ARITHMETIC

5° Retroalimentación tomo V

1. Se desea conocer las edades de los docentes de aritmética Carlos y Ulises, que laboran en el colegio Saco Oliveros. Sabiendo que el producto de sus edades es 2009, pero si a la edad del mayor se le aumenta 18 unidades el nuevo producto sería 2747. Determine dichas edades.

Resolución:

Sea:Carlos: *M* años > Ulises: *m* años

Sabemos $M \times m = P$

Reemplazando los datos:

$$M.m = 2009 ...(I)$$
 $y (M + 18) .m = 2747$
 $de...(I) M.m + 18.m = 2009 + 738$
 $18.m = 738$

Donde m = 41 \vdots M. 41 = 2009 M = 49

Piden: *las edades*∴ 41 y 49

Rpta: 41 y 49 años

2. En una división inexacta, el divisor es 45 y el residuo 11. ¿Cuántas unidades se le deben añadir como máximo al dividendo, para que el cociente aumente en 6 unidades?

Resolution:

Del dato tenemos:

$$D = dq + r$$

sea "x" máximo a aumentar al dividendo

$$r_{máx} = d - 1$$
 $r_{nuevo} = 44$

Reemplazando:

$$D + x = 45. (q + 6) + 44$$

$$D + x = 45.q + 270 + 44$$

Donde

$$D + x = 45.q + 11 + 303$$

Piden:

∴
$$x = 303$$

La siguiente P.A. $\overline{a3}; \overline{a6}; \overline{a9}; \dots; \overline{xaa}$ tiene $\overline{pr5}$ términos, donde r es la razón Halle el máximo valor de: a + p + r + x.

recordemos

$$n = \frac{t_n - t_0}{r}$$

Resolución

Del dato tenemos:

P.A:
$$\overline{a3}$$
; $\overline{a6}$; $\overline{a9}$; ...; \overline{xaa}

+ 3 + 3

reemplazando:

$$\overline{pr5} = \frac{\overline{xaa} - \overline{a0}}{3}$$

$$3. \overline{pr5} = \overline{x0a}$$

reemp:
$$\frac{\frac{1}{p} \frac{1}{35}}{3} \times \frac{1}{x \cdot 0} = \frac{5}{x \cdot 0}$$

Donde:
$$p_{máx} = 2$$
 $x_{máx} = 7$

Piden:
$$\therefore$$
 a + p + r + x = 17

Rpta:

4. De un libro de 293 páginas se arrancaron cierto número de hojas del principio notándose que en las páginas que quedan, se emplearon 612 tipos de imprenta. ¿Cuántas hojas se arrancaron?

Resolución

5. ¿Cuántos múltiplos de 8 terminados en 6 existen entre 139 y 2734?

Resolución:

Del dato tenemos:

Pero:
$$8.k = ...6$$

Donde:

$$k = 22; 27; 32; 37;; 337$$
valores ($k \neq \frac{337 - 17}{5} = \frac{320}{5}$

Piden

:
$$\therefore$$
 # valores ($k \neq 64$

Rpta 64 múltiplos

6. En un congreso organizado por la PUCP participaron 800 profesionales. De los asistentes varones se observó que 3/11 eran abogados, los 4/8 eran médicos y los 2/5 eran economistas. ¿Cuántas damas asistieron al congreso? Resolución:

Del dato tenemos:

Pero:

7. Calcule la suma de cifras de un número entero que al ser dividido entre 152 deja como resto por defecto el doble del cociente por exceso y como resto por exceso el cuádruplo del cociente por defecto.

Resolución

Del dato tenemos:

Defecte₂
2.
$$(q + 1)$$
 q

Pero:
$$r_d + r_e = d$$

$$\Rightarrow$$
 2(q + 1) + 4.q = 152
6.q = 150 | q = 25

Exceso

D 152
4.
$$q$$
 $(q + 1)$

$$r_d = 2. (25 + 1)$$
 $r_d = 52$

Piden: Suma de cifras de D

$$D = (152).25 + 52$$
 $D = 3852$

: Suma de cifras de 🗗

8. Un libro tiene 4000 páginas, determine cuántas cifras se han utilizado en numerar sus páginas impares?

Resolución

9. Del 1 al 2795, ¿Cuántos números son divisibles por 9 pero no por 6? Resolution:

Del dato tenemos:

* Para 9

$$9.k \le 2795$$

$$MCM(9; 6) = 18$$

$$18.k \le 2795$$

Piden:múltiplos de 9 pero no de 6

10. Si: $\overline{ab}^{a} = 9 + 4$; $\overline{ab}^{b} = 9 + 6$ Halle el residuo que se obtiene al dividir $\overline{ab}^{\overline{ab}}$ entre 9.

Resolución:

$$\overline{ab}^{\overline{ab}} = (\overline{ab})^{10a+b} = (\overline{ab})^{10a} \cdot (\overline{ab})^{b}$$

Del dato tenemos:

$$\overline{ab}^a = 9 + 4$$

$$\overline{ab}^b = 9 + 6$$

$$= (\overline{ab}^a)^{10} (\overline{ab})^b$$

Reemp. =
$$(\mathring{9} + 4)^{10} (\mathring{9} + 6)$$

$$\stackrel{\circ}{9} + \underbrace{(4)^{3.3} \cdot 4^{1}}_{9+1} \longrightarrow = (\stackrel{\circ}{9} + 4) \cdot (\stackrel{\circ}{9} + 6)$$

$$= \stackrel{\circ}{9} + 24$$

Donde:

$$\overline{ab}^{\overline{ab}} = \stackrel{\circ}{9} + 6$$

Piden

$$residuo = 6$$

