Abitur 2021 Mathematik Infinitesimalrechnung II

Gegeben ist die Funktion f mit $f(x) = \sqrt{x-2} + 1$ und maximalem Definitionsbereich.

Teilaufgabe Teil A 1a (3 BE)

Zeichnen Sie den Graphen von f im Bereich $2 \le x \le 11$ in ein Koordinatensystem.

Teilaufgabe Teil A 1b (3 BE)

Berechnen Sie den Wert des Integrals
$$\int_{2}^{3} f(x) dx$$
.

Geben Sie jeweils den Term einer in $\mathbb R$ definierten Funktion an, die die angegebene Wertemenge W hat.

Teilaufgabe Teil A 2a (2 BE)

$$W =]-\infty;1]$$

Teilaufgabe Teil A 2b (2 BE)

$$W =]3; +\infty[$$

Teilaufgabe Teil A 3a (2 BE)

Betrachtet werden eine in \mathbb{R} definierte ganzrationale Funktion p und der Punkt Q(2|p(2)).

Beschreiben Sie, wie man rechnerisch die Gleichung der Tangente an den Graphen von p im Punkt Q ermitteln kann.

Teilaufgabe Teil A 3b (3 BE)

Gegeben ist eine in $\mathbb R$ definierte Funktion $h:x\mapsto a\,x^2+c$ mit $a,c\in\mathbb R$, deren Graph im Punkt N(1|0) die Tangente mit der Gleichung y=-x+1 besitzt. Bestimmen Sie a und c

Die Abbildung zeigt den Graphen G_f einer in \mathbb{R} definierten Funktion f. G_f ist streng monoton fallend und schneidet die x-Achse im Punkt (1|0).

Betrachtet wird ferner die Funktion g mit $g(x) = \frac{1}{f(x)}$ und maximalem Definitionsbereich D_g .

Teilaufgabe Teil A 4a (2 BE)

Begründen Sie, dass x=1 nicht in D_g enthalten ist, und geben Sie den Funktionswert q(-2) an.

Teilaufgabe Teil A 4b (3 BE)

Ermitteln Sie mithilfe der Abbildung die x-Koordinaten der Schnittpunkte der Graphen von f und g.

Gegeben ist die in $\mathbb R$ definierte Funktion $f:x\mapsto (1-x^2)\cdot e^{-x}.$ Die Abbildung zeigt den Graphen G_f von f.

Teilaufgabe Teil B 1a (2 BE)

Zeigen Sie, dass f genau zwei Nullstellen besitzt.

Teilaufgabe Teil B 1b (4 BE)

Bestimmen Sie rechnerisch die x-Koordinaten der beiden Extrempunkte von G_f .

(zur Kontrolle:
$$f'(x) = (x^2 - 2x - 1) \cdot e^{-x}$$
)

Teilaufgabe Teil B 1c (4 BE)

Ermitteln Sie anhand der Abbildung einen Näherungswert für das Integral $\int_{-1}^{4} f(x) dx$.

Die in $\mathbb R$ definierte Funktion F ist diejenige Stammfunktion von f, deren Graph durch den Punkt T(-1|2) verläuft.

Teilaufgabe Teil B 1d (2 BE)

Begründen Sie mithilfe der Abbildung, dass der Graph von F im Punkt T einen Tiefpunkt besitzt.

Teilaufgabe Teil B 1e (3 BE)

Skizzieren Sie in der Abbildung den Graphen von F. Berücksichtigen Sie dabei insbesondere, dass $F(1) \approx 3,5$ und $\lim_{x \to +\infty} F(x) = 2$ gilt.

Teilaufgabe Teil B 1f (2 BE)

Deuten Sie die Aussage $F(2,5) - F(0) \approx 0$ in Bezug auf G_f geometrisch.

Betrachtet wird nun die Schar der in \mathbb{R} definierten Funktionen $h_k : x \mapsto (1 - k x^2) \cdot e^{-x}$ mit $k \in \mathbb{R}$. Der Graph von h_k wird mit G_k bezeichnet. Für k = 1 ergibt sich die bisher betrachtete Funktion f.

