ANOVA - Analysis of Variance

ANOVA

A procedure for comparing more than two groups

- independent variable: smoking status
- non-smoking
- one pack a day
- > two packs a day
- dependent variable: number of coughs per day
- Number of conditions = in this case 3.

One-Way ANOVA

- One-Way ANOVA has one independent
- variable (1 *factor*) with > 2 *conditions*
- conditions = levels = treatments
- e.g., for a brand of cola factor, the levels are:
- Coke, Pepsi, RC Cola
- Independent variables = factors

Two-Way ANOVA

- Two-Way ANOVA has 2 independent variables (factors)
- each can have multiple conditions
 Example
- Two Independent Variables (IV's)
- IV1: Brand; and IV2: Calories
- Three levels of Brand:
- Coke, Pepsi, RC Cola
- Two levels of Calories:
- Regular, Diet

When to use ANOVA

- One-way ANOVA: you have more than two levels (conditions) of a single factor.
- EXAMPLE: studying effectiveness of three types of pain reliever
- aspirin vs. tylenol vs. ibuprofen
- Two-way ANOVA: you have more than one factor.
- EXAMPLE: studying pain relief based on pain reliever and type of pain
- Factor A: Pain reliever (aspirin vs. tylenol)
- Factor B: type of pain (headache vs. back pain)

Why bother with ANOVA?

Would require <u>six</u> *t*-tests, each with an associated Type I (false alarm) error rate.

Post-hoc Tests

- If the ANOVA is significant
- at least one significant difference between conditions
- In that case, we follow the ANOVA with posthoc tests that compare two conditions at a time
- post-hoc comparisons
 identify the specific
 significant differences
 between each pair

ANOVA Assumptions

Homogeneity of variance

$$-\sigma_{1}^{2} = \sigma_{2}^{2} = \sigma_{3}^{2} = \sigma_{4}^{2} = \sigma_{5}^{2}$$

- Independence
- Normality
- scores in each population are normally distributed

Partitioning Variance

MSerror (mean square error) is an estimate of the variability as measured by differences within the conditions

- sometimes called the within group variance or the errorterm
- − chance variance (random error + individualdiffere

	Tylenol	Aspirin	Ibuprofen	Gin	
	3	1.6	2.1	1)	
	2.3	2.7	1.6	3.3	
	1.7	2.4	2.4	1.9	
	1	2	1.9	2.7	
	2	3.3	1),	2.1	
Mean:	2	2.4	1.8	2.2	Tylenol Aspirin Ibuprofen Gin Pain Reliever

- MSgroup is an estimate of the differences in scores
- that occurs between the levels in a factor
- – also called *MS*between
- Treatment effect (systematic variance)

1 2 2	2 3.3 2.4	1.9 1 1.8	2.7 2.1 2.2	Overall $\overline{X} = 2.1$
1 2		1.9		
1	2	1.9	2.7	
1.7	2.4	2.4	1.9	
2.3	2.7	1.6	3.3	
3	1.6	2.1	1	
Tylenol	Aspirin	Ibuprofen	Gin	
	2.3	3 1.6 2.3 2.7	3 1.6 2.1 2.3 2.7 1.6	3 1.6 2.1 1 2.3 2.7 1.6 3.3

 MS_{group} = variance between groups

Total Variance

(variability among all the scores in the data set)

Between Groups Variance

- Treatment effect (systematic)
- Chance (random error + individual differences)

Error Variance (within groups)

1. Chance (random error + individual differences)

• In ANOVA, variance = Mean Square (MS)

$$F\text{-}Ratio = \frac{\text{between group variance}}{\text{error variance (within groups)}} = \frac{MS_{\text{group}}}{MS_{\text{error}}}$$

ANOVA Example: Cell phones

Research Question:

- Is your reaction time when driving slowed by a cell phone? Does it matter if it's a hands-free phone?
- Twelve participants went into a driving simulator.
- 1. A random subset of 4 drove while listening to the radio (control group).
- 2. Another 4 drove while talking on a cell phone.
- 3. Remaining 4 drove while talking on a hands-free cell phone.
- Every so often, participants would approach a traffic light that was turning red. The time it took for participants to hit the breaks was measured.

- 1. State your research question
- Is your reaction time when driving influenced by cell-phone usage?

- 2. Choose a statistical test
- three levels of a single independent variable (cell; hands-free; control)
- → One-Way ANOVA, between subjects

State Hypotheses

referred to as the

omnibus null hypothesis

 $H0: \mu 1 = \mu 2 = \mu 3$

H1: at least one μ is different.

- When rejecting the Null in ANOVA, we can only conclude that there is at least one significant difference among conditions.
- If ANOVA significant
- pinpoint the actual difference(s), with posthoc comparisons

ANOVA Summary Table

ANOVA Summary Table

Source	Sum of Squares		Mean Squares	F	p
Group	.072	2	.0360	6.45	0.001
Error	.050	9	.0056		
Total	.122	11			

Post-hoc Comparisons

- Tukey HSD (Honestly Significant Difference)
- sets the familywise error rate at the error rate
 for the collection for all pairwise comparisons.
- very common test
- Other post-hoc tests also seen:
- e.g., Newman-Keuls, Duncan, Scheffe'...

Tukey HSD control and cell groups are significantly different						
		Mean Difference			95% Confide	ence Interval
(I) condition	(J) condition	(1-1)	Std. Error	Sig.	Lower Bound	Upper Bound
control	cell	(17500*)	.05270	.022	3222	0278
	hands	15000*	.05270	.046	2972	0028
cell	control	.17500*	.05270	.022	.0278	.3222
	hands	.02500	.05270	.885	1222	.1722
hands	control	.15000*	.05270	.046	.0028	.2972
	cell	02500	.05270	.885	1722	.1222

^{*.} The mean difference is significant at the .05 level.

hands and cell groups are NOT significantly different

Complete explanation

- Any kind of cell phone conversation can cause a longer reaction time compared to listening to the radio.
- There is no significant difference between reaction times in the normal cell phone and hands-free conditions.

How to report on APA style

A one-way between subjects ANOVA was conducted to compare the effect of sugar on memory for words in sugar, a little sugar and no sugar conditions.

• "There was a significant effect of amount of sugar on words remembered at the p<.05 level for the three conditions [F(2,12) = 4.94, p = 0.027]."

If posthoc was significant:

Post hoc comparisons using the Tukey HSD test indicated that the mean score for the sugar condition (M = 4.20, SD = 1.30) was significantly different than the no sugar condition (M = 2.20, SD = 0.84). However, the a little sugar condition (M = 3.60, SD = 0.89) did not significantly differ from the sugar and no sugar conditions."

Exercises

- Beauty factor!!! Let's perform an one-way ANOVA to examined the effect of alcohol on beauty factor.
- Now, using the data set iris, check if there is difference in petal length between iris species.
- If we have time...
- Let's perform a two one-way ANOVA to examined the effect of alcohol and gender on beauty factor.