Arrex 8a 1/12

PROJET BIOMUSIQUE, RESONANCE et GENETIQUE

PROTOCOLE I-MCL

REGULATION EPIGENETIQUE DE SYNTHESE DE PROTEINES IN VITRO DANS DES CELLULES HUMAINES EN CULTURE, SOUS L'ACTION D'UN SIGNAL SONORE

présenté à l'

INSTITUT INTERNATIONAL DE RECHERCHE SUR LES THERAPIES INFORMATIONNELLES (2IRTI) - Bruxelles -

par:

M.C. LANG M. LEMPEREUR

application du Brevet n° 9206765 (titulaire : Joël STERNHEIMER)

JUIN 2000

La company (a telephone) (a) the company (a) t

REGULATION EPIGENETIQUE DE SYNTHESE DE PROTEINES IN VITRO DANS DES CELLULES HUMAINES EN CULTURE, SOUS L'ACTION D'UN SIGNAL SONORE - application du Brevet nº9206765 (titulaire: Joel Sternheimer)

Principe de l'expérience

Soumettre à une onde acoustique informative un ensemble de cellules humaines cultivées in vitro à 37°C sous atmosphère de 5% de CO2. Les divers paramètres tels que la succession de fréquences, la durée, le nombre d'écoute dans le temps, l'additivité des signaux, le milieu de propagation (- air/eau - eau/eau -) seront déterminés d'après le principe de régulation épigénétique de la synthèse des protéines (Brevet J. Sternheimer). L'application de la succession des fréquences sonores correspondant à la succession des acides aminés d'une protéine est susceptible d'en provoquer la synthèse in situ au sein de l'organisme intégré auquel il est soumis - réciproquement une succession de fréquences en «contrepoint» (plus précisément, en symétrie harmonique) est susceptible d'en inhiber la synthèse.

Après application du signal sonore correspondant à une proteine cellulaire, nous suivrons in situ au niveau moléculaire au sein des cellules réceptrices en culture, la réponse (si elle existe) provoquée par le signal. Nous espérons ainsi stimuler la synthèse de la protéine correspondant à l'information contenue dans le signal sonore.

Ce protocole d'étude est généralisable à toute séquence sonore correspondant à toute protéine pourvu que l'on en connaisse la séquence en acides aminés ainsi que (de préférence) un moyen (simple) de dosage.

But de l'expérience

Nous avons choisi d'étudier l'effet de tels sons sur des cellules humaines cultivées in vitro -

L'expérience a pour but premier, de vérifier, et/ou de mesurer à partir de quelle concentration, des cellules, - sorties de leur contexte organique - sont néanmoins capables de réagir à de tels signaux. Quel qu'en soit le résultat, il sera informatif quant à la caractérisation physique de la propagation du phénomène notamment en terme d'onde d'échelle.

Si l'expérience valide l'existence d'un tel effet, de multiples conséquences sont à envisager ; citons par exemple la possibilité de tests *in vitro* pour établir les propriétés biologiques de protéines inconnues et/ou vérifier les prédictions théoriques correspondantes. De plus, s'il y a une concentration minimale à partir de laquelle s'observe le phénomène, c'est que les cellules émettent à leur tour les ondes prévues par la théorie et sont en interaction mutuelle, avec une potentiation des effets.

3/12

Nous avons porté notre choix pour cette première expérience sur une succession de séquences sonores correspondant à des protéines effectrices d l'apoptose ou mort cellulaire. Le protocole exposé ci-après est dores et déjà opérationnel, des expériences de mise au point ayant permis de dégager les paramètres qui paraissent les plus pertinents à étudier, et notamment l'importance de la concentration cellulaire lors de l'exposition acoustique.

Extension à d'autres champs d'étude.

Une expérience ainsi conçue nous permettra d'aborder plusieurs champs d'étude, en particulier

- 1. Validation de la prédiction de fonctions biologiques.

 La production in situ dans la cellule, de protéines douées d'activités biologiques aura des conséquences sur les voies métaboliques qui en procède. Une évaluation (au niveau de l'ARN) du taux d'expression des gènes correspondants ainsi impliqués dans ces voies métaboliques, sera possible grâce à la technique des DNA-Chips que nous nous proposons de mettre en œuvre à long terme.
- 2. L'élaboration de tests *in vitro* comme élément de validation des potentialités thérapeutiques.

