Multi-Objective Design Optimization of Piezoelectric Energy Harvesting System for UAVs SEEDA-CECNSM 2021, 24-26 Sept, Preveza, Greece

Foutsitzi Georgia¹, Gogos Christos¹, Magklaras Aris², & Antoniadis Nikolaos¹

¹Dept. of Informatics and Telecommunications, University of Ioannina

²Dept. of Electrical and Computer Engineering, University of Patras

25/9/2021
This presentation can be downloaded from https://bit.ly/3zE8Yb3

Energy harvesting in UAVs

- Energy harvesting from ambient energy sources, such as various sources of vibrations has become a practical alternative to conventional power sources
- We examine the possibility of embedding piezoceramics in wing spars of Unmanned Aerial Devices (UAVs)

A weather drone (UAV)

The multi-objective nature of the problem

- The aim is to keep the UAV's fly-ability intact, while contributing extra energy to the UAV
- Modification: aluminum wing spar ⇒ generator wing spar
- Constraint: upper limit on mass addition
- Two objectives:
 - ◆ output power of the generator spar
 - ② ↓ mass of the structure
- A Finite Element Model was developed
- 3 multi-objective algorithms were exercised

 The structure consists of a host metal plate

A wing spar

 The structure consists of a host metal plate with piezoelectric layers embedded on its top and bottom surfaces (bi-morph)

Piezoelectric harvester

- The structure consists of a host metal plate with piezoelectric layers embedded on its top and bottom surfaces (bi-morph)
- The piezoelectric layers are poled through the z-direction and are covered by continuous electrodes with negligible thickness

- The structure consists of a host metal plate with piezoelectric layers embedded on its top and bottom surfaces (bi-morph)
- The piezoelectric layers are poled through the z-direction and are covered by continuous electrodes with negligible thickness
- The electrodes of the top and bottom (identical) piezoelectric layers are connected to an external resistance R

Problem formulation (1/2)

- The FEM formulation is based on laminated plate theory combined with the first-order shear deformation theory (FSDT) for which each piezoelectric layer has one additional electrical degree of freedom.
- This work extends the following work:
 C. De Marqui Jr, A. Erturk, D.J.
 Inman, "An electromechanical finite element model for piezoelectric energy harvester plates", Journal of Sound and Vibration 327 (2009), 9–25

The governing piezoaeroelastic equations for the generator wing are:

$$[M] \left\{ \ddot{d} \right\} + [C] \left\{ \dot{d} \right\} + [K] \left\{ d \right\} + [\Theta] v = \left\{ m^* \right\} \ddot{w}_b$$
$$- [\Theta]^T \left\{ \dot{d} \right\} + C_p \dot{v} + \frac{v}{R} = 0$$

where

- {d} is the vector of mechanical coordinates,
- [M] is the mass matrix,
- [K] is the stiffness,
- [C] is the mechanical damping matrix,
- C_p is the effective capacitance,
- $[\Theta]$ is the effective electromechanical coupling vector, $\{m^*\}$ is an effective mass,
- R is the load resistance,
- \boldsymbol{v} is the voltage across the load

Problem formulation (2/2)

- Some part of the aluminum material (Al 2024-T3) is replaced by the piezoceramic material (PZT-5A)
- L* is the % of spar's length that the PZT covers
- h* = is the % of spar's height that the PZT covers (thickness)
- f_1 is the generated power (negated)
- f_2 is the added mass

min
$$F(L^*, h^*, R) \equiv (f_1, f_2)$$

s.t. $0 \le L^* \le 1.0$
 $0 \le h^* \le 0.5$
 $1 \le R \le 600$ $(k\Omega)$
 $f_2 \le 0.3267$

Fly-ability constraint

Mass densities:

The added mass due to the piezoelectric layers should not exceed 10% of the mass of the original aluminum plate.

PZT-5A
$$\rightarrow$$
 7800 kg/m^3

Al 2024-T3 $\to 2750 kg/m^3$

Multi-objective optimality

- 3 state of the art multi-objective algorithms are tested against the constrained optimization problem: NSGA-II, NSGA-III, GDE3
- All 3 algorithms:
 - retain a population of solutions that evolve over generations
 - produce a front of Pareto optimal solutions
- We examine how good are the produced solutions by employing suitable metrics for multi-objective optimization

Pareto front - non dominated solutions

The concept of dominance:

- x₁ dominates x₂ if
 - x₁ is no worse than x₂ in all objectives
 - x₁ is strictly better that x₂
 in at least one objective
- Pareto front: set of Pareto optimal solutions (those that are not dominated by any other solutions)

Example of a Pareto front min(f1, f2)

NSGA-II (2002)

