

Radio Design Group, Inc. UV-1G Belt Pack FCC 74H:2013

Report #: RDIO0001

Report Prepared By Northwest EMC Inc.

NORTHWEST EMC – (888) 364-2378 – www.nwemc.com

California – Minnesota – Oregon – New York – Washington

CERTIFICATE OF TEST

Last Date of Test: October 11, 2013 Radio Design Group, Inc. Model: UV-1G Belt Pack

Emissions

Test Description	Specification	Test Method	Pass/Fail
Output Power	FCC 74H:2013 (FCC 2.1046)	ANSI/TIA/EIA-603-C-2004	Pass
Modulation Characteristics	FCC 74H:2013 (FCC 2.1047)	ANSI/TIA/EIA-603-C-2004	Pass
Occupied Bandwidth	FCC 74H:2013 (FCC 2.1049)	ANSI/TIA/EIA-603-C-2004	Pass
Emission Mask	FCC 74H:2013 (FCC 2.1049)	ANSI/TIA/EIA-603-C-2004	Pass
Spurious Conducted Emissions	FCC 74H:2013 (FCC 2.1051)	ANSI/TIA/EIA-603-C-2004	Pass
Spurious Radiated Emissions	FCC 74H:2013 (FCC 2.1053)	ANSI/TIA/EIA-603-C-2004	Pass
Frequency Stability	FCC 74H:2013 (FCC 2.1055)	ANSI/TIA/EIA-603-C-2004	Pass

Deviations From Test Standards

None

Approved By:

Kyle Holgate, Operations Manager

NVLAP Lab Code: 200630-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test.

REVISION HISTORY

Revision Number	Description	Date	Page Number
00	None		

Barometric Pressure

The recorded barometric pressure has been normalized to sea level.

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC Guide 65 as a product certifier. This allows Northwest EMC to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

IC - Recognized by Industry Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with IC.

European Union

European Commission – Validated by the European Commission as a Conformity Assessment Body (CAB) under the EMC directive and as a Notified Body under the R&TTE Directive.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

KCC / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI - Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Hong Kong

OFTA - Recognized by OFTA as a CAB for the acceptance of test data.

Vietnam

MIC - Recognized by MIC as a CAB for the acceptance of test data.

Russia

GOST – Accredited by Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC to perform EMC and Hygienic testing for Information Technology products to GOST standards.

SCOPE

For details on the Scopes of our Accreditations, please visit: http://www.nwemc.com/accreditations/

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) for each test is listed below. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-1 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Test	+ MU	- MU
Frequency Accuracy (Hz)	0.12	-0.01
Amplitude Accuracy (dB)	0.49	-0.49
Conducted Power (dB)	0.41	-0.41
Radiated Power via Substitution (dB)	0.69	-0.68
Temperature (degrees C)	0.81	-0.81
Humidity (% RH)	2.89	-2.89
Field Strength (dB)	3.80	-3.80
AC Powerline Conducted Emissions (dB)	2.94	-2.94

FACILITIES

Oregon Labs EV01-12 22975 NW Evergreen Pkwy Hillsboro, OR 97124 (503) 844-4066	California Labs OC01-13 41 Tesla Irvine, CA 92618 (949) 861-8918	New York Labs NY01-04 4939 Jordan Rd. Elbridge, NY 13060 (315) 685-0796	Minnesota Labs MN01-08 9349 W Broadway Ave. Brooklyn Park, MN 55445 (763) 425-2281	Washington Labs NC01-05,SU02,SU07 19201 120 th Ave. NE Bothell, WA 98011 (425) 984-6600	
	VCCI				
A-0108	A-0029		A-0109	A-0110	
Industry Canada					
2834D-1, 2834D-2	2834B-1, 2834B-2, 2834B-3		2834E-1	2834C-1	
NVLAP					
NVLAP Lab Code: 200630-0	NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200761-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200629-0	

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	Radio Design Group, Inc.
Address:	8925 Rogue River Highway
City, State, Zip:	Grants Pass, OR 97527
Test Requested By:	Dennis Haley
Model:	UV-1G Belt Pack
First Date of Test:	October 07, 2013
Last Date of Test:	October 11, 2013
Receipt Date of Samples:	October 07, 2013
Equipment Design Stage:	Production
Equipment Condition:	No Damage

Information Provided by the Party Requesting the Test

Wireless Intercom System Belt Pack

Testing Objective:

To demonstrate compliance with the requirements of FCC Part 74H

CONFIGURATIONS

Configuration RDIO0001-1

Software/Firmware Running during test				
Description Version				
Radio Active Designs UV-1G	1			

