Hilbert's Problem

Sean Richardson

November 7, 2018

1 Algorithm

We take input of a sequence of coefficients $\{a_0, a_1, \ldots, a_n\}$ describing a polynomial $p(x) = \sum_{k=0}^{n} a_k x^k = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x^1 + a_0 x^0$ where the sequence continues until the highest nonzero degree term in the polynomial which we call n.

We then have the following proposed algorithm:

- 1. We define a bound $M \in \mathbb{Z}$ such than $M = \sum_{k=0}^{n-1} |a_k|$.
- 2. Then, we iterate over the integers from -M to M. For each instance $z \in \mathbb{Z}$ we have:
 - (a) We evaluate p(z). If p(z) = 0, we accept the input for p has a integer root at input z. Otherwise, continue.
- 3. If there are no roots within the interval we can safely reject, for we can guarantee that there are no roots outside of this interval. We have the proof below.

Proof. Take some $x \in \mathbb{Z}$ such that |x| > M. Then,

$$|a_n x_n| > |x^n| > |x^{n-1}| |x| > x^{n-1} \sum_{k=0}^{n-1} |a_k|$$

Note $|x| \ge 1$ and thus $|x^k| < |x^{n-1}|$ for $k \le n - 1$. So,

$$|a_n x^n| > \sum_{k=0}^{n-1} |a_k x^{n-1}| > \sum_{k=0}^{n-1} |a_k x^k|$$

For $a_n x^n > 0$ we then must have

$$|a_n x^n| > \sum_{k=0}^{n-1} |a_k x^k| > -\sum_{k=0}^{n-1} a_k x^k$$

Thus we have

$$\sum_{k=0}^{n} a_k x^k = a_n x^n + \sum_{k=0}^{n-1} a_k x^k > 0$$

Similarly, for $a_n x^n < 0$ we then must have

$$a_n x^n < -\sum_{k=0}^{n-1} a_k x^k$$

Thus we have

$$\sum_{k=0}^{n} a_k x^k = a_n x^n + \sum_{k=0}^{n-1} a_k x^k > 0$$

So, in both cases p(x) cannot have a root, so it is safe to reject.

2 Note

I noticed that Hilbert's Problem is generalized for a multi-variable equation. Perhaps this is a valid algorithm for one dimensional polynomials, but does not work for more variables.