IV and Difference-in-Differences Design

Prof. Tzu-Ting Yang 楊子霆

Institute of Economics, Academia Sinica 中央研究院經濟研究所

May 28, 2023

Combining DD and IV

Fabian Waldinger (2010) "Quality Matters: The Expulsion of Professors and the Consequences for PhD Student Outcomes in Nazi Germany" JPE

- The author estimates the effect of faculty quality on the outcomes of PhD students by combining IV and DID approach
- Sometimes combining DID and IV methods can be quite useful

- Estimating the effect of faculty quality on PhD student outcomes is challenging because of:
 - 1. Selection of good students into good universities
 - Omitted variables affecting both faculty quality and student outcomes
 - 3. Measurement error in faculty quality
- He address these issues by using the dismissal of scientists in Nazi Germany as an exogenous shock to faculty quality
- The dismissal affected some departments very strongly, while other departments were not affected

Historical Background

- Germany was the leading country for scientific research at the beginning of the 20th century
- Immediately after gaining power in 1933 the new Nazi government dismissed all Jewish and "politically unreliable" scholars from the German universities

- A panel dataset of all mathematics PhD students graduating from all German universities between 1923 and 1938
- A panel dataset of faculty members from all German universities between 1923 and 1938
- Construct a measure of faculty quality

Dismissed Professors Across German Universities

	Number of Professors	DISMISS	DISMISSAL- INDUCED CHANGE TO DEPARTMENT	
University	Beginning of 1933	Number	Percentage	QUALITY
Aachen TU	7	3	42.9	+
Berlin	13	5	38.5	
Berlin TU	14	2	14.3	+
Bonn	7	1	14.3	+
Braunschweig TU	3	0	0	0
Breslau	6	3	50.0	
Breslau TU	5	2	40.0	
Darmstadt TU	9	1	11.1	+
Dresden TU	10	0	0	0
Erlangen	3	0	0	0
Frankfurt	8	1	12.5	+
Freiburg	9	1	11.1	_
Giessen	7	1	14.3	+
Göttingen	17	10	58.8	
Greifswald	3	0		€ ► € ⁴) Q (* 6/24

Dismissed Professors Across German Universities II

Halle	7	1	14.3	_
	0	0		0
Hamburg	8	0	0	0
Hannover TU	6	0	0	0
Heidelberg	5	1	20.0	+
Jena	5	0	0	0
Karlsruhe TU	6	1	16.7	0
Kiel	5	2	40.0	+
Köln	6	2	33.3	+
Königsberg	5	2	40.0	_
Leipzig	8	2	25.0	_
Marburg	8	0	0	0
München	9	0	0	0
München TU	5	0	0	0
Münster	5	0	0	0
Rostock	2	0	0	0
Stuttgart TU	6	0	0	0
Tübingen	6	0	0	0
Würzburg	4	0	0	0

Effect of Dismissals on Department Size

Effect of Dismissals on Faculty Quality

Identification Strategy

- Use the dismissal as exogenous variation in faculty quality
- The empirical strategy essentially compares changes in outcomes of PhD students in affected department before and after 1933 to changes in outcomes in unaffected departments

Identification Strategy

- He investigates the following outcomes:
 - Whether former PhD student publishes dissertation in a top journal
 - 2. Whether former PhD student ever becomes full professor
 - 3. # of lifetime citations
 - 4. Positive lifetime citations

Graphical Analysis - Publishing Dissertation

Graphical Analysis - Full Professor

Graphical Analysis - Lifetime Citations

■ He estimates the following DID regression:

Outcome_{idt} =
$$\beta_1 + \beta_2$$
 (Dismissal induced Reduction in Faculty Quality_{dt})
+ β_3 (Dismissal induced increase in Student/Faculty Ratio)_{dt}
+ β_4 Famale_{idt} + β_5 Foreign_{idt} + β_6 CohortFE_t + β_7 DepFE_d + ε_{idt}

- Dismissal induced Reduction in Faculty Quality is 0 until 1933
 - It is equal to the dismissal induced fall in faculty quality after 1933 (and remains 0 in departments without dismissals)
- Dismissal induced increase in Student/Faculty Ratio is also 0 until 1933
 - It is equal to the dismissal induced increase in student/faculty ratio after 1933
- The above regression is essentially a differences-in-differences estimation but with different treatment intensities.

Results

Reduced Form			
Published Top (1)	Full Professor (2)	No. of Lifetime Citations (3)	Positive Lifetime Citations (4)
134**	090**	-6.137**	164**
(.017)	(.021)	(2.218)	(.019)
.002	.000	042	.002
(.001)	(.001)	(.114)	(.002)
.004	119*	-10.723*	067
(.048)	(.045)	(4.459)	(.058)
.031	147*	.942	033
(.048)	(.065)	(6.151)	(.075)
Yes	Yes	Yes	Yes
Yes	Yes	Yes	Yes
Yes	Yes	Yes	Yes
690	690	690	690
.221	.208	.185	.208
	Top (1) 134** (.017) .002 (.001) .004 (.048) .031 (.048) Yes Yes Yes 690	Published Top (2) 134**090** (.017) (.021) .002 .000 (.001) (.001) .004119* (.048) (.045) .031147* (.048) (.065) Yes Yes Yes Yes Yes 690 690	Published Top (1) Full Professor (2) Lifetime Citations (3) 134** 090** -6.137** (.017) (.021) (2.218) .002 .000 042 (.001) (.001) (.114) .004 119* -10.723* (.048) (.045) (4.459) .031 147* .942 (.048) (.065) (6.151) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 690 690 690

