COMPUTER ORGANIZATION AND DESIGN

The Hardware/Software Interface

Topic 5

Review of Digital Logic

Digital System Building Blocks

- Multiplexer (MUX)
- Decoder
- Register
- Register File
- Controller (Finite State Machine)
- Tri-State Buffer
- Memory
- ALU

2-to-1-Line Multiplexer (Mux)

Quad 2-to-1-Line MUX

4-to-1-Line Multiplexer

Selects one as output from 4 inputs, needs two select signals $(4 = 2^2)$

3×8 Decoder

Truth Table of 3×8 Decoder

For any input combination, only one of the outputs is turned on

Inputs			Outputs							
Α	В	С	Dο	D1	D2	Dз	D4	D5	D6	D7
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

Register File

A bank of registers

Register File – Read Operation

Reading register file

Register File – Write Operation

Writing register file

Digital Controller

A digital circuit that performs one task at a time

- The Controller can be designed as an FSM, 4 outputs to control 4 tasks
 - In state0, E1 = 1, performing Task 1
 - In state1, E2 = 1, performing Task 2
 - In state2, E3 = 1, performing Task 3
 - In state3, E4 = 1, performing Task 4

State Machine

Finite State Machine

Clocking Methodology for FSM

- Combinational logic transforms data during clock cycles
 - Between clock edges
- Clock cycles should be
 - Long enough to allow combinational logic completes computation
 - Longest delay determines clock period
 - Short enough to ensure acceptable performance and to capture small changes on external inputs

Tri-state Buffers

Typical applications: i/o pad and bus isolation.

Replacement of Big MUXes

- Mux becomes impractical when bigger than 32 channels
 - Replaced with tri-state buffers

Memory – Static RAM (SRAM)

- When Sel = 1, Data is stored and retained in the SRAM cell by the feedback loop
- When Sel = 1, Data can be read out on the same port
- Point A is driven by both the Data transistor and the smaller inverter, but the Data transistor wins because the inverter is implemented using a weak transistor

Memory – SRAM

Typical SRAM block

Memory – SRAM

- Typical memory organization
 - Typical access time: < 20 ns</p>

Memory – Dynamic RAM (DRAM)

- Write: turn on word line, charge capacitor through pass transistor by bit line
- Read: charge bit line halfway between high and low, turn on word line, then sense the voltage change on bit line
 - 1 if voltage increases
 - 0 if voltage decreases

Memory – DRAM

- Typical memory organization
 - Typical access time: 5 10 times more than SRAM

Arithmetic Logic Unit (ALU)

Arithmetic Logic Unit (ALU)

One-bit of ALU

ALU in MIPS

