INTRODUCTION TO ARTIFICIAL INTELLIGENCE

BI-ZUM / BIE-ZUM

QUANTUM ANNEALING

Prof. RNDr. PAVEL SURYNEK, Ph.D.

KAM FIT ČVUT

pavel.surynek@fit.cvut.cz

http://users.fit.cvut.cz/~surynek

http://courses.fit.cvut.cz/bi-zum

QUANTUM COMPUTERS

- Basic concept: qubit
 - superposition of two basic states |0> and |1>
 - qubit state $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$, where are α and β complex numbers
 - probability of $|0\rangle$ after measurement is $|\alpha|$, probability of $|1\rangle$ is $|\beta|$

- gate based
 - quantum gates produce qubits from input qubits
- adiabatic quantum computing
 - quantum annealing
- and more...

Operator	Gate(s)		Matrix
Pauli-X (X)	$-\mathbf{x}$	-	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
Pauli-Y (Y)	$- \boxed{\mathbf{Y}} -$		$\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$
Pauli-Z (Z)	$- \boxed{\mathbf{z}} -$		$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
Hadamard (H)	$-\mathbf{H}$		$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix}$
Phase (S, P)	$-\mathbf{S}$		$\begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$
$\pi/8$ (T)	$- \boxed{\mathbf{T}} -$		$\begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}$
Controlled Not (CNOT, CX)	<u> </u>		$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$
Controlled Z (CZ)			$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$
SWAP			$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
Toffoli (CCNOT, CCX, TOFF)			$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0$

ADIABATIC QUANTUM COMPUTERS

- Limited number of qubits (a few 1000s)
 - many more than gate-based model (a few 100s)
- Limited connectivity
 - hardware does not implement a fully connected graph
 - chained qubits (use extra qubits)
 - 5000 qubits and current topology can implement a fully connected graph with 177 qubits
- But simple: one sample annealing, readout, cooling

ADIABATIC QUNTUM COMPUTATION

Adiabatic computation

$$\mathcal{H}_{ising} = \underbrace{-rac{A(s)}{2} \Biggl(\sum_{i} \hat{\sigma}_{x}^{(i)} \Biggr)}_{ ext{Initial Hamiltonian}} + \underbrace{rac{B(s)}{2} \Biggl(\sum_{i} h_{i} \hat{\sigma}_{z}^{(i)} + \sum_{i>j} J_{i,j} \hat{\sigma}_{z}^{(i)} \hat{\sigma}_{z}^{(j)} \Biggr)}_{ ext{Final Hamiltonian}}$$

- By varying A(s) and B(s) over time
 - 0 ≥ 1, 1 ≥ 0
- The system moves from initial Hamiltonian and stays in the ground state (minimal energy)

QUANTUM ANNEALING

- Adiabatic computation can be interpreted as quadratic optimization problem
 - n Boolean variables x₁,x₂,...,x_n
 - decision variables (we want to determine their values)
 - minimize

$$\sum_{i=1}^{n} a_{i} x_{i} + \sum_{i=1}^{n} a_{i}' x_{i}^{2} + \sum_{i,j} a_{ij} x_{i} x_{j}$$

a_{i.}a_{i'.}a_{ii} are real-valued coefficients

Equivalent to:

- minimize $\sum_{i \le j} q_{ij} x_i x_j$ (QUBO)
 - using matrices min x^TQx
- can be solved by classical simulated annealing but adiabatic computation can utilize quantum tunneling effect

q_{ii} ≠ 0 requires hardware connection between qubits i and j

QUANTUM EFFECTS

- Temperature corresponds to the strength of tunneling effect
 - any height can be crossed
 - but the tunnel can be only of limited length depending on the temperature
 - the temperature can change the landscape
- If a certain cooling scheme is followed, then the process can reach the global optimum thanks to tunneling effect

PROBLEM COMPILATION TO QUBO

- QUBO: Quadratic Unconstrained Binary Optimization
 - minimize $\sum_{i \leq j} q_{ij} x_i x_j$
- How to express constraints in an unconstrained formalism?
- Use penalties.
 - Examples:
 - (pseudo-Boolean) constraint x+y ≤ 1, penalty: xy
 - constraint x = y, penalty: x+y 2xy
 - implication $x \Rightarrow y$, equivalent to $x \le y$, penalty: x xy
 - Penalties are compositional addition, penalty coefficients
- More complex compilation, one-hot encoding
 - n Boolean variables x₁,x₂,...,x_n, exactly one has value 1
 - (pseudo-Boolean) constraint $\sum_{i=1}^{n} x_i = 1 \Leftrightarrow \sum_{i=1}^{n} x_i 1 = 0$, penalty: $(\sum_{i=1}^{n} x_i 1)^2 \Leftrightarrow -\sum_{i=1}^{n} x_i + 2\sum_{i < j} x_j x_j$