Teilaufgabe Teil B 1g (2 BE)

Geben Sie in Abhängigkeit von k die Anzahl der Nullstellen von h_k an.

Teilaufgabe Teil B 1h (3 BE)

Für einen bestimmten Wert von k besitzt G_k zwei Schnittpunkte mit der x-Achse, die voneinander den Abstand 4 haben. Berechnen Sie diesen Wert.

Teilaufgabe Teil B 1i (2 BE)

Beurteilen Sie, ob es einen Wert von k gibt, sodass G_k und G_f bezüglich der x-Achse symmetrisch zueinander liegen.

Betrachtet wird die in \mathbb{R} definierte Funktion $g: x \mapsto \frac{e^x}{e^x + 1}$. Ihr Graph wird mit G_g bezeichnet.

Teilaufgabe Teil B 2a (5 BE)

Zeigen Sie, dass q streng monoton zunehmend ist und die Wertemenge [0;1] besitzt.

(zur Kontrolle:
$$g'(x) = \frac{e^x}{(e^x + 1)^2}$$
)

Teilaufgabe Teil B 2b (3 BE)

Geben Sie g'(0) an und zeichnen Sie G_g im Bereich $-4 \le x \le 4$ unter Berücksichtigung der bisherigen Ergebnisse und der Tatsache, dass G_g in W (0|g(0)) seinen einzigen Wendepunkt hat, in ein Koordinatensystem ein.

Teilaufgabe Teil B 2c (2 BE)

Der Graph der Funktion g^* geht aus G_g durch Strecken und Verschieben hervor. Die Wertemenge von g^* ist]-1;1[. Geben Sie einen möglichen Funktionsterm für g^* an.

Teilaufgabe Teil B 2d (6 BE)

Es wird das Flächenstück zwischen G_g und der x-Achse im Bereich $-\ln 3 \le x \le b$ mit $b \in \mathbb{R}^+$ betrachtet. Bestimmen Sie den Wert von b so, dass die y-Achse dieses Flächenstück halbiert.

Lösung

Teilaufgabe Teil A 1a (3 BE)

Gegeben ist die Funktion f mit $f(x) = \sqrt{x-2} + 1$ und maximalem Definitionsbereich.

Zeichnen Sie den Graphen von f im Bereich $2 \le x \le 11$ in ein Koordinatensystem.

Lösung zu Teilaufgabe Teil A 1a

Skizze

Teilaufgabe Teil A 1b (3 BE)

Berechnen Sie den Wert des Integrals $\int_{2}^{3} f(x) dx$.

Lösung zu Teilaufgabe Teil A 1b

Bestimmtes Integral

$$\int_{2}^{3} f(x) \, dx = \int_{2}^{3} \left(\sqrt{x - 2} + 1 \right) \, dx$$

© Abiturloesung.de

$$\int_{2}^{3} f(x) \, dx = \int_{2}^{3} \left((x - 2)^{\frac{1}{2}} + 1 \right) \, dx$$

Erläuterung: Rechenregeln für Integrale, Stammfunktion

Benötigte Regeln zur Bildung der Stammfunktion von $(x-2)^{\frac{1}{2}}+1$ (siehe auch Merkregel Mathematik):

$$\int_{a}^{b} [f(x) + g(x)] dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$
$$\int x^{r} dx = \frac{x^{r+1}}{r+1} + C \qquad (r \neq -1)$$

Angewendet auf die Funktion der Aufgabe:

$$\int_{2}^{3} \left((x-2)^{\frac{1}{2}} + 1 \right) dx = \int_{2}^{3} (x-2)^{\frac{1}{2}} dx + \int_{2}^{3} \underbrace{1}_{=x^{0}} dx$$

$$\int_{2}^{3} \left((x-2)^{\frac{1}{2}} + 1 \right) dx = \frac{(x-2)^{\frac{1}{2}+1}}{\frac{1}{2}+1} + \frac{x^{0+1}}{0+1} = \frac{2}{3}(x-2)^{\frac{3}{2}} + x$$

$$\int_{2}^{3} f(x) \, dx = \left[\frac{2}{3} (x - 2)^{\frac{3}{2}} + x \right]_{2}^{3}$$

Erläuterung: Hauptsatz der Differential- und Integralrechnung

Ist F eine Stammfunktion von f, dann ist F' = f und es gilt:

$$\int_{a}^{b} f(x) \, dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

$$\int_{2}^{3} f(x) \, dx = \frac{2}{3} (3-2)^{\frac{3}{2}} + 3 - \frac{2}{3} (2-2)^{\frac{3}{2}} - 2$$
$$\int_{2}^{3} f(x) \, dx = \frac{2}{3} + 3 - 2 = \frac{5}{3}$$

Teilaufgabe Teil A 2a (2 BE)

Geben Sie jeweils den Term einer in $\mathbb R$ definierten Funktion an, die die angegebene Wertemenge W hat.

$$W =]-\infty;1]$$

Lösung zu Teilaufgabe Teil A 2a

Wertemenge einer Funktion

z.B.
$$f(x) = -x^2 + 1$$

Teilaufgabe Teil A 2b (2 BE)

$$W =]3; +\infty[$$

Lösung zu Teilaufgabe Teil A 2b

Wertemenge einer Funktion

z.B.
$$f(x) = e^x + 3$$

Teilaufgabe Teil A 3a (2 BE)

Betrachtet werden eine in \mathbb{R} definierte ganzrationale Funktion p und der Punkt Q(2|p(2)).

Beschreiben Sie, wie man rechnerisch die Gleichung der Tangente an den Graphen von pim Punkt Qermitteln kann.

Lösung zu Teilaufgabe Teil A 3a

Tangentengleichung ermitteln

$$y = p'(2)(x-2) + p(2)$$

Erläuterung: Tangentensteigung

Formel für die Tangentengleichung: $t(x) = (x - x_0) \cdot f'(x_0) + f(x_0)$

Teilaufgabe Teil A 3b (3 BE)

Gegeben ist eine in $\mathbb R$ definierte Funktion $h: x\mapsto a\,x^2+c$ mit $a,c\in\mathbb R$, deren Graph im Punkt N(1|0) die Tangente mit der Gleichung y=-x+1 besitzt. Bestimmen Sie a und c.

Lösung zu Teilaufgabe Teil A 3b

Funktionsgleichung ermitteln

$$h(x) = a x^2 + c$$

$$h'(x) = 2a x$$

N(1|0)

$$y = -x + 1$$

Erläuterung: Tangentensteigung

Die Steigung m der Tangente t an dem Graphen G_f einer Funktion f(x) in einem Punkt $S(x_S|y_S)$ ist gleich dem Wert der ersten Ableitung der Funktion an der Stelle x_S .

$$m = f'(x_S)$$

$$h'(1) = -1 \quad \Rightarrow \quad 2a = -1 \quad \Rightarrow \quad a = -\frac{1}{2}$$

Erläuterung: Punktkoordinaten

Der Graph G_h verläuft durch den Punkt N. Sein Koordinaten müssen die Funktionsgleichung erfüllen.

$$h(1) = 0 \iff -\frac{1}{2} + c = 0 \implies c = \frac{1}{2}$$

Teilaufgabe Teil A 4a (2 BE)

Die Abbildung zeigt den Graphen G_f einer in \mathbb{R} definierten Funktion f. G_f ist streng monoton fallend und schneidet die x-Achse im Punkt (1|0).

Betrachtet wird ferner die Funktion g mit $g(x)=\frac{1}{f(x)}$ und maximalem Definitionsbereich D_g .

Begründen Sie, dass x=1 nicht in D_g enthalten ist, und geben Sie den Funktionswert g(-2) an.

Lösung zu Teilaufgabe Teil A 4a

Eigenschaften einer Funktion

Wegen f(1) = 0 würde bei g(1) im Nenner eine 0 stehen.

$$g(-2) = \frac{1}{f(-2)} = \frac{1}{3}$$

Teilaufgabe Teil A 4b (3 BE)

Ermitteln Sie mithilfe der Abbildung die x-Koordinaten der Schnittpunkte der Graphen von f und q.

Lösung zu Teilaufgabe Teil A 4b

Schnittpunkt zweier Funktionen

Erläuterung:

Aus
$$f(x) = g(x)$$
 und $g(x) = \frac{1}{f(x)}$ folgt:
$$f(x) = \frac{1}{f(x)} \qquad |\cdot f(x)|$$
$$(f(x))^2 = 1 \qquad |\sqrt{}$$

$$\Rightarrow f(x) = \pm 1$$

 $x_1 \approx 0, 6; x_2 \approx 1, 3$

Teilaufgabe Teil B 1a (2 BE)

Gegeben ist die in $\mathbb R$ definierte Funktion $f:x\mapsto (1-x^2)\cdot e^{-x}$. Die Abbildung zeigt den Graphen G_f von f.

Zeigen Sie, dass f genau zwei Nullstellen besitzt.

Lösung zu Teilaufgabe Teil B 1a

Nullstellen einer Funktion

Nullstellen bestimmen: f(x) = 0

Erläuterung: Nullstellen

Der Ansatz, um die Nullstellen (die Schnittpunkte einer Funktion f mit der x-Achse) zu bestimmen, lautet stets:

$$f(x) = 0$$

Die Gleichung muss anschließend nach x aufgelöst werden.

$$0 = \left(1 - x^2\right) \underbrace{\cdot e^{-x}}_{>0}$$

Erläuterung: Produkt gleich Null setzen

Das Produkt zweier Terme a und b ist genau dann gleich Null, wenn mindestens einer der Terme Null ist:

$$a \cdot b = 0 \iff a = 0 \quad \text{und/oder} \quad b = 0$$

Alle Terme werden einzeln untersucht.

Da $e^{-x} > 0$ für alle $x \in \mathbb{R}$, muss nur der Term $1 - x^2$ untersucht werden.

$$1 - x^2 = 0$$
 \Rightarrow $x^2 = 1$ \Rightarrow $x_1 = 1; x_2 = -1$

Teilaufgabe Teil B 1b (4 BE)

Bestimmen Sie rechnerisch die x-Koordinaten der beiden Extrempunkte von G_f .

(zur Kontrolle:
$$f'(x) = (x^2 - 2x - 1) \cdot e^{-x}$$
)

Lösung zu Teilaufgabe Teil B 1b

Lage von Extrempunkten ermitteln

$$f(x) = (1 - x^2) \cdot e^{-x}$$

Erste Ableitung bilden: f'(x)

Erläuterung: Produktregel der Differenzialrechnung, Kettenregel der Differenzialrechnung

Produktregel:

$$f(x) = u(x) \cdot v(x)$$
 \Rightarrow $f'(x) = u'(x) \cdot v(x) + u(x) \cdot v'(x)$

In diesem Fall ist $u(x) = 1 - x^2$ und $v(x) = e^{-x}$.

Kettenregel für Exponentialfunktionen:

$$f(x) = e^{g(x)}$$
 \Rightarrow $f'(x) = e^{g(x)} \cdot g'(x)$

In diesem Fall ist g(x) = -x.

$$f'(x) = -2x \cdot e^{-x} + (1 - x^2) \cdot e^{-x} \cdot (-1)$$

$$f'(x) = -2x \cdot e^{-x} - (1 - x^2) \cdot e^{-x}$$

$$f'(x) = (x^2 - 2x - 1) \cdot e^{-x}$$

Erläuterung: Notwendige Bedingung

Folgende notwendige Bedingung muss für einen Extrempunkt an der Stelle x^E erfüllt sein:

$$f'(x^E) = 0$$
, daher immer der Ansatz: $f'(x) = 0$

Erste Ableitung gleich Null setzen: f'(x) = 0

Erläuterung: Wertebereich der Exponentialfunktion

Graph der Exponentialfunktion e^{-x} :

Die Exponentialfunktion e^{-x} ist auf ganz \mathbb{R} stets positiv.

$$(x^2 - 2x - 1) \cdot \underbrace{e^{-x}}_{>0} = 0$$

Erläuterung: Produkt gleich Null setzen

Das Produkt zweier Terme a und b ist genau dann gleich Null, wenn mindestens einer der Terme Null ist:

$$a \cdot b = 0 \iff a = 0 \quad \text{und/oder} \quad b = 0$$

Alle Terme werden einzeln untersucht.

