Bedeutung	Parameter	Einheit	Ersatzwert
Flußbetrieb (DC)			
Sättigungsstrom	$I_{ m S},$ IS	A	1E-14
Emissionskoeffizient	N, N	-	1
Kniestrom	$I_{ m KF},$ IKF	A	∞
Sättigungsstrom der Leckstromdiode	$I_{ m SR},$ ISR	A	0
Emissionskoeffizient der Leckstromdiode	$N_{ m R},{ t NR}$	-	2
Bahnwiderstand	$R_{ m S},{ t RS}$	Ω	0
Sperrbetrieb (DC)			
Durchbruchskniespannung	$B_{ m V},$ BV	V	∞
Durchbruchskniestrom (1. Diode)	$I_{ m BV},\;{ t IBV}$	\mathbf{A}	1E-10
Emissionskoeffizient (1. Diode)	$N_{ m BV},{ t NBV}$	-	1
Durchbruchskniestrom (2. Diode)	$I_{ m BVL},\; { t IBVL}$	A	0
Emissionskoeffizient (2. Diode)	$N_{ m BVL},{ t NBVL}$	-	1
Kapazitäten			
Sperrschichtkapazität bei 0 V	$C_{ m JO},{ m CJO}$	\mathbf{F}	0
Diffusionsspannung	$V_{ m J},{ t V}{ t J}$	V	1
Gradationsexponent	M,\mathtt{M}	-	0.5
$c_{ m j} ext{-}{ m Koeffizient}$	$F_{ m C},{ t FC}$	-	0.5
Transitzeit	$T_{ m T},{ t TT}$	S	0
Temperaturabhängigkeit			
Bandabstandsspannung (= $W_{\rm g}/e$)	$E_{ m G},{ t EG}$	V	1.11
Temperaturexponent für $I_{\rm S}$	$X_{ m TI}, { t XTI}$	-	3
TK für $R_{\rm S}$ (linear)	$T_{ m RS1}, { m TRS1}$	K^{-1}	0
TK für $R_{\rm S}$ (quadratisch)	$T_{ m RS2}, { m TRS2}$	K^{-2}	0
TK für $B_{\rm V}$ (linear)	$T_{ m BV1},~{ t TBV1}$	K^{-1}	0
TK für $B_{\rm V}$ (quadratisch)	$T_{ m BV2},{ t TBV2}$	K^{-2}	0
TK für I_{KF} (linear)	$T_{ m IKF},{ t TIKF}$	K^{-1}	0
Rauschen			
1/f-Rauschkoeffizient	$K_{ m F},{ t KF}$	A^2	0
1/f-Rauschexponent	$A_{ m F},$ AF	-	1