KHIDI

Brief

발행일_ 2020. 5. 15 발행처_ 한국보건산업진흥원 발행인_ 권덕철

보건산업브리프 Vol. 302

통계분석 | 정책제도 | 동향전망

38 코로나19 대응을 위한

국내외 치료제 및 백신 개발 현황과 과제

제약바이오산업단 제약바이오산업기획팀 **전환주, 김창용, 이승환** (취다이노나 **윤상순** 부장 한국파스퇴르연구소 **김승택** 박사 특허정보진흥센터 **송영훈** 그룹장

- II. 코로나19 바이러스(COVID-19) 개요
- Ⅲ. COVID-19 치료제 및 백신개발 글로벌 현황
 - 1. 파이프라인
 - 2. 치료제
 - 3. 백신
- IV. COVID-19 치료제 및 백신개발 국내 현황
 - 1. 치료제
 - 2. 백신
- V. 국내외 정책사례
- VI. 당면 문제
- Ⅶ. 결론 및 정책적 제언
- 부록, 코로나 바이러스 관련 특허 현황

배 경

■ 발생 및 현황 개요

- '코로나바이러스감염증-19'(이하 'COVID-19')는 2019년 12월 중국 후베이성 우한시에서 처음 발생하여 초기 '우한 폐렴'이라고 불려졌고, 현재는 전 세계적으로 확산된 호흡기 감염질환임
 - 초기에는 원인과 전파 경로를 정확히 알 수 없는 호흡기 전염병으로만 알려졌으나 세계보건기구(이하 'WHO')가 2020년 1월 9일 해당 폐렴의 원인이 새로운 유형의 코로나바이러스(SARS-CoV-2, 국제바이러스분류위원회 '20.2.11 명명)라고 밝히면서 병원체가 확인
- 중국에 이어 코로나19 확진자가 전 세계에서 속출하면서 WHO는 3월 11일 홍콩독감(1968). 신종플루(2009)에 이어 사상 세 번째로 COVID-19에 대해 '세계적 대유행(Pandemic)'으로 선포('20.3.11.)

■ COVID-19 발생 현황('20.5.8 조사기준)

- 5월 7일 오전 10시 기준으로 전 세계 COVID-19 발생 국가 및 지역은 218곳이며 누적 확진자 수는 3,672,238명, 신규 확진자 수는 83,465명, 누적 사망자 수는 254,045명, 신규 사망자 수는 6,539명인 상태
 - 미국과 유럽 등에서는 확진자와 사망자가 급격하게 증가하는 추세

자료 출처: COVID-19 Situation Report 108, WHO, 2020. 5. 8.

[그림 1] 전 세계 COVID-19 발생 현황('20.5.7 오전 10시 기준)

- 1월 20일 국내 첫 COVID-19 감염자가 발생했으며 2월 10일 신규 확진자가 0명이 되었으나 2월 18일 대구에서 신천지 교인인 첫 확진자(31번 환자)가 나온 다음 날인 2월 19일부터 신규 확진자 수가 급격하게 증가하여 정부는 2월 23일 감염병 위기경보 수준*을 '경계'에서 최고 수준인 '심각'으로 상향 조정
 - *관심(감염병 발생 및 유행)→주의(국내 유입)→경계(국내 유입된 해외 신종 감염병의 제한적 전파)→심각(국내 유입된 해외 신종 감염병의 지역사회 전파 또는 전국적 확산)

- 5월 8일 오전 0시 기준으로 국내 누적 확진자 수는 10.822명, 신규 확진자 수는 12명, 누적 사망자 수는 256명, 신규 사망자 수는 0명인 상태
- 전국적으로 약 82%는 집단발생과의 연관성을 확인하였으며 기타 산발적 발생 사례 또는 조사·분류중인 사례는 약 9.9%(2020. 4. 8. 기준)
- 국내 확진자 및 사망자 증가세는 주춤한 반면, 미국과 유럽 등에서 확진자가 급격하게 증가하고 있어 해외에서 국내로 유입되는 확진자 수* 증가(2020. 5. 8. 기준 해외유입 누적확진자 1,107명)
 - * 조사가 완료되어 해외유입으로 확인된 사례

자료 출처: 코로나바이러스감염증-19 국내 발생 현황, 질병관리본부, 2020. 5. 8.

[그림 2] 국내 COVID-19 발생 현황('20.5.8 오전 0시 기준)

자료 출처: 코로나바이러스감염증-19 국내 발생 현황, 질병관리본부, 2020. 5. 8.

[그림 3] 국내 COVID-19 해외유입 현황('20.5.8 오전 0시 기준)

코로나19 바이러스(COVID-19) 개요

■ 질환명

- 중국 우한시에서 원인 미상의 폐렴이 집단으로 발병하면서 신종 코로나바이러스의 명칭이 정확히 규정되기 전에는 '신종코로나', '우한 폐렴' 등으로 불리다가 원인 병원체가 코로나바이러스(coronavirus)로 확인된 후 WHO는 우한 폐렴의 원인 병원체를 'novel coronavirus(2019-nCoV)'로 임시 명명했고, 2월 12일 'coronavirus disease 2019(COVID-19)'로 공식 명명하였음
 - *새로운 질병의 명칭은 WHO가 국제질병분류(ICD)의 자문을 받아 세계동물보건기구(OIE), 유엔식량농업기구 (FAO)와 협의해 질환명을 정하며 최종적으로는 ICD에서 명명
- ⊙ 국내는 한글 공식 명칭으로 '코로나바이러스감염증-19'(국문 약칭 '코로나19')로 명명('20, 2, 12,)
 - 'CO'는 코로나(corona), 'VI'는 바이러스(virus), 'D'는 질환(disease), '19'는 신종 코로나 바이러스 발병이 처음 보고된 2019년을 의미

자료 출처: WHO, 이미지 출처: The Biology Notes

[그림 4] COVID-19 질환 영문명

■ 병원체

- ◎ COVID-19의 병원체는 '사스-코로나바이러스-2(SARS-CoV-2)'로써 국제바이러스분류위원회(ICTV)는 2020년 2월 11일 코로나19의 병원체에 SARS-CoV-2라는 이름을 제안한 논문을 발표했는데, 위원회는 이 바이러스가 2003년 유행한 사스(SARS, 중증급성호흡기증후군)와 비슷하다는 점을 강조
 - 이에 ICTV는 COVID-19의 병원체를 SARS-CoV의 변종으로 보고 'SARS-CoV-2'로 명명
- 중국이 학계를 통해 공개한 해당 바이러스의 유전자염기서열을 국내 질병관리본부에서 입수해 계통분석한 결과, 박쥐 유래 유사 코로나바이러스(Bat SARS-like coronavirus isolate bat-SL-CoVZC45)와 가장 높은 상동성(89.1%)을 보였으며 사람 코로나바이러스 4종과는 가장 낮은 상동성(39%~43%)을 지닌 것으로 확인
 - * 메르스와는 50%, 사스와는 77.5%의 상동성을 확인
- ◎ 이에 MERS-CoV, SARS-CoV와 마찬가지로 COVID-19 역시 베타코로나바이러스(betacoronavirus)에 속하며 자연 숙주로서 박쥐에서 기원한 것으로 보고 있음

자료 및 이미지 출처: https://doi.org/10.1016/S0140-6736(20)30251-8

[그림 5] COVID-19 전체 유전체와 베타코로나바이러스 속의 대표적인 바이러스의 계통분석

■ 구조 및 발생기전

- ◎ (구조) 코로나바이러스는 80~200nm 정도의 크기로 바이러스 입자 표면에 Envelope protein(E protein)과 Spike glycoprotein(S protein) 존재하고, 가장 안쪽에는 코로나바이러스의 유전물질인 RNA 단일가닥(ssRNA)과 그 주위를 감싸는 Nucleocapsid protein(N protein)이 존재
 - E protein은 바이러스 입자 형태 형성 및 방출에 관여하고, S protein은 바이스러의 감염과 병원성에 관여하는 역할을 담당하며 N protein은 불안정한 RNA 유전물질을 안정시키며 보호하는 역할
 - *S protein 옆에 위치한 Hemagglutinin-esterase dimer(HE)는 코로나바이러스과에서도 베타코로나바이러스 속에만 존재하는 것으로 알려져 있고, 이 단백질은 수용체 결합과 해리 등에 관여

이미지 출처: https://www.scientificanimations.com/wiki-images/

〈그림 6〉 코로나바이러스 구조

● (발병기전) 우선 코로나바이러스가 우리 호흡기를 통해 진입하면 호흡기 세포에 안착하여, SARS와 SARS2의 경우 기도 표면의 ACE2(Angiotensin converting enzyme 2)에 결합하고 메르스의 경우 DPP4와 같은 특정 수용체 단백질에 결합하여 몸 안으로 스며듦(그림 7 왼쪽 상단) → RdRp(RNA 의존성 RNA 복제효소)에 의해서 유전물질인 RNA가 복제되고, 또 한편으로는 RNA를 설계도로 해서 다양한 바이러스 구성 단백질들을 만듦(그림 7 왼쪽 중간) → 복제된 RNA와 구성 단백질이 만나 코로나바이러스 완성체가 생성(그림 7 오른쪽 하단)된 후 단일 세포를 떠나 복제 및 증식과정을 거쳐 온 몸으로 확산

※ 증식 과정에서 변이 및 유전자 재조합이 빈번하게 일어나며 특히 결손 돌연변이가 주로 발생

이미지 출처: https://blog.naver.com/tasmanic/221850316434

[그림 7] 코로나바이러스 발병 기전(Pathogenesis)

