2012 年度計算数理応用-アルゴリズム- 第一回レポート

東京工業大学 社会理工学研究科 チョウ シホウ 学籍番号 12M42340 2012 年 5 月 12 日

1 課題

部分和問題の NP-困難性を 3SAT からの還元での証明。

2 証明

部分和問題は NP に属することは明らかなので、3SAT から還元によって NPC を証明できる。

部分和問題

入力: 正整数の列 $S = \{s_1, s_2, ..., s_n\}$, 正整数 W。

仕事: 和が W になる $I \subset \{1, 2, 3, ..., n\}$ 、 $\sum_{i \in I} s_i = W$ は存在するか?

ひとまず、3SAT 問題の「ビット形」を作る。例えば、変数の数 n=4、clause の数 m=2 の論理式 $(u_1 \lor u_2 \lor \neg u_4) \land (\neg u_1 \lor \neg u_3 \lor u_4)$ に対して、すべての $u_i, i \in \{1, \ldots, n\}$ を真偽によってそれぞれの T_i ある いは F_i に入れて下記のように書き換える。行の種類を区別するために、すべて値が 0 の p 列を追加しておく。

	u_1	u_2	u_3	u_4	c_1	c_2	p
T_1	1	0	0	0	1	0	0
F_1	1	0	0	0	0	1	0
T_2	0	1	0	0	1	0	0
F_2	0	1	0	0	0	0	0
T_3	0	0	1	0	0	0	0
F_3	0	0	1	0	0	1	0
T_4	0	0	0	1	0	1	0
F_4	0	0	0	1	1	0	0

もし u_i がj番目 $(j \in \{1, ..., m\})$ の clause に含まれたら、 $u_i = true$ なら T_i の $c_j = 1$ 、 $u_i = false$ なら F_i の $c_j = 0$ にする。

次は、すべての行を整数にする、例えば、 T_1 を 1000100 の 7 桁の整数と見なせる。位が繰り上がらないように、底が高い進数を使う。この例では、3 bits(3SAT) の場合には 8 進数を使えるが、便宜上 10 進数(8 以上)にする。S 集合から整数を選択する時に、目標値の制限があるので、 u_i ごとに T_i または F_i の整数を選ばなければならない。

そして、clause ごとに、それぞれの数字が 1,2,3 の三行 $S1_l,S2_l,S3_l$ を追加する。すべての $S1_l,S2_l,S3_l$ の p 値を 1 にする。なお、全部の clause の target を 4 にする。最後は、すべての行 $T_i,F_i,S1_l,S2_l,S3_l$ から集合 S を作る。

	u_1	u_2	u_3	u_4	c_1	c_2	p	部分和問題の入力	
T_1	1	0	0	0	1	0	0	1000100	$=s_1$
F_1	1	0	0	0	0	1	0	1000010	$=s_2$
T_2	0	1	0	0	1	0	0	100100	$=s_3$
F_2	0	1	0	0	0	0	0	100000	$= s_4$
T_3	0	0	1	0	0	0	0	10000	$=s_5$
F_3	0	0	1	0	0	1	0	10010	$=s_6$
T_4	0	0	0	1	0	1	0	1010	$=s_7$
F_4	0	0	0	1	1	0	0	1100	$=s_8$
$S1_1$	0	0	0	0	1	0	1	101	$=s_9$
$S2_1$	0	0	0	0	2	0	1	201	$= s_{10}$
$S3_1$	0	0	0	0	3	0	1	301	$= s_{11}$
$S1_2$	0	0	0	0	0	1	1	11	$= s_{12}$
$S2_2$	0	0	0	0	0	2	1	21	$= s_{13}$
$S3_2$	0	0	0	0	0	3	1	31	$= s_{14}$
Target	1	1	1	1	4	4	2	1111442	=W

 u_i ごとに真偽によって T_i または F_i の整数を選ぶ。もし論理式の clause ごとの真偽値が true であれば、 clause 列の和が必ず 1,2,3 の一つである、その場合、和を 4 になれるために $S1_j$ 、 $S2_j$ 、 $S3_j$ から 1,2,3 の一つを取って足せばよい。逆にある clause の真偽値が false であれば、「各 clause 列の和は 4 である」の条件を満たせない。明らかに、多項式時間内に 3SAT を部分和問題に還元できる。

3SAT 問題の入力:変数の数 n=4、clause の数 m=2 の論理式。

SSUM 問題の入力:正整数の列 $S = \{s_1, \ldots, s_k\}, k = 2n + 3m$ と m + n + 1 桁の目標値 W。

例えば、充足可能の解 $\{1,1,0,1\}$ の時に、和は1111222である、目標値Wに達するため、「スラックス変数」の $S2_1,S2_2$ を選択して足せばよい。 c_j とp列の制限があるので、「スラックス変数」は clause ごとに1個しか選べない

T_1	1	0	0	0	1	0	0
T_2	0	1	0	0	1	0	0
F_3	0	0	1	0	0	1	0
T_4	0	0	0	1	0	1	0
Sum	1	1	1	1	2	2	0
$S2_1$	0	0	0	0	2	0	1
$S2_2$	0	0	0	0	0	2	1
Target	1	1	1	1	4	4	2

部分和問題は NP に属する NP-Hard 問題であるので、NPC 問題である。

参考文献

[1] Paul McCabe, Subset-Sum, http://www.cs.toronto.edu/pmccabe/csc363-2005S/notes17.pdf, 2005