Functional Analysis Assignment II

YANG, Ze (5131209043)

March 17, 2016

Problem 1. Let (X, d) be metric space. Suppose h is a homeomorphism of X onto X, i.e. h is continuous bijective map and its inverse is continuous. Given $A \subset X$, show that A and h(A) have same category in X.

Proof. Since the sets of second category is defined to be those that are *not* of first category, it suffices to show that

A is of first category $\iff h(A)$ is of first category

 (\Rightarrow) Suppose A is of first category, then we write $A = \bigcup_{i=1}^n A_i$, A_i are nowhere dense sets. Since $h(\cdot)$ is bijective, define $B_i := h(A_i)$, then $h(A) = \bigcup_{i=1}^n B_i$.

Claim: B_i is nowhere dense for all i = 1, 2, ..., n.

Proof of claim: Show by contradiction. Assume otherwise, i.e. B_i is not nowhere dense for some i, i.e. the interior of \bar{B}_i is not empty, denote as O. It is clear that O and $h^{-1}(O)$ are open. We have

$$h^{-1}(O) \subseteq h^{-1}(\bar{B}_i) \subseteq \overline{h^{-1}(B_i)} \tag{1}$$

The second subseteq is due to continuity of $h^{-1}(\cdot)$: pick a point $b \in \bar{B}_i$, either $b \in B_i$ or $\lim_{n \to \infty} b_n = b$, $\{b_n\} \subset B_i$. For the first case, clearly $h^{-1}(b) \in h^{-1}(B_i)$. For the second, since h^{-1} is continuous, we have $h^{-1}(\lim_{n \to \infty} b_n) = \lim_{n \to \infty} h^{-1}(b_n)$, and $\{h^{-1}(b_n)\} \subset h^{-1}(B_i)$. In both cases we can obtain $h^{-1}(b) \in \overline{h^{-1}(B_i)}$ $\forall b \in \bar{B}_i$, gives the proof.

Now that we have (1), note that $\overline{h^{-1}(B_i)} = \overline{h^{-1}(h(A_i))} = \overline{A_i}$; and exists open set $h^{-1}(O) \subseteq \overline{A_i}$ that is not empty. By definition

$$\operatorname{int}(\bar{A}_i) := \bigcup_{Q \subseteq \bar{A}_i, \text{open}} Q \supseteq h^{-1}(O)$$
(2)

is therefore not empty. Contradict the fact that A is of first category, i.e. A_i is nowhere dense. (\Leftarrow) is just a symmetric argument. Assume $h(A) = \bigcup_{k=1}^n B_i$, claim $A_i := h^{-1}(B_i)$ is nowhere dense. Argue by contradiction with using the continuity of $h(\cdot)$.

Problem 2. Show that $\mathcal{C}([a,b])$ is separable.

Proof. It suffices to show there exists a contable dense set contained in C([a, b]). Firstly, we denote

$$\mathcal{P}(\mathbb{Q}) := \left\{ q \middle| q(x) = \sum_{k=0}^{n} a_k x^k; n \in \mathbb{N}, a_k \in \mathbb{Q}, a_n \neq 0 \right\}$$
$$\mathcal{P}(\mathbb{R}) := \left\{ p \middle| p(x) = \sum_{k=0}^{n} b_k x^k; n \in \mathbb{N}, b_k \in \mathbb{R}, b_n \neq 0 \right\}$$

(Step.1) We show that $\mathcal{P}(\mathbb{Q})$ is countable. Define $\mathcal{P}_n := \{q | q(x) = \sum_{k=0}^n a_k x^k; a_k \in \mathbb{Q}, a_n \neq 0\}$. Then $|\mathcal{P}_n| = |\mathbb{Q} \setminus \{0\} \times \mathbb{Q}^{n-1}|$, and $\mathcal{P}(\mathbb{Q}) = \bigcap_{k=0}^{\infty} \mathcal{P}_n$. Countable union of contable set, cartesian product of finite number of countable sets are both countable, which gives the proof of $\mathcal{P}(\mathbb{Q})$'s countability. (Step.2) WLOG assume $x \in [0, 1]$. Due to (Weietrass), for all $f \in \mathcal{C}([0, 1])$, we can find $p \in \mathcal{P}(\mathbb{R})$ such

(Step.2) WLOG assume $x \in [0,1]$. Due to (Weietrass), for all $f \in \mathcal{C}([0,1])$, we can find $p \in \mathcal{P}(\mathbb{R})$ such that $|f - p_n| < \frac{1}{2n}$.

