Type of interaction		Interaction energy $w(r)$
Covalent, metallic	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Complicated, short range
Charge-charge	Q_1 Q_2	$Q_1Q_2/4\pi\epsilon_0 r$ (Coulomb energy)
Charge-dipole	$ \begin{array}{c cccc} u & \theta & \gamma & Q \\ \hline Fixed dipole \end{array} $	$-Qu\cos heta/4\piarepsilon_0r^2$
	Freely rotating	$-Q^2u^2/6(4\pi\varepsilon_0)^2kTr^4$
Dipole-dipole	$\frac{u_1}{\int_{\theta_1}^{\theta_1} r} \int_{\theta_2}^{\theta_2} \frac{u_2}{\theta_2}$ Fixed	$-u_1u_2[2\cos\theta_1\cos\theta_2 - \sin\theta_1\sin\theta_2\cos\phi] 4\pi\varepsilon_0r^3 $
		$-u_1^2 u_2^2 / 3(4\pi\varepsilon_0)^2 k Tr^6$ (Keesom energy)
Charge-non-polar	Freely rotating $ \begin{array}{ccc} $	$-Q^2\alpha/2(4\pi\varepsilon_0)^2r^4$
Dipole–non-dipolar	$ \begin{array}{c cccc} u & \theta & r & \alpha \\ \hline & \text{Fixed} & & & & & & & & & & \\ \end{array} $	$-u^2\alpha(1+3\cos^2\theta)/2(4\pi\epsilon_0)^2r^6$
	notating r \alpha \text{ Rotating}	$-u^2\alpha/(4\pi\varepsilon_0)^2r^6$ (Debye energy)
Two non-polar molecules	$r \qquad \alpha \qquad r \qquad \alpha$	$\frac{3}{4} \frac{hv\alpha^2}{(4\pi\epsilon_0)^2 r^6}$ (London dispersion energy)
Hydrogen bond	H O H O H	Complicated, short range, energy roughly proportional to $-1/r^2$

Fig. 2.2. Common types of interactions between atoms, ions and molecules in vacuum. w(r) is the interaction free energy (in J); Q, electric charge (C); u, electric dipole moment (C m); α , electric polarizability (C² m² J⁻¹); r, distance between interacting atoms or molecules (m); k, Boltzmann constant (1.381 \times 10⁻²³ J K⁻¹); T, absolute temperature (K); t, Planck's constant (6.626 \times 10⁻³⁴ J s); t, electronic absorption (ionization) frequency (s⁻¹); t₀, dielectric permittivity of free space (8.854 \times 10⁻¹² C² J⁻¹ m⁻¹). The force is obtained by differentiating the energy w(r) with respect to distance t.