AD-A014 469

CHANGES IN HELICOPTER RELIABILITY/ MAINTAINABILITY CHARACTERISTICS OVER TIME. VOLUME 1. BASIC REPORT

Norman J. Asher, et al

Institute for Defense Analyses

Prepared for:

Office of the Director of Defense Research and Engineering Defense Advanced Research Projects Agency

March 1975

DISTRIBUTED BY:

AD A O 14469

STUDY S-451

CHANGES IN HELICOPTER
RELIABILITY/MAINTAINABILITY
CHARACTERISTICS OVER TIME

Volume 1: Basic Report

Norman J. Asher John Donelson Gerald F. Higgins

March 1975

INSTITUTE POR DEFENSE ANALYSES PROGRAM ANALYSIS DIVISION

€.

NATIONAL TECHNICAL INFORMATION SERVICE

Approv. 3 in public releases

Distribution Unlimited

IDA Log No. HQ 75-17098 Copy 45 of 70 copies

30

The work reported in this document was conducted under contract DAHC15 73 C 0200 for the Department of Defense. The publication of this IDA Study does not Indicate endorsement by the Department of Defense, nor should the contents be construed as reflecting the cifficial position of that agency.

Approved for public release; distribution unlimited.

INCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE: (Men Dore Entered)

	READ INSTRUCTIONS BEFORE COMPLETING FORM
	3. RECIPIENT'S CATALOG NUMBER
S-451	
TITLE (and Subilita)	5 TYPE OF REPORT & PERIOD COVERED
Changes in Helicopter Reliability/Maintain-	Final
ability Characteristics Over Time	6 PERFORMING ORG - REPORT NUMBER
Volume 1: Basic Report	S-451
AU THOR(e)	B CONTRACT OF GRANT NUMBER(s)
Norman J. Asher, John Donelson, Gerald F. Higgins	DAHC15 73 C 0200
PERFORMING ORGANIZATION NAME AND ADDRESS	10 PROGRAM ELEMENT PROJECT, TASK
LISTITUTE FOR DEFENSE ANALYSES	THE S MONE ONLY MUMBERS
ROCRAM AMALYSIS DIVISION 100 Army-Navy Drive, Arlington, Virginia 22202	Task Order T-105
CONTROLLING OFFICE NAME AND ADDRESS	12 REPORT DATE
Referse Advanced Research Projects Agency	March 1975
400 Wilson Boulevard	13 NUMBER OF PAGES
Filington, Vinginia 22209 MONITORING AGENCY NAME & ADDRESSII dillerent from Controlling Office)	15 SECURITY CLASS (of this report)
Tiles of Director of Defense Research & Harineering (Tactical Warfare Programs)	Unclassified
The little of the control of the con	150 DECLASSIFICATION DOWNGRADING
Cability 10th, D.C. 20301	SCHEDULE
	ion unlimited.
Approved for public release; distribut	
Approved for public release; distribut	
Approved for public release; distribut	
oproved for public release; distribut	
CIPTOVED FOR Public release; distribut	
eproved for public release; distribut	
eproved for public release; distribut	
eproved for public release; distribut	
CIPTOVED FOR Public release; distribut	
eproved for public release; distribut	em Repart)
OF PURPLEMENTARY NOTES	em Repart)
DISTRIBUTION STATEMENT (of the abstract entered in Blueb 20, if different for Supplementary notes	em Report)
OFFICE OF THE PROPERTY OF The abstract entered in Bluck 20, if different in	em Report)
DISTRIBUTION STATEMENT (of the abstract entered in Bluck 20, if different for Supplementary notes	em Report)
DISTRIBUTION STATEMENT (of the abstract entered in Blueb 20, if different for Supplementary notes	om Report)

DD - JAH 71 1473

UNCLASSIFIED

SECURIT	TY CLASSIFICAT	TION OF THIS PAGE(When Date Entered)
20.	cont'd	
heli	copter pr	and (6) maintenance man-hours. Many of the data on past rograms are included in the report, so that they will be use by analysts.
·		
li		
	•	

STUDY S-451

CHANGES IN HELICOPTER RELIABILITY/MAINTAINABILITY CHARACTERISTICS OVER TIME

Volume 1: Basic Report

Norman J. Asher John Donelson Gerald F. Higgins

March 1975

INSTITUTE FOR DEFENSE ANALYSES
PROGRAM ANALYSIS DIVISION

400 Army-Navy Drive, Arlington, Virginia 22202

Contract DAHC15 73 C 0200 Task 1-105

SUMMARY

The basic objectives of this study are to examine the growth (or lack of it) in reliability and maintainability (R&M) characteristics of past helicopter programs and to organize the data so that they can be used as bases for predicting the R&M characteristics of future helicopter programs.

We were able to obtain time-series data for six R&M measures: (1) failure rates, (2) component-removal rates, (3) mishap rates, (4) maintenance-action rates, (5) operational availability, and (6) maintenance man-hours. Though all these measures are to varying degrees interrelated, it is believed that they are sufficiently different to warrant discrete treatments. Each measure is discussed separately below. The need for standardization of both R&M definitions and methods of data presentation can often be seen. The data presented for each measure in the basic report are discussed briefly, and the location in the report is identified for easy reference. A general conclusion for each R&M measure is presented.

Duane [26] found that for some equipments cumulative failure rate versus cumulative operating hours resulted in a straight line when the data points were plotted on log-log paper. He expressed these "Duane curves" by the equation

$$CFR = \lambda t^{-\alpha}$$
,

where

.

4.

*

CFR = cumulative failure rate;

 λ = initial failure rate (intersection at t = 1 hour);

t = cumulative operating hours; and

 $\alpha = exponent.$

- α denotes the slope of the cumulative failure-rate line: when α is positive, there is a decreasing failure rate; when it is negative, there is an increasing failure rate. Because of the convenience of the Duane formulation, we have calculated α 's for some of the reliability measures discussed below.

The Duane paper presented data for five equipments whose α 's fell in the range of 0.4 to 0.5. Because of the scarcity of reliability-growth data, the Duane data (α 's of about 0.5) have been used in predicting reliability growth for many other equipment programs, including helicopters. However, the helicopter data presented herein indicate that α 's for various measures of helicopter reliability tend to be much lower; and even some cases of negative α 's were found.

A. FAILURE RATES

Failure rate (sometimes referred to as "malfunction rate"), the most common measure of reliability, is expressed in several forms. Two categories of failures are often used in specifying helicopter reliability: (1) all failures, 1 and (2) failures that are sufficiently serious to cause cancellation or termination of a mission ("mission abort").

Failures are sometimes described as a rate (e.g., 25 failures per 100 flight-hours could be expressed as a failure rate of 0.25 per hour). They may also be described by "mean time between failures" (MTBF). In the example above, MTBF = 100 ÷ 25 = 4.0 hours. If the failure rate is constant, it can be used to determine the probability of completing a mission by use of the expression $e^{-\lambda t}$, where λ is the failure rate and t is the mission duration in hours. For a failure rate of 0.25 per hour (hypothesized above), the probability of completing a one-hour mission without a failure would be 0.779; and the probability of

¹A failure is the inability of an item to perform within previously specified limits.

completing a 1.5-hour mission would be 0.687. The probability of completing a mission without any failure is usually called "total reliability," "system reliability," or "maintenance reliability"; and the probability of completing a mission without a mission-aborting failure is called "mission reliability" or "operational reliability." Mission-aborting failure rate (per flight-hour) is often referred to as abort rate, which is sometimes also expressed as "mean time between aborts" (MTBA), calculated in the same manner as MTBF but based on mission-aborting failures only, rather than on all failures. To standardize these many ways in which failure rates are reported, we recommend that MTBF be used as the primary form of failure reporting, and then be qualified as to whether it includes all failures ("system failures") or only mission-aborting type failures ("mission failures").

Γ.

٤.

Under the various terms discussed above, the following data involving failure rates are presented in this study (see pp. vi-xii, below, for pages on which the figures and tables appear):

- (1) The failure rates for individual CH-47A aircraft in Army operations worsen as the aircraft accumulate flight-hours (Figure 1).
- (2) When the OH-58A was introduced into Army service, it underwent a 15-month R/M demonstration. The MTBF initially was relatively high (probably reflecting the fact that the aircraft were new), but during the first three months it dropped to a level that stayed fairly constant for the remainder of the program (Figure 4).
- (3) The MTBA for the OH-58A worsened somewhat during the first two years of Army service (Figure 5).
- (4) Both the maintenance and operational reliabilities of the UH-1D worsened over the first 13 months of Army operation (Figure 9).
- (5) The MTBA for the CH-54A remained approximately constant over four years of Army service (Figure 11).
- (6) The MTBF for all helicopters in Navy service decreased (worsened) over the period 1968-73 (Figures 15, 18, 21, 24, 27, 30, 33, and 36).
- (7) Based on all failures for a 52-month flight-test program, α for the AH-56A was 0.16. For nine sub-

systems, the a's ranged from -0.14 to +0.33 (Figures 49-58). (The AH-56A development flying covered almost five years, and the program was cancelled without ever reaching service use. Compared with the other development programs for which data are available, it appears that the AH-56A reliability growth may have been somewhat slower than that of "successful" development programs.)

- (8) During the first 16 months of ground testing, the T700 engine has shown a slight improvement: $\alpha = 0.03$, on the basis of all failures (Figure 62); or $\alpha = 0.09$, if failures for which "fixes" have been accepted are eliminated (Figure 63).
- (9) Failure rates generally improved in successive models of of the T53 engine family (Figures 66 and 67).
- (10) α for malfunctions per flight-hour for the CH-47 was 0.063 in Duane notation (or -0.063 in Boeing Vertol notation) for the period 1963-72. The system α's rangeα from 0.315 to -0.160 for the period 1965-72 (Vol. 2, Part A, Table 2, p. BV-29).
- (11) α for malfunctions per flight-hour for the CH-46 was 0.218 for the period 1962-72. However, all the improvement took place from 1962 to 1970; it worsened from 1970 to 1972. Data for systems are available only from 1968 to 1972, during which time they showed a slight reliability degradation; average α for 23 systems was -0.089 (Vol. 2, Part A, Table 7, p. BV-116).
- (12) The failure rate of the OH-6A remained approximately constant for the first 1,000 flight-hours and then improved (α = 0.35) from 1,000 to 27,000 flight-hours (Figure 81).
- (13) Based on development and early production of the UH-1D, AH-1G, and OH-58A, the MTBF at 100 flight-hours was 20-30 percent of the MTBF for the mature production aircraft (Ch. V, Sec. C).
- (14) MTBF/total reliability for the CH-54A/B program generally worsened over the period 1968-74 (Table 46).
- (15) Abort rate/mission reliability for the CH-54A/B program generally improved over the period 1968-74 (Table 46).
- (16) There was a marked decrease in abort rate for the CH-53, from about 0.25 at 100 flight-hours to about 0.07 when the aircraft was introduced into field service (after about 5,000 flight-hours).

From the tart of the flight-test program to early field serice, α was in the range 0.3-0.4. The abort rate in field service dropped to about 0.03 after 40,000 flight-hours, but then it rose to about 0.04 at 100,000-150,000 flight-hours (Figure 86).

General Conclusions. Items (7), (8), (12), (13), and (16)above provide data on the early-development flying (or, in the case of the T700 engine, ground-test) portions of the programs. All indicate failure-rate improvement during this portion of the program. From the scart of the flight-test program to early field service, a's range from 0.16 for the AH-56A to about 0.35 for the OH-6A and CH-53A. Items (12), (13), and (16) cover both development and service experience; they indicate that MTBF at 100 hours is about 16-30 percent of the MTBF for the mature-production aircraft. The 16 percent is based on CH-53 aborting failures. It is probable that aborting failures (being more serious in nature) receive more corrective attention than failures in general. Hence, the lower part of the 16-30 percent range may be more representative of aborting failures, while the higher part of this range is more representative of all failures. During field service, failure rates in general appear to worsen over time--which is probably due to the aging of the fleet, the tendency to add equipment to the aircraft, the tendency to increase engine power, and the assignment of the better maintenance and operating service personnel to the newer programs.

B. COMPONENT REMOVAL RATES

I.

Major components of helicopters (e.g., transmissions, rotor heads, and blades) are removed from the helicopter and sent to a depot or factory for overhaul. Often these components have a time between overhaul (TBO) established for them. With a TBO, the component must be removed and overhauled when it has accumulated the specified number of hours, even though it has not failed; such removals are scheduled removals. Some components

have no TBO and are removed "on condition" (i.e., when failure occurs). In addition, because of failures, components with TBOs may have to be removed prematurely. These removals because of failure are unscheduled removals. Hence, we have three basic classes of removal data: TBO, unscheduled removals, and all removals (scheduled and unscheduled). As in the case of failure data, removal data may be presented either as removal rate per flight-hour (or per 1,000 flight-hours) or as a mean time between removals (MTBR). MTBR is usually based on total-fleet flighthours divided by total number of removals. However, data are sometimes collected for individual components (in which case, the actual number of flight-hours on the component since new or last overhaul is reported). This type of data is designated mean time to removal (MTTR). We recommend that removal data be reported as either MTBR or MTTR, since this format is directly comparable to the reporting of TBOs, which are always reported as time between overhauls--never as overhaul rates per flighthour. Under the various labels discussed above, the following. data involving removal rates are presented in this study:

- (1) MTTRs for OH-58A components generally showed increases from 1969 to 1972. However, even though the components were not improving over this period, their reported MTTR would tend to increase as they accumulated time. Hence, the MTBR (not the MTTR) was probably approximately constant (Figure 6).
- (2) MTTRs for AH-1G components generally showed decreases from 1969 to 1971. Because MTTRs tend to increase during early service operation, this decrease in MTTRs would indicate strongly that MTBRs were worsening over this period (Figure 10).
- (2) MTTRs for the CH-54A components generally increased over the period 1969-72; however, as discussed under the OH-58A (above), this apparent trend does not necessarily indicate a true increase in MTBR (Figure 12).
- (4) Trends for several engines show a definite improvement in unscheduled engine-removal rates (Figure 64).
- (5) MTBRs generally increased for successive models of the T53 engine (Figure 69). However, MTBRs remained

approximately constant for the T-55-L-7/7B/7C engines (Figures 71 and 72).

- (6) Unscheduled removal rates improved for all four CH-47 transmissions; average α = 0.22 (Vol. 2, Part A, Table 8, p. BV-118).
- (7) Unscheduled removal rates were generally constant for eight CH-47 major components (Vol. 2, Part A, Table 11, p. BV-145).
- (8) On average, unscheduled removal rates worsened slightly for five CH-46 major components (Vol. 2, Part A, Table 13, p. BV-157).
- (9) TBOs for transmissions and other components of the CH-47 generally increased (Figures 75-78).
- (10) Component removal rates for the OH-6A improved, from 100 to 27,000 flight-hours; the maximum α that could be ascribed to these data is 0.26 (Figure 82).
- (11) TBOs for UH-1A and H-13 both show good growth (Figure 83).
- (12) MTBRs for the CH-54A/B generally improved (Table 46).
- (13) MTBRs improved in 13 of 14 major components of the CH-53; average $\alpha = 0.23$ (Table 47).
- (14) TBOs for the CH-54A/B generally improved (Table 46).

peared to worsen in only two of the 10 programs for which data were obtained. Since overhauls are generally quite expensive, there is a strong motivation to incorporate improvements that will increase MTBRs. On the other hand, the increases in power and weight that usually take place in model changes over the life of a program tend to reduce MTBRs. TBOs almost always increased. TBOs are established mainly to protect against wearout-type failures in critical components. As flight experience is accumulated, it is normal to increase TBO after a component proves to be safe at the previous TBO. However, TBOs are sometimes lowered—due to the power and weight increases noted above.

C. MISHAP RATES

There are different categories of mishaps, but in general they cover all incidents of a dangerous or potentially dangerous

character--from minor incidents (such as precautionary landings) to major accidents (in which an aircraft is heavily damaged or lost). Chapter II includes time-series plots for four cate-gories of mishaps:

- Total mishaps
- Mishaps involving materiel failure
- Total major accidents
- Major accidents involving materiel failure.

The following data on mishaps are presented in this study:

- (1) Army mishap rates (both total and those involving materiel failure) tended to increase (Figure 38).
- (2) Navy mishap rates (both total and those involving materiel failure) tended to increase (Figure 39).
- (3) Army accident rates (both total and those involving material failure) tended to decrease (Figure 38).
- (4) Navy accident rates (both total and those involving materiel failure) tended to decrease (Figure 39).

()

(5) Fifteen of 17 helicopter types showed decreasing major-accident rates. Average α for all 17 types was 0.23 (Vol. 2, Part A, Table 4, p. BV-65).

General Conclusions. Total mishap rates tend to increase, while major accident rates tend to decrease. Evidently, the more serious types of failures (those causing accidents) tend to be corrected, while minor problems are let go. The increasing mishap rate is probably due to the factors noted in discussing increasing failure rates (last sentence of Section A, above).

D. MAINTENANCE-ACTION RATES

Maintenance actions are those actions necessary for retaining an item in (or restoring it to) a specified condition. Maintenance-action rates tend to follow failure rates (i.e., if failures increase, maintenance actions tend to increase). As in the case of failures, maintenance actions can be expressed either as a rate per flight-hour or as a mean time between maintenance actions

(MTBMA). We recommend that maintenance actions be reported as MTBMA, since this format is directly comparable to our recommended reporting of MTBF. The following data involving maintenance—action rates are presented in this study:

- (1) Maintenance-action rates for individual CH-47A aircraft in Army service tended to increase (Figure 1).
- (2) Maintenance-action rates for helicopters in Navy service tended to increase (MTBMA tended to decrease-Figures 14, 17, 20, 23, 26, 29, 32, and 35).

General Conclusions. Maintenance-action rates tend to worsen in field service. This result is compatible with the finding of increasing failure rates in field service.

E. OPERATIONAL AVAILABILITY

C

ľ.

Operational availability is the percent of aircraft that are available for flying in an operational unit. It reflects all previous mission-aborting failures that have not yet been repaired. As such, it depends not only on the intrinsic R&M characteristics of the aircraft but also on the level of maintenance personnel, equipment, and spare parts available to maintain and repair the aircraft. Hence, operational availability is an imperfect measure of R&M characteristics; nevertheless, differences in R&M characteristics are generally reflected in operational-availability rates. The following data on operational availability are presented in this study:

- (1) The operational availability of the UH-ID increased over its first three years of Army Service (Figure 8).
- (2) The operational availability of the AH-13 increased during its first half-year of Army service and then remained approximately constant (Figure 8).
- (3) Operational availability of the CH-54A increased initially and then remained approximately constant. For the CH-54B, it increased initially and then remained approximately constant, at about the same rate as for the CH-54A (Table 43).

General Conclusions. Operational availability tends to increase over the first year or so of field service and then to remain approximately constant. The initial increase is probably due more to learning by operating and maintenance personnel and the increased availability of equipment and spare parts than it is to improvement in R&M characteristics per se.

F. MAINTENANCE MAN-HOURS

Maintenance man-hours required to maintain the aircraft are usually expressed as a rate per flight-hour (MMH/FH). The following MMH/FH data are presented in this study:

- (1) MMH/FH increased for individual CH-47A aircraft in Army service (Figure 1).
- (2) MMH/FH of the UH-ID decreased over its first three years of Army service (Figure 7).
- (3) MMH/FH of the AH-1G decreased during its first halfyear of Army service and then remained approximately constant (Figure 7).
- (4) For all Army helicopters, MMH/FH tended to remain constant over time; if MMH/FH changed, it tended to worsen more often than it improved (Table 6).
- (5) For all Navy helicopters, MMH/FH tended to worsen (Figures 16, 19, 22, 25, 28, 31, 34, and 37).
- (6) For all Air Force helicopters, MMH/FH tended to worsen over time (Table 16).
- (7) MMH/FH decreased for successive models of the T53 engine (Figure 68).
- (8) MMH/FH for the CH-47 decreased from 1965 to 1967 and then remained approximately constant through 1972 (Vol. 2, Part A, Table 1, p. BV-4).
- (9) MMH/FH for the CH-46 remained approximately constant (α = 0.01--Vol. 2, Part A, Table 7, p. BV-116).
- (10) MMH/FH for the H-21 increased for about the first year of service in the French Army and then remained approximately constant (Vol. 2, Part A, Figure 91, p. BV-117).
- (11) For equal weight empty, MMH/FH has been decreasing with year of introduction into service of new designs (Vol. 2, Part A, Figure 128, p. BV-160).

(12) MMH/FH for the CH-54A and CH-54B were approximately constant; however, MMH/FH were higher for the CH-54B than for the CH-54A (Table 43).

General Conclusions. During the first year or so of service, MMH/FH tends to vary--increasing in some cases and decreasing in others. During the mature portion of service life, MMH/FH tends to remain constant or increase slightly. The factors noted in discussing increasing failure rates (last sentence of Section A, above) tend to increase MMH/FH. On the other hand, design improvements (and learning by operating and maintenance personnel) tend to decrease MMH/FH. Evidently, these factors tend to offset each other.

We expect that the patterns of reliability growth (degradation) of future helicopter programs will be similar to those of the past programs presented herein. Though there is probably more management emphasis on reliability now than there was in the past, the maturing of helicopter technology tends to make improvements in reliability more and more difficult to achieve over time. Hence, though the initial levels of reliability in future helicopter programs will probably be improved over those of past programs, the subsequent rates of improvement from these initial levels will probably be similar to those of past programs. Assuming that reliability growth (degradation) of future helicopter programs will be similar to those of past programs, we would expect:

- Failure rates (both total and mission-aborting) will definitely improve during the development phase of the program; following introduction into field service, they will probably worsen slightly.
- MTBRs and TBOs of components will increase in most cases -- both during development and in field service.

 \mathbf{C}

• Mishap rates will probably increase during field service; accident rates will very likely decrease during field service.

- Maintenance-action rates will probably worsen during field service.
- Operational availability will probably increase over the first year or so of field service and then remain approximately constant.
- MMH/FH will probably vary somewhat during the first year of field service and thereafter remain approximately constant or increase slightly.

We would like to make two recommendations regarding the reporting of R&M data:

- (1) The Services all employ 100 percent reporting of helicopter R&M data; the result is a massive quantity of inaccurate and incomplete data on every Service helicopter. Many of the data are needed for other purposes (e.g., the maintenance log for an aircraft and the inventory control of serial-number components). However, for the collection of the type of R&D data presented above, we recommend the use of a sampling reporting system wherein high-quality data on relatively few helicopters are reported. This recommendation is especially urged on the Army, because it operates approximately 8,700 of the total of about 10,200 U.S. military helicopters. This recommended change should increase the quality of the R&M data systems.
- (2) R&M contractual arrangements provide for the deduction of failures that are judged to be due to causes other than the mechanical performance of the helicopter itself. In addition, failures for which a "fix" has been developed may be deducted, even though in some cases the "fix" has not been tested. This deduction procedure can lead to optimistic reliability projections. For example, in the AH-56A program, Lockheed was allowed to deduct 1,487 of 1,770 failures; as a result, they were able to show a system reliability of 0.701 for a 2.5-hour mission, while our calculations indicate that the system reliability actually achieved was 0.100. We recommend that the Services be much less permissive in allowing contractors to deduct failures; otherwise, unrealistically optimistic projections of reliability will result with a high price to the user when the helicopter enters field service.

CONTENTS

PREFA	ACE .	• ••			•	•	•		•	•		•	•	•	•		•		•	•		•	•	хііі
1.	SERV	HE	RELE	AB	11.1	TY	/M	ΑII	NT	ΛI	IJΑ	ВΙ	LI	TY	' (R/	M)	1	DA'	PΑ				1
	Α.	Army	Dat	a	•	•	•	•	•	•			•	•		•	•					•		1
		1.	Anal	lys:	is	of	F	ie:	ld	D	at	a	fo	r	th	e	СН	_ 1	47 A	1		•		2
			a. b.	TA	mit LCM com	10 R	D	ata	a. :	fo	r	Me	as	ur		g	Re	11	lab					4 6
			c.	Res	sul	.ts		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	8
		2.	Mear (MTE																		t1	or	ıs	13
		3.	The	OH-	-58	A		•	•	•			•	•		•			•		•	•		15
		4.	The	AH-	-10	a	nd	tl	ne	U.	H -	1 D		•					•					30
		5.	The	CH-	-54	Α	•		•	•			•											39
		6.	Mair (MMH																		•		•	39
	В.	Navy	3-N	ı Da	ata	l	•	•	• •	•	•			•										54
		1.	The	H-	1				•	•						•	•		•					55
		2.	The	H-2	2		•												•	•			•	77
		3.	The	H-	3				•	•									•					٦ ک
		4.	The	H-	46				•	•				•									•	89
		5.	The	H-9	53	•			• ,	•								•	•					95
		6.	Gene	ra	1 T	're	nd	s .	•	•											٠	•		101
	C.	Air	Ford	e (66 -	1	Da	τa		•	•	•	•	•	•	•	•		•	•	•	•		101
II.	SERV	/ICE	MISH	AP	RA	TE	S	•	• (•	•		•		•	•	•	•	•					105
	Α.	Repo	rtin	g	Sys	te	ms	ar	nd	A	٧a	11	ab	le	D	at	a	•	•	•	•	•	•	105
		1.	Army	•	•	•	•	•	•	•	•	•		•	•	•		•	•	•	•	•	•	105
		2.	Navy	•	•	•	•	•			•	•	•			•	•	•	•	•	•	•	•	112
		3.	Air	For	rce			•	•	•	•		•	•	•		•	•	•	•	•	•	•	128
	В.	Effe	ect c	f	lel	1c	op	tei	r E	Em!	pt	y	We	ig	ht			•		•	•			128

III.		LYSIS OF AH-56A (CHEYENNE) RELIABILITY ROVEMENT
	Α.	Total System
		1. Contractual Reliability Goals and Measurement Procedures
		2. Data Analysis by Lockheed 14
		3. Data Analysis by IDA
		a. Total System
		j. Weapon Systems (Mode 6) 17
		4. Conclusions
	В.	Weapon Subsystems
		1. Contractual Reliability Goals and Measurement Procedures
		2. Data Analysis
		a. XM-51 40-mm Grenade-Launcher System
		3. Conclusions
IV.	HEL	ICOPTER ENGINE DATA
	Α.	Analysis of T700-Engine Reliability Improvement 19
		1. Data Analysis by IDA
		a. Test Data
		2. Conclusions
	В.	Miscellaneous Engine Data
V,	. ANA	LYSIS OF DATA FROM HELICOPTER MANUFACTURERS 21
	Α.	Boeing Vertol
	В.	Hughes
	С.	Bell

	D.	Sik	orsk	у .	•		•		•	•	•	•	•		•		•				240
		1.	S - 6	4/CH	1-5	4A/	CH-	54B	•	•	•			•		•	•	•	•		240
			b. c. d. e. f.	Tot Mis Act Ope MTE MTE MTE Sun	ssi rivera SF SF SRs	on e M tio (Al (Mi an	Rel MH/ nal l F ssi d T	iab FH Av ail on BOs	ili ail ure Abo	lty lab es) ort	il s)	it or	У	omp	oor	ner	• • • •	•	•	•	243 246 246 247 247
		2.	CH-	53/F	₹H -	53/	HH-	53	•	•	•			•		•	•		•	•	253
			a. b.	Ab o	ort BRs	Ra o:	tes Ma	jor	Ċ	omp	on	en	ts	• (•	•	•	•	•	•	254 260
REFERI	ENCES	s .			•		•		•	•	•	•						•	•		263
							APP	END	ΙXΕ	ES											
Α.			TUAL RELI															N	AN	D	
В.			TUAL O EN			REM	ENT	S 70	OR	ME	AS	UR	INO) F	EΙ	ΙF	AB.	ΙL	ΙΤ	Υ	FOR
DISTR	IBUTI	ОИ	LIST																		

FIGURES

1	Average R/M Measures Versus Flight-Hours for the Army CH-47A	12
2	Mean Time Between Actions Versus Empty Weight for Army Helicopters	14
3	End-Item Aircraft and Functional Group-Level Breakdown of Maintenance Actions	16 16 17
4	R/M Demonstration at Fort Rucker for the Army OH-58A .	19
5	Graphical Summary of Significant Data for the Army OH-58A	20
6	Mean Time to Removal (MTTR) Trends for the Army OH-58A, 1 July 1969 - 30 June 1972	22
7	MMH/FH for the Army UH-1D and AH-1G	31
8	Operational Availability for the Army UH-1D and AH-1G	32
9	System Operational and Maintenance Reliability of the Helicopter as Determined From Failure/Discrepancy Report Data on Monitored UH-1D Helicopters	34
10	MTTR for the Army AH-1G, 1 October 1969 - 30 September 1971	35
11	Mean Time Between Flight Aborts for the Army CH-54A .	41
12	MTTR Trends for the Army CH-54A, 1 October 1969 - 30 September 1972	42
13	MMH/FH Versus Empty Weight for Army Helicopters	53
14	MTBMA for the Navy Single-Engine UH-1/HH-1/TH-1 Series	65
15	MTBF Versus Year for the Navy Single-Engine UH-1/HH-1/TH-1 Series	66
16	MMH/FH for the Navy Single-Engine UH-1/HH-1/TH-1 Series	67
17	MTBMA for the Navy UH-1N	68
18	MTBF Versus Year for the Navy Single-Engine UH-1N	69

19	MMH/FH for the Navy UH-1N	70
20	MTBMA for the Navy AH-1G	71
21	MTBF Versus Year for the Navy AH-1G	72
22	MMH/FH for the Navy AH-1G	73
្ន3	MTBMA for the Navy AH-1J	74
24	MTBF Versus Year for the Navy AH-1J	75
25	MMH/FH for the Navy AH-1J	76
26	MTBMA for All Navy H-2 Models	80
27	MTBF Versus Year for All Navy H-2 Models	81
28	MMH/FH for All Navy H-2 Models	82
29	MTBMA for the Navy SH-3(S)	86
30	MTBF Versus Year for the Navy $SH-3(P)$	87
31	MMH/FH for the Navy SH-3(Γ)	88
3 2	MTBMA for the Navy H-46	92
33	MTBF Versus Year for the Navy H-46	93
34	MMH/FH for the Navy H-46	94
35	MTBMA for the Navy H-53(3)	98
36	MTBF Versus Year for the Navy H-53(S)	99
37	MMH/FH for the Navy H-53(S)	100
36	Mishap Rates for Army Helicopters	110
39	Mishap Rates for Navy Helicopters	125
40	Mishap Rates for the Navy H-1 Series (by Cause and by System)	129
41	Mishap Rates for the Navy H-2 Series (by Cause and by	167
41	System)	150
42	Mishap Rates for the Navy H-3 Series (by Cause and by System)	131
43	Mishap Rates for the Navy H-46 Series (by Cause and by	
	Cystem)	- 32
44	Misnap Rates for the Navy H-53 Series (by Cause and by System)	133
45	Mishap Rates Versus Empty Weight for Army Helicopters	136
46	Mishap Rates Versus Empty Weight for Navy Helicopters	136
47	Reliability Growth by Total Flight-Hours (Mission	
	Reliability Values Versus Confidence Level - GFM at Par)	143

48	Reliability Growth by Total Flight-Hours (System Reliability Values Versus Confidence Level - GFM at Par)
49	AH-56A Reliability Growth Curve for Total System 14
50	AH-55A Reliability Growth Curve for Airframe Components (Mode la)
51	AH-56A Reliability Growth Curve for Rotors and Propellers (Mode 1b)
52	AH-56A Reliability Growth Curve for Gear Boxes and Drives (Mode lc)
53	AH-56A Reliability Growth Curve for Power Plant (Mode 1d)
54	AH-56A Reliability Growth Curve for Instruments (Mode 2)
55	AH-56A Reliability Growth Curve for Communications (Mode 3)
5 6	AH-56A Reliability Growth Curve for Navigation System (Mode 4)
57	AH-56A Reliability Growth Curve for Computer Central Complex (Mode 5)
58	AH-56A Reliability Crowth Curve for Weapon Systems (Mode 6)
59	AH-56A Cumulative Stoppage Rate Versus Rounds Fired for the XM-51 40-mm Grenade-Launcher System 18
60	AH-56A Cumulative Stoppage Rate Versus Rounds Fired for the XM-52 30-mm Gun System
61	AH-56A Cumulative Stoppage Rate Versus Rounds Fired for the XM-53 7.62-mm Machine-Gun System 18
62	Cumulative Failure Rate for Five T700 Engine Prototypes (ATE Failures Included)
63	Cumulative Failure Rate for Five T700 Engine Prototypes (ATE Failures Excluded)
64	Engine Reliability Growth
65	T53 Turboshaft Production and Status History (as of 30 June 1974)
66	T53 Relevant Engine Failures - In-Flight Incidents and Mission Completion
67	T53 In-Flight Engine Malfunctions - All Causes 20
68	T53 Maintenance Man-Hours per Engine Flight-Hour 20
60	T52 Turboshaft MTRD - Fraine Causes 21

, 0	Return to Depot (Worldwide) for All T53 Turbeshaft Engines]
71	Mean Time Between Failure, Removal From Airframe, and Return to Depot (Worldwide) for the T-55-L-7/78/70 Engines	-
72	Mean Time Between Lapat Removal for the T55-L-7/7B/70 Engines	Ц
73	H-46 Flight-Hours	6
74	OH-47 Flight-Hours	7
75	CH-47A Component Schedule	ĉ
7.	CH=47B Component Cohedule	•
77	CH-47C Component Cohedule, With LTC Engines	L.
7.9	OH-470 Component Cohedule, With L.1 Engines	Γ.
73	SH-6A Fallure and Removal Data Ersydded by Huches 22	٤
30	OH-6 Total Fleet Flight-Hours	-
81	OH-6A Cumulative Failure Rate Versus Cumulative Flight-Hours	E
82	OH-6A Cumulative Removal Hate Versus Cumulative Flight-Hours	2
3 يا	HU-1A and H-13 (Model 47) Flight and Calendar Times	
	to Increase TEC	
94	$3-64/\mathrm{CH}+54\mathrm{A}/\mathrm{CH}+54\mathrm{B}$ Cumulytive Flight-Hours	2
85	CH-53/RH-53/HH-53 Cumulative Flight-hourd	-
86	CH-53A/D Abort Rate (Experience Versus Predicted) OF	6
57	Mission-Abort Failure Trend	?
કે છે	OH-53A/D and OH-53A(MOM) Abort Rates	8
89	CH-53A/D Abort Rate Verdus Cumulative Flight-Hours of	9
90	CH-53 and HH-53 Aircraft Micrich Reliability 26	1

TABLES

1	Sample of TALCMOR Output	3
2	R/M Measures for the Army CH-47A	9
3	Army Helicopter Reliability Data	13
4	Abort Data for the Army CH-54A, 1 January 1969 - 31 March 1973	40
5	Army MMH/FH	49
6	Summary of Changes in Army MMH/FF	52
7	Army On-Aircraft MMH/FH	52
Ð	Navy 3-M Data for UH-1D, UH-1E, UH-1H, UH-1L, TH-1L,	-
	and HH-1K Models	57
9	Navy 3-M Data for the UH-1N	57
10	Navy 3-M Data for the AH-1G	61
11	Navy 3-M Lata for the AH-1J	63
12	Navy 3-M Data for All H-2 Models	78
13	Navy 3-M Data for All H-3 Models	84
14	Navy 3-M Data for All H-46 Models	90
15	Navy 3-M Sata for All H-53 Models	96
16	Air Force MMH/FH for Organizational and Field	
	Maintenance	103
17	Michaps of Army Helicopters	108
18	Mishaps of Navy Helicopters	115
19	Average Mishap Rates for Army Helicopters, FYs 1971-73	135
20	Average Mishar Rates for Navy Helicopters, FYs 1971-73	135
21	Monthly and Cumulative Flight-Hours for the AH-56A (CHEYENNE)	139
22	Monthly and Cumulative Failures (With Cumulative Rate)	
	for the A' GA (CHEYENNE) Total System	141
2 3	Monthly decumulative Failures (With Cumulative Rate) for the An. 6A (CHEYENNE) Airframe Components	
	(Mode la)	150

24	Monthly and Cumulative Failures (With Cumulative Rate) for the AH-56A (CHEYENNE) Rotors and Propellers (Mode 1b)
23	Monthly and Cumulative Failures (With Cumulative Rate) for the AH-56A (CHEYENNE) Gear Boxes and Drives (Mode lc)
26	Monthly and Cumulative Failures (With Cumulative Rate) for the AH-56A (CHEYENNE) Power Plants (Mode 1d) 158
27	Monthly and Cumulative Failures (With Cumulative Rate) for the AH-56A (CHEYENNE) Instruments (Mode 2) 161
a 8	Monthly and Cumulative Failures (With Cumulative Rate) for the AH-56A (CHEYENNE) Communications (Mode 3) 163
29	Monthly and Cumulative Failures (With Cumulative Flight-Hours and Rate) for the AH-56A (CHEYENNE) Navigation System (Mode 4)
30	Monthly and Cumulative Failures (With Cumulative Flight-Hours and Rate) for the AH-56A (CHEYENNE) Computer Central Complex (Mode 5)
31	Monthly and Cumulative Failures (With Cumulative Flight-Hours and Rate) for the AH-56A (CHEYENNE) Weapon Systems (Mode 6)
3.2	Stoppage History and Cumulative Stoppage Rate for the XM-51 40-rm Grenade-Launcher System
33	Stoppage History and Cumulative Stoppage Rate for the XM-52 30-mm Gun System
34	Stoppage History and Cumulative Stoppage Rate for the XM-53 7.62-mm Machine-Gun System
35	Comparison of Lockheed's and IDA's Estimates of MRTS for the XM-51, XM-52, and XM-53 Weapon Cystems 188
36	T700 Engine-Component Failures Occurring in Development Tests
37	Cumulative Failures, Test-Hours, and Rate for the T700 Engine-Test Data From Table 36 (Including ATE Failures)
38	Cumulative Failures, Test-Hours, and Rate for the T700 Engine-Test Data From Table 36 (With ATE Failures Eliminated)
39	T53 Turboshaft Production and Status History (as of 30 June 1974)
μО	OH-6A Failure and Removal Data (Chargeable and Nonchargeable Failures)
41	OH-6 Cumulative Failure and Removal Rates 234

42	Ratios of Failures of Power Plant (Including GFE), Communications, and Weapon Systems to Total of Rotors, Airframe, Transmissions and Drives, and Instruments
	and Electrical
43	CH-54A and CH-54B Cumulative R/M Measures 244
44	CH-54A and CH-54B Major Systems Cumulative Total Reliability (All Failures)
45	MTBR and TBO Trends for CH-54A and CH-54B Components . 251
46	Summary of CH-54A and CH-54B R&M Trends 253
47	CH-53A/D Major Component MTBR (Hours) 262

PREFACE

This study was prepared by the Institute for Defense Analyses for the Office of the Director of Defense Research and Engineering (Tactical Warfare Programs) under Task Order T-105 with the Defense Advanced Research Projects Agency. The study was under the technical direction of Mr. John W. Klotz, Assistant Director (Combat Support) of the Tactical Warfare Programs Office.

2.

Because of the difficulties encountered in locating and obtaining helicopter-reliability data, it was felt that the usefulness of this report would be increased if many of the data were included so that the report could be used as a source of data by analysts; as a result, the report is more voluminous than would otherwise be warranted for use by more senior managers.

The study was restricted by the availability of helicopter-reliability and maintainability (R&M) data. All U.S. helicopter manufacturers were asked for data; data were obtained under subcontracts with Boeing Vertol, Hughes, and Sikorsky. In addition, data were obtained from various service organizations. In spite of this rather exhaustive data-collecting effort, the amount and quality of data obtained were somewhat disappointing. There were two basic reasons for the data problem: (1) most of the helicopters were developed fifteen years ago or more, and R&M data collection was not emphasized in those days; (2) the retrieval of data was difficult because much of it has been lost with the passage of time. The lack of data was particularly serious in the pre-service development phase of the helicopter programs. Moderately good pre-service data were obtained only for the AH-56A, OH-6A, and CH-53 programs.

Because of the data problem, it was not feasible to accomplish some of the objectives of the task order. For example, the data were generally so crude that it was not practical to calculate confidence limits; in many cases, we simply observed whether R&M characteristics were improving, remaining constant, or worsening over time.

Chapter I

SERVICE RELIABILITY/MAINTAINABILITY (R/M) DATA

A. ARMY DATA

Army aircraft reliability/maintainability (R/M) data are reported under The Army Maintenance Management System (TAMMS). This is a 100-percent reporting system based on a written description of every maintenance action on every Army aircraft. Analysis of these data requires extensive hand and computer editing procedures that have been developed by the Army Aviation Systems Command (AVSCOM), St. Louis, Missouri.

During a visit to AVSCOM, we obtained the reports (in computer printout form) on eight CH-47A aircraft. IDA personnel analyzed the printouts by hand. The effort required by this limited analysis proved that, within the time and manpower constraints of this study, it would be completely beyond IDA's capability to analyze the Army TAMMS data. However, AVSCOM has issued reports based on the TAMMS data for the following helicopters: the OH-58A, AH-1G, CH-54A, and CH-47A. From these reports, we have extracted data that show R/M trends over time, as well as R/M trends as a function of helicopter empty weight. From general Army regulations and field manuals, we have also extracted maintenance man-hour data, which are presented and analyzed below. We have also included some data (obtained from Bell Helicopter Company) for the OH-58A, AH-1G, and UH-1D helicopters in Army service.

1. Analysis of Field Data for the CH-47A

The data used in this analysis were supplied us by the Directorate for Froduct Assurance (AVSCOM). The data that we have analyzed are for the CH-47A helicopter and are output from the Reliability and Maintainability Management Improvement Techniques (RAMMIT) data processing system developed by AVSCOM.

The particular RAMMIT report that we have used is known as The Aircraft Life Cycle Maintenance and Ownership Record (TALCMOR). TALCMOR (see the output sample in Table 1) provides a chronological listing (starting with the acceptance of an aircraft into the Army inventory) comprised of all maintenance actions performed on the aircraft, transfers of ownership, and scrappage or salvage actions that occur during the life cycle of the aircraft. These events are reconstructed from the Army TAMMS (Ref. [1]) records, which are transcribed on magnetic tape and stored in the AVSCOM RAMMIT data bank. This listing is available from AVSCOM on request for each serial-numbered aircraft in the Army inventory.

The following TAMMS forms are used to develop a TALCMOR listing:

- (1) 2407 Maintenance Request
- (2) 2408-3 Equipment Maintenance Recorl (Organizational)
- (3) 2408-7 Equipment Transfer Record
- (4) 2408-8 Equipment Acceptance and Registration Record
- (5) 2408-9 Equipment Control Record.

The only 2407 records that are accepted into the chronological listing are those that record maintenance actions on the enditem aircraft. As of December 1969, DA Form 2408-3 has been deleted from TAMMS; and all organizational maintenance previously reported on Form 2408-3 is now reported on Form 2407. Also, as of November 1972, DA Forms 2408-7 (Equipment Transfer Record) and 2408-8 (Equipment Acceptance and Registration Record) were deleted in favor of one form, DA Form 2408-9 (Equipment Control Record).

Table 1. SAMPLE OF TALCMOR OUTPUT

PALC				UTIL	0	CTV	100000000000000000000000000000000000000				01590	A USE	75 CTV	A ACR 000
HEG CC PALC											DATE ACFT	2	PART SCURC	2
13150				GAL/FER		FSA PART	16868959427	53755803 6 4 66205851503	1680865999		DATE	£1 96	FSA PART	28409879717
PAGE 1.3				GAL		25	16608	53C5 662C5	1686		DATE	9119	Ž.	28409
•						FAN	*****	004V~			DA TE	1 1 E4	PAN	,
	#00/SE4	(n-4)A		TAGE AVAIL		COMPAGNI/PART		9	a		FOT PART		COMPENENT/PART	e
							10 10 20 20 30 30 30 30 30 30 30 30 30 30 30 30 30		SEPV CCOLFR		TOT *N HRCFST		300 UP	ENG TURB
	ç	U		>				N CEFECT			101	430.		
כענוג רואו	LINE NO	\$50035		COULP SERV		FAILURE		163 CCNTACT/CCNNECTION CEFECT 070 BRCKEN			DEL AV CUETO	:	FÀTLURE	· :
, 1			·			4	- P FEC	ENTACT/C Reken	381 LEAKING		TYPE CRC	TCE	1	301 LEAKING
.	NOUN CESCRIFT	HEL TRANS		_			123 CHAFEC	163 C10 C10 B10 C10 C10 C10 C10 C10 C10 C10 C10 C10 C	381		REPAIR UIC	PAGNAO		
		ř		F JULD AVAIL	33 2 (33	3C71CA	A REPLACE C E SERVICES E SERVICES E SERVICES		E STRVICES A PEPLACET	55	FIRST INDIC17 CA		ACTICN	A REPLACED F INIT INSP G FINAL INSP
	FSN	15206336836	FOUTPMENT MAINTENANCE RECORD, 2468-3	UIC	144140	FIRST INDICATION	C NORM OPER 360 INTRAIT	068 INCPER	O NORM OPER C99 OTHER	MAINTENANCE PEQLEST 2407,WCAK REQLEST	FAILURE	D WORK CPER		
FGCAQF						FAILURE SETECTED	IGRM OPER	+ OTHER D NORM OPER	10RM OPER	FOLEST 240	OI0	MANAC D		
9	Ş	ų.	M TA IN				00751 0 4 00751 00751 00758		33765 D A	ANCE B	UTIL	U	F 8	33775 05775 05775
	SEP 141 NO	te19366	F 00 10 46	CONT .	Ve:112	1007 F.	8173 00 8173 00 8173 00 8174 00		8179 33	MAINTEN	CONT .	665234	DATE F	8184 33 8184 33 8184 33

The records in the TAMMS data bank at AVSCOM are sorted to select the records mentioned in the preceding paragraph for each Type/Model/Series (TMS) fleet. They are then sorted again to arrange the records in chronological order for each end-item aircraft within a given TMS fleet. Thus, a TALCMOR report for a particular aircraft consists of all 2407, 2408-3, 2408-7, 2408-8, and 2408-9 records for that aircraft (arranged in chronological sequence).

a. <u>Limitations and Weaknesses of TAMMS and TALCMOR Data</u> for Measuring Reliability

The accuracy of a TALCMOR is, of necessity, limited to quality of ownership and maintenance reporting and accuracy of the keypunching required to get the data into the RAMMIT data processing system. The TALCMOR reports that we have examined generally contain many time gaps in the reporting of maintenance on the Forms 2407 and 2408-3. Moreover, these TALCMOR reports contain (1) many records that are out of chronological order (usually because of keypunching errors), (2) duplicate records that report the same maintenance, and (3) records that report maintenance but omit maintenance man-hours and part numbers. Thus, it was necessary for us to spend considerable time and effort to edit and assemble the data into a useful format.

For the purpose of measuring the field reliability of Army helicopters, the TALCMOR data are probably the best that are available from the Army. However, the TAMMS data system is not reliability-oriented in the first place--a fact that severely limits the usefulness of TAMMS as a source of reliability data. There are several reasons for this:

(1) It is difficult to determine the occurrence of failures by examination of either the 2408-3 or 2407 forms. These forms contain failure codes, when-failure-detected codes, first-indication-of-trouble codes, and action codes [1, Appendix A, Tables A-1 - A-5]. In practice, however, only

the failure and action codes are recorded by the maintenance personnel who prepare the Forms 2407 and 2408-3; and the failure codes are generally insufficient to determine the degree of malfunction. It is altogether impossible to determine whether the reported event aborted a mission.

- (2) TAMMS is a 100-percent reporting system. Forms 2407 and 2408-3 are completed for every helicopter in the Army inventory. The result is a massive amount of low-quality data for the entire fleet of Army helicopters. Once assembled, and even with the help of the largest computers, this volume of data is far too great and unwieldy to be processed efficiently.
- (3) Part numbers are generally omitted from the forms unless a component is being replaced. Thus, the reliability data contained in a TALCMOR report cannot be further subdivided by component or subsystem. Therefore, it is not possible to determine accurately the reliability or failure rates of individual components in a given TMS fleet. For this reason, our reliability estimates are limited to the complete helicopter. We remark, however, that removal rates for major components are available in the RAMMIT Major Items Removal Frequency (MIRF) report.

