Osnovi Računarske Inteligencije

Neuronske Mreže i Algoritam Propagacije Unazad (*Backpropagation*)

Predavač: Aleksandar Kovačević

Slajdovi preuzeti sa CS 231n, Stanford

http://cs231n.stanford.edu/

Šta smo do sada naučili...

$$s = f(x; W) = Wx$$

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Lecture 2 - 4

$$L=rac{1}{N}\sum_{i=1}^{N}L_i+\sum_k W_k^2$$

SVM funkcija greške

hoćemo
$$abla_W L$$

$$_WL$$

Optimizacija


```
# Vanilla Gradient Descent

while True:
    weights_grad = evaluate_gradient(loss_fun, data, weights)
    weights += - step_size * weights_grad # perform parameter update
```

<u>Landscape image is CC0 1.0 public domain</u>

<u>Walking man image is CC0 1.0 public domain</u>

Gradijentni spust

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

Numerički gradijent: spor :(, aproksimacija :(, lako se računa :) Analitički gradijent: brz :), tačan :), teško se računa i moguće su greške :(

U praksi: Prvo simbolički izvedemo analitički gradijent, pa ga implemenitramo, a implementaciju proverimo pomoću numeričkog gradijenta

Grafovi Izračunavanja Computational graphs

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Neuronska Tjuringova Mašina ulazna slika greška

Figure reproduced with permission from a <u>Twitter post</u> by Andrej Karpathy.

$$f(x, y, z) = (x + y)z$$

npr. x = -2, y = 5, z = -4

Lecture 4 - 9

$$f(x, y, z) = (x + y)z$$

npr. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x,y,z)=(x+y)z$$

npr. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x,y,z)=(x+y)z$$

npr. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x,y,z)=(x+y)z$$

npr. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x,y,z)=(x+y)z$$

npr.
$$x = -2$$
, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Tražimo:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$

$$f(x, y, z) = (x + y)z$$

npr. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial u}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x,y,z)=(x+y)z$$

npr. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x, y, z) = (x + y)z$$

npr. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x,y,z)=(x+y)z$$

npr. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Tražimo: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

izvod složene funkcije (Chain rule):

$$f(x, y, z) = (x + y)z$$

npr. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x, y, z) = (x + y)z$$

npr. x = -2, y = 5, z = -4

$$q=x+y$$
 $\frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2 x_1 + w_2 x_2 + w_2 x_2$$

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2 x_1 + w_2 x_2 + w_1 x_2 + w_2 x_2$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2}}$$

$$f(x) = e^x \qquad o \qquad rac{df}{dx} = e^x \ f_a(x) = ax \qquad o \qquad rac{df}{dx} = a$$

$$f(x) = rac{1}{x} \qquad \qquad \qquad \qquad rac{df}{dx} = -1/x^2 \ f_c(x) = c + x \qquad \qquad \qquad \qquad \qquad rac{df}{dx} = 1$$

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$f(x) = e^x \qquad o \qquad rac{df}{dx} = e^x \ f_a(x) = ax \qquad o \qquad rac{df}{dx} = a$$

$$f(x) = rac{1}{x} \qquad
ightarrow \qquad rac{df}{dx} = -1/x^2 \ f_c(x) = c + x \qquad
ightarrow \qquad rac{df}{dx} = 1$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$egin{aligned} f(x) = e^x &
ightarrow & rac{df}{dx} = e^x \ \hline f_a(x) = ax &
ightarrow & rac{df}{dx} = a \ \hline \end{pmatrix} egin{aligned} f(x) = rac{1}{x} &
ightarrow & rac{df}{dx} = -1/x^2 \ \hline f_c(x) = c + x &
ightarrow & rac{df}{dx} = 1 \ \hline \end{pmatrix}$$

