Assignment Project Exam Help

Add WeChat edu_assist_pro

Assignment Project Exam Help

https://eduassistpro.glthub.lo/

for processistem edu_assistem CIS 418

AMiarkovtchains: Background

- Markov chain is a glace wie that edu_assist edu_bers.
- Law of Large Numbers: assumes that every random outcome that we generate is independent of the previous outcomes.
- Markov chain: is called a memoryless process. The idea is that it has "short-term memory" the future depends only on the current state of the process. This is the less assumption of the process. This is the less assumption of the process.
- Example: Class all https://eduassistpro.github.io/

Avigravevt chaires: Expelleations

- Examples of Markovchains applie edu_assist_pro
 - Describing communication systems
 - Queueing systems
 - Signal processing
 - Manufacturingignment Project Exam Help
 - Music: for exa /watch?v=qOZ2Q-Ls48U
 - Finance. Today https://eduassistpro.gifthqubsidefault.

Add WeChat edu_assist_pro

Videos that explain what Markov chains are:

- https://www.youtube.com/watch?v=63HHmjlh794
- https://www.youtube.com/watch?v=EqUfuT3CC8s
- https://www.youtube.com/watch?v=Ws63I3F7Moc

Detignating vige Major Assencies

Add	M	/e(Chat	ed	lu a	SS	ist	pro
								-

Moody's	Standard & Poor's	Interpretation
Aaa	AAA	Highest quality
Aa	AA.	High quality
Α	Assignm	High quality ent Project Exam Help Strong payment capacity
Baa	BBB	e://eduassistoro wment capacity
Ва	BB Add	s://eduassistpro.github.io/ tion, ongoing WeChat edu_assistnpro
В	В	High -risk obligations
Caa/Ca/C	CCC/CC/C	Current vulnerability to default
C	D	In Default

Future bonde ptaymients may be uncertain

Add WeChat edu_assist_pro

This is an example with a 7-year bond, i 00\$ face value, 6% annual coupon. Table illustrates some scenarios of possible cash flows.

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Question: What is the probability for different scenarios?

Price aibona baseia con expected return

Add WeChat edu_assist_pro (as opposed to n)

Need to consider how to model bond default:

- Probability of default at a given time
- Percentage of principal mantil Projecte Example Leaf perault

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Expectied payoff from a whely ear bond

Add WeChat edu_assist_pro

Symbol	Definition
F	Face value
q	Annual promised coupon rate (%)
$\pi_{_D}$	Probability of default roject Exam Help
λ	Fraction o collect in case of
,,	default https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Expected Payo

Expected spayments of the Expected spayments

Symbol	Add WeChat edu_assist_pro Definition
F	Face value
q	Annual promised coupon rate (%)
$\pi_{\scriptscriptstyle D}^{-1}$	Probability of default in year 1 Probability of default in year 2, given that there was no
π_D^{-2}	default i
λ	Fraction https://eduassistpro.githubtip/case of default

Exp. Payoff Year
$$1 = \pi_D^1 \cdot \lambda F + (1 - \pi_D^1) \cdot qF$$

$$\text{Exp. Payoff Year 2} = \pi_D^1 \cdot 0 + \left(1 - \pi_D^1\right) \cdot \left(\underbrace{\pi_D^2 \cdot \lambda F}_{\text{default_year_2}} + \underbrace{\left(1 - \pi_D^2\right) \cdot \left(1 + q\right) F}_{\text{no_default_year_2}}\right)$$

A simplified model of upgrades and downgrades depends he *latest* rating

Add WeChat edu_assist_pro bility of transition

during one period to rating:

9

Rating	Interpretation	А	В	D	Е
Α	Highest quality, pays as promised	99%	1%	0	0
В	Highest quality, pays as promised Assignment Project Next highest, pays as promised	Exam F	ieip 96%	1%	0
D	First time def https://eduassis	tpro.git	hub.ic)/ 0	100%
Е	Defaulted in a previous period, pa nothing	du_assis	st_œrc	0	100%

- The lower the ranking, the higher the probability of going into default.
- Possible to get payment only upon initial default, hence two default states (*D* and *E*) are needed for the model.

Simon Business School CIS-418 Ricky Roet-Green

Assignment i Creiest Esent Hulon

Add WeChat edu_assist_pro

In mathematical notation the same information is ca a matrix

Add WeChat edu_assist_pro

Transition Matrix

Rating	А	Assignment Project Exam Hep .01	0	$0 \rfloor$
Α	99%	1%		
В	3%	96%https://eduassistpro.github.io/		
D	0	O Add WeChat edu_ass st_pro		
Е	0	o Add wet hat edu_assisppro	0	1

Assignment Project Exam Helpx

Add WeChat edu_assist_pro More generally, this matrix r sition probabilities

12

$$\begin{bmatrix} \pi_{AA} & \pi_{AB} & \pi_{AD} & \pi_{AE} \\ \pi_{BA} & \pi_{BB} & \pi_{BD} & \pi_{BE} \\ \text{gnment Project Exam Help} \\ \pi_{DA} & \pi_{DB} & \pi_{DD} & \pi_{DE} \\ \text{https://eduassistpre.github.io/} \\ \Delta dd WeChat edu assist pro$$

Add WeChat edu_assist_pro

 π_{XY} Represents the probability of transitioning from state (rating) X to state (rating) Y in one period.