Z.

(4) In many cases, the removal and installation of selected aircraft items is not reported on Forms 2407 and 2408-3. Most of these maintenance actions, especially those involving major high-cost or maintenance items, are reported on DA Form 2410 (Component Removal and Repair/Overhaul Record). This form is used to record removal, overhaul, and reinstallation activity for a specific serial-number component, and it stays with that component. Form 2410 shows the serial numbers of both the aircraft from which the component is removed and the aircraft on wich the component is installed. Thus, the 2410 forms are specific to individual serial-number components rather than to serial-number aircraft; and, for this reason, they are not included in a TALCMOR report for an individual aircraft. For example, an engine may be removed from one aircraft, overhauled, and then reinstalled on a different aircraft. This complete series of actions is reported on different copies of the same Form 2410. In order to make use of this information, AVSCOM publishes the Major Items Removal Frequency (MIRF) report for high-cost items on each type of Army helicopter. This report is part of the output from the RAMMIT system.

- (5) Lost TAMMS records impair the usefulness of a TALCMOR report for measuring reliability. All the CH-47A TALCMOR reports that we have examined contain gaps in the reporting of maintenance and of failures. Thus, because of missing data, it is not possible to obtain accurate reliability estimates. In some cases for an end-item aircraft, there are as many as 1,000 flight-hours for which there is no man-hour or failure accounting.
- (6) Time intervals between successive failures on an end-item aircraft cannot be determined accurately from a TALCMOR report. Forms 2407 and 2408-3 contain the cumulative flight-hours on the end-item aircraft at the time the maintenance action recorded on the form is performed. Thus, to obtain the time interval between successive failures, it is necessary to compare successive records--which cannot be done when there are missing data. Also, it is common practice to neglect many minor failures and repair them at the 100-hour Preventive Maintenance Periodic (PMP) inspection. Thus, failures tend to accumulate sharply near every 100-hour checkpoint. The actual failure rate probably does not exhibit these cyclical peaks.

b. Recommendations

The TAMMS reporting system as presently structured is adequate for reporting man-hours expended in maintenance on Army aircraft. However, the data gathered are inadequate for tracking the field reliability of Army helicopters. We make several recommendations, which (if implemented) would allow accurate field reliability data to be obtained through the TAMMS reporting system:

(1) Detailed and accurate reliability data for a small sample of Army helicopters would allow a more reliable assessment of field reliability than does a massive quantity of inadequate, inaccurate, and incomplete data on every helicopter in the Army inventory. In this age of sophisticated statistical methodology, it is not necessary to do exhaustive sampling on a population in order to determine certain population characteristics. This is particularly true in the field of reliability measurement.

- (2) In measuring reliability, we are interested in estimating the probability distribution (and its mean--MTBF) of the times to failure for a certain population of similar items. Thus, the logical data to be collected for the purpose of measuring the field reliability of helicopters concern failures -- the time of occurrence of a failure, the time interval between successive failures, number of duty cycles since last failure, hours on a component at the time of failure, part number of failed component, Thus, the TAMMS data forms--particularly DA Forms 2407 and 2410--should be revised so that this type of reliability data (in addition to maintenance man-hours' can be collected by the TAMMS system. The TAMMS system is the logical mechanism for collecting and reporting accurate field reliability data.
- (3) The coding system used in TAMMS to record failures and maintenance actions is simple. Thus, it is easy for maintenance personnel to use the system. However, the TAMMS failure codes are not adequate for determining the occurrence of failures. At present, it is impossible to determine whether a failure is relevant to safety of flight or whether it caused a mission abort. If the TAMMS reporting system is expanded to include reliability data, the Army's failure definitions, failure codes, and action codes should be revised so that failures and the conditions surrounding their occurrence are accurately recorded on the TAMMS data forms. Thus, a revised TAMMS—failure coding system should distinguish between system, mission, and safety of flight failures.

Mome simple trade-offs are involved in these recommendations, which are not, however, simple to implement. The revisions of TAMMS that we have proposed would undoubtedly make the system more costly and unwieldly than the present TAMMS if the revised system were applied to every helicopter in the Army inventory. However, by limiting this extended coverage to a much smaller sample of aircraft (10 percent or less of the Army helicopter inventory), the number of personnel and man-hours required to obtain accurate helicopter field reliability and maintainability

data could probably be substantially reduced. To be sure, it would require greater training and motivation to obtain from maintenance personnel the increased performance that would be required to collect accurate and complete helicopter reliability data of the type we have discussed here. The personnel required to collect and codify the type of data sought in these recommendations would need specialized training in reliability, in order to be able to distinguish between the different types of failures. At present, people who are knowledgeable in reliability are not likely to be found at the organizational level filling out TAMMS forms.

c. Results

We have analyzed TALCMOR reports for a total of eight CH-47A aircraft. However, only five of these reports contained data that were complete enough for use in our study. The data presented and analyzed in this section are for the following sample of CH-47A aircraft: serial numbers 6507991, 6507994, 6508002, 6619068, and 6619071. These data cover more than 14,000 flight-hours on the CH-47A for the period March 1966 through March 1973. Table 2 shows maintenance man-hours per flight-hour (MMH/FH), maintenance actions per flight hour (MA/FH), and Failures/FH for the first 100 flight-hours, the next 400 flight-hours, and then for each 500-flight-hour interval to 2,500 flight-hours. The first five panels of the table present data for the five individual aircraft; the bottom panel presents the average R/M measures for the five aircraft. Each aircraft in the sample has accumulated flight-hours in excess of 2,500. The data in Table 2

However, many of the data presently being collected are needed for other purposes (e.g., the maintenance log for an aircraft and the inventory control of serial-number components). Hence, a sampling program for all maintenance actions is not feasible; many would have to continue to be reported on a 100 percent basis.

Table 2. R/M MEASURES FOR THE ARMY CH-47A

	Number of Flight-Hours						
R/M Measure	100	500	1,000	1,500	2,000	2,500	
Serial #6507991							
MMH/FH MA/FH Failures/FH	16.46 0.98 0.288	12.25 0.74 0.310	9.19 0.45 0.162	22.05 0.35 0.059	18.35 1.00 0.265	16.61 1.08 0.160	
Flight-Hours with Data Missing Julian Date	20 6159	106 7153	238 8100	413 9022	208 0041	289 0174	
Serial #6507994							
MMH/FH MA/FH Failures/FH Flight-Hours with Data	16.77 1.37 0.286	12.10 1.09 0.391	6.12 0.58 0.250	8.80 0.79 0.196	6.23 0.50 0.150	11.40 1.27 0.390	
Missing Julian Date	16 6180	82 7193	136 8137	182 9071	121 9286	102 1210	
Serial #6508002							
MMH/FH MA/FH Failures/FH Flight-Hours with Data Missing Julian Date	13.76 0.65 0.800	14.83 0.68 0.196	11.22 0.67 0.202	6.41 0.51 0.188	18.43 1.59 0.674	12.96 2.06 0.764	
	0 620 2	78 7106	39 7333	355 8149	333 9334	124 1350	
Serial #6619068							
MMH/FH MA/FH Failures/FH Flight-Hours with Data	2.41 1.07 0.267	5.66 0.52 0.119	11.28 1.29 0.161	8.62 0.78 0.192	19.01 1.60 0.423	22.74 0.91 0.167	
Missing Julian Date	78 7210	1 38 8030	114 9011	102 9242	262 0066	265 1139	
Serial #6619071							
MMH/FH MA/FH Failures/FH Flight-Hours with Data	7.64 0.54 0.063	7.64 0.65 0.194	37.73 1.11 0.619	45.70 1.38 0.652	58.78 1.48 0.488	15.36 1.75 0.784	
Missing Julian Date	20 7177	9 7347	170 8214	60 9147	305 1130	0 3066	
Average of Five Aircraft MMH/FH MA/FH Failures/FH	11.41 0.92 0.189	10.50 0.74 0.242	15.11 0.82 0.279	18.32 0.76 0.257	24.16 1.23 0.412	15.81 1.41 0.448	

cover on-aircraft maintenance only for all levels of Army maintenance except depot maintenance.

In most cases, detailed examination of the R/M data revealed gaps in the reporting. These gaps are indicated in Table 2 by "Flight Hours with Data Missing." For example, Table 2 for aircraft #6507991 under 500 flight-hours shows 106 flight-hours with no maintenance data reporting -- which means that, for the interval between 100 and 500 flight nours, we estimated that there were 106 flight-hours on this aircraft for which no failure or maintenance data were listed in the TALCMOR report. Since DA Forms 2407 and 2408-3 always show the cumulative flight-hours on the aircraft, we have an accurate record of cumulative flighthours. However, there are days for which no maintenance action forms are listed in the TALCMOR report. Thus, the TALCMOR record for aircraft #6507991 shows a Form 2407 on Julian date 6223 (= 223rd day of 1966 = 11 August 1966), with 134 cumulative flighthours. The next record in the report is a Form 2408-3 dated 6321 (98 days later, 17 November 1966), showing 156 cumulative flighthours. It is very unlikely that this aircraft did not fly between 11 August 1966 and 16 November, say, and then was flown for (156 - 134 =) 22 hours on 17 November. Since CH-47A aircraft average about 2 hours of flying time each day, we can reasonably estimate that there are about 20 flight-hours in the time interval between 11 August and 17 November 1966 for which we have no reporting of maintenance actions. Since this aircraft averaged 0.74 maintenance actions per flight-hour during this period (100 to 500 cumulative hours), it is unlikely that it flew 22 hours with no maintenance actions. Hence, there are probably missing maintenance reports for this period.

In all cases, the three R/M measures of Table 2 have been corrected for the flight-hours with data missing. The corrections were made by eliminating the gaps in the data. For example, the three R/M measures for serial #6507991 between 100 and 500 flight-hours are based on the R/M activity levels during the (400 - 106 =)

294 flight-hours for which the data were believed to be completely reported.

The Julian dates for Table 2 show the dates on which the corresponding flight-hour milestones were reached (or the date on the maintenance form with cumulative flight-hours closest to the milestone). Thus, the 500-hour milestone for aircraft #6507991 was reached on Julian date 7153 (i.e., on the 153rd day of 1967). This date was 2 June 1967.

Figure 1 contains a semi-logarithmic plot of the three average R/M measures (from the bottom panel of Table 2) plotted versus flight-hours. The averages are plotted at the midpoint of each flight-hour interval. Thus, for the interval 100 to 500 flight-hours, we show the average of 0.242 Failures/FH plotted at 300 flight-hours, etc.

Figure 1 indicates that the trends of the three R/M measures all worsened as the helicopters accumulated flight-hours. Julian dates of Table 2 indicate that it took an average of approximately five years for each helicopter to accumulate 2,500 flight-hours. The R/M averages for this group of five helicopters indicate that over this period of time the effect of any design improvements incorporated in the helicopters was more than offset by the aging of the helicopters--and possibly by the installation of additional equipment and accompanying weight growth. Army personnel suggested that another reason for the decrease in reliability with time might be that, as the helicopter operators become more familiar with the aircraft and develop more confidence in them, there is the possibility that they fly them harder and carry greater loads than they were designed for. In any case, the detailed R/M data for these CH-47A helicopters would indicate that individual aircraft do not experience R/M growth during their service life. It is possible, however, that later CH-47 models entering service in the 1970s might exhibit improved R/M characteristics at numbers of flight-hours equivalent to those of these CH-47s that entered service about 1966.

Figure 1. AVERAGE R/M MEASURES VERSUS FLIGHT-HOURS FOR THE ARMY CH-47A

2. Mean Time Between Maintenance Actions (MTBMA), Replace Actions, and Repair Actions

Table 3 presents data for mean time between (1) maintenance actions, (2) replace actions, and (3) repair actions for four types of Army helicopters. These are the only helicopters for which these data have been published by AVSCOM. These various mean times between actions have been plotted versus empty weight in Figure 2. In all three types of actions, the mean time between actions (MTBA) is much lower for the CH-47A than for the CH-54A, even though the empty weight of both aircraft is nearly the same. Trend curves have been drawn between these points. These curves indicate a strong decrease in MTBA versus empty weight. These curves appear to be logical, since larger helicopters have more parts and should therefore be expected to require more MA/FH (or less MTBA) than smaller helicopters.

Table 3. ARMY HELICOPTER RELIABILITY DATA

7 1.3	0.73	0.45
2 3.9	2.4	1.0
0 45.0	18.9	4.4
	2 3.9	2 3.9 2.4 0 45.0 18.9

A word of caution concerning the averages presented in Table 2 is needed. These averages are for entire fleets of Army helicopters for specific time periods. The TALCMOR analysis for the CH-47A (above) shows, though inconclusively, that the various failure and maintenance rates for individual helicopters increase

¹Army fleet average empty weights (in pounds) are as follows:

UH-1 4,700 CH-47 19,400

AH-1 5,300 CH-54 19,200

OH-6A 1,200 OH-58 1,500

CH-37 19,700

Figure 2. MEAN TIME BETWEEN ACTIONS VERSUS EMPTY WEIGHT FOR ARMY HELICOPTERS

with cumulative flight-hours. Thur, the values of Table 2 would tend to worsen as the fleets age. Since the average age of the OH-58A aircraft, for example, is less than that of the CH-54A aircraft, some of the reliability advantage of the OH-58A may be due to a lower fleet age rather than to smaller size only (as suggested by Figure 1).

Figures 3a-c (reproduced directly from AVSCOM reports) show the breakdown of maintenance actions by functional group for the OH-58A, AH-1G, and CH-54A.

3. The OH-58A

Ţ,

ł.

The Army OH-58A was developed by Bell Helicopter from the OH-4A and Jet Ranger 206A. The OH-4A was Bell's entry in the Army Light Observation Helicopter (LOH) competition in the early 1960s. When that competition was won by the Hughes OH-6A, Bell developed the Jet Ranger from the OH-4A and sold it to commercial operators and foreign governments. In FY 1968, Bell sold to the Army and to the Navy versions of the Jet Ranger (the OH-58 and the TH-57, resp.). These aircraft entered service in calendar year (CY) 1969. This family of helicopters had accumulated roughly 200,000 flight-hours by the time the OH-58A entered Army service; hence, the initial reliability growth period (if any) would not be captured by the Army experience.

Figure 4 shows MTBF over a 15-month period during R&M demonstration at Fort Rucker. The MTBF was relatively high initially (probably reflecting the fact that the aircraft were new), but dropped during the first three months to a level that stayed fairly constant for the remainder of the program.

Figure 5 (from an AVSCOM report) covers a later period and shows MTB Aborts (rather than MTBF, as in the case of Figure 4) for each calendar quarter beginning in the third of 1970 through the second of 1972. Figure 5 indicates that MTB Aborts worsened somewhat over the period covered—due probably to the aging of the fleet.

GROUP-LEVEL BREAKDOWN OF MAINTENANCE ACTIONS JANUARY 1970 - 30 JUNE 1971 AND FUNCTIONAL ARMY OH-58A, 1 END-ITEM AIRCRAFT a. FOR THE Figure 3.

Reference [2, p. 117].

Source:

4

(continued on next page)

ないないとはいいないないないでもっても

.,

Reference [3, p. 95] Source:

- Mean Time Between Repair Actions

(concluded on next page)

DECEMBER 1970 3 (continued) 1 JULY 1970 - 31 Figure FOR THE ARMY AH-1G, ٠.

DECEMBER 1972 31 (concluded) JULY 1970 -Figure FOR THE ARMY CH-54A, :

Source: Bell Helicopter Company.

R/M DEMONSTRATION AT FORT RUCKER FOR THE ARMY OH-58A Figure 4.

Source: Reference [2, p. 88].

Figure 5. GRAPHICAL SUMMARY OF SIGNIFICANT DATA FOR THE ARMY OH-58A

Figure 6 (from the same AVSCOM report) shows the trends in mean time to removal (MTTR) for major items of the OH-58A. The various panels of Figure 6 cover 21 items; by visual inspection, the trends were categorized as follows:

MTTR increased: 16 MTTR remained constant: 3 MTTR decreased: 2

The categorization is noted to the right of each trend by the words up, constant, or down. The relatively greater number of increasing MTTRs would seem to indicate that the helicopter as a whole experienced reliability growth in MTTR over this period of time. However, closer examination of the data for the OH-58A fleet yields a different interpretation. For example, in Figure 6 the freewheeling unit, PN 20604023013, exhibits a sharp upward trend in MTTR from the fourth calendar quarter of 1969 through the second of 1972--going from about 125 hours MTTR to more than 800 hours MTTR. In fact, during this 11-quarter period there were seven quarters when MTTR exceeded 550 hours, four quarters when MTTR was less than 475 hours, and two quarters when MTTR was less than 300 hours.

However, the first OH-58A aircraft were delivered to the Army in May 1969, and at the end of the fourth calendar quarter of 1969 only 99 of these aircraft had been accepted into the Army inventory. As of September 1972, the aircraft in the Army's OH-58A fleet had averaged 32.4 flight-hours per month per aircraft. Thus, by the end of CY 1969 very few OH-58A aircraft would have accumulated more than 200 flight-hours. Thus, MTTR for any OH-58A components in CY 1969 would have to be less than 200 hours. An examination of the trends in Figure 6 shows that, for every part number where there is a point plotted for the fourth calendar quarter of 1969, the MTTR is less than 150 hours. Thus, all these upward trends are rather doubtful. In fact, as of 30 September 1972, only 25 percent of the OH-58A fleet had accumulated more than 526 flight-hours.

1.

3

Figure 6. MEAN TIME TO REMOVAL (MTTR) TRENDS FOR THE ARMY OH-58A, 1 JULY 1969 - 30 JUNE 1972

Figure 6 (continued)

Figure 6 (continued)

FREEWHEELING UNIT PN 20604023019

Source: Reference [2, pp. 418-25] -- for all eight pages of this figure.

Figure 6 (continued)

PREEWHEELING UNIT

AXIAL COMPRESSOR

Figure 6 (continued)

MAIN FUEL CONTROL PN 25244373

Figure 6 (continued)

Figure 6 (continued)

MAIN ROTOR BLADE PN 2060112503

TAIL ROTOR HUB ASSEMBLY PN 2060118017

Figure 6 (concluded)

MTTR of, say, 700 hours. When plotted versus calendar time (starting in the fourth calendar quarter of 1969), the MTTR for component X will thus show a steady increase—going from about 100 hours MTTR in CY 1969 to around 700 hours MTTR in the middle of CY 1972. To the eye, this increase looks like reliability improvement; but it is, in fact, nothing more than a transient that approaches a steady state. Hence, our conclusion is that it is very doubtful that the upward trends in Figure 6 are indicative of any reliability improvement. On the other hand, we can conclude that those components that showed level or downward trends in Figure 6 were definitely experiencing reliability degradation, since it is hard to envision how a steady-state MTTR could be reached by way of a decreasing transient.

4. The AH-1G and the UH-1D

Figures 7 and 8 (taken from a paper by Bell Helicopter personnel) show trends in MMH/FH and operational availability for the UH-1D and AH-1G helicopters following their introductions into Army service. Since both helicopters were derivatives of earlier UH-1 models, the initial reliability growth period for each would not be representative of that for a completely new helicopter. Both the UH-1D and AH-1G seemed to experience reliability growth.

The MMH/FH for the UH-1D increased in 1965 relative to 1964, but the trend over the 1964-67 period was downward; the UH-1D operational availability increased somewhat over the same period.

The MMH/FH for the AH-1G decreased over the period shown; however, all the decrease occurred in the first four months. Similarly, virtually all the improvement in the AH-1G availability took place in the first four or five months.

Source: Reference [6, p. 7].

Figure 7. MMH/FH FOR THE ARMY UH-1D AND AH-1G

Source: Reference [6, p. 8].

Figure 8. OPERATIONAL AVAILABILITY FOR THE ARMY UH-1D AND AH-1G

Figure 9 (from Bell Report 205-099-141) presents reliability data for the same UH-1D fleet as reported in Figures 7 and 8. The period covered is the first 13 months of Figure 7 and 8(July 1964 through July 1965). The "operational reliability" of Figure 9 considered only primary failures that produced system or subsystem failures, while the "maintenance reliability" included all failures (primary, secondary, and externally caused) that necessitated unscheduled maintenance. The helicopter was broken down into 14 different systems, and similar plots were presented for each system. The operational reliability worsened over the 13 months for all systems except the power plant, and the maintenance reliability worsened for all systems except the oil-cooling, power-plant, and rotors systems. As would be expected, Figure 7 shows that MMH/FH increased over this same period, during which reliability worsened. Figure 7 indicates that MMH/FH declined in the following two years, but unfortunately we were not able to obtain reliability data for these following two years.

Figure 10 (from an AVSCOM report) shows the trends in MTTR for major items of the AH-1G for a later period of time than that covered by the Bell paper. There are 22 items covered in the various panels of Figure 10; by visual inspection, the trends were categorized as follows:

MTTR increased: 5 MTTR remained constant: 4 MTTR decreased: 13

The categorization is noted to the right of each trend by the words up, constant, or down. The relatively greater number of decreasing MTTRs would indicate that the helicopter as a whole experienced reliability degradation in MTTR over this period of time.

Total Control

SYSTEM OPERATIONAL AND MAINTENANCE RELIABILITY OF THE HELICOPTER AS DETERMINED FROM FAILURE/DISCREPANCY REPORT DATA ON MONITORED UH-1D HELICOPTERS Figure 9.

3.

Figure 10. MTTR FOR THE ARMY AH-1G, 1 OCTOBER 1969 - 30 SEPTEMBER 1971

Figure 10 (continued)

figure 10 (continued)

Source: Reference [3, pp. 202-05].

Figure 10 (concluded)

5. The CH-54A

Table 4 (reproduced directly from an AVSCOM report) presents mean time between flight aborts for the CH-54A fleet. These data are plotted in Figure 11. As can be seen from the figure, the abort rate was quite variable over this period of time, but the overall trend was approximately constant.

Figure 12 (from the same AVSCOM report) shows the trends in mean time to removal for major items of the CH-54A. The various panels of Figure 12 cover 18 items; by visual inspection, the trends were categorized as follows:

MTTR increased: 10
MTTR remained constant: 5
MTTR decreased: 3

The categorization is noted to the right of each trend by the words up, constant, or down. The relatively greater number of increasing MTTRs seems to indicate that the helicopter as a whole experienced reliability growth in MTTR over this period of time. However, caution should be observed in drawing this conclusion, since there are many gaps in the data. It should also be noted that for certain items, the MTTR for some quarters may be based on only a single removal. Further, as discussed under the OH-58A trends (Subsection 3, above), some of the apparent improvement could be due to the accumulation of flight-hours on the components over time.

6. Maintenance Man-Hours per Flight-Hour (MMH/FH)

The Army publishes manuals giving manpower requirements for various types of equipment. Since these documents are reissued periodically, they should show trends in helicopter maintenance man-hours over calendar time.

The term "flight abort" means the premature termination of a mission for any reason.

Table 4. ABORT DATA FOR THE ARMY CH-54A.
1 JANUARY 1969 - 31 MARCH 1973

Quarters	Average Inventory	Flight Hours	Number of Aborts	MTB Aborts
lst Qtr. 69	55	5063	10	506.3
2nd Qtr. 69	56	1702	4	425.5
3rd Qtr. 69	58	5417	9	601.9
4th Qtr. 69	58	5167	4	1291.8
1st Qtr. 70	58	5173	13	397.9
2nd Qtr. 70	58	6091	8	761.4
3rd Qtr. 70	57	4025	8	503.1
4th Qtr. 70	56	2904	3	968.0
1st Qtr. 71	54	2816	11	256.0
2nd Qtr. 71	52	2405	3	801.7
3rd Qtr. 71	51	2390	6	398.3
4th Qtr. 71	50	1501	4	375.3
1st Qtr. 72	50	1189	0	1189.0
2nd Qtr. 72	49	1524	4	381.0
3rd Qtr. 72	49	1418	1	1418.0
4th Qtr. 72	48	974	3	324.7
1st Qtr. 73	47	874	3	291.3

Figure 11. MEAN TIME BETWEEN FLIGHT ABORTS FOR THE ARMY CH-54A

^{*} Indicates no data available for this quarter (continued on next page)

Figure 12. MTTR TRENDS FOR THE ARMY CH-54A, 1 OCTOBER 1969 - 30 SEPTEMBER 1972

* Indicates no data available for this quarter (continued on next page)

Figure 12 (continued)

* Indicates no data available for this quarter (continued on next page)

Figure 12 (continued)

* Indicates no data available for this quarter (continued on next page)

Figure 12 (continued)

* Indicates no data available for this quarter (concluded on next page)

Figure 12 (continued)

^{*} Indicates no data available for this quarter

Figure 12 (concluded)

Table 5 presents all the helicopter maintenance man-hour data published by the Army in general service manuals since April 1958. As can be seen in the sources given at the bottom of Table 5, the Army data have been published in a number of different regulations and manuals. In all, eight documents have been published since April 1958—seven of them since February 1968. Data are reported for three levels of maintenance: organizational, direct support, and general support. However, as can be seen by the dashes in the table, not all three levels are reported in every document. The April 1958 document reported only organizational data; the next three documents reported only direct-support and general-support data, while the last four documents reported data for all three levels of maintenance.

In some cases, the designation of the helicopter type varied among documents. For example, the May 1971 document showed only a single entry for all CH-47 aircraft, while the September 1971 document showed figures for the CH-47A, CH-47B, and CH-47C.

In all cases, the figures include a "1.4 indirect productive time factor," and include both on- and off-aircraft maintenance. The figures of Table 5 are taken directly from the Army publications in all but two cases: the organizational maintenance in the May 1971 and March 1973 documents showed "direct man-hours per flight hour." These figures were multiplied by 1.4 to make them consistent with all the other figures.

Presumably, the maintenance man-hours, which are provided by AVSCOM(AMSAV-FP), should reflect actual Army experience. Unfortunately, an examination of the figures indicates that such may not be the case. For example, note the direct-support figures for the H-13 in the last four publications (1.40, 2.20, 1.40, 2.20). These figures look suspiciously as though they were generated by clerks copying figures from previous documents and making mistakes in the process. With this caveat, let us examine the data relative to trends over time.

Table 5. ARMY MMH/FH

Helicopter Type	Apr 1968	Feb 1968	May 1968	July 1969	May 1971	Sep 1971	Mar 1973	May 1973
Organisational Main	tenance							
H-13	4.00				2.65	2.65	2.65	2.65
H-23	4.00				2.65	2.07	2.65	
H-19	7.00							
H-21	10.80							
H- 34	10.80				7.98	8.60	7.98	
H- 37	15.60							
UH-1A/B/C	6.00				3.35	3.35	3.35	3.35
UH-1D/H					3.25	3.25	3.25	3.25
AH-1G					4.05	4.05	4.05	4.05
0H-6/0H-58					2.25	2.25	2.25	2.25
CH-47					12.70		12.70	
CH-47A						12.73		12.73
CH-47B						12.32		12.32
CH-47C						11.30		11.30
CH-54					17.81	17.81	17.81	17.81
Jirect Support								
H-13		1.40	1.40	1.40	1.40	2.20	1.40	2.20
H-23		1.54	1.54	1.54	1.54	2.52	1.54	
H-19		4.62	4.62	4.62				
H-21		5.46	5.46	5.46				
H-34		4.76	4.76	4.76	4.76	9.72	4.76	
H-37		7.56	7.56	7.56				
UH-1		2.10	2.10	2.10				
UH-1B/C					2.79	2.79	2.79	2.79
UH-1D/H					2.41	2.41	2.41	2.41
AH-1G		2.10	2.10	2.10	2.62	2.62	2.62	2.62
OH-6		1.19	1.19	1.19	2.81	2.81	2.81	2.81
OH-58					2.81	2.81	2.81	2.81

(continued on next page)

Table 5 (continued)

Helicopter Type	Apr 1958	Feb 1968	May 1968	July 1969	May 1971	Sep 1971	Mar 1973	May 1973
Direct Support								
CH-47		8.12	8.12	8.12	10.73		10.73	
CH-47A						10.74		10.74
CH-47B						8.36		8.36
CH-47C						12.31		12.31
CH-54		13.60	13.60	13.60	7.85	7.85	7.85	7.85
lonerel Support								
H-13		1.12	1.12	1.12	1.12	1.78	1.12	1.78
H-23		1.12	1.12	1.12	1.12	3.09	1.12	
H-19		2.52	2.52	2.52				
H-21		2.80	2.80	2.80				
H-34		3.22	3.22	3.22	3.22	6.58	3.22	
H-37		5.04	5.04	5.04				
UH-1		1.54	1.54	1.54				
UH-1B/C					2.30	2.30	2.30	2.30
UH-1D/H					2.02	2.02	2.02	2.02
AH-1G		1.54	1.54	1.54	2.18	2.18	2.18	2.18
OH-6		1.04	1.04	1.04	0.67	0.67	0.67	0.67
OH-58					0.67	0.67	0.67	0.67
CH-47		5.18	5.18	5.18	7.85		7.85	
CH-47A						7.85		7.85
CH-47B					••	6.43		6.43
CH-47C						8.85		8.85
CH-54		2.98	2.98	2.98	5.66	5.66	5.66	5.66

Sources: References [8], [9], [10], and [11].

In the case of organizational maintenance, no data were published between April 1958 and May 1971. For the four aircraft reported in both time periods, all showed significant reductions in MMH/FH. It is possible that some definitional change caused this reduction. From May 1971 to May 1973, the MMH/FH were essentially constant for all types.

In the case of direct support, the September 1971 figures for the H-13, H-23, and H-34 appear questionable; they are much higher than those of both the immediately preceding and the immediately following periods. They should probably be ignored. The UH-1, AH-1G, OH-6, and CH-47 are higher in the last four periods than in the first three. The reverse is true for the CH-54. Hence, the direct-support MMH/FH appeared to worsen for four types, improve for one type, and remain constant for the other seven types.

In the case of general support, the September 1971 figures for the H-13, H-23, and H-34 again appear questionable; they are much higher than those of both the immediately preceding and the immediately following periods. The UH-1, AH-1G, CH-47, and CH-54 are higher in the last four periods than in the first three. The reverse is true for the OH-6. Hence, the general support MMH/FH appeared to worsen for four types, improve for one type, and remain constant for the other seven types.

The results of this analysis are summarized in Table 6. Even including the April 1958 data, there are more cases in which MMH/FH worsened than in which they improved. To the extent that these data can be believed, they show, in general, that MMH/FH remain constant over time; if they do change, they tend to worsen more often than they improve.

Table 6. SUMMARY OF CHANGES IN ARMY MMH/FH

	Number of Heli	Number of Helicopter Types					
MMH/FH Change	Including April 1958 Data	Excluding April 1958 Data					
Worsened	8	8					
Improved	6	2					
Constant	20	20					

Table 7 presents some additional MMH/FH data published recently by AVSCOM.

Table 7. ARMY ON-AIRCRAFT MMH/FH

Aircraft	Data	Time Frame	MMH/FH
OH-58À	Jan	70-Jun 71	2.06
AH-1G	Jul	70-Jun 71	5.53
CH-54A	Jul	70-Dec 72	14.50
CH-47A	Apr	71-Mar 73	14.94

The figures of Table 7 represent on-aircraft maintenance on and are therefore lower than those of Table 5, which include toth on- and off-aircraft maintenance. The total MMH/FH for all levels of maintenance for all the turbine-powered helicopters of Tables 5 and 7 are plotted in Figure 13. The data points from Table 5 lie in a hearly straight line on the semi-log plot. The lata points from Table 7 do not lie in a straight line; a trent line parallel to that of the upper trend has been fitted turn on them. There is a fairly wide range of uncertainty at the lower end of this trend.

Figure 13. MMH/FH VERSUS EMPTY VEIGHT FOR ARMY HELICOPTERS

B. NAVY 3-M DATA

Navy aircraft maintenance data is reported under the Maintenance Material Management (3-M) reporting system, a computerized system operated by the Navy Fleet Material Support Office, Mechanicsburg, Pennsylvania. Data are submitted on all Navy aircraft in service use; the test period prior to service use is not covered. Data are published on both monthly and quarterly bases. The Navy advised against our use of its 3-M data before CY 1968, because they were less reliable than data for FYs 1968-73, which are reported herein.

Data are assembled by major operating command. For example, the UH-1N reports show separate data for the following operating commands:

FMFLANT (Fleet Marine Force Atlantic)
CNAP (Commander, Naval Air Force Pacific)
MARNFMF (Marine Non-FMF)
NATRA (Naval Air Training)
CNAL (Commander, Naval Air Force Atlantic).

Data for helicopters operating under combat conditions in Vietnam probably are not representative of normal noncombat operations. Accordingly, we excluded data from the Pacific commands in our use of the 3-M data.

The 3-M system permits the ready calculation of three R/M measures: (1) mean flight-hours between maintenance actions (MFHBMA), (2) mean flight-hours between failures (MTBF), and (3) maintenance man-hours per flight-hour (MMH/FH). It is

¹Reference [12] includes the following definitions:

Maintenance. All actions necessary for retaining an item in or cestoring it to a specified condition.

Failure. The inability of an item to perform within previously specified limits.

Proceeduled maintenance actions only.

Unsided and maintenance only at the organizational and the intermediate assistences activity levels.

also possible, with great effort, to obtain mission-abort rates; however, in our use of the 3-M data we developed only the first three R/M measures.

The 3-M data are coded by numerical work-unit codes (WUCs), which identify the various parts of the helicopter. This coding permits one to assemble data by helicopter system. We assembled data into the following systems: (1) airframe, (2) rotors and hubs, (3) gear boxes and drives, (4) power plant, (5) instruments, communication, and navigation, (6) weapon systems (where applicable), and (7) total. In many cases the weapon systems are responsible for relatively few maintenance actions, failures, and maintenance man-hours; in those cases the data for the weapon systems shown in the tables are not plotted on the graphs. 3-M data are available for five basic types of Navy helicopters: the H-1, H-2, H-3, H-46, and H-53.

1. The H-1

In Table 8 we have combined the data for all the singleengine types in this series except the AH-1G gunship (i.e., the UH-1D, UH-1E, UH-1H, UH-1L, TH-1L, and HH-1K models). Since all these models in Table 8 are quite similar, we feel that a more meaningful fleet average is obtained by combining these types rather than by considering them individually. Tables 9-11 prebent data for three other H-1 models in Navy service: the UH-1N, AH-10, and AH-1J. The UH-1N and AH-1J are twin-engine models. These three are sufficiently different (from the H-1 models of Table 8) that we felt they should be treated separately. Using the data of Tables 8-11, the three R/M measures are plotted for the various H-1 models in Figures 14-25. Figures 14 and 16 indigate that the MTBMA and MMH/FH for the UH-1D/UH-1E/UH-1H/ TH-11/TH-11/HH-1K fleet were fairly constant over the period 1968-75, while Figure 15 indicates that MTBF worsened somewhat. elected 17-25 indicate that for the UH-1N, AH-10, and AH-1J

helicopters, the measures of R/M worsened markedly over the three years these helicopters have been in service.

The trends for the various components do not appear to differ systematically from the trends for the total aircraft. However, relative to the single-engine utility helicopter models, there does appear to be a worsening in R/M characteristics of the models shown separately. In general, the ranking by R/M characteristics is (1) UH-1D/UH-1E/UH-1H/UH-1L/TH-1L/HH-1K (best), (2) UH-1N, (3) AG-1G, (4) AH-1J (worst). This ranking is due mainly to the twin engines of the UH-1N and AH-1J and the weapon systems of the AH models.

In some cases when a helicopter was entering service and the data for these years were not meaningful, they were not plotted.

Table 8. NAVY 3-M DATA FOR UH-1D, UH-1E, UH-1H, UH-1L, TH-1L, and HH-1K MODELS

AIRFR	RAME	AIRCRAFT H-1(S)					
- L.	FLIGHT			_		MAINT	
YFAR	HRS	ACTIONS	MFHUMA	FAIL.	MTRF	MAN-HRS	MH/FH
1948	8380	1446	5.80	759	11.04	4313	•51
1969	18322	3986	4.60	1305	14.04	12356	.47
1970	32389	7766	4.17	2755	11.76	28417	. AA
1971	45565	A152	5.59	3310	13.77	27866	+41
1972	53381	10069	5.30	5888	9.07	35830	.67
1973	45250	9593	4.72	6066	7.46	35366	• 78
1413	43630			3000	• •	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
ROTOR	S AND HU	RS (MAIN/T	AIL)	AIR	CRAFT H-	_	
	FLIGHT					MAINT	
YFAR	HRS	ACTIONS	MFHHMA	FAIL.	MTBF	MAN-HRS	MH/FH
1968	8380	672	12.47	296	2A,31	3379	• 4 0
1969	18322	1044	17.55	455	40.27	3475	• 1 9
1970	32389	2497	12.97	1711	26.75	10682	• 73
1971	45565	2489	18.31	1295	35.19	12496	• 27
1972	53381	3610	14.79	1886	2A.30	16398	15.
1973	45250	3990	11.34	2416	18.73	17988	• 4 0
GEAR		n DRIVES		AIRC	CRAFT H-1		
	FLIGHT		MFHBMA	•		MAINT	MH/FH
YFAR	FLIGHT HRS	ACTIONS	MFHBMA 36.92	FAIL.	MTRF	MAINT Man-HPS	MH/FH -11
YFAR 1968	FLIGHT HRS 0380	ACTIONS 227	36.92	FAIL. 126	MTRF 66.51	MAINT MAN-HPS 907	•11
YFAR 1968 1969	FLIGHT HRS 0380 18327	ACTIONS 227 819	36.92 22.37	FAIL. 126 321	MTRF 66.51 57.08	MAINT MAN-HPS 907 3327	•11 •18
YFAR 1968 1969 1970	FLIGHT HRS 0380 10327 32389	ACTIONS 227 819 1472	36.92 22.37 22.00	FAIL. 126 321 571	MTRF 66.51 57.08 56.72	MAINT MAN-HPS 907 3327 7437	•11 •18 •23
YFAR 1968 1969 1970 1971	FLIGHT HRS 0380 16327 32389 45565	ACTIONS 227 819 1472 1374	36.92 22.37 22.00 33.16	FAIL. 126 321 571 599	MTRF 66.51 57.08 54.72 76.07	MAINT MAN-HPS 907 3327 7417 6694	•11 •18 •23 •15
YFAR 1968 1969 1970 1971 1972	FLIGHT HRS 6380 16327 32389 45565 53381	ACTIONS 227 819 1472 1374 1902	36.92 22.37 22.00 33.16 28.07	FAIL. 126 321 571 599 1073	MTRF 66.51 57.08 54.72 76.07 49.75	MAINT MAN-HPS 907 3327 7437 6694 8546	•11 •18 •23 •15
YFAR 1968 1969 1970 1971	FLIGHT HRS 0380 16327 32389 45565	ACTIONS 227 819 1472 1374	36.92 22.37 22.00 33.16	FAIL. 126 321 571 599	MTRF 66.51 57.08 54.72 76.07	MAINT MAN-HPS 907 3327 7417 6694	•11 •18 •23 •15
YFAR 1969 1970 1971 1972 1973	FLIGHT HRS 6380 16327 32389 45565 53381	ACTIONS 227 819 1472 1374 1902	36.92 22.37 22.00 33.16 28.07	FAIL. 126 321 571 599 1073 980	MTRF 66.51 57.08 54.72 76.07 49.75	MAINT MAN-HPS 907 3327 7437 6694 8546 7108	•11 •18 •23 •15
YFAR 1969 1970 1971 1972 1973	FLIGHT HRS 0380 18327 32389 45565 53381 45750	ACTIONS 227 819 1472 1374 1902	36.92 22.37 22.00 33.16 28.07	FAIL. 126 321 571 599 1073 980	MTRF 66.51 57.08 54.72 76.07 49.75 46.17	MAINT MAN-HPS 907 3327 7437 6694 8546 7108	•11 •18 •23 •15 •16
YFAR 1969 1970 1971 1972 1973	FLIGHT HRS 0380 16327 32389 45565 53381 45250 PLANT FLIGHT HRS	ACTIONS 227 819 1472 1374 1902 1553	36.92 22.37 22.00 33.16 28.07 29.14	FAIL. 126 321 571 599 1073 980 AIRC	MTRF 66.51 57.08 54.72 76.07 49.75 46.17 CRAFT H-	MAINT MAN-HPS 907 3327 7417 6694 8546 7108	•11 •18 •23 •15 •16 •16
YFAR 1968 1969 1970 1971 1972 1973	FLIGHT HRS 0380 16327 32389 45565 53381 45250 PLANT FLIGHT	ACTIONS 227 819 1472 1374 1902 1553	36.92 22.37 22.00 33.16 28.07 29.14	FAIL. 126 321 571 599 1073 980 AIRC	MTRF 66.51 57.08 56.72 76.07 49.75 46.17 CRAFT H-	MAINT MAN-HPS 907 3327 7437 6694 8546 7108 (S) MAINT MAN-HPS 2465	•11 •18 •23 •15 •16 •16
YFAR 1969 1970 1971 1972 1973 POWFF	FLIGHT HRS 0380 16327 32389 45565 53381 45250 PLANT FLIGHT HRS	ACTIONS 227 819 1472 1374 1902 1553	36.92 22.37 22.00 33.16 28.07 29.14	FAIL. 126 321 571 599 1073 980 AIRC	MTRF 66.51 57.08 54.72 76.07 49.75 46.17 CRAFT H-	MAINT MAN-HPS 907 3327 7437 6694 8546 7108 (S) MAINT MAN-HPS 2465 5740	•11 •18 •23 •15 •16 •16
YFAR 1969 1970 1971 1972 1973 POWFF	FLIGHT HRS 0380 18327 32389 45565 53381 45250 PLANT FLIGHT HRS 0380	ACTIONS 227 819 1472 1374 1902 1553	36.92 22.37 22.00 33.16 28.07 29.14	FAIL. 126 321 571 599 1073 980 AIRC	MTRF 66.51 57.08 56.72 76.07 49.75 46.17 CRAFT H-	MAINT MAN-HPS 907 3327 7437 6694 8546 7108 (S) MAINT MAN-HPS 2465	•11 •18 •23 •16 •16 •16 •16
YFAR 1969 1970 1971 1973 1973 POWFF YEAR 1968	FLIGHT HRS 0380 18327 32389 45565 53381 45750 PLANT FLIGHT HRS 0380 18327	ACTIONS 227 819 1472 1374 1902 1553 ACTIONS 471 1522	36.92 22.37 22.00 33.16 28.07 29.14 MFHBMA 17.79 12.04	FAIL. 126 321 571 599 1073 980 AIRC	MTRF 66.51 57.08 56.72 76.07 49.75 46.17 CRAFT H-	MAINT MAN-HPS 907 3327 7437 6694 8546 7108 (S) MAINT MAN-HPS 2465 5740	•11 •18 •23 •15 •16 •16
YFAR 1969 1970 1971 1973 1973 POWFF YEAR 1969 1969	FLIGHT HRS 0380 18327 32389 45565 53381 45250 PLANT FLIGHT HRS 0380 18327 32389	ACTIONS 227 819 1472 1374 1902 1553 ACTIONS 471 1522 3074	36.92 22.37 22.00 33.16 28.07 29.14 MFHBMA 17.79 12.04 10.54	FAIL. 126 321 571 599 1073 980 AIR(FAIL. 260 575 1170	MTRF 66.51 57.08 56.72 76.07 49.75 46.17 CRAFT H- MTRF 32.23 31.86 27.68	MAINT MAN-HPS 907 3327 7437 6694 8546 7108 (S) MAINT MAN-HPS 2465 5740 11845	•11 •18 •23 •16 •16 •16
YFAR 1969 1970 1971 1973 1973 POWFF YEAR 1969 1970	FLIGHT HRS 0380 16327 32389 45565 53381 45250 PLANT FLIGHT HRS 0380 18327 32389 45565	ACTIONS 227 819 1472 1374 1902 1553 ACTIONS 471 1522 3074 2999	36.92 22.37 22.00 33.16 28.07 29.14 MFHBMA 17.79 12.04 10.54 15.19	FAIL. 126 321 571 599 1073 980 AIR(FAIL. 260 575 1170 1357	MTRF 66.51 57.08 56.72 76.07 49.75 46.17 CRAFT H- MTRF 32.23 31.86 27.68 33.58	MAINT MAN-HPS 907 3327 7437 6694 8546 7108 (S) MAINT MAN-HPS 2465 5740 11845 12236	.11 .18 .23 .15 .16 .16 .16

1 ..

