Лабораторно-практическая работа.

Тема: Исследование трехфазной цепи при соединении потребителей «звездой» и «треугольником».

Цель работы: Сформировать знания о трехфазной системе переменного тока при соединении потребителей «звездой» и «треугольником», при равномерной и неравномерной нагрузке фаз. Изучить основные соотношения между токами и напряжениями, выяснить роль нулевого провода в четырехпроводной системе трехфазного тока.

Оборудование:

- 1. Амперметры переменного тока;
- 2. Вольтметр переменного тока;
- 3. Лампы;
- 4. Соединительные провода.

Методические рекомендации.

От трехфазного генератора переменного тока обычно отходят четыре провода - три линейных A, B, C и один нейтральный, или нулевой, 0. (рис. 1).

Напряжения U_{AB} , U_{BC} , U_{CA} , действующие между соответствующими линейными проводами, обычно равны между собой по величине, сдвинуты по фазе относительно друг друга на угол $\frac{2\pi}{3}$ = 120° и носят название линейных, а напряжения U_A , U_B , U_C , действующие между соответствующим линейным и нейтральным проводами, называются фазными. Отдельные фазные приемники перед включением их в сеть распределяются на три группы примерно одинаковой мощности, собой которые нужно соединить между «звездой» или «треугольником».

Рис. 1. Схема соединения приемников электроэнергии, включенных в «звезду» по четырехпроводной схеме с нулевым проводом.

Для соединения трех однофазных приемников Z_A , Z_B Z_C «звездой» (рис. 1) необходимо их концы x, y, z соединить в общую нейтральную или нулевую точку, а к оставшимся свободным началам A, B, C подвести электроэнергию линейными проводами

от трехфазной сети. Нулевую точку присоединяют к четвертому, нейтральному, уравнительному, или нулевому, проводу.

Если полные сопротивления фаз Z_A , Z_B , Z_C отдельных приемников равны между собой $Z_A=Z_B=Z_C=Z_{\varphi}$ и углы сдвига фаз между фазными напряжениями и соответствующими им фазными токами одинаковы $\varphi_A=\varphi_B=\varphi_c=\varphi_{\varphi}$, то такую нагрузку называют симметричной или равномерной. При симметричной нагрузке ток в нейтральном проводе $I_0=0$, что позволяет трехфазную линию выполнить трехпроводной. Если указанные равенства не соблюдаются, т. е. к трехфазной системе присоединены три различных по величине сопротивления или углу сдвига фаз, то такая нагрузка называется несимметричной или неравномерной. При этом в каждой фазе и в каждом линейном проводе потекут различные по величине и углу сдвига фаз токи, симметрия будет нарушена и в нейтральном проводе возникнет ток I_0 равный геометрической сумме токов трех фаз.

При несимметричном режиме и наличии нейтрального провода приемники Z_A , Z_B , Z_C находятся под одинаковыми по величине фазными напряжениями $U_A=U_B=U_C=U_{\varphi}$.

При обрыве нейтрального (нулевого) провода нормальный режим работы трехфазной установки нарушается: фазные токи изменяются и устанавливаются такими, чтобы их сумма стала равной нулю. Это приводит к искажению симметрии фазных напряжений, в результате чего приемники оказываются под напряжениями, отличающимися от номинального значения фазного напряжения.

При соединении приемников «звездой» токи в подводящих проводах - линейные токи I_A , I_B , I_C - становятся одновременно и токами приемников соответствующих фаз, т. е. фазными токами I_{ϕ} . Поэтому при соединении приемников «звездой» справедливо равенство $I_{\pi}=I_{\phi}$. Между линейными и фазными напряжениями существует зависимость $U_{\pi}=\sqrt{3}U_{\phi}$. Это позволяет для трехфазной четырехпроводной системы, например для напряжения 380/220B, присоединять к сети одновременно как трехфазные приемники на 380B, так и однофазные на 220B.

Для соединения трех однофазных приемников Z_{AB} , Z_{BC} , Z_{CA} «треугольником» (рис. 2) надо конец x первого приемника соединить с началом B второго, конец y второго - с началом C третьего, конец z третьего - с началом A первого приемника, а к узлам полученного треугольника подвести линейными проводами энергию от трехфазной сети.

Рис. 2. Схема соединения приемников, включенных в «треугольник».

