```
import numpy as np
import pandas as pd

from sklearn.metrics import accuracy_score
from sklearn.cross_validation import train_test_split
from sklearn.cross_validation import cross_val_score
from sklearn import metrics
from matplotlib import pyplot as plt
```

/Users/thp/anaconda3/lib/python3.6/site-packages/sklearn/cross_validati on.py:41: DeprecationWarning: This module was deprecated in version 0.1 8 in favor of the model_selection module into which all the refactored classes and functions are moved. Also note that the interface of the ne w CV iterators are different from that of this module. This module will be removed in 0.20.

"This module will be removed in 0.20.", DeprecationWarning)

Import the training dataset and start preprocessing the data

```
In [64]: # import the dataset and check
    taxi = pd.read_csv('/Users/thp/Documents/CSULA/5661 Data Science/Projec
    t/train.csv')
    print(taxi.shape)
    taxi.head()
```

(1458644, 11)

Out[64]:

	id	vendor_id	pickup_datetime	dropoff_datetime	passenger_count	pickup_lo
C	id2875421	2	2016-03-14 17:24:55	2016-03-14 17:32:30	1	-73.98215
1	id2377394	1	2016-06-12 00:43:35	2016-06-12 00:54:38	1	-73.98041
2	id3858529	2	2016-01-19 11:35:24	2016-01-19 12:10:48	1	-73.97902
3	id3504673	2	2016-04-06 19:32:31	2016-04-06 19:39:40	1	-74.010040
4	id2181028	2	2016-03-26 13:30:55	2016-03-26 13:38:10	1	-73.97305

in this data set, we found out that some columns are not necessary for the prediction.

For example, "id" and "vendor_id" and "store_and_fwd_flag" column, so we first drop those.

Out[65]:

	pickup_datetime	dropoff_datetime	passenger_count	pickup_longitude	pickup_latituc
0	2016-03-14 17:24:55	2016-03-14 17:32:30	1	-73.982155	40.767937
1	2016-06-12 00:43:35	2016-06-12 00:54:38	1	-73.980415	40.738564
2	2016-01-19 11:35:24	2016-01-19 12:10:48	1	-73.979027	40.763939
3	2016-04-06 19:32:31	2016-04-06 19:39:40	1	-74.010040	40.719971
4	2016-03-26 13:30:55	2016-03-26 13:38:10	1	-73.973053	40.793209

In further observation, we found that Pick-up time - Drop-off time = trip duration,

so if we just need to find out what time the taxi pick people up, we can omit the drop-off column.

To easily capture the hour results, use the following code:

```
In [66]: taxi_new_h = pd.to_datetime(taxi_new["pickup_datetime"])
  taxi_new['hour'] = taxi_new_h.map(lambda x: x.hour)
  taxi_new.head()
```

Out[66]:

	pickup_datetime	dropoff_datetime	passenger_count	pickup_longitude	pickup_latituc
0	2016-03-14 17:24:55	2016-03-14 17:32:30	1	-73.982155	40.767937
1	2016-06-12 00:43:35	2016-06-12 00:54:38	1	-73.980415	40.738564
2	2016-01-19 11:35:24	2016-01-19 12:10:48	1	-73.979027	40.763939
3	2016-04-06 19:32:31	2016-04-06 19:39:40	1	-74.010040	40.719971
4	2016-03-26 13:30:55	2016-03-26 13:38:10	1	-73.973053	40.793209

```
In [195]: figure,axes = plt.subplots(figsize = (10, 5))
    hours = taxi_new.groupby(["hour"]).agg(('mean'))["trip_duration"]
    hours.plot(kind="line", ax=axes)
    plt.title('Hours VS trip_duration')
    axes.set_xlabel('Time in Hours')
    axes.set_ylabel('Avarage of the taxi trip durations')
    plt.show()
```


we can see that we have a column 'hour' that captures the hour of the day when the taxi picks up the customer.

we believe that this timing of the ride is very important.

