1.	Gegeben sind die folgenden Teilmengen $A = \{1, 3, 5, 7, 9\}, B = \{2, 4, 6, 8, 10\}$
	und $D = \{5, 6, 7, 8, 9, 10\}.$
	Gib die folgenden Mengen an:
	(a) $A \sqcup B$

- (a) $A \cup B$
- (b) $A \cap B$
- (c) $A \setminus B$
- (d) $A \setminus D$
- (e) $B \setminus D$
- (f) *D* \ *A*
- (g) $D \setminus B$
- (h) $D \setminus (A \cup B)$
- (i) $D \setminus (A \cap B)$

Lösung:

(a)

2. Wie viele Elemente enthält die Potenzmenge $\mathcal{P}(A)$ einer (endlichen) Menge A mit |A|=n? Schreibe z.B. alle Teilmengen von $\{1,2\}$ oder $\{1,2,3\}$ auf, und versuche eine Regelmäßigkeit zu erkennen. Wie könnte man die Regelmäßigkeit allgemein beweisen? Zeige dass für endliche Mengen stets $|A| < |\mathcal{P}(A)|$ gilt.

Lösung:

(a)

- 3. Bestimme die folgenden Mächtigkeiten:
 - (a) $|\{1,4,6\}|$
 - (b) $|\emptyset|$
 - (c) $|\{\emptyset\}|$
 - (d) $|\{\emptyset, \{1, 2, 3\}\}|$

Lösung:

(a)

- 4. Zeichne Punktmengen A, B und C, die die folgenden vier Bedingungen zugleich erfüllen:
 - (a) $A \cap B \cap C = \emptyset$
 - (b) $A \cap B \neq \emptyset$
 - (c) $B \cap C \neq \emptyset$
 - (d) $A \cap C \neq \emptyset$

Gib daraufhin Zahlenmengen möglichst kleiner Mächtigkeit an, die diese Bedingungen erfüllen.

Lösung:

(a)

- 5. A, B und C seien Teilmengen einer Grundmenge G. Beweise von den folgenden Aussagen die wahren und gib für die falschen jeweils ein Gegenbeispiel an.
 - (a) Wenn $A \cup B = A \cup C$, dann ist B = C
 - (b) Wenn $A \setminus B = A$, dann ist B = C
 - (c) Wenn $B = \emptyset$, dann ist $A \setminus B = A$
 - (d) $A \setminus B$ und $B \setminus C$ sind immer disjunkt (d.h. die Schnittmenge ist leer).

Lösung:

(a)

6. Beweise, dass zwei Mengen A und B gleich sind, wenn sie wechselseitig Teilmengen voneinander sind (und auch nur dann), also:

$$A = B \Leftrightarrow A \subseteq B \land B \subseteq A$$

Lösung:

(a)

7. Die 30 Schüler einer Klasse schrieben in den drei Fächern Deutsch, Englisch und Mathematik Prüfungsarbeiten mit folgendem Ergebnis: In Deutsch bestanden 22, in Englisch bestanden 17 und in Mathematik bestanden 22 Schüler. 4 bestanden weder Deutsch noch Englisch, 3 bestanden weder Deutsch noch Mathematik, 5 bestanden weder Englisch noch Mathematik. 1 Schüler schaffte keine der drei Prüfungen.

Wie viele Schüler bestanden die Prüfung in allen drei Fächern? Aussagen Hinweis: zeichne die Mengen!

Lösung:

(a)

8. Mit der Schreibweise

$$\bigcup_{k=1}^{n} A_k := A_1 \cup A_2 \cup \dots \cup A_n$$

kann man bequem auch kompliziertere Mengen formulieren, insbesondere dann, wenn man erlaubt, dass auch unendlich viele Mengen vereinigt werden dürfen:

$$\bigcup_{k=1}^{\infty} A_k := A_1 \cup A_2 \cup \dots \cup A_n \cup \dots$$

Ein Element ist in dieser Vereinigungsmenge enthalten, wenn es in einer der Mengen A_k enthalten ist. Überlege Dir, wie man zum Beispiel die Menge der Primzahlen hinschreiben könnte (Tipp: formuliere dazu z.B. die Menge V_2 der Vielfachen von 2, etc.).

Lösung:

(a)