RATIO AND PROPORTION

14.1 Ratio and Proportion

We defined ratio $a:b=\frac{a}{b}$ as the comparison of two alike quantities a and b, called the elements (terms) of a ratio. (Elements must be expressed in the same units). Equality of two ratios was defined

as proportion. That is, if a:b=c:d, then a,b,c and d are said to be in proportion.

Similar Triangles

Equally important are the similar shapes. In particular the similar triangles that have many practical applications. For example, we know that a photographer can develop prints to different sizes from the same negative. In spite of the difference in size, these pictures look like each other. One photograph is simply an enlargement of another. They are said to be similar in shape. Geometrical figures can also be similar, e.g., if

In
$$\triangle ABC \longleftrightarrow \triangle DEF$$

$$\angle A \cong \angle D, \quad \angle B \cong \angle E, \quad \angle C \cong \angle F,$$
and $\overline{AB} = \overline{BC} = \overline{CA} = \overline{FD}$

then $\triangle ABC$ and $\triangle DEF$ are called similar triangles which is symbolically written as $\triangle ABC \sim \triangle DEF$

It means that corresponding angles of similar triangles are equal and measures of their corresponding sides are proportional.

 $\Delta PQR \cong \Delta LMN$ means that in

Note:

Two congruent triangles are similar also. But two similar triangles are not necessarily congruent, as congruence of their corresponding sides is not necessary.

Theorem A line parallel to one side of a triangle and intersecting the other two sides divides them proportionally.

Given In $\triangle ABC$, the line l is intersecting the sides \overline{AC} and \overline{AB} at points E and D respectively such that $\overline{ED} \parallel \overline{CB}$.

To Prove

 $\overline{mAD}: \overline{mBD} = \overline{mAE}: \overline{mEC}$

Construction

Join B to E and C to D. From D draw $\overline{DM} \perp \overline{AC}$ and from E draw $\overline{EL} \perp \overline{AB}$.

Statements	Reasons
In triangles BED and AED, \overline{EL} is the common perpendicular.	
$\therefore \Delta BED = \frac{1}{2} \times m\overline{BD} \times m\overline{EL}(i)$ and $\Delta AED = \frac{1}{2} \times m\overline{AD} \times m\overline{EL}(ii)$	Area of a $\Delta = \frac{1}{2}$ (base) (height)
Thus $\frac{\Delta BED}{\Delta AED} = \frac{m\overline{BD}}{m\overline{AD}}$ (iii)	Dividing (i) by (ii)
Similarly	
$\frac{\Delta CDE}{\Delta ADE} = \frac{mEC}{mAE} \qquad(iv)$	8
But $\Delta BED \cong \Delta CDE$	Areas of triangles with common base and same altitudes are equal. Given that
From (iii) and (iv), we have	$\overline{ED} \parallel \overline{CB}$ so altitudes are equal.
$\frac{m\overline{BD}}{m\overline{AD}} = \frac{m\overline{EC}}{m\overline{AE}} \text{ or } \frac{m\overline{AD}}{m\overline{BD}} = \frac{m\overline{AE}}{m\overline{EC}}$	Taking reciprocal of both sides.
Hence \overline{mAD} : $\overline{mBD} = \overline{mAE}$: \overline{mEC}	

Note:

From the above theorem we also have

$$\frac{m\overline{BD}}{m\overline{AB}} = \frac{m\overline{CE}}{m\overline{AC}}$$
 and $\frac{m\overline{AD}}{m\overline{AB}} = \frac{m\overline{AE}}{m\overline{AC}}$

Corollaries

a) If
$$\frac{m\overline{AD}}{m\overline{AB}} = \frac{m\overline{AE}}{m\overline{AC}}$$
, then $\overline{DE} \parallel \overline{BC}$

b) If
$$\frac{m\overline{AB}}{m\overline{DB}} = \frac{m\overline{AC}}{m\overline{EC}}$$
, then $\overline{DE} \parallel \overline{BC}$

Note:

- Two points determine a line and three non-collinear points determine a plane. i)
- A line segment has exactly one midpoint. ii)
- If two intersecting lines from equal adjacent angles, the lines are perpendicular. iii)

Theorem

(Converse of Theorem)

If a line segment intersects the two sides of a triangle in the same ratio then it is parallel to the third side.

