Algoritmos e Estruturas de Dados

Tabelas de dispersão (hash)

Prof. João Caram

Bacharelado em Sistemas de Informação **PUC Minas**

Estruturas lineares e pesquisa

- Pesquisa em:
 - Vetor desorganizado
 - Vetor ordenado
 - Lista/Fila encadeadas

□ Em comum: comparação de valores/objetos

Tabelas de dispersão (hash)

Hash

[uncountable, countable] a hot dish of cooked meat and potatoes that are cut into small pieces and mixed together¹

1 - Oxford Learner's Dicitionaries em https://www.oxfordlearnersdictionaries.com/us/definition/english/hash_1?q=hash, acesso em 18/04/22

- Estrutura de dados adequada para pesquisa
 - Operações em O(1)

- □ Associação de uma chave a objetos de dados
 - Chave: valor identificador do objeto
 - Valor da chave é, preferencialmente, único
 - Par <chave,objeto>

□ Estrutura geral de uma tabela *hash*: *buckets array*

- Endereçamento direto
 - Transformação aritmética da chave de pesquisa

- □ Endereçamento:
 - Código hash do objeto
 - Mapeamento do código para a tabela

Armazenar palavras do idioma português

```
Código: (nº de letras - 1)
```

Mapeamento: código % N

Usando N = 9

Pos	Chave/palavra
0	
1	
2	
3	
4	
5	
6	
7	
8	

Armazenar palavras do idioma português

Código: (nº de letras - 1)

Mapeamento: código % N

Usando N = 9

Bola -3 --> 3

Pos	Chave/palavra
0	
1	
2	
3	bola
4	
5	
6	
7	
8	

Armazenar palavras do idioma português

```
Código: (nº de letras - 1)
```

Usando
$$N = 9$$

Pos	Chave/palavra
0	
1	
2	
3	bola
4	
5	cartão
6	
7	
8	

Armazenar palavras do idioma português

```
Código: (nº de letras - 1)
```

Usando
$$N = 9$$

Pos	Chave/palavra
0	
1	pé
2	
3	bola
4	
5	cartão
6	
7	
8	

Armazenar palavras do idioma português

```
Código: (nº de letras - 1)
```

Usando
$$N = 9$$

Bola
$$-3 --> 3$$

Pos	Chave/palavra
0	
1	pé
2	
3	bola
4	
5	cartão
6	feriado
7	
8	

Armazenar palavras do idioma português

```
Código: (nº de letras - 1)
```

Usando
$$N = 9$$

Pos	Chave/palavra
0	
1	pé
2	
3	bola
4	
5	cartão
6	feriado
7	
8	

Armazenar palavras do idioma português

```
Código: (nº de letras - 1)
```

Mapeamento: código % N

Usando
$$N = 9$$

Bola
$$-3 --> 3$$

Mapeamento – 10 --> 1

(colisão)

Pos	Chave/palavra
0	
1	pé
2	
3	bola
4	
5	cartão
6	feriado
7	
8	

 Colisão: duas chaves geram o mesmo valor de código hash e, assim, vão para a mesma posição da tabela

Tarefa adicional: tratar possíveis colisões

Implementação de tabela hash

- Achar uma boa função de código hash
- Escolher o mapeamento
- Tratar colisões

- Posição de um objeto x
 - \blacksquare m(k(x)), sendo
 - k: código gerado para a chave do objeto x
 - m: mapeamento do código para a tabela

17 Geração de código *hash*

Código hash

□ Boas funções de código:

- Boa previsão de espaço
- Evitam colisões
- Boa distribuição do conjunto
- Simples de computar

Código hash – paradoxo do Aniversário

 Com mais de 23 pessoas juntas, há uma probabilidade maior que 50% de aniversários coincidentes

- 30 pessoas: cerca de 70% de coincidência
- Ou seja, mesmo uma tabela com 365 "espaços" e apenas 30 chaves, podemos ter muitas colisões

Função identidade

- \Box k(x) = x
- Fácil de computar?
- Probabilidades iguais?

