UNIP – Universidade Paulista

Ciência da Computação e Sistemas de Informação

Disciplina: Pesquisa Operacional

Exemplo 01: Maximização - Resolução

Fonte:

Pesquisa Operacional – Curso Introdutório – 2ª edição - Daniel Augusto Moreira – Página 14

Enunciado

Uma fábrica produz dois produtos: A e B. Cada um deles deve ser processado por duas máquinas: M1 e M2. Devido à programação de outros produtos, que também utilizam essas máquinas, a máquina M1 tem 24 horas de tempo disponível para os produtos A e B, enquanto a máquina M2 tem 16 horas de tempo disponível.

Para produzir uma unidade do produto A são gastos 4 horas em cada uma das máquinas M1 e M2. Para produzir uma unidade do produto B são gastos 6 horas na máquina M1 e 2 horas na máquina M2.

Cada unidade vendida do produto A gera um lucro de R\$80,00 e cada unidade do produto B gera um lucro de R\$60,00. Existe uma previsão máxima de demanda para o produto B de 3 unidades, não havendo restrição quanto à demanda do produto A.

Quantas unidades de A e B devem ser produzidas de forma a maximizar o lucro?

Solução

As variáveis de decisão são as quantidades que devem ser fabricadas dos produtos A e B para maximizar o lucro.

Sumarizando o problema em uma tabela temos:

Produto	Horas gastas em M1	Horas gastas em M2	Demanda máxima	Lucro unitário (R\$)
Α	4	4	ilimitada	80
В	6	2	3	60
Horas disponíveis	24	16		

Função objetivo

Representaremos:

- x = quantidade de produtos A
- y = quantidade de produtos B

80x + 60y

já que cada unidade de A gera um lucro de R\$80,00 e cada unidade de B gera um lucro de R\$60,00. É essa função, então, que deve ser maximizada. Mas as restrições devem ser observadas.

Restrições

Há um número limitado de horas de máquina, tanto para M1 como para M2:

- Horas consumidas na máguina M1 ≤ 24
- Horas consumidas na máquina M2 ≤ 16

Cada unidade de A consome 4 horas de trabalho na máquina M1, e cada unidade de B consome 6 horas de trabalho nessa mesma máquina.

Da mesma forma, cada unidade de A consome 4 horas de trabalho na máquina M2, e cada unidade de B consome 2 horas de trabalho nessa mesma máquina.

Portanto:

- Horas consumidas na máquina M1 = 4x + 6y
- Horas consumidas na máquina M2 = 4x + 2y

Resumindo:

- $4x + 6y \le 24$
- $4x + 2y \le 16$

Mas ainda há mais uma restrição, que é o fato de não poder fabricar mais que 3 unidades do produto B. Portanto:

• y ≤ 3

A solução procurada (quantidade de produtos A e B) não pode ser um valor negativo e, portanto, o modelo matemático deve ser informado disso através das restrições:

- x ≥ 0
- y ≥ 0

Formulação completa

Reunindo todos os parâmetros e restrições temos:

- Maximizar 80x + 60y
- $4x + 6y \le 24$
- $4x + 2y \le 16$
- $0x + 1y \le 3$ (é o mesmo que $y \le 3$)
- x ≥ 0
- y ≥ 0

Resolvendo

Z = 80x + 60y, portanto:

Z - 80x - 60y = 0 (esta é a função objetivo de lucro a maximizar)

Acrescentando as variáveis de folga temos:

• $4x + 6y + s1 \le 24$

• $4x + 2y + s2 \le 16$

• $0x + 1y + s3 \le 3$ (é o mesmo que $y \le 3$)

• x ≥ 0

• y ≥ 0

Construindo a Tabela 1:

Linha	Z	/ x	у	s1	s2	s3	b (base)
1a	1	-80	-60	0	0	0	0
2a	0	4	6	1	0	0	24
3a	0	4	2	0	1	0	16
4a	0	0	1	0	0	1	3
						1	

Essa coluna entrará no cálculo

Na 1ª linha, ou seja, na linha da função objetivo, procuramos o maior número negativo ou o maior número absoluto, que no caso é o -80.

