Mecánica de fluidos

Bogurad Barañski Barañska — Adrián Teixeira de Uña

27 de febrero de 2024

${\bf \acute{I}ndice}$

1.	Ten	na 1: Fundamentos y propiedades de los fluidos	2
	1.1.	Hipótesis de medio continuo	2
	1.2.	Ecuaciones equilibrio termodinámico local	4
	1.3.	Fuerzas y respuestas en sólidos y fluidos	4
		Mojabilidad	8
2.	Tema 2: Cinemática de la partícula fluida		9
	2.1.	Repaso operador nabla	9
	2.2.	Conceptos fundamentales	10
	2.3.	Clasificación flujos	10
		Derivada sustancial, local y convectiva	11
		Movimiento diferencial en torno a un punto	13
		Movimiento de la partícula fluida en una dirección	14
3.	Tema 3: Conservación de la masa		16
	3.1.	Teorema del transporte de Reynolds	16
4.	Ejer	rcicios resueltos	18
	•	Tema 1: Fundamentos y propiedades de los fluidos	18
		Tema 2: Cinemática de la partícula fluida	

1. Tema 1: Fundamentos y propiedades de los fluidos

1.1. Hipótesis de medio continuo

Un fluido se caracteriza por un volumen (V) y una longitud característica (L) donde:

Figura 1: Magnitudes fundamentales de un fluido.

Como el tamaño de una molécula es de $d_0 \approx 10^{-11}~a~10^{-10}m$. Por ello, la longitud característica debe ser mucho mayor que $d_0~(L\gg d_0)$ para así comprender el número suficiente de moléculas y poder estudiar la mecánica de fluidos de manera macroscópica.

Además, la longitud debe ser suficiente para que exista equilibrio termodinámico local y así poder aplicar las ecuaciones de estado:

- \blacksquare Camino libre medio (λ) de interacción por choque entre moléculas.
 - En líquidos: $\lambda \approx d_o$
 - En gases: $\lambda \gg d_o$

Figura 2: Camino libre medio.

En este fluido, es necesario poder medir:

1. <u>Densidad</u>: el diferencial de volumen debe ser una muestra significativa a nivel estadístico.

$$\rho(\vec{r},t) = \lim_{V \to 0} \frac{\Delta m}{\Delta V} = \frac{dm}{dV} \left[\frac{kg}{m^3} \right]$$

- El fluido es un gas si: $\rho \neq cte \rightarrow \rho = f(\vec{r}, t)$
- \blacksquare El fluido es un líquido si: $\rho = cte \rightarrow \rho = f(t)$

Si la función depende del tiempo, se dice que está en forma paramétrica.

■ Peso específico

$$\gamma = \rho g \rightarrow g$$
: campo gravitatorio $\left[\frac{m}{s^2}\right]$

■ Densidad relativa

$$\rho_{rel} = \frac{\rho}{\rho_{ref}}$$

- Líquidos: $\rho_{ref} = \rho_{agua} \approx 10^3 \frac{kg}{m^3}$
- Gases: $\rho_{ref} = \rho_{aire_{CN}} \approx 1 \frac{kg}{m^3}$
- 2. Velocidad:

$$\vec{v}(\vec{r},t) = \lim_{\Delta V \rightarrow 0} \frac{\sum m_i \vec{v_i}}{\sum m_i} \left[\frac{m}{s} \right]$$

3. **Presión**: Es una magnitud absoluta (siempre mayor que 0):

$$P = \frac{d(\vec{F} \cdot \vec{n})}{dS} = \frac{dF_n}{dS}[Pa]$$
$$1bar = 10^5 Pa$$

$$1atm = 101325Pa$$

$$1mmHg = \rho_{Hq}gh = 132,32Pa$$

1mca (metros columna agua) = $\rho_{H_2O}gh = 9.8 \cdot 10^3 Pa$

■ Presión manométrica (P_{man}) : Se mide normalmente con un manómetro diferencial:

$$P_{man} = P - P_{atm} \rightarrow P > P_{atm}$$

■ Presión vacuométrica (P_{vac}): Se mide normalmente con un vacuómetro.

$$P_{vac} = P_{atm} - P \rightarrow P < P_{atm}$$

- Presión de vapor (P_v) : Se refiere al equilibrio de fase líquido gas. Si la presión es menor que la presión de vapor **cavita**.
- Cavitación: Generación de burbujas en el líquido por estar por debajo de la presión de vapor que posteriormente al subir la presión explotan con violencia.

1.2. Ecuaciones equilibrio termodinámico local

En un gas ideal, si las condiciones son subsónicas se cumple que:

$$\frac{P}{\rho} = R_g T \rightarrow R_g \frac{R}{mmr} \rightarrow R = 8.314 \frac{J}{mol K}$$

El fluido está en condiciones subsónicas si:

$$|\vec{v}(\vec{r},t)| < a = \sqrt{\frac{\partial P}{\partial \rho}}\bigg|_{S=cte}$$

■ Ecuación isoentrópica: Procesos rápidos.

$$PV^{\alpha} = cte$$

■ Ecuación isoterma: Procesos lentos.

