Problem R-11S ($C_{16}H_{22}Fe_2O_2P_2$). Below are the 60 MHz ¹H NMR spectra of two stereoisomers (E and Z) of the iron Cp complexes shown (*J. Am. Chem. Soc* **1963**, *85*, 3120).

- (a) Which isomer corresponds to Spectrum 1 _____, and which to Spectrum 2 _____? Explain
- (b) Explain the appearance of the multiplet at δ 1.6 (i.e. why does it look like this).

(c) Would you expect the spectrum to look significantly different at 300 MHz (instead of the 60 MHz of the spectra shown)?

Problem R-11S ($C_{16}H_{22}Fe_2O_2P_2$). Below are the 60 MHz ¹H NMR spectra of two stereoisomers (E and Z) of the iron Cp complexes shown (*J. Am. Chem. Soc* **1963**, *85*, 3120).

- (a) Which isomer corresponds to Spectrum 1 <u>E</u>, and which to Spectrum 2 <u>Z</u>? Explain
- This is a simple symmetry argument in the Z isomer the PMe₂ group is diastereotopic, so two triplets are seen. In the E they are identical (related by a C_2 axis).
 - (b) Explain the appearance of the multiplet at δ 1.6 (i.e. why does it look like this).
- In the absence of other effects, the methyl groups should be coupled to one ³¹P nucleus, hence a doublet. If the 4-bond coupling to the remote P was large enough, one would expect to see a dd. One sees a triplet because there is a large *J* between the two ³¹P nuclei, so anything coupled to them will show "virtual coupling" effects i.e. the methyl group *appears* to be coupled equally to both P nuclei.
 - (c) Would you expect the spectrum to look significantly different at 300 MHz (instead of the 60 MHz of the spectra shown)?
- Apart from a larger separation between the two triplets in Spectrum 2, there would be no difference the chemical shift between the P nuclei is zero at all fields, so the "virtual couplings" effect will always be there.