CSCI-567: Assignment #5

Due on Monday, November 16, 2015

Saket Choudhary 2170058637

aket (Choudhary	CSCI-567:	Assignment #5
correct .	Choudhary	CDC1 001.	1155181111C110 #-0

Contents

Problem 1		ė
Problem 1:	: (a)	3
Problem 3		_

Problem 1

Problem 1: (a)

To find $\nabla_{y_t} L$:

$$\nabla_{y_t} L = \frac{\partial}{\partial y_t} \frac{1}{2} \sum_{i=1}^{N} ()$$

Problem 3

Given:

$$p(x_i) = \begin{cases} \pi + (1 - \pi)e^{-\lambda} & x_i = 0\\ (1 - \pi)\frac{\lambda^{x_i}e^{-\lambda}}{x_i!} & x_i > 0 \end{cases}$$

Alternatively:

$$X_i = \begin{cases} 0 & \text{probability} = \pi + (1 - \pi)e^{-\lambda} \\ x_i & \text{probability} = (1 - \pi)\frac{\lambda^{x_i}e^{-\lambda}}{x_i!} \end{cases}$$

We define a *latent* variable Z_i for all cases where $X_i = 0$. It is latent because when we observed $X_i = 0$ we do not know if it came out of the 'Poisson' distribution or it came out the 'degenerate' distribution (which has a probability of 1 at point 0.). we cannot observe the following. So X_i comes out of a mixture of a degenerate distribution as follows:

$$Z_i = \begin{cases} 1 & X_i \text{ is from the degenerate distribution} \\ 0 & \text{otherwise} \end{cases}$$

$$p(X_i = 0, Z_i = 1) = p(Z_i = 1) \times p(X_i = 0 | Z_i = 1) = \pi \times 1$$
$$P(X_i = 0, Z_i = 0) = p(Z_i = 0) \times p(X_i = 0 | Z_i = 0) = (1 - \pi)e^{-\lambda} \times 1$$

$$L(Complete) = \prod_{x_i=0} \pi^{Z_i} \times ((1-\pi)e^{-\lambda})^{1-Z_i} \times \prod_{x_i>0} (1-\pi)e^{\frac{\lambda_i^x e^{-\lambda}}{x_i!}}$$
(1)

$$\log L = \sum_{I(x_i=0)} z_i \log(\pi) + (1 - z_i) \left(\log(1 - \pi) - \lambda \right) + \sum_{I(x_i>0)} \left(\log(1 - \pi) + x_i \log(\lambda_i) - \lambda - \log(x_i!) \right)$$
(2)

E step:

$$Q(\theta, \theta_0) = \sum_{I(x_i = 0)} E_{P(Z|X)}[z_i] \log(\pi) + (1 - E_{P(Z|X)}[z_i]) (\log(1 - \pi) - \lambda)$$
$$+ \sum_{I(x_i > 0)} (\log(1 - \pi) + x_i \log(\lambda_i) - \lambda - \log(x_i!))$$

$$\begin{split} E_{P(Z|X_i)}[z_i] &= 0 \times p(Z_i = 0|X) + 1 \times p(Z_i = 1|X_i = 0) \\ &= \frac{p(X_i = 0|Z_i = 1)p(Z_i = 1)}{p(X_i = 0|Z_i = 0)p(Z_i = 0) + p(X_i = 0|Z_i = 1)p(Z_i = 1)} \\ &= \frac{\pi}{\pi + (1 - \pi)e^{-\lambda}} \end{split}$$