Propsi 대신러닝 이론 및 데이터 처리

데이터 전치리: 데이터 생성, 데이터 정제

Key Words

#요약변수 #파생변수 #이상치 #결측치 #Binning

데이터 생성

Ⅰ요약변수 VS 파생변수

- 요약변수
 - 수집된 정보를 분석의 목적에 맞게 종합(aggregate)한 변수.
 - 많은 모델에 공통으로 사용될 수 있어, 재활용성이 높음. (예) 단어 빈도, 상품별 구매금액, 상품별 구매량, 영화 매출액

데이터 생성

Ⅰ요약변수 VS 파생변수

- 파생변수
 - 특정한 의미를 갖는 작위적 정의에 의한 변수.
 - 사용자가 특정 조건을 만족하거나 특정 함수에 의해 값을 만들어 의미를 부여한 변수.
 - 주관적일 수 있으므로 논리적 타당성을 갖추어야함. (예)구매상품다양성 변수, 가격 선호대 변수, 라이프 스타일 변수, 영화 인기도 변수

▮결측값의 이해

- 기록누락, 미응답, 수집오류 등의 이유로 결측이 발생.
- 결측값이 포함된 자료라도 나머지 변수의 값들은 의미있는 정보이므로, 정보의 손실을 최소화 하도록 결측을 처리하는 것이 바람직함.

	col1	col2	col3	col4	col5			col1	col2	col3	col4	col5
0	2	5.0	3.0	6	NaN		0	2.0	5.0	3.0	6.0	7.0
1	9	NaN	9.0	0	7.0	\longrightarrow	1	9.0	11.0	9.0	0.0	7.0
2	19	17.0	NaN	9	NaN		2	19.0	17.0	6.0	9.0	7.0

▮결측값 처리법

- 완전제거법 (list-wise deletion)
 - 결측값이 하나 이상 포함된 자료를 제거하는 방법.
 - 정보의 손실로 분석 결과가 왜곡될 수 있음.
- 평균대체법 (mean value imputation)
 - 결측값을 해당 변수의 나머지 값들의 평균으로 대체하는 방법.
 - 추정량의 표준오차가 과소추정되는 문제가 있음.

▮결측값 처리법

- 핫덱대체법 (hot deck imputation)
 - 동일한 데이터 내에서 결측값이 발생한 관찰치와 유사한 특성을 가진 다른 관찰치의 정보를 이용하여 대체하는 방법.
 - 정보의 손실로 분석 결과가 왜곡될 수 있음.
- 그밖의 결측값 처리법
 - Regression imputation, kNN imputation 등.

▮이상값의 이해

- 이상값은 다른 데이터와 동떨어진 것을 말함.
- 다른 자료값들에 비해 멀리 떨어져 있지만 의미가 있는 값일 수도 있고, 단순히 입력 오류로 발생한 값일 수도 있음.

▮이상값의 탐지

- 상자그림
 - $-Q1 1.5 \times IQR$ 과 $Q3 + 1.5 \times IQR$ 의 범위를 넘어가는 자료를 이상값으로 진단.

▮이상값의 탐지

- 표준화 점수(Z-score)
 - 표준화 점수의 절대값이 2, 3다 큰 경우를 이상값으로 진단.

▮이상값 처리 방법

- 이상값 제외 (trimming)
 - 처리는 간단하지만, 정보 손실이 발생하고 추정량 왜곡이 생길 수 있음.

▮이상값 처리 방법

- 이상값 대체 (winsorization)
 - 이상값을 정상값 중 최대 또는 최소 등으로 대체하는 방식.

▮이상값 처리 방법

- 변수변환
 - 자료값 전체에 로그변환, 제곱근 변환 등을 적용.

Ⅰ연속형 자료의 범주화

- 변수구간화(binning)
 - 연속형 변수를 구간을 이용하여 범주화 하는 과정.

AGE	AGE_bins
10	[10, 21]
15	[10. 21]
16	[10, 21]
18	[10. 21]
20	[10, 21]
30	[22. 33]
35	[34. 45]
42	[34, 45]
48	[46. 55]
50	[46. 55]
52	[46. 55]
55	[46, 55]

Copyright by Multicampus Co., Ltd. All right reserved

Ⅰ연속형 자료의 범주화

- 변수구간화(binning)의 효과
 - 이상치 문제를 완화.
 - 결측치 처리 방법이 될 수 있음.
 - 변수간 관계가 단순화 되어 분석 시 과적합을 방지할 수 있고, 결과 해석이 용이해짐.

데이터 전처리: 비이터 변환, 데이터 결합

Key words

#로그변환 #제곱근변환 #박스콕스 #이너조인 #레프트조인 #라이트조인 #풀아우터조인

데이터 변환

I데이터 변환

- 자료 변환을 통해 자료의 해석을 쉽고 풍부하게 하기 위한 과정.
- 데이터 변환 목적
 - -분포의 대칭화.
 - 산포를 비슷하게 하기 위하여.
 - 변수 간 관계를 단순하게 하기 위하여.

데이터 변환

I데이터 변환

■ 변환 유형 1 : 제곱근 변환 VS 제곱 변환

데이터 변환

I데이터 변환

■ 변환 유형 2 : 로그 변환 VS 지수 변환

데이터변환

■ 박스콕스 변환 (Box-Cox Transform)

$$-y = \frac{1}{p}((x+1)^p - 1), p = \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \dots$$
: 제곱근 유형의 변환을 일반화.

$$-y = \ln(x+1), p = 0$$

-
$$y = (1 + \frac{x}{p})^p - 1$$
, $p = 2,4,8,...$: 제곱 유형의 변환을 일반화.

데이터 결합

Ⅰ데이터 결합

X1	X2
Α	1
В	2
С	3

X1	Х3
Α	Т
В	F
D	Т

X1 : 키(key) 변수

- 이너조인(inner join)
 - 두 테이블에 키(key)가 공통으로 존재하는 레코드(record)만 결합.
 - (A, 1, T), (B, 2, F)
- 풀아우터조인(full outer join)
 - 두 테이블 중 어느 한쪽이라도 존재하는 키에 대한 레코드를 모두 결합.
 - -(A, 1, T), (B, 2, F), (C, 3, NA), (D, NA, T)

데이터 결합

I데이터 결합

X1	X2
Α	1
В	2
С	3

X1	Х3
Α	Т
В	F
D	Т

X1 : 키(key) 변수

- 레프트 조인(left join)
 - 왼쪽 테이블에 존재하는 키에 대한 레코드를 결합.
 - (A, 1, T), (B, 2, F), (C, 3, NA)
- 라이트 조인(right join)
 - 오른쪽 테이블에 존재하는 키에 대한 레코드를 결합.
 - (A, 1, T), (B, 2, F), (D, NA, T)