.743		-58.558	.676
40.00	.13	3594.1	-62.191	• 105	m	.646
50+0n	411.8	4	-62+638		-54.522	519***
60.00	1.53	22314.171	-63.085	138	-55.516	• 585
70.00	•		-63,531		-54.516	.554
80.00		21034.171	-63.976	171	-53.524	.523
90.00	9250.640	20394.171	-64.420		-52.542	. 442
0.00		19754-171	-64.863	205	-51.548	
	ì					

TABLE 12b. (Continued)

FIRST RURN

HAN ALPHA	9 0 0 6	109	644 .399		755	e •	903 .274		090			9110 655	591 .084	744 .052	907 .019	יין כיין
ALPI	DEC	-50.	1.641	1 4 8 .	- 147	-46.82	145.	- 44-	•	-43.	-42.	-41.	5 * C + *	-36-	-38.	3
CHIY	DEG	221	~	255	~	28A	305	-,322	*.338	- 355	372	389	• • 405	422	439	~ 777
CHI P	DEG	-65+306	-65.746	-66.185	-66,623	-67.059	-47.493	-47.926	-68.357	-68.786	-69.213	-69.637	-70,060	0.47	-70.897	71.010
MEIGHT	LBS	15114-171		17834.171	17194.171	16554 - 171	15914,171	15274.171	14634.171	13994,171	54.1	12714.171	12074+171	11434,171	10794.171	10420.304
SVVW	いいと	8670.042	8379,743	8089.444	7799.145	7506.846	7218.547	6926.248		6347.649	6057,350	5767.051	5476,752	5186.453	4896,154	4017.230
# I WE	SEC	1910•000	1920.000	1930.000	1940.000	1950 • 000	1960,000	1970.000	1980,000	1990.000	2000.000	2010.000	2020.000	2030.000	2040,000	2116

TANE BURE

TABLE 12b. (Continued)

			Nalle Talla
BEGIN BURN	WF1GHT# .18029707+05 KGS	KGS	.39748699+05 LBS
TIME	GXOO	DOYP	0079
SEC	KM/SEC(SQ)	KM/SEC(SQ)	KM/SEC(SQ)
1587.585	010.	•003	000*
1600.000	010	• 003	000*
1610.000	010	+00+	000•
1620.000		* 0 0 *	000.
30		• 004	000•
0	010.1	* O O •	000•
1650.000	010.	+00•	000•
1660.000	011	+00.	000*
1670.000	110	•00•	000•
1680,000	011	+00+	000•
1690.000	110	÷00.	• 000
1700.000	110	+ O O •	000+
1710.000	011	+00+	000•
1720.000	011	+00+	000•
1730+000	110*-	*00*	000
1740.000	110.	+ 0 D +	• 000
1750.000	011	₩ 00•	000.
1760+000	110.1	+00·	• 000
1770.000	011	+00.	000.
1780.000	** 011	*00 *	000•
1790.000	110	• 00 •	000•
1800,000	110	• 00 •	• 000
-	110.1	• 004	000
20	••011	• 00 •	000
1830•000	110.	+00•	000•
Ģ	110.	+ 00·	• 000
1850.000	012	+00•	• • • • •
0	012	+00.	• 000
1870+000	012	+ 00+	000
0.0	012	+00·	000•-
1890.000	012	*DU*	000
1900,000	012	+00•	000

TABLE 12b. (Concluded)

FIRST BURN

KM/SEC(SQ) **DD2P** 000*-••000 0000 • = ..000 000 * -••000 ••000 ••000 -.000 ••000 ..000 ..000 -.000 000.-..000 KM/SEC(SO) DOYP .004 .004 004 .004 .004 + U Ü • +00. .004 .033 .003 .003 .003 .033 KM/SEC(SQ) DOXP -.013 -.015 -.014 -.014 +10.--.015 910 .-910.--- 017 -.019 -.013 -.013 -.013 ..019 1970,000 920.000 2010.000 2020.000 930.000 1940,000 1950,000 1960.000 1990.000 2000.000 2030.000 2040.000 910.000 2042.715 TIME SEC

FND BURN

CONIC COMDITIONS AFIER FIRST BURN.

ORBITAL ELEMENTS

-	96	77862.46	77862.46 (KM)SQ/SEC	ANGULAR MOMENTUM PER UNIT MASS	
		18.0000	18.0000 (KM/SEC)SQ	INICE THE TOTAL ENERGY PER UNIT 4ASS	155
	•	1.298779		ECCENTRICITY	
) Δ		22144.63 KM	I.	SEMI MAJOR AXIS OF CONIC	
٠ د د		6616.35 KM	I	RADIUS AT PERI-CENTER	
C 24 C		50905.60 KM	¥	RADIUS AT APO-CFNTER	
		36.964011	בי בי	INCLINATION	
0 N 4		17.96575 DEG	5 H	TRUE ANOMALY	
RPG		-79.73333 DEG	056	ARGUMENT OF PERI-CENTER	
2ER 100#		32795.33 SEC	SEC	PERTON OF CONIC	

APPENDIX A

OUTPUT FORMAT FOR EACH PRINT TIME INTERVAL AND OPTIONAL SUMMARY PRINT TABLE DESCRIPTION

OUTPUT	FORMAT I	OR EAC	H PRINT	TIME INTE	CRVAL
TIME	XP	X	DXP	DX	R
MASS	ΥP	Y	DYP	DY	ALT
WTLBS	ZP	\mathbf{Z}	DZP	DZ	V
DDXP	DDXPG	W1	P1	LATR	RDOT
DDYP	DDYPG	W2	P2	LONGR	РТН
DDZP	DDZPG	W3	P3	AZ	VPER
LATP	CHIP	ALPN	DCHIP	DALPN	VAPO
LONGP	CHIY	ALPW	DCHIY	DALPW	GRADV
SMA	C3	Ci	ECC	RCA	RAOP
INC	RASNOD	ARPG	TANO	PERIOD	MEOR
S1	S2	S3	SD1	SD2	SD3

DEFINITION OF OUTPUT SYMBOLS FOR EACH PRINT TIME INTERVAL

1.	TIME	time (sec)
2.	MASS	
3.	WTLBS	<u> </u>
4.		position coordinates in the plumbline
	- , , ,	system (m)
5.	X. Y. Z	position coordinates in the ephemeris
•	,,	system (m)
6	DXP. DYP. DZP	velocity components in the plumbline
٠.	511, 511, 521,	system (m/sec)
7	DX DY DZ	velocity components in the ephemeris
•	21, 21, 22	system (m/sec)
Q	DDYD DDYD DDYD	acceleration components in the plumbline
٥,	DDAF, DDIF, DDZF	
٥	DOVDC DOVDC DDZDC	system (m/sec ²)
θ.	DDAPG, DD1PG, DD2PG	gravitational acceleration components
40	WA WO WO	in the plumbline system (m/sec ²)
10.	W1, W2, W3	unit vector in the angular momentum
	D4 D9 D9	direction
		unit vector in the direction of periapsis
12.	LATR, LONGR	latitude (geocentric) and longitude of
4.0	- 4	radius vector (deg)
13.	LATP, LONGP	latitude (geocentric) and longitude of
	_	periapsis (deg)
	R	magnitude of radius vector (m)
15.		altitude above ellipsoid (m)
	V	magnitude of velocity vector (m/sec)
17.	AZ	velocity heading angle (deg)
18.	RDOT	time derivative of radius vector (m/sec)
19.	PTH	flight path angle (deg)
20.	ALPN	angle-of-attack measured from the velocity
		vector to the projection of the thrust
		direction in the flight plane (deg)
21.	ALPW	out-of-plane angle-of-attack measured
		from the projection of the thrust vector
		in the flight plane to the thrust vector
		positive toward the angular momentum
		vector (deg)
22.	CHIP, CHIY	control angles CHI and CHI yaw
		(deg) pitch yaw

DEFINITION OF OUTPUT SYMBOLS FOR EACH PRINT TIME INTERVAL

23.	DALPN, DALPW	time derivatives of ALPN and ALPW
		(rad/sec^2)
24.	DCHIP, DCHIY	time derivatives of CHI pitch and CHI yaw (rad/sec ²)
25.	VPER, VAPO	velocity at periapsis and apoapsis (m/sec)
26.	SMA	semimajor axis (m)
27.	RASNOD	right ascension of the ascending node
		(deg)
28.	ECC	eccentricity
29.	RCA	radius at periapsis (m)
30.	RAOP	radius at apoapsis (m)
31.	GRADV	gravity loss (m/sec)
32.	ARPG	argument of periapsis (deg)
33.	TANO	true anomaly (deg)
34.	PERIOD	orbital period (sec)
	MEOR	mean orbital rate (rad/sec)
36.	S1, S2, S3	calculated outgoing asymptote
37.		desired outgoing asymptote
38.	C3	twice the specific energy (m ² /sec ²)
39.	C1	specific angular momentum (m^2/sec)

DESCRIPTION OF OPTIONAL SUMMARY PRINT TABLES (QUANTITIES REQUIRED TO BE SPECIFIED)

- (1) Print interval for parking orbit coast.
- (2) Print interval for first burn.
- (3) Print interval for transfer coast.
- (4) Print interval for second burn.

