Synthesis of Semantic Actions in Attribute Grammars

Pankaj Kumar Kalita ¹ Miriyala Jeevan Kumar ² Subhajit Roy ¹

¹Indian Institute of Technology Kanpur, India ²Fortanix Tech. India Pvt. Ltd. Bengaluru, India

Kalita, Kumar, Roy Pāṇini 1/2

Kalita, Kumar, Roy Pāṇini 2/21

$$L \to E$$

$$E \to E' \blacklozenge T$$

$$E \to T$$

$$T \to T' \blacksquare F$$

$$T \to F$$

$$F \to (E)$$

$$F \to digit$$

Kalita, Kumar, Roy $Par{ ilde{A}}_{NINI}$ 2/21

$$4 \blacksquare 23$$
 92
 $5 \spadesuit 9$ 14
 $34 \blacksquare (12 \spadesuit 8)$ 680
 $(4 \spadesuit 7) \blacksquare (5 \spadesuit 12)$ 187

$$L \to E$$

$$E \to E' \blacklozenge T$$

$$E \to T$$

$$T \to T' \blacksquare F$$

$$T \to F$$

$$F \to (E)$$

$$F \to digit$$

Kalita, Kumar, Roy $P\bar{\text{A}}_{ ext{NINI}}$ 2/21

```
4 ■ 23 92

5 \diamondsuit 9 14

34 ■ (12 \diamondsuit 8) 680

(4 \diamondsuit 7) ■ (5 \diamondsuit 12) 187
```

```
L → E

E → E' ♦ T

E → T

T → T' ■ F

T → F

F → (E)

F → digit

L.val = E.val

E.val = T.val + T.val

E.val = T.val * F.val

T.val = F.val

F.val = E.val

F.val = int(digit.lexval)
```

Kalita, Kumar, Roy PāṇINI 2/21

```
1. L \rightarrow E | L.val = E.val

2. E \rightarrow E' \blacklozenge T | E.val = E'.val + T.val

3. E \rightarrow T | E.val = T.val

4. T \rightarrow T' \blacksquare F | T.val = T'.val * F.val

5. T \rightarrow F | T.val = F.val

6. F \rightarrow (E) | F.val = E.val

7. F \rightarrow digit | F.val = int(digit.lexval)
```


3/21

Kalita, Kumar, Roy Pāṇini

```
1. L \rightarrow E

2. E \rightarrow E' \blacklozenge T

3. E \rightarrow T

4. T \rightarrow T' \blacksquare F

5. T \rightarrow F

6. F \rightarrow (E)

7. F \rightarrow \text{digit}

L.val = E.val

E.val = T.val

T.val = T'.val * F.val

F.val = E.val

F.val = E.val
```


Kalita, Kumar, Roy PāṇNI 3/21

3.
$$E \rightarrow T$$

6.
$$F \rightarrow (E)$$
 F.val = E.val

7.
$$F \rightarrow digit$$

1.
$$L \rightarrow E$$
 | L.val = E.val

2.
$$E \rightarrow E' \blacklozenge T \mid E.val = E'.val + T.val$$

3.
$$E \rightarrow T$$
 $E.val = T.val$

4.
$$T \rightarrow T' \blacksquare F \mid T.val = T'.val * F.val$$

5.
$$T \rightarrow F$$
 $T.val = F.val$

$$F.val = E.val$$

7.
$$F \rightarrow digit$$
 $F.val = int(digit.lexval)$

Kalita, Kumar, Rov Pānini 3/21

3.
$$E \rightarrow T$$

$$5 T \rightarrow F$$

6.
$$F \rightarrow (E)$$
 $F.val = E.val$

7.
$$F \rightarrow digit$$

1. $L \rightarrow E$ | L.val = E.val

2.
$$E \rightarrow E' \blacklozenge T \mid E.val = E'.val + T.val$$

3.
$$E \rightarrow T$$
 $E.val = T.val$

4.
$$T \rightarrow T' \blacksquare F \mid T.val = T'.val * F.val$$

5.
$$T \rightarrow F$$
 $T.val = F.val$

$$F.val = E.val$$

7.
$$F \rightarrow digit$$
 F.val = int(digit.lexval)

Kalita, Kumar, Rov Pānini 3/21

1.
$$L \rightarrow E$$

3.
$$E \rightarrow T$$

6.
$$F \rightarrow (E)$$

7.
$$F \rightarrow digit$$

1.
$$L \rightarrow E$$
 | L.val = E.val

2.
$$E \rightarrow E' \blacklozenge T \mid E.val = E'.val + T.val$$

3.
$$E \rightarrow T$$
 E.val = T.val

5.
$$T \rightarrow F$$
 $T.val = F.val$

6.
$$F \rightarrow (E)$$
 $F.val = E.val$

7.
$$F \rightarrow digit$$
 | F.val = int(digit.lexval)

