732A96/TDDE15 Advanced Machine Learning Gaussian Process Regression and Classification

Jose M. Peña IDA, Linköping University, Sweden

Lectures 11: Kernels, Hyperparameter Learning and More

Contents

- ► Three Common Covariance Functions
- ▶ Learning the Hyperparameters of the Covariance Function
- More on Covariance Functions
- ▶ Lab: Algorithm 2.1 in Rasmussen and Williams

Literature

- Main source
 - Rasmussen, C. E. and Williams, K. I. Gaussian Processes for Machine Learning. MIT Press, 2006. Chapters 2.3, 5.1-5.4.1.
- Additional source
 - Bishop, C. M. Pattern Recognition and Machine Learning. Springer, 2006. Chapters 6.4.3-6.4.4.

- Let r = ||x x'||.
- Squared exponential (SE):

$$k_{SE}(r) = \sigma_f^2 \exp\left\{-\frac{r^2}{2\ell^2}\right\}$$

where $\sigma_f^2 > 0, \ell > 0$. Very smooth.

Rational quadratic (RQ):

$$k_{RQ}(r) = \sigma_f^2 \left(1 + \frac{r^2}{2\alpha\ell^2}\right)^{-\alpha}$$

 $\sigma_f^2 > 0, \ell > 0, \alpha > 0$. k_{RQ} is an infinite sum of k_{SE} with different ℓ . As $\alpha \to \infty$, $k_{RQ}(r) \to k_{SE}(r)$.

Matérn:

$$k_{Matern} = \sigma_f^2 \frac{2^{1-\nu}}{\Gamma(\nu)} \left(\frac{\sqrt{2\nu}r}{\ell}\right)^{\nu} K_{\nu} \left(\frac{\sqrt{2\nu}r}{\ell}\right)$$

where $\sigma_f^2 > 0, \ell > 0, \nu > 0$, and K_{ν} is the modified Bessel function. As $\nu \to \infty$, $k_{Matern}(r) \to k_{SE}(r)$.

Demo of GaussianProcesses.R and KernLabDemo.R.

Correlation functions

▶ The length scale ℓ determines the smoothness.

▶ The scale factor σ_f determines the variance.

▶ The mean can be arbitrary, e.g. sin(3x).

Learning the Hyperparameters of the Covariance Function

- Let θ denote the hyperparameters of the covariance function, i.e. $\theta = (\sigma_f, \ell)$ for k_{SE} , $\theta = (\sigma_f, \ell, \alpha)$ for k_{RQ} , and $\theta = (\sigma_f, \ell, \nu)$ for k_{Matern} .
- ▶ Choose the hyperparameters that maximize the marginal likelihood:

$$p(\mathbf{y}|X,\theta) = \int p(\mathbf{y}|\mathbf{f},X,\theta)p(\mathbf{f}|X,\theta)d\mathbf{f}$$

where $f|X, \theta \sim \mathcal{N}(0, K(X, X))$ and $y|f \sim \mathcal{N}(f, \sigma_n^2 I)$, which implies

$$\log p(\mathbf{y}|X,\theta) = -\frac{1}{2}\mathbf{y}^{T}(K(X,X) + \sigma_{n}^{2}I)^{-1}\mathbf{y} - \frac{1}{2}\log|K(X,X) + \sigma_{n}^{2}I| - \frac{n}{2}\log 2\pi$$

which alternatively can be obtained directly from

$$\begin{bmatrix} \mathbf{y} \\ \mathbf{f}_* \end{bmatrix} \sim \mathcal{N} \left(0, \begin{bmatrix} K(X, X) + \sigma_n^2 I & K(X, X_*) \\ K(X_*, X) & K(X_*, X_*) \end{bmatrix} \right).$$

- In general, this is a non-convex optimization problem, and gradient methods are typically used. For most common covariance functions, the derivative of K(X,X) wrt θ is easy to compute.
- For a Bayesian approach, choose the hyperparameters that maximize the posterior distribution $p(\theta|\mathbf{y},X) \propto p(\mathbf{y}|X,\theta)p(\theta)$. It typically requires MCMC sampling or Laplace approximation.
- The methods above can also be used to select among covariance functions, i.e. simply include them as hyperparameters. Cross-validation is also an option.

