CS 325 Spring 2018 – HW 6

Sheng Bian

Problem 1:

a) The distance of the shortest path from G to C is 16.

The code is:

The output is:

max dc ST	dg = 0 da - dh <= 4 da - df <= 5 db - dh <= 9 db - da <= 8 db - df <= 7 dc - df <= 3 dc - db <= 4	OBJI 1) VARIABLE DC DG	FOUND AT STEP ECTIVE FUNCTION VALU 16.00000 VALUE 16.000000 0.0000000	REDUCED COST 0.000000 0.000000
END	dc - db <= 4 dd - dc <= 3 dd - dg <= 2 dd - de <= 9 de - db <= 10 de - dd <= 25 de - df <= 2 df - da <= 10 df - dd <= 18 dg - de <= 7 dh - dg <= 3	DA DH DF DB DD DE ROW 2) 3) 4) 5) 6) 7) 8) 10) 11) 12) 13)	4.000000 3.000000 13.000000 12.000000 0.000000 0.000000 3.000000 14.000000 0.000000 0.000000 8.000000 0.000000 0.000000 0.000000 0.000000	0.000000 0.000000 0.000000 0.000000 0.000000
		14) 15) 16) 17) 18) 19) NO. ITERAT:	25.000000 15.000000 1.000000 5.000000 7.000000 0.000000	0.000000 0.000000 0.000000 0.000000 0.000000

The distance of shortest paths from G to A is 7.

The distance of shortest paths from G to B is 12.

The distance of shortest paths from G to D is 2.

The distance of shortest paths from G to E is 19.

The distance of shortest paths from G to F is 17.

The distance of shortest paths from G to H is 3.

The code is:

```
max da + db + dd + de + df + dh

ST

dg = 0
da - dh <= 4
da - df <= 5
db - dh <= 9
db - da <= 8
db - df <= 7
dc - df <= 3
dc - db <= 4
dd - dc <= 3
dd - dg <= 2
dd - dg <= 2
dd - de <= 9
de - db <= 10
de - dd <= 25
de - df <= 2
df - da <= 10
df - da <= 10
df - dd <= 18
dg - de <= 7
dh - dg <= 3

END
```

The output is:

LP OPTIMUM FOUND AT STEP

OBJECTI	VE FUNCTION VALUE	
1)	60.00000	
VARIABLE DA DB DD DE DF DH DG DC	VALUE 7.000000 12.000000 2.000000 19.000000 17.000000 0.000000 16.000000	REDUCED COST 0.000000 0.000000 0.000000 0.000000 0.000000
ROW SI 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19)	ACK OR SURPLUS 0.000000 0.000000 15.000000 3.000000 4.000000 17.000000 26.000000 8.000000 3.000000 0.000000 0.000000 3.000000 26.000000 0.000000	DUAL PRICES 6.000000 3.000000 0.000000 0.000000 0.000000 0.000000

0

```
Problem 2:
```

Profit of Silk tie: \$6.7 - 0.125 * \$20 - \$0.75 = \$3.45

Profit of Poly tie: \$3.55 - 0.08 * \$6 - \$0.75 = \$2.32

Profit of Blend1 tie: \$4.31 - 0.05 * \$6 - 0.05 * \$9 - \$0.75 = \$2.81

Profit of Blend2 tie: \$4.81 - 0.03 * \$6 - 0.07 * \$9 - \$0.75 = \$3.25

Objective function: Maximize Z = 3.45 * s + 2.32 * p + 2.81 * b + 3.25 * c

Subject to:

$$0.08 * p + 0.05 * b + 0.03 * c \le 2000$$

$$0.05 * b + 0.07 * c \le 1250$$

$$s >= 6000$$

$$s \le 7000$$

$$p >= 10000$$

$$p \le 14000$$

$$b >= 13000$$

$$b \le 16000$$

$$c >= 6000$$

$$c \le 8500$$

The code is:

```
max 3.45s + 2.32p + 2.81b + 3.25c

ST

0.125s <= 1000

0.08p + 0.05b + 0.03c <= 2000

0.05b + 0.07c <= 1250

s >= 6000

s <= 7000

p >= 10000

p <= 14000

b >= 13000

b <= 16000

c >= 6000

c <= 8500|
```