1. $L \rightarrow E$ | L.val = E.val

2. $E \rightarrow E' \blacklozenge T \mid E.val = E'.val + T.val$

3. $E \rightarrow T$ E.val = T.val

4. $T \rightarrow T' \blacksquare F \mid T.val = T'.val * F.val$

5. $T \rightarrow F$ | T.val = F.val

6. $F \rightarrow (E)$ F.val = E.val

7. $F \rightarrow digit$ F.val = int(digit.lexval)

Kalita, Kumar, Rov Pānini 3/21

- 3. $E \rightarrow T$

L.val = E.val

2. $E \rightarrow E' \spadesuit T$ E.val = E'.val + T.val

E.val = T.val

4. $T \rightarrow T' \blacksquare F \mid T.val = T'.val * F.val$

5. $T \rightarrow F$ | T.val = F.val

6. $F \rightarrow (E)$ F.val = E.val

7. $F \rightarrow digit$ F.val = int(digit.lexval)


```
1. L \rightarrow E | L.val = E.val

2. E \rightarrow E' \blacklozenge T | E.val = E'.val + T.val

3. E \rightarrow T | E.val = T.val

4. T \rightarrow T' \blacksquare F | T.val = T'.val * F.val

5. T \rightarrow F | T.val = F.val

6. F \rightarrow (E) | F.val = E.val

7. F \rightarrow digit | F.val = int(digit.lexval)
```

Kalita, Kumar, Roy Pāṇṇn 4/21

2.
$$E \rightarrow E' \blacklozenge T$$

3.
$$E \rightarrow T$$

5. T
$$\rightarrow$$
 F

6.
$$F \rightarrow (E)$$
 | F.val = E.val

7.
$$F \rightarrow digit$$

1.
$$L \rightarrow E$$
 | L.val = E.val

2.
$$E \rightarrow E' \blacklozenge T \mid E.val = E'.val + T.val$$

3.
$$E \rightarrow T$$
 | E.val = T.val

4.
$$T \rightarrow T' \blacksquare F \mid T.val = T'.val * F.val$$

5.
$$T \rightarrow F$$
 $T.val = F.val$

$$\mathsf{F}.\mathsf{val} = \mathsf{F}.\mathsf{val}$$

7.
$$F \rightarrow digit$$
 F.val = int(digit.lexval)

23

```
1. L \rightarrow E | L.val = E.val
2. E \rightarrow E' \blacklozenge T \mid E.val = E'.val + T.val
3. E \rightarrow T  E.val = T.val
4. T \rightarrow T' \blacksquare F \mid T.val = T'.val * F.val
                                                        T_1.val = F_1.val
5. T \rightarrow F
                 T.val = F.val
6. F \rightarrow (E) F.val = E.val
7. F \rightarrow digit | F.val = int(digit.lexval)
                                                          F_1.val = 4
```

 ✓ □ > ✓ □

23

3.
$$E \rightarrow T$$

- 5. $T \rightarrow F$
- 6. $F \rightarrow (E)$ F.val = E.val
- 7. $F \rightarrow digit$

1. $L \rightarrow E$ | L.val = E.val

2.
$$E \rightarrow E' \blacklozenge T \mid E.val = E'.val + T.val$$

 $|\mathsf{E.val} = \mathsf{T.val}|$

4.
$$T \rightarrow T' \blacksquare F \mid T.val = T'.val * F.val$$

T.val = F.val

F.val = int(digit.lexval)

Pānini Kalita, Kumar, Rov

```
\begin{array}{lll} 1. & L \rightarrow E \\ 2. & E \rightarrow E' \blacklozenge T \\ 3. & E \rightarrow T \\ 4. & T \rightarrow T' \blacksquare F \\ 5. & T \rightarrow F \\ 6. & F \rightarrow (E) \\ 7. & F \rightarrow digit \end{array} \begin{array}{ll} L.val = E.val \\ E.val = E'.val + T.val \\ E.val = T.val \\ T.val = T'.val * F.val \\ F.val = E.val \\ F.
```


4/21

```
1. L \rightarrow E

2. E \rightarrow E' \blacklozenge T

3. E \rightarrow T

4. T \rightarrow T' \blacksquare F

5. T \rightarrow F

6. F \rightarrow (E)

7. F \rightarrow \text{digit}

L.val = E.val

E.val = T.val * F.val

T.val = F.val

F.val = E.val

F.val = int(digit.lexval)
```


- $1 \mid I \rightarrow F$
- 2. $E \rightarrow E' \blacklozenge T$
- $3 F \rightarrow T$
- 4. T → T' **■** F
- 5. $T \rightarrow F$
- 6. $F \rightarrow (E)$ | F.val = E.val
- 7. $F \rightarrow digit$

