CSE 505

Lecture #7

September 24, 2012

Examples of lambda terms

- X. X
- x. y.x
- f. x. (f (f x))
- f. g. x. (f (g x))
- ..

Sometimes called "anonymous functions"

Informal Meaning

- X. X
 - → identity function
- x. y. x
 - a function of two parameters that returns the first parameter
- f. g. x. (f (g x))
 - the composition of two functions, f g

Bound and Free Occurrences

$$X.(\underline{X} \underline{Y})$$

f. x. $(\underline{f} (\underline{f} \underline{x}))$

 $x. (y. (x.(\underline{z} \underline{y}) \underline{x}) \underline{x})$

Lecture 7: 9/24/ 2012

SF 505 / Javaraman

Free Occurrence of Variable

V occurs_free_in W iff V = W

V occurs_free_in W.T iff V W and V occurs_free_in T

V occurs_free_in (T $_1$ T $_2$) iff V occurs_free_in T $_1$ or

V occurs_free_in T₂

Substitution

(will be used for parameter passing)

Substitution of all free occurrences of a variable V by term T1 in term T2:

e.g.
$$x. (\underline{f} (\underline{f} \underline{x})) [f \leftarrow y.y]$$

=
$$x. (y.y (y.y \underline{x}))$$

Note: $x. (\underline{f} (\underline{f} \underline{x})) [x \leftarrow y]$

x.
$$(\underline{f} (\underline{f} \underline{y}))$$
 -- since x is bound

Substitution (cont'd)

$$x. (\underline{f} (\underline{f} \underline{x})) [f \leftarrow y.(y x)]$$

This is called the "variable capture" problem.

Correct way to do the substitution:

$$x'$$
. (y .(y x) (y .(y x) x'))

Lecture 7: 9/24/ 2012

SE 505 / Javaraman

Substitution Rule (definition)

$$V~[V \leftarrow T]~=~T$$

$$V_1 \ [V \leftarrow T] \ = \ V_1, \ \ \mathbf{if} \ \ V \neq V_1$$

$$(T_1 \mid T_2) \mid [V \leftarrow T] \ = \ (T_1[V \leftarrow T] \mid T_2[V \leftarrow T])$$

$$\lambda(V)T_1$$
 $[V] \leftarrow T] = \lambda V.T_1$

Lecture 7: 9/24/ 2012

CSE 505 / Jayaraman

Substitution Rule

(definition continued)

$$\lambda V_1.T_1 \quad [V \leftarrow T] \quad = \quad \lambda V_1.T_1[V \leftarrow T] \quad \text{if} \quad V \neq V, \ \land \ \neg (V, \ \textit{density}, \textit{for } T) \equiv 0$$

. .

$$\lambda V_1.T_1 \ [V \leftarrow T] \ = \ \lambda V_2.T_1[V_1 \leftarrow V_2][V \leftarrow T],$$

$$\begin{split} \text{if} \ \ V \neq V_1 \ \land \ & (V_1 \ \ occurs_free_in \ T) \\ & \land \neg (V_2 \ occurs_free_in \ T) \\ & \land \neg (V_2 \ occurs_free_in \ T_1) \end{split}$$

Lecture 7: 9/24/2012 10 CSE 505 / Javaraman

Renaming Bound Variables

Renaming the binder variables is always permissible – similar to renaming the formal parameters of a function. Thus:

$$x. x = y. y$$

$$x. (\underline{f} (\underline{f} \underline{x})) = x'. (\underline{f} (\underline{f} \underline{x'}))$$

$$f. x. (f x) = g. y. (g y)$$

Lecture 7: 9/24/ 2012

11

CSE 505 / Jayaraman

Reduction Rules

Three famous reduction rules: , ,

-reduction is renaming of binder variables – it doesn't really "reduce" the term.

-reduction resembles call-by-name, and is based on the substitution rule:

$$(V.T1 T2) \rightarrow T1[V \leftarrow T2]$$

-reduction is not so common: $V.(T \ V) \rightarrow T \ \text{if} \ V \not\in \text{free}(T)$

Computation = -Reduction

$$\Rightarrow$$
 (x. (x.x (x.x x)) a)

$$\Rightarrow$$
 (x.x (x.x a))

$$\Rightarrow$$
 (x.x a)

 \Rightarrow a

Another -Reduction

$$\Rightarrow$$
 (x. (x.x (x.x x)) a)

$$\Rightarrow$$
 (x. $(x.xx)$ a)

$$\Rightarrow$$
 (x. x a)

 \Rightarrow a

Yet Another -Reduction

$$\Rightarrow$$
 (x. (x. x (x. x x)) a)

$$\Rightarrow$$
 (x. (x. x x) a)

⇒ a

Confluence Property

"If a lambda term T reduces to two terms T1 and T2, then T1 and T2 can be reduced to a common term U."

