Decoding from many neurons: population codes

- Population code formulation
- N.€.he 32 for decoding:

 → Jopu'rtion vector

 - → Jopu'rtion vector

 → Bay esiz in iference

 → maximum'r libood

 → maximum a postiviti
- Fisher information

Cricket cercal cells

Biology

Cricket cercal cells

Theunissen & Miller, 1991; in Dayan and Abbott, Theoretical Neuroscience

Population vector

RMS error mest v

Theunissen & Miller, 1991; in Dayan and Abbott, *Theoretical Neuroscience*

Population coding in M1

Cosine tuning curve of a motor cortical new o

Population coding in M1

Cosine tuning:

$$\left(\frac{\langle r \rangle - r_0}{r_{\text{max}}}\right) = \left(\frac{f(s) - r_0}{r_{\text{max}}}\right)_a = \vec{v} \cdot \vec{c}_a$$
Pop. vector:

$$\vec{v}_{\text{pop}} = \sum_{a=1}^{N} \left(\frac{r - r_0}{r_{\text{max}}} \right) \vec{c}_a$$

For sufficiently large N,

is parallel to the direction of arm movement

Is this the best one can do?

The population vector is neither general nor optimal.

"Optimal":

make use of all it for more as in the stimulus/response distributions

Bayesian inference

Bayes' law:

Bayesian inference

Bayes' law:

likelihood function

$$\frac{p[s|\mathbf{r}]}{p[\mathbf{r}]} = \frac{p[\mathbf{r}|s]p[s]}{p[\mathbf{r}]}$$

a posteriori distribution

Find maximum of P[r|s] over s

More generally, probability of the data given the "model"

"Model" = stimulus

assume parametric form for tuning curve

Bayesian inference

Bayes' law:

likelihood function

$$\frac{p[s|\mathbf{r}]}{p[\mathbf{r}]} = \frac{p[\mathbf{r}|s]p[s]}{p[\mathbf{r}]}$$

a posteriori distribution

Decoding strategies

Maximum Likelihood: s* which maximizes p[r|s]

likelihood function

$$\frac{p[s|\mathbf{r}]}{p[\mathbf{r}]} = \frac{p[\mathbf{r}|s]p[s]}{p[\mathbf{r}]}$$

a posteriori distribution

Maximum *a posteriori*: s* which maximizes p[s|r]

Decoding an arbitrary continuous stimulus

Let's take a particular case....

- assume independence
- assume Poisson firing

Decoding an arbitrary continuous stimulus

Let's take an example: Gaussian tuning curves

$$f_a(s) = r_{\text{max}} \exp\left(-\frac{1}{2} \left[\frac{(s - s_a)}{\sigma_a}\right]^2\right)$$

Assume good coverage: $\sum_{a=1}^{N} f_a(s)$ const.

Need to know full P[r|s]

Population response of 11 cells with Gaussian tuning care is

Need to know full P[r|s]

1. Assume Poisson:

$$P_T[k] = (rT)^k \exp(-rT)/k!$$

$$P[r_a|s] = \frac{(f_a(s)T)^{r_aT}}{(r_aT)!} \exp(-f_a(s)T)$$

2. Assume independent: $P[\mathbf{r}|s] = \prod_{s=1}^{N} \frac{(f_a(s)T)^{r_aT}}{(r_aT)!} \exp(-f_a(s)T)$

$$\frac{1}{!} \exp(-j_a(s)I)$$

$$P[\mathbf{r}|s] = \prod_{a=1}^{N} \frac{(f_a(s)T)^{r_aT}}{(r_aT)!} \exp(-f_a(s)T)$$

Maximize $\ln P[\mathbf{r}|s]$ with respect to s

$$P[\mathbf{r}|s] = \prod_{a=1}^{N} \frac{(f_a(s)T)^{r_aT}}{(r_aT)!} \exp(-f_a(s)T)$$

Maximize $\ln P[\mathbf{r}|s]$ with respect to s

$$\ln P[\mathbf{r}|s] = T \sum_{a=1}^{N} r_a \ln(f_a(s)) + \dots$$

Set derivative to zero, use sum = constant

$$\sum_{a=1}^{N} r_a \frac{f'(s^*)}{f(s^*)} = 0$$

$$\sum_{a=1}^{N} r_a \frac{f'(s^*)}{f(s^*)} = 0$$

From Gaussianity of tuning curves,

$$s^* = \frac{\sum r_a s_a / \sigma_a^2}{\sum r_a / \sigma_a^2}$$

If all σ same

$$s^* = \frac{\sum r_a s_a}{\sum r_a}$$

Maximum *a posteriori*

Maximize $\ln p[s|\mathbf{r}]$ with respect to s

$$\ln p[s|\mathbf{r}] = \ln P[\mathbf{r}|s] + \ln p[s] - \ln P[\mathbf{r}]$$
$$\ln p[s|\mathbf{r}] = T \sum_{a=1}^{N} r_a \ln(f_a(s)) + \ln p[s] + \dots$$

Set derivative to zero, use sum = constant

$$\sum_{a=1}^{N} r_a \frac{f'(s^*)}{f(s^*)} + \frac{p'[s]}{p[s]} = 0$$

From Gaussianity of tuning curves,

$$s^* = \frac{T \sum r_a s_a / \sigma_a^2 + s_{\text{prior}} / \sigma_{\text{prior}}^2}{T \sum r_a / \sigma_a^2 + 1 / \sigma_{\text{prior}}^2}$$

Maximum a posteriori

Maximize $\ln p[s|\mathbf{r}]$ with respect to s

$$\ln p[s|\mathbf{r}] = \ln P[\mathbf{r}|s] + \ln p[s] - \ln P[\mathbf{r}]$$

$$\ln p[s|\mathbf{r}] = T \sum_{a=1}^{N} r_a \ln(f_a(s)) + \ln p[s] + \dots$$

Given this data:

Limitations of these approaches

- Tuning curve/mean firing rate
- Correlations in the population

The importance of correlation

The importance of correlation

The importance of correlation

