[Homework 1] Review of Probability Theory

• 如果你使用mac系统和chrome浏览器,遇到了数学字体渲染问题,请换用safari打开。

作业要求

- 1. 本次作业允许讨论,但必须自己独立完成所有证明的写作(即不允许直接复制粘贴,或者直接照 抄同学或者参考资料的现成证明)。
- 2. 如果有与同学讨论,必须注明所有参与讨论同学的名字。
- 3. 如果有参考其他资料完成作业,必须注明参考来源。

Probability Space of Tossing Coins

Let us construct the probability space of tossing an infinite sequence of independent fair coins. Let $\Omega=\{0,1\}^{\mathbb{N}}$. We can write each $\omega\in\Omega$ as an infinite sequence $\omega=(\omega_1,\omega_2,\ldots)$ where $\omega_i\in\{0,1\}$.

1. Let $n \in \mathbb{N}$. For every $s = (s_1, \ldots, s_n) \in \{0,1\}^n$, let

$$C_s = \{\omega \in \Omega \mid \omega_1 = s_1, \dots, \omega_n = s_n\}.$$

Prove that for every $n\in\mathbb{N}$, the collection $\{C_s\}_{s\in\{0,1\}^n}$ forms a partition of Ω .

- 1. Let \mathcal{F}_n be the σ -algebra generated by $\{C_s\}_{s\in\{0,1\}^n}$ (that is, the minimal σ -algebra containing sets in $\{C_s\}_{s\in\{0,1\}^n}$). Note that \mathcal{F}_n is called the σ -algebra of tossing n coins. Prove that there exists a bijection between \mathcal{F}_n and $2^{\{0,1\}^n}$.
- 2. Prove that $\mathcal{F}_1 \subsetneq \mathcal{F}_2 \subsetneq \ldots$ is increasing. The collection $\{\mathcal{F}_n\}_{n\geq 1}$ is called a *filtration*.
- 3. Let $\mathcal{F}_\infty=igcup_{n\geq 1}\mathcal{F}_n^{-1}$. Prove that \mathcal{F}_∞ is an algebra 2 (not necessarily a σ -algebra) and $\mathcal{F}_\infty
 eq 2^\Omega$.
- 4. Let $\mathcal{B}(\Omega) \triangleq \sigma(\mathcal{F}_{\infty})$ be the minimal σ -algebra containing \mathcal{F}_{∞} . Prove that for any $\omega \in \Omega$, it holds that $\{\omega\} \in \mathcal{B}(\Omega) \setminus \mathcal{F}_{\infty}$.
- 5. Prove that for every $A\in\mathcal{F}_{\infty}$, there exist some $n\in\mathbb{N}$ and $s_1,\ldots,s_k\in\{0,1\}^n$ such that $A=C_{s_1}\cup\cdots\cup C_{s_k}$. Although the choice of n might not be unique, prove that the value $\frac{k}{2^n}$ only depends on A.
- 6. Prove that there exists a unique probability measure $P:\mathcal{B}(\Omega) \to [0,1]$ satisfying for every $A \in \mathcal{F}_{\infty}$, $P(A) = \frac{k}{2^n}$ where k and n are defined in the last question. (You can use the <u>Carathéodory's extension theorem</u>)

Then $(\Omega, \mathcal{B}(\Omega), P)$ is our probability space for tossing coins, and it is isomorphic to the Lebesgue measure on [0,1].

8. Formalize $X \sim \mathtt{Geom}(1/2)$ in this probability space.

Conditional Expectation

(In this problem, all random variables take discrete value)

- 1. Let X be a random variable and $f: \mathbb{R} \to \mathbb{R}$ be a measurable function (that is, for every borel set $A \in \mathcal{R}$, $f^{-1}(A) \in \mathcal{R}$). We usually use f(X) to denote the random variable: $\omega \in \Omega \mapsto f(X(\omega)) \in \mathbb{R}$. Prove that f(X) is $\sigma(X)$ -measurable.
- 2. Let Y,Y' be two random variables such that $\sigma(Y)=\sigma(Y')$. Prove that $\mathbf{E}\ [X\mid Y]=\mathbf{E}\ [X\mid Y'].$

(The fact you just proved should convince you that the conditional expectation $\mathbf{E}\left[X\mid Y\right]$ only depends on the σ -algebra $\sigma(Y)$ (but not the value of Y). Let Ω be the set of outcomes and $X:\Omega\to\mathbb{R}$ be a random variable. Let $\mathcal{F}=\sigma(Y)$ be a σ -algebra for some random variable Y. Then we define $\mathbf{E}\left[X\mid \mathcal{F}\right]\triangleq\mathbf{E}\left[X\mid Y\right]$. This notation will be useful in the future class)

- 3. (The coarser always wins) Let $\mathcal{F}_1, \mathcal{F}_2$ be two σ -algebra where $\mathcal{F}_1 = \sigma(Y_1)$ and $\mathcal{F}_2 = \sigma(Y_2)$. Assume that $\mathcal{F}_1 \subseteq \mathcal{F}_2$ and let $X: \Omega \to \mathbb{R}$ be a random variable. Prove that $\mathbf{E} \left[\mathbf{E} \left[X \mid \mathcal{F}_1 \right] \mid \mathcal{F}_2 \right] = \mathbf{E} \left[\mathbf{E} \left[X \mid \mathcal{F}_2 \right] \mid \mathcal{F}_1 \right] = \mathbf{E} \left[X \mid \mathcal{F}_1 \right]$.
- 4. (bonus) The definition of the conditional expectation introduced in the class only applies to discrete-valued random variables. Search on the internet or in the library to find the definition of the conditional expectation $\mathbf{E}[X\mid Y]$ for general X and Y.

(第四题自己看就行了,不用写任何东西)

1. $x \in \bigcup_{n \geq 1} \mathcal{F}_n \iff \exists n \geq 1 : x \in \mathcal{F}_n$.

2. A set $\mathcal F$ is an algebra if for every $A,B\in\mathcal F$, it holds $A^c\in\mathcal F$ and $A\cup B\in\mathcal F$. $lacksymbol{\supseteq}$