©צוות קורס "תורת המספרים האלגוריתמית" סמסטר א תש"פ: בר אלון, מיכאל פרי, שמואל שמעוני, <mark>אריאל</mark> איברהים שאהין, דורון מור, חיה קלר, אלעד אייגנר-חורב. נכתב ע"י דורון מור

שקילויות

ונרשום m ונרשום a יהי $m \in \mathbb{Z}^+$ ויהיו $m \in \mathbb{Z}^+$ ויהיו $m \in \mathbb{Z}^+$ אם $m \in \mathbb{Z}^+$ אם $m \mid a - b$ אם $a \equiv b \pmod{m}$

עבור a=b+km אם ורק אם $a\equiv b\pmod m$. אזי $a,b\in\mathbb{Z}$ אם ורק אם $m\in\mathbb{Z}^+$ יהי ויהי $k\in\mathbb{Z}$ כלשהו.

הוכחה:

km=a-b כלומר m|a-b אזי $a\equiv b\ (mod\ m)$ כיוון ראשון: אם

a-b ולכן a-b=km כלשהו אזי a=b+km עבור מיינ: אם a=b+km

 $.13 = 8 + 5 \cdot 1$ שכן $1 \cdot 5 + 8 = 13$.

היחס מגדיר את היחס $m \in \mathbb{Z}^+$ בהינתן

$$R_m := \{(a, b) \in \mathbb{Z}^2 : a \equiv b \pmod{m}\}$$

משפט 2: יהי $m \in \mathbb{Z}^+$. היחס $n \in \mathbb{R}_m$ מגדיר מחלקות שקילות "מודולו m". כלומר, הוא מקיים את התכונות הבאות:

- $a \in \mathbb{Z}$ לכל $a \equiv a \pmod{m}$. 1
- $a \equiv a \pmod m$ אם ורק אם $a \equiv b \pmod m$ אזי $a,b \in \mathbb{Z}$ אם ורק אם .2
- אזי $b\equiv c\ (mod\ m)$ וגם $a\equiv b\ (mod\ m)$ כך ש $a,b,c\in\mathbb{Z}$ אזי $a\equiv b\ (mod\ m)$.3 $a\equiv c\ (mod\ m)$

הוכחה:

a לכל m|a-a לכל מכך שירות נובעת ישירות נובעת

m|b-a אם ורק אם m|a-b אם ורק מהאבחנה ש

m|b-c וגם m|a-b אם מכך שאם נובעת נובעת טרנזיטיביות

אזי

$$b = c + k_2 m, a = b + k_1 m$$

ולכן נציב ונקבל

$$a = c + (a - b) + (b - c) = c + k_1 m + k_2 m$$

= $c + (k_1 + k_2)m$
. $m|a - c$

היא קבוצת שלמים כך שכל $a\in\mathbb{Z}$ שקול לאיבר הגדרה: מערכת שאריות שלמה מודולו m היא קבוצת שלמים כך שכל $a\in\mathbb{Z}$ שקול לאיבר יחיד של אותה קבוצה מודולו

דוגמה: תהי הקבוצה $S=\{16,11,12,19,14,27\}$ ויהי $S=\{16,11,12,19,14,27\}$ נפעיל S שקול לאיבר איבר בקבוצה S שקול לאיבר מעולת S ונרשום את התוצאה: $S'=\{4,5,0,1,2,3\}$ מכילה את כל השאריות של חלוקה ב S לכן, S הינה מערכת שאריות שלמה מודולו S כמו-כן, הקבוצה S' הינה מערכת שאריות קנונית מודולו S

©צוות קורס "תורת המספרים האלגוריתמית" סמסטר א תש"פ: בר אלון, מיכאל פרי, שמואל שמעוני, <mark>אריאל</mark> איברהים שאהין, דורון מור, חיה קלר, אלעד אייגנר-חורב. נכתב ע"י דורון מור

משפט 3 (עיקרון שובך היונים): אם n יונים מתחלקים בין לכל היותר n-1 שבכים, אזי לאחר החלוקה קיים שובך המכיל לפחות שני יונים.

m מספרים לא שקולים מודולו m מהווה מערכת. $m \in \mathbb{Z}^+$ יהי יהי יהי $m \in \mathbb{Z}^+$. כל קבוצה של m

