Reading Summary 2.2 and 2.3

Evan Hughes

January 2023

2.2 Properties of Modular Arithmetic

Review of Properties of \mathbb{Z}

For all $a, b, c \in \mathbb{Z}$,

- 1. Closure under addition: $a + b \in \mathbb{Z}$
- 2. Associative addition: (a + b) + c = a + (b + c)
- 3. Commutative addition: a + b = b + a
- 4. Additive Identity: a + 0 = a
- 5. There is a solution to a + x = 0 in \mathbb{Z} .
- 6. Closure under multiplication: $ab \in \mathbb{Z}$
- 7. Associative multiplication: (ab)c = a(bc)
- 8. Distributive Law: a(b+c) = ab + ac
- 9. Commutative multiplication: ab = ba
- 10. Multiplicative Identity: $a \cdot 1 = a$
- 11. If ab = 0, then a = 0 or b = 0.

Theorem 2.7

For any classes [a],[b],[c] of \mathbb{Z} ,

- 1. $[a] \oplus [b] \in \mathbb{Z}$
- 2. $[a] \oplus ([b] \oplus [c]) = ([a] \oplus [b]) \oplus [c]$
- 3. $[a] \oplus [b] = [b] \oplus [a]$
- 4. $[a] \oplus [0] = [a]$
- 5. $[a] \oplus X = [0]$ has a solution in $[\mathbb{Z}]$.
- 6. $[a] \odot [b] \in \mathbb{Z}$
- 7. $[a] \odot ([b] \odot [c]) = ([a] \odot [b]) \odot [c]$
- 8. $[a] \odot ([b] \oplus [c]) = [a] \odot [b] \oplus [a] \odot [c]$
- 9. $[a] \odot [b] = [b] \odot [a]$
- 10. $[a] \odot [1] = [a]$

Example:

(from the book) in \mathbb{Z}_5 , $[3]^2 = [3] \odot [3] = [4] \in \mathbb{Z}_5$ and $[3]^4 = [3] \odot [3] \odot [3] \odot [3] = [1] \in \mathbb{Z}_5$.

2.3 The Structure of \mathbb{Z}_p (p Prime) and \mathbb{Z}_n

New Notation: Basically we are writing classes and arithmetic of them in the way we write normal integers. The context will make it clear which world we are in.

+	0	1	2	•	0	1	2
						0	
1	1	2	0	1	0	1	2
2	2	0	1	2	0	2	1

Figure 1: New notation for \mathbb{Z}_3

The structure of \mathbb{Z}_p when p is Prime

Not all \mathbb{Z}_n share the same properties of \mathbb{Z} , in \mathbb{Z} the product of and nonzero integer is nonzero, however in \mathbb{Z}_6 we have $2 \cdot 3 = 0$. On the other hand in \mathbb{Z}_5 we have that the product of nonzero elements is always nonzero. \mathbb{Z}_5 has, for any $a \neq 0$, the equation ax = 1 has a solution in \mathbb{Z}_5 .

Theorem 2.8

If p > 1 is an integer, the following conditions are equivalent:

- 1. p is prime
- 2. For any $a \neq 0$, the equation ax = 1 has a solution in \mathbb{Z}_p .
- 3. Whenever bc = 0 in \mathbb{Z}_p , at least one of b and c is zero.

Example:

In \mathbb{Z}_3 if a=2 then ax=1 has a solution in \mathbb{Z}_3 of 2. And $0\cdot 1=0$ and $0\cdot 2=0$ and $1\cdot 2=2$.

The structure of \mathbb{Z}_n

When n is not prime, the equation doesn't have to have a solution to ax = 1. For an example, the equation 2x = 1 has no solution in \mathbb{Z}_4

Theorem 2.9

Let a and n be integers with n > 1. Then

The equation [a]x = [1] has a solution in \mathbb{Z}_n if and only if (a, n) = 1 in \mathbb{Z} .

Units and Zero Divisors

An element a in \mathbb{Z}_n is a unit if [a]x = [1] has a solution in \mathbb{Z}_n . In other words a is a unit if there is another element b in \mathbb{Z}_n such that ab = 1. In this case we say that b is the inverse of a.

Theorem 2.10

Let a and n be integers with n > 1. Then

[a] is a unit of \mathbb{Z}_n if and only if (a, n) = 1 in \mathbb{Z} .

A nonzero element a in \mathbb{Z}_n is a zero divisor if [a]x = [0] has a nonzero solution in \mathbb{Z}_n (That is, if there is a nonzero element c in \mathbb{Z}_n such that ac = 0).