SoC 틀 위한 Peripheral 설계

Reference: MicroBlaze.v15 [IHIL]

2024-06-19

Table of Contents

- ➤ SoC 를 위한 Peripheral 설계
- 1. Xilinx IP
- 2. Create and Package New IP
- 3. **SPI**
 - 1) SPI Master
 - 2) SPI Slave
 - 3) SPI Controller
- 4. UART
- 5. AMBA
- 6. MicroBlaze_Hello World
- 7. MicroBlaze_LED_Counter
- 8. MicroBlaze_Peripheral Implementation
- 9. MicroBlaze_User Logic Interface

- 10. SPI_Master_IP(MicroBlaze_User_Logic_Interface)
- 11. TCP_IP Implementation Using W5500
- 12. MicroBlaze Block Memory Interface-1
- 13. MicroBlaze_Block Memory Interface-2

14. w5500 Interface Implementation

> SoC Peripheral RTC Design Project

[SPI Master IP TEST]

[Reference]

[Create Block Design]

> SPI Master IP Implementation and Test

- ➤ SPI Master IP TEST → Sequency
 - Create Block Design
 - Blaze Uart & quad_SPI 추가 및 연결
 - sys_clock & reset 설정
 - SPI ss, sck Make External
 - *XDC Constraints* 설정
 - Bitstream
 - Export Hardwar

spi_master_ip_test.xpr

이름 설정 후 OK

spi_master_ip_test.xpr

*Lun Brette Logic Interface Implementation

X

Automatically make connections in your design by checking the boxes of the blocks to connect. Select a block on the left to display its configuration options on the right.

spi_master_ip_test.xpr

spi_master_ip_test.xpr

Run Connection Automation

X

Automatically make connections in your design by checking the boxes of the interfaces to connect. Select an interface on the left to display its configuration options on the right.

All Automation 선택

Select an interface pin on the left panel to view its options

?

Cancel

X

Automatically make connections in your design by checking the boxes of the interfaces to connect. Select an interface on the left to display its configuration options on the right.

?

X

Automatically make connections in your design by checking the boxes of the interfaces to connect. Select an interface on the left to display its configuration options on the right.

Description

Connect clock-pin ({/axi_quad_spi_0/ext_spi_clk}) to selected clock source. Also configure and connect clock-pins of connected bridge-IPs(AXI Interconnect, Smartconnect) as needed. Also infer Processor System Reset block and connect synchronous reset source to associated reset pin(s) as needed.

Clock: /axi_quad_spi_0/ext_spi_clk

clk_wiz_1/clk_out1 (100Mhz) 확인

Source Clock Specification

Clock Source	/clk_wiz_1/clk_out1 (100 MHz)	~
Frequency MHz	100	

Reference Clocks

Ref_Clk0	Auto	~
Ref_Clk1	Auto	Y
Ref_Clk2	Auto	~

확인 후 *OK*

spi_master_ip_test.xpr

spi_rtl → spi 변경

spi master ip test.xpr


```
`timescale 1ns / 1psmodule top(
   reset,
  sys clock,
  usb uart rxd,
  usb uart txd,
6. oTP JA1,
7. oTP JA2
8. );
9. input
              reset ;
10. input
              sys clock;
11. input
              usb uart rxd;
12. output
              usb uart txd;
13. output
              oTP JA1 ;
14. output
              oTP JA2;
15. wire
              usb uart rxd;
              spi ss;
16. wire
              spi sck;
17. wire
              spi mosi;
18. wire
              spi miso;
19. wire
20. wire
              oTP JA1 = spi ss ;
              oTP JA2 = spi sck;
21. wire
              oTP \ JA3 = spi \ mosi;
22. wire
              oTP JA4 = spi miso;
23. wire
```

```
24. spi spi i (
25.
                .reset
                            (reset)
                .spi io0 i
                               (1'b0)
26. <sup>1</sup>
27.
                .spi io0 o
                               (spi mosi
28.
                .spi io0 t
29. <sup>1</sup>
                .spi io1 i
                               (spi miso
30.
                .spi io1 o
                .spi io1 t
31.
32.
                .spi sck i
                               (1'b0)
33.
                .spi sck o
                               (spi sck
34.
                .spi sck t
35.
                .spi ss i
                              (1'b0)
36.
                .spi ss o
                               (spi ss
37.
                .spi ss t
                               (sys clock
38.
                .sys clock
39.
                .usb uart rxd (usb uart rxd
40.
                .usb uart txd (usb uart txd
41.);
42. endmodule
```

→ Bitstream 후 xsa파일 Export 하여 Vitis 실행

> SPI Master IP TEST

XDC Constraints

Basys-3-Master.xdc

- 1. ## Clock signal
- 2. set property-dict { PACKAGE PIN W5 IOSTANDARD LVCMOS33 } [get ports sys clock]
- 3. create_clock -add -name sys_clk_pin -period 10.00 -waveform {0 5} [get_ports sys_clock]
- 4. set_property -dict { PACKAGE_PIN R2 | IOSTANDARD LVCMOS33 } [get_ports {reset}]

