Intro to Analysis of Algorithms Greedy Chapter 2

Michael Soltys

CSU Channel Islands

[Ed: 4th, last updated: October 2, 2025]

MCST

Given a directed or undirected graph G = (V, E) its adjacency matrix is a matrix A_G of size $n \times n$, where n = |V|, such that entry (i,j) is 1 if (i,j) is an edge in G, and it is 0 otherwise.

An adjacency matrix can be encoded as a string over $\{0,1\}$.

That is, given A_G of size $n \times n$, let $s_G \in \{0,1\}^{n^2}$, where s_G is simply the concatenation of the rows of A_G .

We can check directly from s_G if (i,j) is an edge by checking if position (i-1)n+j in s_G contains a 1.

Definitions:

- undirected graph
- path
- connected
- cycle / acyclic
- ► tree
- spanning tree

Every tree with n nodes has exactly n-1 edges.

Claim 1: Every tree has a leaf.

Proof: A leaf is by definition a node with less than 2 edges adjacent on it. If a graph does not have a leaf, then it has a cycle: pick any node, leave it by one of its edges, arrive at a new node . . .

Claim 2: Every tree of n nodes has exactly n-1 edges.

Proof: By induction on n. BC: n=1 is trivial. Then consider a tree T of n+1 nodes; pick a leaf (it has one by Claim 1). Remove the leaf and its edge, and obtain a new tree T' (why is T' a tree?). Apply IH to T' and conclude T is a tree.

We are interested in finding a minimum cost spanning tree for G, assuming that each edge e is assigned a cost c(e).

The understanding is that the costs are non-negative real number, i.e., each c(e) is in \mathbb{R}^+ .

The total cost c(T) is the sum of the costs of the edges in T.

We say that T is a minimum cost spanning tree (MCST) for G if T is a spanning tree for G and given any spanning tree T' for G, $c(T) \leq c(T')$.

Encodings

Difference between encoding and encryption. ASCII is an encoding; Caesar cipher is an encryption.

For example, the 7-bit word 1000001 represents (in ASCII) the letter 'A' and the word 0100110 represents '&'.

With 7 bits we can encode . . .

Encodings are a convention for representing data. In Computer Science all data is eventually encoded as a string over the binary alphabet $\Sigma = \{0,1\}$.

Encoding of a Graph

$$\left[\begin{array}{ccccc} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{array}\right]$$

Adjacency matrix

Encoded as a string:

01100101111110100110101010

Kruskal's Algorithm (A10)

```
1: Sort the edges: c(e_1) \leq c(e_2) \leq \ldots \leq c(e_m)

2: T \leftarrow \emptyset

3: for i:1..m do

4: if T \cup \{e_i\} has no cycle then

5: T \leftarrow T \cup \{e_i\}

6: end if

7: end for
```

But how do we test for a cycle, i.e., execute line 4 in the algorithm?

At the end of each iteration of the for-loop, the set T of edges divides the vertices V into a collection V_1, \ldots, V_k of *connected components*.

That is, V is the disjoint union of V_1, \ldots, V_k , each V_i forms a connected graph using edges from T, and no edge in T connects V_i and V_j , if $i \neq j$.

A simple way to keep track of V_1, \ldots, V_k is to use an array D[i] where D[i] = j if vertex $i \in V_j$.

Initialize D by setting $D[i] \leftarrow i$ for every i = 1, 2, ..., n.

To check whether $e_i = (r, s)$ forms a cycle within T, it is enough to check whether D[r] = D[s].

If e_i does not form a cycle within T, then we update:

 $T \leftarrow T \cup \{(r,s)\}$, and we merge the component D[r] with D[s] as shown in the algorithm in the next slide.

Merging Components (A11)

```
1: k \leftarrow D[r]

2: l \leftarrow D[s]

3: for j : 1..n do

4: if D[j] = l then

5: D[j] \leftarrow k

6: end if

7: end for
```

We now prove that Kruskal's algorithm works.

It is not immediately clear that Kruskal's algorithm yields a spanning tree, let alone a MCST.

To see that the resulting collection T of edges is a spanning tree for G, assuming that G is connected, we must show that (V, T) is connected and acyclic.

It is obvious that T is acyclic, because we never add an edge that results in a cycle.

To show that (V, T) is connected, we reason as follows. Let u and v be two distinct nodes in V.

Since G is connected, there is a path p connecting u and v in G. The algorithm considers each edge e_i of G in turn, and puts e_i in T unless $T \cup \{e_i\}$ forms a cycle.

