11.9.3.3

EE23BTECH11065 - prem sagar

Question:

The 5th,8th and 11th terms of a GP are p,q and s respectively .show that

$$q^2 = ps$$

solution:

Given,

 $a_5 = p$

 $a_8 = q$

 $a_{11} = s$

let first term of a GP= a

common ratio of GP=r

we know,

nth term of a $GP(a_n) = a \cdot r^{n-1}$

so 5th term of $GP(a_5) = a \cdot r^4 = p$

8th term of $GP(a_8) = a \cdot r^7 = q$

11th term of $GP(a_{11}) = a \cdot r^{10} = s$

 $a_8 \cdot a_8 = a \cdot r^7 \cdot a \cdot r^7$ $= a^2 \cdot r^{14}$

 $a_5 \cdot a_{11} = a \cdot r^4 \cdot a \cdot r^{10}$ $= a^2 \cdot r^{14}$

 $a_8^2 = a_5 \cdot a_{11}$

therefore,

 $q^2 = p \cdot s$

hence proved

 $q^2 = p \cdot s$

n	value
1	a
2	$a \cdot r$
3	$a \cdot r^2$
4	$a \cdot r^3$
5	$a \cdot r^4$
6	$a \cdot r^5$
7	$a \cdot r^6$
8	$a \cdot r^7$
9	$a \cdot r^8$
10	$a \cdot r^9$
11	$a \cdot r^{10}$

term	value
a_5	p
a_8	q
a_{11}	S

1

so,

 $p = a \cdot r^4$

 $q = a \cdot r^7$

 $s = a \cdot r^{10}$

hence proved

 $q^2 = p \cdot s$