Agora dividimos o valor da base pelo valor correspondente da coluna que entra:

• $24 / 4 = 6 (2^{\underline{a}} \text{ linha})$

• $16 / 4 = 4 (3^a linha)$

• 3/0 = impossível (4^a linha)

O 4 é o menor valor positivo, ou seja, é o que menos contribuirá na maximização, portanto a 3ª linha será retirada do processo de cálculo:

Li	nha	Z	x	у	s1	s2	s3	b (base)
	1 a	1	-80	-60	0	0	0	0
	2a	0	4	6	1	0	0	24
	3a	0	4	2	0	1	0	16
	4a 🐧	0	0	1	0	0	1	3
Essa linha sairá no cálculo Elemento pivô								

No cruzamento da coluna que entra com a linha que sai encontramos o número 4, que é o elemento pivô para prosseguir o cálculo.

Vamos, agora, recalcular a tabela. Não pode haver valores negativos na linha da função objetivo, porque eles diminuirão o valor da maximização.

Calculando a nova linha pivô, já que a 3ª linha sairá do cálculo. A linha pivô atual é a:

Linha	Z	х	у	s1	s2	s3	b (base)
3a	0	4	2	0	1	0	16

Dividir cada valor desta linha pelo elemento pivô (que é 4). Obteremos a <u>nova linha pivô</u>:

Linha	Z	х	у	s1	s2	s3	b (base)			
3a	0	4	2	0	1	0	16			
		/4								
3a pivô	0	1	0,5	0	0,25	0	4			

Como a 3ª linha saiu, essa nova linha pivô ocupará o lugar da 3ª linha anterior. Essa será a 3ª linha da Tabela 2.

É necessário, agora, recalcular as demais linhas: 1ª, 2ª e 4ª. A 3ª linha é a nova linha pivô.

Recálculo da 1ª linha:

- Pegar o primeiro valor da coluna que entra (que é o -80).
- Inverter esse valor multiplicando-o por -1: -80 x -1 = 80.
- Multiplicar os valores na nova linha pivô por 80:

Linha	Z	х	у	s1	s2	s3	b (base)			
3a	0	1	0,5	0	0,25	0	4			
		x 80								
1a provisória	0	80	40	0	20	0	320			
		•		+	•	•	-			
1a atual	1	-80	-60	0	0	0	0			
	=									
Nova 1a	1	0	-20	0	20	0	320			

Essa nova 1ª linha será a 1ª linha da Tabela 2.

Recálculo da 2ª linha:

- Pegar o primeiro valor da coluna que entra (que é o 4).
- Inverter esse valor multiplicando-o por -1: 4 x -1 = -4.
- Multiplicar os valores na nova linha pivô por -4:

Linha	Z	х	у	s1	s2	s3	b (base)			
3a	0	1	0,5	0	0,25	0	4			
		x (-4)								
2a provisória	0	-4	-2	0	-1	0	-16			
		+								
2a atual	0	4	6	1	0	0	24			
			-	=			-			
Nova 2a	0	0	4	1	-1	0	8			

Essa nova 2ª linha será a 2ª linha da Tabela 2.

Recálculo da 4ª linha:

- Pegar o primeiro valor da coluna que entra (que é o 0).
- Inverter esse valor multiplicando-o por -1: $0 \times -1 = 0$.
- Multiplicar os valores na nova linha pivô por 0:

Linha	Z	х	у	s1	s2	s3	b (base)			
3a	0	1	0,5	0	0,25	0	4			
		x 0								
4a provisória	0	0	0	0	0	0	0			
			-	+			-			
4a atual	0	0	1	0	0	1	3			
			-	=			-			
Nova 4a	0	0	1	0	0	1	3			

Essa nova 4ª linha será a 4ª linha da Tabela 2.

Construindo a Tabela 2:

Linha	Z	х	у	s1	s2	s3	b (base)
1a	1	0	-20	0	20	0	320
2a	0	0	4	1	-1	0	8
3a	0	1	0,5	0	0,25	0	4
4a	0	0	1	0	0	1	3

Variáveis básicas:

$$ightharpoonup Z = 320$$

$$\rightarrow$$
 x = 4

$$>$$
 s1 = 8

$$>$$
 s3 = 3

Variáveis não básicas:

$$\rightarrow$$
 y = 0

$$\geqslant$$
 s2 = 0

O Z (função objetivo) está na 1ª linha/1ª coluna e o conteúdo é 1, portanto, Z=320. Nessa linha, contudo, ainda há um valor negativo (o -20), o que não pode ocorrer. Esta solução, portanto, não é ótima e os cálculos devem continuar.

Na 1ª linha da nova tabela, ou seja, na linha da função objetivo, procuramos o maior número negativo ou o maior número absoluto, que no caso é o -20.

