Package 'mixsmsn'

October 13, 2022

Title Fitting Finite Mixture of Scale Mixture of Skew-Normal Distributions
Date 2021-10-06
Version 1.1-10
Description Functions to fit finite mixture of scale mixture of skew-normal (FM-SMSN) distributions, details in Prates, Lachos and Cabral (2013) <doi:10.18637 jss.v054.i12="">, Cabral, Lachos and Prates (2012) <doi:10.1016 j.csda.2011.06.026=""> and Basso, Lachos, Cabral and Ghosh (2010) <doi:10.1016 j.csda.2009.09.031="">.</doi:10.1016></doi:10.1016></doi:10.18637>
Depends R (>= 1.9.0), mvtnorm (>= 0.9-9)
Author Marcos Prates [aut, cre, trl], Victor Lachos [aut], Celso Cabral [aut]
Maintainer Marcos Prates <marcosop@est.ufmg.br></marcosop@est.ufmg.br>
License GPL (>= 2.0)
Repository CRAN
NeedsCompilation no
Date/Publication 2021-10-06 12:40:02 UTC
R topics documented:
bmi

mix.hist
mix.lines
mix.print
rmix
.

2 bmi

Index 19

bmi Body Mass Index

Description

The data set has the measure of the Body Mass Index (bmi) for 2107 people.

Usage

```
data(bmi)
```

Format

A data frame with 2107 observations of bmi

Source

Rodrigo M. Basso, Victor H. Lachos, Celso R. B. Cabral, Pulak Ghosh (2009). "Robust mixture modeling based on scale mixtures of skew-normal distributions". *Computational Statistics and Data Analysis* (in press). doi: 10.1016/j.csda.2009.09.031

References

Marcos Oliveira Prates, Celso Romulo Barbosa Cabral, Victor Hugo Lachos (2013)."mixsmsn: Fitting Finite Mixture of Scale Mixture of Skew-Normal Distributions". Journal of Statistical Software, 54(12), 1-20., URL https://doi.org/10.18637/jss.v054.i12.

faithful 3

faithful

Old Faithful Geyser Data

Description

Waiting time between eruptions and the duration of the eruption for the Old Faithful geyser in Yellowstone National Park, Wyoming, USA.

Usage

```
data(faithful)
```

Format

A data frame with 272 observations on 2 variables (p=2)

Source

H?rdle, W. (1991) "Smoothing Techniques with Implementation in S". New York: Springer.

Azzalini, A. and Bowman, A. W. (1990). "A look at some data on the Old Faithful geyser". *Applied Statistics* 39, 357–365.

References

Marcos Oliveira Prates, Celso Romulo Barbosa Cabral, Victor Hugo Lachos (2013)."mixsmsn: Fitting Finite Mixture of Scale Mixture of Skew-Normal Distributions". Journal of Statistical Software, 54(12), 1-20., URL https://doi.org/10.18637/jss.v054.i12.

4 faithful

```
## Not run:
data(faithful)
## Maximum likelihood estimaton (MLE) for the multivariate FM-SMSN distribution
## with generated values
## Normal
Norm.analysis <- smsn.mmix(faithful, nu=3, g=2, get.init = TRUE, criteria = TRUE,
                            group = TRUE, family = "Normal")
mix.contour(faithful,Norm.analysis,x.min=1,x.max=1,y.min=15,y.max=10,
            levels = c(0.1, 0.015, 0.005, 0.0009, 0.00015))
## Calculate the information matrix (when the calc.im option in smsn.mmix is set FALSE)
Norm.im <- imm.smsn(faithful, Norm.analysis)</pre>
## Skew-Normal
Snorm.analysis <- smsn.mmix(faithful, nu=3, g=2, get.init = TRUE, criteria = TRUE,</pre>
                            group = TRUE, family = "Skew.normal")
mix.contour(faithful,Snorm.analysis,x.min=1,x.max=1,y.min=15,y.max=10,
            levels = c(0.1, 0.015, 0.005, 0.0009, 0.00015))
## Calculate the information matrix (when the calc.im option in smsn.mmix is set FALSE)
Snorm.im <- imm.smsn(faithful, Snorm.analysis)</pre>
## Skew-t
St.analysis <- smsn.mmix(faithful, nu=3, g=2, get.init = TRUE, criteria = TRUE,
                            group = TRUE, family = "Skew.t")
mix.contour(faithful,St.analysis,x.min=1,x.max=1,y.min=15,y.max=10,
            levels = c(0.1, 0.015, 0.005, 0.0009, 0.00015))
## Calculate the information matrix (when the calc.im option in smsn.mmix is set FALSE)
St.im <- imm.smsn(faithful, St.analysis)</pre>
## Passing initial values to MLE and automaticaly calculate the information matrix
mu1 < - c(5,77)
Sigma1 <- matrix(c(0.18, 0.60, 0.60, 41), 2,2)
shape1 <- c(0.69, 0.64)
mu2 < - c(2,52)
Sigma2 <- matrix(c(0.15, 1.15, 1.15, 40), 2, 2)
shape2 <- c(4.3, 2.7)
pii < -c(0.65, 0.35)
mu <- list(mu1,mu2)</pre>
Sigma <- list(Sigma1,Sigma2)</pre>
shape <- list(shape1,shape2)</pre>
Snorm.analysis <- smsn.mmix(faithful, nu=3, mu=mu, Sigma=Sigma, shape=shape, pii=pii,</pre>
                             g=2, get.init = FALSE, group = TRUE,
                             family = "Skew.normal", calc.im=TRUE)
```