Test Common Trend Assumption

Placebo Test

■ He conducts a placebo test using a "treatment" in 1930

	(Only Pre-1933 Observations)			
	Published Top (5)	Full Professor (6)	No. of Lifetime Citations (7)	Positive Lifetime Citations (8)
Dismissal-induced fall in faculty quality	023	.053	3.434	037
200 10 10 10 10 10 10 10 10 10 10 10 10 1	(.031)	(.037)	(5.597)	(.030)
Dismissal-induced increase in student/faculty ratio	004	002	462	002
	(.004)	(.005)	(.431)	(.003)
Female	.009	167*	-12.114**	104
	(.066)	(.068)	(4.228)	(.071)
Foreigner	017	136	-7.169	050
	(.103)	(.102)	(6.479)	(.134)
Father's occupation	Yes	Yes	Yes	Yes
Cohort dummies	Yes	Yes	Yes	Yes
Department fixed effects	Yes	Yes	Yes	Yes
Observations	403	403	403	403
R^2	.302	.291	.224	.260

Placebo Moving Dismissal to 1930

- If you want to know causal effect of dismissal induced fall in faculty quality on PhD student outcomes
 - DID estimation gives you answer
- However, this does not represent the causal effect of faculty quality on PhD student outcomes
- Use dismissal induced fall in faculty quality as an IV for faculty quality

Use Dismissal as IV

OLS model to the effect of faculty quality on PhD student outcomes:

$$\begin{aligned} \text{Outcome}_{\textit{idt}} &= \beta_1 + \beta_2 (\text{Avg. Faculty Quality})_{\textit{dt}-1} \\ &+ \beta_3 (\text{Student/Faculty Ratio})_{\textit{dt}-1} \\ &+ \beta_4 \text{Female}_{\textit{idt}} + \beta_5 \text{Foreign}_{\textit{idt}} + \beta_6 \text{CohortFE}_t + \beta_7 \text{DepFE}_d + \varepsilon_{\textit{idt}} \end{aligned}$$

- Faculty quality quality and student/faculty ratio are endogenous
 - Use dismissal as IV.

- **2** Endogenous Variables \rightarrow 2 First Stage Regressions:
 - 1. Avg. Faculty Quality $_{idt}=\gamma_1 + \gamma_2 ({\sf Dismissal} \ {\sf induced} \ {\sf Reduction} \ {\sf in} \ {\sf Faculty} \ {\sf Quality})_{dt} + \gamma_2 ({\sf Dismissal} \ {\sf induced} \ {\sf increase} \ {\sf in} \ {\sf Student/Faculty} \ {\sf Ratio})_{dt} + \gamma_4 {\sf Female}_{idt} + \gamma_5 {\sf Foreign}_{idt} + \gamma_6 {\sf CohortFE}_t + \gamma_7 {\sf DepFE}_d + \varepsilon_{idt}$
 - 2. Student/Faculty Ratio $_{idt} = \delta_1 + \delta_2$ (Dismissal induced Reduction in Faculty Quality) $_{dt} + \delta_2$ (Dismissal induced increase in Student/Faculty Ratio) $_{dt} + \delta_4$ Female $_{idt} + \delta_5$ Foreign $_{idt} + \delta_6$ CohortFE $_t + \delta_7$ DepFE $_d + \varepsilon_{idt}$

First Stages

	DEPENDENT VARIABLE		
	Average Quality (1)	Student/Faculty Ratio (2)	
Dismissal-induced fall in faculty quality	-1.236**	-4.195	
	(.074)	(2.058)	
Dismissal-induced increase in student/faculty ratio	.014	.439**	
	(.008)	(.116)	
Female	.142*	1.165	
	(.060)	(.705)	
Foreigner	.046	-1.971	
	(.097)	(1.183)	
Cohort dummies	Yes	Yes	
University fixed effects	Yes	Yes	
Observations	690	690	
R^2	.795	.757	
Cragg-Donald eigenvalue statistic	25	5.2	

First Stages

- To test for weak instruments one cannot simply look at the first stage F-statistics because here we have 2 endogenous regressors and 2 IVs.
- Use Cragg-Donald EV statistic here critical value is 7.03

Department fixed effects

Cragg-Donald eigenvalue

Observations

statistic

 R^2

Results

	OLS	IV	OLS	IV
	(1)	(2)	(3)	(4)
Average faculty quality	.056**	.102**	.037	.076**
	(.018)	(.015)	(.021)	(.015)
Student/faculty ratio	.000	.003	.000	001
	(.001)	(.002)	(.001)	(.003)
Female	015	022	099*	103**
	(.059)	(.055)	(.041)	(.036)
Foreigner	.014	.022	134*	135*
	(.048)	(.045)	(.053)	(.053)
Cohort dummies	Yes	Yes	Yes	Yes

Yes

690

.163

Yes

690

25.2

Yes

690

.155

Published Top

Yes

690

Full Professor