AutoML 2023 Praca Domowa 2

Wiktor Jakubowski, Mikołaj Piórczyński

1 Wstep

Poniższy dokument jest raportem z eksperymentów przeprowadzonych w ramach pracy domowej nr. 2 w ramach przedmiotu Automatyczne Uczenie Maszynowe na Wydziale Matematyki i Nauk Informacyjnych Politechniki Warszawskiej w semestrze jesiennym 2023 roku. W ramach zadania należało przygotować modele dla zadania klasyfikacji binarnej o jak największej mocy predykcyjnej dla sztucznie wygenerowanych i dostarczonych na potrzeby zadania danych, w których zostały ukryte istotne zmienne. Modele należało przygotować w dwóch wariantach:

- ręcznie, czyli wybrać rodzaj modelu, hiperparametry, etc.
- wykorzystując dostępne frameworki AutoMLowe

Dane zawierały 500 zmiennych objaśniających oraz 2000 obserwacji w zbiorze treningowym i 600 w zbiorze testowym. We wszystkich eksperymetach dokładność modeli była mierzona za pomocą miary zrównoważonej dokładności balanced accuracy zdefiniowanej jako:

$$\text{BALANCED ACCURACY} = \frac{1}{2} \left(\frac{TP}{P} + \frac{TN}{N} \right)$$

2 Eksperymenty

Ze zbioru treningowego zostało wydzielonych 20% danych do utworzeni dodatkowego zbioru walidacyjnego wspólnego dla wszystkich eksperymentów.

2.1 ClassicML

W eksperymentach zdecydowaliśmy się na wybór modelu XGBoost ¹ ze względu na jego dominującą jakość w stosunku do innych modeli na większości zbiorach danych. Dokonano następującego preprocessingu danych:

- usunięto kolumny zawierające pojedynczą wartość dla wszystkich danych treningowych
- dokonano imputacji brakujących danych wartością średnią w kolumnie
- dokonano standaryzacji zmiennych
- dokonano usunięcia outlierów za pomocą modelu IsolationForest

 $^{^{1} \}verb|https://xgboost.readthedocs.io/en/stable/$

- \bullet usunięto silnie skorelowane liniowo zmienne, dla których wartość współczynnika korelacji liniowej Pearsona przekraczała $\rho=0.9$
- dokonano selekcji zmiennych na podstawie feature importance zmiennych uzyskanych z modelu drzewa decyzyjnego wytrenowanego na zbiorze treningowym

Przetestowano zarówno algorytm z domyślnymi hiperparametrami jak również dokonano ich optymalizacji z pomocą algorytmu zaimplementowanego w pakiecie \mathtt{Optuna}^2 dla budżetu 100 iteracji. Przy optymalizacji hiperparametrów zastosowano heurystykę balansującą BALANCED ACCURACY na zbiorze treningowym i zbiorze walidacyjnym mającą na celu swoistą regularyzację modelu i zapobieżenie przeuczeniu. Dokonano również analizy wpływu liczby zmiennych w modelu na jego moc predykcyjną.

Table 1: BALANCED ACCURACY na zbiorach treningowym i walidacyjnym dla modeli wytrenowanych 'ręcznie'.

Features	HPO	Train	Validation	
10	-	0.9469	0.8479	
20	-	0.9544	0.8351	
50	-	0.9800	0.8254	
100	-	0.9869	0.8128	
10	+	0.9287	0.8296	
20	+	0.9094	0.8130	
50	+	0.8950	0.8402	
100	+	0.9012	0.8206	

Widzimy, że w przypadku domyślnych hiperparametrów algorytm miał wyraźne problemy z przeuczeniem na zbiorze treningowy, w przypadku zastosowania optymalizacji hiperparametrów wraz z dodaną heurystyką zjawisko to uległo nieznacznemu zmniejszeniu. Jako finalny algorytm wybrano model z 50 zmiennymi oraz hiperparaetrami dostrojonymi poprzez optymalizację.

2.2 AutoML

W eksperymentach zostały wykorzystane trzy wiodące pakiety AutoML:

- AutoGluon³,
- TPOT⁴.
- H2O⁵,

Powyższe pakiety zostały poddane treningowi na dostarczonych danych treningowych i walidacyjnych. Każdy z modeli był trenowany przez 15 minut (mała ilość czasu wynika z mikroskopijnego rozmiaru danych wejściowych) w dwóch podejściach:

²https://optuna.readthedocs.io/en/stable/

³https://auto.gluon.ai/

 $^{^4 {\}tt https://epistasislab.github.io/tpot/}$

⁵https://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html

- 1. Preprocessing danych ograniczony do imputacji brakujących danych i zmapowania zmiennej celu na wartości '0'/'1',
- 2. Preprocessing danych rozszerzony o skalowanie cech, redukcję wymiarowości, i usunięcie silnie skorelowanych kolumn

Imputacja brakujących danych została wykonana poprzez uzupełnienie średnią z każdej kolumny – każda cecha jest numeryczna.

Skalowanie cech zostało przeprowadzone przy pomocy Standard Scaler, który standaryzuje każdą wartość poprzez odjęcie średniej z kolumny i podzieleniu wyniku przez odchylenie standardowe

Redukcja wymiarowości została zaaplikowana poprzez zastosowanie Analizę Głównych Składowych (Principal Component Analysis – PCA). Jako próg wyjaśnialnej wariancji przyjęto poziom 0.8.

Selekcję cech oparto o wartości współczynnika korelacji Pearsona; gdy jego wartość przekraczałą 0.8, cechę o mniejszej wariancji usuwano z rozważań.

Wyniki eksperymentów zostały przedstawione w tabeli 2.

Table 2: BALANCED ACCURACY na zbiorach treningowym i walidacyjnym dla pakietów AutoML.

Pakiet AutoML	Preprocessing	Train	Validation	5% test
AutoGluon	+	1	0.73	0.80
TPOT	+	0.99	0.66	
H2O	+	1	0.68	
AutoGluon	-	0.87	0.86	0.90
TPOT	-	0.92	0.84	
H2O	-	1	0.84	

Tak jak z powyższej tabeli wynika, najlepsze wyniki na zbiorze walidacyjnym osiągnął pakiet AutoGluon bez zaawansowanego preprocessingu. Model, wytypowany przez ten pakiet za najlepszy to Weighted Ensemble z regularyzacją L2. Na komitet składają się następujące modele z odpowiednimi wagami:

- \bullet CatBoost 0.619
- LightGBM 0.286
- LightGBMXT 0.095

Oprócz tego modelu, wszystkie pozostałe cechują się dość sporym przeuczeniem, co odwzorowuje spora różnica w wartościach metryki na zbiorze treningowym i walidacyjnym. Warty zauważenia jest również fakt, że dodatkowe transformacje i filtrowanie danych znacznie obniżyły osiągane wyniki przez modele.

3 Podsumowanie

Jak wynika z powyższych rozważań, zarówno modele zmodyfikowane ręcznie, jak i pakiety do automatycznego uczenia maszynowego osiągnęły wysokie wyniki na zadanych zbiorach. To powiedziawszy, pakiety AutoML poradziły sobie z zadaniem nieco lepiej, przy dużo mniejszym czasie

trenowania i braku potrzeby zaawansowanego preprocessingu i inżynierii cech. Na zaznaczenie zasługuje też fakt, że eksperymenty z przeprocesowaniem danych przed zaaplikowaniem na nich modelu AutoML nie powiodły się, jako że predykcje w ten sposób uzyskane okazały się znacznie gorsze od tych wykonywanych na nietransformowanych danych.