Модуль SCF: модифицируемая факторизация матрицы на основе дополнения Шура

А. О. Махорин*

Март 2014 г.

Аннотация

В данной пояснительной записке рассмотрены математическое обоснование и программная реализация модифицируемой факторизации невырожденной квадратной матрицы на основе дополнения Шура. Соответствующий программный модуль SCF (Schur-Complement-Based Factorization) входит в состав пакета GLPK и используется для факторизации базисной матрицы в рамках симплекс-метода. (Примером реализации, где используется аналогичный подход, может служить пакет LUSOL [1, 2, 3].)

1 Математическое обоснование

1.1 Общая идея

Рассмотрим в качестве примера следующую систему уравнений:

$$\begin{cases}
 a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1 \\
 a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2 \\
 a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3
\end{cases}$$
(1)

Допустим, что нам требуется заменить второй столбец матрицы коэффициентов (a_{12}, a_{22}, a_{32}) новым столбцом $(\overline{a}_{12}, \overline{a}_{22}, \overline{a}_{32})$. Тогда, используя обычную «физическую» замену столбца, мы получим новую систему:

$$\begin{cases}
a_{11}x_1 + \overline{a}_{12}x_2 + a_{13}x_3 = b_1 \\
a_{21}x_1 + \overline{a}_{22}x_2 + a_{23}x_3 = b_2 \\
a_{31}x_1 + \overline{a}_{32}x_2 + a_{33}x_3 = b_3
\end{cases}$$
(2)

Общая идея, лежащая в основе рассматриваемой реализации, состоит в том, чтобы вместо «физического» удаления заменяемого столбца ис-

^{*}Кафедра прикладной информатики, Московский авиационный институт, Москва, Россия. E-mail: <mao@gnu.org>.

пользовать его «логическое» удаление, фиксируя соответствующую переменную в нуле. Так, применительно к рассматриваемому примеру новая система будет следующей:

$$\begin{cases}
a_{11}x_1 + a_{12}\tilde{x}_2 + a_{13}x_3 + \overline{a}_{12}x_2 = b_1 \\
a_{21}x_1 + a_{22}\tilde{x}_2 + a_{23}x_3 + \overline{a}_{22}x_2 = b_2 \\
a_{31}x_1 + a_{32}\tilde{x}_2 + a_{33}x_3 + \overline{a}_{32}x_2 = b_3 \\
\tilde{x}_2 = 0
\end{cases}$$
(3)

Очевидно, что системы (2) и (3) эквивалентны (если не принимать во внимание побочную старую переменную \tilde{x}_2).

Аналогичный способ можно использовать и для замены строк. Пусть, например, в системе (1) требуется заменить вторую строку (a_{21}, a_{22}, a_{23}) новой строкой $(\overline{a}_{21}, \overline{a}_{22}, \overline{a}_{23})$. В этом случае мы можем «логически» удалить старую строку, включая в нее побочную переменную, что делает такую строку «свободной» (правая часть «свободной» строки является несущественной, поэтому ее можно заменить нулем):

$$\begin{cases}
a_{11}x_1 + a_{12}x_2 + a_{13}x_3 &= b_1 \\
a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \widetilde{y} &= 0 \\
a_{31}x_1 + a_{32}x_2 + a_{33}x_3 &= b_3 \\
\overline{a}_{21}x_1 + \overline{a}_{22}x_2 + \overline{a}_{23}x_3 &= b_2
\end{cases}$$
(4)

1.2 Расширенная матрица и ее факторизованная форма

В общем случае элементарная модификация заданной матрицы сводится к добавлению подходящей строки и столбца. Это означает, что если мы начинаем с некоторой начальной матрицы A_0 , то после серии модификаций мы будем иметь расширенную матрицу

$$\left(\begin{array}{cc} A_0 & A_1 \\ A_2 & A_3 \end{array}\right),$$
(5)

где A_1 , A_2 , A_3 — подматрицы, соответствующие добавленным строкам и столбцам. Текущая матрица A, получаемая в результате выполненных модификаций, частично состоит из строк и столбцов начальной матрицы A_0 и частично из новых строк и столбцов, которые были добавлены в расширенную матрицу. Таким образом, A также является частью расширенной матрицы, что можно записать в виде следующего равенства:

$$\begin{pmatrix} A & \widetilde{A}_1 \\ \widetilde{A}_2 & \widetilde{A}_3 \end{pmatrix} = P \begin{pmatrix} A_0 & A_1 \\ A_2 & A_3 \end{pmatrix} Q, \tag{6}$$

где P и Q — перестановочные матрицы.

Конечной целью факторизации является решение систем уравнений с текущей матрицей A. Поскольку строки и столбцы расширенной матрицы, не входящие в A, «логически» удалены, то решение системы Ax=b можно получить как решение расширенной системы

$$\begin{pmatrix} A & \widetilde{A}_1 \\ \widetilde{A}_2 & \widetilde{A}_3 \end{pmatrix} \begin{pmatrix} x \\ \widetilde{x} \end{pmatrix} = \begin{pmatrix} b \\ 0 \end{pmatrix}, \tag{7}$$

а решение транспонированной системы $A^Tx = b$ — как решение расширенной транспонированной системы

$$\begin{pmatrix} A^T & \tilde{A}_2^T \\ \tilde{A}_1^T & \tilde{A}_3^T \end{pmatrix} \begin{pmatrix} x \\ \tilde{x} \end{pmatrix} = \begin{pmatrix} b \\ 0 \end{pmatrix}, \tag{8}$$

где \tilde{x} — вектор побочных переменных.