16:13

PROTOCOLE EXPERIMENTAL

MATERIEL

1- Equipements:

- une hotte à flux laminaire,
- deux incubateurs 37°C, nommés respectivement I₁ I₂ (I₁ avec équipement électroacoustique)
- un amplificateur marque: Technics- Type SUV 300,
- un lecteur de cassettes- (auto-reverse) Aiwa- Type TA353,
- un haut parleur immergeable marque: Rolen Star 25W,
- une cassette audio possédant les séquences sonores d'intérêt,
- un microscope,
- un analyseur de cellules FACS,
- un lecteur de plaque ELISA,
- appareil d'électrophorèse horizontal.

2- Echantilions biologiques:

Cellules humaines immortalisées en lignée continue -

choix de la lignée

- turnorales ou non,
- adhésives sur le flacon de culture ou en suspension dans le milieu de culture.

Cellules non humaines: étude musico-phylogénétique.

2- Consommables

- bromure d'éthidium
- agarose
- le milieu de culture RPMI 1640,
- du sérum de veau fœtal,
- CO2,
- des antibiotiques,
- des colorants :
 - , giemsa
 - . bleu trypan,
- de l'eau de Javel,
- des flacons de culture en plastique,
- du matériel de pipetage,
- des pipettes.

<u>Remarques</u>:

- la réalisation de cette expérience nécessite que la culture cellulaire se fasse dans des conditions stériles,
- le choix de la séquence sonore ainsi que de la lignée de cellules sont fonction de la synthèse protéique que l'on veut réaliser,
- il est nécessaire pour la production protéique par la cellule que celle-ci en possède l'information sous forme d'acide nucléique.

Dispositif pérationnel au stade préliminaire (réalisation 1999)

- LEGENDE - Matériel électro acoustique				
Repére	Désignation	Fiche technique MPLOFT99 nº		
1	Lecteur de cassettes auto-reverse	1		
2	Amplificateur	3		
3	Haut parleur sous marin	2		
4	Liaison lecteur de cassette / amplificateur	6.1		
5	Liaison amplificateur / haut parleur	6,2,0		
6	Silicone	7.1		

Raccordements (haut-parleur) - protection silicone - rep 6 -

x : Pendant diffusion acoustique la traversée de porte de l'incubateur par le câble audio est scotchée

Nota: le labo est équipé d'une hotte à flux laminaire, à côté de l'incubateur.

6/12

PROTOCOLE - PRINCIPALES ETAPES

OBSERVATION

I- Culture des cellules en lignée continue

test

test

III- A J₀, au temps t₀, application du signal sonore pendant 2h dans l'incubateur I₁ sur F₁ -> F₅

Incubation dans I₁ de T1 -> T5 pendant 2h sans signal sonore.

III- Le lendemain, à Ji

flacons F1
$$\rightarrow$$
 F5
T1 \rightarrow T5

test

est

- les flacons F1 etT1 sortent de l'expérience et seront suivis pour leurs paramètres biologiques, incubés en parallèle dans l'incubateur I2, les jours suivants, à 37° C sous atmosphère de 5% de CO2.
- refaire l'étape II sur F3 -> F5

IV- A
$$J_2$$
, flacons F2 \longrightarrow F5

test

 $T2 \rightarrow T5$

test

- les flacons F2 et T2 sortent de l'expérience et seront suivis pour leurs paramètres biologiques, incubés en parallèle dans l'incubateur I₂, les jours suivants, à 37°C, sous atmosphère de 5% de CO2
- refaire l'étape II sur F3 -> F5

V- A J₃, flacons F3
$$\longrightarrow$$
 F5
T3 \longrightarrow T5

test

test

diluer au 1/3 les cellules, si elles arrivent à confluence.

- les flacons F3 et T3 sortent de l'expérience
- refaire l'étape II sur F4 -> F5

Les étapes ultérieures, à J_4 et à J_5 , seront identiques à celles réalisées les jours précédents.

A J₆, arrêt de l'exposition des cellules au signal sonore.

A partir de J₆, les flacons F1 → F5 et T1 → T5 sont incubés dans l'incubateur I₂ pendant une semaine supplémentaire à 37° C sous atmosphère de 5% de CO2. Pendant cette semaine on suivra les paramètres biologiques.