I val = F val

E.val = E'.val + T.val

 $\mathsf{E.val} = \mathsf{T.val}$

T.val = T'.val * F.val

T.val = F.val

F.val = int(digit.lexval)

Problem Statement

```
L \to E
E \to E' \blacklozenge T
E \to T
T \to T' \blacksquare F
T \to F
F \to (E)
F \to digit
```

Kalita, Kumar, Roy $Par{ ilde{A}}_{NINI}$ 5/21

Problem Statement

Kalita, Kumar, Roy Pāṇṇṇ 5/21

Problem Statement

Kalita, Kumar, Roy PāṇiNi 5/21

Grammar with Holes

```
\begin{array}{lll} \mathsf{L} \to \mathsf{E} & \mathsf{L.val} = \mathsf{E.val} \\ \mathsf{E} \to \mathsf{E'} \blacklozenge \mathsf{T} & \mathsf{E.val} = \mathsf{E'.val} + \mathsf{T.val} \\ \mathsf{E} \to \mathsf{T} & \mathsf{E.val} = \mathsf{T.val} \\ \mathsf{T} \to \mathsf{T'} \blacksquare \mathsf{F} & \mathsf{T.val} = \mathsf{T'.val} * \mathsf{F.val} \\ \mathsf{T} \to \mathsf{F} & \mathsf{T.val} = \mathsf{F.val} \\ \mathsf{F} \to (\mathsf{E}) & \mathsf{F.val} = \mathsf{E.val} \\ \mathsf{F} \to \mathsf{digit} & \mathsf{F.val} = \mathsf{int}(\mathsf{digit.lexval}) \end{array}
```

Kalita, Kumar, Roy PāṣṣɪNɪ 6/21

Grammar with Holes

```
L → E

E → E' ♦ T

E.val = E.val

E.val = h_1^{\bullet} (E'.val, T.val)

E → T

E.val = T.val

T.val = h_2^{\bullet} (T'.val, F.val)

T.val = F.val

F.val = E.val

F.val = int(digit.lexval)
```

Kalita, Kumar, Roy Pāṇini 6/21

Grammar with Holes

Definition is missing.

```
L → E

E → E' ♦ T

E → T

T → T' ■ F

T → E

F → (E)

F → digit

E.v = h_{1}^{\bullet} (E'.val, T.val)
E.val = T.val
T.val = h_{2}^{\bullet} (T'.val, F.val)
T.val = F.val
F.val = E.val
F.val = E.val
F.val = int(digit.lexval)
```

L → E	L.val = E.val
$E \rightarrow E' \blacklozenge T$	$E.val = \frac{h_1^{\bullet}}{(E'.val, T.val)}$
$E \rightarrow T$	E.val = T.val
T → T' ■ F	$T.val = \frac{h_2^{\bullet}}{(T'.val, F.val)}$
$T \rightarrow F$	T.val = F.val
$F \rightarrow (E)$	F.val = E.val
$F \to digit$	F.val = int(digit.lexval)

Kalita, Kumar, Roy PĀŅINI 7/21

Kalita, Kumar, Roy Pāṇṇṇ 7/21

Kalita, Kumar, Roy $Par{A}_{NINI}$ 7/21

Kalita, Kumar, Roy Pāṇini 7/21

Motivation

Kalita, Kumar, Roy Pāṇini 8/21

Motivation

Kalita, Kumar, Roy Pāṇṇn 8/21

Forward Differentiation

Kalita, Kumar, Roy PĀŅINI 9 / 21

Challenges: #1

```
L → E

E → E' ♦ T

E.val = h_1^{\bullet} (E'.val, T.val)

E → T

E.val = T.val

T → T' ■ F

T.val = h_2^{\bullet} (T'.val, F.val)

T → F

T.val = F.val

F → (E)

F → digit

L.val = E.val

E.val = E.val

F.val = int(digit.lexval)
```

How to convert semantic action synthesis to program synthesis?

Solution: Symbolic Trace

$$L \rightarrow E \qquad L.val = E.val$$

$$E \rightarrow E' \blacklozenge T \qquad E.val = \frac{h_1^{\bullet}}{1}(E'.val, T.val)$$

$$E \rightarrow T \qquad E.val = T.val$$

$$T \rightarrow T' \blacksquare F \qquad T.val = \frac{h_2^{\bullet}}{1}(T'.val, F.val)$$

$$T \rightarrow F \qquad T.val = F.val$$

$$F \rightarrow (E) \qquad F.val = E.val$$

$$F \rightarrow digit \qquad F.val = int(digit.lexval)$$

11 / 21

Kalita, Kumar, Roy Pāṇini

Solution: Symbolic Trace

L → E L.val = E.val
E → E' ♦ T E.val =
$$h_1^{\bullet}$$
 (E'.val, T.val)
E → T E.val = T.val
T → T' ■ F T.val = h_2^{\bullet} (T'.val, F.val)
T → F T.val = F.val
F → (E) F.val = int(digit.lexval)