В соответствии с (6) решение расширенных систем (7) и (8) с точностью до перестановок компонент векторов переменных и правых частей, определяемых перестановочными матрицами P и Q, эквивалентно решению систем с расширенной матрицей (5). Для этой цели используется следующая факторизованная форма расширенной матрицы:

$$\begin{pmatrix} A_0 & A_1 \\ A_2 & A_3 \end{pmatrix} = \begin{pmatrix} R_0 \\ R & I \end{pmatrix} \begin{pmatrix} S_0 & S \\ & C \end{pmatrix}. \tag{9}$$

Здесь матрицы R_0 и S_0 определяют факторизацию начальной матрицы $A_0=R_0S_0$. (В принципе, можно использовать любую подходящую разреженную факторизацию, которая позволяет эффективно решать системы с матрицами R_0 и S_0 .) Заметим, что начальная матрица A_0 , а значит, и матричные факторы R_0 и S_0 не изменяются в процессе модификации текущей матрицы A. Матрицы $R=A_2S_0^{-1}$, $S=R_0^{-1}A_1$, а также матрица $C=A_3-RS=A_3-A_2A_0^{-1}A_1$, называемая дополнением Шура (матрицы A_0), изменяются при каждой элементарной модификации текущей матрицы A.

1.3 Решение систем уравнений с текущей матрицей

Пусть A — текущая матрица, для которой задана ее факторизация в виде (6) и (9). Как уже было отмечено в предыдущем подразделе, решение системы Ax = b сводится к решению расширенной системы (7), которая с учетом (6) и (9) получается следующей:

$$P\left(\begin{array}{cc} R_0 & \\ R & I \end{array}\right) \left(\begin{array}{cc} S_0 & S \\ & C \end{array}\right) Q\left(\begin{array}{c} x \\ \widetilde{x} \end{array}\right) = \left(\begin{array}{c} b \\ 0 \end{array}\right),$$

откуда

$$\begin{pmatrix} x \\ \widetilde{x} \end{pmatrix} = Q^T \begin{pmatrix} S_0 & S \\ & C \end{pmatrix}^{-1} \begin{pmatrix} R_0 \\ R & I \end{pmatrix}^{-1} P^T \begin{pmatrix} b \\ 0 \end{pmatrix}.$$

Таким образом, расширенный вектор решения можно вычислить по следующим формулам:

$$\begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = P^T \begin{pmatrix} b \\ 0 \end{pmatrix}, \tag{10}$$

$$\begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} R_0 \\ R & I \end{pmatrix}^{-1} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \Rightarrow \begin{cases} v_1 = R_0^{-1} u_1 \\ v_2 = u_2 - R v_1 \end{cases}$$
 (11)

$$\begin{pmatrix} w_1 \\ w_2 \end{pmatrix} = \begin{pmatrix} S_0 & S \\ & C \end{pmatrix}^{-1} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \Rightarrow \begin{cases} w_2 = C^{-1}v_2 \\ w_1 = S_0^{-1}(v_1 - Sw_2) \end{cases}$$
(12)

$$\begin{pmatrix} x \\ \widetilde{x} \end{pmatrix} = Q^T \begin{pmatrix} w_1 \\ w_2 \end{pmatrix}. \tag{13}$$

Аналогично, решение транспонированной системы $A^T x = b$ сводится к решению расширенной транспонированной системы (8), которая с учетом (6) и (9) получается следующей:

$$Q^T \left(\begin{array}{cc} S_0^T \\ S^T & C^T \end{array} \right) \left(\begin{array}{cc} R_0^T & R^T \\ & I \end{array} \right) P^T \left(\begin{array}{c} x \\ \widetilde{x} \end{array} \right) = \left(\begin{array}{c} b \\ 0 \end{array} \right),$$

откуда

$$\left(\begin{array}{c} x \\ \widetilde{x} \end{array}\right) = P \left(\begin{array}{cc} R_0^T & R^T \\ & I \end{array}\right)^{-1} \left(\begin{array}{cc} S_0^T & \\ S^T & C^T \end{array}\right)^{-1} Q \left(\begin{array}{c} b \\ 0 \end{array}\right),$$

что дает необходимые формулы для вычисления расширенного вектора решения:

$$\begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = Q \begin{pmatrix} b \\ 0 \end{pmatrix}, \tag{14}$$

$$\begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} S_0^T \\ S^T \\ C^T \end{pmatrix}^{-1} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \Rightarrow \begin{cases} v_1 = S_0^{-T} u_1 \\ v_2 = C^{-T} (u_2 - S^T v_1) \end{cases}$$
(15)

$$\begin{pmatrix} w_1 \\ w_2 \end{pmatrix} = \begin{pmatrix} R_0^T & R^T \\ & I \end{pmatrix}^{-1} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \Rightarrow \begin{cases} w_2 = v_2 \\ w_1 = R_0^{-T} (v_1 - R^T w_2) \end{cases}$$
(16)

$$\begin{pmatrix} x \\ \widetilde{x} \end{pmatrix} = P \begin{pmatrix} w_1 \\ w_2 \end{pmatrix}. \tag{17}$$

1.4 Элементарные модификации текущей матрицы

Здесь рассмотрены только два вида элементарных модификаций: замена строки и замена столбца. Модификации других видов (например, добавление строки и столбца, удаление строки и столбца, и т. п.) могут быть получены аналогично.

Замена строки. Пусть в текущей матрице A требуется заменить ее i-ю строку новой строкой α^T . В этом случае мы расширяем матрицу в левой части (6) следующим образом:

$$\begin{pmatrix}
A & \widetilde{A}_1 & e_i \\
\widetilde{A}_2 & \widetilde{A}_3 & 0 \\
\hline
\alpha^T & 0 & 0
\end{pmatrix},$$
(18)

где e_i — единичный вектор, содержащий единицу в i-й позиции. Для прямой системы этот вектор соответствует побочной переменной, которая делает старую строку свободной и тем самым «логически» удаляет эту строку.

Модификация (18) приводит к соответствующей модификации расширенной матрицы (5), новые компоненты которой можно определить исходя из равенства (6):

$$\begin{pmatrix} P^{T} \\ 1 \end{pmatrix} \begin{pmatrix} A & \widetilde{A}_{1} & e_{i} \\ \widetilde{A}_{2} & \widetilde{A}_{3} & 0 \\ \overline{\alpha^{T}} & 0 & 0 \end{pmatrix} \begin{pmatrix} Q^{T} \\ 1 \end{pmatrix} = \begin{pmatrix} P^{T} \begin{pmatrix} A & \widetilde{A}_{1} \\ \widetilde{A}_{2} & \widetilde{A}_{3} \end{pmatrix} Q^{T} & P^{T} \begin{pmatrix} e_{i} \\ 0 \end{pmatrix} \\ \overline{\alpha^{T}} & 0 \end{pmatrix} Q^{T} & 0 \end{pmatrix} = \begin{pmatrix} A_{0} & A_{1} & b \\ A_{2} & A_{3} & f \\ \overline{d^{T}} & g^{T} & 0 \end{pmatrix},$$

$$\begin{pmatrix} b \\ f \end{pmatrix} = P^{T} \begin{pmatrix} e_{i} \\ 0 \end{pmatrix}, \quad \begin{pmatrix} d \\ g \end{pmatrix} = Q \begin{pmatrix} \alpha \\ 0 \end{pmatrix}.$$

$$(19)$$

Наконец, чтобы матрица (18) соответствовала новой текущей матрице следует поменять местами ее i-ю и последнюю (новую) строчки. В соответствии с равенством (6) для этого необходимо поменять местами i-ю и последнюю строчки новой перестановочной матрицы P, при этом новая расширенная матрица остается неизменной.

где

Замена столбца. Пусть в текущей матрице A требуется заменить ее j-й столбец новым столбцом β . В этом случае мы расширяем матрицу в левой части (6) следующим образом:

$$\begin{pmatrix}
A & \widetilde{A}_1 & \beta \\
\widetilde{A}_2 & \widetilde{A}_3 & 0 \\
\hline
e_j^T & 0 & 0
\end{pmatrix},$$
(20)

где e_j — единичный вектор, содержащий единицу в j-й позиции. Для прямой системы этот вектор фиксирует старый столбец в нуле и тем самым «логически» удаляет этот столбец.

Модификация (20) приводит к соответствующей модификации расширенной матрицы (5), новые компоненты которой можно определить исходя из равенства (6):

$$\begin{pmatrix} P^{T} \\ 1 \end{pmatrix} \begin{pmatrix} A & \widetilde{A}_{1} & \beta \\ \widetilde{A}_{2} & \widetilde{A}_{3} & 0 \\ \hline e_{j}^{T} & 0 & 0 \end{pmatrix} \begin{pmatrix} Q^{T} \\ 1 \end{pmatrix} =$$

$$= \begin{pmatrix} P^{T} \begin{pmatrix} A & \widetilde{A}_{1} \\ \widetilde{A}_{2} & \widetilde{A}_{3} \end{pmatrix} Q^{T} & P^{T} \begin{pmatrix} \beta \\ 0 \end{pmatrix} \\ \hline \begin{pmatrix} e_{j}^{T} & 0 \end{pmatrix} Q^{T} & 0 \end{pmatrix} = \begin{pmatrix} A_{0} & A_{1} & b \\ A_{2} & A_{3} & f \\ \hline d^{T} & g^{T} & 0 \end{pmatrix},$$
где
$$\begin{pmatrix} b \\ f \end{pmatrix} = P^{T} \begin{pmatrix} \beta \\ 0 \end{pmatrix}, \quad \begin{pmatrix} d \\ g \end{pmatrix} = Q \begin{pmatrix} e_{j} \\ 0 \end{pmatrix}. \tag{21}$$

Наконец, чтобы матрица (20) соответствовала новой текущей матрице следует поменять местами ее j-й и последний (новый) столбцы. В соответствии с равенством (6) для этого необходимо поменять местами j-и последний столбцы новой перестановочной матрицы Q, при этом новая расширенная матрица остается неизменной.

1.5 Пересчет факторизации расширенной матрицы

В общем случае в результате элементарной модификации текущей матрицы A новая расширенная матрица получается из текущей расширенной матрицы (5) и имеет следующий вид:

$$\left(\begin{array}{cc}
A_0 & \overline{A}_1 \\
\overline{A}_2 & \overline{A}_3
\end{array}\right) = \left(\begin{array}{cc|c}
A_0 & A_1 & b \\
A_2 & A_3 & f \\
d^T & g^T & h
\end{array}\right),$$
(22)

где $b,\ f$ — добавленные столбцы, $d^T,\ g^T$ — добавленные строки, h — добавленный диагональный элемент.

