Implementado Machine Learning

Práctica 3 – Problemas de clasificación – Regresión Logística – Redes Neuronales – Evaluación de modelos

Material de lectura:

- Sebastian Raschka, Vahid Mirjalili. Python Machine Learning. Capítulos 2, 3 y 6.
- Andreas C. Müller, Sarah Guido. Introduction to Machine Learning with Python. Capítulo 2 y
- Recursos online sobre algunos conceptos:
 - Optimización de hiperparámetros. AutoML. AutoSklearn:
 https://towardsdatascience.com/auto-sklearn-scikit-learn-on-steroids-42abd4680e94
 - Regresión lineal vs. Redes Neuronales:
 https://www.kdnuggets.com/2021/08/3-reasons-linear-regression-instead-neural-netw
 orks.html
 - Desbalance de clases: https://machinelearningmastery.com/random-oversampling-and-undersampling-for-im balanced-classification/
- Recursos de visualización:
 - o Regresión con webcam: https://editor.p5js.org/AndreasRef/sketches/B1g7ds0wm
 - o Clasificación o Regresión simple en datasets 2D: https://playground.tensorflow.org/
 - o https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html
 - Red entrenada para clasificar imágenes de números: http://scs.ryerson.ca/~aharley/vis/fc/

Para todos los ejercicios:

- En el caso de utilizar una Regresión Logística **grafique** sus parámetros con la función AA_utils.visualizar_parametros
- **Grafique** e **interprete** la matriz de confusión de la predicción sobre el set de test con la función AA_utils.visualizar_confusion_matrix
- Elabore un un reporte de métricas tanto para la predicción de train como para la de test con la función AA_utils.print_classification_report
- En los casos de clasificación binaria grafique e interprete la curva ROC con la función AA_utils.visualizar_curva_ROC
- En los caso de clasificación de dos variables grafique la función de transferencia y la frontera de decisión con las funciones AA_utils.visualizar_funcion_transferencia_2D y AA_utils.visualizar_frontera_de_desicion_2D
- En los casos de clasificación binaria de una variable **grafique** la curva logística con la función AA_utils.visualizar_curva_logistica

- Clasificación binaria con 1 variable: Analice el código de ejemplo en
 ejemplo_clasificacion_binaria_una_variable_regresion_logistica.py. El script entrena un
 modelo de regresión logística para clasificar tumores como malignos o benignos en base a
 su tamaño. El script también muestra la función sigmoidea entrenada (distribución de
 probabilidades). Analice cómo cambia la curva entrenada al cambiar el parámetro
 class_weight.
- Clasificación con 2 variables: Entrene modelos de Regresión Logística para clasificar los siguientes datasets:
 - o 2D moons.csv
 - o 2D unbalanced.csv

El código "ejemplo_clasificacion_binaria_dos_variables_regresion_logistica.py" posee un ejemplo de cómo realizar esta tarea.

- Clasificación Binaria: Compare modelos de Regresión Logística y Redes Neuronales para los siguientes datasets:
 - Breast_cancer.csv. El archivo posee diferentes mediciones sobre tumores con la información de si son malignos o benignos.
 - Titanic.csv. El archivo contiene información de los pasajeros que viajaban. El objetivo es crear un modelo capaz de predecir si un pasajero sobrevive o no al naufragio.
 - Diabetes.csv. El archivo posee 2000 registros con información de análisis clínicos de pacientes, indicando si poseen o no diabetes gestacional.

El código "ejemplo_clasificacion_binaria_dos_variables_red_neuronal.py" posee un ejemplo de cómo realizar esta tarea.

- Clasificación Multiclase: Compare modelos de Regresión Logística y Redes Neuronales para clasificar el dataset Iris.csv. El dataset contiene información de 3 especies de flores. El código "ejemplo_clasificacion_multiclase_dos_variables_regresion_logistica.py" posee un ejemplo de cómo realizar una clasificación multiclase.
- Clasificación Multiclase de imágenes: Analice el código en el archivo
 "Regresion_Logistica_MNIST.py". El script entrena un modelo para clasificar imágenes de 10
 dígitos escritos a mano. Analice la matriz de confusión y las métricas obtenidas para el
 conjunto de training y para el de testing. Mejore los resultados utilizando una Red Neuronal
 como clasificador.

• Regresión con Redes Neuronales:

 Analice el código en el archivo "Redes_neuro_regresion_Nafta.py". El script entrena una red neuronal para predecir el consumo de un vehículo en base a la velocidad a la que circula. Analice la curva entrenada y las métricas obtenidas. ¿Qué ocurre si no normaliza las variables?