

Nice3. Симпатичные узоры — 3

Имя входного файла: nice3.in Имя выходного файла: nice3.out

Компания BrokenTiles планирует заняться выкладыванием во дворах у состоятельных клиентов узоров из черных и белых плиток, каждая из которых имеет размер 1×1 метр. Известно, что дворы всех состоятельных людей имеют наиболее модную на сегодня форму прямоугольника $n \times m$ метров.

Однако при составлении финансового плана у директора этой организации появилось целых две серьезных проблемы: во-первых, каждый новый клиент, естественно, захочет, чтобы узор, выложенный у него во дворе, отличался от узоров всех остальных клиентов этой фирмы, а во-вторых, этот узор должен быть симпатичным.

Как показало исследование, узор является симпатичным, если в нем нигде не встречается квадрата 2×2 метра, полностью покрытого плитками одного цвета.

Для составления финансового плана директору необходимо узнать, сколько клиентов он сможет обслужить, прежде чем симпатичные узоры данного размера закончатся. Помогите ему!

Формат входного файла

На первой строке входного файла находятся три натуральных числа n и m $(1 \le n \le 10^{100}, 1 \le m \le 5, 1 \le p \le 10\,000).$

Формат выходного файла

Выведите в выходной файл единственное число — количество различных симпатичных узоров, которые можно выложить во дворе размера $n \times m$, взятое по модулю p. Узоры, получающиеся друг из друга сдвигом, поворотом или отражением, считаются различными.

Пример

nice3.in	nice3.out
2 2 20	14
3 3 7	0

RNG. Генератор псевдослучайных чисел

Имя входного файла: rng.in Имя выходного файла: rng.out

Последовательность псевдослучайных чисел $X_1, X_2, \ldots, X_i, \ldots$ генерируется следующим образом: числа X_1, X_2, \ldots, X_k задаются в явном виде, а каждое следующее вычисляется по формуле: $X_n = (a_1 X_{n-1} + a_2 X_{n-2} + \ldots + a_k X_{n-k} + b) \bmod m$. Вы должны написать программу, вычисляющую N-е число этой последовательности.

Формат входного файла

Во входном файле записаны целые числа в следующем порядке: k ($1 \le k \le 30$), m ($1 \le m \le 1000$), a_1, \ldots, a_k ($0 \le a_i < m$), b ($0 \le b < m$), X_1, \ldots, X_k ($0 \le X_i < m$), N ($1 \le N \le 10^{100}$). Числа разделяются пробелами и (или) символами перевода строки.

Формат выходного файла

В выходной файл нужно вывести одно число — X_N .

Пример

rng.in	rng.out
2 5	1
1 2 3	
4 0	
3	

Gauss. Система линейных уравнений

Имя входного файла: gauss.in Имя выходного файла: gauss.out

Жюри потребовалось решить систему линейных уравнений:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2, \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n. \end{cases}$$

Помогите им в этом — напишите программу, решающую эту систему.

Формат входного файла

Первая строка входного файла содержит одно число n ($1 \le n \le 100$). Каждая из следующих n строк содержит описание очередного уравнения — n+1 чисел $a_{i1}, a_{i2}, \ldots, a_{in}, b_i$. Все эти числа вещественные. Гарантируется, что система имеет ровно одно решение.

Формат выходного файла

В выходной файл выведите числа $x_1,\,x_2,\,\ldots,\,x_n$ как можно точнее.

Пример

gauss.in	gauss.out
2	2.0000 0.9999999999999
1 1 3	
1 -1.5 0.5	