

DEVOIR SURVEILLE

Semestre: 2

Module : Théorie des langages et compilation

Enseignant(s): Équipe TLA Classe(s): 3A1...3A30 & 4SE

Documents non autorisés ; Calculatrice non autorisée ; Internet non autorisée

Date: --/03-04/2024; Heure --h--; Durée: 1h; Nombre de pages: 2

Exercice 1 : (7,5 pts)

On considère l'automate fini A défini par $A = \langle \Sigma, S, e_0, \delta, F \rangle$ avec :

• $\Sigma = \{a, b\}$: l'alphabet

• $S = \{1, 2, 3, 4, 5, 6, 7\}$: l'ensemble des états

• $e_0 = 1$: l'état initial

• $F = \{7\}$: l'ensemble des états finaux

• $\delta: S \times \Sigma \to S$: la fonction de transition définie par la table ci-contre :

1		
	a	b
1	2	-
2	3	-
3	4,5	7
4	4,5	7
5	-	6
6	4,5	7
7	-	-

- 1. Donner une représentation graphique de l'automate A. (1 pt)
- 2. Donner l'expression régulière E_A dénotant le langage L(A). (2 pts)
- 3. L'automate A est-il déterministe? Justifier. Si non, tracer l'automate déterministe Ap équivalent à A. (3 pts)
- 4. Donner l'expression régulière EA_D dénotant le langage $L(A_D)$. $^{(0,5\ pt)}$
- 5. Donner l'automate **B**, tel que $L(B) \cap L(A_D) = \emptyset$ et $L(B) \cup L(A_D) = \Sigma^*$ sur $\Sigma = \{a, b\}$. (1 pt)

Exercice 2: (6 pts)

Soit E_R , l'expression régulière suivante sur l'alphabet $\Sigma = \{a, b, c\}$: $a^*(bc^+|ca^*)$

- 1. En appliquant l'algorithme de *Thompson*, donner l'automate reconnaissant le langage décrit par l'expression E_R . (1,5 pts)
- 2. Construire, en précisant toutes les étapes, l'automate minimal équivalent. (4,5 pts)

Exercice 3 : (6,5 pts)

- 1. Donner les expressions régulières correspondantes aux langages suivants :
 - **a.** Le langage L₁ de tous les mots w construits sur $\{a, b\}$ dont la taille maximale est égale à deux. $^{(0,5 \text{ pt})}$
 - **b.** Le langage L_2 de tous les mots w construits sur $\{a, b\}$ contenant la séquence ab mais pas la séquence ba. (1,5 pt)
 - c. Le langage L3 de tous les mots w construits sur $\{a, b\}$ contenant au plus l'une des deux séquences ab ou ba. (1 pt)
- 2. Compléter le fichier de spécification *Flex* suivant pour construire un analyseur lexical reconnaissant les langages L₁, L₂ et L₃, permettant de retourner sur la console, à chaque identification d'un lexème, la chaine reconnue ainsi que la description correspondante. (1,5 pt)

- 3. Donner le résultat d'exécution de l'analyseur lexical sur les instructions suivantes : (2 pts)
 - a. bbaaabb
 - b. abbbbaaaa
 - c. bbababa
 - d. aaabaa

Bon Travail