

AD-A041 919 SYSTEMS SCIENCE AND SOFTWARE LA JOLLA CALIF
A PRELIMINARY SPECIFICATION OF THE GEOSYNCHRONOUS PLASMA ENVIRO--FTC(U)
SEP 76 S DEFOREST, A R WILSON F/G 22/2
DNA001-76-C-0121

UNCLASSIFIED

SSS-R-77-3027

DNA-3951T

NL

| OF |
AD
A041919

END

DATE
FILMED
8-77

ADA041919

19

JH

DNA 3951T

A PRELIMINARY SPECIFICATION OF THE GEOSYNCHRONOUS PLASMA ENVIRONMENT

Systems, Science and Software
P.O. Box 1620
La Jolla, California 92038

September 1976

Topical Report

CONTRACT No. DNA 001-76-C-0121

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED.

THIS WORK SPONSORED BY THE DEFENSE NUCLEAR AGENCY
UNDER RDT&E RMSS CODE B323076464 R99QAXEB06960 H2590D.

Prepared for
Director
DEFENSE NUCLEAR AGENCY
Washington, D. C. 20305

REF ID: A
DDC FILE COPY

Destroy this report when it is no longer needed.
Do not return to sender.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

19) REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER DNA 3951T	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) A PRELIMINARY SPECIFICATION OF THE GEOSYNCHRONOUS PLASMA ENVIRONMENT.		5. TYPE OF REPORT & PERIOD COVERED Topical Report
6. AUTHOR(s) Sherman/DeForest* Andrew R. Wilson		7. PERFORMING ORG. REPORT NUMBER SSS-R-77-30271
8. CONTRACT OR GRANT NUMBER(s) DNA 001-76-C-0121		9. PERFORMING ORGANIZATION NAME AND ADDRESS Systems, Science and Software P.O. Box 1620 La Jolla, California 92038
10. PROGRAM ELEMENT PROJECT, TASK AREA & WORK UNIT NUMBERS Subtask R99QAXEB069-60		11. CONTROLLING OFFICE NAME AND ADDRESS Director Defense Nuclear Agency Washington, D.C. 20305
12. REPORT DATE September 1976		13. NUMBER OF PAGES 88
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) <i>(12) 76P.</i>		15. SECURITY CLASS (of this report) UNCLASSIFIED
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.		17. DECLASSIFICATION/DOWNGRADING SCHEDULE <i>D D C D D C JUL 21 1977 C C C</i>
18. SUPPLEMENTARY NOTES This work sponsored by the Defense Nuclear Agency under RDT&E RMSS Code B323076464 R99QAXEB06960 H2590D. *Work performed in Physics Department, University of California at San Diego under subcontract to Systems, Science and Software.		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Spacecraft Charging Geosynchronous Satellites Plasma Environment		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) A preliminary specification of the plasma environment of geosynchronous satellites is provided. The plasma electron and ion density histories and temperatures are provided for a few selected days, including periods of substorm activity and eclipse.		

DD FORM 1 JAN 73 1473

EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

388 507

1B

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(*When Data Entered*)

A large rectangular area of the document has been completely redacted with a thick black line, obscuring several paragraphs of text.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(*When Data Entered*)

ACCESSION NO.	Refuge Section	Buff Section	DISTRIBUTION/AVAILABILITY OF
ATIS	Dist. Avail. Sec. or Dept.
O.C.
UNANNOUNCED
JUSTIFICATION

A

TABLE OF CONTENTS

	Page
1. INTRODUCTION	3
1.1 DESCRIPTION OF THE PROBLEM	3
1.2 DEVELOPMENT OF PRELIMINARY SPECIFICATION .	5
2. DATA SELECTION	6
2.1 BACKGROUND INFORMATION FOR DATA SELECTION	6
2.1.1 Spacecraft Performance Features . .	6
2.1.2 Magnetospheric Weather Features . .	7
2.2 TYPICAL CONDITIONS REPRESENTED	10
2.3 SPECIAL CONDITIONS	10
2.3.1 Eclipse of the Sun	12
2.3.2 Field Aligned Fluxes	12
3. DATA AND FORMAT	13
3.1 MODERATE ACTIVITY	13
3.2 INTENSE LOCALIZED POST MIDNIGHT SUBSTORM .	14
3.3 QUIET DAY	15
3.4 POST-MIDNIGHT SUBSTORM	16
3.5 PRE-MIDNIGHT SUBSTORM	17
3.6 ECLIPSE AND SUNLIGHT CHARGING	17
4. REFERENCES	19
APPENDIX A - DESCRIPTION OF ATS-5 SPECTROGRAMS	21
APPENDIX B - DESCRIPTION OF ATS-5 SPECTRAL AVERAGE PLOTS	29
APPENDIX C - CONSTRUCTION OF COMPLETE SPECTRA	33
APPENDIX D - DATA	35

1. INTRODUCTION

The widespread acknowledgement of the hazards to normal spacecraft operation of electrostatic charging due to interaction of the spacecraft with the natural plasma has led to a need by several government agencies for a specification of the environment which can be used to make predictions of spacecraft behavior (DeForest, 1971, 1972; McPherson, *et al.*, 1975; Rosen, 1975; Scarf and Fredricks, 1972; Shaw, 1974; Stevens, 1975; Whipple, 1976).

The work presented in this report grew out of the special needs of DNA to model spacecraft charging, particularly in unusual circumstances. This work covers only the plasma at the geosynchronous orbit (GSO). Similar studies have been funded by NASA's Lewis Research Center and the Air Force Geophysics Laboratory. Those studies are not targeted at DNA's needs and are on a longer schedule for completion. In particular, the work being funded by AFGL is expected to lead to a comprehensive environmental "Atlas" to be used by a wide variety of researchers. However, that report is still at least a year away.

Therefore, to satisfy the needs of current research programs being funded by DNA, this preliminary specification was created. It is accurate, but crude. The data presented here can be used as input to modeling programs with the assurance that it is the best available, but that a better model will eventually replace it.

To facilitate use of this and later models, we have closely coordinated the various efforts so that the final form of the environmental specification will be compatible with this preliminary specification without extensive re-programming.

1.1 DESCRIPTION OF THE PROBLEM

The natural plasma at GSO is difficult to describe simply. The various plasma parameters vary over orders of

magnitude (DeForest and McIlwain, 1971) from hour to hour. The main source of this plasma is the geomagnetic substorm (Akasofu, 1968) which can release 10^{22} ergs into the magnetosphere in about 20 minutes. Many ground-based and spacecraft experiments have studied this problem (Chappell, 1970; Konradi, et al., 1975; Lezniak and Winckler, 1971; Mauk and McIlwain, 1974; McIlwain, 1972, 1974, 1975; Reasoner, et al., 1975; Vasyliunso, 1968) with limited success. Such basic parameters as where the particles originate, how the energy gets transferred from the solar wind to the magnetosphere, and what triggers the substorm are yet to be answered. Similarly, prediction of substorms is still in the future.

To make matters more difficult, only two spacecraft have been flown at GSO to provide data on the plasma. These are ATS-5 and ATS-6. Both spacecraft carried detectors that respond to a given energy per unit charge. For the negative channels this undoubtedly means that they are responding to electrons, but the positive channels could be either protons or heavier ions.

ATS-5 covered the energy range from 50 eV to 50 KeV with two pairs of body-mounted analyzers. ATS-6 represents a considerable improvement with an energy range of 0.1 eV to 80 KeV with two pairs of analyzers mounted in heads which rotate - one in the north-south plane; the other in the east-west plane.

ATS-6 has uncovered a wealth of new information, but unfortunately, it is extremely complex to analyze. Some of these effects are field-aligned fluxes, and cold plasmas.

Therefore we begin to see that the environmental specification must include such items as the local magnetic field, the distribution function of electrons as a function of energy, time, and pitch angle, the same for protons, and probably the same for heavy ions. Much of this information

simply does not exist. Moreover, the variability of parameters is too great to consider all cases of everything.

