LORC EL1, LORegion Control (EL1)

The LORC EL1 characteristics are:

Purpose

Enables and disables LORegions, and selects the current LORegion descriptor.

Configuration

This register is present only when FEAT_LOR is implemented. Otherwise, direct accesses to LORC EL1 are undefined.

If no LORegion descriptors are supported by the PE, then this register is res0.

Attributes

LORC EL1 is a 64-bit register.

Field descriptions

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0										
RES0				DS	5				RE	5 0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10	9	8	7	6	5	4	3	7	1	0

Bits [63:10]

Reserved, res0.

DS, bits [9:2]

Descriptor Select. Selects the current LORegion descriptor accessed by <u>LORSA_EL1</u>, <u>LOREA_EL1</u>, and <u>LORN_EL1</u>.

The number of LORegion descriptors in implementation defined. The maximum number of LORegion descriptors supported is 256. If the number is less than 256, then bits[63:M+2] are res0, where M is Log₂(Number of LORegion descriptors supported by the implementation).

If this field points to an LORegion descriptor that is not supported by an implementation, then the registers <u>LORN_EL1</u>, <u>LOREA_EL1</u>, and <u>LORSA_EL1</u> are res0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Bit [1]

Reserved, res0.

EN, bit [0]

Enable. Indicates whether LORegions are enabled.

EN	Meaning
0d0	Disabled. Memory accesses do not
	match any LORegions.
0b1	Enabled. Memory accesses may
	match a LORegion.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing LORC_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, LORC EL1

op0	op1	CRn	CRm	op2
0b11	0b000	0b1010	0b0100	0b011

```
then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && SCR_EL3.TLOR == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        X[t, 64] = LORC\_EL1;
elsif PSTATE.EL == EL2 then
    if SCR_EL3.NS == '0' then
        UNDEFINED;
    elsif Halted() && HaveEL(EL3) && EDSCR.SDD ==
'1' && boolean IMPLEMENTATION DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.TLOR == '1' then
        UNDEFINED;
    elsif HaveEL(EL3) && SCR_EL3.TLOR == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        X[t, 64] = LORC\_EL1;
elsif PSTATE.EL == EL3 then
    if SCR_EL3.NS == '0' then
        UNDEFINED;
    else
        X[t, 64] = LORC\_EL1;
```

MSR LORC_EL1, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b000	0b1010	0b0100	0b011

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.TLOR == '1' then
        UNDEFINED;
    elsif SCR_EL3.NS == '0' then
        UNDEFINED;
    elsif EL2Enabled() && HCR_EL2.TLOR == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) |
SCR_EL3.FGTEn == '1') && HFGWTR_EL2.LORC_EL1 == '1'
then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && SCR_EL3.TLOR == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
```

```
else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        LORC\_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
    if SCR_EL3.NS == '0' then
        UNDEFINED;
    elsif Halted() && HaveEL(EL3) && EDSCR.SDD ==
'1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.TLOR == '1' then
        UNDEFINED;
    elsif HaveEL(EL3) && SCR_EL3.TLOR == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        LORC\_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
    if SCR_EL3.NS == '0' then
        UNDEFINED;
    else
        LORC\_EL1 = X[t, 64];
```

AArch32AArch64AArch32AArch64Index byExternalRegistersRegistersInstructionsInstructionsEncodingRegisters

28/03/2023 16:02; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.