Augmented Lagrangian Method

Define the augmented Lagrangian as (equality constrained)

$$L_{A}(x,\lambda_{i}\mu) = f(x) - \sum_{i \in \mathcal{E}} \lambda_{i}C_{i}(x) + \sum_{i \in \mathcal{E}} C_{i}^{2}(x)$$

We can view this idea as either

- · a quadratic panalty applied to the Lagrangian of an equality constrained problem.
- · the Lagrangian of an equality constrained problem augmented by a quadratic penalty.

min
$$f(x)$$
 => min $f(x) + \frac{1}{2} M \gtrsim C_i^2(x)$
S.t. $C_i(x) = 0$, i.e. $f(x) = 0$, i.e. $f(x) = 0$

min
$$f(x) - \sum_{i \in \mathcal{E}} \lambda_i C_i(x)$$
 \Rightarrow min $f(x) - \sum_{i \in \mathcal{E}} \lambda_i C_i(x) + \frac{1}{2} \sum_{i \in \mathcal{E}} C_i^2(x)$

consider an iterative approach for finding a KKT point:

$$\nabla_{X} L_{A}(X_{k}, \lambda^{k}, \mu_{k}) = \nabla f(X_{k}) - \sum_{i \in \mathcal{E}} \left[\lambda_{i}^{k} - \mu_{k} C_{i}(X_{k}) \right] \nabla C_{i}(X_{k}) \approx 0$$

$$\Rightarrow \sum_{i \in \mathcal{E}} \overline{\lambda}_{i} \nabla C_{i}(X_{k})$$

Notice that $\lambda_i^k - M_k C_i(x_k)$ may be a good estimate of λ_i^k . What would that mean?

$$\lambda_{i}^{k} - \mu_{k}C_{i}(x_{k}) \approx \lambda_{i}^{*} \Rightarrow C_{i}(x_{k}) \approx \frac{\lambda_{i}^{k} - \lambda_{i}}{\mu_{k}}$$

message:
$$C_i(x_k) \to 0$$

as $\lambda^k \to \lambda^k$ and as $M_k \to \infty$.

This approach could show strong convergence!

Equality - Constrained Augmented Lagrangian Algorithm

- · Given: Moro, too, X. ER", N° ER"
- · While (MK < 106 \$ 119K11 > 106 \$ 11P11 > 106)
 - Solve $\min_{x} L_A(x, \lambda^k; \mu_K)$ at x_K with termination conditions $\|\nabla L_A\| < t_K$ and $\text{iter} \ge 2n$ optimization returning \bar{x} , iter, $c(\bar{x})$
 - · Updates

$$\lambda^{k+1} = \lambda^{k} - M_{K}C_{i}(\bar{X})$$

$$M_{k+1} = (1 + 10e^{-itkr/n})M_{K}$$

$$t_{k+1} = t_{K}/2$$

$$X_{k+1} = \bar{X}$$

$$K \in K+1$$

Two Theorems

Theorem 17.5 let x^* be a local solution of NLP at which LICQ holds and the second order sufficient conditions are satisfied with x^* , Then there exists $\bar{\mu}$ such that for all $M \ge \bar{\mu}$, x^* is a strict local minimizer of $L_A(x, \bar{\lambda}; \mu)$.

Theorem 17.6 Furthermore, there exist positive scalars δ , ϵ , M such that for all λ^{ϵ} and $M_{\kappa} \geq \bar{\mu}$ satisfying $||\lambda^{\epsilon} - \lambda^{\star}|| \leq M_{\epsilon} \delta$,

- (a) $\| x_{k-} x^{*} \| \le m \| x^{k-} x^{+} \| / M_{k}$
- (b) || \(\lambda^{\mu_1} \gamma^* \rangle \) \(\mathred \mathred \rangle \
- (c) ∇_{xx}^{2} LA is posidef., LICU holds at x_{k}
- (a) \Rightarrow Good convergence as $\lambda^k \rightarrow \lambda^*$ and/or $M_k \rightarrow \infty$.
- (b) ⇒ \(\lambda \) accuracy improves as \(\mu_{\kappa} \) gets large.
- (c) => secondorder conditions hold so monstrained minimization should perform well.

A Method for Incorporating Inequality Constraints

Consider the general problem

mm
$$f(x)$$

s.t. $Ci(x) = 0$ it E
 $Ci(x) \ge 0$ if E
 $X \in \mathbb{R}^n$

we can transform this problem to one of equality constraints only:

min
$$f(x)$$

 xy
 $s.t.$ $Ci(x) = 0$ $i \in \mathbb{Z}$
 $Ci(x) - y_i^2 = 0$ $i \in \mathbb{Z}$ $i \in \mathbb{Z}$ Introduction of $|\mathcal{I}|$ slack variables y_i
 $x \in \mathbb{R}^n$ that are otherwise unconstrained
 $y \in \mathbb{R}^{|\mathcal{I}|}$

Then re-enumerate the constraints and variables:

Min
$$g(\omega)$$

S.t. $\overline{C}_i(x) = 0$ $i \in \overline{E}$
 $w \in \mathbb{R}^N$
Where $w = \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^N$
 $N = n + |x|$
 $\overline{C}_i = C_i$ for $i \in \mathbb{R}$
 $\overline{C}_i = C_i - y_i^2$ for $i \in \mathbb{R}$

$$\Rightarrow \qquad \min_{\omega} g(\omega) - \lambda^{T} \overline{C}(\omega) + \frac{1}{2} \mu \gtrsim \overline{C_{i}}(\omega)$$

Augmented Lagrangian formulation with mcorporated inequality constraints.