Unique Normal Form

If a term T reduces to a term U, and U cannot be reduced any further (by - or -reductions), then U is said to be in normal form.

Normal Form: The normal form of a term is unique if it exists. (Uniqueness is up to renaming of bound variables.)

Proof by Contradiction

Suppose T has two normal forms N₁ and N2:

$$T \rightarrow * N_1$$
 and $T \rightarrow * N_2$

By Confluence Property,

$$N_1 \rightarrow^* U$$
 and $N_2 \rightarrow^* U$

But N1 and N2 are irreducible, hence must be the same except for alpha-reductions, i.e., variable renaming.

Lecture 7: 9/24/ 2012

Nontermination is Posssible!

$$(\underline{x \cdot (x \cdot x)} \quad \underline{x \cdot (x \cdot x)})$$

$$\Rightarrow$$

$$(\underline{x \cdot (x \cdot x)} \quad \underline{x \cdot (x \cdot x)})$$

$$\Rightarrow$$

$$(\underline{x \cdot (x \cdot x)} \quad \underline{x \cdot (x \cdot x)})$$

$$\Rightarrow$$

Leftmost Reductions

- How should we reduce a term in order that the normal form can be derived, if it exists?
- Answer: Choose the leftmost "redex" at every step.
- Let $\Omega = (x \cdot (x \cdot x) \cdot x \cdot (x \cdot x))$
- Then, $(x.a \Omega) \rightarrow a$, by leftmost reduction
- · A nonterminating reduction sequence is:

 $(x.a \Omega) \rightarrow (x.a \Omega) \rightarrow ...$ Lecture 7: 9/24/ 2012

CSE 505 / Jayaraman

Different Reduction Orders

- Leftmost Innermost
- Parallel Innermost
- Rightmost Innermost
- Parallel Outermost
- Leftmost Outermost = Leftmost

Lecture 7: 9/24/ 2012

CSE 505 / Javaraman

Church-Rosser Property

Defn: T1 <==> T2 if T1 ==> T2 or T2 ==> T1, where ==> uses one of the three reduction rules.

Defn: T1 <==>* T2 uses <==> 0 or more times.

Church-Rosser Property: If T1 <==>* T2 then there is a term U s.t. $T1 ==>^* U$ and $T2 ==>^* U$.

Diagram:

Relation between <==>* and ==>*

Note: T1 <==>* T2 does NOT imply T1 ==>* T2 or T2 ==>* T1.

In reality, given T1 <==> * T2, the situation is:

Confluence implies Church-Rosser

Proof (informal):

Church-Rosser implies Confluence

Proof (easy): Given:

Therefore: $T_1 <==>^* T_2$

Therefore:

by Church-Rosser

Data Representation

The boolean type can be represented as follows:

- x. y. x → can represent "true"
- x. y. y → can represent "false"

Representation of "not" operator:

b.((b false) true)

Justification of "not" operator

We must show:

- a. (not true) →* false
- b. (not false) →* true

For example, (not true), i.e.,

(b.((b false) true) true)

if = b. t. e.((b t) e)

We can justify if-then-else by showing:

- a. (((if true) T1) T2) →* T1
- b. (((if false) T1) T2) →* T2

Example:

(((b. t. e.((b t) e) true) T1) T2)

Note on Syntax

Lisp syntax:

(and T1 T2) (if B T1 T2)

• • •

Lambda calculus:

((and T1) T2) (((if B) T1) T2)

Lecture 7: 9/24/ 2012

20

CSE 505 / Jayaraman

What datatype can this represent?

- f. x.x
- f. x.(f x)
- f. x. (f (f x))
- f. x. (f (f (f x)))
-

These are called Church Numerals.

Idea behind Church Numerals

Constructors: zero, succ(zero), succ(succ(zero)),

...

Alternatively: z, s(z), s(s(z)), ...

Lisp Syntax: z, (s z), (s (s z)), ...

Abstract Names: s. z.z,

s. z.(s z),

s. z.(s (s z)), ...