4 ■ 23 92

$$F_1.val \leftarrow 4$$

Kalita, Kumar, Roy $P\bar{\text{A}}$ ŅINI 11/21

Solution: Symbolic Trace

$$\begin{array}{lll} \mathsf{L} \to \mathsf{E} & \mathsf{L.val} = \mathsf{E.val} \\ \mathsf{E} \to \mathsf{E'} \blacklozenge \mathsf{T} & \mathsf{E.val} = \frac{h_1^\bullet}{1} (\mathsf{E'.val}, \, \mathsf{T.val}) \\ \mathsf{E} \to \mathsf{T} & \mathsf{E.val} = \mathsf{T.val} \\ \mathsf{T} \to \mathsf{T'} \blacksquare \mathsf{F} & \mathsf{T.val} = \frac{h_2^\bullet}{1} (\mathsf{T'.val}, \, \mathsf{F.val}) \\ \mathsf{T} \to \mathsf{F} & \mathsf{T.val} = \mathsf{F.val} \\ \mathsf{F} \to (\, \mathsf{E}\,) & \mathsf{F.val} = \mathsf{E.val} \\ \mathsf{F} \to \mathsf{digit} & \mathsf{F.val} = \mathsf{int}(\mathsf{digit}.\mathsf{lexval}) \end{array}$$

4 ■ 23 92

$$F_1.val \leftarrow 4$$
 $T_1.val \leftarrow F_1.val$

Kalita, Kumar, Roy Pāṇini 11/21

$$\begin{array}{lll} \mathsf{L} \to \mathsf{E} & \mathsf{L.val} = \mathsf{E.val} \\ \mathsf{E} \to \mathsf{E'} \blacklozenge \mathsf{T} & \mathsf{E.val} = \frac{h_1^\bullet}{\mathsf{I}} (\mathsf{E'.val}, \, \mathsf{T.val}) \\ \mathsf{E} \to \mathsf{T} & \mathsf{E.val} = \mathsf{T.val} \\ \mathsf{T} \to \mathsf{T'} \blacksquare \mathsf{F} & \mathsf{T.val} = \frac{h_2^\bullet}{\mathsf{I}} (\mathsf{T'.val}, \, \mathsf{F.val}) \\ \mathsf{T} \to \mathsf{F} & \mathsf{T.val} = \mathsf{F.val} \\ \mathsf{F} \to (\, \mathsf{E}\,) & \mathsf{F.val} = \mathsf{E.val} \\ \mathsf{F} \to \mathsf{digit} & \mathsf{F.val} = \mathsf{int} (\mathsf{digit.lexval}) \end{array}$$

4 ■ 23 92

$$F_1.val \leftarrow 4$$

 $T_1.val \leftarrow F_1.val$
 $F_2.val \leftarrow 23$

Kalita, Kumar, Roy PĀŅINI 11/21

$$\begin{array}{lll} \mathsf{L} \to \mathsf{E} & \mathsf{L.val} = \mathsf{E.val} \\ \mathsf{E} \to \mathsf{E'} \blacklozenge \mathsf{T} & \mathsf{E.val} = \frac{h_1^\bullet}{1} (\mathsf{E'.val}, \, \mathsf{T.val}) \\ \mathsf{E} \to \mathsf{T} & \mathsf{E.val} = \mathsf{T.val} \\ \mathsf{T} \to \mathsf{T'} \blacksquare \mathsf{F} & \mathsf{T.val} = \frac{h_2^\bullet}{1} (\mathsf{T'.val}, \, \mathsf{F.val}) \\ \mathsf{T} \to \mathsf{F} & \mathsf{T.val} = \mathsf{F.val} \\ \mathsf{F} \to (\mathsf{E}) & \mathsf{F.val} = \mathsf{E.val} \\ \mathsf{F} \to \mathsf{digit} & \mathsf{F.val} = \mathsf{int}(\mathsf{digit}.\mathsf{lexval}) \end{array}$$

