Recherche Opérationnelle 1A Programmation Linéaire Justification de l'Étape 2 de l'algorithme du simplexe Étape 1 de l'algorithme du simplexe

Zoltán Szigeti

Ensimag, G-SCOP

Rappel de l'itération de l'algorithme du simplexe

l'itération du simplexe

- **①** Soit $s ∈ \overline{J}$ pour lequel $c_s = \max\{c_i : i ∈ \overline{J}\}$.
- ② Si $c_s \leq 0$ arrêter. (La solution de base est optimale.)
- 3 Si $a^s \le 0$ arrêter. $(z(max) = \infty.)$
- Soit $J' = J + s J_r$ la nouvelle base réalisable, pivoter à A_r^s et arrêter/recommencer.

Pivot

- $(a'_r, b'_r) = (a_r, b_r)/A_r^s$
- $\bullet \ (a_i',b_i')=(a_i,b_i)-A_i^s\cdot(a_r',b_r'), \quad \text{pour tout } i\neq r,$
- $(c'^T, -z'_0) = (c^T, -z_0) c_s \cdot (a'_r, b'_r).$

Théorème

Si $c_s \leq 0$ alors J est une base optimale.

- 2 Pour $\left(\frac{\overline{x}_J}{\overline{x}_{\overline{J}}}\right)$, la solution de base associée à J, $z=z_0$,
- 3 elle est donc optimale.

Théorème

Si $c_s > 0$ et $a^s \le 0$ alors $z(\max) = \infty$.

- **1** On augmente x_s en gardant les autres variables hors base fixées à 0, soient donc $\overline{x}'_s = t \ge 0$, $\overline{x}'_{\overline{J} \setminus \{s\}} = 0$.
- - $A \cdot \overline{x}' = I \cdot \overline{x}'_J + a^s \cdot \overline{x}'_s + A^{\overline{J} \setminus \{s\}} \cdot \overline{x}'_{\overline{J} \setminus \{s\}} = (b a^s \cdot t) + a^s \cdot t + 0 = b,$ $\overline{x}'_J = b a^s \cdot t \ge b \ge 0$, puisque $a^s \le 0, t \ge 0$ et $b \ge 0$.
- $+c_{\overline{J}\setminus\{s\}}^T\cdot 0=c_s\cdot t$ tend vers ∞ si t tend vers ∞ .

Théorème

Nouvelle base J' est réalisable.

- On a $\overline{x}_{J'} = b'$.
- $b'_r = \frac{b_r}{A^s} \ge 0$, puisque $b_r \ge 0$ et $A^s_r > 0$,
- $b_i' = b_i A_i^s \cdot b_r' \text{ si } i \neq r.$
 - $\bullet \ \ \mathsf{Si} \ A_i^s \leq 0 \ \mathsf{alors} \ b_i' = b_i A_i^s \cdot b_r' \geq b_i \geq 0, \ \mathsf{car} \ A_i^s \leq 0, \ b_r' \geq 0 \ \mathsf{et} \ b_i \geq 0.$
 - ② Si $A_i^s > 0$ alors $b_i' = b_i A_i^s \cdot b_r' \ge 0$ si et seulement si $\frac{b_i}{A_i^s} \ge b_r'$, mais $\frac{b_i}{A^s} \ge \min\{\frac{b_i}{A^s} : A_i^s > 0\} = \frac{b_r}{A^s} = b_r'$.

Théorème

L'algorithme s'arrête.

- Cas non-dégénéré : b > 0 toujours.
 - **1** La fonction objectif augmente toujours : $z'_0 = z_0 + c_s \cdot b_{r'} > z_0$, puisque c_s , $b_{r'} > 0$.
 - 2 les bases sont donc toutes différentes pendant l'exécution,
 - 3 et puisque le nombre de bases est fini, $\leq C_n^m$,
 - l'algorithme s'arrête.
- ② Cas dégénéré : $b_i = 0$ peut arriver.
 - la même base peut revenir, l'algorithme peut cycler.
 - Pour l'éviter, on utilise la Règle de Brandt : Si on a le choix pour s ou r, il faut choisir le plus petit indice possible.