Função identidade

- \Box k(x) = x
- □ Fácil de computar?
- Probabilidades iguais?
- Sem mapeamento: espaço ocioso?
 - Ex: matrículas da PUC, na mesma disciplina
 - 680392] 102.887 "espaços" na tabela
 - 783279 50 alunos

Extração de dígitos

- Extrair alguns dígitos para criar o código.
 - Ex: tabela com 100 objetos e chave sendo o número de identidade. Extrair os dígitos 3 e 6.
 - MG-17562092
 - MG-19331144
 - MG-5613562

Extração de dígitos

- Extrair alguns dígitos para criar o código.
 - Ex: tabela com 100 objetos e chave sendo o número de identidade. Extrair os dígitos 3 e 6.

 - MG-19331144 → código 31

Extração de dígitos

- Mais eficiente se conhecemos bem as chaves.
 - Ex: extrair os dois primeiros dígitos da matrícula

```
755339 751587 756210 754516 753560 773928 696664 742368 647464 659792
```

Ex: extrair últimos dígitos do CPF:

```
XXX.XXX.XX<mark>Z</mark>-YY
XXX.XXX.XX7-YY
```

- □ Elevar o valor ao quadrado e, depois, extrair dígitos
- □ Ex:
 - **475026**
 - 475031
 - **475033**

- □ Elevar o valor ao quadrado e, depois, extrair dígitos
- □ Ex:
 - **475026**
 - **475031**
 - **475033**

- □ Elevar o valor ao quadrado e, depois, extrair dígitos
- □ Ex:
 - **□** 475026 → 225649700676
 - **□** 475031 → 225654450961
 - **□** 475033 → 225656351089

- □ Elevar o valor ao quadrado e, depois, extrair dígitos
- □ Ex:
 - \rightarrow 475026 \rightarrow 225649700676
 - \rightarrow 475031 \rightarrow 225654450961
 - **□** 475033 \rightarrow 225656351089
 - Aumento da dispersão

Mudança de base

- Mudar o valor para outra base:
 - **■** Ex: valor 453

$$k(453) \rightarrow 453_{10} = 382_{11} \rightarrow \text{chave } 382$$

□ E se o valor não é numérico?

Caracteres e códigos de caracteres

Somar valores dos códigos?

$$LAMA = 12 + 1 + 13 + 1 = 27$$

$$ROMA = 18 + 15 + 13 + 1 = 47$$

□ E se o valor não é numérico?

Caracteres e códigos de caracteres

Somar valores dos códigos?

$$LAMA = 12 + 1 + 13 + 1 = 27$$
 ALMA MALA

$$ROMA = 18 + 15 + 13 + 1 = 47$$

□ E se o valor não é numérico?

□ Caracteres e códigos de caracteres

Somar valores dos códigos?

ROMA = 18 + 15 + 13 + 1 = 47 MORA AMOR ALNR

```
0 1 2 3 4 5 6 7
p[i] 3 4 1 2 5 7 8 6
```

$$\square$$
 JOAO = $10x3 + 15x4 + 1x1 + 15x2 = 121$

$$\square$$
 ALMA = 1x3 + 11x4 + 12x1 + 1x2 = 61

$$\square$$
 ALMA = 1x3 + 11x4 + 12x1 + 1x2 = 61

$$\square$$
 LAMA = $11x3 + 1x4 + 12x1 + 1x2 = 51$

Chave não numérica

Uso de pesos

	0	1	2	3	4	5	6	7		
p[i]										
	M	Α	Р	Ε	Α	M	Ε	N	Т	0

Código polinomial

Uso de um polinômio com multiplicador

$$h(x) = x_0 a^{n-1} + x_1 a^{n-2} + x_2 a^{n-3} + \dots + x_{n-1}$$

- Sendo:
 - □ a > 1, uma constante
 - "n", o comprimento de x

Código polinomial

Uso de um polinômio com multiplicador

$$h(x) = x_0 a^{n-1} + x_1 a^{n-2} + x_2 a^{n-3} + \dots + x_{n-1}$$

Ex:
$$CODIGO$$
, com a = 11

$$3 \times 11^5 + 15 \times 11^4 + 4 \times 11^3 + 9 \times 11^2 + 7 \times 11 + 15$$

Código polinomial

Valores conhecidos para a no idioma inglês:
 33, 37, 39, 41

- □ Código numérico de 32 bits
 - Possível overflow parcial

41 Funções de mapeamento

Funções de mapeamento

- □ Código *k* é potencialmente enorme
 - Tabela identidade: desperdício de espaço

- □ Função de mapeamento
 - Leva k a um bucket da tabela

Funções de mapeamento

- □ Inserção de um objeto na tabela *hash*:
 - Cálculo do código
 - Aplicação do mapeamento
 - Possível tratamento de colisões