1.2 DEVELOPMENT OF PRELIMINARY SPECIFICATION

The solution of the problems presented in the previous section is to recognize that this is a preliminary study and that not all parameters can be presented.

Therefore we have limited our data base to ATS-5 only. This is much simpler to handle, and the analysis programs are much better developed than they are for ATS-6. We use the ATS-5 data to give the bulk of the plasma and in Appendix C give prescriptions for adding hypothetical cold plasmas and field-aligned components. Also in the appendix is reasonable ranges over which to vary the relevant parameters. This approach will get a preliminary model to potential users quickly without the expense of a complete study.

2. DATA SELECTION

Environmental data from the UCSD plasma instrument on board ATS-5 covering the period of September 1969 through the vernal equinox of 1971 (approximately 500 days) has been analyzed to provide input spectra for general modeling. Representative data from six days is presented in the following forms:

- 24 hr spectrogram
- Integrals, for electrons and protons, of the number densities and energy fluxes respectively based on 2.3 minute averages for the selected 24 hour periods
- Plots of six selected spectra for each 24 hour period
- Printouts and punched cards containing the selected spectra

The data has been selected to typify several broadly different categories of magnetospheric weather which occur at geosynchronous orbit. While representative of the magnetospheric conditions the data are not extensive. It is meant to provide useful input for the development of spacecraft charging codes.

2.1 BACKGROUND INFORMATION FOR DATA SELECTION

Previous studies provide background information which is useful in the selection of data for the study of spacecraft charging. Facts which should be considered include:

2.1.1 Spacecraft Performance Features

- Spin up anomalies on the DSCS-II spacecraft are well correlated with geomagnetic substorms
(TRW SCA II, 1975)

- There is a strong association of unexplained satellite performance with the midnight to dawn sector of local time (McPherson, et al. (1975)). (See Figure 2.1.)
- The local time distribution of spacecraft charging events is found to maximize between local midnight and dawn (Reasoner, et al. (1975)). (See Figure 2.2.)

2.1.2 Magnetospheric Weather Features

- Equatorial observations by the geostationary satellite ATS-5 of charged particles on auroral lines of force reveal the frequent injection of plasma clouds into the magnetosphere. These intrusions of hot plasma are found to have a one to one correspondence with magnetospheric substorms (DeForest and McIlwain, 1971).
- The electromagnetic fields surrounding the earth act to separate the injected plasma clouds on the basis of both charge and energy (McIlwain, 1972). Electric fields attempt to bring about corotation of low energy electrons and protons as one moves inward toward the earth. Magnetic field gradients cause high energy electrons to drift toward the dawn side of the magnetosphere while high energy protons are caused to drift toward dusk. Effects of importance which follow are first, the spectra in the midnight to dawn sector are characterized by high electron energies and thus tend to induce spacecraft charging (DeForest, 1972), and second, field aligned fluxes are set up in order to maintain overall charge neutrality (McIlwain, 1975). These fluxes can make important contributions to differential charging of spacecraft surfaces (DeForest, 1973).

Figure 2.1. Unexplained satellite performance correlates with local time.

Figure 2.2 Local time distribution of spacecraft charging events.

- The plasmasphere shrinks during periods of high magnetic activity (Chappel, 1970). At geosynchronous orbit encounters with the plasmasphere are concentrated in the local noon to local evening section as shown in Figure 2.3. Plasmasphere encounters are anti-correlated with spacecraft charging. There are two reasons for this. First, the high density low energy plasma provides a grounding current to the spacecraft thus preventing large potential buildups. Second, plasmasphere encounters are more common during quiet times when substorm activity is low.

2.2 TYPICAL CONDITIONS REPRESENTED

With these facts in mind data from the year 1970 gathered by the UCSD plasma spectrometers on ATS-5 was analyzed. From these data the six representative days were chosen to typify the following magnetospheric weather conditions:

- A quiet day with no substorm activity
- A moderately active day with a single substorm of low intensity
- Two days with intense localized post midnight substorms
- A pre-midnight substorm
- A day when spacecraft charging occurred in the sunlight

2.3 SPECIAL CONDITIONS

Several special conditions can occur which we have designed into the total distribution functions which are to be used in this study (see Appendix C).

Figure 2.3 Local time distribution of warm plasma encounters.

2.3.1 Eclipse of the Sun

The spacecraft charging phenomena was first discovered on ATS-5 during eclipse. The loss of the large photoelectron flux from the satellite surfaces allows the satellite to float up to high potentials (DeForest, 1972).

2.3.2 Field Aligned Fluxes

Usually encountered during the intense early phases of a substorm and of importance because they can cause differential charging.

3. DATA AND FORMAT

The data presented in this section consists of four types in addition to sets of punched cards for easy computer use. For each day or event presented, a 24-hour spectrogram is used to establish the context. Following that, selected spectra are shown which illustrate significant events. Instruction for reading both the spectrograms and the average plots are provided in the appendix. The same data have been written on punched cards and are available for future use. The printouts of the detailed spectra are also available. Note that these detailed spectra are produced from 6.8 minute averages. This gives good statistics without smoothing rapid time fluctuations.

The final form of data presentation is a table of various integrals taken over 2.3 minute periods for the whole day. These might prove useful for studies where analytical approximations to the spectral shape is more useful than the actual spectra. The whole day is provided for possible future use in time-varying codes.

3.1 MODERATE ACTIVITY

2/1/70 - The activity on this day was limited to two early morning injections at approximately 0110 and 0500 UT. The effect was to bathe the spacecraft in a moderate flux of 3000 volt electrons. From previous experience, we can estimate that had the spacecraft gone into eclipse on this day, it would have charged to approximately 1000 volts.

The fluxes associated with this injection were insufficient to cause charging in the sunlight. (For purposes of this report a potential of less than about 50 volts will be neglected since the ATS-5 detectors do not sense lower energies). Furthermore, isolated substorms of this type have never been seen to charge ATS-5 significantly. However, from

ATS-6 data we can estimate that a potential of at least -5 volts occurred and that by simply renormalizing the total flux by a factor of 2-10 while keeping the same spectral shape, we can simulate the conditions under which daylight charging of -100 volts would happen.

Detailed spectra are provided for 0300 to see the pre-electron encounter conditions. The next spectra are at 0400 when the high-energy protons had been encountered, but not the associated electrons. The next three sets of spectra are taken at different points in the main part of the substorm. At 0530 ATS-5 experiences the greatest flux of high energy electrons. By 0630 the average energy of the electrons has fallen slightly due to gradient drifting while the average energy of the ions has increased slightly. At 0730 the ion chasm is well developed, and a notch has developed in the electron spectra. This feature is common and will persist for the entire day. A final set of spectra taken at 1200 is provided simply to complete the story. The spectra at 0530 and 0630 are probably the most hazardous to the spacecraft.

In summary, 2/1/70 is a good example of isolated, moderate activity which could be used to study the response of a spacecraft to a normal environment.

3.2 INTENSE LOCALIZED POST MIDNIGHT SUBSTORM

2/11/70 - On this day we were fortunate enough to find an intense substorm occurring right at the spacecraft location. This day is particularly valuable because of the lack of complicating activity at other times, and because no corrections for daylight charging are needed.

The injection took place at 0850 when ATS-5 was located in the hazardous midnight-to-dawn sector. The total fluxes at 0900 were quite close (within a fraction of 2) of charging the spacecraft in sunlight.

The first set of spectra are taken in the quiescent plasma at 0700. The next spectra taken at 0900 show the first encounter with this event. The low-energy spike seen in both electron detectors is not due, as might be suspected, to charging positively, but rather is most likely the locally produced secondaries being reflected from a suddenly enhanced plasma sheath about the spacecraft (see discussion by Whipple, 1976). This event could easily have produced charging in excess of 10,000 volts if the spacecraft had been eclipsed at this time. Such a sharp, localized event was probably responsible for the main power supply failing on a non-NASA spacecraft. (Note both ATS-5 and ATS-6 are research craft and are somewhat better built than ordinary operational craft. Therefore one is not surprised that they can sail through disturbances that would sink weaker vehicles.)

