CS481/CS583: Bioinformatics Algorithms

Can Alkan

EA509

calkan@cs.bilkent.edu.tr

http://www.cs.bilkent.edu.tr/~calkan/teaching/cs481/

EXACT STRING MATCHING

The problem of String Matching

Given a string 't', the problem of string matching deals with finding whether a pattern 'p' occurs in 't' and if 'p' does occur then returning position in 't' where 'p' occurs.

Brute force (O(mn))

```
n \leftarrow |t|
m \leftarrow |p|
i ← 1
while i < n
 if p = t[i, i+m-1]
    return i;
  else
    i = i + 1;
```

t[O]	t[1]	t[2]	t[3]	t[4]	t[5]	t[6]	t[7]	t[8]	t[9]	t10]
Α	В	С	E	F	G	Α	В	С	D	E

p[0] p[1] p[2] p[3]

A B C D

Y Y Y N

t[O]	t[1]	t[2]	t[3]	t[4]	t[5]	t[6]	t[7]	t[8]	t[9]	t10]
A	В	С	E	F	G	Α	В	С	D	E
		1				p[0]	p[1]	p[2]	p[3]	
						Α	В	С	D	
						Y	Υ	Y	Y	

Straightforward string searching

Worst case:

- Pattern string always matches completely except for last character
- Outer loop executed once for every character in target string
- Inner loop executed once for every character in pattern
- O(mn), where m = |p| and n = |t|
- OK if patterns are short, but better algorithms exist

Knuth-Morris-Pratt

- O(m+n)
- Key idea:
 - if pattern fails to match, slide pattern to right by as many boxes as possible without permitting a match to go unnoticed

t[O]	t[1]	t[2]	t[3]	t[4]	t[5]	t[6]	t[7]	t[8]	t[9]	t10]
Α	В	С	E	F	G	Α	В	С	D	E

p[0] p[1] p[2] p[3]

A B C D

Y Y Y N

The KMP Algorithm - Motivation

- Knuth-Morris-Pratt's algorithm compares the pattern to the text in left-to-right, but shifts the pattern more intelligently than the brute-force algorithm.
- When a mismatch occurs, what is the most we can shift the pattern so as to avoid redundant comparisons?
- Answer: the largest prefix of P[0..j-1] that is a suffix of P[1..j-1]

KMP Failure Function

 Knuth-Morris-Pratt's algorithm preprocesses the pattern to find matches of prefixes of the pattern with the pattern itself

j	0	1	2	3	4	5
P[j]	a	b	а	a	b	a
F(j)	0	0	1	1	2	3

- The failure function F(j) is defined as the length of the largest prefix of P[0..j] that is also a suffix of P[1..j]
- Knuth-Morris-Pratt's algorithm modifies the brute-force algorithm so that if a mismatch occurs at P[j] ≠ T[i] we set j ← F(j-1)

The KMP Algorithm

- The failure function can be represented by an array and can be computed in O(m) time
- At each iteration of the while-loop, either
 - i increases by one, or
 - the shift amount i j increases by at least one (observe that F(j-1) < j)
- Hence, there are no more than 2n iterations of the while-loop
- Thus, KMP's algorithm runs in optimal time O(m + n)

```
Algorithm KMPMatch(T, P)
      F \leftarrow failureFunction(P)
      i \leftarrow 0
     j \leftarrow 0
      while i < n
      if T[i] = P[j]
            if j = m - 1
                   return i - j { match }
            else
                  i \leftarrow i + 1
                  j \leftarrow j + 1
      else
            if j > 0
                  j \leftarrow F[j-1]
            else
                  i \leftarrow i + 1
    return -1 { no match }
```

Computing the Failure Function

- The failure function can be represented by an array and can be computed in O(m) time
- The construction is similar to the KMP algorithm itself
- At each iteration of the while-loop, either
 - i increases by one, or
 - the shift amount i j increases by at least one (observe that F(j-1) < j)
- Hence, there are no more than 2m iterations of the while-loop

```
Algorithm failureFunction(P)
      F[0] \leftarrow 0
      i \leftarrow 1
      j \leftarrow 0
      m \leftarrow length(P)
      while i < m
      if P[i] = P[j]
      {we have matched j + 1 chars}
            F[i] \leftarrow j+1
            i \leftarrow i + 1
            j \leftarrow j + 1
      else if j > 0 then
      {use failure function to shift P}
            j \leftarrow F[j-1]
      else
            F[i] \leftarrow 0  { no match }
            i \leftarrow i + 1
```


k	0	1	2	3	4	5
P[k]	a	b	a	c	a	b
F(k)	0					

$$m = 6$$
$$i = 1$$
$$j = 0$$

```
Algorithm failureFunction(P)
      F[0] \leftarrow 0
     i \leftarrow 1
     j \leftarrow 0
      m \leftarrow length(P)
      while i < m
      if P[i] = P[j]
      {we have matched j + 1 chars}
            F[i] \leftarrow j+1
            i \leftarrow i + 1
            j \leftarrow j + 1
      else if j > 0 then
      {use failure function to shift P}
            j \leftarrow F[j-1]
      else
            F[i] \leftarrow 0 \{ \text{ no match } \}
             i \leftarrow i + 1
```


k	0	1	2	3	4	5
P[k]	a	b	а	c	a	b
F(k)	0					

$$m = 6$$
$$i = 1$$
$$j = 0$$

```
Algorithm failureFunction(P)
      F[0] \leftarrow 0
     i \leftarrow 1
     j \leftarrow 0
      m \leftarrow length(P)
      while i < m
      if P[i] = P[j]
      {we have matched j + 1 chars}
            F[i] \leftarrow j+1
            i \leftarrow i + 1
            j \leftarrow j + 1
      else if j > 0 then
      {use failure function to shift P}
            j \leftarrow F[j-1]
      else
            F[i] \leftarrow 0 \{ \text{ no match } \}
            i \leftarrow i + 1
```


k	0	1	2	3	4	5
P [k]	a	b	а	c	a	b
F (k)	0					

```
Algorithm failureFunction(P)
      F[0] \leftarrow 0
     i \leftarrow 1
     j \leftarrow 0
      m \leftarrow length(P)
      while i < m
      if P[i] = P[j]
      {we have matched j + 1 chars}
            F[i] \leftarrow j+1
            i \leftarrow i + 1
            j \leftarrow j + 1
      else if j > 0 then
      {use failure function to shift P}
            j \leftarrow F[j-1]
      else
             F[i] \leftarrow 0 \{ \text{ no match } \}
             i \leftarrow i + 1
```


k	0	1	2	3	4	5
P[k]	a	b	а	c	a	b
F(k)	0					

$$m = 6$$

$$i = 1$$

$$j = 0$$

```
Algorithm failureFunction(P)
      F[0] \leftarrow 0
     i \leftarrow 1
     j \leftarrow 0
      m \leftarrow length(P)
      while i < m
      if P[i] = P[j]
      {we have matched j + 1 chars}
            F[i] \leftarrow j+1
            i \leftarrow i + 1
            j \leftarrow j + 1
      else if j > 0 then
      {use failure function to shift P}
            j \leftarrow F[j-1]
      else
            F[i] \leftarrow 0 \{ \text{ no match } \}
             i \leftarrow i + 1
```


$$m = 6$$

$$i = 2$$

$$i = 0$$

```
Algorithm failureFunction(P)
      F[0] \leftarrow 0
     i \leftarrow 1
     j \leftarrow 0
      m \leftarrow length(P)
      while i < m
      if P[i] = P[j]
      {we have matched j + 1 chars}
            F[i] \leftarrow j+1
            i \leftarrow i + 1
            j \leftarrow j + 1
      else if j > 0 then
      {use failure function to shift P}
            j \leftarrow F[j-1]
      else
            F[i] \leftarrow 0 \{ \text{ no match } \}
            i \leftarrow i + 1
```



```
Algorithm failureFunction(P)
      F[0] \leftarrow 0
     i \leftarrow 1
     j \leftarrow 0
      m \leftarrow length(P)
      while i < m
      if P[i] = P[j]
      {we have matched j + 1 chars}
            F[i] \leftarrow j+1
            i \leftarrow i + 1
            j \leftarrow j + 1
      else if j > 0 then
      {use failure function to shift P}
            j \leftarrow F[j-1]
      else
            F[i] \leftarrow 0 \{ \text{ no match } \}
             i \leftarrow i + 1
```



```
Algorithm failureFunction(P)
      F[0] \leftarrow 0
     i \leftarrow 1
     j \leftarrow 0
      m \leftarrow length(P)
      while i < m
      if P[i] = P[j]
      {we have matched j + 1 chars}
            F[i] \leftarrow j+1
            i \leftarrow i + 1
            j \leftarrow j + 1
      else if j > 0 then
      {use failure function to shift P}
            j \leftarrow F[j-1]
      else
            F[i] \leftarrow 0 \{ \text{ no match } \}
             i \leftarrow i + 1
```


