${f Mec\'anica}$ (edición de septiembre 1995): FE DE ERRATAS

$P\'ag./pos.^a$	dice	debe decir
p 2.17, l10	$y = \dots$	$z = \dots$
p2.22, l-7	$\ldots + z \mathrm{d}z/\mathrm{d}q.$	$\ldots + Z \mathrm{d}z/\mathrm{d}q.$
p2.25, l-10	$\dots RMC = \dots$	$\dots R = MC = \dots$
p3.6, l–3	$\omega_x = \sqrt{kx/m} \ y \ \omega_y = \sqrt{ky/m}$	$\omega_x = \sqrt{k_x/m} \text{ y } \omega_y = \sqrt{k_y/m}$
p3.8, l+1	(figura ??)	(figura 3.5)
p4.23, l+5	separadamente de la aceleración	separadamente la aceleración
p5.5, n2	$\dots M\ddot{oldsymbol{ ho}} = \dots$	$\dots m\ddot{oldsymbol{ ho}} = \dots$
p5.10, f5.7	ángulo φ (a la d cha. de $F'P$)	ángulo φ (a la izq da. de $F'P$)
p5.17, l+3	$\dots 86 400^2 \dots$	$\dots 86164^2\dots$
p5.17, l+3	$\dots a = 42205\mathrm{Km}$	$\dots a = 42128 \mathrm{km}$
p5.17, l+4	$\dots a - R = 35839\mathrm{Km}$	$\dots a - R = 35762 \mathrm{km}$
p5.17, l+6	$\dots a = 8252 \mathrm{Km}$	$\dots a = 8052 \mathrm{km}$
p6.7, f6.9	$\dot{x}_O = \dot{\varphi}a$	$\dot{x}_O = \dot{\theta}a$
p6.7, f6.9	$\dot{y}_O = -\dot{\theta}a$	$\dot{y}_O = -\dot{arphi}a$
p7.9, l+1	$\left \dots \right \sum_{i} \dots$	$\left \ \dots \sum_k \dots \right $
p7.9, l+2	$\cdots \sum_{i} \cdots \\ \cdots \sum_{i} \cdots$	$\dots \sum_{k}^{\infty} \dots$
p7.9, 1–6	$\sum_{i=1}^{N} \frac{1}{2} m_i \dot{\boldsymbol{r}}^2$	$\sum_{i=1}^{N} \frac{1}{2} m_i \dot{\boldsymbol{r}}_i^2$
p7.29, e7.37	$\ldots \delta_{qj} = 0$	$\ldots \delta q_j = 0$
p=, l=+1	δ_{qj}	δq_j
p9.16, l+3	$\mathbf{I}_O = \begin{pmatrix} A & 0 & 0 \\ 0 & B & 0 \\ 0 & 0 & B \end{pmatrix}$	
p9.18, l+18	$(9.4.5_1)$	la 1.ª de las ecuaciones anteriores
p=, l=+	$(9.4.5_2)$	la 2.ª de las ecuaciones anteriores
p9.19, l–3	Entonces, las direcciones principales de \boldsymbol{I}_G lo son también de \boldsymbol{I}_O .	Entonces, tanto la dirección principal \boldsymbol{u} paralela a OG como las otras dos direcciones principales en G perpendiculares a \boldsymbol{u} (o más, en caso de ser el tensor cilíndrico) son también principales de \boldsymbol{I}_O .
p9.37, l-2	$\dots + Bq(-\dot{\varphi} \operatorname{sen} \theta \operatorname{sen} \varphi \dots$	$\dots + Bq(-\dot{\psi} \operatorname{sen} \theta \operatorname{sen} \varphi \dots$
p9.38, l+14	$\ldots - Ap(\dot{\varphi} \operatorname{sen} \varphi + \dot{\psi} \operatorname{cos} \theta) \ldots$	$\dots - Ap(\dot{\varphi} \operatorname{sen} \varphi + \dot{\psi} \operatorname{cos} \theta \operatorname{sen} \varphi) \dots$
p=, l=	$\dots - Bq(\dot{\varphi}\cos\varphi + \dot{\psi}\cos\theta)$	$\dots - Bq(\dot{\varphi}\cos\varphi + \dot{\psi}\cos\theta\cos\varphi)$
p9.40, l+13,14	$\dots M_O \dots$	$\dots oldsymbol{M}_O^{act} \dots$
p9.40, l-7	$\dots M_O \dots$	$\dots oldsymbol{M}_O^{act} \dots$
p9.40, l-1	F	$\dots oldsymbol{F}^{act} \dots$

a"p": página;"l": línea;"f": figura; "e": ecuación, "n": nota pie página; l+: n.º de línea absoluto desde comienzo de página; l-: n.º de línea absoluto desde final de página; l=+: n.º de línea relativo, hacia abajo, desde última corrección;

$P\'ag./pos.^a$	dice	debe decir
p10.3, l+13	$\dots (9.29) \dots$	(9.28)
p10.7, l-2	(9.45)	(9.44)
p10.11, l–10	$\left(\frac{\mathrm{d}^2 m{r}'}{\mathrm{d}t^2}\right)_{SQ} = (\dot{m{\Omega}} - \dot{m{\omega}}) \wedge m{r}' \dots$	$\left[\left(\frac{\mathrm{d}^2 m{r}'}{\mathrm{d}t^2} \right)_{SQ} = \left(\frac{\mathrm{d}}{\mathrm{d}t} (m{\Omega} - m{\omega}) \right)_{SQ} \wedge m{r}' \dots ight]$
p10.14, f10.7	$-Mgm{k}$	$-Mg\mathbf{K}$
p10.15, l+4	$=oldsymbol{M}_O\dot{oldsymbol{k}}\dots$	$= M_O \cdot k \dots$
p11.3, f11.2	$1/2\epsilon$	$1/\epsilon$
p11.12, l+4	$=rac{1}{2}(oldsymbol{v}_P^1+oldsymbol{v}_Q^2)$	$=rac{1}{2}(oldsymbol{v}_P^1+oldsymbol{v}_P^2)$
p11.16, l+3	movimiento cinético	momento cinético
p12.2, l–1	$\ldots + \frac{\partial Q_i}{\partial q_j} q_j + \frac{\partial Q_i}{\partial \dot{q}_j} \dot{q}_j + \ldots$	$\left \ldots + \frac{\partial Q_i}{\partial q_j} \right _0 q_j + \frac{\partial Q_i}{\partial \dot{q}_j} \left _0 \dot{q}_j + \ldots \right $
p12.16, l+13	matriz R simétrica	matriz K simétrica
p12.19, l+8	$-\omega'_k^2 + i\omega'_k c_k - \omega_k^2$	$-\omega'_k^2 + i\omega'_k c_k + \omega_k^2$
p14.5, e14.7	$m\ddot{x} = k\sqrt{ x }$	$m\ddot{x} = k \left \sqrt{ x } \right $
p14.9, l–9	$\{\mathbf{q}(t)\} = \sum_k C_k \dots$	$\{\mathbf{q}(t)\} = \sum_{k} B_k \dots$
p15.3, l+16	$\mathrm{d}m{r}=\mathrm{d}s\simeqm{t}m{A}m{B}$	$\operatorname{d} oldsymbol{r} = \operatorname{d} oldsymbol{s} oldsymbol{t} \simeq oldsymbol{A} oldsymbol{B}$

a"p": página; "l": línea; "f": figura; "e": ecuación, "n": nota pie página; l+: n.º de línea absoluto desde comienzo de página; l-: n.º de línea absoluto desde final de página; l=+: n.º de línea relativo, hacia abajo, desde última corrección;