Given In $\triangle ABC$, \overline{ED} intersects \overline{AB} and \overline{AC} such

that
$$\overline{mAD}$$
: $\overline{mBD} = \overline{mAE}$: \overline{mEC}

To Prove

ED || CB

Construction If $\overline{ED} / \overline{CB}$, then draw $\overline{BF} || \overline{DE}$ to

meet \overline{AC} produced at F.

Statements	Reasons	
In ΔABF		
$\overline{DE} \parallel \overline{BF}$	Construction	
$m\overline{AD}$ $m\overline{AE}$	(A line parallel to one side of a triangle	
$\therefore \overline{mDB} = \overline{mEF} \qquad \dots $	divides the other two sides proportionally)	
But $\frac{m\overline{AD}}{m\overline{BD}} = \frac{m\overline{AE}}{m\overline{EC}}$ (ii)	Given	
$\therefore \frac{m\overline{AE}}{m\overline{EF}} = \frac{m\overline{AE}}{m\overline{EC}}$ or $m\overline{EF} = \overline{EC}$	From (i) and (ii)	
which is possible only if point F is coincident with C.	(Property of real numbers)	

Exercise 14.1

1. In $\triangle ABC$, $\overline{DE} \parallel \overline{BC}$

- i) $\overline{AD} = 1.5 \text{ cm}, \overline{BD} = 3 \text{ cm},$ $\overline{AE} = 1.3 \text{ cm} \text{ then find } \overline{CE}.$
- ii) If $\overline{AD} = 2.4 \text{ cm}$, $\overline{AE} = 3.2 \text{ cm}$, $\overline{EC} = 4.8 \text{ cm}$, find \overline{AB}
- iii) If $\frac{\overline{AD}}{\overline{DB}} = \frac{3}{5}$, $\overline{AC} = 4.8$ cm, find

AE

- iv) If $\overline{AD} = 2.4 \text{ cm}$, $\overline{AE} = 3.2 \text{ cm}$, $\overline{DE} = 2 \text{ cm}$, $\overline{BC} = 5 \text{ cm}$, find \overline{AB} , \overline{DB} , \overline{AC} , \overline{CE}
- v) If $\overline{AD} = 4x 3$, $\overline{AE} = 8x 7$,

 $\overline{BD} = 3x - 1$, and $\overline{CE} = 5x - 3$, find the value of x

In ΔABC, DE || BC

- (i) $\frac{\overline{\text{mAD}}}{\overline{\text{mBD}}} = \frac{\overline{\text{mAE}}}{\overline{\text{mEC}}}$ $\frac{1.5}{3} = \frac{1.3}{\overline{\text{mEC}}}$ $\overline{\text{mEC}} = \frac{3 \times 1.3}{1.5}$ = 2.6 cm
- (ii) In $\triangle ABC$, $\overline{DE} \parallel \overline{BC}$ $m\overline{AB} = m\overline{AD} + m\overline{BD}$

Let
$$m\overline{DB} = x cm$$

Now $\frac{\overline{\text{mAD}}}{\overline{\text{mDB}}} = \frac{\overline{\text{mAE}}}{\overline{\text{mEC}}}$ $\frac{2.4}{x} = \frac{3.2}{4.8}$ $x = \frac{4.8 \times 2.4}{3.2}$ $x = \frac{48 \times 24}{10 \times 32}$ x = 3.6 cm.

$$\therefore \qquad m\overline{AB} = m\overline{AD} + m\overline{BD}$$

$$\overline{\text{mAB}} = 2.4 + 3.6 = 6 \text{cm}$$

(iii)
$$\frac{\text{mAD}}{\text{mDB}} = \frac{3}{5}, \text{mAC} = 4.8 \text{cm}$$