Learning the Hyperparameters of the Covariance Function

$$\begin{split} \log p(\mathbf{y}|X,\theta) &= -\frac{1}{2}\mathbf{y}^T (K(X,X) + \sigma_n^2 I)^{-1}\mathbf{y} - \frac{1}{2}\log |K(X,X) + \sigma_n^2 I| - \frac{n}{2}\log 2\pi \\ &= \text{ data fit - model complexity - normalization constant.} \end{split}$$

More on Covariance Functions

- Anisotropic version of isotropic covariance function (i.e., it depends only on r) by setting $r^2 = (x x')^T M(x x')$ where M is positive definite.
- Automatic Relevance Determination: $\mathbf{M} = diag(\ell_1^{-2}, \dots, \ell_D^{-2})$, i.e. different length scales for different dimensions. In other words, ARM performs variable selection since a large ℓ_j means that the j-th dimension is essentially irrelevant for $f(\mathbf{x})$.
- Periodic kernel with period d: $k(x,x') = \sigma_f^2 \exp\left\{-\frac{2\sin^2(\pi|x-x'|/d)}{\ell^2}\right\}$.
- ▶ The sum and product of two kernels is a kernel. For instance:
 - $k_{ARD}(x,x') = \prod_{d=1}^{D} k_{SE,\ell_d}(x_d,x_d').$
 - $k_{Periodic}(x, x') \cdot k_{SE}(x, x')$: Close peaks more dependent than distant ones.

Lab: Algorithm 2.1 in Rasmussen and Williams

```
input: X (inputs), \mathbf{y} (targets), k (covariance function), \sigma_n^2 (noise level), \mathbf{x}_* (test input)

2: L := \text{cholesky}(K + \sigma_n^2 I)

\boldsymbol{\alpha} := L^\top \setminus (L \setminus \mathbf{y})

4: \bar{f}_* := \mathbf{k}_*^\top \boldsymbol{\alpha}

\mathbf{v} := L \setminus \mathbf{k}_*

6: \mathbb{V}[f_*] := k(\mathbf{x}_*, \mathbf{x}_*) - \mathbf{v}^\top \mathbf{v}

\log p(\mathbf{y}|X) := -\frac{1}{2}\mathbf{y}^\top \boldsymbol{\alpha} - \sum_i \log L_{ii} - \frac{n}{2}\log 2\pi

8: \mathbf{return}: \bar{f}_* (mean), \mathbb{V}[f_*] (variance), \log p(\mathbf{y}|X) (log marginal likelihood)
```

- The algorithm uses Cholesky decomposition instead of matrix inversion because it is faster and numerically more stable.
- It returns the predictive distribution for noise-free test data, i.e. f_* . Add σ_n^2 to the predictive variances to obtain the distribution for noisy test data, i.e. y_*
- It is presented for a single test case but it also works for several test cases.
- K = K(X,X).
- $K_* = K(X, X_*).$
- $k_* = k(x_*) = K(X, x_*).$
- ► $L = cholesky(A) \Rightarrow A = LL^T \Rightarrow A^{-1} = (L^T)^{-1}L^{-1} = (L^{-1})^TL^{-1}$ and $|A| = det(A) = det(L)det(L^T) = 2\prod_i L_{ii}$.
- $L \setminus y = solve(L, y) = L^{-1}y$.

Contents

- Three Common Covariance Functions
- Learning the Hyperparameters of the Covariance Function
- More on Covariance Functions
- Lab: Algorithm 2.1 in Rasmussen and Williams

Thank you