To avoid numeric relationship, we categorize the hour of a day by 5 differnt time zones:

```
In [29]: def cateHours(x):
    if 0 <= x <= 5:
        return "EM"  # Early Morning, mono decrease
elif 6 <= x <= 15:
        return "MP"  # Morning Peak, mono increase
elif 16 <= x <= 19:
        return "AF"  # Afternoon to night time, mono decrease
elif 20 <= x <= 22:
        return "AP"  # Night peak, mono increase
elif 23 <= x <= 24:
        return "LN"  # Late Night, mono decrase</pre>
```

Then we apply this function to the dataset to change the 'hour' column to discrete values:

```
In [67]: taxi_new['hour'] = taxi_new['hour'].apply(cateHours)
taxi_new.head()
```

Out[67]:

	pickup_datetime	dropoff_datetime	passenger_count	pickup_longitude	pickup_latituc
0	2016-03-14 17:24:55	2016-03-14 17:32:30	1	-73.982155	40.767937
1	2016-06-12 00:43:35	2016-06-12 00:54:38	1	-73.980415	40.738564
2	2016-01-19 11:35:24	2016-01-19 12:10:48	1	-73.979027	40.763939
3	2016-04-06 19:32:31	2016-04-06 19:39:40	1	-74.010040	40.719971
4	2016-03-26 13:30:55	2016-03-26 13:38:10	1	-73.973053	40.793209

```
In [68]: # One hot encoding
    taxi_new_onehotHour = pd.get_dummies(taxi_new['hour'])
    taxi_new_onehotHour.head()
```

Out[68]:

	AF	AP	EM	LN	MP
0	1	0	0	0	0
1	0	0	1	0	0
2	0	0	0	0	1
3	1	0	0	0	0
4	0	0	0	0	1

```
In [199]: time = taxi_new.set_index('trip_duration')
```


Then we use OneHot Encoding for column 'hour'

```
In [75]: # put this into the dataset
    taxi_new = pd.concat([taxi_new,taxi_new_onehotHour], axis=1)
    taxi_new.head()
```

Out[75]:

		pickup_datetime	dropoff_datetime	passenger_count	pickup_longitude	pickup_latituc
•	0	2016-03-14 17:24:55	2016-03-14 17:32:30	1	-73.982155	40.767937
-	1	2016-06-12 00:43:35	2016-06-12 00:54:38	1	-73.980415	40.738564
2	2	2016-01-19 11:35:24	2016-01-19 12:10:48	1	-73.979027	40.763939
;	3	2016-04-06 19:32:31	2016-04-06 19:39:40	1	-74.010040	40.719971
[4	2016-03-26 13:30:55	2016-03-26 13:38:10	1	-73.973053	40.793209

In [76]: taxi_new.head()

Out[76]:

	pickup_datetime	dropoff_datetime	passenger_count	pickup_longitude	pickup_latituc
0	2016-03-14 17:24:55	2016-03-14 17:32:30	1	-73.982155	40.767937
1	2016-06-12 00:43:35	2016-06-12 00:54:38	1	-73.980415	40.738564
2	2016-01-19 11:35:24	2016-01-19 12:10:48	1	-73.979027	40.763939
3	2016-04-06 19:32:31	2016-04-06 19:39:40	1	-74.010040	40.719971
4	2016-03-26 13:30:55	2016-03-26 13:38:10	1	-73.973053	40.793209

In [202]: import seaborn as sns

sns.lmplot(x='trip_duration', y='AP', data=taxi_new) plt.show()

After getting the pick-up time zone, we can drop the pickup_datetime and dropoff_datetime

but before we do that, let make the Label first.

```
In [10]: label = taxi_new['trip_duration']
label.shape

Out[10]: (1458644,)
```

