Documentation for Minimum Number of Arrows to Burst Balloons

Table of Contents

- 1. Problem Statement
- 2. Intuition
- 3. Key Observations
- 4. Approach
- 5. Edge Cases
- 6. Complexity Analysis
 - o <u>Time Complexity</u>
 - o Space Complexity
- 7. Alternative Approaches
- 8. Test Cases
- 9. Final Thoughts

1. Problem Statement

You are given a set of spherical balloons, each represented as a 2D integer array points, where:

• points[i] = $[x_{\text{start}}, x_{\text{end}}]$ denotes a balloon with a horizontal diameter between x_{start} and x_{end} .

You can shoot arrows vertically upwards from any x position.

- A balloon $[x_{start}, x_{end}]$ is burst if $x_{start} \le x \le x_{end}$.
- Arrows travel infinitely upward, bursting all balloons in their path.

Goal: Find the minimum number of arrows required to burst all balloons.

Example 1

```
Input: points = [[10,16],[2,8],[1,6],[7,12]]
Output:2
```

Explanation:

- Arrow 1 at x=6 bursts [1,6] and [2,8].
- Arrow 2 at x=11 bursts [7,12] and [10,16].

Example 2

```
Input: points = [[1,2],[3,4],[5,6],[7,8]]
Output: 4
```

Explanation:

• Each balloon needs a separate arrow.

Example 3

```
Input:points = [[1,2],[2,3],[3,4],[4,5]]
Output:2
```

Explanation:

- Arrow 1 at x=2 bursts [1,2] and [2,3].
- Arrow 2 at x=4 bursts [3,4] and [4,5].

2. Intuition

To minimize arrows, we should aim to burst as many balloons as possible with each shot.

- If two balloons overlap, one arrow can burst both.
- If they do not overlap, we need separate arrows.

Greedy Choice

- Always aim to shoot arrows at the earliest possible x_{end} of an overlapping group.
- This ensures maximum coverage with minimal arrows.

3. Key Observations

- Sorting the balloons by xend helps us make optimal greedy choices.
- We only need a new arrow when a balloon's xstart is beyond the current xend.

Example:

Sorted intervals:
$$[[1,6], [2,8], [7,12], [10,16]]$$

Arrow at $x=6 \rightarrow \text{covers} [1,6] \& [2,8]$
Arrow at $x=12 \rightarrow \text{covers} [7,12] \& [10,16]$

4. Approach

Step 1: Sort the Balloons

- Sort points by their x_{end} (smallest first).
- Sorting ensures we always deal with the smallest x_{end} first, optimizing for minimal arrows.

Step 2: Traverse and Count Arrows

- Initialize arrows = 1 (at least one arrow is needed).
- Start with prev_end = points[0][1] (end of first balloon).
- For each balloon (start, end):
 - o If start > prev_end, it means we must shoot a new arrow.
 - o Otherwise, the balloon is already covered by the previous arrow.

Step 3: Return the Arrow Count

• The count of arrows used is the answer.

5. Edge Cases

Edge Case	Explanation
Single Balloon	Needs only 1 arrow.
onigie bandon	Treeds only Tallow
No Overlapping Balloons	Each balloon requires a separate arrow.
All Overlapping Balloons	Can be burst with a single arrow.
Large Input Size (10 ⁵ balloons)	Sorting takes O(n log n), which is efficient.
Negative x-coordinates	The algorithm should handle negative values correctly.

6. Complexity Analysis

Time Complexity

- Sorting O(n log n)
- One-pass traversal O(n)
- Total: O(n log n)

Space Complexity

• O(1) (in-place sorting and constant extra variables)

7. Alternative Approaches

- i. Dynamic Programming (DP)
 - a. We could use DP to find optimal arrow positions.
 - b. However, DP has $O(n^2)$ complexity, making it slower than the greedy approach.
- ii. Interval Merging Approach
 - a. Merge overlapping intervals and count the groups.
 - b. Works similarly but sorting by x_{end} is more intuitive.

8. Test Cases

```
solution = Solution()

# Test Case 1

assert solution.findMinArrowShots([[10,16],[2,8],[1,6],[7,12]]) == 2

# Test Case 2

assert solution.findMinArrowShots([[1,2],[3,4],[5,6],[7,8]]) == 4

# Test Case 3

assert solution.findMinArrowShots([[1,2],[2,3],[3,4],[4,5]]) == 2

# Test Case 4 - Large input

assert solution.findMinArrowShots([[1,10**9],[2,10**9],[3,10**9],[4,10**9]]) == 1

print("All test cases passed!")
```

9. Final Thoughts

- The Greedy Algorithm is the optimal solution.
- \bullet . Sorting by x_{end} ensures minimum arrows are used.
- Time Complexity is efficient at O(n log n), making it suitable for large inputs.