$$PV = cte$$

1.3. Fuerzas y respuestas en sólidos y fluidos

1. Fuerzas en un fluido:

$$F = f(\Delta \dot{x}) = C\dot{x} \to C$$
: constante de amortiguamiento

2. Tensión tangencial o de cizalladura (τ) :

$$\tau = \lim_{S \to 0} \frac{\Delta F_t}{\Delta S} = \frac{dF_t}{dS}$$

3. <u>Viscosidad</u>(μ): En fluidos newtonianos la viscosidad es relativamente constante:

$$\mu = f(T)[Pa \cdot s]$$

$$\tau=\mu\dot{\varepsilon}=\mu\frac{\Delta v_n}{\Delta l_n}\to\dot{\varepsilon}$$
es la velocidad de deformación
[s^-1]

Figura 3: Cálculo de viscosidad.

$$\tau = \frac{F}{A} = \mu \frac{\Delta v_n}{\Delta l_n} = \mu \frac{v-0}{l_n} = \mu \frac{v}{l_n}$$

En fluidos no newtonianos la viscosidad no es constante:

Viscosidades típicas:

$$\mu_{H_2O} = 10^{-3} Pa \cdot s = 1cP \rightarrow P$$
 Poise

4. Viscosidad cinemática:

$$\nu = \frac{\mu}{\rho} \left[\frac{m^2}{s} \right] \to 1 csk = 10^{-6} \left[\frac{m^2}{s} \right] \to csk \text{ centi-stoke}$$

5. Interfases:

 Vaso grande: Existe intercambio de moléculas en la interfase pero las presiones se equilibran.

Figura 4: Interfase Vaso grande.

■ Vaso pequeño: Existe efecto de la tensión superficial $(\sigma\left[\frac{N}{m}\right])$ descrita mediante la ecuación de Laplace-Young. Solo aplica a fluidos inmiscibles.

$$P_a - P_{liquido} = \sigma K$$

K expresión de la curvatura

$$K = \nabla_s \vec{n} = \left(\frac{1}{R_i} + \frac{1}{R_j}\right)$$

Figura 5: Efecto tensión superficial Vaso pequeño $R_i y R_j$ son radios característicos

■ Zona de efecto: La tensión superficial siempre presenta efectos, no obstante solo se aprecia en una región concreta.

$$ho g l_c pprox \sigma
ightarrow l_c pprox \left(rac{\sigma}{
ho g}
ight)^{rac{1}{2}}$$

Figura 6: Zona de efecto.

\blacksquare Casos particulares

a) Chorro

$$P_i - P_e = \sigma \left(\frac{1}{R_i} + \frac{1}{R_j}\right) = \frac{\sigma}{R}$$

Figura 7: Chorro.

b) Gota

$$P_i - P_e = \sigma \left(\frac{1}{R_i} + \frac{1}{R_j} \right) = \frac{2\sigma}{R}$$

Figura 8: Gota.

c) Pompa

$$P_i - P_m = \frac{2\sigma}{R}$$

$$P_m - P_e = \frac{2\sigma}{R}$$

$$P_i - P_e = \frac{4\sigma}{R}$$

Figura 9: Pompa.

d) Plano

$$P_i - P_e = \sigma \left(\frac{1}{R_i} + \frac{1}{R_j} \right) = 0 \rightarrow P_i = P_e$$

Figura 10: Plano.

1.4. Mojabilidad

- \blacksquare Un líquido no moja a un sólido si $\theta_c\gtrsim 150^\circ.$ Sólido hidrofóbico.
- \blacksquare Un líquido moja a un sólido si $\theta_c \lesssim 45^\circ.$ Sólido hidrofílico totalmente.

Figura 11: Mojabilidad.

2. Tema 2: Cinemática de la partícula fluida

2.1. Repaso operador nabla

En cartesianas nabla se define como:

$$\vec{\nabla} = \frac{\partial}{\partial x} \vec{i} + \frac{\partial}{\partial y} \vec{j} + \frac{\partial}{\partial z} \vec{k}$$

- \blacksquare Aplicado a un campo escalar $\Phi = f(x,y,z)$
 - Operador gradiente

$$\vec{\nabla}\Phi = \left(\frac{\partial}{\partial x}\vec{i} + \frac{\partial}{\partial y}\vec{j} + \frac{\partial}{\partial z}\vec{k}\right)\Phi$$

No es un operador conmutativo.

• Laplaciano:

$$\vec{\nabla}^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

$$\vec{\nabla}^2 \Phi = \Delta \Phi = \frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial u^2} + \frac{\partial^2 \Phi}{\partial z^2}$$

- Aplicado a un campo vectorial $\vec{\Phi}=\phi_x(x,y,z)\vec{i}+\phi_y(x,y,z)\vec{j}+\phi_z(x,y,z)\vec{z}$
 - Divergencia

$$\vec{\nabla} \cdot \vec{\Phi} = \frac{\partial \phi_x}{\partial x} + \frac{\partial \phi_y}{\partial y} + \frac{\partial \phi_z}{\partial z}$$

• Rotacional

$$\vec{\nabla} \times \vec{\Phi} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \phi_x & \phi_y & \phi_z \end{vmatrix}$$

• Gradiente

$$\vec{\nabla}\vec{\Phi} = \begin{bmatrix} \frac{\partial\phi_x}{\partial x} & \frac{\partial\phi_x}{\partial y} & \frac{\partial\phi_x}{\partial z} \\ \frac{\partial\phi_y}{\partial x} & \frac{\partial\phi_y}{\partial y} & \frac{\partial\phi_y}{\partial z} \\ \frac{\partial\phi_z}{\partial x} & \frac{\partial\phi_z}{\partial y} & \frac{\partial\phi_z}{\partial z} \end{bmatrix}$$

