Homework 2

Aaron Politsky October 9, 2015

5.1

Load Libraries and Source Dependencies

```
library(data.table)
library(ggplot2)
library(kknn)
source("docv.R")
```

Import the Used Car data

```
# download data and read data into data.table format
if(!exists("used_cars")) {
   used_cars <- fread(
        'https://raw.githubusercontent.com/ChicagoBoothML/DATA___UsedCars/master/UsedCars_small.csv')
}
# sort data set by increasing mileage
setkey(used_cars, mileage)</pre>
```

Cross-validate using 5-fold, for k from 2 to 100

```
## in docv: nset,n,nfold: 99 1000 5
## on fold: 1 , range: 1 : 200
## on fold: 2 , range: 201 : 400
## on fold: 3 , range: 401 : 600
## on fold: 4 , range: 601 : 800
## on fold: 5 , range: 801 : 1000
```



```
# save this cv as cv.mileage
cv.mileage <- cv

# Choose the k with the minimum Cross-validation RMSE
k.cv <- which.min(cv)</pre>
```

We will use a k value of k = 19. Let's fit using this value and the eyeball value of 30:

In this case, our eyes have not deceived us. The fits are very close. This makes sense, because $conglect{$cv[19]$} = 9248.2401549$ and $conglect{$cv[30]$} = 9284.1316686$. The fit having the larger k value seemse to have slighly less variance (the green curve seems to be "within" the red curve) than than the fit with the smaller k value, which is consistent with the theory of knn.

Predicting the price of a car with 100k miles

Now, let's predict the price of a car having 100k miles using our cross-validation k to train a model using the entire used car dataset.

[1] 18662.63

6.1

Use kNN to get a prediction for a 2008 car with 75k miles

```
# Let's build a model including year and mileage in our covariates
# First, define our rescaling function
rescale <- function(x, xs) {</pre>
  (x - min(xs)) / (max(xs) - min(xs))
# first, lets scale our covariates
used_cars$normalized.mileage <- rescale(used_cars$mileage, used_cars$mileage)</pre>
used_cars$normalized.year <- rescale(used_cars$year, used_cars$year)</pre>
cv <- docvknn(x=used_cars[, .(normalized.mileage, normalized.year)],</pre>
              y=used_cars$price,
              k=kv,
              nfold=n.folds)
## in docv: nset,n,nfold: 99 1000 5
## on fold: 1 , range: 1 : 200
## on fold: 2 , range: 201 : 400
## on fold: 3 , range: 401 : 600
## on fold: 4 , range: 601 : 800
## on fold: 5 , range: 801 : 1000
# convert to RMSE
cv <- sqrt(cv/length(used_cars$price))</pre>
# how does our CV plot look?
rgy <- range(cv)
plot(log(1/kv),cv,type="l",col="red",ylim=rgy,lwd=2,
    xlab="log(1/k)", ylab="RMSE")
```



```
# Choose the k with the minimum Cross-validation RMSE
k.cv <- which.min(cv)
k.cv</pre>
```

[1] 23

```
# fit the whole model
predicted.mileage.year <-
kknn(price ~ normalized.mileage + normalized.year,
    train=used_cars, test=used_cars[, .(normalized.mileage, normalized.year)],
    k=k.cv, kernel='rectangular')$fitted.values</pre>
```

Let's define our test car

Is our predictive accuracy better using this model?

We could look at RMSE...

But let's check the correlations of our predicted values vs. actual values instead:

The correlation suggests that our mileage and year model provides a better fit than our bivariate model. And finally,

pairs(fits)

the plots confirm this. Our mileage and year model appears to have a much tighter fit.