If the terminal condition is a circular orbit, the following tables are printed:

- a. Parking Orbit Coast
- b. Perigee Burn
- c. Conic Conditions After Perigee Burn
- d. Transfer Coast

- e. Apogee Burn
- f. Conic Conditions After Apogee Burn

If the terminal condition is an elliptical orbit, the following tables are printed:

- a. Parking Orbit Coast
- b. First Burn
- c. Conic Conditions After First Burn
- d. Orbit Coast
- e. Second Burn

 If second burn
- f. Conic Conditions After Second Burn required

If the terminal condition is an outgoing hyperbolic asymptote, the following tables are printed:

- a. Parking Orbit Coast
- b. First Burn
- e. Conic Conditions After First Burn

Tables 1-12 are examples of the different summary print tables available.

APPENDIX B

EQUATIONS FOR THE COORDINATE SYSTEM TRANSFORMATION AND COMPUTATION OF ADDITIONAL ORBITAL PARAMETERS

DEFINITION OF SYMBOLS³

ī, j, k	Unit vectors along the X, Y, Z (ephemeris) axes, respectively.
μ	Gravitational constant
v	Inertial velocity magnitude
\mathbf{r}	Magnitude of radius vector \overline{R}
i	Inclination of orbital plane
ω	Argument of periapsis
Ω	Right ascension of ascending node
1 1	Indicates vector magnitude
[]	Matrix or determinant notation

SUPERSCRIPTS

•	Time derivative
h	Hour (universal time)
	Indicates vector quantity

SUBSCRIPTS

p	Plumbline coordinate system	
e n	Transformation from plumbline to ephemeris coordinates	
1, 2, 3	Indicates reference to X, Y, Z (ephemeris) axes,	
	respectively.	

(5)⁴ Transformation from plumbline to ephemeris coordinate system: X, Y, Z [3, 4]

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} T \\ \frac{e}{p} \end{bmatrix} \begin{bmatrix} Xp \\ Yp \\ Zp \end{bmatrix}$$

- 3. Undefined symbols used carry the same connotation as in Reference 1.
- 4. These numbers correspond to those numbering the output symbols of Appendix A.

$$\left[\begin{array}{c} T & \underline{e} \\ \hline p \end{array}\right] = \left[\begin{array}{c} \sin\theta\cos K + \cos\theta\sin\phi\sin K & \cos\theta\cos\phi & \sin\theta\sin K - \cos\theta\sin\phi\cos K \\ -\cos\theta\cos K + \sin\theta\sin\phi\sin K & \sin\theta\cos\phi & -\cos\theta\sin K - \sin\theta\sin\phi\cos K \\ -\cos\phi\sin K & \sin\phi & \cos\phi\cos K \end{array}\right]$$

$$\theta = (GHA) 0^h UT \omega_e t + \lambda$$

GHA = Greenwich hour angle measured west from Greenwich at 0 UT of the

 $0^{\text{h}}\text{UT} = \text{Zero hour universal time.}$ $\lambda = \text{Launch longitude (east through } 360^{\circ}\text{) (279.395645)}$

$$K = (3/2) \pi - A$$

A = Launch azimuth, ϕ = Geodetic latitude (28°6079927)

t = GMT of launch, $\omega_{R} = Earth's$ rotation rate

GHA = $100^{\circ}.07554260 + 0^{\circ}.9856473460 \text{ T}_{d} + 2^{\circ}.9015 \times 10^{-13} \text{ T}_{d}^{2}$

 $T_d = Days past 0^h January 1, 1950.$

$$\omega_{\rm e} = \frac{360}{86164.09892 + 0.00164 \, {\rm T}}$$
 deg/sec

T = Number of Julian Centuries of 36 525 days from 1900 Jan. 0.5 UT (Julian Date = 2415020.0)

(7) Velocity components in the ephemeris system: DX, DY, DZ

$$\begin{bmatrix} DX \\ DY \\ DZ \end{bmatrix} = \begin{bmatrix} \dot{X} \\ \dot{Y} \\ \dot{Z} \end{bmatrix} = \begin{bmatrix} T_{\frac{e}{p}} \end{bmatrix} \begin{bmatrix} \dot{X}p \\ \dot{Y}p \\ \dot{Z}p \end{bmatrix}$$

(10) Unit vector in angular momentum direction: W₁, W₂, W₃

$$C_1 = \sqrt{A^2 + B^2 + C^2}$$

$$A = Y\dot{X} - Z\dot{Y}, B = Z\dot{X} - X\dot{Z}, C = X\dot{Y} - Y\dot{X}$$

$$\overline{C}_1 = \frac{A}{C_1} \quad \overline{i} + \frac{B}{C_1} \quad \overline{j} + \frac{C}{C_1} \quad \overline{k}$$

$$W_1 = \frac{A}{C_1}, \quad W_2 = \frac{B}{C_1}, \quad W_3 = \frac{C}{C_1}$$

(11) Unit vector in direction of periapsis: P1, P2, P3

$$\begin{split} \overline{P} &= \frac{1}{\mu} \left[\left(V^2 - \frac{\mu}{r} \right) \, \overline{R} - r \dot{r} \overline{V} \right] \, - \, \text{Vector in perigee direction} \\ &= \frac{1}{\mu} \, \left[\left(V^2 - \frac{\mu}{r} \right) \, \left(X \, \overline{i} + Y \, \overline{j} + Z \, \overline{k} \right) \, - \, r \dot{r} \, \left(\dot{X} \, \overline{i} + \dot{Y} \, \overline{j} + \dot{Z} \, \overline{k} \right) \, \right] \\ \overline{P} &= \frac{1}{\mu} \left\{ \, \overline{i} \, \left[X \left(V^2 - \frac{\mu}{r} \right) \, - r \dot{r} \, \dot{X} \, \right] + \, \overline{j} \, \left[Y \left(V^2 - \frac{\mu}{r} \right) - r \dot{r} \, \dot{Y} \, \right] + \overline{k} \left[Z \left(V^2 - \frac{\mu}{r} \right) - r \dot{r} \, \dot{Z} \, \right] \right\} \end{split}$$

$$| \overline{P} |= \frac{1}{\mu} \left\{ \, \overline{i} \, \left[X \left(V^2 - \frac{\mu}{r} \right) \, - r \dot{r} \, \dot{X} \, \right] + \, \overline{j} \, \left[Y \left(V^2 - \frac{\mu}{r} \right) - r \dot{r} \, \dot{Y} \, \right] + \overline{k} \left[Z \left(V^2 - \frac{\mu}{r} \right) - r \dot{r} \, \dot{Z} \, \right] \right\} \end{split}$$

$$P_{1} = \frac{\frac{1}{\mu} \left[X \left(V^{2} - \frac{\mu}{r} \right) - r\dot{r} \dot{X} \right]}{|\overline{P}|}, \qquad P_{2} = \frac{\frac{1}{\mu} \left[Y \left(V^{2} - \frac{\mu}{r} \right) - r\dot{r} \dot{Y} \right]}{|\overline{P}|}$$

$$P_{3} = \frac{\frac{1}{\mu} \left[Z \left(V^{2} - \frac{\mu}{r} \right) - r\dot{r} \dot{Z} \right]}{|\overline{P}|}$$

(13) Latitude and longitude of periapsis: LATP, LONGP

LATP = \sin (i) \sin (ω)

$$\sin \theta = \sin (i) \sin (\omega)$$

$$\theta = \sin^{-1} [\sin (i) \sin (\omega)]$$

$$RCA = |\overline{RCA}|, RCA_{XY} = |\overline{RCA}_{XY}|$$

$$RCA_{XV} = RCA \cos \theta$$

$$P_1 = RCA_{XV} \cos \lambda$$

$$P_2 = RCA_{XY} \sin \lambda$$

$$\lambda = \cos^{-1} \left(\frac{P_1}{RCA_{XV}} \right)$$

$$\lambda = \sin^{-1} \left(\frac{P_2}{RCA}_{xy} \right)$$

 $P_1 = X$ - component of unit vector in direction of periapsis

 $P_2 = Y$ - component of unit vector in direction of periapsis

$$r = r_1$$
, $E = Eo$ at $t = t_{inj}$

t = time at injection

$$r = a(1 - e \cos E)$$

 r_1 = magnitude of radius vector (\overline{R}) at injection

$$\frac{\mathbf{r_1}}{2} = 1 - e \cos \mathbf{E}o$$

E = eccentric anomaly

$$\cos E_0 = \frac{a - r_1}{ae}$$

$$Eo = \cos^{-1} \left(\frac{a - r_1}{ae} \right)$$

$$E_0 = \sin^{-1} \frac{(r_1 \sin \theta)}{\sqrt{1 - e^2}}$$

 θ = true anomaly

$$M = n(t - \tau) = E - e \sin E$$

M = mean anomaly

$$n = \sqrt{\frac{\mu}{a^3}}$$

$$(t_{inj} - \tau) = \frac{Eo - e \sin Eo}{n}$$
 $\tau = time at periapsis passage$

= Time increment past periapsis passage for $r = r_1$.

