

91258 / B0385 Natural Language Processing

Lesson 5. Naïve Bayes' Classifier)

Alberto Barrón-Cedeño a.barron@unibo.it

Naïve Bayes

Previously

- One rule-based system for sentiment analysis
- Brief introduction to ML
- Foreword to Naïve Bayes

A. Barrón-Cedeño

DIT, LM SpecTra

125 2 / 27

Naïve Bayes

- 1. Introduced in the IR community by Maron (1961)
- 2. First machine learning approach
- 3. It is a supervised model
- 4. It applies Bayes' theorem with strong (naïve) independence assumptions between the features:
 - they are independent
 - they contribute "the same"

A. Barrón-Cedeño DIT, LM SpecTra 2025 3 / 27 A. Barrón-Cedeño

DIT, LM SpecTra

25 4/2

A conditional probability model

Given an instance represented by a vector

$$\mathbf{x} = (x_1, \dots, x_n) \tag{1}$$

representing *n* independent features $x_1, x_2, x_3, \dots, x_{n-2}, x_{n-1}, x_n$ n could be |V| (the size of the vocabulary)¹

The model assigns to instance x the probability

$$p(C_k \mid \mathbf{x}) = p(C_k \mid x_1, \dots, x_n)$$
 (2)

for each of the k possible outcomes C_k

where $C_k = \{c_1, ..., c_k\}$

From https://en.wikipedia.org/wiki/Naive_Bayes_classifier $|\mathbf{x}|$ is the cardinality of x

Naïve Bayes

Going deeper (assuming a binary classifier)

$$p(C \mid \mathbf{x}) = \frac{p(C) \ p(\mathbf{x} \mid C)}{p(\mathbf{x})}$$
 (5)

 $posterior \ probability = \frac{class \ prior \ probability}{} \times likelihood$ predictor prior probability

 $p(C \mid x)$ Posterior probability of the class given the input²

if p > 0.5:

class = positive

else:

class = negative

DIT, LM SpecTra

Naïve Bayes'

Using Bayes' Theorem

The conditional probability $p(C_k \mid x_1, \dots, x_n)$ can be decomposed as

$$p(C_k \mid \mathbf{x}) = \frac{p(C_k) \ p(\mathbf{x} \mid C_k)}{p(\mathbf{x})}$$
(3)

Which can be read as

$$posterior = \frac{prior \times likelihood}{evidence}$$

But p(x) does not depend on the class (since it is constant):

$$p(C_k \mid \mathbf{x}) \sim p(C_k) \ p(\mathbf{x} \mid C_k) \tag{4}$$

From https://en.wikipedia.org/wiki/Naive_Bayes_classifier

DIT, LM SpecTra

Naïve Bayes

Going deeper (assuming a binary classifier)

$$p(C \mid \mathbf{x}) = \frac{p(C) \ p(\mathbf{x} \mid C)}{p(\mathbf{x})} \tag{6}$$

$$posterior\ probability = \frac{class\ prior\ probability \times likelihood}{predictor\ prior\ probability}$$

p(C) Class prior probability How many positive instances I have seen (during training)

A. Barrón-Cedeño

DIT, LM SpecTra

Going deeper (assuming a binary classifier)

$$p(C \mid \mathbf{x}) = \frac{p(C) \ p(\mathbf{x} \mid C)}{p(\mathbf{x})} \tag{7}$$

class prior probability × likelihood posterior probability = predictor prior probability

 $p(x \mid C)$ Likelihood The probability of the document given the class

Rough Idea

- The value of a particular feature is independent of the value of any other feature, given the class variable
- All features contribute the same to the classification
- Naïve Bayes' tries to find keywords in a set of documents that are predictive of the target (output) variable
- The internal coefficients will try to map tokens to scores
- Same as VADER, but without manually-created rules the machine will *estimate* them!

From (Lane et al., 2019, p. 65-68)

12 / 27

Naïve Bayes

A toy example: Should I ride my bike today?

One single factor: zone (flag)

(here come some dense slides)

DIT, LM SpecTra

Naïve Bayes

A toy example: Should I ride my bike today?

