МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)»

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

по курсу «Data Science»

Тема: Прогнозирование конечных свойств новых материалов (композиционных материалов).

Слушатель

Бурчакова Анна Александровна

Москва, 2023

Оглавление

Введение4
Глава 1. Аналитическая часть
1.1. Постановка задачи7
1.2. Описание используемых методов14
Глава 2. Практическая часть
2.1. Предобработка данных20
2.1.1. Гистограммы, диаграммы ящика с усами, попарные графики рассеяния точек
2.1.2. Удаление выбросов26
2.1.3. Нормализация
2.2. Разработка и обучение модели32
2.3. Нейронная сеть для прогнозирования соотношения матрица наполнитель 36
2.4. Разработка приложения39
2.5. Создание удаленного репозитория41
Заключение
Библиографический список
Список иллюстраций
Рисунок 1 – Информация по датасету х_bp, выведенная с помощью метода
info()9
Рисунок 2 – Статистические характеристики датасета х_bp, выведенные с
помощью метода describe()
Рисунок 3 – Информация по датасету х_пир, выведенная с помощью метода
info()10
Рисунок 4 – Информация по таблице x_ nup, выведенная с помощью метода
describe ()

Таблица 2 – Матрица корреляции свойств композитов исходного датасета
joined_dataset, выведенная с помощью метода corr ()25
Таблица 3 – Пороговые значения десятипроцентных квантилей для
переменных датасета joined_dataset27
Таблица 4 – Статистические характеристики датасета filtered_dataset,
выведенные с помощью метода describe ()
Таблица 5 – Статистические характеристики нормализованного датасета
normalized_dataset, выведенные с помощью метода describe ()31
Таблица 6 - Статистические характеристики независимых переменных
x_upr, выведенные с помощью метода describe ()32
Таблица 7 - Статистические характеристики независимых переменных
x_prochn, выведенные с помощью метода describe ()
Таблица 8 – Размерности обучающих и тестовых выборок модуля упругости
при растяжении и прочности при растяжении
Таблица 9 – Оценка качества моделей для показателя модуль упругости при
растяжении
Таблица 10 – Оценка качества моделей для показателя прочности при
растяжении
Таблица 11 – Статистические характеристики нормализованного датасета
normalized_smndataset, выведенные с помощью метода describe ()36
Таблица 12 – Размерности обучающих и тестовых выборок соотношения
матрица-наполнитель37
Таблица 13 – Оценка качества нейронной сети для соотношения матрица-
наполнитель

Введение

Передовые технологические разработки являются основой научного и промышленного прогресса человечества. Они отвечают за перспективы экономического развития государства, определяют его место на международных рынках, гарантируют индустриальный суверенитет, который, в конченом счете, отражается в политической независимости.

В соответствии с государственными программами Российской Федерации «Развитие промышленности и повышение ее конкурентоспособности» и «Научно-технологическое развитие Российской Федерации» Правительством Российской Федерации ставятся цели по:

- формированию в гражданских отраслях промышленности Российской Федерации глобально конкурентоспособного сектора с высоким экспортным потенциалом, обеспечивающего достижение национальных целей развития¹; а также
- технологическому обновлению научной, научно-технической и инновационной (высокотехнологичной) деятельности².

Этим целям соответствует деятельность Центра НТИ «Цифровое материаловедение: новые материалы и вещества» — структурного подразделения МГТУ им. Н.Э. Баумана, созданного 28 декабря 2020 года для реализации цифрового подхода к «быстрому» и «сквозному» проектированию, разработке, испытанию и применению новых материалов и веществ. Центр НТИ формирует национальный банк данных и знаний по материалам и их «цифровым двойникам»³.

¹ «Развитие промышленности и повышение ее конкурентоспособности» [Электронный ресурс] / Портал Госпрограмм РФ. – https://programs.gov.ru/Portal/program/16/passport / Дата обращения 25.04.2023

 $^{^2}$ «Научно-технологическое развитие Российской Федерации» [Электронный ресурс] / Портал Госпрограмм РФ. – https://programs.gov.ru/Portal/programs/passport/47. Дата обращения 25.04.2023

³ Официальный сайт Центра НТИ «Цифровое материаловедение: новые материалы и вещества» [Электронный ресурс] . – https://nti.emtc.ru/ Дата обращения 25.04.2023

Целью настоящего исследования является решение актуальной производственной задачи Центра НТИ «Цифровое материаловедение: новые материалы и вещества»: прогнозирование свойств получаемых композиционных материалов.

Композиционные материалы — это искусственно созданные материалы, состоящие из нескольких других с четкой границей между ними.

Создание композиционных материалов – дорогостоящий, трудоемкий процесс, требующий участия высококвалифицированных кадров. В этой связи, актуальность настоящего исследования обусловлена тем, что наличие прогнозных моделей позволяет сократить количество реально проводимых испытаний, а также дополнить базу данных материалов их новыми характеристиками и цифровыми двойниками новых композитов.

В исследовании использованы данные о начальных свойствах компонентов композиционных материалов (поверхностная плотность, г/м2; потребление смолы, г/м2 и т.д.).

Основные задачи исследования:

- 1. изучение теоретических основ и методов прогнозирования целевых переменных, в частности свойств получаемых композиционных материалов;
- 2. проведение разведочного анализа данных;
- 3. обучение моделей для прогноза целевых признаков: модуля упругости при растяжении и прочности при растяжении;
- 4. написание нейронной сети, которая будет рекомендовать соотношение матрица-наполнитель;
- 5. разработка приложения, которое будет выдавать прогноз, соотношения матрица-наполнитель.

Результаты исследования опубликованы в созданном на веб-портале GitHub репозитории и находятся в открытом доступе⁴.

 $^{^4}$ Веб-портал GitHub [Электронный ресурс]. — https://github.com/aburchakova/kompozitus

Глава 1. Аналитическая часть

1.1. Постановка задачи

Реализация цифрового подхода к проектированию, разработке, испытанию и применению новых материалов и веществ является важным элементом создания национального банка данных и знаний по материалам.

В настоящей работе исследуются данные о начальных свойствах компонентов композиционных материалов. Таким образом, объектом исследования являются композиционные материалы, которые означают искусственно созданные материалы, состоящие из нескольких других с четкой границей между ними.

Основные задачи исследования включают:

- 1. изучение теоретических основ и методов прогнозирования целевых переменных, в частности свойств получаемых композиционных материалов;
- 2. проведение разведочного анализа данных;
- 3. обучение моделей для прогноза целевых признаков: модуля упругости при растяжении и прочности при растяжении;
- 4. написание нейронной сети, которая будет рекомендовать соотношение матрица-наполнитель;
- 5. разработать приложение, которое будет выдавать прогноз, соотношения матрица-наполнитель.

Актуальность поставленных задач обусловлена возможностью использования цифрового подхода к процессу создания композиционных материалов для снижения количества реально проводимых испытаний.

Для настоящего исследования использованы данные по тринадцати начальным свойствам компонентов композиционных материалов, хранящимся в двух таблицах: x_bp и x_nup⁵.

_

⁵ https://drive.google.com/file/d/1B1s5gBlvgU81H9GGolLQVw_SOi-vyNf2/view?usp=sharing

Перечислим имеющиеся данные о свойствах композитов из таблицы x_bp (далее – датасет x_bp):

- 1. соотношение матрица-наполнитель;
- 2. плотность, $\kappa \Gamma/M^3$;
- 3. модуль упругости, Гпа;
- 4. количество отвердителя, м.%;
- 5. содержание эпоксидных групп, %_2;
- 6. температура вспышки, С 2;
- 7. поверхностная плотность, Γ/M^2 ;
- 8. модуль упругости при растяжении, Гпа;
- 9. прочность при растяжении, Мпа;
- 10. потребление смолы, Γ/M^2 .

Перечислим имеющиеся данные о свойствах композитов из таблицы x_ nup (далее – датасет x_ nup):

- 1. угол нашивки, град;
- 2. шаг нашивки;
- 3. плотность нашивки.

Предметом исследования являются прогнозные данные трех свойств композитов: соотношение матрица-наполнитель, модуль упругости при растяжении, прочность при растяжении.

В датасете x_bp, представляющей собой класс DataFrame, содержатся 1023 строки и 10 столбцов. Отсутствуют пропущенные значения, тип данных – float64 (рисунок 1).

Числа с десятичной точкой (тип данных float) называются числами с плавающей точкой или вещественными числами 6 .

 $^{^6}$ Свейгарт Эл. Автоматизация рутинных задач с помощью Python [Текст] / ООО «Дилектика». – г. Санкт-Петербург. – 2021 г. – 672 с.

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1023 entries, 0 to 1022
Data columns (total 10 columns):
      Column
                                                                       Non-Null Count Dtype
 0 Соотношение матрица-наполнитель
                                                                     1023 non-null float64
                                                                      1023 non-null float64
 1 Плотность, кг/м3
                                                                     1023 non-null float64

      2
      модуль упругости, ГПа
      1023 non-null float64

      3
      Количество отвердителя, м.%
      1023 non-null float64

      4
      Содержание эпоксидных групп,%_2
      1023 non-null float64

      5
      Температура вспышки, С_2
      1023 non-null float64

      6
      Поверхностная плотность, г/м2
      1023 non-null float64

 2 модуль упругости, ГПа
       Модуль упругости при растяжении, ГПа 1023 non-null float64
       Прочность при растяжении, МПа 1023 non-null float64 Потребление смолы, г/м2 1023 non-null float64
dtypes: float64(10)
memory usage: 87.9 KB
```

Рисунок 1 – Информация по датасету x_bp, выведенная с помощью метода info()

Получаем описание датасета x_bp с использованием статистических параметров (рисунок 2). Узнаем, что:

- во всех столбцах количество значений соответствует длине столбцов и составляет 1023;
- средние значения между столбцами несопоставимы;
- видим стандартное квадратическое отклонение, пороговые значения для 25, 50 и 75% квантилей, минимальные и максимальные значения данных по столбцам датасета.

	Соотношение матрица- наполнитель	Плотность, кг/м3	модуль упругости, ГПа	Количество отвердителя, м.%	Содержание эпоксидных групп,%_2	Температура вспышки, С_2	Поверхностная плотность, г/м2	Модуль упругости при растяжении, ГПа	Прочность при растяжении, МПа	Потребление смолы, г/м2
count	1023.000000	1023.000000	1023.000000	1023.000000	1023.000000	1023.000000	1023.000000	1023.000000	1023.000000	1023.000000
mean	2.930366	1975.734888	739.923233	110.570769	22.244390	285.882151	482.731833	73.328571	2466.922843	218.423144
std	0.913222	73.729231	330.231581	28.295911	2.406301	40.943260	281.314690	3.118983	485.628006	59.735931
min	0.389403	1731.764635	2.436909	17.740275	14.254985	100.000000	0.603740	64.054061	1036.856605	33.803026
25%	2.317887	1924.155467	500.047452	92.443497	20.608034	259.066528	266.816645	71.245018	2135.850448	179.627520
50%	2.906878	1977.621657	739.664328	110.564840	22.230744	285.896812	451.864365	73.268805	2459.524526	219.198882
75%	3.552660	2021.374375	961.812526	129.730366	23.961934	313.002106	693.225017	75.356612	2767.193119	257.481724
max	5.591742	2207.773481	1911.536477	198.953207	33.000000	413.273418	1399.542362	82.682051	3848.436732	414.590628

Рисунок 2 — Статистические характеристики датасета x_bp, выведенные с помощью метода describe()

В таблице x_nup, представляющей собой класс DataFrame, содержатся 1040 строк и 3 столбца. Отсутствуют пропущенные значения, присутствуют два типа данных: int64 и float64 (рисунок 3).

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1040 entries, 0 to 1039
Data columns (total 3 columns):
# Column Non-Null Count Dtype
--- 0 Угол нашивки, град 1040 non-null int64
1 Шаг нашивки 1040 non-null float64
2 Плотность нашивки 1040 non-null float64
dtypes: float64(2), int64(1)
memory usage: 32.5 KB
```

Рисунок 3 – Информация по датасету x_nup, выведенная с помощью метода info()

Посмотрим, какие уникальные значения хранятся в столбце «Угол нашивки, град», который содержит данные типа int64. Для этого воспользуемся методом unique(). Результатом будет массив array([0, 90], dtype=int64). Таким образом, угол нашивки принимает два значения: 0 и 90 градусов.

Получим описание датасета x_ nup с использованием статистических параметров (рисунок 4). Узнаем, что:

- во всех столбцах количество значений соответствует длине столбцов и составляет 1040;
- средние значения между столбцами несопоставимы;
- видим стандартное квадратическое отклонение, пороговые значения для 25, 50 и 75% квантилей, минимальные и максимальные значения данных по столбцам датасета.

	Угол нашивки, град	Шаг нашивки	Плотность нашивки
count	1040.00000	1040.000000	1040.000000
mean	45.00000	6.911385	57.248399
std	45.02165	2.555181	12.332438
min	0.00000	0.000000	0.000000
25%	0.00000	5.102256	49.970740
50%	45.00000	6.938000	57.413594
75%	90.00000	8.587662	65.107235
max	90.00000	14.440522	103.988901

Рисунок 4 — Информация по таблице x_ nup, выведенная с помощью метода describe ()

Для целей настоящего исследования объединим два датасета и сформируем единый датасет. В исходных датасетах содержится разное количество строк, разница в 17 строк соответствует 1,6% данных большего датасета х_ пир. Исключим из дальнейшего исследования эти данные и сформируем новый датасет joinned_dataset с помощью метода inner join ().

Выводим информацию по joined_dataset (риснок 5). Узнаем, что:

- класс таблины DataFrame:
- в таблице 1023 строки и 13 столбцов;
- в таблице нет пропущенных значений;
- в таблице 2 типа данных: int64, float64.