Remarques:

- Le test comprend :
 - une observation au microscope
 - numération,
 - coloration au bleu trypan et au giemsa
 - une analyse par FACS du processus d'mort cellulaire,
 - électophorèse sur gel d'agarose pour visualiser une éventu lle fragmentation de l'ADN.

Rev. 06/00

Pendant toute la durée du protocole, les flacons F1 -> F5 et T1 -> T5 sont incubés dans l'incubateur I2 à 37°C sous 5% de CO2, hormis les temps d'incubation dans l'incubateur I1 où est appliquée la signal sonore.

METHODE (cas de cellules en suspension)

I-A- Vérification de l'incubateur I féquipé des éléments électroacoustiques

- 1-1 stérilité
- 1-2 Température CO2
 mettre au moins plusieurs heures au préalable un flacon ouvert de milieu
 stérile coloré au rouge de phénol pour vérifier le pH
- I-3 vérification du taux de CO2 en présence du haut-parleur, le fil traversant le joint-bien scotcher

I-B- Vérification des cellules avant l'expérience

- à J-1, la veille, les «passer» = les diluer pour qu'elles soient en phase exponentielle de croissance le jour de l'expérience prévoir une concentration équivalente au quart de la saturation (concentration c) répartir des quantités égales de cellules dans n flacons Fn et dans n flacons Tn correspondants aux n prélèvements qui seront effectués.
- à Jo observation au microscope:
 - comptage bleu trypan,
 - préparation de lames pour la coloration au giemsa,
 - analyse FACS (cycle cellulaire, potentiel de membrane, marquage de l'annexine)

II-III Expérience

 J_0

- II-1 Vérification du matériel électronique check piles, son.
- II-2 Installer le dispositif électroacoustique vérifier le niveau sonore.
- 11-3 Installer n flacons Fn dans l'incubateur I₁

Check up des cellules dans l'incubateur : géométrie,

- repérer :
 - les distances entre le haut-parleur et les cellules,
 - l'orientation et l'ouverture du bouchon.
- II-4 Refermer la porte de l'incubateur et scotcher très hermétiquement le joint d'étanchéité au niveau du fil d'alimentation du haut-parleur.
- II-5 Mettre en route le lecteur situé dans un pièce adjacente (temps t₀).
- (1-6 Vérifier pendant quelques secondes la présence du son.
- II-7 Quitter le labo, et la pièce où se trouve lecteur de la bande son.
- II-8 Couper le son au temps to + x.

Pour les premiers essais nous opterons pour x = 2 heures, compte tenu du fait que les cellules ne sont pas synchrones et qu'à l'instant t toutes les phases du cycle cellulaire sont présentes dans la population cellulaire - le cycle étant environ de 24 heures - nous estimons qu'une plage de deux heures est une durée minimum nécessaire pour observer le phénomène.

- [1-9 Observer la couleur du milieu.
- II-10 Revisser les bouchons des flacons Fn enlever le haut-parleur.
- II-11 Placer les flacons Fn dans l'incubateur I2

Cellules contrôles de l'étape II:

L s cellules contrôles sont appelées cellules naïves (témoins).

Un nombre identique de n flacons Tn (cellules témoins) sera utilisé pour contrôle. Ils seront incubés ensemble pendant la même durée t dans l'incubateur I₁ que chacun des flacons Fn.

 J_1

III - le lendemain -

Fax émis par : 33 01 45 63 04

III-1 test des cellules flacons F1, F2 - Fn et T1, T2 - Tn:

- comptage bleu trypan,
- lames coloration au giemsa,
- analyse au FACS.

En fonction de l'observation à J_1 , l'étape II de J_0 pourra être répétée à J_1 et ceci plusieurs jours de suite J_2 , J_3 , J_4 .

Nous nommerons, respectivement, F1 le flacon qui aura subi une seule application du signal sonore à J_0 , F2 le flacon qui aura subi deux applications du signal sonore à J_0 et J_1 , et ainsi de suite.

Il faudra néanmoins prendre en compte la croissance cellulaire qui, si elle n'était pas altérée par le champ sonore, mènerait la culture cellulaire à saturation à J_2 voir J_3 , il serait alors nécessaire de diluer la culture.

Nous rappelons que pendant toute la durée du protocole, les flacons $Fl \rightarrow F5$ et $Tl \rightarrow T5$ sont incubés dans l'incubateur I_2 , à 37°C, sous 5% de CO2 hormis la durée pendant laquelle est appliqué le signal sonore dans l'incubateur I_1 .