The output is:

1)	120196.0	
VARIABLE S P B C	VALUE 7000.000000 13625.000000 13100.000000 8500.000000	REDUCED COST 0.000000 0.000000 0.000000 0.000000
ROW 2) 3) 4) 5) 6) 7) 8) 9) 10) 11)	SLACK OR SURPLUS 125.000000 0.000000 0.000000 1000.000000 3625.000000 375.000000 100.000000 2900.000000 2500.000000	DUAL PRICES 0.000000 29.000000 27.200001 0.000000 3.450000 0.000000 0.000000 0.000000 0.000000

4

NO. ITERATIONS=

Therefore, the maximum profit is \$120,196. In order to reach maximum profit, we should make 7000 Silk ties per month, 13,625 Poly ties per month, 13,100 Blend1 ties per month, and 8,500 Blend2 ties per month.

Problem 3:

Part A:

Objective function: Minimize 10cp11 + 15cp12 + 11cp21 + 8cp22 + 13cp31 + 8cp32 + 9cp33 + 14cp42 + 8cp43 + 5cw11 + 6cw12 + 7cw13 + 10cw14 + 12cw23 + 8cw24 + 10cw25 + 14cw26 + 14cw34 + 12cw35 + 12cw36 + 6cw37

Subject to:

$$cp11 + cp12 \le 150$$

$$cp21 + cp22 <= 450$$

$$cp31 + cp32 + cp33 \le 250$$

$$cp42 + cp43 <= 150$$

$$cw11 >= 100$$

$$cw12 >= 150$$

```
cw13 + cw23 >= 100

cw14 + cw24 + cw34 >= 200

cw25 + cw35 >= 200

cw26 + cw36 >= 150

cw37 >= 100

cp11 + cp21 + cp31 - cw11 - cw12 - cw13 - cw14 = 0

cp12 + cp22 + cp32 + cp42 - cw23 - cw24 - cw25 - cw26 = 0

cp33 + cp43 - cw34 - cw35 - cw36 - cw37 = 0

cp11, cp12, cp21, cp22, cp31, cp32, cp33, cp42, cp43, cw11, cw12, cw13, cw14, cw23, cw24, cw25, cw26, cw34, cw35, cw36, cw37 >= 0
```

The code is:

```
min 10cp11 + 15cp12 + 11cp21 + 8cp22 + 13cp31 + 8cp32 + 9cp33 +
14cp42 + 8cp43 + 5cw11 + 6cw12 + 7cw13 + 10cw14 + 12cw23 + 8cw24 + 10cw25 + 14cw26 + 14cw34 + 12cw35 + 12cw36 + 6cw37
ST
         cp11 + cp12 <= 150
         cp21 + cp22 <= 450
         cp31 + cp32 + cp33 <= 250
         cp42 + cp43 <= 150
         cw11 >= 100
         cw12 >= 150
         cw13 + cw23 >= 100
         cw14 + cw24 + cw34 >= 200
         cw25 + cw35 >= 200
         cw26 + cw36 >= 150
         cw37 >= 100
         cp11 + cp21 + cp31 - cw11 - cw12 - cw13 - cw14 = 0
         cp12 + cp22 + cp32 + cp42 - cw23 - cw24 - cw25 - cw26 = 0
         cp33 + cp43 - cw34 - cw35 - cw36 - cw37 = 0
         cp11 >= 0
         cp12 >= 0
         cp21 >= 0
         cp22 >= 0
cp31 >= 0
         cp32 >= 0
         cp33 >= 0
         cp42 >= 0
         cp43 >= 0
         cw11 >=
                  0
         cw12 >= 0
         cw13 >= 0
         cw14 >= 0
         cw23 >= 0
         cw24 >= 0
         cw25 >= 0
         cw26 >= 0
         cw34 >= 0
         cw35 >= 0
         cw36 >= 0
         cw37 >= 0
END
```

The output is:

