

In the Claims:

1. (Currently Amended) A method of treating ocular hypertension which comprises administering to a mammal having ocular hypertension a therapeutically effective amount of a compound represented by formula II:

wherein the hatched segments represent α bonds, the solid triangle represents a β bond, wavy line attachments indicate either the alpha (α) or beta (β) configuration; dashed bonds represent a double bond or a single bond, R is a substituted heteroaryl radical, wherein the substituent is selected from the group consisting of C₁ to C₆ alkyl, halogen, trifluoromethyl, COR¹, COCF₃, SO₂NR¹, NO₂ and CN; R¹ is hydrogen or a lower alkyl radical having up to six carbon atoms, X is selected from the group consisting of -OR¹, -N(R¹)₂, and -N(R⁵)SO₂R⁶, wherein R⁵ represents hydrogen or CH₂OR⁶ and R⁶ represents hydrogen or a lower alkyl radical having up to six carbon atoms and halogen substituted derivatives of said lower alkyl radical; Y is =O or represents 2 hydrogen radicals and the pharmaceutically acceptable salts and esters thereof.

2. (Cancel) The method of Claim 1 wherein the substituent on the heteroaryl radical is selected from the group consisting of lower alkyl, halogen, trifluoromethyl, COR₁, COCF₃, SO₂NR₁, SO₂NH₂, NO₂ and CN.
3. (Original) A pharmaceutical product, comprising a container adapted to dispense the contents of said container in metered form; and an ophthalmic solution in said container comprising a compound of formula I as defined in Claim 1, or a pharmaceutically acceptable salt thereof, in admixture with a non-toxic, ophthalmically acceptable liquid vehicle.

4. (Original) A method of treating glaucoma which comprises administering to a mammal having glaucoma a therapeutically effective amount of a compound represented by formula I:

wherein the wavy segments represent either an alpha (α) or beta (β) bond; dashed bonds represent a double bond or a single bond, R is a substituted hetero aryl radical, wherein the substituent is selected from the group consisting of C₁ to C₆ alkyl, halogen, trifluoromethyl, COR¹, COCF₃, SO₂NR¹, NO₂ and CN; R¹ is hydrogen or a lower alkyl radical having up to six carbon atoms, X is selected from the group consisting of -OR¹, -N(R¹)₂, R¹ is hydrogen or a lower alkyl radical having up to six carbon atoms, X is selected from the group consisting of -OR¹, -N(R¹)₂, and -N(R⁵)SO₂R⁶, wherein R⁵ represents hydrogen or CH₂OR⁶ and R⁶ represents hydrogen or a lower alkyl radical having up to six carbon atoms and halogen substituted derivatives of said lower alkyl radical; Y is =O or represents 2 hydrogen radicals and the pharmaceutically acceptable salts and esters thereof.

5. (Original) The method of claim 4 wherein said compound is represented by formula II:

wherein the hatched segments represent α bonds and the triangular segment represents a β bond.

6. (Currently Amended) A method of treating elevated intraocular pressure which comprises administering to a mammal having elevated intraocular pressure a therapeutically effective amount of a compound represented by formula I:

wherein the wavy segment represents either an alpha (α) or beta (β) bond; dashed bonds represent a double bond or a single bond, R is a substituted hetero aryl radical, wherein the substituent is selected from the group consisting of C_1 to C_6 alkyl, halogen, trifluoromethyl, COR^1 , $COCF_3$, SO_2NR^1 , NO_2 and CN ; R^1 is hydrogen or a lower alkyl radical having up to six carbon atoms, X is selected

from the group consisting of -OR¹, -N(R¹)₂, R¹ is hydrogen or a lower alkyl radical having up to six carbon atoms, X is selected from the group consisting of -OR¹, -N(R¹)₂, and -N(R⁵)SO₂R⁶, wherein R⁵ represents hydrogen or CH₂OR⁶ and R⁶ represents hydrogen or a lower alkyl radical having up to six carbon atoms and halogen substituted derivatives of said lower alkyl radical; Y is =O or represents 2 hydrogen radicals and the pharmaceutically acceptable salts and esters thereof.

7. (Original) The method of claim 6 wherein said compound is represented by formula II:

wherein the hatched segments represent α bonds and the triangular segment represents a β bond.