В соответствии с (9) для новой расширенной матрицы имеем:

$$\begin{pmatrix} A_0 & \overline{A}_1 \\ \overline{A}_2 & \overline{A}_3 \end{pmatrix} = \begin{pmatrix} R_0 \\ \overline{R} & I \end{pmatrix} \begin{pmatrix} S_0 & \overline{S} \\ \overline{C} \end{pmatrix} =$$

$$= \begin{pmatrix} R_0 & \\ R & I \\ w^T & 1 \end{pmatrix} \begin{pmatrix} S_0 & S & v \\ \hline C & x \\ y^T & z \end{pmatrix} = \begin{pmatrix} R_0 S_0 & R_0 S & R_0 v \\ \hline RS_0 & RS + C & Rv + x \\ w^T S_0 & w^T S + y^T & w^T v + z \end{pmatrix} =$$

$$= \begin{pmatrix} A_0 & A_1 & R_0 v \\ \overline{A}_2 & A_3 & Rv + x \\ w^T S_0 & w^T S + y^T & w^T v + z \end{pmatrix} = \begin{pmatrix} A_0 & A_1 & b \\ \overline{A}_2 & A_3 & f \\ \overline{d}^T & g^T & h \end{pmatrix}.$$

Поэтому

$$v = R_0^{-1}b,$$

 $w = S_0^{-T}d,$
 $x = f - Rv,$
 $y = g - S^Tw,$
 $z = h - v^Tw.$ (23)

Таким образом, новая расширенная матрица получается из текущей расширенной матрицы в результате добавления новых компонент: \overline{R} получается добавлением к R новой строки w^T , \overline{S} получается добавлением к S нового столбца v, а \overline{C} получается добавлением к C нового столбца x, новой строки y^T и диагонального элемента z.

Следует заметить, что для решения систем уравнений с текущей матрицей (см. подразд. 1.3) требуется решать вспомогательные системы с матрицей C, что предполагает наличие некоторой факторизованной формы этой матрицы. Таким образом, пересчет факторизации расширенной матрицы также включает в себя пересчет используемой факторизации матрицы C. Однако эти вопросы изложены в другой статье и поэтому здесь не рассматриваются.

2 Программная реализация

2.1 Основная часть

Основная часть (файлы scf.c и scf.h) включает в себя описание структурного типа данных SCF, который представляет факторизацию текущей матрицы A, а также набор подпрограмм, выполняющих основные операции.

Структура SCF

Структурный тип данных SCF служит для представления факторизации (6) и (9) текущей матрицы A. Эта структура имеет следующие поля:

int n-n, порядок текущей матрицы A;

int n0 — n_0 , порядок начальной матрицы A_0 ;

int type — тип используемой факторизации A_0 :

- 1 простая LU-факторизация (модуль LUF). Для этого типа факторизации $A_0 = F_0V_0$, $F_0 = P_0LP_0^T$, $V_0 = P_0UQ_0$, где F_0 и V_0 неявные треугольные матричные сомножители, L_0 нижняя треугольная матрица с единичной диагональю, U_0 верхняя треугольная матрица, P_0 и Q_0 перестановочные матрицы. В данном случае $R_0 = F_0$ и $S_0 = V_0$;
- 2 блочно-треугольная LU-факторизация (модуль BTF). Для этого типа факторизации $A_0 = P_0 \widetilde{A}_0 Q_0$, где \widetilde{A}_0 верхняя блочно-треугольная

- матрица, P_0 и Q_0 перестановочные матрицы, при этом для каждого диагонального блока \widetilde{A}_0 используется простая LU-факторизация. В данном случае $R_0 = I$ (единичная матрица) и $S_0 = A_0$.
- union { LUF *luf; BTF *btf; } a0 факторизация A_0 . В случае type = 1 используется указатель a0.luf на объект типа LUF (простая LU-факторизация). В случае type = 2 используется указатель a0.btf на объект типа BTF (блочно-треугольная LU-факторизация);
- int nn_max nn_{max} , максимальное число дополнительных строк и столбцов расширенной матрицы (5). Этот параметр ограничивает число возможных элементарных модификаций;
- int nn nn, текущее число дополнительных строк и столбцов расширенной матрицы (5), $0 \le nn \le nn_{max}$;
- SVA *sva указатель на область разреженных векторов (объект типа SVA) для хранения строк матрицы R и столбцов матрицы S. Следует заметить, что модуль SCF использует ту же область SVA, которая используется модулем LUF или BTF для хранения компонент факторизации матрицы A_0 , при этом строки R и столбцы S записываются в правую (статическую) часть SVA;
- int rr_ref ссылочный номер разреженного вектора в SVA, который соответствует первой строке матрицы R. Всего резервируется nn_{max} векторов для возможного расширения R;
- int ss_ref ссылочный номер разреженного вектора в SVA, который соответствует первому столбцу матрицы S. Всего резервируется nn_{max} векторов для возможного расширения S;
- IFU ifu объект типа IFU, представляющий факторизацию матрицы C, имеющей порядок nn (модуль IFU). Поскольку порядок C предполагается небольшим (он ограничен параметром nn_{max}), то модуль IFU использует плотный формат представления матриц;
- int *pp_ind, *pp_inv указатели на массивы длины $1 + n_0 + nn$, представляющие перестановочную матрицу $P = (p_{ij})$: если $p_{ij} = 1$, то $pp_ind[i] = j$ и $pp_inv[j] = i$, $1 \le i, j \le n_0 + nn$. Всего резервируется $1 + n_0 + nn_{\max}$ ячеек для возможного расширения P (ячейки с индексом 0 не используются);
- int *qq_ind, *qq_inv указатели на массивы длины $1 + n_0 + nn$, представляющие перестановочную матрицу $Q = (q_{ij})$: если $q_{ij} = 1$, то $qq_ind[i] = j$ и $qq_inv[j] = i$, $1 \le i, j \le n_0 + nn$. Всего резервируется $1 + n_0 + nn_{\max}$ ячеек для возможного расширения Q (ячейки с индексом 0 не используются).