•	Silouid	i fluc fifty	DII
	Data	aset	
	Flag	<i>ở</i>	
		yes	
		yes	
		no	
		yes	
		no	
		no	
		yes	
		no	

Computing all the probabilities by "counting"

Frequency table

Flag	yes	no
~	3	2
	4	0
	2	3

Likelihood table

Flag	yes	no
~	3/9	2/5
	4/9	0/5
	2/9	3/5

A toy example: Should I ride my bike today?

Likelihood table

	<i>₹</i> 0		
Flag	yes	no	
 	3/9 ¹	2/5	
	4/9	0/5	
	2/9	3/5	
	9/14 ²	5/14	

¹
$$p(x \mid c) = p(| yes) = 3/9 = 0.33$$

$$p(c) = p(yes) = 9/14 = 0.64$$

$$p(x) = p(\nearrow) = 5/14 = 0.36$$

What is the Naïve Bayes' probability of yes if ??

$$p(c \mid x) = p(c)p(x \mid c)/p(x)$$

$$p(\text{yes} \mid \sim) = p(\text{yes})p(\sim | \text{yes})/p(\sim)$$

$$p(\text{yes} \mid \sim) = 0.64 * 0.33/0.36$$

$$p(\text{yes} \mid \sim) = 0.50$$
DIT IM Spectra

Adapted from http://www.saedsayad.com/naive_bayesian.htm

Naïve Bayes

A toy example: Should I ride my bike today?

Considering more data

mo	re data				
	Flag	Temp	Humidity	Windy	<i>₹</i>
		hot	high	false	no
		hot	high	true	no
		hot	high	false	yes
		mild	high	false	yes
		cool	normal	false	yes
		cool	normal	true	no
		cool	normal	true	yes
		mild	high	false	no
		cool	normal	false	yes
		mild	normal	false	yes
		mild	normal	true	yes
		mild	high	true	yes
		hot	normal	false	yes
edeñ	0		DIT, LM SpecTra		1

Adapted from http://www.saedsayad.com/naive_bayesian.htm

Naïve Bayes

A toy example: Should I ride my bike today?

If... let's ride 🔗 0!

A. Barrón-Cedeño

IT, LM SpecTra

2025 14 / 27

Naïve Bayes

false

A toy example: Should I ride my bike today?

Frequency tables

Flag	yes	no
~	3	2
	4	0
~	2	3
Humidity	yes	no

	_		
high		3	4
normal		6	1
Temp		yes	no
hot		2	2
mild		4	2
cool		3	1
Windy		yes	no

Likelihood tables

Flag

cool

DIT, LM SpecTra

0		
	3/9	2/5
	4/9	0/5
	2/9	3/5
Humidity	yes	no
high	3/9	4/5

yes no

3/9 1/5

2025 16 / 27

normal	6/9	1/5
Temp	yes	no
hot	2/9	2/5
mild	4/9	2/5

	3/3	1/0	
Windy	yes	no	-
false	6/9	2/5	

Adapted from http://www.saedsayad.com/naive_bayesian.htm

Likelihood tables

Flag	yes	no
~	3/9	2/5
	4/9	0/5
	2/9	3/5
Humidity	yes	no
high	3/9	4/5
normal	6/9	1/5

Temp	yes	no
hot	2/9	2/5
mild	4/9	2/5
cool	3/9	1/5
Windy	yes	no
false	6/9	2/5
true	3/0	3/5

flag temp humidity windy ride cool high true ?

$$p(\text{yes} \mid x) = \frac{p(\text{yes})p(|\mathbf{r}| \text{ yes})p(\text{cool} \mid \text{yes})p(\text{high} \mid \text{yes})p(\text{true} \mid \text{yes})}{p(|\mathbf{r}|)p(\text{cool})p(\text{high})p(\text{true})}$$
$$= \frac{9/14 \times 2/9 \times 3/9 \times 3/9 \times 3/9}{5/14 \times 4/14 \times 7/14 \times 6/14}$$

Adapted from http://www.saedsayad.com/naive_bayesian.htm

Naïve Bayes

Back to the definition...

$$p(c \mid \mathbf{x}) \propto p(c)p(\mathbf{x} \mid c) \tag{11}$$

2025 17 / 27

Remember that \mathbf{x} is a vector

$$p(c \mid x_1 \dots x_n) \propto p(c)p(x_1 \mid c) \times p(x_2 \mid c) \times \dots \times p(x_n \mid c)$$
 (12)

