Empirical Risk $\hat{R}_D(f) = \frac{1}{n} \sum \ell(y, f(x))$ **Softmax** $p(1|x) = \frac{1}{1+e^{-\hat{f}(x)}}, p(-1|x) = \frac{1}{1+e^{\hat{f}(x)}}$ **Sigmoid:** $\frac{1}{1+\exp(-z)}$ Optimization goal: argmin $\sum_{i=1}^{n} ||x_i - z_i w||_2^2$ **Population Risk** $R(f) = \mathbb{E}_{x,y \sim p}[\ell(y, f(x))]$ $||w||_2 = 1,z$ Multi-Class $\hat{p}_k = e^{\hat{f}_k(x)} / \sum_{i=1}^K e^{\hat{f}_j(x)}$ **Universal Approximation Theorem:** We can The optimal solution is given by $z_i = w^{\top} x_i$. It holds that $\mathbb{E}_D[\hat{R}_D(\hat{f})] \leq R(\hat{f})$. We call $R(\hat{f})$ approximate any arbitrary smooth target func-**Linear Classifiers** Substituting gives us: the generalization error. tion, with 1+ layer with sufficient width. $f(x) = w^{\top}x$, the decision boundary f(x) = 0. $\hat{w} = \operatorname{argmax}_{||w||_2=1} w^{\top} \Sigma w$ Bias Variance Tradeoff: Forward Propagation If data is lin. sep., grad. desc. converges to Pred. error = $\frac{\text{Bias}^2}{\text{Pred}}$ + $\frac{\text{Variance}}{\text{Variance}}$ + $\frac{\text{Noise}}{\text{Variance}}$ Input: $v^{(0)} = [x; 1]$ Output: $f = W^{(L)}v^{(L-1)}$ Where $\Sigma = \frac{1}{n} \sum_{i=1}^{n} x_i x_i^{\top}$ is the empirical covari-**Maximum-Margin Solution:** $\mathbb{E}_D[R(\hat{f})] = \mathbb{E}_x[f^*(x) - \mathbb{E}_D[\hat{f}_D(x)]]^2$ Hidden: $z^{(l)} = W^{(l)}v^{(l-1)}, v^{(l)} = [\varphi(z^{(l)}); 1]$ ance. Closed form solution given by the princi $w_{\text{MM}} = \operatorname{argmax} \operatorname{margin}(w) \text{ with } ||w||_2 = 1$ $+\mathbb{E}_{x}[\mathbb{E}_{D}[(\hat{f}_{D}(x)-\mathbb{E}_{D}[\hat{f}_{D}(x)])^{2}]]+\sigma$ pal eigenvector of Σ , i.e. $w = v_1$ for $\lambda_1 \ge \cdots \ge$ Backpropagation Where margin(w) = $\min_i y_i w^{\top} x_i$. **Bias**: how close \hat{f} can get to f^* $\lambda_d \geq 0$: $\Sigma = \sum_{i=1}^d \lambda_i v_i v_i^{\top}$ Non-convex optimization problem: Support Vector Machines i.o.i **Variance**: how much \hat{f} changes with DFor k > 1 we have to change the normalization **Hard SVM** $\left(\nabla_{W^{(L)}} \ell\right)^{T} = \frac{\partial \ell}{\partial W^{(L)}} = \frac{\partial \ell}{\partial f} \frac{\partial f}{\partial W^{(L)}}$ Regression to $W^{\top}W = I$ then we just take the first k princi- $\hat{w} = \min_{w} ||w||_2 \text{ s.t. } \forall i \ y_i w^\top x_i \ge 1$ **Squared loss** (convex, $\mathcal{O}(n^2d) d = \dim$ feat.) $\left(\nabla_{W^{(L-1)}}\ell\right)^{T} = \frac{\partial \ell}{\partial W^{(L-1)}} = \frac{\partial \ell}{\partial f} \frac{\partial f}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial W^{(L-1)}}$ **Soft SVM** allow "slack" in the constraints pal eigenvectors so that $W = [v_1, \dots, v_k]$. $\frac{1}{n}\sum (y_i - f(x_i))^2 = \frac{1}{n}||y - Xw||_2^2$ $\hat{w} = \min \frac{1}{2} ||w||_2^2 + \lambda \sum_{i=1}^{n} \max(0, 1 - y_i w_i^{\top} x_i)$ PCA through SVD. i.o.i $\left(\nabla_{W^{(L-2)}} \ell\right)^{T} = \frac{\partial \ell}{\partial W^{(L-2)}} = \frac{\partial \ell}{\partial f} \frac{\partial f}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial z^{(L-2)}} \frac{\partial z^{(L-2)}}{\partial W^{(L-2)}}$ $\nabla_w L(w) = 2X^{\top}(Xw - y)$ • The first k col of V where $X = USV^{\top}$. linear dimension reduction method Solution: $\hat{w} = (X^{\top}X)^{-1}X^{\top}y$ Only compute the gradient. Rand. init. first principal component eigenvector of Choose +1 as the more important class. Regularization weights by distr. assumption for φ . (2/ n_{in} for data covariance matrix with largest eigen-True Class error₁/FPR **Lasso Regression** (sparse, Laplac. prior, i.o.i) $\overline{\text{TN}+\text{FP}}$ ReLu and $1/n_{in}$ or $1/(n_{in}+n_{out})$ for