MAT454 Notes

Jad Elkhaleq Ghalayini

March 4 2020

Today, our goal is to prove the Riemann mapping theorem:

Theorem 1 (Riemann mapping theorem). Any simply connected open $\Omega \subset \mathbb{C}$ except \mathbb{C} itself has a biholo $morphic\ mapping\ onto\ the\ open\ unit\ disc\ D$

We will begin by proving a series of lemmas.

Lemma 1. There is a biholomorphism of Ω onto a bounded open subset of $\mathbb C$

Proof. Let $a \notin \Omega$ be a point, which exists as $\Omega \neq \mathbb{C}$. Then $\frac{1}{z-a}$ is a nonvanishing holomorphic function on the simply connected open set Ω , and so it has a primitive, some holomorphic function g(z). Now, a primitive of $\frac{1}{z-a}$ is like a branch of $\log(z-a)$, which means that

$$z - a = e^{g(z)}$$

One thing this tells us right away is that g(z) is one to one, because z-a is one to one and if the composition of a function with something else is one to one, then that function must be one to one.

Take a point $z_0 \in \Omega$. Since Ω is open and g is one to one, implying it is nonconstant, there is an open disc centered at $g(z_0)$ inside $g(\Omega)$. Now, I claim that...