Attorney Docket No.: 05655P006

CLAIMS

What is claimed is:

	1	1. An apparatus comprising:		
	2	a left expansion module and a right expansion module, said left expansion		
	3	module coupled to a first merged L component key XOR gate and to a third m		
	4	component key XOR gate;		
	5	said right expansion module coupled to a key XOR gate, and to a second		
	6	merged L component key XOR gate;		
TOOSEOSH	7	said key XOR gate coupled to a first selection function module (SFM), the		
NO	8	first SFM having a first output and a second output;		
101	9	said first output of the first SFM coupled to a first permutation function		
	10	module (PFM) and the second output of the first SFM output is coupled to a fir		
Sept and		1 merged permutation and expansion function (MPE) module;		
U	12	said first PFM coupled to a second collected L component XOR gate;		
	13	said first MPE module coupled to the first merged L component key XOR		
	14	gate, and to the third merged L component key XOR gate;		
	15	said first merged L component key XOR gate coupled to a second SFM		
	16	having a first output and a second output;		
	17	said first output of the second SFM coupled to a second PFM; and		
18		said second PFM coupled to a first collected L component XOR gate.		
	1	2. The apparatus of claim 1 further comprising:		
	2	said second output of the second SFM coupled to a second MPE module;		

- 3 said second MPE module coupled to the second merged L component key 4 XOR gate: 5 said second merged L component key XOR gate coupled to a third SFM 6 having a first output and a second output; 7 said first output of the third SFM coupled to a third PFM, and said second 8 output of the third SFM coupled to a third MPE module: 9 said third MPE module coupled to said third merged L component key XOR 10 gate; 11 said third merged L component key XOR gate coupled to a fourth SFM; 12 00 13 10 13 1 1 2 2 4 4 said fourth SFM coupled to a fourth PFM; and said fourth PFM coupled to the first collected L component XOR gate. 3. The apparatus of claim 2 wherein the output of the second collected L component XOR gate is coupled to the input of the left expansion module and the output of the first collected L component XOR gate is coupled to the input of the right module function.
 - 1 4. The apparatus of claim 2 wherein the key XOR gate exclusive-ors the output
 - 2 of the right expansion module and a first sub key block.
 - 1 5. The apparatus of claim 2 wherein the first merged L component key XOR gate
 - 2 exclusive-ors the output of the first MPE module, the output from the left expansion
 - 3 module, and a second sub key block.

16

17

1 6. The apparatus of claim 2 wherein the second merged L component key XOR 2 gate exclusive-ors the output of the second MPE module, the right expansion module, 3 and a third sub key block. 1 7. The apparatus of claim 2 wherein the third merged L component key XOR 2 gate exclusive-ors the output from the third MPE module, the left expansion module 3 and a fourth sub key block. 1 8. A method to encrypt a block of data comprising: 2 splitting the block of data into a left data block and a right data block: 3 expanding the left data block and the right data block; exclusive-oring, using a key XOR gate, the right expanded data block and a first sub key; sending the output from the key XOR gate to a first selection function module (SFM), the first SFM having a first output and a second output; sending data at the first output of the first SFM to a first permutation function 9 module (PFM): 10 sending data at the second output of the first SFM to a first merged 11 permutation and expansion function module (MPE); 12 exclusive-oring, using a first merged L component key XOR gate, the output 13 from the first MPE, a second sub key and the expanded left data block; 14 sending the output from the first merged L component key XOR gate to a 15 second SFM, the second SFM having a first output and a second output;

sending data at the second output of the second SFM to a second MPE:

sending data at the first output of the second SFM to a second PFM;

	18	exclusive-oring, using a second merged L component key XOR gate, the				
	19	output from the second MPE, a third sub key, and the expanded right data block;				
	20	sending the output from the second merged L component key XOR gate to a				
	21	third SFM, the third SFM having a first output and a second output;				
	22	sending data from the first output of the third SFM to a third PFM;				
	23	sending data at the second output of the third SFM to a third MPE;				
	24	exclusive-oring, using a third merged L component key XOR gate, the output				
	25	from the third MPE, a fourth key block, the left expanded data block, and the i				
	26	MPE;				
		sending the output from the second merged L component key XOR gate to a				
0	28	fourth SFM; and				
	29	sending the output from the fourth SFM to a fourth PFM.				
14 900 h 600 d	1	9. The method of claim 8 further comprising:				
poli poli haj	2	exclusive-oring the left data block, the first PFM output, and the third PFM				
Series Series	3	output to form a left encrypted data block; and				
	4	exclusive-oring the right data block, the second PFM output, and the fourth				
	5	PFM output to form a right encrypted data block.				
	1	10. The method of claim 9 wherein the left encrypted data block is obtained				
	2	concurrently with sending the data to the third MPE.				
	1	11. A method comprising:				
	2	exclusive-oring, using an exclusive-or gate output from a merged permutation				
	3	and expansion function module (MPE), and a sub key block; and				
	4	sending the output from the exclusive-or gate to a selection function module.				

