fo/u fopkjr Hkh# tu] ughavkjEHksdke] foifr n{k NkMs-rjur e/;e eu dj ';keA i#"k flg lulYi dj] lgrsfoifr vusl] ^cuk^ u NkMs-/;\$ dk\$ j?kqj jk[ksVslAA jfpr%ekuo /ke2 izksk | Inx# Jh j.KVkMak1 th egkjkt

STUDY PACKAGE

Subject: Mathematics

Topic: Area Under Curve (Quadrature)

Available Online : www.MathsBySuhag.com

Index

- 1. Theory
- 2. Short Revision
- 3. Exercise (Ex. 1 + 5 = 6)
- 4. Assertion & Reason
- 5. Que. from Compt. Exams
- 6. 38 Yrs. Que. from IIT-JEE(Advanced)
- 7. 14 Yrs. Que. from AIEEE (JEE Main)

Student's Name	:
Class	:
Roll No.	:

Address: Plot No. 27, III- Floor, Near Patidar Studio, Above Bond Classes, Zone-2, M.P. NAGAR, Bhopal : (0755) 32 00 000, 98930 58881, WhatsApp 9009 260 559 www.TekoClasses.com www.MathsBySuhag.com

(b)

Jnder C

Curve Tracing:

To find the approximate shape of a curve, the following procedure is adopted in order:

Symmetry:

Symmetry about x-axis: (i)

If all the powers of 'y' in the equation are even then the curve is symmetrical about the x – axis.

page 2 of21

0 98930 58881, WhatsApp Number 9009 260 559.

자 자

(ii) Symmetry about y-axis:

If all the powers of 'x' in the equation are even then the curve is symmetrical about the y-axis.

E.g.: $x^2 = 4 ay$.

Symmetry about both axis; (iii)

If all the powers of 'x' and 'y' in the equation are even, the curve is symmetrical about the axis of as well as 'y'.

E.g.: $x^2 + y^2 = a^2$

(iv) Symmetry about the line y = x:

Sir), Bhopa.I Phone: (0755) 32 00 000, If the equation of the curve remains unchanged on interchanging 'x' and 'y', then the curve is symmetrical about the line y = x.

E.g.: $x^3 + y^3 = 3 a x y$.

(v) Symmetry in opposite quadrants:

Teko Classes, Maths: Suhag R. Kariya (S. If the equation of the curve remains unaltered when 'x' and 'y' are replaced by -x and -y respectively. then there is symmetry in opposite quadrants.

Find the points where the curve crosses the x-axis and also the y-axis.

- Examine if possible the intervals when f(x) is increasing or decreasing.

Examine if possible the intervals when f (x) is increasing or decreasing.

Examine what happens to 'y' when $x \to \infty$ or $x \to -\infty$.

Asymptotes:
Asymptoto(s) is (are) line (s) whose distance from the curve tends to zero as point on curve moves towards infinity along branch of curve.

(i) If $\lim_{x \to a} f(x) = \infty$ or $\lim_{x \to a} f(x) = -\infty$, then x = a is asymptote of y = f(x)(ii) If $\lim_{x \to a} \frac{\text{Lt}}{x} = \lim_{x \to \infty} \frac{\text{Lt}}{x} = \lim_{$

(i) If
$$\lim_{x \to a} f(x) = \infty$$
 or $\lim_{x \to a} f(x) = -\infty$, then $x = a$ is asymptote of $y = f(x)$

(ii) If
$$\underset{x \to +\infty}{Lt} f(x) = k$$
 or $\underset{x \to -\infty}{Lt} f(x) = k$, then $y = k$ is asymptote of $y = f(x)$

(iii) If
$$\lim_{x \to \infty} \frac{f(x)}{x} = m_1$$
, $\lim_{x \to \infty} \frac{Lt}{x} = m_1$, $\lim_{x \to \infty} \frac{Lt}{x$

(iv) If
$$Lt_{x\to -\infty} \frac{f(x)}{x} = m_2$$
, $Lt_{x\to -\infty} (f(x) - m_2 x) = c_2$, then $y = m_2 x + c_2$ is an asymptote (inclined to left)

$$\therefore$$
 y = 0 is asymptote

$$y = \frac{1}{x}$$

$$\lim_{x\to 0} y = \lim_{x\to 0} \frac{1}{x} = \infty \Rightarrow x = 0 \text{ is asymptote.}$$

$$\lim_{x \to \infty} y = \lim_{x \to \infty} \frac{1}{x} = 0 \Rightarrow y = 0 \text{ is asymptote}$$

$$\lim_{x\to 0} y = \lim_{x\to 0} \left(x + \frac{1}{x}\right) = +\infty \text{ or } -\infty$$

$$\Rightarrow$$
 x = 0 is asymptote.

$$\lim_{x \to 0} y = \lim_{x \to 0} \left(x + \frac{1}{x} \right) = \infty$$

there is no asymptote of the type y = k.

$$\lim_{x \to \infty} \frac{y}{x} = \lim_{x \to \infty} \left(1 + \frac{1}{x^2} \right) = 1$$

$$\lim_{x\to\infty} \ (y-x) = \lim_{x\to\infty} \ \left(x+\frac{1}{x}-x\right) = \lim_{x\to\infty} \ \frac{1}{x} = 0$$

 $\therefore \qquad y = x + 0 \Rightarrow y = x \text{ is asymptote.}$ A rough sketch is as follows

If $f(x) \ge 0$ for $x \in [a, b]$, then area bounded by curve y = f(x), x-axis, x-axis, x = a and x = b is $\int f(x) dx$

Find area bounded by the curve $y = \ln x + \tan^{-1}x$ and x-axis between ordinates x = 1 and x = 2.

$$y = \ell n x + tan^{-1}x$$

Domain x > 0 $\frac{dy}{dx} = \frac{1}{x} + \frac{1}{1+x^2} > 0$

It is increasing function

$$\underset{x\to\infty}{Lt} y = \underset{x\to\infty}{Lt} (\ln x + \tan^{-1}x) = \infty$$

Lt
$$x \to 0^+$$
 $y = Lt / (\ln x + \tan^{-1}x) = -\infty$

=
$$2 \ln 2 - 2 + 2 \tan^{-1}2 - \frac{1}{2} \ln 5 - 0 + 1 - \tan^{-1}1 + \frac{1}{2} \ln 2$$

$$= \frac{5}{2} \ln 2 - \frac{1}{2} \ln 5 + 2 \tan^{-1} 2 - \frac{\pi}{4} - 1$$

page 4 of21

If $f(x) \le 0$ for $x \in [a, b]$, then area bounded by curve y = f(x), x-axis, x = a and x = b is –

Find area bounded by $y = log_1 x$ and x-axis between x = 1 and x = 2.

A rought sketch of $y = log_1 x$ is as follows

Area
$$= -\int_{1}^{2} \log_{\frac{1}{2}} x \, dx = -\int_{1}^{2} \log_{e} x \cdot \log_{\frac{1}{2}} e \, dx$$
$$= -\log_{\frac{1}{2}} e \cdot [x \log_{e} x - x]_{1}^{2}$$
$$= -\log_{\frac{1}{2}} e \cdot (2 \log_{e} 2 - 2 - 0 + 1)$$
$$= -\log_{\frac{1}{2}} e \cdot (2 \log_{e} 2 - 1)$$

Note: If y = f(x) does not change sign an [a, b], then area bounded by y = f(x), x-axis between

ordinates
$$x = a$$
, $x = b$ is $\int_{a}^{b} f(x) dx$.

Teko Classes, Maths: Suhag R. Kariya (S. R. K. Sir), Bhopa. I Phone: (0755) 32 00 000, 0 98930 58881, WhatsApp Number 9009 260 559 If $f(x) \ge 0$ for $x \in [a,c]$ and $f(x) \le 0$ for $x \in [c,b]$ (a < c < b) then area bounded by curve y = f(x) and x-axis

between x = a and x = b is $\int f(x)dx - \int f(x)dx$.