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2 x_1 + w_2 x_2 + w_1 x_2 + w_2 x_2$$

$$egin{aligned} f(x) = e^x &
ightarrow & rac{df}{dx} = e^x \ f_a(x) = ax &
ightarrow & rac{df}{dx} = a \ \end{array} \qquad egin{aligned} f(x) = rac{1}{x} &
ightarrow & rac{df}{dx} = -1/x^2 \ f_c(x) = c + x &
ightarrow & rac{df}{dx} = 1 \ \end{array}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(x) = e^x \qquad o \qquad rac{af}{dx} = e^x \ f_a(x) = ax \qquad o \qquad rac{df}{dx} = a$$

$$f(x)=rac{1}{x} \qquad \qquad
ightarrow \qquad rac{df}{dx}=-1/x \ f_c(x)=c+x \qquad \qquad
ightarrow \qquad rac{df}{dx}=1$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(x) = e^x \hspace{1cm} o \hspace{1cm} rac{af}{dx} = e^x \ f_a(x) = ax \hspace{1cm} o \hspace{1cm} rac{df}{dx} = a$$

$$f(x)=rac{1}{x} \qquad \qquad
ightarrow \qquad rac{df}{dx}=-1/x \ f_c(x)=c+x \qquad \qquad
ightarrow \qquad rac{df}{dx}=1$$

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2 x_1 + w_2 x_2 + w_2 x_2$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2 x_1 + w_3 x_1 + w_3 x_2 + w_3 x_2 + w_3 x_3 + w_3 x_3$$

$$f(x) = e^x \qquad o \qquad rac{df}{dx} = e^x \ f_a(x) = ax \qquad o \qquad rac{df}{dx} = a$$

$$rac{df}{dx} = e^x \hspace{1cm} f(x) = rac{1}{x} \hspace{1cm}
ightarrow \hspace{1cm} rac{df}{dx} = -1/x \ rac{df}{dx} = a \hspace{1cm} f_c(x) = c + x \hspace{1cm}
ightarrow \hspace{1cm} rac{df}{dx} = 1$$

Još jedan primer:

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$f(x) = e^x \hspace{1cm} o \hspace{1cm} rac{df}{dx} = e^x \ f_a(x) = ax \hspace{1cm} o \hspace{1cm} rac{df}{dx} = a$$

$$egin{aligned} rac{df}{dx} = e^x & f(x) = rac{1}{x} &
ightarrow & rac{df}{dx} = -1/x \ rac{df}{dx} = a & f_c(x) = c + x &
ightarrow & rac{df}{dx} = 1 \end{aligned}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$\sigma(x) = \frac{1}{1+e^{-x}}$$

sigmoid funkcija

$$rac{d\sigma(x)}{dx} = rac{e^{-x}}{(1+e^{-x})^2} = \left(rac{1+e^{-x}-1}{1+e^{-x}}
ight) \left(rac{1}{1+e^{-x}}
ight) = \left(1-\sigma(x)
ight)\sigma(x)$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$\sigma(x) = \frac{1}{1+e^{-x}}$$

sigmoid funkcija

$$rac{d\sigma(x)}{dx} = rac{e^{-x}}{(1+e^{-x})^2} = \left(rac{1+e^{-x}-1}{1+e^{-x}}
ight) \left(rac{1}{1+e^{-x}}
ight) = \left(1-\sigma(x)
ight)\sigma(x)$$

čvor **sabiranja**: distributor gradijenta

čvor sabiranja: distributor gradijenta

Šta radi max čvor?

čvor **sabiranja**: distributor gradijenta

max čvor: ruter gradijenta

čvor sabiranja: distributor gradijenta

max čvor: ruter gradijenta

Šta radi čvor množenja?

čvor sabiranja: distributor gradijenta

max čvor: ruter gradijenta

čvor množenja: razmenjuje gradijente

Primer sa vektorima $f(x, W) = ||W \cdot x||^2 = \sum_{i=1}^n (W \cdot x)_i^2$

Primer sa vektorima
$$f(x,W) = ||W\cdot x||^2 = \sum_{i=1}^n (W\cdot x)_i^2$$

$$\in \mathbb{R}^n \in \mathbb{R}^{n\times n}$$

Primer sa vektorima $f(x,W) = ||W \cdot x||^2 = \sum_{i=1}^n (W \cdot x)_i^2$

Lecture 4 - 56

Primer sa vektorima
$$f(x,W) = ||W \cdot x||^2 = \sum_{i=1}^n (W \cdot x)_i^2$$

$$\begin{bmatrix} 0.1 & 0.5 \\ -0.3 & 0.8 \end{bmatrix}_W$$

$$q = W \cdot x = \begin{pmatrix} W_{1,1}x_1 + \dots + W_{1,n}x_n \\ \vdots \\ W_{n,1}x_1 + \dots + W_{n,n}x_n \end{pmatrix}$$