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Belt Pack	Radio Design Group, Inc.	UV-1G	113-008

Remote Equipment Outside of Test Setup Boundary					
Description Manufacturer Model/Part Number Serial Number					
Remote Laptop	Acer	TravelMate 8200	LXTAX060346090A219EM15		
AC/DC Adapter	LITE-ON Technologies, Inc.	PA-1900-04	5Z03016001		

Cables						
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2	
Micro USB Adapter	No	1m	No	Belt Pack	Remote Laptop	
AC Power Cable	No	1.2m	No	DC Power Supply	AC mains	
AC Power Cable	No	1m	No	AC/DC Power Adapter	AC mains	
DC Power Cable	DC Power Cable PA 1.5m PA Laptop AC/DC Power Adapter					
DC Leads	No	.5m	No	DC Power Supply	Belt Pack	
DC Leads	No	.5m	No	DC Power Supply	DMM	
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.						

Configuration RDIO0001- 2

Software/Firmware Running during test				
Description	Version			
Radio Active Designs UV-1G	1			

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Belt Pack	Radio Design Group, Inc.	UV-1G	092712-074

Remote Equipment Outside of Test Setup Boundary							
Description Manufacturer Model/Part Number Serial Number							
Remote Laptop	Acer	TravelMate 8200	LXTAX060346090A219EM15				
AC/DC Adapter	LITE-ON Technologies, Inc.	PA-1900-04	5Z03016001				

Cables							
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2		
MIC XLR Cable	No	1.2m	No	Belt Pack	Unterminated		
AC Power Cable	No	1.2m	No	DC Power Supply	AC mains		
AC Power Cable	No	1m	No	AC/DC Power Adapter	AC mains		
DC Power Cable	PA	1.5m	PA	Laptop	AC/DC Power Adapter		
DA - Cah	lo is normano	ntly attached to the de	vice Shieldi	ing and/or procence of forrite n	aay ba unknown		

CONFIGURATIONS

Configuration RDIO0001-4

Software/Firmware Running during test	
Description	Version
Radio Active Designs UV-1G	1

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Belt Pack	Radio Design Group, Inc.	UV-1G	113-008

Remote Equipment Outside of Test Setup Boundary							
Description Manufacturer Model/Part Number Serial Number							
Remote Laptop	Acer	TravelMate 8200	LXTAX060346090A219EM15				
AC/DC Adapter	LITE-ON Technologies, Inc.	PA-1900-04	5Z03016001				

Cables						
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2	
Micro USB Adapter	No	1m	No	Belt Pack	Remote Laptop	
AC Power Cable	No	1.2m	No	DC Power Supply	AC mains	
AC Power Cable	No	1m	No	AC/DC Power Adapter	AC mains	
DC Power Cable	PA	1.5m	PA	Laptop	AC/DC Power Adapter	
DC Leads	No	.5m	No	DC Power Supply	Belt Pack	
DC Leads	No	.5m	No	DC Power Supply	DMM	
MIC XLR to BNC	No	1.1m	No	Belt Pack	Function Generator	
BNC Cable	No	1m	No	Function Generator	Oscilloscope	
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.						

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
1	10/07/2013	Spurious Conducted	Tested as delivered to	No EMI suppression devices were added or	EUT remained at Northwest EMC
2	10/07/2013	Emissions Output Power	Test Station. Tested as delivered to Test Station.	modified during this test. No EMI suppression devices were added or modified during this test.	Following the test. EUT remained at Northwest EMC following the test.
3	10/08/2013	Frequency Stability	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
4	10/08/2013	Emission Mask	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
5	10/10/2013	Spurious Radiated Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
6	10/11/2013	Occupied Bandwidth	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
7	10/11/2013	Modulation Characteristics	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

OUTPUT POWER

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
MXG Vector Signal Generator	Agilent	N5182A	TIF	NCR	0
Attenuator, 'Precision N'	S.M. Electronics	SA18N-06/SM4032	REE	12/11/2012	12
Power Meter	Gigatronics	8651A	SPM	1/9/2012	24
Power Sensor	Gigatronics	80701A	SPL	7/8/2011	36
DC Power Supply	Topward	TPS-2000	TPD	NCR	0
Multimeter	Tektronix	DMM912	MMH	2/5/2013	24
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	7/30/2013	12
40GHz DC Block	Miteq	DCB4000	AMD	5/16/2013	12
Spectrum Analyzer	Agilent	E4440A	AFD	7/5/2012	24

TEST DESCRIPTION

Per FCC Part 2.1046, the output power shall be measured at the RF terminal. The peak output power was measured with the EUT set to low, medium and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The EUT was transmitting on low, mid and high frequencies.