In AABC, DEIIBC

$$\frac{\overline{\text{mAD}}}{\overline{\text{mDB}}} = \frac{\overline{\text{mAE}}}{\overline{\text{mEC}}}$$

$$\frac{\overline{\text{mAD}}}{\overline{\text{mDB}}} = \frac{\overline{\text{mAC}} - \overline{\text{mCE}}}{\overline{\text{mCE}}}$$
3. 4.8- $\overline{\text{mCE}}$

$$\frac{3}{5} = \frac{4.8 - m\overline{CE}}{m\overline{CE}}$$

$$3m\overline{CE} = 5(4.8 - m\overline{CE})$$

$$3m\overline{CE} = 3(4.8 - m\overline{CE})$$

$$3m\overline{CE} = 24 - 5m\overline{CE}$$

$$3m\overline{CE} + 5m\overline{CE} = 24$$

$$8m\overline{CE} = 24$$

$$m\overline{CE} = \frac{24}{8} = 3cm$$

$$\overline{MAE} = \overline{MAC} - \overline{MCE}$$

$$=4.8-3$$

$$m\overline{AE} = 1.8cm$$

(iv)
$$\overline{MAD} = 2.4 \text{cm}$$
,
 $\overline{MAE} = 3.2 \text{ cm}$, $\overline{MDE} = 2 \text{cm}$, $\overline{MBC} = 5 \text{cm}$.
 $\overline{MAB} = ? \overline{MDB} = ? \overline{MAC} = ? \overline{MCE} = ?$

EPII AB

DEPB is a parallelogram, then

$$m\overline{PB} = mDE = 2cm$$
.

$$m\overline{CP} = 5 - 2 = 3cm$$

In
$$\triangle ABC$$
, $\overline{EP} \parallel \overline{AB}$

$$\frac{\overline{\text{mCE}}}{\overline{\text{mEA}}} = \frac{\overline{\text{mCP}}}{\overline{\text{mPB}}}$$

$$\frac{\overline{\text{mCE}}}{3.2} = \frac{3}{2}$$

$$\overline{\text{mCE}} = \frac{3 \times 3.2}{2}$$

$$mCE = 3 \times 1.6 = 4.8cm$$

Now DEllBC, in ∆ABC

$$\frac{\overline{\text{mBD}}}{\overline{\text{mAD}}} = \frac{\overline{\text{mCE}}}{\overline{\text{mAE}}}$$

$$\frac{\overline{\text{mBD}}}{2.4} = \frac{4.8}{3.2}$$

$$\overline{\text{mBD}} = \frac{2.4 \times 4.8}{3.2} = 3.6 \text{cm}$$

$$mAB = mAD + mDB$$
$$= 2.4 + 3.6$$
$$= 6.0 cm$$

$$\overline{MAC} = \overline{MAE} + \overline{MEC}$$

= 3.2 + 4.8
= 8.0cm.

(v) If $\overline{AD} = 4x - 3$, $\overline{AE} = 8x - 7$, $\overline{BD} = 3x - 1$ and $\overline{CE} = 5x - 3$, Find the value of x

In $\triangle ABC, \overline{DE} \parallel \overline{BC}$

$$\frac{\overline{\text{mAD}}}{\overline{\text{mBD}}} = \frac{\overline{\text{mAE}}}{\overline{\text{mCE}}}$$
$$\frac{4x - 3}{3x - 1} = \frac{8x - 7}{5x - 3}$$

$$(4x-3)(5x-3) = (8x-7)(3x-1)$$

$$20x^2 - 27x + 9 = 24x^2 - 29x + 7$$

$$20x^2 - 24x^2 - 27x + 29x + 9 - 7 = 0$$

$$-4x^2 + 2x + 2 = 0$$

$$2x^2 - x - 1 = 0$$

$$2x^2 - 2x + x - 1 = 0$$

$$2x(x-1)+1(x-1)=0$$

$$(x-1)(2x+1) = 0$$

$$x-1=0$$
 or $2x+1=0$

$$x=1$$
 or $2x = -1$

$$x=1 \text{ or } x = \frac{-1}{2}$$

But
$$x = \frac{-1}{2}$$
 not possible

So
$$x = 1$$

2. If $\triangle ABC$ is an isosceles triangle, $\angle A$ is vertex angle and \overrightarrow{DE} intersects the

sides \overline{AB} and \overline{AC} as shown in the figure so that.

