M2R Oral Presentation

Manifolds and homogeneous spaces (M2R2)

Xu Jiacheng, Zhang Dingxuan, Ameena Hassan, Jiang Shumin Supervised by: Dr. Marie-Amelie Lawn

Imperial College London

16/06/2021

Outline

- Brief definitions
 - Group actions on sets
 - Homeomorphism
 - Charts and atlases
 - Paracompactness
- Manifolds
 - Topological Manifolds
 - Smooth manifolds
- 3 Lie Groups
 - Intuition
 - Examples
- 4 Homogeneous spaces
 - Isotropy group
 - Homogeneous space
 - Homogeneous space and principal bundles
- Applications
- 6 References

Deifinition

An **action** of a group G on a set X is a map $\pi: G \times X \to X$, such that $\pi(g,x) = g \cdot x$ and satisfies the properties:

Deifinition

An **action** of a group G on a set X is a map $\pi: G \times X \to X$, such that $\pi(g, x) = g \cdot x$ and satisfies the properties:

• $e_G \cdot x = x$, where e_G is the identity element of G

Deifinition

An **action** of a group G on a set X is a map $\pi: G \times X \to X$, such that $\pi(g, x) = g \cdot x$ and satisfies the properties:

- For all $g_1, g_2 \in G$, $g_1 \cdot (g_2 \cdot x) = (g_1 \cdot g_2) \cdot x$

Deifinition

An **action** of a group G on a set X is a map $\pi: G \times X \to X$, such that $\pi(g, x) = g \cdot x$ and satisfies the properties:

- **2** For all $g_1, g_2 \in G$, $g_1 \cdot (g_2 \cdot x) = (g_1 \cdot g_2) \cdot x$

Examples:

Deifinition

An **action** of a group G on a set X is a map $\pi: G \times X \to X$, such that $\pi(g, x) = g \cdot x$ and satisfies the properties:

- \bullet $e_G \cdot x = x$, where e_G is the identity element of G
- **2** For all $g_1, g_2 \in G$, $g_1 \cdot (g_2 \cdot x) = (g_1 \cdot g_2) \cdot x$

Examples:

• The symmetric group S(n) acts on the set $\{1, 2, ..., n\}$ by the various permutation maps;

Deifinition

An **action** of a group G on a set X is a map $\pi: G \times X \to X$, such that $\pi(g, x) = g \cdot x$ and satisfies the properties:

- \bullet $e_G \cdot x = x$, where e_G is the identity element of G
- **2** For all $g_1, g_2 \in G$, $g_1 \cdot (g_2 \cdot x) = (g_1 \cdot g_2) \cdot x$

Examples:

- The symmetric group S(n) acts on the set $\{1, 2, ..., n\}$ by the various permutation maps;

Having defining the group actions, we are interested in a particular type of them.

Having defining the group actions, we are interested in a particular type of them.

Definition

A group action $G \times X \to X$ is called a **transitive** action if there exists $x \in X$ such that $X = G \cdot x = \{g \cdot x \mid g \in G\}$, where $G \cdot x$ is called the **G-orbit of x**.

Having defining the group actions, we are interested in a particular type of them.

Definition

A group action $G \times X \to X$ is called a **transitive** action if there exists $x \in X$ such that $X = G \cdot x = \{g \cdot x \mid g \in G\}$, where $G \cdot x$ is called the **G-orbit of x**.

Example:

Having defining the group actions, we are interested in a particular type of them.

Definition

A group action $G \times X \to X$ is called a **transitive** action if there exists $x \in X$ such that $X = G \cdot x = \{g \cdot x \mid g \in G\}$, where $G \cdot x$ is called the **G-orbit of x**.

Example:

We want to look at transitive actions acting on a n-sphere, but before that we need to know what a n-sphere is.

Having defining the group actions, we are interested in a particular type of them.

Definition

A group action $G \times X \to X$ is called a **transitive** action if there exists $x \in X$ such that $X = G \cdot x = \{g \cdot x \mid g \in G\}$, where $G \cdot x$ is called the **G-orbit of x**.

Example:

We want to look at transitive actions acting on a n-sphere, but before that we need to know what a n-sphere is.

 $S^n \subset \mathbb{R}^{n+1}$ is defined as the set: $\{x \in \mathbb{R}^{n+1} : \|x\| = 1\}$, and can also be called the **n-sphere**.

There are 9 transitive actions on a n-sphere...