Example: Find the area bounded by $y = x^3$ and x-axis between ordinates x = -1 and x = 1. Solution

Required area =
$$\int_{-1}^{0} -x^{3} dx + \int_{0}^{1} x^{3} dx$$

$$= -\frac{x^4}{4} \Big]_{-1}^0 + \frac{x^3}{4} \Big]_{0}^1$$
$$= 0 - \left(-\frac{1}{4}\right) + \frac{1}{4} - 0 = \frac{1}{2}$$

page 5 of 21

If $f(x) \ge g(x)$ for $x \in [a,b]$ then area bounded by curves y = f(x) and y = g(x) between ordinates x = a and

$$x = b \text{ is } \int_{a}^{b} (f(x) - g(x)) dx.$$

$$\frac{dy}{dx} = 2x + 1$$

$$\frac{dy}{dx} = 3$$
 at $x = 1$

$$y - 3 = 3$$

Required area =
$$\int_{1}^{1} (x^2 + x + 1 - 3x) dx$$

$$\int_{a}^{b} |f(x) - g(x)| dx$$

If g (y) \geq 0 for y \in [c,d] then area bounded by curve x = g(y) and y-axis between abscissa y = c and

$$y = d is \int_{y=c}^{d} g(y)dy$$

Example:

Find area bounded between $y = \sin^{-1}x$ and y-axis between y = 0 and $y = \frac{\pi}{2}$.

$$y = \sin^{-1} x$$

$$\Rightarrow x = \sin y$$

Required area
$$=\int_{0}^{\frac{\pi}{2}} \sin y \, dy$$

$$= -\cos y \Big|_{0}^{\frac{\pi}{2}} = -(0-1) = 1$$

Note: The area in above example can also evaluated by integration with respect to x.

Area = (area of rectangle formed by x = 0, y = 0, x = 1, $y = \frac{\pi}{2}$) – (area bounded by $y = \sin^{-1}x$ x-axis between x = 0 and x = 1)

$$= \frac{\pi}{2} \times 1 - \int_{0}^{1} \sin^{-1} x \, dx = \frac{\pi}{2} - (x \sin^{-1} x + \sqrt{1 - x^{2}})^{1}$$
$$= \frac{\pi}{2} - \left(\frac{\pi}{2} + 0 - 0 - 1\right) = 1$$

Some more solved examples

Find the area contained between the two arms of curves $(y - x)^2 = x^3$ between x = 0 and x = 1.

$$(y-x)^2 = x^3 \Rightarrow y = x \pm x^{3/2}$$

For arm

$$y = x + x^{3/2} \Rightarrow \frac{dy}{dx} = 1 + \frac{3}{2} x^{1/2} > 0$$

y is increasing function.

For arm

$$y = x - x^{3/2} \Rightarrow \frac{dy}{dx} = 1 - \frac{3}{2} x^{1/2}$$

$$\frac{dy}{dx} = 0 \Rightarrow x = \frac{4}{9}, \frac{d^2y}{dx^2} = -\frac{3}{4}x^{-\frac{1}{2}} < 0 \text{ at } x = \frac{4}{9}$$

$$\therefore \qquad \text{at } x = \frac{4}{9} \quad y = x - x^{3/2} \text{ has maxima.}$$

Required are a =
$$\int_{0}^{1} (x + x^{3/2} - x + x^{3/2}) dx$$

$$= 2 \int_{0}^{1} x^{3/2} dx = \frac{2 x^{5/2}}{5/2} \bigg]_{0}^{1} = \frac{4}{5}$$

Find area contained by ellipse $2x^2 + 6xy + 5y^2 = 1$ $5y^2 + 6xy + 2x^2 - 1 = 0$

$$y = \frac{-6x \pm \sqrt{36x^2 - 20(2x^2 - 1)}}{10}$$

$$y = \frac{10}{10}$$

$$y = \frac{-3x \pm \sqrt{5 - x^2}}{5}$$

y is real \Rightarrow R.H.S. is also real.

$$\Rightarrow$$
 $-\sqrt{5} \le x \le \sqrt{5}$

If
$$x = -\sqrt{5}$$
, $y = 3\sqrt{5}$

If
$$x = -\sqrt{5}$$
, $y = 3\sqrt{5}$
If $x = \sqrt{5}$, $y = -3\sqrt{5}$

$$y = \pm \frac{1}{\sqrt{5}}$$

Teko Classes, Maths: Suhag R. Kariya (S. R. K. Sir), Bhopa. I Phone: (0755) 32 00 000, 0 98930 58881, WhatsApp Number 9009 260 559.

