true font-family: "DejaVu Sans Mono" width: 2100 height: 1400 css: custom.css

Distracted Driving:Detecting Texting with Neural Networks

Joseph Blubaugh29 March 2017

Contents

title: true

- Data Introduction, Preparation, and Project Management
- Exploratory Analysis and Model Proposal
- Understanding Basic Neural Nets
- Model Training and Selection
- Exploring Model Effects

Data Introduction, Preparation, and Project Management

type: section title: false

Data IntroductionData Extraction and PreparationProject Management

Data Introduction

- The data in this project are of 8 driving simulations for 66 individuals ranging from 3,000 to 30,000 observations per simulation.
- Every simulation observation contains likelihood scores for 8 facial expressions recorded at a fixed interval of .03 seconds.
- Stimuli data which records targetted events introduced into each simulation and basic demographic data on each subject are also available.
- There are over 6.7 million observations in the entire dataset spread across 777 files.

T001-001.xlsx (Subject 01, Simulation 01)

• The data set used in this project was originally collected and analyzed in **Dissecting Driver Behaviors** Under Cognitive, Emotional, Sensorimotor, and Mixed Stressors, Scientific Reports 6, Article number: 25651 (2016).

Data Extraction

- **Python scripts** were used to extract and combine the 509 driving simulation files and 267 stimuli files into combined data sets.
- The subject-simulation identifier was the name of each file. A column labeled ID was created based on the file name to identify the original data set.

Sample of data-faces.csv

Frame	Time	Anger	Contempt	Disgust	Fear	Joy	Sad	Surprise	Neutral	ID
0	0.0000	0.0101	0.0218	0.0043	0.0541	0.5260	0.0959	0.0010	0.2868	T001-001
1	0.0333	0.0101	0.0218	0.0043	0.0541	0.5260	0.0959	0.0010	0.2868	T001-001

Frame	Time	Anger	Contempt	Disgust	Fear	Joy	Sad	Surprise	Neutral	ID
2	0.0667	0.0101	0.0218	0.0043	0.0541	0.5260	0.0959	0.0010	0.2868	T001-001
3	0.1000	0.0080	0.0187	0.0032	0.0375	0.5353	0.1050	0.0011	0.2911	T001-001
4	0.1333	0.0091	0.0380	0.0158	0.0036	0.6902	0.0177	0.0004	0.2252	T001-001
5	0.1667	0.0104	0.0450	0.0139	0.0030	0.7157	0.0162	0.0003	0.1955	T001-001

Sample of data-stimuli.csv

Start	End	Event.Switch	Event.Type	Event	ID
86.5	246.50	1	1	Analytical Questions	T001-005
508.5	657.50	1	2	Mathematical Questions	T001-005
107.5	269.25	1	3	Emotional Questions	T001-006
521.0	674.75	1	3	Emotional Questions	T001-006
81.0	240.00	1	4	Texting	T001-007
510.0	671.00	1	4	Texting	T001-007

- NOTE: 2 simulation files started on different rows than the rest of the 507 files and had to be manually corrected
 - T034-005.xlsx: header starts on row 8
 - T009-006.xlsx: header starts on row 10

Data Preparation

- The event data captured the starting and ending times of events only.
- A loop function was written to go through each record and compare time between the simulation and the starting/ending time of the event.
- If the simulation time fell within the starting/ending time interval in the event data, then all of the records in the time interval were coded with that event (ie: **Texting**)
- All observations outside of the event time interval were coded as **No Event**.

Sample of Cleaned Data Showing an Event Transition

Subjec	ctTrial	Age	Ger	ndeFram	eTime [Event.S	w Etve nt	Actio	onAngerContem pi s	gustFear	Joy	Sad	Surpr	isNeutral
T001	007	Y	Μ	2427	80.900	0	No Event	0	0.09090.0575 0.42		0.001	110.134	3 0	0.2954
T001	007	Y	M	2428	80.933	0	No Event	0	0.06120.0397 0.42	04 293 4e- 04	0.001	110.1630	0 0	0.3052
T001	007	Y	Μ	2429	80.967	0	No Event	0	0.10340.0963 0.31	~ -	0.001	130.0850	6 0	0.3946
T001	007	Y	Μ	2430	81.000	1	Texting	g 4	0.03630.4976 0.01	-	0.002	240.0069	9 0	0.4396
T001	007	Y	Μ	2431	81.033	1	Texting	g 4	0.00590.7285 0.00	027 4e- 04	0.006	680.006	3 0	0.2493
T001	007	Y	Μ	2432	81.067	1	Texting	g 4	0.00580.6890 0.00	035 4e- 04	0.007	770.0068	8 0	0.2868

• NOTE: The average texting event lasted 2.5 minutes, but we don't really know what occurred during the event time interval. Was there one long texting action or was the event made up of a series of sending and receiving texts?