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1023 entries, 0 to 1022
Data columns (total 13 columns):
    Column
                                           Non-Null Count Dtype
    Соотношение матрица-наполнитель
                                           1023 non-null
                                                           float64
                                           1023 non-null
                                                           float64
    Плотность, кг/м3
    модуль упругости, ГПа
                                           1023 non-null
                                                            float64
    количество отвердителя, м.%
Содержание эпоксидных групп,%_2
                                           1023 non-null
                                                            float64
                                           1023 non-null
                                                            float64
    Температура вспышки, С_2
                                           1023 non-null
                                                            float64
    Поверхностная плотность, г/м2
                                           1023 non-null
                                                            float64
    Модуль упругости при растяжении, ГПа 1023 non-null
                                                            float64
    Прочность при растяжении, МПа
                                           1023 non-null
                                                            float64
                                           1023 non-null
                                                            float64
    Потребление смолы, г/м2
10 Угол нашивки, град
                                           1023 non-null
                                                            int64
11 Шаг нашивки
                                           1023 non-null
                                                            float64
12 Плотность нашивки
                                           1023 non-null
                                                            float64
dtypes: float64(12), int64(1)
memory usage: 111.9 KB
```

Рисунок 5 – Информация по датасету joined_dataset, выведенная с помощью метода info()

Таким образом, на первом этапе настоящего исследования составлен датасет joined_dataset с данными о свойствах композиционных материалов, представленный классом DataFrame, хранящий 1023 строки и 13 столбцов. В датасете нет пропущенных значений, содержатся 2 типа данных: int64 и float64.

Датасет joined_dataset содержит как целевые переменные, так и признаки, используемые для прогнозирования значений целевых переменных.

Для целевых переменных «модуль упругости при растяжении» и «прочность при растяжении» входными данными будут следующие одиннадцать переменных:

- 1. соотношение матрица-наполнитель;
- плотность, кг/м3;
- 3. модуль упругости, Гпа;
- 4. количество отвердителя, м.%;
- 5. содержание эпоксидных групп, %_2;
- 6. температура вспышки, С_2;
- 7. поверхностная плотность, г/м2;
- 8. потребление смолы, г/м2;
- 9. угол нашивки, град;
- 10. шаг нашивки;
- 11. плотность нашивки

Для целевой переменной «соотношение матрица-наполнитель «входными данными будут следующие двенадцать переменных:

- 1. модуль упругости при растяжении;
- 2. прочность при растяжении;
- плотность, кг/м3;
- 4. модуль упругости, Гпа;
- 5. количество отвердителя, м.%;

- 6. содержание эпоксидных групп, %_2;
- 7. температура вспышки, С_2;
- 8. поверхностная плотность, г/м2;
- 9. потребление смолы, г/м2;
- 10. угол нашивки, град;
- 11. шаг нашивки;
- 12. плотность нашивки.

1.2. Описание используемых методов

В соответствии с поставленными задачами по прогнозированию свойств композитов (модуля упругости при растяжении, прочности при растяжении, соотношение матрица-наполнитель) в настоящем исследовании решается задача регрессии.

Воспользуемся следующим определением регрессионного анализа: «Регрессионный анализ заключается в определении аналитического выражения связи, в котором изменение одной величины (называемой зависимой или результативным признаком) обусловлено влиянием одной или нескольких независимых величин (факторов), а множество всех прочих факторов, также оказывающих влияние на зависимую величину, принимается за постоянные и средние значения»⁷.

Будем использовать метод множественной (многофакторной) регрессии, который определяется как «изучение связи между тремя и более связанными между собой признаками»⁸.

Ниже приводится описание достоинств, недостатков и области применения методов регрессионного анализа, использованных в настоящем исследовании: линейная, метод лассо, дерево решений, метод ближайших соседей.

Линейная регрессия выражается уравнениями прямой (линейной функцией), в случае для парной регрессии и задается следующей формулой:

$$Y = b_0 + b_1 X$$
. (1)

Модель множественной линейной регрессии позволяет находить и изучать зависимости переменной Y от нескольких объясняющих переменных X_1 , X_2 , X_3 , X_4 , X_5 . Множественная линейная регрессия представлена следующим образом:

$$Y=b_0 + b_1X_1 + b_2X_2 + b_3X_3 + b_4X_4 + b_5X_5 + e.$$
 (2)

14

⁷ Теория статистики. Учебник. – г. Москва. – «Финансы и статистика». – 1998 г.

⁸ Там же.

В данном уравнении Y — зависимая переменная, описывающая процесс, который планируется предсказать. X — независимые переменные, используемые для моделирования или прогнозирования значений зависимых переменных.

Независимые переменные в регрессионных моделях называют регрессорами⁹.

b — коэффициенты уравнения линейной множественной регрессии, которые рассчитываются в результате регрессионного анализа для каждой независимой переменной X, они представляют силу и тип взаимосвязи независимой переменной по отношению к зависимой.

е – случайные ошибки.

Построение уравнения линейной регрессии сводится к оценке ее параметров с использованием, например, метода наименьших квадратов (МНК).

МНК позволяет получить такие коэффициенты уравнения линейной множественной регрессии, при которых сумма квадратов отклонений фактических значений зависимой переменной Y от теоретических минимальна.

Метод линейной регрессии — наиболее простой метод регрессионного анализа, характеризуется простотой вычислительных алгоритмов и наглядностью и интерпретируемостью результатов.

Недостатком линейной регрессии является то, что данный метод упрощает реальные задачи, предполагая линейную взаимосвязь между переменными.

Метод регрессии Лассо (LASSO, Least Absolute Shrinkage and Selection Operator) – вариация линейной регрессии. Лассо-регрессия

 $^{^9}$ Бабешко Л.О. Основы эконометрического моделирования: Учебное пособие. [Текст] / КомКнига . – г. Москва. – 2006 г. – 432 с.

минимизирует сумму квадратов остатков (RSS, Residual Sum of Squares) вместе с некоторым штрафным ограничением.

Область применения Лассо – датасеты с высокой коррелированностью независимых переменных (мультиколлинеарность).

Лассо также называют методом регуляризации, заключающемся в наложении дополнительных ограничений на искомые параметры, которые могут предотвратить излишнюю сложность модели. Метод заключается во введении дополнительного слагаемого регуляризации в функционал оптимизации модели, что часто позволяет получать более устойчивое решение.

Недостаток регрессии Лассо заключается в том, что становится трудно интерпретировать коэффициенты в окончательной модели, поскольку они сжимаются до нуля.

Деревья решений относятся к древовидным моделям классификации и регрессии (CART, classification and regression trees).

Древовидная модель — это набор правил импликации вида «если-то-иначе». В модели деревьев решений используется древесная структура для представления ряда возможных путей принятия решения и результата для каждого пути¹⁰.