But in the latter case, there must already be a path in T connecting the end points of e_i , so deleting e_i does not disconnect the graph.

This argument can be formalized by showing that the following statement is an invariant of the loop in Kruskal's algorithm:

The edge set $T \cup \{e_{i+1}, \dots, e_m\}$ connects all nodes in V.

Promising

We say *T* is *promising* if it can be extended to a MCST with edges that have not been considered yet.

"T is promising"

is a loop invariant of Kruskal's algorithm.

Exchange Lemma (Lemma 2.5)

Let G be a connected graph, and let T_1 and T_2 be any two spanning trees for G. For every edge e in T_2-T_1 there is an edge e' in T_1-T_2 such that $T_1\cup\{e\}-\{e'\}$ is a spanning tree for G.

Example run

Iteration	Edge	Current T	MCST extending T
0		Ø	$\{e_1, e_3, e_4, e_7\}$
1	e_1	$\{e_1\}$	$\{e_1, e_3, e_4, e_7\}$
2	e_2	$\{e_1, e_2\}$	$\{e_1, e_2, e_4, e_7\}$
3	<i>e</i> ₃	$\{e_1, e_2\}$	$\{e_1, e_2, e_4, e_7\}$
4	e_4	$\{e_1, e_2, e_4\}$	$\{e_1, e_2, e_4, e_7\}$
5	<i>e</i> ₅	$\{e_1, e_2, e_4\}$	$\{e_1, e_2, e_4, e_7\}$
6	<i>e</i> ₆	$\{e_1, e_2, e_4, e_6\}$	$\{e_1, e_2, e_4, e_6\}$
7	e ₇	$\{e_1, e_2, e_4, e_6\}$	$\{e_1, e_2, e_4, e_6\}$

We show the loop invariant.

Basis Case is easy.

Induction Step: assume T is promising; show it continues being promising after one more iteration of the loop.

Suppose edge e_i has been considered.

Case 1: e_i is rejected

Case 2: e_i is accepted. We must show $T \cup \{e_i\}$ is still promising.

We must show that $T \cup \{e_i\}$ is still promising. Since T is promising, there is a MCST T_1 such that $T \subseteq T_1$. We consider two subcases.

Subcase a: $e_i \in T_1$. Then obviously $T \cup \{e_i\}$ is promising.

Subcase b: $e_i \notin T_1$.

According to the Exchange Lemma, there is an edge e_j in T_1-T_2 , where T_2 is the spanning tree resulting from the algorithm, such that $T_3=(T_1\cup\{e_i\})-\{e_j\}$ is a spanning tree.

Notice that i < j, since otherwise e_j would have been rejected from T and thus would form a cycle in T and so also in T_1 .

Therefore $c(e_i) \le c(e_j)$, so $c(T_3) \le c(T_1)$, so T_3 must also be a MCST. Since $T \cup \{e_i\} \subseteq T_3$, it follows that $T \cup \{e_i\}$ is promising.

Jobs with deadlines and profits

n jobs and one processor

each job has a deadline and a profit, but all have duration 1

We think of a schedule S as consisting of a sequence of job "slots" $1, 2, 3, \ldots$, where S(t) is the job scheduled in slot t.

A *schedule* is an array $S(1), S(2), \ldots, S(d)$ where $d = \max d_i$, that is, d is the latest deadline, beyond which no jobs can be scheduled.

If S(t) = i, then job i is scheduled at time t, $1 \le t \le d$.

If S(t) = 0, then no job is scheduled at time t.

A schedule *S* is *feasible* if it satisfies two conditions:

Condition 1: If S(t) = i > 0, then $t \le d_i$, i.e., every scheduled job meets its deadline.

Condition 2: If $t_1 \neq t_2$ and also $S(t_1) \neq 0$, then $S(t_1) \neq S(t_2)$, i.e., each job is scheduled at most once.

Job Scheduling A12

1: Sort the jobs in non-increasing order of profits:

$$g_1 \geq g_2 \geq \ldots \geq g_n$$

- 2: $d \leftarrow \max_i d_i$
- 3: **for** t:1..d **do**
- 4: $S(t) \leftarrow 0$
- 5: end for
- 6: **for** *i* : 1..*n* **do**
- 7: Find the largest t such that S(t) = 0 and $t \le d_i$, $S(t) \longleftarrow i$
- 8: end for

A schedule is *promising* if it can be extended to an optimal schedule.