There are 9 transitive actions on a *n*-sphere...

Group	SO(n)	U(n), SU(n)	Sp(n)Sp(1),
			Sp(n)U(1),
			Sp(n)
Sphere	S ⁿ⁻¹	S^{2n-1}	S ⁴ⁿ⁻¹

G_2	Spin(7)	Spin(9)
S ⁶	S ⁷	S ¹⁵

Homeomorphism

Homeomorphism (not homomorphism!) is an important concept to describe the mapping between two topological spaces.

Homeomorphism

Homeomorphism (not homomorphism!) is an important concept to describe the mapping between two topological spaces.

Definition

A **homeomorphism** between two topological spaces X, Y is a continuous bijection $f: X \to Y$ whose inverse is also continuous.

Homeomorphism

Homeomorphism (not homomorphism!) is an important concept to describe the mapping between two topological spaces.

Definition

A **homeomorphism** between two topological spaces X, Y is a continuous bijection $f: X \to Y$ whose inverse is also continuous.

A **diffeomorphism** is a smooth homeomorphism whose inverse is also smooth.

Charts and atlases

Definition

A **chart** (U,φ) for a topological space X is a homeomorphism φ from an open U is a subset of X to an open subset \tilde{U} contained in \mathbb{R} , that is $\varphi:U\to \tilde{U}$.

Charts and atlases

Definition

A **chart** (U,φ) for a topological space X is a homeomorphism φ from an open U is a subset of X to an open subset \tilde{U} contained in \mathbb{R} , that is $\varphi:U\to \tilde{U}$.

An **atlas** for a topological space X is the collection of charts for X which covers X.

Example

Consider the simple 2-sphere S^2 .

Example

Consider the simple 2-sphere S^2 .

Figure: An atlas of the 2-sphere

Example

Consider the simple 2-sphere S^2 .

Figure: An atlas of the 2-sphere

$$\varphi_{\mathit{front}}\big(x,y,z\big) = \big(x,z\big), \ \ \varphi_{\mathit{left}}\big(x,y,z\big) = \big(y,z\big), \ \ \varphi_{\mathit{top}}\big(x,y,z\big) = \big(x,y\big)...$$

Definition

A topological space X is **paracompact** if every open cover of X has a locally finite open refinement.

Definition

A topological space X is **paracompact** if every open cover of X has a locally finite open refinement.

For a cover $C = \{U_{\alpha} : \alpha \in A\}$ of a topological space X, a **refinement** $D = \{V_{\beta} : \beta \in B\}$ of the cover C is a subcover such that for all V_{β} in D, exists U_{α} in C such that $V_{\beta} \subseteq U_{\alpha}$.

Definition

A topological space X is **paracompact** if every open cover of X has a locally finite open refinement.

For a cover $C = \{U_{\alpha} : \alpha \in A\}$ of a topological space X, a **refinement** $D = \{V_{\beta} : \beta \in B\}$ of the cover C is a subcover such that for all V_{β} in D, exists U_{α} in C such that $V_{\beta} \subseteq U_{\alpha}$.

An open cover C of X is called **locally finite** if for all x in X, exists B(x) in X where B(x) is a neighbourhood of x such that B(x) intersects a finite number of subsets of C.

Proposition

Every compact space is paracompact.

Proposition

Every compact space is paracompact.

However, the Euclidean space \mathbb{R}^n is paracompact but not compact!

What are manifolds?

What are manifolds?

A manifold is a topological space that **locally resembles** Euclidean space.

What are manifolds?

A manifold is a topological space that **locally resembles** Euclidean space.

A topological space X is **Locally Euclidean of dimension** n if:

For $p \in X$, there exists an open neighbourhood of p that is homeomorphic to an open subset of \mathbb{R}^n

What are manifolds?

A manifold is a topological space that **locally resembles** Euclidean space.

A topological space X is **Locally Euclidean of dimension** n if:

For $p \in X$, there exists an open neighbourhood of p that is homeomorphic to an open subset of \mathbb{R}^n

Recall definition of charts. Every point in locally Euclidean space is contained in some charts.

Definition

A **topological manifold** M is a topological space if it is:

Definition

A **topological manifold** M is a topological space if it is:

1 Hausdorff: For every x and y in M with $x \neq y$, there are open sets U and V such that $x \in U$, $y \in V$, and $U \cap V = \emptyset$.