Then for this p_n with however large n, we can find $q_n \in \mathcal{P}(\mathbb{Q})$ with same n. Further more, since \mathbb{Q} is dense in \mathbb{R} , for $b_k \in \mathbb{R}$, we can find $a_k \in \mathbb{Q}$ for every k, such that $|a_k - b_k| < \frac{1}{2n^2}$ uniformly. Therefore

$$|q_n - p_n| = \left| \sum_{k=0}^n a_k x^k - b_k x^k \right| \le \sum_{k=0}^n |a_k - b_k| |x^k| \le \sum_{k=0}^n |a_k - b_k| < \frac{1}{2n}$$
 (3)

Hence $|f - q_n| \leq |f - p_n| + |q_n - p_n| < \frac{1}{n} \to 0$, i.e. $q_n \to f$. Since $\{q_n\} \subset \mathcal{P}(\mathbb{Q})$, we can conclude that $\overline{\mathcal{P}(\mathbb{Q})} \supseteq \mathcal{C}([0,1])$. $\overline{\mathcal{P}(\mathbb{Q})} \subseteq \mathcal{C}([0,1])$ is trivial. So we have $\mathcal{P}(\mathbb{Q})$ is dense in $\mathcal{C}([0,1])$. (Step.3) We extend this to [a,b] by defining

$$h := \mathcal{C}([0,1]) \to \mathcal{C}([a,b])$$

with $(h \circ f)(x) := f(a + (b - a)x)$. Clearly h is isometry, and h is invertible. We conclude that $h^{-1}(\mathcal{P}(\mathbb{Q}))$ is dense in $\mathcal{C}([a,b])$, implies that the latter is separable.

Problem 3. Show that every sequentially compact metric space K is separable.

Proof. K is sequentially compact $\Rightarrow K$ is totally bounded; i.e. for all $\epsilon > 0$, there exists a finite ϵ -net s.t. $K \subseteq \bigcup_{i=1}^{n_{\epsilon}} B_{\epsilon}(x_i)$.

Let $\epsilon = 1$, we find $U_1 := \bigcup_{i=1}^{n_1} B_1(x_i)$ is a union of n_1 balls. Denote

$$C_1 := \{x_i : B_1(x_i) \text{ Belongs to finite 1-net that covers } K\}$$

I.e. C_1 is the collection of all *center points* of balls in 1-net.

Do this for $\epsilon = \frac{1}{2}, \frac{1}{3}, ..., \frac{1}{n}, ...$, we obtain $\{C_1, C_2, ..., C_n, ...\}$ as collection of center points of the balls that constituting $\frac{1}{n}$ -net. Then for any $z \in K$, there exists $x_1 \in C_1, x_2 \in C_2, ..., x_n \in C_n, ...$ such that $d(z, x_n) \leq \frac{1}{n}$. Hence we can obtain a sequence $x_n \to z$, with $\{x_n\} \subset \bigcup_{n=1}^{\infty} C_n$, which implies

$$\overline{\bigcup_{n=1}^{\infty} C_n} = K \tag{4}$$

I.e. $\bigcup_{n=1}^{\infty} C_n$ is dense in K. And $\bigcup_{n=1}^{\infty} C_n$ is also countable since it's countable union of sets that each has finite number of elements. We conclude that K is separable.

Problem 4. Let K be a compact subset in the complete metric space X. Suppose $f \in \mathcal{C}(K,\mathbb{R})$. Show that f is uniformly continuous.

