# ECE 322 Assignment 2

# Arun Woosaree XXXXXXX

October 27, 2019

### 1 Credit Union

| Conditions            |   |   |   |              |
|-----------------------|---|---|---|--------------|
| city dweller          | 1 | X | 0 | $\mathbf{x}$ |
| male                  | 1 | 1 | 0 | 1            |
| female                | 0 | 0 | 1 | 0            |
| age < 25              | X | 1 | 0 | 0            |
| 25 < age < 65         | X | 0 | 1 | 0            |
| age > 65              | X | 0 | 0 | 1            |
|                       |   |   |   |              |
| Actions               |   |   |   |              |
| Show Product A        | 1 | X | X | X            |
| Show Product B        | X | 1 | X | X            |
| Show Product C        | X | X | 1 | X            |
| Do Not Show Product D | 0 | 0 | 0 | 1            |

Note: Do Not Show Product D=0 means that Product D will be shown.

#### a) Maximal number of rules

Given there are 2 possibilities for gender (in this problem), 2 possibilities for city dweller, and 3 possibilities for age, the maximal number of rules is  $2 \times 2 \times 3 = 12$ .

#### b) Simplified table

The table above is already simplified, so here are the resulting test cases: (Please refer to the table above, which is the simplified table).

| Test | city dweller | $_{\mathrm{male}}$ | age | Expected              |
|------|--------------|--------------------|-----|-----------------------|
| 1    | 1            | male               | 24  | Show Product A        |
| 2    | 1            | $_{\mathrm{male}}$ | 24  | Show Product B        |
| 3    | 0            | female             | 26  | Show Product C        |
| 4    | 1            | $_{\mathrm{male}}$ | 66  | Do Not Show Product D |

 $\mathbf{2}$ 

For the given subdomain, the following lines form the boundaries:

- $y = 5, 0 \le x \le 7$
- $x = 0, 0 \le y \le 5$
- $y = -x, 0 \le x \le 1$
- $y = x 2, 1 \le x \le 7$

#### a) EPC Strategy

From the boundary lines, we see that the maximum value that x can have is 7, its minimum is -1, and that the maximum value that y can have is 5 while its minimum value is 0. Using the EPC testing strategy,  $4^2 + 1 = 17$  test cases are expected. The extreme points chosen are (7, 7.1, 0, -0.1) for x, and (5, 5.1, 0, -0.1) for y. For the additional test case within the boundary, (x = 1, y = 1) is chosen. The full list of suggested test cases is found below:

| test id | X    | У    | Expected      |
|---------|------|------|---------------|
| 1       | 7    | 5    | In domain     |
| 2       | 7    | 5.1  | Out of domain |
| 3       | 7    | -1   | Out of domain |
| 4       | 7    | -0.1 | Out of domain |
| 5       | 7.1  | 5    | Out of domain |
| 6       | 7.1  | 5.1  | Out of domain |
| 7       | 7.1  | -1   | Out of domain |
| 8       | 7.1  | -0.1 | Out of domain |
| 9       | 0    | 5    | In domain     |
| 10      | 0    | 5.1  | Out of domain |
| 11      | 0    | -1   | Out of domain |
| 12      | 0    | -0.1 | Out of domain |
| 13      | -0.1 | 5    | Out of domain |
| 14      | -0.1 | 5.1  | Out of domain |
| 15      | -0.1 | -1   | Out of domain |
| 16      | -0.1 | -0.1 | Out of domain |
| 17      | 1    | 1    | In domain     |

#### b) Weak n x 1 Strategy

Given that there are 4 boundaries, we expect 4(2+1)+1=13 test cases. The dimensionality is 2, so 2 points are chosen on each boundary, as well as one additional point just outside of each boundary. The last test case is one point inside the boundaries. The full list of suggested test cases is found below:

| test id | description                                 | x    | У    | Expected          |
|---------|---------------------------------------------|------|------|-------------------|
| 1       | on $y = 5, 0 \le x \le 7$ boundary          | 2    | 5    | In domain         |
| 2       | on $y = 5, 0 \le x \le 7$ boundary          | 4    | 5    | In domain         |
| 3       | outside $y = 5, 0 \le x \le 7$ boundary     | 3    | 5.1  | Outside of domain |
| 4       | on $x = 0, 0 \le y \le 5$ boundary          | 0    | 2    | In domain         |
| 5       | on $x = 0, 0 \le y \le 5$ boundary          | 0    | 4    | In domain         |
| 6       | outside $x = 0, 0 \le y \le 5$ boundary     | -0.1 | 3    | Outside of domain |
| 7       | on $y = -x, 0 \le x \le 1$ boundary         | 0.3  | -0.3 | In domain         |
| 8       | on $y = -x, 0 \le x \le 1$ boundary         | 0.7  | -0.7 | In domain         |
| 9       | outside $y = -x, 0 \le x \le 1$ boundary    | 0.5  | -0.6 | Outside of domain |
| 10      | on $y = x - 2, 1 \le x \le 7$ boundary      | 3    | 1    | In domain         |
| 11      | on $y = x - 2, 1 \le x \le 7$ boundary      | 5    | 3    | In domain         |
| 12      | outside $y = x - 2, 1 \le x \le 7$ boundary | 4    | 1.9  | Outside of domain |
| 13      | Inside the boundaries                       | 1    | 1    | In domain         |

# 3 Cause-Effect Graph

From the following decision table, the cause effect graph below is generated: The cause effect graph can be simplified by choosing the intermediate nodes differently.