Project Management

Reproducible Research

- Code, plots, and this presentation are organized and hosted in a github repository.
- The main page includes steps to reproduce the data set and models
- The data is too large to be hosted and would need to be retrieved elsewhere

Github Project:	https://github.com/jestonblu/driving

Github Project Page

Exploratory Analysis and Model Proposal

type: section title: false

Exploratory AnalysisandModel Proposal

Exploratory Analysis

* The yellow and gray points represent events during the trials * The baseline trial has no events and is gray throughout * LOESS (Local Polynomial Regression) lines display the moving average over the entire simulation * Many subjects displayed visual differences between the texting simulation and the baseline simulation

Exploratory Analysis		

Exploratory Analysis

- The same LOESS lines were used to show all 59 subjects on a single plot
- All observations were centered on the overall average of the baseline simulation
- Anger, Contempt, Disgust, and Neutral displayed more variation than the other emotions for both trials

Model Proposal

Takeaways * Differences in variation between the trials suggest that it may be possible to build a model capable of predicting a texting event

- Subject specific plots are unique enough that a individual subjects variables may be needed in modeling
- Baseline Trial: Trial 4 was used as a baseline trial because the conditions were identical to the Texting Trial (dense traffic with detour). The overall mean for each Subject's emotion in the baseline trial was subtracted from every observation in the Texting Trial.

Feed Forward Neural Network * Proposal: Train a Neural Network using emotional likelihoods and demographics to predict when a subject is texting

- NNets are well suited for large data sets of continuous variables
- Analogous to logistic regression and appropriate for predicting probabilities

Basic Nueral Networks

type: section title: false

Understanding BasicNeural Networks

Neural Network Basics

Basic Neural Network Example

General Model Form

$$nnet(O1 \sim X1 + X2, size = 3)$$

Feed-Forward Neural Networks * Class of Statistical Learning model * Uses a training set for tuning the model and a testing set for measuring performance * Similar to logistic regression * Typically displayed as a diagram of connected nodes

Neural Network Components * **Nodes:** * Input Nodes: Input values of the predictor variables * Hidden and Output Nodes: Value are the sumproduct of the connected weights * **Weights:** Represents the transformation that takes place between nodes * **Activation Function:** Transforms the output into an appropriate scale * For logistic regression, the sigmoid function: $S(x) = \frac{1}{1 + \exp(-x)}$

Neural Network Basics

Step 1: Model is Initialized with Random Weights

Step 2: Calculate Hidden Weights and Output Node Prediction

• Hidden Node values are the sum product of the connected weights and input nodes

$$H1 = (1)(.2) + (1)(.4) = 0.6, \ S(0.6) = .645H2 = (1)(.1) + (1)(.6) = 0.7, \ S(0.7) = .668H3 = (1)(.7) + (1)(.3) = 1.0, \ S(1.0) = .700 + 1.000 + 1.$$

• Output Node Prediction

$$O1 = (.645)(.3) + (.668)(.5) + (.731)(.7) = 1.039S(1.039) = .739$$

• Model Error: **.739**

NOTE: Activation Function

$$S(x) = \frac{1}{1 + \exp(-x)}$$

First Iteration of a Basic Neural Network

NOTE: Grayed values did not change from previous step

Neural Network Basics

Step 3: Update Weights Based on Error

• Update Weights between Hidden Layer and Output Node

 $Delta = S'(.739) = .2187 Delta Change = (.2187)/[.645, .668, .731] = [.339, .327, .299]w_7 = .645 - .339 = .306w_8 = .668 - .327 = .328 + .3$

• Update Weights between Input Node and Hidden Layer

 $DeltaWeights = Delta/[.3, .5, .7] * S'([.6, .7, 1]) = [.167, .097, .061] \\ DeltaChange = DeltaWeights/[1, 1] = [.167, .097, .061, .16] \\ DeltaWeights = DeltaVeights/[1, 1] = [.167, .097, .061] \\ DeltaWeights/[1, 1] = [.167, .097, .097, .061] \\ DeltaWeights/[1, 1] = [.167, .097,$

Step 4: Repeat steps 2-3 to update node values * S(.633) = .653, Error = .653 vs previous .739

First Iteration of a Basic Neural Network

- Grayed values did not change from previous step
- S'(x) = S(x)(1 S(x))

Model Fitting and Selection

type: section title: false Model Fitting and Selection

Model Fitting

left: 30%

Neural Network Model Design

General Model Form

 $nnet(Texting \sim Subject + Age + Gender + Anger + Contempt + Digust + Fear + Joy + Sad + Surprise + Neutral)$

Modeling Strategy * Train the same general model on various slices of the data to see what works best

- 12 total training/testing data sets created from the combination of Data Processing and Data Split methods
- Data Processing
 - Original: Emotions in the original form measured in .03 second intervals.
 - **Differencing**: First order differening of the original observations.
 - Moving Avg: Moving averages n=30 for all of the emotions.
 - -1/2 Sec Cut: Time cut into 1/2 second intervals with the average value recorded.
 - -1/2 Sec Diff: First order differencing of the 1/2 second cut data.
 - 1/2 Sec Cut Stat: 1/2 Sec Cut with additional sd, min, max, iqr, and median.

