DAA Assignment 6

Ishaan Shaikh 231070063 Batch D

Q. Consider meteorological data like temperature, dew point, wind direction, wind speed, cloud cover, cloud layer(s) for each city. This data is available in a two dimensional array for a week. Assuming all tables are compatible for multiplication. You have to implement the matrix chain multiplication algorithm to find the fastest way to complete the matrix multiplication to achieve timely prediction.

Algorithm:

native dimensions Inxn matrix with ear INT_MAX Order else getorder (s,i,s(i)(i)

Test cases:

Test Cases:
Direct: [10,20, 30, 40,30, 20, 10] Output: 38000, (AIX(A2X(A3X(A4X(A5XA6)))))
Output: 15125, ((AIX(A2XA3)) X(A4XAS) X(A4XAS)
Output: 2010, ((AIXA2) x (A3 XA4) x (A5 XA6)))
u) Input: [10, 120", 130", 40, 30", 20", 10"] Output: All matrix dimensions must be integers
E) To I .
5) Input: Flo, -20, 30, 0, -40,50, -60] Output: All nating dimensions much be partire.
6) Input: []
arput: [] arbut: Input bout must contain at local three demensions to form two motives
The state of the s

Time Complexity:

Basic operation: Gente

Program:

```
class MatrixChainMultiplication:
    """Computes minimum scalar multiplications and optimal order for
matrix chain multiplication.

Attributes:
    dimensions (list): The list of dimensions where dimensions[i-1]
and dimensions[i] are
    dimensions for the i-th matrix in the chain.
    n (int): Number of matrices in the chain.
    m (list): DP table where m[i][j] stores the minimum cost for
```

```
optimal cost in m[i][j].
   def init (self, dimensions):
       self.dimensions = dimensions
       self.n = len(dimensions) - 1
       self. validate dimensions()
   def validate dimensions(self):
       if self.n < 1:
        if any(type(dim) != int for dim in self.dimensions):
            raise ValueError("All matrix dimensions must be integers.")
        if any(dim <= 0 for dim in self.dimensions):</pre>
   def compute min cost(self):
multiply the chain of matrices.
```

```
self.m[i][j] = sys.maxsize
                    cost = (self.m[i][k] + self.m[k + 1][j] +
                            self.dimensions[i] * self.dimensions[k + 1] *
self.dimensions[j + 1])
                    if cost < self.m[i][j]:</pre>
                        self.m[i][j] = cost
                        self.s[i][j] = k
        return self.m[0][self.n - 1]
    def get optimal order(self):
        return self. build order(0, self.n - 1)
    def _build_order(self, i, j):
matrices from i to j.
            return f"({self._build_order(i, self.s[i][j])} x
```

```
{self. build order(self.s[i][j] + 1, j)})"
class MatrixChainTest:
       self.test cases = [
matrices
           {"p": [5, 10, 3, 12, 5, 50, 6]}, # Valid case with 6
           {"p": [10, "20", "30", 40, "30", 20, "10"]}, # Non-integer
dimension
           {"p": []}
       for i, test in enumerate(self.test cases):
           dimensions = test["p"]
           print(f"Test Case {i + 1}: p = {dimensions}")
               min cost = matrix chain.compute min cost()
               order = matrix chain.get optimal order()
               print(f"Minimum cost: {min cost}")
               print(f"Optimal order: {order}")
               print(f"Error: {e}")
               print(f"Unexpected error: {e}")
           print()
```

```
if __name__ == "__main__":
    MatrixChainTest().run_tests()
```

Output:

```
Test Case 1: p = [10, 20, 30, 40, 30, 20, 10]
Minimum cost: 38000
Optimal order: (A1 x (A2 x (A3 x (A4 x (A5 x A6)))))

Test Case 2: p = [30, 35, 15, 5, 10, 20, 25]
Minimum cost: 15125
Optimal order: ((A1 x (A2 x A3)) x ((A4 x A5) x A6))

Test Case 3: p = [5, 10, 3, 12, 5, 50, 6]
Minimum cost: 2010
Optimal order: ((A1 x A2) x ((A3 x A4) x (A5 x A6)))

Test Case 4: p = [10, '20', '30', 40, '30', 20, '10']
Error: All matrix dimensions must be integers.

Test Case 5: p = [10, -20, 30, 0, -40, 50, -60]
Error: All matrix dimensions must be positive.

Test Case 6: p = []
Error: Input list must contain at least three dimensions to form two matrices.
```

Conclusion: In conclusion, we have studied the 5 SOLID principles of software development and implemented it in the program of longest common subsequence. We have implemented the program of matrix chain multiplication using dynamic programming to optimize the time complexity of the algorithm.