7.7

(1)

	а	b	С	d	е	f	g	h
а	∞	4	3	∞	∞	∞	∞	∞
b	4	∞	5	5	9	∞	∞	∞
С	3	5	∞	5	∞	∞	∞	5
d	∞	5	5	∞	7	6	5	4
е	∞	9	∞	7	∞	3	∞	∞
f	∞	∞	∞	6	3	∞	2	∞
g	∞	∞	∞	5	∞	2	∞	6
h	∞	∞	5	4	∞	∞	6	∞


```
a -> 2 -> 1 -> ^
b -> 0 -> 2 -> 3 -> 4 -> ^
c -> 7 -> 3 -> 1 -> 0 -> ^
d -> 1 -> 2 -> 7 -> 6 -> 5 -> 4 -> ^
e -> 1 -> 3 -> 5 -> ^
f -> 4 -> 3 -> 6 -> ^
h -> 6 -> 3 -> 2 -> ^
```


7.10

	α	A	В	С	D	E	F	G	Н	I	J	K	ω
ve(vi)	0	1	6	17	3	34	4	3	13	1	31	22	44
vl(vi)	0	20	24	26	19	34	8	3	13	7	31	22	44

	<α, A >	<α,B>	<α,D>	<α,F>	<α,G>	<α,l>	<a,c></a,c>	<b,c></b,c>
e(ai)	0	0	0	0	0	0	0	1
l(ai)	19	18	16	4	0	6	20	24
	<d,c></d,c>	<d,e></d,e>	<d,j></d,j>	<f,e></f,e>	<f,h></f,h>	<g,ω></g,ω>	<g,h></g,h>	<i,h></i,h>
e(ai)	3	3	3	4	4	3	3	1

	<α, A >	<α,B>	<α,D>	<α,F>	<α,G>	<α, l >	<a,c></a,c>	<b,c></b,c>
l(ai)	19	26	25	23	8	23	3	7
	<c,e></c,e>	<h,c></h,c>	<h,j></h,j>	<h,k></h,k>	<k,j></k,j>	<j,e></j,e>	<j,ω></j,ω>	<Ε,ω>
e(ai)	17	13	13	13	22	31	31	34
l(ai)	26	22	27	13	22	31	32	34

关键路径: α-> G-> H-> K-> J-> E-> ω

7.11

V-S Dist	ь	С	d	e	f	g	S (终点集)
初始	15 <a, b=""></a,>	2 <a,c></a,c>	12 <a,d></a,d>	œ	œ	œ	{a}
K=1	15 <a, b=""></a,>	2 <a,c></a,c>	12 <a,d></a,d>	10 <a,c,e></a,c,e>	6 <a,c,f></a,c,f>	œ	{a, c}
K=2	15 <a,b></a,b>	2 <a,c></a,c>	11 <a,c,f,d></a,c,f,d>	10 <a,c,e></a,c,e>	6 <a,c,f></a,c,f>	16 <a,c,f,g></a,c,f,g>	{a, c, f}
K=3	15 <a, b=""></a,>	2 <a,c></a,c>	11 <a,c,f,d></a,c,f,d>	10 <a,c,e></a,c,e>	6 <a,c,f></a,c,f>	16 <a,c,f,g></a,c,f,g>	{a, c, f, e}
K=4	15 <a,b></a,b>	2 <a,c></a,c>	11 <a,c,f,d></a,c,f,d>	10 <a,c,e></a,c,e>	6 <a,c,f></a,c,f>	14 <a,c,f,d,g></a,c,f,d,g>	{a, c, f, e, d}
K=5	15 <a, b=""></a,>	2 <a,c></a,c>	11 <a,c,f,d></a,c,f,d>	10 <a,c,e></a,c,e>	6 <a,c,f></a,c,f>	14 <a,c,f,d,g></a,c,f,d,g>	{a, c, f, e, d, g}
K=6	15 <a,b></a,b>	2 <a,c></a,c>	11 <a,c,f,d></a,c,f,d>	10 <a,c,e></a,c,e>	6 <a,c,f></a,c,f>	14 <a,c,f,d,g></a,c,f,d,g>	{a, c, f, e, d, g, b}

7.22

```
//返回顶点u在图中的位置
int LocateVex(ALGraph G, VertexType u) {
   int i;
   for(i = 0; i < G.vexnum; i++) {
       if(G.vertices[i].data == u)
           return i;
    }
   return -1;
}
//通过深度优先遍历,
//判断顶点vi到vj之间是否存在路径
void AlgConnect(ALGraph G, VertexType vi, VertexType vj) {
    int i, j, k;
   int path[MAX_VERTEX_NUM + 1];
   for(k = 0; k < G.vexnum; k++)
       vis[k] = FALSE;
   i = LocateVex(G, vi);
   j = LocateVex(G, vj);
   path[0] = 0;
   if(dfsPath(G, i, j, path) == -1) {
       printf("%c 到 %c 之间不存在通路! \n", vi, vj);
       return;
   }
   printf("%c 到 %c 之间的通路为: ", vi, vj);
   for(k = 1; k <= path[0]; k++) {</pre>
       printf("%c ", GetVex(G, path[k]));
   }
}
//深度优先遍历图G,
//查找顶点i到顶点i之间的路径存入path
int dfsPath(ALGraph G, int i, int j, int path[]) {
   int w;
   // 将顶点i加入路径
   vis[i] = TRUE;
   path[0]++;
   path[path[0]] = i;
   if(i == j) return 1;
   // 遍历vi所有邻接点
   for(w = FirstAdjVex(G, GetVex(G, i)); w >= 0; w = NextAdjVex(G, GetVex(G, i), GetVex(G, w)))
       // 跳过已访问的顶点
       if(vis[w]) {
           continue;
       }
       // 递归(深度优先)
       if(dfsPath(G, w, j, path) == OK) {
```

7.27

```
int PathGra(ALGraph G, int start, int end, int k, int path[]) {
   int w;
   path[0]++;
   path[path[0]] = start;
   vis[start] = TRUE; // 标记该顶点已访问
   // 如果遇到终点,则需要视情形返回
   if(start == end) {
       // 顶点数 = 路径长度+1
       if(path[0] == k + 1)
           return 1;
   } else {
       // 深度优先遍历
       for(w = FirstAdjVex(G, G.vertices[start].data);
           W >= 0;
           w = NextAdjVex(G, G.vertices[start].data, G.vertices[w].data)) {
           // 忽略已访问过的顶点
           if(vis[w] == TRUE)
              continue;
          if(PathGra(G, w, end, k, path) == 1) return 1
       }
   }
   // 从路径中移除该顶点,并将其状态降级为"已访问"
   path[0]--;
   vis[start] = FALSE; // 清除访问标记
   return -1;
}
```