Proof. Firstly since $f: K \to \mathbb{R}$ is continuous, $\forall \epsilon > 0$, $\forall x, y \in K$, there exists δ_x relevant to x, such that $d(x,y) < \delta_x \Rightarrow d(f(x),f(y)) < \epsilon$, i.e.

$$f(B_{\delta_x}(x)) \subseteq B_{\epsilon}(f(x)) \tag{5}$$

For same ϵ , exhaust all $x \in K$. Then clearly $\bigcup_{x \in K} B_{\frac{\delta_x}{2}}(x)$ is an open cover of K. Since K is compact, there exists a finite subcover $U := \bigcup_{j=1}^n B_{\frac{\delta_j}{2}}(x_j)$.

Claim. $\forall \epsilon > 0, \forall x, y \in K$, there exists $\delta = \min_{j=1,\dots,n} \frac{\delta_j}{2}$ uniformly, we have $d(x,y) < \delta \Rightarrow d(f(x),f(y)) < \epsilon$. Proof of Claim. Suppose $x \in B_{\frac{\delta_j}{2}}(x_j)$ for some ball j in the finite subcover U, then the choice of δ ensures that y must be in the ball with same center and radius δ_j . Because

$$d(x_i, y) \le d(x_i, x) + d(x, y) = \frac{\delta_j}{2} + \min_{j=1,\dots,n} \frac{\delta_j}{2} \le \delta_j$$

$$(6)$$

Hence $x, y \in B_{\delta_j}(x_j)$, and by the initial choice of δ_j : $f(B_{\delta_j}(x_j)) \subseteq B_{\epsilon}(f(x_i))$, implies that $f(x), f(y) \in B_{\epsilon}(f(x_i))$. Hence $d(x, y) < \delta \Rightarrow d(f(x), f(y)) < \epsilon$, proves uniform continuity.

Problem 5. Let K be a compact subset in the complete metric space X. Suppose $f \in \mathcal{C}(K,\mathbb{R})$. Show that f is bounded and attains its maximum and minimum.

Proof. Step.1 We first show that compactness is continuous-invariant, i.e. for $f: K \to W$ continuous, K compact, then f(K) is also compact.

For arbitrary open cover $U = \bigcup_{i \in A} O_i$ of f(K), $f^{-1}(U)$ is a cover of K. Since $f^{-1}(U) = \bigcup_{i \in A} f^{-1}(O_i)$, and f is continuous $\Rightarrow f^{-1}(O_i)$ are open sets. Hence $f^{-1}(U)$ is an open cover of $K \Rightarrow \exists \bigcup_{i=1}^n f^{-1}(O_i) \subseteq f^{-1}(U)$ and is a finite cover of K. Therefore $\bigcup_{i=1}^n O_i$ is a finite cover of f(K). Proves that f(K) is

compact.

Step.2 Since $f(K) \subseteq \mathbb{R}$ is compact, it is bounded and closed. Since it's bounded, $a := \inf f(K)$ and $b := \sup f(K)$ exists and are limit points of f(K). Moreover since f(K) is closed $\Rightarrow a, b \in f(K)$. Therefore, $\forall x \in K$, $a \le f(x) \le b$; and $\exists x_a, x_b \in K$, s.t. $f(x_a) = a, f(x_b) = b$. Which proves that f is

bounded on K and attains its maximum and minimum.

Problem 6. Let $\{f_n \in \mathcal{C}([0,1]) | n \in \mathbb{N}\}$ be equicontinuous. If $f_n \to f$ pointwise, show that f is continuous

Proof. $\mathcal{F} = \{f_n \in \mathcal{C}([0,1]) | n \in \mathbb{N}\}\$ is equicontinuous, and [0,1] is compact $\Rightarrow \mathcal{F}$ is uniformly equicontinuous. So $\forall n \in \mathbb{N}, \ \forall x \in [0,1], \ \forall \epsilon > 0$, there exists $\bar{\delta}$ having nothing to do with n, x, such that $f_n(B_{\bar{\delta}}(x)) \subseteq B_{\frac{\epsilon}{3}}(f_n(x))$.

Since $f_n \to f$ pointwise, $\forall \epsilon > 0$, $\forall x \in [0,1]$, $\exists N \in \mathbb{N}$, s.t $d(f(x), f_n(x)) < \frac{\epsilon}{3}$ as long as n > N.

