

Monitoring Relative Surface Soil Moisture Using Sentinel-1 Across the River Thames Catchment

<u>Dr. Will Maslanka</u>, Prof. Keith Morrison, Dr. Kevin White, Prof. Anne Verhoef, Prof. Joanna Clark

W. Maslanka et al., "Retrieval of Sub-Kilometric Relative Surface Soil Moisture with Sentinel-1 Utilizing Different Backscatter Normalisation Factors" *IEEE Trans. Geosci. Remote Sens.*

Context

- Soil Moisture (SM) is valuable for agricultural and hydrometeorological processes.
 - Essential Climate Variables by the Global Climate Observing System
- SM is also vital for inferring the effectiveness of land- and soilmanagement based Natural Flood Management
 - Soils ability to store precipitation before it enters the watercourse
- Ability to observe SM over range of scales (catchment to field) is vital to assess the impact on SM from other variables
 - Geology, Soil Type, Crop Management, Land Use

Method

• Using TU-Wien Change Detection Model_[1] to calculate relative Surface Soil Moisture (rSSM) over the Thames Valley, UK.

$$rSSM(t) = \frac{\sigma^{\circ}(\vartheta, t) - \sigma^{\circ}_{d}(\vartheta)}{\sigma^{\circ}_{w}(\vartheta) - \sigma^{\circ}_{d}(\vartheta)} \qquad \text{where} \qquad \sigma^{\circ}(\vartheta, t) = \sigma^{\circ}(\theta, t) - \beta(\theta - \vartheta)$$

Backscatter is sensitive to many individual, highly variable features

Concerning Vegetation	Concerning Soils
Vegetation Water Content	Soil Roughness
Crop Row Orientation	Tillage
Size	Soil Moisture
Crop Density	
Wind Bending	

- Can mitigate a lot via spatial averaging, and normalisation, via normalisation parameter β
- Assuming surface roughness and vegetation do not change in time*

Normalisation

Two different normalisation methods used

- Traditional "Direct Regression Slope" Method
- Complex "Multiple Regression Slope" Method
- Both slopes calculated at Traditional Annual and Monthly timescales

Seasonal Cycle Present

- Peak in Early Summer
- Trough in Late Winter
- Clear impact of Harvest in August
- Not captured with Annual Factors

Data Used

- Sentinel-1
 - Level 1 IWGRDH (VV)
 - October 2015 September 2021
 - Ascending Orbits
 - Relative Orbits 030 and 132

COSMOS-UK Network

- 3 sites
 - Chimney Meadows (CHIMN)
 - Sheepdrove (SHEEP)
 - Waddesdon (WADDN)
- January 2016 December 2019
- Volumetric Water Content
 - Normalised
- Precipitation

Data Used

- Sentinel-1
 - Level 1 IWGRDH (VV)
 - October 2015 September 2021
 - Ascending Orbits
 - Relative Orbits 030 and 132
- COSMOS-UK Network
 - 3 sites
 - Chimney Meadows (CHIMN)
 - Sheepdrove (SHEEP)
 - Waddesdon (WADDN)
 - January 2016 December 2019
 - Volumetric Water Content
 - Normalised
 - Precipitation

Centre of Ecology and Hydrology, Land Cover Model 2018

Comparison with COSMOS-UK (CHIMN – 100m)

General Trend in good agreement

- Overestimation during late summer (July October)
- Measurement depths different (Surface / ~15 cm)
- 14-orbit moving average applied to remove noise

Comparison with COSMOS-UK (CHIMN)

100m	RMSE	R2
Ann-Dir	6.6%	0.58
Mon-Dir	7.2%	0.48
Ann-Reg	6.7%	0.58
Mon-Reg	7.0%	0.53

Mon-Reg	RMSE	R2
1000m	12.1%	0.29
500m	12.0%	0.21
250m	8.2%	0.41
100m	6.6%	0.58

Normalisation Factor

- Comparable uncertainties regardless of combination used
- Annual normalisation factors perform the best, they don't take variation in slope into account.

Spatial Averaging

- Finer Spatial Averaging performs best
- Expected, as comparing with in-situ sensor
 - Coarser Spatial Averaging includes ground not covered by in-situ sensor.

Overestimation in Arable

- Oilseed rape incorrectly identifies Summer as "wet"
 - Summer peak in backscatter due to plant/pod geometry
 - Centre of Ecology and Hydrology, Land Cover Model plus Crops 2018

Future Work

- Using rSSM time series, will compare:
 - Land-use (Arable vs. Grassland)
 - Land-management (Crop type comparison)
 - Soil-type (Dominant Soils in the Thames Valley)
 - Anecdotal Evidence (Common areas of high rSSM)
- Thank you for listening!

Will.Maslanka@reading.ac.uk

https://landwise-nfm.org/

