习题课三

一、填空题

- 1. $\lim_{x \to \infty} \frac{x^2 5\cos x}{3x^2 + 6\sin x} = \underline{\hspace{1cm}}$
- 2. 当 $x\to\infty$ 时, f(x)与 $\frac{1}{r^3}$ 是等价无穷小, g(x) 与 $\frac{2}{x^2}$ 是等价无穷小,则 $\lim_{x \to \infty} \frac{xf(x)}{3g(x)} = \underline{\qquad}.$

3. 设 $x \rightarrow 0$ 时, $(e^{x\cos x^2} - e^x)$ 与 x^k 是同阶无穷小,则k =

4. 已知 $x \to 0$ 时, $(1+ax^2)^{\frac{1}{3}} - 1$ 与 $1 - \cos x$ 是等价无穷小,则常数 $a = \underline{\hspace{1cm}}$

二、选择题

- 1. 设当 $x\to 0$ 时, $(1-\cos x)\ln(1+x^2)$ 是比 $x\sin x^n$ 高阶的无穷小,而 $x\sin x^n$ 是比 $(e^{x^2}-1)$ 高阶的无穷小,则正整数n等于()
 - (A) 1:
- (B) 2; (C) 3; (D) 4.
- 2. $\exists \lim_{x\to 0} \frac{a\tan x + b(1-\cos x)}{c\ln(1-2x) + d(1-e^{-x^2})} = 2$, $a^2 + c^2 \neq 0$, \emptyset ()
 - (A) a = -4c; (B) a = 4c; (C) b = -4d; (D) b = 4d.

- 3. 当 $x \to 1$ 时,函数 $\frac{x^2-1}{x-1}e^{\frac{1}{x-1}}$ 的极限为 ()
- (A).等于2;(B).等于0
- (C).等于∞;(D).不存在但不等于∞.
- 4. 设数列 $\{x_n\}$ 与 $\{y_n\}$ 满足 $\lim_{n\to\infty} \{x_ny_n\}=0$,则下列断言正确的是()
 - (A) 若 $\{x_n\}$ 发散,则 $\{y_n\}$ 必发散;
 - (B) 若 $\{x_n\}$ 无界,则 $\{y_n\}$ 必有界;
 - (C) 若 $\{x_n\}$ 有界,则 $\{y_n\}$ 必为无穷小;

(D) 若 $\{\frac{1}{x_n}\}$ 为无穷小,则 $\{y_n\}$ 必为无穷小。

三、问答题

- 1. 有界函数与无穷小量的乘积是无穷小量,能否说有界函数与无穷大量的乘积是无穷大量?
- 2. 无界函数是否一定是无穷大量?

四、求下列极限

1. $\lim_{x \to +\infty} (\sin \sqrt{x+1} - \sin \sqrt{x})$; 2. $\lim_{x \to \infty} (\sqrt[5]{x^5 - 2x^4 + 1} - x)$.

五.解答题

1.
$$\exists \exists \lim_{x \to 0} \frac{\ln(1 + \frac{f(x)}{\sin 2x})}{e^x - 1} = 5$$
, $\exists \lim_{x \to 0} \frac{f(x)}{x^2}$.

2. 确定常数 a 和 b ,使 $\lim_{x\to +\infty} (\sqrt{x^2-x-1}-ax-b)=0$.

六. 求下列极限

1.
$$\lim_{x \to \infty} \left(\sin \frac{4}{x} + \cos \frac{2}{x} \right)^x$$
 2. $\lim_{x \to 0} \left(\frac{a^x + b^x + c^x}{3} \right)^{\frac{1}{x}}$ 3. $\lim_{x \to 0} \left(\frac{\frac{1}{2 + e^x}}{\frac{4}{x}} + \frac{\sin x}{|x|} \right)$

4. $\lim_{n \to \infty} \sin(\pi \sqrt{n^2 + 1})$

七. 1. 设
$$f(x) = \begin{cases} \frac{\tan ax}{x} & x < 0 \\ x + 2 & x \ge 0 \end{cases}$$
, 已知 $\lim_{x \to 0} f(x)$ 存在, 求 a .

2. 已知 $\lim_{x\to +\infty} (3x-\sqrt{ax^2-x+1})$ 存在且不等于零,求a.

3. 设
$$P(x)$$
为多项式, $\lim_{x\to\infty} \frac{P(x)-x^3}{x^2} = 2, \lim_{x\to0} \frac{P(x)}{x} = 1, 求 P(x).$

4.
$$\Re \lim_{n\to\infty} (\frac{1}{2!} + \frac{2}{3!} + \dots + \frac{n-1}{n!})$$