Spectra at 1000 and 1100 document the evolution of the event in the normal manner. The predominant spectral changes are again caused by gradient drifts.

Spectra at 1400 and 1700 show the complex spectra that can result from the combination of injected particles, particle losses (the chasm in the protons, and loss of high-energy electrons), and multiple encounters with the high-energy particles as they circle the earth. These spectra would be useful for studying spacecraft conditions near noon. However, a low-temperature plasma must be assumed to be present in both sets (see previous section). (See also the description of day 12/3/70 for a similar event.)

3.3 QUIET DAY

2/12/70 - This day was chosen to illustrate a quiet period partly because it is one of the longest quiet times normally seen, and because it fortunately followed the intense event already described on 2/11/70. Therefore we have a single two-day period of uncommon interest for this project. Note

that we have small data gaps at both the start and end of the day. These are of no consequence since the activity is so low.

The spectra for this day is simply spaced throughout to sample uniformly. Any use of these spectra must assume the presence of copious cold (or "warm") plasma with densities of at least 30 cm^{-3} .

3.4 POST-MIDNIGHT SUBSTORM

3/18/70 - The event shown on this day actually consists of two closely spaced injections occurring after a large quiet period. The activity starts at about 1040 UT. This is sufficiently past midnight that the plasma response is very different than the case shown for 2/11/70. In particular, the main body of protons do not reach the spacecraft until about 1330 after traveling around the world to the west. This situation could produce hazardous charging.

The first set of spectra taken at 0900 set the stage for the later injection. The next three sets are spaced somewhat closer than the nominal minimum of one hour followed in the rest of this report. This was necessary because of the rapid development and the desire to show all phases of the event. The set of 1000 shows some electron enhancement over the earlier spectra. The 1050 spectra shows the leading edge of the injection. (Note the apparent oscillations in the electron spectra in this and the following set are an unavoidable artifact due to the particular operating mode chosen that day and the relatively rapid changes taking place.) At 1112 we see significant changes in both the low-energy electrons and the shape of the protons. But at 1200 we see even hotter electrons instead of the effective cooling we would expect normally. The explanation is easily seen in the spectrogram: another injection has followed this first. This is common and does not affect the usefulness of this day for the report.

The final set of spectra follow the injection development. Only now we see that the electrons have experienced rapid depletion (by probably precipitating into the atmosphere) and the arrival of the protons from their trip around the world has given us a spike in the distribution.

3.5 PRE-MIDNIGHT SUBSTORM

12/3/70 - The main feature of this day is the surplus of high-energy protons early in the day. Although this condition is probably not hazardous to spacecraft from the point of view of charging, it is a common occurrence, and the vehicle's response should be studied. Spectra are provided for 0200, 0400, 0600, 0700, 0800, and 1200 LT. The first four are of prime interest for the study of the effect of high-energy protons. The 0800 spectra can be used in a way similar to those of 2/11/70 for intense localized substorms. The main difference between the two are the higher energies, but lower fluxes seen on 12/3/70. The last set of spectra (1200 LT) are provided simply to show the time development of the storm.

3.6 ECLIPSE AND SUNLIGHT CHARGING

3/14/71 - Although the intent of this report is to provide isolated examples of various types of events at synchronous altitude, we realize that for many purposes this is not sufficient. Therefore we also present an active day which has both charging in eclipse and a good example of charging in sunlight. As can be seen from the spectrogram, this day is very different from the other examples. Several distinct substorms follow one after the other. The plasma conditions change so quickly that obtaining good averages is difficult. The charging events are easily identified by the bright bands in the low energy protons. The eclipse is always centered about local midnight, and the sunlight charging on ATS-5 is always observed between midnight and dawn.

The first spectra taken at 0600 is pre-eclipse. The next two are at different phases of the eclipse. The 0800 set is post-eclipse. The last two sets of spectra are preceding and during sunlight charging.

The parallel electrons in the last two cases show the effects of differential charging.

Persons using this set of data might want to correct the fluxes to what they would be if there were no charging. The cookbook method for doing this assumes that the instrument is a differential detector. Then by Liouville's theorem,

$$J_p(E) = [E^2/(E - q\phi)^2] J_m(E - q\phi)$$

where J_p is the predicted flux at energy E , J_m is the measured flux, and ϕ is the potential. The sign of the charge, q , is positive for ions and negative for electrons. We emphasize that the only fluxes to be corrected by means of the above equation are those for 3/14/71.

For the sunlight charged cases the average potential ϕ is -80 volts. The spread throughout the event ranges from zero to -200 volts in sunlight. Therefore corrections above a few thousand volts are unnecessary.

As can be seen from the spectrogram on 3/14/71, the potential varies throughout the entire eclipse from zero to -2500 volts. For the eclipse case shown in p. 40 all channels should be corrected with $\phi = -1700$ volts.

The lowest energy fluxes of electrons and the highest energy ions will be missing from the corrected spectra.

4. REFERENCES

- Akasoful, S. I., Polar and Magnetospheric Substorms, D. Reidel Publishing Company, Dordrecht, Netherlands (1968).
- Chappel, C. R., "A Study of the Influence of Magnetic Activity on the Location of the Plasmapause as Measured by OGO 5," J. Geophys. Res. 75, 50 (1970).
- DeForest, S. E. and C. E. McIlwain, "Plasma Clouds in the Magnetosphere," J. Geophys. Res. 76, 3587 (1971).
- DeForest, S. E., "Spacecraft Charging at Synchronous Orbit," J. Geophys. Res. 77, 651 (1972).
- DeForest, S. E., Electrostatic Potentials Developed by ATS-5, Photon and Particle Interactions with Surfaces in Space, pp. 263-276, D. Reidel Publishing Company, Dordrecht, Netherlands (1973).
- Konradi, A., C. L. Semar and T. A. Fritz, "Substorm-Injected Protons and Electrons and the Injection Boundary Model," J. Geophys. Res. 80, 543 (1975).
- Lezniak, T. W. and J. R. Winkler, "Experimental Study of the Magnetospheric Motions and the Acceleration of Energetic Electrons During Substorms," J. Geophys. Res. 75, 7075 (1971).
- Mauk, B. and C. E. McIlwain, "Correlation of K_p with the Substorm-Injected Plasma Boundary," J. Geophys. Res. 79, 3193 (1974).
- McIlwain, C. W., Plasma Convection in the Vicinity of the Geo-synchronous Orbit, in Earth's Magnetospheric Processes, D. Reidel Publishing Company, Dordrecht, Netherlands (1972).
- McIlwain, C. E., Auroral Electron Beams Near the Magnetic Equator, in Physics of the Hot Plasma in the Magnetosphere, edited by B. Hultquist and L. Stenflo, Plenum, New York (1975).
- McPherson, D. A., D. P. Cauffman and Capt. W. Schober, AIAA 13th Aerospace Meeting, January 1975.
- Meulenberg, A., "Evidence for a New Discharge Mechanism for Dielectrics in a Plasma," COMSAT Laboratories (1976).

- Reasoner, D. L., W. Lennartsson and C. R. Chappell, "The Relationship Between the ATS-6 Spacecraft Charging Occurrences and Warm Plasma Encounters," AIAA/AGU Proceedings on Spacecraft Charging, December 1975.
- Rosen, A., "Spacecraft Charging: Environment Induced Anomalies," AIAA Paper 75-91, AIAA 13th Aerospace Sciences Meeting, Pasadena, California, January 20-22, 1975.
- Scarf, F. L. and R. W. Fredricks, "Findings Regarding Correlation of Satellite Anomalies with Magnetospheric Substorms," TRW Systems Group, February 1972.
- Shaw, R. R., "Electrical Discharges Caused by Satellite Charging at Synchronous Altitudes," Orbital Data Analysis Report No. 5078-01, July 1974.
- Stevens, J. N., R. R. Lovell and V. Gore, "Spacecraft Charging Investigation," NASA Technical Memorandum, Lewis Research Center, NASA TM X-71795 (1975).
- Vasyliunso, V. M., "A Survey of Low Energy Electrons in the Evening Sector of the Magnetosphere with OGO 1 and OGO 3," J. Geophys. Res. 73, 2839 (1968).
- Whipple, E. C., "Observation of Photoelectrons and Secondary Electrons Reflected from a Potential Barrier in the Vicinity of ATS-6," J. Geophys. Res. 81, 715 (1976).

