Discussion Solutions 7

Problem One: Undecidability Reductions

Prove that $ENTERS = \{ \langle M, w, q \rangle \mid q \text{ is a state in } M \text{ and } M \text{ enters } q \text{ when run on } w \} \text{ is undecidable.}$

The intuition behind this proof is that M accepts w precisely when M enters its accept state q_{acc} when run on w. We can therefore decide whether or not M accepts w by deciding whether or not M enters q_{acc} when run on w.

Proof: We show that $A_{TM} \leq_M ENTERS$. since $A_{TM} \notin \mathbf{R}$, this proves that $ENTERS \notin \mathbf{R}$.

To see that $A_{TM} \leq_M ENTERS$, we exhibit a mapping reduction from A_{TM} to *ENTERS*. Define $f(\langle M, w \rangle) = \langle M, w, q_{acc} \rangle$, where q_{acc} is M's accepting state. This function f is computable.

We will prove that f is a mapping reduction from A_{TM} to ENTERS by proving for all TMs M and strings w, that $\langle M, w \rangle \in A_{TM}$ iff $\langle M, w, q_{acc} \rangle \in ENTERS$. To see this, note that by definition of A_{TM} , we have $\langle M, w \rangle \in A_{TM}$ iff M accepts w. M accepts w iff M enters q_{acc} when run on w. Finally, by the definition of ENTERS, M enters q_{acc} when run on w iff $\langle M, w, q_{acc} \rangle \in ENTERS$. Combining these statements together, we get that $\langle M, w \rangle \in A_{TM}$ iff $\langle M, w, q_{acc} \rangle \in ENTERS$. Therefore, f is a mapping reduction from A_{TM} to ENTERS, as required.

Why we asked this question: On the last set of discussion problems, we asked you to prove that this language was undecidable by showing that, if it were decidable, then A_{TM} would be decidable. This alternate proof, which we hoped would be a lot cleaner, shows that the language is undecidable using the framework of mapping reducibility.

Problem Two: Infinity is Strange

Prove that $INFINITE = \{ \langle M \rangle \mid \mathcal{L}(M) \text{ is infinite } \}$ is not **RE**. If you have the time, prove that INFI-NITE is not co-**RE** either.

Proof: We will prove that $A_{TM} \leq_M INFINITE$. Since $A_{TM} \notin \text{co-RE}$, this proves that $INFI-NITE \notin \text{co-RE}$.

To prove that $A_{TM} \leq_M INFINITE$, we will find a mapping reduction from A_{TM} to INFI-NITE. For any TM/string pair $\langle M, w \rangle$, let $f(\langle M, w \rangle) = \langle Amp(M, w) \rangle$. By a theorem from lecture, this function is computable.

We now prove that f is a mapping reduction from A_{TM} to INFINITE by proving that for any TM/string pair $\langle M, w \rangle$, that $\langle M, w \rangle \in A_{TM}$ iff $\langle Amp(M, w) \rangle \in INFINITE$. By the definition of A_{TM} , we know that $\langle M, w \rangle \in A_{TM}$ iff M accepts w.

Now, we claim that M accepts w iff $\mathcal{L}(Amp(M, w))$ is infinite. First, note that if M accepts w, then $\mathcal{L}(Amp(M, w)) = \Sigma^*$, which is infinite. Next, note that if M does not accept w, then $\mathcal{L}(Amp(M, w)) = \emptyset$, which is not infinite. Therefore, we see that M accepts w iff $\mathcal{L}(Amp(M, w))$ is infinite.

Finally, note that by the definition of *INFINITE*, we see that $\mathcal{L}(Amp(M, w))$ is infinite iff $(Amp(M, w)) \in INFINITE$. Combining the preceding statements together, we see that $(M, w) \in A_{TM}$ iff $(Amp(M, w)) \in INFINITE$. This means that f is a mapping reduction from A_{TM} to INFINITE, and so $A_{TM} \leq_M INFINITE$, as required.

