Ordenamientos

¿Qué tener en cuenta en un algoritmo de ordenamiento?

- Tiempo de ejecución
- Memoria extra
- Fiabilidad

Función swap

Regularmente en varios algoritmos de ordenamientos se usa alguna función swap que intercambia dos elementos de posición en una misma colección.

```
swap (array, i, j):

tmp = array[ i ]

array[ i ] = array[ j ]

array[ j ] = tmp
```


Programa de ordenamientos

Bubblesort

```
1 for (i = N - 1; i > 0; i--)
2  for (j = 0; j < i; j++)
3  if (array[j] > array[j + 1])
4  swap (array, j, j + 1)
```

* Esto es solo pseudocódigo. Para que la comparación funcione en Java tendría que ser un arreglo de números, o bien, usar algún método para comparar objetos.

Invariante en ciclos

Una invariante es un enunciado lógico que no varía durante el ciclo.

Para demostrar que un algoritmo iterativo es correcto, se establece alguna invariante y se debe demostrar:

- 1. Inicialización: La invariante es verdadera antes de la primera iteración.
- 2. Mantenimiento: Si la invariante es verdadera antes de cierta iteración del ciclo, entonces debe ser verdadera antes de la siguiente iteración.
- 3. Terminación: Al terminar el ciclo, la invariante nos ayuda a demostrar que el algoritmo es correcto.

Demostrar la correctud del algoritmo Bubblesort:

```
1 for (i = N - 1; i > 0; i--)
2 for (j = 0; j < i; j++)
3 if (array[j] > array[j + 1])
4 swap (array, j, j + 1)
```

Para demostrar que el for de las líneas 1-4 ordena correctamente, primero hay que demostrar que el for de las líneas 2-4 es correcto.

Por demostrar que el ciclo de las líneas 2-4 coloca en array[i] un elemento máximo para el subarreglo array[0:i].

Invariante del ciclo: Al iniciar la j-ésima iteración, en la posición array[j] está el máximo del subarreglo array[0:j].


```
2 for (j = 0; j < i; j++)
3 if (array[j] > array[j+1])
4 swap (array, j, j+1)
```

Invariante del ciclo: Al iniciar la j-ésima iteración, en la posición array[j] está un máximo del subarreglo array[0:j].

Inicialización: Antes de iniciar la primera iteración en la que j tiene que valer 0, el subarreglo array[0:j] sería array[0:0], que consiste solo del elemento array[0], por lo que ese elemento es un máximo de dicho subarreglo.

Mantenimiento: Antes de iniciar la j-ésima iteración, en array[j] se tiene un máximo para el subarreglo array[0:j].

Al hacerse la comparación de la línea 3 hay 2 casos:

array[j] ≤ array[j+1]

En este caso terminaría la iteración por no entrar al cuerpo del if. Como en array[j] hay un máximo para el subarreglo array[0:j] y array[j] ≤ array[j+1], entonces en array[j+1] se tiene un máximo para el subarreglo array[0:j+1].


```
2 for (j = 0; j < i; j++)
3 if (array[j] > array[j+1])
4 swap (array, j, j+1)
```

<u>Invariante del ciclo:</u> Al iniciar la j-ésima iteración, en la posición **array[j]** está un máximo del subarreglo **array[0:j]**.

Mantenimiento(Continuación): El otro caso para la línea 3 es:

array[j] > array[j + 1]

Digamos que en array[j] está el elemento m que es mayor o igual que cualquier elemento en array[0:j-1], mientras que en array[j+1] está el elemento s, tal que m > s.

Después de hacer el swap de la línea 4, en array[j] ahora estará s y en array[j+1] estará m. Como m > s, entonces ahora array[j+1] > array[j]. Además como m es mayor o igual que cualquier elemento en array[0:j-1], entonces array[j+1] es mayor o igual que cualquier elemento en array[0:j-1].

Por lo tanto, al finalizar esta iteración array[j+1] es un máximo del subarreglo array[0:j+1]

Como ya abordamos todos los casos para la j-ésima iteración, podemos concluir que, antes de iniciar la j+1-ésima iteración, en array[j+1] hay un máximo del subarreglo array[0:j+1]


```
2 for (j = 0; j < i; j++)
3 if (array[j] > array[j+1])
4 swap (array, j, j+1)
```

Invariante del ciclo: Al iniciar la j-ésima iteración, en la posición array[j] está un máximo del subarreglo array[0:j].

Terminación: El ciclo termina cuando j == i, por lo que al iniciar una supuesta siguiente iteración tendríamos en array[i] un máximo del subarreglo array[0:i].

:. El ciclo de las líneas 2-4 coloca en **array[i]** un elemento máximo para el subarreglo **array[0:i]**.


```
1 for (i = N - 1; i > 0; i--)
2 for (j = 0; j < i; j++)
3 if (array[j] > array[j+1])
4 swap (array, j, j + 1)
```

Por demostrar que el ciclo de las líneas 1-4 ordena correctamente los elementos del arreglo.

Invariante del ciclo: Al iniciar la iteración en la que i == k, los elementos del subarreglo array[k + 1 : N - 1] están ordenados de forma ascendente y son mayores o iguales que cualquier elemento del subarreglo array[0 : k].

Inicialización: Antes de iniciar la primera iteración en la que i tiene que valer N - 1, el subarreglo array[k + 1: N - 1] sería array[(N - 1) + 1: N - 1] = array[N: N - 1], que consiste en ningún elemento puesto que N > N - 1, por lo que podemos decir que los elementos del subarreglo ya están ordenados de forma ascendente y son mayores que cualquier elemento del subarreglo array[0: k] por vacuidad.

1 for
$$(i = N - 1; i > 0; i--)$$

2-4 Colocar en **array[i]** un elemento máximo para el subarreglo **array[0:i]**

Invariante del ciclo: Al iniciar la iteración en la que i == k, los elementos del subarreglo array[k + 1 : N - 1] están ordenados de forma ascendente y son mayores o iguales que cualquier elemento del subarreglo array[0 : k].

Mantenimiento: Al iniciar la iteración en la que i == k los elementos del subarreglo array[k + 1: N - 1] están ordenados de forma ascendente y son mayores o iguales que cualquier elemento del subarreglo array[0: k].

Después de las líneas 2-4 tendríamos en **array[k]** un máximo para el subarreglo **array[0 : k]**.

Finalmente, el subarreglo array[k:N-1] se encuentra ordenado porque array[k] es menor o igual que cualquier elemento en array[k+1:N-1] que además ya estaba ordenado y, al ser array[k] un máximo para el subarreglo array[0:k], entonces cualquier elemento de array[k:N-1] es mayor o igual que cualquier elemento del subarreglo array[0:k-1].

Por lo tanto, antes de iniciar la siguiente iteración en la que i == k - 1, los elementos del subarreglo array[k : N - 1] = array[(k - 1) + 1 : N - 1] están ordenados de forma ascendente y son mayores o iguales que cualquier elemento del subarreglo array[0 : k - 1].


```
1 for (i = N - 1; i > 0; i--)
2 for (j = 0; j < i; j++)
3 if (array[j] > array[j+1])
4 swap (array, j, j+1)
```

<u>Invariante del ciclo:</u> Al iniciar la iteración en la que i == k, los elementos del subarreglo array[k + 1 : N - 1] están ordenados de forma ascendente y son mayores o iguales que cualquier elemento del subarreglo array[0 : k].

Terminación: El ciclo termina cuando i == 0, por lo que al iniciar una supuesta siguiente iteración tendríamos que los elementos del subarreglo array[0+1:N-1] = array[1:N-1] están ordenados de forma ascendente y son mayores o iguales que los elementos del subarreglo array[0:0] que consiste solo en el elemento array[0].

De esto se sigue que los elementos del subarreglo **array[0:N-1]** están ordenados de forma ascendente. Como ese subarreglo abarca a todos los elementos del arreglo, entonces **array** ya está ordenado.

:. Por lo tanto el ciclo de las líneas 1-4 que corresponde con el algoritmo Bubblesort ordena correctamente.

Ejercicio

Calcula la complejidad en tiempo del algoritmo Bubblesort:

```
1 for (i = N - 1; i > 0; i--)
2  for (j = 0; j < i; j++)
3  if (array[j] > array[j+1])
4  swap (array, j, j+1)
```

Selectionsort

```
1 for (i = N - 1; i > 0; i--)
2   max = 0
3   for (j = 1; j ≤ i; j++)
4    if (array[j] > array[max])
5    max = j
6   swap (array, max, i)
```

<u>Invariante para el ciclo 3-5</u>: Al inicio de la j-ésima iteración, en <u>array[max]</u> hay un máximo para el subarreglo <u>array[0:j-1]</u>.

En este gif se selecciona el mínimo en lugar del máximo.

Ejercicio

Calcula la complejidad en tiempo del algoritmo Selectionsort:

```
1 for (i = N - 1; i > 0; i--)
2    max = 0
2    for (j = 1; j < i + 1; j++)
3        if (array[j] > array[max])
4        max = j
5    swap (array, max, i)
```

Insertionsort

```
1 for ( i = 0; i < N - 1; i++)
2 for ( j = i + 1; j > 0 && arr[j-1] > arr[j]; j--)
3 swap (array, <math>j, j - 1)
```


Ejercicio

Calcula la complejidad en tiempo del algoritmo Insertionsort en **el mejor caso**:

```
1 for (i = 0; i < N - 1; i++)
2 for (j = i + 1; j > 0 && arr[j - 1] > arr[j]; j--)
3 swap (array, j, j - 1)
```

Estrategia "Divide y vencerás"

Algunos algoritmos emplean una estrategia en la que dividen al problema en subproblemas más pequeños, con la finalidad de armar una solución total a partir de las soluciones de los subproblemas.

