

**Amendments to the Claims:**

This listing of claims will replace all prior versions, and listings, of claims in the application:

**Listing of Claims:**

1. (currently amended) A compound of formula I or a pharmaceutically acceptable salt thereof:



I

wherein

R<sup>1</sup> is optionally substituted C<sub>1-10</sub> hydrocarbyl; optionally substituted C<sub>1-10</sub>acyl; optionally substituted C<sub>4-8</sub>heteroaryl-C(=O); R<sup>4</sup>R<sup>5</sup>N-C<sub>1-6</sub>alkyl; R<sup>4</sup>R<sup>5</sup>NC(=O)-C<sub>1-6</sub>alkyl; R<sup>4</sup>O-C<sub>1-6</sub>alkyl; R<sup>4</sup>OC(=O)-C<sub>1-6</sub>alkyl; R<sup>4</sup>C(=O)-C<sub>1-6</sub>alkyl; R<sup>4</sup>C(=O)NR<sup>4</sup>-C<sub>1-6</sub>alkyl; R<sup>4</sup>R<sup>5</sup>NSO<sub>2</sub>-C<sub>1-6</sub>alkyl; R<sup>4</sup>CSO<sub>2</sub>N(R<sup>5</sup>)-C<sub>1-6</sub>alkyl; R<sup>4</sup>R<sup>5</sup>NC(=O)N(R<sup>6</sup>)-C<sub>1-6</sub>alkyl; R<sup>4</sup>R<sup>5</sup>NSO<sub>2</sub>N(R<sup>6</sup>)-C<sub>1-6</sub>alkyl; optionally substituted aryl-C<sub>1-6</sub>alkyl; optionally substituted aryl-C(=O)-C<sub>1-6</sub>alkyl; optionally substituted heterocyclyl-C<sub>1-6</sub>alkyl; optionally substituted heterocyclyl-C(=O)-C<sub>1-6</sub>alkyl; and C<sub>1-10</sub>hydrocarbylamino;

wherein R<sup>4</sup>, R<sup>5</sup> and R<sup>6</sup> are independently selected from -H, C<sub>1-6</sub>alkyl, C<sub>2-6</sub>alkenyl, C<sub>2-6</sub>alkynyl, or a divalent C<sub>1-6</sub>group that together with another divalent C<sub>1-6</sub>group forms a portion of a ring;

~~R<sup>4</sup> is a C<sub>4-12</sub> group;~~

~~X is selected from the group consisting of -NR<sup>6</sup>-, -CH<sub>2</sub>-CH<sub>2</sub>-, -CH=CH-, -O-, -C(R<sup>8</sup>)(R<sup>9</sup>)-, and -S(O)<sub>q</sub>-, wherein q is 0, 1 or 2, wherein R<sup>8</sup> and R<sup>9</sup> are independently C<sub>1-6</sub>alkyl, C<sub>2-6</sub>alkenyl, C<sub>2-6</sub>alkynyl, C<sub>1-6</sub>alkoxy, -OH, or -H; at most one of R<sub>8</sub> and R<sub>9</sub> is -OH; X is a C<sub>1-10</sub>divalent group that separates groups connected thereto by one or two saturated carbons;~~

~~Ar is a C<sub>4-12</sub> divalent aromatic group;~~

~~R<sup>2</sup> is optionally substituted C<sub>1-6</sub>hydrocarbyl, optionally substituted C<sub>6-10</sub>aryl, or optionally substituted C<sub>3-6</sub>heteroaryl;~~

R<sup>3</sup> is selected from:



wherein

$\text{R}^7$  is selected from -H, optionally substituted  $\text{C}_{1-6}$ alkyl, optionally substituted  $\text{C}_{2-6}$ alkenyl, optionally substituted  $\text{C}_{2-6}$ alkynyl, optionally substituted  $\text{C}_{3-6}$ cycloalkyl, optionally substituted  $\text{C}_{6-10}$ aryl, or optionally substituted  $\text{C}_{3-6}$ heteroaryl;

