STP598sta: Spatiotemporal Analysis Homework 4

Name: Your name; NetID: Your ID

Due 11:59pm Sunday November 7, 2020

Question 1

For a moving average process of the form

$$x_t = w_{t-1} + 2w_t + w_{t+1}$$

where w_t are independent with zero means and variance σ_w^2 , determine the autocovariance and autocorrelation functions as a function of lag h = s - t and plot the ACF as a function of h.

Question 2

In this problem, we explore the difference between a random walk and a trend stationary process.

(a) Generate four series that are random walk with drift, $x_t = \delta t + \sum_{i=1}^t w_j$, of length n = 100 with $\delta = 0.01$ and $\sigma_w = 1$. Call the data x_t for $t = 1, \dots, 100$. Fit the regression $x_t = \beta t + w_t$ using least squares. Plot the data, the true mean function (i.e. $\mu_t = 0.01t$) and the fitted line, $\hat{x}_t = \hat{\beta}t$, on the same graph. Hint: The following R code may be useful.

- (b) Generate four series of length n=100 that are linear trend plus noise, say $y_t=0.01t+w_t$, where t and w_t are as in part (a). Fit the regression $y_t=\beta t+w_t$ using least squares. Plot the data, the true mean function (i.e. $\mu_t=0.01t$) and the fitted line, $\hat{y}_t=\hat{\beta}t$, on the same graph.
- (c) Comment (what did you learn from this assignment).

Question 3

For the non-causal stationary process

$$x_t = \phi x_{t-1} + w_t, \quad |\phi| > 1$$

and $w_t \stackrel{iid}{\sim} N(0, \sigma_w^2)$. What is the autocovariance? ACF?

Question 4

For the AR(2) series $x_t + 1.6x_{t-1} + 0.64x_{t-2} = w_t$, use the difference equation (ref pages 19-25 of lecture 8, or the results of Example 3.10 of TSA book) to find the ACF $\rho(h), h = 0, 1, \dots$; solve for the constants in the ACF using the initial conditions. Then plot the ACF values to lag 10 (use ARMAacf as a check on your answers).

Question 5

Generate n = 100 observations from each of the three models: (a) AR(1), (b) MAR(1) and (c) ARMA(1,1) with $\phi = 0.6$ and $\theta = 0.9$. Plot the (sample) ACF and PACF for each of the three models and compare with their theoretic values. What do you find about their tailing behavior?