Laboratorium 2

Część III – MATLAB jako środowisko programistyczne (ćwiczenia)

1. Zadania

1.1 A)

Utwórz m-skrypt wczytujący dane z pliku daneP.csv a następnie realizującego wizualizację danych na wykresie typu plot (każda zmienna na osobnym wykresie). Dodaj do każdego wykresu osobny tytuł.

 Wskazówka: użyj import wizarda do importu danych, następnie wygeneruj m-funkcję do importu danych i wykorzystaj ją w swoim m-skrypcie

1.2 B)

Z zaimportowanych danych wybierz taki fragment, na którym widoczny jest sygnał okresowy. Utwórz nową zmienną zawierającą wybrany fragment sygnału i zwizualizuj ją na osobnym oknie wykresu.

- Wskazówka: Przyglądnij się wykresowi każdej składowej i wybierz taką, na której okresowość jestnajlepiej widoczna. Następnie, przy pomocy indeksowania, wybierz fragment pomijając zakłócenia na początku i na końcu sygnału.

1.3 C)

Z wybranego fragmentu sygnału, usuń trend poprzez dopasowanie krzywej wielomianowej. Dobierz stopień wielomianu jak najmniejszego stopnia przy zachowaniu jak najmniejszego błędu dopasowania (funkcja norm). Do wykresu z poprzedniego punktu dodaj linię dopasowanego trendu (inny kolor). Utwórz nowy wykres zawierający sygnał z usuniętym trendem.

- Wskazówka – możesz zrealizować dopasowanie przy pomocy narzędzia Basic Fitting Tool, a następnie wygenerować m-kod i wybrać z niego potrzebne fragmenty analizy sygnału.

m plik

kresowy przedział kolumny G z linią trei 171.5 r

Okresowy przedział kolumny G bez tren-

Okresowy przedział kolumny B bez tren-

1.4 D)

Znajdź częstotliwość charakterystyczną sygnału. Sformatuj wykres dodając do niego w sposób programowy: opisy osi x,y i tytuł wykresu. Dodaj do wykresu punkt w miejscu maksimum (częstotliwość charakterystyczna) oraz opis informujący o wartości częstotliwości tego maksimum.

- Wskazówka: użyj funkcji fft (patrz przykład w dokumentacji) z częstotliwością próbkowania odczytaną z pliku daneP.csv
- Aby dodać do wykresu opis wykorzystaj funkcję text oraz sformatuj tekst przy pomocy funkcji sprintf.

Gotowy rezultat powinien wyglądać podobnie jak wykres przedstawiony poniżej.


```
f = 900;

R_fft = abs(fft(R_ntrend));
G_fft = abs(fft(G_ntrend));
B_fft = abs(fft(B_ntrend));

m = length(R_ntrend);

fq = (0 : m/2 + (m/2 - 1)) * f/(m - 1);

figure

hold on

plot(abs(fq), (R_fft))

[R_max, index1] = max(R_fft);

txt1 = "Fc = " + string(index1 * f/(m - 1)) + "[Hz]";

text(index1, R_max, txt1, FontSize=9)

title('FFT sygnalu dla R')
xlabel("Czestotliwość [Hz]")
```

```
ylabel("|Y(f)|")
axis([0 450 0 inf])
hold off
```



```
figure
hold on
plot(abs(fq), (G_fft))
[G_max, index2] = max(G_fft);

txt2 = "Fc = " + string(index2 * f/(m - 1)) + "[Hz]"

txt2 = "Fc = 90[Hz]"

text(index2, G_max, txt2, FontSize=9)

title('FFT sygnału dla G')
xlabel("Częstotliwość [Hz]")
ylabel("|Y(f)|")
axis([0 450 0 inf])
hold off
```


hold off

```
figure
hold on
plot(abs(fq), (B_fft))

[B_max, index3] = max(B_fft);

txt3 = "Fc = " + string(index3 * f/(m - 1)) + "[Hz]"

txt3 = "Fc = 90[Hz]"

text(index3, B_max, txt3, FontSize=9)

title('FFT sygnału dla B')
xlabel("Częstotliwość [Hz]")
ylabel("|Y(f)|")
axis([0 450 0 inf])
```


Część IV – MATLAB typy danych (ćwiczenia)

2 Zadania

2.1 A)

Przy pomocy polecenia randn wygeneruj tablicę 3x3 liczb pseudolosowych R o rozkładzie normalnym (średnia 0 i odchylenie standardowe). Następnie utwórz zmienną A jako typ UINT32, zawierającą liczbę 100. Pomnóż zmienną R przez A, odpowiednio dostosowując typy danych. Rezultat (zmienna B) powinna być typu UINT32. Zwróć uwagę czy rezultaty mnożenia są poprawne! W sprawozdaniu zanotuj liczbę bajtów potrzebną do zapamiętania jednej liczby typu double oraz jednej liczby typu UINT32 (wskazówka – skorzystaj z polecenie whos).

