Домашнее задание

По курсу: Математический Анализ

Студент: Ростислав Лохов

АНО ВО Центральный университет 10 апреля 2025 г.

Содержание

1	Прі	меры нахождения суммы ряда	2
	1.1	Задача 1	2
	1.2	Задача 2	2
	1.3	Задача 3	2
	1.4	Задача 4	2
	1.5	Задача 5	2
	1.6	Задача 6	2
2	V	иторий Конии оходимости инспородо рада	ก
4	rypi	итерий Коши сходимости числового ряда	2
4	2.1	Задача 7	2
4			2
4	2.1^{-}	Задача 7	
4	2.1 2.2	Задача 7	2
	2.1 2.2 2.3	Задача 7 Задача 8 Задача 9	2 3 3
4	2.1 2.2 2.3 2.4	Задача 7 Задача 8 Задача 9 Задача 10	2 2 3

1 Примеры нахождения суммы ряда

1.1 Задача 1

- 1. $\sum_{k=1}^{\infty} \frac{1}{(2k-1)(2k+1)}$
- 2. $\sum_{k=1}^{\infty} \frac{1}{4k-2} \frac{1}{4k+2} = \lim_{n \to \infty} 0.5 \frac{1}{4n+2} = 0.5$

1.2 Задача 2

1.3 Задача 3

- 1. $\sum_{1}^{\infty} \frac{2k+1}{k^2(k+1)^2}$
- 2. $\sum_{1}^{\infty} \frac{1}{k^2} \frac{1}{(k+1)^2} = \frac{1}{1} \frac{1}{4} + \frac{1}{4} \frac{1}{9} \cdots = \lim_{k \to \infty} 1 \frac{1}{k} = 1$

1.4 Задача 4

1.
$$\sum_{k=2}^{\infty} \ln(1 - \frac{2}{k(k+1)}) = \ln(k-1) - \ln(k) - \ln(k+1) + \ln(k+2) = -\ln(3)$$

1.5 Задача 5

1.
$$\sum_{1}^{\infty} \sqrt{k+2} - 2\sqrt{k+1} + \sqrt{k} = \sqrt{1} - 2\sqrt{2} + \sqrt{3} + \sqrt{2} - 2\sqrt{3} + \sqrt{4} + \sqrt{3} + 2\sqrt{4} + \sqrt{5} + \dots = 1 - \sqrt{2} + \frac{1}{\sqrt{1+n} - \sqrt{2+n}} = 1 - \sqrt{2}$$

1.6 Задача 6

- 1. $\sum_{k=1}^{\infty} \ln(k^2 + 3 + \frac{2}{k^2})$
- 2. $\lim_{k\to\infty} \ln(k^2+3+\frac{2}{k^2}) = \infty$ таким образом не соответствует необходимому условию сходимости (предел к бесконечности не равен нулю, следовательно сумма бесконечно суммируется)

2 Критерий Коши сходимости числового ряда

2.1 Задача 7

- 1. $\forall \varepsilon > 0 \exists N \in \mathbb{N} : \forall n \ge N \forall p \in \mathbb{N} | \sum_{k=n+1}^{n+p} \frac{1}{\sqrt{k(k+1)}} |$
- 2. Пусть $n=p=N\Rightarrow |\sum_{k=N+1}^{2N}\frac{1}{\sqrt{k(k+1)}}|\geq |\frac{1}{\sqrt{2N(2N+1)}}|=\sum_{k=N+1}^{2N}\frac{1}{\sqrt{4+\frac{2}{N}}}<0.5$ При N=1 и $\varepsilon=\frac{1}{3}$ неравенство не выполняется, следовательно расходится.

2.2 Задача 8

- 1. $\forall \varepsilon > 0 \exists N \in \mathbb{N} : \forall n \geq N \forall p \in \mathbb{N} |\sum_{k=1}^{\infty} \frac{\cos(kx)}{2^k}| < \varepsilon$
- 2. $\left| \sum_{n=1}^{\infty} \frac{\cos(kx)}{2^k} \right| \le \left| \sum_{n=1}^{\infty} \frac{1}{2^k} \right|$
- 3. Таким образом, т.к геометрический ряд, показатель которого меньше 1 сходится, то наша искомая функция сходится аболютно, а значит, ряд сходится.

2

2.3 Задача 9

1.
$$\left| \sum_{n=1}^{\infty} \frac{\ln(n) + \sin(n)}{n^2} \right| < \sum_{n=1}^{\infty} \frac{\ln(n) + 1}{n^2}$$

2. Сделаем интегральный тест: $\int_1^\infty \frac{\ln(x)+1}{x^2} dx = (-\frac{\ln(n)+2}{n})|_1^\infty = 2$ - сходится, значит и наш ряд сходится.

2.4 Задача 10

1.
$$\left|\sum_{k=1}^{\infty} \frac{11+5(-1)^k}{2^{k+4}}\right| < \sum_{k=1}^{\infty} \frac{16}{2^{k+4}}$$

- 2. Воспользуемся интегральным тестом: $16 \int_1^\infty \frac{1}{2^{k+4}} = \frac{1}{\ln(4)}$
- 3. Сходится абсолютно, значит и наш искомый интеграл сходится
- 4. $\sum_{k=1}^{\infty} \frac{1}{k} + \frac{1}{2k^2}$ не сходится т.к одно из слагаемых будет расходится

2.5 Задача 11

$$1. \ \sum_{k=1}^{\infty} rac{5k^5 + e^k}{4^k + \ln(k+1)^3} < \sum_{k=1}^{\infty} rac{5k^5 + e^k}{4^k} \Rightarrow \sum_{k=1}^{\infty} rac{5k^5}{4^k} + rac{e^k}{4^k}$$
 - сходится т.к две суммы сходятся

2.
$$\sum_{k=1}^{\infty} \frac{2k^3+7k+3}{\sqrt{k^8+6k^2+1}} < \sum_{k=1}^{\infty} \frac{2k^3}{k^4}$$
 Расходится.

2.6 Задача 12

1.
$$\sum_{k=1}^{\infty} (1 - \ln(1+k)^{-\frac{1}{k}})$$

2.
$$\sum_{k=1}^{\infty} (1 - e^{-\frac{1}{k}\ln(\ln(1+k))})$$

$$3. \ \sum_{k=1}^{\infty} \frac{\ln(\ln(k))}{k}$$
 - расходится при интегральной оценке.

2.7 Задача 13

1.
$$\sum_{k=1}^{\infty} 1 - \cos(\frac{\pi}{k^{1.5}})$$

2. Хочется попробовать через признак Д'Аламбера

3.
$$\lim_{k\to\infty} \frac{a_{k+1}}{a_k} = \lim_{k\to\infty} \frac{1-\cos(\frac{\pi}{(k+1)^{1.5}})}{1-\cos(\frac{\pi}{k^{1.5}})}$$

4. Тейлором его около 0

5.
$$\lim_{k\to\infty} \frac{a_{k+1}}{a_k} = \lim_{k\to\infty} \frac{\frac{\pi^2}{2(k+1)^3} - \frac{\pi^4}{24(k+1)^6}}{1 - \frac{\pi^2}{24k} + \frac{\pi^4}{24k^6}} = \lim_{k\to\infty} \frac{k^3}{(k+1)} = 1$$
 - очень грустно

6. $\sum_{k=1}^{\infty} \frac{\pi^2}{2k^3} < \pi^2 \sum_{k=1}^{\infty} \frac{1}{k^3}$ - сходится как известный р-ряд. Получается, что Даламбэро критерьеро не помог

3