APRIORI ALGORITHM

International School of Engineering

We Are Applied Engineering

Disclaimer: Some of the Images and content have been taken from multiple online sources and this presentation is intended only for knowledge sharing but not for any commercial business intention

OVERVIEW

- DEFNITION OF APRIORI ALGORITHM
- KEY CONCEPTS
- STEPS TO PERFORM APRIORI
 ALGORITHM
- APRIORI ALGORITHM EXAMPLE
- MARKET BASKET ANALYSIS

- THE APRIORI ALGORITHM : PSEUDO CODE
- LIMITATIONS
- METHODS TO IMPROVE APRIORI'S EFFICIENCY
- APRIORI
 ADVANTAGES/DISADVANTAGES
- VIDEO OF APRIORI ALGORITHM

DEFINITION OF APRIORI ALGORITHM

- The Apriori Algorithm is an influential algorithm for mining frequent itemsets for boolean association rules.
- Apriori uses a "bottom up" approach, where frequent subsets are extended one item at a time (a step known as *candidate generation*, and groups of candidates are tested against the data.
- Apriori is designed to operate on database containing transactions (for example, collections of items bought by customers, or details of a website frequentation).

KEY CONCEPTS

• Frequent Itemsets: All the sets which contain the item with the minimum support (denoted by L_i for i^{th} itemset).

Apriori Property: Any subset of frequent itemset must be frequent.

• Join Operation: To find L_k , a set of candidate k-itemsets is generated by joining L_{k-1} with itself.

STEPS TO PERFORM APRIORI ALGORITHM

STEP 1

Scan the transaction data base to get the support of S each 1-itemset, compare S with min_sup, and get a support of 1-itemsets, L1

STEP 2

Use L_{k-1} join L_{k-1} to generate a set of candidate k-itemsets. And use Apriori property to prune the unfrequented k-itemsets from this set.

STEP 6

For every nonempty subset s of 1, output the rule "s=>(1-s)" if confidence C of the rule "s=>(1-s)" (=support s of 1/support S of s)' min_conf

STEP 3

Scan the transaction database to get the support S of each candidate k-itemset in the find set, compare S with min_sup, and get a set of frequent k-itemsets L_k

STEP 4

The candidate set = Null

YES

STEP 5

For each frequent itemset 1, generate all nonempty subsets of 1

APRIORI ALGORITHM EXAMPLE

Market basket

MARKET BASKET ANALYSIS

- Provides insight into which products tend to be purchased together and which are most amenable to promotion.
- Actionable rules
- Trivial rules
 - People who buy chalk-piece also buy duster
- Inexplicable
 - People who buy mobile also buy bag

APRIORI ALGORITHM EXAMPLE

Database D

Minsup = 0.5

Items		
5		

Scan D

	itemset	sup.
Š	{1}	2
	{2}	3
	{3}	3
	{4 }	1
	{5 }	3

L_2	itemset su		
	{1 3}	2	
	{2 3}	2	
	{2 5}	3	
	{3 5}	2	

L_3	itemset	sup
	{2 3 5}	2

The Apriori Algorithm: Pseudo Code

- Join Step: C_k is generated by joining L_{k-1} with itself
- Prune Step: Any (k-1)-itemset that is not frequent cannot be a subset of a frequent k-itemset
- Pseudo-code : C_k : Candidate itemset of size k

 L_k : frequent itemset of size k

```
L_1 = {frequent items};

for (k = 1; L_k \mid = \emptyset; k++) do begin

C_{k+1} = candidates generated from L_k;

for each transaction t in database do

increment the count of all candidates in C_{k+1}

that are contained in t

L_{k+1} = candidates in C_{k+1} with min_support

end

return \bigcup_k L_k;
```


LIMITATIONS

• Apriori algorithm can be very slow and the bottleneck is candidate generation.

For example, if the transaction DB has 10⁴ frequent 1-itemsets, they will generate 10⁷ candidate 2-itemsets even after employing the downward closure.

• To compute those with sup more than min sup, the database need to be scanned at every level. It needs (n + 1) scans, where n is the length of the longest pattern.

METHODS TO IMPROVE APRIORI'S EFFICIENCY

- Hash-based itemset counting: A k-itemset whose corresponding hashing bucket count is below the threshold cannot be frequent
- Transaction reduction: A transaction that does not contain any frequent k-itemset is useless in subsequent scans
- Partitioning: Any itemset that is potentially frequent in DB must be frequent in at least one of the partitions of DB.
- Sampling: mining on a subset of given data, lower support threshold + a method to determine the completeness
- Dynamic itemset counting: add new candidate itemsets only when all of their subsets are estimated to be frequent

APRIORI ADVANTAGES/DISADVANTAGES

- Advantages
 - Uses large itemset property
 - Easily parallelized
 - Easy to implement
- Disadvantages
 - Assumes transaction database is memory resident.
 - Requires many database scans

For Detailed Description of APRIORI ALGORITHM

Check out our video on

International School of Engineering

For Individuals (+91) 9502334561/62 For Corporates (+91) 9618 483 483

Facebook: www.facebook.com/insofe

Slide share: www.slideshare.net/INSOFE