Definition

A **topological manifold** M is a topological space if it is:

- **Hausdorff**: For every x and y in M with $x \neq y$, there are open sets U and V such that $x \in U$, $y \in V$, and $U \cap V = \emptyset$.
- Second countable: M has a countable basis, which means there exists a countable collection B of open subsets of M such that for any open subset U of M and point p in U, there is an open set B ∈ B such that p ∈ B ⊂ U.

Definition

A **topological manifold** M is a topological space if it is:

- **1 Hausdorff**: For every x and y in M with $x \neq y$, there are open sets U and V such that $x \in U$, $y \in V$, and $U \cap V = \emptyset$.
- Second countable: M has a countable basis, which means there exists a countable collection B of open subsets of M such that for any open subset U of M and point p in U, there is an open set B ∈ B such that p ∈ B ⊂ U.
- **Solution Locally Euclidean**: For every point $p \in M$, there exists a neighbourhood N of p such that N is homeomorphic to an open subset of .

The trivial \mathbb{R}^n is a topological space since it satisfies the three properties in the definition.

The trivial \mathbb{R}^n is a topological space since it satisfies the three properties in the definition.

Proposition

Subspace of Hausdorff and second-countable space is also Hausdorff and second-countable.

Another example is the **unit n-sphere** $S^n = \{x \in \mathbb{R}^{n+1} : |x| = 1\}.$

Another example is the **unit n-sphere**
$$S^n = \{x \in \mathbb{R}^{n+1} : |x| = 1\}.$$

Let $U_i = \{(x_1, x_{n+1}) \in S^n : x_i > 0\}$ and $V_i = \{(x_1, x_{n+1}) \in S^n : x_i < 0\}$

Figure: projection of charts of n-sphere

Transition map

Definition

For two charts (U,φ) and (V,ψ) in a topological manifold, we say if U and V are not disjoint then the composition map $\varphi \circ \psi^{-1} : \psi(U \cap V) \to \varphi(U \cap V)$, or $\psi \circ \varphi^{-1} : \varphi(U \cap V) \mapsto \psi(U \cap V)$ defined on the intersection of U and V is a **transition map**.

Transition map

Figure: transition map

Smooth Atlas

We say two charts (U, φ) and (V, ψ) are **smoothly compatible** if either they are disjoint or their transition map is a diffeomorphism.

Smooth Atlas

We say two charts (U, φ) and (V, ψ) are **smoothly compatible** if either they are disjoint or their transition map is a diffeomorphism.

Definition

An atlas is a **smooth atlas** if every chart of it is smoothly compatible with each other.

Smooth manifolds

Definition

A **smooth manifold** is a pair (M, \mathbb{A}) where \mathbb{A} is a maximal (not contained in any larger smooth atlas) smooth atlas on a topological manifold M.

Smooth manifolds

Definition

A **smooth manifold** is a pair (M, \mathbb{A}) where \mathbb{A} is a maximal (not contained in any larger smooth atlas) smooth atlas on a topological manifold M.

Examples: \mathbb{R}^n , n-sphere, $\mathsf{GL}_n(\mathbb{R})$,...

Intuition

What are Lie groups?

Lie Groups

Definition

A Lie group is a group G that is also a smooth manifold and the map $G \to G$, $(g,h) \mapsto gh^{-1}$, with $g,h \in G$ is smooth.

Lie Groups

Definition

A Lie group is a group G that is also a smooth manifold and the map $G \to G$, $(g,h) \mapsto gh^{-1}$, with $g,h \in G$ is smooth.

Result from Analysis 2: the composition of smooth maps is itself a smooth map

Some results:

We have a few results already

- $GL_n(\mathbb{R})$ is a smooth manifold
- The determinant map: $\det : GL_n(\mathbb{R}) \to \mathbb{R}$ is a smooth map
- Taking the inverse of a matrix is a smooth map
- Matrix multiplication is a smooth map
- The orthogonal group map $A \mapsto AA^{\top}$ is continuous.

Some results:

We have a few results already:

- $GL_n(\mathbb{R})$ is a smooth manifold
- The determinant map: $\det : GL_n(\mathbb{R}) \to \mathbb{R}$ is a smooth map
- Taking the inverse of a matrix is a smooth map
- Matrix multiplication is a smooth map
- The orthogonal group map $A \mapsto AA^{\top}$ is continuous.
- The preimage of a continuous function on a closed set is also a closed set

E. Cartan Closed subgroup Theorem

Any closed subgroup H of a Lie group G is a Lie subgroup and hence a submanifold of G.

