Παρουσίαση για χρήση με το σύγγραμμα, Αλγόριθμοι Σχεδίαση και Εφαρμογές, των Μ. Τ. Goodrich and R. Tamassia, Wiley, 2015 (στα ελληνικά από εκδόσεις Μ. Γκιούρδας)

Πίνακες αντιστοίχισης (χάρτες - maps)

Operating a card sorter, 1920. U.S. Census Bureau.

Εφαρμογή: Δρομολογητές δικτύου

- Οι δρομολογητές δικτύου επεξεργάζονται πακέτα πληροφοριών από πολλές συνδέσεις σε υψηλή ταχύτητα.
- Για την επεξεργασία ενός πακέτου, (k,x), όπου k είναι το κλειδί για τον προορισμό και x τα δεδομένα που περιέχει, ένας δρομολογητής πρέπει πολύ γρήγορα να αποφασίσει σε ποια από τις συνδέσεις του δικτύου να στείλει το πακέτο.
- Ένα τέτοιο σύστημα πρέπει να υποστηρίζει αναζητήσεις βάση κλειδιού, δλδ, λειτουργίες get(k), καθώς και λειτουργίες put(k,c) για την προσθήκη μίας νέας σύνδεσης δικτύου, c, για κλειδί προορισμού, k.
- Ιδανικά θέλουμε να επιτύχουμε O(1) χρόνο τόσο για τη λειτουργία get
 όσο και για τη λειτουργία put.

Πίνακες αντιστοίχισης

- Ένας πίνακας αντιστοίχισης είναι μία συλλογή τιμών με δυνατότητα αναζήτησης για εγγραφές της μορφής κλειδί-τιμή.
- ο Οι κύριες λειτουργίες ενός πίνακα αντιστοίχισης είναι η αναζήτηση, η εισαγωγή, και η διαγραφή στοιχείων.
- Πολλαπλές εγγραφές με το ίδιο κλειδί δεν επιτρέπονται.
- Άλλες εφαρμογές:
 - Βιβλίο διευθύνσεων.
 - Βάση δεδομένων εγγραφών σπουδαστών.

Λειτουργίες πίνακα αντιστοίχισης

- get(k): Αν ο πίνακας αντιστοίχισης Μ περιέχει ένα στοιχείο με κλειδί ίσο με k επιστρέφει την τιμή του, αλλιώς επιστρέφει null.
- put(k, v): εισαγωγή στοιχείου (k, v) στον πίνακα αντιστοίχισης Μ, εάν το κλειδί k δεν υπάρχει στον Μ επιστρέφει null, αλλιώς επιστρέφει την προηγούμενη τιμή στην οποία αντιστοιχούσε το k.
- remove(k): εάν ο πίνακας αντιστοίχισης Μ έχει ένα στοιχείο με κλειδί k, το αφαιρεί από τον Μ και επιστρέφει την τιμή του, αλλιώς επιστρέφει null.
- size(), isEmpty().

Παράδειγμα

Λειτουργία	Έξοδος	Πίνακας αντιστοίχισης (map)
 isEmpty()	true	Ø
 put(5,A)	null	(5,A)
 put(7 <i>,B</i>)	null	(5,A),(7,B)
 put(2 <i>,C</i>)	null	(5,A),(7,B),(2,C)
 put(8 <i>,D</i>)	null	(5,A),(7,B),(2,C),(8,D)
 put(2 <i>,E</i>)	С	(5,A),(7,B),(2,E),(8,D)
get(7)	В	(5,A),(7,B),(2,E),(8,D)
get(4)	null	(5,A),(7,B),(2,E),(8,D)
get(2)	Ε	(5,A),(7,B),(2,E),(8,D)
size()	4	(5,A),(7,B),(2,E),(8,D)
remove(5)	Α	(7,B),(2,E),(8,D)
remove(2)	Ε	(7,B), $(8,D)$
get(2)	null	(7,B), $(8,D)$
isEmpty()	false	(7,B),(8,D)

Ένας απλός πίνακας αντιστοίχισης βασισμένος σε λίστα

- Μπορούμε να υλοποιήσουμε έναν πίνακα αντιστοίχισης με μία αταξινόμητη λίστα.
 - Αποθηκεύουμε τα στοιχεία του πίνακα αντιστοίχισης σε μία λίστα S (βάσει μίας διπλά συνδεδεμένης λίστας), σε τυχαία σειρά.

Απόδοση πίνακα αντιστοίχισης που είναι βασισμένος σε λίστα

Απόδοση:

- Η put απαιτεί χρόνο O(1) αφού μπορούμε να προσθέσουμε ένα νέο στοιχείο στην αρχή ή στο τέλος της ακολουθίας.
- Η get και η remove απαιτούν χρόνο O(n) αφού στην χειρότερη περίπτωση (όπου το στοιχείο δεν υπάρχει) θα διασχίσουν ολόκληρη την ακολουθία ψάχνοντας ένα στοιχείο με το δεδομένο κλειδί.
- Η υλοποίηση βάσει μη ταξινομημένης λίστας είναι κατάλληλη μόνο για χάρτες μικρού μεγέθους ή για πίνακες αντιστοίχισης όπου η συνήθης λειτουργία είναι η put ενώ οι αναζητήσεις (get) και οι διαγραφές (remove) είναι σπάνιες (π.χ. ιστορικό καταγραφής συνδέσεων χρηστών σε έναν Η/Υ).