$\text{R}^{10}$ ,  $\text{R}^{11}$ ,  $\text{R}^{12}$  and  $\text{R}^{13}$  are independently selected from optionally substituted  $\text{C}_{1-6}$ alkyl, optionally substituted  $\text{C}_{2-6}$ alkenyl, optionally substituted  $\text{C}_{2-6}$ alkynyl, optionally substituted  $\text{C}_{3-6}$ cycloalkyl, optionally substituted  $\text{C}_{6-10}$ aryl, or optionally substituted  $\text{C}_{3-6}$ heteroaryl;  $\text{R}^3$  is a  $\text{C}_{1-12}$  group, wherein the atom of  $\text{R}^3$  that is directly connected to the six membered ring of formula I is a nitrogen, or an unsaturated carbon, wherein the unsaturated carbon is connected to an oxygen through a double bond; and

$\text{R}^a$  and  $\text{R}^b$  are -R,  $-\text{NO}_2$ ,  $-\text{OR}$ ,  $-\text{Cl}$ ,  $-\text{Br}$ ,  $-\text{I}$ ,  $-\text{F}$ ,  $-\text{CF}_3$ ,  $-\text{C}(=\text{O})\text{R}$ ,  $-\text{C}(=\text{O})\text{OH}$ ,  $-\text{NH}_2$ ,  $-\text{SH}$ ,  $-\text{NHR}$ ,  $-\text{NR}_2$ ,  $-\text{SR}$ ,  $-\text{SO}_3\text{H}$ ,  $-\text{SO}_2\text{R}$ ,  $-\text{S}(=\text{O})\text{R}$ ,  $-\text{CN}$ ,  $-\text{OH}$ ,  $-\text{C}(=\text{O})\text{OR}$ , or  $-\text{NRC}(=\text{O})\text{R}$ , wherein R is independently -H or  $\text{C}_{1-6}$  hydrocarbyl.

2. (currently amended) A compound as claimed in claim 1, wherein

$\text{R}^4$  is optionally substituted  $\text{C}_{1-10}$  hydrocarbyl; optionally substituted  $\text{C}_{1-10}$  acyl; optionally substituted  $\text{C}_{4-8}$  heteroaryl  $\text{C}(=\text{O})$ ;  $\text{R}^4\text{R}^5\text{N-C}_{1-6}$  alkyl;  $\text{R}^4\text{R}^5\text{NC(=O)-C}_{1-6}$  alkyl;  $\text{R}^4\text{O-C}_{1-6}$  alkyl;  $\text{R}^4\text{OC(=O)-C}_{1-6}$  alkyl;  $\text{R}^4\text{C(=O)-C}_{1-6}$  alkyl;  $\text{R}^4\text{C(=O)NR}^4\text{-C}_{1-6}$  alkyl;  $\text{R}^4\text{R}^5\text{NSO}_2\text{-C}_{1-6}$  alkyl;  $\text{R}^4\text{CSO}_2\text{N(R}^5\text{)-C}_{1-6}$  alkyl;  $\text{R}^4\text{R}^5\text{NC(=O)N(R}^6\text{)-C}_{1-6}$  alkyl;  $\text{R}^4\text{R}^5\text{NSO}_2\text{N(R}^6\text{)-C}_{1-6}$  alkyl; optionally substituted aryl  $\text{C}_{1-6}$  alkyl; optionally substituted aryl  $\text{C}(=\text{O})\text{-C}_{1-6}$  alkyl; optionally substituted heterocyclyl  $\text{C}_{1-6}$  alkyl; optionally substituted heterocyclyl  $\text{C}(=\text{O})\text{-C}_{1-6}$  alkyl; and  $\text{C}_{1-10}$  hydrocarbylamine;

wherein  $\text{R}^4$ ,  $\text{R}^5$  and  $\text{R}^6$  are independently selected from -H,  $\text{C}_{1-6}$  alkyl,  $\text{C}_{2-6}$  alkenyl,  $\text{C}_{2-6}$  alkynyl, or a divalent  $\text{C}_{1-6}$  group that together with another divalent  $\text{C}_{1-6}$  group forms a portion of a ring;

~~R<sup>3</sup> is selected from:~~



wherein

~~R<sup>7</sup> is selected from H, optionally substituted C<sub>1-6</sub>alkyl, optionally substituted C<sub>2-6</sub>alkenyl, optionally substituted C<sub>2-6</sub>alkynyl, optionally substituted C<sub>3-6</sub>cycloalkyl, optionally substituted C<sub>6-10</sub>aryl, or optionally substituted C<sub>3-6</sub>heteroaryl;~~

