Министерство образования Республики Беларусь

Учреждение образования

«Белорусский государственный университет информатики и радиоэлектроники»

Кафедра электронных вычислительных машин

Лабораторная работа №2 «Исследование работы шифратора, дешифратора, мультиплексора, сумматора и компаратора»

Выполнил:

Студент группы 950501 Деркач А.В.

Проверил:

Преподаватель Коников А.Д.

1. Цель работы

Исследование работы шифратора, дешифратора, мультиплексора, сумматора и компаратора.

2. Ход работы

1. Исследование работы шифратора

Логические состояния входов и выходов шифратора при "Е" равном нулю.

Таблица истинности шифратора

				•••	•									
	E	X7	X6	X5	X4	ХЗ	X2	X1	X0	Y2	Y1	Y0	G	E0
Шаг 1	0	1	1	1	1	1	1	1	1	1	1	1	1	0
Шаг 2	0	1	1	1	1	1	1	1	0	1	1	1	0	1
Шаг 3	0	1	1	1	1	1	1	0	1	1	1	0	0	1
Шаг 4	0	1	1	1	1	1	0	1	1	1	0	1	0	1
Шаг 5	0	1	1	1	1	0	1	1	1	1	0	0	0	1
Шаг 6	0	1	1	1	0	1	1	1	1	0	1	1	0	1
Шаг 7	0	1	1	0	1	1	1	1	1	0	1	0	0	1
Шаг 8	0	1	0	1	1	1	1	1	1	0	0	1	0	1
Шаг 9	0	0	1	1	1	1	1	1	1	0	0	0	0	1

Логические состояния входов и выходов шифратора при "Е" равном единице.

Таблица истинности шифратора

	E	X7	Х6	X5	X4	ХЗ	X2	X1	X0	Y2	Y1	Y0	G	E0
Шаг 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Шаг 2	1	1	1	1	1	1	1	1	0	1	1	1	1	1
Шаг 3	1	1	1	1	1	1	1	0	1	1	1	1	1	1
Шаг 4	1	1	1	1	1	1	0	1	1	1	1	1	1	1
Шаг 5	1	1	1	1	1	0	1	1	1	1	1	1	1	1
Шаг 6	1	1	1	1	0	1	1	1	1	1	1	1	1	1
Шаг 7	1	1	1	0	1	1	1	1	1	1	1	1	1	1
Шаг 8	1	1	0	1	1	1	1	1	1	1	1	1	1	1
Шаг 9	1	0	1	1	1	1	1	1	1	1	1	1	1	1

Диаграмма состояний шифратора

По таблице истинности и диаграмме состояний можно определить, что активным сигналом "Е" является 0, активный сигнал GS появляется при любом активном входном сигнале, а активный сигнал EO возникает при отсутствии сигнала на входе (все 1).

Проверка исследуемого шифратора на приоритетность.

Таблица истинности шифратора

	E	X7	Х6	X5	X4	Х3	X2	X1	X0	Y2	Y1	Y0	G	E0
Шаг 1	0	1	1	1	1	1	1	1	1	1	1	1	1	0
Шаг 2	0	1	0	1	1	0	1	1	1	0	0	1	0	1
Шаг 3														
Шаг 4														
Шаг 5														
Шаг 6														
Шаг 7														
Шаг 8														
Шаг 9														

Диаграмма состояний шифратора

Сопоставив выходной сигнал шифратора с полученной ранее таблицей истинности, можно сделать вывод, что старшие входы являются более приоритетными.

2. Исследование работы дешифратора

Таблица истинности дешифратора

	E	X1	X0	Y3	Y2	Y1	Y0
Шаг 1	0	0	0	1	1	1	0
Шаг 2	0	0	1	1	1	0	1
Шаг 3	0	1	0	1	0	1	1
Шаг 4	0	1	1	0	1	1	1
Шаг 5	1	0	0	1	1	1	1
Шаг 6	1	0	1	1	1	1	1
Шаг 7	1	1	0	1	1	1	1
Шаг 8	1	1	1	1	1	1	1

Диаграмма состояний дешифратора

Исследуя полученные данные, можно сказать, что активный сигнал на входе "Е" равен 0.

3. Исследование работы мультиплексора

Логические состояния входов и выходов мультиплексора при "Е" равном нулю и единице.

Таблица истинности мультиплексора

	E	A1	A0	X3	X2	X1	X0	Υ
Шаг 1	0	0	0	0	0	0	0	= X0
Шаг 2	0	0	1	0	0	0	0	= X1
Шаг 3	0	1	0	0	0	0	0	= X2
Шаг 4	0	1	1	0	0	0	0	= X3
Шаг 5	1	0	0	0	0	0	0	
Шаг 6	1	0	1	0	0	0	0	
Шаг 7	1	1	0	0	0	0	0	
Шаг 8	1	1	1	0	0	0	0	

Логические состояния входов и выходов мультиплексора при "Е" равном нулю.

