

BULK RNASEQ WORKSHOP

What we want?

heterogenous tissue

total RNA extraction

...CATCCTAGCTA...
sequencing

average expression data

Bulk RNA-seq

What is Bulk RNA sequencing (Bulk RNA-seq)?

- Bulk RNA sequencing is the method of choice for transcriptomic analysis of tissue sections, or biopsies.
- It measures the average expression level of individual genes across hundreds to millions of input cells and is useful

to get a global idea of gene expression differences between samples.

Bulk RNA-seq Pipeline

DNA

DNA

DNA is the kind of **Molecule** that **encodes your Genome** (all your **Genetic Information**). Separate **recipes** for each type of molecule (each little physical piece that make up brain cells, skin cells, heart cells building and maintaining you)

DNA

This recipe is not written in English.

DNA Molecule is shapes like a double Helix

Miracle in compression

48 volumes of

1000 pages

Every 1mm one letterA4

Pipeline

Step 1: Step 2: **DNA** extraction Library preparation Adapter DNA fragments **DNA** library **Next Generation Sequencing Workflow** Step 3: Step 4: Sequencing Analysis GACTAGTCTG Align Identify reads variants VCF FastQ BAM

10

Nucleotide

SAM File

chr11:5246500-5248500 (reverse strand):

ATATCTTAGAGGGAGGGCTGAGGGTTTGAAGTCCAACTCCTAAGCCAGTGCCAGAAGAGCCAAGGACAGGTACGGCTGTC GCTGGGCATAAAAGTCAGGGCAGAGCCATCTATTGCTTACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAA CAGACACCATGGTGCATCTGACTCCTGAGGAGAAGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGTGGATGAAGTT GGTGGTGAGGCCCTGGGCAGGTTGGTATCAAGGTTACAAGACAGGTTTAAGGAGACCAATAGAAACTGGGCATGTGGAGA GTCTACCCTTGGACCCAGAGGTTCTTTGAGTCCTTTGGGGATCTGTCCACTCCTGATGCTGTTATGGGCAACCCTAAGGT GAAGGCTCATGGCAAGAAAGTGCTCGGTGCCTTTAGTGATGGCCTGGCTCACCTGGACAACCTCAAGGGCACCTTTGCCA CACTGAGTGAGCTGCACTGTGACAAGCTGCACGTGGATCCTGAGAACTTCAGGGTGAGTCTATGGGACGCTTGATGTTTT CTTTCCCCTTCTTTCTATGGTTAAGTTCATGTCATAGGAAGGGGATAAGTAACAGGGTACAGTTTAGAATGGGAAACAG ACGAATGATTGCATCAGTGTGGAAGTCTCAGGATCGTTTTAGTTTCTTTTATTTGCTGTTCATAACAATTGTTTTCTTTT GTTTAATTCTTGCTTTCTTTTTTTTTCTCCGCAATTTTTACTATTATACTTAATGCCTTAACATTGTGTATAACAAA ATGTGTGCTTATTTGCATATTCATAATCTCCCTACTTTATTTTCTTTTATTTTTAATTGATACATAATCATTATACATAT TTATGGGTTAAAGTGTAATGTTTTAATATGTGTACACATATTGACCAAATCAGGGTAATTTTGCATTTGTAATTTTAAAA TGATACAATGTATCATGCCTCTTTGCACCATTCTAAAGAATAACAGTGATAATTTCTGGGTTAAGGCAATAGCAATATCT

chr11:5246500-5248500 (reverse strand):