Now we can show the continuity of f. Consider $\forall \epsilon > 0$, there exists $\delta = \bar{\delta}$. Then due to uniform equicontinuity of \mathcal{F} : $f_n(B_{\delta}(x)) \subseteq B_{\frac{\epsilon}{3}}(f_n(x))$ regardless of n, x. Then pick n = N+1, we have $d(f_n(x), f(x)) < \frac{\epsilon}{3}$. Finally restrict $d(x, y) < \delta$, we get

$$d(f(x), f(y)) \le d(f(x), f_n(x)) + d(f_n(x), f_n(y)) + d(f_n(y) - f(y))$$

$$\le \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3}$$

$$= \epsilon$$
(7)

Implies that f is continuous.

Problem 7. Show that $T: \mathbb{R} \to \mathbb{R}$ defined by

$$T(x) = \frac{\pi}{2} + x - \tan^{-1} x$$

has no fixed point. And

$$|T(x) - T(y)| < |x - y|$$
 For all $x \neq y \in \mathbb{R}$.

Illustrate the reason why this example does not contradict the contraction mapping thm.

Proof. Suppose T has fixed point \bar{z} , then $T\bar{z} = \bar{z} \Rightarrow \frac{\pi}{2} - \tan^{-1}\bar{z} = 0$, which has no solution. Hence T has no fixed point.

Then consider $\forall x \neq y \in \mathbb{R}$. Since T is continuous on \mathbb{R} , by mean-value theorem, there exists $\xi \in [x,y]$

$$|Tx - Ty| = |T'(\xi)||x - y|$$

$$= \left|1 - \frac{1}{1 + \xi^2}\right||x - y|$$

$$= \frac{\xi^2}{1 + \xi^2}|x - y| < |x - y|$$
(8)

This does not contradict the contraction mapping thm because T is Not a contraction map. By definition, $T: \mathbb{R} \to \mathbb{R}$ is contraction map if there exists $L \in [0,1)$ regardless of x,y, such that $d(Tx,Ty) \leq Ld(x,y)$ (\triangle) for all $x,y \in \mathbb{R}$.

But for this T it is clear that RHS in equation $(9) \to |x-y|$ when $\xi \to \infty$. For example, we let y = x+1 and $x \to \infty$. Then we can't find L strictly less than 1 such that $d(Tx, Ty) \le Ld(x, y)$. Clearly this implies that we can't find L < 1 for all $x \ne y \in \mathbb{R}$ to make (\triangle) hold. Therefore T is not contraction map on \mathbb{R} .

Problem 8. The following integral equation for $f:[-a,a]\to\mathbb{R}$ arises in a model of gas particles on a line:

$$f(x) = 1 + \frac{1}{\pi} \int_{-a}^{a} \frac{1}{1 + (x - y)^2} f(y) dy$$
 for $-a \le x \le a$.

Show that this equation has unique, bounded, continuous solution for $0 < a < \infty$. Further show that the solution is non-negative. Also discuss the circumstance when $a = \infty$.

Proof. (Step.1) Define functional $T: \mathcal{C}[-a,a] \to \mathcal{C}[-a,a]$, such that

$$Tf := 1 + \frac{1}{\pi} \int_{-a}^{a} \frac{1}{1 + (x - y)^2} f(y) dy \tag{9}$$

It is clear that RHS is continuous for $-a \le x \le a$. Define $d(f,g) := \sup_{x \in [-a,a]} |f(x) - g(x)|$, then

$$|Tf - Tg| = \left| \frac{1}{\pi} \int_{-a}^{a} \frac{1}{1 + (x - y)^{2}} (f(y) - g(y)) dy \right|$$

$$\leq \left| \frac{1}{\pi} \int_{-a}^{a} \frac{1}{1 + (x - y)^{2}} dy \right| d(f, g)$$

$$= \left| \frac{-1}{\pi} \int_{x - a}^{x + a} \frac{1}{1 + (x - y)^{2}} d(x - y) \right| d(f, g)$$

$$= \left| \frac{1}{\pi} \left(\tan^{-1} (x - a) - \tan^{-1} (x + a) \right) \right| d(f, g)$$

$$\leq \frac{2}{\pi} \tan^{-1} (2a) \cdot d(f, g)$$
(10)

Denote $L:=\frac{2}{\pi}\tan^{-1}(2a)$, we have $d(Tf,Tg)\leq Ld(f,g)$. When a is finite, L<1. Hence d(Tf,Tg)<1 $d(f,g) \Rightarrow T$ is a contraction map on $\mathcal{C}[-a,a]$, which is also complete.

By Contraction mapping Thm. we know that Tf = f has unique fixed point $\bar{f} \in \mathcal{C}[-a, a]$. Hence $\bar{f}(x)$ is unique solution of the equation, and is continuous. Since [-a,a] is compact $\Rightarrow \bar{f}$ is also bounded.

(Step.2) Now we show \bar{f} is non-negative. By the fact that T is contraction map, we can approach by newton's method. I.e. let $g_n := Tg_{n-1}$, then $g_n \to \bar{f}$. We pick $g_0 = 0$. Then $g_1 = Tg_0 = 1 \ge 0$. Now we prove by **Induction**. Assume $g_n \ge 0 \ \forall x \in [-a, a]$, then

$$g_{n+1}(y) = 1 + \frac{1}{\pi} \int_{-a}^{a} \frac{1}{1 + (x - y)^2} g_n(y) dy \ge 1 \ge 0$$
(11)

So $g_n \ge 0$ for all $n \ge 0$. Since inequality is preserved in limit, we have $\bar{f} \ge 0$ as desired. • When $a \to \infty$, we have $L = \lim_{a \to \infty} \frac{2}{\pi} \tan^{-1}(2a) = 1$, hence $d(Tf, Tg) \le d(f, g)$. T is no longer a contraction map. In fact I have checked that Tf = f has no continuous and bounded solution under this circumstance.

Problem 9. Show there is a unique solution for following nonlinear BVP when constant λ has sufficiently small absolute value, where $f:[0,1]\to\mathbb{R}$ is a given continuous function.

$$\begin{cases} -u_{xx} + \lambda \sin u = f(x) \\ u(0) = 0, \ u(1) = 0 \end{cases}$$

Proof. (Step.1) First we claim without proof (it's PDE class's business) that solving the given BVP is equivalent to solving Tu = u, where $T: \mathcal{C}[0,1] \to \mathcal{C}[0,1]$,

$$Tu := \int_0^1 [f(y) - \lambda \sin(u(y))] G(x, y) dy$$

$$\tag{12}$$

Where

$$G(x,y) = \begin{cases} x(1-y) & 0 \le x \le y \le 1\\ y(1-x) & 0 \le y \le x \le 1 \end{cases}$$
 (13)

is Green's function of $-\partial^2/\partial x^2$ in 1-D given boundary condition u(0) = u(1) = 0. We also define

¹By Mathematica.

 $d(u,v) := \sup_{x \in [0,1]} |u(x) - v(x)|$. Then we have:

$$|Tu - Tv| = \left| \int_0^1 \lambda[\sin v(y) - \sin u(y)] G(x, y) dy \right|$$

$$\leq |\lambda| \left| \int_0^1 G(x, y) dy \right| d(\sin v, \sin u)$$

$$= |\lambda| d(\sin v, \sin u) \left| \int_0^x y(1 - x) dy + \int_x^1 x(1 - y) dy \right|$$

$$= |\lambda| d(\sin v, \sin u) \left| \frac{x^2}{2} (1 - x) + x(\frac{1}{2} - x + \frac{x^2}{2}) \right|$$

$$= |\lambda| d(\sin v, \sin u) \left| \frac{x - x^2}{2} \right|$$

$$\leq |\lambda| d(\sin v, \sin u)$$
(14)

Hence $d(Tu, Tv) \leq |\lambda| d(\sin v, \sin u)$. We let $\lambda = \frac{1}{2}$, Then T is a contraction map. Since $\mathcal{C}[0,1]$ is complete, by contraction mapping theorem, Tu = u has unique solution.

Problem 10. Prove the following theorem. (Thm.1) Given linear space X.

