Algèbre linéaire et bilinéaire $I - TD_{10}$ 22 Novembre 2022

Exercice 1

Exprimer les systèmes linéaires suivants sous forme matricielle et les résoudre en inversant la matrice :

$$(S_1) \begin{cases} 2x + 4y = 7 \\ -2x + 3y = -14 \end{cases}, \qquad (S_2) \begin{cases} x + z = 1 \\ -2y + 3z = 1 \\ x + z = 1 \end{cases}, \qquad (S_3) \begin{cases} x + t = a \\ x - 2y = b \\ x + y + t = 2 \\ y + t = 4 \end{cases}$$

Exercice 2

Écrire les matrices suivantes sous forme échelonnée, puis échelonnée réduite :

$$\begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 0 \\ -2 & -2 & -3 \end{bmatrix}, \quad \begin{bmatrix} 1 & 0 & 2 \\ 1 & -1 & 1 \\ 2 & -2 & 3 \end{bmatrix}, \quad \begin{bmatrix} 2 & 0 & -2 & 0 \\ 0 & -1 & 1 & 0 \\ 1 & -2 & 1 & 4 \\ -1 & 2 & -1 & -2 \end{bmatrix}$$

Exercice 3

Soit $A = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & 0 \\ 1 & 0 & 2 \end{bmatrix}$. En utilisant l'algorithme du pivot de Gauss, montrer que A est inversible et calculer A^{-1} .

Exercice 4

Pour quelles valeurs du paramètre $t \in \mathbb{R}$ la matrice suivante est-elle inversible? Dans ce cas, déterminer son inverse.

$$A = \begin{bmatrix} 1 & 0 & t \\ 2 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

Exercice 5

Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice nilpotente, c'est-à-dire qu'il existe $p \in \mathbb{N}^*$ tel que $A^p = 0_n$. Montrer que la matrice $I_n - A$ est inversible, et déterminer son inverse.

Exercice 6

Soit $A \in M_{3,2}(\mathbb{R})$ et $B \in M_{2,3}(\mathbb{R})$ matrices de rang 2 vérifiant $(A \cdot B)^2 = A \cdot B$. Montrer que $B \cdot A = I_2$

Exercice 7

Soit $(A, B) \in (M_n(\mathbb{K}))^2$

1. Justifier qu'il existe $(U, V) \in (\mathrm{GL}_n(\mathbb{K}))^2$ tel que

$$rang(U \cdot A + B \cdot V) = \min(n, rang A + rang B)$$

2. On suppose rang $A+\mathrm{rang}\,B\geq n$. Montrer qu'il existe $(U,V)\in (\mathrm{GL}_n(\mathbb{K}))^2$ tel que

$$(U \cdot A + B \cdot V) \in GL_n(\mathbb{K})$$

Exercice 8

Montrer que les matrices :

$$A = \begin{bmatrix} 5 & -2 & -3 \\ -2 & 4 & 2 \\ 4 & -3 & -2 \end{bmatrix} \in \mathcal{M}_3(\mathbb{R}) \quad \text{et} \quad B = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} \in \mathcal{M}_3(\mathbb{R})$$

sont semblables et déterminer $P \in GL_3(\mathbb{R})$ telle que $A = P.B.P^{-1}$.

Exercice 9

Soit $A \in M_3(\mathbb{R})$ non nulle vérifiant $A^3 + A = 0_3$. On suppose que A n'est pas inversible.

- 1. Montrer que A est semblable à $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}.$
- 2. Ce résultat est-il encore vrai si $A \in M_3(\mathbb{C})$?