CSC345/M45: Big Data & Machine Learning (clustering: part one)

Dr. Xianghua Xie

x.xie@swansea.ac.uk

http://csvision.swan.ac.uk

224 Computational Foundry, Bay Campus

- To understand its structure, given a cloud of data points.
 - Example: digits in a certain attribute/feature space

- Clustering is a process to find similarity groups in data, called clusters
 - Group data instances that are similar or near to each other in one cluster
 - Data instances that are (very) different or far away from each other should be in different clusters
 - Clusters are unlabelled and no a priori grouping of the data instances are given
 - Thus, often known as unsupervised learning
- Approaches
 - K-means (this lecture)
 - Fuzzy C-means
 - Gaussian Mixture Modelling (later)
 - ... many more

CS377/CSM77: CVPR

Clusters & Outliers

- Clustering in low dimension and with small amounts of data is often relatively straight forward.
- More often than not, clustering needs to be performed in more than a 2-dimensional space, e.g. 10s or even 10,000s.
- Curse of Dimensionality
 - Data samples required grows exponentially with the increase of dimensionality
 - For random generated points, almost all pair of points are equally far away from one another (average: 1/3 in a unit cube).

Clustering Example Problem 1

- A catalog of 2 billion "sky objects" represents objects by their radiation in 7 frequency bands
 - 7 dimensional space
- Problem: cluster them into similar objects, e.g. galaxies, nearby stars, quasars, and so on
- Sloan Digital Sky Survey

Clustering Example Problem 2

- Intuition: music divides into categories, and customers prefer a few categories
 - But how should the categories be defined?
 - Based on genre? (yes, if you ask a database person)
 - How to carry out more effective recommendation to customers?
- Data driven approach
 - Represent a song by a set of customers
 - Likely, similar songs have similar sets of customers and viceversa
 - Put all available songs into a space defined by customers
 - Clusters in this space is arguably a better representation of music category than pre-defined genre

Clustering Example Problem 2

- Space of "all" songs
 - A space with one dimension for each customer
 - Values in a dimension may be 0 or 1 only, i.e. binary
 - A song thus is a point in this space $(x_1, x_2, ..., x_k)$, where $x_i = 1$ iff the ith customer bought the song
 - "iff" read as "if and only if"
- Task: find clusters of similar songs
- For Amazon and Apple, the dimension is tens of millions

- K-means is a partitional clustering algorithm
- The number of clusters is often pre-set (value for K)
- Each cluster is represented by the centre of the cluster
- Each data point is assigned to the nearest cluster centre or centroid
- It is an iterative process, start with a random initialisation of the centroids

How to determine it is a good clustering (according to K-means)?

 Minimise the Sum of Squared Error (SSE) from data points to their corresponding centroids

$$SSE = \sum_{j=1}^{k} \sum_{\mathbf{x} \in C_j} dist(\mathbf{x}, \mathbf{m}_j)^2$$

- C_j denotes the jth cluster, \mathbf{m}_j is the centroid of cluster C_j , and $dist(\mathbf{x}, \mathbf{m}_j)$ denotes the distance between data point \mathbf{x} and its centroid.
- Hence, the stopping criteria for the iterative estimation of the centroids is often based on the change in SSE
 - Very small changes in SSE indicates convergence
 - · Sometimes, fixed number of iterations is used

CS377/CSM77: CVPR 10

- Algorithmic steps
 - Determine the value for K (number of clusters)
 - Randomly choose initial K centroids
 - Repeat:
 - Assign each data point to the nearest centroid
 - Update the centroids based on data partitioning
 - Until the stopping criterion is met

An online example: http://www.math.le.ac.uk/ people/ag153/homepage/ KmeansKmedoids/Kmea ns_Kmedoids.html

S377/CSM77: CVPR 12

Example 2: step 1, random initialisation of centroids

Step 2, assign each data to nearest centroid

• Step 3, recalculate centroids

Repeat steps 2 and 3

Until converges

- Generally fast (although an iterative process)
- Still one of the most popular clustering algorithms
 - Fuzzified version often is more robust
- Have to know the number of clusters to start with
 - Not always an easy task
- Provides a local solution
 - Results depends on initialisation
- Sensitive to outliers