~~R<sup>10</sup>, R<sup>11</sup>, R<sup>12</sup> and R<sup>13</sup> are independently selected from optionally substituted C<sub>1-6</sub>alkyl, optionally substituted C<sub>2-6</sub>alkenyl, optionally substituted C<sub>2-6</sub>alkynyl, optionally substituted C<sub>3-6</sub>cycloalkyl, optionally substituted C<sub>6-10</sub>aryl, or optionally substituted C<sub>3-6</sub>heteroaryl; and~~

~~R<sup>a</sup> and R<sup>b</sup> are hydrogen.~~

3. (currently amended) A compound as claimed claim 1,

wherein R<sup>1</sup> is selected from C<sub>1-8</sub>alkyl; C<sub>2-8</sub>alkenyl; C<sub>2-8</sub>alkynyl; optionally substituted aryl-C<sub>1-6</sub>alkyl; R<sup>4</sup>R<sup>5</sup>NC<sub>1-6</sub>alkyl; R<sup>4</sup>OC<sub>1-6</sub>alkyl; C<sub>3-6</sub>cycloalkyl-C<sub>1-6</sub>alkyl; optionally substituted C<sub>3-6</sub>heterocycloalkyl-C<sub>1-6</sub>alkyl; C<sub>1-6</sub>alkyl-C<sub>6-8</sub>aryl; C<sub>1-6</sub>alkyl-C(=O)-; C<sub>6-8</sub>aryl-C(=O)-; C<sub>3-8</sub>heteroaryl-C(=O)-; or optionally substituted C<sub>3-6</sub>heteroaryl-C<sub>1-6</sub>alkyl;

wherein R<sup>2</sup> is selected from C<sub>1-6</sub>alkyl, C<sub>1-6</sub>alkyl substituted by at least one fluorine, C<sub>2-6</sub>alkenyl, C<sub>2-6</sub>alkenyl substituted by at least one fluorine, C<sub>2-6</sub>alkynyl, C<sub>2-6</sub>alkynyl substituted by at least one fluorine, optionally substituted C<sub>3-6</sub>cycloalkyl, optionally substituted C<sub>6-10</sub>aryl, and optionally substituted C<sub>3-6</sub>heteroaryl;

R<sup>4</sup>, R<sup>5</sup> and R<sup>6</sup> are independently selected from the group consisting of -H, C<sub>1-6</sub>alkyl, C<sub>2-6</sub>alkenyl, C<sub>2-6</sub>alkynyl, and a divalent C<sub>1-6</sub>group that together with another divalent C<sub>1-6</sub>group forms a portion of a ring;

~~X is selected from the group consisting of NR<sup>6</sup>, -CH<sub>2</sub>-CH<sub>2</sub>-, CH=CH-, O-, C(R<sup>8</sup>)(R<sup>9</sup>)-, and S(O)<sub>q</sub>-, wherein q is 0, 1 or 2, wherein R<sup>8</sup> and R<sup>9</sup> are independently C<sub>1-6</sub>alkyl, C<sub>2-6</sub>alkenyl, C<sub>2-6</sub>alkynyl, C<sub>4-6</sub>alkoxy, OH, or H; at most one of R<sub>8</sub> and R<sub>9</sub> is OH;~~

~~R<sup>3</sup> is selected from:~~



wherein

$\text{R}^7$  is selected from -H, optionally substituted  $\text{C}_{1-6}$ alkyl, optionally substituted  $\text{C}_{2-6}$ alkenyl, optionally substituted  $\text{C}_{2-6}$ alkynyl, optionally substituted  $\text{C}_{3-6}$ cycloalkyl, optionally substituted  $\text{C}_{6-10}$ aryl, or optionally substituted  $\text{C}_{3-6}$ heteroaryl;

$\text{R}^{10}$ ,  $\text{R}^{11}$ ,  $\text{R}^{12}$  and  $\text{R}^{13}$  are independently selected from optionally substituted  $\text{C}_{1-6}$ alkyl, optionally substituted  $\text{C}_{2-6}$ alkenyl, optionally substituted  $\text{C}_{2-6}$ alkynyl, optionally substituted  $\text{C}_{3-6}$ cycloalkyl, optionally substituted  $\text{C}_{6-10}$ aryl, or optionally substituted  $\text{C}_{3-6}$ heteroaryl; and

$\text{R}^a$  and  $\text{R}^b$  are hydrogen.