Da $e^{-x}>0$ für alle $x\in\mathbb{R}\,,$ muss nur der Term x^2-2x-1 untersucht werden.

$$x^2 - 2x - 1 = 0$$

$$\begin{split} x_{1,2} &= \frac{-(-2) \pm \sqrt{(-2)^2 - 4 \cdot 1 \cdot (-1)}}{2 \cdot 1} = \frac{2 \pm \sqrt{8}}{2} = \frac{2 \pm 2\sqrt{2}}{2} = 1 \pm \sqrt{2} \\ x_1^E &= 1 + \sqrt{2} \approx 2, 41; \quad x_2^E = 1 - \sqrt{2} \approx -0, 41 \end{split}$$

Teilaufgabe Teil B 1c (4 BE)

Ermitteln Sie anhand der Abbildung einen Näherungswert für das Integral $\int\limits_{-1}^4 f(x) \ \mathrm{dx}.$

Lösung zu Teilaufgabe Teil B 1c

Bestimmtes Integral

ca. 6 Kästchen oberhalb der x-Achse ca. 4 Kästchen unterhalb der x-Achse

$$\int_{-1}^{4} f(x) dx \approx 6 - 4 = 2 \text{ Kästchen} \approx 0, 5$$

Erläuterung:

Das bestimmte Integral $\int_{-1}^{4} f(x) dx$ entspricht der Differenz (Fläche unterhalb der

x-Achseist negativ) der zwei Flächen die der Graph G_f mit der x-Achse zwischen -1 und 4 einschließt.

Teilaufgabe Teil B 1d (2 BE)

Die in $\mathbb R$ definierte Funktion F ist diejenige Stammfunktion von f, deren Graph durch den Punkt T(-1|2) verläuft.

Begründen Sie mithilfe der Abbildung, dass der Graph von ${\cal F}$ im Punkt ${\cal T}$ einen Tiefpunkt besitzt.

Lösung zu Teilaufgabe Teil B 1d

Stammfunktion

Erläuterung: Stammfunktion

Ist F eine Stammfunktion von f, dann gilt: F' = f

$$F'(x) = f(x)$$

Erläuterung: Zusammenhang Stammfunktion / Funktion

Zusammenhang zwischen F und f:

wof	ist <i>F</i>
oberhalb der x-Achse verläuft	streng monoton steigend
unterhalb der x-Achse verläuft	streng monoton fallend
streng monoton steigt	linksgekrümmt
streng monoton fällt	rechtsgekrümmt

Daraus ergeben sich weitere Zusammenhänge:

f besitzt	F besitzt
eine Nullstelle mit VZW+/ -	Maximum / Hochpunkt
eine Nullstelle mit VZW -/ +	Minimum / Tiefpunkt
doppelte Nullstelle	Terrassenpunkt
Extrema (Min. oder Max.)	Wendepunkt

f hat an der Stelle x = -1 eine Nullstelle mit Vorzeichenwechsel von "-" nach "+".

Teilaufgabe Teil B 1e (3 BE)

Skizzieren Sie in der Abbildung den Graphen von F. Berücksichtigen Sie dabei insbesondere, dass $F(1)\approx 3,5$ und $\lim_{x\to +\infty}F(x)=2$ gilt.

Lösung zu Teilaufgabe Teil B 1e

Graph der Stammfunktion

$$x_1^E=1+\sqrt{2}\approx 2,41; ~~x_2^E=1-\sqrt{2}\approx -0,41 ~~(\text{s. Teilaufgabe Teil B 1b })$$

Teilaufgabe Teil B 1f (2 BE)

Deuten Sie die Aussage $F(2,5) - F(0) \approx 0$ in Bezug auf G_f geometrisch.

Lösung zu Teilaufgabe Teil B 1f

Geometrische Interpretation eines Integrals

Im Bereich [0;2,5] ist die Fläche, die der Graph von f oberhalb der x-Achse mit dieser einschließt, genauso groß wie die Fläche, die er unterhalb der x-Achse mit dieser einschließt.

Anders ausgedrückt: die Flächenbilanz im Bereich [0; 2, 5] ist 0.

Teilaufgabe Teil B 1g (2 BE)

Betrachtet wird nun die Schar der in \mathbb{R} definierten Funktionen $h_k : x \mapsto (1 - k x^2) \cdot e^{-x}$ mit $k \in \mathbb{R}$. Der Graph von h_k wird mit G_k bezeichnet. Für k = 1 ergibt sich die bisher betrachtete Funktion f.

Geben Sie in Abhängigkeit von k die Anzahl der Nullstellen von h_k an.

Lösung zu Teilaufgabe Teil B 1g

Nullstellen einer Funktion

$$h_k(x) = \left(1 - k x^2\right) \cdot e^{-x}$$

Erläuterung: Nullstellen

Der Ansatz, um die Nullstellen (die Schnittpunkte einer Funktion f mit der x-Achse) zu bestimmen, lautet stets:

$$f(x) = 0$$

Die Gleichung muss anschließend nach \boldsymbol{x} aufgelöst werden.

$$h_k(x) = 0$$

Erläuterung: Wertebereich der Exponentialfunktion

Graph der Exponentialfunktion e^{-x} :

Die Exponentialfunktion e^{-x} ist auf ganz \mathbb{R} stets positiv.

$$(1 - k x^2) \cdot \underbrace{e^{-x}}_{>0} = 0$$

Erläuterung: Produkt gleich Null setzen

Das Produkt zweier Terme a und b ist genau dann gleich Null, wenn mindestens einer der Terme Null ist:

$$a \cdot b = 0 \iff a = 0 \quad \text{und/oder} \quad b = 0$$

Alle Terme werden einzeln untersucht.

Da $e^{-x} > 0$ für alle $x \in \mathbb{R}$, muss nur der Term $1 - k x^2$ untersucht werden.

$$1 - k x^2 = 0$$

$$x^2 = \frac{1}{k}$$

$$k > 0$$
: 2 Nullstellen $x_{1,2} = \pm \sqrt{\frac{1}{k}}$

k < 0: keine Nullstellen

Teilaufgabe Teil B 1h (3 BE)

Für einen bestimmten Wert von k besitzt G_k zwei Schnittpunkte mit der x-Achse, die voneinander den Abstand 4 haben. Berechnen Sie diesen Wert.

Lösung zu Teilaufgabe Teil B 1h

Nullstellen einer Funktion

$$1-k\,x^2=0 \quad \Rightarrow \quad x_{1,2}=\pm\sqrt{\frac{1}{k}} \qquad \quad {
m s. \ Teilaufgabe \ Teil \ B \ 1g}$$

$$\sqrt{\frac{1}{k}} = -\sqrt{\frac{1}{k}} + 4 \qquad | +\sqrt{\frac{1}{k}}$$

$$2 \cdot \sqrt{\frac{1}{k}} = 4$$

$$\sqrt{\frac{1}{k}} = 2 \qquad |^2$$

$$\frac{1}{k} = 4$$

$$k = \frac{1}{4} = 0,25$$

Teilaufgabe Teil B 1i (2 BE)

Beurteilen Sie, ob es einen Wert von k gibt, sodass G_k und G_f bezüglich der x-Achse symmetrisch zueinander liegen.

Lösung zu Teilaufgabe Teil B 1i

Symmetrieverhalten einer Funktion

$$f(0) = 1$$

$$h_k(0) = 1 \neq -1$$

es gibt kein solches k

Teilaufgabe Teil B 2a (5 BE)

Betrachtet wird die in \mathbb{R} definierte Funktion $g: x \mapsto \frac{e^x}{e^x + 1}$. Ihr Graph wird mit G_g bezeichnet.

Zeigen Sie, dass g streng monoton zunehmend ist und die Wertemenge]0;1[besitzt.