Relaciones algebraicas

1.
$$\vec{\nabla}(\varphi\phi) = \varphi \vec{\nabla}\phi + \phi \vec{\nabla}\varphi$$

$$2. \ \vec{\nabla} \times \left(\vec{\nabla} \phi \right) = 0$$

$$3. \ \vec{\nabla} \cdot \left(\vec{\nabla} \times \vec{\Phi} \right) = 0$$

$$4. \ \left(\vec{\Phi}\cdot\vec{\nabla}\right)\vec{\Phi} = \vec{\nabla}\frac{\left|\vec{\Phi}\right|^{2}}{2} - \vec{\Phi}\times\left(\vec{\Phi}\cdot\vec{\nabla}\right)$$

2.2. Conceptos fundamentales

Figura 12: Magnitudes fundamentales.

1. <u>Trayectoria</u>: Se determina el vector posición a partir de la velocidad. Esta ligada al enfoque lagrangiano. Tiene realidad física.

$$\vec{v} = \frac{d\vec{r}}{dt} \rightarrow \vec{r}(t=0) = \vec{r_0}$$

- 2. <u>Senda</u>: Camino que se recorre. Es independiente del tiempo y se obtiene eliminando el tiempo t de la trayectoria. Tiene realidad física.
- 3. <u>Línea de corriente</u>: No tiene realidad física. Se basa den el enfoque euleriano.

$$\begin{split} \frac{d\vec{r}//\vec{v}}{\vec{r} &= x\vec{i} + y\vec{j} + z\vec{k} \to d\vec{r} = dx\vec{i} + dy\vec{j} + dz\vec{k} \\ \vec{v} &= v_x\vec{i} + v_y\vec{j} + v_z\vec{k} \\ Si\ d\vec{r}//\vec{v} \to \vec{v} \times d\vec{r} &= 0 = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ v_x & v_y & v_z \\ dx & dy & dz \end{vmatrix} = (v_ydz - v_zdy)\ \vec{i} + (v_zdx - v_xdz)\ \vec{j} + (v_xdy - v_ydx) \\ \therefore \frac{dz}{v_z} &= \frac{dy}{v_y} \rightleftharpoons \frac{dz}{v_z} = \frac{dx}{v_x} \rightleftharpoons \frac{dx}{v_x} = \frac{dy}{v_y} \end{split}$$

2.3. Clasificación flujos

- 1. Enfoque elección de coordenadas
 - a) Lagrangiano: Enfoque de seguir a la partícula.

$$\vec{v} = \vec{v}(t(\vec{r})) = \vec{v}(t)$$

b) Euclídeo: Enfoque de centrarse en el espacio.

$$\vec{v} = \vec{v}(\vec{r}, t) = v_x(x, y, z, t)\vec{i} + v_y(x, y, z, t)\vec{j} + v_z(x, y, z, t)\vec{k}$$

2. Dirección

- a) 3 directiones $(\vec{i}, \vec{j}, \vec{k})$:
 - Campo vectorial tridireccional.
- b) 2 directiones (\vec{i}, \vec{k}) :
 - Campo vectorial bidireccional.
- c) 1 dirección (\vec{j}) :
 - Campo vectorial unidireccional.

3. Espacio

- a) Si alguna componente depende de x, y, z:
 - Campo vectorial tridimensional.
- b) Si ninguna componente depende de x, y o z:
 - Campo vectorial bidimensional.
- c) Si todas las componentes dependen de x, y o z:
 - Campo vectorial unidimensional o monodimensional.
- d) Si ninguna componente depende de x, y, z:
 - Campo vectorial uniforme o homogéneo.

4. Tiempo

- a) Si alguna componente depende del tiempo:
 - Campo vectorial no estacionario o transitorio.
- b) Si ninguna componente depende del tiempo:
 - Campo vectorial estacionario.

2.4. Derivada sustancial, local y convectiva

Al operador diferencial de variación temporal se le denomina derivada sustancial, total o material:

$$\frac{D}{Dt} = \frac{\partial}{\partial t} + \left(\vec{v} \cdot \vec{\nabla} \right)$$

Figura 13: Derivada sustancial.

Sea
$$\phi = f(\vec{r}, t)$$
 y $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$

$$d\phi = \phi(\vec{r} + d\vec{r}, t + dt) - \phi(\vec{r}, t) = dx \frac{\partial \phi}{\partial x} + dy \frac{\partial \phi}{\partial y} + dz \frac{\partial \phi}{\partial z} + \frac{\partial \phi}{\partial t} dt = d\vec{r} \cdot \vec{\nabla} \phi + \frac{\partial \phi}{\partial t} dt$$

$$\frac{d\phi}{dt} = \vec{v} \cdot \vec{\nabla}\phi + \frac{\partial\phi}{\partial t}$$

- \blacksquare Derivada convectiva: $\vec{v}\cdot\vec{\nabla}\phi$
- \blacksquare Derivada local o temporal: $\frac{\partial \phi}{\partial t}$
- \blacksquare Si $\phi = \vec{v}$

$$\frac{d\vec{v}}{dt} = (\vec{v} \cdot \vec{\nabla})\vec{v} + \frac{\partial \vec{v}}{\partial t}$$

- Aceleración convectiva: $(\vec{v} \cdot \vec{\nabla})\vec{v}$

$$(\vec{v}\cdot\vec{\nabla})\vec{v} = \vec{\nabla}\frac{\left|\vec{v}\right|^2}{2} - \vec{v}\times\left(\vec{\nabla}\times\vec{v}\right)$$

- - \diamond Vorticidad: $\vec{\omega} = (\vec{\nabla} \times \vec{v})$
 - ♦ Si la vorticidad es nula, el fluido es irrotacional y existe una función de corriente tal que:

$$\vec{v} = -\vec{\nabla}\phi \rightarrow \vec{\nabla} \times \left(-\vec{\nabla}\phi\right) = 0$$

En la literatura, a veces en lugar de hablar de vorticidad, se define velocidad de rotación como:

$$\vec{\Omega} = \frac{\vec{\omega}}{2}$$

• Aceleración local: $\frac{\partial \vec{v}}{\partial t}$

2.5. Movimiento diferencial en torno a un punto

A partir de la figura siguiente, se puede deducir que el movimiento diferencial es:

$$\lim_{dt\to 0} d\vec{v}dt = \vec{v}(\vec{r} + d\vec{r}, t)dt - \vec{v}(\vec{r}, t)dt$$

Figura 14: Magnitudes fundamentales del movimiento diferencial.

Operando y despreciando el diferencial de tiempo:

$$d\vec{v} = \vec{v}(\vec{r} + d\vec{r}, t) - \vec{v}(\vec{r}, t) = d\vec{r} \cdot (\vec{\nabla}\vec{v})$$

Donde $\nabla \vec{v}$ es el tensor gradiente de la velocidad:

$$\vec{\nabla} \vec{v} = \begin{bmatrix} \frac{\partial v_x}{\partial x} & \frac{\partial v_x}{\partial y} & \frac{\partial v_x}{\partial z} \\ \frac{\partial v_y}{\partial x} & \frac{\partial v_y}{\partial y} & \frac{\partial v_y}{\partial z} \\ \frac{\partial v_z}{\partial x} & \frac{\partial v_z}{\partial y} & \frac{\partial v_z}{\partial z} \end{bmatrix} = \frac{1}{2} \left[\vec{\nabla} \vec{v} + \left(\vec{\nabla} \vec{v} \right)^t \right] + \frac{1}{2} \left[\vec{\nabla} \vec{v} - \left(\vec{\nabla} \vec{v} \right)^t \right] = \overline{\xi} + \overline{\gamma}$$

Las variables que aparecen, son $\overline{\xi}$ el tensor de velocidad de deformación (simétrico) y $\overline{\gamma}$ el tensor de velocidad de rotación.

$$\overline{\overline{\xi}} = \begin{bmatrix} \frac{\partial v_x}{\partial x} & \frac{1}{2} \left(\frac{\partial v_x}{\partial y} + \frac{\partial v_y}{\partial x} \right) & \frac{1}{2} \left(\frac{\partial v_x}{\partial z} + \frac{\partial v_z}{\partial x} \right) \\ \frac{1}{2} \left(\frac{\partial v_x}{\partial y} + \frac{\partial v_y}{\partial x} \right) & \frac{\partial v_y}{\partial y} & \frac{1}{2} \left(\frac{\partial v_y}{\partial z} + \frac{\partial v_z}{\partial y} \right) \\ \frac{1}{2} \left(\frac{\partial v_x}{\partial z} + \frac{\partial v_z}{\partial x} \right) & \frac{1}{2} \left(\frac{\partial v_y}{\partial z} + \frac{\partial v_z}{\partial y} \right) & \frac{\partial v_z}{\partial z} \end{bmatrix}$$

$$\overline{\overline{\gamma}} = \begin{bmatrix} 0 & \frac{1}{2} \left(\frac{\partial v_x}{\partial y} - \frac{\partial v_y}{\partial x} \right) & \frac{1}{2} \left(\frac{\partial v_x}{\partial z} - \frac{\partial v_z}{\partial x} \right) \\ -\frac{1}{2} \left(\frac{\partial v_x}{\partial y} - \frac{\partial v_y}{\partial x} \right) & 0 & \frac{1}{2} \left(\frac{\partial v_y}{\partial z} - \frac{\partial v_z}{\partial y} \right) \\ -\frac{1}{2} \left(\frac{\partial v_x}{\partial z} - \frac{\partial v_z}{\partial x} \right) - \frac{1}{2} \left(\frac{\partial v_y}{\partial z} - \frac{\partial v_z}{\partial y} \right) & 0 \end{bmatrix}$$

Por tanto, aplicado al movimiento:

$$d\vec{v} = d\vec{r} \cdot (\vec{\nabla}\vec{v}) = d\vec{r} \cdot \overline{\xi} + d\vec{r} \cdot \overline{\gamma}$$

Donde:

- Movimiento velocidad de deformación: $d\vec{r} \cdot \bar{\xi}$ que representa las deformaciones lineales (diagonal) y angulares (fuera de la diagonal).
 - Si la traza de $\overline{\overline{\xi}}$ es nula, el fluido es incompresible y, por tanto de densidad constante.
- Movimiento velocidad de rotación: $\overline{\overline{\gamma}}$ que representa el movimiento del fluido como si fuera un sólido rígido.
 - Se puede relacionar este tensor con la vorticidad y se demuestra que:

$$\overline{\overline{\gamma}} = \frac{1}{2}\vec{\omega} \times d\vec{r} = (\vec{\nabla} \times \vec{v}) \times d\vec{r} = \begin{bmatrix} 0 & -\frac{1}{2}\omega_z & \frac{1}{2}\omega_y \\ \frac{1}{2}\omega_z & 0 & -\frac{1}{2}\omega_x \\ -\frac{1}{2}\omega_y & \frac{1}{2}\omega_x & 0 \end{bmatrix}$$

