

CEVI WORKSHOP PROJECT 2022

TEAMNO: 20

TEAM MEMBERS					
1	VINOD PATIL	01FE20BEC143			
2	ALLABAKASH	01FE20BEC261			

OVERVIEW

Problem statement. Dataset used. **Dataset description. Dataset description analysis.** Methodology. **RESNET-50** architecture. Analysis of model-1. **Analysis of model-2.** Validation. **Observations** Efficient model. References.

LITERATURE SURVEY.

RESEARCH PAPER: Object Detection Based on VGG with ResNet Network.

- Introduction to an improved very deep convolutional network for accurate and significant object detection.
- It extracts high-level features that help to achieve tremendous performance to classify the image and detect objects

ARCHITECTURE.

Fig. 2. The proposed architecture of ResNet

PROBLEM STATEMENT

Detection of Non-Helmet Riders.

OBJECTIVES

- Detect helmet from the image.
- ☐ Predicting correct bounding box.

figure a: input image

figure b: predicted output

1.DATASET USED

HELMET DETECTION DATASET.

figure 1.a: Image1

figure 1.c:lmage2

Filename	width	height	xmin	ymin	xmax	ymax	label
Image1	576	460	289	5	361	125	Without helmet
Image1	576	460	196	10	282	158	Without helmet

figure 1.b:Image1 annotation's

Filename	width	height	xmin	ymin	xmax	ymax	label
Image2	576	460	276	78	381	190	With helmet
Image2	576	460	336	138	441	250	With helmet

figure 1.d:Image2 annotation's

2. DATASET DESCRIPTION

- 1200 Train images.
- 300 Test images.
- The dataset contains both Helmet and Non-helmet riders images and their corresponding annotation's in a single csv.

3. DATASET DESCRIPTION ANALYSIS

- We have all image annotations in a single CSV file. reading the contents from CSV, filename, width, height, label, xmin, ymin, xmax, ymax.
- ☐ Splitting the lists like 80% for training and 20% for testing using train_test_split().
- ☐ Resizing images to 224x224(because resnet50 takes input images of size 224x224).
- ☐ Converting the lists in the form of tensors from the torch library.

5.RESNET-50 ARCHITECTURE

figure 5 : resnet50 architecture

6.MODEL-1.

- ☐ Pretrained model: RESNET-50.
- Number of convolution layers for regressor: 4.
- Number of epochs trained: 20.
- ☐ Loss function for bounding box: I1Loss.
- Loss function for labels: CrossEntropyLoss.
- □ Optimizer: Stochastic gradient descent.

RESULTS OF MODEL-1

figure 6: training loss/accuracy

6.1 PREDICTION OF MODEL-1

figure 6.1.a

figure 6.1.b

figure 6.1.c

When model-1 was trained for 200 epoch's the results were not that satisfactory.

6.2 METRIC EVALUATION

☐ Evaluating model-1 using intersection over union.

figure 6.2.a: formula for intersection over union.

figure 6.2.a: IOU of the output image.

7.MODEL-2

- ☐ Pretrained model: RESNET-50.
- Number of convolution layers for regressor: 8.
- Loss function for bounding box: Mean squared error loss.
- Loss function for labels: CrossEntropyLoss.
- □ Optimizer: Adam optimizer.

7.1 EPOCHS: 70

figure 7.1.a:total training loss

figure 7.1.c : input image

figure 7.1.b:total training accuracy

figure 7.1.d: predicted output

7.2 EPOCHS: 200

figure 7.2.a:total training loss

figure 7.2.c : input image

figure 7.2.b:total training accuracy

figure 7.2.d: predicted output

7.3 Learning rate: 0.001

figure 7.3.a: total training loss

figure 7.3.c : input image

figure 7.3.d : predicted output

7.4 Learning rate: 0.01

figure 7.4.a: total training loss

figure 7.4.c: input image

figure 7.4.b : total accuracy loss

figure 7.4.d : predicted output

7.5 VALIDATION OF MODEL-2

figure 7.5.a

figure 7.5.b

figure 7.5.c

figure 7.5.d

7.6 BONUS

7.6 METRIC EVALUATION

☐ Evaluating model-2 using intersection over union.

figure 5.2.a: formula for intersection over union.

figure 7.2.a: IOU of the output image.

8 OBSERVATION.

Model	Highest Train Accuracy	Highest Validation Accuracy	lou
Model-1	85.46%	89.96%	0.22
Model-2	91.21%	90%	0.37

9. EFFICIENT MODEL

After training our model with different loss functions, different optimizers, training with different numbers of epochs, and adding more convolution layers.

We conclude that the best-suited parameters for our model are:

- Loss function for bounding box: MSELoss.
- Loss function for labels: CrossEntropyLoss.
- Optimizer: Adam optimizer.
- Pretrained model: RESNET-50.
- Learning rate: 0.01
- Number of convolution layers: 8.

10. REFERENCES

- https://www.kaggle.com/datasets/andrewmvd/helmet-detection
- <u>Training an object detector from scratch in PyTorch PyImageSearch</u>
- https://pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
- https://www.irjmets.com/uploadedfiles/paper//issue 5 may 2022/25059/final/fin irjmets1654316725.pdf
- https://www.researchgate.net/publication/333232428 Object Detection Based on VGG with ResNet Network
- https://pytorch.org/
 - https://stackoverflow.com/

