Amortized Analysis

In an amortized analysis, we consider the total time of a sequence of operations. Even if a single operation is O(f(n)), the average of n operations might be o(f(n)).

Examples:

Sequence of Heapify calls from Build-Heap.

Sequence of calls to Tree-Successor.

Repeatedly incrementing a bit string.

Repeated insertions into a dynamic array.

Make-Set, Union, and Find-Set.

Aggregate Method: Directly analyze total time.

Accounting Method:

Assign an amortized cost to each operation.

Show total amortized cost \geq total time.

Potential Method:

Specify an initial charge (potential).

Amortized op cost = time + change in potential.

Total amortized cost = total time + change in potential.

Show change ≥ 0 or potential ≥ 0 at all times.

Incrementing a Bit String

A is a bit string. Analyze number of bit flips.

INCREMENT
$$(A[0 ... m-1])$$
 $i \leftarrow 0$
while $i < m$ and $A[i] = 1$
do $A[i] \leftarrow 0$
 $i \leftarrow i+1$
if $i < m$
then $A[i] \leftarrow 1$

Aggregate Method:

Assume n increments starting from all 0s.

A[0] flips every increment for n flips.

A[1] flips every 2nd time for $\leq n/2$ flips.

A[2] flips every 4th time for $\leq n/4$ flips.

A[i] flips every 2^i th time for $\leq n/2^i$ flips.

Number of flips
$$\leq n + \frac{n}{2} + \frac{n}{4} + \dots$$

= $n \sum_{i=0}^{\infty} \frac{1}{2^i}$
= $2n \in O(n)$

Accounting Method:

Assume n increments starting from all 0s.

Increment flips exactly one bit from 0 to 1.

Assign an amortized cost of 2 units/increment.

Both units are assigned to the bit that is flipped from 0 to 1.

Use one unit immediately for flip from 0 to 1.

Save other unit for when it is flipped back to 0.

All bit flips are accounted for, so the total cost of 2n is \geq number of bit flips.

Potential Method:

Assume n increments starting with k bits = 1.

Let potential = number of bits equal to 1.

Use an amortized cost of 2 units/increment because 2 = bit flips + (bit flips from 0 to 1 - bit flips from 1 to 0)

All bit flips are accounted for, so total amortized cost of 2n = total time + change in potential.

Total time is $\leq 2n + k$ because potential ≥ 0 .

Dynamic Arrays

Assume num[A] is number of elements in A. Assume num[A] = 0 and size[A] = 1 initially.

ARRAY-INSERT(A, x)

if
$$num[A] = size[A]$$

then reallocate A with length $2 \cdot size[A]$ $size[A] \leftarrow 2 \cdot size[A]$

 $num[A] \leftarrow num[A] + 1$ $A[num[A]] \leftarrow x$

Analyze number of insertions + amount of copying during reallocations.

Aggregate Method:

Assume n insertions starting from 0 elts.

Assume num[A] time for reallocating A.

Assume 1 unit time for rest of Array-Insert.

Reallocate when num[A] is a power of 2.

$$\sum_{i=0}^{\lfloor \lg n \rfloor} 2^i \le n \sum_{i=0}^{\infty} \frac{1}{2^i} = 2n$$

So insertion + reallocation time $\leq n + 2n = 3n$

Accounting Method:

Assign an amortized cost of 3 units/insertion.

Use one unit immediately for inserting A[j].

Save two units for future reallocation: one for A[j] and the other for A[j-s/2], where s = size[A].

When reallocating, all elts are accounted for, so the total cost of 3n is \geq time units.

Suppose deletions are allowed.

 $size[A] \leftarrow size[A]/2$ when array is 1/4 full.

Assign an amortized cost of 2 units/deletion.

Use one unit immediately for deleting A[j]. Save one unit for reallocation of A[j-s/4], where s = size[A].

If space is at a premium, then use a expansion/contraction factor < 2. In the analysis, each operation will cost more.