Lab 5: Cascading Sequence

Michael McCorkell

Humber Polytechnics

Programmable Logic Controllers: MENG 3500 0NB

Savdulla Kazazi

February 3, 2025

Objectives

This lab focused on implementing a **Cascading Sequence Technique** to control three pneumatic cylinders (A, B, and C) in a predefined order. The key objectives were:

- 1. Establishing stable communication between the **PLC** and the computer.
- 2. Implementing Cascading Sequence logic for sequential cylinder operation.
- 3. Developing a **Start-Stop mechanism** to control the process.
- 4. Enabling a **Cycle Counter** to track and limit the number of completed sequences.
- 5. Ensuring that all cylinders return to their **home positions** when stopped.
- 6. Testing the **CYCLE_PB** functionality to allow single-cycle execution.
- 7. Running the program and troubleshooting any errors in sequencing or logic.

Description of Work Completed

- PLC Communication Setup: Communication between the PLC and the computer was configured and tested.
- Control Logic Development:
 - o **Start Cycle (START PB):** Initiates a **fixed sequence** of cylinder movements:
 - 1. Cylinder B advances
 - 2. Cylinder A advances
 - 3. Cylinder B retracts
 - 4. Cylinder C advances
 - 5. Cylinder C retracts
 - 6. Cylinder A retracts
 - Stop Function (STOP_PB):
 - Pressing the STOP button at any time immediately stops the sequence.
 - All three cylinders retract to their home positions.
 - Single Cycle Mode (CYCLE_PB):
 - Pressing the **CYCLE_PB** executes **one full cycle** and then stops automatically.
 - Cycle Counting and Limitation:
 - A counter tracks completed sequences.
 - The system **automatically stops** after **three full cycles**, and the counter resets.
- Field Device Wiring & Testing:
 - The input devices (START_PB, STOP_PB, CYCLE_PB) and output devices (cylinder actuators) were wired per specifications.
 - The program was downloaded, executed, and monitored for correct sequencing and stopping behavior.
- Troubleshooting & Debugging:
 - o Live monitoring of cylinder positions ensured proper **step-by-step operation**.
 - o The **STOP function was tested** at different points to confirm that all cylinders retracted immediately.
 - The CYCLE_PB was tested to verify single-cycle execution.
 - Errors such as misalignment of sequence timing or incorrect retraction behavior were identified and corrected.

Wiring Diagram

Conclusions

The lab was successfully completed, demonstrating accurate sequencing, controlled cycle execution, and proper stop mechanisms. The use of the Cascading Sequence Technique reinforced the principles of step-based automation, real-time control, and fail-safe operation in PLC programming. The cycle counter and immediate stop function added robustness to the system, making it a reliable model for sequential pneumatic control applications.