二項分布のロジスティックモデル

確率分布

$$p(y \mid N, q) = \binom{N}{y} q^y (1 - q)^{N - y}$$

場合の数

$$\binom{N}{y} = \frac{N!}{y!(N-y)!}$$

$$p(y_i \mid N_i, q_i) = inom{N_i}{y_i} q_i^{y_i} (1-q_i)^{N_i-y_i}$$

ロジスティック関数

$$q_{i} = \frac{1}{1 + \exp(-z_{i})}$$

$$q_{i} = \frac{1}{1 + \exp(-(\beta_{1} + \beta_{2}x_{i}))}$$

$$q_{i} = \frac{1}{1 + \exp(-(\beta_{1} + \beta_{2}x_{i}))}$$

$$\frac{1}{1 + \exp(-(\beta_{1} + \beta_{2}x_{i}))}$$

- β_1 を変えると曲線の「位置」が左右に動く \Leftrightarrow ある x_i における確率が上下する
- β₂ を変えると「傾き」みたいなものがきつくなったりゆるくなったりする

対数尤度関数

尤度関数

$$L(q_i \mid y_i, N_i) = \prod_{i=1}^{100} \binom{N_i}{y_i} q_i^{y_i} (1 - q_i)^{N_i - y_i}$$

対数尤度関数

$$\log L(q_i \mid y_i, N_i) = \sum_{i=1}^{100} \left\{ \log \binom{N_i}{y_i} + y_i \log(q_i) + (N_i - y_i) \log(1 - q_i) \right\}$$

これを最大化するような推定値セットはglm()で求まる

リンク関数

$$q_{i} = \frac{1}{1 + \exp(-(\beta_{1} + \beta_{2}x_{i} + \beta_{3}f_{i}))}$$

$$\frac{1}{q_{i}} = 1 + \exp(-(\beta_{1} + \beta_{2}x_{i} + \beta_{3}f_{i}))$$

$$\frac{1}{q_{i}} - 1 = \exp(-(\beta_{1} + \beta_{2}x_{i} + \beta_{3}f_{i}))$$

$$\frac{1 - q_{i}}{q_{i}} = \exp(-(\beta_{1} + \beta_{2}x_{i} + \beta_{3}f_{i}))$$

$$\frac{q_{i}}{q_{i}} = \exp(\beta_{1} + \beta_{2}x_{i} + \beta_{3}f_{i}) = \exp(\beta_{1}) \exp(\beta_{2}x_{i}) \exp(\beta_{3}f_{i})$$

$$\log \frac{q_i}{1 - q_i} = \beta_1 + \beta_2 x_i + \beta_3 f_i$$

$$\operatorname{logit}(q_i) = \log \frac{q_i}{1 - q_i} = \beta_1 + \beta_2 x_i + \beta_3 f_i = z_i$$

章	適用例	確率分布	リンク関数	ポイント
前半	生存確率の予測	二項分布	logit	
6.5	生存確率の予測	二項分布	logit	交互作用項
6.6	人口密度の予測	ポアソン	対数リンク	オフセット
6.7	連続値データ	正規分布		連続値の 最尤推定
6.8	確率変数が 0以上の連続値	ガンマ分布	対数リンク	GLMすごい
6.9		まと	: め	

章	適用例	確率分布	リンク関数	ポイント
前半	生存確率の予測	二項分布	logit	
6.5	生存確率の予測	二項分布	logit	交互作用項
6.6	人口密度の予測	ポアソン	対数リンク	オフセット
6.7	連続値データ	正規分布	-	連続値の 最尤推定
6.8	確率変数が 0以上の連続値	ガンマ分布	対数リンク	GLMすごい
6.9		まと	5	

交互作用項

$$\operatorname{logit}(q) = \log \frac{q}{1 - q} = \beta_1 + \beta_2 x + \beta_3 f + \beta_4 x f$$

交互作用項とはある説明変数とある説明変数の積の効果を表す

```
glm(cbind(y, N - y) ~ x * f, data = d, family = binomial)
または
glm(cbind(y, N - y) ~ x + f + x:f, data = d, family = binomial)
```

交互作用項が効く場合

施肥処理のあり、なしによって サイズと生存種子数の関係が変わる場合

今回の場合は交互作用項の影響はない

交互作用項のないモデル

AIC = 274

章	適用例	確率分布	リンク関数	ポイント
前半	生存確率の予測	二項分布	logit	
6.5	生存確率の予測	二項分布	logit	交互作用項
6.6	人口密度の予測	ポアソン	対数リンク	オフセット
6.7	連続値データ	正規分布		連続値の 最尤推定
6.8	確率変数が 0以上の連続値	ガンマ分布	対数リンク	GLMすごい
6.9		まと	5	