$$f(q) = ||q||^2 = q_1^2 + \dots + q_n^2$$

Primer sa vektorima
$$f(x,W) = ||W \cdot x||^2 = \sum_{i=1}^n (W \cdot x)_i^2$$

$$\begin{bmatrix} 0.1 & 0.5 \\ -0.3 & 0.8 \end{bmatrix}_W$$

$$\begin{bmatrix} 0.22 \\ 0.26 \end{bmatrix}$$

$$x$$

$$q = W \cdot x = \begin{pmatrix} W_{1,1}x_1 + \dots + W_{1,n}x_n \\ \vdots \\ W_{n,1}x_1 + \dots + W_{n,n}x_n \end{pmatrix}$$

$$f(q) = ||q||^2 = q_1^2 + \dots + q_n^2$$

Primer sa vektorima
$$f(x,W) = ||W \cdot x||^2 = \sum_{i=1}^n (W \cdot x)_i^2$$

$$\begin{bmatrix} 0.1 & 0.5 \\ -0.3 & 0.8 \end{bmatrix}_W$$

$$\begin{bmatrix} 0.22 \\ 0.4 \end{bmatrix}_X$$

$$q = W \cdot x = \begin{pmatrix} W_{1,1}x_1 + \dots + W_{1,n}x_n \\ \vdots \\ W_{n,1}x_1 + \dots + W_{n,n}x_n \end{pmatrix}$$

$$f(q) = ||q||^2 = q_1^2 + \dots + q_n^2$$

Primer sa vektorima
$$f(x,W) = ||W \cdot x||^2 = \sum_{i=1}^n (W \cdot x)_i^2$$

$$\begin{bmatrix} 0.1 & 0.5 \\ -0.3 & 0.8 \end{bmatrix}_W$$

$$\begin{bmatrix} 0.22 \\ 0.4 \end{bmatrix}_X$$

$$q = W \cdot x = \begin{pmatrix} W_{1,1}x_1 + \dots + W_{1,n}x_n \\ \vdots \\ W_{n,1}x_1 + \dots + W_{n,n}x_n \end{pmatrix}$$

$$f(q) = ||q||^2 = q_1^2 + \dots + q_n^2$$

$$\frac{\partial f}{\partial q_i} = 2q_i$$

$$\nabla_q f = 2q$$

Primer sa vektorima
$$f(x,W) = ||W \cdot x||^2 = \sum_{i=1}^n (W \cdot x)_i^2$$

$$\begin{bmatrix} 0.1 & 0.5 \\ -0.3 & 0.8 \end{bmatrix}_W$$

$$\begin{bmatrix} 0.22 \\ 0.26 \end{bmatrix}$$

$$\begin{bmatrix} 0.22 \\ 0.26 \end{bmatrix}$$

$$\begin{bmatrix} 0.44 \\ 0.52 \end{bmatrix}$$

$$q = W \cdot x = \begin{pmatrix} W_{1,1}x_1 + \dots + W_{1,n}x_n \\ \vdots \\ W_{n,1}x_1 + \dots + W_{n,n}x_n \end{pmatrix}$$

$$f(q) = ||q||^2 = q_1^2 + \dots + q_n^2$$

$$\begin{bmatrix} 0.27 \\ 0.44 \\ 0.52 \end{bmatrix}$$

$$\begin{bmatrix} 0.27 \\ 0.44 \\ 0.52 \end{bmatrix}$$

$$\begin{bmatrix} 0.47 \\ 0.52 \end{bmatrix}$$

Primer sa vektorima
$$f(x,W) = ||W \cdot x||^2 = \sum_{i=1}^n (W \cdot x)_i^2$$

$$\begin{bmatrix} 0.1 & 0.5 \\ -0.3 & 0.8 \end{bmatrix}_{\mathbf{W}}$$

$$\begin{bmatrix} 0.22 \\ 0.26 \end{bmatrix}$$

$$\begin{bmatrix} 0.22 \\ 0.26 \end{bmatrix}$$

$$\begin{bmatrix} 0.44 \\ 0.52 \end{bmatrix}$$

$$\frac{\partial q_k}{\partial W_{i,j}} = \mathbf{1}_{k=i}x_j$$

$$q = W \cdot x = \begin{pmatrix} W_{1,1}x_1 + \dots + W_{1,n}x_n \\ \vdots \\ W_{n,1}x_1 + \dots + W_{n,n}x_n \end{pmatrix}$$

