1 Feb 2019 [1] Problem Set 2 is out. 3 quartions, due Thurs 11:59 pm. [2] Homework partner finding - Use Google sheet: (see Prazza post for instrux.) Announcements - Or, ottend CS homework partner finding event Monday, Feb. 4, 6-7 pm Gates 3rd floor lounge. Today's lecture. The Minimum Spansing Tree Problem Given an undirected graph G=(V,E) with non-negative edge costs C(e) for all edges in E (I'll also use C(u,v) for C(e) when e=(u,v).) Input is the 'adjacency list' representation of G. A (doubly) linked list of vertices. For each vertex, a (doubly) linked list of the edges it belongs to. For each edge, a pointer to its two endpoints. In this betwee and throughout CS 4820, n = # of vertices m = # of edges joining together all vertiles Output a connected subgraph with minimum total edge cost. Among the min-cost connected subgraphs, at legst one of them is a tree. (Any conn. sooning subgraph can be transformed to a tree by repeatedly finding a cycle and removing one of its edges.)

Kru	skal	O۱	d	Priv	<u>Λ', </u>]	Algi	vith	ns	-								
Kru	skali		for	in for	i=1 sert cr	to ei eate	m	in cy	, de	E		_					, <i>عر</i> .	7
Prim	``	_	chood T =	(-} r	- 3 ,	ø))				-		V(t)	1 4	, (lle,	N\	(٢)
				ca V Vhile) v \not \(\tau^{\tau}\) (\tau^{\tau}) (\tau^{\tau}) (\tau^{\tau}) (\tau^{\tau})	this V(T). V E	dge (T)	U	e = { v} { e :	= (u)	v)	where	, , ,	neV	· (+)),	