Divisão e resto

 $\mod m(k(x)) = x \% N$, sendo N o tamanho da tabela

- N influencia as colisões
 - **Ex:** m(k(x)) = k(x) % 8
 - $k(x) = 10 \rightarrow 2$
 - $k(x) = 20 \rightarrow 4$
 - $k(x) = 9 \rightarrow 1$
 - $k(x) = 15 \rightarrow 7$
 - $k(x) = 100 \rightarrow 4$

Divisão e resto

Recomenda-se escolher para N um número primo.

```
Ex: m(k(x)) = k(x)\%31 (por exemplo, para 25 objetos)

MG-17562092 \rightarrow código 50 \rightarrow posição 19

MG-19331144 \rightarrow código 31 \rightarrow posição 0

MG-5613562 \rightarrow código 16 \rightarrow posição 16
```

Método MAD

- Multiplicação, adição, divisão
- □ Tentativa de eliminar padrões da operação "resto"

$$m(k(x)) = ((ak(x)+b) \% p) \% N$$

- \blacksquare k(x) \rightarrow código gerado para o objeto x
- N → tamanho da tabela
- \square p \rightarrow primo maior que n
- □ a, b: escolhidos de forma que 0 < a e b < p-1

Método MAD

- m(k(x)) = ((2k(x)+7) % 47) % 31
 - N \rightarrow tamanho da tabela \rightarrow 31
 - \blacksquare p \rightarrow primo maior que n \rightarrow 47
 - \blacksquare a e b escolhidos entre 0 e p-1 \rightarrow 2 e 7
- **□** Ex:
 - MG-17562092 → código 50 → posição (107%47)%31 =
 13
 - MG-19331144 \rightarrow código 31 \rightarrow posição (69%47)%31 = 22

48 Tratamento de colisões

Tratamento de colisões

- Métodos chamados para endereçar objetos com resultados iguais para a transformação
 - Colisões: objetos levados ao mesmo *bucket*

- □ Em geral, o tratamento usa:
 - Listas encadeadas

ou

■ Endereçamento aberto

Colisões com listas encadeadas

□ Cada *bucket* é uma lista encadeada

 Objetos de códigos iguais ou com mesmo mapeamento são encadeados em uma lista linear

- □ Usos:
 - número imprevisível de objetos a armazenar
 - □ 'filtro' de conjuntos de objetos

Colisões com listas encadeadas

 \square Ex: m(k(x)) = k(x)%7, chaves P E S Q U I S A

$$P: 16 \rightarrow 2$$

$$E: 5 \rightarrow 5$$

S:
$$19 \rightarrow 5$$

Q:
$$17 \rightarrow 3$$

$$U: 21 \rightarrow 0$$

$$1: 9 \rightarrow 2$$

$$A: 1 \rightarrow 1$$

Colisões com listas encadeadas

- Com probabilidades iguais de endereçamento:
 - □ Tamanho esperado da lista: n/M
 - M é chamado fator de divisão
 - Ex: m(k(x)) = k(x)%23
 - 80 objetos \rightarrow 23 *buckets* x 4 objetos
- □ Pesquisa, inserção e remoção:
 - \Box O(1 +n/M)
 - Se M se aproxima de n, O(1)

Colisões com endereçamento aberto

 Utilização de lugares vazios da própria tabela para tratamento de colisões

□ Uso:

- Há uma boa estimativa inicial da quantidade de objetos a ser armazenada
- Objetos únicos com chaves únicas

Endereçamento aberto

- Procura uma nova posição dentro da área da tabela
 - Sondagem linear
 - Sondagem quadrática
 - Duplo hash (double hashing)

Endereçamento aberto

 Sondagem linear: as próximas posições são sondadas (circularmente), até que uma posição livre seja encontrada.