$$m = 6$$

 $i = 3$
 $j = 1$

```
Algorithm failureFunction(P)
      F[0] \leftarrow 0
     i \leftarrow 1
     j \leftarrow 0
      m \leftarrow length(P)
      while i < m
      if P[i] = P[j]
      {we have matched j + 1 chars}
            F[i] \leftarrow j+1
            i \leftarrow i + 1
            j \leftarrow j + 1
      else if j > 0 then
      {use failure function to shift P}
            j \leftarrow F[j-1]
      else
            F[i] \leftarrow 0 \{ \text{ no match } \}
             i \leftarrow i + 1
```



```
Algorithm failureFunction(P)
      F[0] \leftarrow 0
     i \leftarrow 1
     j \leftarrow 0
      m \leftarrow length(P)
      while i < m
      if P[i] = P[j]
      {we have matched j + 1 chars}
            F[i] \leftarrow j+1
            i \leftarrow i + 1
            j \leftarrow j + 1
      else if j > 0 then
      {use failure function to shift P}
            j \leftarrow F[j-1]
      else
            F[i] \leftarrow 0 \{ \text{ no match } \}
            i \leftarrow i + 1
```



```
Algorithm failureFunction(P)
      F[0] \leftarrow 0
     i \leftarrow 1
     j \leftarrow 0
      m \leftarrow length(P)
      while i < m
      if P[i] = P[j]
      {we have matched j + 1 chars}
            F[i] \leftarrow j+1
            i \leftarrow i + 1
            j \leftarrow j + 1
      else if j > 0 then
      {use failure function to shift P}
            j \leftarrow F[j-1]
      else
             F[i] \leftarrow 0 \{ \text{ no match } \}
             i \leftarrow i + 1
```



```
Algorithm failureFunction(P)
      F[0] \leftarrow 0
     i \leftarrow 1
     j \leftarrow 0
      m \leftarrow length(P)
      while i < m
      if P[i] = P[j]
      {we have matched j + 1 chars}
            F[i] \leftarrow j+1
            i \leftarrow i + 1
            j \leftarrow j + 1
      else if j > 0 then
      {use failure function to shift P}
            j \leftarrow F[j-1]
      else
             F[i] \leftarrow 0 \{ \text{ no match } \}
             i \leftarrow i + 1
```



```
Algorithm failureFunction(P)
      F[0] \leftarrow 0
     i \leftarrow 1
     j \leftarrow 0
      m \leftarrow length(P)
      while i < m
      if P[i] = P[j]
      {we have matched j + 1 chars}
            F[i] \leftarrow j+1
            i \leftarrow i + 1
            j \leftarrow j + 1
      else if j > 0 then
      {use failure function to shift P}
            j \leftarrow F[j-1]
      else
             F[i] \leftarrow 0 \{ \text{ no match } \}
            i \leftarrow i + 1
```


$$m = 6$$

$$i = 3$$

$$j = 0$$

```
Algorithm failureFunction(P)
      F[0] \leftarrow 0
     i \leftarrow 1
     j \leftarrow 0
      m \leftarrow length(P)
      while i < m
      if P[i] = P[j]
      {we have matched j + 1 chars}
            F[i] \leftarrow j+1
            i \leftarrow i + 1
            j \leftarrow j + 1
      else if j > 0 then
      {use failure function to shift P}
            j \leftarrow F[j-1]
      else
            F[i] \leftarrow 0 \{ \text{ no match } \}
             i \leftarrow i + 1
```


$$m = 6$$

$$i = 4$$

$$j = 0$$

```
Algorithm failureFunction(P)
      F[0] \leftarrow 0
     i \leftarrow 1
     j \leftarrow 0
      m \leftarrow length(P)
      while i < m
      if P[i] = P[j]
      {we have matched j + 1 chars}
            F[i] \leftarrow j+1
            i \leftarrow i + 1
            j \leftarrow j + 1
      else if j > 0 then
      {use failure function to shift P}
            j \leftarrow F[j-1]
      else
            F[i] \leftarrow 0 \{ \text{ no match } \}
             i \leftarrow i + 1
```


$$m = 6$$

 $i = 4$
 $i = 0$

```
Algorithm failureFunction(P)
      F[0] \leftarrow 0
     i \leftarrow 1
     j \leftarrow 0
      m \leftarrow length(P)
      while i < m
      if P[i] = P[j]
      {we have matched j + 1 chars}
            F[i] \leftarrow j+1
            i \leftarrow i + 1
            j \leftarrow j + 1
      else if j > 0 then
      {use failure function to shift P}
            j \leftarrow F[j-1]
      else
            F[i] \leftarrow 0 \{ \text{ no match } \}
             i \leftarrow i + 1
```



```
Algorithm failureFunction(P)
      F[0] \leftarrow 0
     i \leftarrow 1
     j \leftarrow 0
      m \leftarrow length(P)
      while i < m
      if P[i] = P[j]
      {we have matched j + 1 chars}
            F[i] \leftarrow j+1
            i \leftarrow i + 1
            j \leftarrow j + 1
      else if j > 0 then
      {use failure function to shift P}
            j \leftarrow F[j-1]
      else
            F[i] \leftarrow 0 \{ \text{ no match } \}
             i \leftarrow i + 1
```


k	0	1	2	3	4	5
P[k]	a	$\left(m{b}\right)$	а	c	a	(b)
F(k)	0	0	1	0	1	2

$$m = 6$$

 $i = 5$
 $j = 1$

```
Algorithm failureFunction(P)
      F[0] \leftarrow 0
     i \leftarrow 1
     j \leftarrow 0
      m \leftarrow length(P)
      while i < m
      if P[i] = P[j]
      {we have matched j + 1 chars}
            F[i] \leftarrow j+1
            i \leftarrow i + 1
            j \leftarrow j + 1
      else if j > 0 then
      {use failure function to shift P}
            j \leftarrow F[j-1]
      else
            F[i] \leftarrow 0 \{ \text{ no match } \}
             i \leftarrow i + 1
```

j

k	0	1	2	3	4	5
P[k]	a	$\left(m{b}\right)$	а	c	a	(b)
F(k)	0	0	1	0	1	2


```
m = 6<br/>i = 6<br/>j = 2
```

```
Algorithm failureFunction(P)
      F[0] \leftarrow 0
     i \leftarrow 1
     j \leftarrow 0
      m \leftarrow length(P)
      while i < m
      if P[i] = P[j]
      {we have matched j + 1 chars}
            F[i] \leftarrow j+1
            i \leftarrow i + 1
            j \leftarrow j + 1
      else if j > 0 then
      {use failure function to shift P}
            j \leftarrow F[j-1]
      else
            F[i] \leftarrow 0 \{ \text{ no match } \}
             i \leftarrow i + 1
```

