```
In [1]: !pip install numpy
        Requirement already satisfied: numpy in c:\users\subhe\anaconda3\lib\site-packages (1.2
        4.3)
In [2]:
        !pip install seaborn
        Requirement already satisfied: seaborn in c:\users\subhe\anaconda3\lib\site-packages (0.
        12.2)
        Requirement already satisfied: numpy!=1.24.0,>=1.17 in c:\users\subhe\anaconda3\lib\site
        -packages (from seaborn) (1.24.3)
        Requirement already satisfied: pandas>=0.25 in c:\users\subhe\anaconda3\lib\site-package
        s (from seaborn) (1.5.3)
        Requirement already satisfied: matplotlib!=3.6.1,>=3.1 in c:\users\subhe\anaconda3\lib\s
        ite-packages (from seaborn) (3.7.1)
        Requirement already satisfied: contourpy>=1.0.1 in c:\users\subhe\anaconda3\lib\site-pac
        kages (from matplotlib!=3.6.1,>=3.1->seaborn) (1.0.5)
        Requirement already satisfied: cycler>=0.10 in c:\users\subhe\anaconda3\lib\site-package
        s (from matplotlib!=3.6.1,>=3.1->seaborn) (0.11.0)
        Requirement already satisfied: fonttools>=4.22.0 in c:\users\subhe\anaconda3\lib\site-pa
        ckages (from matplotlib!=3.6.1,>=3.1->seaborn) (4.25.0)
        Requirement already satisfied: kiwisolver>=1.0.1 in c:\users\subhe\anaconda3\lib\site-pa
        ckages (from matplotlib!=3.6.1,>=3.1->seaborn) (1.4.4)
        Requirement already satisfied: packaging>=20.0 in c:\users\subhe\anaconda3\lib\site-pack
        ages (from matplotlib!=3.6.1,>=3.1->seaborn) (23.0)
        Requirement already satisfied: pillow>=6.2.0 in c:\users\subhe\anaconda3\lib\site-packag
        es (from matplotlib!=3.6.1,>=3.1->seaborn) (9.4.0)
        Requirement already satisfied: pyparsing>=2.3.1 in c:\users\subhe\anaconda3\lib\site-pac
        kages (from matplotlib!=3.6.1,>=3.1->seaborn) (3.0.9)
        Requirement already satisfied: python-dateutil>=2.7 in c:\users\subhe\anaconda3\lib\site
        -packages (from matplotlib!=3.6.1,>=3.1->seaborn) (2.8.2)
        Requirement already satisfied: pytz>=2020.1 in c:\users\subhe\anaconda3\lib\site-package
        s (from pandas>=0.25->seaborn) (2022.7)
        Requirement already satisfied: six>=1.5 in c:\users\subhe\anaconda3\lib\site-packages (f
        rom python-dateutil>=2.7->matplotlib!=3.6.1,>=3.1->seaborn) (1.16.0)
        import pandas as pd
In [3]:
         import numpy as np
         import matplotlib.pyplot as plt
        import seaborn as sns
In [4]:
        df = pd.read_csv('Diwali Sales Data.csv', encoding = 'unicode_escape')
        df.shape
In [5]:
        (11251, 13)
Out[5]:
        df.head()
In [6]:
Out[6]:
                                                Age
           User_ID Cust_name Product_ID Gender
                                                     Age Marital_Status
                                                                              State
                                                                                            Occupation
                                                                                      Zone
                                               Group
        0 1002903
                     Sanskriti
                             P00125942
                                               26-35
                                                      28
                                                                    0
                                                                         Maharashtra
                                                                                             Healthcare
                                                                                    Western
        1 1000732
                             P00110942
                                               26-35
                                                                    1 Andhra Pradesh
                       Kartik
                                                      35
                                                                                   Southern
                                                                                                 Govt
        2 1001990
                                                      35
                                                                    1
                       Bindu
                             P00118542
                                            F
                                               26-35
                                                                        Uttar Pradesh
                                                                                     Central
                                                                                             Automobile
        3 1001425
                       Sudevi
                             P00237842
                                            Μ
                                                0 - 17
                                                      16
                                                                           Karnataka
                                                                                   Southern
                                                                                            Construction
                                                                                                 Food
        4 1000588
                        Joni
                             P00057942
                                               26-35
                                                      28
                                                                    1
                                                                             Gujarat
                                            M
                                                                                    Western
                                                                                             Processing
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 11251 entries, 0 to 11250
Data columns (total 13 columns):
     Column
                       Non-Null Count
                                       Dtype
     -----
 0
    User_ID
                       11251 non-null int64
 1
    Cust_name
                       11251 non-null object
 2
    Product_ID
                       11251 non-null object
 3
    Gender
                       11251 non-null object
 4
    Age Group
                       11251 non-null object
 5
    Age
                       11251 non-null int64
 6
    Marital_Status
                       11251 non-null int64
 7
                       11251 non-null object
    State
 8
    Zone
                       11251 non-null object
 9
    Occupation
                       11251 non-null
                                       object
 10 Product_Category 11251 non-null object
 11 Orders
                       11251 non-null int64
 12 Amount
                       11239 non-null float64
dtypes: float64(1), int64(4), object(8)
memory usage: 1.1+ MB
```

EXPLORATORY DATA ANALYSIS EDA

```
In [9]: ax = sns.countplot(x='Gender', data=df)

for bar in ax.containers:
    ax.bar_label(bar)
```



```
In [10]: df.groupby(['Gender'], as_index=False)['Amount'].sum().sort_values(by='Amount',ascending
```