- The 2 goals of the Non-dominated Sorting Genetic Algorithm II are:
 - Find solutions as close as possible to the Pareto optimal front
 - Find solutions as diverse as possible in the obtained non dominated front (by exploiting crowding distance)

```
Procedure NSGA-II
  Input: N', q, f_k(X) \triangleright N' members evolved q generations to solve f_k(X)
 1 Initialize Population P';
 2 Generate random population - size N':
3 Evaluate Objectives Values;
 4 Assign Rank (level) based on Pareto - sort;
 5 Generate Child Population;
     Binary Tournament Selection:
     Recombination and Mutation;
s for i = 1 to g do
      for each Parent and Child in Population do
         Assign Rank (level) based on Pareto - sort;
11
         Generate sets of nondominated solutions;
         Determine Crowding distance;
12
         Loop (inside) by adding solutions to next generation starting from
13
         the first front until N' individuals;
14
      Select points on the lower front with high crowding distance;
15
      Create next generation;
16
         Binary Tournament Selection:
17
        Recombination and Mutation;
```

Pseudo code¹ for NSGA-II

19 end

¹ Matnei Filho, R. A., & Vergilio, S. R. (2016). A multi-objective test data generation approach for mutation testing of feature models. Journal of Software Engineering Research and Development, 4(1), 1-29 > 4 0 > 4

NSGA-III (2014)

- NSGA-III extends NSGA-II In NSGA-III:
 - A set of reference points is determined before generating the initial population
 - The reference point set serves to guide the evolution into creating a uniform Pareto front in the objective space

Algorithm 1 Generation t of NSGA-III procedure

Input: H structured reference points Z^{s} or supplied aspiration points Z^a , parent population P_t

Output: P_{t+1} S_t = ∅, i = 1

- 2: $Q_t = \text{Recombination} + \text{Mutation}(P_t)$
- 3: $R_t = P_t \cup Q_t$
- 4: $(F_1, F_2, ...)$ = Non-dominated-sort (R_t)

5: repeat

- $S_t = S_t \cup F_i$ and i = i + 1
- 7: until |S_t| ≥ N
- 8: Last front to be included: $F_l = F_i$
- 9: if $|S_t| = N$ then
- $P_{t+1} = S_t$, break
- 11: else
 - $P_{t+1} = \bigcup_{i=1}^{l-1} F_i$
 - Points to be chosen from F_l : $K = N |P_{t+1}|$
- Normalize objectives and create reference set Z^r : Normalize $(\mathbf{f}^n, S_t, Z^r, Z^s, Z^a)$
- 15: Associate each member s of S_t with a reference point: $[\pi(\mathbf{s}), d(\mathbf{s})] = \text{Associate}(S_t, Z^r)$ % $\pi(\mathbf{s})$: closest reference point, d: distance between s and $\pi(s)$
- Compute niche count of reference point $j \in Z^r$: $\rho_i =$ $\sum_{\mathbf{s} \in S_*/F_*} ((\pi(\mathbf{s}) = j) ? 1 : 0)$
- 17: Choose K members one at a time from F_l to construct P_{t+1} : Niching $(K, \rho_i, \pi, d, Z^r, F_l, P_{t+1})$ 18: end if

Pseudo-code for NSGA-III¹

Deb, K., & Jain, H. (2014). An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints. IEEE Transactions on Evolutionary Computation, 18(4) 577-601 4 D F 4 D F 4 D F 4 D F

GDE3 (2005)

- GDE3 (Generalized
 Differential Evolution 3) is
 based in the common DE, but is
 also able to solve optimization
 problems with multiple
 constraints and objectives. In
 GDE3:
 - Decisions are based on the objective values, and crowdedness while ensuring feasibility
 - The algorithm is less reliant on the selection of control parameters

```
Algorithm 5 GDE3

    Initialise the population P of size N with randomly generated solutions and evaluate

    while Termination condition is not met do
        Initialise empty offspring population with size 2N;
          Randomly select three distinct parent solutions x<sup>r1</sup>, x<sup>r2</sup>, x<sup>r3</sup> and a random variable
          index jrand;
           {Apply mutation}
          \mathbf{u} = \mathbf{x}^{r3} + F(\mathbf{x}^{r1} - \mathbf{x}^{r2}) with F scale factor [1]:
           {Apply binomial crossover [1]}
           for j = 1 : d do
              if rand[0, 1) < CR \text{ OR } i = i_{rand} (CR \text{ crossover rate}) then
                 u^i = x^i:
           Evaluate the fitness f_1(\mathbf{u}), f_2(\mathbf{u}), . . . f_k(\mathbf{u});
           if the child solution \mathbf{u} and the solution \mathbf{x}^{\mathbf{l}} of the parent population are indifferent
              Add both solutions to offspring population;
16:
          else if x^i \prec u then
              Add solution x<sup>i</sup> to offspring population;
20:
              Add child solution u to offspring population;
        Sort the offspring population as in Algorithm 3:
       Choose the best N solutions for the next generation:
```

Pseudo-code¹ for GDE3

Rostami, S., Neri, F., & Gyaurski, K. (2020). On algorithmic descriptions and software implementations for multi-objective optimisation: A comparative study. SN Computer Science, 1(5), 1-23:

Hardware and software used

- MATI AB 2018b on Windows 10
- BIMK / PlatEMO¹ (Evolutionary multi-objective optimization platform - includes implementations of 162 multi-objective algorithms & various tools for experimentation)
- pfevaluator² python package for performance metrics
- OAPackage³ python package for identification of Pareto optimal solutions

Hardware

Intel Core i9 7960X @2.8GHz GPU, 64GB DDR4 RAM Population = 50, generations = $50 \approx 2500$ seconds runtime

¹https://github.com/BIMK/PlatEMO

²https://pypi.org/project/pfevaluator/

https://pypi.org/project/OApackage/ Foutsitzi G., Gogos C., Magklaras A., & Antoniadis N.

Evolution of the Pareto front

- A Base Pareto Front was generated based on collected results of several runs (the red line)
- Around 20th generation convergence occurs (population=50)
- GDE3 has a small lead

Pareto fronts proximity to BPF

Proximity to the Base Pareto Front (BPF) for generations 5, 10 and 50 The red line is the approximated optimal Pareto front aka BPF

PFs proximity to BPF (Zoom in of the previous slide)

Metrics

Table: Performance metrics for NSGA-II, NSGA-III and GDE3 (population=50, generations=50)

		GD	IGD	MPFE	MS	HV
NSGA-II	Mean	0.0348	0.0806	4.6917	0.9980	26545.1330
	SD	0.0044	0.0055	0.7847	0.0052	33.2109
	Best	0.0291	0.0895	3.5325	1.0000	26577.9370
NSGA-III	Mean	0.0299	0.1013	9.0326	0.9970	26506.6338
	SD	0.0031	0.0016	0.7498	0.0048	56.0942
	Best	0.0226	0.1042	7.7758	1.0000	26564.4818
GDE3	Mean	0.0363	0.0648	3.3602	0.9940	26489.0978
	SD	0.0035	0.0030	0.4547	0.0072	54.3403
	Best	0.0297	0.0703	2.7993	1.0000	26577.5045

- GD = Generational Distance (favor ↓ values)
- ② IGD = Inverted Generational Distance (favor ↑ values)
- MPFE = Maximum Pareto Front Error (favor ↓ values)
- MS = Maximum Spread (favor ↑ values)
- HV = Hyper Volume (favor ↑ values)

Selected solutions

Table: Some "good" non-dominated solutions

Power $\left(\frac{mW}{g^2}\right)$	Mass	L* (%)	H* (%)	$R(k\Omega)$	Algorithm
165.71184	0.32666	0.24316	0.11184	139.61471	NSGA-II
165.57695	0.32656	0.22207	0.12203	160.53703	NSGA-III
165.27248	0.32619	0.20690	0.12934	190.74535	GDE3

For example, the parameter values for the first of the solutions in the above Table achieves 5% increase in power output and 0.11% decrease in mass addition when compared to values reported by De Marqui et al.

• The production of electrical energy from sources available within the environment of UAVs is of vital importance

- The production of electrical energy from sources available within the environment of UAVs is of vital importance
- The mass of structures used in aerospace applications is a crucial design factor, so in our work the minimization of mass is used as an extra objective

- The production of electrical energy from sources available within the environment of UAVs is of vital importance
- The mass of structures used in aerospace applications is a crucial design factor, so in our work the minimization of mass is used as an extra objective
- A multi-objective problem has been studied in order to achieve an optimal design of a wing spar generator with embedded piezoceramics

- The production of electrical energy from sources available within the environment of UAVs is of vital importance
- The mass of structures used in aerospace applications is a crucial design factor, so in our work the minimization of mass is used as an extra objective
- A multi-objective problem has been studied in order to achieve an optimal design of a wing spar generator with embedded piezoceramics
- 3 state-of-the-art multi-objective algorithms (NSGA-II, NSGA-III and GDE3) have been carried out to optimize the geometric dimensions and the load resistance for maximum power output and minimum mass added by the embedded piezoceramics

- The production of electrical energy from sources available within the environment of UAVs is of vital importance
- The mass of structures used in aerospace applications is a crucial design factor, so in our work the minimization of mass is used as an extra objective
- A multi-objective problem has been studied in order to achieve an optimal design of a wing spar generator with embedded piezoceramics
- 3 state-of-the-art multi-objective algorithms (NSGA-II, NSGA-III and GDE3) have been carried out to optimize the geometric dimensions and the load resistance for maximum power output and minimum mass added by the embedded piezoceramics
- The results show that the solutions achieved closely resemble a constructed reference Pareto optimal front by all 3 algorithms (no clear winner)

- The production of electrical energy from sources available within the environment of UAVs is of vital importance
- The mass of structures used in aerospace applications is a crucial design factor, so in our work the minimization of mass is used as an extra objective
- A multi-objective problem has been studied in order to achieve an optimal design of a wing spar generator with embedded piezoceramics
- 3 state-of-the-art multi-objective algorithms (NSGA-II, NSGA-III and GDE3) have been carried out to optimize the geometric dimensions and the load resistance for maximum power output and minimum mass added by the embedded piezoceramics
- The results show that the solutions achieved closely resemble a constructed reference Pareto optimal front by all 3 algorithms (no clear winner)
- Better results are reported than ones found in the bibliography

Thank You! Questions?