В задачах регрессии деревья решений работают путем определения соответствующего выходного значения в соответствии с вектором признаков.

Преимущество модели заключается в наличии визуального инструмента обследования данных для представления о том, какие переменные важны и как они друг с другом связаны. Кроме того, древовидные модели обеспечивают набор правил и могут быть эффективно использованы неспециалистами.

 $^{^{10}}$ Грас Д. Data Science. Наука о данных с нуля [Текст] / БХВ-Петербург. – г. Санкт-Петербург. – 2021 г. – 416 с

Метод К ближайших соседей (KNN, k-nearest neighbors) состоит, вопервых, в поиске К записей, которые имеют схожие значения независимых переменных, во-вторых, в поиске среди этих схожих записей среднего и предсказывания этого среднего для новой записи.

Coceд (neighbor) – запись, чьи предикторные значения схожи с другой записью¹¹.

Преимуществом метода К ближайших соседей является простота модели и ее интуитивная понятность.

Метрические показатели расстояния (distance metrics) – метрические показатели, которые обобщают в одном числе, насколько далеко одна запись находится от другой¹². Самым популярным метрическим показателем расстояния между двумя векторами является евклидово расстояние.

К – число соседей, учитываемых при вычислении алгоритма ближайших соседей. Определяется К тем, насколько хорошую результативность алгоритм показывает на тренировочных данных с использованием разных значений К.

Нейросетевая регрессия создает модели регрессии с помощью алгоритма нейронной сети.

Искусственные нейронные сети (artificial neural networks, ANN) – упрощенные модели биологических нейронных сетей мозга человека¹³. Упрощенная математическая модель нейрона состоит из следующих элементов (рисунок 6):

– входные параметры $x_1, x_2, x_3, ..., x_n$, имеющие свои веса – w_1 , $w_2, w_3, ..., w_n$;

 $^{^{11}}$ Брюс П., Брюс Э. Практическая статистика для специалистов Data Science [Текст] / «БХВ-Петербург» – г. Санкт-Петербург. – 2020 г. – 304 с.

¹² Там же.

 $^{^{13}}$ Постолит, А. Основы искусственного интеллекта в примерах на Python [Текст] / «БХВ-Петербург» – г. Санкт-Петербург. – 2022 г. – 448 с.

- сумматор, где каждый входной коэффициент умножается на некоторый действительный весовой коэффициент и формируется итоговая сумма;
- функция активации нелинейное преобразование, поэлементно применяющееся к пришедшим на вход данным;
- на выходе осуществляется проверка значения функции активации.

Рисунок 6 – Математическая модель искусственного нейрона

Источник: Основы искусственного интеллекта в примерах на Python. – А.Постолит. – г. Санкт-Петербург. – «БХВ-Петербург». – 2022 г.

Обучение нейронной сети — это поиск такого набора весовых коэффициентов, при котором входной сигнал после прохода по сети преобразуется в нужный выходной.

Обучающая выборка (training set) — это набор входных сигналов вместе с правильными выходными сигналами, по которым происходит обучение сети.

Тестовые выборка (testing set) – это набор входных сигналов вместе с правильными выходными сигналами, по которым происходит оценка качества работы сети после обучения на обучающей выборке.

Таким образом, для обучения моделей прогноза модуля упругости при растяжении и прочности при растяжении будут использованы

рассмотренные выше методы регрессионного анализа: линейная, метод лассо, дерево решений, метод ближайших соседей. Также будет написана нейронная сеть, которая будет рекомендовать соотношение матрицанаполнитель.

Глава 2. Практическая часть

2.1. Предобработка данных

Предварительная обработка данных является важнейшим этапом исследования, позволяющим подготовить датасет, который будет в дальнейшем использоваться при построении моделей прогнозирования значения переменных.

Как уже было определено в *Разделе 1.1. Постановка задачи* решение задач исследования базируется на работе с датасетом, содержащим данные о свойствах композиционных материалов со следующими характеристиками:

- класс DataFrame;
- содержит 1023 строки и 13 столбцов;
- отсутствуют пропущенные значения;
- содержатся 2 типа данных: int64 и float64.

Датасет (joined_dataset) содержит как целевые переменные, так и признаки, используемые для прогнозирования значений целевых переменных.

2.1.1. Гистограммы, диаграммы ящика с усами, попарные графики рассеяния точек

В первую очередь построим графики рассеяния исследуемого датасета (рисунок 7). На графиках отображена взаимосвязь между переменными в исследуемом наборе данных. По диагонали на пересечении одного и того же признака отображена его гистограмма, в местах пересечения разных признаков отображена точечная диаграмма.

На графике ниже видно, что видимая попарная зависимость признаков отсутствует.

Рисунок 7 — Попарные графики рассеяния точек датасета joined_dataset

Далее построим диаграмму "ящик с усами", чтобы выявить наличие в выборке выбросов – данных, не подпадающих под общее распределение.

На рисунках 8-9 видно, что выбросы есть у всех параметров, кроме угла нашивки, который принимает только два значения.

Рисунок 8 — Диаграммы «ящик с усами» признаков исходного датасета joined_dataset (выбросы обнаружены)

Рисунок 9 — Диаграмма «ящик с усами» признаков исходного датасета joined_dataset (выбросы не обнаружены)

Далее построим гистограммы распределения признаков датасета joined_dataset (рисунки 10-11).

Гистограммой называется ступенчатая фигура, состоящая из прямоугольников, основанием которых служат частичные интервалы длиной h, а высоты равны w_i/h^{14} .

На графиках видно, что распределение признаков имеет колоколообразный вид, что свидетельствует о нормальном распределении данных. Признак «поверхностная плотность, г/м2» смещенное влево распределение, говорит о несимметричности распределения. Количество значений слева от медианы больше, чем справа от медианы.

Признак «угол нашивки» имеет отличную от других признаков гистограмму, поскольку принимает только два значения: 0 и 90 градусов.

Рисунок 10 – Гистограммы признаков исходного датасета joined_dataset

 $^{^{14}}$ Фадеева Л.Н., Жуков Ю.В., Лебедев А.В. Математика для экономистов: Теория вероятностей и математическая статистика [Текст] / Эксмо. – г. Москва. – 2006 г. – 336 с.

Рисунок 11 — Гистрограмма дискретного признака «угол нашивки» исходного датасета joined_dataset

Рассмотрим подробнее статистические характеристики датасета. Для этого воспользуемся методом describe(), который для каждой переменной датасета покажет количество значений (count), среднее значение (mean), стандартное (среднеквадратичное) отклонение (std), максимальные и минимальные значения (max, max), пороговые значения для 25, 50 и 75% квантилей (таблица 1).

Таблица 1 — Статистические характеристики исходного датасета joined_dataset, выведенные с помощью метода describe ()

Свойства композитов	count	mean	std	min	25%	50%	75%	max
Соотношение	1023	2,9	0,9	0,4	2,3	2,9	3,6	5,6
матрица- наполнитель								
Плотность, кг/м3	1023	1 975,7	73,7	1 731,8	1 924,2	1 977,6	2 021,4	2 207,8
Модуль упругости, ГПа	1023	739,9	330,2	2,4	500,0	739,7	961,8	1 911,5
Количество отвердителя, м.%	1023	110,6	28,3	17,7	92,4	110,6	129,7	199,0
Содержание эпоксидных групп, %_2	1023	22,2	2,4	14,3	20,6	22,2	24,0	33,0
Температура вспышки, С_2	1023	285,9	40,9	100,0	259,1	285,9	313,0	413,3
Поверхностная плотность, г/м2	1023	482,7	281,3	0,6	266,8	451,9	693,2	1 399,5

Модуль	1023	73,3	3,1	64,1	71,2	73,3	75,4	82,7
упругости при								
растяжении,								
ГПа								
Прочность при	1023	2 466,9	485,6	1 036,9	2 135,9	2 459,5	2 767,2	3 848,4
растяжении,								
МПа								
Потребление	1023	218,4	59,7	33,8	179,6	219,2	257,5	414,6
смолы, г/м2								
Угол нашивки,	1023	44,3	45,0	0,0	0,0	0,0	90,0	90,0
град								
Шаг нашивки	1023	6,9	2,6	0,0	5,1	6,9	8,6	14,4
Плотность	1023	57,2	12,4	0,0	49,8	57,3	64,9	104,0