ATATCTTAGAGGGAGGGCTGAGGGTTTGAAGTCCAACTCCTAAGCCAGTGCCAGAAGAGCCAAGGACAGGTACGGCTGTC GCTGGGCATAAAAGTCAGGGCAGAGCCATCTATTGCTTACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAA CAGACACCATGGTGCATCTGACTCCTGAGGAGAAGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGTGGATGAAGTT **GGTGGTGAGGCCCTGGGCAG**GTTGGTATCAAGGTTACAAGACAGGTTTAAGGAGACCAATAGAAACTGGGCATGTGGAGA GTCTACCCTTGGACCCAGAGGTTCTTTGAGTCCTTTGGGGATCTGTCCACTCCTGATGCTGTTATGGGCAACCCTAAGGT GAAGGCTCATGGCAAGAAAGTGCTCGGTGCCTTTAGTGATGGCCTGGCTCACCTGGACAACCTCAAGGGCACCTTTGCCA CACTGAGTGAGCTGCACTGTGACAAGCTGCACGTGGATCCTGAGAACTTCAGGGTGAGTCTATGGGACGCTTGATGTTTT CTTTCCCCTTCTTTTCTATGGTTAAGTTCATGTCATAGGAAGGGGATAAGTAACAGGGTACAGTTTAGAATGGGAAACAG ACGAATGATTGCATCAGTGTGGAAGTCTCAGGATCGTTTTAGTTTCTTTTATTTGCTGTTCATAACAATTGTTTTCTTTT GTTTAATTCTTGCTTTCT TAACATTGTGTATAACAAA Homo sapiens hemoglobin, beta (HBB) AGGAAATATCTCTGAGAT ATGTGTACACATATTGACCAAATCAGGGTAA TGATACAATGTATCATGCCTCTTTGCACCATTCTAAAGAATAACAGTGATAATTTCTGGGTTAAGGCAATAGCAATATCT TTATGGGTTAAAGTITCTGCATATAAATTGTAACTGATGTAAGAGGTTTCATATTGCTAATAGCAGCTACAATCCAGCTA AATGCTTTCTTCTTTTTTTTTGGTTGGGATAAGGCTGGATTATTCTGAGTCCAAGCTAGGCCCTTTTGCTAATCATGTTCA TTATGGGTTAAAGTCTCCCACAGCTCCTGGGCAACGTGCTGGTCTGTGTGCTGGCCCATCACTTTGGCAAAGAATTCACC AATGCTTTCTTTGCCTATCAGAAAGTGGTGGCTGGTGTGGCTAATGCCCTGGCCCACAAGTATCACTAAGCTCGCTT

First generation DNA sequencing

Fred Sanger "Chain termination" sequencing

First generation DNA sequencing

Your genome

100,000,000 nt

Input DNA

CCATAGTATATCTCGGCTCTAGGCCCTCATTTTTT
CCATAGTATATCTCGGCTCTAGGCCCTCATTTTTT
CCATAGTATATCTCGGCTCTAGGCCCTCATTTTTT
CCATAGTATATCTCGGCTCTAGGCCCTCATTTTTT

CCATAGTA TATCTCGG CTCTAGGCCCTC ATTTTT
CCA TAGTATAT CTCGGCTCTAGGCCCTCA TTTTTT
CCATAGTAT ATCTCGGCTCTAG GCCCTCA TTTTTT
CCATAG TATATCT CGGCTCTAGGCCCT CATTTTTT

Deposit on slide

CATAG

$$Q = 10 \rightarrow 1$$
 in 10 chance call is incorrect

$$Q = 20 \rightarrow 1 \text{ in } 100$$

$$Q = 30 \rightarrow 1 \text{ in } 1,000$$

The score values

Phred Quality Score	Probability of incorrect base call	Base call accuracy		
10	1 in 10	90%		
20	1 in 100	99%		
30	1 in 1000	99.9%		
40	1 in 10,000	99.99%		

Call: orange (C)

Estimate *p*, probability incorrect: non-orange light / total light

p = 3 green / 9 total = 1/3

 $Q = -10 \log_{10} \frac{1}{3} = 4.77$

A read in FASTQ format

```
Name @ERR194146.1 HSQ1008:141:D0CC8ACXX:3:1308:20201:36071/1
Sequence ACATCTGGTTCCTACTTCAGGGCCATAAAGCCTAAATAGCCCACACGTTCCCCTTAAAT
(ignore) +
Base qualities ?@@FFBFFDDHHBCEAFGEGIIDHGH@GDHHHGEHID@C?GGDG@FHIGGH@FHBEG:G
```


Space	32	0	48	@	64	P	80
!	33	1	49	A	65	Q	81
"	34	2	50	В	66	R	82
#	35	3	51	C	67	S	83
\$	36	4	52	D	68	T	84
%	37	5	53	E	69	U	85
&	38	6	54	F	70	V	86
'	39	7	55	G	71	W	87
(40	8	56	Н	72	X	88
)	41	9	57	I	73	Y	89
*	42	:	58	J	74	Z	90
+	43	;	59	K	75	[91
,	44	>	60	L	76	\	92
-	45	=	61	M	77]	93
	46	<	62	N	78	٨	94
/	47	?	63	О	79	_	95
				J			