k	0	1	2	3	4	5
P[k]	a	b	a	c	a	b
F(k)	0	0	1	0	1	2

```
Algorithm failureFunction(P)
      F[0] \leftarrow 0
      i \leftarrow 1
      j \leftarrow 0
      m \leftarrow length(P)
      while i < m
      if P[i] = P[j]
      {we have matched j + 1 chars}
            F[i] \leftarrow j+1
             i \leftarrow i + 1
            j \leftarrow j + 1
      else if j > 0 then
      {use failure function to shift P}
            j \leftarrow F[j-1]
      else
             F[i] \leftarrow 0 \{ \text{ no match } \}
             i \leftarrow i + 1
```


1	2	3	4	5	6	
a	b	a	C	a	b	j=5

j	0	1	2	3	4	5
P[j]	a	b	a	c	a	b
F(j)	0	0	1	0	1	2

```
Algorithm KMPMatch(T, P)
        F \leftarrow failureFunction(P)
        i \leftarrow 0
        j \leftarrow 0
        while i < n
        if T[i] = P[j]
                 if j = m - 1
                         return i-j
                         /* match */
                 else
                         i \leftarrow i + 1
                         j \leftarrow j + 1
        else
                 if j > 0
                         j \leftarrow F[j-1]
                 else
                         i \leftarrow i + 1
                         j \leftarrow 0
      return -1 /* no match */
```

a	b	a	c	a	a	b	a	c	c	a	b	a	c	a	b	a	a	b	b

	7					
a	b	a	C	a	b	j=1

j	0	1	2	3	4	5
P[j]	a	b	a	c	a	b
F(j)	0	0	1	0	1	2

```
Algorithm KMPMatch(T, P)
        F \leftarrow failureFunction(P)
        i \leftarrow 0
       j \leftarrow 0
        while i < n
        if T[i] = P[j]
                if j = m - 1
                         return i-j
                        /* match */
                else
                        i \leftarrow i + 1
                        j \leftarrow j + 1
        else
                if j > 0
                        j \leftarrow F[j-1]
                else
                        i \leftarrow i + 1
      return -1 /* no match */
```

a	b	a	c	a	a	b	a	c	c	a	b	a	c	a	b	a	a	b	b

j	0	1	2	3	4	5
P[j]	a	b	а	c	a	b
F(j)	0	0	1	0	1	2

```
Algorithm KMPMatch(T, P)
        F \leftarrow failureFunction(P)
        i \leftarrow 0
       j \leftarrow 0
        while i < n
        if T[i] = P[j]
                if j = m - 1
                         return i-j
                        /* match */
                else
                        i \leftarrow i + 1
                        j \leftarrow j + 1
        else
                if j > 0
                        j \leftarrow F[j-1]
                else
                        i \leftarrow i + 1
      return -1 /* no match */
```

j=0

j	0	1	2	3	4	5
P[j]	a	b	a	c	a	b
F(j)	0	0	1	0	1	2

13 a b a c a b

```
Algorithm KMPMatch(T, P)
        F \leftarrow failureFunction(P)
        i \leftarrow 0
        j \leftarrow 0
        while i < n
        if T[i] = P[j]
                if j = m - 1
                         return i-j
                        /* match */
                else
                         i \leftarrow i + 1
                        j \leftarrow j + 1
        else
                if j > 0
                        j \leftarrow F[j-1]
                else
                         i \leftarrow i + 1
      return -1 /* no match */
```

j	0	1	2	3	4	5
P[j]	а	b	а	c	а	b
F(j)	0	0	1	0	1	2

```
    14
    15
    16
    17
    18
    19

    a
    b
    a
    c
    a
    b
```

```
j=0
i++
```

```
Algorithm KMPMatch(T, P)
        F \leftarrow failureFunction(P)
        i \leftarrow 0
       j \leftarrow 0
        while i < n
        if T[i] = P[j]
                if j = m - 1
                         return i-j
                        /* match */
                else
                        i \leftarrow i + 1
                        j \leftarrow j + 1
        else
                if j > 0
                        j \leftarrow F[j-1]
                else
                        i \leftarrow i + 1
      return -1 /* no match */
```

The Boyer-Moore Algorithm

- Similar to KMP in that:
 - Pattern compared against target
 - On mismatch, move as far to right as possible
- Different from KMP in that:
 - Compare the patterns from right to left instead of left to right
- Does that make a difference?
 - Yes much faster on long targets; many characters in target string are never examined at all

Boyer-Moore example

N

There is no E in the pattern: thus the pattern can't match if *any* characters lie under t[3]. So, move four boxes to the right.

Boyer-Moore example

Again, no match. But there is a B in the pattern. So move two boxes to

Again, no match. But there is a B in the pattern. So move two boxes to the right.