(continued on next page)

Table 8 (continued)

INSTRUMENT, COMM AND NAV		۱v	AI	1 (5)			
	FLIGHT					MAINT	
YEAR	HRS	ACTIONS	MFHBMA	FAIL.	MTBF	MAN-HRS	MH/FH
1968	6380	1625	5.16	810	10.35	5417	. 65
1969	18322	2870	6.38	608	30.13	6900	• 30
1970	PAESE	5174	6.26	2245	14.43	23374	• 72
1971	45565	6372	7.15	2767	16,47	24717	. 54
1972	53361	6630	8.05	3718	14,36	25165	.47
1973	45250	5149	8.79	2995	15.11	24008	• 53
WEAPON SYSTEMS			ATI	RCRAFT H=	1 (5)		
	FLIGHT	•		•	•	MAINT	
YEAR	HRS	ACTIONS	MFHBMA	FAIL.	MTBF	MAN-HPS	MH/FH
1968	8380	13	644.62	10	830.00	5 0	•01
1969	18322	33	555.21	ii	1665.66	R4	• 00
1970	32389	64	506.08	33	961.48	245	•01
1971	45565	181	251.74	A9	511.97	500	•01
1972	53381	126	417.04	72	741.40	335	• 61
1973	45250	105	430+95	49	923.47	348	• 01
• • •	TOTA						
	FLIGHT					MAINT	
YEAR	HRS	ACTIONS	MFHHMA	FAIL.	MTBF	MAN-HRS	MH/FH
1968	8380	4454	1.88	5261	3,71	16531	1.97
1969	18327	10274	1.78	3275	5,59	31882	1.74
1970	32389	20047	1.62	7985	4.06	A19A0	2.53
1971	45565	21567	2.11	9417	4.84	84509	1.85
1972	43381	25947	5.06	14776	3,61	101143	1.49
1973	45250	23590	1.92	14668	3.08	97222	2.15

Table 9. NAVY 3-M DATA FOR THE UH-1N

41.46				AJH	CHAFT UH	I=1N	
	FLIGHT				, -	MAINT	
Atur	エだら	SULLTON	MF HBMA	FAIL.	MTRF	MAN-HRS	MH/FH
1000	,	0	0.00	0	0.00	0	
1440	n	Ü	0.00	Ô	a.00		0.00
1971	^	Ō	0 • 0 0	ö	0.00	ņ	0.00
1971	2045	343	6.07	191	10.90	1000	0 • 0 0
1472	9911	7363	4.19	1245	7.96	1009	• 4 R
1973	15740	4160	3.80	5355	4.80	6556	• 56
		- "		F 13 6, &	~•40	13649	• 86
HOTOR		INS (MAIN/)	TATL)	AIA	CRAFT UH	- 1 N	
	FLIGHT					MAINT	
YEAR	HHS	ACTIONS	MF HUMA	FATL.	MTHF	MAN-HRS	MH/FH
1048	n	0	0.00	0	0.00	0	0.00
1440	n	0	0.00	Ö	0.00	ó	0.00
1471	n	0	0 • 0 0	Č	0.00	Ô	0 • 0 0
1471	2082	47	44.30	77	77.11	146	
1972	9911	551	17.99	246	40.29	1113	• 07
1477	15740	1400	11.28	546	28.92	3998	•11 •25
GE"A'?	ROXES AN	n nrives		A 7 ()	C134 mm		
	FLIGHT			WIN	CRAFT UH-	-	
YF. 4H	HRS	ACTIONS	MF HHMA	E 4 * 1		MAINT	
1464	n	_		FAIL.	MTHF	MAN-HRS	MH/FH
1949	n	0	0.00	0	0.00	0	0.00
1977	Ċ	0	0.00	0	0.00	0	$0 \bullet 00$
1971	20H2	0 34	0.00	0	0.00	0	0 • 0 0
1972	4911	319	61.24	51	99.14	243	• 1 2
1973	15740	517	31.07	190	52.16	974	• 0 9
• • •	4 - 7 - 7 (1	951	23•67	432	36.55	2935	•19
304FH	PLANT			4 . 4	20 Amm - 11	- 4.	
	FLIGHT			AIRC	CHAFT UH-	-	
44.45	14125	ACTIONS	ме нима	EATI		MATNT	
1444	n	0		FAIL.	MTAF	MAN-HRS	MH/FH
1440	'n		0 • 0 0 U • 0 0	0	0.00	0	0.00
1979	,, D	0		0	0.00	0	0.00
11071	20A2	0	0.00	0	0.00	0	0.00
1975	9911	21A	4.55	154	13.52	619	• 30
1973	15790	9/1	10.51	645	15.37	71 18	• 72
, ,,,	12144	2614	6.93	1473	10.72	14447	• 91
					(contin	ued on nex	t paga)

Table 9 (continued)

LUSTHUMENT . COMM AND NAV			١v	AIA	RCHAFT UH	- 1 N	
•	FLIGHT					MAINT	
YEAR	HRS	ACTIONS	MF HOMA	FAIL.	MTAF	MAN-HRS	MH/FH
1464	0	0	0.00	0	0.00	0	0.00
1460	ñ	ŏ	0.00	n	0.00	0	0.00
1970	ö	Ŏ	0.00	0	0.00	0	9.00
1971	2082	JOŘ	6.76	95	21.92	714	• 34
1472	9911	1546	6+25	725	13.67	6158	• 62
1477	15790	2851	5.54	1413	11-17	10245	• 55
WEAPUN SYSTEMS			ATI	CHAFT UH	- 1 N		
WY WY G	FLIGHT	•		•		MAINT	
4530	HHS	ACTIONS	МЕ ННМА	FATL.	MTHF	MAN-HRS	MH/FH
949	0	0	0.00	0	0.00	0	0.00
1949	Ú	Ŏ	0.00	Ö	0.00	0	0.00
1970	ń	Ŏ	0.00	Ō		0	0.00
1971	2045	Ş	1041.00	1	2082.00	5	• 0 0
1472	9911	46	215.46	16	519.44	59	• 01
1973	15790	51	751.90	7		34	.00
	•						
	FLIGHT					MAINT	
YEAN	ння	ACTIONS	MF HISMA	FAIL.	MTRF	MAN-HRS	MH/FH
1984	n	0	0.00	0	0.00	0	0.00
1944	0	0	0.00	0	0.00	Ö	0.00
1070	n	0	0.00	0	0.00	0	0 • 0 0
1971	20H2	452	2.19	489	4.26	2736	1.31
1472	4911	5836	1.70	3067	3.23	2192A	5.51
1971	15740	11377	1.39	6193	2.55	4534A	2.97

Table 10. NAVY 3-M DATA FOR THE AH-1G

ATREH	4 4t			AIR	CHAFT AH	- 16	
	FLIGHT					MAINT	
YEAD	ннŞ	ACTIUMS	MEHHMA	FAIL.	MTRF	MAN-HOS	MH/FH
1964	ň	0	0.00	0	0.00	0	0.00
1740	1	Ċ	0.00	Ó	0.00	Č	0.00
1970	1	Ò	0 • 0 0	Ŏ	0.00	ò	0.00
1971	343	42	9.12	28	13.68	109	• 28
472	1214	SHÀ	4.20	159	7.64	1207	• 99
1973	1362	531	2.56	307	4.44	1561	1+15
₹ ೧ ૪ :1•₹	S AND HU	TYPIAM) 2H	ATL	ATR	CHAFT AH	-16	
•••	FL1GHT		-1-7			MAINT	
YFAIR	ння	ACTIONS	MEHHMA	FAIL.	MTHF	MAN-HOS	MH/FH
1964	1	0	0.00	0	0.00	· · · · · · · · · · · · · · · ·	
1960	n	ŏ	0.00	0	0.00	0	0.00
1970	n	ŏ	0.00	ŏ	0.00	0	0.00
1971	343	11	34.82	7	54.71	29	.08
1972	1214	45	19.5A	34	35.71	345	. 7A
1973	1362	41	14.97	64	21.28	403	.30
CE A ()				A • D	6 1.4 m m - 4		
(also dec		n DRIVES		AIM	CHAFT AH	-	
u=	FLIGHT		.45.443444	~		MAINT	
7F4"	HHS	ACTIONS	MEHBMA	FAIL.	MTRF	MAN-HRS	MH/FH
1049	0	0	0.00	9	0.00	0	0.00
-	0	0	0.00	0	0.00	0	0.00
1970	3 M 3 Ú	, 0	0.00	0	0.00	0	0.00
1977		12	31.92	7	54.71	21	• 05
1973	1214 1362	52 70	23•35 19•46	2A	43.36	315	• 76
14/4	1302	, 0	14.40	44	3n.95	149	• 1 5
PO4F4	PLANT			ATH	CHAFT AH	- 1 G	
	FLIGHT			-		MAINT	
YFAU	HHS	ACTIONS	MFHHMA	FATL.	MTRF	MAN-HDS	MH/FH
19611	0	0	0.00	0	0.00	0	0.00
1460	n	0	9.00	Ö	0.00	Ŏ	0.00
1077	0	Ŏ	0.00	Ŏ	0.00	ŏ	0.00
1971	747	Š	75.60	Š	76.60	Ť	• 05
1472	1214	60	20.23	36	37.72	205	•17
1.323	1362	100	7-17	119	11.54	444	• 33
				(c	ontinued	on next p	age)

Table 10 (continued)

INSTRIMENT - COMM AND NAV			W	AIRCHAFT AH-1G			
	FLIGHT					MAINT	
YFAD	HRS	ACTIONS	МЕНВМА	FAIL.	MTRF	M4N-HPS	MH/FH
1040	n	0	0.00	0	0.00	0	0.00
[OAO	n	0	0.00	0	0.00	0	0.00
1977	Ç	0	0.00	0	n.00	0	0 • 0 0
1971	383	43	8.91	21	18.74	1 36	• 36
1972	1214	500	6.07	98	12.39	727	• 60
1974	1362	301	4 • 52	118	11.54	A97	• 66
WEAPON SYSTEMS				417	CHAFT AH	- 16	
	FLIGHT			_		MAINT	
ALVE	HH S	ACTIONS	YFHBMA	FAIL.	MTHF	MAN-HRS	MH/FH
1968	0	0	0.00	0	0.00	0	0.00
1949	n	0	0.00	0	0.00	Ç	0.00
1977	0	0	U • 11 O	ŋ	0.00	0	0.00
1071	383	2	191.50	1	383.00	4	-01
1972	1214	39	31 • 13	14	84.71	133	•11
1977	1362	56	24.32	16	85.12	146	•12
	TOTA	l * * *					
	FLIGHT					MAINT	
YFAD	HHS	ACTIONS	MEHHMA	FAIL.	MTRF	MAN-HPS	MH/FH
JOHH	n	0	0.00	0	0.00	0	0.00
1960	n	0	0.00	0	0.00	0	0.00
1970	0	Ô	0.00	0	0.00	Ö	0.00
1971	347	115	3 • 33	69	5.55	306	• 80
1472	1214	702	1.73	369	3.29	2972	2.42
1973	1362	1239	1 • 10	667	7.04	3640	2.47

Table 11. NAVY 3-M DATA FOR THE AH-1J

ATHER	KAME			AI	HCHAFT AH	-} J	
	FLIGHT					MAINT	
YEAR	HRS	ACTIUNS	MF HH 4A	FAIL.	MTRF	MAN-HRS	MH/FH
1044	n	0	0.00	0	0.00	0	0.00
1940	n	0	0.00	0	0.00	Ŏ	0.00
1970	13	13	1 • 00	7	1.46	21	1.42
1971	5514	154	2.90	403	5.50	2141	•97
1472	3645	742	4.97	418	9.82	2013	. 55
1973	0574	4452	1+47	2400	2.72	11348	1 • 74
Rotod		INNIAP) PAL	TATL)	AI	CRAFT AH	- 1J	
	FLIGHT					MAINT	
YFAR	HRS	ACTIONS	MF HOMA	FATL.	MTRF	MAN-HRS	MH/FH
1948	r	0	0.00	ø	0.00	0	0.00
1960	n	0	0.00	0	0.00	Ō	0.00
1970	13	0	0 • 0 0	0	0.00	Ŏ	0.00
1971	5214	137	16.18	91	24.35	739	• 33
1072	3645	235	15•5A	146	25.24	1280	• 35
1973	6524	H73	7.47	410	15.91	4202	• 64
SFAH		n DRIVES		ATR	ICHAFT AM	-1J	
	FLIGHT					MAINT	
YFAR	HIZS	ACTIONS	MFHHMA	FAIL.	MTRF	MAN-HRS	MH/FH
Idea	ŋ	0	0.00	0	0.00	0	0.00
1940	n	0	0.00	n	0.00	0	0.00
1970	13	1	13.00	n	0.00	Š	•15
1971	5516	69	32 • 12	41	54.05	343	•15
1972	3645	157	23.47	100	34.85	870	• 23
1973	6574	695	9.39	429	15.21	3689	•57
POSEK	PLANT			ATR	CRAFT AH-	1.1	
	FLIGHT			•		MAINT	
YFAIR	442	ACTIONS	MFHBMA	FAIL.	MTHF	MAN-HRS	MH/FH
1959	ŋ	0	0.00	0	0.00	0	0.00
1949	n	0	0.00	Ŏ	0.00	Ö	0.00
1970	13	9	1 • 4 4	6	2.17	ğ	•69
1971	2216	314	6.97	212	10.45	3127	1.41
1972	PHAL	399	9.24	285	12.93	2801	•76
1973	6524	2109	3.09	1306	5.00	9097	1 • 39
					(continu	ed on next	page)

Table 11 (continued)

INSTA		IT CUMM AND NAV		AIRCRAFT AH-1J			
	FLIGHT					MAINT	
ALVID	HHS	ACTIONS	MF HHMA	FATL.	MTHF	MAN-HRS	MH/FH
1044	r	0	0.00	0	0.00	0	0.00
1040	^	0	0.00	C	0.00	Ö	0.00
1470	1 3	10	1 • 30	4	3.25	14	1.08
1971	5514	509	4+35	249	A.90	1216	• 55
1472	3645	719	5.13	383	9.42	3593	• 98
1977	6424	51.65	5 • 98	1053	4.20	6194	• 95
HE ADUNI SYSTEMS				AIR	CHAFT AH	- 1J	
	FLIGHT			•		MAINT	
4F40	HRS	ACTIONS	MFHHMA	FAIL.	WTRF	MAN-HRS	MH/FH
1364	Ç	0	0.00	0	0.00	0	0.00
1967	1	0	0.00	ŏ	0.00	Ö	0.00
1971	13	i	13.00	Õ	0.00	1	• 08
1471	2714	74	23.57	37	59.49	546	•15
1972	3685	143	20-14	95	43.35	7n5	•19
1973	6524	1048	6.53	547	11.93	2940	• 45
• • •	T 0 T A						
	PLIGHT					MAINT	
YFAP	HHS	ACTIONS	мғ ннма	FAIL.	MTRF	MAN-HOS	MH/FH
IONA	ŋ	0	0.00	0	0.00	0	0.00
1949	a	0	0.00	0	0.00	Ō	0.00
1970	. 13	34	• 34	17	. 76	47	3.42
1971	2714	1891	1 • 1 7	1033	2.15	7832	3.53
1972	3445	24 35	1.51	1417	2.60	11222	3.05
1471	6574	11369	•57	6145	1.06	37490	5.75

Figure 14. MTBMA FOR THE NAVY SINGLE-ENGINE UH-1/HH-1/TH-1 SERIES

Figure 15. MTBF VERSUS YEAR FOR THE NAVY SINGLE-ENGINE UH-1/HH-1/TH-: SERIES

Figure 16. MMH/FH FOR THE NAVY SINGLE-ENGINE UH-1/HH-1/TH-1 SERIES

Figure 17. MTBMA FOR THE NAVY UH-1N

Figure 18. MTBF VERSUS YEAR FOR THE NAVY SINGLE-ENGINE UH-1N

Figure 19. MMH/FH FOR THE NAVY UH-1N

Figure 20. MTBMA FOR THE NAVY AH-1G

Figure 21. MTBF VERSUS YEAR FOR THE NAVY AH-1G

Figure 22. MMH/FH FOR THE NAVY AH-1G

Figure 23. MTBMA FOR THE NAVY AH-1J

::

Figure 24. MTBF VERSUS YEAR FOR THE NAVY AH-1J

Figure 25. MMH/FH FOR THE NAVY AH-1J

2. The H-2

The U.S. Navy is the only operator of the H-2. A total of 190 of them were built--each with a single T-58 engine. Eightyeight were UH-2A aircraft and 102 were UH-2B aircraft, which differed only in the non-installation of certain electronic navigation equipment. Starting in 1967, the survivors of these 190 aircraft were all converted to twin T-58 engines and were redesignated as the UH-2C, HH-2C, HH-2D, SH-2D, and SH-2F. We first segregated the 3-M data for the H-2's into three groups: (1) the UH-2A and UH-2B; (2) the UH-2C, HH-2C, and HH-2D; and (3) the SH-2D and SH-2F. However, the three R/M measures for these three groups were all quite similar in total and by component, both in levels of R/M and in trends over time. Accordingly, in Table 12 and Figures 26-28, we have aggregated data for all the H-2 aircraft. Figures 26 and 27 indicate that MTBMA and MTBF have both worsened somewhat over time, while Figure 28 indicates that MMH/FH has remained approximately constant. The trends for the various components do not appear to differ systematically from the trends for the total aircraft.

Compared with the other Navy helicopter types, the H-2 R/M characteristics are poor, particularly relative to the H-1 air-craft, which are approximately the same size. There are probably several causes contributing to this result:

- The H-2 has generally been operated in detachments of one or a few aircraft. Economies of scale have thus been lacking in their operating environment.
- Fewer H-2 aircraft than any of the other types were built. Accordingly, the economic incentives to introduce product improvements have not been as great as for the other types.
- Insofar as years of experience and production quantities are concerned, Kaman is somewhat behind the other manufacturers.

Table 12. NAVY 3-M DATA FOR ALL H-2 MODELS

A [MF 24MF			AIRCHAFT H-2(5)				
FILGHT						MAINT	
TEAH	HHS	"CTIONS	MEHRMA	FATL.	MTRF	MAN-HRS	MH/FH
149H	13103	10988	1.19	5666	2.31	46113	3.52
1 169	3171	3120	1.00	1404	2.22	13599	4.36
1470	H4]A	12053	.70	5161	1 • 43	23395	2.7H
1.771	8412	10836	.7n	5466	1.54	25341	3.01
477	10100	13494	.13	750/	1 • 35	32541	3.22
197a	12185	13986	.H7	72A7	1.67	35755	2.93
• • • •	1212	• • • • • • • • • • • • • • • • • • • •	• •	. ,	, - , ,		· -
HUTOUS AND HURS (MAINZTATE)			AIDCHAFT H=2(5)				
	FILIGHT	-	- 4.			MAINT	
YEAR	HHS	ACTIONS	MFHRMA	FATL.	MTRF	MAN-HRS	MH/FH
1468	13103	1838	3.41	2227	5.48	1576)	1.20
1460	3121	496	3.13	570	5.44	4917	1.58
1470	8418	3353	2.51	1692	4 - QH	7976	.95
1471	6412	3345	2.4H	1932	4 - 35	10271	1.22
1472	10100	4247	2.35	2512	4.02	12804	1.27
14/3	12145	4587	2.66	2821	4.31	16752	1.37
SEAR HOYER AND DETVES			Aluchaft H-2(S)				
	FILEHT					MAINT	
YEAR		ACTIONS	MFHRMA	FATL.	MTRF	MAN-HRS	MH/FH
ICAN	HRS	44.1 \$ ().4.3	with Life Life				
1464	13103	1778	7.37	947] 7 • 84	8798	.67
				947 231] 7•84] 7•5]	2747	្នឹមអ
1464	13103	1778	7.37		-	2747 457 <i>2</i>	. មអ . 54
1364 1464	13103 3121	177H 427	7.37 7.31	231	13.51	2747	. 54 . 54 . 44
1964 1969 1970	13103 3121 8418	1778 427 1607	7.37 7.31 5.05	231 879	13.51 9.58	2747 457 <i>2</i>	.88 .54 .44 .76
1969 1970 1971	13103 3121 8418 8412	1778 427 1607 1240	7.37 7.31 5.05 6.52	231 879 711	13.51 9.58 11.83	2747 4572 3667	. 54 . 54 . 44
1969 1970 1971 1977	13103 3121 8418 8412 10100	1778 427 1607 1290 1846	7.37 7.31 5.05 6.52 5.47	231 879 711 1188 1227	13.51 9.54 11.83 4.50 9.93	2747 4572 3667 7697 9633	.88 .54 .44 .76
1969 1970 1971 1977	13103 3121 8418 8412 10100 12185	1778 427 1607 1290 1846	7.37 7.31 5.05 6.52 5.47	231 879 711 1188 1227	13.51 9.5H 11.83 H.50	2747 4572 3667 7697 9633	.88 .54 .44 .76
1969 1970 1971 1973 1973	13103 3121 8418 8412 10100 12185	1778 427 1607 1290 1846 2077	7.37 7.31 5.05 6.52 5.47 5.87	231 879 711 1188 1227	13.51 9.5H 11.83 H.50 9.93	2747 4572 3667 7697 9633 -2(5) MAINT	.54 .44 .76 .79
1969 1969 1970 1977 1973 POWED	13103 3121 8418 8412 10100 12185 PLANT FLIGHT HKS	1778 427 1607 1290 1846 2077	7.37 7.31 5.05 6.52 5.47 5.87	231 879 711 1188 1227 AID	13.51 9.5H 11.83 4.50 9.93	2747 4572 3667 7697 9633 -2(S) MAINT	.54 .44 .76 .79
1969 1969 1970 1971 1973 1973 POWED	13103 3121 8418 8412 10100 12185 PLANT FLIGHT HRS 13103	1778 427 1607 1290 1846 2077	7.37 7.31 5.05 6.52 5.47 5.87	231 879 711 1188 1227 AID:	13.51 9.5H 11.83 4.50 9.93 **********************************	2747 4572 3667 7697 9633 -2(S) MAINT 44N-HRS	.54 .44 .76 .79 MH/FH 1.21
1969 1970 1971 1972 1973 POWED YEAR 1968	13103 3121 8418 8412 10100 12185 PLANT FLIGHT HKS 13103 3121	1778 427 1607 1290 1846 20/7	7.37 7.31 5.05 6.52 5.47 5.87 MFHRMA 6.28 5.49	731 879 711 1188 1227 AID FAIL• 1091 296	13.51 9.5H 11.83 H.50 9.93 ***AFT H- MTRF 12.01 10.54	2747 4572 3667 7697 9633 -2(S) MAINT 44N-HRS 15804 3062	.54 .44 .76 .79 MH/FH 1.21
1969 1970 1971 1972 1973 POWED YEAR 1968 1960 1970	13103 3121 8418 8412 10100 12185 PLANT FLIGHT HRS 13103 3121 8418	1778 427 1607 1290 1846 2077 ACTIONS 2085 568 2583	7.37 7.31 5.05 6.52 5.47 5.87 MFHRMA 6.28 5.49 3.26	731 879 711 1188 1227 AID 6 1091 296 1274	13.51 9.5H 11.83 H.50 9.93 **********************************	2747 4572 3667 7697 9633 -2(S) MAINT 4AN-HRS 15804 3062 11164	.54 .44 .76 .79 MH/FH 1.21 .99 1.33
1969 1970 1971 1972 1973 POWFO YEAR 1968 1969 1970	13103 3121 8418 8412 10100 12185 PLANT FLIGHT HRS 13103 3121 8418 8418	1778 427 1607 1290 1846 2077 ACTIONS 2085 568 2583 2937	7.37 7.31 5.05 6.52 5.47 5.87 MFHRMA 6.28 5.49 3.26 2.86	731 879 711 1188 1227 AID 1191 296 1274 1605	13.51 9.5H 11.83 H.50 9.93 **********************************	2747 4572 3667 7697 9633 -2(S) MAINT -4AN-HRS 15804 3062 11164 12994	.54 .44 .76 .79 .79 .79 .1.33 1.54
1969 1970 1971 1973 1973 POWFO 1968 1960 1970 1971	13103 3121 8418 8412 10100 12185 PLANT FLIGHT HRS 13103 3121 8418 8418 10100	1778 427 1607 1290 1846 2077 ACTIONS 2085 568 2583 2937 3664	7.37 7.31 5.05 6.52 5.47 5.87 MFHRMA 6.28 5.49 3.26 2.86 2.76	231 879 711 1188 1227 AID AID 1274 1605 2216	13.51 9.5H 11.83 H.50 9.93 **********************************	2747 4572 3667 7697 9633 -2(S) MAINT -4AN-HRS 15804 3062 11164 12994 13650	MH/FH 1.21 .99 1.33 1.54 1.35
1969 1970 1971 1972 1973 POWFO YEAR 1968 1969 1970	13103 3121 8418 8412 10100 12185 PLANT FLIGHT HRS 13103 3121 8418 8418	1778 427 1607 1290 1846 2077 ACTIONS 2085 568 2583 2937	7.37 7.31 5.05 6.52 5.47 5.87 MFHRMA 6.28 5.49 3.26 2.86	731 879 711 1188 1227 AID 1191 296 1274 1605	13.51 9.5H 11.83 H.50 9.93 **********************************	2747 4572 3667 7697 9633 -2(S) MAINT -4AN-HRS 15804 3062 11164 12994	.54 .44 .76 .79 .79 .79 .1.33 1.54

1. INTRODUCTION

Helicopters have consistently exhibited relatively high unscheduled maintenance requirements because of the great percentage of high reliability risk and high-cost components needed for the helicopters unique performance capabilities. This tendency towards high maintenance requirements has generated concurrence among both the contractor and customer that improved reliability must be achieved without a long and expensive period of in-service product improvement. High initial reliability can be achieved only through a well-executed analytical design approach and an enthusiastic and well-controlled developmental testing effort.

The primary reliability effort in the design stage is the analysis and evaluation of the aircraft design and development of Reliability Predictions. Recent work has shown that a point estimate of aircraft or component reliability is meaningless unless accompanied by a quantification of the time in the components maturity (development) cycle for which the estimate is relevant.

Reliability growth prediction techniques have been employed to estimate the number of developmental test hours required to achieve a desired level of reliability with increased confidence in the technology.

However, since reliability continues to be improved by the Product Improvement process throughout most of the inproduction life of a helicopter, it is necessary to understand this growth process. The magnitude and the factors affecting this growth process must be determined and quantified if future aircraft programs are to be optimized. Development costs and O&M costs must be viewed as intimately related to reliability. The key to minimum total system costs is the understanding of the reliability growth process through the development and operational phases.

Table 12 (continued)

LNSTO	FI TRMT	MA AND NA	7 A	Als	RORAFT H	-2(S)	
# h. A.u.		4.C. T. T. () A. C.	448°			MAINT	MH (EL)
TEAH	HHS	ACTIONS	MFHRMA	FATL	MTRF	MAN-HRS	MH/FH
TANH	13103	4715	2.7B	2043	6.41	18871	1.44
1464	3121	1561	2.48	511	6.11	4697	1.57
19/0	H41H	4420	1.90	1471	4.5()	15930	1.84
1451	4412	4360	1.93	1885	4.46	16562	1.97
1412	16100	5286	1.91	2755	3.67	18540	1.84
1414	12165	4448	46. 4	2534	4.81	16750	1.37
46 AB:1	" CYSTEM	S		ΔIu	CPAFT H	-2(S)	
	FLIGHT					MAINT	
TEAR	નાનક	ACTIONS	MFHAMA	FAIL.	MTRF	MAN-HRS	MH/FH
TAPH	13103	54	742.65	24	545.96	275	.02
1459	3121	20	156.05	- 6	520.17	91	.03
1770	8418	47	179.11	20	420.90	ยัง	.01
1971	4412	R3	101.35	54	155.78	405	.05
1972	10100	515 23	47.64				
			•	116	91.42	612	.06
1973	12145	227	53.68	110	110.77	717	.06
* • ·		į * * *					
	Filiant					MAINT	
YHAR	HHS	ACTIONS	MFHBMA	FATL.	MTRF	MAN-HRS	MH/FH
1444	13103	23458	. 56	11994	1.09	105621	8.06
1464	3121	6392	.49	3016	1.03	29315	9 _39
1470	H41A	24123	. 35	14897	•77	63117	7.50
1971	8412	22901	.37	11653	.72	69241	8.23
1472	10100	29199	.35	14286	•62	85850	8.50
1473	12185	29678	41	14286	• 75	94212	7.73

Figure 26. MTBMA FOR ALL NAVY H-2 MODELS

i.

Figure 27. MTBF VERSUS YEAR FOR ALL NAVY H-2 MODELS

Figure 28. MMH/FH FOR ALL NAVY H-2 MODELS

3. The H-3

• •

i.

Most H-3 aircraft in Navy service are SH-3 aircraft (antisubmarine-warfare helicopters)--mainly SH-3A, SH-3G, SH-3D, and SH-3H aircraft. Table 13 presents 3-M data for all H-3 models; the three R/M measures are plotted in Figures 29-31. Relative to 1968, all three measures improved markedly in 1969; but after 1969 they worsened considerably, until they were worse in 1973 than they were in 1968. The trends for the various components do not appear to differ systematically from the trends for the total aircraft.

Table 13. NAVY 3-M DATA FOR ALL H-3 MODELS

ATTEN	A MF			AT	CRAFT	H-3 (S)	
	FLIGHT				,	MATNT	
YF&?	244	ACTIONS	ME HISIAN	FATL.	MTRF	MAN-HOS	WH/FH
JOER	4(210	20491	1.42	11761	3.42	64341	1.70
1940	37835	13156	7.88	5960	K.35	41772	1.10
1970	29324	15225	1.03	8475	3.46	37073	1.26
1471	32434	241177	1 - 36	14102	2.33	54635	1.82
1472	36516	50406	1 - 24	17211	2.12	74414	2.04
1973	46909	34454	1.50	JAHA4	2.17	89703	2.17
LCTOR	e cho un	IRS (MAJN/T		475	CDAR .		
Million	FLIGHT	MA CAMINAN	4)()	47.5	CHAFT	4-3(5)	
YEAD	FELIGHT BES	ACTIONS	146 b 6460 a	E A 7 1		MATNT	
1968	40210	4280	₩F HHMA ₩• 39	FAIL. 245E	MTRF	MAN-HOS	MH/FH
1060	37835	407	41.71		16.38 65.68	23145	.58
1970	29324	2H22	10.39	543	19.29	3957	•10
1071	32838			1520		11150	45.
1972	36516	4613	7•12 7•46	2771	11.85	14981	•61
1973	44909	4M94 5415	6.42	2923	12.49	20946	• 57
ייעו	400	2717	744	7117	13-12	23605	• 58
CFAD	ROXES AN	n ORIVES		AJH	CRAFT F	1-3(5)	
	FLIGHT					MAINT	
YFED	HUS	ACTIONS	MEHBUR	FATL.	HTRF	MAN-HOS	MH/FH
JOKE	40210	1570	25.61	4 T Y	47.93	15044	.37
lata	७७॥ वृद	530	60.06	334	113.28	4024	•11
1470	24324	1257	23.33	687	42.68	7935	• 27
1971	35838	2440	13.46	15]7	21.76	17750	•54
1972	36414	FHHS	12-67	1700	21.48	17594	•4R
1973	40409	3107	13-17	1709	23.94	18715	•46
Prin FK	PLANT			41 0	CHAFT N	1-3(5)	
	FLIGHT			- 1.	TOWNS TO	MAINT	
YFAR	HRS	ACTIONS	AF HILLIA	FATL.	HTRF		A144-14
15/69	40210	3446	11.07	1742	22.44	MAN-HOS 1940A	NH/FH .48
1960	37835	2477	15.27	1213	31,19	8779	.23
1970	29374	3530	H • 31	1892	15.50	12067	•41
1471	32838	4439	4. 19	2631	12.48	18143	• 55
1972	34516	5044	7 - 17	2413	12.98	20329	-56
1977	40900	6.444	6 • AN	3113	13-14	25621	•56
					(contin	ued on next	page)

Reproduced from best available copy.

Table 13 (continued)

INCAH	HMENT, CI	NIA CLIAA PARAC	Ny .	ΔΤΙ	CHAFT H	-7(5)	
	FLIGHT					TATAM	
AEV O	HPS	ACTIONS	MFHISMA	FATL.	MTRF	MAII-HDS	MH/FH
JOER	40210	13451	2.99	6707	6.00	54705	1.46
1960	77875	12149	3.10	3364	11.25	36012	. 95
1070	24724	9210	3.14	3926	7.47	26944	• 02
1071	35838	10500	3.13	4427	6.8 0	34512	1 • 05
1972	36516	12450	2.84	4 ፍ] ନ	5.60	47657	1 • 3 1
ነሱንግ	40000	15437	2•65	7744	5.45	50632	1.24
いたたのひ	· SYSTEM	c		4 T R	CHAFT H	-3(5)	
	FITCHT					HATAIT	
YEID	Hisc	ACTIONS	REHMIAN	FATL.	HTHE	MAMEHOS	MH/FH
1068	40210	51 j	7H.64	154	261.10	1165	. 43
1040	17475	615	61.52	111	340.86	1504	.04
1670	29324	544	45.25	232	126.46	1571	• 05
1471	37270	154	43.55	295	111.32	1582	• 15
1072	36516	1216	30.05	521	70.09	2943	٩٦•
1022	40000	1586	25.79	65 8	62.17	3870	61.
* * *	TÖTA	+ + +					
	FLIGHT					MATHT	
YE LO	40210	ACTIONS 44240	4FH6MA •91	FAIL. 27708	MTRF 1.70	MAN-HPS 185008	44/FH
1060	77475	29474	1.26	11525	า วิล	96148	2.54
1970	24324	さらりゅう	• 10 (0	16732	1.75	96740	3.20
1971	35030	47223	• 70	26139	1.26	151603	4.62
1670	36514	55443	• 65	31686	1.15	183923	5-04
1073	40000	66048	•68	34725	1.18	204546	5.10

Reproduced from best available copy.

Figure 29. MTBMA FOR THE NAVY SH-3(S)

Figure 30. MTBF VERSUS YEAR FOR THE NAVY SH-3(S)

Figure 31. MMH/FH FOR THE NAVY SH-3(S)

4. The H-46

Most H-46 aircraft in Navy service are CH-46 aircraft (cargo helicopters)--mainly CH-46A, CH-46D, and CH-46F aircraft. Table 14 presents 3-M data for all H-46 models; the three R/M measures are plotted in Figures 32-34. The R/M measures show the same general pattern as those of the H-3 aircraft; relative to 1968, all three measures improved markedly in 1969; but after 1969 they worsened considerably, until they were worse in 1973 than they were in 1968. The trends for the various components do not appear to differ systematically from the trends for the total aircraft.

Table 14. NAVY 3-M DATA FOR ALL H-46 MODELS

AIR	FHAME						
	FLIGHT			4	[RCRAFT	H-46	
YFA	1113	ACTION	MEHBMA	E 4 * 1		MAINT	
1941	12	10458			-,	MAN-HRS	MH/FH
1949		8532			~ •	39111	1.46
1970		11952	2.73	4582		29274	1.17
1971		13405	2.15	7545		38758	1.19
1977	27274	14684		7974	~ 6 4 7	44086	1.53
1973	35A57	23591	- 4 .> 0	A76A		46349	1.70
	·	C\$371	1.52	14469	2.48	A6732	2.42
ROTO	HS AND H	JRS (MAIN/	9				
•	FLIGHT	NO CHATNY	TATL)	AI	RCRAFT H	-46	
YFAD	HRS	ACTIONS	MEHOMA			MAINT	
1968	26714	2576	MFHBMA	FAIL.	MTRF	MAN-HRS	44/FH
1949	25079	166A	10.37	1226	21.79	15371	•
1970	37667	2156	15.04	588	36.45	7225	.57
1971	28820	2375	15-15	1316	24.82	11643	. 29
1972	27274		15.13	1394	20.67	11971	• 36
1973	35457	3583	7.61	1861	14.66	14799	•41
• . ,	33757	6761	5+30	3412	10.51	37990	•54 1•06
GFAD	ROXES ANI	001454					•
	FI IGHT	DRIVES		AIR	CRAFT H-	46	
YFAD	HPS	ACTIONS	***			MATNT	
1968	26714		MEHBMA	FATL.	MTRF	MAN-HRS	
1960	25079	1327	20.13	590	44.28	9141	MH/FH
1970	72667	BAB	28.24	395	63.49	5707	. 14
1971	2882n	1406	23.23	858	39.45	8424	•53
1975	27274	1552	18.57	ARA	32.53	9451	• 26
1973	35857	2036	13.40	1146	23.80	14697	• 33
, ,	11777	3003	11.94	1777	20.18	18097	•54 •50
てつてれて	PLANT						
	FL IGHT			AIRC	RAFT H-4	6	
YFAR		ACTIONS	14F 1 11 2 4 4	_		MAINT	
1960	26714	1698	MEHBMA	FAIL.	MTRF	MAN-HRS	MH/FH
1969	25079	-	15.73	856	31.71	11775	
1970	32667	1196	20.97	494	50.77	5953	.44
1971	SAASU	2077	15•73	1145	29.53	15568	• 74
1972	27274	2574	11.50	1381	20-87		• 34
1979		2784	9.80	1529	17.84	16041	•56
, - , •	75857	473A	7.57	2524	14.21	16692	•61
				•		269ñ6	• 75
					(continue	d on next	page)

Table 14 (continued)

INSTR)O.THEILY THEILY	OMM AND N	۸٧	AI	RCRAFT H	-46	
YEAD	HPS	ACTIONS	МЕННМА	EATI	14=DE	TUIAM	
1968	26714	5663	4.72	FAIL.	MTRF	MAN-HRS	MH/EH
1949	25079	5074	4.94	7103	A.61	17629	• 66
1971	32667	45A9	4.96	1749	14.34	13712	•55
1971	28820	6414	4.49	3353 3282	9.74	18763	.57
1972	27274	6915	3.94		A.78	2356A	. 47
1973	35857	9993	3.59	7715 5589	7,34	25416	. 93
	53447	777.)	.3 (33 7	שחרר	4,42	38174	1.06
WF 8 PO	N SYSTEM	19		AT	RCRAFT H	-46	
	FLIGHT			· ·		MAINT	
YEAD	HRS	ACTIONS	MFHBMA	FATL.	MTRF	MAN-HOS	MH/FH
1948	26714	17	1571.41	6	4452.33	10	.00
1969	25n79	47	533.60	7	3582.71	92	• 0.0
1970	32647	213	153.37	88	371.22	623	- 02
1971	28820	126	228 • 73	55	524.00	388	• 01
1972	27274	188	145+07	A4	324.69	645	• 05
1973	35857	388	92.41	162	221.34	1547	• 64
• • •	TOTA	į * * *					
	FLIGHT					MAINT	
YFAR	HRS	ACTIONS	мрннмд	FAIL.	MTRF	MAN-HRS	MH, FH
1944	26714	55530	1.20	12561	2.13	92906	3.4R
1969	25079	17405	1.44	7915	3.17	61963	2.47
1970	32467	24393	1 • 34	14275	2.29	90449	2.77
1971	58450	26446	1 • 09	14972	1.92	105445	3.56
1972	27274	30190	• 9 0	17103	1.59	118587	4.35
1973	35957	48474	•74	27972	1.28	209422	5.94

Figure 32. M.EMA FOR THE NAVY H-46

Figure 33. MTBF VERSUS YEAR FOR THE NAVY H-46

Figure 34. MMH/FH FOR THE NAVY H-46

5. The H-53

Most H-53 aircraft in Navy service are CH-53 aircraft (cargo helicopters)--mainly CH-53A and CH-53D aircraft. Table 15 presents 3-M data for all CH-53 models; the three R/M measures are plotted in Figures 35-37. Table 15 includes R/M measures for CH-53 weapon systems. However, since the weapon systems accounted for such a small portion of the total R/M activity, the weapon system data points in most cases did not fall on the R/M scales used in Figures 35-37 and therefore were not plotted on these figures. All three measures show a generally worsening trend over the 1968-73 period. There does not appear to be any systematic difference in the MTBMA and MTBF trends for the various components from the trends for the total aircraft. However, the MMH/FH trends indicate an improvement in power-plant MMH/FH, while the MMH/FH trends for the other components worsened.

Table 15. NAVY 3-M DATA FOR ALL H-53 MODELS

ATHEN	AME			ATR	CRAFT H-	53 (S)	
-	FLIGHT			-		MAINT	
YEAD	HPS	ACTIONS	MFHHMA	FATL.	MTHF	MAN-HRS	MH/FH
1969	6209	3158	1.97	1856	3,35	14617	2.35
1969	5734	2954	1.94	1646	3.48	15342	2.68
1970	11378	5172	1.97	3728	3.05	24356	2.14
1971	12614	7275	1.73	4788	2.44	28821	2.28
1972	15126	11427	1 • 32	6812	2.72	40742	2.69
1473	18505	16514	1 • 10	19627	1 - 74	62851	3.40
3070	C AND IN	De (MATA)	471 1	A 7 :34	rdase u i	E2/6\	
HIII III		IRS (MAIN/T	W] (-)	AIN	CRAFT H-	= :	
VEAD	FLIGHT	· ACTIONS	МЕНВМД	EATI	MTDE	MAINT Man-HPS	W4/F4
YFAD	6209	576	10.78	FATL. 339	MTRF	_	4H/FH
			14.12		18.32	4110	• 55
1969	5774 11374	406 1067		195	29.41	4000 6641	•70 •58
1971	12614	1439	8+77	645	17.64	9394	
1972	15126	2229	6• 79	860 1317	14•67 11•49	12541	•74 •83
1973	18505	3535	5•23	2174	R-49	24149	1.30
1414	[05][4	3000	9-23	2)14	7047	77147	1 - 10
GEAR		n DRIVES		ATR	CRAFT H-	• •	
	FLIGHT					MAINT	
YFAR	HRS	ACTIONS	меньма	FATL:	MTRE	MANTHRS	MH/EH
1968	6209	500	12.42		26.65	3533	.57
1360	5734	347	14.44	187	30.66	2370	•41
1970	11378	984	11.56	661	17.21	5035	• 4 4
1971	12614	1231	10.52	731	17.76	5344	• 45
1972	15126	IHHA	A+01	1039	14.56	10664	•71
1977	18505	2644	6•99	1721	10.75	11295	•41
POWER	PLANT			4140	CRAFT H=	53(5)	
·	FLIGHT			_	•	MAINT	
YFAR	મેંગેડ	ACTIONS	AFHHYA	FAIL.	MTRF	MAN-HRS	MH/FH
1968	6209	/54	4,23	469	13.24	56R3	1.08
1969	5734	565	10.15	339	14.91	3 342	-58
1970	11378	1088	10.46	740	15.38	3797	•33
1971	12614	1301	9.70	774	16.30	4543	• 16
1972	15124	1774	4.53	1038	14.57	5874	• 39
1973	18505	3295	5•62	1886	9.41	10506	•57
					(contin	ued on nex	t page)

Table 15 (continued)

INSTR	HMENT.CO	IMM ANI) 4	١v	ATH	CRAFT H-	53(5)	
	FLIGHT					MAINT	
YFAR	HHS	ACTIONS	MFHBMA	FATLE	MTRF	MAN-HOS	MH/FH
1969	67n9	1366	4.55	613	10.13	4266	.49
1969	5774	1340	4.16	459	12.49	4727	. 92
1970	11778	2663	4.27	1348	R.44	7620	• 47
1971	12614	3446	3.51	1673	7.54	12708	1.01
1972	15126	4013	3•77	2069	7.31	14596	• 96
1973	14575	5861	3+16	3,453	5.52	22378	1.51
4FABO	N SYSTEM	iš		ATS	CRAFT H-	53(5)	
	FL IGHT	•			•	MAINT	
YEAD	HHS	ACTIONS	MEHHMA	FATL	MTRF	MAN-HPS	MH/FH
1968	6209	172	36.10	52	119.40	342	. 16
1349	5734	166	34.54	35	163.83	351	• 06
1970	11379	254	44 • 45	109	104.39	649	• 06
1971	12614	279	45.21	132	95.56	692	• 05
1972	15124	309	48.95	172	87.94	885	• 06
1973	18505	345	4R • 96	185	100.03	A71	• 05
	T 0 T 4					_	
	FLIGHT					THIAM	
YEAR	24H	ACTIONS	менвма	FAIL.	MTRF	MAN-HRS	MH/FH
1948	6549	6526	.95	3562	1.74	335K1	5.40
1040	5734	5472	.98	2861	5.00	30135	5.25
1970	11379	11430	• 96	7231	1.57	48088	4.23
1971	12614	15021	• A4	RASR	1.49	61522	4 • RA
1972	15124	21640	•70	12447	1.22	85242	5.64
1977	18505	3253H	•57	19951	.93	132050	7.14

Reproduced from bost available copy.

7.7

Figure 35. MTBMA FOR THE NAVY H-53(S)

Figure 36. MTBF VERSUS YEAR FOR THE NAVY H-53(S)

Figure 37. MMH/FH FOR THE NAVY H-53(S)

6. General Trends

The time trends of Figures 14-37 indicate that the R/M measures worsened over time in 21 of the 24 cases. In the other three cases. the R/M measures remained approximately constant. Unfortunately, for all five basic types of helicopters the year of introduction into Navy inventory was before 1968. Hence, we cannot say definitely what the trend in R/M measures is from year of first introduction into service. However, mishap rates from the Naval Safety Center are available from time of introduction for all the Navy helicopters (see Table 17, in Ch. II, below). The Naval Safety Center data show a general worsening in mishap rates from time of introduction into the Navy inventory. Hence, it is probable that the three R/M measures worsen--or, at best, stay constant -- from time of introduction into the inventory. Evidently, the aging of the fleet that occurs over time outweighs the beneficial effects of product improvements and results in an overall worsening of R/M measures during the service life of the aircraft.

C. AIR FORCE 66-1 DATA

Attempts at reading the AFM 66-1 data tapes containing failure, maintenance action, and man-hour counts covering Air Force helicopters were unsuccessful. The main obstacle encountered was getting a complete count of failures, maintenance actions, and expended man-hours from the tapes supplied us by the Air Force. For example, for the UH-1N aircraft our count of failures for the fourth quarter of 1973 (taken from the tapes) fell approximately 35 percent short of the count given in a sample of hard-copy output supplied by the Air Force. This hard-copy sample is a portion of the official report compiled and supplied to all commands by the Air Force Logistics Command,

¹MIBMA and MIH/FH for the UH-1D/UH-1E/UH-1H/UH-1L/TH-1L/HH-1K models, and MMH/FH for the H-2.

Wright-Patterson AFB, Ohio. Although ACVMM is the group officially designated as responsible for preparing these reports, no long-term historical record of the data in reference is maintained—hence our requirement to read the original tapes.

According to the definition of a failure and the construction of the first tape record (which covers all work done "on" aircraft as opposed to work done on components removed from aircraft), the count of failures taken from the record should exceed the correct count. The downward adjustment indicated should come from "off" equipment records (shop work), wherein an item could be inspected and found not to be in a failed state—thus reducing the initial count of failures. Our attempt at reading this first record for the UH-IN (fourth quarter of 1973) produced the contrary result, an approximately 35-percent shortage of failures.

Consultation by telephone with Mr. Bill Harrison (ACVMM, Wright-Patterson AFB, Ohio), supplier of the tapes, confirmed that the definition we were using was correct and should have produced results corresponding to the sample copy. The difficulty appeared to flow from unidentifiable codes in the columns that are intended to indicate the type of aircraft to which a particular record entry applies. Mr. Harrison was not able to help in this matter. Accordingly, after expenditure of considerable time and effort, we decided that the remaining time for the study could be more fruitfully spent in other areas, and we abandoned the effort to obtain valid 66-1 data from the Air Force tapes.

Using maintenance data reported under the AFM 66-1 system, the Air Force publishes information on maintenance man-hour requirements for various types of equipment. Since these documents are reissued periodically, they should show trends in helicopter maintenance man-hours over calendar time. Table 16 presents Air Force MMH/FH for organizational and field maintenance. These figures reflect maintenance of the complete

aircraft (including communications, armament, and electronics equipment). The basic helicopter types shown in the table may include several different models; for example, the Air Force has procured several different models of the H-l series. Table 16 includes all revisions of these data published from October 1955 through August 1974.

Table 16. AIR FORCE MMH/FH FOR ORGANIZATIONAL AND FIELD MAINTENANCE

Heli- copter Type	0ct. 1955	Dec. 1956	Sep. 1962	Jan. 1963	Oct. 1965	Oct. 1966	Mar. 1967	May 1969	Feb. 1973
H-18	11.7								
H-5	7.9	8.6							
H-23	13.3	14.5			-				
H-13	11.6	12.6	6.3	6.3	5	5	5	5	
H-19	11.6	20.7	11.5	11.5	13	13	13	13	
H-21	13.2	24.5	16.8	16.8	14	17	17	21	21
H-43			14.7	14.7	13	13	13	10	12
H-1				10.0	8	10	8	10	10
H-3				20.3	15	17	17	17	22
H-34					14	14	14	14	21
H-53							17	17	22
H-47							17		10

Source: 1955-63: Reference [13]. 1965-73: Reference [14].

The September 1962 and January 1963 publications gave two sets of figures for the H-19 and H-21: one for monthly flight-hours (for the detachment) less than 300 and one for monthly flight-hours greater than 300. In each of those four cases, averages of the two figures are presented in Table 16. Three types (H-13, H-43, and H-47) show improvement in MMH/FH over time; seven types (H-5, H-23, H-19, H-21, H-3, H-34, and H-53)

show a worsening (increase in MMH/FH), and one type (H-1) was essentially constant. Hence these data indicate that, in general, MMH/FH tend to worsen over time.

Chapter II SERVICE MISHAP RATES

All three Services maintain reporting systems for aircraft "mishaps." These reporting systems are all similar in concept but differ in detail among the Services. There are different categories of mishaps, but in general they cover all incidents of a dangerous or potentially dangerous character—from minor incidents (such as precautionary landings) through major accidents, in which the aircraft is heavily damaged or lost. The cause of the accident is also reported; there are a number of cause categories, and more than one may be involved in a single mishap. For example, if a transmission warning—light indicates an incipient transmission failure and the pilot damages the landing gear in making an emergency landing, that mishap may show both "Materiel Failure" and "Pilot Error" as having contributed to the accident.

A. REPORTING SYSTEMS AND AVAILABLE DATA

Each Service's reporting system and available data are discussed separately below.

1. Army

for Aviation Safety (USAAAVS), Fort Rucker, Alabama. The reporting starts with the introduction of the aircraft into regular service use; the test period prior to service use is not covered. In addition to the Mishap Summary, USAAAVS publishes "Flight Fax," which reports all accidents and precautionary landings. However,

the data making up "Flight Fax" must be reported electronically to USAAAVS within eight hours of the occurrence. For this reason, USAAAVS personnel felt that the Mishap Summary was more reliable and would be best for our purposes.

In the Army reporting system, mishaps are categorized as total losses, major accidents, minor accidents, incidents, forced landings, and precautionary landings. The difference between major and minor accidents and between minor accidents and incidents is established for each aircraft type by the number of man-hours required to repair.

The Army reporting system includes the following summary "Cause Factors":

Personnel
Flight Crew
Ground Crew
Supervisory

Environmental Facilities Command Training

Materiel¹
Failure/Malfunction
Maintenance
Design

Weather.

As already noted, it is possible that a single mishap may involve more than one cause factor—which is true even within the major cause—factor categories. For example, a mishap involving materiel may be charged to more than one of the three subfactors under materiel.