APPENDIX A DESCRIPTION OF ATS-5 SPECTROGRAMS

FORMAT

The spectrograms are produced in pairs: one showing the spectra from the perpendicular proton and the perpendicular electron analyzers and one showing the spectra from the parallel proton and electron analyzers. They are labeled by a large \perp or \parallel on the middle left side. The proton part is always below the electron part. The day of the year (January 1 equals day 1) and year is given at the bottom. The month, day in month, and year are also given at the left just above the \perp or \parallel label. The times at the beginnings and ends of the spectrograms can be arbitrarily set, and can cover any desired time span. Time scales covering as little as 10 minutes and as great as 4 days have been used. When more than one day is encompassed, either negative hours or hours greater than 24 are used to prevent any ambiguity. Grey scales are located at the right. Six different integrals are plotted in grey coded bands in the upper part along with magnetic field quantities. At the very top are two data quality indicators.

GREY SCALE INTERPRETATION

The primary value of spectrograms is their ability to reveal patterns in the energy-time plane. The determination of actual flux levels from them is of secondary importance. For this reason, and because of the loss in time resolution, the option which produces a coded pattern with which accurate flux values can be obtained is now rarely used. Color coding also permits accurate values to be obtained, but is more expensive than grey coding. In the present case, color is reserved for adding another dimension: by superimposing the perpendicular and parallel spectrograms with color filters limiting each to one-half of the visible spectrum, the energy and time

dependence of the pitch angle anisotropies are clearly displayed as patterns of different shades of color.

Should one desire to estimate the flux at a given point on a spectrogram, first locate the corresponding level on the grey scale at the lower right and determine the value of "G" on the scale marked 0 to 3. The differential energy flux in $\text{eV/cm}^2 \text{ sec sr eV}$ is then given by

$$(10^G - 1) 10^{b+4.367}$$

where b is given by "EL" in the lower left corner of the spectrogram for the electron fluxes or "PR" for the proton fluxes. The value of "ST" in the lower left corner gives the change in G between each of the 33 discrete grey levels available.

One option available is to let the grey scale recycle repeatedly instead of simply saturating. This option with a small value of "ST" is used to reveal small variations over a wide dynamic range of fluxes.

ENERGY SCALES

The computer program which generates the spectrograms can utilize any arbitrary function of energy for the energy scales for exhibiting all or any part of the measured spectra. The entire range from 50 eV to 50 keV is usually plotted with one of the two types of scales:

1. Logarithmic with 50 eV at the bottom for both protons and electrons.
2. Proportional to $1/(E + 3 \text{ keV})$ with the electron part inverted and sharing the same point with the protons at zero energy. The bias of 3 keV was arbitrarily chosen to give a good presentation of the 50 eV to 50 keV energy range. If the scale, S , is taken to be 0.0 at infinite proton energy, 1.0 at zero electron and proton

energy and 2.0 at infinite electron energy, then

$$S = \frac{E(1-q) + 3 \text{ keV}}{E + 3 \text{ keV}}$$

where E is the particle energy in keV,

$$q = \pm 1$$

depending on the sign of the particle's charge. Note that at low energies, $S \approx 1 + qE/3 \text{ keV}$. Time tic marks are located at $S = 0, 1, \text{ and } 2$. The extrapolation of dispersion curves back to the time marks (at $S = 0 \text{ or } 2$) yields the time infinite energy particles would have arrived, and therefore, the time of the event responsible for the dispersing particles. The slopes of the high energy parts of dispersion curves give a measure of the distance of the satellite from the regions in which the particles were perturbed, but it is apparently necessary to include electric field effects to obtain useful accuracy.

SUBSIDIARY DATA

A number of useful quantities are given in the lower left hand corner.

The analyzers in the "master" and "mate" channels are identified by numbers following "MASTR" and "MATE" according to the scheme:

1. perpendicular electron analyzer
2. perpendicular proton analyzer
3. parallel electron analyzer
4. parallel proton analyzer

TA = averaging time for the spectra in minutes

TS = time between spectral averages in minutes

TM = averaging time for the magnetic data in minutes

The seven bit command word is given immediately below "COMMAND". The first three bits give the channel assignments and are therefore redundant to the master and mate identifications given above. Bits 4 and 5 specify the operating mode according to the scheme:

bit	4	5	Mode
	0	0	track-scan
	0	1	single step scan only
	1	0	track only
	1	1	double step scan only

Bits 6 and 7 not set to zero correspond to other modes which are rarely used.

"ST", "EI.", and "PR" are described above.

"PSNG" specifies the quantity being plotted in the spectrogram according to the scheme:

1. differential energy flux.
2. differential number flux.
3. ratios of the flux averaged over "TS" minutes to the flux averaged over the previous "TA" - "TS" minutes.
4. ratios of adjacent energy steps.

Options other than the first are used only in special studies. If the option to make the background black rather than white has been used, then "PSNG" will be negative. A black background is preferred for slides that are to be projected.

MAGNETIC FIELD

Data from the ATS-5 magnetometer have been kindly supplied by T. Skillman of the Goddard Space Flight Center and are plotted above the spectral data along with lines at 0, 50, 100, and 150 gammas. The data are not corrected for the effects of time changes in the spacecraft current systems. These perturbations can be as large as 15 gammas. The absolute value of the magnetic field component parallel and perpendicular to the spin axis is given by the darker and lighter points respectively (and usually the upper and lower respectively) with the spectrograms of the perpendicular analyzers. The perpendicular component is obtained using only the coarse (33 gamma step size) data and is thus uncertain by at least ± 10 gammas. Most of the scatter in this component is due to using only the coarse data.

The magnitude of the field and the angle of the field to the spin axis are given by the lighter and darker points respectively (and usually the upper and lower respectively) with the spectrograms of the parallel analyzers. The angle to the spin axis is given in degrees. Both the magnitude and angle are subject to the additional uncertainties in the perpendicular component.

INTEGRALS

Above and below the magnetometer data are six strips in which various quantities are logarithmically encoded in a grey scale such that a ratio of about 2000 to 1 is covered in going from black to white.

In the 1st, 2nd, 3rd, and 5th strips, the following integrals from the perpendicular and parallel analyzers are plotted with perpendicular and parallel spectra respectively:

<u>Label</u>	<u>Quantity</u>	<u>Value at Midpoint of Grey Scale</u>
PR N DEN	proton number density	1.0 proton/cm ³
EL N DEN	electron number density	1.0 electron/cm ³
E E FLX	electron energy flux	1.0 erg/cm ² sec sr
PR E FLX	proton energy flux	1.0 erg/cm ² sec sr

In the 4th strip labeled "PRESSURE", the total perpendicular electron plus proton pressure is plotted with the spectrogram of the perpendicular detectors with a midpoint value of 10^{-8} dynes/cm². In the 4th strip with the parallel data, the magnetic field pressure is plotted with a midpoint value of 2×10^{-8} dynes/cm².

In the 6th strip (near the top) labeled "PAR NFLX" the parallel electron number flux is plotted with the spectrogram of the perpendicular detectors with a midpoint value of 10^8 electron/cm² sec sr. In the top strip with the parallel data, the parallel proton number flux is plotted with a midpoint value of 10^7 protons/cm² sec sr.

DATA QUALITY INDICATORS

At the very top of the spectrogram is a line which increases in breadth with an increasing percentage of missing data. In the track-scan mode, about 73 percent of the potential data is usually "missing" since 75 percent of the time is spent tracking a peak in a narrow spectral region. When data are not available, previous data are used unless the time gap is greater than 30 minutes in which case the spectrograms are left blank. The top line, of course, goes to its maximum width during gaps in the data. The magnetometer data are not plotted during such gaps. Care must be exercised to avoid false interpretations of spectrograms containing data padded in from an earlier time.