■ 감염경로

- ◎ 코로나바이러스는 인간에게 전파되기 전에 먼저 동물로부터 유래하며 MERS-CoV, SARS-CoV 모두 박쥐를 조상 숙주로 보고 있으며 COVID-19 또한 초기 폐렴이 발생한 환자의 검체 서열분석에 의거, 박쥐가 근원인 것으로 알려짐
 - *초기 41명 감염자 중 66%가 화난 수산 시장(Huanan seafood market)에 방문 이력이 있어, COVID-19 바이러스가 이 시장을 통해 유입되었음을 확인
- 감염자의 비말(침방울)이 호흡기나 눈·코·입의 점막으로 침투될 때 전염
 - 감염자가 기침·재채기를 할 때 작은 물방울(비말)에 바이러스·세균이 섞여 나와 타인에게 감염되는 것으로 통상 이동거리는 2m로 알려져 있음
 - 눈의 경우 환자의 침 등이 눈에 직접 들어가거나, 바이러스에 오염된 손으로 눈을 비비면 눈을 통해 감염될 수 있음
 - 20년 2월 19일 중국 당국은 비말 뿐 아니라 공기 중에 떠 있는 고체 또는 액체 미립자(에어로졸)에 의한 COVID-19의 전파 가능성도 확인

■ 증상

- COVID-19 감염 시, 상·하기도 모두에서 번식 가능하며 초기 증상이 다양하고 상대적으로 가벼운 편이지만 약 2-14일의 잠복기 후 37.5도 이상의 발열 및 기침, 호흡곤란 등의 호흡기 증상, 폐렴이 주요 증상으로 나타남* 그 외에 근육통, 피로감, 설사가 나타나기도 하며 드물게 무증상 감염 사례도 나타나고 있음
 - 우한 진인탄 병원 의료팀이 2020년 1월 24일 Lancet지에 발표한 COVID-19 41명의 감염자 증상 연구 결과, 최초 증상 발현 후 병원 방문까지 기간의 중간값은 7일(4-8일), 숨가쁨 증상까지는 8일(5-13일), 급성호흡부전증후군(acute respiratory distress syndrome, ARDS)까지는 9일(8-14일), 기계 호흡까지는 10.5일(7-14일), 집중치료실 입원까지는 10.5일(8-17일) 경과를 거치는 것으로 보고(그림 7)

자료 및 이미지 출처: https://doi.org/10.1016/S0140-6736(20)30183-5

[그림 8] COVID-19 감염자의 질병 발현 후 증상 진행단계

〈표 1〉 감기 vs 독감 vs 코로나19 비교

구분	단순 감기	독감	코로나19
증상 발생 위치	주로 상부 호흡기관(상기도)	주로 상하부 호흡기관	주로 하부 호흡기관(하기도)
주요 증상	콧물, 인후염, 열과 두통으로 인한 무기력증	두통, 근육통, 기침, 한기를 동반한 고열	발열, 마른기침, 근육통, 피로
잠복기	잠복기 없음	일주일~몇 주 동안 길게 지속	잠복기 평균 7~14일 추정
회복 소요 기간	일주일 안에 회복	-	약 13~18일(국내 기준)
감염 판단 방법	별도 검사 없음	독감 바이러스 검사	코로나 유전자 유무 검사

자료 출처: 질병관리본부, 신종감염병 중앙임상위원회의

■ 진단

- (발생 초기) 국내의 경우, 신종코로나 바이러스의 유전자 정보가 없어 일반유전자증폭(conventional PCR)을 활용한 판 코로나바이러스(pan-coronavirus) 검사법과 염기서열분석 일치 여부를 통한 확진 검사를 진행
 - * (판코로나바이러스 검사법) 코로나바이러스 여부 확인 → 코로나바이러스 6종(SARS, MERS 등)과 대조 → 대조군에 없는 경우 코로나19로 판정
 - 의심환자에 대해 코로나바이러스 계열인지 여부(판코로나 검사법)를 확인한 뒤 양성반응이 나오면 환자 검체에서 나온 바이러스 유전자 염기서열을 분석해 검사를 진행하는 것으로, 약 1~2일이 소요
- (초기 이후) 코로나19의 유전자 정보가 공개되면서 기존의 잘 알려진 '실시간 역전사 중합효소 연새반응 (Real Time RT-PCR)'을 활용하여 코로나19만을 타깃으로 하는 새 검사법이 개발되면서 1월 31일부터 질병관리본부(국립인천공항검역소 포함)와 전국 18개 보건환경연구원에서부터 적용
 - 판 코로나 검사처럼 코로나바이러스 전체 계열이 아닌 코로나19를 특정해 진단할 수 있는 '시약 키트'가 핵심으로, 검사 6시간 이내 결과 확인 가능
 - 판 코로나 검사처럼 코로나바이러스 전체 계열이 아닌 코로나19를 특정해 진단할 수 있는 '시약 키트'가 핵심으로, 검사 6시간 이내 결과 확인 가능
 - 이 키트는 2월 7일부터 민간병원에도 보급되면서, 코로나19의 신속한 진단이 가능

자료 및 이미지 출처: 질병관리본부, 식품의약품안전처 보도자료

[그림 9] 질병관리본부와 식품의약품안전처가 지난 4일 긴급 사용을 승인한 신종 코로나바이러스 진단시약 키트

- ◎ (진단키트 국내현황) 국내 5개社의 진단키트 긴급사용 승인 후 사용 중에 있으며 11개社에서 식약처 수출허가를 획득
- (**진단키트 국외현황**) 스위스, 미국 등 제약사에서 진단키트 개발 진행 중

COVID-19 치료제 및 백신 개발 글로벌 현황

1. 파이프라인

- 대소규모 단위의 제약·바이오기업에서 신종 코로나바이러스감염증(COVID-19) 대유행을 막기 위해 치료제 및 백신 개발을 추진 중
 - 일부 기업은 기존 항바이러스제를 활용하고 있고, 일부는 검증된 기술을 동원하고 있으며 일부는 신기술로 접근
- Pharma Intelligence DB에 2020년 5월 11일 기준으로 COVID-19 치료 및 예방 목적으로 개발 중인 파이프라인은 311개 약물로 파악
 - 임상 단계별로 살펴보면 대부분 전임상으로 285개, 임상1상은 4개, 임상2상은 18개, 임상3상은 4개 진행 중
 - 기업별로 살펴보면 Emergent BioSolutions EpiVax Mateon Therapeutics Sorrento Therapeutics가 각 4개로 가장 많음

자료 출처: Pharma Intelligence DB, COVID-19 치료 및 예방 목적으로 개발 중인 Pharmaprojects 내 약물 파이프라인 현황, 2020.5.7.

[그림 10] COVID-19 치료 및 예방 목적으로 개발 중인 Pharmaprojects 내 약물 파이프라인 글로벌 현황

- Pharma Intelligence DB에 2020년 5월 11일 기준으로 COVID-19 치료 및 예방 목적으로 시험 중인 임상시험은 1,489개 진행 중
 - 임상 단계별로 살펴보면 임상1상은 174개, 임상2상은 733개, 임상3상은 397개, 임상4상은 176개 등 진행 중

자료 출처: Pharma Intelligence DB, COVID-19 치료 및 예방 목적으로 시험 중인 Trialtrove 내 약물 임상시험 현황, 2020.5.7.

[그림 11] COVID-19 치료 및 예방 목적으로 개발 중인 Trialtrove 내 약물 임상시험 글로벌 현황

2. 치료제

- 현재 코로나19에 특이적인 치료법이나 감염 억제를 위해 사용할 수 있는 특이적인 항바이러스 치료제나 백신은 아직 개발되지 않는 상태로 전파속도로 볼 때 백신 개발 전에 치료제의 개발이 필요
 - 바이러스 특성상, 항원 다양성이 크고 변이가 빈번하게 일어나 치료제 개발이 어려움
- 전 세계적 COVID-19 치료제 관련 임상연구의 대표적인 특징은, 기존에 허가받은 치료제 또는 안정성이 담보되면서 효능이 충분히 입증되지 않은 신약후보물질을 다시 검토해 COVID-19 치료에 사용할 수 있는지에 대한 연구(신약재창출, drug repositioning) 방향으로 수행 중(표2)
 - * (신약재창출) 이미 시판 후 사용되고 있어 안전성이 입증된 약물이나 임상시험에서 안전성은 있지만 효능이 충분히 입증되지 않아 허가 받지 못한 약물을 적응증을 규명하여 신약으로 개발
 - 현재 에볼라바이러스치료제, HIV(인간면역결핍바이러스)치료제, C현간염치료제, 독감치료제 등 기존의 항바이러스제가 COVID-19 치료에 효과가 있는지 입증하기 위한 기존자료 검색, 임상시험, 해당 약물의 긴급사용승인 등이 활발하게 이루어지고 있음
 - * (주요 약물) 칼레트라, 렘데시비르, 플라크닐(하이드록시클로로퀸), 레소친(클로로퀸) 등
 - 기존 치료제의 효능과 안전성을 확인하기 위한 임상시험은 현재 대다수 중국에서 이루어지고 있지만 최근 글로벌 제약사 주도의 다국가 임상시험도 시작되면서 COVID-19 치료제 연구는 더욱 활발해질 것으로 예측

- 다만 전 세계에서 코로나 바이러스 치료제로 사용되고 있던 '애브비'의 '칼레트라'는 치료효과가 미미하다는 연구 결과 발표(NEJM, 2020. 3. 18)
 - * 중국일본우호병원 Bin Cao 교수가 이끄는 연구진은 코로나19 환자 199명을 대상으로 무작위 대조 임상 시험을 실시한 결과 통계학적으로 유의한 효과를 보지 못했다고 결론
- 이에 국가별로는 미국, 독일, 프랑스, 일본, 중국 등에서 치료제를 개발하고 있으며 기업별로 길리어드 사이언스, 애브비, 리제네론 등에서 개발 진행 중(표 2, 3)

