Week5

Qi'ao Chen 21210160025

March 30, 2022

Exercise 1. Show that $a_1, a_2, ...$ is not totally indiscenible

Proof. If $a_i = a_j$ and i < j, then since $a_i a_j \equiv a_m a_n$ for any m < n, a_1, a_2, \ldots is a constant sequence. Because a_1, a_2, \ldots is a non-constant indiscenible sequence, either $a_1 < a_2$ or $a_1 > a_2$. We may assume $a_1 < a_2$. Then $a_1 a_2 \not\equiv a_2 a_1$ since $x < y \in \operatorname{tp}(a_1 a_2)$ but $x > y \in \operatorname{tp}(a_2 a_1)$

Exercise 2. Show that $a_1 a_2 > 0$

Proof. If $a_i=0$, then $x=0\in \operatorname{tp}(a_i)$. But since $a_i\equiv a_j$ for any $j,a_1,a_2,...$ is a constant sequence, a contradiction.

If $a_1a_2<0$, then $a_2a_3<0$ and so $a_1a_2^2a_3>0$ which implies $a_1a_3>0$. But $a_1a_2\equiv a_1a_3$, we get a contradiction. Hence $a_1a_2>0$

Exercise 3. Suppose $a_2 - a_1 \ge 1$. Show that $a_2 - a_1 \ge 7$

Proof. we have $a_8-a_7\geq 1, a_7-a_6\geq 1,\ldots,a_2-a_1\geq 1$, and so $a_8-a_1\geq 7$. Hence $a_2-a_1\geq 7$

Exercise 4. Show that at least one of the following is true: $a_2 < (1.01) \cdot a_1$ or $a_2 > 200 \cdot a_1$

Proof. Assume $a_2 \ge (1.01) \cdot a_1$ and $a_2 \le 200 \cdot a_1$.

Claim: $a_{2n} \ge (1.01)^{2n-1}a_1$

If $a_{2n} \geq (1.01)^{2n-1}a_1$, then $a_{2n+2} \geq (1.01) \cdot a_{2n+1}$, $a_{2n+1} \geq (1.01) \cdot a_{2n}$, and so $a_{2n+2}a_{2n+1}a_{2n} \geq (1.01)^{2n+1}a_1a_{2n}a_{2n+1}$. Since $a_{2n+1}a_{2n} > 0$, $a_{2n+2} \geq (1.01)^{2n+1}a_1$.

Hence if we take N large enough, then $a_{2N} \geq (1.01)^{2N-1}a_1 > 200 \cdot a_1$. Then by indiscernibility, $a_2 > 200 \cdot a_1$, a contradiction

Exercise 5. Show that $a_i + a_j \neq a_k$ for any i, j, k

Proof. Without loss of generality, we may assume that $\{a_i,a_j,a_k\}=\{a_1,a_2,a_3\}$ and $a_1>0$

- 1. If $a_1+a_2=a_3$. Then $a_3-a_2=a_1$ and there is $q\in\mathbb{Q}$ s.t. $q\leq a_1<1+q$ where q>0. Then $a_3-a_2\geq q$. Take $N=\lceil\frac{1+q}{q}\rceil$, since $a_{N+2}-a_{N+1}\geq q, a_{N+1}-a_N\geq q, a_{M+1}-a_1\geq q$, we have $a_{N+2}-a_2\geq Nq\geq 1+q>a_1$. Hence $a_3-a_2>a_1$, a contradiction
- 2. If $a_1 + a_3 = a_2$, take $a_2 a_1 = a_3$ and we can prove similarly
- 3. If $a_2+a_3=a_1$. Then $a_2-a_1=-a_3$ and there $q\in\mathbb{Q}$ s.t. $-1-q<-a_3\leq -q$ where q>0. Similarly we can prove that $a_2-a_1<-a_3$.

Therefore
$$a_i + a_j \neq a_k$$

Exercise 6. Show that there is an indiscenible sequence b_1, b_2, b_3, \dots s.t. $b_2 > 200 \cdot b_1$

Proof. Let $(a_i:i\in\mathbb{N}\setminus\{0\})$ be an infinite sequence s.t. $a_i=201^i,\,i\in\mathbb{N}$. Then by Theorem 10 in the notes, there is an indiscenible sequence $(b_j:j\in\mathbb{N}\setminus\{0\})$ with $\operatorname{tp}^{EM}(\bar{b})=\operatorname{tp}^{EM}(\bar{a})$. Since in \bar{a} , for any $j>i,\,a_j>200\cdot a_i$, therefore $b_m>200\cdot b_n$ for any m>n. Particularly, $b_2>200\cdot b_1$.