| Conditions         |              |              |              |              |   |              |   |              |              |              |   |
|--------------------|--------------|--------------|--------------|--------------|---|--------------|---|--------------|--------------|--------------|---|
| C1: $a < b + c$ ?  | 0            | 1            | 1            | 1            | 1 | 1            | 1 | 1            | 1            | 1            | 1 |
| C2: $b < a + c$ ?  | X            | 0            | 1            | 1            | 1 | 1            | 1 | 1            | 1            | 1            | 1 |
| C3: $c < a + b$ ?  | X            | X            | 0            | 1            | 1 | 1            | 1 | 1            | 1            | 1            | 1 |
| C4: $a = b$ ?      | X            | X            | X            | 1            | 1 | 1            | 1 | 0            | 0            | 0            | 0 |
| C5: $a = c$ ?      | X            | $\mathbf{x}$ | $\mathbf{x}$ | 1            | 1 | 0            | 0 | 1            | 1            | 0            | 0 |
| C6: $b = c$ ?      | X            | X            | X            | 1            | 0 | 1            | 0 | 1            | 0            | 1            | 0 |
|                    |              |              |              |              |   |              |   |              |              |              |   |
| Actions            |              |              |              |              |   |              |   |              |              |              |   |
| A1: Not a Triangle | 1            | 1            | 1            | X            | X | X            | X | X            | X            | X            | x |
| A2: Scalene        | $\mathbf{x}$ | $\mathbf{x}$ | $\mathbf{x}$ | $\mathbf{x}$ | X | $\mathbf{x}$ | X | $\mathbf{x}$ | $\mathbf{x}$ | $\mathbf{x}$ | 1 |
| A3: Isosceles      | X            | X            | X            | X            | X | X            | 1 | X            | 1            | 1            | x |
| A3: Equilateral    | X            | X            | X            | 1            | X | X            | X | X            | X            | X            | x |
| A4: Impossible     |              |              |              |              |   |              |   |              |              |              |   |



## 4 Test Cases

The following description table is derived from the cause effect graph (Because of the requires, (C3 = 1, C6 = 0) will never happen)

| Conditions     |              |   |   |   |   |
|----------------|--------------|---|---|---|---|
| C3             | 1            | 0 | 0 | X | 0 |
| C4             | $\mathbf{x}$ | X | 1 | X | 0 |
| C5             | 1            | X | 1 | 0 | X |
| C6             | 1            | 0 | 1 | X | X |
|                |              |   |   |   |   |
| Effects        |              |   |   |   |   |
| $\overline{E}$ | 1            | 0 | 1 | 0 | 0 |

From the decision table above, the following test cases are generated:

| Test | C3 | C4 | C5 | C6 | Expected |
|------|----|----|----|----|----------|
| 1    | 1  | 0  | 1  | 1  | 1        |
| 2    | 0  | 1  | 1  | 0  | 0        |
| 3    | 0  | 1  | 1  | 1  | 1        |
| 4    | 1  | 1  | 0  | 1  | 0        |
| 5    | 0  | 0  | 1  | 1  | 0        |

## 5 Combinatorial Testing

There are  $2 \times 3 \times 3 \times 3 \times 3 \times 2 \times 3 \times 3 = 2916$  total possible combinations to test. Ideally, the orthogonal array should be of size  $2^23^6$ . Using some code, the following mapping is created:

|    | PRINTERS | PLUGINS | BROWSERS | OPERATING SYSTEMS | SERVERS | MONITORS | EMAIL SYSTEMS | SOFTWARE PACKAGES |
|----|----------|---------|----------|-------------------|---------|----------|---------------|-------------------|
| 1  | printer2 | plugin2 | browser3 | os1               | server2 | monitor2 | email1        | software 2        |
| 2  | printer1 | plugin1 | browser1 | os3               | server1 | monitor1 | email2        | software 2        |
| 3  | printer1 | plugin2 | browser1 | os2               | server3 | monitor2 | email3        | software1         |
| 4  | printer2 | plugin1 | browser2 | os2               | server2 | monitor1 | email1        | software3         |
| 5  | printer2 | plugin2 | browser2 | os3               | server3 | monitor2 | email2        | software3         |
| 6  | printer1 | plugin1 | browser3 | os1               | server1 | monitor1 | email3        | software3         |
| 7  | printer2 | plugin2 | browser3 | os2               | server1 | monitor1 | email2        | software1         |
| 8  | printer1 | plugin1 | browser2 | os3               | server2 | monitor2 | email3        | software1         |
| 9  | printer1 | plugin1 | browser3 | os3               | server3 | monitor1 | email1        | software 2        |
| 10 | printer2 | plugin1 | browser1 | os1               | server1 | monitor2 | email1        | software1         |
| 11 | printer2 | plugin1 | browser2 | os2               | server1 | monitor2 | email3        | software 2        |
| 12 | printer1 | plugin1 | browser2 | os1               | server3 | monitor1 | email2        | software3         |
| 13 | printer1 | plugin2 | browser1 | os2               | server2 | monitor2 | email2        | software3         |

resulting in 13 test cases, as opposed to 2916 if we were to test all possible

combinations, a huge improvement ( $\frac{2916-13}{2916} \times 100 \approx 99.55\%$ ) Alternatively, using a standard orthogonal array, the closest fit is  $L_{18}(2^13^7)$ , which would result in 18 test cases and still a huge improvement over testing all possible combinations ( $\approx 99.38\%$ )