A.A. 2021-2022

Elementi di Elettronica (INF) Prof. Paolo Crippa

Esercizi – P2

Esercizi su Circuiti con Amplificatori Operazionali

Esercizi su Circuiti con Amplificatori Operazionali da compiti del:

14 Gennaio 2014

4 Febbraio 2014

17 Giugno 2014

20 Luglio 2014

16 Settembre 2014

3 Febbraio 2015

17 Aprile 2015

17 Gennaio 2016

V

V

Esame di Elementi di Elettronica 14-01-2014

 $V_{\text{out}} =$

. Dato il circuito ($V_{\rm in1}=1~{\rm V}, V_{\rm in2}=3~{\rm V}, R_1=1~{\rm k}\Omega, R_2=2~{\rm k}\Omega, R_3=3~{\rm k}\Omega, R_4=4~{\rm k}\Omega$), determinare: i) l'espressione simbolica che lega $V_{\rm out}$ a $V_{\rm in1}$ e $V_{\rm in2}$; ii) i valori numerici indicati.

 V_3

 $V_{\rm out} =$

Esame di Elementi di Elettronica 14-01-2014

. Dato il circuito ($V_{\rm in1}=1~{\rm V}, V_{\rm in2}=3~{\rm V}, R_1=1~{\rm k}\Omega, R_2=2~{\rm k}\Omega, R_3=3~{\rm k}\Omega, R_4=4~{\rm k}\Omega$), determinare: i) l'espressione simbolica che lega $V_{\rm out}$ a $V_{\rm in1}$ e $V_{\rm in2}$; ii) i valori numerici indicati.

$$V_{
m out} = V_{
m in2} \Biggl(1 + rac{R_{
m l}}{R_{
m 2}} \Biggr) - V_{
m in1} \Biggl(1 + rac{R_{
m 3}}{R_{
m 4}} \Biggr) rac{R_{
m l}}{R_{
m 2}}$$

V_1	=	+			3	0	0	0	V
V_2	=	+		9	1	7	5	0	V
V_3	=	[+]			1	0	0	0	V
$V_{\rm out}$	=	+			2	1	2	5	V

Esame di Elementi di Elettronica 14-01-2014

Soluzione:

$$V1 = Vin2 = 3 V$$
; $V3 = Vin1 = 1 V$

$$\frac{Vout-V1}{R_1} = \frac{V1-V2}{R_2}$$
 ; $\frac{V2-V3}{R_3} = \frac{V3}{R_4}$

$$V2 = Vin1 \frac{R_3 + R_4}{R_4} = 1.75 \text{ V}$$

$$Vout = Vin2 \frac{R_1 + R_2}{R_2} - Vin1 \frac{R_3 + R_4}{R_4} \frac{R_1}{R_2} =$$

$$= 3 \frac{1+2}{2} - 1 \frac{3+4}{4} \frac{1}{2} = 2.125V$$

Esame di Elementi di Elettronica 04-02-2014

Dato il circuito ($V_{\rm in}=1~{\rm V},\,I_{\rm B}=1~{\rm mA}\,R_1=1~{\rm k}\Omega,\,R_2=2~{\rm k}\Omega,\,R_3=2~{\rm k}\Omega,\,R_4=1~{\rm k}\Omega$), determinare: i) l'espressione simbolica che lega $V_{\rm out}$ a $V_{\rm in}$; ii) i valori numerici delle grandezze indicate.

$$V_{\rm out} =$$

	re year and a second		
$V_{\rm A}$			V
V_{A} V_{B} I_{R1}			V
I_{R1}			mA
I_{R2}			mA
I_{R3}		,	mA
101			mA
$V_{\rm out}$			V

Esame di Elementi di Elettronica 04-02-2014

Dato il circuito ($V_{\rm in}=1~{\rm V},\,I_{\rm B}=1~{\rm mA}\,R_1=1~{\rm k}\Omega,\,R_2=2~{\rm k}\Omega,\,R_3=2~{\rm k}\Omega,\,R_4=1~{\rm k}\Omega$), determinare: i) l'espressione simbolica che lega $V_{\rm out}$ a $V_{\rm in}$; ii) i valori numerici delle grandezze indicate.

$$V_{\text{out}} = -R_3 I_B - V_{\text{in}} R_3 \left(\frac{1}{R_2} + \frac{R_4}{R_1 R_2} + \frac{R_4}{R_1 R_3} + \frac{1}{R_1} \right)$$

$V_{\rm A}$	_				0	0	0	0	V
$V_{\rm B}$	=				1	0	0	0	V
I_{R1}	=	+	53		1	0	0		mA
I_{R2}	=	+			1	0	0	0	mA
I_{R3}		+			3	0	0	0	mA
I_{R4}	=				1	0	0	0	mA
$V_{ m out}$	=				7	0	0	0	V

Esame di Elementi di Elettronica 17-06-2014

Dato il circuito ($V_{\rm in}=3$ V, $R_1=1$ k Ω , $R_2=2$ k Ω , $R_3=2$ k Ω , $R_4=4$ k Ω), determinare: i) l'espressione simbolica che lega $V_{\rm out}$ a $V_{\rm in}$; ii) i valori di $V_{\rm A}$, $V_{\rm B}$, $V_{\rm X}$, $V_{\rm out}$.

 $V_{\rm out} =$

$V_{\rm A}$		V
$V_{\rm B}$,	V
$V_{\rm X}$		V
$V_{ m out}$		V

Esame di Elementi di Elettronica 17-06-2014

Dato il circuito ($V_{\rm in}=3~{\rm V},~R_1=1~{\rm k}\Omega,~R_2=2~{\rm k}\Omega,~R_3=2~{\rm k}\Omega,~R_4=4~{\rm k}\Omega$), determinare: i) l'espressione simbolica che lega $V_{\rm out}$ a $V_{\rm in}$; ii) i valori di $V_{\rm A},~V_{\rm B},~V_{\rm X},~V_{\rm out}$.

$$V_{\text{out}} = V_{\text{in}} \frac{R_3 + R_4}{R_3 + R_4 \left(1 + \frac{R_2}{R_1}\right)}$$

$V_{\rm A}$		+		1	2	8	6	V
$V_{\rm B}$	=	+		3	0	0	0	V
$V_{\rm X}$		+		3	8	5	7	V
$V_{ m out}$	_	+		1	2	8	6	V

Esame di Elementi di Elettronica 20-07-2014

Dato il circuito in figura ($V_{\rm in}=1~{\rm V},~R_1=R_3=R_5=10~{\rm k}\Omega,~R_2=R_4=R_6=20~{\rm k}\Omega$), determinare: i) i valori di $V_{\rm A},~V_{\rm B},~V_{\rm out};~ii$) l'espressione simbolica che lega $V_{\rm out}$ a $V_{\rm in}$.

$$V_{\rm out} =$$

$V_{\rm A}$	=[V
$V_{\rm B}$	=],[V
$V_{\rm out}$	=			V

Esame di Elementi di Elettronica 20-07-2014

Dato il circuito in figura ($V_{\rm in}=1~{\rm V},~R_1=R_3=R_5=10~{\rm k}\Omega,~R_2=R_4=R_6=20~{\rm k}\Omega$), determinare: i) i valori di $V_{\rm A},~V_{\rm B},~V_{\rm out};~ii$) l'espressione simbolica che lega $V_{\rm out}$ a $V_{\rm in}$.

$$V_{
m out} = V_{
m in} \Biggl(1 + rac{R_2}{R_1} \Biggr) rac{R_4}{R_3} \; rac{R_6}{R_5}$$

$V_{\rm A}$	=	+			3	0	0	0	V
V_{B}	=				6	0	0	0	V
$V_{ m out}$	=	\Box		1	2	0	0	0	V

Esame di Elementi di Elettronica 16-09-2014

Dato il circuito in figura ($V_{\rm in}=1~{\rm V},~I_{\rm A}=I_{\rm B}=I_{\rm C}=500~{\rm \mu A},~R_1=R_2=R_3=R_4=1~{\rm k}\Omega$), determinare: i) l'espressione simbolica che lega $V_{\rm out}$ a $V_{\rm in}$; ii) i valori di $V_{\rm A},~V_{\rm B},~V_{\rm C},~V_{\rm out}$.

$$V_{\text{out}} =$$

$V_{\rm A}$		V
$V_{\rm B}$		V
$V_{\rm C}$		V
$V_{ m out}$		V

Esame di Elementi di Elettronica 16-09-2014

Dato il circuito in figura ($V_{\rm in}=1~{\rm V},~I_{\rm A}=I_{\rm B}=I_{\rm C}=500~{\rm \mu A},~R_1=R_2=R_3=R_4=1~{\rm k}\Omega$), determinare: i) l'espressione simbolica che lega $V_{\rm out}$ a $V_{\rm in}$; ii) i valori di $V_{\rm A},~V_{\rm B},~V_{\rm C},~V_{\rm out}$.

$$V_{
m out} = V_{
m in} \Biggl(1 + rac{R_2}{R_1} \Biggr) \Biggl(1 + rac{R_4}{R_3} \Biggr) + R_4 \ I_B \ .$$

$V_{\rm A}$	=	+		2		0	0	0	V
$V_{\rm B}$		+		2	•	0	0	0	V
$V_{\rm C}$	=	+		1		0	0	0	V
V_{out}	1	+		4		5	0	0	V

Esame di Elementi di Elettronica 03-02-2015

Dato il circuito in figura ($V_{\rm DD}=5~{\rm V},~V_{\rm in}=1~{\rm V},~I_{\rm A}=100~{\rm \mu A}~R_1=10~{\rm k}\Omega,~R_2=4~{\rm k}\Omega,~R_3=4~{\rm k}\Omega,~R_4=2~{\rm k}\Omega$), determinare: i) l'espressione simbolica che lega $V_{\rm out}$ a $V_{\rm in};~ii$) i valori numerici indicati.