■ Também chamado de "próximo endereço livre"

- Sondagem linear
- \Box Ex: m(k(x)) = k(x)%9
 - \blacksquare k(x) = 13 \rightarrow pos: 4

Pos	Chave
0	18
1	
2	
3	21
4	
5	
6	
7	34
8	

- Sondagem linear
- \Box Ex: m(k(x)) = k(x)%9
 - $k(x) = 13 \rightarrow pos: 4$

Pos	Chave
0	18
1	
2	
3 4	21
	13
5	
6	
7	34
8	

- □ Ex: m(k(x)) = k(x)%9
 - \triangleright k(x) = 13 \rightarrow pos: 4
 - \triangleright k(x) = 16 \rightarrow pos: 7

Pos	Chave
0	18
1	
2	
3	21
4	13
5	
6	
7	34
8	_

- □ Sondagem linear
- □ Ex: m(k(x)) = k(x)%9
 - $k(x) = 13 \rightarrow pos: 4$
 - □ k(x) = 16 \rightarrow pos: 7 (colisão)

	Pos	Chave
	0	18
	1	
	2	
	3	21
	4	13
	5	
	6	
>	7	34
	8	

- Sondagem linear
- \Box Ex: m(k(x)) = k(x)%9
 - $k(x) = 13 \rightarrow pos: 4$
 - □ k(x) = 16 \rightarrow pos: 7 (colisão: 8)

Pos	Chave
0	18
1	
2	
3	21
4	13
5	
6	
7	34
8	16

- □ Ex: m(k(x)) = k(x)%9
 - \triangleright k(x) = 13 \rightarrow pos: 4
 - \blacksquare k(x) = 16 \rightarrow pos: 7 (\rightarrow 8)
 - $k(x) = 30 \rightarrow pos: 3$

Pos	Chave
0	18
1	
2	
3	21
4	13
5	
6	
7	34
8	16

- □ Sondagem linear
- □ Ex: m(k(x)) = k(x)%9
 - $k(x) = 13 \rightarrow pos: 4$
 - $k(x) = 16 \rightarrow pos: 7 (\rightarrow 8)$
 - □ k(x) = 30 \rightarrow pos: 3 (colisão)

Pos	Chave
0	18
1	
2	
3	21
4	13
5	
6	
7	34
8	16

- □ Sondagem linear
- \Box Ex: m(k(x)) = k(x)%9
 - $k(x) = 13 \rightarrow pos: 4$
 - \blacksquare k(x) = 16 \rightarrow pos: 7 (\rightarrow 8)
 - □ k(x) = 30 \rightarrow pos: 3 (colisão) \checkmark

Pos	Chave
0	18
1	
2	
3	21
4	13
5	
6	
7	34
8	16

- □ Sondagem linear
- \Box Ex: m(k(x)) = k(x)%9
 - $k(x) = 13 \rightarrow pos: 4$
 - \blacksquare k(x) = 16 \rightarrow pos: 7 (\rightarrow 8)
 - □ k(x) = 30 \rightarrow pos: 3 (colisão: 5)

	Pos	Chave
	0	18
	1	
	2	
	3	21
)	4	13
	5	30
	6	
	7	34
	8	16

- \Box Ex: m(k(x)) = k(x)%9
 - $k(x) = 13 \rightarrow pos: 4$
 - \blacksquare k(x) = 16 \rightarrow pos: 7 (\rightarrow 8)
 - $k(x) = 30 \rightarrow pos: 3 (\rightarrow 5)$

Pos	Chave
0	18
1	
2	
3	21
4	13
5	30
6	
7	34
8	16

- □ Ex: m(k(x)) = k(x)%9
 - \triangleright k(x) = 13 \rightarrow pos: 4
 - \blacksquare k(x) = 16 \rightarrow pos: 7 (\rightarrow 8)
 - $k(x) = 30 \rightarrow pos: 3 (\rightarrow 5)$
 - \blacksquare k(x) = 97 \rightarrow pos: 7

Pos	Chave
0	18
1	
2	
3	21
4	13
5	30
6	
7	34
8	16

Sondagem linear

- □ Ex: m(k(x)) = k(x)%9
 - $k(x) = 13 \rightarrow pos: 4$
 - \blacksquare k(x) = 16 \rightarrow pos: 7 (\rightarrow 8)
 - \blacksquare k(x) = 30 \rightarrow pos: 3 (\rightarrow 5)
 - \blacksquare k(x) = 97 \rightarrow pos: 7 (\rightarrow 1)

(após 3 colisões)

Pos	Chave
0	18
1	97
2	
3	21
4	13
5	30
6	
7	34
8	16

- □ Ex: m(k(x)) = k(x)%9
 - \triangleright k(x) = 13 \rightarrow pos: 4
 - \blacksquare k(x) = 16 \rightarrow pos: 7 (\rightarrow 8)
 - \blacksquare k(x) = 30 \rightarrow pos: 3 (\rightarrow 5)
 - $k(x) = 97 \rightarrow pos: 7 (\rightarrow 1)$
- □ E a busca?