- Matrix multiplication, taking the inverse is smooth
- $\mathsf{GL}_n(\mathbb{R})$ is a smooth manifold
- $GL_n(\mathbb{R})$ is a Lie group

Example: $\mathsf{GL}_n(\mathbb{R})$

- Matrix multiplication, taking the inverse is smooth
- $\mathsf{GL}_n(\mathbb{R})$ is a smooth manifold
- $\mathsf{GL}_n(\mathbb{R})$ is a Lie group

Example: $\mathsf{SL}_n(\mathbb{R})$

 \bigcirc $\mathsf{SL}_n(\mathbb{R})$ is a subgroup of $\mathsf{GL}_n(\mathbb{R})$

Example: $GL_n(\mathbb{R})$

- Matrix multiplication, taking the inverse is smooth
- $GL_n(\mathbb{R})$ is a smooth manifold
- $\mathsf{GL}_n(\mathbb{R})$ is a Lie group

- ullet $\mathsf{SL}_n(\mathbb{R})$ is a subgroup of $\mathsf{GL}_n(\mathbb{R})$
- \circ $SL_n(\mathbb{R})=\det^{-1}\{1\}$ is a topologically closed subgroup because

Example: $GL_n(\mathbb{R})$

- Matrix multiplication, taking the inverse is smooth
- $GL_n(\mathbb{R})$ is a smooth manifold
- $\mathsf{GL}_n(\mathbb{R})$ is a Lie group

- ullet $\mathsf{SL}_n(\mathbb{R})$ is a subgroup of $\mathsf{GL}_n(\mathbb{R})$
- ② $SL_n(\mathbb{R}) = det^{-1}\{1\}$ is a topologically closed subgroup because preimage of a continuous function on a closed set is also closed

Example: $GL_n(\mathbb{R})$

- Matrix multiplication, taking the inverse is smooth
- $GL_n(\mathbb{R})$ is a smooth manifold
- $\mathsf{GL}_n(\mathbb{R})$ is a Lie group

- ullet $\mathsf{SL}_n(\mathbb{R})$ is a subgroup of $\mathsf{GL}_n(\mathbb{R})$
- ② $SL_n(\mathbb{R})= \det^{-1}\{1\}$ is a topologically closed subgroup because preimage of a continuous function on a closed set is also closed
- Apply E. Cartan's Closed subgroup theorem

Example: $GL_n(\mathbb{R})$

- Matrix multiplication, taking the inverse is smooth
- $GL_n(\mathbb{R})$ is a smooth manifold
- $GL_n(\mathbb{R})$ is a Lie group

- ullet $\mathsf{SL}_n(\mathbb{R})$ is a subgroup of $\mathsf{GL}_n(\mathbb{R})$
- ② $SL_n(\mathbb{R})= \det^{-1}\{1\}$ is a topologically closed subgroup because preimage of a continuous function on a closed set is also closed
- Apply E. Cartan's Closed subgroup theorem
- **OUTION** SL_n(\mathbb{R}) is a Lie subgroup and submanifold of $GL_n(\mathbb{R})$

Example: $GL_n(\mathbb{R})$

- Matrix multiplication, taking the inverse is smooth
- $\mathsf{GL}_n(\mathbb{R})$ is a smooth manifold
- $GL_n(\mathbb{R})$ is a Lie group

Example: $SL_n(\mathbb{R})$

- \bigcirc $\mathsf{SL}_n(\mathbb{R})$ is a subgroup of $\mathsf{GL}_n(\mathbb{R})$
- ② $SL_n(\mathbb{R})= \det^{-1}\{1\}$ is a topologically closed subgroup because preimage of a continuous function on a closed set is also closed
- Apply E. Cartan's Closed subgroup theorem
- **SL**_n(\mathbb{R}) is a Lie subgroup and submanifold of $GL_n(\mathbb{R})$
- Matrix multiplication and taking inverse are smooth maps in $SL_n(\mathbb{R}) \Longrightarrow SL_n(\mathbb{R})$ is also a smooth manifold

Definition: $O_n(\mathbb{R})$

 $O_n(\mathbb{R})$ is the set of all matrices, that, when multiplied by their own inverse, give the identity matrix

Definition: $SO_n(\mathbb{R})$

 $SO_n(\mathbb{R})$ is the set of all $n \times n$ invertible matrices with det = 1 and the inverse of each matrix is itself.

