Arquitetura de Dispositivos Móveis

2015/2016 - Exame - Duração: 2h

TeSP AM - Arquitetura de Dispositivos Móveis, André Pereira

Nome:	Nº:	
Nota 1: As perguntas assinaladas com CBi são as de competências básicas ("	i " indica o número da	
pergunta). As que estiverem assinaladas com CCi são perguntas de competências complementares.		
Nota 2: Para todas as respostas apresente todos os cálculos efetuados		

Nota 3: É necessário responder acertadamente a pelo menos 4 básicas

PARTE I

- 1. Efetue as seguintes conversões: (CB1)
 - a. 0110.10₂ para decimal (base 10)
 - b. 0x1FC para decimal (base 10)
- 2. **Converta** o valor –273 para uma representação binária, usando 10 *bits*, nas seguintes representações: (CB2)
 - a. Complemento para 1
 - b. Excesso 2ⁿ⁻¹
- 3. **Considere** o seguinte formato para vírgula flutuante, representados com 8 bits:
 - FORMATO1:
 - o bit mais significativo contém o sinal
 - o os 3 bits seguintes formam o expoente (em excesso 2ⁿ⁻¹)
 - os restantes 4 bits formam a mantissa

Para todos os restantes casos, as regras são as mesmas que as da norma IEEE (valor normalizado, desnormalizado, representação do 0, infinito, e NaN).

- a. Converta os valores 10011011₂ e 01100000₂ para decimal. (CB3)
- 4. **Indique** a informação que circula nos barramentos apenas durante a última fase de execução da instrução instrução addl (0x100), %ebx e **indique** quais os registos que foram alterados. Considere que a instrução ocupa 16 *bits* em memória e é executada numa máquina com as seguintes características: (CB4)
 - Arquitetura: 16 bits
 - Ordenação: Little Endian
 - Valores em memória:
 - o **De** 0x100 até 0x103: B1 4C D9 11
 - Valores em registos:
 - 0 % ebx = 0x0010

5. Considere o seguinte excerto de código C, e **complete** o código *assembly* correspondente.(CB5)

```
if(x < y) return 1;
else return 0;
...

if (x < y) return 1;
cmpl %eax, %edx
j__ .L3
movl $1,
jmp .L5
.L3:
movl _, %eax
.L5:
...</pre>
```

6. Considere o seguinte excerto de código *assembly* e os valores para os registos %eax e %ebx, e **indique** qual a instrução a ser executada depois do salto condicional. (CB6)

```
cmpl %eax, %ebx
jge .L1
addl $10, %eax
jmp .FIM
.L1
addl $10, %ebx
.FIM
pushl %eax
--- VALORES DE REGISTOS ---
%eax -> 0x15
%ebx -> 0xC
```

PARTE II

- Considere uma representação de inteiros em Complemento para 2 com 8 bits.
 Indique o resultado, em binário, da seguinte operação: 0xCC + 0x40 (CC1)
- 2. Considere o FORMATO1 apresentado da pergunta 3 (PARTE I), e **indique** (em decimal): (CC2)
 - a. O maior valor positivo finito possível de ser representado
 - b. O valor negativo mais próximo de zero possível de ser representado
- 3. Crie o código assembly da seguinte função: (CC3)

```
----- Código C ----- .func

int func (int x, int y) {

  if(x > y) {

    return x+1;

  }else {

    return y+1;

  }

}
```

ANEXO I - Regras da Norma IEEE

Normalized	±	0 < Exp < Max	Any bit pattern
Denormalized	±	0	Any nonzero bit pattern
Zero	±	0	0
Infinity	±	1111	0
Not a number	±	1 1 1 1	Any nonzero bit pattern
	×	Sign bit	