im.smsn 5

im.smsn

Information matrix

Description

Calculate the information matrix of returned analysis based on the model family choice (univariate case, p=1).

Usage

```
im.smsn(y, model)
```

Arguments

y the response vector
model a variable returned by smsn.mix

Value

Estimate the Information Matrix of the parameters.

Author(s)

Marcos Prates <marcosop@est.ufmg.br>, Victor Lachos <hlachos@ime.unicamp.br> and Celso Cabral <celsoromulo@gmail.com>

See Also

```
{\tt smsn.mix}
```

```
## see \code{\link{bmi}}
```

6 mix.contour

imm.smsn

Information matrix

Description

Calculate the information matrix of returned analysis based on the model family choice (multivariate case, p>=2).

Usage

```
imm.smsn(y, model)
```

Arguments

y the response vector (p>2)

model a variable returned by smsn.mmix

Value

Estimate the Information Matrix of the parameters. Note: In the Information Matrix the scale parameters estimates are relative to the entries of square root matrix of Sigma.

Author(s)

Marcos Prates <marcosop@est.ufmg.br>, Victor Lachos <hlachos@ime.unicamp.br> and Celso Cabral <celsoromulo@gmail.com>

See Also

```
smsn.mmix
```

Examples

```
## see \code{\link{faithful}}
```

mix.contour

Print the selected groups with contours

Description

Plot the contour of the observations with the group selection.

mix.dens 7

Usage

Arguments

у	the response matrix (dimension nx2)
model	a variable returned by smsn.mmix
slice	number of slices in the sequenceo the contour
ncontour	number of contours to be ploted
x.min	value to be subtracted of the smallest observation in the x-axis
x.max	value to be added of the biggest observation in the x-axis
y.min	value to be subtracted of the smallest observation in the y-axis
y.max	value to be added of the biggest observation in the y-axis
	further arguments to contour

See Also

```
smsn.mmix
```

Examples

```
## see \code{\link{smsn.mmix}}
```

mix.dens

Estimated densities

Description

Plot the estimated density or log-density (univariate case, p=1).

Usage

```
mix.dens(y, model, log=FALSE, ylab=NULL, xlab = NULL, main = NULL, ...)
```

Arguments

У	the response vector
model	a variable returned by smsn.mix
log	Logical, plot log-density if TRUE (default = FALSE)
ylab	Title of the ylab, if NULL default is selected
xlab	Title of the xlab, if NULL default is selected
main	Main Title, if NULL default is selected
• • •	further arguments to plot

8 mix.hist

See Also

```
smsn.mix
```

Examples

```
## see \code{\link{bmi}} and \code{\link{smsn.mix}}
```

mix.hist

Estimated densities

Description

Plot the histogram along with the estimated density (univariate case, p=1).

Usage

```
mix.hist(y, model, breaks, main, col.hist, col.dens, ...)
```

Arguments

```
y the response vector

model a variable returned by smsn.mix

breaks the same option in histogram

main the same option in histogram

col.hist change the color of the histogram bars

col.dens change the color of the density curve

further arguments to hist
```

See Also

```
smsn.mix
```

```
## see \code{\link{bmi}} and \code{\link{smsn.mix}}
```

mix.lines 9

mix.lines

Plot lines of smsn densities

Description

Add lines of smsn estimated denisty or log-density in mix.dens plots (univariate case, p=1).

Usage

```
mix.lines(y, model, log=FALSE, ...)
```

Arguments

y the response vector

model a variable returned by smsn.mix

log Logical, plot log-density if TRUE (default = FALSE)

... further arguments to lines

See Also

smsn.mix

Examples

```
## see \code{\link{bmi}} and \code{\link{smsn.mix}}
```

mix.print

Printing mix object

Description

Printing a smsn.mix object (univariate case, p=1)

Usage

```
mix.print(model, digits = 3, ...)
```

Arguments

model an object of class snsm.mix, see smsn.mix for details

digits rounding for tabular output on the console (default is to round to 3 decimal

place)

... further arguments to print

See Also

smsn.mix

10 rmix

rmix	Random univariate FM-SMSN generator
=	

Description

Random generator of univariate FM-SMSN distributions.

Usage

```
rmix(n, pii, family, arg, cluster=FALSE)
```

Arguments

n	number of observations
pii	a vector of weights for the mixture (dimension of the number g of clusters). Must sum to one!
family	distribution family to be used in fitting ("t", "Skew.t", "Skew.cn", "Skew.slash", "Skew.normal", "Normal")
arg	a list with each entry containing a vector of size equal to the number of clusters of the necessary parameters from a family
cluster	TRUE or FALSE if the true observations clusters must be returned.

Author(s)

 $Marcos\ Prates\ <\verb|marcosop@est.ufmg.br>|,\ Victor\ Lachos\ <\verb|hlachos@ime.unicamp.br>| \ and\ Celso\ Cabral\ <<elsoromulo@gmail.com>|$

See Also

```
smsn.mix
```

```
## see \code{\link{smsn.mix}}
```

rmmix 11

rmmix	Random multivariate FM-SMSN generator	

Description

Random generator of multivariate FM-SMSN distributions.

Usage

```
rmmix(n, pii, family, arg, cluster=FALSE)
```

Arguments

n	number of observations
pii	a vector of weights for the mixture (dimension of the number g of clusters). Must sum to one!
family	distribution family to be used in fitting ("t", "Skew.t", "Skew.cn", "Skew.slash", "Skew.normal", "Normal")
arg	a list of g lists with each list containing the necessary parameters of the selected family
cluster	TRUE or FALSE if the true observations clusters must be returned.

Author(s)

 $Marcos\ Prates\ < marcosop@est.ufmg.br>,\ Victor\ Lachos\ < hlachos@ime.unicamp.br>\ and\ Celso\ Cabral\ < celsoromulo@gmail.com>$

See Also

```
smsn.mmix
```

```
## see \code{\link{smsn.mmix}}
```

smsn.mix

smsn.mix

Fit univariate FM-SMSN distribution

Description

Return EM algorithm output for FM-SMSN distributions (univaritate case, p=1).

Usage

```
smsn.mix(y,
    nu, mu = NULL, sigma2 = NULL, shape = NULL, pii = NULL,
    g = NULL, get.init = TRUE,
    criteria = TRUE, group = FALSE, family = "Skew.normal",
    error = 0.00001, iter.max = 100, calc.im = TRUE, obs.prob = FALSE,
    kmeans.param = NULL)
```

Arguments

У	the response vector
nu	the parameter of the scale variable (vector or scalar) of the SMSN family (kurtosis parameter). It is necessary to all distributions. For the "Skew.cn" must be a vector of length 2 and values in $(0,1)$
mu	the vector of initial values (dimension g) for the location parameters
sigma2	the vector of initial values (dimension g) for the scale parameters
shape	the vector of initial values (dimension g) for the skewness parameters
pii	the vector of initial values (dimension g) for the weights for each cluster. Must sum one!
g	the number of cluster to be considered in fitting
get.init	if TRUE, the initial values are generated via k-means
criteria	if TRUE, AIC, DIC, EDC and ICL will be calculated
group	if TRUE, the vector with the classification of the response is returned
family	distribution family to be used in fitting ("Skew.t", "t", "Skew.cn", "Skew.slash", "slash", "Skew.normal", "Normal")
error	the covergence maximum error
iter.max	the maximum number of iterations of the EM algorithm. Default = 100
calc.im	if TRUE, the information matrix is calculated and the standard errors are reported
obs.prob	if TRUE, the posterior probability of each observation belonging to one of the g groups is reported
kmeans.param	a list with alternative parameters for the kmeans function when generating initial values, list(iter.max = 10 , n.start = 1 , algorithm = "Hartigan-Wong")

smsn.mix 13

Value

Estimated values of the location, scale, skewness and kurtosis parameter.

Author(s)

Marcos Prates <marcosop@est.ufmg.br>, Victor Lachos <hlachos@ime.unicamp.br> and Celso Cabral <celsoromulo@gmail.com>

References

Rodrigo M. Basso, Victor H. Lachos, Celso R. B. Cabral, Pulak Ghosh (2010). "Robust mixture modeling based on scale mixtures of skew-normal distributions". Computational Statistics and Data Analysis, 54, 2926-2941. doi: 10.1016/j.csda.2009.09.031

Marcos Oliveira Prates, Celso Romulo Barbosa Cabral, Victor Hugo Lachos (2013)."mixsmsn: Fitting Finite Mixture of Scale Mixture of Skew-Normal Distributions". Journal of Statistical Software, 54(12), 1-20., URL https://doi.org/10.18637/jss.v054.i12.

See Also

```
mix.hist, im.smsn and smsn.search
```

```
mu1 <- 5; mu2 <- 20; mu3 <- 35
sigma2.1 <- 9; sigma2.2 <- 16; sigma2.3 <- 9
lambda1 <- 5; lambda2 <- -3; lambda3 <- -6
nu = 5
mu \leftarrow c(mu1, mu2, mu3)
sigma2 <- c(sigma2.1,sigma2.2,sigma2.3)</pre>
shape <- c(lambda1,lambda2,lambda3)</pre>
pii < -c(0.5, 0.2, 0.3)
arg1 = c(mu1, sigma2.1, lambda1, nu)
arg2 = c(mu2, sigma2.2, lambda2, nu)
arg3 = c(mu3, sigma2.3, lambda3, nu)
y <- rmix(n=1000, p=pii, family="Skew.t", arg=list(arg1,arg2,arg3))
## Not run:
par(mfrow=c(1,2))
## Normal fit
Norm.analysis <- smsn.mix(y, nu = 3, g = 3, get.init = TRUE, criteria = TRUE,
                           group = TRUE, family = "Normal", calc.im=FALSE)
mix.hist(y,Norm.analysis)
mix.print(Norm.analysis)
mix.dens(y,Norm.analysis)
## Skew Normal fit
Snorm.analysis <- smsn.mix(y, nu = 3, g = 3, get.init = TRUE, criteria = TRUE,</pre>
                            group = TRUE, family = "Skew.normal", calc.im=FALSE)
mix.hist(y,Snorm.analysis)
```

14 smsn.mmix

```
mix.print(Snorm.analysis)
mix.dens(y,Snorm.analysis)
## t fit
t.analysis <- smsn.mix(y, nu = 3, g = 3, get.init = TRUE, criteria = TRUE,
                        group = TRUE, family = "t", calc.im=FALSE)
mix.hist(y,t.analysis)
mix.print(t.analysis)
mix.dens(y,t.analysis)
## Skew t fit
St.analysis <- smsn.mix(y, nu = 3, g = 3, get.init = TRUE, criteria = TRUE,
                        group = TRUE, family = "Skew.t", calc.im=FALSE)
mix.hist(y,St.analysis)
mix.print(St.analysis)
mix.dens(y,St.analysis)
## Skew Contaminated Normal fit
Scn.analysis \leftarrow smsn.mix(y, nu = c(0.3,0.3), g = 3, get.init = TRUE, criteria = TRUE,
                         group = TRUE, family = "Skew.cn", calc.im=FALSE)
mix.hist(y,Scn.analysis)
mix.print(Scn.analysis)
mix.dens(y,Scn.analysis)
par(mfrow=c(1,1))
mix.dens(y,Norm.analysis)
mix.lines(y,Snorm.analysis,col="green")
mix.lines(y,t.analysis,col="red")
mix.lines(y,St.analysis,col="blue")
mix.lines(y,Scn.analysis,col="grey")
## End(Not run)
```

smsn.mmix

Fit multivariate FM-SMSN distributions.

Description

Return EM algorithm output for multivariate FM-SMSN distributions.