Period =
$$T = \frac{2\pi}{n}$$

$$t_p = T - (t_{inj} - \tau) = Time$$
 at periapsis passage

The t value used should be that time of injection computed on the last iteration of a converged run.

LOCATION OF GREENWICH MERIDIAN:

LONGP =
$$\lambda [GHA + \omega_e (t + t_{inj} + t_p)]$$

(26) Semimajor axis: SMA

$$V^2 = \mu \left(\frac{2}{r} - \frac{1}{a} \right)$$

$$\frac{V^2}{u} - \frac{2}{r} = -\frac{1}{a}$$

$$\frac{1}{a} = \frac{2}{r} - \frac{V^2}{\mu} = \frac{2\mu - rV^2}{\mu r}$$

$$SMA = a = \frac{\mu r}{2\mu - rV^2}$$

(27) Right ascension of the ascending node: RASNOD

$$W_{X} = W_{1} = \sin \Omega \sin i = \frac{A}{C_{1}}$$

$$\sin \Omega = \frac{W_1}{\sin i}$$

$$\cos \Omega = -\frac{W_2}{\sin i}$$

$$RASNOD = \Omega = \sin^{-1} \left(\frac{W_1}{\sin i} \right)$$

$$RASNOD = \Omega = \cos^{-1} \left(-\frac{W_2}{\sin i} \right)$$

- (28) Eccentricity: ECC = e = $\left\{ 1 + \frac{1}{\mu^2} \left[C_3 \left(r^2 V^2 r^2 \dot{r}^2 \right) \right] \right\}^{1/2}$
- (29) Radius at periapsis: RCA = a (1-e)
- (30) Radius at apoapsis: RAOP = a (1 + e)
- (31) Gravity loss: GRADV = $V_c \Delta V$

$$V_c = V_{ex} Ln \left(\frac{1}{1 - \zeta} \right) V_{ex} = I_{sp}(g_o)$$

$$\zeta = \frac{W}{W_f + W_p}$$

$$W_f = \text{ weight of propellant burned}$$

$$W_f = \text{ final weight of vehicle}$$

$$\Delta V = \sqrt{V^2 + 2\mu \left(\frac{1}{r_i} - \frac{1}{r_f}\right)} - V_i$$

 $r_i = initial radius$

 $V_{i} = initial velocity$

 $r_f = final radius$

(32) Argument of periapsis: ARPG

$$P_z = P_3$$

$$Q_z = Q_3 = W_1 P_2 - W_2 P_1$$

$$\sin \omega = \frac{P_z}{\sin i}$$

$$\cos \omega = \frac{Q_z}{\sin i}$$

$$ARPG = \omega = \sin^{-1} \left(\frac{P_z}{\sin i} \right)$$

$$ARPG = \omega = \cos^{-1} \left(\frac{Q_z}{\sin i} \right)$$

(33) True anomaly: TANO

TANO =
$$\theta = \cos^{-1} \left[\frac{a (1-e^2) - r}{er} \right]$$

TANO =
$$\theta = \sin^{-1} \left\{ \frac{\dot{\mathbf{r}}}{e} \left[\frac{a (1-e^2)}{\mu} \right]^{1/2} \right\}$$

(34) Period: Period

Period =
$$T = \frac{2\pi}{\mu^{1/2} a^{-3/2}}$$

(35) Mean orbital rate: MEOR

$$MEOR = \frac{2\pi}{T}$$

(36) Calculated outgoing asymptote: S_1 , S_2 , S_3

$$\overline{S} = \left(-\frac{1}{e}\right)\overline{P} + \frac{\sqrt{|e^2 - 1|}}{e} \overline{Q}$$

$$\overline{P} = \overline{i}(P_1) + \overline{j}(P_2) + \overline{k}(P_3)$$

$$\overline{Q} = \overline{W} \times \overline{P} = \begin{bmatrix} i & j & k \\ w_1 & w_2 & w_3 \\ p_1 & p_2 & p_3 \end{bmatrix} = \overline{i}(w_2 p_3 - w_3 p_2) - \overline{j}(w_1 p_3 - w_3 p_1) + \overline{k}(w_1 p_2 - w_2 p_1)$$

$$\overline{S} = -\frac{1}{e} \left[\overline{i} (P_1) + \overline{j} (P_2) + \overline{k} (P_3) \right] + \frac{\sqrt{e^2 - 1}}{e} \left[\overline{i} (W_2 P_3 - W_3 P_2) + \overline{j} (W_3 P_1 - W_1 P_3) + \overline{k} (W_1 P_2 - W_2 P_1) \right]$$

$$S_1 = -\left(\frac{1}{e}\right) P_1 + \frac{\sqrt{|e^2 - 1|}}{e} (W_2 P_3 - W_3 P_2)$$

$$S_2 = -\left(\frac{1}{e}\right) P_2 + \frac{\sqrt{|e^2 - 1|}}{e} (W_3 P_1 - W_1 P_3)$$

$$S_3 = -\left(\frac{1}{e}\right) P_3 + \frac{\sqrt{|e^2 - 1|}}{e} (W_1 P_2 - W_2 P_1)$$

APPENDIX C

ADDITIONAL INPUT VARIABLES REQUIRED AND INPUT DATA LISTINGS

Program Input Description

Input for ROBOT modified for the special printout shown in Appendix A is the same as that in Reference 1, with the addition of the following input variables:

Input Symbol	Internal Symbol	Explanation
AAETC+50	EPRNT	= 1 if special printout is desired
		= 0 is normal ROBOT printout is desired
AAETC+24	RA	Right ascension as measured in ephemeris coordinates (deg)
AAETC+25	DC	Declination (deg)
AAETC+54	MO	Month of launch
AAETC+55	IDAY	Day of launch
AAETC+56	IYR	Year of launch (years since 1900)
AAETC+57	HOUR	Hour and minute of launch (military time)
AAETC+58	SEC	Fractional minutes of launch time expressed in seconds

If summary print tables are desired, the following variables must be set.

JRBETC+7	The thrust event number where tables begin
JRBETC+29	= 1 if the cutoff condition is a circular orbit
	= 2 if the cutoff condition is an elliptical orbit
	= 3 if the cutoff condition is an outgoing hyperbolic asymptote

Input Data Lists

The following lists give the input data for the terminal conic constraints.