〈표 2〉 해외 주요기업 코로나19 치료목적 신약재창출 임상시험 현황

순번	기업명	기존의약품/후보물질	기전	임상
1	Ascletis Pharamceuticals	가노보(Ganovo) ※ 주요성분 : 다노프레비르(Danoprevir)	C형 간염 치료제	4상
2	AstraZeneca	파시가(Farxiga) ※ 주요성분 : 다파글리플로진(Dapagliflozin)	당뇨병 치료제	3상
3	Gilead Sciences	렘데시비르(Remdesivir)	에볼라 바이러스 치료 후보물질	3상
4	Humanigen	렌질루맵(Lenzilumab)	만성 골수단핵구 백혈병 치료 후보물질	3상
5	Oncolmmune	CD24Fc	림프구 면역저하 질환 치료후보물질	3상
6	Swedish Orphan Biovitrum	키너렛(Kineret) ※ 주요성분 : 아나킨라(Anakinra)	류마티스 관절염 치료제	2상
7	Vanda Pharmaceuticals	트레디피탄트(Tradipitant)	당뇨병성 위마비 치료 후보물질	3상
8	InflaRX	IFX-1	히드라 데우스염 치료제	2상, 3상
9	Roche	악템라(Actemra) ※ 주요성분 : 토실리주맙(Tocilizumab)	류마티스 관절염 치료제	3상
10	Sanofi-Regeneron	케브자라(Kevzara) ※ 주요성분 : 사리루맵(Sarilumab)	류마티스 관절염 치료제	2상, 3상
11	Abbvie	칼레트라(Kaletra) ※ 주요성분 : 로피나비르(Lopinavir), 리토나비르(Ritonavir)	HIV 치료제	2상
12	AstraZeneca	칼퀸스(Calquence) ※ 주요성분 : 아칼라브루티닙(Acalabrutinib)	혈액암 치료제	2상
13	Blade therapeutics	BLD-2660	섬유화증 치료 후보물질	2상
14	Can-Fite Bio pharma	피클리데노손(Piclidenoson)	경구건선용 치료 후보물질	2상
15	CytoDyn	레론리맙(Leronlimab)	HIV 치료 후보물질	2상

순번	기업명	기존의약품/후보물질	기전	임상
16	Karyopharm Therapeutics	엑스포비오(Xpovio) ※ 주요성분 : 셀리넥서(Selinexor)	다발골수종 치료제	2상
17	Swedish Orphan Biovitrum	가미판트(Gamifant) ※ 주요성분 : 에마팔루맵(Emapalumab),	혈구탐식성 림프 조직구 증식증 치료제	2상
18	BioCryst Pharma	갈리데시비르(Galidesivir)	에볼라 바이러스 치료 후보물질	1상
19	Sanofi	플라크닐(Plaquenil) ※ 주요성분 : 하이드록시클로로퀸 (HydroxyChloroquine)	말라리아 치료제	1상, 3상

자료 출처: 1) Clinical Trials 2020.4.21. COVID-19 Intervential clinical trials 내용 재가공 2) FROST & SULLIVAN Market Insight 2020. 4.2. 내용 재가공

〈표 3〉 해외 주요기업 코로나19 신약 연구개발 임상현황

순번	기업명	후보물질	연구개발 주요목적	임상
1	Apeiron Biolgoics	APN01	바이러스 복제능력 억제 및 치료효능 검증	2상
2	Eli Lilly and Company	LY3127804	코로나19 환자 대상 후보물질 정맥투여 시 효능 관찰	2상
3	I-Mab Biopharma	TJ003234	GM-CSF 중화항체 통한 사이토카인 폭풍억제	1상, 2상
4	Theravance Biopharma	TD-0903	안전성 및 내약성 검증	1상

자료 출처: 1)ClinicalTrials 2020.4.21. COVID-19 Intervential clinical trials 내용 재가공 2) FROST & SULLIVAN Market Insight 2020. 4.2. 내용 재가공

3. 백신

- 코로나19 치료제와 동일하게 현재 개발된 COVID-19 백신은 없으며 아래와 같은 한계점이 있음에도 불구하고 현재 후보 백신에 대한 연구가 활발히 진행 중
 - 교정이 가능한 DNA 중합효소와는 달리 RNA 중합효소는 교정기능이 없어서 변이가 자주 일어남. 스스로를 복제하는 과정에서 모습이 달라지다 보니 공략법을 찾아도 무용지물이 되는 일이 부지기수임.
 - 백신 개발이 완료된 시점에는 이미 바이러스가 종식될 가능성도 크기 때문에, 많은 기업들이 큰 비용과 많은 시간이 소요되는 백신 개발에 선뜻 나서기 어려움
 - SARS-CoV-2 바이러스의 동물모델 개발이 어려움. 이 바이러스는 정상쥐에서 자라지 않으며, 바이러스가 세포에 침입하기 위해 결합하는 ACE2 수용체 단백질이 과발현되어 있는 형질전환 쥐에서 경미하게 발병하는 하는 것으로 알려져 있음.
- 이에 국가별로 미국, 독일, 프랑스, 일본, 중국, 러시아 등에서 백신을 개발 진행 중에 있으며 기업별로는 이노비오(미국), 모더나 테라퓨틱스(미국)*, 존슨앤존슨(미국), 큐어백(독일), 글락소 스미스클라인(영국), 사노피(프랑스)에서 개발 진행 중(표4)
 - *모더나테라퓨틱스코로나백신에대한세계첫임상1상을피험자45명대상4월부터진행하고있으며,올여름임상2상과올 가을임상3상을계획하고있음
- 개발 중인 백신 플랫폼은 총 7가지로 DNA, Inactivated, mRNA, Not-replicating vector, Protein Subunit, Lentiviral Vector, Replicating viral vector 가 있음

- (DNA) 안정적인 구조의 DNA 조각(플라스미드)을 이용해 유전자를 전달하는 방식으로 Applied DNA Sciences, Inovio Pharmaceuticals에서 개발 진행 중이며 현재까지 사람을 대상으로 최종 사용 승인받은 적은 없음
- (mRNA) 인체 세포 안에 들어가 코로나19 단백질을 합성하는 mRNA를 전달하는 유형의 백신(이 단백질을 인식한 인체가 방어용 항체를 만들게 해 면역 기능을 활성화시키는 게 원리)으로 CureVac, Moderna Therapeutics, Pfizer and BioNTech 사에서 개발 중
- (Protein Subunit) 바이러스의 단백질 조각을 항원으로 이용하는 방식으로 GlaxoSmithKline, Migal institute에서 개발 중
- (viral vector) 바이러스를 다른 안정된 바이러스 게놈(벡터)에 담아 체내에 전달하는 방식으로 Tonix Pharmaceutical, Oxford University, Altimmune, CnaSino Biologics, Johnson & Johnson, Shenzhen Geno-Immune Medical Institute에서 개발 중
- (Inactivated or attenuated) 비활성화시킨 바이러스를 주입하는 방식과 독성을 약화시킨 바이러스를 직접 주입하는 방식으로 Sinovac 사의 백신 후보물질이 임상 1상 및 2상 진행 중

(표 4) 해외 주	9기언 코로나	10 밴시 여-	1개반 조요혀화

순번	기업명	백신유형	후보물질	연구개발 주요목적	임상
1	Inovio Pharmaceuticals	DNA vaccine	INO-4800	건강한 성인 대상 안전성 및 적응성 검증	1상
2	Sinovac Biotech	Inactivated	SARS-CoV-2 inactivated vaccine	백신 후보물질 면역원성과 안전성 및 효능 검증	1, 2상
3	Moderna Therapeutics	mRNA	mRNA-1273	55세 이하 성인 남, 여(비 임신부) 대상 백신 안전성 검증	1상
4	CanSino Biologics	Non-replicating viral vector	Recombinant Novel Coronavirus Vaccine (Ad5-nCoV)	코로나 바이러스 재조합 백신의 반응성, 효능 및 안전성 검증	1상, 2상
5	University of OXFORD	Replicating Viral Vector	ChAdOx1 nCoV-19	55세 이하 건강한 성인대상 백신 후보물질 안전성 및 효능 검증	1상, 2상
6	Shenzhen Geno- Immune Medical Institute	Lentiviral Vector	Pathogen- specific aAPC	코로나19 유전자 활용 범용 백신 개발 후 백신 안전성 및 면역 반응성 검증	1상
7	Shenzhen Geno- Immune Medical Institute	Lentiviral Vector	LV-SMENP- DC	코로나19 유전자 활용 범용 백신 개발 후 백신 안전성 및 면역 반응성 검증	1상, 2상

자료 출처: 1) ClinicalTrials 2020.4.6. COVID-19 Intervential clinical trials Phase 2,3 내용 재가공

- 2) FROST & SULLIVAN Market Insight 2020. 4.2. 내용 재가공
- 3) https://www.nature.com/articles/d41573-020-00073-5
- 4) https://www.spglobal.com/marketintelligence/en/news-insights/latest-news-headlines/led-by-gsknovartis-drugmakers-rediscover-mission-in-covid-19-collaboration-58067233

〈표 5〉 SARS-CoV-2 백신 주요 플랫폼 개요

플랫폼 (비율*)	장점	단점
DNA (6%)	안전성(직접 감염원을 다루지 않기 때문), 용이한 대량생산, 저비용 생산(소규모 GMP생산시설), 신속 생산가능, 내열성, SARS-CoV-1에서 이미 인체시험 검증	세포대 시민이 미승규지
mRNA (16%)	안전성(직접 감염원을 다루지 않기 때문), 신속 생산 가능, 저비용 생산(소규모 GMP생산시설)	RNA 특성상 불안정성, 생체내 전달의 비효율성
protein subunit (recombinant protien) (34%)	안전성(직접 감염원을 다루지 않기 때문), 면역원성을 향상시키기 위해adjuvant(면역증강제) 사용 가능	항원 또는 에피토프의 무결성 손상 가능성, 높은 수율확보 필요, 글로벌 생산능력의 제한
viral vector (24%)	메르스 등 새로이 발견된 다수의 바이러스에 대해 우수한 전임상 및 임상결과 사례	벡터 자체의 면역반응성
live attenuated vaccines (2%)	기존 cGMP급·백신 생산 인프라 활용 가능	약독화 코로나 바이러스 백신 종자를 위한 감염성 클론 제작에 긴 시간 소요됨, 위험성
inactivated vaccines (2%)	기존 cGMP급 백신 생산 인프라 활용 가능, 면역원성을 항상시키기 위해adjuvant(면역증강제) 사용 가능	항원 또는 에피토프의 무결성 손상 가능성, 위험성 (위험한 병원체 사용)