page 6 of 21

If
$$y = 0$$
, $x = \pm \frac{1}{\sqrt{x}}$

Required area
$$= \int_{-\sqrt{5}}^{\sqrt{5}} \left(\frac{-3x + \sqrt{5 - x^2}}{5} - \frac{-3x - \sqrt{5 - x^2}}{5} \right) dx$$

$$= \frac{2}{5} \int_{-\sqrt{5}}^{\sqrt{5}} \sqrt{5 - x^2} dx$$

$$= \frac{4}{5} \int_{0}^{\sqrt{5}} \sqrt{5 - x^2} dx$$

Put
$$x = \sqrt{5} \sin \theta$$
: $dx = \sqrt{5} \cos \theta d\theta$

U.L:
$$x = \sqrt{5} \Rightarrow \theta = \frac{\pi}{2}$$

$$= \frac{4}{5} \int_{\theta=0}^{\frac{\pi}{2}} \sqrt{5 - 5\sin^2 \theta} \sqrt{5} \cos \theta d\theta$$

$$= 4 \int_{0}^{\frac{\pi}{2}} \cos^{2} \theta d\theta = 4 \frac{1}{2} \frac{\pi}{2} = \pi$$

Example : Let A (m) be area bounded by parabola $y = x^2 + 2x - 3$ and the line y = mx + 1. Find the least area A(m).

Solution. Solving we obtain

$$x^2 + (2 - m) x - 4 = 0$$

Let
$$\alpha, \beta$$
 be roots $\Rightarrow \alpha + \beta = m - 2$, $\alpha\beta = -4$

$$A (m) = \left| \int_{\alpha}^{\beta} (mx + 1 - x^2 - 2x + 3) dx \right|$$

$$= \left| \int_{\alpha}^{\beta} (-x^2 + (m - 2)x + 4) dx \right|$$

$$= \left| \left(-\frac{x^3}{3} + (m - 2)\frac{x^2}{2} + 4x \right)_{\alpha}^{\beta} \right|$$

$$= \left| \frac{\alpha^3 - \beta^3}{3} + \frac{m - 2}{2} (\beta^2 - \alpha^2) + 4(\beta - \alpha) \right|$$

$$= \left| \beta - \alpha \right| \cdot \left| -\frac{1}{3} (\beta^2 + \beta \alpha + \alpha^2) + \frac{(m - 2)}{2} (\beta + \alpha) + 4 \right|$$

$$= \sqrt{(m - 2)^2 + 16} \left| -\frac{1}{3} ((m - 2)^2 + 4) + \frac{(m - 2)}{2} (m - 2) + 4 \right|$$

$$= \sqrt{(m-2)^2 + 16} \left| \frac{1}{6} (m-2)^2 + \frac{8}{3} \right|$$

A(m) =
$$\frac{1}{6} ((m-2)^2 + 16)^{3/2}$$

Leas A(m) =
$$\frac{1}{6}$$
 (16)^{3/2} = $\frac{32}{3}$.

page 7 of21

(i) bounded between x = 1 and x = 2.

Ans. 6 page 8 of 21

R. K. Sir), Bhopa.l Phone: (0755) 32 00 000,

Teko Classes, Maths: Suhag R. Kariya (S.

(ii) bound between x = 0 and x = 2.

1 Ans.

Find the area included between curves $y = 2x - x^2$ and y + 3 = 0.

Ans.
$$\frac{32}{3}$$

Find area between curves $y = x^2$ and y = 3x - 2 from x = 0 to x = 2.

Ans.

0 98930 58881, WhatsApp Number 9009 260 559. Curves y = sinx and y = cosx intersect at infinite number of points forming regions of equal area between them calculate area of one such region.

Ans. $2\sqrt{2}$

Find the area of the region bounded by the parabola $(y-2)^2 = (x-1)$ and the tangent to it at ordinate y=3and x-axis.

Ans.

Find the area included between $y = tan^{-1}x$, $y = cot^{-1}x$ and y-axis.

Ans. ℓn2

Find area common to circle $x^2 + y^2 = 2$ and the parabola $y^2 = x$.

Ans. 2 3

Find the area included between curves y = and 5y = 3|x| - 6.

Ans.

Find the area bounded by the curve |y| +

2 (1-\ell n2) Ans.

Find the area of loop $y^2 = x (x - 1)^2$.

Ans. 15

Find the area enclosed by $|x| + |y| \le 3$ and $xy \ge 2$.

Find are bounded by $x^2 + y^2 \le 2ax$ and $y^2 \ge ax$, $x \ge 0$.

Ans.

For 38 Years Que. from IIT-JEE(Advanced) & 14 Years Que. from AIEEE (JEE Main) we distributed a book in class room