INPUT DATA LISTING FOR TERMINAL CONIC CONSTRAINT (V, γ, r)

```
INPUT:
HEAD=(BRADFORD-CHKOUT TERM. CUTOFF SURFACES AND TRANS. EQS.(
F=0~;0.;205000.,0.,205000.;
TNE+8=1.,
TNE+16=1 ..
XMD=0+;0+;481+22015,0+;481,22015,
TAUT=0..0.,263.3,18643.1,97.5.
MOEVNT=1,1,1,1,1,1,
PRINT=50 .. 50 .. 10 .. 50 .. 10 ..
STEP#16.,16.,8.,16.,8.,
AAETC=115..
AAFTC+6=,4,
AAETC+8=204169.7,
JRBETC=1,2,0,3,3,40,
JRBETC+18=4.
KDB = 0, 0, 1, 1, 1, 1,
NBGCT=3,5.
NENDCT#4.6.
NP=25,25,0,0,
TTBL=0.,131.,263.,
TPTBL=2.609,2.740,2.869,
CYTBL = . Q0132 . . 0052 . . 0085 .
TTBL+50=19906.,18947.,19003.,
CPTBL+50==380;-.378;=:375;
CYTBL+50=-.00054,-.00058,-.00064,
VIV=6966.323.-3490.034.-107.378.2941137.,5866843.,-91242.,0.,
KCDPH1=1;2,3,4,
PSIREQ=3071 . 909617 . 0 . . 42240000 . .
WIBT=2.,.2,2.,
URBETC+29=1;
JRBETC+7#1.
AAETC+54#8.,6.,73.,1438.,15.85,
AAETC+50=t..
AAETC+24=15.55.31.59.
```

INPUT DATA LISTING FOR TERMINAL CONIC CONSTRAINT (V, γ , r, i)

```
INPUT:
HEAD*(RODNEY BRADFORD MODIFIED CUTOFF SURFACES AND TRANS.
F=0.,0.,205000.,0.,205000.,
TNE+Bal.,
TNE+16=1.,
XMD=0..0..481.22015.0..481.22015.
TAUT=U.,269.05,263.76,18861.96,101.16,
NOEVNT=1,1,1,1,1,
PRINT=50.,50.,10.,50.,10.,
STEP=16.,16.,8.,16.,8.,
AAETC=115.
AAETC+6=.4,
AALTC+8=284168.7.
JRBETC=1,2,0,3,3,40,
JRBETC+18=4,
KDB=0,1,1,1,1,1,
NBGCT=3,5,
NENDCT#4,6,
NP=25,25,0,0,
118L=269.551.401.430.533.309,
CPTBL=2.384,2.513.2.642,
CYTBL = . 0754, . 0783, . 0800,
TTBL+50=19395 . 04 , 19445 . 62 , 19496 . 20 ,
CPTBL+50=-.6317,-.6291,-.6265,
CYTBL+50=-.4389,-.4389,-.4389,
V1V=6966.323,-3490.034,-107.378,2941137.,5866843.,+91242.,0.,
WIBI = 2. . . 2.2. .
KCDPHI=1,2,3,4,10,
PSIREQ=3071.909617,0.,42240000.,50.,
JRBETC+29=1,
JRBETC+7=2,
AAETC+54#8.,6.,73.,1438.,15.85,
. AAETC+5U=1.,
AAETC+24=15.55,31.59,
JRBETC+10=1,
```

INPUT DATA LISTING FOR TERMINAL CONIC CONSTRAINT (C3, C1)

```
HEAD# (BRADFORD + CHKOUT TERM + CUTOFF SURFACES AND TRANS + EQS + L
TZERO=100.,0.,0.,0.,0.,0.,
F=0.,0.,205000.,
XMO=0.,0.,481.22015,
TNE+8=1.,
TNE+16=1 . ,
TAUT=0.,0.,264.,
NOEVNT=1,1,1,
PRINT#50.,50.,10.,
SIEP=16.,16.,8.,
AÄETC=115+,
AAETC+6=.4,
AAETC+8=284168.7.
JRBETC=1,2,0,3,3,80,
JRBETC+10=1,
KD8=0,0,1,
NEGCT=3,
NENDCT=4,
NP=25.
TTBL=100+1,231+,363+,
CPTBL=2.609,2.740,2.869,
CYTBL=+00132,+00523,+00854;
VIV=6966.323,-3490.034,-107.378,2941137.,5866843.,-91242.,0.,
KCDPHI=1,5,6,
PSIREQ==16.3268288E6.67.4046207E9.
JRBETC+7=2,
JRBETC+29=2,
AAETC+50=1..
AAETC+24#14.38,
AAETC+54=8.,6.,73.,1438.,15.85,
```

INPUT DATA LISTING FOR TERMINAL CONIC CONSTRAINT (C3, C1, i5)

```
KDB=0,0,0,1,1,
WIBT=.1,1.,
KCDPHI=1,5,6,10,
PSIREQ=-16.3268288E6,67.4046207E9:50.,
```

^{5.} Run as a "stacked case" behind terminal constraint (C_3 , C_1) input data.

INPUT DATA LISTING FOR TERMINAL CONIC CONSTRAINT (C_3 , α , δ)

```
INPUT:
HEAD=(BRADFORD+CHKOUT TERM. CUTOFF SURFACES AND TRANS. EQS. (
TZERO#0.,0.,0.,0.,0.,0.,0.,
NAGCT=3.
NENDCT=4.
NP=25,0.0.0.
PRINT=50 . ,50 . , 10 . .
STEP=16.,16.,16.,
JRBETC=1,2,0,3,3,40,
AAETC+8=39748+7.
KDB=0,1,1,
TTBL=0.,460.,
CPTBL=3.,3.,
KCDPHI=1,5,18,19,
PSIREQ=18.E6.D., 0.,
·F=0.,0.,20000.,
TNE+8=1.,
XMD=0.,0.,64.,
TAUT=0.,735.,460.,
AAETC+24=15.55,31.59,
NOEVNT=1,1,1,
AAETC=115.,
 JRBETC+10=1.
VIV=6966.323.-3490.034.-107.378.2933546.5.-506451.3.-107518.8.0..
VIV+3=2941137+,5866843+, -91242+,
 AAETC+50=1.,
 AAETC+54=8.,6.,73.,1438.,15.85.
WIST=2.,4.,
 TAUT=0.,1500.,456.,
 TTBL=1500.,5000.,
 CPTBL=3.68,4.37,
 CYTBL=0.,0.,
 JRBETC+7=2,
 JRBFTC+29=3,
```