I_{R1}		μΑ
$V_{\mathbf{x}}$		V
$V_{\mathbf{y}}$		$\bigcup V$
$V_{\rm out}$		$\bigcup V$

Esame di Elementi di Elettronica 03-02-2015

Dato il circuito in figura ($V_{\rm DD}=5$ V, $V_{\rm in}=1$ V, $I_{\rm A}=100$ μA $R_1=10$ k Ω , $R_2=4$ k Ω , $R_3=4$ k Ω , $R_4=2$ k Ω), determinare: i) l'espressione simbolica che lega $V_{\rm out}$ a $V_{\rm in}$; ii) i valori numerici indicati.

I_{R1}	=	†		7	1	4			μА
$V_{ m x}$	=	+			1	7	1	4	V
$V_{ m y}$	=	+			1	7	1	4	V
$V_{ m out}$	=	+			2	0	7	i	V

Esame di Elementi di Elettronica 17-04-2015

Dato il circuito in figura ($V_{\rm in}=2$ V, $I_{\rm A}=I_{\rm B}=500$ $\mu{\rm A},~R_1=1$ k $\Omega,~R_2=R_3=2$ k $\Omega,~R_4=R_5=R_6=1$ k $\Omega,~R_7=2$ k Ω), determinare: i) l'espressione simbolica che lega $V_{\rm out}$ a $V_{\rm in};~ii$) i valori numerici indicati.

$V_{\rm A} = $		
$V_{\rm B} = \square$		7
$V_{\rm C} = \square$	3.	7
$V_{\rm D} = \square$		7
$V_{\text{out}} = \boxed{}$		7

Esame di Elementi di Elettronica 17-04-2015

Dato il circuito in figura ($V_{\rm in}=2$ V, $I_{\rm A}=I_{\rm B}=500$ $\mu{\rm A},~R_1=1$ k $\Omega,~R_2=R_3=2$ k $\Omega,~R_4=R_5=R_6=1$ k $\Omega,~R_7=2$ k Ω), determinare: i) l'espressione simbolica che lega $V_{\rm out}$ a $V_{\rm in};~ii$) i valori numerici indicati.

$$V_{\text{out}} = V_{\text{in}} \frac{R_2 R_7}{R_1 R_4 R_6} \left(\frac{1}{R_4} + \frac{1}{R_5} + \frac{1}{R_6} \right)^{-1} = V_{\text{in}} \frac{R_2 R_5 R_7}{R_1 (R_4 R_5 + R_4 R_6 + R_5 R_6)}$$

$V_{\rm A}$				g	4	0	0	0	V
$V_{\rm B}$	=				0	0	0	0	V
$V_{\rm C}$		_		9	1	3	3	3	V
$V_{\rm D}$	=				0	0	0	0	V
V_{out}		[+]	2	8	2	6	6	6	V

Esame di Elementi di Elettronica 17-01-2016

4. Dato il circuito in figura ($V_{\rm in}=1~{\rm V},~R_1=1~{\rm k}\Omega,~R_2=2~{\rm k}\Omega,~R_3=1~{\rm k}\Omega,~R_4=2~{\rm k}\Omega,~R_5=2~{\rm k}\Omega,~R_6=1~{\rm k}\Omega,~R_7=4~{\rm k}\Omega,~I_A=600~{\rm \mu A}$), determinare: i) l'espressione simbolica che lega $V_{\rm out}$ a $V_{\rm in};~ii$) i valori numerici indicati.

$$I_{R1} = I_{R2} = I_{R4} = I_{R5} = I_{R7} = V_{A} = V_{C} = V_{out} = V_{out}$$

Esame di Elementi di Elettronica 17-01-2016

4. Dato il circuito in figura ($V_{\rm in}=1~{\rm V},~R_1=1~{\rm k}\Omega,~R_2=2~{\rm k}\Omega,~R_3=1~{\rm k}\Omega,~R_4=2~{\rm k}\Omega,~R_5=2~{\rm k}\Omega,$ $R_6 = 1 \text{ k}\Omega$, $R_7 = 4 \text{ k}\Omega$, $I_A = 600 \text{ }\mu\text{A}$), determinare: i) l'espressione simbolica che lega V_{out} a V_{in} ; ii) i valori numerici indicati.

I_{R1}	=	+	ĺ	0	0	0	0	0	0	μА
I_{R2}	=	+	1	0	0	0	0	0	0	$\mu \textbf{A}$
I_{R4}	=	-		2	0	0	0	0	0	$\mu \textbf{A}$
I_{R5}	=			8	0	0	0	0	0	$\mu \textbf{A}$
I_{R7}	=	-	l	6	0	0	0	0	Ò	$\mu \textbf{A}$
$V_{ m A}$	=					0	0	0	0	V
$V_{ m B}$	=	-				2	Ô	0	0	V
$V_{ m C}$	=	_				i	6	Ô	0	V
$V_{ m out}$	=	_				8	0	0	0	V