Just below the missing data line is a line which becomes darker and thicker with increasing numbers of bad points. Often the quality of data transmission is such that over one percent of the data points are bad. Even the highest quality data being obtained are usually incorrect more than 0.1 percent of the time. This corresponds to over 800 bad data points per day of data. A data editing scheme has been devised which eliminates approximately 99 percent of the bad data and rarely removes data later judged to be good. Failure to remove bad points usually occurs when the false data happen to form a self-consistent context. This type of failure to edit properly is responsible for the two white areas in the lower right of Figure 4. The bad data indicating line reaches its maximum thickness when there are more than 10 bad points in the four spectra measured during the time covered between averages (equal to "TS").

APPENDIX B
DESCRIPTION OF ATS-5 SPECTRAL AVERAGE PLOTS

FORMAT

The spectra from the two electron and the two proton analyzers are plotted in adjoining log-log plots with borders at 30 eV and 100 keV. The range of the vertical scale is variable and depends upon whether the differential energy flux or the differential number flux is being plotted. The parallel electron spectrum is shifted down by a factor of 100 (i.e., $\times 0.01$) and the perpendicular proton spectrum is shifted up by a factor of 100 (i.e., $\times 100$). These shifts usually provide adequate separation and place the perpendicular spectra above the parallel spectra in each case.

The universal time at the midpoint of the data being averaged over is given twice at the top of the plots. On the left hand (electron) side, the time is given in hours, minutes, tenths of minute, month, day of month, and year, and is followed by the averaging time in minutes. On the right hand (proton) side, the time is given in hours (to the nearest one thousandth of an hour), day of year (January 1 equals day 1), and the year. The local time in hours and minutes is sometimes added on the left side.

Also given near the top are four different integrals over each of the four spectra. The integrals for the perpendicular data are given above the integrals for the parallel data. Following two of these sets of integrals will be found the words "MASTER" and "MATE" to indicate which analyzers are occupying the two non-subcommutated data channels. When in the track mode, the "master" analyzer controls the peak tracking system. The operating mode (for example, the scan only or track-scan modes) of the system is given on the right side.

ERROR BARS

Vertical bars which encompass the middle 68.26 percent of the Poisson distribution are given at each data point. At high rates, they correspond to plus and minus one standard deviation. The approximation $N_{\pm} = N \pm \sqrt{N} (1.0 - 0.17/N)$ is used where N is the total number of counts accumulated at the point.

When in the track-scan mode, there are about four times the number of accumulations at the points near the energy of the peak being tracked than at other energies. Also the spectra from the "MASTER" and "MATE" channels will have about twice the accumulation time as the other two (subcommutated) spectra.

When in the single step scan only mode, every other data point in the subcommutated spectra will be missing. This under-sampling of the spectra can lead to substantial errors in the smooth line drawn through the data points since structure as sharp as the instruments' resolution is frequently observed.

If zero counts are obtained, then the error bar is replaced by a triangle pointing up to the line which is placed at one-half the flux corresponding to one count being accumulated.

If no data are available for a point during the time period being averaged over, then the flux obtained during a preceding time period is inserted. In this case, the error bar is replaced by a triangle pointing down to the data point.

INTEGRALS OVER THE SPECTRA

The four integrals given for each analyzer at the top of the plots are of course intrinsically directional quantities. The parallel cases correspond to pitch angles $\alpha \sim 0$ (α = the angle of the spin vector to the magnetic field vector) and the perpendicular cases correspond to averages over the pitch angle range of $90 \pm \alpha$ degrees. The integrals are taken only over the measured range of 50 eV to 50 keV and are, therefore, lower limits.

The number densities in particles/cm³ are labeled "DEN" and correspond to 4π times the directional number densities in particles/cm³ sr.

The particle pressures in 10^{-9} dynes/cm² are labeled "PRES". They correspond to $8\pi/3$ times the directional energy densities in ergs/cm³ sr. The multiplication by $8\pi/3$ simplifies computation of the total particle pressure perpendicular to the magnetic field vector.

The directional energy fluxes in ergs/cm² sec sr are labeled "E FLX".

The directional number fluxes in 10^6 particles/cm² sec sr are labeled "N FLX".

APPENDIX C
CONSTRUCTION OF COMPLETE SPECTRA

The data presented in the main report can be combined with experience gained in the ATS-6 program to construct a most probable set of total spectra. This consists of adding other components (estimated for ATS-6 data) to the measured fluxes.

Let dN_{ℓ} be the number density of particles of species ℓ with energies in the range between E and $E + dE$, and directions in the range between $\vec{\Omega}$ and $\vec{\Omega} + d\vec{\Omega}$. We represent dN_{ℓ} by the sum

$$dN_{\ell} = dN_{\ell, \text{cold}} + dN_{\ell, \text{iso}} + dN_{\ell, \text{FA}}$$

where $dN_{\ell, \text{cold}}$ and $dN_{\ell, \text{FA}}$ represent the unmeasured cold and field aligned components of the total distribution. The measured spectrum is isotropized to construct $dN_{\ell, \text{iso}}$, so that we may write

$$dN_{\ell, \text{iso}} = \sqrt{m_{\ell}/2} E^{-3/2} dj, \quad 50 \text{ eV} \leq E \leq 50 \text{ keV}$$

where dj represents the measured energy flux for either the parallel or perpendicular detectors, or may be some weighted combination of the two.

The unknown cold and field aligned components are represented as

$$dN_{\ell, \text{cold}} = \frac{N_{\ell, \text{cold}}}{2} \left(\frac{1}{\pi k T_{\ell, \text{cold}}} \right)^{3/2} \sqrt{E} e^{-E/k T_{\ell, \text{cold}}} dE d\Omega$$

PRECEDING PAGE BLANK-NOT FILMED

$$dN_{\ell, FA} = \frac{N_{\ell, FA}}{2} \left(\frac{1}{\pi k T_{\ell, FA}} \right)^{3/2} \sqrt{E} \\ \cdot e^{-[(E - 2\sqrt{EE_0} \cos \alpha + E_0)/kT_{\ell, FA}]} dEd\Omega$$

where α is the pitch angle.

The unknown quantities in these equations are the densities and the temperatures of the cold and field aligned components, and the energy E_0 in the field aligned component. In choosing the unknown parameters, charge neutrality should be observed, i.e.,

$$\sum_{\ell} q_{\ell} N_{\ell} = 0$$

where

$$N_{\ell} = N_{\ell, \text{cold}} + N_{\ell, \text{iso}} + N_{\ell, \text{FA}} .$$

The temperature chosen for T_{cold} should probably be a few volts to a few tens of volts. The density of the cold component can be estimated from Reasoner's work (1975) and Figure 2.3 to be about $30/\text{cm}^3$.

The form for the field-aligned component was derived from the assumption of a displaced Maxwellian plasma falling through a potential well of ϵ_0 . If we assume that these particles have their origins in the ionosphere, then we can estimate $100 < \epsilon_0 < 10,000$ electron volts and that kT_{FA} is a few electron volts. The density is more difficult to estimate, but a few percent of the ambient would be consistent with measurements.

Note that the field-aligned component is probably only important for the study of differential charging since it only influences the charge state at locations where the bulk of the plasma is excluded (i.e., in properly oriented cavities on the vehicle).

APPENDIX D

DATA

Spectrogram for 2/1/70 - Moderate activity.

5.00
4.00
3.00
2.00
1.00
0.00

Spectrogram for 3/14/71 - Eclipse and sunlight charging.

Spectrogram for 12/3/70 - Pre-midnight substorm.

Spectrogram for 3/18/70 - Post-midnight substorm.

Spectrogram for 2/12/70 - Quiet day.

5.00
4.00
3.00
2.00
1.00
0.00

Spectrogram for 2/11/70 - Intense localized post midnight substorm.