^{*} 개발중인 코로나19백신 유형별 비율

출처 : Immunity 52, April 14, 2020, 동아사이언스, WHO, 싱가포르국립대

IV. COVID-19 치료제 및 백신 개발 국내 현황

1. 치료제

- 국내도 기존 출시 의약품 검토(신약재창출, drug repositioning) 및 신약후보물질 발굴을 진행 중으로, 대부분 신약후보물질 발굴 단계 및 임상시험 이전 단계로써 상용화를 위해서는 앞으로도 상당한 시간이 소요될 예정
- ◎ 질병관리본부 산하 국립보건연구원에서 항체 탐지용 단백질 '프로브'제작에 성공하였으며 약 15개의 국내 제약바이오기업이 코로나19 치료제를 개발 추진 중(국립보건연구원, 2020. 3. 9.)
 - (질병관리본부산하국립보건연구원)
 - SARS-CoV-2 항원에 대응하기 위해 B 세포(B Cell)에서 생산하는 중화항체를 특이적으로 검출할 수 있는 항체 탐지용 단백질(프로브) 제작에 성공했으며, 이를 활용해 SARS-CoV-2에 대한 항체 생산 및 코로나19 치료제 개발 등을 위한 기반 연구가 진행 중(2020.3.10.)
 - * 코로나19 치료제 개발을 위한 긴급 현안지정 학술연구용역 3건을 지원 중
 - (신약재창출) 부광약품의 레보비르(클레부딘 성분)가 '하이드록시클로로퀸과 레보비르의 코로나19 안정성 및 치료효능 검증'을 목적으로 국내에서 단독으로 코로나19 치료목적 임상2상 승인을 받았으며, 그 밖의 국내기업은 식약처 임상승인 대기 중에 있음
 - 경북대병원, 서울의료원, 단국대학교병원, 양산부산대학교병원, 부산대학교병원, 경상대학교병원에서 임상 2상을 위하여, 피험자 60명 모집예정
 - (신약개발) 코로나 바이러스 치료제 및 항체 개발을 위한 국책 과제에 선정(아시아타임즈, 2020.03.19.)되어 셀트리온은 코로나 바이러스 치료용 단클론 항체 비임상 후보물질을 발굴할 예정
 - 코로나 바이러스 완치자 혈액 샘플을 확보로 항체 발견에 수월할 것으로 전망되며 질병관리본부는 셀트리온에게 4억8800만원연구비지원
 - SK바이오사이언스는 코로나19 서브유닛 백신 후보물질과 동물 대상 임상 등의 R&D 진행 시작

〈표 6〉 국내 주요기업 코로나19 신약재창출 세부 현황

순번	개발사	후보물질	기전	주요내용	임상
1	부광약품	레보비르	항바이러스 치료제	 ('01.6.13.) 레보비르 의약품 허가 획득 ('20.4.14.) 코로나19 치료 효과확인 및 특허출원 후 식약처에 임상시험 승인획득 	2상 (3분기 결과발표)
2	이뮨메드	HzVSFv13 (신약후보물질)	인플루엔자 치료제	 ('18.7.20.) 후보물질 임상 1상 승인 획득 ('20.3.) 코로나19 치료목적 긴급사용 승인획득 	2상예정 (_「 년 하반기)
3	엔지캠 생명과학	EC-18	호중구 감소증 치료제	 ('20.3.) 미국 내 임상시험계획 제출 준비 ('20.4.17.) 국내 임상 2상 신청서 제출 	1상

순번	개발사	후보물질	기전	주요내용	임상
4	코미팜	파나픽스	암성통증 치료제	 ('07.7) 바이러스 치료목적 파나픽스 개발 착수 ('20.2.) 코로나19 치료 효능 확인을 위한 임상 2·3상 계획 제출 	1상
5	일양약품	슈펙트	백혈병 치료제	• ('18.2.19.) 만성골수백혈병 환자 대상 임상 3상 승인획득	전임상
6	한국유나이티드 제약	흡입용 스테로이드 제제	중증폐렴 치료제	• ('20.3.) 임상1상 진행을 위한 식약처 임상 계획제출	전임상
7	셀리버리	iCP-NI	중증 폐혈증 후보물질	 ('20.2.19.) 중증폐혈증 치료제 미국 특허 출원 ('20.3.27.) 코로나19 전임상 착수 	전임상
8	카이노스메드	자체화합물	에볼라 치료 후보물질	• ('20.3.2.) 한국파스퇴르연구소와 코로나19 치료제 개발을 위하여 공동연구 계약체결	전임상
9	파미셀	셀그램-AKI	B형 간염치료제	• ('20.3.) 코로나19 치료목적 사용승인 획득	전임상

자료 출처: 언론 공시자료 및 개발사별 홈페이지 보도자료

〈표 7〉 국내 주요기업 코로나19 신약개발 세부 현황

순번	개발사	후보물질	개발현황	개발 주요이력 및 계획
1	셀트리온	코로나19 바이러스 치료용 단일클론 항체	완치자 혈액확보 후 신약개발 진행 중	 ('20.2.) 완치자 혈액 내 치료용 항체 300개 확보 ('20.4.) 치료용 항체 후보군 38개 결정 ('20.7.) 신약 효과 검증을 위한 임상 진행 예정
2	노바셀테크 놀로지	NCP112 기반 치료제	생체에 작용하는 면역치료제로서 코로나19과 같은 바이러스성 중증 호흡기 질환에 대한 범용적인 효과	• ('20.3.6.) 에이디엠 코리아와 코로나19 신약개발을 위한 협력체결
3	유틸렉스	T세포 활용 코로나 치료제	자체 개발 항체 4-1BB 발현 림프구 활성화 증식을 유도하여 코로나19 바이러스 치료제 개발	• ('20.3.) 코로나19 치료제 개발착수 및 미국 내 특허 출원
4	GC녹십자	GC5131A	혈장치료제 기반 활용 고면역글로불린 활용 치료제 개발 중	• ('20.6.~) 코로나19 혈장치료제 상용화 계획

자료 출처: 언론 공시자료 및 개발사별 홈페이지 보도자료

● 또한 식품의약품안전처 보도자료에 따르면 COVID-19 치료 및 예방 목적으로 국내외 기업에서 개발 중인 치료제에 대해 국내 임상시험 기관에 시험 승인을 확대하고 있으며(20. 3. 27) 국내 임상시험용의약품에 대한 치료목적 사용 승인 역시 가속화 중(20.3.26)

〈표 8〉 국내 임상시험 계획 승인 현황

순번	의뢰자	제품명	임상시험 제목	실시기관	승인일
1	길리어드 사이언스코리아 유한회사	Remdesivir	중등도 COVID-19 시험대상자에서 표준 치료 투여와 비교해 렘데시비르(GS- 5734™)의 안전성 및 항바이러스 활성을 평가하기 위한 제3상 무작위 배정 시험	• 경북대학교병원 • 국립중앙의료원 • 서울의료원	2020-03-02
2	길리어드 사이언스코리아 유한회사	Remdesivir	중증 COVID-19 시험대상자에서 렘데시비르(GS-5734™)의 안전성 및 항바이러스 활성을 평가하기 위한 제3상 무작위 배정 시험	• 경북대학교병원 • 국립중앙의료원 • 서울의료원	2020-03-02
3	서울대학교병원	remdesivir	COVID-19에 대한 remdesivir의 안전성과 유효성에 대한 다기관, 무작위배정, 이중눈가림, 위약대조 연구	서울특별시보라매병원 분당서울대학교병원 서울대학교병원	2020-03-05
4	서울이산병원	칼레트라정, 옥시크로린정	경증 코로나19 환자에서 lopinavir/ritonavir vs hydroxychloroquine vs 비투약군 간의 open labelled randomized controlled clinical trial	• 서울아산병원 등	2020-03-20
5	강남세브란스병원	할록신정	SARS -CoV -2 에 대한 노출 후 예방으로서 하이드록시클로르퀸 연구	• 강남세브란스병원	2020-03-25
6	고려대학교 의과대학 부속 구로병원	알베스코 흡입제	경증 코로나19 환자에서 Ciclesonide의 임상적 유효성 평가	고려대학교 의과대학 부속 구로병원 아주대학교병원 충북대학교병원 한림대학교 강남성심병원	2020-03-27
7	부광약품	레보비르캡슐30mg (클레부딘)	중등증 코로나바이러스감염증- 19(COVID-19)환자에서 클레부딘(Clevudine)과 히드록시클로로퀸 (Hydroxychloroquine)의 안전성과 유효성을 평가하는 공개, 무작위배정, 제2상 임상시험	고려대학교 의과대학부속 구로병원 아주대학교병원 고려대학교의과대학부속 안산병원 인하대학교의과대학부속병원 한림대학교강남성심병원 갈병원 충남대학교병원 학교법인 고려중앙학원고려대학교의과대학부속병원	2020-04-14

순번	의뢰자	제품명	임상시험 제목	실시기관	승인일
8	경상대학교병원	후탄	코로나19 폐렴 환자에서 Nafamostat mesilate 의 치료효과 분석을 위한 open labelled randomized controlled clinical trial	경북대학교병원 서울의료원 단국대학교 의과대학부속병원 양산부산대학교병원 부산대학교병원 경상대학교병원	2020-04-17
9	동아대학교병원	페로딜정	COVID-19 감염 중증 폐렴 환자의 폐 기능에 관한 이펜프로딜의 28일 제2a상 공개, 연구자 주도 연구	• 동아대학교병원	2020-04-21

자료 출처: 식품의약품안전처 의약품 안전나라 임상시험 정보공개, 2020.4.21.