APPENDIX D UNIVAC 1108 FORTRAN LISTING OF SUBROUTINE APRTN

```
SUBROUTINE APRIM (MM)
COMMON/CONTST/CONTST,STATE(15,7)
COMMONIXTRAIGHA, OMEGAL, HOUR
 COMMON/EPRNT/FPRNT, CHIPS, CHIYS, ALPM, ALPN, ALPMS, ALPMS, DCHIP, DCHIY,
1 DALPWODALPNOTEP(2,2), SD1, SD2, SD2, TSAV
COMMON/GRAV/GTC, G11, G22, G23, G33
 COMMONIVALONGO/ALONGO
COMMON/CHIROL/TCHIR, FAZ, CHROOT
COMMON/SPHI/SPHI, CPHI
COMMONINTABLE/UTÂDLE
CONTINUAREST/USTR, HOMRS, KODRES(6), TR, LSD, MF8, NOPAR, MIBT(17)
COMMON/COMST/RAD, PI, PE, FLAT, CU, M, DU, CMUE, CMESA, ALTI, ALTZ, PSL
 COMMON/AGENI/TIMF(2,15),TANT(15),TANT(15),TART(15),TZERO,TORAG,TLIFT,TTILT,
   TCHERZ, DTZ, TO, TL, YMANG, AME(2), TME(4, 15), AE(15), S(15), MD(15),
   WUET(15), XMD(15), F(15), CHIFRZ, HEAD(15), PRINT(15), STEP(15),
2
  HMOM(15), HMAX(15)
COMMON/AGENZ/AA,SA,CA,ALF,SIG,SSIG,CSIG,CMIP,SCMIP,CCMIP,CHIY,
   SCHIY, CCHIY, THZ, STH, CTH, THGT, THETL, STHL, CTHL, SPHIZ, GR, GTH,
   RTHE, RTHZ, R, R2, VR, THR, X4, XMDOT, S4, SU, SM, 47, UZ, VZ, YZ, YZ, ZZ, YRZ,
   VIV(8), DVARS(7), DFLXDW(15,3), PELXDR(7), PELXD(15,7), EXIT,
  DRAGI, CHIDOT, WZERO, CZERO, ALT, RHO, PAM, SS, XMACH, Q, ODOT, CAX, CNP, CN,
5 FAA,FAN,FX,FY,FZ,^(3,3),BL(3,3),BO(3,3),D(3,3),DQDX(6),CASE,
   CT2,UMF, A12M, A22M, A32M, XJEXT, GNU(10), KINDR, KRDERP, BEH, RYL,
  PHMAX(15) . PHMM . PSTEP(15)
 COMMON/AGEN3/IORR,ITHR,IND,IMDCHI,IXR,JORP,JUMP,KAT,KOST,
   KCYTAB, KDIR, KPAGE, KPRT, KS1, KWTA, LINES, NBGCT(4), NENDCT(4), NMAX,
   MOEVNT(5), NOTRAC, NOMO(15), NVNT, NVRST, NMVNT
 COMMON/FORINT/HRANK(2),T,TT,V,V,V,X,Y,Z,XMI,AHT,DVAR(8),
1FSAVE(200),NTRG1,TV1,NTRG2,TV2,MTRG3,TV3,MTRG4,TV4,NTRG5,TV5,
2MTRG6, TV6, MTRG7, TV7, KIND, KRDER, FU, FL, AYL, HMX, HMM, HMM
 COMMON/BAKINT/PRANK(2), T8K, TRKD, YL(7,10), YLD(7,10), RSAVE(1350),
   NBTRG1,TBV1,MRTRG2,TPV2,NRTRG3,TRV3,NBTRG4,TRV4,NRTRG5,TBV5,
2 TEND, DTE4, DU3, D23, D43, WISSD(10, 10)
 DIMENSION RID(40), TE(6)
 LOGICAL CONTST
 DATA(RID(I), I=3,40)/6HLIFT-0,2HFF,6HIGNITI,2HOM,6HBOOST ,6HIMPACT,
16HTHRUST,6H EVENT,6HENG CU,4HTOFF,6HMEGIN ,4HTILT,4HEND ,4HTILT,
   6HSEPARA, 4HTION, 6HSTART , 5HCOAST, 6HEND CO, 3HAST, 6HIO KMS, 1H.,
26H14 KMS,1H.,
36HO MAXI,3HMUM,6HINJECT,5HION ,6HREGIN ,6HCHIFRZ,6HMEIGHT,
36H DROP ,
46HBEGIN ,5HMIN-H,6HEND AT,3HMOS,6HREIGNI,4HTICN/
 DATA(RID(I),I=1,2)/6H
                               ,6H
 IF(LSB.EQ.1)RETURN
 DA7 = ABS(EA7 + AA)
 CHIR=DAZ
 IF(T.GT.TCHIR)CHIR=PAZ-ABS(CHRDOT)*(T-TCHIR)
 IF(CHIR.LT.O.)CHIR=C.
 CHIR=CHIR*SIGN(1.,DAZ)
 XM = XMI + XMAUG
 D(1+2)=X/R
 D(2,2)=Y/R
 D(3,2)=7/R
 CTH = \Lambda(1,2) *D(1,2) + \Lambda(2,2) *D(2,2) + \Lambda(3,2) *D(3,2)
 SPHI=\Lambda(1,1)*D(1,2)+\Lambda(2,1)*D(2,2)+\Lambda(3,1)*D(3,2)
 CPHI=A(1,3)*D(1,2)+A(2,3)*D(2,2)+A(3,3)*D(3,2)
 PHI = ATAN2 (SPHI, CPHI)
 IF(T.LT..1)PHI=DTZ*OMFGA
 XNOD=PHI
 IF(PHI.LT. 0.)PHI =PHI+2.*PI
 PHI=(PHI-OMEGA*(T+DTZ))*RAD-ALONGO
```

```
VI=(W*W+W*(U+V*V)**.5
      GAM = (MAX + MAX       GAM=ARKSIN(GAM, ICD)
      IF(GAM.GT.PI)GAM=GAM-2.*PI
      C1=VI*R*COS(GAM)
      GAM#GAM#PAD
      CREVIAVI-P. *CMUE/P
       THESTHP
       I=(IORR.FO.0)GO TO 20
       THE=THE-EXIT*PAM
       CHIP=ATAM2 (SCHIP, CCI'IP)
       ALEP=ATAM2(SW,SU)-CHIP
       ALEY=ARKSIN(SV/VR, JER)
       CHIY=ATAM2(SCHIY, CCHIY)
       IF(CHIY.GT.PI)CHIY=CHIY-2.*PI
       STG=ARKSIN(SSIC, TER)
       こひにい = こべい *ロ / り
20 CONTINUE
       XLACC=(THE-FAA)/XM
       CBDG=CHID#RVD
       CYDG=CHIY*RAD
       IF(IORR.FQ.1)60 TO 30
       SW=W-(Z*A22W-Y*A32W)
       SU=U-(X*A32V-7*A12V)
       SV=V-(Y*A]2V-X*A22W1
       VR=(SHXS11+SUXS01+SVXSV)***5
       TEMP=(W*CCHIY*SCHIP+U*CCHIY*CCHIP+V*SCHIY)/VI
       ALF=ARKCOS(TEMP.IER)
       ALFP=ATAM2(M.U)-CHIP
       AL FY=ARKSIN(V/VI,IEP)
       TEMP=RE
       IF(JORB.EQ.O)TEMP=HMF*RE/(HMF*UMF*(1.-CT2)+CT2)**.5
       ALT=R-TEMP
30 ALTP=ALT
        ADEG=ALE*RAD
       ALFP=ALFP*RAD
        ALFY=ALFY*RAD
       THFP=THF/4.44822162
       XMLR=XM/.45359237
        TISP=F(ITHR)/(SZEPO*X"O(ITHR))
        STH=(1.-CTH*CTH)**.5
       PCTH=R*STH
       D(1,3) = (D(1,2)*CTH-4(1,2))/STH
       D(2,3) = (D(2,2)*CTH-\Lambda(2,2))/STH
       D(3,3) = (D(3,2)*CTH-A(3,2))/STH
        D(1,1) = (-Y*A(3,2)+Z*A(2,2)) / RSTH
        D(2,1) = (X*A(3,2)-Z*A(1,2))/RSTH
       D(3,1)=(-X*A(2,2)+Y*A(1,2))/RSTH
       VTH=D(1,3)*V+D(2,3)*U+D(3,3)*V
       VPH=D(1,1)*V+D(2,1)*U+D(3,1)*V
       XI =-VTH/SORT(VTH*VTH+VPH*VPH)
        AZ=ARKCOS(XI,IFR)
        THET=ARKCOS(CTH, IER)
        THETA=90.-THET*RAD
        THETG=ATAN2(SIN(THETA/RAD), JME*UME*COS(THETA/RAD))*RAD
        XINC=ARKCOS(SIM(AZ)*SIM(THFT), IER)
       XNOD=(XNOD+ATAN2(CTH*VPH,VTH))*RAD
        IF(XMOD.LT.O.)XMOD=XMOD+360.
        XINC=XINC*RAD
        Al=ARS(CMHE/C3)
        P=(1*(1/CMUE
```

```
ECC=1.+P*C3/CMUF
IF(ECC.LT.0.)60 TO 31
      FCC=SORT(FCC)
      TE(RE-P/(1.+ECC).LT.RE/10.)50 TO 31
      CETAMM= (P-R)/(R*ECC)
      ETANW=ARKCOS(CETANW.IEP)
      CETAIN=(P-RE)/(RE*ECC)
      FTATN=ARKCOS(CFTATM.IFR)
      DELETA=ADS/ETATN-ETANUL
      IF(GAM.GT.O.) OFLETA = 2.*(PI-FTANY) + OFLETA
      DGENOW=ADKCOS ((A1-D )/(A1*FCC) . TED)
      TE (GAM. IT. G. ) DOENOW = 2. *PI-PGENOW
      BGETHN=2.*PI-19KCOS((/1-RE)/(11*500),IFR)
      DEL DOE-DOETHN-BOENON
      DTT=(DELEGE+FCC*(SIM(PGETHM)+SIM(RGENOM)))/SQRT(CMUE/(A1*A1*A1))
      THT1=ARKCOS(CTH*CCS(DELETA)+STH*SIN(DELETA )*COS(AZ).IFR)
      DUPHI=ARKSIM(SIM(DELETA)*SIM(AZ)/SIM(THT1), IER)
      bH1.6=bH1+(0fbH1-0.204*011)*570
      THIMP=90.-THT1*RAD
   31 47=47*840
      M= 2 * NM-1
   50 IF(LINES) 55,55,60
C
      WRITE HEADER
   SE VDAGE=VDAGE+1
      MRITEL 6.561000F.(MEAD(I).I=1.101.KPAGE
   56 FORMAT(1H1,6H ROBOT,2X,6HCASE = ,F11,4,10X,10A6,10X,4HPAGE,I3)
      LIMES=54
   60 IF(FPRMT.ME.O.160 TO 91
      MRITE( 6,61)RID(N),RID(N+1),T,VI,VR,THE,XLACC,X,Y,Z,W,V,V,ALTP,
     1XMACH, FAA, ADEG, SDEG, CPDG, CYDG, R, XM, Q, TISP, FAN, THIMP, PHIMP, THETG,
     2XINC,XNOD,SV,SV,SV,AHI,GAM,THEP,XMLP,C1,C3,THETA,PHI,4Z
   16H THRST, E15.8,6H [ACC, E15.8,713X,6H Z13-X, E15.8,6H X13-Y, F15.8
     26H Y13-Z,F15.8,6H ZD12W,E15.8,6H XD13U,F15.8,712X,6H YD13V,F15.8
                                          FA1, E15.8, 6H ALPHA, F15.8, /13X
     36H
           ALT, E15.8,6H
                         MACH, E15.8,6H
     46H STGMA, F15.8,6H
                         CHIP, E15.8, 6H CHIY, E15.8, 6H
                                                            R.F15.8.
     56H
         MASS,E15.8,/13x,6H
                                  Q,E15.8,6H
                                               ISP,E15.8,6H
                                                              FAN. E15.8.
     664 LTIMP, E15.8, 6H LNGMP, E15.8, /13X, 6H GDLAT, E15.8, 6H
                                                              INCL , E15 . 8:
     76H
          NODS, E15.8,6H
                           SM,E15.8,6H
                                           SU,E15.8,/13X,6H
                                                                SV.F15.8.
                                         THEP, E15.8,6H XMLP, E15.8,/13X:
                          GAM, E15.8,6H
     86H
           4HI,E15.8,6P
                                         LAT, E15.8, 6H LONG, E15.8,
     964
            C1,E15.8,64
                          C3,E15.8,6H
     25H
          AZ.S.F15.8)
      LIMES=LIMES-9
      IF (NTABLE . EQ. 0) RETURN
      TE (NMAX.NE.O) RETURN
     WRITE OUTPUT FOR REPORT
      GAMR=(SW*X+SU*Y+SV*Z)/(R*VR)
      GAMP=ARKSIN (GAMP, IED)
      IF (GAMR.GT.PI) GAMP=CAMR+2.*PI
      GAMR=GAMP*RAD
      ALFQ=ALF*Q
      CPDG=-CPDG
      WRITE( 9)RID(N),RID(N+1),T,VI,VR,GAM,GAMR,XM,XML8,THE.THEP,
     A XLACC,ALTP,R,XMACH,Q,ALFP,ALFY,AZ,CPDG,CYDG,CHIR,AHI,X,Y,Z,
       W,U,V,ALEQ,THETA,PHI,(DYAR(I),I=1,3)
      RETURN
     VELOCITY IN EPHEMERIS SYSTEM
   91 DXF=TFP(1,1)*"+TFP(1,2)*"+TFP(1,3)*V
      □▼□=▼□□(つ、1、※以上▼□□(つ。つり※川も▼□□(つ。3)※以
```

```
DZE=TEP(3,1)*V+TEP(3,2)*U+TEP(3,3)*V
      POSITION IN EPHEMERIS SYSTEM
      XF=TFP(1,1)*X+TEP(1,2)*Y+TEP(1,3)*Z
      YE=TEP(2,1)*X+TEP(2,2)*Y+TEP(2,3)*Z
      ZE = TEP(3,1) * X + TEP(3,2) * Y + TEP(3,3) * Z
      TEMPA=YE*DZE-ZE*DYE
      TEMPREZE*DXE-XE*DZE
      TEMPC=XE*DYE-YE*DXE
      C1E=1./(TEMPA*TEMPA+TEMPB*TEMPB+TEMPC*TEMPC) **.5
      UNIT VECTOR IN ANGULAR MOMENTUM DIRECTION
      WIF=TEMPA*CIE
      W2E=TEMPP*C1E
      W3E=TEMPC*C1E
C***
      RDOT
      RD = (W \times X + U \times Y + V \times Z) / R
      TEMPA=VI*VI-CMUE/R
      TEMPB=R*RD
      PEMP1=XE*TEMPA-TEMP8*DXE
      PEMP2=YE*TE"PA-TEMPP*DYE
      PEMP3=ZE*TEMPA-TEMPR*DZE
      PBARMU=(PEMP1*PEMP1+PEMP2*PEMP3*PEMP3*PEMP3)**.5
     UNIT VECTOR IN DIRECTION OF PERIAPSIS
      P1F=PEMP1/PBARMU
      PZE=PEMP2/PBARYU
      PSE=REMP3/PRARMU
      SEMIMAJOR AXIS
      SMA=ABS(CMUE/C3)
      RIGHT ASCENSION OF ASCENDING NODE
      W2M=-W2E
      RASNOD=ATAM2 (MIE, W2M) *RAD
C***
      ECCENTRICITY
      TEMPE=C3*R*R/(CTUE*CMUE)
      ECCTEN=(1.+TEMPE*(VI*VI-RD*RD))
      ECC=0.
      IF(ECCTEM.GT.J.) CCC=(ECCTEM)**.5
      RADIUS AT PERIAPSIS
      RCA=ABS(SMA*(1.-ECC))
      RADIUS AT APOAPSIS
      RAOP = SMA*(1 + ECC)
      VELOCITY AT PERIAPSIS
      VPER=C1/RCA
      VELOCITY AT APOAPSIS
      VAPO=C1/RAOP
      CALCULATED OUTGOING ASYMPTOTE ($1,52,53)
      TEMPAR=W1E*P2E-W2E*P1E
      TEMS1 = -(1 \cdot / ECC)
      TEMS2=-(ABS(ECC*ECC-1.))**.5
      S1=TEMS1*(P1E+TEMS2*(M2E*P3E-W3E*P2E))
      S2=TEMS1*(P2E+TEMS2*(W3E*P1E-W1E*P3E))
      S3=TEMS1*(P3E+TEMS2*TEMPAR)
      SPAR=(S1*S1+S2*S2+S2*S3)**.5
      S1=S1/SBAR
      S2=S2/SBAR
      53=53/SBAR
      ARGUMENT OF PERIAPSIS
      ARPG=ATAN2 (P3E • TEMPAR)
      TRUE ANOMALY
      TEMPT=ABS(SMA*(1.-ECC*ECC))
      STANO=TEMPB*(TEMPT/CMUE)**.5
      CTANO=TEMPT-R
      TANO=ATAN2(STANO, CTANO) *RAD
```

```
PERIOD
XMEOR=(CMUE/S'A**3)**.5
C***
      PERIOD=2.*PI/XMEOR
      ACCELERATION COMP. IN PLUBBLINE SYSTEM
C***
      DDXP=DVAR(1)
      DDYP=DVAR(2)
      DDZP=DVAR(3)
      IF(JORD.EG.0)G0 TO 501
      DDXPG=X*G11
      DDYPG=Y*G11
      DDZPG=Z*G11
      GC TO 502
  501 DDXPG=X*G11-A(1,2)*GTC
      DDYPG=Y*G11-A(2,2)*GTO
      DDZPG=Z*G11-A(3,2)*GT0
      GRAVITY LOSS
C * * *
  502 IF(T.EQ.TZERO)VZC≈(YZ*YZ+UZ*YZ+VZ*VZ)**.5
      DUMB=(1./RE-1./R)
      IF(DUMB.LT.d.)DUMS=C.
      DVSTR=(VI*VI+2.*CHUE*DUMB)**.5-VZE
      DEL=WZERO/(XN+WZERO)
      VEX=TISP*GZERC
      VC=VEX*ALOG(1./(1.-DEL))
      GRADV=VC-DVSTR
      TEMPX=XINC/RAD
      XLATP=(SIN(TE PX)*SIN(ARPS))*RAD
      XLNGP=0.
      IF ( NOT CONTST) GO TO 602
      TEMLAM=ATAN2(P2E+P1E)
      ENGHT=ARKCOS((SMA-R)/(SMA*ECC), IER)
      SENGHT=SIN(ENGHT)
      TTAU=TEND-((ENGHT-ECC*SENGHT)/XMFOR)
      TTP=PERIOD-(TEND-TTAU)
      XUNGP=(TERLAM-(GHA/RAD+ONEGAL*(HOUR*3600.FTERD+TTP)))*RAD
  603 AXLN=ABS(XLNGP)
      IF(AXLN.LE.360.)GO TO 602
      XLNGP=XLNGP-360.*SIGN(1.,XLNGP)
      GO TO 603
  602 IF(KS1.NE.7)GO TO 601
      DCHIP=CHIDOT
      DCHIY=0.
  601 IF(TV5.EG.TCHFRZ)ECHIP=0.
      ARPG=ARPG*RAD
      APND=ALPN*RAD
      APWD=ALPW*RAD
      DCHPD=DCHIP*RAD
      DCHYD=DCHIY*RAD
      DLPND=DALPN*RAD
      DLPWD=DALPW*RAD
      WRITE(6,64)RID(N),RID(N+1),T,X,XE,W,DXE,R,X 1,Y,YE,W,DYE,
     1 ALTP.XMLB.Z.ZE.V.DZE.VI.BDXP.BDXPG.U1C.P1C.THETA.RD.DDYP.DDYPG.
        W2E,P2E,PHI,GAM,DDZP,DDZPG,M3E,P3E,AZ,VPER
      WRITE(6,65)XLATP,CPDG,APND,CCHPD,DLPND,VAPO,XLNGP,CYDG,APHD,DCHYD,
          DLPWD, GRADV, SMA, C3, C1, ECC, RCA, RAOP, XIMC, RASMOD, ARPG, TANO, PERIOD
     2,XMEOR,51;S2,S3,SD1,SD2,SD3
      LINES=LINES-14
      IF (NMAX.NE.O) RETURN
      IF(ITHR.NE.NTABLE) GO TO 301
      TZ=TIME(1,NTABLE)
      DO 302 I=1,6
      IZ=NTABLE-1+I
```

