Mechanics of Materials

Lecture 8 - Axial Load, Torsion

Dr. Nicholas Smith

Wichita State University, Department of Aerospace Engineering

13 September, 2021

1

schedule

- 13 Sep Project 1 Due
- 13 Sep Axial Load
- 15 Sep Torsion
- 17 Sep Homework 2 Self-Grade Due
- 20 Sep Torsion
- 22 Sep Bending
- 24 Sep Homework 3 Due, Project 1 Recovery Due

outline

- superposition
- statically indeterminate
- force method
- thermal stress
- torsion

superposition

superposition

- Some problems are too complicated to solve all at once
- Instead, we break them up into two simpler problems
- Each "sub-problem" must still satisfy equilibrium
- Problem must be linear and the deformation should be small enough that it does not cause moment-equilibrium issues

statically indeterminate

statically indeterminate

- There are many problems that are at least slightly over-constrained
- While this is common engineering practice, it creates too many variables for statics analysis
- These problems are called "statically indeterminate"

5

statically indeterminate

- One extra equation we can use is called "compatibility" or the "kinematic condition"
- We know that at the displacement must be equal on both sides of any arbitrary section we make in a member
- We can separate a member into two parts, then use compatibility to relate the two unknown forces

statically indeterminate

7

example 4.7

Figure 1: A 0.8 m long rigid horizontal bar is supported by hanging from 3 vertical rods. Rod

Assuming the bottom bar is rigid, find the force developed in each bar. AB and EF have cross-sectional areas of 50 mm2 while CD has a cross-sectional area of 30 mm2.

force method

force method

- One way to solve statically indeterminate problems is using the principle of superposition
- We choose one redundant support and remove it
- We then add it back as a force separately (without the other forces in the problem)

force method

Figure 2: An illustration of the force method, we have the same statically indeterminate problem as before, a 5 m long, vertically-oriented bar is fixed at both ends, with a 500 N downward load applied 2 m from the top. We set this equivalent to a bar with the same load, but no support on the bottom end. We then add a force which will provide enough displacement to cancel out the displacement introduced by removing the load.

force method

- We connect the two problems by requiring that the displacement in both frames adds to 0 to meet the support requirements
- This is referred to as the equation of compatibility

11

procedure

- Choose one support as redundant, write the equation of compatibility
- Express the external load and redundant displacements in terms of load-displacement relationship
- Draw free body diagrams and use the equations of equilibrium to solve

12

example 4.9

Figure 3: A 1200 mm long horizontal rod is fixed at its left end and has a fixed support 0.2 mm away from its right end. A 20 kN load is applied to the right 400 mm away from its left end.

The steel rod shown has a diameter of 10 mm. Determine the reactions at A and B'

thermal stress

thermal stress

- A change in temperature cases a material to either expand or contract
- For most materials this is linear and can be described using the coefficient of linear expansion

$$\delta_{\tau} = \alpha \Delta T L$$

thermal stress

- When a body is free to expand, the deformation can be readily calculated using
- If it is not free to expand, however, thermal stresses develop
- We can use the force method described previously to find the thermal stresses developed

15

example 4.12

An aluminum tube with cross-section of 600 mm2 is used as a sleeve for a steel bolt with cross-sectional area of 400 mm2. When $T{=}15$ degrees Celsius there is negligible force and a snug fit, find the force in the bolt and sleeve when $T{=}80$ degrees Celsius.

Figure 4: An aluminum tube used as a sleeve for a steel bolt. The tube is 150 mm long.

group problems

problem 1

The A36 Steel bar is constrained to just fit between two fixed supports when $T_1=60^{\circ}\mathrm{F}$. If the temperature is raised to $T_2=120^{\circ}\mathrm{F}$ determine the average normal stress developed in the bar. Note: you may use $\alpha=6.5\times10^{-6\circ}\mathrm{F}^{-1}$

Figure 5: steel bar for thermal expansion example

problem 2

Figure 6: figure four group problem 2

The rigid beam is fixed to the top of three posts made from A992 steel and 2014 T-6 aluminum. The posts each have a length of 250 mm when no load is applied to the beam and the temperature is $T_1 = 20^{\circ}$ C. Determine the force supported by each post if the bar is subjected to a uniformly distributed load of 150 kN/m and the temperature is raised to $T_2 = 80^{\circ}$ C Use

 $E_{st} = 200 \text{ GPa}, E_{al} = 70 \text{ GPa}, ^{18}$

problem 3

The aluminum post shown is reinforced with a brass core. If this assembly supports an axial compressive load of P = 9 kip determine the average normal stress in the aluminum and the brass. Use $E_{al}=10$ Msi and $E_{br} = 15 \text{ Msi}$

Figure 7: figure for group problem 3

torsion

torsion

- Torque is a moment that tends to twist a member about its axis
- For small deformation problems, we assume that the length and radius do not change significantly under torsion
- \blacksquare The primary deformation we are concerned with in torsion is the angle of twist, denoted with ϕ

shear

The shear strain at points on the cross section increases linearly with ρ , i.e., $\gamma = (\rho/c)\gamma_{\rm max}$.

21

torsion formula

- For a linearly elastic material, Hooke's Law in shear will hold ($\tau = G\gamma$)
- This means that, like shear strain, shear stress will vary linearly along the radius

torsion formula

 We can find the total force on an element, dA by multiplying the shear stress by the area

$$dF = \tau dA$$

• The torque $(dT = \rho dF)$ produced by this force is then

$$dT = \rho(\tau dA)$$

23

torsion formula

Integrating over the whole cross-section gives

$$T = \int_{A} \rho(\tau dA) = \frac{\tau_{max}}{c} \int_{A} \rho^{2} dA$$

■ The integral $\int_A \rho^2 dA$ is also called the Polar Moment of Inertia, J, so we can write

$$au_{max} = \frac{Tc}{J}$$

polar moment of inertia

- We know that $J = \int_A \rho^2 dA$, so we can compute this for some common shapes
- For a solid circular cross-section, we have

$$J = \int_0^c \rho^2 (2\pi \rho d\rho) = \frac{\pi}{2} c^4$$

• For a circular tube we have

$$J = \int_{c_1}^{c_2} \rho^2 (2\pi \rho d\rho) = \frac{\pi}{2} (c_2^4 - c_1^4)$$

example 5.1

Figure 8: On left is a solid 100

mm radius tube, while on the right is a hollow tube with outer radius of 100 mm and inner radius of 75 mm. Element A is on the surface of the solid tube on the left, element B is on the outer surface of the hollow tube on the right and Element C is on the inner surface of the hollow tube.

The allowable shear stress is 75 MPa. Determine the maximum torque that can be applied to each of the cross-sections shown and find the stress acting on a small element at A, B and C

26