In [33]: from math import cos, asin, sqrt, sin, atan2, radians

Direct Distance from Andrew

```
def getDistanceFromLatLon(lat1,lon1,lat2,lon2):
             R = 3959 # Radius of the earth in miles
             dLat = radians(lat2-lat1) #deg2rad below
             dLon = radians(lon2-lon1)
             a = \sin(dLat/2) * \sin(dLat/2) + \cos(radians(lat1)) * \cos(radians(lat1))
         2)) * sin(dLon/2) * sin(dLon/2)
             c = 2 * atan2(sqrt(a), sqrt(1-a))
             d = R * c; #Distance in km
             #print(d)
             return d
         def f(x):
             return getDistanceFromLatLon(x[0], x[1], x[2], x[3])
In [79]: taxi_new['distance'] = taxi_new[['pickup_latitude','pickup_longitude','d
         ropoff_latitude','dropoff_longitude']].apply(f, axis =1)
         taxi new['distance'].head()
Out[79]: 0
              0.931195
```

1 1.121959
2 3.967761
3 0.923103
4 0.738600
Name: distance, dtype: float64

• • •

In [80]: taxi_new.head()

Out[80]:

	pickup_datetime	dropoff_datetime	passenger_count	pickup_longitude	pickup_latituc
0	2016-03-14 17:24:55	2016-03-14 17:32:30	1	-73.982155	40.767937
1	2016-06-12 00:43:35	2016-06-12 00:54:38	1	-73.980415	40.738564
2	2016-01-19 11:35:24	2016-01-19 12:10:48	1	-73.979027	40.763939
3	2016-04-06 19:32:31	2016-04-06 19:39:40	1	-74.010040	40.719971
4	2016-03-26 13:30:55	2016-03-26 13:38:10	1	-73.973053	40.793209

```
In [36]:
            # Calculate correlations
            corr = taxi_new.corr()
            # Heatmap
            sns.heatmap(corr)
            plt.show()
                                                                           -1.00
              passenger_count -
              pickup_longitude
                                                                            - 0.75
               pickup_latitude
             dropoff longitude
                                                                            - 0.50
              dropoff latitude
                 trip_duration
                                                                            - 0.25
                         ΑF
                         AΡ
                                                                            0.00
                         ΕМ
                         LN
                                                                             -0.25
                         MΡ
                    distance
                                                         표 짐
                             passenger_count
                                pickup_longitude
                                    pickup_latitude
                                        dropoff_longitude
                                           dropoff_latitude
                                               trip_duration
 In [ ]:
            .agg(('mean'))
 In [ ]: figure,axes = plt.subplots(figsize = (10, 5))
            distance = taxi_new.groupby(["distance"])["trip_duration"]
            distance.plot(kind="line", ax=axes)
            plt.title('Distance VS trip_duration')
            axes.set_xlabel('Distance')
            axes.set_ylabel('Trip durations')
            plt.show()
```

then drop all unnecessary columns, and make the feature matrix

Out[37]:

	passenger_count	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_latitud
0	1	-73.982155	40.767937	-73.964630	40.765602
1	1	-73.980415	40.738564	-73.999481	40.731152
2	1	-73.979027	40.763939	-74.005333	40.710087
3	1	-74.010040	40.719971	-74.012268	40.706718
4	1	-73.973053	40.793209	-73.972923	40.782520

```
In [23]: taxi_new = taxi_beforeScalled
```

Scaling may help to normalize the data:

```
In [59]: from sklearn import preprocessing
    taxi_beforeScalled = taxi_new ## back up before scalling
    taxi_scaled = preprocessing.scale(taxi_new)
    taxi_new = pd.DataFrame(taxi_scaled)
    taxi_new.head()
```

Out[59]:

	0	1	2	3	4	5	6	7
0	-0.505637	-0.122261	0.517494	0.124369	0.384575	1.879925	-0.453426	-0.364997
1	-0.505637	-0.097727	-0.375819	-0.368970	-0.575303	-0.531936	-0.453426	2.739745
2	-0.505637	-0.078143	0.395910	-0.451805	-1.162220	-0.531936	-0.453426	-0.364997
3	-0.505637	-0.515558	-0.941274	-0.549976	-1.256071	1.879925	-0.453426	-0.364997
4	-0.505637	0.006112	1.286091	0.006974	0.855957	-0.531936	-0.453426	-0.364997