PARAMETRES A CONSIDERER

1 - Paramètres physiques :

son:

- succession temporelle de fréquences
 - intensité
 - diffusion sonore : nombre durée (d) intervalle
- milieu de propagation géométrie du dispositif

2 - Paramètres biologiques :

choix du phénomène à observer :

- est-il gouverné par un ou plusieurs gènes?
- facilité d'observation

choix de la (succession de) protéine(s) susceptible(s) d'induire le phénomène

choix de la lignée cellulaire (organisme, tissu, cellule tumorale ou non) choix des conditions de culture :

- concentration cellulaire (c) = distance moyenne entre cellule
- nombre de cellules
- cellules adhérentes ou en suspension.

GENERALISATION DU PROTOCOLE

Le procédé que nous venons de décrire est généralisable à toute induction épigénétique de protéine dont on pourra suivre un dosage adapté.

En particulier l'interféron y présente un intérêt thérapeutique clairement établi notamment dans le cas de maladies infectieuses. La séquence sonore dans ce cas là correspondrait à la séquence en acides aminés de l'interféron y. Le test comporterait, outre une visualisation au microscope de la viabilité des cellules par coloration au bleu trypan, un dosage par une technique ELISA commercialisée et disponible auprès de nombreuses sociétés de Biotechnologie.

10/12

COMPOSITION de L'EQUIPE EXPERIMENTALE

Marie-Claude Lang Doct. Es Sc.

Biologiste - Virologue

Michel Lempereur

Ing.

Technique électro-acoustique

- Consultants:

Guy Frezouls

Doct. Ing.

Biochimiste

H. T Duc

Doct. Es Sc.

Immunologiste

Compte tenu de l'implication antérieure dans divers projets scientifiques autres que celui-ci , par chacun des membres , nous souhaitons engager un stagiaire titulaire d'un Brevet de Technicien Supérieur qui réaliserait l'expérience sous la Direction de M.C. Lang. Le but de ce stage serait aussi d'engager la formation de personnes compétentes dans le domaine de la bio-acoustique.

Dans un premier temps, une étude préliminaire immédiatement réalisable par le stagiaire à recruter pourrait être conduite dès attribution de l'aide financière sollicitée, dont le montant est précisé ci-après.

MOYENS NECESSAIRES

Nous disposons de tout l'équipement nécessaire (voir schéma de l'installation), toutefois, il est devenu indispensable de procéder à un déménagement et la réinstallation sur un site différent.

Nous estimons que le coût de cette opération s'élèverait à :

13 500 FF

Nous estimons que le coût en matériel consommable s'élèverait à :

3 500 FF

Pour un salaire net d'un emploi jeune, il faudrait prévoir la somme totale de environ pour un an compte tenu des charges sociales et autres dispositions

24.000 FF

légales en vigueur.

Montant total de l'aide nécessaire pour réaliser l'expérience :

41 000 FF

Enfin, il serait souhaitable d'établir un contrat de concession de licence avec le Dr. J. Sternheimer

OBLIGATION de COMPTE - RENDU

Toute obtention de subvention par cette équipe, supposera la rédaction sous la responsabilité de M.C. Lang de compte-rendu d'expérience et la communication des résultats aux organismes qui subventionnent le projet.

Toute publication dans des revues spécialisées fera mention de l'origine des crédits attribués à la réalisation du projet.

ANNEXES: CURRICULUM VITAE de M-C. Lang et M. Lempereur

Rev. 06/00

Fax Received: 10/26/2001 10:24 WORKSRV1 FAX3BD93FD02E08 Pg 70/85
Fax émis par : 33 01 45 63 04 47 CABINET ORES Z6/10/01 16:13 Pg: 70/89

11/12

CURRICULUM VITAE

M. C. Lang

Marie-Claude Lang

née le 30 septembre 1948 (Neuilly-France)

adresse: 2-4 Rue Kuss 75013 Paris

tel/Fax 33 1 53 80 21 84

e-mail <marie-claude.lang @brs.ap-hop-paris.fr>

I- ETUDES

Juin 1970	Maitrise de Chimie- Physique
Juin 1971	DEA de Chimie-Physique(mention assez-bien)
	Université de Paris VI
	Stage au Laboratoire de Spectroscopie Infrarouge à haute
	Résolution- Pr. Barchevitz
Juin 1974	Doctorat de 3 ^{ème} Cycle de Chimie-Physique(mention
	Physico-chimie Macromoléculaire)-Université de ParisVI
	Thèse: "Etude de la dynamique des chaines de polyoxyéthylène par
	marquage de spin"
	Laboratoire de Physico-chimie Structurale et Macromoléculaire -Pr.
	Champetier, Pr. Monnerie
	Ecole Supérieure de Physique et Chimie Industrielle-(ESPCI)Paris
Janvier1976	Doctorat d'Etat es sciences- Université de Strasbourg
à Mars 1983	Thèse: "Modifications structurales de l' ADN induites par la fixation covalente de cancérogènes"

II - CARRIERE DE RECHERCHE

1971 -1974	Etudiante dans le laboratoire de Physico-chimie Structurale et Macromoléculaire à l'Ecole Supérieure de Physique et Chimie de Paris
1974-1975	Boursière au Département de Chimie-Physique de l' Université Hébraïque de Jérusalem
1976-1979	Boursière de la Ligue Française contre le Cancer Laboratoire de Biophysique -IBMC- Strasbourg
1979-1982	Attachée de Recherche INSERM
1982-1983	Laboratoire de Biophysique- IBMC- Strasbourg Chargée de Recherche INSERM
1984-1986	Laboratoire de Biophysique- IBMC- Strasbourg Chargée de Recherche INSERM
1986-1988	Laboratoire de Mutagénèse et Cancérogénèse CNRS-UPR17-Dr. R. Devoret Chargée de Recherche INSERM
	Unité de Pathologie Moléculaire-Unité 15 INSERM-Paris-Dr.D.Labie
1988-1993	Chargée de Recherche INSERM Unité de Biologie des Rétrovirus -Institut Pasteur-Paris Dr. F. Barré-Sinoussi
	Dill Datte-Dingussi

1994-1999

Chargée de Recherche INSERM- Responsable de Thématique

Laboratoire d'Oncologie Virale-UPR9045- Dr. Ion Gresser , Dr.M.G. Tovey

2000-

Chargée de Recherche INSERM-

Laboratoire d'Immunopathologie Humaine-Unité 430-INSERM

Pr.M.Kazatchkine

III- ENSEIGNEMENT

1971-1972	Monitorat de Travaux Pratiques en CB-BG-Pr. Fauchère	
1972-1973	Assistante vacataire de Travaux Pratiques de Thermodynamique-ESPCI	
1973-1974	Assistante vacataire(Physique) en PCEM à l'UER d'Etudes Médicales et	
	Biologiques (Pr. Jaffrain)-Paris	
1988-1992	Enseignement de Travaux Pratiques -Cours de Virologie Médicale	
	Institut Pastcur-Paris	
1992	Enseignement de Travaux Pratiques -Cours de Microbiologic	
∑.74 -	Institut Pasteur-Paris	

Fax Received: 10/26/2001 10:24 WORKSRV1 FAX3BD93FD02E08

Inserm Anex 86

Administration déléguée régionale Paris VI Saint-Antoine institut pational de la santé et de la recharche médicale

CONVENTION D'ACCUEIL DE PERSONNEL

Entre

l'Inserm (Institut National de la Santé et de la Recherche Médicale), représenté par Monsieur Claude GRISCELLI, Directeur Général, et par délégation Madame Claudine CHEMLA, Administrateur Délégué Régional, Inserm ADR Paris VI, Hôpital Saint-Antoine, 184 rue du Faubourg Saint-Antoine, 75571 PARIS Cedex 12, agissant pour l'inserm,

d'une part

Εt

L'Ecole Supérleure de Physique et Chimie Industrielles de Paris, 10 rue Vauquelin, 75005 Paris, représentée par son Directeur, Monsieur le Professeur 'Plerre-Gilles DE GENNES,

d'autre part

Inserm - Administration Déléguée PartsVI Saint-Antoine Hôpital Saint-Antoine - Bâtiment Raoul Kourlisky 184 Rue du Faubourg Saint Antoine 75571 PARIS Cedex 12 Téléphone : 01 49 28 48 42 Télécopie : 01 43 44 15 48 Mél : adré st-antoine inserm.fr

République française

10/26/2001 10:24 WORKSRV1 FAX3BD93FD02E08 CABINET ORES

Il a été arrîté et convenu ce qui suit :

Article 1

Madame Marie-Claude LANG REJZMAN, chargé de recherche à l'Inserm, est amenée à effectuer un travail de recherche de Biophysique moléculaire, utilisant les installations situées dans le Laboratoire de Physico-Chimie Structurale et Macromoléculaire de Monsieur le Professeur VAN DAMME.