4. (original) A compound as claimed in claim 3, wherein

$\text{R}^1$  is selected from  $\text{C}_{1-6}$ alkyl;  $\text{C}_{2-6}$ alkenyl;  $\text{C}_{2-6}$ alkynyl; optionally substituted  $\text{C}_{3-6}$ cycloalkylmethyl; optionally substituted  $\text{C}_{3-6}$ heterocycloalkylmethyl;

$\text{X}$  is  $-\text{CH}_2-$ ;

$\text{Ar}$  is phenylene or pyridylene;

$\text{R}^2$  is selected from  $-\text{CH}_3$ ,  $-\text{CH}_2\text{CH}_3$ ,  $-\text{CH}(\text{CH}_3)_2$ ,  $-\text{CH}_2\text{CF}_3$ ,  $\text{CF}_3$ , cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, pyridyl and phenyl; and

$\text{R}^3$  is selected from



wherein,  $\text{R}^7$  is selected from -H and methyl;  $\text{R}^{10}$  and  $\text{R}^{11}$  are independently selected from optionally substituted  $\text{C}_{1-6}$ alkyl, optionally substituted  $\text{C}_{2-6}$ alkenyl, optionally substituted  $\text{C}_{2-6}$ alkynyl, optionally substituted  $\text{C}_{3-6}$ cycloalkyl, optionally substituted  $\text{C}_{6-10}$ aryl, or optionally substituted  $\text{C}_{3-6}$ heteroaryl.

5. (original) A compound as claimed in claim 3, wherein

R<sup>1</sup> is selected from C<sub>1-6</sub>alkyl; C<sub>2-6</sub>alkenyl; C<sub>2-6</sub>alkynyl; optionally substituted C<sub>3-6</sub>cycloalkylmethyl; optionally substituted C<sub>3-6</sub>heterocycloalkylmethyl;

X is -CH<sub>2</sub>-;

Ar is selected from the group consisting of an optionally substituted *para*-arylene; an optionally substituted a six-membered *para*-heteroarylene;

R<sup>2</sup> is selected from -CH<sub>3</sub>, -CH<sub>2</sub>CH<sub>3</sub>, -CH(CH<sub>3</sub>)<sub>2</sub>, -CH<sub>2</sub>CF<sub>3</sub>, CF<sub>3</sub>, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, pyridyl and phenyl; and

R<sup>3</sup> is selected from:



wherein, R<sup>7</sup> is selected from -H and methyl; R<sup>10</sup> and R<sup>11</sup> are selected from optionally substituted C<sub>1-6</sub>alkyl, optionally substituted C<sub>2-6</sub>alkenyl, optionally substituted C<sub>2-6</sub>alkynyl, optionally substituted C<sub>3-6</sub>cycloalkyl, optionally substituted C<sub>6-10</sub> aryl, or optionally substituted C<sub>3-6</sub>heteroaryl.

6. (original) A compound as claimed in claim 3, wherein

R<sup>1</sup> is selected from optionally substituted C<sub>3-6</sub>cycloalkylmethyl; and optionally substituted C<sub>3-6</sub>heterocycloalkylmethyl;

X is -CH<sub>2</sub>-;

Ar is *para*-phenylene or *para*-pyridylene;

R<sup>2</sup> is methyl, or ethyl; and

R<sup>3</sup> is selected from



wherein, R<sup>7</sup> is selected from -H and methyl; R<sup>10</sup> and R<sup>11</sup> are selected from C<sub>1-6</sub>alkyl, C<sub>3-6</sub>cycloalkyl, phenyl optionally substituted with halogen, nitro, C<sub>1-3</sub>alkyl, -COOR<sup>14</sup>, -OH, cyano, trifluormethyl, C<sub>1-3</sub>alkyloxy; C<sub>3-6</sub>heteroaryl optionally substituted with halogen, nitro, C<sub>1-3</sub>alkyl, -COOR<sup>14</sup>, -OH, cyano, trifluormethyl, C<sub>1-3</sub>alkyloxy, wherein R<sup>14</sup> is a C<sub>1-3</sub>alkyl.

