GATE 2018 PH(14-26)

1

EE24BTECH11030 - J.KEDARANANDA

1) The elementary particle Ξ^0 is placed in the baryon decuplet, shown below, at

Fig. 1

- a) P
- b) Q

- c) R
- d) S
- 2) The intrinsic/permanent electric dipole moment in the ground state of hydrogen atom is (a_0 is the Bohr radius)
 - a) $-3ea_0$

c) *ea*₀

b) zero

- d) 3ea₀
- 3) The high temperature magnetic susceptibility of solids having ions with magnetic moments can be described by $\chi \propto \frac{1}{T+\theta}$ with T as absolute temperature and θ as constant. The three behaviors i.e. paramagnetic, ferromagnetic and anti-ferromagnetic are described, respectively, by

a)
$$\theta < 0$$
, $\theta > 0$, $\theta = 0$

c)
$$\theta = 0$$
, $\theta < 0$, $\theta > 0$

b)
$$\theta > 0$$
, $\theta < 0$, $\theta = 0$

d)
$$\theta = 0$$
, $\theta > 0$, $\theta < 0$

4) Which one of the following is an allowed electric dipole transition?

a)
$${}^{1}S_{0} \rightarrow {}^{3}S_{1}$$

b)
$${}^{2}P_{3/2} \rightarrow {}^{2}D_{5/2}$$

c)
$${}^2D_{5/2} \rightarrow {}^2P_{1/2}$$

d) ${}^3P_0 \rightarrow {}^5D_0$

d)
$${}^{3}P_{0} \rightarrow {}^{5}D_{0}$$

- 5) In the decay, $\mu^+ \rightarrow e^+ + \nu_e + X$, what is X?
 - a) γ

c) ν_{μ}

b) $\bar{\nu_e}$

- d) $\bar{v_u}$
- 6) A spaceship is traveling with a velocity of 0.7c away from a space station. The spaceship ejects a probe with a velocity 0.59c opposite to its own velocity. A person in the space station would see the probe moving at a speed Xc, where the value of X is _____ (up to three decimal places).
- 7) For an operational amplifier (ideal) circuit shown below,

if $V_1 = 1 \text{ V}$ and $V_2 = 2 \text{ V}$, the value of V_0 is _____ V (up to one decimal place).

- 8) An infinitely long straight wire is carrying a steady current I. The ratio of magnetic energy density at distance r_1 to that at r_2 (= 2 r_1) from the wire is
- 9) A light beam of intensity I_0 is falling normally on a surface. The surface absorbs 20% of the intensity and the rest is reflected. The radiation pressure on the surface is given by $X_{c}^{\underline{l_0}}$, where X is _____ (up to one decimal place). Here c is the speed of light.

- 10) The number of independent components of a general electromagnetic field tensor is
- 11) If X is the dimensionality of a free electron gas, the energy (E) dependence of density of states is given by $E^{\frac{X'}{2}-Y}$, where Y is .
- 12) For nucleus 164 Er, a $J^{\pi}=2^{+}$ state is at 90 keV. Assuming 164 Er to be a rigid rotor, the energy of its 4⁺ state is keV (up to one decimal place).
- 13) Given $V_1 = \hat{i} \hat{j}$ and $V_2 = -2\hat{i} + 3\hat{j} + 2\hat{k}$, which one of the following V_3 makes (V_1, V_2, V_3) a complete set for a three dimensional real linear vector space?

(A)
$$V_3 = \hat{i} + \hat{j} + 4\hat{k}$$

(C)
$$\mathbf{V}_3 = \hat{i} + 2\hat{j} + 6\hat{k}$$

(D) $\mathbf{V}_3 = 2\hat{i} + \hat{j} + 4\hat{k}$

(B)
$$\mathbf{V}_3 = 2\hat{i} - \hat{j} + 2\hat{k}$$

$$\mathbf{V}_3 = 2\hat{i} + \hat{j} + 4\hat{k}$$