	-1G Belt Pack			Work Order:		
Serial Number: 113					10/08/13	
	dio Design Group, Inc			Temperature		
Attendees: No				Humidity:		
Project: No				Barometric Pres.:		
Tested by: Bra			Power: 7.5 VDC	Job Site:	EV06	
TEST SPECIFICATION:	S		Test Method			
FCC 74H:2013			ANSI/TIA/EIA-603-C-2004			
COMMENTS						
None						
DEVIATIONS FROM TE	ST STANDARD					
None						
	1					
Configuration #	1		7 /1 1			
g		Signature	The state of the s			
	L L	O/g/Idia/O				
				Value	Limit	Result
Broadcasting Frequenci	es					
	w Channel, 174.025 MHz			41.70 mW	50 mW	Pass
	d Channel, 195 MHz			42.60 mW	50 mW	Pass
	h Channel, 215.975 MHz			42.91 mW	50 mW	Pass

OUTPUT POWER

Broadcasting Frequencies, Mid Channel, 195 MHz							
					Value	Limit	Result
					42.60 mW	50 mW	Pass

OUTPUT POWER

Modulation Characteristics

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Attenuator, 20 dB, 'BNC'	SM Electronics	SA01B-20	REZ	12/11/2012	12
Waveform Generator	Agilent	33120A	TEC	NCR	0
scilloscope (For REFERENCE ONL)	Tektronix	TDS 3052	TOF	NCR	0
DC Power Supply	Topward	TPS-2000	TPD	NCR	0
Multimeter	Tektronix	DMM912	MMH	2/5/2013	24
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	7/30/2013	12
40GHz DC Block	Miteq	DCB4000	AMD	5/16/2013	12
Spectrum Analyzer	Agilent	E4440A	AFD	7/5/2012	24
MXG Vector Signal Generator	Agilent	N5182A	TIF	NCR	0
Attenuator, 'Precision N'	S.M. Electronics	SA18N-06/SM4032	REE	12/11/2012	12
Power Meter	Gigatronics	8651A	SPM	1/9/2012	24
Power Sensor	Gigatronics	80701A	SPL	7/8/2011	36

TEST DESCRIPTION

Per FCC rule part 2.1047(a) the modulation characteristics of the radio were measured across its rated audio input voltage and frequency ranges.

	UV-1G Belt Pack			Work Order:		
Serial Number:	113-008			Date:	10/11/13	
Customer:	Radio Design Group, Inc.	•		Temperature:	22°C	
Attendees:				Humidity:		
Project:				Barometric Pres.:	1013.1	
Tested by:	Brandon Hobbs		Power: 7.5 VDC	Job Site:	EV06	
TEST SPECIFICAT	IONS		Test Method			
FCC 74H:2013			ANSI/TIA/EIA-603-C-2004			
COMMENTS						
None						
	M TEST STANDARD					
None						
Configuration #	4	Signature	J. J.			
	•		-	Deviation		
				(kHz)	Limit	Result
Broadcasting Freque	ency					
	Mid Channel, 195 MHz			SEE GRAPH	N/A	N/A

Modulation Characteristics

Audio Input Frequency

				it i roquonoj		
Audio Input	100 Hz	300 Hz	1 kHz	2.5 kHz	3 kHz	8 kHz
Voltage (mV)			Frequency D	eviation (kHz)		
15	0.1	0.3	1	2.5	3	8
50	0.1	0.3	1	2.5	3	8
100	0.1	0.3	1	2.5	3	8
150	0.1	0.3	1	2.5	3	8
200		0.3	1	2.5	3	8
250	0.1	0.3	1	2.5	3	8

Note that the maximum rated audio input voltage is 250 mV

OCCUPIED BANDWIDTH

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Attenuator, 20 dB, 'BNC'	SM Electronics	SA01B-20	REZ	12/11/2012	12
Oscilloscope (For REFERENCE	Tektronix	TDS 3052	TOF	NCR	0
Waveform Generator	Agilent	33120A	TEC	NCR	0
DC Power Supply	Topward	TPS-2000	TPD	NCR	0
Multimeter	Tektronix	DMM912	MMH	2/5/2013	24
Attenuator, 'Precision N'	S.M. Electronics	SA18N-06/SM4032	REE	12/11/2012	12
MXG Vector Signal Generator	Agilent	N5182A	TIF	NCR	0
Power Meter	Gigatronics	8651A	SPM	1/9/2012	24
Power Sensor	Gigatronics	80701A	SPL	7/8/2011	36
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	7/30/2013	12
40GHz DC Block	Miteq	DCB4000	AMD	5/16/2013	12
Spectrum Analyzer	Agilent	E4440A	AFD	7/5/2012	24

TEST DESCRIPTION

Per FCC rule part 74.861(e)(5), the emission bandwidth was determined by measuring the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency with a 2.5kHz tone modulated across the carrier. The points are 26 dB down relative to the maximum level of the modulated carrier. A spectrum analyzer using a peak detector with no video filtering was used with a resolution bandwidth equal to approximately 1-3% percent of the emission bandwidth of the EUT.