Tanh) $\operatorname{argmin} ||y - \Phi w||_2^2 + \lambda ||w||_1$ • covariance matrix is symmetric \rightarrow all error₂/FNR: Overfitting principal components are mutually or-Precision Regularization; Early Stopping; Dropout: **Ridge Regression** (convex, Gauss. prior, i.o.i) ignore hidden units with prob. p, after train-TPR / Recall : $\frac{1 \text{ r}}{\text{TP} + \text{FN}}$ $\operatorname{argmin}||y - \Phi w||_2^2 + \lambda ||w||_2^2$ Kernel PCA ing use all units and scale weights by p; **Batch** AUROC: Plot TPR vs. FPR and compare dif- $\Sigma = \frac{1}{n} \sum_{i=1}^{n} x_i x_i^{\top} = X^{\top} X \Rightarrow \text{ kernel trick:}$ **Normalization**: normalize the input data (mean ferent ROC's with area under the curve. **F1-Score**: $\frac{2TP}{2TP + FP + FN}$, Accuracy : $\frac{TP + TN}{P + N}$ $\nabla_w L(w) = 2X^{\top}(Xw - y) + 2\lambda w$ 0, variance 1) in each layer $\hat{\alpha} = \operatorname{argmax}_{\alpha} \frac{\alpha^{\top} K^{\top} K \alpha}{\alpha^{\top} K \alpha}$ Solution: $\hat{w} = (X^{\top}X + \lambda I)^{-1}X^{\top}y$ **CNN** i.o.i $\varphi(W * v^{(l)})$ Closed form solution: Goal: large recall and small FPR. large $\lambda \Rightarrow$ larger bias but smaller variance For each channel there is a separate filter. $\alpha^{(i)} = \frac{1}{\sqrt{\lambda_i}} v_i \quad K = \sum_{i=1}^n \lambda_i v_i v_i^\top, \lambda_1 \ge \cdots \ge 0$ Kernels **Cross-Validation** Convolution Parameterize: $w = \Phi^{\top} \alpha$, $K = \Phi \Phi^{\top}$ A point x is projected as: $z_i = \sum_{i=1}^n \alpha_i^{(i)} k(x_i, x)$ C = channel F = filterSize inputSize = I• For all folds i = 1, ..., k: A kernel is **valid** if K is sym.: k(x,z) = k(z,x)padding = P stride = S- Train \hat{f}_i on $D' - D'_i$ **Autoencoders** and psd: $z^{\top}Kz \geq 0$ Output size $1 = \frac{I + 2P - K}{S} + 1$ - Val. error $R_i = \frac{1}{|D'|} \sum \ell(\hat{f}_i(x), y)$ We want to minimize $\frac{1}{n}\sum_{i=1}^{n}||x_i-\hat{x}_i||_2^2$. **lin.**: $k(x,z) = x^{\top}z$, **rbf**: $k(x,z) = \exp(-\frac{||x-z||\alpha}{\tau})$ $\hat{x} = f_{dec}(f_{enc}(x, \theta_{enc}); \theta_{dec})$ • Compute CV error $\frac{1}{k} \sum_{i=1}^{k} R_i$ **poly.**: $k(x,z) = (x^{T}z + 1)^{m} \mathcal{O}(n^{2} * d)$ Output dimension = $l \times l \times m$ Lin.activation func. & square loss => PCA • Pick model with lowest CV error $\alpha = 1 \Rightarrow$ laplacian kernel Inputs = W * H * D * C * N**Statistical Perspective** Gradient Descent, i.o.i $\alpha = 2 \Rightarrow$ gaussian kernel Assume that data is generated iid. by some Trainable parameters = F * F * C * # filtersConverges only for convex case. $\mathcal{O}(n*k*d)$ Kernel composition rules p(x,y). We want to find $f: X \mapsto Y$ that mini-**Unsupervised Learning** $w^{t+1} = w^t - \eta_t \cdot \nabla \ell(w^t)$ $k=k_1+k_2, \quad k=k_1\cdot k_2, \quad \forall c>0. \ k=c\cdot k_1,$ k-Means Clustering, d.o.i mizes the **population risk**. $\forall f \text{ convex. } k = f(k_1), \text{ holds for polynoms with } Optimization Goal (non-convex):}$ For linear regression: Opt. Predictor for the Squared Loss $||w^t - w^*||_2 \le ||I - \eta X^\top X||_{op}^t ||w^0 - w^*||_2$ pos. coefficients or exp function. f minimizing the population risk: $\hat{R}(\mu) = \sum_{i=1}^{n} \min_{j \in \{1, \dots, k\}} ||x_i - \mu_j||_2^2$ $ho = ||I - \eta X^{\top} X||_{op}^{t}$ conv. speed for const. η . Opt. fixed $\eta = \frac{2}{\lambda_{\min} + \lambda_{\max}}$ and max. $\eta \leq \frac{2}{\lambda_{\max}}$. $\forall f. k(x, y) = f(x)k_1(x, y)f(y)$ $f^*(x) = \mathbb{E}[y \mid X = x] = \int y \cdot p(y \mid x) dy$ **Mercers Theorem:** Valid kernels can be decomposed into a lin. comb. of inner products. Lloyd's heuristics: Init.cluster centers $\mu^{(0)}$:

• Assign points to closest center Estimate $\hat{p}(y \mid x)$ with MLE: $\theta^* = \operatorname{argmax} \hat{p}(y_1, ..., y_n \mid x_1, ..., x_n, \theta)$ **Momentum**: $w^{t+1} = w^t + \gamma \Delta w^{t-1} - \eta_t \nabla \ell(w^t)$ **Kern. Ridge Reg.** $\frac{1}{n}||y-K\alpha||_2^2 + \lambda \alpha^\top K\alpha$ • Update μ_i as mean of assigned points Converges in exponential time. Learning rate η_t guarantees convergence if $\mathcal{O}(d^m)$ for large d, $\mathcal{O}(m^d)$ for large m = argmin $-\sum \log p(y_i \mid x, \theta)$ Initialize with **k-Means++**: $\sum_t \eta_t = \infty$ and $\sum_t \eta_t^2 < \infty$ **KNN Classification** The MLE for linear $\stackrel{i=1}{\text{reg}}$ ression is unbiased and • Random data point $\mu_1 = x_i$ Classification Pick k and distance metric d • Add seq μ_2, \dots, μ_k rand., with prob: has minimum variance among all unbiased esti-**Zero-One loss** not convex or continuous • For given x, find among $x_1, ..., x_n \in D$ the given $\mu_{1:i}$ pick $\mu_{i+1} = x_i$ where p(i) = mators. However, it can overfit. $\ell_{0-1}(\hat{f}(x), y) = \mathbb{I}_{y \neq \operatorname{sgn}\hat{f}(x)}$ k closest to $x \rightarrow x_{i_1}, ..., x_{i_k}$ Ex. Conditional Linear Gaussian $\frac{1}{7} \min_{l \in \{1, \dots, i\}} ||x_i - \mu_l||_2^2$ • Output the majority vote of labels **Logistic loss** $\log(1 + e^{-y\hat{f}(x)})$ Assume Gaussian noise $y = f(x) + \varepsilon$ with $\varepsilon \sim$ Neural Networks, d.o.i Converges expectation $\mathcal{O}(\log k) * \text{opt.solution.}$ $\nabla \ell(\hat{f}(x), y) = \frac{-y_i x_i}{1 + e^{y_i \hat{f}(x)}}$ $\mathcal{N}(0, \sigma^2)$ and $f(x) = w^{\top}x$: w are the weights and $\varphi : \mathbb{R} \to \mathbb{R}$ is a nonlinear Find k by negligible loss decrease or reg. $\hat{p}(\mathbf{v} \mid \mathbf{x}, \boldsymbol{\theta}) = \mathcal{N}(\mathbf{v}; \mathbf{w}^{\top} \mathbf{x}, \boldsymbol{\sigma}^2)$ activation function: $\phi(x|w) = \phi(w^{\top}x)$