Kalita, Kumar, Roy PāṇNI 11/21

$$\begin{array}{lll} \mathsf{L} \to \mathsf{E} & \mathsf{L}.\mathsf{val} = \mathsf{E}.\mathsf{val} \\ \mathsf{E} \to \mathsf{E}' \blacklozenge \mathsf{T} & \mathsf{E}.\mathsf{val} = \frac{h_1^\bullet}{(\mathsf{E}'.\mathsf{val},\,\mathsf{T}.\mathsf{val})} \\ \mathsf{E} \to \mathsf{T} & \mathsf{E}.\mathsf{val} = \mathsf{T}.\mathsf{val} \\ \mathsf{T} \to \mathsf{T}' \blacksquare \mathsf{F} & \mathsf{T}.\mathsf{val} = \frac{h_2^\bullet}{(\mathsf{T}'.\mathsf{val},\,\mathsf{F}.\mathsf{val})} \\ \mathsf{T} \to \mathsf{F} & \mathsf{T}.\mathsf{val} = \mathsf{F}.\mathsf{val} \\ \mathsf{F} \to (\mathsf{E}) & \mathsf{F}.\mathsf{val} = \mathsf{E}.\mathsf{val} \\ \mathsf{F} \to \mathsf{digit} & \mathsf{F}.\mathsf{val} = \mathsf{int}(\mathsf{digit}.\mathsf{lexval}) \end{array}$$

Kalita, Kumar, Roy $Par{ ext{A}}_{ ext{NINI}}$ 11/21

Kalita, Kumar, Roy PĀŅINI 11/21

$$\begin{array}{lll} \mathsf{L} \to \mathsf{E} & \mathsf{L.val} = \mathsf{E.val} \\ \mathsf{E} \to \mathsf{E'} \blacklozenge \mathsf{T} & \mathsf{E.val} = \frac{h_1^{\bullet}}{1} (\mathsf{E'.val}, \, \mathsf{T.val}) \\ \mathsf{E} \to \mathsf{T} & \mathsf{E.val} = \mathsf{T.val} \\ \mathsf{T} \to \mathsf{T'} \blacksquare \mathsf{F} & \mathsf{T.val} = \frac{h_2^{\bullet}}{2} (\mathsf{T'.val}, \, \mathsf{F.val}) \\ \mathsf{T} \to \mathsf{F} & \mathsf{T.val} = \mathsf{F.val} \\ \mathsf{F} \to (\, \mathsf{E}\,) & \mathsf{F.val} = \mathsf{E.val} \\ \mathsf{F} \to \mathsf{digit} & \mathsf{F.val} = \mathsf{int}(\mathsf{digit.lexval}) \end{array}$$

Kalita, Kumar, Roy PĀŅINI 11/21

$$\begin{array}{lll} \mathsf{L} \to \mathsf{E} & \mathsf{L.val} = \mathsf{E.val} \\ \mathsf{E} \to \mathsf{E'} \blacklozenge \mathsf{T} & \mathsf{E.val} = \frac{h_1^{\bullet}}{1} (\mathsf{E'.val}, \, \mathsf{T.val}) \\ \mathsf{E} \to \mathsf{T} & \mathsf{E.val} = \mathsf{T.val} \\ \mathsf{T} \to \mathsf{T'} \blacksquare \mathsf{F} & \mathsf{T.val} = \frac{h_2^{\bullet}}{2} (\mathsf{T'.val}, \, \mathsf{F.val}) \\ \mathsf{T} \to \mathsf{F} & \mathsf{T.val} = \mathsf{F.val} \\ \mathsf{F} \to (\, \mathsf{E}\,) & \mathsf{F.val} = \mathsf{E.val} \\ \mathsf{F} \to \mathsf{digit} & \mathsf{F.val} = \mathsf{int}(\mathsf{digit.lexval}) \end{array}$$

Kalita, Kumar, Roy $Par{ ext{A}}_{ ext{NINI}}$ 11/21

23

Challenges: #2

$L \rightarrow E$	L.val = E.val
$E \rightarrow E' \blacklozenge T$	$E.val = h_1^{\bullet}(E'.val, T.val)$
$E \to T$	E.val = T.val
$T \to T' \blacksquare F$	$T.val = \frac{h_2^{\bullet}}{(T'.val, F.val)}$
$T \rightarrow F$	T.val = F.val
$F \to (E)$	F.val = E.val
$F \to digit$	F.val = int(digit.lexval)

How to use these programs to synthesize these holes?


```
4   23 = 92
F_2.val \leftarrow 4
T_2.val \leftarrow F_2.val
F_1.val \leftarrow 23
T_1.val \leftarrow \frac{h_2^{\bullet}}{(T_2.val, F_1.val)}
E.val \leftarrow T_1.val
L.val \leftarrow E.val
output \( - L.val \)
assert output = 92
```

Kalita, Kumar, Roy Pāṇini 13/21

```
\begin{array}{|c|c|c|}\hline \mathbf{5} & \blacklozenge & 9 & = 14 \\ F_1.val & \leftarrow 9 \\ T_1.val & \leftarrow F_1.val \\ E_1.val & \leftarrow T_1.val \\ F_2.val & \leftarrow 5 \\ T_2.val & \leftarrow F_2.val \\ E_2.val & \leftarrow \frac{h_1^{\bullet}}{1}(E_1.val, T_2.val) \\ L.val & \leftarrow E_2.val \\ output & \leftarrow L.val \\ \hline & assert \ output & = 14 \\ \hline \end{array}
```