Schedule S' extends schedule S if for all $1 \le t \le d$, if $S(t) \ne 0$, then S(t) = S'(t).

For example, S' = (2, 0, 1, 0, 3) extends S = (2, 0, 0, 0, 3).

We show by induction that S is promising is a loop invariant.

Basis case is easy

Induction step: Suppose that S is promising, and let $S_{\rm opt}$ be some optimal schedule that extends S.

Let S' be the result of one more iteration through the loop where job i is considered.

We must prove that S' continues being promising, so the goal is to show that there is an optimal schedule S'_{opt} that extends S'.

We consider two cases: job i can/cannot be scheduled

job i cannot be scheduled: easy

job i is scheduled at time t_0

job *i* is scheduled at time t_0 , so $S'(t_0) = i$ (whereas $S(t_0) = 0$) and t_0 is the latest possible time for job *i* in the schedule *S*.

We have two subcases.

Subcase a: job *i* is scheduled in S_{opt} at time t_1 :

If $t_1 = t_0$, then, as in case 1, just let $S'_{\mathrm{opt}} = S_{\mathrm{opt}}$.

If $t_1 < t_0$, then let $S'_{\rm opt}$ be $S_{\rm opt}$ except that we interchange t_0 and t_1 , that is we let $S'_{\rm opt}(t_0) = S_{\rm opt}(t_1) = i$ and $S'_{\rm opt}(t_1) = S_{\rm opt}(t_0)$. Then $S'_{\rm opt}$ is feasible (why 1?), it extends S' (why 2?), and $P(S'_{\rm opt}) = P(S_{\rm opt})$ (why 3?).

The case $t_1 > t_0$ is not possible (why 4?).

Subcase b: job i is not scheduled in $S_{\rm opt}$. Then we simply define $S'_{\rm opt}$ to be the same as $S_{\rm opt}$, except $S'_{\rm opt}(t_0)=i$. Since $S_{\rm opt}$ is feasible, so is $S'_{\rm opt}$, and since $S'_{\rm opt}$ extends S', we only have to show that $P(S'_{\rm opt})=P(S_{\rm opt})$.

Claim: Let $S_{\text{opt}}(t_0) = j$. Then $g_j \leq g_i$.

We prove the claim by contradiction: assume that $g_j > g_i$ (note that in this case $j \neq 0$). Then job j was considered before job i. Since job i was scheduled at time t_0 , job j must have been scheduled at time $t_2 \neq t_0$ (we know that job j was scheduled in S since $S(t_0) = 0$, and $t_0 \leq d_j$, so there was a slot for job j, and therefore it was scheduled). But S_{opt} extends S, and $S(t_2) = j \neq S_{\mathrm{opt}}(t_2)$ —contradiction.

Make Change A13

- 1. What would be the natural greedy alg for making change?
- 2. Does it work with all currencies?

Maximum weight matching

(Application to network switches.)

Let $G=(V_1\cup V_2,E)$ be a bipartite, i.e, a graph with edge set $E\subseteq V_1\times V_2$ with disjoint sets V_1 and $V_2.$ $w:E\longrightarrow \mathbb{N}$ assigns a weight $w(e)\in \mathbb{N}$ to each edge $e\in E=\{e_1,\ldots,e_m\}$.

A matching for G is a subset $M \subseteq E$ such that no two edges in M share a common vertex. The weight of M is $w(M) = \sum_{e \in M} w(e)$.

What would be a natural Greedy alg?

Maximum weight matching

(Application to network switches.)

Let $G=(V_1\cup V_2,E)$ be a bipartite, i.e, a graph with edge set $E\subseteq V_1\times V_2$ with disjoint sets V_1 and $V_2.$ $w:E\longrightarrow \mathbb{N}$ assigns a weight $w(e)\in \mathbb{N}$ to each edge $e\in E=\{e_1,\ldots,e_m\}$.

A matching for G is a subset $M \subseteq E$ such that no two edges in M share a common vertex. The weight of M is $w(M) = \sum_{e \in M} w(e)$.

What would be a natural Greedy alg?

See Problem 2.29 and Algorithm 15 given in its solution

Shortest path

Application to OSPF: Open Shortest Path First, see RFC 2328

Huffman Codes A14

Suppose that we have a string s over the alphabet $\{a,b,c,d,e,f\}$, and |s|=100.

Suppose also that the characters in s occur with the frequencies 44, 14, 11, 17, 8, 6, respectively.

As there are six characters, if we were using fixed-length binary codewords to represent them we would require three bits, and so 300 characters to represent the string.