〈표 9〉 국내 임상시험용의약품의 치료목적 사용 승인 현황

순번	구분	신청인	승인일자	성분명	대상질환명
1	개인별 환자 대상	서울대학교병원	2020-02-21	HzVSF v13	COVID-19(coronavirus disease-19)
2	개인별 환자 대상	서울대학교병원	2020-03-06	HzVSF v13	COVID-19(coronavirus disease-19)
3	개인별 환자 대상	영남대학교병원	2020-03-18	HzVSF v13	COVID-19(coronavirus disease-19)
4	개인별 환자 대상	영남대학교병원	2020-03-18	HzVSF v13	COVID-19(coronavirus disease-19)
5	개인별 환자 대상	충남대학교병원	2020-03-20	HzVSF v13	COVID-19(coronavirus disease-19)
6	개인별 환자 대상	충남대학교병원	2020-03-24	HzVSF v13	COVID-19(coronavirus disease-19)
7	개인별 환자 대상	연세대학교 의과대학 세브란스병원	2020-03-27	HzVSF v13	COVID-19(corona virus disease-19)
8	2명 이상의 환자 대상	파미셀주식회사	2020-03-27	Cellgram-AKI	COVID-19 감염에 의한 중증 폐렴 환자
9	개인별 환자 대상	칠곡경북대학교병원	2020-04-03	테르토모 타이트염산염	COVID-19(coronavirus disease-19)
10	개인별 환자 대상	칠곡경북대학교병원	2020-04-03	테르토모 타이트염산염	COVID-19(corona virus disease-19)
11	개인별 환자 대상	경북대학교병원	2020-04-17	테르토모 타이드염산염	COVID-19 (Corona virus disease-19)
12	2명 이상의 환자 대상	(주)안트로젠	2020-04-22	동종유래 지방줄기세포	COVID-19 (Corona virus disease-19)
13	개인별 환자 대상	인하대학교의과대학 부속병원	2020-04-24	SCM-AGH	동종골수유래중간엽줄기세포
14	2명 이상의 환자 대상	주식회사 강스템바이오텍	2020-05-01	퓨어스템- 알에이주 (FURESTEM- RA Inj.)	동종제대혈유래중간엽줄기세포
15	개인별 환자 대상	경북대학교병원	2020-05-04	GV1001	테르토모타이드염산염

자료 출처: 식품의약품안전처 의약품 안전나라 치료목적 사용승인현황 2020. 5. 4.

2. 백신

- COVID-19 예방을 위한 백신 연구 역시 국내 정부기관의 지원 하에 기업에서 활발하게 진행 중
 - (질병관리본부산하 국립보건연구원)
 - COVID-19 유전체 분석을 통해 기존 사스 중화항체 2개와 메르스 중화항체 1개가 특이적으로 COVID-19의 표면 돌기 당단백질에 결합할 수 있다는 것을 발견했으며, 이 연구 결과는 COVID-19 치료용 항체와 백신 개발에 활용 가능하다고 밝힘(2020. 3. 4.)
 - 코로나19 관련 긴급 현안지정 학술연구용역 12건을 실시하고 있으며 이중 백신 후보물질 개발 관련 과제는 4건 진행중
 - 자체 내부과제를 통해 인플루엔자바이러스 구조단백질에 코로나19 바이러스 스파이크(spike) 항원을 탑재한 형태의 바이러스유사체
 - * 백신 후보물질을 발굴
 - *바이러스유사체 (Virus Like Particle, VLP): 유전물질이 없이 구조단백질로만 구성된 바이러스 입자로 인체 내에서 바이러스 복제가 일어나지 않고 면역반응만 유도하는 백신 형태(2020. 4. 7.)
 - (국내 제약·바이오 기업) 약 4개의 국내 제약·바이오 기업이 백신 후보물질을 개발하고 있으며 기타 복수의 제약·바이오 기업도 백신 개발 준비
 - SK바이오사이언스, 스마젠, 지플러스 생명과학, GC 녹십자에서 개발 진행 중
 - 코로나 바이러스 백신 개발을 위한 국제백신연구소와 국내산·학·연 협력을 통해 제넥신, 바이넥스, 제넨바이오, 카이스트, 포스텍 등 6개 기관과 협력하여 DNA 백신
 - * 'GX-19'개발
 - * (DNA 백신) 바이러스 항원을 만들어낼 수 있는 유전자를 인체에 투여해 면역반응 유도, 코로나 바이러스 감염으로 인식하여 면역반응을 일으켜 항체를 만들어내는 방식으로 기존 백신보다 만들기 쉽다는 장점이 있으며 7월 중 임상 개시가 목표

〈표 10〉 국내 주요기업 코로나19 백신개발 세부 현황

순번	개발사	후보물질	주요내용	이력
1	SK바이오사이언스	합성항원기반 코로나19 서브유닛 (Protein Subunit)	스파이크 단백질 종류 메르스에서 코로나19로 변경하여 효과확인 중	 ('20.3.18.) 코로나19 백신 개발 국책과제 우선순위 협상자 선정 ('20.3.24.) 코로나19 백신 전임상 진행
2	스마젠	코로나19 핵심 항원 (Viral Vector)	VSV 벡터 기술 활용 코로나19 백신 개발 진행 중	 ('20.3.5.) 국제백신 연구소와 코로나19 전임상 연구용역 계약 ('20.3.18.) 캐나다 정부로부터 100만달러 규모 연구개발비 지원 수주
3	지플러스생명과학	스파이크 단백질 (Protein Subunit)	식물기반 플랫폼 활용 코로나19 백신 개발 진행 중	• ('20.3.6.) 코로나19 재조합백신 후보물질 발현
4	GC녹십자	합성항원 기반 코로나19 서브유닛 (Protein Subunit)	백신과 유전자재조합 치료제 개발 연구개발 역량을 활용해 백신 개발	• ('20.3.9.) 코로나19 백신 및 치료제 개발 착수

자료 출처: 언론 공시자료 및 개발사별 홈페이지 보도자료

국내외 정책사례

■ 미국 FDA

- 미국 식품의약국(FDA)는 코로나 19 치료제와 백신 개발을 위한 규제를 완화하고, 효율적인 절차로 신속한 임상 평가가 가능하도록 코로나19(COVID-19) 치료제 개발 촉진 프로그램(CTAP : Coronavirus Treatment Acceleration Program)을 구성하였음
 - -약물평가연구센터(CDER)와 바이오의약품평가연구센터(CBER)에서 의료 및 규제직원의 재배치하여 코로나19 치료제 요청에 대한 신속 대응팀을 구성함
 - 24시간내 초고속으로 임상프로토콜을 검토하거나 코로나 19로 생명이 위급한데 치료대안이 없는 환자에게 3시간 내에 검토 완료 후 임상후보물질을 처방함

■ 식품의약품안전처

- '코로나19 치료제·백신 개발'지원
 - 코로나19 위기대응지원본부 내 「제품화팀」을 구성(2.3.)하여, 코로나19 치료제·백신 개발 준비 중인 제약업체 대상 별도의 상담 창구*를 운영
 - * 제품화 지원과 코로나19 임상시험에 대해 우선·신속 심사고지원
- '코로나19 치료제·백신 개발'사업 협력
 - 식약처는 과학기술정보통신부, 질병관리본부가 추진하는 코로나19 치료제 개발 사업에 협력하여 개발 소요기간 단축 지원

〈주요기관별 역할〉

- ▶ 과학기술정보통신부 : 미국 FDA에서 허가된 의약품 중 코로나19 치료에 효과적인 약물을 발굴하여 연구결과를 의료계에 전달하고, 임상에 활용될 수 있도록 지원하는 「약물재창출사업」 수행
- ▶ 질병관리본부: 코로나19 치료제 개발을 위한 기존약물 사용범위 확대, 항체치료제·혈장치료제·백신에 대한 임상시험 연구과제 수행
- ▶ 식품의약품안전처: 개발 초기단계부터 임상시험계획 관련 정보를 공유하고 과학적 타당성을 검토하여 시행착오가 없도록 지원
- 코로나19 치료에 사용하는 의약품 공급 관리
 - 질병관리본부 요청 시, 코로나19 치료를 위하여 사용되는 국내 미허가 의약품 특례수입 지원
 - * (주요사례) 인체 면역결핍 바이러스(HIV-1) 감염치료제 '칼레트라액' 3차례 특례수입 조치
 - *특례수입: 의약품을 수입하려면 품목허가가 필요하나, 감염병 대유행 상황 등 대비를 위해 관계 부처의 장의 요청이 있는 경우 품목허가 없이 의약품을 수입하는 제도
 - 코로나19 치료에 사용*하는 '칼레트라정'과 '하이드록시클로로퀸정'등의 국내 공급 현황을 모니터링 하여. 필요한 경우 수입 또는 생산될 수 있도록 대비
 - * 코로나19 약물 치료에 관한 전문가 권고안(20.3.13., 대한감염학회 등) 근거
- 격리 중인 코로나19 환자 또는 보호자에 대한 임상시험 동의절차 개선

- (동의설명) 격리 중인 코로나19 환자 또는 보호자 등 대리인에게 임상시험에 대한 내용을 전화로 설명하고 동의 절차 진행 허용
- (동의서보관) 격리 중인 화자 또는 보호자의 자필서명 동의서 워본이 파기 대상일 경우 워본 대신 사진 등으로 대체 가능
- 환자 또는 보호자가 격리 해제되면 동의·설명서를 다시 제공하여 환자 또는 보호자가 동의서를 보관할 수 있도록 조치

