N93-26971

"20 kWe" NEP SYSTEM STUDIES

Nuclear Propulsion Technical Interchange Meeting LeRC Plum Brook Station October 20, 1992

> Jeff George **Advanced Space Analysis Office**

> > NASA Lewis Research Center **Advanced Space Analysis Office**

Introduction

- · Investigate low power options for nuclear electric propulsion (NEP) demonstration missions
- Use technologies which are applicable to later NASA missions through growth and scalability
- · What is desirable in a "demonstration" system/mission?
 - Applicable to "production" systems and missions Technologies

 - Power levels
 - Temperatures
 - Applicable to NASA mission needs
- LeRC Inhouse power systems analysis:
 Advanced Space Analysis Office

 - Power Technology Division

Initial Study Groundrules

- Mission
 - 1998 2000 Launch
 - Launch to escape No earth orbital spirals
 - Meaningful scientific return
 - Smallest feasible launch vehicle
- System
 - Near term technology
 - 2 3 year system lifetime
 - Scaled SP-100 reactor
 - Technology evolable to 100 kWe needed for outer planet exploration missions
- Groundrules will evolve as study progresses

NASA Lewis Research Center Advanced Space Analysis Office

Power System Groundrules/Assumptions

- 10 50 kWe
- 3 year life
- 2000 V to load
- 15 m reactor-to-payload separation distance
- 1.0 x 10¹² n/cm²
- 5 x 10⁴ rad gamma
- 17 degree half-angle
- 10 % excess heat rejection capacity

Power System Technologies Assessed

Reactor

- · "Customized" SP-100
 - Scaled to meet thermal power requirements
 - Reactor redesign required
- Prototypical 2.4 MWt SP-100
 - Current design
 - Thermal power "rich" for 10-50 kWe

NASA Lewis Research Center Advanced Space Analysis Office

Power System Technologies Assessed (cont.)

Power Conversion

- Thermoelectrics
 - Current SP-100 program choice
 - Static
 - Power limited to approx. few 100's kWe
 - $-z = 0.67 \times 10^{-3}$ 1/K multicouple (Aug. 92 projected)
- Brayton
 - Dynamic
 - Scalable to multimegawatts
 - 1144 K demonstrated technology
 - 0.9 recuperator effectiveness
 - 1 + 1 redundancy (100%)
- Stirling
 - Dynamic
 - Power limited to approx. 1 MWe
 - 1050 K demonstrated technology
 - -1 + 1 redundancy (100%)

"Prototype" SP-100 System Specific Mass

NASA Lewis Research Center Advanced Space Analysis Office

"Custom" SP-100 System Specific Mass

NASA Lewis Research Center Advanced Space Analysis Office NEP: System Concepts

Radiator Packaging Limits

(No Deployment)

NASA Lewis Research Center **Advanced Space Analysis Office**

Brayton System Specific Mass and Radiator Area

NASA Lewis Research Center Advanced Space Analysis Office NP-TIM-92

Thermoelectric Specific Mass and Radiator Area

NASA Lewis Research Center Advanced Space Analysis Office

Specific Mass for "Prototype" vs. "Custom" SP-100-based Systems

System Packaging Limits on Power Level (kWe)

ELV	TE	Stirling	Brayton
Delta	15	15	10
Atlas	35	40	20
Titan	>50	>50	50

NASA Lewis Research Center Advanced Space Analysis Office

Conceptual NEP Science Mission Spacecraft Design

z\right\

N/S/\ Lewis Research Center Advanced Space Analysis Office NP-TIM-9

Conceptual NEP Science Mission Spacecraft Design

NASA Lewis Research Center Advanced Space Analysis Office

Summary

- Power system options for low power NEP demonstration missions investigated
 - 10-50 kWe
 - 2.4 MWt versus "Custom" SP-100
 - Brayton, Stirling, Thermoelectric
- Van Allen Mapper Mission identified as candidate 15 20 kWe demo.
- Investigation of other candidate missions continues

NASA Lewis Research Center Advanced Space Analysis Office