

10/521965

DT01 Rec'd PCT/PTO 21 JAN 2005

AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings of claims in the application:

LISTING OF CLAIMS:

1. (original) Process for determining the number of transport seats available in a computerized reservation system, whereby said system includes means for storing data on services that provide transportation between two locations and their current reservation status, broken down by class of service, a process in which, at a predefined level of expected revenue (Y), a number of seats locally available $av_{Fik}(Y)$ is determined for a given class of service (k) on a given transport service (F_i), characterized by the fact that:

for a given class of service (k) on a given transport service (F_i), the following steps are carried out:

- at least one other class of service (k') of a transport service (F_j) is selected;
- the number of locally available seats $av_{Fjk'}(Y)$ is determined for the class of service (k') of the transport service (F_j) at the predefined level of expected revenue (Y);
- an overall number of available seats $XFAV_{Fjk}(Y)$ is determined for the given class of service (k) of the given transport service (F_i) at the predefined level of expected revenue (Y) as a function of the different number of seats available locally ($av_{Fik}(Y)$, $av_{Fjk'}(Y)$).

2. (original) Process according to Claim 1, wherein:

- at least one other class of service (k') that belongs to another transport service (F_j) is selected;
- the overall number of available seats $XFAV_{Fik}(Y)$ is determined by adding up the numbers of seats available locally ($av_{Fik}(Y)$, $av_{Fjk'}(Y)$) of the two classes of service (k , k').

3. (original) Process according to Claim 1, wherein:

- to each class of service a boundary transfer value (SP^{max}) is assigned that corresponds to the maximum number of reservation requests for the class of service that can be transferred to seats on other classes of service;
- for each class of service, a number of transferable reservation requests ($SP(Y)$) is determined that is equal to:
 - either zero, if the number of seats available locally for said class of service (k) is positive,
 - or the inverse of the number of seats available locally for said class of service (k) if said number is negative and its inverse is less than the boundary transfer value (SP^{max});
 - or the boundary transfer value (SP^{max}) if the number of seats available locally is negative and its inverse is greater than or equal to said boundary transfer value (SP^{max});
- for each class of service, a number of reservation requests that can be accepted ($SA(Y)$) is determined that is equal to:
 - either zero, if the number of seats available locally for said class of service $av(Y)$ is less than or equal to zero;

- or the number of seats available locally for said class of service $av_k(Y)$ if this number is positive.

4. (original) Process according to Claim 3, wherein:

- to each class of service a boundary acceptance value (SA^{max}) is assigned that corresponds to the maximum number of seats in said class of service that can be used to transfer reservation requests on other classes of service;
- an upper limit that is equal to the boundary acceptance value (SA^{max}) is assigned to the number of reservation requests that can be accepted.

5. (original) Process according to Claim 3, wherein:

- a single other class of service (k') that belongs to another transport service (F_j) is selected;
- the total acceptance capacity (TSA_k) from the other class of service (k') for the given class of service (k) is determined by selecting the minimum value from the boundary transfer value (SP_{Fjk}^{max}) of the given class of service (k) and the number of reservation requests that can be accepted ($SA_{Fjk'}(Y)$) on said other class of service (k'),
- the total transfer capacity (TSP_k) on said other class of service (k') is determined on the given class of service (k) by selecting the minimum value from the number of transferable reservation requests for the other class of service (k') ($SP_{Fjk'}(Y)$) and the number of reservation requests that can be accepted on the given class of service (k) ($SA_{Fik}(Y)$),
- the overall number of available seats $XFAV_{Fik}(Y)$ is calculated by:

- adding the number of seats available locally $av_{Fik}(Y)$ and the total acceptance capacity $TSA_{Fik}(Y)$,
- and subtracting therefrom the total transfer capacity $TSP_{Fik}(Y)$.

6. (original) Process according to Claim 4, wherein:

- a transport service chain (F_i) is formed that has successive departure times and where each departure time has a selected class of service (k, k'),
- an index i is assigned to each transport service, whereby the value of said index increases with the time of departure,
- for each class of service (k) of a given transport service (F_i), the classes of service (k') of the transport service are selected that have a lower index to which the reservation requests on the class of service of the given transport service (F_i) can be transferred.

7. (original) Process according to Claim 6, wherein:

the total acceptance capacity $TSA_{Fik}(Y)$ for the class of service (k) is determined by selecting the minimum value from the boundary transfer value (SP_{Fik}^{max}) of the given class of service (k) and the sum of the numbers of reservation requests that can be accepted ($SA_{Fjk'}(Y)$) for the classes of service (k') of transport services (F_j) to which the given class of service (k) can be transferred.

8. (currently amended) Process according to Claim [[6]] 7, wherein:

the total transfer capacity TSP_{Fik} from all of the other classes of service to a class of service (k) is determined

from the update of the number of reservation requests that can be accepted to said class of service (k).

9. (currently amended) Process according to ~~Claim 7~~ and Claim 8, wherein:

- the overall number of available seats $XFAV_{Fik}(Y)$ is calculated by:

- adding the number of seats available locally $av_{Fik}(Y)$ and the total acceptance capacity $TSA_{Fik}(Y)$,
- and subtracting therefrom the total transfer capacity $TSP_{Fik}(Y)$.

10. (currently amended) Process according to ~~any of Claims 1 to 9~~ Claim 1, wherein:

the steps in the process are carried out each time there is an availability request from a customer.

11. (new) Process according to Claim 8, wherein:

the total transfer capacity TSP_{Fik} from all of the other classes of service to a class of service (k) is determined from the update of the number of reservation requests that can be accepted to said class of service (k).