нашивки								

Исследуем зависимость (корреляцию) свойств композитов. Для этого построим матрицу корреляций, содержащую коэффициенты корреляции между всеми парами переменных, используемых в анализе.

Таблица 2 — Матрица корреляции свойств композитов исходного датасета joined_dataset, выведенная с помощью метода corr ()

	Соотн ошени е матри ца- напол нител ь	Плотн ость, кг/м3	Моду ль упруг ости, ГПа	Колич ество отверд ителя, м.%	Содер жание эпокс идных групп, %_2	Темпе ратура вспы шки, С_2	Повер хност ная плотн ость, г/м2	Моду ль упруг ости при растя жении , ГПа	Прочн ость при растя жении , МПа	Потре блени е смолы , г/м2	Угол нашив ки, град	Шаг нашив ки	Плотн ость нашив ки
Соотношени е матрица- наполнитель	1	0,004	0,032	-0,006	0,020	-0,005	-0,006	-0,008	0,024	0,073	-0,031	0,036	-0,005
Плотность, кг/м3	0,004	1	-0,010	-0,036	-0,008	-0,021	0,045	-0,018	-0,070	-0,016	-0,068	-0,061	0,080
Модуль упругости, ГПа	0,032	-0,010	1	0,024	-0,007	0,031	-0,005	0,023	0,042	0,002	-0,025	-0,010	0,056
Количество отвердителя, м.%	-0,006	-0,036	0,024	1	-0,001	0,095	0,055	-0,066	-0,075	0,007	0,039	0,015	0,017
Содержание эпоксидных групп,%_2	0,020	-0,008	-0,007	-0,001	1	-0,010	-0,013	0,057	-0,024	0,015	0,008	0,003	-0,039
Температура вспышки, С_2	-0,005	-0,021	0,031	0,095	-0,010	1	0,020	0,028	-0,032	0,060	0,021	0,026	0,011
Поверхност ная плотность, г/м2	-0,006	0,045	-0,005	0,055	-0,013	0,020	1	0,037	-0,003	0,016	0,052	0,038	-0,050
Модуль упругости при растяжении, ГПа	-0,008	-0,018	0,023	-0,066	0,057	0,028	0,037	1	-0,009	0,051	0,023	-0,029	0,006
Прочность при растяжении, МПа	0,024	-0,070	0,042	-0,075	-0,024	-0,032	-0,003	-0,009	1	0,029	0,023	-0,060	0,020

Потреблени е смолы, г/м2	0,073	-0,016	0,002	0,007	0,015	0,060	0,016	0,051	0,029	1	-0,015	0,013	0,012
Угол нашивки, град	-0,031	-0,068	-0,025	0,039	0,008	0,021	0,052	0,023	0,023	-0,015	1	0,024	0,108
Шаг нашивки	0,036	-0,061	-0,010	0,015	0,003	0,026	0,038	-0,029	-0,060	0,013	0,024	1	0,003
Плотность нашивки	-0,005	0,080	0,056	0,017	-0,039	0,011	-0,050	0,006	0,020	0,012	0,108	0,003	1

Дополнительно проиллюстрируем корреляцию признаков с помощью «тепловой карты корреляции» (рисунок 12). На рисунке видно, что зависимость между признаками минимальна.

Рисунок 12 — Корреляционная тепловая карта исходного датасета joined_dataset

2.1.2. Удаление выбросов

В настоящем исследовании при подготовке датасета для построения моделей удаление выбросов проводилось несколько раз. Окончательный

выбор был сделан в пользу выборки, для которой был вычислен наибольший коэффициент детерминации (R2).

Модели создавались для следующих датасетов:

- датасет, в котором выбросы удалены по 10%-м нижним и верхним квартилям;
- датасет, в котором выбросы удалены вручную для трех признаков;
- датасет, в котором удалены первые 40 строк исходного датасета;
- датасет, в котором удалены первые 40 строк исходного датасета, а также вручную удалены выбросы для трех признаков.

Выведем таблицу с пороговыми значениями 10%-х квантилей для переменных датасета joined_dataset (таблица 3).

Таблица 3 – Пороговые значения десятипроцентных квантилей для переменных датасета joined_dataset

	Соотношен ие матрица- наполнител ь	Плотност ь, кг/м3	Модуль упругост и, ГПа	Количество отвердител я, м.%	Содержани е эпоксидны х групп,%_2	Температу ра вспышки, С_2	Поверхностн ая плотность, г/м2	Модуль упругости при растяжени и, ГПа	Прочность при растяжени и, МПа	Потреблен ие смолы, г/м2	Угол нашивки , град	Шаг нашивк и	Плотност ь нашивки
0	0,4	1731,8	2,4	17,7	14,3	100,0	0,6	64,1	1036,9	33,8	0,0	0,0	0,0
0,1	1,7	1881,4	321,1	75,9	19,1	233,2	117,7	69,3	1859,9	140,5	0,0	3,7	41,4
0,2	2,2	1912,9	442,6	87,2	20,2	251,5	219,7	70,6	2055,6	169,8	0,0	4,8	47,6
0,3	2,5	1936,1	563,7	96,8	21,0	265,6	311,1	71,7	2203,6	188,2	0,0	5,5	51,3
0,4	2,7	1959,6	652,5	104,4	21,6	275,4	379,6	72,4	2354,8	202,3	0,0	6,3	54,6
0,5	2,9	1977,6	739,7	110,6	22,2	285,9	451,9	73,3	2459,5	219,2	0,0	6,9	57,3
0,6	3,1	1993,8	830,3	118,2	22,9	295,8	536,1	74,1	2578,8	233,6	90,0	7,5	60,1
0,7	3,4	2013,0	918,4	125,9	23,6	305,7	637,6	74,9	2707,7	248,3	90,0	8,1	63,5
0,8	3,7	2035,8	1022,0	133,9	24,3	320,3	734,6	76,0	2852,0	271,1	90,0	9,0	66,9
0,9	4,1	2067,1	1157,0	146,2	25,3	340,7	865,1	77,3	3088,8	299,2	90,0	10,2	72,1
1	5,6	2207,8	1911,5	199,0	33,0	413,3	1399,5	82,7	3848,4	414,6	90,0	14,4	104,0

Исходная выборка является недостаточно многочисленной, состоит из 1023 строк и 13 колонок, не содержит пустых значений. Подробное изучение данных позволяет сделать выод о наличии в выборке синтетических данных, которые выделяются из всего датасета отутствием

значений после запятой (рисунок 13). Проделанная автором работа по созданию моделей прогнозирования переменных позволяет сделать выод о необходимости удаления первых сорока строк датасета для формирования датасета, для которого в дальнейшем будут получены наилучшие характеристики достоверности моделей прогноза.

12	1,598173516	1950	827	129	21,25	300	470	73,33333333	2455,555556	220	0	9	57
13	2,919677836	1980	568	129	21,25	300	470	73,33333333	2455,555556	220	0	9	60
14	4,029126214	1910	800	129	21,25	300	470	73,33333333	2455,555556	220	0	9	70
15	2.934782609	2030	302	129	21,25	300	210	70	3000	220	0	10	47
16	3.557017544	1880	313	129	21.25	300	210	70	3000	220	0	10	57
17	4.193548387	1950	506	129	21.25	300	380	75	1800	120	0	10	60
18	4.897959184	1890	540	129	21,25	300	380	75	1800	120	0	10	70
19	3.532338308	1980	1183	111.88	22.26785714	284.6153846	1010	78	2000	300	0	0	
												4	47
20	2,877358491	2000	205	111,86	22,26785714	284,6153846	1010	78	2000	300	90		
21	1,598173516	1920	456	111,88	22,26785714	284,6153846	470	73,33333333	2455,555556	220	90	4	57
22	4,029126214	1880	622	111,88	22,26785714	284,6153846	470	73,33333333	2455,555556	220	90	4	60
23	2,587347643	1953,274926	1138,598135	137,6274198	22,34453357	234,716883	555,8934533	80,80322176	2587,342983	246,6131165	90	4	70
24	2,499917928	1942,595777	901,5199467	146,2522078	23,08175748	351,231874	864,7254838	76,17807508	3705,672523	226,2227604	90	5	47
25	2,046471464	2037,631811	707,570887	101,6172513	23,14639281	312,3072052	547,6012188	73,81706662	2624,026407	178,1985559	90	5	57
26	1.85647617	2018.220332	836.2943816	135.4016966	26.4355146	327.5103767	150.9614485	77.21076158	2473.187195	123.3445614	90	5	60
27	3.305535422	1917.907508	478,2862473	105,7869296	17,87409991	328.1545795	526,6921594	72.34570879	3059,032991	275,5758795	90	5	70
28	2.709554095	1892.071124	641.0525494	96.56329319	22.98929056	262.956722	804.5926208	74.51135922	2288.967377	126.8163389	90	7	47
	2,703004030	2008.357592	393.9673255	149.3728324			535,3714591		2704.445081	281,0770716		7	
29 30	1.978140173	1973.629097	991.7240946	149,3728324	21,66175068 19,75057789	330,498641 232,0581913	485.4537781	72,24492408 75.68570058	2448.943079	162.4936936	90 90	7	57 60
31	1,771438393	1872,49156	801,0338825	79,79454787	22,29630372	340,7388984	884,9291837	70.94759158	2796,785402	123,3562643	90	7	70
32	3.277086987	2010.047012	339.5504228	67.49899306	24.28060902	254.9490837	117.5352342	67.47870663	2462.605386	207.0185813	90	9	47
33	2.984362226	1912.315437	1183.091845	133.5490007	23.26379657	314.9961255	377.3890094	75.29045222	2303.770656	200.5802494	90	9	57
34	2.916149621	1879,969846	1003,270178	109,2395305	25,68275948	294,0485366	408,3542393	71,70085562	3086,546196	192,1911621	90	9	60
35	3.247617211	1813.2346	757.874479	81.37987084	23.42246524	279.0801575	575.0628571	69.34113288	3188,136358	252,8705688	90	9	70
36	2.423875673	1908.940601	530,2286864	58.26241428	24.07354923	325.138688	456.9080467	74.24435417	1890.505807	222,6994873	90	10	47
37	5.09899309	1977,339047	1572,096042	132,3430598	25,39700098	286,5564309	690,3648357	72,34163973	1386,578973	271,9013937	90	10	57
38	2.444176986	2085,495837	931,3106361	110.5648399	23.48713976	270.2867651	278.2300203	71,47906047	2740.229631	187.8613727	90	10	60