Data gathering

SRP: Study

SRX : Experiment

SRS: Sample

SRR: Run

DRP

DRX

DRS

DRR

ERP

ERX

ERS

ERR

An experiment is a A run refers to a biological A sample refers to a A study is the sequencing run, biological sample test/perturbation, associated with one overarching (cell, mouse, human) conducted on one biological sample and investigation, on which an sample. eg: gene SRP (Project/Study) hypothesis and its experiment, experiment is knockout, associated tests replicated any overexpression, or conducted number of times control SRS (Sample) run sample experiment run SRX (Experiment) study run SRR (Run) sample experiment run run

SRR: SRR6468671.SRA (Too Dense) 326 M

SRAtoolkit: Fastq-dump

fasterq-dump --split-3 SRR11192680.SRA

FastQ: SRR6468671_1.fastq 738 M Paired End SRR6468671_2.fastq 738 M SRR6468671.fastq 1.5 K (Not pared)

738M 18:00 29 جوللی SRR6468671_1.fastq جوللی SRR6468671_1.fastq 734M 18:00 29 جوللی SRR6468671_2.fastq 1.5K 18:00 29 جوللی SRR6468671.fastq 326M 15:01 26

1

Fastq File head!

```
SRR6468540.sra SRR6468671_1.fastq SRR6468671_2.fastq SRR6468671.fastq
                                                                          SRR6468671.sra*
                                      :~/SRR$ head SRR6468671_1.fastq
(base)
                    my-pc
@SRR6468671.1 1 length=101
TAGATCAATTTCATTTATTTTTGGACTATGTTGTAATTTTTATTCTTTGCAATGTTTTTGAGATTCACTTTAGGAGATCGGAAGAGCACACGTCTGAACTCCA
+SRR6468671.1 1 length=101
CCCDFFDFHHDGDHIIBGGGIGG?FEGIIFH<FHEHGGIIGGGEGHI@GGIIGHGGBDHG8DGG<FHEGIIIHGEEHIGEHFFFFCC@A???CD>AACDCC
@SRR6468671.2 2 length=101
GTACCGCCAATAAGCGTTTGAGAGATGGAGTGACACAGTAGGATAAGCTAACCGTACTGTTGGTTATGTACGGAGATCGGAAGAGCACACGTCTGAACTCC
+SRR6468671.2 2 length=101
@?@FFFDDFHHDHJIJFFGGHEGHHBGHGH0BDHIEIJBFEDEHIIJ>FGGGIH;=CAAEEHF?;@CC>>CDDDD@>CB=8@BABCCBDDDDDDB>ACCCD
@SRR6468671.3 3 length=101
CCGTCCCTTGGGTGCCGCCTTTTTTGTTTTTCATCAGATAAACAGGGTGGTACCGCGATGAGTCCCGTCGTCCCTTGCAATTAGATCGGAAGAGCACACGT
(base)
                                      :~/SRR$ wc SRR6468671 1.fastq
                    my-pc
 11191060 22382120 773622054 SRR6468671 1.fastq
                                      :~/SRR$ wc -l SRR6468671 1.fastq
(base)
                    my-pc
11191060 SRR6468671_1.fastq
```

~ 12000000 line

~ 3000000 Read

FASTQC

Aims to provide a simple way to do some quality control checks on raw sequence data coming from

high throughput sequencing pipelines.

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

- You may have FastQC or Need to Download .
 - Then:

```
$ sudo apt-get update (Prepare to download)
$ sudo apt-get install fastqc
$ fastqc — f fastq SRR6468671_1.fastq SRR6468671_2.fastq
```


№FastQC Report

Summary

Basic Statistics

Per base sequence quality

Per sequence quality scores

Per base sequence content

Per sequence GC content

Per base N content

Sequence Length Distribution

Sequence Duplication Levels

Overrepresented sequences

Adapter Content

Basic Statistics

Measure	Value			
Filename	SRR6468671_1.fastq			
File type	Conventional base calls			
Encoding	Sanger / Illumina 1.9			
Total Sequences	2797765			
Sequences flagged as poor quality	0			
Sequence length	78-101			
%GC	43			

Per base sequence quality

X : Position

Y : Quality

More than 8000000 base pairs Quality are 40

Trimming

Trimmomatic: A flexible read trimming tool for Illumina NGS data.

