

In the Claims:

Amend the claims as follows:

5

1. (Currently amended) A method for controlling a transmission power level in a digital subscriber line, characterized in that transmission power levels of several digital subscriber lines are controlled simultaneously by the method comprising the steps of

10

[[[-]] measuring crosstalk properties for each subscriber line in different situations;

[[[-]] estimating crosstalk values from the measured crosstalk properties;

15

[[[-]] organizing the crosstalk values of the different situations; and

[[[-]] controlling the transmission power levels using the organized crosstalk values;

20

taking SNR limitations into account when controlling the transmission power levels; and

making the control of the transmission power levels so that the crosstalk is distributed in such a way that more crosstalk is accepted for lower service class lines.

25

2. (Currently amended) A method according to claim 1, characterized in that the method comprises a preliminary step before the measuring step for sending sending line specific test signals from a transmitting end to a receiving end in each line from which the crosstalk properties are measured.

30

3. (Previously presented) A method according to claim 2, characterized in that the test signal of each subscriber line is sent sequentially in such a way that signal levels of the test signal are sequent specific and a combination of the parallel sequences of the digital subscriber lines is time

35

sequence specific.

4. (Previously presented) A method according to claim 2,
characterized in that crosstalk properties are power levels of
5 the test signals.

5. (Previously presented) A method according to claim 2,
characterized in that when estimating the crosstalk values,
information from the test signals are used.

10 6. (Previously presented) A method according to claim 1,
characterized in that matrices are used when organizing the
crosstalk values.

15 7. (Canceled)

8. (Currently amended) A method according to claim 1, 7,
characterized in that the control of the transmission power
levels are made equally so that the crosstalk is distributed
20 in an even and fair manner to the subscriber lines.

9. (Canceled)

10. (Previously presented) A method according to claim 1,
25 characterized in that the measurements are made off-line.

11. (Previously presented) A method according to claim 1,
characterized in that the measurements are made on-line.

30 12. (Previously presented) A method according to claim 1,
characterized in that the digital subscriber lines are VDSL
lines.

35 13. (Previously presented) A method according to claim 1,
characterized in that the measurements are made in advance,

before controlling the transmission powers of the lines.

14. (Previously presented) A method according to claim 1,
characterized in that the crosstalk values are crosstalk power
5 level values.

15. (Previously presented) A method according to claim 1,
characterized in that the crosstalk values are crosstalk
coefficient values.

10 16. (Previously presented) A method according to claim 1,
characterized in that the measurements are made from a
downstream signal.

15 17. (Previously presented) A method according to claim 1,
characterized in that the measurements are made from an
upstream signal.

20 18. (Currently amended) An arrangement for controlling a
transmission power level in a digital subscriber line,
characterized in that the arrangement controls transmission
power levels of several digital subscriber lines
simultaneously, comprising:

25 [[-]] means for measuring crosstalk values for each subscriber
line in different situations situations;

[[-]] means for organizing the crosstalk values of the
different situations; and

[[-]] means for controlling the transmission power levels
using the organized crosstalk values;

30 means for taking SNR limitations into account when controlling
the transmission power levels, and
means for making the control of the transmission power levels
equally so that the crosstalk is distributed in an even and
fair manner to the subscriber lines.

19. (Currently amended) An arrangement according to claim 18
16, characterized in that the arrangement comprises means for
sending line specific test signals signals from a
transmitting end to a receiving end in each line wherein the
measuring means exists.

5
20. (Original) An arrangement according to claim 19,
characterized in that the test signal of each subscriber line
is sent sequentially in such a way that signal levels of the
10 test signal are sequent specific and a combination of the
parallel sequences of the digital subscriber lines is time
sequence specific.

15
21. (Currently amended) An arrangement according to claim 19,
18 characterized in that crosstalk properties are power
levels of the test signals.

20
22. (Previously presented) An arrangement according to claim 19
characterized in that when estimating the crosstalk values,
information from the test signals are used.

25
23. (Currently amended) An arrangement according to claim 18,
characterized in that matrices are used when organizing the
crosstalk values.

24. (Canceled)

25. (Canceled)

30
26. (Original) An arrangement according to claim 24,
characterized in that the control of the transmission power
levels is made so that the crosstalk is distributed in such a
way that more crosstalk can be accepted for lower service
class lines.

27. (Previously presented) An arrangement according to claim 18, characterized in that the measurements are made off-line.

5 28. (Previously presented) An arrangement according to claim 18, characterized in that the measurements are made on-line.

29. (Previously presented) An arrangement according to claim 18, characterized in that the digital subscriber lines are VDSL lines.

10 30. (Currently amended) An arrangement according to claim 18, characterized in that the measurements are made in advance before controlling ~~con-~~ trolling the transmission powers of the lines.

15 31. (Previously presented) An arrangement according to claim 18, characterized in that the crosstalk values are crosstalk power level values.

20 32. (Previously presented) An arrangement according to claim 18, characterized in that the crosstalk values are crosstalk coefficient values.

25 33. (Currently amended) A method An arrangement according to claim 18, characterized in that the measurements are made from a downstream signal.

30 34. (Currently amended) A method An arrangement according to claim 18, characterized in that the measurements are made from an upstream signal.