Pos	Chave
0	18
1	97
2	
3	21
4	13
5	30
6	
7	34
8	16

- □ Ex: m(k(x)) = k(x)%9
 - \blacksquare k(x) = 13 \rightarrow pos: 4
 - $k(x) = 16 \rightarrow pos: 7 (\rightarrow 8)$
 - $k(x) = 30 \rightarrow pos: 3 (\rightarrow 5)$
 - $k(x) = 97 \rightarrow pos: 7 (\rightarrow 1)$
- □ E a busca?
 - Mesma regra da inserção

Pos	Chave
0	18
1	97
2	
3	21
4	13
5	30
6	
7	34
8	16

- Sondagem linear
- □ Ex: m(k(x)) = k(x)%9

Na prática:

$$m(k(x),c) = (m(k(x))+c)%9$$

(sendo c o número de colisões)

Pos	Chave
0	18
1	97
2	
3	21
4	13
5	30
6	
7	34
8	16

- □ Sondagem linear / próximo livre: complexidade
 - *Degeneração* da tabela?

- Sendo "a" o fator de carga \rightarrow a = n/N
- \blacksquare a = 0,50 \rightarrow f(n) = 1,50
- $a = 0.90 \rightarrow f(n) = 5.50$

Endereçamento aberto

 Sondagem quadrática: a distância até a próxima posição a ser sondada é determinada pelo quadrado da tentativa

$$m(k(x),c) = (m(k(x) + c^2)) \% n$$
, sendo c o número de colisões

Sonda	agem	quadr	rática

□ Ex:
$$m(k(x)) = k(x)\%29$$

$$\blacksquare$$
 k(x) = 33 \rightarrow pos: 4

Pos	Chave
0	58
1	
2	
3	03
4	
5	
6	35
7	
8	
9	
10	
11	

12

Sond	lagem	quad	lrát	ica

□ Ex:
$$m(k(x)) = k(x)\%29$$

$$\blacksquare$$
 k(x) = 33 \rightarrow pos: 4

Pos	Chave
0	58
1	
2	
3	03
4	33
5	
6	35
7	
8	
9	
10	

Sondagem	quaurati	Cd

$$\Box$$
 Ex: m(k(x)) = k(x)%29

$$\blacksquare$$
 k(x) = 33 \rightarrow pos: 4

$$□$$
 k(x) = 64 \rightarrow pos: 6 (colisão)

Sondagem	quadra	atica

$$\Box$$
 Ex: m(k(x)) = k(x)%29

$$\triangleright$$
 k(x) = 33 \rightarrow pos: 4

■
$$k(x) = 64 \rightarrow pos: 6 (colisão)$$

Pos	Chave
0	58
1	
2	
3	03
4	33
5	
6	35
7	
8	
9	
10	

Sondagem quadrática

□ Ex:
$$m(k(x)) = k(x)\%29$$

$$k(x) = 33 \rightarrow pos: 4$$

□
$$k(x) = 64 \rightarrow pos: 6 (colisão)$$

6+1 = 7

Chave

58

Pos

12

Son	dagem	quadrática
_	_	

$$\Box$$
 Ex: m(k(x)) = k(x)%29

$$\blacksquare$$
 k(x) = 33 \rightarrow pos: 4

$$k(x) = 64 \rightarrow pos: 6 (\rightarrow 7)$$

$$□ k(x) = 90$$
 pos: 3 (colisão)

Pos		Chave		
	0	58		
	1			
	2			
	3	03		
	4	33		
	5			
	6	35		
	7	64		
	8			
	9			
	10			
	11			
	12			

