Contents

Equations	2
Acceleration in Circular Motion	2
Concepts on acceleration	2
Uniform Circular Motion	2
Non Uniform Circular Motion	3
Angular Kinematics	3
Angular Displacement ($ heta$)	3
Angular velocity (ω)	3
Angular acceleration ($lpha$)	4
Equations of angular kinematics	4
Relation among angular and linear motion	4
Rotational $K.E.$	4
Moment of Inertia I	5
Moment of inertia I	5
Radius of gyration R	5
Application of I	5
Moment of inertia of thin uniform rod from a distance h	6
Rotation from center	6
Rotation from one end	7
Torque ($ au$)	7
Relation between $ au$ and $lpha$	7
Work and Power	7
Work W	8
Power	
Angular momentum	8
Conservation of angular momentum	C

Equations

Objective: Recall equations of angular motion and compare them with equations of linear motion.

Acceleration in Circular Motion

Concepts on acceleration

- Acceleration is change in velocity of a body. Velocity as a vector quantity has direction and magnitude.
- In 2-D plane acceleration can be resolved in two components.
 - The parallel component a_{\parallel} .
 - * The parallel component is responsible for change in magnitude of velocity of a particle.
 - The perpendicular component a_{\perp} .
 - * The perpendicular component is responsible for changing the direction of a particle.
- The acceleration can be expressed as

Uniform Circular Motion

- In uniform circular motion the **magnitude** of **velocity** particle is always **constant**.
- The **direction** changes continuously.
- There is **acceleration** as there is change in velocity.
- There is only **perpendicular** component of acceleration because the motion is *uniform*
- The perpendicular component of acceleration can be related with **linear velocity** of the particle.
- A particle is moving in a **circle** with a *uniform* speed.
- At a point P the **velocity** of the particle is $\vec{v_1}$
- After a short time $\triangle t$ the **velocity** is $\vec{v_2}$

• A angle ϕ is made between $\vec{v_1}$ and $\vec{v_2}$ inside the circle. In the similar triangles formed by the **velocity vectors** and their displacement in circular arc of radius R,

 $\triangle s$ = Displacement in circular arc

Differentiating (i) w.r.t. $\triangle t$

Non Uniform Circular Motion

- There is also a parallel component in **acceleration** in non uniform circular motion.
- The **parallel** component is $a_{\parallel} = \frac{d|v|}{dt}$

Angular Kinematics

Angular Displacement (θ)

It is the magnitude of rotation of a particle in a circle of fixed radius R.

$$\theta = \frac{s}{R}$$

Angular velocity (ω)

It is rate of change of angular displacement.

$$\omega = \frac{\theta}{t}$$

Angular acceleration (α)

It is rate of change of angular velocity.

$$\alpha = \frac{\omega}{t}$$

Equations of angular kinematics

$$\omega = \omega_0 + \alpha t$$

$$\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$$

$$\omega^2 = \omega_0^2 + 2\alpha s$$

Relation among angular and linear motion

Differentiating above equations with respect to t,

$$v = \omega \times R$$

$$a_{\parallel} = \alpha \times R$$

Rotational K.E.

Objective: Derive the expression for rotational kinetic energy

Rotational Kinetic Eergy of a particle is energy due to it's rotation.

• The kinetic energy of a body in translation motion is:

$$K.E. = \frac{1}{2}mv^2$$

$$K.E. = \frac{1}{2}m(\omega r)^2$$

$$K.E. = \frac{1}{2}m\omega^2 r^2$$

$$K.E. = \frac{1}{2}I\omega^2$$

The **rotational kinetic energy** is given by:

$$K.E = \frac{1}{2}I\omega^2$$

Moment of Inertia I

Objective: Describe the term moment of inertia and radius of gyration

Moment of inertia I

- Moment of inertia of a body is it's tendency to resist angular acceleration.
- It is the sum of product of **mass** of each *particle* with the **square** of **distance** of *particle* from the axis.

$$I = \sum_{i=1}^{n} m_i r_i^2$$

$$I = \int x^2 dm$$

Radius of gyration R

• Radius of gyration is the radial distance from the axis of rotation at which the moment of inertia of the *body* is equivalent to the product of *mass* of the body with the radial distance.

