0.1 Lecture 3: nepovinné cvičenia

Riešenie nasledujúcich úloh je dobrovoľné. Pomôže vám overiť si, či problematike dostatočne rozumiete.

V týchto cvičeniach niektoré sú a niektoré nie sú označené hviezdičkou (\star) . Tie, ktoré sú označené, sú ťažšie. Tým ostatným treba určite rozumieť.

1. Z definície dokážte primitívnu rekurzívnosť nasledujúcich zaujímavých funkcií:

•
$$p(x) = \begin{cases} 0 & \leftarrow x = 0 \\ x - 1 & \leftarrow \text{inak} \end{cases}$$

•
$$minus(x,y) = \begin{cases} x - y & \leftarrow x \ge y \\ 0 & \leftarrow \text{inak} \end{cases}$$

•
$$diff(x,y) = |x-y|$$
.

•
$$max(x, y)$$

•
$$median(x, y, z)$$

•
$$rovnasa(x, y) = \begin{cases} 1 & \leftarrow x = y \\ 0 & \leftarrow \text{inak} \end{cases}$$

•
$$fact(x) = x!$$

$$\bullet \ (\star) \ zvysok(x,y) = \begin{cases} x \bmod y & \leftarrow y > 0 \\ 0 & \leftarrow \mathrm{inak} \end{cases}$$

- 2. Dokážte: Každý polynóm p(x), ktorého koeficienty sú prirodzené čísla, je primitívne rekurzívny.
- 3. (*) Dokážte alebo vyvráťte: K ľubovoľnému polynómu p(x) s celočíselnými (potenciálne aj zápornými!) koeficientami existuje primitívne rekurzívna funkcia f_p taká, že $\forall n \in \mathbb{N} : f_p(n) = \max(0, p(n))$.
- 4. Dokážte: Pre ľubovoľnú primitívne rekurzívnu funkciu f je funkcia $g(x) = \sum_{i < x} f(i)$ primitívne rekurzívna. (Funkciu g voláme prefixovým súčtom funkcie f.)
 - (\star) Dokážte aj všeobecnejšie tvrdenie: pre ľubovoľné primitívne rekurzívne funkcie lo, hi a f je funkcia

$$g(\overline{x}) = \sum_{lo(\overline{x}) \le i \le hi(\overline{x})} f(i, \overline{x})$$

primitívne rekurzívna. (Značenie \overline{x} je skráteným zápisom pre x_1, \ldots, x_k .)

5. Pomocou funkcie zvysok a predchádzajúceho výsledku o prefixovom súčte dokážte, že predikát deli a funkcia podiel sú primitívne rekurzívne.

1

•
$$deli(x,y) = \begin{cases} 1 & \leftarrow y > 0 \land y \text{ deli } x \\ 0 & \leftarrow \text{ inak} \end{cases}$$

•
$$podiel(x, y) = \begin{cases} \lfloor x/y \rfloor & \leftarrow y > 0 \\ 0 & \leftarrow \text{inak} \end{cases}$$

6. (*) Dokážte vetu o ohraničenej minimalizácii:

Pre ľubovoľné primitívne rekurzívne funkcie $f(y, \overline{x})$ a $g(\overline{x})$ je funkcia

$$h(\overline{x}) = \begin{cases} \min\{i \mid i < g(\overline{x}) \ \land \ f(i,\overline{x}) > 0\} & \leftarrow \text{ak také } i \text{ existuje} \\ g(\overline{x}) & \leftarrow \text{inak} \end{cases}$$

primitívne rekurzívna.

Slovne, $h(\overline{x})$ si môžeme predstaviť tak, že postupne počíta $f(0,\overline{x}), f(1,\overline{x}), \ldots$, až kým buď prvýkrát nedostane nenulovú hodnotu, alebo nedosiahne vopred určenú hranicu $g(\overline{x})$.

- 7. Pomocou vety o ohraničenej minimalizácii vieme triviálne ukázať primitívnu rekurzívnosť niektorých funkcií, pre ktoré je to priamo z definície nepríjemné. Dokážte takto primitívnu rekurzívnosť nasledujúcich funkcií:
 - $ceil(x,y) = \begin{cases} \lceil x/y \rceil & \leftarrow y > 0 \\ 0 & \leftarrow \text{inak} \end{cases}$
 - $sqrt(x) = \lceil \sqrt{x} \rceil$
 - (*) $prvocislo(x) = \begin{cases} 1 & \leftarrow x \text{ je prvočíslo} \\ 0 & \leftarrow \text{inak} \end{cases}$

(Hint: ceil je primitívne rekurzívna, lebo ju môžeme definovať zhruba nasledovne: ceil(x,y) je najmenšie také z, pre ktoré $yz \geq x$, pričom z stačí hľadať v rozsahu od 0 po x. Rozmyslite si, ako by tento argument vyzeral formálne. Pri testovaní prvočíselnosti budete pravdepodobne potrebovať niekoľko pomocných funkcií.)