Kalita, Kumar, Roy Pāṇini 13/21

```
4 = 23 = 92
F_2.val \leftarrow 4
T_2.val \leftarrow F_2.val
F_1.val \leftarrow 23
T_1.val \leftarrow \frac{h_2^{\bullet}}{(T_2.val, F_1.val)}
E.val \leftarrow T_1.val
L.val \leftarrow E.val
output \( \in L.val \)
assert output = 92
```

```
\begin{array}{c} \mathbf{5} \blacklozenge \mathbf{9} = \mathbf{14} \\ \mathbf{F_1.val} \leftarrow \mathbf{9} \\ \mathbf{T_1.val} \leftarrow \mathbf{F_1.val} \\ \mathbf{E_1.val} \leftarrow \mathbf{T_1.val} \\ \mathbf{F_2.val} \leftarrow \mathbf{5} \\ \mathbf{T_2.val} \leftarrow \mathbf{F_2.val} \\ \mathbf{E_2.val} \leftarrow \frac{h_1^{\bullet}}{(\mathbf{E_1.val}, \mathbf{T_2.val})} \\ \mathbf{L.val} \leftarrow \mathbf{E_2.val} \\ \text{output} \leftarrow \mathbf{L.val} \\ \text{assert output} = \mathbf{14} \end{array}
```

```
34 \blacksquare (12 \diamondsuit 8) = 680
F_{34}.val \leftarrow 34
F_{12}.val \leftarrow 12
F_8.val \leftarrow 8
E_1.val \leftarrow h_1^{\bullet} (F_{12}.val, F_8.val)
T_1.val \leftarrow h_2^{\bullet} (F_{34}.val, E_1.val)
E_2.val \leftarrow T_1.val
L_1.val \leftarrow E_2.val
output \leftarrow L_1.val
 Post:output = 680
```

Kalita, Kumar, Roy Pāṇini 13/21

```
\begin{array}{l} \textbf{5} \blacklozenge 9 = \textbf{14} \\ \textbf{F}_1.\text{val} \leftarrow 9 \\ \textbf{T}_1.\text{val} \leftarrow \textbf{F}_1.\text{val} \\ \textbf{E}_1.\text{val} \leftarrow \textbf{T}_1.\text{val} \\ \textbf{F}_2.\text{val} \leftarrow 5 \\ \textbf{T}_2.\text{val} \leftarrow \textbf{F}_2.\text{val} \\ \textbf{E}_2.\text{val} \leftarrow \textbf{h}_1^{\bullet} \left( \textbf{E}_1.\text{val}, \textbf{T}_2.\text{val} \right) \\ \textbf{L.val} \leftarrow \textbf{E}_2.\text{val} \\ \text{output} \leftarrow \textbf{L.val} \\ \textbf{assert output} = \textbf{14} \end{array}
```

```
34 \blacksquare (12 \diamondsuit 8) = 680
F_{34}.val \leftarrow 34
F_{12}.val \leftarrow 12
F_8.val \leftarrow 8
E_1.val \leftarrow h_1^{\bullet} (F_{12}.val, F_8.val)
T_1.val \leftarrow h_2^{\bullet} (F_{34}.val, E_1.val)
E_2.val \leftarrow T_1.val
L_1.val \leftarrow E_2.val
output \leftarrow L_1.val
 Post:output = 680
```

Two holes, i.e., h_1^{\bullet} and h_2^{\bullet} , are being shared among infinite strings.

Scalability

(a) Forward differentiation (b10)

(b) Java bytecode (b11)

Kalita, Kumar, Roy Pāṇini 14/21

Scalability

(a) Forward differentiation (b10)

(b) Java bytecode (b11)

Kalita, Kumar, Roy Pāṇini 14/21

Incremental Synthesis to the Rescue

(a) Forward differentiation (b10)

(b) Java bytecode (b11)

Kalita, Kumar, Roy Pāṇṇn 15/21

L
$$\rightarrow$$
 E
E \rightarrow E' \blacklozenge T
E \rightarrow T
T \rightarrow T' \blacksquare F
T \rightarrow (E'.val, T.val)
E.val = T.val
T.val = $h_{\underline{0}}^{\bullet}$ (T'.val, F.val)
T.val = F.val
F \rightarrow (E)
F \rightarrow digit
F.val = E.val
F.val = int(digit.lexval)
 $h_{\underline{1}}^{\bullet}$ (a, b) = ??