$$f(q) = ||q||^2 = q_1^2 + \dots + q_n^2$$

Primer sa vektorima
$$f(x,W) = ||W \cdot x||^2 = \sum_{i=1}^n (W \cdot x)_i^2$$

$$\begin{bmatrix} 0.1 & 0.5 \\ -0.3 & 0.8 \end{bmatrix}_W$$

$$\begin{bmatrix} 0.22 \\ 0.4 \end{bmatrix}_X$$

$$\begin{bmatrix} 0.22 \\ 0.44 \\ 0.52 \end{bmatrix}$$

$$\frac{\partial q_k}{\partial W_{i,j}} = \mathbf{1}_{k=i}x_j$$

$$q = W \cdot x = \begin{pmatrix} W_{1,1}x_1 + \dots + W_{1,n}x_n \\ \vdots \\ W_{n,1}x_1 + \dots + W_{n,n}x_n \end{pmatrix}$$

$$f(q) = ||q||^2 = q_1^2 + \dots + q_n^2$$

$$= 2q_i x :$$

Primer sa vektorima - dodatak

$$\nabla_W f = 2q \cdot x^T$$

$$\begin{bmatrix} a_{11} \\ a_{21} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \end{bmatrix} = \begin{bmatrix} a_{11}b_{11} & a_{11}b_{12} \\ a_{21}b_{11} & a_{21}b_{12} \end{bmatrix}$$
$$\begin{bmatrix} 0.44 \\ 0.52 \end{bmatrix} \begin{bmatrix} 0.2 & 0.4 \end{bmatrix} = \begin{bmatrix} 0.44 * 0.2 & 0.44 * 0.4 \\ 0.52 * 0.2 & 0.52 * 0.4 \end{bmatrix}$$
$$\begin{bmatrix} 0.44 \\ 0.52 \end{bmatrix} \begin{bmatrix} 0.2 & 0.4 \end{bmatrix} = \begin{bmatrix} 0.088 & 0.176 \\ 0.104 & 0.208 \end{bmatrix}$$

Primer sa vektorima
$$f(x,W) = ||W \cdot x||^2 = \sum_{i=1}^n (W \cdot x)_i^2$$

$$\begin{bmatrix} 0.1 & 0.5 \\ -0.3 & 0.8 \end{bmatrix} W$$

$$\begin{bmatrix} 0.088 & 0.176 \\ 0.104 & 0.208 \end{bmatrix} X$$

$$\begin{bmatrix} 0.22 \\ 0.4 \end{bmatrix} X$$

$$\begin{bmatrix} 0.22 \\ 0.26 \end{bmatrix}$$

$$\begin{bmatrix} 0.44 \\ 0.52 \end{bmatrix}$$

$$\frac{\partial q_k}{\partial W_{i,j}} = \mathbf{1}_{k=i}x_j$$

$$\frac{\partial f}{\partial W_{i,j}} = \sum_k \frac{\partial f}{\partial q_k} \frac{\partial q_k}{\partial W_{i,j}}$$

$$= \sum_k (2q_k)(\mathbf{1}_{k=i}x_j)$$

$$f(q) = ||q||^2 = q_1^2 + \dots + q_n^2$$

$$= 2q_i x_i$$

Primer sa vektorima
$$f(x,W) = ||W \cdot x||^2 = \sum_{i=1}^n (W \cdot x)_i^2$$

$$\begin{bmatrix} 0.1 & 0.5 \\ -0.3 & 0.8 \end{bmatrix} W$$

$$\begin{bmatrix} 0.088 & 0.176 \\ 0.104 & 0.208 \end{bmatrix} X$$

$$\begin{bmatrix} 0.22 \\ 0.26 \end{bmatrix}$$

$$\begin{bmatrix} 0.22 \\ 0.26 \end{bmatrix}$$

$$\begin{bmatrix} 0.22 \\ 0.26 \end{bmatrix}$$

$$\begin{bmatrix} 0.44 \\ 0.52 \end{bmatrix}$$

$$\begin{bmatrix} 0.44 \\ 0.52 \end{bmatrix}$$

$$q = W \cdot x = \begin{pmatrix} W_{1,1}x_1 + \dots + W_{1,n}x_n \\ \vdots \\ W_{n,1}x_1 + \dots + W_{n,n}x_n \end{pmatrix}$$