Download:

http://www.usadellab.org/cms/index.php?page=trimmomatic

Install:

\$ sudo apt-get install trimmomatic

```
$ java -jar trimmomatic-0.35.jar SE/PE 2 input files and 4 outputs

LEADING:25 (Trim from left side , quality < 25 )

TRAILING: 25 (Trim from right side , quality < 25 )

SLIDINGWINDOW:4: 25 (Slidin window size 4 pair, trim next by meanquality < 25 )

MINLEN:36 (Remove if Remaining real < 36 )
```

```
Required:
```

jre-8v261-linux-x64.tar.gz -----→ tar xvzf jre-8v261-linux-x64.tar.gz

Input: SRR6468671_1.fastq SRR6468671_2.fastq

Output: SRR6468671_1_trimmed.fastq SRR6468671_1_untrimmed.fastq

SRR6468671_2_trimmed.fastq SRR6468671_2_untrimmed.fastq

Alligning

Reference genome

Hisat2

🕦 Image Description Ge... 🚳 Help with Questions N Free Text to Speech O... 💹 Free Al Assistant 🔯 Hamster Kombat Daily... 🐧 الباهد ليم يال Arrow 🚳 Describe Images With ... 🕀 Lumina: Research at th... 📵 BigBl

HISAT2 is a fast and sensitive alignment program for mapping next-generation sequencing reads

(both DNA and RNA) to a population of human genomes as well as to a single reference genome.

HISAT2 graph-based alignment of next generation sequencing reads to a population of genomes HISAT2 is a fast and sensitive alignment program for mapping next-generation sequencing reads (both DNA and RNA) to a population of human genomes as well as to a single reference genome. Based on an extension of BWT for graphs (Sirén et al. 2014), we designed and implemented a graph FM index (GFM), an original approach and its first implementation. In addition to using one global GFM index that represents a population of human genomes, HISAT2 uses a large set of small GFM indexes that collectively cover the whole genome. These small indexes (called local indexes), combined with several alignment strategies, enable rapid and accurate alignment of sequencing reads. This new indexing scheme is called a Hierarchical Graph FM index (HGFM). The HISAT-3N paper published at Genome Research, 7/1/2021 HISAT-3N beta release 12/14/2020 HISAT-3N is a software system for analyzing nucleotide conversion sequencing reads. See the HISAT-3N for more details. Index files are moved to the AWS Public Dataset Program. 9/3/2020 We have moved HISAT2 index files to the AWS Public Dataset Program. See the link for more details. HISAT 2.2.1 release 7/24/2020 This patch version includes the following changes. Remove the HISAT-genotype related scripts. HISAT-genotype moved to http://daehwankimlab.github.io/hisat-genotype/ Fixed bugs related to --read-lengths option HISAT 2.2.0 release 2/6/2020

Main
About
Manual
HISAT-3N
Download
HowTo
Links

Funding

This work was supported in part by the National Human Genome Research Institute under grants R01-HG006102 and R01-HG006677, and NIH grants R01-LM06845 and R01-GM083873 and NSF grant CCF-0347992 to Steven L. Salzberg and by the Cancer Prevention Research Institute of Texas under grant RR170068 and NIH grant R01-GM135341 to Daehwan Kim

Getting Help

Please use hisat2.genomics@gmail.com for private communications only. Please do not email technical questions to HISAT2 contributors directly.

Binaries

Version: HISAT2 2.2.1

Release Date: 7/24/2020

Source https://cloud.biohpc.swmed.edu/index.php/s/fE9QCsX3NH4QwBi/download

OSX_x86_64 https://cloud.biohpc.swmed.edu/index.php/s/zMgEtnF6LjnjFrr/download

Linux_x86_64 https://cloud.biohpc.swmed.edu/index.php/s/oTtGWbWjaxsQ2Ho/download

Version: HISAT2 2.2.0

Release Date: 2/6/2020

Source https://cloud.biohpc.swmed.edu/index.php/s/hisat2-220-source/download

OSX_x86_64 https://cloud.biohpc.swmed.edu/index.php/s/hisat2-220-OSX_x86_64/download