R1 = 3×3 uint32 matrix

0 0 0 0 0 0 1 0 0

B = R1 * A

 $B = 3 \times 3$ uint32 matrix

0 0 0 0 0 0 100 0 0

whos

Name	Size	Bytes	Class	Attributes
Α	1x1	4	uint32	
В	3x3	36	uint32	
B_fft	51x1	408	double	
B_max	1x1	8	double	
B_ntrend	51x1	408	double	
B_trend	51x1	408	double	
Chemia	5x1	40	double	
D	2x2	512	cell	
D1	3x3	72	double	
Fizyka	5x1	40	double	
G	295x1	2360	double	
G_fft	51x1	408	double	
G_max	1x1	8	double	
G_ntrend	51x1	408	double	
G_trend	51x1	408	double	
Imie	5x1	578	cell	
Matematyka	5x1	40	double	
R	3x3	72	double	
R1	3x3	36	uint32	
R_fft	51x1	408	double	
R_max	1x1	8	double	
R_ntrend	51x1	408	double	
R_trend	51x1	408	double	
T	5x3	2133	table	
calka	1x1	8	double	
daneP	295x3	7080	double	
end_idx	1x1	8	double	
f	1x1	8	double	
f1	1x1	32	function_handle	
fq	1x51	408	double	
i	1x1	8	double	
idx	1x1	8	double	
index1	1x1	8	double	
index2	1x1	8	double	
index3	1x1	8	double	
m	1x1	8	double	
okres	1x51	408	double	
r1	5x1	40	double	
r2	5x1	40	double	
r3	5x1	40	double	
r_max	1x1	8	double	
str1	1x1	342	string	
str2	1x14	28	char	
str3	2x14	56	char	
txt	1x1	166	string	
txt1	1x1	166	string	
txt2	1x1	166	string	

Potrzebna ilość bajtów do zapamiętania jednej liczby typu:

Double: 8

Uint32: 4

2.2 B)

Utwórz dwie tablice znakowe zawierające teksty: "ćwiczenie 2" oraz "laboratorium 1". Połącz te dwie tablice tak aby tablica wynikowa zawierała tekst jak poniżej (wskazówka – skorzystaj z polecenia strvcat)

```
str3 =

ćwiczenie 2
laboratorium 1

str1 = 'ćwiczenie 2';
str2 = 'laboratorium 1';
str3 = strvcat(str1, str2)

str3 = 2×14 char array
   'ćwiczenie 2 '
   'laboratorium 1'
```

2.3 C)

Utwórz tablicę znakową str1 zawierającą tekst "Krasnoludy przeszły przez rzekę w bród, nie zamoczywszy swych bród i do tego zmywszy ze swych nóg brud". Znajdź indeksy słów zaczynających się na literę "b", kończących na literę "d" i nie zawierających litery "u". Wskazówka – skorzystaj z wyrażeń regularnych – dokumentacja do polecenia regexp.

```
str1 = "Krasnoludy przeszły przez rzekę w bród, nie zamoczywszy swych bród i do tego zmywszy
str1 =
"Krasnoludy przeszły przez rzekę w bród, nie zamoczywszy swych bród i do tego zmywszy ze swych nóg brud"

warunki = 'b[^(?!u).*$]+d';
[idx1, idx2] = regexp(str1, warunki)

idx1 = 35
idx2 = 70
```

2.4 D)

Utwórz tablicę komórkową o rozmiarze 2x2 zawierającą następujące dane jak na rysunku poniżej. Wybierz z tablicy komórkowej, tablicę liczb pseudolosowych znajdującą się w komórce 2-wiersz, 1- kolumna, dodaj do niej wartość 100, a rezultat zapisz w to samo miejsce do tablicy komórkowej.

Liczba 123	Tekst 'abcd'
Tablica liczb	Liczba 0.1
losowych 3x3	

```
D = {123 'abcd'; rand(3) 0.1}
```

```
D = 2 \times 2 \text{ cell}
```

	1	2
1	123	'abcd'
2	[0.1233,	0.1000

```
D{2, 1} = D{2, 1} + 100;
D
```

_			
D	_	ついつ	C O I I
1,	_	フェフ	

	1	2	
1	123	'abcd'	
2	[100.123	0.1000	

2.5 E)

Oblicz całkę oznaczoną w przedziale \in (-2,2) z funkcji () = 2 - 2 · + 4 i narysuj jej wykres dla tego przedziału. Wskazówka – zdefiniuj funkcję przy pomocy uchwytu do funkcji, wykorzystaj funkcję quad oraz fplot.

```
f1 = @(x) x.^2 - 2*x + 4;
calka = integral(f1, -2, 2)
```

```
calka = 21.3333
```

```
y = zeros(41, 1);
x = -2:0.1:2;

for i = 1:1:41
     y(i) = integral(f1, -2, x(i));
end
y;

plot(x, y)
xlabel("x")
ylabel("y")
```


2.6 F)

Utwórz typ danych tabelaryczny (table) zawierający dane jak na rysunku poniżej. Wyeksportuj dane z tabeli do pliku CSV. Wskazówka – sprawdź w systemie pomocy jak definiować nazwy kolumn oraz wierszy. Liczby do tabeli wygeneruj losowo. Skorzystaj z polecenia writetable

т =

	Matematyka	Fizyka	Chemia
Rafal	36	65	30
Monika	83	74	75
Paweł	2	65	19
Elżbieta	5	46	69
Mirek	17	55	19

```
r1 = randi(100,5, 1);
r2 = randi(100,5, 1);
r3 = randi(100,5, 1);

T = table([r1],[r2], [r3],'VariableNames',{'Matematyka', 'Fizyka','Chemia'}, 'RowNames', {'Rafa'
```

$T = 5 \times 3$ table

	Matematyka	Fizyka	Chemia
1 Rafał	34	39	95

	Matematyka	Fizyka	Chemia
2 Monika	91	25	96
3 Paweł	37	41	58
4 Elżbieta	12	10	6
5 Mirek	79	14	24

writetable