NUMERICAL METHODS I:

I . Introduction:

Numerical methods are algorithmic offracties to solving mathematical problems / equations, which are hard to solve algebraically / analytically.

goal of Pris: Study efficient numerical methods and understand them:

- How do they work?
- When do they work? Limitations?
- What is the error introduced?

Example 1: given a function $f: \mathbb{R} \longrightarrow \mathbb{R}$ that is hard to evaluate for some $x \in \mathbb{R}$.

But the values of f and its derivatives are

benove for a value c that is close to x. Con we use this information to approximate f(x)

How accurate is Eluis opproximation?

For example $f(x) = \cos(x)$ let x = 0.1We know the values of $\cos^{(b)}(0)$:

$$f(c) = cos(0) = 1$$

 $f'(c) = -sim(0) = 0$ for $c = 0$.

$$f(c) = - \cos(0) = -1$$

Con we get cos(0.1) from these values?

Dol 7. (Taylon series) lod l: R-> R be

differentiable at $c \in \mathbb{R}$. Then, the Taylor series of f at c is given by: f''(c) = f'''(c)

$$\int_{c}^{(c)} f'(c)(x-c) + \int_{c}^{(c)} f'(c)(x-c)^{2} + \int_{c}^{(c)} f'(c)$$

This is a power series!

For c=0 this is known as Machanin series.

Remember: A power series has a radius of conveyence / interval of conveyence. If $\times \in \text{interval of conveyence}$, then

$$J(x) = \sum_{k=0}^{\infty} \frac{J^{(k)}(c)}{k!} (x-c)^{k}$$

Example 3: Taylor series for $f(x) = e^x$ at c=c We have $f^{(k)}(x) = e^x$, so $f^{(k)}(c) = e^o = 1$.

Thus $\sum_{k=0}^{\infty} \frac{1}{k!} \times^k$

and the radius of conveyence is ∞ , i.e. for any $\times \in \mathbb{R}$, $e^{\times} = \sum_{k=0}^{\infty} \frac{x^{k}}{k!}$.

For a numerical algorithm we need to stop the summation after a finite number of terms:

E.g.
$$e^{x} \approx \frac{1}{0!} x^{0} + \frac{1}{1!} x^{1} + \frac{1}{2!} x^{2}$$

= $1 + x + \frac{1}{2} x^{2}$

this is a polynomial!

Example 4:
$$f(x) = 4x^2 + 5x + 7$$
, $c = 2$
Taylor series of f at c^2
 $f(2) = 33$, $f'(x) = 8x + 5$, $f''(x) = 8$, $f''(x) = 0$
 $f'(z) = 21$ $f''(z) = 8$

Taylor series:

$$33 + 21(x-2) + \frac{8}{2}(x-2)^{2}$$
$$= 4x^{2} + 5x + 7 = \delta(x)$$

The Taylor series of a polynomial is the polynomial idelf!

Theorem 5: (Taylor theorem)

Let $f \in C^{n+1}(\Gamma_{a_1}b_1)$ i.e. f is (a+1)-times continuously differentiable over $\Gamma_{a_1}b_1$. Then for any $C, X \in \Gamma_{a_1}b_1$ we have that

$$J(x) = \sum_{k=0}^{n} \int_{k}^{(k)} (c) (x-c)^{k}$$
 truncated

$$\int_{k=0}^{n} \int_{k}^{(k)} (c) (x-c)^{k}$$
 Taylor stries

remainder
$$+\frac{\int_{(n+1)}^{(n+1)}(\overline{3}x)}{(n+1)!}(x-c)^{n+1}$$

where 3x is a point that depends on x and which lies between c and x.

For
$$n = 0$$
: $f(x) = f^{(0)}(c) + f'(3x)(x-c)$
choose $c = a, x = b$:

$$\begin{cases}
f(b) = f(a) + f'(\xi_x)(b-a) \\
f(b) - f(a) = f'(\xi_x)
\end{cases}$$

$$= f'(\xi_x)(b-a)$$

Def 6: We say that a Taylor series represents
the function of at x, iff the Taylor series converges at that point, i.e. the remainder tends:
zero as n -> ∞.

Bach to Example 3: $f(x) = e^x$, c=0

By Taylor theorem

$$e^{\times} = \frac{1}{k!} + \frac{e^{3\times}}{(n+1)!} \times e^{3\times}$$

For any $x \in \mathbb{R}$ we find $s \in \mathbb{R}^+$ so that $|x| \leq s$, and $|3x| \leq s$ because 3x is belowen c and x.

Because ex is monotone in crasing we have $e^{3x} \leq e^{5}$.

Thus:
$$\lim_{n\to\infty} \left| \frac{e^{3x}}{(n+1)!} \times n+1 \right|$$

$$\leq \lim_{n\to\infty} \frac{e^{5}}{(n+1)!} \cdot 5^{n+1}$$

$$\leq \lim_{n\to\infty} \frac{e^{5}}{(n+1)!} \cdot 5^{n+1}$$

= e^{-1} ∞ (n+1)! e^{-1} because (4+1)! will grow faster than any power of s.

Thus, ex is represented by its Taylor series.

Example 7: f(x) = ln(1+x), c = 0then $f'(x) = \frac{1}{1+x}$ $\xi''(x) = \frac{-1}{(1+x)^2}$ $\chi^{(k)}(x) = (-1)^{k-1} (k-1)! \frac{1}{(1+x)^k}$ so $\xi^{(k)}(0) = (-1)^{k-1} (k-1)!$ So, the Taylor series is: