Selective express method for measuring longitudinal spin relaxation time in solid-state systems

Kravtsov Mihail HSE, LPI RAS

Academic advisor — Belykh Vasilii Valerevich, Division of Solid State Physics, P.N. Lebedev Physical Institute of the Russian Academy of Sciences

December, 2021, Moscow

Detecting magnetic resonance optically

• Larmor frequency
$$f_{larm} = \frac{2\pi g \mu_b B}{\hbar}$$

- \bullet Additional radiofrequency (rf) \longrightarrow spin system experience a resonance when $f_{rf}=f_{larm}$ (Electron-spin resonance)
- ESR can also be detected optically, e.g., by measuring the degree of circular polarization of photoluminescence, which significantly increases sensitivity of the method
- The spin ensemble can be synchronized by a periodic train of laser pulses, thus providing a locking of several electron spin precession modes.

Pump probe method

Measured signal, $\Delta S_z \propto \theta_F(\text{rf off}) - \theta_F(\text{rf on})$

- Sample is excited with intense circularly polarized pump pulse, which induces resonant transitions and generates spin oriented electrons and holes
- Linearly-polarized part provides the rotation of the polarization plane of the transmitted probe pulse

Rotation of elliptically-polarized plane

How to measure relaxation time?

Spin projection change on an axis Parallel to the magnetic field direction $\Delta S_z(t)$

Measured signal, $\Delta S_z \propto \theta_F(\text{rf off}) - \theta_F(\text{rf on})$

$$ESR \approx \sqrt{\frac{1}{1 + \omega^2 T_1^2}}$$

Beam allocation

Measurement scheme

Experimental setup

Practice