2.6. Movimiento de la partícula fluida en una dirección

Se parte de la expresión deducida anteriormente pero expresando el $d\vec{r}$ mediante módulo dirección, esta expresión, también se suele denominar movimiento vectorial:

$$d\vec{v} = d\vec{r} \cdot \left(\vec{\nabla} \vec{v}\right) = d\vec{r} \cdot \left(\overline{\overline{\xi}} + \overline{\overline{\gamma}}\right) = |d\vec{r}| \vec{n} \cdot \left(\overline{\overline{\xi}} + \overline{\overline{\gamma}}\right)$$

Figura 15: Magnitudes fundamentales del movimiento de la partícula fluida.

Si se aplica a una dirección concreta, también suele denominarse como movimiento escalar:

$$d\vec{v}\cdot\vec{n}=d\vec{r}\cdot\left(\vec{\nabla}\vec{v}\right)=d\vec{r}\cdot\left(\overline{\overline{\xi}}+\overline{\overline{\gamma}}\right)=|d\vec{r}|\vec{n}\cdot\left(\overline{\overline{\xi}}+\overline{\overline{\gamma}}\right)\cdot\vec{n}=\vec{n}\cdot\left(\overline{\overline{\xi}}+\overline{\overline{\gamma}}\right)\cdot\vec{n}$$

Como la dirección no es más que una composición de las distintas direcciones, se puede dividir por coordenadas:

- Los términos de deformación:
 - Si $\vec{n} = \vec{i} \rightarrow \vec{i} \cdot \overline{\xi} \cdot \vec{i} = \xi_{11}$
 - Si $\vec{n} = \vec{j} \rightarrow \vec{j} \cdot \overline{\overline{\xi}} \cdot \vec{j} = \xi_{22}$
 - Si $\vec{n} = \vec{k} \rightarrow \vec{k} \cdot \overline{\overline{\xi}} \cdot \vec{k} = \xi_{33}$
- Los términos de velocidad de rotación:
 - Para todo vector $\vec{n} \cdot \overline{\overline{\gamma}} \cdot \vec{n} = 0$

3. Tema 3: Conservación de la masa

3.1. Teorema del transporte de Reynolds

Figura 16

 $\Phi = \text{Función}$ que depende del espacio y tiempo en general $\rightarrow \Phi = f(\vec{r},t)$

Nos interesa conocer:

$$\frac{d}{dt} \int_{V_c(t)} \Phi(\vec{r}, t) dV = \lim_{\Delta t \to 0} \left[\int_{V_c(t+dt)} \Phi(\vec{r}, t+dt) dV - \int_{V_c(t)} \Phi(\vec{r}, t) dV \right]$$

Se hace el desarrollo de Taylor en t del primer término:

$$\frac{d}{dt} \int_{V_c(t)} \Phi(\vec{r}, t) dV = \int_{V_c(t)} \frac{\partial}{\partial t} \Phi(\vec{r}, t) dV + \lim_{\Delta t \to 0} \frac{1}{\Delta t} \left[\int_{V_c(t+dt)} \Phi(\vec{r}, t) dV - \int_{V_c(t)} \Phi(\vec{r}, t) dV \right]$$

Hay que estudiar la velocidad del volumen de control de tal manera que, solo afecta la velocidad paralela a la normal porque es lo que provoca expansión o compresión del mismo, la velocidad tangencial lo "gira":

$$dV = \vec{v}_c \cdot \vec{n} dS \Delta t$$

Por tanto:

$$\frac{d}{dt} \int_{V_c(t)} \Phi(\vec{r},t) \, dV = \int_{V_c(t)} \frac{\partial}{\partial t} \Phi(\vec{r},t) \, dV + \oint_{S_c(t)} \Phi(\vec{r},t) \vec{v_c} \cdot \vec{n} \Delta t \, dS$$

Si queremos podemos imponer que (hablando en tema de volumen fluido):

$$V_c(t) = V_{fluido}(t) = V_f(t)$$

$$\frac{d}{dt} \int_{V_f(t)} \Phi(\vec{r}, t) \, dV = \int_{V_f(t)} \frac{\partial}{\partial t} \Phi(\vec{r}, t) \, dV + \oint_{S_f(t)} \Phi(\vec{r}, t) \vec{v} \cdot \vec{n} \Delta t \, dS$$

Si tomamos un tiempo t* paramétrico tal que $V_c(t*) = V_F(t*) \rightarrow \int_{V_c(t*)} \frac{\partial \Phi}{\partial t} dV \approx \int_{V_f(t*)} \frac{\partial \Phi}{\partial t} dV$ Solo en ese instante t*

Si se restan las ecuaciones de Volumen de control y la de los movimientos fluidos queda (Teorema de Reynolds del transporte (problemas)):

$$\frac{d}{dt}\int_{V_{r}(t)}\Phi(\vec{r},t)\,dV = \frac{d}{dt}\int_{V_{c}(t)}\Phi(\vec{r},t)\,dV + \oint_{S_{c}(t)}\Phi(\vec{r},t)\left[(\vec{v}-\vec{v}_{c})\cdot\vec{n}\right]\Delta t\,dS$$