For each helicopter type, we received mishap data from USAAAVS for the active Army worldwide inventory; these data exclude mishaps caused by combat. The Army indicated that its

¹The Army and Air Force use this spelling; the Navy uses "Material." In this report we use "Materiel" throughout.

TROLE 2 - CH-47 SYSTEM REH GROWTH parameters

\$

ţ.

28

	3	7777	****************	3	MAI Ven Court	1	:
SYSTEM	8	7	0	ρ	4	0	
AIRFRAME	1.997	1.997152	957	-1.915	90.	, 70 40	
POWER PLANT	121-	017157	i57	766		539	ASSUMED RELATIONSHIP
FLIGHT CONTROL	2.631	176 295	176	2.010	2.0:03:5965		· Iny= abox + B
ROTOR	+11.		980.	186.	120	198 021 789.	le Y = eaxa
ENDICATING	- <u>1</u> 86	186 - 197 - 849	849	-1.619 570 619.1-	073	849	whe
EQUIPMENT	3.475	.415	3.475415970	926 651 577	159	959	32 .i
COMM/NAV	.883	268	.268931	990.	.066224907	106	tefthour
HYDRAULIC	236	se1	236195864 -1.456142958	-1.456	42	958	and Well
LANDING GEAR	<u>ō</u>	220	101220972	-1. 794 135 870	133	870	A = with floor source
DRIVE	2.336	612	2.336219948 -3.939	-3.939	091.	.951	P- 1. 1
ELECTRICAL	7.038	212: -	018 -:212950	926	926147821	821	
TOTAL	3.510	3.510172	.934	1.044063884	063	498.	W The state of the
R-OREMNEETODEL + ENTEGRATED Direct support, Direct Maintenance manhours.	at + H	utegrafe ec t surs e	7		Z Z Z	Ty = 1/2 (E-1,-3)2	V = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

mishap data before FY 1968 were less reliable and advised against our using them. Accordingly, the data reported herein cover the six FYs 1968-73. For each helicopter type, we assembled the following data by fiscal year:

- Number of flight-hours
- Number of accidents (total of total losses-both major and minor accidents):
 - Materiel failure
 - Total.
- Number of mishaps (total of three accident types: incidents, forced landings, and precautionary landings):
 - Materiel failure
 - . Total.

Using these data, we calculated mishap rates per 10,000 flight-hours (Table 17) and plotted the four mishap rates versus fiscal year (Figure 38a-g). In some cases when a helicopter was entering or being phased out of service and the mishap rates were not meaningful, the data for those years were not included in our tables or figures.

Mishap rates involving materiel were shown, because they should reflect reliability growth, if any, in the helicopter fleet being achieved through design or process improvement. The mishap rates were plotted on semi-log paper, so that equal rates of change would be parallel at any location on the paper. For both accident rates and total mishap rates, the change in rates involving materiel generally followed the total rates. In most cases, surprisingly, the rates for all mishaps tended to increase over time, while the accident rates either decreased or remained approximately constant over time. In discussing these results, USAAVS personnel offered the following probable reasons for these two trends.

¹Since log paper does not go to 0.0, a zero accident rate (whenever it occurred) was plotted at the bottom of the mishap-rate scale.

Table 17. MISHAPS OF ARMY HELICOPTERS

Heli-Series Accidents Mishaps Flig Copter Nateriel Total Failure Total Flig UH-1 68 188 550 1,147 1,919 2,224 UH-1 69 232 544 1,950 3,230 2,564 70 212 481 2,169 3,230 2,564 71 149 299 1,466 2,397 2,122 72 38 136 1,766 2,89 1,266 73 14 37 756 982 744 AH-1 68 5 15 37 756 982 744 AH-1 68 5 17 46 74 334 527 87 AH-1 68 5 17 46 74 334 527 87 AH-1 10 6 11 46 74 334 52 87 AH-1				Number	er			Rate ((per 10,000	O flight-hours)	rs)
FY Materiel Failure Materiel Failure Materiel Hou 68 188 550 1,147 1,919 2,524 69 232 544 1,950 3,230 2,564 70 212 481 2,169 3,026 2,687 71 149 299 1,466 2,397 2,122 72 38 136 1,176 1,590 1,266 73 14 37 756 982 786 69 35 92 187 393 71 46 74 334 523 303 73 8 22 153 222 87 69 76 206 223 513 413 70 85 193 242 480 454 71 41 103 191 420 28 71 48 106 192 26 26 85 19<	He] i -		יס ו	اب	Misha	ا م		Accidents			bs
68 188 550 1,147 1,919 2,524 70 212 481 2,169 3,230 2,564 71 149 299 1,466 2,397 2,126 72 38 136 1,176 1,590 1,266 73 14 37 756 982 786 68 5 15 37 69 44 69 35 92 187 342 270 70 66 110 401 523 363 370 71 46 74 334 527 303 73 8 22 153 222 87 69 76 163 163 413 70 85 193 242 480 454 71 41 103 191 420 28 71 48 106 192 13 13 72	opter eries	F	Materiel Failure	Total	Materiel Failure	Total	Flight- Hours	Materiel Failure	Total	Materiel Failure	Total
69 232 544 1,950 3,230 2,564 70 212 481 2,169 3,026 2,687 71 149 299 1,466 2,397 2,122 72 38 136 1,176 1,590 1,266 73 14 37 756 982 786 68 5 15 37 69 44 70 66 110 401 523 393 71 46 74 334 527 303 71 46 74 334 523 303 73 8 22 153 77 69 76 206 223 513 413 70 85 193 242 480 454 71 41 103 191 420 287 73 9 12 17 40 25 74 9	UH-1	89	188	550	1,147	16,	2,224,702	0.8	2.5	5.2	8.6
70 212 481 2,169 3,026 2,687 71 149 299 1,466 2,397 2,122 72 38 136 1,176 1,590 1,266 73 14 37 756 982 786 68 5 15 37 69 44 69 35 92 187 342 270 70 66 110 401 523 399 71 46 74 334 527 303 73 8 22 153 77 69 76 163 77 69 76 193 242 480 454 71 41 103 191 420 287 72 17 48 106 130 130 72 17 48 106 130 130 73 3 3 25		69	232	544	1,950	3,230	2,564,718	6.0	2.1	7.6	12.6
71 149 299 1,466 2,397 2,126 72 38 136 1,176 1,590 1,266 73 14 37 756 982 786 68 5 15 37 69 44 69 35 92 187 349 270 70 66 110 401 523 393 71 46 74 334 527 303 72 17 39 309 361 179 73 8 22 153 222 87 69 76 206 223 513 413 70 85 193 242 480 454 71 48 108 130 25 73 9 12 17 40 25 69 3 3 3 25 26 69 3 3		70	212	481	2,169	3,026	2,687,434	8.0	1.8	8.1	11.3
72 38 136 1,176 1,590 1,266 73 14 37 756 982 786 68 5 15 37 69 44 69 35 92 187 342 270 70 66 110 401 523 399 71 46 74 334 527 303 72 17 39 309 361 179 73 8 22 60 76 139 77 69 76 206 223 513 413 70 85 193 242 480 454 71 41 103 191 420 287 72 17 48 108 192 130 73 9 12 1 40 25 69 3 3 3 25 26 5 70<		7.1	149	599	1,466	2,397	2,122,168	0.7	٦. 4	6.9	11.3
73 14 37 756 982 786 68 5 15 37 69 44 69 35 92 187 342 270 70 66 110 401 523 399 71 46 74 334 527 303 72 17 39 309 361 179 73 8 22 153 522 87 69 76 206 223 513 413 70 85 193 242 480 454 71 41 103 191 420 28 73 9 12 17 40 25 68 0 1 25 26 5 69 3 3 3 25 26 5 69 3 3 3 25 26 5 70 0<		7.2	38	136	1,176		1,266,471	9.3		6.3	12.6
68 5 15 37 69 44 69 35 92 187 342 270 70 66 110 401 523 399 71 46 74 334 527 303 72 17 39 309 361 179 73 8 22 153 222 87 69 76 206 76 139 77 69 76 206 223 513 413 71 41 103 191 420 287 72 17 48 108 192 130 73 9 12 17 40 25 69 3 3 25 26 5 69 3 10 0 11 25 26 5 70 0 0 0 10 10 11 11		73	14	37	756	982	786,840	0.2	0.5	9.6	12.5
69 35 92 187 342 270 70 66 110 401 523 399 71 46 74 334 527 309 72 17 39 309 361 179 73 8 22 153 222 87 68 22 60 76 139 77 69 76 206 223 513 413 70 85 193 242 480 454 71 41 103 191 420 287 72 17 48 108 192 130 73 9 12 17 40 25 69 3 3 25 26 5 69 3 3 3 25 26 5 70 0 0 0 10 11 2 71 <td< th=""><th>AH-1</th><th>89</th><th>.c</th><th></th><th>37</th><th>69</th><th>44,085</th><th>1.1</th><th>3.4</th><th>8.4</th><th>15.6</th></td<>	AH-1	89	.c		37	69	44,085	1.1	3.4	8.4	15.6
70 66 110 401 523 399 71 46 74 334 527 303 72 17 39 309 361 179 73 8 22 153 222 87 68 22 60 76 139 77 69 76 206 223 513 413 70 85 193 242 480 454 71 41 103 191 420 287 72 17 48 108 192 130 73 9 12 17 40 25 69 3 3 3 25 26 5 70 0 0 0 10 11 2 71 0 0 0 2 2 5 5 71 0 0 0 0 0 1		69	35	92	187	342	270,764	1.3	3.4	6.9	12.6
71 46 74 334 527 303 72 17 39 309 361 179 73 8 22 153 222 87 68 22 60 76 139 77 69 76 206 223 513 413 70 85 193 242 480 454 71 41 103 191 420 287 72 17 48 108 192 130 73 9 12 17 40 25 69 3 3 25 26 5 69 3 3 25 26 5 71 0 0 10 11 2 72 1 2 2 2 2 73 0 0 0 0 0 71 0 0 0 <		70	99	011	401	523	399,870	1.7	2.8	10.0	13.1
72 17 39 309 361 179 73 8 22 153 222 87 68 22 60 76 139 77 69 76 206 223 513 413 70 85 193 242 480 454 71 41 103 191 420 287 72 17 48 108 192 130 73 9 12 17 40 25 69 3 3 25 26 5 70 0 0 0 11 2 71 0 0 0 2 5 5 71 0 0 0 11 2 5 5 71 0 0 0 0 0 0 0 0 0 71 10		7	46	74	334	527	303,122	1.5	2.4	11.0	17.4
68 22 153 222 87 68 22 60 76 139 77 69 76 206 223 513 413 70 85 193 242 480 454 71 41 103 191 420 287 72 17 48 108 192 130 73 9 12 17 40 25 68 0 1 25 26 5 69 3 3 3 25 26 5 70 0 0 0 2 2 5 71 0 0 10 11 2 5 71 0 0 0 0 2 5 5 71 0 0 0 0 0 0 11 2 71 <th></th> <th>72</th> <td>17</td> <td>39</td> <td>309</td> <td>361</td> <td>179,260</td> <td>6.0</td> <td>2.2</td> <td>17.2</td> <td>20.1</td>		72	17	39	309	361	179,260	6.0	2.2	17.2	20.1
68 22 60 76 139 77 69 76 206 223 513 413 70 85 193 242 480 454 71 41 103 191 420 287 72 17 48 108 192 130 73 9 12 17 40 25 68 0 1 25 29 5 69 3 3 25 26 5 70 0 0 0 11 2 71 0 0 0 11 2 71 0 0 10 11 2 72		73	∞	22	153	222	87,814	6.0	2.5	17.4	25.3
69 76 206 223 513 413 70 85 193 242 480 454 71 41 103 191 420 287 72 17 48 108 192 130 73 9 12 17 40 25 68 0 1 25 29 5 69 3 3 25 26 5 70 0 0 10 11 2 71 0 0 2 2 5 71 0 0 10 11 2 72	9-но	89	22	09	92	139	77,426	2.8	7.8	8.6	18.0
70 85 193 242 480 454 71 41 103 191 420 287 72 17 48 108 192 130 73 9 12 17 40 25 68 0 1 25 29 5 69 3 3 25 26 5 70 0 0 10 11 2 71 0 0 2 2 5 72		69	92	506	223	513	413,393	1.8	5.0	5.4	12.4
71 41 103 191 420 287 72 17 48 108 192 130 73 9 12 17 40 25 68 0 1 25 29 5 69 3 3 25 26 5 70 0 0 10 11 2 71 0 0 2 26 5 72		70	88	193	242	480	454,460	1.9	4.2	5.3	10.6
72 17 48 108 192 130 73 9 12 17 40 25 68 0 1 25 29 5 69 3 3 25 26 5 70 0 0 10 11 2 71 0 0 2 2 5 72		7		103	191	420	287,935	1.4	3.6	9.9	14.6
73 9 12 17 40 25 68 0 1 25 29 5 69 3 3 25 26 5 70 0 0 10 11 2 71 0 0 2 2 2 72	·	72		48	108	192	130,303	1.3	3.7	8.3	14.7
68 0 1 25 29 5 69 3 3 25 26 5 70 0 0 10 11 2 71 0 0 2 2 2 72		73	6	12	17	40	25,794	3.5	4.7	9.9	15.5
3 3 25 26 5 0 0 10 11 2 0 0 0 2 2 2	CH-37	89	0	_	52	53	5,961	0.0	1.7	41.7	48.3
0 0 10 11 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0		69	m	m	25	56	5,315	5.7	5.7	47.2	49.1
0 0		20	0	0	01	Ξ	2,485	0.0	0.0	40.0	44.0
:		7	0	0	2	2	352	0.0	0.0	50.0	50.0
		72			;	;	i	:	:	:	:
		73		:	i	;	;	;		:	;

Table 17 (continued)

7.

			Number	er			Rate (Rate (per 10,000	flight-hour	(
Heli-		Accident	nts	Mishaps	bs	·	Accidents	ints		S
copter Series	FY	Nateriel Failure	Total	Materiel Failure	Total	Flight- Hours	Materiel Failure	Total	Materiel Failure	Total
CH-47	89	7	12	166	219	195,962	0.4	1.1	8.5	11.2
	69	16	33	254	331	241,906	0.7	1.4	10.5	13.7
	70	16	31	276	341	261,262	9.0	1.2	10.5	13.0
	7.1	16	21	281	403	196,124	9.0	:	14.3	20.6
	72	6	∞	192	224	112,760	8.0	0.7	17.0	19.9
	73	-	2	114	137	52,718	0.5	9.0	21.7	26.0
CH-54	89	_	2	15	18	8,826		2.3	17.0	20.5
	69	2	٣	13	22	19,080	0.	1.6	8.9	11.5
	70	_	2	36	35	23.044	4.0	6.0	15.7	15.2
-	7	ო	2	18	56	13,363	2.2	1.5	13.4	19.4
	72	0	2	15	20	9,791	0.0	2.0	15.3	20.4
	73	0		19	27	7,214	0.0	1.4	26.4	37.5
0H-58	89	i	:	•	;	!	!	;	!	;
	69	0	0	0	0	112	0.0	0.0	0.0	0.0
	70	m	9	40	62	76,462	0.4	8.0	5.2	8.1
	7	7	46	126	258	262,645	0.5	œ. 	8.4	8.6
	72	17	38	230	356	279,055	9.0	1.4	8.2	12.8
	73	10	24	229	376	275,021	0.4	6.0	8.3	13.7
						1				

Source: U.S. Army Agency for Aviation Safety, Ft. Rucker, Alabama.

Figure 38. MISHAP RATES FOR ARMY HELICOPTERS

X

Figure 38 (continued)

- (1) Serious problems causing accidents tend to be corrected first (thus reducing the accident rate), while minor problems receive less attention.
- (2) With the deceleration of the Vietnam conflict, less mission pressure encouraged pilots to make precautionary landings in order to reduce the possibility of accidents.
- (3) Though the development of better fault-warning systems has increased precautionary landings and other incidents, it has reduced accidents.
- (4) Progressively more mishaps occur as the fleet ages, much as is the case with old automobiles.

Hence, though there appears to be either approximately constant or increasing reliability insofar as accidents are concerned, there appears to be a deterioration in reliability insofar as all mishaps (both those involving material and total) are concerned.

2. <u>Navy</u>

Navy mishap data are reported by the Naval Safety Center (NSC), Norfolk, Virginia. The reporting starts with the testing of the aircraft at the Naval Air Test Center, Patuxent River. However, the data we obtained for helicopters during this period appeared unreliable, and only data for regular Service use appeared usable for our purposes. In the Navy reporting systems, mishaps are broken down as follows:

Major Accident - Involves loss or substantial damage to aircraft.

Minor Accident - Minor or limited damage.

Incident - Very minor damage or no damage (e.g., an engine failure followed by a successful autorotative landing, or an abort following main engine start).

Ground Accident - No intent to fly (includes injuries to maintenance personnel during maintenance).

The difference between major and minor accidents is established for each aircraft type by the number of man-hours required to

repair; heavy damage to a major component (which may not take many man-hours to replace is also considered as a major accident.

The Navy reporting system includes the following "Contributing Causes":

Pilot

Billian State Southerton Being and and the secondary and mental the

*

Other Personnel

Materiel

Failure or Malfunction
Design
Maintenance-Personnel-Induced
Pilot-Induced

Weather

Airport Facility

Carrier/LPH Facility.

There are a number of other contributing causes, in addition to those listed above. However, the great majority of mishaps involve the first three categories above (including the subcategories under "Materiel"). As with the Army, it is possible that a single mishap may involve more than one cause.

For each helicopter type now in Navy service, we received mishap data from the fiscal year of introduction into service through FY 1973 for the Navy worldwide inventory; the Navy excluded mishaps caused by combat in these data. For each helicopter type, we assembled the following data by fiscal year:

- . Number of flight-hours.
- Number of major accidents:
 - Involving pilot error
 - Involving other personnel error
 - Involving materiel failure
 - . Total.
- · Number of minor accidents or incidents:
 - Involving pilot error
 - Involving other personnel error
 - Involving materiel failure
 - Total.

Ground Accidents:

- Involving pilot error
- Involving other personnel error
- Involving materiel failure
- . Total.

• Total mishaps:

- Involving pilot error
- . Involving other personnel error
- Involving materiel failure
- . Total.

Although the present Navy system reports minor accidents separately from incidents, prior to FY 1968 the two were reported as a single category. For this reason, in order to have a consistent time series we have combined them, since all Navy helicopter types presently in service were in the inventory before FY 1968. Using these data, we calculated mishap rates per 10,000 flight-hours (Table 18). In general, there are somewhat fewer major accidents than ground accidents, while the great majority of mishaps involve minor accidents or incidents. However, even though major accidents account for the fewest mishaps of the three categories, they are probably the most important in terms of total cost (both in materiel loss and in injuries and fatalities). Major accident rates (involving materiel and total) and all mishaps (involving materiel and total) were plotted versus fiscal year (Figures 39a-e). In some cases when a helicopter was entering service and the mishap rates were not meaningful, the data for those years were not included in our tables or figures.

The general pattern of the Navy mishap rates is similar to that for the Army. In general, the accident rates either decreased or remained approximately constant over time while the total mishap rates increased. Personnel at NSC felt that the quality and attitude of maintenance personnel were also factors in the worsening mishap rate. They indicated that (1) the better maintenance personnel are assigned to the newer aircraft types

Table 18. MISHAPS OF NAVY HELICOPTERS

r

A STATE OF THE PARTY OF THE PAR

Pilot Personnel Materiel Total Flight-Firor Pilot Error Dither Error 1 1 1 2 17,125 0.6 0.6 4 5 0 6 2.3 2.9 4.7 0 2 0 2 1.2 1.2 1.2 0 2 1 5 38,443 1.2 0 2 1 5 38,443 1.2 0 4 0 4 1.2 1.2 0 4 0 4 1.0 1.0 13 11 34 2.1 3.4 1.0 1.0 20 4 0 4 1.0 1.0 20 4 0 4 1.0 1.4 20 4 0 4 0 2.1 1.4 20 4 0 4					Number	L			Rate	(per 10,000	flight-hours	urs)
65 Major 1 1 1 1 2 17,125 0.6 0.6 Minor 4 5 0 6 6 1.2 66 Major 0 2 1 5 38,443 0.5 Minor 8 7 10 25 2.1 1.8 6round 0 4 0 4 1.0 7 4 3 15 55,755 1.3 0.7 67 Major 7 4 19 40 2.3 0.7 68 Major 11 10 10 25 5.9 3.6 2.2 69 Major 11 10 10 25 5.9 3.1 3.1 3.1 69 Major 19 10 12 38 101,212 1.9 1.0 69 Major 19 10 12 38 101,212 1.9 1.0 70477 20 23 91 150 2.0 2.0 2.3 10 <td< th=""><th>Heli- copter Series</th><th>FΥ</th><th>Mishap Type*</th><th>Pilot Error</th><th>Other rsonne Error</th><th>a t Fa</th><th>ota</th><th>Flight- Hours</th><th>Pilot Error</th><th>Other Personnel Error</th><th>Nateriel Failure</th><th>Total</th></td<>	Heli- copter Series	FΥ	Mishap Type*	Pilot Error	Other rsonne Error	a t Fa	ota	Flight- Hours	Pilot Error	Other Personnel Error	Nateriel Failure	Total
Minor 4 5 0 6 2.3 2.9 Ground 0 2 0 2 1.2 Major 0 2 1 5 38,443 1.2 Minor 8 7 10 25 2.9 4.7 Ground 0 4 0 4 1.0 Minor 13 4 19 40 1.0 Ground 0 4 0 4 1.0 Minor 22 22 59 3.6 2.2 Ground 0 6 0 4 0.7 Ground 0 4 0 4 0.7 Ground 0 4 0 4 0.7 Ground 0 6 0 9 0.7 Actal 10 10 22 52	H-1	65	Major	ı	-	l	2	7,12	9.0	١ ٠	9.0	1.2
Ground 0 2 0 2 1.2 Total 5 8 1 10 2.9 4.7 Hajor 0 2 1 5 38,443 0.5 Minor 8 7 10 25 3 4.7 1.0 Ground 0 4 0 4 1.0 Minor 13 4 19 40 2.3 0.7 Ground 0 4 0 4 0.7 0.7 Minor 22 22 59 3.6 2.2 3.6 3.6 2.2 Ground 0 6 0 9 0.9 0.9 Total 33 38 62 127 4.7 5.4 Minor 20 23 91 150 0.9 Minor 20 23 91 150			Minor	4	ഹ	0	9		•	•	:	3.5
Major δ 1 10 25 38,443 0.5 Minor 8 7 10 25 38,443 0.5 Ground 0 4 0 4 1.0 1.0 Rajor 7 4 3 15 55,755 1.3 0.7 Major 13 4 19 40 2.3 0.7 Ground 0 4 0 4 0.7 2.3 0.7 Major 11 10 10 22 59 3.6 2.2 Total 20 4 0 4 0.7 3.6 2.2 Major 11 10 10 22 70,237 1.6 1.4 Major 11 10 10 22 70,237 1.6 1.4 Major 13 33 38 62 127 4.7 5.4 Minor			Ground	ol	2	ol	2		ì	1.2	;	1.2
Major 0 2 1 5 38,443 0.5 Minor 8 7 10 25 38,443 1.8 Ground 0 4 0 4 1.0 Minor 13 4 19 40 2.1 3.4 Ground 0 4 0 4 0.7 Ground 0 4 0 4 0.7 2.3 0.7 Major 11 10 10 26 59 3.6 3.1 3.1 Ground 0 6 0 9 0.7 6.4 Major 19 10 12 38 101,212 1.9 1.0 Major 19 10 12 38 101,212 1.9 1.0 Major 19 10 12 38 101,212 1.9 1.0 Total 20			Tota?	\$	80	I	10		•	•	9.0	5.8
Minor 8 7 10 25 2.1 1.8 Ground 0 4 0 4 1.0 Major 7 4 3 15 55,755 1.3 0.7 Minor 13 4 19 40 2.3 0.7 Ground 0 4 0 4 0 7 Major 11 10 10 25 59 3.6 2.2 Froat 2 2 52 93 3.1 3.1 3.1 Ground 0 6 0 9 0.9 Total 33 38 62 127 4.7 5.4 Minor 20 23 31 10 1.0 Minor 20 23 31 1.0 1.1 Minor 20 23 31 1.0 1.1 Minor 20 23 31		99	Major	0	61	_	2	,44	;	•	0.3	1.3
Ground 0 4 0 4 1.0 Totai 8 13 11 34 2.1 3.4 Major 7 4 3 15 55,755 1.3 0.7 Minor 13 4 19 40 2.3 0.7 Ground 0 4 0 4 0.7 Major 111 10 10 25 73,237 1.6 1.4 Minor 22 22 52 93 3.1 3.1 3.1 Ground 0 6 0 9 0.9 Total 33 38 62 127 4.7 5.4 Minor 20 23 91 150 1.0 Minor 20 11 11 12 2.0 2.3 Ground 0 11 12 2.0 2.0 Minor <t< th=""><th></th><th></th><th>Minor</th><th>ω</th><th>7</th><th>10</th><th>25</th><th></th><th>2.1</th><th></th><th>5.6</th><th>6.5</th></t<>			Minor	ω	7	10	25		2.1		5.6	6.5
Major 7 4 3 11 34 2.1 3.4 Major 13 4 9 40 2.3 0.7 Ground 0 4 19 40 2.3 0.7 Ground 0 4 0 4 0 0.7 Major 11 10 10 10 22 5.2 5.2 5.2 3.1 3.1 Minor 22 22 52 93 3.1 3.1 3.1 Ground 0 6 0 9 0.9 Total 33 38 62 127 4.7 5.4 Minor 20 23 91 150 2.0 2.3 Ground 0 11 12 38 101,212 1.9 1.0 Minor 20 23 91 16 0.2 2.3 Ground 0			Ground	ol	4	이	4		1	1.0	;	1.0
Major7431555,7551.30.7Minor13419402.30.7Ground04040.7Total201222593.62.2Major1110102570,2371.61.4Major06090.9Total3338621274.75.4Major19101238101,2121.91.0Minor2023911502.02.02.3Ground01111191.1			Totai	80	13	11	34		2.1	•	2.9	8.8
Ground 0 4 19 40 2.3 0.7 Ground 0 4 0 4 0.7 Total 20 22 59 3.6 2.2 Major 11 10 10 2E 70,237 1.6 1.4 Major 22 22 52 93 3.1 3.1 3.1 Ground 0 6 0 9 0.9 Major 19 10 12 38 101,212 1.9 1.0 Minor 20 23 91 150 2.0 2.3 Ground 0 11 19 1.0 2.0 2.3 Minor 20 23 91 150 1.1 Total 1 10 1 2.0 2.3 Minor 20 20 2.0 2.3 Minor 20 20 2.0		67	Major	7	❤	က	15	5,75	1.3	0.7	0.5	2.7
Ground 0 4 0 4 0.7 Tota1 20 12 22 59 3.6 2.2 Major 11 10 10 2E 70,237 1.6 1.4 Minor 22 22 52 93 3.1 3.1 3.1 Ground 0 6 0 9 0.9 Tota1 33 38 62 127 4.7 5.4 Major 19 10 12 38 101,212 1.9 1.0 Minor 20 23 91 150 2.0 2.3 2.0 2.3 Ground 0 11 1 19 1.1 Tota1 20 23 91 150 1.1 Tota1 20 23 91 20 2.0 2.3			Minor	13	4	19	40		•	0.7	3.4	7.2
Major 11 10 10 25 59 3.6 2.2 Minor 22 22 52 93 70,237 1.6 1.4 Minor 20 6 0 9 0.9 Total 33 38 62 127 4.7 5.4 Major 19 10 12 38 101,212 1.9 1.0 Minor 20 23 91 150 2.0 2.3 Ground 0 11 19 1.1 Total 30 11 10 2.3			Ground	이	4	이	4		!	0.7	;	0.7
Major 11 10 10 25 73,237 1.6 1.4 Minor 22 22 52 93 70,237 1.6 1.4 Ground 0 6 0 9 0.9 Total 33 38 62 127 4.7 5.4 Major 19 10 12 38 101,212 1.9 1.0 Minor 20 23 91 150 2.0 2.3 Ground 0 11 1 19 1.1 Total 20 23 91 150 2.0 2.3 Total 20 20 2.0 2.0 2.3			Total	20	12	22	59		3.6	2.2	3.5	10.6
Kinor 22 22 52 93 3.1 3.1 Ground 0 6 0 9 0.9 Total 33 38 62 127 4.7 5.4 Major 19 10 12 38 101,212 1.9 1.0 Minor 20 23 91 150 2.0 2.3 Ground 0 11 1 19 1.1 Total 30 40 20 20 20		68	Major	,	10	10	2£	70,237	1.6	1.4	1.4	3.6
Ground 0 6 0 9 0.9 Total 33 38 62 127 4.7 5.4 Major 19 10 12 38 101,212 1.9 1.0 Minor 20 23 91 150 2.0 2.3 Ground 0 11 10 10 1.1 Total 30 10 1.0 1.1			Minor	22	22	52	93		3.1	3.1	7.4	13.3
Total 33 38 62 127 4.7 5.4 Major 19 10 12 38 101,212 1.9 1.0 Minor 20 23 91 150 2.0 2.3 Ground 0 11 1 19 1.1 Total 30 44 100 2.0 2.3			Ground	이	9	0	6			6.0	;	1.3
Major 19 10 12 38 101,212 1.9 1.0 Minor 20 23 91 150 2.0 2.3 Ground 0 11 1 19 1.1 Total 30 30 30 30 30			Total	33	38	62	127		•	•	8.8	18.1
20 23 91 150 2.0 2.3 4 0 11 1 19 1.1		69	Major	19	10	12	38	101,212	1.9	1.0	1.2	3.8
20 11 19 1.1			Minor	50	23	16	150		2.0	2.3	9.6	14.8
20 44 101 902			Ground	이		-1	19			•	0.1	1.9
55 44 104 20/ 5.9 4.5			Total	39	44	104	202		3.9	4.3	10.3	20.5

(continued on next page) *Includes Major Accidents, Minor Accidents or Incidents, Ground Accidents, and Total Mishaps.

Table 18 (continued)

				Number	er			Rate	(per 10,000	flight-hours	urs)
Heli- copter Series	FY	Mishap Type	Pilot Error	Other Personnel Error	Materiel Failure	Total	Flight- Hours	Pilot Error	Other Personnel Error	Materiel Failure	Total
(H-1)	70	Major	15	12	14	32	124,370	1.2	1.0	1.1	2.6
contdj		Minor	33	54	66	188		2.7	4.3	8.0	15.1
		Ground	-	27	2	38		0.1	2.2	7.0	3.1
		Tota1	49	93	118	258		3.9	7.5	9.5	20.7
	11	Major	10	ĸ	13	23	128,031	8.0	4.0	1.0	3.8
		Minor	53	42	137	215		2.3	3.3	10.7	16.8
		Ground	0	9		23		ŀ	1.5	0.1	7.8
		Tota1	39	99	151	261		3.0	5.2	11.8	20.4
	72	Major	14	ón	9	19	121,034	1.2	0.7	0.5	1.6
		Minor	42	46	168	261		3.5	3.8	13.9	21.6
		Ground	이	38	4	45		;	3.1	0.3	3.7
	•	Total	26	93	178	325		4.6	7.7	14.7	26.9
	73	Major	4	2	,	4	110,322	0.4	0.2	0.1	4.0
		Minor	24	50	193	566		2.2	4.5	17.5	24.1
		Ground	이	81	0	19		;	9.	1	1.7
		Total	88	20	194	289		2.5	6.3	17.6	26.2
H-2	63	Major	4	4	0	S	5,570	7.2	7.2	;	0.6
		Minor	2	2	_	ო		3.6	3.6	1.8	5.4
		Ground	ol	mi	ol	က		i	5.4	:	5.4
		Total	9	6	1	11		10.8	16.2	1.8	19.7
									,		-

(continued on next page)

Table 18 (continued)

				Number	er			Rate	(per 10,000	flight-hours	urs)
Heli-		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Other					Other	l	
Series	F	Type	Error	Fersonnel	materiei Failure	Total	riight- Hours	Pilot Error	Personnel	Materiel Failure	Total
(H-2,	64	Major	4	9	6	91	27,773	1.4	2.2	3.2	5.8
cours		Minor	က	12	21	35		1.8	4.3	7.6	12.6
		Ground	ol	=	0	디		;	4.0	;	4.0
		Total	O)	29	30	62		3.2	10.4	10.8	22.3
	65	Major	9	4	16	24	34,043	1.8	1.2	4.7	7.0
		Minor	14	80	12	34		4.1	2.3	3.5	10.0
		Ground	0	7	-	6		i	2.1	0.3	5.6
		Total	0.5	19	29	29		5.9	5.6	8.5	19.7
	99	Major	S	2	4	-	41,202	1.2	0.5	1.0	2.7
	-	Minor	œ	_	14	59		1.9	1.7	3.4	7.0
		Ground	이	12	0	15		;	2.9	1	3.6
		Total	13	21	18	55		3.2	5.1	4.4	13.3
	29	Major	œ	4	e	12	43,283	1.8	6.9	0.7	2.8
		Minor	13	S	23	36		3.0	1.2	5.3	8.3
		Ground	-	16	-1	50		0.2	3.7	0.2	4.6
		Total	22	25	2.2	89		5.1	5.8	6.2	15.7
	68	Major	7	7	11	15	39,811	1.8	1.8	2.8	3.8
	_	Minor	10	15	32	99		2.5	3.8	8.0	14.1
		Ground	7	<u>50</u>	0	22		0.5	5.0	1	5.5
		Total	13	42	43	93		4.8	10.5	10.8	23.4

(continued on next page)

Table 18 (continued)

	-			Number	er			Rate	(per 10,000	flight-hours	urs)
Heli- copter		Mishap	Pilot	Other Personnel	Materiel		Flight-	Pilot	Other Personnel	Materiel	
Series FY		Type	Error	Error	Failure	Total	Hours	Error		Failure	Total
(H-2, 69		Major	4	9	4	10	36,371		1.6	1.1	2.7
conta)	<u>-</u>	Minor	15	25	66	135		4.1	6.9	27.2	37.1
		Ground	0	04	m	47		1	11.0	9.0	12.9
		Total	19	7.1	106	192		5.2	19.5	29.1	52.8
70		Major	2	_	2	2	30,753	0.7	0.3	0.7	1.6
	_	Minor	91	26	16	115		5.5	8.5	24.7	37.4
		Ground	0	35	-	38		;	11.4	0.3	12.4
		Total	18	62	29	158		5.9	20.2	25.7	51.4
7		Major	_	0	,	-	27,500	0.4	•	♦.0	4.0
	_	Minor	18	19	87	123		6.5	6.9	31.6	44.7
	_	Ground	0	17	-1	19		•	6.2	4.0	6.9
		Total	18	36	68	143		6.9	13.1	32.4	52.0
	72	Major	_	0	က	4	23,560	4.0	;	1.3	1.7
	_	Minor	16	25	87	126		8.9	10.6	36.9	53.5
		Ground	이	35	ကျ	39		;	14.9	1.3	16.6
		Total	17	09	93	169		7.2	25.5	39.5	71.7
	6	Major	ĸ	4	2	ø	26,714	1.9	1.5	0.7	2.2
	_	Minor	∞	31	148	189		3.0	11.6	55.4	7.0.7
	_	Ground	-1	24	6	31		0.4	0.6		11.6
		Total	14	5.9	153	226		5.2	22.1	57.3	84.6
									(continued	led on next	page)

Table !8 (continued)

				Number	ē			Rate	(per 10,000	flight	1 2 2 1 2 2
Held-		3		Other					ىدا	3	
Series	٤	Type	Error	Fersonne	Materiel Failure	Total	Flight-	Pilot Error	Personnel	Materie! Failure	
H-3	61	Major	-	0	0	-	2.316	4 2			
		Minor	2	0		4	•	•			÷ ,
		Ground	<u> </u>		- (٠ ،			•	4.3	17.3
			۰ اد	ol ()	ارم ا		:	13.0	•	13.0
		10101	ۍ 	M3	I	છ		13.0	13.0	4.3	34.5
	62	Major	7	8	2	4	23,533	0.8	œ.	œ.	1
		Minor	m	4	4	Ξ		1.3			
		Ground	<i>-</i> -I	13	21	16		4.0	5.5	. 0	
		Total	g	19	80	31		2.5	8.1		٠,
	63	Major	^	2	5	1	47,102	.5	4		
		Minor	13	on.	7	21	•	2.8	6	- u	5.3
		Ground	0	17	0	22			•	- (•
		Total	20	28	12	54		6.5			
	64	Major	4	2	~	•	77 000		•	•	6.11
		Minor	12	19	22	64	7001//	0.0	•		•
		Ground	-	37	4	. 94	_		4. 4	89. 49	2.0
		Total	56	58	23	119		3.3	٠,	• •	•
	65	Major	က	ĸ	4	7	82,050	4.0	4	,	
		Minor	27	25	19	110			• (•	y . c .
		Ground	0	53	9	30			•	0.7	, ~
	7	Total	30	57	7.1	147		3.7	6.9	•	
									(continued	d on next	. [60

Table 18 (continued)

				Number	er			Rate	(per 10,000	flight-hours	urs)
Heli- copter Series	FΥ	Mishap Type	Pilot Error	Other Personnel Error	Materiel Failure	Total	Flight- Hours	Pilot Error	Other Personnel Error	Materiel Failure	Total
(н-3,	99	Major	2	-	3	9	88,306	0.2	0.1	0.3	0.7
contd)		Minor	18	22	65	103		2.0	2.5	7.4	11.7
		Ground	2	30	7	34		0.5	3.4	0.2	3.9
		Total	22	53	20	143		2.5	0.9	7.9	16.2
	29	Major	S	m	ഹ	14	89,684	9.0	0.3	9.0	1.6
		Minor	21	24	99	93		2.3	2.7	6.2	10.4
		Ground	m	28	9	30		0.3	3.1	;	3.3
		Total	53	55	61	137		3.2	6.1	6.8	15.3
	89	Major	က	4	2	10	93,186	0.3	0.4	0.2	1.1
		Minor	44	43	96	167		4.7	4.6	10.3	17.9
		Ground	이	37	8	47		!	4.0	6.0	5.0
		Total	47	84	106	224		5.0	9.0	11.4	24.0
	69	Major	2	₩	ß	∞	98,192	0.5	0.4	0.5	0.8
		Minor	39	46	140	216		4.0	4.7	14.3	27.0
		Ground	이	89	9	76		1	6.9	9.0	7.7
		Total	44	118	151	300		4.5	12.0	15.4	30.6
	20	Major	9	က	9	10	78,067	0.8	0.4	0.8	1.3
		Minor	22	36	101	161		2.8	4.6	12.9	20.6
		Ground	이	48	2	57		;	6.1	0.3	7.3
		Total	28	87	109	228		3.6	11.1	14.0	29.2

(continued on next page)

Table 18 (continued)

				Number	er			Rate	(001 10 000	- 1	
Heli-	_			4+0							
copter Series	FY	Kishap Type	Pilot Error	Personnel Error	Materiel Failure	Total	Flight- Hours	Pilot Error	Other Personnel Error	Materie! Failure	10+01
(H-3,	11	Major	5	1	5	=	69.295	0.7	1.0	0 7	,
coura		Minor	22	43	145	509			2-9	20 02	200
		Ground	이	63	13	11		:	; ; , 6	5.1	11,11
		Total	22	113	163	297		3.9	16.3	23.5	42.9
	72	Major	4	0	က	9	88,538	0.5	1	0.3	0 7
		Minor	31	65	391	490		3.5	7.3	44.2	55.3
		Ground	2	75	∞¦	88		0.5	8.5	0.9	10,1
		Total	37	140	402	585		4.2	15.8	45.4	66.1
	73	Kajor	4	9	2	6	95,670	4.0	9.0	0,0	c
		Minor	33	9.7	383	202		3.4	10.1	40.0	53.0
		Ground	-	71	•	8		0.1	7.4	4.0	8.5
		Total	38	174	389	283		4.0	18.2	40.7	62.4
H-46	65	Major	-	0	0	-	9,034		;	1	
		Minor	2	8	~	12		2.2	2.2	60	13.3
		Ground	ol	 1	c)	-		;		;	• •
		Total	M	ĸ	80	14		3.3	3.3	8.8	15.5
	99	Major	2		0	က	33,442	9.0	0.3	;	6,0
		Minor	13	14	32	09		3.9	4.2	9.6	17.9
		Ground	-1	6	اه	17		0.3	2.7	1.8	5.1
		Total	16	24	38	80		4.8	7.2	11.4	23.9

(continued on next page)

Table 18 (continued)

				Numbe	er			Rate	(per 10,000	flight-h	ours)
Heli-				Other					Other		
copter Series	FΥ	Mishap Type	Pilot Error	Personnel Error	Materiel Failure	Total	Flight- Hours	Pilot Error	Personnel Error	Materiel Failure	Total
(H-46,	29	Major	9	4	9	17	75,108	0.8	0.5	0.8	2.3
coura)		Minor	27	37	57	153		3.6	6.4	7.6	20.4
		Ground	2	19	ကျ	25		0.3	2.5	9.0	3.3
		Total	35	09	99	195		4.7	8.0	8.8	26.0
	89	Major	10	6	17	26	91,917		1.0	7.8	2.8
		Minor	8	37	52	108		5.0	4.0	5.7	11.7
		Ground	က	53	9	43		0.3	3.2	0.7	4.7
		Total	31	7.5	7.5	177		3.4	8.8	8.2	19.3
	69	Major	15	91	Ξ	32	161,543	6.0	1.0	0.7	2.0
		Minor	55	99	236	384		3.4	4.1	14.6	23.8
		Ground	이	38	2	46		;	2.4	0.1	2.8
		Total	20	120	249	462		4.3	7.4	15.4	28.6
	70	Major	13	13	7	24	140,247	6.0	0.9	0.5	1.7
		Minor	67	95	299	483		8.4	9.9	21.3	34.4
		Ground	이	27	9	86		:	1.9	0.4	6.1
		Total	80	132	312	593		5.7	9.4	22.2	42.3
	11	Major	₹	9	'n	0.0	132,350	0.3	0.5	0.4	8.
		Minor	20	65	198	334		3.8	4.9	15.C	25.2
		Ground	က	30	4	4		0.2	2.3	0.3	3.1
		Total	52	101	202	385		4.3	2.6	15.6	29.1
											•

(continued on next page)

;;

Table 18 (continued)

T

				Number	er			Rate	(per 10,000	flight-hours	urs)
Heli- copter Series	Ŧ	Mishap Type	Pilot Error	Other Personnel Error	Materiel Failure	Total	Flight- Hours	Pilot Error	Other Personnel Error	Materiel Failure	Total
. 97-н)	72	Major	က	2	2	6	95,046	0.3	0.2	0.2	0.9
ontd)		Minor	53	46	175	258		3.1	8.4	18.4	27.1
		Ground	-1	46	2	55		0.1	4.8	0.5	5.8
		Total	33	94	182	322		3.5	9.6	19.1	33.9
	73	Major	8	2	-	9	93,971	0.3	0.2	0.1	9.0
		Minor	35	82	215	346		3.7	8.7	22.9	36.8
		Ground	-	38	9	46		0.1	4.0	9.0	4.9
		Total	39	122	222	398		4.2	13.0	23.6	42.4
H-53	29	Major	2	_	0	2	900.6	2.2		;	2.2
		Minor	9	6	34	47		6.7	10.0	37.8	52.3
		Ground	ol	0	9	0		!	•		;
		Total	90	10	34	49		8.9	11.1	37.8	54.5
	68	Major	7	m		œ	26,392	2.7	1.1	4.0	3.0
		Minor	10	16	94	69		3.8	6.1	18.6	26.1
		Ground	0	13	4	17		!	4.9	1.5	6.4
		Total	17	32	54	94		6.4	12.1	20.5	35.6
	69	Major	က	**		9	34,046	6.0	1.2	0.3	1.8
		Minor	35	30	67	119		10.3	8.8	19.7	35.0
		Ground	-	17	이	18		0.3	5.0	;	5.3
		Total	39	51	89	143		11.5	15.0	20.0	42.0
									(concluded	ed on next	page)

123

Table 18 (concluded)

			Number	er			Rate	(per 10,000	flight-hours	urs)
}			Other					Other		
	Mishap Type	Pilot Error	Personnel Error	Materiel Failure	Total	Flight- Hours	Pilot Frror	Personnel	Materiel	Total
1								5	3	
70	Major	က	0	_	4	40,251	0.7.	ì	0.2	0.9
E Coura	Minor	22	29	62	132		5.5	7.2	22.1	32.8
9	Ground	이	62	m	31		:	7.2	0.7	7.7
	Total	25	58	ري ن	167		6.2	14.4	23.0	40.5
<u> </u>	Major	'n	_	2	9	43,798		0.2	0.5	1.4
<u> </u>	Minor	30	55	141	204		8.9	12.6	32.2	46.6
	Ground	-	36	ا9	41		0.2	8.2	1.4	4.0
	Total	36	92	149	251		8.2	21.0	34.0	57.3
72 M	Major	m	m		4	46,714	9.0	9.0	0.2	6.0
	Minor	18	55	195	253		3.9	11.8	41.7	54.2
5	Ground	-	38	13	50		0.2	8.1	2.8	10.7
	Total	22	96	209	307		4.7	20.6	44.7	65.7
73 M	Major	4	25	7	נ	43,969	6.0		1.6	2.5
X	Minor	24	59	248	318		5.5	13.4	56.4	72.4
5	Ground	7	52	의	19		0.5	11.8	2.3	13.9
	Total	30	116	265	390		8.9	26.4	60.3	88.7

Source: Naval Safety Center, Norfolk, Virginia

MISHAP RATES FOR NAVY HELICOPTERS Figure 39.

Figure 39 (continued)

Figure 39 (concluded)

127

and (2) their degree of eagerness decreases with the age of the the aircraft. Figures 40-44 were taken directly from a NSC memorandum; on these plots the rate scale (per 10,000 flight-hours) is linear. They show by system the breakdown of materiel-caused mishaps. Although there is considerable crossing over of the system rates, in general the system rates tend to move with the overall materiel rate. The overall materiel rate in the top panel of these plots corresponds to the mishap rate involving materiel of Figure 39.

3. Air Force

The Air Force Logistics Command, ACVMM, Wright-Patterson AFB, Ohio, supplied IDA with tapes covering Accident, Incident and Emergency Unsatisfactory Material Report (AIE) data. Per our request, we were to have been provided these data covering calendar years 1970-73. Upon reading the tapes supplied us, we learned that no data were included for 1970 and 1972--and only part-year coverage for 1971 and 1973. Consequently, the information contained in the tapes provided was not sufficient to construct AIE time trends.

B. EFFECT OF HELICOPTER EMPTY WEIGHT

Since large helicopters have more parts that could fail or malfunction, one could hypothesize that large helicopters would have more accidents or mishaps than small helicopters. Accordingly, we felt it would be of interest to investigate mishap rates as a function of empty weight.

Figures 38-44 indicate that mishap rates vary sharply from year to year. Accordingly, in investigating the effect of helicopter weight on mishap rates, we have used the average mishap rates for the last three fiscal years (FYs 1971-73).

Figure 40. MISHAP RATES FOR THE NAVY H-1 SERIES (BY CAUSE AND BY SYSTEM)

Figure 41. MISHAP RATES FOR THE NAVY H-2 SERIES (BY CAUSE AND BY SYSTEM)

Figure 42. MISHAP RATES FOR THE NAVY H-3 SERIES (BY CAUSE AND BY SYSTEM)

Figure 43. MISHAP RATES FOR THE NAVY H-46 SERIES (BY CAUSE AND BY SYSTEM)

Figure 44. MISHAP RATES FOR THE NAVY H-53 SERIES (BY CAUSE AND BY SYSTEM)

Helicopter weights within a family of helicopters (such as the Bell H-l family) vary by individual model. Further, the composition of a Service's fleet is constantly changing as later models are procured and earlier models are retired. In Tables 19¹ and 20, we have estimated average empty weight for each helicopter family and shown the average mishap rates for the past three years. These data are plotted in Figures 45 and 46. These plots indicate that accident rates seem to be independent of aircraft weight, while all mishaps (both those involving materiel and total) seem to increase with size.