- 1. The sets $\{0\}$ and X are linear subspaces of X.
- 2. The sum of any collection of subspaces is a subspace.
- 3. The intersection of any collection of subspaces is a subspace.
- 4. The union of a collection of subspaces totally ordered by inclusion is a subspace.

Proof. (Thm.1)

- 1. Really trivial.
- 2. $Y_{\alpha} \subset X$ is linear subspace for index $\alpha \in A$. Consider any $x, y \in \sum_{\alpha} Y_{\alpha}$, by definition we can write $x = \sum_{\alpha} x_{\alpha}, y = \sum_{\alpha} y_{\alpha}$ with $x_{\alpha}, y_{\alpha} \in Y_{\alpha}$. Since Y_{α} is linear subspace $\Rightarrow ax_{\alpha} + by_{\alpha} \in Y_{\alpha}$. So

$$ax + by = a\sum_{\alpha} x_{\alpha} + b\sum_{\alpha} y_{\alpha} = \sum_{\alpha} ax_{\alpha} + by_{\alpha} \in \sum_{\alpha} Y_{\alpha}$$
 (15)

- 3. Y_{α} is linear subspace for index $\alpha \in A$. Then for $x, y \in \bigcap_{\alpha} Y_{\alpha}$, we have x, y in Y_{α} for all α . Hence $ax + by \in Y_{\alpha}$ for all $\alpha \Rightarrow ax + by \in \bigcap_{\alpha} Y_{\alpha}$, finished the proof.
- 4. $Y_n \subset X$ is linear subspace for all $n \in \mathbb{N}$; $Y_n \subseteq Y_{n+1}$. Consider $x, y \in \bigcup_{n \geq 1} Y_n$, there exists $p,q \geq 1$ such that $x \in Y_p, y \in Y_q$. WLOG assume $p \leq q$, then by inclusion $x \in \overline{Y_p} \subseteq Y_q$. Therefore $ax + by \in Y_q \subseteq \bigcup_{n>1} Y_n$, finished the proof.

Problem 11. X is linear space, Y is linear subspace of X. For $x_1, x_2 \in X$, denote $x_1 \equiv x_2 \mod Y$ if $x_1 - x_2 \in Y$. Verify the followings

- 1. If $x_1 \equiv z_1, x_2 \equiv z_2$, then $x_1 + x_2 \equiv z_1 + z_2 \mod Y$.
- 2. If $x_1 \equiv z_1$, then $kx_1 \equiv kz_1 \mod Y$.

Proof. Both are clear by the fact that Y is linear subspace. Since $x_1 - z_1, x_2 - z_2 \in Y \Rightarrow (x_1 - z_1) + z_1 = 0$ $(x_2-z_2) \in Y$, i.e. $(x_1+x_2)-(z_1+z_2) \in Y$.

Since
$$x_1 - z_1 \in Y \Rightarrow k(x_1 - z_1) = kx_1 - kz_1 \in Y$$
.

Problem 12. Prove the following theorems. (Thm.3)

1. The image of a linear subspace Y of X under a linear map $M: X \to U$ is a linear subspace of U.

2. The inverse image under M of a linear subspace V of U is a linear subspace of X.

(Thm.4) Let K be a convex subset of a linear space X over the reals. Suppose that $x_1, ..., x_n \in K$; then so does every x of the form

$$x = \sum_{j=1}^{n} a_j x_j$$
 where $a_j \ge 0, \sum_{j=1}^{n} a_j = 1$ (†)

Proof. (Thm.3) $\forall u_1, u_2 \in MY$, we denote $My_1 = u_1, My_2 = u_2$ for $y_1, y_2 \in Y$. Since M is a linear map:

$$u_1 + u_2 = My_1 + My_2 = M(y_1 + y_2) \in MY$$

 $ku_1 = kMy_1 = M(ky_1) \in MY$
(16)

indicates that MY is a linear subspace of U. Also since M^{-1} is a linear map. $\forall z_1, z_2 \in M^{-1}V$, we denote $Mz_1 = v_1, Mz_2 = v_2$ for $v_1, v_2 \in V$.

$$z_1 + z_2 = \mathbf{M}^{-1}v_1 + \mathbf{M}^{-1}v_2 = \mathbf{M}^{-1}(v_1 + v_2) \in \mathbf{M}^{-1}V$$

$$kz_1 = k\mathbf{M}^{-1}v_1 = \mathbf{M}^{-1}(kv_1) \in \mathbf{M}^{-1}V$$
(17)

Bespeaks that $M^{-1}V$ is a linear subspace of X.

