

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.01 Информатика и вычислительная техника

ОТЧЕТ

по лабораторной работе № 2

Название:	Исследование мультиплексоров

Дисциплина: Схемотехника

Студент	ИУ6-52Б		С.В. Астахов
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Преподаватель			Т.А. Ким
•		(Подпись, дата)	(И.О. Фамилия)

<u>Цель работы:</u> изучение принципов построения, практического применения и экспериментального исследования мультиплексоров.

Вариант 14:

Комбинация сигналов: 10100101 ФАЛ: 0, 1, 2, 5, 6, 7, 9, 11, 12

Ход работы.

- 1. Исследование ИС ADG408 или ADG508 (рис.6) в качестве коммутатора MUX 8-1 цифровых сигналов:
- а) на информационные входы D0 ...D7 мультиплексора подать комбинацию сигналов, заданную преподавателем из табл. 2. Логические уровни 0 и 1 задавать источниками напряжения U=5 В и 0 В (общая);
- б) на адресные входы A2, A1, A0 подать сигналы Q3, Q2. Q1 соответственно с выходов 4-разрядного двоичного счетчика (младший разряд Q0). На вход счетчика подать импульсы генератора с частотой 500 кГц.

Рисунок 1 - исследование мультиплексора ADG508

в) снять временную диаграмму сигналов при EN=1 и провести ее анализ. Наблюдение сигналов выполнить на логическом анализаторе.

Рисунок 2 - временная диаграмма сигналов в схеме

- 2. Исследование ИС ADG408 или ADG508 (рис.6) в качестве коммутатора MUX 8-1 аналоговых сигналов:
- а) на информационные входы D0 ...D7 мультиплексора подать дискретные уровни напряжений с источников напряжения UCC (приложение Multisim): 0 B; 0.7 B; 1.4 B; 2.1 B; 2.8 B; 3.5 B; 4.2 B; 5.0 B;
- б) на адресные входы A2, A1, A0 подать сигналы Q3, Q2. Q1 соответственно с выходов 4-разрядного двоичного счетчика (младший разряд Q0). На вход счетчика подать импульсы генератора с частотой 500 кГц;

Рисунок 3 - использования мультиплексора в качестве коммутатора аналоговых сигналов

в) снять временную диаграмму сигналов при EN=1 и провести ее анализ. Наблюдение сигналов выполнить на логическом анализаторе, выходного сигнала мультиплексора — на логическом анализаторе и осциллографе. Совместить развертки сигналов, регистрируемых логическим анализатором и осциллографом.

Рисунок 4 - временные диаграммы сигналов на логическом анализаторе и осциллографе

Как видно на показаниях осциллографа, при переключении мультиплексора сигнал искажается помехами. Для их устранения установим на выходе простейший ФНЧ на основе конденсатора.

Рисунок 5 - использования мультиплексора в качестве коммутатора аналоговых сигналов с применением ФНЧ

Как видно из показаний осциллографа ниже, влияние помех на сигнал после введения ФНЧ уменьшилось.

Рисунок 6 - показания осциллографа после введения ФНЧ

3. Исследование ИС ADG408 или ADG508 (рис.6) как коммутатора MUX 8—1 цифровых сигналов в качестве формирователя ФАЛ четырех переменных. ФАЛ задается преподавателем из табл. 2. Проверить работу формирователя в статическом и динамическом режимах. Снять временную диаграмму сигналов формирователя ФАЛ и провести ее анализ.

Составим таблицу истинности указанной ФАЛ (Таблица 1).

Таблица 1 - таблица истинности ФАЛ.

n x1 x2 x3 x4 F 0 0 0 0 0 1 1 0 0 0 1 1 2 0 0 1 0 1 3 0 0 1 1 0 4 0 1 0 0 0 5 0 1 0 1 1
1 0 0 0 1 1 2 0 0 1 0 1 3 0 0 1 1 0 4 0 1 0 0 0
2 0 0 1 0 1 3 0 0 1 1 0 4 0 1 0 0 0
3 0 0 1 1 0 4 0 1 0 0 0
4 0 1 0 0
5 0 1 0 1 1
6 0 1 1 0 1
7 0 1 1 1 1
8 1 0 0 0
9 1 0 0 1 1
10 1 0 1 0
11 1 0 1 1 1
12 1 1 0 0 1
13 1 1 0 1 0
14 1 1 1 0 0
15 1 1 1 1 0

На основе таблицы истинности составим схему, подавая 3 сигнала на адресные входы и один (в случаях, когда это необходимо) сигнал - на информационные входы.

Так же применим ФНЧ для избежания ложных сигналов.

Рисунок 7 - реализация ФАЛ на мультиплексоре

Рисунок 8 - временная диаграмма сигналов в схеме

4. Наращивание мультиплексора.

Построить схему мультиплексора MUX 16-1 на основе простого мультиплексора MUX 4-1 и дешифратора DC 2-4 (рис.2, второй вариант наращивания, см. выше). Исследовать мультиплексора MUX 16-1 в динамическом режиме. На адресные входы подать сигналы с 4-разрядного двоичного счетчика, на информационные входы D0 ...D15- из табл. 2.

Провести анализ временной диаграммы сигналов мультиплексора MUX 16 – 1.

Согласно схеме наращивания мультиплексоров, старшие разряды счетчика подадим на дешифратор, младшие - в 4 мультиплексора.

Рисунок 9 - наращивание мультиплексоров

Рисунок 10 - временная диаграмма сигналов

<u>Вывод:</u> в ходе данной лабораторной работы были изучены принципы построения, практического применения и экспериментального исследования мультиплексоров.