Howigh read Project Exsittible matrix?

Add WeChat edu_assist_pro

$$\Pi = \begin{bmatrix} .99 & .01 & 0 & 0 \\ .03 & .96 & .01 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \pi_{AA} & \pi_{AB} & \pi_{AD} & \pi_{AE} \\ \pi_{BA} & \pi_{BB} & \pi_{BD} & \pi_{BE} \\ \pi_{CA} & \pi_{CB} & \pi_{CB} & \pi_{CB} \\ \pi_{CA} & \pi_{CB} & \pi_{CB} & \pi_{CB} \\ \pi_{CB} & \pi_{CB} & \pi_{CB} & \pi_{CB} \\$$

- Say we start with an https://eduassistpro.githuboiQing into default in year 1?
 - Given the value Avacas is the Chatredu_assisthing to an A-rated bond over one period: it ating, or get downgraded to B. The probability of going into default, π_{AD} , is zero.

So if the bond matures in one period, what payout should we expect?

$$\underbrace{\left(\pi_{AA} + \pi_{AB}\right) \cdot \left(1 + q\right) F}_{not \ in \ default \ and \ at \ maturity} + \underbrace{\pi_{AD} \cdot \lambda F}_{just_defaulted} + \underbrace{\pi_{AE} \cdot 0}_{already_in_default}$$

Second period triansition probability

In this model, what will hap Chhat edu_assisted Food in the second period? Given data in our model, it can end up either rated A or B or it can go into default for the first time:

$$\begin{bmatrix} \pi_{AA} & \pi_{AB} & 0 & 0 \\ \pi_{BA} & \pi_{BB} & \mathbf{A} \mathbf{S} \mathbf{S} \mathbf{i} \mathbf{g} \mathbf{n} \mathbf{ment} & \mathbf{Proje} \mathbf{E} \mathbf{A} \mathbf{E} \mathbf{x} \mathbf{a} \mathbf{n} \mathbf{n} & \mathbf{Help} + \pi_{AB} \cdot \pi_{BB} \\ 0 & 0 & 0 & 1 \\ 0 & 0 & \mathbf{https://eduassistpro.github.io/} \\ \pi_{AE}^2 = 0 \\ \mathbf{Add} & \mathbf{WeChat} & \mathbf{edu_assist_pro} \\ \mathbf{f} \text{ the bond matures in the second perior} & \mathbf{tshould we expect} \\ \mathbf{f} \text{ the bond matures in the second perior} & \mathbf{tshould we expect} \\ \mathbf{f} \text{ the bond matures in the second perior} & \mathbf{tshould we expect} \\ \mathbf{f} \text{ the bond matures in the second perior} & \mathbf{tshould we expect} \\ \mathbf{f} \text{ the bond matures in the second perior} & \mathbf{tshould we expect} \\ \mathbf{f} \text{ the bond matures in the second perior} & \mathbf{tshould we expect} \\ \mathbf{f} \text{ the bond matures in the second perior} & \mathbf{tshould we expect} \\ \mathbf{f} \text{ the bond matures in the second perior} \\ \mathbf{f} \text{ the bond matures in the second perior} & \mathbf{tshould we expect} \\ \mathbf{f} \text{ the bond matures in the second perior} \\ \mathbf{f} \text{ the bon$$

So if the bond matures in the second perio t should we expect in the second period?

$$\underbrace{\left(\pi_{AA}^{2} + \pi_{AB}^{2}\right) \cdot \left(1 + q\right) F}_{not_in_default_and_at_maturity} + \pi_{AD}^{2} \cdot \lambda F + \pi_{AE}^{2} \cdot 0$$

$$\underbrace{\left(\pi_{AA}^{2} + \pi_{AB}^{2}\right) \cdot \left(1 + q\right) F}_{not_in_default_and_at_maturity} + \underbrace{\left(\pi_{AB}^{2} + \pi_{AB}^{2}\right) \cdot \lambda F}_{just_defaulted} + \underbrace{\left(\pi_{AB}^{2} + \pi_{AB}^{2}\right) \cdot \left(1 + q\right) F}_{location} + \underbrace{\left(\pi_{AB}^{2} + \pi_{AB}^{2}\right) \cdot \left(1 + q\right) F}_{just_defaulted} + \underbrace{\left(\pi_{AB}^{2} + \pi_{AB}^{2}\right) \cdot \left(1 + q\right) F}_{location} + \underbrace{\left(\pi_{AB}^{2} + \pi_{AB}^{2}\right) \cdot \lambda F}_{location} + \underbrace{\left(\pi_{AB}^{$$