(TH Reynolds para teoria)

$$\frac{d}{dt} \int_{V_f(t)} \Phi(\vec{r},t) \, dV = \int_{V_f(t)} \frac{\partial}{\partial t} \Phi(\vec{r},t) \, dV + \oint_{S_f(t)} \Phi(\vec{r},t) \vec{v} \cdot \vec{n} \Delta t \, dS$$

Término de variación local:

$$\int_{V_f(t)} \frac{\partial}{\partial t} \Phi(\vec{r}, t) \, dV$$

Térimno de variación convectiva:

$$\oint_{S_f(t)} \Phi(\vec{r}, t) \vec{v} \cdot \vec{n} \Delta t \, dS$$

Si la magnitud $\Phi = \rho$ Se obtiene la ecuación de conservación de la masa en forma integral: Es igual a 0 porque el volumen total no se pierde: (Problemas)

$$\frac{d}{dt} \int_{V_f(t)} \rho \, dV = \frac{d}{dt} \int_{V_c(t)} \rho \, dV + \oint_{S_c(t)} \rho \left[(\vec{v} - \vec{v}_c) \cdot \vec{n} \right] \Delta t \, dS = 0$$

(Teoría)

$$\frac{d}{dt} \int_{V_f(t)} \rho \, dV = \int_{V_f(t)} \frac{\partial \rho}{\partial t} \, dV + \oint_{S_f(t)} \rho \vec{v} \cdot \vec{n} \Delta t \, dS = 0$$

Si $V_f(t) \approx dV_f(t)$ entonces y aplicando el teorema de gauss se llega a la ecuación diferencial de la masa o forma conservativa: $(\oint_S \varphi \cdot \vec{n} \, dS = \int_V \vec{\nabla} \cdot \varphi \, dV)$

$$\lim_{dV \rightarrow 0} \left[\frac{\partial \rho}{\partial t} dV + \vec{\nabla} \cdot (\rho \vec{v}) \, dV \right] = 0$$

$$\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot (\rho \vec{v}) = 0$$

Término local de masa:

$$\frac{\partial \rho}{\partial t}$$

Término convectivo de masa:

$$\vec{\nabla} \cdot (\rho \vec{v})$$

4. Ejercicios resueltos

4.1. Tema 1: Fundamentos y propiedades de los fluidos

1. Obtener el ángulo de mojabilidad θ_c

Figura 17: Esquema del problema.

$$\begin{split} P_2 &= P_1 = P_a \\ P_2 &= \rho g H_0 = P_3 \\ P_3 &= P_4 + \rho g (H_0 + \Delta h) \\ P_1 - P_4 &= \frac{2\sigma}{R} \\ \frac{2\sigma}{R} &= \rho g \Delta h \\ Rcos(\theta_c) &= a \\ \theta_c &= \arccos\left(\frac{a\rho g \Delta h}{2\sigma}\right) \end{split}$$

2. En el pueblo de Aisa se ha instalado un nuevo sistema de presión para el abastecimiento de agua del municipio. El agua procedente de un manantial es impulsado por una bomba y se almacena en un depósito sobrepresor. Para controlar la presión del agua a la entrada y salida de la bomba se han montado un vacuómetro y un manómetro en los puntos de interés. Cuando el vacuómetro marca 0.75 bares y el manómetro marca 4.2 bares, ¿cuál será el valor de la presión absoluta?. ¿Existe riesgo de cavitación en algún punto de la conducción?. Datos: $p_{atm}=816,91 \text{ hPa}$; $p_v=159856 \text{ Pa}$.

Figura 18: Esquema bomba de agua.

$$P_v = P_{atm} - P_e$$

$$P_m = P_s - P_{atm}$$

$$P_e = 81691 - 75000 = 6691Pa$$

$$P_s = 81691 + 420000 = 501691Pa$$
 Existe cavitación a la entrada.

3. La presión en un punto de un fluido ($\rho=1234\frac{kg}{m^3}$) alcanza el valor de 3 bares. Expresar el valor de la presión en milímetros de mercurio (cm Hg) y en columna de metros de agua (m.c.a.). Datos: $\rho_{Hq,rel}=13,6$

$$\rho = 1234 \frac{kg}{m^3}$$

$$P = 3 \cdot 10^5 Pa$$

$$1mmHg = \rho_{Hg}gh = 13.6 \cdot 10^3 \frac{kg}{m^3} \cdot 9.8 \frac{m}{s^2} \cdot 10^{-3}m = 133.416 Pa$$

$$1mca = \rho_{H_2O}gh = 10^3 \frac{kg}{m^3} \cdot 9.8 \frac{m}{s^2} \cdot 1m = 9810 Pa$$

4. Sobre una superficie de 4000 cm^2 , orientada en el espacio por su vector normal $\vec{n}=\vec{k}$, está actuando una fuerza $\vec{F}=2\vec{i}+3\vec{j}-3\vec{k}$ (N). Calcular la componente normal de la fuerza y la presión que está soportando la superficie

$$S = 4000cm^2 = 0.4m^2$$
 $\vec{n} = \vec{k}$ $\vec{F} = 2\vec{i} + 3\vec{j} - 3\vec{k} \rightarrow F_n = 3N$ $P = \frac{F_n}{S} = \frac{3N}{0.4m^2} = 7.5Pa$