LP OPTIMUM FOUND AT STEP 13

OBJECTIVE FUNCTION VALUE

11	١	1	7	1	n	n	n	n	
1	ı	1	,	т.	ш	ш.	ш	ш	

-/	17100.00	
VARIABLE	VALUE 150.000000 0.000000 200.000000 250.000000 150.000000 150.000000 150.000000 150.000000 150.000000 200.000000 200.000000 0.000000 0.000000 0.000000 0.000000	REDUCED COST 0.000000 8.000000 0.000000 0.000000 0.000000 7.000000 0.000000 0.000000 0.000000 2.000000 0.000000 1.000000 7.000000 1.000000 7.000000 0.000000 0.000000 0.000000 0.000000
ROW 2) 3) 4) 5) 6) 7) 8) 9) 11) 12) 13) 14) 15) 16) 17) 18) 12) 22) 23) 24) 25) 26) 27) 28) 33) 34) 35) 36)	SLACK OR SURPLUS	DUAL PRICES 1.000000 0.000000 1.000000 -16.000000 -17.000000 -18.000000 -18.000000 -18.000000 -11.000000 -11.000000 -11.000000 0.000000 0.000000 0.000000 0.000000

Therefore, the minimum cost is 17,100 and the optimal solution is as below.

```
P1 -> W1: 150  P2 -> W1: 200

P2 -> W2: 250  P3 -> W2: 150

P3 -> W3: 100  P4 -> W3: 150

W1 -> R1: 100  W1 -> R2: 150  W1 -> R3: 100

W2 -> R4: 200  W2 -> R5: 200

W3 -> R6: 150  W3 -> R7: 100
```

Part B:

It's not feasible.

The code is:

```
min 10cp11 + 11cp21 + 13cp31 + 9cp33 + 8cp43 + 5cw11 + 6cw12 + 7cw13 +
10cw14 + 14cw34 + 12cw35 + 12cw36 + 6cw37
          cp11 <= 150
          cp21 <= 450
          cp31 + cp33 <= 250
          cp43 <= 150
          cw11 >= 100
          cw12 >= 150
cw13 >= 100
          cw14 + cw34 >= 200
          cw35 >= 200
          cw36 >= 150
          cw37 >= 100
         cp11 + cp21 + cp31 - cw11 - cw12 - cw13 - cw14 = 0
cp33 + cp43 - cw34 - cw35 - cw36 - cw37 = 0
cp11 >= 0
          cp21 >= 0
          cp31 >= 0
          cp33 >= 0
          cp43 >= 0
          cw11 >= 0
          cw12 >= 0
cw13 >= 0
          cw14 >= 0
          cw34 >= 0
          cw35 >= 0
          cw36 >= 0
cw37 >= 0
END
```

The output is:

Part C:

Yes, it's feasible. We need to add the constraint: $cp12 + cp22 + cp32 + cp42 \le 100$

The code is:

```
min 10cp11 + 15cp12 + 11cp21 + 8cp22 + 13cp31 + 8cp32 + 9cp33 + 14cp42 + 8cp43 + 5cw11 + 6cw12 + 7cw13 + 10cw14 + 12cw23 + 8cw24 + 10cw25 + 14cw26 + 14cw34 + 12cw35 + 12cw36 + 6cw37
ST
          cp11 + cp12 <= 150
          cp21 + cp22 <= 450
          cp31 + cp32 + cp33 <= 250
          cp42 + cp43 <= 150
          cw11 >= 100
          cw12 >= 150
          cw13 + cw23 >= 100
          cw14 + cw24 + cw34 >= 200
          cw25 + cw35 >= 200

cw26 + cw36 >= 150
          cw37 >= 100
          cp11 + cp21 + cp31 - cw11 - cw12 - cw13 - cw14 = 0
          cp12 + cp22 + cp32 + cp42 - cw23 - cw24 - cw25 - cw26 = 0
          cp33 + cp43 - cw34 - cw35 - cw36 - cw37 = 0
          cp12 + cp22 + cp32 + cp42 <= 100
          cp11 >= 0
cp21 >= 0
          cp31 >= 0
          cp33 >= 0
          cp43 >= 0
          cw11 >= 0
          cw12 >= 0
cw13 >= 0
          cw14 >= 0
          cw34 >= 0
          cw35 >= 0
          cw36 >= 0
          cw37 >= 0
END
```

The output is:

LP OPTIMUM FOUND AT STEP 15

OBJECTIVE FUNCTION VALUE

1) 18300.00

ROW 2) 3) 4) 5) 6) 7) 8) 9) 10) 11)	SLACK OR SURPLUS 0.000000 0.000000 0.000000 0.000000 0.000000	DUAL PRICES 1.000000 0.000000 2.000000 3.000000 -16.000000 -17.000000 -18.000000 -21.000000 -23.000000
12) 13)	0.000000 0.000000	-17.000000 -11.000000
14)	0.000000	-13.000000
15)	0.00000	-11.000000
16)	0.00000	5.000000
17)	150.000000	0.000000
18)	350.000000	0.000000
19)	0.000000	0.000000
20)	250.000000	0.000000
21)	150.000000	0.000000
22) 23)	150.000000	0.000000
24)	100.000000	0.000000
25)	150 000000	0.000000
261	0 000000	0.000000
26) 27)	150.000000	0.000000
28)	150.000000	0.000000
29)	100.000000	0.000000

NO. ITERATIONS=

15

Therefore, the minimum cost is 18,300 and the optimal solution is as below.

P1 -> W1: 150 P2 -> W1: 350

P2 -> W2: 100

P3 -> W3: 250 P4 -> W3: 150

W1 -> R1: 100 W1 -> R2: 150 W1 -> R3: 100 W1 -> R4: 150

W2 -> R4:50 W2 -> R5:50

W3 -> R5: 150 W3 -> R6: 150 W3 -> R7: 100

Problem 4:

a)

Let n1 be the number of coin 1, n2 be the number of coin 5, n3 be the number of coin 10, n4 be the number of coin 25

Objective function: Minimize n1 + n2 + n3 + n4

Subject to:

$$n1 + 5n2 + 10n3 + 25n4 = 202$$

n1, n2, n3, n4 >= 0

The code is:

```
min n1 + n2 + n3 + n4
ST

n1 + 5n2 + 10n3 + 25n4 = 202
n1 >= 0
n2 >= 0
n3 >= 0
n4 >= 0

END
GIN n1
GIN n2
GIN n3
GIN n4
```

The output is:

OBJECTIVE FUNCTION VALUE

1)	10.00000	
VARIABLE	VALUE	REDUCED COST
N1	2.000000	1.000000
N2	0.000000	1.000000
N3	0.000000	1.000000
N4	8.000000	1.000000
ROW	SLACK OR SURPLUS	DUAL PRICES
2)	0.000000	0.000000
3)	2.000000	0.000000
4)	0.000000	0.000000
5)	0.000000	0.000000
6)	8.000000	0.000000
NO. ITERATI BRANCHES=	ONS= 31 6 DETERM.= 1.000E	0

Therefore, the minimum number of coins is 10. The number of denomination 1 is 2 and the number of denomination 25 is 8.

b)

Let n1 be the number of coin 1, n2 be the number of coin 3, n3 be the number of coin 7, n4 be the number of coin 12, n5 be the number of coin 27.

Objective function: Minimize n1 + n2 + n3 + n4 + n5

Subject to:

$$n1 + 3n2 + 7n3 + 12n4 + 27n5 = 293$$

```
n1, n2, n3, n4, n5 >= 0
```

The code is:

```
min n1 + n2 + n3 + n4 + n5
ST

n1 + 3n2 + 7n3 + 12n4 + 27n5 = 293
n1 >= 0
n2 >= 0
n3 >= 0
n4 >= 0
n5 >= 0

END
GIN n1
GIN n2
GIN n3
GIN n4
GIN n5
```

The output is:

OBJECTIVE FUNCTION VALUE

1)	14.00000	
VARIABLE N1 N2 N3 N4 N5	VALUE 0.000000 0.000000 2.000000 3.000000 9.000000	REDUCED COST 1.000000 1.000000 1.000000 1.000000 1.000000
ROW 2) 3) 4) 5) 6) 7)	SLACK OR SURPLUS 0.000000 0.000000 0.000000 2.000000 3.000000 9.000000	DUAL PRICES 0.000000 0.000000 0.000000 0.000000 0.000000
NO. ITERAT: BRANCHES=	IONS= 98 34 DETERM.= 1.000E	0

Therefore, the minimum number of coins is 14. The number of denomination 7 is 2; the number of denomination 12 is 3; the number of denomination 27 is 9.