55X4HDDYPE14.8,2X5HDDYPGE14.8,5X2H72E14.8,5X2HP2E14.8,2X5HLONGRE14. 12X5HDALPNE14.8,3X4HVAPOE14.8/4X5HLONGPE14.8,3X4HCHIYE14.8,3X4HALPW 64 FORMAT(/1X,2A6,/5X4HTIMEE14.3,5X2HXPE14.8,6X1HXE14.8,4X3HJXPE14.8, 3,6X1HZE14.8,4X3HDZPE14.8,5X2HDZE14.8,6X1HVE14.8/5X4HDDXPE14.8,2X5 46X3HINCE14.8,7H RASNODE14.3,3X4HARPGE14.8,3X4HTANOE14.8,7H PERIOD 1DZE,DDXP,DDYP,DDZP,C1,C3,ECC,SMA,RCA,RACP,XINC,TANO,ARPG,PERIOD, 24X3HDYPE14.3,5X2HDYE14.8,4X3HALTE14.8/4X5HWTLBSE14.8,5X2HZPE14.8 2E14.8,2X5HDCHIYE14.8,2X5HDALPWE14.8,2X5HGRADVE14.8/6X3HSMAE14.8, 35X2HC3E14.8,5X2HC1E14.8,4X3HECCE14.8,4X3HRCAE14.8,3X4HRAOPE14.8/ WRITE(9) T. T. R. VI. AZ. GAM. THETA. PHI. X. Y. Z. W. U. V. XE. YE. ZE. DXE. DYE. 4HDDXPGE14.8,5X2HW1E14.8,5X2HP1E14.8,3X4HLATRE14.8,3X4HRDOTE14.8/ FORMAT(5X4HLATPE14.8,3X4HCHIPE14.8,3X4HALPNE14.8,2X5HDCHIPE14.8, 5E14.8,3X4HMEORE14.8/7X2HS1E14.8,5X2HS2E14.8,5X2HS3E14.844X3HSD1 15X2HDXE14.8.6X1HRE14.8/5X4HMASSE14.8.5X2HYPE14.8.6X1HYE14.8. 68,4X3HPTHE14,8/5X4HDDZPE14,8,2X5HDDZPGE14,8,5X2HW3E14.8, 75X2HP3E14.8.5X2HAZE14.8.3X4HVPERE14.8. 2XM,XMLB,TZ,TE,CPDG,CYDG,APND,APWD 6E14.8,4X3HSD2E14.8,4X3HSD3E14.8) RETURN IF(ITHR.LT.NTABLE) 65 301