EUT:	: UV-1G Belt Pack				Work O	rder: RDIO0001	
Serial Number:	113-008					Date: 10/11/13	
Customer	: Radio Design Group, Inc				Tempera	ture: 22°C	
Attendees	: None					idity: 41%	
Project:	: None				Barometric P	res.: 1013.1	
Tested by:	: Brandon Hobbs		Power:	7.5 VDC	Job	Site: EV06	
TEST SPECIFICAT				Test Method	<u> </u>		
FCC 74H:2013			/	ANSI/TIA/EIA-603-C-2004			
COMMENTS							
None							
DEVIATIONS FROM	M TEST STANDARD						
None							
IVOIIC							
Configuration #	1		7	1 1			
Comiguration #	'	Signature	7.4				
		Signature					
					Value	Limit	Result
Desertes Francis					value	Lillik	Result
Broadcasting Frequ		-			24 200 H	- 200 HI	Dana
	Low Channel, 174.025 MH	12			21.398 kH		Pass
	Mid Channel, 195 MHz				21.355 kH		Pass
	High Channel 215 975 MF	-lz			21 788 kH	z < 200 kHz	Pass

OCCUPIED BANDWIDTH

	Broadcasting Fre	equencies, Mid C	hannel, 195 MHz	2	
			Value	Limit	Result
			21.355 kHz	< 200 kHz	Pass

OCCUPIED BANDWIDTH

EMISSION MASK

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
DC Power Supply	Topward	TPS-2000	TPD	NCR	0
Multimeter	Tektronix	DMM912	MMH	2/5/2013	24
Attenuator, 'Precision N'	S.M. Electronics	SA18N-06/SM4032	REE	12/11/2012	12
MXG Vector Signal Generator	Agilent	N5182A	TIF	NCR	0
Power Meter	Gigatronics	8651A	SPM	1/9/2012	24
Power Sensor	Gigatronics	80701A	SPL	7/8/2011	36
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	7/30/2013	12
40GHz DC Block	Miteq	DCB4000	AMD	5/16/2013	12
Spectrum Analyzer	Agilent	E4440A	AFD	7/5/2012	24

TEST DESCRIPTION

Per FCC Part 74.861(e)(6) the emission mask was measured. Emissions more than 100 - 200kHz away from the center frequency must be attenuated below the transmitter output power by at least 25 dB. This was evaluated by the Occupied Bandwidth measurement according to FCC Part 74.861(e)(5). In addition, emissions 200 - 500kHz away from the center frequency must be attenuated below the transmitter output power by at least 35 dB.

A spectrum analyzer was used to measure the emission mask. A spectrum analyzer using a peak detector.

	/-1G Belt Pack				Work Order:		
Serial Number: 11						10/08/13	
Customer: Ra	idio Design Group, Inc				Temperature:	22.2°C	
Attendees: No					Humidity:		
Project: No					Barometric Pres.:		
Tested by: Br	andon Hobbs		Power: 7.5 VDC		Job Site:	EV06	
TEST SPECIFICATION	S		Test Method				
FCC 74H:2013			ANSI/TIA/EIA-603	-C-2004			
COMMENTS							
None							
DEVIATIONS FROM TI	EST STANDARD						
None							
Configuration #	1		7 1				
J		Signature					
	•	<u> </u>					
					Value	Limit	Result
Broadcasting Frequenci	ies				_	<u> </u>	
Lo	w Channel, 174.025 MHz				SEE GRAPH	SEE GRAPH	Pass
Mi	d Channel, 195 MHz				SEE GRAPH	SEE GRAPH	Pass
Hig	gh Channel, 215.975 MHz				SEE GRAPH	SEE GRAPH	Pass

EMISSION MASK

	Broadcasting Fre	equencies, Mid C	hannel, 195 MHz		
			Value	Limit	Result
			SEE GRAPH	SEE GRAPH	Pass