5.00
4.00
3.00
2.00
1.00
0.00

5.00
4.00
3.00
2.00
1.00
0.00

DISTRIBUTION LIST

DEPARTMENT OF DEFENSE

Commander in Chief
U.S. European Command, JCS
ATTN: ECJ6-P

Director
Defense Advanced Rsch. Proj. Agency
ATTN: NMR

Director
Defense Civil Preparedness Agency
ATTN: TS, AED

Defense Communication Engineer Center
ATTN: Robert Rostron
ATTN: Code 1035, Nicholas A. Sica
ATTN: Code R103P

Director
Defense Communications Agency
ATTN: Code 800, Fred Bond
ATTN: B205, George B. Adkins
ATTN: Code 430
ATTN: Code 930, Monte I. Burgett, Jr.
ATTN: NMR

Defense Documentation Center
Cameron Station
12 cy ATTN: TC

Director
Defense Intelligence Agency
ATTN: DB-4C, Edward O'Farrell

Director
Defense Nuclear Agency
ATTN: DDST
ATTN: STSI, Archives
ATTN: RATN
2 cy ATTN: RAEV
3 cy ATTN: STTL, Tech. Library

Commander
Field Command
Defense Nuclear Agency
ATTN: FCLMC
ATTN: FCPR

Director
Interservice Nuclear Weapons School
ATTN: Document Control

Director
Joint Strat. Tgt. Planning Staff JCS
ATTN: JLTW-2

Chief
Livermore Division, Fld. Command DNA
Lawrence Livermore Laboratory
ATTN: FCPRL

National Communications System
Office of the Manager
ATTN: NCS-TS, Charles D. Bodson

DEPARTMENT OF DEFENSE (Continued)

Director
National Security Agency
ATTN: Orland O. Van Gunten, R-425

OJCS/J-3
ATTN: J-3, RDTA Br., WWMCCS Plans Div.

OJCS/J-5
ATTN: J-5, Plans & Policy R&D Div.

DEPARTMENT OF THE ARMY

Director
BMD Advanced Tech. Ctr.
ATTN: RDMH-O, F. M. Hoke

Commander
BMD System Command
ATTN: SSC-TEN, L. L. Dickerson
ATTN: BDMSC-TEN, Noah J. Hurst

Dep. Chief of Staff for Rsch. Dev. & Acq.
ATTN: DAMA-CSM-N, LTC G. Ogden

Commander
Harry Diamond Laboratories
ATTN: DRXDO-TR, Edward E. Conrad
ATTN: DRXDO-RB, Joseph R. Miletta
ATTN: DRXDO-RCC, John E. Thompsons
ATTN: DRXDO-RCC, John A. Rosado
ATTN: DRXDO-RCC, Raine Gilbert
ATTN: DRXDO-EM, Robert E. McCoskey
ATTN: DRXDO-RBH, Stewart S. Graybill
ATTN: DRXDO-RC, Robert B. Oswald, Jr.
ATTN: DRXDO-TI, Tech. Lib.
ATTN: DRXDO-EM, George Merkel
ATTN: DRXDO-EM, R. Bostak
ATTN: DRXDO-EM, John Bombardt
ATTN: DRXDO-NP, Francis N. Wimenitz

Commander
Picatinny Arsenal
ATTN: SARPA-ND-C-E, Amina Nordio
ATTN: SARPA-FR-E, Louis Avrami
ATTN: SMUPA-TN, Burton V. Franks
ATTN: SARPA-TS-I-E, Abraham Grinoch
ATTN: SARPA-ND-N-D
ATTN: SMUPA-ND-W

Commander
Redstone Scientific Information Ctr.
3 cy ATTN: Chief, Documents

Commander
TRASANA
ATTN: ATAA-EAC, Francis N. Winans

Director
U.S. Army Ballistic Research Labs.
ATTN: DRXBR-AM, Donald Eccleshall

Chief
U.S. Army Communications Sys. Agency
ATTN: SCCM-AD-SV, Library

PRECEDING PAGE BLANK-NOT FILMED

DEPARTMENT OF THE ARMY (Continued)

Commander
U.S. Army Electronics Command
ATTN: DRSEL-TL-ME, M. W. Pomerantz
ATTN: DRSEL-NL-O-4
ATTN: DRSEL-GG-TD, W. R. Werk
ATTN: DRSEL-TL-IR, Edwin T. Hunter
ATTN: DRSEL-PL-ENV, Hans A. Bomke

Division Engineer
U.S. Army Engineer Div., Missouri Rvr.
ATTN: MRDED-MC, Floyd L. Hazlett

Commander-In-Chief
U.S. Army Europe and Seventh Army
ATTN: ODCSE-E, AEAGE-PI

Commandant
U.S. Army Field Artillery School
ATTN: ATSFA-CTD-ME, Harley Moberg

Commander
U.S. Army Foreign Science & Tech. Ctr.
ATTN: DRXST-ISI, Daniel W. McCallum, Jr.

Commander
U.S. Army Mat. & Mechanics Rsch. Ctr.
ATTN: DRXMR-HH, John F. Dignam

Commander
U.S. Army Materiel Dev. & Readiness Cmd.
ATTN: DRCDE-D, Lawrence Flynn

Commander
U.S. Army Missile Command
ATTN: DRCPM-PE-EG, William B. Johnson

Commander
U.S. Army Test and Evaluation Comd.
ATTN: DRSTE-NB, Russell R. Galasso
ATTN: DRSTE-EL, Richard I. Kolchin

DEPARTMENT OF THE NAVY

Chief of Naval Operations
ATTN: Robert A. Blaise
ATTN: Code 604C3, Robert Piacesi

Chief of Naval Research
ATTN: Henry Mullaney, Code 427
ATTN: Thomas P. Quinn, Code 464

Commander
Naval AIR Systems Command
ATTN: AIR-5202, Muriel L. Scarbough

Commander
Naval Electronic Systems Command
ATTN: PME 117-21
ATTN: PME 117-T
ATTN: Code 5032, Charles W. Neill

Commander
Naval Electronics Laboratory Center
ATTN: Code 3100, E. E. McCown

Commanding Officer
Naval Intelligence Support Ctr.
ATTN: NISC-611

DEPARTMENT OF THE NAVY (Continued)

Director
Naval Research Laboratory
ATTN: Gerald Cooperstein, Code 7770
ATTN: Jack D. Brown, Code 7701
ATTN: James C. Ritter, Code 6631
ATTN: Doris R. Folen, Code 2627
ATTN: Emanuel L. Brancato, Code 4004
ATTN: Jay P. Boris, Code 7706

Commander
Naval SEA Systems Command
ATTN: SEA-9931, Samuel A. Barham
ATTN: SEA-9931, Riley B. Lane

Commander
Naval Ship Engineering Center
ATTN: Code 6174D2, Edward F. Duffy

Commander
Naval Surface Weapons Center
ATTN: Code WA501, Navy Nuc. Prgms. Off.
ATTN: Code WA50, John H. Malloy
ATTN: Code 431, Edwin R. Rathburn
ATTN: Code WX21, Tech. Lib.
ATTN: Code 431, Edwin B. Dean

Commander
Naval Telecommunications Command
ATTN: N-7, LCDR Hall

Commander
Naval Weapons Center
ATTN: Code 533, Tech. Lib.

Commanding Officer
Naval Weapons Evaluation Facility
ATTN: Lawrence R. Oliver

Commanding Officer
Naval Weapons Support Center
ATTN: Code 7024, James Ramsey
ATTN: Code 70242, Joseph A. Munarin

Director
Strategic Systems Project Office
ATTN: NSP-230, David Gold
ATTN: SP 2701, John W. Pitsenberger
ATTN: NSP-2431, Gerald W. Hoskins

DEPARTMENT OF THE AIR FORCE

Commander
ADC/DE
ATTN: DEEDS, Joseph C. Brannan

AF Geophysics Laboratory, AFSC
ATTN: Charles Pike
ATTN: LQR, Edward A. Burke

AF Institute of Technology, AU
ATTN: Library AFIT Bldg. 640, Area B.

