Mathematics 3F03 Advanced Differential Equations

Instructor: David Earn

Lecture 7
Review of Planar Linear Algebra
18 September 2013

Announcements

- Assignment 1 due THIS FRIDAY, 20 Sep 2013, before class, in the appropriately labelled locker next to HH-105.
- Putnam Mathematical Competition: There will be an organizational meeting on Thursday 19 Sep 2013 in HH 410.

The William Lowell Putnam competition is a university-level mathematics competition held annually for undergraduate students at North American universities. More information can be found at http://math.scu.edu/putnam or on the undergraduate page of the Math department's website. This year's competition will occur on 7 Dec 2013. If you are interested in participating or learning more, drop by on Thursday 19 Sep and/or send email to Prof. Bradd Hart (hartb@mcmaster.ca).

When can we solve

$$AX = B$$

for $X \in \mathbb{R}^n$?

In the plane, when can we solve

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

for
$$\begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2$$
 ?.

$$AX = B$$

When is there a unique solution?

$$\exists ! \text{ solution } \iff \det A \neq 0$$

$$\iff A^{-1} \text{ exists}$$

$$\iff X = A^{-1}B$$

AX = B. Is there necessarily a solution?

Examples:

$$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} X = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

no solution

$$\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} X = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

no solution

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} X = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

lacksquare $\forall y \in \mathbb{R}, \ X = egin{pmatrix} 1 \\ y \end{pmatrix}$ is a solution

$$AX = B$$

What are the possibilities?

- \blacksquare 0, 1 or ∞ solutions
- If det $A \neq 0$ then $\exists !$ solution
- If $\det A = 0$ then either
 - no solutions
 - ∞ solutions

Linear Independence

$$V = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}, \ W = \begin{pmatrix} w_1 \\ w_2 \end{pmatrix}$$

 $V,W\in\mathbb{R}^2$ are **linearly independent** if and only if any of the following is true:

- V and W do not lie along the same line through the origin
- V and W are not proportional
- $\det \begin{pmatrix} v_1 & w_1 \\ v_2 & w_2 \end{pmatrix} \neq 0$

Basis

A **basis** of \mathbb{R}^n is a set of *n* linearly independent vectors.

The **standard basis** is $\{E_i : i = 1, ..., n\}$, where

$$E_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \quad E_2 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \quad \cdots, \quad E_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$$

Eigenvectors and Eigenvalues

Eigenvectors of a matrix A are vectors in special directions in which A acts like scalar multiplication.

The following are equivalent (assuming $V \neq 0$):

- $lue{V}$ is an eigenvector of A
- $\blacksquare \exists \lambda \text{ such that } AV = \lambda V$
- $\exists \lambda$ such that $(A \lambda I)V = 0$

Such a λ is called an **eigenvalue** of A.

Eigenvectors and Eigenvalues

To find eigenvalues and eigenvectors, note that

$$V \neq 0$$
 and $(A - \lambda I)V = 0 \implies \det(A - \lambda I) = 0$

 \therefore Solutions λ of the **characteristic equation** $\det(A - \lambda I) = 0$ are eigenvalues.

For each eigenvalue, find eigenvectors by solving $AV = \lambda V$ for V.

Action of A is easiest to understand if \exists basis of eigenvectors.

Original Grid

After applying
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\lambda_1 = 1, \quad \lambda_2 = 1$$

Original Grid

After applying
$$A = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}$$

$$\lambda_1 = 2.41421, \quad \lambda_2 = -0.414214$$

After applying
$$A = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Original Grid

After applying $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$

$$\lambda_1 = 1, \quad \lambda_2 = 0$$

Original Grid

After applying $A = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$

$$\lambda_1 = 1, \quad \lambda_2 = 0$$

Original Grid

After applying $A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$

$$\lambda_{\pm} = 1 \pm i, \quad |\lambda| = 1.414, \quad \theta = 0.785$$

Original Grid

After applying
$$A = \begin{pmatrix} 1 & -0.5 \\ 0.5 & 1 \end{pmatrix}$$

$$\lambda_{\pm} = 1 \pm 0.5i$$
, $|\lambda| = 1.118$, $\theta = 0.464$

Original Grid

After applying $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

$$\lambda_1 = 1, \quad \lambda_2 = -1$$

Original Grid

After applying
$$A = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\lambda_1 = 1$$
, $\lambda_2 = -1$

Original Grid

After applying
$$A = \begin{pmatrix} 1 & 0.5 \\ 0 & 1 \end{pmatrix}$$

$$\lambda_1 = 1, \quad \lambda_2 = 1$$

Original Grid

After applying
$$A^2 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

$$\lambda_1 = 1, \quad \lambda_2 = 1$$

Original Grid

After applying
$$A^3 = \begin{pmatrix} 1 & 1.5 \\ 0 & 1 \end{pmatrix}$$

$$\lambda_1 = 1, \quad \lambda_2 = 1$$