EMISSION MASK

SPURIOUS CONDUCTED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
DC Power Supply	Topward	TPS-2000	TPD	NCR	0
Multimeter	Tektronix	DMM912	MMH	2/5/2013	24
Attenuator, 'Precision N'	S.M. Electronics	SA18N-06/SM4032	REE	12/11/2012	12
MXG Vector Signal Generator	Agilent	N5182A	TIF	NCR	0
Power Meter	Gigatronics	8651A	SPM	1/9/2012	24
Power Sensor	Gigatronics	80701A	SPL	7/8/2011	36
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	7/30/2013	12
40GHz DC Block	Miteq	DCB4000	AMD	5/16/2013	12
Spectrum Analyzer	Agilent	E4440A	AFD	7/5/2012	24

TEST DESCRIPTION

The antenna port spurious conducted emissions were measured at the RF output terminal of the EUT with 20dB of external attenuation on the RF input of the spectrum analyzer. Analyzer plots were made from 30 MHz to 2.2 GHz. The peak conducted power of spurious emissions, up to the 10th harmonic of the transmit frequency, were investigated to a limit of –13 dBm.

EUT	: UV-1G Belt Pack			Work Order:	RDIO0001	
Serial Number	r: 113-008			Date:	10/08/13	
Customer	r: Radio Design Group, Inc	;		Temperature:	22°C	
Attendees	s: None			Humidity:		
Project	t: None			Barometric Pres.:		
Tested by	/: Brandon Hobbs		Power: 7.5 VDC	Job Site:	EV06	
TEST SPECIFICAT			Test Method			
FCC 74H:2013			ANSI/TIA/EIA-603-C-2004			
COMMENTS						
None						
itolic						
DEVIATIONS FRO	M TEST STANDARD					
None	MI ILOI OTANDAND					
None		I				
Configuration #	1		2 /1 1			
Comiguration #		Ciamatura	Jan X Jan			
		Signature	, , ,			
				Value	Limit	Result
Broadcasting Frequ						
	Low Channel, 174.025 MF	łz		-19.45 dBm	-13 dBm	Pass
	Mid Channel, 195 MHz			-21.91 dBm	-13 dBm	Pass
	High Channel 215 975 Mi	-17		-21 11 dBm	-13 dBm	Pass

SPURIOUS CONDUCTED EMISSIONS

Value Limit Result		E	Broadcasting Fre	equencies, Mid C	hannel, 195 MHz		
					Value	Limit	Result

SPURIOUS CONDUCTED EMISSIONS

SPURIOUS RADIATED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Tx 174.025 MHz, Low Channel

Tx 195 MHz, Mid Channel

Tx 215.975 MHz, High Channel

POWER SETTINGS INVESTIGATED

Battery

CONFIGURATIONS INVESTIGATED

RDIO0001 - 2

FREQUENCY RANGE INVESTIGATED

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4446A	AAQ	2/7/2012	24 mo
EV01 Cables	N/A	Double Ridge Horn Cables	EVB	9/2/2013	12 mo
Pre-Amplifier	Miteq	AMF-4D-010100-24-10P	APW	6/20/2013	12 mo
Antenna, Horn	ETS	3115	AIZ	1/24/2011	36 mo
EV01 Cables	N/A	Bilog Cables	EVA	6/20/2013	12 mo
Pre-Amplifier	Miteq	AM-1616-1000	AOL	6/20/2013	12 mo
Antenna, Biconilog	EMCO	3141	AXG	4/10/2012	36 mo
Antenna, Dipole	A.H. Systems, Inc.	FCC-4	ADCA	5/17/2013	36 mo
Attenuator, 'Precision N'	S.M. Electronics	SA18N-06/SM4032	REE	12/11/2012	12 mo
MXG Vector Signal Generator	Agilent	N5182A	TIF	NCR	0 mo
Power Meter	Gigatronics	8651A	SPM	1/9/2012	24 mo
Power Sensor	Gigatronics	80701A	SPL	7/8/2011	36 mo

MEASUREMENT BANDWIDTHS

Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

TEST DESCRIPTION

The Field Strength of Spurious Radiation was measured in the far-field at an FCC Listed OATS up to 3 GHz. Spectrum analyzer, signal generator, and linearly polarized antennas were used to measure radiated harmonics and spurious emissions. The orientation of the EUT and measurement antenna were manipulated to maximize the level of emissions. The EUT was configured to transmit at the highest output power.

For licensed transmitters, the FCC references TIA/EIA-603 as the measurement procedure standard. TIA/EIA-603 Section 2.2.12 describes a method for measuring radiated spurious emissions that utilizes an antenna substitution method:

At an approved test site, the transmitter is place on a remotely controlled turntable, and the measurement antenna is placed 3 meters from the transmitter. The turntable azimuth is varied to maximize the level of spurious emissions. The height of the measurement antenna is also varied from 1 to 4 meters. The amplitude and frequency of the highest emissions are noted. The transmitter is then replaced with a ½ wave dipole that is successively tuned to each of the highest spurious emissions. A signal generator is connected to the dipole (horn antenna for frequencies above 1 GHz), and its output is adjusted to match the level previously noted for each frequency. The output of the signal generator is recorded, and by factoring in the cable loss to the dipole antenna and its gain; the power (dBm) into an ideal ½ wave dipole antenna is determined for each radiated spurious emission.

For the purposes of preliminary measurements, the field strength of the spurious emissions can be measured and compared with a 3 meter limit. The 3 meter limit was calculated to be 82.2 dBuV/m at 3 meters. The final measurements must be made utilizing the substitution method described above and applied against the EIRP limit of -13 dBm.

SPURIOUS RADIATED EMISSIONS

Work Order:	RDIO0001	Date:	10/10/13	
Project:	None	Temperature:	22.7 °C	11111
Job Site:	EV01	Humidity:	39.8% RH	
Serial Number:	092712-074	Barometric Pres.:	1016.3 mbar	Tested by: Brandon Hobbs
EUT:	UV-1G Belt Pack			
Configuration:				
Customer:	Radio Design Group,	Inc.		
Attendees:	None			
EUT Power:	Battery			
Operating Mode:	Тх			
Deviations:	None			
Comments:		comments for EUT ori	entation and frequend	су

Test Specifications

FCC 74H:2013

Test Method ANSI/TIA/EIA-603-C-2004

Freq (MHz)	Antenna Height (meters)	Azimuth (degrees)	Polarity/ Transducer Type	Detector	EIRP (Watts)	EIRP (dBm)	Spec. Limit (dBm)	Compared to Spec. (dB)	Comments
 696.100	1.0	104.0	Vert	PK	6.48E-07	-31.9	-13.0	-18.9	Low Ch. 174.025 MHz, EUT Vert
522.078	1.5	183.0	Horz	PK	1.70E-07	-37.7	-13.0	-24.7	Low Ch. 174.025 MHz, EUT Horz
431.948	1.0	151.0	Horz	PK	1.68E-07	-37.7	-13.0	-24.7	High Ch. 215.975 MHz, EUT Horz
863.898	1.0	340.0	Horz	PK	1.16E-07	-39.4	-13.0	-26.4	High Ch. 215.975 MHz, EUT Horz
696.095	1.0	105.0	Horz	PK	1.13E-07	-39.5	-13.0	-26.5	Low Ch. 174.025 MHz, EUT Horz
863.897	1.4	360.0	Vert	PK	1.03E-07	-39.9	-13.0	-26.9	High Ch. 215.975 MHz, EUT Vert
522.075	1.0	63.0	Vert	PK	1.00E-07	-40.0	-13.0	-27.0	Low Ch. 174.025 MHz, EUT Vert

Freq (MHz)	Antenna Height (meters)	Azimuth (degrees)	Polarity/ Transducer Type	Detector	EIRP (Watts)	EIRP (dBm)	Spec. Limit (dBm)	Compared to Spec. (dB)	Comments
647.933	1.3	221.0	Horz	PK	8.11E-08	-40.9	-13.0	-27.9	High Ch. 215.975 MHz, EUT Horz
647.917	1.0	343.0	Vert	PK	6.44E-08	-41.9	-13.0	-28.9	High Ch. 215.975 MHz, EUT Vert
348.048	1.0	203.0	Horz	PK	5.88E-08	-42.3	-13.0	-29.3	Low Ch. 174.025 MHz, EUT Horz
647.930	1.3	50.0	Horz	PK	5.74E-08	-42.4	-13.0	-29.4	High Ch. 215.975 MHz, EUT On Side
585.005	1.0	45.0	Vert	PK	5.18E-08	-42.9	-13.0	-29.9	Mid Ch. 195 MHz, EUT Vert
585.010	1.6	78.0	Horz	PK	4.95E-08	-43.1	-13.0	-30.1	Mid Ch. 195 MHz, EUT Horz
647.920	1.0	38.0	Horz	PK	4.26E-08	-43.7	-13.0	-30.7	High Ch. 215.975 MHz, EUT Vert
647.918	1.0	163.0	Vert	PK	3.15E-08	-45.0	-13.0	-32.0	High Ch. 215.975 MHz, EUT On Side
431.948	1.4	360.0	Vert	PK	1.93E-08	-47.1	-13.0	-34.1	High Ch. 215.975 MHz, EUT Vert
647.933	2.8	307.0	Vert	PK	1.15E-08	-49.4	-13.0	-36.4	High Ch. 215.975 MHz, EUT Horz
348.050	1.4	249.0	Vert	PK	1.09E-08	-49.6	-13.0	-36.6	Low Ch. 174.025 MHz, EUT Vert
780.005	1.1	53.0	Horz	PK	5.65E-09	-52.5	-13.0	-39.5	Mid Ch. 195 MHz, EUT Horz
390.000	1.0	197.0	Horz	PK	5.54E-09	-52.6	-13.0	-39.6	Mid Ch. 195 MHz, EUT Horz
780.000	1.4	101.0	Vert	PK	3.49E-09	-54.6	-13.0	-41.6	Mid Ch. 195 MHz, EUT Vert
390.000	1.1	99.0	Vert	PK	1.60E-09	-58.0	-13.0	-45.0	Mid Ch. 195 MHz, EUT Vert