AF Materials Laboratory, AFSC
ATTN: Library

DEPARTMENT OF THE AIR FORCE (Continued)

AF Weapons Laboratory, AFSC

ATTN: SAB
ATTN: ELC
ATTN: EL, John Darrah
ATTN: ELA
ATTN: SAS
ATTN: SUL
ATTN: EL

AFTAC

ATTN: TFS, Maj Marion F. Schneider

Commander
ASD

ATTN: 4950 Test W/TZMH, Peter T. Marth
ATTN: ASD-YH-EX, Lt Col Robert Leverette

Headquarters

Electronic Systems Division, (AFSC)
ATTN: XRRT
ATTN: DCD/SATIN IV

Commander

Foreign Technology Division, AFSC
ATTN: ETET, Capt Richard C. Husemann

HQ USAF/RD

ATTN: RDQPN

Commander

Rome Air Development Center, AFSC
ATTN: P. Gianino

SAMSO/DY

ATTN: DYS, Maj Larry A. Darda
ATTN: DYS, Capt Wayne Schober

SAMSO/IN

ATTN: IND, Maj Darryl S. Muskin

SAMSO/MN

ATTN: MNNG, Capt David J. Strobel
ATTN: MNNG
ATTN: MNNH, Capt Michael V. Bell
ATTN: MNNH, Capt William M. Carra

SAMSO/SK

ATTN: SKF, Peter H. Stadler

SAMSO/XR

ATTN: XRS

Commander in Chief

Strategic Air Command

ATTN: XPFS, Capt Deraad
ATTN: NRI-STINFO Library

ENERGY RESEARCH & DEVELOPMENT ADMINISTRATION

University of California

Lawrence Livermore Laboratory

ATTN: Tech. Info. Dept. L-3
ATTN: Hans Kruger, L-96
ATTN: Frederick R. Kovar, L-31
ATTN: Donald W. Vollmer, L-154
ATTN: Donald J. Meeker, L-545
ATTN: Louis F. Wouters, L-48
ATTN: William J. Hogan, L-531
ATTN: Walter W. Hofer, L-24

ENERGY RESEARCH & DEVELOPMENT ADMINISTRATION
(Continued)

Los Alamos Scientific Laboratory

ATTN: Doc. Con. for Bruce W. Noel
ATTN: Doc. Con. for Donald R. Westervelt
ATTN: Doc. Con. for J. Arthur Freed
ATTN: Doc. Con. for John S. Malik
ATTN: Doc. Con. for Marvin M. Hoffman
ATTN: Doc. Con. for P. W. Keaton
ATTN: Doc. Con. for Richard L. Wakefield
ATTN: Doc. Con. for Reports Lib.

Sandia Laboratories

Livermore Laboratory
ATTN: Doc. Con. for Theodore A. Dillin

Sandia Laboratories

ATTN: Doc. Con. for 3141, Sandia Rpt. Coll.
ATTN: Doc. Con. for Elmer F. Hartman
ATTN: Doc. Con. for Org. 2110, J. A. Hood
ATTN: Div. 5231, James H. Renken
ATTN: Doc. Con. for Org. 9353, R. L. Parker
ATTN: Doc. Con. for Org. 2315, James E. Gover
ATTN: Doc. Con. for 5240, Gerald Yonas

OTHER GOVERNMENT AGENCIES

Administrator

Defense Electric Power Admin.
ATTN: Document Control

Department of Commerce

National Bureau of Standards
ATTN: Judson C. French

Department of Transportation

Federal Aviation Administration
ATTN: Fredrick S. Sakate, ARD-350

NASA

ATTN: Code Res. Guid. Con. & Info. Sys.

NASA

Lewis Research Center
ATTN: Library
ATTN: Robert R. Lovell, MS 54-3

DEPARTMENT OF DEFENSE CONTRACTORS

Aerojet Electro-Systems Co., Div.

Aerojet-General Corporation
ATTN: Thomas D. Hanscome

Aeromutronic Ford Corporation

Western Development Laboratories, Div.
ATTN: J. T. Mattingley, MS X22
ATTN: Donald R. McMorrow, MS G30
ATTN: Library

Aerospace Corporation

ATTN: Library
ATTN: Frank Hei
ATTN: William W. Willis
ATTN: Norman D. Stockwell
ATTN: V. Josephson
ATTN: Irving M. Garfunkel
ATTN: C. B. Pearlston
ATTN: Julian Reinheimer
ATTN: J. Benveniste

DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

Aveo Research & Systems Group
ATTN: Research Lib. A830, Rm. 7201

Battelle Memorial Institute
ATTN: Robert H. Blazek

The BDM Corporation
ATTN: T. H. Neighbors

The Bendix Corporation
ATTN: George Gartner

The Boeing Company
ATTN: Donald W. Egelkroun, M S 2R-00
ATTN: Aerospace Library
ATTN: David L. Dye, M S 87-75
ATTN: Howard W. Wicklein, M S 17-11
ATTN: Kenneth D. Friddell, M S 2R-00
ATTN: Robert S. Caldwell, 2R-00

Booz-Allen and Hamilton, Inc.
ATTN: Raymond J. Chrisner

Brown Engineering Company, Inc.
ATTN: John M. McSwain, M S 18

University of California at San Diego
ATTN: Sherman deForest

Charles Stark Draper Laboratory, Inc.
ATTN: Paul R. Kelly
ATTN: Richard G. Haltmaier
ATTN: Kenneth Fertig

Computer Sciences Corporation
ATTN: Barbara F. Adams

Computer Sciences Corporation
ATTN: Alvin T. Schiff
ATTN: Richard H. Dickhaut

Cutler-Hammer, Inc.
ATTN: Central Tech. Files, Anne Anthony

Dr. Eugene P. dePlomb
ATTN: Eugene P. dePlomb

The Dikewood Corporation
ATTN: Tech. Lib.
ATTN: K. Lee

E-Systems, Inc.
Clemson Division
ATTN: Library 8-50100

Hillman, Inc.
ATTN: Hilda H. Hoffman
ATTN: Technical Library

Jordan & Associates Physics Consultants
ATTN: Thomas M. Jordan

Leeds & Northrup and Instrument Corp.
ATTN: Engg. for D-233, David K. Myers

McDonnell Douglas Corporation
ATTN: Charles W. Thompson

DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

General Electric Company
Space Division
ATTN: Larry I. Chasen
ATTN: Joseph C. Peden, VFSC, Rm. 4230M
ATTN: Daniel Edelman
ATTN: John L. Andrews

General Electric Company
Re-entry & Environmental Systems Div.
ATTN: Robert V. Benedict

General Electric Company
TEMPO-Center for Advanced Studies
ATTN: John D. Illgen
ATTN: William McNamara
ATTN: Royden R. Rutherford
ATTN: DASIAc

General Electric Company
Aircraft Engine Group
ATTN: John A. Ellerhorst, E 2

General Electric Company
Aerospace Electronics Systems
ATTN: W. J. Patterson, Drop 233
ATTN: Charles M. Hewison, Drop 624

General Research Corporation
ATTN: John Isc, Jr.

Georgia Institute of Technology
Georgia Tech. Research Institute
ATTN: R. Curry

Goodyear Aerospace Corporation
Arizona Division
ATTN: B. Manning

Grumman Aerospace Corporation
ATTN: Jerry Rogers, Dept. 533

GTE Sylvania, Inc.
Electronics Systems Grp-Eastern Div.
ATTN: Charles A. Thornhill, Librarian
ATTN: Leonard L. Blaisdell

GTE Sylvania, Inc.
ATTN: H & V Group, Mario A. Nurefora
ATTN: David P. Flood
ATTN: Herbert A. Ullman
ATTN: ASM Dept., S. E. Perlman
ATTN: Comm. Syst. Div., Emil P. Motchok

Hazeltine Corporation
ATTN: Tech. Info. Ctr., M. Waite

Hercules, Incorporated
ATTN: 100K-26-W, R. Woodruff

Honeywell Incorporated
Government and Aeronautical
Products Division
ATTN: Ronald R. Johnson, A1622

Honeywell Incorporated
Aerospace Division
ATTN: Harrison H. Noble, M S 725-5A
ATTN: Richard B. Reinecke, M S 725-5

DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

Honeywell Incorporated
Radiation Center
ATTN: Technical Library

Hughes Aircraft Company
Centinela and Teale
ATTN: Kenneth R. Walker, MS D157
ATTN: John B. Singletary, MS 6-D133
ATTN: Billy W. Campbell, MS 6-E-110
ATTN: Tech. Lib.

Hughes Aircraft Company
Space Systems Division
ATTN: William W. Scott, MS A1080
ATTN: Edward C. Smith, MS A620

IBM Corporation
ATTN: Frank Frankovsky

IIT Research Institute
ATTN: Irving N. Mindel
ATTN: Jack E. Bridges

Institute for Defense Analyses
ATTN: IDA Librarian, Ruth S. Smith

Intl. Tel. & Telegraph Corporation
ATTN: Alexander T. Richardson

Ion Physics Corporation
ATTN: Robert D. Evans

IRT Corporation
ATTN: Dennis Swift
ATTN: James A. Naber
ATTN: R. L. Mertz
ATTN: Terry Flanagan

Jaycor
ATTN: Andrew Woods
ATTN: Eric P. Weenas

Jaycor
ATTN: Catherine Turesko
ATTN: Robert Sullivan

Johns Hopkins University
Applied Physics Laboratory
ATTN: Peter E. Partridge

Kaman Sciences Corporation
ATTN: Albert P. Bridges
ATTN: W. Foster Rich
ATTN: Donald H. Bryce
ATTN: John R. Hoffman
ATTN: Library
ATTN: Walter E. Ware

Litton Systems, Inc.
Guidance & Control Systems Division
ATTN: Val J. Ashby, MS 67
ATTN: John P. Retzler
ATTN: R. W. Maughmer

Lockheed Missiles & Space Co., Inc.
ATTN: George F. Heath, Dept. 81-14
ATTN: Benjamin T. Kimura, Dept. 81-14
ATTN: Edwin A. Smith, Dept. 85-85
ATTN: Samuel I. Taimuty, Dept. 85-85
ATTN: Philip J. Hart, Dept. 81-14

DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

Lockheed Missiles and Space Company
ATTN: Clarence F. Kooi, Dept. 52-11

LTV Aerospace Corporation
Vought Systems Division
ATTN: Charles H. Coleman

LTV Aerospace Corporation
Michigan Division
ATTN: Tech. Lib.
ATTN: James F. Sanson, B-2

M.I.T. Lincoln Laboratory
ATTN: Jean L. Ryan
ATTN: Leona Loughlin, Librarian A-082

Martin Marietta Aerospace
Orlando Division
ATTN: Jack M. Ashford, MP-537
ATTN: Mona C. Griffith, Lib., MP-30
ATTN: William W. Mras, MP-413

Martin Marietta Corporation
Denver Division
ATTN: J. E. Goodwin, MAIL 0452
ATTN: Ben T. Graham, MS PO-454

Maxwell Laboratories, Inc.
ATTN: Victor Fargo

McDonnell Douglas Corporation
ATTN: Stanley Schneider
ATTN: Paul H. Duncan, Jr.

Mission Research Corporation
ATTN: Roger Stettner
ATTN: Daniel F. Higgins
ATTN: Conrad L. Longmire
ATTN: William C. Hart

Mission Research Corporation
ATTN: David E. Merewether
ATTN: Larry D. Scott

Mission Research Corporation-San Diego
ATTN: V. A. J. Van Lint

The Mitre Corporation
ATTN: Theodore Jarvis

Motorola Incorporated
Semiconductor Group
ATTN: James R. Black

Motorola, Inc.
Government Electronics Division
ATTN: Tech. Info. Ctr., A. J. Kordalewski

Northrop Corporation
Electronic Division
ATTN: John M. Reynolds
ATTN: Vincent R. DeMartino
ATTN: Boyce T. Ahlport

Northrop Corporation
Northrop Research and Technology Ctr.
ATTN: Library
ATTN: David N. Pocock
ATTN: Orlie L. Curtis, Jr.

DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

Northrop Corporation
Electronic Division
ATTN: Joseph D. Russo

Physics International Company
ATTN: Doc. Con. for John H. Huntington
ATTN: Doc. Con. for Charles H. Stallings
ATTN: Doc. Con. for Ian D. Smith
ATTN: Doc. Con. for Philip W. Spence

Pulsar Associates, Inc.
ATTN: Carleton H. Jones, Jr.

R & D Associates
ATTN: William R. Graham, Jr.
ATTN: William J. Karzas
ATTN: Leonard Schlessinger
ATTN: S. Clay Rogers
ATTN: Richard R. Schaefer

The Rand Corporation
ATTN: Cullen Crain

Raytheon Company
ATTN: Gajanan H. Joshi, Radar Sys. Lab.

Raytheon Company
ATTN: Harold L. Flescher

RCA Corporation
Government & Commercial Systems
Astro Electronics Division
ATTN: George J. Brucker

RCA Corporation
David Sarnoff Research Center
ATTN: K. H. Zaininger

RCA Corporation
Government & Commercial Systems
Missile & Surface Radar Division
ATTN: Eleanor K. Daly
ATTN: Andrew L. Warren

RCA Corporation
Camden Complex
ATTN: F. Van Keuren, 13-5-2

Research Triangle Institute
ATTN: Sec. Officer for Eng. Div., Mayrant
Simons, Jr.

Rockwell International Corporation
ATTN: N. J. Rudie, FA53
ATTN: Donald J. Stevens, FA70
ATTN: J. Spetz
ATTN: L. H. Pinson, FB41
ATTN: George C. Messenger, FB61
ATTN: James E. Bell, HA10

Rockwell International Corporation
ATTN: John F. Roberts

Rockwell International Corporation
ATTN: T. B. Yates

DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

Sanders Associates, Inc.
ATTN: I-6270, R. G. Despathy, SR P E
ATTN: Moe L. Aitel, NCA 1-3236
ATTN: James L. Burrows

Science Applications, Inc.
Huntsville Division
ATTN: Noel R. Byrn

Science Applications, Inc.
ATTN: J. Roger Hill

Science Applications, Inc.
ATTN: Charles Stevens

Science Applications, Incorporated
ATTN: William L. Chadsey

Sidney Frankel & Associates
ATTN: Sidney Frankel

Simulation Physics, Inc.
ATTN: Roger G. Little

The Singer Company
ATTN: Irwin Goldman, Eng. Management

Sperry Flight Systems Division
Sperry Rand Corporation
ATTN: D. Andrew Schow

Sperry Rand Corporation
ATTN: James A. Inda, MS 41T25

Sperry Rand Corporation
Sperry Division
ATTN: Paul Marraffino
ATTN: Charles L. Craig, EV

Stanford Research Institute
ATTN: Mel Bernstein
ATTN: Setsuo Ddairiki
ATTN: Arthur Lee Whitson
ATTN: Philip J. Dolan

Stanford Research Institute
ATTN: Macpherson Morgan

Sundstrand Corporation
ATTN: Curtin B. White

Systems, Science and Software
ATTN: David A. Meskan

Systems, Science and Software, Inc.
ATTN: Ira Katz
ATTN: Andrew R. Wilson
ATTN: Sherman DeFrost

Systron-Donner Corporation
ATTN: Harold D. Morris

Texas Instruments, Inc.
ATTN: Donald J. Manus, MS 72

Texas Tech. University
ATTN: Travis L. Simpson

DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

TRW Systems Group
One Space Park
ATTN: Jerry I. Lubell
ATTN: Tech. Info. Center, S-1930
ATTN: Aaron H. Narevsky, R1-2144
ATTN: R. K. Plebuch, R1-2078
ATTN: H. H. Holloway, R1-2036
2 cy ATTN: Robert M. Webb, R1-2410

TRW Systems Group
San Bernardino Operations
ATTN: F. B. Fay, 527/710
ATTN: Earl W. Allen
ATTN: J. M. Gorman, 520/114

TRW Systems Group
ATTN: Donald W. Pugsley

DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

United Technologies Corp.
Norden Division
ATTN: Conrad Corda
Westinghouse Electric Corporation
Defense and Electronic Systems Ctr.
ATTN: Henry P. Kalapaca, MS 3525