Why we asked this question: The "amplifier machine" from lecture is a powerful building block for showing that various languages are not **RE** or co-**RE**. In this proof, we use the amplifier to turn the question of "what does M do on w?" into the question "does this TM accept every string?" As you'll see in the problem set, it is sometimes useful to build other TMs out of TM/string pairs other than the amplifier machine, and in fact using that other TM you can prove that $INFINITE \notin \mathbf{RE}$ by reducing $\overline{\mathbf{A}}_{TM}$ to INFINITE.

Problem Three: Sets and Subsets

The language A_{ALL} is defined as $A_{ALL} = \{ \langle M \rangle \mid \mathcal{L}(M) = \Sigma^* \}$. $A_{ALL} \notin \mathbf{RE}$ and $A_{ALL} \notin \mathbf{co} - \mathbf{RE}$ (you'll prove this in Problem Set 8).

Prove that the language $SUBSET_{TM} = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs, and } \mathcal{L}(M_1) \subseteq \mathcal{L}(M_2) \}$ is neither **RE** nor co-**RE** by reducing A_{ALL} to $SUBSET_{TM}$.

The idea behind this reduction is to use the fact that A_{ALL} is unrecognizable to show that SUB-SET_{TM} is not recognizable either. To do so, we'll use the fact that any language L satisfies $L \subseteq \Sigma^*$. Consequently, if $\Sigma^* \subseteq L$, then $L = \Sigma^*$. In other words, if Σ^* is a subset of some other language, then that language must be Σ^* . Consequently, we can use SUBSET_{TM} as a building block to recognize A_{ALL} , which we know is unrecognizable. The formal proof is given here:

Proof: We will prove that $A_{ALL} \leq_M SUBSET_{TM}$. Since we know $A_{ALL} \notin \mathbf{RE}$, this proves that $SUBSET_{TM} \notin \mathbf{RE}$.

To prove $A_{ALL} \leq SUBSET_{TM}$, we will give a mapping reduction from A_{ALL} to SUBSET_{TM}. For any TM M, let $f(\langle M \rangle) = \langle S, M \rangle$, where S is the TM "On input w, accept." This function is computable.

We further claim that $\langle M \rangle \in A_{ALL}$ iff $\langle S, M \rangle \in SUBSET_{TM}$. To see this, note that by definition of A_{ALL} , $\langle M \rangle \in A_{ALL}$ iff $\mathcal{L}(M) = \Sigma^*$. Now, we claim that $\mathcal{L}(M) = \Sigma^*$ iff $\mathcal{L}(S) \subseteq \mathcal{L}(M)$. To see this, note first that if $\mathcal{L}(M) = \Sigma^*$, then $\mathcal{L}(S) \subseteq \mathcal{L}(M)$ because any language is a subset of Σ^* . Next, note that if $\mathcal{L}(M) \neq \Sigma^*$, then there is some string $w \in \Sigma^*$ such that $w \notin \mathcal{L}(M)$. Then $\mathcal{L}(S)$ is not a subset of $\mathcal{L}(M)$, since $w \in \mathcal{L}(S)$ (recall that $\mathcal{L}(S) = \Sigma^*$) but $w \notin \mathcal{L}(M)$. Therefore, we have $\mathcal{L}(M) = \Sigma^*$ iff $\mathcal{L}(S) \subseteq \mathcal{L}(M)$. Finally, note that by definition of SUBSET_{TM}, that $\mathcal{L}(S) \subseteq \mathcal{L}(M)$ iff $\langle S, M \rangle \in SUBSET_{TM}$. Combining these steps together, we see that $\langle M \rangle \in A_{ALL}$ iff $\langle S, M \rangle \in SUBSET_{TM}$. Therefore, we see that f is a mapping reduction from A_{ALL} to SUBSET_{TM}, so $A_{ALL} \subseteq_M SUBSET_{TM}$, as required. \blacksquare

Why we asked this question: This question shows that you can prove that a language is neither **RE** nor co-**RE** in one fell swoop by reducing a language already known to be neither **RE** nor co-**RE** to it.