5. ##Pmod Header JA

- 6. set property-dict { PACKAGE PIN J1 IOSTANDARD LVCMOS33 } [get ports oTP JA1];#Sch name = JA1
- 7. set property-dict { PACKAGE PIN L2 IOSTANDARD LVCMOS33 } [get ports oTP JA2];#Sch name = JA2
- 8. #set_property-dict { PACKAGE_PIN J2 | IOSTANDARD LVCMOS33 } [get_ports {JA[2]}];#Sch name = JA3
- 9. #set property-dict { PACKAGE PIN G2 IOSTANDARD LVCMOS33 } [get ports {JA[3]}]; #Sch name = JA4
- 10. #set_property-dict { PACKAGE PIN H1 IOSTANDARD LVCMOS33 } [get_ports {JA[4]}];#Sch name = JA7
- 11. #set_property-dict { PACKAGE_PIN_K2 | IOSTANDARD_LVCMOS33 } [get_ports {JA[5]}];#Sch_name = JA8
- 12. #set property-dict { PACKAGE PIN H2 IOSTANDARD LVCMOS33 } [get ports {JA[6]}];#Sch name = JA9
- 13. #set_property-dict { PACKAGE_PIN G3 IOSTANDARD LVCMOS33 } [get_ports {JA[7]}];#Sch name = JA10

14. ##USB-RS232 Interface

- 15. set property-dict { PACKAGE PIN B18 IOSTANDARD LVCMOS33 } [get ports usb uart rxd]
- 16. set_property-dict { PACKAGE_PIN A18 | IOSTANDARD LVCMOS33 } [get_ports usb_uart_txd]

17. ## Configuration options, can be used for all designs

- 18. set_property CONFIG_VOLTAGE 3.3 [current_design]
- 19. set_property CFGBVS VCCO [current_design]

20. ## SPI configuration mode options for QSPI boot, can be used for all designs

- 21. set property BITSTREAM.GENERAL.COMPRESS TRUE [current design]
- 22. set property BITSTREAM.CONFIG.CONFIGRATE 33 [current design]
- 23. set property CONFIG MODE SPIx4 [current design]

- > SPI Master IP TEST -> Sequency
 - Create Block Design
 - Blaze Uart & quad_SPI 추가 및 연결
 - sys_clock & reset 설정
 - SPI ss, sck Make External
 - XDC Constraints 설정
 - Bitstream
 - Export Hardwar

[SPI Master IP TEST]

> SPI Master IP TEST Rep<u>o</u>rts Edit Window Layout View Help X F6 Flow Navigator Create and Package New IP... > PROJECT MANAGER Create Interface Definition Board ? _ 0 0 Diagram Enable Dynamic Function eXchange... → IP INTEGRATOR Run Tcl Script... Create Block Desic **Property Editor** Ctr[+] 1_wrapper.v) (1) Open Block Desig Associate ELF Files... Generate Memory Configuration File... Generate Block De Compile Simulation Libraries... > SIMULATION Vivado Store... **Custom Commands** → RTL ANALYSIS **Launch Vitis** → Click Launch Vitis IDE ∨ Open Elaborated Language Templates Compile Order Report Metho Settings... Report DRC Source File Properties ? _ D G X Schematic design 1 wrapper.v Open Dataflow Design ✓ Enabled ▼ SYNTHESIS c:/Users/parkj/project 30/project 30.gen/sources 1/bc Location: Run Synthesis Verilog Type: reset D > Open Synthesized Design xil defaultlib Library: sys_clock

> SPI Master IP TEST

> SPI Master IP TEST [₽] □ Welcome [□] XILINX VITIS ■ New Application Project Create a New Application Project This wizard will guide you through the 4 steps of creating new application projects. 1. Choose a platform or create a platform project from Vivado exported XSA 2. Put application project in a system project, associate it with a processor 3. Prepare the application runtime - domain 4. Choose a template for application to guick start development Project App · A platform provides hardware information and software environment settings Cre Skip welcome page next time. (Can be reached with Back button) Cre Next > Cancel Cre Import Project

spi_master_ip_test.xpr

> SPI Master IP TEST

> SPI Master IP TEST Welcome

 Welcome XILINX VITIS. √ New Application Project Templates Select a template to create your project. Available Templates: EB Find: Hello World Embedded software development templates Let's say 'Hello World' in C. Dhrystone Empty Application (C++) Empty Application(C) Hello World lwIP Echo Server IwIP TCP Perf Client IwIP TCP Perf Server IwIP UDP Perf Client IwIP UDP Perf Server mba_fs_boot Memory Tests Peripheral Tests SREC Bootloader SREC SPI Bootloader Cre Cre < Back Einish Cancel Next Cre Import Project

