Week 6, Lecture 1 + 2

2- Input AND Gate

Truth Table

A (Input 1)	B (Input 2)	X = (A.B)
0	0	0
0	1	0
1	0	0
1	1	1

NOT	Gate
A	A
0	1
,	_

$$C \longrightarrow A+C$$

$$C \longrightarrow Q = B (A+C)$$

Name	AND form	OR form
Identity law	1A = A	0 + A = A
Null law	0A = 0	1 + A = 1
Idempotent law	AA = A	A + A = A
Inverse law	$A\overline{A} = 0$	$A + \overline{A} = 1$
Commutative law	AB = BA	A + B = B + A
Associative law	(AB)C = A(BC)	(A + B) + C = A + (B + C)
Distributive law	A + BC = (A + B)(A + C)	A(B + C) = AB + AC
Absorption law	A(A + B) = A	A + AB = A
De Morgan's law	$\overline{AB} = \overline{A} + \overline{B}$	$\overline{A + B} = \overline{A}\overline{B}$

The Boolean Expression: A.(A + B)

Multiplying out the brackets gives us:

	A.(A+B)	Start
multiply:	A.A + A.B	Distributive Law
but:	A.A = A	Idempotent Law
then:	A + A.B	Reduction
thus:	A.(1 + B)	Annulment Law
equals to:	А	Absorption Law

	(A + B)(A + C)	Start
multiply:	A.A + A.C + A.B + B.C	Distributive law
but:	A.A = A	Idempotent Law
then:	A + A.C + A.B + B.C	Reduction
however:	A + A.C = A	Absorption Law
thus:	A + A.B + B.C	Distributive Law
again:	A + A.B = A	Absorption Law
thus:	A + B.C	Result

AB(BC+AC)		Start
multiply	A.B.B.C + A.B.A.C	Distributive Law
again:	A.A = A	Idempotent Law
then:	A.B.B.C + A.B.C	Reduction
but:	$B.\overline{B} = 0$	Complement Law
so:	A.O.C + A.B.C	Reduction
becomes:	0 + A.B.C	Reduction
as:	0 + A.B.C = A.B.C	Identity Law
thus:	ABC	Result

The truth table that shows the verification of De Morgan's First law is given as follows:

А	В	A'	B'	(A.B)′	A'+B'
0	0	1	1	1	1
0	1	1	0	1	1
1	0	0	1	1	1
1	1	0	0	0	0

The last two columns show that (A.B)' = A' + B'.

The following truth table shows the proof for De Morgan's second law.

А	В	A'	B'	(A+B)'	A'. B'
0	0	1	1	1	1
0	1	1	0	0	0
1	0	0	1	0	0
1	1	0	0	0	0

The last two columns show that $(A+B)' = A' \cdot B'$.

Solution: Given expression A(B+D).

А	В	D	B+D	A(B+D)
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	1	0
1	0	0	0	0
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