Proof. (Thm.4) (Induction Proof) n = 1 is trivial, n = 2 is the definition of convexity. Assume theorem is true when n = k, then when n = k + 1

$$\sum_{n=1}^{k+1} a_n x_n = (1 - a_{k+1}) \sum_{n=1}^k \frac{a_n}{1 - a_{k+1}} x_n + a_{k+1} x_{k+1}$$
(18)

Since we have $\sum_{1}^{k+1} a_n = 1$, therefore $\sum_{1}^{k} a_n = 1 - a_{k+1} \Rightarrow \sum_{1}^{k} \frac{a_n}{1 - a_{k+1}} = 1$. So by n = k assumption, $y := \sum_{1}^{k} \frac{a_n}{1 - a_{k+1}} x_n \in K$, i.e. $RHS = (1 - a_{k-1})y + a_{k+1}x_{k+1}$. It belongs to K by defintion of convex set and the fact that $y, x_{k+1} \in K$.

Problem 13. Prove the following theorems.

(Thm.5) Let X be a linear space of the reals.

- 1. The empty set is convex.
- 2. A singleton is convex.
- 3. Every linear subspace of X is convex.
- 4. The sum of two convex subsets is convex.
- 5. If K is convex, so is -K.
- 6. The intersection of an arbitrary collection of convex sets is convex.
- 7. Let $\{K_j\}$ be a collection of convex subsets that is totally ordered by inclusion. Then their union is convex.
- 8. The image of a convex set under a linear map is convex.
- 9. The preimage of a convex set under a linear map is convex.

(Thm.6) Define Convex Hull of S as the intersection of all convex sets containing S, denote S^{co} . Show that

- 1. S^{co} is the smallest convex set containing S.
- 2. S^{co} consists of all convex combinations (†) of points of S.

Proof. $(Thm.5) \bullet (1)$ trivial since there is no convex combinations. $\bullet (2)$ trivial since the only convex combination is just the singleton itself. $\bullet (3)$ trivial since convex combination is a special linear combination.

• (4) Denote $K := K_1 + K_2$, K_1, K_2 convex. Pick any $x, y \in K$, form any convex combination $(1 - \lambda)x + \lambda y = (1 - \lambda)(x_1 + x_2) + \lambda(y_1 + y_2) = [(1 - \lambda)x_1 + y_1] + [(1 - \lambda)x_2 + \lambda y_2]$ for which we have $(1 - \lambda)x_1 + y_1 \in K_1$, $(1 - \lambda)x_2 + y_2 \in K_2$. Therefore $x + y \in K$.

- (5) $x, y \in -K$, then $-x, -y \in K \Rightarrow -(1 \lambda)x \lambda y \in K \Rightarrow (1 \lambda)x + \lambda y \in -K$
- (6) Denote $K := \bigcap_{\alpha} K_{\alpha}$. Pick any $x, y \in K$, then $x, y \in K_{\alpha}$ for all α . Hence convex combination $(1 - \lambda)x + \lambda y \in K_{\alpha}$ for all α , so it is in K.
- (7) Consider $K_n \subseteq K_{n+1}$, $K := \bigcup_{k \ge 1} K_n$. Clearly $K_n \nearrow K$. For $x, y \in K$, $x \in K_p$, $y \in K_q$ for some p,q. So $x,y \in K_{\max\{p,q\}}$, which is convex $\Rightarrow (1-\lambda)x + \lambda y \in K_{\max\{p,q\}} \subseteq K$. • (8) $M: X \to Z$ is linear map. $\forall x,y \in MK$ we have $M^{-1}x, M^{-1}y \in K$. By linearity of M, Convex
- combination

$$(1 - \lambda)M^{-1}x + \lambda M^{-1}y = M^{-1}((1 - \lambda)x + \lambda y) \in K$$
(19)