4 ■ 23	92
5 ♦ 9	14
34 ■ (12 ♦ 8)	680
(4 ♦ 7) ■ (5 ♦ 12)	187

Kalita, Kumar, Roy PāṇiNi 16/21

 $h_2^{\bullet}(a,b) = ??$

L → E
E → E' ♦ T
E.val =
$$h_1^{\bullet}$$
 (E'.val, T.val)
E → T
T → T' ■ F
T.val = h_2^{\bullet} (T'.val, F.val)
T.val = F.val
F.val = E.val
F.val = int(digit.lexval)
 h_1^{\bullet} (a, b) = ??

Kalita, Kumar, Roy PāṇNI 16/21

L
$$\rightarrow$$
 E
E \rightarrow E' \spadesuit T
E \rightarrow T
E \rightarrow T
T \rightarrow T' \blacksquare F
T \rightarrow (E)
F \rightarrow digit

L.val = E.val
E.val = T.val
T.val = $\frac{h_2^{\bullet}}{(T'.val, F.val)}$
T.val = F.val
F.val = E.val
F.val = int(digit.lexval)

Kalita, Kumar, Roy PāṇNI 16/21

$$L \to E$$

$$E \to E' \blacklozenge T$$

$$E \to T$$

$$T \to T' \blacksquare F$$

$$T \to G$$

$$E.val = h_{1}^{\bullet}(E'.val, T.val)$$

$$E.val = T.val$$

$$T.val = h_{2}^{\bullet}(T'.val, F.val)$$

$$T.val = F.val$$

$$F.val = E.val$$

$$F.val = E.val$$

$$F.val = int(digit.lexval)$$

$$h_{1}^{\bullet}(a,b) = ??$$

Kalita, Kumar, Roy PĀŅINI 16/21

L
$$\rightarrow$$
 E
E \rightarrow E' \blacklozenge T
E \rightarrow T
T \rightarrow T' \blacksquare F
T \rightarrow (E)
F \rightarrow (E)
F \rightarrow digit

L.val = E.val
E.val = T.val
T.val = $h_{\underline{1}}^{\bullet}$ (T'.val, F.val)
T.val = F.val
F.val = E.val
F.val = int(digit.lexval)
 $h_{\underline{1}}^{\bullet}$ (a, b) = ??

Kalita, Kumar, Roy PĀŅINI 16/21

L
$$\rightarrow$$
 E
E \rightarrow E' \blacklozenge T
E \rightarrow T
T \rightarrow T' \blacksquare F
T \rightarrow (E'.val, T.val)
E.val = T.val
T.val = $h_{\underline{0}}^{\bullet}$ (T'.val, F.val)
T.val = F.val
F \rightarrow (E)
F \rightarrow digit
F.val = E.val
F.val = E.val
F.val = int(digit.lexval)
 $h_{\underline{1}}^{\bullet}$ (a, b) = ??

Kalita, Kumar, Roy Pāṇini 17/21

L
$$\rightarrow$$
 E
E \rightarrow E' \blacklozenge T
E \rightarrow T
T \rightarrow T' \blacksquare F
T \rightarrow (E)
F \rightarrow (B)
F \rightarrow digit

L.val = E.val
E.val = T.val
T.val = $h_{\underline{2}}^{\bullet}$ (T'.val, F.val)
T.val = F.val
F.val = E.val
F.val = E.val
F.val = int(digit.lexval)
 $h_{\underline{1}}^{\bullet}$ (a, b) = ??

Kalita, Kumar, Roy PāṇNI 17/21

PĀŅINI in Action

L
$$\rightarrow$$
 E
E \rightarrow E' \spadesuit T
E \rightarrow T
E \rightarrow

Kalita, Kumar, Roy Pāṇini 17/21

L
$$\rightarrow$$
 E
E \rightarrow E' \blacklozenge T
E \rightarrow T
E \rightarrow T
E \rightarrow T
T \rightarrow T' \blacksquare F
T \rightarrow C E)
F \rightarrow (E)
F \rightarrow digit
L.val = E.val
E.val = T.val
T.val = h_{2}^{\bullet} (T'.val, F.val)
T.val = F.val
F.val = E.val
F.val = int(digit.lexval)
 h_{1}^{\bullet} (a, b) = $a + a + a - 1$

Kalita, Kumar, Roy Pāṇini 17/21

PĀŅINI in Action

L
$$\rightarrow$$
 E
E \rightarrow E' \spadesuit T
E \rightarrow T
E \rightarrow T
T \rightarrow T' \blacksquare F
T \rightarrow Gigit