302

APPENDIX E UNIVAC 1108 FORTRAN LISTING OF SUBROUTINE TRASH

```
SUBROUTINE TRASH (MODE)
      DIMENSION OFF(2), TITLE(17), A(7), S(15), ORBL(10), TE(6)
      STEMP=.5**24
      DATA (OFF(I), I=1,2)/6H
                                   ,6H
      DATA ENDPRI/6HENDPRI/
      DATA BLANK/6H
      DATA(TITLE(I), I=1,17)/6H
                                    P,6HARKING,6H ORBIT,6H COAST,6HPERIGE
     1,6HE BURN,6H CONIC,6H CONDI,6HTIONS ,6HAFTER ,6HFIRST ,6HBURN ,
             TR.6HANSFER,6HAPOGEE,6H BURN ,6HSECOND/
     2 6H
      NOT=1
  500 REWIND 9
      READ( 9)EP,T,R,VI,AZ,PTH,LAT,LONG,S,ORBL,XMKG,XMLB,TZ,TE,CHIP,CHIY
     1 ,ALPN,ALPW
      REWIND 9
      GO TO 400
    5 NTAB=1
      IBCK=0
    2 WRITE(6,1000)OFF, A, XMKG, XML3
      GC TC 100
    3 WRITE(6,1001)OFF,(A(I),I=1,6)
C*** CIRCULAR ORBIT
  100 GO TO (110,110,130,110,110,130),NOT
  110 GO TO (111,112,113,124,125),NTAB
  111 WRITE(6,1111)A(7)
   12 LINES=32
   11 READ (9) EP,T,R,VI,AZ,PTH,LAT,LONG,S,CRBL,XMKG,XMLB,TZ,TE,CHIP,
     1 CHIY, ALPN, ALPW
      IF (EP . EQ . ENDPRT) GO TO 173
      IBCK=I3CK+1
      TC=ABS(T-TZ)
      R=R*.001
      VI=VI*.001
      DO 170 I=1:15
  170 S(I)=S(I)*.001
      ORBL(1)=OR3L(1)*.001*.001
      ORBL(2)=ORBL(2)*.001*.001
      DO 600 I=4.6
  600 OREL(I)=CRBL(I)*.001
      GO TO (1110,1120,1130,1240,1250,11),NTA3
 1110 WRITE(6,999) T,TC,R,VI,AZ,PTH,LAT,LONG
      GO TO 171
 1120 WRITE(6,999) T,TC,(S(I),I=1,6)
      GC TC 171
 1130 WRITE(6,999) T,TC,(S(I),I=7,12)
      GO TO 171
 1240 WRITE(6,999) T.TC.XMKG.XMLB.CHIP.CHIY.ALPN.ALPW
      GO TO 171
 1250 WRITE(6,997) T,TC,(S(I),I=13,15)
  171 LINES=LINES-1
      IF(LINES.EQ.O) GO TO 3
      IF (ABS(T-TE(NOT+1)).GT.STEMP*TE(NOT+1))GO TO 11
  173 WRITE(6,998) A(7)
  172 IF(EP.EG.ENDPRT)GO TO 174
      NTAB=NTAB+1
      IF(NTAB.LE.NTBL)GO TO 502
      NOT = NOT + 1
      GO TO 400
  174 WRITE(6,996)
  502 DO 503 I=1.IBCK
  503 BACKSPACE 9
      IBCK=0
```

```
IF(EP.EG.ENDPRT)RETURN
GO TO 2
 112 WRITE(6,1112) A(7)
      GO TO 12
 113 WRITE(6,1113) A(7)
      GO TO 12
 124 WRITE(6,1124) A(7)
      GO TO 12
 125 WRITE(6,1125) A(7)
      GO TO 12
 130 WRITE(6,1131) ORBL
      GO TO 172
CS$$$$$NOT TRANSITION
  400 DO 2400 I=1,7
2400 A(I)=BLANK
      GO TO (410,420,420), MODE
 410 GO TO (411,412,413,414,415,416),NOT
 411 DC 401 I=1.4
 401 A(I)=TITLE(I)
  407 A(7) = A(4)
      NTBL=3
      GO TO 5
 412 A(3)=TITLE(5)
      A(4)=TITLE(6)
  405 A(7)=TITLE(16)
      NTBL=5
      GO TO 5
  413 DO 402 I=1.4
      A(I)=TITLE(I+6)
  402 A(I+2)=TITLE(I+2)
  404 NTBL=1
      GO TO 3
  414 A(1)=TITLE(13)
      A(2)=TITLE(14)
      A(3)=TITLE(4)
      A(7)=A(3)
      NTBL=3
      GO TO 5
  415 A(3)=TITLE(15)
      A(4)=TITLE(16)
      GO TO 405
  416 DO 403 I=1.4
      A(I)=TITLE(I+6)
  403 A(I+2)=TITLE(I+12)
      GO TO 404
  420 GO TO (411,422,423,411,425,423),NOT
  422 A(3)=TITLE(11)
      A(4)=TITLE(12)
      GO TO 405
  423 DO 406 I=1.6
  406 A(I)=TITLE(I+6)
      GO TO 404
  425 A(3)=TITLE(17)
      A(4)=TITLE(16)
      GO TO 405
 1000 FORMAT(1H1,78X12HTABLE NUMBER/1X2A6,29X6A6/6H BEGIN,A6,4X7HWEIGHT=
     1E13.8.4H KGS.8X.E13.8.4H LBS//)
 1111 FORMAT(4X4HTIME,6XA6,5H TIME,5X1HR,6X13HINER VELOCITY2X9HAZIMUTH S
     15X3HPTH5X8HLATITUDE3X9HLONGITUDE/5X3HSEC11X3HSEC8X2HKM10X6HKM/SEC.
     17X3HDEG8X3HDEG8X3HDEG/)
  996 FORMAT(1H1)
```

