# Exercises FYS4480, Third set

#### Exercise 5

Starting with the Slater determinant

$$\Phi_0 = \prod_{i=1}^n a_{\alpha_i}^{\dagger} |0\rangle,$$

use Wick's theorem to compute the normalization integral  $\langle \Phi_0 | \Phi_0 \rangle$ .

### Exercise 6

Write the two-particle operator

$$G = \frac{1}{4} \sum_{\alpha\beta\gamma\delta} \langle \alpha\beta | g | \gamma\delta \rangle a_{\alpha}^{\dagger} a_{\beta}^{\dagger} a_{\delta} a_{\gamma}$$

in the quasi-particle representation for particles and holes

$$b_{\alpha}^{\dagger} = \begin{cases} a_{\alpha}^{\dagger} \\ a_{\alpha} \end{cases} \qquad b_{\alpha} = \begin{cases} a_{\alpha} & \alpha > \alpha_{F} \\ a_{\alpha}^{\dagger} & \alpha \leq \alpha_{F} \end{cases}$$

The two-body matrix elements are antisymmetric.

### Exercise 7

Use the results from exercise 6 and Wick's theorem to calculate

$$\langle \beta_1 \gamma_1^{-1} | G | \beta_2 \gamma_2^{-1} \rangle$$

You need to consider that case that  $\beta_1$  be equal  $\beta_2$  and that  $\gamma_1$  be equal  $\gamma_2$ .

## Exercise 8

Show that the onebody part of the Hamiltonian

$$\hat{H}_0 = \sum_{pq} \langle p | \, \hat{h}_0 \, | q \rangle \, a_p^{\dagger} a_q$$

can be written, using standard annihilation and creation operators, in normal-ordered form as

$$\begin{split} \hat{H}_{0} &= \sum_{pq} \left\langle p \right| \hat{h}_{0} \left| q \right\rangle a_{p}^{\dagger} a_{q} \\ &= \sum_{pq} \left\langle p \right| \hat{h}_{0} \left| q \right\rangle \left\{ a_{p}^{\dagger} a_{q} \right\} + \delta_{pq \in i} \sum_{pq} \left\langle p \right| \hat{h}_{0} \left| q \right\rangle \\ &= \sum_{pq} \left\langle p \right| \hat{h}_{0} \left| q \right\rangle \left\{ a_{p}^{\dagger} a_{q} \right\} + \sum_{i} \left\langle i \right| \hat{h}_{0} \left| i \right\rangle \end{split}$$

Explain the meaning of the various symbols. Which reference vacuum has been used?

#### Exercise 9

Show that the twobody part of the Hamiltonian

$$\hat{H}_{I} = \frac{1}{4} \sum_{pqrs} \langle pq | \hat{v} | rs \rangle a_{p}^{\dagger} a_{q}^{\dagger} a_{s} a_{r}$$

can be written, using standard annihilation and creation operators, in normal-ordered form as

$$\begin{split} \hat{H}_{I} &= \frac{1}{4} \sum_{pqrs} \left\langle pq \right| \hat{v} \left| rs \right\rangle a_{p}^{\dagger} a_{q}^{\dagger} a_{s} a_{r} \\ &= \frac{1}{4} \sum_{pqrs} \left\langle pq \right| \hat{v} \left| rs \right\rangle \left\{ a_{p}^{\dagger} a_{q}^{\dagger} a_{s} a_{r} \right\} + \sum_{pqi} \left\langle pi \right| \hat{v} \left| qi \right\rangle \left\{ a_{p}^{\dagger} a_{q} \right\} + \frac{1}{2} \sum_{ij} \left\langle ij \right| \hat{v} \left| ij \right\rangle \end{split}$$

Explain again the meaning of the various symbols.

Derive the normal-ordered form of the threebody part of the Hamiltonian.

$$\hat{H}_3 = \frac{1}{36} \sum_{\substack{pqr \\ stu}} \langle pqr | \hat{v}_3 | stu \rangle a_p^{\dagger} a_q^{\dagger} a_r^{\dagger} a_u a_t a_s$$

and specify the contributions to the twobody, onebody and the scalar part.