$$m\overline{AD}: m\overline{DB} = m\overline{AE}: m\overline{EC}$$

Prove that $\triangle ADE$ is also an isosceles triangle.

In $\triangle ABC$, $\angle A$ is vertical angle and

$$\overrightarrow{AB} \cong \overrightarrow{AC}$$

$$\frac{\text{mAD}}{\text{mDB}} = \frac{\text{mAE}}{\text{mEC}}$$

$$\frac{\text{mDB}}{\text{mAD}} = \frac{\text{mEC}}{\text{mAE}}$$

$$\frac{\overline{mDB} + \overline{mAD}}{\overline{mAD}} = \frac{\overline{mEC} + \overline{mAE}}{\overline{mAE}}$$

To Prove: Find all angles of $\triangle ADE$

$$\frac{\overline{\text{mAB}}}{\overline{\text{mAD}}} = \frac{\overline{\text{mAC}}}{\overline{\text{mAE}}}$$

Now $m\overline{AB} = m\overline{AC}$

$$\overline{mAD} = \overline{mAE}$$

 Δ ADE is an isosceles triangle.

3. In an equilateral triangle ABC shown in the figure.

$$\overline{mAE}$$
: $\overline{mAC} = \overline{mAD}$: \overline{mAB}

Find all three angles of $\triangle ADE$ and name it also.

Given: $\triangle ABC$ is an equilateral triangle.

$$\frac{mAE}{mAC} = \frac{mAD}{mAB}$$

Statements	Reasons
$\frac{\text{mAE}}{\text{mAC}} = \frac{\text{mAD}}{\text{mAB}}$	Given
Then $\overline{DE} \parallel \overline{BC}$ ΔABC is equilateral triangle Then $m\angle A = m\angle B = m\angle C = 60^{\circ}$ $\overline{DE} \parallel \overline{BC}$ $m\angle 1 = m\angle B = 60^{\circ}$ $m\angle 2 = m\angle C = 60^{\circ}$ $m\angle A = 60^{\circ}$	Proved Corresponding angle

4. Prove that the line segment drawn through the midpoint of one side of a triangle and parallel to another side bisects the third side.

Given in $\triangle ABC$, \overline{DE} is such that $\overline{mAD} = \overline{mDB}$ and $\overline{DE} \parallel \overline{BC}$

 $\overline{MAE} = \overline{MEC}$

77510°0.	Statements	Reasons
In	ΔΑΒC	
	DENBC	Given
	$\frac{\overline{\text{mAD}}}{\overline{\text{mBD}}} = \frac{\overline{\text{mAE}}}{\overline{\text{mEC}}} \dots (i)$	*
	$\overline{MAD} = \overline{MDB}$	Given
	mDB_mAE	
	${\text{mDB}} = {\text{mEC}}$	Put $m\overline{AD} = m\overline{DB}$ in (i)
	$1 = \frac{m\overline{AE}}{m\overline{EC}}$	
	$m\overline{AE} = m\overline{EC}$	

5. Prove that the line segment joining the mid-points of any two sides of a triangle is parallel to the third side.

In $\triangle ABC$, points D, E are such that $\overline{MAD} = \overline{MDB}$

 $\overline{mAE} = \overline{mEC}$

mAD mAE

mDB mEC

To Prove:

DEIIBC

It is possible only when point K lies on the point C.

Thus DEIIBC

Theorem

The internal bisector of an angle of a triangle divides the side opposite to it in the ratio of the lengths of the sides containing the angle.