FOREAT (4X4HTIME6XA6,5H TIME6X2HXP,10X2HYP10X2HZP9X3HDXP9X3HDYP9X3H =F12.4411H (KM/SEC)SQ5X36HTMICE THE TOTAL ENERGY PER UNIT 8X6HKH/SEC.6X6HKM/SE FORMAT(4X4HTIME6XA6,5H TIME6X1HX11X1HY11X1HZ10X2HDX10X2HDY10X2HDZ/ 1124 FORMAT(4X4HTIME6XA6,5H TIME5X4HMASS,8X6HMEIGHT7X5HCHI P,6X5HCHI Y, 1125 FORMAT(4X4HINE6XA6,5H TIME8X4HDDXP,10X4HDDYP,10X4HDDZP/5X3HSEC, 8X6HKW/SEC6X6HKW/SEC+ =F12.2.11H (KM)SQ/SEC.5X. 8X3HKGS10X3HL3S. 111X3HSEC7X10HKM/SEC(SQ)4X10HKM/SEC(SQ)4X10HKM/SEC(SQ)/) DEG.12X23HARGUMENT OF PERI-CENTER/ =F12.2,3H KM,13X24HSENI MAJOR AXIS OF COMICA =F12.2,3H KM,13X21HRADIUS AT PERI-CENTER/ KM13X20HRADIUS AT APC-CENTER/ FORMAT(1H1,78X12HTABLE NUMBER/1X2A6,29X6A6//) SEC+12X15HPERIOD OF CONIC) DEG: 12X12HTRUE ANOMALY/ ECC =F12.6,16X12HECCENTRICITY/ DEG.12X11HINCLINATION/ 1DZP/5X3HSEC11X3HSEC9XZHKM10X2HKM10X2HKM• 15X7HALPHA N5X7HALPHA W/5X3HSEC11X3HSEC. 15X3HSEC11X3HSEC8X2HKM10X2HKM10X2HKM, FORMAT (3(F11.3,1X),2X,F11.3,4F11.3) 1131 FORMAT(17H ORBITAL ELEMENTS//8H C1 130HANGULAR TOMENTUM PER UNIT MASS/ 997 FORMAT(5(F11.3.2X),3(F11.5.2X)) 29X3HDEG8X3HDEG8X3HDEG9X3HDEG/) =F12.2,3H =F12.6,4H =F12.5,4H =F12.5,4H 28H PERIOD=F12.2,4H FORMAT (/ 4H ENDA6) 2C.6X6HKM/SEC/) 26X6HKM/SEC/) 3 MASS/8H RAPO TANO 18H ARPG RCA 48H 5MA 78H INC H86 68H 59H 998 1001

REFERENCES

- 1. Gottlieb, Robert G.: ROBOT Apollo and AAP Preliminary Mission Profile Optimization Program. Part I Mathematical Formulation, NASA CR-61223, May 1968.
- 2. Ellison, Bobby; Noblitt, Bobby G.; and Young, Archie C.: Mission Analysis and Trajectories for Three-Zero-Degree Inclination Earth Synchronous Orbit Missions Using the Saturn V Vehicle With Three Burns of the S-IVB Stage. NASA TM X-53498, August 1966.
- 3. Cooper, D. L.; and Ellis, L. V.: Optimization of Transfer Trajectories by Application of the Calculus of Variations. Northrop Space Laboratories Research and Analysis Section Technical Memorandum #48, January 25, 1965.
- 4. Clarke, V. C.; Bellman, W. E.; Roth, R. Y.; and Scholey, W. J.: Design Parameters for Ballistic Interplanetary Trajectories. Part I: One-Way Transfers to Mars and Venus, JPL Technical Report No. 32-77, January 1963.

APPROVAL

OPTIMAL TRANSFER TRAJECTORIES FROM EARTH PARKING ORBIT TO VARIOUS TERMINAL CONIC CONSTRAINTS AND MODIFICATIONS TO THE ROBOT COMPUTER PROGRAM

By Rodney Bradford

The information in this report has been reviewed for security classification. Review of any information concerning Department of Defense or Atomic Energy Commission programs has been made by the MSFC Security Classification Officer. This report, in its entirety, has been determined to be unclassified.

This document has also been reviewed and approved for technical accuracy.

H. F. THOMAE

+ 16111

Chief, Performance & Flight Mechanics Division

ERICH E. GOERNER

Director, Preliminary Design Office

W. R. LUCAS

Director, Program Development

DISTRIBUTION

INTERNAL

DIR

Dr. von Braun

DEP-T

Dr. Rees

AD-S

Dr. Stuhlinger

PD-DIR

Dr. Lucas

PD-SA-DIR

Mr. Huber

PD-SA-V

Mr. Orillion

PD-DO-DIR

Mr. Goerner

Dr. Thomason

Mr. Heyer

Mrs. Andrews

PD-DO-P

Dr. Thomae

Mr. Scott

PD-DO-PD

Mr. Schwartz

Mr. Jump

Mr. Lowery

Mr. Sumrall

Mr. Bradford (20)

PD-DO-E

Mr. Digesu

PD-DO-ES

Mr. Cole

PD-DO-PF

Mr. Goldsby

Mr. Croft

Mr. French

Mr. Fults

Mr. Leonard

Mr. Perkinson

Mr. Smart

PD-DO-PM

Mr, Hill

Mr. Wheeler

Mr. Young

Mr. Gold

Mr. Farr

S&E-AERO-DIR

Dr. Geissler

Mr. Horn

Mr. von Puttkamer

S&E-AERO-D

Mr. E. Deaton

Mr. Cremin

Mr. Toelle

Mr. A. Deaton

Mr. Perrine

S&E-AERO-G

Mr. Chandler

Mr. Baker

Mr. Causev

Mr. Loftin

DISTRIBUTION (Continued)

INTERNAL (Concluded)

S&E-AERO-F

Mr. Lindberg

Mr. Wittenstein

Mr. Dickerson

Mr. Mullins

Mr. Little

Mr. Telfer

Mr. Bauer

Mr. Mabry

Mr. Phillips

S&E-AERO-Y

Mr. W. Vaughn

S&E-AERO-T

Dr. H. Krause

Dr. Teuber

A&TS-MS-IP (2)

A&TS-MS-IL (8)

A&TS-PAT

Mr. L. D. Wofford, Jr.

PM-PR-M

Mr. Goldston

A&TS-MS-H

A&TS-TU (6)

EXTERNAL

Scientific and Technical Information

Facility (25)

P.O. Box 33

College Park, Maryland 20740

Attn: NASA Representative (S-AK/RKT)

NASA-Manned Spacecraft Center

Houston, Texas 77058

Attn: Library (5)

Dynamics Research Corporation

Holiday Office Center

Huntsville, Alabama 35805

Attn: Mr. Gottlieb

Mrs. Johnson

Northrop Space Laboratories

Technology Drive

Huntsville, Alabama 35805

Attn: Mr. W. A. Klabunde

Mr. D. Raney

Mr. W. B. Tucker

Library (5)

Lockheed Missiles and Space Company

Technology Drive

Huntsville, Alabama 35805

Attn: Library (5)

Mr. J. Winch

Mail Stop AC-50

The Boeing Company

P.O. Box 1680

Huntsville, Alabama 35807

DISTRIBUTION (Concluded)

EXTERNAL (Concluded)

Mr. John E. Canady NASA-Langley Research Center Langley Station, Virginia 23365 Mail Stop 215

NASA Headquarters
Attn: Col. Burke, MTV (5)
Library (5)
RMP (5)

NASA - Ames Research Center Mountain View, California 94035 Attn: Library (5)

NASA-Langley Research Center Hampton, Virginia 23365 Attn: Library (5)

NASA-Electronics Research Center Cambridge, Mass. 02138 Attn: Mr. W. Miner Library (5)

Jet Propulsion Laboratory Pasadena, California 91103 Attn: Library (5)

Mr. J. J. Modorelli (5) Tech. Info. Div. NASA-Lewis Research Center 21000 Brookpark Road Cleveland, Ohio 44135