Подпрограмма scf r0 solve

```
void scf_r0_solve(SCF *scf, int tr, double x[/*1+n0*/]);
```

Данная подпрограмма предназначена для решения системы $R_0x = b$ (если параметр tr равен нулю) или системы $R_0^Tx = b$ (если параметр tr отличен от нуля), где R_0 — левый матричный сомножитель начальной матрицы A_0 порядка n_0 .

На входе в подпрограмму элементы вектора правых частей b должны быть записаны в ячейки массива $x[1], \ldots, x[n0]$. На выходе подпрограмма записывает элементы вектора решения x в те же самые ячейки.

В случае scf->type = 1 имеет место $R_0 = F_0$ (см. описание структуры SCF), поэтому для решения системы $F_0x = b$ ($F_0^Tx = b$) данная подпрограмма использует подпрограмму luf_f_solve (luf_ft_solve), входящую в модуль LUF.

В случае scf->type = 2 имеет место $R_0 = I$ (единичная матрица), поэтому подпрограмма просто оставляет содержимое массива \mathbf{x} неизменным, так как x = b.

Подпрограмма scf s0 solve

```
void scf_s0_solve(SCF *scf, int tr, double x[/*1+n0*/], double w1[/*1+n0*/], double w2[/*1+n0*/], double w3[/*1+n0*/];
```

Данная подпрограмма предназначена для решения системы $S_0x=b$ (если параметр tr равен нулю) или системы $S_0^Tx=b$ (если параметр tr отличен от нуля), где S_0 — правый матричный сомножитель начальной матрицы A_0 порядка n_0 .

На входе в подпрограмму элементы вектора правых частей b должны быть записаны в ячейки массива $x[1], \ldots, x[n0]$. На выходе подпрограмма записывает элементы вектора решения x в те же самые ячейки.

Подпрограмма использует ячейки [1], ..., [n0] трех рабочих массивов w1, w2 и w3. (В случае scf->type = 1 массивы w2 и w3 не используются и могут быть заданы как NULL.)

В случае scf->type = 1 имеет место $S_0 = V_0$ (см. описание структуры SCF), поэтому для решения системы $V_0x = b$ ($V_0^Tx = b$) данная подпрограмма использует подпрограмму luf_v_solve (luf_vt_solve), входящую в модуль LUF.

В случае scf->type = 2 имеет место $S_0 = A_0$ (начальная матрица), поэтому для решения системы $A_0x = b$ ($A_0^Tx = b$) данная подпрограмма использует подпрограмму btf_a_solve (btf_at_solve), входящую в модуль BTF.

Подпрограмма scf r prod

void scf_r_prod(SCF *scf, double y[/*1+nn*/], double a, const double x[/*1+n0*/]);

Данная подпрограмма предназначена для вычисления матричного произведения

$$\overline{y} = y + \alpha Rx, \tag{24}$$

где $R-nn \times n_0$ -матрица в факторизации (9) текущей расширенной матрицы, x — заданный n_0 -вектор, α — заданный скаляр, y — заданный nn-вектор.

На входе в подпрограмму элементы векторов x и y должны находится в ячейках массивов $x[1], \ldots, x[n0]$ и $y[1], \ldots, y[nn]$, соответственно. На выходе подпрограмма записывает элементы вычисленного вектора \overline{y} в массив y на место исходного вектора y.

Поскольку матрица $R = (r_{ij})$ хранится в строчном разреженном формате, то компоненты результирующего вектора вычисляются как скалярные произведения:

$$\overline{y}_i = y_i + \alpha(i$$
-я строка $R)x = y_i + \alpha \sum_{j=1}^{n_0} r_{ij} x_j$ (25)

для $i=1,\ldots,nn$.

Подпрограмма scf rt prod

void scf_rt_prod(SCF *scf, double y[/*1+n0*/], double a, const double x[/*1+nn*/]);

Данная подпрограмма предназначена для вычисления матричного произведения

$$\overline{y} = y + \alpha R^T x, \tag{26}$$

где $R-nn\times n_0$ -матрица в факторизации (9) текущей расширенной матрицы, x — заданный nn-вектор, α — заданный скаляр, y — заданный n_0 -вектор.

На входе в подпрограмму элементы векторов x и y должны находится в ячейках массивов $x[1], \ldots, x[nn]$ и $y[1], \ldots, y[n0]$, соответственно. На выходе подпрограмма записывает элементы вычисленного вектора \overline{y} в массив y на место исходного вектора y.

Поскольку матрица R хранится в строчном разреженном формате, то результирующий вектор вычисляется как линейная комбинация строк этой матрицы:

$$\overline{y} = y + \alpha \sum_{i=1}^{nn} R_i^T x_i, \tag{27}$$

где R_i^T-i -я строка матрицы R.