39	2.667696929	2078.894676	1542.168458	132.1474033	22.6501092	357.9728962	787,299217	76.47178847	2559.643047	163.902778	90	10	70
40	3.034399483	1968.401388	455.8710188	61,42129652	23,49072291	316,4145721	637,3768927	75,09037174	2848.490078	311,0523979	0	7.856166547	64.30196385
41	2.465204971	1936.099137	1056,554985	71.29405822	24.5233807	271,9756783	129.0771629	66,42079436	2868.586527	227.0225573	0	7.401542587	19.25053314
42	2.664388649	1996,159145	525.0577741	77,50688254	18.12610706	223,4086854	28.65810234	69.48977348	2220.587445	314,7766687	0	6.675780339	78.62329934
43	1.193529582	1965,929227	899,603701	102.9590686	19.58871824	225,8102229	871.0889548	73,45489452	2335,541792	91.04764633	0	7.52639832	38,17697532
44	2.914333275	2049.373404	382,2633585	81.35204737	16.39159473	233,2960627	581,9921308	69.81461516	2262,784366	303.0754524	0	8.32569922	46.04542763
45	4.315665782	1913.379677	822,9187355	143.5769371	24.2755881	274.9887944	260.8593411	75.95732857	1639.912525	248.2443299	0	7.656210875	33.57102356
46	2.338424288	1963,35156	1155,160504	150,0158298	18,29942138	315,9041781	644,3631421	71,30398977	3407,713581	304,4232741	0	10.30294472	39,23427979
47	1.298167246	1984.511373	1405,786822	130.9427979	21.8292399	288.9520988	161.0077185	74,68091326	2526.814256	228,8677196	0	8.946891121	72,08459409
48	2.134446144	1986.349053	809.2938035	95.08902184	19.38492572	205.499761	198.3578427	78.34020725	2459.524528	289.9571416	0	3.748824977	57.99777218
49	4,147966432	1991,789789	1250,198275	116.8564622	21.57328495	320,7401725	755,5005552	70,35546403	1795,719359	189,8833073	0	9,094363677	44,80160057
50	3.057830147	1987.259859	403.3952302	112,719826	19.39051107	336.2453837	352.8319835	73.01648889	2016.503637	206.6933789	0	6.303772846	72.15201873
51	4.182128584	1940.739237	347.9917504	111,9697729	18,80028338	304,1904883	229,9283369	72,76947322	2097,669452	226,4226453	0	7,257961831	50.21983553

Рисунок 13 — Демонстрация специфики данных исходного датасета joined_dataset

Таким образом, с помощью функии iloc[] из датасета были удалены все строки до сорокой. Для дальнейшего удаления выбросов был создан датасет raw_dataset, содержащий 983 строки и 13 колонок. Тип данных в датасете: float64 и int64.

Для raw_dataset далее были построены диаграммы "ящик с усами" для определения и последующего удаления выбросов. Принято решение об удалении выбросов для трех признаков:

- температура вспышки, С 2 (более 390 и менее 170);
- содержание эпоксидных групп,%_2 (более 30 и менее 16);
- плотность нашивки (более 95, менее 15).

Такой выбор обсуловлен тем, что данные выбросы наиболее выделяются из основной выборки. Отбор выбросов осуществлялся исходя из цели по максимальному сохранению численности выборки, так как для построения моделей необходимо сохранить достаточное количество параметров.

Таким образом, сформирован новый датасет dataset_filtered, в котором содержаться 972 строки и 13 столбцов, пустые значения отсутствуют (рисунок 14).

	ss 'pandas.core.frame.DataFrame'> 4Index: 972 entries, 40 to 1022		
Data	columns (total 13 columns):		
#	Column	Non-Null Count	Dtype
0	Соотношение матрица-наполнитель	972 non-null	float64
1	Плотность, кг/м3	972 non-null	float64
2	модуль упругости, ГПа	972 non-null	float64
3	Количество отвердителя, м.%	972 non-null	float64
4	Содержание эпоксидных групп,%_2	972 non-null	float64
5	Температура вспышки, С_2	972 non-null	float64
6	Поверхностная плотность, г/м2	972 non-null	float64
7	Модуль упругости при растяжении, ГПа	972 non-null	float64
8	Прочность при растяжении, МПа	972 non-null	float64
9	Потребление смолы, г/м2	972 non-null	float64
10	Угол нашивки, град	972 non-null	int64
11	Шаг нашивки	972 non-null	float64
12	Плотность нашивки	972 non-null	float64
dtyp	es: float64(12), int64(1)		
memo	ry usage: 106.3 KB		

Рисунок 14 – Информация по датасету dataset_filtered, выведенная с помощью метода info()

На таблице 4 отображены статистические характеристики датасета, содержащие количество значений (count), среднее значение (mean), стандартное (среднеквадратичное) отклонение (std), максимальные и минимальные значения (max, max), пороговые значения для 25, 50 и 75% квартилей.

Датасет dataset_filtered содержит данные в исходном виде, которые трудно сопоставить между собой. Об этом свидетельствут средние значения признаков. В этом связи следующим шагом исследования будет проведение процедуры нормализации датасета.

Таблица 4 — Статистические характеристики датасета filtered_dataset, выведенные с помощью метода describe ()

Свойства композитов	count	mean	std	min	25%	50%	75%	max
Соотношение	972	2,94	0,91	0,39	2,33	2,92	3,56	5,59
матрица-наполнитель								
Плотность, кг/м3	972	1 975,50	73,63	1 731,76	1 924,70	1 977,60	2 020,99	2 207,77
модуль упругости, ГПа	972	738,37	329,62	2,44	498,44	738,28	962,17	1 911,54
Количество	972	110,49	28,29	17,74	92,17	110,16	129,85	198,95
отвердителя, м.%								
Содержание	972	22,24	2,39	16,05	20,55	22,21	23,98	28,96
эпоксидных групп,%_2								
Температура вспышки,	972	285,18	40,15	173,48	258,35	285,20	312,84	386,07
C_2								
Поверхностная	972	480,55	281,28	0,60	266,21	450,41	692,80	1 399,54
плотность, г/м2								
Модуль упругости при	972	73,32	3,12	64,05	71,30	73,23	75,34	82,68
растяжении, ГПа								
Прочность при	972	2 464,87	485,27	1 036,86	2 135,89	2 455,30	2 758,75	3 848,44
растяжении, МПа								
Потребление смолы,	972	219,01	59,88	33,80	179,91	218,25	258,81	414,59
г/м2								
Угол нашивки, град	972	44,35	45,02	0	0	0	90	90
Шаг нашивки	972	6,92	2,57	0,04	5,14	6,91	8,58	14,44
Плотность нашивки	972	57,14	12,12	15,42	49,89	57,36	64,93	92,96

2.1.3. Нормализация

Перед процедурой нормализации исключаем целевые значения модуля упругости при растяжении и прочности при растяжении. Далее проводим процедуру нормализации для датасета с десятью переменными.

На таблице 5 отображены статистические характеристики нормализованного датасета, средние значения признаков которого теперь расположены в диапазоне от 0 до 1 и являются сопоставимыми.

Таблица 5 – Статистические характеристики нормализованного датасета normalized dataset, выведенные с помощью метода describe ()

Свойства композитов	count	mean	std	min	25%	50%	75%	max
Соотношение								
матрица-наполнитель	972	0,0013	0,0004	0,0002	0,0010	0,0013	0,0016	0,0025
Плотность, кг/м3	972	0,8857	0,0507	0,6949	0,8527	0,8890	0,9253	0,9850
Модуль упругости,								
ГПа	972	0,3246	0,1313	0,0011	0,2338	0,3320	0,4208	0,6816
Количество								
отвердителя, м.%	972	0,0496	0,0131	0,0079	0,0412	0,0493	0,0586	0,0935
Содержание								
эпоксидных								
групп,%_2	972	0,0100	0,0013	0,0063	0,0091	0,0099	0,0109	0,0142
Температура вспышки,								
C_2	972	0,1279	0,0194	0,0749	0,1146	0,1276	0,1409	0,1883
Поверхностная								
плотность, г/м2	972	0,2120	0,1185	0,0003	0,1218	0,2033	0,3023	0,5599
Потребление смолы,								
г/м2	972	0,0983	0,0276	0,0147	0,0803	0,0970	0,1167	0,1968
Угол нашивки, град	972	0,0199	0,0203	0,0000	0,0000	0,0000	0,0406	0,0486
Шаг нашивки	972	0,0031	0,0012	0,0000	0,0023	0,0031	0,0038	0,0074
Плотность нашивки	972	0,0256	0,0056	0,0073	0,0220	0,0256	0,0295	0,0443

Таким образом, на этапе предварительной обработки и разведочного анализа данных подготовлен датасет, не содержащий пустых значений, очищенный от явных выбросов, над которым произведена процедура нормализации.

Полученный датасет будет использован для создания моделей прогноза значений двух признаков: модуля упругости при растяжении и прочности при растяжении.

2.2. Разработка и обучение модели

В предыдущих разделах в результате предварительной обработки и разведочного анализа данных подготовлен датасет для создания моделей прогноза значений двух признаков: модуля упругости при растяжении и прочности при растяжении. Датасет не содержит пустых значений, очищен от явных выбросов, нормализован.