Sondagem quadrática

301	Ida	801	• •	94	au	ıa	CI	

□ Ex:
$$m(k(x)) = k(x)\%29$$

$$\blacksquare$$
 k(x) = 33 \rightarrow pos: 4

$$k(x) = 64 \rightarrow pos: 6 (\rightarrow 7)$$

■
$$k(x) = 90 \rightarrow pos: 3 (colisão)$$

$$3+1 = 4$$

Pos	Chave
0	58
1	
2	
3	03
4	33
5	
6	35
7	64
8	
9	
10	
11	
12	

Sondagem	quadrática

□ Ex:
$$m(k(x)) = k(x)\%29$$

$$\blacksquare$$
 k(x) = 33 \rightarrow pos: 4

$$k(x) = 64 \rightarrow pos: 6 (\rightarrow 7)$$

$$3+4=7$$

	Pos	Chave
	0	58
	1	
	2	
	3	03
	4	33
	5	
	6	35
	7	64
	8	
	9	
	10	
	11	

12

•	-	٦
٠.	⋖	
•	- 1	
_	4	ı

$$\Box$$
 Ex: m(k(x)) = k(x)%29

$$\blacksquare$$
 k(x) = 33 \rightarrow pos: 4

$$k(x) = 64 \rightarrow pos: 6 (\rightarrow 7)$$

□
$$k(x) = 90 \rightarrow pos: 3 (colisão)$$

3+4=7

S	Chave
	58
	03
	33
	35 64
	64

C	1	
- Sona	aaem	quadrática
	490111	90001000

$$\Box$$
 Ex: m(k(x)) = k(x)%29

$$\blacksquare$$
 k(x) = 33 \rightarrow pos: 4

$$k(x) = 64 \rightarrow pos: 6 (\rightarrow 7)$$

$$k(x) = 90 \rightarrow pos: 3 (\rightarrow 12)$$

$$3+4 = 7$$

$$3+9 = 12$$

90

Chave

58

Pos

0

12

Endereçamento aberto

 Duplo hash: a distância até a próxima posição a ser sondada é determinada por uma segunda função hash

$$m(k(x),c) = [m(k(x)) + c*m'(k(x))] % n$$

- Sendo:
 - c: a quantidade de colisões
 - m': função de segundo *hash*
 - n: tamanho da tabela

m(30,0) = 11

m(5,0) = 5

m(100,0) = 5

□ **Duplo hash**: m(k(x),c) = [m(k(x)) + c*m'(k(x))] % n

 \square Ex: m(k(x)) = k(x)%19 e m'(k(x)) = k(x)/23

PUC Minas – Curso de Sistemas de Informação – AED – Prof. João Caram

11 30 12 13

Pos

0

3

4

5

6

8

9

10

Chave

5

□ **Duplo hash**:
$$m(k(x),c) = [m(k(x)) + c*m'(k(x))] % n$$
□ Ex: $m(k(x)) = k(x) % 19 e m'(k(x)) = k(x) / 23$

$$m(5,0) = 5$$

$$(0,0) = 11$$

PUC Minas – Curso de Sistemas de Informação – AED – Prof. João Caram

Pos

Chave

86

3

□ **Duplo hash**: m(k(x),c) = [m(k(x)) + c*m'(k(x))] % n

 \square Ex: m(k(x)) = k(x)%19 e m'(k(x)) = k(x)/23

m(5,0) = 5

m(30,0) = 11

m(100,0) = 5 (colisão)

PUC Minas – Curso de Sistemas de Informação – AED – Prof. João Caram

m(100,1) = 5 + 1*4 = 9

4 5

10

11

12

13

6

Pos

0

30

□ **Duplo hash**: m(k(x),c) = [m(k(x)) + c*m'(k(x))] % n

 \square Ex: m(k(x)) = k(x)%19 e m'(k(x)) = k(x)/23

m(47,0) = 9

PUC Minas – Curso de Sistemas de Informação – AED – Prof. João Caram

Pos

□ **Duplo hash**: m(k(x),c) = [m(k(x)) + c*m'(k(x))] % n

 \square Ex: m(k(x)) = k(x)%19 e m'(k(x)) = k(x)/23

m(47,0) = 9 (colisão)

PUC Minas – Curso de Sistemas de Informação – AED – Prof. João Caram

Pos

□ **Duplo hash**: m(k(x),c) = [m(k(x)) + c*m'(k(x))] % n

 \square Ex: m(k(x)) = k(x)%19 e m'(k(x)) = k(x)/23

PUC Minas – Curso de Sistemas de Informação – AED – Prof. João Caram

- m(47,0) = 9 (colisão)
- m(47,1) = 9 + 1*2 = 11 (colisão)