Eq. (12) can be rewritten as

$$p(c \mid x_1 \dots x_n) \propto p(c) \prod_{i=1}^n p(x_i \mid c)$$
 (13)

 A. Barrón-Cedeño
 DIT, LM SpecTra
 2025
 19 / 27

Naïve Bayes

Back to the definition...

$$p(C \mid \mathbf{x}) = \frac{p(C) \ p(\mathbf{x} \mid C)}{p(\mathbf{x})}$$
(8)

The probability p(x) is constant for any given input

$$p(C \mid \mathbf{x}) = \frac{p(C) \ p(\mathbf{x} \mid C)}{p(\mathbf{x})} \tag{9}$$

$$p(c \mid \mathbf{x}) \propto p(c)p(\mathbf{x} \mid c) \tag{10}$$

Parrón Cadaño DIT LM SpacTra 2025 18 / 27

Naïve Bayes

The classification process

Back to the toy example

 $p(\text{yes} \mid x) \propto p(\text{yes})p(\text{im} \mid \text{yes})p(\text{cool} \mid \text{yes})p(\text{high} \mid \text{yes})p(\text{true} \mid \text{yes})$ $\propto 9/14 \times 2/9 \times 3/9 \times 3/9 \times 3/9$ $\propto 0.00529$, which is **not** a probability

Classification: the maximum for all the classes

$$c \propto \arg\max_{c} p(c) \prod_{i=1}^{n} p(x_i \mid c)$$
 (14)

```
compute p(yes|x)
compute p(no|x)
if p(yes|x) > p(no|x):
    yes
else:
A. Barrón-Cedeño

DIT, LM SpecTra

2025 20/27
```

Classification process

$$p(C \mid \mathbf{x}) = \frac{p(C) \ p(\mathbf{x} \mid C)}{p(\mathbf{x})} \tag{15}$$

The probability p(x) is constant for any given input!

$$p(C \mid \mathbf{x}) = \frac{p(C) \ p(\mathbf{x} \mid C)}{p(\mathbf{x})} \tag{16}$$

Back to the toy example, using Eq. (16)...

$$p(\text{yes} \mid x) = p(\text{yes})p(\text{rainy} \mid \text{yes})p(\text{cool} \mid \text{yes})p(\text{high} \mid \text{yes})p(\text{true} \mid \text{yes})$$

= $9/14 \times 2/9 \times 3/9 \times 3/9 \times 3/9$

= 0.00529not a probability!

DIT, LM SpecTra

The dataset

We need a bunch of items (documents) with their associated class

kind	examples
binary	{positive, negative}
	{0, 1}
	$\{-1, 1\}$
multiclass	{positive, neutral, negative}
	{0,1,2}

In our case, we need the sentiment:

Training a Machine Learning Model

The dataset

Option 1 Use a corpus created by somebody else

Option 2 Build your own corpus³

- (a) You have/hire experts to do it
- (b) You engage non-experts through gamification
- (c) You hire non-experts through explicit crowdsourcing
- (d) There are many other ways to get annotated data

³A lesson about this is going on now.

DIT, LM SpecTra

Let us go and build a classifier with a corpus built by Hutto and Gilbert $(2014)^4$

If you are following NLP in Action, they instruct you to download and install their software companion:

https://github.com/totalgood/nlpia

⁴http://comp.social.gatech.edu/papers/icwsm14.vader.hutto.pdf

A. Barrón-Ced<u>eño</u>

DIT, LM SpecTra

2025 25 / 2

References

Hutto, C. and E. Gilbert

2014. VADER:A parsimonious rule-based model for sentiment analysis of social media text. In *Eighth International Conference on Weblogs and Social Media (ICWSM-14)*, Ann Arbor, MI.

Lane, H., C. Howard, and H. Hapkem

2019. Natural Language Processing in Action. Shelter Island, NY: Manning Publication Co.

Maron, M.

1961. Automatic indexing: An experimental inquiry. Journal of the ACM, 8:404-417.

DIT, LM SpecTra

What I did on OsX and GNU Linux

I use pipenv⁵

\$ pipenv install --skip-lock nlpia

On Github they explain how to install it with conda or pip if you plan to contribute to the project

</> Let us see it working

⁵https://pipenv.readthedocs.io/en/latest/

A. Barrón-Cedeño DIT, LM SpecTra