N

Boyer-Moore example

t[O]	t[1]	t[2]	t[3]	t[4]	t[5]	t[6]	t[7]	t[8]	t[9]	t10]
Α	В	С	Е	F	G	Α	В	С	D	E
		p[0] p[1] p[2] p[3]								3]
						Α	В	С	D	
						Υ	Υ	Υ	Υ	

Boyer-Moore: another example

Problem: determine d, the number of boxes that the pattern can be moved to the right.

d should be smallest integer such that t[k+m-1] = p[m-1-d], t[k+m-2] = p[m-2-d], ... t[k+i] = p[i-d]

The Boyer-Moore Algorithm

We said:

- d should be smallest integer such that:
 - T[k+m-1] = p[m-1-d]
 - T[k+m-2] = p[m-2-d]
 - T[k+i] = p[i-d]
- Reminder:
 - k = starting index in target string
 - m = length of pattern
 - i = index of mismatch in pattern string
- Problem: statement is valid only for d<= i</p>
 - Need to ensure that we don't "fall off" the left edge of the pattern

Boyer-Moore: another example

If c == W, then d should be 3

If c == R, then d should be 7

Bad Character Rule

Suppose that P_1 is aligned to T_s now, and we perform a pair-wise comparing between text T and pattern P from right to left. Assume that the first mismatch occurs when comparing T_{s+j-1} with P_j .

Since $T_{s+j-1} \neq P_j$, we move the pattern P to the right such that the largest position c in the left of P_j is equal to T_{s+j-1} . We can shift the pattern at least (j-c) positions right.

Character Matching Rule

- Bad character rule uses Character Matching Rule.
- For any character x in T, find the nearest x in P which is to the left of x in T.

Implication of Character M. Rule

Case 1. If there is a x in P to the left of T, move P so that the two x's match.

Т		х]
			-
P		х	

Case 2: If no such a x exists in P, move P to the right of x

T x

P

Ex: Suppose that P1 is aligned to T6 now. We compare pairwise between T and P from right to left. Since T16,17 = P11,12 = "CA" and T15 = "G" ≠P10 = "T". Therefore, we find the rightmost position c=7 in the left of P10 in P such that Pc is equal to "G" and we can move the window at least (10-7=3) positions.

Good Suffix Rule 1

- If a mismatch occurs in T_{s+j-1} , we match T_{s+j-1} with $P_{j'-m+j}$, where $j'(m-j+1 \le j' < m)$ is the **largest position** such that
 - (1) $P_{j+1,m}$ is a suffix of $P_{1,j}$,
 - (2) $P_{j'-(m-j)} \neq P_{j'}$
- We can move the window at least (m-j) position(s).

The Substring Matching Rule

For any substring u in T, find a nearest u in P which is to the left of it. If such a u in P exists, move P;

u

P

Ex: Suppose that P[1] is aligned to T[6] now. We compare pairwise between P and T from right to left. Since T[16,17] = "CA" = P[11,12] and T[15] = "A" ≠P[10] = "T". We find the substring "CA" in the left of P[10] in P such that "CA" is the suffix of P[1,6] and the left character to this substring "CA" in P is not equal to P[10] = "T". Therefore, we can move the window at least m-j' (12-6=6) positions right.

Good Suffix Rule 2

Good Suffix Rule 2 is used only when Good Suffix Rule 1 can not be used. That is, t does not appear in P[1, j]. Thus, t is unique in P.

If a mismatch occurs in T_{s+j-1} , we match T_{s+m-j} , with P_1 , where $j'(1 \le j' \le m-j)$ is **the largest position** such that

 $P_{1,j}$, is a suffix of $P_{j+1,m}$.

P.S.: t' is suffix of substring t.

Unique Substring Rule

- The substring u appears in P exactly once.
- If the substring s matches with $T_{i,j}$, no matter whether a mismatch occurs in some position of P or not, we can slide the window by l.

The string s is the longest prefix of P which equals to a suffix of u.

The Suffix to Prefix Rule

For a window to have any chance to match a pattern, in some way, there must be a suffix of the window which is equal to a prefix of the pattern.

The Suffix to Prefix Rule

- Note that the above rule also uses Rule 1.
- It should also be noted that the unique substring is the shorter and the more right-sided the better.
- A short u guarantees a short (or even empty) s which is desirable.

Ex: Suppose that P_1 is aligned to T_6 now. We compare pairwise between P and T from right to left. Since $T_{12} \neq P_7$ and there is no substring $P_{8,12}$ in left of P_8 to exactly match $T_{13,17}$. We find a longest suffix "AATC" of substring $T_{13,17}$, the longest suffix is also prefix of P. We shift the window such that the last character of prefix substring to match the last character of the suffix substring. Therefore, we can shift at least 12-4=8 positions.

• Let B(a) be the rightmost position of a in P[1..j]. The function will be used for applying bad character rule.

A	C	G	T
12	11	0	10
9	8	0	10

• We can move our pattern right at least j- $B[j](T_{s+j-1})$ position by above B function.

Let Gs(j) be the largest number of shifts by good suffix rule when a mismatch occurs for comparing P_j with some character in T.