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Humidity Temperature Meter	Omegaette	HH311	DTY	3/29/2011	36
Temp./Humidity Chamber	Cincinnati Sub Zero (CSZ)	ZH-32-2-2-H/AC	TBA	NCR	0
DC Power Supply	Topward	TPS-2000	TPD	NCR	0
Multimeter	Tektronix	DMM912	MMH	2/5/2013	24
Attenuator, 'Precision N'	S.M. Electronics	SA18N-06/SM4032	REE	12/11/2012	12
MXG Vector Signal Generator	Agilent	N5182A	TIF	NCR	0
Power Meter	Gigatronics	8651A	SPM	1/9/2012	24
Power Sensor	Gigatronics	80701A	SPL	7/8/2011	36
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	7/30/2013	12
40GHz DC Block	Miteq	DCB4000	AMD	5/16/2013	12
Spectrum Analyzer	Agilent	E4440A	AFD	7/5/2012	24

TEST DESCRIPTION

A direct connect measurement was made between the EUT's antenna cable and a spectrum analyzer. The spectrum analyzer is equipped with a precision frequency reference that exceeds the stability requirement of the EUT.

Measurements were made at the edges of the main transmit band as called out on the data sheets. Testing was done with modulation.

The primary supply voltage was varied from 85 % to 115% of the nominal voltage Using a temperature chamber, the transmit frequency was recorded at the extremes of the specified temperature range $(-30 \degree \text{ to } +50 \degree \text{ C})$ and at $10 \degree \text{C}$ intervals.

		H. H. J. Z. W. M.						
EUT	: UV-1G Belt Pack					Work Order:	RDIO0001	
Serial Number	: 113-008					Date:	10/08/13	
Customer	: Radio Design Group, Inc	·.				Temperature:	22°C	
Attendees						Humidity:	41%	
Project	: None					Barometric Pres.:	1013.1	
Tested by	: Brandon Hobbs		Power: 7.5 VDC			Job Site:	EV06	
TEST SPECIFICAT	TONS		Test Method					
FCC 74H:2013			ANSI/TIA/EIA-603-0	C-2004				
COMMENTS								
None								
DEVIATIONS EDO	A TEOT OTANDARD							
	M TEST STANDARD							
None		T						
Configuration #	1	Signature	7 1					
		Oigricia o		Measured	Assigned	Error	Limit	
				Value (MHz)	Value (MHz)	(ppm)	(ppm)	Result
Low Channel 174.0								
	Voltage: 115%			174.0248	174.025	1.2	50	Pass
	Voltage: 100%			174.0249	174.025	0.6	50	Pass
	Voltage: 85%			174.02485	174.025	0.9	50	Pass
	Temperature: +50°			174.02485	174.025	0.9	50	Pass
	Temperature: +40°			174.02485	174.025	0.9	50	Pass
	Temperature: +30°			174.02485	174.025	0.9	50	Pass
	Temperature: +20°			174.02485	174.025	0.9	50	Pass
	Temperature: +10°			174.0247	174.025	1.7	50	Pass
	Temperature: 0°			174.02475	174.025	1.4	50	Pass
	Temperature: -10°			174.0247	174.025	1.7	50	Pass
	Temperature: -20°			174.02465	174.025	2	50	Pass
Mid Ob 1 405 M	Temperature: -30°			174.0246	174.025	2.3	50	Pass
Mid Channel 195 M	Voltage: 115%			194.9998	195	1	50	Pass
	Voltage: 100%			194.9998	195	1	50	Pass
	Voltage: 85%			194.9998	195	1	50	Pass
	Temperature: +50°			194.99985	195	0.8	50	Pass
	Temperature: +40°			194.99985	195	0.8	50	Pass
	Temperature: +30°			194.9998	195	1	50	Pass
	Temperature: +20°			194.9998	195	1	50	Pass
	Temperature: +10°			194.9997	195	1.5	50	Pass
	Temperature: 0°			194.9997	195	1.5	50	Pass
	Temperature: -10°			194.99965	195	1.8	50	Pass
	Temperature: -20°			194.99955	195	2.3	50	Pass
High Channel 215.9	Temperature: -30°			194.9996	195	2	50	Pass
riigii Gilaililei 215.8	Voltage: 115%			215.97475	215.975	1.2	50	Pass
	Voltage: 100%			215.97475	215.975	1.2	50	Pass
	Voltage: 85%			215.97475	215.975	1.2	50	Pass
	Temperature: +50°			215.9748	215.975	0.9	50	Pass
	Temperature: +40°			215.9748	215.975	0.9	50	Pass
	Temperature: +30°			215.9748	215.975	0.9	50	Pass
	Temperature: +20°			215.9748	215.975	0.9	50	Pass
				215.97465	215.975	1.6	50	Pass
	Temperature: +10°							
	Temperature: 0°			215.97465	215.975	1.6	50	Pass
	Temperature: -10°			215.97455	215.975	2.1	50	Pass
	Temperature: -20°			215.9745	215.975	2.3	50	Pass
	Temperature: -30°			215.9745	215.975	2.3	50	Pass