Подпрограмма scf s prod

void scf_s_prod(SCF *scf, double y[/*1+n0*/], double a, const double x[/*1+nn*/]);

Данная подпрограмма предназначена для вычисления матричного произведения

$$\overline{y} = y + \alpha S x,\tag{28}$$

где $S-n_0 \times nn$ -матрица в факторизации (9) текущей расширенной матрицы, x — заданный nn-вектор, α — заданный скаляр, y — заданный n_0 -вектор.

На входе в подпрограмму элементы векторов x и y должны находится в ячейках массивов $x[1], \ldots, x[nn]$ и $y[1], \ldots, y[n0]$, соответственно. На выходе подпрограмма записывает элементы вычисленного вектора \overline{y} в массив y на место исходного вектора y.

Поскольку матрица S хранится в столбцовом разреженном формате, то результирующий вектор вычисляется как линейная комбинация столбцов этой матрицы:

$$\overline{y} = y + \alpha \sum_{j=1}^{nn} S_j x_j, \tag{29}$$

где S_j — j-й столбец матрицы S.

Подпрограмма scf st prod

void scf_st_prod(SCF *scf, double y[/*1+nn*/], double a, const double x[/*1+n0*/]);

Данная подпрограмма предназначена для вычисления матричного произведения

$$\overline{y} = y + \alpha S^T x,\tag{30}$$

где $S-n_0 \times nn$ -матрица в факторизации (9) текущей расширенной матрицы, x — заданный n0-вектор, α — заданный скаляр, y — заданный nn-вектор.

На входе в подпрограмму элементы векторов x и y должны находится в ячейках массивов $x[1], \ldots, x[n0]$ и $y[1], \ldots, y[nn]$, соответственно. На выходе подпрограмма записывает элементы вычисленного вектора \overline{y} в массив y на место исходного вектора y.

Поскольку матрица $S=(s_{ij})$ хранится в столбцовом разреженном формате, то компоненты результирующего вектора вычисляются как скалярные произведения:

$$\overline{y}_j = y_j + \alpha(j$$
-й столбец $S)x = y_j + \alpha \sum_{i=1}^{n_0} s_{ij} x_i$ (31)

для $j = 1, \ldots, nn$.

Подпрограмма scf a solve

Данная подпрограмма предназначена для решения системы Ax=b, где A — текущая матрица порядка n.

На входе в подпрограмму элементы вектора правых частей b должны быть записаны в ячейки массива $x[1], \ldots, x[n]$. На выходе подпрограмма записывает элементы вектора решения x в те же самые ячейки.

Размеры рабочих массивов w, work1, work2 и work3 должны быть не меньше, чем указано в спецификации подпрограммы (см. выше). Ячейки этих массивов с индексом 0 не используются.

Вычисление решения выполняется в соответствии с формулами (10)—(13) из подразд. 1.3. Для решения систем с матрицами R_0 и S_0 данная подпрограмма использует подпрограммы scf_r0_solve и scf_s0_solve , а для вычисления произведений $u_2 - Rv_1$ и $v_1 - Sw_2$ — подпрограммы scf_rprod и scf_sprod . Для решения системы с матрицей C используется подпрограмма ifu_a_solve , входящая в состав модуля IFU.

Подпрограмма scf at solve

```
void scf_at_solve(SCF *scf, double x[/*1+n*/],
    double w[/*1+n0+nn*/], double work1[/*1+max(n0,nn)*/],
    double work2[/*1+n*/], double work3[/*1+n*/]);
```

Данная подпрограмма предназначена для решения системы $A^T x = b$, где A — текущая матрица порядка n.

На входе в подпрограмму элементы вектора правых частей b должны быть записаны в ячейки массива $x[1], \ldots, x[n]$. На выходе подпрограмма записывает элементы вектора решения x в те же самые ячейки.

Размеры рабочих массивов w, work1, work2 и work3 должны быть не меньше, чем указано в спецификации подпрограммы (см. выше). Ячейки этих массивов с индексом 0 не используются.

Вычисление решения выполняется в соответствии с формулами (14)—(17) из подразд. 1.3. Для решения систем с матрицами R_0^T и S_0^T данная подпрограмма использует подпрограммы $\mathsf{scf}_\mathsf{r0}_\mathsf{solve}$ и $\mathsf{scf}_\mathsf{s0}_\mathsf{solve}$, а для вычисления произведений $u_2 - S^T v_1$ и $v_1 - R^T w_2$ — подпрограммы $\mathsf{scf}_\mathsf{rt}_\mathsf{prod}$ и $\mathsf{scf}_\mathsf{st}_\mathsf{prod}$. Для решения системы с матрицей C^T используется подпрограмма $\mathsf{ifu}_\mathsf{at}_\mathsf{solve}$, входящая в состав модуля IFU.

Подпрограмма scf add r row

```
void scf_add_r_row(SCF *scf, const double w[/*1+n0*/]);
```

Данная подпрограмма добавляет новую строку с номером nn+1 к $nn \times n_0$ -матрице R, которая является частью факторизации (9) текущей расширенной матрицы. Элементы новой строки должны находиться в ячейках массива w[1], ..., w[n0]. Предполагается, что $nn < nn_{max}$.

Подпрограмма scf add s col

```
void scf_add_s_col(SCF *scf, const double v[/*1+n0*/]);
```

Данная подпрограмма добавляет новый столбец с номером nn+1 к $n_0 \times nn$ -матрице S, которая является частью факторизации (9) текущей расширенной матрицы. Элементы нового столбца должны находиться в ячейках массива v[1], ..., v[n0]. Предполагается, что $nn < nn_{max}$.

