Section 6: Cross — Validation

Yotam Shem-Tov Fall 2014

In Sample prediction error

- There are two types of Prediction errors: In sample prediction error and out of sample prediction error.
- In sample prediction error: how well does the model explain the data which is used in order to estimate the model.
- Consider a sample, (y, X), and fit a model $f(\cdot)$ (for example a regression model), and denote the fitted values by $\hat{y_i}$.
- In order to determine how well the model fits the data, we need to choose some criterion, which is called the loss function, i.e $L(y_i, \hat{y}_i)$.
- standard loss functions: $MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i \hat{y}_i)^2, RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i \hat{y}_i)^2}$

Out of sample prediction error

- How well can the model predict a value of y_j given x_j where observation j is not in the sample. This is referred to as the out of sample prediction error.
- How can we estimate the out of sample prediction error?
- The most commonly used method is Cross-Validation.

Cross-Validation

Summary of the approach:

- Split the data into a training set and a test set
- 2 Build a model on the training data
- Evaluate on the test set
- Repeat and average the estimated errors

Cross-Validation is used for:

- Choosing model parameters
- Model selection
- Opening which variables to include in the model

Cross-Validation

There are 3 common CV methods, in all of them there is a trade-off between the bias and variance of the estimator.

- Random sub-sampling CV
- K-fold CV
- Leave one out CV (LOOCV)

My preferred method is Random sub-sampling CV.

Random sub-sampling CV

- Randomly split the data into a test set and training set.
- Fit the model using the training set, without using the test set at all!
- Second Second
- Repeat the procedure multiple times and average the estimated errors (RMSE)

What is the tuning parameter in this procedure? The *fraction* of the data which is used as a test set There is no common choice of *fraction* to use. My preferred choice is 50%, however this is arbitrary.

Random sub-sampling CV: Example

Recall the dilemma of choosing a P-score model: with or without interactions.

Random sub-sampling CV: Example

We can use CV in order to choose between the two competing models.

```
L0=100 # number of repetitions
rmse.model.1 <- rmse.model.2 <- rep(NA,L0)
a = data.frame(treat=treat,x)
for (j in c(1:L0)){
  id = sample(c(1:dim(d)[1]), round(dim(d)[1]*0.5))
  ps.model1 <- glm(treat~(.),data=a[id,],family=binomial(1:</pre>
  ps.model2 <- glm(treat~(.)^2,data=a[id,],family=binomial</pre>
  rmse.model.1[j]=rmse(predict(ps.model1,newdata=a[-id,],
  type="response"),a$treat[-id])
  rmse.model.2[j]=rmse(predict(ps.model2,newdata=a[-id,],
  type="response"), a$treat[-id])
}
```


Random sub-sampling CV: Example

• The results are in the table below:

	Model 1	Model 2
Mean	0.29	0.33
Median	0.29	0.32

- It is clear that model 1, no interactions, has a lower out of sample prediction error.
- Model 2 (with interactions) over fits the data, and generates a model with a wrong P-score. The model includes too many covariates
- Note, it is also possible to examine other models that include some of the interactions, but not all of them

K Folds CV

- Randomly split the data into K folds (groups)
- Estimate the model using K-1 folds
- Evaluate the model using the remaining fold.
- Repeat the process by the number of folds, K times
- Average the estimated errors across folds

The choice of K, is a classic problem of bias-variance trade-off.

What is the tuning parameter in this method? The *number of folds*, K. There is no common choice of K to use. Commonly used choices are, K=10, and K=20. The choice of K depends on the size of the sample, N.