Coding the General Augmented Lagrangian Approach

Example.

min
$$f(x)$$

S.t. $c_3(x) = 0$
 $c_4(x) = 0$
 $c_1(x) - y_1^2 = 0$
 $c_2(x) - y_2^2 = 0$
Min $g(\omega)$
 s_1t . $\bar{c}(\omega) = 0$
Min $g(\omega) - \lambda^{\dagger} \bar{c}(\omega) + \frac{1}{2} M \sum_{i \in \mathbb{Z}} \bar{c}_i^2(\omega)$

$$\begin{split} \omega &= \begin{bmatrix} \chi \\ y \end{bmatrix} \in \mathbb{R}^{n+2} \\ g(\omega) &= f(x) - \lambda_1(C_1(x) - y_1^2) - \lambda_2(c_2(x) - y_1^2) - \lambda_3c_3(x) - \lambda_4c_4(x) \\ &+ \frac{1}{2}\mu \left(C_1(x) - y_1^2 \right)^2 + \frac{1}{2}\mu \left(c_2(x) - y_1^2 \right)^2 + \frac{1}{2}\mu C_2^2(x) + \frac{1}{2}\mu C_1^2(x) \\ \nabla g(\omega) &= \begin{bmatrix} \nabla f(x) \\ 0 \end{bmatrix} + \begin{bmatrix} M \left(c_1(x) - y_1^2 \right) - \lambda_1 \end{bmatrix} \begin{bmatrix} \nabla_{\chi} C(x) \\ -2y_1 \\ 0 \end{bmatrix} \\ &+ \begin{bmatrix} M \left(c_2(x) - y_1^2 \right) - \lambda_2 \end{bmatrix} \begin{bmatrix} \nabla_{\chi} C(x) \\ -2y_2 \end{bmatrix} \\ &+ \begin{bmatrix} M C_3(x) - \lambda_3 \end{bmatrix} \begin{bmatrix} \nabla_{\chi} C_3(x) \\ 0 \end{bmatrix} \\ &+ \begin{bmatrix} M C_3(x) - \lambda_4 \end{bmatrix} \begin{bmatrix} \nabla_{\chi} C_3(x) \\ 0 \end{bmatrix} \end{split}$$

$$g(\omega) = f(x) - (C_{\underline{r}} - y^2) \lambda + \frac{1}{2} \mu (C_{\underline{r}} y^2)^{\dagger} (C_{\underline{r}} y^2) - C_{\underline{\lambda}} + \frac{1}{2} \mu C_{\underline{r}}^{\dagger} C_{\underline{r}}$$

inequalities

equalities

$$\nabla g(\omega) = \begin{bmatrix} \nabla_{x} f(x) \\ O_{|x| \times 1} \end{bmatrix} + \sum_{i \in \mathcal{E}} (\mu C_{i}(x) - \lambda_{i}) \begin{bmatrix} \nabla_{x} C_{i}(x) \\ O_{|x| \times 1} \end{bmatrix} + \sum_{i \in \mathcal{E}} (\mu (C_{i}(x) - y_{i}^{2}) - \lambda_{i}) \begin{bmatrix} \nabla_{x} C_{i}(x) \\ -2y_{i} e_{i} \end{bmatrix}$$

$$= \begin{bmatrix} \nabla_{x} f(x) \\ O \end{bmatrix} + \begin{bmatrix} \nabla_{\zeta}(x) \\ O_{z|x| \times 1} \end{bmatrix} (\mu C_{\overline{s}} - \lambda_{\overline{s}}) + \begin{bmatrix} \nabla_{\zeta}(x) \\ -2Y \end{bmatrix} [\mu (C_{\overline{e}} - y^{2}) - \lambda_{\overline{e}}]$$
Requalities

Requalities

where

$$\mathbf{y} = \begin{bmatrix} \mathbf{y}_1 \\ \vdots \\ \mathbf{y}_{|\mathcal{I}|} \end{bmatrix}, \quad \mathbf{y}^2 = \begin{bmatrix} \mathbf{y}_1^2 \\ \vdots \\ \mathbf{y}_{|\mathcal{I}|}^2 \end{bmatrix}, \quad \mathbf{y} = \operatorname{diag}(\mathbf{y}), \quad \mathbf{C}_{\mathcal{I}} = \begin{bmatrix} \mathbf{C}_1(\mathbf{x}) \\ \vdots \\ \mathbf{C}_{|\mathcal{I}|}(\mathbf{x}) \end{bmatrix}, \quad \mathbf{C}_{\mathcal{E}} = \begin{bmatrix} \mathbf{C}_1(\mathbf{x}) \\ \vdots \\ \mathbf{C}_{|\mathcal{I}|}(\mathbf{x}) \end{bmatrix}, \quad \lambda = \begin{bmatrix} \lambda_{\mathcal{E}} \\ \lambda_{\mathcal{I}} \end{bmatrix}$$

If the only inequality constraints are box constraints ($l \le x \le u$) then we can consider a simpler (?) approach.

Recall the optimality test in terms of the normal cone:

If
$$-\nabla f(x) \in N(x)$$

then x is locally optimal

For box constraints, this test becomes

$$X = \text{Proj}_{B} (X - \nabla f(X))$$

The projection is calculated as

Projew = max {l, mm {u, w }

$$proj_{B}(x-\nabla f(x)) = x$$

