Derivatives

I. Limit

if
$$\lim_{x\to c} f(x) = L$$
 exist $\Leftrightarrow \lim_{x\to c^+} f(x) = \lim_{x\to c} f(x) = L$

if $\lim_{x\to c} f(x) = \infty \Rightarrow$ the limit DNE (does not exist)

Sandwich Principle

if
$$h(x) \ge g(x) \ge f(x)$$
 and $\lim_{x \to c} h(x) = \lim_{x \to c} f(x) = L$

then $\lim_{x\to c} g(x) = L$

Important Limits,

$$\lim_{x\to 0}\frac{\sin x}{x}=1$$

$$\lim_{x \to 0} \frac{1 - \cos x}{x} = 0$$

$$\lim_{x\to\infty}\left(1+\frac{1}{x}\right)^x=e$$

for $x \to \infty$

- $\sin x \cong \tan x \cong x$
- $\sin^{-1} x / \tan^{-1} x / e^x 1 / \ln(x+1) \cong x$
- $\bullet \quad a^x 1 \cong x \ln a$

2. Continuity

$$f(x)$$
 is continuous at c if $\lim_{x \to c} f(x) = \lim_{x \to c} f(c)$ (both c^+ and c^-)

3. Intermediate Value Theorem (IVT)

if f(x) is continuous on [a,b] and $f(a) \cdot f(b) \le 0$, then must exist f(x) = 0 on [a,b]

example: prove
$$f(x) = \frac{x^2+8}{x}\cos(x-1) = 6$$
 must have root on $[-2,2]$

since $x \neq 0$, f(x) is only continuous on (-2,0) and (0,2)

$$f(-2) \cdot \lim_{x \to 0^{-}} f(x) < 0$$
, $\lim_{x \to 0^{+}} f(x) \cdot f(2) > 0$

according to IVT, f(x) must have root on (-2,0)

4. Derivatives

$$f'(x) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 - \Delta x)}{\Delta x}$$

Derivatives of Inverse Function

$$f(x_0) = y \Rightarrow f^{-1}(y) = x_0$$

take derivatives of both sides: $(f^{-1})'(y)f'(f^{-1}(y)) = 1$

$$\Rightarrow \boxed{(f^{-1})'(x) = \frac{1}{f'(f^{-1}(y))}}$$

Important Derivatives

•
$$x^n \sim nx^{n-1} / e^x \sim e^x / a^x \sim a^x \ln x / \ln x \sim \frac{1}{x} / \log_a x \sim \frac{1}{x \ln a}$$

•
$$\sin x \sim \cos x / \cos x \sim -\sin x / \tan x \sim \sec^2 x$$

•
$$\sin^{-1} x \sim \frac{1}{\sqrt{1-x^2}} / \cos^{-1} x \sim -\frac{1}{\sqrt{1-x^2}} / \tan^{-1} x = \frac{1}{1+x^2}$$

5. Differentiation

- f(x) is differentiable at c if $\lim_{x \to c^+} f'(x) = \lim_{x \to c^-} f'(x)$
- f(x) is continuous at c if f(x) is differentiable at c

Chain Rule

$$(f \circ g)'(x) = f'(g(x)) \cdot g'(x)$$

Implicit Differentiation

example: find dy/dx of $x^2 + y^2 = 1$ differentiate both sides

$$\Rightarrow \frac{d}{dx}(x^2) + \frac{d}{dx}(y^2) = \frac{d}{dx}(1) = 0$$
$$\Rightarrow 2x + 2y \cdot \frac{dy}{dx} = 0$$

$$\Rightarrow \frac{dy}{dx} = -\frac{x}{y}$$

6. L'hopital's Rule

if $\lim_{x \to c} \frac{f(x)}{g(x)}$ has form of ∞/∞ or 0/0

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$$

example:
$$\lim_{x \to c} f(x)^{g(x)} \Rightarrow \lim_{x \to c} e^{g(x) \ln f(x)}$$

7. Linear Approximation

make approximation by Δx which is very small

$$f'(x_0) \approx \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

$$\Rightarrow \boxed{f(x_0 + \Delta x) \approx f'(x_0) \Delta x + f(x_0)}$$

8. Extremum

for f(x) on interval l:

 x_0 is global maximizer if $f(x_0) \ge f(x)$ for all $x \in l$

 x_0 is global minimizer if $f(x_0) \le f(x)$ for all $x \in l$

 x_0 is global maximizer if $f(x_0) \ge f(x)$ for all $x \in l_0 \cap l$

 x_0 is global minimizer if $f(x_0) \le f(x)$ for all $x \in l_0 \cap l$

Critical Point

for f(x) on interval l, x_0 (not end point) is critical point if $f'(x_0) = 0$ or ODE if l is not closed, global maximizer / minimizer may not exist

9. The Mean Value Theorem: The Lagrange's

for f(x) on [a,b], f(x) is continuous and differentiable on (a,b)

$$\exists \ \xi \in (a,b), f'(\xi) = \frac{f(b) - f(a)}{b - a}$$

example: prove
$$\sin \alpha - \sin \beta \le \alpha - \beta$$
 for any $\alpha > \beta$
 $\sin \alpha - \sin \beta = \sin'(\xi)(\alpha - \beta) = \cos \xi (\alpha - \beta) < \alpha - \beta$

IO. Convexity / Concavity

for convex curve, $f''(x) \ge 0$ for concave curve, $f''(x) \le 0$

inflection point is where f''(x) = 0 or DNE, and has to have convexity and concavity change

II. Asymptotes

- horizontal asymptotes: $\lim_{x\to a} f(x) = a$
- vertical asymptotes: $\lim_{x \to a} f(x) = \infty$

for f(x) = P(x)/Q(x), if x = a is a vertical asymptotes, then $Q(a) \rightarrow 0$

• inclined asymptotes: $\lim_{x\to\infty} f(x) - (mx + b) = 0$

example: find inclined asymptotes for $f(x) = \frac{x^2 - x + 2}{x - 2}$

$$m = \lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{x^2 - x + 2}{x - 2} = 1$$

$$b = \lim_{x \to \infty} f(x) - mx = \lim_{x \to \infty} \frac{x+2}{x-2} = 1$$