■ 질병관리본부 국립보건연구원

- ◎ 질병관리본부 국립보건연구원 국내 기업과 협력하여 코로나19 항체 치료제와 예방 백신을 개발
 - '코로나19의 치료·임상 및 백신개발 연구 기술 기반 마련'에 대한 연구계획 발표로 산·학·연 전문가 회의(2월19일)를 통해, 현장수요 중심의 코로나19연구과제 수요를 발굴하였고 관련 예산 추가확보
- 긴급과제공모로 치료제 개발을 위해 셀트리온과 협력중이며, 백신 개발은 ㈜SK바이오사이언스와 협력하여 추진 중
 - ㈜셀트리온과 단클론항체 치료제* 개발 중이며, SK바이오사이언스와 합성항원(서브유닛) 기술을 이용한 예방 백신** 개발 중
 - * (단클론항체 치료제) 코로나19 완치자 혈액의 항체를 분석·평가하여 바이러스를 무력화시킬 수 있는 항체만 선별하여 치료제로 이용
 - ** (합성항원(서브유닛) 백신) 면역반응을 유도할 수 있는 병원체의 일부 단백질(항원)만 유전자재조합 기술로 합성하여 제조한 백신으로 감염의 우려가 적고 안전성 높음
- 연구를 통해 후보물질 개발과 효능 평가 수행 후 효능이 입증된 후보물질을 선별하여 비임상· 임상시험 지원예정
 - 백신실용화기술개발사업단('20~29년)구성 후 '20년 연구 예산(119.5억원) 활용 예정(6월~)
 - 실용화 가속화를 위한 연구·개발 단계부터 식약처 등 관련 부처와 협업예정
- 코로나19 환자진료 의료기관 경북대학교병원, 국립중앙의료원과 협업하여 환자의 임상역학과 면역학적 특성 연구를 추진
 - 관련 기술과 경험을 축적한 전문기관(광주과학기술과학원, 한국화학연구원)과 협업하여 방역현장에 신속하게 적용할 수 있는 진단자원과 치료제 평가에 필요한 자원을 개발 중

〈표 11〉 질병관리본부 국립보건연구원 연구과제 현황 사례

[연구 수행 중(3월~)]

분야	번호	과제명	연구기관	연구비(`20) (백만원)
친근제	1	코로나19 치료용 단클론 항체 비임상 후보물질 발굴	㈜셀트리온	188
치료제	2	코로나19 면역항원 제작 및 평가기술	한국화학연구원	120
백신	3	합성항원 기반 코로나19 서브유닛 백신 후보물질 개발	SK바이오사이언스㈜	100
진단	4	코로나19 진단 항원·항혈청 생산 및 효능평가	광주과학기술원	39
임상	5	코로나19 환자의 임상역학적 연구	경북대학교	200
пÖ	6	코로나19 감염 국내 확진자 면역학적 특성 연구	국립중앙의료원	110

[선정평가 예정 연구과제]

분야	번호	과제명	연구비(`20) (백만원)	비고
치료제	1	코로나19 치료제 신속 임상 적용을 위한 항바이러스 효능 분석	100	선정평가 예정(3.26)
백신	2	핵산백신 플랫폼을 활용한 코로나19 백신 후보물질 개발	150	선정평가 예정 (3.26)
77(2)	3	바이러스전달체를 이용한 백신 후보물질 개발	150	재공고(~3.31)
진단	4	다양한 검체적용을 위한 코로나19 고감도 신속진단제 개발	100	선정평가 예정 (3.26)
신인	5	면역반응을 이용한 코로나19 고감도 신속 현장 진단제 개발	100	재공고(~3.31)
임상	6	코로나19 환자 접촉자에서의 혈청학적 연구	100	선정평가예정(3.26)

■ 과학기술정보통신부

- ◎ 신약재창출(Drug Reposition)을 통한 코로나바이러스신약 재창출 연구 추진을 통해 동물실험 연구결과 정리 및 의료계 전달로 연구개발 지원예정
 - 영장류 대상, 감염모델 개발 예정이나 동물실험에 대한 윤리적 문제 등으로 인한 연구결과 도출지연 예상

■ 범부처 감염병 연구개발 추진위원회

- 제1차 국가감염병 위기대응기술개발 추진전략('12~'16)에 이어 2차 추진전략('17~'21) 수립
 - 기존 8대 중점분야*에 예방접종·백신과 재난대비·관리 분야를 추가
 - *(8대 중점분야) 신종인플루엔자, 다제내성균(슈퍼박테리아), 결핵, 인수공통감염병, 만성감염질환, 기후변화관련감염병, 생물테러, 원인불명감염병
- 2차 추진전략 이후, 7개 부처 합동 방역연계 범부처 감염병 연구개발사업(觖-觚) 기획 후 감염병 유입차단, 현장대응, 확산방지에 활용될 수 있는 7대 중점분야 30개 과제를 현재 추진 중

■ 민관합동 코로나19 치료제 · 백신개발 「범정부 실무추진단」

- 대통령 주재 산·학·연·병 합동회의를 계기로 코로나19 치료제·백신 개발을 집중 지원하여, 신속히 성과를 창출할 수 있도록 민관합동 정부 지원단★을 구성('20.4.9)
 - *보건복지부장관/과기정통부장관(공동단장), 관계부처(기재·산업·중기부·국무조정실) 차관, 질병관리본부장, 식약처장, 민간전문가 등
 - 이를 뒷받침하기 위해, 범정부 실무추진단을 구성하여 코로나19 치료제, 백신, 방역물품·기기 연구개발, 생산, 국가비축, 방역 현장 활용 등 전주기에 걸친 상황 분석 및 현장 애로사항을 파악하고, 지원방안을 마련해 나갈 예정
 - * (구성 및 운영) 질병관리본부 국립보건연구원장과 과학기술정보통신부 연구개발정책실장을 공동단장으로 하며, 치료제, 백신, 방역물품·기기의 각 3개 분과별로 산·학·연·병·정 관계자로 구성하고, 각 분과장 및 관계부처 국장으로 구성된 총괄분과를 두어 운영
- 또한 범정부 지원단 산하에 설치될 "기업 애로사항 해소 지원센터(한국보건산업진흥원)"와 연계하여 국내 치료제·백신 개발 기업의 애로사항을 신속하게 해소할 수 있도록 전문적 컨설팅을 제공할 계획

VI 당면 문제

- 국내제약바이오기업 대상 조사결과* 원료의약품 수급, 임상일정 지연, 비즈니스 파트너십 제한, 신약개발 일정지연 등의 애로사항 확인
 - *(조사 목적) 코로나19(COVID-19)로 인한 국내제약바이오 기업의 피해사항 파악 및 의견 수렴을 위하여 한국보건산업진흥원주관으로 국내 제약바이오기업 대상으로 비대면 방식의 설문실시('20.4.1~4.2)
 - * (조사 내용) 코로나19로 인한 국내 제약바이오기업 애로사항 및 건의사항
- (원료의약품 수급지연) ① 미국, 유럽 등 현지 코로나 확산 방지를 위한 이동제한 조치로 현지 물자이동 감소, ② 해외-국내 간 항공운항 감소로 물자 이동의 제한
- (수출입지연) 복잡한 통관절차로 수출입 진행 시 납기 차질문제 발생
 - (의약품 수입절차) 의약품 품목허가 신청 및 발부 → 표준통관예정보고서 신청 및 승인 → 수입신고필증 교부 → 품질검사진행 → 적합판정 → 수입 및 판매
- (신약개발 연구개발 지연)① 감염병 여파로 임상시험 피험자 지원 수요 감소로 임상진행의 어려움, 국내 제약바이오기업 주요 협력국가(미국, 유럽 등)의 코로나19 확산으로 인한 업무 중단(물품구매, 협력업무)과 해외 협력인사의 출입국제한으로 신약개발 연구 및 임상일정 지연
- ◎ (매출감소) ① 국내 의료기관 내 영업활동 제한, ② 병원 외래환자 감소로 처방의약품 매출감소, ③ 희귀질환 외국인환자의 국내의료기관 방문 감소로 고가의 희귀의약품 판매저하
 - (대내적 요인) 의료기관 방문자수 저하, 병원 내 영업활동 제한으로 매출 감소
 - (대외적 요인) 미주·유럽의 업무중단 및 치료목적 방한 해외환자 감소로 의약품 매출 감소
- 미충족 의료수요가 높은 희귀난치성질환 및 감염병 등의 질환에 대한 신약개발 관련 정부 지원 및 산·학·연·병과의 적극적인 협력 미흡
- 최근 감염병에 대한 전 세계적인 위험이 커지면서 감염병에 대한 국가적 대응을 모색할 필요성이 대두
- 이에 정부는 국가적 차원의 코로나19 대응을 위해 기업·의료계·학계 등과 의견을 교환했고, 질병관리본부 산하 국립보건연구원은 코로나19의 진단, 치료제, 백신 개발을 위해 긴급현안과제 12개를 2차례* 공모 실시
 - * 1차 공모는(2020. 2. 17.-25.) 4개 과제에 대해 4억 5,700만 원 규모이며, 2차 공모는 (2020. 3. 2.-10.) 8개 과제에 대해 10억 원 규모
 - 이와 같은 코로나19 대응을 위한 일련의 연구를 추진함으로써 국가적 차원의 치료제 및 백신 개발의 초석을 다지는 계기가 마련
- 따라서 향후 국가적 차원의 선제적 대응이 가능하도록 보건복지부를 비롯한 정부의 지원 확대와 산·학·연·병과의 적극적인 협력이 필요