Usage

```
smsn.mmix(y, nu=1,
    mu = NULL, Sigma = NULL, shape = NULL, pii = NULL,
    g = NULL, get.init = TRUE, criteria = TRUE,
    group = FALSE, family = "Skew.normal",
    error = 0.0001, iter.max = 100, uni.Gama = FALSE,
    calc.im=FALSE, obs.prob = FALSE, kmeans.param = NULL)
```

smsn.mmix 15

Arguments

У	the response matrix (dimension nxp)
nu	the parameter of the scale variable (vector or scalar) of the SMSN family (kurtosis parameter). It is necessary to all distributions. For the "Skew.cn" must be a vector of length 2 and values in $(0,1)$
mu	a list of g arguments of vectors of initial values (dimension \mathbf{p}) for the location parameters
Sigma	a list of g arguments of matrices of initial values (dimension pxp) for the scale parameters
shape	a list of g arguments of vectors of initial values (dimension p)for the skewness parameters
pii	the vector of initial values (dimension g) for the weights for each cluster. Must sum one!
g	the number of cluster to be considered in fitting
get.init	if TRUE, the initial values are generated via k-means
criteria	if TRUE, log-likelihood (logLik), AIC, DIC, EDC and ICL will be calculated
group	if TRUE, the vector with the classification of the response is returned
family	distribution famility to be used in fitting ("Skew.t", "t", "Skew.cn", "Skew.slash", "slash", "Skew.normal", "Normal")
error	the covergence maximum error
iter.max	the maximum number of iterations of the EM algorithm. Default = 100
uni.Gama	if TRUE, the Gamma parameters are restricted to be the same for all clusters
calc.im	if TRUE, the information matrix is calculated and the starndard erros are reported
obs.prob	if TRUE, the posterior probability of each observation belonging to one of the g groups is reported
kmeans.param	a list with alternative parameters for the kmeans function when generating initial values, list(iter.max = 10, n.start = 1, algorithm = "Hartigan-Wong")

Value

Estimated values of the location, scale, skewness and kurtosis parameter. Note: The scale parameters estimated are relative to the entries of the squae root matrix of Sigma.

Author(s)

 $Marcos\ Prates < \verb|marcosop@est.ufmg.br>|,\ Victor\ Lachos\ < \verb|hlachos@ime.unicamp.br>| \ and\ Celso\ Cabral\ < celsoromulo@gmail.com>|$

16 smsn.mmix

References

Cabral, C. R. B., Lachos, V. H. and Prates, M. O. (2012). "Multivariate Mixture Modeling Using Skew-Normal Independent Distributions". *Computational Statistics & Data Analysis*, 56, 126-142, doi:10.1016/j.csda.2011.06.026.

Marcos Oliveira Prates, Celso Romulo Barbosa Cabral, Victor Hugo Lachos (2013)."mixsmsn: Fitting Finite Mixture of Scale Mixture of Skew-Normal Distributions". Journal of Statistical Software, 54(12), 1-20., URL https://doi.org/10.18637/jss.v054.i12.

See Also

```
mix.contour, rmmix and smsn.search
```

```
mu1 < - c(0,0)
Sigma1 <- matrix(c(3,1,1,3), 2,2)
shape1 <-c(4,4)
nu1 <- 4
mu2 < - c(5,5)
Sigma2 <- matrix(c(2,1,1,2), 2,2)
shape2 <-c(2,2)
nu2 <- 4
pii < -c(0.6, 0.4)
arg1 = list(mu=mu1, Sigma=Sigma1, shape=shape1, nu=nu1)
arg2 = list(mu=mu2, Sigma=Sigma2, shape=shape2, nu=nu2)
y <- rmmix(n= 500, p = pii, "Skew.t", list(arg1,arg2))</pre>
## Not run:
## Normal fit giving intial values
mu <- list(mu1,mu2)</pre>
Sigma <- list(Sigma1,Sigma2)</pre>
shape <- list(shape1,shape2)</pre>
pii <- c(0.6, 0.4)
Norm.analysis <- smsn.mmix(y, nu=3, mu=mu, Sigma=Sigma, shape=shape, pii = pii,
                            criteria = TRUE, g=2, get.init = FALSE, group = TRUE,
                            family = "Normal")
mix.contour(y,Norm.analysis)
## Normal fit
Norm.analysis <- smsn.mmix(y, nu=3, g=2, get.init = TRUE, criteria = TRUE,
                            group = TRUE, family = "Normal")
mix.contour(y,Norm.analysis)
## Normal fit with a unique Gamma
Norm.analysis <- smsn.mmix(y, nu=3, g=2, get.init = TRUE, criteria = TRUE,
                            group = TRUE, family = "Normal", uni.Gama = TRUE)
```

smsn.search 17

```
mix.contour(y,Norm.analysis)
## Skew Normal fit
Snorm.analysis <- smsn.mmix(y, nu=3, g=2, get.init = TRUE, criteria = TRUE,</pre>
                            group = TRUE, family = "Skew.normal")
mix.contour(y,Snorm.analysis)
## t fit
t.analysis <- smsn.mmix(y, nu=3, g=2, get.init = TRUE, criteria = TRUE,</pre>
                         group = TRUE, family = "t")
mix.contour(y,t.analysis)
## Skew t fit
St.analysis <- smsn.mmix(y, nu=3, g=2, get.init = TRUE, criteria = TRUE,
                         group = TRUE, family = "Skew.t")
mix.contour(y,St.analysis)
## Skew Contaminated Normal fit
Scn.analysis <- smsn.mmix(y, nu=c(0.1,0.1), g=2, get.init = TRUE, criteria = TRUE,
                          group = TRUE, family = "Skew.cn",error=0.01)
mix.contour(y,Scn.analysis)
## Skew Contaminated Normal fit
Sslash.analysis <- smsn.mmix(y, nu=3, g=2, get.init = TRUE, criteria = TRUE,
                             group = TRUE, family = "Skew.slash", error=0.1)
mix.contour(y,Sslash.analysis)
## End(Not run)
```

smsn.search

Find the best number of cluster for a determined data set.

Description

Search for the best fitting for number of cluster from g.min to g.max for a selected family and criteria for both univariate and multivariate distributions.

Usage

18 smsn.search

Arguments

у	the response vector(matrix)
nu	the parameter of the scale variable (vector or scalar) of the SMSN family (kurtosis parameter). It is necessary to all distributions. For the "Skew.cn" must be a vector of length 2 and values in $(0,1)$
g.min	the minimum number of cluster to be modeled
g.max	the maximum number of cluster to be modeled
family	distribution famility to be used in fitting ("t", "Skew.t", "Skew.nc", "Skew.slash", "Skew.normal", "Normal")
criteria	the selection criteria method to be used ("aic", "bic", "edc", "icl")
error	the covergence maximum error
iter.max	the maximum number of iterations of the EM algorithm
calc.im	if TRUE, the infomation matrix is calculated and the starndard erros are reported
uni.Gama	if TRUE, the Gamma parameters are restricted to be the same for all clusters (Only valid in the multivariate case, $p>1$)
kmeans.param	a list with alternative parameters for the kmeans function when generating initial values, list(iter.max = 10 , n.start = 1 , algorithm = "Hartigan-Wong")
	other parameters for the hist function

Value

Estimated values of the location, scale, skewness and kurtosis parameter from the optimum number of clusters.

Author(s)

 $Marcos\ Prates < \verb|marcosop@est.ufmg.br>|,\ Victor\ Lachos < \verb|hlachos@ime.unicamp.br>| \ and\ Celso\ Cabral < celsoromulo@gmail.com>|$

See Also

```
smsn.mix and smsn.mmix
```

```
## see \code{\link{bmi}} and \code{\link{faithful}}
```

Index

lines, 9

```
* aplot
                                                   mix.contour, 6, 16
    mix.contour, 6
                                                   mix.dens, 7
    mix.hist, 8
                                                   \min. hist, 8, 13
* datasets
                                                   mix.lines, 9
    bmi, 2
                                                   mix.print, 9
    faithful, 3
                                                   plot, 7
* interface
                                                   print, 9
    im.smsn,5
    imm.smsn, 6
                                                   rmix, 10
    smsn.mix, 12
                                                   rmmix, 11, 16
    smsn.mmix, 14
    smsn.search, 17
                                                   smsn.mix, 5, 7–10, 12, 18
* lines
                                                   smsn.mmix, 6, 7, 11, 14, 18
    mix.lines, 9
                                                   smsn.search, 13, 16, 17
* methods
    rmix, 10
    rmmix, 11
* models
    im.smsn,5
    imm.smsn, 6
    smsn.mix, 12
    smsn.mmix, 14
    smsn.search, 17
* plot
    mix.dens, 7
* print
    mix.print, 9
bmi, 2
contour, 7
faithful, 3
hist, 8
histogram, 8
im.smsn, 5, 13
imm.smsn, 6
```