In [7]: df.info()

```
F 74335856.43
                                                                                                                                                                                                         M 31913276.00
                                                                                                                       sales\_gen = df.groupby(['Gender'], as\_index=False)['Amount'].sum().sort\_values(by='Amount'].sum().sort\_values(by='Amount'].sum().sort\_values(by='Amount'].sum().sort\_values(by='Amount'].sum().sort\_values(by='Amount'].sum().sort\_values(by='Amount'].sum().sort\_values(by='Amount'].sum().sort\_values(by='Amount'].sum().sort\_values(by='Amount'].sum().sort\_values(by='Amount'].sum().sort\_values(by='Amount'].sum().sort\_values(by='Amount'].sum().sort\_values(by='Amount'].sum().sort\_values(by='Amount'].sum().sort\_values(by='Amount'].sum().sort\_values(by='Amount'].sum().sort\_values(by='Amount'].sum().sort\_values(by='Amount'].sum().sort\_values(by='Amount'].sum().sort\_values(by='Amount'].sum().sort\_values(by='Amount'].sum().sort\_values(by='Amount').sort\_values(by='Amount').sort\_values(by='Amount').sort\_values(by='Amount').sort\_values(by='Amount').sort\_values(by='Amount').sort\_values(by='Amount').sort\_values(by='Amount').sort\_values(by='Amount').sort\_values(by='Amount').sort\_values(by='Amount').sort\_values(by='Amount').sort\_values(by='Amount').sort\_values(by='Amount').sort\_values(by='Amount').sort\_values(by='Amount').sort\_values(by='Amount').sort\_values(by='Amount').sort\_values(by='Amount').sort\_values(by='Amount').sort\_values(by='Amount').sort\_values(by='Amount').sort\_values(by='Amount').sort\_values(by='Amount').sort\_values(by='Amount').sort\_values(by='Amount').sort\_values(by='Amount').sort\_values(by='Amount').sort\_values(by='Amount').sort\_values(by='Amount').sort\_values(by='Amount').sort\_values(by='Amount').sort\_values(by='Amount').sort\_values(by='Amount').sort\_values(by='Amount').sort\_values(by='Amount').sort\_values(by='Amount').sort\_values(by='Amount').sort\_values(by='Amount').sort\_values(by='Amount').sort\_values(by='Amount').sort\_values(by='Amount').sort\_values(by='Amount').sort\_values(by='Amount').sort\_values(by='Amount').sort\_values(by='Amount').sort\_values(by='Amount').sort\_values(by='Amount').sort\_values(by='Amount').sort\_values(by='Amount').sort\_values(by='Amount').sort\_values(by='Amount').sort\_values(by='Amount').s
In [17]:
                                                                                                                        sns.barplot(x='Gender', y='Amount' , data = sales_gen)
```


From the above graph we can see that most of the buyers are female and the purchasing power of female is more than male.

AGE

Out[10]:

Gender

Amount

<Axes: xlabel='Gender', ylabel='Amount'>

```
sns.countplot(data=df, x='Age Group', hue='Gender')
In [19]:
         <Axes: xlabel='Age Group', ylabel='count'>
Out[19]:
```


In [20]: ax=sns.countplot(data=df,x='Age Group', hue='Gender')
for bars in ax.containers:
 ax.bar_label(bars)


```
In [25]: sales_age=df.groupby(['Age Group'], as_index=False)['Amount'].sum().sort_values(by='Amount').sum().sort_values(by='Amount').sum().sort_values(by='Amount').sum().sort_values(by='Amount').sum().sort_values(by='Amount').sum().sort_values(by='Amount').sum().sort_values(by='Amount').sum().sort_values(by='Amount').sum().sort_values(by='Amount').sum().sort_values(by='Amount').sum().sort_values(by='Amount').sum().sort_values(by='Amount').sum().sort_values(by='Amount').sum().sort_values(by='Amount').sum().sort_values(by='Amount').sum().sort_values(by='Amount').sum().sort_values(by='Amount').sum().sort_values(by='Amount').sum().sort_values(by='Amount').sum().sort_values(by='Amount').sum().sort_values(by='Amount').sum().sort_values(by='Amount').sum().sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_va
```

Out[25]: <Axes: xlabel='Age Group', ylabel='Amount'>

From the above graph we can see that most of the buyers are between the age group 26-35.

STATE

```
In [35]:
         sale_state=df.groupby(['State'], as_index=False)['Orders'].sum().sort_values(by='Orders'
         sns.set(rc={'figure.figsize':(16,10)})
         sns.barplot(x='State', y='Orders', data=sale_state)
```

<Axes: xlabel='State', ylabel='Orders'> Out[35]:

From the above graph we can see that most of the orders are placed from Uttarpradesh.

PRODUCT CATEGORY

The above graph shows the category of product with highest number of sales.

Loading [MathJax]/extensions/Safe.js

In the above graph we could see that maximum amount is spent on Fooding.

TOP SELLING PRODUCT

```
In [57]: sale_product=df.groupby(['Product_ID'], as_index=False)['Amount'].sum().sort_values(by= '
    sns.set(rc={'figure.figsize':(20,10)})
    sns.barplot(data=sale_product, x='Product_ID', y='Amount')
```

Out[57]: <Axes: xlabel='Product_ID', ylabel='Amount'>

Product Id P00265242 is the top selling product.

```
In [ ]:
```