

Introduction to TPOT (Automated Machine Learning in Python)

linkedin.com/in/rakhid16/github.com/rakhid16/

Juli 2017 - Sekarang

Maret 2018 - Sekarang

Oktober 2018 - Sekarang

Yang hendak dibahas :

- 1. TPOT Overview
- 2. Machine Learning Pipeline
- 3. Cara kerja TPOT
- 4. Genetic Algorithm 101
- 5. Instalasi TPOT
- 6. Cara menggunakan TPOT (menentukan *classifier* dan *regressor* terbaik)

TPOT Overview

- Digunakan untuk mengoptimalkan/menentukan algoritma pembelajaran mesin secara otomatis
- Memanfaatkan algoritma genetika(metaheuristik)
- Bekerja di atas library scikit-learn
- Dilatar belakangi oleh
- "Oke dataset'nya udah bersih algoritma pembelajaran mesin mana nih yang cocok?"
- Sangat mudah digunakan(*high level*)

Machine Learning Pipeline

Cara kerja TPOT

Genetic Algorithm 101

Instalasi TPOT

Install python (windows)

Install pip (windows, linux, mac)

pip install tpot atau pip3 install tpot

Cara menggunakan TPOT untuk menentukan *classifier* terbaik

```
from tpot import TPOTClassifier
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
import pandas as pd
import numpy as np
data = pd.read_csv('iris.csv')
column = ['class']
for feature in column:
        if feature in data.columns.values:
            data[feature] = LabelEncoder().fit transform(data[feature])
X_train, X_test, y_train, y_test = train_test_split(data, data['class'].ravel(), train_size=2/3,
test size=1/3)
tpot = TPOTClassifier(generations=5, population size=50, verbosity=2)
tpot.fit(X_train, y_train)
print(tpot.score(X_test, y_test))
tpot.export("classifier.py")
```

Hasil ekspor(classifier.py)

```
import numpy as np
import pandas as pd
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.model selection import train test split
# NOTE: Make sure that the class is labeled 'target' in the data file
tpot data = pd.read csv('PATH/TO/DATA/FILE', sep='COLUMN SEPARATOR', dtype=np.float64)
features = tpot_data.drop('target', axis=1).values
training_features, testing_features, training_target, testing_target = \
            train test split(features, tpot data['target'].values, random state=None)
# Average CV score on the training set was:1.0
exported_pipeline = ExtraTreesClassifier(bootstrap=False, criterion="gini", max_features=0.1,
min_samples_leaf=12, min_samples_split=19, n_estimators=100)
exported_pipeline.fit(training_features, training_target)
results = exported_pipeline.predict(testing_features)
```

Cara menggunakan TPOT untuk menentukan *regressor* terbaik

```
. . .
from tpot import TPOTRegressor
from sklearn.model_selection import train_test_split
import pandas as pd
import numpy as np
data = pd.read_csv('yacht_hydrodynamics.csv')
X_train, X_test, y_train, y_test = train_test_split(data, data['residuary'].ravel(),train_size=0.7,
test_size=0.3)
tpot = TPOTRegressor(generations=5, population_size=50, verbosity=2)
tpot.fit(X_train, y_train)
print(tpot.score(X_test, y_test))
tpot.export("regressor.py")
```

Hasil ekspor(regressor.py)

```
import numpy as np
import pandas as pd
from sklearn.cluster import FeatureAgglomeration
from sklearn.feature selection import VarianceThreshold
from sklearn.linear_model import LassoLarsCV
from sklearn.model_selection import train_test_split
from sklearn.pipeline import make_pipeline
# NOTE: Make sure that the class is labeled 'target' in the data file
tpot_data = pd.read_csv('PATH/TO/DATA/FILE', sep='COLUMN_SEPARATOR', dtype=np.float64)
features = tpot data.drop('target', axis=1).values
training_features, testing_features, training_target, testing_target = \
            train test split(features, tpot data['target'].values, random state=None)
# Average CV score on the training set was:-3.5543171952759125e-29
exported_pipeline = make_pipeline(
   VarianceThreshold(threshold=0.05),
   FeatureAgglomeration(affinity="manhattan", linkage="average"),
   LassoLarsCV(normalize=True)
exported_pipeline.fit(training_features, training_target)
results = exported pipeline.predict(testing features)
```

Terima kasih!

materi, *notebook*, dan *slides* presentasi : github.com/Rakhid16/Python-TPOT