Of course, there are many other factors that can affect these rates. The type of mission, age of the fleet, geographical environment, etc., can be particularly important in accident rates.

¹The CH-37 was dropped from the Army helicopter types, since it was the only piston-powered Army helicopter and was being phased out of service during this period.

Table 19. AVERAGE MISHAP RATES FOR ARMY HELICOPTERS, FYS 1971-73 [Per 10,000 flight-hours]

Heli-	Average	Accid	ents	Mish	a p s
copter Type	Empty Weight	Materiel Failure	Total	Materiel Failure	Total
UH-1	4,700	0.4	1.0	8.6	12.1
AH-1	5,300	1.1	2.4	15.2	20.9
0H-6	1,200	2.1	4.0	7.2	14.9
CH-47	19,400	0.6	0.7	17.7	22.2
CH-54	19,200	0.7	1.6	18.4	25.8
OH-58	1,500	0.5	1.4	7.1	12.1

Table 20. AVERAGE MISHAP RATES FOR NAVY HELICOPTERS, FYs 1971-73
[Per 10,000 flight-hours]

Heli-	Average	Accid	ents	Misha	a p s
copter Type	Empty Weight	Materiel Failure	Total	Materiel Failure	Total
H-1	5,000	0.5	6.8	14.7	24.5
H-2	7,300	0.8	1.4	43.1	69.4
H-3	11,800	0.4	1.1	36.5	57.1
H-46	13,200	0.2	0.8	19.4	35.1
H-53	23,200	0.8	1.6	46.3	70.6

Chapter III

ANALYSIS OF AH-56A (CHEYENNE) RELIABILITY IMPROVEMENT

The AH-56A was a high-speed compound helicopter that was based on very advanced rotary-wing technology. It was flown in a development program that lasted almost five years before the helicopter was canceled without ever reaching service use. Helicopter programs normally require about three years from first flight to service use. Accordingly, it is possible that the reliability growth of the AH-56A may not have been representative of programs that successfully enter service use after about three years. Compared with the other development programs for which data are available, it appears that AH-56A reliability growth may have been somewhat slower than that of "successful" development programs.

A. TOTAL SYSTEM

The data used in this analysis of AF-56A reliability improvement come from the "Deducted Item Failure List" and the "Residual Item Failure List" (Ref. [14, Vol. III, Appendixes D and F, resp.]). This Lockheed report divides the AH-56A aircraft into six basic categories, identified as Modes 1 through 6 (Ref. [14, Vol. III, pp. v-vi]), as follows:

Mode 1: Airframe
Landing gear
Power plant
Power transmission
Rotors and propellers
Hydraulic power
Fuel systems

Flight controls Utilities (mechanical) Auxiliary power plant

Mode 2: Instruments

Electrical power system

Special instrumentations and displays

Utilities (electrical)

Fault location and warning system

Mode 3: Communications

Mode 4: Navigation system

Intercom

Swiveling gunner's station

Pilot's fire control

Stores control

Mode 5: Computer central complex

Mode 6: Gun and associated systems

Rockets and associated systems Missiles and associated systems

By grouping the system codes contained in a table [ibid., pp. ix-xi], we were able to further subdivide Mode 1 into the following categories:

Mode la: Airframe components

Landing gear Hydraulic power Fuel systems Flight controls

Utilities (mechanical)

Mode 1b: Rotors and propellers

Mode lc: Gear boxes and drives

Mode ld: Power plant

Auxiliary power plant

The monthly flight-hour data (supplied to us by Lockheed and presented in Table 21) covers 52 months of flight testing, which began in September 1967 and continued through December 1971. We have counted only those failures that occurred during this period on aircraft that were being flight tested. Aircraft serial number 1001 (a Ground Test Vehicle) was never flown. Similarly, aircraft serial number 1004 (used by Lockheed to conduct maintenance training and verification) was never flown.

Table 21. MONTHLY AND CUMULATIVE FLIGHT-HOURS FOR THE AH-56A (CHEYENNE)

	Flight	-Hours		Flight	-Hours
Month	Monthly	Cumulative	Month	Monthly	Cumulative
9/67	1.4	1.4	11/69	12.3	535.6
10/67	3.3	4.7	12/69	26.0	561.6
11/67	5.1	9.8	1/70	7.2	568.8
12/67	8.2	18.0	2/70	21.2	590.0
1/68	22.2	40.2	3/70	28.1	618.1
2/68	14.2	54.4	4/70	39.3	657.4
3/68	5.5	59.9	5/70	25.7	683.1
4/68	20.6	80.5	6/70	25.0	708.1
5/68	3.4	83.9	7/70	15.0	723.1
6/68	28.9	112.8	8/70	30.2	753.3
7/68	28.3	141.1	9/70	32.8	786.1
8/68	10.5	151.6	10/70	16.7	802.8
9/68	4.1	155.7	11/70	31.8	834.6
10/68	16.7	172.4	12/70	45.7	880.3
11/68	46.8	219.2	1/71	49.5	929.8
12/68	48.4	267.6	2/71	28.2	958.0
1/69	61.3	328.9	3/71	22.6	980.6
2/69	78.6	407.5	4/71	46.4	1,027.0
3/69	34.8	442.3	5/71	23.5	1,050.5
4/69	0.0	442.3	6/71	40.8	1,091.3
5/69	0.9	443.2	7/71	36.8	1,128.1
6/69	4.9	448.1	8/71	36.9	1,165.0
7/69	9.7	457.8	9/71	63.7	1,228.7
8/69	7.0	464.8	10/71	52.5	1,281.2
9/69	31.5	496.3	11/71	72.5	1,353.7
10/69	27.0	523.3	12/71	72.3	1,426.0

We have excluded all failures that occurred on these two vehicles. Also, we have excluded all failures that occurred before flight testing began in September 1967. Thus, the data in Table 22 show a total of 1,553 failures from September 1967 through December 1971, which compares with a total of 1,770 primary failures reported by Lockheed [14, Vol. I, p. xii]. The difference in the failure count is due to failures on serial numbers 1001 and 1004, which Lockheed counted but we did not. It is to be noted that we have combined the deducted failures and the residual failures into a single list, to obtain a total failure count for each month of flight testing.

1. Contractual Reliability Goals and Measurement Procedures

For the purpose of standardizing the measurement of mission reliability, the CHEYENNE reliability goals were based on the long-endurance (2.5-hour) escort mission. It consists of the following sequence of events:

- (1) Take-off.
- (2) Hover (2 minutes).
- (3) Cruise (195 knots for 30 minutes, at not more than normal rated power).
- (4) Hover (10 minutes).
- (5) Dash (212±4 knots for 15 minutes).
- (6) Cruise (140 knots for 90 minutes).
- (7) Hover (2 minutes).
- (8) Land.

All mission- and system-reliability requirements were established with this long-range mission as a base [ibid., p. 1]. The reliability goals stated in terms of this mission were--

- (1) Mission Reliability. Ninety-four (94) percent mission reliability, exclusive of the armament subsystems, to be demonstrated at the 90-percent confidence level (see Paragraph 7.4.4.2, Appendix A, below).
- (2) System Reliability. Seventy-nine (79) percent system reliability, exclusive of the armament subsystems, to

(WITH CUMULATIVE RATE) SYSTEM Table 22.

Month				•			20.50
	Number	Number	Rate	Month	Number	Number	Rate
19/6	7	7	5.000	11/69	18	672	1.255
10/67	10	17	3.617	12/69	11	689	1.227
11/67	Ξ	28	2.857	1/70	18	707	1.243
12/67	6	37	2.056	2/70	32	739	1.253
1/68	80	45	1.119	3/70	22	197	1.231
89/2	19	64	1.176	4/70	41	802	1.220
3/68	17	81	1.352	5/70	32	834	1.221
4/68	34	115	1.429	6/70	40	874	1.234
2/68	22	137	1.633	7/70	53	903	1.249
89/9	32	169	1.498	8/70	52	955	1.268
2/68	51	220	1.559	9/10	54	1,009	1.284
89/8	56	246	1.623	10/70	42	1,051	1.309
89/6	23	569	1.728	11/70	37	1,088	1.304
10/68	22	291	1.688	12/70	63	1,151	1.308
11/68	35	326	1.487	1//1	37	1,188	1.278
12/68	32	358	1.338	17/2	30	1,218	1.271
1/69	42	400	1.216	3/71	40	1,258	1.283
5/69	38	438	1.075	4/71	30	1,288	1.254
3/69	24	462	1.045	17/5	23	1,311	1.248
69/1	7	469	1.060	12/9	32	1,343	1.231
69/9	22	491	1.108	1/7	56	1,369	1.214
69/9	23	514	1.147	8/71	36	1,405	1.206
69/1	53	543	1.186	11/6	40	1,445	1.176
69/8	37	580	1.248	10/71	39	1,484	1.158
69/6	35	615	1.239	11/71	41	1,525	1.127
10/69	39	654	1.250	12/71	28	1,553	1.089

be demonstrated at the 90-percent confidence level (see Paragraph 7.4.5.2, Appendix A, below; and Ref. [14, Vol. III, p. H-2]).

Procedures used by Lockheed to determine the failure count and to measure mission and system reliability are quoted verbatim in Appendix A (below).

2. Data Analysis by Lockheed

Before presenting our own analysis of the AH-56A reliability data, we shall present the result of the analysis performed by the AH-56A contractor, Lockheed Aircraft Corporation.

Lockheed reported the following measurements:

- Mission Reliability at 92% based on a statistical confidence level of 90% with data collected through 1,884 flight hours....
- System Reliability at 70% based on a statistical confidence level of 90% with data collected through 1,884 flight hours.... [14, Vol. I, p. xi]

Lockheed noted that these 1,884 flight-hours include run time on the Ground Test Vehicle (GTV), Serial Number 1001, while the test-flight-hour data in Table 21 do not include run time on the GTV.

Lockheed makes the following statement:

Of the 1,770 primary failures identified during this development and measurement program, 1,487 or 84%, have been corrected by redesign to prevent recurrence. The remaining 283 failures continue to be analyzed for effective corrective actions. [14, Vol. I, p. xii]

The reliability computations quoted above were obtained by a Monte Carlo computer simulation in which Government Furnished Material (GFM) components were assumed to have fixed failure rates (so-called "par values") "to allow the Government to assess the Contractor's individual reliability effort without the influence of GFM operation" [14, Vol. I, p. 2]. Figure 47 (from [14, Vol. I, p. 4]) shows graphically the results of the

Figure 47. RELIABILITY GROWTH BY TOTAL FLIGHT-HOURS (MISSION RELIABILITY VALUES VERSUS CONFIDENCE LEVEL - GFM AT PAR)

"simulated measurement" of mission reliability. Figure 48 (from [14, Vol. I, p. 81]) shows the results of a sililar Monte Carlo simulation to "measure" system reliability. In our opinion, the results of Lockheed's computations are wildly optimistic.

RELIABILITY GROWTH BY TOTAL FLIGHT-HOURS (SYSTEM RELIABILITY VALUES VERSUS CONFIDENCE LEVEL -Figure 48. GFM AT PAR)

Data Analysis by IDA 3.

The statistical analysis we have performed is an attempt to measure any reliability improvement (or degradation) that occurred in the AH-56A during the period of flight testing (September 1967 through December 1971). The approach we have used is to model the occurrences of failures by means of a

Non-Homogeneous Poisson Process (NHPP) having a mean value function m(t)—i.e., m(t) = expected number of failures in the internal [0,t]—of the form

$$m(t) = \lambda t^{\beta}, \qquad (1)$$

where λ and β^1 are positive constants, which must be estimated from the data. (See Donelson [15] for a complete discussion of these statistical methods.) The instantaneous failure rate r(t) is given by the time derivative of Equation (1) and has the form

$$r(t) = \lambda \beta t^{\beta-1} .$$
(2)

Thus, if $0 < \beta < 1$, the instantaneous failure rate of the system is decreasing in time and the system is undergoing "reliability growth." The expected cumulative failure rate c(t)--i.e., c(t) = expected number of failures in [0,t]/t--therefore has the form

*

$$c(t) = \frac{m(t)}{t}. (3)$$

Substituting Equation (1) into Equation (3), we obtain

$$c(t) = \lambda t^{\beta - 1} \tag{4}$$

for the expected cumulative failure rate. When c(t) given by Equation (4) is plotted versus t on full logarithmic paper, the result is a straight line having slope (β -1) and intercept λ at t = 1. If 0 < β < 1, the slope is negative—indicating that the expected cumulative failure rate is decreasing in time.

Our analysis of the AH-56A reliability data has been performed for the total system and for each mode (subsystem) listed in the first paragraph of this chapter. For each mode

¹l-β corresponds to the α used in Duane's and General Electric's RPM reliability-growth models.

we have established the trend of cumulative failure-rate (= cumulative failures: cumulative flight-hours) versus cumulative flight-hours. We use maximum-likelihood estimation to estimate λ and β in Equations (1), (2), and (4). Having these estimates of λ and β , we then estimate mean time between failures (MTBF), τ , and reliability for a 2.5-hour mission, R(2.5), using the formulas

$$\tau_{n} = \left(\frac{1}{\beta}\right) \left(\frac{1}{\lambda}\right)^{\frac{1}{\beta}} \left(\frac{\Gamma\left(\frac{1}{\beta}+n-1\right)}{\Gamma(n)}\right) \tag{5}$$

and

$$R(2.5) = \int_{0}^{\infty} \frac{(\lambda t^{\beta})^{n-2}}{(n-2)!} (\lambda \beta t^{\beta-1}) \exp \left[-\lambda (2.5+t)^{\beta}\right] dt , \quad (6)$$

where n denotes the cumulative number of failures at the time the estimate is made. $\Gamma(\cdot)$ is the gamma function and $\Gamma(n) = (n-1)!$ for $n = 1, 2, \ldots$ (see Donelson [15] for a derivation of Equations (5) and (6)).

Some qualifications on the limits of our analysis need to be pointed out. First, from the data given by Lockheed [14], it is very difficult to determine whether a failure aborted a test flight (or would abort a 2.5-hour mission). The data in Volume III of Reference [14] contain codes that indicate only where a failure was observed (either in flight or on the ground). Also, in the time allotted to this study, it was not possible to pinpoint those components on the AH-56A that are essential to the long-endurance 2.5-hour mission. Second, by examining the failure data, it is difficult to determine whether a failure would require unscheduled maintenance. Since not all the failures reported by Lockheed would necessarily abort a mission, it is not possible for us to estimate mission reliability. However, 1,541 of the 1,553 failures that we have included in our data in Table 22 are chargeable

under the definitions given in Paragraph 7.4.4.3 (Appendix A, below). Of the remaining (1,553-1,541 =) 12 failures, seven were induced failures, two were "open--not yet classified," and three were secondary-dependent failures. Therefore, we feel that our estimates of MTBF (see below) are reasonable estimates of the mean time between chargeable failures. Accordingly, our reliability estimates given by Equation (6) represent the probability of completing a 2.5-hour mission without incurring a chargeable failure.

a. Total System

Table 22 contains the monthly failure count and monthly cumulative failure total for the total AH-56A system. The cumulative failures in a given month are divided by the cumulative flight-hours from Table 21 for the corresponding month, to obtain the cumulative failure rate for each month of flight testing from September 1967 to December 1971. The cumulative failure rate for the total AH-56A system is tabulated in Table 22. Figure 49 shows a full logarithmic plot of cumulative failure rate versus cumulative flight-hours for the data from Table 22. The maximum-likelihood estimates of λ and β in Equations (1) and (4) for the data from Table 22 are

$$\hat{\lambda} = 3.384$$
 and $\hat{\beta} = 0.844$.

The dashed line in Figure 49 is a plot of Equation (4) for these values of λ and β . It represents the maximum-likelihood estimate of the expected cumulative failure-rate function. The slope of this line is

$$\hat{\beta} - 1 = 0.844 - 1 = -0.156$$
.

The negative slope of the dashed line in Figure 49 is indicative of overall reliability improvement in the AH-56A during the 52-month flight-test program. The estimated MTBF of the AH-56A system after 1,426 hours of flight testing is

AH-56A RELIABILITY GROWTH CURVE FOR TOTAL SYSTEM Figure 49.

 $\tau = 1.09 \text{ hours}$.

The estimated reliability for a 2.5-hour mission is

$$R(2.5) = 0.100$$
.

This number represents the estimated probability that the AH-56A will complete a 2.5-hour mission without incurring a chargeable failure; the corresponding Lockheed estimate is 0.701 at a 90-percent confidence level (see Figure 48, above).

b. Airframe Components (Mode la)

Table 23 contains the monthly failure count and monthly cumulative failure rate for the airframe components of the AH-56A. (See the beginning of this chapter for the subsystems included in Mode la.) Figure 50 shows the reliability growth curve for the airframe components. It shows cumulative failure rate plotted versus cumulative flight-hours. The dashed line in Figure 50 represents the maximum-likelihood estimate of the expected cumulative failure rate under the hypothesis of Equations (1) and (4). The maximum-likelihood estimates of λ and ℓ in this case are

$$\hat{\lambda} = 2.673$$
 and $\hat{\beta} = 0.711$.

The clope of the growth curve is, therefore,

$$\hat{s} - 1 = 0.711 - 1 = -0.289$$
,

which indicates reliability improvement. We note that, after the first 100 flight-hours, the points in Figure 50 lie very globe to the straight line. The MTBF for these components is estimated at $\tau = 4.29$ hours, while the estimated reliability for a 2.5-hour mission is R(2.5) = 0.558.

MONTHLY AND CUMULATIVE FAILURES (WITH CUMULATIVE RATE) FOR THE AH-56A (CHEYENNE) AIRFRAME COMPONENTS (MODE 1a) Table 23.

Menth Number Rate Month Number Rate 9/67 2 1.429 11/69 7 270 0.504 10/67 1 3 0.638 12/69 7 277 0.495 11/67 5 8 0.816 1/70 2 279 0.495 11/68 4 14 0.348 3/70 4 283 0.495 1/68 4 14 0.348 3/70 1 284 0.495 1/68 10 2 1/70 2 2/70 0.495 4/68 10 0.441 4/70 2 291 0.495 5/68 18 0.441 4/70 2 291 0.491 5/68 18 0.591 5/70 6 291 0.411 5/68 19 0.659 9/70 6 303 0.411 11/68 14 11 0.720 1/71	Monthly	Failures	Cumulative	Failures	Monthly	Failures	Cumulative	Failures
2 2 1.429 11/69 7 270 1 3 0.638 12/69 7 277 5 8 0.816 1/70 2 279 4 14 0.556 2/70 4 283 4 14 0.556 2/70 4 283 19 24 0.441 4/70 2 279 19 24 0.441 4/70 2 279 19 24 0.441 4/70 2 284 10 0.596 6/70 6 291 14 71 0.629 8/70 9 312 13 104 0.686 10/70 18 336 13 104 0.686 10/70 6 318 13 115 0.742 11/70 5 341 14 158 0.742 11/71 4 408 14 183<	Heath	Mumber	Number	Rate	Month	Kumber	Number	Rate
1 3 0.638 12/69 7 277 5 8 0.816 1/70 2 279 4 14 0.556 2/70 4 283 4 14 0.348 3/70 1 284 10 24 0.441 4/70 2 286 6 30 0.501 5/70 5 291 18 48 0.596 6/70 6 291 18 71 0.679 7/70 6 303 14 71 0.679 8/70 9 312 13 104 0.686 10/70 6 318 13 104 0.686 10/70 6 318 13 104 0.686 10/70 6 318 13 104 0.686 11/70 5 341 14 158 0.742 12/70 20 361 14	19/6	2	2	1.429	11/69	7	270	0.504
5 8 0.816 1/70 2 279 2 10 0.556 2/70 4 283 4 14 0.348 3/70 1 284 10 24 0.441 4/70 2 286 6 30 0.501 5/70 5 291 18 48 0.596 6/70 6 297 9 57 0.679 7/70 6 303 14 71 0.629 8/70 9 312 20 91 0.679 1/70 6 318 13 104 0.629 8/70 9 318 13 104 0.686 10/70 6 318 13 104 0.686 11/70 5 341 13 115 0.742 12/70 20 361 14 158 0.742 12/71 7 374 14<	10/67	1	M	0.638	12/69	7	277	0.493
2 10 0.556 2/70 4 283 4 14 0.348 3/70 1 284 10 24 0.441 4/70 2 286 6 30 0.501 5/70 5 291 18 48 0.596 6/70 6 297 9 57 0.679 7/70 6 303 14 71 0.629 8/70 6 318 20 91 0.645 9/70 6 318 13 104 0.686 10/70 18 336 13 105 0.742 12/70 5 341 14 158 0.742 17/71 9 370 14 158 0.590 2/71 7 374 25 183 0.456 5/71 4 408 26 199 0.456 5/71 4 408 2	11/67	پ	œ	0.816	1/70	~	279	0.491
4 14 0.348 3/70 1 284 19 24 0.441 4/70 2 286 6 30 0.501 5/70 5 291 18 48 0.596 6/70 6 297 9 57 0.679 7/70 6 303 14 71 0.629 8/70 9 312 20 91 0.645 9/76 6 318 13 104 0.686 10/70 18 336 13 128 0.742 12/70 5 341 14 158 0.590 2/71 7 377 14 158 0.590 2/71 7 378 14 158 0.566 3/71 4 408 25 183 0.456 5/71 4 408 8 191 0.456 5/71 4 408 9	12/67	2	9	9.556	2/70	•	283	0.480
19 24 0.441 4/70 2 286 6 30 0.501 5/70 5 291 18 48 0.596 6/70 6 297 9 57 0.679 7/70 6 303 10 71 0.629 8/70 6 318 20 91 0.665 9/70 6 318 13 104 0.686 10/70 18 336 13 105 0.742 12/70 5 341 13 128 0.742 12/70 5 341 14 158 0.742 12/70 5 341 14 158 0.590 2/71 7 377 14 158 0.590 2/71 4 398 2 183 0.465 5/71 4 408 3 202 0.456 5/71 4 408 <t< td=""><td>1/68</td><td>~</td><td>7</td><td>0.348</td><td>3/70</td><td></td><td>284</td><td>0.459</td></t<>	1/68	~	7	0.348	3/70		284	0.459
6 30 0.501 5/70 5 291 18 48 0.596 6/70 6 297 9 57 0.679 7/70 6 303 14 71 0.629 8/70 9 312 20 91 0.645 9/70 6 318 13 104 0.686 10/70 18 336 13 115 0.739 11/70 5 341 13 128 0.742 12/70 20 361 14 158 0.742 17/71 9 370 14 158 0.590 2/71 7 374 25 183 0.456 5/71 4 408 8 191 0.469 4/71 4 408 8 199 0.457 6/71 4 408 10 233 0.498 8/71 10 436	2/68	2	24	0.441	4/70	7	586	0.435
18 48 0.596 6/70 6 297 9 57 0.679 7/70 6 303 14 71 0.629 8/70 9 312 20 91 0.645 9/70 6 318 13 104 0.686 10/70 18 336 13 115 0.742 12/70 5 341 13 128 0.742 12/70 5 341 14 158 0.742 1/71 9 370 16 144 0.657 1/71 9 370 16 144 0.656 3/71 1 394 25 183 0.556 3/71 4 408 8 191 0.469 4/71 4 408 8 199 0.456 5/71 6 414 10 212 0.478 7/71 6 414	3/68	•	8	0.501	2/30	Ś	291	0.426
9 57 0.679 7/70 6 303 14 71 0.629 8/70 9 312 20 91 0.645 9/70 6 318 13 104 0.686 10/70 18 336 13 115 0.742 12/70 5 341 14 0.686 10/70 18 336 15 0.742 12/70 5 341 16 144 0.657 1/71 9 370 14 158 0.590 2/71 7 337 25 183 0.566 3/71 17 394 8 191 0.469 4/71 4 398 8 191 0.456 5/71 6 404 10 212 0.456 5/71 6 414 10 233 0.456 9/71 10 436 5 238	4/68	80	89	965.0	9/10	.	297	0.419
14 71 0.629 8/70 9 312 20 91 0.645 9/70 6 318 13 104 0.686 10/70 18 336 13 128 0.742 12/70 5 341 14 128 0.742 12/70 20 361 14 158 0.742 1/71 9 370 25 183 0.590 2/71 7 374 25 183 0.556 3/71 17 394 8 191 0.469 4/71 4 408 9 193 0.456 5/71 6 404 10 212 0.456 5/71 6 414 10 223 0.456 9/71 10 436 10 233 0.509 9/71 10 443 5 238 0.509 9/71 16 459 6 443 6 408 6 17 238 0.50	89/5	o	57	0.679	1/70	.	303	0.419
20 91 0.645 9/76 6 318 13 104 0.686 10/70 18 336 11 115 0.739 11/70 5 341 13 128 0.742 12/70 20 361 16 144 0.657 1/71 9 370 14 158 0.590 2/71 7 377 25 183 0.556 3/71 17 394 8 191 0.469 4/71 4 398 8 191 0.457 6/71 4 408 10 212 0.457 6/71 4 408 10 223 0.458 8/71 10 436 10 233 0.509 9/71 10 443 5 238 0.512 10/71 7 443 8 246 0.496 11/71 8 467	89/9	=	71	0.629	8/70	•	312	0.414
13 104 0.686 10/70 18 336 13 115 0.742 11/70 5 341 13 128 0.742 12/70 20 361 16 144 0.657 1/71 9 370 14 158 0.590 2/71 7 377 25 183 0.556 3/71 17 394 8 191 0.469 4/71 4 398 9 0.456 5/71 6 404 10 212 0.457 6/71 4 408 10 223 0.458 8/71 12 426 10 233 0.509 9/71 10 443 5 238 0.512 10/71 7 443 8 246 0.503 11/71 8 467	1/68	20	16	0.645	9/10	•	318	0.405
11 115 0.739 11/70 5 341 13 128 0.742 12/70 20 361 16 144 0.657 1/71 9 370 14 158 0.590 2/71 7 374 25 183 0.556 3/71 17 394 8 191 0.469 4/71 4 398 3 202 0.456 5/71 6 404 10 212 0.457 6/71 4 408 10 212 0.478 7/71 6 414 11 223 0.498 8/71 10 436 10 233 0.509 9/71 10 443 5 238 0.512 10/71 7 443 8 246 0.496 11/71 8 467	8/68	13	104	989-0	10/70	8	336	0.419
13 128 0.742 12/70 20 361 16 144 0.657 1/71 9 370 14 158 0.590 2/71 7 377 25 183 0.556 3/71 17 394 8 191 0.469 4/71 4 398 8 199 0.456 5/71 6 404 10 212 0.457 6/71 4 408 10 212 0.457 6/71 4 408 11 223 0.458 8/71 12 426 10 233 0.509 9/71 10 436 5 238 0.512 10/71 7 443 8 246 0.503 11/71 8 467	9/68	,	115	0.739	11/70	5	341	0.409
16 144 C.657 1/71 9 370 14 158 0.590 2/71 7 377 25 183 0.556 3/71 17 394 0 8 191 0.469 4/71 4 398 0 3 202 0.456 5/71 6 404 0 10 212 0.457 6/71 4 408 0 10 212 0.458 8/71 12 426 0 10 223 0.498 8/71 10 436 0 5 238 0.512 10/71 7 443 9 8 246 0.496 11/71 16 459 0 17 263 0.503 12/71 8 467 0	10/68	13	128	0.742	12/70	50	361	0.410
14 158 0.590 2/71 7 377 25 183 0.556 3/71 17 394 0 8 191 0.469 4/71 4 398 0 3 202 0.456 5/71 6 404 0 10 212 0.457 6/71 4 408 0 10 212 0.478 7/71 6 414 0 10 223 0.498 8/71 10 436 0 10 233 0.509 9/71 10 436 0 5 238 0.512 10/71 7 443 0 8 246 0.496 11/71 8 467 0	11/68	16	77	C.657	1//1	•	370	0.398
25 183 0.556 3/71 17 394 0 8 191 0.469 4/71 4 398 0 3 199 0.456 5/71 6 404 0 10 212 0.457 6/71 4 408 0 10 212 0.478 7/71 6 414 0 10 223 0.498 8/71 10 436 0 5 238 0.509 9/71 10 443 0 8 246 0.496 11/71 16 459 0 17 263 0.503 12/71 8 467 0	12/68	=	158	0.590	2/71	_	377	0.394
8 191 0.469 4/71 4 398 0 3 199 0.456 5/71 6 404 6 3 202 0.457 6/71 4 408 0 10 212 0.478 7/71 6 414 0 11 223 0.498 8/71 12 426 0 10 233 0.509 9/71 10 436 0 5 238 0.512 10/71 7 443 9 8 246 0.496 11/71 8 467 0	1/69	52	183	0.556	3/71	17	394	0.402
3 199 0.456 5/71 6 404 0 3 202 0.457 6/71 4 408 0 10 212 0.478 7/71 6 414 0 11 223 0.498 8/71 12 426 0 10 233 0.509 9/71 10 436 0 5 238 0.512 10/71 7 443 9 8 246 0.496 11/71 8 467 0 17 263 0.503 12/71 8 467 0	5/69	œ	191	0.469	4/71	~	398	0.388
3 202 0.457 6/71 4 408 0 10 212 0.478 7/71 6 414 0 11 223 0.498 8/71 12 426 0 10 233 0.509 9/71 10 436 0 5 238 0.512 10/71 7 443 9 8 246 0.496 11/71 16 459 0 17 263 0.503 12/71 8 467 0	3/69	<i>co</i>	199	0.456	5/71	9	101	G.385
10 212 0.478 7/71 6 414 0 11 223 0.498 8/71 12 426 0 10 233 0.509 9/71 10 436 0 5 238 0.512 10/71 7 443 9 8 246 0.496 11/71 16 459 0 17 263 0.503 12/71 8 467 0	69/1	m	202	0.457	6/71	-	408	0.374
11 223 0.498 8/71 12 426 0 10 233 0.509 9/71 10 436 0 5 238 0.512 10/71 7 443 9 8 246 0.496 11/71 16 459 0 17 263 0.503 12/71 8 467 0	5/69	2	212	0.478	11/1	9	414	0.367
10 233 0.509 9/71 10 436 0 5 238 0.512 10/71 7 443 9 8 246 0.496 11/71 16 459 0 17 263 0.503 12/71 8 467 0	69/9	=	223	0.498	8/71	12	426	0.366
5 238 0.512 10/71 7 443 9 8 246 0.496 11/71 16 459 0 17 263 0.503 12/71 8 467 0	1/69	2	233	6.509	11/6	2	436	0.355
8 246 0.496 11/71 16 459 0 17 263 0.503 12/71 8 467 0	8/69	w	238	0.512	10/11	_	443	9.346
17 263 0.503 12/71 8 467 0	69/6	∞	246	967.0	11/71	16	459	0.339
	59/0!	11	263	0.503	12/71	∞	467	0.327

AH-56A RELIABILITY GROWTH CURVE FOR AIRFRAME COMPONENTS (MODE 1a) Figure 50.

c. Rotors and Propellers (Mode 1b)

Table 24 contains the monthly failure count and monthly cumulative failure rate for the subsystems included in Mode lb. This mode includes the AH-56A main rotor, antitorque rotor, and tail-pusher propeller. The reliability-growth curve for these components is shown in Figure 51. The maximum-likelihood estimate of λ and 8 for this case are

 $\hat{\lambda} = 0.784$ and $\hat{\beta} = 0.672$.

The expected cumulative failure-rate curve given by the dashed line in Figure 51 has slope -0.328. The estimated MTBF for the components in Mode 1b is

 $\tau = 20.5 \text{ hours}$.

and the estimated reliability for a 2.5-hour mission is

R(2.5) = 0.884.

We note that the data points for this mode lie very close to the expected value curve after 300 flight-hours. Also, the components in Mode 1b experienced the most rapid reliability improvement (apart from the XM-53 7.62-mm Machine-Gun System, which is covered in Section B of this chapter, below) of any subgroup of AH-56A components, in the sense that the slope of the expected cumulative failure-rate curve for Mode-1b components is less (i.e., steeper) than the corresponding slopes for the other categories.

d. Gear Boxes and Drives (Mode 1c)

This mode includes the main transmission, transmission lube system, torque meter shaft, tail rotor shafting, and the APU shaft and gearbox. Table 25 contains the monthly failure count and monthly cumulative failure rate for the Wode-lc components. The cumulative failure rate from Table 25 is plotted versus cumulative flight-hours in Figure 52. The maximum-likelihood

MONTHLY AND CUMULATIVE FAILURES (WITH CUMULATIVE RATE) FOR THE AH-56A (CHEYENNE) ROTORS AND PROPELLERS (MODE 1b) Table 24.

8

Month				C			
	Mumber	Number	Rate	Month	Mumber	Mumber	Rate
19/6	-	_	0.714	11/69	2	58	0,108
10/67	-	8	0.426	12/69	•	58	0.103
11/67	0	2	0.204	1/70	_	9.30	0.104
12/67	٣	5	0.278	2/70	0	59	0.100
1/68	0	\$	0.124	3/70	O	59	0.095
2/68	-	9	0.110	4/70	0	59	0.000
3/68	æ	61	0.150	5/70	0	29	0.086
4/68	m	12	0.149	9//9	_	09	0.085
89/5	~	16	0.191	7/70	_	61	0.084
89/9	5	21	0.186	8/70		62	0.082
2/68	7	28	0.198	9/70	•	89	0.087
8/68	~	32	0.211	10/70	0	89	0.085
89/6	₩.	36	0.231	11/70		69	0.083
10/68	0	36	0.200	12/70	2	7.1	0.081
11/68	_	37	0.169	1//1	0	7.	0.076
12/68	~	38	0.142	17/2	0	7.1	0.074
1/69	m	5	0.125	3/71	vo.	77	0.079
5/69	2	43	0.106	4/73	₹	8	0.079
3/69	m	94	0.104	11/5		82	0.078
4/69	0	9+	0.104	6/71	0	82	0.075
69/5		47	0.106	1//1	7	**	0.074
69/9	0	47	0.105	8/71	m	87	0.075
69/1	0	47	0.103	17/6	m	06	0.073
69/8	-	48	0.103	10/71	40	96	0.075
69/6	5	53	0.107	11/11	ĸ	101	0.075
10/69	m	99	0.107	12/71	2	103	0.072

AH-56A RELIABILITY GROWTH CURVE FOR ROTORS AND PROPELLERS (MODE 16) Figure 51.

MONTHLY AND CUMULATIVE FAILURES (WITH CUMULATIVE RATE) FOR THE AH-56A (CHEYENNE) GEAR BOXES AND DRIVES (MODE 1c) Table 25.

	-						
Month	Mumber	Number	Rate	Month	Number	Number	Rate
19/6	0	0	0.000	11/69		75	0.140
10/67		-	0.213	12/69		76	0.135
11/67	0	pra	0.102	1/70	2	78	0.137
12/67		2	0.113	2/70	~	28	0.137
1/68		m	0.075	3/70	•	8	0.131
2/68	7	s	0.092	4/70	-	85	0.129
3/68	2	7	0.117	5/70	0	85	0.124
4/68	•	13	0.163	6/70	2	87	0.123
89/9	*	17	0.203	07/7	0	87	0.120
89/9	м	20	0.177	8/70	m	06	0.119
1/68	49	26	0.184	9/70	6	95	0.121
8/88	~	28	0.185	10/70	_	102	0.127
89/6	m	31	0.199	11/70	^	109	0.131
10/68	2	33	0.191	12/70	92	119	0.135
11/68	∞	7	0.187	1/11	*	123	0.132
12/68	2	4 3	0.161	17/2	2	125	0.130
1/69	m	46	0.140	3/71	*	129	0.132
69/2	S	51	0.125	4/71	m	132	0.129
3/69	_	52	0.118	5/71		133	0.127
4/69	m	55	0.124	11/9	m	136	0.125
69/5	_	56	0.126	1/11	•	136	0.121
69/9	2	58	0.129	8/71		137	0.118
69/1	*	62	0.135	11/6	_	138	0.112
69/8	5	29	0.144	10/11	2	140	0.109
69/6	m	70	0.141	11/71		141	0.104
10/69	4	7.4	0.141	12/71	0	141	000

estimates of λ and β for the Mode-1c components are

$$\hat{\lambda} = 0.624$$
 and $\hat{\beta} = 0.746$.

The slope of the expected cumulative failure-rate curve in this case is -0.254. The estimated MTBF for the Mode-lc component is

$$\tau = 13.59 \text{ hours}$$
.

and the estimated reliability of these components for a 2.5-hour mission is

$$R(2.5) = 0.831$$
.

e. Power Plant (Mode 1d)

This category includes the main engines, engine accessories, engine starting system, engine power and speed-control system, engine oil supply, and auxiliary power unit (APU). Table 26 contains the monthly failure count and monthly cumulative failure rate for the Mode-1d components. In Figure 53, the cumulative failure rate for these components is plotted versus cumulative flight-hours. The maximum-likelihood estimates of λ and β for the Mode-1d components are

$$\hat{\lambda} = 0.278$$
 and $\hat{B} = 0.881$.

The dashed line in Figure 53 represents the expected cumulative failure-rate curve for Mode-1d components and has slope -0.119 (i.e., $\hat{\mathbf{B}} = 1 = 0.881 - 1 = -0.119$). The estimated MTBF for these components is

$$\tau = 9.69 \text{ hours}$$
,

and their estimated reliability for a 2.5-hour mission is

$$R(2.5) = 0.772$$
.

MONTHLY AND CUMULATIVE FAILURES (WITH CUMULATIVE RATE) FOR THE AH-56A (CHEYENNE) POWER PLANTS (MODE 1d) Table 26.

Monthly	Failures	Cumulative	e Failures	Monthly	Failures	Cumulative	Failures
Month	Number	Number	Rate	Month	Number	Number	Rate
6/67	0	0	0.000	11/69	2	7.4	0.138
10/67	0	0	0.000	12/69	0	7.4	0.132
11/67	_		0.102	1/70	4	78	0.137
12/67	0		0.056	2/70	₹	82	0.139
1/68	0		0.025	3/70	m	85	0.138
2/68		~	0.037	4/70	6	4	0.143
3/68	_	m	0.050	5/70	7	151	0.148
4/68	9	6	0.112	0//9	9	107	0.151
89/9	2	_	0.131	1/70	9	113	0.156
89/9	٣	4	0.124	8/70	S.	8	0.157
89/1	S	61	0.135	0//6	•	124	0.158
89/8	æ	22	0.145	10/70	4	128	0.159
89/6	_	23	0.148	11/70	m	131	0.157
10/58	2	25	0.145	12/70	&	139	0.158
11/68	ĸ	58	0.128	1/71	2		0.152
12/68	7	35	0.131	17/2	9	147	0.153
1/69	\$	40	0.122	3/71	,	148	0.151
69/2	7	.	0.115	4/71	9	154	0.150
3/69	4	5.	0.115	5/71		155	0.148
4/69	0,	15	0.115	11/9	0	155	0.142
5/69	3	5.4	0.122	1/71	-	156	0.138
69/9	9	09	0.134	8/71	,	157	0.135
69/1		29	0.135	11/6	4	191	0.131
8/69	9	89	0.146	10/11	2	166	0.130
69/6		7.1	0.143	11/71	0	166	0.123
10/69	_	72	0.138	12/71	_	167	0.117

t. Instruments (Mode 2)

The components included in this mode are listed at the beginning of this chapter. Table 27 contains the monthly failure count and the monthly cumulative failure rate for the Mode-2 components. The cumulative failure rate from Table 27 is plotted versus cumulative flight-hours in Figure 54. The maximum-likelihood estimates of λ and β for the Mode-2 components are

$$\hat{\lambda} = 1.253$$
 and $\hat{\beta} = 0.738$.

The slope of the expected cumulative failure-rate curve (given by the dashed line in Figure 54 is -0.262--indicating a moderately rapid rate of reliability improvement. The estimate of MTBF for Mode-2 components is

$$\tau = 7.24 \text{ hours}$$
,

and their estimated reliability for a 2.5-hour mission is

$$R(2.5) = 0.708$$
.

g. <u>Communications (Mode 3)</u>

Table 28 contains the monthly failure count and monthly cumulative failure rate for the AH-56A communications system. The reliability-growth curve for these components is shown in Figure 55, where the cumulative failure rate from Table 28 is plotted versus cumulative flight-hours. The maximum-likelihood estimates of λ and β for these components are

$$\hat{\lambda} = 0.121$$
 and $\hat{\beta} = 0.874$.

The slope of the dashed line in Figure 55 is -0.126. The estimated MTBF of the AH-56A communications system is

$$\tau = 23.59$$
 hours,

and the estimated reliability for these components is

$$R(2.5) = 0.899$$
.

MONTHLY AND CUMULATIVE FAILURES (WITH CUMULATIVE RATE) FOR THE AH-56A (CHEYENNE) INSTRUMENTS (MODE 2) Table 27.

Monthly	Failures	Cumulative	<u></u>	Monthly	Failures	Cumulative	e Failures
Month	Number	Number	Rate	Month	Number	Number	Rate
19/6	٣	۳,	2.143	11/69		108	0 202
10/67	7	10	2.128	12/69	4	112	100.
11,767	2	5	1.531	1/70	~~ 	115	0 202
12/67	~	18	1.000	2/70	· · · · ·	123	202.0
1,68		19	0.473	3/70	₩	127	0.202
5/68	m	22	0.404	4/70	Ŋ	132	0.203
37.68	4	26	0.434	5/70	7	139	0.203
4/68	_	27	0.335	0//9		150	0.212
2/68	2	29	0.346	1/70	9	156	0.216
89/9	9	35	0.310	8/70	∞	164	0.218
2/68	9	41	0.291	9/10	91	180	0.229
89/8	4	45	0.297	10/70		181	0.225
89/6	2	47	0.302	11/70	12	193	0.231
89/01	4	51	0.296	12/70	17	210	0.339
11/68	9	57	0.260	1/71	6	219	0.236
12/68	_	64	0.239	2/71	5	224	0.234
1/69	m	67	0.204	3/71	~	227	•
5/69	12	79	0.194	4/71	2	529	0.223
3/69	4	83	0.188	5/71	σ	238	0.227
4/69	_	84	0.190	6/71	7	245	0.225
69/9	m	87	0.196	1/71	2	247	0.219
69/9		88	0.196	8/71	m	250	0.215
69/1	2	96	0.197	17/6	25	255	0.208
69/8	∞	86	0.211	10/71	m	258	0.201
69/6	2	100	0.201	ונ/נו	က	261	0.193
10/69	7	107	0.204	12/71	2	266	0.187

MONTHLY AND CUMULATIVE FAILURES (WITH CUMULATIVE RATE) FOR THE AH-56A (CHEYENNE) COMMUNICATIONS (MODE 3) Table 28.

Monthly	Failures	Cumulative	Failures	Monthly	Failures	Cumulative	Failures
Month	Number	Number	Rate	Month	Number	Number	Rate
19/6	0	0	0.0000	11/69	. 0	31	0.0579
10/67	0	0	0.000.0	12/69	0	3	0.0552
11/67	0	0	0.000	1/70	C	33	0.0545
12/67	0	0	0.000	2/70	0	3.1	0.0525
1/68	2	~	0.0498	3/70	0	33	0.0502
89/2	2	₩	0.0735	4/70	· •	32	0.0487
3/68	_	· · ·	0.0835	5/70	₹	36	0.0527
4/68	0	S	0.0621	6/70	_	37	0.0523
2/68	_	9	0.0715	1/70	_	88	0.0526
89/9	0	φ	0.0532	8/70	4	42	0.0558
1/68	S	-	0.0780	0//6		4.	0.0547
89/8	-	12	0.0792	10/70	_	4	0.0548
89/6	m	15	0.0963	11/70		47	0.0563
10,68		91	0.0923	12/70		8 48	0.0545
11/68	0	16	0.0730	1/71	2	20	0.0538
12/68		17	0.0635	17/2	_	51	0.0532
1/69		18	0.0547	3/71	m	54	0.0551
69/2	2	20	0.0491	4/71		55	0.0536
3/69	0	20	0.0452	5/71	0	55	0.0524
4/69	0	20	0.0452	11/9	~	57	0.0522
69/5	0	20	0.0451	1/11	4	61	0.0541
69/9	0	20	0.0446	8/71	4	6.5	0.0558
69//	m	23	0.0502	11/6		99	0.0537
69/8	2	25	0.0538	10/71	0	99	0.0515
69/6	4	59	0.0584	11/11	-	67	0.0495
10/69	2	3,1	0.0592	12/71	2	69	0.0484

Figure 55. AH-56A RELIABILITY GROWTH CURVE FOR COMMUNICATIONS (MODE 3)

We note that the slope of the reliability-growth curve for the Mode-3 components is about the same as the slope of the reliability-growth curve for the AH-56A power plants (Mode ld). Both these categories experienced only relatively minor reliability improvement during the 52 months of flight testing on the CHEYENNE.

h. Navigation System (Mode 4)

The components included in this mode are listed at the beginning of this chapter. The navigation system was installed on the AH-56A in January 1969 after a total of 267.6 test-flight-hours had been accumulated. Accordingly, Table 29 shows the monthly failure count and monthly cumulative failure rate for Mode-4 components beginning in January 1969. The cumulative test-hours in Table 29 represent test-flight-hours accumulated on the AH-56A after January 1969. Mode 4 also includes some weapon-systems components that were not flight tested until March 1969.

The monthly cumulative failure rate from Table 29 is plotted versus cumulative flight-test time in Figure 56. We note that the cumulative failure rate for Mode-4 components increases steadily from 0.016 failures per flight-hour in January 1969 to 0.140 failures per flight-hour in October 1970 after 535.2 flight-hours had been accumulated on the Mode-4 components (802.8 flight-hours total on the AH-56A). The maximum-likelihood estimates of λ and β for these components are

$$\hat{\lambda} = 0.043$$
 and $\hat{\beta} = 1.140$.

The slope of the expected cumulative failure-rate curve in Figure 56 (i.e., the dashed line) is 0.140--indicating an over-all increasing trend in cumulative failure rate for Mode-4 components. The estimated MTBF for the Mode-4 components is

 $\tau = 7.58$ hours.

Table 29. MONTHLY AND CUMULATIVE FAILURES (WITH CUMULATIVE FLIGHT-HOURS AND RATE) FOR THE AH-56A (CHEYENNE) NAVIGATION SYSTEM (MODE 4)

e.

	Failures	. Fliq	ht-Hours	Cumulative	•
Month	Number	Monthly	Cumulative	Number	Date
1 69	1	61.3	61.3	1	0.016
2769	2	78.6	139.9	3	0.021
3 169	1	34.8	174.7	4	0.023
4/69	Ç	0.0	174.7	4	0.023
5/69	2	0.9	175.6	6	0.034
6/69	0	4.9	180.5	6	0.033
7/69	4	9.7	190.2	10	0.053
8/69	1	7.0	197.2	3.1	0.056
9/69	6	31.5	228.7	1.7	0.074
10/69	1	27.0	255.7	18	0.070
11/69	1	12.3	268.0	19	0.071
12/69	0	26.0	294.0	19	0.065
1,70	2	7.2	301.2	21	0.070
2/70	7	21.2	322.4	28	0.087
3/70	5	28.1	350.5	33	0.094
4/70	8	39.3	389.8	41	0.105
5/70	3	25.7	415.5	44	0.106
6/70	5	25.0	440.5	4 9	0.111
7/70	6	15.0	455.5	5.5	0.121
8/70	9	30.2	485,7	64	0.132
9/70	6	32.8	518.5	70	0.135
10/70	5	16.7	535.2	75	0.140
11/70	2	31.8	567.0	77	0.136
12/70	6	45.7	612.7	83	. U.135
1/71	6	49.5	662.2	89	0.134
2/71 .	4	28.2	690.4	93	0.135
3/71	3	22.6	713.0	96	0.135
4/71	5	46.4	759.4	101	0.133
5/71	3	23.5	782.9	104	0.133
6/71	7	40.8	823.7	111	0.135
7/71	5	36.8	860.5	116	0.135
8/71	1	36.9	897.4	117	0.130
9/71	4	63 7	961 1	121	0.126
10/71	2	52.5	1,013.6	123	0.121
11/71	4	72.5	1,086.1	127	0.117
12/71	7	72.3	1,158.4	134	0.116

and their estimated reliability for a 2.5-hour mission is R(2.5) = 0.719.