7. (original) A compound selected from:

- 1) *N*-[1-(cyclohexylmethyl)-2-[(4-ethoxyphenyl)methyl]-1*H*-pyrrolo[2,3-*b*]pyridin-5-yl]-2,2-dimethyl-propanamide;
- 2) *N*-[1-(cyclohexylmethyl)-2-[(3-methoxyphenyl)methyl]-1*H*-pyrrolo[2,3-*b*]pyridin-5-yl]-2,2-dimethyl-propanamide;
- 3) *N*-[1-(cyclohexylmethyl)-2-[(4-ethoxyphenyl)methyl]-1*H*-pyrrolo[2,3-*b*]pyridin-5-yl]-*N*-methyl-*N'*-(1-methylethyl)-urea;
- 4) *N*-[1-(cyclohexylmethyl)-2-[(4-ethoxyphenyl)methyl]-1*H*-pyrrolo[2,3-*b*]pyridin-5-yl]-*N*,3-dimethyl-butanamide;
- 5) *N*-[1-(cyclohexylmethyl)-2-[(4-ethoxyphenyl)methyl]-1*H*-pyrrolo[2,3-*b*]pyridin-5-yl]-*N*,2-dimethyl-propanamide;
- 6) *N*-[1-(cyclohexylmethyl)-2-[(4-ethoxyphenyl)methyl]-1*H*-pyrrolo[2,3-*b*]pyridin-5-yl]-*N*-methyl-cyclopropanecarboxamide;
- 7) *N*-[1-(cyclohexylmethyl)-2-[(4-ethoxyphenyl)methyl]-1*H*-pyrrolo[2,3-*b*]pyridin-5-yl]-*N*,2,2-trimethyl-propanamide;
- 8) *N*-[1-(cyclohexylmethyl)-2-[(4-ethoxyphenyl)methyl]-1*H*-pyrrolo[2,3-*b*]pyridin-5-yl]-*N*',*N*'-diethyl-*N*-methyl-urea;
- 9) *N*-[1-(cyclohexylmethyl)-2-[(4-ethoxyphenyl)methyl]-1*H*-pyrrolo[2,3-*b*]pyridin-5-yl]-*N*,5-dimethyl-3-isoxazolecarboxamide;
- 10) *N*-[1-(cyclohexylmethyl)-2-[(4-ethoxyphenyl)methyl]-1*H*-pyrrolo[2,3-*b*]pyridin-5-yl]-2-fluoro-*N*-methyl-benzamide;
- 11) *N*-[1-(cyclohexylmethyl)-2-[(5-ethoxy-2-pyridinyl)methyl]-1*H*-pyrrolo[2,3-*b*]pyridin-5-yl]-2,2-dimethyl-propanamide;
- 12) [1-(cyclohexylmethyl)-2-[(5-ethoxy-2-pyridinyl)methyl]-1*H*-pyrrolo[2,3-*b*]pyridin-5-yl]-1-methylethyl ester carbamic acid;
- 13) *N*-[1-(cyclohexylmethyl)-2-[(5-ethoxy-2-pyridinyl)methyl]-1*H*-pyrrolo[2,3-*b*]pyridin-5-yl]-*N*,2,2-trimethyl-propanamide;
- 14) *N*-[1-(cyclohexylmethyl)-2-[(5-ethoxy-2-pyridinyl)methyl]-1*H*-pyrrolo[2,3-*b*]pyridin-5-yl]-*N*,3-dimethyl-butanamide;
- 15) *N*-[1-(cyclohexylmethyl)-2-[(5-ethoxy-2-pyridinyl)methyl]-1*H*-pyrrolo[2,3-*b*]pyridin-5-yl]-*N*-methyl-*N'*-(1-methylethyl)-urea;
- 16) *N*-[2-[(4-ethoxyphenyl)methyl]-1-[(tetrahydro-2*H*-pyran-4-yl)methyl]-1*H*-pyrrolo[2,3-*b*]pyridin-5-yl]-2,2-dimethyl-propanamide;
- 17) *N*-[2-[(4-ethoxyphenyl)methyl]-1-[(tetrahydro-2*H*-pyran-4-yl)methyl]-1*H*-pyrrolo[2,3-*b*]pyridin-5-yl]-2,6-difluoro-*N*-methyl-benzenesulfonamide;