$$f(q) = ||q||^2 = q_1^2 + \dots + q_n^2$$

$$\begin{array}{c} \text{Primer sa vektorima} \quad f(x,W) = ||W \cdot x||^2 = \sum_{i=1}^n (W \cdot x)_i^2 \\ \begin{bmatrix} 0.1 & 0.5 \\ -0.3 & 0.8 \end{bmatrix} \\ \begin{bmatrix} 0.088 & 0.176 \\ 0.104 & 0.208 \end{bmatrix} \\ \begin{bmatrix} 0.2 \\ 0.4 \end{bmatrix} \\ X \\ \end{array} \begin{array}{c} \begin{bmatrix} 0.22 \\ 0.26 \end{bmatrix} \\ \begin{bmatrix} 0.44 \\ 0.52 \end{bmatrix} \\ \end{bmatrix} \begin{array}{c} \underbrace{\begin{pmatrix} 0.116 \\ 1.00 \end{pmatrix}} \\ \end{bmatrix} \\ q = W \cdot x = \begin{pmatrix} W_{1,1}x_1 + \dots + W_{1,n}x_n \\ \vdots \\ W_{n,1}x_1 + \dots + W_{n,n}x_n \end{pmatrix} \\ f(q) = ||q||^2 = q_1^2 + \dots + q_n^2 \\ \end{array} \begin{array}{c} \frac{\partial q_k}{\partial x_i} = \sum_k \frac{\partial f}{\partial q_k} \frac{\partial q_k}{\partial x_i} \\ \frac{\partial f}{\partial x_i} = \sum_k 2q_k W_{k,i} \end{array}$$

Lecture 4 - 69

$$\begin{array}{c} \text{Primer sa vektorima} \quad f(x,W) = ||W \cdot x||^2 = \sum_{i=1}^n (W \cdot x)_i^2 \\ \begin{bmatrix} 0.1 & 0.5 \\ -0.3 & 0.8 \end{bmatrix} \\ \begin{bmatrix} 0.088 & 0.176 \\ 0.104 & 0.208 \end{bmatrix} \\ \begin{bmatrix} 0.2 \\ 0.4 \end{bmatrix} \\ \begin{bmatrix} 0.2 \\ 0.4 \end{bmatrix} \\ \begin{bmatrix} 0.44 \\ 0.52 \end{bmatrix} \\ \begin{bmatrix} 0.44 \\ 0.52 \end{bmatrix} \\ \end{bmatrix} \\ \begin{bmatrix} 0.44 \\ 0.52 \end{bmatrix} \\ \end{bmatrix} \\ q = W \cdot x = \begin{pmatrix} W_{1,1}x_1 + \dots + W_{1,n}x_n \\ \vdots \\ W_{n,1}x_1 + \dots + W_{n,n}x_n \end{pmatrix} \\ f(q) = ||q||^2 = q_1^2 + \dots + q_n^2 \\ \end{bmatrix} \\ \begin{array}{c} \frac{\partial q_k}{\partial x_i} = W_{k,i} \\ \frac{\partial f}{\partial x_i} = \sum_k \frac{\partial f}{\partial q_k} \frac{\partial q_k}{\partial x_i} \\ \frac{\partial f}{\partial x_i} = \sum_k 2q_k W_{k,i} \end{array}$$