Таблица истинности мультиплексора

	E	A1	A0	Х3	X2	X1	X0	Y
Шаг 1	0	0	0	0	0	0	0	= X0
Шаг 2	0	0	0	0	0	0	1	= X0
Шаг 3	0	0	1	0	0	0	0	= X1
Шаг 4	0	0	1	0	0	1	0	= X1
Шаг 5	0	1	0	0	0	0	0	= X2
Шаг 6	0	1	0	0	1	0	0	= X2
Шаг 7	0	1	1	0	0	0	0	= X3
Шаг 8	0	1	1	1	0	0	0	= X3

Диаграмма состояний мультиплексора

По таблице истинности и диаграмме состояний можно определить, что активным сигналом "E" является 0.

4. Исследование работы сумматора

Таблица истинности сумматора

				•	•									
	CO	A3	A2	A1	A0	В3	B2	B1	B0	S3	S2	S1	S0	C4
Шаг 1	0	0	0	1	0	0	1	0	0	0	1	1	0	0
Шаг 2	0	1	0	0	1	1	1	0	1	0	1	1	0	1
Шаг 3	0	0	1	0	1	0	1	1	0	1	0	1	1	0
Шаг 4	0	1	0	1	1	0	1	1	1	0	0	1	0	1
Шаг 5	0	1	1	1	1	1	1	1	1	1	1	1	0	1
Шаг 6	1	0	0	1	1	0	1	0	1	1	0	0	1	0
Шаг 7	1	0	0	1	0	1	0	0	0	1	0	1	1	0
Шаг 8	1	1	0	0	1	0	0	1	1	1	1	0	1	0
Шаг 9	1	1	1	1	0	1	1	1	0	1	1	0	1	1
Шаг 10	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Диаграмма состояний сумматора

Полученные данные были проверены с помощью приведённого уравнения:

$$C0 + 2^{0}(A0 + B0) + 2^{1}(A1 + B1) + 2^{2}(A2 + B2) + 2^{3}(A3 + B3) =$$

$$= 2^{0}S0 + 2^{1}S1 + 2^{2}S2 + 2^{3}S3 + 2^{4}C4$$

$$0 + 0010 + 0100 = 0110$$

$$0 + 1001 + 1101 = 10110$$

$$0 + 0101 + 0110 = 1011$$

$$0 + 1011 + 0111 = 10010$$

$$0 + 1111 + 1111 = 11110$$

$$1 + 0011 + 0101 = 1001$$

$$1 + 0010 + 1000 = 1011$$

$$1 + 1001 + 0011 = 1101$$

$$1 + 1110 + 1110 = 11101$$

1+1111+1111=11111

5. Исследование работы компаратора

Таблица истинности цифрового компаратора

	A 3	A2	A1	A0	B3	B2	B1	В0	I(A>B)	I(A=B)	I(A <b)< th=""><th>A>B</th><th>A=B</th><th>A<b< th=""></b<></th></b)<>	A>B	A=B	A <b< th=""></b<>
Шаг 1	1	0	0	0	0	0	0	0	1	1	1	1	0	0
Шаг 2	0	0	0	0	1	0	0	0	0	0	0	0	0	1
Шаг 3	0	1	0	0	0	0	0	0	1	1	1	1	0	0
Шаг 4	0	0	0	0	0	1	0	0	0	0	0	0	0	1
Шаг 5	0	0	1	0	0	0	0	0	1	1	1	1	0	0
Шаг 6	0	0	0	0	0	0	1	0	0	0	0	0	0	1
Шаг 7	0	0	0	1	0	0	0	0	1	1	1	1	0	0
Шаг 8	0	0	0	0	0	0	0	1	0	0	0	0	0	1
Шаг 9	0	0	0	0	0	0	0	0	1	0	0	1	0	0
Шаг 10	0	0	0	0	0	0	0	0	0	0	1	0	0	1
Шаг 11	0	0	0	0	0	0	0	0	0	1	0	0	1	0
Шаг 12	0	0	0	0	0	0	0	0	1	1	1	0	1	0
Шаг 13	0	0	0	0	0	0	0	0	1	0	1	0	0	0
Шаг 14	0	0	0	0	0	0	0	0	0	0	0	1	0	1

Диаграмма состояний цифрового компаратора

На основе таблицы истинности можно определить, что для сравнения пятиразрядных двоичных чисел необходимы старшие 4 разряда подать на входы для сравнения и на управляющие входы подать результат сравнения младшего разряда.

3. Вывод

В процессе данной работы исследовалась работа цифровых логических элементов на практике, в результате которой были получены таблицы истинности для шифратора, дешифратора, мультиплексора, сумматора, компаратора, а также их диаграммы состояний.