Linux_x86_64 https://cloud.biohpc.swmed.edu/index.php/s/hisat2-220-Linux_x86_64/download

Version: HISAT2 2.1.0

Release Date: 6/8/2017

Source https://cloud.biohpc.swmed.edu/index.php/s/hisat2-210-source/download

OSX_x86_64 https://cloud.biohpc.swmed.edu/index.php/s/hisat2-210-OSX_x86_64/download

Linux_x86_64 https://cloud.biohpc.swmed.edu/index.php/s/hisat2-210-Linux_x86_64/download

Windows http://www.di.fc.ul.pt/~afalcao/hisat2_windows.html

Index

HISAT2 indexes are hosted on AWS (Amazon Web Services), thanks to the AWS Public Datasets program. Click this link for more details.

H. sapiens

GRCh38

genome https://genome-idx.s3.amazonaws.com/hisat/grch38_genome.tar.gz

genome_snp https://genome-idx.s3.amazonaws.com/hisat/grch38_snp.tar.gz

genome_tran https://genome-idx.s3.amazonaws.com/hisat/grch38_tran.tar.gz

genome_snp_tran https://genome-idx.s3.amazonaws.com/hisat/grch38_snptran.tar.gz

genome_rep(above 2.2.0) https://genome-idx.s3.amazonaws.com/hisat/grch38_rep.tar.gz

genome_snp_rep(above 2.2.0) https://genome-idx.s3.amazonaws.com/hisat/grch38_snprep.tar.gz

UCSC hg38

genome https://genome-idx.s3.amazonaws.com/hisat/hg38_genome.tar.gz

genome_tran https://genome-idx.s3.amazonaws.com/hisat/hg38_tran.tar.gz

• GRCh37

genome https://genome-idx.s3.amazonaws.com/hisat/grch37_genome.tar.gz

genome_snp https://genome-idx.s3.amazonaws.com/hisat/grch37_snp.tar.gz

genome_tran https://genome-idx.s3.amazonaws.com/hisat/grch37_tran.tar.gz

genome_snp_tran https://genome-idx.s3.amazonaws.com/hisat/grch37_snptran.tar.gz

If the Index file is not available, we must build one, Then Download The reference Genom as a Fasta format and use given command:

\$ hisat-build reference.fasta

Here we have it!
The index files are given for ChrX as 8 files . (chrX_tran_1.ht2 , ..)

\$ hisat2 -q -x < Index.ht2 folder > { -1 m1 -2 m2 } --add-chrname S name.sam

To investigate samfile we must use samview but "head" command could be benefitial!