18

19

- 1 12. The method of claim 12 further comprising, sending output from the selection 2 function module to a permutation function module. 1 13. The method of claim 12 further comprising sending output from the selection 2 function module to a second MPE. 1 14. An apparatus comprising: 2 a bus: 3 a co-processor coupled to the bus, said co-processor having a left expansion module and a right expansion module, said left expansion module coupled to a first merged L component key XOR gate and a third merged L component key XOR gate; said right expansion module coupled to a key XOR gate, and a second merged L component key XOR gate: said key XOR gate coupled to a first selection function module (SFM), the first SFM having a first output and a second output: 11 said first output of the first SFM coupled to a first permutation function 12 module (PFM) and the second output of the first SFM output is coupled to a first 13 merged permutation and expansion function (MPE) module; 14 said first PFM coupled to a second collected L component XOR gate; 15 said first MPE module coupled to the first merged L component key XOR 16 gate, and to the third merged L component key XOR gate: 17 said first merged L component key XOR gate coupled to a second SFM
 - 21

said first output of the second SFM coupled to a second PFM; and

having a first output and a second output;

20	said second PFN	I coupled to a	first collected	L component	XOR gate
----	-----------------	----------------	-----------------	-------------	----------

- 1 15. The apparatus of claim 14 further comprising: 2 said second output of the second SFM coupled to a second MPE module; 3 said second MPE module coupled to the second merged L component key 4 XOR gate; 5 said second merged L component key XOR gate coupled to a third SFM 6 having a first output and a second output; 7 said first output of the third SFM coupled to a third PFM, and said second output of the third SFM coupled to a third MPE module; said third MPE module coupled to said third merged L component key XOR gate; said third merged L component key XOR gate coupled to a fourth SFM: said fourth SFM coupled to a fourth PFM; and said fourth PFM coupled to the first collected L component XOR gate.
 - 16. The apparatus of claim 15 wherein the output of the second collected L
- 2 component XOR gate is coupled to the input of the left expansion module and the
- 3 output of the first collected L component XOR gate is coupled to the input of the right
- 4 expansion module.
- 1 17. The apparatus of claim 15 wherein the key XOR gate exclusive-ors the output
- 2 of the right expansion module and a first sub key block.

- 1 18. The apparatus of claim 15 wherein the first merged L component key XOR
- 2 gate exclusive-ors the output of the first MPE module, the output from the left
- 3 expansion module, and a second sub key block.
- 1 19. The apparatus of claim 15 wherein the second merged L component key XOR
- 2 gate exclusive-ors the output of the second MPE module, the right expansion module,
- 3 and a third sub key block.
- 1 20. The apparatus of claim 15 wherein the third merged L component key XOR
 2 gate exclusive-ors the output from the third MPE module, the left expansion module
 3 and a fourth sub key block.
- 21. An apparatus to perform a DES iteration, said apparatus including an
 expansion module to receive a R input, a key XOR, a selection module, a permutation
 module, and a L component XOR gate, the improvement comprising:
- 4 a DES circuit to perform a series of iterations that contains no L component
 5 XOR gates, said DES circuit to include
- 6 an expansion module coupled to receive an L input;
- a merged permutation expansion module, coupled to the selection module of
 each iteration, that results from merging the permutation module of each iteration
- 9 with the expansion module of the immediately following iteration in the series;
- a plurality of merged L component key XOR gates each coupled between a
 different one of the merged permutation expansion modules and the selection module
- 12 of the immediately following iteration in the series;

	13	a plurality of permutation modules each coupled to one selection module of a			
	14	4 different iteration; and			
	15	a first and second collected L component XOR gates, coupled to mutually			
	16	16 exclusive sets of the permutation modules.			
	1	22. The apparatus of claim 21 further comprising the outputs from the first and			
	2	second collected L component XOR gates fed back to the expansion module coupled			
	3	to the L input and the expansion module coupled to the R input respectively.			
ļ. ph	1	23. An apparatus comprising:			
	2	a DES circuit having an L and R component input and including,			
U	3	a critical path including,			
CI UI Si	4	a first and second expansion modules respectively coupled to receive			
	5	the L and R components;			
	6	a plurality of selection function modules coupled to each other in series			
V	7	by a merged permutation and expansion module coupled to a merged L component			
	8	key XOR gate;			
	9	a key XOR gate coupled to the first of the selection modules in the series;			
1	10	a first of a plurality of permutation modules coupled to the last of the plurality			
11 12		of selection function modules in the series; and			
		a non-critical path including,			
1	3	a second L component collection XOR module, said first and second L			
1	4	component collection modules coupled to mutually exclusive groups of the plurality			
1	5	of permutation modules, wherein each of the plurality of permutation modules is			
1	6	coupled to a different one of the selection function modules.			

24. The apparatus of claim 23 wherein the output from the first L component collection module is fed back to the L component input, and the output from the second L component collection module is fed back to the R component input.