5. Sabiendo que un fluido tiene una densidad de 0.627 $\frac{kg}{l}$ y que su coeficiente de viscosidad absoluta es 1.2 cP, calcular su viscosidad cinemática. ¿Cuál es su densidad relativa si consideramos el agua como fluido de referencia?. Datos $\rho_{agua} = 999, 8 \frac{kg}{m^3}$

$$\nu = \frac{\mu}{\rho} = \frac{1,2cP \cdot \frac{10^{-3}Pa \cdot s}{1cP}}{0,627 \frac{kg}{l} \cdot \frac{10^{3}l}{m^{3}}} = 1,91 \cdot 10^{-6} \frac{m^{2}}{s}$$

$$\rho_{rel} = \frac{\rho}{\rho_{H_2O}} = \frac{0.627 \frac{kg}{l} \cdot \frac{10^3 l}{m^3}}{999.8 \frac{kg}{m^3}} = 6.27 \cdot 10^{-1}$$

6. En la Figura se muestra un bloque, de bases paralelas con dimensiones 0,3 m x 0,6 m y altura 0,1 m, de densidad 1800 $\frac{kg}{m^3}$, que desliza con una velocidad constante de 1 $\frac{m}{s}$ a la largo de un plano inclinado debido a la acción de las fuerzas gravitacionales tangenciales al mismo. Entre dicho plano y el bloque hay una película de aceite de espesor 1 mm. Aplicando equilibrio de fuerzas, calcular la viscosidad del aceite en Po.

Figura 19: Esquema del bloque deslizando por el plano inclinado.

$$F_n = mgsen\alpha$$

$$F_n = \rho Vgsen\alpha$$

$$\tau = \mu \frac{v}{e} = \frac{F_n}{S} = \rho hgsen\alpha$$

$$\mu = \frac{e\rho hgsen\alpha}{v} = \frac{10^-3m \cdot 1800 \frac{kg}{m^3} \cdot 0.1m \cdot 9.81 \frac{m}{s^2} \cdot sen(30^\circ)}{1 \frac{m}{s}} = 0.8829 Pa \cdot s \frac{1P}{0.1Pa \cdot s} = 8.83 Pa$$

4.2. Tema 2: Cinemática de la partícula fluida

1. Dado el campo de velocidades de un flujo

$$\vec{v} = 4\cos(\omega t)\vec{x} - 2\cos(\omega t)\vec{y} - 2\cos(\omega t)\vec{z}\vec{k}$$

- a) Indicar el tipo de flujo Flujo tridireccional, tridimensional y transitorio.
- b) La ecuación de la trayectoria si en t=0s se encuentra en (x_0,y_0,z_0)

$$\vec{v} = \frac{d\vec{r}}{dt} \to \vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$$

$$v_x = 4\cos(\omega t)x = \frac{dx}{dt}$$

$$v_y = -2\cos(\omega t)y = \frac{dy}{dt}$$

$$v_z = -2\cos(\omega t)z = \frac{dz}{dt}$$

$$\ln x|_0^t = \frac{4\sin(\omega t)}{\omega}\Big|_0^t \to x = x_0 e^{\frac{4\sin(\omega t)}{\omega}}$$

$$y = y_0 e^{\frac{-2sen(\omega t)}{\omega}}$$
$$z = z_0 e^{\frac{-2sen(\omega t)}{\omega}}$$

c) La ecuación de las sendas

$$\ln \frac{x}{x_0} = \frac{4sen(\omega t)}{\omega}$$

$$\ln \frac{y}{y_0} = \frac{-2sen(\omega t)}{\omega}$$

$$\ln \frac{z}{z_0} = \frac{-2sen(\omega t)}{\omega}$$

$$\frac{1}{2} \ln \frac{x}{x_0} = -\ln \frac{y}{y_0} \to xy^2 = x_0 y_0^2$$

$$\ln \frac{y}{z_0} = \ln \frac{y}{y_0} \to yz_0 = zy_0$$

d) Las líneas de corriente en un instante t

$$\frac{dz}{v_z} = \frac{dy}{v_y} = \frac{dx}{v_x}$$

$$\frac{dy}{-2\cos(\omega t)y} = \frac{dz}{-2\cos(\omega t)z} \to \frac{dy}{y} = \frac{dz}{z} \to \ln z = \ln y + C_0 \to z = C_{00}y$$

$$\frac{dy}{-2\cos(\omega t)y} = \frac{dx}{4\cos(\omega t)x} \to -\frac{dy}{y} = \frac{dx}{2x} \to -\ln y = \frac{1}{2}\ln x + C_1 \to C_{11} = xy^2$$

- 2. La velocidad de un fluido se encuentra definida por $\vec{v}=y\vec{j}+(ye^{-t}-z)\,\vec{k}$ Se pide:
 - a) Las componentes de la velocidad

$$v_x = 0$$

$$v_y = y$$

$$v_z = ye^{-t} - z$$

- b) Caracterización del flujo Flujo bidireccional, bidimensional y transitorio.
- $c)\,$ La aceleración de la partícula fluida cuando en t=0s pasa por el punto $(0,\!1,\!0)$
- d) Movimiento de la partícula fluida
- e) ¿Podría tratarse de un líquido?
- f) La velocidad de deformación lineal específica en la dirección del vector unitario $\vec{l}=\frac{1}{\sqrt{3}}\left(\vec{i}-\vec{j}+\vec{k}\right)$

- 3. Considere el flujo definido por $v_y = z (t + 2t^2)$ y $v_z = 2y$. Determine:
 - a) Tipo de flujo Flujo bidireccional, bidimensional y transitorio.
 - b) La aceleración de la partícula fluida: total, local, convectiva y las contribuciones de la aceleración convectiva

$$\frac{D\vec{v}}{Dt} = \frac{\partial \vec{v}}{\partial t} + \left(\vec{v} \cdot \vec{\nabla}\right)\vec{v} =$$

- c) El vector velocidad angular
- d) El movimiento de la partícula fluida
- e) ¿Podría representar este campo de velocidades a un fluido que fuera un líquido?
- 4. Un campo de velocidades viene dado por $v_x = x^2 2y^2$; $v_y = -2xy$

$$\vec{v} = (x^2 - 2y^2)\vec{i} - 2xy\vec{j}$$

- a) Clasificación del flujo Flujo bidireccional, bidimensional y estacionario.
- b) La expresión de la aceleración total de la partícula fluida

$$\begin{split} \frac{D\vec{v}}{Dt} &= \frac{\partial \vec{v}}{\partial t} + \left(\vec{v} \cdot \vec{\nabla} \right) \vec{v} = \left(\vec{v} \cdot \vec{\nabla} \right) \vec{v} \\ \left(\vec{v} \cdot \vec{\nabla} \right) \vec{v} &= v_x \frac{\partial}{\partial x} \left[v_x \vec{i} + v_y \vec{j} \right] + v_y \frac{\partial}{\partial y} \left[v_x \vec{i} + v_y \vec{j} \right] \\ \left(\vec{v} \cdot \vec{\nabla} \right) \vec{v} &= \left[v_x \frac{\partial v_x}{\partial x} + v_y \frac{\partial v_x}{\partial y} \right] \vec{i} + \left[v_x \frac{\partial v_y}{\partial x} + v_y \frac{\partial v_y}{\partial y} \right] \vec{j} \\ \left(\vec{v} \cdot \vec{\nabla} \right) \vec{v} &= \left[(x^2 - 2y^2)2x + 4xy^2 \right] \vec{i} + \left[(x^2 - 2y^2)(-2y) + 4x^2y \right] \vec{j} \\ \left(\vec{v} \cdot \vec{\nabla} \right) \vec{v} &= 2 \left(x^2 + 2y^2 \right) \left(x \vec{i} + y \vec{j} \right) \end{split}$$

c) Aceleración local

$$\frac{\partial \vec{v}}{\partial t} = 0$$

d) Aceleración convectiva debida al cambio del módulo de la velocidad

$$\vec{\nabla} \frac{|\vec{v}|^2}{2} = \vec{\nabla} \left(\frac{v_x^2 + v_y^2}{2} \right) = \vec{\nabla} \left(\frac{x^4 + 4y^4}{2} \right) = 2x^3 \vec{i} + 8y^3 \vec{j}$$

e) Aceleración convectiva debido al cambio de dirección de la velocidad

$$-\vec{v} \times \left(\vec{\nabla} \times \vec{v}\right) = (\vec{v} \cdot \vec{\nabla})\vec{v} - \vec{\nabla} \frac{|\vec{v}|^2}{2} = 2\left(x^2 + 2y^2\right)\left(x\vec{i} + y\vec{j}\right) - \left(2x^3\vec{i} + 8y^3\vec{j}\right)$$
$$-\vec{v} \times \left(\vec{\nabla} \times \vec{v}\right) = 4y^2x\vec{i} + \left(2x^2y - 4y^3\right)\vec{j}$$

f) Demostrar que la variación de la densidad a lo largo de una línea de corriente es nula

La variación de la densidad a lo largo de una línea de corriente es nula si el fluido es incompresible:

$$traza(\overline{\overline{\xi}}) = \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} = 2x - 2x = 0 \rightarrow \text{Fluido incompresible}$$

g) Movimiento de la partícula fluida

$$d\vec{v} = d\vec{r} \cdot \left(\overline{\overline{\xi}} + \overline{\overline{\gamma}}\right)$$

$$\overline{\overline{\xi}} = \begin{bmatrix} \frac{\partial v_x}{\partial x} & \frac{1}{2} \left(\frac{\partial v_x}{\partial y} + \frac{\partial v_y}{\partial x} \right) \\ \frac{1}{2} \left(\frac{\partial v_x}{\partial y} + \frac{\partial v_y}{\partial x} \right) & \frac{\partial v_y}{\partial y} \end{bmatrix} = \begin{bmatrix} 2x & -3y \\ -3y & -2x \end{bmatrix}$$

$$\overline{\overline{\gamma}} = \begin{bmatrix} 0 & \frac{1}{2} \left(\frac{\partial v_x}{\partial y} - \frac{\partial v_y}{\partial x} \right) \\ -\frac{1}{2} \left(\frac{\partial v_x}{\partial y} - \frac{\partial v_y}{\partial x} \right) & 0 \end{bmatrix} = \begin{bmatrix} 0 & -y \\ y & 0 \end{bmatrix}$$

$$d\vec{v} = d\vec{r} \cdot \left(\begin{bmatrix} 2x & -3y \\ -3y & -2x \end{bmatrix} + \begin{bmatrix} 0 & -y \\ y & 0 \end{bmatrix} \right) = d\vec{r} \cdot \begin{bmatrix} 2x & -4y \\ -2y & -2x \end{bmatrix}$$