Drill Handout

Section 4.3

October 31, 2019

Name:__

- (1) Sketch a graph of a function that is continuous on $(-\infty, \infty)$ and has the following properties. Use a sign graph to summarize information about the function.
 - (a) f'(-1) is undefined; f'(x) > 0 on $(-\infty, -1)$; f'(x) < 0 on $(-1, \infty)$.
 - (b) f'(-2) = f'(2) = f'(6) = 0; $f'(x) \ge 0$ on $(-\infty, \infty)$.

- (2) First Derivative Problems:
 - (a) Find the intervals on which $f(x) = x^2 \ln x$ is increasing and decreasing.
 - (b) Locate the critical points of $f(x) = 2x^5 5x^4 10x^3 + 4$ on [-2, 4] and the use the First Derivative Test to local the local maxima and minima. What are the absolute maxima and minima?

- (3) Sketch a graph of a function that is continuous on $(-\infty, \infty)$ and has the following properties. Use a sign graph to summarize information about the function.
 - (a) f'(x) < 0 and f''(x) > 0 on $(-\infty, 0)$; f'(x) < 0 and f''(x) > 0 on $(0, \infty)$.
 - (b) f'(x) < 0 and f''(x) < 0 on $(-\infty, 0)$; f'(x) < 0 and f''(x) < 0 on $(0, \infty)$.

- (4) Second Derivative Problems:
 - (a) Determine the intervals on which the function $f(x) = \frac{1}{1+x^2}$ is concave up or concave down. Identify any inflection points.
 - (b) Locate the critical points of the function $g(x) = \frac{x^4}{2-12x^2}$. Then use the Second Derivative Test to determine (if possible) whether they correspond to local maxima or minima.