\$ head sam ERR188044.9

ERR188044.9	83	chrX	1297695	2	60	76M	=	1297686	8	-160	AACTACT	GACAACGA	AGGCCGCGCCT
GCCTTTCCCATCTGT	CTATCTAT	CTGGCTGG	CAGGGAAG	GAAAGAAC	TTG	>>CDCDD	C@CC?DCE/	ADDHIIJJ	נככככככנו	<u>כ</u> כככככככ	ככככככככ	ככככככככ	JJJJJJJJJHHH
HHFFFFFCCC	AS:i:0	XN:i:0	XM:i:0	XO:i:0	XG:i:0	NM:i:0	MD:Z:76	YS:i:0	YT:Z:CP	NH:i:1			
ERR188044.9	163	chrX	1297686	8	60	76M	=	1297695	2	160	TACTTCT	TTTAGCTG	TTTAACTTTGT
AAGATGCAAAGAGGT	TGGATCAA	GTTTAAAT	GACTGTGC	TGCCCCTT	TCA	CCCFFFF	FHHHHHJJ:	נככככככנ	JIHFHGHI.	ננננונננ	JGHIJJJJ	ננננננננ	נננוננננננננ
ונונונוננלננ	AS:i:0	XN:i:0	XM:i:0	X0:i:0	XG:i:0	NM:i:0	MD:Z:76	YS:i:0	YT:Z:CP	NH:i:1			
ERR188044.35	83	chrX	6551798	7	60	1S75M	=	6551285	3	-3288	TCTGAGC	TAACCTGC	CATGCAGAGCC
CTGCAAAGCTCCTCT	TTTCTGGG	CCAGAAGC	CTAGCATT	CTCGGCAG	TGG	@DDDCC@	C>;DFFFH	IICCHHH	IIIJIFJI.	CCCCICCC	ככככככככ	CCCIICCC	JJJIJJJIHGH
GHFFFFFCCC	AS:i:-1	XN:i:0	XM:i:0	XO:i:0	XG:i:0	NM:i:0	MD:Z:75	YS:i:0	YT:Z:CP	NH:i:1			
ERR188044.35	163	chrX	6551285	3	60	49M1921	N27M	=	6551798	7	3288	GCTGTTG	CTGCAGTTGCC
ACTGCCGACACCACA	GCTCAGGC	CCAAGGTG	TCAGTCTT	GCATGTTG	AGGGTTCC	AGC	CCCFFFFI	-DHHGHHH	JJJIJJJJ.	JGGIJJJI	ננננננוננ	נוננננננ	8@CBEHFHIJJ
JJHHHHHGHFFEED	EEE	AS:i:0	XN:i:0	XM:i:0	XO:i:0	XG:i:0	NM:i:0	MD:Z:76	YS:i:-1	YT:Z:CP	XS:A:-	NH:i:1	
ERR188044.92	99	chrX	1297680	0	60	76M	=	1297694	7	222	GGCGAAT	CGTAATGA	GGCGTGCGCCG
CCAATATGCACTGTA	CATTCCAC	AAGCATTG	CCTTCTTA	TTTTACTT	CTT	CCCFFFF	FHHHHHJJ:	JJIJEHGG	GHIIJJJJ	ננוננננו	HGHHHHHH	GFFFFFEE	EEEEDDDDDDD
EEEEDDCCDA	AS:i:0	XN:i:0	XM:i:0	X0:i:0	XG:i:0	NM:i:0	MD:Z:76	YS:i:0	YT:Z:CP	NH:i:1			
ERR188044.92	147	chrX	1297694	7	60	75M	=	1297680	9	-222	CAAAGAA	CTACTGAC	AACGAAGGCCG
CGCCTGCCTTTCCCA	TCTGTCTA	TCTATCTG	GCTGGCAG	GGAAGGAA	AG	@DCB;;-:	>;5@>@=C	C@ADD>B8	HFGHEJJJ.	ננונננננ	JJIJIJJJ	UIIICCCC	ННННСССССССС
HFFFFFCCC	AS:i:0	XN:i:0	XM:i:0	X0:i:0	XG:i:0	NM:i:0	MD:Z:75	YS:i:0	YT:Z:CP	NH:i:1			
ERR188044.120	83	chrX	1036852	35	60	26M1370	N50M	=	1036770	44	-6820	GCAAACT	TAGCTTTTCTG
ATGGTGACCTGAAAC	ATGGTGACCTGAAACGAGAATCCAGATCTTCCCAGCAGCCGACGTGTGATCACTGCCG <c@;3ecec?7cffha=c>C@).>@C8;;GCCAF@D9?4F?GB?8DBFGGA@C6CGFA</c@;3ecec?7cffha=c>												
CAHE@FFHDBADFDD	@C@	AS:i:0	XN:i:0	XM:i:0	X0:i:0	XG:i:0	NM:i:0	MD:Z:76	YS:i:0	YT:Z:CP	XS:A:-	NH:i:1	

Sam tools

- To identify read count first we must have BAM file.
- Then , converting <u>sam</u> file to <u>bam</u> file by using samtools!

• \$ samtools view –F 4 –b filename.sam output.bam

```
ERR188044.bam آقۇست 17:46 15 آقۇست 17:46 15 قۇست 641M 11:19 10 آقۇست 646M 11:22 10 آقۇست 646M 11:22 10
```


Gene Counting

Requirements:

- *.sam
- *.bam
- *.gtf

The Gene Transfer Format (GTF) is a widely used format forstoring gene annotations.

You can obtain GTF files easily from the

UCSC table browser and Ensembl.

Gtf file

ucsc genome browser

To obtain "gtf" file, identifying the situation of each gene on each chromosome.

For a specific chromosome .

chrUn KI270751v1.fa.gz	2014-01-23 16:40	48K
chrUn_KI270752v1.fa.gz	2014-01-23 16:40	9.2K
chrUn_KI270753v1.fa.gz	2014-01-23 16:40	20K
chrUn_KI270754v1.fa.gz	2014-01-23 16:40	8.7K
chrUn_KI270755v1.fa.gz	2014-01-23 16:40	11K
chrUn_KI270756v1.fa.gz	2014-01-23 16:40	16K
chrUn KI270757v1.fa.gz	2014-01-23 16:40	14K
chrX.fa.gz	2014-01-23 16:40	47M
	2014-01-23 16:40 2014-01-23 16:40	47M 80K
chrX.fa.gz		
chrX.fa.gz chrX KI270880v1 alt.fa.gz	2014-01-23 16:40	80K
<pre>chrX.fa.gz chrX KI270880v1 alt.fa.gz chrX KI270881v1 alt.fa.gz</pre>	2014-01-23 16:40 2014-01-23 16:40	80K 46K
<pre>chrX.fa.gz chrX KI270880v1 alt.fa.gz chrX KI270881v1 alt.fa.gz chrX KI270913v1 alt.fa.gz</pre>	2014-01-23 16:40 2014-01-23 16:40 2014-01-23 16:40	80K 46K 77K

Htseq-count

A tool developed with HTSeq that preprocesses RNA-Seq data for differential expression analysis by counting the overlap of reads with genes.

Install:

\$ sudo apt-get install build-essential python2.7-dev python-numpy python-matplotlib python-pysam python-htseq

Usage:

\$ htseq- count [options] <alignment_files(*.sam)> <gff_file> > output.count

Count to csv

For each sample, All The pipeline must be done separately.

Samples

GENE ID	KD.2	KD.3	OE.1	OE.2	OE.3	IR.1	IR.2	IR.3
1/2-SBSRNA4	57	41	64	55	38	45	31	39
A1BG	71	40	100	81	41	77	58	40
A1BG-AS1	256	177	220	189	107	213	172	126
A1CF	0	1	1	0	0	0	0	C
A2LD1	146	81	138	125	52	91	80	50
A2M	10	9	2	5	2	9	8	4
A2ML1	3	2	6	5	2	2	1	C
A2MP1	0	0	2	1	3	0	2	1
A4GALT	56	37	107	118	65	49	52	37
A4GNT	0	0	0	0	1	0	0	C
AA06	0	0	0	0	0	0	0	0
AAA1	0	0	1	0	0	0	0	C
AAAS	2288	1363	1753	1727	835	1672	1389	1121
AACS	1586	923	951	967	484	938	771	635
AACSP1	1	1	3	0	1	1	1	3
AADAC	0	0	0	0	0	0	0	0
AADACL2	0	0	0	0	0	0	0	0
AADACL3	0	0	0	0	0	0	0	C
AADACL4	0	0	1	1	0	0	0	C
AADAT	856	539	593	576	359	567	521	416
AAGAB	4648	2550	2648	2356	1481	3265	2790	2118
AAK1	2310	1384	1869	1602	980	1675	1614	1108
AAMP	5198	3081	3179	3137	1721	4061	3304	2623
AANAT	7	7	12	12	4	6	2	7
AARS	5570	3323	4782	4580	2473	3953	3339	2666

Benes

• fastqc -f fastq ../NGS/samples/ERR188044_chrX_1.fastq ERR188044_chrX_2.fastq

• java -jar trimmomatic-0.39.jar PE ../NGS/samples/ERR188044_chrX_1.fastq ../NGS/samples/ERR188044_chrX_2.fastq ER1trim.fastq ER1untrim.fastq ER2trim.fastq ER2untrim.fastq

LEADING:25 TRAILING:25

SLIDINGWINDOW:4:20

hisat2 -q -x ../bulk/NGS/indexes/chrX_tran -1 ../bulk/NGS/samples/ER1trim.fastq -2 ../bulk/NGS/samples/ER2trim.fastq --add-chrname -S mapped.sam

• htseq-count mapped.sam ../genes/chrX.gtf > ERR18.count


```
sudo -i
wget http://archive.ubuntu.com/ubuntu/pool/main/o/openssl/libssl1.1_1.1.1f-
lubuntu2_amd64.deb
sudo dpkg -i libssl1.1 1.1.1f-lubuntu2 amd64.deb
```

sudo -i
root@s:~# apt --fix-broken install

sudo apt-get install build-essential python3-numpy python3-matplotlib python3pysam python3-htseq

Thanks