Hinge loss $\max(0, 1 - y\hat{f}(x))$

Model Error

ReLU: max(0,z), **Tanh:** $\frac{\exp(z) - \exp(-z)}{\exp(z) + \exp(-z)}$

Principal Component Analysis

Maximum a Posteriori Estimate Introduce bias to reduce variance. The small weight assumption is a Gaussian prior $w_i \sim$

The optimal \hat{w} can be found using MLE:

 $\hat{w} = \operatorname{argmax} p(y|x, \theta) = \operatorname{argmin} \sum (y_i - w^{\top} x_i)^2$

$\mathcal{N}(0,\beta^2)$. The posterior distribution of w is given by: $p(w \mid x, y) = \frac{p(w) \cdot p(y \mid x, w)}{p(y \mid x)} = p(w) \cdot (y \mid x, w)$

Now we want to find the MAP for
$$w$$
:
$$\hat{w} = \operatorname{argmax}_{w} p(w \mid \bar{x}, \bar{y})$$

$$= \operatorname{argmin}_{w} - \log \frac{p(w) \cdot p(y \mid x, w)}{p(y \mid x)}$$

$$= \operatorname{argmin}_{w} \frac{\sigma^{2}}{\beta^{2}} ||w||_{2}^{2} + \sum_{i=1}^{n} (y_{i} - w^{\top} x_{i})^{2}$$
If $P_{\theta} = Unif(\Theta)$: $\theta_{b_{\text{MAP}}} = b_{\theta_{\text{MLE}}}$

Statistical Models for Classification

f minimizing the population risk:

$$f^*(x) = \operatorname{argmax}_{\hat{y}} p(\hat{y} \mid x)$$

the 0-1 loss. Assuming iid. Bernoulli noise, the conditional probability is: $p(y \mid x, w) \sim \text{Ber}(y; \sigma(w^{\top}x))$ Where $\sigma(z) = \frac{1}{1 + \exp(-z)}$ is the sigmoid function.

Using MLE we get:
$$\sum_{n=1}^{n} \sum_{n=1}^{n} \sum_{n=1}^{n$$

Using MLE we get:

$$\hat{w} = \operatorname{argmin} \sum_{i=1}^{n} \log(1 + \exp(-y_i w^{\top} x_i))$$

Which is the logistic loss. Instead of MLE we can estimate MAP, e.g. with a Gaussian prior:
$$\hat{w} = \operatorname{argmin} \lambda ||w||_2^2 + \sum_{i=1}^n \log(1 + e^{-y_i w^\top x_i})$$

Given $p(y \mid x)$, a set of actions A and a cost $C: Y \times A \mapsto \mathbb{R}$, pick the action with the maximum expected utility.

$$a^* = \operatorname{argmin}_{a \in A} \mathbb{E}_y[C(y, a) \mid x]$$

Can be used for asymetric costs or abster

Can be used for asymetric costs or abstention.

Aim to estimate p(x,y) for complex situations

Bayesian Decision Theory

Generative Modeling

using Bayes' rule: $p(x,y) = p(x|y) \cdot p(y)$ Naive Bayes Model

helps estimating $p(x \mid y) = \prod_{i=1}^{d} p(x_i \mid y_i)$.

GM for classification tasks. Assuming for a class label, each feature is independent. This

Gaussian Naive Bayes Classifier Naive Bayes Model with Gaussian's features. Estimate the parameters via MLE:

MLE for class prior: $p(y) = \hat{p}_y = \frac{\text{Count}(Y=y)}{x}$ MLE for feature distribution:

$$P(x_i|y) = \frac{Count(X_i = x_i, Y = y)}{Count(Y = y)}$$

Predictions are made by: $y = \operatorname{argmax} p(\hat{y} \mid x) = \operatorname{argmax} p(\hat{y}) \cdot \prod p(x_i \mid \hat{y})$ Equivalent to decision rule for bin. class.:

$$y = \operatorname{sgn}\left(\log \frac{p(Y=+1|x)}{p(Y=-1|x)}\right)$$
Where $f(x)$ is called the discriminant function.