■ 연구자 임상시험(IIT, Investigator Initiated Trials)에 대한 체계적인 지원 미흡

- ◎ 전 세계 신약개발 선진국에서 연구자 임상시험은 신약개발을 주도하는 핵심 영역으로 인식되고 있으며 대표적 신약개발 강국인 미국의 연구자 임상시험 비중은 약 50%에 달함 (자료 출처: 국가임상시험지원재단, ClinicalTrials.gov 등록현황 분석)
- 반면, 국내 연구자 임상시험 비중은 약 25% 수준에 불과 (자료 출처: 국가임상시험지원재단, 식품의약품안전처 임상시험계획 승인현황 분석)
 - 연구자 주도 임상시험 및 감염병 등 긴급한 공중보건위기 대응을 위한 공익적 목적의 상업적 임상시험에 대해 건강보험 요양급여를 적용해 지원하고 있음에도(2018. 5. 1. 시행) 여전히 연구자 임상시험의 비중은 답보 상태
 - *연구자 임상시험을 체계적으로 지원하는 기관 및 환경이 아직 제대로 마련되어 있지 않아 국내 연구자가 임상시험 수행에 어려움을 겪고 있기 때문
 - 실제로 연구자 임상시험은 상업적 임상시험보다 객관적이고 학술적인 결과를 도출할 수 있지만 연구자의 행정적·재정적 부담과 임상시험 결과의 체계적 관리 어려움으로 상품화까지 이어지지 않아 환자에게 쓰이지 못하는 경우가 발생
 - ※ 따라서 공중보건위기 대응을 위한 백신, 치료제 등 국내 혁신신약개발을 위해서는 상업적 임상시험 지원뿐만 아니라, 다수의 전문가가 참여 가능한 연구자 임상시험 지원 활성화 필요
- ◎ 이를 위해 연구자 임상시험의 운영 및 결과를 체계적으로 관리하고, 임상연구 결과가 실용화 될 수 있도록 정부와 협의하여 연구자 임상시험 활성화를 위한 체계적인 지원 방안 마련 필요

VⅢ 결론 및 정책적 제언

- (원료의약품 수급 및 수출입 절차 완화) 원료의약품 주요 수입국 대상 한시적 수입 절차 완화로 신속한 통관처리 지원 필요
- 이에 정부 부처 간 협의(복지부-관세청)를 통한 원료의약품 수입 신속통관 지원팀 개설 및 1:1 인력지원, 절차간소화 지원 방안 등을 마련 중에 있음
 - (주요내용) 통관신속허가를 위하여 한시적으로 해외제조원의 성적서를 국내 품질 시험 성적서로 갈음 등
- 해외 저명한 제약 전문가를 통해 전염병 대응 치료제 및 백신 관련 개발, 제조, 유통 등과 관련된 온·오프라인 컨설팅 및 국가별 인·허가 주요 정보 제공 지원을 통해 원료의약품 수급지연에 대한 문제해결 필요
- (감염성 질환 대응 신약개발 연구개발 지원 및 수출지원) 코로나19와 같은 감염병 대비를 위한 신약개발 연구비 및 해외수출 지원 필요
- 코로나19 확산으로 인한 세계적 전염병 대유행(Pandemic) 등 국가적 재난 상황에서 적시 대응 가능한 의약품 개발 전략을 민관 합동단을 구성하여 체계적으로 연구 지원 필요
 - 특히, 이미 시판되거나 안정성 이외의 이유로 상업화에 실패한 약물을 대상으로 새로운 적응증을 규명하는 신약재창출로 다수의 해외 신약개발이 창출
 - *화이자(Pfizer), 크리조티닙(crizotinib)을 미분화 대세포 림프종에서 비소세포암 치료제로 재창출
 - 또한 신약개발 역량 및 R&D 투자 자금이 절대적으로 부족한 국내 제약기업들에게 적합한 신약개발 전략으로 신약재창출 필요성 제기
 - 이에 국내에서 이미 의약품 연구개발 투자 및 성과를 인증받은 혁신형 제약기업을 중심으로 국내외 제약사나 바이오벤처사가 보유한 개발 또는 중단된 물질 등을 중개 지원하는 사업 필요
 - 단기적으로는 '코로나19 감염증 신약재창출'을 중점적으로 지원하고, 중·장기적으로는 '감염병 질환 신약재창출'지원으로 확대 필요
 - *적응증 변경 및 확대 가능한 후보물질 탐색, 검증, 특허 확보를 위한 비용을 지원
- 4차 산업혁명 기술혁신을 도약 기회로 삼아 감염성 질환 치료제 및 백신 개발 기간 단축 및 효율성 제고 위해 딥러닝 기반의 인공지능(AI)을 활용한 신약개발 및 플랫폼 국내 도입 필요
 - 글로벌 제약사를 중심으로 신약 후보물질 및 임상 데이터 분석에 인공지능 도입·활용하여 R&D 효율성을 높이는 "Quick win, Fast fail" * 전략 확산
 - * 주요 정보 조기 확보로 유효성이 입증된 신약 후보물질만 선택적으로 임상 2상 진행
 - 일반적으로 신약발매까지 29억달러 소요, 임상시험 성공률은 11.8%*에 그쳤으나, 후보물질 발굴, 임상연구 등에 인공지능을 활용함으로써 R&D 비용·후보물질 탐색기간 절감으로 선진국에서는 적극 활용 중
 - * 자료: Tufts CSDD, 2016
 - * (미국·유럽) AI기업을 중심으로 인공지능을 활용한 신약 개발을 진행(아톰와이즈(Atomwise)의 단백질 억제제 개발, 오믹스(OMICS)의노화관련질병신약개발, 영국베네볼런트(BenevolentAI)의난치성질환신약개발등))
 - * (일본) 도쿄대학병원, 오사카 대학병원, 게이오병원 등 전국적으로 수십 개의 의료기관과 제약 및 헬스케어 분야 기업들이 참가하여 인공지능으로 연구 및 신약개발 착수('18)

〈표 12〉 AI 기반의 코로나 대응 신약재창출 현황사례

구분	기업명	개발사	약품명	주요내용
해외	베네볼런트 Al 일라이 릴리 (Benevolent Al) (Ely Lilly)		올루미언트 (Olumiant, baricitinib)	인공지능 기반 머신러닝 프로그램을 이용해 일라이 릴리社의 류마티스성 관절염 치료제 '올루미언트'가 바이러스의 폐 세포 감염 능력을 감소시킬 수 있는 것으로 예측 (올루미언트) JAK1과 JAK2의 선택적 저해제(JAK1/2 inhibitor)로 염증성 사이토카인의 생성을 막는 기전을 가짐
	디어젠	브리스톨 마이어스 스퀴브 (Bristol Myers Squibb, 이하 BMS)	아타자나비르 (Atazanavir, 제품명 레야타즈)	딥러닝 기반의 약물-단백질 상호작용 예측 알고리즘 MT-DTI (Moleculule Transformer- Drug Target Interaction) 기술을 사용해 BMS社의 HIV 치료제 '아타나자비르'가 신종 코로나바이러스의 복제에 관여하는 5가지 단백질 전부와 효과적으로 결합할 것으로 예측
국내	신테카 바이오	-	-	AI기반 약물 재창출 모델을 활용해 신종 코로나바이러스 감염증에 효능을 보일 것으로 예측되는 30종의 후보물질을 도출 검증 결과 확인 시, 유효 물질 특허(용도) 출원과 영장류 대상 실험에 들어갈 예정
	테라젠이텍스	-	_	미국 식품의약국(FDA)의 품목허가 승인 약물 1,880종을 대상으로 신약재창출 선별 연구를 실시, 5종의 치료제 후보물질 발굴 최종 후보물질에는 호흡기질환 치료제와 심혈관질환 치료제 등이 상위권에 포함 획득한 후보물질을 대상으로 공신력 있는 연구기관과의 약물 효력시험을 진행하는 한편, 12종의 추가 타깃 단백질에 대한 버추얼 스크리닝(Virtual screening)을 통해 후보물질을 추가 발굴할 예정

자료 출처: 주요 언론 공시 자료 인용

- 더불어 AI 신약개발 활용지원 사업의 방향성을 병원임상 데이터를 활용하는 전염성 질환 감염증 백신 또는 치료제 후보물질 발굴로 확대하여 지원 필요
- 국내제약바이오기업 대상으로 제약산업 전주기별로 글로벌 진출을 강화하기 위해 임상·인허가 컨설팅, 생산기반 선진화, 현지 법인 설립 등 의약품 해외진출 지원 방안을 확대 할 필요가 있음
- (국내 임상시험의 효율성과 질 개발 및 규제 개선) 해외 경쟁사와 구별할 수 있는 국내 임상시험의 효율성, 속도, 그리고 질적 개선이 필요
- 중국의 규제 환경이 크게 개선되고 시장 규모가 커짐에 따라 중국은 다 지역 임상 시험 (multiregional clinical trials; MRCT)에 대한 ICH E17 지침의 광범위한 채택으로 아시아 지역 또는 아시아 인구를 대표할 수 있는 이점을 활용
 - 이에 국내 역시 경쟁사와 한국을 분명히 구별할 수 있는 다른 수준의 임상시험 효율성과 질을 개발함으로써 가까운 시일 내에 임상시험의 효율성, 속도 및 질이 우수한 세계 시험의 선호 장소로 간주 될 수 있을 것으로 사료

- 바이오시밀러 최초 허가(紙.2) 등과 같이 글로벌 제약기업사들이 중국 바이오시밀러 시장에 쉽게 진출할 수 있도록 규제를 완화함으로써 중국 내에서 최초로 허가됨에 따라 승인 절차가 확립되어 바이오시밀러 허가 시간이 단축되고, 글로벌 제약 회사의 중국 진입이 가속화 될 것으로 예상
- ◎ 이에 국내 역시 감염병 질환과 관련된 신속한 임상시험 승인과 함께 시험 내용에 대한 효율성과 질을 동시에 개발 필요
 - 가령 국가임상시험지원재단에서 7개 병원을 포함하여 운영 중인 "Smart Clinical Trial Platform"지원 프로그램은 국내 병원에서 널리 채택되고 있다는 가정 하에 한국의 임상 시험 효율성을 높이는 데 기여할 것으로 예상
 - 타당성을 수행하고 복잡한 포함 / 제외 기준으로 환자를 일치시키는 데 EMR 데이터를 적극적으로 사용하면 한국 보건 당국의 보다 능률적이고 투명한 임상 시험 승인 프로세스와 함께 효율성이 크게 향상될 것으로 사료 (자료 출처: Chee DH. Korean clinical trials: its current status, future prospects, and enabling environment, Transl Clin Pharmacol, 2019;27(4):115-118)