Algorithm selection:

We select Linear Regression, Lasso, ElasticNet, and Ridge to perform regression, and compare them together

```
In [38]: # Frist define the RMSE method.

def RMSE(y_test,y_predict):
    # Calculating "Mean Square Error" (MSE):
    mse = metrics.mean_squared_error(y_test, y_predict)
    # Using numpy sqrt function to take the square root and calculate "R
    oot Mean Square Error" (RMSE)
    rmse = np.sqrt(mse)
    return(rmse)
```

```
In [61]: # Define a method to run all 4 regression at the same time:
         def Regressions(feature, label):
             # split the dataset into training and testing sets by 80-20 ratio
             X_train, X_test, y_train, y_test = train_test_split(feature, label,
         test_size=0.2, random_state=3)
             #linear
             from sklearn.linear_model import LinearRegression
             myLinearReg = LinearRegression()
             myLinearReg.fit(X_train,y_train)
             y predict = myLinearReq.predict(X test)
             print('Linear ',RMSE(y_test,y_predict))
             y predict = myLinearReg.predict(X train)
             print('Linear Train',RMSE(y_train,y_predict),'\n') ## Output the
          RMSE on the Training set.
             #Ridge
             from sklearn.linear_model import Ridge
             myRidge = Ridge()
             myRidge.fit(X_train,y_train)
             y_predict = myRidge.predict(X_test)
             print('Ridge ', RMSE(y_test,y_predict))
             y_predict = myRidge.predict(X_train)
             print('Ridge Train', RMSE(y train,y predict),'\n') ## Output the
          RMSE on the Training set.
             #ElasticNet
             from sklearn.linear_model import ElasticNet
             myENet = ElasticNet()
             myENet.fit(X_train,y_train)
             y predict = myENet.predict(X test)
             print('ElasticNet ', RMSE(y_test,y_predict))
             y predict = myENet.predict(X train)
             print('ElasticNet Train', RMSE(y_train,y_predict),'\n')
             from sklearn.linear model import Lasso
             myLasso = Lasso()
             myLasso.fit(X train,y train)
             y predict = myLasso.predict(X test)
             print('Lasso ', RMSE(y_test,y_predict))
             y predict = myLasso.predict(X train)
             print('Lasso Train', RMSE(y_train,y_predict),'\n')
             # 10-fold Cross validation:
             rmse list = cross val score(myLasso, X train, y train, cv=10, scorin
         g='neg mean_squared_error')
             #print(rmse list)
```

```
# Notice that "cross_val_score" by default provides "negative" value
s for "mse" to clarify that mse is error.
    # in order to calculate root mean square error (rmse), we have to ma
ke them positive!
    mse_list_positive = -rmse_list

# using numpy sqrt function to calculate rmse:
    rmse_list = np.sqrt(mse_list_positive)
    #print(rmse_list)

print('cross-validation',rmse_list.mean())
```

Also, in order to reduce work load and compare result, we create a method to split the dataset

Split the dataset to make it smaller:

```
In [41]: # use spliting 5 times as example.
    taxi_reduced, label_reduced = shrinkDataSet (taxi_new,label,5,0.5) #
    split 5 times, into half

    print('original: ',taxi_new.shape)
    print('After: ',taxi_reduced.shape)

    original: (1458644, 11)
    After: (45582, 11)

In [62]: def Run_compare(k): # K = how many times to split

        taxi_reduced, label_reduced = shrinkDataSet (taxi_new,label, k ,0.5)
    # split k times, into half
        print('Original shape: ',taxi_new.shape)
            print('After shape: ',taxi_reduced.shape,'\n')

        Regressions(taxi_reduced,label_reduced)
```

start predicting:

First, Define a method for easy comparing:

```
In [63]: # with k=8

k=8

Run_compare(k)

Original shape: (1458644, 11)
After shape: (5697, 11)

Linear 1677.38367183
Linear Train 2850.67764143

Ridge 1677.4026249
Ridge Train 2850.6776485

ElasticNet 1716.15264197
ElasticNet Train 2856.9494962

Lasso 1677.07258237
Lasso Train 2850.68223431

cross-validation 2021.76111409
```

Original shape: (1458644, 11) After shape: (45582, 11)

Linear 2360.00212068 Linear Train 3139.21822558

Ridge 2359.9389808 Ridge Train 3139.21934679

ElasticNet 2360.50990752 ElasticNet Train 3141.12840396

Lasso 2359.43538113 Lasso Train 3139.65687642

cross-validation 3120.46497092

```
In [55]: # with k=3
         k=3
         Run_compare(k)
         Original shape: (1458644, 11)
         After shape: (182330, 11)
         Linear 3122.76943374
         Linear Train 2993.6234682
         Ridge 3122.77069386
         Ridge Train 2993.62347391
         ElasticNet 3123.88277372
         ElasticNet Train 2994.63109028
         Lasso 3123.09736192
         Lasso Train 2993.82103544
         cross-validation 2980.58463961
         NameError
                                                   Traceback (most recent call 1
         ast)
         <ipython-input-55-cfa522c26e9a> in <module>()
               3 k=3
         ---> 5 Run compare(k)
         <ipython-input-53-abf3f31d4d2b> in Run_compare(k)
                     print('After shape: ',taxi reduced.shape,'\n')
               6
         ---> 7
                     final_submit = Regressions(taxi_reduced,label_reduced)
               8
               9
         <ipython-input-54-6118307aec98> in Regressions(feature, label)
              64
                     print('cross-validation',rmse list.mean())
              65
         ---> 66
                     final_submit['trip_duration'] = np.round(y_predict)
              67
              68
                     return final submit
```

NameError: name 'final_submit' is not defined

Original shape: (1458644, 11) After shape: (729322, 11)

Linear 3130.13732036 Linear Train 6827.78006402

Ridge 3130.13736018 Ridge Train 6827.7800642

ElasticNet 3130.92467467 ElasticNet Train 6828.24569576

Lasso 3130.33679291 Lasso Train 6827.85985898

cross-validation 5276.14189853

```
In [49]: # with k=0 , not spliting at all
         k=0
         Run_compare(k)
         Original shape: (1458644, 11)
         After shape: (1458644, 11)
         Linear 4774.16988657
         Linear Train 5317.03045721
         Ridge 4774.16895939
         Ridge Train 5317.03045751
         ElasticNet 4772.98346594
         ElasticNet Train 5317.98241472
         Lasso 4773.79623661
         Lasso Train 5317.15883643
         cross-validation 4455.35744246
         NameError
                                                   Traceback (most recent call 1
         ast)
         <ipython-input-49-a9017d89ae2a> in <module>()
         ---> 5 Run compare(k)
         <ipython-input-48-bc8904a9fb9f> in Run compare(k)
                     Regressions(taxi reduced, label reduced)
         ---> 9 final submit['trip duration'] = np.round(y predict)
         NameError: name 'y predict' is not defined
```

From article, if we compare the RMSE from the Predicted RMSE and the Training RMSE, and if they are similar, it's good.

RMSE doesn't have a specific threadhold to say "below xxx is good".

Therefore, we can see that at k=8, the RMSE of predicted and training are the closest.

In this case, I can say that when we split the dataset into 3 times, providing about 180k rows of data, the model is trained to the best fit.

In [221]: #Mean learning curves for different cross validation folds
 train_score_mean = np.mean(train_scores,axis=1)
 test_score_mean = np.mean(test_scores,axis=1)
 plt.plot(train_sizes_abs,train_score_mean)
 plt.plot(train_sizes_abs, test_score_mean)
 plt.show()