Lecture 7: 9/24/ 2012

COP FOR I

Operations on numbers

Let succ = n. f. x. ((n f) (f x))

Let add = n1. n2. f. x. $((n1 \ f) \ ((n2 \ f) \ x))$

Let mult = n1. n2. f. x. ((n1 (n2 f)) x)

Let mystery = n1. n2. (n2 n1)

Lecture 7: 9/24/ 2012

(SUCC S. Z.Z)

Lecture 7: 9/24/ 2012

CSE 505 / Jayaraman

Data Structures

Recall Lisp lists:

'(1) (cons 1 nil)

'(1 2 3) (cons 1 (cons 2 (cons 3 nil)))

The names of the constructors nil and cons are not important, so we "abstract them away" in lambda calculus, as shown on next slide.

Lecture 7: 9/24/ 2012

CSE 505 / Jayaraman

Encoding Lists

- c.n.n
- c. n. ((c tom) n)
- c. n. ((c tom) ((c dick) n))
- c. n . ((c tom) ((c dick) ((c harry) n)))
- ...

Function to get first element: I.((I x. y.x) a)

(I.((I x. y.x) a) c. n.((c tom) ((c dick) n)))

→* tom

(I.((I x. y.x) a) c. n.((c tom) ((c dick) n)))

 \Rightarrow ((c. n.((c tom) ((c dick) n))) x. y.x) a)

 \Rightarrow (n.((x. y.x tom) ((x. y.x dick) n))) a)

 \Rightarrow (n.(y.tom ((x. y.x dick) n))) a)

 \Rightarrow (y.tom ((x. y.x dick) a)))

⇒tom

Lecture 7: 9/24/ 2012

CSE 505 / Jayaran

LAMBDA CALCULUS TOOL DEMO

Lecture 7: 9/24/ 2012

37

CSE 505 / Jayaraman

Computability

- The language of lambda expressions is powerful enough to encode all computable functions!
- Notice that there is no recursive function definition – but this can be simulated, as will be next shown.

Recursive Definition

Consider recursive definition:

$$f(n) = if isO(n) then 1 else n * f(n-1)$$

Lisp syntax:

Lambda calculus (not quite):

letrec
$$f = n.(((if (is0 n)) 1) ((mult n) (f (pred n))))$$

Lecture 7: 9/24/2012

Representing Recursion

letrec fact = f.
$$n.(((if (is0 n)) 1) ((mult n) (fact (pred n))))$$

Fixed-Point Operator, Y:

let
$$Y = f. (x.(f(x x)) (x.(f(x x)))$$

Note: Fixed point of f is an x such that f(x) = x

Non-recursive equivalent of original function: (Y t)

Y = f. (x.(f(x x)) x.(f(x x)))

Y is fixed-point operator, because (for any t):

$$(Y \ t) <==>^* (t \ (Y \ t))$$

Derivation:

$$(Y t) = (f. (x.(f (x x)) x.(f (x x))) t)$$

$$==> (x.(t (x x)) x.(t (x x)))$$

$$==> (t (x.(t (x x)) x.(t (x x)))))$$

$$<==> (t (Y t))$$

Lecture 7: 9/24/ 2012

CSE 505 / Jayaraman

Recursion and Fixed-points

$$fact = n.(((if (is0 n)) 1) ((mult n) (fact (pred n)))$$

$$t = f. n.(((if (is0 n)) 1) ((mult n) (f (pred n))))$$

Why does the fixed-point of t capture f?

Fixed point g has the property: g = (t g)

$$g = n.(((if (is0 n)) 1) ((mult n) (g (pred n)))$$

Lecture 7: 9/24/ 2012

2

CSE 505 / Jayaraman

Least Fixed Point

Consider: letrec f(n) = if n=0 then 0 else f(n);

Fixed-point f1(n) =
$$\left\{ \begin{array}{l} 0, \text{ if } n=0 \\ 1, \text{ if } n=0 \end{array} \right\}$$
Fixed-point f2(n) =
$$\left\{ \begin{array}{l} 0, \text{ if } n=0 \\ 2, \text{ if } n=0 \end{array} \right\}$$

Least fixed-point
$$g(n) = \begin{cases} 0, & \text{if } n=0 \\ ?, & \text{if } n=0 \end{cases}$$

Lecture 7: 9/24/ 2012

CSE 505 / Jayaraman

Typed Lambda Calculi

Thus far, we have studied the untyped lambda calculus, i.e., no types associated with vars.

There are two well-known calculi:

- the simply-type lambda calculus
- the second-order (polymorphic) lambda calculus

Interesting, adding types causes all lambda expressions to terminate! Cannot have $(x \ x)$.

Lecture 7: 9/24/ 2012

CSE 505 / Jayaraman