Example: $SO_n(\mathbb{R})$

- \bigcirc SO_n(\mathbb{R}) is a subgroup of SL_n(\mathbb{R})
- $O: SL_n(\mathbb{R}) \to SL_n(\mathbb{R}), \ O(A) = AA^{\top}$ also acts on $SO_n(\mathbb{R})$ (as determinant 1 is preserved),
- $SO_n(\mathbb{R}) = O^{-1}(\{I_n\})$. As $\{I_n\}$ is closed in $SL_n(\mathbb{R})$, the preimage $SO_n(\mathbb{R})$ is also (topologically) closed
- Apply E. Cartan's Closed subgroup theorem
- **SO**_n(\mathbb{R}) is a Lie subgroup and submanifold of $SL_n(\mathbb{R})$
- Matrix multiplication and taking inverse are smooth maps in $SO_n(\mathbb{R}) \Longrightarrow SO_n(\mathbb{R})$ is also a smooth manifold

What is Isotropy group

The definition of isotropy group helps understand our main example of homogeneous space, and it's defined as follows:

What is Isotropy group

The definition of isotropy group helps understand our main example of homogeneous space, and it's defined as follows:

Definition

An **isotropy group** G_x is a subgroup of G, which for all g in G_x , $g \cdot x = x$.

What is Isotropy group

The definition of isotropy group helps understand our main example of homogeneous space, and it's defined as follows:

Definition

An **isotropy group** G_x is a subgroup of G, which for all g in G_x , $g \cdot x = x$.

The main result here is the special linear group SO(n) is the isotropy group of SO(n+1).

Definition

Homogeneous space: A homogeneous space for a group G can be a smooth manifold, or in general a topological space X on which G acts transitively.

Definition

Homogeneous space: A homogeneous space for a group G can be a smooth manifold, or in general a topological space X on which G acts transitively.

An example of homogeneous space would be S^n

Definition

Homogeneous space: A homogeneous space for a group G can be a smooth manifold, or in general a topological space X on which G acts transitively.

An example of homogeneous space would be S^n

Proof is straight-forward using results from previous slides, but note that it's slightly different from the definition, the ingredients we need:

Definition

Homogeneous space: A homogeneous space for a group G can be a smooth manifold, or in general a topological space X on which G acts transitively.

An example of homogeneous space would be S^n

Proof is straight-forward using results from previous slides, but note that it's slightly different from the definition, the ingredients we need:

- 1. Lie group action acts transitively on G.
- 2. S^n is a smooth manifold.

Figure: Homogeneous space

First, definition of a fiber bundle:

Definition

For E (total space), B (base fiber), F (fiber) topological spaces and a continuous map $\pi: E \to B$ form a **fiber bundle with fiber F** if:

- B is a connected topological space.
- **②** The natural projection map $\pi: E \to B$ is surjective.
- **②** Each element in the base fiber has an open neighbourhood contained within the base fiber. That is for all $x \in B$, ∃ open neighbourhood $U_x ⊂ B$, there exists a homeomorphism $\varphi : \pi^{-1}(U_x) \to U_x \times F$, that is a topological isomorphism.

Figure: Fiber bundle

Principal bundle is the special case of fiber bundle, and here's the definition of principal bundles:

Principal bundle is the special case of fiber bundle, and here's the definition of principal bundles:

Definition

Principal bundles: A principal G-bundle with a topological space G, is a fiber bundle $\pi: E \to B$, together with a continuous right action $\omega: E \times G \to E$, and that $\tilde{\pi}:= E \times G \xrightarrow{\mu} E \xrightarrow{\pi} B$ and $E \times G \xrightarrow{\pi \times C} B \times \{e\} \xrightarrow{\sim} B$ commutes with the map C, a map from everything to identity. And given a point $x \in B$, G acts freely and transitively on the fiber F_x .

Applications

- Take isotropy group to be a fiber
- $G/G_{iso} \times G_{iso}$

Applications

- Take isotropy group to be a fiber
- $G/G_{iso} \times G_{iso}$
- Connections and parallel transport across manifolds

Applications

- Take isotropy group to be a fiber
- $G/G_{iso} \times G_{iso}$
- Connections and parallel transport across manifolds
- More applied areas, e.g. Mathematical gauge theory

References

Andreas Cap. Geometry of homogeneous spaces [Lecture] University of Vienna. Spring 2019