При соединении «треугольником» каждый приемник включен между подводящими

проводами и находится под линейным напряжением $U_{\rm л}$, которое - является одновременно фазным напряжением U_{ϕ} . Поэтому при соединении «треугольником» справедливо равенство $U_{AB} = U_{BC} = U_{CA} = U_{\phi} = U_{\pi}$.

При симметричной нагрузке фазные токи всех фаз одинаковы по величине $I_{AB} = I_{BC} = I_{CA} = I_{\Phi}$ и сдвинуты по отношению к своим фазным напряжениям на одинаковые углы: $\phi_{AB} = \phi_{BC} = \phi_{CA} = \phi_{\Phi}$.

Все линейные токи равны между собой и превышают значения фазных токов в $\sqrt{3}$ раз, т. е, $I_A=I_B=I_C=\sqrt{3}*I_{\Phi}$.

При несимметричном режиме, когда изменяется нагрузка в одной из фаз, происходит одновременное изменение соответствующих фазного и двух линейных токов, но это не влияет на величины фазных напряжений и токов других фаз, а также на величину третьего линейного тока.

Порядок выполнения работы

1. Собрать схему по рис. 3 (соединение «звездой») и дать проверить ее преподавателю. В каждую фазу включить по три лампы одинаковой мощности.

Рис. 3. Схема для исследования цепи трехфазного тока при соединении приемников «звездой» по четырехпроводной схеме с нулевым проводом

- 2. Включить схему в электрическую цепь.
- 3. Снять показания приборов при равномерной нагрузке фаз (измерение линейных и фазных напряжений производить одним переносным вольтметром). Записать результаты измерений в табл. 1. Проверить соотношения между линейными и фазными напряжениями и токами.

|--|

	Ţ.	I_{B}	I_{C}	Io	фазные		линейные			
	IA				U_{A}	U_{B}	Uc	U_{AB}	U_{BC}	Uca
Равномерная без нулевого										
провода										
Равномерная с нулевым										
проводом										
Неравномерная без										
нулевого провода										
Неравномерная с										
нулевым проводом										

- 4. Включить в схему рис. 3 четвертый (нулевой) провод и опять показания для случая «Равномерная нагрузка с нулевым проводом» (табл. 1, п. 2).
- 5. Создать неравномерную нагрузку, отключить нулевой провод, снять показания приборов (табл. 1, п. 3).
- 6. При неравномерной нагрузке включить нулевой провод и снять показания приборов (табл. 1, п. 4). Неравномерная нагрузка создастся равным количеством ламп, включенных в каждую фазу (например, в фазе A включены три лампы, в фазе B две, в фазе C одна).
- 7. Сделать вывод о влиянии нулевого провода на работу трехфазной системы при равномерной и неравномерной нагрузках фаз.
- 8. Собрать схему по рис. 4 (соединение «треугольником») и дать проверить ее преподавателю.

Рис. 4. Схема для исследования цепи трехфазного тока при соединении приемников «треугольником».

- 9. Включить схему в электрическую цепь.
- 10. Снять показания приборов при равномерной нагрузке фаз (измерение линейных и фазных напряжений производить одним переносным вольтметром). Записать результаты измерений в табл. 2. Проверить соотношения между линейными и фазными напряжениями и токами.

Режимы	Режимы Токи нагрузки, А							Напряжение, В				
нагрузки	фазные			J	инейны	e						
	I_A	I_B	I_{C}	I_{AB}	I_{BC}	I_{CA}	U_{AB}	U_{BC}	U_{CA}			
Равномерная												
Неравномерная												

- 11.Изменить нагрузку фаз и снять показания приборов при неравномерной нагрузке фаз. Результаты измерений записать в п.2 табл. 2.
- 12.Сравнить схемы включения в «звезду» и «треугольник» при равномерной и неравномерной нагрузках.
 - 13.Слелать отчет.

Контрольные вопросы

- 1. Как соединить три однофазных приемника «звездой»?
- 2. Для чего применяют нулевой провод и в каких случаях можно обойтись без него?
- 3. Какой режим работы трехфазной цепи называют равномерным или симметричным?
 - 4. Как соединить три однофазных приемника «треугольником»?
- 5. Какие существуют зависимости между линейными и фазными токами и напряжениями при соединении приемников «звездой» и «треугольником»?
- 6. Какой должна быть схема соединений, чтобы в одну трехфазную сеть включить лампы накаливания и трехфазный электродвигатель?