Low Channel 174.025 MHz, Voltage: 100%						
		Measured	Assigned	Error	Limit	
		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Result
		174 0249	174 025	0.6	50	Pass

	Low Channel 174.025 MHz, Temperature: +50°							
			Measured	Assigned	Error	Limit		
			Value (MHz)	Value (MHz)	(ppm)	(ppm)	Result	
l			174.02485	174.025	0.9	50	Pass	

	Low Channel 1	74.025 MHz, Ter	mperature: +30°		
	Measured	Assigned	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Result
	174 02485	174 025	0.9	50	Pass

	Low Channel 1	74.025 MHz, Ten	mperature: +10°		
	Measured	Assigned	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Result
	174 0247	174 025	1 7	50	Pass

	Low Channel 1	74.025 MHz, Ter	mperature: -10°		
	Measured	Assigned	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Result
	174 0247	174 025	17	50	Pass

	Low Channel 1	174.025 MHz, Ten	nperature: -30°		
	Measured	Assigned	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Result
	174.0246	174.025	2.3	50	Pass

	Mid Chann	el 195 MHz, Volt	age: 100%		
	Measured	Assigned	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Result
	194 9998	195	1	50	Pass

	Mid Channel	195 MHz, Temp	erature: +50°		
	Measured	Assigned	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Result
	194 99985	195	0.8	50	Pass

	Mid Channel	195 MHz, Tempe	erature: +30°		
	Measured	Assigned	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Result
	194.9998	195	1	50	Pass

	Mid Channel	195 MHz, Temp	erature: +10°		
	Measured	Assigned	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Result
	194 9997	195	1.5	50	Pass

		Mid Channe	I 195 MHz, Temp	erature: -10°		
		Measured	Assigned	Error	Limit	
	•	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Result
		194.99965	195	1.8	50	Pass

	Mid Channe	I 195 MHz, Temp	erature: -30°		
	Measured	Assigned	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Result
	194 9996	195	2	50	Pass

	High Channe	I 215.975 MHz, \	/oltage: 100%		
	Measured	Assigned	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Result
	215 97475	215 975	12	50	Pass

	High Channel 2	15.975 MHz, Ter	mperature: +50°		
	Measured	Assigned	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Result
	215 9748	215 975	0.9	50	Pass

	High Channel 2	15.975 MHz, Ter	mperature: +30°		
	Measured	Assigned	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Result
	215 9748	215 975	0.9	50	Pass

		High Channel 2	15.975 MHz, Ter	mperature: +10°		
		Measured	Assigned	Error	Limit	
		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Result
1		215 97465	215 975	1.6	50	Pass

	High Channel 2	215.975 MHz, Ter	nperature: -10°		
	Measured	Assigned	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Result
	215.97455	215.975	2.1	50	Pass

		High Channel 2	215.975 MHz, Ter	mperature: -30°		
		Measured	Assigned	Error	Limit	
_		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Result
		215.9745	215.975	2.3	50	Pass

