

Introduction & Linear Algebra Basics

30 August 2017

What do I need to know?

- I won't assume you know machine learning or signal processing
 - You are here to learn, not to know!

- Be comfortable with the basics
 - Some linear algebra, some probability
 - If you are rusty that's ok, you are here to learn

What is this?

- Is it a signal processing class?
 - What is signal processing?

- Is it a machine learning class?
 - What is machine learning?

Signal Processing

 The study of capturing, processing and manipulating "signals"

• What is a signal?

Signals (as far as this class goes)

"Structured" collections of measurements that convey

information

Images

Machine Learning

 The study of discovering and extracting information from "data"

For data we will use signals

Why bother?

 Traditional signal processing doesn't really care about its input's content

Traditional machine learning is not signals-friendly

MLSP

 MLSP combines both disciplines to perform learning on signals data

Many examples of MLSP in the real-world

Face recognition

Found in cameras and photo software

Speech recognition

Surveillance

Detection of specified objects / activity

Gunshot detection

Pedestrian detection

Bio-signals

Interpreting our body's data

Heartbeat processing

Brain Machine Interfaces

Many other applications

- Biometrics
- Music Information Retrieval
- Robotics
- Gesture-based Uls
- Condition monitoring (power grids, automotive, ...)
- Financial data mining
- Many more ...

About this course

- Heavy on practical applications
 - Please bring your own domain problem in class!

- Won't go excruciatingly deep on theory
 - We'll skip convergence proofs, etc.
 - Many more courses here that cover all that

Our objective is intuition and real-world experience

Syllabus: the basics

- Covering the basics:
 - Part 1: Linear Algebra and Probability
 - Part 2: Signals Theory
 - Part 3: Representations and Features

Syllabus: machine learning review

- Elements of machine learning
 - Part 4: Unsupervised learning basics
 - Part 5: Detection and classification
 - Part 6: Time-series and dynamical models

Syllabus: The fun stuff

Applications and theory:

- Matrix Factorizations, Bag Models
- Manifolds and Embedding
- Graphical Models
- Deep Learning
- ICA, MIMO models, Arrays, Sensor Fusion
- Compressive Sensing and Sparsity
- Computer Vision, Speech Recognition
- Music/Audio Informatics
- Bio/Brain-signals
- •

Your part

- Problem sets: 40% of the grade
 - One every two weeks, will be mostly machine problems
- Final project: 50% of the grade
 - Mid-semester: Proposal due
 - Last 1-2 weeks: Presentations and/or posters
- Remaining 10% of grade
 - Show your face in class, ask questions, make sure I know who you are!

The final project is "conference style"

- Teams of 2-3 students (no more than 3, no less than 2)
 - Start making friends now!
- Mid-term: Abstract submission
 - Short abstract describing the problem you want to solve and how you plan to
- Week ~13: Paper Submission
 - 4-6 page paper
 - Peer reviewed by all of you
 - All papers will be accepted!

Communications

- We have a course page:
 - http://courses.engr.illinois.edu/cs598ps
 - Will have lectures, problem sets, data, links, etc.

- We have a piazza.com page
 - Look for CS598PS
 - Use for questions, discussions, finding project-mates, etc.
 - I will be using it for announcements

Who am 1?

- Instructor: Paris Smaragdis (CS & ECE)
 - paris@illinois.edu
 - Office: Siebel Center 3231
 - Send me email of you want to meet
- Interested in machine perception, computational audition
- Previously chaired the IEEE MLSP Technical Committee
- Plenty of commercialized experience on the subject

Who are the TAs?

- Cem Subakan
 - subakan2@illinois.edu

- Zesheng Wang
 - zwang180@illinois.edu

- TA office hours at Siebel 0207
 - Wednesdays 5:00-6:00PM

Who are you?

- Name, department, advisor, ugrad?
 - What are your interests in this area?
 - Hint: you will need a project-mate (take notes!)

Final administrative note

- As with every year, this class is oversubscribed
 - If you don't think you will stay until the end please consider dropping the course so that waitlisted students can register

- If you are not formally registered yet, send me your UID
 - I need this for the email list so you get all the announcements

Linear algebra refresher

- Linear algebra is the math tool du jour
 - Compact notation
 - Convenient set operations
 - Used in all modern texts
 - Interfaces well with MATLAB, numpy, R, TensorFlow, etc.

We will use a lot of it!!

Scalars, Vectors, Matrices, Tensors

Scalar

 \mathcal{X}

Matrix

$$\mathbf{X} = \left[\begin{array}{cccc} \mathbf{x} & \cdots & \mathbf{x}_{N} \end{array} \right] = \left[\begin{array}{cccc} x_{1,1} & x_{N,1} \\ \vdots & \cdots & \vdots \\ x_{1,M} & x_{N,M} \end{array} \right]$$

2nd dimension

Vector

$$x = \begin{vmatrix} x_1 \\ \vdots \\ x_N \end{vmatrix}$$

$$\mathbf{X} = \{\mathbf{X}_{1}, \dots \mathbf{X}_{K}\} = \begin{bmatrix} x_{1,1,1} & x_{N,1,1} \\ \vdots & \dots & \vdots \\ x_{1,M,1} & x_{N,M,1} \end{bmatrix}$$

$$\begin{bmatrix} x_{1,1,1} & x_{N,M,1} \\ \vdots & \ddots & \vdots \\ x_{1,M,K} & x_{N,1,K} \\ \vdots & \dots & \vdots \\ x_{1,M,K} & x_{N,M,K} \end{bmatrix}$$

2nd dimension

How will we see these?

• 1D signals (e.g. sounds) will be vectors

• 2D signals (e.g. images) will be matrices

$$\mathbf{X} = \left[\begin{array}{ccc} x_{1,1} & & x_{N,1} \\ \vdots & \dots & \vdots \\ x_{1,M} & & x_{N,M} \end{array} \right] = \left[\begin{array}{ccc} & & & & \\ & & & & \\ & & & & \\ \end{array} \right]$$

• 3D data will be videos, etc ...

27

Element-wise operations

Addition/subtraction

$$\mathbf{a} \pm \mathbf{b} = \mathbf{c} \longrightarrow a_i \pm b_i = c_i$$

Multiplication (Hadamard product)

$$\mathbf{a} \odot \mathbf{b} = \mathbf{c} \longrightarrow a_i \ b_i = c_i$$

• Other times denoted as $a \circ b$ or $a \cdot *b$

- No named operator for element-wise division
 - Just use Hadamard with inverted elements

Transpose

- Transpose
 - Change rows to columns (and vice versa)

$$\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix}, \quad \mathbf{x}^\top = \begin{bmatrix} x_1 & \cdots & x_N \end{bmatrix} \qquad \mathbf{x} = \begin{bmatrix} x_1 & x_3 \\ x_2 & x_4 \end{bmatrix}, \quad \mathbf{x}^\top = \begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix}$$

- Hermitian (conjugate transpose)
 - Notated as X^H
 - MATLAB note: x' is Hermitian transpose, x.' is transpose

Visualizing transposition

Mostly pointless for 1D signals

$$\mathbf{x} = \begin{bmatrix} \mathbf{x} \\ \mathbf{x} \end{bmatrix}, \quad \mathbf{x}^{\top} = \begin{bmatrix} \mathbf{x} \\ \mathbf{x} \end{bmatrix}$$

Swap dimensions for 2D signals

$$\mathbf{x} = \begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}, \quad \mathbf{x}^{\top} = \begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$$

30

Reshaping operators

- The vec operator
 - Unrolls elements column-wise
 - Useful for getting rid of matrices/tensors

$$\operatorname{vec}(\mathbf{x}) = \operatorname{vec}\begin{bmatrix} x_1 & x_3 \\ x_2 & x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