Pos

□ **Duplo hash**:
$$m(k(x),c) = [m(k(x)) + c*m'(k(x))] % n$$

□ Ex:
$$m(k(x)) = k(x)\%19 e m'(k(x)) = k(x)/23$$

 $m(47.0) = 9 (colisão)$

$$m(47,1) = 9 + 1*2 = 11$$

 $m(47,2) = 9 + 2*2 = 13$

PUC Minas – Curso de Sistemas de Informação – AED – Prof. João Caram

Pos

Chave

□ **Duplo hash**: m(k(x),c) = [m(k(x)) + c*m'(k(x))] % n

m(47,0) = 9 (colisão)

m(47,2) = 9 + 2*2 = 13

 \square Ex: m(k(x)) = k(x)%19 e m'(k(x)) = k(x)/23

m(47,1) = 9 + 1*2 = 11 (colisão)

PUC Minas – Curso de Sistemas de Informação – AED – Prof. João Caram

8 9 10

11

12

Pos

0

3

4

5

6

100

47

92 Outras operações

- □ Remoção em listas lineares: já vimos
 - Basta localizar a lista e chamar a remoção

- Endereçamento aberto:
 - Apagar instantaneamente pode causar problemas
 - Uso de *marca de remoção (lápide)*
 - Segue a regra de colisão da inserção
 - Futura *reparação* do arquivo
 - Reorganização
 - Compactação

- Endereçamento aberto
 - Sondagem linear
- m(k(x)) = k(x) % 9
- □ Remover 34

$$(34 \% 9) = 7$$

Pos	Chave
0	18
1	
2	
3	21
4	13
5	30
6	
7	34
8	16

- Endereçamento aberto
 - Sondagem linear
- m(k(x)) = k(x) % 9
- □ Remover 34

$$(34 \% 9) = 7$$

Lápide

Pos	Chave
0	18
1	
2	
3	21
4	13
5	30
6	
7	34 (F)
8	16

- Endereçamento aberto
 - Sondagem linear
- m(k(x)) = k(x) % 9
- □ Remover 34
- □ Remover 30

Pos	Chave
0	18
1	
2	
3	21
4	13
5	30
6	
7	34 (F)
8	16

- Endereçamento aberto
 - Sondagem linear
- m(k(x)) = k(x) % 9
- □ Remover 34
- □ Remover 30

Pos	Chave
0	18
1	
2	
3	21
4	13
5	30
6	
7	34 (F)
8	16

- Endereçamento aberto
 - Sondagem linear
- m(k(x)) = k(x) % 9
- □ Remover 34
- □ Remover 30

30 % 9 = 3 (não existe??)

Pos	Chave
0	18
1	
2	
3	21
4	13
5	30
6	
7	34 (F)
8	16

- Endereçamento aberto
 - Sondagem linear
- m(k(x)) = k(x) % 9
- □ Remover 34
- □ Remover 30

$$30 \% 9 = 3 (\rightarrow 4)$$

Pos	Chave
0	18
1	
2	
3	21
4	13
5	30
6	
7	34 (F)
8	16

- Endereçamento aberto
 - Sondagem linear
- m(k(x)) = k(x) % 9
- □ Remover 34
- □ Remover 30

$$30 \% 9 = 3 (\rightarrow 5)$$

Pos	Chave
0	18
1	
2	
3	21
4	13
5	30
6	
7	34 (F)
8	16

- Endereçamento aberto
 - Sondagem linear
- m(k(x)) = k(x) % 9
- □ Remover 34
- □ Remover 30

$$30 \% 9 = 3 (\rightarrow 5)$$

Lápide

Pos	Chave
0	18
1	
2	
3	21
4	13
5	30 (F)
6	
7	34 (F)
8	16

- Endereçamento aberto
 - Sondagem linear
- m(k(x)) = k(x) % 9
- Inserir 14

Pos	Chave
0	18
1	
2	
3	21
4	13
5	30 (F)
6	
7	34 (F)
8	16

- Endereçamento aberto
 - Sondagem linear
- m(k(x)) = k(x) % 9
- Inserir 14

Pos	Chave
0	18
1	
2	
3	21
4	13
5	14
6	
7	34 (F)
8	16

- Endereçamento aberto
 - Sondagem linear
- m(k(x)) = k(x) % 9
- □ Remover 104

104 % 9: 5 (não existe??)

Pos	Chave
0	18
1	
2	
3	21
4	13
5	14
6	
7	34 (F)
8	16

- Endereçamento aberto
 - Sondagem linear
- m(k(x)) = k(x) % 9
- □ Remover 104

104 % 9: 5 (não existe??)

