

Universidad Tecnológica de la Mixteca

Clave DGP: 110506

Maestría en Modelación Matemática

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA

Ecuaciones diferenciales ordinarias

SEMESTRE	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Optativa	221501ED	80

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

El alumno adquirirá los conocimientos básicos de la teoría formal de los sistemas de ecuaciones diferenciales ordinarias y, los aplicará a la modelación matemática.

TEMAS Y SUBTEMAS

1. Sistemas lineales

- 1.1. Sistemas lineales desacoplados.
- 1.2. Diagonalización.
- 1.3. Exponencial de operadores.
- 1.4. El teorema fundamental para sistemas lineales.
- 1.5. Uso de software para elaborar retratos fase.
- 1.6. Teoría de estabilidad para sistemas lineales.
- 1.7. Sistemas lineales no homogéneos.

2. Teoría fundamental de los sistemas no lineales

- 2.1. Sistemas dinámicos y campos vectoriales.
- 2.2. Teorema de existencia y unicidad.
- 2.3. Dependencia de las soluciones con respecto de las condiciones iniciales.
- 2.4. Dependencia de las soluciones con respecto a los parámetros.
- 2.5. Flujo de una ecuación diferencial.

3. Sistemas no lineales

- 3.1. Contracciones y expansiones (fuentes, sumideros y flujos hiperbólicos).
- 3.2. Linealización.
- 3.3. Teoría de la estabilidad.
- 3.4. El Teorema de la Variedad Estable.
- 3.5. El Teorema de Hartman-Grobman.
- 3.6. Estabilidad y funciones de Liapunov.
- 3.7. Conjuntos límite, órbitas periódicas y ciclos límite.
- 3.8. Dinámica en R2 y el teorema de Poincaré-Bendixon.
- 3.9. Introducción a la teoría de bifurcación.
- 3.10. Uso de software para resolver sistemas no lineales.

4. Aplicaciones

- 4.1. Sistema presa-depredador.
- 4.2. Sistemas mecánicos.
- 4.3. Sistemas eléctricos.

VICE-RECTORIA ACADÉMICA

ACTIVIDADES DE APRENDIZAJE

Exposición de la clase por parte del maestro, haciendo énfasis en la demostración y aplicación de los teoremas. El alumno deberá trabajar intensamente con los ejercicios de la tarea que el profesor asigne.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Se realizarán al menos dos evaluaciones parciales y una final. El profesor deberá tomar en cuenta la participación activa del alumno en clases y tareas, además de su puntual asistencia a las clases.

BIBLIOGRAFÍA (TIPO, TÍTULO, AUTOR, EDITORIAL Y AÑO)

Básica:

- 1. Differential equations and dynamical systems, Perko, Lawrence, Springer Science & Business Media, 2013.
- Ecuaciones diferenciales, sistemas dinámicos y álgebra lineal, Hirsch, Morris William, and Stephen Smale, Alianza Editorial, 1983.
- 3. Ordinary Differential Equations, Adkins, W. Davidson, M.Springer, 2012.

Consulta:

- 1. Differential equations, dynamical systems, and an introduction to chaos, Hirsch, Morris W., Stephen Smale, and Robert L. Devaney, Academic press, 2012.
- 3. Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering, Strogatz, Steven H., CRC Press, 2018.
- 2. Ordinary differential equations with applications, Chicone Carmen, Springer Science & Business Media, 2006.

PERFIL PROFESIONAL DEL DOCENTE

Estudios mínimos de Maestría en Matemáticas o en Matemáticas Aplicadas.

Clinina

Vo.Bo

DR. JOSÉ ANIBAL ARIAS AGUILAR POS CADO

JEFE DE LA DIVISIÓN DE ESTUDIOS DE POSGRADO

DR. AGUSTÍN SANTIAGO ALVÁRADO VICE-RECTOR ACADÉMICO ECTORIA

ACADÉMICA