This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF A/T TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

.... <u>SU</u>.... <u>1675980</u> A1

(51) 5 H O1 Q 13/00

ГОСУДАРСТВЕННЫЙ КОМИТЕТ ПО ИЗОБРЕТЕНИЯМ И ОТКРЫТИЯМ ПРИ ГКНТ СССР

BUECOMBHAR MATERITY TERREPREDIES

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

.

(21) 4630081/09

(22) 03.01.89

(46) 07.09.91. Бюл. N. 33

(71) Казанский авиационный институт им.А.Н.Туполева

(72) Ю.И.Чони, Г.А.Морозов

и С.П.Лахтин

(53) 621.396.67(088.8)

(56) Авторское свидетельство СССР

№ 1603462, кл. Н 01 Q 13/10, 1988.

(54) ЩЕЛЕВОЙ ИЗЛУЧАТЕЛЬ-ФАЗОВРА-ЩАТЕЛЬ

(57) Изобретение относится к технике антенн СВЧ и может быть использовано в составе антенных решеток. Цель изобретения — упрощение конструкции. Щелевой излучатель-фазовращатель содержит отрезок 1 прямоугольного волновода с продольной щелью 2, выполненной на его широкой стенке, четыре переключающих диода 3, 4, 5 и 6,

расположенных попарно противоположно и на равных расстояниях от оси симметрии широкой стенки. В широкой стенке на концах продольной щели 2 выполнены две идентичные щели 7, 8. Поперечные щели 7, 8 выполнены симметрично относительно оси симметрии широкой стенки, а переключающие диоды 3, 4, 5 и 6 установлены в местах соединения поперечных щелей 7, 8 с продольной щелью 2. При коммутации переключающих диодов 3, 4, 5 и 6 формируются излучающие Г-образные щелевые структуры, состоящие из продольной щели 2 и одной из половин поперечных щелей 7, 8, отличающиеся пространственным расположением. Возбуждаемые бегущей волной отрезка 1 прямоугольного волновода поперечные щели 7, 8 обеспечивают коммутируемое возбуждение Г-образных шелевых структур с фазами 0° , 90° , 180° , 270° , 1 ил.

2

Изобретение относится к технике антенн СВЧ и может быть использовано в составе антенных решеток.

Цель изобретения – упрощение конструкции.

На чертеже схематически изображен щелевой излучатель-фазовращатель.

Щелевой излучатель-фазовращатель содержит отрезок 1 прямоугольного волновода с продольной щелью 2, выполненный вдоль оси симметрии его широкой стенки, четыре переключающих диода 3, 4, 5 и 6, расположенных попарно противоположно и на равных расстояниях от оси симметрии широкой стенки с интервалом между парами вдоль нее, равными $\lambda_{\rm b}/4$, где $\lambda_{\rm b}$ -длина.

волны в волноводе. В широкой стенке отрезка 1 прямоугольного волновода на концах продольной щели 2 выполнены две идентичные поперечные щели 7. 8 длиной $I=\lambda_0-\lambda_B/2$, где λ_0 — длина волны в свободном пространстве. Поперечные щели 7. 8 выполнены симметрично относительно оси симметрии широкой стенки, а переключающие диоды 3, 4, 5 и 6 установлены в местах соединения поперечных щелей 7, 8 с продольной щелью 2.

Щелевой излучатель-фазовращатель работает следующим образом.

Расположенные с интервалом $\lambda_6/4$ поперечные щели 7. 8 возбуждаются поверхностными токами бегущей волны отрезка 1

119) SU (11) 1675980 A1

BCAY P E 030045

CITED BY APPLICANT

прямоугольного волновода с разностью фаз 90°. За счет коммутации переключающих диодов 3, 4, 5 и 6 формируются излучающие Г-образные щелевые структуры, состоящие из продольной щели 2 и одной из половин поперечных щелей 7, 8 и отличающиеся пространственным расположением. Длина поперечных щелей 7, 8 выбирается из условия $I = \lambda_0 - \lambda_B/2$, что обеспечивает резонансную длину формируемых Г-образных щелевых структур. равную $\lambda_0/2$.

Участки поперечных щелей 7, 8, находящиеся по разные стороны оси симметрии широкой стенки, возбуждаются противофазно, вследствие чего возбуждаемые бегущей волной отрезка 1 прямоугольного волновода поперечные щели 7, 8 обеспечивают возбуждение Г-образных щелевых 20 структур с фазами 0°, 90°, 180°, 270°,

Формула изобретения

Щелевой излучатель-фазовращатель. содержащий отрезок прямоугольного волновода с продольной щелью, выполненной вдоль оси симметрии его широкой стенки. четыре переключающих диода, расположенных попарно противоположно и на равных расстояниях от оси симметрии широкой стенки с интервалом между парами вдоль нее, равным $\lambda_{B}/4$, где λ_{B} — длина волны в волноводе, отличающийся тем, что, с целью упрощения конструкции, в широкой стенке отрезка прямоугольного волновода на концах продольной щели выполнены две идентичные поперечные щели длиной $I = \lambda_0 - \lambda_B/2$, где λ_0 - длина волны в свободном пространстве, симметричные относительно оси симметрии широкой стенки, а переключающие диоды установлены в местах соединения поперечных щелей с продольной щелью.

Редактор Г. Наджарян

Составитель И. Сухарев Техред М.Моргентал

Корректор О. Кравцова

Заказ 3008

Тираж

Подписное

ВНИИПИ Государственного комитета по изобретениям и открытиям при ГКНТ СССР 113035, Москва, Ж-35, Раушская наб., 4/5