הוכחה: תהי קבוצה S בגודל m. לכל איבר $S\in S$ נפעיל את משפט החלוקה ונקבל m הוכחה: $S=k_sm+r_s$ תהי $S=k_sm+r_s$ תהי $S=k_sm+r_s$ תהי $S=k_sm+r_s$ מספרים לא שקולים מודולו $S=k_sm+r_s$ אך עדיין אינה מייצגת מערכת שאריות שלמה מודולו $S=k_sm+r_s$ מספרים לא שקולים מודולו $S=k_sm+r_s$ מספרים ולכל היותר $S=k_sm+r_s$ שאריות, ולכן קיימים $S=k_sm+r_s$ שקולים $S=k_sm+r_s$ ועדיין $S=k_sm+r_s$ לפי עיקרון שובך היונים (משפט $S=k_sm+r_s$ שקולים $S=k_sm+r_s$ ועדיין $S=k_sm+r_s$ שקולים מודולו $S=k_sm+r_s$

משפט 5: (אריתמטיקה מודולרית)

:יהיו $a\equiv b\ (mod\ m), c\equiv d\ (mod\ m)$ כך ש $m\in\mathbb{Z}^+$ ויהי $a,b,c,d\in\mathbb{Z}$ יהיו

$$a + c \equiv b + d \pmod{m}$$
. חיבור:

$$a-c \equiv b-d \pmod{m}$$
 .2

$$.ac \equiv bd \pmod{m}$$
 .3

(1)
$$a-b=km, c-d=lm$$
 הוכחה: לפי ההנחה מתקיים

חיבור: נשים לב כי

$$.(a+c) - (b+d) = (a-b) + (c-d)$$

נציב את (1) וסיימנו.

חיסור: נשים לב כי

$$(a-c)-(b-d)=(a-b)-(c-d)$$

נציב את (1) וסיימנו.

<u>הכפלה</u>: נשים לב כי מתקיים

$$ac - bd = ac - bc + bc - bd$$

$$= c(a - b) + b(c - d)$$

$$= kmc + lmb$$

$$= m(kc + lb)$$

.m|ac - bd = m(kc + lb) ולכן

דוגמה: $(5 \ mod \ 5)$ לכן מתקיים $(6 \ mod \ 5)$ לכן מתקיים

$$24 + 13 = 37 \equiv 4 + 8 \equiv 12 \pmod{5}$$

©צוות קורס "תורת המספרים האלגוריתמית" סמסטר א תש"פ: בר אלון, מיכאל פרי, שמואל שמעוני, <mark>אריאל</mark> איברהים שאהין, דורון מור, חיה קלר, אלעד אייגנר-חורב. נכתב ע"י דורון מור

$$24 - 13 = 11 \equiv 4 - 8 \equiv -4 \pmod{5}$$

$$24 \cdot 13 = 312 \equiv 4 \cdot 8 \equiv 32 \pmod{5}$$

אם ורק $ac\equiv bc\ (mod\ m)$ אזי d=(c,m) כך ש $m\in\mathbb{Z}^+$ אם ויהי $a,b,c\in\mathbb{Z}$ יהיו : $a\equiv b\ (mod\ m)$ אם $a\equiv b\ (mod\ m)$

הוכחה:

במילים אחרות ובמילים m|c(a-b) כלומר .ac $\equiv bc \pmod m$ ובמילים אחרות

$$mk = c(a - b)$$

עבור m=ds, c=dr ניתן לרשום gcd ניתן לפי הגדרת לפי הגדרת $k\in\mathbb{Z}$ ניתן לרשום ונקבל

$$,ks = r(a-b)$$

כלומר, s|(a-b) היות ומתקיים s|(a-b) אזי בהכרח s|(a-b) היות והגדרנו s|(a-b) היות ומתקיים s=m/d

<u>כיוון שני</u>: כיוון זה זהה לכיוון הראשון, רק שעובדים "מלמטה למעלה".

 $1.10 \equiv 7 \ (mod \ 3)$ אם ורק אם $2 \cdot 10 = 20 \equiv 2 \cdot 7 \equiv 14 \ (mod \ 2 \cdot 3)$ דוגמה: