Pravděpodobnost a statistika - zkoušková písemka 11.6.2019

Jméno a příjmení	1	2	3	4	celkem	známka

Úloha 1. Telefonní poradna jisté firmy během své pracovní doby od 9:00 do 19:00 přijme průměrně 30 hovorů, z nichž průměrně každý desátý je omyl. 2/3 všech volajících jsou muži, avšak mezi hovory, které jsou omyly, jsou mezi volajícími 2/3 žen. Všechny hovory přicházejí nezávisle na sobě. Určete pravděpodobnost, že

- a) během odpoledne (tj. od 12:00) přijme poradna alespoň 10 hovorů a přitom všechny se uskuteční do 18:30,
- b) během dopoledne (tj. do 12:00) přijme poradna maximálně 1 omyl (a k tomu libovolný počet hovorů, které nejsou omyl),
- c) doba čekání na hovor bude kratší než 40 minut,
- d) v pěti po sobě jdoucích hovorech budou maximálně 2 omyly,
- e) nejpozději sedmý hovor bude omyl,
- f) pokud zavolá žena, bude to omyl,
- g) pokud hovor není omyl, volá muž,
- h) v následujících 100 hovorech bude alespoň 7 omylů (řešte pomocí CLV).

Úloha 2.Sdružené pravděpodobnosti náhodných veličin X a Y jsou dány následující tabulkou:

	X = 1	X = 2	X = 3	X = 5
Y = -1	1/12	1/6	0	1/12
Y = 1	1/6	1/3	1/12	1/12

- a) Rozhodněte, zda jsou náhodné veličiny X a Y nezávislé, a své rozhodnutí matematicky řádně zdůvodněte.
- b) **Jsou-li** X a Y **nezávislé**, určete sdružené rozdělení (tj. tabulku sdružených pravděpodobností) náhodného vektoru (U, V), v němž náhodné veličiny U, resp. V, mají stejná marginální rozdělení jako X, resp. Y, ale přitom U a V **nezávislé nejsou**.

Pokud X a Y nezávislé nejsou, určete sdružené rozdělení náhodného vektoru (U,V), v němž náhodné veličiny U, resp. V, mají stejná marginální rozdělení jako X, resp. Y, ale přitom U a V nezávislé jsou.

Úloha 3. Na 16 týdenních vědeckých konferencích byly sledovány počty výskytů technických problémů. Tyto počty jsou uvedeny v následující tabulce:

- a) Nakreslete histogram a empirickou distribuční funkci.
- b) Z grafů z otázky a) a z charakteru dat určete, jaké rozdělení mají tato data.
- c) Metodou maximální věrohodnosti určete parametr(y) tohoto rozdělení.
- d) Odhadněte z dat (jak z hodnot, tak z jejich charakteru) střední hodnotu a rozptyl rozdělení z otázky b).
- e) Statisticky otestujte na hladině 5%, zda střední počet rostlin na ploše 100m² je možno považovat za roven 3.
- f) Matematicky zdůvodněte test použitý v otázce e) (tj. jaké předpoklady jste použili k tomu, abyste mohli test provést).

Úloha 4. Student si během studia dělal záznamy o tom, kolik vypil za semestr piv, a získal následující údaje:

$semestr \setminus ročník$	1.	2.	3.	4.	5.
ZS	60	100	100	60	80
LS	100	150	140	90	120

- a) Otestujte na hladině 5%, zda student v zimním i letním semestru vypil přibližně stejné množství piv.
- b) Otestujte na hladině 1%, zda student ve každém ročníku vypil přibližně stejné množství piv.
- c) Víme-li, že jediné ze všech vypitých piv byl Guiness, jaká je pravděpodobnost, že tento Guiness byl vypitý během bakalářského studia (tj. během prvních tří ročníků)?
- d) Pokud byl tento Guiness vypitý během bakalářského studia, jaká je pravděpodobnost, že to bylo v zimním semestru?