A Expected payout in period n

Add WeChat edu_assist_pro
If we start out with an A-rated bond, we c expected payout in period n. If *n* is prior to maturity:

If *n* is at maturity, face

https://eduassistpro.github.io/

$$(\pi_{AA}^{n} + \pi_{AB}^{n}) \cdot (\mathbf{Add}) \mathbf{WeChat edgrassist}_{AB}^{n} \mathbf{pro}$$

$$\underline{(\pi_{AA}^{n} + \pi_{AB}^{n}) \cdot (\mathbf{Add}) \mathbf{WeChat edgrassist}_{AB}^{n} \mathbf{pro}}_{\text{already_in_default}}$$

$$\underline{(\pi_{AA}^{n} + \pi_{AB}^{n}) \cdot (\mathbf{Add}) \mathbf{WeChat edgrassist}_{AB}^{n} \mathbf{pro}}_{\text{already_in_default}}$$

$$\underline{(\pi_{AA}^{n} + \pi_{AB}^{n}) \cdot (\mathbf{Add}) \mathbf{WeChat edgrassist}_{AB}^{n} \mathbf{pro}}_{\text{already_in_default}}$$

After maturity we do not expect any cash flows...

How to calculate the piriod transition probabilities?

We can think of transitions as two-step e-consider the rating in period n-1, and then the next one-period transition:

$$\pi^n_{AA}=\pi^{n-1}_{AA}\cdot\pi_{AA}+\pi^{n-1}_{AB}\cdot\pi_{BA}$$

Assignment Project Tax and Help

https://eduassistpro.github.io/
$$\pi_{AE}^{n} = \pi_{AD}^{n-1} \cdot \pi_{AE}$$
https://eduassistpro.github.io/
 $\pi_{AE}^{n} = \pi_{AD}^{n-1} \cdot 1 + \pi_{AE}^{n-1} \cdot 1$
Add WeChat edu_assist_pro

We use matrices multiplication:

$$\begin{bmatrix} \pi_{AA}^{n} & \pi_{AB}^{n} & \pi_{AD}^{n} & \pi_{AE}^{n} \end{bmatrix} = \begin{bmatrix} \pi_{AA}^{n-1} & \pi_{AB}^{n-1} & \pi_{AD}^{n-1} & \pi_{AE}^{n-1} \end{bmatrix} \begin{bmatrix} \pi_{AA} & \pi_{AB} & 0 & 0 \\ \pi_{BA} & \pi_{BB} & \pi_{BD} & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Simon Business School CIS-418 Ricky Roet-Green

Assignment Broject Catem atth

Add WeChat edu_assist_pro
Another way to find the probabilitie ings in period n for a bond initially rated A is to multiply the initial probabilities by the transition matrix *n* times

Assignment Project Exam Help
$$0 \quad 0$$

$$\left[\pi_{AA}^{n} \quad \pi_{AB}^{n} \quad \pi_{AD}^{n} \right] / \text{eduassistpro.github.io}$$

$$\text{Add WeChat edu_assist_pr0} \quad 1 \right]$$

Calculate the reast from deperiod n

Add WeChat edu_assist_pro

If we know the probabilities of diff or a bond in period *n*, we can calculate the cash flow during that period.

If *n* is prior to maturity, then the cash flow is

Add WeChat edu_assist_pro

If *n* is at maturity, then the cash flow is
$$\left[\pi_{AA}^{n} \quad \pi_{AB}^{n} \quad \pi_{AD}^{n} \quad \pi_{AE}^{n} \right] \times \begin{bmatrix} (1+q)F \\ (1+q)F \\ \lambda F \\ 0 \end{bmatrix}$$

Assignment Project Exam Help

Add WeChat edu_assist_pro

• A 10-year bond issued today *at p* face value) with an A rating is assumed to bear a coupon rate of 7 percent. The transition matrix is given in the file *Bond Default Example.xlxs*. What should be its actual coupon rate?

Assignment Project Exam Help

• If another 10-year rating and with the recovery percenta https://eduassistpro.git/pubates/ that it is also sold *at par*?

Add WeChat edu_assist_pro

Assignment Project Exam Help

Add WeChat edu_assist_pro

- Think about creating a schedule of rresponding to bond payoffs every year.
- Start out testing your spreadsheet with the A-rated bond
- Use Excel NPV function to calculate the PV of the bond.
- What is the New Signment Projectly the dan that the A-rated bond is sold at par?
- Use Excel's GoalS https://eduassistpro.github.ip/n rate for the B-rated bond.

 Add WeChat edu_assist_pro