QF Group Theory CC2022 By Zaiku Group

Lecture 04

Delivered by Bambordé Baldé

Friday, 8/04/2022

Session Agenda

- 1. Learning Journey Timeline
- 2. Course Approach Overview
- 3. Mini Schools Series Idea

Pre-session Comments

- 1. Inverse Semigroup
- 2. Identity Element
- 3. Identity Element Extension
- 4. Monoid Structure
- 5. Monoid Homomorphism Kernel

Main Session

Learning Journey Timeline

We're here!

Applied QF Initiatives

Join a meetup organized by Washington DC/Warsaw/Toronto Quantum Computing Meetups

Exposing Abstract Mathematical Structures to Aspiring Quantum Pros

May 21, 13:00 - 15:00 EDT

Speaker: BAMBORDE BALDE CO-FOUNDER of Zaiku Group

Moderator:
PAWEŁ GORA
CEO
Quantum Al Foundation

Inverse Semigroup

Definition 1.0

Let (S,*) be a semigroup and $x \in S$. Then x is said to be invertible if there exists some $\tilde{x} \in S$ such that $x * \tilde{x} * x = x$ and $\tilde{x} * x * \tilde{x} = \tilde{x}$.

• The element \tilde{x} is as you can guess is called an inverse for x!

Definition 1.1

A semigroup (S,*) is called 'inverse semigroup' if for every $x \in S$ there is a unique $\tilde{x} \in S$ such that $x*\tilde{x}*x=x$ and $\tilde{x}*x*\tilde{x}=\tilde{x}$.

• When dealing with inverse semigroups, the notation x^{-1} is used to denote the inverse of $x \in S$ instead of \tilde{x} !

Homework Challenge 1

Let $(S_1, *_1)$ and $(S_2, *_2)$ be inverse semigroups. Now suppose that a map $f: S_1 \longrightarrow S_2$ is a homomorphism.

• Is it true that $f(x^{-1}) \in S_2$ is the inverse of $f(x) \in S_2$ for all $x \in S_1$?

Semigroup Identity Element

Definition 1.2

Let (S, *) be a semigroup. An element $e \in S$ is called:

- **1** A left identity if e * x = x for all $x \in S$.
- 2 A right identity if x * e = x for all $x \in S$.
- **3** A two sided identity if e * x = x * e = x for all $x \in S$.
- For our purposes, we are only interested in semigroups with two sided identity elements!

Spoiler alert: A semigroup with a two sided identity is called a monoid!

Homework Challenge 2

Let (S, *) be a semigroup with a two sided identity element $e \in S$.

• Is it true that e is unique i.e. if e_1 and e_2 are two sided elements then $e_1 = e_2$?

Homework Challenge 3

Let $(S_1, *_1)$ and $(S_2, *_2)$ be semigroups with two sided identity elements e_1 and e_2 respectively. Now suppose that a map $f: S_1 \longrightarrow S_2$ is a homomorphism.

• Is it true that $f(e_1) = e_2$?

Identity Element Examples

- Let $(S,*)=(\mathbb{R},\times)$. Then 1 is an identity element right? Is it two sided identity?
- Let \mathbb{R}^* denote the set of nonzero reals i.e \mathbb{R}^* is the set of reals excluding zero. We can construct a binary operation * on \mathbb{R}^* as a*b=|a|b for all $a,b\in\mathbb{R}^*$ where |.| denotes the absolute value of reals.
 - \bullet (\mathbb{R}^* , *) forms a semigroup right?
 - 2 It's clear that 1 is a left identity? What about -1?
 - **3** Does $(\mathbb{R}^*,*)$ contain a right identity?
- Is $(\mathbb{R}^*, *)$ as constructed above an abelian semigroup?

Question: What if a semigroup doesn't have any identity? Can we invent one?!

Adding an Identity to a Semigroup

Definition 1.3

Let (S,*) be a semigroup without an identity. We first define the set $S^1 = S \cup \{1\}$. Then we can construct a binary operation $\hat{*}$ on S^1 as follows:

- \bullet $a \hat{*} b = a * b$ for all $a, b \in S$.
- 2 $x \hat{*} 1 = 1 \hat{*} x = x$ for all $x \in S^1$.
- With $\hat{*}$ define above, $(S^1, \hat{*})$ forms a semigroup structure with a two-sided identity 1.

Monoid Structure

Definition 1.4

A monoid is a triple (M, *, e) such that (M, *) is a semigroup and $e \in M$ is a two-sided identity in the semigroup (M, *).

Question: Is e in a monoid unique i.e. if e and \tilde{e} are two-sided identities then $e = \tilde{e}$?

Definition 1.5

Let $(M, *, \mathbf{e})$ be a monoid and $N \subseteq M$. If $(N, *, \mathbf{e}_N)$ is a monoid then we call it a submonoid.

• Is it true that we must have $e_N = e$?

Homework Challenge 4

Let $(M_1, *_1, \boldsymbol{e}_1)$ and $(M_2, *_2, \boldsymbol{e}_2)$ be monoids. Now let $\phi: M_1 \longrightarrow M_2$ be a homomorphism.

• Is it true that we must have $\phi(e_1) = e_2$?

Monoid Homomorphism Kernel

Definition 1.5

Let $(M_1, *_1, \mathbf{e}_1)$ and $(M_2, *_2, \mathbf{e}_2)$ be monoids. Now let $\phi : M_1 \longrightarrow M_2$ be a homomorphism. The set $\ker(\phi) = \{x \in M_1 \mid \phi(x) = \mathbf{e}_2\}$ is called the kernel of the homomorphism ϕ .

• Obviously $ker(\phi)$ cannot be empty right?

Homework Challenge 5

Let $(M_1, *_1, \mathbf{e}_1)$ and $(M_2, *_2, \mathbf{e}_2)$ be monoids. Now let $\phi : M_1 \longrightarrow M_2$ be a homomorphism.

- Is it true that $ker(\phi)$ is a submonoid of $(M_1, *_1, e_1)$?
- 2 Is it true that ϕ is an isomorphism iff $ker(\phi) = \{e_1\}$?

GitHub: github.com/quantumformalism

YouTube: youtube.com/ZaikuGroup

Discord: discord.gg/SPcmcsXMD2

Twitter: twitter.com/ZaikuGroup

LinkedIn: linkedin.com/company/zaikugroup