PRIMERA PRUEBA, PARTE PRÁCTICA:

Problema 1. Hallar el número de n-plas, (a₁, a₂,...,a_n), de componentes, a_i, números enteros positivos que satisfacen las tres ecuaciones siguientes:

$$\sum_{i=1}^{n} a_{i} = 26 \qquad \sum_{i=1}^{n} a_{i}^{2} = 72 \qquad \sum_{i=1}^{n} a_{i}^{3} = 224$$

Problema 2.

Sea f : [0 , 1] → [0 , +∞) una función continua tal que f(0) = f(1) = 0 y $\forall x \in (0, 1)$ f(x) > 0.

Demostrar que existe un cuadrado con dos vértices en el intervalo (0, 1) del eje de abscisas y los otros dos en la gráfica de f.

Problema 3. si
$$x_1 = \sqrt{2}$$
 , $x_{n+1} = \sqrt{\frac{2 \cdot x_n}{1 + x_n}}$, hallar $\prod_{n=1}^{\infty} x_n$

Problema 4.

- A) Sea & una circunferencia y en ella dos puntos distintos, no diametralmente opuestos, A y B. Describir el lugar geométrico del ortocentro de los triángulos ABC, siendo C un punto de & distinto de A y B.
- B) Se eligen aleatoriamente los números b , $c \in [0, a]$. La probabilidad de que la distancia en el plano complejo de las raíces del polinomio $z^2 + b \cdot z + c$ no sea mayor que 1, no es menor que 0,25. Hallar a.

Nota: Cada uno de los cuatro problemas participará con el 25% en la calificación de este examen. Es fundamental que se describan por escrito las justificaciones del desarrollo de las soluciones, incluyendo los enunciados de los teoremas o proposiciones que se apliquen.