Quicksort - 1961 C. A. R. Hoare

```
1 quicksort (arr[]):
2 quicksort (arr, 0, N - 1)
```

```
1 quicksort ( arr [ ], lo, hi ):
2  if ( hi ≤ lo ) return
3  j = partition (arr, lo, hi)
4  quicksort ( arr, lo, j - 1)
5  quicksort ( arr, j + 1, hi)
```


Quicksort - Algoritmo de partición

```
1 partition (arr [], lo, hi):
  i = lo
   j = hi + 1
    piv = arr [lo]
    while (true):
       while (arr[++i] < piv) if (i == hi) break
       while (piv < arr [-i]) if (i == lo) break
       if (i \ge j) break
      swap (arr, i, j)
    swap (arr, lo, j)
   return j
```


Complejidad de Quicksort

	Tiempo	Espacio
Caso promedio	O(n log n)	O(log n)
Peor caso	O(n²)	O(n)

Un mal escenario para
Quicksort es cuando ordena
elementos repetidos

Estabilidad en ordenamientos

Sea **A** una colección cualquiera y **A'** el resultado de aplicarle un ordenamiento, se dice que dicho ordenamiento es *estable* si y solo si:

$$A[i] = A[j] y i < j \Rightarrow A'.indexOf(A[i]) < A'.indexOf(A[j])$$

Resultado de un ordenamiento estable:

$$C B_1 B_2 B_3 A \Rightarrow A B_1 B_2 B_3 C$$

Resultado de un ordenamiento inestable:

$$C B_1 B_2 B_3 A \Rightarrow A B_3 B_2 B_1 C$$

^{*} El ordenamiento Quicksort puede llegar a ser inestable.

Mergesort - 1945 Von Neumann

```
1 mergesort (arr []):
2 mergesort (arr, 0, N - 1)
```



```
1 mergesort ( arr [], lo, hi ):
2    if ( hi ≤ lo ) return
3    mid = lo + (hi - lo) / 2
4    mergesort ( arr, lo, mid)
5    mergesort ( arr, mid + 1, hi)
6    merge ( arr, lo, mid, hi )
```


Mergesort - Algoritmo de mezcla

El algoritmo de mezcla requiere de memoria extra, pues tiene que crear una copia de la subcolección.

Ejercicio

Calcula la complejidad en **espacio** del algoritmo Mergesort:

```
    mergesort (arr [], lo, hi):
    if (hi ≤ lo) return
    mid = lo + (hi - lo) / 2
    mergesort (arr, lo, mid)
    mergesort (arr, mid + 1, hi)
    merge (arr, lo, mid, hi)
```

Comparación entre algoritmos

	Tiempo promedio	Peor tiempo	Espacio promedio	Peor espacio
Bubblesort	O(n²)	O(n²)	O(1)	O(1)
Selectionsort	O(n²)	O(n²)	O(1)	O(1)
Insertionsort	O(n²)	O(n²)	O(1)	O(1)
Quicksort	O(n log n)	O(n²)	O(log n)	O(n)
Mergesort	O(n log n)	O(n log n)	O(n) *	O(n) *

Enlace a un comparador de los algoritmos

Búsqueda binaria

Si tenemos una colección ordenada en la que podamos acceder al iésimo elemento en tiempo constante, podemos emplear búsqueda binaria para encontrar a un elemento en particular.

```
busquedaBinaria( array, elem, lo, hi):

if ( lo > hi ) Fracaso

mid = lo + (hi - lo) / 2

if ( array[ mid ] == elem ) Éxito

if ( array[ mid ] < elem )

return busquedaBinaria( array, elem, lo, mid - 1 )

else

return busquedaBinaria( array, elem, mid + 1, hi )
```


Ejercicio

Calcula la complejidad en tiempo y espacio de hacer búsqueda binaria en una colección ordenada.

Manteniendo colecciones ordenadas

Si tenemos una colección ordenada y queremos seguir manteniéndola así, entonces al agregar o eliminar un elemento debemos preservar el orden. Para ello hay dos alternativas:

- Aplicar un algoritmo de ordenamiento después de cada inserción o eliminación.
 - Mala idea
- Crear un mecanismo propio en la colección para agregar y eliminar elementos preservando el orden.
 - o Buena idea

Pregunta

Si tenemos un **arreglo ordenado**, ¿qué mecanismo
recomiendas para preservar el
orden después de una
eliminación o inserción?

Pregunta

Si tenemos una lista ordenada, ¿qué mecanismo recomiendas para preservar el orden después de una eliminación o inserción?