Lacking complete knowledge of the conditions that prevailed during AH-56A flight testing, we are unable to explain the rather sharp increase in the cumulative failure rate and its subsequent leveling off for these components.

i. Computer Central Complex (Mode 5)

The Computer Central Complex (CCC) was installed on the AH-56A for flight testing in March 1969 after 407.5 test-flight-hours had been accumulated on the AH-56A. Accordingly, Table 30 shows the monthly failure totals and monthly cumulative failure rate, beginning in March 1969. The cumulative failure rate is relative to flight-hours accumulated on the AH-56A after February 1969. The cumulative failure rate from Table 30 is plotted versus cumulative flight-hours in Figure 57. The cumulative failure rate for the Mode-5 components decreases from a high of 0.154 failures per flight-hour at 395.3 cumulative test-hours to 0.092 failures per flight-hour at 1,018.5 cumulative test-hours. The maximum-likelihood estimates for λ and 8 for the data in Table 30 are

$$\hat{\lambda} = 0.233$$
 and $\hat{\beta} = 0.865$.

The dashed line in Figure 57 has slope -0.134--indicating that the expected cumulative failure rate for the CCC is decreasing slightly. The estimated MTBF of these components is

$$\tau = 12.5 \text{ hours}$$
,

and their estimated reliability for a 2.5-hour mission is

$$R(2.5) = 0.818$$
.

Table 30. MONTHLY AND CUMULATIVE FAILURES (WITH CUMULATIVE FLIGHT-HOURS AND RATE) FOR THE AH-56A (CHEVENNF) COMPUTER CENTRAL COMPLEX (MODE 5)

Morthly	Failures	Fligh	it-Hours	Cumulative	Failures
Month	Number	Monthly	Cumulative	Number	Rate
3/69	; 1	34.8	34.8	1	0.029
4/69	0	0.0	34.8	0	0.029
5/69	<u> </u>	0.9	35.7	2	0.056
6/69	0	4.9	40.6	. 2	0.049
7/69	3	9.7	50.3	5	0.099
8/69	' 2	7.0	57.3	. 7	0.122
9/69	. 1	31.5	88.8	1	0.090
10/69	1	27.0	115.8	. 9	0.078
11/69	1	12.3	128.1	, 10	0.078
12/69	2	26.0	154.1	12	0.078
1/70	, 0	7.2	161.3	12	0.074
2/70	3	21.2	182.5	15	0.082
3/70	6	28.1	210.6	21	0.100
4/70	7	39.3	249.9	28	0.112
5/70	4	25.7	275.6	32	0.116
6/70	8	25.0	300.6	40	0.133
7/70	2	15.0	315.6	42	0.133
8/70	10	30.2	345.8	52	0.150
9/70	6	32.8	378.6	58	0.153
10/70	3	16.7	395.3	61	0.154
11/70	0	31.8	427.1	61	0.143
12/70	0	45.7	472.8	61	0.129
1/71	0	49.5	522.3	61	0.117
2/71	3	28.2	550.5	64	0.116
3/71	1	22.6	573.1	65	0.113
4/71	2	46.4	619.5	67	0.108
5/71	0	23.5	643.0	67	0.104
6/71	4	40.8	683.8	71	0.104
7/71	3	36.8	720.6	74	0.103
8/71	4	36.9	757.5	78	0.103
9/71	7	63.7	821.2	85	0.104
10/71	1	52.5	873.7	86	0.098
11/71	6	72.5	946.2	92	0.097
12/71	2	72.3	1,018.5	94	0.092

γ.

AH-56A RELIABILITY GROWTH CURVE FOR COMPUTER CENTRAL COMPLEX (MODE 5) Figure 57.

j. Weapon Systems (Mode 6)

The systems included in this mode are listed at the beginning of this chapter. Flight testing on the weapon systems summerced in March 1969, after the AH-56A had already accumulated 407.5 flight hours. Table 31 contains the monthly failure totals and monthly cumulative failure rate for the Mode-6 failures, starting in March 1969. The cumulative failure rate in Table 31 is relative to flight-hours accumulated on the AH-56A after February 1969. In the following section, we give a more comprehensive reliability-growth analysis for the gun systems using the "Armament Stoppage History" for the XM-51 40-mm Grenade-Launcher System, the XM-52 30-mm Gun System, and the XM-53 7.62-mm Machine-Gun System (tables contained in [14, Vol. I]). The monthly cumulative failure rate from Table 31 is plotted versus cumulative flight-test-hours for these components in Figure 58.

The maximum-likelihood estimates of λ and β for the data from Table 31 are

$$\hat{\lambda} = 0.291$$
 and $\hat{\beta} = 0.848$.

The slope of the expected cumulative failure-rate curve in Figure 58 is -0.152--indicating reliability improvement for these components. The estimated MTBF for Mode-J components is

$$\tau = 11.66 \text{ hours}$$
.

and their estimated reliability for a 2.5-hour mission is R(2.5) = 0.807.

4. Conclusions

The analysis presented in this section assumes that failures occur in accordance with a Non-Homogeneous Poisson Process (NHPP), the time parameter of the process being cumulative flight-hours in this case. We further assume that the mean-

Table 31. MONTHLY AND CUMULATIVE FAILURES (WITH CUMULATIVE FLIGHT-HOURS AND RATE) FOR THE AH-56A (CHEYENNE) WEAPON SYSTEMS (MODE 6)

Monthly	Failures	Flig	ht-Hours	Cumulative	Failures
Month	Number	Monthly	Cumulative	Number	Rate
3/69	1	34.8	34.8	1	0.029
4/69	0	0.0	34.8	1	0.029
5/69	, 1	0.9	35.7	2	0.056
6/69	2	4.9	40.6	4	0.099
7/69	1	9.7	50.3	5	0.099
8/69	6	7.0	57.3	11	0.192
9/69	3	31.5	88.8	14	0.158
10/69	3	27.0	115.8	17	0.147
11/69	3	12.3	128.1	20	0.156
12/69	3	26.0	154.1	23	0.149
1/70	4	7.2	161.3	27	0.167
2/70	3	21.2	182.5	30	0.164
3/70	3	28.1	210.6	33	0.157
4/70	5 .	39.3	249.9	38	0.152
5/70	1 2 .	25.7	275.6	40	0.145
6/10	, 0 '	25.0	300.6	40	0.133
7/70	1	15.0	315.6	41	0.130
8/70	3	30.2	345.8	44	0.127
9/70	2	32.8	378.6	46	0.122
10/70	4 :	16.7	395.3	50	0.126
11/70	3	31.8	427.1	53	0.124
12/70	0	45.7	472.8	53	0.112
1/71	5	49.5	522.3	58	0.111
2/71	2	28.2	550.5	60	0.109
3/71	2	22.6	573.1	62	0.108
4/71	3	46.4	619.5	65	0.105
5/71	2	23.5	643.0	67	0.104
6/71	5	40.8	683.8	72	0.105
7/71	3	36.8	720.6	75	0.104
8/71	7	36.9	757.5	82	0.108
9/71	5	63.7	821.2	87	0.106
10/71	12	52.5	873.7	99	0.113
11/71	3	72.5	946.2	102	0.108
12/71	1	72.3	1,018.5	103	0.101

AH-56A RELIABILITY GROWTH CURVE FOR WEAPON SYSTEMS (MODE 6) Figure 58.

value function of this NHPP has the form given by Equation (1). If this assumption is correct, then the expected cumulative failure rate has the form given by Equation (4), which is a straight line on full logarithmic paper. Also, MTBF and reliatility (for a 2.5-hour mission) are correctly estimated by Equations (5) and (b), respectively, when the assumptions in Equation (1) are correct. We have used maximum-likelihood estimation to estimate the parameters λ and β appearing in Equations (1) through (6). It is shown in Donelson [15] that this method of estimating λ and β is consistent in the sense that, as the size of the data sample becomes large, the maximum-likelihood estimates of λ and β will be very close to their true values (assuming, of course, that such values exist).

The data presented in this section apply to a program that was terminated in the development stage. (The AH-56A CHEYENNE never went into production.) However, we believe that the data examined here convey several important messages.

First, it is very evident from a quick comparison of our results and the results of Lockheed's computations (Figures 47 and 48) that Lockheed's estimates of AH-56A reliability are much more optimistic than ours. The reasons for these differences are explained, we believe, by the differences in the procedures used to model and estimate the reliability of the AH-56A. Lockheed used a very complicated simulation method, in which the GFM components were assumed to have constant failure rates. Also, Lockheed relied heavily on Paragraph 7.4.4.5, "Deduction of Failures" (see Appendix A, below), to obtain a favorable estimate of AH-56A reliability. Our method examines the statistical pattern i.. which failures occur in time and estimates MTBF and reliability directly from the data, without assuming any sort of dynamic iclationship between the components in which certain components are assumed to have fixed (unchanging) failure rates. Considering the complexity of the AH-56A, we

doubt that a simulation model (which involves hundreds of assumptions) is likely to give meaningful results. On the other hand, our method (which examines the pattern of failure occurrence in time) is able to deduce MTBF and reliability with a minimum number of assumptions.

We see very little justification for deducting a failure for which a fix has reportedly been developed. Of course, it is possible that a fix proposed to correct a failure mode will be entirely effective. But this cannot be ascertained with certainty before the fix is installed and tested. In the case of the AH-56A, many of the fixes that were developed were never installed and tested. The overall effect of Paragraph 7.4.4.5 is to present an overly optimistic picture of the manner in which reliability growth occurred on the AH-56A. To say that 84 percent of the chargeable failures (the percentage of deducted chargeable failures as a percentage of their total) on the AH-56A never occurred is to present a very unrealistic picture of what actually happened. It is our view that all chargeable failures (and perhaps some nonchargeable failures as well) should be counted, for the purpose of measuring reliability growth.

The next important message conveyed by the data presented in this section is that there are simple statistical methods that can be used to monitor reliability improvement effectively and to predict future reliability growth. The cumulative-failure-rate curves shown in Figures 49-54 exhibit considerable statistical regularity. These plots of cumulative failure rate versus cumulative flight-hours show an easily recognizable trend in reliability improvement.

The methods we have employed here to analyze AH-56A reliability improvement do not attempt to explain (1) why failures occur or (2) the dynamics of the failure-causing mechanisms. However, using only the assumption that failures occur in time in accordance with a NHPP, we are able to give a simple mathematical

explanation—Equations (4), (5), and (6)—of the pattern or trend in the occurrence of failures. Measurement of this trend is all that is needed for monitoring reliability improvement. In addition, these methods may be used to forecast cumulative failure rate, MTBF, and reliability. Such forecasts can be monitored for accuracy and can easily be revised and updated.

B. WEAPON SUBSYSTEMS

We have performed a reliability-growth analysis that uses test data from the following weapon systems on the AH-56A (CHEYENNE): XM-51 40-mm Grenade-Launcher System, XM-52 30-mm Gun System, and XM-53 7.62-mm Machine-Gun System.

The source of the data used in this analysis is the AH-56A Armament Stoppage History contained in Reference [14, Vol. I]. This information was collected from logs, monthly test reports, inspection tags, and on-site Design Assurance Representatives. Stoppages were recorded only when the guns failed to fire or point upon command. This condition was recorded for both air firing and ground firing. However, firing from a test installation was not included [14, Vol. I, p. 63].

1. Contractual Reliability Goals and Measurement Procedures

The CHEYENNE contract specified the following reliability goals for each of the weapon systems we have considered:

- (1) XM-51 40-mm Grenade-Launcher System (not including the gun or ammunition) 7,150 mean-rounds-to-stoppage (MRTS) after firing 467,000 rounds at 90-percent confidence level.
- (2) XM-52 30-mm Gun System (not including the gun or ammunition) 9,550 MRTS after firing 128,000 rounds at 90-percent confidence level.
- (3) XM-53 7.62-mm Machine-Gun System (not including the gun or ammunition) 14,400 MRTS after firing 1,056,000 rounds at 90-percent confidence level. [14, Vol. I, pp. xi-xii]

The gun and ammunition are Government Furnished Material (GFM), and their reliability is not included in these reliability goals. Thus, the goals apply only to weapon subsystems such as the turret, feed chute, and control systems.

Procedures that were used by Lockheed to determine the failure count and to measure reliability of the weapon subsystems on the AH-56A may be found in Appendix A, below (Paragraphs 7.4.6 through 7.4.6.6). As we shall demonstrate, Paragraphs 7.4.4.5 (Deduction of Failures) and 7.4.6.6 (Data Acquisition and Evaluation Process) permit the contractor (Lockheed Aircraft Corporation) to estimate AH-56A weapon-systems reliability in an extremely optimistic manner.

2. Data Analysis

a. XM-51 40-mm Grenade-Launcher System

Testing on this system began in September 1968 and continued until 21 December 1971. The data used in our analysis are the Armament Stoppage History for the XM-51 (Ref. [14, Vol. I, pp. 68-103]). During more than three years of testing on the XM-51 40-mm Grenade-Launcher System, Lockheed fired a total of 40,530 rounds (or 8.7 percent of the programmed 467,000 rounds) and reported a total of 166 stoppages, of which 71 were due to Contractor Furnished Material (CFM). However, after deducting failures for which fixes had been developed (in accordance with Paragraph 7.4.4.5, Deduction of Failures) and nonchargeable failures, Lockheed reported a net total of only 14 chargeable failures. It is to be noted that in many cases the fixes (which allowed the deduction of failures) were never incorporated into the weapon system and tested. Thus, using the criteria of Paragraph 7.4.6.6 (above), Lockheed estimated the reliability of the XM-51 as 2,895 MRTS--i.e., 40.530/14 = 2.895 [14, Vol. I, p. xii]).

However, an analysis of Lockheed's data (not counting failures due to GFM) shows that the average firing period without a failure was only 785 rounds, with a standard deviation of 1,063 rounds. Of a total of 50 stoppages due to CFM for which there are rounds-since-last-stoppage data available, in only three of these firing periods did the rounds since last stoppage exceed 2,895 rounds. Thus, Lockheed's estimate of MRTS for the XM-51 lies above the 90th percentile of the data on rounds since last stoppage due to CFM. The deduction of failures for which a fix is developed, even before the fix is incorporated and tested, necessarily includes the optimistic assumptions that the fix will entirely eliminate the failure mode being fixed and will not introduce any new failure modes into the system.

In this study we were primarily interested in the reliability improvement of the entire weapon system, including the gun and ammunition. It is our view that all failures should be counted, for the purpose of measuring reliability growth during a test and development program. Therefore, in our analysis we have counted all failures, whether they are due to CFM or GFM; and we have not deducted any failure for which a fix had reportedly been developed. Table 32 shows a summary of the stoppage history on the XM-51. It is to be noted that our data differ from the data reported by Lockheed. There are two reasons for this. First, there are arithmetic and typographical errors in the data Lockheed reported in Reference [14, Vol. I, pp. 68-103]. In some cases we made the obvious correction, and in others we found it necessary to guess (by splitting the differences). Second, in some instances Lockheed reported weapons stoppages without reporting rounds fired since last stoppage or cumulative rounds fired. We were unable to determine whether these data represent multiple failures detected at the time a weapons stoppage occurred or whether they represent stoppages for which the data were lost.

Table 32. STOPPAGE HISTORY AND CUMULATIVE STOPPAGE RATE FOR THE XM-51 40-mm GRENADE-LAUNCHER SYSTEM

	Rounds Since	Cumu 1	ative		Rounds Since	Cumu	ative
Stoppage	Last	Rounds	Stoppage	Stoppage	Last	Rounds	Stoppage
Number	Stoppage		Rate	Number	Stoppage		Rate
- Mainbei	Scoppage	11164	1,000	Humaver	Scoppage	11160	Na ce
1	17	17	0.05880	41	379	11,756	0.00349
2	ı i	18	0.11110	42	131	11,887	0.00353
3	78	96	0.03130	43	145	12,032	0.00357
2 3 4	129	225	0.01780	44	9	12,041	0.00365
5	19	244	0.02050	45	178	12,219	0.00368
6	28	272	0.02210	46	38	12,257	0.00375
7	26	298	0.02350	47	5	12,262	0.00383
8	5	300	0.02670	48	1,669	13,931	0.00345
9	2 7	302	0.02980	49	1,177	15,108	0.00324
10	7	309	0.03240	50	136	15,244	0.00328
11	142	451	0.02440	51	126	15,370	0.00332
12	184	635	0.01890	52	626	15,996	0.00325
13	185	820	0.01590	53	851	16,847	0.00315
14	185	1,005	0.01390	54	374	17,221	0.00314
15	673	1,678	0.00894	55	28	17,249	0.00319
16	673	2,351	0.00681	56	104	17,353	0.00323
17	673	3,024	0.00562	57	2	17,355	0.00328
18	673	3,697	0.00487	58	307	17,662	0.00328
19	674	4,371	0.00435	59	51	17,713	0.00333
20	778	5,149	0.00388	60	101	17,814	0.00337
21	778	5,927	0.00354	61	180	17,994	0.00339
22	778	6,705	0.00328	62	498	18,492	0.00335
23	957	7,662	0.00300	63	118	18,610	0.00339
24	252	7,914	0.00303	64	232	18,842	0.00340
25	212	8,126	0.00308	65	178	19,020	0.00342
26	533	8,659	0.00300	66	1,717	20,737	0.00318
27	824	9,483	0.00285	67	406	21,143	0.00317
28	102	9,585	0.00292	68	406	21,549	0.00316
29	73	9,658	0.00300	69	406	21,955	0.00314
30	422	10,080	0.00298	70	406	22,361	0.00313
31	74	10,154	0.00305	71	406	22,767	0.00312
32	113	10,267	0.00312	72	2	22,769	0.00316
33	263	10,530	0.00313	73	2	22,771	0.00321
34	184	10,714	0.00317	74	204	22,975	0.00322
35	4	10,718	0.00327	75	17	22,992	0.00326
36	68	10,786	0.00334	76	86	23,078	0.00329
37	61	10,847	0.00341	77	8	23,086	0.00334
38	69	10,916	0.00348	78	154	23,240	0.00336
39	458	11,374	0.00343	79	207	23,244	0.00340
40	3	11,377	0.00352	80	327	23,571	0.00339

*

(continued on next page)

Table 32 (continued)

	Rounds Since	Cumu	ative		Rounds Since	Cumu1	ative
Stoppage Number	Last Stoppage	Rounds Fired	Stoppage Rate	Stoppage Number	Last Stoppage	Rounds Fired	Stoppage Rate
81	196	23,767	0.00341	98	444	31,893	0.00307
82	50	23,817	0.00344	99	444	32,337	0.00306
83	24	23,841	0.00348	100	910	33,247	0.00301
84	349	24,190	0.00347	101	158	33,405	0.00302
85	831	25,021	0.00340	102	362	33,767	0.00302
86	6	25,027	0.00344	103	18	33,785	0.00305
87	321	25,348	0.00343	104	1,513	35,298	0.00295
88	583	25,931	0.00339	105	207	35,505	0.00296
89	51	25,982	0.00343	106	185	35,690	0.00297
90	21	26,003	0.00346	107	341	36,031	0.00297
91	278	26,281	0.00346	108	122	36,153	0.00299
92	1,154	27,435	0.00335	109	211	36,364	0.00300
93	2,238	29,673	0.00313	110	462	36,826	0.00299
94	444	30,117	0.00312	111	98	36,924	0.00301
95	444	30,561	0.00311	112	935	37,859	0.00296
96	444	31,005	0.00310	113	667	38,526	0.00293
97	444	31,449	0.00308	114	124	38,650	0.00295

Therefore, we excluded them from the data in Table 32 and counted only those stoppages for which rounds since last stoppage and cumulative rounds fired were reported. Accordingly, Table 32 shows only 114 stoppages out of the total of 166 reported by Lockheed. (Our estimate of MRTS is therefore probably optimistic!)

Figure 59 shows the graph in full-logarithmic coordinates of the cumulative stoppage rate versus cumulative rounds fired from Table 32. The straight line on this graph represents the maximum-likelihood estimate of the expected cumulative failure rate under the hypothesis that the expected cumulative failure rate has the parametric form $c(t) = \lambda t^{\beta-1}$ for t > 0. λ and β^1 are positive constants estimated from the data by using the

 $^{^11}$ -\$\beta\$ corresponds to the \$\alpha\$ used in Luane's and General Electric's RPM reliability-growth models.

AH-56A CUMULATIVE STOPPAGE RATE VERSUS ROUNDS FIRED FOR THE XM-51 40-mm GRENADE-LAUNCHER SYSTEM Figure 59.

method of maximum likelihood. A full discussion of the statistical methods that we have used in our analysis may be found in Donelson [15]. For the data in Table 32, the maximum-likelihood estimates are \hat{i} = 0.046 and \hat{s} = 0.74. A 95-percent confidence interval for 8 (and therefore for the slope of the straight line in Figure 59) is given by [0,598,0.869]. The maximum-likelihood estimate of MRTS after 38,650 rounds is 458 MRTS.

b. XM-52 30-mm Gun System

Testing on this weapon system began in January 1969 and continued until 21 December 1971. The data for our analysis come from Reference [14, Vol. I, pp. 109-27]. Lockheed reported firing a total of 33,432 rounds (or 26 percent of the programmed 128,000 rounds) during this testing period. Lockheed also reported a total of 107 stoppages, of which 50 were due to CFM. The deduction of nonchargeable failures and failures for which fixes had been developed reduced the count of net chargeable failures due to CFM to 12. Thus, Lockheed reported the reliability of the XM-52 Gun System as 2,786 MRTS--1.e., 33,432/12 = 2,786.

Again, we performed our reliability analysis for the entire weapon system including the gun and ammunition. Thus, we have counted stoppages due to both CFM and GFM. Table 33 contains the stoppage history for the XM-52 Gun System. Our data again differ from the data reported by Lockheed [14, Vol. I, pp. 109-27]. The reasons for these discrepancies are the same as explained earlier for the XM-51 Grenade-Launcher System.

Figure 60 contains the graph in full-logarithmic coordinates of the cumulative-stoppage-rate data from Table 33. The straight line in Figure 60 represents the maximum-likelihood estimate of the expected cumulative failure rate under the hypothesis that the expected cumulative failure rate has the parametric form $c(t) = \lambda t^{B-1}$ for t > 0. The maximum-likelihood estimates of λ and 8 for the data from Table 33 are $\hat{\lambda} = 0.044$ and $\hat{\beta} = 0.73$.

Table 33. STOPPAGE HISTORY AND CUMULATIVE STOPPAGE RATE FOR THE XM-52 30-mm GUN SYSTEM

	Rounds Since	Cumul	ative		Rounds Since	Cumu1	ative
Stoppage Number	last Stoppage	Rounds Fired	Stoppage Rate	Stoppage Number	Last Stoppage	Rounds Fired	Stoppage Rate
1	76	76	0.01316	48	458	11,762	0.00408
2	0	76	0.02632	49	705	12,467	0.00393
3	70 Î	146	0.02055	50	2,983	15,450	0.00324
2 3 4	80	226	0.01770	51	136	15,586	0.00327
5	56	282	0.01773	52	446	16,032	0.0032
5 6 7	364	646	0.00929	53	186	16,218	0.0032
7]	728	1,374	0.00509	54	125	16,343	0.0033
8	663	2,037	0.00393	55	633	16,976	0.0032
9 [663	2,700	0.00333	56	27	17,003	0.0032
10	664	3,364	0.00297	57	24	17,027	0.0033
11	150	3,514	0.00313	58	25	17,052	0.0034
12	381	3,895	0.00308	59	24	17,076	0.0034
13	19	3,914	0.00332	60	149	17,225	0.0034
14	244	4,158	0.00337	61	51	17,276	0.0035
15	26	4,184	0.00359	62	950	18,226	0.0034
16	27	4,211	0.00380	63	255	18,481	0.0034
17	27	4,238	0.00401	64	712	19,193	0.0033
18	87	4,325	0.00416	65	26	19,219	0.0033
19	31	4,356	0.00436	66	51	19,270	0.0034
20	Ö	4,356	0.00459	67	181	19,451	0.0034
21	22	4,378	0.00480	68	25	19,476	0.0034
22	ō	4,378	0.00503	69	155	19,631	0.0035
23	24	4,402	0.00522	70	659	20,290	0.0034
24	i	4,403	0.00545	71	3,268	23,558	0.0030
25	28	4,431	0.00564	72	497	24,055	0.0029
26	40	4,471	0.00582	73	302	24,357	0.0030
27	17	4,488	0.00602	74	302	24,659	0.0030
28	302	4,790	0.00585	75	464	25,123	0.0029
29	160	4,950	0.00586	76	687	25,810	0.0029
30	57	5,007	0.00599	77	424	26,234	0.0029
31	430	5,437	0.00570	78	885	27,119	0.0028
32	54	5,491	0.00583	79	450	27,569	0.0028
33	360	5,851	0.00564	80	215	27,784	0.0028
34	52	5,903	0.00576	81	142	27,926	0.0029
35	ī	5,904	0.00593	82	71	27,997	0.0029
36	751	6,655	0.00541	83	416	28,413	0.0029
37	53	6,708	0.00552	84	455	28,868	0.0029
38	1,023	7,731	0.00492	85	455	29,323	0.0029
39	42	7,773	0.00502	86	455	29.778	0.0028
40	179	7,952	0.00503	87	455	30,23	0.0028
41	ŏ	7,952	0.00516	88	92	30,325	0.0029
42	1,649	9,601	0.00437	89	750	31,075	0.0028
43	42	9,643	0.00446	90	235	31,310	0.0028
44	609	10,252	0.00429	91	127	31,437	0.0028
45	7	10,259	0.00439	92	1,016	32,453	0.0028
46	44	10,303	0.00446	93	679	33,132	0.0028
47	1,001	11,304	0.00416	j		,	

AH-56A CUMULATIVE STOPPAGE RATE VERSUS ROUNDS FIRED FOR THE XM-52 30-mm GUN SYSTEM Figure 60.

A 95-percent confidence interval for 5 is given by [0.578, 0.875]. The maximum-likelihood estimate of MRTS for the XM-52 after 33.132 rounds fired is 484 MRTS.

c. XM-53 7.62-mm Machine-Gun System

Y.,

Testing on this weapon system began in April 1968 and continued until 29 August 1969, at which time the XM-53 was deleted from the AH-56A program and replaced with the XM-51 Grenade-Launcher System [14, Vol. I, p. 129]. However, we have included the XM-53 in our study because it exhibited the most rapid reliability growth of any of the three gun systems on the AH-56A.

The data used in our analysis come from the XM-53 Armament Stoppage History [14, Vol. I, pp. 132-39]. Lockheed reported firing a total of 161,003 rounds (or 15 percent of the programmed 1,056,000 rounds) and a total of 72 stoppages, of which 43 were due to CFM. There were a total of 16 net chargeable failures after deducting nonchargeable failures and failures for which fixes had been developed. Thus, Lockheed reported the reliability of the XM-53 Machine-Gun System as 10,063 MRTS--i.e., 161,003/16 = 10,063.

The reliability-growth analysis we have performed here is for the entire XM-53 Gun System and includes both the gun and ammunition. Therefore, we have included stoppages due to both CFM and GFM in the XM-53 stoppage history in Table 34. Our data again differ somewhat from the data reported by Lockheed [14, Vol. I, pp. 132-39]. Again, this difference is due to arithmetic and typographical errors and to lost data.

Figure 61 contains the graph of the cumulative-stoppagerate data for the XM-53 from Table 34. The dashed line in Figure 61 represents the maximum-likelihood estimate of the expected cumulative failure rate under the hypothesis that the expected cumulative failure rate has the parametric form

Table 34. STOPPAGE HISTORY AND CUMULATIVE STOPPAGE RATE FOR THE XM-53 7.62~mm MACHINE-GUN SYSTEM

	Rounds Since	Cumul	ative		Rounds Since	Cumu 1	ative
Stoppage Number	Last Stoppage	Rounds Fired	Stoppage Rate	Stoppage Number	Last Stoppage	Rounds Fired	Stoppage Rate
1	69	69	0.01449	33	315	18,609	0.001770
2	18	87	0.02299	34	238	18,847	0.001800
3	27	114	0.02632	35	4,628	23,475	0.001490
4	35	149	0.02685	36	24,973	48,448	0.000743
5	4	153	0.03268	37	3,775	52,223	0.000709
6	153	306	0.01961	38	617	52,840	0.000719
7	351	657	0.01065	39	2,058	54,898	0.000710
8	120	777	0.01030	40	13,406	68,304	0.000586
9	110	887	0.01015	41	4,114	72,418	0.000566
10	64	951	0.01052	42	9,904	82,322	0.000510
11	1,087	2,038	0.00540	43	5,733	88,055	0.000488
12	163	2,201	0.00545	44	7,168	95,223	0.000462
13	241	2,442	0.00532	45	9,664	104,887	0.000429
14	94	2,536	0.00552	46	3,690	108,577	0.000424
15	29	2,565	0.00585	47	2,913	111,490	0.000422
16	106	2,671	0.00599	48	10,846	122,336	0.000392
17	143	2,814	0.00604	49	324	122,660	0.000399
18	5,688	8,502	0.00212	50	10,101	132,761	0.000377
19	148	8,650	0.00220	51	4,057	136,818	0.000373
20	108	8,758	0.00228	52	647	137,465	0.000378
21	570	9,328	0.00225	53	184	137,649	0.000385
22	1,358	10,686	0.00206	54	1,471	139,120	0.000388
23	1,712	12,398	0.00186	55	135	139,255	0.000395
24	50	12,448	0.00193	56	30	139,285	0.000402
25	0	12,448	0.00201	57	248	139,533	0.000409
26	177	12,625	0.00206	58	115	139,648	0.000415
27	99	12,724	0.00212	59	10,573	150,221	0.000393
28	1,548	14,272	0.00196	60	1,138	151,359	0.000396
29	848	15,120	0.00192	61	24	151,383	0.000403
30	140	15,260	0.00197	62	24	151,407	0.000409
31	416	15,676	0.00198	63	2,990	154,397	0.000408
32	2,618	18,294	0.00175	64	4,174	158,571	0.000404

AH-56A CUMULATIVE STOPPAGE RATE VERSUS ROUNDS FIRED FOR THE XM-53 7.62-mm MACHINE-GUN SYSTEM Figure 61.

c(t) = $\lambda t^{\beta-1}$ for t > 0. The maximum-likelihood estimates of λ and β for the data from Table 34 are $\hat{\lambda}$ = 0.369 and $\hat{\beta}$ = 0.431. A 95-percent confidence interval for β is given by [0.319, 0.529]. Under the hypothesis that the instantaneous stoppage rate has the form $\lambda(t) = \lambda \beta t^{\beta-1}$ for t > 0, the maximum-likelihood estimate of MRTS for the XM-53 after 158,571 rounds fired is 5,773 MRTS.

Our calculations clearly indicate that the XM-53 Gun System experienced a very rapid improvement in reliability during the period of time it was being tested.

3. Conclusions

Table 35 compares Lockheed's and IDA's estimates of MRTS for the XM-51, XM-52, and XM-53 weapon systems. The estimates in Table 35 apply to the weapon systems at the end of the testing program.

Table 35. COMPARISON OF LOCKHEED'S AND IDA'S ESTIMATES OF MRTS FOR THE XM-51, XM-52, AND XM-53 WEAPON SYSTEMS

Weapon	Estimat e o	f MRTS
System	By Lockheed	By IDA
XM-51	2,895	458
XM-52	2,785	484
XM-53	10,063	5,773

For the XM-51 and XM-52, Lockheed's estimates of MRTS are approximately six times IDA's; for the XM-53, their estimate is almost double so Since the test period on the XM-53 lasted only 17 month before its discontinuance, it appears that Lockheed personnel were unable to apply the "Deduction of Failures" provisions of Paragraph 7.4.6.5 (see Appendix A, below) to the

personnel deducted fewer chargeable failures in making their estimate of MRTS for the XM-53. Hence, Lockheed's estimate of MRTS for the XM-53 is closer to our estimate than it is for the other weapon systems. However, in every case, Lockheed's estimates of MRTS are more optimistic than ours, because they counted fewer failures than we did.

We believe that reliability estimates based on the deduction of failures tend to be overly optimistic. We recommend that, in future contracts, reliability estimates based on all failures should be required—in addition to the more optimistic estimates based on deducted failures.

Chapter IV

HELICOPTER ENGINE DATA

A. ANALYSIS OF T700-ENGINE RELIABILITY IMPROVEMENT'

The data used in this analysis were obtained by IDA from the Project Manager's Office (PMO), Utility Tactical Transport Aircraft System (UTTAS). In fulfillment of contractual obligations, these data are supplied to the UTTAS PMO by General Electric Company, the prime contractor for the T700 engine.

Appendix B (below) contains paragraphs (which specify the reliability goals, failure definitions, excluded failures, and measurement procedures) that are quoted directly from Reference [23].

The development and testing program has been apportioned 7,200 hours of test time in which to achieve the goal of 1,200 hours MTBF. A total of 2,268 hours of testing had been completed as of 1 August 1974.

1. Data Analysis by IDA

2

The statistical analysis we have performed using T700 engine-test data has three objectives:

- (1) To determine the rate of reliability improvement.
- (2) To evaluate T700 reliability as of 10 June 1974.
- (3) To forecast T700 engine reliability at future points in the test program.

a. Test Data

Table 36 contains a list of all T700 engine failures that were validated in the T700 testing program as of 1 August 1974. All these failures are chargeable under the definitions of Paragraph 3.40.3 (see Appendix B, below).

A total of 36 failures had been validated on the T700 engine as of 10 June 1974, at which time 2,0/1 hours of testing had been completed. As of 1 August 1974, 2,268 hours of testing had been completed. However, our analysis uses only the data through 10 June 1974 (i.e., 2,071 test hours), because additional failures that may have occurred between 10 June and 1 August 1974 may not have been completely analyzed and reported as of the assessment cut-off date (1 August 1974).

Table 36 shows for each failure the component that failed, the date the failure occurred, the engine serial-build on which the failure was detected, the cumulative test hours on each T700 prototype engine, and the cumulative test time on all T700 prototypes as of the date on which the failure occurred. An asterisk (*) indicates an engine that failed. It is to be noted that data for engine #002 has not been included in Table 36, since engine #002 (a gas generator) is not intended to perform as a T700 engine. The parallel failures are indicated by a "P" on the left side of Table 36. These are failures where the same component has failed more than once, either on the same engine or on separate engines.

"ATE" on the left side of Table 36 indicates chargeable failures that have been eliminated because the components involved have passed acceptance tests. These failures occurred when defective components were left on engines so that testing could continue. We have performed two identical statistical analyses—one using the data on all failures in Table 36, the other using the data from Table 36 with the ATE failures eliminated.

T700-ENGINE COMPONENT FAILURES OCCURRING IN DEVELOPMENT TESTS [Includes narallel failures] Table 36.

						Ser	Serial-Hours	urs		
				Engine					T	Cumulative
Kumber	Kotes!		Event	Serial-	-	t day	trgine number	١		Time - A!!
			חפוב	00110	-		•	_	•	thgines
_		Anti-Ice and Bleed Valve	4/6/73	81-100	68.	;	į	:	:	88
2		Primer Nozzle	4/27/73	01-100	*127	;	;	;	:	127
m ~		Ignition Circuitry-Igniter	5/11/73	01-100	121.	0	;	;	;	127
*		Hydrochemical Control UnitPressure- Regulating Valve (PRV)	5/22/73	001-15	*178	3.6	;	!	;	212
ss.		Oil Filter Bypass Sensor	5/24/73	001-1E	+184	34	:	;	;	218
9		P3 Sensing Hose - Air Lines	6/1/73	31-100	+234	34	:	;	-	268
^		Axis 6 Bearing Anti-Rotation Pin, Inlet Particle Separator (IPS) Blower	6/19/73	003-10	259	*6 5	0	:	;	324
80	(a)	# Bearing - (Skidding)	7/6/73	004-10	271	128	* 16	;	;	415
o -		[PS Blower - (Bonding failed) (Component failed at 25 hours)	7/10/73	003-16	27.1	-141	92	:	;	428
2	(a)	#4 Bearing - (Skidding)	7/12/73	004-xx	177	1	•20	;	!	412
;	(ATE)	Electronic Control Unit (ECU) - $\{T_A \in Fluctuation\}$	8/24/73	003-16	27.1	961,	~	;	;	548
21	(ATE)	Engine Lube System (A Sump-High discharge pressure)	9/10/73	004-1H	27.1	214	*93	:	;	673
13	(ATE)	Combustion Lingr (Lean blowout)	9/10/73	0.3-1H	271	214	+93		;	578
=	(ATE)	ECU (Tags and Torque Oscillation)	9/12/73	004-1H	27.1	214	*103	:	;	288
35	(ATE)	## Bearing-Trilobe (Component failed at 16.5 hours)	10/2/73	003-2A	271	*225	121			617
91	6	Turbine Rotor Assembly (Stage-1 Cooling Plate)	10/30/73	003-20	27.1	4316	160		!	747
11		P ₂ Hose - Air Lines (Broken)	11/14/73	003-25	271	*323	232	;	;	826
<u></u>		Wiring Harness, PT Speed and Overspeed	11/16/73	003-2E	27.1	*348	253	;	:	872
6.	(ATE)	Sequence Valve (Hung Start)	11/27/73	005-1A	272	350	277	0.	:	899
20		InterBalance Ficton (IBP) Seal (Rotor seizure)	11/29/73	81-500	279	350	335	• 20	;	97.4
2		Turbine Rotor Assembly (Stage-1 Cooling Plate)	12/6/73	005-xx-	279	350	365	*56	;	1,050
22	(e)	Turbine Rotor Assembly (Stage-1 Cooling Plate)	12/7/73	004-xx2	279	350	*365	26	;	1,050
23		Mydromechanical Unit (HMU) PRV #2	1/10/74	₩1-500	367	350	431	*192	;	1,340
		HMU PRV #3 (Component failed at 123 hours)	1/16/74	H1-500	367	350	431	*235	;	1,383
25	[(6)	MEN DON OF CHATCH	1114174	AA5-34	36.7	36.0	157	35 64	-	***

b. Statistical Model of Reliability Growth

In modeling reliability growth on the T700 engine, we assume that failures measured versus cumulative test time toccur according to a Non-Homogeneous Poisson Process (NHPP) $\{N(t), t \geq 0\}$, where N(t) denotes the number of failures in the interval [0,t]. The time variable t measures cumulative test time on all prototype engines. Let m(t), which is called the mean-value function of the NHPP N(t), denote the expected number of failures in the interval [0,t]--i.e., m(t) = E(N(t)). Specifically, we assume that our NHPP has a mean-value function of the form

$$m(t) = \lambda t^{\beta}$$

for $t \ge 0$, where λ and β^1 are positive constants.

Let $S_0 \equiv 0$; and for $n=1,\,2,\,\ldots$, let S_n denote the random time of occurrence of the n^{th} failure. Again, time is to be understood here as cumulative test time. For $n=1,\,2,\,\ldots$, let $T_n=S_n-S_{n-1}$ be the elapsed (random) time between the occurrence of the $(n-1)^{St}$ and n^{th} failures. Let τ_n denote the expected value of T_n --i.e., $\tau_n=E(T_n)$. Then τ_n is the expected elapsed time between the $(n-1)^{St}$ and n^{th} failures (i.e., MTBF). τ_n is given in terms of β , λ ; and n, by the equation

$$\tau_{n} = \frac{1}{\beta} \left(\frac{1}{\lambda}\right)^{\frac{1}{\beta}} \frac{\Gamma\left(\frac{1}{\beta} + n - 1\right)}{\Gamma(n)} \tag{7}$$

for $n=1, 2, \ldots$, where $\Gamma(\cdot)$ is the Euler gamma (factorial) function and $\Gamma(n)=(n-1)!$. Since λ and β are not known in advance, we use the method of maximum-likelihood estimation to obtain strongly consistent estimators for λ and β in terms of

 $^{^11}$ -B corresponds to the α used in Duane's and General Electric's RPM reliability-growth models.

observed failure time data. (See Donelson [15] for a thorough discussion of these statistical techniques.) We denote these estimates by $\hat{\lambda}$ and $\hat{\beta}$.

Once we have obtained estimates of λ and β , we may substitute them into Equation (7) to obtain estimates of τ_n for various values of n. Thus, if we have observed m failures (the mth failure occurring at time s_m), we can estimate that the achieved or current MTBF of the system at time $t = s_m$ is τ_m . If we let σ_n denote the expected time of occurrence of the nth failure (i.e., $\sigma_n = E(S_n)$), we can also estimate that at time $t = \sigma_n$ the MTBF of the system is τ_n . For the purpose of his computation, σ_n is given in terms of λ , β ; and n, by th formula

$$\sigma_{n} = \left(\frac{1}{\lambda}\right)^{\frac{1}{\beta}} \frac{\Gamma\left(\frac{1}{\beta} + n\right)}{\Gamma(n)} \tag{8}$$

for n = 1, 2, ...

c. Results of Statistical Analysis

Table 37 contains the cumulative failure rate for the test data from Table 36, including the ATE failures. The cumulative failure rate is obtained by dividing cumulative failures by cumulative test-hours. The maximum-likelihood estimates of λ and β for the data in Table 37 are

$$\hat{\lambda} = 0.022$$
 and $\hat{\beta} = 0.968$.

A 95-percent confidence interval for β (using the data in Table 37) is given by the interval [0.655,1.277]. In Figure 62 we have plotted the cumulative failure rate from Table 37 versus cumulative test-hours on full logarithmic scale. The dashed line in Figure 62 represents the maximum-likelihood estimate of the expected cumulative-failure-rate function under the hypothesis that the mean-value function has the form $m(t) = \lambda t^{\beta}$. In this case the expected cumulative failure rate is

CUMULATIVE FAILURES, TEST-HOURS, AND RATE FOR THE 1700 Table 37.

Failure Number	Cumulative Test-Hours	Cumulative Failure Rate	Failure Number	Cumulative Test-Hours	Cumulative Failure Rate
	68	0.0112	19	668	0.0211
7	127	0.0157	20	974	0.0205
m	127	0.0236	21	1,050	0.0200
せ	212	0.0189	22	1,050	0.0210
2	218	0.0229	23	1,340	0.0172
9	268	0.0224	24	1,383	0.0174
_	324	0.0216	25	1,383	0.0181
Φ	415	0.0193	25	1,416	0.0184
o	428	0.0210	27	1,450	0.0186
10	432	0.0231	28	1,465	1610.0
poor.	548	0.0201	29	1,645	0.0176
12	578	0.0208	30	1,683	0.0178
13	578	0.0225	33	1,687	0.0184
14	588	0.0238	32	1,928	0.0166
15	617	0.0243	33	1,930	0.0171
3.6	747	0.0214	34	1,974	0.0172
17	826	0.0206	35	2,012	0.0174
18	872	0.0206	36	2,071	0.0174

CUMULATIVE FAILURE RATE FOR FIVE T700 ENGINE PROTOTYPES (ATE FAILURES INCLUDED) Figure 62.

 $c(t) = m(t)/t = \lambda t^{\beta-1}$. It is to be noted that this function is just a straight line with slope $\beta-1$ when it is plotted on full logarithmic scale.

The solid line in Figure 62 gives the estimated MTBF for the T700 engine at various times in the test program. This estimate is obtained by plotting τ_n given by Equation (7) versus σ_n given by Equation (8) for $n=1, 2, \ldots$ (using the maximum-likelihood values of λ and β given in the preceding paragraph).

The estimate î of current MTBF after 36 failures (ATE failures included) and 2,071 cumulative test-hours (as of 10 June 1974) is

 $\hat{\tau} = 59.4 \text{ hours}$.

The estimated standard deviation of the time to failure (as of 10 June 1974) is

 $\sigma_{\rm m}$ = 59.5 hours .

This compares with a current estimate (given to us by the UTTAS PMO) of 753 hours MTBF, made by General Electric.

Projecting the trend (i.e., using the above estimated values of λ and β) that has been established using the data in Table 40, we estimate from Equation (8) that the expected time for failure #121 is 7,250 hours. At this point the estimated expected value (MTBF) of the 121st failure time-interval is only 61.9 hours. Thus, the present trend when projected into the future indicates virtually no reliability improvement for the T700 engine. Unless there are dramatic improvements in the near future (which are unlikely, given the lead time required to change the makeup of such a development program), we believe that it is highly improbable that the T700 engine-development program will achieve the 1,200-hour MTBF goal.

Table 38 contains the cumulative failure-rate for the test data from Table 36 after the ATE failures have been eliminated. The maximum-likelihood estimates of λ and β for the data in Table 38 are

 $\hat{\lambda} = 0.027$ and $\hat{\beta} = 0.905$.

A 95-percent confidence interval for 8 (using the data in Table 38) is given by the interval [0.569,1.237].

Figure 63 contains a plot of the cumulative failure-rate from Table 38 .ersus cumulative test-hours. Again, the dashed line in Figure 63 represents the maximum-likelihood estimate of the expected cumulative failure-rate for the data from Table 38, and the solid line shows the estimated MTBF as a function of sumulative test-hours. We note that when the ATE failures are eliminated, the estimate of MTBF as of 10 June 1974 (i.e., after 2,071 test-hours) is

$\hat{\tau}$ = 84.6 hours.

Using the maximum-likelihood values of λ and 8 for the data in Table 38, the expected number of failures in 7,200 hours of testing is 84--the expected time of occurrence of the 84th failure being 7,261 hours. The expected value (MTBF) of the 84th failure time-interval in this case is 95.37 hours. Thus, even with the ATE failures eliminated, the predicted MTBF at the end of 7,200 hours of testing is only 10 hours above the current estimate--the predicted MTBF achievement being slightly less than eight percent of the 1,200-hour MTBF goal.

CUMULATIVE FAILURES, TEST-HOURS, AND RATE FOR THE T700 ENGINE-TEST DATA FROM TABLE 36 (WITH ATE FAILURES ELIMINATED) Table 38.

Failure Number	Cumulative Test-Hours	Cumulative Failure Rate	Failere Number	Cumulative Test-Hours	Cumulative Failure Rate
	88	0.0112	15	1,050	0.0143
2	127	0.0157	16	1,050	0.0152
m	127	0.0236	17	1,340	0.0127
4	212	0.0189	18	1,383	0.0130
'n	218	0.0229	19	1,383	0.0137
9	268	0.0224	20	1,416	0.0141
	324	0.0216	23	1,450	0.0145
∞	415	0.0193	22	1,465	0.0150
6	428	0.0210	23	1,645	0.0140
10	432	0.0231	24	1,683	0.0143
	747	0.0147	25	1,687	0.0148
12	826	0.0145	26	2,012	0.0129
13	872	0.0149	27	2,071	0.0130
#	974	0.0144			

CUMULATIVE FAILURE RATE FOR FIVE T700 ENGINE PROTOTYPES (ATE FAILURES EXCLUDED) Figure 63.

2. Conclusions

After 2,071 hours of testing (about 29 percent of the 7,200 hours allotted to testing), the T700 engine-development program has achieved only seven percent of the 1,200-hour MTBF goal. The rate (trend) of reliability improvement that has been established thus far is minimal and is not sufficient to achieve the 1,200 MTBF goal after 7,200 hours of testing. In fact, we estimate that less than 10 percent of the 1,200-hour goal will be achieved, even after ATE failures are excluded (Figure 63).

B. MISCELLANEOUS ENGINE DATA

Figure 64 is taken from a Boeing Vertol report prepared under contract to the U.S. Army Air Mobility Research and Development Laboratory. Data for a lower number of cumulative engine flight-hours were obtained directly from the manufacturers of the T58, T64, and T63 helicopter engines. Although there is a wide scatter in the lines for the various engines, the figure shows definite reliability growth in unscheduled engine-removal rates-from a rate of roughly 3.0 around 1,000 hours to a rate of about 0.3 at 10 million hours. In most cases, engine power ratings are increased over time; this growth in power tends to work against growth in engine reliability.