Given: In $\triangle ABC$ internal angle bisector of $\angle A$ meets \overline{CB} at the point D.

To Prove: $m\overline{BD}$: $m\overline{DC} = m\overline{AB}$: $m\overline{AC}$

Construction:

Draw a line segment $\overline{BE} \parallel \overline{DA}$ to meet \overline{CA} produced at E.

Proof:

Proof: Statements	Reasons
∴ $\overline{AD} \parallel \overline{EB}$ and \overline{EC} intersects them, ∴ $m\angle 1 = m\angle 2$ (i)	Construction Corresponding angles
Again $\overline{AD} \parallel EB$ and \overline{AB} intersects them, $\therefore m \angle 3 = m \angle 4$ (ii) But $m \angle 1 = m \angle 3$ $\therefore m \angle 2 = m \angle 4$ and $\overline{AB} \cong \overline{AE}$ or $\overline{AE} \cong \overline{AB}$	Alternate angles Given From (i) and (ii) In a Δ, the sides opposite to congruent angles are also congruent.
Now $\overline{AD} \parallel \overline{EB}$	Construction
$\therefore \frac{m\overline{BD}}{m\overline{DC}} = \frac{m\overline{EA}}{m\overline{AC}}$	By Theorem
or $\frac{m\overline{BD}}{m\overline{DC}} = \frac{m\overline{AB}}{m\overline{AC}}$	$m\overline{EA} = m\overline{AB}$ (proved)
Thus $m\overline{BD}: m\overline{DC} = m\overline{AB}: \overline{AC}$	

Theorem: If two triangles are similar, then the measures of their corresponding sides are proportional.

Given: $\triangle ABC \sim \triangle DEF$

i.e., $\angle A \cong \angle D$, $\angle B \cong \angle E$, and $\angle C \cong \angle F$

To Prove:

$$\frac{m\overline{AB}}{mDE} = \frac{m\overline{AC}}{mDF} = \frac{m\overline{BC}}{mEF}$$

Construction:

- Suppose that $m\overline{AB} > m\overline{DE}$ i)
- $\overline{mAB} \le m\overline{DE}$ ii)

On \overline{AB} take a point L such that $\overline{mAL} = \overline{mDE}$

On \overline{AC} take a point M such that $\overline{mAM} = m\overline{DF}$. Join L and M by the line segment LM. Proof:

Statements i) In AAIM () ADEC	Reasons
The state of the s	7.500
$\angle A \cong \angle D$	Given
$AL \cong \overline{DE}$	Construction
$\overline{AM} \cong \overline{DF}$	Construction
Thus $\triangle ALM \cong \triangle DEF$	S.A.S. Postulate
and $\angle L \cong \angle E$, $\angle M \cong \angle F$,	(Corresponding angles of congruen
Now $\angle E \cong \angle B$, and $\angle F \cong \angle C$	triangles)
$\therefore \angle L \cong \angle B, \angle M \cong \angle C,$	Given
	Transitivity of congruence
Thus $\overline{LM} \parallel \overline{BC}$	Corresponding angles are equal.
Hence $\frac{mAL}{mAM} = \frac{mAM}{mAM}$	
$mAB m\overline{AC}$	By Theorem
or $\frac{m\overline{DE}}{\overline{DE}} = \frac{m\overline{DF}}{\overline{DE}}$	$m\overline{AL} = m\overline{DE}$ and $m\overline{AM} = m\overline{DF}$
$\overline{mAB} = \overline{mAC}$ (i)	(construction)
Similarly by intercepting segments on	
\overline{BA} and \overline{BC} , we can prove that	
$\frac{mDE}{m\overline{AB}} = \frac{m\overline{EF}}{m\overline{BC}} \qquad \dots (ii)$	
hus $\frac{mDE}{LR} = \frac{mDF}{LR} = \frac{mEF}{LR}$	by (i) and (ii)
mAB mAC mBC	* <
$mAB = m\overline{AC} - m\overline{BC}$	2
$mDE = m\overline{DF} = m\overline{EF}$	by taking reciprocals
If $m\overline{AB} < m\overline{DE}$, it can similarly be	