	Linha	Z	X	/ y \	s1	s2	s3	b (base)		
	1a	1	0	-20	0	20	0	320		
	2a	0	0	4	1	-1	0	8		
	3a	0	1	0,5	0	0,25	0	4		
	4a	0	0	1 /	Q	0	1	3		
	Elemento pivô Essa linha sairá no cálculo									
		· ····································	The Gallean	1 11	Essa colun	a entrará no	o cálculo			

Agora dividimos o valor da base pelo valor correspondente da coluna que entra:

- $8/4 = 2 (2^{\underline{a}} \text{ linha})$
- $4/0.5 = 8 (3^a linha)$
- $3/1 = 3 (4^a linha)$

A 2ª linha tem o menor resultado positivo. Vamos retirar a 2ª linha do processo de cálculo.

No cruzamento da coluna que entra com a linha que sai encontramos o número 4 que é o elemento pivô para prosseguir o cálculo.

Calcular a nova linha pivô, já que a 2ª linha sairá do cálculo. A linha pivô atual é a:

Linha	Z	X	у	s1	s 2	s3	b (base)
2a	0	0	4	1	-1	0	8

Dividir cada valor desta linha pelo elemento pivô (que é 4). Obteremos a nova linha pivô:

Linha	Z	х	у	s1	s2	s3	b (base)			
2a	0	0	4	1	-1	0	8			
		/ 4								
2a pivô	0	0	1	0,25	-0,25	0	2			

Essa nova 2ª linha será a 2ª linha da Tabela 3.

É necessário, agora, recalcular as demais linhas: 1ª, 3ª e 4ª. A 2ª linha é a nova linha pivô.

Recálculo da 1ª linha:

- Pegar o primeiro valor da coluna que entra (que é o -20).
- Inverter esse valor multiplicando-o por -1: -20 x -1 = 20.
- Multiplicar os valores na nova linha pivô por 20:

Linha	Z	х	у	s1	s2	s3	b (base)		
2a	0	0	1	0,25	-0,25	0	2		
	x 20								
1a provisória	0	0	20	5	-5	0	40		
	+								
1a atual	1	0	-20	0	20	0	320		
	=								
Nova 1a	1	0	0	5	15	0	360		

Essa nova 1ª linha será a 1ª linha da Tabela 3.

Recálculo da 3ª linha:

- Pegar o primeiro valor da coluna que entra (que é o 0,5).
- Inverter esse valor multiplicando-o por -1: $0.5 \times -1 = -0.5$.
- Multiplicar os valores na nova linha pivô por -0,5:

Linha	Z	х	у	s1	s2	s3	b (base)		
2a	0	0	1	0,25	-0,25	0	2		
	x (-0,5)								
3a provisória	0	0	-0,5	-0,13	0,13	0	-1		
	+								
3a atual	0	1	0,5	0	0,25	0	4		
	=								
Nova 3a	0	1	0	-0,13	0,38	0	3		

Essa nova 3ª linha será a 3ª linha da Tabela 3.

Recálculo da 4ª linha:

- Pegar o primeiro valor da coluna que entra (que é o 1).
- Inverter esse valor multiplicando-o por -1: 1 x -1 = -1.
- Multiplicar os valores na nova linha pivô por -1:

Linha	Z	х	у	s1	s2	s3	b (base)		
2a	0	0	1	0,25	-0,25	0	2		
	x (-1)								
4a provisória	0	0	-1	-0,25	0,25	0	-2		
	+								
4a atual	0	0	1	0	0	1	3		
	=								
Nova 4a	0	0	0	-0,25	0,25	1	1		

Essa nova 4ª linha será a 4ª linha da Tabela 3.

Construindo a Tabela 3:

Linha	Z	х	у	s1	s2	s3	b (base)
1 a	1	0	0	5	15	0	360
2a	0	0	1	0,25	-0,25	0	2
3a	0	1	0	-0,13	0,38	0	3
4a	0	0	0	-0,25	0,25	1	1

Variáveis básicas:

$$> Z = 360$$

$$\rightarrow$$
 x = 3

$$>$$
 s3 = 1

Variáveis não básicas:

$$>$$
 s1 = 0

$$>$$
 s2 = 0

Resposta:

Para maximizar o lucro Z = R\$360,00 devem ser produzidas 3 unidades do produto A e 2 unidades do produto B.

Como o limite de venda do produto B é de 3 unidades, e o cálculo aponta a venda de apenas 2 unidades para maximizar o lucro, a folga s3 é de 1 unidade (que, potencialmente, poderia ser vendida, mas não o será).