$$M = \sum_{i=1}^{n} m_i$$

• R = Radius of gyration

$$I = MR^2$$

Application of I

Objective: Find the moment of inertia of thin uniform rod rotating about it's centre and it's one end

Moment of inertia of thin uniform rod from a distance h

- Length of the rod = L
- Length of a small mass dm = dx
- Distance of axis from the origin = h
- Remaining length of the rod = L-h

$$\begin{split} \frac{M}{dm} &= \frac{L}{dx} \\ dm &= \frac{M}{L} dx \\ I &= \int x^2 dm \\ I &= \frac{M}{L} \int_{-h}^{L-h} x^2 dx \\ I &= [\frac{M}{L} \frac{x^3}{3}]_{-h}^{L-h} \\ I &= \frac{M}{3L} [(L^3 - 3L^2h + 3Lh^2 - h^3) + h^3] \\ I &= \frac{1}{3} M (L^2 - 3Lh + 3h^2) \end{split}$$

• Moment of inertia of a thin uniform rod with it's axis from the origin in a distance h is:

$$I = \frac{1}{3}M(L^2 - 3Lh + 3h^2)$$

Rotation from center

$$h = \frac{L}{2}$$

$$I = \frac{1}{3}M(L^2 - 3\frac{L^2}{2} + 3\frac{L^2}{4})$$

$$I = \frac{1}{3}M\frac{L^2}{4}$$

• The moment of inertia of a thin uniform rod rotating about the center as it's axis is:

$$I = \frac{1}{12}ML^2$$

Rotation from one end

$$h=0$$

$$I=\frac{1}{3}M(L^2-3\times L\times 0+3\times 0^2$$

• The moment of inertia of a thin uniform rod rotating about the it's one end as it's axis is:

$$I = \frac{1}{3}ML^2$$

Torque (τ)

Objective: Establish the relation between torque and angular acceleration.

- **Torque** is a quantity of cause of rotation of a body.
- It is the **product** of **force** with it's **perpendicular distance** from the axis of rotation.

$$\vec{\tau} = \vec{F} \times \vec{r}$$

• Torque is rate of change of angular momentum of a body.

$$\tau = \frac{d\vec{L}}{dt}$$

Relation between τ and α

$$\tau = ma_{\parallel}r$$

$$\tau = m(r\alpha)r$$

$$\tau = mr^{2}\alpha$$

• Torque is the product of moment of inertia of a body with it's angular acceleration .

$$\tau = I\alpha$$

Work and Power

Objective: Describe the work and power in rotational motion with expression.

Work W

 Work in rotational motion is the quantity expressing the product of torque with angular displacement.

$$W = Fs$$
$$W = FR \triangle \theta$$

• Work is expressed as:

$$W = \tau \triangle \theta$$

Power

- **Power** in rotational motion is the quantity expressing the product of **torque** with angular velocity.
- **Power** is work done per unit time.

Differentiating both sides with respect to t,

$$\frac{dW}{dt} = \tau \frac{d\triangle\theta}{dt}$$

• **Power** is expressed as:

$$P=\tau\omega$$

Angular momentum

Objective: Define angular momentum and prove the principle of conservation of angular momentum.

• **Angular momentum** is the *quantity* of rotational motion *contained* in a body.

$$\vec{L} = \vec{p} \times \vec{r}$$

 $\vec{L} = m\vec{v} \times \vec{r}$

 $\vec{L} = m(\vec{\omega} \times \vec{r}) \times \vec{r}$

 $L_z = mr^2\omega_z$

· Angular momentum is expressed as:

$$L_z = I\omega_z$$

Conservation of angular momentum

- When the net external **torque** applied on a system is **zero**, the **angular momentum** of the system is **constant**.
- A body A applies torque to body B equivalent to au_{AonB}
- A body B applies torque to body A equivalent to au_{BonA}

From Newton's third law of motion,

$$\tau_{AonB} = -\tau BonA$$

$$\frac{d\vec{L_A}}{dt} + \frac{d\vec{L_B}}{dt} = 0$$

$$\vec{L_A} + \vec{L_B} = 0$$

$$\vec{L} = \vec{L_A} + \vec{L_B}$$

The total *constant* angular momentum is expressed as:

$$\vec{L} = 0$$