Étape 1 de l'algorithme du simplexe

Définition

- ① On cherche une base réalisable d'un PL (P) sous forme standard où
- 2 on suppose que $b \ge 0$. (Si $a_i \cdot x = b_i < 0 \Longrightarrow (-a_i) \cdot x = -b_i > 0$.)

$$(P) \qquad \begin{array}{ccc} A \cdot x & = b \\ x & \geq 0 \end{array}$$

On considère le PL auxiliaire suivant :

$$(P') \begin{array}{ccc} A \cdot x + I \cdot y = b \\ x, & y \ge 0 \\ (\mathbf{1}^T \cdot A) \cdot x & = z'(\max) + \mathbf{1}^T \cdot b \end{array}$$

Théorème

Il existe une solution réalisable de (P) si et seulement si z'(max) = 0.

Étape 1 de l'algorithme du simplexe

$$(P) \begin{array}{ccc} A \cdot x & = b \\ x & \geq 0 \end{array} \qquad (P') \begin{array}{ccc} A \cdot x + I \cdot y = b \\ x, & y \geq 0 \\ (\mathbf{1}^T \cdot A) \cdot x & = z'(\max) + \mathbf{1}^T \cdot b \end{array}$$

Théorème

Il existe une solution réalisable de (P) si et seulement si z'(max) = 0.

$$\mathbf{0} \ z'(\max) = (\mathbf{1}^T \cdot A) \cdot x - \mathbf{1}^T \cdot b = \mathbf{1}^T \cdot (A \cdot x - b) = \mathbf{1}^T \cdot (-I \cdot y)$$
$$= -\mathbf{1}^T \cdot y < 0.$$

- il existe $\overline{x}, \overline{y}$ tels que $A \cdot \overline{x} + I \cdot \overline{y} = b, \overline{x}, \overline{y} \ge 0$, et $-\mathbf{1}^T \cdot \overline{y} = 0$ (mais $-\mathbf{1}^T \cdot \overline{y} = 0$ si et seulement si $\overline{y} = 0$ puisque $\overline{y} \ge 0$) \iff
- il existe \overline{x} tel que $A \cdot \overline{x} = b, \overline{x} \ge 0$ \iff
- il existe une solution réalisable \overline{x} de (P).

Étape 1 de l'algorithme du simplexe

$$(P') \begin{array}{ccc} A \cdot x + I \cdot y = b \\ x, & y \ge 0 \\ (\mathbf{1}^T \cdot A) \cdot x & = z'(\max) + \mathbf{1}^T \cdot b \end{array}$$

Remarque

- Les variables de y forment une base réalisable du (P'), puisque on a la matrice identité et $b \ge 0$,
- (P') est sous forme standard par rapport aux variables de y.
- 3 On peut le résoudre avec l'Étape 2.

<u>É</u>noncé

Appliquer l'algorithme du simplexe pour résoudre ce programme linéaire.

$$\begin{array}{l} 2x_1 + 1x_2 \geq 2 \\ 1x_1 + 3x_2 \leq 3 \\ x_2 \leq 4 \\ x_1, \quad x_2 \geq 0 \\ 3x_1 - 1x_2 = z(\max) \end{array}$$

Solution

1 On ajoute les nouvelles variables x_3 , x_4 , x_5 qui sont non-négatives et on obtient le programme linéaire suivant (P_2) :

- **②** (P_2) est sous forme standard mais on n'a pas une base réalisable. $(\{3,4,5\}$ est une base mais elle n'est pas réalisable.)
- 3 On a donc besoin de l'Étape 1.

Solution

① Pour avoir la matrice identité il faut ajouter une nouvelle variable y_1 qui est non-négative et on veut minimizer $y_1 \iff$ maximiser $-y_1$.

- ② Maintenant la base $J' = \{6, 4, 5\}$ est réalisable mais $c'_{J'} \neq 0$.
- **3** En ajoutant la première ligne, on obtient (P^*) :

$$2x_1 + 1x_2 - 1x_3 + 1y_1 = 2$$

$$1x_1 + 3x_2 + 1x_4 = 3$$

$$1x_2 + 1x_5 = 4$$

$$x_1, x_2, x_3, x_4, x_5, y_1 \ge 0$$

$$2x_1 + 1x_2 - 1x_3 = z'(\max) + 2$$

Solution

Maintenant on peut utiliser l'Étape 2 pour résoudre (P*).