weights for each point $(w_j = \pi_j = p(Z = j))$: $\gamma_j^{(t)}(x_i) = p(Z = j \mid D) = \frac{w_j \cdot p(x_i; \theta_j^{(t-1)})}{\sum_k w_k \cdot p(x_i; \theta_k^{(t-1)})}$ If the conditional independence assumption is M-Step: compute MLE with closed form: violated, the classifier can be overconfident. Gaussian Bayes Classifier No independence assumption, model the

eatures with a multive
$$\mathcal{N}(x; u, \Sigma)$$
:

features with a multivariant Gaussian $\mathcal{N}(x; \mu_{v}, \Sigma_{v})$: ical init. or empirical covariance of the data. $\mu_{y} = \frac{1}{\operatorname{Count}(Y=y)} \sum_{j \mid y_{j}=y} x_{j}$ Select *k* using cross-validation. $\Sigma_{y} = \frac{1}{\text{Count}(Y=y)} \sum_{j \mid y_{j}=y} (x_{j} - \hat{\mu}_{y}) (x_{j} - \hat{\mu}_{y})^{\top}$ Degeneracy of GMMs

 $p(y) = \frac{1}{2}$, Outlier detection: $p(x) \le \tau$. **Avoiding Overfitting** This is called the Bayes' optimal predictor for MLE is prone to overfitting. Avoid this by restricting model class (fewer parameters, e.g. elled by a GMM.

This is also called the quadratic discriminant

analysis (QDA). LDA: $\Sigma_{+} = \Sigma_{-}$, Fisher LDA:

GNB) or using priors (restrict param. values). **Generative vs. Discriminative Discriminative models:** p(y|x), can't detect outliers, more robust

Generative models: p(x,y), can be more powerful (dectect outliers, **GMMs for Density Estimation** missing values) if assumptions are met, are typ- Can be used for anomaly detection or data imically less robust against outliers

Gaussian Mixture Model Assume that data is generated from a convex- FP rate. Use ROC curve as evaluation criterion

combination of Gaussian distributions: $p(x|\theta) = p(x|\mu, \Sigma, w) = \sum_{j=1}^{k} w_j \mathcal{N}(x; \mu_j, \Sigma_j)$ We don't have labels and want to cluster this **E-Step**: Take the expected value over latent data. The problem is to estimate the param. for variables z to generate likelihood function Q: the Gaussian distributions.

 $\operatorname{argmin}_{\theta} - \sum_{i=1}^{n} \log \sum_{i=1}^{k} w_{i} \cdot \mathcal{N}(x_{i} \mid \mu_{i}, \Sigma_{i})$ This is a non-convex objective. Similar to training a GBC without labels. Start with guess for our parameters, predict the unknown labels and then impute the missing data. Now we can get M-Step: Compute MLE / Maximize:

Hard-EM Algorithm, d.o.i

a closed form update.

data point: $z_i^{(t)} = \operatorname{argmax} p(z \mid x_i, \theta^{(t-1)})$

M-Step: compute MLE of $\theta^{(t)}$ as for GBC.

 $= \operatorname{argmax} p(z \mid \boldsymbol{\theta}^{(t-1)}) \cdot p(x_i \mid z, \boldsymbol{\theta}^{(t-1)})$

Problems: labels if the model is uncertain, tries to extract too much inf. Works poorly if clus- Training requires finding a saddle point, always ters are overlapping. With uniform weights and converges to saddle point with if G, D have spherical covariances is equivalent to k-Means enough capacity. For a fixed G, the optimal dis-

criminator is:

The prob. of being fake is $1 - D_G$. Too powerful discriminator could lead to memoriza-

One possible performance metric:

 $\widehat{DG} = \max_{w'_D} M(w_G, w'_D) - \min_{w'_G} M(w'_G, w_D)$

Derivatives: $\nabla_{\mathbf{r}} x^{\mathsf{T}} A = A \quad \nabla_{\mathbf{r}} a^{\mathsf{T}} x = \nabla_{\mathbf{r}} x^{\mathsf{T}} a = a$

GMMs can overfit with limited data. Avoid this

by add v^2I to variance, so it does not collapse

Gaussian-Mixture Bayes Classifiers Assume that $p(x \mid y)$ for each class can be mod-