Primer sa vektorima - dodatak

$$\nabla_x f = 2W^T \cdot q$$

$$2\begin{bmatrix} w_{11} & w_{21} \\ w_{12} & w_{22} \end{bmatrix} \begin{bmatrix} q_1 \\ q_2 \end{bmatrix} = \begin{bmatrix} w_{11}q_1 + w_{21}q_2 \\ w_{12}q_1 + w_{22}q_2 \end{bmatrix}$$

$$2\begin{bmatrix} 0.1 & -0.3 \\ 0.5 & 0.8 \end{bmatrix} \begin{bmatrix} 0.44 \\ 0.52 \end{bmatrix} = \begin{bmatrix} 0.1 * 0.44 + (-0.3 * 0.52) \\ 0.5 * 0.44 + (0.8 * 0.52) \end{bmatrix}$$

$$\begin{bmatrix} -0.112 \\ 0.636 \end{bmatrix}$$

Modularizovana implementacija: forward / backward API

Graf (ili Mreža) objekat (grubi pseudo-kod)

```
class ComputationalGraph(object):
    # . . .
    def forward(inputs):
        # 1. [pass inputs to input gates...]
        # 2. forward the computational graph:
        for gate in self.graph.nodes topologically sorted():
            gate.forward()
        return loss # the final gate in the graph outputs the loss
    def backward():
        for gate in reversed(self.graph.nodes topologically sorted()):
            gate.backward() # little piece of backprop (chain rule applied)
        return inputs gradients
```

Modularizovana implementacija: forward / backward API

(x,y,z su skalari)

Modularizovana implementacija: forward / backward API

(x,y,z su skalari)

```
class MultiplyGate(object):
    def forward(x,y):
        z = x*y
        self.x = x # must keep these around!
        self.y = y
        return z
    def backward(dz):
        dx = self.y * dz # [dz/dx * dL/dz]
        dy = self.x * dz # [dz/dy * dL/dz]
        return [dx, dy]
```

Primer: Slojevi u Caffe okruženju za Deep Learning

Branch: master - caffe / src / c	affe / layers /	ew file	Upload files	Find file	Histor	
shelhamer committed on GitHub	Merge pull request #4630 from BIGene/load_hdf5_fix	l	atest commit e	e687a71 21	days ag	
144						
absval_layer.cpp	dismantle layer headers			a year ago		
absval_layer.cu	dismantle layer headers			a year ag		
accuracy_layer.cpp	dismantle layer headers		a year ag			
argmax_layer.cpp	dismantle layer headers		a year ag			
abase_conv_layer.cpp	enable dilated deconvolution			а	year ag	
base_data_layer.cpp	Using default from proto for prefetch		3 months ag			
base_data_layer.cu	Switched multi-GPU to NCCL			3 mo	nths ag	
atch_norm_layer.cpp	Add missing spaces besides equal signs in batch_norm_layer.cpp			4 mo	nths ag	
abatch_norm_layer.cu	dismantle layer headers		a year ag			
batch_reindex_layer.cpp	dismantle layer headers		a year ag			
batch_reindex_layer.cu	dismantle layer headers			а	year ag	
bias_layer.cpp	Remove incorrect cast of gemm int arg to Dtype in BiasLayer			а	year ag	
bias_layer.cu	Separation and generalization of ChannelwiseAffineLayer into Bias	Layer		а	year ag	
bnll_layer.cpp	dismantle layer headers			а	year ag	
bnll_layer.cu	dismantle layer headers			а	year ag	
concat_layer.cpp	dismantle layer headers			а	year ag	
concat_layer.cu	dismantle layer headers			a year ag		
contrastive_loss_layer.cpp	dismantle layer headers			a year ag		
contrastive_loss_layer.cu	dismantle layer headers			a year ago		
conv_layer.cpp	add support for 2D dilated convolution			a year ago		
conv_layer.cu	dismantle layer headers			a year ago		
crop_layer.cpp	remove redundant operations in Crop layer (#5138)			2 months ag		
crop_layer.cu	remove redundant operations in Crop layer (#5138)			2 months ago		
cudnn_conv_layer.cpp	dismantle layer headers			a year ago		
cudnn_conv_layer.cu	Add cuDNN v5 support, drop cuDNN v3 support			11 mo	nths ag	

cudnn_lcn_layer.cpp	dismantle layer headers	a year ago
cudnn_lcn_layer.cu	dismantle layer headers	a year ago
cudnn_lrn_layer.cpp	dismantle layer headers	a year ago
cudnn_lrn_layer.cu	dismantle layer headers	a year ago
cudnn_pooling_layer.cpp	dismantle layer headers	a year ago
cudnn_pooling_layer.cu	dismantle layer headers	a year ag
cudnn_relu_layer.cpp	Add cuDNN v5 support, drop cuDNN v3 support	11 months ag
cudnn_relu_layer.cu	Add cuDNN v5 support, drop cuDNN v3 support	11 months ag
cudnn_sigmoid_layer.cpp	Add cuDNN v5 support, drop cuDNN v3 support	11 months ag
cudnn_sigmoid_layer.cu	Add cuDNN v5 support, drop cuDNN v3 support	11 months ag
cudnn_softmax_layer.cpp	dismantle layer headers	a year ag
cudnn_softmax_layer.cu	dismantle layer headers	a year ag
cudnn_tanh_layer.cpp	Add cuDNN v5 support, drop cuDNN v3 support	11 months ag
cudnn_tanh_layer.cu	Add cuDNN v5 support, drop cuDNN v3 support	11 months ag
data_layer.cpp	Switched multi-GPU to NCCL	3 months ag
deconv_layer.cpp	enable dilated deconvolution	a year ag
deconv_layer.cu	dismantle layer headers	a year ag
dropout_layer.cpp	supporting N-D Blobs in Dropout layer Reshape	a year ag
dropout_layer.cu	dismantle layer headers	a year ag
dummy_data_layer.cpp	dismantle layer headers	a year ag
eltwise_layer.cpp	dismantle layer headers	a year ag
eltwise_layer.cu	dismantle layer headers	a year ag
elu_layer.cpp	ELU layer with basic tests	a year ag
elu_layer.cu	ELU layer with basic tests	a year ag
embed_layer.cpp	dismantle layer headers	a year ag
embed_layer.cu	dismantle layer headers	a year ag
euclidean_loss_layer.cpp	dismantle layer headers	a year ag
euclidean_loss_layer.cu	dismantle layer headers	a year ag
exp_layer.cpp	Solving issue with exp layer with base e	a year ag
exp_layer.cu	dismantle layer headers	a year ag

Caffe is licensed under BSD2-Clause

#include <cmath> #include <vector> Caffe Sigmoid Sloj #include "caffe/layers/sigmoid layer.hpp" namespace caffe { template <typename Dtype> inline Dtype sigmoid(Dtype x) { return 1. / (1. + exp(-x));template <typename Dtype> void SigmoidLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) { const Dtype* bottom data = bottom[0]->cpu data(); Dtype* top_data = top[0]->mutable_cpu_data(); const int count = bottom[0]->count(); for (int i = 0; i < count; ++i) { top data[i] = sigmoid(bottom data[i]); template <typename Dtype> void SigmoidLayer<Dtype>::Backward cpu(const vector<Blob<Dtype>*>& top, const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) { if (propagate_down[0]) { const Dtype* top_data = top[0]->cpu_data(); const Dtype* top_diff = top[0]->cpu_diff(); Dtype* bottom_diff = bottom[0]->mutable_cpu_diff(); const int count = bottom[0]->count(); $(1 - \sigma(x)) \sigma(x)$ * top_diff (pravilo for (int i = 0; $i < count; ++i) {$ const Dtype sigmoid_x = top_data[i]; bottom diff[i] = top diff[i] * sigmoid x * (1. - sigmoid x); ◀ ulančavanja izvoda) #ifdef CPU ONLY STUB_GPU(SigmoidLayer); INSTANTIATE_CLASS(SigmoidLayer); 47 } // namespace caffe Caffe is licensed under BSD 2-Clause

Kako bi izgledao SVM / Softmax klasifikator kao Graf Izračunavanja? Da li možemo obučavanje da organizujemo na forward/backward način?

Rezime...

