Name:

Problem 1. Let X be a Hausdorff space and let $K \subset X$ be compact. Let $y \in X \setminus K$. Show that there exist disjoint open sets $U, V \subset X$ such that $y \in U$ and $K \subset V$.

Solution. Since X is Hausdorff, for every $k \in K$ there exist disjoint open sets U_k and V_k such that $y \in U_k$ and $k \in V_k$. Then $\{V_k \mid k \in K\}$ is an open cover of K, and since K is compact, there exist $k_1, \ldots, k_r \in K$ such that $\{V_{k_i} \mid i = 1, \ldots, r\}$ is a finite subcover. Let $U = \bigcap_{i=1}^r U_{k_i}$ and $V = \bigcup_{i=1}^r V_{k_i}$. Then $Y \in U$ and $X \subset V$, and by DeMorgan's Laws, U and V are disjoint. Since V is the union of open sets, V is open, and since U is the intersection of finitely many open sets, U is also open.

Problem 2. Let X be a Hausdorff space and let $K_1, K_2 \subset X$ be compact. Show that there exist disjoint open sets $U_1, U_2 \subset X$ such that $K_1 \subset U_1$ and $K_2 \subset U_2$.

Solution. By Problem 1, for every $y \in K_1$ there exist disjoint open sets U_y and V_y such that $y \in U_y$ and $K_2 \subset V_y$. Then $\{V_y \mid y \in K_1\}$ is an open cover of K_1 , and since K_1 is compact, there exist $y_1, \ldots, y_r \in K_1$ such that $\{V_{y_i} \mid i = 1, \ldots, r\}$ is a finite subcover. Let $U_1 = \bigcup_{i=1}^r U_{y_i}$ and $U_2 = \bigcap_{i=1}^r V_{y_i}$. Then $K_1 \subset U_1$, $K_2 \subset U_2$, and by DeMorgan's Laws, U_1 and U_2 are disjoint. Since U_1 is the union of open sets, U_1 is open, and since U_2 is the intersection of finitely many open sets, U_2 is also open.

Problem 3. Let \mathbb{R}^{∞} denote the set of all sequences of real numbers which are eventually zero, that is, sequences $\vec{x} = (x_n)$ such that $x_n = 0$ for all but finitely many n. Let $X = \mathbb{R}^{\infty}$ and for $\vec{x}, \vec{y} \in X$, define

$$d(\vec{x}, \vec{y}) = \sqrt{\sum_{i=1}^{\infty} (x_i - y_i)^2},$$

where $\vec{x} = (x_n)$ and $\vec{y} = (y_n)$. This make sense without considering convergence, since there are only finitely many nonzero summands. Then (X, d) is a metric space. Let $|\vec{x}| = d(\vec{x}, \vec{0})$. Show that

$$D = \{ \vec{x} \in \mathbb{R}^{\infty} \mid |\vec{x}| \le 1 \}$$

is closed and bounded but not compact.

Solution. Clearly, D is bounded. If $\vec{x} \notin D$, then $r = |\vec{x}| > 1$. Let s = r - 1; then the triangle inequality shows that $B_s(\vec{x})$ is contained in the complement of D, which shows that D^c is open, so D is closed.

Let $\vec{e_i}$ denote the sequence which equals 1 in the i^{th} slot, and equals 0 elsewhere. Let $E = \{\vec{e_i} \mid i = 1, \dots, \infty\}$. Let $U = \mathbb{R}^{\infty} \setminus E$. Then U is open, since every point in U is an interior point.

Let B_i denote the open ball of radius 1/2 about $\vec{e_i}$. Let $\mathcal{C} = \{B_i \mid i = 1, ..., \infty\} \cup \{U\}$. Then \mathcal{C} is an open cover of D which has no finite subcover, which demonstrates that D is not compact.

Problem 4. Use our results regarding compactness and continuity to prove the Intermediate Value Theorem: Let $f:[a,b] \to \mathbb{R}$ be continuous. Suppose that $f(a) < y_0 < f(b)$. Then there exists $x_0 \in [a,b]$ such that $f(x_0) = y_0$.