• Data Split

- **365** Split: The data are split at the 365 second, approximately half way through the texting simulation.
- Entire Sim: The training set is randomly selected from the entire simulation.

Model Fitting

Statistical Software

- R's **nnet** package for feed-forward neural networks
- The Caret Package
- \bullet $\,$ $\,$ $\,$ $\,$ $\,$ $\,$ $\,$ Caret is a modeling framework for training and testing classification and regression models
- Uses models from other packages and offers a rich set of validation test and diagnostic plots
- Can implement parallel processing of cross validation tasks

Performance and Validation Testing * k=10 cross validation for training sets * AUC (Area Under Curve) and total accuracy

Model Search Parameters * Max Iterations: The number of iterations allowed for training * 100 (500 and 1000 iterations are run for the best models) * Size: The number of nodes in the hidden layer. Increases training time exponentially * [1, 10, 25, 50] * Decay: A penality applied to weights after each iteration. Moves weights that dont update towards zero. * [0, .1, .2]

NOTE: Each Model is trained 120 times * (k=10 cross validation) x (12 combinations of size and decay)

Model Selection

left: 55%Model Performance with 100 Iteration Limit

Model	Data Processing	Data Split	MaxItr	Size	Decay	Training	Testing	AUC
Model 1:	Original	365 Split	100	50	.20	.760	.676	.734
Model 2:	Original	Entire Sim	100	50	.20	.754	.754	.847
Model 3:	Differencing	365 Split	100	10	.00	.518	.516	.526
Model 4:	Differencing	Entire Sim	100	25	.10	.572	.571	.637
Model 5:	Moving Avg	365 Split	100	10	.00	.503	.502	.527
Model 6:	Moving Avg	Entire Sim	100	10	.00	.528	.528	.544
Model 7:	1/2 Sec Cut	365 Split	100	50	.10	.820	.698	.761
Model 8:	1/2 Sec Cut	Entire Sim	100	50	.20	.788	.779	.868
Model 9:	1/2 Sec Diff	365 Split	100	50	.10	.633	.602	.650
Model 10:	1/2 Sec Diff	Entire Sim	100	50	.20	.682	.622	.681
Model 11:	1/2 Sec Cut Stat	365 Split	100	50	.10	.846	.716	.781
Model 12:	1/2 Sec Cut Stat	Entire Sim	100	50	.20	.820	.803	.891

Additional Training for Best Models

Model	Data Processing	Data Split	MaxItr	Size	Decay	Training	Testing	AUC
Model 8:	1/2 Sec Cut	Entire Sim	250	50	.10	.816	.804	.893

Model	Data Processing	Data Split	MaxItr	Size	Decay	Training	Testing	AUC
	1/2 Sec Cut 1/2 Sec Cut	Entire Sim Entire Sim	500 1000	50 50	.10 .10	.828 .842	.810 .820	.899 .906
	1/2 Sec Cut Stat	Entire Sim	250	50	.10	.858	.823	.906
Model 12:	1/2 Sec Cut Stat	Entire Sim	500	50	.20	.864	.823	.907
Model 12:	1/2 Sec Cut Stat	Entire Sim	1000	50	.10	.871	.824	.908

NOTE: Blue indicates best models

Model Fitting

Model Training and Validation

```
## Set Cross Validation
fit.control = trainControl(method = "cv", number = 10)
## Create combination of model parameters to train on
search.grid = expand.grid(decay = c(0, .1, .2),
                        size = c(1, 10, 25, 50))
## Limit the iterations and weights each model can run
maxIt = 1000; maxWt = 15000
fit = train(Texting ~ . - Time, mdl.08.train,
           method = "nnet",
           trControl = fit.control,
           tuneGrid = search.grid,
           MaxNWts = maxWt,
           maxit = maxIt)
44503 samples, 12 predictors, 2 classes: '0', '1'
Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 40053, 40053, 40052, 40052, ...
Resampling results across tuning parameters:
 Decay Size Accuracy Kappa
 0.0
        1
             0.6654
                      0.3042
 0.0 10 0.7857
                      0.5519
 0.0
        25 0.8135
                        0.6129
 0.0
        50
             0.8252
                       0.6375
 0.1
        1 0.6830
                     0.3182
 0.1
        10 0.8052
                      0.5934
 0.1
        25 0.8247
                      0.6352
 0.1
        50
            0.8304
                       0.6472 ## Best Model
 0.2
        1 0.6809
                      0.3126
 0.2
        10 0.8033
                        0.5889
 0.2
        25 0.8196 0.6242
```

```
0.2 50 0.8241 0.6336
```

