```
COS2601
59448873
LKE MNCUBE
```

Question 1

- (i) The set {a b}* will be suitable because it contains, along with other words, all the words in the language ODDnotAB
- (ii) The generators are a and b
- (iii) The function CONCAT as defined in learning unit 3 will be suitable.
- (iv) Two possible recursive definitions:

First:

ODDnotAB is the smallest subset of {a b}* such that a, b \in ODDnotAB and if Q \in ODDnotAB, then also CONCAT(bb, Q) \in ODDNOTAB and CONCAT(Q , aa) \in ODDNOTAB,

and

if Q \in ODDNOTAB and Q does not end on a , then CONCAT(Q, ba), CONCAT(Q, bb) \in ODDNOTAB, if Q \in ODDNOTAB and Q does not begin with b , then CONCAT(aa, Q), CONCAT(ba, Q) \in ODDNOTAB

Second:

Rule 1: ab ∈ ODDNOTAB.

Rule 2: If $Q \in AB$ then $CONCAT(bb, Q) \in AB$.

Rule 3: If $Q \in AB$ then $CONCAT(Q, aa) \in AB$.

Rule 4: If $Q \in AB$ then CONCAT(Q , ba) $\in AB$ and CONCAT(Q, bb) $\in ODDNOTAB$

Rule 5: If Q \in AB then CONCAT(aa, Q) \in AB

and CONCAT(ba, Q) \in ODDNOTAB

Rule 6: Only words generated by rules 1 to 5 are in AB.

Question 2

(i) Rule 1: $1 \in P$.

Rule 2: If $x \in P$ then $x+1 \in P$.

Rule 3: P is the smallest set satisfying R1 and R2.

(ii)

(iii) Let
$$S = \{ n \mid n \in Z+, 11+15+19+...+(4n+7)=2n^2+9n \}$$

Step 1:
Is $1 \in S$? Yes, since $4+7=11$ and $2+9=11$
Step 2:
Assume $k \in S$, hence $11+15+19+...+(4k+7)=2k^2+9k$
Step 3:
Is $k+1 \in S$? Yes, proof:
 $11+15+19+...+(4k+7)+(4(k+1)+7)=2(k+1)^2+9(k+1)$
LHS $=4(k+1)+7$
 $=4k+11$
RHS $=2(k+1)^2+9(k+1)$
 $=2k^2+4k+2+9k+9$
 $=2k^2+9k+4k+2+9$
 $=2k^2+9k+4k+11$
From Step 2, we know that $11+15+19+...+(4k+7)=2k^2+9k$
So LHS = RHS
Hence, $k+1 \in S$. Thus $S = Z+$.
Question 3
 $M = (b*ab*)+(ab(ab*))$

Question 3

$$M = (b*ab*)+(ab(ab*))$$

Question 5

Question 6

Question 7