1 Lebesgue Integration Theory

1.1 Review of measure theory

Definition. Given a set E, a σ -algebra on E is a collection \mathcal{E} of subsets of E such that:

- (i) $E \in \mathcal{E}$;
- (ii) $A \in \mathcal{E} \Rightarrow A^c = E \setminus A \in \mathcal{A}$;
- (iii) $A_n \in \mathcal{E}, n \in \mathbb{N} \Rightarrow \bigcup_{n \in \mathbb{N}} A_n \in \mathcal{E}.$
- (E,\mathcal{E}) is called a measurable space, and any $A \in \mathcal{E}$ is called a measurable set.

Given a collection \mathcal{A} of subsets of E, $\sigma(\mathcal{A})$ is the smallest σ -algebra containing \mathcal{A} .

Definition. A measure on (E, \mathcal{E}) is a function $\mu : \mathcal{E} \to [0, \infty]$ such that

- (i) $\mu(\emptyset) = 0;$
- (ii) $A_n \in \mathcal{E}, n \in \mathbb{N} \text{ disjoint } \Rightarrow \mu\left(\bigcup_{n \in \mathbb{N}} A_n\right) = \sum_{n \in \mathbb{N}} \mu(A_n).$

 (E, \mathcal{E}, μ) is called a measure space.

Definition (Borel measure). If (E, τ) is a topological space, then $\sigma(\tau)$ is called a *Borel algebra*, denoted $\mathcal{B}(E)$, and a measure on $(E, \mathcal{B}(E))$ is called a *Borel measure*.

Example. $E = \mathbb{R}^n$, μ the Lebesgue measure satisfying $\mu((a_1, b_1) \times \ldots \times (a_n, b_n)) = (b_1 - a_1) \ldots (b_n - a_n)$.

Notation: we write $\mu(dx) = dx$ and $\mu(A) = |A|$ when μ is the Lebesgue measure.

Definition (Measurable function). Let (E, \mathcal{E}) and (F, \mathcal{F}) be measurable spaces. Then $f: E \to F$ is measurable if $f^{-1}(A) \in \mathcal{E}$ whenever $A \in \mathcal{F}$. If (E, \mathcal{E}) and (F, \mathcal{F}) are Borel algebras, a measurable function is called a Borel function. Special case: $(F, \mathcal{F}) = ([0, \infty], \mathcal{B}([0, \infty]))$, then $f: E \to F$ is called a nonnegative measurable function.

Fact. The class of measurable functions is closed under addition, multiplication and taking (pointwise) limits.

Definition. $f: E \to F$ $(F = [0, \infty] \text{ or } \mathbb{R}^n \text{ or } \mathbb{C}^n)$ is a *simple function* if $f = \sum_{k=1}^K a_k \mathbb{1}_{A_k}$ for some $K \in \mathbb{N}$, $a_k \in F$, $A_k \in \mathcal{E}$. For a simple function, the integral is

$$\int f d\mu = \int f(x) d\mu(x) = \sum_{k=1}^{K} a_k \mu(A_k) \ (0 \cdot \infty := 0).$$

For a non-negative measurable f, we define

$$\int f \mathrm{d}\mu = \sup \left\{ \int g \mathrm{d}\mu : g \text{ simple }, 0 \leq g \leq f \right\}.$$

Definition. A measurable function $f: E \to \mathbb{R}$ is said to be *integrable* if $\int |f| d\mu < \infty$. Write $f = f_+ - f_-$ with f_\pm non-negative, measurable, $\int f_\pm d\mu < \infty$, and then $\int f d\mu = \int f_+ d\mu - \int f_- d\mu$. For $f: E \to \mathbb{R}^n$, this is applied in each component.

Theorem (Monotone convergence theorem). Let (E, \mathcal{E}, μ) be a measure space, and let (f_n) be a (pointwise) increasing sequence of non-negative functions on E converging to f. Then

$$\lim_{n \to \infty} \int_E f_n d\mu = \int_E f d\mu.$$

Theorem (Dominated convergence theorem). Let (f_n) be a sequence of measurable functions on a measure space (E, \mathcal{E}, μ) such that:

- (i) $f_n \to f$ pointwise almost everywhere;
- (ii) $|f_n| \leq g$ almost everywhere for some integrable g.

Then

$$\lim_{n \to \infty} \int_E f_n d\mu = \int_E f d\mu.$$

1.2 L^p spaces

Definition. Let (E, \mathcal{E}, μ) be a measure space. For $p \in [1, \infty)$ and $f : E \to \mathbb{R}$ define

$$||f||_{L^p} = \left(\int_E |f|^p \mathrm{d}\mu\right)^{1/p}$$

and

$$||f||_{L^{\infty}} = \operatorname{esssup}|f| = \inf\{K : |f| \le K \text{ a.e}\}.$$

The space L^p , $p \in [1, \infty]$ is defined by

$$L^p = L^p(E, \mathcal{E}, \mu) = \{f : E \to \mathbb{R} \text{ measurable} : ||f||_{L^p} < \infty\}/\sim.$$

Where $f \sim g$ if f = g a.e.

Theorem (Riesz-Fisher theorem). L^p is a Banach space for all $p \in [1, \infty]$.

Notation: when $E = \mathbb{R}^n$, μ the Lebesgue measure, write $L^p(E, \mu) = L^p(\mathbb{R}^n)$.

Fact. For $p \in [1, \infty)$, the simple functions f with $\mu(\{x : f(x) \neq 0\}) < \infty$ are dense in L^p . For $p = \infty$ we can drop the condition on the measure of the support.

Definition. For $f, g : \mathbb{R}^n \to \mathbb{R}$, the convolution f * g is defined by

$$f * g(x) = \int_{\mathbb{R}^n} f(y)g(x-y)dy,$$

provided the integral exists. Note that f*g=g*f, convolution is associative, and $\mu(f*g)=\mu(f)\mu(g)$.

Theorem. $C_c^{\infty}(\mathbb{R}^n)$ is dense in $L^p(\mathbb{R}^n)$ for $p \in [1, \infty)$.

Before we prove the theorem, we will need some preliminary results.

Remark. This theorem is false for $p = \infty$.

Notation: a multiindex is $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{Z}_{\geq 0}^n$. Set $|\alpha| = \alpha_1 + \dots + \alpha_n$; $\alpha! = \alpha_1! \dots \alpha_n!$; $X^{\alpha} = X_1^{\alpha_1} \dots X_n^{\alpha_n}$ for $X \in \mathbb{R}^n$; $\nabla^{\alpha} f = D^{\alpha} f = \frac{\partial^{\alpha} f}{\partial x^{\alpha}} = \frac{\partial^{|\alpha|} f}{\partial x^{\alpha_1} \dots \partial x_n^{\alpha_n}}$.

Definition. We say $f \in L^p_{loc}(\mathbb{R}^n)$ if $f \mathbb{1}_K \in L^p(\mathbb{R}^n)$ for any $K \subseteq \mathbb{R}^n$ compact.

Proposition. Let $f \in L^1_{loc}(\mathbb{R}^n)$, $g \in C^k_c(\mathbb{R}^n)$, some $k \geq 0$. Then $f * g \in C^k(\mathbb{R}^n)$ and $\nabla^{\alpha}(f * g) = f * (\nabla^{\alpha}g)$ for all $|\alpha| \leq k$.

Proof. First we check for k=0. Set $T_zf(x)=f(x-z), z\in\mathbb{R}^n$. Then $T_z(f*g)=f*(T_zg)$. Also $T_zg(x)\to g(x)$ for all x as $z\to 0$ (continuity of g). Furthermore $|T_zg(x)|\leq ||g||_{L^\infty}\mathbb{1}_{B_R(0)}(x)$ if $|x|+1\leq R, |z|<1$ (we can just take R large enough so it holds everywhere since g has compact support). Then $|f(y)T_zg(x-y)|\leq C|f(y)|\mathbb{1}_{B_R(0)}(x-y)$, for $C:=||g||_{L^\infty}$.

Since $f \in L^1_{loc}(\mathbb{R}^n)$, $|f(y)|\mathbb{1}_{B_R(0)}(x-y)$ is integrable in y, so by the dominated convergence theorem,

$$T_z(f*g) = (f*T_zg)(x) = \int_{\mathbb{R}^n} f(y)T_zg(x-y)dy \xrightarrow{z\to 0} \int_{\mathbb{R}^n} f(y)g(x-y)dy = (f*g)(x).$$

And so $f * g \in C^0$. Now let k = 1. Let $\nabla_i^h g(x) = \frac{g(x + he_i) - g(x)}{h}$, where e_i is the *i*th unit vector. Then $\nabla_i^h g(x) \to \nabla_i g(x)$ as $h \to 0$.