Cette étude se fera sur un an, éventuellement renouvelable, à partir du 25 février 2001

Lors de ses missions, Madame Marie-Claude LANG REJZMAN reste placée sous l'autorité de son supérieur hiérarchique, Monsieur le Professeur Michel KAZATCHKINE, Directeur de l'unité 430 Inserm.

Article 3

En matière d'hygiène et de sécurité, Madame Marie-Claude LANG REJZMAN devra se conformer au règlement en vigueur dans le Laboratoire de Physico-Chimie Structurale et Macromoléculaire de Monsieur le Professeur VAN DAMME.

Article 4

En cas de difficulté, le Laboratoire de Physico-Chimle Structurale et Macromoléculaire de Monsieur le Professeur VAN DAMME saisit l'unité 430 Inserm qui seule exerce le pouvoir disciplinaire.

Article 5

En cas d'accident de travail, le Laboratoire de Physico-Chimie Structurale et Macromoléculaire de Monsieur le Professeur VAN DAMME s'engage à prévenir immédiatement l'unité 430, afin de la mettre en mesure d'effectuer les déclarations et formalités requises.

Article 6

Madame Marie-Claude LANG REJZMAN est assurée, à titre privé, par la Compagnie au travers des garanties responsabilité Civile et Individuelle Accidents (indemnisation sur dommages corporels).

Article 7

En cas de difficulté sur l'interprétation ou l'exécution de la convention, les parties s'efforcent de résoudre leurs différends à l'amlable. En cas de désaccord persistant, il est fait attribution de compétence aux juridictions de Paris.

Fait à Paris, le 23 Fedrier 2001

INSERM

POUR TO THE CEPTUR MENERAL de l'INSERM

le Salarié

Ecole Supérieure de Physique et Chimie Industrielles de Paris

ESPOL

35. CON SAINT ANTOINE Camainstrateur fa

Signe CATTEMLA

M.C dan

Fax Received: 10/26/2001 10:24 WORKSRV1 FAX3BD93FD02E08 Pg 75/85

ŽŠVÍBŽ01 16:13 Pg: 75/

Institut International de Recherche en Thérapeutique Informationnelle (2IRTI)

asbl. n°3544/97 (Annexe au Moniteur Belge du 6 mars 1997)

Dam/Homo p.31

Réunion du mardi 10 octobre 2000 à 12b15

La réunion se tient dans les locaux de l'Institut Paul Lambin (UCL), 43, Clos Chapelle-aux-Champs à Woluwé St Lambert

sout présents:

le Doctour B. Marichal, Président le Docteur M. Jenaer, Vice-Président-Trésorier Madame P. Glibert Me J-L Hirsch Madame Cl. Lemaire Monsieur G. Lemaire, Secrétaire

sont excusés:

le Professeur Roberfroid Monsieur et Madame D.Saey

Le Docteur Marichal présente un compte-rendu de la réunion de travail tenue le 26 septembre 2000 par le Conseil Scientifique (voir document en annexe)

Protocoles sous le n°1 relatifs au suivi de 15 patients atteints de sclérose en plaque et de 15 patients atteints de la maladic de Parkinson. Le suivi sera élargi à 2x5 patients supplémentaires afin d'avoir un nombre plus significatif dans chaque protocole.

Les dotations à envisager actuellement pour les protocoles 2) et 3) sont trop coûteuses pour le budget du 2 IRTI.

Le protocole sous n°4) concerne un projet présenté par le Dr Lang (FNRS France). Concernant l'étude du comportement de cultures cellulaires par étude de la variation de l'interféron gamma il a été détaillé par le Profeseur Roberfroid. Le Comité Scientifique considère le projet comme valable. Le Docteur Jeuaer a reçu une lettre de Madame Lang demandant à pouvoir rencontrer le Comité Scientifique. Différentes dates seront proposées en accord avec Madame Glibert. Le budget de ce protocole est estimé à 41.000 FF.