- $gs_1(j)$ be the largest k such that $P_{j+1,m}$ is a suffix of $P_{1,k}$ and $P_{k-m+j} \neq P_j$ where $m-j+1 \leq k < m$; 0 if there is no such k. (gs_1 is for Good Suffix Rule 1)
- $gs_2(j)$ be the largest k such that $P_{1,k}$ is a suffix of $P_{j+1,m}$ where $1 \le k \le m-j$; 0 if there is no such k.

 (gs_2 is for Good Suffix Rule 2.)
- $Gs(j) = m \max\{gs_1, gs_2\}, \text{ if } j = m, Gs(j)=1.$

1	2	3	4	5	6	7	8	9	10	11	12
A	T	C	A	C	A	T	C	A	T	C	A
0	0	0	0	0	0	9	0	0	6	1	0
4	4	4	4	4	4	4	4	1	1	1	0
8	8	8	8	8	8	3	8	11	6	11	1

Gs

$$gs_{1}(7)=9$$

 $P_{8,12}$ is a suffix of $P_{1,9}$ and $P_4 \neq P_7$

$$gs_{2}(7)=4$$

∵P_{1,4} is a suffix of

Time Complexity

- Use bad character or good suffix rule
 - The one that skips more
- The preprocessing phase in O(m+Σ) complexity
- If you are searching for ALL matches, worst case:
 - O(mn) when P is in T at all positions
 - T=AAAAAAAAAAA; P=AAAA
 - O(m+n) when P is not in T

BRUTE FORCE – EXAMPLE #2

Brute force

X

```
T = ABABABCABABABCABABAC
                                Comparisons: 6
P = ABABAC
T = ABABABCABABABCABABAC
                                Comparisons: 1
P = ABABAC
T = ABABABCABABABCABABAC
                                Comparisons: 5
    ABABAC
P =
T = ABABABCABABABCABABAC
                                Comparisons: 1
     ABABAC
      X
T = ABABABCABABABCABABAC
                                Comparisons: 3
       ABABAC
```

Brute force

```
T = ABABABCABABABCABABAC
                                Comparisons: 1
        ABABAC
        X
T = ABABABCABABABCABABAC
                                Comparisons: 1
         ABABAC
P =
T = ABABABCABABABCABABAC
                                Comparisons: 6
           ABABAC
P =
T = ABABABCABABABCABABAC
                                Comparisons: 1
            ABABAC
P =
            X
T = ABABABCABABABCABABAC
                                Comparisons: 5
             ABABAC
P =
```

X

Brute force

```
T = ABABABCABABABCABABAC
                                 Comparisons: 1
               ABABAC
P =
T = ABABABCABABABCABABAC
                                 Comparisons: 3
               ABABAC
P =
T = ABABABCABABABCABABAC
                                 Comparisons: 1
                 ABABAC
P =
T = ABABABCABABABCABABAC
                                 Comparisons: 1
                  ABABAC
P =
                   X
T = ABABABCABABABCABABAC
                                 Comparisons: 6
                   ABABAC
P =
```

match

Total comparisons: 41

KMP – EXAMPLE #2

T = ABABABCABABABCABABAC P = ABABAC

Reminder: F(j) is defined as the size of the largest prefix of P[0..j] that is also a suffix of P[1..j]

	A	В	A	В	Α	С
F	0	0	1	2	3	0

```
Algorithm failureFunction(P)
      F[0] \leftarrow 0
      i \leftarrow 1
      j \leftarrow 0
      m \leftarrow length(P)
      while i < m
      if P[i] = P[j]
      {we have matched j + 1 chars}
             F[i] \leftarrow j+1
             i \leftarrow i + 1
            j \leftarrow j + 1
      else if j > 0 then
      {use failure function to shift P}
            j \leftarrow F[j-1]
      else
            F[i] \leftarrow 0 \{ \text{ no match } \}
             i \leftarrow i + 1
```

	0	1	2	3	4	5
	Α	В	Α	В	Α	С
F	0	0	1	2	3	0

T = ABABABCABABACABABAC P = ABABAC

X

$$j = 5, i = 5$$

New
$$j = F[4] = 3$$
 (shift 5-3 = 2)
New $i = 5$ (no change)

```
T = ABABABCABABAC
P = ABABAC
j=3
```

```
Algorithm KMPMatch(T, P)
      F \leftarrow failureFunction(P)
      i \leftarrow 0
     j \leftarrow 0
      while i < n
      if T[i] = P[j]
            if j = m - 1
                   return i - j { match }
            else
                  i \leftarrow i + 1
                  j \leftarrow j + 1
      else
            if j > 0
                 j \leftarrow F[j-1]
            else
                  i \leftarrow i + 1
                  j \leftarrow 0
    return -1 { no match }
```

	0	1	2	3	4	5
	Α	В	Α	В	Α	С
F	0	0	1	2	3	0

```
T = ABABABCABABAC
P = ABABAC
X
```

$$j = 4$$
, $i = 6$

New
$$j = F[3] = 2$$
 (shift 4-2 = 2)
New $i = 6$ (no change)

```
Algorithm KMPMatch(T, P)
      F \leftarrow failureFunction(P)
      i \leftarrow 0
     j \leftarrow 0
      while i < n
      if T[i] = P[j]
            if j = m - 1
                   return i - j { match }
            else
                  i \leftarrow i + 1
                  j \leftarrow j + 1
      else
            if j > 0
                 j \leftarrow F[j-1]
            else
                  i \leftarrow i + 1
                  j \leftarrow 0
    return -1 { no match }
```

	0	1	2	3	4	5
	Α	В	Α	В	Α	С
F	0	0	1	2	3	0

```
T = ABABABCABABAC
P = ABABAC
X
```

$$j = 2, i = 6$$

New
$$j = F[1] = 0$$
 (shift 2-0 = 2)
New $i = 6$ (no change)

```
Algorithm KMPMatch(T, P)
      F \leftarrow failureFunction(P)
      i \leftarrow 0
     j \leftarrow 0
      while i < n
      if T[i] = P[j]
            if j = m - 1
                   return i - j { match }
            else
                  i \leftarrow i + 1
                  j \leftarrow j + 1
      else
            if j > 0
                 j \leftarrow F[j-1]
            else
                  i \leftarrow i + 1
                  j \leftarrow 0
    return -1 { no match }
```

	0	1	2	3	4	5
	Α	В	Α	В	Α	С
F	0	0	1	2	3	0

```
T = ABABABCABABAC
P = ABABAC
X

j = 0, i = 6
```

New j = 0New i = 7 (shift 1)

```
T = ABABABCABABAC
P = ABABABCABABAC
ABABAC
j=0
```

```
Algorithm KMPMatch(T, P)
      F \leftarrow failureFunction(P)
      i \leftarrow 0
     j \leftarrow 0
      while i < n
      if T[i] = P[j]
            if j = m - 1
                   return i - j { match }
            else
                  i \leftarrow i + 1
                  j \leftarrow j + 1
      else
            if j > 0
                 j \leftarrow F[j-1]
            else
                  i \leftarrow i + 1
                  j \leftarrow 0
    return -1 { no match }
```

	0	1	2	3	4	5
	Α	В	Α	В	Α	С
F	0	0	1	2	3	0

```
T = ABABABCABABAC
P = ABABAC
X
```

$$j = 5, i = 12$$

New
$$j = F[4] = 3$$
 (shift 5-3=2)
New $i = 12$ (no change)

```
Algorithm KMPMatch(T, P)
      F \leftarrow failureFunction(P)
      i \leftarrow 0
     j \leftarrow 0
      while i < n
      if T[i] = P[j]
            if j = m - 1
                   return i - j { match }
            else
                  i \leftarrow i + 1
                  j \leftarrow j + 1
      else
            if j > 0
                 j \leftarrow F[j-1]
            else
                  i \leftarrow i + 1
                  j \leftarrow 0
    return -1 { no match }
```

	0	1	2	3	4	5
	Α	В	Α	В	Α	С
F	0	0	1	2	3	0

```
T = ABABABCABABAC
P = ABABAC
X
```

$$j = 4$$
, $i = 13$

New
$$j = F[3] = 2$$
 (shift 4-2=2)
New $i = 13$ (no change)

```
T = ABABABCABABABCABABAC
P = ABABABCABABABAC
i=13
ABABACABABAC
i=2
```

```
Algorithm KMPMatch(T, P)
      F \leftarrow failureFunction(P)
      i \leftarrow 0
     j \leftarrow 0
      while i < n
      if T[i] = P[j]
            if j = m - 1
                   return i - j { match }
            else
                  i \leftarrow i + 1
                  j \leftarrow j + 1
      else
            if j > 0
                 j \leftarrow F[j-1]
            else
                  i \leftarrow i + 1
                  j \leftarrow 0
    return -1 { no match }
```

	0	1	2	3	4	5
	Α	В	Α	В	Α	С
F	0	0	1	2	3	0

$$j = 2$$
, $i = 13$

New
$$j = F[1] = 0$$
 (shift 2-0=0)
New $i = 13$ (no change)

```
Algorithm KMPMatch(T, P)
      F \leftarrow failureFunction(P)
      i \leftarrow 0
     j \leftarrow 0
      while i < n
      if T[i] = P[j]
            if j = m - 1
                   return i - j { match }
            else
                  i \leftarrow i + 1
                  j \leftarrow j + 1
      else
            if j > 0
                 j \leftarrow F[j-1]
            else
                  i \leftarrow i + 1
                  j \leftarrow 0
    return -1 { no match }
```

	0	1	2	3	4	5
	Α	В	Α	В	Α	С
F	0	0	1	2	3	0

```
T = ABABABCABABACABABAC
P = ABABAC ABABAC
```

$$j = 0, i = 13$$

New
$$j = 0$$
 (no shift)
New $i = 14$ (shift by 1)

```
T = ABABABCABABABCABABAC
P = i=14
ABABAC
ABABAC
i=0
```

```
Algorithm KMPMatch(T, P)
      F \leftarrow failureFunction(P)
      i \leftarrow 0
     j \leftarrow 0
      while i < n
      if T[i] = P[j]
            if j = m - 1
                   return i - j { match }
            else
                  i \leftarrow i + 1
                  j \leftarrow j + 1
      else
            if j > 0
                 j \leftarrow F[j-1]
            else
                  i \leftarrow i + 1
                  j \leftarrow 0
    return -1 { no match }
```

BOYER-MOORE – EXAMPLE #2

T = ABABABCABABABCABABAC

Comparison: 1

P = ABABAC

X

T = ABABABCABABABCABABAC

P = ABABAC

Bad character rule

T = ABABABCABABABCABABAC

P = ABABAC

Good suffix rule

Note: no suffix matches in

the previous step!!!