By the mean value theorem, there exists $t \in [-h, h]$ such that

$$\nabla_i^h g(x) = \nabla_i g(x + te_i) \Rightarrow |\nabla_i^h g(x)| \le ||\nabla_i g||_{L^{\infty}} \mathbb{1}_{B_R(0)}(x).$$

Again by the dominated convergence theorem, $\nabla_i^h(f*g) = f*(\nabla_i^h g) \to f*\nabla_i g$. Thus $f*g \in C^1$. The case k>1 is similar, with induction.

Proposition (Minkowski's integral inequality). Let $p \in [1, \infty)$ and $f : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ Borel. Then

$$\left[\int_{\mathbb{R}^n} \left| \int_{\mathbb{R}^n} f(x, y) dx \right|^p dy \right]^{1/p} \le \int_{\mathbb{R}^n} \left| \int_{\mathbb{R}^n} |f(x, y)|^p dy \right|^{1/p} dx.$$

Proof. Example sheet 1.

Proposition. Let $p \in [1, \infty)$, $g \in L^p(\mathbb{R}^n)$. Then

$$||T_z g - g||_{L^p} \to 0 \text{ as } |z| \to 0.$$

Remark. This is not true for $p = \infty$. Let $\theta(x) = \mathbb{1}_{x \geq 0}$. Then $||T_z \theta - \theta||_{L^{\infty}} = 1$ if $z \neq 0$.

Proof. Consider first $g = \mathbb{1}_R$, R a rectangle. Then the result is clear. Hence it also follows for any finite union of rectangles. If B is a Borel set, $|B| < \infty$, then for every $\varepsilon > 0$, there exists a finite union of rectangles R such that

$$||\mathbb{1}_B - \mathbb{1}_R||_{L^p} = |B \triangle R|^{1/p} < \varepsilon.$$

Hence

$$||T_z\mathbbm{1}_B - \mathbbm{1}_B||_{L^p} \leq \underbrace{||T_z\mathbbm{1}_B - T_z\mathbbm{1}_R||_{L^p}}_{=||\mathbbm{1}_B - \mathbbm{1}_R||_{L^p}} + \underbrace{||T_z\mathbbm{1}_R - \mathbbm{1}_R||_{L^p}}_{<\varepsilon \text{ for } |z| \text{ small}} + \underbrace{||\mathbbm{1}_R - \mathbbm{1}_B||_{L^p}}_{<\varepsilon}.$$

Thus the result holds for $g = \mathbb{1}_B$, $B \in \mathcal{B}(\mathbb{R}^n)$. Thus the result holds for simple functions g. Finally, for any $g \in L^p$, there is a \tilde{g} simple such that $||g - \tilde{g}||_{L^p} < \varepsilon$. Then

$$||T_zg-g||_{L^p} \leq \underbrace{||T_zg-T_z\tilde{g}||_{L^p}}_{=||g-\tilde{g}||_{L^p}<\varepsilon} + \underbrace{||T_z\tilde{g}-\tilde{g}||_{L^p}}_{<\varepsilon \text{ for } |z| \text{ small}} + \underbrace{||g-\tilde{g}||_{L^p}}_{<\varepsilon}.$$

Theorem. Let $\varphi \in C_c^{\infty}(\mathbb{R}^n)$ be such that $\varphi \geq 0$ and $\int_{\mathbb{R}^n} \varphi dx = 1$ and set $\varphi_{\varepsilon}(x) = \varepsilon^{-n} \varphi(x/\varepsilon)$. Then for any $g \in L^p$, $p \in [1, \infty)$, it follows that $\varphi_{\varepsilon} * g \in C^{\infty}(\mathbb{R}^n)$ and $\varphi_{\varepsilon} * g \to g$ in L^p .

Proof. We have

$$\varphi_{\varepsilon} * g(x) - g(x)| = \left| \int_{\mathbb{R}^n} \left[\varphi_{\varepsilon}(y) g(x - y) - g(x) \right] dy \right|$$

$$= \left| \int_{\mathbb{R}^n} \varphi(z) \left[g(x - \varepsilon z) - g(x) \right] dz \right|$$

$$\leq \int_{\mathbb{R}^n} \varphi(z) \left| T_{\varepsilon z} g(x) - g(x) \right| dz.$$

Hence

$$\|\varphi_{\varepsilon} * g - g\|_{L^{p}} = \left(\int_{\mathbb{R}^{n}} \underbrace{|\varphi_{\varepsilon} * g - g|^{p}}_{\int_{\mathbb{R}^{n}} \varphi(z)|T_{\varepsilon z}g - g|dz} dx \right)^{1/p}$$

$$\leq \int_{\mathbb{R}^{n}} \left(\int_{\mathbb{R}^{n}} \varphi(z)^{p} |T_{\varepsilon z}g(x) - g(x)|^{p} dx \right)^{1/p} dz$$

$$= \int_{\mathbb{R}^{n}} \varphi(z) \underbrace{||T_{\varepsilon z}g - g||_{L^{p}}}_{\to 0 \text{ as } \varepsilon \to 0} dz$$

where the inequality comes from Minkowski's inequality. Also the final term tends to 0 as $\varepsilon \to 0$ by the DCT since $\varphi(z)||T_{\varepsilon z}g - g||_{L^p}|| \le 2\varphi(z)||g||_{L^p}$ and φ is integrable.

Definition. φ as above is called a (smooth) mollifier.

Corollary. $C_c^{\infty}(\mathbb{R}^n)$ is dense in $L^p(\mathbb{R}^n)$, $p \in [1, \infty)$.

Proof. The previous theorem implies $C^{\infty}(\mathbb{R}^n) \cap L^p(\mathbb{R}^n)$ is dense in L^p . Since $||f - f \mathbb{1}_{B_R(0)}||_{L^p} \to 0$ as $R \to \infty$ by the DCT, for $f \in L^p$, applying the theorem with $g = f \mathbb{1}_{B_R(0)}$ it follows that $C_c^{\infty}(\mathbb{R}^n)$ is dense in L^p .

1.3 Lebesgue Differentiation Theorem

Recall:

Theorem (Fundamental Theorem of Calculus). For $f : \mathbb{R} \to \mathbb{R}$ continuous, $F(x) := \int_0^x f(t) dt$ is differentiable with F'(x) = f(x).

We actually have a stronger result:

Theorem (Lebesgue Differentiation Theorem). For $f: \mathbb{R}^n \to \mathbb{R}$ integrable,

$$\lim_{r \to 0} \frac{1}{|B_r(x)|} \int_{B_r(x)} |f(y) - f(x)| dy = 0 \text{ for almost all } x.$$

The x for which this holds are called Lebesgue points.

We will need a few preliminary results and definitions before we can prove this.

Corollary. If $g \in L^1(\mathbb{R})$ and $G(x) = \int_{-\infty}^x g(t) dt$, then G is differentiable for almost every x with G'(x) = g(x).

Corollary. If φ is a smooth mollifier and $g \in L^p(\mathbb{R}^n)$, then $\varphi_{\varepsilon} * g \xrightarrow{\varepsilon \to 0} g$ almost everywhere.

Definition. For $f: \mathbb{R}^n \to \mathbb{R}$ integrable, the Hardy-Littlewood Maximal Function Mf: $\mathbb{R}^n \to [0, \infty]$ is defined by

$$Mf(x) = \sup_{r>0} \frac{1}{|B_r(x)|} \int_{B_r(x)} |f(y)| dy.$$

Remark. We sometimes write $\int_{B_r(x)} |f(y)| dy$ for $\frac{1}{|B_r(x)|} \int_{B_r(x)} |f(y)| dy$.

Lemma (Wiener's covering lemma). If K is compact and $K \subseteq \bigcup_{i=1}^N B_i$ for open balls $(B_i)_{i=1}^N$, there exists a subcollection $(B_{i_k})_k$ of disjoint balls such that

$$\left| \bigcup_{i=1}^{N} B_i \right| \le 3^n \sum_{k} |B_{i_k}|.$$

Proof. Example sheet.

Proposition. Take $f \in L^1(\mathbb{R}^n)$. Then Mf is a Borel function, finite almost everywhere, and

$$|\underbrace{\{\mathrm{Mf} > \lambda\}}_{:=A_{\lambda}}| \le \frac{3^n}{\lambda} ||f||_{L^1}.$$

Proof. For each $x \in A_{\lambda}$, there exists $r_x > 0$ such that

$$\frac{1}{B_{r_x}(x)} \int_{B_{r_x}(x)} |f(y)| \mathrm{d}y > \lambda.$$

We claim that A_{λ} is open. Then we will have shown Mf is Borel as the $A_{\lambda}=(\mathrm{Mf})^{-1}((\lambda,\infty])$ are open, and the sets $(\lambda,\infty]$ generate the Borel σ -algebra.

We'll actually show A_{λ}^c is closed. Suppose $(x_k)_{k\geq 1}$ is a sequence in A_{λ}^c with $x_k \to x$. Suppose $x \in A_{\lambda}$. By the Dominated Convergence Theorem,

$$\frac{1}{B_{r_x}(x_k)} \int_{B_{r_x}(x_k)} |f(y)| dy \to \frac{1}{B_{r_x}(x)} \int_{B_{r_x}(x)} |f(y)| dy.$$

Since $x_k \notin A_\lambda$, the LHS is $\leq \lambda$ for all k, but the RHS is $> \lambda$ which is impossible. Hence $x \in A_\lambda^c$ and A_λ^c is closed.

To prove the inequality, let $K \subseteq A_{\lambda}$ be compact. Since $\{B_{r_x}(x)\}_{x \in A_{\lambda}}$ is an open cover of K, there exists a finite subcover $K \subseteq \bigcup_{i=1}^N B_i$, where $B_i = B_{r_x}(x)$ for

some $x \in A_{\lambda}$. Now take a subcollection $(B_{i_k})_k$ of disjoint balls as in Wiener's covering lemma.

Since $\frac{1}{|B_i|}\int_{B_i}|f(y)|\mathrm{d}y>\lambda$, it follows that $|B_i|<\frac{1}{\lambda}\int_{B_i}|f(y)|\mathrm{d}y$. Hence

$$|K| \leq 3^n \sum_k |B_{i_k}| < \frac{3^n}{\lambda} \sum_k \int_{B_{i_k}} |f(y)| \mathrm{d}y \leq \frac{3^n}{\lambda} \int_{\mathbb{R}^n} |f(y)| \mathrm{d}y.$$

Since this holds for any $K \subseteq A_{\lambda}$ compact, by regularity of the Lebesgue measure, it also holds for A_{λ} . In particular, $|\{\mathrm{Mf} = \infty\}| \leq |\{\mathrm{Mf} > \lambda\}| \xrightarrow{\lambda \to \infty} 0$, i,e $\mathrm{Mf} < \infty$ almost everywhere.

Now we are ready to prove:

Theorem (Lebesgue Differentiation Theorem). For $f: \mathbb{R}^n \to \mathbb{R}$ integrable,

$$\lim_{r\to 0} \frac{1}{|B_r(x)|} \int_{B_r(x)} |f(y) - f(x)| dy = 0 \text{ for almost all } x.$$

The x for which this holds are called Lebesgue points.

Proof. Let

$$A_{\lambda} = \left\{ x \in \mathbb{R}^n : \limsup_{r \to 0} \int_{B_r(x)} |f(y) - f(x)| \mathrm{d}y > 2\lambda \right\}$$

Then it suffices to show $|A_{\lambda}| = 0$ for any $\lambda > 0$. Indeed, the non-Lebesgue points are then $\bigcup_n A_{1/n}$, a countable union of sets of measure 0.

Given $\varepsilon > 0$, let $g \in C_c^{\infty}(\mathbb{R}^n)$ be such that $||f - g||_{L^1} < \varepsilon$. Then

$$\underbrace{\int_{B_r(x)} |f(y) - f(x)| \mathrm{d}y}_{\leq \underbrace{\int_{B_r(x)} |f(y) - g(y)| \mathrm{d}y}_{\leq M(f - g)(x)} + |f(x) - g(x)| + \underbrace{\int_{B_r(x)} |g(x) - g(y)| \mathrm{d}y}_{\to 0 \text{ since } g \in C^{\infty}}.$$

$$\implies \limsup_{r \to 0} \int_{B_r(x)} |f(y) - f(x)| \mathrm{d}y \le M(f - g)(x) + |f(x) - g(x)|.$$

If $x \in A_{\lambda}$, then either $M(f-g)(x) > \lambda$ or $|f(x) - g(x)| > \lambda$. The Hardy-Littlewood maximal inequality says $|\{M(f-g) > \lambda\}| \leq \frac{3^n}{\lambda}||f-g||_{L^1}$. Then by Markov's inequality $|\{|f-g| > \lambda\}| \leq \frac{1}{\lambda}||f-g||_{L^1}$. Hence

$$|A_{\lambda}| \le \frac{3^n + 1}{\lambda} ||f - g||_{L^1} < \frac{3^{n+1} + 1}{\lambda} \varepsilon.$$

Since $\varepsilon > 0$ was arbitrary, $|A_{\lambda}| = 0$.