Proof. Since [a,b] is a compact and connected set, its image f([a,b]) is also compact and connected. A compact connected subset of \mathbb{R} is a closed interval [p,q], where by convention we allow p=q, so that $[p,p]=\{p\}$. Thus $p\leq f(a)< y_0< f(b)\leq q$, so $y_0\in [p,q]=f([a,b])$. Thus $y_0=f(x_0)$ for some $x_0\in [a,b]$.

Problem 5. Use our results regarding compactness and continuity to prove the Extreme Value Theorem: Let $f:[a,b]\to\mathbb{R}$ be continuous. Then there $c,d\in[a,b]$ such that f has a global minimum at c and f has a global maximum at d.

Solution. Since [a,b] is a compact and connected set, its image f([a,b]) is also compact and connected. A compact connected subset of $\mathbb R$ is a closed interval [p,q], where by convention we allow p=q, so that $[p,p]=\{p\}$. Thus f(c)=p and f(d)=q, for some $c,d\in[a,b]$. Clearly, $p\leq f(x)$ and $q\leq f(x)$, for every $x\in[a,b]$, so we have a global minimum and maximum.

Definition 1. Let $X \subset \mathbb{R}$ and let $f: X \to \mathbb{R}$ be continuous.

We say that f is continuous at $x_0 \in X$ if

$$\forall \epsilon > 0 \ \exists \delta > 0 \ \forall x_2 \in X : |x_2 - x_0| < \delta \implies |f(x_2) - f(x_0)| < \epsilon.$$

We say that f is continuous on X if f is continuous at x_1 for every $x_1 \in X$.

We say that f is uniformly continuous on X if

$$\forall \epsilon > 0 \; \exists \delta > 0 \; \forall x_1, x_2 \in X : |x_2 - x_1| < \delta \Rightarrow |f(x_2) - f(x_1)| < \epsilon.$$

Thus, the difference between the concepts of general continuity versus uniform continuity is that for general continuity, the δ may depend on the point x_0 , but for uniform continuity, the same δ works throughout X. Clearly, if f is uniformly continuous, then f is generally continuous.

Problem 6. Let $X \subset \mathbb{R}$ and let $f: X \to \mathbb{R}$ be continuous. Show that if X is compact, then f is uniformly continuous.

Solution. Suppose that X is compact. Let $\epsilon > 0$. Since f is continuous, for every $a \in X$, there exists δ_a such that $|f(x) - f(a)| < \frac{\epsilon}{2}$ whenever $x \in X$ and $|x - a| < \delta_a$.

It is clear that the collection $\{B_{\delta_a/2}(a) \mid a \in X\}$ is an open cover of X, and since X is compact, there is a finite subset $A \subset X$ such that the collection $\mathcal{A} = \{B_{\delta_a/2}(a) \mid a \in A\}$ covers X. Let $\delta = \min\{\frac{\delta_a}{2} \mid a \in A\}$; since A is finite, we know that $\delta > 0$.

Let $x_1, x_2 \in X$ such that $|x_1 - x_2| < \delta$. Since \mathcal{A} covers X, there exists $a \in A$ such that $x_1 \in B_{\delta_a/2}(a)$, so $|x_1 - a| < \delta_a/2$. By the triangle inequality, and since $\delta \leq \delta_a/2$, we have

$$|x_2 - a| \le |x_1 - x_2| + |x_1 - a| < \delta + \delta_a/2 \le \delta_a.$$

Thus $|x_1 - a| < \delta_a$, and $|x_2 - a| < \delta_a$, so

$$|f(x_1) - f(x_2)| \le |f(x_1) - a| + |f(x_2) - a| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Problem 7. Let X and Y be sets, and let $f: X \to Y$. In each case, determine whether the definition of uniform continuity can be extended to the given circumstance.

- (a) $X, Y \subset \mathbb{R}$
- (b) $X, Y \subset \mathbb{R}^2$
- (c) $X \subset \mathbb{R}^n$ and $Y \subset \mathbb{R}^m$
- (d) X and Y are metric spaces
- (e) X is a metric space and Y is a topological space
- (f) X is a topological space and Y is a metric space
- (g) X and Y are topological spaces