proved by taking intercepts on the sides of
$$\Delta DEF$$

If
$$m\overline{AB} = m\overline{DE}$$
,

then in $\triangle ABC \longleftrightarrow \triangle DEF$

$$\angle A \cong \angle D$$

$$\angle B \cong \angle E$$

and
$$\overline{AB} \cong \overline{DE}$$

so
$$\triangle ABC \cong \triangle DEF$$

Thus
$$\frac{m\overline{AB}}{mDE} = \frac{m\overline{AC}}{mDF} = \frac{m\overline{BC}}{m\overline{EF}} = 1$$

Hence the result is true for all the cases.

Given Given

$$A.S.A \cong A.S.A$$

$$\overline{AC} \cong \overline{DF}, \ \overline{BC} \cong \overline{EF}$$

Exercise 14.2

1. In $\triangle ABC$ as shown in the figure, \overrightarrow{CD} bisects $\angle C$ and meets \overrightarrow{AB} at D, \overrightarrow{mBD} is equal to a) 5 b) 16 c) 10 d) 18

Ans. $\frac{\overline{\text{mBD}}}{\overline{\text{mDA}}} = \frac{\overline{\text{mBC}}}{\overline{\text{mCA}}}$ $\frac{\overline{\text{mBD}}}{6} = \frac{10}{12}$

$$m\overline{BD} = \frac{10}{12} \times 6 = 5$$

2. In $\triangle ABC$ as shown in the figure, \overline{CD} bisects $\angle C$. If $m\overline{AC} = 3$, $m\overline{CB} = 6$ and $m\overline{AB} = 7$, then find $m\overline{AD}$ and $m\overline{DB}$.

Ans.
$$mAD = x$$

$$m\overline{BD} = 7 - x$$

$$\frac{\overline{\text{mAD}}}{\overline{\text{mDB}}} = \frac{\overline{\text{mAC}}}{\overline{\text{mCB}}}$$

$$\frac{x}{7-x} = \frac{3}{6}$$

$$\frac{x}{7-x} = \frac{1}{2}$$

$$2x = 1(7 - x)$$

$$2x = 7 - x$$

$$3x = 7 \implies x = \frac{7}{3}$$

$$m\overline{AD} = \frac{7}{3}$$

$$m\overline{DB} = 7 - x$$

$$=7 - \frac{7}{3}$$

$$= \frac{21 - 7}{3} = \frac{14}{3}$$

3. Show that in any correspondence of two triangles if two angles of one triangle are congruent to the corresponding angles of the other, then the triangles are similar.

Proof:

Statements	Reasons
$m\angle B + m\angle C + m\angle A = 180^{\circ}$ (i)	Sum of interior angles of triangle is 180°
$m\angle E + m\angle F + m\angle D = 180^{\circ}(ii)$	Given
m \angle B + m \angle C + m \angle D = 180°(iii) m \angle A - m \angle D = 0 m \angle A = m \angle D All Angles of \triangle DEF and \triangle ABC are congruent Thus \triangle ABC ~ \triangle DEF.	Subtracting (i) from (ii)

4. If line segments \overline{AB} and are \overline{CD} intersecting at point X and $\frac{m\overline{AX}}{m\overline{XB}} = \frac{m\overline{CX}}{m\overline{XD}}$ then show that ΔAXC and ΔBXD are similar.

Given:

AB and CD intersect each other at point x and

$$\frac{m\overline{AX}}{m\overline{XB}} = \frac{m\overline{CX}}{m\overline{XD}}$$

To Prove:

ΔAXC ~ ΔBXD

	Statements	Reasons
In	$\triangle AXC$ and $\triangle BXD$ $\angle 1 \cong \angle 2$	Vertical angles
Then	$\frac{\frac{mAX}{mXB}}{\frac{mXD}{AC\parallel BD}} = \frac{mCX}{mXD}$	Given
	∠4≅∠3 ∠6≅∠5	Alternate angles
Thus	$\frac{m\overline{AX}}{m\overline{XB}} = \frac{m\overline{CX}}{m\overline{XD}} = \frac{m\overline{AC}}{m\overline{DB}}$	
Hence	\triangle AXC and \triangle BXD are similar.	1

Which of the following are true and which are false? 5.

i.	Congruent triangles are of same size and shape.		True
ii.	Similar triangles are of same shape but different sizes.		True
***	Crumbal used for congruent is 'a.'	1 4	Fals

iii.	Symbol used for congruent is '~'.	Faise
920000000 114		False

V111.	One and only one time can be drawn through two points.	71000
ix.	Proportion is non-equality of two ratios.	False

In $\triangle LMN$ show in the figure, $\overline{MN} \parallel \overline{PQ}$.

i) If
$$m\overline{LM} = 5$$
cm, $m\overline{LP} = 2.5$ cm, $m\overline{LQ} = 2.3$ cm, then find $m\overline{LN}$.

ii) If
$$m\overline{LM} = 6$$
cm, $m\overline{LQ} = 2.5$ cm, $m\overline{QN} = 5$ cm, then find $m\overline{LP}$.

In ALMN, MNIIPQ Given:

 $\overline{\text{mLM}} = 5\text{cm}, \overline{\text{mLP}} = 2.5\text{cm}, \overline{\text{mLQ}} = 2.3\text{cm}$

		100 m
1 1 2 2		mIN -
To Pr	OVENER	mLN = 1

Proof:

Statements	Reasons			
mLN _ mLM	PQIIMN (Given)			
mLQ mLP				

$$\frac{\overline{\text{mLN}}}{2.3} = \frac{5}{2.5}$$

$$\overline{\text{mLN}} = \frac{5 \times 2.3}{2.5}$$

$$= \frac{5 \times 23}{25}$$

$$= 4.6 \text{cm}$$

Putting Values

(ii)

Given: ALMN, MNIIPQ

 $\overline{mQN} = 5cm, \overline{mLQ} = 2.5cm, \overline{mLM} = 6cm.$

To prove: Proof:

$$m\overline{LP} = ?$$

$$\frac{\overline{\text{mLP}}}{\overline{\text{mLM}}} = \frac{\overline{\text{mLQ}}}{\overline{\text{mLN}}}$$

$$\frac{\overline{\text{mLP}}}{\overline{\text{mLM}}} = \frac{\overline{\text{mLQ}}}{\overline{\text{mLQ}} + \overline{\text{mQN}}}$$

$$\frac{\overline{\text{mLP}}}{6} = \frac{2.5}{2.5 + 5}$$

$$\overline{\text{mLP}} = \frac{2.5}{7.5} \times 6$$

$$\overline{\text{mLP}} = \frac{1}{2} \times 6$$

7. In the shown figure, let $\overline{mPA} = 8x - 7$, $\overline{mPB} = 4x - 3$, $\overline{mAQ} = 5x - 3$, $\overline{mBR} = 3x - 1$. Find the value of x if $\overline{AB} \parallel \overline{QR}$.

If $\overline{AB} \parallel \overline{QR}$ then

$$\frac{\overline{mPA}}{\overline{mAQ}} = \frac{\overline{mPB}}{\overline{mBR}}$$

Putting values

$$\frac{8x-7}{5x-3} = \frac{4x-3}{3x-1}$$

$$(8x-7)(3x-1) = (5x-3)(4x-3)$$

$$24x^2 - 8x - 21x + 7 = 20x^2 - 15x - 12x + 9$$

$$24x^2 - 29x + 7 = 20x^2 - 27x + 9$$

$$24x^2 - 20x^2 - 29x + 27x + 7 - 9 = 0$$

$$4x^2 - 2x - 2 = 0$$

$$2x^2 - x - 1 = 0$$

$$2x^2 - 2x + x - 1 = 0$$

$$2x(x-1) + 1(x-1) = 0$$

$$2x + 1 = 0 \text{ or } x - 1 = 0$$

$$2x = -1 \qquad x = 1$$

$$x = \frac{-1}{2}$$

8. In $\triangle LMN$ shown in the figure \overrightarrow{LA} bisects $\angle L$. If $\overrightarrow{mLN} = 4$, $\overrightarrow{mLM} = 6$, $\overrightarrow{mMN} = 8$, then find \overrightarrow{mMA} and \overrightarrow{mAN} .