- 18) *N*-[2-[(4-ethoxyphenyl)methyl]-1-[(tetrahydro-2*H*-pyran-4-yl)methyl]-1*H*-pyrrolo[2,3-*b*]pyridin-5-yl]-*N*-methyl-cyclobutanecarboxamide;
- 19) *N*-[2-[(4-ethoxyphenyl)methyl]-1-[(tetrahydro-2*H*-pyran-4-yl)methyl]-1*H*-pyrrolo[2,3-*b*]pyridin-5-yl]-2,5-difluoro-*N*-methyl-benzamide;
- 20) *N*-[2-[(4-ethoxyphenyl)methyl]-1-[(tetrahydro-2*H*-pyran-4-yl)methyl]-1*H*-pyrrolo[2,3-*b*]pyridin-5-yl]-*N*,2-dimethyl-propanamide;
- 21) *N*-[2-[(4-ethoxyphenyl)methyl]-1-[(tetrahydro-2*H*-pyran-4-yl)methyl]-1*H*-pyrrolo[2,3-*b*]pyridin-5-yl]-*N*,2,2-trimethyl-propanamide;
- 22) *N*-[2-[(4-ethoxyphenyl)methyl]-1-[(tetrahydro-2*H*-pyran-4-yl)methyl]-1*H*-pyrrolo[2,3-*b*]pyridin-5-yl]-*N*-methyl-*N'*-(1-methylethyl)-urea;
- 23) *N*-[2-[(4-ethoxyphenyl)methyl]-1-[(tetrahydro-2*H*-pyran-4-yl)methyl]-1*H*-pyrrolo[2,3-*b*]pyridin-5-yl]-*N*,3-dimethyl-butanamide;
- 24) *N*-[1-(cyclobutylmethyl)-2-[(4-ethoxyphenyl)methyl]-1*H*-pyrrolo[2,3-*b*]pyridin-5-yl]-2,2-dimethyl-propanamide;
- 25) [1-(cyclobutylmethyl)-2-[(4-ethoxyphenyl)methyl]-1*H*-pyrrolo[2,3-*b*]pyridin-5-yl]-, methyl ester carbamic acid;
- 26) *N*-[1-(cyclobutylmethyl)-2-[(4-ethoxyphenyl)methyl]-1*H*-pyrrolo[2,3-*b*]pyridin-5-yl]-2,6-difluoro-*N*-methyl-benzenesulfonamide;
- 27) *N*-[1-(cyclobutylmethyl)-2-[(4-ethoxyphenyl)methyl]-1*H*-pyrrolo[2,3-*b*]pyridin-5-yl]-*N*-methyl-2-pyridinecarboxamide;
- 28) *N*-[1-(cyclobutylmethyl)-2-[(4-ethoxyphenyl)methyl]-1*H*-pyrrolo[2,3-*b*]pyridin-5-yl]-*N*,3-dimethyl-butanamide;
- 29) *N*-[1-(cyclobutylmethyl)-2-[(4-ethoxyphenyl)methyl]-1*H*-pyrrolo[2,3-*b*]pyridin-5-yl]-*N*-methyl-*N'*-(1-methylethyl)-urea;
- 30) *N*-[1-(cyclobutylmethyl)-2-[(4-ethoxyphenyl)methyl]-1*H*-pyrrolo[2,3-*b*]pyridin-5-yl]-*N*,1-dimethyl-1*H*-imidazole-5-sulfonamide;
- 31) *N*-[1-(cyclobutylmethyl)-2-[(4-ethoxyphenyl)methyl]-1*H*-pyrrolo[2,3-*b*]pyridin-5-yl]-4-(dimethylamino)-*N*-methyl- benzamide;
- 32) *N*-[1-(cyclobutylmethyl)-2-[(4-ethoxyphenyl)methyl]-1*H*-pyrrolo[2,3-*b*]pyridin-5-yl]-*N*,5-dimethyl-3-isoxazolecarboxamide;
- 33) 4-[[[1-(cyclobutylmethyl)-2-[(4-ethoxyphenyl)methyl]-1*H*-pyrrolo[2,3-*b*]pyridin-5-yl]methylamino]sulfonyl]-benzoic acid;
- 34) *N*-[1-(cyclobutylmethyl)-2-[(4-ethoxyphenyl)methyl]-1*H*-pyrrolo[2,3-*b*]pyridin-5-yl]-*N*-methyl-2-nitro-benzenesulfonamide; and pharmaceutically acceptable salts thereof.

8 –11 (cancelled)

12. (currently amended) A pharmaceutical composition comprising a therapeutically effective amount of a compound according to claim 1 and a pharmaceutically acceptable carrier.

