# Relational Algebra Tutorial

**SWEN304/SWEN439** 

Lecturer: Dr Hui Ma

**Engineering and Computer Science** 





- Unary Operation: Select, Project, Rename
- Binary Operation: Join, Cartesian Product, Outer Join, Union, Interaction, Difference
- Relational algebra exercises

# Victoria UNIVERSITY OF WELLINGTON TE Winare Winanga o te Üpoko o te Ika a Mäui

## **Unary Operations**

- Project:  $\pi_{AL}(N)$ 
  - Example:  $\pi_{LName, FName}(Student)$
- Select:  $\sigma_c(N)$ 
  - Example:  $\sigma_{FName = 'Susan'}$  (Student)
- Rename:  $\delta_{AI \rightarrow BI,...,Ak \rightarrow Bk}(N)$ 
  - Example:  $\delta_{\text{FName} \rightarrow \text{FirstName}, \text{LName} \rightarrow \text{LastName}}$ (Student)



## **Binary Operations**

- Union:  $N_1 \cup N_2$ 
  - Example:  $\pi_{StudId}(Student) \cup \pi_{StudId}(Grades)$
- Interaction:  $N_1 \cap N_2$ 
  - Example:  $\pi_{StudId}(Student) \cap \pi_{StudId}(Grades)$
- Difference:  $N_1$   $N_2$ 
  - Example:  $\pi_{StudId}(Student) \pi_{StudId}(Grades)$



### Binary Operation: Join Operations

- Join operation joins two relations by merging those tuples from two relations that satisfy a given condition
  - The condition is defined on attributes belonging to relations to be joined
- Equijoin, natural join operations



## **Equijoin Operation**

• Notation:  $N = N_1 \bowtie_C N_2$ where  $JC = jc_1 \wedge ... \wedge jc_n$  $jc_i \equiv A = B, A \in R_1, B \in R_2,$ 

For example,

Student ⋈ StudId = StudId Grades

In SQL:

SELECT \*

FROM Student s, Grades g WHERE s.StudId = g.StudId;



# Equijoin

Equijoin:  $N_1 \bowtie_{N1.B=N2.B} N_2$ 

| $N_{I}$ |   |  |
|---------|---|--|
| А       | В |  |
| 1       | 2 |  |
| 3       | 3 |  |
| 4       | 4 |  |

$$N1.B = N2.B$$

|   | В        | C |
|---|----------|---|
| 2 | 2        | 7 |
|   | 4        | 9 |
|   | $\omega$ | 0 |

 $N_2$ 

| A | В | В | С |
|---|---|---|---|
| 1 | 2 | 2 | 7 |
| 4 | 4 | 4 | 9 |

Natural Join :  $N = N_1 * N_2$ 

| $N_1$ |   | _  | $N_{2}$  | 2 |   | Ì | V |   |
|-------|---|----|----------|---|---|---|---|---|
| Α     | В | *  | В        | С |   | A | В | C |
| 1     | 2 | ,, | 2        | 7 | = | 1 | 2 | 7 |
| 3     | 3 |    | 4        | 9 |   | 4 | 4 | 9 |
| 4     | 4 |    | $\omega$ | 0 |   |   |   |   |



## **Cartesian Product**

| $N_1$ |   |   | $N_2$    |   |   |
|-------|---|---|----------|---|---|
| Α     | В |   | В        | C |   |
| 1     | 2 | × | 2        | 7 | = |
| 3     | 3 |   | 4        | 9 |   |
| 4     | 4 |   | $\omega$ | 0 |   |
|       |   |   | -        |   |   |

| $N_1 \times N_2$ |   |          |   |  |
|------------------|---|----------|---|--|
| Α                | В | В        | C |  |
| 1                | 2 | 2        | 7 |  |
| 1                | 2 | 4        | 9 |  |
| 1                | 2 | $\omega$ | 0 |  |
| 3                | 3 | 2        | 7 |  |
| 3                | 3 | 4        | 9 |  |
| 3                | 3 | $\omega$ | 0 |  |
| 4                | 4 | 2        | 7 |  |
| 4                | 4 | 4        | 9 |  |
| 4                | 4 | $\omega$ | 0 |  |



#### **Outer Join**

#### Right Outer Join



$$N_2$$
 $C$ 
 $D$ 
 $2$ 
 $7$ 
 $2$ 
 $9$ 
 $\omega$ 
 $7$ 

$$N_1 \bowtie_{\mathsf{B}=\mathsf{C}} N_2$$

| Α | В | С | D |
|---|---|---|---|
| 1 | 2 | 2 | 7 |
| 1 | 2 | 2 | 9 |
| ω | ω | ω | 7 |

#### Full Outer Join

$$\begin{array}{c|cccc}
N_I \\
\hline
A & B \\
1 & 2 \\
\hline
5 & 6 \\
\end{array}$$

| $N_1 \supset I_{B=C} N_2$ |   |   |   |
|---------------------------|---|---|---|
| А                         | В | С | D |
| 1                         | 2 | 2 | 7 |
| 1                         | 2 | 2 | 9 |
| 5                         | 6 | ω | ω |
| ω                         | ω | ω | 7 |



#### **Summary or Relational Operations**

- SELECT  $\sigma_c(N)$  : choose rows
- PROJECT  $\pi_{A1,...,Ak}(N)$ : choose columns
- RENAME  $\delta_{AI \to BI,...,Ak \to Bk}(N)$ : rename attributes
- JOIN: combine tables
  - Natural Join  $N_1 * N_2$  or
  - Equi-Join  $N_1 \bowtie_{A1=B1,...,Ak=Bk} N_2$
- CARTESIAN PRODUCT ( x ): combine tables
- Set operations
  - UNION ( ∪ ),
  - INTERSECTION ( ∩ ),
  - DIFFERENCE (or MINUS, )
- Additional Relational Operations
  - OUTER JOINS



# A Sample Relational Database

#### **Student**

| LName | FName | StudId | Major |
|-------|-------|--------|-------|
| Smith | Susan | 131313 | Comp  |
| Bond  | James | 007007 | Math  |
| Smith | Susan | 555555 | Comp  |
| Cecil | John  | 010101 | Math  |

#### **Course**

| CName  | CourId | Points | Dept |
|--------|--------|--------|------|
| DB Sys | C302   | 15     | Comp |
| SofEng | C301   | 15     | Comp |
| DisMat | M214   | 22     | Math |
| Pr&Sys | C201   | 22     | Comp |

#### **Grades**

| StudId | CourId | Grade |
|--------|--------|-------|
| 007007 | C302   | A+    |
| 555555 | C302   | ω     |
| 007007 | C301   | Α     |
| 007007 | M214   | A+    |
| 131313 | C201   | B-    |
| 555555 | C201   | С     |
| 131313 | C302   | ω     |
| 007007 | C201   | Α     |
| 010101 | C201   | ω     |

11



#### **Exercises**

- Suppose we are given the university database instance as in slide 9. Write queries in relational algebra for the following queries
  - 1. Find all students with their ID who got at least one 'A+'
  - 2. Find students with their ID, FName, who have enrolled in C302
  - 3. Find students with their IDs who have enrolled in 'C201' but not 'C302'
  - 4. Find students who have enrolled in both 'M214' and 'C302'
  - 5. Find students who have neither enrolled in 'M214' nor in 'C302'
  - 6. Find students who major in 'Math' and got 'A+' in at least one course offered by computer science department