title here

Felipe B. Pinto 61387 – MIEQB

11 de dezembro de 2023

Conteúdo

I Estruturas Cristalinas	2	Questão 8	15
Questão 1	3	Questão 9	16
Questão 2	4	Questão 10	17
Questão 3	7	Questão 11	18
Questão 4	10	III Estruturas Cristalinas – Inters-	
Questão 5	11	tícios, Impurezas	19
Questão 6	12	Questão 12	20
II Difração de Raios X	13	Questão 13	21
Questão 7	14	Questão 14	22
		Questão 15	23

I -	Estruturas Cristalinas

Para as estruturas cúbica simples (CS), cúbica de corpo centrado (CCC) e cúbica de faces centradas (CFC), calcule:

Q1 a.

A relação entre o parâmetro de rede a e o ráio atómico

(iii)

CFC

 $a_{\rm CFC} = 4 r \cos(\pi/4) = 2 r \sqrt{2}$

Resposta

$$a_{\rm CS} = 2 \, r$$

(ii) CCC

$$a_{\text{CCC}}^2 + (a_{\text{CCC}}\sqrt{2})^2 = (4r)^2 \implies$$

 $\implies a_{\text{CCC}} = 4r/\sqrt{3}$

Q1 b.

O número de átomos por célula unitária

Resposta

(i) CS

$$n_{CS} = 8 * 1/8 = 1$$

(ii) **CCC**

$$n_{CCC} = 1 + 8 * 1/8 = 2$$

(iii) **CFC**

$$n_{CFC} = 6 * 1/2 + 8 * 1/8 = 4$$

Q1 c.

O espaço ocupado por um átomo em cada estrutura

Resposta

(i) CS

$$\frac{1 * \pi r^3 4/3}{a^3} = \frac{\pi r^3 4/3}{(2r)^3} = \frac{\pi}{6} \approx 52.4 \%$$

(ii) CCC

$$\frac{1 + \pi r^{2} + 76}{a^{3}} = \frac{\pi r^{2} + 76}{(2r)^{3}} = \frac{\pi}{6} \approx 52.4\%$$

$$\frac{\pi r^3 4/3}{a^3} = \frac{\pi r^3 4/3}{(r\sqrt{2^3})^3} =$$

$$= \frac{\pi}{3 * 2^{3*3/2-2}} = \frac{\pi}{3 * 2^{3/2}} \cong$$

$$\cong 18.5\%$$

$$\frac{\pi r^3 4/3}{a^3} = \frac{\pi r^3 4/3}{(4 r/\sqrt{3})^3} = \frac{\pi 4/3}{4^3/3^{3/2}} = \frac{\pi \sqrt{3}}{16} \approx 34.0 \%$$

Calcule o fator de empacotamento atómico das estruturas CS, CCC e CFC

Resposta

(i) CS

$$fea_{CS} = 1 \frac{\pi r^3 4/3}{a^3} \cong$$

 $\cong 52.360\%$

(ii) CCC

$$fea_{CCC} = 2 \frac{\pi r^3 4/3}{a^3} \cong$$

 $\approx 2 * 34.009\% \approx 68.017\%$

(iii) CFC

$$fea_{CFC} = 4 \frac{\pi r^3 4/3}{a^3} \cong$$

 $\cong 4 * 18.512\% \cong 74.048\%$

Q3 a.

A densidade do Al é 2.70 g/cm³. O peso atómico é 26.98 g/mol. Calcular os parâmetros da rede CFC do Al

$$a = \sqrt[3]{Vol} = \sqrt[3]{\frac{m}{\rho}} = \sqrt[3]{\frac{Pa_{\text{Al}}\,\text{g}}{\text{mol}} \frac{\text{mol}}{N_A \, \text{Atomos}}} n_{\text{atomos por celula uni}} \, \text{Atomos}} = \sqrt[3]{\frac{Pa_{\text{Al}}\,n_{\text{atomos por celula uni}}}{\rho}} = \sqrt[3]{\frac{Pa_{\text{Al}}\,n_{\text{atomos por celula uni}}}{\rho \, N_A}} = \sqrt[3]{\frac{4 * 26.98}{2.70 \, (1 \, \text{E}^{-8})^3 * 6.022 athrm} E^{23}} \, \mathring{\text{A}}} \cong 2.049 \, \mathring{\text{A}}$$

Q3 b.

A densidade do Fe $-\alpha$ é 7.87 g/cm 3 . O peso atómico é 55.85 g/mol. Calcular os parâmetros da rede CCC do Fe $-\alpha$

$$a = \sqrt[3]{\frac{2*55.85}{7.87 (1 E^{-8})^3 6.022 a thr m E^{23}}} \cong 2.867 \text{ Å}$$

A densidade do Mg é 1.741 g/cm³. O peso atómico é 24.31 g/mol. Calcular os parâmetros da rede HC do Mg

$$\begin{split} a &= 2\,r; \\ V_{\rm atomo} &= \pi\,r^3\,4/3; \\ V_{\rm atomo}/fea_{HC} &= V_{\rm atomo\ por\ unidade} = \frac{Pa}{\rho} \implies \\ &\implies a = 2\,r = 2\,\left(\sqrt[3]{\frac{V_{\rm atomo}\,3}{4\,\pi}}\right) = 2\,\sqrt[3]{\frac{(V_{\rm atomo\ por\ unidade\ fea_{HC})\,3}}{4\,\pi}} = \\ &= 2\,\sqrt[3]{\frac{\left(\frac{Pa}{\rho\,N_A}\right)\,fea_{HC}\,3}{4\,\pi}} \cong 2\,\sqrt[3]{\frac{\frac{24.31}{1.741\,\mathrm{E}^{-24*6.022athrmE^{23}}\,*\,74.048\,\% *\,3}{4\,\pi}}\,\mathring{\mathrm{A}} \cong \\ &\cong 3.201\,\mathring{\mathrm{A}}; \end{split}$$

$$c = 1.633 a \cong 1.633 * 3.201 \text{ Å} \cong 5.227 \text{ Å}$$

Considere a estrutura cúbica simples:

Q4 a.

Desenhe os planos com os seguintes índices de miller

i: (001)

ii: (110)

iii: (111)

Resposta

(i) (001)

(ii) (110)

(iii) (111)

Q4 b.

Sobre os planos anteriores desenhe, respectivamente, as direções:

i: [2 1 0]

ii: [111]

iii: [10Ī]

Resposta

(i) [210]

(ii) $[\bar{1} \, 1 \, 1]$

(iii) $[10\bar{1}]$

O Pb possui estrutura Cúbica de Faces Centradas (CFC) e o seu parâmetro de rede é $a_{\rm Pb}=4.95\,{\rm \AA}$. Quantos átomos por mm² existem nos planos (100) e (111) do chumbo?

$$\frac{N_{atomos}}{\text{Area}} = \frac{2}{a^2} = \frac{2}{(4.95 \, \text{E}^-7)^2} \cong 8.162 athrm E^{12} \, \text{Atomos/mm}^2;$$

$$\begin{split} \frac{N_{atomos}}{\text{Area}} &= \frac{3*1/2 + 3*1/6}{a\sqrt{2}*a\sqrt{2}\sin(\pi/3)/2} = \frac{4}{(4.95\,\text{E}^{-7})^2\sqrt{3}} \cong \\ &\cong 9.425 athrm E^{12}\,\text{Atomo/mm}^2 \end{split}$$

O cobre tem uma estrutura CFC e um raio atómico de 1.278 Å. Quantas camadas de planos $\{1\,0\,0\}$ existem ao longo da espessura de uma película de $1\,\mu\mathrm{m}$ de espessura. Suponha que os planos $(0\,0\,1)$ são paralelos às superfícies superior e inferior da película.

$$\left| \frac{1 \, \mu \text{m}}{a} \right| = \left| \frac{1 \, \mu \text{m}}{r \, 2^{3/2}} \right| = \left| \frac{1 \, \mu \text{m}}{(1.278 \, \text{E}^{-4}) \, 2^{3/2}} \right| = 2766$$

II -	Difração de Raios X

Sabendo os critérios para determinar a existência de difração por parte de uma família de planos são na estrutura:

Cúbica simples (CS): todos os índices possíveis

Cúbica de Corpo Centrado (CCC): Soma dos índices é par

Cúbica de Faces Centradas (CFC): Indices todos pares ou todos ímpares

Assinale abaixo nas colunas correspondentes as reflexões possíveis para casa caso:

h	k	l	N	CS	CFC	CCC
1	0	0	1	X		
1	1	0	2	X		X
1	1	1	3	X	X	
2	0	0	4	X	X	X
2	1	0	5	X		
2	1	1	6	X		X
2	2	0	8	X	X	X
2	2	1	9	X		
3	0	0	9	X		
3	1	0	10	X		X
3	1	1	11	X	X	
2	2	2	12	X	X	X

Os elementos do Grupo IV-A da tabela periódica apresentam uma estrutura cristalina designada de diamante em que as reflexões ocorrem nos planos nos quais os índices (h k l) são:

i: todos ímpares ou

ii: todos pares e h + k + l = 4n, i.e., a soma é um múltiplo de 4.

