Introduction to the Course

Models for Socio-Environmental Data

Chris Che-Castaldo, Mary B. Collins, and N. Thompson Hobbs

August 14, 2017

- Introductions
- GitHub for course materials
- Daily schedule
- ► Lecture / exercise mix
- Pulling notes just in time
- Individual modeling projects

Readings

Errata: http://warnercnr.colostate.edu/~hooten/papers/
 pdf/Hobbs_Hooten_Bayesian_Models_2015_errata.pdf

Exercise

What do statements made by journalists, attorneys, and scientists have in common? What sets the statements of scientists apart?

What is this course about?

Building models of socio-ecological processes

$$[z_i|\boldsymbol{\theta}_p]$$

and linking those models to data

$$[y_i|z_i, \boldsymbol{\theta}_d]$$

using Bayesian methods.

KEY TO STATISTICAL METHODS

	Design or Purpose	Measurement Variables	Ranked Variables	Attributes
1 variable 1 sample	Examination of a single sample	Procedure for grouping, a frequency distribution, Box 2.1; stem and leaf oblighty, Section 2.5; testing for outliers, Section 13.4 Computing median of frequency distribution, Box 4.1 Computing arthritectic mean: Computing area of evidence of the computing arthritectic mean: Computing and and, Box 6.2 Computing and and, Box 6.2 Computing and and, Box 6.2		Confidence limits for a percentage, Section 17.1 Runs test for randomness in dichotomized data, Box 18.3
	Comparison of a single sample with an expected frequency distribution	Normal expected frequencies, Box 6.1 Goodness of fit tests parameters from an extrinsic hypothesis, Box 17.1; from an intrinsic hypothesis, Box 17.2 Kolmogorov-Smirrov test of goodness of fit, Box 17.3 Graphic "Tests" for normality: large sample sizes, Box 6.3; mall sample sizes transkit test), Box 6.4 Test of sample statics against expected value, Box 7.4		Binomial expected frequencies, Box 5.1 Poisson expected frequencies, Box 5.2 Goodness of fit tests: parameters from an extrinsic hypothesis, Box 17.1; from an intrinsic hypothesis, Box 17.2
1 variable ≥2 samples	Single classification	Single Classification annes. Increal sample sizes, Box 91; equal sample sizes, Box 9.4 Planned comparison of means in anova, Box 9.8; Planned comparison of means in anova, Box 9.8; Increal single degree of freedom comparisons of means, Box 14.10 Unplanned comparison of means. Tenthod, equal sample sizes, Box 9.9; T., GTZ, and Tukey-Narmer, unequal sample sizes, Box 9.10; Schieffe, T., and GTZ, Box 9.1; multiple confidence limits. Section 14.10 Estimate variance components: unequal sample sizes, Box 9.2; equal sample sizes, Box 9.3 Tests of homogeneity of variances, Box 13.1 Tests of capitally of means when variances are heterogeneous, Box 13.2	Kruskal-Wallis test, Box 13.5 Unplanned comparison of mears by a nonparametric STP, Box 17.5	Gest for homogeneity of percentages, Boxes 17.5 and Boxes 17.5 and Boxes 17.5 and Experience of expected frequency distribution, Box 17.4; unplanned analysis of replicated tests of goxdness of fit, Box 17.5.
	Nested classification	Two level nested anova: equal sample sizes. Box 10.1; unequal sample sizes, Box 10.4 Three-level nested anova: equal sample sizes. Box 10.3; unequal sample sizes, Box 10.5		
	Two-way or multi-way classification	Two way anova: with replication, Box 11.1; without replication, Box 11.2; unequal but proportional subclass sizes, Box 11.4; with a using mising observation, Box 12.5. Three way anova, Box 12.1. More than three way classification, Section 12.3 and Box 12.2. Test for nonadditivity in a two way anova. Box 13.4.	Friedman's method for randomized blocks. Box 13.9	Three-way log-linear model, Box 17.9 Randomized blocks for frequency data repeated testing of the same individuals), Box 17.11

Papers using Bayesian analysis in Ecology

Problems poorly suited to traditional approaches

- Multiple sources of data
- Multiple sources of uncertainty
- Inference across scales
- Unobservable quantities
- Multimodal data
- Derived quantities
- Forecasting

SESYNC is dedicated to fostering synthetic, actionable science related to the structure, functioning, and sustainability of socioenvironmental systems.

Goals

- Provide principles based understanding
- Enhance intellectual satisfaction
- Foster collaboration
- Build a foundation for self-teaching

Learning outcomes

Learning outcomes

Learning outcomes

- 1. Explain basic principles of Bayesian inference.
- Diagram and write out mathematically correct posterior and joint distributions for Bayesian models.
- Explain basics of the Markov chain Monte Carlo (MCMC) algorithm.
- 4. Use software for implementing MCMC.
- 5. Develop and implement hierarchical models.
- 6. Evaluate model fit.
- 7. Appreciate possibilities for model selection.
- 8. Understand papers and proposals using Bayesian methods.

Topics

Day 1 - 4

Principles

- Laws of probability
- Distribution theory
- Moment matching
- Bayes' theorem
- Writing hierarchical models

Day 3 - 4

Implementation

- Conjugate priors
 - MCMC
- JAGS

Day 5 - 10

Analysis and inference

- Multi-level regression
- Model checking and selection
- Mixture models
- State-space models
- Spatial models
- Meta analysis

Cross cutting theme


```
model{
    for(i in 1:length(y)){
        mu[i] <- (m*x[i]^a)/(h^a+x[i]^a)
        y[i] ~ dgamma(mu[i]^2/sigma^2,mu[i]/sigma^2)
    }
a ~ dnorm(0,.0001)
m ~ dgamma(.01,.01)
h ~ dgamma(.01,.01)
sigma ~ dunif(0,5)
}</pre>
```

Exercise

Describe how Bayesian analysis differs from other types of statistical analysis.

Some notation

- ▶ y data
- lacktriangledown heta a parameter or other unknown quantity of interest
- lackbox[y| heta] The probability distribution of y conditional on heta
- $lackbox{ } [heta|y]$ The probability distribution of heta conditional on y
- ▶ $P(y|\theta) = p(y|\theta) = [y|\theta] = f(y|\theta) = f(y,\theta)$, different notation that means the same thing.

Confidence envelopes

What do we do in Bayesian modeling?

- ▶ We divide the world into things that are observed (y) and things that unobserved (θ) .
- ▶ The unobserved quantities (θ) are random variables . The data are random variables before they are observed and fixed after they have been observed.
- ▶ We seek to understand the probability distribution of θ using fixed observations, i.e., $[\theta|y]$.
- ▶ Those distributions quantify our uncertainty about θ .

You can understand it.

- Rules of probability
 - Conditioning and independence
 - Law of total probability
 - Factoring joint probabilities
- Distribution theory
- Markov chain Monte Carlo

