Алгоритмы и модели вычислений. Задание 6: всякая хуйня

Сергей Володин, 272 гр. задано 2014.03.20

(каноническое) Задача 24

 $\psi = \overline{x_1} \lor x_2$. $\psi' = (\overline{x_1} \lor x_2 \lor y) \land (\overline{x_1} \lor x_2 \lor \overline{y})$. Граф $W_{\psi'}$ с раскраской:

(каноническое) Задача 25

1. $\psi = \overline{x_1} \lor x_2, \ \psi' = (\overline{x_1} \lor x_2 \lor y) \land (\overline{x_1} \lor x_2 \lor \overline{y}). \ n = 3, \ m = 2.$ Граф $Q_{\psi'}$. Клика мощности s = m = 2 выделена красным цветом.

2. $(\partial o \kappa a s a h o \ h a \ c e m u h a p e)$ 3-SAT \leqslant_m^p CLIQUE. Формула $\chi = (x_1 \lor x_2 \lor x_3) \land (\overline{x_1} \lor \overline{x_2}) \land (x_1 \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_3) \land \overline{x_3},$ $\chi' = (x_1 \lor x_2 \lor x_3) \land (\overline{x_1} \lor \overline{x_2} \lor y_1) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{y_1}) \land (x_1 \lor \overline{x_2} \lor y_2) \land (x_1 \lor \overline{x_2} \lor \overline{y_2}) \land (\overline{x_1} \lor x_2 \lor x_3) \land (\overline{x_3} \lor y_3 \lor y_4) \land (\overline{x_3} \lor y_3 \lor y_4) \land (\overline{x_3} \lor \overline{y_3} \lor y_4) \land (\overline{x_3} \lor \overline{y_3} \lor y_4) \land (\overline{x_3} \lor \overline{y_3} \lor \overline{y_4}).$ n = 7, t = m = 10. f(x) = (G, t) — граф, построенный по χ' (и число 10 — мощность искомой клики), f — функция из сводимости. Пусть в G существует клика мощности $\geqslant t$. Тогда существует клика мощности t (любой подграф из t вершин исходной клики). Тогда $f(x) \in \mathsf{CLIQUE}^\mathsf{c в o d n m o c t b} \chi' \in 3\text{-SAT} \Rightarrow \chi'$ — выполнима — противоречие. Значит, в графе образа χ' нет клики мощности $\geqslant t \equiv 10$

(каноническое) Задача 26

(каноническое) Задача 27

Пусть $f: \Gamma \coprod \subset \Sigma^* \to \{0,1\}, f(x) = 1 \Leftrightarrow x \in \Gamma \coprod, \text{ и } T_f(x) = \text{poly}(|x|).$

- 1. Фиксируем граф G, его описание $x \in \Sigma^*$. Построим алгоритм поиска гамильтонова пути (если он существует), использующий f. Обозначим за h(G,v) граф, полученный из G удалением вершины v и направлением (u,v),(v,w) в (v,w). Фиксируем некоторую вершину v графа G. Рассмотрим граф h(G,v). Он также гамильтонов todo. Будем пребирать все вершины u графа h(G,v) и рассматривать h(h(G,v),u). Один из них будет гамильтоновым todo. Значит, в некотором гамильтоновом пути в G вершины u и v стояли рядом todo. Продолжим этот процесс, пока не останутся две вершины v_1 и v_2 . Они стоят рядом. Полученная последовательность $(v,u,u',...,u^{(l)},v_1,v_2,v)$ искомый гамильтонов цикл.
- 2. Псевдокод

```
1 path(x)
2 {
3    if(!f(x)) return(empty); // no path
4    else
5    {
6    }
7 }
```

3. Время работы. Всего в графе n вершин, для каждой перебираем не более, чем n, откуда сложность $T(x) = O(n^2)$. Поскольку $|x| = \Omega(n)$, то $T(x) = O(|x|^2) = \text{poly}(|x|)$. Более точно, используя псевдокод: todo.