Other Facts

 $\operatorname{Cov}[X] = \mathbb{E}[(X - \mathbb{E}[X])(X - \mathbb{E}[X])^{\top}] =$

putation. Detect outliers, by comparing the es-

and optimize using CV to find τ . tivariate normal distribution with mean μ and

 $Q(\theta; \theta^{(t-1)}) = \mathbb{E}_{Z}[\log p(X, Z \mid \theta) \mid X, \theta^{(t-1)}]$ $= \sum_{i=1}^{n} \sum_{z_i=1}^{\kappa} \gamma_{z_i}(x_i) \log p(x_i, z_i \mid \boldsymbol{\theta})$

with $\gamma_z(x) = p(z \mid x, \theta^{(t-1)})$

 $\theta^{(t)} = \operatorname{argmax} O(\theta; \theta^{(t-1)})$

E-Step: predict the most likely class for each We have monotonic convergence, each EMiteration increases the data likelihood.

> Learn f: "simple" distr. \mapsto non linear distr. Computing likelihood of the data becomes hard, therefore we need a different loss.

 $\min_{w_G} \max_{w_D} \mathbb{E}_{x \sim p_{\text{data}}}[\log D(x, w_D)]$

with Lloyd's heuristics.

Soft-EM Algorithm, d.o.i

E-Step: calculate the cluster membership

 $\hat{\Sigma}_{y} = \frac{1}{\text{Count}(Y = y)} \sum_{i: y_{i} = y} (\mathbf{x}_{i} - \hat{\mu}_{y}) (\mathbf{x}_{i} - \hat{\mu}_{y})^{T}$

 $p(x | y) = \sum_{i=1}^{k_y} w_i^{(y)} \mathcal{N}(x; \mu_i^{(y)}, \Sigma_i^{(y)})$

 $p(y \mid x) = \frac{1}{z} p(y) \sum_{j=1}^{k_y} w_j^{(y)} \mathcal{N}(x; \mu_j^{(y)}, \Sigma_j^{(y)})$

Giving highly complex decision boundaries:

General EM Algorithm

 $+\mathbb{E}_{z\sim p_z}[\log(1-D(G(z,w_G),w_D))]$

tion of finite data. Other issues are oscillations/divergence or mode collapse.

One possible performance metric:
$$DG = \max M(w_G, w_D') - \min M(w_G', w_D)$$

Init. the weights as uniformly distributed, rand. Where $M(w_G, w_D)$ is the training objective. or with k-Means++ and for variances use spher-**Various**

 $\nabla_x b^{\top} A x = A^{\top} b \quad \nabla_x x^{\top} x = 2x \quad \nabla_x x^{\top} A x = 2Ax$ $|\nabla_{w}||y - Xw||_{2}^{2} = 2X^{\top}(Xw - y)$ (equiv. to a Wishart prior on the covariance matrix). Choose v by cross-validation. **Bayes Theorem:** $p(y \mid x) = \frac{1}{p(x)} \underbrace{p(y) \cdot p(x \mid y)}_{p(x)}$ **Gaussian-Mixture Bayes Classifiers**Normal Distribution:

 $f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)^{p(x,y)}$ $\operatorname{Tr}(AB) = \operatorname{Tr}(BA), \operatorname{Var}(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2$

 $X \in \mathbb{R}^{n \times d} : X^{-1} \to \mathcal{O}(d^3) X^{\top} X \to \mathcal{O}(nd^2),$ $\binom{n}{k} = \frac{n!}{(n-k)!k!}, ||w^{\top}w||_2 = \sqrt{w^{\top}w}$

 $E[XX^{\top}] - E[X]E[X]^{\top}$ timated density against τ . Allows to control the $p(z|x,\theta) = \frac{p(x,z|\theta)}{p(x|\theta)}$ $E[s \cdot s^{\top}] = \mu \cdot \mu^{\top} + \Sigma = \Sigma$ where s follows a mul-

> covariance matrix Σ $p(x, y|\theta) = p(y|x, \theta) * p(x|\theta)$ Convexity

0: $L(\lambda w + (1 - \lambda)v) \le \lambda L(w) + (1 - \lambda)L(v)$ 1: $L(w) + \nabla L(w)^{\top}(v - w) \le L(v)$

2: Hessian $\nabla^2 L(w) \geq 0$ (psd) • $\alpha f + \beta g$, $\alpha, \beta > 0$, convex if f, g convex • $f \circ g$, convex if f convex and g affine or

> f non-decreasing and g convex • $\max(f,g)$, convex if f,g convex