Parameter Comparisons

Confusion Matrix and Statistical Summaries

```
Reference
            0
Prediction
        0 22736 4616
        1 2943 14208
              Accuracy : 0.8301
                95% CI: (0.8266, 0.8336)
   No Information Rate: 0.577
   P-Value [Acc > NIR] : < 2.2e-16
                 Kappa: 0.6479
 Mcnemars Test P-Value : < 2.2e-16
           Sensitivity: 0.8854
           Specificity: 0.7548
        Pos Pred Value: 0.8312
        Neg Pred Value: 0.8284
     Balanced Accuracy: 0.8201
 Area Under Curve (AUC): 0.906
```

Model Performance

* Each point is colored by the prediction of the best model * The blue line is a LOESS smoother of the probability prediction for that corresponding prediction * The shaded regions represent the actual texting window * Yellow points within the gray regions represent correct predictions

Model Performance

Model Performance

left: 60%

Total Accuracy by Subject

TOP

nbsp;	Г022Т()86T0	07T0	06T0	18T0	35T0	83T0	76T0	81T0	64T0	20T0	12T0	74T0	09T0	13T0	88T0	03T0	32T0	11T0	TOP 44 20
Gender AgeOld			_	-	-				_	_	-									

TA /	п	
IVI		ı,

nbsp;	T08	0T01	.6T0	05T0	60T0	39T0	15T0	08T0	46T0	29T0	79T(051T()73T0	82T0	24T0	10T0	01T0	66T0	17T0	33T0	42 20
Train	0.89	70.90)40.8	670.9	110.8	800.8	680.8	790.8	8830.8	3420.8	3920.8	8840.8	3550.8	8660.8	290.8	470.8	670.8	550.8	240.8	250.8	43 .865
Test	0.87	20.87	710.8	640.8	590.8	530.8	500.8	480.8	3470.8	390.8	370.8	8320.8	3310.8	300.8	270.8	260.8	250.8	190.8	170.8	030.8	02 .837
Gende	r M al	.e0	1	0	0	1	0	1	0	0	1	0	1	0	0	1	0	1	0	1	8
AgeOl	d0	0	0	0	1	0	0	1	1	0	1	1	0	0	0	0	0	0	1	1	7

BOTTOM

nbsp;	T03	31T04	0T0	61T(036T()47T	084T()77T0	14T0	04T0	21T0	19T0	02T0	54T0:	25T0	41T0	34T0	23T0	38T0:	27 19
Train	0.84	60.81	40.79	960.	8000.7	7890.	8030.7	7920.8	3280.7	710.8	120.7	460.7	420.7	740.7	600.7	190.7	040.7	110.6	740.6	51 .764
Test	0.79	940.79	00.78	870.	7830.	7820.	7760.7	7660.7	7580.7	580.7	570.7	420.7	350.7	310.7	240.7	200.7	000.6	820.6	650.6	40.741
Gende	r M al	le1	1	1	0	1	0	0	0	1	1	0	1	0	0	1	1	1	0	10
AgeOl	d1	1	0	1	1	1	1	0	0	0	0	0	1	1	1	1	0	1	1	12

Proportional Summary

	Proportion Male	Proportion Old	Proportion Old Male	Proportion Old Female
Top 20	40.0%	26.9%	35.7%	16.7%
$Mid\ 20$	26.7%	26.9%	21.4%	33.3%
Bot 19	33.3%	46.2%	42.9%	50.0%

Takeaways * 15 of 59 had testing performance > 90% * 40 of 59 had testing performance > 80% * 3 of 59 had testing performance < 70% * 6 of the 7 worst performing Subjects were Old (4 Male, 3 Female) * The 15 top performing Subjects (7 Male, 5 Old)

Exploring Modeling Effects

Evaluating Differences in Age and Gender

```
********************
Deviance Residuals:
    Min 1Q Median
                            3Q
-0.163277 -0.041330 -0.000279 0.059284 0.148769
Coefficients:
                Estimate Std. Error t value Pr(>|t|)
(Intercept)
                GenderAgeYoung Female 0.05604 0.02953 1.898 0.063.
GenderAgeOld Male
               0.02099 0.03033 0.692 0.492
GenderAgeYoung Male 0.03718 0.03033 1.226 0.226
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
(Dispersion parameter for gaussian family taken to be 0.006133847)
   Null deviance: 0.36163 on 58 degrees of freedom
Residual deviance: 0.33736 on 55 degrees of freedom
AIC: -127.25
Number of Fisher Scoring iterations: 2
********************
Shapiro-Wilk Normality Test
*********************
data: mdl$residuals
W = 0.97765, p-value = 0.3482
```

Conclusions