13. (cancelled)

14. (original) A method for preparing a compound of formula II,



comprising the steps of

a) reacting a compound of formula III,



with a base having a pKa more than 20;



b) reacting a product formed in step a) with a compound of formula IV,

**IV**

to form the compound of formula II,

wherein

R<sup>1</sup> is optionally substituted C<sub>1-10</sub> hydrocarbyl; optionally substituted C<sub>1-10</sub>acyl; optionally substituted C<sub>4-8</sub>heteroaryl-C(=O)-; R<sup>4</sup>R<sup>5</sup>N-C<sub>1-6</sub>alkyl; R<sup>4</sup>R<sup>5</sup>NC(=O)-C<sub>1-6</sub>alkyl; R<sup>4</sup>O-C<sub>1-6</sub> alkyl; R<sup>4</sup>OC(=O)-C<sub>1-6</sub>alkyl; R<sup>4</sup>C(=O)-C<sub>1-6</sub>alkyl; R<sup>4</sup>C(=O)NR<sup>4</sup>-C<sub>1-6</sub>alkyl; R<sup>4</sup>R<sup>5</sup>NSO<sub>2</sub>-C<sub>1-6</sub>alkyl; R<sup>4</sup>CSO<sub>2</sub>N(R<sup>5</sup>)-C<sub>1-6</sub>alkyl; R<sup>4</sup>R<sup>5</sup>NC(=O)N(R<sup>6</sup>)-C<sub>1-6</sub>alkyl; R<sup>4</sup>R<sup>5</sup>NSO<sub>2</sub>N(R<sup>6</sup>)-C<sub>1-6</sub>alkyl; optionally substituted aryl-C<sub>1-6</sub>alkyl; optionally substituted aryl-C(=O)-C<sub>1-6</sub>alkyl; optionally substituted

heterocyclyl-C<sub>1-6</sub>alkyl; optionally substituted heterocyclyl-C(=O)-C<sub>1-6</sub>alkyl; and C<sub>1-10</sub>hydrocarbylamino;

wherein R<sup>4</sup>, R<sup>5</sup> and R<sup>6</sup> are independently selected from -H, C<sub>1-6</sub>alkyl, C<sub>2-6</sub>alkenyl, C<sub>2-6</sub>alkynyl, or a divalent C<sub>1-6</sub>group that together with another divalent C<sub>1-6</sub>group forms a portion of a ring;

R<sup>2</sup> is optionally substituted C<sub>1-6</sub>hydrocarbyl, optionally substituted C<sub>6-10</sub>aryl, or optionally substituted C<sub>3-6</sub>heteroaryl;

R<sup>3</sup> is selected from:



wherein

R<sup>7</sup> is selected from -H, optionally substituted C<sub>1-6</sub>alkyl, optionally substituted C<sub>2-6</sub>alkenyl, optionally substituted C<sub>2-6</sub>alkynyl, optionally substituted C<sub>3-6</sub>cycloalkyl, optionally substituted C<sub>6-10</sub>aryl, or optionally substituted C<sub>3-6</sub>heteroaryl;

R<sup>10</sup>, R<sup>11</sup>, R<sup>12</sup> and R<sup>13</sup> are independently selected from optionally substituted C<sub>1-6</sub>alkyl, optionally substituted C<sub>2-6</sub>alkenyl, optionally substituted C<sub>2-6</sub>alkynyl, optionally substituted C<sub>3-6</sub>cycloalkyl, optionally substituted C<sub>6-10</sub>aryl, or optionally substituted C<sub>3-6</sub>heteroaryl; and

R<sup>c</sup> is C<sub>1-4</sub>alkyl.

15. (original) A process as claimed in claim 14, wherein

the base is t-butyl lithium;

R<sup>1</sup> is selected from C<sub>1-6</sub>alkyl; C<sub>2-6</sub>alkenyl; C<sub>2-6</sub>alkynyl; optionally substituted C<sub>3-6</sub>cycloalkylmethyl; optionally substituted C<sub>3-6</sub>heterocycloalkylmethyl;

R<sup>2</sup> is selected from -CH<sub>3</sub>, -CH<sub>2</sub>CH<sub>3</sub>, -CH(CH<sub>3</sub>)<sub>2</sub>, -CH<sub>2</sub>CF<sub>3</sub>, CF<sub>3</sub>, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, pyridyl and phenyl; and

R<sup>3</sup> is selected from:



wherein,  $R^7$  is selected from -H and methyl;  $R^{10}$  and  $R^{11}$  are independently selected from optionally substituted  $C_{1-6}$ alkyl, optionally substituted  $C_{2-6}$ alkenyl, optionally substituted  $C_{2-6}$ alkynyl, optionally substituted  $C_{3-6}$ cycloalkyl, optionally substituted  $C_{6-10}$ aryl, or optionally substituted  $C_{3-6}$ heteroaryl.

