Być albo nie być czarną dziurą

Franciszek Hansdorfer Jacek Winiarczyk Łukasz Parda Tomasz Gruss Opiekun projektu: dr hab. Radosław Poleski

12 czerwca 2024

- Ogólna teoria względności
- Masa zakrzywia czasoprzestrzeń ⇒
- Światło idące w pobliżu masy jest odchylane
- Obserwator widzi obiekty za zakrzywiającą masą w inny sposób ⇒
- Soczewkowanie grawitacyjne

ESA/Hubble, NASA

Principles of Gravitational Lensing, Arthur B. Congdon, Charles R. Keeton

Równanie soczewki:

$$\beta = \theta - \alpha(\theta)$$

Równanie soczewki:

$$\beta = \theta - \alpha(\theta)$$

Dla punktowej masy mamy:

$$\alpha(\theta) = \frac{4GM}{c^2 \theta} \frac{D_s - D_l}{D_s D_l}$$

$$\theta_E = \sqrt{\frac{4GM}{c^2} \frac{D_s - D_l}{D_s D_l}}$$

Wtedy:

$$\beta = \theta - \frac{\theta_E^2}{\theta}$$

Mikrosoczewkowanie

$$M \sim M_{\odot}$$

Na przykład dla $D_s=8$ kpc, $D_l=4$ kpc, $M=1M_{\odot}$:

$$\theta_E=0.32~\mathrm{mas}$$

Dla $u=\frac{\beta}{\theta_E}$ wzmocnienie źródła określa wzór:

$$A(u) = \frac{u^2 + 2}{u\sqrt{u^2 + 4}}$$

u możemy natomiast obliczyć znając u_0, t_0, t_E :

$$u(t) = \sqrt{u_0^2 + \left(\frac{t - t_0}{t_E}\right)^2}$$

Animation by B.S. Gaudi microlensing-source.org

Paralaksa

Dla $t_{\rm E} > 30$ d ruchu Ziemi wokół Słońca przestaje być pomijalny. Wtedy:

$$u_{\oplus}(t) = u_{\odot}(t) +$$

$$+ \pi_E \beta \cos(\Omega(t - t_0) + \varphi) +$$

$$+ \Lambda \omega (\sin(\Omega(t - t_0) + \varphi))$$

PAR-20, $u_0 < 0$

Xallarap

Jeżeli źródło jest częścią układu podwójnego, to jego ruch orbitalny może mieć znaczący wpływ na parametr u(t). Ten feonomen nosi nazwę xallarap (Parallax od tyłu).

PAR-57.1

Mulens Model, to paczka służąca do modelowania zjawisk mikrosoczewkowania. Do dopasowania krzywej, używany jest algorytm MCMC (Próbkowanie Monte Carlo łańcuchami Markowa).

Wstęp

59 zjawisk wykazujących dominujący wpływ paralaksy?, z przeglądu OGLE-III (Wyżykowski et al. 2016).

A co jeśli źródło jest w układzie podwójnym?

Porównanie modeli

Nazwa	$\Delta \chi^2$	$\chi^2_{Paraxall}$
PAR-05-noaver.dat	52.7989	2360.0741
PAR-06-noaver.dat	304.5130	4567.5600
PAR-14-noaver.dat	37.3174	7164.3571
PAR-39-noaver.dat	129.9147	13677.8037
PAR-57-noaver.dat	59681.0222	4335.8364
PAR-58-noaver.dat	34.7714	1087.9253
PAR-59-noaver.dat	124.1144	2175.4949