2	1	-1 0 0 -1	0	0	1	2
1	3	0	1	0	0	3
0	1	0	0	1	0	4
2	1	-1	0	0	0	2

	-1	- 1			1	-
1	$\frac{1}{2}$	$-\frac{1}{2}$	0	0	$\frac{1}{2}$	1
0	1/2 5/2	$\frac{1}{2}$	1	0	$-\frac{1}{2}$ 0	2
0	ī	Ō	0	1	0	2
0	0	0	0	0	-1	0

- 2 Dans le dernier tableau la fonction objectif est non-positive,
- **3** la base $J'' := \{1, 4, 5\}$ est donc optimale et
- la valeur de la fonction objectif pour la solution de base associée est 0.
- J'' est donc une base réalisable de (P_2) .

1	1/2	$-\frac{1}{2}$	0	0	$\frac{1}{2}$	1
0	1 2 5 2	1/2	1	0	$-\frac{1}{2}$ $-\frac{1}{2}$	2
0	ī	Ō	0	1	0	1 2 4
0	0	0	0	0	-1	0

Solution

- En utilisant le dernier tableau et la fonction objectif originale on a un PL (P'_2) qui est équivalent à (P_2) et pour qui on a $A''_{\mu\nu} = I$.
- ② II faut encore changer la fonction objectif car $c_{J''} \neq 0$ $(c_1 \neq 0)$.
- 3 Il faut soustraire 3 fois la première ligne de la fonction objectif.

Solution

① On a finalement le PL sous forme standard par rapport à J''.

$$\begin{array}{lll} x_1 + \frac{1}{2}x_2 - \frac{1}{2}x_3 & = 1 \\ + \frac{5}{2}x_2 + \frac{1}{2}x_3 + x_4 & = 2 \\ 1x_2 & + x_5 = 4 \\ x_1, & x_2, & x_3, & x_4, & x_5 \ge 0 \\ - \frac{5}{2}x_2 + \frac{3}{2}x_3 & = z(\max) - 3 \end{array}$$

Maintenant on peut utiliser l'Étape 2.

1	$\frac{1}{2}$	$-\frac{1}{2}$	0	0	1
0	<u>5</u> 2	$\frac{1}{2}$	1	0	2
0	1	0	0	1	4
0	$-\frac{5}{2}$	<u>3</u> 2	0	0	-3

1	3	0	1	0	3
1 0	5	1	2	0	4
0	1	0		1	3 4 4
0	-10	0	-3	0	-9

- 3 Dans le dernier tableau la fonction objectif est non-positive,
- une solution optimale est donc $(\overline{x}_1, \overline{x}_2) = (3, 0)$ de valeur 9.

Algorithme du simplexe révisé

Étant donnés un PL sous forme standard, une base réalisable J, et sa forme standard par rapport à J:

$$\begin{array}{ll} A \cdot x = b & \hat{A} \cdot x = \hat{b} \\ x \geq 0 & x \geq 0 \\ c^T \cdot x = z(\max) & \hat{c}^T \cdot x = z(\max) - \hat{z}_0 \end{array}$$

- $\hat{A} = (A^J)^{-1} \cdot A,$
- $\hat{b} = (A^J)^{-1} \cdot b,$
- **3** $\pi^T = c_I^T \cdot (A^J)^{-1}$,
- $\hat{c}^T = c^T c_J^T \cdot \hat{A} = c^T c_J^T \cdot (A^J)^{-1} \cdot A = c^T \pi^T \cdot A,$
- $\hat{a}^s = (A^J)^{-1} \cdot a^s,$
- $\hat{\mathbf{z}}_0 = c_J^T \cdot \hat{b} = c_J^T \cdot (A^J)^{-1} \cdot b = \pi^T \cdot b.$

On peut calculer seulement ces vecteurs et pas tout le tableau.