 $\Rightarrow (1 - \lambda)x + \lambda y \in MK.$

• (9) $M: V \to X$. $\forall x, y \in M^{-1}K$ we have $Mx, My \in K$.

$$(1 - \lambda)\mathbf{M}x + \lambda\mathbf{M}y = \mathbf{M}((1 - \lambda)x + \lambda y) \in K$$
(20)

 $\Rightarrow (1 - \lambda)x + \lambda y \in \mathbf{M}^{-1}K.$

Proof. (Thm.6) By its definition

$$S^{co} := \bigcap_{S_{\alpha} \text{convex}, S \subseteq S_{\alpha}} S_{\alpha} \tag{21}$$

So $\forall \alpha, S_{\alpha} \supseteq S^{co}$. Inplies that S^{co} is contained in all convex sets containing S. $\forall x_1,...,x_n \in S \subseteq S^{co}$, since S^{co} is convex, and combinations x of the form

$$x = \sum_{j=1}^{n} a_j x_j$$
 where $a_j \ge 0, \sum_{j=1}^{n} a_j = 1$ (†)

Should be $x \in S^{co}$, by (Thm.4) shown in problem 12.

Problem 14. Prove the following theorems.

(Thm.7) Let K be a convex set, E an extreme subset of K and F an extreme subset of E. Then F is an extreme subset of K.

(Thm.8) Let M be linear map of linear space X into linear space U. Let K be a convex subset of U, Ean extreme subset of K. Then the inverse image of E is either empty or an extreme subset of the inverse image of K.

Give an example to show that the image of an extreme subset under a linear map need not be an extreme subset of the image.

Proof. (Thm. 7) Since E an extreme subset of $K \Rightarrow E$ convex and non-empty. F is extreme subset of E \Rightarrow F is also convex and non-empty by definition.

Now it suffices to check second property. $\forall x \in F$ that can be written as $x = (y + z)/2, y, z \in K$; note that $F \subseteq E$, we have $x \in E$. So by the fact that E is extreme subset of $K \Rightarrow y, z \in E$.

Now that
$$x = (y+z)/2 \in F$$
, $y, z \in E$, F is extreme subset of $K \Rightarrow y, z \in F$.

Proof. (Thm.8) $M: X \to U$. E is extreme subset of convex $K \subset U$. Then if $M^{-1}(E)$ is non-empty, it must be convex (due to Thm.5-9). Furthermore, $M^{-1}K$ is also convex.

 $\forall x \in \mathbf{M}^{-1}E$ that can be written as $x = (y+z)/2, y, z \in \mathbf{M}^{-1}K$; we have $\mathbf{M}y, \mathbf{M}z \in K, \mathbf{M}x \in E$. And since M is linear map,

$$\mathbf{M}x = \mathbf{M}\left(\frac{y+z}{2}\right) = \frac{\mathbf{M}y + \mathbf{M}z}{2} \tag{22}$$

Since E is extreme subset of K, by definition we have $My, Mz \in E$. Therefore $y, z \in M^{-1}E$ as desired. We obtain: $\forall x \in \mathbf{M}^{-1}E$ that can be written as $x = (y+z)/2, y, z \in \mathbf{M}^{-1}K \Rightarrow y, z \in \mathbf{M}^{-1}E$. Therefore in this case $M^{-1}E$ is extreme set of $M^{-1}K$.

(Exercise 9) Map $M: [0,1]^2 \to [0,1], (x,y) \mapsto x$. M is a linear map, because

$$aM(x_1, y_1) + bM(x_2, y_2) = ax_1 + bx_2 = M(a(x_1, y_1) + b(x_2, y_2))$$
(23)

It is clear that both $[0,1]^2$ and [0,1] are convex. Furthermore, take $E:=\{(x,y)|0.3\leq x\leq 0.4,y=0\}\subset \mathbb{R}$ $[0,1]^2$. E is a extreme subset of it. But $ME = [0.3, 0.4] \subset [0,1]$ is not a extreme subset of [0,1].