Given: In
$$\triangle$$
LMN, \overrightarrow{LA} is angle bisector of \angle L.

$$\overline{mLM} = 6cm, \overline{mLN} = 4cm, \overline{mMN} = 8cm.$$

To Prove:
$$\overline{\text{mMA}} = ?$$
, $\overline{\text{mAN}} = ?$

Proof:

Let
$$m\overline{AN} = xcm$$

$$m\overline{MA} = 8 - xcm$$

$$\frac{\text{mMA}}{\text{mMA}} = \frac{\text{mLM}}{\text{mLM}}$$

Putting values

$$\frac{8-x}{x} = \frac{6}{4}$$

$$4(8-x) = 6x$$

$$32 - 4x = 6x$$

$$32 = 6x + 4x$$

$$10x = 32$$

$$x = \frac{32}{10} = 3.2$$

$$\therefore$$
 mAN = 3.2cm.

$$m\overline{MA} = 8 - x$$

$$=8-3.2$$

=4.8cm.

9. In Isosceles ΔPQR shown in the figure, find the value of x and y.

Given:

In
$$\triangle PQR$$
, $\overrightarrow{PQ} \cong \overline{PR}$ and $\overrightarrow{PL} \perp \overrightarrow{QR}$.

To Prove:

$$x = ? y = ?$$

Proof:

In APRL and APQL

$$mPQ = mPR...(i)$$

Isosceles triangle

Each of right angle

$$m\overline{PL} = m\overline{PL}$$

Common

$$\Delta PQL \cong \Delta PRL$$

 $H.S. \cong H.S$

$$m\overline{Q}\overline{L} = m\overline{L}\overline{R}$$

$$6 = y$$

$$\Rightarrow$$
 y = 6cm.

From (i)
$$x = 10cm$$
.

OBJECTIVE

- In \triangle ABC as shown in figure, \overrightarrow{CD} bisects∠C and meets AB at D, a mBD is equal to:
 - 5 (a)
 - 16 (b)
 - (c) 10
 - (d) 18
- 2. In \triangle ABC shown in figure, \overline{CD} bisects $\angle C$, if $\overline{mAC} = 3$, $\overline{mCB} = 6$ and mAB = 7 then

- (i)
- (b) (a)
- (d) (c)
- (ii) mBD =
 - (a) (b)
 - 11 (c) (d)

- 3. One and only one line can be drawn through ____ points:
 - (a) Two (b) Three
 - (c) Four (d) Five
- 4. The ratio between two alike quantities is defined as:
 - (a) a:b
 - (b) b:a
 - (c) a:b=c:d
 - (d) None
- 5. If a line segment intersects the two sides of a triangle in the same ratio then it is parallel to the __ side:
 - (a) Third
- (b) Fourth
- (c) Second (d) None
- 6. Two triangles are said to be similar if these are equiangular and their corresponding sides are ____
 - (a) Proportional
 - (b) congruent

- (c) concurrent
- (d) None
- 7. In \triangle LMN shown in the figure $\overline{MN} \parallel \overline{PQ} \text{ if } m\overline{LM} = 5 \text{cm},$ $m\overline{LP} = 2.5 \text{cm}, m\overline{LQ} = 2.3 \text{cm then}$ $m\overline{LN} = \underline{\hspace{1cm}} :$
 - (a) 4.6cm
 - (b) 4.5cm
 - (c) 3.5cm
 - (d) 4.0

ANSWER KEY

1.	a	2.	(i) a (ii) b	3.	a	4.	a	5.	a
6.	a	7.	a						