- The vec-transpose
 - For (p) of an $m \times n$ matrix make each column a $p \times (m/p)$ matrix
 - Useful for inverting vec and getting rid of tensors $\mathbf{X} = \text{vec}(\mathbf{X})^{(M)}$, $\mathbf{X} \in \mathbb{R}^{M \times N}$

$$\mathbf{x}^{(2)} = \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \\ x_{31} & x_{32} \\ x_{41} & x_{42} \\ x_{51} & x_{52} \\ x_{61} & x_{62} \end{bmatrix}^{(2)} = \begin{bmatrix} x_{11} & x_{31} & x_{51} \\ x_{21} & x_{41} & x_{61} \\ x_{12} & x_{32} & x_{52} \\ x_{22} & x_{42} & x_{62} \end{bmatrix}$$

Trace and diag

- Matrix trace

• Sum of diagonal elements
$$\operatorname{tr}(\mathbf{X}) = \operatorname{tr}\begin{bmatrix} x_{11} & \cdots & x_{1N} \\ \vdots & \ddots & \vdots \\ x_{N1} & \cdots & x_{NN} \end{bmatrix} = \sum_{i} x_{ii}$$

The diag operator

$$\operatorname{diag}(\mathbf{x}) = \operatorname{diag} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 & 0 \\ 0 & x_2 \end{bmatrix}$$
$$\operatorname{diag}^{-1} \begin{bmatrix} x_1 & a \\ b & x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

The dot product

- Dot product
 - Shorthand for multiply and accumulate

$$\mathbf{x}^{\top} \cdot \mathbf{y} = \sum_{i} x_{i} \cdot y_{i} = |\mathbf{x}| \cdot |\mathbf{y}| \cos \theta$$

- Geometry
 - For unit vectors:

$$\theta = \arccos(\mathbf{x}^{\mathsf{T}} \cdot \mathbf{y})$$

Great tool for checking out similarity

Matrix-vector product

Generalizing the dot product

$$\mathbf{X} \cdot \mathbf{y} = \begin{bmatrix} \mathbf{x}_{1}^{\top} \\ \mathbf{x}_{2}^{\top} \\ \mathbf{x}_{3}^{\top} \end{bmatrix} \cdot \mathbf{y} = \begin{bmatrix} \mathbf{x}_{1}^{\top} \cdot \mathbf{y} \\ \mathbf{x}_{2}^{\top} \cdot \mathbf{y} \\ \mathbf{x}_{3}^{\top} \cdot \mathbf{y} \end{bmatrix} = \begin{bmatrix} \sum x_{1,i} \cdot y_{i} \\ \sum x_{2,i} \cdot y_{i} \\ \sum x_{2,i} \cdot y_{i} \end{bmatrix}$$

- X must have as many columns a y has elements
 - Non-commutative!
- Useful for computing multiple dot products
 - Pack all vectors that you want to multiply in a matrix

Matrix-matrix product

Between two matrices:

$$\mathbf{X} \cdot \mathbf{Y} = \begin{bmatrix} \mathbf{x}_1^\top \\ \mathbf{x}_2^\top \\ \mathbf{x}_3^\top \end{bmatrix} \cdot \begin{bmatrix} \mathbf{y}_1 & \mathbf{y}_2 & \mathbf{y}_3 \end{bmatrix} = \begin{bmatrix} \mathbf{x}_1^\top \cdot \mathbf{y}_1 & \mathbf{x}_1^\top \cdot \mathbf{y}_2 & \mathbf{x}_1^\top \cdot \mathbf{y}_3 \\ \mathbf{x}_2^\top \cdot \mathbf{y}_1 & \mathbf{x}_2^\top \cdot \mathbf{y}_2 & \mathbf{x}_2^\top \cdot \mathbf{y}_3 \\ \mathbf{x}_3^\top \cdot \mathbf{y}_1 & \mathbf{x}_3^\top \cdot \mathbf{y}_2 & \mathbf{x}_3^\top \cdot \mathbf{y}_3 \end{bmatrix}$$

- X must have as many columns as Y has rows
 - $(M \times N) = (M \times K) \cdot (K \times N)$
 - Remember this doesn't commute!
- All linear operations can be represented as a matrix product
 - We'll be seeing that a lot!