1.4 Littlewood's Principles

Theorem (Egorov). Let $E \subseteq \mathbb{R}^n$, $|E| < \infty$, and $f_k : E \to \mathbb{R}$, $k \ge 1$ be a sequence of measurable functions such that $f_k \to f$ almost everwhere. Then for every $\varepsilon > 0$, there is a closed subset $A_{\varepsilon} \subseteq E$ such that $|E \setminus A_{\varepsilon}| < \varepsilon$ and $f_k \to f$ uniformly on A_{ε} .

Proof. Without loss of generality, $f_k(x) \to f(x)$ for all $x \in E$ (otherwise restrict to a subset of E of full measure). Let

$$E_k^n = \left\{ x \in E : |f_j(x) - f(x)| < \frac{1}{n} \ \forall j > k \right\}.$$

Then $E_{k+1}^n \supseteq E_k^n$, $\bigcup_k E_k^n = E$, hence $|E_k^n| \uparrow |E|$ as $k \to \infty$. Let k_n be such that $|E \setminus E_{k_n}^n| < 2^{-n}$ and for $N \in \mathbb{N}$ set

$$A_N = \bigcap_{n \ge N} E_{k_n}^n \implies |E \setminus A_N| \le \sum_{n \ge N} |E \setminus E_{k_n}^n| \le 2^{-N+1} < \varepsilon \text{ for } N = N_{\varepsilon}.$$

Now it suffices to show $f_j \to f$ uniformly on A_N . Indeed, for $x \in A_N$ and any $n \ge N$, $|f_j(x) - f(x)| < \frac{1}{n}$ for all $j > k_n$. Hence $\limsup_{j \to \infty} \sup_{A_N} |f_j - f| \le \frac{1}{n}$ for all $n \ge N$, hence $\lim_{j \to \infty} \sup_{A_N} |f_j - f| = 0$.

Theorem (Lusin). Let $f: E \to \mathbb{R}$ be a Borel function, where $E \subseteq \mathbb{R}^n$ and $|E| < \infty$. Then for every $\varepsilon > 0$, there exists $F_{\varepsilon} \subseteq E$ closed such that $|E \setminus F_{\varepsilon}| < \varepsilon$ and $f|_{F_{\varepsilon}}$ is continuous.

Remark. Careful: this does <u>not</u> mean that f is continuous at $x \in F_{\varepsilon}$ in the topology of \mathbb{R}^n .

Proof. First we show that the statement holds for simple functions f. Let $f = \sum_{m=1}^M a_m \mathbbm{1}_{A_m}$ with the A_m disjoint and $\bigcup_m A_m = E$. Then there are compact sets $K_m \subseteq A_m$ with $|A_m \setminus K_m| < \frac{\varepsilon}{M}$ by regularity of the Lebesgue measure. Then if $F_\varepsilon = \bigcup_m K_m$, $|E \setminus F_\varepsilon| < \varepsilon$. Since f is constant on each K_m , and the distance between K_m and $K_{m'}$ is strictly positive for $m \neq m'$ (compactness), this implies $f|_{F_\varepsilon}$ is continuous.

Now we show the statement holds for any measurable f. Let f_n be simple functions such that $f_n \to f$ almost everywhere, and $C_n \subseteq E$ be such that $|C_n| < 2^{-n}$ and $f_n|_{E \setminus C_n}$ is continuous for all n. By Egorov's Theorem, there exists A_ε such that $f_n \to f$ uniformly on A_ε and $|E \setminus A_\varepsilon| < \varepsilon$. Set $F'_\varepsilon = A_\varepsilon \setminus \bigcup_{n \ge N} C_n$ so $|E \setminus F'_\varepsilon| < 2\varepsilon$ for $N = N_\varepsilon$ sufficiently large. Since $f_n|_{F'_\varepsilon}$, $n \ge N$ is continuous $f_n \to f$ uniformly on F'_ε , $f|_{F'_\varepsilon}$ is continuous.

By regularity of the Lebesgue measure, there exists F_{ε} closed with $|F_{\varepsilon} \setminus F'_{\varepsilon}| < \varepsilon$ so $|E \setminus F_{\varepsilon}| < 3\varepsilon$ and we are done.