(zur Kontrolle:
$$g'(x) = \frac{e^x}{(e^x + 1)^2}$$
)

Lösung zu Teilaufgabe Teil B 2a

Monotonieverhalten einer Funktion

$$g(x) = \frac{e^x}{e^x + 1}$$

Erste Ableitung bilden: f'(x)

Erläuterung: Quotientenregel der Differenzialrechnung

Quotientenregel:

$$f(x) = \frac{u(x)}{v(x)} \quad \Rightarrow \quad f'(x) = \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{\left[v(x)\right]^2}$$

 $u(x) = e^x$ und $v(x) = e^x + 1$.

Dann ist $u'(x) = e^x$ und $v'(x) = e^x$.

Erinnerung: die Ableitung der Exponentialfunktion e^x ist gleich der Funktion selbst.

$$g'(x) = \frac{e^x \cdot (e^x + 1) - e^x \cdot e^x}{(e^x + 1)^2}$$

$$g'(x) = \frac{e^x \cdot (e^x + 1 - e^x)}{(e^x + 1)^2}$$
$$g'(x) = \frac{e^x}{(e^x + 1)^2}$$

$$g'(x) = \frac{e^x}{(e^x + 1)^2}$$

Vorzeichen der ersten Ableitung f'(x) untersuchen:

Erläuterung: Wertebereich der Exponentialfunktion

Die Exponentialfunktion e^x ist auf ganz \mathbb{R} stets positiv.

$$g'(x) = \underbrace{\frac{e^x}{e^x}}_{x} > 0 \quad \text{für} \quad x \in \mathbb{R}$$

Erläuterung: Monotonieverhalten einer Funktion

Für stetige Funktionen besteht eine Beziehung zwischen Monotonie und Ableitung, da die Ableitung die Steigung der Funktion angibt.

Es gilt:

Ist f'(x) > 0 in einem Intervall a; b[, so ist G_f für $x \in [a; b]$ streng monoton steigend.

Ist f'(x) < 0 in einem Intervall |a;b|, so ist G_f für $x \in [a;b]$ streng monoton fallend.

 \Rightarrow streng monoton steigend

Verhalten der Funktion an den Rändern des Definitionsbereichs

$$\lim_{x \to -\infty} \underbrace{\frac{e^x}{e^x} + 1}_{\to 1} = 0$$

Erläuterung: Wertebereich der Exponentialfunktion

$$\underset{x \to -\infty}{\lim} e^x = 0$$

$$\lim_{x\to\infty}\underbrace{\frac{\overset{\rightarrow\infty}{e^x}}{\overset{\rightarrow\infty}{e^x+1}}}_{x\to\infty}=\lim_{x\to\infty}\frac{e^x}{e^x\cdot\left(1+\frac{1}{e^x}\right)}=\lim_{x\to\infty}\frac{1}{1+\underbrace{e^{-x}}_{\to0}}=1$$

Erläuterung: Exponentialfunktion

Graph der Exponentialfunktion e^{-x} :

$$\underset{x\to\infty}{\lim}e^{-x}=0$$

Teilaufgabe Teil B 2b (3 BE)

Geben Sie g'(0) an und zeichnen Sie G_g im Bereich $-4 \le x \le 4$ unter Berücksichtigung der bisherigen Ergebnisse und der Tatsache, dass G_g in W (0|g(0)) seinen einzigen Wendepunkt hat, in ein Koordinatensystem ein.

Lösung zu Teilaufgabe Teil B 2b

Skizze

$$g(x) = \frac{e^x}{e^x + 1}$$

$$g'(x) = \frac{e^x}{(e^x + 1)^2}$$

$$g'(0) = \frac{e^0}{(e^0 + 1)^2} = \frac{1}{2^2} = \frac{1}{4}$$

$$g(0) = \frac{e^0}{e^0 + 1} = \frac{1}{2}$$

$$W(0|0, 5)$$

Teilaufgabe Teil B 2c (2 BE)

Der Graph der Funktion g^* geht aus G_g durch Strecken und Verschieben hervor. Die Wertemenge von q^* ist]-1;1[. Geben Sie einen möglichen Funktionsterm für q^* an.

Lösung zu Teilaufgabe Teil B 2c

$Verschiebung\ von\ Funktionsgraphen$

$$g^*(x) = 2 \cdot \frac{e^x}{e^x + 1} - 1$$

Teilaufgabe Teil B 2d (6 BE)

Es wird das Flächenstück zwischen G_g und der x-Achse im Bereich $-\ln 3 \le x \le b$ mit $b \in \mathbb{R}^+$ betrachtet. Bestimmen Sie den Wert von b so, dass die y-Achse dieses Flächenstück halbiert.

Lösung zu Teilaufgabe Teil B 2d

Flächenberechnung

Flächeninhalt bis zur y-Achse:

Erläuterung: Bestimmtes Integral

Die Fläche die G_g mit der x-Achse zwischen $-\ln 3$ und 0 einschließt, ist gegeben durch das bestimmte Integral:

$$A = \int_{-\ln 3}^{0} \frac{e^x}{e^x + 1} \, \mathrm{d}x$$

$$A = \int_{-\ln 3}^{0} \frac{e^x}{e^x + 1} \, \mathrm{dx}$$

Erläuterung: Logarithmisches Integrieren

Ist g eine Funktion der Form $g(x) = \frac{h'(x)}{h(x)}$, so gilt:

$$\int g(x) \, \mathrm{dx} = \ln|h(x)|$$

Hier ist $h(x) = e^x + 1$ und $h'(x) = e^x$ (Erinnerung: die Ableitung der Exponentialfunktion e^x ist die Funktion selbst).

$$A = [\ln |e^x + 1|]_{-\ln 3}^0$$

Erläuterung: Hauptsatz der Differential- und Integralrechnung

Ist F eine Stammfunktion von f, dann ist F' = f und es gilt:

$$\int_{a}^{b} f(x) \, dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

$$A = \ln |e^0 + 1| - \ln |e^{-\ln 3} + 1|$$

Erläuterung: Potenzregel

Regel:
$$a^{-r} = \frac{1}{a^r}$$

$$\Rightarrow e^{-\ln 3} = \frac{1}{e^{\ln 3}} = \frac{1}{3}$$

$$\Rightarrow A = \ln 2 - \ln \left(\frac{1}{3} + 1\right) = \ln 2 - \ln \frac{4}{3}$$

$$A = \ln 2 - \ln \frac{4}{3}$$

Erläuterung: Rechnen mit Logarithmen

Logarithmus eines Quotienten / Differenzvon Logarithmen:

$$\ln\left(\frac{a}{b}\right) = \ln a - \ln b$$

$$\ln 2 - \ln \frac{4}{3} = \ln \frac{2}{\frac{4}{3}} = \ln \left(2 \cdot \frac{3}{4} \right) = \ln \frac{3}{2}$$

$$A = \ln \frac{3}{2}$$

Es soll also gelten:
$$\int_{0}^{b} \frac{e^{x}}{e^{x} + 1} dx = \ln \frac{3}{2}$$

$$[\ln |e^x + 1|]_0^b = \ln \frac{3}{2}$$

$$\ln|e^b + 1| - \ln|e^0 + 1| = \ln\frac{3}{2}$$

Erläuterung:

Da $e^b + 1 > 0$ fallen die Betragsstriche aus $\ln |e^b + 1|$ weg.

$$\ln\left(e^{b}+1\right) - \ln 2 = \ln\frac{3}{2}$$
 | + \ln 2

$$\ln\left(e^b + 1\right) = \ln\frac{3}{2} + \ln 2$$

Erläuterung: Rechnen mit Logarithmen

Logarithmus eines Produkts/ Summe von Logarithmen:

$$\ln(a \cdot b) = \ln a + \ln b$$

$$\ln\frac{3}{2} + \ln 2 = \ln\left(\frac{3}{2} \cdot 2\right) = \ln 3$$

$$\ln\left(e^b + 1\right) = \ln 3 \qquad |e$$

$$e^b + 1 = 3$$

$$e^b = 2$$
 $|\ln x|$

$$b = \ln 2$$