■ 이 외에도 코로나19 감염증 치료제 및 백신 연구개발 동향을 지속적으로 제공함과 동시에 전문가 및 개발기업 간 정보 공유 필요

- 전 세계적으로 신종코로나바이러스(2019-nCoV)를 종식시키기 위한 집중적인 노력을 기울이고 있으며, 과학적 근거에 기반한 정보의 습득과 현재 진행 중인 연구의 최신 정보 및 현황 파악이 중요
- 현재 알려진 연구의 결과나 지식에 대한 변동가능성이 있으므로, 이를 업데이트할 수 있는 정보를 지속적으로 관련 기관에서 제공 필요
- 더불어 임상 단계별 유의사항, 치료제 유형별(유전자 치료제, 세포치료제 등) 개발 경험 공유, 코로나19 감염병의 국내외 동향 및 치료제 개발 개발사례를 관계자 간에 공유함으로써 국내 제약기업 치료제, 백신 연구개발 활성화에 기여 예상
 - 코로나19 관련 민관 정보교류 활성화를 위하여, 제약산업정보 포털 내 코로나19 치료제 및 백신 연구개발 페이지를 개설하여 지속적인 정보제공의 장 마련
 - 국제감염병연구소, 라이트펀드* 등과 산·학·연·병 공동연구회 추진으로 연구자간 협력환경 조성
 - *라이트펀드: 글로벌헬스기술연구기금 (이하 'RIGHT Fund')은 한국정부, 한국생명과학기업 그리고 해외투자자의 3자간 협력을 통해 글로벌헬스 분야의 R&D를 지원하기 위해 설립된 최초의 민관협력 비영리재단

〈표 13〉 코로나19 관련 저널 및 사이트

순번	저널명 및 사이트명	url주소
1	NEJM	https://www.nejm.org/coronavirus
2	Nature	https://www.nature.com/subjects/sars-cov-2
3	Lancet	https://www.thelancet.com/coronavirus
4	Elsevier	https://www.elsevier.com/connect/coronavirus-information-center
5	Clinical Trial Tracker	https://www.covid-trials.org/
6	보건복지부사이트	http://ncov.mohw.go.kr/
7	한국보건산업진흥원	www.khidi.or.kr
8	WHO situation report	https://www.who.int/emergencies/diseases/novel-coronavirus- 2019/situation-reports
9	CDC Coronavirus site	https://www.cdc.gov/coronavirus/index.html

〈문의 dreampt85@khidi.or.kr, elliot16@khidi.or.kr〉

■ 부록----

□ 특허 동향 및 분석 범위

- COVID-19는 2019년 12월 발병되어, 현재까지 특화된 백신 및 항바이러스 치료제에 대한 특허자료가 없음. 다만, 유사 코로나 바이러스에 대한 특허출원은 활발히 이뤄지고 있음
- (분석범위) 세계 5대 특허청(한국, 미국, 일본, 유럽, 중국)의 공개 등록특허에 대한 DB를 분석하였음(표2 참고)

〈표1. 분석대상 및 검색범위〉

자료구분	국가	검색DB	검색구간	검색범위	
	한국(KIPO)				
	미국(USPTO)		2000~2019	공개 및 등록특허 전체문서	
공개·등 록특 허	일본(JPO)	DERWENT 및 KIWEE	(출원일 기준)		
	유럽(EPO)				
	중국(CNIPA)				

자료 출처: 특허청, 특허통계 분석 보고서, 항바이러스 치료제 (2020.3.) 자료편집

〈표2. 백신 및 항바이러스 치료제 검색어〉

자료구분	검색어
코로나백신	(covid* or 코로나* or Coronavirus* or 코로나바이러* or SARS a/2 cov or "sars-cov*" or COV or 메르스* or 사스 or mers* or sars) and (바이러스*, 비루스*, virus*, viral*) + ((virus*, 바이러스*) a/1 (like*, 유사*) or virus-like* or 바이러스-유사* or (baculovirus* or 바큘로바이러스* or 바큐로바이러스* or 배큘로바이러스*) or vaccine* or 백신*) + ipc:(a61k, c07*)
	키워드('코로나 바이러스'및 '백신'근접·유사단어 조합) + CPC·IPC(a61k, c07* 등)
항바이러스 치료제	(간염*,hepati*,hcv*,hbv*,duy11*, tetrazolo*, luphoid*, lamivudine*, 바이러스* n/3 호흡, 인플루*,(코로나*,Corona) n/4(virus* or 바이러스), 메르스*,사스,호흡기*a/2증후*,SARS*,H1N1 *,H1N2*,H2N1*,H3N1*,H3N2*,H2N3*,SARS*,Influenz*,"mers",플루엔자*,influenz*,신종플루 *,신종인플루*,독감*,유행성감기*,"유행성-감기*",신종*n/1(인플루*,플루*,독감*,influenz*,flu*) or malaria*,Plasmodium*, 말라리아* or 에볼라*, 애볼라*, ebola* or hiv*,후천성면역*,에이즈*, std*, cbas*) n/10 (항바이러스* or 안티바이러스*, antivir*, anti* N/1 vir* or medic*, (treat*, heal*) n/3 (element*, ingredien*, component*, constitu*), drug*, pharma*, 치료*, 제약*) and (바이러스*, 비루스*, virus*, viral*) + ipc:(a61k, c07*)
	키워드('바이러스'와 '치료'근접·유사단어 조합) + CPC·IPC(a61k, c07* 등)

자료 출처: 특허청, 특허통계 분석 보고서, 항바이러스 치료제(2020.3.) 자료편집

□ 코로나 바이러스 관련 백신 특허

- 2004년에 152건으로 백신 관련 특허가 가장 많이 출원되었으며, 이후 연간 80건 내외로 출원되고 있는 것으로 나타남
 - 국가별 출원량은 미국 533건(39%), 유럽 281건(20%), 중국 233건(17%), 일본 226건(16%), 한국 107건(8%) 순

〈표3. IP5 코로나 바이러스 관련 백신 특허현황, 단위:건 〉

자료구분	전체	미국 (USPTO)	유럽 (EPO)	중국 (CNIPA)	일본 (JPO)	한국 (KIPO)
코로나 백신	1,380	533	281	233	226	107

자료 출처: 특허청, 특허통계 분석 보고서, 항바이러스 치료제(2020.3.) 자료편집

- 주요출원인으로 미국의 Zoetis사와 Kineta사 등이 있음

〈표4. 2000~2019년 코로나 바이러스 관련 백신 특허출원인 TOP10〉

순위	출원인	국적	형태	KIPO 건수	USPTO 건수	JPO 건수	EPO 건수	CNIPA 건수	총출원건수
1	Zoetis LLC	US	기업	2	48	4	3	4	61
2	Kineta INC	US	기업	5	15	10	12	7	49
3	CureVac	DE	기업	2	16	3	11	3	35
4	Nsgene	DK	기업	3	13	6	7	6	35
5	Zymmogenetics	US	기업	0	25	2	5	0	32
6	Baylor Res Inst	US	연구소	0	9	7	6	6	28
7	Consejo Superior Investigation	ES	연구소	0	9	2	12	3	26
8	Boehringer Ingelheim Vetmedica	DE	기업	2	9	4	5	5	25
9	Pfizer	US	기업	2	9	8	2	2	23
10	Illumigen Biosciences	US	기업	1	9	4	4	3	21

□ 코로나 바이러스 관련 항바이러스 치료제 특허

- 2000년에 3,000여건(중국기업 BODE GENE DEV의 영향)으로 가장 많은 항바이러스 치료제 특허를 출원하였고, 이후 연간 1,300건 내외로 출원건수가 유지되고 있음
 - 국가별 출원은 미국 7,755건(29%), 중국 7,565건(28%), 유럽 4,717건(18%), 일본 4,285건(16%), 한국 2,352건(9%)의순

〈표5. IP5 코로나 바이러스 관련 항바이러스 치료제 특허현황, 단위:건 〉

자료구분	전체	미국 (USPTO)	중국 (CNIPA)	유럽 (EPO)	일본 (JPO)	한국 (KIPO)
항바이러스치료제	26,674	7,755	7,565	4,717	4,285	2,352

자료 출처: 특허청, 특허통계 분석 보고서, 항바이러스 치료제(2020.3.) 자료편집

〈표6. 2000~2019년 코로나 바이러스 관련 항바이러스 치료제 특허출원인 TOP10, 단위:건〉

순위	기 출원인	국적	출원인 형태	KIPO	USPTO	JPO	EPO	CNIPA	총출원 건수
근기	골전 근	4,-4	출전한 장네	건수	건수	건수	건수	건수	중절면 신구
1	BODE GENE DEV	CN	기업	0	5	0	0	2137	2142
2	Bristol Myers	US	기업	83	319	170	230	163	965
3	Gilead	US	기업	118	268	192	190	98	866
4	ROCHE	CH	기업	98	129	118	131	119	595
5	GSK	GB	기업	46	122	95	107	58	428
6	MSD	US	기업	38	101	89	133	49	410
7	VERTEX	US	기업	48	112	74	82	52	368
8	BOEHRINGER	DE	기업	39	104	85	89	49	366
9	SCHERING	US	기업	36	77	74	71	65	323
10	JANSSEN	BE	기업	41	92	51	59	37	280

- 집필자: 전환주, 김창용, 이승환
 감수자: 윤상순, 김승택, 송영훈
- ◉ 문의: 043 713 8460 / 8026
- 본 내용은 연구자의 개인적인 의견이 반영되어 있으며, 한국보건산업진흥원의 공식견해가 아님을 밝혀둡니다.
- 본 간행물은 보건산업통계포털(http://www.khiss.go.kr)에 주간단위로 게시되며 PDF 파일로 다운로드 가능합니다.

