

Analiza i przetwarzanie obrazu Filtry nieliniowe

Marcin Fabrykowski

13 maja 2013

O czym będziemy mówić

- Filtry logiczne
- 2 Filtr medianowy
- 3 Filtry minimalny i maksymalny
- Wykrywanie krawędzi
- 5 Filtry adaptacyjne

zasada działania

wartość pixel określana jest na podstawie zależności sąsiadów

zastosowanie

- Usuwanie poziomych lini:
 p = a, jeśli a=d, w przeciwnym przypadku X
- Usuwanie pojedynczych punktów:
 p = a, jeśli a=b=c=d, w przeciwnym przypadku >

Filtry logiczne

zasada działania

wartość pixel określana jest na podstawie zależności sąsiadów

	а	
b	Χ	С
	d	

zastosowanie

- Usuwanie poziomych lini:
 p = a, jeśli a=d, w przeciwnym przypadku X
- Usuwanie pojedynczych punktów:
 p = a, jeśli a=b=c=d, w przeciwnym przypadku X

Filtry logiczne

zasada działania

wartość pixel określana jest na podstawie zależności sąsiadów

	а	
b	Χ	С
	d	

zastosowanie

- Usuwanie poziomych lini:
 - p = a, jeśli a=d, w przeciwnym przypadku X
- Usuwanie pojedynczych punktów:

$$p = a$$
, jeśli $a=b=c=d$, w przeciwnym przypadku X

Filtr medianowy

Zastosowanie

usuwanie szumów z obrazu

Zasada działania

wybierany jest element środkowy z okna

Popularne okna

3x3, 5x5, 7x7

Filtr medianowy

Zastosowanie

usuwanie szumów z obrazu

Zasada działania

wybierany jest element środkowy z okna

Popularne okna

3x3, 5x5, 7x7

Filtr medianowy

Zastosowanie

usuwanie szumów z obrazu

Zasada działania

wybierany jest element środkowy z okna

Popularne okna

3x3, 5x5, 7x7

Przykładowe działanie: okno 3x3

OszumMed1

Przykładowe działanie: okno 7x7

Oszum

OszumMed3

Przykładowe działanie: okno 13x13

OszumMed6

Oszun

Wady i zalety rozmiarów okien

Mniejsze okna

- krótszy czas filtrowania
- wyraźniejszy obraz
- obecność niepożądanych efektów

Większe okna

- dłuższy czas filtrowania
- niewyraźny obraz
- brak niepożądanych efektów

Wady i zalety rozmiarów okien

Mniejsze okna

- krótszy czas filtrowania
- wyraźniejszy obraz
- obecność niepożądanych efektów

Większe okna

- dłuższy czas filtrowania
- niewyraźny obraz
- brak niepożądanych efektów

Czy można lepiej?

Oszum

OszumMed1

Czy można lepiej?

Ovum

Filtr medianowy vs uśredniający

Filtr medianowy vs uśredniający

Filtry minimalny i maksymalne

zasada działania

działają podobnie jak filtr medianowy, z tą różnicą że wybierany jest odpowiednio najmniejszy bądź największy element

zastosowanie

Minimalny(erocja) powoduje zmniejszanie się elementów obrazu, natomiast maksymalny(dylatacja) powoduje ich zwiększanie

Erozja i dylatacja

Kombinowane wykrywanie krawędzi

Zasada działania

stosujemy filtry poziomy i pionowy, a następnie obliczamy odległości euklidesowe dla odpowiednich punktów:

$$p = \sqrt{p_h^2 + p_v^2}$$

uproszczenie

dla uproszczenia obliczeń, stosuje się czasem sumę modułów:

$$p = |p_h| + |p_v|$$

Wykrywanie krawędzi

Wykrywanie krawędzi

Wykrywanie krawędzi

Filtry adaptacyjne

zastosowanie

wykorzystywane w celu podniesienia skuteczności innych filtrów

przykłady

adaptacyjny uśredniający, adaptacyjny medianowy

Filtry adaptacyjne

zastosowanie

wykorzystywane w celu podniesienia skuteczności innych filtrów

przykłady

adaptacyjny uśredniający, adaptacyjny medianowy

Podsumowanie

Wady

- trudniejsze w implementacji
- dłuższy czas wykonywania

Zalety

• znacznie lepsze efekty działania

Podsumowanie

Wady

- trudniejsze w implementacji
- dłuższy czas wykonywania

Zalety

• znacznie lepsze efekty działania

Ostateczna konfrontacja

Oszum

Ostateczna konfrontacja

Oszum

Ostateczna konfrontacja

Bibliografia

Marcin Kiełczewski.

http://etacar.put.poznan.pl/marcin.kielczewski/P0iSW3.pdf. Dostęp 2013-05-12.

Maciej Radzieński.

http://atol.am.gdynia.pl/tc/Radzienski/.
Dostęp 2013-05-12.

Przemysław Korohoda Ryszard Tadeusiewicz.

Komputerowa analiza i przetwarzanie obrazów.

Kraków, 1997.

Adam Szczepański.

 $\verb|http://adamszczepanski.pl/pl/index.php?p=aipo.|$

Dostęp 2013-05-12.