Note that Figure 64 depicts unscheduled engine removal (UER) rates. As hours are accumulated, the scheduled removal rates also tend to decrease (as TBOs are increased), so that the total removal rates (scheduled and unscheduled)—though greater than the UER rates shown in Figure 64—should also decrease roughly proportionally to the UER rates.

Table 39 and Figures 65-69 are from a Lycoming report on the T53 engine [18A]. Table 39 presents the production and status history for the various T53 engine models, and Figure 65

Figure 64. ENGINE RELIABILITY GROWTH

153 TURBOSHAFT PRODUCTION AND STATUS HISTORY (AS OF 30 JUNE 1974) Jable 39.

	L-1/1A	કા	L-9/9A	L-11/118	L-11C/11D	L-13/13A	1.138
a. Engines Produced New	112	182	595	3.900	0	7,042	S91°1
b. Engines Converted To This Model	C	0	8	rı	1.003		\$514
c. Engines Reassigned From Other Engine Programs To This Model	Û	c	0	æ	0	#	1.5
d. Engines Converted To Other Models	C	8	e1	76.	guilt visit	5.514	M
e. Engines Reassigned From This Model To Other Engine Pograms	0	O	7	991	e.i	911	06.1
t. Engines Scrapped/Lost/Retured	113	84	597	<u> </u>	117	722	145
g. Total Engines Now In This Nodel	31	24	52	148	1.473	739	6.448
h. Average Age Since New (Hrs.)	2,778	1,423	1917	1.917	2.147	651	1,254
1. Average Age Since Major U/H (Hrs.)	902	1.377	879	526	285	388	308
j. Age Since New of Oldest Engine (Hrs.) (Includes Hrs. on Engines Converted From Other Models)	4,706	2,051	3,716	4.318	4.258	2,175	5,424
k. Accumulative Engine Flying Hours	620.300	00+661	1.132.000	009'689'9	770,290	6,436,500	3.812.300
1. Initial Shipment Date	3/26	2/60	6/61	8/63	10/68	99/8	4/70

Source: Reference [18A, p. 20].

Source: Reference [18A, p. 22].

Figure 65. T53 CUMULATIVE FLYING-HOURS

RELEVANT ENGINE FAILURES INFLIGHT INCIDENTS

. 3

₹.

RELEVANT ENGINE FAILURES
INCIDENTS AFFECTING MISSION COMPLETION

ACTUAL VALUE FOR THE T53-L-13B IN THE R&M OPERATIONAL SAMPLE IS 0.0000 PER 1000 ENGINE FLYING HOURS, HOWEVER THE POINTS SHOWN FOR THE L-13B ARE DERIVED BY USING 50% CONFIDENCE LEVEL ESTIMATE OF FAILURE RATE.

Source: Reference [18A, p. 60].

Figure 66. RELEVANT ENGINE FAILURES - IN-FLIGHT INCIDENTS AND MISSION COMPLETION

[&]quot; "ALL CAUSES" INCLUDES BOTH ENGINE CAUSES AND ALL OTHER NON-ENGINE CAUSES (FOD, OPERATOR ERROR, ETC.)

ENGINE CAUSES

ALL OTHER CAUSES

Source: Reference [18A, p. 61].

Figure 67. T53 IN-FLIGHT ENGINE MALFUNCTIONS - ALL CAUSES*

shows the cumulative flying-hours. The turboshaft models are those that are used in helicopters. Figures 66-68 present relevant engine-failure¹ rates, malfunction² rates, and MMH/FH,

^{**} ACTUAL VALUE FOR THE T53-L-138 IN THE R&M OFERATIONAL SAMPLE IS 0 0000 PER 1000 ENGINE FLYING HOURS, HOWEVER THE POINT SHOWN FOR THE L-138 IS DERIVED BY USING 50% CONFIDENCE LEVEL ESTIMATE OF FAILURE RATE.

¹A relevant engine failure is an engine malfunction, the cause for which has been determined to be the responsibility of the engine manufacturer and attributable to the existence of discrepancies in the engine, its components, or the documentation of its design or use.

²A malfunction denotes inability to meet specified operating requirements. A malfunction can occur only during actual operation of the engine; it may or may not constitute a failure.

abefolde forell meftiligene gegigen gen mit

NOTE:

MAINTENANCE MAN-HOURS INCLUDE ORGANIZATIONAL AND DIRECT SUPPORT ENGINE MAINTENANCE DUE TO ALL CAUSES, EXCEPTING ROUTINE SCHEDULED EXTERNAL INSPECTIONS.

Source: Reference [18A, p. 72].

Figure 68. T53 MAINTENANCE MAN-HOURS PER ENGINE FLIGHT-HOUR

respectively, for the various T53 engine models. Figure 69 shows the achievement in Mean-Time Between Depot Return (MTBD)¹ for engine causes for the T53 turboshaft family of engines over

¹The mean time between necessary depot actions for engine causes is calculated by dividing the total flying hours by the total number of engine-caused, necessary, depot removals for the same calendar time period.

Source: Reference [18A, p. 145].

Figure 69. T53 TURBOSHAFT MTBD - ENGINE CAUSES

the years. All these figures indicate that the successive T53 engine models generally exhibited R&M characteristics improved over earlier models. At the same time, the power rating was being increased in the successive models.

Figure 70 shows reliability trends for all T53 turboshaft engines from 1970 to 1973. Though the reliability measures fluctuated markedly, there was no definite overall trend upwards or downwards over this period of time. The fluctuations were probably due mainly to the mix of different models over time. Table 39 indivates that in addition to new engines, large numbers of engines were sometimes converted to later models. For example, 5,514 engines were converted to the L-13B model configuration,

Ė.

MTBF - ENGINE MEAN TIVE BETWEEN RELEVANT ENGINE FAILURE.

MTBR - MEAN TIME BETWEEN NECESSARY ENGINE-CAUSED REMOVALS FROM AIRFRAME, MTBD - MEAN TIME BETWEEN NECESSARY DEPOT ACTIONS FOR ENGINE CAUSES, NOTE: THREE-MONTH MOVING AVERAGES USED FOR SMOOTHING PURPOSES.

SOURCE, REFERENCE [20].

FROM AIRFRAME, AND RETURN TO DEPOT ENGINES MEAN TIME BETWEEN FAILURE, REMOVAL (WORLDWIDE) FOR ALL T53 TURBOSHAFT Figure 70.

which was initially shipped in April 1970. Figure 69 indicates that this model had a much greater MTBD than earlier models; the increase in MTBD in Figure 70 from 1972 to 1973 probably reflects an increase in the relative number of L-13B conversions in the inventory.

Figures 71 and 72 show approximately constant reliability trends for the T55-L-7/7B/7C engines; unfortunately, we do not have data for other T55 engine models.

The most important reliability measure in these figures is MTBD, which reflects both scheduled and unscheduled depot actions for engine causes; depot actions (many of which are overhauls) are much more costly than nondepot actions. Lycoming personnel stated that depot overhauls account for about 90 percent of total engine-maintenance costs.

It is interesting to note that there is a great difference between the MTBFs (based on relevant failures) reported by Lycoming for the T53 engines and the MTBFs for these engines obtained from service data (based on all failures). For example, Figure 70 for the T53 engine shows MTBF in excess of 1,200 hours from 1970 through 1973. However, Tables 8 and 10 indicate that power-plant MTBF for the H-1 family of aircraft, which use the T53 engine, averaged only about 30 hours between 1968 and 1973. The Lycoming MTBF is based on relevant engine failures, while the data reported for the helicopter power plants include all failures. Lycoming defines a relevant engine failure as

an engine-malfunction, the cause for which has been determined to be the responsibility of the engine manufacturer and attributable to the existence of discrepancies in the engine, its components, the documentation of its design or use.

Evidently, most T53 engine failures were classified by Lycoming as nonrelevant.

のでは、これのは、はないは、これのでは、これの

4 2

MTBR - MEAN TIME BETWEEN NECESSARY ENGINE-CAUSED REMOVALS FROM AIRFRAME.

MTBD - MEAN TIME BETWEEN NECESSARY DEPOT ACTIONS FOR ENGINE CAUSES,

NOTE: (1) THREE-MONTH MOVING AVERAGES USED FOR SMOOTHING PURPOSES

(2) T55-L-11/11A DATA NOT INCLUDED ON THIS FIGURE

SOURCE FOR 1967-71, REFERENCE [197; FOR 1970-74, REFERENCE [20].

MEAN TIME BETWEEN FAILURE, REMOVAL FROM AIRFRAME, AND RETURN TO DEPOT (WORLDWIDE) FOR THE T55-L-7/78/7C ENGINES Figure 71.

SOURCE: REFERENCE [21, p. 45]

1-24-75-19

Figure 72. MEAN TIME BETWEEN DEPOT REMOVAL FOR THE T55-L-7/7B/7C ENGINES

Chapter V

ANALYSIS OF DATA FROM HELICOPTER MANUFACTURERS

A. BOEING VERTOL

Ĺ.

×

Part A of Volume 2 presents helicopter R&M data (obtained under subcontract from the Boeing Vertol Company), most of which were for the H-46 and CH-47 programs. Most of the H-46s were cargo helicopters operated by the Marine Corps (mainly CH-46As, CH-46Ds, and CH-46Fs). The Navy operated a small number of UH-46As. In addition to these U.S. military aircraft, versions of the H-46 family were operated by New York Airways, the Canadian Army and Air Force, the Swedish Navy and Air Force, and Japanese military and commercial services. First operations were by New York Airways—starting in July 1962. The first flight of the CH-46A was in October 1962, and the aircraft entered field service with the Marine Corps in November 1964 (Reference [24]). Figure 73 shows cumulative flight-hours versus calendar time for the H-46 family of aircraft.

The CH-47A was developed for the U.S. Army and first flew in September 1961. Operating the CH-47A, B, and C models, the Army was for many years the only operator of the CH-47. Starting in 1972, deliveries were made to the military services of Spain, Australia, Italy, Iran, and Candada [25]. Figure 74 shows cumulative flight-hours versus calendar time for the U.S. Army CH-47 family. The Army was the only operator of CH-47s for the first million flight-hours (the period covered by Figure 74).

In order not to introduce transcription errors into the data, Part A is reproduced in the original Boeing format and

Figure 73. H-46 FLIGHT-HOURS

Figure 74. CH-47 FLIGHT-HOURS

x

is discussed below. Table and figure numbers refer to those of Volume 2, Part A; and items are discussed in the order that they appear there.

CH-47 Reliability. The top panel of Table 1 presents malfunctions per flight-hour for the complete CH-47 and for the total subdivided into 11 systems. Data for the total aircraft are available from 1963 to 1972; data by system are given from 1965 to 1972. The very early phase of operations is not included in these data; cumulative flight-hours were 4,750 in 1963 and 37,033 in 1965. Cumulative malfunction rates are plotted in Figures 1 to 12. At the bottom of each plot, the α (the same as the α used in Duane's and in General Electric's RPM reliability-growth models, but with a change in sign [26]) is given; a negative α indicates reliability growth, while a positive α indicates reliability degradation. The a's for each system and for the total aircraft are summarized in the right panel of Table 2. Note that the total aircraft-reliability growth was quite low (-0.063). The system a's ranged from -0.315 (flight control) to +0.160 (drive). Nine systems exhibited reliability growth, while two exhibited reliability degradation.

CH-47 Maintenance Man-Hours. The bottom panel of Table 1 presents MMH/FH for the complete CH-47 and for the total subdivided into 11 systems. Data are available from 196, to 1972. The cumulative MMH/FH rates are plotted in Figures 13-24. The a's for each system and for the total aircraft are summarized in the left panel of Table 2. The total aircraft maintenance—improvement growth (i.e., reduced MMH/FH) was -0.172; all of the systems showed maintenance—improvement growth, ranging from -0.415 (equipment) to -0.005 (rotor).

Safety Growth Statistics. Tables 3 to 3-16 present major accident rates for the following helicopters: UH-1(Army),

UH=1(Navy/Marine Corps), H=2(Navy), H=3(Navy), OH=6(Army),H=19(Navy), H=19(Army), H=21A/B(Air Force), H=21C(Army), H=34(Army), H-34(Navy/Marine Corps), H-37(Navy), CH-37(Army), UH/CH-46, CH-47, CH-53(Marine Corps), and CH-54(Army). For the CH-46 and CH-47, the data were from Boeing Vertol records for all years. For all the other aircraft, the data through CY 1968 were from Vertol records; the data for FYs 1968-73 were obtained by IDA from the Naval Safety Center and the U.S. Army Agency for Aviation Safety. For those helicopters with operations spanning both periods, the IDA data have been added to the Boeing Vertol data to provide more complete coverage. The cumulative accident rates have been plotted for all the helicopters in Figure 25 and by individual helicopter type in Figures 26-42. The a's for each helicopter type are summarized in Table 4. Fifteen of the 17 helicopter types exhibit safety-reliability growth. Only the UN-1(Navy/Marine Corps) and the H-21C(Army) show safety degradation. The a's for the 17 types range from -0.742 for the H-19(Army) to +0.158 for the H-21C(Army). average value of α for all 17 helicopter types was -0.23.

CH-46 Reliability. Table 5 presents malfunctions per flight-hour for the complete CH-46 and for the total subdivided into 23 systems. Data are available for the 23 systems only for 1968, 1969, 1970, and 1972. Data for the complete helicopter are available for these years, as well as for 1962-67. Cumulative flight-hours were 10,000 in 1962 and 394,000 in 1968. The reliability of the total helicopter improved markedly, from 2.00 malfunctions per flight-hour in 1962 to 0.723 in 1968; by 1972, however, it worsened to 0.925 malfunctions per flight-hour. The cumulative malfunction rates are plotted in Figures 43-66; the a's for each system and for the total aircraft are summarized in the right panel of Table 7. Because of its reliability growth from 1962 to 1968, the total aircraft exhibits good reliability growth (a = -0.218). The system a's in general show a slight reliability degradation from 1968 to 1972. The

system a's ranged from -0.372 (airframe) to +0.547 (miscellaneous utilities). Nine systems exhibited reliability growth, while 14 exhibited reliability degradation. The average value of a for all 23 systems from 1968 to 1972 was 0.089. Based on all CH-46 operations, these system trends from 1968 to 1972 are generally consistent with the 3-M data, excluding Pacific Theater (Vietnam) operations. Figure N-20 indicates that MTBF for the five major systems worsened between 1968 and 1972.

CH-46 Maintenance Man-Hours. Table 6 presents MMH/FH for the complete CH-46 and for the total subdivided into 23 systems. Data are available only for 1968, 1969, 1970, and 1972. The cumulative MMH/FH rates are plotted in Figures 67-90; the α's for each system and for the total aircraft are summarized in the left panel of Table 7. The MMH/FH for the total aircraft worsened (increased) slightly (α = 0.010). The system α's ranged from -0.288 (airframe) to +0.410 (fuselage compartment). Eight systems exhibited maintenance improvement (reduced MMH/FH), while 15 exhibited maintenance degradation (increased MMH/FH). These system trends from 1968 to 1972, based on all CH-46 operations, do not show as much degradation in MMH/FH as the 3-M data excluding Pacific Theater (Vietnam) operations. Figure N-21 indicates that MMH/FH for four of the five major systems worsened between 1968 and 1972.

H-21 Maintenance Man-Hours. Figure 91 shows MMH/FH for H-21 helicopters of the French Army during the Algerian War. Data for these helicopters were carefully reported by service representatives because these were the first Boeing Vertol helicopters engaged in combat operations. When the H-21 entered French Army service, it had already accumulated about 70,000 flight-hours in U.C. Army and Air Force service (see Table 3-7). Figure 91 indicates that MMH/FH increased as the aircraft aged and reached a rather stable level after a year. This is a typical pattern following introduction of a helicopter into service. While the

aircraft are new, maintenance requirements are relatively low; as they accumulate flight time, components reach their overhaul time: and other parts of the helicopter require more maintenance. Afte: a year or so, the level of maintenance tends to stabilize as improvements to the aircraft tend to offset the adverse effects of aging.

CH-47 Transmission Reliability. Table 8 presents unscheduled removal rates for the four transmissions of the CH-47. Both yearly and cumulative removal rates are plotted in Figures 92-99 and corresponding α 's are shown in Table 10. There was reliability growth for all four transmissions; α 's based on cumulative removal rates ranged from -0.450 to -0.041. The average value of α for all four transmissions was -0.22.

Figures 75-78 (on the next four pages, not in Volume 2) show TBO histories for four models of the CH-47. The TBOs for the four transmissions increased over time in all CH-47 models, and each achieved a TBO of 1,200 hours. Since TBOs determine scheduled removal rates, both the unscheduled and scheduled removal rates for all transmissions exhibit reliability growth.

CH-47 Component Reliability. Table 9 presents unscheduled removal rates for major CH-47 components that are overhauled when they fail. Both yearly and cumulative removal rates are plotted in Figures 100-115, and corresponding α's are shown in Table 11. α's based on cumulative removal rates ranged from -0.334 to +0.632. Five components exhibited reliability growth, while three exhibited reliability degradation. However, the average value of α was 0.019, indicating slight reliability degradation.

Tables B-1 to B-4 include TBO histories for four of the components of Tables 9 and 11 (pivoting actuator, swiveling actuator, rotor blades, and swashplates). In all cases except for the CH-47B rotor blades, the TBOs either increased or remained constant. The TBO of the CH-47B rotor blades decreased

	8			-					8	2400				
	74	γ	1	99. 3		Doc	pene	YCPT	-3	<u> </u>	14.		T=	
	LS.	ļ	<u> </u>		3€	ļ	<u> </u>	<u> </u>	Po	₽		Ц		
	_	<u> </u>	<u> </u>		-	<u> </u>	<u> </u>	<u></u> ,	80	8	<u> </u>	<u> </u>	3 0 8	
			<u> </u>	<u> </u>	1			<u>L</u>					0	
		٥	<u> </u>	0									117	
	L	8	Li	8									Z,	6
													79	Tempe
				<u> </u>			8				0			ACTUAL
							B				9		2	7
			6	6			ō				1		 	
			8	8								1	FIMAM	7
			4	14									—	ı
		- ' '	1	†								1	=	
				1						1		1	•	
			1	1								 	_	
		-	 	1		†	1	†				†	<u> </u>	
	8	8		<u> </u>	9	1	 			-		+	8 0 8	
		•	 	8	8	H	\vdash	e		8	1200	┼	₹.	
		3	 		3		 	8	1200	-		-	38	
		8	8	+		8	200	ð		-	-3	 	1966	
		3	-	8		17	12				_		 '	
			-	<u> </u>	 	-	13			 	8 6	-		
			 	3		-	├ ──				3	8	5	
	8	6	0	 -	<u> </u>	8	8	6	0	0	6		JFMAM	
	600	00	8	00	9	7	P _	8	00 J	00	8	ð		
1962	1	•	•	1	◀.	1	1		•	•	1		-	
HO 1	275	275	300	250	200	200	200	9	400	400	400	3 8 8	<u> </u>	
STAR TB								1	_					
						TOR	SHIVELING ACTUATOR					ي ا		
					SI	\$					E,			
	i		5 25	75	2	ថ្ង	×	SS	တ္က	တ္	S	8		
	z	-	S S	5		9	2	3	3	5	4	114030		
	8	8	×	1	ō	Ā	3				X			
}	FIG XXISN	- A	9		2	ğ		5	Ž	2		ار ي		
İ	E	AFT XHSH	COMB. MAISH	ENGINE XMSN	ROTOR CONTROLS	PIVOTING ACTUA		RCTOR BLADES	NOTOR HEADS	SYNC SHAFTS	APT TEKE SHAPI	SYNC SHAFF		
L	I						لتسا			لــــــا			ľ	

Figure 75. CH-47A COMPONENT SCHEDULE

#.

Figure 76. CH-478 COMPONENT SCHEDULE

		STARTING .BO						
30.30% ITADS (3.50 5365)	114R2003 114R2004	600		13db				
SW rstplate (1:50)	11483505	600 x	ods		2 +	3+		
RSW CPE	11401200	009		å- 24				
NEE TEEN	11402200	. 009		8	2.0			
CCM3. XMSM	11405200	, 209		100 100 100 100 100 100 100 100 100 100	70			
ENGINE MASH	11406200	\$ CO9		0.: 6	807.4			120 M
SILLUS OXXS		1800 s	7.540	3				
Takis oksy ith	11453250	1200				•		
FND STATES AFT	11481502	CN COXO						
PIVOTIIC ACTUATOR	114H6500	RO CE						-
SWIVELING ACTUATOR	11486700	ω ΩΣΩΩ						
		M.	1968 1	1969 1969	1970		1971	
A ACTUAL ACTUAL	ا							

CH-47C COMPONENT SCHEDULE, MITH L7C ENGINES Figure 77.

		\$ \$ \$	0d2t *	dos is po	oda taga	3a1		00eT				1970 1971
		oca eca	4	8	5,4	84	7,400					1) 1868 1969 1969 1969 1969 1969 1969 1969
STARTING TBO	₩ 009	₩ 009	▼009	₹009	₩ 009	600	₹800	1200	NO COMO			
	114R2003 114R2004	114R3505	11401200	11452200	11405200	114D6200		114D3250	11481562	114H6600	11486700	
	ROTOR HEADS (MSO BRGS)	SWASHPLATE (M50)	FWD JOHSW	apt XXX	COMB. XMSN	ENGINE XMSN	SYNC SUAFTS	AFT VERT SHAFT	FWD FWD ROTOR BLADES AFT	PIVOTING ACTUATOR	SWIVELING ACTUATOR	

Figure 78. CH-47C COMPONENT SCHEDULE, WITH L11 ENGINES

from "On Condition" to 1,500 hours for the aft rotor and 3,600 hours for the forward rotor. The TBO of the CH-47A blades increased from 400 hours to "On Condition," and the TBO of the CH-47C blades was always "On Condition." Hence the trend in scheduled (TBO) removal rate for rotor blades was mixed, while the unscheduled removal rate worsened (a = 0.146). For the other three components, both the scheduled (TBO) and unscheduled removal rates improved.

CH-46 Component Reliability. Table 12 presents unscheduled removal rates for CH-46 transmissions and rotor heads. Both yearly and cumulative removal rates are plotted in Figures 116-125, and corresponding a's are shown in Table 13. a's based on cumulative removal rates ranged from -0.284 to +0.709. Two components exhibited reliability growth, while three exhibited reliability degradation. The average value of a for all five components was 0.14--indicating slight reliability degradation. Interestingly, the aft transmission and rotor head showed improvement, while the forward transmission and rotor head showed tegradation.

Helicopter Maintenance Trends. Figure 126 shows the trends of helicopter and fixed-wing direct-maintenance costs versus weight empty (W.E.). The helicopter direct-maintenance cost increases with (W.E.)^{0.7}. The insert indicates a rather weak relationship between maintenance cost and year of introduction.

Figure 127 shows a trend of MMH/FH versus W.E. As would be expected, MMH/FH increases with W.E. Using the equation fitted through the points of Figure 127, Figure 128 normalizes for W.E. and shows the effect of year of introduction on MMH/FH. Figure G-2 indicates that, for equal W.E., MMH/FH has been decreasing with year of introduction. This decrease will tend to flatten out in the future, as successive generations of helicopters are introduced (MMH/FH can not be negative).

B. HUGHES

Ù,

Part B of Volume 2 presents R&M data (obtained under subcontract from Hughes Helicopters) for the YOH-6 and OH-6A helicopters. In order not to introduce transcription errors into the data, Part B is reproduced in the original Hughes format and is discussed below.

Ten prototype YOH-6 aircraft were built and had first flight dates from 27 February 1963 to 30 April 1964. These aircraft were flown in various tests at many scattered locations in CONUS. First production-aircraft flying started in May 1966. (More detailed program history is given in Volume 2, pp. H-1 - H-5.)

Figure 79 summarizes the failure and removal data provided in Part B. The blocks indicate the periods of time covered for each of the seven sets of data. Failure data are broken down into the following subsystem categories: (1) rotors, (2) airframe, (3) transmissions and drives, (4) power plant, (5) instruments and electrical, (6) communications, and (7) weapon systems. Failure data are presented for Subsystems (1), (2), (3), and (5) in all cases; but, as noted in Figure 79, data for Subsystems (4), (6), and (7) are not always presented. In some cases, the contractor-furnished equipment (CFE) associated with the power plant subsystem is included, but the government-furnished equipment (GFE) is not included. The GFE is the engine itself.

In addition to the failure data, Volume 2 includes "Total Removals" for all aircraft except Prototype No. 6 (p. H-16) and the nine production aircraft (p. H-24). The number of removals refer to the removal of all major components for overhaul or repair. Both failures and removals are categorized as "Charge-able" (C) or "Non-Chargeable" (NC). Chargeable failures or removals are those caused by some deficiency in the item itself that caused its failure or removal, while nonchargeable failures or removals are due to some other cause (e.g., a maintenance

OH-6A FAILURE AND REMOVAL DATA PROVIDED BY HUGHES Figure 79.

error committed by a mechanic). Because the assignment of cause to "chargeable" or "nonchargeable" often involves subjective judgment, we have used the sum of both chargeable and non-chargeable failures and removals in all our analyses. The sum of both categories should provide a truer picture of total reliability growth than the use of only chargeable failures or removals.

Because of the incomplete failure reporting of Subsystems (4), (6), and (7), we have not used them in our analysis of reliability growth. Table 40 summarizes the failure data for the other four subsystems, as well as the total removal data.

The data of Table 40 cover a total of 12,607 flight-hours from April 1963 to May 1968 for 20 aircraft. Other aircraft were also accumulating flight-hours over this same time period. Figure 80 (based on Hughes' Figure 2-1 [Vol. 2, p. B-5, below]) shows total flight-hours for the entire YOH-6/OH-6A fleet. It indicates approximately 27,000 total fleet flight-hours by May 1968. Hence, the data of Table 40 represents slightly less than half the total fleet flight-hours accumulated by May 1968. In determining growth rates relative to cumulative flight-hours, the data of Table 40 must be related to the total fleet flight-hours, since learning is associated with all the aircraft being flown.

In Table 41, we have accumulated by calendar time from Table 40 the flight-hours, total failures (for the four subsystems of Table 40), and total removals. We have not included the data for rototype No. 6, which was being flown in a 1,000-hour logistics evaluation at Fort Rucker at the same time Prototype No. 5 was being flown at Culver City. Its reported failure rate was only about one-third that of No. 5, as well as much lower than that of Prototypes Nos. 3 and 8 (see Vol. 2, p. B-7, below). It is highly probable that its failure reporting was not complete, and for that reason it was not included in the

Table 40. OH-6A FAILURE AND REMOVAL DATA (CHARGEABLE AND NON-CHARGEABLE FAILURES)

			Nu	mber of Failur	e\$		
Month	Flight- Hours	Rotors	Airframe	Transmissions and Drives	Instruments and Electrical	Total	Total Removals
Protot	ype No.	3	·				
4/63	9.8	5	1	0	0	3	6
5/63	19.9	5	1	1	4	11	8
6/63	12.1	2 5 5 2	038308511230]	04312300320010	9	9
7/63	33.0	5	3	2 3 0	1	11	7
8/63 9/63	24.5 23.0	1	8	3	2	15	6
10/63	6.4	•	ň	00	30	7	1
11/63	33.8	ò	š	ĭ	o i	ġ	ġ
12/63	25.5	0	5	Ò	3	9	11
1/64	20.8	0 0 1 0	1	1	2	4	3
2/64	18.1	0]	0	0]	2
3/64	13.7	0	2	0	ָיָ ו	2	2
4/64 5/64	17.2	1	3		,	9	
Total	6.8 264.6	U	U	1	U	9 9 4 1 2 6 1 89	6 8 9 7 8 6 1 8 1 3 2 2 7 7 79
Protot	ype No.	5 5			•		
9/63	4.5	1	5	.3	3	12	2
10/63	21.7	9	5	6	2	22	11
11/63	26.5	5	3	0	2	10	10
12/63	5.0	5	16	2	2	16 28	17
1/64 2/64	55.8 33.9	9	7	0	4	16	14 12
3/64	17.0	2	7	3 6 0 2 0 2	3 2 2 2 4 4 6 0	16	וו
4/64	22.0	3	8		ŏ	ii	6
5/64	49.5	5	7	0 1		14	14 18
6/64	112.7	95583235422	5 37 16 7 7 8 7 4 7 6 13	0	7 7 0	12	18
7/64	38.2	2	7	0	7	16 8	15 4
8/64	24.3	2	6	I	I	8	
3/04	20.0	3	13	2 0 1	4	22	1
11/64	18.4	3	2	7	ŏ	6	4
12/64	10.9	ĭ	2	i	0 0 0	3	i
9/64 10/64 11/64 12/64 1/65 2/65	26.6 1.4 18.4 10.9 6.1	ò				22 6 3 2 4 4 3	o l
2/65	1.2	0	2	0 0 0 0	o l	2	1 1
3/65 4/65 5/65	34.0		2	0	0 2 1	4 1	2
4/65	23.2	0	3	o l]	4	2
5/65 6/65	3.9 4.1	Ö	1 2 2 3 0	0		3	0 1 2 2 3 0
0/03	4.1	U		<u> </u>		لسلسا	

(continued on next page)

Table 40 (continued)

			Numb	er of Failures			
Month	Flight~ Hours	Rotors	Airframe	Trensmissions and Drives	Instruments and Electrical	Total	Total Removals
Prototyp	e No. 5 (a	ontd)					
7/65 8/65 9/65 10/65 11/65 12/65 1/66 2/66 3/66 4/66 5/66 6/66 7/66 8/66 10/66 1 6 12/66	9.2 15.5 11.1 6.4 9.0 8.8 11.2 28.0 18.8 11.8 25.8 12.2 6.0 4.1 16.8 32.5 0 0 36.6 1.8	221122310110010	1311307121121122570	01101111200000000000000000	10310112101021001	38436624645622357711	1 5 2 0 4 2 4 2 5 3 7 5 0 0 3 3 1 0 0 0
3/67 4/67 Total	0 11.0 817.5	1	0 0 8 1	0	4 2	13 4 342	5 1 210
Prototyp	e No. 6						
2-6/64	1,000	34	40	11	27	112	
Prototyp 3-6/64	e No. 8 2 30	25	28	6	31	90	57
R&M Aire	raft, Seri	11 Nos. (85-12 929 d	md -12930			
2/67 3/67 4/67 5/67 6/67 7/67 8/67 Total	36.1 262.4 108 131.6 255 96.6 110.6 1,000.3	0 8 5 14 27 2 4	0 14 9 34 64 18 22	0 0 1 3 10 4 7	0 9 5 17 31 6	0 31 20 68 132 30 43 324	0 14 14 31 66 20 17

(concluded on next page)

Table 40 (concluded)

	·		Numbe	er of Failures			
Month	Flight- Hours	Rotors	Airframe	Transmissions and Drives	Instruments and Electrical		Total Removals
	nfirmato 16, -1295			rial Nos. 6	5-12940, -	12944 I	,
9/67 ~ 5/68		106	298	22	305	731	529
				lal Nos. 65- 925, -21926,		917,	-21918,
10-12/66 - 10/67		57	168	40	79	344	
Grand Total	12,607.4				2,032	2,032	1,037

Figure 80. OH-6 TOTAL FLEET FLIGHT-HOURS

Table 41. OH-6 CUMULATIVE FAILURE AND REMOVAL RATES

		Flight-Hours	<u> </u>		Failures			Removals	
Month	Number	Cumulative	Total Fleet	Number	Cumulative	Cumulative Rate	Number	Cumulative	Cumulative Rate
1/63	9.8	9.8	100	3	3	. 31	6	6	.61
5/63	19.9	29.7	160	11	14	.47	. 8	j 14	.47
6/63	12.1	41.8	210	9	23	. 55	9	23	.55
7/63	33.0	74.8	300	111	34	. 45		30	.40
3/63 9/63	24.5	99.3 126.8	400 500	15	49 68	.49	8	38	. 38
10/63	28.1	154.9	500	19	91	.54	8	46	. 36
11/63	60.3	215.2	720	19	110	. 59 . 51	12 18	58 76	. 37 . 35
12/63	30.5	245.7	840	25	135	.55	28	104	.42
1/64	76.6	322.3	980	32	167	.52	17	121	.38
2/64	52.0	374.3	1,110	17	184	.49	14	135	. 36
3/64	30.7	405.0	1,240	18	202	.50	13	148	. 37
4/64	39.2	444.2	1,390	17	219	. 49	13	161	. 36
5/64	56.3	500.5	1,560	15	234	.47	15	176	.35
6/64	342.7	843.2	1,720	102	336	.40	75	251	. 30
7/64	38.2	881.4	1,900	16	352	.40	15	266	.30
8/64 9/64	24.3 26.6	905.7 932.3	2.050	8 22	360	.40	4	270	. 30
10/64	1.4	932.3	2,220 2,390	1 22	382 384	.41	9	279	. 30
11/64	18.4	952.1	2.560	2	390	.41 .41	4	280	. 30
12/64	10.9	963.0	2.720	3	393	.41	1	284 285	. 30 . 30
1/65	6.1	969.1	2,890	ž	395	.41	ó	285	.29
2/65	1.2	97C.3	3,060	ž	397	.41	i	286	.29
3/65	34.0	1,004.3	3,210	4	401	.40	2	288	.29
4/65	23.2	1,027.5	3,390	4	405	. 39	2	290	.28
5/65	3.9	1.031.4	3,550	3	408	.40	2	293	. 28
6/65	4.1	1,035.5	3,710	1	409	. 39	0	293	.28
7/65	9.2 15.5	1,044.7	3,880	3	412	. 39	1	294	. 28
8/ 65 9/ 65	11.1	1,060.2	4,020	8	420	.40	5	299	. 28
10/65	6.4	1,071.3	4,200	4	424	.40	2	301	.28
11/65	9.0	1,077.7 1,086.7	4,380 4,550	3 6	427 433	.40	0	301	.28
12/65	8.8	1,095.5	4,700	6	439	.40		305 30 <i>7</i>	. 28 . 28
1/66	11.2	1,106.7	4,850	12	451	.41	2	307 311	.28
2/66	28.0	1,134.7	5.020	4	455	.40	7	313	.28
3/66	18.8	1,153.5	5.200	6	461	.40	5	318	.28
4/66	11.8	1,165.3	5,380	4	465	.40	2 5 3 7	321	.28
5/66	25.8	1,191.1	5,530	5	470	. 39	7	328	. 28
6/66	12.2	1,203.3	5,760	6 2 3 5 7	476	.40	5 0	333	. 28
7/66	6.0	1,209.3	6.010	2	478	.40	ō j	333	. 28
8/66 9/66	4.1 16.8	1,213.4	6.320	7	480	.40	0	333	. 27
10/66	32.5	1,230.2	6.680 7.060	1 1	483 488	. 39	3	336	.27
11/66	32.3	1,262.7	7,500	7	488 495	. 39 . 39	3	339	.27
12/66	ŏ	1,262.7	8,000	7	502	.40	6	340 340	.27 .27
1/67	36.6	1,299.3	8.550	íl	503	.39	ŏ	340	.26
2/67	37.9	1,337.2	9,150	- i	504	.38	ŏ	340	.25
3/67	262.4	1,599.6	9,850	44	548	. 34	19	359	.22
4/67	119	1,718.6	10,600	24	572	. 33	15	374	.22
5/67	131.6	1,850.2	11,450	68	640	. 35	31	405	.22
6/67	255	2,105.2	12,400	132	772	. 37	66	471	. 22
7/67	96.6	2,201.8	13,350	30	802	. 36	20	491	.22
3/67	110.6	2,312.4	14,400	43	845	. 37	17	508	. 22
	4,026	6,338.4	16,610	344	1,189	. 19	*	1 0274	*
3/00	5,269	11,607.4*	27,000	731	1,920	. 17	529*	1,037*	.14*

^{*}Removal data not available for block of 4,026 flight-hours ending October 1967. Hence, cumulative flight-hours for removal data through May 1968 are 11, 607 - 4026 = 7581.4.

calculations of Table 41. Cumulative failure and removal rates are calculated and total fleet flight-hours (from Figure 80) are shown.

In Figure 81 the cumulative failure rate versus the cumulative fleet flight-hours is plotted on log-log paper -- the same format Duane used in his reliability growth paper [26]. Figure 75 indicates that the failure rate remained approximately constant at about 0.5 for the first 1,000 hours and then improved after that time. The last two points, reflecting the failure rates of the nine production aircraft and five confirmatory aircraft, lower the cumulative failure rate considerably from that of the prototype aircraft. Possibly, the failure reporting for these production aircraft was not as complete as for the earlier aircraft. However, if we accept the final point as valid and put a trend line from it through the 1,000-hour point, we obtain a rate of growth corresponding in the Duane formulation to $\alpha = 0.35$, which is the maximum α that could be ascribed to these data. It should be remembered that the failure rates of Figure 81 are for only four of the seven subsystems of the aircraft. Table 42 presents the ratios of the numbers of failures for the other three subsystems to those of the four subsystems of Figure 81. Table 42 indicates that the failure rates of Figure 75 should be multiplied by approximately (1 + .29 + .06 + .12 =) 1.47 to obtain the failure rates for the complete aircraft. Accordingly, the cumulative failure rate for the complete aircraft would be about 0.74 for the first 1,000 hours; and then it would reduce to approximately 0.24 at 27,000 hours.

In Figure 82, the cumulative removal rate is plotted versus the cumulative fleet flight-hours. Here, apparently, there was reliability growth over the entire period. As in the case of failure rate, the last point (reflecting the removal rate of the five confirmatory aircraft) lowers the cumulative removal

OH-6A CUMULATIVE FAILURE RATE VERSUS CUMULATIVE FLIGHT-HOURS Figure 81.

RATIOS OF FAILURES OF POWER PLANT (INCLUDING GFE), COMMUNICATIONS AND WEAPON SYSTEMS TO TOTAL OF ROTORS, AIRFRAME, TRANSMISSIONS AND DRIVES, AND INSTRUMENTS AND ELECTRICAL Table 42.

		Number of	Failures			Ratio	
Aircraft	Power Plant (Including GFE)	Communi- cations	Weapon Systems	Four Other Subsystems	Power Plant (Including GFE)	Communi- cations	Weapon Systems
Prototype No. 3	32	٣	r~	86	.36	.03	٠0:
Prototype No. 5	8	10	1	342	.24	.03	;
Prototype No. 6	1	1	1	211	1	İ	1
Prototype No. 8	24	æ	1	06	.27	60.	:
R&M Aircraft	-	ŀ	1	324	1	ł	!
Five Confirmatory Aircraft	238	65	166	731	.33	60.	.23
Nine Production Aircraft Average	29	ł	1	344	<u>53.</u>	: %	1 2.

OH-6A CUMULATIVE REMOVAL RATE VERSUS CUMULATIVE FLIGHT-HOURS Figure 82.

rate considerably from that of the earlier aircraft. However, if we accept the final point as valid and put a trend line from it to the initial point, we obtain a rate of growth corresponding in the Duane formulation to $\alpha = 0.26$, which is the maximum α that could be ascribed to these data. The removal rates of Figure 82 include all major components for the complete aircraft.

C. BELL

Bell Helicopter Company has been conducting a study of helicopter reliability growth for the Eustis Directorate, U.S. Army Air Mobility Research and Development Laboratory, Ft. Eustis, Virginia, under Contract DAAJ02-73-0097. A preliminary (and unapproved) report [27] has been prepared. The report analyzes the reliability growth characteristics of the development and early production of UH-1D, AH-1G, and OH-58A helicopters. The results indicate that, depending on the reliability-program effort planned for the design phase, the MTBF at 100 flight-hours was between 20 and 30 percent of the MTBF for the mature production aircraft. It sould be noted that these three helicopter programs were derivatives of earlier programs and that these results may not be representative of a completely new helicopter program.

It must be stressed that these findings are preliminary and may be changed as a result of further analysis. The final approved version of the Bell report is expected to be available in the third quarter of 1975. Ft. Eustis technical direction is being provided by Mr. V. W. Wellner (the Contracting Officer's Technical Representative) and Mr. T. L. House (of the Military Operations Technology Division).

Time Between Overhaul (TBO). Figure 83 (taken directly from a Bell Helicopter paper [28]) shows the progression in TBOs for the H-13 and HU-1A helicopter programs. Both show

surce: Reference [28].

igure 83. HU-1A AND H-13 (MODEL 47) FLIGHT AND CALENDAR TIMES TO INCREASE TBO

both in this reliability measure, with the more recent (HU-1A) bornam showing a faster rate of TBO growth in terms of both light time and calendar time. Since overhaul of major comments is relatively costly, growth in TBO is important in lucing total maintenance costs. Of course, not every unit to the its nominal TBO; hence, a more important reliability is the actual MTBO.

SIKORSKY

Part C of Volume 2 presents R&M data (obtained under subtract from Sikorsky Aircraft) for the H-53 and H-54 series nelicopters. Sikorsky was not able to locate a significant ant of time-series R&M data for any of their earlier promas. The H-53 and H-54 data consisted mainly of quarterly

R&M reports prepared under Navy and Army contracts. Because of the bulk of these reports (References [29] - [34]), only the most interesting sections of the final quarterly reports of the CH-53 Readiness Program series and the CH-54A Operations Reliability/Engineering Program series are presented in Volume 2. R&M data from these reports have been extracted (and are discussed below) for the two basic types.

1. S-64/CH-54A/CH-54B

The commercial S-64 was developed as a company project by Sikorsky and started flying in mid-1962. A military derivative, the CH-54A, was then sold to the Army and started flying about April 1964.

In November 1968, Sikorsky announced that it had received an Army contract to increase the payload capacity of the CH-54 from 10 to 12.5 tons. The 12.5-ton-payload version was designated the CH-54B. The contract called for a number of design improvements to the engine, gearbox, rotor head, and structure; altitude performance and hot-weather operational capability were also to be improved. The original JFTD12-4A engines were replaced by two Pratt & Whitney JFTD12-5As, each rated at 4,800 hp, and a gearbox capable of receiving 7,900 hp from the two engines was introduced. Single-engine performance was increased, since the new gearbox receives 4,800 hp from one engine, compared with 4,050 hp on the CH-54A. A new rotor system was also introduced, utilizing a high-lift rotor blade with a chord some 2.5 inches greater than that of the blade used formerly. Other changes included the provision of dual wheels on the main landing gear, an improved automatic flight-control system, and some general structural strengthening throughout the aircraft. Gross weight was increased from 42,000 to 47,000 pounds [35]. The CH-54B started flying in 1969. Cumulative flight-hours for the S-64/ CH-54A/CH-54B family of aircraft are shown in Figure 84.

ä

, ja

Figure 84. S-64/CH-54A/CH-54B CUMULATIVE FLIGHT-HOURS

Sections I.A.2, I.A.5, I.A.6, and II.A.1 include CH-54 service-reported R&M data. In addition to these data, Tables 43 and 44 present data for a number of R&M measures extracted from the quarterly R&M reports for the CH-54A (Ref. [33]) and the CH-54B (Ref. [34]). The quarters covered by the reports are shown in the first column of both Table 43 and Table 44. All the R&M measures of Tables 43 and 44 are cumulative for the CH-54A and the CH-54B (they start anew for the CH-54B) and are discussed below.

a. <u>Total Reliability</u>

Total reliability is defined as the probability of no failure during a one-hour mission. This category applies to all classes of failure, regardless of degree of severity, and includes aborts, downs, minors, and malfunctions with no effect. The CH-54A total reliability worsened over time (from 0.848 to 0.785); for the CH-54B, it remained approximately constant but was somewhat worse than it was for the CH-54A.

b. Mission Reliability

Mission reliability is defined as the probability that an aircraft will experience no mission-aborting failure in a one-hour mission. For the CH-54A, the mission reliability improved slightly, while for the CH-54B it remained approximately constant and was about the same as it was for the CH-54A.

c. Active MMH/FH

Active MMH/FH for the CH-54A increased during its first year of operation and then remained approximately constant, at about 6.5 MMH/FH. This type of pattern is often found where new air-craft enter service and operate for an initial period with lower than the steady-state MMH/FH. The active MMH/FH for the CH-54B decreased from the first to the second quarter reported but then

CH-54A AND CH-54B CUMULATIVE R/M MEASURES Table 43.

_	13/H	431	(hours)	13.							¥.	BR and	MTBR and TBO (hours)	ours)								
	NH PALI	nol1474 [ide[it	- l Saunti	noi 24	Me in- Rotor Head	÷ 5 0	APP	5	Tail- Rotor 8144e		Main- Rotor Danger		Rein- Reter	- 5 5	Turbine	36	Inter- mediate Sear Box		233		201	= 3
a y	γoγ	do	* ;		MT83	180	MTBR	780 MT	2	180	MTBR	160	MT58	180	MT 8.R	180	#1 BR	180	#1.E	186	MTBE	2
1								-	-	-												
	6.0	:	3.06	:	:	:	;			 ;	:	:	;		:	;	:	;	:	;	:	:
28	•	0.64	6.03	52.3	330	375	311	200	029		•	;	2.970	5.000	;	600	916	1.200	360	90%	720	2
983	5.5	53.7	6.00	56.7	323	375	282	200	583	:		:	3.640	5,000	384	900	299	1,200	38,	8	3	2
985	5.7	54.3	5.64	₹.99	335	375	312	200	909	-	862.79	:	3.900	5.000	442	909	976	1.200	565	750	*	3
985	7.9	49.8	5.45	64.6	345	375	310	200	785		47,677	;	4.910	5.000	*7.	909	1,040	1.200	610	750	360	3
986	9.9	48.8	6.90	85.5	342	375	300	200	858		30,519	1	4,330	5.000	620	900	3.070	3.200	663	90	8	2
986	<u>~</u>	6.8	4.75	71.2	309	400	223	200	363	;	398	\$00	1,369	5.000	531	300	\$ \$	1.200	£32	202	539	ž
985	-	5.05	4.12	68.2	313	400	249	200	381	;	397	007	1.375	5.000	503	900	931	1.200	554	908	512	2
3		\$2.8	4.20	69.3	305	200	276	₹36	328		386	\$00	1,236	5.600	198	100	\$25	1,200	524	90	533	Š
987	•	54.1	4.12	76.6	322	400	309	500	374	:	391	007	1.457	5,000	476	600	8	1,200	260	908	545	-
986	•	54.3	4.12	80.1	162	8	31	200	345	;	395	409	1.017	5.000	999	630	873	1,200	=	800	989	3
986	12.8	46.9	2.78	70.2		200	70	200	:		318	400	:	;	467	١.000	•	1,200	273	1.000	•	3
985	•	38.6	3.32	65.8	9	200g	112	500	;	;		4004	;	:	\$25	900	•	2005	222	280c	•	3
ĩ	~	48.7	3.06	51.3	380	200p	88	\$00°	 :	 ;	745	4004	;	:	535	800		\$00\$	623	2005	•	3
979		51.3	2.76	47.5	439	200g	66	200		;	156	400	;	:	582	800	•	506	650	300g	•	Š
985	_	54.6	3.18	64.3		2009		500	;	:	770	400	:	;	7.5	800	•	2005	33.	300c	•	3
38	7.7	53.3	3.12	67.9	£83	2005	342	200		:	755	400	:	:	25	909	•	200	929	590 ₅	1	3
963		53.3	3.01	28	£2.	2005	=======================================	5004		;	619	400	:	:	550	300	5.478	500	637	\$00¢	•	=
200	7.8	48.4	2.93	19:4	:	\$00g	165	200		:	583	400	:	:	240	800	259.9	260	639	\$80¢	•	5
984	7.5	50.6	2.85	63.8	83	200g	176	200	:	 -	195	400	;	:	512	008	7.405	28	=======================================	2005	•	2
985		51.1	2.90	2.89	151	\$00g	189	200		;	361	4000	:	:	519	900	8.112	\$005	===	3005	٠	5
986	7.5	50.1	2.86	7.2	586	0005	189	200	:		1.407	\$00¢	:	!	208	800	1,119	200	Ī	34529	,	3
366	7.3	50.1	2.83	12.2	576	2000	176	200	070	630	36.7	P000			413	000	1 198	-	-	4		5

And on condition.

And 800 hours.

Cand 1.000 hours.

And 7.200 hours.

