NOM : ...... Prénom : .....



## Partiel Electronique

Les calculatrices et les documents ne sont pas autorisés. Le barème est donné à titre indicatif.

Réponses exclusivement sur le sujet. Si vous manquez de place, vous pouvez utiliser le verso des pages.

Exercice 1. Questions de cours (8 points – pas de points négatifs pour le QCM)

Choisissez la bonne réponse :

- Q1. Pour mesurer la tension aux bornes d'un générateur, on met le voltmètre :
  - a. En série avant le générateur
  - b. En série après le générateur
  - c. En parallèle avec le générateur
  - d. On ne peut pas mesurer la tension aux bornes d'un générateur
- **Q2.** Quelle est la résistance vue entre A et B?

a. 
$$\frac{5}{2}R$$

c. 
$$\frac{3}{5}$$
. R

d. 
$$\frac{2}{5}R$$



**Q3.** Soit le circuit ci-contre. Que vaut U?



**Q4.** Quelle est la bonne formule ?

a- 
$$I_1 = 4.I$$

b- 
$$I_1 = \frac{I}{4}$$

c- 
$$I_1 = \frac{3}{4} I$$

d- 
$$I_1 = \frac{3R}{4}I$$



Soit le circuit ci-contre (Q5 à 7) :

- **Q5.** L'intensité du courant *I* est égale à :
  - a.  $\frac{5.E}{6R}$
  - b.  $\frac{2.E}{3R}$

- $\mathsf{C.} \quad \frac{3}{2} \cdot \frac{E}{R}$
- d.  $\frac{3R}{2}$ . E



- c. *E*
- d. -E

- **Q6.** La tension  $U_3$  est égale à :
  - a.  $\frac{E}{2}$
  - b. 3*R*.*E*
- **Q7.** La tension  $U_4$  est égale à :
  - a.  $\frac{2}{3}E$
  - b.  $\frac{3}{2}E$

- c.  $-\frac{2}{3}E$
- d. -E
- ${\bf Q8.} \quad {\bf Soit \ le \ circuit \ ci-contre. \ L'intensit\'e \ du \ courant \ } I_3 \ {\bf est \ \'egale}$

à:

- a.  $\frac{V_0}{4R}$
- b.  $\frac{V_0}{8R}$
- $\mathsf{C.} \quad \frac{1}{5} \cdot \frac{V_0}{R}$
- d.  $I_1 + \frac{V_3}{2R}$





## Equivalences Thévenin/Norton (12 points) Exercice 2.

1. Soient les 2 circuits ci-dessous.





a. Déterminer les expressions de  $\mathcal{I}_N$  et de  $\mathcal{R}_N$  tels que les 2 circuits ci-dessus soient équivalents.

b. En déduire l'expression de l'intensité du courant I' qui traverse R' en fonction de I, R et R'.

2. Soit le circuit ci-contre. Déterminer l'expression de la tension U en fonction de E, I et R. Vous pourrez utiliser les équivalences Thévenin/Norton.