Matrix products

- Output rows == left matrix rows
- Output columns == right matrix columns

Norms

• 2-norm:

$$\|\mathbf{x}\| = \sqrt{\sum_{i} x^2}$$

• p-norms:

$$\|\mathbf{x}\|_p = \left(\sum_i |x_i|^p\right)^{1/p}$$

• Frobenius norm:

$$\left| \left| \mathbf{X} \right| \right|_{F} = \sqrt{\mathrm{tr} \left(\mathbf{X}^{\top} \cdot \mathbf{X} \right)} = \sqrt{\mathrm{tr} \left(\left[\begin{array}{c} \mathbf{X}_{1}^{\top} \\ \mathbf{X}_{2}^{\top} \end{array} \right] \cdot \left[\begin{array}{c} \mathbf{X}_{1} & \mathbf{X}_{2} \end{array} \right]} \right)} = \sqrt{\mathrm{tr} \left(\left[\begin{array}{c} \mathbf{X}_{1}^{\top} \cdot \mathbf{X}_{1} & \mathbf{X}_{1}^{\top} \cdot \mathbf{X}_{2} \\ \mathbf{X}_{2}^{\top} \cdot \mathbf{X}_{1} & \mathbf{X}_{2}^{\top} \cdot \mathbf{X}_{2} \end{array} \right]} \right)$$

Kronecker product

- A bit more complex
 - Replicate and multiply right matrix with each scalar of left matrix

$$\begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{bmatrix} \otimes \mathbf{Y} = \begin{bmatrix} x_{11} \cdot \mathbf{Y} & x_{12} \cdot \mathbf{Y} \\ x_{21} \cdot \mathbf{Y} & x_{22} \cdot \mathbf{Y} \end{bmatrix}$$

Useful result:

$$vec(\mathbf{X} \cdot \mathbf{Y} \cdot \mathbf{Z}) = (\mathbf{Z}^{\top} \otimes \mathbf{X}) vec(\mathbf{Y})$$

Visualizing Kronecker

 $\begin{bmatrix} 1 & 3 \\ 2 & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & 3 \\ 4 & 1 \end{bmatrix} = 3$

Visualizing Kronecker

Dealing with tensors

- Using Kronecker products and the vec operator we can perform *multilinear transforms*
 - Tensor example with RGB images:

Mixing the colors

Define color, horizontal, and vertical mixing

$$\left(\mathbf{C}^{\top} \otimes \mathbf{H}^{\top} \otimes \mathbf{V}^{\top}\right) \cdot \text{vec}(\mathbf{X})$$
3rd dim 2nd dim 1st dim

Example: color mixing

$$\left(\operatorname{diag}\left[\begin{array}{ccc} 1 & 0 & 1\end{array}\right] \otimes \mathbf{I} \otimes \mathbf{I}\right) \operatorname{vec}(\mathbf{X}) = \mathbf{I}$$

• Caution: Dimensions will quickly get out of hand this way

Special matrices

Symmetric:

$$\mathbf{X} = \mathbf{X}^{\top} \Rightarrow \mathbf{x}_{ij} = \mathbf{x}_{ji}$$

- Positive definite
 - Is so if: $\mathbf{y}^{\top} \cdot \mathbf{X} \cdot \mathbf{y} > 0$, $\forall \mathbf{y}$
 - Also symmetric

Orthonormal:

$$\mathbf{X}^{\top} \cdot \mathbf{X} = \mathbf{X} \cdot \mathbf{X}^{\top} = \mathbf{I}$$

Matrix inverse

- "Undoes" a matrix multiplication
 - Only for square matrices
 - Not all matrices are invertible
 - must be a full-rank matrix

$$\mathbf{X}^{-1} \cdot \mathbf{X} = \mathbf{I}$$
 $\mathbf{X}^{-1} \cdot \mathbf{X} \cdot \mathbf{Y} = \mathbf{Y}$
 $\mathbf{X} \cdot \mathbf{X} \cdot \mathbf{X} = \mathbf{Y}$
 $\mathbf{Y} \cdot \mathbf{X} \cdot \mathbf{X}^{-1} = \mathbf{Y}$

