Goal: 15 points Total: 22 points

- 1. Prove the perpendicular bisectors of a triangle are concurrent. (1)
- 2. Prove the angle bisectors of a triangle are concurrent. (1)
- 3. Prove the medians of a triangle are concurrent. (2)
- 4. Prove the altitudes of a triangle are concurrent. (2)
- 5. Prove that the orthocenter, centroid, and the circumcenter of a triangle are collinear. $(\star 4)$
- 6. Consider $\triangle ABC$ with point D on BC. Let M,N be the circumcenters of $\triangle ABD$ and $\triangle ACD$, respectively. Let the circumcircles of $\triangle ACD$ and $\triangle MND$ intersect at $H \neq D$. Prove A, H, M are collinear. (\star 6)
- 7. In $\triangle ABC$ lines CE and AD are drawn so that $\frac{CD}{DB} = \frac{3}{1}$ and $\frac{AE}{EB} = \frac{3}{2}$. Let $r = \frac{CP}{PE}$ where P is the intersection point of CE and AD. Find r. (3)
- 8. Let CH be the altitude of acute $\triangle ABC$. The points X,Z,Y lie on lines CA,CH,CB respectively in such a manner that AX = AC,BY = BX, and HZ = HC. Prove that X,Y, and Z are collinear. (3)