Assignment 2

Jialin Kang

e-mail: jkang58@jhu.edu

Question 1. Coverage Analysis [20 pts]

Question 1a. How long is the reference genome?

In linux, use command

```
'samtools faidx ref.fa'
'cat ref.fa.fai'
② jialinkang@DESKTOP-B9I1CPK:/mnt/d/Downloads/computational_genomics/comparative_genomics/assignment1/chrom_10
++> ls
README dna-encode.pl frag180.1.fq frag180.2.fq jump2k.1.fq jump2k.2.fq ref.fa ref.fa.fai
++> samtools faidx ref.fa
++> cat ref.fa.fai
Halomonas 233806 11 70 71
++> __
```

We can know the length of the reference genome is: 233806 bp

Question 1b. How many reads are provided and how long are they? Make sure to measure each file separately

In linux, use command

```
'fastqc frag180.1.fq'
'fastqc frag180.2.fq'
'fastqc jump2k.1.fq'
'fastqc jump2k.2.fq'
```

We can get a html file and zip file of each command.

Basic Statistics

Measure	Value
Filename	frag180.1.fq
File type	Conventional base calls
Encoding	Sanger / Illumina 1.9
Total Sequences	35198
Sequences flagged as poor quality	0
Sequence length	100
%GC	54

Basic Statistics

Measure	Value
Filename	frag180.2.fq
File type	Conventional base calls
Encoding	Sanger / Illumina 1.9
Total Sequences	35198
Sequences flagged as poor quality	0
Sequence length	100
%GC	54

⊘Basic Statistics

Measure	Value
Filename	jump2k.1.fq
File type	Conventional base calls
Encoding	Sanger / Illumina 1.9
Total Sequences	70396
Sequences flagged as poor quality	0
Sequence length	50
%GC	54

Basic Statistics

Measure	Value
Filename	jump2k.2.fq
File type	Conventional base calls
Encoding	Sanger / Illumina 1.9
Total Sequences	70396
Sequences flagged as poor quality	0
Sequence length	50
%GC	54

From those result of basic statistics, we can get:

Name	Reads	Length	Coverage
frag180.1.fq	35198	100	15.05
frag180.2.fq	35198	100	15.05
Jump.2k.1.fq	70396	50	15.05
Jump.2k.2.fq	70396	50	15.04

Question 1c. How much coverage do you expect to have?

See the above chart. So the excepted coverage is 15.

Question 1d. Plot the average quality value across the length of the reads.

frag180.1.fq

frag180.2.fq

Jump.2k.1.fq

Jump.2k.2.fq

Question 2. Kmer Analysis

Question 2a. How many kmers occur exactly 50 times?

Use the command:

```
jellyfish count -m 21 -s 100M -t 10 -C jump2k.1.fq jump2k.2.fq frag180.1.fq frag180.2.fq jellyfish histo mer_counts.jf
```

from the result we can know:

1062 kmers occur exactly 50 times

Question 2b. What are the top 10 most frequently occurring kmers?

Use command:

```
jellyfish dump -c -t mer_counts.jf > kmer_count.fasta
sort -rn -k2 kmer_count.fasta > sort.txt
head -n 10 sort.txt
```

CGCCCACTAATTAGTGGGCGC 94

CCCACTAATTAGTGGGCGCCG 94

GCAGGAATTGAACCTGCGACC 93

GCCCACTAATTAGTGGGCGCC 92

ACGGCGCCCACTAATTAGTGG 92

GGCAGGAATTGAACCTGCGAC 88

GCGCGCCGGCAGGAATTGAA 87

CGCGCCCGGCAGGAATTGAAC 87

GCGCCCGGCAGGAATTGAACC 86

AGGTCGCAGGTTCAATTCCTG 86

Question 2c. What is the estimated genome size based on the kmer frequencies?

Use command:

jellyfish histo -t 10 mer_counts.jf > reads.histo
put the reads.histo file into genomescope website

the genomescope result link:

http://genomescope.org/analysis.php?code=YDrXUbdH3pNuOZz2nw4m

Results

GenomeScope version 1.0 k = 21

property	min	max
Heterozygosity	-0.00321515%	0.0115018%
Genome Haploid Length	233,837 bp	234,211 bp
Genome Repeat Length	-72 bp	-72 bp
Genome Unique Length	233,909 bp	234,283 bp
Model Fit	98.6444%	98.6455%
Read Error Rate	0.800445%	0.800445%

From the results table, we can know that the min Genome haploid length is: 233837 bp

the length of the reference genome is: 233806 bp and the estimation is: 233837~234283, the estimation is very near to the really result. It is a good estimation to the reference genome.