Determine as posições 2θ em que deverá obter os primeiros 12 picos de difração do Si ($a_{\rm Si}=5.4309\,{\rm \AA}$), utilizando o comprimento de onda da radiação

•
$$K \alpha_{Mo} = 0.71073 \,\text{Å}$$

•
$$K \alpha_{Cu} = 1.5406 \,\text{Å}$$

$$n \lambda = 2 d_{hkl} \sin(\theta) \implies$$

$$\implies 2\theta = 2 \arcsin \frac{n \lambda}{2 d_{hkl}} = 2 \arcsin \frac{1 * \lambda}{2 (a/\sqrt{h^2 + k^2 + l^2})} =$$

$$= 2 \arcsin \frac{\lambda}{2 a/\sqrt{N}} = 2 \arcsin \frac{\lambda \sqrt{N}}{2 a}$$

h	k	l	N	$2 heta_{ ext{Mo}}$	$2 heta_{ extsf{Cu}}$
1	1	1	3	0.227	0.496
2	2	0	8	0.372	0.826
3	1	1	11	0.438	0.980
4	0	0	16	0.530	1.207
3	3	1	19	0.578	1.333
4	2	2	24	0.653	1.536
3	3	3	27	0.694	1.657
5	1	1	27	0.694	1.657
4	4	0	32	0.758	1.862
5	3	1	35	0.795	1.991
6	2	0	40	0.853	2.226
5	3	3	43	0.887	2.389

- $r_{\text{Fe}} = 1.24 \,\text{Å}$
- $\lambda K \alpha_{Cu} = 1.54 \text{ Å}$
- $\lambda K \alpha_{Cr} = 2.29 \,\text{Å}$

Q9 a.

Usando a lei de Bragg, calcule os ângulos de difração 2θ para os três primeiros picos do Fe $-\alpha$ (CCC) obtidos com uma ampola de cobre e com uma ampola de crómio.

Q9 b.

Compare os dados obtidos a partir destes cálculos com os valores do espectro do aço ferramenta H13.

Considere uma estrutura cúbica simples. Liste por ordem crescente de densidade atómica os seguintes planos:

 $\cdot \{100\}$ · {2 1 0} · {211} · {221}

· {111} · {110} · {311}

Considere os seguintes ângulos de difração para os primeiros três picos do padrão de difração de raios X de um metal. Utilizou-se radiação monocromática que possui um comprimento de onda de 0.1542 nm.

Ordem dos picos	ângulo de difração
1	38.6
2	55.7
3	70.0
	

Q11 a.

Determinar se esta estrutura cristalina é CFC ou CCC, ou nenhuma delas, justificando a sua escolha.

Q11 b.

Com base na seguinte tabela identifique qual dos metais possui esse padrão de difração

	Estrutura	Raio Atómico
Metal		
	Cristalina	(nm)
Alumínio	CFC	0.1431
Cadmio	HC	0.1490
Crómio	CCC	0.1249
Cobalto	HC	0.1253
Cobre	CFC	0.1278
Ouro	CFC	0.1442
Ferro-a	CCC	0.1241
Chumbo	CFC	0.1750
Molibdénio	CCC	0.1363
Níquel	CFC	0.1246
Platina	CFC	0.1387
Prata	CFC	0.1445
Tântalo	CCC	0.1430
Titânio-a	HC	0.1445
Tungsténio	CCC	0.1371
Zinco	HC	0.1332

III -	Estruturas Cristalinas – Interstícios, Impurezas

Quais são as posições intersticiais de maior volume nas redes CCC e CFC? Calcular o raio máximo dos átomos que podem entrar nessas posições.

	Oct.	Tetr.
CFC	0.414	0.255
CCC	0.155	0.291

Ouestão 13

Calcule o raio do maior interstício da rede do ferro- γ (CFC). O raio atómico do ferro na rede CFC é 0.129 nm e os maiores intrestícios surgem em posições do tipo: (1/2,0,0), (0,1/2,0), (0,0,1/2), etc.

Nos metais de estrutura CFC o escorregamento dá-se em planos do tipo {1 1 1} ao longo de direções <110> paralelas a esses planos. Escreva todas as combinações possíveis de plano e direção de escorregamento para estes metais.

$$\{1,1,1\} \begin{cases} (1,1,1) \\ (\bar{1},1,1), (\bar{1},\bar{1},1), (\bar{1},1,\bar{1}), (\bar{1},\bar{1},\bar{1}) \\ (1,\bar{1},1), (1,\bar{1},\bar{1}) \\ (1,1,\bar{1}) \end{cases} \\ [1,1,0] \begin{cases} [1,1,0], [1,0,1], [0,1,1] \\ [\bar{1},1,0], [\bar{1},\bar{1},0], [1,\bar{1},0] \\ [\bar{1},0,1], [\bar{1},0,\bar{1}], [1,0,\bar{1}] \\ [0,\bar{1},1], [0,\bar{1},\bar{1}], [0,1,\bar{1}] \end{cases}$$

Usando os dados da tabela, compare o grau de solubilidade no estado sólido dos seguintes elementos no cobre: Zn,Pb,Si,Ni,Al e Be.

Elemento	Raio atómico (nm)	Estrutura Cristalina	Eletro- negatividade	Valência
Cobre	0.128	CFC	1.8	+2
Zinco	0.133	HC	1.7	+2
Chumbo	0.175	CFC	1.6	+2,+4
Silício	0.117	Cúbica Diamante	1.8	+4
Níquel	0.125	CFC	1.8	+2
Alumínio	0.143	CFC	1.5	+3
Berílio	0.114	HC	1.5	+2