- neuronske mreže su u praksi veoma velike: nije praktično da se ručno određuju gradijenti za svaki parametar (gradijente određujemo onkako kako smo to radili danas)
- **backpropagation** = rekurzivna primena ulančavanja izvoda kroz graf izračunavanja da bi izračunali sve potrebne gradijente
- implementacije neuronskih mreža koriste strukturu grafa gde svaki čvor implementira forward() / backward() API
- **forward**: izračunavamo odgovaraću operaciju i čuvamo rezultate u memoriji da bi mogli da ih iskoristimo za računanje gradijenata kasnije u **backpropagation**
- backward: primenjujemo pravilo ulančavanja da bi izračunali gradijente za sve parametre u odnosu na funkciju greške

Neuronske Mreže Neural Networks

Neuronske Mreže: prvo bez analogije sa ljudskim mozgom

f = Wx(Ranije) Linearna skor funkcija:

Lecture 4 - 80

Neuronske Mreže: prvo bez analogije sa ljudskim mozgom

f = Wx(Ranije) Linearna skor funkcija:

(**Sada**) Neuroska mreža sa dva sloja: $f = W_2 \max(0, W_1 x)$

Neuronske Mreže: prvo bez analogije sa ljudskim mozgom

(Ranije) Linearna skor funkcija:

$$f = Wx$$

(**Sada**) Neuroska mreža sa dva sloja: $f = W_2 \max(0, W_1 x)$

Neuronske Mreže: prvo bez analogije sa ljudskim mozgom (Ranije) Linearna skor funkcija: f=Wx

(**Sada**) Neuroska mreža sa dva sloja: $f = W_2 \max(0, W_1 x)$

Neuronske Mreže: prvo bez analogije sa ljudskim mozgom

(**Ranije**) Linearna skor funkcija: f=Wx

(**Sada**) Neuroska mreža sa dva sloja: $f = W_2 \max(0, W_1 x)$

Neuroska mreža sa tri sloja:

 $f = W_3 \max(0, W_2 \max(0, W_1 x))$

Kompletna implementacija dvo-slojne Neuronske Mreže ima ~20 linija koda:

```
import numpy as np
    from numpy random import randn
    N, D in, H, D out = 64, 1000, 100, 10
    x, y = randn(N, D in), randn(N, D out)
    w1, w2 = randn(D_in, H), randn(H, D_out)
    for t in range(2000):
      h = 1 / (1 + np.exp(-x.dot(w1)))
      y pred = h.dot(w2)
10
       loss = np.square(y_pred - y).sum()
11
12
      print(t, loss)
13
      grad_y_pred = 2.0 * (y_pred - y)
14
15
      grad_w2 = h.T.dot(grad_y_pred)
16
       grad h = grad y pred.dot(w2.T)
17
      grad_w1 = x.T.dot(grad_h * h * (1 - h))
18
      w1 -= 1e-4 * grad w1
19
      w2 -= 1e-4 * grad w2
20
```


Kako bi ste to sami uradili?

```
# receive W1,W2,b1,b2 (weights/biases), X (data)
# forward pass:
h1 = \#... function of X,W1,b1
scores = #... function of h1, W2, b2
loss = #... (several lines of code to evaluate Softmax loss)
# backward pass:
dscores = #...
dh1, dW2, db2 = #...
dW1, db1 = #...
```


This image by Fotis Bobolas is licensed under CC-BY 2.0

Treba biti pažljiv u pravljenju analogija sa mozgom!

Biološki neuroni:

- Mnogo različitih tipova
- Dendriti vrše kompleksne ne-linearne operacije
- Sinapse nisu samo jedna težina već kompleksan ne-linearan dinamički sistem
-

[Dendritic Computation. London and Hausser]

Aktivacione funkcije

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU $\max(0.1x, x)$

tanh

Maxout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

ReLU

$$\max(0,x)$$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Neuronske Mreže: Arhitekture

Primer izračunavanja prenosa unapred (*feed-forward*) u Neuronskoj Mreži

```
class Neuron:
    # ...
    def neuron_tick(inputs):
        """ assume inputs and weights are 1-D numpy arrays and bias is a number """
        cell_body_sum = np.sum(inputs * self.weights) + self.bias
        firing_rate = 1.0 / (1.0 + math.exp(-cell_body_sum)) # sigmoid activation function
        return firing_rate
```

Možemo, vrlo efikasno, vektorskim operacijama da izračunamo aktivacije za jedan ceo sloj u mreži.

Rezime

- Uređujemo neurone u potputno-povezane slojeve
- Apstrakcija jednog sloja nam dozvoljava da koristimo vektorske operacije zarad efikasnosti (npr. množenje matrica)
- Neuronske mreže nisu baš stvarno neuronske u biloškom smislu