Подпрограмма scf update aug

```
int scf_update_aug(SCF *scf, double b[/*1+n0*/], double d[/*1+n0*/], double f[/*1+nn*/], double g[/*1+nn*/], double h, int upd, double w1[/*1+n0*/], double w2[/*1+n0*/], double w3[/*1+n0*/]);
```

Данная подпрограмма выполняет пересчет факторизации (9) расширенной матрицы, чтобы новая факторизация соответствовала новой расширенной матрице (22).

На входе в подпрограмму элементы векторов b, d, f и g, определяющих новую расширенную матрицу, должны находиться в ячейках массивов $b[1], \ldots, b[n0], d[1], \ldots, d[n0], f[1], \ldots, f[nn], g[1], \ldots, g[nn], соответственно. Подпрограмма использует эти массивы как рабочие, поэтому на выходе их содержимое не сохраняется. Параметр <math>h$ задает диагональный элемент h для новой расширенной матрицы.

Параметр **upd** задает метод пересчета факторизации матрицы C (подробнее см. описание модуля IFU):

- 1 метод Бартелса—Голуба;
- 2 метод вращения Гивенса.

Длина рабочих массивов **w1**, **w2** и **w3** должна быть не меньше $1 + n_0$. Ячейки этих массивов с индексом 0 не используются.

Подпрограмма возвращает один из следующих признаков:

- 0 пересчет факторизации расширенной матрицы успешно выполнен;
- 1 достигнуто максимальное число элементарных модификаций (на входе в подпрограмму $nn = nn_{max}$);
- 2 невозможно выполнить пересчет факторизации матрицы C (подробнее см. описание модуля IFU).

Для пересчета факторизации подпрограмма вначале вычисляет векторы v,w,x,y, а также скаляр z по формулам (23), записывая указанные векторы на место векторов b,d,f и g, соответственно. Для решения систем с матрицами R_0 и S_0^T используются подпрограммы $\operatorname{scf}_r0_solve$ и $\operatorname{scf}_s0_solve$, а для вычисления произведений f-Rv и $g-S^Tw-$ подпрограммы scf_rprod и $\operatorname{scf}_st_prod$. Далее вычисленный вектор w добавляется в качестве новой (nn+1)-й строки к матрице R, а вычисленный вектор v- в качестве нового (nn+1)-го столбца к матрице S, для чего используются подпрограммы $\operatorname{scf}_add_rrow$ и $\operatorname{scf}_add_scol}$. После этого выполняется пересчет факторизации матрицы C, чтобы ее новая факторизация соответствовала новой матрице

$$\overline{C} = \begin{pmatrix} C & x \\ y^T & z \end{pmatrix}, \tag{32}$$

для чего используется подпрограмма ifu_bg_update (если upd =1) или подпрограмма ifu_gr_update (если upd =2). В заключение перестановочные матрицы P и Q расширяются для получения новых перестановочных матриц

$$\overline{P} = \begin{pmatrix} P & \\ & 1 \end{pmatrix}, \quad \overline{Q} = \begin{pmatrix} Q & \\ & 1 \end{pmatrix}, \tag{33}$$

и счетчик элементарных модификаций nn увеличивается на единицу.

2.2 Интерфейс

Интерфейс к факторизации (файлы scfint.c и scfint.h) включает в себя описание структурного типа данных SCFINT, представляющего интерфейс, а также набор подпрограмм, реализующих интерфейс.

Структура SCFINT

Структурный тип данных SCFINT представляет интерфейс к факторизации (6) и (9) текущей матрицы A. Эта структура имеет следующие поля:

int valid — текущая факторизация является действительной только в том случае, если установлен данный флажок;

SCF scf — объект типа SCF, представляющий факторизацию (6) и (9) текущей матрицы A (см. подразд. 2.1);

union { LUFINT *lufi; BTFINT *btfi; } и — интерфейс к факторизации начальной матрицы A_0 . В случае scf.type = 1 используется указатель u.lufi (простая LU-факторизация). В случае scf.type = 2 используется указатель u.btfi (блочно-треугольная LU-факторизация).

double *w1, *w2, *w3 — указатели на рабочие массивы, имеющие размерность $1 + n0_{max}$;

double *w3, *w4 — указатели на рабочие массивы, имеющие размерность $1 + n0_{max} + nn_{max}$;

 $nn_{max} - nn_{max}$, управляющий параметр, определяющий максимальное число элементарных модификаций. Если необходимо, вызывающая программа может изменить значение этого управляющего параметра. (Новое значение nn_{max} вступает в силу не сразу, а только после вызова подпрограммы $scfint_factorize$.)

Примечание. Управляющий параметр $n0_{max}$, определяющий максимальный порядок начальной матрицы A_0 , при котором не требуется переразмещение массивов, соответствует управляющему параметру n_{max} , который является частью структур LUFINT и BTFINT. В случае необходимости этот параметр увеличивается автоматически.

Подпрограмма scfint create

```
SCFINT *scfint_create(int type);
```

Данная подпрограмма создает программный объект типа SCFINT (интерфейс к факторизации).

Параметр type определяет тип используемой факторизации начальной матрицы A_0 (подробнее см. описание структуры SCF в подразд. 2.1):

- 1 простая LU-факторизация;
- 2 блочно-треугольная LU-факторизация.