16. (original) A process for preparing a compound of formula V,



V

comprising the step of reacting a compound of formula VI,



VI

with a compound of formula VII,



VII

to form the compound of formula V,

wherein

$R^1$  is optionally substituted  $C_{1-10}$  hydrocarbyl; optionally substituted  $C_{1-10}$ acyl; optionally substituted  $C_{4-8}$ heteroaryl-C(=O)-;  $R^4R^5N-C_{1-6}$ alkyl;  $R^4R^5NC(=O)-C_{1-6}$ alkyl;  $R^4O-C_{1-6}$ alkyl;  $R^4OC(=O)-C_{1-6}$ alkyl;  $R^4C(=O)-C_{1-6}$ alkyl;  $R^4C(=O)NR^4-C_{1-6}$ alkyl;  $R^4R^5NSO_2-C_{1-6}$ alkyl;  $R^4CSO_2N(R^5)-C_{1-6}$ alkyl;  $R^4R^5NC(=O)N(R^6)-C_{1-6}$ alkyl;  $R^4R^5NSO_2N(R^6)-C_{1-6}$ alkyl; optionally substituted aryl- $C_{1-6}$ alkyl; optionally substituted aryl-C(=O)- $C_{1-6}$ alkyl; optionally substituted

heterocyclyl-C<sub>1-6</sub>alkyl; optionally substituted heterocyclyl-C(=O)-C<sub>1-6</sub>alkyl; and C<sub>1-10</sub>hydrocarbyl amino;

wherein R<sup>4</sup>, R<sup>5</sup> and R<sup>6</sup> are independently selected from -H, C<sub>1-6</sub>alkyl, C<sub>2-6</sub>alkenyl, C<sub>2-6</sub>alkynyl, or a divalent C<sub>1-6</sub>group that together with another divalent C<sub>1-6</sub>group forms a portion of a ring;

R<sup>2</sup> is optionally substituted C<sub>1-6</sub>hydrocarbyl, optionally substituted C<sub>6-10</sub>aryl, or optionally substituted C<sub>3-6</sub>heteroaryl;

R<sup>3</sup> is selected from:



wherein

R<sup>7</sup> is selected from -H, optionally substituted C<sub>1-6</sub>alkyl, optionally substituted C<sub>2-6</sub>alkenyl, optionally substituted C<sub>2-6</sub>alkynyl, optionally substituted C<sub>3-6</sub>cycloalkyl, optionally substituted C<sub>6-10</sub>aryl, or optionally substituted C<sub>3-6</sub>heteroaryl;

R<sup>10</sup>, R<sup>11</sup>, R<sup>12</sup> and R<sup>13</sup> are independently selected from optionally substituted C<sub>1-6</sub>alkyl, optionally substituted C<sub>2-6</sub>alkenyl, optionally substituted C<sub>2-6</sub>alkynyl, optionally substituted C<sub>3-6</sub>cycloalkyl, optionally substituted C<sub>6-10</sub>aryl, or optionally substituted C<sub>3-6</sub>heteroaryl;

Y is CH or N; and

R<sup>c</sup> is C<sub>1-4</sub>alkyl.

17. (original) A process as claimed in claim 16, wherein

R<sup>1</sup> is selected from C<sub>1-6</sub>alkyl; C<sub>2-6</sub>alkenyl; C<sub>2-6</sub>alkynyl; optionally substituted C<sub>3-6</sub>cycloalkylmethyl; optionally substituted C<sub>3-6</sub>heterocycloalkylmethyl;

R<sup>2</sup> is selected from -CH<sub>3</sub>, -CH<sub>2</sub>CH<sub>3</sub>, -CH(CH<sub>3</sub>)<sub>2</sub>, -CH<sub>2</sub>CF<sub>3</sub>, CF<sub>3</sub>, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, pyridyl and phenyl; and

R<sup>3</sup> is selected from:



wherein, R<sup>7</sup> is selected from -H and methyl; R<sup>10</sup> and R<sup>11</sup> are independently selected from optionally substituted C<sub>1-6</sub>alkyl, optionally substituted C<sub>2</sub>-alkenyl, optionally substituted C<sub>2</sub>-alkynyl, optionally substituted C<sub>3-6</sub>cycloalkyl, optionally substituted C<sub>6-10</sub> aryl, or optionally substituted C<sub>3-6</sub>heteroaryl.