spi master ip test.xpr


```
48 #include <stdio.h>
49 #include "platform.h"
50 #include "xil printf.h"
51 #include "xparameters.h"
52 #include "xuartlite.h"
53 #include "xspi.h"
54 #include "sleep.h"
55 #include "xil exception.h"
56 XSpi
             SpiInstance:
                                   /* The instance of the SPI device */
58 /* definitions for SPI */
59 #define SPI DEVICE ID
                                   XPAR SPI 0 DEVICE ID
61⊕void spi_init(void)
62 {
63
       XSpi Config *ConfigPtr: /* Pointer to Configuration data */
64
65
       ConfigPtr = XSpi LookupConfig(SPI DEVICE ID);
66
       XSpi CfgInitialize(&SpiInstance, ConfigPtr, ConfigPtr->BaseAddress);
67
       XSpi SelfTest(&SpiInstance);
68
69
       XSpi SetOptions(&SpiInstance, XSP MASTER OPTION );
70
                                                    /* Start SPI */
       XSpi Start(&SpiInstance);
                                                    /* Disable interrupt */
       XSpi_IntrGlobalDisable(&SpiInstance);
72
       XSpi_SetSlaveSelect(&SpiInstance, 0x35);
73 }
74
76@int main()
78
       init_platform();
79
       spi init();
80
81
82
         uint8 t wbuf[3];
83 while(1){
```

(a)

```
while(1){
84
85
86
         wbuf[0] = 0x64:
87
         wbuf[1] = 0x64;
88
         wbuf[2] = 0x64;
89
         wbuf[3] = 0x64:
90
         XSpi Transfer(&SpiInstance, wbuf, NULL, 4);
91
92
         usleep(1);
93 }
94
       cleanup platform();
95
       return 0:
96 }
97
```

SP/로 임의의 4바이트 출력

오실로스코프 활용해 SPI master 동작 원리 확인.

Helloworld.C 수정


```
1. #include <stdio.h>
   #include "platform.h"
   #include "xil printf.h"
   #include "xparameters.h"
   #include "xuartlite.h"
   #include "xspi.h"
   #include "sleep.h"
   #include "xil exception.h "
                           /* The instance of the SPI device */
           SpiInstance;
9. XSpi
10. /* definitions for SPI */
11. #define SPI DEVICE ID XPAR SPI 0 DEVICE ID
12. void spi init(void)
13. {
14. XSpi Config *ConfigPtr;/* Pointer to Configuration data */
15. ConfigPtr = XSpi LookupConfig(SPI DEVICE ID);
16. XSpi CfgInitialize(&SpiInstance, ConfigPtr, ConfigPtr->BaseAddress);
17. XSpi SelfTest(&SpiInstance);
18. XSpi SetOptions(&SpiInstance, XSP MASTER OPTION);
19. XSpi Start(&SpiInstance);
                                      /* Start SPI */
20. XSpi IntrGlobalDisable(&SpiInstance);/* Disable interrupt */
21. XSpi SetSlaveSelect(&SpiInstance, 0x35);/*
22. }
```

```
23. int main()
24. {
      init platform();
      spi init();
26.
     uint8 t wbuf[3];
28.
29.
     while(1){
               wbuf[0] = 0x64;
30.
31.
               wbuf[1] = 0x64;
               wbuf[2] = 0x64;
32.
33.
               wbuf[3] = 0x64;
               XSpi Transfer(&SpiInstance, wbuf, NULL, 4);
34.
35.
               usleep(1);
36. }
      cleanup platform();
37.
38.
      return 0;
39. }
```


M 10us /div

SS가 LOW 일 때 SCK 파형이 발생함을 확인할 수 있음

1. 전송 시작 부분

SS가 $LOW \rightarrow 일정 delay 후에 <math>SCK$ 가 발생(HIGH)

spi_master_ip_test.xpr

2. 전송 종료 부분

SS의 HIGH와 SCK의 LOW가 동시에 발생

```
23. int main()
24. {
       init platform();
26.
       spi init();
      uint8_t wbuf[3];
28.
29.
       while(1){
30.
                     wbuf[0] = 0x64;
31.
                     wbuf[1] = 0x64;
                     wbuf[2] = 0x64;
32.
33.
                     wbuf[3] = 0x64;
                    XSpi Transfer(&SpiInstance, wbuf, NULL, 4);
34.
35.
                     usleep(1);
36.
37.
       cleanup_platform();
38.
       return 0;
39.
```



```
23. int main()
24. {
                                                                                                                                                                  25.
      init platform();
                                                                   WON
      spi init();
26.
      uint8 t wbuf[3];
28.
      while(1){
29.
                 wbuf[0] = 0x64;
30.
                 wbuf[1] = 0x55;
31.
                 wbuf[2] = 0x64;
32.
33.
                 wbuf[3] = 0x55;
                 XSpi Transfer(&SpiInstance, wbuf, NULL, 4);
34.
                 usleep(1);
35.
36. }
      cleanup_platform();
37.
38.
       return 0;
39. }
                                                                              AC 1 V /div
                                                                     2.0divs
                                                                                  -2.0divs
                                                                     483.421 kHz
```


수고하셨습니다.