На выходе данная подпрограмма возвращает указатель на созданный интерфейс. Вызывающая программа может использовать этот указатель для выполнения необходимых операций с факторизацией.

Подпрограмма scfint factorize

```
int scfint_factorize(SCFINT *fi, int n, int (*col)(void *info, int j,
    int ind[], double val[]), void *info);
```

Данная подпрограмма вычисляет факторизацию заданной матрицы A, которая становится начальной матрицей A_0 .

Параметр **n** задает порядок матрицы A, n > 0.

Для получения элементов матрицы A данная подпрограмма вызывает формальную подпрограмму соl и передает ей некоторый номер столбца $1 \le j \le n$, а также транзитный указатель info, переданный вызывающей программой. В этом случае подпрограмма соl должна записать строчные индексы и значения ненулевых элементов j-го столбца A в ячейки ind[1], ..., ind[len] и val[1], ..., val[len], соответственно, где len — длина j-го столбца (число ненулевых элементов в этом столбце), $0 \le len \le n$, возвращаемая в качестве результата.

Если факторизация успешно вычислена, данная подпрограмма возвращает нуль. В противном случае возвращается признак, который был выдан подпрограммой lufint_factorize (если используется простая LU-факторизация) или подпрограммой btfint_factorize (если используется блочная LU-факторизация).

Подпрограмма scfint_factorize вычисляет факторизацию заданной матрицы A следующим образом.

В зависимости от типа используемой факторизации данная подпрограмма вызывает подпрограмму $lufint_factorize$ (простая LU-факторизация) или $btfint_factorize$ (блочная LU-факторизация), которые вычисляют факторизацию A.

Далее подпрограмма определяет новые значения управляющих параметров n0_max и nn_max и, если необходимо, переразмещает массивы в структурах SCF и SCFINT, размер которых зависит от этих управляющих параметров.

В завершение данная подпрограмма устанавливает $n_0=n,\ nn=0,\ R=\emptyset,\ S=\emptyset,\ C=\emptyset$ (\emptyset — пустая матрица, не имеющая строк и/или столбцов), P=Q=I (I — единичная матрица). С точки зрения факторизации (6) и (9) это означает, что начальная матрица A_0 совпадает с текущей (заданной) матрицей A.

Подпрограмма scfint update

```
int scfint_update(SCFINT *fi, int upd, int j, int len, const int ind[],
      const double val[]);
```

Данная подпрограмма выполняет пересчет факторизации после замены столбца в текущей матрице A. (На входе в подпрограмму факторизация должна быть действительной.)

Параметр upd задает метод пересчета факторизации матрицы C (см. описание подпрограммы scf_update_aug в подразд. 2.1).

Параметр j задает номер измененного столбца, $1 \le j \le n$, где n — порядок текущей матрицы A.

Строчные индексы и значения элементов нового j-го столбца A должны находиться в ячейках массивов $\operatorname{ind}[1], \ldots, \operatorname{ind}[\operatorname{len}]$ и $\operatorname{val}[1], \ldots, \operatorname{val}[\operatorname{len}]$, соответственно, где $\operatorname{len} -$ длина нового j-го столбца (число ненулевых элементов в этом столбце), $0 \leq \operatorname{len} \leq n$.

Признак, возвращаемый данной подпрограммой имеет тот же смысл, что и для подпрограммы scf_update_aug (см. подразд. 2.1).

Для пересчета факторизации используется способ, рассмотренный в подразд. 1.4. Данная подпрограмма вычисляет векторы $b,\ f,\ d$ и g по формуле (21), вызывает подпрограмму scf_update_aug (см. подразд. 2.1), после чего меняет местами j-й и последний (только что добавленный) столбцы матрицы Q.

Подпрограмма scfint ftran

```
void scfint_ftran(SCFINT *fi, double x[]);
```

Данная подпрограмма предназначена для решения системы Ax = b, где A — текущая матрица порядка n. (На входе в подпрограмму факторизация должна быть действительной.)

На входе в подпрограмму элементы вектора правых частей b должны быть записаны в ячейки массива $x[1], \ldots, x[n]$. На выходе подпрограмма записывает элементы вектора решения x в те же самые ячейки.

Для решения системы данная подпрограмма использует подпрограмму scf_a_solve (см. подразд. 2.1).

Подпрограмма scfint btran

```
void scfint_btran(SCFINT *fi, double x[]);
```

Данная подпрограмма предназначена для решения системы $A^Tx = b$, где A — текущая матрица порядка n. (На входе в подпрограмму факторизация должна быть действительной.)

На входе в подпрограмму элементы вектора правых частей b должны быть записаны в ячейки массива $x[1], \ldots, x[n]$. На выходе подпрограмма записывает элементы вектора решения x в те же самые ячейки.

Для решения системы данная подпрограмма использует подпрограмму scf_at_solve (см. подразд. 2.1).

Подпрограмма scfint_delete

```
void scfint_delete(SCFINT *fi);
```

Данная подпрограмма удаляет указанный программный объект типа SCFINT (интерфейс к факторизации), освобождая всю занимаемую этим объектом память.

Литература

- [1] M. A. Saunders, "LUSOL: A basis package for constrained optimization," SCCM, Stanford University, 2006.
- [2] M. A. Saunders, "Notes 5: Basis Updates," CME 318, Stanford University, Spring 2006.
- [3] M. A. Saunders, "Notes 6: LUSOL—a Basis Factorization Package," ibid.