Remember, in matrix multiplication order matters

$$\mathbf{X} \cdot \mathbf{Y} \cdot \mathbf{X}^{-1} \neq \mathbf{Y}$$

Matrix pseudoinverse

- Also known as Moore-Penrose (or MP) pseudoinverse
 - For an $m \times n$ matrix X, pseudoinverse is $n \times m$ matrix X^+

$$\mathbf{X} \cdot \mathbf{X}^{+} \cdot \mathbf{X} = \mathbf{X}$$
 $\mathbf{X}^{+} \cdot \mathbf{X} \cdot \mathbf{X}^{+} = \mathbf{X}^{+}$
 $(\mathbf{X} \cdot \mathbf{X}^{+})^{\top} = \mathbf{X} \cdot \mathbf{X}^{+}$
 $(\mathbf{X}^{+} \cdot \mathbf{X})^{\top} = \mathbf{X}^{+} \cdot \mathbf{X}$

We'll be seeing this operation a lot, it's essentially least squares

$$\mathbf{A} \cdot \mathbf{x} = \mathbf{y} \rightarrow \mathbf{x} = \mathbf{A}^+ \cdot \mathbf{y}$$

Low rank approximations

Use smaller matrices to describe a large matrix

$$\mathbf{Y} \approx \mathbf{A} \cdot \mathbf{X}$$

• With Y being $m \times n$, A being $m \times r$, X being $r \times n$, and r < m

Eigenanalysis

- Eigenvectors and eigenvalues
 - For an $n \times n$ matrix X

$$\mathbf{X} \cdot \mathbf{V} = \mathbf{V} \cdot \mathbf{L}$$
 $\mathbf{V} = \begin{bmatrix} \mathbf{v}_1 & \cdots & \mathbf{v}_N \end{bmatrix}$
 $\mathbf{L} = \operatorname{diag} \begin{bmatrix} \lambda_1 & \cdots & \lambda_N \end{bmatrix}$

- V is $m \times n$ and contains the eigenvectors \mathbf{v}_i
 - It will be an orthogonal matrix for positive (semi-)definite matrix inputs
- L is $n \times n$ contains the eigenvalues λ_i

The Singular Value Decomposition (SVD)

- Similar decomposition to eigenanalysis
 - For a matrix X

$$\mathbf{U}^{\top} \cdot \mathbf{U} = \mathbf{I}$$
 $\mathbf{X} = \mathbf{U} \cdot \mathbf{S} \cdot \mathbf{V}^{\top}$ where $\mathbf{V}^{\top} \cdot \mathbf{V} = \mathbf{I}$
 $\mathbf{S} = \operatorname{diag}(\sigma_{i})$

- U, V are orthonormal
 - Contain the left and right singular vectors of X
- S is diagonal
 - Contains on its diagonal the singular values σ_i

Visualizing the SVD

- Comes in two versions, full and economy
 - The only difference is the size of the matrices
 - The numerical approximation is the same
 - By truncating the columns of S we can make a low-rank approx.

Recap

- What's this class about?
 - Signals, learning, fun, etc ...

- Linear algebra basics
 - Algebraic operations, norms, decompositions, form manipulations

Finale

- Skim through this material for now
 - We'll be seeing it in context soon
 - e.g., what are the eigenvectors of image matrices?

- Reading material
 - Old and new algebra useful for statistics
 - http://research.microsoft.com/en-us/um/people/minka/papers/matrix/
 - The Matrix Cookbook
 - http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=3274

Questions?

- Slides will be online soon after all lectures at:
 - http://courses.engr.illinois.edu/cs598ps/

Next lecture

• Review of:

- Probability theory
 - Bayes theorem, probability rules, Bayes nets
 - Basic distributions, transformations of RV's
- Statistics
 - Basic measures, independence, information
- Parameter estimation intro
 - Maximum likelihood, MAP, Bayesian, EM intro