104 % 9: 5 (→ 6 : não existe!!)

Pos	Chave
0	18
1	
2	
3	21
4	13
5	14
6	
7	34 (F)
8	16

Reparação

- Também chamada de reorganização ou compactação da tabela
- m(k(x)) = k(x) % 9

Reparação

- Também chamada de reorganização ou compactação da tabela
- m(k(x)) = k(x) % 9

	Pos	Chave
	0	
3	1	
4	2	
	3	
	4	
	5	
	6	
	7	
	8	

Pos	Chave
0	18
1	10
2	
3	21 (F)
4	13
5	30
6	
7	34 (F)
8	16

- Também chamada de reorganização ou compactação da tabela
- m(k(x)) = k(x) % 9

	Pos	Chave
	0	
1	1	
1	2	
	3	
	4	
	5	
	6	
	7	
	8	

Pos	Chave
0	18
1	10
2	
3	21 (F)
4	13
5	30
6	
7	34 (F)
8	16

- Também chamada de reorganização ou compactação da tabela
- m(k(x)) = k(x) % 9

	Pos	Chave
	0	18
1	1	
•	2	
	3	
	4	
	5	
	6	
	7	
	8	

Pos	Chave
0	18
1	10
2	
3	21 (F)
4	13
5	30
6	
7	34 (F)
8	16

- Também chamada de reorganização ou compactação da tabela
- m(k(x)) = k(x) % 9

	Pos	Chave
	0	18
3	1	10
4	2	
	3	
	4	
	5	
	6	
	7	
	8	

Pos	Chave
0	18
1	10
2	
3	21 (F)
4	13
5	30
6	
7	34 (F)
8	16

- Também chamada de reorganização ou compactação da tabela
- m(k(x)) = k(x) % 9

	Pos	Chave	
	0	18	
3	1	10	
4	2		
	3		
	4		
	5		
	6		
	7		
	8		

Pos	Chave
0	18
1	10
2	
3	21 (F)
4	13
5	30
6	
7	34 (F)
8	16

- Também chamada de reorganização ou compactação da tabela
- m(k(x)) = k(x) % 9

	Pos	Chave
	0	18
)	1	10
	2	
	3	
	4	13
	5	
	6	
	7	
	8	

Pos	Chave
0	18
1	10
2	
3	21 (F)
4	13
5	30
6	
7	34 (F)
8	16

- Também chamada de reorganização ou compactação da tabela
- m(k(x)) = k(x) % 9

	Pos	Chave	
	0	18	
3	1	10	
4	2		
	3		
	4	13	
	5		
	6		
	7		
	8		

Pos	Chave
0	18
1	10
2	
3	21 (F)
4	13
5	30
6	
7	34 (F)
8	16

- Também chamada de reorganização ou compactação da tabela
- m(k(x)) = k(x) % 9

	Pos	Chave	
	0	18	
3	1	10	
4	2		
	3	30	
	4	13	
	5		
	6		
	7		
	8		

Pos	Chave
0	18
1	10
2	
3	21 (F)
4	13
5	30
6	
7	34 (F)
8	16

- Também chamada de reorganização ou compactação da tabela
- m(k(x)) = k(x) % 9

Pos	Chave
0	18
1	10
2	
3	30
4	13
5	
6	
7	
8	

Pos	Chave
0	18
1	10
2	
3	21 (F)
4	13
5	30
6	
7	34 (F)
8	16

- Também chamada de reorganização ou compactação da tabela
- m(k(x)) = k(x) % 9

	Pos	Chave	
	0	18	
1	1	10	
1	2		
	3	30	
	4	13	
	5		
	6		
	7	16	4
	8		

Pos	Chave
0	18
1	10
2	
3	21 (F)
4	13
5	30
6	
7	34 (F)
8	16

- Também chamada de reorganização ou compactação da tabela
- m(k(x)) = k(x) % 9

	Pos	Chave
	0	18
)	1	10
4	2	
	3	30
	4	13
	5	
	6	
	7	16
	8	

Imprimir todos os objetos

- Imprimir na ordem da tabela: fácil
 - Percorrer verificando remoções e espaços vazios

Imprimir os objetos em ordem

□ Como imprimir *em ordem*?!

PUC Minas – Curso de Sistemas de Informação – AED – Prof. João Caram

Obrigado.

Dúvidas?