Question 3. De novo assembly

Question 3a. How many contigs were produced?

```
Sudo apt install spades spades --pe1-1 frag180.1.fq --pe1-2 frag180.2.fq --mp1-1 jump2k.1.fq --mp1-2 jump2k.2.fq -o asm -t 4 -k 31 grep -c '>' contigs.fasta we the number of contigs is 4
```

Question 3b. What is the total length of the contigs?

```
samtools faidx contigs.fasta
datamash sum 2 < contigs.fasta.fai
we can get the total length of contigs is 234596
```

Question 3c. What is the size of your large contig?

```
from the sort result we can know the large contig size is 105834
```

Question 3d. What is the contig N50 size?

```
if line[0] == '>':
            name = line.replace('>','')
            seq[name] = ''
            seq[name] += line.replace('\n','').strip()
        line = sys.stdin.readline()
    val_list = []
    for val in seq.values():
        val_list.append(len(val))
    val_list.sort(reverse=True)
    val_half = sum(val_list)/2
    for i in range(len(val_list)):
        if val_half > 0:
            val_half -= val_list[i]
        else:
            N_50 = val_list[i-1]
            break
    return N 50
if __name__ == "__main__":
    N 50 = fafile2dict()
    print('N50 is ', N 50)
```

the N50 of configs.fasts is: 47851

Question 4. Whole Genome Alignment

Question 4a. What is the average identify of your assembly compared to the reference?

Run the command:

```
dnadiff ./ref.fa ./asm/scaffolds.fasta
nucmer ./ref.fa ./asm/scaffolds.fasta
show-coords out.delta
```

the result is as followings:

```
jialinkang@DESKTOP-B9IICPK:/mnt/d/Downloads/computational_genomics/comparative_genomics/assignment2/asm$ show-coords out.delta
/mnt/d/Downloads/computational_genomics/comparative_genomics/assignment2/asm/ref.fa /mnt/d/Downloads/computational_genomics/comparative_genomics/assignment2/a
sm/asm/scaffolds.fasta
NUCMER

[S1] [E1] | [S2] [E2] | [LEN 1] [LEN 2] | [% IDV] | [TAGS]

11 26789 | 1 26779 | 26779 | 26779 | 100.00 | Halomonas NODE_1_length_234626_cov_20.511980
26790 233794 | 27628 234626 | 207005 206999 | 99.98 | Halomonas NODE_1_length_234626_cov_20.511980
```

And from the out.report file we can know:

the average identify is 99.98(1-to-1) and 99.98(M-to-M)

Question 4b. What is the length of the longest alignment

The longest alignment is 207005.

Question 4c. How many insertions and deletions are in the assembly?

There is 1 insertion in the assembly.

Insertions	2	1
InsertionSum	22	848
InsertionAvg	11.00	848.00

The insertion length is 848 bp.

No deletions.

Question 5. Decoding the insertion

Question 5a. What is the position of the insertion on the reference?

The position is scaffolds.fasta NODE_1_length_234626_cov_20.511980 26780-27627

Question 5b. How long is the novel insertion?

848bp

Question 5c. What is the DNA sequence of the encoded message?

The DNA sequence is:

>NODE_1_length_234626_cov_20.511980:26780-27627

CTAACATTCGTCGGTGATGCTTTCATTCCTTGCTGTCCTAAGTCCACTCTGTATCAATGG

CTAGCGTATGCAAGTACAATAGGTCGACCGGCGCAGCGTCGTGTAGGCTTCAGG

ACTAACACAGTTATCACTTATGGTAATCCACCAGGTCGAACGGCGCAACTTCAGCGACTC

Question 5d. What is the secret message?

samtools faidx ./asm/scaffolds.fasta NODE_1_length_234626_cov_20.511980:26780-27627 >
seq.fa
./dna-encode.pl -d seq.fafol

The secret message is:

Congratulations to the Spring 2020 JHU Applied Genomics course... Keep on looking for little green aliens