And 1.200 hours.

CH-54A AND CH-54B MAJOR SYSTEMS CUMULATIVE TOTAL RELIABILITY (ALL FAILURES) Table 44.

	sanomunasni		166.9	176.9	111.0	88.3	108.2	76.1	54.8	52.2	52.5	53.2		31.2	47.0	33.0	29.4	31.1	34.6	32.8	31.5	33.0	33.3	32.1	31.3
	Automatic Flight- Control System			412.8	311.6	233.7	317.9	226.1	\$02.4	200.5	206.6	206.9		140.3	59.8	42.0	1.0	48.9	65.3	43.8	#.4	46.0	47.7	46.2	45.6
	-soinumunica- enois	:	81.9	73.4	69.2	67.9	88.5	58.8	57.5	59.8	63.4	65.5		56.1	62.7	66.0	56.6	67.9	68.6	66.0	6.59	64.4	62.4	59.4	58.1
	notzaętvaN	;	2,170.1	1.061.4	400.6	397.3	508.6	339.1	270.4	279.0	275.9	282.3		140.3	657.8	369.4	264.1	174.6	174.3	166.0	170.6	161.0	159.1	151.7	150.4
	-dainnu7 agai	:	149.7	140.2	130.4	126.1	171.0	113.6	94.1	92.3	93.0	93.4		;	:	<u> </u>	:	:	;	;	;	;	:	;	:
	Fuel	ţ	620.0	437.0	415.4	418.2	549.9	2.162	217.1	210.1	195.5	197.5		280.6	54.8	73.9	72.0	96.5	116.1	130.4	130.4	142.4	124.8	128.7	131.0
urs)	4ydraulics	;	47.2	55.4	56.9	62.6	80.4	64.8	54.7	54.1	56.3	57.4		46.8	45.4	39.3	39.6	50.2	48.7	48.5	50.8	52.2	52.3	53.1	56.6
MTBF (hours	Electrical	:	98.6	140.2	136.8	137.0	173.9	134.9	113.5	110.4	108.4	107.9		40.1	62.7	54.3	55.3	70.5	55.9	52.2	48.9	45.2	# . 1	41.2	41.5
*	AnsilixuA Power Jasiq	!	114.2	114.3	105.8	91.9	118.3	95.0	85.2	84.1	87.7	89.2		1.95	73.1	8.2S	51.7	65.5	64.7	57.7	\$6.4	59.7	67.0	64.4	63.3
	- 2ns v T no izzim	:	45.7	53.1	45.8	43.9	53.7	35.2	31.4	30.6	31.0	30.9		16.5	25.8	25.7	24.8	29.1	29.0	27.5	25.9	25.1	26.3	2.92	26.1
	Power		30.6	28.9	28.5	26.9	34.7	23.7	21.7	22.0	21.8	21.8		12.8	14.5	15.5	14.1	15.7	15.2	15.4	16.3	16.4	17.0	16.7	16.5
	Actors and Blades	;	33.9	25.5	32.4	33.6	\$.0\$	28.0	26.4	27.7	29.5	29.8		35.1	45.4	43.0	41.7	46.4	46.2	40.0	33.8	29.3	28.5	28.0	27.1
	Mechanical Flight. Controls	;	255.3	464.3	361.8	338.1	383.9	254.3	177.1	167.7	139.7	133.7		280.6	219.3	202.5	264.1	333.3	282.9	260.9	166.3	157.6	150.2	157.3	117.5
	6ulbne.l	;	310.0	161.5	3:3.6	135.8	186.6	116.3	83.3	82.7	80.4	80.9		46.8	101.2	84.0	54.0	61.1	57.3	51.7	\$0.4	43.3	*:1	43.4	43.7
	smaniniA.	;	188.7	247.7	167.4	172.7	216.4	127.2	98.5	89.4	75.7	71.2		70.2	54.8	52.8	61.0	47.6	46.2	\$5.3	46.5	42.1	45.3	47.5	48.8
	Total Stemonia	3.06	6.05	6.00	5.64	5.45	6.90	4.75	4.12	4.10	4.12	4.12		2.78	3.32	3.06	•	3.18	3.12	3.01	2.93	2.85	2.90	2.86	• • 1
	Querter	1/68	2/68	3/68	4/68	1/69	5/69	3/69	69/1	1/70	2/10	3/70	C-54B	2/71	3/71	4/73	1/72	2/12	3/72	4/72	1/73	2/73	3/73	4/73	1/1

remained approximately constant—at 7.4, a level moderately higher than it was for the CH-54A.

d. Operational Availability

Operational availability depends not only on the intrinsic R&M characteristics of the aircraft but also on the level of maintenance personnel, equipment, and spare parts available to maintain the aircraft. Hence, operational availability is an imperfect measure of R&M characteristics; nevertheless, differences in R&M characteristics are generally reflected in operational availability rates.

Operational availability of the CH-54A increased initially (from the second to the third quarter of 1968) and then remained approximately constant, at about 52 percent. For the CH-54B, it increased over the first year of operation and then remained approximately constant at about 51 percent--about the same rate as for the CH-54A.

e. MTBF (All Failures)

The next column of Table 43 shows MTBF for all failures for the complete aircraft. This column is repeated in Table 44, which also shows the breakdown of MTBF for most of the aircraft 3.2 ems. For the total aircraft, the MTBF for the CH-54A improved (increased) from the first to the second quarter of 1968 and then worsened (decreased), from about 6.0 to 4.1 hours. For the CH-54B, it improved from the second to the third quarter of 1971 and then worsened, from about 3.3 to 2.8 hours—a rate andierably worse than that of the CH-54A. The MTBFs for the major systems shown in Table 44 generally follow the trend of the tital aircraft; in most cases, there is a worsening them starting with the second quarter reported for each aircraft. For the 36-54A, 13 of the 15 systems show a worsening them, while the other two remain approximately constant.

For the CH-54B, six of the 14 systems show a worsening trend, five remain approximately constant, and three show an improvement in MTBF. At the end of the reporting period for each aircraft, 12 of the 14 systems showed a worse MTBF on the CH-54B than on the CH-54A; the other two systems had about the same MTBF on both aircraft. In general, the MTBFs for the total aircraft and for the individual systems worsened on both the CH-54A and the CH-54B, and the CH-54B was worse than the CH-54A.

f. MTBF (Mission Aborts)

The next column of Table 43 shows MTBF for those failures of such a nature that they result in a mission abort. For this class of failures, the CH-54A showed improvement (from about 54 to 80 hours) and the CH-54B improved slightly (from about 65 to 72 hours, a level slightly worse than for the CH-54A). The MTBFs for individual systems were not extracted as they were in Table 44 for all failures. They would probably show, in general, the same improvement trends as noted above for the total aircraft. The trends for all failures are probably more reliable than the trends for mission-aborting types of failures, because subjective judgment is involved in determining which failures are serious enough to result in a mission abort.

It is interesting to note that the MTBF for all failures worsened for both aircraft, while the MTBF for mission-atort-type failures improved for both aircraft--which would indicate that action was taken to correct the more serious type of failures (those causing mission aborts) but that the more minor types of failures were relatively ignored and increased in frequency as the fleets aged.

g. MTBR and TBO

The final section of Table 43 shows MTBR and TBO for a number of major components. These are the types of components

that are removed from the aircraft and overhauled either when they fail or at a specified time (TBO).

Main Rotor Head. The MTBR for the CH-54A main-rotor head worsened slightly, from about 330 to 291 hours. At the same time, the TBO was increased from 375 to 400 hours. Table 43 shows an infinite MTBR for the CH-54B main-rotor head during the first two quarters—which simply indicates that no removals occurred during those two quarters. Starting with the third quarter reported, the MTBR for the CH-54B improved from about 400 to 580 hours, considerably better than the experience of the CH-54A. The TBO was increased to 500 and 800 hours for two different models of the main-rotor head, both being operated simultaneously.

Auxiliary Power Plant (APP) Clutch. The MTBR for the CH-54A APP clutch remained approximately constant, at about 311 hours; its TBO was constant, at 500 hours. The MTBR for the CH-54B improved from about 100 to 180 hours, but was considerably worse than that of the CH-54A. In simultaneous service use on the CH-54B were two models, one of which had a TBO of 500 hours and the other of which had no TBO (replaced "On Condition").

Tail-Rotor Blade. The MTBR for the CH-54A tail-rotor blade wordened, from about 600 to about 350 hours; no TBO was shown for this item. For the CH-64B, the MTBR was reported only for the final quarter. The MTBR of 940 hours was almost three times better then that for the CH-54A. The corresponding TBO was 1,600 hours.

Find connects foregoes, a commonent in shown with the or more TBOD at the common time; treate Thus are equivalented with different models of the sem— of section in the remarked at the semble time.

Main-Rotor Damper. The MTBRs for the CH-54A main-rotor damper from the fourth quarter of 1968 to the second quarter of 1969 are probably wrong, since the MTBRs are greater than the total fleet flight-hours (see Figure 84, above). In the third quarter of 1969, the total MTBR dropped to 398 hours and then remained approximately constant (at about 395 hours) for the next five quarters. During this period, its TBO was 400 hours. The MTBR figures for the CH-54B also look questionable; they jumped from 561 hours in the third quarter of 1973 to 1,407 hours in the fourth quarter of 1973. However, its level of MTBR appears improved over that of the CH-54A--at least for the latter's last five quarters. The TBOs for the CH-54B were 400 and 800 hours through the third quarter of 1973 and 400 and 7,200 hours for the last two quarters reported.

Main-Rotor Blade. The MTBR for the CH-54A appears questionable; it dropped from 4,110 in the second quarter of 1969 to 1,369 in the third quarter of 1969. After that large questionable drop, its MTBR worsened, from about 1,370 to 1,017 hours. Its TBO throughout was 5,000 hours. The MTBR for the CH-54B was reported only for the final quarter; at 1,888 hours, it was considerably improved over the final MTBR of the CH-54A, while its TBO had been reduced to 2,500 hours—one half that for the CH-54A.

Turbine Engine. The MTBR for the CH-54A remained approximately constant (at about 470 hours), while its TBO increased from 600 to 800 hours. For the CH-54B, the MTBR worsened slightly (from about 540 to 510 hours), but was slightly better than that of the CH-54A. Its TBO increased to 1,000 hours in the first quarter reported but then dropped to 800 hours and remained there throughout the reporting period.

Best Available Copy

Intermediate Gear Box. The MTBR for the CH-54A remained approximately constant at about 900 hours; the TBO also remained constant at 1,200 hours. The MTBR for the CH-54B looks questionable because of the sharp drop between the third and the fourth quarter of 1973. However, the relatively low numbers reported in the last two quarters still showed improvement over that of the CH-54A. For the first ten quarters, the TBOs were 500 hours; for the last two quarters, they were 500 and 1,200 hours.

Main Gear Box. The MTBR for the main gear box of the CH-54A worsened slightly (from about 550 to about 450 hours). However, over this same period of time, the TBO was increased in two steps (from 500 to 800 hours). The MTBR for the CH-54B improved from 400 to 547 hours, a level slightly better than that of the CH-54A. Several models of the main gear box were in service, with TBOs varying from 250 to 800 hours.

Tail-Rotor Head. The MTBR for the CH-54A worsened (from about 700 to 550 hours); its TBO remained constant (at 800 hours). No removals were recorded for the CH-54B, even though the TBO remained at 800 hours. The MTBR reporting for the CH-54B is probably in error.

The MTBR and TBO trends are summarized in Table 45. As can be seen by the totals (for the three types of trends) at the bottom of the table, the results are mixed. For the CH-54A, the MTBR trends were generally worsening; all nine components either worsened or remained constant. On the other hand, the MTBR trends for the CH-54B generally improved; three improved, while only one worsened. Further, at the end of the reporting period the each already, the CH-54B components were improved relative to the chart the CH-54A in seven of the eight cases for which rate were available for a spanison. Any overall evaluation than a CH-54B (haber in these interes is difficult to make; with

Best Available Copy

Table 45. MTBR AND TBO TRENDS FOR CH-54A AND CH-54B COMPONENTS

	CH	-54A	CH-	54 B	CH-54B R to CH	
Component	MTBR	TB0	MTBR	TBO 3	MTBR	TB0
Main-Rotor Head	W	I	I	I		1
APP Clutch	C	C	1	C	W	I
Tail-Rotor Blade	W	-	-	_	I	-
Main-Rotor Damper	С	W	_	1	I	I
Main-Rotor Blade	W	С	-	-	· I	W .
Turbine Engine	С	I	W	W	I	С
Intermediate Gear Box	C	С	-	W	I .	W
Main Gear Box	. W	I	I	_	I	-
Tail-Rotor Head	W	-	-	-	•	-
Totals W		ו	1	2	1	2
	: 4	3	0 3	1 2	0 7	3

Key: W = worsening trend;

C = constant; and

I = improving trend.

that caveat, we will conclude that MTBRs tend to worsen for the first few years of service (the CH-54A period) and then improve with the introduction of a later model of the aircraft (the CH-54B period).

TBDs in general tend to increase, but not as uniformly as one might expect. In the case of the CH-54A, three increased while one was reduced; for the CH-54B, the same number (two) increased as were reduced.

The reprelation between MTBRs and TBOs is much weaker than the might expect. In the case of the CH-54A, all the MTBRs we record to remained constant, while six of the seven TBOs increases or remained constant. On the other hand, the MTBRs of the CH-color improved relatively more than the TBOs. The lesson

to be learned from this analysis is that increasing TBOs should not be assumed automatically to reflect improved MTBRs.

h. Summary of R&M Trends

The trends of the eight R&M measures (presented above) for the CH-54A and CH-54B are summarized in Table 46, which indicates that there were about the same number of worsening trends (8 total) as there were improving trends (7 total). Hence, without any weighting of relative importance, the data indicate an overall approximately constant level of R&M measures for the CH-54A/B family of aircraft.

A crude weighting of the R&M measures of Table 46 can be accomplished by eliminating the less important measures and the measures that are redundant. Based on these criteria, the following four measures could be eliminated: (1) operational availability, because it depends on many factors other than intrinsic R&M characteristics; (2) MTBF (All Failures) and (3) MTBF (Mission Aborts), because they are reflected in total and mission reliability; and (4) TBO, because overhaul costs are driven by MTBR, not TBO. If these four R&M measures are dropped, the results are essentially the same as before: there were still about the same number of worsening trends (4 total) as there were improving trends (3 total)—again indicating an overall approximately constant level of R&W measures for the CH-54A/B family of aircraft.

Table 46. SUMMARY OF CH-54A AND CH-54B R&M TRENDS

R&M Measure	CH-54A	CH-54B	CH-54B Relative to CH-54A
Total Reliability	W	C	
Mission Reliability	I	C	C
Active MMH/FH	С	C	W (1)
Operational Availability	C	C	C
MTBF (All Failures)	W	W	W
MTBF (Mission Aborts)	I	Ī	W The second
MTBR	W	·	I
ТВО	I	С	I
Totals W: C: I:	3 2 3	1 5 2	4 2 2

Key: W = worsening trend;

C = constant; and

I = improving trend.

2. CH-53/RH-53/HH-53

The CH-53A, the first of the H-53 series, was developed for the Marine Corps and flew first in October 1964; deliveries began in mid-1966. In September 1966, the Air Force ordered eight HH-53Bs; the first flight was in March 1967, and deliveries began in June 1967. The HH-53C, an improved version of the HH-53B, was first delivered to the Air Force in August 1968. A total of 66 HH-53B/Cs were built. The CH-53D, an improved version of the CH-53A for the Marine Corps, was first delivered in March 1969. The last CH-53D (the 265th CH-53 built) was delivered in January 1972. In early 1971, the Navy borrowed 15 H-53As to form the first helicopter mine countermeasures (MCM) aquairon. The RH-53D(MCM) was flown first in October 1972, and reliveries began in September 1973. In addition to these U.S. milliarry versions of the H-53, a total of 153 CH-53Gs are being

produced for the German armed forces; the first delivery of this version was in March 1969. There have also been eight CH-53s delivered to Israel and two to Austria [25]. Cumulative flight-hours for the H-53 family of aircraft are shown in Figure 85.

Sections I.B.5, I.C, and II.A.2 include H-53 service-reported R&M data. In addition to these data, we obtained data from Sikorsky on abort rates and MTBRs for major components.

a. Abort Rates

Figure 86, taken directly from a Sikorsky report, shows the CH-53A/D abort rate (in aborts per hour) versus accumulated flight-hours. Figure 87, from another Sikorsky report, shows in greater detail the abort-failure trend for the first 600 flight-hours. Figure 88 shows in more detail the data points for the last segment of Figure 86 (covering the period October 1969 to June 1971); in addition, it shows from mid-1971 to mid-1973 the abort rate for the 15 CH-53As operated by the Navy as MCM helicopters.

Figure 86 indicates an abort rate per hour of about 0.28 at 100 flight-hours, while Figure 87 indicates a rate of about 0.22 at 100 hours (the slope of the curve at 100 hours). In either case, there was a marked decrease in abort rate from 0.22-0.28 at 100 hours to about 0.07 when the aircraft was introduced into field service (after about 5,000 flight-hours). The field rate dropped to about 0.03 after 40,000 flight-hours, but then rose to about 0.04 at 100,000 to 150,000 flight-hours. Figure 88 indicates that the abort rate remained at about 0.04 through the end of 1972, but then worsened markedly during the first half of 1973, to about 0.07 (but this is only for 15 RH-53s). This higher abort rate could have resulted from a more severe operating environment (MCM) than that of the Marine Corps' heavy-transport mission. Ignoring the last two data points of Figure 88, the field-abort rate showed a moderate

Figure 85. CH-53/RH-53/HH-53 CUMULATIVE FLIGHT-HOURS

CH-53A/D ABORT RATE (EXPERIENCE VERSUS PREDICTED) Figure 86.

1965 CALENDAR PERIOD FOR DATA ACCUMULATION

SOURCE: Reference [29, 4th Report] .

Figure 87. MISSION-ABORT FAILURE TREND

SOURCES: To mid-1971 - Reference [31, 8th Report].

After mid-1971 - Reference [32, 1st Report].

2- 27-75-8

Figure 88. CH-53A/D AND CH-53A(MCM) ABORT RATES

improvement (from 0.07 to 0.04) following introduction into service.

It is interesting to note that there was an increase in abort rate every time the helicopter entered a new operating environment; these increases were probably due to the initial learning period of the new operating personnel. In Figure 86, a "Predicted (Learning Curve)" has been drawn by Sikorsky through the various curve segments for the different operating phases. Note that the "Predicted (Learning Curve)" is lower than the actual rates achieved in field service.

In Figure 89, these curves have been replotted on log-log paper; also shown on this paper are the slopes representing different Duane α 's. As can be seen, depending on which parts of the curves are used, a wide range of α 's can be obtained. From the initial point of the "Observed (In plant)" segment to any point on the first "Observed (Field)" segment, the α 's lie in the range of 0.3-0.4.

CH-53A/D ABORT RATE VERSUS CUMULATIVE FLIGHT-HOURS Figure 89.

Figure 90 shows mission reliability for the CH-53A, CH-53D, and HH-53B/C, where mission reliability is defined as the probability that an aircraft will experience no mission-aborting failure in a 1.5-hour mission. Note that Figure 90 is based on a 1.5 hour mission, while Figures 86-88 are abort rates (aborts per flight=hour). The mission reliability can be computed from the abort rate by means of the formula $e^{-\lambda t}$, where λ is the abort rate and t is the length of the mission in hours. The time period of Figure 90 (fourth quarter of 1967 to third quarter of 1969) covers Figure 86's spon of accumulated flight-hours from about 25,000 to 85,000 flight-hours. Figure 86 indicates an approximately constant abort rate of about 0.14 over this period, while Figure 90 indicates an improving mission reliability. This difference is due to the fact that Figure 86 is based on "observed" (unadjusted) aborts while Figure 90 is based on adjusted aborts. The adjustment involves the elimination of aborts judged to be lie to causes other than the mechanical performance of the helicopter itself (see Volume 2, page 8-92, final paragraph). Page 1-93 of Volume 2 shows both observed and adjusted abort rates for the same basic data. Thi best observed abort rate for the H-53 is about 0.04, while its corresponding adjusted abort rate is about 0.025. However, even Figure 86 indicates an improvement from early field service (at about 5,000 flight-hours). Hence, we can conclude that the CH-53 piecroed about rate dropped from about 0.07 during early serview use to a stabilized level of about 0.04 after roughly 50,000 complative flight-hours.

b. MTBRs of Major Components

Table 47 presents aumalative MTBRs of major components for all TH-53A and CH-53D aircraft (including the 15 CH-53As loaned

The last three quarters of Figure 90 indicate a mission reliability of about 0.963 for the 1.5-hour mission; the corresponding about rate (per hour) would be 0.025.

SOURCE: Reference [30, 2nd Report, p. 7], 2-27-75-4

Figure 90. CH-53 AND HH-53 AIRCRAFT MISSION RELIABILITY

to the Navy for MCM use). The table overs the period from the end of 1967 (when cumulative flight-hours were about 29,000) through the periods noted (June 1970 to December 1973). There is a general trend of improvement in MTBR for these major components: 13 of the 14 showed improvement in MTBR; only the "Sleeve and Spindle" exhibited a worsening MTBR. In the last column of Table 47, the α 's for the Duane formulation [26] are presented. The average value of α for all 14 components was 0.23.

[Statistical data accrued from 1967 through the periods noted] CH-53A/D MAJOR COMPONENT MTBR (HOURS) Table 47.

Main Gear Box 416 502 491 492 499 495 497 497 501 520 525 Intermediate Gear Box 728 573 730 753 772 880 874 855 857 863 Accessory Gear Box 518 551 559 579 574 570 575 602 600 606 607 806 406	Component	6/70	3/71	11/9	9/71	12/71	6/72	9/72	12/72	3/73	6/73	9/73	12/73	ಶ
Box 728 £7.4 733 730 753 772 880 874 855 857 500 602 578 607 620 649 659 653 654 666 490 ^a 551 559 579 574 570 575 602 600 606 490 ^a 529 540 536 537 541 548 549 516 516 416 ^b 499 473 476 477 498 493 508 516 516 243 285 281 295 294 297 312 311 416 403 386 286 316 489 493 491 499 506 550 540 531 584	Main Gear Box	416	205	491	492	499	495	467	492	50)	520	525	829	.27
c 510 602 578 607 620 649 659 653 654 666 490 ^a 529 540 574 570 575 602 600 606 490 ^a 529 540 537 541 548 549 514 516 416 ^b 499 473 476 477 498 493 508 516 516 243 285 281 287 286 477 498 493 508 506 506 416 ^b 403 380 285 295 294 297 312 313 346 465 560 483 464 489 493 491 499 500 550 540 531 584 418 453 463 491 483 418	Intermediate Gear Box		223	733	730	753	772	088	874	855	857	863	885	.33
c 518 551 559 574 570 575 602 600 606 490 ^a 529 540 536 537 541 548 549 514 516 329 ^b 382 384 383 383 387 388 591 516 516 416 ^b 499 473 476 477 498 493 508 506 506 243 285 281 295 294 297 312 312 311 465 509 485 483 489 493 493 506 550 540 531 584 550 540 463 493 493 493 500 418 453 443 483 418 453 453 384	Tail Gear Box	200	209	578	209	620	649	629	653	654	999	695	693	.40
490 ^a 529 540 536 537 541 548 549 514 516 517 418 493 508 493 508 506<	Accessory Gear Box	518	551	559	579	574	920	575	209	009	909	909	623	32.
329 ^b 382 384 383 383 387 388 391 393 394 416 ^b 499 473 476 477 498 493 508 506 506 506 243 285 285 295 294 297 312 312 311 465 509 485 483 464 489 493 491 499 500 550 540 531 584 325 377 400 418 418 453 443 491 483 372 375 383 384 372 375 383 384 <t< th=""><th>Nose Gear Box</th><th>490g</th><th>529</th><th>540</th><th>536</th><th>537</th><th>541</th><th>248</th><th>549</th><th>514</th><th>516</th><th>525</th><th>539</th><th>60.</th></t<>	Nose Gear Box	490g	529	540	536	537	541	248	549	514	516	525	539	60.
416 ^b 499 473 476 477 498 493 508 506 506 243 285 281 295 294 297 312 313 391 403 380 286 316 328 329 340 343 311 465 509 485 483 464 489 491 499 500 550 540 531 584 <	Main-Rotor Head	329 ^b	382	384	383	383	387	388	391	393	394	386	397	.19
243 285 281 295 294 297 312 312 311 465 391 403 380 286 316 328 329 340 343 343 346 465 509 485 483 464 489 493 491 499 500 550 540 531 584 325 377 400 418 418 453 443 491 483 372 327 375 383 384	Swashplate	4160	499	473	476	477	498	493	208	909	206	206	205	æ.
indle 391 403 380 286 316 328 329 340 343 346 id 465 509 485 483 464 489 493 491 499 500 rvo 550 540 531 584	Main-Rotor Damper	243	285	281	295	295	294	297	312	312	311	307	307	.24
Id 465 509 485 483 464 489 493 491 499 500 rvo 550 540 531 584	Sleeve and Spindle	391	403	380	286	316	328	329	340	343	346	340	340	===
vo 550 540 531 584	Tail-Rotor Head	465	209	485	483	464	489	493	491	499	200	202	517	.16
325 377 400 418	Tail-Rotor Servo	250	540	531	584	;	ļ	1	!	1	!	1	!	.27
418 453 443 491 483 <t< th=""><th>Primary Servo</th><th>325</th><th>377</th><th>400</th><th>314</th><th>;</th><th>1</th><th>1</th><th>-</th><th> </th><th>1</th><th>!</th><th>1</th><th>.30</th></t<>	Primary Servo	325	377	400	314	;	1	1	-		1	!	1	.30
372 327 375 383 384	Main-Rotor Blades	418	453	443	491	483	1	1	!	!	1	!	!	.42
-	Tail-Rotor Blades	372	327	375	383	384	!	ŀ	;	;	!	:	:	75.

^aSame figure through December 1969.

^bSame figure through September 1969.

Sources: July 1970 - December 1971: Reference [31, 8th Report]; June 1972 - March 1973: Reference [32, 4th Report]; March 1973 - December 1973: Reference [32, 7th Report].

REFERENCES

September of the second section of the second

[1] The Army Maintenance Management System (TAMMS), TM-38-750, Headquarters, Department of the Army, Washington, D.C., November 1972.

The state of the second

- [2] OH-58 Management Summary Report, Army Aviation Systems Command, 16 January 1973.
- [3] AH-1G Management Summary Report, Army Aviation Systems Command, July 1972.
- [4] CH-54A Management Summary Report, Army Aviation Systems Command, 24 September 1973.
- [5] CH-47A Assessment and Comparative Fleet Evaluations, Army Aviation Systems Command, November 1974.
- [6] J. A. Gean and G. E. Knudsen, The Huey/Cobra M&R Field Program Results and Significance, Bell Helicopter Company, July 1970.
- [7] Bell Helicopter Company, Report 205-099-141.
- [8] SR 310-30-15, Organisation and Equipment Authorisation Tables Personnel, 15 April 1958.
- [9] AR 310-32, Organisation and Equipment Authorisation Tables Personnel, 7 February 1968 and 28 May 1968.
- [10] AR 570-2, Organization and Equipment Authorization Tables Personnel, issues dated 22 July 1969, 12 May 1971, and 23 March 1973.
- [11] FM 101-20, Field Manual United States Army Aviation Planning Manual, September 1971 and May 1973.
- [12] MIL-STD-721B, Definitions of Effectiveness Terms for Reliability, Maintainability, Human Factors, and Safety, 25 August 1965.
- [13] AFM 26-1, Manpower Policies, Procedures and Criteria.

- [14] Lockheed-California Company, AH-56A Reliability Data Report, 3 volumes, 21 February 1972.
- [15] J. Donelson, "Duane's Reliability Growth Model as a Non-homogeneous Poisson Process," 1974 (to appear in the open literature, 1975).
- [16] K. G. Rummel and H. J. M. Smith, Investigation and Analysis of Reliability and Maintainability Problems Associated With Army Aircraft Engines, Boeing Vertol Company Report, July 1973.
- [17] T58 and T64 extensions: Letter from L. E. Goodding (GE) to N. J. Asher (IDA), 18 April 1974.
- [18] T63 extension: Letter from A. R. Townsend (Allison) to N. J. Asher (IDA), 24 May 1974.
- [18A] Report No. 1628.5.15, U.S. Army T53 Reliability & Maintainability Evaluation Program, Avco Lycoming Division, November 1974.
 - [19] Report No. 1755.2.64, U.S. Army T55 Reliability & Maintainability Evaluation Program, Avco Lycoming Division, May 1972.
 - [20] Report No. 1755.2.88, U.S. Army T55 Reliability & Maintainability Evaluation Program, Avco Lycoming Division, April 1974.
 - [21] Report No. 1755.5.28, U.S. Army T55 Reliability & Maintainability Evaluation Program, Avco Lycoming Division, February 1974.
 - [22] Report No. 1628.5.12, U.S. Army T55 Reliability & Maintainability Evaluation Program, Avco Lycoming Division, February 1974.
 - [23] Prime Item Development Specifications for T700-GE-700
 Turboshaft Engine (Part 1), Aircraft Engine Group, General
 Electric Co., Lynn, Massachusetts, 11 December 1973.
 - [24] Jane's All the World's Aircraft, 1969-70.
 - [25] Jane's All the World's Airoraft, 1974~75.
 - [26] J. T. Duane, "Learning Curve Approach to Reliability Monitoring," *IEEE Transactions on Aerospace*, 2 (April 1964), 563-66.
- [27] Bell Helicopter Company, "Helicopter Reliability Growth Evaluation," by James V. W. Head, n.d.

- [28] J. A. Gean, "New Techniques for Helicopter Reliability Control," paper presented before the American Helicopter Society Seventeenth Annual National Forum, Washington, D.C., 3-5 May 1961.
- [29] Sikorsky Aircraft, CH-53 Recurring Reliability Reports, 4th (SER-65374), 7th and 8th (SER-65376), 12th (SER-65508), and 17th (SER-65570) Reports, 28 February 1966 to 30 September 1969.
- [30] Sikorsky Aircraft, Internal H-53 Reliability/Maintainability Reports, 1st (SER-65574) and 2nd (SER-65579) Reports, 23 January 1970 and 30 April 1970.
- [31] Sikorsky Aircraft, Quarterly CH-53 Readiness Reports, 1st (PS 65-K-1) through 8th (PS 65-K-3) Reports, 11 February 1970 through 31 December 1971.
- [32] Sikorsky Aircraft, Quarterly RH-53 Readiness Reports, 1st (PS 65-N-1) through 7th (PS 65-N-7) Reports, 30 June 1972 through 21 December 1973.
- [33] Sikorsky Aircraft, CH-54A Operations Reliability/Maintainability Engineering Program Quarterly Evaluation Report, SER-64276 Rev J (11th Quarterly Report, with cumulative data for 33-month period), 10 May 1968.
- [34] Sikorsky Aircraft, CH-54B Operations Reliability/Maintainability Engineering Program Quarterly Evaluation Report, SER-64344 (12th Quarterly Report, with cumulative data for 36-month period), 15 November 1971.
- [35] Jane's All the World's Aircraft, 1973-74.

APPENDIX A

CONTRACTUAL REQUIREMENTS FOR MEASURING MISSION AND SYSTEM RELIABILITY FOR THE AH~56A (CHEYENNE)

7.4.4 Mission Reliability Measurement

7.4.4.1 Mission Reliability Measurement Test Schedule - Measurement of mission reliability shall be accomplished utilizing all data derived from contractor and Government flight test programs. A measure of achieved reliability will be available with status reports provided as specified in the contract. All component time and failure data will be utilized to provide the broadest possible statistical base for conclusions.

7.4.4.2 Mission Success and Failure Criteria - For purposes of measuring AAFSS [Advanced Aerial Fire Support System, the AH-56A] reliability, mission reliability is defined as the probability that the AAFSS will successfully complete a mission of designated type and profile under specified flight conditions without any fault in any subsystem/component required for the mission, given that the AAFSS is operationally ready at the time of mission assignment. Failures and malfunctions of minor or non-essential components which do not affect mission capability are not considered mission failures. Mission failures criteria applicable to measurement of AAFSS reliability are presented, but not limited to those in Table D.

TABLE D

MISSION FAILURE CRITERIA

SYSTEM/SUBSYSTEM

FAILURE CONDITIONS

A Aerial Vehicle

Airframe

Windshield failure to the extent that both pilot and copilot vision are obscured.

Inadvertent loss of canopy.

Loss of an external store required for mission.

Any structural failure to the basic airframe that requires precautionary landing.

Loss of an engine cowling, fairing, major access door, or cover.

Landing Gear

Failure of MLG to retract.

Failure to sustain MLG in the up position.

Failure to extend and lock MLG in the down position.

7.4.4.2 (Continued)

SYSTE	M/	SUB	SYS	TEM

FAILURE CONDITIONS

Power Plant and Related Systems

Less than 90 percent of installed

power available.

Engine caused forced shutdown.

Loss of engine control.

Failure to start.

Power Transmission

Loss of engine drive input power or failure of engine drive input section to provide to main rotor drive or tail rotor drive sections.

Loss of tail rotor power, or failure of tail rotor drive to provide normal driving power.

Individual loss of either main rotor drive power or accessory drive power.

Loss of ability to provide required lubrication in the engine or power train lubrication systems.

Rotors, Props, and Accessories

Loss of any one rotor blade or portion thereof.

Loss of pitch control function of forward propulsion propeller.

Hydraulics

Loss of hydraulic power to both Flight Control Hydraulic subsystems.

Instruments

Loss of BDHI or HSI.

Complete loss of attitude indications. Complete loss of airspeed indication.

Loss of both TIT indicators.

Loss of any two engine tach indicators.

Loss of both rotor tach indicators.

Electrical

Loss of more than 50 percent of AC

power.

Loss of two out of three TR units in the DC power subsystem.

Fuel

Loss of ability to provide required

fuel to engine.

7.4.4.2 (Continued)

SYSTEM/SUBSYSTEM FAILURE CONDITIONS

Flight Controls Inability of gyro to control main rotor blade pitch.

Inability to maintain functional control of the collective actuator.

Loss of cyclic control.

Inability to maintain control of the yaw actuator.

Inability of the yaw actuator to control tail rotor blade pitch.

Utility Loss of main rotor or anti-torque rotor, de-icing.

False fire warning.

Loss of engine inlet duct anti-icing/de-icing function.

Complete loss of lighting to primary flight instruments.

Auxiliary Fower Failure to start.

B Avionics

Communications Loss of both VHF/FM tactical RT functions.

Loss of both ICS control subsystems.

Loss of both Doppler Navigation and air mass sensing subsystems.

Loss of both heading and attitude reference (HARS).

Computer Central Loss of a single output function.

^ Fire Control

Pilot Sight Loss of pilot sight subsystem.

Swiveling Gunner Loss of gunner sight subsystem.
Station

Loss of azimuth tracking and inability to return to boresight stow position.

Loss of missile guidance function.

Controls & Displays Loss of missile control capability.

7.4.4.2 (Continued)

SYSTEM/SUBSYCTEM

FAILURE CONDITIONS

D Armament

XM-140 Jun	Any	inability	to	fire	upo	on command.
XM-52 Subsystem	Any	inability	1.0	fire	on	command.
XM-134 Gun	Any	inability	to	fire	on	command.
XM-53 Subsystem	Any	inability	to	fire	on	command.
XM-129 Grenade Launcher	Any	inability	to	fire	on	command.
XM-51 Subsystem	Any	inability	to	fire	on	eommand.
TOW Missile Subsystem	Any	inability	to	fire	on	command.

- 7.4.4.3 Chargeable Failures Failures will be included in the computation of mission reliability when one or more of the following conditions exist:
- a. Multiple independent (primary) failure conditions detected on the vehicle during measurement time will be individually chargeable.
- b. Involun'ary stoppage caused by an independent (primary) failure condition; or forced stoppage judged necessary by the pilot or crew to prevent or eliminate airframe or engine damage and/or personnel hazard.
- c. Failure condition as a result of fluid, fuel, or lubrication contamination where subsequent testing proves that the contamination levels are within the limits specified for use in the vehicle.
- d. Undiagnosed failure conditions where failure symptom was detected and verified in subsequent retesting at the bench test level but diagnosis and determination of the basic cause could not be established.
- e. Failure is induced in GFM by installation characteristics. Failure induced by such characteristic shall be chargeable to CFM reliability.
- 7.4.4.4 Non-Chargeable Failures Failures will be excluded from the mission reliability computation when one or more of the following conditions exist:

7.4.4.4 (Continued)

- a. The failure symptom detected at the vehicle cannot be duplicated during subsequent retest.
- b. The failure symptom is detected on the vehicle when time is not being recorded by the appropriate meters.
- c. The failure condition is a dependent (secondary) failure as a result of an independent (primary) failure.
- d. The failure is the result of damage caused by mishandling, abuse, or improper storage practices.
- e. The failure condition is a direct result of improper test procedures or test equipment or improper maintenance (maintenance not in accord with applicable technical manuals or other maintenance documents).
- f. Failure condition is the result of erroneous and/or ineffective rework of a previous failure condition.
- g. Failure consists of physical discrepancy which does not affect the functional performance of the vehicle subsystem.
- h. Failures detected during flight which are the result of a misalignment or maladjustment by ground maintenance personnel.
- i. Failures which result from fluid, fuel, or lubrication contamination introduced to the vehicle from external sources and subsequent testing proves that contamination levels are outside the limits of the applicable vehicle specifications.
- j. The failure condition occurred as a result of having been subjected to operational limits beyond applicable operation instructions.
- 7.4.4.5 Deduction of Failures Failures which have been analyzed as to cause, with an effective fix developed for implementation to preclude recurrence, will be deducted from the total chargeable failures.
- 7.4.4.6 Data Acquisition and Evaluation Process Two factors shall be utilized to measure achieved mission reliability; cumulative operating time, and net chargeable failures. Failure evaluation to determine net chargeable failures and cumulative time to be utilized in the measurement of mission reliability shall be performed, as required, by the Contractor.

7.4.5 System Reliability Measurement

- 7.4.5.1 System Reliability Measurement Test Schedule Measurement of system reliability shall be accomplished utilizing data derived from Contractor and Government flight test programs. A measure of achieved reliability will be available with the status reports provided as specified in the contract. All component time and failure data will be utilized to provide the broadest possible statistical base for conclusions.
 - 7.4.5.2 System Success and Failure Criteria For the purpose of measuring AAFSS reliability. System Reliability is defined as the probability that the AAFSS will successfully complete a mission assignment of designated type and profile under specified flight conditions without incurring a fault in any of its subsystems which would require unscheduled maintenance given that the AAFSS has been maintained in accordance with applicable instructions and is operationally ready at the time of mission assignment.
 - 7.4.5.3 Chargeable Failures Failures will be included in the computation of system reliability when one or more of the following conditions exist:
 - a. Multiple independent (primary) failure conditions detected on the vehicle during measurement time will be individually chargeable.
 - b. Involuntary stoppage caused by an independent (primary) failure condition; or forced stoppage judged necessary by the pilot or crew to prevent or eliminate airframe or engine damage and/or personnel hazard.
 - c. Failure condition as a result of fluid, fuel, or lubrication contamination where subsequent testing proves that the contamination levels are within the limits specified for use in the vehicle.
 - d. Undiagnosed failure conditions where failure symptom was detected and verified in subsequent retesting at the bench test level but diagnosis and determination of the basic cause could not be established.
 - e. Failure is induced in GFM by installation characteristics. Failure induced by such characteristic shall be chargeable to CFM reliability.

- 7.4.5.4 Nonchargeable Failures Failures will be excluded from the system reliability computation when one or more of the following conditions exist:
- a. The failure symptom detected at the vehicle cannot be duplicated during subsequent retest..
- b. The failure symptom is detected on the vehicle when time is not being recorded by the appropriate meters.
- c. The failure condition is a dependent (secondary) failure as a result of an independent (primary) failure.
- d. The failure is the result of damage caused by mishandling, abuse, or improper storage practices.
- e. The failure condition is a direct result of improper test procedures, test equipment or improper maintenance (maintenance not in accord with applicable technical manuals or other maintenance documents).
- f. Failure condition is the result of erroneous and/or ineffective rework of a previous failure condition.

Ţ.

8

N

- g. Failure consists of physical discrepancy which does not affect the functional performance of the vehicle subsystem.
- h. Failures detected during flight which are the result of a misalignment or maladjustment by ground maintenance personnel.
- i. Failures which result from fluid, fuel, or lubrication contamination introduced to the vehicle from external sources and subsequent testing proves that contamination levels are not within the limits of the applicable vehicle specification.
- j. The failure condition occurred as a result of having been subjected to operational limits beyond applicable operational instructions.
- 7.4.5.5 Deduction of Failures Failures which have been analyzed as to cause, with an effective fix developed for implementation to preclude recurrence, will be deducted from the total chargeable failures.
- 7.4.5.6 Data Acquisition and Evaluation Process Two factors shall be utilized to measure achieved system reliability: cumulative operating time, and net chargeable failures. Failure evaluation to determine net chargeable failures and sumulative time to be utilized in the measurement of system reliability shall be performed, as required, by the Contractor.

7.4.6 Weapon Subsystem Reliability Measurement

- 7.4.5.1 Weapon Subsystem Measurement Test Schedule Measurement of Weapon Subsystem reliability shall be accomplished by live firing in the aircraft both air and ground. All firing conducted during the entire flight test program both Contractor and Army, shall be used for this purpose to the extent possible.
- 7.4.6.2 Weapon Subsystem Success and Failure Criteria Weapon Subsystems reliability shall be expressed in terms of Mean Rounds to Stoppage (MRTS). For the purpose of measuring Weapons Subsystems reliability to the objectives of 6.1.4.3, the criteria given in Paragraph 7.4.4.2 shall apply.
- 7.4.5.3 Chargeable Failure Failures shall be included in the computation of weapon subsystem reliability when one or more of the following conditions exist:
- a. Multiple independent (primary) failure conditions detected on the vehicle during measurement time will be individually chargeable.
- b. Involuntary stoppage caused by an independent (primary) failure condition; or forced stoppage judged necessary by the pilot or crew to prevent or eliminate airframe or engine damage and/or personnel hazard.

.7

- c. Failure condition as a result of fluid, or lubrication contamination where subsequent testing proves that the contamination levels are within the limits specified for use in the vehicle.
- d. Undiagnosed failure conditions where failure symptom was detected and verified in subsequent necessing but diagnosis and determination of the basic cause could not be established.
- e. Failure is induced in GFM by installation characteristics. Failure induced by such characteristic shall be chargeable to CFM reliability.
- 7.4.6.4 Nonthanticula Tailures Tailures will be excluded from the weapon subsystem reliability computation when one or more of the following conditions exist:
- a. The failure symptom detected at the vehicle cannot be duplicated during subsequent retest.

7.4.6.4 (Continued)

¥.

- b. The failure symptom is detected on the vehicle when time is not being recorded by the appropriate meters.
- c. The failure condition is a dependent (secondary) failure as a result of an independent (primary) failure.
- d. The failure is the result of damage caused by mishandling, abuse or improper storage practices.
- e. The failure condition is a direct result of improper test procedures, test equipment or improper maintenance (main-tenance not in accord with applicable technical manuals or other maintenance documents).
- f. Failure condition is the result of erroneous and/or ineffective rework of a previous failure condition.
- g. Failure consists of physical discrepancy which does not affect the functional performance of the weapon subsystem.
- h. Failures detected during flight which are the result of a misalignment or maladjustment by ground maintenance personnel.
- i. Failures which result from fluid, or lubrication contamination introduced to the vehicle from external sources where subsequent testing proves that contamination levels are outside the limits of the applicable vehicle specification.
- j. The failure condition occurred as a result of having been subjected to operational limits beyond applicable operational instructions.
- 7.4.6.5 Deduction of Failures Failures which have been analyzed as to cause, with an effective fix developed for implementation to preclude recurrence, will be deducted from the total chargeable failures.
- 7.4.6.6 Data Acquisition and Evaluation Process Two factors shall be utilized to measure achieved mission reliability: cumulative operating time, cumulative rounds fired, and net chargeable failures. Failure evaluation to determine net chargeable failures and cumulative time and rounds fired to be utilized in the measurement of weapons subsystem reliability shall be performed, as required, by the Contractor.

APPENDIX B

CONTRACTUAL REQUIREMENTS FOR MEASURING RELIABILITY
FOR THE T700 ENGINE

- 3.40 Reliability. The engine shall achieve the specified reliability value of 1200 hours Specified Mean Time Between Failure based upon decision risks of 10 percent and a discrimination ratio of two to one. This value is subject to the failure definitions and exclusions specified in 3.40.3 and 3.40.4.
- 3.40.1 Engine Design Life. The engine shall have a design life of 5,000 hours, with an initial target of 1,500 engine operating hours MTBFRO (Mean Time Between Failure Requiring Overhaul) at completion of the Post Qualification Reliability Demonstration Test Program. The 1,500 hour MTBFRO is based on the criteria of "on condition" maintenance and the load spectrum below.

(a)	% INTERMEDIATE ENGINE POWER	% ENGINE LIFE AT THIS POWER
	100	15
	75	45
	55	25
	35	10
	IDLE	5

(b) Two start cycles per hour, with at least half of the starts made after the engine has cooled to ambient temperature.

The basic engine and all related components shall be designed for a minimum life of 5000 hours when operated at rated temperature levels according to the loading schedule of (a) above.

3.40.2 Engine Reliability Objectives. Reliability objectives to be reached at 17,000 engine operating hours of accumulated experience after qualification are shown below. These Mean Engine Operating Time Between Failure (MEOTEF) objectives shall not be degraded by more than 10 percent due to storage in approved storage container (without any maintenance or restoration) for a period not to exceed six calendar months.

Failure Classes	Engine MEOTBF (Hours)
I	1,250,000
1/11	303,000
I/II/III	6,300
I/II/III/IV	3,000
I/II/III/VV	1,800

3.40.3 Definitions.

- (a) Mean Time Between Failure (MTBF). The total engine operating time of a population of engines divided by the total number of relevant events of engine failure experienced within the population during the measurement interval.
- (b) Failure. Inability to perform required function within specified limits.
- (c) Failure Requiring Overhaul (FRO). Failures in which corrective maintenance is sufficiently extensive to be beyond the capability of the organizational or direct support level; i.e., best performed at depot level (typically this will include major lube system contamination cases, main engine bearing failures, etc.).

(d) Failure Classes:

- Class I Failures that result in destruction of an engine or loss of aircraft control or fire external to the engine.
- Class II Failures which result in In-Flight shutdown (i.e., unrecoverable power loss).
- Class III Failures which result in potential power losses completely or partially rectified by automatic or manual corrective action.
- Class IV Failures which result in power loss or no start.
- Class V Failure which requires unscheduled maintenance action.
- (e) <u>Power Loss</u>. Inability to obtain and/or sustain at least 90 percent of the desired power level.
- (f) Primary Failure. An independent failure, not as a result of another failure.
- (g) <u>Secondary Failure</u>. Any failure within the engine which was the result of some other failure.
- 3.40.4 Excluded Failures. The following exclusions apply in computation of the Reliability values stated in 3.40 and 3.40.2.

- (a) Failures resulting from errors of maintenance personnel.
- (b) Failures resulting from operating the engine beyond specification limits. Included failures are those operationally related failures for which engine provides integral protective devices (overspeed, overtemperature, hot starts).
 - (c) Failures resulting from airframe components.

The state of the s

4.

- (d) Failures to start if a successful start is accomplished without corrective maintenance action.
- (e) Reported operating malfunctions which cannot be verified by subsequent investigation, flight or ground test.
- (f) Multiple part removals and other maintenance actions performed upon the same engine following an initial failure requiring maintenance action will be counted as one failure against the engine.
- (g) Failures of equipment not furnished by the engine contractor.
- (h) Failures for which a corrective engine design change or an operational procedure change has been demonstrated, and approved by the Government, will be removed from the failure count, unless the events are identical to those for which corrective action was taken and it has been determined that the prescribed corrective action procedures have been utilized.