Grade received 100% To pass 80% or higher

Go to next item

Unsupervised Learning

For which of the following tasks might K-means clustering be a suitable algorithm? Select all that apply.	1/1 point
Given historical weather records, predict if tomorrow's weather will be sunny or rainy.	
From the user usage patterns on a website, figure out what different groups of users exist.	
✓ Correct	
We can cluster the users with K-means to find different, distinct groups.	
Given many emails, you want to determine if they are Spam or Non-Spam emails.	
Given a set of news articles from many different news websites, find out what are the main topics covered.	
⊘ Correct	
K-means can cluster the articles and then we can inspect them or use other methods to infer what topic each cluster represents	
Γ ₄ Γ ο Γ ο Γ ο Γ ο Γ ο Γ ο Γ ο Γ ο Γ ο Γ	
Suppose we have three cluster centroids $\mu_1=\begin{bmatrix}1\\2\end{bmatrix}$, $\mu_2=\begin{bmatrix}-3\\0\end{bmatrix}$ and $\mu_3=\begin{bmatrix}4\\2\end{bmatrix}$. Furthermore, we have a	1 / 1 point
training example $x^{(i)} = egin{bmatrix} 3 \\ 1 \end{bmatrix}$. After a cluster assignment step, what will $c^{(i)}$ be?	
$\bigcirc \ c^{(i)} = 1$	
$\bigcirc \ c^{(i)}$ is not assigned	
$igotimes c^{(i)}=3$	
$\bigcirc \ c^{(i)}=2$	
✓ Correct	
$x^{(i)}$ is closest to μ_3 , so $c^{(i)}=3$	
K-means is an iterative algorithm, and two of the following steps are repeatedly carried out in its inner-loop.	1/1 point
Which two?	
Randomly initialize the cluster centroids.	
The electron set of the parameters $c^{(i)}$ are undetected.	
The cluster assignment step, where the parameters $c^{(\imath)}$ are updated.	
 ✓ Correct This is the correst first step of the K-means loop. 	
Move the cluster centroids, where the centroids μ_k are updated.	
✓ Correct The cluster update is the second step of the K-means loop.	
Suppose you have an unlabeled dataset $\{x^{(1)},\ldots,x^{(m)}\}$. You run K-means with 50 different random	
initializations, and obtain 50 different clusterings of the	1/1 point
data. What is the recommended way for choosing which one of	
these 50 clusterings to use?	
The answer is ambiguous, and there is no good way of choosing.	
$lackbox{ }$ For each of the clusterings, compute $rac{1}{m}\sum_{i=1}^m x^{(i)}-\mu_{c^{(i)}} ^2$, and pick the one that minimizes this.	
\bigcirc The only way to do so is if we also have labels $y^{(i)}$ for our data.	
Always pick the final (50th) clustering found, since by that time it is more likely to have converged to a good	
solution.	
✓ Correct This function is the distortion function. Since a lower value for the distortion function implies a better	
clustering, you should choose the clustering with the smallest value for the distortion function.	
Which of the following statements are true? Select all that apply.	1/1 point
K-Means will always give the same results regardless of the initialization of the centroids.	
On every iteration of K-means, the cost function $J(c^{(1)},\ldots,c^{(m)},\mu_1,\ldots,\mu_k)$ (the distortion function)	
should either stay the same or decrease; in particular, it should not increase.	
Correct Details the elector assignment and elector undata stone decrease the cost / distantian function as it should	
Both the cluster assignment and cluster update steps decrese the cost / distortion function, so it should never increase after an iteration of K-means.	
Once an example has been assigned to a particular centroid, it will never be reassigned to another different	
centroid	
A good way to initialize K-means is to select K (distinct) examples from the training set and set the cluster centroids equal to these selected examples.	
✓ Correct	

This is the recommended method of initialization.