Block Diagram

02 乘法器

308 309 310		Global cell area		Local cell area			
	Hierarchical cell	Absolute Total	Percent Total	Combi- national	Noncombi- national	Black- boxes	Design
	conv	38662.7473	100.0	10275.2496	16269.4222	0.0000	conv
	add_0_root_add_0_root_add_111_8	811.6416	2.1	811.6416	0.0000	0.0000	conv_DW01_add_0
	add_1_root_add_0_root_add_111_8	811.6416	2.1	811.6416	0.0000	0.0000	conv_DW01_add_1
	add_2_root_add_0_root_add_111_8	788.3568	2.0	788.3568	0.0000	0.0000	conv_DW01_add_4
	add_7_root_add_111_8	635.3424	1.6	635.3424	0.0000	0.0000	conv_DW01_add_7
	mult_111	1007.8992	2.6	1007.8992	0.0000	0.0000	conv_DW_mult_tc_8
	mult_111_2	1007.8992	2.6	1007.8992	0.0000	0.0000	conv_DW_mult_tc_7
	mult_111_3	1007.8992	2.6	1007.8992	0.0000	0.0000	conv_DW_mult_tc_6
	mult_111_4	1007.8992	2.6	1007.8992	0.0000	0.0000	conv_DW_mult_tc_5
	mult_111_5	1007.8992	2.6	1007.8992	0.0000	0.0000	conv_DW_mult_tc_4
	mult_111_6	1007.8992	2.6	1007.8992	0.0000	0.0000	conv_DW_mult_tc_3
	mult_111_7	1007.8992	2.6	1007.8992	0.0000	0.0000	conv_DW_mult_tc_2
	mult_111_8	1007.8992	2.6	1007.8992	0.0000	0.0000	conv_DW_mult_tc_1
	mult_111_9	1007.8992	2.6	1007.8992	0.0000	0.0000	conv_DW_mult_tc_0
	Total			22393.3251	16269.4222	0.0000	
30							

最終的設計我用到了 9 個乘法器,和 filter 的格子數一樣(對 filter 中每個數字 做乘法),而可從這個 synthesis report 中看到,一個乘法器的面積約為 1000,占了 combinational area 很大的一部分。

遇到困難與如何解決/設計方法

我的設計共做了三次,而以下會大致介紹每一次的概念、方法,以及針對一、 二的改良:

▶ 設計一:

我用了最笨也是最圖法煉鋼的方式,就是直接在 case 判斷裏頭做各項的乘法,出來的面積大得驚人,這是我第一次寫出六位數子的設計!而之所以會有這樣的情況應該是因為利用太多的乘法器,如上可知,一個乘法器面積約為 1000,若以這樣的寫法,做乘法的面積就大約 1000*25*9 = 225000,可想而知為甚麼會有那麼大的電路。

```
Combinational area: 424694.800130

Buf/Inv area: 34847.367605

Noncombinational area: 19851.955589

Macro/Black Box area: 0.000000

Net Interconnect area: undefined (No wire load specified)

Total cell area: 444546.755719

Total area: undefined
```

▶ 設計二:

我首先對乘法的面積進行改良,把乘法拉出 case 外面來做,另外設 9 個 reg,而用 case 判斷甚麼時候把哪 9 個數字存進這些 reg 和 filter 進行乘法加總,這次的面積大概 6 萬多,而面積都主要為 combinational。

▶ 設計三(最終設計):

這次的改良我針對 case 的條件判斷進行修正,因為 combinational 的面積依然很大,所以我直接對 image 做 shift 來代替 25 個的條件判斷,而當下被 shift 到乘法位置的那 9 個數字就和 filter 做乘法,一樣是使用 9 個乘法器,能夠再減了一些面積。結果如下:

```
296
297 Combinational area: 22393.325099
298 Buf/Inv area: 1187.524843
299 Noncombinational area: 16269.422226
300 Macro/Black Box area: 0.000000
301 Net Interconnect area: undefined (No wire load specified)
302
303 Total cell area: 38662.747325
304 Total area: undefined
```

心得

這次的作業讓我真正體會到乘法器面積的龐大,將來在做設計的時候,若能降低運算面積改為較簡單的 operation 像是這次的 shift 就要盡量使用,避免像我這次第一次設計出這麼恐怖的電路。所以從這次的作業我學到了:要做出良好的設計,一定要對實質電路有相當的概念和認知,像是常用到的 blocks (multiplier, adder, shift, mux 等) 大概都會合成出多大的面積。