L.val = E.val
E.val = T.val
T.val = h_{2}^{\bullet} (T'.val, F.val)
T.val = F.val
F.val = E.val
F.val = E.val
F.val = int(digit.lexval)
 h_{1}^{\bullet} $(a,b) = a + a + a - 1$

$$34 \quad \blacksquare \quad (12 \quad \blacklozenge \quad 8) \qquad 680$$

$$F_{34}.val \leftarrow 34$$

$$F_{12}.val \leftarrow 12$$

$$F_{8}.val \leftarrow 8$$

$$E_{1}.val \leftarrow h_{1}^{\bullet} \quad (F_{12}.val, F_{8}.val)$$

$$T_{1}.val \leftarrow h_{2}^{\bullet} \quad (F_{34}.val, E_{1}.val)$$

$$E_{2}.val \leftarrow T_{1}.val$$

$$L_{1}.val \leftarrow E_{2}.val$$
output \(L_{1}.val \)
assert output = 680

L
$$\rightarrow$$
 E
E \rightarrow E' \blacklozenge T
E \rightarrow T
T \rightarrow T' \blacksquare F
T \rightarrow (E)
F \rightarrow digit

L.val = E.val
E.val = T.val
T.val = h_{2}^{\bullet} (T'.val, F.val)
T.val = F.val
F.val = E.val
F.val = int(digit.lexval)
 h_{1}^{\bullet} (a, b) = a + a + a - 1
 h_{2}^{\bullet} (a, b) = a * b

 $h_{2}^{\bullet}(a,b) = a * b$

$$F_{34}.val \leftarrow 34$$
 $F_{12}.val \leftarrow 12$
 $F_{8}.val \leftarrow 8$
 $E_{1}.val \leftarrow h_{1}^{\bullet}(F_{12}.val, F_{8}.val)$
 $h_{1}^{\bullet}(12,8)=35$
 $T_{1}.val \leftarrow h_{2}^{\bullet}(F_{34}.val, E_{1}.val)$
 $h_{2}^{\bullet}(34,35)=1190$
 $E_{2}.val \leftarrow T_{1}.val$
 $L_{1}.val \leftarrow E_{2}.val$
output $\leftarrow L_{1}.val$
assert output = 680

Kalita, Kumar, Roy PĀŅINI 18/21

PĀŅINI in Action

```
I \rightarrow F
                        L.val = E.val
E \rightarrow E' \blacklozenge T E.val = h_1^{\bullet} (E'.val, T.val)
\mathsf{E} \to \mathsf{T}
             E.val = T.val
T \rightarrow T' \blacksquare F T.val = \frac{h_2^{\bullet}}{} (T'.val, F.val)
T \rightarrow F T.val = F.val
F \rightarrow (E) F.val = E.val
\mathsf{F} \to \mathsf{digit}
                        F.val = int(digit.lexval)
h_1^{\bullet}(a,b) = ??
h_2^{\bullet}(a,b) = ??
```

```
34 ■ (12 ♦ 8)
                                    680
               5 ♦ 9 14
              4 23
                           92
F_{34}.val \leftarrow 34
F_{12}.val \leftarrow 12
F_8.val \leftarrow 8
E_1.val \leftarrow h_1^{\bullet}(F_{12}.val, F_8.val)
T_1.val \leftarrow h_2^{\bullet}(F_{34}.val, E_1.val)
E_2.val \leftarrow T_1.val
L_1.val \leftarrow E_2.val
output \leftarrow L_1.val
 assert output = 680
```

PĀŅINI in Action

L
$$\rightarrow$$
 E
E \rightarrow E' \blacklozenge T
E \rightarrow T
T \rightarrow T' \blacksquare F
T \rightarrow (E'.val, T.val)
E.val = T.val
T.val = $h_{\underline{2}}^{\bullet}$ (T'.val, F.val)
T.val = F.val
F \rightarrow (E)
F \rightarrow digit
T.val = E.val
F.val = E.val
F.val = int(digit.lexval)
 $h_{\underline{1}}^{\bullet}$ (a, b) = a + b
 $h_{\underline{2}}^{\bullet}$ (a, b) = a * b

```
34 ■ (12 ♦ 8)
                                    680
               5 ♦ 9 14
              4 23
                           92
F_{34}.val \leftarrow 34
F_{12}.val \leftarrow 12
F_8.val \leftarrow 8
E_1.val \leftarrow h_1^{\bullet}(F_{12}.val, F_8.val)
T_1.val \leftarrow h_2^{\bullet}(F_{34}.val, E_1.val)
E_2.val \leftarrow T_1.val
L_1.val \leftarrow E_2.val
output \leftarrow L_1.val
 assert output = 680
```

Case Study: Constant folding in SPIN

```
init{ int flags[(5 * 25) - 42]; int v = flags[10 - 4 + (9 / 3)]; }
```

```
init {
    int flags[83];
    int v = flags[9];
}
```

Case Study: PROMELA AST

Kalita, Kumar, Roy Pāṇini 20 / 21

THANK YOU

Extended version of this work.