Pick bad character rule shift:

T = ABABABCABABABCABABAC

T = ABABABCABABABCABABAC

Comparison: 1

P = ABABAC

X

T = ABABABCABABACABABAC

P = ABABAC

Bad character rule

T = ABABABCABABABCABABAC

P = ABABAC

Good suffix rule

Note: no suffix matches in

the previous step!!!

Pick either shift:

T = ABABABCABABABCABABAC

T = ABABABCABABABCABABAC

Comparison: 1

P = ABABAC

X

T = ABABABCABABABCABABAC

P = ABABAC

Bad character rule

T = ABABABCABABABCABABAC

P = ABABAC

Good suffix rule

Note: no suffix matches in

the previous step!!!

Pick bad character rule shift:

T = ABABABCABABABCABABAC

T = ABABABCABABAC
P = ABABAC

Comparison: 1

X

T = ABABABCABABABCABABAC

P = ABABAC

Bad character rule

T = ABABABCABABABCABABAC

P = ABABAC

Good suffix rule

Note: no suffix matches in

the previous step!!!

Pick bad character rule shift:

T = ABABABCABABABCABABAC

T = ABABABCABABAC P = ABABAC

Comparison: 1

X

T = ABABABCABABABCABABAC

P = ABABAC

Bad character rule

T = ABABABCABABABCABABAC

P = ABABAC

Good suffix rule

Note: no suffix matches in

the previous step!!!

Pick bad character rule shift:

T = ABABABCABABABCABABAC

T = ABABABCABABAC P = ABABAC

Comparison: 1

X

T = ABABABCABABABCABABAC

P = ABABAC

Bad character rule

T = ABABABCABABABCABABAC

P = ABABAC

Good suffix rule

Pick either:

T = ABABABCABABACABABAC

T = ABABABCABABAC P = ABABAC Comparison: 1

X

T = ABABABCABABABCABABAC

P = ABABAC

Bad character rule

T = ABABABCABABABCABABAC

P = ABABAC

Good suffix rule

Pick bad character rule shift:

T = ABABABCABABACABABAC
P = ABABAC

T = ABABABCABABACABABAC P = ABABAC Comparison: 1

X

T = ABABABCABABABCABABAC

P = ABABAC

Bad character rule

T = ABABABCABABABCABABAC

P = ABABAC

Good suffix rule

Pick bad character rule shift and match:

T = ABABABCABABAC

P = ABABAC

Comparison: 6

Total comparisons: 14 -- KMP: 26 Brute Force: 41

BOYER-MOORE – EXAMPLE #3

T = ABABABCABCBAB P = ABCBAB

Comparison: 4

X

T = ABABABCABABABCABCBAB

P = ABCBAB

Bad character rule

T = ABABABCABABABCABCBAB

P = ABCBAB

Good suffix rule 2 Suffix (BAB) = prefix(P) = AB

Pick good suffix rule 2:

T = ABABABCABABABCABCBAB

T = ABABABCABABABCABCBAB

Comparison: 1

P = ABCBAB

X

T = ABABABCABABABCABCBAB

P = ABCBAB

Bad character rule

T = ABABABCABABABCABCBAB

P = ABCBAB

Good suffix rule

No suffix match in previous

step

Pick either:

T = ABABABCABABABCABCBAB

Comparison: 4

X

T = ABABABCABCBAB

P = ABCBAB

Bad character rule

T = ABABABCABABABCABCBAB

P = ABCBAB

Good suffix rule 2 Suffix (BAB) = prefix(P) = AB

Pick good suffix rule 2:

T = ABABABCABABABCABCBAB

T = ABABABCABABABCABCBAB P = ABCBAB

Comparison: 1

X

T = ABABABCABABABCABCBAB

P = ABCBAB

Bad character rule

T = ABABABCABABABCABCBAB

P = ABCBAB

Good suffix rule

No suffix match in previous

step

Pick either:

T = ABABABCABABABCABCBAB

Comparison: 3

T = ABABABCABABABCABCBAB P = ABCBAB

X

Bad character rule

T = ABABABCABABABCABCBAB P = ABCBAB

Good suffix rule 1 or 2 Suffix (AB) = prefix(P) = AB

Pick good suffix rule and match:

T = ABABABCABABABCABCBAB P = ABCBAB

Comparison: 6

Brute force & KMP for this example: exercise

Total comparisons: 19

Demonstration

- Knuth-Morris-Pratt
 - https://cmps-people.ok.ubc.ca/ylucet/DS/KnuthM orrisPratt.html
- Boyer-Moore
 - https://dwnusbaum.github.io/boyer-moore-demo/

Z-Algorithm