В первую очередь, поместим целевые переменные 'Модуль упругости при растяжении, ГПа' и 'Прочность при растяжении, МПа' в переменные у_upr и у_prochn. Статистические характеристики целевых переменных, выведенные с помощью метода describe () проиллюстрированы на рисунке 15.

сть при растяжении, МПа	Прочно	гости при растяжении, ГПа	Модуль уп
972.000000	count	972.000000	count
2464.874731	mean	73.323252	mean
485.269329	std	3.122066	std
1036.856605	min	64.054061	min
2135.886086	25%	71.301753	25%
2455.297778	50%	73.230375	50%
2758.749272	75%	75.337585	75%
3848.436732	max	82.682051	max

Рисунок 15 — Статистические характеристики целевых переменных, выведенные с помощью метода describe ()

Оставшиеся одиннадцать признаков поместим в переменные x_upr и x_prochn (таблицы 6-7).

Таблица 6 – Статистические характеристики независимых переменных x_upr, выведенные с помощью метода describe ()

Свойства композитов	count	mean	std	min	25%	50%	75%	max
Соотношение матрица-наполнитель	972	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Плотность, кг/м3	972	0,89	0,05	0,69	0,85	0,89	0,93	0,98
Модуль упругости, ГПа	972	0,32	0,13	0,00	0,23	0,33	0,42	0,68
Количество отвердителя, м.%	972	0,05	0,01	0,01	0,04	0,05	0,06	0,09
Содержание эпоксидных групп,%_2	972	0,01	0,00	0,01	0,01	0,01	0,01	0,01
Температура вспышки, С_2	972	0,13	0,02	0,07	0,11	0,13	0,14	0,19
Поверхностная плотность, г/м2	972	0,21	0,12	0,00	0,12	0,20	0,30	0,56
Потребление смолы, г/м2	972	0,10	0,03	0,01	0,08	0,10	0,12	0,20

Угол нашивки, град	972	0,02	0,02	0,00	0,00	0,00	0,04	0,05
Шаг нашивки	972	0,00	0,00	0,00	0,00	0,00	0,00	0,01
Плотность нашивки	972	0,03	0,01	0,01	0,02	0,03	0,03	0,04

Таблица 7 — Статистические характеристики независимых переменных x_prochn, выведенные с помощью метода describe ()

Свойства	count	mean	std	min	25%	50%	75%	max
композитов								
Соотношение								
матрица-								
наполнитель	972	0,001	0,000	0,000	0,001	0,001	0,002	0,003
Плотность, кг/м3	972	0,886	0,051	0,695	0,853	0,889	0,925	0,985
модуль упругости,								
ГПа	972	0,325	0,131	0,001	0,234	0,332	0,421	0,682
Количество								
отвердителя, м.%	972	0,050	0,013	0,008	0,041	0,049	0,059	0,093
Содержание								
эпоксидных								
групп,%_2	972	0,010	0,001	0,006	0,009	0,010	0,011	0,014
Температура								
вспышки, С_2	972	0,128	0,019	0,075	0,115	0,128	0,141	0,188
Поверхностная								
плотность, г/м2	972	0,212	0,118	0,000	0,122	0,203	0,302	0,560
Потребление								
смолы, г/м2	972	0,098	0,028	0,015	0,080	0,097	0,117	0,197
Угол нашивки, град	972	0,020	0,020	0,000	0,000	0,000	0,041	0,049
Шаг нашивки	972	0,003	0,001	0,000	0,002	0,003	0,004	0,007
Плотность нашивки	972	0,026	0,006	0,007	0,022	0,026	0,029	0,044

Разобьем данные на обучающую (X_train_upr, y_train_upr, X_train_prochn, y_train_prochn) и тестовую (X_test_upr, y_test_upr, X_test_prochn, y_test_prochn) выборки. В соответствии с заданными условиями 30% данных оставим на тестирование модели, на остальных произведем обучение моделей, значение случайного числа (random_state) определим равным 42.

Посмотрим на размерности обучающих и тестовых выборок модуля упругости при растяжении и прочности при растяжении (таблица 8).

Таблица 8 – Размерности обучающих и тестовых выборок модуля упругости при растяжении и прочности при растяжении

X_train_upr	y_train_upr	X_test_upr	y_test_upr
(680, 11)	(680, 1)	(292, 11)	(292, 1)
X_train_prochn	y_train_prochn	X_test_ prochn	y_test_ prochn
(680, 11)	(680, 1)	(292, 11)	(292, 1)

Далее проведено обучение моделей для прогноза значений модуля упругости при растяжении и прочности при растяжении, рассчитаны значения средних квадратических ошибок (MSE), корней из средней квадратической ошибки (RMSE), а также коэффициентов детерминации (R^2) .

В настоящем исследовании использованы следующие методы обучения моделей: линейная регрессия, метод лассо, дерево решений, метод ближайших соседей.

Таблица 9 — Оценка качества моделей для показателя модуль упругости при растяжении

Метрики	RMSE	MSE	R2_score
Лассо упругость	3,22	10,36	0,00
Дерево решений	3,23	10,45	-0,01
упругость			
К-соседей упругость	3,33	11,09	-0,07

Таблица 10 – Оценка качества моделей для показателя прочности при растяжении

Метрики	RMSE	MSE	R2_score
Лассо прочность	502,02	252027,1	-0,02
Дерево решений			
прочность	2500,32	6251620	-24,35
К-соседей прочность	500,33	250329,4	-0,01

Представление выше метрики свидетельствует о достаточно низких способностях моделей к прогнозированию. Наилучшие значения показывает метод регрессии Лассо, что тем не менее не говорит об эффективности модели.

2.3. Нейронная сеть для прогнозирования соотношения матрица наполнитель

В первую очередь, подготовим датасет для прогнозирования значений соотношения матрица-наполнитель. Для этого из исходного датасета dataset_index, прошедшего процесс нормализации и удаления выбросов, выведем целевую переменную и сохраним ее в target_smn.

Далее, из исходного датасет dataset_index удалим целевую переменную с помощью метода drop(). Полученный датасет с независимыми переменными df_drop_target_smn содержит 12 столбцов.

Таким образом, получаем важную информацию для разработки нейронной сети: значение input_dim равное 12, для выходного слоя зададим такое количество нейронов, которое соответствует количеству прогнозируемых классов, т.е. 1.

Далее нормализуем датасет аналогично процедуре, проведенной в разделе 2.1: с помощью метода Normalizer. На таблице 11 отображены статистические характеристики датасета normalized_smndataset, средние значения признаков которого теперь расположены в диапазоне от 0 до 1.

Таблица 11 – Статистические характеристики нормализованного датасета normalized_smndataset, выведенные с помощью метода describe ()

Свойства композитов	count	mean	std	min	25%	50%	75%	max
Плотность, кг/м3	972	0,597	0,069	0,420	0,551	0,592	0,642	0,874
модуль упругости, ГПа	972	0,221	0,096	0,001	0,150	0,222	0,291	0,481
Количество отвердителя, м.%	972	0,033	0,010	0,005	0,027	0,033	0,039	0,073
Содержание эпоксидных групп,%_2	972	0,007	0,001	0,004	0,006	0,007	0,007	0,011
Температура вспышки, С_2	972	0,086	0,016	0,048	0,075	0,085	0,097	0,148
Поверхностная плотность, г/м2	972	0,144	0,084	0,000	0,081	0,136	0,203	0,414
Модуль упругости при растяжении, ГПа	972	0,022	0,003	0,015	0,020	0,022	0,024	0,033
Прочность при растяжении, МПа	972	0,730	0,073	0,430	0,687	0,740	0,781	0,882
Потребление смолы, г/м2	972	0,066	0,019	0,011	0,053	0,066	0,079	0,145
Угол нашивки, град	972	0,013	0,014	0,000	0,000	0,000	0,027	0,038
Шаг нашивки	972	0,002	0,001	0,000	0,002	0,002	0,003	0,005
Плотность нашивки	972	0,017	0,004	0,004	0,015	0,017	0,020	0,031

Далее разобьем данные на обучающую (X_train_smn, y_train _smn) и тестовую (X_test _smn, y_test _smn) выборки. В соответствии с заданными условиями, 30% данных оставим на тестирование модели, на остальных проведем обучение моделей, значение случайного числа (random_state) определим равным 42.

Посмотрим на размерности обучающих и тестовых выборок соотношения матрица-наполнитель (таблица 12).

Таблица 12 — Размерности обучающих и тестовых выборок соотношения матрица-наполнитель

X_train_smn	y_train_smn
(680, 12)	(680, 1)
X_test_smn	y_test.smn
(292, 12)	(292, 1)

Разработаем и обучим нейронную сеть для прогнозирования значений соотнрошения матрица-наполнитель. Создадим четыре DENSE-слоя: три скрытых слоя, состоящих из 128 нейронов каждый, и 1 выходной слой из 1 нейрона.

Активационные функции на скрытых слоях relu, на выходном – elu. Входному слою передаем input_dim = 12, а также функцию активации relu. Воспользуемся методом Dropout, чтобы избежать переобучения сети, зададим значение 0.2. Для выходного слоя зададим такое количество нейронов, которое соответствует количеству классов, т.е. 1, а также воспользуемся функцией elu.

Скомпелируем модель с помощью метода compile(), которому зададим функцию потерь mean_absolute_error, оптимизатор обучения Adam.

Запустим обучение нейронной сети с помощью метода fit(). Передадим методу данные х train smn и у train smn, размер батча

(batch_size) зададим равным 128, количество циклов обучения (epochs) – 100, долю обучающих данных, используемую для проверки нейросети (validation_split) 0,2.

Для нейронной сети рассчитаны значения средней квадратической ошибки (MSE), корня из средней квадратичной ошибки (RMSE), а также коэффициента детерминации (\mathbb{R}^2) (таблица 13).

Таблица 13 — Оценка качества нейронной сети для соотношения матрица-наполнитель

Метрики					
RMSE	0,88				
MSE	0,77				
R2	-0,02				

Представление выше метрики свидетельствует о достаточно низких способностях модели к прогнозированию. Отрицательный коэффициент детерминации говорит о низком качестве модели.

Таким образом, модель для прогнозирования свойства «соотношение матрица-наполнитель» недостаточно эффективна.

2.4. Разработка приложения

Приложение создано для прогнозирования признака соотношениематрица наполнитель (рисунок 16). Для получения прогнозного значения необходимо ввести значения двенадцати переменных:

- 1. модуль упругости при растяжении;
- 2. прочность при растяжении;
- 3. плотность, кг/м3;
- 4. модуль упругости, Гпа;
- 5. количество отвердителя, м.%;
- 6. содержание эпоксидных групп, %_2;
- 7. температура вспышки, С 2;
- 8. поверхностная плотность, г/м2;
- 9. потребление смолы, г/м2;
- 10. угол нашивки, град;
- 11. шаг нашивки;
- 12. плотность нашивки.

Расчет соотношения матрица-наполнитель
Ввод параметров
Введите Плотность, кг/м3
Введите Модуль упругости, ГПа
Введите Количество отвердителя, м.%
Введите Содержание эпоксидных групп,%_2
Введите Температура вспышки, С_2
Введите Поверхностная плотность, г/м2
Введите Модуль упругости при растяжении, ГПа
Введите Прочность при растяжении, МПа
Введите Потребление смолы, г/м2
Введите Угол нашивки, град
Введите Шаг нашивки
Введите Плотность нашивки
Рассчитать Сбросить
Спрогнозированное Соотношение матрица-наполнитель для введенных параметров:

Рисунок 16 — Окно ввода данных для прогнозирования признака соотношение-матрица наполнитель

Далее необходимо заполнить ячейки соответствующими значениями независимых признаков (рисунок 17).

Расчет соотношения матрица-наполнитель
Ввод параметров—
Введите Плотность, кг/м3 1
Введите Модуль упругости, ГПа 1
Введите Количество отвердителя, м.% 1
Введите Содержание эпоксидных групп,%_2 1
Введите Температура вспышки, С_2 1
Введите Поверхностная плотность, т/м2
Введите Модуль упругости при растяжении, ГПа 1
Введите Прочность при растяжении, МПа 1
Введите Потребление смолы, г/м2 1
Введите Угол нашивки, град 1
Введите Шаг нашивки 1
Введите Плотность нашивки 1
Рассчитать
Спрогнозированное Соотношение матрица-наполнитель для введенных параметров:

Рисунок 17 — Окно ввода данных с заполненными значениями независимых переменных

После проставления вводных данных необходимо нажать на кнопку «рассчитать». Прогнозное значение признака соотношение-матрица наполнитель отразится в нижней строке (рисунок 18).

Расчет соотношения матрица-наполнитель
Ввод параметров-
Введите Плотность, кг/м3
Введите Модуль упругости, ГПа
Введите Количество отвердителя, м.%
Введите Содержание эпоксидных групп,%_2
Введите Температура вспышки, С_2
Введите Поверхностная плотность, г/м2
Введите Модуль упругости при растяжении, ГПа
Введите Прочность при растяжении, МПа
Введите Потребление смолы, г/м2
Введите Угол нашивки, град
Введите Шаг нашивки
Введите Плотность нашивки
Рассчитать Сбросить
Спрогнозированное Соотношение матрица-наполнитель для введенных параметров:8.7

Рисунок 18 — Окно ввода данных с выведенным прогнозным значением признака соотношение-матрица наполнитель

2.5. Создание удаленного репозитория

Автором создана личная страница на веб-сервисе GitHub (aburchakova). На страницу добавлен репозиторий «kompozitus», который находится по адресу: https://github.com/aburchakova/kompozitus.

Заключение

Прогнозирование свойств композиционных материалов является актуальной производственной задачей, позволяющей снизить количество реально проводимых испытаний.

Объектом исследования выступили композиционные материалы, которые представляют собой искусственно созданные материалы, состоящие из нескольких других с четкой границей между ними.

Предметом исследования стали прогнозные данные трех свойств композитов: соотношение матрица-наполнитель, модуль упругости при растяжении, прочность при растяжении.

В настоящем исследовании последовательно решались следующие задачи исследования:

- 1. изучение теоретических основ и методов прогнозирования целевых переменных, в частности свойств получаемых композиционных материалов;
- 2. проведение разведочного анализа данных;
- 3. обучение моделей для прогноза целевых признаков: модуля упругости при растяжении и прочности при растяжении;
- 4. написание нейронной сети, которая будет рекомендовать соотношение матрица-наполнитель.

На первом этапе исследования сформирован датасет с данными о свойствах композиционных материалов, представленный классом DataFrame, хранящий 1023 строки и 13 столбцов. Проведено исследование данных с использованием статистических характеристик.

На втором этапе исследования проведена обработка данных: построены попарные графики рассеяния точек, диаграммы ящика с усами, гистограммы, исследованы выбросы датасета, изучена корреляция между признаками, а также проведена нормализация независимых переменных. В

результате подготовлен датасет, использованный при построении моделей прогнозирования значений переменных.

Кроме того, осуществлено изучение теоретических основ и методов прогнозирования целевых переменных, в частности линейной регрессии, метода лассо, дерева решений, метода ближайших соседей, исследована специфика нейросетевой регрессии.

На третьем этапе исследования разработаны и обучены модели прогноза значений модуля упругости при растяжении, прочности при растяжении, создана нейронная сеть для прогнозирования соотношения матрица наполнитель.

Оценка метрик моделей показала наличие слабой способности моделей к прогнозированию целевых значений. В этой связи для дальнейшего исследования определены следующие задачи: применение большего количества моделей машинного обучения для поиска модели с более высокой способностью к прогнозированию, обработка исходных данных датасета с участием экспертов-составителей датасета и формирование нового датасета.

Библиографический список

- 1. Бабешко Л.О. Основы эконометрического моделирования: Учебное пособие. [Текст] / КомКнига . – г. Москва. – 2006 г. – 432 с.
- 2. Брюс П., Брюс Э. Практическая статистика для специалистов Data Science [Текст] / «БХВ-Петербург» г. Санкт-Петербург. 2020 г. 304 с.
- 3. Грас Д. Data Science. Наука о данных с нуля [Текст] / БХВ-Петербург. г. Санкт-Петербург. 2021 г. 416 с.
- 4. Постолит, А. Основы искусственного интеллекта в примерах на Python [Текст] / «БХВ-Петербург» г. Санкт-Петербург. 2022 г. 448 с.
- 5. Свейгарт Эл. Автоматизация рутинных задач с помощью Python [Текст] / ООО «Дилектика». г. Санкт-Петербург. 2021 г. 672 с.
- 6. Теория статистики. Учебник. г. Москва. «Финансы и статистика». 1998 г.
- 7. Фадеева Л.Н., Жуков Ю.В., Лебедев А.В. Математика для экономистов: Теория вероятностей и математическая статистика [Текст] / Эксмо. г. Москва. 2006 г. 336 с.
- 8. «Развитие промышленности и повышение ее конкурентоспособности» [Электронный ресурс] / Портал Госпрограмм РФ.
 https://programs.gov.ru/Portal/program/16/passport / Дата обращения 25.04.2023
- 9. «Научно-технологическое развитие Российской Федерации» [Электронный ресурс] / Портал Госпрограмм РФ. https://programs.gov.ru/Portal/programs/passport/47. Дата обращения 25.04.2023