The tuning parameter

K folds,

Choosing the number of folds, K

- $\uparrow K$ lower bias, higher variance
- $\downarrow K$ higher bias, lower variance
 - Random sub-sampling,

Choosing the fraction of the data in the test set

- ↓ fraction lower bias, higher variance
- ↑ fraction higher bias, lower variance

Leave one out CV (LOOCV)

- LOOCV is a specific case of K folds CV, where K = N
- Example in which there is an analytical formula for the LOOCV statistic
- The model: $Y = X\beta + \varepsilon$
- The OLS estimator: $\hat{\beta} = (X'X)^{-1} X'y$
- Define the hat matrix as, $H = X(X'X)^{-1}X'$
- Denote the elements on the diagonal of H, as h_i
- The LOOCV statistic is,

$$CV = \frac{1}{n} \sum_{i=1}^{n} (e_i/(1-h_i))^2$$

where $e_i = y_i - x_i' \hat{\beta}$, and $\hat{\beta}$ is the OLS estimator over the whole sample

CV in time series data

- The CV methods discussed so far do not work when dealing with time series data
- The dependence across observations generates a structure in the data, which will be violated by a random split of the data
- Solutions:
 - An iterated approach of CV
 - Bootstrap 0.632 (?)

CV in time series data

Summary of the iterated approach:

- Build a model using the first M periods
- 2 Evaluate the model on period t = (M + 1) : T
- **3** Build a model using the first M + 1 periods
- Evaluate the model on period t = (M + 2) : T
- **5** Continue iterating forward until, M + 1 = T
- Output Description
 Output Descript

Example

- We want to predict the GDP growth rate in California in 2014
- The available data is *only* the growth rates in in the years 1964 2013
- consider the following three possible Auto-regression models:

 - 2 $y_t = \alpha + \beta_1 y_{t-1} + \beta_2 y_{t-2}$

Example: The data

Example: estimation of the three models

	Model 1	Model 2	Model 3
Intercept	1.954*	1.935*	1.411
	(0.841)	(0.919)	(0.977)
Lag 1	0.717***	0.710***	0.716***
	(0.103)	(0.149)	(0.149)
Lag 2		0.014	-0.145
		(0.150)	(0.182)
Lag 3			0.217
			(0.150)
R^2	0.505	0.509	0.534
Adj. R ²	0.495	0.487	0.502
Num. obs.	49	48	47

^{***}p < 0.001, **p < 0.01, *p < 0.05

Example: choice of model

• Which of the models will you choose?

• Will you use an F-test?

 What is your guess: which of the models will have a lower out of sample error, using CV?

Example: F-test I

- Note, in order to conduct an F-test, we need to drop the first 3 observations. This is in order to have the same data used in the estimation of all three models.
- Dropping the first 3 observations, might biased our results in favour of models 2 and 3, relative to model 1.

```
Analysis of Variance Table
```

```
Model 1: y ~ lag1 + lag2

Model 2: y ~ lag1 + lag2 + lag3

Res.Df RSS Df Sum of Sq F Pr(>F)

1 44 330.02

2 43 314.58 1 15.438 2.1102 0.1536
```

Example: F-test II

```
Analysis of Variance Table
```

```
Model 1: y ~ lag1

Model 2: y ~ lag1 + lag2

Res.Df RSS Df Sum of Sq F Pr(>F)

1 45 330.03

2 44 330.02 1 0.012439 0.0017 0.9677
```

Example: F-test III

```
Analysis of Variance Table
```

```
Model 1: y ~ lag1

Model 2: y ~ lag1 + lag2 + lag3

Res.Df RSS Df Sum of Sq F Pr(>F)

1 45 330.03

2 43 314.58 2 15.45 1.0559 0.3567
```

Example: CV Results

- We used the iterative approach, as this is time series data
- M is the number of periods used for fitting the model before starting the CV procedure.
- The average RMSE are,

	Model 1	Model 2	Model 3
M=5	27.266	27.078	26.994
M = 10	29.770	29.586	29.474
M = 15	33.106	32.924	32.797

• Among Model 1 and Model 2 only, which is preferable?

The tuning parameter in time series CV

• What is the bias-variance trade-off in the choice of *M*?

Choice of M

- $\uparrow M$ lower bias, higher variance
- $\downarrow M$ higher bias, lower variance

Additional readings

• For a survey of cross-validation results, see Arlot and Celisse (2010),

http://projecteuclid.org/euclid.ssu/1268143839